МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Лабораторна робота №3 Дослідження ВАХ діодів

Автор Столяров Андрій Дмитрович, група 5-А, Фізичний Факультет

Зміст

Вступ
Мета
Методи дослідження
Теоретичні відомості
Терміни
Робота р–п-переходу
Хід Роботи
Випрямлювальний діод
Стабілітрон
Світлодіод
Висновок

Вступ

Ця лабораторна робота присвячена вивченню властивостей напівпровідникових діодів — найпростіших нелінійних елементів електронних схем та вимірюванню їх вольт-амперних характеристик.

Мета

навчитися одержувати зображення BAX діодів на екрані двоканального осцилографа, дослідити властивості p-n-переходів напівпровідникових діодів різних типів.

Методи дослідження

- 1. одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа;
- 2. побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму $I_{\rm д}$, що відповідають певним значенням та полярності напруги $U_{\rm д}$, і подання результатів вимірів у вигляді графіка.

Теоретичні відомості

Терміни

Напівпровідниковий діод — це напівпровідниковий прилад з одним p-n-n-pехо-dом і двома виводами. p-n-nеpехid — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-tипу, а інша — провідність p-tипу.

Вольт-амперна характеристика (ВАХ) діода — це залежність сили струму $I_{\rm д}$ через p-n—перехід діода від величини і полярності прикладеної до діода напруги $U_{\rm d}$.

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму $I_{\scriptscriptstyle \rm I}$ від напруги $U_{\scriptscriptstyle \rm I}$.

Робота р-п-переходу

Розглянемо роботу р-п-переходу, утвореного на межі поділу двох середовищ, які являють собою один і той же напівпровідник, в одну з частин якого введені донорні домішки і яка відповідно має провідність п-типу (тобто перше середовище – це матеріал п-типу), а в іншу введені акцепторні домішки і яка має провідність р-типу (друге середовище – матеріал р-типу). Концентрація вільних електронів в матеріалі п-типу набагато більша, ніж концентрація вільних дірок. Тому електрони в матеріалі п-типу називають основними носіями заряду, а дірки – неосновними носіями заряду. В матеріалі р-типу – навпаки: дірки є основними носіями заряду, а електрони – неосновними. Якщо матеріал п-типу привести в контакт з матеріалом р-типу, то почнеться процес дифузії електронів з матеріалу п-типу (де їх концентрація велика) в матеріал р-типу (де їх концентрація мала). Аналогічно, дірки будуть дифундувати з матеріалу р-типу (де їх концентрація велика) в матеріал птипу (де їх концентрація мала). Зрозуміло, що при двох вищезгаданих процесах матеріал п-типу буде втрачати негативний заряд і набувати позитивного заряду, а матеріал р-типу, навпаки, буде втрачати позитивний заряд і набувати негативного заряду. В результаті в області контакту буде виникати електричне поле, яке буде протидіяти подальшому переходу електронів в р-область та дірок в п-область, і між матеріалом п-типу і матеріалом р-типу виникатиме різниця потенціалів. Ця різниця потенціалів називається контактною різницею потенціалів φ_k , а вищезгадане електричне поле – полем p–n-переходу E_{p-n} . Розглянемо поведінку носіїв заряду після виникнення контактної різниці потенціалів в області р-п-переходу. Для того щоб основні носії заряду (наприклад, електрони з п-області) могли пройти через область контакту, вони повинні подолати потенціальний поріг, зумовлений цією контактною різницею потенціалів. Зрозуміло, що зробити це буде тим важче, чим більшою буде висота порогу. В той же час, неосновні носії (наприклад, дірки з р-області), які опиняються поблизу р-п-переходу, "звалюються" з потенціального порогу в область з іншим типом провідності незалежно від висоти цього порогу! Таким чином, струм, зумовлений переходом через р-п-перехід неосновних носіїв (так званий струм неосновних носіїв I_0), не залежить від висоти потенціального порогу. Процес зростання висоти порогу під час дифузії носіїв через р-п-перехід припиниться, коли буде досягнута динамічна рівновага між кількістю переходів через р-п-перехід основних і неосновних носіїв заряду одного й того ж самого знаку (наприклад, електронів), тобто коли струм основних носіїв заряду $I_{\rm OCH}$ через p–n-перехід зрівняється зі струмом неосновних носіїв I_0 , який протікає у протилежному напрямку.

Хід Роботи

Випрямлювальний діод

Рис. 1. Схема підключення діоду

Рис. 2. Напруга на діоді

Рис. 3. ВАХ діоду

Рис. 4. Виміри

Стабілітрон

Рис. 5. Схема підключення стабілітрону

Рис. 6. Напруга на стабілітроні

Рис. 7. ВАХ стабілітрону

Рис. 8. Виміри

Світлодіод

Рис. 9. Схема підключення світлодіоду

Рис. 10. Напруга на світлодіоді

Рис. 11. ВАХ світлодіоду

Рис. 12. Виміри

Висновок

У даній роботі ми ознайомились з принципом роботи діодів та їх вплив на сигнал, що подається, виміряли вольт-амперну характеристику. Зробили знімки екрану, що показані вище. При дослідження використовувалось спільна схема і три типи напівпровідникових діодів: випрямлювальний, стабілізатор та світлодіод.

Робота виконувалась у програмі Multisim14.