In []:

Name :- Md Shaukat Ali

Roll: - 23CS4141

Reg: - 23P10244

DAY-1 LAB

```
In []:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

In [2]: import os
    import warnings

In [3]: train=pd.read_csv("Blood_samples_dataset_balanced_2(f).csv")

In [4]: test= pd.read_csv("blood_samples_dataset_test.csv")
```


In [5]: train

Out[5]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpusculai Volume		
0	0.739597	0.650198	0.713631	0.868491	0.687433	0.529895	0.290006	0.631045		
1	0.121786	0.023058	0.944893	0.905372	0.507711	0.403033	0.164216	0.307553		
2	0.452539	0.116135	0.544560	0.400640	0.294538	0.382021	0.625267	0.295122		
3	0.136609	0.015605	0.419957	0.191487	0.081168	0.166214	0.073293	0.668719		
4	0.176737	0.752220	0.971779	0.785286	0.443880	0.439851	0.894991	0.442159		
								•••		
2346	0.012956	0.336925	0.451218	0.175006	0.734664	0.382770	0.656463	0.177502		
2347	0.407101	0.124738	0.983306	0.663867	0.361113	0.663716	0.232516	0.341056		
2348	0.344356	0.783918	0.582171	0.996841	0.065363	0.242885	0.658851	0.543017		
2349	0.351722	0.014278	0.898615	0.167550	0.727148	0.046091	0.900434	0.136227		
2350	0.032726	0.053596	0.102633	0.221356	0.153956	0.216573	0.312577	0.608940		
2351 rows × 25 columns										

In [6]: test

Out[6]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpuscular Volume
0	0.001827	0.033693	0.114755	0.997927	0.562604	0.866499	0.578042	0.914615
1	0.436679	0.972653	0.084998	0.180909	0.675736	0.563889	0.798382	0.670361
2	0.545697	0.324815	0.584467	0.475748	0.558596	0.661007	0.934056	0.381782
3	0.172994	0.050351	0.736000	0.782022	0.069435	0.085219	0.032907	0.460619
4	0.758534	0.739968	0.597868	0.772683	0.875720	0.860265	0.486189	0.486686
481	0.985163	0.412960	0.529993	0.263765	0.431288	0.198882	0.581289	0.701192
482	0.581914	0.629325	0.491644	0.901473	0.347797	0.633286	0.698114	0.516947
483	0.066669	0.404558	0.591041	0.228401	0.127461	0.026670	0.847444	0.279740
484	0.901444	0.430680	0.243853	0.825551	0.493884	0.726299	0.660930	0.445560
485	0.877912	0.597809	0.730440	0.462307	0.498438	0.792822	0.976056	0.883937

486 rows × 25 columns

EDA on Training Data

In [7]: train.head()

Out[7]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpuscular Volume	C F
0	0.739597	0.650198	0.713631	0.868491	0.687433	0.529895	0.290006	0.631045	
1	0.121786	0.023058	0.944893	0.905372	0.507711	0.403033	0.164216	0.307553	
2	0.452539	0.116135	0.544560	0.400640	0.294538	0.382021	0.625267	0.295122	
3	0.136609	0.015605	0.419957	0.191487	0.081168	0.166214	0.073293	0.668719	
4	0.176737	0.752220	0.971779	0.785286	0.443880	0.439851	0.894991	0.442159	

