	AN
TIME	

1.C	6.B	11.A	16.C	21.C	26.A	31.D	36.D	41.B	46.B
2.B	7.A	12.B	17.C	22.B	27.A	32.A	37.C	42.C	47.B
3.B	8.B	13.C	18.A	23.A	28.C	33.B	38.D	43.A	48.C
4.B	9.D	14.B	19.B	24.A	29.D	34.D	39.C	44.A	49.C
5.C	10.C	15.C	20.D	25.B	30.B	35.A	40.B	45.A	50.A

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1: Đáp án C.

Lưu ý: $\int x^a dx = \frac{x^{a+1}}{a+1} + C \text{ và } \int C dx = Cx + C_1 \text{ (C và C_1)}$ là hằng số).

Câu 2: Đáp án B.

Hoành độ giao điểm của hai đồ thị hàm số y = -x và y = x - 2 là: $-x = x - 2 \Leftrightarrow x = 1$.

Diện tích hình phẳng cần tính là:

$$S = \int_{0}^{1} \left(\frac{10}{3} x - x^{2} + x \right) dx + \int_{1}^{3} \left(\frac{10}{3} x - x^{2} - x + 2 \right) dx.$$

$$\Leftrightarrow S = \int_{0}^{1} \left(\frac{13}{3} x - x^{2} \right) dx + \int_{1}^{3} \left(\frac{7}{3} x - x^{2} + 2 \right) dx$$

$$\Leftrightarrow S = \int_{0}^{1} \left(\frac{13}{3} x - x^{2} \right) dx + \int_{1}^{3} \left(\frac{7}{3} x - x^{2} + 2 \right) dx$$

$$\Leftrightarrow S = \left(\frac{13}{6} x^{2} - \frac{x^{3}}{3} \right) \Big|_{1}^{1} + \left(\frac{7}{6} x^{2} - \frac{x^{3}}{3} + 2x \right) \Big|_{3}^{3} = \frac{13}{2}.$$

Câu 3: Đáp án B.

Với t = 0 thì đường thẳng d đi qua điểm F(0;1;2).

Câu 4: Đáp án B.

Tại điểm A hệ số góc tiếp tuyến bằng $0 \Rightarrow f'(x_A) = 0$.

Tại điểm B hệ số góc tiếp tuyến là số âm và tại điểm C hệ số góc tiếp tuyến là số dương nên ta có:

$$f'(x_B) < 0; f'(x_C) > 0.$$

Vậy: $f'(x_B) < f'(x_A) < f'(x_C)$.

Câu 5: Đáp án C.

Ta có: $\log_{a^5} e = \frac{1}{5} \log_a e = \frac{1}{5} \cdot \frac{1}{\log_a a} = \frac{1}{5 \ln a}$.

Câu 6: Đáp án B.

Ta có:
$$y' = (3-2x)^2 + x \cdot 2 \cdot (3-2x) \cdot (-2)$$

 $= (3-2x)(3-2x-4x) = 3(3-2x)(1-2x)$
 $y' = 0 \Leftrightarrow \begin{bmatrix} x = \frac{1}{2} \\ x = \frac{3}{2} \end{bmatrix}$ Xét $f(\frac{1}{4}) = \frac{25}{16}$; $f(\frac{1}{2}) = 2$; $f(1) = 1$,

Ta được giá trị nhỏ nhất của hàm số $y = x(3-2x)^2$

trên đoạn
$$\left\lceil \frac{1}{4}; 1 \right\rceil$$
 là $y = f(1) = 1$.

Câu 7: Đáp án A.

Ta có: $z^{-1} = \frac{1}{|z|^2} \bar{z}$. Mà $|z| = \sqrt{a^2 + b^2}$ và $\bar{z} = a - bi$ nên

$$z^{-1} = \frac{a}{a^2 + h^2} - \frac{b}{a^2 + h^2}i.$$

Vậy phần ảo của số phức z = a + bi là $\frac{-b}{a^2 + b^2}$.

Câu 8: Đáp án B.

Gọi $A \in d \Rightarrow A(2+3a;-3+2a;1+a)$.

$$\overrightarrow{MA}(3a+3;-4+2a;-1+a)$$
. Để $\overrightarrow{MA} \perp \overrightarrow{u_{d'}}$ thì

$$3 + 3a - 12 + 6a + 2 - 2a = 0 \Leftrightarrow a = 1$$
. Vậy $\overrightarrow{MA} = (6; -2; 0)$

nên đường thẳng cần tìm đi qua M(-1;1;2) và nhận

n(3;-1;0) làm một vectơ chỉ phương.

