

Alexandru Calotoiu

Slides courtesy of Tal Ben-Nun, Johannes de Fine Licht, Alexandros-Nikolaos Ziogas, Timo Schneider, Torsten Hoefler,

Jan Kleine, Philipp Schaad and others at SPCL

Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures

Cray-1 Vector Processor

CPU

Multi-Core

GPU Computing Heterogeneous Systems Specialization

FPGAs and beyond

Newer computer ≠ faster application

100 Between cabinets' Energy/bit (pJ/bit) 10 **DRAM** read Chip to **Board to Board** chip Double FP Op (7nm) 0.1 On Die 0.01 0.1 10 100 1000 Interconnect Distance (cm)
Data provided by Intel and Lee et al.

Source: US DoE

Computational Scientist

Domain Scientist

Performance Engineer

Optimization Techniques

Multi-core CPU

- Tiling for complex cache hierarchies
- Register optimizations
- Vectorization

Many-core GPU

- High-performance optimization = data movement reduction
- Warp divergence minimization, register tiling
- Task fusion

DVIDIA.

FPGA

- Maximize resource utilization (logic units, DSPs)
- Streaming optimizations, pipelining
- Explicit buffering (FIFO) and wiring

DaCe Overview

Domain Scientist

Problem Formulation

$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

Python

DSLs

TensorFlow

MATLAB

Scientific Frontend

Performance Engineer

Data-Centric Intermediate Representation (SDFG)

Hardware Information

Compiler

Performance Results

Transformed

Dataflow

CPU Binary Runtime

GPU Binary

FPGA Modules

Data-centric Parallel Programming for Python

Programs are integrated within existing codes

In Python, integrated functions in existing code
In MATLAB, separate .m files
In TensorFlow, takes existing graph

In Python: Implicit and Explicit Dataflow

Implicit: numpy syntax

Explicit: Enforce memory access decoupling from computation

Output compatible with existing programs

C-compatible SO/DLL file with autogenerated include file

```
@dace.program
def program_numpy(A, B):
   B[:] = np.transpose(A)
```


Matrix Multiplication SDFG

Matrix Multiplication SDFG

MapReduceFusion Transformation

BlockTiling LoopReorder MapReduceFusion

Intel Xeon E5-2650 v4

Xilinx VU9P

SDFG

General Compilers

GCC 8, Clang 6, icc 18, NVCC 9.2, SDAccel

Polyhedral Optimizers

Polly 6, Pluto 0.11.4, PPCG 0.8

Frameworks & Libraries

HPX, Halide, Intel MKL, CUBLAS, CUSPARSE, CUTLASS, CUB

Related work

