256

- Dos vectores en \mathbb{R}^3 son paralelos si el ángulo entre ellos es 0 o π . Son paralelos si uno es un múltiplo
- Dos vectores \mathbb{R}^3 son ortogonales si el ángulo entre ellos es $\frac{\pi}{2}$. Son ortogonales si y sólo si su producto escalar es cero.
- Sean \mathbf{u} y \mathbf{v} dos vectores diferentes de cero en \mathbb{R}^3 . La proyección de \mathbf{u} sobre \mathbf{v} es un vector, denotado por proy_v u, que está definido por

$$\operatorname{proy}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}$$

El escalar $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$ se llama la **componente** de \mathbf{u} en la dirección de \mathbf{v} .

- $proy_v \mathbf{u}$ es paralelo a \mathbf{v} y $\mathbf{u} proy_v \mathbf{u}$ es ortogonal a \mathbf{v} .
- La dirección de un vector $\mathbf{v} \mathbb{R}^3$ es el vector unitario

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$$

• Si $\mathbf{v} = (a, b, c)$, entonces $\cos \alpha = \frac{a}{|\mathbf{v}|}$, $\cos \beta = \frac{b}{|\mathbf{v}|}$ y $\cos \gamma = \frac{c}{|\mathbf{v}|}$ se llaman **cosenos directores** de \mathbf{v} .

AUTOEVALUACIÓN 4.3

I) Responda si la afirmación siguiente es falsa o verdadera. La práctica común seguida en este libro es desplegar los ejes xyz para \mathbb{R}^3 como un sistema derecho.

Respuesta: _

II) La distancia entre los puntos (1, 2, 3) y (3, 5, -1) es ___

a)
$$\sqrt{(1+2+3)^2+(3+5-1)^2}$$
 b) $\sqrt{2^2+3^2+2^2}$

b)
$$\sqrt{2^2 + 3^2 + 2^2}$$

c)
$$\sqrt{2^2+3^2+4^2}$$

d)
$$\sqrt{4^2+7^2+2^2}$$

- III) El punto (0.3, 0.5, 0.2) está _____ la esfera unitaria.
 - a) en la tangente a

b) sobre

c) dentro de

- d) fuera de
- IV) $(x-3)^2 + (y+5)^2 + z^2 = 81$ es la ecuación de la esfera con _____
 - a) centro 81 y radio (-3, 5, 0)
- **b)** radio 81 y centro (-3, 5, 0)
- c) radio -9 y centro (3, -5, 0)
- d) radio 9 y centro (3, -5, 0)
- V) i (4k 3i) = ...
 - a) (1, -4, -3)

b) (1, -4, 3)

c) (-3, 1, -4)

- **d**) (3, 1, -4)
- **VI**) $(i + 3k j) \cdot (k 4j + 2i) = ____$
 - a) 2 + 4 + 3 = 9

- **b)** (1+3-1)(1-4+2) = -3
- c) 1 + 12 2 = -13
- d) 2-4-3=-5