Câu 9: Đáp án D.

Công thức tính thể tích của khối tròn xoay khi quay

D quanh trục hoành là: $V = \pi \int_a^b \left[f(x) \right]^2 dx = \pi \int_2^3 \pi^{2x} dx$.

Câu 10: Đáp án C.

Một điểm nằm trên mặt phẳng (Oxz) có tung độ y = 0. Vậy hình chiếu vuông góc của điểm M(1;2;3) trên mặt phẳng (Oxz) là E(1;0;3).

Câu 11: Đáp án A.

Câu 12: Đáp án B.

Ta có:
$$I = \int_{0}^{3} \frac{dx}{x+2} = \ln(x+2)\Big|_{0}^{3} = \ln 5 - \ln 2 = \ln \frac{5}{2}$$
.

Câu 13: Đáp án C.

Vì đường thẳng đi qua A(1;2;0) và vuông góc với mặt phẳng (P): 2x+y-3z+5=0 nên nhận $\vec{n}(2;1;-3)$ làm một vecto chỉ phương. Vậy phương trình đường

thẳng cần tìm là:
$$\begin{cases} x = 3 + 2t \\ y = 3 + t \end{cases}$$
 (điểm A tương ứng với
$$z = -3 - 3t$$

t = -1).

Câu 14: Đáp án B.

Ta có: $3^{-3x} > 3^{-x+2} \Leftrightarrow -3x > -x + 2 \Leftrightarrow x < -1$.

Vậy tập nghiệm của bất phương trình là $S = (-\infty; -1)$.

Câu 15: Đáp án C.

Số cách chọn danh sách SẮP THỨ TỰ 5 cầu thủ trong 11 cầu thủ là: $P_{11}^5 = 55440$.

Câu 16: Đáp án C.

Khoảng cách từ đỉnh S đến mặt phẳng (ABCD) là:

$$h = \frac{a\sqrt{2}}{2} \cdot \tan 60^{\circ} = \frac{a\sqrt{6}}{2}.$$

Câu 17: Đáp án C.

Điều kiện: $|x| \ge 2$.

Ta có: $\lim_{y \to \infty} y = 1$; $\lim_{y \to \infty} y = -1$ và

 $\lim_{x\to 2^+} y = +\infty$; $\lim_{x\to (-2)^-} y = -\infty$ nên đồ thị hàm số đã cho có 4

đường tiệm cận.

Câu 18: Đáp án A.

Mặt phẳng cần tìm nhận n(2;-1;3) làm một vecto chỉ phương và đi qua M(1;-1;2) nên có phương trình là:

$$2(x-1)-1(y+1)+3(z-2)=0 \Leftrightarrow 2x-y+3z-9=0.$$

Câu 19: Đáp án B.

Ta có:
$$L = \lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1} = \lim_{x \to 1} (x + 4) = 5.$$

Câu 20: Đáp án D.

Có:
$$C_n^{n-1} + C_n^{n-2} = 78 \Leftrightarrow C_n^1 + C_n^2 = 78$$

$$\Leftrightarrow \frac{n!}{(n-1)! \cdot 1!} + \frac{n!}{(n-2)! \cdot 2!} = 78$$

$$n + \frac{1}{2}n(n-1) = 78 \Leftrightarrow \begin{bmatrix} n = 12\\ n = -13(l) \end{bmatrix}$$

Khi đó ta có khai triển: $(2x-1)^{12} = \sum_{k=0}^{12} C_{12}^k (2x)^{12-k} (-1)^k$

Hệ số của x^5 là: $C_{12}^7.2^5.(-1)^7 = -25344.$

Câu 21: Đáp án C.

Vì $AA' \perp (ABCD)$ và $CC' \perp (ABCD)$ nên

 $(ACC'A') \perp (ABCD)$ hay góc giữa chúng là 90°.

Câu 22: Đáp án B.

Có:
$$f(x) = 3\cos x + \frac{1}{x^2}$$

$$\Rightarrow F(x) = \int f(x) dx = 3\sin x - \frac{1}{x} + C.$$

Câu 23: Đáp án A.

