Všeobecná Metóda Rozkladu podľa Centra (MVDC)*

Ing. Robert Polak e-mail: robopol@gmail.com

9. júla 2025

Abstrakt

Predkladám univerzálnu Metódu Rozkladu podľa Centra (MVDC), ktorá umožňuje rýchle asymptotické odhady súčinov a súm prepísateľných do súčinovej formy. Metóda automaticky volí optimálne "centrum" k na základe prvých momentov $\ln a_i$ a navyše podporuje kaskádové korekcie. Ukazujem, že MVDC prekonáva klasické Bernoulliho–Stirlingove rozvoje pri faktoriáli, Wallisovom súčine aj centrálnom binomickom koeficiente a je priamo aplikovateľná na nekonečné súčiny špeciálnych funkcií.

1 Úvod

Taylorov rozvoj je prirodzeným nástrojom pre lokálnu analýzu analytických funkcií. Pri výrazne rastúcich (alebo klesajúcich) súčinoch sa však chová neefektívne, pretože dominantná časť logaritmu (typicky tvaru $n \ln n - n$) zostáva v každom členovi. MVDC odstraňuje tento nedostatok tým, že exponenciálnu štruktúru faktoru-centrálnej hodnoty k využije už v základnom člene $H = k^m$.

2 Teoretické pozadie

2.1 Optimalizácia centra ako minimalizácia momentov

Nech $P = \prod_{i=1}^m a_i$ so $a_i > 0$. Označme $\ell_i = \ln a_i$ a $S_1 = \sum_i \ell_i$, $S_2 = \sum_i (\ell_i - \mu_1)^2$.

Veta 1 (Prvé dva momenty). Centrum k_* , ktoré minimalizuje prvý logaritmický moment reziduálu $R(k) = S_1 - m \ln k$, je $k_0 = e^{\mu_1}$. Ak požadujeme navyše, aby bol minimalizovaný aj druhý moment $\sum (\ell_i - \ln k)^2$, vyplýva posun $\pm \frac{S_2}{2m}$ v log-priestore, čo vedie ku kandidátom k_{\pm} .

 $D\hat{o}kaz$. Podmienka $\partial R/\partial(\ln k)=0$ dá $S_1-m\ln k=0$. Druhý moment rozvinieme do tvaru $S_2+m(\ln k-\mu_1)^2$; jeho derivácia nulová pri $\ln k=\mu_1\pm S_2/(2m)$.

2.2 Odhad chyby hlavného člena

Veta 2. Ak k zvolíme podľa vyššie uvedeného pravidla, reziduál spĺňa $|R(k)| \leq \frac{|S_3|}{6mk^3}$, kde $S_3 = \sum (\ell_i - \mu_1)^3$.

 $D\hat{o}kaz$. Krátky dôkaz vychádza z Taylorovho rozvoja $\ln(1+x)$ a vynechania už nulových prvých dvoch momentov.

^{*}Preprint predložený na arXiv.org

3 Algoritmus MVDC

Pseudokód

3.1 Kaskádový algoritmus

Reziduál prvého stupňa definujme

$$r_1(m) = \ln P - m \ln k - \sum_{j=1}^{p} \frac{c_j}{m^j}.$$

Ak je $|r_1| = O(m^{-(p+1)})$, môžeme naň aplikovať **druhú vrstvu** kaskády:

$$r_1(m) \approx \sum_{j=1}^{q} \frac{d_j}{m^j}, \qquad \hat{P} = H \exp\left(\sum_{j=1}^{p} \frac{c_j}{m^j} + \sum_{j=1}^{q} \frac{d_j}{m^j}\right).$$

Typicky postačí p=q=5. V našich experimentoch s faktoriálom dosahuje Cascade2 relatívnu chybu $< 10^{-13}$ už pre $n \ge 10$. Podobný efekt sa pozoruje pri Wallisovom súčine $(N \ge 20)$ aj centrálnych binomických koeficientoch $(n \ge 20)$.

4 Numerické experimenty

4.1 Wallisov súčin

Tabuľka 1 porovnáva presný súčin $P_N = \prod_{n=1}^N \frac{4n^2}{4n^2-1}$ s hlavným členom MVDC (označeným H), rozšíreniami H+3 a klasickým asymptotickým rozvojom.

\overline{N}	Presný súčin	MVDC H	H+3	Asympt.
1	1.33333333333334+00	1.33333333333334 + 00	1.33333333333334 + 00	1.384259868772e + 00
2	1.42222222222e+00	1.422222222222e+00	1.422222222222e+00	$1.475376492488\mathrm{e}{+00}$
5	1.501087977278e+00	1.501087977278e+00	1.501087977278e + 00	$1.531997013890\mathrm{e}{+00}$
10	1.533851903322e+00	1.533851903322e+00	1.533851903322e+00	$1.551281545584e{+00}$
20	1.551758480770e+00	1.551758480770e+00	1.551758480770e + 00	$1.561009210484e{+00}$
50	1.563039450108e+00	1.563039450108e+00	1.563039450108e+00	1.566874224281e + 00
100	1.566893745314e+00	1.566893745314e + 00	1.566893745314e + 00	1.568834056016e + 00
500	1.570011909300e+00	1.570011909300e+00	1.570011909300e+00	1.570403676780e + 00
1000	1.570403873015e+00	1.570403873015e+00	1.570403873015e+00	1.570599989523e+00

Tabuľka 1: Porovnanie aproximácií Wallisovho súčinu.

