3章 重積分

問1

$$rac{x}{3}+rac{y}{4}+rac{z}{2}=1$$
 より, $z=-rac{2}{3}x-rac{y}{2}+2$ また,領域 D を $D=\{(x,y)\mid 0\leq x\leq 1,\ 0\leq y\leq 2\}$ とすれば $V=\iint_{\mathbf{D}}\left(-rac{2}{3}x-rac{y}{2}+2
ight)dx\,dy$

問2

$$\begin{split} & = \int_0^1 \left\{ \int_1^2 (x^2 - xy) \, dx \right\} \, dy \\ & = \int_0^1 \left[\frac{1}{3} x^3 - \frac{1}{2} y x^2 \right]_1^2 \, dy \\ & = \int_0^1 \left\{ \left(\frac{8}{3} - 2y \right) - \left(\frac{1}{3} - \frac{1}{2} y \right) \right\} \, dy \\ & = \int_0^1 \left(\frac{7}{3} - \frac{3}{2} y \right) \, dy \\ & = \left[\frac{7}{3} y - \frac{3}{4} y^2 \right]_0^1 \\ & = \frac{7}{3} - \frac{3}{4} = \frac{28 - 9}{12} = \frac{19}{12} \end{split}$$

問3

(1)
$$\exists \vec{x} = \int_0^2 \left\{ \int_0^1 (x+y) \, dy \right\} dx$$

$$= \int_0^2 \left[xy + \frac{1}{2} y^2 \right]_0^1 dx$$

$$= \int_0^2 \left(x + \frac{1}{2} \right) dx$$

$$= \left[\frac{1}{2} x^2 + \frac{1}{2} x \right]_0^2$$

$$= 2 + 1 = 3$$

(2)
$$= \int_{-1}^{3} \left\{ \int_{-2}^{1} x^{2} y \, dy \right\} dx$$

$$= \int_{-1}^{3} \left[\frac{1}{2} x^{2} y^{2} \right]_{-2}^{1} dx$$

$$= \int_{-1}^{3} \left(\frac{1}{2} x^{2} - 2x^{2} \right) dx$$

$$= \int_{-1}^{3} \left(-\frac{3}{2} x^{2} \right) dx$$

$$= \left[-\frac{1}{2} x^{3} \right]_{-1}^{3}$$

$$= -\frac{27}{2} - \frac{1}{2} = -\frac{28}{2} = -14$$

問4

(1) 領域を図示すると

(2) 領域を図示すると

よって
与式 =
$$\int_{1}^{2} \left\{ \int_{0}^{y} (x^{2} + y^{2}) dx \right\} dy$$

= $\int_{1}^{2} \left[\frac{1}{3} x^{3} + y^{2} x \right]_{0}^{y} dy$
= $\int_{1}^{2} \left(\frac{1}{3} y^{3} + y^{3} \right) dy$
= $\int_{1}^{2} \frac{4}{3} y^{3} dy$
= $\frac{4}{3} \left[\frac{1}{4} y^{4} \right]_{1}^{2}$
= $\frac{1}{3} (16 - 1)$
= $\frac{1}{3} \cdot 15 = 5$

(3) 領域を図示すると

よって
与式 =
$$\int_1^2 \left\{ \int_{x^2}^{x^4} \frac{\sqrt{y}}{x} \, dy \right\} dx$$

$$= \int_1^2 \frac{1}{x} \left[\frac{2}{3} y \sqrt{y} \right]_{x^2}^{x^4} dx$$

$$= \frac{2}{3} \int_1^2 \frac{1}{x} (x^4 \sqrt{x^4} - x^2 \sqrt{x^2}) \, dx$$

$$= \frac{2}{3} \int_1^2 \frac{1}{x} (x^4 | x^2 | - x^2 | x |) \, dx$$

$$= \frac{2}{3} \int_1^2 \frac{1}{x} (x^6 - x^3) \, dx \quad (x > 0 \text{ JD})$$

$$= \frac{2}{3} \int_1^2 (x^5 - x^2) \, dx$$

$$= \frac{2}{3} \left[\frac{1}{6} x^6 - \frac{1}{3} x^3 \right]_1^2$$

$$= \frac{2}{3} \left\{ \left(\frac{64}{6} - \frac{8}{3} \right) - \left(\frac{1}{6} - \frac{1}{3} \right) \right\}$$

$$= \frac{2}{3} \cdot \frac{64 - 16 - 1 + 2}{6}$$

$$= \frac{2}{3} \cdot \frac{49}{6} = \frac{49}{9}$$

(4) 領域を図示すると

よって
与式 =
$$\int_0^2 \left\{ \int_0^{y^2} (2x+y) \, dx \right\} dy$$

= $\int_0^2 \left[x^2 + xy \right]_0^{y^2} dy$
= $\int_0^2 (y^4 + y^3) \, dy$
= $\left[\frac{1}{5} y^5 + \frac{1}{4} y^4 \right]_0^2$
= $\frac{32}{5} + 4 = \frac{52}{5}$

