ECE 382V: INTRODUCTION TO QUANTUM COMPUTING SYSTEMS: FROM A SOFTWARE AND ARCHITECTURE PERSPECTIVE

INTRODUCTION

POULAMI DAS

ECE, The University of Texas at Austin

Some Problems Are Hard For Current Computers

Number crunching (E.g., Find the sum)

Perception (E.g., Is this a dog?)

Factorization (E.g., Factor N= 2048-bits)

123018668453011775513049495838496 272077285356959533479219732245215 172640050726365751874520219978646 938995647494277406384592519255732 630345373154826850791702612214291 3461670429214311602221240479274737 794080665351419597459856902143413

Factorization As An Example

Problem: Compute the prime factors of a 2048-bit number

Supercomputer Farm (as large as Germany)

All Energy On Earth

> Solution in Years

Martinis' Talk @ Google, 2014 Gidney and Ekera, 2019 **Quantum Computer**

► Solution in ~8 Hours

The Limitations Of Classical Machines

Some problems are fundamentally hard on classical machines due to lack of efficient algorithms

Another Example: Protein Folding

- Proteins are chains of amino acids (N) with an exponential number (2^N) of conformations (or spatial arrangements).
- Many proteins quickly fold to a native conformation –understanding this is crucial for solving many problems in healthcare, agriculture.

 \triangleright O(N⁴) on a quantum computer

IBM Quantum: https://protein-folding-demo.mybluemix.net/https://arxiv.org/pdf/1908.02163.pdf

The True Potential Of Quantum Computing

Quantum computers promise massive speed-up for crucial problems in various domains – chemistry, material science, healthcare, etc.

Better fertilizers

Efficient batteries

Better medicines

Efficient power-grids

Carbon capture

Optimal routes

Abstractions & Transformations: Key To Computing

Application Algorithm Program ISA **µ**architecture Circuits **Electrons**

Q Application Math, Quantum Information Theory **Q** Algorithm **Q** Program ECE/CSE **QISA** [Software, Architecture, & Q Ctrl μ arch Systems] **Q** Circuits Qubits **Devices** <u>(atoms, ions)</u>

This course focuses on the software, architecture, and systems aspect of quantum computing

Quantum Bits (Qubits)

- Classical machines encode information using classical bits
 - Either 0 or 1 at any given time (only two points on the sphere)
- A qubit is the fundamental unit of information on a quantum computer
 - Any combination of 0 and 1 at the same time (any point on the sphere)

Superposition & Entanglement

- A qubit exists in a superposition of 0 and 1.
 - A quantum system with 'n' qubits exist in *superposition* of all possible 2ⁿ states.
- **Entanglement** enables us to create highly correlated states.
 - This property allows us to efficiently manage the exponential state space.

Quantum Gate Operations

Quantum gates manipulate the state of qubits

Single-qubit gates

- X Bit-flip/ NOT
- H Superposition

Two-qubit gates

Quantum Programs

Quantum programs comprise of quantum operations

Quantum programs manipulate qubits to amplify the probabilities of the correct output(s)

Qubit Candidate Technologies

A (physical) qubit can be any two-level system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states

And others: Photonic qubits, topological qubits, neutral atom qubits

Quantum Computer: Organization

Key Challenge In Quantum Computing: Qubits Are Noisy

• Qubit devices naturally lose their state even when left idle (*decoherence*)

Imperfect quantum operations lead to computational errors

Classical bit error-rate ~ 10⁻¹⁸

Quantum Error Correction (QEC)

QEC enables fault-tolerance but is expensive

Evaluating Qubit Device Technologies

Two vectors: Qubit lifetimes and operational fidelities + Scalability

Qubit Technology	Advantages	Challenges	Example	
Superconducting	High gate fidelities	Cryogenic operations	Google, IBM	
		Short qubit lifetimes	Rigetti	
Trapped ions	Extremely high gate fidelities	Poor laser scalability	Honeywell	
	Very long qubit lifetimes	Ultra-high vacuums	IonQ	
Photonic	Promising gate fidelities	Two-qubit gates hard	PsiQuantum	
	No cryogenics or vacuums	Short qubit lifetimes	Xanadu	
Neutral atoms	Promising gate fidelities	Poor laser scalability	QuEra, Pascal	
Neutral atoms	Long qubit lifetimes	Ultra-high vacuums	ColdQuanta	
Silicon/Spin	Promising gate fidelities	Cryogenic operations	Intel	
	Good qubit lifetimes	High interference/crosstalk	Inter	
Topological	Extremely high gate fidelities	Extremely hard to build	Microsoft	
	Extremely long qubit lifetimes	* No demonstration yet	MICIOSOIT	

