

Applied Natural Language Processing

Info 256

Lecture 15: Attention/BERT (Oct. 14, 2021)

David Bamman, UC Berkeley

How do we use word embeddings for document classification?

lyyer et al. (2015), "Deep Unordered Composition Rivals Syntactic Methods for Text Classification" (ACL)

Attention

• Let's incorporate structure (and parameters) into a network that captures which elements in the input we should be attending to (and which we can ignore).

$$v \in \mathcal{R}^H$$

2.7 3.1 -1.4 -2.3 0.7

Define v to be a vector to be learned; think of it as an "important word" vector. The dot product here measures how similar each input vector is to that "important word" vector

$$v \in \mathcal{R}^H$$

2.7 3.1 -1.4 -2.3 0.7

Convert r into a vector of normalized weights that sum to 1.

$$a = \operatorname{softmax}(r)$$

Attention

- Lots of variations on attention:
 - Linear transformation of x into before dotting with v
 - Non-linearities after each operation.
 - "Multi-head attention": multiple v vectors to capture different phenomena that can be attended to in the input.
 - Hierarchical attention (sentence representation with attention over words + document representation with attention over sentences).

attention over sentences

bidirectional GRU over sentence representations

attention over words

bidirectional GRU over word representations

Attention

- Attention gives us a normalized weight for every token in a sequence that tells us how important that word was for the prediction
- This can be useful for visualization

BERT

- Transformer-based model (Vaswani et al. 2017) to predict masked word using bidirectional context + next sentence prediction.
- Generates multiple layers of representations for each token sensitive to its context of use.

At the end of this process, we have one representation for each layer for each token

WordPiece

 BERT uses WordPiece tokenization, which segments some morphological structure of tokens

• Vocabulary size: 30,000

The	The		
dog	dog		
barked	bark #ed		

- BERT also encodes each sentence by appending a special token to the beginning ([CLS]) and end ([SEP]) of each sequence.
- This helps provides a single token that can be optimized to represent the entire sequence (e.g., for document classification)

- We can represent the entire document with this *one* [CLS] vector
- Why does this work? When we design our network so that a
 classification decision relies entirely on that one vector and allow all
 the parameters of the network to be updated, the parameters of the
 model are optimized to compress all the relevant information into that
 one vector so that it can predict well (and minimize the loss).

- We can represent the entire document with this *one* [CLS] vector
- Why does this work? When we design our network so that a
 classification decision relies entirely on that one vector and allow all
 the parameters of the network to be updated, the parameters of the
 model are optimized to compress all the relevant information into that
 one vector so that it can predict well (and minimize the loss).

BERT

- Deep layers (12 for BERT base, 24 for BERT large)
- Large representation sizes (768 per layer)
- Pretrained on English Wikipedia (2.5B words) and BooksCorpus (800M words)

BERT

	H=128	H=256	H=512	H=768		
L=2	2/128 (BERT-Tiny)	2/256	2/256 2/512			
L=4	4/128	4/256 (BERT-Mini)	4/512 (BERT-Small)	4/768		
L=6	6/128	6/256	6/512	6/768		
L=8	8/128	8/256	8/512 (BERT-Medium)	8/768		
L=10	10/128	10/256	10/512	10/768		
L=12	12/128	12/256	12/512	12/768 (BERT-Base)		

View page source

Docs » Pretrained models

Pretrained models.

Here is a partial list of some of the available pretrained models together with a short presentation of each model.

For the full list, refer to https://huggingface.co/models.

Architecture	Model id	Details of the model
	bert-base-uncased	12-layer, 768-hidden, 12-heads, 110M parameters. Trained on lower-cased English text.
	bert-large-uncased	24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text.

Lost in (language-specific) BERT models? We are here to help!

We currently have indexed 31 BERT-based models, 19 Languages and 28 Tasks.

We have a total of 178 entries in this table; we also show Multilingual Bert (mBERT) results if available! (see our paper)

Curious which BERT model is the best for named entity recognition in Italian I ? Just type "Italian NER" in the search bar!

Show 10 \$ entries Search:

Language ↑♭	Model ↔	NLP Task ↔	Dataset ↑↓	Dataset- Domain ↔	Measure ↔	Performance ↔	mBERT ↔	Difference with mBERT ᠰ	Source ↔
Arabic ==	Arabert v1	SA	AJGT	twitter	Accuracy	93.8	83.6	10.2	2 0
Arabic ==	Arabert v1	SA	HARD	hotel reviews	Accuracy	96.1	95.7	0.4	2 0
Arabic ==	Arabert v1	SA	ASTD	twitter	Accuracy	92.6	80.1	12.5	2 0
Arabic 🔤	Arabert v1	SA	ArSenTD-Lev	twitter	Accuracy	59.4	51.0	8.4	

Progress — Coreference resolution

Bertology

- Hewitt et al. 2019
- Tenney et al. 2019
- McCoy et al. 2019
- Liu et al. 2019
- Clark et al. 2019
- Goldberg 2019
- Michel et al. 2019

Code

Pre-trained models for BERT, Transformer-XL, ALBERT, RoBERTa, DistilBERT, GPT-2, etc. for English, French, "Multilingual"

https://huggingface.co

Probing

- Even though BERT is mainly trained on a language modeling objective, it learns a lot about the structure of language even without direct training data for specific linguistic tasks.
- Probing experiments uncover what—and where (in what layers)—-pretrained BERT encodes this information.

Activity

9.neural/BERTClassification

• Explore BERT for document classification using Google Colab