FORMULARIO UNIDAD DE APRENDIZAJE **ALGEBRA**

ARITMETICA

Propiedades de los números reales						
Propiedad Suma Multiplicación						
Cerradura	$a + b \in R$	a * b ∈ <i>R</i>				
Conmutativa	a + b = b + a	a * b = b * a				
Asociativa	a + (b + c) = (a + b) + c	a (b * c) = (a * b) c				
Elemento Neutro	a + 0 = a	a * 1 = a				
Inverso	a + (-a) = 0	$a * (\frac{1}{a}) = 0$				
Distributiva	a (b+c)	= ab + ac				

Signos de operación	Signos de relación		
Suma $a+b$	a < b "a menor que b"		
Resta $a-b$	a > b "a mayor que b"		
Multiplicación ab , $(a)(b)$,	a = b "a mayor que b"		
$a * b, a \times b$	Signos de agrupación		
División $\frac{a}{b}$, a/b	() Paréntesis		
Potencia a^n Raíz \sqrt{a}	[] Corchetes { } Llaves		

Jerarquía de operaciones	Leyes de los signos
Signos de agrupación	(+)(+) = (+)
Potencia y raíz	(-)(-) = (+)
Multiplicación y división 👃	(+)(-) = (-)
Suma y resta ▼	(-)(+) = (-)

	•
Criterios de divisibilidad	
Divisibilidad entre 2	Si termina en números pares
Divisibilidad entre 3	Si la suma de sus dígitos es múltiplo de 3
Divisibilidad entre 4	Si sus últimos dos dígitos son 0 o múltiplo de 4
Divisibilidad entre 5	Si su ultimo digito es 0 o 5
Divisibilidad entre 6	Si es divisible entre 2 y 3
Divisibilidad entre 10	Si su ultimo digito es 0

Números Racionales					
Fracciones Propias	Fracciones Impropias	Fracciones Mixtas			
$\frac{a}{b}$ con $a < b$	$\frac{a}{b}$ con $a \ge b$	$a^{\frac{b}{-}}con\ b < c$			

l	Operaciones	
	Suma – resta	
ſ	Con mismo denominador	Con diferente denominador
	$\frac{a}{2} \pm \frac{c}{2} - \frac{a \pm c}{2}$	$\frac{a}{2} \pm \frac{c}{2} = ad \pm bc$
	$\frac{1}{b} \pm \frac{1}{b} - \frac{1}{b}$	$\frac{\overline{b}}{b} \pm \frac{\overline{d}}{d} - \frac{\overline{bd}}{bd}$

Multiplicación

$$(a)\left(\frac{b}{c}\right) = \frac{(a)(b)}{(c)}$$
 $\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{(a)(c)}{(b)(d)}$

División

$$\frac{a}{b} \div \frac{c}{d} = \frac{(a)(d)}{(b)(c)} \qquad \frac{a}{b} \div \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{(a)(d)}{(b)(c)}$$

Potenciación

 $a^n = a \cdot a \cdot a$... donde a es la base y n el exponente $a^{-n} = \frac{1}{a^n}$ $a^m \cdot a^n = a^{m+n}$

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \left(\frac{a}{b}\right)^{m} = \frac{a}{b^{n}}$$

$$a^{0} = 1$$

 $(a^m)^n = a^{mn}$ $(a \cdot b \cdot c)^m = a^m \cdot b^m \cdot c^m$

 $\frac{a}{a^n} = a^{m-n}$

Radicación

 $\sqrt[n]{a^m} = a^{\frac{m}{n}}, \quad \text{donde a es la base, m el exponente y} \\ \quad n \text{ el indice}$

Teoremas

 $\sqrt[n]{a \cdot b \cdot c} = (a \cdot b \cdot c)^{\frac{1}{n}} = \frac{1}{a^n} \cdot \frac{1}{b^n} \cdot \frac{1}{c^n} = \sqrt[n]{a^n} \sqrt[n]{b^n} \sqrt[n]{c}$

$$\sqrt[n]{\frac{a}{b}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \frac{a^{\frac{1}{n}}}{\frac{1}{b^{\frac{1}{n}}}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{\sqrt[m]{a}} = (\sqrt[m]{a})^{\frac{1}{n}} = (a^{\frac{1}{m}})^{\frac{1}{n}} = \sqrt[nm]{a}$$

Operaciones con raíces

Suma - resta

$$a\sqrt[n]{d} + b\sqrt[n]{d} - c\sqrt[n]{d} = (a+b-c)\sqrt[n]{d}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} \cdot \sqrt[n]{c} = \sqrt[n]{a \cdot b \cdot c}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Racionalización

$$\frac{c}{\sqrt[n]{a^m}} = \frac{c}{\sqrt[n]{a^m}} \cdot \frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n-m}}} = \frac{c \cdot \sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{m+n-m}}} = \frac{c \cdot \sqrt[n]{a^{n-m}}}{\sqrt[n]{a^n}} = \frac{c \cdot \sqrt[n]{a^{n-m}}}{a}$$

