Algèbre 1

Polynômes et

fractions rationnelles

Question 1/16

Partie polaire d'une décomposition en éléments simples dans $\mathbb{C}(X)$ F a des pôles (r_1, \dots, r_k) de multiplicité

 $(\alpha_1,\cdots,\alpha_k)$

Réponse 1/16

$$\sum_{j=0}^{\alpha_i} \left(\frac{\lambda_{i,j}}{(X - r_i)^j} \right)$$

Question 2/16

 $\deg(P)$

Réponse 2/16

$$\max(\{n \in \mathbb{N} \mid a_n \neq 0\})$$

Question 3/16

Propriétés de $\varphi : \mathbb{K}[X] \to \mathbb{K}[x]$

Réponse 3/16

Homomorphisme d'anneaux surjectif

Question 4/16

Structure de $\mathbb{A}[X]$

Réponse 4/16

Anneau commutatif

Question 5/16

Interpolation de la fonction f aux points (x_1, \dots, x_n)

Réponse 5/16

$$P = \sum_{i=1}^{n} (f(x_i)L_i)$$

Question 6/16

i-ième polynôme interpolateur de Lagrange

Réponse 6/16

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{X - x_j}{x_i - x_j}\right)$$

Question 7/16

Propriétés de $\varphi : \mathbb{K}[X] \to \mathbb{K}[x]$ si $\operatorname{car}(\mathbb{K}) = 0$

Réponse 7/16

Isomorphisme d'anneaux

Question 8/16

Décomposition en éléments simples dans $\mathbb{R}(X)$ F avec $Q = Q_1^{\alpha_1} \cdots Q_k^{\alpha_k}$, $\deg(Q_i) \leq 2$

Réponse 8/16

$$F = E + \sum_{i=0}^{k} \left(\sum_{j=0}^{\alpha_i} \left(\frac{A_{i,j}}{Q_i^j} \right) \right)$$
$$\deg(A_{i,j}) < \deg(Q_i)$$

Question 9/16

Structure de $\mathbb{K}(X)$

Réponse 9/16

Corps

Question 10/16

Coefficient avec le terme X-r de la décomposition en éléments simples de $F=\frac{P}{Q}$ dans $\mathbb{C}(X)$

Réponse 10/16

$$\lambda = \frac{P(r)}{Q} = \frac{P(r)}{Q'(r)}$$

Question 11/16

Décomposition en éléments simples dans $\mathbb{C}(X)$ F a des pôles (r_1, \dots, r_k) de multiplicité $(\alpha_1, \dots, \alpha_k)$

Réponse 11/16

$$F = E + \sum_{i=0}^{k} \left(\sum_{j=0}^{\alpha_i} \left(\frac{\lambda_{i,j}}{(X - r_i)^j} \right) \right)$$

Question 12/16

Relations de Viète
$$P = \sum_{k=0}^{n} (a_k X^k) \text{ est scindé à racines}$$

$$(r_1, \cdots, r_n)$$

Réponse 12/16

$$\sum_{K \in \mathcal{P}_k([\![1,n]\!])} \left(\prod_{j \in K} (r_j) \right) = (-1)^k \frac{a_{n-k}}{a_n}$$

Question 13/16

Décomposition en éléments simples de $\frac{P'}{P}$ de racines (r_1, \dots, r_k) de multiplicité $(\alpha_1, \dots, \alpha_k)$

Réponse 13/16

$$\frac{P'}{P} = \sum_{i=1}^{n} \left(\frac{\alpha_i}{X - r_i}\right)$$

Question 14/16

Structure de $\mathbb{A}[X]$ si \mathbb{A} est intègre

Réponse 14/16

Anneau intègre commutatif

Question 15/16

Un anneau commutatif $\mathbb B$ est une algèbre sur un anneau commutatif $\mathbb A$ $\mathbb A$ -algèbre $\mathbb B$

Réponse 15/16

$$\forall (\lambda, \mu, x, y) \in \mathbb{A}^2 \times \mathbb{B}^2$$
$$(\lambda \mu) y = \lambda(\mu y)$$
$$\lambda(xy) = (\lambda x) y = x(\lambda y)$$
$$(\lambda + \mu) x = \lambda x + \mu x$$
$$\lambda(x + y) = \lambda x + \lambda y$$
$$1_{\mathbb{A}} x = x$$

Question 16/16

val(P)

Réponse 16/16

$$\min(\{n \in \mathbb{N} \mid a_n \neq 0\})$$