```
Chap 4.1.
     #2.
                                                                                                  a. u=(0, a), v=(1,-3).
                                                                                                              U+U=(2,2).
                                                                                                                    20=(0,8).
                                                                                                b. u+(-u) = 0 = (1,1).
                                                                                                                                                                                £(0,0)
                                                                                              C. 0 = ko
                                                                                                                         (=-1 => -0=0=(-1,-1)
                                                                                                     u = \begin{bmatrix} a_1 & b_2 \\ C_1 & d_1 \end{bmatrix}, \quad v = \begin{bmatrix} a_2 & b_2 \\ C_2 & d_2 \end{bmatrix} \quad (\underline{v}, \underline{v} \in V).
 #8
                                                                                               axiam 1. \underline{U} + \underline{U} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ C_1 + C_2 & d_1 + d_2 \end{bmatrix}
                                                                                               Oxion 2. U+U=Y+U U+U=\begin{bmatrix} a_1+a_2 & b_1+b_2 \end{bmatrix} = \underbrace{U+U} = \begin{bmatrix} a_2+a_1 & b_2+b_1 \end{bmatrix}
\underbrace{C_1+C_2} = \underbrace{C_1+C_2} = \underbrace{C_2+C_1} = \underbrace
                                                                                                                                                            axiom 3. Ut((1+(1))=(U+1)+LL
                                                                                                                                                                                                                                                                                                                            (4+4)+6= (a, ta) ta3 (b, tb2)+b3 (C, tG) t(3 (d, tde) tds
                                                                                                  axion 45. U+(-4) = (-4)+4=0
                                                                                                                                                                                                       0 + n= n+0 = n
                                                                                                                                                                                                   0= [a,-a, b,-b,]=u+(-u)= [0 0]
                                                                                                                                                                                                   \underline{o+u} = \begin{bmatrix} o+a, & o+b_1 \\ o+C_1 & o+d_1 \end{bmatrix} = \underline{u+o} = \underline{u}
```

```
u \in V \Rightarrow t u \in V. k=1 \Rightarrow u=1 \cdot u = \begin{bmatrix} a, b, \\ C, d, \end{bmatrix}
                     axiom 6.10.
#8
                    axion 7. ((u+v)=ku+kv
                                     k(\underline{u}+\underline{v}) = \begin{bmatrix} k(a_1+a_2) & k(b_1+b_2) \\ k(a_1+a_2) & k(d_1+b_2) \end{bmatrix}
k\underline{u}+k\underline{v} = \begin{bmatrix} ka_1+ka_2 & kb_1+kb_2 \\ ka_1+ka_2 & kd_1+kd_2 \end{bmatrix}
                     axion 8. (Kanju= Eu+ann
                                        (k+aa) \underline{c} = \begin{bmatrix} (k+aa) a_1 & (k+aa) b_1 \\ (k+aa) \underline{c}_1 & (k+aa) b_1 \end{bmatrix}.
                                         Kuturu = [ Kaitura, Kbiturbi]
Kaitura, Kditurdi].
                     axiom9. (c(mu) = (km) u
                                     K[ma, mb,] = [Kana, Kanb,]
[mc, md,] = [Kana, Kanb,]
                                        ten [a, b,] = [kma, kmb,] = [kmc, kmd.].
                                      Utl EV (a_0+a_1x)+(b_0+b_1x)=(a_0+b_0)+(a_1+b_1)x
                     axiom 1.
#12
                                      U+U=U+u (a<sub>0</sub>+b<sub>0</sub>) + (a<sub>1</sub>+b<sub>1</sub>) x = (b<sub>0</sub>+a<sub>0</sub>)+(b<sub>1</sub>+a<sub>1</sub>) x
                                       Ut(UtW)=(K+K)+W let W= (Co +Cix).
                                                                 (a+(b+c))+(a+(b+c,)) = ((a+b,)+C,)+(a+b,)+C,) ×
                     axiom 4.5. U+(-4)=(-4)+4=0 6 (a+(-a))+(a+(-a)) = 0+0x
                                       \underline{0} + \underline{u} = \underline{u} + \underline{0} = \underline{u} \quad \downarrow \quad ((-\alpha_0) + \alpha_0) + ((\alpha_1) + \alpha_1) \times = 0 + 0 \times
                                                                         (0+0x)+(a_0+a_1x)=a_0+a_1x
                      Oxiom 6.10. UEV => KUEV. & let k=1.
                                                             I(a_0+a_1x)=a_0+a_1x
                                          1-4=4
                                                                     ( Kao + Kair) CV.
```

```
112.
                       k (u+u)=lku+ku
                                          (((aotbo)+(a,tb,)x).
            axiom 7.
                                          = K(aota,x)+K(both,x).
            axiow &
                       (Ktun) u = Kutun
                                         (c (au u) = (au) u
                                          (C/an(ao+a,x))= (can(ao+a,x)).
            axiom 9
                                                        = kugo + kua.x.
             f(x) = 90 + a1x+ - + anx"
#14.
             9(x) = botb, x+ ... + bn x"
             K(X)=Co+C1X+-+CnX".
                                        (a.+b.)+(a,+b.)x+ -. + (author)x" C (-x0,00)
            axian 1. ft& c (-00,00)
            axiom 2. ftg = g+f
                                       (autbo) +(a,+b,)x+...+ (autba)za.
                                        = (botao)+(b,ta.)x+ --+ (bn+an)x".
           axiom3. (f+(g+k)=f+g)+k. [ao+(bo+Co))+ (a,+(b,+Ci))x+ ...
                                                       + (ant(but Ca)) 200.
                                       = ((aotbo)+(o)+ ((a,+b,)+C,) x+ ...
                                                      + ((antbn)+Cn) xn.
            axion 7. 1c(f+9)=1cf+tg.
                                       K(a.+b.) + k(a,+b,)x+ "+ k(auth)x"
                                       = ka.+ka.x+ ... + ka. z"+ kb.+kb,x+ ... +kb.x".
           axiom 8. (ktm) = tftanf
                                       (Kta) aot (Kta) aix + ... + (Kta) anx"
                                       = Kao+ka,x+ ... + kanz"+ mao + ma,x+ ... + anax -.
           axiom 9. K(aut)=(kar)+
                                       k(man) + k(manx)+···+ k(manx)
                                       = ((car)a+((car)a, z+...+(kar)an x".
           axiouno. 1-f=f
                                       ( ( ao taix+ ··· + aux") = ao taix+ ··· + aux".
```