5 rows × 25 columns

In [8]: train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2351 entries, 0 to 2350
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
	 Clusses	2251 non null	 Cl+C4
0	Glucose	2351 non-null	float64
1	Cholesterol	2351 non-null	float64
2	Hemoglobin	2351 non-null	float64
3	Platelets	2351 non-null	float64
4	White Blood Cells	2351 non-null	float64
5	Red Blood Cells	2351 non-null	float64
6	Hematocrit	2351 non-null	float64
7	Mean Corpuscular Volume	2351 non-null	float64
8	Mean Corpuscular Hemoglobin	2351 non-null	float64
9	Mean Corpuscular Hemoglobin Concentration	2351 non-null	float64
10	Insulin	2351 non-null	float64
11	BMI	2351 non-null	float64
12	Systolic Blood Pressure	2351 non-null	float64
13	Diastolic Blood Pressure	2351 non-null	float64
14	Triglycerides	2351 non-null	float64
15	HbA1c	2351 non-null	float64
16	LDL Cholesterol	2351 non-null	float64
17	HDL Cholesterol	2351 non-null	float64
18	ALT	2351 non-null	float64
19	AST	2351 non-null	float64
20	Heart Rate	2351 non-null	float64
21	Creatinine	2351 non-null	float64
22	Troponin	2351 non-null	float64
23	C-reactive Protein	2351 non-null	float64
24	Disease	2351 non-null	object
	os. floot(4/24) object/1)		,

dtypes: float64(24), object(1)
memory usage: 459.3+ KB

In [9]: train.isnull()

Out[9]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpuscular Volume	Cor Her			
0	False	False	False	False	False	False	False	False				
1	False	False	False	False	False	False	False	False				
2	False	False	False	False	False	False	False	False				
3	False	False	False	False	False	False	False	False				
4	False	False	False	False	False	False	False	False				
2346	False	False	False	False	False	False	False	False				
2347	False	False	False	False	False	False	False	False				
2348	False	False	False	False	False	False	False	False				
2349	False	False	False	False	False	False	False	False				
2350	False	False	False	False	False	False	False	False				
2351 r	2351 rows × 25 columns											


```
In [10]: train.isnull().sum()
Out[10]: Glucose
                                                        0
         Cholesterol
                                                         0
         Hemoglobin
                                                         0
         Platelets
                                                         0
         White Blood Cells
                                                         0
         Red Blood Cells
                                                         0
         Hematocrit
                                                         0
         Mean Corpuscular Volume
                                                         0
         Mean Corpuscular Hemoglobin
                                                         0
         Mean Corpuscular Hemoglobin Concentration
                                                         0
         Insulin
                                                         0
         BMI
                                                         0
         Systolic Blood Pressure
                                                         0
         Diastolic Blood Pressure
                                                         0
         Triglycerides
                                                         0
         HbA1c
                                                         0
         LDL Cholesterol
                                                         0
         HDL Cholesterol
                                                         0
         ALT
                                                         0
         AST
                                                         0
         Heart Rate
                                                         0
         Creatinine
                                                         0
         Troponin
                                                         0
                                                         0
         C-reactive Protein
         Disease
                                                         0
         dtype: int64
```

In [11]: train.describe()

Out[11]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hemato
count	2351.000000	2351.000000	2351.000000	2351.000000	2351.000000	2351.000000	2351.0000
mean	0.362828	0.393648	0.586190	0.504027	0.511086	0.506590	0.507
std	0.251889	0.239449	0.271498	0.303347	0.277270	0.266565	0.285
min	0.010994	0.012139	0.003021	0.012594	0.010139	0.044565	0.0117
25%	0.129198	0.195818	0.346092	0.200865	0.259467	0.263589	0.288
50%	0.351722	0.397083	0.609836	0.533962	0.527381	0.467431	0.4934
75%	0.582278	0.582178	0.791215	0.754841	0.743164	0.743670	0.7536
max	0.968460	0.905026	0.983306	0.999393	0.990786	1.000000	0.977!

8 rows × 24 columns


```
In [12]: train.duplicated()
Out[12]: 0
                  False
                  False
         1
         2
                  False
         3
                  False
         4
                  False
         2346
                  True
         2347
                   True
         2348
                   True
         2349
                   True
         2350
                   True
         Length: 2351, dtype: bool
In [13]: train.duplicated().sum()
Out[13]: 2286
In [14]: train.shape
Out[14]: (2351, 25)
In [ ]:
In [ ]:
```

EDA on testing Data

```
In [15]: test.head()
```

Out[15]:

Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	•	C F
0.001827	0.033693	0.114755	0.997927	0.562604	0.866499	0.578042	0.914615	
0.436679	0.972653	0.084998	0.180909	0.675736	0.563889	0.798382	0.670361	
0.545697	0.324815	0.584467	0.475748	0.558596	0.661007	0.934056	0.381782	
0.172994	0.050351	0.736000	0.782022	0.069435	0.085219	0.032907	0.460619	
0.758534	0.739968	0.597868	0.772683	0.875720	0.860265	0.486189	0.486686	
	0.001827 0.436679 0.545697 0.172994	0.001827 0.033693 0.436679 0.972653 0.545697 0.324815 0.172994 0.050351	0.001827 0.033693 0.114755 0.436679 0.972653 0.084998 0.545697 0.324815 0.584467 0.172994 0.050351 0.736000	0.001827 0.033693 0.114755 0.997927 0.436679 0.972653 0.084998 0.180909 0.545697 0.324815 0.584467 0.475748 0.172994 0.050351 0.736000 0.782022	Glucose Cholesterol Hemoglobin Platelets Blood Cells 0.001827 0.033693 0.114755 0.997927 0.562604 0.436679 0.972653 0.084998 0.180909 0.675736 0.545697 0.324815 0.584467 0.475748 0.558596 0.172994 0.050351 0.736000 0.782022 0.069435	Glucose Cholesterol Hemoglobin Platelets Blood Cells Blood Cells 0.001827 0.033693 0.114755 0.997927 0.562604 0.866499 0.436679 0.972653 0.084998 0.180909 0.675736 0.563889 0.545697 0.324815 0.584467 0.475748 0.558596 0.661007 0.172994 0.050351 0.736000 0.782022 0.069435 0.085219	Glucose Cholesterol Hemoglobin Platelets Blood Cells Blood Cells Hematocrit 0.001827 0.033693 0.114755 0.997927 0.562604 0.866499 0.578042 0.436679 0.972653 0.084998 0.180909 0.675736 0.563889 0.798382 0.545697 0.324815 0.584467 0.475748 0.558596 0.661007 0.934056 0.172994 0.050351 0.736000 0.782022 0.069435 0.085219 0.032907	Glucose Cholesterol Hemoglobin Platelets Blood Cells Blood Cells Hematocrit Corpuscular Volume 0.001827 0.033693 0.114755 0.997927 0.562604 0.866499 0.578042 0.914615 0.436679 0.972653 0.084998 0.180909 0.675736 0.563889 0.798382 0.670361 0.545697 0.324815 0.584467 0.475748 0.558596 0.661007 0.934056 0.381782 0.172994 0.050351 0.736000 0.782022 0.069435 0.085219 0.032907 0.460619

5 rows × 25 columns


```
In [16]: test.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 486 entries, 0 to 485
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Glucose	486 non-null	float64
1	Cholesterol	486 non-null	float64
2	Hemoglobin	486 non-null	float64
3	Platelets	486 non-null	float64
4	White Blood Cells	486 non-null	float64
5	Red Blood Cells	486 non-null	float64
6	Hematocrit	486 non-null	float64
7	Mean Corpuscular Volume	486 non-null	float64
8	Mean Corpuscular Hemoglobin	486 non-null	float64
9	Mean Corpuscular Hemoglobin Concentration	486 non-null	float64
10	Insulin	486 non-null	float64
11	BMI	486 non-null	float64
12	Systolic Blood Pressure	486 non-null	float64
13	Diastolic Blood Pressure	486 non-null	float64
14	Triglycerides	486 non-null	float64
15	HbA1c	486 non-null	float64
16	LDL Cholesterol	486 non-null	float64
17	HDL Cholesterol	486 non-null	float64
18	ALT	486 non-null	float64
19	AST	486 non-null	float64
20	Heart Rate	486 non-null	float64
21	Creatinine	486 non-null	float64
22	Troponin	486 non-null	float64
23	C-reactive Protein	486 non-null	float64
24	Disease	486 non-null	object
d+\\\\\	os: float64(24) object(1)		

dtypes: float64(24), object(1)

memory usage: 95.0+ KB


