Projet Gestion Quantitative: étude d'article

Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach (2020)

Heimana ZHONG, Steven WORICK, Yuan LI

6 Février 2021

- 1 Présentation de l'article
 - Introduction et objectif
 - LASSO quantile régression
 - Analyse de portefeuilles
 - Quelques chiffres autour du sujet et limites
- 2 Extensions
 - Ridge et Elastic-net
 - Estimateur de Hill

Introduction

- 3 Janvier 2009: création de Bitcoin par Satoshi Nakamoto
 - décentralisé
 - technique de Blockchain
- 14 Janvier 2015: chute du taux de change BTC/USD d'environ 21% à cause d'une cyberattaque
- Plusieurs autres épisodes similaires où les prix ont fortement évolué
- Les facteurs pouvant provoquer des sauts de prix:
 - illiquidité
 - déséquilibre des flux d'ordres
 - domination des traders agressifs

Objectif

- Etudier la connectivité du risque extrême sur les marchés des crypto-monnaies
- Identifier les principaux conducteurs et les principaux récepteurs du réseau
- Analyse de portefeuilles: équipondéré vs mean-CVaR

000000000

LASSO quantile régression

Dataset

- 21 crypto-monnaies:
 - $lue{}$ capitalisation boursière \geq 50 millions USD 31 Décembre 2019
 - au moins 3 ans d'historiques
 - Stablecoins sont exclus
- Période d'étude: 01 Nov 2016-31 Dec 2019
- Rendements quotidiens

Régression quantile :

$$VaR_{q,t}^{i} = \alpha^{i} + \theta^{i\top} \mathbf{E}_{t}^{-i} + \omega^{i} X_{t-1}^{i}$$

où $\mathrm{VaR}^i_{q,t}$ est la VaR (également appelée la fonction quantile conditionnelle) du rendement de la crypto-monnaie i au qième quantile au temps t. X^i_{t-1} est le rendement de la crypto-monnaie i au temps t-1.

 \mathbf{E}_t^{-i} est un vecteur dont les éléments sont le dépassement des pertes de tous les autres crypto-monnaies du réseau à l'exception de la crypto-monnaie i au moment t.

Méthodes

Le dépassement de la perte la crypto-monnaie j notée \mathbf{E}_t^j , est définie comme suit:

$$E_t^j = \left\{ egin{array}{l} 0, X_t^j \geq {f q} \ {
m i} {
m e} {
m me} \ {
m quantile} \ {
m inconditionnel} \ {
m du} \ X^j \ X_t^j, \ {
m sinon}. \end{array}
ight.$$

 θ^i est le vecteur de rendement. Le jième élément du vecteur, noté θ^i_j est le coefficient de répercussion de la crypto-monnaie j à la crypto-monnaie i où le rendement de la crypto-monnaie j est en-dessous du qième quantile de la distribution du rendement.

LASSO

Etape 1 : L'approche suivie dans l'article consiste à estimer le vecteur de coefficient ξ^i en minimisant le programme d'optimisation suivant :

$$\frac{1}{T} \sum_{t=1}^{T} \left[q - I\left(X_t^i \leq \xi^{i\top} W_t^i\right) \right] \left(X_t^i - \xi^{i\top} W_t^i\right) + \lambda^i \frac{\sqrt{(q(1-q))}}{T} \sum_{k=1}^{K} \left|\xi_k^i\right|$$

 λ^i est le coefficient de pénalité du modèle. X^i_t est le rendement de la crypto-monnaie i au temps t

 $I(X_t^i \xi^i W_t^i)$ est la fonction d'indicateur qui prend la valeur de 1 si $X_t^i \xi^i W_t^i$ et de 0 sinon K est le nombre de régresseurs dans W_t^i ξ_t^i est le kième élément du vecteur de coefficient ξ^i .

