Leis da Termodinâmica e suas Aplicações

A termodinâmica é fundamental para compreender máquinas térmicas, motores, reações químicas e o comportamento da matéria em diferentes estados.

Raimundo Ronis

UFPA/IFPA

2023

Contexto

- Leis da termodinâmica
 - Lei zero da termodinâmica
 - Escala Celsius, Kelvin e Fahrenheit
- 2 Dilatação Térmica
 - Calor e Temperatura
 - Calor e Trabalho
 - Primeira Lei da Termodinâmica
 - Exemplo
 - Condução Térmica
 - Entropia e segunda lei da Termodinâmica
- Conclusão
- 4 Referência
- 6 Agradecimentos

Lei zero da termodinâmica

As propriedades dos corpos sofrem mudanças quando aquecidos em forno ou resfriado em geladeiras.

A lei zero diz:

Se dois corpos **A** e **B** estão separadamente em equilíbrio térmico com um terceiro corpo **T**, então **A** e **B** estão em equilíbrio térmico entre si.

Dito de outra forma:

Quando dois corpos estão em equilíbrio térmico isso quer dizer que suas **temperaturas** são iguais.

Escala Celsius, Kelvin e Fahrenheit

As duas escalas termométricas não são as únicas que existem porém são as mais usadas.

O grau Celsius tem o mesmo valor numérico que o Kelvin, porém o zero da escala Celsius está em um valor mais conveniente que o zero absoluto. A conversão de escalas é dado por:

$$T_C = T_K - 273,15^o (1)$$

A relação entre as escalas Ceisius e Fahrenheit é:

$$T_F = \frac{9}{5}T_C + 32^o \tag{2}$$

Escala Celsius, Kelvin e Fahrenheit

Temperatura	°C	°F
Ponto de ebolição da água	100	212
Temperatura normal do corpo humano	37,0	89,6
Temperatura confortável	20	68
Ponto de congelamento da água	0	32

Table: 1 - Correspondência entre algumas temperaturas

Escalas em figura.

Dilatação térmica

Quando queremos tirar a tampa de uma garrafa que acabamos de tirar da geladeira e a mesma está muito atarraxada. Um método seria colocar a tampa da garrafa em baixo da torneira até que aqueça a tampa. Após isso a tampa da garrafa desenrosca tranquilamente.

A dilatação térmica dos materiais com o aumento da temperatura.

São três tipos de dilatação térmica:

- Dilatação linear.
- Dilatação superficial.
- Dilatação volumétrica.

Dilatação Linear

Se a temperatura de uma barra metálica de comprimento L aumenta de valor ΔT , seu comprimento aumenta de:

$$\Delta L = L_0 \alpha \Delta T \tag{3}$$

onde α é uma constante chamada coeficiente de dilatação linear

Dilatação Superficial

Dilatação Superficial é o aumento da área de um corpo que compreende duas dimensões - comprimento e largura.

A variação da superfície em função da temperatura é dado por:

$$\Delta A = A_0 \beta \Delta T \tag{4}$$

Onde,

 $\Delta A = Variação de área$

 $A_0 =$ Área inicial

 $\beta = \text{Coeficiente de dilatação superficial}$

 $\Delta T = Variação de temperatura$

Dilatação Volumétrica

Se todas as dimensões aumentam com a temperatura, é evidente que o volume do sólido aumente. A representação matemática se dá de forma:

$$\Delta V = V_0 \gamma \Delta T \tag{5}$$

Alguns coeficientes de dilatação linear:

Substância	$\alpha(10^{-6}/C^{o})$	Substância	$\alpha(10^{-6}/C^{o})$
Gelo(a 0ºC)	51	Aço	11
Chumbo	29	Vidro(comum)	9
Alumínio	23	Diamante	1,2
Concreto	12	Quartzo fundido	0,5

Table: 2 - Valores a temperatura ambiente

Coeficientes

Relação entre os coeficientes de dilatação:

$$\alpha = \frac{\beta}{2} = \frac{\gamma}{3}$$

Figure: 3 - Estrutura cristalina de um sólido

Do ponto de vista molecular podemos ver que na figura ao lado (cubo em azul) a baixa temperatura as moléculas que formam a estrutura cristalina pouco vibram, já o outro cubo onde os átomos estão representados em vermelho as moléculas estão mais afastadas. Isso acontece porque no momento em que a temperatura é aumentada, as moléculas presentes nesse corpo se agitam e geram o aumento da distância entre eles.

