Coding for Economists Advanced Session 2

Jian Cao 2 May 2025

Module Files

Google Drive Folder

- Neural Networks
- Use LSTM for Time Series Analysis

- Neural Networks
- Use LSTM for Time Series Analysis
- Use GNN for Network Analysis

Machine learning methods that mimic how neurons work.

- Machine learning methods that mimic how neurons work.
- Good at picking up rules/patterns that cannot be manually programmed.

- Machine learning methods that mimic how neurons work.
- Good at picking up rules/patterns that cannot be manually programmed.
- Only bounded by data and computing power.

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	5	6
7	8	9
10	11	12

Input Layer

Fully Connected Network (MLP)

Fully Connected Network (MLP)

• Widely used in general-purpose classification & regression

Fully Connected Network (MLP)

- Widely used in general-purpose classification & regression
- e.g. anomaly detection, stock value forecasting, houseprice estimation

Ideal for well-structured spatial correlation

- Ideal for well-structured spatial correlation
- e.g. images, video frames, 2D/3D grids

• Ideal for sequential data, temporal correlation

- Ideal for sequential data, temporal correlation
- e.g. time series, text, speech, sequential signals

Improved performance on sequential data

- Improved performance on sequential data
- e.g. time series, speech recognition, translation

- Improved performance on sequential data
- e.g. time series, speech recognition, translation

Advanced 2

A

• Ideal for complex interdependencies between objects.

- Ideal for complex interdependencies between objects.
- e.g. I/O analysis, medicine, material, social network

- Ideal for complex interdependencies between objects.
- e.g. I/O analysis, medicine, material, social network