Lab de Técnicas Digitais - Preparatório 3 - PUC-Rio

Rafael Rubim Cabral - 1511068

André Guimarães de Mello Alves - 1511032

Diagrama de Estados

Escolhemos a senha 12. Segue o diagrama de estados no modelo Mealy:

Após isso, fizemos a máquina no modelo Moore:

Tabela de transições de estados

q	z	0	1	2	3
q_0	0	q_2	q_1	q_2	q_2
q_1	0	q_3	q_3	q_7	q_3
q_2	0	q_3	q_3	q_3	q_3
q_3	0	q_5	q_4	q_5	q_5
q_4	0	q_6	q_6	q_7	q_6
q_5	0	q_6	q_6	q_6	q_6
q_6	0	q_6	q_6	q_6	q_6
q_7	1	q_2	q_1	q_2	q_2

Podemos simplificar a tabela pelas equivalências:

$$q_5=q_6$$

q	z	0	1	2	3
q_0	0	q_2	q_1	q_2	q_2
q_1	0	q_3	q_3	q_7	q_3
q_2	0	q_3	q_3	q_3	q_3
q_3	0	q_5	q_4	q_5	q_5
q_4	0	q_5	q_5	q_7	q_5
q_5	0	q_5	q_5	q_5	q_5
q_7	1	q_2	q_1	q_2	q_2

Tabela de implicação

Para checar ainda mais possibilidades de simplificação, vamos ao próximo passo:

0						
2-3 1-3 2-7	1					
2-3 1-3	3-7	2				
2-5 1-4	3-5 3-4 7-5	3-5 3-4	3			
2-5 1-5 2-7	3-5	3-5 3-7	4-5 5-7	4		
2-5 1-5	l	3-5	4-5	5-7	5	
Х	Х	Х	Х	Х	Х	7

Em primeiro lugar nenhum estado é equivalente ao 7:

0						
Х	1					
2-3 1-3	X	2				
2-5 1-4	x	3-5 3-4	3			
Х	3-5	x	x	4		
2-5 1-5	X	3-5	4-5	X	5	
Х	х	Х	х	х	Х	7

Depois podemos fazer sucessivas passadas para testar as condições de equivalência restantes:

0						
X	1					
X	x	2				
2-5 1-4	X	X	3			
Х	3-5	х	х	4		
X	x	3-5	Х	Х	5	
X	Х	Х	х	х	x	7

0						
х	1					
Х	Х	2				
2-5 1-4	х	х	3			
х	х	х	х	4		
Х	х	X	X	х	5	
х	х	X	х	X	Х	7

0						
Х	1					
Х	Х	2				
Х	Х	х	3			
Х	Х	х	х	4		
Х	х	X	х	х	5	
Х	Х	х	х	х	х	7

A conclusão é que não há mais simplificações possíveis.

Tabela de transições simplificada

Renomeando o estado 7 para 6, temos nossa tabela simplificada final:

q	z	0	1	2	3
q_0	0	q_2	q_1	q_2	$ q_2 $
q_1	0	q_3	q_3	q_6	q_3
q_2	0	q_3	q_3	q_3	q_3
q_3	0	q_5	q_4	q_5	q_5
q_4	0	q_5	q_5	q_6	q_5
q_5	0	q_5	q_5	q_5	q_5
q_6	1	q_2	q_1	q_2	q_2

Tabelas do flip-flop e de transição de estado binário:

Como pedido no enunciado, para implementar o circuito sequencial utilizaremos flip-flops do tipo JK. Para fazer a transição de estados, as entradas necessárias no flip-flop é:

Transição	J	K
0 → 0	0	Х
0→1	1	Х
1→0	Х	1
1→1	Х	0

Temos 7 estados diferentes na máquina. Portanto cada um será representado por 3 bits ($q=y_2y_1y_0$). As entradas variam de 0 a 3, portanto podem ser representadas por 2 bits. A tabela de transições em binários será:

	_	_			
$y_2y_1y_0$	z	00	01	10	11
000	0	010	001	010	010
001	0	011	011	110	011
010	0	011	011	011	011
011	0	101	100	101	101
100	0	101	101	110	101
101	0	101	101	101	101
110	1	010	001	010	010

Circuitos de entrada dos flip-flops

Como cada estado tem 3 bits, precisaremos de 3 flip-flops, com dois circuitos de entrada para cada um deles (para J e para K). Obtivemos esses circuitos mínimos por Mapas de Karnaugh, em que ABC representa o estado atual ($y_2y_1y_0$ respectivamente) e DE representa os 2 bits de entrada do circuito. Os resultados obtidos para esses circuitos foi:

Flip-flop 2

$$J_2 = BC + CD\overline{E}$$

$$K_2 = B$$

Flip-flop 1

$$J_1 = \overline{A}\overline{E} + \overline{A}D + \overline{A}C + \overline{C}D\overline{E}$$

$$K_1 = C + A\overline{D}E$$

Flip-flop 0

$$J_0 = \overline{D}E + \overline{A}B + A\overline{B}\overline{D} + A\overline{B}E$$

$$K_0 = B\widetilde{D}E + \widetilde{AB}D\widetilde{E}$$

Considerando os bits de entrada (DE) como x_1x_0 , traduzimos ABCDE para $y_2y_1y_0x_1x_0$:

Flip-flop 2

$$J_2 = y_1 y_0 + y_0 x_1 \overline{x_0}$$

$$K_2 = y_1$$

Flip-flop 1

$$J_1 = \overline{y_2}\overline{x_0} + \overline{y_2}\overline{x_1} + \overline{y_2}\overline{y_0} + \overline{y_0}\overline{x_1}\overline{x_0}$$

$$K_1 = y_0 + y_2 \overline{x_1} x_0$$

Flip-flop 0

$$J_0 = \overline{x_1}x_0 + \overline{y_2}y_1 + y_2\overline{y_1}\overline{x_1} + y_2\overline{y_1}x_0$$

$$K_0 = y_1 \overline{x_1} x_0 + \overline{y_2} \overline{y_1} x_1 \overline{x_0}$$

Implementação

Por último, basta implementar os 3 flip-flops, com uma opção de reset e com as entradas J/K relativas ao resultado dos mapas de karnaugh descritos acima. As entradas do circuito são x_1x_0 (número de 0 a 3) e a saída é 1 apenas no estado 110, ou seja, basta fazer esse teste na saída dos flip-flops.