Question 2:

Since $\{v_{1}, v_{2}, v_{3}\}$ is a linearly dependent set in \mathbb{R}^{n} , there exist scalars a_{1}, a_{2}, a_{3} , not all zero, such that

$$a_1v_1 + a_2v_2 + a_3v_3 = 0$$

Applying the linear transformation T to both sides of the equation, we get

$$T(a_1v_1 + a_2v_2 + a_3v_3) = T(0)$$

Since T is linear, it preserves scalar multiplication and vector addition, so we have

$$a_1 T(v_1) + a_2 T(v_2) + a_3 T(v_3) = T(0)$$

The image of the zero vector under any linear transformation is the zero vector in the codomain.

Thus, T(0)=0 in R^m . Therefore, we have

$$a_1 T(v_1) + a_2 T(v_2) + a_3 T(v_3) = 0$$

Since at least one of $a_{1,}$ a_{2} , a_{3} is non-zero, the set $\{T(v_{1}), T(v_{2}), T(v_{3})\}$ is linearly dependent in R^{m} .

Question 3:

To show: $T(x_1, x_2) = (4x_1 - 2x_2, 3|x_2|)$ is not linear.

Let the vector $u=(x_1, x_2)$ where $x_2<0$ (i.e. u=(0, -1)) and a scalar c=-1.

We know, T(cu) = cT(u), according to the homogeneity property.

For T(cu):

We have $cu = (-x_1, -x_2)$:

$$T(-x_1, -x_2) = (4(-x_1) - 2(-x_2), 3|-x_3|) = (-4x_1 + 2x_2, 3x_2)$$

Since
$$x_2 < 0$$
, $|x_2| = -x_2$ and $|-x_2| = x_2$

Now,

For cT(u):

We have, $u = (x_1, x_2)$:

$$cT(x_1, x_2) = -1 * (4x_1 - 2x_2, 3|x_3|) = (-4x_1 + 2x_2, -3|x_2|)$$

Comparing T(cu) and cT(u):

$$(-4x_1 + 2x_2, 3x_2) \neq (-4x_1 + 2x_2, -3|x_2|)$$

This inequality demonstrates that T does not satisfy the homogeneity property for all vectors in its domain and scalars c, thus proving that T is not a linear transformation.

Question 4:

We have, Ax = 0, for all x such that T(x) = 0

We need null space of matrix A. Given,

A =

4	-2	5	-5
4 -9 -6 5	7	-8	0
-6	4	5	3
5	-3	8	-4

Converting into row reduction echelon form: R1=R1/4

1	-1/2	5/4	-5/4
-9	7	-8	0
-6	4	5	3
5	-3	8	-4

R2 = R2 + 9R1, R3 = R3 + 6R1, R4 = R4 - 5R1

1	-1/2	5/4	-5/4
0	5/2	13/4	-45/4
0	1	25/2	-9/2
0	-1/2	7/4	9/4

R2 = 2 * R2/5

1	_ -1/2	5/4	-5/4
0	1	13/10	-9/2
0	1	25/2	-9/2
0	-1/2	7/4	9/4

R1 = R1 + R2/2, R3 = R3 - R2, R4 = R4 + R2/2

1	0	19/10	-7/2
0	1	13/10	-9/2
0	0	56/5	0
0	0	12/5	0

R3 = 5R3/56

R1 = R1 - 19 R3/10, R2 = R2 - 13 R3/10, R4 = R4 - 12 R3/5

From above, we know that,

 $\boldsymbol{x}_{\scriptscriptstyle 4}$ can be a free variable so, $\boldsymbol{x}_{\scriptscriptstyle 4} = \boldsymbol{x}_{\scriptscriptstyle 4}$

$$x_3 = 0$$

Then,

$$x_1^{} - \frac{7}{2}x_4^{} = 0$$

or,
$$x_1 = \frac{7}{2}x_4$$

Again,

$$x_2 - \frac{9}{2}x_4 = 0$$

or, $x_2 = \frac{9}{2}x_4$

or,
$$x_2 = \frac{9}{2}x_4$$

We can define the variables in terms of \boldsymbol{x}_4 . Let \boldsymbol{x}_4 be t.

Now,
$$x_1 = \frac{7}{2}t, x_2 = \frac{9}{2}t$$

Thus, x =

$$or, x = \begin{bmatrix} \frac{7}{2} \\ \frac{9}{2} \\ 0 \\ 1 \end{bmatrix} \cdot t$$

Which is the null space of matrix A.