Конспект лекций по дисциплине

Дифференциальные уравнения

Новосибирский государственный университет Физический факультет

4-й семестр

2025 год

Студент: Б.В.О

Преподаватель: Скворцова Мария Александровна

Оглавление

T	ьар	риационное исчисление.	
	1.	Примеры задач вариационного исчисления	2
	2.	Простейшая задача вариационного исчисления	4
	3.	Необходимые условия локального экстремума	4
	4.	Случай понижения порядка в уравнении Эйлера	7
	5.	Решение задачи о брахистохроне	8
	6.	Решение задачи о поверхности вращения наименьшей площади	11
	7.	Вариационная задача с несколькими функциями	12
	8.	Вариационная задача с высшими производными	12
	9.	Вариационная задача с несколькими независимыми переменными	13
	10.	Принцип Остроградского-Гамильтона (принцип наименьшего действия,	
		признак стационарного действия, основной вариационный принцип ме-	
		ханики)	13
	11.	Изопериметрическая задача	14
	12.	Решение классической изопериметрической задачи	16
	13.	Вариационная задача на условный экстремум	16
	14.	Решение задачи о геодезических на сфере	17
2	Система малых колебаний		19
	1.	Линейные однородные системы малых колебаний	19
	2.	Линейные неоднородные системы малых колебаний	22
3	Зависимость решения от параметров		
	1.	Непрерывная зависимость решений от параметров и начальных данных	25

Глава 1: Вариационное исчисление.

1. Примеры задач вариационного исчисления

Задача математического анализа:

Есть кривая заданная функцией f(x) найти точки экстремума:

$$f'(x) = 0 \Rightarrow x_1, x_2$$
 — точки, подозреваемые на экстремум

$$f''(x_1) < 0 \Rightarrow x_1 - \max$$

 $f''(x_2) > 0 \Rightarrow x_2 - \min$

 $3 a \partial a$ ча вариационного исчисления: Функционал: $I[y] = \int_{x_0}^{x_1} F(x,y(x),y'(x)) dx$ Найти функцию y(x) такую, что I[y] принимает min или max

Пример 1 : задача наискорейшего спуска (задача Брахистохроне)

Найти кривую y(x) по которой тело из точки A в точку B попадет за наименьшее время.

3.C.9:
$$mgy_0 + 0 = mgy(x) + \frac{m|v|^2}{2}$$

$$|v| = \sqrt{v_x^2 + v_y^2} = \sqrt{\left(\frac{\partial x}{\partial t}\right)^2 + \left(\frac{\partial y}{\partial t}\right)^2} = \sqrt{1 + (y'(x))^2} \frac{dx}{dt}$$

$$\sqrt{2g(y_0 - y(x))} = |v| = \sqrt{1 + (y(x)')^2} \frac{dx}{dt}$$

$$T = \int_0^T dt = \int_{x_0}^{x_1} \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g(y_0 + y(x))}} dx$$

Пример 2 : задача поверхности вращения наименьшей площади.

Площадь $S \to \min$

$$\Delta \delta = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \Delta x$$
$$\Delta S = 2\pi y(x) \Delta \delta$$
$$\sum \Delta S \xrightarrow{\Delta x \to 0} \int_{x_1}^{x_2} 2\pi y(x) \sqrt{1 + (y'(x))^2} dx$$

Пример 3 : задача о геодезических на поверхности.

Найти кривую, проходящую через точки А и В, лежащую на поверхности, которая имеет наименьшую длину.

$$G(x, y, z) = 0$$
 — уравнение поверхности

Пусть уравнение кривой :
$$\begin{cases} x=x(t)\\ y=y(t) & t\in [t_0,t_1]-\text{параметр}\\ z=z(t) \end{cases}$$

 $G(x(t),y(t),z(t))=0 \leftarrow$ кривая лежит на поверхности

$$l = \sum \Delta l = \sum \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} = \sum \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2 + \left(\frac{\Delta z}{\Delta t}\right)^2} \Delta t$$
$$l \xrightarrow{\Delta t \to 0} \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$$

2. Простейшая задача вариационного исчисления

$$I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx \tag{1}$$

 $F: \mathbb{D} \to \mathbb{R}, \mathbb{D} \subset \mathbb{R}^3$ непустое открытое множество, $F \in C^2(\mathbb{D})$

Определение 1 (допустимая функция). Функция $y : [x_0, x_1] \to \mathbb{R}$ называется допустимой, если:

- 1) $y(x) \in C([x_0, x_1])$
- 2) $y(x) \in C^2((x_0, x_1))$
- 3) $\forall x \in [x_0, x_1], (x, y(x), y'(x)) \in \mathbb{D}$

4)
$$\int_{x_0}^{x_1} F(x, y(x), y'(x)) dx$$
 cxodumcs

Краевые условия:
$$y(x_0) = y_0, \ y(x_1) = y_1$$
 (2)

Определение 2. Допустимая $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет локальный минимум функционалу (1) при краевых условиях (2),если:

- 1) $\tilde{y}(x_0) = y_0, \tilde{y}(x_1) = y_1$
- (2) $\exists \varepsilon_0 > 0 \ \forall \ \partial$ опустимой функции y(x), удовлетворяющей (2): $\sup_{x \in [x_0, x_1]} |y(x) \tilde{y}(x)| < \varepsilon_0$ выполняется: $I[\tilde{y}] \leq I[y]$

Определение 3. Допустимая функция $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет глобальный минимум функционалу I[y] при краевых условиях (2), если:

- 1) $\tilde{y}(x_0) = y_0$, $\tilde{y}(x_1) = y_1$
- 2) \forall допустимой функции y(x), удовлетворяющей (2), выполняется $I[\tilde{y}] \leq I[y]$

3. Необходимые условия локального экстремума

Аналог f'(x) = 0

Пусть функция \tilde{y} доставляет функционалу I[y] при краевых условиях (2) локальный минимум $\Rightarrow I[\tilde{y}] \leq I[y]$, где y(x) из определенного локального минимума.

и минимум
$$\Rightarrow I[y] \leq I[y]$$
, где $y(x)$ из определенного локального д
Возьмем $y(x) = \tilde{y} + \varepsilon \eta(x), \quad \varepsilon \in \left(-\frac{\varepsilon_0}{M}, \frac{\varepsilon_0}{M}\right), \quad M = \max_{x \in [x_0, x_1]} |\eta(x)|$ $\eta(x) \in C^2([x_0, x_1])$ - финитная функция.

