

J Selective Sampling-based Scalable Sparse Subspace Clustering

Shin Matsushima

Maria Broic

MOVERVIEW

Sparse Subspace Clustering (SSC)

- High performance clustering for high dimensional data with strong theoretical guarantees
- Quadratic complexity w.r.t. number of data points

Selective Sampling-based Scalable Sparse Subspace Clustering (S⁵C)

- ✓ Theoretical Guarantee → Theoretical Scalability
- ✓ Low computational cost → Experimental Scalability
- ✓ Good clustering performance

TSUBSPACE CLUSTERING-

-0.1 +0.3 +0.8 =

representation of

Assumption: high-dimensional data points lie in the union of lowdimensional subspaces.

Goal: identify subspaces and assign data points to the subspaces

Algorithm:

- Representation learning
- 2. Derive an affinity graph
- 3. Spectral clustering

Applications:

Clustering images Clustering documents...

Represent data point as a linear combination of a small number of subsamples {\omega, \omega, \omega}

To generate subsamples, perform selective sampling so that all data points are represented well

S5C ALGORITHM

Randomly sample a data point

Solve $\min_{\mathbf{c}} \left\| \left(c_2 + c_5 + c_7 \right) \right\|$

among current collection of subsamples $\{ \mathbb{Z}, \mathbb{Z}, \mathbb{Z} \}$

Add \mathfrak{S} to current collection of subsamples $\{\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}\}$

Repeat 1.-4. T times starting from {}

Solve $\min_{c} \left[\left(c_2 + c_3 + c_5 + c_7 \right) - \cdot \right]^2$

w.r.t. final subsamples for all data points

Iteratively select a subsample which seems to improve the current representation!

- Initialize N-by-L matrix \mathbf{V} as a random orthogonal matrix
- 2. $V \leftarrow (2I L) V$
- Orthogonalize V by QR decomposition
- 4. Repeat 2.-3. until convergence
- Apply K-means for V

Graph Laplacian L has O(N) nonzero elements $\rightarrow O(N)$ algorithm!

-RELATED WORK.

10001010												
	SSC	SSC-OMP	SSC- ORGEN	SSSC	5 ⁵ C							
Theoretical Scalability	X	X	X	X	✓							
Experimental Scalability	X			✓	✓							

THEORETICAL SCALABILITY

S⁵C Algorithm performs perfect clustering in O(N) running time in high probability under some generative model

Required number of subsamples (≔T) is O(1) w.r.t. N

Semi Random model

Data points are uniformly randomly generated from unit ball in each subspace Subspace detection property

- 1. c_{i'} for i-th data is nonzero only when i and i' share the same subspace
- 2. c is not all zeros
 - -0.1 +0.3 +0.8 =

-CLUSTERING PERFORMANCE

Clustering error (%)

Clustering error (%)									
	Nystrom	AKK	SSC	SSC-OMP	SSC-ORGEN	SSSC	S ⁵ C		
Yale B	76.8	85.7	33.8	35.9	37.4	59.6	39.3		
Hopkins 155	21.8	20.6	4.1	23.0	20.5	21.1.	14.6		
COIL-100	54.5	53.1	42.5	57.9	89.7	67.8	45.9		
Letter-rec	73.3	71.7	/	95.2	68.6	68.4	67.7		
CIFAR-10	76.6	75.6	/	/	82.4	82.4	75.1		
MNIST	45.7	44.6	/	/	28.7	48.7	40.4		
Devanagari	73.5	72.8	/	/	58.6	84.9	67.2		

SPARSE SUBSPACE CLUSTERING

+ L1 regularizer on **c**

Represent data point as a linear combination of all data points

According to the

absolute value of

the gradient

 \rightarrow O(NT) algorithm!

Perfect clustering is theoretically proven (SDP property)

Find eigenvectors corresponding to L smallest eigenvalues of graph Laplacian L

Elhamifar and Vidal. TPAMI (2013)

SCALABILITY Number of Datapoints

EXPERIMENTAL -

Solve for all data points $\rightarrow O(N^2)$ algorithm! \rightarrow not scalable (2)

subspace remain

Only some data points in the same