

大麦泛基因组揭示了突变育种的潜在遗传痕迹

nature

大麦泛基因组揭示了突变育种的潜在遗传痕迹 The barley pan-genome reveals the hidden legacy of mutation breeding

•	发表时间:	2020年11月25日
•	发表期刊:	Nature
•	影响因子:	42.778
•	主要单位:	德国莱布尼茨植物遗传与作物栽培研究所
•	关键词:	大麦,泛基因组

背景介绍

大麦 (Hordeum vulgare)

- 变种:青裸(Hordeum vulgare var. nudum),颖果成熟时易于脱出 容体。
- 具有很强的环境适应性,**生长环境很广**,而且具有**春,冬生长习性**。
- 具有食用、饲用、酿造、药用等多种用途。
- 起源和驯化中心在新月沃地。

Genus	Species	Subspecies	Authority	Chromosome Number (2n)			
Hordeum	vulgare	cv. Sultan	L.	14	2	Fe	5.50

背景介绍

						X
物种	时间	期刊	主要单位	品系	组装策略	组装指标
大麦	2012.11	Nature	国际大麦基因组测序联盟(IBGSC)	Morex	Illumina 50X	Contig N50 266kb
	2017.04	Nature	德国莱布尼茨植物遗传 与作物栽培研究所	Morex	Illumina/454,光学图谱, 遗传图谱,Hi-C	Contig N50 79kb Scaffold N50 1.9 Mb
青稞	2015.01	PNAS	西藏农牧科学院	Goumang	Illumina 178X	Contig N50 18kb Scaffold N50 242kb
	2017.11	Plant Biotechnology Journal	浙江大学	Zangqing320	Illumina 50X	Contig N50 5.9kb Scaffold N50 173.8kb
物种	时间	期刊	主要单位	材料	测序策略	研究内容
大麦/ 青稞	2018.11	Nature Genetics	德国莱布尼茨植物遗 传与作物栽培研究所	22626份大麦种质	GBS	种质库基因组学揭示全球 大麦种质的多样性
	2018.10	Nature Communications	西藏农牧科学院	437份大麦(大麦、 野生大麦)	青稞和 WGS/WES	青稞在西藏的起源进化

Nils Stein

Leibniz Institute of Plant Genetics and Crop Plant Research \cdot Department Genebank **II** $45.55 \cdot \text{Professor}$

研究内容概要

· 材料选择:通过22000份大麦种质的基因分型数据的PCA选择了20份大麦来代表其遗传多样性 (地理来源、行类型、年生长习性)

- **组装策略**:将Illumina的双末端和配对短序列组装成scaffolds,使用10X Genomics和Hi-C将 scaffolds排列成染色体假分子
- 注释方法:利用RNA-seq和Iso-Seq对Morex、Barke和HOR 10350进行从头基因注释,注释的基因模型被合并并比对到其他17个基因组

• **结果**: Scaffolds均达Mb级别,注释到35,859-40,044个基因,直系同源基因聚类产生了40,176个 直系同源组

Accession	Status	Row-type	Growth habit	Country of orgin	No. of super- scaffolds#	Super-scaffolds N50 (Mb)	Size (Gb)#	No. of projected gene models§	% of transposons	single-copy sequence (Mb)#	Single-copy unique sequence (Mb)
Akashinriki	cultivar	6-rowed	winter	Japan	345	34.3	4.4	36,948	80.2	475.8	1.9
B1K-04-12	wild	2-rowed	spring	Israel	347	32.5	4.2	36,366	80.4	478.9	13.2
Barke	cultivar	2-rowed	spring	Germany	284	34.8	4.1	38,302	80.3	478.3	1.5
Golden Promise	cutlivar	2-rowed	spring	Europe	1595	18.4	3.8	35,859	80.1	467.9	1.4
Hockett	cultivar	2-rowed	spring	USA	482	18.4	4.0	38,725	79.9	450.0	1.6
HOR 10350	landrace	6-rowed	spring	Ethiopia	273	30.5	4.1	38,074	80.3	477.7	2.4
HOR 13821	landrace	2-rowed	spring	Turkey	338	33.3	4.3	37,199	80.3	477.1	2.1
HOR 13942	landrace	6-rowed	spring	Southern Europe	492	20.2	4.2	37,252	80.3	476.9	3.2
HOR 21599	landrace	2-rowed	winter	Syria	318	39.4	4.3	36,834	80.3	478.1	4.7
HOR 3081	cultivar	6-rowed	winter	Poland	552	18.9	4.2	37,502	80.2	479.4	2.2
HOR 3365	landrace	6-rowed	winter	Russia	377	31.1	4.5	40,044	79.4	476.1	2.7
HOR 7552	landrace	6-rowed	spring	Pakistan	558	17.7	4.2	37,047	80.2	477.9	3.7
HOR 8148	landrace	2-rowed	spring	Turkey	519	18.8	4.2	37,474	80.3	478.5	2.0
HOR 9043	landrace	6-rowed	spring	Ethiopia	282	42.7	4.2	37,459	80.3	478.2	2.2
Igri	cultivar	2-rowed	winter	Germany	646	12.5	4.2	37,590	80.2	475.9	1.6
Morex	cultivar	6-rowed	spring	USA	273	40.1	4.2	38,352	80.2	479.7	2.1
OUN333	landrace	intermedium	intermediate	Nepal	337	35.1	4.4	37,042	80.3	477.2	3.7
RGT Planet	cultivar	2-rowed	spring	Australia	320	37.2	4.2	37,822	80.2	479.6	1.5
ZDM01467	landrace	6-rowed	spring	China	1397	5.0	4.4	37,116	80.3	461.3	2.5
ZDM02064	landrace	6-rowed	spring	China	720	10.9	4.0	37,292	80.2	475.5	2.2

