Lei dos Grandes Números e Teorema do Limite Central

Ben Dêivide de Oliveira Batista

17 de fevereiro de 2016

Sumário

- 1 Noção sobre convergência de variáveis aleatórias
- 2 Lei do Grandes Números

3 Teorema do Limite Central

Noções

Estamos interessados em saber: Seja X_1, X_2, \ldots, X_n uma sequência de variáveis aleatórias independentes e identicamente distribuídas, então sendo $n \to \infty$, para onde $X_n \to (?)$ com alta probabilidade? Mais ainda com que $P(X_n \to (?))$?

Noções

- Estamos interessados em saber: Seja X_1, X_2, \ldots, X_n uma sequência de variáveis aleatórias independentes e identicamente distribuídas, então sendo $n \to \infty$, para onde $X_n \to (?)$ com alta probabilidade? Mais ainda com que $P(X_n \to (?))$?
- Perguntas como essas foram introduzidas quando definimos convergência em probabilidade, convergência quase certa e convergência em distribuição.

Teorema 1 (Lei Fraca dos Grandes Números (LFRGN))

Seja $\{X_n; n \geq 1\}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $Var[X] = \sigma^2 < \infty$. Então, para cada $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \le \epsilon) = 1,\tag{1}$$

isto é, $\bar{X}_n = \sum_{i=1}^n X_i/n$ converge em probabilidade para μ , denotada por $\bar{X}_n \stackrel{p}{\to} \mu$.

A LFRGN afirma que:

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \le \epsilon) = 1.$$
 (2)

A LFRGN afirma que:

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \le \epsilon) = 1. \tag{2}$$

Teorema 2 (Desigualdade de Chebychev)

Seja X uma variável aleatória definida no espaço de probabilidade (Ω, \mathcal{F}, P) . Considere ainda g(x) uma função não negativa de X. Então para qualquer k>0,

$$P(g(x) \ge k) \le \frac{E[g(x)]}{k}. (3)$$

Teorema 3 (Lei Forte dos Grandes Números (LFOGN))

Seja $\{X_n; n \geq 1\}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $Var[X] = \sigma^2 < \infty$. Então, para cada $\epsilon > 0$,

$$P(\lim_{n \to \infty} |\bar{X}_n - \mu| \le \epsilon) = 1,\tag{4}$$

isto é, $\bar{X}_n = \sum_{i=1}^n X_i/n$ converge em quase certamente para μ , denotada por $\bar{X}_n \overset{\mathrm{qc}}{\to} \mu$.

A LFOGN afirma que

$$P(\lim_{n\to\infty} |\bar{X}_n - \mu| \le \epsilon) = 1, \tag{5}$$

A LFOGN afirma que

$$P(\lim_{n \to \infty} |\bar{X}_n - \mu| \le \epsilon) = 1,\tag{5}$$

É possível mostrar que se $\bar{X}_n \stackrel{\mathrm{qc}}{\to} \mu$ então

$$\forall \epsilon > 0, \ P(|\bar{X}_k - X| \le \epsilon, \forall k \ge n) \xrightarrow[n \to \infty]{} 1.$$
 (6)

A LFOGN afirma que

$$P(\lim_{n \to \infty} |\bar{X}_n - \mu| \le \epsilon) = 1,\tag{5}$$

É possível mostrar que se $\bar{X}_n \stackrel{\mathrm{qc}}{\to} \mu$ então

$$\forall \epsilon > 0, \ P(|\bar{X}_k - X| \le \epsilon, \forall k \ge n) \underset{n \to \infty}{\to} 1.$$
 (6)

Para os slides seguintes, usamos a seguinte referência: MICHEAUX, P. L.; LIQUET, B. Undertanding convergence concepts: a visual-minded and graphical simulation-based approach. **The American Staticician**.2008.

Figure 2: Seeing convergence in probability with M=10 fictitious realizations. For n=1000, $\hat{p}_n=2/10$ since we can see two sample paths lying outside the band $[-\epsilon, +\epsilon]$ in the bar at position 1000. For n=2000, $\hat{p}_n=1/10$ since we can see one sample path lying outside the band $[-\epsilon, +\epsilon]$ in the bar at position 2000.

Convergência em probabilidade

Figure 4: Seeing almost sure convergence with M=10 fictitious realizations. For n=1000, $\hat{a}_n=3/10$ since we can see 3 sample paths (a, c, d) lying outside the band $[-\epsilon, +\epsilon]$ in the block beginning at position 1000. For n=2000, $\hat{a}_n=2/10$ since we can see 2 sample paths (a, c) lying outside the band $[-\epsilon, +\epsilon]$ in the block beginning at position 2000.

Convergência quase certa

Um dos Teoremas mais importantes na Estatística

Teorema 4 (Teorema do Limite Central (TLC))

Seja $\{X_n; n \geq 1\}$ uma sequência de variáveis aleatórias, independente e identicamente distribuídas (iid), definidas no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que $E[X] = \mu$ e $0 < Var[X] = \sigma^2 < \infty$. Se $S_n = X_1 + X_2 + \ldots + X_n$, então

$$Z_n = \frac{(S_n - n\mu)}{\sigma\sqrt{n}} \stackrel{\mathrm{d}}{\to} Z \sim N(0, 1), \tag{7}$$

isto é,
$$Z_n \stackrel{\mathrm{d}}{\to} Z$$
.