READING WORLD BANK DATA

```
In [2]: # Reading in Per Capita Energy Consumption Data
        energy url='http://api.worldbank.org/v2/en/indicator/EG.USE.PCAP.KG.OE?dov
        energy0=pd.read_excel(energy_url,
                              sheet name='Data',
                              skiprows=3,
                              index col=0,
                              usecols=range(270)
        energy0.head()
        # Reading in Per Capita GDP Data
        gdp url='http://api.worldbank.org/v2/en/indicator/NY.GDP.PCAP.CD?download
        gdp0=pd.read excel(gdp url,
                              sheet name='Data',
                              skiprows=3,
                              index col=0,
                              usecols=range(270)
                                 )
        gdp0.head()
        # Reading in % Urban Population In Each Country
        urban url='http://api.worldbank.org/v2/en/indicator/SP.URB.TOTL.IN.ZS?dow
        urban0=pd.read excel(urban url,
                              sheet name='Data',
                              skiprows=3,
                              index col=0,
                              usecols=range(270)
                                 )
        urban0.head()
        # Reading in % Contribution Of Services to Total GDP
        services url='http://api.worldbank.org/v2/en/indicator/NV.SRV.TOTL.ZS?dow
        services0=pd.read excel(services url,
                              sheet name='Data',
                              skiprows=3,
                              index col=0
```

```
usecols=range(270)
)
services0.head()
```

Out[2]:

	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	1966	
Country Name											
Aruba	ABW	Services, value added (% of GDP)	NV.SRV.TOTL.ZS	NaN							
Afghanistan	AFG	Services, value added (% of GDP)	NV.SRV.TOTL.ZS	NaN							
Angola	AGO	Services, value added (% of GDP)	NV.SRV.TOTL.ZS	NaN							
Albania	ALB	Services, value added (% of GDP)	NV.SRV.TOTL.ZS	NaN							
Andorra	AND	Services, value added (% of GDP)	NV.SRV.TOTL.ZS	NaN							

5 rows × 61 columns

CLEANING UP DATA

```
In [3]: # Extracting only Energy Consumption, GDP Per-Capita, Urban Population %,
    energy=energy0[['2014']].dropna()
    urban=urban0[['2014']].dropna()
    services=services0[['2014']].dropna()

    energy=energy.reset_index()
    gdp=gdp.reset_index()
    urban=urban.reset_index()
    services=services.reset_index()

# Renaming the columns
    gdp.columns=['Country','GDP']
    energy.columns=['Country','Energy']
    urban.columns=['Country','Urban']
    services.columns=['Country','Services']
```

In [4]: # Merging all data into the same dataframe
 data=pd.merge(energy.assign(Country=energy.Country.astype(str)),gdp.assign
 data=pd.merge(data.assign(Country=data.Country.astype(str)),urban.assign(Country=data.Country.astype(str)),services.assign
 data.head()

Out[4]:

	Country	Energy	GDP	Urban	Services
0	Albania	808.455840	4578.666728	56.423000	45.782515
1	Arab World	1953.286680	7452.814677	57.557605	40.855709
2	United Arab Emirates	7769.234738	44443.061514	85.375000	38.805326
3	Argentina	2015.187040	12245.256449	91.377000	52.940543
4	Armenia	1018.071240	3994.712355	63.112000	47.413044

REGRESSION ANALYSIS

```
In [5]: # Regressing Energy Consumption against Per-Capita GDP
    p=data[['GDP']]
    p=smf.add_constant(p)

    t=data[['Energy']]

    model=smf.OLS(t,p).fit()
    print(model.summary())
```

OLS Regression Results

====== Dep. Variable:

Energy R-squared:

```
U • I I U
Model:
                        OLS
                           Adj. R-squared:
0.436
Method:
                Least Squares F-statistic:
121.0
Date:
              Fri, 21 Dec 2018
                           Prob (F-statistic):
3.97e-21
Time:
                    20:36:53
                            Log-Likelihood:
-1417.4
No. Observations:
                       156
                           AIC:
2839.
Df Residuals:
                       154
                          BIC:
2845.
Df Model:
                         1
Covariance Type:
                   nonrobust
______
=======
           coef std err t P>|t| [0.025]
0.9751
_____
        968.0536 223.430 4.333 0.000 526.670
const
1409.437
GDP
          0.0887
                  0.008 10.998 0.000
                                          0.073
0.105
______
=======
Omnibus:
                     131.874 Durbin-Watson:
1.965
Prob(Omnibus):
                      0.000
                           Jarque-Bera (JB):
1621.450
Skew:
                      3.049
                           Prob(JB):
0.00
Kurtosis:
                     17.569 Cond. No.
3.59e+04
______
=======
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.59e+04. This might indicate that there are

