EXPERIMENT 4

Aim:

(a) Write a Program in C/C++ to determine the area of Circle, Triangle, Square and Rectangle. Values may be from the interval [1, 100] and perform Equivalence Class Testing.

Algorithm:

- Take inputs from the user according to Polygon.
- Check whether they lie in the given interval.
- If the condition is false, stop the program and exit.
- If the condition is true, calculate the area of Polygon.

```
    If Circle, area = π * radius²
    If Triangle, area = ½ * base * height
    If Square, area = side²
    If Rectangle, area = length * breadth
```

• Perform equivalence class testing accordingly.

Code:

```
#include <iostream>
using namespace std;
float circle()
{
    float r;
    cout << "Enter the Radius of Circle (r) : ";</pre>
    cin >> r;
    if (r < 1 || r > 100)
    { cout << "Out of Range";</pre>
        return 0; }
    float area = 3.14 * r * r;
    return area;
float triangle()
{
    float b, h;
    cout << "Enter the Base and Height of Triangle (b, h) : ";</pre>
    cin >> b >> h;
    if (b < 1 || b > 100 || h < 1 || h > 100)
    { cout << "Out of Range";</pre>
        return 0; }
    float area = 0.5 * b * h;
    return area;
}
```

```
float square()
{ float s;
    cout << "Enter the Side of Square (s) : ";</pre>
    cin >> s;
    if (s < 1 | | s > 100)
    { cout << "Out of Range";</pre>
        return 0; }
    float area = s * s;
    return area; }
float rectangle()
{ float 1, b;
    cout << "Enter the Length and Breadth of Rectangle (1, b) : ";</pre>
    cin \gg 1 \gg b;
    if (1 < 1 || 1 > 100 || b < 1 || b > 100)
    { cout << "Out of Range";</pre>
        return 0; }
    float area = 1 * b;
    return area; }
int main()
{ int ch;
    float area;
  cout << "Area of : \n 1. Circle \n 2. Square \n 3. Triangle</pre>
            \n 4. Rectangle";
    cout << "\nEnter Choice : ";</pre>
    cin >> ch;
    switch (ch)
    {
    case 1:
        area = circle();
        cout << "Area : " << area;</pre>
        break;
    case 2:
        area = square();
        cout << "Area : " << area;</pre>
        break;
    case 3:
        area = triangle();
        cout << "Area : " << area;</pre>
        break;
    case 4:
        area = rectangle();
        cout << "Area : " << area;</pre>
        break;
    default:
       cout << "Wrong Choice";</pre>
    }
    return 0;
```

Output Screenshots:

Equivalence Class Testing:

Range: R [1, 200]

Case 1: CIRCLE

Input Domain: Output Domain:

I1 =
$$\{r: r < = 0\}$$
 O1 = $\{: Circle if 1 < = r < = 200\}$

$$I2 = \{r: r > 200\}$$
 $O2 = \{: Not a Circle if r < = 0\}$

$$I3 = \{r: 1 < = r < = 200\}$$

Case 2: SQUARE

Input Domain: Output Domain:

$$I1 = \{s: s < 0\}$$
 $O1 = \{: Square if s > 0\}$

$$I2 = \{s: s > 200\}$$
 $O2 = \{: Not a Square if s < = 0\}$

$$I3 = \{s: 1 < = s < = 200\}$$

Case 3: TRIANGLE

Input Domain: Output Domain:

I1 =
$$\{h: h < 0\}$$
 O1 = $\{: Triangle if h > 0, b > 0\}$

$$I2 = \{h: h > 200\}$$
 $O2 = \{: Not a Triangle if $h < = 0, b < = 0\}$$

$$I3 = \{h: 1 < = h < = 200\}$$

$$I4 = \{b: b < = 0\}$$

$$I5 = \{b: b > 200\}$$

Case 4: RECTANGLE

Input Domain: Output Domain:

$$I1 = \{1: 1 < 0\}$$
 $O1 = \{: Rectangle if 1 > 0, b > 0\}$

$$I2 = \{1: 1 > 200\}$$
 $O2 = \{: Not a Rectangle if 1 < = 0, b < = 0\}$

$$I3 = \{1: 1 < = 1 < = 200\}$$

$$I4 = \{b: b < = 0\}$$

$$I5 = \{b: b > 200\}$$

$$I6 = \{b: 1 < b < b < 200\}$$

Circle Test Cases:

Test Case	r	Expected Output		
1	0	Invalid Input		
2	100	31400		
3	201	Invalid Input		

Square Test Cases:

Test Case	S	Expected Output		
1	0	Invalid Input		
2	100	10000		
3	201	Invalid Input		

Triangle Test Cases:

Test Case	h	b	Expected Output		
1	0	100	Invalid Input		
2	100	100	5000		
3	201	100	Invalid Input		
4	100	0	Invalid Input		
5	100	100	5000		
6	100	201	Invalid Input		

Rectangle Test Cases:

Test Case	l	b	Expected Output
1	0	100	Invalid Input
2	100	100	10000
3	201	100	Invalid Input
4	100	0	Invalid Input
5	100	100	10000
6	100	201	Invalid Input

<u>Aim</u>:

(b) Write a Program in C/C++ to determine the type of Triangle that is Equilateral, Isosceles, Scalene or Not a Triangle. Values may be from the interval [1, 100] and perform Decision Table Based Testing and Equivalence Class Testing.

