A Theoretical Analysis of Momentum and Value Strategies

Dimitri Vayanos LSE, CEPR and NBER

Paul Woolley LSE

Oxford - May 2012

1. Introduction

- Two of the most common strategies in active management:
 - Momentum: Buy recent winners / sell recent losers.
 - Value: Buy assets that are cheap relative to measures of fundamental value / sell assets that are expensive.
- Vast empirical literature documents that momentum and value strategies are profitable.
 - Short-run momentum: Jegadeesh-Titman (1993)...
 - Long-run reversal: DeBondt-Thaler (1985)...
 - Value: Fama-French (1992)...

Practice vs. Theory

- Design of momentum and value strategies has mainly been data-driven with little theoretical guidance.
- Guidance should ideally be based on model that:
 - Explains momentum and value effects.
 - Allows for multiple assets.

This Paper

- Analyze momentum and value strategies within model of Vayanos-Woolley (2011).
 - Momentum and value effects arise from flows between investment funds.
 - Rational investors and fund managers.
 - Multiple assets.

Main Results

- Closed-form Sharpe ratios (SR) for many active strategies.
- Momentum and value returns negatively correlated...
 - ... yet, overall optimal SR significantly higher than of optimal combination of momentum and value.
- Momentum more sensitive than value to its implementation.
- Attractiveness of momentum relative to value decreases as investment horizon increases.

Related Papers

- Theories of momentum and reversal.
 - Behavioral: Barberis-Shleifer-Vishny (1998), Daniel-Hirshleifer Subrahmanyam (1998), Hong-Stein (1999), Barberis-Shleifer (2003).
 - Rational: Berk-Green-Naik (1999), Johnson (2002), Shin (2006),
 Albuquerque-Miao (2010), Cespa-Vives (2011), Dasgupta-Prat-Verardo (2011), Vayanos-Woolley (2011).
 - Multiple assets only in BS and VW. BS study portfolio optimization but not correlation, implementation sensitivity, or horizon.
- Portfolio optimization with exogenous momentum and value effects.
 - Koijen-Rodriguez-Sbuelz (2006). One asset.

2. Overview of VW

Basic Mechanism

- An asset's fundamental value \(\psi\)
 - ⇒ Funds holding asset realize poor returns
 - ⇒ Outflows by investors updating negatively on managers' efficiency.
 - ⇒ Funds sell asset, further depressing price.
- If outflows are gradual, so is price drop \Rightarrow Momentum.
- ullet Price below fundamental value \Rightarrow Reversal.

Bird-in-the-Hand Effect

- Why do gradual outflows cause gradual price drop?
 - Why buy asset whose expected return has decreased?
- Buy asset now:
 - Attractive long-run return (because expectation of gradual outflows renders asset underpriced).
- Buy asset after outflows occur:
 - More attractive return, on average...
 - but risk that underpricing disappears.

Example

$$t=0 \qquad \qquad t=1 \qquad \qquad t=2$$

$$S_0=92 \qquad \qquad No \ \text{Flow:} \ S_1=100 \qquad \qquad E(S_2)=100$$

$$E(S_1)=90 \qquad \qquad Outflow: \ S_1=80$$

- Buy at $t = 0 \Rightarrow$ "Lock-in" expected return of 8.
- Buy at $t=1\Rightarrow$ "Gamble" for expected return of 20 or 0.
- Buying at t=0 is attractive despite $E(S_1-S_0)<0$.

Assets

- Continuous time $t \in [0, \infty)$.
- Exogenous riskless rate r.
- ullet N risky stocks (industry sectors, asset classes).
 - Supply $\pi \equiv (\pi_1, ..., \pi_N)$ shares.
 - Endogenous prices S_t .

Cashflows

Stocks' cumulative cashflows follow

$$dD_t = F_t dt + \sigma dB_t^D.$$

Expected cashflows follow

$$dF_t = \kappa(\bar{F} - F_t)dt + \phi\sigma dB_t^F.$$

• Covariance matrix $\Sigma \equiv \sigma \sigma'$.

Index Fund

- Tracks index consisting of $\eta \equiv (\eta_1, ..., \eta_N)$ shares.
- ullet Index η differs from true market portfolio.
 - Differs from market portfolio $\pi...$
 - ... or exogenous buy-and-hold investors hold portfolio $\hat{\pi}$ different from π .
- Denoting by $\theta\equiv\pi-\hat{\pi}$ residual supply left over from buy-and-hold investors, η and θ are not collinear.