```
In [6]: # Regressing Energy Consumption against Per-Capita GDP and Urban Population
p=data[['GDP','Urban']]
p=smf.add_constant(p)

t=data[['Energy']]

model=smf.OLS(t,p).fit()
```

OLS Regression Results

========			======		
======================================	1 -	D			
Dep. Variab	ore:	Energ	y R-sq	uared:	
Model:		OL	s Adi.	R-squared:	
0.457		02		it bquurout	
Method:		Least Square	s F-st	atistic:	
66.19					
Date:	Fr	i, 21 Dec 201	8 Prob	(F-statist	ic):
1.94e-21					
Time:		20:36:5	3 Log-	Likelihood:	
-1414.0		4.5			
No. Observa	itions:	15	6 AIC:		
2834. Df Residual	C •	15	3 BIC:		
2843.	-5 :	13	o bic:		
Df Model:			2		
Covariance	Type:	nonrobus			
				========	==========
======					
	coef	std err	t	P> t	[0.025
0.975]					
	-525.6395	611.700	-0.859	0.392	-1734.108
682.829 GDP	0 0717	0.010	6.990	0.000	0.051
0.092	0.0717	0.010	0.990	0.000	0.031
Urban	28.5710	10.923	2.616	0.010	6.992
50.150	20.3710	10.723	2.010	0.010	0.332
========			======	========	==========
======					
Omnibus:		138.88	8 Durb	in-Watson:	
1.974					
Prob(Omnibu	ıs):	0.00	0 Jarq	ue-Bera (JB):
1875.917			1		
Skew:		3.24	8 Prob	(JB):	
0.00 Kurtosis:		10 60	7 Cond	. No.	
1.00e+05		18.69	, cond	. NO.	
	.=======	========		========	==========
=======					

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1e+05. This might indicate that there are

```
p=data[['GDP','Urban','Services']]
p=smf.add_constant(p)

t=data[['Energy']]

model=smf.OLS(t,p).fit()
print(model.summary())
```

OLS Regression Results

		OLS Regi				
========	=======	========	====	====:	========	=======
Dep. Variab	le:	Energ	ſУ	R-sq	uared:	
0.548					_	
Model:		OL	ıS	Adj.	R-squared:	
0.539						
Method:		Least Square	s	F-st	atistic:	
61.34		! 01 D 001	^	D l-	(B =1 =1 i =1 i =	
Date:	F.	ri, 21 Dec 201	.8	Prob	(F-Statistic):
4.80e-26 Time:		20:36:5	2	T 0 % 1	[ikolihood.	
-1400.8		20:30:3		тод-1	Likelihood:	
-1400.0 No. Observa	tions.	15	6	Δ Τ C •		
2810.		13		.		
Df Residual	s:	15	2	BIC:		
2822.			_			
Df Model:			3			
Covariance	Type:	nonrobus	t			
	========		====	====		
======						
	coef	std err		t	P> t	[0.025
0.975]						
	2204 0011	012 060	2	F00	0.000	1400 550
const	3284.0911	912.860	3.	598	0.000	1480.558
5087.624	0 0050	0 010	0	711	0 000	0 066
GDP 0.105	0.0858	0.010	٥.	741	0.000	0.066
Urban	41.0568	10.337	3.	072	0.000	20.634
61.480	41.0300	10.557	٥.	912	0.000	20.034
	-88.3785	16.656	-5	306	0.000	-121.287
-55.471	-00:5705	10.050	-5•	300	0.000	-121.207
========	========	=========	-===	====	========	========
======						
Omnibus:		135.68	8	Durb	in-Watson:	
1.920						
Prob(Omnibu	s):	0.00	0	Jarqı	ue-Bera (JB):	
2112.148				_	,	
Skew:		3.05	8	Prob	(JB):	
0.00						
0.00 Kurtosis:		19.95	7	Cond	. No.	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\[2\]$ The condition number is large, 1.62e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [8]: fig, ax=plt.subplots(figsize=(12,8))
fig = smf.graphics.plot_partregress_grid(model, fig=fig)
```


