Copyrighted Materials Copyright © 2015 John Wiley & Sons Retrieved from app.knovel.com

INDEX

<u>Note</u>: Page numbers in *italics* refer to figures; page numbers in **bold** refer to tables; *bold*, *italicized* page numbers refer to boxes.

<u>Index Terms</u>	<u>Links</u>		
A			
Abingdon, United Kingdom			
geological map	19		
Absolute errors	379		
Abstraction, data model	153	153–154	
Accident location	84		
Accuracy	115	115	
Acquisition and planning. See GI system			
development process			
Active citizen	435–437		
Added value	391		
Adnan, Muhammad	287		
Advanced Emergency GIS (AEGIS)	234	234	235
Aerial photograph	154	178	
color	182	183	
Aeronautical Approach Chart	263		
Affine transformation	96		
Agent-based models (ABM)	346–347	346–347	
Age of Discovery	59		
Aggregate models	343	346–347	
Aggregation			
generalization rule	71		
validation through	122	122-123	
Airborne laser swath mapping (ASLM). See LiDAR			
(light detection and ranging)			
Alternative evaluation	371		
Amalgamation, generalization rule	71		
Amazon Basin			
land-use transition in	347	348	
Ambiguity	105–107	108	
Analog models	340		
Analog-to-digital transformation	174		
Analytical Hierarchy Process (AHP)	353	354	

Index Terms	<u>Links</u>			
Ancestry	6-8			
Anisotropic variogram	316			
Annotation	167			
Application programming interfaces (API)	134			
database management systems	196			
Applications				
database management systems	196			
development and support	377			
land information example	376–377			
ArcGIS	19	138–139	232	232
Online	352			
Server	148			
Architecture, GI system software	131–136			
Cloud computing	133			
desktop	132	132		
project/departmental/enterprise software	131			
three-tier	131	131–133		
ArcPad (Esri, Inc.)	148	149		
Area				
labels	252			
measurement of	319–320			
objects	36			
spatial analysis based on	319–320			
using vector data model	158	159		
Artificial objects	36			
ASCII (American Standard Code for Information				
Interchange) system	58			
Aspect	324–326	325	326	
Attenuation function	44			
Attribute classification, fuzzy approaches to	108–110			
Attribute errors	379			
Attributes				
attribute tables	296–299			
comparison of	303-304			
data capture	190			
representation and transformation	248–253			
rules	167			
types of	35	252		
(See also specific attributes)				
Audience, map design and	246			

<u>Index Terms</u>	<u>Links</u>		
Augmented reality (AR)	228–230	230	231
handheld computing and	284	285	201
Australia	201	200	
Great Sandy Strait, Queensland	239		
AutoCAD Map 3D	137		
Autoclosure	160		
Autocorrelation	100		
spatial	34–38	48–51	50-51
temporal	34	334	
Autodesk			
as GIS software vendor	137		
Map 3D	149		
MapGuide	143	144–145	
Autodesk Infrastructure Design Server	137		
Autodesk Infrastructure Design Suite	137		
Autodesk Infrastructure Map Server	137		
Automated Mapping and Facilities Management			
(AM/FM) systems	261–262		
AVIRIS (Airborne Visible InfraRed Imaging			
Spectrometer)	67		
Azimuthal projections	90	90	
В			
D			
Backup and recovery, database management			
systems and	195		
Batch vectorization	183	183-184	
Batteries, mobile equipment	232		
Batty, Peter	170–171		
BBC Domesday Project	402	402	
Beck, Harry	276		
Bell curve	116	116	
Benchmarking	371		
Benefits, tangible/intangible	361	362–365	
Bentley	137–138		
Bentley Map	149		
Berners-Lee, Tim	405	405–406	
Bertin, Jacques	248	249	
Bethlehem, West Bank, Israel	251		
Bhaduri, Budhendra	341		

Index Terms	<u>Links</u>			
Big Data	16	42	126	266
	285–286	393-394	449	
characteristic of	294			
Binary counting system	58			
Binary digits	57			
Bing Maps 3D	136	228	229	
virtual globes and	146	147		
Binomial distribution	334			
Bivariate Gaussian distribution	117			
Black Death	450			
Block encoding	158			
Bodmer, Walter	17			
Boolean operators	204			
Boundary disputes	452–453	453		
Bowman expeditions	27			
Brazil				
Amazon region of	13			
Bristol, United Kingdom	104	279		
British Exploring Society	436–7			
British Isles	286			
Brookline, Massachusetts	257			
Brunsdon, Chris	298			
Brushing data	270			
B-tree index	208–209	209		
Buffering	306–307	307		
Business drivers	384–5			
Business models, GI-related enterprises	412–414	413–414		
C				
Cached maps	74			
CAD (computer-aided design)	149	155		
Cadasters	85–86			
California				
Carrizo Plain	65			
Death Valley	164			
Goleta	124			
Newport Beach	328	328–329		
Orange County	326	326	327	327
Santa Ana River	327			
Canada, Whistler, British Columbia	238			

<u>Index Terms</u>	<u>Links</u>		
Canada Geographic Information System	320		
Canada Geographic Information System (CGIS)	18		
Canada Land Inventory	18		
Canadian FSA (Forward Sortation Area)	83		
Capacity Area Management System (CAMS)	333		
Carbon dioxide removal (CDR)	459		
Carrizo Plain, Southern California,	65		
Cartesian coordinate system	89	89	
Cartograms, geovisualization and	276–277	277	
Cartographic modeling	349	350–351	
Cartography	237–238		
CASE (computer-aided software engineering) tool	169	169–170	
Cataloging model	352		
Cellular models	347	349	349-350
CEN (Comité Européen de Normalisation)	189		
Censuses of population	396-398		
Census tract geography	278	278	
Center of Excellence for Geospatial Information			
Science (CEGIS)	80		
Central business district (CBD)	52		
Centrality			
centers	322–324	323	
dispersion	324		
Central Place Theory	52		
Central-point rule	67		
Central tendency	322		
Centroid	36	323	323
Channels	327	327–328	328
Charlton, Martin	298		
Cheshire, James	106		
China	100		
Great Wall	179		
Yangtse River	165		
Chloropleth maps	46	47	
Cholera	292–293	47	
Chrisman, Nicholas	125		
Christaller, Walter	52		
Citizen	435–437	101	
centric data collection	190	191	
science	280–281		

