Презентация по упражнению хсоѕ

Компонентное моделирование. Scilab, подсистема xcos

Ибатулина Д.Э.

5 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Ибатулина дарья эдуардовна
- студентка группы НФИбд-01-22
- Российский университет дружбы народов
- · 1132226434@rudn.ru
- https://deibatulina.github.io

Вводная часть

Тема моделирования различных процессов, происходящих в мире, актуальна, поскольку позволяет найти решения для их оптимизации.

Объект и предмет исследования

- Процесс функционирования двух источников синусоидального сигнала
- Программное обеспечение для моделирования (xcos, OpenModelica)

Цели и задачи

Научиться работать со средствами моделирования xcos и OpenModelica.

Задачи:

- 1. Реализовать имитационную модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу в хсоз с различными параметрами;
- 2. Реализовать имитационную модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу в OpenModelica.

Основная часть

Теоретическое введение

Палитры блоков

Математическое выражение для кривой Лиссажу

$$\begin{cases} x(t) = A\sin(at + \delta), \\ y(t) = B\sin(bt) \end{cases}$$

Задание характеристик блоку

$$A = B = 1, a = 2, b = 2, \delta = 0$$

$A = B = 1, a = 2, b = 2, \delta = \pi/4$

$A = B = 1, a = 2, b = 2, \delta = \pi/2$

$A = B = 1, a = 2, b = 2, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 2, \delta = \pi$

$A = B = 1, a = 2, b = 4, \delta = 0$

$A = B = 1, a = 2, b = 4, \delta = \pi/4$

$A = B = 1, a = 2, b = 4, \delta = \pi/2$

$A = B = 1, a = 2, b = 4, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 4, \delta = \pi$

$A = B = 1, a = 2, b = 6, \delta = 0$

$A = B = 1, a = 2, b = 6, \delta = \pi/4$

$A = B = 1, a = 2, b = 6, \delta = \pi/2$

$A = B = 1, a = 2, b = 6, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 6, \delta = \pi$

$A = B = 1, a = 2, b = 3, \delta = 0$

$A = B = 1, a = 2, b = 3, \delta = \pi/4$

$A = B = 1, a = 2, b = 3, \delta = \pi/2$

$A = B = 1, a = 2, b = 3, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 3, \delta = \pi$

Редактор OMEdit

Создание класса

Просмотр класса в текстовом виде

Написание кода для задания дифференциального уравнения

```
1 model DU "Решение ДУ"
2 Real x(start=1);
3 equation
4 der(x)=-x;
5 end DU;
```

Задание параметров симуляции

Полученные графики для х и х'

Полученный график для х

Заключительная часть

В результате выполнения лабораторной работы я научилась работать со средствами моделирования xcos и OpenModelica.