Belegungen:

 \rightarrow Abschnitt 1.3

weisen den Variablensymbolen Elemente einer S-Struktur zu

Belegung

über *S*-Struktur
$$\mathcal{A} = (A, c^{\mathcal{A}}, \dots, f^{\mathcal{A}}, \dots)$$
:
 $\beta \colon \mathcal{V} \longrightarrow A$
 $x \longmapsto \beta(x)$

der Variablensymbole in *S*-Struktur diese Interpretation läßt sich natürlich auf alle *S*-Terme erweitern (wie?)

→ die Semantik von Termen

FGdI II Sommer 2015 M Otto 55/1

Teil 2: FO

Terme und Belegungen

FO 1.2

Semantik von S-Termen

 \rightarrow Abschnitt 1.2/3

in **S-Interpretation:** S-Struktur + Belegung $\mathfrak{I} = (A, \beta)$

Semantik von Termen

induktiv über T(S) für gegebene S-Interpretation $\mathfrak{I} = (A, \beta)$:

Interpretation von $t \in T(S)$: $t^{\Im} \in A$ induktiv geg. durch

- $t = x \ (x \in \mathcal{V} \ \text{Variable}) : \qquad t^{\mathfrak{I}} := \beta(x).$
- $t = c \ (c \in S \ \mathsf{Konstante}) : \qquad t^\mathfrak{I} := c^\mathcal{A}.$
- $t = ft_1 \dots t_n \ (f \in S, n\text{-st.}) : \ t^{\mathfrak{I}} := f^{\mathcal{A}}(t_1^{\mathfrak{I}}, \dots, t_n^{\mathfrak{I}}).$

beachte Format dieser Interpretation als Abbildung

$$\begin{array}{ccc}
T(S) & \longrightarrow & A \\
t & \longmapsto & t^{\Im}
\end{array}$$

und Abhängigkeit von S-Struktur \mathcal{A} und Belegung β .

FGdI II Sommer 2015 M Otto 56/

Herbrand-Struktur: die syntaktische Interpretation

für funktionales S (ohne Relationssymbole)

Herbrand-Struktur

$$\mathcal{T} = \mathcal{T}(S) = (T(S), \dots, c^{\mathcal{T}(S)}, \dots, f^{\mathcal{T}(S)}, \dots)$$

- $c \in S$: $c^T := c \in T(S)$.
- $\bullet \ \ f \in S \ (\mathsf{n\text{-}st.}): \quad f^{\mathcal{T}} \colon T(S)^n \ \longrightarrow \ T(S) \\ (t_1, \dots, t_n) \ \longmapsto \ ft_1 \dots t_n.$

(die einzig plausible Wahl . . . , warum?)

Beobachtung

(Übung 1.7, vgl. auch FGdl I)

für jede S-Interpretation $\mathfrak{I}=(\mathcal{A},\beta)$ ist die Abbildung

$$\begin{array}{ccc} h \colon T(S) & \longrightarrow & A \\ & t & \longmapsto & t^{\mathfrak{I}} \end{array}$$

ein Homomorphismus von $\mathcal{T}(S)$ nach \mathcal{A} .

FGdI II

Sommer 2015

M Otto

57/1

Teil 2: FO

Syntax und Semantik

FO₂

Logik erster Stufe: Syntax von $FO(S) \rightarrow Abschnitt 2.1$

Symbole: Symbole in S zusammen mit Variablen $x \in \mathcal{V}$, AL-Junktoren, =, \forall , \exists , Klammern

induktive Definition der Menge der FO(S) Formeln:

• atomare Formeln: für $t_1, t_2 \in T(S)$: $t_1 = t_2 \in FO(S)$.

für
$$R \in S$$
 $(n\text{-st.})^*$, $t_1, \ldots, t_n \in T(S)$: $Rt_1 \ldots t_n \in FO(S)$.

* für $n = 2$: auch infixe Notation

• AL-Junktoren: für $\varphi, \psi \in FO(S)$: $\neg \varphi \in FO(S)$.

$$(\varphi \wedge \psi) \in FO(S).$$

$$(\varphi \lor \psi) \in FO(S).$$

• Quantifizierung: für $\varphi \in FO(S)$, $x \in \mathcal{V}$: $\exists x \varphi \in FO(S)$.

$$\forall x \varphi \in FO(S)$$
.

