Урок 3. Збіжність

Задача 3.1. Нехай $x_n \to x$ при $n \to \infty$ і $x_n \in M$. Доведіть, що $x \in \overline{M}$.

Розв'язок.

$$x_{n} \to x \Rightarrow \forall O(x) \in \tau \; \exists N > 0 \colon \forall n \geq N \; x_{n} \in O(x) \Rightarrow$$

$$\Rightarrow \forall O(x) \in \tau \; O(x) \cap \{x_{1}, x_{2}, ...\} \neq \emptyset, \; x_{n} \in M \Rightarrow$$

$$\Rightarrow \forall O(x) \in \tau \; O(x) \cap M \neq \emptyset \Rightarrow x \in \overline{M} \; .$$

Коментар. Оскільки x є границею послідовності $\{x_n\}_{n=1}^{\infty}$, то за означенням для довільного околу O(x) точки x існує таке натуральне число N, що для всіх чисел $n \geq N$ елементи x_n лежать в околі O(x). Отже, перетин довільного околу O(x) з послідовністю $\{x_n\}_{n=1}^{\infty}$ є непорожнім. Оскільки $x_n \in M$, з цього випливає, що перетин довільного околу O(x) з множиною M є непорожньою множиною, тобто точка x є точкою дотику множини M.

Задача 3.2. Чи вірно, що для довільної точки $x\in M$ знайдеться така послідовність $x_n\in M$, що $x_n\to x$ при $n\to\infty$?

Розв'язок. Такою послідовністю є стаціонарна послідовність $\left\{x_n\right\}_{n=1}^{\infty}$, тобто послідовність, всі елементи якого, починаючи з деякого номера дорівнюють $x:\exists N>0\colon x_n=x \ \forall n\geq N$.

Задача 3.3. Наведіть приклад простору (X, τ) , в якому деяка точка $x \in \Gamma$ граничною для множини $X \setminus \{x\}$ і жодна послідовність з $X \setminus \{x\}$ не збігається до x.

Pозв'язок. Нехай X — довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \left\{ \emptyset, X \setminus \left\{ x_1, x_2, ..., x_{n_1} ... \right\} \right\}.$$

Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності. Припустимо, що в просторі існує нестаціонарна послідовність $\left\{x_n\right\}_{n=1}^{\infty}$, що збігається до x. Тоді, взявши в якості околу точки x множину U, яка утворюється викиданням із X всіх членів послідовності $\left\{x_n\right\}_{n=1}^{\infty}$, які відрізняються від точки x (якщо ця точка належить послідовності), ми дійдемо до протиріччя з тим, що окіл U мусить містити всі точки послідовності $\left\{x_n\right\}_{n=1}^{\infty}$, починаючи з деякого номера. Якщо точка x не належить цій послідовності, то послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ буде вилучена повністю. Отже, в цьому випадку існує окіл U точки x, який не містить жодного елементу x_n , тобто послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ не збігається до x.

На другому етапі доведення розглянемо підмножину $X \setminus \{x\}$, що утворюється шляхом видалення із X однієї точки x. Очевидно, точка x є граничною точкою

множини X. Справді, якщо U — довільний відкритий окіл точки x, то за означенням відкритих в X множин, доповнення $X \setminus U$ ϵ не більш ніж зліченим.

$$U \in \tau \Rightarrow U = X \setminus \{x_1, x_2, ..., x_n, ...\} \Rightarrow$$

 $\Rightarrow X \setminus U = X \setminus X \setminus \{x_1, x_2, ..., x_n, ...\} = \{x_1, x_2, ..., x_n, ...\} \Rightarrow$
 $\Rightarrow A \setminus U \neq \emptyset$ (оскільки card $A = c$).

Отже, доповнення $X \setminus U$ не може містити незлічену множину X, а значить, в околі точки x міститься незліченна множина точок простору X, а значить, точка x є граничною точкою множини X. З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x \notin A$ випливає, що жодна послідовність точок із множини X не може збігатися до точки x.

Задача 3.4. Наведіть приклад множини з двома різними топологіями, в яких збігаються класи збіжних послідовностей, що містять нескінченну кількість різних точок.

Розв'язок. Класи збіжних послідовностей збігаються, коли будь-яка послідовність, яка збігається в топологічному просторі (X, τ_1) збігається і в (X, τ_2) до тієї ж точки, і навпаки.

Нехай першим простором ϵ тривіальний топологічний простір $(X,\{0,X\})$, а другим — простір Зариського $(X,\{\emptyset,X,X\setminus\{x_1,x_2,...,x_n\}\})$. Як в тривіальному просторі, так і просторі Зариського будь-яка послідовність, що містять нескінченну кількість різних точок, ϵ збіжною і збігається до всіх точок простору, тобто класи збіжних послідовностей збігаються.

