Neural networks

CISC 5800 Professor Daniel Leeds Two breeds of deep networks

Discriminative: $unit^k(\mathbf{x}) = (\mathbf{w}^k)^T \mathbf{x} + b = [0, 1]$

Neural networks / Convolutional neural networks

Generative: $unit^k(\mathbf{x}) = P(\mathbf{x}; \mathbf{\theta}^k) = [0, 1]$

Bayes Nets / Deep Belief Nets

Network architecture

Input layer:

• Compute based on initial features

"Hidden" layers

• Compute based on new features

"Output" layer

• Output final class or high-level features

Each unit takes inputs from past layer, outputs to next layer

Neural network building blocks

Individual unit "perceptron":

• Typically logistic function unit(\mathbf{x}) = g(h= $\mathbf{w}^T\mathbf{x}$ +b)= $\frac{1}{1+e^{-h}}$

Inter-layer computations

- Output $r_{unit\#}^{level}$: $r_k^m = g(\sum_j w_{k,j}^m r_j^{m-1} + b_k^m)$
- Parameters $w_{unit\#,input\#}^{level}: w_{k,j}^{m}$

Parameters: $w_{k,i}^{m}$ - weights for every unit

Hyper-parameters:

- number of layers
- number of units per layer
- (sigmoid alternatives g(...) with hyper-parameters)
- learning step weight

Simple feedforward practice

Find
$$r_1^1$$
, r_2^1 , r_1^2 Assume b=0

$$x_1=0.1$$
 $x_2=0.9$ $r_1^1=sigmoid(0.1x2+0.9x-1.5)=$ $sigmoid(0.2-1.35)=sigmoid(-1.15)=0.2$

- r_2^1 =sigmoid(0.1x0+0.9x2)= sigmoid(0+1.8)=sigmoid(1.8)=0.85
- r_1^2 =sigmoid(0.2x1+0.85x-1)= sigmoid(0.2-0.85)=sigmoid(-0.65)=0.3

Simple feedforward practice

What is $w_{1,2}^2$? It is 1 $w_{2,1}^1$? It is 0

Learning parameters: back-propagation

Training data: input **x**ⁱ and class **y**ⁱ

Compute $\mathbf{x}^{\mathrm{i}}\text{'s}$ output for all units, from layer 1 to layer out $\vec{\ }$

Adjust weights in reverse order

Δw for each unit at layer out (based on yi)

Δw for each unit at layer out-1 (based on layer out)

 Δw for each unit at layer 1 (based on layer 2)

Kyr –

Hyper-parameters:

- number of layers
- number of units per layer
- (sigmoid alternatives g(...) with hyper-parameters)

Parameters: $w_{k,i}^{m}$ - weights for every unit

• ϵ learning step weight

14

Learning parameters: back-propagation

First: Change w in layer top for each unit

Want to minimize the error, as measured $\sum_i ig(r_{\mathbf{k}}^{top,i} - y_k^iig)^2$

$$\mathbf{r}_{\mathbf{k}}^{\mathsf{top}} = \mathbf{g} \left(\sum_{j} \mathbf{w}_{\mathbf{k},j}^{\mathsf{top}} \mathbf{r}_{j}^{\mathsf{top}-1} + \mathbf{b}_{\mathbf{k}}^{\mathsf{top}} \right)$$

$$= \frac{1}{1 + \exp \left(-\left(\sum_{i} \mathbf{w}_{\mathbf{k},j}^{\mathsf{top}} \mathbf{r}_{j}^{\mathsf{top}-1} + \mathbf{b}_{\mathbf{k}}^{\mathsf{top}} \right) \right)} \mathbf{r}_{\mathbf{1}}^{\mathsf{top}-1,i}$$

Δw at each layer

Calculate change to w's at layer top

$$\Delta \mathbf{w}_{\mathbf{k},\mathbf{j}}^{\mathsf{top}} = \epsilon (1 - r_k^{top,i}) (y^i - r_k^{top,i}) r_k^{top,i} r_j^{top-1,i}$$
Error correction input j effect

Define error signal δ : $\delta_{\mathbf{k}}^{top,i} = \left(1 - r_{\mathbf{k}}^{top,i}\right) \left(y^i - r_{\mathbf{k}}^{top,i}\right) r_{\mathbf{k}}^{top,i}$

Send error signal back to layer m-1

.6

Simple feedback practice, part 1

Inputs: $x_1=0.1$ $x_2=0.9$ Outputs: $r_1^1=0.3$ $r_2^1=0.8$ $r_1^2=0.4$ y=1

Update layer 2 unit: $\Delta w_{k,j}^{top} = \epsilon (1-r_k^{top,i})(y^i-r_k^{top,i})r_k^{top,i}r_j^{top-1,i}$

Δw at non-top layer

Top layer error signal $\delta\colon \, \delta_{\mathbf{k}}^{top,i} = \left(1-r_{\mathbf{k}}^{top,i}\right)\left(y^i-r_{\mathbf{k}}^{top,i}\right)r_{\mathbf{k}}^{top,i}$

Calculate change to w's at layer m<top

$$\Delta w_{\mathbf{k},\mathbf{j}}^{\mathbf{m}} = \epsilon (1 - r_{\mathbf{k}}^{m,i}) \left(\sum_{n} w_{n,\mathbf{k}}^{m+1,i} \delta_{n}^{m+1,i} \right) r_{\mathbf{k}}^{m,i} r_{\mathbf{j}}^{m-1,i}$$
Error correction input i effe

Define error signal $\delta\colon \delta^m_{\mathbf{k}} = \left(1-r^{m,i}_{\mathbf{k}}\right)\sum_n \left(w^{m+1,i}_{n,\mathbf{k}}\delta^{m+1,i}_n\right)r^{m,i}_{\mathbf{k}}$

Simple feedback practice, part 2 Layer 2 Inputs: $x_1 = 0.1$ Layer 1 Outputs: $r_1^1 = 0.2$ $r_2^1 = 0.8$ $r_1^2 = 0.3$ €=0.1 y=1 Update layer 1, unit 2: $\delta_{\mathbf{k}}^{top,i} = \left(1 - r_{\mathbf{k}}^{top,i}\right) \left(y^{i} - r_{\mathbf{k}}^{top,i}\right) r_{\mathbf{k}}^{top,i}$ $\Delta \mathbf{w}_{\mathbf{k},\mathbf{j}}^{\mathbf{m}} = \epsilon \left(1 - r_{\mathbf{k}}^{m,i}\right) \left(\sum_{n} w_{n,\mathbf{k}}^{m+1,i} \delta_{n}^{m+1,i}\right) r_{\mathbf{k}}^{m,i} r_{\mathbf{j}}^{m-1,i}$

Alternative input transformations

- Traditional: Sum+sigmoid g(w^Tx + b)
- Straight sum wTx + b
- Sum+rectify
- Max (no weights!)

Alternative weights

- Traditional: weight inputs from layer m-1
- Competition/Normalization: weight inputs from layer m
- Feedback: weight inputs from layer m+1

Convolutional neural networks

• Wait until end of semester!

20