2

3

WHAT IS CLAIMED IS:

	WHAT IS CLAIMED IS.
1	1. A power supply for driving opposing corona chargers
2	comprising:
3	a pair of transformers on the power supply, each of the
4	transformers providing an output;
5	a current sense element attached to each of the
6	transformers;
7	a current regulation circuit that is responsive to each of
8	the current sense circuits in accordance with a predetermined
9	parameter to adjust current flowing through the transformers;
10	a voltage monitoring circuit for each of the transformers;
11	and
12	a voltage control circuit that is responsive to the output
13	voltage monitoring circuit to limit the transformer voltage to
14	less than a predetermined value.
1	2. The power supply of claim 1 wherein the current
2	regulation circuit is a DC-to-DC converter that responds to the current
3	sense circuit by adjusting the transformer voltage.
1	3. The power supply of claim 1 wherein the current sense
2	circuit is configured to sense voltage from the transformer secondary.
1	4. The power supply of claim 3 wherein the current sense
2	circuit that is configured to sense voltage from the transformer
3	secondary senses a voltage developed by the flow of current through
4	an element in the series with the transformer secondary.
1	5. The power supply of claim 1 further comprising a clock

generation circuit that provides synchronized clocks of opposite

polarities to the transformer creating AC outputs to the transformers.

- 1 6. The power supply of claim 5 wherein each of the 2 transformers have a pair of primary coils that are electrically 3 connected to opposite phases of the clock generation circuit.
- 7. The power supply of claim 6 wherein both the transformers have the primary coils receiving opposite clocks phases such that the transformer secondary coils are synchronized to provide opposing AC outputs.
- 1 8. The power supply of claim 1 further comprising a current 2 signal conditioning circuit connected to each of the current sense 3 elements.
- 9. The power supply of claim 1 wherein the current regulation circuit is a DC-to-DC converter that can be programmed to regulate current through a range by adjusting the transformer voltage and also programmed responsive to the voltage monitoring circuit to limit the transformer voltage.
- 1 10. A power supply for driving a corona charger comprising: 2 a pair of outputs to the power supply;
- at least one current sense element connected to the power
 supply;
- at least one voltage monitoring circuit connected to the power supply; and
- a DC-to-DC converter that is programmed to regulate current through a range of loads in response to the current sense element and also programmed as a voltage limiting device for the power supply.

1	11. The power supply of claim 10 further comprising a clock
2	generation and inverter circuit connected to the power supply to
3	provide synchronizing and opposing AC outputs.
1	12. The power supply of claim 11 wherein the current sense
2	element is configured to sense voltage from the transformer
3	secondary.
1	13. The power supply of claim 12 wherein the current sense
2	element that is configured to sense voltage from the transformer
3	secondary senses a voltage developed by the flow of current through
4	an element in the series with the transformer secondary.
1	14. The power supply of claim 10 further comprising a
2	current signal conditioning circuit connected to the current sense
3	element.
1	15. A method for supplying power to a corona charger to
2	regulate current without exceeding voltage limitations comprising the
3	steps of:
4	providing a pair transformers driven at their input to have
5	opposite phases of an AC signal;
6	connecting a programmable regulator to the transformers
7	output to apply a DC voltage level at the transformers output;
8	sensing current being sourced through the transformers
9	by circuitry operatively connected to the transformers inputs
10	and the programmable regulator;
11	adjusting the DC voltage level provided by the
12	programmable regulator at the transformer output in response to
13	the sensing step;
14	sensing voltage applied to the transformer output; and

15	responding via the programmable regulator to	limit
16	voltage applied to the transformers output in excess	of a
17	predetermined amount.	

- 1 16. The method of claim 15 wherein the step of connecting
 2 further comprises connecting a DC-to-DC converter as the
 3 programmable regulator, and the DC voltage level applied by the
 4 regulator is responsive to sensed current from the transformers to keep
 5 current flowing through the transformers constant.
- 1 17. The method of claim 16 wherein the step of connecting 2 further comprises responding to voltage sensed at the transformer 3 output to limit the transformer output voltage to a predetermined 4 amount.
- 18. The method of claim 17 wherein the step of connecting further comprises the DC-to-DC converter being programmed to regulate current through a range by adjusting the transformer voltage.