Noţiuni introductive

Multiset

Intuitiv: O "mulțime" unde elementele se pot repeta

Multiset

- S o mulţime (finită) nevidă
- Multiset
 - $R = (S, r), r : S \rightarrow \mathbb{N}$ funcție de multiplicitate
- Notaţie

•
$$R = \{x^{r(x)} \mid x \in S\}$$

Exemplu

$$S = \{1, 2, 3, 4, 5\}$$

 $R = \{2^2, 3, 5^3\}$

- |R| = 2+1+3 = 6 suma multiplicităților
- 1 ∉ R

Graf, multigraf

Graf orientat

Graf neorientat

$$G = (V, E)$$

V - finită

E – perechi (ordonate) de 2 elemente distincte din V

- v ∈ V vârf
- e = (u, v) = uv arc

u = e- - vârf iniţial / origine / extremitate iniţială

v = e⁺ - vârf final / terminus / extremitate finală

E – submulțimi de 2 elemente (distincte) din V

- v ∈ V vârf / nod
- $e = \{u, v\} = (u, v) = uv muchie$ u, v - capete / extremități

Notaţii

- ▶ V(G), E(G)
- ▶ e = uv

Multigraf neorientat/orientat

- G = (V, E, r)r(e) – multiplicitatea muchiei e
 - $e = \{u,u\} = buclă$
 - e cu r(e) > 1 = muchie/arc multiplă/multiplu

Grade

Graf orientat

- grad interior $d_G^-(u) = |\{e \in E \mid u \text{ extremitate finala pentru } e\}|$
- grad exterior $d_G^+(u) = |\{e \in E \mid u \text{ extremitate initial a pentru } e\}|$
- grad $d_G(u) = d_G^+(u) + d_G^-(u)$

$$s^{-}(G) = \{d_{G}^{-}(v_{1}),...,d_{G}^{-}(v_{n})\}$$

Graf neorientat

• grad $d_G(u) = |\{e \in E \mid u \text{ extremitate pentru } e\}|$

$$s^+(G) = \{d_G^+(v_1), ..., d_G^+(v_n)\}$$

Grade

Graf orientat

$$\sum_{u \in V} d_G^-(u) = \sum_{u \in V} d_G^+(u) = |E|$$

Graf neorientat

$$\sum_{u \in V} d_G(u) = 2 |E|$$

Grade multigraf neorientat

 \rightarrow G = (V, E, r) – multigraf

 $d_G(u) = |\{e \in E \mid e \text{ nu este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}|$

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf
 - $u \neq v \in V \text{ sunt adiacente dacă } uv \in E$
 - Un vecin al lui u ∈ V este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf
 - $u ext{ si } v \in V ext{ sunt } \mathbf{adiacente} ext{ dacă } uv \in E$
 - Un vecin al lui u ∈ V este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u
 - O muchie e ∈ E este incidentă cu un vârf u dacă u este extremitate a lui e
 - e și $f \in E$ sunt adiacente dacă există un vârf în care sunt incidente (au o extremitate în comun)

Graf orientat

Graf neorientat

- Drum (walk)
- Drum simplu (trail)
- Drum elementar (path)
- Circuit + elementar
- Lungimea unui drum
- Distanță între două vârfuri

- Lanţ (walk)
- Lanţ simplu (trail)
- Lanţ elementar (path)
- Ciclu + elementar
- Lungimea unui lanţ
- Distanță între două noduri

Drumuri/ Lanțuri

Fie G un graf orientat/neorientat

Un drum/lanţ este o secvenţă P de vârfuri

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

a.î. între oricare două vârfuri consecutive există arc/muchie:

$$(v_{i, v_{i+1}}) \in E(G)$$
, $\forall i \in \{1, ..., k-1\}$

Drumuri/ Lanțuri

Fie G un graf orientat/neorientat

Un drum/lanţ este o secvenţă P de vârfuri

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

a.î. între oricare două vârfuri consecutive există arc/muchie:

$$(v_{i, v_{i+1}}) \in E(G), \forall i \in \{1, ..., k-1\}$$

- P este <u>drum/lanţ simplu</u> dacă nu conţine un arc/o muchie de mai multe ori $((v_{i,} v_{i+1}) \neq (v_{j,} v_{j+1}), \forall i \neq j)$
- P este drum/lanţ elementar dacă nu conţine un vârf de mai multe ori $(v_i \neq v_j, \forall i \neq j)$