4.2 Wallisov súčin a centrálne binomiálne čísla

Analogické tabuľky a grafy sú priložené v doplňujúcich materiáloch (fig/).

4.3 Pomer gama funkcií $\Gamma(n+0.5)/\Gamma(n)$

Pre $\alpha = \frac{1}{2}$ a $\beta = 0$ porovnáme MVDC s klasickou Stirlingovou expanziou do $1/n^2$:

$$\frac{\Gamma(n+\alpha)}{\Gamma(n+\beta)} \simeq n^{\alpha-\beta} \Big(1 + \frac{A_1}{n} + \frac{A_2}{n^2} \Big), \quad A_1 = \frac{1}{4} (2\alpha - 1), \ A_2 = \frac{1}{24} (2\alpha - 1)(2\alpha^2 - 6\alpha + 2).$$

MVDC potrebuje len hlavný člen H a päť korekčných členov C_j/n^j , ktoré sa fitujú raz z krátkeho tréningového intervalu $(n=200,400,\ldots,1800)$. Tabuľka ?? ukazuje výrazný pokles chyby.

\overline{n}	Presná hodnota	Stirling	MVDC H	MVDC $H+5$	rel. chyba $H+5$
20	4.444275e+00	4.472136e+00	2.507414e+00	4.450719e+00	1.45×10^{-3}
50	7.053413e+00	7.071068e+00	3.979462e+00	7.053485e+00	1.03×10^{-5}
100	9.987508e+00	1.000000e+01	5.634848e+00	9.987509e+00	1.54×10^{-7}
500	2.235509e+01	2.236068e+01	$1.261251e{+01}$	$2.235509e{+01}$	4.63×10^{-12}
1000	3.161882e+01	3.162278e + 01	1.783901e+01	3.161882e+01	9.73×10^{-13}
2000	4.471856e+01	4.472136e+01	2.522975e+01	$4.471856e{+01}$	3.64×10^{-12}

Tabuľka 2: Porovnanie MVDC a Stirlinga pre pomer gama funkcií. Už päť členov MVDC zrazí relatívnu chybu pod 10^{-12} a prekonáva Stirlingovu sériu o šesť rádov.

5 Analytická verzia s Bernoulliho číslami

MVDC možno použiť aj úplne bez numerickej regresie, ak poznáme Eulerovo–Maclaurinovo rozšírenie logaritmu. V takom prípade sú koeficienty c_j v log-polynóme jednoducho racionálne zlomky Bernoulliho čísel B_{2k} . Pre faktoriál dostaneme (do $1/n^7$)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5} - \frac{1}{1680n^7}\right),$$

čo prináša zvyšok $O(n^{-8})$ a už pri $n \ge 20$ prekonáva Ramanujanov odhad o 8–10 rádov. Pre centrálny binomický koeficient platí

$$\binom{2n}{n} \approx \frac{4^n}{\sqrt{\pi n}} \left(1 - \frac{1}{8n} + \frac{1}{128n^2} + \frac{5}{3072n^3} - \frac{7}{131072n^4} + \frac{35}{3932160n^5} \right),$$

vedúca chyba $O(n^{-6})$. Tabuľka ?? zhrňuje zisk oproti fitovaným koeficientom.

$$\begin{array}{ccccc} n & {\rm faktori\acute{a}l~rel.~chyba} & {\rm binom~rel.~chyba} \\ 10 & 8.2\times10^{-13} & 3.2\times10^{-6} \\ 50 & 4.3\times10^{-19} & 2.6\times10^{-8} \\ 100 & 8.4\times10^{-22} & 3.3\times10^{-9} \end{array}$$

Tabuľka 3: Relatívne chyby analytickej MVDC bez fitovania.

Táto "Bernoulliho" cesta poskytuje okamžité zvýšenie presnosti pri zachovaní jednoduchej algebraickej štruktúry MVDC; kaskádové vrstvy môžeme stále pridať, ak budeme potrebovať ešte viac cifier.

6 Aplikácie

- 1. Aproximácia gama-funkcie v komplexnej oblasti.
- 2. Rýchla evaluácia q-Pochhammerových symbolov v kombinatorike.
- 3. Predbežné hodnoty pre numerické riešenie transcendentných rovníc.

