

Al Course Project

23.04.2022

CS-415-AI-C

Sir Muhammad Shakeel

Abdulbasit Janjua 201980014

Overview

I am assigned with the task to **code the project using Python programming language** to solve the CSP. I have used the simpleai library as discussed and used in the course labs.

I have attached the Python (.py) file in the submitted zip folder.

Specifications:

Code	Explanation
from simpleai.search import CspProblem, backtrack, min_conflicts, MOST_CONSTRAINED_VARIABLE, HIGHEST_DEGREE_VARIABLE, LEAST_CONSTRAINING_VALUE	In this piece of code I just imported the simpleai module of AI having CSP Problem solver, LCV solvers and MCV solvers etc.
gaming_domains = ['SC','GTA','COD','MK','TO','RL','DS']	In this piece of code I make the python list having gaming domains.
def cons_kiran (variables, values): return values[0] == 'SC' or values[0] == 'GTA' or values[0] == 'COD'	It is the constraint method for variable kiran. And the constraint is kiran must supervise games which are SC , GTA , COD . It returns the value of the constraint which is equal to SC or GTA or COD.
def cons_naila (variables, values): return values[0] != 'RL'	It is the constraint method for variable naila. And the constraint is naila cannot supervise a game which is RL. It returns the value of the constraint which is not equal to RL.

<pre>def cons_faisal(variables, values): if values[0] == 'MK' or values[0] == 'TO' or values[0] == 'RL': return False else: return True</pre>	It is the constraint method for variable faisal. And the constraint is faisal cannot supervise games which are MK , TO , RL . It uses the if else condition in the if part the value is equal to MK, TO and RL which returns false and the else part returns true having any other domain.
def cons_daud (variables, values): return values[0] != 'TO'	It is the constraint method for variable daud. And the constraint is daud cannot supervise a game which is TO . It returns the value of the constraint which is not equal TO.
def diffrent_game (variables,values): return values[0]!=values[1]	It is the constraint method for variables having different games . It returns the not equal comparison of value(0) and value(1).
def choosed_games (variables,values): return gaming_domains.index(values[0]) <gaming_ domains.index(values[1])<="" td=""><td>It is the constraint method for games which are chosen by the parent must not chosen by child nodes (person depends on others) shown in the list.</td></gaming_>	It is the constraint method for games which are chosen by the parent must not chosen by child nodes (person depends on others) shown in the list.
lcv_variables = ('Marium', 'Daud', 'Faisal', 'Jameela' , 'Kiran' , 'Baber' , 'Naila')	In this piece of code I make the python tuple having variable names.
domains = {	In this piece of code I make the python sets having domains.

```
In this piece of code I made the python list
constraints =
                                              for variables and applied the constraint
    (('Kiran'), cons kiran),
                                              methods.
    (('Naila'), cons naila),
    (('Faisal'), cons faisal),
    (('Daud'), cons daud),
    (('Naila','Marium'),choosed games),
    (('Kiran', 'Daud'), choosed games),
    (('Naila','Jameela'),choosed_games),
    (('Daud','Faisal'),choosed games),
    (('Baber','Naila'),diffrent_game),
    (('Daud','Jameela'),diffrent game)
  1
unary_Constraints = [
                                              In this piece of code I made the python list
    (('Kiran'), cons_kiran),
                                              for unary variables and applied the
    (('Faisal'), cons faisal),
                                              constraint methods.
    (('Daud'), cons_daud),
    (('Naila'), cons naila),
problem_simpleSolution =
                                              In this piece of code I define the CSP
CspProblem(variables, domains,
                                              Problems works on firstly variables
constraints)
                                              secondly domains and then constraint
                                              methods.
  problem partA = CspProblem(variables,
domains, unary_Constraints)
  problem_partC =
CspProblem(lcv variables, domains,
constraints)
print('\nSolution:\n:',
                                              In this piece of code I am just printing the
backtrack(problem simpleSolution))
                                              solution
  print('\nUnary Constraint:',
backtrack(problem_partA))
  print('\nWhen MRV heuristic is applied
then baber will assigned first ')
  print('\nWhen LCV heuristic with Marium
as first variable is applied: '
     , backtrack(problem_partC,
value heuristic=LEAST CONSTRAINING VAL
UE))
                     .....End of Code and Explanation.....
```