ARITHMETIC Chapter 19

Números racionales

Al sumar estos números

$$rac{3}{100}, \quad rac{25}{10.000}, \quad rac{748}{10}, \quad ext{etc.}$$

Un ingeniero y matemático holandés llamado Simón Stevin inventó en el S. XVI un método para hacer cálculos con fracciones decimales sin usar el denominador. Por ejemplo, escribía

Al sumar estos números, obtenía

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 7 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 7 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 8 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix}$$

Aunque su método no llegó a usarse mucho, su idea fue tomada por un gran matemático escocés, Napier, quien desarrolló, a partir de la proposición de Stevin, otra manera de escribir las fracciones decimales.

RACIONALES

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z} \land b \in \mathbb{Z} - \{0\} \right\}$$

Ejm.
$$\frac{12}{5}$$
; $\frac{-9}{13}$; $\frac{8}{-5}$; $\frac{1}{4}$; $\frac{18}{6}$

Números enteros

DENSIDAD DE LOS NÚMEROS RACIONALES

Dados los números racionales m y n con m < n, siempre existe un número racional p, tal que

$$m$$

NÚMEROS FRACCIONARIOS

Son los números racionales no enteros.

$$\frac{9}{25}$$
; $\frac{7}{-3}$; $\frac{15}{10}$

FRACCIONES

Son aquellos números fraccionarios cuyos términos son enteros positivos.

$$F = \left\{ \frac{a}{b} / (a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}) \right\}$$

Ejm

$$\frac{12}{5}$$
; $\frac{9}{13}$; $\frac{8}{5}$; $\frac{1}{4}$

Llamamos:

$$F = \frac{a}{b} \Rightarrow \begin{array}{c} \text{Numerador : } a \\ \text{Denominador : } b \end{array}$$

CLASIFICACIÓN DE LAS FRACCIONES

POR LA COMPARACIÓN DE SU /ALOR RESPECTO A LA UNIDAD

POR SU DENOMINANDOR

1. Propia

Ejm
$$\frac{15}{25}; \frac{9}{13}; \frac{19}{30}$$

$$f = \frac{a}{b} < 1 \to a < b$$

2. Impropia

Ejm
$$\frac{18}{12}$$
; $\frac{11}{3}$; $\frac{5}{2}$

$$f = \frac{a}{b} > 1 \to a > b$$

$$f > 1$$

1. Decimal

Ejm
$$\frac{7}{10^2}; \frac{23}{10}; \frac{45}{10^3}$$

$$\Rightarrow f = \frac{a}{b} \to b = 10^n$$

 $\forall n \in \mathbb{Z}^+$

2. Ordinaria

Ejm
$$\frac{5}{26}$$
; $\frac{12}{8}$; $\frac{15}{6}$

$$\Rightarrow \qquad f = \frac{a}{b} \to b \neq 10^n$$

 $\forall n \in \mathbb{Z}^+$

HELICO | THEORY

PROPIEDADES

1. Sean las fracciones irreductibles

Si:
$$\frac{a}{b} + \frac{c}{d} = k$$
; $(k \in \mathbb{Z}) \rightarrow b = d$

Sean
$$\frac{a}{m}; \frac{b}{n}; \frac{c}{p}$$

$$MCD\left(\frac{a}{m}; \frac{b}{n}; \frac{c}{p}\right) = \frac{MCD(a; b; c)}{MCM(m; n; p)}$$

$$MCM\left(\frac{a}{m}; \frac{b}{n}; \frac{c}{p}\right) = \frac{MCM(a; b; c)}{MCD(m; n; p)}$$

1. ¿Cuántos valores toma a si la fracción $\frac{a}{30}$ es propia e irreductible?

RESOLUCIÓN

f. propia:
$$a < 30 \implies a: 1; 2; 3; ...; 29$$

f. irreductible:
$$a y 30 \text{ son (PESI)} \rightarrow 30 = 2^3 \times 3 \times 5$$

 $a \neq 2; 3 \land 5$

∴ Cantidad de valores que toma a

8

2. Halle una fracción equivalente a $\frac{112}{364}$ sabiendo que el MCM de sus términos es 624. Dé como respuesta el numerador.

