

Chinaunix首页 | 论坛 | 问答 | 博客

登录 | 注册

博文 ▼

CU博客频道6月技术图书有奖试读活动

Tekkaman Ninja

Linux我的梦想,我的未来! 本博客的原创文章的内容会不定期更新或修正错误!转载文章都会注明出处,若有侵权,请即时同我联系,原创文章版权所有!如需转载,请注明出处: tekkamanninja.blog.chinaunix.net,谢谢合作!!!拒绝一切广告性质的评论,一经先

首页 | 博文目录 | 关于我

tekkamanninj

博客访问: 75909 博文数量. 263 博客积分: 15936 博客等级: 上将 技术积分: 13951 用户组: 普通用户 注册时间: 2007-03-27 11:22

> 加关注 短消息

加好友 论坛

Fedora-ARM

文章分类

全部博文 (263)

Red Hat (2)

代码管理(6)

感悟(3)

Linux调试技术(2)

MaxWit (1)

Linux设备驱动程(41)

Android (20)

neo freerunner (2)

计算机硬件技术((9)

网络 (WLAN or LA (8)

励志 (7)

ARM汇编语言(1)

Linux操作系统的(15)

Linux内核研究 (38)

ARM-Linux应用程(19)

建立根文件系统(4)

Linux内核移植(14)

Bootloader (45)

建立ARM-Linux交(7)

未分配的博文(19)

文章存档

2014年(1)

Linux设备驱动程序学习(4)-高级字符驱动程序操作「(1)ioctl and llseek 1 2007-10-31 15:16:39

分类: LINUX

Linux设备驱动程序学习(4)

-高级字符驱动程序操作「(1) ioctl and llseek]

今天进入《Linux设备驱动程序(第3版)》第六章高级字符驱动程序操作的学习。

一、ioctl

大部分设备除了读写能力,还可进行超出简单的数据传输之外的操作,所以设备驱动也必须具备进行各种 硬件控制操作的能力. 这些操作常常通过 ioctl 方法来支持,它有和用户空间版本不同的原型:

```
int (*ioctl) (struct inode *inode, struct file *filp,
              unsigned int cmd, unsigned long arg);
```

需要注意的是:不管可选的参数arg是否由用户给定为一个整数或一个指针,它都以一个unsigned long的 形式传递。如果调用程序不传递arg参数,被驱动收到的 arg 值是未定义的。因为在arg参数上的类型检 查被关闭了, 所以若一个非法参数传递给 ioct1, 编译器是无法报警的, 且任何关联的错误难以查找.

选择ioctl命令

为了防止向错误的设备使用正确的命令,命令号应该在系统范围内唯一。为方便程序员创建唯一的 ioctl 命令代号, 每个命令号被划分为多个位字段。要按 Linux 内核的约定方法为驱动选择 ioctl 的命令号, 应该首先看看 include/asm/ioctl.h 和 Documentation/ioctl-number.txt。 要使用的位字段符号定义 在 linux/ioctl.h>:

type(幻数): 8 位宽(_IOC_TYPEBITS),参考ioctl-number.txt选择一个数,并在整个驱动中使用它。 number (序数): 顺序编号, 8 位宽(_IOC_NRBITS)。

direction (数据传送的方向): 可能的值是 IOC NONE(没有数据传输)、 IOC READ、 IOC WRITE和 _IOC_READ | _IOC_WRITE (双向传输数据)。该字段是一个位掩码 (两位), 因此可使用 AND 操作来抽取 _IOC_READ 和 _IOC_WRITE。

size (数据的大小): 宽度与体系结构有关, ARM为14位. 可在宏_IOC_SIZEBITS 中找到特定体系的值. ux/ioctl.h> 中包含的 <asm/ioctl.h>定义了一些构造命令编号的宏:

IO(type, nr)/*没有参数的命令*/

IOR(type, nr, datatype)/*从驱动中读数据*/

_IOW(type, nr, datatype)/*写数据*/

IOWR(type, nr, datatype)/*双向传送*/

/*type 和 number 成员作为参数被传递, 并且 size 成员通过应用 sizeof 到 datatype 参数而 得到*/

这个头文件还定义了用来解开这个字段的宏:

IOC DIR(nr)

_IOC_TYPE(nr)

_IOC_NR(nr)

_IOC_SIZE(nr)

具体的使用方法在实验中展示。

返回值

POSIX 标准规定: 如果使用了不合适的 ioctl 命令号,应当返回-ENOTTY 。这个错误码被 C 库解释 为"不合适的设备 ioctl。然而,它返回-EINVAL仍是相当普遍的。

- 2013年(3)
- 2012年 (61)
- 2011年 (66)
- 2010年(27)
- 2009年 (30)
- 2008年 (23)
- 2007年 (52)

我的朋友

wkm81018

van19900

wilfred_

erain 30

hushup

推荐博文

- linux 3. x的 通用时钟架构 ...
- · SCN的相关解析
- Flash驱动学习
- 浅谈nagios之state type和 no...
- DB2 (Linux 64位) 安装教程...
- insert语句造成latch:library...
- 2014.06.13 网络公开课《让我...
- MvSQL Slave异常关机的处理 (...
- · 巧用shell脚本分析数据库用户...
- 查询linux, HP-UX的cpu信息...