Notación científica

mantisa $\rightarrow a \times 10^n \leftarrow$ potencia de 10

Suma - resta

$$a \times 10^{n} \pm c \times 10^{n} = (a \pm c) \times 10^{n}$$

Multiplicación

$$a (b x 10^n) = (a x b) x 10^n$$

$$(a \times 10^m)(b \times 10^n) = (a \times b) \times 10^{m+n}$$

División

$$\frac{b \times 10^n}{a} = (b \div a) \times 10^n \text{ con } a \neq 0 \text{ para la división}$$
$$\frac{a \times 10^m}{b \times 10^m} = (a \div b) \times 10^{m-n}$$

Potencias - raíces

$$(a \times 10^m)^n = a^n \times 10^{m \times a}$$

$$\sqrt[n]{a \times 10^m} = \sqrt[n]{a} \times \sqrt[n]{10^m}$$
 con m multiplo de n

Razones v proporciones

Razón	Proporción
$\frac{a}{b}o \ a:b \ con \ b \neq 0$	$\frac{a}{b} = \frac{c}{d} \ entonces \ b = \frac{ad}{b}$

Inversa

Regla de tres simple

$\frac{a_1}{a_2} = \frac{b_1}{x} \therefore x = \frac{a_2 b_1}{a_1}$

$\frac{a_1}{}=$	b_1	$\therefore x = \frac{a_1 b_1}{a_2 a_3 a_4 a_4}$
a_2	x	a_2

Tanto por ciento

$$\frac{a}{x} = \frac{100}{\%}$$

Realizo: Prof. Veronica Varela Ontiveros

FORMULARIO UNIDAD DE APRENDIZAJE ALGEBRA

ALGEBRA

Expresión Algebraica

Clasificación

Operaciones algebraicas

Suma

Se efectúa la suma en forma vertical u horizontal y se reducen términos semeiantes

terminos semejantes
$$a+b+c+a=2a+b+c + \frac{a+b+c}{2a+b+c}$$

Resta

Identificar minuendo y sustraendo y realizar la reducción de términos semejantes 2a + b + c

terminos semejantes
$$(2a+b+c)-(a+b)=a+c \qquad \frac{2a+b+c}{-a-b}$$

Multiplicación

Monomio por monomio

Se multiplican los coeficientes y después las bases

Ejem:
$$(2x)(3x) = 6x^2$$

Polinomio por monomio

Se multiplica cada uno de los términos del polinomio por el monomio.

Eiem:
$$(2x + y)(3x) = 6x^2 + 3xy$$

Polinomio por Polinomio

Se multiplica cada uno de los términos del primer polinomio por cada uno de los términos del segundo polinomio. Se reducen términos semejantes.

Ejem:
$$(2x + y)(3x - 5y) = 6x^2-5xy+3xy-5y^2$$

 $6x^2-2xy-5y^2$

División

Monomio entre monomio

Se realiza la división de los coeficientes y después la de las bases, aplicando leyes de los exponentes.

Ejem:
$$-\frac{8x^3}{2x} = -4x^{3-1} = -4x^2$$

Polinomio entre monomio

Se divide cada termino del polinomio entre el monomio

Ejem:
$$\frac{8x^3 + 6x^2}{-2x} = \frac{8x^3}{-2x} + \frac{6x^2}{-2x} = -4x^2 - 3x$$

Polinomio entre Polinomio

Ejem:
$$x + 1 \overline{\smash)x^2 + 3x + 2}$$

 $-x^2 - x$
 $2x + 2$
 $-2x - 2$

Productos Notables

Cuadrado de un binomio

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

Cuadrado de un trinomio

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ab + 2ab$$

Binomio conjugado
$$(a + b)(a - b) = (a^2 - b^2)$$

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Binomio de la forma

$$(mx + a)(nx + b) = mnx^2 + (a * n)x + (b * m)x + ab$$

Factorización

Factor común

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Diferencia de cuadrados

$$(a^2 - b^2) = (a + b)(a - b)$$

Trinomio cuadrado perfecto

$$a^2 \pm 2ab + b^2 = (a \pm b)^2$$

Trinomio de la forma

$$x^{2} + (a + b)x + ab = (x + a)(x + b)$$

Trinomio de la forma

$$acx^{2} + (ad + bc)x + bd = (ax + b)(cx + d)$$

Suma o diferencia de cubos

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

 $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

Suma o diferencia de exponentes impares

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1})$$

$$a^{n} - b^{n} = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

Ecuaciones de Primer grado(lineal)

Teorema: Sea la ecuación lineal ax = b

Si
$$a \neq 0$$
, $x = \frac{b}{a}$ es solución única

Si
$$a = 0$$
 pero $b \neq 0$, entonces, $ax = b$ no tiene solucion

Si
$$a = 0$$
 pero $b = 0$, todo $k \in R$ es solucion de $ax = b$

Sistemas de ecuaciones. Métodos de solución

Reducción (suma-resta)

- -Multiplicar las ecuaciones dadas por algún numero.
- -Sumar las ecuaciones equivalentes para eliminar una incógnita.
- -Resolver la ecuación y sustituir su valor en la otra ecuación.

Sustitución

- -Despejar una de las variables y sustituir en la ecuación restante.
- -Se resuelve la ecuación de 1er grado, se obtiene valor de la incógnita.
- -Los despejes se igualan y se resuelve la ecuación.

Igualación

- -Se elige una variable y se despeja de ambas ecuaciones.
- -El valor de la incógnita se sustituye en el despeje.
- -El valor que se obtiene se sustituye en cualquiera de los despejes.

Cramer (Determinantes)

$$x = \frac{\begin{bmatrix} c_1 & b_1 \\ c_2 & b_2 \end{bmatrix}}{\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}}; \quad y = \frac{\begin{bmatrix} a_1 & c_1 \\ a_2 & c_2 \end{bmatrix}}{\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}}; \quad con \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \neq 0$$

Grafico

-Pares ordenados que satisfacen ambas ecuaciones

Ecuaciones de segundo grado (cuadráticas)

La ecuación de la forma $ax^2 + bx + c = 0$, $donde\ a, b, c \in R\ y\ a \neq 0$

Propiedades de las raíces o soluciones de una ecuación Discriminante: $I = b^2 - 4ac$

Si I > 0, las raíces son reales y diferentes

Si I=0, entonces las raíces son reales e iguales, $x=-\frac{b}{2a}$

Si I < 0, entonces las raíces son complejas

Métodos de solución

Completando Trinomio Cuadrado Perfecto Se suma en ambos miembros de la igualdad $\left(\frac{b}{2}\right)^2$

Formula General

Se sustituyen valores de a, b y c en:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Factorización

Se factoriza la expresión y se iguala a cero cada factor

Realizo: Prof. Veronica Varela Ontiveros Actualizado: 20 de Sep de 2020

FORMULARIO UNIDAD DE APRENDIZAJE GEOMETRIA Y TRIGONOMETRIA

FUNCIONES EXPONENCIALES Y LOGARITMICAS

Base					
Sistemas	del sistema	Denominación			
log	а	Logaritmo de base a			
$\log_{10} = \log = \lg$	10	Logaritmo común			
$\log_e 1 = \ln$	e	Logaritmo natural			

$$\log_a x = b$$
 $a = base x = argumento b = logaritmo$
 $a^b = x$

Propiedades de los logaritmos (De cualquier base)

Para cualquier M, N, b > 0 $v \neq 0$, se cumple que:

$$\log_b 1 = 0$$

$$\log_b b = 1$$

$$\log_b M^n = n \log_b M$$

$$\log_b \sqrt[n]{M} = \frac{1}{n} \log_b M$$

$$\log_b MN = \log_b M + \log_b N$$

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

$$\log_e M = \ln M,$$

 $ln = logaritmo\ natural\ v\ e = 2.718281...$

GEOMETRIA EUCLIDIANA Ángulos

Conversión de grados a radianes v de radianes a grados

Control of the Branch of Table 1 and				
Grados a radianes	Radianes a grados			
Se multiplica el número de grados por el factor $\frac{\pi}{180^{\circ}}$ y se simplifica, esto es:	Se multiplica el número de radianes por el factor $180^{\circ}/\pi$) y se simplifica, esto es:			
$s\left(\frac{\pi}{180^{\circ}}\right)$	R(180°/ π)			

Rectas paralelas cortadas por una secante

Triángulos

 $c^2 = a^2 + b^2$

Cuadriláteros

Polígonos Clasificación

Por sus lados

- Regulares - Irregulares Por sus ángulos, Convexo Cóncavo

Elementos

Diagonales Trazadas desde un vértice

d = n - 3Totales

$$d = \frac{n(n-3)}{2}$$

Ángulos

Suma de ángulos interiores $S_t = 180^{\circ} (n-2)$

Suma de ángulos exteriores $S_e = 360^{\circ}$

Angulo interior Angulo exterior 360° e = -

Circunferencia y circulo Rectas notables

Realizo: Prof. Veronica Varela Ontiveros

0: centro AE: arco

ED: semicircunferencia

OA:radio DE: diametro

BC: secante HI: tangente

FG: cuerda KI: sagita o flecha

T: punto de tangencia

Segmento circular Semicírculo Sector circular Actualizado: 20 de Sep de 2020

Circunferencia y circulo

TRIGONOMETRIA Triangulo Rectángulo

	I cuadrante	II cuadrante	III cuadrante	IV cuadrante	
Seno	+	+	-	-	
Coseno	+	-	-	+	
Tangente	+	-	+	-	
Cotangente	Cotangente +		+	-	
Secante	+	-	-	+	
Cosecante	+	+	-	-	

•							
Grados	Rad	Sen	Cos	Tan	Csc	Sec	Cot
0°	0	0	1	0	No existe	1	No existe
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	√3
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	No existe	1	No existe	0

Identidades trigonométricas

Identidades trigonométricas de suma de ángulos				
$sen(\alpha + \beta) = (sen \alpha)(cos \beta) + (sen \beta)(cos \alpha)$				
$sen (\alpha + \beta) = (sen \alpha)(\cos \beta) + (sen \beta)(\cos \alpha)$ $cos (\alpha + \beta) = (cos \alpha)(\cos \beta) - (sen \alpha)(sen \beta)$				
$tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$				

Ángulos dobles			
Ángulos dobles $sen(2\alpha) = 2(sen\alpha)(cos\alpha)$			
$\cos(2\alpha) = 2\cos^2\alpha - 1$			
$\tan(2\alpha) = \frac{2\tan\alpha}{1-\alpha}$			
$tan(2\alpha) = \frac{1}{1 - tan^2\alpha}$			

Triangulo Oblicuángulo

Ley de los senos $\frac{a}{sen A} = \frac{b}{sen B} = \frac{c}{sen C}$

Ley de los cosenos $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac \cos B$ $c^2 = a^2 + b^2 - 2ab \cos C$

FORMULARIO UNIDAD DE APRENDIZAJE GEOMETRIA ANALITICA

GEOMETRIA ANALITICA BIDIMENSIONAL

Distancia entre dos puntos

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} =$$

División de un segmento en una razón dada

$$r = \frac{x - x_1}{x_2 - x}$$
 $r = \frac{y - y_1}{y_2 - y}$

$$r = \frac{y - y_1}{y_2 - y}$$

Punto de división dados los extremos y la razón

$$x = \frac{x_1 + rx_2}{1 + r}$$
 $y = \frac{y_1 + ry_2}{1 + r}$

$$y = \frac{y_1 + ry_2}{1 + r}$$

Punto medio de un segmento de recta

$$P_m = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Área de un polígono

PENDIENTE DE UNA RECTA

Pendiente de una recta que pasa por dos puntos

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\theta = arc tang m$$

Condición de paralelismo

$$l_1 ll l_2 \Rightarrow m_1 = m_2$$

Condición de perpendicularidad

$$m_1 m_2 = -1$$

Angulo entre rectas

$$\tan\theta=\frac{m_2-m_1}{1+m_1.m_2}$$

LUGAR GEOMETRICO

Intersecciones con los ejes Con eje "x", y=0 eje "y", x=0 Simetría con los ejes y el origen. f(x,-y), f(-x,y), f(-x,-y) Extensión de la curva...... Valores reales "x" e "y" **Asíntotas** Grafica

LINEA RECTA

Ecuación general de la recta

$$Ax + By + C = 0$$

Ecuación punto-pendiente

$$y-y_1=m(x-x_1)$$

Ecuación punto-punto

$$y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$$

Ecuación pendiente-ordenada al origen (forma ordinaria o reducida

$$y = mx + b$$

Ecuación en forma simétrica

$$\frac{x}{a} + \frac{y}{b} = 1$$

Distancia de un punto a una recta

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

FAMILIA DE RECTAS

Rectas paralelas

$$y = mx + b$$
 Con b como parámetro

Rectas concurrentes

y = mx + b Con m como parámetro

RECTAS NOTABLES EN EL TRIANGULO

CIRCUNFERENCIA

Definición y elementos

Ecuación en su forma ordinaria

$$(x-h)^2 + (y-k)^2 = r^2$$

Ecuación en su forma general

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$
, con $A = C$

Ecuación en su forma canónica

$$x^2 + y^2 = r^2$$

Análisis de la ecuación de una circunferencia

Si r es positivo la circunferencia es real

Si r es negativo la circunferencia es imaginaria

Si r es igual a cero entonces representa un punto

FAMILIA O HAZ DE CIRCUNFERENCIAS

$$(x-h)^2+(y-k)^2=p^2$$
 Con p como parámetro

COORDENADAS POLARES

Relación entre las coordenadas polares y rectangulares

PARABOLA

Parábola horizontal con vértice en el origen Ecuación Canónica: $v^2 = 4 px$ Elementos: Foco: F(p,0)Directriz: (\overline{DD}) x = -pEcuación del eje: v = 0Lado recto: $\overline{LR} = |4p|$

Si p > 0 → la parabola abre hacia la derecho Si p < 0 → la parabola abre hacia la derecho

Parábola vertical con vértice en el origen

Si p > 0 entonces la parábola es cóncava hacia arriba. Si p < 0 entonces la parábola es cóncava hacia abajo.

Parábola horizontal con vértice en (h,k)

Parábola vertical con vértice en (h,k)

ELIPSE

F(0, p)

v = -p

 $\overline{LR} = |4p|$

x = 0

Elipse horizontal con vértice en el origen

Elipse vertical con vértice en el origen

Elipse horizontal con vértice en (h,k)

Elipse vertical con vértice en (h,k)

HIPERBOLA

Ecuación Canónica:

Elementos:

Vértices: $V(\pm a,0)$ $F(\pm c,0)$ Extremos del eje : $B(0, \pm b)$ Lado recto: Excentricidad: e == (e < 1)

Asíntotas: $l_1: y = \frac{b}{a}x$ $l_2: y = -\frac{b}{a}$

Hipérbola vertical con vértice en el origen

Ecuación Canónica:

Elementos:

Vértices: $V(0,\pm a)$ Focos: $F(0,\pm c)$ Extremos del eje : B(+b, 0)Lado recto: Excentricidad: e =Asíntotas: $l_1:y = \frac{1}{2}x$ $l_2:y = -$

Hipérbola horizontal con vértice en (h,k)

Ecuación Canónica: $(x-h)^2$

Elementos:

V(h + a, k)Vértices: $F(h \pm c, k)$ Focos: Extremos del eje : $B(h, k \pm b)$ Lado recto: Excentricidad: e =Asíntotas:

Hipérbola vertical con vértice en el (h,k)

Ecuación Canónica: $(v-k)^2$ Elementos:

 $V(h, k \pm a)$ Vértices: $F(h, k \pm c)$ Focos: Extremos del eje : $B(h \pm b, k)$ Lado recto: Excentricidad: e = - = (e < 1) Asíntotas:

FORMULARIO UNIDAD DE APRENDIZAJE CALCULO DIFERENCIAL

RELACIONES Y FUNCIONES

Notación:

Una función se denota o escribe como y=f(x), donde:

- x: variable independiente
- y: variable dependiente
- f: función, regla de asignación o correspondencia

Dominio, contra dominio y rango de una función

Dada una función:, se dice :

A es el dominio (D_f) y B es el contradominio (C_f) Rango (R_f)

Propiedades de las desigualdades

Sean a, b, $c \in R$

 $Si \ a > b \ y \ b > c$, entonces a > c

Si a > b, entonces a + c > b + c y a - c > b - c

Si a > b y c > 0, entonces ac > bc y $\frac{a}{c} > \frac{b}{c}$

Si a > b y c < 0, entonces ac < bc y $\frac{a}{c} < \frac{b}{c}$

Tabla de intervalos

Desigualdad	Intervalo	Grafica
x > a	(a,∞)	-
x < a	$(-\infty,a)$	<u> </u>
$x \ge a$	[<i>a</i> ,∞)	
$x \le a$	(-∞, a]	-
a < x < b	(a,b)	◆ () →
$a \le x \le b$	[a,b]	
$a < x \le b$	(a, b]	()
$a \le x < b$	[a, b)	*[) *
$-\infty < \chi < \infty$	$(-\infty,\infty)$	

Operaciones con funciones

$$f(x)+g(x)=(f+g)(x), D_f\cap D_g$$

$$f(x)-g(x)=(f-g)(x), D_f\cap D_g$$

$$f(x) \cdot g(x) = (f \cdot g)(x), D_f \cap D_g$$

$$\frac{f(x)}{g(x)} = \left(\frac{f}{g}\right)(x), \{x \in D_f \cap D_g | g(x) \neq 0\}$$

Función composición (función de funciones)

$$(f \circ g)(x) = f(g(x))$$

$$D_{f \circ a}$$
: $\{x \mid x \in D_a \ y \ g(x) \in D_f\}$

LIMITES

Teoremas

$$\lim_{x\to 2}(c)=c$$

$$\lim_{x \to a} (x) = a$$

$$\lim_{x\to a}(x)=a$$

$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{si } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

Limites Indeterminados:

Son aquellos cuyo resultado es de la forma $\frac{\upsilon}{0}$ consiguiente es necesario eliminar la indeterminación.

Casos de factorización (para recordar)

$$ax^n + bx^{n-1} = x^{n-1}(ax + b)$$

$$a^2 - b^2 = (a + b)(a - b)$$

$$a^2 + 2ab + b^2 = (a+b)^2$$

$$x^{2} + x(a + b) + ab = (x + a)(x + b)$$

$$(a^3 \pm b^3) = (a \pm b)(a^2 \mp ab + b^2)$$

Limites cuando x tiende al infinito

$$\lim_{x\to\infty}\frac{c}{x^n}=0 \text{ , con } c \text{ constante}$$

CONTINUIDAD

Una función f(x) es continua en el punto $x_0 \in R$ si cumple con las siguientes condiciones:

- 1. $f(x_0)$ está definida.
- 2. $\lim_{x \to x} f(x)$ existe.
- $3. \quad \lim_{x \to x} f(x) = f(x_o).$

DERIVADA

Derivada por definición

Sea f(x) una función , se define a su f(x):

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretación geométrica de la derivada

 Δx : incremento en x Δy : incremento en y

Realizo: Prof. Veronica Varela Ontiveros

Derivadas de funciones algebraicas

$$\frac{d}{dx}c = 0$$

$$\frac{d}{dx}x = 1$$

$$\frac{d}{dx}c \cdot v = c \cdot \frac{dv}{dx}$$

$$\frac{d}{dx}(u \pm v \pm w) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx}$$

$$\frac{d}{dx}x^n = n \cdot x^{n-1}$$

$$\frac{d}{dx}v^n = n \cdot v^{n-1} \cdot \frac{dv}{dx}$$

$$\frac{d}{dx}\sqrt[n]{v} = \frac{1}{n\sqrt[n]{v^{n-1}}}\frac{dv}{dx}$$

$$\frac{d}{dx}\sqrt{v} = \frac{\frac{dv}{dx}}{2\sqrt{v}}$$

$$\frac{d}{dx}(u \cdot v) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

$$\frac{d}{dx}\left(\frac{c}{v}\right) = -\frac{c}{v^2}\frac{dv}{dx}$$

$$\frac{d}{dx} \left(\frac{v}{c} \right) = \frac{1}{c} \frac{dv}{dx}$$

Regla de la cadena

$$\frac{dy}{dx} = \frac{d}{dx} (g \circ f)(x) = \frac{d}{dx} g(f(x)) = \frac{dy}{du} \cdot \frac{du}{dx}$$

Derivadas de funciones trascendentes

Trigonométricas

$$\frac{d}{dx}\operatorname{sen}(v) = \cos(v) \cdot \frac{d}{dx}v$$

$$\frac{d}{dx}\cos(v) = -\operatorname{sen}(v) \cdot \frac{d}{dx}v$$

$$\frac{d}{dx}\tan(v) = \sec^2(v) \cdot \frac{d}{dx}v$$

$$\frac{d}{dx}\cot(v) = -csc^2(v) \cdot \frac{d}{dx}v$$

$$\frac{d}{dx}\sec(v) = \sec(v) \cdot \tan(v) \cdot \frac{d}{dx}v$$

$$\frac{d}{dx}\csc(v) = -\csc(v) \cdot \cot(v) \cdot \frac{d}{dx}v$$

Inversas Trigonométricas

$$\frac{d}{dx}(arc\ sen\ v) = \frac{1}{\sqrt{1-v^2}}\,\frac{dv}{dx}$$

$$\frac{d}{dx}(arc\cos v) = -\frac{1}{\sqrt{1-v^2}}\frac{dv}{dx}$$

$$\frac{d}{dx}(arc\ tan\ v) = \frac{1}{1+v^2}\frac{dv}{dx}$$

$$\frac{d}{dx}(arc\ cot\ v) = -\frac{1}{1+v^2}\frac{dv}{dx}$$

$$\frac{d}{dx}(arc\ sec\ v) = \frac{1}{v\sqrt{v^2 - 1}} \frac{dv}{dx}$$

$$\frac{d}{dx}(arc\ csc\ v) = -\frac{1}{v\sqrt{v^2 - 1}}\frac{dv}{dx}$$

Logarítmicas

$$\frac{d}{dx} Ln \ v = \frac{\frac{dv}{dx}}{v}$$

$$\frac{d}{dx} log_b(v) = \frac{log_b \ e}{v} \cdot \frac{dv}{dx}$$

Exponenciales

$$\frac{d}{dx}e^v = e^v \cdot \frac{dv}{dx}$$

$$\frac{d}{dx}a^v = a^v \cdot \ln a \ \frac{dv}{dx}$$

$$\frac{d}{dx}u^{\nu} = v \cdot u^{\nu-1}\frac{du}{dx} + \ln u \cdot u^{\nu} \frac{dv}{dx}$$

APLICACIONES

Recta Tangente y normal a la curva

Recta Tangente Recta normal

$$y - y_1 = \frac{dy}{dx}(x - x_1)$$
 $y - y_1 = -\frac{1}{\underline{dy}}(x - x_1)$

Angulo entre curvas

$$\tan \theta = \frac{f'(x_o) - g'(x_o)}{1 + f'(x_o) \cdot g'(x_o)}$$

Máximos y mínimos de una función

Criterio de la 1era derivada

- a) Si la derivada cambia de + a es un máximo local
- b) Si la derivada cambia de a + es un mínimo local
- c) Si la derivada no cambia de signo no existe
- Criterio de la 2da derivada

máximo ni mínimo

- a) Si la 2da derivada es mayor que 0 es un mínimo
- b) Si la 2da derivada es menor que 0 es un máximo

Intervalos de crecimiento

- a) Creciente en (a,b)si f'(x) > 0
- b) Decreciente en (a, b)si f'(x) < 0

Intervalos de concavidad:

- a) Si f''(x) < 0 : cóncava hacia arriba
- Si f''(x) > 0 : cóncava hacia abajo
- Si f''(x) = 0: tiene un punto de inflexion

Identidades trigonométricas (para recordar)

Reciprocas
$$sen \theta = \frac{1}{\csc \theta}$$
 $cos \theta = \frac{1}{\sec \theta}$
 $tan \theta = \frac{1}{\cot \theta}$
 $csc \theta = \frac{1}{sen \theta}$
 $sec \theta = \frac{1}{\cos \theta}$
 $ctg \theta = \frac{1}{\tan \theta}$

De cociente

De cociente
$$\frac{\sec n \alpha}{\cos \alpha} = \tan \alpha$$

$$\frac{\sec n^2 \alpha + \cos^2 = 1}{\tan^2 \alpha + 1 = \sec \alpha}$$

$$1 + \cot^2 \alpha = \csc^2$$

Pitagóricas

$$tan^2 \alpha + 1 = sec^2 \alpha$$

$$1 + ctg^2 \alpha = csc^2 \alpha$$

Ángulos dobles

$$sen(2\alpha) = 2(sen\alpha)(cos\alpha)$$

$$\cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\tan\alpha$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$

Realizo: Prof. Veronica Varela Ontiveros

FORMULARIO UNIDAD DE APRENDIZAJE CALCULO INTEGRAL

Integrales inmediatas

1.
$$\int (du + dv - dw) = \int du + \int dv - \int dw$$

$$2. \int a \, dv = a \int dv$$

$$3. \int dx = x + C$$

4.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$

5.
$$\int v^n dv = \frac{v^{n+1}}{n+1} + C, n \neq -1$$

$$6. \int \frac{dv}{v} = \ln[v] + C$$

$$7. \int a^{\nu} d\nu = \frac{a^{\nu}}{\ln a} + C$$

$$8. \int e^{v} dv = e^{v} + C$$

$$9. \int sen \ v \ dv = -\cos v + C$$

$$10. \int \cos v \, dv = \sin v + C$$

11.
$$\int \tan v \, dv = -\ln|\cos v| + C = \ln|\sec v| + C$$

$$12. \int \cot v \, dv = \ln|senv| + C$$

13.
$$\int \sec v \, dv = \ln|\sec v + \tan v| + C$$

$$14. \int \csc v \, dv = \ln|\csc v - \cot v| + C$$

$$15. \int \sec^2 v \ dv = \tan v + C$$

$$16. \int csc^2 v dv = -\cot v + C$$

17.
$$\int \sec v \tan v \, dv = \sec v + C$$

$$18. \int \csc v \cot v \, du = -\csc v + C$$

$$19. \int \frac{dv}{v^2 + a^2} = \frac{1}{a} arc \tan\left(\frac{v}{a}\right) + C$$

$$20. \int \frac{dv}{v^2 - a^2} = \frac{1}{2a} \ln \left| \frac{v - a}{v + a} \right| + C$$

$$21. \int \frac{dv}{a^2 - v^2} = \frac{1}{2a} \ln \left| \frac{a + v}{a - v} \right| + C$$

$$22. \int \frac{dv}{\sqrt{a^2 - v^2}} = arc \operatorname{sen} \frac{v}{a} + C$$

23.
$$\int \frac{dv}{\sqrt{v^2 \pm a^2}} = \ln\left(v + \sqrt{v^2 \pm a^2}\right) + C$$

$$24. \int \frac{dv}{v\sqrt{v^2 - a^2}} = \frac{1}{a} arc \sec \frac{v}{a} + C$$

25.
$$\int \sqrt{a^2 - v^2} \, dv = \frac{v}{2} \sqrt{a^2 - v^2} + \frac{a^2}{2} \arcsin \frac{v}{a} + C$$

26.
$$\int \sqrt{v^2 \pm a^2} \, dv = \frac{v}{2} \sqrt{v^2 \pm a^2} \pm \frac{a^2}{2} \ln \left(v + \sqrt{u^2 \pm a^2} \right) + C$$

Integrales de diferenciales trigonométricas

Integral de la forma	Emplear identidad
$\int sen^m v dv,$ $\int cos^n v dv,$	$sen^{2}x = 1 - cos^{2}x$ $cos^{2}x = 1 - sen^{2}x$
con m y n impar	
$\int tan^n v dv,$ $\int cot^n v dv,$ $con n entero$ $par e impar$	$tan^{2}x = sec^{2}x - 1$ $cot^{2}x = csc^{2}x - 1$
$\int sec^n v dv,$ $\int csc^n v dv,$ $con n par$	$sec^{2}x = 1 + tan^{2}x$ $csc^{2}x = 1 + cot^{2}x$

$\int tan^m sec^n v dv,$ $\int cot^m csc^n v dv,$ $con n par$ $m par e impar$	$ sec^{2}x - tan^{2}x = 1 csc^{2}x - cot^{2}x = 1 $				
$\int sen^m v dv,$ $\int cos^n v dv,$	$senvcosv = \frac{1}{2}sen \ 2v$ $sen^{2}v = \frac{1}{2} - \frac{1}{2}cos \ 2v$				
con m y n par	$\cos^2 v = \frac{1}{2} + \frac{1}{2}\cos 2v$				
$\int senmx cosnx dx$	$-\frac{\cos(m+n)x}{2(m+n)} - \frac{\cos(m-n)x}{2(m-n)} + C$				
$\int senmx sen nx dx$	$-\frac{\operatorname{sen}(m+n)x}{2(m+n)} + \frac{\operatorname{sen}(m-n)x}{2(m-n)} + C$				
$\int cosmx \ cosnx \ dx$	$\frac{\operatorname{sen}(m+n) x}{2(m+n)} + \frac{\operatorname{sen}(m-n) x}{2(m-n)} + C$ $\operatorname{con} m \neq n$				

METODOS DE INTEGRACIÓN

Integración por sustitución trigonométrica

Algunas integrales que involucran expresiones de la forma $\sqrt{a^2-u^2}$, $\sqrt{u^2+a^2}$ y $\sqrt{u^2-a^2}$, deben resolverse utilizando las siguientes transformaciones:

Caso	Triángulo	Cambio-diferencial	Transformación
$\sqrt{a^2 - u^2}$	a/u	$senz = \frac{u}{a}$ $u = asenz$ $du = acoszdz$	$ \sqrt{a^2 - u^2} \\ = a \cos z $
$\sqrt{u^2 + a^2}$	$\frac{z}{a}u$	$tanz = \frac{u}{a}$ $u = atanz$ $du = asec^2 dz$	$ \sqrt{u^2 + a^2} \\ = asecz $
$\sqrt{u^2-a^2}$	u/z/a	$secz = \frac{a}{u}$ $u = asecz$ $du = asecztandz$	$ \sqrt{u^2 - a^2} \\ = atanz $

Realizo: Prof. Veronica Varela Ontiveros Actualizado: 20 de Sep de 2020

Integración por partes

$$\int u \, dv = u \cdot v - \int v \, du$$

Donde:

- 1. u es una función fácil de derivar
- dv es una función fácil de integrar
- $\int vdu$ es mas sencilla que la integral inicial

Integración por fracciones parciales

Integrales de la forma:

$$\int \frac{P(x)}{Q(x)} dx$$

 $\int \frac{P(x)}{O(x)} dx$ Donde P(x) y Q(x) son polinomios tales que el grado P(x) es menor

Caso I.

El denominador tiene solo factores de primer grado que no se repiten.

A cada factor de la forma: ax + b, le corresponde una fracción de la forma $\frac{A}{2x+h}$. Donde A es una constante por determinar.

Caso II.

Los factores del denominador son todos de 1er grado y algunos se repiten. Si se tiene un factor de la forma $(ax + b)^n$, se desarrolla una suma como sigue:

$$\frac{A}{(ax+b)^n} + \frac{B}{(ax+b)^{n-1}} + \frac{C}{(ax+b)^{n-2}} + ... + \frac{Z}{(ax+b)^n}$$

Donde A, B, C y Z son constantes por determinar.

Caso III

El denominador contiene factores de segundo grado y ninguno de ellos se repite. A todo factor de la forma $ax^2 + bx + c$, le corresponde una fracción de la forma:

$$\frac{Ax+B}{ax^2+bx+c}$$

Donde A y Bson constantes por determinar.

Caso IV

Los factores del denominador son todos de segundo grado y algunos se repiten. Si existe algún factor de segundo grado de la forma $(ax^2 + bx + c)^n$, se desarrolla una suma de n fracciones parciales, de la

$$\frac{Ax + B}{ax^2 + bx + c} + \frac{Cx + D}{\left(ax^2 + bx + c\right)^2} + \dots + \frac{Vx + W}{\left(ax^2 + bx + c\right)^{n-1}} + \frac{Yx + Z}{\left(ax^2 + bx + c\right)^n}$$

Constante de integración

Dada integral indefinida $\int f'(x)dx = F(x) + C$ donde C recibe el nombre de constante de integración.

APLICACIONES DE LA INTEGRAL

Integral definida

Representa el área que forma la función f(x) con el eje X en el intervalo [a, b]

Teorema fundamental f(x) dx = F(b) - F(a)a =límite inferior

b =límite superior

Calculo de una integral definida

- Se integra la diferencial de la función
- 2. Se sustituye la variable de la integral que se obtuvo v los resultados se restan para obtener el valor de la integral definida.

Propiedades de la integral definida

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{b} cf(x)dx = c[F(b) - F(a)] \quad \text{donde } c \text{ es una constante}$$

$$\int_{a}^{b} (f(x) \pm g(x)) = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \quad \text{Con}_{c \in [a,b]}$$

Área baio la curva

El área limitada por la curva y = f(x) continua en [a, b], el eje X y las rectas x = a, x = b, es:

$$Area = \int_{a}^{b} f(x)dx = \int_{a}^{b} ydx$$

El área limitada por la curva x = f(y) continua en [c,d], el eje Y y las rectas y=c,y=d, es:

$$Area = \int_{c}^{d} f(y)dy = \int_{a}^{b} xdy$$

Área entre curvas planas

El área comprendida entre las curvas f(x) y g(x), tomando rectángulos de base dx, está definida como:

Volumen de solidos de revolución

Método de discos

Se utiliza cuando el eje de rotación forma parte del contorno del área plana.

Método de arandelas

Se utiliza cuando el eje de rotación forma parte del contorno del área plana.

 $[f(x)]^2 - [g(x)]^2 dx$

Método de capas

El volumen de la capa se expresa en función de la circunferencia media, la altura y el espesor de la capa cilíndrica, generada al girar el rectángulo.

$$\lim_{n\to\infty}\sum_{i=1}^{n}2\pi y_i f(y_i)\Delta y = 2\pi \int_{c}^{d} y f(y) dy$$

Longitud de arco

Sea la función y = f(x) continua en el intervalo [a, b], entonces la longitud de arco se define como:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)^{2}]} dx$$

Realizo: Prof. Veronica Varela Ontiveros