

Fluent Translations from Disfluent Speech in End to End Speech Translation

End-to-End Speech Translation

Elizabeth Salesky 1 , Matthias Sperber 2 , and Alex Waibel 1,2

¹Carnegie Mellon University, Pittsburgh PA, U.S.A. ²Karlsruhe Institute of Technology, Karlsruhe, Germany elizabeth.salesky@gmail.com

Abstract

- Spoken language translation applications for speech suffer due to conversational speech phenomena, particularly the presence of disfluencies.
- With the rise of end-to-end speech translation models, processing steps such as disfluency removal that were previously an intermediate step between speech recognition and machine translation need to be incorporated into model architectures.
- We use a sequence-to-sequence model to translate from noisy, disfluent speech to fluent text with disfluencies removed using the recently collected 'copy-edited' references for the Fisher Spanish-English dataset.
- We directly generate fluent translations and introduce considerations about how to evaluate success on this task.
- We provide a baseline for a new task, the translation of conversational speech with joint removal of disfluencies.

Challenges:

- Fillers are the most frequent vocab items and are easy to translate
- The original Spanish-English data is mostly one-to-one and monotonic. Clean targets create more challenging alignments.
- Utterances go from short to shorter: down from 11.3 to 8.2 tokens. Single mistake has higher consequences for BLEU.

Takeaways:

- Can maintain semantic meaning while removing disfluencies ()
- End-to-end model performs better than post-processing step
- Provides a baseline for future work to reduce labeled data requirements, e.g. through pre-training or LM multi-tasking
- Evaluation requires care using existing metrics

Model

Initial work on the Fisher-Spanish dataset used HMM-GMM ASR models linked with phrase-based MT using lattices.

Recently, Weiss et al. (2017); Bansal et al. (2018) showed that end-to-end SLT models perform competitively.

• We use an encoder-decoder with attention in **xnmt** with a 3-layer BiLSTM encoder and 1-layer decoder each with 512 hidden units.

- Like Bansal et al. (2018) this is a modified version of Weiss et al. (2017) all models train in <5 days on 1 GPU
- We do not use convolutional layers to downsample, but instead use network-in-network (NiN) projections from N to N/2
 - Gives the same total 4× downsampling in time
 - Benefit of added depth with fewer parameters
- We use 40-dimensional mel filterbank features with per-speaker mean and variance normalization (Povey et al., 2011).
- We translate to target characters, as opposed to words
- All models use the same preprocessing as previous work on this dataset: lowercasing and removing punctuation except apostrophes.

Contact Information

- **Data:** https://github.com/isl-mt/fluent-fisher
- Email: elizabeth.salesky@gmail.com

Data

We use the Fisher Spanish-English dataset which consists of ~ 160 hours of \frown speech and 138k utterances.

The data is conversational and disfluent. Disfluencies can be **filler** words and hesitations (um, eh), discourse markers (you know, well, mm), repetitions, corrections and false starts, etc.

Original (**ORG**) English translations faithfully translate disfluencies in the source speech. New fluent (**FLT**) references (Salesky et al., 2018) rewrite utterances without disfluencies.

$\overline{ m SRC}$	eh, eh, um, yo pienso que es así
ORG	uh, uh, uh, um, i think it's like that
\mathbf{FLT}	i think it's like that
\overline{SRC}	también tengo um eh estoy tomando una clase
ORG	i also have um eh i'm taking a marketing class
\mathbf{FLT}	i'm also taking a marketing class
SRC	porque qué va, mja ya te acuerda que
ORG	because what is, mhm do you recall now that
\mathbf{FLT}	do you recall now that
SRC	y entonces am es entonces la universidad donde
	yo estoy es university of pennsylvania
ORG	and so am and so the university where i am it's
	the university of pennsylvania
\mathbf{FLT}	i am at the university of pennsylvania

Table 1: Examples of disfluencies in Spanish source (SRC), original (ORG) and fluent (FLT) English translations

- Most common utterances in dataset are 1-2 token backchanneling
- 10.5% of all utterances marked only disfluencies

Output

Segment comparison: Deletion Insertion Shift

	<pre>and that you see it well but you are not sure that you're there</pre>
Fluent:	you don't see it but you are sure that they are there
Disfluent:	and well that even if they don't see
Fluent:	although you don't see
Disfluent:	yes <mark>yes</mark>

Figure 1: Comparison of example outputs from disfluent and fluent models created with CharCut (Lardilleux and Lepage, 2017).

