Revealed Preferences when preferences differ

Jingni Yang

joint with Paul van Bruggen

Lunch Talk at Quantecon

I Agreement

 \bullet \mathbf{R}_{+}^{2} is the payoff space.

- \mathbf{R}_{+}^{2} is the payoff space.
- Any $a = (a_1, a_2) \in \mathbb{R}^2_+$ is an allocation, a_1 is your payoff, and a_2 is the other person's payoff.

- \mathbf{R}_{+}^{2} is the payoff space.
- Any $a = (a_1, a_2) \in \mathbb{R}^2_+$ is an allocation, a_1 is your payoff, and a_2 is the other person's payoff.
- Two contexts, G and S.
 context G: the other is generous; context S: the other is selfish

- \mathbf{R}_{+}^{2} is the payoff space.
- Any $a=(a_1,a_2)\in \mathbf{R}_+^2$ is an allocation, a_1 is your payoff, and a_2 is the other person's payoff.
- Two contexts, G and S.
 context G: the other is generous; context S: the other is selfish
- You have a pair of preferences (\succsim_G, \succsim_S) on \mathbb{R}^2_+ . \succsim_G and \succsim_S represent DM's preference in Context G and Context S respectively.

The Agreement axiom

Agreement: For all
$$x, y \in \mathbf{R}^2_+$$
 with $x = (x_1, x_2)$ and $y = (y_1, y_2)$, $x \succsim_S (\succ_S) y$ and $x_1 \le y_1$ imply $x \succsim_G (\succ_G) y$.

The Agreement axiom

Agreement: For all $x, y \in \mathbf{R}^2_+$ with $x = (x_1, x_2)$ and $y = (y_1, y_2)$, $x \succsim_S (\succ_S) y$ and $x_1 \le y_1$ imply $x \succsim_G (\succ_G) y$.

Example 1: If $(\in 20, \in 10) \succsim_S (\in 21, \in 5)$ then $(\in 20, \in 10) \succsim_G (\in 21, \in 5)$

The Agreement axiom

Agreement: For all
$$x, y \in \mathbf{R}^2_+$$
 with $x = (x_1, x_2)$ and $y = (y_1, y_2)$, $x \succsim_S (\succ_S) y$ and $x_1 \le y_1$ imply $x \succsim_G (\succ_G) y$.

Example 1: If
$$(\in 20, \in 10) \succsim_S (\in 21, \in 5)$$
 then $(\in 20, \in 10) \succsim_G (\in 21, \in 5)$

Agreement is equivalent to a reverse condition:

For all
$$x, y \in \mathbf{R}^2_+$$
 with $x = (x_1, x_2)$ and $y = (y_1, y_2)$,
$$x \succsim_{\mathcal{G}} (\succ_{\mathcal{G}}) y \text{ and } x_1 \ge y_1 \text{ imply } x \succsim_{\mathcal{G}} (\succ_{\mathcal{G}}) y.$$

II Revealed Preferences

Context G: x^i better than a and $x_1^i \ge a_1$

Agreement $\Rightarrow x^i$ better than a in Context S

Context S: x^m better than b and $x_1^m \le b_1$

Agreement $\Rightarrow x^m$ better than b in Context G

Context G: x^i and Context S: x^m

Context G: x^i and Context S: x^m

In Context G: x^i is strictly better than x^m

Context G: x^i and Context S: x^m

In Context G: by Agreement, x^m is not better than x^i

Context G: x^i and Context S: x^m

In Context S: x^m is strictly better than x^i

Context G: x^i and Context S: x^m

In Context S: by Agreement, x^i is not better than x^m

Context G: x^i and Context S: x^m

Context S: x^i and Context G: x^m

Context S: x^i and Context G: x^m

In Context S: x^i is strictly better than x^m

Context S: x^i and Context G: x^m

In Context S: by Agreement, x^m is strictly better than x^i

Context G: x^i , x^j and Context S: x^m , x^n

Context G: x^i , x^j and Context S: x^m , x^n

Context G: x^i , x^j and Context S: x^m , x^n

Context G: x^i , x^j and Context S: x^m , x^n

Experiment

Context G: x^i , x^j and Context S: x^m , x^n

Context G: x^i , x^j and Context S: x^m , x^n

Context G: x^i , x^j and Context S: x^m , x^n

Identifying preferences

Identifying preferences

Green must be S, grey must be G

Green must be S, grey must be G

Green must be G, grey must be S

Cannot be rationalised with Agreement

III Experiment

• Two players made choices.

- Two players made choices.
- The first mover (player FM) made a single choice:

```
(€27, €13) or (€18, €18)
```

- Two players made choices.
- The first mover (player FM) made a single choice:

```
(€27, €13) or (€18, €18)
```

• The second mover (player SM, N = 85) made 14 choices from budgets for both these cases (strategy method).

- Two players made choices.
- The first mover (player FM) made a single choice:

```
(€27, €13) or (€18, €18)
```

- The second mover (player SM, N = 85) made 14 choices from budgets for both these cases (strategy method).
- Either FM's choice or one of SM's choices (randomly selected) was paid out to avoid wealth effects

- Two players made choices.
- The first mover (player FM) made a single choice:

```
(€27, €13) or (€18, €18)
```

- The second mover (player SM, N = 85) made 14 choices from budgets for both these cases (strategy method).
- Either FM's choice or one of SM's choices (randomly selected) was paid out to avoid wealth effects
- The possible choices by FM represent the contexts between which SM's preferences may change.

Interface of one question

Budgets for player SM

Hypothesis: Player SM chooses according to different preference relations in each context.

Testable condition: GARP holds on the data from each context separately, but not on the data from both contexts together.

Testing hypothesis 1

Hypothesis: Player SM's preference relations in the two contexts can be connected with Agreement, with SM being more generous when FM is more generous.

Testable condition: Agreement-GARP holds, with the revealed preferences from the more generous context being more generous.

Testing hypothesis 2

Agreement: essentially a single-crossing condition

Agreement: essentially a single-crossing condition

Agreement: essentially a single-crossing condition

Beyond reciprocity

- A set of utilities satisfy single-crossing condition: deviation from stable preferences.
- Heterogeneity of preferences: same person in difference contexts and different people in same context
- Outcome set can be bundles not limited to money allocations.

Beyond reciprocity: an example

Choices of subjects in context G grouped by GARP

Beyond reciprocity: an example

Choices of subjects in context G grouped by Agreement-GARP

Computational Problem I

- Agreement is a partial order on the sets of choices
- *N* sets of choices $\{\Omega_i\}_{i=1}^N$ that satisfy GARP receptively.
- What is the minimal number of chain? (How many groups ?)

Computational Problem II

- Agreement is a partial order on a set of choices
- N choices
- What is the minimal number of groups ?

Thank you.

27 / 28

Efficiency

Efficiency

Efficiency

