Tema I - Ex. 3

Ichim Teodora & Radu Mihai-Emilian

(a)
$$T$$
 arbore $\Longrightarrow \begin{cases} T \ conex \implies rang M_T = n-1 \\ T \ are(n-1)muchii \implies M_T = (n-1) \times n \end{cases}$

 \implies Daca vom scoate o coloana $M(n-1)\times(n-1))$ \implies matrice patratica

Fie C si D doua astfel de matrici.

Consideram ca:

C va contine coloanele 1,2,3,...,n-1D va contine coloanele 1,2,3,...,n-2,n

 $C \, si \, D$ vor avea primele n-2 coloane identice

Daca in C la ultima coloana vom aduna celelalte coloane atunci ultima coloana a lui C va deveni de doua ori ultima coloana a lui $D \implies \det(\mathbf{C})=2$ * $\det(\mathbf{D})$

Procedand in acest mod vom obtine o relatie intre toti determinantii matricelor $M=(n-1)\times(n-1)\implies$ daca unul va fi $0\implies$

 \implies toti vor avea 0 & rang $(M_T) =$ n-1 \implies toti determinantii vor fi $\neq 0$

⇒ matricele vor fi nesingulare

(b)
$$C$$
 circuit $\implies M_c = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$ Daca dezvoltam

determinantul dupa ultima linie :

$$\det(M_c) = (-1)^{1+n} * \det(M_1) + (-1)^{n+n} * \det(M_2)$$

Observam ca $M_1 = {}^tM_2 \implies det(M_1) = det(M_2)$

Prin indepartarea unei muchii din C, acesta va fi in continuare conex, dar nu va mai avea circuite \implies C va deveni arbore $\stackrel{(a)}{\implies} det(M_1), det(M_2) \neq 0$

" \Longrightarrow " $det(M_C) \neq 0 \& \det(M_1) = det(M_2) \implies (-1)^{1+n} = (-1)^{n+n} \implies$ $1 + n \ par \implies n \ impar$ " \Longleftarrow "

 $\det(M_c) = (-1)^{1+n} * \det(M_1) + (-1)^{n+n} * \det(M_2) = \det(M_1) + \det(M_2) = 2 * \det(M_1) \neq 0 \implies M_C \text{ nesingular}$