Gleichheitsfreie Logik erster Stufe, $FO^{\neq} \subseteq FO$: genauso, aber ohne Atome $t_1 = t_2$.

FGdI II Sommer 2015 M Otto 58/

Syntax: freie Variablen

(Definition 2.2)

induktiv über Aufbau der Formeln definiere Funktion

frei:
$$FO(S) \longrightarrow \mathcal{P}(\mathcal{V})$$

 $\varphi \longmapsto frei(\varphi) \subseteq \mathcal{V}$

induktiv gemäß: $\operatorname{frei}(\varphi) := \operatorname{var}(\varphi)$ für atomare φ . $\operatorname{frei}(\neg \varphi) := \operatorname{frei}(\varphi)$. $\operatorname{frei}(\varphi \wedge \psi) = \operatorname{frei}(\varphi \vee \psi) := \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi)$. $\operatorname{frei}(\exists x \varphi) = \operatorname{frei}(\forall x \varphi) := \operatorname{frei}(\varphi) \setminus \{x\}$.

Formeln ohne freie Variablen: Sätze

 $FO_n(S) := \{ \varphi \in FO(S) \colon frei(\varphi) \subseteq \mathcal{V}_n \}.$

Schreibweise: $\varphi(x_1, \ldots, x_n)$ für $\varphi \in FO_n(S)$.

Variablen in φ , die nicht frei vorkommen: gebunden

Beispiele: $\operatorname{frei}(0 < fx) = \{x\}$ $\operatorname{frei}(0 < fx \land \forall x \neg x = fx) = \{x\}$ $\operatorname{frei}(\forall x \neg x = fx) = \emptyset$

FGdI II

Sommer 2015

M Otto

50/1

Teil 2: FO

Syntax und Semantik

FO₂

Syntax: Quantorenrang

(Definition 2.3)

induktiv über Aufbau der Formeln definiere Funktion

$$qr \colon FO(S) \longrightarrow \mathbb{N}$$

$$\varphi \longmapsto qr(\varphi) \in \mathbb{N}$$

induktiv gemäß: $\operatorname{qr}(\varphi)=0$ für atomares φ . $\operatorname{qr}(\neg\varphi):=\operatorname{qr}(\varphi).$ $\operatorname{qr}(\varphi\wedge\psi)=\operatorname{qr}(\varphi\vee\psi):=\max(\operatorname{qr}(\varphi),\operatorname{qr}(\psi)).$ $\operatorname{qr}(\exists x\varphi)=\operatorname{qr}(\forall x\varphi):=\operatorname{qr}(\varphi)+1.$

Formeln von Quantorenrang 0 heißen quantorenfrei.

Beispiele: qr(0 < fx) = 0 $qr(\forall x \exists y \ x < y) = 2$ $qr(0 < fx \land \forall x \exists y \ x < y) = 2$

FGdI II Sommer 2015 M Otto 60/1

Teil 2: FO Syntax und Semantik FO 2

Alfred Tarski (1901–1983)

Logiker, der die semantische Sicht auf FO wesentlich geprägt hat

FGdI II Sommer 2015 M Otto 61/1

Teil 2: FO Syntax und Semantik FO 2

Semantik von FO(S)

→ Abschnitt 2.2

Wahrheitswerte $\varphi^{\mathfrak{I}}$ für $\mathrm{FO}(S)$ -Formeln über S-Interpretation \mathfrak{I} induktive Definition von $\varphi^{\mathfrak{I}}$

atomare φ : $(t_1 = t_2)^{\mathfrak{I}} = 1$ gdw. $t_1^{\mathfrak{I}} = t_2^{\mathfrak{I}}$.

 $(Rt_1\dots t_n)^{\mathfrak{I}}=1$ gdw. $(t_1^{\mathfrak{I}},\dots,t_n^{\mathfrak{I}})\in R^{\mathcal{A}}$.

Negation: $(\neg \varphi)^{\Im} := 1 - \varphi^{\Im}$.

