

Aula 10.1

Segmentação de Imagens

A segmentação de uma imagem consiste na separação de suas partes

Por exemplo: Segmentar o objeto do fundo

Segmentar diferentes objetos entre si e do fundo usando

- cores
- formas
- texturas

Supondo que R representa toda a região espacial ocupada por uma imagem, então, a segmentação da imagem é um processo que particiona R em n-subregiões R_1 , R_2 , ..., R_n , de tal modo que:

a)
$$\bigcup_{i=1}^{n} R_i = R$$

A segmentação deve ser completa, ou seja, cada pixel deve estar em uma região

Supondo que R representa toda a região espacial ocupada por uma imagem, então, a segmentação da imagem é um processo que particiona R em n-subregiões R_1 , R_2 , ..., R_n , de tal modo que:

b) R_i é um conjunto conectado, i =1, 2, ..., n

Requer que os pixels em uma região estejam conectados de algum modo, por exemplo, 4-conectados

Supondo que R representa toda a região espacial ocupada por uma imagem, então, a segmentação da imagem é um processo que particiona R em n-subregiões R_1 , R_2 , ..., R_n , de tal modo que:

c)
$$R_i \cap R_j = \emptyset$$
, \forall i e j, $i \neq j$

Indica que as regiões devem estar separadas entre si

Supondo que R representa toda a região espacial ocupada por uma imagem, então, a segmentação da imagem é um processo que particiona R em n-subregiões R_1 , R_2 , ..., R_n , de tal modo que:

d) $Q(R_i)$ = Verdadeira, para i=1, 2, ..., n

sendo Q(R_i) uma propriedade lógica que deve ser verdadeira para indicar que todos os pixels em R_i possuem o mesmo nível de intensidade

Em geral, Q é uma propriedade composta, como por exemplo: Q(Ri) = verdadeira se a intensidade média dos pixels em R_i for menor que m_i E (AND) se o desvio padrão das intensidades for maior que σ_i

Supondo que R representa toda a região espacial ocupada por uma imagem, então, a segmentação da imagem é um processo que particiona R em n-subregiões R_1 , R_2 , ..., R_n , de tal modo que:

e) $Q(R_i \cup R_j)$ = Falsa para quaisquer regiões adjacentes R_i e R_j

Indica que duas regiões adjacentes devem ter níveis de intensidade diferentes, ou seja, serem diferentes em relação à propriedade Q

O problema fundamental da segmentação é a divisão de uma imagem em regiões que satisfaçam estas cinco propriedades

A etapa de segmentação é responsável por separar os objetos existentes na imagem

A segmentação autônoma é uma das tarefas mais difíceis do processamento de imagens

Os algoritmos de segmentação são geralmente baseados em uma das duas propriedades básicas dos valores de níveis de cinza:

- similaridade
- descontinuidade

- a)Imagem com uma região de intensidade constante; b) Imagem mostrando a fronteira entre as regiões interna e externa, obtida pelas descontinuidades de intensidade; c) Resultado da segmentação
- d) Imagem com uma região com textura; e) Resultado do cálculo das bordas (muitas bordas internas neste caso); f) Resultado da segmentação

Os algoritmos baseados em descontinuidade

- Particionam a imagem baseando-se nas mudanças bruscas nos níveis de cinza
 - detecção de pontos isolados
 - detecção de linhas
 - bordas

Os algoritmos baseados em similaridade

- Baseiam-se em
 - limiarização
 - crescimento de regiões
 - divisão/fusão de regiões

Detecção de descontinuidades

A maneira mais comum é utilizando uma máscara de

convolução adequada à tarefa

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_{s}	w_9

Segmentação

As descontinuidades mais importantes são obtidas com a detecção de mudanças abruptas nos tons de cinza, que podem caracterizar:

- Pontos
- Linhas
- Bordas

Detecção de Pontos Isolados

Aplica-se o **Laplaciano**, convoluindo o filtro na imagem

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\mathbf{R} = \mathbf{Imagem} * \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Se $|R| > limiar \rightarrow Ponto Detectado$

© 2002 R. C. Gonzalez & R. E. Woods

Laplaciano - é uma derivada de segunda ordem:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Para uma região 3x3 fica: $\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$

ou
$$\nabla^2 f = 8z_5 - (z_1 + z_2 + z_3 + z_4 + z_6 + z_7 + z_8 + z_9)$$

Máscaras do Laplaciano vizinhança 4 e 8

É a mesma do detector de pontos

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Desvantagem: não fornece a direção da borda

Digital Image Processing, 2nd ed.

