

## planetmath.org

Math for the people, by the people.

## von Neumann algebras contain the range projections of its elements

 $Canonical\ name \qquad Von Neumann Algebras Contain The Range Projections Of Its Elements$ 

Date of creation 2013-03-22 17:28:57 Last modified on 2013-03-22 17:28:57 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 5

Author asteroid (17536)

Entry type Result
Classification msc 46L10
Classification msc 47A05

- Let T be an operator in a von Neumann algebra  $\mathcal{M}$  acting on an Hilbert space H. Then the orthogonal projection onto the range of T and the orthogonal projection onto the kernel of T both belong to  $\mathcal{M}$ .

**Proof**: Let T = VR be the polar decomposition of T with KerV = KerR.

By the result on the http://planetmath.org/PolarDecompositionInVonNeumannAlgebraspa entry we see that  $V \in \mathcal{M}$ .

As V is a partial isometry,  $VV^*$  is the () projection onto the range of T, and  $I - V^*V$  is the () projection onto the kernel of T, where I is the identity operator in  $\mathcal{M}$ .

Therefore the () projections onto the range and kernel of T both belong to  $\mathcal{M}$ .  $\square$