ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ

Лабораторная работа №7.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ. МАКСИМАЛЬНОЕ БЫСТРОДЕЙСТВИЕ ДЛЯ ОБЪЕКТА 3-ГО ПОРЯДКА

Цель работы: исследовать задачу максимального быстродействия для объекта 3-го порядка, особенности ее решения на основе принципа максимума Понтрягина, освоить аналитические и численные методы решения.

Основные положения

Решение задач управления по критерию максимального быстродействия резко усложняется с повышением порядка дифференциальных уравнений, описывающих объект управления.

Основным методом решения задачи максимального быстродействия для объектов, описываемых дифференциальными уравнениями выше второго порядка, является поиск моментов переключения.

Для случая объекта 3 порядка, собственные числа которого являются вещественными числами, можно применять теорему об *N* интервалах. Согласно этой теореме, оптимальное управление является последовательностью постоянных интервалов с разными знаками, и количество интервалов равно порядку системы. Тогда задача поиска может быть сформулирована следующим образом:

Требуется найти такие значения параметров t_1 , t_2 и T, где t_1 и t_2 моменты переключения знака управляющего воздействия, а T - момент выключения управления, при которых расстояние между изображающей точкой, соответствующей моменту T и требуемым конечным состоянием объекта, было бы минимальным. Практика выполнения расчетов показывает, что зависимость точности обеспечения заданных конечных условий от набора моментов переключения носит очень сложный характер и содержит большое количество локальных экстремумов. В таких условиях существенно возрастает значение выбора начальной точки поиска.

Одним из возможных способов определения начальной точки поиска является решение промежуточной задачи максимального быстродействия для усеченного объекта 2 порядка.

Более подробно процесс решения задачи максимального быстродействия для объекта 3 порядка рассмотрим на следующем примере.

Допустим, что объект управления описывается следующими уравнениями:

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = -x_2 + x_3$$

$$\frac{dx_3}{dt} = -2x_3 + u$$

$$|u| \le 1$$

$$x_1(0) = 1$$

$$x_2(0) = 0$$

$$x_3(0) = 0$$

$$x_1(T) = x_2(T) = x_3(T) = 0$$

где x_1 , x_2 , x_3 - состояния объекта управления, u - управляющее воздействие, T - момент времени перевода объекта в конечное состояние.

Собственные числа рассматриваемого объекта являются вещественными, следовательно, в соответствии с теоремой об N интервалах, для управления этим объектом управляющее воздействие должно быть максимально по модулю, иметь 3 интервала постоянного сигнала и менять знак 2 раза.

Рассмотрим проекцию фазовой траектории на плоскости x_2x_3 . Начальные и конечные условия на данной плоскости равны нулю. Значит фазовая траектория должна начинаться из точки (0;0), перемещаться в две точки переключения и заканчиваться в точке (0;0).

На первом этапе решения задачи выберем первую точку переключения произвольно (t_{11}). При выбранном значении t_{11} момент второго переключения t_{21} и момент выключения управления T_1 могут быть однозначно определены с помощью построения линии переключения в плоскости x_2x_3 методом обратного времени.

Поскольку момент t_{11} был выбран произвольно конечное состояние объекта управления по состоянию x_1 будет отличаться от заданного. Обозначим его x_{1T1} . На данной итерации получен набор моментов переключения, который обеспечивает минимальное время перевода объекта в точку промежуточного финиша: [x_{1T1} 0 0].

Повторяя данные итерации, можно выбирать новые значения для момента переключения, чтобы минимизировать отклонение переменной x_1 от нуля.

Можно также воспользоваться функцией FMINSEARCH, выбирая найденную на первой итерации точку в качестве начальной. С учетом сложности целевой функции, может потребоваться серия повторных экспериментов. Таким образом, для определения набора точек переключения, соответствующего заданным конечным условиям, требуется выполнить серию поисковых расчетов, в каждом из которых в качестве начального набора точек переключения использовать результат предыдущего расчета, а точка промежуточного финиша систематически приближается к заданному конечному состоянию.

