

FIG. 1A

poly dl-dC E. coli

FIG. 1B

FIG.1C

pUC VL

1 2 3 4 5 6 7

FIG.2A

FIG.2B

1 2

HeLa

FIG.3

FIG.4A

V_L	coding strand (-66)	TCTTAATA	ATTTGCAT	ACCCCTCAC*
V_H	non-coding strand (-50)	CGCACATG	ATTTGCAT	ACTCATGA
$J_H - C\mu$	coding strand (166)	CCTGGGTA	ATTTGCAT	TTCTAAAA

FIG. 4B

FIG. 5A

FIG.5B

FIG.6

Extract:

pK
 $p\Delta KE\mu$
 $p\Delta K$

$\left. \begin{array}{c} pK \\ p\Delta KE\mu \\ p\Delta K \end{array} \right\}$ EW

Template:

FIG. 7

FIG. 8

FIG.9A

Probe: μ 300
 Extract: EW/N
 Competitor:

FIG.9B

FIG.10A

- : E
- : ?
- : Octamer (ATTTGCAT)

FIG.10B

Probe: $\mu 50$
d.I.C. $\xrightarrow{ }$

$(\mu 60)_2$
d.I.C. $\xrightarrow{ }$

$\mu 70$
d.I.C. $\xrightarrow{ }$

FIG.IOC

- : PEW!
- : ?
- : Octamer (ATTTGCAT)

LABEL: $\mu 70$
COMPETITOR:

FIG.IOD

FIG.10E

FIG.IIA

FIG.IIB

۵۰

AATTACCCAGGTGGTGTTC
TTAATGGTCCACCAAAACG

۱۷۰:

A G C A G @ T C A T @ G T @ G C A A G G C T A
T C G T C C A @ G T A C A C C @ G T T C C G A T

FIG. I

FIG.12A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

FRAGMENT: μ 50
EXTRACT(9-11 μ gm)

HAF TL
PD
3889
70Z
EW
WEIII/231
AJ9
SP2-O
KR-12
8226
RLdII
W7
EL4
BW
COS
3T3
MEL
MeLa

1
2
3
4
5
6
7
8
9
10
11
12

FRAGMENT: μ 70
EXTRACT(9-11 μ g)

EW
C5
3889
70Z
WEIII
SP2-O
COS
3T3
MEL
PCC4
HeLa

FIG.12B

FIG.13A

FIG.13B

Extract EW/c 1 μ l
fragment Comp

FIG. 13C

K2 -
K2 -
K2 M70 Long
K2 M70 30ng
(M60)₂ 10
(M60)₂ 30
(M170)₂ 20
M170 60
K2 SV 40E 50
K2 SV 40E 150

1 2 3 4 5 6 7 8 9 10

FIG.13D

FIG. 14

Probe : $\kappa - 3 / \text{Dde}^*$

Extract

MPC II

-

WEHI 23I

-

1 2 3 4

FIG.15A

FIG. I-5B

FIG.16

λ gt11-EBNA-1

oriP PROBE

FIG.17

A.

<i>MHC</i>	<u>TGGGGATTCCCCA</u>
<i>mhc1</i>	TGcGGATTCCCaA
<i>κEN</i>	aGGGGAcTttCCg
<i>ken</i>	aaatt <u>A</u> ttCCg
<i>SVEN</i>	TGGGGAcTttCCA
<i>HIV</i>	TGGGGAcTttCCA
	aaGGGAcTttCCg

