NSERC CREATE for BioZone Machine Learning Bootcamp

Unsupervised Learning

Clustering

The most common type of unsupervised learning

Goal: group "similar" data points together

Unsupervised because we don't label the data as we did in classification/regression: let the features speak for themselves!

Clustering galaxies, from Miller et al. (2005)

Data Preparation for Clustering

The points are colored by a clustering algorithm

Data Preparation for Clustering

Clustering workflow

From Google's Clustering lesson: https://developers.google.com/machine-learning/clustering/

Distance Metrics

The right distance metric depends on your application!

Distance of vectors $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$

• Euclidean distance
$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Manhattan distance
$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• Correlation distance
$$d(x,y) = 1 - r(x,y)$$
 $r(x,y)$ is Pearson correlation coefficient

Distance of sequences ACCTTG and TACCTG

• Hamming distance
$$\frac{\mathbf{AC}C\mathbf{T}TG}{\mathbf{TA}C\mathbf{C}TG} => 3$$

• Levenshtein distance
$$\underline{\cdot}_{ACC\underline{T}TG} => 2$$

Clustering workflow

From Google's Clustering lesson: https://developers.google.com/machine-learning/clustering/

Euclidean distance metric

K-means Clustering

Given a set of data points...

			0				
					0		
				0			
		0					
0					0		
	_						0
	0					0	

Euclidean distance metric

K-means Clustering

Select k=3 initial centers at random

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Selecting the number of clusters

FIGURE 14.8. Total within-cluster sum of squares for K-means clustering applied to the human tumor microarray data.

K-means can fail

This is a heuristic! No guarantees it'll find optimum

In practice, smarter centroid initialization solves this

Clustering workflow

From Google's Clustering lesson: https://developers.google.com/machine-learning/clustering/

Hierarchical Clustering

High-level idea: build a tree (hierarchy) of clusters

Hierarchical Clustering

Human Tumor Microarray Data

64 samples, 6830 features (gene expression levels)

Elements of Statistical Learning, Chapter 14.3.8

Dimensionality Reduction

or dealing with very high-dimensional data

Examples: Principal Component Analysis (PCA), t-SNE, ...

Powerful unsupervised learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

Useful for:

- Visualization
- Data compression for faster supervised learning
- Noise removal

Based on slide by Nina Balcan

Principal Component Analysis (PCA)

 Principal Components (PC) are orthogonal directions that capture most of the variance in the data.

PCA for Face Reconstruction

Eigenfaces, slide based on Derek Hoeim's, UIUC CS543

Image dataset

64 Principal Components

PCA for Face Reconstruction

Eigenfaces, slide based on Derek Hoeim's, UIUC CS543

Face Reconstruction using the Principal Components

PCA for Face Reconstruction

Eigenfaces, slide based on Derek Hoeim's, UIUC CS543

Face Recognition using PCA:

- 1 Given face image datasets, extract Principal Components v_1, v_2, \dots, v_4 .
- 2 Given new image, project onto PCs.
- 3 Find closest (projected) image in training dataset

[PDF] Face recognition using eigenfaces

MA Turk, AP Pentland - ... on Computer Vision and Pattern Recognition, 1991 - cin.ufpe.br We present an approach to the detection and identification of human faces and describe a working, near-real-time face recognition system which tracks a subject's head and then recognizes the person by comparing characteristics of the face to those of known ...

Final words on PCA

Advantages

- Fast to compute an optimal solution: an eigenvector problem
- No hyper-parameters to tune

Caveats

- Discards information
- Limited to linear projections

From Michael Guerzhoy's slides, UofT CSC320

t-SNE

t-Distributed Stochastic Neighbor Embedding

784 dimensions = 28x28 pixels

2 dimensions

t-SNE t-Distributed Stochastic Neighbor Embedding A selection from the 64-dimensional digits dataset

PCA

Principal Components projection of the digits (time 0.00s)

t-SNE

t-SNE embedding of the digits (time 4.60s)

Final words on t-SNE

Advantages

- Conserves local and global patterns in the data
- Handles highly non-linear data

Caveats

- Slow to compute
- Requires careful hyper-parameter tuning
- Cannot project a new point

Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Mahfouz et al. (2015)

Interactive dimensionality reduction

- https://projector.tensorflow.org/
 - You can use the "LOAD" button to upload your own data and interactively visualize the results of PCA or t-SNE, in the browser
- https://distill.pub/2016/misread-tsne/
 - t-SNE has some tricky hyper-parameters that must be tuned to the dataset you care about. This interactive study looks at how the hyperparameters behave and gives guidelines for tuning them to get the best outcomes