Ta có:
$$y' = \left(\frac{x^2 - 2x - 3}{x + 1} + \frac{3}{x + 1}\right)' = \left(x - 3 + \frac{3}{x + 1}\right)'$$

= $1 - \frac{3}{(x + 1)^2}$.

Suy ra $y'(1) = \frac{1}{4}$. Vậy phương trình tiếp tuyến của đồ

thị hàm số tại điểm $A\left(1; -\frac{1}{2}\right)$ là: $y = \frac{1}{4}(x-1) - \frac{1}{2}$.

Câu 24: Đáp án A.

Thể tích của khối lăng trụ là: V = Bh.

Câu 25: Đáp án B.

Xác suất để chọn được 3 đoàn viên là nam là:

$$P_1 = \frac{C_{15}^3}{C_{35}^3} = \frac{13}{187}.$$

Xác suất để chọn được 3 đoàn viên là nữ là:

$$P_2 = \frac{C_{20}^3}{C_{35}^3} = \frac{228}{1309}.$$

Vậy xác suất để chọn được 3 đoàn viên trong đó có cả

nam và nữ là:
$$P = 1 - (P_1 + P_2) = \frac{90}{119}$$
.

Câu 26: Đáp án A.

Lưu ý: Số phức liên hợp của số phức z = a + bi là $\overline{z} = a - bi$.

Câu 27: Đáp án A.

Vì f'(x) = 0 và đổi dấu tại 2 điểm x = -2 và x = 3

nên hàm số y = f(x) có 2 điểm cực trị.

Câu 28: Đáp án C.

Vì $\lim_{x\to\pm\infty} y = 2$ nên đồ thị hàm số có tiệm cận ngang là đường thẳng y = 2.

Vì $\lim_{x\to 1^+} y = +\infty$ và $\lim_{x\to 1^-} y = -\infty$ nên đồ thị hàm số có

tiệm cận đứng là đường thẳng x = 1.

Câu 29: Đáp án D.

Bán kính đáy của hình nón là: $r = \frac{3\sqrt{2}}{2}$.

Độ dài đường sinh của hình nón là: l = 3.

Vậy diện tích xung quanh của hình nón là:

$$S_{xq} = \pi r l = \frac{9\pi\sqrt{2}}{2}.$$

Câu 30: Đáp án B.

Ta có tam giác ABC vuông cân tại A, tam giác BDC vuông cân tại D.

Ta có
$$\overrightarrow{AB}.\overrightarrow{CD} = (\overrightarrow{DB} - \overrightarrow{DA})\overrightarrow{CD} = \overrightarrow{DB}.\overrightarrow{CD} - \overrightarrow{DA}.\overrightarrow{CD}$$

$$= \left| \overrightarrow{DB} \right| \left| \overrightarrow{CD} \right| \cos \left(\overrightarrow{DB}, \overrightarrow{CD} \right) - \left| \overrightarrow{DA} \right| \left| \overrightarrow{CD} \right| \cos \left(\overrightarrow{DA}, \overrightarrow{CD} \right) = -\frac{1}{2}a^2$$

Mặt khác ta lại có: $\overrightarrow{AB}.\overrightarrow{CD} = |\overrightarrow{AB}| |\overrightarrow{CD}| \cos(\overrightarrow{AB}.\overrightarrow{CD})$

$$\Leftrightarrow \cos\left(\overrightarrow{AB},\overrightarrow{CD}\right) = \frac{\overrightarrow{AB}.\overrightarrow{CD}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{CD}\right|} = -\frac{1}{2}$$

$$\Rightarrow (\overrightarrow{AB}, \overrightarrow{DC}) = 120^{\circ} \Rightarrow (AB, CD) = 60^{\circ}.$$

Câu 31: Đáp án D.

Hai đồ thị đối xứng qua Oy vì khi thay x bằng -x thì (C_1) biến thành (C_2) và ngược lại.

Câu 32: Đáp án A.