Exemple

1 2 6

Drum neelementar, dar simplu:

Lanţ neelementar, dar simplu:

Drum elementar:

Lanţ elementar:

Exemple

Drum neelementar, dar simplu:

$$P=[1, 3, 1, 2]$$

Drum elementar:

$$P=[1, 2, 4, 6]$$

Lanț neelementar, dar simplu:

$$P=[1, 3, 2, 1, 5]$$

Lanţ elementar:

$$P=[1, 2, 4, 6]$$

Drumuri/ Lanțuri

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

Lungimea lui P = I(P) = k-1 = |E(P)| - număr de arce/muchii

Drumuri/ Lanțuri

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

- **Lungimea** lui P = I(P) = k-1 = |E(P)|
- \mathbf{v}_1 și \mathbf{v}_k se numesc **capetele/ extremitățile** lui P
- P se numeşte şi v₁-v_k drum

Notăm

- $V(P) = \{v_1, v_2, ..., v_k\}$
- \circ e_i = (v_i, v_{i+1})
- $E(P) = \{e_1, e_2, ..., e_{k-1}\}$
- ∘ Pentru i≤j notăm $[v_i P_j]$ subdrumul lui P dintre v_i și v_j

Distanță. Drum minim

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$\delta_{G}(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum/lant in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum/lant in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum/lanț)

Distanță. Drum minim

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$\delta_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum/lant in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum/lant in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum/lanț)

- Un u-v drum de lungime $\delta_G(u,v)$ se numește drum minim de la u la v
- Vom nota și $\delta(u,v)$ dacă G se deduce din context sau d(u,v) dacă nu apar confuzii de notație

Exemple

$$\delta(1, 6) =$$

Un drum minim de la 1 la 6:

$$\delta(1, 4) =$$

Un lanț minim de la 1 la 4:

Exemple

$$\delta(1, 6) = 2$$

Un drum minim de la 1 la 6:

$$P=[1, 5, 6]$$

$$\delta(1, 4) = 2$$

Un lanț minim de la 1 la 4:

$$P=[1, 2, 6]$$

Circuite/Cicluri

- Un **circuit/ciclu** este un drum/lanț *simplu* cu capetele identice $C = [v_1, v_2, ..., v_{k-1}, v_k, v_1]$
- Circuit/ciclu elementar: drumul/lanțul $[v_1, v_2, ..., v_{k-1}, v_k]$ este elementar
- Notații V(C), E(C)

Exemple

Circuit neelementar:

Circuit elementar:

Ciclu neelementar:

Ciclu elementar:

Exemple

Circuit neelementar:

$$P=[1, 2, 4, 6, 2, 3, 1]$$

Circuit elementar:

$$P=[2, 4, 6, 2]$$

Ciclu neelementar:

$$P=[1, 2, 6, 4, 2, 3, 1]$$

Ciclu elementar:

$$P=[1, 2, 6, 5, 1]$$

Graf parțial. Subgraf. Conexitate

- graf parţial
- subgraf
- subgraf indus

Fie
$$G = (V, E)$$
 și $G_1 = (V_1, E_1)$ două grafuri

• G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$

Fie G = (V, E) și $G_1 = (V_1, E_1)$ două grafuri

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 < G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$

```
Fie G = (V, E) și G_1 = (V_1, E_1) două grafuri
```