热词专题

- ·linux系统权限修复——学生误...
- · Modbus协议使用
- linux
- · busybox原理
- · php环境搭建教程

预定义命令

有一些ioctl命令是由内核识别的,当这些命令用于自己的设备时,他们会在我们自己的文件操作被调用 之前被解码. 因此, 如果你选择一个ioctl命令编号和系统预定义的相同时, 你永远不会看到该命令的请 求,而且因为ioctl号之间的冲突,应用程序的行为将无法预测。预定义命令分为3类:

- (1) 用于任何文件(常规,设备,FIFO和socket)的命令
- (2) 只用于常规文件的命令
- (3) 特定于文件系统类型的命令

下列 ioctl 命令是预定义给任何文件,包括设备特定文件:

FIOCLEX: 设置 close-on-exec 标志(File IOctl Close on EXec)。

FIONCLEX: 清除 close-no-exec 标志(File IOctl Not CLose on EXec)。

FIOQSIZE: 这个命令返回一个文件或者目录的大小; 当用作一个设备文件, 但是, 它返回一个 ENOTTY 错误。

FIONBIO: "File IOctl Non-Blocking I/O"(在"阻塞和非阻塞操作"一节中描述)。

使用ioctl参数

在使用ioctl的可选arg参数时,如果传递的是一个整数,它可以直接使用。如果是一个指针,,就必须小 心。当用一个指针引用用户空间,我们必须确保用户地址是有效的,其校验(不传送数据)由函数 access ok 实现, 定义在 <asm/uaccess.h>:

int access ok(int type, const void *addr, unsigned long size);

第一个参数应当是 VERIFY_READ(读)或VERIFY_WRITE(读写); addr 参数为用户空间地址, size 为字 节数,可使用sizeof()。access ok 返回一个布尔值: 1 是成功(存取没问题)和 0 是失败(存取有问 题)。如果它返回假,驱动应当返回 -EFAULT 给调用者。

注意:首先, access_ok不做校验内存存取的完整工作;它只检查内存引用是否在这个进程有合理权限的 内存范围中,且确保这个地址不指向内核空间内存。其次,大部分驱动代码不需要真正调用 access_ok, 而直接使用put_user(datum, ptr)和get_user(local, ptr),它们带有校验的功能,确保进程能够写入给 定的内存地址,成功时返回 0,并且在错误时返回 -EFAULT.。

put_user(datum, ptr)

__put_user(datum, ptr)

get_user(local, ptr)

__get_user(local, ptr)

这些宏它们相对copy to user 和copy from user快,并且这些宏已被编写来允许传递任何类型的指针, 只要它是一个用户空间地址. 传送的数据大小依赖 prt 参数的类型, 并且在编译时使用 sizeof 和 typeof 等编译器内建宏确定。他们只传送1、2、4或8 个字节。如果使用以上函数来传送一个大小不适合 的值,结果常常是一个来自编译器的奇怪消息,如"coversion to non-scalar type requested". 在这些 情况中,必须使用 copy_to_user 或者 copy_from_user。

__put_user和__get_user 进行更少的检查(不调用 access_ok),但是仍然能够失败如果被指向的内存对 用户是不可写的, 所以他们应只用在内存区已经用 access_ok 检查过的时候。作为通用的规则: 当实现 一个 read 方法时,调用 __put_user 来节省几个周期,或者当你拷贝几个项时,因此,在第一次数据传 送之前调用 access_ok 一次。

权能与受限操作

Linux 内核提供了一个更加灵活的系统, 称为权能(capability)。内核专为许可管理上使用权能并导出 了两个系统调用 capget 和 capset,这样可以从用户空间管理权能,其定义在〈linux/capability.h〉 中。对设备驱动编写者有意义的权能如下:

CAP_DAC_OVERRIDE /*越过在文件和目录上的访问限制(数据访问控制或 DAC)的能力。*/

CAP_NET_ADMIN /*进行网络管理任务的能力,包括那些能够影响网络接口的任务*/

CAP SYS MODULE /*加载或去除内核模块的能力*/

CAP_SYS_RAWIO /*进行 "raw" (裸) I/O 操作的能力. 例子包括存取设备端口或者直接和 USB 设 备通讯*/

CAP_SYS_ADMIN /*截获的能力, 提供对许多系统管理操作的途径*/

```
| CAP_SYS_TTY_CONFIG /*执行 tty 配置任务的能力*/
```

在进行一个特权操作之前,一个设备驱动应当检查调用进程有合适的能力, 检查是通过 capable 函数来进行的(定义在〈linux/sched.h〉)范例如下:

```
if (! capable (CAP_SYS_ADMIN))
  return -EPERM;
```

二、定位设备(llseek实现)

llseek是修改文件中的当前读写位置的系统调用。内核中的缺省的实现进行移位通过修改 filp->f_pos, 这是文件中的当前读写位置。对于 lseek 系统调用要正确工作,读和写方法必须通过更新它们收到的偏移量来配合。

如果设备是不允许移位的,你不能只制止声明 llseek 操作,因为缺省的方法允许移位。应当在你的 open 方法中,通过调用 nonseekable open 通知内核你的设备不支持 llseek:

```
int nonseekable_open(struct inode *inode; struct file *filp);
```

完整起见, 你也应该在你的 file_operations 结构中设置 llseek 方法到一个特殊的帮助函数 no llseek (定义在 linux/fs.h>)。 具体的应用在试验程序中学习.

