

1. Procedure summary

This procedure describes the process to sample the monitor wells at the IABR for the Biannual requirements of Discharge Permit 1785

Related Procedures

Submission of Samples for External Analyysis <Related procedure name>

procedure number> <Related procedure number>

<Additional notes>

<Additional notes>

<Additional notes>

Printed: 3/22/2022

<Related

Procedure impacts and concerns

Safety Use of proper PPE, and safe use of equipment <Additional notes>
Quality It is important that samples are collected correctly and labeled for <Additional notes>

submission so that data is preserved and can be interpreted

appropriately

Delivery Final results for external analysis are to be delivered to the New

Mexico Environmental Department

Environmental A Discharge Permit requires that three monitor wells be installed and <a d style="color: blue;"> <a d style="color: blue;">Additional notes <a d style="color: blue;"><a d style="color: blue;"><a d style="color: blue;">Additional notes <a d style="color: blue;"><a d style="color: blue;">Additional notes <a d style="color: blue;"><a d style="color: bl

sampled biannually, along with sampling of two evaporation ponds

Cost There is a risk of unnecessary additional expense if efforts are

duplicated or if samples are sent to a laboratory and not obtained

correctly

Compliance Some external analysis is conducted in support of environmental

monitoring required by the IABR Discharge Permit

Responsibilities and owners

Document OwnerManage content and distributionClark GentryProcess OwnerResponsible for content and process validationClark GentrySite ManagerResponsible for implementation and conformanceRebecca White

2. Process

2.1 Process description

New Mexico Environmental Department has issued a Discharge Permit for Sapphire Energy IABR facility.

This permit requires that three monitor wells be installed and sampled biannually. This permit also

1785
requires that two evaporation ponds, (a 6 acre, and a 1 acre) be sampled as well

2.2 Process diagram: Work Instruction

Page 1 of 3 Revision: <Revision number>

Task specific PPE

- Appropriate keys for well locks, depth sounders
- Logbook, calculator, field data sheets and sample labels
- •Sample containers, shipping containers, packing materials, Ziploc® bags

<Additional notes>

Purging and equipment

Equipment Needed

- •Generator with full tank of fuel
- •Submersible well control unit
- •Cam lock extension with hose and 1" flow meter attached
- Plastic sheeting (liner material) for dsontamination area

Field preparation

- •Gather all equipment for the sampling process
- Follow procedure for sampling wells and evaporation ponds

<Additional diagrams, figures, and pictures to explain this procedure>

2.4 Process steps

2.4.1

Preparation for sampling should include:

- 1. Review of Discharge Permit 1785 for requirements to sample the monitor wells and evaporation
- 2. Review of calculations of the water volume in the wells
- 3. Review of well volume purging
- 4. Review of QA/QC Chain of Custody for samples

2.4.2

Field Preparation:

- 1. Lay plastic sheeting (liner) around the well to be sampled to minimize contamination, and have area to work on
- 2. Remove lock on well cap, note location, time of day, and date in the site logbook.
- 3. Remove well-casing cap.
- 4. Lower depth sounder into casing in hole provided to determine the static water level.
- 5. Measure from static water level to top of casing and record in site logbook.
- 6. Calculate the volume of water in the well and volume to be purged using the calculation section of this SOP.

2.4.3

Calculations:

To calculate the water volume of a well (in gallons of water per foot of casing), utilize the following

Water volume = $p \times r^2 \times h \times (cf)$

[Equation 1]

- Where:
- p = pi (approximately 3.14)
- r = radius of monitoring well casing (feet)

Distribution No. <Distribution number optional> Uncontrolled Copy Unless Distribution Number Recorded Page 2 of 3

Revision: <Revision number>

Printed: 3/22/2022

- h = height of the water column (feet) [This may be determined by subtracting the depth to water from the total depth of the well as measured from the same reference point.]
- cf = conversion factor (gal/ft³) = 7.48 gal/ft³

If the diameter of the monitor well is known, there are a number standard conversion factors which can be used to simplify the equation above.

3. Required documents

Input documents

Discharge Permit 1785 <Input document Calculations for water volume number>

Output documents

<Output document and storage instructions> <Output document

number>

4. Document control

Revision history

R0 – Initial Release – <editor name=""></editor>	<date></date>
R1 – <editor name=""></editor>	<date></date>

Document approval

<Name> <Approval date>

Document reviewers

<Name> <Last reviewed

<Name> date>

<Last reviewed

date>

5. Risk analysis

<Risk name> <Mitigation plan> <Owner> <RPN>

Revision: <Revision number>

Printed: 3/22/2022