

Trustful Action Suggestion in Human Agent Interaction

Nuno Miguel Xu Gonçalves

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Rui Prada Prof. Ana Paiva

October 2016

Acknowledgments

I would like to thank my parents for their friendship, encouragement and caring over all these years, for always being there for me through thick and thin and without whom this project would not be possible. I would also like to thank my grandparents, aunts, uncles and cousins for their understanding and support throughout all these years.

Quisque facilisis erat a dui. Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis.

Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis. Suspendisse sagittis ante a urna. Morbi a est quis orci consequat rutrum. Nullam egestas feugiat felis. Integer adipiscing semper ligula. Nunc molestie, nisl sit amet cursus convallis, sapien lectus pretium metus, vitae pretium enim wisi id lectus.

Donec vestibulum. Etiam vel nibh. Nulla facilisi. Mauris pharetra. Donec augue. Fusce ultrices, neque id dignissim ultrices, tellus mauris dictum elit, vel lacinia enim metus eu nunc.

I would also like to acknowledge my dissertation supervisors Prof. Some Name and Prof. Some Other Name for their insight, support and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always there for me during the good and bad times in my life. Thank you.

To each and every one of you - Thank you.

Abstract

Nulla facilisi. In vel sem. Morbi id urna in diam dignissim feugiat. Proin molestie tortor eu velit. Aliquam erat volutpat. Nullam ultrices, diam tempus vulputate egestas, eros pede varius leo, sed imperdiet lectus est ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin consectetuer velit in dui. Phasellus wisi purus, interdum vitae, rutrum accumsan, viverra in, velit. Sed enim risus, congue non, tristique in, commodo eu, metus. Aenean tortor mi, imperdiet id, gravida eu, posuere eu, felis. Mauris sollicitudin, turpis in hendrerit sodales, lectus ipsum pellentesque ligula, sit amet scelerisque urna nibh ut arcu. Aliquam in lacus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla placerat aliquam wisi. Mauris viverra odio. Quisque fermentum pulvinar odio. Proin posuere est vitae ligula. Etiam euismod. Cras a eros.

Keywords

Maecenas tempus dictum libero; Donec non tortor in arcu mollis feugiat; Cras rutrum pulvinar tellus.

Resumo

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibu-

lum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam

egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et

sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,

wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus

enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Aliquam aliquet, est a ullamcorper

condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales

ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna.

Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor

diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

Palavras Chave

Colaborativo; Codificaçãoo; Conteúdo Multimédia; Comunicação;

٧

Contents

1	Intro	oductio	on	1
2	This	is the	Second Chapter	3
	2.1	Traditi	onal Streaming Technologies	5
	2.2	Cras lo	obortis tempor velit	5
3	This	is the	Third Chapter	7
	3.1	Archite	ecture Design Requirements	9
	3.2	Archite	ecture Design Requirements	10
4	Trus	t Mode	el	11
		4.0.1	Memory	13
			4.0.1.A Trust Calculation	14
		4.0.2	Perception	16
		4.0.3	Action Suggestion	16
5	This	is the	Fifth Chapter	17
	5.1	Maece	enas vitae nulla consequat	19
	5.2	Proin	ornare dignissim lacus	20
6	Con	clusion	n	23
	6.1	Conclu	usions	25
	6.2	Syster	m Limitations and Future Work	26
A	Cod	e of Pr	roject	29
В	A La	arge Ta	ble	37

List of Figures

4.1	Memory Architecture (represented in UML)	. 1
4.2	Perception Example	. 16
5.1	Test Environment	. 19
5.2	Adaptation System Behavior Test	. 2

List of Tables

2.1	Streaming Technologies Comparison	5
5.1	Network Link Conditioner Profiles	20
B.1	Example table	38

List of Algorithms

Listings

3.1	Example of a MPD file	10
A.1	Example of a XML file	29
A.2	Assembler Main Code	30
A.3	Matlab Function	31
A.4	function.m	32
A.5	HTML with CSS Code	32
A.6	HTML CSS Javascript Code	34
A.7	PYTHON Code	35

