Root systems and free algebras of modular forms

Haowu Wang (joint with Brandon Williams)

Max Planck Institute for Mathematics

International Seminar on Automorphic Forms
October 14, 2020

• General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .

- General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .
- The simplest structure: the algebra of automorphic forms is freely generated.

- General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .
- The simplest structure: the algebra of automorphic forms is freely generated.
- Difficulty: free algebra \Longrightarrow The Satake-Baily-Borel compactification of the modular variety \mathcal{D}/Γ is a weighted projective space.

- General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .
- The simplest structure: the algebra of automorphic forms is freely generated.
- Difficulty: free algebra \Longrightarrow The Satake-Baily-Borel compactification of the modular variety \mathcal{D}/Γ is a weighted projective space.
- ullet Candidates of \mathcal{D} : complex balls and symmetric domains of type IV
 - ▶ Popov-Vinberg: $M_*(\Gamma)$ is free $\Longrightarrow \Gamma$ is generated by reflections.

- General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .
- The simplest structure: the algebra of automorphic forms is freely generated.
- Difficulty: free algebra \Longrightarrow The Satake-Baily-Borel compactification of the modular variety \mathcal{D}/Γ is a weighted projective space.
- ullet Candidates of \mathcal{D} : complex balls and symmetric domains of type IV
 - ▶ Popov-Vinberg: $M_*(\Gamma)$ is free $\Longrightarrow \Gamma$ is generated by reflections.
- Famous example: Igusa (1962):

$$\textit{M}_{2*}(\mathrm{Sp}_4(\mathbb{Z})) = \mathbb{C}[\mathcal{E}_4, \mathcal{E}_6, \Phi_{10}, \Phi_{12}].$$

- General question: determining the structure of the algebras of automorphic forms for an arithmetic group Γ on a symmetric domain \mathcal{D} .
- The simplest structure: the algebra of automorphic forms is freely generated.
- Difficulty: free algebra \Longrightarrow The Satake-Baily-Borel compactification of the modular variety \mathcal{D}/Γ is a weighted projective space.
- ullet Candidates of \mathcal{D} : complex balls and symmetric domains of type IV
 - ▶ Popov-Vinberg: $M_*(\Gamma)$ is free $\Longrightarrow \Gamma$ is generated by reflections.
- Famous example: Igusa (1962):

$$\textit{M}_{2*}(\mathrm{Sp}_4(\mathbb{Z})) = \mathbb{C}[\mathcal{E}_4, \mathcal{E}_6, \Phi_{10}, \Phi_{12}].$$

• Project: to classify and construct all free algebras of modular forms

- M: even lattice of signature (2, n) with bilinear form (\cdot, \cdot) , $n \ge 3$.
- Symmetric domain of type IV: $O^+(2, n)/(SO(2) \times O(n))$ $\mathcal{D}(M) = \{ [\omega] \in \mathbb{P}(M \otimes \mathbb{C}) : (\omega, \omega) = 0, (\omega, \bar{\omega}) > 0 \}^+$
- $O^+(M) \subset O(M)$ preserving $\mathcal{D}(M)$
- $\bullet \ \widetilde{\operatorname{O}}^+(M) = \ker(\operatorname{O}^+(M) \to \operatorname{O}(M^\vee/M))$

- M: even lattice of signature (2, n) with bilinear form (\cdot, \cdot) , $n \ge 3$.
- Symmetric domain of type IV: $O^+(2, n)/(SO(2) \times O(n))$ $\mathcal{D}(M) = \{ [\omega] \in \mathbb{P}(M \otimes \mathbb{C}) : (\omega, \omega) = 0, (\omega, \bar{\omega}) > 0 \}^+$
- $O^+(M) \subset O(M)$ preserving $\mathcal{D}(M)$
- $\widetilde{\operatorname{O}}^+(M) = \ker(\operatorname{O}^+(M) \to \operatorname{O}(M^{\vee}/M))$

Definition

A modular form of weight $k \in \mathbb{N}$ for $\Gamma < \mathrm{O}^+(M)$ is a holomorphic function $F : \mathcal{D}(M)^{\bullet} \to \mathbb{C}$ on the affine cone $\mathcal{D}(M)^{\bullet}$ satisfying

- M: even lattice of signature (2, n) with bilinear form (\cdot, \cdot) , $n \ge 3$.
- Symmetric domain of type IV: $O^+(2, n)/(SO(2) \times O(n))$ $\mathcal{D}(M) = \{ [\omega] \in \mathbb{P}(M \otimes \mathbb{C}) : (\omega, \omega) = 0, (\omega, \bar{\omega}) > 0 \}^+$
- $O^+(M) \subset O(M)$ preserving $\mathcal{D}(M)$
- $\widetilde{\operatorname{O}}^+(M) = \ker(\operatorname{O}^+(M) \to \operatorname{O}(M^{\vee}/M))$