Calor e Temperatura

Tirando uma latinha de refrigerante da geladeira percebemos e ao colocar na mesa percebemos que a temperatura da latinha vai aumentando rapidamente e após um tempo esquenta devagar até atingir a temperatura ambiente.

A energia transferida é chamada de **calor**, é representada por Q.

Definição de Calor

Calor é a energia transferida de um sistema para o ambiente e vice-versa devido a uma diferença de temperatura.

Capacidade térmica, dado por:

$$Q = C\Delta T = C(T_f - T_i) \tag{6}$$

Q é o quantitativo de calor e C é medido em unidades de energia por grau.

Calor específico

Definindo a capacidade térmica por unidade de massa ou simplesmente **Calor Específico**.

Agora termos uma nova forma de determinar a quantidade de calor que te a forma:

$$Q = cm\Delta T \tag{7}$$

Nem sempre com quando o calor é transferido para uma amostra sua temperatura irá aumentar, pois ela simplesmente poderá mudar somente de fase.

Calor de Transformação , a relação que temos agora fica:

$$Q = Lm \tag{8}$$

Da fase líquida para a gasosa o Calor de vaporização $L_v = 2256 Kj/kg$ para a água.

Calor de Transformação

	Fusão		Ebulição)
Substância	PF(K)	$CF L_F (kJ/kg)$	PE	$CV(K) L_V (kJ/kg)$
Hidrogênio	14	58	20,3	455
Oxigênio	54,8	13,9	90,2	213
Mercúrio	234	11,4	630	296
Água	273	333	373	2256
Chumbo	601	23,2	2017	858
Prata	1235	105	2323	2336

Legenda \to PF=Ponto de fusão, CF=Calor de Fusão, PV=Ponto de Vaporização e CV=Calor de Vaporização

Calor e Trabalho

Vamos

agora ver como a energia se correlaciona com trabalho.

Um gás está confinado a um cilindro móvel. Uma certa quantidade Q pode ser adicionada ou removida do gás regulando a temperatura T do reservatório.

O trabalho infinitesimal dW realizado é:

$$dW = \vec{F} \cdot \vec{ds} = pA(ds) = p(Ads) = pdV$$

Integrando ambos os lados temos :

$$W = \int dW = \int_{V_i}^{V_f} p dV \tag{9}$$

Figure: 2 - O trabalho W pode

ser realizada pelo gás levantando ou baixando o êmbolo.

Calor e trabalho são grandezas que dependem do caminho.

Primeira Lei da Termodinâmica

Mostrando a forma da 1º Lei no formato discreto e infinitesimal.

$$\Delta E_{int} = E_{int,f} - E_{int,i} = Q - W \tag{10}$$

No contexto infinitesinam, temos:

$$dE_{int} = dQ - dW (11)$$

Enunciado

A energia interna $\mathbf{E_{int}}$ de um sistema tende a aumentar, se acrescemos energia na forma de calor \mathbf{Q} , e a diminuir se removemos energia na forma de trabalho \mathbf{W} realizado pelo sistema.

Processos Adiabáticos.

$$\Delta E_{int} = -W \tag{12}$$

Processos Adiabáticos.

$$\Delta E_{int} = -W \tag{12}$$

Processo a Volume contante.

$$\Delta E_{int} = Q \tag{13}$$

Processos Adiabáticos.

$$\Delta E_{int} = -W \tag{12}$$

Processo a Volume contante.

$$\Delta E_{int} = Q \tag{13}$$

Processo Cíclico

$$Q = W \tag{14}$$

Processos Adiabáticos.

$$\Delta E_{int} = -W \tag{12}$$

Processo a Volume contante.

$$\Delta E_{int} = Q \tag{13}$$

Processo Cíclico

$$Q = W \tag{14}$$

Expansão Livre.

$$\Delta E_{int} = 0 \tag{15}$$

Exemplo

Suponha que 1 kg de água a $100^{\circ}C$ é convertido em valor a $100^{\circ}C$ à pressão atmosférica padrão ($1atm=1,01\times10^{5}Pa$). O volume da água varia de um valor inicial de $1\times10^{-3}m^{3}$ do líquido para $1,671m^{3}$.

