Introduction to Deep Learning (CS474)

Lecture 15

Outline

Module 2

More on Convolution

Strided Convolution

2 3	3 4	7 4	4	6	2	9
6 ¹	6 º	9 ²	8	7	4	3
3 -1	4 º	8 3	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4
7×7						

	3	4	4
*	1	0	2
	-1	0	3
		3+3	
SH	tride	2 =	2

91	

Slide Credit: Prof. Andrew Ng

Strided Convolution

$$n \times n$$
 image $f \times f$ filter

padding
$$p$$
 stride s

$$\left|\frac{n+2p-f}{s}+1\right|$$

$$\left|\frac{n+2p-f}{s}+1\right|$$

Convolution over Volumes

Convolution over Volumes

Slide Credit: Prof. Andrew Ng

Convolution over Volumes (Multiple Filters)

One Layer of a Convolutional Net

Slide Credit: Prof. Andrew Ng

If layer l is a convolution layer:

$$f^{[l]}$$
 = filter size
 $p^{[l]}$ = padding
 $s^{[l]}$ = stride

Input:
$$n_H \times n_W \times n_c$$

Output: $n_H \times n_W \times n_c$
 $n_H \times n_W \times n_c$

If layer 1 is a convolution layer:

$$f^{[l]} = \text{filter size}$$

 $p^{[l]} = \text{padding}$
 $s^{[l]} = \text{stride}$

Input:
$$h_{H}^{(l-1)} \times h_{W} \times h_{C}^{(l-1)} \leftarrow$$

Output: $h_{H}^{(l-1)} \times h_{W}^{(l-1)} \times h_{C}^{(l-1)} \leftarrow$
 $h_{H}^{(l-1)} \times h_{W}^{(l-1)} \times h_{C}^{(l-1)} \leftarrow$

If layer 1 is a convolution layer:

```
f^{[l]} = \text{filter size}
p^{[l]} = \text{padding}
s^{[l]} = \text{stride}
n_c^{[l]} = \text{number of filters}
Each filter is: \int_{-\infty}^{\infty} \int_{-\infty}^
```

Input:
$$n_{H} \times n_{W} \times n_{C} \times n_{C}$$

If layer 1 is a convolution layer:

```
Input: n_H \times n_W
f^{[l]} = filter size
p^{[l]} = padding
                                                Output: n cas x n cas x
s^{[l]} = stride
n_c^{[l]} = number of filters
Each filter is: \( \frac{100}{\times \text{Lin}} \times \( \frac{100}{\text{c}} \)
Activations: Q > 1 4 × 1/4 × 1.
Weights: friskfrisk version x version
bias: notes
```

References

• All the contents present in the slides are taken from various online resources. Due credit is given in the respective slides. These slides are used for *academic* purposes only.