Definition

A modular form of weight $k \in \mathbb{N}$ for $\Gamma < \mathrm{O}^+(M)$ is a holomorphic function $F : \mathcal{D}(M)^{\bullet} \to \mathbb{C}$ on the affine cone $\mathcal{D}(M)^{\bullet}$ satisfying

$$F(t\mathcal{Z}) = t^{-k}F(\mathcal{Z}), \quad \forall t \in \mathbb{C}^*,$$

 $F(g\mathcal{Z}) = F(\mathcal{Z}), \quad \forall g \in \Gamma.$

- M: even lattice of signature (2, n) with bilinear form (\cdot, \cdot) , $n \ge 3$.
- Symmetric domain of type IV: $O^+(2, n)/(SO(2) \times O(n))$ $\mathcal{D}(M) = \{ [\omega] \in \mathbb{P}(M \otimes \mathbb{C}) : (\omega, \omega) = 0, (\omega, \bar{\omega}) > 0 \}^+$
- $O^+(M) \subset O(M)$ preserving $\mathcal{D}(M)$
- $\bullet \ \widetilde{\operatorname{O}}^+(M) = \ker(\operatorname{O}^+(M) \to \operatorname{O}(M^{\vee}/M))$

Definition

A modular form of weight $k \in \mathbb{N}$ for $\Gamma < \mathrm{O}^+(M)$ is a holomorphic function $F : \mathcal{D}(M)^{\bullet} \to \mathbb{C}$ on the affine cone $\mathcal{D}(M)^{\bullet}$ satisfying

$$F(t\mathcal{Z}) = t^{-k}F(\mathcal{Z}), \quad \forall t \in \mathbb{C}^*,$$

 $F(g\mathcal{Z}) = F(\mathcal{Z}), \quad \forall g \in \Gamma.$

• The graded algebra $M_*(\Gamma)$ is finitely generated over \mathbb{C} . In particular, if $M_*(\Gamma)$ is a free algebra generated by n+1 forms of weights $k_1, k_2, ..., k_{n+1}$, then $(\mathcal{D}(M)/\Gamma)^*$ is a weighted projective space with weights $(k_1, k_2, ..., k_{n+1})$.

• Igusa (1962): $M_{2*}(\operatorname{Sp}_4(\mathbb{Z}))$ is freely generated by 4 modular forms of weights 4, 6, 10, 12.

- Igusa (1962): $M_{2*}(\operatorname{Sp}_4(\mathbb{Z}))$ is freely generated by 4 modular forms of weights 4, 6, 10, 12.
- $\operatorname{Sp}_4(\mathbb{Z})$ can be realized as a certain orthogonal group of signature (2,3), i.e. $\operatorname{SO}^+(2U \oplus \langle -2 \rangle)$.

- Igusa (1962): $M_{2*}(\operatorname{Sp}_4(\mathbb{Z}))$ is freely generated by 4 modular forms of weights 4, 6, 10, 12.
- $\mathrm{Sp_4}(\mathbb{Z})$ can be realized as a certain orthogonal group of signature (2,3), i.e. $\mathrm{SO}^+(2U\oplus \langle -2\rangle)$.
- $M_*(O^+(2U \oplus \langle -2 \rangle))$ is freely generated by 4 modular forms of weights 4, 6, 10, 12.

- Igusa (1962): $M_{2*}(\operatorname{Sp}_4(\mathbb{Z}))$ is freely generated by 4 modular forms of weights 4. 6. 10. 12.
- $\mathrm{Sp_4}(\mathbb{Z})$ can be realized as a certain orthogonal group of signature (2,3), i.e. $\mathrm{SO}^+(2U\oplus \langle -2\rangle)$.
- $M_*(O^+(2U \oplus \langle -2 \rangle))$ is freely generated by 4 modular forms of weights 4, 6, 10, 12.
- $M_*(SO^+(2U \oplus \langle -2 \rangle))$ is generated by 5 modular forms of weights 4, 6, 10, 12, 35 with a single relation in weight 70.

Theorem (W.-Williams 2020)

Let R be a root system of type $A_r(1 \le r \le 7)$, $B_r(2 \le r \le 4)$, $D_r(4 \le r \le 8)$, $C_r(3 \le r \le 8)$, G_2 , F_4 , E_6 , or E_7 . We define $\Gamma_R < \operatorname{O}^+(2U \oplus L_R(-1))$ as the subgroup generated by $\operatorname{\widetilde{O}}^+(2U \oplus L_R(-1))$ and W(R). Then the graded algebra $M_*(\Gamma_R)$ is freely generated by r+3 forms of weights 4, 6, and $-k_j+12m_j$, 1 < j < r+1.

Theorem (W.-Williams 2020)

Let R be a root system of type $A_r(1 \le r \le 7)$, $B_r(2 \le r \le 4)$, $D_r(4 \le r \le 8)$, $C_r(3 \le r \le 8)$, G_2 , F_4 , E_6 , or E_7 . We define $\Gamma_R < \operatorname{O}^+(2U \oplus L_R(-1))$ as the subgroup generated by $\operatorname{O}^+(2U \oplus L_R(-1))$ and W(R). Then the graded algebra $M_*(\Gamma_R)$ is freely generated by r+3 forms of weights 4, 6, and $-k_j+12m_j$, $1 \le j \le r+1$.