Chap 4.2.	
#2.	a. $y = (a_1, b_1, C_1)$, $W = (a_2, b_2, C_2)$.
	V+w= (a, +a=, b, +b=, C, +C=). or (a, +a=, (a, +C, +1) + (a+C=+1), C, +C=).
	$! = (a', b', c') = (a, ta_2, a, ta_2 + C_1 + C_2 + 1, C_1 + C_2).$
	a'tc'
	(a, tas, a, tast c, + (s+1, c, + c2)
	(a, +02, a, +02+C, +C2+2, C, +C2).
	"Nat subgross of R3
	b. x = (a, b, 0), w=(a2,b2,0).
	$\underline{V} + \underline{w} = (\alpha_1 + \alpha_2, b_1 + b_2, \sigma).$
	60 =(ka., kb., ko)
	=(6a, 6b, 0)
	: Subspaces of P3.
	C. $Q = (\alpha_1, b_1, C_1), W = (\alpha_2, b_2, C_2).$
	$U+U=(a,+a_2,b,+b_2,C,+C_2)$
	$=(\alpha',b',c').$
	$\alpha_1 + b_1 = 7$, $\alpha_2 + b_2 = 7$. $\Rightarrow \alpha_1 + b_1 + \alpha_2 + b_3 = 7$
	= b'
	b'≠1
	:- Not subspaces of R3.
7	
#4.	$a, A^T = -A$
	A = [a, a, a, a, a] KA = Ka, kaz - kan
	[am. am2 align] Lam. Eam. Lam.
	let k=-1 then kA= -an -A=AT= an -A=AT=
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	L-ami ami
	: Net subspaces of Mm.