Investor

- Can invest in riskless asset, index fund and active fund.
- ullet Holds x_t shares of index fund and fraction y_t of active fund.
- Maximizes expected utility of intertemporal consumption

$$-E\int_0^\infty \exp(-\alpha c_t - \beta t)dt.$$

Manager

- Chooses active portfolio.
- Can invest personal wealth in riskless asset and active fund.
 - Pins down manager's objective.
 - Manager acts as trading counterparty to investor.
- ullet Holds fraction \bar{y}_t of active fund.
- Maximizes expected utility of intertemporal consumption

$$-E\int_{0}^{\infty}\exp(-\bar{\alpha}\bar{c}_{t}-\beta t)dt.$$

Cost of Active Management

- Return of active fund to investor is net of a cost.
 - Return gap. (Grinblatt-Titman (1989), Wermers (2002),
 Kacperczyk-Sialm-Zhang (2008))
 - * Managerial perk.
 - * Reduced form for managerial ability.
- Flow cost is $C_t y_t$, where

$$dC_t = \kappa(\bar{C} - C_t)dt + sdB_t^C.$$

Equilibrium for $C_t = 0$

Investor holds zero shares in index fund and

$$y_t = \frac{\bar{\alpha}}{\alpha + \bar{\alpha}}$$

shares in active fund.

Expected returns are

$$E_t(dR_t) = \frac{r\alpha\bar{\alpha}}{\alpha + \bar{\alpha}}Cov_t(dR_t, \theta dR_t).$$

- Constant over time.
- Depend on covariance with true market portfolio.

Time-Varying C_t : Benchmark Case

ullet Symmetric information: Investor and manager observe C_t .

Instantaneous flows.

Example

- Two periods, two stocks, same variance.
- Index: (50,50) shares.
- True market portfolio: (50,30) shares.
 - Stock 1: Active overweight.
 - Stock 2: Active underweight.

Price Adjustment

Flows

- ullet Following increase in C_t , investor
 - Flows out of active fund.
 - Maintains constant overall index exposure.
 - ⇒ Sells slice of flow portfolio

$$p_f \equiv \theta - \frac{\eta \Sigma \theta'}{\eta \Sigma \eta'} \eta.$$

- ullet Long positions in p_f : Active overweights.
- Short positions in p_f : Active underweights.

Prices and Expected Returns

- Following increase in C_t (\Rightarrow outflows from active fund),
 - Stocks covarying positively with $p_f \downarrow$ and $E_t(dR_t) \uparrow$.
 - Stocks covarying negatively with $p_f \uparrow$ and $E_t(dR_t) \downarrow$.
- Reversal only.
- Comovement and lead-lag effects.

Time-Varying C_t : Enrichments

- Gradual flows.
 - Investor incurs flow cost $\frac{\psi}{2}\left(\frac{dy_t}{dt}\right)^2$ to adjust position in the active fund.
 - Institutional constraints or decision lags.
- ullet Asymmetric information: Only manager observes C_t .

Equilibrium

- ullet Investor believes that C_t is normal with mean \hat{C}_t .
- Equilibrium stock prices are

$$S_t = \frac{\bar{F}}{r} + \frac{F_t - \bar{F}}{r + \kappa} - (a_0 + a_1\hat{C}_t + a_2C_t + a_3y_t).$$

Investor's speed of adjustment is

$$\frac{dy_t}{dt} = b_0 - b_1 \hat{C}_t - b_2 y_t.$$

Prices and Expected Returns

- Following increase in \hat{C}_t or C_t ,
 - Stocks covarying positively with $p_f \downarrow$ and $E_t(dR_t) \downarrow$.
 - Stocks covarying negatively with $p_f \uparrow$ and $E_t(dR_t) \uparrow$.
- Following decrease in y_t ,
 - Stocks covarying positively with $p_f \downarrow$ and $E_t(dR_t) \uparrow$.
 - Stocks covarying negatively with $p_f \uparrow$ and $E_t(dR_t) \downarrow$.
- Short-run momentum, long-run reversal.

Remainder of the Talk

- Calibrate model and use it to study performance of many active strategies.
- Evaluate performance at equilibrium prices.
 - Strategies are implemented by a "small" investor.

3. Trading Strategies and Sharpe Ratios

- Consider strategy consisting of $w_t \equiv (w_{1t},..,w_{Nt})$ shares.
- ullet Evaluate strategy w_t by annualized Sharpe ratio (SR)

$$SR_w \equiv \frac{E(\hat{w}_t dR_t)}{\sqrt{Var(\hat{w}_t dR_t)dt}}$$

of its index-adjusted version

$$\hat{w}_t \equiv w_t - \frac{Cov_t(w_t dR_t, \eta dR_t)}{Var_t(\eta dR_t)} \eta.$$

SR and Portfolio Optimization

- Consider investor with
 - Access to index η and strategy w_t .
 - Horizon dt and mean-variance preferences

$$E(dW_t) - \frac{a}{2}Var(dW_t).$$

Investor can achieve maximum utility

$$\frac{E(\eta dR_t)^2}{2aVar(\eta dR_t)} + \frac{SR_w^2 dt}{2a}.$$

Optimal strategy maximizes SR.

Per Share vs. Per Dollar Returns

- Per share and per dollar returns yield the same:
 - SR if conditional SR is constant over time.
 - Correlation if conditional correlation is constant over time.
- In the data:
 - Correlation for per share and per dollar returns differs by
 - \approx 2.5% for monthly stock returns and 10-year sample.

Computing SR

Conditional expected returns given by two-factor model:

$$E_t(dR_t) = (\Psi \Sigma \eta' + \Lambda_t \Sigma p_f') dt.$$

- Factor 1: Index η ; constant premium $\Psi > 0$.
- Factor 2: Flow portfolio p_f ; premium affine in (\hat{C}_t, C_t, y_t) .
- ullet Does w_t load highly on p_f when Λ_t is high?

Computing SR (cont'd)

ullet SR of w_t is

$$SR_{w} = \frac{\left(f + \frac{k\Delta}{\eta \Sigma \eta'}\right) E\left(\Lambda_{t} w_{t} \Sigma p'_{f}\right)}{\sqrt{f\left[E(w_{t} \Sigma w'_{t}) - \frac{E[(w_{t} \Sigma \eta')^{2}]}{\eta \Sigma \eta'}\right] + kE[(w_{t} \Sigma p'_{f})^{2}]}},$$

where (f, k, Δ) are constants.

ullet SR is high if w_t loads highly on p_f when Λ_t is high.

Optimal Strategy

Optimal strategy is

$$w_t = \Lambda_t p_f$$
.

 How close to this strategy can momentum and value strategies get?

4. Calibration of Model Parameters

Assets and Portfolios

- \bullet Set N=10.
 - Ten industry sectors.
- Set $\eta=\mathbf{1}\equiv (1,..,1)$ and $\bar{\theta}\equiv \frac{\sum_{n=1}^N \theta_n}{N}=1.$
 - Index includes one share of each stock.
 - True market portfolio includes an average of one share of each stock.
 - Normalizations: Redefine one share of each stock and of the index.
- Set $\sigma(\theta) \equiv \sqrt{\frac{\sum_{n=1}^{N}(\theta_n \bar{\theta})^2}{N}} = 0.6$.
 - Active weight in typical industry sector differs from index weight by 60% (Kacperczyk-Sialm-Zheng 2005).

Cashflows

- Set $\Sigma = \hat{\sigma}^2 (I + \omega \mathbf{1'1})$.
 - Symmetric stocks.
- Set $\hat{\sigma}=0.22$.
 - Market index η has SR=30%.
- Set $\omega = 7$.
 - Average correlation between industry sector and index returns is 87% (Ang-Chen 2002).
- Set $\phi = 0.3$.
 - Shocks to F_t relative to D_t . Small effect on calibration results.

Cost of Active Management

- Set $s^2 = 1.6$.
 - Top decile of mutual funds in terms of return gap earn monthly CAPM alpha 0.273%, while bottom decile earn -0.431% (KSZ 2008).
- Set $\kappa = 0.3$.
 - Shocks to return gap shrink to 1/3 of their size within 4 years.
- Set $\bar{C}=0$.
 - Average return gap in cross section is 0.

Remaining Parameters

- Set r = 4%.
- ullet Set $\psi=1.2$.
 - Impulse response of flows to performance peaks at one year (Coval-Stafford 2007).
- Set $\alpha = 1$.
 - Normalization: Redefine consumption units.
- Set $\bar{\alpha}=30$.
 - Manager accounts for 3.2% = (1/(30+1)) of aggregate risk tolerance.
 - GDP share of the Finance and Insurance industry 5.5% on average during 1960-2007 in the US (Philippon 2008).

Independent Checks

- St. dev. of stock turnover generated by fund flows (s).
 - Lou (2011): 7% of assets managed by funds, quarterly.
 - Model: 7.8%.
- % of stock return variance generated by fund flows $(s, \bar{\alpha})$.
 - Greenwood-Thesmar (2011): 8% (sample includes < 50% of funds).
 - Model: 16%.

5. Results

- Momentum strategies.
- Value strategies.
- Combining momentum and value.
- Long horizons.