Konjunktion: $(\varphi \wedge \psi)^{\Im} := \min(\varphi^{\Im}, \psi^{\Im}).$

Disjunktion: $(\varphi \vee \psi)^{\Im} := \max(\varphi^{\Im}, \psi^{\Im}).$

Quantoren: $(\exists x \varphi)^{\Im} = \max(\varphi^{\Im[x \mapsto a]} : a \in A).$

 $(\forall x\varphi)^{\Im} = \min(\varphi^{\Im[x\mapsto a]} \colon a \in A).$

Semantik der Quantoren arbeitet mit modifizierten Belegungen

$$\beta[x \mapsto a](y) := \begin{cases} \beta(y) & \text{für } y \in \mathcal{V} \setminus \{x\} \\ a & \text{für } y = x \end{cases}$$

$$\Im[x\mapsto a] = (\mathcal{A}, \beta[x\mapsto a])$$
Sommer 2015 M Otto

FGdI II Sommer 2015 M Otto 62/1

Semantik von FO(S)

Wahrheitswert $\varphi^{\Im} \in \mathbb{B}$ definiert für alle $\varphi \in FO(S)$ und S-Interpretationen $\Im = (\mathcal{A}, \beta)$

Sprech- und Schreibweisen:

$$\begin{array}{ccc} \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\;\varphi^{\mathfrak{I}}=1 & \varphi\; \mathit{wahr}\; \mathrm{unter}\; \mathfrak{I}\\ & \mathfrak{I}\; \mathrm{erf\ddot{u}llt}\; \varphi\\ & \mathfrak{I}\; \mathrm{Modell}\; \mathrm{von}\; \varphi\\ & \mathfrak{I}\vDash\varphi \end{array}$$

$$\begin{array}{ccc} \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\ \varphi^{\Im} = \mathrm{0}; & \varphi\ \mathit{falsch}\ \mathrm{unter}\ \Im\\ & \Im\ \mathrm{erf\ddot{u}llt}\ \varphi\ \mathrm{nicht}\\ & \Im\ \mathrm{kein}\ \mathrm{Modell}\ \mathrm{von}\ \varphi\\ & \Im\ \not\models\varphi \end{array}$$

FGdI II Sommer 2015 M Otto 63/1

Teil 2: FO Syntax und Semantik FO 2

Belegungen und freie Variablen

Werte der Belegung $\beta(x) \in A$ über \mathcal{A} nur relevant für $x \in \operatorname{frei}(\varphi)$. Beweis durch Induktion über $\varphi \in \operatorname{FO}(S)$!

Für
$$\varphi(x_1,\ldots,x_n)\in FO_n(S)$$
 (d.h. $frei(\varphi)\subseteq \mathcal{V}_n=\{x_1,\ldots,x_n\}$), $(a_1,\ldots,a_n)=(\beta(x_1),\ldots,\beta(x_n))\in A^n$:

$$\mathcal{A} \models \varphi[a_1,\ldots,a_n]$$
 :gdw. $\left[\begin{array}{c} (\mathcal{A},\beta) \models \varphi \text{ für ein/alle } \beta \text{ mit } \\ \beta(x_i) = a_i \text{ für } i = 1,\ldots n \end{array} \right]$.

Beispiel: $\varphi(x) = \forall y R x y$ beschreibt eine Eigenschaft von x, φ^{\Im} hängt nicht von $\beta(y)$ ab, aber von $\beta(x)$

speziell für Sätze (d.h.
$$\mathrm{frei}(\varphi) = \emptyset$$
): φ^{\Im} hängt nur von $\mathcal A$ ab,
$$\mathcal A \models \varphi \text{ oder } \mathcal A \not\models \varphi$$
 unabhängig von β

FGdl II Sommer 2015 M Otto 64/1

FO 2

semantische Grundegriffe

→ Abschnitt 2.3

übertragen sich direkt von AL auf FO!

Folgerungsbeziehung, $\varphi \models \psi$:

f.a. \mathfrak{I} gilt $(\mathfrak{I} \models \varphi \Rightarrow \mathfrak{I} \models \psi)$.

logische Aquivalenz, $\varphi \equiv \psi$:

f.a. \mathfrak{I} gilt $(\mathfrak{I} \models \varphi \Leftrightarrow \mathfrak{I} \models \psi)$.

vgl. Erfüllbarkeitsäquivalenz (später)

Erfüllbarkeit, $\varphi \in SAT(FO)$:

es gibt \mathfrak{I} mit $\mathfrak{I} \models \varphi$.