Acronyms

CC Cloud Computing

CDN Content Distribution Network

DASH Dynamic Adaptive Streaming over HTTP

GPRS General Packet Radio Service

HTTP Hypertext Transfer Protocol

LAN Local Area Network

LTE Long Term Evolution

SVC Scalable Video Coding

UMTS Universal Mobile Telecommunication System

Introduction

This is the Second Chapter

Contents

2.1	Traditional Streaming Technologies	٠.	•	• •	٠.	•	• •	• •	•	•	 •	•	 •	•	 •	•	•	•	5
2.2	Cras lobortis tempor velit																		5

Vivamus auctor leo vel dui. Aliquam erat volutpat. Phasellus nibh. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Cras tempor. Morbi egestas, urna non consequat tempus, nunc arcu mollis enim, eu aliquam erat nulla non nibh. Duis consectetuer malesuada velit. Nam ante nulla, interdum vel, tristique ac, condimentum non, tellus. Proin ornare feugiat nisl. Suspendisse dolor nisl, ultrices at, eleifend vel, consequat at, dolor.

2.1 Traditional Streaming Technologies

Cras dictum. Maecenas ut turpis. In vitae erat ac orci dignissim eleifend. Nunc quis justo. Sed vel ipsum in purus tincidunt pharetra [6]. Sed pulvinar, felis id consectetuer malesuada, enim nisl mattis elit, a facilisis tortor nibh quis leo. Sed augue lacus, pretium vitae, molestie eget, rhoncus quis, elit [7]. Donec in augue. Fusce orci wisi, ornare id, mollis vel, lacinia vel, massa. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas..

Sed pulvinar, felis id consectetuer malesuada, enim nisl mattis elit, a facilisis tortor nibh quis leo Table 2.1.

Dynamic Smooth HLS Streaming Streaming RTMP Streaming Protocol HTTP HTTP H.264, VP6 Video Codec H.264 H.264 Audio Codec AAC, MP3 WMA, AAC AAC, MP3 Container Format MP4, FLV, MP4 MPEG2-TS NO YES iOS YES Android NO YES YES

Table 2.1: Streaming Technologies Comparison

Suspendisse vestibulum dignissim quam. Integer vel augue. Phasellus nulla purus, interdum ac, venenatis non, varius rutrum, leo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas [8]. Duis a eros. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Fusce magna mi, porttitor quis, convallis eget, sodales ac, urna [9]. Phasellus luctus venenatis magna. Vivamus eget lacus.

2.2 Cras lobortis tempor velit

Nunc tincidunt convallis tortor. Duis eros mi, dictum vel, fringilla sit amet, fermentum id, sem. Phasellus nunc enim, faucibus ut, laoreet in, consequat id, metus. Vivamus dignissim [10]. Cras lobortis tempor velit. Phasellus nec diam ac nisl lacinia tristique. Nullam nec metus id mi dictum dignissim. Nullam quis wisi non sem lobortis condimentum. Phasellus pulvinar, nulla non aliquam eleifend, tortor wisi scelerisque felis, in sollicitudin arcu ante lacinia leo.

3

This is the Third Chapter

Contents

3.1	Architecture Design Requirements	•	•	•	•	 	 ٠	٠	٠	•	 •	•	•	•	 •	•	•	•	•	•	 •	9	
3.2	Architecture Design Requirements					 									 							10	

Donec gravida posuere arcu. Nulla facilisi. Phasellus imperdiet. Vestibulum at metus. Integer euismod. Nullam placerat rhoncus sapien. Ut euismod. Praesent libero. Morbi pellentesque libero sit amet ante. Maecenas tellus. Maecenas erat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

3.1 Architecture Design Requirements

Quisque facilisis erat a dui. Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis. Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis.

Suspendisse sagittis ante a urna. Morbi a est quis orci consequat rutrum. Nullam egestas feugiat felis. Integer adipiscing semper ligula. Nunc molestie, nisl sit amet cursus convallis, sapien lectus pretium metus, vitae pretium enim wisi id lectus. Donec vestibulum. Etiam vel nibh. Nulla facilisi. Mauris pharetra. Donec augue. Fusce ultrices, neque id dignissim ultrices, tellus mauris dictum elit, vel lacinia enim metus eu nunc:

- **Web-streaming:** The client application should support streaming media using Hypertext Transfer Protocol (HTTP) protocols.
- **Multi-source streaming:** The client application should support multi-source streaming media, i.e., "simultaneous" streaming of media content components from a network, supported/complemented by Content Distribution Network (CDN)/Cloud Computing (CC) services.
- Support content Metadata Description: The client application should support content metadata description in a format similar or compliant with MPEG Dynamic Adaptive Streaming over HTTP (DASH) [11].
- **Scalable and Adaptive Media Contents:** The system should support on-demand streaming of scalable and adaptive contents based on Scalable Video Coding (SVC).
- **Heterogenous End-User Devices:** The client application should be compatible with current and future generations of end-user devices form factors, irrespective of their performance, screen size and resolution.
- **Access Network independency:** The solution should provide the expected service over different types of access networks supported by the end-user devices, such as Wireless Local Area Networks

(LANs) (IEEE 802.11) or cellular data networks such as General Packet Radio Service (GPRS), Universal Mobile Telecommunication System (UMTS), Long Term Evolution (LTE), etc.

Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis. Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis.

3.2 Architecture Design Requirements

Ut nulla. Vivamus bibendum, nulla ut congue fringilla, lorem ipsum ultricies risus, ut rutrum velit tortor vel purus. In hac habitasse platea dictumst. Duis fermentum, metus sed congue gravida, arcu dui ornare urna, ut imperdiet enim odio dignissim ipsum. Nulla facilisi. Cras magna ante, bibendum sit amet, porta vitae, laoreet ut, justo. Nam tortor sapien, pulvinar nec, malesuada in, ultrices in, tortor. Cras ultricies placerat eros. Quisque odio eros, feugiat non, iaculis nec, lobortis sed, arcu. Pellentesque sit amet sem et purus pretium consectetuer.

Listing 3.1: Example of a MPD file.

```
<?xml version="1.0" encoding="UTF-8"?>
   <BaseURL>svc_1/
<BaseURL>
<SegmentInfo from="0" to="11" duration="PT5.00S">
                    <BaseURL>svc_1-L0-</BaseURL>
10
                </SegmentInfo>
11
           </Representation>
12
           Representation mimeType="video/SVC" codecs="svc" frameRate="30.00" bandwidth="1322.60" width="352" height="288" id="L1">
13
14
                <BaseURL>svc_1/<BaseURL><SegmentInfo from="0" to="11" duration="PT5.00S"><BaseURL>svc_1-L1-/BaseURL>
15
16
17
                </SegmentInfo>
18
            </Representation>
19
        </Clip>
20
   </StreamInfo>
21
```

Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam.

Trust Model

We sought out to develop a trust model definition that would be easily implementable, but generic enough to be able to adapt to various testing scenarios. To do this we took inspiration from the work by Sabater et al. [?] described in Section ?? by taking a similar approach to architecture where a central memory component holds the model's current state, getting updated by perceptions received from the environment. But while Repage describes a third module that suggests actions to resolve belief conflicts in the model, we instead defined such module to assume the point of view of one of the agents in the scenario and, if participating in a social interaction, it suggests actions to improve the trust relationship with a trustor. In fact, most of the design of the model was made with the intent that it would be used by one of the agent's in the scenario, and the model created would be his own trust model of the world environment. And so, the model can be described by 3 main components:

- Memory, which defines and stores the main model structure;
- Perceptions, a series of environment perceptions mapped to changes in the Memory;
- Action Suggestion, a module that outputs different actions depending on current perceptions and the state of the model.

4.0.1 Memory

One of the main concerns while designing the model was how trust would be calculated, as we wanted to use Castlefranchi and Falcone's conceptualization of trust [?] as a basis for trust definition, focusing specially on it being dependent on the task entrusted, and the transferability of trust between different tasks. But starting from the five-part definition of trust, as seen in Equation ??, we decided that inserting context (\mathbf{C}) and the trustor's goal (g_x) into the model would bring in too much complexity for the scope of this thesis, as it would require for a world state model to be kept, as well as some way to predict the trustor's goal. So we simplified, defining trust through a simpler three-part relation, involving just the trustor (\mathbf{X}), the trustee (\mathbf{Y}) and the task (τ), represented in Equation 4.1.

$$TRUST(X Y \tau)$$
 (4.1)

So we designed the structure with the concepts and relations represented in Figure 4.1, and we can describe them as follows:

- Agent: a simple representation of the known entities in the scenario world space, serving mostly
 as an identifier;
- **Trustee**: each agent contains a collection of other agents he has information about, either by reputation, or by interaction, which we represent as their Trustees;

