પ્રશ્ન 1(અ) [3 ગુણ]

નેગેટિવ ફીડબેકના ફાયદા અને ગેરફાયદાની સૂચિ બનાવો

જવાબ:

નેગેટિવ ફીડબેકના ફાયદા	નેગેટિવ ફીડબેકના ગેરફાયદા
બેન્ડવિડ્થમાં વધારો	ગેઈનમાં ઘટાડો
સ્થિરતામાં સુધારો	વધુ ઘટકોની જરૂર
વિકૃતિમાં ઘટાડો	જટિલ સર્કિટ ડિઝાઈન
નોઈઝમાં ઘટાડો	યોગ્ય રીતે ડિઝાઈન ન કરવામાં આવે તો ઓસિલેશનની શક્યતા
સારું ઇનપુટ/આઉટપુટ ઇમ્પીડન્સ નિયંત્રણ	વધુ પાવર વપરાશ

મેમરી ટ્રીક: "STAND" - Stability, linearity, Amplitude reduction, Noise reduction, Distortion reduction

પ્રશ્ન 1(બ) [4 ગુણ]

ગેઇન અને સ્ટેબિલિટી ઉપર નેગેટિવ ફીડબેકની અસર સમજાવો.

જવાબ:

ગેઇન પર અસર	સ્થિરતા પર અસર
(1+Αβ) ફેક્ટર દ્વારા ગેઇનમાં ઘટાડો	તાપમાન પરિવર્તન સામે સ્થિરતામાં વધારો
ગેઇન સમીકરણ: A' = A/(1+Aβ)	ઘટક પરિમાણોમાં ફેરફારોથી સંવેદનશીલતામાં ઘટાડો
વધુ અનુમાનિત ગેઇન મૂલ્યો	સામાન્ય કાર્ય સ્થિતિમાં ઓસિલેશન અટકાવે છે
તાપમાન સાથે ગેઇનમાં ઓછો ફેરફાર	સમય સાથે વધુ સુસંગત સર્કિટ કાર્યક્ષમતા

આકૃતિ:

મેમરી ટ્રીક: "GRIP" - Gain Reduction, Improved stability, Predictable performance

પ્રશ્ન 1(ક) [7 ગુણ]

નેગેટિવ ફિડબેક વોલ્ટેજ એમ્પલિફાયરના ઓવરઓલ ગેઇન માટે સમીકરણ તારવો.

જવાબ:

પગલું	સમીકરણ	นต์า
1	Vi = Vs - Vf	ઇનપુટ વોલ્ટેજ = સોર્સ - ફીડબેક
2	$Vf = \beta \times Vo$	ફ્રીડબેક વોલ્ટેજ = β ગુણા આઉટપુટ વોલ્ટેજ
3	Vo = A × Vi	આઉટપુટ વોલ્ટેજ = એમ્પલિફાયર ગેઇન ગુણા ઇનપુટ વોલ્ટેજ
4	$Vo = A \times (Vs - \beta \times Vo)$	(1) ਅਜੇ (2) ਜੇ (3) ਮਾਂ ਮ੍ਰ§ਗ
5	$Vo + A \times \beta \times Vo = A \times Vs$	પદોને ફરીથી ગોઠવતા
6	$Vo(1 + A\beta) = A \times Vs$	Vo ને ફેક્ટર કરતા
7	$Vo/Vs = A/(1+A\beta)$	ઓવરઓલ ગેઇન સમીકરણ

આકૃતિ:

भेभरी ट्रीड: "SAFE" - Source, Amplifier, Feedback, Equation A/(1+Aβ)

પ્રશ્ન 1(ક-OR) [7 ગુણ]

વોલ્ટેજ શંટ એમ્પ્લીફાયર, વોલ્ટેજ સીરીઝ, કરંટ શંટ અને કરંટ સીરીઝ એમ્પ્લીફાયરની તુલના કરો.