Ta có:
$$f(x) = \int f'(x) dx = \int \frac{1}{x(\ln x - 1)} dx$$

$$=\int \frac{d \left(\ln x - 1\right)}{\ln x - 1} = \ln \left|\ln x - 1\right| + C \ \text{v\'oi} \ x \in \left(0; +\infty\right) \setminus \left\{e\right\}.$$

TH1:
$$\ln x - 1 > 0 \iff x > e : f(x) = \ln(\ln x - 1) + C_1$$

Có:
$$f(e^2) = 3 \Leftrightarrow C_1 = 3$$
 nên

$$f(e^3) = \ln(\ln e^3 - 1) + 3 = 3 + \ln 2$$

TH2:
$$\ln x - 1 < 0 \Leftrightarrow 0 < x < e$$
: $f(x) = \ln(1 - \ln x) + C_2$

Có:
$$f\left(\frac{1}{e^2}\right) = \ln 3 + C_2 = \ln 6 \Rightarrow C_2 = \ln 2$$
 nên

$$f\left(\frac{1}{e}\right) = \ln\left(1 - \ln\frac{1}{e}\right) + \ln 2 = 2\ln 2.$$

Vậy:
$$f\left(\frac{1}{e}\right) + f(e^3) = 3(1 + \ln 2)$$
.

Câu 33: Đáp án B.

Điểm
$$A(1;2)$$
 và $B(5;-1)$ nên $AB = \overrightarrow{AB}$

$$=\sqrt{(1-5)^2+(2-(-1))^2}=5.$$

Câu 34: Đáp án D.

Ta có công thức tính tổng của n số hạng đầu tiên của

cấp số cộng như sau:
$$S_n = \frac{n[2a_1 + (n-1)d]}{2}$$
 (có đề cập

trong sách CPT).

Thay các dữ kiện đề cho, ta được:

$$253 = \frac{n[2.3 + (n-1).4]}{2} \iff n = 11 \text{ (vì } n > 0).$$

Câu 35: Đáp án A.

Phương trình ban đầu tương đương với:

$$e^{m\cos x - \sin x} + (m\cos x - \sin x) = e^{2(1-\sin x)} + 2(1-\sin x)$$
 (1)

Xét hàm số $f(t) = e^t + t$ có $f'(t) = e^t + 1 > 0 \forall t$ nên từ

(1) suy ra
$$m\cos x - \sin x = 2(1 - \sin x)$$

$$\Leftrightarrow m\cos x + \sin x = 2$$
 (2)

Phương trình (2) có nghiệm $\Leftrightarrow m^2 + 1^2 \ge 2^2 \Leftrightarrow m^2 \ge 3$

$$\Leftrightarrow \begin{bmatrix} m \le -\sqrt{3} \\ m \ge \sqrt{3} \end{bmatrix}$$

Từ đó ta có:
$$\begin{cases} 10a = -10\sqrt{3} \\ 20b = 20\sqrt{3} \end{cases} \Rightarrow T = 10a + 20b = 10\sqrt{3}.$$

Câu 36: Đáp án D.

Gọi A(a;0;0), B(0;b;0), C(0;0;c), do A, B, C

thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.

$$(P)$$
 theo đoạn chắn có dạng $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Do
$$M(2;1;1) \in (P) \Rightarrow \frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 1$$

Áp dụng Cauchy cho 3 số dương $\frac{2}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ ta có

$$1 = \frac{2}{a} + \frac{1}{b} + \frac{1}{c} \ge 3\sqrt[3]{\frac{2}{abc}}$$

$$\Rightarrow V_{OABC} = \frac{abc}{6} \ge 9$$
.

Dấu bằng xảy ra khi $\frac{2}{a} = \frac{1}{b} = \frac{1}{c} = \frac{1}{3} \Rightarrow \begin{cases} a = 6 \\ b = c = 3 \end{cases}$.

Vậy
$$(P): \frac{x}{6} + \frac{y}{3} + \frac{z}{3} = 1 \Leftrightarrow x + 2y + 2z - 6 = 0$$
.

Câu 37: Đáp án C.

Có: $y' = x - m + \frac{1}{x - 1} \ge 0, \forall x \in (1; +\infty) \ (y' = 0 \text{ chỉ ở hữu})$

hạn các giá trị)

$$\Leftrightarrow m \le x + \frac{1}{x - 1} = g(x), \quad x \in (1; +\infty) \iff m \le \min_{(1; +\infty)} g(x).$$

Xét
$$g(x)$$
 có $g'(x) = 1 - \frac{1}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}$

Vẽ bảng biến thiên ta được $\begin{cases} m > 0 \\ m \le 3 \end{cases} \Rightarrow m \in \{1; 2; 3\}.$

Câu 38: Đáp án D.

$$h = |a| = |5\sin 6t - 4\cos 6t| \le \sqrt{5^2 + (-4)^2} = \sqrt{41}$$

$$\Leftrightarrow$$
 $-\sqrt{41} \le 5\sin 6t - 4\cos 6t \le \sqrt{41}, 0 < t < 1$

