NATIONAL UNIVERSITY OF SINGAPORE

CS2100 – COMPUTER ORGANISATION

(Semester 2: AY2018/19)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your Student Number with <u>a pen</u> (to prevent accidental erasure) only on the **ANSWER BOOKLET**. Do not write your name.
- 2. This assessment paper consists of **SEVEN (7)** questions and comprises **EIGHTEEN (18)** printed pages.
- 3. This is a **CLOSED BOOK** assessment. One double-sided A4 reference sheet is allowed.
- 4. Calculators and computing devices such as laptops and PDAs are <u>not</u> allowed.
- 5. Answer all questions and write your answers in the **ANSWER BOOKLET** provided.
- 6. You may use pencil to write your answers.
- 7. Page 12 onwards contain the MIPS Reference Data Sheet and several blank tables for your rough works.
- 8. You are to <u>submit only the **ANSWER BOOKLET**</u> and no other document.

1. [12 marks]

Study the following MIPS code, which has one input \$50 and two outputs \$10 and \$11.

```
addi $t0, $zero, 32
    addi $t1, $zero, 32
   beg $s0, $zero, N
    andi $t2, $s0 , 0x0001
   beq $t2, $zero, E
    addi $t1, $t1 , -1
    addi $t0, $t0 , -1
E:
    srl $s0, $s0 , 1
    j
        L
N:
```

- (a) What are the values of \$t0 and \$t1 at the end of the execution if the value of \$s0 at the \$t0-26 \$t1 = 31 start is 32?
- (b) If the value of \$50 is 43 at the start of execution, what is the total number of times both beg instructions branch? That is, when both "beg \$s0, \$zero, N" branches to N [2 marks] and "beq \$t2, \$zero, E" branches to E. \longrightarrow 2
- (c) Give a value of \$50 at the start such that the values of \$t0 and \$t1 at the end of the execution are both 0. Ox FFFF FFFF [2/marks]
- (d) What is the encoding of the only **R-format** instruction above in *hexadecimal*? [2 marks] DX 0010 8042
- (e) Write the relationship between **\$t0** and **\$s0** as well as between **\$t1** and **\$s0** in a <u>single</u> # leading 0 / positron of leftmost 1 33 - # 1's [2 marks] sentence each.

(f) Our current MIPS instruction set does not have load half-word since 1hw is a pseudoinstruction. **1hw** loads 16 bits from memory to the *lower half* of the register and sets the upper half of the register to all zeros. The pseudo-instruction 1hw \$t0, 80(\$zero) will be translated into actual MIPS instructions before being run. Write down the equivalent actual instructions to perform load half-word in the fewest number of MIPS lw \$to, 80 (\$zero) instructions possible. [2 marks] |ui \$t0 , 0

2. **[4 marks]**

As the number -0.3_{10} cannot be represented precisely in binary, it also cannot be represented precisely in the IEEE 754 standard single precision floating point format. However, we can approximate the value by truncating the bits to the nearest representation.

Write the approximation of -0.3_{10} in IEEE 754 standard single precision floating point [4 marks] format. Give your answer in hexadecimal. Ox be 99994 da

3. **[14 marks]**

You are given the implementation of MIPS processor on the next page with partially incorrect modification to include the Jump instruction (j). Note that for the added multiplexer (the one with control signal **IsJump?**), if **IsJump?** is 0, the top input is chosen; otherwise the bottom input is chosen.

It sign extended before multiplying by 2, this would mean we would lose 2 MSB

(a) Describe what is wrong with the implementation in one sentence.

The 1st 4 bits do not come from PC+4

Use of sign-extend instead of zero-extend (edge case where address starts with bit 1)

(b) Consider an instruction **0x0800C840** at address **0x2100FFFC**. What is the next value of PC when the instruction is executed using the incorrect processor above? jumping to 0000C840, sign extend C8400000, sll 2 21000000 [3 marks]

- (c) Since we are using the intermediate signal **ALUop**, we specify that the **ALUop** for j instruction is **11**. The rest of the **ALUop** does not change. Fill in the missing values in the control signal table in the answer booklet. [3 marks]
- (d) Modify the combinational circuit given in the answer booklet to include **ALUop1**, **ALUop0** and **IsJump?** control signals. [4 marks]
- (e) Given that there is no change to the ALU Control unit shown below for your convenience, what will be the value of ALUcontrol when the instruction 0x08000031 is executed? Give your answer in 4 bits binary.
 [2 marks]