Рассмотрим функцию $g(\varepsilon) = I[\tilde{y} + \varepsilon \eta] \Rightarrow g(0) \leq g(\varepsilon)$

$$0 = \frac{d}{d\varepsilon} g(\varepsilon)|_{\varepsilon=0} = \frac{d}{d\varepsilon} \left[\int_{x_0}^{x_1} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{x_0}^{x_1} \int_{(1)}^{x_1} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_1} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta$$

Теорема 1 (из математического анализа). $f(x,\varepsilon):[a,b]\times[c,d]\to\mathbb{R}$ - непрерывна, $\exists \frac{df}{d\varepsilon}(x,\varepsilon)$ - непрерывна

$$\Rightarrow \frac{d}{d\varepsilon} \int_{a}^{b} f(x,\varepsilon) dx = \int_{a}^{b} \frac{d}{d\varepsilon} f(x,\varepsilon) dx$$

Вносим производную под знак интеграла:

$$\begin{split}
& = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots)\eta(x) + \frac{\partial F}{\partial y'}\eta'(x) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \frac{\partial F}{\partial y}(\dots)\eta(x) dx + \underbrace{\frac{\partial F}{\partial y'}(x)\eta(x)}_{x_0+\delta} \Big|_{x_0+\delta}^{x_1-\delta} - \int_{x_0+\delta}^{x_1-\delta} \eta(x) \frac{d}{dx} \left[\frac{\partial F}{\partial y'}(\dots) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots) - \frac{\partial}{\partial x} \frac{\partial F}{\partial y'}(\dots) \right] \eta(x) dx \Big|_{\varepsilon=0} = \\
& = \int_{x_0}^{x_1} \eta(x) \left[\frac{\partial F}{\partial y}(x, y(x), y'(x)) - \dots \right] dx = 0
\end{split}$$

 \forall финитной функции $\eta(x)$

Лемма 1 (основаная леммая вариационного исчисления). $f(x):[x_0,x_1]\to \mathbb{R}-\ nenpe-$

рывна $u\int_{x_0}^{x_1}f(x)\eta(x)dx=0, \forall \ \phi$ инитной $\eta(x)$. Тогда $f(x)\equiv 0 \ \forall x\in [x_0,x_1]$ По лемме: $\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'}=0$ - необходимое условие локального экстремума(уравнение Эйлера)

Определение 1 (экстремаль). Допустимая функция y(x) называется экстремалью функционала I[y] при краевых условиях (2), если:

- 1) $y(x_0) = y_0, \ y(x_1) = y_1$
- 2) y(x) удовлетворяет условию Эйлера

$$\begin{cases}
I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx \\
y(x_0) = y_0, \ y(x_1) = y_1
\end{cases}$$
(1)

Найти функцию y(x) такую, чтобы функционал I[y] принимал наибольшее или наименьшее значение.

Необходимо найти условие локального экстремума:

Если
$$\tilde{y}$$
 экстремаль $\Rightarrow \tilde{y} \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0$ (2)

Докозательство формулы (2).

$$I[\tilde{y}] \leq I[y], y = \tilde{y} + \varepsilon \eta, \varepsilon \in (-\varepsilon_1, \varepsilon_1), \eta(x) \in C^2([x_0, x_1])$$
 – финитная

$$\underbrace{I[y]}_{=g(0)} \leq \underbrace{I[\tilde{y} + \varepsilon \eta]}_{=g(\varepsilon)} \Rightarrow g(0) \leq g(\varepsilon) \Rightarrow g'(0) = 0$$

$$0 = \frac{d}{d\varepsilon}g(\varepsilon)|_{\varepsilon=0} = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y}(x,\tilde{y}(x),\tilde{y}'(x)) - \frac{d}{dx}\frac{\partial F}{\partial y'}(x,\tilde{y}(x),\tilde{y}'(x))\right)\eta(x)dx, \forall \eta(x) - \varphi$$
инитная

Лемма 2 (Лагранжа). Пусть f(x) - непрерывна и $\int_{x_0}^{x_1} f(x) \eta(x) dx = 0. \forall \eta(x)$ - финитная на $[x_0, x_1]$. Тогда $f(x) = 0, \forall x \in [x_0, x_1]$

Доказательство. От противного:

Пусть для определенности $f(\tilde{x}) > 0$. Тогда так как $f(\tilde{x})$ - непрерывна, то f(x) > 0при $x \in (\tilde{x} - \delta_0, \tilde{x} + \delta_0)$

Возьмем функцию $\eta(x)=\begin{cases} (\delta_0^2-(x-\tilde{x})^2)^4, |x-\tilde{x}|<\delta \\ 0, |x-\tilde{x}|>\delta_0 \end{cases}$ — финитная функция Наша функция $\eta(x)$ плавно переходит к нашим точкам $\tilde{x}-\delta_0, \tilde{x}+\delta_0$

$$\int_{x_0}^{x_1} f(x)\eta(x)dx = \int_{\tilde{x}-\delta_0}^{\tilde{x}-\delta_0} \underbrace{f(x)}_{>0} \underbrace{\eta(x)}_{>0} dx > 0 - \text{противоречие}$$

$$\Rightarrow \forall x \in [x_0,x_1]: f(x) = 0$$

Из доказательства леммы следует, что доказана формула (2)

Случай понижения порядка в уравнении Эйлера 4.

$$\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} = 0 \quad F = F(x, y(x), y'(x))$$

1)
$$F = f(x, y) \Rightarrow \frac{d}{dx} \frac{\partial F}{\partial y'}(x, y') = 0 \Rightarrow y = y(x)$$

2)
$$F = F(x, y') \Rightarrow \frac{\partial F}{\partial y}(x, y) = 0 \Rightarrow \frac{\partial F}{\partial y'}(x, y') = C$$

3) F = F(y, y'):

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0 | \cdot y'$$

$$y' \frac{\partial F}{\partial y} - y' \frac{\partial F}{\partial y'} = 0$$

$$= \frac{d}{dx} (y' \frac{\partial F}{\partial y'}) - y'' \frac{\partial F}{\partial y'}$$

