BRACIS'14

Macroscopic Observation of Large-scale Multi-agent Systems

Robin Lamarche-Perrin¹, <u>Yves Demazeau</u>², and Jean-Marc Vincent²

¹ Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
² Laboratoire d'Informatique de Grenoble, France

The Analysis of Large-scale MAS

Examples:

Analysis of execution traces [Journaa, 2009]

Examples:

Analysis of execution traces [Journaa, 2009]

No precedence to the best of our knowledge

[Bonabeau and Dessalles, 1997]

« Emergence is associated with a decrease of the relative complexity. »

MAS Execution x

[Bonabeau and Dessalles, 1997]

« Emergence is associated with a decrease of the relative complexity. »

Observation Device δ_2

Description $d_2 = \delta_2(x)$

[Bonabeau and Dessalles, 1997]

« Emergence is associated with a decrease of the relative complexity. »

[Bonabeau and Dessalles, 1997]

« Emergence is associated with a decrease of the relative complexity. »

A Two-parts Talk

1. Aggregating Microscopic Causal Descriptions

1.a. Syntactic modeling of the microscopic causal structure

1.b. **Spatiotemporal aggregation** of this causal structure

A Two-parts Talk

1. Aggregating Microscopic Causal Descriptions

1.a. Syntactic modeling of the microscopic causal structure

1.b. **Spatiotemporal aggregation** of this causal structure

How to provide a macroscopic description without computing the microscopic description?

A Two-parts Talk

1. Aggregating Microscopic Causal Descriptions

2. Macroscopic Observation of an Ant Colony

Aggregating Microscopic Causal Descriptions

Microscopic Observation

Data Aggregation

Causal Descriptions of MAS

Generic modeling of the execution causal structure

- to focus on the syntax of agent interactions
- to abstract away the semantics of interactions

Interaction diagrams adapted from Distributed Systems [Mattern, 1989] to Multi-agent Systems

Causal dependence:

$$e_1 < e_2 < e_3 < e_4$$

Independence:

$$e_0 \parallel e_1$$

How to **measure** the complexity of an interaction diagram?

Set of Agents A_d

Spatial complexity

$$c_s(d) \sim |A_d|$$

Set of Time Cuts Γ_d

Temporal complexity

$$c_s(d) \sim |A_d|$$

$$c_t(d) \sim |\Gamma_d|$$

Set of Events E_d

- Spatial complexity
- Temporal complexity
- Spatio-temporal complexity

$$c_s(d) \sim |A_d|$$

$$c_t(d) \sim |\Gamma_d|$$

$$c_{st}(d) \sim |E_d|$$

Set of Interactions I_d

- Spatial complexity
- Temporal complexity
- Spatio-temporal complexity
- Interaction complexity

$$c_s(d) \sim |A_d|$$

$$c_t(d) \sim |\Gamma_d|$$

$$c_{st}(d) \sim |E_d|$$

$$c_i(d) \sim |I_d|$$

How to **reduce** the complexity of an interaction diagram?

Spatial Aggregation

- Reduction of spatial complexity
- Potential reduction of interaction complexity
- Conservation of temporal complexity

Temporal Aggregation

- Reduction of temporal complexity
- Potential reduction of interaction complexity
- Conservation of space complexity

Macroscopic Observation of Causal Structures

Macroscopic Observation of Causal Structures

Macroscopic Observation of an Ant Colony

 a_{23} a_{4} a_{23} a_{4} a_{23} a_{23}

- Incorporate the observation process within the MAS execution
- Distribute in space and time the computation of aggregated causal descriptions
- → The agents support their own macro-observation process, that becomes itself an emergent process

Observation of an Ant Colony

AntsForage on MASON
 Micro-observation device
 Macro-observation device

[Luke et al., 2005]

Emergent phenomena
 Creation of pheromone tracks
 Exploitation of food sources

- Classical and well-known MAS
- Pedagogical objectives
- First evaluation of the approach

Microscopic Interaction Diagram one probe per ant

one cut per time step

BRACIS 2014

BRACIS 2014

Microscopic Interaction Diagram
one probe per ant
one cut per time step

How to design a macroscopic observation design to deal with this complexity?

Macro-probes for Spatial Aggregation

Adapted from distributed sensor networks

Macro-probes: sensors located in decisive places (home, food sources, track forks) in order to centralize spatial information

Aggregated Agents: all ants are associated to the last probe they visited

Probe Interactions: transfer of an ant from a track to another one

Distributed Cuts and Temporal Aggregation

Adapted from the *snapshot algorithm* [Chandy and Lamport, 1985]

Macro-cuts: abstract time intervals synchronizing temporal information

Aggregated Cuts: all interactions happening during the round-trip of a given ant of reference

Probe Interactions: ant transfers aggregated for each round-trip

Results

- Getting the macroscopic description is less expensive
 - 100 simulations with 6400 ants and 6400 time steps
 - 220×200 grid with 10 food sources and 4 obstacles

	Average emergence rate	Std. dev.
Spatial Complexity	$\bar{\rho_s} = 300$	$\sigma_{\scriptscriptstyle S}=1,4$
Temporal Complexity	$\bar{\rho_t} = 180$	$\sigma_t = 1.2$
Interaction Complexity	$\overline{ ho_i}=14000$	$\sigma_i = 1,5$
Relative Complexity	$\overline{\rho_r} = 58$	$\sigma_r = 1.5$

 It is tractable, and yet emergent phenomena of interest are still fully described by the macroscopic observation

Results

Spatial Complexity wrt the number of agents

CONSTANT STEPS = 6400

Temporal Complexity wrt execution time

CONSTANT AGENTS = 6400

Conclusion and Perspectives

Conclusion and Perspectives

InternalExternalMacroMASEmergenceMicroAgentsComplexity

Any other interpretation or exploitation of this diagram?

Thank you for your attention

Robin Lamarche-Perrin Yves Demazeau Jean-Marc Vincent

Robin.Lamarche-Perrin@mis.mpg.de

Yves.Demazeau@imag.fr

Jean-Marc Vincent@imag.fr