

NCAA Bracket Predictor

By Abhay Varshney

Introduction

- Calculate which team would win in NCAA basketball tournament
- Use ELO Ranking algorithm to compare 2 teams and figure out who would win
- Make Prediction based of ranking algorithm
- Acquire Tweets from Tweepy
- Respond with prediction based off tweet

Basic Process of Code

General Format - Data

(Kaggle)

REGULARSEASON.csv

Teams.csv

Team_ld	Team_Name
1101	Abilene Chr
1102	Air Force
1103	Akron
1104	Alabama
1105	Alabama A&M
1106	Alabama St
1107	Albany NY
1108	Alcorn St
1109	Alliant Intl
1110	American Univ
1111	Appalachian St
1112	Arizona
1113	Arizona St
1114	Ark Little Rock

TourneyResults.csv

Season	Seed	Team
1985	W01	1207
1985	W02	1210
1985	W03	1228
1985	W04	1260
1985	W05	1374
1985	W06	1208
1985	W07	1393
1985	W08	1396
1985	W09	1439
1985	W10	1177

Code Walkthrough: Main Function

- Reads Season stats

```
seeds = pd.read csv('my data/TourneySeeds.csv')
  frames = [season data, tourney data]
  all_data = pd.concat(frames)
  model = linear_model.LogisticRegression()
  team_rating = {}
  total matchups = []
  teamsArr = {}
  csv data = []
  # initalize 2d list
  for i in range(1985, 2018):
      team rating[i] = {}
      team stats[i] = {}
  # Begin analyzing season and create model
  college basketball samples, binary correct = analyzeSeason(all data.iterrows(), team rating)
  print("Total samples: %d" % len(college_basketball_samples))
  # Calculate accuracy using cross-validation sklearn
  print("Cross-validation: %f" % cross validation.cross val score(model, numpy.array(college bas
  print("Fitting samples to Logistic Regression model.")
  model.fit(college_basketball_samples, binary_correct)
  setUpTourney()
  # convert data to .csv
  print("Converting results to csv.")
  for index, col in pd.read_csv('my_data/Teams.csv').iterrows():
      teamsArr[col['Team Id']] = col['Team Name']
  for matchup in total_matchups:
      values = matchup[0].split(' ')
      csv_data.append([teamsArr[int(values[1])], teamsArr[int(values[2])], matchup[1]])
  with open('my_data/my_predictions.csv', 'w') as f:
      writer = csv.writer(f)
      writer.writerows(csv data)
  print("Beginning Twitter communication...")
  beginTwitter()
```

obtain bball score results from csv (obtained from Kaggle)

season_data = pd.read_csv('my_data/RegularSeasonDetailedResults.csv')
tourney_data = pd.read_csv('my_data/TourneyDetailedResults.csv')

initialize necessary variables

SkLearn

- **Logistic Regression Model**
 - Used to predict who wins based off stats of previous NCAA games
 - log-odds of the probability of an event is a linear combination of independent or predictor variables
- Cross-Validation
 - Returns accuracy of prediction using results from previous stats using Cross-Validation
 - ▶ Training data → college_basketball_samples & binary_correct