Click me: GitHub Repository

$$\begin{split} y'\frac{\partial F}{\partial y} - \frac{d}{dx}\left(y'\frac{\partial F}{\partial y'}\right) + y''\frac{\partial F}{\partial y'} &= 0 \\ \text{Заметим, что: } \frac{d}{dx}F(y,y') &= y'\frac{\partial F}{\partial y} + y''\frac{\partial F}{\partial y'} \\ \frac{d}{dx}F - \frac{d}{dx}\left(y'\frac{\partial F}{\partial y'}\right) &= 0 \Rightarrow \boxed{F - y'\frac{\partial F}{\partial y'} = C} \end{split}$$

5. Решение задачи о брахистохроне

$$1 + (y'(x))^2 = \frac{c_1}{y_0 - y(x)} \xrightarrow{x \to x_1} +\infty$$

$$y'(x) \xrightarrow{x \to x_0} \pm \infty \Rightarrow y'(x) \xrightarrow{x \to x_0} -\infty$$

Если выбрать знак "+ то тело не сможет скатится в нужную точку

$$y' = -\sqrt{\frac{c_1 - y_0 + y}{y_0 - y}}$$

Замена: $\tilde{y} = y_0 - y(x)$:

$$\tilde{y}'(x) = +\sqrt{\frac{c_1 - \tilde{y}}{\tilde{y}}}$$

Замена: $\tilde{y} = c_1 z$:

$$c_1 z' = \sqrt{\frac{c_1 - c_1 z}{c_1 z}} = \sqrt{\frac{1 - z}{z}}$$

Замена: $z = \sin^2 s, s \in \left[0, \frac{\pi}{2}\right]$

 $c_1 2 \sin s \cos s \cdot s' = \sqrt{\frac{1 - \sin^2 s}{\sin^2 s}} = \frac{\cos s}{\sin s}$ (знак определили из интервала s)

$$2c_1\sin^2 s \frac{ds}{dx} = 1$$

$$\frac{dx}{ds} = c_1(1 - \cos(2s)) \Rightarrow x(s) = c_1\left(s - \frac{1}{2}\sin 2s\right) + c_2$$

$$y(x) = y_0 - \tilde{y}(x) = y_0 - c_1 z = y_0 - c_1 \sin^2 s = y_0 - \frac{c_1}{2} (1 - \cos 2s)$$

$$y(s) = y_0 - \frac{c_1}{2}(1 - \cos(2s))$$

Замена: $t = 2s, t \in (0, \pi)$

$$\begin{cases} x(t) = \frac{c_1}{2}(t - \sin t) + c_2 \\ y(t) = y_0 - \frac{c_1}{2}(1 - \cos t) \end{cases}, \quad t \in (0, \pi)$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \frac{c_1}{2} + c_2 \\ y - \frac{c_1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{c_1}{2} \sin t \\ \frac{c_1}{2} \cos t \end{pmatrix} \quad t \in (0, \pi)$$

$$t = 0: \begin{cases} x(0) = c_2 = x_0 \\ y(0) = y_0 \end{cases}$$

$$t = \pi : \begin{cases} x(\pi) = \frac{c_1}{2}\pi + c_2 = \frac{c_1}{2}\pi + x_0 \\ y(\pi) = y_0 - c_1 \end{cases}$$

Теперь возьмем "+"(формула (3)):

$$y' = \sqrt{\frac{c_1 - y_0 + y}{y_0 - y}} \quad (5)$$

$$\tilde{y}(x) = y_0 - y(x) \Rightarrow \tilde{y}' = -\sqrt{\frac{c - \tilde{y}}{\tilde{y}}}$$

Делаем те же действия (замены) и получаем такие же x(s), y(s) с различием только в интервале для ${\bf t}$:

$$\begin{cases} x(t) = \frac{C_1}{2}(t-\sin t) + x_0 \\ y(t) = y_0 - \frac{c_1}{2}(1-\cos t) \end{cases}, \quad t \in (0,2\pi) \Rightarrow \text{ циклоида полная}$$

6. Решение задачи о поверхности вращения наименьшей площади

$$\begin{cases} I[y] = \int_{x_0}^{x_1} 2\pi y(x) \sqrt{1 + (y'(x)^2)} \\ y(x_0) = y_0, \ y(x_1) = y_1 \end{cases}$$

$$F - y \frac{\partial F}{\partial y'} = C$$

$$2\pi y \sqrt{1 + (y')^2} - y' 2\pi y \frac{2y'}{2\sqrt{1 + (y')^2}} = C$$

$$2\pi y \left(\sqrt{1 + (y')^2} - \frac{(y')^2}{\sqrt{1 + (y')^2}} \right) = C$$

$$= \frac{1}{\sqrt{1 + (y')^2}}$$

$$(2\pi y)^2 = c^2(1 + (y')^2)$$

1)
$$c = 0 \Rightarrow y(x) = 0$$
 - решение, если $y_0 = y_1 = 0$

1)
$$c=0\Rightarrow y(x)=0$$
 - решение, если $y_0=y_1=0$
2) $c\neq 0\Rightarrow \left(\frac{y}{c_1}\right)^2=1+(y')^2\Rightarrow y'=\pm\sqrt{\frac{y^2}{c_1^2}-1},\ c_1=\frac{c}{2\pi}>0$

$$y(x) = \operatorname{ch} z(x)c_1, \ z > 0$$

$$c_1 \operatorname{sh} z \cdot z'(x) = \pm \underbrace{\sqrt{\operatorname{ch}^2 z - 1}}_{=\operatorname{sh} z} \Rightarrow c_1 z' = \pm 1$$

$$z = \pm \frac{x + c_2}{c_1} \Rightarrow y(x) = c_1 \operatorname{ch}\left(\frac{x + c_2}{c_1}\right)$$
 — цепная линия

7. Вариационная задача с несколькими функциями

$$I[y_1, \dots, y_n] = \int_{x_0}^{x_1} F(x, y_1(x), y_1'(x), \dots, y_n(x), y_n'(x)) dx$$

$$\begin{cases} y_1(x_0) = y_{01}, \dots, y_n(x_0) = y_{0n} \\ y_1(x_1) = y_{11}, \dots, y_n(x_1) = y_{1n} \end{cases}$$

Необходимое условие локального экстремума:

Пусть $\tilde{y}_1(x), \ldots, \tilde{y}_n(x), :$

$$I[\tilde{y}_1,\ldots,\tilde{y}_n] \leq I[y_1,\ldots,y_n], \ \forall y_2,\ldots,y_n$$