```
In [17]: test.describe()
```

Out[17]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	С
count	486.000000	486.000000	486.000000	486.000000	486.000000	486.000000	486.000000	,
mean	0.490044	0.506797	0.485502	0.528136	0.509783	0.504347	0.501042	
std	0.284196	0.282871	0.298818	0.292610	0.290887	0.302865	0.294501	
min	0.001827	0.003088	0.000719	0.000006	-0.000206	0.000552	0.004556	
25%	0.236664	0.268021	0.201994	0.276155	0.264944	0.218573	0.246255	
50%	0.496471	0.502397	0.477706	0.538642	0.511102	0.518103	0.496275	
75%	0.727144	0.754638	0.750028	0.789486	0.767896	0.768466	0.761107	
max	0.991742	0.999606	0.997876	0.999507	0.999646	0.997267	1.000857	

8 rows × 24 columns

In [18]: test.isnull().sum()

Out[18]:	Glucose	0
	Cholesterol	0
	Hemoglobin	0
	Platelets	0
	White Blood Cells	0
	Red Blood Cells	0
	Hematocrit	0
	Mean Corpuscular Volume	0
	Mean Corpuscular Hemoglobin	0
	Mean Corpuscular Hemoglobin Concentration	0
	Insulin	0
	BMI	0
	Systolic Blood Pressure	0
	Diastolic Blood Pressure	0
	Triglycerides	0
	HbA1c	0
	LDL Cholesterol	0
	HDL Cholesterol	0
	ALT	0
	AST	0
	Heart Rate	0
	Creatinine	0
	Troponin	0
	C-reactive Protein	0
	Disease	0
	dtype: int64	


```
test.duplicated().sum()
In [19]:
Out[19]: 0
In [20]:
           test.describe()
Out[20]:
                                                                          White
                                                                                  Red Blood
                      Glucose Cholesterol Hemoglobin
                                                           Platelets
                                                                          Blood
                                                                                             Hematocrit C
                                                                                       Cells
                                                                           Cells
                                                                                             486.000000
            count 486.000000
                                486.000000
                                             486.000000
                                                         486.000000
                                                                     486.000000
                                                                                 486.000000
            mean
                     0.490044
                                  0.506797
                                               0.485502
                                                           0.528136
                                                                       0.509783
                                                                                   0.504347
                                                                                               0.501042
              std
                     0.284196
                                  0.282871
                                               0.298818
                                                           0.292610
                                                                       0.290887
                                                                                   0.302865
                                                                                               0.294501
                                                           0.000006
                                                                                   0.000552
              min
                     0.001827
                                  0.003088
                                               0.000719
                                                                       -0.000206
                                                                                               0.004556
              25%
                     0.236664
                                  0.268021
                                               0.201994
                                                           0.276155
                                                                       0.264944
                                                                                   0.218573
                                                                                               0.246255
              50%
                     0.496471
                                  0.502397
                                               0.477706
                                                           0.538642
                                                                       0.511102
                                                                                   0.518103
                                                                                               0.496275
              75%
                     0.727144
                                  0.754638
                                               0.750028
                                                           0.789486
                                                                       0.767896
                                                                                   0.768466
                                                                                                0.761107
                     0.991742
                                  0.999606
                                                                                               1.000857
             max
                                               0.997876
                                                           0.999507
                                                                       0.999646
                                                                                   0.997267
           8 rows × 24 columns
In [21]:
           test.shape
Out[21]:
          (486, 25)
 In [ ]:
```

We merge the train and test dataset in 'df'


