```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
from sklearn import metrics
```

Decision Tree -- (drug200) dataset:

load the drug dataset for classification:

```
drugs = pd.read csv('drug200.csv', encoding='utf-8')
drugs.head()
   Age Sex
               BP Cholesterol Na to K
                                         Drug
  23 F
                               25.355
                                        drugY
0
             HIGH
                         HIGH
   47
1
        М
               LOW
                         HIGH 13.093
                                        drugC
2
   47
               LOW
                         HIGH
                                10.114
        М
                                        drugC
3
    28
        F
           NORMAL
                         HIGH
                                7.798
                                        drugX
                         HIGH
4
    61
        F
               LOW
                                18.043
                                        drugY
#explore the data:
drugs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
 #
     Column
                 Non-Null Count
                                 Dtype
- - -
     -----
                 200 non-null
                                 int64
 0
    Age
 1
                 200 non-null
                                 object
    Sex
 2
                 200 non-null
                                 object
 3
    Cholesterol 200 non-null
                                 object
    Na_to_K
 4
                 200 non-null
                                 float64
 5
     Drug
                 200 non-null
                                 object
dtypes: float64(1), int64(1), object(4)
memory usage: 9.5+ KB
print(drugs['Cholesterol'].unique(),' -- ',drugs['Drug'].unique())
['HIGH' 'NORMAL'] -- ['drugY' 'drugC' 'drugX' 'drugA' 'drugB']
#change the string to numric for the model:
drugs['Sex'] = drugs['Sex'].replace({'F' : 1, 'M' : 0})
drugs['BP'] = drugs['BP'].replace({'HIGH' : 2, 'NORMAL' : 1, 'LOW' :
```

```
0})
drugs['Cholesterol'] = drugs['Cholesterol'].replace({'HIGH' : 1,
'NORMAL' : 0})
drugs['Drug'] = drugs['Drug'].replace({'drugA' : 4, 'drugB' : 3,
'drugC' : 2 , 'drugX' : 1, 'drugY' : 0})
drugs.head()
   Age Sex
             BP
                 Cholesterol Na to K Drug
              2
                               25.355
0
    23
          1
                           1
    47
                               13.093
                                           2
1
          0
              0
                           1
    47
                                           2
2
          0
              0
                           1
                               10.114
3
    28
              1
                           1
                                7.798
                                           1
          1
          1
                               18.043
    61
              0
                           1
                                           0
```

Build the model:

steps:

- split the data.
- standarizing the data.
- create the model.
- train the model.
- evaluate the model.
- visualize the model.

```
# split the data:
x = drugs.drop(columns=['Drug'])
y = drugs['Drug']

x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=0.3, random_state=23)

print(f'train shape: {x_train.shape} -- test shape: {x_test.shape}')

train shape: (140, 5) -- test shape: (60, 5)

# standraize the data:
standard = StandardScaler()
x_train_std = standard.fit_transform(x_train)
x_test_std = standard.transform(x_test)

# build the model then train it:
tree_model = DecisionTreeClassifier(max_depth=5, min_samples_leaf=5)
tree_model.fit(x_train_std,y_train)
DecisionTreeClassifier(max_depth=5, min_samples_leaf=5)
```


insights:

• From the graph, we see that our model predict the classes well, the gini index in the graph gave small values, which mean the misclassification in the model is little.

Random Forest -- new dataset (Load Boston):