It is too early now to bet on a single qubit device technology

Available Quantum Systems + Future Roadmap

Noisy Intermediate Scale Quantum (NISQ)

Near-term quantum computers with few hundreds of qubits: NISQ machines

Today (up-to 433 qubits)

2023 1000+ qubits 2025 4000+ qubits

Preskill, "Quantum Computing in the NISQ Era and beyond", 2018

The Quantum Roadmap

NISQ Computing Model

Goal: Maximize probability of successful execution or trial (program success rate)

Fault-Tolerant Quantum Computing

QEC involves syndrome (parity) extraction and decoding to identify errors

- 1 Instructions to generate syndrome
- 2 Send syndrome to decoder
 - ? Did an error occur?
 - Where did the error occur?
 - What was the type of error?
 - 3 Send correction to control processor

Why This Course?

- What is quantum computing?
- What was that recent blog from IBM/Google?
- How do quantum computers work?
- What is the primary role of software/architecture in quantum?
- Little bit from all the layers
 (algorithms, compilation, micro arch, qubit devices)

About Instructor & Teaching Assistant

Instructor

- PhD from Georgia Tech
 - Software and Architecture for Improving Fidelity of Emerging Quantum Computers
- Traditionally into computer architecture and hardware design
- Work experience and collaborations with industry
- Office Hours: Tuesday 3-4 pm / By appointment
- Email: poulami.das@utexas.edu

Extra OH on August 24th (Thursday) 3-4 pm

Teaching Assistant

• Hiring in progress

Tentative Course Schedule

Week	Tues	Thurs	Notes
1 (8/21-)	Why QC? Course outline, Sup + Entanglement	Linear Algebra	
2 (8/28-)	Quantum gates and circuits	Basic algorithms (GHZ, Deutsch-Jozsa, BV)	
3 (9/04-)	Setup + learn basics of Qiskit	Basic algo contd. (quantum key distribution)	
4 (9/11-)	Advanced Algorithms [Shor, Grover]	Advanced Algorithms Cont.	HW-1 Due
5 (9/18-)	Errors, NISQ, Fault-Tolerance + Recap	MIDTERM-1	
6 (9/25-)	NISQ Applications, NISQ Compilation	Error mitigation for gate errors	Lab-1 Due
7 (10/2-)	Error mitigation for measurement errors	Error mitigation for idle/crosstalk errors	
8 (10/9-)	Variational quantum algorithms (QAOA)	Other topics in NISQ (neutral atom etc.)	HW-2 Due
9 (10/16-)	Quantum cloud services	MIDTERM-2	
10 (10/23-)	Program verification in NISQ [Recorded]	Quantum Error Correction: Intro and Basics	
11 (10/30-)	Current landscape of QEC, unique challenges	Control challenges for QEC	
12 (11/6-)	Error decoding (MWPM, Union-Find)	Hardware decoders	Lab-2 Due
13 (11/13-)	Hardware decoders contd.	Magic state distillation + other topics in FTQCs	
14 (11/20-)	Fall/Thanksgiving break		1
15 (11/27-)	Leakage errors in QEC	Course Recap, Open Problems, Exam Review	

Course Evaluations & Other Logistics

Component	Scoring Policy	Total
2 Homework Assignments	5% x 2	10%
2 Lab Assignments	15% x 2	30%
2 Midterms	20% x 2	40%
1 Final exam / Project	20%	20%

Mainly papers from ISCA, MICRO, ASPLOS, HPCA

- Quantum Computation and Quantum Information by Nielsen and Chuang
- Quantum Computer Systems Research for Noisy Intermediate-Scale Quantum Computers by Yongshan Ding and Frederic T. Chong
- Quantum Computing: Progress and Prospects [NAE Report]
- If you decide to take the course, please fill out the student information sheet and submit by the end of the class on August 24th