

Modeling and Designing High Permittivity Pads for MRI

Kirsten Koolstra and Jeroen van Gemert May 31st, 2017

Outline

- Dielectric pads
- Volume Integral Equation
- Different Discretization schemes
- Designing pads
- Perturbing Maxwell's equations
- Reduced order modeling

speed

Introduction

Magnetic Resonance Imaging (MRI)

http://www.news-medical.net

www.neurensics.com/technische-specificaties

Dielectric B₁⁺ shimming

Magnetic Resonance Imaging (MRI)

B_0	f_L
1.5 T	64 MHz
3.0 T	128 MHz
7.0 T	300 MHz

high permittivity dielectric pad

de Heer et al., Magn Res Med, 68(4), 1317-24, 2012.

Challenges

In Numerical Modeling

- Strong (localized) inhomogeneities in medium parameters
- Large computational domain due to the body model
- Accurate for low resolution!
- Fast!

How to solve them?

$$-\mathbf{\nabla} \times \mathbf{H} + \sigma \mathbf{E} + \mathbf{j}\omega \varepsilon \mathbf{E} = -\mathbf{J}^{\text{ext}}$$
$$\mathbf{\nabla} \times \mathbf{E} + \mathbf{j}\omega \mu \mathbf{H} = \mathbf{0}$$

Different discretization methods possible:

- Finite element method
- Finite difference method
- Method of Moments (or volume integral equation (VIE) approach)

Global approach instead of local Efficient for problems with a small contrast domain

The Volume Integral Equation

$$\mathbf{E} = \mathbf{E}^{\mathrm{inc}} + \mathbf{E}^{\mathbf{sc}}$$

$$\mathbf{E} = \mathbf{E}^{\mathrm{inc}} + (\mathbf{k}_{\mathrm{b}}^{2} + \nabla \nabla \cdot) \mathbf{S}(\chi_{e} \mathbf{E})$$

$$\mathbf{S}(\mathbf{J}) = \int_{\Omega} g(\mathbf{x}' - \mathbf{x}) \mathbf{J}(\mathbf{x}) d\mathbf{x}$$

Different Formulations

EVIE:
$$\mathbf{E}^{\text{inc}} = \mathbf{E} - (\mathbf{k}_{b}^{2} + \nabla \nabla \cdot) \mathbf{S}(\chi_{e} \mathbf{E})$$

DVIE:
$$\mathbf{E}^{\mathrm{inc}} = \frac{1}{\varepsilon} \mathbf{D} - (\mathbf{k}_{\mathrm{b}}^2 + \nabla \nabla \cdot) \mathbf{S}(\frac{\chi_e}{\varepsilon} \mathbf{D})$$

The Volume Integral Equation

$$\mathbf{E}^{\text{inc}} = \mathbf{E} - \left(\mathbf{k}_{\text{b}}^{2} + \nabla \nabla \cdot\right) \mathbf{S}(\chi_{e} \mathbf{E})$$

$$\downarrow 2D$$

$$\begin{bmatrix} E_{\chi}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{\chi} \\ E_{y} \end{bmatrix} - \left(\mathbf{k}_{\text{b}}^{2} + \nabla \nabla \cdot\right) \begin{bmatrix} S_{\chi}(\chi_{e} E_{\chi}) \\ S_{y}(\chi_{e} E_{y}) \end{bmatrix}$$

- The x- and y-components of the electric field are coupled via the $\nabla \nabla \cdot$ operator.
- The vector potential S depends on the material parameters.

$$A\mathbf{x} = \mathbf{b}$$

- 1. Specify $\varphi_i(x)$
- 2. Find f_i for all i
- 3. Reconstruct f(x)

Expansions

$$\begin{bmatrix} E_{\chi}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{\chi} \\ E_{y} \end{bmatrix} - \left(k_{b}^{2} + \nabla \nabla \cdot \right) \begin{bmatrix} S_{\chi}(\chi_{e}E_{\chi}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

