

§ 1.4 同构、同态

引言:不同的代数系统表面上看起来元素不同,运 算也不同,但是通过在他们之间建立一个一一对应 关系,并且这种对应关系还能保持元素之间的运算 关系,这样借助此种一一对应关系,我们就可以把 在一个代数系统中所证明的结论相应翻译为另一个 代数系统的结论,从而不必在该系统中再证一遍。 换言之,此种不同的代数系统之间差别仅是元素和 运算符号的差异,本质上是一致的,可以认为他们 具有相同的结构。

[本节主要内容]

- 1) (幺) 半群的同构、同态的定义及相关性质定理;
- 2) 变换幺半群的定义及其Cayley定理;
- 3)自然同态及幺半群同态基本定理。

定义1 同构: (S, \circ) 与(T, *)为两个半群, $\varphi: S \to T$ 的一一映射,若对 $\forall a, b \in S$ 有: $\varphi(a \circ b) = \varphi(a) * \varphi(b)$,则称半群 (S, \circ) 与 (T, *) 同构,记为 $(S, \circ) \cong (T, *)$,简记为 $S \cong T$,称 φ 为S到T的同构。

定义2 设 (M_1, \circ, e_1) 与 $(M_2, *, e_2)$ 是两个幺 半群, $\varphi: M_1 \to M_2$ 的一一映射,且对 $\forall x, y \in M_1$, $\neq \varphi(e_1) = e_2$, $\varphi(x \circ y) = \varphi(x) * \varphi(y)$ 则称 (M_1, \circ, e_1) 与 $(M_2, *, e_2)$ 同构,记为 $(M_1, \circ, e_1) \cong (M_2, *, e_2) \otimes M_1 \cong M_2$ 注:可以证明 $\varphi(e_1)$ 为 M,的单位元, 故此处可省去该条件

例: 1) $X = \{1, 2, 3, 4\}$. $f: X \to X$ 的映射 $f = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,4 \rangle, \langle 4,1 \rangle\}$ (为一循环置换r=4) $\exists F = (f) = \{f^0, f^1, f^2, f^3\}$

则 (F, \circ) 可交换幺半群。

其运算如下:

0	<i>f</i> ⁰	f^1	f ²	f 3
f^0	f^0	f^1	f ²	<i>f</i> ³
f^1	f^1	f ²	<i>f</i> ³	f^0
<i>f</i> ²	f ²	<i>f</i> ³	f^0	f^1
<i>f</i> ³	<i>f</i> ³	f^0	f^1	f ²

-

2) $Z_4 = \{[0], [1], [2], [3]\}$ 即模4同余的等价类集合 $[i] \oplus [j] = [i+j] 则 (Z_4, \oplus)$ 为可交换半群,[0]为单位元

其乘法表如下:

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

运算对应表:

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

0	f^0	f^1	<i>f</i> ²	f 3
f^0	f^0	f^1	f ²	<i>f</i> ³
f^1	f^1	f ²	<i>f</i> ³	f^0
<i>f</i> ²	<i>f</i> ²	<i>f</i> ³	f^0	f^1
f 3	<i>f</i> ³	f^0	f^1	f ²

定义:
$$\varphi: F \to Z_4 \varphi(f^j) = [j], j = 0, 1, 2, 3$$

显然 $\varphi(f^i \circ f^j) = \varphi(f^i) \oplus \varphi(f^j)$

注:此两个代数系统在结构上没有差别,不同的只是元素的名字和运算的符号而已。

定义3 变换半群

(S,*)是半群, ρ_a : $S \rightarrow S$ 的映射, $a \in S$, 対 $\forall x \in S$, $\rho_a(x) = a * x$ (ρ_a 为由a确定的S 上的左变换)。 \diamondsuit L(S)= $\{\rho_a|a\in S, \forall x\in S, \rho_a(x)=a*x\}$ 则L(S)对映射的合成运算"°"构成 一个半群 $(L(S), \circ)$ 称为变换半群。 注: 1)主要是证封闭性,关于映射的合成 (复合)运算结合律显然成立。

2)类似可得变换幺半群。

4

引理1

设 (S,*) 是半群, $\varphi:S \to L(S)$ 的映射, 对 $\forall a \in S$ 有 $\varphi(a) = \rho_a$ 若对 $\forall x \in S$ a*x=b*x则a=b,则 φ 为同构。

注:主要是要说明 φ 为一一映射。

定理1 (幺半群的Cayley定理)

任何幺半群(M,*,e)同构于变换幺半群 $(L(M),\circ,I_M)$

定义4 同态

设 (S, \circ) 与 (T, *) 为两个半群 $\varphi: S \to T$ 的映射,若对 $\forall a, b \in S$ 有 $\varphi(a \circ b) = \varphi(a) * \varphi(b)$ 则称半群 (S, \circ) 与 (T, *) 同态, $\varphi(S)$ 称为同态象

4

幺半群同态:

