ME 3001 Lecture, Roots of Non-Linear Equations A Finite Difference Approach - The Secant Method

Time Billerence Approach The Secult Method	
• What does secant mean?	
• The Newton-Raphson method is not purely numerical, wh	y ?
- The Equation	
– The Derivation	
• How can we avoid this issue?	

- $\bullet \ \ \textbf{Introduce the} \ \textit{Secant Method (modified Newton-Raphson)}$
 - Forward Difference

- Backwards Difference

- Central Difference

_	These	are	know	as	Finite	Difference	A	Approximations	
---	-------	-----	------	----	--------	------------	---	----------------	--

— When they are used in the Newton-Raphson equation this becomes the $Secant\ Method$.

- So what is different about using this method?

A Brief Introduction to Optimization

- What is Optimization ?
 - Find Local Minima and Maxima

- Constraints

- Root finding and Optimization?
 - Using the derivative, 4^{th} form of the problem...

• What kind of problems do we solve? Think about the cone we designed a few days ago.

surface area,
$$s=\pi rl=\pi r\sqrt{h^2+r^2}$$
 volume, $v=\pi r^2\frac{h}{3}$

ullet Optimization Techniques

- Brute Force

- Steepest Accent

REMINDERS

- Homework was due Friday but there is a late policy.
- The late policy has changed slightly. Please see the syllabus
- MATLAB script from today's lecture will be posted on ilearn.