1	2	3	4	5	6	7	8	CALIF.

APELLIDO Y NOMBRE:

Condición: Libre

Regular

Algebra III - Final 6 de febrero de 2023

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (14 pts) Enunciar el Teorema de Descomposición Cíclica y dar un bosquejo de la demostración completando los detalles de la primera parte.
- 2. (12 pts) Enunciar y demostrar el teorema de caracterización de las transformaciones lineales triangularizables.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Sea V un \mathbb{C} -espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal con polinomio característico p. Entonces T es invertible si y sólo si $p(0)\neq 0$.
 - (b) (3 pts) Si $T^2 = 1$ entonces T es diagonalizable.
 - (c) (3 pts) Sea V espacio vectorial con producto interno. Toda transformación lineal en V tiene adjunto.

Parte Práctica (70 pts.)

- 4. (15 pts) Sea $T: \mathbb{C}[t] \to \mathbb{C}[t]$ la transformación lineal dada por T(p) = p + p'. Para cada $n \in \mathbb{N}$, sea V_n el subespacio de los polinomios de grado $\leq n$.
 - (a) Probar que cada V_n es T-invariante y que $T_{|V_n}$ es un isomorfismo. Deducir que T es un isomorfismo.
 - (b) Hallar la forma de Jordan de $T_{|V_n|}$ y una base en la cual se realiza.
 - (c) Hallar la descomposición en diagonalizable más nilpotente de $T_{|V_n}$.
- 5. (15 pts) Sean \mathbbm{k} un cuerpo y $T: \mathbbm{k}^4 \to \mathbbm{k}^4$ una transformación lineal tal que $(T^3 \mathrm{id})(T + \mathrm{id}) = 0$.
 - (a) Hallar todas las posibles formas de Jordan y racionales cuando $\mathbb{k} = \mathbb{R}$.
 - (b) Hacer lo mismo para $\mathbb{k} = \mathbb{C}$ y $\mathbb{k} = \mathbb{Z}_3$.
- 6. (15 pts) Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica, sean $\lambda_1, \dots, \lambda_n$ sus autovalores (eventualmente repetidos). Probar que

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i,j=1}^{n} a_{ij}^2.$$

- 7. (15 pts) Sea V un espacio de dimensión finita, $W \subseteq V$ un subespacio y $T: V \to V$ una transformación lineal. Probar que W es T-invariante si y sólo si el anulador W^0 de W es T^t -invariante.
- 8. (20 pts) Diremos que una matriz $P \in \mathbb{C}^{n \times n}$ tiene raíz cuadrada si existe una matriz $Q \in \mathbb{C}^{n \times n}$ tal que $P = Q^2$. Diremos también que Q es una raíz cuadrada de P
 - (a) Sea $N \in \mathbb{C}^{3\times 3}$ una matriz nilpotente. Probar que $A = \mathrm{id} + \frac{1}{2}N \frac{1}{8}N^2$ es una raiz cuadrada de $\mathrm{id} + N$.
 - (b) Sea N como antes. Deducir que $\lambda \operatorname{id} + N$ tiene raiz cuadrada para todo $\lambda \neq 0$.
 - (c) Probar que toda matriz invertible $P \in \mathbb{C}^{3\times 3}$ tiene raíz cuadrada (sugerencia: usar la forma de Jordan).