三、ioctl和llseek实验。

模块程序链接: ioctl and llseek

模块测试程序链接: ioctl_and_llseek-test

ARM9实验板的实验现象是:

```
[Tekkaman2440@SBC2440V4]#cd /lib/modules/
[Tekkaman2440@SBC2440V4]#insmod scull.ko scull nr devs=1
[Tekkaman2440@SBC2440V4]#cd /tmp/
[Tekkaman2440@SBC2440V4]#./scull_test2
open scull!
SCULL_IOCSQUANTUM-SCULL_IOCQQUANTUM : scull_quantum=10
SCULL_IOCTQUANTUM-SCULL_IOCGQUANTUM : scull_quantum=6
SCULL_IOCXQUANTUM : scull_quantum=6 --> 10
SCULL_IOCHQUANTUM : scull_quantum=10 --> 6
SCULL IOCSQSET-SCULL IOCQQSET : scull qset=2
SCULL_IOCTQSET-SCULL_IOCGQSET : scull_qset=4
SCULL_IOCXQSET : scull_qset=4 --> 2
SCULL_IOCHQSET : scull_qset=2 \longrightarrow 4
before reset : scull_quantum=6 scull_qset=4
close scull!
reopen scull!
reopen : scull_quantum=6 scull_qset=4
write code=6 i=20
write code=6 i=14
write code=6 i=8
write code=2
lseek scull SEEK SET-->0!
read code=6 i=20
read code=6 i=14
read code=6 i=8
read code=2
[0]=0 [1]=1 [2]=2 [3]=3 [4]=4
[5]=5 [6]=6 [7]=7 [8]=8 [9]=9
[10]=10 [11]=11 [12]=12 [13]=13 [14]=14
[15]=15 [16]=16 [17]=17 [18]=18 [19]=19
SCULL IOCRESET
after reset : scull_quantum=4000 scull_qset=1000
close scull!
reopen scull!
write code=20
lseek scull SEEK_CUR-10-->10!
read code=10
```

```
[0]=10 [1]=11 [2]=12 [3]=13 [4]=14
[5]=15 [6]=16 [7]=17 [8]=18 [9]=19
lseek scull SEEK END-20-->0!
read code=20
[0]=0 [1]=1 [2]=2 [3]=3 [4]=4
[5]=5 [6]=6 [7]=7 [8]=8 [9]=9
[10]=10 [11]=11 [12]=12 [13]=13 [14]=14
[15]=15 [16]=16 [17]=17 [18]=18 [19]=19
close scull!
[Tekkaman2440@SBC2440V4]#cat /proc/scullseq
Device 0: qset 1000, q 4000, sz 20
 item at c3dd3d74, qset at c3f54000
       0: c3e71000
[Tekkaman2440@SBC2440V4]#
```

阅读(8801) | 评论(2) | 转发(37) |

Linux设备驱动程序学习...

上一篇: 移植Linux2.6.22.2到博创2410-S(s3c2410A)

下一篇: [转载]中国最致命的薄弱环节! (一个机械类毕业生的心声)

相关热门文章

移植 ushare 到开发板 Linux设备驱动程序学习(1)-... 【ROOTFS搭建】busybox的httpd... 系统提供的库函数存在内存泄漏... Linux设备驱动程序学习(2)-... xmanager 2.0 for linux配置 linux虚拟机 求教 Linux设备驱动程序学习(3)-... 什么是shell 初学UNIX环境高级编程的,关于... Linux设备驱动程序学习(4)-... linux socket的bug?? chinaunix博客什么时候可以设...

linux 常见服务端口

给主人留下些什么吧! ~~

kaikai1013 2012-07-13 19:11:02

仁兄,我用linux-3.2内核实验你的程序时,发现了以下错误,明明应用程序和驱动用的一样的CMD并且SCULL_IOC_MAGIC也一样,但是在驱动ioctl判断时却给出了"_IOC_TYPE(cmd)!= SCULL_IOC_MAGIC"

回复 | 举报

0

2011-08-03 00:45:24

如果调用程序不传递arg参数,被驱动收到的 arg 值是未定义的? 貌似是不传递cmd参数

回复 | 举报

评论热议

请登录后评论。 登录 注册

关于我们 | 关于IT168 | 联系方式 | 广告合作 | 法律声明 | 免费注册

Copyright 2001-2010 ChinaUnix.net All Rights Reserved 北京皓辰网域网络信息技术有限公司. 版权所有

感谢所有关心和支持过ChinaUnix的朋友们 京ICP证041476号 京ICP证060528号