- Trust Feature: a piece of information a trustor has on a trustee is represented in a Trust Feature, which contains the Belief Sources of said information. The Feature Model defines and uniquely identifies what feature is represented.
- Feature Model: the possible set of trust features from which a trustee can be assigned is defined
 in a collection of Feature Models where each one represents a possible piece of trust related
 information relevant to the model scenario (e.g. The trustee's ability to cook, or the willingness to
 drive);
- Category: a Feature Model must belong to a Category, making it easier to present the different type of Trust Features;
- Belief Source: this represents a source of information on the corresponding feature, belonging to one of the 3 sub-classes depending on the origin of the information, Reputation for when reported from other agents (whether directly (e.g. talking) or indirectly (e.g. report on newspaper)), Bias for pre-existing beliefs on the feature, and Direct Contact for direct observations of the trustee, 3 values are provided to determine the associated feature's belief value:
 - Belief Value, a number between 0.0 and 1.0 describing the trustor evaluation;
 - Certainty describes how well the trustee was evaluated, in Reputation for instance, this might represent how well we trust in the reporter, and in Direct Contact how well the trustor observed the trustee performing said feature;
 - Time is just a record of when was this belief source recorded, as older records might have a lower impact in the overall belief value score, compared to newer records.
- Task: a representation of the possible delegation tasks in the scenario, containing the Feature
 Models associated with the performance of this task (e.g. The ability to serve drinks if the task is
 bartending). A weight is given to each Feature corresponding to its importance in the task. The
 various weights are normalized so that their sum is 1.0.

4.0.1.A Trust Calculation

Taking a Trustor X, a Trustee Y and a delegated task τ , Trust can then be calculated by taking the Trustee's Trust Features F_y , the Task's Feature Models F_τ and checking which they have in common, which we can represent as $F_{y\cap\tau}$. Remember that Trust Features are uniquely identified by a Feature Model. So after getting $F_{y\cap\tau}$ we can apply a linear function to each of the features in $F_{y\cap\tau}$, where for each element F_i we multiply the trustee's feature's belief value $B(F_i)$ with the weight of the feature for

Figure 4.1: Memory Architecture (represented in UML)

the task $W(F_i)$, as represented in Equation 4.2.

$$Trust_{X,Y,\tau} = \sum_{i=0}^{n} W(F_i)B(F_i)$$
(4.2)

The belief value of the feature itself, $B(F_i)$, is also calculated through a sum of parameters pertaining to each of the n belief sources $B_{F_i}^j$ composing the feature, as represented in Equation 4.3, with each parameter described as follows:

$$B(F_i) = \sum_{j=0}^{n} D_{F_i}^j C_{F_i}^j B_j$$
 (4.3)

- $D^j_{F_i}$, a value from 0.0 to 1.0 that represents how far ago in time was this belief source received compared to the last one, being 0.0 a long time ago, and 1.0 the most recent belief. We wished to represent the rapid decay of value of old beliefs when compared to new ones, but also making sure recent memories would not fall quickly in value, so we chose to describe this parameter with a Gaussian Function, as represented in Equation 4.4, where $T^{Last}_{F_i}$ is the most recent belief value's time stamp, $T^j_{F_i}$ is $B^j_{F_i}$ belief value's time stamp, and L is the difference between the oldest and newest belief value's time stamps. $\frac{L}{4}$ defines the mid drop-off point of the function.
- $C_{F_i}^j$, the certainty value stored in the Belief Source;
- $B_{F_i}^j$, the belief value stored in the Belief Source;

$$D_{F_i}^j = e^{-\frac{T_{F_i}^{Last} - T_{F_i}^j}{2(\frac{L}{4})^2}} \tag{4.4}$$

4.0.2 Perception

In this module, a collection of relevant environment perceptions is inserted into the model, in order to translate perceived changes in the environment, into changes in the model. This is done through a Perception object, representing some possible environment input, and containing a map of what target features should have belief sources added, what kind of belief sources they are, and how to translate the values received from the environment to belief value and certainty, as exemplified in Figure 4.2.

Figure 4.2: Perception Example

4.0.3 Action Suggestion

This component contains a collection of

This is the Fifth Chapter

Contents

5.1	Maecenas vitae nulla consequat	. 1	9
5.2	Proin ornare dignissim lacus	. 2	0

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

5.1 Maecenas vitae nulla consequat

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros Fig. 5.1, facilisis vel, eleifend non, auctor dapibus, pede.

