Missing Data 2
MSBBSS01: Survey data analysis

Stef van Buuren, Gerko Vink

Nov 16, 2020

Generating imputations, univariate

Generating imputations, multivariate

Workflow after generating imputation

Special topic 1: Practicalities

Special topic 2: Multilevel data

Wrap up

Schedule

Slot	Time	What	Topic
A	10.00-10.45	L	Generating imputations
	10.45-11.00		COFFEE/TEA
В	11.00-11.45	L	Workflows, special topics
	11.45-12.00		COFFEE/TEA
C	12.00-13.00	Р	Three vignettes

Generating imputations, univariate

Relation between temperature and gas consumption

We delete gas consumption of observation 47

Predict imputed value from regression line

${\sf Predicted\ value} + {\sf noise}$

${\sf Predicted\ value+noise+parameter\ uncertainty}$

Imputation based on two predictors

Drawing from the observed data

Predictive mean matching

PMM: Add two regression lines

PMM: Predicted given 5°,C, 'after insulation'

PMM: Define a matching range $\hat{\mathbf{y}} \pm \delta$

PMM: Select potential donors

PMM: Bayesian PMM: Draw a line

PMM: Define a matching range $\hat{\mathbf{y}} \pm \delta$

PMM: Select potential donors

Imputation of a binary variable

► Logistic regression

$$\Pr(y_i = 1 | X_i, \beta) = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)}$$

Fit logistic model

Draw parameter estimate

Read off the probability

Impute ordered categorical variable

- ightharpoonup K ordered categories $k=1,\ldots,K$
- ordered logit model, or
- proportional odds model

$$\Pr(y_i = k | X_i, \beta) = \frac{\exp(\tau_k + X_i \beta)}{\sum_{k=1}^K \exp(\tau_k + X_i \beta)}$$

Fit ordered logit model

Read off the probability

Built-in imputation functions

https://amices.org/mice/reference/index.html

Generating imputations, multivariate

Issues in multivariate imputation

- ▶ The predictors Y_{-j} themselves can contain missing values; ▶ "Circular" dependence can occur, where $Y_j^{\rm mis}$ depends on Y_h^{mis} , and vice versa;
- ▶ Variables are often of different types (e.g., binary, unordered, ordered, continuous);
- \triangleright Especially with large p and small n, collinearity or empty cells can occur;
- ▶ The ordering of the rows and columns can be meaningful, e.g., as in longitudinal data;
- The relation between Y_j and predictors Y_{-j} can be complex, e.g., nonlinear, or subject to censoring processes;
- Imputation can create impossible combinations, such as pregnant grandfathers.

Missing data patterns

Three general strategies

- ► Monotone data imputation
- Joint modeling
 Fully conditional specification (FCS)

Imputation of monotone pattern

Imputation by joint modelling

Imputation by joint modelling - next iteration

Imputation by joint modelling - next iteration

Imputation by fully conditional specification

Imputation by fully conditional specification - next iteration

Imputation by fully conditional specification - next iteration

How many iterations?

- Quick convergence5–10 iterations is adequate for most problems
- lacktriangle More iterations is λ is high
- ► Inspect the generated imputations
- ▶ Monitor convergence to detect anomalies

Non-convergence

Convergence

Number of iterations

Watch out for situations where

- ▶ the correlations between the Y_j's are high;
 ▶ the missing data rates are high; or
- constraints on parameters across different variables exist.

Multiple imputation in mice

Workflow after generating imputation

Workflow 1: mids workflow using saved objects

Workflow 2: mids workflow using pipes

```
# mids workflow using saved objects
library(mice)
imp <- mice(nhanes, seed = 123, print = FALSE)
fit <- with(imp, lm(chl ~ age + bmi + hyp))
est1 <- pool(fit)</pre>
```

```
# mids workflow using pipes
library(magrittr)
est2 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  with(lm(chl ~ age + bmi + hyp)) %>%
  pool()
```

Workflow3: mild workflow using base::lapply

```
Workflow4: mild workflow using pipes and base::Map
```

```
# mild workflow using base::lapply
est3 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  lapply(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