Allgemeingültigkeit:

für alle \Im gilt $\Im \models \varphi$.

- Äquivalent? $\bullet \forall x \forall y \varphi(x, y) \equiv \forall y \forall x \varphi(x, y)$?
 - $\bullet \ \forall x \varphi \equiv \neg \exists x \neg \varphi ?$

Erfüllbar?

- $\forall x \exists y Rxy \land \neg \exists y \forall x Rxy$?
- $\forall x \forall y (Rxy \land \neg Ryx)$?
- $\forall x \forall y (Rxy \leftrightarrow \neg Ryx)$?

Teil 2: FO

Syntax und Semantik

FO₂

Variationen: relationale Semantik

→ Abschnitt 2.4

mit $\varphi(x_1,\ldots,x_n)\in \mathrm{FO}_n(S)$ und S-Struktur $\mathcal A$ assoziiere die *n*-stellige Relation

$$\llbracket \varphi \rrbracket^{\mathcal{A}} := \left\{ \mathbf{a} = (a_1, \dots, a_n) \in A^n \colon \mathcal{A} \models \varphi[\mathbf{a}] \right\} \subseteq A^n$$

→ relationale Algebra

Konjunktion \land — Durchschnitt \cap Korrespondenzen:

Disjunktion ∨ — Vereinigung ∪

Negation ¬ — Komplement

existenzielle Quant. \exists — Projektion

→ relationale Datenbanken, SQL

Sommer 2015

FO₂

Variationen: Spielsemantik

 \rightarrow Abschnitt 2.4

model checking Spiel für φ in Negations-Normalform (NNF)

NNF: alle Negationen nach innen; Aufbau mit nur \forall , \exists , \land , \lor (ohne \neg) aus Atomen und negierten Atomen

allgemeiner Ansatz:

zu geg. ${\mathfrak I}$ und φ Spiel zwischen zwei Spielern $\begin{array}{ll} \text{Verifizierer } \mathbf{V} & \text{will } \mathfrak{I} \models \varphi \text{ nachweisen} \\ \text{Falsifizierer } \mathbf{F} & \text{will } \mathfrak{I} \models \varphi \text{ widerlegen} \end{array}$

Spiel-Positionen: $(\psi, \mathbf{a}) \in \mathrm{SF}(\varphi) \times A^n$

Spiel-Züge/Regeln so gemacht, dass

FO₂

Teil 2: FO Syntax und Semantik

Spielsemantik – Semantik-Spiel

zu $\varphi(x_1,\ldots,x_n)\in\mathrm{FO}_n(S)$ über $\mathcal A$ in NNF mit Spielpositionen $(\psi, \mathbf{a}) \in \mathrm{SF}(\varphi) \times A^n$

Züge in Position (ψ, \mathbf{a}) , $\mathbf{a} = (a_1, \dots, a_n)$:

zieht nach einem $(\psi_0, \mathbf{a}[x_i \mapsto a_i'])$.

Spiel-Ende in Positionen (ψ, \mathbf{a}) , ψ atomar oder negiert atomar.

Gewinner: **V** gewinnt in Endposition (ψ, \mathbf{a}) , wenn $\mathcal{A} \models \psi[\mathbf{a}]$.

F gewinnt in Endposition (ψ, \mathbf{a}) , wenn $\mathcal{A} \not\models \psi[\mathbf{a}]$.

Sommer 2015

Spielsemantik - Semantik-Spiel

Satz:

 $\mathcal{A} \models \psi[\mathbf{a}] \Leftrightarrow \mathbf{V}$ hat Gewinnstrategie in Position (ψ, \mathbf{a}) .

reduziert Auswertung auf Spielanalyse oft mit algorithmisch optimaler Komplexität

Frage: Spiel für φ , das nicht in NNF ist?

FGdl II Sommer 2015 M Otto 69/1

Teil 2: FO

Syntax und Semantik

FO 2

das Konzept der Gleichung in der Algebra Robert Recorde

Arzt und früher Popularisierer der "Algebra"

der Erfinder des Gleichheitszeichens!

FGdI II Sommer 2015 M Otto 70/1

Syntax und Semantik

FO₂

FO mit oder ohne =?