Описанные выше вычисления могут быть выполнены с помощью следующих MATLAB программ:

%%Скрипт Main7.т

```
% Построение линии переключения в плоскости x2x3 с % использованием обратного времени t1 = 1; t2 = 1.85, T = 2.1; u_t = @(t) [-(t<t1)+(t>=t1)-2*(t>=t2)]; rp_ode = @(t,x) [x(2);-x(2)+x(3);-2*x(3)+u_t(t)]; % интегрирование в обратном времени из конечной точки [t_r,x_r]=ode45(rp_ode,[TT t2],[0; 0; 0]); % интегрирование в прямом времени из начальной точки [t_s,x_s]=ode45(rp_ode,[0 t2],[1; 0; 0]); figure(1), plot(x_r(:,2),x_r(:,3),x_s(:,2),x_s(:,3)) % построение переходных процессов на интервале T % определение величины x1T1 [t,x]=ode45(rp_ode,[0 T],[1; 0; 0]) plot(t, x) x1T1=x(end,1);
```

Выполненные с помощью программы расчеты показали, что набор моментов переключения $t_1 = 1$ $t_2 = 1.85$ T = 2.1 позволяет перевести объект в точку промежуточного финиша с координатами [0.78 0.00 0.00]. Момент переключения t2 может быть найден с погрешностью, вызванной автоматическим выбором шага интегрирования функцией ode45. Уменьшить погрешность можно за счет выбора другой функции для интегрирования — ode23s. Также можно уточнить величины t_1 , t_2 , T с помощью функции FMINSEARCH, указывая в качестве желаемой точки движения координаты [0.78 0.00 0.00], а в качестве начальной точки поиска — [1 1.85 2.1].

Однако даже при наличии погрешности найденные моменты переключения можно использовать для оптимизационной процедуры.

%% Скрипт main7_2.m

```
t0=[1 1.85 2.1]
T=fminsearch('costfunc',t0)
```

%% Функция costfunc.m

```
function z=costfunc(Tvec)
t1 = Tvec(1); t2 = Tvec(2); T = Tvec(3);
u_t = @(t) [-(t<t1)+(t>=t1)-2*(t>=t2)];
rp_ode = @(t,x) [x(2);-x(2)+x(3);-2*x(3)+u_t(t)];
[t,x]=ode45(rp_ode,[0 T],[1; 0; 0])
z= x(end,:)*[x(end,:)]';
plot(t,x), pause(1)
```

Скрипт main7_2.m позволил получить за одну итерацию получить вектор моментов времени $t_0 = [2.77\ 3.84\ 4.12]$, обеспечивающий перевод объекта в конечную точку с приемлемой точностью. Иногда одной итерации недостаточно, тогда нужно заново выполнить скрипт main7_2.m, уточняя начальные условия для поиска по результатам предыдущей итерации.

Содержание работы

- 1. Вычисление собственных чисел динамической системы, заданной в соответствии с вариантом (в качестве обоснования для применения теоремы об N интервалах).
- 2. Определение моментов переключения для объекта 3-го порядка в соответствии с исходными данными ([x_{10} 0 0] и U_{max}) графическим методом на фазовой плоскости и дальнейшим уточнением с помощью fminsearch.
- 3. Таблица точек начала поиска и результатов поиска функцией FMINSEARCH (если потребуется сделать несколько итераций).
- 4. Графики фазовой плоскости x_2x_3 для выбранного произвольно момента времени t_{11} , графики $x_1(t)$, $x_2(t)$, $x_3(t)$, соответствующие выбранному моменту, графики $x_1(t)$, $x_2(t)$, $x_3(t)$, соответствующие итоговым моментам переключения.

Задания на лабораторную работу

Таблица 7.1 Исходные данные для работы

Вариант	Объект управления	$u_{\rm max}$	<i>x</i> ₁₀	Вариант	Объект управления	$u_{\rm max}$	<i>x</i> ₁₀
1	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.4	8	13	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.1 \end{bmatrix}$	1.2	-12
2	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	2	-8	14	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0.9 \end{bmatrix}$	1.4	-15
3	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.4	-10	15	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.1 \end{bmatrix}$	2	14
4	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.5	14	16	$A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0.9 \end{bmatrix}$	1.4	16
5	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.5	10	17	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0.9 \end{bmatrix}$	1.5	12
6	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.2	8	18	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.1 \end{bmatrix}$	1.2	15
7	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.2	-8	19	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0.95 \end{bmatrix}$	1.5	-12
8	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.5	-10	20	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.2 \end{bmatrix}$	1.2	-15
9	$\begin{bmatrix} 0 & -0.5 & -2 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$	1.4	14		$\begin{bmatrix} 0 & -0.5 & -2 \end{bmatrix}$ $\begin{bmatrix} 1.3 \end{bmatrix}$	1.4	14
10	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -1 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	2	16	22	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -1 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.4 \end{bmatrix}$	2	16
11	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -1.5 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.4		23	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -1.5 & -4 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.5 \end{bmatrix}$	1.4	-15
12	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -3 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	1.5	-16	24	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & -3 & -5 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1.6 \end{bmatrix}$	1.5	-16