| NOME | <br>$N^o$ |  |
|------|-----------|--|
|      |           |  |

10/01/2019

Duração: 2h30

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- CADA RESPOSTA CORRECTA É COTADA COM 2,00 VALORES.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a  $9.8~\text{m}\,\text{s}^{-2}$  .

## FOLHA DE RESPOSTAS

| D .      | 434    |   |   | Respost | a |   | Voncão |
|----------|--------|---|---|---------|---|---|--------|
| Pergunta | Alínea | A | В | С       | D | E | Versão |
|          | a)     | X |   |         |   |   |        |
| 1)       | b)     |   | X |         |   |   | 1      |
|          | c)     |   |   | X       |   |   |        |
| 2)       | a)     |   |   |         | X |   |        |
|          | b)     |   | X |         |   |   | 1      |
|          | c)     |   |   | X       |   |   |        |
|          | a)     |   | X |         |   |   |        |
| 3)       | b)     | X |   |         |   |   | 1      |
|          | c)     |   |   |         | X |   |        |
|          | a)     |   |   | X       |   |   |        |
| 4)       | b)     | X |   |         |   |   | 1      |
|          | c)     |   |   |         | X |   |        |

NOME: \_\_\_\_\_\_ N°: \_\_\_\_\_

[6] 1. Os dois sistemas de forças e binários apresentados na figura são equivalentes. A distância  $\underline{a}$  é igual a 20 cm, as forças  $\vec{F}_1$  e  $\vec{F}_2$  t, e as intensidades das forças  $\vec{F}_1$ ,  $\vec{F}_2$ ,  $\vec{F}_3$  e  $\vec{F}_4$  são 20 N, 20 N, 30 N e 30 N, respectivamente.







[2] a) Qual o momento resultante dos sistemas de forças em relação ao ponto A?

| <b>A</b> ) | +200 k (Ncm) | B) | -200 k (Ncm) | C) | -600 k (Ncm) | D) | +600 k (Ncm) |
|------------|--------------|----|--------------|----|--------------|----|--------------|
| E)         |              |    |              |    |              |    | _            |

[2] b) Qual das seguintes opções representa as forças  $\vec{F}_5$  e  $\vec{F}_6$ , e o momento  $\vec{M}$ ?

|    |                                                                                         |            |                                                                                    | -  | -                                                                                                                                        |    |                                                                                         |
|----|-----------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------|
| A) | $\vec{F}_5 = +10\hat{i} (N)$ $\vec{F}_6 = -10\hat{j} (N)$ $\vec{M} = +200\hat{k} (Ncm)$ | <b>B</b> ) | $\vec{F}_5 = -10\hat{i}(N)$ $\vec{F}_6 = +10\hat{j}(N)$ $\vec{M} = -200\hat{k}(N)$ | C) | $\vec{F}_5 = -10\hat{\mathbf{i}}(\mathbf{N})$ $\vec{F}_6 = +10\hat{\mathbf{j}}(\mathbf{N})$ $\vec{M} = +200\hat{\mathbf{k}}(\mathbf{N})$ | D) | $\vec{F}_5 = +10\hat{i} (N)$ $\vec{F}_6 = -10\hat{j} (N)$ $\vec{M} = -200\hat{k} (Ncm)$ |
| E) | Nenhuma das anteriores                                                                  |            |                                                                                    |    |                                                                                                                                          |    |                                                                                         |

[2] c) Tomando o ponto A como origem do sistema de eixos, qual das seguintes rectas no plano XY (com z = 0 cm) define o eixo central de momentos dos sistemas de forças e binários?

| A)         | y = -x + 60  (cm)      | B) | y = x - 20  (cm) |
|------------|------------------------|----|------------------|
| <b>C</b> ) | y = -x + 20  (cm)      | D) | y = x - 60  (cm) |
| E)         | Nenhuma das anteriores |    |                  |

[6] 2. Considere o sistema em equilíbrio representado na figura, constituído por uma barra com peso  $P_1$  e comprimento L, apoiada em A por um pino, e em B e E por uma corda que passa por uma roldana, de tal modo que a barra faz um ângulo  $\theta_1 = 20^\circ$  com a horizontal, a corda em B encontra-se na vertical, e em E faz um ângulo  $\theta_2$  com a horizontal. No ponto D da barra encontra-se suspenso um corpo com peso  $P_2$ . Na resolução do problema considere  $P_1 = P_2 = 100$  N e  $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = L/4$ .