Some cases were known:

• A₁: Igusa 1962

Theorem (W.-Williams 2020)

Let R be a root system of type $A_r(1 \le r \le 7)$, $B_r(2 \le r \le 4)$, $D_r(4 \le r \le 8)$, $C_r(3 \le r \le 8)$, G_2 , F_4 , E_6 , or E_7 . We define $\Gamma_R < \operatorname{O}^+(2U \oplus L_R(-1))$ as the subgroup generated by $\widetilde{\operatorname{O}}^+(2U \oplus L_R(-1))$ and W(R). Then the graded algebra $M_*(\Gamma_R)$ is freely generated by r+3 forms of weights 4, 6, and $-k_j+12m_j$, $1 \le j \le r+1$.

Some cases were known:

- A₁: Igusa 1962
- A₂, B₂: Dern-Krieg 2003, 2006
- A₃, B₃: Freitag-Hermann 2000; Klöcker 2005
- B₄, F₄: Krieg 2005, 2011

Theorem (W.-Williams 2020)

Let R be a root system of type $A_r(1 \le r \le 7)$, $B_r(2 \le r \le 4)$, $D_r(4 \le r \le 8)$, $C_r(3 \le r \le 8)$, G_2 , F_4 , E_6 , or E_7 . We define $\Gamma_R < \operatorname{O}^+(2U \oplus L_R(-1))$ as the subgroup generated by $\widetilde{\operatorname{O}}^+(2U \oplus L_R(-1))$ and W(R). Then the graded algebra $M_*(\Gamma_R)$ is freely generated by r+3 forms of weights 4, 6, and $-k_j+12m_j$, $1 \le j \le r+1$.

Some cases were known:

- *A*₁: Igusa 1962
- A₂, B₂: Dern-Krieg 2003, 2006
- A₃, B₃: Freitag-Hermann 2000; Klöcker 2005
- B₄, F₄: Krieg 2005, 2011
- C_n -tower: Vinberg 2010, 2018 (geometric method: moduli spaces of lattice polarized K3 surfaces)

Theorem (W.-Williams 2020)

Let R be a root system of type $A_r(1 \le r \le 7)$, $B_r(2 \le r \le 4)$, $D_r(4 \le r \le 8)$, $C_r(3 \le r \le 8)$, G_2 , F_4 , E_6 , or E_7 . We define $\Gamma_R < \operatorname{O}^+(2U \oplus L_R(-1))$ as the subgroup generated by $\operatorname{O}^+(2U \oplus L_R(-1))$ and W(R). Then the graded algebra $M_*(\Gamma_R)$ is freely generated by r+3 forms of weights 4, 6, and $-k_j+12m_j$, $1 \le j \le r+1$.

Some cases were known:

- *A*₁: Igusa 1962
- A₂, B₂: Dern-Krieg 2003, 2006
- A₃, B₃: Freitag-Hermann 2000; Klöcker 2005
- B₄, F₄: Krieg 2005, 2011
- C_n -tower: Vinberg 2010, 2018 (geometric method: moduli spaces of lattice polarized K3 surfaces)
- The cases $A_4, A_5, A_6, A_7, E_6, E_7$ are new.

Let F be a modular form of weight k for $\Gamma = \langle \widetilde{\operatorname{O}}^+(2U \oplus L(-1)), W \rangle$, $W < \operatorname{O}(L)$. We consider its Fourier and Fourier-Jacobi expansions on the tube domain

$$\mathcal{H}(L) = \{Z = (\tau, \mathfrak{z}, \omega) \in \mathbb{H} \times (L \otimes \mathbb{C}) \times \mathbb{H} : (\operatorname{Im} Z, \operatorname{Im} Z) > 0\}$$

at the 1-dimensional cusp determined by 2U

Let F be a modular form of weight k for $\Gamma = \langle \widetilde{\operatorname{O}}^+(2U \oplus L(-1)), W \rangle$, $W < \operatorname{O}(L)$. We consider its Fourier and Fourier-Jacobi expansions on the tube domain

$$\mathcal{H}(L) = \{Z = (\tau, \mathfrak{z}, \omega) \in \mathbb{H} \times (L \otimes \mathbb{C}) \times \mathbb{H} : (\operatorname{Im} Z, \operatorname{Im} Z) > 0\}$$

at the 1-dimensional cusp determined by 2U

$$F(\tau,\mathfrak{z},\omega)=\sum_{\substack{n,m\in\mathbb{N},\ell\in L^{\vee}\\2nm-(\ell,\ell)\geq 0}}f(n,\ell,m)q^{n}\zeta^{\ell}\xi^{m}=\sum_{m=0}^{\infty}\phi_{m}(\tau,\mathfrak{z})\xi^{m},$$

where $q = \exp(2\pi i \tau)$, $\zeta^{\ell} = \exp(2\pi i (\ell, \mathfrak{z}))$, $\xi = \exp(2\pi i \omega)$.