Page **3** of **18**

Page 4 of 18

4. [16 marks]

A sequential circuit goes through the following states, whose state values are shown in decimal:

The states are represented by 4-bit values *ABCD*. Implement the sequential circuit using a *D* flip-flop for *A*, *T* flip-flops for *B* and *C*, and a *JK* flip-flop for *D*.

$$\begin{split} D &= A.B' + A.C' + A'.B.C.D & JD &= B.C.D' \\ TB &= C & TC &= A' + B' + C' & KD &= A.B.C \end{split}$$

- a. Write out the **simplified SOP expressions** for all the flip-flop inputs. [10 marks]
- b. Implement your circuit according to your simplified SOP expressions obtained in part

 (a). Complete the given state diagram on the Answer Booklet, by indicating the next state for each of the five unused states.
 [5 marks]
- c. Is your circuit self-correcting? Why? (Answer without reason will not be given mark.) [1 mark]

5. **[22 marks]**

For the parts below, you are to assume that <u>complemented literals are not available</u>. Note also that circuit that is correct but uses more logic gates than necessary will be given partial credit.

(a) The **8-bit count-1** device, whose block diagram is shown below, takes in an 8-bit input *ABCDEFGH* and outputs $F_3F_2F_1F_0$ which is the number of 1s in the input. For example, if *ABCDEFGH* = 11101101, then $F_3F_2F_1F_0$ = 0110 (six).

How would you implement an **8-bit count-0** device to count the number of 0s in the input using the above 8-bit count-1 device and XOR gates? No other gates or devices besides the count-1 device and XOR gates are allowed. [3 marks]

(b) Assuming that the 8-bit input *ABCDEFGH* is an unsigned binary number. Let P(A,B,C,D,E,F,G,H) be a Boolean function that returns 1 if *ABCDEFGH* contains an odd number of 1s and *ABCDEFGH* is an even number, or returns 0 otherwise. For example, the function *P* returns 1 for the following inputs: 01110000, 10111010, 00010000, but returns 0 for the following inputs: 00111001, 10100001, 11110000.

Implement *P* using the **Count-1 device** as shown in part (a) above, with the <u>fewest</u> <u>number of additional logic gates</u>. [3 marks]

(c) Assuming that the 8-bit input ABCDEFGH is an unsigned binary number. Let Q(A,B,C,D,E,F,G,H) be a Boolean function that returns 1 if ABCDEFGH is a multiple of 17 (eg: 0, 17, 34, 51, etc.), or returns 0 otherwise.

Given a **parallel adder**, a **magnitude comparator**, a **decoder**, an **encoder**, and a **demultiplexer**, implement *Q* using only <u>ONE</u> of these devices, <u>without any additional logic gates</u>. Your device should be the smallest possible (for example, if an 8-bit parallel adder is sufficient, you should not use a 16-bit parallel adder). [4 marks]

- 5. (continue...)
- (d) Implement the following four-variable function R(A,B,C,D) using a <u>single</u> **4:1 multiplexer** without any additional logic gates. [6 marks]

$$R(A,B,C,D) = \Sigma m(0, 2, 3, 4, 6, 7, 12, 14)$$

- (e) Study the following circuit which uses a half adder (HA), a 2×4 decoder with 1-enable and active high outputs, three 4:1 multiplexers and three devices each with a 1-enable control (EN):
 - A (\times 2)-device: it takes in two inputs P and Q and produces 3-bit output with value (P+Q) \times 2.
 - A (+2)-device: it takes in two inputs P and Q and produces 3-bit output with value P+Q+2.
 - A (+3)-device: it takes in two inputs P and Q and produces 3-bit output with value P+Q+3.

For the three devices above, if a device is not enabled, its outputs are all zeroes.

Redesign the above circuit so that it can be implemented using the fewest logic gates. Write your expressions for *X*, *Y* and *Z*. You do not need to draw your circuit. [6 marks]

6. [18 marks]

Given three integer arrays A, B, C, where arrays B and C each contains n elements and array A contains 2n elements, a MIPS code is written to update the elements in A with the elements in B and C as follows:

```
A[k] = A[k] + B[k/2] if k is even

A[k] = A[k] + C[(k-1)/2] if k is odd
```

For example, suppose $A = \{1, 2, 3, 4, ...\}$, $B = \{101, 102, ...\}$ and $C = \{201, 202, ...\}$, then the final values in A are $\{102, 203, 105, 206, ...\}$.

The MIPS code fragment is shown below.

```
$s0 = base address of array A
      # $s1 = base address of array B
      \# $s2 = base address of array C
      \# $s3 = n, the number of elements in array B
     add $t0, $s0, $0
                          # Inst1, Address: 0x00FFFF18
     add $t1, $s1, $0
                           # Inst2
         $t2, $s2, $0
                            # Inst3
                                      つ
     add
                           # Inst4: $t3 = 2n
     add $t3, $s3, $s3
                           # Inst5: $t4 = k (loop variable)
     add $t4, $0,
                    $0
Loop: slt $t5, $t4, $t3
                            # Inst6: k < 2n?
                           # Inst7 }
     beq $t5, $0, End
          $t6, 0($t0)
     lw
                            # Inst8
     lw
          $t7, 0($t1)
                            # Inst9
     add $t6, $t6, $t7
                           # Inst10
          $t6, 0($t0)
                           # Inst11 0
     sw
          $t8, 4($t0)
                           # Inst12
     lw
          $t9, 0($t2)
                            # Inst13
     lw
     add $t8, $t8, $t9
                            # Inst14
          $t8, 4($t0)
                           # Inst15
     sw
     addi $t0, $t0, 8
                           # Inst16
                           # Inst17
     addi $t1, $t1, 4
     addi $t2, $t2, 4
                            # Inst18
                           # Inst19 1
     addi $t4, $t4, 2
          Loop
                            # Inst20
     j
End:
```

For parts (a), (b), (c): Given a **two-way set associative data cache** with 64 words in total, and each block containing 4 words with each word being 4 bytes long. LRU (least recently used) algorithm is used for replacement. Each integer occupies one word.

Assuming that the integer arrays B and C each contains $\mathbf{2^{10}}$ elements. Arrays A, B and C are stored starting at memory addresses $\underline{0x00000080}$, $\underline{0x00100000}$ and $\underline{0x00108040}$ respectively.

The data cache is involved when memory is accessed (that is, when **Iw** and **sw** instructions are executed).

- a. How many bits are there in the set index field? In the byte offset field? [2 marks]
- b. Which set is A[0] mapped to? Which set is B[60] mapped to? Which set is C[1032] mapped to? You may write your answer in decimal or binary. [3 marks]
- c. What is the cache hit rate for array A? For array B? For array C? Write your answer as a fraction. [6 marks]

For parts (e), (f), (g): Given a **direct-mapped instruction cache** with 16 words in total and each block contains 4 instructions (words). The first instruction (**add** \$t0, \$s0, \$0) is at memory address 0x00FFFF18. Recall that the integer arrays B and C each contains 2^{10} elements.

- d. How many misses are there in the 1st iteration (Inst1 to Inst20 inclusive)? [2 marks]
- e. How many misses are there in the 2^{nd} iteration (Inst6 to Inst20 inclusive)? $\sqrt{2}$ marks]
- f. How many misses are there in the execution of the whole code?

marks]