જવાબ:

પરિમાણ	વોલ્ટેજ સીરીઝ	વોલ્ટેજ શંટ	કરંટ સીરીઝ	કરંટ શંટ
ઇનપુટ સિગ્નલ	વોલ્ટેજ	વોલ્ટેજ	SŚS	s÷s
આઉટપુટ સિગ્નલ	વોલ્ટેજ	કરંટ	વોલ્ટેજ	558
ઇનપુટ કોન્ફિગરેશન	સીરીઝ	પેરેલેલ	સીરીઝ	પેરેલેલ
આઉટપુટ કોન્ફિગરેશન	સીરીઝ	સીરીઝ	પેરેલેલ	પેરેલેલ
ઇનપુટ ઇમ્પીડન્સ	વધારે	ઘટાડે	ઘટાડે	વધારે
આઉટપુટ ઇમ્પીડન્સ	ઘટાડે	ઘટાડે	વધારે	વધારે
ઉપયોગિતા	વોલ્ટેજ એમ્પલિફાયર	ટ્રાન્સકન્ડક્ટન્સ એમ્પલિફાયર	ટ્રાન્સરેસિસ્ટન્સ એમ્પલિફાયર	કરંટ એમ્પલિફાયર

આકૃતિ:

Voltage Series Zi↑ Zo↓ Av↓	 	Voltage Shunt Zi↓ Zo↓ Av↓	
+	 +	+	 +
+	+ 	+	+
Current Series	İ	Current Shunt	i
Zi↓ Zo↑		Ziî Zoî	
Ai↓		Ai↓	
+	+	+	+

ਮੇਮਰੀ ਟ੍ਰੀਡ: "VISC" - Voltage In (Series/shunt), Signal Current (series/shunt)

પ્રશ્ન 2(અ) [3 ગુણ]

યુજેટીની એપ્લિકેશન લખો.

જવાબ:

UJT ની એપ્લિકેશન
રિલેક્સેશન ઓસિલેટર
ટાઈમિંગ સર્કિટ
SCR અને TRIAC માટે ટ્રિગર સર્કિટ
સોટૂથ વેવ જનરેટર
પલ્સ જનરેટર
પાવર ઇલેક્ટ્રોનિક્સમાં ફેઝ કંટ્રોલ

મેમરી ટ્રીક: "ROBOTS" - Relaxation Oscillators, Bistable circuits, Oscillators, Timing, Switching

પ્રશ્ન 2(બ) [4 ગુણ]

વેઈન બ્રિજ ઓસિલેટર અને હાર્ટલી ઓસિલેટરનો સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

વેઈન બ્રિજ ઓસિલેટર:

હાર્ટલી ઓસિલેટર:

મેમરી ટ્રીક: "WH-RC-LC" - Wein uses RC, Hartley uses LC

પ્રશ્ન 2(ક) [7 ગુણ]

યુજેટીની રચના, કાર્ય અને લાક્ષણિકતાઓ દોરો અને સમજાવો.

જવાબ:

UJT ની રચના:

રચના	કાર્યપ્રણાલી	લાક્ષણિકતાઓ
N-પ્રકારની સિલિકોન બાર સાથે P- પ્રકારનું જંક્શન	ઇન્ટ્રિન્સિક સ્ટેન્ડ-ઓફ રેશિયો η સાથે વોલ્ટેજ ડિવાઇડર તરીકે કાર્ય કરે છે	V-I કર્વમાં નેગેટિવ રેઝિસ્ટન્સ વિસ્તાર
ત્રણ ટર્મિનલ: બેઝ1, બેઝ2, એમિટર	જ્યારે VE > ηVBB, ત્યારે તે વાહક થાય છે	પીક પોઇન્ટ અને વેલી પોઇન્ટ
સિંગલ P-N જંક્શન	આંતરિક રેઝિસ્ટન્સ ઝડપથી ઘટે છે	સ્થિર સ્વિચિંગ ઓપરેશન
સિંગલ જંક્શન પરંતુ બે બેઝ	રિલેક્સેશન ઓસિલેશન ઉત્પન્ન કરે છે	તાપમાન સંવેદનશીલતા

V-I લાક્ષણિકતાઓ:

મેમરી ટ્રીક: "PNVB" - P-N junction, Negative resistance, Valley point, Bases two

પ્રશ્ન 2(અ-OR) [3 ગુણ]

વપરાયેલ ઘટક અને ઓપરેટિંગ આવર્તનના આધારે ઓસિલેટરનું વર્ગીકરણ કરો.