Figure 5.1: Test Environment

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc portitior nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede Table 5.1 used in the tests. The Network Link Conditioner allows to force/simulate fluctuations in fixed network segments.

Table 5.1: Network Link Conditioner Profiles

Network Profile	Bandwidth	Packets Droped	Delay
Wifi	40 mbps	0%	1 ms
3G	780 kbps	0%	100 ms
Edge	240 kbps	0%	400 ms

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

5.2 Proin ornare dignissim lacus

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis.

Et "optimistic" nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui G_j , nec ligula et lorem consequat ullamcorper p ut mauris eu mi mollis luctus j, porttitor ut, formula 5.1, uctus posuere justo:

- N_j Is the number of times peer j has been optimistically unchoked.
- n_j Among the N_j unchokes, the number of times that peer j responded with unchoke or supplied segments to peer p.
- $C_{r[j]}$ The cooperation ratio of peer j. If peer j never supplied peer p, the information of $C_{r[j]}$ may not be available.

 $C_{r(max)}$ The maximum cooperation ratio of peer p's neighbors, i.e., $C_{r(max)} = max(C_r)$.

$$G_{j} = \begin{cases} \frac{n_{j}C_{r[j]}}{N_{j}} & \text{if } n_{j} > 0\\ \frac{C_{r(max)}}{N_{j} + 1} & \text{if } n_{j} = 0 \end{cases}$$
(5.1)

Cursus $C_{r(max)}$ conubia nostra, per inceptos hymenaeos j gadipiscing mollis massa $N_j = 0$, unc ut dui eget nulla venenatis aliquet $G_j = C_{r(max)}$.

Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa.

Both Fig. 5.2(a) et Fig. 5.2(b) Phasellus eget nisl ut elit porta "perfect" tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra.

Figure 5.2: Adaptation System Behavior Test

Cras sed ante. Phasellus in massa. Curabitur dolor eros, gravida et, hendrerit ac, cursus non, massa. Aliquam lorem. In hac habitasse platea dictumst. Cras eu mauris. Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies. Vivamus elit eros, ullamcorper a, adipiscing sit amet, porttitor ut, nibh. Maecenas adipiscing mollis massa. Nunc ut dui eget nulla venenatis aliquet. Sed luctus posuere justo. Cras vehicula varius turpis. Vivamus eros metus, tristique sit amet, molestie dignissim, malesuada et, urna.

6

Conclusion

Contents

6.1	Conclusions	25
6.2	System Limitations and Future Work	26

Pellentesque vel dui sed orci faucibus iaculis. Suspendisse dictum magna id purus tincidunt rutrum. Nulla congue. Vivamus sit amet lorem posuere dui vulputate ornare. Phasellus mattis sollicitudin ligula. Duis dignissim felis et urna. Integer adipiscing congue metus.

6.1 Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

Quisque facilisis erat a dui. Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis. Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis. Suspendisse sagittis ante a urna. Morbi a est quis orci consequat rutrum. Nullam egestas feugiat felis. Integer adipiscing semper ligula. Nunc molestie, nisl sit amet cursus convallis, sapien lectus pretium metus, vitae pretium enim wisi id lectus. Donec vestibulum. Etiam vel nibh. Nulla facilisi. Mauris pharetra. Donec augue. Fusce ultrices, neque id dignissim ultrices, tellus mauris dictum elit, vel lacinia enim metus eu nunc.

Proin at eros non eros adipiscing mollis. Donec semper turpis sed diam. Sed consequat ligula nec tortor. Integer eget sem. Ut vitae enim eu est vehicula gravida. Morbi ipsum ipsum, porta nec, tempor id, auctor vitae, purus. Pellentesque neque. Nulla luctus erat vitae libero. Integer nec enim. Phasellus aliquam enim et tortor. Quisque aliquet, quam elementum condimentum feugiat, tellus odio consectetuer wisi, vel nonummy sem neque in elit. Curabitur eleifend wisi iaculis ipsum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non velit non ligula laoreet ultrices. Praesent ultricies facilisis nisl. Vivamus luctus elit sit amet mi. Phasellus pellentesque, erat eget elementum volutpat, dolor nisl porta neque, vitae sodales ipsum nibh in ligula. Maecenas mattis pulvinar diam. Curabitur sed leo.