Dấu "=" xảy ra
$$\Leftrightarrow \frac{\sin 6t}{5} = \frac{\cos 6t}{-4} \Leftrightarrow \tan 6t = -\frac{5}{4}$$

$$\Leftrightarrow$$
 6t = -0,896 + $k\pi \Leftrightarrow t = -0,15 + k\frac{\pi}{6}$

Vì 0 < t < 1 nên 0,29 < k < 2,2. Lại có $k \in \mathbb{Z}$ nên $k \in \{1;2\}$.

Câu 39: Đáp án C.

Phương trình hoành độ giao điểm:

$$mx+1 = \frac{x+1}{x-1} \Leftrightarrow \begin{cases} x \neq 1 \\ (mx+1)(x-1) = x+1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \neq 1 \\ mx^2 - mx - 2 = 0 \end{cases}$$
 (1)

YCBT \Leftrightarrow (1) có hai nghiệm phân biệt $x_{\!\scriptscriptstyle 1}$, $x_{\!\scriptscriptstyle 2}$ khác 1

thỏa mãn
$$(x_1 - 1)(x_2 - 1) < 0$$

$$\Leftrightarrow \begin{cases} m \neq 0 \\ \Delta = m^2 + 8m > 0 \\ m \cdot 1^2 - m \cdot 1 - 2 \neq 0 \\ x_1 x_2 - (x_1 + x_2) + 1 < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m \neq 0 \\ m > 0 \\ m < -8 \\ m \in \mathbb{R} \\ -\frac{2}{m} - 1 + 1 < 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 0 \\ m < -8 \\ \frac{2}{m} > 0 \end{cases} \\ \Rightarrow m > 0 \end{cases}$$

Câu 40: Đáp án B.

Gọi I là tâm đường tròn nội tiếp tam giác OMN.

Ta áp dụng tính chất sau: "Cho tam giác OMN với I là tâm đường tròn nội tiếp, ta có $a.\overrightarrow{IO} + b.\overrightarrow{IM} + c.\overrightarrow{IN} = \overrightarrow{0}$, với a = MN, b = ON, c = OM".

Ta có
$$OM = \sqrt{2^2 + 2^2 + 1^2} = 3$$
,

$$ON = \sqrt{\left(\frac{-8}{3}\right)^2 + \left(\frac{4}{3}\right)^2 + \left(\frac{8}{3}\right)^2} = 4.$$

$$MN = \sqrt{\left(\frac{-8}{3} - 2\right)^2 + \left(\frac{4}{3} - 2\right)^2 + \left(\frac{8}{3} - 1\right)^2} = 5.$$

$$\begin{aligned} x_I &= \frac{5.0 + 4.2 + 3.\left(\frac{-8}{3}\right)}{3 + 4 + 5} = 0 \\ 5.\overrightarrow{IO} + 4.\overrightarrow{IM} + 3.\overrightarrow{IN} &= \overrightarrow{0} \Leftrightarrow \begin{cases} y_I &= \frac{5.0 + 4.2 + 3.\left(\frac{4}{3}\right)}{3 + 4 + 5} = 1 \\ z_I &= \frac{5.0 + 4.2 + 3.\left(\frac{8}{3}\right)}{3 + 4 + 5} = 1 \end{cases} \end{aligned}$$

Mặt phẳng (Oxz) có phương trình y = 0.

Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có

bán kính
$$R = d(I,(Oxz)) = 1$$
.

Vậy phương trình mặt cầu là: $x^2 + (y-1)^2 + (z-1)^2 = 1$

Câu 41: Đáp án B.

Theo giả thiết ta có $S_{xq}=2\pi rl \Leftrightarrow r=\frac{S_{xq}}{2\pi l}=\frac{16\pi a^2}{2\pi .2a}=4a$.

Câu 42: Đáp án C.

