Medical Image Processing for Interventional Applications

Factorization for Orthographic Projections

Online Course – Unit 39 Andreas Maier, Joachim Hornegger, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Factorization Methods for Orthographic Projections

Preliminaries

Registered Measurement Matrix

Factorization of the Measurement Matrix

Summary

Take Home Messages

Further Readings

Factorization Methods

Preliminaries:

- Orthogonal projection model
- Number of frames $N_F \ge 3$
- Each world point $\tilde{\boldsymbol{p}}_{i}^{w}$ is visible in **all** frames.
- The world points are **not** all coplanar.
- $(x_{ij}, y_{ij})^T \in \mathbb{R}^2$ is the *j*-th image point in the *i*-th frame.

Factorization Methods

Idea:

- Put all image points together in one matrix M,
- then factorize *M* into a product of two matrices, a projection-matrix *R*, and a matrix *S* (world-points):

$$M = RS$$
.

In general we have:

- R is a $3N_F \times 4$ matrix containing all projection matrices,
- **S** is a $4 \times N_p$ matrix containing all world points (N_p = number of all points).

In the case of orthogonal projections, the homogeneous form is not necessary, thus:

- \mathbf{R} is $2N_{\mathsf{F}} \times 3$,
- **S** is $3 \times N_p$.

Measurement Matrix

Form the so-called *measurement matrix M* of size $2N_F \times N_p$ from the image points:

$$extbf{ extit{M}} = egin{pmatrix} extbf{ extit{X}} extbf{ extit{Y}} \ extbf{ extit{Y}} \ extbf{ extit{,}}$$

where

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1N_p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N_F1} & x_{N_F2} & \dots & x_{N_FN_p} \end{pmatrix}, \qquad \mathbf{Y} = \begin{pmatrix} y_{11} & y_{12} & \dots & y_{1N_p} \\ \vdots & \vdots & \ddots & \vdots \\ y_{N_F1} & y_{N_F2} & \dots & y_{N_FN_p} \end{pmatrix}.$$

Registered Measurement Matrix

For factorization we need the **registered** measurement matrix \widehat{M} containing all 2-D points $(x_{ij}, y_{ij})^T$ shifted so that their mean is 0, i. e.,

$$\widehat{\pmb{M}} = \begin{pmatrix} \widehat{\pmb{X}} \\ \widehat{\pmb{Y}} \end{pmatrix},$$

where the entries of $\hat{\mathbf{X}}$, $\hat{\mathbf{Y}}$ are:

$$\widehat{x}_{ij} = x_{ij} - \overline{x}_i, \qquad \widehat{y}_{ij} = y_{ij} - \overline{y}_i,$$

with

$$\bar{x}_i = \frac{1}{N_p} \sum_{j=1}^{N_p} x_{ij}, \qquad \bar{y}_i = \frac{1}{N_p} \sum_{j=1}^{N_p} y_{ij}.$$

Representation of 2-D Image Points

Now consider the following representation of image points:

$$oldsymbol{x}_{ij} = oldsymbol{u}_i^\mathsf{T} \left(ilde{oldsymbol{p}}_j^W - oldsymbol{t}_i
ight), \quad oldsymbol{y}_{ij} = oldsymbol{v}_i^\mathsf{T} \left(ilde{oldsymbol{p}}_j^W - oldsymbol{t}_i
ight),$$

where

- *u_i*, *v_i* are unit vectors of image reference frame *i* (3-D vectors),
- t_i is the translation vector from world-origin to frame origin,
- $\tilde{\boldsymbol{p}}_{i}^{w}$ is a 3-D world point,
- the world coordinate system is object-centered:

$$\frac{1}{N_p}\sum_{j=1}^{N_p}\tilde{\boldsymbol{p}}_j^w=0$$

Figure 1: Image planes in 3-D

Representation of 2-D Image Points

Thus we get:

$$\widehat{x}_{ij} = x_{ij} - \overline{x}_i = \boldsymbol{u}_i^{\mathsf{T}} (\widetilde{\boldsymbol{p}}_j^W - \boldsymbol{t}_i) - \frac{1}{N_{\mathsf{p}}} \sum_{m=1}^{N_{\mathsf{p}}} (\boldsymbol{u}_i^{\mathsf{T}} (\widetilde{\boldsymbol{p}}_m^W - \boldsymbol{t}_i))$$

$$= \boldsymbol{u}_i^{\mathsf{T}} \widetilde{\boldsymbol{p}}_j^W - \boldsymbol{u}_i^{\mathsf{T}} \boldsymbol{t}_i - \boldsymbol{u}_i^{\mathsf{T}} \left(\left(\frac{1}{N_{\mathsf{p}}} \sum_{m=1}^{N_{\mathsf{p}}} \widetilde{\boldsymbol{p}}_m^W \right) - \boldsymbol{t}_i \right)$$