問 5

(1) $\quad x+2y \le 2$ より , $y \le -\frac{1}{2}x+1$ であるから , 領域 D は次の不等式で表すことができる .

$$0 \le x \le 2, \quad 0 \le y \le -\frac{1}{2}x + 1$$
 したがって

与式 =
$$\int_0^2 \left\{ \int_0^{-\frac{1}{2}x+1} (x+y) \, dy \right\} dx$$

= $\int_0^2 \left[xy + \frac{1}{2}y^2 \right]_0^{-\frac{1}{2}x+1} dx$
= $\int_0^2 \left\{ x \left(-\frac{1}{2}x+1 \right) + \frac{1}{2} \left(-\frac{1}{2}x+1 \right)^2 \right\} dx$
= $\int_0^2 \left(-\frac{1}{2}x^2 + x + \frac{1}{8}x^2 - \frac{1}{2}x + \frac{1}{2} \right) dx$
= $\frac{1}{8} \int_0^2 (-3x^2 + 4x + 4) \, dx$
= $\frac{1}{8} \left[-x^3 + 2x^2 + 4x \right]_0^2$
= $\frac{1}{8} (-8 + 8 + 8) = \frac{1}{8} \cdot 8 = \mathbf{1}$

〔別解〕

 $x+2y \leq 2$ より , $x \leq -2y+2$ であるから , 領域 D は次の不等式で表すことができる .

$$0 \le y \le 1, \quad 0 \le x \le -2y + 2$$

与式 = $\int_0^1 \left\{ \int_0^{-2y+2} (x+y) \, dx \right\} dy$ = $\int_0^1 \left[\frac{1}{2} x^2 + yx \right]_0^{-2y+2} dy$ = $\int_0^1 \left\{ \frac{1}{2} (-2y+2)^2 + y(-2y+2) \right\} dy$ = $\int_0^1 (2y^2 - 4y + 2 - 2y^2 + 2y) dy$ = $-2 \int_0^1 (y-1) \, dy$ = $-2 \left[\frac{1}{2} y^2 - y \right]_0^1$

(2) $x^2+y^2\le 1$ より, $y^2\le 1-x^2$,すなわち $-\sqrt{1-x^2}\le y\le \sqrt{1-x^2}$ であるから,領域 D は次の不等式で表すことができる. $-1\le x\le 1,\ 0\le y\le \sqrt{1-x^2}$

 $=-2\left(\frac{1}{2}-1\right)=-2\cdot\left(-\frac{1}{2}\right)=1$

$$-1 \stackrel{\triangle}{=} x \stackrel{\triangle}{=} 1, \quad 0 \stackrel{\triangle}{=} y \stackrel{\triangle}{=} \sqrt{1}$$

〔別解〕

 $x^2+y^2\le 1$ より, $x^2\le 1-y^2$,すなわち $-\sqrt{1-y^2}\le x\le \sqrt{1-y^2}$ であるから,領域 D は次の不等式で表すことができる. $0\le y\le 1,\quad -\sqrt{1-y^2}\le x\le \sqrt{1-y^2}$ したがって

問 6

(1)
$$x=5-\frac{5}{2}y$$
 より, $y=2-\frac{2}{5}x$ であるから,領域は次の不等式で表すことができる.
$$0\leq x\leq \frac{5}{2},\ \ 1\leq y\leq 2-\frac{2}{5}x$$

で表すことができる。
$$0 \le x \le \frac{5}{2}, \quad 1 \le y \le 2 - \frac{2}{5}x$$
したがって
与式 = $\int_0^{\frac{5}{2}} \left\{ \int_1^{2 - \frac{2}{5}x} f(x, y) \, dy \right\} dx$

(
$$2$$
) $y=\frac{1}{2}\sqrt{4-x^2},~x\ge 0$ より, $4y^2=4-x^2$,すなわち, $x=2\sqrt{1-y^2}$ であるから,領域は次の不等式で表すことができる. $0\le y\le 1,~0\le x\le 2\sqrt{1-y^2}$

したがって

与 ਹੈ
$$\left\{\int_0^2 \sqrt{1-y^2} f(x,\;y) \; dx
ight\} \; dy$$

(3) $y = \log x$ より, $x = e^y$ であるから,領域は次の不等式で表すことができる.

$$0 \le y \le 1, \ e^y \le x \le e$$

したがって

与式
$$=\int_0^1 \left\{\int_{e^y}^e \! f(x,\;y)\, dx
ight\}\, dy$$

(4) $x=\sqrt{y}$ より, $y=x^2$ であるから,領域は次の不等式で表すことができる.

$$0 \le x \le 1, \quad x^2 \le y \le 1$$

したがって

与式
$$=\int_0^1\left\{\int_{x^2}^1\!f(x,\;y)\,dy\right\}\,dx$$

問7

 $0 \le y \le 1, \ y \le x \le 1$ であるから , 領域は図のようになる .