Segmentação de Imagens

laplaciano

0	-1	0	<u>m</u>
-1	4	-1	
0	-1	0	

Além disso: O laplaciano é muito sensível ao ruído

Solução:

Aplicar o Laplaciano após uma suavização da imagem

Esta operação é chamada Laplaciano da Gaussiana (LoG)

e pode ser aplicada com

uma única máscara

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Digital Image Processing, 2nd ed.

Segment	tação
de Imag	gens

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Laplaciano da Gaussiana (LoG)

Prática:

 Implementar o Laplaciano e o Laplaciano da Gaussiana (LoG) exibindo os dois resultados lado a lado

 Normalizar ou Equalizar as imagens resultantes, para uma boa visualização

A maior dificuldade desta abordagem é que as imagens não possuem pontos isolados para serem segmentados

Quando se amplia o local, nota-se haver mais que um único ponto

Detecção de Linhas

As linhas em uma imagem também são caracterizadas por áreas com mudanças abruptas nos tons de cinza

Detector de linhas em quatro direções

Aplica-se todas as máscaras acima e, a máscara que gerar o <u>maior valor</u>, vai detectar a linha e a orientação desta linha será a orientação da máscara

áreas homogêneas retornam zero

Detector de linhas em quatro direções

Uma vantagem interessante é que se a imagem possui linhas com a espessura de um ponto e com uma orientação específica, estes filtros podem ser usados para encontrar facilmente tais retas

- a) Imagem Original
- b) Resultado após aplicar a Máscara para -45º
- c) Resultado após limiarização

Observa-se que uma máscara para -45° também responde para outras direções, porém, gera uma borda de menor magnitude, que não resiste à limiarização

A maior dificuldade aqui é que estas máscaras de convolução são construídas considerando a espessura das linhas, no caso espessura de um pixel

-1	-1	2
-1	2	-1
2	-1	-1

Problemas

- Linhas são muito incomuns em imagens
- Depende-se da resolução da amostragem,
 para uma linha ter espessura de um pixel

Quando se amplia a área nota-se que não tem a espessura de um pixel

Detecção de bordas

- Embora a detecção de linhas e pontos seja básica, quando se fala em segmentação, a abordagem mais comum para a detecção de descontinuidades significativas nos níveis de cinza é a detecção de bordas

Uma borda é o limite entre duas regiões com propriedades relativamente distintas de níveis de cinzas Bordas se aplicam a pontos, retas e outras formas

 Variações de uma função são medidas com uma diferenciação no local.

Borda ideal

Model of an ideal digital edge

Gray-level profile of a horizontal line through the image

Borda mais comum

Model of a ramp digital edge

Gray-level profile of a horizontal line through the image a) Imagemcom umaborda digitalideal

b) Imagem com borda em formato de rampa

c) Bordas decorrentes da presença de uma linha na imagem

forma de <u>telhado</u> ou <u>roof edge</u>

Filtros de detecção de bordas

Detectam detalhes finos da imagem

Utilizam uma operação equivalente a uma derivada

Diferenças finitas:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

No computador faz-se h=1 menor tamanho possível para um pixel

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

Função, 1ª e 2ª Derivadas

1ª Derivada

Diferentes operadores propostos para detectar bordas

Roberts

-1	0	0	-1
0	1	1	0

Roberts

Prewitt

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

Sobel

110 1111						
-1	-2	-1	-1	0	1	
0	0	0	-2	0	2	
1	2	1	-1	0	1	

Sobel

(valores grandes positivos ou negativos indicam a borda)

 Em (I), a magnitude da primeira derivada pode ser usada para detectar a presença de uma borda em um ponto de uma imagem

 Em (II), o sinal da segunda derivada pode ser usado para determinar se um pixel da borda está do lado escuro ou do lado claro de uma borda, além disso, o cruzamento por zero da segunda derivada pode ser usado para localizar o centro de bordas espessas

 Como as derivadas operam detectando as variações abruptas entre os tons de cinza de pixels vizinhos, estas operações acabam respondendo forte também ao <u>ruído</u>

Um procedimento comum na identificação de bordas consiste em:

- 1. Suavização da imagem para redução do ruído
- **2. Detecção dos pontos de borda** É uma operação local que tira de uma imagem todos os pontos que são candidatos potenciais a se tornarem pontos de borda
- **3. Localização da borda** Seleciona, dentre os possíveis pontos de borda, apenas aqueles que de fato pertencem ao conjunto de pontos que formam uma borda

Usando a primeira derivada

Aplicações

Inspeção industrial – lentes de contato

Bordas inclinadas

É possível usar filtros para obter bordas inclinadas

Observe a diferença para um detector de linhas

Máscaras de Prewitt e Sobel para bordas diagonais (valores grandes positivos ou negativos indicam a borda)

Entretanto, as máscaras padrão de Sobel e Prewitt podem ser usadas para detectar tais bordas inclinadas, quando se combinam as suas respostas em x e y

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

Segmentação de Imagens

Gradiente da imagem

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

0	-1	-2	-1		-1	0	1
-	0	0	0		-2	0	2
	1	2	1		-1	0	1
			So	h	al.		

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

A direção do gradiente é dada por: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

A intensidade da borda é dado pela magnitude do gradiente:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

NEVATIA E BABU - sugere a aplicação de máscaras particulares, que apresentam uma maior resposta para bordas com inclinações específicas

	•					•		•		A		
	100	100	0	-100	-100			-100	-100	0	100	100
1	100	100	0	-100	-100		1	-100	-100	0	100	100
78-3	100	100	0	-100	-100		12 - S	-100	-100	0	100	100
1000	100	100	0	-100	-100		1000	-100	-100	0	100	100
	100	100	0	-100	-100			-100	-100	0	100	100
,	33-		Ograns		170		!			180 g l au	5	11.51.35.51.25
	(1. Nep2)	19000		er - 2000	2000 00000				1 2000	100000000000000000000000000000000000000		
	100	-32	-100	-100	-100		000	-100	32	100	100	100
7	100	78	-92	-100	-100		1	-100	-78	92	100	100
1 1 - 1	100	100	Ū	-100	-100			-100	-100	- 8	100	100
1102	100	100	92	-78	-100		1102	-100	-100	-92	78	100
	100	100	100	32	-100			-100	-100	-100	-32	100
•		- V	30 graus		7		!			210 grau	5	
	82		392		38					850.50		
957	-100	-100	-100	-100	-100		93	100	100	100	100	100
1	32	78	-100	-100	-100		1	-32	78	100	100	100
1100	100	92	8	-92	-100			-100	-92	Ü	92	100
1102	100	100		78	-32		1102	-100	-100	2 000-00	-78	32
	100	100	100	100	100			-100	-100	-100	-100	-100
	34		60 graus	3.5	38			\$00 X		240 ආනා	Ś	30

Nevatia e Babu

É possível construir máscaras específicas para detectar bordas com direções préviamente desejadas

- a) Imagem Original
- b) |Gx|
- c) |Gy|
- d) |Gx|+|Gy|

a) Imagem Original seguida de suavização usando o filtro da média 5x5

b) |Gx|

c) |Gy|

d) |Gx|+|Gy|

© 2002 R. C. Gonzalez & R. E. Woods

Digital Image Processing, 2nd ed.

Segmentação de Imagens

- a) Imagem Original
- b) |Gx|
- c) |Gy|
- d) |Gx|+|Gy|

- a) Imagem Original seguida de suavização usando o filtro da média 5x5
- b) Gx
- c) |Gy|
- d) |Gx|+|Gy|

Sando Filtros para Bordas inclinadas

-2	-1	0
-1	0	1
0	1	2

$$-\frac{\partial f}{\partial x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 Sobel
$$-\frac{\partial f}{\partial y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial y}$$

← magnitude

Sobel (vertical + horizontal)