## 29.8 How to measure the effectiveness of K-NN?

Let us consider the Amazon Fine Food Reviews Dataset which has got 364K reviews(after deduplication). For a given query point ' $x_q$ ', we have to predict the class label ' $y_q$ '. Each data point is represented in the form of a numerical vector, and each data point has its own class label.

## Procedure to measure the effectiveness of K-NN

- 1) Let us assume we are given a dataset  $\{D_n\}$  and our inputs are  $\{x_i\}_{i=1}^n$  and the outputs are  $\{y_i\}_{i=1}^n$
- 2) Divide the dataset  $\{D_n\}$  into the training set  $\{D_{Train}\}$  and the test set  $\{D_{Test}\}$ . Let 'n<sub>1</sub>' be the number of points in  $\{D_{Train}\}$  and 'n<sub>2</sub>' be the number of points in  $\{D_{Test}\}$ .  $\{n_1 + n_2 = n\}$



- 3) Now we have to fit the KNN model on ' $D_{Train}$ ', so that the entire ' $D_{Train}$ ' gets stored. Then for each point ' $x_q$ ' in ' $D_{Test}$ ', we have to make predictions using the same KNN model and predict the value of  $y_q$ '.
- 4) Let us initialize a variable 'count = 0' and for every data point ' $x_q$ ' in ' $D_{Test}$ ', if  $y_q = y_q$ ', then increment the 'count' value by 1.
- 5) Finally we have to compute the accuracy using the formula

  Accuracy = count/(number of data points in 'D<sub>Test</sub>') = count/n<sub>2</sub>

  Accuracy value typically lies in between 0 and 1.



**Note**: If accuracy = 0.92, it means in 92% of the cases, using the fit on ' $D_{Train}$ ', the model predicts the output labels accurately.