«به نام خدا»

تكليف سوم – سوال پنجم – مرضيه عليدادی – 9631983

(کد های مربوط، در دو فرمت py. و ipynb. ضمیمه شده اند. – فایل dot_file.dot نیز ضمیمه شده است.)

.4

a دیتاست با وجود مقادیر NULL به این صورت است:

	T3_resin	Serum_thyroxin	Serum_triiodothyronine	Basal_TSH	Abs_diff_TSH	Outcome
0	107.0	10.1	2.2	0.9	2.7	1.0
1	NaN	9.9	3.1	2.0	5.9	1.0
2	127.0	12.9	2.4	NaN	0.6	1.0
3	109.0	NaN	1.6	1.4	1.5	1.0
4	105.0	7.3	1.5	NaN	-0.1	1.0
5	105.0	6.1	2.1	1.4	7.0	1.0
6	110.0	NaN	1.6	1.6	2.7	1.0
7	114.0	NaN	2.4	1.5	5.7	1.0
8	106.0	?	2.2	1.5	NaN	1.0
9	107.0	13.0	1.1	0.9	3.1	1.0

ابتدا بررسی کردم و متوجه شدم که مقادیر NULL علاوه بر دو شکل NULL و NaN ، به صورت "?" هم ذخیره شده اند. پس آن ها را هم به NaN تبدیل کردم.

> سپس تایپ همه ی متغیر ها را به float تبدیل کردم تا بتوان از آن ها میانگین گرفت. درنهایت، پس از جایگذاری مقادیر NULL با میانگین هر ستون، دیتاست به این شکل در آمد:

	T3_resin	Serum_thyroxin	Serum_triiodothyronine	Basal_TSH	Abs_diff_TSH	Outcome
0	107.000000	10.100000	2.2	0.900000	2.700000	1.0
1	107.761628	9.900000	3.1	2.000000	5.900000	1.0
2	127.000000	12.900000	2.4	1.274269	0.600000	1.0
3	109.000000	10.870115	1.6	1.400000	1.500000	1.0
4	105.000000	7.300000	1.5	1.274269	-0.100000	1.0
5	105.000000	6.100000	2.1	1.400000	7.000000	1.0
6	110.000000	10.870115	1.6	1.600000	2.700000	1.0
7	114.000000	10.870115	2.4	1.500000	5.700000	1.0
8	106.000000	10.870115	2.2	1.500000	2.047093	1.0
9	107.000000	13.000000	1.1	0.900000	3.100000	1.0

b) همبستگی ها:

	T3_resin	Serum_thyroxin	Serum_triiodothyronine	Basal_TSH	Abs_diff_TSH	Outcome
T3_resin	1.000000	-0.224923	-0.150091	0.103323	0.204132	-0.248920
Serum_thyroxin	-0.224923	1.000000	0.617121	-0.179007	-0.407017	0.776032
Serum_triiodothyronine	-0.150091	0.617121	1.000000	-0.166763	-0.298197	0.591060
Basal_TSH	0.103323	-0.179007	-0.166763	1.000000	0.176113	-0.210160
Abs_diff_TSH	0.204132	-0.407017	-0.298197	0.176113	1.000000	-0.427268
Outcome	-0.248920	0.776032	0.591060	-0.210160	-0.427268	1.000000

نمودار heatMap:

پراکندگی این ستون، در ابتدا به این شکل بود: (به طور مشخص imbalanced است)

1.000000 144 2.000000 30 1.172414 11

Name: Outcome, dtype: int64

1.17 همان مقدار میانگین ستون بوده، که آن را جایگزین مقادیر null کرده بودم. با توجه به نامعتبر بودن 1.17 از لحاظ مفهوم در این ســـتون، با توجه به اینکه به 1 نزدیک تر اســت و به طور کلی فراوانی 1 بیشتر است، احتمال اینکه 1 بوده باشند بیشتر است؛ پس آن ها را به 1 تبدیل کردم. پس پراکندگی این ستون، به این شکل در آمد:

> 1.0 155 2.0 30

Name: Outcome, dtype: int64

فرضاً برای بالانس کردن آن می خواهیم از هریک از این دو مقدار، 50 درصد در این ستون وجود داشته باشد.

$$x = \frac{p(records) - rare}{1 - p} = 125$$

يس بايد 125 سطر با income = 2 به اين ديتاست اضافه كنيم.