Adding more years of data

```
In [9]: ####### 2013 DATA ########
energy_13=energy0[['2013']].dropna()
gdp_13=gdp0[['2013']].dropna()
urban_13=urban0[['2013']].dropna()
services_13=services0[['2013']].dropna()

energy_13=energy_13.reset_index()
gdp_13=gdp_13.reset_index()
urban_13=urban_13.reset_index()
services_13=services_13.reset_index()

gdp_13.columns=['Country','GDP']
energy_13.columns=['Country','Energy']
urban_13.columns=['Country','Urban']
services_13.columns=['Country','Services']
```

```
data_13=pd.merge(energy_13.assign(Country=energy_13.Country.astype(str)),
data 13=pd.merge(data 13.assign(Country=data 13.Country.astype(str)),urbal
data_13=pd.merge(data_13.assign(Country=data_13.Country.astype(str)),serv
####### 2012 DATA ########
energy 12=energy0[['2012']].dropna()
gdp 12=gdp0[['2012']].dropna()
urban_12=urban0[['2012']].dropna()
services 12=services0[['2012']].dropna()
energy 12=energy 12.reset index()
gdp 12=gdp 12.reset index()
urban_12=urban_12.reset_index()
services_12=services_12.reset_index()
gdp_12.columns=['Country','GDP']
energy_12.columns=['Country','Energy']
urban 12.columns=['Country','Urban']
services_12.columns=['Country','Services']
data_12=pd.merge(energy_12.assign(Country=energy_12.Country.astype(str)),
data_12=pd.merge(data_12.assign(Country=data_12.Country.astype(str)),urbar
data_12=pd.merge(data_12.assign(Country=data_12.Country.astype(str)),serv
####### 2011 DATA ########
energy 11=energy0[['2011']].dropna()
gdp_11=gdp0[['2011']].dropna()
urban 11=urban0[['2011']].dropna()
services_11=services0[['2011']].dropna()
energy 11=energy 11.reset index()
gdp_11=gdp_11.reset_index()
urban 11=urban 11.reset index()
services_11=services_11.reset_index()
gdp_11.columns=['Country','GDP']
energy_11.columns=['Country','Energy']
urban_11.columns=['Country','Urban']
services_11.columns=['Country','Services']
data_11=pd.merge(energy_11.assign(Country=energy_11.Country.astype(str)),
data_11=pd.merge(data_11.assign(Country=data_11.Country.astype(str)),urbar
data 11=pd.merge(data 11.assign(Country=data 11.Country.astype(str)),serv
```

```
In [10]: data=data.append(data 13)
          data=data.append(data 12)
          data=data.append(data 11)
          data=data.reset_index()
In [11]: | p=data[['GDP','Urban','Services']]
          #p=data[['2014 GDP']]
          p=smf.add_constant(p)
          p.head()
          t=data[['Energy']]
          t.head()
          model=smf.OLS(t,p).fit()
          print(model.summary())
          fig, ax=plt.subplots(figsize=(12,8))
          fig = smf.graphics.plot partregress grid(model, fig=fig)
          Warnings:
           [1] Standard Errors assume that the covariance matrix of the errors is
           correctly specified.
           [2] The condition number is large, 1.44e+05. This might indicate that
           there are
           strong multicollinearity or other numerical problems.
                                         Partial Regression Plot
             12500
```


Splitting into High, middle and low income countries

```
In [13]: data=data.reset_index()
    data.sort_values('GDP', ascending=False).head()
Out[13]:
```

```
level_0 index
                      Country
                                                    GDP Urban
                                   Energy
                                                                  Services
90
        90
               90 Luxembourg
                               6861.106667 119225.380023 89.884
                                                                 77.599543
569
       569
                  Luxembourg
                              8056.404301 115761.507705 88.906 78.306119
               90
245
       245
               89
                  Luxembourg
                              7312.154005 113625.132900 89.574 78.125206
407
       407
                   Luxembourg
                              7722.190204 106749.013623 89.249 78.256920
264
                       Norway 6415.990714 103059.248228 80.286 52.624111
       264
              108
```

```
In [14]: data_high=data[data['GDP']>15000]
In [15]: data_low=data[data['GDP']<5000]</pre>
```

```
In [16]: data_middle=data[(data['GDP']<=15000) & (data['GDP']>=5000)]
```

