(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 27.08.1997 Bulletin 1997/35
- (21) Application number: 97301066.3
- (22) Date of filing: 19.02.1997

(51) Int CI.6: **C12N 15/52**, C12N 9/00, C12N 15/63, C12P 19/62, C12P 17/08

(11)

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE

Designated Extension States: RO

- (30) Priority: 22.02.1996 US 12050
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)
- (72) Inventors:
 - Burgett, Stanley Gene Indianapolis, Indiana 46227 (US)

- Kuhstoss, Stuart Allen Indianapolis, Indiana 46256 (US)
- Rao, Ramachandra Nagaraja
 Indianapolis, Indiana 46260 (US)
- Richardson, Mark Alan Bloomington, Indiana 46408 (US)
- Rosteck, Paul Robert, Jr.
 Indianapolis, Indiana 46237 (US)
- (74) Representative: Tapping, Kenneth George et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)
- (54) Platenolide synthase gene
- (57) A DNA molecule isolated from Streptomyces

ambofaciens encodes the multi-functional proteins which direct the synthesis of the polyketide platenolide.

Description

40

45

The present invention is directed to the DNA isolated from *Streptomyces ambofaciens* responsible for encoding the multi-functional proteins which direct the synthesis of the polyketide platenolide. The present invention also is directed to use of that DNA to produce compounds exhibiting antibiotic activity based on the platenolide structure, including specifically spiramycin and spiramycin analogues and derivatives.

Spiramycin is a macrolide antibiotic useful in both veterinary and human medicine produced by *Streptomyces ambofaciens* (ATCC 15154). Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. Spiramycin's antibiotic activity is believed to be due to its inhibition of protein synthesis by a mechanism that involves binding of the antibiotic to a ribosome. Spiramycin is structurally similar to another antibiotic, tylosin, and the biosynthetic pathways of both are known to be similar.

The biosynthesis of tylosin has been thoroughly investigated (Baltz et al., Antimicrobial Agents and Chemotherapy, 20(2):214-225(1981); Beckmann et al., Genetics and Molecular Biology of Industrial Microorganisms, (1989):176-186). Polyketides are synthesized via a common mechanistic scheme thought to be related to fatty acid synthesis. The cyclic lactone framework is prepared by a series of condensations involving small carboxylic acid residues. Modifications of the structure, such as ketoreduction, dehydration and enolylreduction, also occur during the processing. The synthesis is driven by a set of large multi-functional polypeptides, referred to as polyketide synthases.

PCT Publication WO 93/13663 describes the organization of the gene encoding the polyketide synthase of Saccharapolyspora ezythraea. The gene is organized in modules, with each module effecting one condensation step. The precise sequence of chain growth and the processing of the growing chain is determined by the genetic information in each module. This PCT application describes an approach for synthesizing novel polyketide structures by manipulating in several ways the DNA governing the biosynthesis of the cyclic lactone framework. In order to adapt this methodology to other polyketides, however, the DNA molecules directing the biosynthetic processing must first be isolated.

The present invention is directed to the DNA sequence for the gene cluster responsible for encoding platenolide synthase, the building machinery of platenolide which is the basic building block of spiramycin. As a result, the present invention provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide, arising from modifications of this DNA sequence designed to change the number and type of carboxylic acids incorporated into the growing polyketide chain and to change the kind of post-condensation processing that is conducted.

The present invention provides a DNA molecule comprising an isolated DNA sequence that encodes a platenolide synthase domain. Thus, the present invention provides the DNA molecule of SEQ ID NO:1 and DNA molecules that contain submodules thereof. The present invention also provides the products encoded by said DNA molecules, recombinant DNA expression vectors, and transformed microbial host cells. The present invention is further directed to a method of screening for new antibiotics based on the platenolide structure.

Figure 1 shows the map of the srmG region of the *S. ambofaciens* DNA. Distances in kb are shown relative to the beginning of srmG. Open reading frames (ORF) are indicated by block arrows. The srmG DNA (0-42 kb) is the plate-nolide PKS region. The indicia Ap, G, E, K, P, and X denote restriction sites Apal, Bglll, EcoRl, Kpnl, Pstl and Xhol, respectively. Predicted domains for the srmG DNA are labeled as shown. ACP stands for acyl carrier protein; AT stands for acyltransferase; DH stands for dehydratase; ER stands for enoylreductase; KR stands for ketoreductase; KS stands for ketosynthase; and KS' stands for a ketosynthase-like domain in which a glutamine residue is present in the position occupied by an active site cysteine in a normal ketosynthase. KR' is a domain that resembles a ketoreductase but which is predicted to be inactive.

Figure 2 demonstrates the biosynthetic pathway for platenolide synthesis. A denotes malonyl-CoA; B denotes ethylmalonyl-CoA; P denotes methylmalonyl-CoA; C2 denotes a CoA derivative related to malonyl-CoA but of unknown structure.

Figure 3 shows the map of two clones that span the whole region of the srmG DNA.

The term polyketide defines a class of molecules produced through the successive condensation of small carboxylic acids. This diverse group includes plant flavonoids, fungal aflatoxins, and hundreds of compounds of different structures that exhibit antibacterial, antifungal, antitumor, and anthelmintic properties. Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways; others do not yet have an ascribed function. Some polyketides have more than one pharmacological effect. The diversity of polyketide structures reflects the wide variety of their biological properties. Many cyclized polyketides undergo glycosidation at one or more sites, and virtually all are modified during their synthesis through hydroxylation, reduction, epoxidation, etc.

A common feature of compounds in this class is that their synthesis is directed by a complex of multi-functional peptides, termed a "polyketide synthase". Molecular genetic analysis of polyketide synthase genes has revealed two distinct classes of enzymes operating for different polyketides: (a) the aromatics, which are made through an essentially iterative process; (b) the complex polyketides, which comprise several repeats of the same activities arranged in few, very large polypeptides. A common feature among complex polyketide synthase genes is that they are generally arranged in several open reading frames (ORFs), each of which contains one or more repeated units, designated mod-

ules. Each module processes one condensation step and typically requires several activities accomplished by several enzymes including acyl carrier protein (ACP), β-ketosynthase (KS), and acyltransferase (AT).

Therefore a "module" is defined as the genetic element encoding a multi-functional protein segment that is responsible for all of the distinct activities required in a single round of synthesis, i.e., one condensation step and all the β -carbonyl processing steps associated therewith. Each module encodes an ACP, a KS, and an AT activity to accomplish the condensation portion of the synthesis, and selected post-condensation activities to effect β -carbonyl processing. Each module is therefore, further characterized by the inclusion of submodules that are responsible for encoding the distinct activities of a complex polyketide synthase. A "submodule" thus is defined as the portion of the polyketide synthase DNA sequence that encodes a distinct activity, or "domain". A distinct activity or domain is commonly understood to mean that part of the polyketide synthase polyprotein necessary for a given distinct activity.

The protein segments corresponding to each module are called synthase units (SUs). Each SU is responsible for one of the fatty acid-like cycles required for completing the polyketide; it carries the elements required for the condensation process, for selecting the particular extender unit (a coenzyme A thioester of a dicarboxylate) to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the ACP it occupies to the KS of the next SU utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, employing a new SU for each elongation cycle, until the programmed length has been reached. As in synthesis of long chain fatty acids, the number of elongation cycles determines the length of the molecule. However, whereas fatty acid synthesis involves a single SU used iteratively, formation of complex polyketides requires participation of a different SU for each cycle, thereby ensuring that the correct molecular structure is produced. The composition of the polyketide synthase gene modules are variable. Some carry the full complement of β -ketoreductase(KR), dehydratase(DH), and enoylreductase(ER) domains, and some encode a particular domain only or lack a functional domain, although much of the sequence is preserved.

This variable composition of the modules, which correlate with the asymmetry in the synthesis of the polyketide precursor, enable a specific step to be assigned to each module. Since each enzymatic activity is involved in a single biochemical step in the pathway, loss of any one activity should affect only a single step in the synthesis. Knowledge of the correlation between the structure of the polyketide and the organization of the polyketide synthase genes enables one to produce altered genes selectively which produce a polyketide derivative with predicted structure.

Because the degree of processing appears to depend on the presence of functional domains in a particular SU, inactivation of a KR, DH, or ER will result in a polyketide less processed at a single site, but only if the altered chain thus produced can be utilized as a substrate for the subsequent synthesis steps. Thus, the inactivation of one of these domains should result in the formation of a polyketide retaining a ketone, hydroxyl, or site of unsaturation at the corresponding position. This rationale has led to the successful production of altered erythromycin derivatives from strains in which a KR or an ER domain had been inactivated.

Thus, one can engineer polyketide pathways by genetic intervention of the polyketide synthase and by adding or eliminating modification steps. Many of the enzymes involved in postpolyketide modifications do not seem to have absolute specificity for a particular structure. In addition one can also select the desired components from a library of polyketide and postpolyketide biosynthesis genes and combine them to produce novel structures.

The present invention provides, in particular, the DNA sequence encoding the polyketide synthase responsible for biosynthesis of platenolide, i.e., platenolide synthase. Platenolide itself is the foundation for spiramycin-related polyketides. The platenolide synthase DNA sequence, which defines the platenolide synthase gene cluster, directs biosynthesis of the platenolide polyketide by encoding the various distinct activities of platenolide synthase.

The gene cluster for platenolide synthase, like other polyketide biosynthetic genes whose organization has been elucidated, is characterized by the presence of several ORFs, each of which contains one or more repeated units termed modules as defined above. Each module also further includes submodules as defined above. Organization of the platenolide synthase gene cluster derived from *Streptomyces ambofaciens* is shown in Figure 1. The accompanying synthetic pathway and the specific carboxylic acid substrates that are used for each condensation reaction and the post-condensation activities of platenolide synthesis are indicated in Figure 2.

A preferred DNA molecule comprising the platenolide synthase gene cluster isolated from *Streptomyces ambofaciens* is represented by SEQ ID NO: 1. Other preferred DNA molecules of the present invention include the various ORFs of SEQ ID NO: 1 that encode individual multi-functional polypeptides. These are represented by ORF1, 350 to 14002, ORF2, 14046 to 20036, ORF3, 20110 to 31284, ORF4, 31329 to 36071, and ORF5, 36155 to 41830 all in SEQ ID NO: 1. The predicted amino acid sequences of the various peptides encoded by these sequences are shown in SEQ ID NO: 2, 3, 4, 5, and 6.

Yet other preferred DNA molecules of the present invention include the modules that encode all the activities necessary for a single round of synthesis. These are represented by starter module 392 to 3424, module 1, 3527 to 8197, module 2, 8270 to 13720, module 3, 14148 to 19730, module 4, 20215 to 24678, module 5, 24742 to 31002, module 6, 31428 to 35837, and module 7, 36257 to 41395 all in SEQ ID NO: 1. The predicted amino acid sequences of the various synthase units encoded by these modules are represented by starter SU 15 to 1025, SU1, 1060 to 2616,

and SU2, 2641 to 4457 in SEQ ID NO: 2; SU3, 35 to 1895 in SEQ ID NO: 3; SU4, 36 to 1523, and SU5, 1545 to 3631 in SEQ ID NO: 4; SU6, 34 to 1503 in SEQ ID NO: 5; SU7, 35 to 1747 all in SEQ ID NO: 6.

Still other preferred DNA molecules include the various submodules that encode the various domains of platenolide synthase. These submodules are represented by KS'(s), 392 to 1603, AT(s), 1922 to 2995, and ACP(s), 3173 to 3424 of starter module in SEQ ID NO:1; KS1, 3527 to 4798, AT1, 5135 to 6208, KR1, 7043 to 7597, and ACP1, 7946 to 8197 of module.1 in SEQ IN NO: 1; KS2, 8270 to 9541, AT2, 9899 to 10909, DH2, 10985 to 11530, KR2, 12596 to 13153, and ACP2, 13469 to 13720 of module 2 in SEQ ID NO: 1; KS3, 14148 to 15422, AT3, 15789 to 16844, DH3, 16914 to 17510, KR3, 18612 to 19166, and ACP3, 19479 to 19730 of module 3 in SEQ ID NO: 1; KS4, 20215 to 21486, AT4, 21889 to 22872, KR'4, 23638 to 24159, and ACP4, 24484 to 24678 of module 4 in SEQ ID NO: 1; KS5, 24742 to 26016, AT5, 26371 to 27381, DH5, 27442 to 27966, ER5, 28843 to 29892, KR5, 29905 to 30462, and ACP5, 30760 to 31002 of module 5 in SEQ ID NP: 1; KS6, 31428 to 32696, AT6, 33024 to 34022, KR6, 34770 to 35327, and ACP6, 35586 to 35837 of module 6 in SEQ ID NO: 1; KS7, 36257 to 37528, AT7, 37898 to 38905, KR7, 39851 to 40408, ACP7, 40658 to 40909, and TE, 41297 to 41395 of module 7 in SEQ ID NO: 1. The predicted amino acid sequences of the various domains encoded by these submodules are represented by KS'(s), 15 to 418, AT(s), 525 to 882, and ACP(s), 942 to 1025 of starter SU in SEQ ID NO:2; KS1, 1060 to 1483, AT1, 1596 to 1953, KR1, 2232 to 2416, and ACP1, 2533 to 2616 of SU1 in SEQ IN NO: 2; KS2, 2641 to 3064, AT2, 3184 to 3520, DH2, 3546 to 3727, KR2, 4083 to 4268, and ACP2, 4374 to 4457 of SU2 in SEQ ID NO: 2; KS3, 35 to 459, AT3, 582 to 933, DH3, 957 to 1155, KR3, 1523 to 1707, and ACP3, 1812 to 1895 of SU3 in SEQ ID NO: 3; KS4, 36 to 459, AT4, 594 to 921, KS04, 1177 to 1350, and ACP4, 1459 to 1523 of SU4 in SEQ ID NO: 4; KS5, 1545 to 1969, AT5, 2088 to 2424, DH5, 2445 to 2619, ER5, 2912 to 3261, KR5, 3266 to 3451, and ACP5, 3551 to 3631 of SU5 in SEQ ID NO: 4; KS6, 34 to 456, AT6, 566 to 898, KR6, 1148 to 1333, and ACP6, 1420 to 1503 of SU6 in SEQ ID NO: 5; KS7, 35 to 458, AT7, 582 to 917, KR7, 1233 to 1418, ACP7, 1502 to 1585, and TE, 1715 to 1747 of SU7 in SEQ ID NO: 6.

Although not wishing to be bound to any particular technical explanation, a sequence similarity exists among domain boundaries in various polyketide synthase genes. Thus, one skilled in the art is able to predict the domain boundaries of newly discovered polyketide synthase genes based on the sequence information of known polyketide synthase genes. In particular, the boundaries of submodules, domains, and open reading frames in the instant application are predicted based on sequence information disclosed in this application and the locations of the domain boundaries of the erythromycin polyketide synthase (Donadio et al., *GENE*, 111 51-60 (1992)). Furthermore, the genetic organization of the platenolide synthase gene cluster appears to correspond to the order of the reactions required to complete synthesis of platenolide. This means that the polyketide synthase DNA sequence can be manipulated to generate predictable alterations in the final platenolide product.

