Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \tag{1}$$

1 Vectors

Parameters	Values	Description	
\mathbf{m}_1	$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$	AB	
\mathbf{m}_2	$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	CA	
$ \mathbf{B} - \mathbf{A} $	$\sqrt{32}$	length of AB	
$\ \mathbf{C} - \mathbf{B}\ $	$\sqrt{37}$	length of BC	
$ \mathbf{A} - \mathbf{C} $	$\sqrt{13}$	length of CA	
rank	3	non-collinear	
\mathbf{n}_1	$\begin{pmatrix} 4 \\ -4 \end{pmatrix}$	AB	
\mathbf{c}_1	12		
\mathbf{n}_2	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$	ВС	
\mathbf{c}_2	2		
\mathbf{n}_3	$\begin{pmatrix} -3 \\ -2 \end{pmatrix}$	CA	
\mathbf{c}_3	6		
area	10	area of $\triangle ABC$	
∠A	78.69°		
∠B	35.54°	angles of triangle	
∠C	65.77°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

^	3 4	-		
?	N/I	ED	TA	N

Parameters	Values	Description
D	$\begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$	<u>B+C</u> 2
E	$\begin{pmatrix} -1 \\ -1.5 \end{pmatrix}$	<u>C+A</u>
F	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	<u>A+B</u> 2
\mathbf{m}_4	$\begin{pmatrix} 1 \\ 3.5 \end{pmatrix}$	Line AD
\mathbf{n}_4	$\begin{pmatrix} 3.5 \\ -1 \end{pmatrix}$	Line AD
c_4	3	
m ₅	$\begin{pmatrix} -5 \\ -2.5 \end{pmatrix}$	Line <i>BE</i>
\mathbf{n}_5	$\begin{pmatrix} -2.5\\5 \end{pmatrix}$	Line BE
c_5	-5	
\mathbf{m}_6	$\begin{pmatrix} 4 \\ -1 \end{pmatrix}$	Line CF
\mathbf{n}_6	$\begin{pmatrix} -1 \\ -4 \end{pmatrix}$	- Line CF
c_6	2	
G	$\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}$	centroid of $\triangle ABC$
AG : DG	2	
BG : EG	2	Division by centroid
CG : FG	2	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}$	2	points are collinear
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}$	2	points are connical
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$	2	
$\mathbf{F} - \mathbf{A}$	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	∴ AFDE is a quadrilateral
D – E	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	

TABLE 2: Medians.

Fig. 2: triangle plotted using python

Fig. 3: triangle plotted using python

4 Perpendicular Bisector

3 ALTITUDE

Parameters	Values	Description
\mathbf{D}_1	(-0.54)	
D 1	(0.24)	Foots of Altitude
\mathbf{E}_1	(-0.62)	roots of Attitude
	(-2.08)	
\mathbf{F}_1	(0.5)	
F.1	(-2.5)	
\mathbf{m}_7	(-0.54)	
III '/	(3.24)	Line AD_1
\mathbf{n}_7	(3.24)	Line AD ₁
 ,	(0.54)	
c_7	-1.62	
m ₈	(-4.62)	
1118	(-3.08)	Line BE_1
n ₈	(-3.08)	Eine BE
118	(4.62)	
c ₈	-7.69	
\mathbf{m}_9	(2.5)	
1119	(-2.5)	Line CF_1
n ₉	(-2.5)	Line CF ₁
119	(-2.5)	
<i>C</i> 9	5	
Н	(-0.2)	Orthocentre
11	(-1.8)	Orthocentre

TABLE 3: Altitude.

Parameters	Values	Description	
\mathbf{m}_{10}	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$	-	
\mathbf{n}_{10}	$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	Line <i>OD</i>	
c_{10}	-6.5		
\mathbf{m}_{11}	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	1. 0.5	
n ₁₁	$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$	line <i>OE</i>	
c_{11}	-2.5		
\mathbf{m}_{12}	$\begin{pmatrix} -4 \\ 4 \end{pmatrix}$	1. 0.5	
n ₁₂	$\begin{pmatrix} -4 \\ -4 \end{pmatrix}$	line <i>OF</i>	
c_{12}	-4		
О	$\begin{pmatrix} 1.1 \\ -0.1 \end{pmatrix}$	Circumcentre	
$\ \mathbf{O} - \mathbf{A}\ $	3.1		
$\ \mathbf{O} - \mathbf{B}\ $	3.1	OA = OB = OC = R	
O - C	3.1		
∠BOC	157.38°	POC 2 PAC	
∠BAC	78.69°	$\angle BOC = 2\angle BAC$	
∠AOC	71.07°	/AOC 2/ABC	
∠ABC	35.5°	$\angle AOC = 2\angle ABC$	
$\angle AOB$	228.45°	$\angle AOB = 2\angle BCA$	
∠BCA	65.77°		

TABLE 4: Perpendicular Bisector.

D D Circumcircle AB BC

∕ CA

- OF

— ОД — ОЕ

Fig. 4: triangle plotted using python

-2

-3

-2

5 Angle Bisector

Parameters	Values	Description	
m	(-0.15)		
\mathbf{m}_{13}	(-1.54)	AT	
n ₁₃	(-1.54)	AI	
113	(0.15)		
c_{13}	-0.46		
\mathbf{m}_{14}	$\begin{pmatrix} -1.69 \\ -0.87 \end{pmatrix}$	Di	
n ₁₄	$\begin{pmatrix} 0.87 \\ -1.69 \end{pmatrix}$	BI	
c_{14}	1.79		
	(-1.54)		
\mathbf{m}_{15}	(0.67)	CI	
n	(-0.67)	CI	
${\bf n}_{15}$	(-1.54)		
C ₁₅	1.33		
I	$\begin{pmatrix} 0.20 \\ -0.95 \end{pmatrix}$	Incentre	
	(-0.93)		
\mathbf{D}_3	$\begin{pmatrix} 0.01 \\ 0.33 \end{pmatrix}$	POC with BC	
\mathbf{E}_3	$\begin{pmatrix} -0.88 \\ -1.68 \end{pmatrix}$	POC with AC	
\mathbf{F}_3	(1.12 -1.88)	POC with AB	
$\ {\bf I} - {\bf D}_3\ $	1.3		
$\ \mathbf{I} - \mathbf{E}_3\ $	1.3		
$\ \mathbf{I} - \mathbf{F}_3\ $	1.3	$ID_3 = IE_3 = IF_3 = r$	
r	1.3		
∠BAI	39.34°	.DAI .GAI	
∠CAI	39.34°	$\angle BAI = \angle CAI$	
$\angle ABI$	17.77°	ADI CDI	
∠CBI	17.77°	$\angle ABI = \angle CBI$	
∠ACI	32.89°	AGI PGI	
∠BCI	32.89°	$\angle ACI = \angle BCI$	

TABLE 5: Angle Bisector.

Fig. 5: triangle plotted using python