High Income

```
In [17]: p=data_high[['GDP','Urban','Services']]
#p=data[['2014_GDP']]
p=smf.add_constant(p)
p.head()

t=data_high[['Energy']]
t.head()

model=smf.OLS(t,p).fit()
print(model.summary())

fig, ax=plt.subplots(figsize=(12,8))
fig = smf.graphics.plot_partregress_grid(model, fig=fig)
```

OLS Regression Results

```
=======
Dep. Variable:
                                 Energy
                                          R-squared:
0.403
Model:
                                    OLS
                                          Adj. R-squared:
0.393
Method:
                         Least Squares
                                          F-statistic:
44.03
                      Fri, 21 Dec 2018
Date:
                                          Prob (F-statistic):
8.52e-22
Time:
                               20:36:54
                                          Log-Likelihood:
```

-1866.3							
No. Observ	ations:		200	AIC:			
3741.	_						
Df Residua	ls:		196	BIC:			
3754. Df Model:			3				
Covariance	Type.	nonrob	_				
	======================================		=====	======			===
======							
	coef	std err		t	P> t	[0.025	
0.975]							
const	8647.4280	1557 583	5	.552	0.000	5575 653	
1.17e+04	0047.4200	1557.505	J	. 552	0.000	3373.033	
GDP	0.0489	0.010	4	.974	0.000	0.030	
0.068							
Urban	50.1254	17.590	2	.850	0.005	15.436	
84.815							
	-153.6988	15.317	-10	.035	0.000	-183.905	
-123.492							
=======			=====				===
Omnibus:		121.	820	Durbir	n-Watson:		
2.422		-2•		241211			
Prob(Omnib	ous):	0.	000	Jarque	e-Bera (JB):	:	
644 029	-			_	, ,		

644.029

Skew: .42e-140

Kurtosis: 10.301 Cond. No.

3.75e+05

2.449

Prob(JB):

1

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.75e+05. This might indicate that there are


```
0.4
                                                                                       10000
   10000
                                                                                        8000
     7500
e(Energy | X)
                                                                                        6000
     5000
                                                                                        4000
     2500
                                                                                        2000
                                                                                            0
   -2500
                                                                                       -2000
                                                                                       -4000
   -5Q9B
                                                                       0.4 20
                                        0.2
                                                                                                -40 0.6-30
                                                                                                                  -20
                                        e(Urban | X)
                                                                                                                          e(Services | X)
```

```
In [18]: high_income_coeff = list(model.tvalues)
```

Middle Income

```
In [19]: p=data_middle[['GDP','Urban','Services']]
#p=data[['2014_GDP']]
p=smf.add_constant(p)
p.head()

t=data_middle[['Energy']]
t.head()

model=smf.OLS(t,p).fit()
print(model.summary())

fig, ax=plt.subplots(figsize=(12,8))
fig = smf.graphics.plot_partregress_grid(model, fig=fig)
```

```
OLS Regression Results
======
Dep. Variable:
                                Energy
                                          R-squared:
0.244
Model:
                                    OLS
                                          Adj. R-squared:
0.233
Method:
                         Least Squares
                                          F-statistic:
21.52
Date:
                      Fri, 21 Dec 2018
                                          Prob (F-statistic):
4.02e-12
Time:
                              20:36:55
                                          Log-Likelihood:
-1642.0
No. Observations:
                                    204
                                          AIC:
3292.
Df Residuals:
                                    200
                                          BIC:
3305.
Df Model:
                                      3
Covariance Type:
                             nonrobust
======
```

	coef	std err	t	P> t	[0.025
0.975]					
const	3119.7241	152 122	6.900	0.000	2228.184
4011.264	3119.7241	432.123	0.900	0.000	2220.104
GDP	0.1592	0.021	7.429	0.000	0.117
0.202					
Urban	-15.7714	4.594	-3.433	0.001	-24.829
-6.713					
	-29.9716	6.860	-4.369	0.000	-43.499
-16.444					
=======	========	========	========	=======	========
Omnibus:		46.0	025 Durhin	-Watson:	
2.253		10.	ozo barbin	wacbon.	
Prob(Omnib	us):	0.0	000 Jarque	-Bera (JB)	:
74.341	,		-	,	
Skew:		1.2	218 Prob(J	В):	
7.19e-17					
Kurtosis:		4.0	676 Cond.	No.	
8.06e+04					
=======		========		=======	=========

