Worksheet 11

16/16 Points

Attempt 1 Score: **16/16**

Anonymous Grading: no

Unlimited Attempts Allowed

∨ Details

Q1: What are the new entries in the page table after retrieving page from storage?

Q2: What are possible criteria or factors for selecting the victim page?

Q3: Assuming FIFO page replacement and a 3-frame limit for the process, how would the frames be filled? Which instances of memory access would cause a page fault?

10	06	06	14	06	11	12
-						

Q4: Assume a page/frame architecture where each page has **100 bytes.** Assume the following byte (address) requests, left to right (written in base 10) generated by a process. Taking into account offset, and that pages/frames are swapped in/out, and NOT bytes, then how many page faults are generated when the memory has 1, 2, 3 or 4 frames?

1-Frame Memory:									
0110	1206	0613	0697	1206	1606	0614			
2-Frame Memory:									
0110	1206	0613	0697	1206	1606	0614			
3-Frame Memory:									
0110	1206	0613	0697	1206	1606	0614			
4-Frame Memory:									
0110	1206	0613	0697	1206	1606	0614			

Answer1:

New entries in the page table after retrieving it from storage:

I am not sure how to answer this question. :(

Answer2:

Criteria or factors for selecting the victim page:

- Duration of the page accessing the frame
- Frequency/number of times the page is accessing the frame
- Track/history of the page access

Answer3:

Given an instance of the memory access,

10 06	06	14	06	11	12
-------	----	----	----	----	----

Assuming the FIFO replacement algorithm and 3-frame limit for the process,

- There will be 5 page faults as shown below.
- Using the FIFO approach, we replaced 10 (the oldest one) with the new entry 11.
- Using the FIFO approach, we again replaced 06 with the new entry 12.

Page Fault	Page Fault	✓	Page Fault	✓	Page Fault	Page Fault
10	06	06	14	06	11	12

3-frame Memory:

10	10	10	10	10	11	11
	06	06	06	06	06	12
			14	14	14	14

Answer4:

Given an instance of the byte requests,

	01	12	06	06	12	16	06
- 1							

Assuming the FIFO replacement algorithm and frame limits as 1, 2, 3, 4 for the process,

1-frame Memory:

• There will be 6 page faults as shown below.

Page	Page	Page	✓	Page	Page	Page
Fault	Fault	Fault		Fault	Fault	Fault
01	12	06	06	12	16	06

1-frame Memory:

01	12	06	06	12	16	06
01	1∠	00	UO	1∠	10	06

2-frame Memory:

• There will be 4 page faults as shown below.

Page Fault	Page Fault	Page Fault	✓	✓	Page Fault	✓
01	12	06	06	12	16	06

2-frame Memory:

01	01	06	06	06	06	06
	12	12	12	12	<mark>16</mark>	16

3-frame Memory:

• There will be 4 page faults as shown below.

Page Fault	Page Fault	Page Fault	✓	✓	Page Fault	✓
01	12	06	06	12	16	06

3-frame Memory:

01	01	01	01	01	16	16
	12	12	12	12	12	12
		06	06	06	06	06

4-frame Memory:

• There will be 4 page faults as shown below.

Page Fault	Page Fault	Page Fault	✓	✓	Page Fault	✓
01	12	06	06	12	16	06

4-frame Memory:

01	01	01	01	01	01	01
	12	12	12	12	12	12
		06	06	06	06	06
					16	16

New Attempt