#4	b. u= 10 0 V= 4000
	010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00-70
	000/
	U+V is not investible = has not only trivial Salution.
	Not subspaces of Man.
	The thirty of your.
	C- a, b e V.S.
	$a = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $b = \begin{bmatrix} 2^2 & 0 & 0 & 0 \\ 0 & 2^2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2^4 \end{bmatrix}$
	a+b= 2+22 0 0 # 2t 0 0
	0 240
	00-94
	$\Rightarrow \alpha(a \cdot b) = \alpha c \Rightarrow \alpha c \neq c \alpha$.
	in Not subspaces of Man.
	d. Sauc as b.
	:Not subspaces of Man.
#8.	a. $f + q \Rightarrow (f + g)(x) = (f + g)(-x)$. $f + q \in (-\infty, \infty)$.
	$kf \Rightarrow kf(x) = kf(-x).$ $kf(-\infty,\infty).$
	:Subspaces of (-00,00).
	b. let $f(x) = x^n + a_0 x^{n-1} + a_1 x^{n-2} + \dots + a_{n-1}$
	g(x) = x"+ bo x"+ b, x"2 + "+b~1. \
	frg = (aotbo) x"-1+ #P".
	n=2. (degree is 2)
	Not subspaces of P.

#10. a.
$$VS = \begin{bmatrix} 0 & 0 \\ b & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$Ut0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$VS = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix}$$

a. f(x) = 200+20.x+20xx+ ...+20xx" (0625n, 026 N). #16. q(1) = 2 bo t2b, x + 2 boxt ... + 2 bnx (0 62 Eu, b2 EN). ftg(x)=2(aotbo)xot2(aitbi)x+ ... +2(autha)xa. C 5.5. kf = k200+ k.20, x+ ... + k200x". (k=1 then 2/00, is not even). in Net subspace of Peo b. f(x) = aota, zta, z+a, z+ ... + a, z" (o < i < n, I ai = 0). q(a) = b + b , ct b = 22 + ... + b , x ... (o ≤ 2 ≤ n , I b = = 0). ftg= $I\alpha_i + Jb_i = 0+0$. C S.S. $kf = kj\alpha_i = k0 = 0$. C S.S. isubspace of Poo C. f(x) = a. +a. x21 + a. x22 + ... +a. x2n g(x) = b + b, x2-1+ ... + bn x2.1. ftg = (atb.) f(a, tb.) x2-1+ ... + an x2n CS-S. kf = kao + ka, x2-1 + ... + kan x2-n CS.S. isubspace of Poo

Chap 4.3.	
#2.	[2147[a7 [d] [a7: [-1/2 3/2 1/2]] d7
	1-13 b = B b = 2-1-1 B
	$\begin{bmatrix} 2 & 1 & 4 & 7 & 7 & 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7$
	2/4/00
	1-13 0 10
	325 001
	-111-101
	-0-22 11-1 100 -1/2 3/2 7/2
	$\frac{1}{-0} \frac{1}{-1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \Rightarrow 0 \mid 0 2 -1 -1$
3	-102 -1/2 1/2 001 5/2 -1/2 -3/2.
	0/0 1-1-1
	-00-1-5/2 1/2 3/2 ·
	001 7/2-1/2-3/2
	100 -1/2 3/2 7/2.
	a. (d,p,r) = u
	$\begin{vmatrix} -11/2 & 3/2 & 9/2 \\ 2 & -1 & -1 & 1 \\ \end{vmatrix} = -1$
	2 -1 -1 / = -1
	[5/2 -1/2 -3/2] [4] [-3/2]
	:. (°/2, -1, -2/2)
	b. $(\alpha, \beta, \gamma) = \underline{U}$
	[-11/2 3/2 7/2][1] [7/2]
	2 -1 -1 -1 = 0
	$\begin{bmatrix} -11/2 & 3/2 & 7/2 & 1 & 1 & 7/2 \\ 2 & -1 & -1 & -1 & = 0 \\ \hline 5/2 & -1/2 & -3/2 & 3 & -3/2 \end{bmatrix}$
	:- (7/2,0,-3/2)

#2.
$$C. (d, \beta, \gamma) = 1/2$$
 $-1/2 \le 3/2 = 3/2$
 $2 = 1 = 1$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2 = 3/2$
 $3/2 = 3/2$

#8. 05-51 05-30 ath column can be all sero. :. Not in span. 0/0-3 1003 in span.