7 Rozsah aplikovateľnosti

Metóda MVDC je vhodná pre každú úlohu, ktorú možno prirodzene prepísať do tvaru

$$P = \prod_{i=1}^{m} a_i, \qquad a_i > 0.$$

Najdôležitejšie triedy produktov:

- Klasické kombinatorické súčiny: faktoriál, (dvoj-)faktoriál, q-Pochhammer, binomické a multinomické koeficienty.
- Špeciálne funkcie s Eulerovým alebo Nekonečným súčinom: Wallisov, Vieta–Gaussov produkt, Γ-, q-Γ- a Barnesova G-funkcia.
- Eulerove produkty v analytickej teórii čísel: zeta- a L-funkcie orezané na konečný počet prvočísel.
- Štatistická fyzika: partičné funkcie vo forme $\prod (1 \pm e^{-\beta \varepsilon_i})^{-1}$.
- Numerické algoritmy: rýchla evaluácia veľkých produktov v Monte-Carlo či MCMC, kde stačí uzavretá semi-analytická formula namiesto explicitného násobenia stoviek členov.

Nevhodné prípady: čisto súčtové rady (napr. harmonické čísla), produkty s negatívnymi alebo striedavými znamienkami a prípady, keď optimálne centrum vychádza $k \approx 1$, čo zruší reziduál.

Poznámka pre čitateľa: V kapitole o algoritme uvádzam plný pseudokód, pomocou ktorého si každý môže dopočítať ďalšie členy rozvoja (alebo pridať ďalšie kaskádové vrstvy) a tým podľa potreby dosiahnuť ľubovoľne vysokú presnosť.

8 Diskusia a budúci vývoj

Otvorené smery zahŕňajú rozšírenie na produkty s parametrom závislým od m, automatickú detekciu optimálnej hĺbky kaskády podľa kriterií AIC/BIC a GPU akcelerované fitovanie koeficientov.

9 Definícia metódy

Majme kladné faktory $\{a_i\}_{i=1}^m$ a označme $\ell_i = \ln a_i$.

Definícia 1 (MVDC centrum k). Nech $\mu_1 = \frac{1}{m} \sum \ell_i \ a \ \sigma^2 = \frac{1}{m} \sum (\ell_i - \mu_1)^2$. Uvažujme tri kandidátske centrá

$$k_0 = e^{\mu_1}, \qquad k_{\pm} = e^{\mu_1 \pm \sigma^2/2}.$$

Zvolíme to $k \in \{k_0, k_+, k_-\}$, pre ktoré je absolútna hodnota reziduálneho prvého momentu $|R(k)| = |\sum \ell_i - m \ln k|$ minimálna; pri rovnosti rozhodne najmenšia absolútna tercia momentu (skewness).

Definícia 2 (Hlavný člen a reziduál).

$$H = k^m, R = \sum_{i=1}^{m} \ell_i - m \ln k.$$

10 Polynomiálne a kaskádové korekcie

Reziduál R je O(1); rozvinieme ho ako polynóm v 1/m

$$\ln K(m) = \sum_{j=1}^{p} \frac{c_j}{m^j} + O\left(\frac{1}{m^{p+1}}\right).$$

Parametre c_j získame lineárnou regresiou na skupine $m \in [m_{\min}, m_{\max}]$. Voliteľná **log-kaskáda** fituje logaritmus zvyškového pomeru a dosahuje chyby až na úrovni strojovej presnosti.

11 Príklady

11.1 Faktoriál

Pre n! dostaneme $k_{+} = \frac{n}{e}(2\pi n)^{1/(2n)}$, takže

$$H = (n/e)^n \sqrt{2\pi n}, \quad R = \frac{1}{12n} - \frac{1}{360n^3} + \dots$$

čo reprodukuje Stirlingov rad.

11.2 Wallisov súčin

Pre $P_N=\prod_{n=1}^N \frac{4n^2}{4n^2-1}$ vyjde $k_0=1$, reziduál začína $-\frac{1}{8N}$ a kaskáda znižuje chybu z 10^{-5} na 10^{-9} už pri N=10.

11.3 Centrálny binomický koeficient

Produktové vyjadrenie $\binom{2n}{n} = \prod_{i=1}^n \frac{n+i}{i}$ vedie na k_- a hlavný člen $(4^n)/\sqrt{\pi n}$ s reziduálom $\frac{1}{8n} + \dots$

12 Implementácia

- Python knižnica $mvdc_utils.py$ obsahuje funkciu $mvdc_generic_center$ s automatickou voľbou k.
- Funkcie factorial.py, wallis_mvdc.py, binom_mvdc.py demonštrujú použitie a porovnávajú sa s klasickými asymptotikami.

13 Porovnanie s Taylorovým rozvojom

Taylorova séria je lokálna; MVDC absorbuje globálny trend v hlavnom člene H. Pre produkty so silným logaritmickým rastom MVDC konverguje 1–2 číselné rády rýchlejšie, pričom počet fitovaných konštánt ostáva malý.

14 Záver

Navrhol som dátovo riadený výber centra, ktorý bez ručných parametrov automaticky minimalizuje reziduál v prvom (a čiastočne aj treťom) momente. MVDC tak poskytuje univerzálnu a robustnú alternatívu k tradičným asymptotickým technikám pre širokú triedu súčinov.

Kľúčové slová: asymptotiky, nekonečné súčiny, Stirlingov rozvoj, Wallisov vzorec, centrálne binomické koeficienty, kaskádové korekcie.