Given parity game $G = (V, V_0, V_1, E, \Omega)$ and pre-solved vertices $P_0 \subseteq V$ and $P_1 \subseteq V$ such that $P_0 \subseteq W_0 \subseteq V \setminus P_1$. The formula

$$S(G) = \nu Z_{d-1} \cdot \mu Z_{d-2} \dots \nu Z_0 \cdot F_0(G, Z_{d-1}, \dots, Z_0)$$

 $F_0(G, Z_{d-1}, \dots, Z_0) = \{v \in V_0 \mid \exists_{w \in V} \ (v, w) \in E \land w \in Z_{\Omega(w)}\} \cup \{v \in V_1 \mid \forall_{w \in V} \ (v, w) \in E \implies w \in Z_{\Omega(w)}\}$ solves W_0 for G.

In this section we prove that formula

$$S^{P}(G) = \nu Z_{d-1} \cdot \mu Z_{d-2} \dots \nu Z_{0} \cdot (F_{0}(G, Z_{d-1}, \dots, Z_{0}) \cap (V \setminus P_{1}) \cup P_{0})$$

also solves W_0 for G. Note that the formula $F_0(G, Z_{d-1}, \ldots, Z_0) \cap (V \setminus P_1) \cup P_0$ is still monotonic as shown in Lemma 0.1.

Lemma 0.1. Given lattice $\langle 2^D, \subseteq \rangle$, monotonic function $f: 2^D \to 2^D$ and $A \subseteq D$. The functions $f^{\cup}(x) = f(x) \cup A$ and $f^{\cap}(x) = f(x) \cap A$ are also monotonic.

Proof. Let $x, y \subseteq D$ and $x \subseteq y$ then $f(x) \subseteq f(y)$.

Let $e \in f(x) \cup A$. If $e \in f(x)$ then $e \in f(y)$ and $e \in f(y) \cup A$. If $e \in A$ then $e \in f(y) \cup A$. We find $f^{\cup}(x) \subseteq f^{\cup}(y)$.

Let $e \in f(x) \cap A$. We have $e \in f(x)$ and $e \in A$. Therefore $e \in f(y)$ and $e \in f(y) \cap A$. We find $f^{\cap}(x) \subseteq f^{\cap}(y)$.

Fixed-point iteration index We introduce the notion of fixed-point *iteration index* to help with the proof.

Consider alternating fixed-point formula

$$\nu X_m . \mu X_{m-1} \nu X_0 . f(X_m, X_{m-1}, ..., X_0)$$

Using fixed-point iteration to solve this formula results in a number of intermediate values for the iteration variables $X_m, \dots X_0$. We define an iteration index that, intuitively, indicates where in the iteration process we are. For an alternating fixed-point formula with m fixed-point variables we define an iteration index $\zeta \subseteq \mathbb{N}^m$.

When applying iteration to formula $\nu X_j.f(X)$ we start with some value for X_j^0 and calculate $X_j^{i+1} = f(X_j^i)$. So we get a list of values for X_j , however when we have alternating fixed-point formula's we might iterate X_j multiple times but get different lists of values because the values for X_m, \ldots, X_{j-1} are different. We use the iteration index to distinguish between these different lists.

Iteration index $\zeta = (k_m, \ldots, k_0)$ indicates where in the iteration process we are. We start at $\zeta = (0, 0, \ldots, 0)$. We first iterate X_0 , when we calculate X_0^1 we are at iteration index $\zeta = (0, 0, \ldots, 1)$, when we calculate X_0^2 we are at iteration index $\zeta = (0, 0, \ldots, 2)$ and so on. In general when we calculate a value for X_j^i then $k_j = i$ in ζ . This gives a natural order of indexes:

$$\begin{array}{c} (0,\ldots,0,0,0) \\ (0,\ldots,0,0,1) \\ (0,\ldots,0,0,2) \\ & \vdots \\ (0,\ldots,0,1,0) \\ (0,\ldots,0,1,1) \\ (0,\ldots,0,1,2) \\ & \vdots \\ \end{array}$$

Formally we have $(k_{d-1}, ..., k_0) < (j_{d-1}, ..., j_0)$ if and only if for the largest $l \le d-1$ such that $k_l \ne j_l$ we have $k_l < j_l$. We define $\{k_{d-1}, ..., k_0\} - 1 = \{k_{d-1}, ..., k_0 - 1\}$ and $\{k_{d-1}, ..., k_0\} + 1 = \{k_{d-1}, ..., k_0 + 1\}$ for convenience of notation.

We write X_j^{ζ} to indicate the value of variable X_j at moment ζ of the iteration process. Variable X_j doesn't change values when a variable X_l with j>l changes values, there we have for indexes $\zeta=1$ $(k_m, \ldots, k_j, k_{j-1}, \ldots, k_0)$ and $\zeta' = (k_m, \ldots, k_j, k'_{j-1}, \ldots, k'_0)$ that $X_j^{\zeta} = X_j^{\zeta'}$. We can use the fixed-point iteration definition to define the values for X_j^{ζ} . Let $\zeta = (k_m, \ldots, k_0)$, we have:

$$X_0^{\zeta+1} = f(X_m^{\zeta}, X_{m-1}^{\zeta}, \dots, X_0^{\zeta})$$

and for any even $0 < j \le m$

$$X_j^{(...,k_j+1,...)} = \mu X_{j-1} \cdot \cdot \cdot = \bigcup_{i>0} X^{(...,k_j,i,...)}$$

and for any odd $0 < j \le m$

$$X_j^{(\dots,k_j+1,\dots)} = \nu X_{j-1} \dots = \bigcap_{i>0} X^{(\dots,k_j,i,\dots)}$$

 Γ -game We define Γ , which transforms a parity game, to help with the proof.

Given parity game $G = (V, V_0, V_1, E, \Omega)$ with winning set W_0 such that $P_0 \subseteq W_0 \subseteq V \setminus P_1$. We define $\Gamma(G, P_0, P_1) = (V', V'_0, V'_1, E', \Omega')$ such that

$$V' = (V \setminus P_0 \setminus P_1) \cup \{s_0, s_1\}$$

$$V'_0 = (V_0 \cap V') \cup \{s_1\}$$

$$V'_1 = (V_1 \cap V') \cup \{s_0\}$$

$$E' = (E \cap (V' \times V')) \cup \{(v, s_\alpha) \mid (v, w) \in E \land w \in P_\alpha\}$$

$$\Omega'(v) = \begin{cases} 0 & \text{if } v \in \{s_0, s_1\} \\ \Omega(v) & \text{otherwise} \end{cases}$$

Parity game $\Gamma(G, P_0, P_1)$ contains vertices s_0 and s_1 such that they have no outgoing edges and s_{α} is owned by player $s_{\overline{\alpha}}$. Clearly if the token ends in s_{α} then player α wins. Vertices that had edges to a vertex in P_{α} now have an edge to s_{α} .

Note that this parity is not total, as shown in [Monadic second-order logic on tree-like structures by Igor Walukiewicz] the formula S(G) also solves non-total games.

Lemma 0.2. Given parity game $G = (V, V_0, V_1, E, \Omega)$ with winning set W_0 such that $P_0 \subseteq W_0 \subseteq V \setminus P_1$ and parity game $G' = \Gamma(G, P_0, P_1)$ with winning set Q_0 we have $W_0 \cap (V \setminus P_0 \setminus P_1) = Q_0 \cap (V \setminus P_0 \setminus P_1)$.