6+ 2 X510

6 + 2 x 1024, since it is comapring to 2n instead of n

7. **[14 marks]**

Refer to the same MIPS code in the previous question:

```
$s0 = base address of array A
       $s1 = base address of array B
      \# $s2 = base address of array C
      \# $s3 = n, the number of elements in array B
           $t0, $s0, $0
      add
                              # Inst1, Address: 0x00FFFF18
           $t1, $s1, $0
                              # Inst2
      add
                              # Inst3
      add
           $t2, $s2, $0
           $t3, $s3, $s3
                              # Inst4: $t3 = 2n
      add
                              \# Inst5: \$t4 = k (loop variable)
      add $t4, $0,
                      $0
           $t5, $t4, $t3
Loop: slt
                              # Inst6: k < 2n?
           $t5, $0,
                     End
                              # Inst7
      beq
           $t6, 0($t0)
                              # Inst8
      lw
                              # Inst9
           $t7, 0($t1)
      lw
      add
           $t6, $t6, $t7
                              # Inst10
           $t6, 0($t0)
                              # Inst11
      sw
      lw
           $t8, 4($t0)
                              # Inst12
           $t9, 0($t2)
                              # Inst13
      lw
      add
           $t8, $t8, $t9
                              # Inst14
      sw
           $t8, 4($t0)
                              # Inst15
      addi $t0, $t0, 8
                              # Inst16
      addi $t1, $t1, 4
                              # Inst17
      addi $t2, $t2, 4
                              # Inst18
      addi $t4, $t4, 2
                              # Inst19
           Loop
                              # Inst20
      j
End:
```

We assume a 5-stage MIPS pipeline system, and the first instruction (add \$t0, \$s0, \$0) begins at cycle 1.

- a. The jump (j) instruction causes a control hazard. What is the minimum number of stall cycles that a jump instruction would incur and how can that be achieved? [2 marks]

 The jump instruction incurs one stall cycle, if computation of the next PC value is done at ID stage
- b. Assuming without forwarding and branch decision is made at MEM stage (stage 4).
 No branch prediction is made and no delayed branching is used. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take?

 You need to count until the last stage of instruction 19.
- c. Assuming with forwarding and early branching, that is, the branch decision is made at ID stage (stage 2). No branch prediction is made and no delayed branching is used. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take? You need to count until the last stage of instruction 19. [3 marks]

d. Assuming with forwarding and early branching, that is, the branch decision is made at ID stage (stage 2). Branch prediction is used, where the branch is predicted not taken. How many cycles does the code from instructions 1 through 19 (leaving out the jump instruction) take? You need to count until the last stage of instruction 19.

[3 marks]

e. Assuming with forwarding, how would you rearrange the instructions to reduce the number of stall cycles, and how many stall cycles is reduced as a result of this? You do not need to rewrite the full code. Just describe the changes or show the portion that is changed. Your changes should be as minimal as possible.

[3 marks]

Instruction 2 after 6 Instruction 3 after 9 Instruction 11 after 13 10 & 11 after 13

-2 stall

~~ end of paper ~~~ load dependency

(The next few pages contain the MIPS Reference Data sheet, blank truth tables, K-maps and pipeline charts.)