Let F be a modular form of weight k for $\Gamma = \langle \widetilde{\operatorname{O}}^+(2U \oplus L(-1)), W \rangle$, $W < \operatorname{O}(L)$. We consider its Fourier and Fourier-Jacobi expansions on the tube domain

$$\mathcal{H}(\mathit{L}) = \{\mathit{Z} = (\tau, \mathfrak{z}, \omega) \in \mathbb{H} \times (\mathit{L} \otimes \mathbb{C}) \times \mathbb{H} : (\operatorname{Im} \mathit{Z}, \operatorname{Im} \mathit{Z}) > 0\}$$

at the 1-dimensional cusp determined by 2U

$$F(\tau,\mathfrak{z},\omega) = \sum_{\substack{n,m\in\mathbb{N},\ell\in L^{\vee}\\2nm-(\ell,\ell)\geq 0}} f(n,\ell,m)q^{n}\zeta^{\ell}\xi^{m} = \sum_{m=0}^{\infty} \phi_{m}(\tau,\mathfrak{z})\xi^{m},$$

where $q=\exp(2\pi i\tau)$, $\zeta^\ell=\exp(2\pi i(\ell,\mathfrak{z}))$, $\xi=\exp(2\pi i\omega)$. Then $\phi_m\in J^W_{k,L,m}$, i.e. ϕ_m is a W-invariant holomorphic Jacobi form of weight k and index m associated to the lattice L.

Let F be a modular form of weight k for $\Gamma = \langle \widetilde{\operatorname{O}}^+(2U \oplus L(-1)), W \rangle$, $W < \operatorname{O}(L)$. We consider its Fourier and Fourier-Jacobi expansions on the tube domain

$$\mathcal{H}(L) = \{Z = (\tau, \mathfrak{z}, \omega) \in \mathbb{H} \times (L \otimes \mathbb{C}) \times \mathbb{H} : (\operatorname{Im} Z, \operatorname{Im} Z) > 0\}$$

at the 1-dimensional cusp determined by 2U

$$F(\tau,\mathfrak{z},\omega) = \sum_{\substack{n,m\in\mathbb{N},\ell\in L^{\vee}\\2nm-(\ell,\ell)\geq 0}} f(n,\ell,m)q^{n}\zeta^{\ell}\xi^{m} = \sum_{m=0}^{\infty} \phi_{m}(\tau,\mathfrak{z})\xi^{m},$$

where $q=\exp(2\pi i\tau)$, $\zeta^\ell=\exp(2\pi i(\ell,\mathfrak{z}))$, $\xi=\exp(2\pi i\omega)$. Then $\phi_m\in J^W_{k,L,m}$, i.e. ϕ_m is a W-invariant holomorphic Jacobi form of weight k and index m associated to the lattice L. Moreover, we have the symmetric relation

$$f(n,\ell,m) = f(m,\ell,n), \quad \forall (n,\ell,m) \in \mathbb{N} \oplus L^{\vee} \oplus \mathbb{N}.$$

- R: irreducible root system of rank r; L_R : root lattice; W(R): Weyl group;
- $\langle \cdot, \cdot \rangle$: if L_R is odd, then $\langle \cdot, \cdot \rangle := 2(\cdot, \cdot)$. L_R^* : dual lattice

- R: irreducible root system of rank r; L_R : root lattice; W(R): Weyl group;
- $\langle \cdot, \cdot \rangle$: if L_R is odd, then $\langle \cdot, \cdot \rangle := 2(\cdot, \cdot)$. L_R^* : dual lattice

Let $k \in \mathbb{Z}$, $t \in \mathbb{N}$. A holomorphic function $\varphi : \mathbb{H} \times (L_R \otimes \mathbb{C}) \to \mathbb{C}$ is called a W(R)-invariant weak Jacobi form of weight k and index t if

(1)
$$\varphi(\tau, \sigma(\mathfrak{z})) = \varphi(\tau, \mathfrak{z}), \quad \sigma \in W(R);$$

(2)
$$\varphi(\tau,\mathfrak{z}+x\tau+y)=e^{-t\pi i(\langle x,x\rangle\tau+2\langle x,\mathfrak{z}\rangle)}\varphi(\tau,\mathfrak{z}),\quad x,y\in L_R;$$

(3)
$$\varphi\left(\frac{a\tau+b}{c\tau+d},\frac{\mathfrak{z}}{c\tau+d}\right)=(c\tau+d)^k\exp\left(\frac{t}{\tau}i\frac{c\langle\mathfrak{z},\mathfrak{z}\rangle}{c\tau+d}\right)\varphi(\tau,\mathfrak{z});$$

(4)
$$\varphi(\tau,\mathfrak{z}) = \sum_{n=0}^{\infty} \sum_{\ell \in L_p^*} f(n,\ell) e^{2\pi i (n\tau + \langle \ell, \mathfrak{z} \rangle)}.$$

- R: irreducible root system of rank r; L_R : root lattice; W(R): Weyl group;
- $\langle \cdot, \cdot \rangle$: if L_R is odd, then $\langle \cdot, \cdot \rangle := 2(\cdot, \cdot)$. L_R^* : dual lattice

Let $k \in \mathbb{Z}$, $t \in \mathbb{N}$. A holomorphic function $\varphi : \mathbb{H} \times (L_R \otimes \mathbb{C}) \to \mathbb{C}$ is called a W(R)-invariant weak Jacobi form of weight k and index t if

(1)
$$\varphi(\tau, \sigma(\mathfrak{z})) = \varphi(\tau, \mathfrak{z}), \quad \sigma \in W(R);$$

(2)
$$\varphi(\tau,\mathfrak{z}+x\tau+y)=e^{-t\pi i(\langle x,x\rangle\tau+2\langle x,\mathfrak{z}\rangle)}\varphi(\tau,\mathfrak{z}),\quad x,y\in L_R;$$