<u>Index Terms</u>	<u>Links</u>			
Citizen/customer satisfaction	365			
Citizen science	42			
Citizen scientists	435–437	436–437		
Civilian spin-offs	408–409	430–437		
Clarke, Keith	349			
Clark Labs Idrisi	149	150		
	149 166	130		
Class, objects	109			
Classes, fuzzy logic and Classification	109			
fuzziness in	110			
generalization	73	26		
geodemographic Clerical/staff technicians	25	26		
	378	379		
Client-server GI system software	132	132		
Cloud computing	256	122	210	
Cloud GI Web services	14 130	133	219	
Cluster detection	308–309	40		
Clustered sampling	40		202	202
Coastline	111	111	302	302
of Maine	52			
Codd, Ted	200	127		
Code of Ethics	425	426		
Cognitive engineering	271	107		
COGO data entry	186–187	187		
Collapse, generalization rules	71			
Color, usage of	251			
Commercial off-the-shelf (COTS) systems	370			
Commoditization	390			
Computational model	340			
Computer-Aided Routing System (CARS)	333	220, 220		
Computing visibility	328	328–329	220	
Computing watersheds	327	327–328	328	
Conceptions of attributes	107 107	100		
ambiguity and	105–107	108		
place and	101–103			
vagueness	103–108			
Conceptual model	153	153	206	
Confidence limits, approach to inference	334–335			
Conflation	123–124			

<u>Index Terms</u>	<u>Links</u>		
Conformal property	90		
Confusion matrix	112–114	113	118
Conic projections	90	90	
Connectivity rules	167		
Consolidation	126		
Consumer			
data	5	400	
externalities	390		
price index (CPI)	412		
Containment, topological relationships	160		
Contains operators	204		
Content Standards for Digital Geospatial Metadata (CSDGM)	224	224	
Continuous databases, multiuser editing of	213–214		
Continuous-field polygon overlay	301-302	302	
Continuous fields	68–69	69	
discrete objects vs.	64–65		
lakes as	65		
Contours	70	313	
Contour sampling	40	41	
Controlled update, database management systems and	195		
Controlled variation	34		
Control points	185		
Convolution	310		
Conway, John	347		
Coordinates, projections and	88–91		
Copyright	416–418		
Cost avoidance	363		
Cost-benefit analysis	370		
Cost-effectiveness evaluation	371		
Cost reduction	362–363		
Coupling, model	351		
Craglia, Max	431		
Credit cards, point of sale systems and	232	232	
Crime	456		
Cross-validation	354		
Curved surfaces	305	305-306	
Customer data, exploiting	5	400	
Customer support	375–377		
Customization, GI system software	133–134		
Cyberinfrastructure	220		
•	•		

Index Terms	<u>Links</u>			
Cylindrical equidistant projection	91	91–92		
Cylindrical projections	90	91–92		
Cyprus	267	90		
Czech Geological Survey (CGS)	245			
Czech Republic, Krkonose-Jizera Mountains	245			
Czech Republic, Kikohose-Jizera Mountains	243			
D				
Dasymetric maps	278	278–280	279	395
Data	16	374		
characteristics	9–10			
cleaning errors	184	185		
collection (See Data collection)				
consumer	5	400		
deduction and induction	53–54			
directional/cyclic	35			
distance decay and	43–45	48		
exhaust	420			
formats	189–190			
fractals and	52	53		
fundamental problems and	34–37			
integration	123–124			
integration and shared lineage	123–124			
management support	377			
measuring similarity between neighbors	50-51			
sampling and VGI	42–43			
spatial autocorrelation, scale and	37–39	48–51		
spatial sampling	39–42			
validation topology tests	159–160			
Data analytics	290			
Database administrator (DBA)	377			
Database design				
conceptual model	206			
logical model	206			
physical model	206			
process	205	205		
stages in	205	206		
Database management systems (DBMS)	195–196			
advantages	194–195			
applications	195–196			
disadvantages	195			

<u>Index Terms</u>	<u>Links</u>	
Database management systems (DBMS) (Cont.)		
editing and data maintenance	212	
geographic database design	204–205	
geographic database types and functions	202–205	
geographic extensions	197–198	
multiuser editing of continuous databases	213–214	
object	196	
object-relational	196–197	
relational	162	196
role of	198	
storing data in tables	198–201	
structuring geographic information	206–211	
transaction services	197	
types of	196–197	
Databases		
administration tools	195–196	
defined	194	
OpenStreetMap	427	427
operators	203	
protection	416–418	
quality and security of	374–375	
tables	198–201	
tax assessment	201	
Database schema	206	
Data collection	173–193	
analog-to-digital transformation	174	
attribute	190	
citizen-centric Web-based	190	191
classification	173	174
costs	174	174–175
from external sources	187–190	188
primary geographic data capture	175–181	
project, managing	191–192	
secondary geographic data capture	181–187	
sources of	173	
stages in	175	
workflow	175	175
Data distribution	222–227	
Content Standards for Digital Geospatial Metadata	224	224
Dublin Core Metadata Standard	224	225
object-level metadata	223–224	

Index Terms	<u>Links</u>			
Data flow diagrams	374			
Data industry	21–23			
Data load capability, DBMS	195			
Data mining	290			
Data model	339–340			
Data modeling				
abstraction levels	153	153–154		
CAD	155			
and customization	133–134			
database management systems	194	195		
graphical	155	156		
image	155	156		
object	164–167			
overview	152–153			
in practice	170–172			
raster	155–157	156		
role of	152	153		
technical raster compression techniques	157–158			
types of	154	154–167		
vector	157–164			
water-facility object data model	168	168-170	169	
Data transfer	187–190	188		
Data translation, strategies for	190			
Dayton Agreement	105			
DCL (Data Control Language) statement	201	202		
DDL (Data Definition Language) statement	201	202		
Dead Sea	65			
Deanonymization	24			
Death Valley, California	164			
De Bernardinis, Bernardo	412			
Decision-making support infrastructure,	10			
Decision trees	374			
Deduction	124–125			
Demand constraint	48			
Demonstration systems	374			
Density estimation	310–313	312		
Descartes, René	87			
Design, preliminary	369–370			
Desktop GI system implementation	134–136	135	135	
Desktop GI system software	132	132	140–142	141
Developer GI systems	147–148			

<u>Index Terms</u>	<u>Links</u>			
Dictionaries	374			
Differential GPS (DGPS)	95			
Differentiated world	437–438	438	438	439–440
Digital cartographic models (DCM)	258–259			
Digital elevation model (DEM)	116	118	119	121
	313			
hydrologic analysis of	327	327		
Orange County	326	326		
photogrammetry	186	187		
surface analysis	324	327–328	328	
Digital landscape model (DLM)	259			
Digital line graph (DLG)	70			
Digital models	340			
Digital raster graphic (DRG)	69	70		
Digital representation	57–58			
Digitization	183–184			
DIME (Dual Independent Map Encoding)	18			
Dimension	64			
Direct indicators	108			
Direction indicator	247			
Dirichlet polygons. See Thiessen polygons				
Disaster management	4–5			
Discrete object	62–64	63	111	111
continuous fields vs.	64–65			
lakes as	65			
Disease patterns				
analysis and modeling of	449	449–450		
Dispersed arrangement	37			
Dispersed point patterns	308			
Dispersion	324			
Displacement, generalization rule	71			
Distance				
attenuating effect of	44	44		
measurement	304–306			
Distance-based spatial analysis	304–317			
buffering	306–307	307		
cluster detection and	308–309			
density estimation	310–313	312		
distance decay	309–310			
distance/length measurement	304–306			
spatial interpolation	313–317			

<u>Index Terms</u>	<u>Links</u>		
Distance decay	43–45	48	309–310
Distance effects and spatial autocorrelation	48–51		
Distance measuring instrument (DMI)	52		
distance/length measurement	304–306		
Distributed GI systems	220		
DML (Data Manipulation Language) statement	201	202	
Documents, scanning of	182		
Domesday Project	402	402	
Dorling, Danny	259–260		
Dot-counting method	320		
Dot-density map	252		
Double digitizing	207		
Douglas, David	73		
Douglas-Poiker algorithm	73	73	
Downs, Roger	229		
DRASTIC groundwater vulnerability model	343	344	
Dublin Core Metadata Standard	224	225	
Duplicate lines	160		
Durham, United Kingdom			
OpenStreetMap for	271	272	
Dynamic segmentation	163	262	
E			
Earth			
surface, forms of	12	12	
Earthquake			
Tohoku region	4–5		
Earth's curvature	85	305	305
Ecological fallacy	122	122	
Editing, database	212		
Editing productivity, topology and	160		
E-Flora British Columbia data collection project	191		
Egypt	452–453		
Einstein, Albert	13		
Ellipsoid	86–87	87	
El Paso Electric Company map	262		
Elwood, Sarah	235–236		
Encapsulation	166		
Enhancement, generalization rule	71		
Environmental sustainability	456–458	457	

<u>Index Terms</u>	<u>Links</u>			
EOSDIS (Earth Observing System Data and				
Information System)	223			
EPSG. See European Petroleum Study Group (EPSG)				
Equal area property	90			
Equal-interval breaks	253	254		
Error function	116			
Error propagation	118			
Errors				
vector data capture	184	184–185	185	
Esri, Inc.	19	23	138–139	138–139
ArcPad	148	149		
Ethics	425	426		
European Petroleum Study Group (EPSG)	93			
European Union (EU)	430			
Evidence, characteristics of	11			
Exaggeration, generalization rule	71			
Exhaust data	420			
Exploitation	415–418			
Externalities	387–390	388–389		
types of	390			
External sources				
spatial analysis and	117–118			
validation with reference to	123–124			
Extreme Citizen Science (ExCiteS)	280–281			
Eyam, Derbyshire	450			
${f F}$				
False economy	374			
Family names	105–107			
Feiner, Steven	229			
Field	65	111	111	
discrete objects vs.	64–65			
Film and paper maps scanning	182			
Final design specifications	371			
First Law of Geography (Tobler)	34	35–36	40	51
	314	335		
First-order processes, point patterns and	308			
Flattening	86–87			
Flex (Adobe)	134			
Flight simulators	61			

Index Terms	<u>Links</u>		
Floating-point representations	58		
Flowcharts, models expressed as	351		
Focal operations, cartographic modeling	351		
Food, access to	452–453		
Forestry management	2		
Fotheringham, Stewart	298		
Fractal geometry	52	53	
Freedom of Information Acts (FOIA)	414		
Frequentist interpretations	109		
Functional zones	103	104	
Fuzzy logic	108–110		
G			
Gale, Chris	287		
Game of Life	349-350		
Gantt chart	373		
Gartner Hype Cycle	459		
Gaussian distribution	116	116–117	324
bivariate	117		
Gaussian distributions	311	312	
Gazetteer services	352		
GDAL/ODR	148		
Genealogy	6–8		
Generalization			
about places	71–73	72	73
about properties	74	76	
classification	73		
online map with	74–75		
rules, types of	71	72	
symbolization	73		
Genetic map	286		
Geobrowsers	228		
Geocaching	231	271	273
Geocoding	95		
Geocomputation	105	126	340
Geocybernetics	192		
GeoDa	336		
Geodemographic			
classifications	25	26	
Geodesign	329	20	
Geografia	32)		

<u>Index Terms</u>	<u>Links</u>	
Geoengineering	458–459	459
GeoEye	23	
"Geo for All" initiative	15–16	
Geographical Analysis Machines	294	294
Geographically weighted regression (GWR)	298	
Geographic attributes	61	
Geographic databases. See Databases		
Geographic information. See also Data;		
Databases; Laws		
about individuals	394–402	
access to	419	
changes in	401–404	
characteristics of	390–391	
classification of	391–404	393
indexing	208–211	
as infrastructure	386–387	
for management	387–391	
military information infrastructure	406–409	407
need for	381–386	
Open Data/Open Government	404–405	
as public good	387	
rise of geotemporal data in	401–402	
risk	383	
structuring	206–211	
topology creation and	206–208	
trade-offs	383	
uncertainty	383	
uses of	383	
Geographic Information Science and Technology		
Body of Knowledge	30	
Geographic information systems	1–11	
component parts of	14	14
data and	9–10	16
database tables	198–201	
development, events shaped	20–21	
functions of	307	
implemention (See Implementation, GI systems)		
information and	10	
knowledge and	10–11	
managing (See GI system management)		

<u>Index Terms</u>	<u>Links</u>		
Geographic information systems (<i>Cont.</i>)			
privacy and	421–423		
role of	198		
science and	11–14		
as service	23		
software (See GI system software)			
sustainable (See Sustainable GI systems)			
technical importance of	9		
uses of	3		
vendors	16		
Geographic Names Information System	78		
Geographic phenomena	101–110		
Geographic problems	2–6		
Geographic representation			
binary counting system	58		
continuous fields and	64–66	68–69	69
creation of	58–61	60	
database design	206		
digital representation	57–58		
dimension	64		
discrete objects	62–64	63	
fundamental problem	61–62		
generalization (See Generalization)			
paper map	69–71	70	
raster data	66–67	67	68
as table	63		
usefulness of	58-61		
vector data	68	68	68
Geographic rules	167		
Geographic sampling	335	335	
Geography Markup Language (GML)	220		
Geoid	86		
Geolibraries	225–227		
GeoMedia	139	140	
Geometric objects	36		
Geometries, spatial analysis methods on	204	204	
Geopiracy (Wainwright)	27		
Geoportals	225–227		
Georeferencing	77–98		
cadasters	85–86		

<u>Index Terms</u>	<u>Links</u>			
Georeferencing (Cont.)				
converting	95–96			
cylindrical equidistant projection	91	91–92		
geotagging and mashups	96			
Global Positioning System	94–95			
IP addresses	84			
latitude and longitude	86	86–88		
linear referencing system	84	84	85	
metric	78			
place-names/points of interest	79	79	80	80–81
	81			
Plate Carrée projection	91	91–92		
postal addresses and postal codes	<i>79</i>	82–84		
projections and coordinates	88–91			
requirements of	78			
state plane coordinates and other local systems	94	94		
systems of	79			
and uncertainty	78			
Universal Transverse Mercator	92	92–93	93	
U.S. Public Land Survey System	79	85–86	86	
Georegistration	96–98	97	97	183
Geo-services				
economic impact of	382			
Geospatial	9			
Geospatial intelligence (GEOINT)	408			
Geospatial One-Stop	226	226		
GeoStar	21			
Geostationary orbit	67			
Geotagging	96			
GeoTools	148			
Geovisualization				
analysis and	269			
cartograms and	276–277	277		
dasymetric maps	278	278–280	279	
exploration and	268			
geocaching	271	273		
iterative process	269			
objectives	268–269			
presentation and	269			
public participation in GI systems	280–282			

<u>Index Terms</u>	<u>Links</u>			
Geovisualization (Cont.)	260, 260			
synthesis and	268–269	202 204		
3-D representation	282–283	282–284		
and transformation	274–280			
2.5-D representation	282			
usage/users/messages/media	266	268		
visualizing geotemporal dynamics	285–288			
GeoWeb	22	217–236		
See also Internet; Web				
data distribution	222–227			
locations and	219			
mobile user	227–232			
service-oriented architecture	234	234	235	
spatial query online	271	273		
Gerry, Elbridge	320			
Gerrymander	320			
GI-related enterprises				
business models for	412–414	413–414		
GI science and systems (GISS)	16			
active citizen	435–437			
business perspective	19–23			
challenges	443–444			
citizen scientists	435–437			
computer-science/information-science perspectives	24–25			
differentiated world	437–438	438	438	439–440
environmental sustainability	456–458	457		
food/potable water/boundary disputes, access to	452	452–453	453	
geography perspective	25–27	25–27		
government perspective	23–24			
historical perspective	18–19			
human health	448–452			
inputs, stages for	441–443	442		
interdependency	440–441			
natural disasters, coping with	453–456	454	455	
population growth	445	445–446	700	
poverty and hunger	446	446–448	447	447
societal perspective	27	29–30	/	77/
in society	31–32	27-30		
and spatial thinking	30–31			
terrorism/crime/warfare				
terrorism/crime/warrare	456			

Index Terms	<u>Links</u>		
GI system development process	272		
acceptance testing	372		
alternatives evaluation	371		
analyzing requirements	368–370		
cost-benefit analysis	370		
life-cycle phases	366–367	367	
requirement specification	370–371		
GI services	233	233–234	352
GI system management	358–380		
See also GI system			
development process; Implementation, GI systems			
application development and support	377		
data management support	377		
land information example	376–377		
operations support	377		
people and their competencies	378–380		
return-on-investment	360–366		
risk management	359–360		
GI system software	12	15–16	128-150
application programming interfaces	134		
architecture of (See Architecture, GI system software)			
building	136–137		
client-server software	132	132	
data models and customization (See Data			
modeling)			
desktop and Web	134–136	135	135
desktop software	140–142	141	
developer	147–148		
evolution of	129–131		
industry	19	21	
integrated development environment	134		
mobile	148–149	149	
raster-based	149	150	
server GI systems	142–146	144	144–145
types of	140–150		
vendors (See GI system software vendors)			
virtual globes	146–147		
Web mapping	142	143	
GI system software vendors			
Autodesk	137		
	10,		

<u>Index Terms</u>	<u>Links</u>			
GI system software vendors (<i>Cont.</i>)				
Bentley	137–138			
Esri, Inc.	138–139	138–139		
Intergraph	139	139–140	140	
Glacier National Park	110			
Glasgow, United Kingdom	439			
Glennon, Alan	344			
Global Earth Observation System of Systems (GEOSS)	431			
Global Geospatial Information Management (GGIM)	430			
Global operations, cartographic modeling	351			
Global Positioning System (GPS)	18	94–95	231	231
	232	408		
history of	409			
Global spatial data infrastructure (GSDI)	427			
Global wealth pyramid	439			
Godin, Jean	87			
Goleta, California	124			
Google Earth	85	97–98	98	146
	146	228		
Google Maps	21	89	130	142
	229	332	421	
Google projection	93			
Google's Glass	228	228		
Google Sketchup	282	283		
Governments				
and GI	23–24			
as information traders	419–421			
Graphical data model	155	156		
Graphic flowchart	351			
Graphic primitives	248	249		
Graticule	91			
Great Britain, family names mapping	105–107			
Great circle	88	88		
Great Sandy Strait, Queensland, Australia	239			
Great Wall, China				
remote-sensing image	179			
Greedy approach	334			
"Green field" sites	370			
Greenwich Observatory	86	86		
Grid computing	220			

<u>Index Terms</u>	<u>Links</u>		
	200	200 210	
Grid index	209	209–210	
Ground surveying	179–180		
Groundwater	2.42	244	
DRASTIC vulnerability model	343	344	
multivariate mapping of	255–256		
protection model in Karst Environment	343	344–345	
Günther, Oliver	215–216		
Guo, Huadong	178–179		
Н			
Hakimi, Louis	330		
Haklay, Muki	42		
Hand-held devices. See also Mobile user			
augmented reality and	284	285	
Heads-up digitizing	183–184		
Health and safety	362		
Health systems, operating	450	450-452	451
Heat map	312		
Heisenberg Uncertainty Principle	61		
Henry the Navigator	59	60	60
Heterogeneity	336		
Heterogeneity, spatial	34		
Heuristics	334		
Horizontal data integration	296		
Hotspots	101	102	
Hue	248	251	
Human individuals, geographic information about	394–402		
administrative data	395–396		
aggregate data from synthetic individuals	401–402		
survey approaches	395		
Human intelligence (HUMINT)	408		
Humanitarian relief	238	240	
Hydrologic analysis, DEM	327	327	
Hypothesis generation	126		
Hypothesis testing, geographic data	334–337		
I			
IPM II OC IVious More	1 47	140	
IBM ILOG JViews Maps	147	148	
Idiographic geography H.OC. IViews More (IPM)	12	1.40	
ILOG JViews Maps (IBM)	147	148	

<u>Index Terms</u>	<u>Links</u>		
Image data model	155	156	
Image improvement	365		
Imperfect indicators	108		
Implementation, GI systems	373–375	374	
See also GI system development			
process; GI system management			
effective planning	373		
operational budget and	375	375	
Incremental data collection	191		
Indexing	208–211		
B-tree	208–209	209	
cell tree data	215		
database management systems	195	197	
grid	209	209-210	
minimum bounding rectangle	210–211	212	
quadtree	210	210	211
R-trees	210–211	211	
Indicator	107–108		
Individual models	343	346–347	
Induction	124–125		
Inferential tests	334		
Information traders, governments as	419–421		
Infrastructure, geographic information for	386–391		
Inheritance	166		
Innovation	415–418		
Inset/overview map	247		
INSPIRE (INfrastructure for SPatial InfoRmation in			
Europe) project	429–430		
Instances, geographic objects	165		
Institut Géographique National (IGN)	71	173	
Institutional benefits	361		
Intangible benefits	361	362–365	
Integer digital representation	58		
Integrated development environment (IDE)	134		
Intellectual property rights	415–416	415–416	
Intelligent transportation systems (ITS)	84		
Interactive vectorization	184		
Interdependency	440–441		
Intergovernmental Panel on Climate Change (IPCC)	452		
Intergraph	139	139–140	140

<u>Index Terms</u>	<u>Links</u>		
Internal and external validation	117–118		
Internal worlds	171		
International Monetary Fund	395		
International Organization for Standardization (ISO)	66		
Internet	14–15		
citizen-centric data collection	190	191	
usage and penetration statistics	15		
Interpolation, spatial	313–317		
Interpolation function	44		
Intersection, topological relationships	160		
Interval attribute	35		
Interviews	374		
Inverse-distance weighting (IDW)	314	314–315	315
Invitation to tender	371		
IP address	84		
ISO (International Organization for Standards)	189	202	203
Isochrones	46		
Isodapanes	46		
Isohyets	46		
Isoline	46		
Isopleth	44	46	
Isotropic	44		
Isotropic variogram	316		
Italian Major Risks Committee	412		
Italy, Pisa	165		
J			
Java frameworks	134		
JavaScript/REST (representation state transfer protocol)	134		
Jefferson, Thomas	60		
Jenks breaks	253		
Join, relational	300		
Judiciary, scientists and	412		
K			
Kandt, Jens	286		
Kappa index	113–114		
Karst Environment, groundwater protection model in	343	344–345	
Kenai Peninsula of Alaska	63	63	
Kernel function	311	311–312	

Index Terms	<u>Links</u>			
K function	308			
KML	142			
Knowledge				
categories of	28-29			
characteristics of	10–11			
forms of	13			
Knowles, Anne	328			
Kriging	315–317	316		
Krkonose–Jizera Mountains, Czech Republic	245			
L				
Lakes				
as continuous fields	65			
as discrete objects	65			
Lambert Conformal Conic projection	91	92	94	
Land information maps	376–377			
Landsat Thematic Mapper	67			
Landslide prediction	13			
Largest-share rule	67			
Latitude/longitude	79	86	86–88	
See also Georeferencing				
measurement	94–95			
Laws				
geography and	414–415			
intellectual property rights	415–416	415–416		
legal liability	418–419			
predictive quality of	13			
protecting innovation/exploitation	415–418			
Laws of Motion	13			
Leaflet	74			
Legal liability	418–419			
Leicestershire, United Kingdom	41	41		
Lewis, Meriwether	60			
Lhasa, Tibet	81			
LiDAR (light detection and ranging)	180–181	181	282	
Life expectancy, geography of	438			
Lima, Antonio	288			
Linear				
distance decay	44	44		
referencing	84	84	85	163
	262	264		

<u>Index Terms</u>	<u>Links</u>		
Line intersection	160		
Lines	36		
Local Delivery Office (LDO)	82	83	
Local operations, cartographic modeling	351		
Location-allocation problem	332		
Location-based service (LBS)	15	230–232	
Location-based spatial analysis	295–303	296	
attribute tables	296–299		
point-in-polygon operation	300	300-301	
polygon overlay	301	301-303	302
raster analysis	303	303-304	
spatial joins	299–300		
Locations			
GeoWeb and	219		
importance of	2–6		
location-allocation problem	332		
statistical models of uncertainty	117		
Logical models	153	153	206
Logical positivism	30		
London, United Kingdom	101	102	
Citymapper mobile phone application for	271		
pattern of Twitter usage in	287	287–288	
Underground system	276		
Virtual model	119	282	283
Looped network	162		
Loxodrome	90		
Lud, Vautrin	81		
M			
Maciejewski, Ross	275		
Maine coastline	52		
Maintenance, database	212		
Mandelbrot, Benoît	52	53	
Manifold desktop system	140	141	
MapAction	455	455	
Map algebra	349	350–351	
MapBox	274		
Map composition	247	247–248	
Map design	246–256	2.7 210	
audience and	246–236		
characteristics of data	246		

<u>Index Terms</u>	<u>Links</u>			
Mon design (Cout)				
Map design (<i>Cont.</i>) conditions of use and	246			
	246			
purpose	246			
reality and				
symbolization	248–255			
technical limits and	246			
MapGuide	143	144–145		
The Mapmaker's Wife (Whitaker)	87			
Mapnik	74			
Map projections	31			
MapQuest	142	232	332	
Maps				
applications	261–264			
body	247			
cartography and	237–264			
clock diagrams on	256			
composition of (See Map composition)				
dasymetric	278	278–280	279	
design, principles of (See Map design)				
direction indicator	247			
functions of	241			
genetic	286			
heat	312			
inset/overview	247			
legend	247			
limitations of	243	244		
marine charts	237	239		
and media	245–246			
metadata	247			
military	238	239	264	
multivariate	253	255	255-256	
paper	69–71	70	238	245-246
reference	241	242		
scale	247			
series	257–259			
shaded area	261			
standardized/up-to-date names on	244			
symbolization	248–255			
thematic	241	242		
title	247			

<u>Index Terms</u>	<u>Links</u>		
MapServer	143	144	
Margin of error	334		
Marine charts	237	239	
Mashups	96	221	
MBTiles	274		
McGlade, Jacqueline	458		
McLafferty, Sara	295		
Mean	322	323	
Mean center	323	323	
Mean distance	324		
Mecca	346		
Media			
coping with	426		
maps and	245–246		
Median	322		
Membership map	110		
Mercator, Gerard	90		
Mercator Projection	89	90	91
Merge rules, parcel objects	167	167	
Merging, generalization rule	71		
Meridian	86		
Metadata	126	190	
issue	405		
maps	247		
object-level	223–224		
Methods, object-oriented concepts	166		
Metric, distance/length measurement	304		
Metric georeferences	78		
Microsoft Bing Maps	21		
MicroStation	137–138		
Military information infrastructure	406–409	407	
technological changes and	406–407		
Military maps	238	239	264
Millennium Development Goals (MDGs)	444		
Minimum bounding rectangle (MBR)	210–211	212	
Misclassification matrix	113		
Mixel	112		
Mobile GI systems	148–149	149	
issues	232		

<u>Index Terms</u>	<u>Links</u>			
Mobile user	227–232			
See also Hand-held devices				
augmented reality	228–230	230	231	
location-based service	230–232			
virtual reality	228–230	229	230	
Model. See also Spatial modeling				
building, causes of	341–342			
disease patterns	449	449–450		
individual/aggregate	343	346–347		
static	343			
technology for	351–352			
testing	354–356			
travel on surface	326	326-327	327	
Model coupling	351			
Moderate-Resolution Imaging Spectroradiometer (MODIS)	62			
Modifiable Areal Unit Problem (MAUP)	123–124	299	394	
Monte Carlo simulation	120	355		
Montpelier, Vermont	264			
Moran index	51	310	311	336
	337			
Move set	326	326		
Muir Glacier	452			
Multicriteria decision making (MCDM)	14	352–354		
Multinational Geospatial Co-Production Program (MGCP)	408			
Multivariate maps	253	255	255–256	
Musolesi, Mirco	288			
Mutations, in information policy	420–421			
N				
Nakaya, Tomoki	299			
National information infrastructure (NII)	386	387		
National Map Accuracy Standards	117			
National mapping and charting agencies (NMCAs)	430			
National park	2			
National Research Council	457			
National Risk Register	444	444		
National Spatial Data Infrastructure (NSDI)	387	427–429		
National statistical institute (NSI)	395			
Natural breaks	253	254		
Natural disasters, coping with	453–456	454	455	

