

General Overview of Secondary Metabolism

Primary Metabolism: Simple Sugars, Starch, Lipids, Amino Acids, Nucleotides, DNA, RNA

Primary metabolites

Secondary Metabolism Primary Metabolite Precursor Enzyme 1 Precursor X Heterologous Plant encoded Enzyme 2 Enzyme enzymes that Activity produce Precursor Y Depletes Enzyme 3 secondary X, Y or Z metabolites Precursor Z Enzyme 4

Final product (Secondary Metabolites)

General Phenylpropanoid Metabolism

FIG. 2

3/33 Sinapine in *Brassica napus* Seeds

FIG. 3

4/33
Sinapine Accumulation in
Developing Seeds of *B. napus* cv Westar

5/33 Sinapine Synthesis in *Brassica napus* Seeds incubated with 14-C Choline

FIG. 5

6/33
Sinapine Synthesis in *Brassica napus* Seeds infiltrated with 14-C Choline

FIG. 6

7/33
Location of Radiolabelled Sinapine in *B. napus* seed

FIG.7

8/33 Sinapine Content in *B. napus* Seeds

FIG. 8

9/33 Sinapine Content in *B. napus* Seeds

FIG. 9

1	ATGCACATCG	ACAACGTCGA	A AAACCTCAAC	GACCGCGAGT	TCGACTACAT
51	CATCATCGGC	GGCGGTTCCG	; ccggagcggc	AGTCGCCGCC	CGCCTGAGCG
101	AGGAGCCCAC	CGTGTCCGTG	GCGCTGGTGG	AGGCCGGCCC	GGACGACCGC
151	GGCGTTCCCG	AGGTACTGCA	GCTCGACCGC	TGGATGGAGC	TGCTGGAATC
201	CGGCTACGAC	TGGGACTACC	CGATCGAACC	GCAGGAGAAC	GGCAACTCCT
251	TCATGCGCCA	CGCCCGCGCG	AAGATCATGG	GTGGCTGCTC	CAGCCACAAC
301	TCCTGCATCG	CCTTCTGGGC	CCCGCGCGAA	GACCTGGACG	AGTGGGAGTC
351	CAAGTACGGC	GCCACCGGCT	GGAACGCTGA	GTCCGCCTGG	CCGCTGTACC
401	AGCGGCTGGA	GACCAACGAG	GACGCCGGCC	CGGACGCGCC	GCACCACGGC
451	GACTCAGGCC	CGGTGCACCT	GATGAACGTG	cccccgccg	ACCCCGCCGG
501	CGTCGCACTC	CTGGACGCCT	GCGAACAGGC	AGGCATTCCG	CGCGCGAAGT
551	TCAACACCGG	CACCACCGTG	ATCAATGGCG	CCAACTTTTT	CCAGATCACA
601	CGCCGCGCGG	ACGGCACCCG	TTCCTCCAGC	TCGGTCTCCT	ACATCCACCC
651	GATCATCGAG	CGCGGGAACT	TCACCCTGCT	GACCGGGTTG	CGCGCCCGGC
701	AACTGGTGTT	CGACGCGGAC	AAGCGCTGCA	CCGGCGTCGA	CGTTGTGGAC
751	TCGGCGTTCG	GCCGGACTCA	CCGGCTCTCC	GCGCGTTGCG	AGGTCATCCT
801	GTCCACCGGC	GCCATTGACT	CGCCTAAGCT	GCTCATGCTC	TCCGGCATCG
851	GCCCGCCGC	GCACCTCGCC	GAGCACGGCG	TCGAGGTCCT	GGTCGACTCC
901	CCCGGTGTCG	GCGAGCACCT	GCAGGACCAC	CCCGAAGGCG	TCGTCCAGTT
951	CGAGGCCAAG	CAGCAGATGG	TGCAGACTTC	GACGCAGTGG	TGGGAGATCG
1001	GCATCTTCAC	CCCCACCGAG	AACGGCCTGG	ACCGCCCGGA	CCTGATGATG
1051	CACTACGGCT	CCGTCCCGTT	CGACATGAAC	ACCCTGCGGT	ACGGCTACCC
1101	CACCACGGAG	AACGGCTTCA	GCCTCACGCC	GAACGTCACG	CACGCCCGCT
1151	CCCGCGGCAC	CGTCCGGCTG	CGCAGCCGCG	ACTTCCGCGA	CAAGCCCGCC
1201	GTCGACCCGC	GGTACTTCAC	TGATCCGGAG	GGCCACGACA	TGCGCGTCAT
1251	GGTGGCCGGC	ATCCGCAAGG	CCCGTGAAAT	CGCCGCCCAG	CCTGCCATGG
1301	CCGAATGGAC	CGGCCGCGAG	CTCTCGCCCG	GCACCGAGGC	GCAGACCGAC

