Instructions for Building

Version 1 11 August 2024

This document is intended to you print and build the goniostat jig for use with a Tormek.

If you have any questions, please contact me at ColvinTools@Gmail.com.

Good luck.

Rich Colvin

Table of Contents

Bill of Materials	4
3D Printing the Parts	5
Assembly of the Goniostat	7
Using the Goniostat	9
Document Version History	2

Bill of Materials

Parts required for building this are below. The item numbers are shown in the following drawings using an orange, circled number like the one to the right.

NOTE: Pictures shown in the table below are to help with identification. Sizes shown are not representative of the actual size.

Item				Source	
#	Item	Qty	Source	Part Number	Comments
101	Short-Thread Alloy Steel Shoulder Screw 6 mm Shoulder Diameter, 4 mm Shoulder Length, M5 x 0.8 mm Thread	1	McMaster-Carr	94361A517	For the tool fence
102	Black-Oxide Steel Machined Neck T-Slot Bolt M6 x 1 mm Thread, 28 mm Thread Length, 6 mm Wide Slot	1	McMaster-Carr	92770A113	For the tool fence
103	Steel Knurled Grip Knob M6 x 1mm Threaded Through Hole, 25mm Diameter Head	1	McMaster-Carr	60765K333	For the tool fence
104	Black-Oxide Steel Knurled Grip Knob M6 x 1 mm Thread 19mm Long Stud	1	McMaster-Carr	61165K73	For the tool fence when using the depth stop
105	Flat-Tip Set Screws M6 x 1 mm Thread, 5 mm Long	1	McMaster-Carr	93245A125	For the tool holders Box of 50
106	Flared-Collar Knurled-Head Thumb Screw M6 x 1.00 mm Thread Size, 14 mm Long	1	McMaster-Carr	99607A292	For the tool holders
107	Tormek SVD-110 Tool Rest	1	Tormek dealer	SVD-110	
108	Tormek WM-200 AngleMaster	1	Tormek dealer	WM-200	

3D Printing the Parts

Assembly of the Goniostat

Tools needed:

- M6-1.0 tap
- M5-0.8 tap

Tool Fence

Tap the center hole using an M6-1.0 tap.

Base Plate

Tap the center hole using an M5-0.8 tap.

Tool Holder Lock Down Screw

For item 102 (Machined Neck T-Slot Bolt), it inserts from the back. You will need to cut down the shoulder so that it does not project above the surface of the base plate. If it does, the tool fence will not sit flat against the base plate.

I used a metal lathe, but a file could also be used.

Tool Holder Lock Down Screw

Using the Goniostat

Using the goniostat jig with a typical square lathe tool.

The tool (gray) is held against the tool fence (red). The base plate (blue) slides left and right on the Tormek SVD-110.

The angle used for the tool fence can be set using a typical student's compass.

The angle for the base plate as it pertains to the grindstone is set using the WM-200.

Using the goniostat jig with a round tool.

The tool is held in the tool holder (green) using a set screw (#105). The tool holder is held against the tool fence (red). The base plate (blue) slides left and right on the Tormek SVD-110.

Using the goniostat jig with a round tool where both wings of the tool need to be equal length.

The tool is held in the tool holder using the thumb screw, part #106 (this replaces the set screw).

The tool depth stop (yellow) is attached to the tool fence using part #104. The depth of the grind is set by sliding the depth stop to the desired setting and locked down using the thumb screw.

The tool holder (green) is held against the tool fence (red). The base plate (blue) slides left and right on the Tormek SVD-110.

Document Version History

Ver	Date	Comment
1.0	11 Aug 24	Initial document

To the extent that material may appear to be infringed, I assert that such alleged infringement is permissible under fair use principles in U.S. copyright laws. If you believe material has been used in an unauthorized manner, please contact me at ColvinTools@Gmail.com.

Permission is not granted to manufacture these for sale.