Add Immediate a Add Imm. Unsigned a Add Imm. Unsigned a Add Unsigned a And a And Immediate a Branch On Equal b Branch On Not Equal b Jump j Jump And Link j Jump Register j Load Byte Unsigned a Load Halfword Unsigned a Load Linked a Load Upper Imm. a Load Word a Nor g Or g Or Immediate a Set Less Than Imm. a Set Less Than Imm. a	NIC add addiu addiu and andi beq bne j	FOR-MAT R I I R R I I I I I I I R R I I I I R R I I I I R		(1) (1,2) (2) (3) (4) (5) (5) (2) (2,7) (2)	0 / 21 _{he} 0 / 24 _{he} chex 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} 4 _{hex} 23 _{hex}
NAME, MNEMON Add a Add Immediate a Add Immediate a Add Unsigned a And Immediate a And Immediate a And Immediate a Branch On Equal a Branch On Not Equal a Jump jump And Link jump Register j Load Byte Unsigned a Load Halfword unsigned Load Linked load Linked load Upper Imm. a Load Word a Nor g Or Immediate a Set Less Than Set Less Than Imm. Set Less Than Imm.	NIC add addiu addiu and andi andi beq bne j jal jr lbu llhu ll ui llw nor	FOR-MAT R I I R R I I I I I I I R R I I I I R R I I I I R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rd] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr rC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt] = {24'b0,M[R[rs] + SignExtImm](7:0)} R[rt] = H[rs]+SignExtImm] R[rt] = 4[rt] = H[rs]+SignExtImm] R[rt] = 4[rt] = H[rs]+SignExtImm] R[rt] = 4[rt] = H[rt] = H[rt] = H[rt] = H[rt] R[rt] = M[rt] = H[rt] = H[rt	(1,2) (2) (3) (4) (4) (5) (5) (5)	/ FUNC (Hex) 0 / 20he 8hex 9hex 0 / 21he 0 / 24he chex 4hex 5hex 2hex 3hex 0 / 08he 24hex 25hex 30hex fhex 23hex
Add a Add Immediate a Add Imm. Unsigned a Add Unsigned a And Immediate a And Immediate a Branch On Equal b Branch On Not Equal b Jump j Jump And Link j Jump Register j Load Byte Unsigned a Load Halfword Unsigned l Load Upper Imm. 1 Load Word 1 Nor 1 Or 1 Set Less Than 1 S	addi addiu addiu addu and andi beq bne j jal jr llbu llbu ll lui lw nor	R I I R R I I I I I I I R R I I I I R I I I I I I I R	R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr r[31]=PC+8;PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(1,2) (2) (3) (4) (4) (5) (5) (5)	0/20he 8hex 9hex 0/21he 0/24he chex 4hex 5hex 2hex 3hex 0/08he 24hex 25bex 30hex fhex 23hex
Add Immediate a Add Imm. Unsigned a Add Unsigned a And a And Immediate a Branch On Equal b Branch On Not Equal b Jump j Jump And Link j Jump Register j Load Byte Unsigned a Unsigned Load Linked a Load Upper Imm. a Load Word j Nor g Or j Or Immediate a Set Less Than s Set Less Than Imm. a Unsigned	addi addiu addu and andi beq bne j jal jr llbu llhu ll ui	I I R R I I I I I I I R R	R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs] == R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(1,2) (2) (3) (4) (4) (5) (5) (5)	8hex 9hex 0 / 21he 0 / 24he chex 4hex 5hex 2hex 3hex 0 / 08he 24hex 25bex 30hex 1hex 23hex
Add Imm. Unsigned a Add Unsigned a And a And Immediate a Branch On Equal b Branch On Not Equal b Jump j Jump And Link j Jump Register j Load Byte Unsigned a Unsigned Load Linked a Load Upper Imm. a Load Word j Nor g Or j Or Immediate a Set Less Than s Set Less Than Imm. a Unsigned	addiu addiu and andi beeq bne j jal jr llbu llhu ll llui llw	I R R I I I I I I R R	R[rt] = R[rs] + SignExtImm R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(2) (3) (4) (5) (5) (5) (2) (2,7)	9 _{hex} 0/21 _{he} 0/24 _{he} 0/24 _{he} c _{hex} 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0/08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} 4 _{hex} 23 _{hex}
Add Unsigned a And a And Immediate a Branch On Equal a Branch On Not Equal a Jump	addu and andi beq bne j j jal jr llbu llhu ll lui unor	R R I I I J J R I I I I I I I I I I I I	R[rd] = R[rs] + R[rt] R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZcroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(3) (4) (4) (5) (5) (5) (2) (2,7)	0 / 21 _{he} 0 / 24 _{he} chex 4 _{hex} 5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} 4 _{hex} 23 _{hex}
And and And Immediate and And	and andi beq bne j jal jr lbu lhu ll lui lw nor	R I I I I I I I I I R I I I R	R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZcroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (2) (2,7)	0 / 24 _{he} c _{hex} 4 _{hex} 5 _{hex} 2 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
And Immediate Branch On Equal Branch On Not Equal Branch On Not Equal Jump Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Set Less Than Imm. Unsigned	andi beq bne j jal jr lbu lhu ll lui lw nor	I I I I I I I I I R I I I I R	R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (2) (2,7)	chex 4hex 5hex 2hex 3hex 0 / 08he 24hex 25hex 30hex fhex 23hex
Branch On Equal E Branch On Not Equal E Jump j Jump And Link j Jump Register j Load Byte Unsigned 1 Load Halfword Unsigned 1 Load Linked 1 Load Upper Imm. 1 Load Word 1 Nor 1 Or 1 Or Immediate 2 Set Less Than 1 Set Less Than 1 Unsigned 1	beq j jal jr lbu lhu ll lui lw	I I J J R I I I I R R	if(R[rs]==R[rt]) PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (2) (2,7)	4hex 5hex 2hex 3hex 0 / 08he 24hex 25hex 30hex fhex 23hex
Branch On Not Equal E Jump Jump And Link Jump Register Load Byte Unsigned Unsigned Unsigned Load Linked Load Linked Load Word Nor Or Or Immediate Set Less Than Set Less Than Imm. Unsigned	bne j jal jr lbu lhu ll lui lw	I J R I I I I R	PC=PC+4+BranchAddr if(R[rs]!=R[rt]) PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(4) (5) (5) (2) (2) (2,7)	5 _{hex} 2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
Jump Jump And Link Jump Register Jump Regist	j jal jr lbu lhu ll lui lw	J J R I I I I R	PC=PC+4+BranchAddr PC=JumpAddr R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(5) (5) (2) (2) (2,7)	2 _{hex} 3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} 4 _{hex} 25 _{hex}
Jump And Link Jump Register Load Byte Unsigned Load Halfword Unsigned Load Linked Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Imm. Set Less Than Imm. Unsigned	jal jr lbu lhu ll lui lw	J R I I I I R	R[31]=PC+8;PC=JumpAddr PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(5) (2) (2) (2,7)	3 _{hex} 0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
Jump Register j Load Byte Unsigned l Load Halfword Unsigned l Load Linked l Load Upper Imm. l Load Word l Nor l Or l Or Immediate l Set Less Than Imm. l Set Less Than Imm. l Unsigned l	jr lbu lhu ll lui lw	R I I I I R	PC=R[rs] R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(2) (2) (2,7)	0 / 08 _{he} 24 _{hex} 25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
Load Byte Unsigned Load Halfword Unsigned Load Linked Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Set Less Than Imm. Unsigned	lbu lhu ll lui lw	I I I I I R	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(2) (2,7)	24 _{hex} 25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
Load Halfword Unsigned Load Linked Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Set Less Than Imm. Unsigned	lhu ll lui lw	I I I I R	+SignExtImm](7:0)} R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(2) (2,7)	25 _{hex} 30 _{hex} f _{hex} 23 _{hex}
Unsigned Load Linked Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Imm. Unsigned	ll lui lw	I I I R	+SignExtImm](15:0)} R[rt] = M[R[rs]+SignExtImm] R[rt] = {imm, 16'b0} R[rt] = M[R[rs]+SignExtImm]	(2,7)	30 _{hex} f _{hex} 23 _{hex}
Load Upper Imm. Load Word Nor Or Or Immediate Set Less Than Imm. Set Less Than Imm. Unsigned	lui lw nor	I I R	$R[rt] = \{imm, 16'b0\}$ $R[rt] = M[R[rs] + SignExtImm]$		f _{hex} 23 _{bex}
Load Word 3 Nor 7 Or 6 Or Immediate 6 Set Less Than 8 Set Less Than Imm. 2 Unsigned 7	lw nor	I R	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{bex}
Nor control of the co	nor	R		(2)	
Or c Or Immediate c Set Less Than s Set Less Than Imm. s Set Less Than Imm. Unsigned			$R[rd] = \neg (R[rs] \mid R[rt])$		
Or Immediate constitution of the Set Less Than Imm. Set Less Than Imm. Unsigned	or				$0/27_{ho}$
Set Less Than set Less Than Imm. Set Less Than Imm. Unsigned		R	R[rd] = R[rs] R[rt]		0/25 _h
Set Less Than Imm. s Set Less Than Imm. Unsigned	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}
Set Less Than Imm. Unsigned	slt	R	$R[rd] = (R[rs] \le R[rt]) ? 1 : 0$		0 / 2a _h
Unsigned	slti	I	$R[rt] = (R[rs] \le SignExtImm)? 1$: 0 (2)	a _{hex}
Set Less Than Unsig. a	sltiu	I	$R[rt] = (R[rs] \le SignExtImm)$? 1:0	(2,6)	b _{hex}
	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hc}$
Shift Left Logical	s11	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _h
Shift Right Logical s	srl	R	$R[rd] = R[rt] \gg shamt$		0 / 02 _h
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{bex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{bex}
	sub	R	R[rd] = R[rs] - R[rt]	(1)	0/22 _{hc}
	subu		R[rd] = R[rs] - R[rt]		0/23 _h
(((((2) Sign (3) Zen (4) Bra (5) Jun (6) Ope	nExtI oExtI nchA npAde crands	se overflow exception mm = { 16{immediate[15]}, imm lmm = { 16{1b'0}, immediate } ddr = { 14{immediate[15]}, immediate = { PC+4[31:28], address, 2'b sensidered unsigned numbers (vest&set pair; R[rt] = 1 if pair atomi	ediate, : 00 } s. 2's c	2'b0 }
BASIC INSTRUCTIO	ON FO	RMA	ATS		
R opcode	-	S	rt rd shamt	1	funct
I opcode	r	21	20 16 15 11 10	6.5	

