

Application example: Photo OCR

Problem description and pipeline

Photo optical Character recognition

Machine Learning

The Photo OCR problem

Photo OCR pipeline

→ 1. Text detection

→ 2. Character segmentation

→ 3. Character classification

Andrew Ng

Photo OCR pipeline

Suppose you are running a sliding window detector to find text in images. Your input images are 1000x1000 pixels. You will run your sliding windows detector at two scales, 10x10 and 20x20 (i.e., you will run your classifier on lots of 10x10 patches to decide if they contain text or not; and also on lots of 20x20 patches), and you will "step" your detector by 2 pixels each time. About how many times will you end up running your classifier on a single 1000x1000 test set image?

1,000,000

250,000

100,00

500,000

✓ Correct

With a stride of 2, you will run your classifier approximately 500 times for each dimension. Since you run the classifier twice (at two scales), you will run it 2 * 500 * 500 = 500,000 times.

Application example: Photo OCR

Sliding windows

Pedestrian detection

Supervised learning for pedestrian detection

x =pixels in 82x36 image patches

Positive examples (y = 1)

000

Negative examples (y = 0)

Positive examples (y = 1)

Negative examples (y = 0)

[David Wu]

1D Sliding window for character segmentation

Photo OCR pipeline

> 1. Text detection

→ 2. Character segmentation

→ 3. Character classification

Machine Learning

Application example: Photo OCR

Getting lots of data: Artificial data synthesis

Character recognition

Artificial data synthesis for photo OCR

Real data

What is the "Aspect ratio"?

Abcdefg Abcdefg Abcdefg Abcdefg **Abcdefg**

Artificial data synthesis for photo OCR

Real data

Synthetic data

Bóp méo

Synthesizing data by introducing distortions

Synthesizing data by introducing distortions: Speech recognition

Original audio: <

Audio on bad cellphone connection

Noisy background: Crowd

Noisy background: Machinery

Synthesizing data by introducing distortions

Distortion introduced should be representation of the type of noise/distortions in the test set.

- Audio: Background noise, bad cellphone connection
- Usually does not help to add purely random/meaningless noise to your data.
- $\rightarrow x_i = \text{intensity (brightness) of pixel } i$
- $\rightarrow x_i \leftarrow x_i + \text{random noise}$

meaningless

Discussion on getting more data

- 1. Make sure you have a low bias classifier before expending the effort. (Plot learning curves). E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.
- 2. "How much work would it be to get 10x as much data as we Makes: M = (0,000) $\Rightarrow 10$ Secs/example M = 10,000Mechanical This currently have?"
 - Artificial data synthesis
 - Collect/label it yourself
 - "Crowd source" (E.g. Amazon Mechanical Turk

Discussion on getting more data

- 1. Make sure you have a low bias classifier before expending the effort. (Plot learning curves). E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.
- 2. "How much work would it be to get 10x as much data as we currently have?"
 - Artificial data synthesis
 - Collect/label it yourself
 - "Crowd source" (E.g. Amazon Mechanical Turk)

Machine Learning

Application example: Photo OCR

Ceiling analysis: What part of the pipeline to work on next

Estimating the errors due to each component (ceiling analysis)

What part of the pipeline should you spend the most time

trying to improve?

Component	Accuracy
Overall system	72%
Text detection	72% — 17°/. 89% — 1°/.
Character segmentation	90%
Character recognition	100%

Another ceiling analysis example

Face recognition from images (Artificial example)

Another ceiling analysis example