Можно взять y_1 - любое: $y_2 = \tilde{y}_2, \dots,$

$$\Rightarrow \underbrace{I[\tilde{y}_1, \dots, \tilde{y}_n]}_{Y[\tilde{y}_1]} \leq \underbrace{I[y_1, \dots, \tilde{y}_n]}_{Y[y_1]} \Rightarrow \frac{\partial F}{\partial y_1} - \frac{d}{dx} \frac{\partial F}{\partial y_1'} = 0$$

Аналогично: $\frac{\partial F}{\partial y_j} - \frac{d}{dx} \frac{\partial F}{\partial y_j'} = 0$

8. Вариационная задача с высшими производными

$$I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x), ..., y^{(n)}(x)) dx$$

$$\begin{cases} y(x_0) = y_0, & y(x_1) = y_1 \\ y'(x_0) = y'_0, & y'(x_1) = y'_1 \\ ... y^{(n)} = y_0^{(n)}, & y^{(n)}(x_1) = y_1^{(n)} \end{cases}$$

Необходимое условие локального экстремума:

Если функция $\tilde{y}(x)$ доставляет функционалу локальному экстремум, то $\tilde{y}(x)$ - решение диффернциального уравнения

$$\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial F}{\partial y''} + \dots + (-1)^n \frac{d^n}{dx^n}\frac{\partial F}{\partial y^{(n)}} = 0$$

Доказательство.

Пусть $\tilde{y}(x)$ доставляет функционалу локальный минимум $\Rightarrow \exists \varepsilon_0 > 0, \ \forall y(x),$ удовлетворяет краевым условиям, $\sup_{x \in [x_0, x_1]} |y(x) - \tilde{y}(x)| < \varepsilon_0 \Rightarrow I[\tilde{y}] \leq I[y]$

Возьмем $y(x) = \tilde{y}(x) + \varepsilon \eta(x), \eta(x)$ финитная функция.

$$\underbrace{I[\tilde{y}]}_{g(0)} \leq \underbrace{I[\tilde{y}+\varepsilon\eta]}_{g(\varepsilon)} \Rightarrow g(0) \leq g(\varepsilon) \Rightarrow \varepsilon = 0 - \text{ точка локального минимума для функции } g(\varepsilon)$$

$$q'(0) = 0$$

#

$$0 = \frac{d}{d\varepsilon}g(\varepsilon)\bigg|_{\varepsilon=0} = \frac{d}{d\varepsilon}\int_{x_0}^{x_1}F(x,\tilde{y}(x)+\varepsilon\eta(x),\tilde{y}'(x)+\varepsilon\eta'(x),...)dx\bigg|_{\varepsilon=0}$$
 Если $F\in C^{\infty}(\mathbb{R}^{n+2}),y(x)\in C^{\infty}([x_0,x_1]),$ то
$$0 = \int_{x_0}^{x_1}\left[\frac{\partial F}{\partial y}\eta(x)+\frac{\partial F}{\partial y'}(...)\eta'(x)+\frac{\partial F}{\partial y''}(...)\eta''(x)+...\right]dx\bigg|_{\varepsilon=0} =$$

$$= \int_{x_0}^{x_1}\frac{\partial F}{\partial y}\eta(x)dx+\frac{\partial F}{\partial y'}\eta(x)\bigg|_{x_0}^{x_1}-\int_{x_0}^{x_1}\eta(x)\frac{d}{dx}\frac{\partial F}{\partial y'}(...)dx+\frac{\partial F}{\partial y'}(...)\eta(x)\bigg|_{x_0}^{x_1}-\int_{x_0}^{x_1}\eta'(x)\frac{d}{dx}\frac{\partial F}{\partial y''}dx...$$
 и тд. Для $\mathbf{n}=2$:
$$\int_{x_0}^{x_1}\left(\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'}\right)\eta(x)dx-\eta(x)\frac{d}{dx}\frac{\partial F}{\partial y'}\bigg|_{x_0}^{x_1}\int_{x_0}^{x_1}\eta(x)\frac{d^2}{dx^2}\frac{\partial F}{\partial y''}dx=$$

$$=\int_{x_0}^{x_1}\left(\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'}+\frac{d^2}{dx^2}\frac{\partial F}{\partial y''}\right)\eta(x)dx=0\quad\forall$$
 финитной функции $\eta(x)$ Если $\mathbf{n}=2$, то по лемме Лагранжа:
$$\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'}+\frac{d^2}{dx^2}\frac{\partial F}{\partial y''}=0$$
 При $\mathbf{n}>2$ аналогично.

9. Вариационная задача с несколькими независимыми переменными

$$\begin{cases} I[z] = \iint_D F(x, y, z(x), z'_x(x, y), z'_y(x, y)) dxdy \\ z|_{(x,y) \in \partial D} = \varphi(x, y) \end{cases}$$

Необходимое условие локального экстремума:

$$\frac{\partial F}{\partial z} - \frac{\partial}{\partial x} \frac{\partial F}{\partial z_x'} - \frac{\partial}{\partial y} \frac{\partial F}{\partial z_y'} = 0 - \ \text{уравнение Эйлера-Остроградского}$$

Без доказательства

10. Принцип Остроградского-Гамильтона (принцип наименьшего действия, признак стационарного действия, основной вариационный принцип механики)

Т - кинетическая энергия, U - потенциальная энергия:

$$L = T - U - функция Лагранжа (Лагранжиан)$$

$$S = \int_{t_0}^{t_1} L dt - функционал действия$$

Click me: GitHub Repository

Движения в системе происходит по экстремалям функционала действия. Пример:

$$T = \frac{m\dot{x}^2}{2} \quad U = \frac{kx^2}{2}$$

$$S = \int_{t_0}^{t_1} \left(\frac{m\dot{x}^2}{2} - \frac{kx^2}{2}\right) dt$$

Уравнение Эйлера (уравнение Лагранжа): $\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0$

$$-kx - \frac{d}{dt}(m\dot{x}) = 0 \Rightarrow m\ddot{x} + kx = 0$$

Понижение порядка: $L - \dot{x} \frac{\partial L}{\partial \dot{x}} = C$

$$\frac{m\dot{x}^2}{2} - \frac{kx^2}{2} - \dot{x}m\dot{x} = c \Rightarrow -\frac{m\dot{x}^2}{2} - \frac{kx^2}{2} = c - 3.\text{C.9}.$$

11. Изопериметрическая задача

Найти кривую заданной длины, ограничивающую наибольшую площадь.