RESOLUCIÓN

$$\frac{112}{364} = \frac{4k}{13k} \longrightarrow MCM(4k; 13k) = 624$$

$$52k = 624$$

$$k = 12$$

El numerador es:

$$4k = 4(12) = 48$$

3. Halle el valor de N sabiendo que $\frac{N}{3a5a}$ es equivalente a $\frac{13}{17}$.

RESOLUCIÓN

$$\frac{N}{3a5a} = \frac{13k}{17k}$$

$$\frac{3a5a}{3a5a} = 17$$

$$3050 + \overline{a0a} = 17$$

$$3050 + 101a = 17$$

$$(17 + 7) + (17 - 1)a = 17$$

$$17 + 7 - a = 17$$

$$a = 7$$

Reemplazando a

$$3a5a = 17k$$

 $3757 = 17k$
 $k = 221$

$$N = 13k = 13(221) = 2873$$

4. Si la suma de dos fracciones irreductibles resulta 5 y la suma de sus numeradores es 40, ¿cuál es la suma de sus denominadores?

RESOLUCIÓN

sean las fracciones irreductibles:

$$\frac{a}{b}$$
 y $\frac{c}{d}$

Del dato tenemos:

$$\frac{a}{b} + \frac{c}{d} = 5$$
propiedad
b = d

Reemplazando:

$$\frac{a}{b} + \frac{c}{b} = 5$$

$$\frac{a + c}{b} = 5$$

dato: a + c = 40

Piden: suma de denominadores

5. Mi sueldo asciende a S/2400 y gasté los $\frac{2}{5}$; luego se me perdieron los $\frac{3}{8}$ del resto y finalmente en una apuesta logro ganar $\frac{2}{3}$ de lo que me quedaba. ¿Cuánto dinero me queda ahora?

RESOLUCIÓN

Sea "x" la cantidad inicial

Del dato tenemos:

Variación	QUEDA
$\frac{2}{5}$	$\frac{3}{5}x$
$\frac{3}{8}$	$\frac{5}{8}\left(\frac{3}{5}x\right)$
$\frac{2}{3}$	$\frac{5}{3} \left[\frac{5}{8} \left(\frac{3}{5} x \right) \right]$

Donde:

$$\frac{5}{3}x\frac{5}{8}x\frac{3}{5}xx = queda$$

$$\frac{5}{9}x^{2490}$$
Piden: $\therefore queda = 1500$

6. En la vitivinícola Tabernero ubicada en el valle de Chincha se realizó la siguiente prueba:

De un recipiente lleno de vino se retiró la sexta parte y se reemplazó por agua; luego se retiró las 2/3 partes de la mezcla y se volvió a reemplazar con agua. ¿Cuál será la relación de agua y vino que queda en dicho recipiente?

RESOLUCIÓN

Del dato tenemos:

RETIRA	QUEDA DE VINO PURO
$\frac{1}{6}$	$\frac{5}{6}V$
$\frac{2}{3}$	$\frac{1}{3}\left(\frac{5}{6}V\right)$

Sea "V" la cantidad de vino inicial

Donde:

queda vino =
$$\frac{1}{3} \times \frac{5}{6} \times V = \frac{5}{18} \times V$$

cantidad de agua = $V - \frac{5}{18}V = \frac{13}{18}V$

Pidenrelación de agua y vino

$$\frac{(13/18) V}{(5/18) V} : \frac{13}{5}$$
 13 a 5

7. La mitad de la gaseosa que me queda en la botella es igual a la tercera parte de lo que ya me tomé. Si tomo la cuarta parte de lo que me queda, ¿qué fracción de toda la gaseosa me habré tomado?

RESOLUCIÓN

Sea "q" la cantidad que queda

Y "t" la cantidad que tome

Donde: Total = q + t

Del dato tenemos:

$$\frac{1}{2} \cdot \mathbf{q} = \frac{1}{3} \cdot \mathbf{t} \qquad \qquad \frac{\mathbf{q}}{\mathbf{t}} = \frac{2 \, \mathbf{k}}{3 \, \mathbf{k}}$$

sigue tomando =
$$\frac{1}{4}$$
 (2k) = $\frac{k}{2}$

Entonces:

tome =
$$3k + \frac{k}{2} = \frac{7k}{2}$$

$$Total = (5k)$$

Piden:

$$\frac{\frac{7k}{2}}{5k} = \frac{7}{10}$$

7/10