$$= \boldsymbol{u}_i^{\mathsf{T}} \widetilde{\boldsymbol{p}}_i^W.$$

Computation of Registered Image Points

With $\hat{x}_{ij} = u_i^T \tilde{p}_j^w$ and $\hat{y}_{ij} = v_i^T \tilde{p}_j^w$ the registered measurement matrix looks as follows:

$$\widehat{\boldsymbol{M}} = \begin{pmatrix} \boldsymbol{u}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{1}^{w} & \boldsymbol{u}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{2}^{w} & \dots & \boldsymbol{u}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{N_{\mathsf{p}}}^{w} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{u}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{1}^{w} & \boldsymbol{u}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{2}^{w} & \dots & \boldsymbol{u}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{N_{\mathsf{p}}}^{w} \\ & & & & & \\ \boldsymbol{v}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{1}^{w} & \boldsymbol{v}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{2}^{w} & \dots & \boldsymbol{v}_{1}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{N_{\mathsf{p}}}^{w} \\ \vdots & \vdots & \ddots & \vdots & & \\ \boldsymbol{v}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{1}^{w} & \boldsymbol{v}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{2}^{w} & \dots & \boldsymbol{v}_{N_{\mathsf{F}}}^{\mathsf{T}} \tilde{\boldsymbol{p}}_{N_{\mathsf{p}}}^{w} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}_{1}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{u}_{N_{\mathsf{F}}}^{\mathsf{T}} \\ \boldsymbol{v}_{1}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{v}_{N_{\mathsf{F}}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{p}}_{1}^{w} & \tilde{\boldsymbol{p}}_{2}^{w} & \dots & \tilde{\boldsymbol{p}}_{N_{\mathsf{p}}}^{w} \end{pmatrix}.$$

Notes

- $\widehat{\mathbf{M}}$ can be factorized into:
 - a $2N_F \times 3$ matrix **R** containing camera movement,
 - and a $3 \times N_p$ matrix **S** containing 3-D points.
- \widehat{M} is always of rank 3, since
 - \boldsymbol{u}_i , \boldsymbol{v}_i , $\tilde{\boldsymbol{p}}_i^w$ are 3-vectors,
 - and the world points are **not** all coplanar.
- Factorization can be done using the SVD.
- The factorization is not unique.

Rank theorem: \widehat{M} has rank 3.

Factorization of the Measurement Matrix

If the factorization is $\widehat{M} = RS$, then

$$\widehat{\boldsymbol{M}} = (\boldsymbol{R}\boldsymbol{Q})(\boldsymbol{Q}^{-1}\boldsymbol{S})$$

is also a valid factorization. The matrix Q is an invertible 3×3 matrix.

The following constraints are useful:

- u_i , v_i are orthogonal,
- $|u_i| = |v_i| = 1$.

1. Track points.

- 1. Track points.
- 2. Compute SVD of $\widehat{\mathbf{M}}$:

$$\widehat{\mathbf{M}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}.$$

- 1. Track points.
- 2. Compute SVD of \widehat{M} :

$$\widehat{M} = U \Sigma V^{\mathsf{T}}.$$

3. Set all σ_k for $k \ge 4$ to zero, since rank $(\widehat{\textbf{\textit{M}}}) = 3$.

- 1. Track points.
- 2. Compute SVD of \hat{M} :

$$\widehat{M} = U \Sigma V^{\mathsf{T}}.$$

- 3. Set all σ_k for $k \ge 4$ to zero, since rank $(\widehat{M}) = 3$.
- 4. Let U' be the $2N_F \times 3$ submatrix of U, and V' the $3 \times N_p$ submatrix of V corresponding to σ_1 , σ_2 , and σ_3 . Let $\Sigma' = \text{diag}(\sigma_1, \sigma_2, \sigma_3)$, then compute:

$$\hat{\boldsymbol{R}} = \boldsymbol{U}' \boldsymbol{\Sigma}'^{\frac{1}{2}}, \qquad \hat{\boldsymbol{S}} = \boldsymbol{\Sigma}'^{\frac{1}{2}} \boldsymbol{V}'^{\mathsf{T}}.$$