```
# mild workflow using pipes and base::Map
est4 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  Map(f = lm, MoreArgs = list(f = chl ~ age + bmi + hyp)) ;
  pool()
```

Workflow5: mild workflow using purrr::map

Workflow6: long workflow using base::by

```
# mild workflow using purrr::map
library(purrr)
est5 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("all") %>%
  map(lm, formula = chl ~ age + bmi + hyp) %>%
  pool()
```

```
# long workflow using base::by
est6 <- nhanes %>%
  mice(seed = 123, print = FALSE) %>%
  mice::complete("long") %>%
  by(as.factor(.$.imp), lm, formula = chl ~ age + bmi + hyp
pool()
```

Workflow7: long workflow using a dplyr list-column

```
# long workflow using a dplyr list-column
library(dplyr)
est7 <- nhanes %>%
    mice(seed = 123, print = FALSE) %>%
    mice::complete("long") %>%
    group_by(.imp) %>%
    do(model = lm(formula = chl ~ age + bmi + hyp, data = .))
as.list() %>%
.[[-1]] %>%
    pool()
```

Special topic 1: Practicalities

How to set up the imputation model

- 1. MAR or MNAR
- 2. Form of the imputation model
- 3. Which predictors
- 4. Derived variables
- 5. What is *m*?
- 6. Order of imputation
- 7. Diagnostics, convergence

Which predictors?

- Include all variables that appear in the complete-data model, including transformations and interactions
- ▶ Include the variables that are related to the nonresponse
- Include variables that explain a considerable amount of variance
- ► Remove variables that have too many missing values within the subgroup of incomplete cases

Functions mice::quickpred() and mice::flux()

Derived variables

- ratio of two variables
- sum score
- ▶ index variable
- quadratic relations
- interaction term
- conditional imputation
- compositions

Derived variables: summary

- ► Derived variables pose special challenges
- ► Plausible values should respect data dependencies
- ▶ If you can, create derived variables after imputation
- ▶ Best option: Probably model-based imputation
- ► More work needed to verify

Special topic 2: Multilevel data

Imputation of multilevel data

- ▶ Avoid multilevel imputation . . . if you can
- ► Considerably more complex than *flat-file* imputation
- ▶ One of the hot spots in statistical technology
- Standard multilevel model does not deal with missing predictors
- ▶ Know the complete-data statistical analysis

brandsma data

- ▶ Brandsma and Knuver, Int J Ed Res, 1989.
- Extensively discussed in Snijders and Bosker (2012), 2nd ed.
- ▶ 4106 pupils, 216 schools, about 4% missing values

```
library(mice)
head(brandsma[, c(1:6, 9:10, 13)], 3)
```

```
## sch pup iqv iqp sex ses lpr lpo den
## 1 1 1 -1.35 -3.72 1 -17.67 33 NA 1
## 2 1 2 2.15 3.28 1 NA 44 50 1
## 3 1 3 3.15 1.27 0 -4.67 36 46 1
```

brandsma data subset