设
$$(M_1, \circ, e_1)$$
 与 $(M_2, *, e_2)$
是两个幺半群, φ : $M_1 \to M_2$ 的映射,且对 $\forall x, y \in M_1$ 有: $\varphi(e_1) = e_2$, $\varphi(x \circ y) = \varphi(x) * \varphi(y)$ 则称 (M_1, \circ, e_1) 与 $(M_2, *, e_2)$ 同态。 若 φ 为满的,则称为满同态,记为S~T,或 $M_1 \sim M_2$

设(S, o)为半群,(T,*)为一个具有 二元代数运算"*"的代数系。 若存在满射 $\varphi: S \to T$, 若对 $\forall x, y \in S$ 有 $\varphi(x \circ y) = \varphi(x) * \varphi(y)$ 则(T,*)为半群。

设 (S, \circ, e) 为幺半群,(T, *) 是半群, $\varphi: S \to T$ 的满半群同态,则 $\varphi(e)$ 是T的单位元,从而 $(T, *, \varphi(e))$ 是幺半群。

设 (M, \circ, e_1) 与 $(T, *, e_2)$ 为两个幺半群, $\varphi: M \to T$ 同态, 则M的可逆元素a的象元 $\varphi(a)$ 也可逆, 且 $(\varphi(a))^{-1} = \varphi(a^{-1})$

设
$$\varphi_1:(S_1,\otimes)\to(S_2,*)$$
 半群同态
$$\varphi_2:(S_2,*)\to(S_3,\bullet)$$
 半群同态 则 $\varphi_2\circ\varphi_1:(S_1,\otimes)\to(S_3,\bullet)$ 半群同态。

回顾定义1: 设 $f:X \rightarrow Y$ 在X上 定义二元关系 E_f 如下: $\forall a,b \in X$ $aE_f b$ 当且仅当f(a) = f(b)则称 E_f 为由f导出的关系。 且为等价关系。

回顾定义2:设 E 是X上的一个等 价关系, $\gamma: X \to X/E$ 其定义为: $\gamma(a) = [a], \forall a \in X$ 其中[a]为a关于 E 的等价类。 称 γ 为 $X \to X/E$ 自然映射。 显然为满映射。

回顾定义3: 设 $f: X \to Y$ 则 f 可分解为 $X \to X/E$ 的自然映射 Y 与 $X/E \to Y$ 的某个单射 \bar{f} 的合成

$$f = \bar{f} \circ \gamma$$

定义5

设 (S, \circ) 与 (T, *) 为两个半群, $\varphi: S \to T$ 的同态,则由 φ 确定了S上的一个等价关系 $E_{\varphi}: \forall x, y \in S, x E_{\varphi} y$ 当且仅当 $\varphi(x) = \varphi(y)$

(接上)

在 S/E_{φ} (商集,由 E_{φ} 所得到

的等价类组成)上定义一个二元 运算"●"如下:[a]•[b]= $[a \circ b]$

则为
$$\left(S_{E_{\varphi}},\bullet\right)$$
半群(商半群)

同理: 可得商幺半群:

设
$$(M_1, \circ, e_1)$$
 与 $(M_2, *, e_2)$ 是两个幺半群, $\varphi: M_1 \to M_2$ 的同态, M_1/E_{φ} 为商集,则 $(M_1/E_{\varphi}, \bullet, [e_1])$ 称为商幺半群。

注:只需要说明[e_1]为其单位元。

定义6 自然同态:设 (S,\circ) 与(T,*)为两个半群, $\varphi:S\to$ T的同态,半群

$$\forall a \in S, \gamma(a) = [a]$$
, 则称

$$\gamma: S \to S/E_{\varphi}$$
 为自然同态。

定理6 幺半群的同态基本定理:

设 (M_1, \circ, e_1) 与 $(M_2, *, e_2)$ 是两个幺半群, $\varphi: M_1 \to M_2$ 的同态,则:

1) 同态象 $\varphi(M_1)$ 是 M_2 的一个子幺半群

2) 由 φ 确定的等价关系 E_{φ} 为同余 关系,即若 $aE_{\varphi}a'$ 且 $bE_{\varphi}b'$, 则 $a \circ b E_{\varphi} a' \circ b'$,于是: $\forall [a], [b] \in {}^{M_1} / E_{\sigma}, [a] \bullet [b] = [a \circ b]$ 是 M_1/E_{σ} 上二元代数运算,

$$\begin{pmatrix} M_1 / E_{\varphi} \end{pmatrix}$$
, •, $[e_1]$ 是幺半群(商幺半群)

3) 存在唯一的 M_{1}/E_{φ} 到 M_{2} 的 单 (射) 同态 $\overline{\varphi}$ 使 $\varphi = \overline{\varphi} \circ \gamma$ 其中 γ 为 $M_{1} \to M_{1}/E_{\varphi}$ 的自然同态;

4)若 φ 是满同态,则 M_1/E_{φ} 与 M_2 同构。