Expansions

$$\begin{bmatrix} E_{\chi}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{\chi} \\ E_{y} \end{bmatrix} - (k_{b}^{2} + \nabla \nabla \cdot) \begin{bmatrix} S_{\chi}(\chi_{e}E_{\chi}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

is solved via expanding

$$E_{x}(x) = \sum_{i=1}^{n} e_{i}^{x} \psi_{i}^{x}(x)$$

$$E_{y}(x) = \sum_{i=1}^{n} e_{i}^{y} \psi_{i}^{y}(x)$$

Expansions

$$\begin{bmatrix} E_{\chi}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{\chi} \\ E_{y} \end{bmatrix} - (k_{b}^{2} + \nabla \nabla \cdot) \begin{bmatrix} S_{\chi}(\chi_{e}E_{\chi}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

is solved via expanding

$$E_{x}(x) = \sum_{i=1}^{n} e_{i}^{x} \psi_{i}^{x}(x) \qquad S_{x}(x) = \sum_{i=1}^{n} s_{i}^{x} \psi_{i}^{x}(x)$$

$$E_{y}(x) = \sum_{i=1}^{n} e_{i}^{y} \psi_{i}^{y}(x) \qquad S_{y}(x) = \sum_{i=1}^{n} s_{i}^{y} \psi_{i}^{y}(x)$$

Expansions

$$\begin{bmatrix} E_{x}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} - (\mathbf{k}_{b}^{2} + \nabla \nabla \cdot) \begin{bmatrix} S_{x}(\chi_{e}E_{x}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

$$A \begin{bmatrix} \mathbf{e}^{x} \\ \mathbf{e}^{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{x} \\ \mathbf{b}^{y} \end{bmatrix}$$

- How do we incorporate the operator S in the matrix A?
- How do we deal with the derivative terms?

Fast Fourier Transform

Remember,

$$\mathbf{S}(\chi_e \mathbf{E})(\mathbf{x}') = \int_{\Omega} g(\mathbf{x}' - \mathbf{x}) \chi_e(\mathbf{x}) \mathbf{E}(\mathbf{x}) d\mathbf{x} = g * \chi_e \mathbf{E}$$

And

$$\mathcal{F}\{\mathbf{S}\} = \mathcal{F}\{g * \chi_e \mathbf{E}\} = \mathcal{F}\{g\}\mathcal{F}\{\chi_e \mathbf{E}\}$$

$$\Longrightarrow \mathbf{S} = \mathcal{F}^{-1} \{ \mathcal{F} \{ g \} \mathcal{F} \{ \chi_e \mathbf{E} \} \}.$$

So, use fast Fourier transform (FFT) algorithms to incorporate **S** in the matrix **A**!

Expansions

$$\begin{bmatrix} E_{x}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} - (\mathbf{k}_{b}^{2} + \nabla \nabla \cdot) \begin{bmatrix} S_{x}(\chi_{e}E_{x}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

$$A \begin{bmatrix} \mathbf{e}^{x} \\ \mathbf{e}^{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{x} \\ \mathbf{b}^{y} \end{bmatrix}$$

- How do we incorporate the operator S in the matrix A?
- How do we deal with the derivative terms?

Basis Functions: Rooftop

Expansions

$$\begin{bmatrix} E_{x}^{\text{inc}} \\ E_{y}^{\text{inc}} \end{bmatrix} = \begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} - (\mathbf{k}_{b}^{2} + \nabla \nabla \cdot) \begin{bmatrix} S_{x}(\chi_{e}E_{x}) \\ S_{y}(\chi_{e}E_{y}) \end{bmatrix}$$

$$A \begin{bmatrix} \mathbf{e}^{x} \\ \mathbf{e}^{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{x} \\ \mathbf{b}^{y} \end{bmatrix}$$

• How do we incorporate the operator S in the matrix A?

How do we deal with the derivative terms?