(3)
$$\varphi\left(\frac{\mathsf{a}\tau+\mathsf{b}}{\mathsf{c}\tau+\mathsf{d}},\frac{\mathfrak{z}}{\mathsf{c}\tau+\mathsf{d}}\right)=(\mathsf{c}\tau+\mathsf{d})^{\mathsf{k}}\exp\left(\frac{\mathsf{t}}{\mathsf{t}}\pi i\frac{\mathsf{c}\langle\mathfrak{z},\mathfrak{z}\rangle}{\mathsf{c}\tau+\mathsf{d}}\right)\varphi(\tau,\mathfrak{z});$$

(4)
$$\varphi(\tau,\mathfrak{z}) = \sum_{n=0}^{\infty} \sum_{\ell \in L_R^*} f(n,\ell) e^{2\pi i (n\tau + \langle \ell, \mathfrak{z} \rangle)}.$$

If φ further satisfies the condition

$$f(n,\ell) \neq 0 \Longrightarrow 2nt - (\ell,\ell) \geq 0$$

then φ is called a W(R)-invariant holomorphic Jacobi form.

Theorem (Wirthmüller, 1992)

If R is not of type E_8 , then $J_{*,L_R,*}^{w,W(R)}$ over M_* is the polynomial algebra in r+1 basic W(R)-invariant weak Jacobi forms of weight $-k_j$ and index m_j , where $0 \le j \le r$ and

• $k_0 = 0$, $m_0 = 1$;

Theorem (Wirthmüller, 1992)

- $k_0 = 0$, $m_0 = 1$;
- m_j are the coefficients of the dual of the highest coroot written as a linear combination of the simple roots of R;

Theorem (Wirthmüller, 1992)

- $k_0 = 0$, $m_0 = 1$;
- m_j are the coefficients of the dual of the highest coroot written as a linear combination of the simple roots of R;
- k_j are the degrees of the generators of the ring of W(R)-invariant polynomials, i.e. the exponents of W(R) increased by 1.

Theorem (Wirthmüller, 1992)

- $k_0 = 0$, $m_0 = 1$;
- m_j are the coefficients of the dual of the highest coroot written as a linear combination of the simple roots of R;
- k_j are the degrees of the generators of the ring of W(R)-invariant polynomials, i.e. the exponents of W(R) increased by 1.
- [W. 2018] $J_{*,E_8,*}^{w,W(E_8)}$ is not a polynomial algebra over M_* .

Theorem (Wirthmüller, 1992)

- $k_0 = 0$, $m_0 = 1$;
- m_j are the coefficients of the dual of the highest coroot written as a linear combination of the simple roots of R;
- k_j are the degrees of the generators of the ring of W(R)-invariant polynomials, i.e. the exponents of W(R) increased by 1.
- [W. 2018] $J_{*,E_8,*}^{w,W(E_8)}$ is not a polynomial algebra over M_* .
- [W. 2020] The Jacobian of free generators equals a theta block associated to the root system R. e.g. $(A_1 \text{ case}) \phi_{0,1} \phi'_{-2,1} \phi'_{0,1} \phi_{-2,1} = \vartheta(\tau,2z)/\eta^3$. This observation leads to an automorphic proof of Wirthmüller's theorem (arXiv:2007.16033).

1 The Fourier-Jacobi coefficients of modular forms for Γ_R are W(R)-invariant Jacobi forms.

- **1** The Fourier-Jacobi coefficients of modular forms for Γ_R are W(R)-invariant Jacobi forms.
- **Wirthmüller 1992:** For all irreducible root systems except E_8 , the bigraded algebra of W(R)-invariant weak Jacobi forms is freely generated by r+1 forms over the ring of $\mathrm{SL}_2(\mathbb{Z})$ modular forms.

- **1** The Fourier-Jacobi coefficients of modular forms for Γ_R are W(R)-invariant Jacobi forms.
- **Wirthmüller 1992:** For all irreducible root systems except E_8 , the bigraded algebra of W(R)-invariant weak Jacobi forms is freely generated by r+1 forms over the ring of $\mathrm{SL}_2(\mathbb{Z})$ modular forms.
- **3** We construct r + 3 basic modular forms for Γ_R :
 - (a) Two modular forms \widetilde{E}_4 and \widetilde{E}_6 of weights 4 and 6 whose first Fourier-Jacobi coefficients are respectively the Eisenstein series E_4 and E_6 on $\mathrm{SL}_2(\mathbb{Z})$;

- **1** The Fourier-Jacobi coefficients of modular forms for Γ_R are W(R)-invariant Jacobi forms.
- **Wirthmüller 1992:** For all irreducible root systems except E_8 , the bigraded algebra of W(R)-invariant weak Jacobi forms is freely generated by r+1 forms over the ring of $\mathrm{SL}_2(\mathbb{Z})$ modular forms.
- **1** We construct r + 3 basic modular forms for Γ_R :
 - (a) Two modular forms E_4 and E_6 of weights 4 and 6 whose first Fourier-Jacobi coefficients are respectively the Eisenstein series E_4 and E_6 on $\mathrm{SL}_2(\mathbb{Z})$;
 - (b) r+1 modular forms $\Phi_j\in M_{-k_j+12m_j}(\Gamma_R)$ whose first nonzero Fourier-Jacobi coefficients are $\Delta^{m_j}\phi_j$ in their $m_j^{\rm th}$ term, where Δ is the normalized cusp form of weight 12 on ${\rm SL}_2(\mathbb{Z})$. (i.e. $\Phi_j=\Delta^{m_j}\phi_j\cdot\xi^{m_j}+O(\xi^{m_j+1})$.)

