1.4 Consequences of Completeness

THEOREM 1.4.1 (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \dots$$

has a nonempty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. In order to show $\bigcap_{n=1}^{\infty} I_n$ is not empty, we are going to use the Axiom of Completeness to produce a single real number x satisfying $x \in I_n$ for every $n \in \mathbb{N}$. Consider the set

$$A = \{a_n : n \in \mathbf{N}\}$$

of left-hand endpoints of the intervals. Since the intervals are nested, every b_n is an upper bound for A. let $x = \sup A$. Consider a particular $I_n = [a_n, b_n]$. Since x is an upper bound for A, $a_n \le x$. Since x is the least upper bound and each b_n are upper bounds, $x \le b_n$. So $a_n \le x \le b_n$ for any n. So $x \in I_n$ for any $n \in \mathbb{N}$. Hence, $x \in \bigcap_{n=1}^{\infty} I_n \ne \emptyset$.

The Density of Q in R

THEOREM 1.4.2 (Archimedean Property). (i) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.

(ii) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y.

Proof. Part (i) states that **N** is not bounded above. Assume, for contradiction, that **N** is bounded above. By AoC, **N** has a least upper bound. Let $\alpha = \sup N$. $\alpha - 1$ is not an upper bound, so there is an $n \in \mathbb{N}$, such that $\alpha - 1 < n$, which is the same as saying $\alpha < n + 1$. $n + 1 \in \mathbb{N}$, we have a contradiction to the fact α is an upper bound.

Part (ii) follows from (i) by letting
$$x = 1/y$$
.

THEOREM 1.4.3 (Density of Q in R). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Proof. To simplify matters, let's assume $0 \le a < b$. A rational number is a quotient of integers, so we must product $m, n \in \mathbb{N}$ so that

$$a < \frac{m}{n} < b$$

First, we must choose a large enough n so that an increment of size 1/n is small enough so it doesn't step over the interval (a, b). Basically, we need an $n \in \mathbb{N}$ such that

$$\frac{1}{n} < b - a$$

By the first inequality, we can get na < m < nb. With n chosen, we need to choose an m to be the smallest natural number greater than na. So,

$$m - 1 \le na < m$$

which yields a < m/n. And a < b - 1/n from the second inequality. So

$$m \le na + 1 < n(b - \frac{1}{n}) + 1 = nb$$

Because m < nb so m/n < b. Now we have a < m/n < b.

Collary Given any two real numbers a < b, there exists an irrational number t satisfying a < t < b

The Existence of Square Roots

THEOREM 1.4.4. There exists a real numbers $\alpha \in \mathbf{R}$ satisfying $\alpha^2 = 2$.

Proof. Consider the set

$$T = \{t \in \mathbf{R} : t^2 < 2\}$$

and set $\alpha = \sup T$. If $\alpha^2 < 2$. NEED TO FINISH THIS PROOF.

Countable and Uncountable Sets

Cardinality

Cardinality refers to the size of a set. The cardinalities of finite sets can be compared by attaching a natural number to each set. By using comparisons rather than just length, this idea extends to infinite sets.

Definition A function $f:A\to B$ is one-to-one (1-1) if $a_1\neq a_2$ in A implies that $f(a_1)\neq f(a_2)$ in B. The function f is *onto* if given any $b\in B$, it is possible to find the element $a\in A$ such that f(a)=b. **Definition** Two sets A and B have the same cardinality if there exists $f:A\to B$ that is 1-1 and onto. In this case, we write $A\sim B$.

Countable Sets

Definition A set A is *countable* if $N \sim A$. AN infinite set that is countable is called an *uncountable* set.

THEOREM 1.4.5. (i) The set Q is countable

(ii) The set R is uncountable

Proof. (i) For each $n \in \mathbb{N}$, let

$$A_n = \{\pm \frac{p}{q} : \text{where } p, q \in \mathbf{N} \text{ are in lowest terms with } p + q = n\}$$

so

$$A_1 = \{\frac{0}{1}\}, \qquad A_2 = \{\frac{1}{1}, \frac{-1}{1}\}, \qquad A_3 = \{\frac{1}{2}, \frac{-1}{2}, \frac{2}{1}, \frac{-2}{1}\}$$

Our one to one correspondence from **N** to **Q** is by listing the elements from $\bigcup_{n=1}^{\infty} A_n$. So, $f(n) = (\bigcup_{n=1}^{\infty} A_n)[n]$. For any fraction, like 22/7, it will be in $\bigcup_{n=1}^{\infty} A_n$ exactly once $(22/7 \in A_29)$. This makes $\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_n \cap A_m = \emptyset$. So, $\mathbf{N} \sim \mathbf{Q}$ and **Q** is countable.

(ii) Proof by contradiction. Assume there exists a 1-1 from **N** to **R**. If we let $x_n = f(n)$ for each $n \in \mathbf{N}$, we can write

$$\mathbf{R} = \{x_1, x_2, x_3, \dots\}$$

Let I_1 be a closed interval that does not contain x_1 . Then create infinite intervals based on the following rules. Given an I_n , construct I_{n+1} to satisfy

(i)
$$I_{n+1} \subseteq I_n$$
 and

(ii)
$$x_{n+1} \notin I_{n+1}$$
.

Given I_n , it is clear that I_{n+1} exists since I_n certainly contains two smaller disjoint closed intervals and x_{n+1} can only be in one of them. Since $x_{n_0} \notin I_{n_0}$,

$$x_{n_0} \notin \bigcap_{n=1}^{\infty} I_n$$

This is true for every natural number n_0 , and hence every real number x_{n_0} , so

$$\bigcap_{n=1}^{\infty} I_n = \emptyset$$

which contradicts the Nested Interval Property, which asserts that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Due to this contradiction, **R** cannot be countable, and is uncountable.

Since $\mathbf{R} = \mathbf{Q} \cup \mathbf{I}$, where \mathbf{I} is all irrational numbers, \mathbf{I} cannot be countable because otherwise \mathbf{R} would be.

THEOREM 1.4.6. If $A \subseteq B$ and B is countable, then A is either countable, finite, or empty.

THEOREM 1.4.7. (i) If $A_1, A_2, \ldots A_m$ are each countable sets, then the union $\bigcup_{n=1}^m A_n$ is countable.

(ii) If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.