Điều kiện
$$\begin{cases} x+2>0 \\ x>0 \end{cases} \Leftrightarrow x>0 \ (*).$$

Phương trình $\Leftrightarrow \ln(x+2)^2 + \ln 4 = \ln x + \ln 3^4$

$$\Leftrightarrow \ln \left[4(x+2)^2 \right] = \ln (x.3^4)$$

$$\Leftrightarrow \begin{cases} x.3^4 > 0 \\ 4(x+2)^2 = 81x \end{cases} \Leftrightarrow \begin{cases} x = 16 \\ x = \frac{1}{4} \end{cases} \text{ thỏa mãn } (*)$$

$$\Rightarrow \begin{cases} x_1 = \frac{1}{4} \Rightarrow P = \frac{x_1}{x_2} = \frac{1}{64}. \\ x_2 = 16 \end{cases}$$

Câu 43: Đáp án A.

Ta có
$$y' = -3x^2 + 4x - m$$
, $y'' = -6x + 4$

Hàm số đạt cực tiểu tại
$$x = 1 \Leftrightarrow \begin{cases} y'(1) = 0 \\ y''(1) > 0 \end{cases} \Leftrightarrow \begin{cases} m = 1 \\ -2 > 0 \end{cases}$$

(vô nghiệm)

Câu 44: Đáp án A.

Ta có
$$\int_{0}^{1} \frac{\pi x^3 + 2^x + ex^3 \cdot 2^x}{\pi + e \cdot 2^x} dx$$

$$= \int_{0}^{1} \left(x^{3} + \frac{2^{x}}{\pi + e.2^{x}} \right) dx = \frac{1}{4} + \int_{0}^{1} \frac{2^{x}}{\pi + e.2^{x}} dx = \frac{1}{4} + J.$$

Tính
$$J = \int_{0}^{1} \frac{2^{x}}{x + e \cdot 2^{x}} dx$$
. Đặt

$$\pi + e.2^x = t \Rightarrow e.2^x \ln 2dx = dt \Leftrightarrow 2^x dx = \frac{1}{e.\ln 2}dt$$

Đổi cận: Khi x = 0 thì $t = \pi + e$; khi x = 1 thì $t = \pi + 2e$

$$J = \int_{0}^{1} \frac{2^{x}}{\pi + e \cdot 2^{x}} dx = \frac{1}{e \ln 2} \int_{\pi + e}^{\pi + 2e} \frac{1}{t} dt$$
$$= \frac{1}{e \ln 2} \ln |t|_{\pi + e}^{\pi + 2e} = \frac{1}{e \ln 2} \ln \left(1 + \frac{e}{e + \pi} \right)$$

Khi đó
$$\int_{0}^{1} \frac{\pi x^{3} + 2^{x} + ex^{3} \cdot 2^{x}}{\pi + e \cdot 2^{x}} dx = \frac{1}{4} + \frac{1}{e \ln 2} \ln \left(1 + \frac{e}{e + \pi} \right)$$

$$\Rightarrow m = 4$$
, $n = 2$, $p = 1$. Vậy $S = 7$.

Câu 45: Đáp án A.

$$n_{\Omega} = 9.10^4 = 90000$$

Gọi số thỏa mãn yêu cầu là: abcde thì:

$$a \neq 0, e \in \{2, 3, 5, 7\}, abcde = 11t(t \in \mathbb{N})$$

TH1: e = 2 có

$$10.\overline{abcd} + 2 = 11t \Rightarrow \overline{abcd} = t + \frac{t-2}{10}$$
. Suyra

$$t = 10k + 2(k \in \mathbb{N})$$
.

Vậy abcd = 11k + 2 mà 1000 < abcd < 9999 suy ra

$$\frac{1000-2}{11} < k < \frac{9999-2}{11}, k \in \mathbb{N}$$
 do đó có 818 giá trị của

k nên có 818 số thỏa mãn yêu cầu.

TH2: e = 3 . Tương tự có 818 số thỏa mãn yêu cầu.

TH3: e = 5. Tương tự có 818 số thỏa mãn yêu cầu.

TH4: $e=7\,$. Tương tự có 818 số thỏa mãn yêu cầu.

Vậy xác suất cần tìm là $P = \frac{818.4}{90000} = \frac{409}{11250}$

Câu 46: Đáp án B.

Từ giả thiết:
$$e^{u_{18}} + 5\sqrt{e^{u_{18}} - e^{4u_1}} = e^{4u_1}$$
 ta đặt $t = \sqrt{e^{u_{18}} - e^{4u_1}} \ge 0$.

Ta có:
$$t^2 + 5t = 0$$
 hay $e^{u_{18}} = e^{4u_1} \iff u_{18} = 4u_1$.

