Current-Voltage Analysis of BJT's

Muhammad Adeel

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

Current & Voltage Analysis

 $I_{\rm B}$: dc base current

 $I_{\rm E}$: dc emitter current

 $I_{\rm C}$: de collector current

 V_{BE} : dc voltage at base with respect to emitter

 $V_{\rm CB}$: dc voltage at collector with respect to base

 $V_{\rm CE}$: dc voltage at collector with respect to emitter

 $V_{\rm BB}$ forward-biases the base-emitter junction, and $V_{\rm CC}$ reverse-biases the base-collector junction. When the base-emitter junction is forward-biased, it is like a forward-biased diode and has a nominal forward voltage drop of

$$V_{\rm BE} \cong 0.7 \, \rm V$$

Although in an actual transistor V_{BE} can be as high as 0.9 V and is dependent on current, we will use 0.7 V throughout this text in order to simplify the analysis of the basic concepts.

Since the emitter is at ground (0 V), by Kirchhoff's voltage law, the voltage across R_B is

$$V_{R_{\rm B}} = V_{\rm BB} - V_{\rm BE}$$

Also, by Ohm's law,

$$V_{R_{\mathrm{B}}} = I_{\mathrm{B}}R_{\mathrm{B}}$$

Substituting for $V_{R_{\rm R}}$ yields

$$I_{\rm B}R_{\rm B} = V_{\rm BB} - V_{\rm BE}$$

Solving for I_B ,

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}}$$

The voltage at the collector with respect to the grounded emitter is

$$V_{\rm CE} = V_{\rm CC} - V_{R_{\rm C}}$$

Since the drop across R_C is

$$V_{R_{\rm C}} = I_{\rm C} R_{\rm C}$$

the voltage at the collector can be written as

$$V_{\text{CE}} = V_{\text{CC}} - I_{\text{C}}R_{\text{C}}$$

where $I_{\rm C} = \beta_{\rm DC} I_{\rm B}$.

The voltage across the reverse-biased collector-base junction is

$$V_{\rm CB} = V_{\rm CE} - V_{\rm BE}$$

Example

Determine β_{DC} and I_E for a transistor where $I_B = 50 \,\mu\text{A}$ and $I_C = 3.65 \,\text{mA}$.

Solution

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{3.65 \text{ mA}}{50 \,\mu\text{A}} = 73$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 3.65 \text{ mA} + 50 \,\mu\text{A} = 3.70 \text{ mA}$$

Related Problem * A certain

A certain transistor has a β_{DC} of 200. When the base current is 50 μ A, determine the collector current.

Determine I_B , I_C , I_E , V_{BE} , V_{CE} , and V_{CB} in the circuit of Figure 4–8. The transistor has a $\beta_{DC} = 150$.

FIGURE 4-8

Example

From Equation 4–3, $V_{\rm BE} \cong 0.7$ V. Calculate the base, collector, and emitter currents as follows:

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{5 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = 430 \,\mu\text{A}$$

$$I_{C} = \beta_{DC}I_{B} = (150)(430 \,\mu\text{A}) = 64.5 \,\text{mA}$$

$$I_{E} = I_{C} + I_{B} = 64.5 \,\text{mA} + 430 \,\mu\text{A} = 64.9 \,\text{mA}$$

Solve for V_{CE} and V_{CB} .

$$V_{\text{CE}} = V_{\text{CC}} - I_{\text{C}}R_{\text{C}} = 10 \text{ V} - (64.5 \text{ mA})(100 \Omega) = 10 \text{ V} - 6.45 \text{ V} = 3.55 \text{ V}$$

 $V_{\text{CB}} = V_{\text{CE}} - V_{\text{BE}} = 3.55 \text{ V} - 0.7 \text{ V} = 2.85 \text{ V}$

Since the collector is at a higher voltage than the base, the collector-base junction is reverse-biased.

Saturation region

Assume that $V_{\rm BB}$ is set to produce a certain value of $I_{\rm B}$ and $V_{\rm CC}$ is zero. For this condition, both the base-emitter junction and the base-collector junction are forward-biased because the base is at approximately 0.7 V while the emitter and the collector are at 0 V. The base current is through the base-emitter junction because of the low impedance path to ground and, therefore, $I_{\rm C}$ is zero. When both junctions are forward-biased, the transistor is in the saturation region of its operation.

Muhammad Adeel

As $V_{\rm CC}$ is increased, $V_{\rm CE}$ increases gradually as the collector current increases. This is indicated by the portion of the characteristic curve between points A and B in Figure 4–9(b). $I_{\rm C}$ increases as $V_{\rm CC}$ is increased because $V_{\rm CE}$ remains less than 0.7 V due to the forward-biased base-collector junction.