Momentum Strategies

Raw returns:

$$\left(w_t^M\right)' \equiv \int_{t-\tau}^t dR_u.$$

• Index-adjusted returns:

$$\left(w_t^{\hat{M}}\right)' \equiv \int_{t-\tau}^t d\hat{R}_u,$$

where
$$d\hat{R}_t \equiv dR_t - \frac{Cov_t(dR_t, \eta dR_t)}{Var_t(\eta dR_t)} \eta dR_t$$
.

- Equivalent for symmetric stocks.
- Lookback τ .

Momentum SR

- ullet Maximum SR is 40% and is achieved for au=4 months.
 - Empirically: 70% for individual stocks and 34% for country-level indices (Asness-Moskowitz-Pedersen 2009).

Sources of Momentum SR

- Conditional covariance.
 - A stock's higher-than-expected return predicts high future return.
- Covariance of conditional expectations.
 - A stock can have temporarily high expected return.
- Cross-sectional covariance of unconditional expectations.
 - Some stocks have permanently high expected return (Conrad-Kaul 1998).
- Calibration: 62%/36%/2%.

Value Strategies

Raw prices:

$$(w_t^V)' \equiv \frac{\bar{F}}{r} + \frac{\epsilon(F_t - \bar{F})}{r + \kappa} - S_t.$$

- $-\epsilon=1$: Can forecast cashflows as in model.
- $-\epsilon=0$: Cannot forecast cashflows.
- Index adjusted prices:

$$\left(w_t^{\hat{V}}\right)' \equiv \frac{\bar{F}}{r} + \frac{\epsilon(F_t - \bar{F})}{r + \kappa} - \hat{S}_t,$$

where $\hat{S}_t \equiv S_t + E_t \left[\int_t^\infty \Psi Cov_{t'}(dR_{t'}, \eta dR_{t'}) e^{-r(t'-t)} \right]$.

Value SR

- 25.5% under optimal forecast; 26% under crude forecast.
 - Empirically: 36% for individual stocks and 34% for country-level indices (AMP).
- Crude forecast does not hurt SR!
 - Value less sensitive than momentum to its implementation.
 - Intuition: Forecast error helps predict expected returns.
 - E.g., negative shock to expected dividends raises:
 - * Weight under crude forecast.
 - * Expected return.

Correlation Between Momentum and Value

- Momentum and value weights negatively correlated
 - ⇒ Returns negatively correlated.
- Average momentum and value weights are identical (high for stocks with high unconditional expected returns)
 - ⇒ Returns positively correlated.
- Which effect dominates?

Correlation Between Momentum and Value (cont'd)

- Calibration: Correlation=-3%.
 - Empirically: More negative (AMP).
- Diversification gains: SR of optimal combination is 48%.
- Yet, overall optimal SR is 61%, significantly higher.
 - Momentum and value strategies can be improved.
 - Use information on fund flows.
 - * First principal component of flows?

Lagged Value

Value strategy with lagged signal:

$$(w_t^V)' \equiv \frac{\bar{F}}{r} + \frac{\epsilon(F_{t-\tau} - \bar{F})}{r + \kappa} - S_{t-\tau}.$$

- Higher SR than with current signal:
 - Maximum for $\tau=1$ year, and equal to 35%.
- Has element of momentum.
- When combined with momentum, SR same as with current signal.

Longer Investment Horizons

- So far: evaluate risk and return for investor with infinitesimal horizon.
- ullet Annualized SR for strategy w_t over horizon T is

$$SR_{w,T} \equiv \frac{E\left(\int_{t}^{t+T} \hat{w}_{u} dR_{u}\right)}{\sqrt{Var\left(\int_{t}^{t+T} \hat{w}_{u} dR_{u}\right)T}}.$$

 Exceeds SR over infinitesimal horizon if autocovariances are negative, and vice-versa.

Autocovariance of Momentum and Value Strategies

- Momentum has small short-run momentum.
 - Weights change rapidly \rightarrow inherit only part of stock return momentum.
- Value has short-run momentum and long-run reversal.
 - Weights change slowly \rightarrow inherit both momentum and reversal.

Long-Horizon SR

- Long-run risk of momentum is sum of short-run risks.
 - Series of uncorrelated bets.
- Long-run risk of value is smaller than sum of short-run risks.
 - Expected return becomes higher following poor performance.

Other Results

- Lead-lag effects between momentum and value.
 - Small. Larger from value to momentum.
- Persistence of expected returns.
 - Larger for value.
- Continuous-rebalancing vs. buy and hold.
 - Not rebalancing for one year reduces:
 - * Value SR by 1%.
 - * Momentum SR by 30%.

6. Conclusion Page 52

6. Conclusion

- Momentum, reversal and value effects can arise from flows between investment funds.
- Tractable model to study these effects.
- Use model as laboratory to study performance of many active strategies.