```
In [22]: df=pd.concat([train,test],axis=0)
    df.head()
```

Out[22]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpuscular Volume	
(0.739597	0.650198	0.713631	0.868491	0.687433	0.529895	0.290006	0.631045	_
•	0.121786	0.023058	0.944893	0.905372	0.507711	0.403033	0.164216	0.307553	
2	2 0.452539	0.116135	0.544560	0.400640	0.294538	0.382021	0.625267	0.295122	
;	0.136609	0.015605	0.419957	0.191487	0.081168	0.166214	0.073293	0.668719	
4	0.176737	0.752220	0.971779	0.785286	0.443880	0.439851	0.894991	0.442159	

5 rows × 25 columns

In [23]: df.isnull().sum() Out[23]: Glucose 0 Cholesterol 0 Hemoglobin 0 Platelets 0 White Blood Cells 0 Red Blood Cells 0 Hematocrit 0 Mean Corpuscular Volume 0 Mean Corpuscular Hemoglobin 0 Mean Corpuscular Hemoglobin Concentration 0 Insulin 0 BMI 0 Systolic Blood Pressure 0 Diastolic Blood Pressure 0 Triglycerides 0 HbA1c 0 LDL Cholesterol 0 HDL Cholesterol 0 ALT 0 AST 0 Heart Rate 0 Creatinine 0 Troponin C-reactive Protein 0 Disease dtype: int64

In [24]: df.shape

Out[24]: (2837, 25)

```
In [25]: df['Disease'].unique()
Out[25]: array(['Healthy', 'Diabetes', 'Thalasse', 'Anemia', 'Thromboc',
                 'Heart Di'], dtype=object)
In [26]: df['Disease'].nunique()
Out[26]: 6
In [27]: df['Disease']=df['Disease'].replace('Heart Di','Heart Disease')
         df['Disease'].unique()
Out[27]: array(['Healthy', 'Diabetes', 'Thalasse', 'Anemia', 'Thromboc',
                 'Heart Disease'], dtype=object)
In [28]: df.columns
Out[28]: Index(['Glucose', 'Cholesterol', 'Hemoglobin', 'Platelets',
                 'White Blood Cells', 'Red Blood Cells', 'Hematocrit',
                 'Mean Corpuscular Volume', 'Mean Corpuscular Hemoglobin',
                 'Mean Corpuscular Hemoglobin Concentration', 'Insulin', 'BMI',
                 'Systolic Blood Pressure', 'Diastolic Blood Pressure', 'Triglyceride
         s',
                 'HbA1c', 'LDL Cholesterol', 'HDL Cholesterol', 'ALT', 'AST',
                 'Heart Rate', 'Creatinine', 'Troponin', 'C-reactive Protein',
                'Disease'],
               dtype='object')
In [ ]:
 In [ ]:
```

We have to classify which type of disease, The Disease feature of categorical type so we need to convert it into numerical so here we apply label encoder of different different disease

```
In [29]: from sklearn.preprocessing import LabelEncoder
In [30]: le=LabelEncoder()
```

```
In [31]: df['Disease']=le.fit_transform(df['Disease'])
    df.head()
```

Out[31]:

	Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpuscular Volume	C F
0	0.739597	0.650198	0.713631	0.868491	0.687433	0.529895	0.290006	0.631045	_
1	0.121786	0.023058	0.944893	0.905372	0.507711	0.403033	0.164216	0.307553	
2	0.452539	0.116135	0.544560	0.400640	0.294538	0.382021	0.625267	0.295122	
3	0.136609	0.015605	0.419957	0.191487	0.081168	0.166214	0.073293	0.668719	
4	0.176737	0.752220	0.971779	0.785286	0.443880	0.439851	0.894991	0.442159	
5	rows × 25 o	columns							
4									•

Split the Dataset into training and testing part:-

In [32]: sns.heatmap(df)

Out[32]: <AxesSubplot:>


```
In [34]: y=df['Disease']
x=df.drop('Disease',axis=1)
```

In [35]: sns.countplot(x=y)
plt.show()

In []:

In [42]: sns.heatmap(x.corr(),square=True)
plt.show()

In [36]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state