FIG. 10A

1351	GAGGAACTGC	AGGACTACAT	CCGCAAGACG	CACAACACCG	TTTACCACCC
1401	CGTCGGCACC	GTCCGCATGG	GACCAGCCGA	CGACGACATG	TCGCCGCTCG
1451	ACCCCGAGCT	GCGGGTGAAG	GGCGTGACCG	GCCTGCGCGT	CGCCGATGCC
1501	TCTGTCATGC	CTGAACACGT	CACGGTCAAT	CCCAACATCA	CCGTCATGAT
1551	GATCGGCGAA	CCCTCCCCC	ACCTCATCCG	CGCCAGCCGG	ACCGGCGAAA
1601	CAACGACGGC	GGAGGCGGAG	CTCAGCGCGT	CCCTCGCCTG	A

FIG. 10B

Predicted amino acid sequence of choline oxidase open frame.

1 MHIDNVENLN DREFDYIIIG GGSAGAAVAA RLSEEPTVSV ALVEAGPDDR
51 GVPEVLQLDR WMELLESGYD WDYPIEPQEN GNSFMRHARA KIMGGCSSHN
101 SCIAFWAPRE DLDEWESKYG ATGWNAESAW PLYQRLETNE DAGPDAPHHG
151 DSGPVHLMNV PPADPAGVAL LDACEQAGIP RAKFNTGTTV INGANFFQIT
201 RRADGTRSSS SVSYIHPIIE RGNFTLLTGL RARQLVFDAD KRCTGVDVVD
251 SAFGRTHRLS ARCEVILSTG AIDSPKLLML SGIGPAAHLA EHGVEVLVDS
301 PGVGEHLQDH PEGVVQFEAK QQMVQTSTQW WEIGIFTPTE NGLDRPDLMM
351 HYGSVPFDMN TLRYGYPTTE NGFSLTPNVT HARSRGTVRL RSRDFRDKPA
401 VDPRYFTDPE GHDMRVMVAG IRKAREIAAQ PAMAEWTGRE LSPGTEAQTD
451 EELQDYIRKT HNTVYHPVGT VRMGPADDDM SPLDPELRVK GVTGLRVADA
501 SVMPEHVTVN PNITVMMIGE RCADLIRASR TGETTTAEAE LSASLA*

FIG. 12

14/33
Sinapine Content of Transgenic
Brassica napus Seeds

Pools of segregants from independent lines

FIG. 13

FIG. 14

Reduction of Sinapine in Cox and Cox/BaDH lines

Plant	Number	Plant	Sinapine	Sinapine
line	of	Genotype	Absorbance	Levels
	plants		Units	(Control =
	analyzed			100%)
2026 X	15	Cox + Badh 13,878	13,878	13.6%
1534		ī		
2013	23	Cox	19,874	19.5%
1994	26	Cox	23,344	22.9%
2026	27	control	101,856	100%

Total Soluble Phenolic Content in Transgenic Lines

Soluble Phenolic Levels (Control = 100%)	69.0%	78.0%	77.3%	100%
Soluble Phenolic Absorbance Units	103,828	98,222	97,370	125,882
Plant Genotype	Cox + Badh 103,828	Cox	Cox	control
Number of plants analyzed	15	23	26	27
Plant line	2026 X 1534	2013	1994	2026

.

1	ATGGACCAAT	TCGTGGGTCT	CCACATGATC	TACACATACG	AGAACGGTTG
51	GGAGTACGAA	ATCTACATCA	AGAACGACCA	CACAATCGAC	TACCGTATCC
101	ACAGTGGTAT	GGTGGGTGGT	AGGTGGGTGA	GGGACCAAGA	GGTGAACATC
151	GTGAAGCTCA	CAAAGGGTGT	GTACAAGGTG	AGCTGGACAG	AGCCAACAGG
201	TACAGACGTG	AGCCTCAACT	TCATGCCAGA	GGAGAAGAGG	ATGCACGGTG
251	TGATCTTCTT	CCCAAAGTGG	GTGCACGAGA	GGCCAGACAT	CACAGTGTGC
301	TACCAAAACG	ACTACATCGA	CCTCATGAAG	GAGAGCAGGG	AGAAGTACGA
351	GACATACCCA	AAGTACGTGG	TGCCAGAGTT	CGCTGACATC	ACATACATCC
401	ACCACGCTGG	AGTGAACGAC	GAGACAATCA	TCGCTGAgGC	TCCATACGAg
451	GGTATGACAG	ACGAGATCAG	GGCTGGTAqG	AAG	

- 1 MDQFVGLHMI YTYENGWEYE IYIKNDHTID YRIHSGMVGG RWVRDQEVNI
- 51 VKLTKGVYKV SWTEPTGTDV SLNFMPEEKR MHGVIFFPKW VHERPDITVC
- 101 YQNDYIDLMK ESREKYETYP KYVVPEFADI TYIHHAGVND ETIIAEAPYE
- 151 GMTDEIRAGR K