જવાબ:

ઘટકના આધારે	ઓપરેટિંગ આવર્તનના આધારે
RC ઓસિલેટર (વિયન બ્રિજ, ફેઝ શિફ્ટ)	ઓડિઓ ફ્રિક્વન્સી (20Hz-20kHz)
LC ઓસિલેટર (હાર્ટલી, કોલપિટ્સ, ક્લેપ)	રેડિયો ફ્રિક્વન્સી (20kHz-30MHz)
ક્રિસ્ટલ ઓસિલેટર (ક્વાર્ટ્ઝ ક્રિસ્ટલ)	વેરી હાઇ ફ્રિક્વન્સી (30MHz-300MHz)
રિલેક્સેશન ઓસિલેટર (UJT આધારિત)	અલ્ટ્રા હાઇ ફ્રિક્વન્સી (300MHz-3GHz)
નેગેટિવ રેઝિસ્ટન્સ ઓસિલેટર (ટનલ ડાયોડ)	માઇક્રોવેવ ફ્રિક્વન્સી (>3GHz)

મેમરી ટ્રીક: "RCLCN" - RC, LC, Crystal, Negative resistance

પ્રશ્ન 2(બ-OR) [4 ગુણ]

UJT ને રિલેક્સેશન ઓસિલેટર તરીકે સમજાવો

જવાબ:

ઓપરેશન સ્ટેજ	વર્ણન
યાર્જિંગ ફેઝ	કેપેસિટર રેઝિસ્ટર R થી યાર્જ થાય છે
થ્રેશોલ્ડ પોઇન્ટ	જ્યારે કેપેસિટર વોલ્ટેજ પીક પોઇન્ટ વોલ્ટેજ (ηVBB) સુધી પહોંચે ત્યારે UJT ચાલુ થાય છે
ડિસ્થાર્જ ફેઝ	કેપેસિટર UJT ના ઓછા રેઝિસ્ટન્સ દ્વારા ઝડપથી ડિસ્ચાર્જ થાય છે
રિસેટ	કેપેસિટરનો વોલ્ટેજ વેલી પોઇન્ટથી નીચે પડ્યા પછી UJT બંધ થાય છે

સર્કિટ ડાયાગ્રામ:

મેમરી ટ્રીક: "CTDR" - Charge, Threshold, Discharge, Repeat

પ્રશ્ન 2(ક-OR) [7 ગુણ]

કોલપિટ્સ ઓસિલેટરના સર્કિટનું સ્કેચ કરો અને તેનું કામ સંક્ષિપ્તમાં સમજાવો

જવાબ:

કોલપિટ્સ ઓસિલેટર સર્કિટ:

ยรร	ธเน้
C1 અને C2	ફ્રીડબેક પ્રદાન કરતું વોલ્ટેજ ડિવાઇડર નેટવર્ક
ઇન્ડક્ટર L	C1 અને C2 સાથે LC ટેંક સર્કિટ બનાવે છે
ટ્રાન્ઝિસ્ટર Q	એમ્પ્લિફિકેશન પ્રદાન કરે છે
RFC (રેડિયો ફ્રિક્વન્સી ચોક)	DC ને પસાર કરતાં AC ને અવરોધે છે

કાર્યપ્રણાલી:

- 1. ટેંક સર્કિટ (L સાથે C1+C2) દોલન આવૃત્તિ નક્કી કરે છે
- 2. આવૃત્તિ ફોર્મ્યુલા: f = 1/(2π√(L×(C1×C2)/(C1+C2)))
- 3. કેપેસિટિવ વોલ્ટેજ ડિવાઇડર મારફતે ફીડબેક
- 4. ટ્રાન્ઝિસ્ટર એમ્પ્લિફાય કરે છે અને દોલનો જાળવે છે
- 5. ટ્રાન્ઝિસ્ટર મારફતે 180° ફેઝ શિફ્ટ, ફીડબેક નેટવર્ક મારફતે 180° ફેઝ શિફ્ટ

મેમરી ટ્રીક: "COLTS" - Capacitors form Oscillations with L-Tank circuit Sustainably

પ્રશ્ન 3(અ) [3 ગુણ]

પાવર એમ્પ્લીફાયર સંબંધિત શરતો વ્યાખ્યાયિત કરો:

i) collector Efficiency ii) Distortion iii) power dissipation capability

જવાબ:

3918	ત્યાખ્યા
કલેક્ટર કાર્યક્ષમતા	કલેક્ટર બેટરી દ્વારા પૂરા પાડવામાં આવતા DC પાવરથી AC આઉટપુટ પાવરનો ગુણોત્તર (η = P_out/P_DC × 100%)
ડિસ્ટોર્શન	ઇનપુટથી આઉટપુટ સુધી વેવફોર્મ આકારમાં અનિચ્છનીય ફેરફાર (THD - ટોટલ હાર્મોનિક ડિસ્ટોર્શન તરીકે માપવામાં આવે છે)
પાવર ડિસિપેશન કેપેબિલિટી	મહત્તમ પાવર જે એમ્પ્લિફાયર નુકસાન વિના ગરમી તરીકે સુરક્ષિત રીતે ઓગાળી શકે છે (P_D = V_CE × I_C)

ਮੇਮਣੀ ਟ੍ਰੀਡ: "EDP" - Efficiency measures DC-to-AC conversion, Distortion alters signal, Power dissipation limits operation

પ્રશ્ન 3(બ) [4 ગુણ]

વર્ગ-A પાવર એમ્પ્લીકાયરની કાર્યક્ષમતા મેળવો.