Proof. Let vertex $v \in V \setminus P_0 \setminus P_1$. Assume v is won by player α in G using strategy $\sigma_\alpha : V_\alpha \to V$. We construct a strategy $\sigma'_{\alpha}: V'_{\alpha} \to V'$ for game G' as follows:

$$\sigma'_{\alpha}(w) = \begin{cases} s_{\beta} & \text{if } \sigma_{\alpha}(w) \in P_{\beta} \text{ for some } \beta \in \{0, 1\} \\ \sigma_{\alpha}(w) & \text{otherwise} \end{cases}$$

This strategy maps the vertices to the same successors except when a vertex is mapped to a vertex in P_{β} , in which case σ'_{α} maps the vertex to s_{β} .

Let π' be a valid path in G', starting from v and conforming to σ'_{α} . Since vertices s_0 and s_1 don't have any successors we distinguish three cases for π' :

• Assume π' ends in $s_{\overline{\alpha}}$. Let $\pi' = (x_0 \dots x_m s_{\overline{\alpha}})$ with $v = x_0$. Because s_0 and s_1 don't have successors we find $x_i \in V \setminus P_0 \setminus P_1$. Moreover for every $x_i x_{i+1}$ we have $(x_i, x_{i+1}) \in E'$, any such edge is also in E because the edges between vertices in $V \setminus P_0 \setminus P_1$ were left intact when creating G'. Finally we find that $(x_m, y) \in E$ with $y \in P_{\overline{\alpha}}$. There must exist a valid path $\pi = (x_0 \dots x_m y \dots)$ in game G. Moreover this path conforms to σ_{α} because σ'_{α} and σ_{α} map to the same vertices for all $x_0 \dots x_{m-1}$ and x_m maps to a vertex in $P_{\overline{\alpha}}$. Player $\overline{\alpha}$ has a winning strategy from y so we conclude that π is won by $\overline{\alpha}$ in game G. Because π exists and conforms to σ_{α} we find that σ_{α} is not winning for α from v in G. This is a contradiction so we conclude that π' never ends in $s_{\overline{\alpha}}$.

- Assume π' ends in s_{α} . In this case player α wins the path.
- Assume π' never visits s_{α} or $s_{\overline{\alpha}}$. Assume the path is on by player $\overline{\alpha}$, as we argued above we find that this path is also valid in game G, conforms to σ_{α} and is winning for $\overline{\alpha}$. Therefore σ_{α} is not winning for player α from v, this is a contradiction so we conclude that player α wins the path π' .

We find that π' is always won by player α in game G'. We conclude that any vertex $v \in V \setminus P_0 \setminus P_1$ has the same winner in game G as in game G'.

Proof

Theorem 0.3. Given parity game $G = (V, V_0, V_1, E, \Omega)$ with winning set W_0 such that $P_0 \subseteq W_0 \subseteq V \setminus P_1$. The formula

$$S^{P}(G) = \nu Z_{d-1} \cdot \mu Z_{d-2} \dots \nu Z_{0} \cdot (G, F_{0}(Z_{d-1}, \dots, Z_{0}) \cap (V \setminus P_{1}) \cup P_{0})$$

correctly solves W_0 for G.

Proof. Let $G' = \Gamma(G, P_0, P_1)$. We consider S(G'), which calculates the winning set for player 0 for game G'. Formula $F_0(G', Z_{d-1}, \ldots, Z_0)$ will always include s_0 and never include s_1 regardless of the values for $Z_{d-1} \dots Z_0$. Clearly any $\nu Z_i \dots$ or $\mu Z_i \dots$ contains s_0 and doesn't contain s_1 . So we can calculate S(G')using fixed-point iteration starting greatest fixed-point variables at $V'\setminus\{s_1\}$ and least fixed-point variables at $\{s_0\}.$

We can also calculate $S^P(G)$ using fixed-point iteration starting at P_0 and $V \setminus P_1$ because clearly any $\nu Z_i \dots$ or $\mu Z_i \dots$ contains all vertices from P_0 and none from P_1 .