Load and store the dataset for Regression:

```
# import:
from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import RandomForestRegressor

# store dataset:
california_house = fetch_california_housing()

# check from data:
california_house
```

```
{'data': array([[
                    8.3252 ,
                                  41.
                                                  6.98412698, ...,
2.5555556,
           37.88
                      , -122.23
                                     ],
            8.3014
                          21.
                                          6.23813708. ....
2.10984183,
           37.86
                      , -122.22
            7.2574
                          52.
                                          8.28813559, ...,
2.80225989,
           37.85
                      , -122.24
                          17.
                                          5.20554273, ...,
            1.7
2.3256351 ,
           39.43
                        -121.22
                                     ],
                                          5.32951289, ...,
            1.8672
                          18.
2.12320917,
           39.43
                      , -121.32
            2.3886
                          16.
                                          5.25471698, ...,
2.61698113,
           39.37
                    , -121.24
                                     ]]),
 'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]),
 'frame': None,
 'target names': ['MedHouseVal'],
 'feature names': ['MedInc',
  'HouseAge',
  'AveRooms'
  'AveBedrms'
  'Population',
  'AveOccup',
  'Latitude'
  'Longitude'],
 'DESCR': '.. _california housing dataset:\n\nCalifornia Housing
dataset\n-----\n\n**Data Set Characteristics:**\
n\n:Number of Instances: 20640\n\n:Number of Attributes: 8 numeric,
predictive attributes and the target\n\n:Attribute Information:\n
              median income in block group\n
                                                - HouseAge
                              - AveRooms
house age in block group\n
                                              average number of rooms
per household\n
                   - AveBedrms
                                   average number of bedrooms per
                               block group population\n
household\n

    Population

    Ave0ccup

average number of household members\n
                                         - Latitude
                                                         block group
             - Longitude
                              block group longitude\n\n:Missing
Attribute Values: None\n\nThis dataset was obtained from the StatLib
repository.\nhttps://www.dcc.fc.up.pt/~ltorgo/Regression/cal housing.h
tml\n\nThe target variable is the median house value for California
districts,\nexpressed in hundreds of thousands of dollars ($100,000).\
n\nThis dataset was derived from the 1990 U.S. census, using one row
per census\nblock group. A block group is the smallest geographical
unit for which the U.S.\nCensus Bureau publishes sample data (a block
group typically has a population\nof 600 to 3,000 people).\n\nA
household is a group of people residing within a home. Since the
average\nnumber of rooms and bedrooms in this dataset are provided per
```

```
household, these\ncolumns may take surprisingly large values for block groups with few households\nand many empty houses, such as vacation resorts.\n\nIt can be downloaded/loaded using the\n:func:`sklearn.datasets.fetch_california_housing` function.\n\n.. rubric:: References\n\n- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,\n Statistics and Probability Letters, 33 (1997) 291-297\n'}
```

Train the model:

steps:

- split the data.
- stadraizing the data.
- duild and train the model.
- evaluate the model.
- visualizing the model.

```
# split:
x california = california house.data
y california = california house.target
x california train, x california test, y california train,
y_california_test = train_test_split(x_california, y_california,
test_size=0.3, random state=23)
print(f'train shape: {x california train.shape} -- test shape:
{x california test.shape}')
train shape: (14448, 8) -- test shape: (6192, 8)
# standarize the data:
standard2 = StandardScaler()
x california train std = standard2.fit transform(x california train)
x california test std = standard2.transform(x california test)
# build and train the model:
randomForest model = RandomForestRegressor(n estimators=100,
random state=23)
randomForest model.fit(x california train std,y california train)
RandomForestRegressor(random state=23)
# predict the values and evaluate the R2 score(accuracy score for
regression):
y california predict =
randomForest model.predict(x california test std)
```

```
print(f'Accucarcy: {metrics.r2_score(y_california_test,
y_california_predict)}')

Accucarcy: 0.8107395747196504

# visualiseing the result:

plt.figure(figsize=(20,10))
plt.plot(sorted(x_california_test[0:50, 2]),
sorted(y_california_test[0:50]), color='#3498db', label = 'Real data')
plt.plot(sorted(x_california_test[0:50, 2]),
sorted(y_california_predict[0:50]), label = 'Predicted data',
color='#e26b5d')
plt.legend(fontsize=12)
plt.title('Cost of Houses in California based on Room Average')
plt.ylabel('Room Average')
plt.ylabel('House Cost')
plt.show()
```


insights:

- From the graph, we see that them model predict the house prices approximately 80% correctly.
- At 'Room-avg' between 6.5 and 7.7 it has a bigger gap than other periods.
- To have more accurate, we can use another model, such as svm.SVR, LinearRegression, or tunnig the same model. Also we can check from data, or add more data to data training.