$$S \to \max$$
 $l = \text{const}$

$$\begin{cases} x = x(t) & x(t_0) = x(t_1) \\ y = y(t) & t \in [t_0, t_1] & y(t_0) = y(t_1) \end{cases}$$
$$S = \iint_D dx dy$$

Формула Грина:
$$\int_{\partial D} \left(P(x,y)dx + Q(x,y)dy\right) = \iint_{D} \left(-\frac{\partial P}{\partial y}(x,y) + \frac{\partial Q}{\partial x}(x,y)\right) dx dy$$

$$S = \iint_D dxdy = \iint_D \left(\underbrace{\frac{1}{2}}_{-\frac{\partial P}{\partial y}} + \underbrace{\frac{1}{2}}_{\frac{\partial Q}{\partial x}} \right) dxdy = \int_{\partial D} \left(-\frac{y}{2} dx + \frac{x}{2} dy \right) = \frac{1}{2} \int_{t_0}^{t_1} (x(t)y'(t) - x'(t)y(t)) dt$$

$$\begin{cases} \frac{\partial P}{\partial y} = -\frac{1}{2} & P = -\frac{y}{2} \\ \frac{\partial Q}{\partial x} = \frac{1}{2} & Q = \frac{x}{2} \end{cases}$$

$$l = \int_{t_0}^{t_1} \sqrt{(x'(t)^2 + (y'(t))^2} dt = \text{const}$$

Задача из математического анализа:

$$\begin{cases} f(x_1, \dots, x_n) \to \text{extz} & \tilde{f} = f + \lambda_1 g_1 + \dots + \lambda_m g_m \to \text{extz} \\ g_1(x_1, \dots, x_n) = 0 \\ \vdots \\ g_m(x_1, \dots, x_n) = 0 \end{cases}$$

Задача вариационного исчисления:

$$I[y_1, ..., y_n] = \int_{x_0}^{x_1} F(x, y_1, ..., y_n, y_1', ..., y_n') dx \to \text{extz}$$

$$\begin{cases} y_1(x_0) = y_0^1 & y_n(x_0) = y_0^n \\ y_1(x_1) = y_1^1 & y_n(x_1) = y_1^n \end{cases}$$

$$Y[y_1, ..., y_n] = \int_{x_0}^{x_1} G(x, y_1, ..., y_n, y_1', ..., y_n') dx = \text{const}$$

Необходимое условие локального экстремума:

Пусть $\tilde{y_1}(x), ..., \tilde{y_n}(x)$ доставляет локальный экстремум функционалу $I[y_1, ..., y_n]$ и не является экстремалью функционалу $Y[y_1, ..., y_n]$, тогда $\exists \lambda \in \mathbb{R}$, такие, что $\tilde{y_1}(x), ..., \tilde{y_n}(x)$ доставляют экстремум функционалу $\tilde{I} = I = \lambda Y$

Без доказательства

Замечание.
$$I + \lambda Y \to \text{extz} \Leftarrow \begin{cases} Y = \text{const} \\ I \to \text{extz} \end{cases}$$

$$\lambda\left(\frac{1}{\lambda}I + Y\right) \to \text{extz} \Leftrightarrow Y + \frac{1}{\lambda} \to \text{extz} \Leftarrow \begin{cases} Y \to \text{extz} \\ I = \text{const} \end{cases}$$

Двойственная задача:

$$\begin{cases} S \to \max \\ l = \text{const} \end{cases} \Leftrightarrow \begin{cases} l \to \min \\ S = \text{const} \end{cases}$$

12. Решение классической изопериметрической задачи

$$\tilde{I} = S + \lambda l = \int_{t_0}^{t_1} \underbrace{\left[\frac{1}{2}(xy' - x'y) + \lambda\sqrt{(x')^2 + (y')^2}\right]}_{F} dt \to \text{extz}$$

$$\begin{cases} \frac{\partial F}{\partial x} - \frac{d}{dt}\frac{\partial F}{\partial x'} = 0 \\ \frac{\partial F}{\partial y} - \frac{d}{dt}\frac{\partial F}{\partial y'} = 0 \end{cases} \begin{cases} \frac{1}{2}y' - \frac{d}{dt}\left[-\frac{1}{2}y + \lambda\frac{x'}{\sqrt{(x')^2 + (y')^2}}\right] = 0 \\ -\frac{1}{2}x' - \frac{d}{dt}\left[\frac{1}{2}x + \lambda\frac{x'}{\sqrt{(y')^2 + (y')^2}}\right] = 0 \end{cases}$$

№ 39 (задачник Александрова-Егорова). Понизить порядок не получится так же, как в простейшей задаче.

$$\begin{cases} \frac{d}{dt} \left[\frac{y}{2} + \frac{y}{2} - \lambda \frac{x'}{\sqrt{(y')^2 + (y')^2}} \right] = 0 \\ -\frac{d}{dt} \left[\frac{x}{2} + \frac{x}{2} + \lambda \frac{y'}{\sqrt{(x')^2 + (y')^2}} \right] = 0 \end{cases} \begin{cases} y - c_1 = \frac{\lambda x'}{\sqrt{(x')^2 + (y')^2}} \\ x - c_2 = \frac{-\lambda y'}{\sqrt{(x')^2 + (y')^2}} \end{cases}$$
$$(y - c_1)^2 + (x - c_2)^2 = \lambda^2 \left[\frac{(x')^2}{(x')^2 + (y')^2} + \frac{(y')^2}{(x')^2 + (y')^2} \right]$$
$$(y - c_1)^2 + (x - c_2)^2 = \lambda^2 - \text{окружность}$$

13. Вариационная задача на условный экстремум

$$\begin{cases} I[y_1, \dots, y_n] = \int_{t_0}^{t_1} F(t, y_1, \dots, y_n, y'_n, \dots, y'_n) dt \to \text{extz} \\ y_i(t_0) = y_{i_0}, \quad y_i(t_1) = y_{i_1}, \quad i = 1, \dots, n \\ G(t, y_1, \dots, y_n) = 0 \end{cases}$$

Пример: Задача о геодезических на поверхности

Найти кривую, соединяющую точки А и В, лежащие на поверхности, имеющую наименьшую длину.