We will go through the iteration of formula's $S^P(G)$ and S(G') using iteration index ζ to indicate where in the iteration we are. We write Z_i to denote variables in S(G') and Y_i to denote variables in $S^P(G)$.

Trivially, for any ζ and i we have $P_0 \subseteq Y_i^{\zeta} \subseteq V \setminus P_1$ and $\{s_0\} \subseteq Z_i^{\zeta} \subseteq V \setminus \{s_1\}$ We define operator $\simeq: V \times V' \to \mathbb{B}$ such that for $Y \subseteq V$ and $Z \subseteq V'$ we have $Y \simeq Z$ if and only if:

$$Y \backslash P_0 \backslash P_1 = Z \backslash \{s_0, s_1\}$$

We will prove that for any $\zeta = (k_{d-1}, \ldots, k_0)$ we have $Y_i^{\zeta} \simeq Z_i^{\zeta}$ for every $i \in [0, d-1]$.

Proof by induction on ζ .

Base $\zeta = (0,0,\ldots,0)$: we have for least fixed-point variables Z_i^{ζ} and Y_i^{ζ} the values $\{s_0\}$ and P_0 , clearly $Z_i^{\zeta} \simeq Y_i^{\zeta}$.

For greatest fixed-point variables Z_j^{ζ} and Y_j^{ζ} we have $Z_j^{\zeta} \setminus \{s_0, s_1\} = V \setminus P_1 \setminus P_0$. So we find $Z_j^{\zeta} \simeq Y_j^{\zeta}$. **Step:** Consider $\zeta = (k_{d-1}, \ldots, k_0)$. Let $0 \leq j \leq d-1$. If $k_j = 0$ then $Z_j^{\zeta} = Z_j^{(0,0,\ldots,0)}$ and $Y_j^{\zeta} = Y_j^{(0,0,\ldots,0)}$, furthermore $Z_j^{(0,0,\ldots,0)} \simeq Y_j^{(0,0,\ldots,0)}$ so we find $Z_j^{\zeta} \simeq Y_j^{\zeta}$. If $k_j > 0$ then we distinguish three cases for j to show that $Z_i^{\zeta} \simeq Y_i^{\zeta}$:

• Case: j = 0. We have the following equations:

$$Y_0^{\zeta} = F_0(G, \tilde{Z}_{d-1}^{\zeta-1}, \dots, Y_0^{\zeta-1}) \cap (V \backslash P_1) \cup P_0$$

and

$$Z_0^{\zeta} = F_0(G', Z_{d-1}^{\zeta-1}, \dots, Z_0^{\zeta-1})$$

Consider vertex $v \in V \backslash P_0 \backslash P_1$. We distinguish two cases:

- Assume $v \in V_0$.

If $v \in Y_0^{\zeta}$ then v must have an edge in game G to w such that $w \in Y_{\Omega(w)}^{\zeta-1}$. We find $w \notin P_1$ because vertices from P_1 are never in the iteration variable. If $w \in P_0$ then it follows from the way we created G' that in G' there exists an edge from v to s_0 and since s_0 is always in the iteration variable we find $v \in Z_0^{\zeta}$. If $w \notin P_0$ then because $Y_{\Omega(w)}^{\zeta-1} \simeq Z_{\Omega(w)}^{\zeta-1}$ we find $w \in Z_{\Omega(w)}^{\zeta-1}$ and therefore $v \in Z_0^{\zeta}$.

If $v \in Z_0^{\zeta}$ then v must have an edge in game G' to w such that $w \in Z_{\Omega(w)}^{\zeta-1}$. We find $w \neq s_1$ because w is never in the iteration variable. If $w = s_0$ then it follows from the way we created G' that in G there exists an edge from v to a vertex in P_0 and since any vertex in P_0 is always in the iteration variable we find $v \in Y_0^{\zeta}$. If $w \neq s_0$ then because $Y_{\Omega(w)}^{\zeta-1} \simeq Z_{\Omega(w)}^{\zeta-1}$ we find $w \in Y_{\Omega(w)}^{\zeta-1}$ and therefore $v \in Y_0^{\zeta}$.