Span $\{p_1, p_2, p_3, p_4\} \Rightarrow \begin{cases} 1 & 1 & 2 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{cases} \quad \begin{cases} p_0 \\ p_2 \\ p_4 \end{cases}$ #10. 11/2 Po 1002 (PotP,-2P2)/2 0/0/(Po-Pi)/2 001-192 0 0 1 -1 P2. 0202 Po Pr. 0 1 0 / (Po-Pi)/2 101/ (Po+Pr)/2 1002 (PotP1-2P2)/2 - Spains Pa. $(4.12) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ #12. =) span { (1,0), (2,1) } [/2][k][/] k1+2k2=/ in the span {TA(e,), TA(e,) }. b. span? (1,1),(1,1)? k1+k2=1 2 ... : Not in the span STA (e,1), TA (e2) }.

#14.	a. cosax= cos2x-sw2x.	
	in lies in the spanif, g?	
	eres those spentings.	7 11 7
	b. Not lies in the gran f. g?	
	2. 1 oct etcs that for 1141.	
	C. live in the span 9f, 87.	
	C. Wes wat Spirit 1117 (.	
	d 12 1 1 11 or Cl 42	
	d-Not dies in the span ff. 97.	
	e. lies in the gan ff. gq.	
	e. lies in the gun figh.	
5-1		
		1 1 1 2

# 20.	$W = e^{x} e^{x} = x^{e^{x}}$
Marie III	$W = \begin{vmatrix} e^{x} & \chi e^{x} & \chi^{2}e^{x} \\ e^{x} & e^{x} + \chi e^{x} & 2\chi e^{x} + \chi^{2}e^{x} \end{vmatrix}$
	e^{x} $Je^{x}+\tau e^{x}$ $Je^{x}+4\tau e^{x}+\tau^{2}e^{x}$
	e ^t te ^t te ^t
	$= o e^{x} gxe^{x}$
	$0 2e^{x} 2e^{x} + 4xe^{x}$
	$= e^{x} (2e^{x} + 4xe^{x}) - 2e^{x} \cdot 2xe^{x} \neq 0.$
	: lineally independent.
4.1.5.	

Chap 4.5.	
#2.	$V_1 = (3, 1, -4), V_2 = (2, 5, 6), V_5 = (1, 4, 8).$
	C, V, + C2V2 + C3V3 = 0 2 SPanc R37
	$C_1 V_1 + C_2 V_2 + C_3 V_3 = 0$
	[321][c1][321]
	154 C2 154 is investible?
	-4 6 8 C3 L-4 6 8
10 TO 10	
	321
	-1-5-4
	-468
	-189
	01313
	0 ()
	1 10 → investible.
	101
-	is basis for As.
14.	1111 1000
	1-100 = 1-100 = inventible.
	00-10 00-10
	0000-1 0000-1
	-basis for R°
	- basis for the
	[04 400 1] [000 1]
	0+-1100 = 0-100 = invertible.
	0+0/0 = 0 0 16 = (MOPATHE.
	1000 (000
	: basis for Maz.
	Laying 10 was.

14 a. (4,-3,1) 110000 $\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$ $\begin{bmatrix} c \\ -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ 020 1-11 010 1/2-1/21/2 0 0 +1 -1/2 +1/2+1/2 100 1/2 1/2 -1/2 ·· (0, 2,-1). $T_A(\underline{u}) = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & -1 \\ 0 & 1 \end{bmatrix}$ #22

·· (2,-2, 0).

J).	b. 010 101
	1011111001111
	001011. 1-11 -2 = 2
	100 100 -1 -3
	-11.0 001
	1-11010
	.: (1,2,-5).