Proof of Main Theorem

- **1** The Fourier-Jacobi coefficients of modular forms for Γ_R are W(R)-invariant Jacobi forms.
- **Wirthmüller 1992:** For all irreducible root systems except E_8 , the bigraded algebra of W(R)-invariant weak Jacobi forms is freely generated by r+1 forms over the ring of $\mathrm{SL}_2(\mathbb{Z})$ modular forms.
- **9** We construct r + 3 basic modular forms for Γ_R :
 - (a) Two modular forms \widetilde{E}_4 and \widetilde{E}_6 of weights 4 and 6 whose first Fourier-Jacobi coefficients are respectively the Eisenstein series E_4 and E_6 on $\mathrm{SL}_2(\mathbb{Z})$;
 - (b) r+1 modular forms $\Phi_j\in M_{-k_j+12m_j}(\Gamma_R)$ whose first nonzero Fourier-Jacobi coefficients are $\Delta^{m_j}\phi_j$ in their $m_j^{\rm th}$ term, where Δ is the normalized cusp form of weight 12 on ${\rm SL}_2(\mathbb{Z})$. (i.e. $\Phi_j=\Delta^{m_j}\phi_j\cdot\xi^{m_j}+O(\xi^{m_j+1})$.)
- We can kill the first Fourier-Jacobi coefficients of a given modular form by a polynomial combination of the above r+3 functions. If the first n Fourier-Jacobi coefficients of a modular form are zero (for a certain n which depends on the structure of the ring of weak Jacobi forms) then it is identically zero. It follows that $M_*(\Gamma_R)$ is generated by the above r+3 functions and hence a free algebra.

• We use the additive lift: $J_{k,L_R,1}^{W(R)} \to M_k(\Gamma_R)$.

- We use the additive lift: $J_{k,L_R,1}^{W(R)} \to M_k(\Gamma_R)$.
- If all generators of weak Jacobi forms have index 1, then the basic modular forms can be constructed as the additive lifts of the Jacobi-Eisenstein series of weights 4 and 6, and the holomorphic Jacobi forms $\Delta \phi_{-k_i,1}$.

- We use the additive lift: $J_{k,L_R,1}^{W(R)} \to M_k(\Gamma_R)$.
- If all generators of weak Jacobi forms have index 1, then the basic modular forms can be constructed as the additive lifts of the Jacobi-Eisenstein series of weights 4 and 6, and the holomorphic Jacobi forms $\Delta \phi_{-k_i,1}$.
- For $D_n(4 \le n \le 8)$, E_6 , E_7 , there are basic weak Jacobi forms of index > 1.

- We use the additive lift: $J_{k,L_R,1}^{W(R)} \to M_k(\Gamma_R)$.
- If all generators of weak Jacobi forms have index 1, then the basic modular forms can be constructed as the additive lifts of the Jacobi-Eisenstein series of weights 4 and 6, and the holomorphic Jacobi forms $\Delta \phi_{-k_i,1}$.
- For $D_n(4 \le n \le 8)$, E_6 , E_7 , there are basic weak Jacobi forms of index > 1.
- We estimate dim $M_k(\Gamma_R)$ in terms of the dimensions of Jacobi forms:

$$M_k(\Gamma)(\xi^r) = \{ F \in M_k(\Gamma) : \phi_m = 0, \text{ for all } m < r \},$$

 $J_{k,L,m}^W(q^r) = \{ \phi \in J_{k,L,m}^W : \phi = O(q^r) \}.$

- We use the additive lift: $J_{k,L_R,1}^{W(R)} \to M_k(\Gamma_R)$.
- If all generators of weak Jacobi forms have index 1, then the basic modular forms can be constructed as the additive lifts of the Jacobi-Eisenstein series of weights 4 and 6, and the holomorphic Jacobi forms $\Delta \phi_{-k_i,1}$.
- For $D_n(4 \le n \le 8)$, E_6 , E_7 , there are basic weak Jacobi forms of index > 1.
- We estimate dim $M_k(\Gamma_R)$ in terms of the dimensions of Jacobi forms:

$$M_k(\Gamma)(\xi^r) = \{ F \in M_k(\Gamma) : \phi_m = 0, \text{ for all } m < r \},$$

 $J_{k,L,m}^W(q^r) = \{ \phi \in J_{k,L,m}^W : \phi = O(q^r) \}.$

We have the following exact sequence:

$$0 \longrightarrow M_k(\Gamma)(\xi^{r+1}) \longrightarrow M_k(\Gamma)(\xi^r) \stackrel{P_r}{\longrightarrow} J_{k,L,r}^W(q^r),$$

where the map P_r sends F to its Fourier-Jacobi coefficient ϕ_r .

