Foundations of Deep Learning

Alfredo Canziani

A simple program

2 bit addition with logic gates

Programming

- Algorithm: addition (half-adder)
- Data: 2 binary digits (bits)
- Answer: sum

Number base

0	1:00	1:00:00	1 d	1d + 0h	0_{2}	0_{16}
1	1:01	1:00:01	1d + 1h	1d + 1h	1_2	1 ₁₆
2	1:02	1:00:02	1d + 2h	1d + 2h	102	2 ₁₆
•	:	: :	•	•	11_{2}^{2}	•
58	59:58	23:59:58	1d + 22h	6d + 22h	1002	E ₁₆
59	59:59	23:59:59	1d + 23h	6d + 23h	1012	F ₁₆
1m	1h	1d	2d	1w	110_{2}^{2}	10 ₁₆
1:01	1:00:01	1d + 1s	2d + 1h	1w + 1d	1112	11 ₁₆
					_	10

Adder

Half-Adder

Half-Adder X-OR NOT X-OR Α OR S S AND В Cout C S B 00 0 0 0 0 1 0 1 0 10

OR gate

AND gate

X ₁	X ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

NOT gate

x_1 \circ y

$\mathbf{X_1}$	У
0	1
1	0

BUFFER gate

$\mathbf{x_1}$	y
0	0
1	1

The perceptron

AKA non-linear neuron

Linear neuron

Neuron / perceptron

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\hat{y} = \sigma(z)$$

OR neuron

X_1	X_2	У	Z
0	0	0	< -5
0	1	1	> +5
1	0	1	> +5
1	1	1	> +5

AND neuron

X_1	X_2	У	Z
0	0	0	< -5
0	1	0	< -5
1	0	0	< -5
1	1	1	> +5

NOT neuron

Half-Adder X-OR NOT X-OR Α OR S S AND В Cout C S B 00 0 0 0 0 1 0 1 0 10