Informe N°10: Laboratorio de Máquinas: Curvas características de una bomba centrífuga.

Leonor Villalobos Burgos ¹

¹Escuela de Ingeniería Mecánica

Pontificia Universidad Católica de Valparaíso

cristobal.galleguillos@pucv.cl

10 de diciembre de 2020

1. Objetivos

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

2. Trabajo de laboratorio

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor. Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho.

A continuación, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax % presión de aspiración, en [%].
- pdx % presión de descarga, en [%].
- Δhx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- T temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente. El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación. Terminado lo anterior, se procede de igual manera para otros puntos de curva convenientemente seleccionados.

Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3. Informe

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

3.1. Tabla de valores medidos

Valores medidos a 2900 RPM para el ensayo original y los puntos 1, 2 y 3, respectivamente:

		Med	lida n = 2900	rpm	<i>a</i>	
nx	pax	pdx	∆hx	Fx	Т	Patm
[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]
2899	91,8	5,6	140	1,19	18	757,1
2899	93,8	10,2	128	1,27	18	757,1
2898	96,3	14,6	115	1,34	18	757,1
2899	98,6	19,4	101	1,42	18	757,1
2898	100,8	24	87	1,48	18	757,1
2897	103,2	28,5	74	1,53	18	757,1
2899	104,8	32,2	63	1,53	18	757,1
2896	107,3	37,7	50	1,57	18	757,1
2897	109,7	42,2	36	1,53	18	757,1
2898	112,2	46,5	22	1,45	18	757,1
2899	115,2	50,3	9	1,21	19	757,1
2900	121,1	54,3	0	0,82	19	757,1

Figura 1: Tabla original del ensayo de la bomba

		1° me	edida n = 290	00 rpm		
nx	pax	pdx	∆hx	Fx	Т	Patm
[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]
2908	97,4	17,6	105	1,4	16	757,1
2912	79,5	12,8	105	1,4	16	757,1
2912	63	8,6	105	1,4	16	757,1
2913	53,5	5,2	105	1,38	16	757,1
2916	50,4	5	98	1,35	16	757,1
2917	39,4	4,9	89	1,4	16,5	757,1
2916	36,2	4,7	79	1,4	17	757,1

Figura 2: Tabla del punto 1

	2° medida n = 2900 rpm											
nx	pax	pdx	∆hx	Fx	Т	Patm						
[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]						
2917	102,3	27,8	78	1,52	17	757,1						
2917	74	20,5	78	1,52	17	757,1						
2917	48,4	10,6	78	1,48	17	757,1						
2917	37,7	4,7	78	1,41	17,5	757,1						
2915	35,9	4,6	73	1,4	17,5	757,1						
2917	35,8	4,7	69	1,38	18	757,1						
2916	36,1	4,4	64	1,35	18	757,1						

Figura 3: Tabla del punto 2

	3° medida n = 2900 rpm											
nx	nx pax dax \(\triangle hx \) Fx T											
[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]						
2916	109,8	43,8	35	1,49	18	757,1						
2917	86,1	36,8	35	1,55	18	757,1						
2918	26,8	4	35	1,28	18	757,1						
2918	27,8	3,7	34	1,25	18,5	757,1						
2917	29,3	3,6	31	1,2	18,5	757,1						

Figura 4: Tabla del punto 3

3.2. Fórmulas

Velocidad:

$$V = \frac{4 \cdot Q}{3600 \cdot \pi \cdot D_A^2} \left[\frac{m}{s} \right] \tag{1}$$

Donde: DA = 0.1023 [m]

Columna neta de succión positiva disponible, CNSPD:

$$CNSPD = pax + \frac{13,54 \cdot P_{atm}}{1000} + \frac{V^2}{2 \cdot g} - Pv[m_{ca}]$$
 (2)

