MASS EXTINCTIONS

Philips 1860

Philips 1860

The Consensus Paper... Sepkoski et al. 1981

Sepkoski's curve

Sepkoski's curve of marine invertebrates

Taxonomic level

Range trough counting

 Traditionally, diversity curves were based on ranges through FA & LA

Diversity = Sampled-in-bin diversity + Range through

Bivalve diversity across the Phanerozoic

Diversity biases – (1) sampling intensity

Diversity increases with sampling intensity

Sedimentary rock volume bias

Miller 2009, after Raup 1972

Diversity biases – (2) Edge effects

 Fossil ranges contains gaps ("Lazarus taxa"), gaps before FAD and after LAD are unknown and cannot be counted

 Range-through diversity is artificially low at the edges of any time series ("edge effects")

Pull of Recent

 Because the living fauna is so well known, the ranges of many more recent taxa are "pulled" to the present-day

Solution - Rarefaction

Rarefied Phanerozoic diversity trends

Origination and extinction rates

Extinction rate over time

What are the mass extinctions?

Extinction intensity

Mass Extinction Events	Families (%)	Genera (%)	Species (%) ^c
End Cretaceous	16—17	47—50	76 ± 5
End Triassic	22—23	48—53	80 ± 4
End Permian	51—57	82—84	95 ± 2
Late Devonian	19—22	50—57	83 ± 4
End Ordovician	26—27	57—60	85 ± 3

Mass & Background extinction

Is there a periodic cycle of mass extinctions?

Causes of Mass extinction

- Asteroid Impact
- □ Flood Basalt Volcanism
- Ocean anoxia
- Climate / Sea-level change

Asteroid Impact

Location of Chicxulub crater (180-300 km in diameter)

Iridium-rich
boundary
clay layer

Temporal correlation between asteroid impact and mass extinction events

Flood Basalts

Flood Basalts

Asteroid impact, Flood basalt & Mass extinctions

Sea level change

Figure 22.11 Three successive rounds of ammonite extinction were correlated with declines in the sea level (expressed here as area of continents covered by sea: when the sea is higher, it covers more of continental land). From Hallam (1983).

P-T extinction

CO₂ level and mass extinctions

Sea level change and mass extinctions

Summary of possible causes of the mass extinctions

Mass Extinction/ Cause	Sea Level Rise/Fall	Climate Change	Global Ocean Anoxia	Brackish Ocean	Bolide Impact	Volcanism
End- Ordovician	X (Fall)	X (Cool)				
End- Devonian		X (cool or warm?)	X	X	?	
End-Permian	X (Fall)	X (cool)	X	X	?	X
End-Triassic	X (Fall)	X (cool or warm?)			?	X?
End- Cretaceous	X (Fall)		X		X	X

Sixth mass extinction?

Extinction rate in birds

The International Union for Conservation of Nature (IUCN)

The IUCN Red List

The number of 'Endangered Species' is rising

A SIXTH MASS EXTINCTION?

CO₂ level and mass extinctions

CO₂ level across the Phanerozoic

CO₂ level across the last 100 myr

CO₂ level across the last 1000 kyr

CO₂ level across the last 10,000 yr

CO₂ level across the last 250 yr

CO₂ level across in the future

CO₂ and sea-level

Habitat loss

A Deforestation in Borneo, Indonesia, 1950–2005, and projections toward 2020

B

Sea level rise since 1993 (in mm)

Contributors to global sea-level rise (1993-2018)