Algorithm:

- Take 3 inputs from the user for the sides of the Triangle.
- Check whether they lie in the given interval.
- If the condition is false, stop the program and exit.
- If the condition is true, check the type of Triangle.
 - If all three sides are equal, Equilateral Triangle.
 - If any two sides are equal, Isosceles Triangle.
 - If all three sides are different, Scalene Triangle.
- Make decision table according to the output.
- Perform equivalence class testing accordingly.

Code:

```
#include <iostream>
using namespace std;
int main()
{
    int a, b, c;
    cout << "Enter the Sides of Triangle (a, b, c) : ";</pre>
    cin >> a >> b >> c;
    if (a < 1 || a > 100 || b < 1 || b > 100 || c < 1 || c > 100)
         cout << "Out of Range" << endl;</pre>
    else if ((a < b + c) && (b < a + c) && (c < a + b))
        if ((a == b) \&\& (b == c))
             cout << "Equilateral Triangle" << endl;</pre>
        else if ((a != b) && (b != c) && (c != a))
             cout << "Scalene Triangle" << endl;</pre>
        else
             cout << "Isosceles Triangle" << endl;</pre>
    }
    else
         cout << "Not a Triangle" << endl;</pre>
    return 0;
```

Output Screenshot:

Decision Table Based Testing:

Range: R [1, 100]

c1: a < b + c?	F	T	T	T	T	T	T	T	T	T	T
c2: b < a + c?		F	T	T	T	T	T	T	T	T	T
c3: c < a + b?		_	F	T	T	T	T	T	T	T	T
c4: a = b?		_		T	T	T	T	F	F	F	F
c5: a = c?	_	—	_	T	T	F	F	T	T	F	F
c6: b = c?	_	—	_	T	F	T	F	T	F	T	F
a1: Not a Triangle	X	X	X								
a2: Scalene Triangle											X
a3: Isosceles Triangle						X			X	X	
a4: Equilateral Triangle				X							
a5: Impossible					X	X		X			

Corresponding Test Cases:

Case ID	a	b	c	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral Triangle
DT5	?	?	?	Impossible
DT6	?	?	?	Impossible
DT7	2	2	3	Isosceles Triangle
DT8	?	?	?	Impossible
DT9	2	3	2	Isosceles Triangle
DT10	3	2	2	Isosceles Triangle
DT11	3	4	5	Scalene Triangle

Equivalence Class Testing:

Range: R [1, 100]

Input Domain:

 $I1 = \{0 < a <= 10\}$ $I11 = \{a = b, b ! = c\}$

 $I2 = \{a < 0\}$ $I12 = \{b = c, c! = a\}$

I3 = $\{a > 10\}$ I13 = $\{a = c, c! = b\}$

 $I4 = \{0 < b < = 10\}$ $I14 = \{a ! = b ! = c\}$

 $I5 = \{b < 0\}$ $I15 = \{a + b = c\}$

I6 = $\{b > 10\}$ I16 = $\{a + b < c\}$

 $I7 = \{0 < c < = 10\}$ $I17 = \{b + c = a\}$

 $I8 = \{c < 0\}$ $I18 = \{b + c < a\}$

 $I9 = \{c > 10\}$ $I19 = \{c + a = b\}$

 $I10 = \{a = b = c\}$ $I20 = \{c + a > b\}$

Output Domain:

O1 = Not a Triangle

O2 = Equilateral Triangle

O3 = Isosceles Triangle

O4 = Scalene Triangle

Test Cases:

TD 4.0				E 4 10 4 4	A 4 10 4 4		
Test Case	a	b	С	Expected Output	Actual Output		
O1	10	5	5	Not a Triangle	Not a Triangle		
O2	5	5	5	Equilateral Triangle	Equilateral Triangle		
O3	1	5	5	Isosceles Triangle	Isosceles Triangle		
O4	10	9	5	Scalene Triangle	Scalene Triangle		
I1	5	5	5	Equilateral Triangle	Equilateral Triangle		
I2	0	5	5	Invalid Input	Invalid Input		
I3	11	5	5	Invalid Input	Invalid Input		
I4	5	5	5	Equilateral Triangle	Equilateral Triangle		
I5	5	0	5	Invalid Input	Invalid Input		
I6	5	11	5	Invalid Input	Invalid Input		
I7	5	5	5	Equilateral Triangle	Equilateral Triangle		
I8	5	5	0	Invalid Input	Invalid Input		
I9	5	5	11	Invalid Input	Invalid Input		
I10	5	5	5	Equilateral Triangle	Equilateral Triangle		
I11	5	5	1	Isosceles Triangle	Isosceles Triangle		
I12	1	5	5	Isosceles Triangle	Isosceles Triangle		
I13	5	1	5	Isosceles Triangle	Isosceles Triangle		
I14	9	5	10	Scalene Triangle	Scalene Triangle		
I15	5	5	10	Not a Triangle	Not a Triangle		
I16	1	5	10	Not a Triangle	Not a Triangle		
I17	10	5	5	Not a Triangle	Not a Triangle		
I18	10	5	1	Not a Triangle	Not a Triangle		
I19	5	10	5	Not a Triangle	Not a Triangle		
I20	5	10	1	Not a Triangle	Not a Triangle		