• 结果: 20个基因组具有相似的参考基因模型,基因组彼此高度共线

20个基因组的共线性和基因完整性

• 结果: Morex品种的短读长与PacBio长读长组装具有高共线性,并且具有检测PAV的相似能力

	Morex V2	Morex CLR
Pseudomolecule size#	4,257,712,555	4,072,877,080
contig N50	32.7 kb	10.2 Mb
contig N90	1.4 kb	1.9 Mb
Bionano label sites (%)	90.5	93.1
% cDNA alignment	91.0	89.5

Reference	Query	No. PAVs (> 1 kb)	Presence#	Absence#	Single-copy overlapping presence	Single-copy overlapping absence
Morex V2	Barke	14,636 (66.8 Mb)	7,013 (38.5 Mb)	7,623 (28.3 Mb)	3,378 (5.4 Mb)	4,686 (5.5 Mb)
Morex CLR	Barke	15,532 (87.4 Mb)	8,226 (44.2 Mb)	7,306 (43.2 Mb)	3,598 (5.6 Mb)	4,232 (5.4 Mb)

两种方法检测结构变异:

- 1) 基因组比对: 将19个组装分别与Morex对比
- **2) 单拷贝序列聚类:** 从每个组装中提取单拷贝区域,生成非冗余序列(单拷贝泛基因组),利用多样性群体(200驯化+100野生)的短读长序列进行k-mers(k = 31)计数,估计与结构变异重叠的单 拷贝簇的丰度

Barke与Morex的H7染色体比对

利用短读长序列K-mers的结构变异分析方法

结果:基因组比对鉴定到1,586,262个PAVs,大小从50到999,568 bp,呈现低频变异的富集,在远端密度较高

基因组比对检测SV的长度、频率和染色体分布

结果:基因组中单拷贝序列的平均累积大小为478 Mb(基因组的9.5%),非冗余单拷贝序列的大小为638.6 Mb(1,472,508个簇,N50为1,087 bp),其中402.5 Mb在所有20个基因组之间共享

	Size (Mb)	Number of sequences	N50
single-copy sequence per genotype (mean, SD)	478.5, 4.8	905,318	1,177 bp
all clusters	638.6	1,472,508	1,087 bp
PAV clusters	236	1,013,765	269 kb
singletons	59.1	395,235	132 kb

• **结果**:基于k-mers的丰度估计(泛基因组标记)表明,单拷贝序列的位点在不同种质中的拷贝数变异很大,泛基因组标记和与SNP生成相似的群体结构

300份重测序样本中的结构变异k-mers丰度估计

基于泛基因组标记的300份重测序(左)和20000份GBS大麦(右)的PCA

· 结果:基于泛基因组标记的GWAS显示与先前研究一致的峰值。与稃依赖性关联的泛基因组标记包含*NUDUM(NUD*)基因,36个裸粒品种均含有缺失

• 材料方法: 67驯化和2野生种,Hi-C测序

· 结果:鉴定到总共42个倒位事件,大小在4到141 Mb之间,大多数为低频。

69份大麦中大倒位的大小分布

69份大麦中大倒位的频率分布

• **结果**: RGT Planet中检测到的7H染色体倒位是最大事件(141 Mb);相对于Morex×Barke,RGT Planet×Hindmarsh群体倒位侧翼区域的重组频率增加,表明存在抑制大量重组缺失时补偿机制

RGT Planet 7H染色体上的大倒位事件

Morex×Barke和RGT Planet×Hindmarsh群体7H染色体上的倒位事件附近的重组率比较

- 方法:对该倒位设计诊断性PCR检测方法,对全部种质进行分型
- 结果: RGT Planet谱系的许多系中均被发现该倒位,最早出现在Diamant (由Valticky辐射诱变而来)中,Valticky样品均未进行倒位,而在Diamant样品中分离;RGT Planet×Hindmarsh群体中产量相关性状的定位未在7H染色体上显示信号,与倒位的选择性中立一致,表明诱变育种导致这一育种家未知的大倒位

RGT Planet谱系中7H倒位的PCR基因分型 (黄/蓝,携带/不携带RGT Planet等位,红,为扩增出)

RGT Planet×Hindmarsh群体中产量相关性状的定位

结果: 2H上跨度一个10 Mb的倒位出现在69个Hi-C样本中的26个中,对200个驯化的大麦品种和100个野生大麦品种进行的区域PCA和单倍型分析表明,倒位单倍型是单一来源

总结

亮点:

- 首个大麦泛基因组
- 基于大规模群体重测序的材料选择代表性个体
- 基于短读长数据的单拷贝序列k-mer计数PAV检测方法

不足:

- 组装策略不先进,未使用三代测序
- 泛基因组的深入研究不足
- 生物学故事不够,没有与驯化改良和重要性状机制解析结合起来

