## Protect 5-dimensional tables with the modular approach implemented in $\tau$ -Argus

3RD WORKSHOP ON TIME SERIES ANALYSIS AND STATISTICAL Disclosure Control Methods for Official Statistics 14-15

> J. Jamme W. Pomel A.-R. Socard

2023/12/15





- Protection of tabular data against disclosure risks
- SDC method: suppressive method applied on tabular data in two steps:
  - ► **Primary suppression** (frequency, dominance or p% rules) easy step to compute
  - ► Secondary suppression (marginal differenciation, protection levels, singleton rules, etc.) need of powerful algorithm to compute
- Reference tool:  $\tau$ -Argus (CBS, [De Wolf et al., 2014]) for the secondary suppression algorithms
- Additional tool: rtauargus (Insee, [Berrard et al., 2023]) management of the suppression over large sets of linked tables

There are 4 secondary suppression methods implemented in au-Argus . Especially,

- Hypercube (GHMITER, [Repsilber, 1994])
- Modular (HiTas, [De Wolf, 2002])

#### HYPERCURE

- Advantages:
  - Fastest method in  $\tau$ -Argus
  - Can deal with long and large tables.
- Drawback:
  - Many suppressed cells,
  - Margins are easily suppressed,
  - ► ⇒ Low utility.

#### MODULAR

#### Advantages:

- ► Fast (but less than Hypercube ),
- Good utility: margins cells are more protected than the inner cells (Minimisation of the suppressed values)

#### Drawbacks:

- In some cases, problems are infeasible for Modular (lots of zeroes in sub-tables [De Wolf et al., 2014]),
- Very long computation time on some tables (3 days for a 2D table with 360 000 rows),
- Modular is available only for < 4D tables.</p>

→ Modular is the best way to solve secondary suppression problems.

## **MOTIVATIONS**

- Need to release some large tabular data (> 4 dims)
- Today, only possible with Hypercube ⇒ Very low utility
- ⇒ Current alternative at Insee is:
  - Either apply home made algorithm but with no optimisation, no protection levels, no relevancy between linked tables
  - ullet Or not release the 5D tabular data but only some 3D or 4D tables.

## THE MISSION

What if we could find a way to reduce the number of dimensions of tabular data without loosing cells ?

# Issues/Challenges

- How to do this?
- Does the solution generate less suppression than Hypercube ?
- Is the solution adapted to our real use cases?

## AN EXAMPLE TO START

Let's have a 4D tabular data crossing:

- $EDU \in \{ALL, A, B, C, D\}$
- $OCC \in \{ALL, A, B, C\}$
- $GEN \in \{ALL, F, M\}$
- $AGE \in \{ALL, Child, Adult\}$

## AN EXAMPLE TO START

| EDU | OCC | GEN | AGE   | FREQ |
|-----|-----|-----|-------|------|
| Α   | Α   | ALL | ALL   | 86   |
| Α   | Α   | ALL | Adult | 44   |
| Α   | Α   | ALL | Child | 42   |
| Α   | Α   | F   | ALL   | 36   |
| Α   | Α   | F   | Adult | 23   |
| Α   | Α   | F   | Child | 13   |
| Α   | Α   | М   | ALL   | 50   |
| Α   | Α   | M   | Adult | 21   |
| Α   | Α   | М   | Child | 29   |

TABLE: First nine rows (over 180) of the original 4-dimensional table to split

## An example to start

NAIVE IDEA: MERGE TWO VARIABLES

| EDU | occ | GEN_AGE    | FREQ |
|-----|-----|------------|------|
| Α   | Α   | ALL_ALL    | 86   |
| Α   | Α   | ALL_Adult  | 44   |
| Α   | Α   | ALL_Child  | 42   |
| Α   | Α   | F_ALL      | 36   |
| Α   | Α   | F_Adult    | 23   |
| Α   | Α   | F_Child    | 13   |
| Α   | Α   | M_ALL      | 50   |
| Α   | Α   | $M\_Adult$ | 21   |
| A   | Α   | M_Child    | 29   |

TABLE: First nine rows (over 180) of the 3-dimensional table after first step (merging step)

## An example to start

Naive idea ⇒ non-nested hierarchies issue



FIGURE: The two non-nested hierarchies after the merging of GENDER and AGE variables

## AN EXAMPLE TO START

IDEA: MERGE-AND-SPLIT THE TABLE

| EDU    | OCC    | GEN_AGE                | FREQ     | EDU    | OCC    | GEN_AGE            | FREQ     |
|--------|--------|------------------------|----------|--------|--------|--------------------|----------|
| Α      | Α      | ALL_ALL                | 86       | Α      | Α      | ALL_ALL            | 86       |
| A<br>A | A<br>A | ALL_Adult<br>ALL_Child | 44<br>42 | A<br>A | A<br>A | F_ALL<br>F_Adult   | 36<br>23 |
| Α      | Α      | F_Adult                | 23       | Α      | Α      | F_Child            | 13       |
| Α      | Α      | F_Child                | 13       | Α      | Α      | M_ALL              | 50       |
| A      | A      | M_Adult                | 21       | A<br>A | A<br>A | M_Adult<br>M_Child | 21<br>29 |
| A      | Α      | M_Child                | 29       |        |        |                    |          |

TABLE: The two linked sub-tables to protect

## The Merge-And-Split Method

#### GENERAL IDEA

- Merge step: Remove one dimension by merging two of the original variables
- Split step:
  - Split the table in sub-tables
  - ▶ In each sub-table, the merged variable has to be perfectly hierarchical

## The Merge-And-Split Method

CHALLENGE

How to split the table in any cases?