この領域は , $0 \le x \le 1, \ 0 \le y \le x$ と表せるので

与式 =
$$\int_0^1 \left\{ \int_0^x \sin x^2 \, dy \right\} dx$$

= $\int_0^1 \sin x^2 \left[y \right]_0^x dx$
= $\int_0^1 x \sin x^2 \, dx$

 $x^2=t$ とおくと, $2x\,dx=dt$ より, $x\,dx=rac{1}{2}\,dt$

また,xとtの対応は

$$\begin{array}{c|ccc} x & 0 & \to & 1 \\ \hline t & 0 & \to & 1 \end{array}$$

よって

与式 =
$$\int_0^1 \sin t \cdot \frac{1}{2} dt$$

$$= \frac{1}{2} \int_0^1 \sin t \, dt$$

$$= \frac{1}{2} \left[-\cos x \right]_0^1$$

$$= \frac{1}{2} (-\cos 1 + \cos 0)$$

$$= \frac{1}{2} (1 - \cos 1)$$

問8

求める体積を V とする . x+y=2 より , y=2-x であるから , 領域は次の不等式で表すことができる .

$$0 \le x \le 2, \quad 0 \le y \le 2 - x$$

この領域内で $z=4-x^2 \ge 0$ なので

$$V = \int_0^2 \left\{ \int_0^{2-x} (4 - x^2) \, dy \right\} dx$$

$$= \int_0^2 (4 - x^2) \left[y \right]_0^{2-x} dx$$

$$= \int_0^2 (4 - x^2)(2 - x) \, dx$$

$$= \int_0^2 (x^3 - 2x^2 - 4x + 8) \, dx$$

$$= \left[\frac{1}{4} x^4 - \frac{2}{3} x^3 - 2x^2 + 8x \right]_0^2$$

$$= 4 - \frac{16}{3} - 8 + 16$$

$$= \frac{12 - 16 + 24}{3} = \frac{20}{3}$$

問9

(1) 領域 D を , $x^2+y^2 \leq a^2, \; x \geq 0, \; y \geq 0$ とすると , この領域は 次の不等式で表すことができる .

$$0 \le x \le a, \quad 0 \le y \le \sqrt{a^2 - x^2}$$

この領域内で, $z=y\geq 0$ であるから, 求める体積を V とすると

$$\begin{split} V &= 2 \! \int_D \! y \, dx \, dy \\ &= 2 \! \int_0^a \left\{ \int_0^{\sqrt{a^2 - x^2}} \! y \, dy \right\} \, dx \\ &= 2 \! \int_0^a \left[\frac{1}{2} y^2 \right]_0^{\sqrt{a^2 - x^2}} \, dx \\ &= \int_0^a (a^2 - x^2) \, dx \\ &= \left[a^2 x - \frac{1}{3} x^3 \right]_0^a \\ &= a^3 - \frac{1}{3} a^3 = \frac{2}{3} a^3 \end{split}$$

(2) 領域 D を , $x^2+y^2 \leq a^2, \ x \geq 0, \ y \geq 0$ とすると , この領域は 次の不等式で表すことができる .

$$0 \le x \le a, \quad 0 \le y \le \sqrt{a^2 - x^2}$$

この領域内で, $z=\sqrt{a^2-x^2} \ge 0$ であるから,求める体積を V とすると

$$\begin{split} V &= 4 \! \int \!\!\! \int_D \sqrt{a^2 - x^2} \, dx \, dy \\ &= 4 \! \int_0^a \left\{ \int_0^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2} \, dy \right\} \, dx \\ &= 4 \! \int_0^a \left\{ \sqrt{a^2 - x^2} \int_0^{\sqrt{a^2 - x^2}} \, dy \right\} \, dx \\ &= 4 \! \int_0^a \sqrt{a^2 - x^2} \left[\ y \ \right]_0^{\sqrt{a^2 - x^2}} \, dx \\ &= 4 \! \int_0^a (a^2 - x^2) \, dx \\ &= 4 \left[a^2 x - \frac{1}{3} x^3 \right]_0^a \\ &= 4 \left(a^3 - \frac{1}{3} a^3 \right) = \frac{8}{3} a^3 \end{split}$$