A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EA

Bookmark

Show all steps: (

ON

Problem

(a) Explain why $2x^2 \equiv 8 \pmod{10}$ has the same solutions as $x2 \equiv 4 \pmod{5}$.(b) Explain why $x \equiv 2 \pmod{5}$ and $x \equiv 3 \pmod{5}$ are all the solutions 4 of $2x^2 \equiv 8 \pmod{10}$.

Step-by-step solution

Step 1 of 3

(a)

Consider the congruence equation

$$2x^2 \equiv 8 \pmod{10}$$

Take $x^2 \equiv y$ then $2y \equiv 8 \pmod{10}$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the given equation.

Comment

Step 2 of 3

The congruence equation $2y \equiv 8 \pmod{10}$ has a solution modulo 10 because $\gcd(2,10) = 2$ and $2 \mid 8$.

The solution of congruence equation $2y \equiv 8 \pmod{10}$ is same as the solution of

$$y \equiv 4 \pmod{5} \left(\text{since } \frac{2}{2} y \equiv \frac{8}{2} \left(\text{mod } \frac{10}{2} \right) \right).$$

Therefore, the solution of congruence equation
$$2x^2 \equiv 8 \pmod{10}$$
 is same as the solution of $x^2 \equiv 4 \pmod{5}$

Comment

Step 3 of 3

(b)

The congruence equation $x^2 \equiv 4 \pmod{5}$ is equivalent to $\left(\overline{x}\right)^2 = \overline{4}$ in Z_5 .

Need to find the values for x in Z_5 such that $\left(\overline{x}\right)^2 = 4$ in Z_5

The solutions of $(\bar{x})^2 = 4$ in Z_5 are $\bar{x} = \bar{2}$ and $\bar{x} = \bar{3}$.

Verify that

$$(\overline{2})^2 = (\overline{2})(\overline{2})$$

= $\overline{4}$ in Z_5

$$(\overline{3})^2 = (\overline{3})(\overline{3})$$

$$= \overline{9}$$

$$= \overline{4} \text{ in } Z_5$$

Therefore, the solutions of the congruence equation $2x^2 \equiv 8 \pmod{10}$ are

$$x \equiv 2 \pmod{5}$$
 and $x \equiv 3 \pmod{5}$

Comment