- Assume $v \in V_1$.

If $v \in Y_0^{\zeta}$ then for any successor w of v in game G it holds that $w \in Y_{\Omega(w)}^{\zeta-1}$. Consider successor x of v in game G'. We distinguish three cases:

- * $x = s_0$: In this case $x \in Z_{\Omega(x)}^{\zeta-1}$ because s_0 is always in the iteration variables.
- * $x = s_1$: Because of the way G' is constructed we find vertex v must have a successor w in P_1 , however we found $w \in Y_{\Omega(w)}^{\zeta-1}$. This is a contradiction because vertices in P_1 are never in the iteration variables. So this case can not happen.
- * $x \notin \{s_0, s_1\}$: We have $x \in V' \setminus \{s_0, s_1\}$ and therefore x is also a successor of v in game G. We find $x \in Y_{\Omega(x)}^{\zeta-1}$ and because $Y_{\Omega(x)}^{\zeta-1} \simeq Z_{\Omega(x)}^{\zeta-1}$ we have $x \in Z_{\Omega(x)}^{\zeta-1}$.

We always find $x \in Z_{\Omega(x)}^{\zeta-1}$, therefore $v \in Z_0^{\zeta}$.

If $v \in Z_0^{\zeta}$ then for any successor w of v in game G' it holds that $w \in Z_{\Omega(w)}^{\zeta-1}$. Consider successor x of v in game G. We distinguish three cases:

- * $x \in P_0$: In this case $x \in Y_{\Omega(x)}^{\zeta-1}$ because vertices in P_0 are always in the iteration variables.
- * $x \in P_1$: Because of the way G' is constructed we find vertex v must have successor s_1 in game G', however we found that for any successor w of v in game G' we have $w \in Z_{\Omega(w)}^{\zeta-1}$. This is a contradiction because s_1 is never in the iteration variable. So this case can not happen.
- * $x \in V \setminus P_0 \setminus P_1$: We find that x is also a successor of v in game G'. We find $x \in Z_{\Omega(w)}^{\zeta-1}$ and because $Y_{\Omega(x)}^{\zeta-1} \simeq Z_{\Omega(x)}^{\zeta}$ we have $x \in Y_{\Omega(x)}^{\zeta}$.

We always find $x \in Y_{\Omega(x)}^{\zeta-1}$, therefore $v \in Y_0^{\zeta}$.

• Case: j > 0 being even. We have

$$Z_j^{\zeta} = \mu Z_{j-1} \cdots = \bigcup_{i>0} Z_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$$

and

$$Y_j^{\zeta} = \mu Y_{j-1} \cdots = \bigcup_{i>0} Y_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$$

Let $v \in V \backslash P_0 \backslash P_1$.

If $v \in Z_j^{\zeta}$ then there exists some i such that $v \in Z_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$. Since $\{k_{d-1},\dots,k_j-1,i,\dots\} < \zeta$ we apply induction to find $Z_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}} \simeq Y_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$. Because $v \in V \setminus P_0 \setminus P_1$ we find $v \in Y_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$ and therefore $v \in Y_j^{\zeta}$.

If $v \in Y_j^{\zeta}$ then we apply symmetrical reasoning to find $v \in Z_j^{\zeta}$.

• Case: j > 0 being odd. We have

$$Z_j^{\zeta} = \nu Z_{j-1} \cdots = \bigcap_{i \ge 0} Z_{j-1}^{\{k_{d-1}, \dots, k_j - 1, i, \dots\}}$$

and

$$Y_j^{\zeta} = \nu Y_{j-1} \cdots = \bigcap_{i>0} Y_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$$

Let $v \in V \backslash P_0 \backslash P_1$.