How to detect all the non-nested hierarchies in the new variable?

#### DETECTION OF ALL NON-NESTED HIERARCHIES

#### Notations:

- X, Y variables to merge (ie paste the categories)
- X Y the merged variable
- $n_X$ ,  $n_Y$ , number of nodes of X, Y respectively,
- The **nodes** are all the categories of a hierarchy except the leaves,
- A **sub-part** of a hierarchy consists of a node and the categories immediately below it.

## There are as many sub-parts in a hierarchy as nodes





FIGURE: Example of hierarchies for X (left) and Y (right)

- $n_X = 3$  and  $n_Y = 5$  nodes
- $\{Total, R1, R2\}$  is a sub-part of X's hierarchy from the node Total
- $\{B, B1, B2\}$  is a sub-part of Y's hierarchy from the node B

#### DETECTION OF ALL NON-NESTED HIERARCHIES

## First Step: Build sub-tables from the hierarchy of X

- One sub-table for each sub-part of the X's hierarchy
- $\bullet$  Keep all the categories of Y
- $\Rightarrow$  We get  $n_X$  sub-tables

### Example:

- $T_1$ :  $\cdots \times X\{Total, R1, R2\} \times Y$
- $T_2: \cdots \times X\{R1, D11, D12\} \times Y$
- $T_3: \cdots \times X\{R2, D21, D22\} \times Y$

#### DETECTION OF ALL NON-NESTED HIERARCHIES

Second Step: Build sub-tables from the hierarchy of Y

- One sub-table for each sub-part of the Y's hierarchy
- Apply this on each sub-table of the firs step
- $\Rightarrow$  We get  $n_X \times n_Y$  sub-tables

## Example:

- $T_{11}$ :  $\cdots \times X\{Total, R1, R2\} \times Y\{Total, A, B, C\}$
- $T_{12}$ : · · · ×  $X\{Total, R1, R2\} \times Y\{A, A1, A2\}$
- $T_{13}$ : · · · ×  $X\{Total, R1, R2\} \times Y\{B, B1, B2\}$
- $T_{14}$ : · · · ×  $X\{Total, R1, R2\} \times Y\{C, C1, C2\}$
- $T_{15}$ : · · · × X{ Total, R1, R2} × Y{ C1, C21, C22}
- $T_{21}$ : · · · ×  $X\{R1, D11, D12\}$  ×  $Y\{Total, A, B, C\}$
- :
- $T_{35}$ :  $\cdots \times X\{R2, D21, D22\} \times Y\{C1, C21, C22\}$

#### DETECTION OF ALL NON-NESTED HIERARCHIES

Third Step: Merge the two variables

- To do in each sub-table
- ullet  $\Rightarrow$  We retrieve our starting example: X and Y have 1 node in each sub-table.

#### DETECTION OF ALL NON-NESTED HIERARCHIES

Fourth Step: Split each sub-table in two sub-tables to deal with non-nested hierarchies

- We get  $2 \times n_X \times n_Y$  sub-tables
- X\_Y is perfectly hierarchical in each one.

Here are the 30 sub-tables of the example to protect:

- $T_{111}$ :  $\cdots \times X_Y$ {  $Total\_Total$ ,  $R1\_Total$ ,  $R2\_Total$ ,  $R1\_A$ ,  $R1\_B$ ,  $R1\_C$   $R2\_A$ ,  $R2\_B$ ,  $R2\_C$ }
- $\bullet \quad T_{112}\colon \cdots \times X\_Y \{ \textit{Total\_Total}, \textit{Total\_A}, \textit{Total\_B}, \textit{Total\_C}, \textit{R1\_A}, \textit{R2\_A}, \textit{R1\_B}, \textit{R2\_B}, \textit{R1\_C} \; \textit{R2\_C} \}$
- •
- $\bullet \quad T_{351}: \, \cdots \, \times \, X\_Y\{R2\_C1,\, D21\_C1,\, D22\_C1,\, D21\_C21,\, D21\_C22,\, D22\_C21,\, D22\_C22\}$
- $\bullet \quad T_{352}: \ \cdots \times \ X\_Y \{R2\_C1, R2\_C21, R2\_C22, D21\_C21, D22\_C21, D21\_C22, D22\_C22\}$