Code Walkthrough - Analyze Season

```
def analyzeSeason(season data, team rating):
   print("Analyzing Season Data and computing rating based of ELO algorithm.")
   for index, column in season data:
        isUsable = True
       mvYear = column['Season'] # gives vear
       if column['Wloc'] == 'H': # home team gets 100 in ranking
           team a ranking = 100 + getRating(column['Wteam'], myYear, team rating)
           team b ranking = getRating(column['Lteam'], myYear, team rating)
           team_a_ranking = getRating(column['Wteam'], myYear, team_rating)
           team_b_ranking = 100 + getRating(column['Lteam'], myYear, team_rating)
        copy team a ranking = [team a ranking]
       copy team b ranking = [team b ranking]
        for field in stats_fields:
           team_a_stats = calculateStatistics(column['Wteam'], myYear, field)
           team_b_stats = calculateStatistics(column['Lteam'], myYear, field)
           if team a stats is 0 and team b stats is 0:
               isUsable = False # can't use these stats
               copy_team_a_ranking.append(team_a_stats)
               copy_team_b_ranking.append(team_b_stats)
        if isUsable:
           combineSamples(copy_team_a_ranking, copy_team_b_ranking)
        if column['Wfta'] != 0 and column['Lfta'] != 0:
           update_stats(myYear, column['Wteam'], setField('W', column))
           update_stats(myYear, column['Lteam'], setField('L', column))
       winner rank = getRating(column['Wteam'], myYear, team rating)
       loser rank = getRating(column['Lteam'], myYear, team rating)
       odds = 1 / (1 + math.pow(10, ((winner_rank - loser_rank) * -1) / 400))
       team_rating[myYear][column['Wteam']] = round(winner_rank + (getRank(winner_rank) * (1 - odds)))
       team rating[myYear][column['Lteam']] = (loser rank - (round(winner rank + (getRank(winner rank) * (1 - odds))) - winner rank))
   return college basketball samples, binary correct
```

Code Walkthrough - Make Prediction

```
def makePrediction(team_a, team_b, model, year, features, team_rating):
    team1Rating = getRating(team_a, year, team_rating)
    team2Rating = getRating(team b, year, team rating)
    features.append(team1Rating)
    for stat in stats_fields:
        year_stats = calculateStatistics(team_a, year, stat)
        features.append(year_stats)
    features.append(team2Rating)
    for stat in stats_fields:
        year stats = calculateStatistics(team b, year, stat)
        features.append(year_stats)
    return model.predict proba([features])
```

<u>Code Walkthrough - Prediction +</u> <u>Connect Prediction with Team Name</u>

```
def setUpTourney():
    # obtain tournament teams
    tourney_teams = []
    for index, col in seeds.iterrows():
        if col['Season'] == 2017:
            tourney_teams.append(col['Team'])
    # Build our prediction of every matchup.
    print("Predicting matchups.")
    tourney_teams.sort()
    for team_1 in tourney_teams:
        for team_2 in tourney_teams:
            if team 2 > team 1:
                # print("%s beats %s. Prediction accuracy: %f." % (team_2, team_1, prediction[0][0]))
                label = str(2017) + '_' + str(team_1) + '_' + str(team_2)
                total matchups.append([label, makePrediction(team 1, team 2, model, 2017, [], team rating)[0][0]])
```

Sample Output of Prediction Results:

Arizona	Arkansas	0.713786321751323
Arizona	Arkansas	0.713700321751323
Arizona	Baylor	0.616389331693955
Arizona	Bucknell	0.914968404875365
Arizona	Butler	0.642872527872693
Arizona	Cincinnati	0.6473955837288152
Arizona	Creighton	0.6984138358203831
Arizona	Dayton	0.7373784591102085
Arizona	Duke	0.5382249159463944
Arizona	ETSU	0.9005179129311065
Arizona	FL Gulf Coast	0.9194677902063007
Arizona	Florida	0.6750449208825784
Arizona	Florida St	0.6674151936265311
Arizona	Gonzaga	0.5382249159463944
Arizona	Iona	0.9094318095748143
Arizona	Iowa St	0.5987265113966642
Arizona	Jacksonville St	0.965743528154061
Arizona	Kansas	0.45813488371668154
Arizona	Kansas St	0.7650494050237683
Arizona	Kent	0.8996294332660116
Arizona	Kentucky	0.5111318650466458
Arizona	Louisville	0.5856059575776493

Twitter Feature

- Connect with Twitter
- Wait for response...
 - Once a response is received, read the tweet
 - Extract team names
- Using team names, read .csv file and look for prediction %
 - Reply to the tweet using prediction %

Twitter Sample Results:

Yo <u>@Laker_Blood</u>, I dont know about this but maybe Arizona is gonna beat Duke. The chance that this happens is 53.699240104080644%. Its your choice!

#ncaabasketball

11:41 PM - 6 Jun 2018

Accuracy:

~70%

Demo!

THANKS!