If $v \in Z_j^{\zeta}$ then for all $i \geq 0$ we have $v \in Z_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$. Assume $v \notin Y_j^{\zeta}$, there must exist an $l \geq 0$ such that $v \notin Y_j^{\{k_{d-1},\dots,k_j-1,l,\dots\}}$. Since $\{k_{d-1},\dots,k_j-1,l,\dots\} < \zeta$ we apply induction to find $Z_{j-1}^{\{k_{d-1},\dots,k_j-1,l,\dots\}} \simeq Y_{j-1}^{\{k_{d-1},\dots,k_j-1,l,\dots\}}$. Because $v \in V \setminus P_0 \setminus P_1$ we find $v \notin Z_{j-1}^{\{k_{d-1},\dots,k_j-1,i,\dots\}}$ which is a contradiction so we have $v \in Y_i^{\zeta}$.

If $v \in Y_i^{\zeta}$ then we apply symmetrical reasoning to find $v \in Z_i^{\zeta}$.

This proves that for any ζ we have $Y_i^{\zeta} \simeq Z_i^{\zeta}$ for every $i \in [0, d-1]$. We have shown that when starting the iteration of S(G') and $S^P(G)$ at specific values then we get a similar results for vertices in $V \setminus P_0 \setminus P_1$. We choose these values such that they solve the formula's correctly, so we conclude that $S(G')\setminus\{s_0,s_1\}=S^P(G)\setminus P_0\setminus P_1$. Lemma 0.2 shows that S(G') correctly vertices in $V \setminus P_0 \setminus P_1$ for game G. So $S^P(G)$ also correctly solves vertices $V \setminus P_0 \setminus P_1$ for game G.

Moreover any vertex in P_0 is in $S^P(G)$, which is correct because P_0 vertices are winning for player 0. Any vertex in P_1 is not in $S^P(G)$, which is correct because P_1 vertices are winning for player 1. We conclude that all vertices are correctly solved.

This gives the following algorithm where we start iteration at P_0 and $V \setminus P_1$. Moreover we ignore vertices in P_0 or P_1 in the diamond and box calculation, finally we always add vertices in P_0 to the results of the diamond and box operator.

Algorithm 1 Fixed-point iteration with P_0 and P_1

```
1: function FPITER(G = (V, V_0, V_1, E, \Omega), P_0, P_1)
                                                                                1: function INIT(i)
          for i \leftarrow d-1, \ldots, 0 do
                                                                                        Z_i \leftarrow P_0 if i is odd, V \backslash P_1 otherwise
 2:
 3:
               Init(i)
                                                                                3: end function
          end for
 4:
 5:
          repeat
 6:
               Z_0 \leftarrow P_0 \cup \text{Diamond}() \cup \text{Box}()
                                                                                1: function DIAMOND
 7:
                                                                                        return \{v \in V_0 \backslash P_0 \backslash P_1 \mid \exists_{w \in V} (v, w) \in E \land A\}
 8:
               while Z_i = Z'_i \wedge i < d-1 do
9:
                                                                                    w \in Z_{\Omega(w)}
                   i \leftarrow i + 1
                                                                                3: end function
10:
                   Z_i' \leftarrow Z_i
11:
                   Z_i \leftarrow Z_{i-1}
12:
                   Init(i-1)
13:
               end while
                                                                                1: function Box
14:
          until i = d - 1 \wedge Z_{d-1} = Z'_{d-1}
                                                                                        return \{v \in V_1 \backslash P_0 \backslash P_1 \mid \forall_{w \in V}(v, w) \in E \implies
15:
          return (Z_{d-1}, V \setminus Z_{d-1})
16:
                                                                                    w \in Z_{\Omega(w)}
17: end function
                                                                                3: end function
```

Note: In the paper [The Fixpoint-Iteration Algorithm for Parity Games], that describes an algorithm to solve S(G), total parity games are used. However the argumentation only relies on the fact that every vertex has a unique owner and priority. So the algorithm can also solve non total games.