作者: 张陈成

学号: 023071910029

K-理论笔记 外微分拾遗

目录

1 模的外积

定义 1 (对称 (反对称) 函数). 给定 R-模 M 与 N. 今取定 $m \in \mathbb{N}_{>1}$ 以及态射 $M^m \stackrel{f}{\longrightarrow} N$.

- 1. 称 f 是对称的, 若 $f(x_1, x_2, ..., x_m) = f(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(m)})$ 对一切置换 $\sigma \in S_m$ 成立;
- 2. 称 f 是反对称的, 若 $f(x_1, x_2, ..., x_m) = (-1)^{\sigma} f(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(m)})$ 对一切置换 $\sigma \in S_m$ 成立;
- 3. 称 f 是交错的, 若 f 满足以下论断: 若存在 $i \neq j$ 使得 $x_i = x_j$, 则 $f(x_1, x_2, ..., x_m) = 0$. 显然, 反对称等价于 "对换改变符号", 亦等价于交错.

定义 2 (模的外积). 给定反对称态射 $M^m \stackrel{f}{\longrightarrow} N$, 则有如下交换图

- 1. $\pi: M^m \to \bigotimes^m M$ 由张量积之范性质保证.
- 2. 对任意反对称态射 $f \in \operatorname{Hom}_R(M^m,N)$, 总有 $\ker(\tilde{f}) \subseteq \langle x_1 \otimes \cdots \otimes x_n \mid \text{存在}i \neq j \text{ 使得}x_i = x_j \rangle =: J$. 从而定义外积 $\bigwedge^m(M) := \frac{\bigotimes^m M}{J}$. 用泛性质语言描述之,任意 M^m 出发的反对称态射通过 $\bigwedge^m(M)$ 分解. **例 1.** $\bigwedge^0(M) \simeq \bigotimes^0(M) \simeq R$, $\bigwedge^1(M) \simeq \bigotimes^1(M) \simeq M$. 记 I := (x,y) 为 R 的理想,则 $\bigwedge^2(I)$ 为主理想. **命题 1.** 若 M 有限生成,记其极小生成集大小为 n. 则 $\bigwedge^m(M) = 0$ 对一切 m > n 成立.