જવાબ:

પગલું	સમીકરણ	વર્ણન
1	P_DC = V_CC × I_C	DC પાવર ઇનપુટ
2	P_out = (V_peak × I_peak)/2	AC પાવર આઉટપુટ
3	V_peak = V_CC	મહત્તમ વોલ્ટેજ સ્વિંગ
4	I_peak = I_C	મહત્તમ કરંટ સ્વિંગ
5	$P_{out} = (V_{CC} \times I_{C})/2$	મહત્તમ મૂલ્યો મૂકતા
6	$\eta = (P_out/P_DC) \times 100\%$	કાર્યક્ષમતાની વ્યાખ્યા
7	$\eta = ((V_CC \times I_C)/2)/(V_CC \times I_C) \times 100\%$	પાવર મૂલ્યો મૂકતા
8	η = 50%	મહત્તમ સૈદ્ધાંતિક કાર્યક્ષમતા

આકૃતિ:

મેમરી ટ્રીક: "HALF" - Highest Achievable Level Fifty percent

પ્રશ્ન 3(ક) [7 ગુણ]

કંપલીમેંટરી સીમેંટરી પુશ-પુલ એમ્પ્લીફાયરની કામગીરી સમજાવો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

ઓપરેશન	นย์า	
પોઝિટિવ હાફ સાયકલ	NPN ટ્રાન્ઝિસ્ટર Q1 કન્ડક્ટ કરે છે, PNP ટ્રાન્ઝિસ્ટર Q2 બંધ રહે છે	
નેગેટિવ હાફ સાયકલ	PNP ટ્રાન્ઝિસ્ટર Q2 કન્ડક્ટ કરે છે, NPN ટ્રાન્ઝિસ્ટર Q1 બંધ રહે છે	
ક્રોસઓવર રીજન	બંને ટ્રાન્ઝિસ્ટર લગભગ બંધ હોય છે, ક્રોસઓવર ડિસ્ટોર્શન થાય છે	
બાયસ સર્કિટ	થોડો ફોરવર્ડ બાયસ આપીને ક્રોસઓવર ડિસ્ટોર્શન ઘટાડે છે	
કાર્યક્ષમતા	ક્લાસ A કરતાં વધુ (સૈદ્ધાંતિક રીતે 78.5% સુધી)	
હીટ ડિસિપેશન	ક્લાસ A કરતાં સારું કારણ કે એક સમયે માત્ર એક ટ્રાન્ઝિસ્ટર કન્ડક્ટ કરે છે	

મેમરી ટ્રીક: "COPS" - Complementary transistors, Opposite conducting cycles, Push-pull operation, Symmetrical output

પ્રશ્ન 3(અ-OR) [3 ગુણ]

પાવર એમ્પ્લીફાયરનું વર્ગીકરણ આપો

જવાબ:

વર્ગીકરણ આદ્યાર	પ્રકારો
બાયસિંગના આદ્યારે	ક્લાસ A, ક્લાસ B, ક્લાસ AB, ક્લાસ C
કોન્ફિગરેશનના આદ્યારે	સિંગલ-એન્ડેડ, પુશ-પુલ, કોમ્પ્લિમેન્ટરી સિમેટ્રી
કપલિંગના આધારે	RC કપલ્ડ, ટ્રાન્સફોર્મર કપલ્ડ, ડાયરેક્ટ કપલ્ડ
ફ્રિક્વન્સી રેન્જના આદ્યારે	ઓડિઓ પાવર એમ્પ્લિફાયર, RF પાવર એમ્પ્લિફાયર
ઓપરેટિંગ મોડના આદ્યારે	લિનિયર, સ્વિચિંગ (ક્લાસ D, E, F)

મેમરી ટ્રીક: "ABCDE" - A, B, C classes, Direct/transformer coupling, Efficiency increases from A to C

પ્રશ્ન 3(બ-OR) [4 ગુણ]

વર્ગ B પુશ પુલ એમ્પ્લીફાયરની કાર્યક્ષમતા મેળવો

જવાબ:

પગલું	સમીકરણ	น _{ที} ่
1	$P_DC = (2 \times V_CC \times I_max)/\pi$	DC પાવર ઇનપુટ (દરેક ટ્રાન્ઝિસ્ટર અર્ધા ચક્ર માટે કન્ડક્ટ કરે છે)
2	$P_out = (V_CC \times I_max)/2$	AC પાવર આઉટપુટ
3	$\eta = (P_out/P_DC) \times 100\%$	કાર્યક્ષમતાની વ્યાખ્યા
4	$η = ((V_CC \times I_max)/2)/((2 \times V_CC \times I_max)/π) \times 100\%$	પાવર મૂલ્યો મૂકતા
5	$\eta = (\pi/4) \times 100\%$	સરળીકરણ કરતા
6	η = 78.5%	મહત્તમ સૈદ્ધાંતિક કાર્યક્ષમતા

આકૃતિ:

મેમરી ટ્રીક: "PIPE" - Pi divided by four Equals efficiency

પ્રશ્ન 3(ક-OR) [7 ગુણ]

વર્ગ A, B, C અને AB પાવર એમ્પ્લીફાયર વચ્ચે તફાવત કરો.

જવાબ:

પરિમાણ	ક્લાસ A	ક્લાસ B	ક્લાસ AB	ક્લાસ C
અંગલ કન્ડક્શન	360°	180°	180°-360°	<180°
બાયસ પોઇન્ટ	લોડ લાઇનના સેન્ટરમાં	કટ-ઓફ પર	કટ-ઓફથી થોડું ઉપર	કટ-ઓફથી નીયે
કાર્યક્ષમતા	25-30%	78.5%	50-78.5%	90% સુધી
ડિસ્ટોર્શન	સૌથી ઓછું	વધારે (ક્રોસઓવર)	ઓછું	ખૂબ વધારે
લિનિયારિટી	સાટું	નબળું	સાટું	નબળું
પાવર આઉટપુટ	ઓછો	મધ્યમ	મધ્યમ	વદ્યારે
ઉપયોગો	હાઇ-ફ્રિડેલિટી ઓડિઓ	ઓડિઓ પાવર એમ્પ્લિફાયર	ઓડિઓ પાવર એમ્પ્લિફાયર	RF પાવર એમ્પ્લિફાયર

વેવફોર્મ તુલના:

મેમરી ટ્રીક: "ABCE" - Angle decreases, Bias moves to cutoff, Conduction decreases, Efficiency increases

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો (i) CMRR (ii) Slew rate

જવાબ:

પરિમાણ	વ્યાખ્યા	પ્રમાણભૂત મૂલ્ય
CMRR (કોમન મોડ રિજેક્શન રેશિયો)	ડિફરેન્શિયલ મોડ ગેઇનનો કોમન મોડ ગેઇન સાથેનો ગુણોત્તર, dB માં વ્યક્ત	90-120 dB
	CMRR = 20 log(Ad/Acm)	વધારે એટલે વધુ સારું
સ્લ્યુ રેટ	આઉટપુટ વોલ્ટેજના એકમ સમય દીઠ મહત્તમ ફેરફારનો દર	0.5-10 V/μs
	SR = dVo/dt	વદ્યારે એટલે ઝડપી પ્રતિસાદ

મેમરી ટ્રીક: "CRSR" - Common Rejection Slope Rate

પ્રશ્ન 4(બ) [4 ગુણ]

ઓપ-એમ્પને સમિંગ એમ્પ્લીફાયર તરીકે સમજાવો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

ઓપરેશન	વર્ણન
કાર્ય સિદ્ધાંત	વર્ચ્યુઅલ ગ્રાઉન્ડ કન્સેપ્ટ - ઇન્વર્ટિંગ ઇનપુટને ગ્રાઉન્ડ પોટેન્શિયલ પર જાળવવામાં આવે છે
આઉટપુટ સમીકરણ	$V_{out} = -(R_f/R1 \times V1 + R_f/R2 \times V2 + + R_f/Rn \times Vn)$
સ્પેશિયલ કેસ	જ્યારે બધા ઇનપુટ રેઝિસ્ટર સમાન હોય (R1=R2==Rn=R), V_out = -(R_f/R) × (V1+V2++Vn)
ઉપયોગો	ઓડિઓ મિક્સર્સ, એનાલોગ કમ્પ્યુટર્સ, સિગ્નલ કંડિશનિંગ સર્કિટ્સ