- (a) Qual o trabalho realizado pelo sistema durante esse processo?
- (b) Qual a energia é transferida em forma de calor durante o processo?
- (c) Qual é a variação da energia interna do sistema durante o processo?

Solução (a)

(1) O trabalho realizado pelo sistema é positivo, já que o volume aumenta. (2) Podemos calcular o trabalho W integrando a pressão em relação ao volume Eq.[9]. Temos portanto:

$$W = \int_{V_i}^{V_f} p dV = p \int_{V_i}^{V_f} dV = p(V_f - v_i)$$

$$= (1, 01 \times 10^5 Pa)(1, 671 m^3 - 1 \times 10^{-3} m^3)$$

$$= 1, 69 \times 10^5 J$$
(16)

Solução (b)

Como a mudança é da fase líquida para a gasosa, L é o calor de vaporização L_V da água, cujo valor aparece na Tab.[13]. Temos que:

$$Q = L_V m = (2256kJ/kg)(1,00kg)$$

= 2256kJ \approx 2260kJ. (17)

Solução (c)

A variação da energia interna do sistema está relacionada ao calor (no caso, a energia transferida para fora do sistema) através da primeira lei da termodinâmica, temos:

$$\Delta E_{int} = Q - W \tag{18}$$

$$= 2256kJ - 169kJ \tag{19}$$

$$2090kJ = 2,09MJ (20)$$

Condução Térmica

Se aplicarmos calor Q na extremidade de um ferro e segurarmos na outra extremidade perceberemos que com pouco tempo o ferro fica todo aquecido. Os átomos do metal vibram intensamente quando alta temperatura é aplicada.

A energia transferida por unidade de tempo é:

$$P_{cond} = \frac{Q}{t} = kA \frac{T_Q - T_F}{L} \tag{21}$$

Onde k é a condutividade térmica, A é a área, L é a espessura, T_Q é a temperatura da fonte quente e T_F é a temperatura da fonte fria.

Resistência Térmica

A formato matemático da resistência térmica é:

$$R = \frac{L}{k} \tag{22}$$

No geral os materiais metálicos são bons condutores de calor e por isso possui alto valor de R, já os gases e materiais de construção tem baixa resistência térmica.

Entropia e segunda lei da Termodinâmica

Processos Irreversíveis e Entropia

Você ficaria muito surpreso se colocasse a mão em um xícara de café quente e suas mãos ficassem frias.

Postulado da entropia

Se um processo irreversível ocorre em um sistema fechado, a **Entropia S** do sistema sempre aumenta.

A variação da entropia é dado por:

$$\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T}$$
 (23)

Entropia e Estado

Partido da primeira lei da termodinâmica termos:

$$dE_{int} = dQ - dW (24)$$

$$dQ = dE_{int} + dW (25)$$

$$dQ = nC_V dT + pdV (26)$$

Usando a lei dos gases ideais e dividindo toda a Eq.[26] por T, temos:

$$\frac{dQ}{T} = nR\frac{dV}{V} + nC_V \frac{dT}{T}$$

$$\int_{\cdot}^{f} \frac{dQ}{T} = \int_{\cdot}^{f} nR\frac{dV}{V} + \int_{\cdot}^{f} nC_V \frac{dT}{T}$$
(27)

Entropia e Estado

A equação geral da entropia é:

$$\Delta S = nR \ln \frac{V_f}{V_i} + nC_V \ln \frac{T_f}{T_i}$$
 (28)

Onde \mathbf{n} é o número de moles, \mathbf{R} é a constante do gases ideias e \mathbf{ln} é o log natural de base e.

Conclusão

- Vimos que as leis da termodinâmica são os princípios fundamentais que governam o comportamento da energia e do calor em sistemas físicos.
- Elas nos ensinam que a energia é constante e que processos naturais têm limitações inerentes.
- À medida que exploramos essas leis, ganhamos uma compreensão mais profunda das complexas trocas de energia que ocorrem ao nosso redor.
- Além disso, descobrimos que as leis da termodinâmica não são apenas conceitos abstratos, mas sim diretrizes práticas que moldam nossa capacidade de projetar, inovar e entender o mundo ao nosso redor.

Referências Bibliográficas

Figure: 8 - (a)

Figure: 8 - (b)

Figure: 8 - (c)

Agradecimentos

Obrigado pela atenção!

► Início