درنهایت، پراکندگی این ستون در دیتاست به این شکل شد:

2.0 155 1.0 155

Name: Outcome, dtype: int64

(d

```
print(x_train.shape);
print(x_test.shape);
print(y_train.shape);
print(y_test.shape);

(248, 5)
(62, 5)
(248,)
(62,)
```

(e

f با استفاده از قابلیت های sklearn با استفاده از درخت تصمیمی که در بخش قبل تولید کرده بودم، متغیر هدف را برای داده های تست پیشبینی کردم. نتیجه را با مقادیر واقعی متغیر هدف مقایسه کردم. بدین صورت شد:

```
print(confusion_matrix(y_test, y_pred))
[[26 2]
[ 0 34]]
```

<pre>print(classification_report(y_test, y_pred))</pre>							
	precision	recall	f1-score	support			
1.0	1.00 0.94	0.93 1.00	0.96 0.97	28 34			
accuracy macro avg weighted avg	0.97 0.97	0.96 0.97	0.97 0.97 0.97	62 62 62			

همانطور که مشخص است، از بین 62 پیشبینی، 60 تا را درست حدس زد و 2 تا را اشتباه حدس زد. یعنی دقت درخت تصمیم گیری ما، %96.77 است.

(g

- در حالت 3: max_depth=1 اشتباه
- در حالت 6 : max_depth=2 اشتباه
- در حالت 2 : max_depth=3 اشتباه
- در حالت 2: max_depth=4 اشتباه
- در حالت 2: max_depth=5 اشتباه
- در حالت 1: max_depth=6 در حالت
- در حالت 1: max_depth=7 اشتباه
- در حالت 2 : max_depth=8 اشتباه
- در حالت 0 : max_depth=9 اشتباه
- در حالت اتوماتیک: در این حالت، عمق را بررسی کردم و برابر 7 بود. دقت در این حالت برابر %100 بود. به طور واضح، میتوان گفت هر چه max_depth بیشتر باشد، دقت بیشتر می شود. پس 9 را به عنوان بهترین در نظر می گیرم.
- **(h** با استفاده از متد feature_importances بر روی مدل خود، می توانیم اهمیت هر کدام از ویژگی های دیتاست مورد نظر را، بدست آوریم.

این متد، یک امتیاز به هرکدام از ویژگی های دیتاست می دهد. هرچه امتیاز بیشـتر باشـد، آن ویژگی، نسـبت به متغیر خروجی(هدف)، مهم تر یا مرتبط تر است.

مثلا می توان با استفاده از آن، 10 تا مهم ترین متغیرهای دیتاست را مشاهده کرد.

مقداری که این متد برای متغیر های درخت تصمیم دیتاست ما نشان می دهد، به این صورت است:

```
print(cart.feature_importances_)
[0.07676913 0.77528725 0.04035761 0. 0.10758601]
```

feat_importances = pd.Series(cart.feature_importances_, index=x_train.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()

نتیجه ی این متد نشان می دهد، که متغیر Serum_thyroxin مهم ترین و مرتبط ترین متغیر نسبت به استخراج متغیر هدف است. و متغیر Basal_TSH کم اهمیت ترین و نامربوط ترین است.

Classifier (i که در بخش g به عنوان بهترین انتخاب شده بود، آنی بود که از عمق ماکسیمم 9 در آن استفاده شده بود؛ که دقت آن %100 برآورد شده بود. از همان Classifier در این بخش استفاده می کنم.

یک فایل با فرمت dot. ساختم و نتیجه ی این متد را در آن ذخیره کردم:

<_io.TextIOWrapper name='Desktop/dot_file.dot' mode='w' encoding='cp1256'>

فایل ضمیمه شده است.

(j گراف حاصل از dot_file.dot :

