

Mini Project No 2

CS 771A: INTRODUCTION TO MACHINE LEARNING

Group No 51

Team Members: Lt Col Divya Sharma 241110085 Yugul Kishor Pandey 241110083 Rajender Gill 241110055 Deepak Soni 241110018

IIT Kanpur

November 26, 2024

Machine Learning Models for Continual Shifting Domains

1. Problem 1: CIFAR-10 Dataset with LwP Classifier

1.1 Task 1

Objective

The primary goal of Task 1 is to develop a sequence of models $(f_1, f_2, ..., f_{10})$ using an LwP (Learning with Prototype) classifier. Starting with a labeled dataset D_1 , the task involves updating the model iteratively across datasets D_2 to D_{10} using pseudo-labels generated by preceding models. The updated models should perform well on new datasets without significant degradation on previously encountered ones.

Detailed Approach

Dataset Characteristics:

- Input: CIFAR-10 images (32×32 color images).
- **Distribution:** Datasets D_1 to D_{10} share the same input distribution (p(x)).
- Training: Only D_1 is labeled; D_2 to D_{10} are unlabeled.
- Evaluation: Held-out datasets (\hat{D}_1 to \hat{D}_{10}) are used solely for performance assessment.

Feature Extraction:

- Pre-trained convolutional neural networks (CNNs), such as **ConvNeXtBase**, was used to extract image embeddings.
- About ConNeXtBase: The ConvNeXtBase neural network is a deep learning model built upon the ConvNeXt architecture, which is designed to optimize performance by integrating modern enhancements to traditional convolutional neural networks (CNNs). It's inspired by ResNet-like architectures while borrowing ideas from transformer models, making it a robust choice for various tasks, especially image classification and feature extraction.
 - Architecture
 - * ConvNeXtBase follows a hierarchical design with multiple stages of convolutional blocks.
 - * It introduces key innovations like layer normalization, better convolutional kernels, and fewer activation layers for improved efficiency and scalability.
 - Retraining
 - \ast Retraining typically involves fine-tuning the pretrained ConvNeXtBase model on a new dataset.
 - * During retraining:Pretrained Weights: Weights from models trained on datasets like ImageNet are used as initialization. Feature Layers: These layers act as general feature extractors for the new dataset.Custom Output Layer:Adjusted to match the new dataset's task, such as classification labels or regression outputs.
 - Dataset Used for Pretraining:
 - * ImageNet-1K (1.28M images, 1,000 classes).
 - * ImageNet-22K (14M images, 21,841 classes).
- These embeddings capture high-level features while reducing dimensionality.

Model Training with LwP:

- Prototype Representation: Each class in D_1 was represented as a prototype (mean of feature vectors).
- Classification: For any input, the label is predicted based on the nearest prototype in the feature space.
- Loss Function: Cross-entropy loss was used to optimize classification, ensuring compactness of class-wise clusters.

Iterative Model Update:

- Starting with f_1 trained on D_1 , pseudo-labels for D_2 were predicted.
- Using the pseudo-labeled D_2 , f_1 was updated to f_2 .
- This process was repeated for all datasets $(D_3 \text{ to } D_{10})$.
- A regularization term minimized parameter drift to reduce catastrophic forgetting.

Evaluation Methodology:

• Each model f_i was evaluated on its corresponding held-out dataset (\hat{D}_i) and all prior held-out datasets $(\hat{D}_1$ to $\hat{D}_{i-1})$.

Results

Accuracy Matrix for Task 1:

Model/Dataset	\hat{D}_1	\hat{D}_2	\hat{D}_3	\hat{D}_4	\hat{D}_5	\hat{D}_6	\hat{D}_7	\hat{D}_8	\hat{D}_9	\hat{D}_{10}
f_1	89.00%	-	-	-	-	-	-	-	-	-
f_2	88.44%	89.76%	-	-	-	-	-	-	-	-
f_3	87.84%	89.08%	87.48%	-	-	-	-	-	-	-
f_4	87.72%	89.08%	87.40%	88.68%	-	-	-	-	-	-
f_5	87.32%	89.24%	87.32%	88.52%	87.68%	-	-	-	-	-
f_6	87.20%	88.68%	86.80%	88.40%	87.44%	87.20%	-	-	-	-
f_7	87.12%	88.68%	86.88%	88.40%	87.16%	87.24%	87.20%	-	-	-
f_8	86.84%	88.40%	86.48%	88.28%	87.28%	87.20%	87.48%	87.64%	-	-
f_9	86.88%	88.44%	86.96%	88.00%	86.88%	87.12%	87.32%	87.44%	87.56%	-
f_{10}	86.84%	88.48%	86.92%	88.24%	87.04%	87.36%	87.32%	87.48%	87.60%	87.52%