Задача 3.5. Нехай X=(0,1], а топологія τ визначається множинами \emptyset , X і усіма можливими інтервалами (a,b), де $a,b\in(0,1)$, а також їх довільними об'єднаннями. Знайдіть границю послідовності $x_n=\frac{1}{n}, n=1,2,...$

Poзв'яз $o\kappa$. Околами будь-якої точки $x_0 \in (0,1]$ ϵ інтервали (a_α,b_α) , де $\alpha \in A$, та їх об'єднання $O(x) = \bigcup_{\alpha \in A} (a_\alpha,b_\alpha)$, що містять точку x_0 .

1)
$$\forall x_0 \in (0,1) \, \forall O(x) = \bigcup_{\alpha \in A} (a_\alpha, b_\alpha) \, a \delta o \, O(x) = (a,b)$$

$$\exists N = \left[\frac{1}{\inf\limits_{\alpha}\left\{a_{\alpha}\right\}}\right] a \delta o \ N = \left[\frac{1}{a}\right] : x_{n} < \inf\limits_{\alpha}\left\{a_{\alpha}\right\} a \delta o \ x_{n} < a \ \forall n \geq N \ \Rightarrow x_{0} \neq \lim_{n \to \infty} x_{n} \ .$$

$$2) \ \forall a,b \in \left(0,1\right) \ 1 \not\in \left(a,b\right), 1 \neq \bigcup_{a,b} \left(a,b\right), \text{ ane } 1 \in X \ , \ \left\{\frac{1}{n}\right\}_{n=1}^{\infty} \in \left(0,1\right] = X \ \Rightarrow \ \lim_{n \to \infty} \frac{1}{n} = 1.$$

Коментар. Розглянемо довільну точку $x_0 \in (0,1)$. Її довільним околом ϵ або окремий інтервал або об'єднання інтервалів, що містить точку x_0 . Якщо околом ϵ окремий інтервал (a,b), то для всіх номерів $n \geq \left[\frac{1}{a}\right]$ всі числа x_n менше a, тобто не належать околу (a,b). Якщо ж околом ϵ об'єднання інтервалів $\bigcup_{\alpha \in A} (a_\alpha,b_\alpha)$, то для всіх

номерів $n>\left[\dfrac{1}{\inf\limits_{\alpha}\left\{a_{\alpha}\right\}}\right]$ виконується нерівність $x_n<\inf\limits_{\alpha}\left\{a_{\alpha}\right\}$, тобто числа x_n не належать околу. Отже, жодна точка $x_0\in(0,1)$ не може бути границею послідовності $\left\{\dfrac{1}{n}\right\}_{n=1}^{\infty}$, тому що довільний її окіл містить лише скінченну кількість елементів цієї послідовності.

Точки $x_0 = 1$ не належить жодному околу виду (a,b), де $a,b \in (0,1)$ або їх об'єднанню. Отже, в топології існує єдиний окіл, що містить точку $x_0 = 1$, а саме множина-носій (0,1]. Цей напівінтервал містить всі елементи послідовності, отже, $\lim_{n\to\infty} \frac{1}{n} = 1$.

Задача 3.6. Нехай X=(0,1], а топологія τ визначається множинами \varnothing , X, інтервалами (0,a), де $a,b\in(0,1)$, та множинами $(0,a)\cup\{1\}$. Доведіть, що в просторі (X,τ) послідовність $x_n=\frac{n-1}{n}, n=1,2,...$ не має границі. Pose's

1).
$$\forall x_0 \in (0,1) \ \forall O(x) = (0,a) \ a foo \ O(x) = (0,a) \cup \{1\} \ \exists N = \left[\frac{1}{1-a}\right] : x_n > a \ \forall n \ge N \Rightarrow x_0 \ne \lim_{n \to \infty} \frac{n-1}{n}.$$

2).
$$\forall a \in (0,1) \exists N = \left\lceil \frac{1}{1-a} \right\rceil : x_n > a \ \forall n \ge N \implies 1 \ne \lim_{n \to \infty} \frac{n-1}{n}.$$

Коментар. Як і в попередній задачі, жодна точка інтервалу (0,1) не може бути границею послідовності $x_n = \frac{n-1}{n}, n = 1, 2, ...$ оскільки її довільний окіл має вигляд (0,a) або $(0,a) \cup \{1\}$ і містить лише скінченну кількість елементів цієї послідовності.

Крім того, околами точки x=1 є об'єднання та сам напівінтервал X=(0,1]. Щоб точка x=1 була границею послідовності необхідно, щоб її *довільний* окіл містив всі елементи послідовності, починаючи з деякого номера. Відносно множини ця умова виконується. Але об'єднання $(0,a)\cup\{1\}$ побудовано так, що воно містить лише скінченну кількість елементів послідовності $x_n=\frac{n-1}{n}, n=1,2,...$ (решта розташована між точкою a та 1). Таким чином, послідовність не має жодної границі в даному просторі. \blacksquare

Задача 3.7. Доведіть, що в топологічному просторі з тривіальною топологією кожна послідовність ϵ збіжною до довільної точки простору.

