

1 **CLAIMS:**

2 1. A method of forming a semiconductor construction,
3 comprising:

4 forming a first substrate comprising silicon-containing structures
5 separated from one another by an insulative material; the silicon-
6 containing structures defining an upper surface;

7 forming a second semiconductor substrate comprising a
8 monocristalline material having a damage region therein;

9 bonding the second semiconductor substrate to the silicon-
10 containing structures at the upper surface; and

11 cleaving the monocristalline material along the damage region.

12
13 2. The method of claim 1 wherein the cleaving leaves a rough
14 upper surface of the monocristalline material over the silicon-containing
15 structures; and further comprising, after the cleaving, smoothing the
16 upper surface of the monocristalline material.

17
18 3. The method of claim 1 wherein the silicon-containing
19 structures comprise conductively-doped silicon.

20
21 4. The method of claim 1 wherein the silicon-containing
22 structures comprise amorphous silicon.

1 5. The method of claim 1 wherein the silicon-containing
2 structures comprise polycrystalline silicon.

3
4 6. The method of claim 1 wherein the silicon-containing
5 structures comprise monocrystalline silicon.

6
7 7. A method of forming a semiconductor construction,
8 comprising:

9 forming a first semiconductor substrate comprising a first
10 monocrystalline base and having a first transistor supported on the first
11 monocrystalline base; the first transistor having source/drain regions
12 associated therewith; the first substrate also having an insulative material
13 formed over the base and silicon-containing plugs extending through the
14 insulative material and to the source/drain regions; the silicon-containing
15 plugs being separated from one another by the insulative material and
16 defining a planarized upper surface above the first monocrystalline base;

17 providing a second semiconductor substrate comprising a second
18 monocrystalline base and bonding the second semiconductor substrate to
19 the silicon-containing plugs at the planarized upper surface above the
20 first monocrystalline base; and

21 forming a second transistor supported over the second substrate.

1 8. The method of claim 7 wherein one of the first and second
2 transistors is a PMOS transistor and wherein the other of the first and
3 second transistors is an NMOS transistor.

4 5 9. The method of claim 7 wherein the second transistor
6 comprises source/drain regions which extend entirely through the second
7 monocrystalline base.

8 9 10. The method of claim 7 wherein the second transistor
10 comprises source/drain regions which extend only partially through the
11 second monocrystalline base.

12

13

14

15

16

17

18

19

20

21

22

23

1 11. A method of forming a semiconductor construction,
2 comprising:

3 forming a first semiconductor substrate comprising a first
4 monocrystalline base and silicon-containing structures above the base, at
5 least some of the silicon-containing structures being separated from one
6 another by an insulative material; the silicon-containing structures and
7 insulative material together defining a planarized upper surface above
8 the first monocrystalline base;

9 forming a second semiconductor substrate comprising a second
10 monocrystalline base and having a damage region formed within the
11 second monocrystalline base;

12 bonding the second semiconductor substrate to the silicon-
13 containing structures at the planarized upper surface above the first
14 monocrystalline base; and

15 cleaving the second monocrystalline base along the damage region.

16
17 12. The method of claim 11 the first and second monocrystalline
18 bases comprise monocrystalline silicon.

1 13. The method of claim 11 wherein some of the silicon-
2 containing structures have no function except to bond to the second
3 semiconductor substrate; and wherein others of the silicon-containing
4 structures have additional functions besides bonding to the second
5 semiconductor substrate.

6

7 14. The method of claim 11 wherein the second monocrystalline
8 base is bonded to the silicon-containing structures.

9

10 15. The method of claim 11 wherein the bonding the second
11 semiconductor structure comprises bonding the second monocrystalline
12 base to the silicon-containing structures, and bonding the second
13 monocrystalline base to the insulative material at the planarized upper
14 surface above the first monocrystalline base.

15

16 16. The method of claim 11 wherein the damage region is
17 formed by implanting hydrogen ions into the second monocrystalline
18 base.

1 17. The method of claim 11 wherein the damage region is
2 formed by implanting hydrogen ions into the second monocrystalline
3 base, and wherein the cleaving comprise thermally treating the second
4 monocrystalline base.

5

6 18. The method of claim 11 wherein the only temperatures
7 utilized for the bonding are less than or equal to about 700°C, and
8 further comprising not exposing the first monocrystalline base to
9 temperatures exceeding 700°C after the bonding.

10

11 19. The method of claim 11 further comprising forming at least
12 one doped silicon region extending through the second monocrystalline
13 base and electrically contacting at least one of the silicon-containing
14 structures.

15

16 20. The method of claim 11 further comprising:
17 forming at least one doped silicon region extending through the
18 second monocrystalline base and electrically contacting at least one of
19 the silicon-containing structures; and

20 forming at least one other doped silicon region within the second
21 monocrystalline base, but which does not extend entirely through the
22 second monocrystalline base.