મેમરી ટ્રીક: "SWAP" - Summing With Amplification Property

પ્રશ્ન 4(ક) [7 ગુણ]

op Amp નો ઉપયોગ કરીને નોન-ઇનવર્ટિંગ એમ્પ્લીફાયર દોરો અને વોલ્ટેજ ગેઇનનું સમીકરણ મેળવો. તેના માટે ઇનપુટ અને આઉટપુટ વેવફોર્મ પણ દોરો

જવાબ:

સર્કિટ ડાયાગ્રામ:

પરિમાણ	นต์า
વોલ્ટેજ ગેઇન સમીકરણ	$A_v = 1 + (R_f/R1)$
ઇનપુટ ઇમ્પીડન્સ	ખૂબ ઊંચું (સામાન્ય રીતે >10 ⁶ Ω)
આઉટપુટ ઇમ્પીડન્સ	ખૂબ નીચું (સામાન્ય રીતે <100 Ω)
ફેઝ શિફ્ટ	0° (ઇન ફેઝ)

ઇનપુટ અને આઉટપુટ વેવફોર્મ:

સમીકરણ મેળવવાની રીત:

- 1. બંને ઇનપુટ પિન પર વોલ્ટેજ સરખા હોય છે (V+ = V-)
- 2. આદર્શ ઓપ-એમ્પમાં ઇનવર્ટિંગ ઇનપુટ પર વોલ્ટેજ, V = V_in
- 3. ફીડબેક નેટવર્કમાં વોલ્ટેજ ડિવાઇડર બને છે:

 $V^- = V_out \times [R1/(R1+R_f)]$

4. ઉપરના બંને સમીકરણ સરખાવીએ:

 $V_{in} = V_{out} \times [R1/(R1+R_f)]$

5. ફેરવીએ તો:

 $V_{out}/V_{in} = (R1+R_f)/R1 = 1 + (R_f/R1)$

6. તેથી, A_v = 1 + (R_f/R1)

નોન-ઇનવર્ટિંગ એમ્પ્લીફાયરના લક્ષણો:

- આઉટપુટ ઇનપુટ સાથે ફેઝમાં હોય છે (0° ફેઝ શિફ્ટ)
- ઊંચો ઇનપુટ ઇમ્પીડન્સ હોવાથી આદર્શ વોલ્ટેજ એમ્પ્લીફાયર તરીકે ઉપયોગી
- ગેઇન હંમેશા 1 કરતાં વધારે હોય છે
- નોઇઝ રિજેક્શન ઇન્વર્ટિંગ એમ્પ્લીફાયર કરતાં ઓછું હોય છે

મેમરી ટ્રીક: "UPON" - Unity Plus One plus Noninverting gain

પ્રશ્ન 4(અ-OR) [3 ગુણ]

ઓપરેશનલ એમ્પ્લીફાયરનું પ્રતીક દોરો. IC 741 નો પિન ડાયાગ્રામ દોરો.

જવાબ:

ઓપ-એમ્પ પ્રતીક:

IC 741 પિન ડાયાગ્રામ:

ਮੇਮરੀ ਟ੍ਰੀs: "7-PIN" - 741 Pinout INcludes power, inputs, null, output

પ્રશ્ન 4(બ-OR) [4 ગુણ]

વોલ્ટેજ ગેઇનની સમીકરણ સાથે ઓપ-એમ્પનું ઇન્વર્ટિંગ કન્ફિગરેશન દોરો અને સમજાવો.

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર સર્કિટ:

પગલું	વર્ણન	
1	વર્ચ્યુઅલ ગ્રાઉન્ડ કન્સેપ્ટ લાગુ કરો (V⁻ ≈ 0)	
2	R_i થી પસાર થતો કરંટ: I_i = V_in/R_i	
3	R_f થી પસાર થતો કરંટ: I_f = -V_out/R_f	
4	કિર્યોફના કરંટ સિદ્ધાંત મુજબ: l_i + l_f = 0	
5	તેથી, V_in/R_i = V_out/R_f	
6	વોલ્ટેજ ગેઇન: A_v = V_out/V_in = -R_f/R_i	

મેમરી ટ્રીક: "IRON" - Inverting Ratio Of Negative feedback

પ્રશ્ન 4(ક-OR) [7 ગુણ]

ઓપ-એમ્પને ઇન્ટીગ્રેટર તરીકે સમજાવો.