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 уравнение кривой в параметрическом виде , $t \in [t_0, t_1]$ $z = z(t)$

$$I[x, y, z] = \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$$

$$\begin{cases} x(t_0) = x_0, & x(t_1) = x_1 \\ y(t_0) = y_0, & y(t_1) = y_1 \\ z(t_0) = z_0, & z(t_1) = z_1 \end{cases}$$

Необходимое условие локального экстремума:

Пусть $\tilde{y_1},...,\tilde{y_n}$ доставляют локальному экстремум для задачи (1). Тогда $\exists \lambda(t)$ такая, что функции $\tilde{y_1},...,\tilde{y_n}$ являются экстремалями вспомогательного функционала.

$$\tilde{I}[y_1, \dots, y_n] = \int_{t_0}^{t_1} (F + \lambda G(t)) dt$$

Без доказательства.

14. Решение задачи о геодезических на сфере

$$x^2 + y^2 + z^2 = R^2$$

Геодезическая на сфере - дуга на большой окружности.

Глава 2: Система малых колебаний

1. Линейные однородные системы малых колебаний

$$M\vec{x''} + K\vec{x} = 0 \quad (1)$$

$$\vec{x} = \vec{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \quad M = \begin{pmatrix} m_{11} & \dots & m_{1n} \\ \vdots & & \vdots \\ m_{n_1} & \dots & m_{nn} \end{pmatrix} \quad K = \begin{pmatrix} k_{11} & \dots & k_{1n} \\ \vdots & & \vdots \\ k_{n_1} & \dots & k_{nn} \end{pmatrix}$$

Пример: $n = 1 \Rightarrow mx'' + kx = 0, m > 0, k > 0$

M — матрица масс, K — матрица жесткостей

- 1) $M = M^{\top}, K = K^{\top} (m_{ij} = m_{ji}, k_{ij} = k_{ji})$
- $(M_{\rm S}) = 0$ (матрица положительна определена), $K \geq 0$

Определение 1. Матрица $M = M^{\top}$ называется положительно определенной, если $\forall \vec{v} \in \mathbb{R}^n, \vec{v} \neq 0$ выполняется $(M\vec{v}, \vec{v}) > 0$.

Критерий Сильвестра: $M = M^{\top} > 0 \Leftrightarrow$ все главные миноры > 0. **1-ый способ:** Сведение к системе 1-го порядка.

$$\begin{cases} \vec{y_1} = \vec{x} & \begin{cases} \vec{y_1'} = \vec{y_2} \\ \vec{y_2'} = \vec{x''} \end{cases} & \begin{cases} \vec{y_1'} = \vec{y_2} \\ \vec{y_2'} = \vec{x''} = -M^{-1}K\vec{x} = -M^{-1}K\vec{y_1} \end{cases} \\ \frac{d}{dt} \begin{pmatrix} \vec{y_1} \\ \vec{y_2} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & E \\ -M^{-1}K & 0 \end{pmatrix}}_{n \times n} \begin{pmatrix} \vec{y_1} \\ \vec{y_2} \end{pmatrix} \\ \begin{pmatrix} \vec{y_1} \\ \vec{y_2} \end{pmatrix} = \underbrace{\begin{pmatrix} e^{tA} \\ (2n \times 2n) \end{pmatrix}}_{(2n \times 1)} \underbrace{\begin{pmatrix} \vec{c} \\ (2n \times 1) \end{pmatrix}}_{(2n \times 1)} = \begin{pmatrix} \Phi_{11}(t) & \Phi_{12}(t) \\ \Phi_{12}(t) & \Phi_{22}(t) \end{pmatrix} \begin{pmatrix} \vec{c_1} \\ \vec{c_2} \end{pmatrix}$$

$$\vec{x}(t) = \vec{y_1}(t) = F_{11}(t)\vec{c_1} + F_{12}(t)\vec{c_2}$$
 (2n констант)

Лемма 1. Если $M = M^{\top} > 0$, то $\exists M^{-1}$

Доказательство.

Пусть не существует
$$M^{-1}\Rightarrow \det M=0 \Rightarrow \exists \vec{v}\neq 0: M\vec{v}=0$$
 $\Rightarrow \lambda=0$ — собств.знач. $\det(M-0E)=0$ $(M\vec{v},\vec{v})=(0,\vec{v})=0$ — противоречие

#

Утверждение 1 (из алгебры). Пусть $A = A^{\top} \Rightarrow$ все собственные числа $\lambda_j \in \mathbb{R}$. Пусть $A = A^{\top} > 0 \Rightarrow$ все собственные числа $\lambda_j > 0$.

Утверждение 2 (из алгебры). Пусть $A = A^{\top} \Rightarrow e \mathbb{R}^n$ существует базис из собственных векторов, то есть нет присоединенных

Утверждение 3 (из алгебры). Пусть
$$A = A^{\top} \Rightarrow A = UDU^{-1}, \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
 U - ортогональная матрица, то есть $U^{-1} = U^{\top}$

2-ой способ:

Определение 2. Число λ называется собственным числом системы (1), если $\det(K - \lambda M) = 0$

Определение 3. Вектор $\vec{v} \neq \vec{0}$ называется собственным вектором системы (1) (вектором нормальных колебаний), если $(K - \lambda M)\vec{v} = 0$

Теорема 1. Существует n собственных чисел системы (1) u $\lambda_i \geq 0, \forall i = 1, 2, ..., n$ Доказательство.

1)
$$\det(K - \lambda M) = 0$$

$$\det(M(M^{-1}K - \lambda E)) = 0$$

 $\underbrace{\det M}_{\neq 0} \det \left(M^{-1}K - \lambda E \right) = 0 \Rightarrow \text{ существует n собственных чисел}$

2) $\vec{v_j}$ - собственные вектора $\Rightarrow K \vec{v_j} = \lambda_j M \vec{v_j} \mid \cdot \vec{v_j}$

$$\underbrace{(Kv_j, v_j)}_{>0} = \lambda_j \underbrace{(Mv_j, v_j)}_{>0} \Rightarrow \lambda_j \ge 0$$

#

Теорема 2. $B \mathbb{R}^n$ существует базис из собственных векторов системы (1).

Доказательство будет позже.

Теорема 3. Пусть $M = M^{\top} > 0, K = K^{\top} \ge 0, \lambda_1, \dots, \lambda_n \ge 0$ - собственные числа системы (1), $\vec{v_1}, \dots, \vec{v_n}$ - собственные вектора системы (1), соответвующие числам $\lambda_1, \dots, \lambda_n$. Тогда все решения системы (1) имеют вид:

$$x(t) = \sum_{j=1}^{n} q_j(t) \vec{v_j},$$

, где $q_j(t)$ - решение дифференциального уравнения: $q_j'' + \lambda_j q_j = 0$

Доказательство.

