

فصل يازدهم: فهرست مطالب

- □ یادگیری بدون نظارت □ كاربردها
 - □ خوشەبندى
 - □ الگوريتم K-means
- □ بهبود خوشهبندی □ الگوریتم دو بخشیساز
- □ خوشەبندى سلسلەمراتبى

فصل یازدهم: یادگیری نظارت شده

□ یادگیری نظارت شده. به ازای هر نمونه، پاسخ درست داده شده است.

فصل یازدهم: یادگیری بدون نظارت

□ یادگیری بدون نظارت. عدم آگاهی از پاسخهای درست.

□ هدف. تشخیص ساختار در دادههای ورودی [گروهبندی دادههای مشابه]

فصل یازدهم: خوشه بندی

فصل یازدهم: کاربرد خوشه بندی (گروه بندی اخبار مرتبط)

فصل یازدهم: کاربرد خوشه بندی (گروه بندی اخبار مرتبط)

فصل یازدهم: چند کاربرد دیگر از یادگیری بدون نظارت

سازمانرهی کلاسترهای مفاسباتی (مرکز دارهها)

بفش بندی بازار

تعليل شبكه هاى اجتماعي

تفلیل راره های ستاره شناسی (نعوه تشکیل کهکشان ها)

فصل يازدهم: الكوريتم خوشه بندى K-means

فصل یازدهم: الگوریتم خوشه بندی K-means

- □ یک الگوریتم خوشهبندی تکرار شونده.
- K نقطه را به صورت تصادفی به عنوان مراکز خوشهها انتخاب کن.
 - 🗖 مراحل زیر را تکرار کن:
 - هر داده را به یک خوشه با نزدیک ترین مرکز انتساب بده.
- مرکز هر خوشه را با میانگین گیری از دادههای انتساب یافته به آن خوشه به روز رسانی کن.
- □ توقف: زمانی که در یک تکرار هیچ دادهای خوشهی خود را عوض نکند.

فصل یازدهم: الگوریتم خوشه بندی K-means

- □ یک الگوریتم خوشهبندی تکرار شونده.
- نقطه را به صورت تصادفی به عنوان مراکز خوشهها انتخاب کن.
 - 🗖 مراحل زیر را تکرار کن:
 - هر داده را به یک خوشه با نزدیک ترین مرکز انتساب بده.
- مرکز هر خوشه را با میانگین گیری از دادههای انتساب یافته به آن خوشه به روز رسانی کن.
- □ توقف: زمانی که در یک تکرار هیچ دادهای خوشه ی خود را عوض نکند.

فصل یازدهم: الگوریتم خوشه بندی K-means

- □ یک الگوریتم خوشهبندی تکرار شونده.
- K نقطه را به صورت تصادفی به عنوان مراکز خوشهها انتخاب کن.
 - □ مراحل زیر را تکرار کن:
 - هر داده را به یک خوشه با نزدیک ترین مرکز انتساب بده.
- مرکز هر خوشه را با میانگین گیری از دادههای انتساب یافته به آن خوشه به روز رسانی کن.
- □ توقف: زمانی که در یک تکرار هیچ دادهای خوشهی خود را عوض نکند.

فصل یازدهم: الگوریتم K-means

- \square ورودی.
- k :تعداد خوشهها \square
- $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ مجموعهی آموزشی:

- □ توجه. در مجموعهی آموزشی هیچ برچسبی برای دادهها تعیین نشده است.
 - توجه. در خوشهبندی نیازی به افزودن ویژگی $x_0=1$ نیست. α

فصل یازدهم: الگوریتم K-means

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
     for i = 1 to m
                                                                  انتساب رارهها به فوشهها
        c^{(i)} = \arg\min_{k} ||x^{(i)} - \mu_k||
    for k = 1 to K
                                                                  به روز رسانی مرکز خوشهها
         \mu_k= average of points assigned to cluster k
```

خوشەبندى: تابع هدف

فصل يازدهم: تابع هدف

□ نمادها.

k مرکز خوشهی: μ_k . $x^{(i)}$ دادهی خوشهی اختصاص یافته به دادهی : $c^{(i)}$

 $x^{(i)}$ مرکز خوشهی اختصاص یافته به دادهی: $\mu_{c^{(i)}}$.

$$J(c^{(1)}, c^{(2)}, \dots, c^{(m)}, \mu_1, \mu_2, \dots, \mu_k) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

فصل یازدهم: الگوریتم K-means

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
     for i = 1 to m
                                                                                 کمینه سازی تابع هرف c^{(i)}نست به یار امترهای
         c^{(i)} = \arg\min_{\nu} ||x^{(i)} - \mu_k||
     for k = 1 to K
                                                                                   کمینه سازی تابع هرف
نسبت به پارامترهای µ
          \mu_k = average of points assigned to cluster k
```