- 1. Track points.
- 2. Compute SVD of \widehat{M} :

$$\widehat{M} = U \Sigma V^{\mathsf{T}}.$$

- 3. Set all σ_k for $k \ge 4$ to zero, since rank $(\widehat{M}) = 3$.
- 4. Let U' be the $2N_F \times 3$ submatrix of U, and V' the $3 \times N_p$ submatrix of V corresponding to σ_1 , σ_2 , and σ_3 . Let $\Sigma' = \text{diag}(\sigma_1, \sigma_2, \sigma_3)$, then compute:

$$\hat{\boldsymbol{R}} = \boldsymbol{U}' \boldsymbol{\Sigma}'^{\frac{1}{2}}, \qquad \hat{\boldsymbol{S}} = \boldsymbol{\Sigma}'^{\frac{1}{2}} \boldsymbol{V}'^{\mathsf{T}}.$$

5. Solve the following (nonlinear) equations for Q:

$$\hat{\boldsymbol{u}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{u}}_{i} = 1,$$

 $\hat{\boldsymbol{v}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{v}}_{i} = 1,$
 $\hat{\boldsymbol{u}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{v}}_{i} = 0.$

- 1. Track points.
- 2. Compute SVD of \widehat{M} :

$$\widehat{M} = U \Sigma V^{\mathsf{T}}.$$

- 3. Set all σ_k for $k \ge 4$ to zero, since rank $(\widehat{M}) = 3$.
- 4. Let U' be the $2N_F \times 3$ submatrix of U, and V' the $3 \times N_p$ submatrix of V corresponding to σ_1 , σ_2 , and σ_3 . Let $\Sigma' = \text{diag}(\sigma_1, \sigma_2, \sigma_3)$, then compute:

$$\hat{\boldsymbol{R}} = \boldsymbol{U}' \boldsymbol{\Sigma}'^{\frac{1}{2}}, \qquad \hat{\boldsymbol{S}} = \boldsymbol{\Sigma}'^{\frac{1}{2}} \boldsymbol{V}'^{\mathsf{T}}.$$

5. Solve the following (nonlinear) equations for **Q**:

$$\hat{\boldsymbol{u}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{u}}_{i} = 1,$$

 $\hat{\boldsymbol{v}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{v}}_{i} = 1,$
 $\hat{\boldsymbol{u}}_{i}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \hat{\boldsymbol{v}}_{i} = 0.$

6. Compute the output:

$$\mathbf{R} = \hat{\mathbf{R}}\mathbf{Q}, \qquad \mathbf{S} = \mathbf{Q}^{-1}\hat{\mathbf{S}}.$$

Remarks

- Nonlinear optimization for Q is not very pleasant.
- Elegant "democratic" method: All points are treated equally.
- It is mathematically simple and stable.
- The algorithm yields only the rotation of the world points.
- It is used in industry.
- Translation parallel to the image plane is proportional to the translation of the image centroid between two frames.
- The translational component along the optical axis cannot be computed because of the orthogonal projection model.
- Adding new frames is easy and gives a more stable reconstruction.
- Problem: All 3-D points must be visible in all frames.
- Check the assumption that the camera gives an orthogonal image.

Topics

Factorization Methods for Orthographic Projections

Preliminaries

Registered Measurement Matrix

Factorization of the Measurement Matrix

Summary

Take Home Messages

Further Readings

Take Home Messages

- If we put all image points from several ultrasound acquisitions into a single measurement matrix for 3-D reconstruction, we can perform a factorization of this matrix.
- One of the factorized matrices contains the projective information, the other contains the world points.
- We need to register a given measurement matrix towards the centroid center of the image points.
- Tomasi's algorithm can be used to compute a factorization in case of orthogonal projections.

Further Readings

- Carlo Tomasi and Takeo Kanade. "Shape and Motion from Image Streams Under Orthography: A Factorization Method". In: *International Journal of Computer Vision* 9.2 (Nov. 1992), pp. 137–154. DOI: 10.1007/BF00129684
- C. J. Poelman and T. Kanade. "A Paraperspective Factorization Method for Shape and Motion Recovery". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19.3 (Mar. 1997), pp. 206–218. DOI: 10.1109/34.584098
- Mei Han and Takeo Kanade. "A Perspective Factorization Method for Euclidean Reconstruction with Uncalibrated Cameras". In: *The Journal of Visualization and Computer Animation* 13.4 (2002), pp. 211–223. DOI: 10.1002/vis.290
- Peter Sturm and Bill Triggs. "A Factorization Based Algorithm for Multi-Image Projective Structure and Motion". In: Computer Vision — ECCV '96: 4th European Conference on Computer Vision Cambridge, UK, April 15–18, 1996 Proceedings Volume II. ed. by Bernard Buxton and Roberto Cipolla. Vol. 1065. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 709–720. DOI: 10.1007/3-540-61123-1_183