По теореме $2 \ \vec{v_1},...,\vec{v_n}$ - базис в \mathbb{R}^n . При фиксированном $\mathbf{t} \ x(t) \in \mathbb{R}^n \Rightarrow \vec{x}(t)$ раскладывается по базису: $\vec{x}(t) = \sum_{j=1}^n q_j(t) \vec{v_j}$

Подставляем x(t) в систему (1):

$$M \sum_{j=1}^{n} q_{j}''(t)\vec{v_{j}} + K \sum_{j=1}^{n} q_{j}(t)\vec{v_{j}} = 0$$

$$\sum_{j=1}^{n} \left(q_{j}''(t)M\vec{v_{j}} + q_{j}(t) \underbrace{K\vec{v_{j}}}_{\lambda_{j}M\vec{v_{j}}} \right) = 0$$

$$\sum_{j=1}^{n} \left(q_{j}''(t)M\vec{v_{j}} + \lambda_{j}q_{j}(t)M\vec{v_{j}} \right) = 0 \mid \cdot M^{-1}$$

$$\sum_{j=1}^{n} \left(q_{j}''(t) + \lambda_{j}q_{j}(t) \right) \vec{v_{j}} = 0, \ \forall t \in \mathbb{R}$$

Т.к $\vec{v_1},...,\vec{v_n}$ линейно независимы, то $q_j''(t) + \lambda_j q_j(t) = 0$

#

Замечание.
$$q_j''(t) + \lambda_j q_j(t) = 0 \ 1) \ \lambda_j = 0 \Rightarrow q_j(t) = c_1 t + c_2$$

 $2) \ \lambda_j > 0 \Rightarrow q_j(t) = c_1 \cos\left(\sqrt{\lambda_j}t\right) + c_2 \sin\left(\sqrt{\lambda_j}t\right)$

Определение 4. $\omega_1 = \sqrt{\lambda_1}, ..., \omega_n = \sqrt{\lambda_n}$ называется собственными частотами колебаний системы (1).

Докозательство теоремы 2.

$$M=M^{ op}>0\Rightarrow \lambda_1(M),...,\lambda_n(M)$$
 — собственные числа матрицы M

$$M=Uegin{pmatrix} \lambda_1(M) & 0 \\ & \ddots & \\ 0 & & \lambda_n(M) \end{pmatrix}U^{-1},$$
 можно взять U - ортогональную матрицу, то есть $U^{-1}=U^{\top}$

$$\sqrt{M} = U \begin{pmatrix} \sqrt{\lambda_1(M)} & 0 \\ & \ddots & \\ 0 & \sqrt{\lambda_n(M)} \end{pmatrix} U^{-1}$$

Видно, что: $\sqrt{M}\sqrt{M}=M$

Пусть $\vec{v_j}$ - собственный вектор: $(K - \lambda_j M) \vec{v_j} = \vec{0}$

$$(K - \lambda_i \sqrt{M} E \sqrt{M}) \vec{v_i} = 0$$

$$\sqrt{M}(\underbrace{(\sqrt{M})^{-1}K(\sqrt{M})^{-1}}_{A}-\lambda_{j}E)\sqrt{M}\vec{v_{j}}=0$$

 λ_j — собственное число $A,~\sqrt{M}\vec{v_j}$ — собственный вектор A

$$A = A^{\top}, \quad A^{\top} = \underbrace{[(\sqrt{M})^{-1}]^{\top}}_{(\sqrt{M})^{-1}} \underbrace{K^{\top}}_{K} \underbrace{[(\sqrt{M})^{-1}]^{\top}}_{(\sqrt{M})^{-1}}$$

Из алгебры (утверждение 2.) в \mathbb{R}^n существует базис из собственных векторов матрицы $A: \sqrt{M}\vec{v_1}, ..., \sqrt{M}\vec{v_n}$. Так как $\det \sqrt{M} < 0$, то $v_1, ..., v_n$ - базис \mathbb{R}^n .

#

2. Линейные неоднородные системы малых колебаний

$$M\vec{x}'' + K\vec{x} = \vec{f}(t) \quad (1)$$

$$\vec{x} = \vec{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ M, K - (n \times n), \ M = M^{\top} > 0, K = K^{\top} \ge 0, \vec{f}(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

1-способ. Сведение к системы 1-го порядка 2-способ.

Теорема 1. Пусть $\lambda_1, \ldots, \lambda_n$ - собственные числа, то есть $\det(K - \lambda_j M) = 0$, v_1, \ldots, v_n - собственные вектора, то есть $(K - \lambda_j M)v_j = 0$ Пусть $\lambda_1 \neq \lambda_2$. Тогда $\underbrace{(Mv_1, v_2)}_{v_1, v_2 - M} = \underbrace{(Kv_1, v_2)}_{v_1, v_2 - K} = 0$

Доказательство.

$$\begin{cases} Kv_1 = \lambda_1 M v_1 | \cdot v_2 \\ Kv_2 = \lambda_2 M v_2 | \cdot v_1 \end{cases} \begin{cases} (Kv_1, v_2) = \lambda_1 (Mv_1, v_2) \\ (Kv_2, v_1) = \lambda_2 (Mv_2, v_1) \end{cases}$$

Click me: GitHub Repository

$$(K\vec{v}_1, \vec{v}_2) = (v_1, K^{\mathsf{T}}v_2) = (v_1, Kv_2) = (Kv_2, v_1)$$

Вычитаем одно из другого:

$$0 = \lambda_1(Mv_1, v_2) - \lambda_2(Mv_2, v_1) = \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0}(Mv_1, v_2) \Rightarrow (Mv_1, v_2) = 0 \Rightarrow (Kv_1, v_2) = 0$$

#

Теорема 2. Пусть $\lambda_1 = , \ldots, = \lambda_p$ - собственное число кратности p. Тогда существует собственные вектора $\vec{w_1}, \ldots, \vec{w_p}$, которые являются M - ортогональными, то есть $(Mw_i, w_j) = 0$ при $i \neq j$

Доказательство.

Из параграфа 1 (теорема 2) мы знаем, что $\exists \vec{v}_1,...,\vec{v}_p$ - линейно независимые собственные вектора.

