Integrate-and-Fire models of neuronal excitability

Computational Neuroscience

Plan for the day(s)

- Simplification of AP generation: the Integrate-&-Fire model
- The Frequency-Current formula for the Integrate-&-Fire
- The Integrate-&-Fire with spike-frequency adaptation
- Models of Synaptic transmission and their simplification

So far: adding biological **realism** and grounding mathematical descriptions into biophysics

Now: simplify the detailed models of neurons into reduced descriptions

Stripping down a complex model to its bare essential may provide an explanatory model (easier to understand)

Ultimate goal of studying emergence of non-intuitive phenomena in large networks of neurons where simpler neurons are easier/faster to simulate

where to stop???!

The data available.

it might (not) be possible to constraint all parameters of a complex model

The desired type of analysis.

one might want to investigate and analyze collective properties and not single-neuron phenomena

Computational resources.

Simpler models are faster to simulate than complex ones.

The level of explanation.

Correspondence between model parameters and physical elements (e.g. models of the appropriate types of ion channels are needed in order to predict what happens to a neuron when a particular neuromodulator is released or a particular type of channel is blocked).

Integrate-and-Fire models

Integrate-and-Fire models

- there is a (fixed) explicit threshold (θ)
- a spike is said to occur when there is a threshold crossing
- after a spike, the membrane potential is clamped to H a (hyperpolarized) level, for a time interval au_{arp}

```
if V >= theta
V = H
to = t
elseif t < (to+Tarp)
V = H
else
V = V + dt*G/C * (E - V) + dt/C *I
end</pre>
```

Leaky-Integrate-and-Fire model:V(t)

Leaky-Integrate-and-Fire model:V(t)

Frequency vs (DC) current curve for a I&F model

G = 1/R

from Sterratt et al., 2011

Frequency vs (DC) current curve for a I&F model

$$C \frac{dV}{dt} = G (E - V) + I_{ext}$$
 $V(t) = E + I_0/G \left(1 - e^{-G/C t}\right)$
 $V(t^*) = V_{th}$

$$t^* = \frac{C}{G} log \left(\frac{I_0}{G(E - V_{th}) + I_0}\right)$$
 $f(I) = \frac{1}{\tau_{arp} + t^*}$

Frequency vs (DC) current curve for a I&F model

there is a minimal current (rheobase) for spikes to be fired (i.e. for the threshold to be crossed)

$$C \frac{dV}{dt} = G (E - V) + I_{ext}$$

...at the steady-state

$$V = E + I_{ext}/G$$

$$I_{rhe} = G (V_{th} - E)$$

(or if you like math, then look at where ln(x) is defined...)

Frequency vs (DC) current curve for a I&F model

if we neglect the refractoriness, for very large currents (i.e. far away the rheobase, where you have a strong non-linearity in the curve)...

$$f(I) \approx \frac{1}{t^*}$$
 $t^* = -\frac{C}{G} \log \left(1 + \frac{G(E - V_{th})}{I_0}\right)$

$$ln(1+x)pprox x$$

$$f(I)pprox rac{I_0}{C(V_{th}-E)}$$
 $t^*pprox -C rac{(E-V_{th})}{I_0}$ Then, the f-I curve is threshold-linear.

Frequency vs (DC) current curve for a I&F model

Very rough (functional) approximation

$$t^* = -\frac{C}{G} \log \left(1 + \frac{G(E - V_{th})}{I_0} \right)$$

$$I_0 \qquad f$$

$$f(I) \approx \frac{I_0}{C(V_{th} - E)}$$

A neuron is a device that converts input current (**amplitudes**) into a train of action potential with a certain **frequency**.

But... cortical pyramidal neurons do display spike-frequency adaptation!

from McCormick et al., 1985

Integrate-&-Fire with extra "adaptation mechanism" (i.e. spike-frequency adaptation *current*)

Integrate-&-Fire with extra "adaptation mechanism" (i.e. spike-frequency adaptation current)

$$I_{adapt} = \bar{g}_{adapt} x (E - V)$$

$$\frac{dx}{dt} = -\frac{x}{\tau_{adapt}} \qquad \text{below threshold, } if \quad V < \theta$$

$$x \to x + \Delta_{adapt}$$

during a "spike"

$$\left|I_{adapt}
ight|pprox-ar{g}_{adapt}|x|$$
 approx. equivalent

Frequency vs (DC) current curve for a real pyramidal neuron

Frequency vs current curve for a pyramidal neuron: I&F are accurate enough!!