Mặt khác
$$(u_n)$$
 là cấp số cộng có $d = 3$ nên

$$u_{18} = u_1 + 17.3 \Leftrightarrow 4u_1 = u_1 + 17.3$$

$$\Leftrightarrow u_1 = 17 \Rightarrow u_n = 3n + 14$$

Ta có:

 $\log_3 u_n < \ln 2018 \Leftrightarrow 3n + 4 < 3^{\ln 2018} \Leftrightarrow n < 1419,97$.

Vậy n lớn nhất là 1419.

Câu 47: Đáp án B.

$$AA' \perp (ABC) \Rightarrow MC \perp (AA'H) \Rightarrow CH \perp AH$$
.

Suy ra
$$S_{AHC} = \frac{1}{2}AH.HC \le \frac{1}{2}.\frac{AH^2 + HC^2}{2} = \frac{a^2}{4}$$

Dấu "=" khi AH = CH. Khi đó:

$$BH = BD - DH = \frac{a\sqrt{3}}{2} - \frac{a}{2} = \frac{a(\sqrt{3} - 1)}{2}$$

(với D là trung điểm của AC).

Câu 48: Đáp án C.

Từ giả thiết (P) đi qua A, B nên ta có:

$$\begin{cases} a+2b+4c+3=0 \\ c+3=0 \end{cases} \Rightarrow \begin{cases} a+2b=9 \\ c=-3 \end{cases}$$

Do
$$r^2 = R^2 - d^2(I_r(P))$$
 nên r_{min} thì $d_{max}^2(I_r(P))$.

Xét:
$$d_{\text{max}}^2(I,(P)) = 9 \frac{(b-2)^2}{5b^2 - 36b + 90}$$
 có giá trị lớn nhất

khi
$$b = \frac{27}{4} \Rightarrow a = \frac{-9}{2} \Rightarrow T = -\frac{3}{4}$$
.

Câu 49: Đáp án C.

Gọi
$$P = (P) \cap BC, Q = (P) \cap AD, S = (P) \cap BD$$
.

$$V_{ABCD} = \frac{\sqrt{2}}{12}$$
; $\frac{V_{S.DNQ}}{V_{S.BMP}} = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{9}$

$$\begin{split} &V_{S.DNQ} = \frac{1}{3}.S_{DNQ}.d\left(S,\left(DNQ\right)\right) \\ &= \frac{1}{3}.\frac{1}{9}S_{ACD}.d\left(B,\left(ACD\right)\right) = \frac{1}{9}.V_{ABCD} = \frac{\sqrt{2}}{108} \\ &\text{Suy ra } V_{S.BMP} = \frac{\sqrt{2}}{24} \Rightarrow V_{BDMQNP} = \frac{\sqrt{2}}{24} - \frac{\sqrt{2}}{108} = \frac{7\sqrt{2}}{216} \\ &\text{Do $d\acute{o}$: } V = V_{ABCD} - V_{BDMQNP} = \frac{11\sqrt{2}}{216} \end{split}$$

Câu 50: Đáp án A.

Đặt
$$z-3-2i=w$$
 với $w=x+yi$ $(x,y \in \mathbb{R})$.

Theo bài ra ta có $|w| = 2 \Leftrightarrow x^2 + y^2 = 4$.

Ta có

$$P = |z+1-2i| + 2|z-2-5i| = |w+4| + 2|w+1-3i|$$

$$= \sqrt{(x+4)^2 + y^2} + 2\sqrt{(x+1)^2 + (y-3)^2}$$

$$= \sqrt{20+8x} + 2\sqrt{(x+1)^2 + (y-3)^2}$$

$$= 2\sqrt{5+2x} + 2\sqrt{(x+1)^2 + (y-3)^2}$$

$$= 2\left(\sqrt{x^2 + y^2 + 2x + 1} + \sqrt{(x+1)^2 + (y-3)^2}\right)$$

$$= 2\left(\sqrt{(x+1)^2 + y^2} + \sqrt{(x+1)^2 + (y-3)^2}\right)$$

$$\geq 2\left(|y| + |y-3|\right) \geq 2|y+3-y| = 6.$$

$$P = 6 \Leftrightarrow \begin{cases} x = -1 \\ y(3 - y) \ge 0 \Leftrightarrow \begin{cases} x = -1 \\ y = \sqrt{3} \end{cases}.$$

Vậy GTNN của P là bằng 6 đạt được khi $z = 2 + (2 + \sqrt{3})i$.