LLIÇÓ 15: SUMA DIRECTA ORTOGONAL I PROJECCIONS ORTOGONALS

Suma directa ortogonal i projeccions ortogonals

• Si F és un subespai de \mathbb{R}^n , llavors

$$\mathbb{R}^n = F \oplus F^{\perp}$$

• Si A és una matriu $m \times n$, llavors

$$\mathbb{R}^{m} = \operatorname{Col} A \oplus \operatorname{Nul} A^{t}$$
$$\mathbb{R}^{n} = \operatorname{Fil} A \oplus \operatorname{Nul} A$$

Càlcul de la projecció ortogonal del vector \vec{b} sobre el subespai F

Elegiu A perquè F = Col A

- Calculeu els productes $\mathbf{A}^t\mathbf{A}$ i $\mathbf{A}^t\vec{b}$
- Resoleu el sistema lineal $A^t A \vec{x} = A^t \vec{b}$
- La projecció ortogonal és el vector $p_F(\vec{b}) = A\vec{x}$

Un cas especial:

• Si $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_1 p\}$ és una base ortonormal de F, llavors

$$p_F(\vec{b}) = (\vec{q}_1 \cdot \vec{b})\vec{q}_1 + (\vec{q}_2 \cdot \vec{b})\vec{q}_2 + \cdots + (\vec{q}_p \cdot \vec{b})\vec{q}_p$$

així que, si Q = $\begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_p \end{bmatrix}$, llavors

$$p_F(\vec{b}) = QQ^t\vec{b}$$