HUDK 4051: LEARNING ANAIY CS: PROCESS & THORY

Today

- Prediction background
- The five tribes
- Caret (Weka)
- Activity

Prediction

- There are times when we want to automate a process in education
- Action oriented
- Sometimes this is a supervised learning problem
- (Sometimes it is not)

Prediction

- Common supervised learning problems:
- Drop out, attendance, payment

Correct/incorrect

K Jordan, Open University, 2013

Prediction

The aim of prediction is to predict the future and intervene

Predictive Modelling in Teaching and Learning

Christopher Brooks & Craig Thompson

- Key metric is the accuracy of the prediction and how generalizable it is (Purdue)
- JEDM

PREDICTING STUDENTS' PERFORMANCE USING ID3 AND C4.5 CLASSIFICATION ALGORITHMS

Kalpesh Adhatrao, Aditya Gaykar, Amiraj Dhawan, Rohit Jha and Vipul Honrao

Department of Computer Engineering, Fr. C.R.I.T., Navi Mumbai, Maharashtra, India

Five Tribes

- Symbolists
- Connectionists
- Evolutionaries
- Bayesians
- Analogizers

Inverse deduction (deduction)

Socrates is human

....?

Therefore Socrates is mortal

Decision trees

- Manipulating symbols with an algorithm and choose the ones that work
- It is about learning "rules" that can be applied

Positives:

- Easy to interpret
- Fast
- Makes "sense"

Drawbacks:

- The number of possible inductions is practically infinite - need to be very specific about the problem space
- If the premise or conclusion are wrong it is over
- Overfitting
- Concepts are rarely cleanly defined: female/male, spam/non-spam - can't incorporate grey areas

Binary Classification Tree

* Minimize the error

RPART

- Tree chooses the optimal fit at each leaf - NOT the overall best fit for the data
- Therefore, there is a danger of overfitting the tree
- Tree is too specific to training data to be able to predict new data
- Therefore: stop the tree at a certain number of nodes OR prune

PARTY

- "part(y)itioning"
- Conditional Inference Tree
- Look at correlation between X and shape and Y and shape
- Statistically test H₀: there is no relationship
- Choose the variable with the highest correlation
- Split on that variable
- Stop when H₀ cannot be rejected

Bayesians

Bayesians

$$P(\theta \mid \mathbf{D}) = P(\theta) \frac{P(\mathbf{D} \mid \theta)}{P(\mathbf{D})}$$

- Probabilistic (just grey areas)
- Conditional probabilities shrink the problem space
- Often we know the probabilities of the effects given causes, what we want is the probabilities of the causes given the effects (EG medical diagnoses)
- Conditional independence assumption

Positives Bayesians

- Computationally simple
- Empirically accurate
- Can handle ambiguity

Negatives

- Conditional independence assumption
- Susceptible to exponential blowup/Bayesian networks become intractable as variables
- There is no true hypothesis = have to calculate everything
- Can't generate new hypotheses on the fly

Analogizers

Analogizers

- Representation = your data
- Find the thing closest to the thing you are looking for: nearest neighbor
- EG John Snow Cholera Map (1854)
- Collaborative Filters
- k-nearest neighbors, Support Vector Machines, stepwise regression

Analogizers

Positives

- Fast and at one time accurate as Neural Nets for complex feature sets OTB
- Can do transfer learning
- High dimensional space works well

Negatives

- Can't handle class overlap well
- Run time is dependent on data size
- Probabilities are generated by cross validation

Connectionists

Connectionists

- Hebb's Rule: neuron's that fire together, wire together
- One concept = many neurons
- Sigmoid curve
- Backpropagation

Connectionists

Positives

- Can learn very complex data sets Negatives
- Hyperspace is ~infinite, you will likely find a local minima
- Weights are not interpretable
- Can't do adaptive reasoning (rule chaining)

Evolutionaries

Evolutionaries

- John Holland (first PhD in CS)
- Objective, program, fitness function, sex
- Selective breeding + immortality
- EG Spam filter that looks at every word in an email
- Mostly work at the sub-routine level

Evolutionaries

Positives

- Combines neural nets with rule based system
- Maybe it can create any kind of machine?
 Negatives
- No empirical reason to have the sex step
 - And maybe a reason not to (mixability)
- Is it the evolutionary nature or just brute force that leads to success?
- Needs a lot of computing power

- Standard syntax for comparing many models
- Generate training and testing data sets
- Run several model types
- Run resampling algorithms and alter parameters to generate the best model
- Compare using the same diagnostic metrics
- https://topepo.github.io/caret/

Generate Training/Test Data Sets

```
trainData <- createDataPartition(
   y = data$thing, ## the outcome data are needed
   p = .75, ## The percentage of data in the
training set
   list = FALSE)

#Generates a list of index numbers for the sample
training <- DATA[ trainData,]
testing <-DATA[-trainData,]</pre>
```

K-Fold Cross Validation

```
ctrl <- trainControl(method = "cv", repeats = 3)</pre>
```

Train Model

```
fit1 <- train(
   thing ~ .,
   data = training,
   method = "model", ## Center and scale the
predictors for the training set and all future
samples.
   preProc = c("center", "scale")
   trControl = ctrl #add cross validation specs
   metric = "ROC"
)</pre>
```

Test Model

```
pred1 <- predict(fit1, newdata = testing)
confusionMatrix(data = pred1, DATA$thing)</pre>
```

