

Теория вероятностей и математическая статистика

Экзамен, 20.06.2016

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором В кажлом вопросе единственный верный ответ. Н

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

1. Про одну выборку

Вопрос 1 \clubsuit Требуется проверить гипотезу о равенстве дисперсий по двум нормальным выборкам размером 20 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 60, по второй — 90. Тестовая статистика может быть равна

 В 1
 С 2
 Е 1.224

 В 4
 F Нет верного ответа.

Вопрос 2 ♣ Для проверки гипотезы о равенстве долей в двух выборках могут использоваться следующие распределения

Вопрос 3 👫 При проверке гипотезы о равенстве долей используется следующее распределение

Вопрос 4 \clubsuit Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

Вопрос 5 \clubsuit При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

 A 2
 С 1
 1.5

 B 4
 D 1.224
 F Нет верного ответа.

Вопрос 7 🗍 Доля успехов в первой выборке равна 0.8, доля успехов во второй выборке — 0.3. Количество наблюдений в выборках 40 и 20 соответственно. Гипотеза о равенстве долей

А Гипотезу невозможно проверить

В не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости

С не отвергается на любом разумном уровне значимости

отвергается на любом разумном уровне значимости

Е не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости

F Нет верного ответа.

Вопрос 8 4 Доля успехов в первой выборке равна 0.55, доля успехов во второй выборке — 0.4. Количество наблюдений в выборках равно 40 и 20 соответственно. Тестовая статистика для проверки гипотезы о равенстве долей может быть равна

A 2.4

1.1

E 1.2

B 0.9

 $\boxed{\mathsf{D}}$ 2.2

F Нет верного ответа.

Вопрос 9 4 Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $|A| t_{m+n-1}$

[E] $F_{m+1,n+1}$

 t_{m+n-2}

 $\boxed{\mathrm{D}} F_{m,n}$

F Нет верного ответа.

2. Про две выборки

Вопрос 10 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $ar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0: \mu=20$ против $H_a: \mu>20$ можно сделать вывод, что гипотеза H_0

|A| не отвергается при любом разумном значении α

отвергается при любом разумном значении α

С Гипотезу невозможно проверить

D отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$

| E | отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$

| F | *Нет верного ответа.*

Вопрос 11 \clubsuit Величины X_1, \ldots, X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости lpha проверяется гипотеза $H_0: \mu = \mu_0$ против $H_a: \mu \neq \mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

$$C \varphi_2 = \alpha$$

$$\boxed{\mathbf{E}} \ \varphi_1 = 1 - \alpha$$

$$\boxed{\mathbf{B}} \ \varphi_2 = 1 - \alpha$$

$$\begin{array}{c}
\boxed{C} \ \varphi_2 = \alpha \\
\boxed{D} \ \varphi_1 + \varphi_2 = \alpha
\end{array}$$

 $\frac{5-\bar{X}}{5/\sqrt{n}}$ применима для проверки

- |A| гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших nгипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, при любых n
- | C | гипотезы $H_0 : \sigma = 5$
- \square гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при любых n
- |E| гипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, только при больших n
- | F | *Нет верного ответа.*

Вопрос 14 \clubsuit Пусть X_1, \ldots, X_n — выборка из нормального распределения с известной дисперсией σ^2 . Пусть $U=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$. Величина U^2 имеет распределение

 $A F_{1,n-1}$ $E \chi_{n-1}^2$ $B \mid t_{n-1}$ **F** Нет верного ответа.

Вопрос 15 👶 При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная

- |A| отвергается при любом разумном значении α
- [B] отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$
- С Гипотезу невозможно проверить
- [D] отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$
- не отвергается при любом разумном значении α
- | F | *Нет верного ответа.*

Выборочная доля успехов в некотором испытании составляет 0.3. Исследователь Ромео хочет, чтобы длина двустороннего 95%-го доверительного интервала для истинной доли не превышала 0.1. Количество наблюдений, необходимых для этого, примерно равно

E 81 A 161 C | 225 B 113 322 **F** Нет верного ответа.

