Coherence Models Re-Thinking the Shuffle Test

Philippe Laban, Luke Dai, Lucas Bandarkar, Marti A. Hearst

ACL2021 Recorded Presentation

We thank our sponsor:

Research

Progress in text generation

Modern language models generate increasingly realistic text.

Progress in text generation

Modern language models generate increasingly realistic text.

	Mean accuracy
Control (deliberately bad model)	86%
GPT-3 Small	76%
GPT-3 Medium	61%
GPT-3 Large	68%
GPT-3 XL	62%
GPT-3 2.7B	62%
GPT-3 6.7B	60%
GPT-3 13B	55%
GPT-3 175B	52%

Human accuracy in identifying whether short (~200 word) news articles are model generated

Tom Brown, et al. "Language Models are Few-Shot Learners" Proceedings of NeurIPS. 2020.

Is the generated text Coherent?

Can we measure Coherence?

The Shuffle Test

Can NLU models detect shuffled text?

Accuracy

Publication Year

The task was introduced in 2008 by Barzilay et al., along with the *Entity Grid*: ~75% accuracy.

Elsner et al. *extend* the Entity Grid in 2011, adding new features and improve accuracy to ~85% accuracy.

Nguyen et al. introduce a CNN-based neural network to the task in 2017. Accuracy: 86%.

In 2018, Mohiuddin et al. add word2vec embeddings to a neural network for the task. Accuracy: 89%.

In 2019, Moon et al. leverage ELMO contextual embeddings to improve performance. Accuracy: 93%.

In each step, an increase in model capacity leads to an improvement in task performance.

We push this logic further: we finetune a **Roberta-large** on the task.

We achieve near-perfect performance of 98%.

Is supervision on the Shuffle Test appropriate?

Shuffle Test and Supervision

Mohiuddin et al. 2020 show:

There is only **weak correlation** between performance of coherence models on <u>synthetic tasks</u> (e.g. the Shuffle Test) and <u>downstream tasks</u> (e.g. ranking generated summaries).

Shuffle Test and Supervision

Mohiuddin et al. 2020 show:

There is weak correlation between performance of coherence models on <u>synthetic tasks</u> (e.g. the Shuffle Test) and <u>downstream tasks</u> (e.g. ranking generated summaries).

We argue:

That this is due to the use of <u>direct supervision</u> on the task. High-capacity models learn features specific to <u>shuffle-ness</u>, not necessarily important for <u>coherence</u>.

Zero-Shot Shuffle Test

We propose that the Shuffle Test should be applied in a **Zero-Shot** setting. More precisely:

In the Zero-Shot Shuffle Test, the evaluated model must not be pre-trained, fine-tuned or modified using shuffled text.

Adapting Models To the Zero-Shot Shuffle Test

Adapting LM Models

We adapt Language Models to perform the Zero-Shot Shuffle Test.

Language models take as input a text **T**, and output a probability: **LM(T)**

Adapting LM Models

We adapt Language Models to perform the Zero-Shot Shuffle Test.

Language models take as input a text **T**, and output a probability: **LM(T)**

Given a text **T1** and a shuffled version **T2**:

If LM(T1) > LM(T2), we label T1 as **original**, and T2 as **shuffled**If LM(T1) <= LM(T2), we label T1 as **shuffled**, and T2 as **original**

Adapting LM Models

We adapt Language Models to perform the Zero-Shot Shuffle Test.

Language models take as input a text **T**, and output a probability: **LM(T)**

LMs are trained on a language modeling loss, and not exposed to shuffled text.

We test GPT2 language models of varying size (small, medium, large).

Adapting NLU Models

We adapt NLU models (e.g., BERT) to perform the Zero-Shot Shuffle Test.

Because of bi-directionality, we need to use pseudo-log likelihood, also known as Masked Language Model Scoring (**MLMS**).

Adapting NLU Models

We adapt NLU models (e.g., BERT) to perform the Zero-Shot Shuffle Test.

Because of bi-directionality, we need to use pseudo-log likelihood, also known as Masked Language Model Scoring (**MLMS**).

Given a text **T1** and a shuffled version **T2**:

If MLMS(T1) > MLMS(T2), we label T1 as **original**, and T2 as **shuffled**If MLMS(T1) <= MLMS(T2), we label T1 as **shuffled**, and T2 as **original**

Adapting NLU Models

We adapt NLU models (e.g., BERT) to perform the Zero-Shot Shuffle Test.

Because of bi-directionality, we need to use pseudo-log likelihood, also known as Masked Language Model Scoring (**MLMS**).