ARITHMETIC CORE	INSTE	RU	CTION SET 2	OPCODE
	FO	D		/ FMT /FT / FUNCT
NAME, MNEMONIO				(Hex)
Branch On FP True be			if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False be			if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide di	iv R		Lo=R[rs]/R[rt]: Hi=R[rs]%R[rt]	0///la
Divide Unsigned di	vu R	Ł	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add	i.s Fl	R	F[fd] = F[fs] + F[ft]	11/10//0
FP Add Double	a.a F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0
FP Compare Single ex	s* F	R	FPcond = (F[fs] op F[ft])?1:0	11/10//y
Double	.d* Fl	•	$FPcond = ({F[fs],F[fs+1]} op {F[ft],F[ft+1]})? 1:0$	11/11//y
			=, <, or <=) (y is 32, 3c, or 3c)	
	7.5 F	R	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	r.d Fl	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
	1.5 F	R	$F[fd] = F[fs] \cdot F[ft]$	11/10//2
FP Multiply Double mul	l.a F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
_	o.s F	R	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract Double sul	o.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
	c1 I		F[rt]=M[R[rs]+SignExtImm] (2)	31///
Load FP Double	ci I	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mf	hi R	t	R[rd] = Hi	0 ///10
Move From Lo mf	lo R	t	R[rd] = Lo	0 ///12
Move From Control mf	c0 R	t	R[rd] = CR[rs]	10 /0//0
	lt R		$\{Hi,Lo\} = R[rs] \cdot R[rt]$	0///18
Multiply Unsigned mul	Ltu R	t	$\{Hi,Lo\} = R[rs] \cdot R[rt]$ (6)	
	ca R	-	R[rd] = R[rt] >>> shamt	0///3
	ci I		M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP Double sd	ci I	ı	M[R[rs]+SignExtImm] = F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d///