 \rightarrow Abschnitt 2.5

FO und FO≠

- Gleichheit ist Bestandteil der *Logik* in FO; anders als interpretierte Relationen $R \in S$.
- natürliche Formalisierungen brauchen oft =,
 z.B.: Injektivität, algebraische Identitäten, . . .
- dennoch möglich: Reduktion von FO auf FO[≠];
 Idee: modelliere = durch interpretierte Relation ~.

$$\hat{S} := S \cup \{\sim\}$$

Verträglichkeitsbedingungen:

 \sim Kongruenzrelation bzgl. aller $R, f \in S$

erhalte Modelle A_0 mit echter Gleichheit als \sim -Quotientien:

$$\mathcal{A}_0 = \mathcal{A}/\sim^{\mathcal{A}} = (A/\sim^{\mathcal{A}}, \dots, [c^{\mathcal{A}}]_{\sim^{\mathcal{A}}}, \dots, f^{\mathcal{A}}/\sim^{\mathcal{A}}, \dots, R^{\mathcal{A}}/\sim^{\mathcal{A}})$$
 \sim -Äguivalenzklassen als Elemente

EC4LII

Sommer 2015

M Ott

71/1

Teil 2: FO

PNF

FO 3.1

Pränexe Normalform

 \rightarrow Abschnitt 3.1

 $\varphi \in FO(S)$ in pränexer Normalform (PNF):

$$\varphi = Q_1 x_{i_1} \dots Q_k x_{i_k} \psi$$
, $Q_i \in \{ \forall, \exists \}, \ k \in \mathbb{N}, \ \psi \ \text{quantorenfrei.}$

Beispiele

$$\exists y (Exy \land \forall x (Eyx \to x = y)) \equiv \exists y \forall z (Exy \land (Eyz \to z = y))$$
$$\exists y \forall x Exy \lor \neg \exists y Exy \equiv \exists y_1 \forall y_2 \forall y_3 (Ey_2y_1 \lor \neg Exy_3)$$

Satz über PNF

Jede FO-Formel ist logisch äquivalent zu einer Formel in PNF.

Beweis durch Induktion über $\varphi \in FO(S)$.

FGdI II Sommer 2015 M Otto 72/

Substitution → Abschnitt 3.2

das semantisch korrekte Einsetzen von Termen

gesucht: für $t \in T(S)$ und $\varphi(x) \in FO(S)$,

$$\varphi' := \varphi(t/x) \in FO(S)$$
 so, dass:

$$\boxed{ \mathfrak{I} \models \varphi' \quad \Leftrightarrow \quad \mathfrak{I}[\mathsf{x} \mapsto \mathsf{t}^{\mathfrak{I}}] \models \varphi. }$$

Vorsicht! Naives Ersetzen von x durch t tut's nicht!

- beachte, dass x frei und gebunden auftreten kann.
- beachte, dass Variablen in t nicht fälschlich gebunden werden.

Methode

Induktive Definition, die intern gebundene Variablen so umbenennt, dass Konflikte vermieden werden.

Beispiel: $\varphi(x) = \forall y (Exy \land \exists x \neg Exy)$

$$\varphi(fy/x) = ?$$

FGdI II Sommer 2015 M Otto 73/

Teil 2: FO Skolemisierung FO 3.3

Thoralf Skolem

(1887 - 1963)

Logik, Modelltheorie, Mengenlehre

FGdI II Sommer 2015 M Otto 74/

Teil 2: FO Skolemisierung FO 3.3

Skolemisierung: alles universell?

→ Abschnitt 3.3

universell-pränexe Formeln: $\forall x_{i_1} \dots \forall x_{i_k} \psi$, ψ quantorenfrei

- nicht jede Formel ist logisch äquivalent zu universell-pränexer Formel, z.B. $\varphi = \forall x \exists y \ Exy$
- aber jede Formel ist *erfüllbarkeitsäquivalent* zu universell-pränexer Formel.