```
In [37]: X_train
```

Out[37]:

Out[37]:		Glucose	Cholesterol	Hemoglobin	Platelets	White Blood Cells	Red Blood Cells	Hematocrit	Mean Corpusculai Volume
	438	0.798768	0.400015	0.478800	0.172237	0.686304	0.467431	0.444994	0.642926
	1005	0.298550	0.182145	0.701824	0.418574	0.875773	0.660344	0.977520	0.459985
	1393	0.253417	0.257914	0.003021	0.284489	0.199566	0.703588	0.957599	0.074917
	1784	0.143772	0.089600	0.027259	0.171121	0.744950	0.452787	0.871778	0.995263
	166	0.452539	0.116135	0.544560	0.400640	0.294538	0.382021	0.625267	0.295122
									••
	1638	0.799282	0.447299	0.325035	0.825397	0.259467	0.743670	0.434097	0.198072
	1095	0.099982	0.542793	0.795435	0.196821	0.371385	0.156494	0.457720	0.046942
	1130	0.143772	0.089600	0.027259	0.171121	0.744950	0.452787	0.871778	0.995263
	1294	0.798768	0.400015	0.478800	0.172237	0.686304	0.467431	0.444994	0.642926
	860	0.722428	0.300282	0.487907	0.200865	0.402035	0.729285	0.851338	0.820546
	2127 rows × 24 columns								
	4								•
In [38]:	<pre>y_train = np.array(y_train).reshape(-1,1)</pre>								
In [39]:	y_train.shape								
Out[39]:	(2127, 1)								
In [40]:	X_train.shape								
Out[40]:	(2127, 24)								
In [41]:	<pre>from sklearn.metrics import accuracy_score,roc_auc_score,roc_curve</pre>								

Imported all the ML algorithm and make object of each model:-


```
from sklearn.linear_model import LogisticRegression
In [43]:
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.naive_bayes import GaussianNB
In [44]: | lr=LogisticRegression(multi_class='multinomial')
         dt=DecisionTreeClassifier()
         rf=RandomForestClassifier()
         knn=KNeighborsClassifier()
         gnb=GaussianNB()
In [45]: def predictor(model_name):
             print("For the {}".format(model_name))
             model_name.fit(X_train,y_train)
             y_pred_train = model_name.predict(X_train)
             y_pred_test = model_name.predict(X_test)
             print("The TRAIN accuracy is",accuracy_score(y_train,y_pred_train))
             print("--"*50)
             print("The TEST accuracy is",accuracy_score(y_test,y_pred_test))
```

Logistic Regression


```
predictor(lr)
In [46]:
         For the LogisticRegression(multi class='multinomial')
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: D
         ataConversionWarning: A column-vector y was passed when a 1d array was expec
         ted. Please change the shape of y to (n_samples, ), for example using ravel
         ().
           return f(*args, **kwargs)
         The TRAIN accuracy is 0.8241654913023038
         The TEST accuracy is 0.7971830985915493
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
         y:763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
         it-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
         ssion (https://scikit-learn.org/stable/modules/linear model.html#logistic-re
         gression)
           n_iter_i = _check_optimize_result(
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
```

Decision Tree


```
predictor(dt)
In [47]:
         For the DecisionTreeClassifier()
         The TRAIN accuracy is 1.0
         The TEST accuracy is 0.9436619718309859
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         K-NN
```

```
In [48]: predictor(knn)
         For the KNeighborsClassifier()
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\neighbors\_classificatio
         n.py:179: DataConversionWarning: A column-vector y was passed when a 1d arra
         y was expected. Please change the shape of y to (n_samples,), for example us
         ing ravel().
           return self._fit(X, y)
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         The TRAIN accuracy is 0.922425952045134
         The TEST accuracy is 0.8943661971830986
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
```

In [49]:

Random Forest