Donde: Pv = Presión de vapor del líquido bombeado $[m_{ca}]$

Columna neta de succión positiva requerida ,CNSPR:

$$CNSPR = CNSPD_{CRITICA} (3)$$

3.3. Tabla de valores calculados

		3	73	3	Medic	la n = 2900	[RPM]					100
Q_x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
95,04	96,71197	-0,935	2,405	3,34	3,45855	2,537335	2,673617	0,92912	34,75142	3,26841	9,57879	9,57879
95,04	96,71197	-0,735	4,245	4,98	5,15676	2,707912	2,853356	1,385335	48,55105	3,26841	9,77879	9,57879
95,04	96,74534	-0,485	6,005	6,49	6,724995	2,856182	3,012706	1,807255	59,98778	3,269538	10,02917	9,57879
95,04	96,71197	-0,255	7,925	8,18	8,470341	3,027745	3,190367	2,275509	71,32438	3,26841	10,25879	9,57879
95,04	96,74534	-0,035	9,765	9,8	10,15485	3,154589	3,327466	2,728983	82,01386	3,269538	10,47917	9,57879
95,04	96,77874	0,205	11,565	11,36	11,77946	3,260038	3,442256	3,16667	91,99403	3,270667	10,71954	9,57879
95,04	96,71197	0,365	13,045	12,68	13,13006	3,262288	3,437508	3,527318	102,6126	3,26841	10,87879	9,57879
93,24	94,97859	0,615	15,245	14,63	15,18068	3,344113	3,534689	4,00511	113,3087	3,20983	11,10944	9,57879
90,36	92,01312	0,855	17,045	16,19	16,7878	3,260038	3,442256	4,290828	124,6516	3,109611	11,31715	9,57879
88,2	89,78261	1,105	18,765	17,66	18,29945	3,090645	3,260018	4,563811	139,9935	3,034231	11,54354	9,57879
86,4	87,91997	1,405	20,285	18,88	19,55013	2,57998	2,718552	4,774574	175,6293	2,971282	11,82426	9,57879
84,24	85,69241	1,995	21,885	19,89	20,58177	1,749019	1,841054	4,899172	266,1069	2,896001	12,39174	9,57879

Figura 5: Tabla de valores calculados a 2900 RPM

	Medida Punto 1 n = 2900 [RPM]												
Q_x	x Q pa _x pd _x H _x H Nex Ne Nh η _{gl} V CN:										CNSPD	CNSPR	
[m3/h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
77,76	77,54608	-0,375	7,205	7,58	7,538352	2,994368	2,969723	1,623805	54,67866	2,620693	9,944306	3,774888	
77,76	77,43956	-2,165	5,285	7,45	7,388725	2,998486	2,96157	1,589388	53,66708	2,617093	8,153345	3,774888	
77,76	77,43956	-3,815	3,605	7,42	7,358972	2,998486	2,96157	1,582988	53,45097	2,617093	6,503345	3,774888	
77,76	77,41298	-4,765	2,245	7,01	6,947572	2,956666	2,917258	1,493978	51,21174	2,616195	5,553105	3,774888	
77,76	77,33333	-5,075	2,165	7,24	7,160767	2,895369	2,84797	1,538239	54,01176	2,613503	5,242388	3,774888	
75,24	74,80151	-6,175	2,125	8,3	8,203539	3,003635	2,951426	1,704547	57,75336	2,52794	4,103958	3,774888	
74,16	73,75309	-6,495	2,045	8,54	8,44654	3,002605	2,95345	1,73044	58,59045	2,492508	3,774888	3,774888	