The state of the s

FIG. 19

FIG. 20

Days after pollination

FIG. 22

Days after pollination

FIG. 23

-		AAAAAAAAATTTTACTTCTCTGTTTTACCAAAAAGAGAAAAAAAA
cipimtla imtsp		CAATGGCAACTACACACAACCAAAAACCCTAGACAAAGATGAACAATTAGCTGGTTTGGC
cipimtla imtsp		AGTGACATTAGCAAATGCAGCTGCTTTTCCAATGATCCTGAAATCAGCCTTTGAGCTAAA
cipimtla imtsp		AATCCTTGACATATTCTCAAAAGCAGGGGAAGGCGTGTTTGTATCGACTTCTGAGATCGC
cipimtla imtsp		TAGCCAAATCGGGGCAAAGAACCCTAATGCCCCGGTGTTGTTGGACCGGATGCTCCGGCT
cipimtla imtsp		CCTGGCTAGCCACTCTGTGTTAACATGCAAGCTCCAAAAGGGTGAGGGTGGTTCTCAAAG
cipimtla imtsp		GGTGTATGGTCCAGCTCCCCTTTGCAACTATCTTGCTAGTAATGATGGTCAAGGCTCTCT
cipimtla imtsp		TGGCCCTTTGCTTTTTGCATCATGACAAGGTCATGATGGAGAGTTGGTTTCACTTGAA
cipimtla imtsp		TGATTACATACTAGAAGGAGGTGTTCCATTCAAGCGCGCTCATGGGATGATCCAATTCGA
cipimtla imtsp		CTACACTGGGACTGATGAAAGGTTCAATCATGTGTTCAACCAAGGGATGGCACACCACAC
cipimtla imtsp		TATCCTGGTCATGAAGAAGCTCCTTGACAACTACAATGGGTTTAATGATGTCAAGGTCCT
cipimtla imtsp		AGTTGATGTGGGTGGTAACATTGGTGTCAATGTGAGCATGATCGTCGCTAAGCATACTCA
cipimtla imtsp		CATTAAGGGCATCAACTATGACTTGCCTCATGTCATTGCTGATGCTCCTTCTTACCCCGG
cipimtla imtsp		TGTGGAGCATGTTGGTGGTAACATGTTTGAGAGCATACCACAAGCAGATGCCATTTTCAT
cipimtla imtsp		GAAGTGGGTGTTGCATGATTGGAGCGACGACCATTGCGTGAAGATACTCAACAAGTGCTA
cipimtla imtsp	:	TGAGAGCCTGGCAAAGGGAGGGAAGATCATCCTTGTGGAATCGCTTATACCAGTAATCCC
cipimtla imtsp	:	AGAAGACAACCTCGAATCACACATGGTGTTTAGCCTTGATTGCCACACTTTGGTGCACAA

FIG. 24 (continued)

The second entering counts, compared to the second entering e

FIG. 25

FIG. 26

PCR analysis of transgenic plants containing the IMT gene

The first form where were some every series of the first fir

M=molecular marker; 1= control plant; 2-22=transgenic plants

Figure 27

Northern blot analysis of 35S-IMT transgenic plants

Transgenic plant No.

FIG. 29

10. See Littory there have see the state of the see that the see that

Reduction of Phytic Acid in transgenic Plants

in F1, F2 & F3 seeds from Phytic Acid reduction plants containing pSIMT Percent

_						1			I	Τ	
Dercent)	Phytic	Acid	Reduction	in F3	seeds	-36	-32	-34		67-
Dorront	ret celle	Phytic	Acid	Reduction	in F2	seeds	-26	-24	-30		-29
+ 2 2 2 2 2 4	Percent	Phytic	Acid	Reduction	in F1	seeds	-10.5	-3.7	7 0	0.0-	-5.7
	Coby		inserted)	-	4	~) [-4	۲
10.	Transdenic	Dlant	Mumber	Namoci			3	5	0		17

(a negative percent (-) means a reduction in phytic acid relative to non-transformed plants.)

in F1 & F2 seeds from plants Percent Phytic Acid reduction containing pNIMT

Reduction of Phytic Acid in transgenic Plants

there is the section where we were some section that the section and the secti

							,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Percent Phytic Acid	Reduction in	F2 seeds	-37	-44.81	-39	-24	-38	-43	-37	-31.54
Percent phytic Acid	Reduction in	F1 seeds	+24.31	-6.99	-1.2	-5.36	-1.5	-7.38	-7.78	+17.76
Copy number	or inserted	ָ בוני בוני בוני		n d.	2		7	7	,	
Transgenic	Plant Number		נ	0 1		1.5	13	10	1.5	N

(a negative percent (-) means a reduction in phytic acid relative to non-transformed plants.)