```
predictor(rf)
C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
FutureWarning: is_sparse is deprecated and will be removed in a future versi
on. Check `isinstance(dtype, pd.SparseDtype)` instead.
  array.dtypes.apply(is_sparse).any()):
C:\Users\91825\AppData\Local\Temp/ipykernel_22252/4075669676.py:4: DataConve
rsionWarning: A column-vector y was passed when a 1d array was expected. Ple
ase change the shape of y to (n_samples,), for example using ravel().
  model_name.fit(X_train,y_train)
For the RandomForestClassifier()
The TRAIN accuracy is 1.0
The TEST accuracy is 0.956338028169014
C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
FutureWarning: is_sparse is deprecated and will be removed in a future versi
on. Check `isinstance(dtype, pd.SparseDtype)` instead.
  array.dtypes.apply(is_sparse).any()):
C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
FutureWarning: is_sparse is deprecated and will be removed in a future versi
on. Check `isinstance(dtype, pd.SparseDtype)` instead.
  array.dtypes.apply(is_sparse).any()):
```

Naive Bayes


```
predictor(gnb)
In [50]:
         For the GaussianNB()
         The TRAIN accuracy is 0.8119417019275975
         The TEST accuracy is 0.8028169014084507
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: D
         ataConversionWarning: A column-vector y was passed when a 1d array was expec
         ted. Please change the shape of y to (n_samples, ), for example using ravel
         ().
           return f(*args, **kwargs)
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
```

Accuracy of different - different Model

```
In [51]: models = ['LR', 'DT', 'RF', 'KNN' , 'NB']
accuracies = [0.82, 1, 0.95, 0.92 , 0.81]
colors = ['skyblue', 'orange', 'green', 'red' , 'blue']
```



```
In [52]: plt.figure(figsize=(10, 6))
    plt.bar(models, accuracies, color='skyblue')
    bars = plt.bar(models, accuracies)
    for i in range(len(bars)):
        bars[i].set_color(colors[i])
    plt.title('Accuracy of Different Models')
    plt.xlabel('Models')
    plt.ylabel('Accuracy')
    plt.show()
```


We apply MLP on this dataset

```
In [53]: import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
```

In [54]: import tensorflow as tf
from tensorflow.keras import layers, models


```
In [56]: # Create MLP model
input_shape = X_train.shape[1:]
num_classes = len(np.unique(y_train))
mlp_model = create_mlp(input_shape, num_classes)
```

In [58]: |mlp_model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	3200
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 6)	390

Total params: 11,846 Trainable params: 11,846 Non-trainable params: 0

```
In [59]: mlp_history = mlp_model.fit(X_train, y_train, epochs=5, validation_data=(X_text)
```

```
In [60]: mlp_loss, mlp_accuracy = mlp_model.evaluate(X_test, y_test)
print("MLP Accuracy:", mlp_accuracy)
```



```
In [61]: from sklearn.svm import SVC
In [62]:
         # Train SVM model
         svm model = SVC(kernel='linear')
         svm_model.fit(X_train, y_train)
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is sparse).any()):
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: D
         ataConversionWarning: A column-vector y was passed when a 1d array was expec
         ted. Please change the shape of y to (n_samples, ), for example using ravel
           return f(*args, **kwargs)
Out[62]: SVC(kernel='linear')
In [63]: svm_accuracy = accuracy_score(y_test, svm_model.predict(X_test))
         print("SVM Accuracy:", svm_accuracy)
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is_sparse).any()):
```

Graph shows the accuracy and loss of MLP vs SVM

SVM Accuracy: 0.8619718309859155

```
# Plot MLP accuracy
In [64]:
         plt.subplot(1, 2, 1)
         plt.plot(mlp_history.history['accuracy'], label='MLP Training Accuracy')
         plt.plot(mlp_history.history['val_accuracy'], label='MLP Validation Accuracy'
         plt.xlabel('Epoch')
         plt.ylabel('Accuracy')
         plt.title('MLP Model Accuracy')
         plt.legend()
         # Plot MLP Loss
         plt.subplot(1, 2, 2)
         plt.plot(mlp_history.history['loss'], label='MLP Training Loss')
         plt.plot(mlp_history.history['val_loss'], label='MLP Validation Loss')
         plt.xlabel('Epoch')
         plt.ylabel('Loss')
         plt.title('MLP Model Loss')
         plt.legend()
         plt.tight_layout()
         plt.show()
```


In [65]: from sklearn.metrics import accuracy_score, confusion_matrix