Figura 6: Tabla de valores calculados en el punto 1

	Medida Punto 2 n = 2900 [RPM]												
Qx	Q	pa _x	pd_x	H _x	н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR	
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
77,76	77,30682	0,115	11,285	11,17	11,04018	3,261089	3,204405	2,370782	73,98509	2,612608	10,43215	3,743958	
77,76	77,30682	-2,715	8,365	11,08	10,95123	3,261089	3,204405	2,35168	73,38897	2,612608	7,602149	3,743958	
77,76	77,30682	-5,275	4,405	9,68	9,567501	3,175271	3,120079	2,054536	65,84886	2,612608	5,042149	3,743958	
77,76	77,30682	-6,345	2,045	8,39	8,292493	3,025089	2,972507	1,78074	59,90699	2,612608	3,972149	3,743958	
77,76	77,35986	-6,525	2,005	8,53	8,442439	3,001576	2,955477	1,814183	61,38376	2,6144	3,792626	3,743958	
75,24	74,80151	-6,535	2,045	8,58	8,480285	2,960726	2,909262	1,76205	60,5669	2,52794	3,743958	3,743958	
74,16	73,75309	-6,505	1,925	8,43	8,337744	2,895369	2,84797	1,708151	59,97784	2,492508	3,764888	3,743958	

Figura 7: Tabla de valores calculados en el punto 2

	Medida Punto 3 n = 2900 [RPM]												
Q_x	Q _x Q pa _x pd _x H _x H Nex Ne Nh η _{gl} V CNSPD												
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
54	53,7037	0,865	17,685	16,82	16,63592	3,19563	3,143315	2,481697	78,95157	1,814933	10,98608	2,68585	
54	53,68529	-1,505	14,885	16,39	16,19952	3,325453	3,26765	2,415766	73,92978	1,814311	8,615965	2,68585	
54	53,6669	-7,435	1,765	9,2	9,086848	2,747122	2,696597	1,354619	50,23439	1,813689	2,68585	2,68585	
52,92	52,59356	-7,335	1,645	8,98	8,869553	2,682736	2,633396	1,295782	49,20573	1,777415	2,779209	2,68585	
51,48	51,17998	-7,185	1,605	8,79	8,687844	2,574544	2,529793	1,235121	48,82301	1,729643	2,920666	2,68585	

Figura 8: Tabla de valores calculados en el punto 3

3.4. Gráficos

Trace el siguientes gráficos en una hoja completa:

3.4.1. Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos

Figura 9: Tabla de valores calculados en el punto 3

• ¿Qué significan las desviaciones que se producen?

Indica que se ha producido cavitación, lo que significa que la condensación de burbujas de vapor generadas en la succión de la bomba ocurre de repente cuando se lleva a un área de mayor presión; esto crea una altura de elevación reducida, el flujo (caudal) y el rendimiento también se reducirán.

3.4.2. Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y η_{gl} , y en la abscisa la CNSPD.

Figura 10: Gráficos calculados en el punto 1

Figura 11: Gráficos calculados en el punto 2

Figura 12: Gráficos calculados en el punto 3

• ¿Cómo determina la CNSPD crítica y qué representa?

Para determinarlo, debemos analizar las gráficas expuestas anteriormente, en estas gráficas debemos encontrar la posición del punto de corte de la altura, que es el momento en que la curva desciende significativamente y se comporta anormalmente. Analice cada gráfico para obtener la columna neta de succión positiva neta (CNSPR) requerida y su caudal correspondiente para cada lote de mediciones. El CNSPD crítico representa la presión mínima que puede existir sin cavitación en la entrada de la bomba.

3.4.3. Grafique la CNSPR en función del caudal

Figura 13: Gráficos calculados de la CNSPR

- ¿La curva obtenida tiene la forma característica?
 - Si, la curva debería ser ascendente y lo es.
- ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?
 - Si, el informe anterior puede dar fe de esta velocidad específica que se seleccionó y que con un rendimiento parecido, se obtiene un valor superior de la CNSPR. La CNSPD ¿CNSPR por la comparación hecha.

Referencias

- $[1] \ {\tt Turbom\'aquinas}, \ {\tt Ramiro} \ {\tt M\'ege} \ {\tt Thierry}, \ {\tt Pontificia} \ {\tt Universidad} \ {\tt Cat\'olica} \ {\tt de} \ {\tt Valpara\'iso}$
- [2] Laboratorio de Máquinas, Sergio Coutin V., Universidad de Chile