1 CTGGGGCCCCAGAGAGGTGGGAGATGACACAGTTGTCCTCCAGCCCTGGCGGGCG
 61 GGCAGCATGGTCACTCCAGCATGGGGCTCCAGAAATAAGAATGTCTAACGCCCTGGAG
 M V H S S M G A P E I R M S K P L E
 121 GCCGAGAAGCAAGGTCTGGACTCCCCATCAGAGCACACAGACACCGAAAGAAATGGACCA
 A E K Q G L D S P S E M T D T E R N G P
 181 GACACTAACATCAGAACCCCCAAAATAAGACCTCCCCATTCTCCGTGTCCCCAACTGGC
 D T N H O N P Q N R T S P F S V S P T G
 241 CCCAGTACAAAGATCAAGGCTGAAGACCCCAGTGGCGATTCAAGCCCCAGCAGCACCCCTG
 P S T K I K A E D P S G D S A P A A P L
 301 CCCCCTCAGCCGGCCCAGCCTCATCTGCCCAAGGCCAACTCATGTTGACGGGCAGCCAG
 P P Q P A Q P N L P Q A Q L M L T G S Q
 361 CTAGCTGGGACATACAGCAGCTCCTCCAGCTCCAGCAGCTGGTGTGCCAGGCCAC
 L A G D I Q Q L L Q L Q Q L V L V P G H
 421 CACCTCCAGCCACCTGCTCAGTCTGCTACCGCAGGCCAGCAGGCCAGGCCCTG
 H L Q P P A Q F L L P Q A Q Q S Q P G L
 481 CTACCGACACCAAATCTATTCCAGCTACCTCAGCAAACCCAGGGAGCTCTGACCTCC
 L P T P H L F Q L P Q Q T Q G A L L T S
 541 CAGCCCCGGCCGGCTTCCCACACAGGCCGTACCGCCCTACGCTGCCGACCCGCAC
 Q P R A G L P T Q A V T R P T L P D P H
 601 CTCTCGACCCGCAGCCCCAAATGCTGGAGCCACCATCCCACCCGAGGAGCCAGT
 L S H P Q P P K C L E P P S H P E E P S
 661 GATCTGGAGGAGCTGGAGCAATTGGCCCGCACCTCAAGCAACGCCGCATCAAGCTGGC
 D L E E L E Q F A R T F K Q R R I K L G
 721 TTACCGCAGGGTGATGTGGGCCTGGCCATGGCAAGCTTACGCCAACGACTTCAGCCAG
 F T Q G D V G L A M G K L Y G N D F S Q
 C G P G H G Q A L R Q R L Q P D

FIG. 18A

1261 GTTACTACCTTATCCTCAGCTGTGGGACGCTCCACCCAGCCGGACAGCTGGAGGGGGT
 V T T [L] S S A V G T [L] H P S R T A G G G
 Y Y L I L S C G D A P P Q P D S N M G W

1321 GGGGGCGGGGGCGGGCTGCGCCCTCAATTCCATCCCCTCTGTCACTCCCCCACCC
 G G G G G A A P P L N S I P S V T P P P
 G M G R G C A P P Q F H P L C H S P T P

1381 CCGGCCACCAACAAACAGCACAAACCCAGCCCTCAAGGCAGCCACTCGGCTATCGGCTTG
 P A T T N S T N P S P Q G S H S A I G L
 G H N Q Q H K P Q P S R Q P L G Y M L V

1441 TCAGGCCTGAACCCAGCACGGGTAAGTGGGTGCACGTGGAAAGCTGTGGGAGAAGCA
 S G L H P S T G +
 A P E P Q N G V S G C T W E A V G R S R

1501 GCGTCGCTGCTCCTCTAGGTGGGAGCGGCACCCAGTTATGTTGGCAGGTCCCTGCC
 V A A A S R V G S G T P V M L A G P C P

1561 CCTGCTAATGCCTCTGCTTGCCTCTGCAGAACACAATGGTGGGTTGAGCTCCGGCT
 C +

1621 GAGTCCAGCCCTCATGAGCAACAACCCCTGGCCACTATCCAAGGTGCGTGCTGCCTCAT

1681 GTCACACCCATCGTCACCAGCCCCGAATTCGAG

FIG.18A (CONT.)

ACGACCATTCGGCTTCGAGGCCCTAACCTGAGCTCAAGAACATGTGCAAACCTCAAG
 781 T T I S R F E A L N L S F K N M C K L K
 D H F P L R G P Q P E L Q E H V Q T Q A
 CCCCTCCTGGAGAAGTGGCTAACGATGCAGAGACTATGTCTGTGGACTCAAGCCTGCC
 841 P L L E K W L N D A E T M S V D S S L P
 P P G E V A Q R C R D Y V C G L K P A Q
 AGCCCCAACAGCTGAGCAGCCCCAGCCTGGTTTCGAGCCTGCCGGAGACGCAAG
 901 S P N O L S S P S L G F E P A G R R R K
 P Q P A E Q P Q P G F R A C M P E T Q E
 AAGAGGACCAGCATCGAGACAAACGTCCGCTCGCCTAGAGAAGAGTTTCTAGCGAAC
 961 K R T S I E T N V R F A L E K S F L A N
 E D Q M R D K R P L R L R E E F S S E P
 CAGAAGCCTACCTCAGAGGAGATCCTGCTGATGCCGAGCAGCTGCACATGGAGAAGGAA
 1021 Q K P T S E E I L L I A E Q L H M E K E
 E A Y L R G D P A D R R A A A H G E G S
 GTGATCCCGCTGGTTCTGCAACCGGCCAGAAGGACAAACGCATCAACCCCTGCAGT
 1081 V I R V W F C N R R Q K E K R I H P C S
 D P R L V L Q P A P E G E T H Q P L Q C
 GCGGCCCATGCTGCCAGCCCAGGGAAAGCCGCCAGCTACAGCCCCATATGGTCACA
 1141 A A P M L P S P G K P A S Y S P H H V T .
 G P H A A Q P R E A G Q L Q P P Y G H T
 CCCCAAGGCGGCGCGGGACCTTACCGTTCCAGCTGAGCACACA
 1201 P Q G G A G T L P [L] S Q A S S S [L] S T T
 P A G R G D L T V V P S F Q Q S E H N S

FIG.18A (CONT.)