Notes on Output:

Fluent: yes

- Training with fluent target data constrains output vocabulary: filler words such as 'um', 'ah', 'mhm' are not generated.
- Significant reductions in repetitions of both words and phrases
- Instances where the fluent model generates a shorter paraphrase of a disfluent phrase (2nd example above)

Treating disfluency removal as a filtering task can reduce fluency.

Removal via MT allows reordering and insertions, boosting fluency:

Disfluent mm well and from and the email is a scandal the spam.

Fluent the email is a scandal it's spam.

Stats Impacting Evaluation:

- Fluent model outputs are 13% shorter with 1.5 fewer tokens per utterance than the disfluent model: avg. utt lengths of 10-11 tokens.
- Scoring against original disfluent refs, shorter length significantly lowers scores: BLEU brevity penalty is 0.86 compared to 0.96-1.0.
- Removing BP, 1Ref scores are boosted to 19.3 and 19.8 from 16.6 and 17.0 for dev and test as good as disfluent model on original data (Table 3).
- Fairer comparison: we don't want fluent outputs to match disfluent sequence lengths, and the disfluent models are not penalized due to length.

Evaluation using existing metrics requires care

Evaluation

We evaluate using both **BLEU** and **METEOR**.

- **METEOR** is more 'semantic': we want METEOR scores to be the same with both fluent and disfluent references
- **BLEU** uses modified n-gram precision with a brevity penalty $e^{(1-r/c)}$. We expect scores against fluent references to be lower

METEOR will indicate if meaning is maintained, but not assess disfluency removal, while **BLEU** changes will indicate whether disfluencies have been removed.

Results

Baseline results on original disfluent references, test

- 33.7 BLEU, 30.9 METEOR (*4Ref*)
- 19.6 BLEU, 26.1 METEOR (1Ref)
- Improvement of 4 BLEU and 2 METEOR over Bansal et al. (2018)
- Do not match Weiss et al. (2017); significantly smaller network

Target Task: disfluent speech \rightarrow fluent translations

- METEOR scores are almost the same while BLEU scores are lower with the disfluent model
- Fluent outputs should be semantically the same as disfluent outputs but with disfluencies removed
- Scores are lower than disfluent models: fluent references are shorter, so single token changes carry greater weight for BLEU

Figure 2: End-to-end model performance evaluated with new fluent references. Comparing avg. single reference scores (1Ref) vs multi-reference scores using both generated references (2Ref).

End-to-end or Post-processing Step?

We compare disfluency removal as a post-processing step, using filtering (**Filter**) and monolingual translation (**MonoMT**).

- Filter requires labeled spans and may not capture all false starts or repetitions
- MonoMT allows for reordering and insertions, boosting fluency
- Performance: Filter shows slight improvement over disfluent models on dev but not test. MonoMT approaches end-to-end model scores but requires the same resources.

	\mathbf{dev}		\mathbf{test}	
\mathbf{Model}	$\overline{1}$ Ref	2Ref	1Ref	2Ref
Postproc. Filter	13.6	16.5	13.5	16.8
Postproc. MonoMT	14.4	17.8	14.4	18.0

Table 2: End-to-end disfluent model with different post-processing steps. Performance evaluated with **new fluent references**.

Comparing to Original References:

- Fewer long n-gram matches with disfluencies removed, BLEU ↓
- Low disfluency recall (filler words, backchanneling), METEOR \downarrow
- Recall is reduced by $\sim 14\%$ with the fluent model = approx. % disfluencies in the original data

			\mathbf{dev}		te	\mathbf{st}
	\mathbf{Model}	${f Metric}$	1Ref	4Ref	1Ref	4Ref
	Fluent	BLEU	16.6	29.8	17.0	30.4
	Disfluent	BLEU	19.0	32.4	19.6	33.7
-	Fluent	METEOR	21.8	25.9	22.7	27.0
	Disfluent	METEOR	25.1	30.0	26.1	30.9

Table 3: Evaluating with original disfluent references.