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 < G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$
- G_1 este subgraf indus de V_1 în G (vom nota $G_1=G[V_1]$) dacă $V_1\subseteq V$, $E_1=\{e\mid e\in E(G),\ e\ are\ ambele\ extremități\ în\ V_1\}$ (toate arcele/muchiile cu extremități în V_1)

Conexitate

Fie G = (V, E) un graf neorientat

- graf conex
- componentă conexă

două componente conexe

Conexitate

Fie G = (V, E) un graf neorientat

- G este graf conex dacă între orice două vârfuri distincte există un lanț
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Pentru cazul orientat tare-conexitate

Conexitate

Fie G = (V, E) un graf neorientat

- G este **graf conex** dacă între orice două vârfuri distincte există un lanț
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Pentru cazul orientat tare-conexitate
- Toate vârfurile și muchiile lui G aparțin unei (singure) componente conexe)

Tare conexitate

Fie G = (V, E) un graf **orientat**

G este **graf tare-conex** dacă între orice două vârfuri distincte există un drum

Tare conexitate

Fie G = (V, E) un graf orientat

- G este **graf tare-conex** dacă între orice două vârfuri distincte există un drum
- O componentă tare-conexă a lui G este un subgraf indus tare-conex maximal (care nu este inclus în alt subgraf tare-conex)

Tare conexitate

Fie G = (V, E) un graf orientat

- G este graf tare-conex dacă între orice două vârfuri distincte există un drum
- O componentă tare-conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Toate vârfurile lui G aparțin unei (singure) componente tare-conexe
- Un arc din G nu aparține neapărat unei componente tare-conexe

Notații

- ightharpoonup G v, $v \in V(G)$
- ightharpoonup G e, $e \in E(G)$
- $\blacktriangleright \ \ \textbf{G} \ \ \textbf{V} \ \ ' \ , \ \ \textbf{V} \ \ ' \subseteq V(G)$
- $\quad \textbf{G} \textbf{E'} \ , \ \textbf{E'} \subseteq \textbf{E}(\textbf{G})$
- \rightarrow G + e

Egalitate. Izomorfism

Egalitate

Egalitate?

Fie G₁, G₂ două grafuri

- $G_1 = (V_1, E_1)$
- $G_2 = (V_2, E_2)$

Grafurile G_1 și G_2 sunt **izomorfe** $(G_1 \sim G_2) \Leftrightarrow \text{există } f: V_1 \rightarrow V_2 \text{ bijectivă }$ cu

$$uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$$

pentru orice $u,v \in V_1$

(f conservă adiacența și neadiacența)

Interpretare: se pot reprezenta în plan prin același desen

f:
$$2 -> a$$

 $4 -> c$
 $1 -> b$
 $3 -> d$

$$G_1 \sim G_2 \Rightarrow s(G_1) = s(G_2)$$

▶
$$s(G_1) = s(G_2) \Rightarrow G_1 \sim G_2$$
 Exemplu??

Izomorfe?

Care dintre aceste grafuri sunt izomorfe?

Sunt aceste grafuri izomorfe?

• Un graf neorientat G = (V, E) se numește **bipartit** \Leftrightarrow

există o partiție a lui V în două submulțimi V_1 , V_2 (bipartiție):

$$V = V_1 \cup V_2$$

$$V_1 \cap V_2 = \emptyset$$

astfel încât orice muchie $e \in E$ are o extremitate în V_1 și cealaltă în V_2 :

$$|\mathbf{e} \cap \mathbf{V}_1| = |\mathbf{e} \cap \mathbf{V}_2| = 1$$

Observație

```
    G = (V, E) bipartit ⇔
    există o colorare a vârfurilor cu două culori:
    c: V → {1, 2}
    astfel încât pentru orice muchie e=xy∈E avem
    c(x) ≠ c(y)
    (bicolorare)
```


nu este bipartit

▶ P_n - lanţ elementar

▶ C_n – ciclu elementar

▶ K_n – graf complet (de ordin n)

▶ K_{p,q} – graf bipartit complet

► K_{3,3}