Розв'язок. Тривіальна топологія має вигляд $\{\varnothing,X\}$. Отже, для довільної послідовності $\{x_n\}_{n=1}^{\infty}$ довільний окіл (в даному випадку — множина-носій X) довільної точки x містить всі елементи послідовності, тобто $\forall x,x_n\in X$ $x=\lim_{n\to\infty}x_n$.

Задача 6.8. Нехай X — довільна нескінченна множина, а au — топологія Зариського на X . Доведіть, що в (X, au) кожна послідовність, яка містить нескінченну кількість різних точок, збігається до довільної точки множини X .

Розв'язок. Топологія Зариського має вигляд $\{\emptyset, X, X \setminus \{x_1, x_2, ..., x_n\}\}$. Якщо послідовність містить нескінченну кількість різних точок, то вона не може цілком міститись в жодній скінченній множині. Отже, починаючи з деякого номеру, вона міститься в доповненні до скінченної множини, тобто у відкритій множині із топології $\{\emptyset, X, X \setminus \{x_1, x_2, ..., x_n\}\}$. З іншого боку, ця довільна множина є околом будь-якої своєї точки. Таким чином, в топології Зариського будь-яка послідовність, що містить нескінченну кількість різних точок, збігається до всіх точок множини X.

Задача 3.9. Якій умові має задовольняти топологія, щоб єдиність границі збіжної послідовності мала місце?

Pозв'язок. Для того щоб будь-яка збіжна послідовність мала єдину границю, ми повинні вимагати, щоб ця послідовність містилася в довільному околі границі, починаючи з деякого номера, і ця умова не виконувалась щодо околів іншої точки. Отже, необхідно, щоб для довільних різних точок x і y існували околи, що не перетинаються (такі простори називаються хаусдорфовими, або просторами T_2).

Задача 3.10. Якщо простір T має злічену базу (задовольняє другій аксіомі зліченності), він ϵ сепарабельним.

Доведення. Нехай $B = \left\{ B_n \right\}_{n=1}^{\infty}$ — деяка зліченна база в просторі T. Утворимо зліченну множину $M = \left\{ a_n \right\}_{n=1}^{\infty}$, вибравши по одній точці $a_n \in B_n$, і доведемо, що множина M є всюди щільною, тобто в довільному околі довільної точки простору E існує точка із множини M. Дійсно, нехай x_n — довільна точка із простору T, а U_0 — її довільний окіл. Оскільки $B = \left\{ B_n \right\}_{n=1}^{\infty}$ — база простору T, існує окіл U_{n_0} , що цілком міститься в околі U_0 . Отже, точка $a_{n_0} \in U_{n_0}$ також належить околу U, тобто множина M є всюди щільною.

Задача 3.11. Доведіть, що сепарабельний простір не обов'язково має зліченну базу. Доведення. Нехай X— *незлічена* множина, на якому введено топологію Зариського, яка складається із порожньої множини \emptyset , X і всіх можливих підмножин U із простору X, доповнення до яких $X \setminus U$ є скінченними множинами (тобто утворені шляхом викидання із множини X всіх можливих скінченних множин.)

$$\tau = \{\emptyset, X, X \setminus \{x_1, x_2, ..., x_n\}\}$$

Розглянемо довільну нескінченну підмножину M простору X. Її замикання ϵ нескінченною і замкненою множиною.

card
$$M = \infty$$
, $\overline{M} = M$.

Це можливо лише тоді, коли $\overline{M}=X$. Оскільки це твердження розповсюджується на всі нескінченні підмножини, воно виконується і для будь-якої зліченої підмножини простору X. Отже, простір $T=(X,\tau)$ є сепарабельним.

Тепер доведемо, що простір T не може мати зліченої бази. Справді, припустимо, що існує $\beta = \left\{B_n\right\}_{n=1}^\infty$ — злічена база в просторі T, x_0 — довільна точка із множини X, а $A_0 = \bigcap_k B_{n_k}$ — перетин всіх елементів із бази β , що містять точку x_0 . Доведемо, що $A_0 = \left\{x_0\right\}$. Для цього припустимо, що існує точка $y_0 \in A_0$, $y_0 \neq x_0$. Покладемо $V = X \setminus \left\{y_0\right\}$. Ця множина належить топології Зариського, тобто є відкритою. Звідси випливає, що існує множина $B_{n_0} \in \beta$, така що $x_0 \in B_{n_0} \subset V$. Це означає, що множина A_0 , а значить, і точка y_0 , належить множині V, що суперечить її означенню. Таким чином, $A_0 = \left\{x_0\right\}$. Розглянемо доповнення $X \setminus A_0 = \bigcup_k \left(X \setminus B_{n_k}\right)$ і зауважимо, що кожна підмножина $X \setminus B_{n_k}$ містить скінченну кількість точок (оскільки вона є замкненою в топології Зариського і відрізняється від множини X). Таким чином, множина $\bigcup_k \left(X \setminus B_k\right)$ є зліченною (права частина рівності), а множина $X \setminus A_0 = X \setminus \left\{x_0\right\}$ є незліченою (ліва частина рівності). Отримане протиріччя спростовує наше припущення.