UNIT 1

Matter

What is Matter?

- 1. Matter is the "stuff" that makes up everything in the universe.
- 2. Properties of Matter
 - 2.1. Each specific substance has its own combination of properties that can be used to identify the substance.
 - 2.2. Matter can Δ it's properties. \star
 - 2.2.1. Ex. Water is a
 - 2.2.1.1. Liquid at room temperate
 - 2.2.1.2. Solid at cold temperatures
 - 2.2.1.3. Gas at high temperatures
 - 2.3. Examples:
 - 2.3.1. Hardness
 - 2.3.2. Texture
 - 2.3.3. Flammability
 - 2.3.4. Color
 - 2.3.5. Shape
 - 2.3.6. Temperature

This is some text that I want to put a side margin note in for. *

★ Test side note

★ △ means "Change"

Kinds of Matter

- 3. Elements
 - 3.1. If you break down an element any more, then it just becomes generic <u>protons</u>, <u>neutrons</u> and electrons.
 - 3.1.1. It stops behaving like that element
 - Ex: If you break down Gold into protons, neutrons and electrons, it is no longer a shiny metal that conducts electricity.
 - 3.2. Each element has its own symbol
 - 3.2.1. Usually the first 1 2 letters in the name
 - 3.2.2. Always CAPITAL lowercase if two letters long
 - 3.2.3. Examples
 - $O \rightarrow \underline{O}$ xygen
 - He \rightarrow Helium
 - $C \to \underline{C}arbon$
 - $H \rightarrow \underline{H}ydrogen$
 - Al $\rightarrow \underline{\text{Al}}\text{uminum}$
 - $\bullet \ \operatorname{Au} \to \operatorname{Gold}$
- 4. Compounds

Ex: Carbon Dioxide (CO_2)

Ex: Water (H_2O)

The latin word for Gold is "Aurum", so it still follows the rule, just in a different language.

4.1. Examples

• $C_6H_{12}O_6$

• CO_2

• NaCl

• $CaCO_3$

• CH₄

• $Al(OH)_3$

5. Mixtures

- 5.1. Ex: Well Water
 - 5.1.1. Well water is a mixture because it has minerals, salts, and even dissolved oxygen within it

$Changes\ in\ Matter$

6. Physical Changes

Figure 1.1: Ripping Paper

- 6.1. Before it is ripped, it is paper
- 6.2. After it is ripped, it is still paper
 - 6.2.1. Thus, this is an example of a physical change.
- 6.3. Other examples
 - 6.3.1. Melting Ice
 - 6.3.2. Smashing a rock

7. Chemical Changes

- 7.1. Chemical changes occur when
 - 7.1.1. A substance combines with another to form a new substance. OR
 - 7.1.2. Chemical decomposition into two or more different substances.
- 7.2. Examples
- Burning Wood
- Iron Rusting
- $\bullet\,$ Mixing Baking Soda and Vinegar

Measuring Matter

- 8. Mass
- 9. Weight
- 10. Volume
- 11. Density

Matter Formulas

Density Formulas

When Density is unknown

$$density = \frac{mass}{volume}$$

Density is measured in

$$\frac{g}{cm^2}$$
 $\frac{g}{mL}$

When Mass is unknown

$$mass = density \cdot volume$$

Mass is measured in

When Volume is unknown

$$volume = \frac{mass}{density}$$

Volume is measured in

$$L \mid mL \mid cm^2$$

Pressure Formulas

When Pressure is unknown

$$pressure = \frac{force}{area}$$

Pressure is measured in

atm

1.5.1 Gas Laws

Charle's Law Formulas

When Pressure is unknown

$$pressure = \frac{force}{area}$$

Pressure is measured in

atm

When Force is unknown

$$force = pressure \cdot area$$

Force is measured in

N

When Area is unknown

$$area = \frac{force}{pressure}$$

Area is measured in

 $cm^2 \mid m^2$

Gay-Lussac's Law Formulas

When Pressure is unknown

$$pressure = \frac{force}{area}$$

Pressure is measured in

atm

When Force is unknown

$$force = pressure \cdot area$$

Force is measured in

Ν

When Area is unknown

$area = \frac{force}{pressure}$

Area is measured in

$$cm^2 \mid m^2$$