Idee: neue Funktionen, die *ggf.* Existenzbeispiele liefern [vgl. ∃-Züge für **V** im Semantik Spiel]

Beispiel

$$\varphi = \forall x \exists y \; \mathsf{E} x y \quad \longmapsto \quad \varphi' = \forall x \; \mathsf{E} x \mathsf{f} x \qquad \text{(für neues } f\text{)}$$

dann gilt:

(i)
$$\mathcal{A}' = (A, E^{\mathcal{A}}, \dots, f^{\mathcal{A}'}) \models \varphi' \Rightarrow \mathcal{A} = (A, E^{\mathcal{A}}, \dots) \models \varphi$$

(ii)
$$A = (A, E^A, ...) \models \varphi \implies \text{ es gibt } f^A \text{ ""uber } A, \text{ sodass}$$

$$A' = (A, E^A, ..., f^{A'}) \models \varphi'$$

FGdI II Sommer 2015 M Otto 75/1

Teil 2: FO Skolemisierung FO 3.3

Skolemnormalform

(Satz 3.6)

Satz über die Skolemnormalform

Jedes $\varphi \in FO$ ist *erfüllbarkeitsäquivalent* zu einer universell-pränexen Formel φ' (in einer erweiterten Signatur).

Man erhält φ' aus einer zu φ logisch äquivalenten Formel in PNF durch Substitution von *Skolemfunktions*termen für existentiell abquantifizierte Variablen.

Zur Erfüllbarkeitsäquivalenz gilt sogar:

- $\varphi' \models \varphi$.
- jedes Modell von φ lässt sich zu Modell von φ' erweitern.

FGdI II Sommer 2015 M Otto 76/3

Teil 2: FO Herbrand FO 3.4

Jacques Herbrand

(1908-1931)

Logiker und Algebraiker

FGdI II Sommer 2015 M Otto 77/1

Teil 2: FO Herbrand FO 3.4

Satz von Herbrand

→ Abschnitt 3.4

zur Erfüllbarkeit von universellen FO[≠]-Sätzen in Herbrand-Modellen

- S enthalte mindestens ein Konstantensymbol
- geg. $\Phi \subseteq FO_0^{\neq}(S)$: Satzmenge, universell & gleichheitsfrei

Herbrand-Struktur (Erinnerung):

die S_F -Termstruktur $\mathcal{T}_0(S)$ über $\mathcal{T}_0(S)$ (variablenfreie S-Terme)

Herbrand-Modell:

Expansion der Termstruktur $\mathcal{T}_0(S)$ zu S-Struktur,

— durch Interpretation von R (n-st.) als Teilmenge von $T_0(S)^n$ — zu einem Modell von Φ

Gleichheitsfreiheit notwendig!

FGdI II Sommer 2015 M Otto 78/1

Satz von Herbrand

(Satz 3.10)

Satz von Herbrand

Sei $\Phi \subseteq FO_0^{\neq}(S)$ Menge von *universellen, gleichheitsfreien* Sätzen; S habe mindestens ein Konstantensymbol.

Dann gilt:

$$Φ$$
 erfüllbar \Leftrightarrow es existiert ein Herbrand-Modell $\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S}) \models Φ.$

Beweis

"←": offensichtlich.

" \Rightarrow ": geeignete Interpretationen $R^{\mathcal{H}}$ aus geg. Modell $\mathcal{A} \models \Phi$.

FGdI II Sommer 2015 M Otto 79/1

Teil 2: FO SAT(FO)/SAT(AL) FO 3.5

Erfüllbarkeit: Reduktion auf AL → Abschnitt 3.5

Reduktions-Idee: $\Phi \subseteq FO(S)$ (bel. Formelmenge)

$$\left.\begin{array}{l} \text{erf.-\"{a}quiv.} \\ \Phi'\subseteq\mathrm{FO}_0(S_1) \\ \\ \text{erf.-\"{a}quiv.} \end{array}\right.$$

$$\Phi'' \subseteq \mathrm{FO}_0^{
eq}(S_2)$$
 (gleichheitsfrei) $\left. igg
ight.$ erf.-äquiv.

$$\Phi''' \subseteq \mathrm{FO}_0^{\neq}(S_3)$$
 (universell(-pränex))

 Φ erfüllbar \Leftrightarrow Φ''' erfüllbar \Leftrightarrow Φ''' in Herbrand-Modell erfüllbar

und Bedingungen an Herbrand-Modell lassen sich in AL kodieren!

FGdl II Sommer 2015 M Otto 80/3