## What about 5D-tables

# Principle: Repeat the merge-and-split process twice consecutively There are two ways to do this:

- Either choose at both merge-and-split processes two different couples of variables ( $\Rightarrow X\_Y$  and  $Z\_T$ )
  - ► We get  $(2 * n_X * n_Y) \times (2 * n_Z * n_T) = 4 * n_X * n_Y * n_Z * n_T$  sub-tables
  - ▶ Least number of sub-tables:  $n_X = 1$ ,  $n_Y = 1$ ,  $n_Z = 1$ ,  $n_T = 1 \Rightarrow 4$  sub-tables
- Or, at the second time, reuse the first merged variable  $(\Rightarrow X\_Y\_Z)$ 
  - We get  $12 * n_X * n_Y * n_Z$  sub-tables (for some cases, demo in the paper)
  - ▶ Least number of sub-tables:  $n_X = 1, n_Y = 1, n_Z = 1 \Rightarrow 12$  sub-tables

#### CHALLENGES

The merge-and-split process produces a set of linked tables

- ⇒ We can expect over-suppression and longer computation time.
  - Is the over-suppression acceptable?
  - How much longer is the computation?
  - Does the quantity of primary cells have an effect on over-suppression and computation time?
  - Is Modular combined with merge-and-split method better than Hypercube?

#### 4D TABLES, NO HIERARCHY

#### Results on 100 simulations:

|                    | Nb of linked | primary suppression |            | secondary : | time       |         |
|--------------------|--------------|---------------------|------------|-------------|------------|---------|
| method             | tables       | n cells (%)         | values (%) | n cells (%) | values (%) | comput. |
| 1-Direct Modular   | 1            | 10.4                | 0.8        | 16.8        | 5.5        | 3.9     |
| 2-Split Modular    | 2            | 10.4                | 0.8        | 19.3        | 6.1        | 10.6    |
| 3-Direct Hypercube | 1            | 10.4                | 0.8        | 34.6        | 13.8       | 3.6     |
| 4-Split Hypercube  | 2            | 10.4                | 8.0        | 21.1        | 6.6        | 11.4    |

 $\overline{TABLE}$ : 4-Dimensional table - split on two non-hierarchical variables - 10% of primary cells

#### 4D TABLES, NO HIERARCHY



 $\overline{ ext{FIGURE}}$ : Distribution of % of values suppressed at the secondary step depending on the method and the % of primary cells for a 4-dimensional tabular data with no hierarchical variable

#### 5D Tables, no Hierarchy

| method             | Nb of linked<br>tables | primary suppression n cells (%) values (%) |     | secondary suppression n cells (%) values (%) |      | time<br>comput. |
|--------------------|------------------------|--------------------------------------------|-----|----------------------------------------------|------|-----------------|
| 2-Split Modular    | 4                      | 20.2                                       | 2.7 | 20.6                                         | 7.8  | 27.7            |
| 3-Direct Hypercube | 1                      | 20.2                                       | 2.7 | 60.8                                         | 55.9 | 5.1             |
| 4-Split Hypercube  | 4                      | 20.2                                       | 2.7 | 21.1                                         | 7.9  | 26.8            |

 $\overline{\text{TABLE}}$ : Simulations on a 5-Dimensional table - split on two non-hierarchical variables - 20% of primary cells

#### 5D Tables, no Hierarchy



 $\overline{ ext{FIGURE}}$ : Distribution of % of values suppressed at the secondary step depending on the method and the % of primary cells for a 5-dimensional tabular data with no hierarchical variable

## DISCUSSION

#### CHALLENGES

- Is the over-suppression acceptable ? Yes
- How much longer is the computation ? 3 times longer in the simulations
- Does the quantity of primary cells have an effect on over-suppression and computation time? Yes, the variability is greater for a Split Modular than for a Direct Modular
- Is Modular combined with merge-and-split method better than Hypercube ? Always in terms of suppression, never in terms of time

## DISCUSSION

#### To go further

Simulation results cannot be generalized to all real cases encountered:

- The efficiency of the secondary suppression is depending on the pattern of primary cells
- In real use cases, primary cells are not uniformly spread in the data that can produce some local difficulties for Modular
- Uniformly distributed primary cells seem to be a too gentle hypothesis ⇒ Try more sophisticated distribution.

## DISCUSSION

#### To go further

- In some realistic examples of 4D table, split modular was faster than direct modular
  - ⇒ There are real use cases for which the merge-and-split method could be useful.
- On some real use cases (5D table with 5 000 rows), split modular was very (too) long on each table.

Berrard, P.-Y., Jamme, J., Rastout, N., Beroud, F., Pointet, J., Pomel, W., and Socard, A.-R. (2023).

rtauargus: Run  $\tau$ -Argus from R.

R package version 1.2.0 (dev).

De Wolf, P.-P. (2002).

Hitas: a heuristic approach to cell suppression in hierarchical tables. In *Proceedings of the AMRADS meeting in Luxembourg*.

De Wolf, P.-P., Hundepool, A., Giessing, S., Salazar, J.-J., and Castro, J. (2014).

au-Argus - User's Manual - Version 4.1.

Statistics Netherland.

Repsilber, R. D. (1994).

Preservation of confidentiality in aggregated data.

In Second International Seminar on Statistical Confidentiality.