<u>Index Terms</u>	<u>Links</u>		
Natural environment	11–12	12	
Natural objects	36		
Natural units	101		
Negative			
exponential distance decay	44	44	
Negative externalities	388	388	
Negative spatial autocorrelation	37		
pattern of	38–39		
Neogeography	25	27	147
Nestoria Website	22		
.Net	134		
Network			
connectivity	159		
data model	162–163		
externalities	390		
GI paradigms and	134–136	135	135
tracing	160		
New Forest, United Kingdom	105		
Newport Beach, California	328	328-329	
Newton, Isaac	13	87	
Nile River	452–453	453	
Nominal attribute	35		
Nominal data	112–114	113	
Nomothetic geography	12		
Normal distribution	116	116	
Normalized database topology model	207	207	
Normative methods	329		
North America digital elevation model	157		
North American Datum			
of 1927 (NAD27)	87		
of 1983 (NAD83)	87	94	
North Korea, maritime boundaries of	453	453	
North Pole	86		
Nugget, semivariogram	316		
Null hypothesis	335		
0			
Object, defined	166		
Object database management system (ODBMS)	196		

<u>Index Terms</u>	<u>Links</u>			
Object data model	164–167			
water-facility	168	168–170	169	
Objectives, definition of	368–369	442		
Object-level metadata (OLM)	223–224			
Object-model diagrams	374			
Object-oriented concepts	166			
Object-relational DBMS (ORDBMS)	196–197			
Obstacles, anticipating and avoiding	374			
Off-the-shelf 3-D representations	282–284			
OGC (Open Geospatial Consortium)	189			
1-median problem	331			
OnStar system	84			
Ontology	76	339		
Open Data	16	19	21–22	29
	42	404–405		
defined	23			
sources	23			
OpenGeo	135			
Open Geospatial Consortium (OGC)	150	202	203	220
Open Government Partnership (OGP)	404–405			
Openshaw, Stan	123	294	294	308
Open software	15			
Open-source intelligence (OSINT)	408			
OpenStreetMap	22	25	27	74
	75	142	223	
in Cyprus	267			
database	427	427		
for Durham, United Kingdom	271	272		
Foundation	427			
for Pyongyang, North Korea	399	399		
registered users of	427	428		
for Rio de Janeiro	274			
Operational budget	375	375		
Operationalizing models, in GI systems	351			
Operations support	377			
Operators, databases	203			
Optimistic versioning	213			
Optimum location problems	331			
Oracle Spatial	197–198			
Orange County, California	326	326	327	327

Index Terms	<u>Links</u>			
Ordinal attribute	35			
Ordinal attribute data	252			
Ordnance Survey	21			
Organizational charts	374			
Organizational drivers	383–386	384–385		
Organizations				
GI system accommodation within	375			
organizational drivers	383–386	384–385		
Orientation, photogrammetry and	186			
Ormeling, Ferjan	243-244			
Orthoimages	186	187		
Output Area Classification	25	26	276	
Output Area Classification	286	286		
Outward Codes	82	83	83	
Overlap, data validation and	160			
Overpass	63			
P				
Paper map	69–71	70	238	245–246
Patents	416			
PCRaster	351			
Percent correctly classified (PCC)	113			
Periodicity	40			
Pessimistic versioning	213			
Pfaff, Rhonda	344			
Photogrammetry	185–186	186		
Physical database topology model	207–208	208		
Physical models	153	153	206	
Physical terrain	41			
Pilot study	370			
Pisa, Italy	165			
Pixels	67			
Place/location representation	111–112			
Place-names	79	79	80	80–81
	81			
databases	96			
Places	25–27	71–73	101-103	
Planar enforcement	161			
Planar projections	90	90		

<u>Index Terms</u>	<u>Links</u>			
Planimeter method	320			
Plate Carrée projection	91	91–92		
p-median problem	331			
Poiker, Tom	73			
Point	36			
digitizing	183			
point location	330–332	331		
using vector data model	158	159		
Point patterns	308			
analysis	36			
Points of interest	79	80	80-81	81
Polygons				
adjacency	160	161		
area of	320	320		
dataset	160–162	161	162	
overlay	301	301-303	302	
sliver	184			
spurious	302	302		
Thiessen	313–314	314		
vector data and	68			
vectorized	183			
Polylines	305	305-306		
vector data and	68	159		
Polymorphism	166			
Population				
censuses of	<i>396–398</i>			
growth of	445	445–446		
Positive externalities	389–390			
Positive spatial autocorrelation	37	119		
Postal address georeferencing	79	82–84		
Postal codes georeferencing	<i>79</i>	82–84		
Potable water	452	452–453		
Poverty				
geography of	447			
and inequality	447			
proportions of people living in	446			
Precision	115	115		
Predictor variable	298			
Preliminary design	369–370			

<u>Index Terms</u>	<u>Links</u>		
Price elasticity	390		
Primary geographic capture	175–181		
raster	175–178		
vector	179–181		
Prime meridian	85	86	86
Privacy, and geographic information systems	421–423		
Problem solving			
technology of	14–16		
Producer externalities	390		
Professional users	378		
Projections	88–91		
Project management tool	374		
Project manager	379		
Prototyping	373		
Public good, geographic information as	387		
Public health planning	448–449		
Public participation in GIS (PPGIS)	280–282		
Public-sector information (PSI)	29		
availability of	24		
defined	23		
Public trust	424	424–425	
Pumain, Denise	356		
Pyongyang, North Korea			
OpenStreetMap for	399	399	
Pythagorean metric	304	304	
Python	351		
Q			
QR (quick response) code	221	222	
Quadtree index	210	210	211
Quantile breaks	253	254	
Quantum GIS desktop system	140	141	
Quantum GIS Project	15		
Query language	195	197	
Query optimization	160–162	196–197	
Query parser	196		
Query performance	207		
Quickbird Earth	173		

R			
Radial network	162		
Randomization tests	336	337	
Random sampling	39–40		
Raster analysis	303	303-304	
Raster-based GI systems	149	150	
Raster compression	157–158		
Raster data	66–67	67	68
capture	175–178	181–183	182
model	155–157	156	
relative advantages	68		
Ratios attribute	35		
Reality, data model abstraction level	153	153	
Recursion	52		
Reference maps	241	242	
Referential errors	379		
Refinement, generalization rule	71		
Regional geography	102–103	103	
Regional naming pattern	6–8		
Registers, risk	359–360	360	
Regression analysis	53	298	
Regular sampling interval	40		
Regulatory compliance	364		
Relational database management system (RDBMS)	162	196	
Relational join	300		
Relationship, objects	166		
Relative positioning errors	379		
Remote sensing	18	175–176	176
image of Great Wall	179		
Remote-sensing satellites	67		
Replication, database management systems	197		
Representative fraction	38	69	340
Request for information (RFI)	370		
Request for Proposals (RFP)	371		
Requirements, analyzing	368–370		
Requirement specification	370–371		
Resampling rasters	313		
Resampling to join point data	303–304		
Return-on-investment (ROI)	360–366	361	374
Revenue growth	362		

