ESEMPI

L'acqua del rubinetto

L'acqua che esce dal rubinetto acquista, cadendo, velocità. Per la costanza della portata, la sua sezione diminuisce.

Lancio con "effetto"

$$v_B = v + v_{rotazione}$$
 $v_A = v - v_{rotazione} < v_B$
 $p + \frac{1}{2}\rho v^2 = costante$

$$p_B < p_A$$

La palla devia verso B

Nebulizzatore

Il liquido viene aspirato

Portanza di un'ala

A causa della forma dell'ala:

$$v_1 > v_2$$

$$v_1 < p_2$$

$$F = (p_2 - p_1)S = \frac{1}{2}\rho S (v_1^2 - v_2^2)$$

Effetto "risucchio" in un sorpasso

La depressione si crea nel canale d'aria tra le autovetture (in verso orizzontale) per l'aumento della velocità dell'aria a contatto con le auto.

Effetto tanto più elevato quanto più stretto è il canale

Paradosso Idrodinamico

cosa ci aspettiamo

cosa può succedere

SISTEMA CIRCOLATORIO

Portata del sangue

$$Q = 5 \ell /_{min} = \frac{5000}{60} \frac{cm^3}{s} = 88.33 cm^3 /_{s}$$

 $N_{capillari} \gg N_{arterie}$

 $S_{totale\,capillari} \gg S_{totale\,arterie}$

Portata costante

 $v_{capillari} \ll v_{arterie}$

Velocita' del sangue nei vari distretti:

AORTA (r	=0.8 cm)	$\mathbf{A} = \pi \ \mathbf{r}^2 \approx 2 \ \mathbf{cm}^2$	$v = q/A \approx 40 \text{ cm/s}$
ARTERIOI	E.	$A \approx 400 \text{ cm}^2$	$v = q/A \approx 0.2 \text{ cm/s}$
CAPILLAR	E L	$A \approx 4000 \text{ cm}^2$	$v = q/A \approx 0.02 \text{ cm/s}$
VENA CAV	A (r=1.1 cm)	$A = \pi r^2 \approx 4 cm^2$	$v = q/A \approx 20 \text{ cm/s}$

La bassissima velocità del sangue nei capillari è funzionale allo scambio di sostanze necessarie per la vita