[2] a) Se  $\theta_2 = 46,02^{\circ}$  e a tensão na corda ligada aos pontos B e E for T = 102,26 N, qual das opções traduz a intensidade da reacção que o apoio A exerce sobre a barra?

| A) | 90 N                      | B) | 85 N | C) | 80 N | D) | 75 N |  |
|----|---------------------------|----|------|----|------|----|------|--|
| E) | F) Nenhuma das anteriores |    |      |    |      |    |      |  |

[2] **b)** Se  $\theta_2 = 20^\circ$  e a tensão na corda for igual a 144,53 N, a que distância do ponto A se encontra o centro de massa da barra?

| A) | 0,8 L                  | <b>B</b> ) | 0,6 L | C) | 0,4 L | D) | 0,2 L |  |
|----|------------------------|------------|-------|----|-------|----|-------|--|
| E) | Nenhuma das anteriores |            |       |    |       |    |       |  |

[2] c) Se a barra for homogénea (centro de massa no ponto C) e a tensão máxima suportada pela corda for igual a 147,92 N, qual o valor mínimo do ângulo θ<sub>2</sub> para que a corda não parta?

| A) | 16°                       | B) | 10° | <b>C</b> ) | 14° | D) | 12° |  |
|----|---------------------------|----|-----|------------|-----|----|-----|--|
| E) | E) Nenhuma das anteriores |    |     |            |     |    |     |  |

10/01/2019

Duração: 2h30

[6] 3. Um material isotrópico e linearmente elástico, com módulo de elasticidade  $E = 180 \, \text{GPa}$  e razão de Poisson v = 0.3, está submetido ao estado de tensão bidimensional representado na figura, com  $|\sigma_x| = 100 \, \text{MPa}$  e  $|\tau_{xy}| = |\tau_{yx}| = 50 \, \text{MPa}$ .



[2] a) Para o estado de tensão representado, qual das seguintes opções representa o tensor de deformações?

|    | 1 , 1                                                                                           | 6 13 1                                                                                              |
|----|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| A) | $\begin{bmatrix} -556 & 361 & 0 \\ 361 & 167 & 0 \\ 0 & 0 & 167 \end{bmatrix} \times 10^{-6}$   | $\begin{bmatrix} 556 & 361 & 0 \\ 361 & -167 & 0 \\ 0 & 0 & -167 \end{bmatrix} \times 10^{-6}$      |
| C) | $\begin{bmatrix} -556 & -361 & 0 \\ -361 & 167 & 0 \\ 0 & 0 & 167 \end{bmatrix} \times 10^{-6}$ | D) $\begin{bmatrix} 556 & -361 & 0 \\ -361 & -167 & 0 \\ 0 & 0 & -167 \end{bmatrix} \times 10^{-6}$ |
| E) | Nenhuma das anteriores                                                                          |                                                                                                     |

[2] b) Tendo por referência o estado de tensão fornecido, qual das seguintes opções representa o tensor de tensões, para um elemento de área rodado de 30° em torno do eixo dos *ZZ*, no sentido contrário ao dos ponteiros do relógio?

| $\begin{bmatrix} 118 & -18 & 0 \\ -18 & -18 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$ | B) $\begin{bmatrix} -32 & 68 & 0 \\ 68 & -68 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$ |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\begin{bmatrix} 32 & -68 & 0 \\ -68 & 68 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$   | $\begin{bmatrix} -118 & 18 & 0 \\ 18 & 18 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$    |
| E) Nenhuma das anteriores                                                       |                                                                                  |

[2] c) Qual das seguintes opções corresponde ao ângulo de rotação necessário do elemento de área em torno do eixo dos ZZ, de modo a obter a orientação dos planos principais?

| A) | -45,0°                    | B) | -22,5° | C) | +45,0° | <b>D</b> ) | +22,5° |
|----|---------------------------|----|--------|----|--------|------------|--------|
| E) | F) Nenhuma das anteriores |    |        |    |        |            |        |

10/01/2019

Duração: 2h30

10/01/2019

Duração: 2h30

NOME: \_\_\_\_\_\_ N°: \_\_\_\_\_

[6] **4.** Considere uma barra horizontal de massa desprezável, com comprimento  $L=1,2\,\mathrm{m}$ . A barra encontra-se suportada por dois apoios simples, em A e em B. Sobre a barra encontram-se aplicadas as cargas distribuídas representadas na figura, com  $p_1(x)=114\left[\mathrm{N\,m^{-1}}\right]$  e  $p_2(x)=-285\,x+342\left[\mathrm{N\,m^{-1}}\right]$ . Para ambas as distribuições de carga, a variável x é a distância ao ponto A.







[2] a) Qual a intensidade da reacção  $\vec{B}_y$ ?

| A) | 38,40 N                   | B) | 42,67 N | <b>C</b> ) | 40,53 N | D) | 36,27 N |  |
|----|---------------------------|----|---------|------------|---------|----|---------|--|
| E) | E) Nenhuma das anteriores |    |         |            |         |    |         |  |

[2] b) Qual a intensidade da força de corte a uma distância de 0,5 metros do apoio A?

| <b>A</b> ) | 16,47 N                | B) | 15,60 N | C) | 14,73 N | D) | 17,33 N |  |
|------------|------------------------|----|---------|----|---------|----|---------|--|
| E)         | Nenhuma das anteriores |    |         |    |         |    |         |  |

[2] c) Se a força de corte no centro da barra for igual a  $-5.07\hat{j}(N)$ , qual a intensidade do momento flector no centro da barra?

| A) | 13,68 Nm                  | B) | 12,92 Nm | C) | 15,20 Nm | D) | 14,44 Nm |  |
|----|---------------------------|----|----------|----|----------|----|----------|--|
| E) | E) Nenhuma das anteriores |    |          |    |          |    |          |  |