Nulla facilisi. In vel sem. Morbi id urna in diam dignissim feugiat. Proin molestie tortor eu velit. Aliquam erat volutpat. Nullam ultrices, diam tempus vulputate egestas, eros pede varius leo, sed imperdiet lectus est ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin consectetuer velit in dui. Phasellus wisi purus, interdum vitae, rutrum accumsan, viverra in, velit. Sed enim risus, congue

non, tristique in, commodo eu, metus. Aenean tortor mi, imperdiet id, gravida eu, posuere eu, felis. Mauris sollicitudin, turpis in hendrerit sodales, lectus ipsum pellentesque ligula, sit amet scelerisque urna nibh ut arcu. Aliquam in lacus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla placerat aliquam wisi. Mauris viverra odio. Quisque fermentum pulvinar odio. Proin posuere est vitae ligula. Etiam euismod. Cras a eros.

Nunc auctor bibendum eros. Maecenas porta accumsan mauris. Etiam enim enim, elementum sed, bibendum quis, rhoncus non, metus. Fusce neque dolor, adipiscing sed, consectetuer et, lacinia sit amet, quam.

6.2 System Limitations and Future Work

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

Bibliography

- [1] Apple, HTTP Live Streaming Overview, Apple Inc., 1 Infinite Loop, Cupertino, CA 95014, 408-996-1010 U.S., 2011. [Online]. Available: https://developer.apple.com/library/ios/documentation/networkinginternet/conceptual/streamingmediaguide/StreamingMediaGuide.pdf
- [2] Adobe HTTP Dynamic Streaming. [Online]. Available: http://www.adobe.com/products/hds-dynamic-streaming.html
- [3] Z. Alex. ISS Smooth Streaming Technical Overview. [Online]. Available: http://download.microsoft.com/download/4/2/4/4247C3AA-7105-4764-A8F9-321CB6C765EB/ IIS_Smooth_Streaming_Technical_Overview.pdf
- [4] Fraunhofer Heinrich-Hertz-Institute, "SVC: Scalable Extension of H.264/AVC," 2013. [Online]. Available: http://www.hhi.fraunhofer.de/de/kompetenzfelder/image-processing/research-groups/image-video-coding/scalable-video-coding/svc-scalable-extension-of-h264avc.html
- [5] ISO/IEC, "Information technology Coding of audio-visual objects Part 10: Advanced Video Coding," International Organization for Standardization/International Electrotechnical Commission, International Standard ISO/IEC 14496-10:2012, Oct. 2012.
- [6] B. MacAulay, A. Felts and Y. Fisher, "IP Streaming of MPEG-4 Native RTP vs MPEG-2 Transport Stream," WHITEPAPER, October 2005. [Online]. Available: http://www.envivio.com/files/white-papers/RTPvsTS-v4.pdf
- [7] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1103–1120, 2007.
- [8] J. Bankoski, J. Salonen, P. Wilins, and Y. Xu, "VP8 Data Format and Decoding Guide," RFC 6386, IETF, RFC 6386, November 2011. [Online]. Available: http://tools.ietf.org/html/rfc6386
- [9] Y.-H. Chiang, P. Huang, and H. Chen, "SVC or MDC? That's the question," in *Embedded Systems for Real-Time Multimedia (ESTIMedia)*, 2011 9th IEEE Symposium on, 2011, pp. 76–82.

- [10] P. Moscoso, "Interactive Internet TV Architecture Based on Scalable Video Coding," Master's thesis, Instituto Superior Técnico, May 2011.
- [11] ISO/IEC, "Information technology Dynamic adaptive streaming over HTTP (DASH) Part 1: Media presentation description and segment formats," International Organization for Standard-ization/International Electrotechnical Commission, International Standard ISO/IEC FCD 23009-1:2012, Apr. 2012.

Code of Project

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listing A.1: Example of a XML file.

```
<BaseURL>svc_1-L0-</BaseURL>
10
              </SegmentInfo>
11
          </Representation>
          <Representation mimeType="video/SVC" codecs="svc" frameRate="30.00" bandwidth="1322.60"</p>
              width="352" height="288" id="L1">
              <BaseURL>svc_1/</BaseURL>
15
              <SegmentInfo from="0" to="11" duration="PT5.00S">
16
                  <BaseURL>svc_1-L1-</BaseURL>
17
              </SegmentInfo>
18
          </Representation>
       </Clip>
  </StreamInfo>
```

Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam.