1 ト 4回 ト 4 恵 ト 4 恵 ト

LASSO

Étape 2 : Supprimer les variables du rang k tel que ξ^i au rang k inférieur à 0.0001

Étape 3 : Refaire la régression avec les variables sélectionnées :

$$\xi^{i\top} W_t^i = \alpha^i + \theta^{i\top} E_t^{-i} + \omega^i X_{t-1}^i$$

Les coefficients de répercussion estimés sont ensuite regroupés dans la matrice de connectivité du risque extrême notée A où l'élément A^i_j prend la valeur du coefficient estimé post-LASSO θ^i_j si la variable est sélectionnée et 0 sinon.

Résultats

Table: La connectivité du risque extrême des crypto-monnaies. Échantillon complet analyse statique : 21 crypto-monnaies.

	Right tail	Left tail	Difference
1% VaR	73	39	34
5% VaR	182	85	97
10% VaR	174	140	34
20% VaR	162	106	56

Résultats

- Les crypto-monnaies semblent être fortement exposées au risqué extrême
- La connectivité du risque extrême a tendance à être plus forte aux seuils moins extrêmes
- Il y a plus de connectivité aux queues de droite qu'aux queues de gauche

Résultats

Table: Top 5 crypto-monnaies en termes de In-Degree, Out-Degree, Net-Degree

				_											
Cryp-	1%	Cryp-	5%	Cryp-	10%	Cryp-	20%	Cryp-	20%	Cryp-	10%	Cryp-	5%	Cryp-	1%
tocur-	left	tocur-	left	tocur-	left	tocur-	left	tocur-	right	tocur-	right	tocur-	right	tocur-	right
rency	tail	rency	tail	rency	tail	rency	tail	rency	tail	rency	tail	rency	tail	rency	tail
Panel A: In-	Degree														
Dogecoin	8	Siacoin	12	Waves	13	Siacoin	12	NEM	16	NEM	16	Bitcoin	13	Ethereum Classic	9
Ethereum Classic	7	Dash	11	Siacoin	12	Zcash	11	MonaCoin	14	Dogecoin	13	Dogecoin	13	DigiByte	8
Monero	7	Bytecoin	8	Bytecoin	10	Litecoin	10	Stellar	13	Ethereum	13	Lisk	13	Lisk	8
Augur	6	NEM	7	Litecoin	9	Monero	10	Bytecoin	11	MonaCoin	12	NEM	13	Verge	8
Neo	4	Litecoin	7	NEM	9	Ethereum Classic	9	Siacoin	11	Lisk	11	Siacoin	13	Augur	7
anel B: Ou	t-Degree														
NEM	7	Ethereum Classic	9	Ethereum	16	NEM	12	Ethereum	18	Lisk	17	Litecoin	16	Lisk	8
DigiByte	3	Decred	8	Ethereum Classic	12	Ethereum	11	Bitcoin	15	Bitcoin	15	Bitcoin	15	Bitcoin	7
Ethereum	3	Augur	7	Litecoin	12	Siacoin	8	Lisk	15	Litecoin	14	Dash	13	Waves	6
Ethereum Classic	3	Ethereum	7	NEM	12	Dash	7	Waves	14	Waves	14	Ethereum	12	Ethereum	5
Litecoin	3	Waves	7	Monero	8	Monero	7	Litecoin	13	Ethereum	13	Lisk	12	Ethereum Classic	5
Panel C: Ne	t-Degree														
NEM	7	Ethereum Classic	9	Ethereum	11	Ethereum	11	Bitcoin	15	Bitcoin	13	Augur	11	NEM	5
DigiByte	3	Decred	8	Decred	7	NEM	11	Ethereum	13	Decred	7	Decred	9	Waves	5
Ethereum	3	Waves	7	Ethereum	4	Waves	5	Litecoin	12	Ethereum	6	DigiByte	5	Dash	4
				Classic			-			Classic	-	67	-		
Litecoin	3	Augur	4	Litecoin	3	Lisk	4	Lisk	11	Lisk	6	Litecoin	4	Bitcoin	3
Stellar	3	Neo	4	NEM	3	Neo	4	Dash	8	Dash	4	Zcash	3	Dogecoin	3

