Investigating viewpoint-dependence and context in object recognition using depth rotated

3D models in a sequential matching task Aylin Kallmayer, Dejan Draschkow, Melissa L.-H. Võ

Department of Psychology, Scene Grammar Lab, Goethe University Frankfurt

GOETHE

000

consistent

Consistency

UNIVERSITÄT

FRANKFURT AM MAIN

OUR RESEARCH QUESTIONS

viewpoint?

objects instead? Does context reduce the effects of

Do we find viewpoint-dependence at basic

level recognition if we use 3D models of

→ Is there a difference between movable and non-movable objects?

Experiment 2 (N=32): 156 3D models of objects, canonical (0°) and non-canonical (120°) viewpoints, consistent and inconsistent backgrounds

Canonical (0°) x consistent

Canonical (0°) x inconsistent

Object image, keypress response match/mismatch Background preview (300 ms)

Feedback

incorrect

Non-canonical (120°) x inconsistent Non-canonical (120°) x consistent

Object name at basic level (1500 ms)

Fixation cross (500 ms)

Bed

RESULTS: EXPERIMENT 1A

Quadratic main effect of Rotation Accuracy: significant interaction between Rotation and Correct Response **Response Time:** significant interaction between Correct Response and Movability

RESULTS: EXPERIMENT 1B Mean Accuracy Adjusted Accuracy non-movable Rotation Rotation

RESULTS: EXPERIMENT 2

Adjusted Accuracy Mean Accuracy Significant non-movable interaction between Rotation and Consistency canonical Consistency Consistency **Mean Response Time Adjusted Response Time** non-movable movable Significant main effect of Rotation

Rotation

DISCUSSION

- Two subsystems: a view-based system that works more efficiently for matching and is viewpoint-dependent and a gist-driven system that works more efficiently for mismatching and is viewpoint invariant.
- "Recovery" at 180° for movable objects: switch from view-based system to more gist-based system. Only for movable objects because they are more likely to be seen upside-down before.

CONCLUSION

Recognition of depth rotated objects around the pitch axis is viewpoint-dependent and generally faster for movable objects but context in the form of consistent backgrounds can modulate this effect, increasing accuracy for non-canonical viewpoints.

REFERENCES AND ACKNOWLEDGEMENTS

Hamm, J. P., & McMullen, P. A. (1998). Effects of orientation on the identification of rotated objects depend on the level of identity. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 413.

This work was supported by DFG grant VO 1683/2-1 and by SFB/TRR 26 135 project C7 to MLV