Вопрос 17 \clubsuit Для выборки X_1, \dots, X_n , имеющей нормальное распределение, проверяется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет вид

 $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 - \alpha$

 $oxed{B}$ $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$

[C] (0, A), где A таково, что $\mathbb{P}(\chi_{n-1}^2 < A) = 1 - \alpha$

 $\boxed{\mathrm{D}}\ (-\infty,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-\alpha$

[E] (0,A), где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$

F | Нет верного ответа.

3. Про выборочные характеристики

Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

$$A \chi^2 = 14, df = 1$$

$$\chi^2 = 36, df = 1$$
 E $\chi^2 = 24, df = 1$

$$E \chi^2 = 24, df = 1$$

B
$$\chi^2 = 20, df = 2$$

$$D \chi^2 = 2, df = 2$$

F Нет верного ответа.

Вопрос 19 👃 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

A 1/3

3/8

E 1/2

B 1/8

F | *Нет верного ответа.*

Вопрос 20 🐇 🛮 В коробке 50 купюр пяти различных номиналов. Случайным образом достаются две купюры. Номиналы вынимаемых купюр

А не коррелированы и не зависимы

|D| положительно коррелированы, но не зависимы

В не коррелированы, но зависимы

отрицательно коррелированы

С положительно коррелированы

F Нет верного ответа.

Вопрос 21 🌲 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 3

E 1

B 14/3

F Нет верного ответа.

Вопрос 22 🌲 Кузнец Вакула в течение 100 лет ведет статистику о прилете аистов и рождении младенцев на хуторе близ Диканьки. У него получилась следующая таблица сопряженности

	Аисты прилетали	Аисты не прилетали
Появлялся младенец	30	10
Не появлялся младенец	30	30

Укажите число степеней свободы статистики Пирсона и на уровне значимости 5% определите, зависит ли появление младенца от прилета аистов

A df = 3, зависит

df = 1, зависит D df = 1, не зависит

 $\boxed{\mathrm{E}}$ df=2, зависит

 $\boxed{\mathrm{B}}$ df = 4, зависит

F Нет верного ответа.

Вопрос 23 🌲 Экзамен принимают два преподавателя: Злой и Добрый. Они поставили следующие оценки:

> Злой 2 3 10 Добрый 6 4 7

Значение статистики критерия Вилкоксона о совпадении распределений оценок равно

A 7.5

C 20

22.5

B 19

D 20.5

F Нет верного ответа.

Вопрос 24 🕹 Датчик случайных чисел выдал два значения псевдослучайных чисел: 0.5 и 0.9. Вычислите значение критерия Колмогорова и проверьте гипотезу о соответствии распределения равномерному на уровне значимости 0.1. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

 $\begin{bmatrix} A \end{bmatrix}$ 0.9, H_0 не отвергается

 $0.5, H_0$ не отвергается $0.5, H_0$ отвергается

[E] 0.9, H_0 отвергается

 $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ 0.4, H_0 не отвергается

F Нет верного ответа.

Вопрос 25 🗍 Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна

A 2/3

C 1/3

B 1/2

F Нет верного ответа.

Вопрос 26 👃 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

 $0.58, H_0$ не отвергается

 \square 1.96, H_0 отвергается

[E] 1.65, H_0 отвергается

 $\begin{bmatrix} B \end{bmatrix}$ 0.43, H_0 не отвергается

 $\boxed{\mathrm{D}}$ 0.58, H_0 отвергается

F Нет верного ответа.

Вопрос 27 \clubsuit Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распределения $F_n(x)$

 $A E(F_n(x)) = F(x)$

[B] $F_n(x)$ имеет разрыв в каждой точке вариационного ряда

 $\lfloor \mathbf{C} \rfloor \ F_n(x)$ асимптотически нормальна

 $F_n(x)$ является невозрастающей функцией

 $E \operatorname{Var}(F_n(x)) = F(x)(1 - F(x))$

4. Про оценки

Вопрос 28 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

$$\begin{bmatrix} A & 1 \\ B & \frac{1}{n} \end{bmatrix}$$

 $\begin{bmatrix} \mathsf{E} \end{bmatrix} n$

F Нет верного ответа.

Вопрос 29 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,...,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\boxed{\textbf{A}} - \textbf{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \cdot \frac{\partial \ell(\theta)}{\partial \theta} \right) \qquad \qquad \boxed{\textbf{C}} - \textbf{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \right)$$

$$\boxed{\mathbf{C}} - \mathbf{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \right)$$

$$\blacksquare$$
 $E\left(\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right)$

$$\boxed{\mathbf{B}} \ \mathbf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2} \right)$$

$$\boxed{\mathbf{D}} \mathbf{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \right)$$

F Нет верного ответа.

Вопрос 30 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из равномерного на $(0, 2\theta)$ распределения. Оценка $\hat{\theta} = X_1$

Несмещённая

D Нелинейная

В Состоятельная

Е Эффективная

С Асимптотически нормальная

F Нет верного ответа.

Вопрос 31 Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

$$\boxed{\mathbf{A}} \ \mathbf{E}(\hat{\theta}_n) = \theta$$

$$\boxed{\mathbb{D}} \ \mathbb{E}(\hat{\theta}_n) \to \theta$$

 $\boxed{\mathbf{B}} \operatorname{Var}(\hat{\theta}_n) \geq Var(\hat{\theta}_{n+1})$

$$P(|\hat{ heta}_n - heta| > t) o 0$$
 для всех $t > 0$

 $C \operatorname{Var}(\hat{\theta}_n) \to 0$

F Нет верного ответа.

Вопрос 32 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\boxed{\mathbf{A}} - \mathbf{E} \left(\left(\frac{\partial \ell(\theta)}{\partial \theta} \right)^2 \right)$$

$$-\mathrm{E}\left(rac{\partial^2\ell(heta)}{\partial heta^2}
ight)$$

$$\boxed{\mathrm{E}} - \mathrm{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \right)$$

$$\boxed{\mathbf{B}} \ \mathbf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2} \right)$$

$$\boxed{\mathrm{D}} \ \mathrm{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \right)$$

$$\boxed{\mathbf{A}} \quad \frac{5p(1-p)}{n}$$

$$\frac{5n}{p(1-p)}$$

$$E \frac{n}{5p(1-p)}$$

$$\boxed{\mathbf{B}} \ \frac{n}{p(1-p)}$$

$$\boxed{\mathbf{D}} \quad \frac{p(1-p)}{5n}$$

F Нет верного ответа.

Вопрос 34 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

$$A \frac{\theta}{n}$$

$$\frac{r}{\theta}$$

$$\overline{E}$$

$$\boxed{\mathrm{B}} n\theta^2$$

$$\boxed{\mathbf{D}} \ \frac{\theta^2}{n}$$

F Нет верного ответа.

Вопрос 35 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

$$\boxed{\mathbf{A}} \operatorname{Var}(\hat{\theta}) \leq I_n(\theta)$$

$$\begin{array}{|c|c|c|c|}\hline \textbf{A} & \mathrm{Var}(\hat{\theta}) \leq I_n(\theta) & \hline \textbf{C} & I_n^{-1}(\theta) \geq \mathrm{Var}(\hat{\theta}) \\ \hline \textbf{B} & \mathrm{Var}(\hat{\theta}) = I_n(\theta) & \hline & \mathrm{Var}(\hat{\theta}) \cdot I_n(\theta) = 1 \\ \hline \end{array}$$

$$E$$
 $I_n^{-1}(\theta) \leq Var(\hat{\theta})$

$$\boxed{\mathrm{B}} \operatorname{Var}(\hat{\theta}) = I_n(\theta)$$

F Нет верного ответа.

5. Про ML и MM

Вопрос 36 🐥 Выберите НЕВЕРНОЕ утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- Функция $\ell(\theta)$ имеет максимум при $\theta=0$
- |B| Функция $\ell(\theta)$ может принимать значения больше единицы
- C Функция $\ell(\theta)$ может принимать положительные значения
- D Функция $\ell(\theta)$ может иметь несколько экстремумов
- $|\mathsf{E}|$ Функция $\ell(\theta)$ может принимать отрицательные значения

Вопрос 37 \clubsuit Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и γ два неизвестных параметра. Выберите верное утверждение о распределении статистики отношения правдоподобия, LR:

 \square И при H_0 , и при H_a , $LR \sim \chi_2^2$

[B] И при H_0 , и при H_a , $LR \sim \chi_1^2$

[E] Если верна H_a , то $LR \sim \chi_1^2$

| C | Если верна H_a , то $LR \sim \chi_2^2$

| F | *Нет верного ответа.*

Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

Имеется выборка из трёх наблюдений: $X_1=5,\,X_2=3,\,X_3=5.$ Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

|A| 1/2

C 2/3

Е Метод неприменим

1/3

D 1/4

F Нет верного ответа.

Вопрос 39 \clubsuit Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2; 0.01^2)$, то, согласно дельтаметоду, $\hat{\theta}^2$ имеет примерно нормальное распределение

 $|A| \mathcal{N}(4; 8 \cdot 0.01^2)$

 $\mathcal{N}(4;16\cdot 0.01^2)$

 $E \mathcal{N}(2; 4 \cdot 0.01^2)$

 $\boxed{B} \mathcal{N}(4:2\cdot0.01^2)$

 $D \mathcal{N}(4:4\cdot0.01^2)$

F Нет верного ответа.

Вопрос 40 🐇 Выберите НЕВЕРНОЕ утверждение про метод максимального правдоподобия (ММП):

Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$

В ММП применим для оценивания двух и более параметров

С ММП оценки не всегда совпадают с оценками метода моментов

D ММП применим для зависимых случайных величин

Е При выполнении технических предпосылок оценки ММП состоятельны

Вопрос 41 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

|A| 1/2

C 1/3

В Метод неприменим

D 2/3

F Нет верного ответа.

Вопрос 42 \clubsuit Величины $X_1, X_2, ..., X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu; 42)$. Оказалось, что $\bar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

Вопрос 43 \clubsuit Величины $X_1,...,X_n$ независимы и одинаково распределены, $\mathrm{E}(X_1^2)=2\theta+4$. По выборке из 100 наблюдений оказалось, что $\sum_{i=1}^{100}X_i^2=200$. Оценка метода момента, $\hat{\theta}_{MM}$, равна

|А| Метод неприменим

 $\mathbf{E} \mid \mathbf{0}$

B 2

F | *Нет верного ответа.*

A $LR=60, H_0$ не отвергается

 $LR=80, H_0$ отвергается

С Критерий неприменим

D $LR=40, H_0$ не отвергается

[E] $LR=40, H_0$ отвергается

F Нет верного ответа.

Вопрос 45 \clubsuit По выборке из 100 наблюдений построена оценка метода максимального правдоподобия, $\hat{\theta}_{ML}=42$. Вторая производная лог-функции правдоподобия равна $\ell''(\hat{\theta})=-1$. Ширина 95%-го доверительного интервала для неизвестного параметра θ примерно равна

A 8

B 1/2

C 2

D 1

4

F Нет верного ответа.

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Bonpoc 1 : ■ B C D E F
Bonpoc 2 : ■ B C D E F
Bonpoc 3 : A ■ C D E F
Bonpoc 4 : A B C ■ E F

Вопрос 5 : А С D Е F

Вопрос 6 : A B C D F Вопрос 7 : A B C F F

Вопрос 11 : **В** В С D E F

Вопрос 13 : A C D E F

Вопрос 14 : A B C E F

Вопрос 15 : A B C D F

Вопрос 16: А В С Е Е

Вопрос 17 : B C D E F Вопрос 18 : A B D E F

Вопрос 19 : A B D E F

Вопрос 20 : A B C D **F**

Bonpoc 21 : A B ■ D E F

Вопрос 22 : A B D E F

Вопрос 23 : А В С D 🖪 F

Вопрос 24 : А В П В Б Б

Вопрос 25 : АВСВСБ

Вопрос 26 : **В** В С D Е F

Вопрос 27 : А В С Е

Вопрос 28 : А В В D Е F

Вопрос 29 : А В С D 🖪 F

Вопрос 30 : В В С D Е F

Вопрос 31 : А В С D 🖪 F

Вопрос 32 : АВВ ПО Е Г

Вопрос 45 : A B C D **F**