The DNA sequence of the platenolide synthase gene can be determined from recombinant DNA clones prepared from the DNA of *Streptomyces ambofaciens*, in particular strain ATCC 15154. The platenolide synthase gene is contained in recombinant DNA vectors pKC1080 and pKC1306 (Figure 1), which are available from the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-3999, in *E. coli* DH10B under accession numbers B-21500 for pKC1080 (deposited Sep 21, 1995) and B-21499 for pKC1306 (deposited Sep 21, 1995) respectively.

Techniques of isolating bacterial DNA are readily available and well known in the art. Any such techniques can be employed in this invention. In particular DNA from these deposited cultures can be isolated as follows. Lyophils of *E. coli* DH10B/pKC1080 or *E. coli* DH10B/pKC1306 are plated onto L-agar (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g agar per liter) plates containing 100 µg/ml apramycin to obtain a single colony isolate of the strain. This colony is used to inoculate about 500 ml of L-broth (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter) containing 100 µg/ml apramycin, and the resulting culture is incubated at 37°C with aeration until the cells reach stationary phase. Cosmid DNA can be obtained from the cells in accordance with procedures known in the art (see e.g., Rao et al., 1987 in Methods in Enzymology, 153:166).

DNA of the current invention can be sequenced using any known techniques in the art such as the dideoxynucle-otide chain-termination method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463 (1977)) with either radioisotopic or fluorescent labels. Double-stranded, supercoiled DNA can be used directly for templates in sequence reactions with sequence-specific oligonucleotide primers. Alternatively, fragments can be used to prepare libraries of either random, overlapping sequences in the bacteriophage M13 or nested, overlapping deletions in a plasmid vector. Individual recombinant DNA subclones are then sequenced with vector-specific oligonucleotide primers. Radioactive reaction products are electrophoresed on denaturing polyacrylamide gels and analyzed by autoradiography. Fluorescently labeled reaction products are electrophoresed and analyzed on Applied Biosystems (ABI Division, Perkin Elmer, Foster City, CA 94404) model 370A and 373A or Dupont (Wilmington, DE) Genesis DNA sequencers. Sequence data are assembled and edited using Genetic Center Group (GCG, Madison, WI) programs GelAssemble and Seqed or the ABI model 670 Inherit Sequence Analysis system and the AutoAssembler and SeqEd programs.

Polypeptides corresponding to a domain, a submodule, a module, a synthesis unit (SU), or an open reading frame can be produced by transforming a host cell such as bacteria, yeast, or eukaryotic cell-expression system with the

cDNA sequence in a recombinant DNA vector. It is well within one skilled in the art to choose among host cells and numerous recombinant DNA expression vectors to practice the instant invention. Multifunctional polypeptides of polyketide platenolide synthase can be extracted from platenolide-producing bacteria such as *Streptomyces ambofaciens* or translated in a cell-free in vitro translation system. In addition, the techniques of synthetic chemistry can be employed to synthesize some of the polypeptides mentioned above.

Procedures and techniques for isolation and purification of proteins produced in recombinant host cells are known in the art. See, for example, Roberts et al., Eur. J. Biochem. 214, 305-311, (1993) and Caffrey et al., FEBS 304, 225-228 (1992) for detailed description of polyketide synthase purification in bacteria. To achieve a homogeneous preparation of a polypeptide, proteins in the crude cell extract can be separated by size and/or charge through different columns well known in the art once or several times. In particular the crude cell extract can be applied to various cellulose columns commercially available such as DEAE-cellulose columns. Subsequently the bound proteins can be eluted and the fractions can be tested for the presence of the polyketide platenolide synthase or engineered derivative protein. Techniques for detecting the target protein are readily available in the art. Any such techniques can be employed for this invention. In particular the fractions can be analysized on Western blot using antibodies raised against a portion or portions of such polyketide platenolide synthase proteins. The fractions containing the polyketide platenolide synthase protein can be pooled and further purified by passing through more columns well known in the art such as applying the pooled fractions to a gel filtration column. When visualized on SDS-PAGE gels homogeneous preparations contain a single band and are substantially free of other proteins.

Knowledge of the platenolide synthase DNA sequence, its genetic organization, and the activities associated with particular open reading frames, modules, and submodules of the gene enables production of novel polyketides having a predicted structure that are not otherwise available. Modifications may be made to the DNA sequence that either alter the initial carboxylic acid building block used or alter the building block added at any of the condensation steps. The platenolide synthase gene may also be modified to alter the actual number of condensation steps done, thereby changing the size of the carbon backbone. Submodules that are part of the present invention may be selectively inactivated thereby giving rise to predictable, novel polyketide structures. Modifications to portions of the DNA sequence that encode the post-condensation processing activities will alter the functional groups appearing at the various condensation sites on the carbon chain backbone.

One skilled in the art is fully familiar with the degeneracy of the genetic code. Consequently, the skilled artisan can modify the specific DNA sequences provided by this disclosure to provide proteins having the same or improved characteristics compared to those polypeptides specifically provided herein. Also, one skilled in the art can modify the DNA sequences to express an identical protein to those provided, albeit expressed at higher levels. Furthermore, one skilled in the art is familiar with means to prepare synthetically, either partially, or in whole, DNA sequences which would be useful in preparing recombinant DNA vectors or coding sequences which are encompassed by the current invention. Additionally, recombinant means for modifying the DNA sequences provided may include for example site-directed deletion or site-directed mutagenesis. These techniques are well known to those skilled in the art and require no further elaboration here. Consequently, as used herein, DNA which is isolated from natural sources, prepared synthetically or semi-synthetically, or which are modified by recombinant DNA methods, are within the scope of the present invention.

Likewise, those skilled in the art will recognize that the polypeptides of the invention may be expressed recombinantly. Alternatively, these polypeptides may be synthesized as well, either in whole or in part, by conventional known non-recombinant techniques; for example, solid-phase synthesis. Thus, the present invention should not be construed as necessarily limited to any specific vector constructions or means for production of the specific polyketide synthase molecules exemplified. These alternate means for preparing the present polypeptides are meant to be encompassed by the present invention.

Many cyclized polyketides undergo glycosidation at one or more sites. Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. The process of converting platenolide to spiramycin is well known in the art. The present invention also provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide. The principles have already been described above. In addition, any product resulting from post-transcriptional or post-translational modification in vivo or in vitro based on the DNA sequence information disclosed here are meant to be encompassed by the present invention.

The following example is provided for exemplification purposes only and is not intended to limit the scope of the invention which has been described in broad terms above.

Example 1:

55 Specific experimental details and results from the sequencing of platenolide synthase.

The DNA sequence of the S. ambofaciens platenolide synthase (srmG) gene can be obtained by sequencing inserts of recombinant DNA subclones containing contiguous or overlapping DNA segments of the region indicated in

Figure 3. All sequences representing srmG are fully contained in the overlapping cosmid clones pKC1080 and pKC1306 (Figure 3). The sequence can be obtained by subcloning and sequencing the fragments bounded by Nrul sites at position 1, 0.3 kb, 8.2 kb, 14.1 kb, 20.2 kb, 29.5 kb, 31.4 kb, 41.1 kb and 42.0 kb. In order to obtain the srmG region on a single fragment, the 25.0 kb fragment bounded by the Nrul site at position 1 and the Sful site at 25.0 kb should be isolated from a partial digestion of pKC1080 with restriction enzymes Nrul and Sful. The 17.8 kb DNA fragment bounded by the Sful sites at 25.0 kb and 42.8 kb should be isolated from a digestion of pKC1306 with the restriction enzyme Sful. The resulting fragments should be ligated and cloned in an appropriate recombinant DNA vector. Clones containing the correct orientation of the two ligated fragments can be identified by restriction enzyme site mapping.

The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: ELI LILLY AND COMPANY (B) STREET: Lilly Corporate Center (C) CITY: Indianapolis (D) STATE: Indiana (E) COUNTRY: United States of America (F) ZIP: 46285
	(ii) TITLE OF INVENTION: PLATENOLIDE SYNTHASE GENE
15	(iii) NUMBER OF SEQUENCES: 6
20	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: K. G. Tapping (B) STREET: Erl Wood Manor (C) CITY: Windlesham (D) STATE: Surrey (E) COUNTRY: United Kingdom (F) ZIP: GU20 6PH
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh 7.0 (D) SOFTWARE: Microsoft Word 5.1
30	•
<i>35</i>	
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 35014002
55	(ix) FEATURE: (A) NAME/KEY: CDS

(B) LOCATION: 14046..20036

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 20110..31284

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 31329..36071

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 36155..41830

15

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	•						
	GACCGCTCGG	GGAGACCTGA	CATATTCGTC	GCGAAGTGGT	TGTCCGCGCC	GCGAGGTACT	60
20	GAAATCTTCT	CCGCTCGCCC	AGGACTCCGC	GTGCAGGTCA	CCGGAGTGCG	CGACCGGCCG	120
	GGACGTCGGA	GCGCCGACCC	TGCGGACCTG	GTGCGATGCC	GTGTGGTCCC	GCATGATCCC	180
	GCGCCGTCTC	CGGTGACGAG	AATCGGTGGA	CAATCTCCGA	ACTTGACACA	ATTGATTGTC	240
25	GTTCACCGGC	CGTTCCTGTC	GCCCGGCAGT	TCGCCCGCTG	TACGCTCGGG	AAGATCAAGA	300
	AAAGGCAGAA	AAGCCACGGC	GTGGTACGGC	GAACATATGA	GGGATGCAGG	TGTCTGGAGA	360
	ACTCGCGATT	TCCCGCAGTG	ACGACCGGTC	CGACGCCGTT	GCCGTGGTCG	GAATGGCGTG	420
30	CCGCTTTCCC	GCCCCCCGG	GAATTGCCGA	ATTCTGGAAA	CTGCTGACCG	ACGGAAGGGA	480
	CGCGATCGGC	CGGGACGCCG	ACGGCCGCCG	GCGCGGCATG	ATCGAGGCGC	CCGGCGACTT	540
35	CGACGCCGCC	TTCTTCGGCA	TGTCACCCCG	CGAGGCCGCC	GAGACCGACC	CCCAGCAGCG	600
	CCTGATGCTC	GAACTCGGCT	GGGAGGCTCT	GGAGGACGCC	GCATCGTCC	CCGCCTCCCT	660
	GCGCGGCGAG	GCGGTCGGCG	TCTTCGTCGG	GGCCATGCAC	GACGACTACG	CCACCCTGCT	720
40	CCACCGCGCC	GCCCCCCCC	TCGGCCCCCA	CACCGCCACC	GCCTCCAGC	GCGCCATGCT	780
	CGCCAACCGG	CTCTCCTACG	TCCTGGGGAC	cccccccc	AGCCTCGCGG	TCGACACCGC	840
	CCAGTCGTCC	TCCCTGGTCG	CCGTGGCCCT	CGCCGTCGAG	AGCCTGCGGG	CCGGCACCTC	900
45	CCGCGTCGCC	GTCGCCGGGG	GCGTCAACCT	CCTCCTCCCC	GACGAGGGAA	CGGCCGCCAT	960
	GGAACGCCTC	GCCCCCTCT	CACCCGACGG	CCGCTGCCAC	ACCTTCGACG	CCCGTGCCAA	1020
50	CGGCTATGTC	CGCGGTGAGG	GCGGCGCCGC	CGTCGTCCTG	AAGCCCCTCG	CCGACGCCCT	1080
00	GGCCGACGGG	GACCCCGTGT	ACTGCGTGGT	GCGTGGCGTC	GCCGTCGGCA	ACGACGGCGG	1140
	CGGCCCCGGG	CTGACCGCTC	CCGACCGCGA	GGGACAGGAG	GCGGTGCTCC	GGCCGCCTG	1200
55	CGCCCAGGCC	CGGGTCGACC	CCGCCGAGGT	GCGTTTCGTC	GAACTGCACG	GCACGGGAAC	1260

	CCCGGTGGGC	GACCCGGTCG	AGGCACACGC	CCTCGGCGCG	GTGCACGGCT	CCGGTCGGCC	1320
	GGCCGACGAC	CCCCTGCTGG	TGGGGTCGGT	GAAGACCAAC	ATCGGCCACC	TGGAGGGCGC	1380
5	CGCCGGCATC	GCGGGCCTGG	TCAAGGCCGC	ACTGTGCCTG	CGGGAACGCA	CCCTTCCCGG	1440
	CTCGCTGAAC	TTCGCCACCC	CCTCTCCGGC	CATCCCGCTG	GACCAGCTCC	GGCTGAAGGT	1500
	GCAGACCGCT	GCCGCCGAGC	TGCCGCTCGC	CCCGGGCGGC	GCACCCCTGC	TGGCGGGTGT	1560
10	CAGTTCGTTC	GGCATCGGTG	GCACCAACTG	CCATGTGGTC	CTGGAACACC	TCCCCTCCCG	1620
	GCCCACCCCG	GCCGTCTCCG	TCGCCGCCTC	GCTTCCGGAC	GTCCCGCCGC	TGTTGTTGTC	1680
15	CGCGCGGTCG	GAGGGGGCGT	TGCGGGCGCA	GCCGCTGCGG	TTGGGTGAGT	ACGTGGAGCG	1740
	GGTGGGCGCG	GATCCGCGGG	ATGTGGCTTA	TTCGCTGGCT	TCGACGCGGA	CTCTTTTCGA	1800
	GCACCGTGCG	GTGGTGCCGT	GTGGTGGGCG	TGGGGAGCTC	GTCGCTGCTC	TTGGTGGGTT	1860
20	TGCTGCCGGG	AGGGTGTCTG	GGGGTGTGCG	GTCCGGGCGG	GCTGTGCCGG	CTCCCCTCCC	1920
	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	GGGCGTGGGT	TGTATGCGGG	1980
25	GGGTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	ATGGTGGGG	AGGTGGATGG	2040
25	TCCCTCCTTC	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	CCGGGGCTGA	2100
	TGCGGGTGCC	GCTGCGGGTG	CTGGGGTCGG	TTCTGGTTCC	CCTTCTCTCC	GTGGGTTGTT	2160
30	GGGTCGGACG	GAGTTTGCTC	AGCCTGCGTT	GTTTGCGTTG	GAGGTGGCGT	TGTTCCGGGC	2220
	GTTGGAGGCT	CCCCCTCTCC	AGGTGTCGGT	CCTCTTCCCT	CATTCGGTGG	GGGAGGTGGC	2280
	TGCTGCGTAT	CTCCCCCCC	TCTTCTCCTT	GGGTGATGCG	GTGCGGTTGG	TGGTGGCGCG	2340
35	CCCTCCCTTC	ATGGGTGGGT	TGCCGGTGGG	TGGGGGGATG	TCGTCGGTCG	GGGCGTCGGA	2400
	GTCGGTGGTG	CCCCCCCTTC	TTGAGGGGTT	GGGGGAGTGG	GTGTCGGTTG	CGGCGGTGAA	2460
	TGGCCGCGG	TCGCTGCTGT	TGTCGGGTGA	TCTCCCTCTC	CTGGAGTCGG	TGGTTGCCTC	2520
40	GCTGATGGGG	GATGGGGTGG	AGTGCCGGCG	GTTGGATGTG	TCGCATGGGT	TTCATTCGGT	2580
	GTTGATGGAG	CCGCTCTTGG	GGGAGTTCCG	GGGGGTTGTG	GAGTCGTTGG	AGTTCGGTCG	2640
45	GCTGCGGCCG	GCTCTCCTCC	TGGTGTCGGG	TGTGTCGGGT	GCCCTCCTCC	GTTCGGGGGA	2700
	CTTCCCCCAT	CCGGGGTATT	GGGTGCGTCA	TGCGCGGGAG	GCGGTGCGTT	TCGCGGATGG	2760
	GGTGGGGGTG	GTGCGTGGTC	TGGGTGTGGG	GACGTTGGTG	GAGGTGGGTC	CGCATGGGGT	2820
50	GCTGACGGGG	ATGGCGGGTG	ACTGCCTGGG	GGCCGGTGAT	GATGTGGTGG	TGGTGCCGGC	2880
	GATGCGGCGG	GCCCTGCGG	AGCGGGAGGT	GTTCGAGGCG	GCGCTGGCGA	CGGTGTTCAC	2940
	CCGGGACGCC	GGCCTGGACG	CCACGGCACT	CCACACCGGG	AGCACCGGCC	GGCGCATCGA	3000
55	CCTCCCCACC	TACCCCTTCC	AACGCCGTAC	CCACTGGTCG	CCCGCGCTGA	GCCGGCCGGT	3060

	CACGGCCGAC	GCCGGGGCGG	GTGTGACCGC	CACCGATGCC	GTGGGGCACA	GCGTCTCCCC	3120
5	GGACCCGGAG	AGCACCGAGG	GGACGTCCCA	CAGGGACACG	GACGACGAGG	CGGACTCGGC	3180
	GTCACCGGAG	CCGATGTCCC	CCGAGGATGC	CGTCCGCCTG	GTCCGCGAGA	GCACCGCGGC	3240
	CCTCCTGGGC	CACGACGATC	CCGGCGAGGT	CGCGCTCGAC	CGCACCTTCA	CCTCCCAGGG	3300
10	CATGGACTCG	GTGACCGCGG	TCGAGCTGTG	CGACCTGCTG	AAGGCCCCT	CGGGGCTCCC	3360
	CCTCGCCGCC	ACGCTGGTCT	ACGACCTGCC	CACCCCGCGT	GCCGTCGCCG	AGCACATCGT	3420
	GGAAGCCGCG	GGCGGGCCGA	AGGACTCGGT	TGCCGGTGGG	CCCGGAGTGC	TCTCGTCGGC	3480
15	CGCGGTAGGG	GTGTCGGACG	ccceeecee	CAGCCGGGAC	GACGACGACC	CGATCGCCAT	3540
	CGTGGGTGTC	GGCTGCCGGC	TCCCCGGCGG	CGTCGACTCG	CGCGCCGCTC	TCTGGGAGCT	3600
20	GCTGGAGTCC	GGCGCCGACG	CCATCTCGTC	CTTCCCCACC	GACCGCGCT	GGGACCTCGA	3660
	CGGGCTGTAC	GACCCCGAGC	CCGGGACGCC	CGGCAAGACC	TATGTGCGGG	AGGGCGGGTT	3720
	CCTGCACTCG	GCGGCCGAGT	TCGACGCGGA	CTTCTTCGGG	ATATCGCCGC	GCGAGGCCAC	3780
25	GGCCATGGAC	CCGCAGCAGC	GCTTGCTGCT	GGAAGCGTCG	TGGGAGGCCC	TCGAGGACGC	3840
	CGGAGTGCTC	CCCGAGTCAC	TGCGCGGCGG	CGACGCCGGA	GTGTTCGTCG	GCGCCACCGC	3900
	ACCGGAGTAC	GGGCCGAGGC	TTCACGAGGG	AGCGGACGGA	TACGAGGGGT	ACCTGCTCAC	3960
30	CGGCACCACC	GCGAGCGTGG	CCTCCGGCCG	GATCGCCTAC	ACCCTCGGCA	CCGGCGGACC	4020
	GCCCTCACC	GTCGACACCG	CGTGCTCCTC	GTCCCTGGTG	GCGCTGCACC	TGGCCGTGCA	4080
35	GCCCTCCCC	CGGGGCGAGT	GCGGGCTGGC	TCTGGCGGGC	GGCGCCACGG	TGATGTCGGG	4140
	GCCCGGCATG	TTCGTGGAGT	TCTCGCGGCA	GCGCGGGCTC	GCCCCCGACG	GCCGCTGCAT	4200
	GCCGTTCTCC	GCCGATGCCG	ACGGTACGGC	CTGGTCCGAG	GGTGTCGCCG	TACTGGCACT	4260
40	GGAGCGGCTC	TCCGACGCCC	GGCGTGCGGG	ACACCGGGTG	CTGGGCGTGG	TGCGGGGCAG	4320
	TGCGGTCAAC	CAGGACGGTG	CCAGCAACGG	CCTGACCGCT	CCCAACCGCT	CCGCGCAGGA	4380
	GGGCGTCATC	CGAGCTGCCC	TGGCCGACGC	CGCCTCGCG	CCGGGTGACG	TGGACGCGGT	4440
45	GGAGGCGCAC	GGTACGGGGA	CGGCGCTGGG	CGATCCGATC	GAGGCGAGCG	CGCTGCTGGC	4500
	CACGTACGGG	CGTGAGCGGG	TGGGCGACCC	CTTGTGGCTC	GGGTCGCTGA	AGTCCAACGT	4560
50	CGGTCACACC	CAGGCCGCCG	ccccccc	GGGTGTGGTC	AAGATGCTGC	TTGCCCTGGA	4620
	GCACGCCACG	CTGCCGCGGA	CACTTCACGC	GGACCGGCCC	AGCACGCACG	TCGACTGGTC	4680
	GTCGGGCACC	GTCGCCCTGC	TGGCAGAGGC	CCCCCCTCC	CCCCGCCGT	CGGACCGCCC	4740
55	ccccccccc	GCTGTGTCGT	CGTTCGGGAT	CAGTGGGACG	AACGCGCATC	TGATCATCGA	4800

	GGAGGCGCCG	GAGTGGGTCG	AGGACATCGA	CGGCGTCGCT	GCTCCTGACC	GCGGTACCGC	4860
	GGACGCGGCT	GCTCCGTCGC	CGCTGTTGTT	GTCCGCGCGG	TCGGAGGGGG	CGTTGCGGGC	4920
5	GCAGGCGGTG	CGGTTGGGTG	AGTACGTGGA	GCGGGTGGGT	GCGGATCCGC	GGGATGTGGC	4980
	TTATTCGCTG	GCTTCGACGC	GGACTCTTTT	CGAGCACCGT	GCGGTGGTGC	CGTGTGGTGG	5040
10	GCGTGGGGAG	CTCGTCGCTG	CTCTTGGTGG	GTTTGCTGCC	GGGAGGGTGT	CTGGGGGTGT	5100
	GCGGTCCGGG	CGGGCTGTGC	CGGGTGGGGT	GGGGGTGTTG	TTCACGGGTC	AGGGTGCGCA	5160
	GTGGGTTGGT	ATGGGGCGTG	GGTTGTATGC	CCCCCCTCCC	GTGTTTGCGG	AGGTGCTGGA	5220
15	TGAGGTGTTG	TCGATGGTGG	GGGAGGTGGA	TGGTCGGTCG	TTGCGGGATG	TGATGTTCGG	5280
	CGACGTCGAC	GTGGACGCGG	CTCCCGCGC	TGATGCGGGT	GCCGGTGCGG	CTCCTCCCCT	5340
	CGGTTCTGGT	TCCGGTTCTG	TGGGTGGGTT	GTTGGGTCGG	ACGGAGTTTG	CTCAGCCTGC	5400
20	GCTGTTTGCG	TTGGAGGTGG	CGTTGTTCCG	GGCGTTGGAG	GCTCGGGGTG	TGGAGGTGTC	5460
	GGTGGTGTTG	GGTCATTCGG	TGGGGGAGGT	GGCTGCTGCG	TATGTGGCGG	GGGTGTTGTC	5520
25	GTTGGGTGAT	GCGGTGCGGT	TGGTGGTGGC	GCGGGGTGGG	TTGATGGGTG	GGTTGCCGGT	5580
	GGGTGGGGG	ATGTGGTCGG	TGGGGGCGTC	GGAGTCGGTG	GTGCGGGGGG	TTGTTGAGGG	5640
	GTTGGGGGAG	TGGGTGTCGG	TTGCGGCGGT	GAATGGGCCG	CGGTCGGTGG	TGTTGTCGGG	5700
30	TGATGTGGGT	GTGCTGGAGT	CGGTGGTTGC	CTCGCTGATG	GGGGATGGGG	TGGAGTGCCG	5760
	GCGGTTGGAT	GTGTCGCATG	GGTTTCATTC	GGTGTTGATG	GAGCCGGTGT	TGGGGGAGTT	5820
	CCGGGGGGTT	GTGGAGTCGT	TGGAGTTCGG	TCGGGTGCGG	CCGGGTGTGG	TGGTGGTGTC	5880
35	GGGTGTGTCG	GCTGGGGTGG	TCCCTTCCCC	GGAGTTGGGG	GATCCGGGGT	ATTGGGTGCG	5940
	TCATGCGCGG	GAGGCGGTGC	GTTTCGCGGA	TGGGGTGGGG	GTGGTGCGTG	CTCTCCCTCT	6000
40	GGGGACGTTG	GTGGAGGTGG	GTCCGCATGG	GGTGCTGACG	GGGATGGCGG	GTGAGTGCCT	6060
	CCCCCCCT	GATGATGTGG	TGGTGGTGCC	GGCGATGCGG	CGGGGCCGTG	CGGAGCGGGA	6120
	GGTGTTCGAG	GCGGCGCTGG	CGACGCTGTT	CACCCGGGAC	CCCGCCTGC	ACCCACGC	6180
45	ACTCCACACC	GGGAGCACCG	GCCGGCGCAT	CGACCTCCCC	ACCTACCCCT	TCCAACGCGA	6240
	CCGCTACTGG	CTGGACCCCG	TTCGCACCGC	CGTGACCGGC	GTCGAGCCCG	CCGGCTCGCC	6300
	GCCGGACGCT	CGGGCCACTG	AGCGGGGACG	GTCGACGACG	GCCGGGATCC	GCTACCGCGT	6360
50	CGCTTGGCAG	CCGGCCGTCG	TCGACCGCGG	CAACCCCGGG	CCTGCCGGTC	ATGTGCTGCT	6420
	TCTGGCCCCG	GACGAGGACA	CCCCCGACTC	CGGACTCGCC	CCCCCGATCG	CACGTGAACT	6480
55	CGCCGTGCGC	GGGGCCGAGG	TCCACACCGT	CGCCGTGCCG	GTCGGTACAG	GCCGGGAGGC	6540
	AGCCGGGGAC	CTCTTGCGGG	CCGCCGGTGA	CGGTGCCGCC	CGCAGCACCC	GACTTCTGTG	6600

	GCTCGCCCCG	GCCGAGCCGG	ACGCGGCCGA	CGCCGTCGCC	CTCGTCCAGG	CCCTCCCCCA	6660
5	GGCGGTACCC	GAAGCCCCGC	TCTGGATCAC	CACCCGTGAG	GCGGCGGCCG	TGCGGCCGGA	6720
	CGAGACCCCT	TCCGTCGGGG	GCGCTCAGCT	GTGGGGACTC	GGACAGGTCG	CCCCCCTCCA	6780
	ACTGGGGCGG	CGCTGGGGCG	GCTTGGCGGA	CCTGCCCGGG	AGTGCGTCGC	CCCCCCTCCT	6840
10	CCGTACGTTC	GTCGGGGCGC	TGCTCGCCGG	GGGAGAGAAC	CAGTTCGCGG	TACGGCCCTC	6900
	CGGCGTCCAT	GTCCGCCGTG	TGGTTCCCGC	GCCCGTCCCC	GTCCCGGCCT	CCGCTCGCAC	6960
	CGTCACCACG	GCCCCCGCCA	CCGCCGTCGG	CGAGGACGCA	CGGAACGACA	CCTCGGACGT	7020
15	GGTCGTGCCG	GACGACCGGT	GGTCCTCCGG	CACCGTACTG	ATCACCGGGG	GCACCGGTGC	7080
	CCTGGGTGCG	CAGGTCGCCC	GCAGGCTCGC	CCGGTCGGGC	GCCGCGCGTC	TGCTCCTGGT	7140
20	GGGCCGGCGC	GCCCCCCCC	GCCCCGGAGT	GGGCGAACTC	GTCGAGGAGC	TGACGGCGCT	7200
	CGGTTCCGAA	GTGGCCGTCG	AGGCCTGCGA	CGTCGCCGAC	CGGGACGCAC	TGGCCGCGCT	7260
	CCTCGCGGGC	CTCCCCGAGG	AGCGGCCCCT	CGTCGCCGTA	CTGCACGCGG	CAGGTGTGCT	7320
25	CGACGACGGT	GTGCTCGACT	CGCTCACCTC	CGACCGGGTG	GACGCCGTAC	TGCGGGACAA	7380
	GGTCACCGCC	GCCCGTCACC	TGGACGAGCT	GACCGCGGAC	CTTCCGCTCG	ACCCCTTCGT	7440
	GCTCTTCTCC	TCCATCGTCG	GCGTGTGGGG	CAACGGAGGG	CAGGCCGTCT	ACGCCGCCCC	7500
30	CAACGCCGCG	CTCGACGCCC	TGGCGCAGCG	GCGCCGGGCC	AGGGGAGCCC	GTGCCGCCTC	7560
	GATCGCCTGG	GGCCGTGGG	CCCCTCCCC	AATGGCCTCC	GGAACGGCGG	CGAAGTCCTT	7620
35	CGAACGGGAC	GGCGTCACGG	CCCTGGACCC	CGAGCGCGCG	CTCGACGTCC	TCGACGACGT	7680
	GGTGGGCGCC	GGCGGGACCT	CTGCCGCAGG	GACGCACGCG	GCCGGCGAGA	GCTCCCTGCT	7740
	CGTCGCCGAC	GTGGACTGGG	AGACCTTCGT	CGGGCGTTCG	GTCACCCGCC	GTACCTGGTC	7800
40	GCTCTTCGAC	GCCGTCTCCG	CCGCCCGTTC	GCCCCTCCC	GGCCATGCCG	CGGACGACCG	7860
	TGCCGCTCTC	ACCCCAGGGA	CGCGGCCGGG	CGACGCCCCA	CCGGGCGGGA	GCGCACAGGA	7920
	CGGGGGCGAG	GCCCGCCCT	GGCTCTCCGT	CCCCCTCC	CCGGCGGAAC	CCCCTCCTCC	7980
45	TCTGCTCACG	CTTGTGCGCT	CGGAGGCCGC	CGGGATCCTG	CGCCACGCCT	CCCCCCACCC	8040
	GGTCGACCCG	GAGCTGGCCT	TCCGGTCCGC	CGGGTTCGAC	TCCCTCACCG	TICTCGAACT	8100
50	GCGTAACCGC	CTGACCGCTG	CCACCGGCCT	GAACCTGCCG	AACACGCTGC	TCTTCGACCA	8160
	CCCGACCCCC	CTCTCGCTCG	CCTCCCACCT	GCACGACGAA	CTCTTCCGTC	CCGACAGCGA	8220
	GGCGGAGCCG	GCAGCGGCCG	CCCCACGCC	GGTCATGGCC	GACGAGCGTG	AGCCGATCGC	8280
55	GATCGTGGGC	ATGGCGTGCC	GTTACCCGGG	CCCTCTCCCC	TCGCCGGACG	ACCTGTGGGA	8340

	CCTGGTGGCC	GGTGACGGGC	ACACGCTCTC	CCCGTTCCCG	GCCGACCGTG	GCTGGGACGT	8400
	CGAGGGGCTG	TACGACCCGG	AGCCGGGGGT	GCCGGGCAAG	AGCTATGTAC	GGGAAGGCGG	8460
5	GTTCCTGCGT	TCCGCGGCCG	AGTTCGACGC	GGAGTTCTTC	GGGATATCGC	CGCGCGAGGC	8520
	CACGCCCATG	GACCCGCAGC	AGCGGTTGCT	GCTGGAGACG	TCGTGGGAGG	CGCTGGAGCG	8580
10	GGCCGGCATC	GTTCCGGACT	CGCTGCGCGG	CACCCGGACC	GGTGTCTTCA	GCGGCATCTC	8640
	CCAGCAGGAC	TACGCGACCC	AGCTGGGGGA	CGCCGCCGAC	ACCTACGGCG	GGCATGTGCT	8700
	CACGGGGACC	CTCGGCAGTG	TGATCTCCGG	TCGGGTTGCC	TATGCGTTGG	GGTTGGAGGG	8760
15	GCCGGCGCTG	ACGGTGGACA	CGGCGTGTTC	GTCGTCGTTG	GTGGCGTTGC	ATCTGGCGGT	8820
	GCAGTCGTTG	CGGCGGGGTG	AGTGTGATCT	GGCGTTGGCC	GGTGGGGTGA	CGGTGATGGC	8880
	GACGCCGACG	GTGTTCGTGG	AGTTCTCGCG	GCAGCGGGGG	CTGGCGGCGG	ACGGGCGGTG	8940
20	CAAGGCGTTC	GCGGAGGGTG	CGGACGGGAC	GCCTGGCC	GAGGGTGTGG	GTGTGCTGCT	9000
	GGTGGAGCGG	CTTTCCGACG	CGCGCCGCAA	CGGTCATCGG	GTGCTGGCGG	TGCTGCGGGG	9060
25	CAGTGCGGTC	AATCAGGACG	GTGCGAGCAA	TGGGCTGACG	GCGCCGAGTG	GTCCGGCGCA	9120
	GCAGCGGGTG	ATCCGTGAGG	CGCTGGCTGA	TGCGGGGCTG	GTGCCCGCCG	ACGTGGATGT	9180
	GGTGGAGGCG	CACGGTACGG	GGACGCCGCT	GGGTGATCCG	ATCGAGGCGG	GTGCGCTGCT	9240
30	GGCCACGTAC	GGGCGGGAGC	GGGTCGGCGA	TCCGTTGTGG	CTCGGGTCGT	TGAAGTCGAA	9300
	CATCGGGCAT	GCGCAGGCGG	CTGCGGGTGT	GCCTCCTCTC	ATCAAGGTGG	TGCAGGGGAT	9360
	GCGGCATGGG	TCGTTGCCGC	GGACGCTGCA	TGTGGATGCG	CCGTCGTCGA	AGGTGGAGTG	9420
35	GGCTTCGGGT	GCGGTGGAGC	TGCTGACCGA	GACCCGGTCG	TGGCCGCGGC	GGGTGGAGCG	9480
	GGTGCGGCGG	GCCGCGGTGT	CGGCGTTCGG	GGTGAGCGGG	ACCAACGCCC	ATGTGGTCCT	9540
40	GGAGGAAGCG	CCGGCGGAGG	CCGGGAGCGA	GCACGGGGAC	GGCCCTGAAC	CTGAGCGGCC	9600
40	CGACGCGGTG	ACGGGTCCGT	TGTCGTGGGT	GCTTTCTGCG	CGGTCGGAGG	CCCCTTCCC	9660
	GGCGCAGGCG	CTCCCCTTCC	GTGAGTGTGT	GGAGCGGGTG	GGTGCGGATC	CGCGGGATGT	9720
45	GCCGGGGTCG	TTGGTGGTGT	CGCGTGCGTC	GTTCGGTGAG	CCTCCCCTCC	TGGTGGGCCG	9780
	GGGCGTGAG	GAGTTGCTGG	CGGGTCTGGA	TCTCCTCCCT	GCCGGGGCTC	CTCTCCCTCT	9840
	GTCTTCGGGG	GCCGGTGCTG	TGGTGCGGGG	GACTGCGGTG	CGGGGTCGTG	GCCTCCCCCT	9900
50	GTTGTTCACG	GGTCAGGGTG	CGCAGTGGGT	TGGTATGGGG	CGTGGGTTGT	ATGCGGGGGG	9960
	TCCCCTCTTT	GCGGAGGTGC	TGGATGAGGT	GTTGTCGGTG	GTGGGGGAGG	TGGATGGTCG	10020
<i>EE</i>	CTCCTTCCGG	GATGTGATGT	TCGCGGATGC	TGACTCGGTT	TTGGGTGGGT	TGTTGGGTCG	10080
55	GACGGAGTTT	GCTCAGCCTG	CGTTGTTTGC	CTTGGAGGTG	GCGTTGTTCC	GGGCGTTGGA	10140
		•					

	GGCTCGGGGT	CTCGACGTCT	CGGTGGTGTT	GGGTCATTCG	GTGGGGGAGG	TGGCTGCTGC	10200
5	GTATGTGGCG	CCCCTCTTCT	CCTTCCCTCA	TGCGGTGCGG	TTGGTGGTGG	CGCGGGGTGG	10260
	GTTGATGGGT	GCCTTCCCGC	TGGCTGGGG	GATGTGGTCG	GTGGGGGGGT	CGGAGTCGGT	10320
	GGTGCGGGG	GTTGTTGAGG	GGTTGGGGGA	GTGGGTGTCG	GTTGCGGCGG	TGAATGGGCC	10380-
10	GCGGTCGGTG	GTGTTGTCGG	GTGATGTGGG	TGTGCTGGAG	TCGGTGGTTG	TCACGCTGAT	10440
	GGGGGATGGG	GTGGAGTGCC	GGCGGTTGGA	TGTGTCGCAT	GGGTTTCATT	CGGTGTTGAT	10500
	GGAGCCGGTG	TTGGGGGAGT	TCCGGGGGGT	TGTGGAGTCG	TTGGAGTTCG	CTCGGGTGCG	10560
15	GCCGGGTGTG	GTGGTGGTGT	CGGGTGTGTC	GGGTGGGGTG	GTGGGTTCGG	GGGAGTTGGG	10620
	GGATCCGGGG	TATTGGGTGC	GTCATGCGCG	GGAGGCGGTG	CGTTTCGCGG	ATGGGGTGGG	10680
20	GGTGGTGCGT	GGTCTGGGTG	TGGGGACGTT	GGTGGAGGTG	GGTCCGCATG	GGGTGCTGAC	10740
	GGGGATGGCG	GGTCAGTGCC	TGGAGGCCGG	TGATGATGTG	GTGGTGGTGC	CGGCGATGCG	10800
	GCGGGGCCGT	CCGGAGCGGG	AGGTGTTCGA	GGCGGCGCTG	GCGACGGTGT	TCACCCGGGA	10860
25	CGCCGGCCTC	GACGCCACGA	CACTCCACAC	CGGGAGCACC	GGCCGACGCA	TCGACCTCCC	10920
	CACCTACCCC	TTCCAACACA	ACCGCTACTG	GGCAACCGGC	TCAGTGACCG	GTGCGACCGG	10980
	CACCTCGGCA	GCCGCGCGCT	TCGGCCTGGA	GTGGAAGGAC	CACCCCTTCC	TCAGCGGCGC	11040
30	CACGCCGATA	GCCGGCTCCG	GCGCGCTGCT	CCTCACCGGC	AGGGTGGGGC	TCGCTGCCCA	11100
	CCCGTGGCTG	GCCGACCACG	CCATCTCCGG	CACGGTGCTG	CTCCCCGGAA	CGGCGATCGC	11160
35	CGACCTCCTG	CTGCGGGGGG	TCGAGGAGGT	CGGCGCCGGA	GGGGTCGAGG	AACTGACGCT	11220
	CCATGAGCCC	CTGCTCCTCC	CCGAGCGAGG	CGGCCTGCAC	GTCCAGGTGC	TGGTCGAGGC	11280
	GGCCGACGAG	CAGGGACGGC	GTGCCGTGGC	AGTCGCCGCA	CGCCCGGAGG	GCCCTGGGCG	11340
40	GGACGGTGAG	GAACAGGAGT	GGACCCGGCA	CGCGGAAGGC	GTGCTCACCT	CCACCGAGAC	11400
	GGCCGTTCCG	GACATGGGCT	GGGCCGCCGG	GCCTGGCCG	CCGCCCGGTG	CCGAGCCGAT	11460
	CGACGTCGAG	GAGCTGTACG	ACGCGTTCGC	CGCGGACGGC	TACGGCTACG	GCCCGGCCTT	11520
45	CACCGCACTG	TCCGGCGTGT	GCCTCTCGG	CGACGAACTC	TTCGCCGAGG	TGCGGCGGCC	11580
	CGCGGGGGGC	GCGGGCACGA	CCGGTGACGG	TTTCGGCGTC	CACCCCGCAC	TCTTCGATGC	11640
50	GCCCTCCAC	CCGTGGCGCG	CCGGCGGGCT	GCTGCCCGAC	ACGGGCGCA	CCACCTGGGC	11700
	GCCGTTCTCC	TGGCAGGGCA	TCGCGCTCCA	CACCACCGGA	GCCGAGACGC	TCCGCGTCAG	11760
	ACTGGCCCCT	ecceccecc	GCACCGAGTC	GCCTTCTCC	GTACAGGCCG	CCGACCCGGC	11820
55	GGGCACCCCG	GTCCTCACCC	TCGACGCACT	GCTGCTCCGC	CCGGTGACCC	TGGGGAGGGC	11880

	CGACGCGCCG	CAACCGCTGT	ACCGCGTCGA	CTGGCAGCCG	GTCGGCCAGG	GGACCGAGGC	11940
5	CTCCGGCGCC	CAGGGCTGGA	CGGTGCTCGG	GCAGGCCGCG	GCCGAGACGG	TCGCGCAGCC	12000
•	CGCCGCCCAT	GCGGACCTCA	CCGCCCTGCG	TACGGCTGTG	GCCGCGGCGG	GAACACCCGT	12060
	GCCCCGGCTG	GTGGTCGTGT	CGCCGGTGGA	CACCCGGCTG	GACGAGGGGC	CGGTGCTGGC	12120
10	GGACGCCGAG	GCTCGGGCCC	GTGCGGGTGA	CGGCTGGGAC	GACGATCCCC	TACGTGTCGC	12180
	CCTCGGGCGC	GGCCTGACCC	TGGTCCGGGA	GTGGGTCGAG	GACGAACGGT	TGGCGGACTC	12240
	CCGGCTCGTC	GTCCTCACCC	CTCCCCCCT	GCCGCCCGGT	CCCGGCGATG	TGCCGGACCT	12300
15	GACAGGTGCG	GCCCTGTGGG	GGCTGCTCCG	CTCCGCGCAG	TCGGAGTATC	CGGACCGCTT	12360
	CACCCTCATC	GACGTGGACG	ATTCCCCCGA	GTCCCGTGCG	GCTCTGCCCC	GGGCTCTGGG	12420
	ATCGGCCGAG	CGACAACTCG	CCCTGCGGAC	GGGCGACGTG	CTGGCGCCGG	CCCTGGTCCC	12480
20	GATGGCCACC	CGGCCGGCGG	AGACCACTCC	AGCGACGGCG	GTCGCCTCGG	CGACAACACA	12540
	GACACAGGTC	ACCGCGCCCG	CTCCCGACGA	CCCGGCTGCG	GATGCCGTGT	TCGACCCGGC	12600
25	GGGCACCGTA	CTGATCACCG	GCGGCACCGG	CGCCCTGGGA	CGGCGTGTCG	CCTCGCACCT	12660
	cccccccc	TACGGCGTAC	GCCACATGCT	TCTGGTCAGC	AGGCGTGG A C	CGGACGCCCC	12720
	CGAGGCCGGT	CCCCTGGAAC	GGGAACTCGC	CGGTCTCGGA	GTCACCGCCA	CCTTCCTGGC	12780
30	ATGCGACCTC	ACCGACATCG	AGGCCGTACG	GAAGGCCGTC	GCCGCGGTGC	CGTCGGACCA	12840
	CCCGCTGACC	GGTGTGGTGC	ACACCGCCGG	CGTGCTGGAC	GACGCCCCC	TGACCGGCCT	12900
	GACCCGGCAA	CGCCTCGACA	CCGTGCTGCG	GCCCAAGGCC	GACGCCGTGC	GGAACCTCCA	12960
35	CGAGGCGACC	CTCGACCGGC	CGCTGCGCGC	GTTCGTCCTG	TTCTCCGCCG	CCGCCGGACT	13020
	CCTGGGCCGC	CCCGGGCAGG	CCTCCTACGC	CGCCGCCAAC	GCGGTCCTCG	ACCCCCTCCC	13080
40	GGGAGCCCGC	ccccccccc	GACTGCCCGC	AGTGTCCCTG	GCGTGGGGCC	TGTGGGACGA	13140
40	GCAGACGGGC	ATGGCAGGAG	GCCTCGACGA	GATGGCCCTG	CGCGTGCTGC	GCCGGGACGG	13200
	CATCGCCGCG	ATGCCTCCGG	AGCAGGGGCT	CGAACTGCTC	GACCTGGCCC	TGACCGGACA	13260
45	CCGGGACGGA	CCCGCCGTCC	TCCTCCCCCT	CCTCCTCGAC	GCCCCCCCC	TGCGCCGCAC	13320
	GGCGAAGGAG	cccccccc	CCACGATGTC	CCCCTTGCTG	CGCGCCCTGC	TGCCCGCCGC	13380
	CCTGCGCCGC	AGCGGTGGAG	cccccccc	ccccccccc	GACCGGCACG	GCAAGGAGGC	13440
50	GGACCCCGGT	GCGGGACGCC	TCGCAGGGAT	GGTGGCACTC	GAAGCGGCGG	AGCGTTCCGC	13500
	GCCGTCCTT	GAGCTGGTCA	CCGAACAGGT	CGCCGAGGTC	CTCGGCTACG	CCTCCCCCCC	13560
	GGAGATCGAG	CCCGAACGAC	CCTTCCGGGA	GATCGCCGTC	GACTCCCTGG	CGGCGGTGGA	13620
55	GCTGCGCAAC	CGGCTCAGCC	GTCTGGTCGG	CCTGCGGTTG	CCGACCACGC	TGTCCTTCGA	13680

	CCACCCCACG	CCGAAGGACA	TGGCGCAGCA	CATCGACGGG	CAGCTCCCCC	CCCCGCCGG	13740
5	AGCCTCGCCC	GCGGACGCAG	CGCTGGAAGG	GATCGGCGAC	CTCGCGCGGG	CGGTCGCCCT	13800
	GCTGGGCACG	GGCGACGCCC	GCCGGGCCGA	GGTACGAGAG	CAGCTCGTCG	GACTGCTGGC	13860
	CGCGCTCGAC	CCACCTGGGC	GGACGGGCAC	CGCCGCACCC	GCCTCCCCT	CCGGTGCCGA	13920
10	TGGCGCGGAA	CCGACCGTGA	CGGACCGGCT	CGACGAGGCG	ACCGACGACG	AGATCTTCGC	13980
	CTTCCTGGAC	GAGCAGCTGT	GACCACACCG	TGGACCGACC	GCATGCCGAG	GAGTTGGTGG	14040
15	CAGCAATGAC	CGCCGAGAAC	GACAAGATCC	GCAGCTACCT	GAAGCGTGCC	ACCGCCGAAC	14100
	TGCACCGGAC	CAAGTCCCGC	CTGGCCGAGG	TCGAGTCGGC	GAGCCGCGAG	CCGATCGCGA	14160
	TCGTGGGCAT	GCCTGCCGT	TACCCGGGCG	GTGTGGCGTC	GCCGGACGAC	CTGTGGGACC	14220
20	TGGTGGCAGC	CGGTACGGAC	GCGGTCTCCG	CGTTCCCCGT	CGACCGTGGC	TGGGACGTCG	14280
	AGGGGCTGTA	CGACCCCGAT	CCGCAGGCGG	TGGGGCGTAG	TTACGTGCGG	GAGGGCGGGT	14340
	TCCTGCACTC	GGCGGCCGAG	TTCGACGCGG	AGTTCTTCGG	GATCTCGCCC	CGTGAGGCGG	14400
25	CGGCGATGGA	TCCGCAGCAG	CGCTTGCTGC	TGGAGACGTC	GTGGGAGGCG	CTGGAGCGGG	14460
	CGGGGATCGT	CCCCGCGTCG	CTGCGCGGCA	CCCGTACCGG	CGTCTTCACC	GCCGTCATGT	14520
30	ACGACGACTA	CGGGTCGCGG	TTCGACTCGG	CTCCGCCGGA	GTACGAGGGC	TACCTCGTGA	14580
30	ACGCCAGCGC	CGGCAGCATC	GCGTCCGGTC	GGGTTGCCTA	TGCGTTGGGG	TTGGAGGGGC	14640
	CGGCGCTGAC	GGTGGACACG	GCGTGTTCGT	CGTCGTTGGT	GGCGTTGCAT	CTGGCGGTGC	14700
35	AGTCGTTGCG	GCGGGGTGAG	TGTGATCTGG	CGTTGGCCGG	TGGGGTGACG	GTGATGGCGA	14760
	CGCCGACGGT	GCTCGTGGAG	TTCTCGCGGC	AGCGGGGGCT	GGCGGCGGAC	GGGCGGTGCA	14820
•	AGGCGTTCGC	GGAGGGTGCG	GACGGGACGG	CGTGGGCCGA	GGGTGTGGGC	GTGCTGCTGG	14880
40	TGGAGCGGCT	CTCCGACGCC	CGCCGCAATG	GCCATCGGGT	GCTGGCGGTG	GTGCGGGGCA	14940
	GTGCGGTCAA	TCAGGACGGT	GCGAGCAACG	GGCTGACGGC	GCCGAGTGGT	CCTGCGCAGC	15000
	AGCGGGTGAT	CCGTGAGGCG	CTGGCCGACG	CGGGGCTGAC	GCCCGCCGAC	GTCGACGCGG	15060.
45	TCGAGGCGCA	CGGCACCGGC	ACACCCCTGG	GCGACCCCAT	CGAGGCGGGT	CCCTTCCTCC	15120
	CCACCTATGG	CAGTGAGCGC	CAGGGCCAAG	GTCCGTTGTG	GTTGGGGTCG	TTGAAGTCGA	15180
50	ACATCGGGCA	TGCGCAGGCG	GCTGCGGGTG	TGGGTGGCGT	GATCAAGGTG	GTGCAGGCGA	15240
	TGCGGCATGG	CTCCTTCCCC	CGGACGCTGC	ATGTGGATGC	GCCGTCGTCG	AAGGTGGAGT	15300
	GGGCTTCGGG	TGCGGTGGAG	CTGCTGACCG	AGACCCGGTC	GTGGCCGCGG	CGGGTGGAGC	15360
55	GGCTGCGGCG	GGCCGCGGTG	TCGGCGTTCG	GGGTGAGCGG	GACCAACGCC	CATGTGGTCC	15420

	TGGAGGAAGC	GCCGGCGGAG	GCCGGGAGCG	AGCACGGGGA	CGGCCCTGAA	CCCGAGCGGC	15480
5	CCGACGCGGT	GACGGGTCCG	TTGTCGTGGG	TGCTTTCTGC	GCGGTCGGAG	GGGGGGTTGC	15540
	GGGCGCAGGC	GGTGCGGTTG	CGTGAGTGTG	TGGAGCGGGT	GGGTGCGGAT	CCGCGGGATG	15600
	TGGCGGGGTC	GTTGGTGGTG	TCGCGTGCGT	CGTTCGGTGA	GCGTGCGGTG	GTGGTGGGCC	15660
10	GGGGGCGTGA	GGAGTTGCTG	GCGGGTCTGG	ATGTGGTGGC	TGCCGGGGCT	CCTGTGGGTG	15720
	TGTCCGGGGG	CGTGTCTTCG	GGGGCCGGTG	CTGTGGTGCG	GGGGAGTGCG	CTCCCCCCTC	15780
	CTCCCCTCCC	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	GGCCGTGGGT	15840
15	TGTATGCGGG	GGGTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	CTCCTCCCCC	15900
	AGGTGGGGG	TTGGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	15960
	CCGGGGCTGA	TGCGGGTGTC	GGTTCGGGTG	TTGGTGTGGG	TGGGTTGTTG	GGTCGGACGG	16020
20	AGTTTGCTCA	GCCTGCGTTG	TTTGCGTTGG	ACCTCCCGTT	GTTCCGGGCG	TTGGAGGCTC	16080
	GGGGTGTGGA	GGTGTCGGTG	GTGTTGGGTC	ATTCGGTGGG	GGAGGTGGCT	GCTGCGTATG	16140
25	TGGCGGGGT	GTTGTCGTTG	GGTGATGCGG	TGCGGTTGGT	GGTGGCGCGG	GCTGGGTTGA	16200
	TGGGTGGGTT	GCCGGTGGGT	GGGGGGATGT	GGTCGGTGGG	GGCGTCGGAG	TCGGTGGTGC	16260
	GGGGGGTTGT	TGAGGGGTTG	GGGGAGTGGG	TGTCGGTTGC	GGCGGTGAAT	GGGCCGCGGT	16320
30	CGGTGGTGTT	GTCGGGTGAT	GTCCGTGTCC	TGGAGTCGGT	GGTTGCCTCG	CTGATGGGGG	16380
	ATGGGGTGGA	GTGCCGGCGG	TTGGATGTGT	CGCATGGGTT	TCATTCGGTG	TTGATGGAGC	16440
	CCCTCTTCCC	GGAGTTCCGG	GGGGTTGTGG	AGTCGTTGGA	CTTCCCTCCC	CTCCCCCCC	16500
35	GTGTGGTGGT	GGTGTCGAGT	GTGTCGGGTG	GGGTGGTGGG	TTCGGGGGAG	TTGGGGGATC	16560
	CGGGGTATTG	GGTGCGTCAT	GCGCGGGAGG	CGGTGCGTTT	CGCGGATGGG	GTGGGGGTGG	16620
40	TGCGTGGTCT	GGGTGTGGGG	ACGTTCGTCG	AGGTGGGTCC	GCATGGGGTG	CTGACGGGGA	16680
40	TGGCGGGTGA	GTGCCTGGGG	GCCGGTGATG	ATGTGGTGGT	GCTGCCGGCG	ATGCGGCGGG	16740
	GCCGTGCGGA	GCGGGAGGTG	TTCGAGGCGG	CGCTGGCGAC	GGTGTTCACC	CCCGACCCCC	16800
45	GCCTGGACGC	CACGACACTC	CACACCGGGA	GCACCGGCCG	ACGCATCGAC	CTCCCCACCT	16860
	ACCCCTTCCA	ACACGACCGC	TACTGGCTGG	CCGCCCCGTC	CCGGCCCAGG	ACGGACGGC	16920
	TGTCGGCGGC	GGGTCTGCGC	GAGGTGGAGC	ACCCCCTGCT	CACCGCCGCC	CTGGAACTGC	16980
50	CCGGCACCGA	CACCGAGGTG	TGGACCGGCC	GCATATCCGC	TGCCGACCTG	CCCTGGCTCG	17040
	CCGACCACCT	GGTGTGGGAC	CGAGGCGTGG	TGCCGGGGAC	CCCCTCCTC	GAGACGGTGC	17100
	TCCAGGTGGG	AAGCCGGATC	GGTCTGCCGC	GCGTCGCCGA	ACTGGTCCTG	GAGACGCCGC	17160
55	TGACCTGGAC	GTCGGACCGC	CCGCTCCAGG	TCCGGATCGT	CGTGACCGCT	GCCGCCACCG	17220

	CCCCCGGGG	CGCGCGTGAG	CTGACCCTCC	ACTCGCGGCC	CGAGCCCGTG	CCCCCCTCCT	17280
5	CGTCCTCCCC	GAGTCCCGCC	TCTCCCCGC	ACCTCACGGC	GCAGGAGAGC	GACGACGACT	17340
	GGACCCGGCA	TGCCTCAGGG	CTGCTCGCCC	CGGCTGCCGG	CCTCGCCGAC	GACTTCGCCG	17400
	AGCTCACCGG	CGCCTGGCCC	CCCGTCGGCG	CCGAGCCCCT	CGACCTCGCC	GGTCAGTACC	17460
10	CGCTCTTCGC	AGCCGCCGGA	GTGCGCTACG	AAGGCGCCTT	CCGAGGGCTG	CGCGCGCAT	17520
	GCCTCGAGG	CGACGAGGTC	TTCGCCGACG	TACGGCTGCC	CGACGCGCAC	GCGGTCGACG	17580
15	CTGATCGTTA	CGGGGTGCAC	CCCGCCCTGC	TCGACGCGGT	GCTCCACCCG	ATCGCGTCGC	17640
	TGGACCCGCT	GGCGACGGC	GGGCACGGTC	TGCTGCCGTT	CTCCTGGACC	GACGTACAGG	17700
	GACACGGCGC	CGGCGGACAC	CCCCTCCCCC	TACGGGTGGC	GGCCGTCGAC	GCCGCCGCG	17760
20	TGTCGGTCAC	CGCGGCCGAC	CACGCGGGCA	ACCCGGTGTT	ATCCGCCCGG	TCCCTGGCAC	17820
	TGCGTCGTAT	CACCGCGGAC	CGGCTTCCCG	CCCCCCCCT	CGCCCCTCTC	TACCGCGTGG	17880
,	ACTGGCTGCC	CTTCCCGGGT	CCGGTGCCCG	TATCCGCGGG	CGCCCGCTGG	GCGGTCGTCG	17940
25	GACCCGAGGC	CGAAGCCACG	GCTGCCGGAC	TGCGTGCGGT	GGGCCTCGAC	GTGCGTACCC	18000
	ATGCGCTCCC	CCTCGGAGAG	CCCCTGCCTC	CGCAGGCCGG	TACCGACGCG	GAGGTGATCA	18060
	TCCTCGACCT	GACCACCACC	GCAGCCGGCC	GTACGGCGTC	GGACGGGGG	CGGCTCAGTC	18120
30	TCCTCGACGA	CCTCCCTCCC	ACGGTGCCCC	GGACCCTCGA	AGCCGTACAG	CCCCCCTCC	18180
	CCGACACCGA	AACGGCCCCC	GACGTCGACG	TCCGTACGGC	cccccccc	CGCACAGCCG	18240
35	CCCGTACAAG	CCCCCCCCTG	GACACCCCCA	CGGGAGCCCG	CACCGCTGAC	ecccccccc	18300
	TCGTCGTCCT	GACCCGGGGC	GCGGCCGGAC	CCGAGGGAGG	CGCGGCCGAT	CCCGCGGGTG	18360
	CCGCTGTCTG	GGGGCTCGTC	CGGGTCGCCC	AGGCCGAACA	cccccccc	TTCACCCTGG	18420
40	TGGACGTCGA	CGGCACCCAG	GCGTCGCTGC	GGGCCCTGCC	CCCTCTCCTC	GCCACGGATG	18480
	CCGGCCAGTC	GCCGTGCGC	GACGGACCTG	TCACCGTCCC	GCGCCTCGTC	CCCGTGGCCG	18540
	ACCCCGTCCC	CCACGGCGGC	GGCACGGCGG	CCGACGGGAC	GGGTGCCGGC	GAGCCGTCCG	18600
45	CGACCCTGGA	CCCCGAAGGC	ACCGTGCTGA	TCACCGGCGG	CACCGGAGCA	CTGGCCGCGG	18660
	3AAACCGCCCC	GCACCTGGT	GACCGGCAC	A AGGTGCGCCI	A TCTCCTGCT	GTGGGCAGGC	18720
50	GCGGTCCCGA	CCCACCCCCC	GTCGATCGAC	TGGTCGCCGA	GTTGACCGAG	TCGGGTGCCG	18780
50	AGGTCGCCGT	ACGGCCTGT	GACGTCACCG	ACCGCGACGC	CCTGCGCCGC	CTGCTCGACG	18840
	CACTCCCCGA	CGAACACCCG	CTGACCTGCG	TGGTGCACAC	CCCCCCCCTC	CTCGACGACG	18900
55	GCCTGCTCTC	CCCCAGACG	GCCGAGCGCA	TCGACACGGT	GCTCCGCCC	AAGGCCGACG	18960

	CCGCCGTCCA	CCTGGACGAG	CTGACCCGGG	AGATCGGACG	GCTGCCCCTG	GTGCTGTACT	19020
5	CCTCGGTCTC	GGCCACCCTG	GGCAGCGCGG	GGCAGGCCGG	GTACGCGGCG	GCCAACGCCT	19080
3	TCATGGACGC	GCTGGCCGCC	CGCCGTGCG	CCGCCGGGCA	CCCCGCGCTG	TCGCTCGGCT	19140
	GGGGCTGGTG	GTCCGGGGTG	GGTCTCGCCA	CCGGACTGGA	CGGAGCGGAC	GCGCGCGGG	19200
10	TCAGGCGCTC	GGGTCTCGCC	CCGCTCGACG	ccecccccc	ACTGGACCTG	CTCGACCGGG	19260
	CGCTGACCCG	GCCCGAGCCG	GCCCTGCTGC	CCGTGCGGCT	CGACCTGCGC	GCCGCGGCCG	19320
	GTGCCACCGC	TCTCCCGGAG	GTCCTGCGTG	ACCTGGCCGG	CGTACCGGCG	GACGCCCGCA	19380
15	GCACGCCCGG	GCCGCGGCG	GGCACCGGGG	ACGAGGACGG	TGCCGTGCGC	CCTGCCCCCG	19440
	CCCCGGCCGA	CGCCGCCGGG	ACGCTGGCCG	CGCGGCTCGC	GGGACGTTCC	GCACCCGAGC	19500
	GTACGGCTCT	CCTGCTCGAC	CTGGTGCGGA	CCGAGGTCGC	GGCGGTGCTC	GGACACGGCG	19560
20	ACCCCGCCGC	GATCGGCGCC	GCCCGCACCT	TCAAGGACGC	CGGATTCGAC	TCCCTCACCG	19620
	CTGTCGACCT	CCGCAACCGG	CTGAACACAC	GCACCGGACT	GCGGCTGCCC	GCGACCCTCG	19680
25	TCTTCGACCA	CCCCACACCG	CTCGCCCTCG	CCGAACTCCT	GCTCGACGG	CTGGAGGCGG	19740
	CCGGTCCAGC	GGAACCGGCC	GCTGAGGTCC	CGGACGAAGC	GGCCGGTGCC	GAGACCCTGT	19800
	CCGCCGTGAT	CGACCGGCTG	GAACGCAGCC	TCGCCGCGAC	CGACGACGGC	GACGCCCGGG	19860
30	TCCGCGCGCC	ACGCCGCCTG	CGCGGCCTGC	TGGACGCGCT	CCCCGCCGGT	CCCGGTGCCG	19920
	CGTCCGGTCC	GGATGCCGGA	GAGCACGCCC	CCGGTCGCGG	CGACGTGGTG	ATCGACCGGC	19980
	TCAGGTCGGC	CTCCGACGAC	GACTTGTTCG	ACCTGCTCGA	CAGCGACTTC	CAGTGAGCCG	20040
35	GACCGCGCCG	CGCGCCGACC	GCTGAACCGC	TCTTCACCCA	GACCCACGAG	ACCACGCCTG	20100
	AGGAGAACCG	TGTCTGCGAC	CAACGAGGAG	AAGTTGCGGG	AGTACCTGCG	GCCCCCCATG	20160
	GCCGACCTGC	ACAGCGCACG	AGAGCGGTTG	CGCGAGGTCG	AGTCGGCGAG	CCGTGAGCCG	20220
40	ATCGCGATCG	TGGGCATGGC	GTGCCGTTAC	CCGGGCGGTG	TGGCGTCGCC	GGAGGAGCTG	20280
	TGGGACCTGG	TGGCCGCCGG	TACGGACGCG	ATCTCCCCGT	TCCCCGTCGA	CCGCGGCTGG	20340
45	GACGCCGAGG	GTCTGTACGA	CCCGGAGCCG	GCCCTCCCCC	GCAAGAGCTA	CGTGCGCGAG	20400
	GCCGCTTCC	TGCACTCGGC	GGCCGAGTTC	GACGCGGAGT	TCTTCGGGAT	CTCGCCGCGT	20460
	GAGGCGGCGG	CGATGGATCC	GCAGCAGCGG	TTGCTGCTGG	AGACGTCGTG	GGAGGCGCTG	20520
50	GAGCGGGCCG	GGATCGTCCC	CGCGTCGCTG	CGCGGCACCC	GTACCGGCGT	CTTCACCGGC	20580
	GTCATGTACC	ACGACTACGG	CAGCCACCAG	GTCGGCACCG	CCGCCGATCC	CAGTGGACAG	20640
	CTCGGCCTCG	GCACCGCGGG	GAGCGTCGCC	TCGGGCCGGG	TGGCGTACAC	CCTCGGTCTA	20 70 0
55	CAGGGGCCGG	CCGTGACCAT	GGACACGGCA	TGCTCGTCCT	CGCTGGTGGC	GTTGCACCTG	20760

	GCGGTGCAGT	CGTTGCGGCG	GGGCGAGTGC	GATCTCGCGT	TGGCCGGCGG	GGCGACGGTC	20820
5	TTGGCGACGC	CCACGGTGTT	CGTGGAGTTC	TCGCGGCAAC	GGGGGCTGGC	GGCGGACGGA	20880
	CGGTGCAAGG	CGTTCGCGGA	GGGCGCCGAC	GGCACGGCGT	GGGCCGAGGG	CGCCGGTGTG	20940
	CTGCTGGTGG	AGCGGCTCTC	CGACGCCCGC	CGCAACGGCC	ATCGGGTGCT	CCCCCTCCTC	21000
10	CGGGGCAGCG	CGGTCAACCA	GGACGGTGCC	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	21060
	GCCCAGCAGC	GGGTGATCCG	TGACGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	21120
15	GACGCGGTCG	AGGCGCACGG	CACCGGCACA	CCGCTCGGCG	ACCCGATCGA	GCCGGCGCG	21180
,,,	CTGATGGCCA	CCTACGGCAG	TGAACGGGTG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	21240
	TCGAACATCG	GACACACCCA	ccccccccc	GGAGCCGCCG	GCGTCATCAA	GATGGTGCAG	21300
20	GCGTTACGGC	AGTCCGAGCT	GCCGCGCACC	CTGCACGTCG	ACGCGCCCTC	GGCCAAGGTC	21360
	GAATGGGACG	CCCCCCCCT	GCAACTGCTC	ACCGGCGTCC	GGCCATGGCC	CCGGCGCGAG	21420
	CACAGGCCCC	GCCGGCCCCC	GGTCTCCGCC	TTCGGCGTCA	GCGGCACCAA	CGCCCACGTC	21480
25	ATCATCGAGG	AACCGCCCGC	GGCCGGTGAC	ACCTCGCCCG	CCGGCGACAC	CCCTGAGCCG	21540
•	GGCGAGGCGA	CCGCGTCCCC	CTCCACCGCG	GCCGGGCCGT	CGTCCCCCTC	CCCCGTCCCC	21600
	GGCCGCTGT	сссстсстс	CCCGGCCGTG	CTCTGGCCCC	TGTCCGCCGA	GACCGCCCCC	21660
30	GCCCTGCGCG	CCCAGGCCGC	CCGCCTGCGG	GCGCACCTCG	AACGCCTCCC	CGGCACCTCG	21720
	CCGACCGACA	TCGGCCACGC	CCTGGCCGCC	GAACGCGCCG	CCCTCACCCG	ACGCGTCGTG	21780
35	ĊTGCTCGGCG	ACGACGGAGC	CCCGGTCGAC	OCACTCGCCG	CCCTCGCCGC	CGCCGAGACC	21840
	ACCCCGACG	CCGTCCACGG	CACCGCGGCG	GACATCCGCC	GGGTCGCCTT	CCTCTTCCCC	21900
	GGCCAGGGTT	CCCAGTGGGC	CGGGATGGGC	GCCGAACTGC	TGGACACGGC	CCCGCCCTTC	21960
40	GCCGCCGAAC	TGGACCGCTG	CCAGGGCGCG	CTCTCCCCGT	ACGTGGACTG	GAACCTCGCG	22020
	GACGTGCTGC	GCGGCGCGCC	CGCGGCGCCC	GCCTCGACC	GGGTCGACGT	CGTCCAGCCG	22080
	GCCACCTTCG	CCGTCATGGT	GGGACTCGCC	GCGCTGTGGC	GCTCCCTCGG	GGTCGAACCC	22140
45	GCCGCCGTCA	TCGGCCACTC	CCAGGGCGAG	ATCGCCGCGG	CCTGCGTGGC	GGGCGCGCTC	22200
	TCCCTGGAGG	ACGCCGCCCG	GATCGTGGCC	CTGCGCTCCC	AGGTCATCGC	CCGCGAACTG	22260
50	GCCGGGCGGG	GCGGCATGGC	CTCGGTGGCC	CTCCCCCCC	CGGAGGTCGA	GCCCCCCTG	22320
	GCCGGCGGCG	TCGAGATCGC	CGCCGTCAAC	GCCCCGGCT	CGACCGTCGT	CTGCGGAGAG	22380
	CCCGGCGCCC	TGGAGGCGTT	GCTCGTCACG	CTGGAGAGCG	AAGGCACCCG	GGTCCGCCGC	22440
55	ATCGACGTCG	ACTACGCGTC	CCACTCCCAC	TACGTCGAGA	GCATCCGGGC	GGAACTCGCC	22500

	ACCGTCCTCG	GCCCCGTCCG	GCCGCGGAGG	GCCGACGTGC	CCTTCTACTC	CACCGTCGAG	22560
5	GCGCCCTCC	TCGACACCGC	CACCCTGGAC	GCCGACTACT	GGTACCGCAA	CCTGCGCCTC	22620
3	CCGGTGCGCT	TCGAGCCGAC	CGTACGCGCC	ATGCTCGACG	ACGGCGTCGA	CCCCTTCCTG	22680
	GAGTGCTCCG	CGCATCCCGT	CCTGACCGTC	GCCGTGCGCC	AGACCGTGGA	GAGCGCCGGC	22740
10	GGCGCGGTCC	CGGCCCTCGC	TTCGCTGCGC	CGCGACGAGG	GCGGGCTGCG	GCGCTTCCTC	22800
	ACCTCCGCCG	CCGAGGCCCA	GGTCGTCGGC	GTCCCCGTGG	ACTGGGCGAC	GCTCCGCCCA	22860
	GCCCCCCCC	GGGTGGACCT	GCCGACCTAC	GCCTTCCAGC	GCGAACGCCA	CTGGGTCGGC	22920
15	CCCGCCCGGC	CCGACTCCGC	GGCGACGGCC	GCCACGACCG	GTGACGACGC	CCCGGAGCCC	22980
	GGAGACCGGC	TCGGCTACCA	CGTCGCGTGG	AAGGGACTGC	GCTCCACCAC	CCCCCCCTCC	23040
	CGCCCCGGCC	TGCGCCTGCT	GATCGTGCCC	ACCGGGGACC	AGTACACCGC	CCTCGCCGAC	23100
20	ACCCTGGAAC	AGGCGGTCGC	CTCCTTCGGC	GGAACGGTCC	GCCGCGTCGC	CTTCGACCCG	23160
	GCACGCACCG	GACGCGCCGA	GCTGTTCGGC	CTGCTCGAGA	CGGAGATCAA	CGGCGACACC	23220
25	GCCGTCACCG	GCGTCGTCTC	GCTGCTCGGA	CTGTGCACCG	ACGGCAGGCC	GGACCACCCC	23280
	GCCGTGCCCG	TCGCCGTCAC	CGCCACCCTC	GCCCTCGTCC	AGGCCCTGGC	CGACCTCGGC	23340
	AGCACCGCAC	CGCTGTGGAC	CGTCACCTGC	GCCCCGTCG	CCACCGCCCC	CGACGAACTG	23400
30	CCGTGCACCG	CCGGTGCCCA	GCTCTGGGGC	CTCCCCCCC	TGGCCGCGCT	GCAGCTGCCC	23460
	GAGGTGTGGG	GCGGCCTCAT	CGACCTTCCC	ccccccccc	ACGCCCGGGT	CCTGGACCGT	23520
	CTCGCCGGCG	TCCTCGCCGA	ACCCGGCGGC	GAGGACCAGA	TCGCCGTACG	GATGGCGGGC	23580
35	CTCTTCCCCC	GCCGGGTCCT	GCGGAACCCG	GCCGACTCCC	GCCCCCGGC	CTCGCGCGCC	23640
	CGGGGCACCG	TCCTCATCGC	CGGCGACCTC	ACGACGGTGC	CCGGCCGACT	GCTCCGCTCC	23700
10	CTCCTCGAGG	ACGCCGCGGA	CCCCCTCCTC	CTGGCCGGAC	CCGACGCCCC	OGCACAGGCC	23760
40	ecceccecce	GACTGACCGG	CGTCTCCCTC	GTCCCCGTGC	GCTGCGACGT	CACCGACCGC	23820
	GCCGCACTGG	CCGCGCTGCT	CGACGAGCAC	GCGCCCACCG	TCGCCGTGCA	cccccccc	23880
45	CTGGTGCCCC	TGGCGCCGCT	GCGGGAGACG	GCACCCGGCG	ACATCGCCGC	OCCCTOCCC	23940
	GCCAAGACCA	CCCCCCCCC	CCACCTGGTC	GACCTGGCGC	ceeceecee	CCTCGACGCG	24000
	CTGGTGCTGT	TCTCCTCGGT	CTCCGGAGTG	TGGGGCGCG	CGGCCCAGGG	CCCCTACCCC	24060
50	GCCGCCAGCG	CGCACCTCGA	CGCGCTGGCC	GAACGCGCCC	GCGCCGCGGG	GGTGCCCGCG	24120
	TTCTCCGTGG	CCTGGAGCCC	CTGGGCCGGA	GGCACGCCCG	CCGACGGTGC	CGACGCCGAG	24180
	TTCCTCAGCC	GCCGCGGCT	GGCTCCCCTC	GACCCCGACC	AGGCGGTGCG	GACCCTGCGC	24240
55	CGCATGCTGG	AGCGCGGCAG	CGCCTGCGGT	GCGGTCGCCG	ACGTCGAGTG	CACCCCCTTC	24300

	GCCGCCTCCT	ACACCTGGGT	GCGTCCCGCC	GTACTCTTCG	ACGACATCCC	GGACGTGCAG	24360
5	CGGCTGCGCG	CGGCCGAACT	CGCCCCGAGC	ACCGGAGACT	CGACCACCTC	CGAACTCGTC	24420
	CGCGAGCTGA	CCGCGCAGTC	CGGCCACAAG	CGGCACGCCA	CCCTGCTGCG	GCTGGTGCGC	24480
	GCACACGCCG	CCGCCGTCCT	CGGACAGTCC	TCCGGCGACG	CGGTGAGCAG	ccccccccc	24540
10	TTCCGCGACC	TCGGCTTCGA	CTCGCTGACC	GCCCTCGAAC	TGCGCGACCG	GCTCAGCACC	24600
	AGCACCGGGC	TCAAACTGCC	CACCTCCCTG	GTCTTCGACC	ACTCCAGCCC	GCCCCCCTC	24660
15	GCCCGGCACC	TCGGTGAGGA	ACTCCTCGGC	CGGAACGACA	CCGCCGACCG	eccecccc	24720
,,,	GACACCCCGG	TACGGACGGA	CGAGCCCATC	GCCATCATCG	GCATGCCCTG	CCGGCTGCCC	24780
	GCCGGGGTGC	AGTCCCCCGA	GGACCTGTGG	GACCTGCTGA	CCGGTGGGAC	CGACGCCATC	24840
20	ACCCCCTTCC	CGACCAACCG	GGGATGGGAC	AACGAGACCC	TCTACGACCC	CGACCCCGAC	24900
·	TCGCCCGGGC	ACCACACCTA	CGTGCGCGAG	GCCGGGTTCC	TGCACGACGC	GCCCGACTTC	24960
	GACCCCGGCT	TCTTCGGCAT	CAGCCCCCGC	GAGGCCCTGG	CCATGGACCC	GCAGCAGCGG	25020
25	CTGATCCTGG	AGACGTCCTG	GGAGTCCTTC	GAACGGGCCG	GCATCGACCC	GGTCGAACTG	25080
	CGCGGCAGCC	GCACCGGGGT	CTTCGTCGGC	ACCAACGGAC	AGCACTACGT	GCCGCTCCTC	25140
	CAGGACGGCG	ACGAGAACTT	CGACGCTAC	ATCGCCACCG	GCAACTCCGC	CAGCGTGATG	25200
30	TCCCCCCCCC	TCTCCTACGT	CTTCGGACTG	GAGGGCCCCG	CCGTCACCGT	CGACACCGCC	25260
	TGCTCGGCCT	CCCTGGCCGC	ACTGCACCTG	GCGGTGCAGT	CACTGCGCCG	CGGCGAATGC	253 20
35	GACTACGCCC	TCGCCGGCGG	GGCCACGGTG	ATGTCCACCC	CCGAGATGCT	GGTGGAGTTC	25380
	GCCCGTCAGC	GAGCGGTGTC	GCCGGACGGC	CGCAGCAAGG	CGTTCGCGGA	GGCGGCCGAC	25440
	GGGGTCGGTC	TCGCCGAGGG	AGCCGGGATG	CTGCTCGTGG	AGCGGCTGTC	GGAGGCGCAG	25500
40	AAGAAGGGCC	ATCCGGTACT	GCCGCTGGTG	CGGGGCAGTG	CCGTCAACCA	GGACGGTGCC	25560
	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	GCCCAGCAGC	GGGTGATACG	GGAGGCGCTG	256 20
	GCCGACGCGG	CCCTGACGCC	CGCCGACGTG	GACGCGGTCG	AGGCGCACGG	CACCGGCACG	25680
45	CCGCTCGGCG	ACCCCATCGA	GCCCGCCGCG	CTGCTCGCCA	CGTACGGCCG	GCACCGCCCC	25740
	GACGGCCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	GGCACACCCA	GCCGCCGCC	25800
50	GCCGTGGCCG	GGGTGATCAA	GATGGTGCTG	GCCCTGCGCC	ACGCCGAGCT	CCCCCCCACC	258 60
50	CTGCACGCGT	CGACGCCGTC	GTCCAGGATC	GATTGGGACG	CGGCCCCCT	GGAGTTGCTG	25920
	GACGAGGCCA	GCCCTGGCT	CCAGCGGGCC	GAGGGCCGC	GCCGGGCGGG	CATCTCCTCG	25980
55	TTCGGCATCA	GCGCCACCAA	CGCGCACCTC	GTCATCGAGG	AGCCGCCGGA	GCCCACCGCG	26040

	CCCGAACTGC	TCGCGCCCGA	ACCGGCCGCC	GACGGCGACG	TCTGGTCCGA	CGACTCCTCC	26100
5	CACGAGGTGA	CCGTGCCCCT	GATGATGTCC	GCGCACAACG	AAGCCGCCCT	GCGCGACCAG	26160
3	GCGCGGCGCC	TGCGCGCCGA	CCTGCTCGCC	CACCCCGAGC	TGCACCCGGC	CGACGTCGGC	26220
	TACACCCTCA	TCACCACCCG	CACCCGGTTC	GAGCAGCGGG	CCGCCGTCGT	CGGCGAGAAC.	26280
10	TTCACGGAGC	TGATCGCGGC	CCTCGACGAC	CTCGTCGAAG	GCCGACCGCA	CCCGCTCGTG	26340
	CTGCGGGGCA	CCGCCGGCAC	CTCCGACCAG	GTCGTGTTCG	TCTTCCCCGG	CCAGGGCTCG	26400
	CAGTGGCCCG	AGATGGCCGA	CGGGCTGCTG	GCCCGCTCCA	GCGGCTCCGG	CTCCTTCCTG	26460
15	GAGACCGCCC	GCGCCTGCGA	CCTCGCGCTC	CGGCCCCACC	TCGGCTGGTC	CCTCCTGGAC	26520
	GTACTGCGCC	GGGAACCCGG	CGCGCCCTCG	CTCGACCGGG	TCGACGTGGT	GCAGCCCGTG	26580
	CTGTTCACCA	TGATGGTCTC	GCTCGCCGAG	ACGTGGCGTT	CGCTGGGCGT	CGAACCGGCC	26640
20	GCGGTCGTCG	GTCACTCCCA	GGGCGAGATC	GCCGCCGCCT	ACGTCGCCGG	CGCCCTGACG	26700
	CTGGACGACG	CGGCGCGCAT	CGTCGCCCTG	CGCAGCCAGG	CGTGGCTGCG	GCTGGCCGGC	26760
25	AAGGGCGGCA	TGGTCGCCGT	GACCCTGTCC	GAACGCGACC	TGCGTCCCCG	CCTGGAGCCC	26820
	TGGAGCGACC	GGCTCGCCGT	CGCCGCCGTC	AACGGCCCCG	AGACCTGCGC	CGTCTCCGGG	26880
	GACCCGGACG	CCCTGGCGGA	GCTGGTCGCC	GAACTCGGTG	CGGAGGGCGT	GCACGCCCGC	26940
30	CCCATCCCCG	GCGTCGACAC	CGCCGGGCAC	TCGCCGCAGG	TCGACACGCT	GGAGGCCCAC	27000
	CTGCGGAAGG	TGCTCGCGCC	CGTCGCGCCC	CGCACCTCCG	ACATCCCGTT	CTACTCGACG	27060
	GTCACCGGAG	GACTGATCGA	CACCGCCGAG	CTGGACGCCG	ACTACTGGTA	CCGCAACATG	27120
35	CGCGAGCCGG	TGGAGTTCGA	GCAGGCCACC	CGCGCCCTGA	TCGCCGACGG	CCACGACGTG	27180
	TTCCTGGAGT	CGAGCCCGCA	CCCCATGCTG	GCCGTCTCCC	TCCAGGAGAC	GATCAGCGAC	27240
	GCCGGTTCCC	CGCCGCCCT	CCTCGGCACC	CTGCGGCGCG	GCCAGGGCGG	CCCCCCCTGG	27300
40	CTGGGCGTCG	CCCTCTGCCG	CGCCTACACC	CACGGCCTGG	AGATCGACGC	CGAGGCCATC	27360
	TTCGGCCCCG	ACTCACGCCA	GGTGGAACTG	CCCACGTACC	CCTTCCAGCG	CGAGCGCTAC	27420
45	TGGTACAGCC	CCGGCCACCG	CGGTGACGAC	CCCGCCTCCC	TCGGTCTGGA	CGCCGTCGAC	27480
	CACCCGCTGC	TGGGCAGCGG	CGTCGAACTG	CCGGAGTCCG	GTGACCGGAT	GTACACCGCA	27540
	CGGCTGGGCG	CCGACACCAC	CCCGTGGCTG	GCCGACCACG	CGCTGCTGGG	CTCCCCCCTC	27600
50	CTGCCCGGCG	CCGCCTTCGC	CGACCTGGCG	CTCTGGGCCG	GCCGCCAGGC	CGGCACCGGC	27660
	CGCGTCGAGG	AGCTCACCCT	GCCGCGCCC	CTGGTGCTGC	CCGGCTCCGG	CCCTCTCCCC	27720
	CTGCGGCTGA	ACGTCGGCGC	CCCGGGCACC	GACGACGCCC	GCCGCTTCGC	CCTGCACGCC	27780
55	CGCGCCGAGG	GCGCCACGGA	CTGGACCCTG	CACGCCGAGG	GGCTGCTCAC	CGCGCAGGAC	27840

	ACGGCCGACG	CGCCGGACGC	CTCGGCGGCC	ACCCCGCCCC	CCGGCGCCGA	ACAACTGGAC	27900
5	ATCGGCGACT	TCTACCAGCG	CTTCTCCGAA	CTCGGTTACG	GCTACGGCCC	GTTCTTCCGG	27960
	GGACTGGTGA	GCGCCCACCG	CTGCGGCCCC	GACATCCACG	CGGAGGTCGC	GCTGCCCGTC	28020
	CAGGCGCAGG	GCGACGCGGC	CCGCTTCGGC	ATCCATCCCG	CGCTGCTGGA	CGCGGCGCTG	28080
10	CAGACCATGA	GCCTCGGGGG	CTTCTTCCCC	GAGGACGGCC	GCGTCCGCAT	GCCGTTCGCC	28140
	CTGCGCGGGG	TTCGGCTGTA	CCGCGCCGGA	GCCGACCGGC	TGCACGTGCG	CCTCTCCCCC	28200
15	GTCTCCGAGG	ACGCGGTCCG	CATCAGGTGC	GCCGACGGCG	AGGGACGGCC	GGTCGCCGAG	28260
	ATCGAGTCCT	TCATCATGCG	GCCGGTCGAC	CCGGGACAGC	TCCTGGGCGG	CCGCCCGGTC	28320
	GGCGCCGACG	CGCTCTTCCG	CATCGÇCTGG	CGGGAACTCG	CCGCCGGCCC	GGGCACCCGT	28380
20	ACCGGCGACG	GCACCCCTCC	CCCGCTGCGC	TGGGTGCTGG	CGGGACCCGA	CGCGCTGGGC	28440
	CTGGCCGAGG	CGGCCGACGC	CCACCTGCCC	GCCGTTCCCG	GCCCGGACGG	CGCACTGCCG	28500
	TCCCCGAÇGG	GACGCCCGGC	GCCGGACGCC	GTCGTGTTCG	CGGTCCGTGC	CGGGACCGGC	28560
25	GACGTCGCCG	CCGACGCGCA	CACCGTGGCC	TGCCGGGTGC	TGGACCTCGT	CCAGCGCCGG	28620
	CTCGCGGCCC	CGGAGGCCC	GGACGCCCC	CCCCTCCTCC	TGGCCACCCG	CGGCGCGGTC	28680
	GCCGTACGCG	ACGACGCCGA	GGTGGACGAC	cccccccc	CCGCCGCGTG	GGGCCTGCTG	28740
30	CGCTCCGCGC	AGGCCGAGGA	cccccccc	TTCCTGCTCG	TGGACCTGGA	CGACGACCCG	28800
	GCGTCCGCCC	GGGCGCTGAC	CGACGCCCTC	GCCTCCGGCG	AACCGCAGAC	CGCGGTCCGG	28860
35	GCCGGGACGG	TGTACGTGCC	CCGGCTGGAG	CCCCCCCC	ACCGCACGGA	CGGGCCGCTC	28920
	ACCCCGCCCG	ACGACGGTGC	CTGGCGGCTG	GGCCGGGGCA	CCGACCTCAC	CCTCGACGGC	28980
	CTCGCCCTGG	TGCCCGCCCC	GGACGCCGAG	GCGCCGCTGG	AGCCCGGCCA	GGTGCGCGTC	29040
40	GCCGTACGCG	CCCCCCCCCT	CAACTTCCGC	GACGCCCTCA	TCCCCCTCCC	CATGTACCCG	29100
	GGCGAGGCGG	AGATGGGAAC	GGAGGGCGCC	GGCACCGTCG	TCGAGGTCGG	CCCCGCCTC	29160
	ACCGGTGTCG	CCGTCGGCGA	CCGCGTGCTC	GCCTGTGGG	ACGGCGGCCT	GGGCCCGCTG	29220
45	TGCGTGGCCG	ACCACCGGCT	GCTCGCCCCC	GTCCCGGACG	GCTGGTCCTA	CCCCACCC	29280
	GCCTCGGTCC	CCGCGGTGTT	CCTCAGCGCC	TACTACGGTC	TGGTCACCCT	GCCCGCCTC	29340
50	AGGCCGGGGG	AGCGGGTGCT	CGTGCACGCC	GCCGCCGGGG	GCGTCGGCAT	GCCGCGCTG	29400
50	CAGATCGCCC	GCCACCTCGG	CGCGGAGGTG	CTGGCCACCG	CGAGCCCCGG	CAAGTGGGAC	29460
	GCCCTGCGCG	CCATGGGCAT	CACCGACGAC	CACCTCGCCT	CCTCCCGCAC	CCTCGACTTC	29520
55	GCGACCGCCT	TCACCGGAGC	GGACGGCACG	TCCCGCGCGG	ACGTCGTCCT	GAACTCGCTC	29580

	ACCAAGGAGT	TCGTGGACGC	CTCCCTCGGG	CTGCTCCGTC	CGGGCGGCCG	GTTCCTGGAG	29640
5	CTGGGCAAGA	CCGACGTCCG	GGACCCCGAG	CGGATCGCCG	CCGAACACCC	CGGGGTGCGC	29700
	TACCGGGCGT	TCGACCTCAA	CGAGGCCGGA	CCCGACGCAC	TCGGCCGGCT	GCTGCGGGAA	29760
	CTGATGGACC	TGTTCGCCGC	CGGCGTGCTG	CACCCGCTGC	CCGTCGTCAC	CCACGACGTG	29820
10	CCCCCCCCC	CGGACGCCCT	GCGCACCATC	AGCCAGGCCC	GGCACACCGG	AAAGCTCGTC	29880
	CTGACCATGC	CGCCCGCCTG	GCACCCGTAC	GGCACGGTCC	TGGTCACCGG	TGGCACCGGC	29940-
	GCCCTCGGCA	GCCGCATCGC	CCGCCACCTG	GCGAGCCGGC	ACGGCGTCCG	CCGGCTGCTG	30000
15	ATCGCCGCCC	GCCGGGGCCC	GGACGCCGAG	GCCCCCCCC	AGCTGGTCGC	CGACCTCGCC	30060
	GCCCTGGGCG	CGTCGGCCAC	CGTGGTCGCC	TGCGACGTCT	CCGACGCGGA	CCCCGTCCGC	30120
20	GGACTGCTCG	CCGGCATACC	GGCCGATCAC	CCGCTGACGG	CGGTGGTGCA	CAGCACCGGC	30180
	GTCCTCGACG	ACGGCGTGCT	GCCCGGGCTC	ACCCCGAGC	GGATGCGGCG	CGTGCTGCGG	30240
·	CCCAAGGTGG	AGGCCGCCGT	CCACCTGGAC	GAACTCACCC	GCGACCTCGA	CCTGTCGGCG	30300
25	TTCGTCCTCT	TCTCCTCCAG	CGCCGGTCTG	CTGGGCAGCC	CGGCCCAGGG	CAACTACGCG	30360
	GCGGCCAACG	CCACCCTCGA	CGCCCTCGCC	GCCCGGCGCC	GGTCCCTCGG	CCTCCCGTCG	30420
	GTGTCACTCG	CCTGGGGTCT	GTGGTCCGAC	ACCAGCCGGA	TGGCACACGC	ACTGGACCAG	30480
30	GAGAGCCTCC	AGCGGCGCTT	CGCCCGCAGC	GCCTTCCCGC	CCCTGTCCGC	CACGCTGGGC	30540
	GCCGCGCTGT	TCGACGCCGC	CCTGCGGGTC	GACGAGGCCG	TGCAGGTCCC	CATGCGGTTC	30600
	GACCCGGCCG	CGCTGCGCGC	CACCGGAAGC	GTCCCCGCCC	TGCTGTCGGA	CCTCGTCGGG	30660
35	TCCGCCCCGG	CGACCGGGTC	cccccccc	GCGTCCGGCC	CCCTTCCGGC	TCCGGACGCC	30720
	GGGACCGTCG	GCGAGCCGCT	CGCCGAGCGG	TTGGCCGGAC	TCTCCGCCGA	GGAACGCCAC	30780
40	GACCGGCTGC	TCGGCCTGGT	CGGCGAACAC	CTCCCCCCC	TACTGGGCCA	CGGCTCCGCC	30840
	GCCGAGGTCC	GCCCGACCG	CCCCTTCCCC	GAGGTCGGGT	TCGACTCGCT	CACGGCCGTG	30900
	GAACTGCGCA	ACCGGATGGC	GGCGGTCACC	GGGGTCAGGC	TCCCCGCCAC	CCTGGTCTTC	30960
45	GACCACCCCA	ccccccccc	GCTGTCCTCG	CACCTCGACG	GCCTGCTGGC	CCCGGCACAG	31020
	CCGGTCACCA	CCACACCGCT	GCTGTCCGAA	CTGGACCGCA	TCGAGGAGGC	CCTGGCCGCC	31080
	CTCACCCCCG	AGCACCTCGC	GGAGCTCGCC	cccccccc	ACGACCGGGC	CGAGGTCGCC	31140
50	CTGCGCCTGG	ACGCCCTGGC	CGACCGCTGG	CGCGCCCTGC	ACGACGCCC	GCCCGGCGCC	31200
	GACGACGACA	TCACCGACGT	GCTGAGCAGC	GCCGACGACG	ACGAGATCTT	CGCGTTCATC	31260
	GACGAGCGGT	ACGGCACGTC	GTGACCGCCG	GCCCGGAGCC	CCGCCCGTCA	TCGAAAGGAA	31320
55	GCACCACCAT	GGCGAACGAA	GAGAAGCTGC	GCGCCTACCT	CAAGCGCGTG	ACGGGTGAGC	31380