Links

Index Terms

<u>Index Terms</u>	<u>Links</u>		
Revenue protection and assurance	362		
Reyes, Carmen	192–193		
RFID (radio frequency identification)	221	222	
Rhumb line	90		
Richardson, Doug	337		
Richardson, Lewis Fry	53		
Rich picture analysis	374		
Rio de Janeiro, OpenStreetMap for	274		
Rise over run	325		
Risk	383		
Risk management	359–360	360	
Risk register	359–360	360	
Rock outcrops	39		
Roldan, Gabriel	135		
Root mean square error (RMSE)	115–116	120	324
Royal Observatory, Greenwich, England	86	86	
R-trees index	210–211	211	
Rubberbanding	160		
Rubber sheeting	185	185	
Rule sets	13		
Run-length encoding	158		
Russia, regional geography of	102–103	103	
Rutherford, Ernest	355		
\mathbf{S}			
Saaty, Thomas	353		
Safety, health and	362		
Sample			
frame	39		
interval	38		
random	39–40	40	
systematic	40	40	
San Andreas Fault system	52		
Santa Ana River, California	327		
São Paulo, Brazil			
street map of	27		
Satellite photograph	178		
Scale			
map composition	38	247	
and map design	246		

<u>Index Terms</u>	<u>Links</u>			
Scale (Cont.)				
meanings of	38			
paper maps and	69			
spatial autocorrelation and	36	37–39		
validation through	122	122–123		
Scanners				
raster data capture using	181–183	182		
vector data capture using	183–187			
Scatterplots	296–298	297		
Scientists				
citizen	435–437	436-437		
and judiciary	412			
Scripts	351			
SDTS (Spatial Data Transfer Standard)	189			
Sears	333			
Secant projections	90	91		
Secondary geographic data capture	181–187			
raster	181–183	182		
vector	183–187			
Second-order processes, point patterns and	308			
Security				
database management systems	195			
Self-sacrifice	450			
Self-similarity	39	52		
Semiautomatic vectorization	184			
Semivariogram	316	316		
Sensitivity analysis	355			
Server GI systems	142–146	144	144–145	
Service improvement	365			
Service-oriented architecture (SOA)	221–222	234	234	235
	352			
SETI (Search for Extra-Terrestrial Intelligence)	220			
SETI@Home	436			
Shaded area maps	261			
Shape measurement	320	321		
Shared lineage	123–124			
Sharing model	352			
Shortest path	332–334	333		
Short-listing	371			
Shuttle Radar Topography Mission	65			

<u>Index Terms</u>	<u>Links</u>		
Sierpinski carpet	38		
Signals intelligence (SIGINT)	408		
Silverlight (Microsoft)	134		
Similarity between neighbors, measuring	50-51		
Simplification, generalization rules	71		
Sliver polygons	184		
Slope	324–326	325	326
Smallworld	171		
SMART (specific, measurable, attainable, relevant,			
and time-bound)	366		
Smith, Ross	366		
Smoothing, generalization rules	71		
Snapping	160		
Snow, John	292-293	294	308
SOA. See Service-oriented architecture (SOA)			
SOAP/XML (simple object access protocol/extensible			
markup language)	134		
Soft savings	36 1		
Soil class, classification and	110		
Solar radiation management (SRM)	459		
Southend-on-Sea, United Kingdom	82	83	
South Korea, land management and	376–377		
South Korea, maritime boundaries of	453	453	
Southwark, London	101	102	
Spatial analysis	290–316	356	
area-based	319–320		
based on distance	304–317		
based on location	295–303	296	
centrality	321–324		
characteristics of	290–294		
definition of	290–292		
design	329–334		
examples of	292–294		
hypothesis testing	334–337		
internal and external validation through	117–118		
methods of	291		
point location and	330–332	331	
routing problem	332–334	333	
shape measurement	320	321	
surface analysis	324–329		
•			

Index Terms	<u>Links</u>			
Spatial autocorrelation	34			
assessment of	34			
field arrangement and	37			
measuring distance effects and	48–51			
object types and	48–50	48–50		
pattern of	39			
scale and	36	37–39		
validation through	118–122			
Spatial clustering	37			
Spatial data infrastructures (SDI)	427–432			
Spatial-decision support systems (SDSS)	329–330			
Spatial discrimination	125			
Spatial heterogeneity	34	298	336	
Spatial independence	37			
Spatial interaction models	332			
Spatial interpolation	313–317			
applications	313			
inverse-distance weighting	314	314–315	315	
Kriging	315–317	316		
Thiessen polygons	313–314	314		
Spatial interrelationships, analyzing and modeling	442			
Spatial joins	299–300			
Spatially extensive variables	46			
Spatially intensive variables	46			
Spatial modeling				
accuracy and validity	354–356			
analog models	340			
analysis vs. modeling	342–343			
cataloging and sharing models	352			
data model vs.	339			
individual and aggregate models	343	346–347		
model coupling	351			
operationalizing models	351			
static models and indicators	343			
technology for	351–352			
Spatial objects	36			
Spatial queries	269	270	271	273
Spatial regression	299			
Spatial relationships, testing	203			

Index Terms	<u>Links</u>			
Spatial resolution	177	340–341		
commercial satellites	177	0.000.1		
limiting detail and	62			
Spatial sampling	39–42			
random	39–40			
systematic	40			
Spatial stupidity, coping with	432	433		
Spatial thinking	30–31			
Spectral resolution	177	177		
Split rules, parcel objects	167	167		
SPOT (Système Probatoire d'Observation de la Terre)	173	177		
Spread	326			
Spurious polygon	302	302		
SQL (structured/standard query language)	201–202	202		
Square cells	67			
Staff involvement	365	378–379	379	
Standard deviation	116	253	254	324
Standard query language (SQL)	201–202	202		
State Plane Coordinates (SPC)	79	94		
Static models and indicators	343			
Steinitz, Carl	329–330			
Stereoplotters	185			
Storage management, database management systems and	197			
Store location	5			
Storm Water Management Model (SWMM)	352			
Straight-line metric	304	304		
Stratified sampling	40	40		
Stream-mode digitizing	183			
Street network	162–163	163		
Structured query language (SQL)	201–202	202		
Subjective probability	109			
Sui, Dan	42	43		
Support infrastructure for decision making	10			
Surface analysis	324–329			
computing visibility	328	328–329		
computing watersheds/channels	327	327–328	328	
modeling travel on surface	326	326–327	327	
slope and aspect	324–326	325	326	
Surname	105–107			
Sustainable Development Goals	444			