જવાબ:

ઇન્ટીગ્રેટર સર્કિટ:

પરિમાણ	વર્ણન
ટ્રાન્સફર ફંક્શન	$V_{out} = -(1/RC) \int V_{in} dt$
ઇનપુટ સિગ્નલ	કોઈપણ વેવફોર્મ (DC, સાઇન, સ્ક્વેર, વગેરે)
કોન્સ્ટન્ટ ઇનપુટ માટે આઉટપુટ	રેમ્પ (રેખીય રીતે વધતું/ઘટતું)
સ્કવેર વેવ માટે આઉટપુટ	ત્રિકોણાકાર વેવ
સાઇન વેવ માટે આઉટપુટ	કોસાઇન વેવ (90° ફેઝ શિફ્ટ)

વેવફોર્મ ટ્રાન્સફોર્મેશન:

પ્રેક્ટિકલ કન્સિડરેશન:

- કેપેસિટર પર રિસેટ સ્વિયની જરૂર
- ઇનપુટ ઓફસેટ વોલ્ટેજને કારણે સેચ્યુરેશન
- ઓપ-એમ્પ બેન્ડવિડ્થને કારણે મર્યાદિત ફ્રિક્વન્સી રેન્જ

મેમરી ટ્રીક: "SIRT" - Signal Integration Results in Time-domain transformation

પ્રશ્ન 5(અ) [3 ગુણ]

સિક્વેન્શિયલ ટાઈમરની આકૃતિ દોરો.

જવાબ:

IC 555 નો ઉપયોગ કરીને સિક્વેન્શિયલ ટાઈમર સર્કિટ:

Vcc

મેમરી ટ્રીક: "STTR" - Sequential Timing Through Relay-like operation

પ્રશ્ન 5(બ) [4 ગુણ]

બ્લોક ડાયાગ્રામનો ઉપયોગ કરીને ટાઈમર IC 555 નું કાર્ય સમજાવો

જવાબ:

IC 555 નો બ્લોક ડાયાગ્રામ:

બ્લોક	รเช้	
વોલ્ટેજ ડિવાઇડર	(2/3)VCC અને (1/3)VCC ના રેફરન્સ વોલ્ટેજ બનાવે છે	
થ્રેશોલ્ક કંપેરેટર	થ્રેશોલ્ડ પિન વોલ્ટેજની (2/3)VCC સાથે તુલના કરે છે	
ટ્રિગર કંપેરેટર	ટ્રિગર પિન વોલ્ટેજની (1/3)VCC સાથે તુલના કરે છે	
SR ફિલપ-ફ્લોપ	કંપેરેટર ઇનપુટ્સના આધારે આઉટપુટ સ્ટેટ કંટ્રોલ કરે છે	
આઉટપુટ સ્ટેજ	બાહ્ય લોડ ચલાવવા માટે કરંટ પ્રદાન કરે છે	
ડિસ્થાર્જ ટ્રાન્ઝિસ્ટર	આઉટપુટ લો હોય ત્યારે ટાઇમિંગ કેપેસિટર ડિસ્ચાર્જ કરે છે	

મેમરી ટ્રીક: "VTTDO" - Voltage divider, Two comparators, Toggle flip-flop, Discharge, Output

પ્રશ્ન 5(ક) [7 ગુણ]

ટાઈમર IC 555 ના એસ્ટેબલ મલ્ટિવાઈબ્રેટર સમજાવો.

જવાબ:

એસ્ટેબલ મલ્ટિવાઈબ્રેટર સર્કિટ:

પરિમાણ	ફોર્મ્યુલા	વર્ણન	
ચાર્જિંગ ટાઈમ (HIGH)	થાર્જિંગ ટાઈમ (HIGH)		
ડિસ્થાર્જિંગ ટાઈમ (LOW)	W) t ₂ = 0.693 × Rb × C આઉટપુટ LOW સમયગાળો		
કુલ પીરિયડ	$T = t_1 + t_2 = 0.693 \times (Ra + 2Rb) \times C$	સંપૂર્ણ ચક્ર સમય	
ફિક્વન્સી	f = 1.44/((Ra + 2Rb) × C)	એક સેકન્ડમાં ચક્રોની સંખ્યા	
ક્યુટી સાયકલ	D = (Ra + Rb)/(Ra + 2Rb)	કુલ સમયગાળા સાથે HIGH સમયનો ગુણોત્તર	

વેવફોર્મ:

મેમરી ટ્રીક: "FREE" - Frequency Related to External Elements

પ્રશ્ન 5(અ-OR) [3 ગુણ]

IC 555 નો પિન ડાયાગ્રામ દોરો.