```
svm_pred = svm_model.predict(X_test)
In [66]:
         svm_cm = confusion_matrix(y_test, svm_pred)
         # MLP confusion matrix
         mlp pred = np.argmax(mlp_model.predict(X_test), axis=1)
         mlp_cm = confusion_matrix(y_test, mlp_pred)
         # Plot confusion matrices
         plt.figure(figsize=(12, 5))
         plt.subplot(1, 2, 1)
         sns.heatmap(svm_cm, annot=True, fmt='d', cmap='Blues', cbar=False)
         plt.title('SVM Confusion Matrix')
         plt.xlabel('Predicted Label')
         plt.ylabel('True Label')
         plt.subplot(1, 2, 2)
         sns.heatmap(mlp_cm, annot=True, fmt='d', cmap='Blues', cbar=False)
         plt.title('MLP Confusion Matrix')
         plt.xlabel('Predicted Label')
         plt.ylabel('True Label')
         plt.tight_layout()
         plt.show()
```

C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
FutureWarning: is_sparse is deprecated and will be removed in a future versi
on. Check `isinstance(dtype, pd.SparseDtype)` instead.
 array.dtypes.apply(is_sparse).any()):

DAY-2 LAB

In []:

process the dataset with Support Vector Machines (SVM). In the next step, consolidate the outcomes of MLP and SVM at decision level with logical OR and AND operators to obtain the final outcome. Finally, show both ERROR and ACCURACY curves for MLP, SVM, OR rule and AND rule in the same graph while considering loss and accuracy in the same axis.

```
# Step 1: Obtain predictions from both models
In [68]:
         svm predictions = svm model.predict(X test)
        mlp_predictions = np.argmax(mlp_model.predict(X_test), axis=-1)
          1/23 [>.....] - ETA: 0s
         C:\Users\91825\anaconda3\lib\site-packages\sklearn\utils\validation.py:571:
         FutureWarning: is_sparse is deprecated and will be removed in a future versi
         on. Check `isinstance(dtype, pd.SparseDtype)` instead.
           array.dtypes.apply(is sparse).any()):
         23/23 [======== ] - 0s 2ms/step
In [69]:
        # Step 2: Apply logical OR and AND operators to consolidate predictions
         or_predictions = np.logical_or(svm_predictions, mlp_predictions)
         and_predictions = np.logical_and(svm_predictions, mlp_predictions)
        # Step 3: Calculate accuracy and loss for consolidated predictions
In [70]:
         svm_accuracy = accuracy_score(y_test, svm_predictions)
        mlp_accuracy = accuracy_score(y_test, mlp_predictions)
         or_accuracy = accuracy_score(y_test, or_predictions)
         and_accuracy = accuracy_score(y_test, and_predictions)
```



```
# Step 4: Plot error and accuracy curves
In [71]:
         plt.figure(figsize=(12, 5))
         # Accuracy curve
         plt.subplot(1, 2, 1)
         plt.plot(mlp_history.history['accuracy'], label='MLP Accuracy')
         plt.plot(mlp_history.history['val_accuracy'], label='MLP Validation Accuracy'
         plt.axhline(y=svm_accuracy, color='r', linestyle='--', label='SVM Accuracy')
         plt.axhline(y=or_accuracy, color='g', linestyle='-.', label='OR Rule Accuracy
         plt.axhline(y=and_accuracy, color='b', linestyle=':', label='AND Rule Accuracy
         plt.xlabel('Epoch')
         plt.ylabel('Accuracy')
         plt.title('Model Accuracy')
         plt.legend()
         # Loss curve
         plt.subplot(1, 2, 2)
         plt.plot(mlp_history.history['loss'], label='MLP Loss')
         plt.plot(mlp_history.history['val_loss'], label='MLP Validation Loss')
         plt.xlabel('Epoch')
         plt.ylabel('Loss')
         plt.title('Model Loss')
         plt.legend()
         plt.tight_layout()
         plt.show()
```


In []:

