Speech Emotion RecognitionPrawesh Dahal

ELENE 6820 Final Project Presentation May 15, 2019

Challenges in SER

- Which features are relevant and informative for SER?
- No explicit temporal boundaries of emotion states
- Emotion patterns vary across individuals

Objective

To compare the performance of conventional emotion classifiers (SVM) to RNN-based speech emotion recognition (SER)

Corpus

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

1440 files, 12 female and 12 male actor speech recordings 8 emotions expressions - neutral, calm, happy, sad, angry, fearful, surprise, and disgust.

Reference Paper: Automatic speech emotion recognition using recurrent neural networks with local attention - Mirsamadi et al. (2017)

Sample traces and spectrogram

Neutral

Sad

120 -100 -80 -60 -40 -20 -0 50 100 150 200 250 300 350

Happy

Angry

Statement - "Kids are talking by the door"

Classifier I: Support Vector Machine (SVM)

- Constructs a hyperplane in n-dimensional space to separate the classes
- Finds a hyperplane that maximizes the between class margin
- Kernel functions employed for nonlinear data

Classifier I: Support Vector Machine (SVM)

Feature Extraction II (HSF)

Normalization by global mean and standard deviation of neutral features

Train SVM Classifier Model

Emotions

- Short frames (50 ms)
- Hop length (10 ms)
- 17 LLDs
 - 13 MFCCs
 - Frame Energy
 - Spectral rolloff
 - Spectral centroid
 - Zero Crossing Rate

High-level statistical functions (HSF)

Mean, std, min, max.
 etc

SVM Parameters

- Multiclass OneVsOne classifier
- Radial Basis Function (RBF)
 Kernel
- Tuned parameters using grid search method

Classifier I: Support Vector Machine (SVM) Results

Table 2. Accuracy comparison between hand-crafted and learned LLDs from raw spectral features.

Features	Classifier	HSFs	WA
emotion LL	Ds SVM	Mean	53.3%
			61.2%

Literature Result

Project Result

Emotions	Neutral	Нарру	Sad	Angry
Neutral	47.5	17.5	25	10
Нарру	0	67.6	27	5.4
Sad	4.2	4.1	79.2	12.5
Angry	0	16.7	0	83.3

Classifier I: Support Vector Machine (SVM) Results

Table 2. Accuracy comparison between hand-crafted and learned LLDs from raw spectral features.

Features	Classifier	HSFs	WA
emotion LL	Ds SVM	Mean	53.3%
			61.2%
			56.3%

Literature Result

Project Result (4 emotions)

Project Result (8 emotions)

Emotion	Neutral	Calm	Нарру	Sad	Angry	Fearful	Disgust	Surprise
Neutral	35.7	21.4	11.9	12.1	4.7	7.1	2.3	4.7
Calm	8.8	60	2.2	17.8	0	2.2	4.4	4.4
Нарру	0	0	62.2	18.9	5.4	5.4	0	8.1
Sad	0	6.7	0	80	0	6.7	6.7	0
Angry	0	0	6.8	0	75.8	3.4	0	13.8
Fearful	0	2.9	8.8	11.8	5.9	52.9	5.9	11.7
Disgust	1.8	0	3.6	3.6	14.5	10.9	54.5	10.9
Surprise	0	2.7	8.3	2.7	8.3	19	8.3	50

Classifier II: LSTM

Mel spectrogram

- Train (70%), Validation (20%), Test (10%) data split from each emotion set
- One-hot target vectors for emotion classes
- Normalize

Train a LSTM model

Emotions

LSTM Parameters

- 128 memory cells
- Bi-directional
- Final frame (many-to-one) training
- Focal Loss

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

Local attention model (attention weights)

Classifier II: LSTM Results

Table 3. Accuracy comparison between RNN architecturesFeaturesTemporal aggregationWAraw spectralRNN-final frame54.4%66.07%52.50%

Classifier II: LSTM WITH ATTENTION Results

Table 3. Accuracy comparison between RNN architectures

Features	Temporal aggregation	WA	
raw spectral	RNN-final frame	54.4%	66.07%
	RNN with attention	61.8%	67.86%

```
with open(args.model_save, 'rb') as f:
    model_LSTM_test = LSTM()
    model_LSTM_test.load_state_dict(torch.load(f))
model_LSTM_test = model_LSTM_test.cuda()
model_LSTM_test = model_LSTM_test.eval()
test_LSTM = validate(model_LSTM_test, loader = test_loader)
```

Conclusion

- Conventional approaches in SER that uses machine learning algorithms such as SVM require hand-picked features.
- Deep learning architectures like RNN perform better compared to SVM.
- Attention mechanisms can be implemented within RNN that focuses on specific outputs of utterance that could be relevant determining emotions.

THANK YOU!