مقداردهی اولیه به مراکز خوشهها

فصل یازدهم: الگوریتم K-means

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
    for i = 1 to m
        c^{(i)} = \arg\min_{k} ||x^{(i)} - \mu_k||
    for k = 1 to K
        \mu_k = average of points assigned to cluster k
```

فصل یازدهم: مقداردهی اولیه به مرکز خوشه ها

$[K \leq m]$ مقدار دهی اولیه. \square

- انتخاب K نمونهی آموزشی به صورت تصادفی \square
- انتساب مراکز خوشهها به K نمونهی انتخاب شده \square

فصل یازدهم: بهینه ی محلی

فصل یازدهم: اجتناب از بهینه های محلی

```
for t = 1 to MAX
   randomly initialize cluster centroids \mu_1, \mu_2, \dots, \mu_k
   run K-means to get c^{(1)}, c^{(2)}, ..., c^{(m)}, \mu_1, \mu_2, ..., \mu_k
   compute cost function J(c^{(1)}, c^{(2)}, ..., c^{(m)}, \mu_1, \mu_2, ..., \mu_k)
pick clustering with minimum cost
```

تعين تعداد خوشهما

فصل یازدهم: مقدار مناسب برای K کدام است؟

فصل یازدهم: مقدار مناسب برای K کدام است؟

فصل یازدهم: مقدار مناسب برای K کدام است؟

فصل یازدهم: تعین تعداد مناسب خوشه ها

□ روش «آرنج».

بهبود خوشہبندی

فصل یازدهم: بهبود خوشه بندی با پس پردازش خوشه ها

□ تقسيم.

□ ادغام.

فصل یازدهم: الگوریتم K-means دو بخشی ساز

- □ الگوریتم دو بخشیساز.
- ◘ با یک خوشه شامل تمامی دادهها شروع کن.
 - 🗖 هر بار یک خوشه را انتخاب کن:
- خوشهی انتخاب شده را به وسیلهی الگوریتم K-means به دو خوشه تقسیم کن.
 - مجموع خطای خوشهبندی را محاسبه کن.
 - خوشهبندی با کمترین خطا را انتخاب کن.
 - ◘ عمل فوق را تا زمان رسيدن به تعداد خوشههاي مورد نظر تكرار كن.

فصل یازدهم: الگوریتم K-means دو بخشی ساز

```
Start with all the points in one cluster
while the number of clusters is less than K
   measure the total error
   for every cluster
      perform K-means clustering with k = 2 on the given cluster
      measure the total error after splitting
   choose the cluster split that gives the lowest error
```

فصل یازدهم: خوشه بندی سلسله مراتبی

فصل یازدهم: خوشه بندی سلسله مراتبی

- □ خوشەبندى سلسلەمراتبى.
- 🗖 ابتدا دادههای بسیار شبیه را ادغام کن.
- 🗖 به تدریخ با ادغام خوشههای کوچکتر، خوشههای بزرگتری ایجاد کن.

□ الگوريتم.

- 🗖 در ابتدا هر داده بیانگر یک خوشه است.
 - □ مراحل زیر را تکرار کن:
- هر بار نزدیک ترین دو خوشه را انتخاب کن.
- آن دو خوشه را در یک خوشه جدید ادغام کن.
- توقف: زمانی که تنها یک خوشه باقی مانده باشد.
- □ ایجاد یک درخت نگاره شامل یک طیف گسترده از خوشهبندیها.

فصل یازدهم: خوشه بندی سلسله مراتبی

□ س. چگونه می توان نزدیک ترین دو خوشه را تعریف نمود؟

□ نزدیکترین زوج (خوشهبندی تک-پیوندی)

🗖 معیارهای تعیین شباهت خوشهها.

- 🗖 دورترین زوج (خوشهبندی تمام-پیوندی)
- 🗖 میانگین فاصله همه زوجها
- □ روش «وارد» (کمترین پراکندگی، مانند k-means)
- □ معیارهای مختلف باعث ایجاد خوشهبندیهای متفاوتی میشوند.

فصل یازدهم: خلاصه

- □ یادگیری بدون نظارت. یافتن ساختار در دادهها
 - 🗖 خوشهبندی. گروهبندی دادههای مشابه
 - الگوريتم خوشهبندي K-means
 - پیادہسازی آسان
 - برای مجموعه دادههای بسیار بزرگ کند
 - امکان گیر کردن در بهینهی محلی
 - 🗖 پسپردازش خوشهها: تقسیم و ادغام خوشهها
 - □ الگوریتم K-means دو بخشیساز
 - K-means خوشهبندی بهتر نسبت به الگوریتم
 - □ الگوریتمهای خوشهبندی سلسلهمراتبی

تمرينها

فصل یازدهم: تمرین ۱ (پیاده سازی الگوریتم K-means)

فصل یازدهم: تمرین ۲ (فشرده سازی تصویر با استفاده از K-means)

فصل یازدهم:

با تشکر از توجه شما