Listing A.2: Assembler Main Code.

```
{\tt Constantes}
         ************************
         EQU 1 ; contagem ligada
         EQU 0
                  contagem desligada
  INPUT EQU 8000H ; endereço do porto de entrada
    ;(bit 0 = RTC; bit 1 = botão)
           EQÚ 8000H; endereço do porto de saída.
     ************************
     * Stack ****
14
15
  PLACE
16
  pilha:
fim_pilha:
             TABLE 100H ; espaço reservado para a pilha
17
18
20
21
  PLACE
           2000H
   ; Tabela de vectores de interrupção
24
25
           WORD rot0
26
27
                             29
     * Programa Principal
30
31
  PLACE
32
33
  inicio:
34
    MOV BTE, tab
MOV R9, INPUT
                      ; incializa BTE
35
                      ; endereço do porto de entrada
    MOV R10, OUTPUT MOV SP, fim_pilha
                        ; endereço do porto de Ìsada
37
38
     MOV R5, 1
                    ; inicializa estado do processo P1
39
     MOV R6, 1
                    ; inicializa estado do processo P2
40
    MOV R4, OFF
MOV R8, O
                   ; inicializa controle de RTC; inicializa contador
41
42
     MOV R7,
            OFF
                 ; inicialmente não permite contagem; permite interrupções tipo 0
43
```

```
ET
                  ; activa interrupções
46
   ciclo:
     CALL
            P1
                    ; invoca processo P1
49
     CALL
            P2
                     ; invoca processo P2
     JMP
            ciclo
                     ; repete ciclo
51
     ***********************
    * ROTINAS
54
55
56
     CMP R5, 1
JZ P1_1
57
                 ; se estado = 1
58
  J2 P1_1
CMP R5, 2
JZ P1_2
sai_P1:
                 ; se estado = 2
59
60
61
                 ; sai do processo.
62
     RET
63
64
65
  P1_1:
     MOVB RO, [R9] ; lê porto de entrada
66
     BIT RO, 1
JZ sai_P1
67
68
                     ; se botão não carregado, sai do processo
     MOV R7, ON
MOV R5, 2
                  ; permite contagem do display ; passa ao estado 2 do P1
69
70
  P1_2:
73
     MOVB RO, [R9] ; lê porto de entrada
74
75
     BIT RO, 1
     JNZ sai_P1
                     ; se botão continua carregado, sai do processo
     MOV R7, OFF MOV R5, 1
                   ; caso contrário, desliga contagem do display; passa ao estado 1 do P1
     JMP sai_P1
```

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

This inline MATLAB code for i=1:3, disp('cool'); end; uses the \mcode{} command.1

Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci.

Listing A.3: Matlab Function

```
1 for i = 1:3
2 if i >= 5 && a ~= b % literate programming replacement
3 disp('cool'); % comment with some \text{ET}_{\text{E}}Xin it: \pi x^2
4 end
5 [:,ind] = max(vec);
6 x_last = x(1,end) - 1;
7 v(end);
8 ylabel('Voltage (\muV)');
9 end
```

¹MATLAB Works also in footnotes: for i=1:3, disp('cool'); end;

Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci.

Listing A.4: function.m

```
copyright 2010 The MathWorks, Inc.
function ObjTrack(position)

funct
```

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci. Vestibulum erat libero, scelerisque et, porttitor et, varius a, leo.

Listing A.5: HTML with CSS Code

```
margin: 0;
11
        }
      </style>
      <link rel="stylesheet" href="css/style.css" />
14
     </head>
15
    <header> hey </header>
16
     <article> this is a article </article>
17
     <body>
18
      <!-- Paragraphs are fine -->
      <div id="box">
        >
21
          Hello World
22
        23
        Hello World
24
        Hello World
25
        </div>
      <div>Test</div>
28
      <!-- HTML script is not consistent -->
29
      <script src="js/benchmark.js"></script>
30
      <script>
31
        function createSquare(x, y) {
32
          // This is a comment.
33
          var square = document.createElement('div');
34
          square.style.width = square.style.height = '50px';
          square.style.backgroundColor = 'blue';
37
38
           * This is another comment.
39
           */
          square.style.position = 'absolute';
          square.style.left = x + 'px';
          square.style.top = y + 'px';
43
44
          var body = document.getElementsByTagName('body')[0];
45
          body.appendChild(square);
        };
```

```
// Please take a look at +=
window.addEventListener('mousedown', function(event) {
    // German umlaut test: Berührungspunkt ermitteln
    var x = event.touches[0].pageX;
    var y = event.touches[0].pageY;
    var lookAtThis += 1;
});

// Script>

// Script>

// Chody>
// Chody></p
```