જવાબ:

IC 555 પિન કોન્ફિગરેશન:

પિન નામ	પિન નંબર	รเช็
GND	1	ગ્રાઉન્ડ રેફરન્સ
TRIGGER	2	જ્યારે < 1/3 VCC થાય ત્યારે ટાઇમિંગ સાયકલ શરૂ કરે છે
OUTPUT	3	આઉટપુટ ટર્મિનલ
RESET	4	LOW હોય ત્યારે ટાઇમિંગ સાયકલ રિસેટ કરે છે
CONTROL	5	થ્રેશોલ્ડ અને ટ્રિગર લેવલ કંટ્રોલ કરે છે
THRESHOLD	6	જ્યારે > 2/3 VCC થાય ત્યારે ટાઇમિંગ સાયકલ સમાપ્ત કરે છે
DISCHARGE	7	ટાઇમિંગ કેપેસિટર ડિસ્થાર્જ કરે છે
VCC	8	પોઝિટિવ સપ્લાય વોલ્ટેજ (4.5V-18V)

મેમરી ટ્રીક: "GTORCTDV" - Ground, Trigger, Output, Reset, Control, Threshold, Discharge, Vcc

પ્રશ્ન 5(બ-OR) [4 ગુણ]

ટાઈમર IC 555 ના મોનોસ્ટેબલ મલ્ટિવાઈબ્રેટર સમજાવો.

જવાબ:

મોનોસ્ટેબલ મલ્ટિવાઈબ્રેટર સર્કિટ:

પરિમાણ	વર્ણન
ટ્રિગર	પિન 2 પર નેગેટિવ એજ ટ્રિગર્ડ (<1/3 VCC)
પલ્સ વિડ્થ	T = 1.1 × R × C સੇਂਭ-s
ઓપરેટિંગ સ્ટેટ્સ	સ્ટેબલ સ્ટેટ (આઉટપુટ LOW) અને ક્વાસી-સ્ટેબલ સ્ટેટ (આઉટપુટ HIGH)
રિસેટ	રિસેટ પિનને LOW કરીને વહેલા સમાપ્ત કરી શકાય છે

મોનોસ્ટેબલ ઓપરેશન:

- 1. આઉટપુટ સામાન્ય રીતે LOW રહે છે
- 2. નેગેટિવ ટ્રિગર પલ્સ ટાઇમિંગ સાયકલ શરૂ કરે છે
- 3. આઉટપુટ T સમયગાળા માટે HIGH જાય છે
- 4. સમય T પછી, આઉટપુટ LOW પર પાછો આવે છે
- 5. ટાઇમિંગ સાયકલ દરમિયાન સર્કિટ વધારાના ટ્રિગર પત્સને અવગણે છે

મેમરી ટ્રીક: "OPTS" - One Pulse Timed by Single trigger

પ્રશ્ન 5(ક-OR) [7 ગુણ]

ટાઈમર IC 555 ના બાઈસ્ટેબલ મલ્ટિવાઈબ્રેટર સમજાવો.

જવાબ:

બાઈસ્ટેબલ મલ્ટિવાઈબ્રેટર સર્કિટ:

સ્ટેટ	શરત	આઉટપુટ
સેટ સ્ટેટ	ટ્રિગર પિન (2) ક્ષણભર માટે 1/3 VCC કરતાં નીચે ખેંચવામાં આવે	HIGH
રિસેટ સ્ટેટ	રિસેટ પિન (4) ક્ષણભર માટે LOW ખેંચવામાં આવે	LOW
મેમોરી ફંક્શન	ઇનપુટ દ્વારા બદલાય નહીં ત્યાં સુધી સ્ટેટ જાળવે છે	કોઈપણ સ્ટેટમાં સ્થિર

બાઈસ્ટેબલ ઓપરેશન:

- 1. સર્કિટના બે સ્થિર સ્ટેટ છે (HIGH અથવા LOW)
- 2. SET ઇનપુટ (ટ્રિગર) આઉટપુટને HIGH બનાવે છે
- 3. RESET ઇનપુટ આઉટપુટને LOW બનાવે છે
- 4. કોઈ ટાઇમિંગ ઘટકોની જરૂર નથી
- 5. બેઝિક લેચ અથવા ફિલપ-ફ્લોપ તરીકે કાર્ય કરે છે

ઉપયોગો:

• ટોગલ સ્વિય

- મેમોરી એલિમેન્ટ્સ
- બાઉન્સ-ફ્રી સ્વિચિંગ
- લેવલ શિફ્ટિંગ
- પુશ-બટન ON/OFF કંટ્રોલ

ਮੇਮરੀ ਟ੍ਰੀs: "SRSS" - Set-Reset Stable States