1411 CCTCAAGGCAGCCACTCGGCTATCGGCTTGTCAAGGCCTGAACCCCAGCACGGGCCCTGGC
P Q G S H S A I G L S G L N P S T G P G
S A Q P L G Y R L V M P E P Q M G P N P

1471 CTCTGGTGGAACCTGCCCTTACCAAGCCTTGATGGCAGCGGAAATCTGGTGCTGGGGC
L W W N P A P Y Q P .
L V E P C P L P A L M A A G I W C W G Q

1531 AGCCGGTGCAGCCCCGGGGAGCCCTGGCCTGGTACCTCGCCGCTCTTCTTGAATCATGC
P V Q P R G A L A W .

1591 TGGGCTGCCCTGCTCAGCACCCCGCCTGGTGTGGCCTGGTCTCAGCAGCGGCTGCAGG
TGTGGCAGCCTCCATCTCCAGCAAGTCTCCTGGCCTCCCTCCATCCCTTCATCCTC

1651 ATCCTCCTCCTCCACTTGCAGCGAGACGGCAGCACAGACCCCTGGAGGTCCAGGGGG
1711 CCCGAGGCAGGGTCCAAACCTGAGTGAGGGCCAGCCATGCCTCCCTCCATTCCCTGG
1771 TCCCTGCCCGGAATTTC
1831

FIG.18B

N a a a E/D DNA LLLL C Oct-2

N LORF (277 AA) C

FIG.18C

FIG.19

FIG.20

helix turn helix →

↔

Oct-2 RRKKRTSIE TNVRF A E K S F L A N Q K P T S E E I L L I A E Q L H M E K E V I R V W E C N R Q K E K R I N P C

* *

a1 SPKGSSISPQARAFLEQVFRRKQSLNSKEKEEVAKKCGITPLQVVRVHEINKBMRSK

* *

a2 KP YRGHRET KENVRI L E S W F E A K N P X L D T K G L E N I M K N T S I L S R I Q I K N M V S N R B R K E K T I T

*

pho2 QRPK RTRAKGEALD V L K R K F E I N P T P S L V E R K K I S D L I G M P E K N V R I K E Q N R B A K L R K K Q

*

mec-3 RRG P R T T I K Q N Q L D V I N E M F S N T P K P S K H A R A K L A A L E T G L S M R V I Q V W E Q N R B S K E R R L K

*

cut SKKQBVL E S E E Q K E A L R L A F A L D P Y P N V G T I E F I L A N E L G L A T R T I T N W E H N H R M R L K Q Q V

* *

en E K R P B T A F S S E Q L A R L K R E F N E R Y L T E R R R Q Q I L S S E L G L N E A Q I K I W E Q N K R A K I K K S T

*

Antp R K R G B Q T Y T R Y Q T L E K E E H E N R Y L T R R R I E I A H A L C L T E R O I K I W E Q N R B M K W K K E N

*

R Q I Y L W E N R

(conserved residues in homeo-box family)

FIGURE 21A

FIGURE 21B

WEHI 23

LPS (4hr)
LPS (2hr)
LPS (1hr)
LPS (30min)

FIGURE 22A

FIGURE 22B

FIGURE 23A

FIGURE 23B

FIGURE 24A

FIGURE 24B

FIGURE 24C

FIGURE 25

κ -Enhancer

HIV LTR

FIGURE 26

FIGURE 27

A

Treatment : none

Dissociating Agents

CONTROL TPA

Fraction : N C P N C P

wt.

CONTROL

B

Denaturation SDS-PAGE Renaturation

CONTROL TPA

Fraction : N C P N C P

wt.

C

κB -Probe :

1 2 3 4 5 6 1 2 3 4 5 6

wt. wt.

1 2 3 4 5 6 7 8 9 10 11 12

wt. mu mu mu mu mu

55-62 kDa

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

70Z/3

FIGURE 33

HeLa

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

FIGURE 38

Enucleation :	-	+	-	+	-	+
Treatment of Cells :	Co TPA					

}

Figure 39

Figure 40

Figure A1

Figure 42

