Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 14 luglio 2009

matricola		nome		cognome
corso di laure	ea		anno accademico di	immatricolazione
Votazione:	T1 T2	E1		
		E2		
		E3		

- \Box (1) Esiste una matrice **A**, 3×4 a coefficienti complessi, di rango 4?
- \square (2) Esiste una matrice \mathbf{A} , 4×4 con det $\mathbf{A} = 1$, tale che 0 è un autovalore di A?
- \square (3) Sia V uno spazio vettoriale e sia $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ una sua base. Esistono $\mathbf{w}_1, \mathbf{w}_2 \in V$ tali che $\{\mathbf{w}_1, \mathbf{w}_2\}$ è un insieme di generatori?
- T1) Si diano le seguenti definizioni: (1) applicazione lineare, (2) insieme di generatori di uno spazio vettoriale. Sia $g: V \to W$ un'applicazione lineare suriettiva e sia $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ un insieme di generatori di V. Si dimostri che $\{g(\mathbf{v}_1), \dots, g(\mathbf{v}_n)\}$ è un insieme di generatori di W.
- T2) Si dia la definizione di prodotto interno in uno spazio vettoriale e si dimostri che, se $(\cdot | \cdot)$ è un prodotto interno su V e si pone $\|\mathbf{v}\| = (\mathbf{v} | \mathbf{v})$, vale la disuguaglianza

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$$

E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & \alpha - 3 & 6 & \alpha \\ 5 & 1 & \alpha + 11 & 8 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 3$ si trovi una base ortogonale di $C(\mathbf{A}_3)$. Inoltre si interpreti \mathbf{A}_3 come la matrice completa di un sistema lineare e si trovino tutte le soluzioni del sistema.

- E2) Sia $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, dove $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Si verifichi che \mathscr{B} è una base di \mathbb{C}^3 . Si consideri l'applicazione lineare $f \colon \mathbb{C}^3 \to \mathbb{C}^3$ tale che $f(\mathbf{v}_1) = \mathbf{v}_2 \mathbf{v}_3$, $f(\mathbf{v}_2) = \mathbf{v}_1 + 2\mathbf{v}_2$, $f(\mathbf{v}_3) = 2\mathbf{v}_1 + 3\mathbf{v}_2 + \mathbf{v}_3$.
 - (1) Si trovi la matrice ${\bf B}$ associata a f rispetto alla base canonica sul dominio e sul codominio.
 - (2) Si calcoli il rango di f.
 - (3) Il vettore $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_3$ appartiene all'immagine di f? Se sì, si trovi un vettore $\mathbf{v} \in \mathbb{C}^3$ tale che $f(\mathbf{v}) = \mathbf{w}$.
 - (4) Si trovi una base dello spazio nullo e dell'immagine di f.
- E3) Si consideri la matrice $(\beta \in \mathbb{C})$

$$\mathbf{B}_{\beta} = \begin{bmatrix} \beta & 0 & 2\beta - 1 \\ 0 & 1 & 2 \\ -\beta & 0 & 1 - 2\beta \end{bmatrix}.$$

Si dica per quali valori di β la matrice è diagonalizzabile; si determini, quando esiste, una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} . Esiste una base ortogonale di \mathbb{C}^3 formata da autovettori di \mathbf{B}_2 ?