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listing A.6: HTML CSS Javascript Code

```
2 @media only screen and (min-width: 768px) and (max-width: 991px) {
3
     #main {
       width: 712px;
       padding: 100px 28px 120px;
    }
    /* .mono {
     font-size: 90%;
10
    } */
11
12
     .cssbtn a {
13
       margin-top: 10px;
14
       margin-bottom: 10px;
       width: 60px;
16
       height: 60px;
17
       font-size: 28px;
18
       line-height: 62px;
19
    }
20
```

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listing A.7: PYTHON Code

```
class TelgramRequestHandler(object):
def handle(self):
   addr = self.client_address[0]  # Client IP-adress
   telgram = self.request.recv(1024)  # Recieve telgram
   print "From: %s, Received: %s" % (addr, telgram)
   return
```

A Large Table

Aliquam et nisl vel ligula consectetuer suscipit. Morbi euismod enim eget neque. Donec sagittis massa. Vestibulum quis augue sit amet ipsum laoreet pretium. Nulla facilisi. Duis tincidunt, felis et luctus placerat, ipsum libero vestibulum sem, vitae elementum wisi ipsum a metus. Nulla a enim sed dui hendrerit lobortis. Donec lacinia vulputate magna. Vivamus suscipit lectus at quam. In lectus est, viverra a, ultricies ut, pulvinar vitae, tellus. Donec et lectus et sem rutrum sodales. Morbi cursus. Aliquam a odio. Sed tortor velit, convallis eget, porta interdum, convallis sed, tortor. Phasellus ac libero a lorem auctor mattis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Nunc auctor bibendum eros. Maecenas porta accumsan mauris. Etiam enim enim, elementum sed, bibendum quis, rhoncus non, metus. Fusce neque dolor, adipiscing sed, consectetuer et, lacinia sit amet, quam. Suspendisse wisi quam, consectetuer in, blandit sed, suscipit eu, eros. Etiam ligula enim, tempor ut, blandit nec, mollis eu, lectus. Nam cursus. Vivamus iaculis. Aenean risus purus, pharetra in, blandit quis, gravida a, turpis. Donec nisl. Aenean eget mi. Fusce mattis est id diam. Phasellus faucibus interdum sapien. Duis quis nunc. Sed enim.

As Table B.1 shows, the results were very satisfactory considering the characteristics of the radio link.

Table B.1: Example table

Benchmark: ANN	#Layers	#Nets	#Nodes* $(3) = 8 \cdot (1) \cdot (2)$	Critical path $(4) = 4 \cdot (1)$	Latency (T_{iter})
A1	3–1501	1	24-12008	12-6004	4
A2	501	1	4008	2004	2–2000
A3	10	2-1024	160-81920	40	60^{\dagger}
A4	10	50	4000	40	80–1200
Benchmark: FFT	FFT size [‡]	#Inputs	#Nodes*	Critical path	Latency (T_{iter})
	(1)	$(2) = 2^{(1)}$	$(3) = 10 \cdot (1) \cdot (2)$	$(4) = 4 \cdot (1)$	(5)
F1	1–10	2–1024	20–102400	4–40	6–60 [†]
F2	5	32	1600	20	40 – 1500
Benchmark: Random	#Types	#Nodes	#Networks	Critical path	Latency (T_{iter})
networks	(1)	(2)	(3)	(4)	(5)
R1	3	10-2000	500	variable	(4)
R2	3	50	500	variable	$(4) \times [1; \cdots; 20]$

^{*} Excluding constant nodes.

Values in bold indicate the parameter being varied.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

[†] Value kept proportional to the critical path: (5) = (4) * 1.5.

[‡] A size of x corresponds to a 2^x point FFT.