Device-independent lower bounds on the conditional von Neumann entropy

Peter Brown, Hamza Fawzi and Omar Fawzi

arXiv:2106.13692

Aug 25, 2021

■ Foundation for randomness expansion / key-distribution protocols!

- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on *rate* (bits per interaction).

- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on *rate* (bits per interaction).

minimize
$$H(A|E)$$

over all devices compatible with statistics.

- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on *rate* (bits per interaction).

 or H(AB|E)or H(A|E) H(A|B)or...

over all devices compatible with statistics.

- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on *rate* (bits per interaction). or H(AB|E) or H(A|E) H(A|B) or . . .

over all devices compatible with statistics.

■ Difficult to solve – nonconvex / unbounded dimension

Our approach

Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right] \tag{1}$$

such that $H_m \leq H$ and $H_m \to H$ as $m \to \infty$.

Our approach

Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right] \tag{1}$$

such that $H_m \leq H$ and $H_m \to H$ as $m \to \infty$.

■ inf H_m efficiently approximated by semidefinite programming [NPA].

Our approach

Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right] \tag{1}$$

such that $H_m \leq H$ and $H_m \to H$ as $m \to \infty$.

- inf H_m efficiently approximated by semidefinite programming [NPA].
- close to optimal / more efficient / wider scope

Bounding inf $H(A|X=0, Q_E)$

Bounding inf $H(A|X = 0, Q_E)$

Bounding inf $H(A|X = 0, Q_E)$

Bounding inf $H(A|X = 0, Q_E)$

Results III - Improved DIQKD rates

Bounding inf $H(A|X=0, Q_E) - H(A|X=0, Y=2, B)$

Results III - Improved DIQKD rates

Bounding inf $H(A|X=0, Q_E) - H(A|X=0, Y=2, B)$

Thanks for listening!