Table 1: Accuracy Matrix for Task 1

1.2 Task 2

Objective

The aim of Task 2 is to extend the iterative model update approach to datasets D_{11} to D_{20} , starting with f_{10} as the base model. Unlike Task 1, these datasets exhibit different distributions, presenting additional challenges in model generalization and stability.

Approach

Challenges of Distribution Shifts:

- The input distributions p(x) for D_{11} to D_{20} differ significantly.
- To address this, domain adaptation techniques were incorporated during model updates.

Model Update Methodology:

Feature Alignment: Maximum Mean Discrepancy (MMD) was used to align feature distributions
across domains.

```
\hat{\text{D1}} \ \hat{\text{D2}} \ \hat{\text{D3}} \ \hat{\text{D4}} \ \hat{\text{D5}} \ \hat{\text{D6}} \ \hat{\text{D7}} \ \hat{\text{D8}} \ \hat{\text{D9}} \ \hat{\text{D10}} \ \hat{\text{D11}} \ \hat{\text{D12}} \ \hat{\text{D13}} \ \hat{\text{D14}} \ \hat{\text{D15}} \ \hat{\text{D16}} \ \hat{\text{D17}} \ \hat{\text{D18}} \ \hat{\text{D19}} \ \hat{\text{D20}}
f11: 84.76% 86.24% 84.96% 86.20% 85.40% 85.40% 85.92% 85.48% 85.60% 85.56% f12: 82.96% 83.80% 83.16% 84.48% 83.68% 83.36% 83.56% 83.80% 83.00% 83.84%
f13: 82.24% 83.32% 82.76% 83.80% 83.12% 82.84% 83.36% 82.96% 82.64% 83.16%
f14: 82.60% 83.64% 83.40% 84.24% 83.72% 83.56% 84.08%
                                                                                 83.32%
                                                                                            83.28%
                                                                                                                   71.28%
                                                                                                                   71.04% 55.96%
f16: 82.16% 83.04% 82.72% 84.00% 83.40% 82.60% 84.04% 82.80% 82.68% 83.20%
                                                                                                                                         76.40% 82.40% 82.76% 74.48%
f17: 82.00% 82.64% 82.24% 83.64% 83.12% 82.28% 83.60% 82.32% 82.00% 82.84%
                                                                                                                   70.88%
                                                                                                                                                    82.20% 82.52% 74.72% 79.44%
                                                                                                                                                    81.80% 81.24% 73.44% 77.80% 73.36%
f18: 80.96% 81.88% 81.32% 83.00% 82.56% 81.64% 82.64% 81.20%
                                                                                                                   70.52%
                                                                                                        82.20%
                                                80.44%
f20: 80.12% 81.08% 80.72% 81.80% 81.60% 80.64% 81.16%
```

Figure 1: Accuracy Matrix for Task 2

• Weight Adaptation: A weighted loss function prioritized predictions on classes with higher confidence scores.

Regularization:

• To mitigate forgetting, a knowledge distillation loss was applied, preserving information from previous models.

Evaluation:

• Similar to Task 1, models f_{11} to f_{20} were evaluated on all 20 held-out datasets $(\hat{D}_1 \text{ to } \hat{D}_{20})$.

2. Problem 2: Paper Presentation

Selected Paper

Deja Vu: Continual Model Generalization for Unseen Domains (ICLR 2023)

Summary

- **Problem Studied:** Proposes solutions to continual model generalization for unseen domains, focusing on robust feature extraction and memory consolidation.
- **Key Techniques:** Adaptive feature alignment across unseen domains and memory-based learning to retain past knowledge.
- Insights: Demonstrates improved performance on domain-shift tasks similar to those in Problem

Youtube Link: https://youtu.be/zi2QcjrRvGI

3. Conclusion

This mini-project 2 explored continual learning using LwP classifiers and highlighted the challenges of maintaining performance across evolving distributions. Insights from domain adaptation research proved instrumental in achieving the objectives of Task 1 and Task 2.