<u>Index Terms</u>	<u>Links</u>		
Sustainable GI systems	366–378		
acquisition process model	368	368–375	
life-cycle phases	366–367	367	
SWOT analysis	374	20,	
Symbolization	27.1		
generalization	73		
map	248–255		
Systematic spatial sampling	40		
System flowcharts	374		
System inplementation	371–372		
System implementation	3/1-3/2		
T			
Tangent cylindrical projection	90	91	91–92
Tangible benefits	361	362-365	
Tapestry	23		
Tauranga Harbor Tidal Movements	251		
Tax assessment			
database	201		
Technology			
and military information infrastructure	406–407		
of problem solving	14–16		
for spatial modeling	351–352		
technical limits	246		
Temporal autocorrelation	34		
Temporal resolution	177	340	
TERRA satellite	62		
Terrestrial areas	237	238	
Terrorism	456		
Thematic maps	241	242	
Theory of Relativity	13		
Thiessen polygons	313–314	314	
Three-dimensional representation			
geovisualization and	282–283	282-284	
objects and	63	63	
Three-tier architecture, GI system software	131	131–133	
Tilemill	274		
Time			
savings of using GI systems	363–364		
series, events	34		
as spatial object	36		
unreasonable time frames	375		

Index Terms	<u>Links</u>			
Time scale				
geographic problems	5–6			
Times Square, New York				
OpenStreetMap for	74–75			
Tobler, Waldo	34			
See also First Law of Geography (Tobler)				
Tohoku, Japan				
earthquake/tsunami	4–5			
Tomlin, Dana	350			
Tomlinson, Roger	367	367		
TomTom	23	416		
Topological errors	379			
Topology				
creation	206–208			
editing productivity	160			
normalized database topology model	207	207		
physical database topology model	207–208	208		
of TIN	165			
topological dimension	36			
vector data models	159–162			
Torrens, Paul	282			
Total stations	180	180		
Touches operators	204			
Township and range system	85	86		
Trade-offs	383	392		
Traffic density	63			
Transactions database	213	214		
Transaction services, database management systems	197			
Transect sampling	40	41		
Transformation, geovisualization and	274–280			
Trapezium	320	320		
Travel, modeling	326	326–327	327	
Traveling-salesperson problem (TSP)	330	333	334	
Triangulated irregular networks (TINs)	163–164	164	165	314
Tsunami				
Tohoku region	4–5			
Two-dimensional representation				
2.5-D representation	64	164	282	

U				
Uncertain Geographic Context Problem (UGCoP)	294			
Uncertainty	99–126	355–356	383	
attribute classification, fuzzy approaches to	108–110			
in conception of geographic phenomena	101–110			
conceptions of attributes and	103–108			
conceptions of place and	101–103			
conceptual view	101			
coping with	379–380			
georeferencing and	78			
internal and external validation	117–118			
interval/ratio case	114–117			
nominal data and	112–114	113		
in representation of geographic phenomena	111–117			
representation of place/location	111–112			
statistical models (in attribute measures)	112–117			
statistical models (in location measures)	117			
validation through autocorrelation	118–122			
Uncontrolled variation	34			
Underpass	63			
Unified Modeling Language (UML)	168			
Uniform Resource Identifier (URI)	405			
Uniform zones	112			
United States Geological Survey (USGS)	173			
United States National Map Accuracy Standard	117			
Units of analysis	101–103			
Universal Soil Loss Equation	13			
Universal Soil Loss Equation (USLE)	343			
Universal Transverse Mercator (UTM)	79	92	92–93	93
Unmanned autonomous vehicle (UAV)	406	407	409	448
Upper Lake McDonald Basin, Glacier National Park	110			
U.S. Geological Survey (USGS)	80			
U.S. Public Land Survey System	40	79	85–86	86
U.S. University Consortium for Geographic				
Information Science	30			
Use conditions, map design and	246			
User requirements	369			
Usery, E. Lynn	80			
U-shaped function	353	353		

Links

Index Terms

V			
Vagueness	103–108	105–107	
Validation			
internal/external	124–125		
with reference to external sources	123–124		
through autocorrelation	118–122		
through investigating effects of aggregation/scale	122	122-123	
through spatial analysis	117–118		
Varenius project	31	31	
Variable line width	252		
Vector data	68	68	68
capture	179–181	183–187	
COGO data entry	186–187	187	
ground surveying	179–180		
heads-up digitizing and vectorization	183–184		
LiDAR (light detection and ranging)	180–181	181	
measurement errors	184	184–185	185
model	157–164		
network model	162–163		
photogrammetry	185–186	186	
polygons and	68		
polyline and	68		
relative advantages	68		
representational models	154		
simple features	158–159		
TIN model	163–164	164	165
topological features	159–162		
vertices and	68		
Vector field	64		
Vectorization	183	183–184	
Vector maps	74		
Vegetation	71	114	114
Vermeer, Johannes	229	229	
Versioning, database	213–214	214	
Vertical data integration	296		
Vertices			
vector data and	68		
Vespucci, Amerigo	81		
Virrantaus, Kirsi	66		
Virtual Earth	21		

Links

Index Terms

Index Terms	<u>Links</u>			
Virtual globes	146–147	228		
Virtual London model	119	282	283	
Virtual reality (VR)	228–230	229	230	284
Visibility, computing	328	328–329	200	20.
Visual programming languages	134	020 025		
Volume objects	36			
Volunteered geographic information (VGI)	25	29	147	223
() () () () () () () () () ()	271	396–400		
sampling and	42–43	270 .00		
Voronoi polygons. See Thiessen polygons	.2			
W				
Waldseemüller, Martin	81	82		
Warfare	456			
Water-facility object data model	168	168–170	169	
Wavelet compression techniques	158			
Wealth and consumption	438	439		
Wearable computers	228	228		
Web. See also GeoWeb; Internet				
applications	134–136	135	135	
citizen-centric data collection	190	191		
map service	142	143		
Web Mercator	89	93		
Web service	130			
Weeding process	73			
Weights matrix	50-51			
Wetland classification	108			
WGS84 (the World Geodetic System of 1984)	87			
What-if scenarios	342			
Whistler, British Columbia, Canada	238			
Whitaker, Robert	87			
WiFi wireless broadband	227	227	283	
See also Hand-held devices; Mobile user				
Wikimapia	25	27	81	81
Wikipedia	96			
Willis Research Network	442			
WIMP (Windows, Icons, Menus, and Pointers)				
interface	269–270	270		
Wisconsin Presidential Disaster Declarations	250			
Wisdom, characteristics of	11			

<u>Index Terms</u>	<u>Links</u>
W UE : E	444
World Economic Forum	444
World Health Organization (WHO)	451
Wrap-around problem	80
X	
Xerox PARC	142
XML (extensible markup language)	220
\mathbf{Y}	
Yangtse River, China	165
Yellow Pages service	231
Yu Liu	218–219
Z	
Zero autocorrelation	37
Zheng He	60
Zhu, A-Xing	109
Zonal operations, cartographic modeling	351