Reduction of connections on vector bundles

Definition 1. Let $\pi_P: P \to M$ be a principal G-bundle and $\pi_Q: Q \to M$ be a principal H-bundle. We say Q is a reduction of P if there is an embedding $\iota_Q: Q \to P$ and an injective homomorphism $\iota_H: H \to Q$ such that it holds that $\iota_Q(\eta h) = \iota_Q(\eta) \iota_H(h)$ for any $\eta \in Q$ and $h \in H$.

Consider principal G-bundle $\pi_P: P \to M$, principal H-bundle $\pi_Q: Q \to M$, and associated bundle $P \times_{\rho} V$ for a representation $\rho: G \to GL(V)$. If there is an homomorphism $\iota_H: H \to G$, we can another associated bundle $Q \times_{\sigma} V$ for the restriction representation for $\sigma = \rho \circ \iota_H$ of H.

Proposition 1. If Q is a reduction of P, then there is a natural isomorphism between $P \times_{\rho} V$ and $Q \times_{\sigma} V$.

Proof. Consider a map $Q \times V \to P \times V$, $(\eta, v) \mapsto (\iota_Q(\eta), v)$. Then it holds that if $(\eta h, v) \sim (\eta, \sigma(h)v)$ then

$$\begin{split} (\iota_Q(\eta h), v) &= (\iota_Q(\eta) \iota_H(h), v) \\ &\sim (\iota_Q(\eta), \rho(\iota_H(h)) v) \\ &= (\iota_Q(\eta), \sigma(h) v). \end{split}$$

Hence the map $\varphi: Q \times_{\sigma} V \to P \times_{\rho} V$, $\eta \times_{\sigma} v \mapsto \iota_{Q}(\eta) \times_{\rho} v$ is well-defined. We want to show that φ is a desired isomorphim.

We construct well-handled local trivializations of our bundles. First we consider Q and choose some local trivialization $\phi^Q:Q|_U\to U\times H$. Then we have a section $q:U\to Q|_U$ such that $\phi^Q\circ q(y)=(y,e)$. Using the section q, we can denote $\phi^Q(\eta)=(y,h)$ where $y=\pi_Q(\eta)$ and $\eta=q(y)h$.

We construct $\phi^P: P|_U \to U \times G$ which satisfies the following commutative

diagram:

$$P|_{U} \xrightarrow{\phi^{P}} U \times G$$

$$\downarrow_{Q} \uparrow \qquad \uparrow_{id \times \iota_{H}}$$

$$Q|_{U} \xrightarrow{\phi^{Q}} U \times H$$

$$\downarrow_{q} \uparrow \qquad \downarrow_{id \times \{e\}}$$

Let $p = \iota_Q \circ q$ and define $\phi^P : P|_U \to U \times G$ by $\phi^P(\xi) = (x, g)$ where $x = \pi_P(\xi)$ and $\xi = p(x)g$. Then it holds that for $\eta = q(y)h \in Q|_U$

$$\iota_Q(\eta) = \iota_Q(q(y)h) = \iota(q(y))\iota_H(h)$$
$$= p(y)\iota_H(h)$$
$$\phi^P(\iota_Q(\eta)) = (y, \iota_H(h)).$$

This shows the commutativity of upper rectangle. The commutativity of lower triangle follows by the definition of q. Note that $\phi^P \circ p(x) = (x, \iota_H(e)) = (x, e)$ for $x \in U$.

Next we construct local trivializations for E^P and E^Q . Define $\psi^Q(q(y) \times_{\sigma} v) = v$ and $\psi^P(p(x) \times_{\sigma} u) = u$. Then trivially it holds that the following commutative diagram:

$$E^{P}|_{U} \xrightarrow{\psi^{P}} U \times V$$

$$\varphi \uparrow \qquad \qquad \parallel$$

$$E^{Q}|_{U} \xrightarrow{\psi^{Q}} U \times V$$

This implies that varphi is an isomorphism from E^Q to E^P .

For a convinience in the following section, we re-state the exietence of well-handled local trivializations of our bundles:

Proposition 2. For a local trivialization $\phi^Q:Q|_U\to U\times H$, diffine

- a section $q: U \to Q|_U$ by $\phi^Q \circ q(y) = (y, e)$;
- a section $p: U \to P|_U$ by $p = \iota_O \circ q$;
- a local trivialization $\phi^P: P|_U \to U \times G$ of P by $\phi^P(\xi) = (x,g)$ where $x = \pi_P(\xi)$ and $\xi = p(x)g$;

- a local trivialization $\psi^Q: E^Q|_U \to U \times V$ of E^Q by $\psi^Q(q(y) \times_{\sigma} v) = v$;
- a local trivialization $\psi^P : E^P|_U \to U \times V$ of E^P by $\psi^P(p(x) \times_{\sigma} u) = u$.

Then it holds the following commutative diagrams:

$$P|_{U} \xrightarrow{\phi^{P}} U \times G \qquad E^{P}|_{U} \xrightarrow{\psi^{P}} U \times V$$

$$\downarrow_{Q} \uparrow \qquad \uparrow_{id \times \iota_{H}} \qquad \varphi \uparrow \qquad \parallel$$

$$Q|_{U} \xrightarrow{\phi^{Q}} U \times H \qquad E^{Q}|_{U} \xrightarrow{\psi^{Q}} U \times V$$

Definition 2. Let $\pi_P: P \to M$ be a principal G-bundle and $\pi_Q: Q \to M$ be a principal H-bundle which is a reduction of P. We call a connection form $\theta \in \Omega^1(P; \mathfrak{g})$ is reducible to Q if $(\ker \theta)_{\iota_Q(\eta)} \subset (\iota_Q)_{*\eta}(T_{\eta}Q)$ for any $\eta \in Q$.

Theorem 1. Consider a (real or complex) Hermitian verctor bundle (E,h), frame bandle P of E, and frame bandle Q of (E,h). For a connection form $\theta \in \Omega^1(P;\mathfrak{g})$ the followings are equivalent:

- the induced connection ∇^{θ} on E is h-preserving;
- θ is reducible to Q.