

Exhibit B regarding the present application

Exhibit A Condition

ltem	Example 1	Example 2	Example 3	Example 4
Particle material	Fe	Fe	Fe	Fe
Particle size*	30-50nm or 10um	30-50nm or 10um	30-50nm or 10um	30-50nm or 10um
Matrix material	Polybutene	Polystyrene	Polybutene	Polystyrene
Volume content of particle	60-95 vol. %	60-95 vol. %	60-95 vol. %	% 'loa 56-09
Film thickness (um)	2	5	5	2
Saturation magnetization (T)	1.5	1.6	1.4	1.5
Electrical resistivity (u Q cm)	180	250	400	200
Anisotropic magnetic field (Oe)**		10	- 01	8
Permeability at 0.1 MHz	2000 2140***	1800 1600***	1500 1400***	2000 1880***
at 25 MHz	1000 2130***	1200 1590***	1300 1390***	1200 1870***
at 1GHz	- error	- error	- error***	- erro <i>g</i> -

"error" represents the value of zero. No data in JP02-201904-Takeshi and estimated from FIG. 6 of the attached reference 1

*** Calculated using LLG equation with the parameters of film thickness, saturation magnetization, electrical resistivity and anisotropic magnetic field To data in JP02-201904 Takeshi and estimated using LLG equation.

Exhibit B Condition

Allibit B collainoil								
Item	Example	ple 1	Example 2	ple 2	Exam	Example 3	Exam	Example 4
article material	Co69Fe3	1 (at. %)	Fe		ľ	Fe	Co69Fe3	11 (at. %)
rticle size	ď	mu,	701	mu.	P	Jum	6	Jum
atrix material	Polyimide	mide	Polyimide	nide	Polyi	Polyimide	Tel	Leflon
lume content of particle	% lov 08	%10	% lov 08	%'Ic	06	% lov 06	%:lov 88	ol.%
m thickness (um)	0	0.45	0.45	12	Ö	0.45	ò	.43
turation magnetization (T)	13	.33	1.21		-	.75	-	.73
ectrical resistivity (u \(\omega\) cm)	260	0	250	0	-	10	¥	00
isotropic magnetic field (Oe)	1	2	K			0.	1	75
emeability at 0.1 MHz	•	175***		170***	ľ	250***		230
at 25 MHz		175***	•	170	7	250***		230***
-100	2000	4000	000	1000	030		2000	

Calculated using LLG equation with the parameters of film thickness, saturation magnetization, electrical resistivity and anisotropic magnetic field

particles with a size of 30-50nm never have a column Particle size of Takeshi was estimated from FIG. 6 of particles have a column structure, the latter value of the attached reference 1 and the value of coercive particle size of Takeshi was 30-50nm or 10um. As force shown in Table 1 of Takeshi. The estimated 10um can be adopted. The ferromagnetic metal Takeshi mentions that the ferromagnetic metal structure.

similar results will be obtained. Even if the value of 20nm proposed by Fujimori are adopted in Takeshi. estimated permeability at 1GHz will be zero (error). If the values of 30-50nm are adopted in Takeshi, That is, the similar results will be obtained.

FIG. 6 of the attached Reference 1

x (*) emarphous Ce (Fe)-bose e nerocrystetine Fe-Cu_{ss}Nb₂(SiB)₈₈, o Fe-Si S5 wtX a 50 Ne-Fe a Permotoy

[Ref] G. Herzer, "Gran Staz Dependence of Commission and Permandulay in Nanocrystalline Ferremagnets", IEEE Trans. Mag., 26(5), 1397-1402 (1990) Fig. 6 Grain size and coercivity H₀ for various soft magnetic metallic alloys.