Benchmark Problem

Scattering on a Two-Layer Conducting Cylinder

- TE-polarization
- f = 100 MHz
- Plane wave incident field
- Muscle/fat tissue

Scattering on a Two-Layer Conducting Cylinder

Comparison of EVIE and DVIE

Scattering on a Two-Layer Conducting Cylinder

Global Error Propagation

Human Body Simulations

Scattering on a Human Body with Dielectric Pad

Human Body Simulations

Comparison of the staggered and non-staggered grid

High resolution

Low resolution

Staggered grid

Low resolution

Non-staggered grid

Outline

- Dielectric pads
- Volume Integral Equation
- Different Discretization schemes
- Designing pads
- Perturbing Maxwell's equations
- Reduced order modeling

speed

Simulating dielectrics

Useful properties

- Many trial-and-error simulations
- Choose optimum pad afterwards
- Time consuming (days)
- Properties
 - For every simulation only the pad changes
 - Pad close to ROI.
 - Pad design domain is small w.r.t. computational domain

Designing dielectrics

Minimization

Define a cost function

$$C(pad) = \frac{1}{2} \frac{\|\mathbf{b}_{1}^{+;\text{simulated}}(pad) - \mathbf{b}_{1}^{+;\text{desired}}\|_{2}^{2}}{\|\mathbf{b}_{1}^{+;\text{desired}}\|_{2}^{2}}$$

- IN: desired B₁ + field as target field in region of interest
- OUT: properties dielectric pad

Solve for the fields

$$-\mathbf{\nabla} \times \mathbf{H} + \sigma \mathbf{E} + \mathbf{j}\omega \varepsilon \mathbf{E} = -\mathbf{J}^{\text{ext}}$$
$$\mathbf{\nabla} \times \mathbf{E} + \mathbf{j}\omega \mu \mathbf{H} = \mathbf{0}$$

Finding electromagnetic fields amounts to solving for f

Perturbation

Antennas + body

$$\mathsf{Df} = -\mathsf{q}$$

Antennas + body + pad

$$(D + SX_{pad}S^T) f = -q$$

Woodbury-identity

Solving the system

$$f = -(D + SX_{pad}S^T)^{-1}q$$

Perturbing matrix inverse using Woodbury-identity

$$f = -D^{-1}q + D^{-1}S(I_P + X_{pad}S^TD^{-1}S)^{-1}X_{pad}S^TD^{-1}q$$

Which electromagnetically speaking represents

$$\mathsf{b}_{1}^{+} = \mathsf{b}_{1}^{+; \text{no pad}} + \mathsf{G}^{B_{1}^{+} \mathsf{J}} \left(\mathsf{I}_{P} - \mathsf{X}_{\text{pac}} \mathsf{G}^{\mathsf{EJ}} \right)^{-1} \mathsf{X}_{\text{pac}} \mathsf{e}^{\text{no pad}}$$

But, we make it readable again

$$b_1^+ = b_1^{+;\text{no pad}} + G^{B_1^+J}A^{-1}b$$

Woodbury-identity

Solving the system

$$f = -\left(D + SX_{pad}S^{T}\right)^{-1}q$$

Perturbing matrix inverse using Woodbury-identity

$$\mathbf{f} = -\mathbf{D}^{-1} \mathbf{q}^{\mathsf{S}} + \mathbf{D}^{\mathsf{LO}} \mathbf{S} (\mathbf{I}_P + \mathbf{X}_{\mathsf{pad}} \mathbf{S}^T \mathbf{D}^{-1} \mathbf{S})^{-1} \mathbf{X}_{\mathsf{pad}} \mathbf{S}^T \mathbf{D}^{-1} \mathbf{q}$$

Which electromagnetically speaking represents

$$b_1^+ = b_1^{+;no} \xrightarrow{pad} + G_{\text{Size}} \left(1 \xrightarrow{20 \text{ GK}} \underset{pad}{\text{of}} G_{\text{pad}} \right)^{-1} X_{pad} e^{no} \xrightarrow{pad}$$

• But, we make it readable again

$$b_1^+ = b_1^{+;\text{no pad}} + G^{B_1^+J}A^{-1}b$$

Practical considerations

Parametrization

Practical considerations

Updating equations

Before: control every edge

$$b_1^+(n) = b_1^{+;no pad} + G^{B_1^+J}A(n)^{-1}b(n)$$

Now: only p variables to define a rectangular pad

$$b_1^+(p) = b_1^{+;no pad} + G^{B_1^+J}A(p)^{-1}b(p)$$

Still 30 GB and of same size: reduced order modeling

$$b_1^+(p) = b_1^{+;no pad} + G^{B_1^+J}j(p)$$

New basis

Original model

$$b_1^+(p) = b_1^{+;\text{no pad}} + G^{B_1^+J}j(p)$$
 $j(p) = A(p)^{-1}b(p)$

$$\mathsf{j}(\mathsf{p}) = \mathsf{A}(\mathsf{p})^{-1}\mathsf{b}(\mathsf{p})$$

Find approximation for current density j(p)

$$\mathbf{j}_r(\mathbf{p}) = \alpha_1(\mathbf{p})\mathbf{u}_1 + \alpha_2(\mathbf{p})\mathbf{u}_2 + \dots + \alpha_r(\mathbf{p})\mathbf{u}_r = \mathbf{U}_r\mathbf{a}_r(\mathbf{p})$$