======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.06e+04. This might indicate that there are

e(Urban | X) e(Services | X)

```
In [20]: middle_income_coeff = list(model.tvalues)
```

Low Income

Urban

2.7316

OLS Regression Results ______ Energy R-squared: Dep. Variable: 0.453 Model: OLS Adj. R-squared: 0.446 Method: Least Squares F-statistic: 64.23 Date: Fri, 21 Dec 2018 Prob (F-statistic): 2.66e-30 20:36:55 Time: Log-Likelihood: -1681.2 No. Observations: 237 AIC: 3370. Df Residuals: BIC: 233 3384. Df Model: 3 Covariance Type: nonrobust _____ ======= coef std err t P>|t| [0.025] 0.9751 const 17.6760 114.999 0.154 0.878 -208.895 244.247 0.020 8.807 0.000 GDP 0.1783 0.138 0.218

1.733

1.576

0.116

-0.683

6.146 Services 7.801	3.3172	2.276	1.458	0.146	-1.167
==========	========	=======	=======	========	========
======					
Omnibus:		179.151	Durbin-W	atson:	
1.508					
Prob(Omnibus):		0.000	Jarque-B	era (JB):	
2082.336					
Skew:		2.947	Prob(JB)	:	
0.00					
Kurtosis:		16.272	Cond. No	•	
1.47e+04					

======== =======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.47e+04. This might indicate that there are

In [31]: low_income_coeff = list(model.tvalues)

```
print([ combined_model_coeff[1], high_income_coeff[1], middle_income_coeffint([combined_model_coeff[2], high_income_coeff[2], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeffint([combined_model_coeff[3], high_income_coeff[3], middle_income_coeff[3], high_income_coeff[3], middle_income_coeff[3], high_income_coeff[3], middle_income_coeff[3], middl
```

In [54]: print([combined model coeff[0], high income coeff[0], middle income coeff

PLOTTING ABSOLUTE F-VALUES FOR EACH COEFFICIENT OF EACH MODEL

```
In [67]: # Libraries
         import matplotlib.pyplot as plt
         import pandas as pd
         from math import pi
         # Set data
         df = pd.DataFrame({
         'F-Values: ': ['Combined Model', 'High Income Model', 'Middle Income Model'
         'Constant Intercept':[6.00, 5.55, 6.901, 0.15],
         'GDP': [17.68, 4.97, 7.43, 8.81],
         'Urbanization': [7.56, 2.85, 3.43, 1.58],
         'Services': [9.22, 10.03, 4.37, 1.46]
         })
         # ----- PART 1: Define a function that do a plot for one line of the d_{\epsilon}
         def make spider( row, title, color):
             # number of variable
             categories=list(df)[1:]
             N = len(categories)
             # What will be the angle of each axis in the plot? (we divide the pl
             angles = [n / float(N) * 2 * pi for n in range(N)]
             angles += angles[:1]
             # Initialise the spider plot
             ax = plt.subplot(2,2,row+1, polar=True, )
             # If you want the first axis to be on top:
             ax.set theta offset(pi / 2)
             ax.set theta direction(-1)
              # Draw and ave nor warishle + add labels labels wet
```

```
# DIAW OHE ARE PET VALIABLE T AUG TABELS TABLES YEL
    plt.xticks(angles[:-1], categories, color='grey', size=8)
    # Draw ylabels
    ax.set rlabel position(0)
    plt.yticks([5,10,15], ["5","10","15"], color="grey", size=7)
    plt.ylim(0,20)
    # Ind1
    values=df.loc[row].drop('F-Values:').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')
    ax.fill(angles, values, color=color, alpha=0.4)
    # Add a title
    plt.title(title, size=11, color=color, y=1.1)
# ----- PART 2: Apply to all individuals
# initialize the figure
my dpi=96
plt.figure(figsize=(1500/my_dpi, 1500/my_dpi), dpi=my_dpi)
# Create a color palette:
my palette = plt.cm.get cmap("Set2", len(df.index))
# Loop to plot
for row in range(0, len(df.index)):
   make_spider( row=row, title='F-Values: '+df['F-Values:'][row], color=
```


Services GDP Services	GDP
Urbanization	Urbanization

In []: