Classificazione: alberi di decisione

Materiale parzialmente tratto dalle slide associate al libro: Introduction to Data Mining di Tan, Steinbach, e Kumar

Il problema

Il problema

- Le classi non sono insite negli esempi (o istanze)
- Non si tratta di raggruppamenti naturali inequivocabili
- Sono predefinite e dipendono dal fine per il quale si vuole costruire il predittore

Raggruppamento per colore

Fiori finti e fiori veri

Il problema

Dati:

- Esempi (fiori)
- Categorie o classi (fiori finti/fiori veri, fiori rosa/gialli/bianchi/rossi, ...)

Costruire:

- Una rappresentazione astratta (modello) che permetta di associare in modo corretto nuove istanze alla classe (o alle classi) di appartenenza
- Apprendimento supervisionato: gli esempi dal quale astrarre le definizioni delle classi hanno associata la classe a cui appartengono
- 1) Problema di rappresentazione dei dati
- 2) Problema di analisi dei dati e costruzione delle definizioni
- 3) Problema di utilizzo della conoscenza acquisita

Schema generale

Learning (o training) set

Per **learning** (o training) **set** si intende la collezione di dati usati per svolgere il compito di apprendimento. I dati sono divisi in **istanze** (o record o esempi). Ogni esempio è rappresentato da una **tupla** (x, y) dove x è a sua volta una tupla di valori di **attributi descrittivi** e y è la **classe** di appartenenza dell'istanza

nome	temperat ura	Copertur a pelle	viviparo	Creatura acquatica	Creatura volatile	zampe	letargo	CLASSE
uomo	Sangue caldo	peluria	SÌ	no	no	sì	no	mammifero
pitone	Sangue freddo	squame	no	no	no	no	sì	rettile
salmor	ne Sangue freddo	squame	no	sì	no	no	no	pesce
balena	Sangue caldo	peluria(?)	SÌ	SÌ	no	no	no	mammifero
rana	Sangue freddo	nessuna	no	semi	no	SÌ	SÌ	anfibio
pinguir	no Sangue caldo	piumaggio	no	semi	no	SÌ	no	uccello
piccior	ne Sangue caldo	piumaggio	no	no	sì	SÌ	no	uccello

Modelli

$$\langle x_1, x_2, \dots, x_n \rangle$$
 Modello

Nota:

Come classe si usano <u>attributi binari</u> o <u>categorie nominali</u>

Sì no 1 0 Vero falso

Etichette: es. Mammifero, pesce, ...

Usi dei Modelli appresi

Modello predittivo

Viene usato per predire la classe di appartenenza di istanze ignote in fase di apprendimento

Es. data la descrizione di una salamandra (sangue freddo, nessuna, no, semi, no, sì, sì) si usano le regole apprese per decidere a quale classe appartiene

Modello descrittivo

Viene usato come strumento esplicativo che permette di evidenziare quali caratteristiche distinguono le diverse categorie

Esprime in maniera sintetica delle descrizioni evitando di ragionare direttamente sugli esempi

Es. i mammiferi hanno il sangue caldo e solitamente non sono esseri acquatici

Test set

Qual è la bontà dei modelli appresi?

Valutazione sperimentale: il modello viene usato per classificare le istanze di un *test set*. La valutazione della bontà è fatta sulla base del comportamento di classificazione corretto/sbagliato su questi dati

Matrice di confusione:

Accuratezza ed error rate

$$Accuratezza = (f11+f22)/(f11+f22+f12+f21)$$

Predizioni corrette

Predizioni totali

Error rate =
$$(f12+f21)/(f11+f22+f12+f21)$$

Predizioni sbagliate

Predizioni totali

Matrice di confusione: esempio

	classe predetta			
	lattina	altro ogg.		
lattina	18	2		
altro ogg.	1	19		

Accuratezza: (18 + 19) / 40 = 92.5%

Error rate: 3 / 40 = 7.5%

Matrice dei costi

Matrice dei costi: esempio

		classe predetta			
		Classe 1	Classe 2		
classe reale	Classe 1	-1	50		
Classe reale	Classe 2	10	0		

Ogni istanza di classe 1 correttamente classificata riduce il costo complessivo; sbagliare a classificare gli oggetti di classe 1 è molto costoso; sbagliare a classificare gli oggetti di classe 2 è meno grave

Esempio: è più grave dire a un malato che è sano o dire a una persona sana che è malata?

Matrice dei costi: esempio d'uso

		classe predetta			
COSTI		Classe 1	Classe 2		
classe reale	Classe 1	-1	50		
	Classe 2	10	0		

		classe predetta			
Mat. Conf.		lattina	altro ogg.		
classe reale	lattina	18	2		
	altro ogg.	1	19		

Costo = $-1 \times 18 + 50 \times 2 + 1 \times 10 + 0 \times 19 = 92$

Attenti ai numeri ...

Instanze di classe A: 9990

Instanze di classe B: 10

Supponiamo che il nostro classificatore dica sempre che l'*istanza* è *di classe A*

Accuratezza: 9990/10000 = 0.999 !!

Error rate: 10 / 10000 = 0.001

Usi della classificazione (esempio)

Identificazione degli stati meteorologici

Usi della classificazione (esempio)

Classificazione della struttura secondaria delle proteine (alpha-helix, beta sheet, random coil)

Usi della classificazione (esempio)

Uso lecito o fraudolento in transazioni on-line con carta di credito