

## **Trial Examination 2023**

# VCE Mathematical Methods Units 3&4

# Written Examination 1

# **Question and Answer Booklet**

Reading time: 15 minutes
Writing time: 1 hour

| Student's Name: |      |
|-----------------|------|
|                 |      |
| Teacher's Name: | <br> |

#### Structure of booklet

| Number of questions | Number of questions to be answered | Number of<br>marks |
|---------------------|------------------------------------|--------------------|
| 9                   | 9                                  | 40                 |

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.

Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

### Materials supplied

Question and answer booklet of 12 pages

Formula sheet

Working space is provided throughout the booklet.

#### **Instructions**

Write your name and your teacher's name in the space provided above on this page.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

#### At the end of the examination

You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2023 VCE Mathematical Methods Units 3&4 Written Examination 1.

## **Instructions**

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

**Question 1** (4 marks)

ii.

Let 
$$f:\left(\frac{1}{2},\infty\right) \to R, f(x) = \frac{1}{4x-2}$$
.

| a. | Find $f'(x)$ . |  |  | 1 marl |
|----|----------------|--|--|--------|
|    |                |  |  |        |

| b. | i. | Find an antiderivative of $f(x)$ . | 1 mark |
|----|----|------------------------------------|--------|
|    |    |                                    |        |
|    |    |                                    |        |

| Express $\int_{1}^{5} f(x)dx$ in the form $\log_{e}(\sqrt{a})$ , where a is an integer. | 2 marks |
|-----------------------------------------------------------------------------------------|---------|
|                                                                                         |         |
|                                                                                         |         |
|                                                                                         |         |
|                                                                                         |         |
|                                                                                         |         |

| <b>Question 2</b> (2 marks) The derivative of the function $f(x)$ has the rule $f'(x) = 3\sin(2x)$ . |
|------------------------------------------------------------------------------------------------------|
| Given that $f\left(\frac{\pi}{3}\right) = 1$ , find $f(x)$ .                                         |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |

# Question 3 (4 marks)

Let  $f: (-2, 1] \to R, f(x) = x^3 + 3x^2$ .

**a.** Find the coordinates of the stationary point.

2 marks

**b.** On the axes below, sketch the graph of y = f(x). Label the endpoints and stationary point with their coordinates.

2 marks



| Question | 4 | (3              | marks) | ١ |
|----------|---|-----------------|--------|---|
| Question | • | $(\mathcal{I})$ | marks  | , |

For events A and B,  $Pr(A \cap B') = 0.2$  and  $Pr(A' \cap B) = 0.1$ .

Let  $Pr(A \cap B) = k^2$  and Pr(A') = 1.6k.

a. Find an expression for  $Pr(A' \cap B')$  in terms of k.

1 mark

b. Find the value of k.

2 marks

| Oue | estion | 5 | (3 | marks)        |
|-----|--------|---|----|---------------|
| ×   | DUIDII | _ | (- | III a i i i i |

| Solve $4\cos^2(3x) - 1 = 0$ for $x \in \left[ -\frac{\pi}{6}, \frac{\pi}{6} \right]$ | ]. |  |
|--------------------------------------------------------------------------------------|----|--|
|                                                                                      |    |  |
|                                                                                      |    |  |
|                                                                                      |    |  |
|                                                                                      |    |  |

# Question 6 (2 marks)

A transformation maps the graph of y = f(x) to y = af(bx + c) + d, where a, b, c and d are positive real numbers. The following algorithm will be used to map any point (x, y) on the graph of y = f(x) to the graph of y = af(bx + c) + d.

| <pre>input x, y</pre>    | #Line | 1 |
|--------------------------|-------|---|
| x _ new =                | #Line | 2 |
| y _ new =                | #Line | 3 |
| <pre>print x _ new</pre> | #Line | 4 |
| <pre>print y _ new</pre> | #Line | 5 |

Complete lines 2 and 3 of the algorithm.

| <b>Question 7</b> (4 marks | Question | 17 | (4 | marks |
|----------------------------|----------|----|----|-------|
|----------------------------|----------|----|----|-------|

The possible outcomes when a die is rolled are 1, 2, 3, 4, 5 or 6. Each outcome is equally likely. A die is rolled three times, and the resulting number is recorded each time.

| Find the probability that the resulting number is the same each time.                                                       | 1   |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                             |     |
|                                                                                                                             |     |
| Find the probability that the resulting number is the same exactly two times.                                               | 1   |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
| What is the probability that the resulting number is greater than 3 each time, given that it is the same exactly two times? | 2 1 |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |

Question 8 (12 marks)

Let  $f(x) = \log_e(x - 2)$ .

**a.** State the domain of f.

1 mark

**b.** On the axes below, sketch the graph of y = f(x). Label the axial intercept with its coordinates and the asymptote with its equation. 2 marks



| the curve $y = f(x)$ and the x-axis from $x = 3$ to $x = 6$ . Give your answer in the form $\log_e(a)$ , where $a$ is an integer. | , |
|-----------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
| Let $g: (a, \infty) \to R$ , $g(x) = x^2 + 4x + 2$ and $h(x) = (f \circ g)(x)$ .                                                  |   |
|                                                                                                                                   | 3 |
|                                                                                                                                   |   |
|                                                                                                                                   |   |
| Find the smallest value of $a$ such that $h(x) = (f \circ g)(x)$ .                                                                | 3 |
|                                                                                                                                   |   |
|                                                                                                                                   | 3 |
|                                                                                                                                   | 3 |
|                                                                                                                                   |   |
|                                                                                                                                   | 3 |

| State the domain and range of $h(x)$ . | 2 mark |
|----------------------------------------|--------|
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |
|                                        |        |

MMU34\_QB\_Ex1\_2023

**Question 9** (6 marks)

The tangent to the graph of  $f(x) = 4x - x^2$  at the point A(a, f(a)) is shown below.



| <b>a.</b> Show that the equation of the tangent is $y = (4 - 2a)x + a^2$ . | 2 marks |
|----------------------------------------------------------------------------|---------|
|----------------------------------------------------------------------------|---------|

| to $f(x)$ at $x = a$ , where $0 \le a \le 2$ .                  |         |
|-----------------------------------------------------------------|---------|
| Find the rule for $S(a)$ .                                      | 3 marks |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
| Find the value(s) of $a$ such that $S(a)$ is a <b>maximum</b> . | 1 mar   |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |
|                                                                 |         |

END OF QUESTION AND ANSWER BOOKLET