- Principaux récepteurs : Siacoin et NEM
- Principal récepteur du risque extrême positif : Lisk
- Principaux facteurs : Ethereum et Litcoin
- Principal facteur du risque extrême positif : Bitcoin
- Principaux facteurs de risque extrême net : Litecoin, Ethereum, NEM, Decred
- Principal facteur du risque extrême positif net : Bitcoin
- Principaux acteurs du réseau : Litecoin and Ethereum Classic

Première approche

- Analyse de performance entre un portefeuille équipondéré buy-and-hold et un portefeuille mean-CVaR buy-and-hold
- 1 mai 2017 1 mai 2018
- Le portefeuille équipondéré surperforme le portefeuille mean-CVaR.

Deuxième approche

- La deuxième approche consiste à construction les deux portefeuilles hypothétiques avec un rebalancement périodique des poids et des coûts de transactions.
- La performance du portefeuille mean-CVaR cherchant activement à minimiser le risque extrême indique que la diversification peut être directement accomplie avec une pondération égale.

Résultats

Table: Performance des portefeuilles avec rebalancement et coûts de transaction

Transaction cost = 10 bps

4,913.298	3,610.819	4,853.566	274.817	3,505.563	269.728
0.575	0.708	0.595	0.337	0.575	0.333
5.915	8.442	6.285	6.445	6.465	6.378
-12.588	-15.815	-13.416	-13.275	-14.011	-13.023
1.837	1.588	1.791	0.982	1.681	0.980
0.863	0.848	0.839	0.477	0.776	0.480
	0.575 5.915 -12.588 1.837	0.575 0.708 5.915 8.442 -12.588 -15.815 1.837 1.588	0.575 0.708 0.595 5.915 8.442 6.285 -12.588 -15.815 -13.416 1.837 1.588 1.791	0.575 0.708 0.595 0.337 5.915 8.442 6.285 6.445 -12.588 -15.815 -13.416 -13.275 1.837 1.588 1.791 0.982	0.575 0.708 0.595 0.337 0.575 5.915 8.442 6.285 6.445 6.465 -12.588 -15.815 -13.416 -13.275 -14.011 1.837 1.588 1.791 0.982 1.681

Résultats

Table: Performance des portefeuilles avec rebalancement et coûts de transaction

Transaction cost = 50 bps

4,734.344	486.966	4,738.339	307.611	3,444.161	304.891
0.571	0.396	0.593	0.349	0.573	0.349
5.915	6.628	6.286	6.483	6.466	6.499
-12.591	-13.118	-13.425	-13.056	-14.011	-13.099
1.825	1.124	1.784	1.011	1.675	1.009
0.857	0.568	0.835	0.502	0.773	0.501
	0.571 5.915 -12.591 1.825	0.571 0.396 5.915 6.628 -12.591 -13.118 1.825 1.124	0.571 0.396 0.593 5.915 6.628 6.286 -12.591 -13.118 -13.425 1.825 1.124 1.784	0.571 0.396 0.593 0.349 5.915 6.628 6.286 6.483 -12.591 -13.118 -13.425 -13.056 1.825 1.124 1.784 1.011	0.571 0.396 0.593 0.349 0.573 5.915 6.628 6.286 6.483 6.466 -12.591 -13.118 -13.425 -13.056 -14.011 1.825 1.124 1.784 1.011 1.675

Quelques chiffres autour du sujet

Table: Résultats de recherche sur Google Sholar

Mot-clé	cryptocurrency
2009-2014	2170 résultats
2015-2021	18800 résultats

Mot	-clé	tail risk crypto
		9600 résultats

Quelques chiffres autour du suiet et limites

Limites

- La période d'étude est relativement courte : trois ans d'observations
- Une des limites du LASSO: en cas de fortes corrélations entre les variables
- Le fait de ne pas pouvoir vendre à découvert dans la construction des portefeuilles

Illustration

Extensions

Ridge et Elastic-net

Ridge et Elastic-net

Les fonctions d'optimisations sont définies:

LASSO(I^1 penalisation):

$$\frac{1}{T} \sum_{t=1}^{T} \left[q - I\left(X_{t}^{i} \leq \xi^{iT} W_{t}^{i}\right) \right] \left(X_{t}^{i} - \xi^{iT} W_{t}^{i}\right) + \lambda \frac{\sqrt{q(1-q)}}{T} \sum_{k=1}^{K} \left|\xi_{k}^{i}\right|$$

Ridge(I^2 penalisation):

$$\frac{1}{T}\sum_{t=1}^{T}\left[q-\operatorname{I}\left(X_{t}^{i}\leq\xi^{iT}W_{t}^{i}\right)\right]\left(X_{t}^{i}-\xi^{iT}W_{t}^{i}\right)+\lambda\frac{\sqrt{q(1-q)}}{T}\sum_{k=1}^{K}\xi_{k}^{j2}$$

Elastic-net($I^1 + I^2$ penalisation):

$$\alpha I^1 + (1-\alpha)I^2$$

Résultats

Ridge et Elastic-net

Table: La connectivité du risque extrême des crypto-monnaies en utilisant LASSO, Ridge et Elastic-net: alpha=0.85 seuil de sélecion=10⁻⁴

	LASSO		RIDG	E	C-NET		
	Right Tail	Left Tail	Right Tail	Left Tail	Right Tail	Left Tail	
1% VaR	381	336	420	420	352	352	
5% VaR	341	286	420	419	359	297	
10% VaR	325	297	420	420	339	310	
20% VaR	330	317	419	420	329	315	

Ridge et Elastic-net

Résultats Ridge

Table: La connectivité du risque extrême des crypto-monnaies en utilisant

Ridge: seuil de sélecion=0.05

	RIDGE _{seuil=0.05}			
	Right Tail	Left Tail		
1% VaR	268	223		
5% VaR	316	246		
10% VaR	280	230		
20% VaR	224	204		

Estimateur de Hill

L'Estimateur de Hill défini par :

$$\xi_{k(n),n}^{H} = \frac{1}{k(n)} \sum_{i=n-k(n)+1}^{n} \log \left(\frac{X_{i:n}}{X_{n-k(n)+1:n}} \right)$$

$$VaR(p) = \left(\frac{k}{n(1-p)}\right)^{\xi^H} X_{n-k+1:n}$$

où ξ^H est l'estimateur de Hill du paramètre de la GEV.

Résultats VaR de Hill

Table: VaR simulée avec l'estimateur de Hill

	mean VaR Hill
99%	0.3890
95%	0.1999
90%	0.1519
80%	0.1162
20%	-0.0304
10%	-0.0294
5%	-0.0281
1%	-0.0255

Redéfinition de la fonction du dépassement de perte

- Dans l'article étudié, l'auteur a utilisé les quantiles des rendements historiques dans la définition de la fonction du dépassement de perte E_t^j
- Afin de prendre en compte les phénomènes de queues épaisses et d'éviter l'utilisation de quantile historique, nous avons décidé d'utiliser la VaR simulée par l'estimateur de Hill pour définir le dépassement de la crypto-monnaie j, notée $E_t{}^j$, est redéfinie comme suit :

$$E_t^j \left\{ egin{array}{l} 0, X_t^j \geq VaR^{Hill}(q) \ de \ X_t^j \ E_t^j \left\{ egin{array}{l} 0, X_t^j \leq VaR^{Hill}(q) \ de \ X^j \ X_t^j \end{array}
ight.$$

Résultats LASOO avec VaR de Hill

Table: La connectivité du risque extrême des crypto-monnaies en utilisant LASSO et VaR simulé avec l'estimateur de Hill: seuil de sélecion=10⁻⁴

	LASSO_{Hill}			
	Right Tail	Left Tail		
1% VaR	373	340		
5% VaR	340	288		
10% VaR	312	304		
20% VaR	328	313		

Merci pour votre attention!