We experiment with BERT and RoBERTa models, which are pre-trained with Masked Language Modeling.

Shuffle Test – Test Domains

News

Based on Wall Street Journal (WSJ) corpus. (following prior work)

Legal

Based on US legislation bills included in the BillSum dataset.

Blog/Reddit

Based on entire Reddit posts included in the Reddit TIFU dataset.

No domain overlaps with the training data used to train GPT2, BERT or RoBERTa

Model	News	Legal	Reddit	Overall
GPT2-base	47	92	75	71
GPT2-medium	91	99	89	93
GPT2-large	73	99	91	88
BERT-base	73	96	86	85
RoBERTa-base	82	95	97	91

Accuracy of several models at the Zero-Shot Shuffle Test on test portions of three textual domains.

Model	News	Legal	Reddit	Overall
GPT2-base	47	92	75	71
GPT2-medium	91	99	89	93
GPT2-large	73	99	91	88
BERT-base	73	96	86	85
RoBERTa-base	82	95	97	91

Observation 1: Models are competitive even in Zero-Shot setting, with overall performance ~90%.

Model	News	Legal	Reddit	Overall
GPT2-base	47	92	75	71
GPT2-medium	91	99	89	93
GPT2-large	73	99	91	88
BERT-base	73	96	86	85
RoBERTa-base	82	95	97	91

Observation 2: Performance varies across domains (e.g., all models have strong performance in Legal domain).

News	Legal	Reddit	Overall
47	92	75	71
91	99	89	93
73	99	91	88
73	96	86	85
82	95	97	91
	47 91 73 73	47 92 91 99 73 99 73 96	47 92 75 91 99 89 73 99 91 73 96 86

Observation 3: Increasing model size mostly increases model performance at the Zero-shot Shuffle Test.

Model	News	Legal	Reddit	Overall
GPT2-base	47	92	75	71
GPT2-medium	91	99	89	93
GPT2-large	73	99	91	88
BERT-base	73	96	86	85
RoBERTa-base	82	95	97	91

Observation 4: Bi-directional models perform better than NLG counterparts of similar size (GPT2-base vs. RoBERTa-base).

Model	News	Legal	Reddit	Overall
GPT2-base	47	92	75	71
GPT2-medium	91	99	89	93
GPT2-large	73	99	91	88
BERT-base	73	96	86	85
RoBERTa-base	82	95	97	91

Observation 5: RoBERTa outperforms BERT, even though BERT has a *Next Sentence Prediction* (NSP) loss. Confirms prior work indicating that NSP is not useful for model pre-training.

Is the Zero-Shot Shuffle Test a solved problem?

Increasing Block Size

We introduce a variation to the Shuffle Test, increasing the **block size**.

- 4. Hayden usually brings coffee.
- 5. Jesse on the other hand prefers tea.
- 6. There is no accounting for tastes.
- 1. Jesse and Hayden go to the park.
- 2. They go there every day.
- 3. It's a good way to get fresh air.

Block Size 3

Results – Blocked Shuffle Test

Block Size

Model	1	2	3	4	5
Human performance	97	94	93	96	94

Block size does not affect human performance. Inter-annotator agreement remains high for all block sizes (0.86)

Results – Blocked Shuffle Test

Block Size

Model	1	2	3	4	5
Human performance	97	94	93	96	94
GPT2-med - WSJ	95	91	89	87	85
GPT2-med - Legal	99	98	97	96	94
GPT2-med - Reddit	89	79	66	59	54
GPT2-med - Average	94	89	84	81	78

Model performance drops with increased block size in all domains.

Results – Blocked Shuffle Test

Block Size

Model	1	2	3	4	5
Human performance	97	94	93	96	94
GPT2-med - WSJ	95	91	89	87	85
GPT2-med - Legal	99	98	97	96	94
GPT2-med - Reddit	89	79	66	59	54
GPT2-med - Average	94	89	84	81	78

Average performance drops from 94% at block size 1 to 78% at block size 5.

Takeaways

- 1. Current coherence models are **directly supervised** on the Shuffle Test, weakening the evaluation of the models.
- 2. Recent Transformer-based models achieve strong **Zero-shot** performance (>90%) at the standard Shuffle Test.
- 3. Increasing the block-size of the Shuffle Test increases task difficulty for models (model performance drops to 78% at block size 5).

Thanks

See you at the Q&A!

Code & data on Github:

https://github.com/tingofurro/shuffle_test/

Contact:

phillab@berkeley.edu

We thank our sponsor:

Research

<u>CREDITS</u>: This presentation template was created by **Slidesgo**, and includes **Flaticon** icons.