1 21. A method of forming a semiconductor construction,
2 comprising:
3

4 forming a first substrate comprising silicon-containing structures
5 separated from one another by an insulative material; the silicon-
6 containing structures defining an upper surface;

7 bonding a second semiconductor substrate to the silicon-containing
8 structures at the upper surface; the second semiconductor substrate
9 comprising a monocrystalline material which is bonded to the silicon-
10 containing structures; and

11 forming at least one doped silicon region extending through the
12 monocrystalline material and electrically contacting at least one of the
13 silicon-containing structures.

14 22. The method of claim 21 wherein the forming the at least
15 one doped silicon region comprises implanting dopant into the
16 monocrystalline material.

17 23. The method of claim 21 further comprising forming at least
18 one insulative region extending at least partially into the monocrystalline
19 material.

1 24. The method of claim 21 further comprising forming at least
2 one insulative region extending through the monocrystalline material.

3
4 25. The method of claim 24 wherein the forming the at least
5 one insulative region comprises:

6 forming an opening through the monocrystalline material; and
7 filling the opening with an insulative material.

8
9 26. The method of claim 21 wherein the forming the at least
10 one doped silicon region comprises:

11 forming an opening through the monocrystalline material; and
12 filling the opening with a doped silicon material.

13
14 27. The method of claim 26 wherein the doped silicon material
15 comprises doped amorphous silicon.

16
17 28. The method of claim 26 wherein the doped silicon material
18 comprises doped polycrystalline silicon.

1 29. The method of claim 21 further comprising forming at least
2 one second doped silicon region within the second monocrystalline base
3 and which does not extend entirely through the second monocrystalline
4 base.

5

6 30. The method of claim 29 wherein the forming the at least
7 one doped silicon region comprises:

8 forming an opening through the monocrystalline material; and
9 filling the opening with a doped silicon material.

10

11 31. The method of claim 30 wherein the doped silicon material
12 comprises doped amorphous silicon.

13

14 32. The method of claim 30 wherein the doped silicon material
15 comprises doped polycrystalline silicon.

1 33. A semiconductor construction, comprising:

2 a first substrate comprising silicon-containing structures separated
3 from one another by an insulative material; the silicon-containing
4 structures defining an upper surface; and

5 a second semiconductor substrate comprising a monocrystalline
6 material bonded over the silicon-containing structures at the upper
7 surface.

8

9 34. The construction of claim 33 further comprising one of
10 either a PMOS or NMOS transistor having a gate between the first and
11 second substrates; and the other of a PMOS or NMOS transistor having
12 a gate over the second substrate.

13

14 35. The construction of claim 33 further comprising only one
15 type of PMOS type or NMOS type transistors having a gate between
16 the first and second substrates; and the other type PMOS type and
17 NMOS type transistors having a gate over the second substrate.

18

19 36. The construction of claim 33 further comprising only one
20 type of PMOS type or NMOS type transistors having a gate between
21 the first and second substrates; and both types of PMOS type and
22 NMOS type transistors having gates over the second substrate.

1 37. The construction of claim 33 further comprising both types
2 of PMOS type and NMOS type transistors having gates between the first
3 and second substrates; and only one type of the PMOS type and NMOS
4 type transistors having a gate over the second substrate.

5

6 38. The construction of claim 33 wherein the monocrystalline
7 material of the second semiconductor substrate is monocrystalline silicon.

8

9 39. The construction of claim 33 wherein the silicon-containing
10 structures comprise conductively-doped silicon.

11

12 40. The construction of claim 33 wherein the silicon-containing
13 structures comprise amorphous silicon.

14

15 41. The construction of claim 33 wherein the silicon-containing
16 structures comprise polycrystalline silicon.

17

18 42. The construction of claim 33 wherein the silicon-containing
19 structures comprise monocrystalline silicon.

1 43. A semiconductor construction, comprising:

2 a first semiconductor substrate comprising a first monocrystalline
3 base and silicon-containing structures above the base, at least some of
4 the silicon-containing structures being separated from one another by an
5 insulative material; the silicon-containing structures and insulative
6 material together defining an upper surface above the first
7 monocrystalline base; and

8 a second semiconductor substrate comprising a second
9 monocrystalline base bonded to the silicon-containing structures at the
10 upper surface above the first monocrystalline base.

11

12 44. The construction of claim 40 the first and second
13 monocrystalline bases comprise monocrystalline silicon.

14

15 45. The construction of claim 40 wherein the second
16 monocrystalline base is bonded to the insulative material at the upper
17 surface above the first monocrystalline base.

18

19 46. The construction of claim 40 further comprising at least one
20 electrically insulative region extending through the second
21 monocrystalline base.

1 47. The construction of claim 40 further comprising at least one
2 doped silicon region extending through the second monocrystalline base
3 and electrically contacting at least one of the silicon-containing
4 structures.

5

6 48. The construction of claim 40 further comprising:
7 at least one doped silicon region extending through the second
8 monocrystalline base and electrically contacting at least one of the
9 silicon-containing structures; and
10 at least one insulative region extending through the second
11 monocrystalline base.

12

13 49. The construction of claim 40 further comprising:
14 at least one doped silicon region extending through the second
15 monocrystalline base and electrically contacting at least one of the
16 silicon-containing structures; and
17 at least one doped silicon region within the second monocrystalline
18 base, but which does not extend entirely through the second
19 monocrystalline base.