O que são Threads:

Threads são unidades de execução dentro de um processo que permitem que múltiplas tarefas sejam realizadas simultaneamente. Elas compartilham recursos como memória e arquivos com outras threads do mesmo processo.

Como Threads Funcionam Computacionalmente:

Threads são gerenciadas pelo sistema operacional, que aloca tempo de CPU para cada uma através de um agendador. Elas compartilham o mesmo espaço de memória do processo, facilitando a comunicação, mas exigem controle para evitar conflitos.

Como o Uso de Threads Pode Afetar o Tempo de Execução de um Algoritmo:

O uso de threads pode melhorar o tempo de execução de algoritmos ao permitir operações paralelas, especialmente em sistemas com múltiplos núcleos. No entanto, a gestão inadequada pode causar overhead e prejudicar o desempenho.

Relação Entre Computação Concorrente e Paralela e a Performance dos Algoritmos:

A computação concorrente envolve a execução de múltiplas tarefas, enquanto a paralela executa tarefas simultaneamente em núcleos separados. O paralelismo tende a melhorar a performance, mas depende da capacidade do hardware e da natureza do algoritmo.

Referência:

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts. Wiley.

Tempo por médio por cidade:

Qtd. THREADS	TEMPO MÉDIO DE EXECUÇÃO EM SEGUNDOS
0 Threads	1.614
2 Threads	1.21
4 Threads	0.863
8 Threads	0.79
16 Threads	0.971
32 Threads	2.325
64 Threads	2.849
80 Threads	3.128
160 Threads	4.395
320 Threads	3.328

Tempo médio por ano:

Qtd. THREADS	TEMPO MÉDIO DE EXECUÇÃO EM SEGUNDOS
0 Threads	3.178
2 Threads	1.782

4 Threads	1.502
8 Threads	1.563
16 Threads	1.519
32 Threads	1.586
64 Threads	3.311
80 Threads	3.904
160 Threads	3.677
320 Threads	2.827

Média total de tempo de execução das threads : 2.267 Segundos.

Tempo Médio por Cidade:

Quando o número de threads aumenta de 0 para 8, o tempo de execução reduz significativamente, indicando que o uso de múltiplas threads melhora a eficiência de execução.

A partir de 16 threads, o tempo médio começa a aumentar, sugerindo que a sobrecarga de gerenciamento das threads está superando os benefícios da paralelização. Com 64 threads, o tempo de execução continua a aumentar, atingindo um pico em 160 threads, mostrando que o overhead de sincronização e competição por recursos impacta negativamente o desempenho.

Tempo Médio por Ano:

Similar ao experimento por cidade, o desempenho melhora até 8 threads, após o qual o tempo médio de execução começa a aumentar.

Entre 64 e 160 threads, o tempo de execução apresenta um aumento substancial, refletindo os mesmos problemas de gerenciamento de threads visto anteriormente. Em 320 threads, o tempo de execução diminui ligeiramente, mas permanece elevado, sugerindo que o aumento da quantidade de threads sem controle adequado não traz benefícios significativos e pode prejudicar o desempenho geral.