

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	100V
R _{DS(on)}	2.6mΩ
I_D	180A

100% Avalanche Tested 100% DVDS Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSQ027N10N	-	TO-247	Tube	N/A	N/A	25/30pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	100	V
Continuous drain current			
T _C = 25°C (Silicon limit)	I_{D}	273	А
T _C = 25°C (Package limit)	₁ D	180	
T _C = 100°C (Silicon limit)		177	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	$I_{D\;pulse}$	720	А
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω) ^[1]	E _{AS}	529	mJ
Gate-Source voltage	V _{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	454	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

Notes:1.EAS was tested at Tj = 25° C, ID = 46A.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.28	°C/W
Thermal resistance, junction – ambient(min. footprint)	R _{thJA}	48	- C/ VV

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Cymbal	Value			Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Unit	rest condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	100	-	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	2.2	3	3.8	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
						V _{DS} =100V,V _{GS} =0V	
Zero gate voltage drain current	I _{DSS}	-	0.05	1	μΑ	T _j =25°C	
		-	-	10		T _j =125°C	
Gate-source leakage current	I_{GSS}	_	±10	±100	nA	V_{GS} =±20V, V_{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	2.6	3.1	mΩ	V _{GS} =10V, I _D =90A	
Transconductance	g _{fs}	-	197.2	-	S	V_{DS} =5V, I_{D} =90A	

Dynamic Characteristic

•						
Input Capacitance	C _{iss}	-	11355	-		V _{GS} =0V, V _{DS} =50V,
Output Capacitance	C _{oss}	-	1446	-	pF	
Reverse Transfer Capacitance	C _{rss}	-	54	-		f=1MHz
Gate Total Charge	\mathbf{Q}_{G}	-	169	-		
Gate-Source charge	Q_{gs}	-	67	-	nC	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D} = 90A$
Gate-Drain charge	Q_{gd}	-	30	-		
Turn-on delay time	t _{d(on)}	-	35	-		$V_{GS} = 10V, V_{DD} = 50V,$ $R_{G_{ext}} = 3.0\Omega$
Rise time	t _r	-	111	-	nc	
Turn-off delay time	t _{d(off)}	-	84	-	ns	
Fall time	t _f	-	112	-		
Gate resistance	R_G	-	1.8	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

SkyMOS1 N-MOSFET 100V, $2.6m\Omega$, 180A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition	
	Syllibol	min.	typ.	max.	Oilit	rest condition	
Body Diode Forward Voltage	V_{SD}	-	0.9	1.4	V	V _{GS} =0V,I _{SD} =90A	
Body Diode Reverse Recovery Time	t _{rr}	ı	101	-	ns	I _F =90A, dI/dt=100A/µs	
Body Diode Reverse Recovery Charge	Q _{rr}	-	338	-	nC	- 1 _F =90A, α1/α(=100A/μS	

Typical Performance Characteristics

2.4 2.2 DD 2.0 1.8 1.8 V_{GS}=10V 1.4 1.2 1.0 0.8

75

Tj - Junction Temperature (°C)

100

125

150

25

50

175

Fig 7: Gate Charge Characteristics

Fig 8: Body-diode Forward Characteristics

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-247

Complete I	Dimensions I	Dimensions	In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	4.70	5.30	0.185	0.209
A1	2.20	2.60	0.087	0.102
A2	1.50	2.49	0.059	0.098
b	1.04	1.33	0.041	0.052
b2	1.90	2.41	0.075	0.095
b4	2.87	3.43	0.113	0.135
С	0.55	0.70	0.022	0.028
D	20.70	21.30	0.815	0.839
D1	16.25	17.65	0.640	0.695
D2	0.51	1.40	0.020	0.055
е	5.44	5.44 BSC.		BSC.
Е	15.50	16.30	0.610	0.642
E1	13.08	14.16	0.515	0.557
E2	3.80	5.49	0.150	0.216
E3	1.00	2.75	0.039	0.108
L	19.72	20.32	0.776	0.800
L1	3.85	4.50	0.152	0.177
Q	5.25	6.25	0.207	0.246
Р	3.50	3.70	0.138	0.146
S	6.04	6.30	0.238	0.248

SkyMOS1 N-MOSFET 100V, $2.6m\Omega$, 180A

华润微电子(重庆)有限公司

Revision History

Revison	Date	Major changes
1.0	2018/1/24	Release of formal version.
2.0	2019/6/25	Supplement package outline info.
3.0	2020/5/9	Modify ID
4.0	2022/10/20	Update mark info.
5.0	2024/8/19	Update Package Qty & Outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.