```
d <- brandsma[, c("sch", "lpo", "sex", "den")]
head(d, 2)</pre>
```

```
##  sch lpo sex den
## 1  1  NA  1  1
## 2  1  50  1  1
```

- ▶ sch: School number, cluster variable, C = 216;
- ▶ 1po: Language test post, outcome at pupil level;
- ▶ sex: Sex of pupil, predictor at pupil level (0-1);
- ▶ den: School denomination, predictor at school level (1-4).

Model of scientific interest

Predict 1po from the

- ▶ level-1 predictor sex
- ▶ level-2 predictor den

Level notation - Bryk and Raudenbush (1992)

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (1)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{2}$$

$$\beta_{1c} = \gamma_{10} \tag{3}$$

- ightharpoonup lpo $_{ic}$ is the test score of pupil i in school c
- ightharpoonup sex $_{ic}$ is the sex of pupil i in school c

pupil level

- ightharpoonup den_c is the religious denomination of school c
- \blacktriangleright eta_{0c} is a random intercept that varies by cluster
- ▶ β_{1c} is a sex effect, assumed to be the same across schools. ▶ $\epsilon_{ic} \sim N(0, \sigma_{\epsilon}^2)$ is the within-cluster random residual at the

Level 2 equations: interpretation

The first level-2 model

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \mathrm{den}_c + \mathit{u}_{0c},$$

describes the variation in the mean test score between schools as a function of

- \blacktriangleright the grand mean $\gamma_{00},$
- $\blacktriangleright\,$ a school-level effect γ_{01} of denomination, and a
- **>** school-level random residual $u_{0c} \sim N(0, \sigma_{u_0}^2)$

The second level 2 model

$$\beta_{1c} = \gamma_{10}$$

specifies β_{1c} as a fixed effect equal in value to γ_{10}

Unknown parameters

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (4)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{5}$$

$$\beta_{1c} = \gamma_{10} \tag{6}$$

The unknowns to be estimated are the fixed parameters:

- γ₀₀,
- $ightharpoonup \gamma_{01}$, and
- $ightharpoonup \gamma_{10}$,

and the variance components:

- σ_{ϵ}^2 and $\sigma_{u_0}^2$.

Where are the missings?

In single level data, missingness may be in the outcome and/or in the predictors

With multilevel data, missingness may be in:

- 1. the outcome variable;
- 2. the level-1 predictors;
- 3. the level-2 predictors;
- 4. the class variable.

Univariate missing, level-1 outcome

Univariate missing, level-1 predictor, sporadically missing

Univariate missing, level-1 predictor, systematically missing

Univariate missing, level-2 predictor

Multivariate missing

Fully conditional specification

$$\begin{split} & 1\dot{p}o_{ic} \sim N(\beta_0 + \beta_1 den_c + \beta_2 sex_{ic} + u_{0c}, \sigma_{\epsilon}^2) \\ & s\dot{e}x_{ic} \sim N(\beta_0 + \beta_1 den_c + \beta_2 1po_{ic} + u_{0c}, \sigma_{\epsilon}^2) \end{split} \tag{8}$$

Theoretical problem with FCS

Conditional expectation of sex_{ic} in a random effects model depends on

▶ 1po_{ic},
 ▶ 1po_i, the mean of cluster i, and

Resche-Rigon & White (2018) suggest the imputation model

▶ should incorporate the cluster means of level-1 predictors

▶ be heteroscedastic if cluster sizes vary

Methods for multilevel imputation in mice

Package	Method	Description
Continuous		
mice	21.lmer	normal, lmer
mice	2l.pan	normal, pan
miceadds	21.continuous	normal, lmer , blme
micemd	2l.jomo	normal, jomo
micemd	2l.glm.norm	normal, lmer
mice	21.norm	normal, heteroscedastic
micemd	21.2stage.norm	normal, heteroscedastic
Generic		
miceadds	2l.pmm	pmm, homoscedastic, lmer
micemd	21.2stage.pmm	pmm, heteroscedastic, mymeta

Methods for multilevel imputation in mice

methods is available as a function called mice.impute.[method] in the specified R package

Package	Method	Description
Binary		
mice	2l.bin	logistic, glmer
miceadds	21.binary	logistic, glmer
micemd	21.2stage.bin	logistic, mvmeta
micemd	21.glm.bin	logistic, glmer
Count		
micemd	21.2stage.pois	Poisson, mvmeta
micemd	21.glm.pois	Poisson, glmer
countimp	2l.poisson	Poisson, glmmPQL
countimp	21.nb2	negative binomial, glmmadmb
countimp	21.zihnb	zero-infl neg bin, glmmadmb

Methods for multilevel imputation in mice

Table 7.4: Overview of mice.impute.[method] functions to perform univariate multilevel imputation

Package	Method	Description
Level-2		
mice	2lonly.mean	level-2 manifest class mean
miceadds	21.groupmean	level-2 manifest class mean
miceadds	21.latentgroupmean	level-2 latent class mean
mice	2lonly.norm	level-2 class normal
mice	2lonly.pmm	level-2 class pmm
miceadds	2lonly.function	level-2 class, generic
miceadds	ml.lmer	≥ 2 levels, generic

Summary

- Impact of missing data
 Ad-hoc techniques
 Theory of multiple imputation
 Generating imputations
- ► Workflows
- Specification of imputation modelMultilevel data

Wrap up