• By the symmetric relation $f(n, \ell, m) = f(m, \ell, n)$, we get

$$\dim M_k(\Gamma_R) \leq \sum_{r=0}^\infty \dim J^{W(R)}_{k,L_R,r}(q^r) \leq \sum_{r=0}^\infty \dim J^{w,W(R)}_{k-12r,L_R,r}.$$

• By the symmetric relation $f(n, \ell, m) = f(m, \ell, n)$, we get

$$\dim M_k(\Gamma_R) \leq \sum_{r=0}^\infty \dim J^{W(R)}_{k,L_R,r}(q^r) \leq \sum_{r=0}^\infty \dim J^{w,W(R)}_{k-12r,L_R,r}.$$

- (The root system C_8):
 - ▶ The "orthogonal Eisenstein" series

$$\mathcal{E}_4, \mathcal{E}_6, \mathcal{E}_{8,0}, \mathcal{E}_{8,1}, \mathcal{E}_{10,0}, \mathcal{E}_{10,1}, \mathcal{E}_{12,0}, \mathcal{E}_{12,1}, \mathcal{E}_{14,0}, \mathcal{E}_{16,0}, \mathcal{E}_{18,0}$$

satisfy no algebraic relations in weights less than 20.

• By the symmetric relation $f(n, \ell, m) = f(m, \ell, n)$, we get

$$\dim M_k(\Gamma_R) \leq \sum_{r=0}^\infty \dim J^{W(R)}_{k,L_R,r}(q^r) \leq \sum_{r=0}^\infty \dim J^{w,W(R)}_{k-12r,L_R,r}.$$

- (The root system C_8):
 - ▶ The "orthogonal Eisenstein" series

$$\mathcal{E}_4, \mathcal{E}_6, \mathcal{E}_{8,0}, \mathcal{E}_{8,1}, \mathcal{E}_{10,0}, \mathcal{E}_{10,1}, \mathcal{E}_{12,0}, \mathcal{E}_{12,1}, \mathcal{E}_{14,0}, \mathcal{E}_{16,0}, \mathcal{E}_{18,0}$$

satisfy no algebraic relations in weights less than 20.

▶ **Proof**: We choose $v \in D_8$ with $v^2 = 2m$. The pull-backs of the above series (by taking $\mathfrak{z} = z \cdot v$) are additive lifts of the pull-backs of the Jacobi Eisenstein series, and they are Siegel paramodular forms of level m. It suffices to prove the same claim for paramodular forms.

• By the symmetric relation $f(n, \ell, m) = f(m, \ell, n)$, we get

$$\dim M_k(\Gamma_R) \leq \sum_{r=0}^\infty \dim J_{k,L_R,r}^{W(R)}(q^r) \leq \sum_{r=0}^\infty \dim J_{k-12r,L_R,r}^{w,W(R)}.$$

- (The root system C_8):
 - ► The "orthogonal Eisenstein" series

$$\mathcal{E}_4, \mathcal{E}_6, \mathcal{E}_{8,0}, \mathcal{E}_{8,1}, \mathcal{E}_{10,0}, \mathcal{E}_{10,1}, \mathcal{E}_{12,0}, \mathcal{E}_{12,1}, \mathcal{E}_{14,0}, \mathcal{E}_{16,0}, \mathcal{E}_{18,0}$$

satisfy no algebraic relations in weights less than 20.

- ▶ **Proof**: We choose $v \in D_8$ with $v^2 = 2m$. The pull-backs of the above series (by taking $\mathfrak{z} = z \cdot v$) are additive lifts of the pull-backs of the Jacobi Eisenstein series, and they are Siegel paramodular forms of level m. It suffices to prove the same claim for paramodular forms.
- We then derive

$$\dim M_k(\Gamma_{C_8}) = \sum_{r=0}^{\infty} \dim J_{k-12r,D_8,r}^{w,W(C_8)}, \quad \text{for } k \leq 20.$$

This yields the existence of the basic modular forms on Γ_{c_8} .

Some examples

• $R = A_1$: $\Gamma_R = \mathrm{O}^+(2U \oplus A_1(-1))$. The $W(A_1)$ -invariant weak Jacobi forms has generators of weights and indices (0,1) and (-2,1). Thus the generators of orthogonal modular forms have weights 4, 6, 10, 12.

Some examples

- $R = A_1$: $\Gamma_R = O^+(2U \oplus A_1(-1))$. The $W(A_1)$ -invariant weak Jacobi forms has generators of weights and indices (0,1) and (-2,1). Thus the generators of orthogonal modular forms have weights 4, 6, 10, 12.
- $R = B_4$: $\Gamma_R = O^+(2U \oplus 4A_1(-1))$, weights: 4,4,6,6,8,10,12.
- $R = A_7$: $\Gamma_R = \widetilde{O}^+(2U \oplus A_7(-1))$, weights: 4, 4, 5, 6, 6, 7, 8, 9, 10, 12.
- $R = C_8$: $\Gamma_R = O^+(2U \oplus D_8(-1))$, weights: 4, 6, 8, 8, 10, 10, 12, 12, 14, 16, 18.
- $R = E_7$: $\Gamma_R = O^+(2U \oplus E_7(-1))$, weights: 4, 6, 10, 12, 14, 16, 18, 22, 24, 30.
- $R = E_6$: $\Gamma_R = \widetilde{O}^+(2U \oplus E_6(-1))$, weights: 4, 6, 7, 10, 12, 15, 16, 18, 24