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	IS II	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	LS		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \leq R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	nove	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NOWIDER	USE	A CALL?
Szero	0	The Constant Value 0	N.A.
Şat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	Ño
Sgp	28	Global Pointer	Yes
Şsp	29	Stack Pointer	Yes
Sfp	30	Frame Pointer	Yes
Şra	31	Return Address	No

26 25 Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

address

Α	В	С	D	A ⁺	B ⁺	C ⁺	D ⁺			

DA

ТВ

TC

JD

KD

Cycle	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2	2	2	2 5	2	2 7	2	2 9	3 0
I1 add																														
I2																														\vdash
add																														
I3																														\vdash
add																														
14																														
add																														
15																														
add																														
16																														
slt																														
17																														
beq																														
18																														
lw																														
19																														
lw																														
110																														
add																														
l11																														
sw																														

Cycle															
I12 lw															
I13 lw															
I14 add															
I15 sw															
I16 addi															
I17 addi															
I18 addi															
I19 addi															

Cycle	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2 2	2	2 4	2 5	2	2 7	2 8	2	3
l1										U				7)	0	,	0		0)	_)	U	,	U	,	0
add																														
12																														
add																														
13																														
add																														<u> </u>
14																														
add																														
I5 add																														
16																														
slt																														
17																														
beq																														
18																														
lw																														
19																														
lw																														
110																														
add																														ļ
l11																														
SW																														
I12 lw																														
113																														
lw																														
114																														
add																														
l15																														
sw																														
I16]
addi																														
l17																														
addi																														
118																														
addi																														
I19																														
addi	<u> </u>			1								<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>				ш

(This page is intentionally left blank.)

(This page is intentionally left blank.)