Muhammad Adeel

Ideally, when V_{CE} exceeds 0.7 V, the base-collector junction becomes reverse-biased and the transistor goes into the active or linear region of its operation. Once the base-collector junction is reverse-biased, I_C levels off and remains essentially constant for a given value of I_B as V_{CE} continues to increase. Actually, I_C increases very slightly as V_{CE} increases due to widening of the base-collector depletion region. This results in fewer holes for recombination in the base region which effectively causes a slight increase in β_{DC} . This is shown by the portion of the characteristic curve between points B and C in Figure 4–9(b). For this portion of the characteristic curve, the value of I_C is determined only by the relationship expressed as $I_C = \beta_{DC}I_B$.

 $(I_{R1} < I_{R2} < I_{R3} \text{ etc.})$

Muhammad Adeel

(b) I_C versus V_{CE} curve for one value of I_B

When V_{CE} reaches a sufficiently high voltage, the reverse-biased base-collector junction goes into breakdown; and the collector current increases rapidly as indicated by the part of the curve to the right of point C in Figure 4–9(b). A transistor should never be operated in this breakdown region.

 $I_{\rm B1}$

(c) Family of I_C versus V_{CE} curves for several values of I_B

 $(I_{B1} < I_{B2} < I_{B3} \text{ etc.})$

Muhammad Adeel 27-Sep-17

V_{CE(max)}

Breakdown

0.7 V

(b) I_C versus V_{CE} curve for one value of I_B

Cut-off region

A family of collector characteristic curves is produced when I_C versus V_{CE} is plotted for several values of I_B , as illustrated in Figure 4–9(c). When $I_B = 0$, the transistor is in the cutoff region although there is a very small collector leakage current as indicated. The amount of collector leakage current for $I_B = 0$ is exaggerated on the graph for illustration.

Muhammad Adeel

Cutoff

FIGURE 4-12

Cutoff: Collector leakage current (I_{CEO}) is extremely small and is usually neglected. Base-emitter and base-collector junctions are reversebiased.

Saturation

FIGURE 4-13

Saturation: As I_B increases due to increasing V_{BB} , I_C also increases and V_{CE} decreases due to the increased voltage drop across R_C . When the transistor reaches saturation, I_C can increase no further regardless of further increase in I_B . Base-emitter and base-collector junctions are forward-biased.

DC Load Line

- •The bottom of the load line is at ideal cutoff where $I_c = 0$ and $V_{CF} = Vcc$.
- •The top of the load line is at saturation where $I_c = I_{C(sat)}$ and $V_{CE} = V_{CE(sat)}$ (which is most likely to be approximately 0.7 volts in the above given configuration).
- •In between cutoff and saturation along the load line is the active region of the transistor's operation.

15

Example

Determine whether or not the transistor in Figure 4–15 is in saturation. Assume $V_{\text{CE(sat)}} = 0.2 \text{ V}$.

FIGURE 4-15

Solution First, determine I_{C(sat)}.

$$I_{\text{C(sat)}} = \frac{V_{\text{CC}} - V_{\text{CE(sat)}}}{R_{\text{C}}} = \frac{10 \text{ V} - 0.2 \text{ V}}{1.0 \text{ k}\Omega} = \frac{9.8 \text{ V}}{1.0 \text{ k}\Omega} = 9.8 \text{ mA}$$

Now, see if I_B is large enough to produce $I_{C(sat)}$.

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{3 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = \frac{2.3 \text{ V}}{10 \text{ k}\Omega} = 0.23 \text{ mA}$$

 $I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (50)(0.23 \text{ mA}) = 11.5 \text{ mA}$

This shows that with the specified β_{DC} , this base current is capable of producing an I_C greater than $I_{C(sat)}$. Therefore, the **transistor is saturated**, and the collector current value of 11.5 mA is never reached. If you further increase I_B , the collector current remains at its saturation value.

Transistor as a Switch

Conditions in Cutoff

As mentioned before, a transistor is in the cutoff region when the base-emitter junction is not forward-biased. Neglecting leakage current, all of the currents are zero, and V_{CE} is equal to V_{CC} .

$$V_{\text{CE(cutoff)}} = V_{\text{CC}}$$

Conditions in Saturation

$$I_{\text{C(sat)}} = \frac{V_{\text{CC}} - V_{\text{CE(sat)}}}{R_{\text{C}}}$$

Since $V_{\rm CE(sat)}$ is very small compared to $V_{\rm CC}$, it can usually be neglected. The minimum value of base current needed to produce saturation is

$$I_{\text{B(min)}} = \frac{I_{\text{C(sat)}}}{\beta_{\text{DC}}}$$

 $I_{\rm B}$ should be significantly greater than $I_{\rm B(min)}$ to keep the transistor well into saturation.

A Simple Application of a Transistor Switch