Introduces a residual

$$r = A(p)j_r(p) - b(p)$$

Galerkin condition

Residual

$$r = A(p)j_r(p) - b(p)$$

$$r = A(p)U_ra_r(p) - b(p)$$

Galerkin condition

$$\mathsf{U}_r^H\mathsf{r}=0$$

• Two equations, two unknowns:

$$\mathbf{a}_r(\mathbf{p}) = \left[\mathbf{U}_r^H \mathbf{A}(\mathbf{p}) \mathbf{U}_r \right]^{-1} \mathbf{U}_r^H \mathbf{b}(\mathbf{p})$$

Update equations

We started with

$$b_1^+(p) = b_1^{+;no pad} + G^{B_1^+J}j(p)$$

Approximated it by

$$\mathsf{b}_1^+(\mathsf{p}) = \mathsf{b}_1^{+;\mathsf{no}\;\mathsf{pad}} + \mathsf{G}^{B_1^+\mathsf{J}}\mathsf{U}_r^H\mathsf{a}_r(\mathsf{p})$$

And end up with

$$\mathsf{b}_1^+(\mathsf{p}) = \mathsf{b}_1^{+;\mathsf{no}\;\mathsf{pad}} + \mathsf{G}^{B_1^+\mathsf{J}}\mathsf{U}_r^H \left[\mathsf{U}_r^H \mathsf{A}(\mathsf{p})\mathsf{U}_r \right]^{-1} \mathsf{U}_r^H \mathsf{b}(\mathsf{p})$$

Size r instead of 10⁴

What to choose for the basis U_r?

Projection Based Model Reduction

Create snapshots: random pad parameters in the model

$$\mathsf{S} = [\mathsf{j}_1(\mathsf{p}_1) \ldots \mathsf{j}_S(\mathsf{p}_S)]$$

Compute SVD of S

$$\mathsf{S} = \mathsf{U}\Sigma\mathsf{V}^H$$

and take r most significant LSV

$$\mathsf{U}_r = \mathsf{U}\left(1:r,:\right)$$

Complexity

We take the 500 first LSV as new basis

$$b_1^{+;r}(p) = b_1^{+;no pad} + G^{B_1^{+}J}U_r^H [U_r^HA(p)U_r]^{-1} U_r^Hb(p)$$

Size: $10^4 = 500$

Data: $30 \text{ GB} = 51 \text{ GB}$

Reduced order models introduce errors in fields

Comparison B₁⁺ fields

Pad design

Minimization

Define a cost function

$$\mathbf{C}(\mathbf{p}) = \frac{1}{2} \frac{\|\mathbf{b}_1^{+;r}(\mathbf{p}) - \mathbf{b}_1^{+;\text{desired}}\|_2^2}{\|\mathbf{b}_1^{+;\text{desired}}\|_2^2}$$

We set a desired B₁+ field as target field

Solved using Gauss-Newton approach

Pad design

Optimization

Pad found in 30 seconds:

$$L \times W \times H = 35 \times 10 \times 1 \text{ cm}^3$$

$$\varepsilon_{\rm r} = 295$$
 $\sigma = 0.25 \text{ S/m}$

Iteration #

Pad design

Fabrication

T1 GRE

T2 TSE

Without pad

T2 TSE

Summary/ Conclusion

There are different methods to solve **Maxwell's** equations

The VIE approach is an efficient method for solving Maxwell's equations, which can be used to construct Green's tensors

ROM reduces complexity with small loss in accuracy

Designing dielectrics in 30 seconds instead of days

Modeling and Designing High Permittivity Pads for MRI

Kirsten Koolstra and Jeroen van Gemert May 31st, 2017

