Calcul Différentiel III

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1 (réponse multiple)	Soit $f:(x_1,x_2)\in\mathbb{R}^2\mapsto x_1x_2\in\mathbb{R}$. On
-------------------------------	---

□ A:

$$H_f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

 \square B: Si $h_1 = (h_{11}, h_{12}) \in \mathbb{R}^2$ et $h_2 = (h_{21}, h_{22}) \in \mathbb{R}^2$,

$$d^2 f(x_1, x_2) \cdot h_1 \cdot h_2 = h_{11} h_{22} - h_{21} h_{12}$$

 \square C: Pour tout $x \in \mathbb{R}^2$

$$\nabla f(x+h) = \nabla f(x) + \frac{1}{2} \langle h, H_f(x) \cdot h \rangle + \varepsilon(h) ||h||^2$$

où $\varepsilon(h) \to 0$ quand $h \to 0$.

Question 2 Si $f: \mathbb{R}^n \to \mathbb{R}$ est deux fois différentiable en $x \in U$ et que $df(x) \cdot h \cdot h$ est connu pour tout $h \in \mathbb{R}^n$, peut-on déterminer $df(x) \cdot h_1 \cdot h_2$ pour tout $h_1, h_2 \in \mathbb{R}^n$?

- \square Non.
- \square Oui.

Question 3 Le tenseur de type (1,1,1) défini par par $t_{ijk}=1.0$:

- \square est d'ordre 1,
- \square est décrit en NumPy par le tableau np.array([1.0]),
- \Box représente l'application linéaire $x\in\mathbb{R}\to y\in\mathbb{R}\to xy\in\mathbb{R}$

Question 5 Si $f: \mathbb{R}^2 \to \mathbb{R}^4$ est trois fois différentiable, quel est le type du tenseur représentant $d^3f(x)$?

- \Box A: (4, 2, 2, 2)
- \Box B: (3, 4, 2)
- \Box C: (4, 2, 1)

Question 6 Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ est deux fois différentiable, combien y'a-t'il au plus de coefficients différents dans le tenseur représentant $d^2f(x)$? \square A: 9