Corollary (W.-Williams 20)

Let R be a root system in Main Theorem. For any weak Jacobi form $\phi \in J_{k,L_R,m}^{w,W(R)}$, there exists a modular form of weight k+12m for Γ_R whose first non-zero Fourier-Jacobi coefficient is $(\Delta^m \phi) \cdot \xi^m$. Moreover, we have the equality

$$\dim M_k(\Gamma_R) = \sum_{r=0}^{\infty} \dim J_{k-12r,L_R,r}^{w,W(R)}.$$

Let k be a positive integer. A formal series of Jacobi forms is an element

$$\Psi(Z) = \sum_{m=0}^{\infty} \psi_m \xi^m \in \prod_{m=0}^{\infty} J_{k,L,m}^W.$$

We call Ψ a formal Fourier-Jacobi expansion of weight k if it satisfies

$$f_m(n,\ell) = f_n(m,\ell), \quad m,n \in \mathbb{N}, \ell \in L^{\vee},$$

where $f_m(n,\ell)$ are Fourier coefficients of ψ_m . We denote the space of such expansions by $FM_k(\Gamma)$.

Modularity of formal Fourier-Jacobi expansions

For all Γ_R in Main Theorem, we have that $FM_k(\Gamma_R)=M_k(\Gamma_R)$ for any $k\in\mathbb{N}$. In other word, every formal Fourier-Jacobi expansion is convergent on the tube domain $\mathcal{H}(L)$ and defines an orthogonal modular form.

Modularity of formal Fourier-Jacobi expansions

For all Γ_R in Main Theorem, we have that $FM_k(\Gamma_R)=M_k(\Gamma_R)$ for any $k\in\mathbb{N}$. In other word, every formal Fourier-Jacobi expansion is convergent on the tube domain $\mathcal{H}(L)$ and defines an orthogonal modular form.

Proof.

The Fourier-Jacobi expansion of modular forms defines the injective map

$$M_k(\Gamma) \to FM_k(\Gamma)$$
, $F \mapsto$ Fourier-Jacobi expansion of F .

Using a similar argument, we get dim $FM_k(\Gamma) \leq \sum_{r=0}^{\infty} \dim J_{k-12r,L,r}^{w,W}$. We then prove the surjectivity of the above map by Corollary A.

Modularity of formal Fourier-Jacobi expansions

For all Γ_R in Main Theorem, we have that $FM_k(\Gamma_R)=M_k(\Gamma_R)$ for any $k\in\mathbb{N}$. In other word, every formal Fourier-Jacobi expansion is convergent on the tube domain $\mathcal{H}(L)$ and defines an orthogonal modular form.

Proof.

The Fourier-Jacobi expansion of modular forms defines the injective map

$$M_k(\Gamma) \to FM_k(\Gamma)$$
, $F \mapsto$ Fourier-Jacobi expansion of F .

Using a similar argument, we get dim $FM_k(\Gamma) \leq \sum_{r=0}^{\infty} \dim J_{k-12r,L,r}^{w,W}$. We then prove the surjectivity of the above map by Corollary A.

Remark: This nice property is only known to hold in the A_1 case (Aoki 2000) and for Siegel modular forms (Bruinier-Braum 2015). The modularity for Siegel modular forms + Zhang Wei's thesis \Rightarrow Kudla's conjecture on the modularity of generating series of special cycles for orthogonal Shimura varieties.

• The bigraded ring of $W(E_8)$ -invariant weak Jacobi forms is not a free algebra so our method does not apply to the E_8 root system.

- The bigraded ring of $W(E_8)$ -invariant weak Jacobi forms is not a free algebra so our method does not apply to the E_8 root system.
- Hashimoto–Ueda 2014 The graded ring of modular forms on $O^+(2U \oplus E_8(-1))$ is freely generated by forms of weights 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42.

- The bigraded ring of $W(E_8)$ -invariant weak Jacobi forms is not a free algebra so our method does not apply to the E_8 root system.
- Hashimoto–Ueda 2014 The graded ring of modular forms on $O^+(2U \oplus E_8(-1))$ is freely generated by forms of weights 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42.
- We do not need to consider modular forms associated to root systems of rank > 8 due to the following result:

- The bigraded ring of $W(E_8)$ -invariant weak Jacobi forms is not a free algebra so our method does not apply to the E_8 root system.
- Hashimoto–Ueda 2014 The graded ring of modular forms on $O^+(2U \oplus E_8(-1))$ is freely generated by forms of weights 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42.
- \bullet We do not need to consider modular forms associated to root systems of rank > 8 due to the following result:
 - Shvartsman-Vinberg 2017 Let Γ be an arithmetic subgroup of $O_{2,n}^+$. When n > 10, the graded algebra $M_*(\Gamma)$ is never free.

Theorem (W. 2020)

Let $M=2U\oplus L(-1)$ be an even lattice of signature (2,n). Let $\Gamma<\mathrm{O}^+(M)$ be a subgroup containing $\widetilde{\mathrm{O}}^+(M)$. If $M_*(\Gamma)$ is a free algebra, then Γ must be

- $O^+(2U \oplus E_8(-1));$
- one of the 25 groups in Main Theorem.

Thank you very much!