Метод M - ортогонализации Грама-Шмидта:

$$\vec{w_1} = \vec{v_1}$$

$$\vec{w_2} = \vec{v_2} + \alpha \vec{v_1}, \ \alpha - ?, \ (M\vec{w_2}, \vec{w_1}) = 0$$

$$\underbrace{(M\vec{w_2}, \vec{w_1})}_{=\vec{w_1}} = (M\vec{v_2}, \vec{w_1}) + \alpha(M \underbrace{\vec{v_1}}_{=\vec{w_1}}, \vec{w_1}) \Rightarrow \alpha = -\frac{(M\vec{v_2}, \vec{w_1})}{(M\vec{w_1}, \vec{w_1})}$$

Пусть $\vec{w_1},...,\vec{w_{m-1}}$ построены, причем $(M\vec{w_i},\vec{w_j})=0,\ i\neq j,\ i,j=1,\ldots,m-1$

$$\vec{w_m} = \vec{v_m} + \sum_{j=1}^{m-1} \beta_j \vec{w_j}, \ \beta_j - ?, \ (M\vec{w_m}, \vec{w_i}) = 0, \ i = 1, \dots, m - 1$$

$$\underbrace{(M\vec{w_m}, \vec{w_i})}_{0} = (M\vec{v_m}, \vec{w_i}) + \underbrace{\sum_{j=1}^{m-1} \beta_j (M\vec{w_j}, \vec{w_i})}_{\beta_i \underbrace{(M\vec{w_i}, \vec{w_i})}_{0}}$$

$$\Rightarrow eta_i = rac{-(Mec{v_m},ec{w_i})}{(Mec{w_i},ec{w_i})},\ j=1,\dots,m-1 \Rightarrow ec{w_1},..,ec{w_p}$$
 - М-ортогональны

#

Теорема 3. Пусть $\lambda_1, ..., \lambda_n$ - собственные числа системы (1), $\vec{w_1}, ..., \vec{w_n}$ - собственные вектора, которые М-ортогональны. Тогда решение (1) имеет вид:

$$\vec{x}(t) = \sum_{j=1}^{n} q_j \vec{w_j}$$

, где $q_j(t)$ - решение дифференциального уравнения: $q_j'' + \lambda_j q_j = \tilde{f}_j(t)$

$$\tilde{f}_j = \frac{(\vec{f}(t), \vec{w_j})}{(M\vec{w_j}, \vec{w_j})}$$

Доказательство.

Так как
$$\vec{w_1},...,\vec{w_n}$$
 - базис в $\mathbb{R}^n, \ \vec{x}(t) \in \mathbb{R}^n \Rightarrow \vec{x}(t) = \sum_{j=1}^n q_j(t)\vec{w_j}$ — решение (1).
$$M \sum_{j=1}^n q_j''(t)\vec{w_j} + K \sum_{j=1}^n q_j(t)\vec{w_j} = \vec{f}(t)$$

$$\sum_{j=1}^n (q_j''(t) + \lambda_j q_j(t))M\vec{w_j} = \vec{f}(t)| \cdot \vec{w_i}$$

$$\sum_{j=1}^n (q_j''(t) + \lambda_j q_j(t))\underbrace{(M\vec{w_j},\vec{w_i})}_{= 0, \text{ если } j \neq i} = (\vec{f}(t),\vec{w_i})$$

$$\underbrace{(q_i''(t) + \lambda_i q_i(t))(M\vec{w_i},\vec{w_i})}_{= 0, \text{ если } j = i} = (\vec{f}(t),\vec{w_i})$$
 ##

Click me: GitHub Repository

Глава 3: Зависимость решения от параметров

1. Непрерывная зависимость решений от параметров и начальных данных

$$\begin{cases} y'=f(t,y), & f:\mathbb{D}\to\mathbb{R},\ \mathbb{D}\subset\mathbb{R}^2,\ \mathbb{D} \text{ - решение открытое}\\ y(t_0)=y_0 \end{cases}$$

Теорема 1 (Теорама Пикара). Если $f \in C(\mathbb{D}), \exists \frac{\partial f}{\partial y} \in C(\mathbb{D}) \Rightarrow \forall (t_0, y_0) \in D \exists !$ непродолжаемое решение задачи Коши, определенной на открытом интервале (α, ω)

Будем менять y_0

Решение задачи Коши: $y(t; y_0)$

Вопрос: если $y_0 \approx y_0^*$, можно ли утверждать, что $y(t, y_0^*) \approx y(t, y_0)$ Пример:

$$\begin{cases} y' = y^2 \\ y(0) = y^* = 0 \end{cases} \qquad \begin{cases} y' = y^2 \\ y(0) = y_0 > 0 \end{cases}$$
$$y(t, 0) = 0, \ t \in (-\infty, +\infty) \qquad y(t, y_0) = \frac{1}{\frac{1}{y_0} - t}, \ t \in \left(-\infty, \frac{1}{y_0}\right) \end{cases}$$

Теорема 2. Пусть $f \in C(\mathbb{D})$, $\exists \frac{\partial f}{\partial y} \in C(\mathbb{D})$. Пусть $(t_0, y_0^*) \in \mathbb{D}$. Пусть $y(t, y_0^*)$ - решение задачи Коши, определенное на интервале (α, ω) . Возьмем $[t_1, t_2] \subset (\alpha, \omega)$. Тогда:

1) $\exists \Delta > 0, \ \forall y_0 : |y_0 - y_0^*| < \Delta \Rightarrow y(t,y_0)$ определенно при $t \in [t_1,t_2];$ 2) $y(t,y_0) \xrightarrow{y_0 \to y_0^*} y(t,y_0^*), \ t \in [t_1,t_2]$

2)
$$y(t, y_0) \xrightarrow{y_0 \to y_0^*} y(t, y_0^*), t \in [t_1, t_2]$$

Пример:

$$(t_0, y_0^*) = (0, 0) \Rightarrow y(t, y_0^*) \equiv 0, \ (\alpha, \omega) = (-\infty, +\infty).$$
 Возьмем: $[-T, T]$

1)
$$y_0 > 0$$
; $T < \frac{1}{y_0} \Leftrightarrow y_0 < \frac{1}{T} = \Delta$

2)
$$y(t, y_0) = \frac{1}{\frac{1}{y_0} - t} \xrightarrow{y_0 \to 0} 0, \ t \in [-T, T]$$

Пролетарии всех стран, соединяйтесь!