	TGCACCGGGC	CACCGAGCAG	CTGCGTGCCC	TGGACCGGCG	GGCCCACGAG	CCGATCGCGA	31440
5	TCGTCGGGGC	GGCCTGCCGA	CTCCCCGGCG	GCGTCGAGAG	TCCGGACGAC	CTGTGGGAGC	31500
	TGCTGCACGC	CGGTGCCGAC	GCGGTCGGCC	CGGCCCCCGC	CGACCGCGGC	TGGGACGTGG	31560
	AGGGAAGGTA	CTCGCCCGAC	CCCGACACGC	CCGGCACCTC	GTACTGCCGC	GAGGGGGGCT	31620
10	TCGTGCAGGG	GCCGACCGG	TTCGACCCCG	CCCTCTTCGG	CATCTCGCCC	AACGAGGCGC	31680
	TCACCATGGA	CCCCCAGCAG	CGGCTGCTGC	TGGAGACCTC	CTGGGAGGCG	CTGGAGCGAG	31740
15	CCGGTCTGGA	CCCCCAGTCC	CTGGCGGGCA	GCCGGACCGG	CGTGTTCGCC	GGGCGTGGG	31800
	AGAGCGGCTA	CCAGAAGGGC	GTCGAAGGGC	TCGAAGCCGA	TCTGGAGGCC	CAACTCCTGG	31860
	CCGGCATCGT	CAGCTTCACC	GCCGGCCGCG	TCGCCTACGC	CCTGGGCCTG	GAGGGCCCGG	31920
20	CGCTGACGAT	CGACACGGCC	TGCTCCTCGT	CGCTGGTGGC	ACTGCACCTG	GCGGTGCAGT	31980
	CACTGCGCCG	GGCGAGTGC	GACCTCGCAC	TGGCGGGGGG	CGCCACGGTC	ATCGCCGACT	32040
	TCGCGCTCTT	CACCCAGTTC	TCCCGGCAGC	GCGGGCTCGC	CCCCGACGGG	CGCTGCAAGG	32100
25	CCTTCGGTGA	GACGGCCGAC	GGCTTCGGCC	CCGCCGAGGG	CGCGGGGATG	CTGCTGGTCG	32160
	AGCGGCTGTC	GGACGCCCGC	CGCAACGGGC	ACCCGGTGCT	GGCGGTGGTG	CCCGCCAGTG	32220
	CCGTCAACCA	GGACGGTGCG	AGCAATGGGC	TGACGGCGCC	GAGTGGTCCT	GCGCAGCAGC	32280
30	GGGTGATCCG	TGAGGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	32340
	AGGCGCACGG	CACCGGCACG	CCGCTCGGCG	ACCCCATCGA	GGCCGGCGCG	CTCATGGCGA	32400
35	CGTACGGGCA	CGAACGGACG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	32460
	GGCACACCCA	GCCGCCGCC	GCCTCCCC	GGGTGATCAA	GATGGTGCTG	GCGCTGCGCC	32520
	ACGGTGAGCT	GCCGCGCACC	CTGCACGCGT	CGACGCCGTC	CTCCAGGATC	GAATGGGACG	3 2580
40	CGGCGCCGT	GGAGTTGCTG	GACGAGGCCA	GCCCTGGCC	CCGGCGTGCC	GAGGGGCCGC	32640
	GCCGGGCGGG	CATCTCCTCG	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	32700
	AGGAGCCGCC	cecceecce	GAGCCCGAGG	AGGCCGCGCA	GCCGCCCGCC	CCGGCCACCA	32760
45	CCGTCCTCCC	GCTGTCGGCC	ecceccecec	GATCCCTGCG	CGAGCAGGCC	CGCAGGCTCG	32820
	CCGCGCACCT	GGCCGGCCAC	GAGGAGATCA	CCGCCGCCGA	cecceccec	TCCGCCGCCA	32880
50	CCACCCGTGC	CCCCTCTCC	CACCGGGCCT	CGGTCCTGGC	CGACGACCGG	CCCCCCTGA	32940
	TCGACAGGCT	GACCGCGCTG	GCGGAGGACA	GGAAGGACCC	CGGCGTCACC	CTCCGCGAGG	33000
	CGGGCAGCGG	cccccccc	GTCTTCGTCT	TCCCGGGACA	GGGCTCCCAG	TGGACGGGCA	33060
<i>55</i>	TGGGCGCCGA	ACTCCTGGAC	AGGGCACCGG	TCTTCCGCGC	CAAGGCCGAG	GAGTGCGCGC	33120

	GGGCCCTCGC	GCCCACCTC	GACTGGTCGG	TGCTCGACGT	CCTGCGCGAC	ccccccccc	33180
5	CCCCGCCGAT	CGACCGCGCG	GACGTCGTCC	AGCCGACCCT	GTTCACCATG	ATGGTCTCCC	33240
Ū	TCGCGGCGCT	GTGGGAGTCC	CACGGTGTAC	GCCCGCCGC	CGTGGTCGGC	CACTCCCAAG	33300
	GCGAGATCGC	CGCCGCCCAC	GCGGCCGGTG	CCCTGTCCCT	CGACGACGCG	GCCCGCGTGA	33360
10	TCGCCGAGCG	CAGCAGGCTC	TGGAAGCGGC	TGGCCGGAAA	CGGCGGCATG	CTCTCCGTGA	33420
	TGGCCCCGGC	CGACCGGGTC	CGCGAACTGA	TGGAGCCCTG	GGCGGAGCGG	ATGTCCGTGG	33480
	CCGCCGTCAA	CGCCCCCCC	TCGGTCACCG	TGGCCGGTGA	CGCGCGGGCG	CTGGAGGAGT	33540
15	TCGGCGGCCG	GCTCTCCGCC	GCCGGGGTGC	TGCGCTGGCC	CCTCGCCGGC	GTCGACTTCG	33600
	CCGGACACTC	ACCCCAGGTG	GAGCAGTTCC	GCGCCGAGCT	CCTCGACACG	CTGGGCACCG	33660
	TCCGCCCGAC	CGCCGCCCGG	CTGCCCTTCT	TCTCCACCGT	GACCGCCGCG	GCGCACGAGC	33720
20	CCGAAGGCCT	GGACGCCGCG	TACTGGTACC	GGAACATGCG	CGAACCCGTG	GACTTCCCCT	33780
	CCACCCTGCG	GACGCTGCTG	CGCGAGGGCC	ACCGCACCTT	CGTCGAGATG	GCCCGCACC	33840
25	CCCTGCTGGG	CGCCGCGATC	GACGAGGTCG	CCGAGGCCGA	GGGCGTGCAC	GCCACCGCCC	33900
	TCGCCACCCT	CCACCGCGGC	TCCGGCGGCC	TGGACCGGTT	CCGCTCCTCG	GTGGGCGCCG	33960
	CGTTCGCCCA	CGGAGTACGG	GTCGACTGGG	ACGCCCTCTT	CGAGGGCTCC	GCCCCCCCC	34020
30	GGGTCCCGCT	GCCCACCTAC	GCCTTCAGCC	GCGACCGGTA	CTGGCTGCCC	ACCGCCATCG	34080
	GCCGGCGCGC	CGTCGAGGCG	GCCCCCGTCG	ACGCGTCCGC	CCCCGGGCGC	TACCGCGTCA	34140
	CCTGGACACC	CGTGGCATCC	GACGACTCCG	GCCGGCCCTC	CGGCCGCTGG	CTGCTGGTGC	34200
35	AGACCCCCGG	CACCGCGCCG	GACGAGGCGG	ACACCGCGGC	GTCGGCCCTC	CCTCCCCCCC	34260
	GGGTGGTCGT	GGAGCGCTGC	CTGCTGGATC	CCACCGAGGC	CGCGCGCGTC	ACGCTCACCG	34320
40	AGCGACTGGC	CGAACTGGAC	GCGCAGCCGG	AGGGCCTGGC	CGGCGTGCTG	GTGCTGCCCG	34380
70	GCCGTCCGCA	GAGCACCGCA	CCGGCCGACG	CCTCCCCGCT	CGACCCGGGG	ACGCCCCCC	34440
	TCCTGCTCGT	GGTCCAGGCC	GTGCCGGACG	CCGCTCCGAA	GGCCCGGATC	TGGTGGTGA	34500
45	CGCGGGGTGC	GGTGGCGGTG	CCCTCCCCTC	AGGTGCCGTG	TGCGGTGGGT	CCCCCCCTCT	34560
	GGGGTCTGGG	GCGGGTGGCT	GCGTTGGAGG	TGCCGGTGCA	GTGGGGTGGG	TTGGTGGATG	34620
	TGGCGGTGGG	GCCGCCTCTC	CGTGAGTGGC	GTCGTGTGGT	CCCTCTCCTT	GCGGGGGGTG	34680
50	GTGAGGATCA	GGTGGCGGTG	CGTGGTGGGG	CTCTCTTCGG	TCGTCGTCTC	CTCCCTCTCC	34740
	GCGTGCGCGG	TGGTTCGGGG	GTGTGGCGTG	CGCGGGGGTG	TCTCCTCCTC	ACGGGTGGGT	34800
	TGGGTGGTGT	GGGGGGTCAT	GTGGCGCGGT	GGTTGGCGCG	TTCGGGTGCG	GAGCATGTGG	34860
55	TGTTGGCGGG	GCGTCGGGGT	GCTCGCGTTC	TGGGGGCGGT	GGAGTTGGAG	CCCCACTTCC	34920

	TGGGGTTGGG	GGCGAAGGTG	ACGTTCGTTT	CGTGTGATGT	GGGGGATCGG	GCGTCGATGG	34980
5	TGGGGTTGTT	GGGTGTGGTG	GAGGGGTTGG	GGGTGCCGTT	GCGTGGTGTG	TTTCATGCGG	35040
	CGGGGGTGGC	TCAGGTGTCG	GCCTTCCCTC	AGGTGTCGTT	GGCGGAGGCG	GCTCGTCTCT	35100
	TGGGGGGTAA	GCCGTGCGG	GCTGAGTTGT	TGGACGAGTT	GACGCCGGGT	GTGGAGCTGG	35160
10	ATGCGTTCGT	GTTGTTCTCG	TCGGGTGCTG	GGGTGTGGGG	GAGTGGGGG	CAGTCGGTGT	35220
	ATGCGGCGGC	CAATGCGCAT	CTGGATGCGT	TGGCGGAGCG	TCGTCGTGCG	CAGGGGCGTC	35280
15	CCGCGACCTC	CGTCGCCTGG	GCCTCTGGG	GCGGCGAGGG	CATGGGAGCG	GACGAAGGCG	35340
	TCACGGAGTT	CTACGCCGAG	CGCGGCCTCG	CCCCCATGCG	GCCCGAGTCG	GGCATCGAGG	35400
	CACTGCACAC	GGCACTGAAC	GAGGCGACA	CCTGCGTCAC	GGTCGCCGAC	ATCGACTGGG	35460
20	AACACTTCGT	CACCGGGTTC	ACCGCCTACC	GGCCCAGCCC	GCTGATCTCC	GACATCCCCC	35520
	AGGTCCGCGC	GTTGCGCACG	CCCGAACCCA	CCGTGGACGC	CTCGGACGGA	CTGCGCCGGC	35580
	GCGTCGACGC	CGCCCTCACC	CCGCGCGAGC	GCACCAAGGT	CCTGGTCGAC	CTGGTCCGCA	35640
25	CGGTGGCGGC	GGAGGTCCTC	GGTCACGACG	GGATCGGCGG	CATCGGCCAC	GACGTGGCCT	35700
	TCCGGGACCT	CGGCTTCGAC	TCGCTGGCCG	CGGTGCGGAT	GCGCGGCCGG	CTGGCCGAGG	35760
	CGACCGGACT	CGTACTGCCC	GCGACGGTCA	TCTTCGACCA	CCCCACCGTG	GACCGGCTCG	35820
30	GCGCGCGCT	GCTGGAGCGG	CTGTCCGCGG	ACGAACCCGC	GCCCGCCGG	GCGCCGGAGC	35880
	cccccccccc	GAGGCCCGCG	ACCCCACCGC	CCGCACCGGA	GCCGGCCGTC	CACGACGCCG	35940
35	ACATCGACGA	ACTCGACGCG	GACGCCCTGA	TCCGGCTGGC	CACGGGAACC	GCCGGACCGG	36000
	CCGACGGCAC	GCCGGCCGAC	GCCGGCCCG	ACGCGGCGGC	GACCGCCCCC	GACGGAGCAC	36060
	CGGAGCAGTA	GCGCGCCCTC	ACCGGCGCGC	CGACCGGCGG	AGCGCCGTAC	CGCCGACGCC	36120
40	CCCCACAGCC	AGCGAGCAGA	CGAGGAAGCC	GAAGATGTCA	CCGTCCATGG	ACGAAGTGCT	36180
	GGGTGCGCTG	CGCACCTCCG	TCAAGGAGAC	CGAGCGGCTG	CGCCGGCACA	ACCGGGAGCT	36240
	CCTGGCCGGC	GCGCACGAGC	CGGTCGCCAT	CGTGGGCATG	GCCTGCCGCT	ACCCCGGTGG	36300
45	CGTGAGCACC	CCGGACGACC	TGTGGGAGCT	CGCCGCGGAC	GGCGTCGACG	CGATCACCCC -	36360
	CTTCCCGGCC	GACCGGGGCT	GGGACGAGGA	CGCCGTCTAC	TCGCCCGACC	CCGACACCCC	36420
50	CGGCACCACC	TACTGCCGTG	AGGGCGGCTT	CCTCACCGGC	GCCGGGGACT	TCGACGCGGC	36480
	CTTCTTCGGC	ATCTCGCCGA	ACGAGGCGCT	GGTGATGGAC	CCGCAGCAGC	GCTGTTGCT	36540
	GGAGACGTCG	TGGGAGACGT	TGGAGCGGC	CCCCATCCTC	CCCCCCTCGC	TGCGCGGCAG	36600
55	CCGTACCGGT	GTCTTCGTCG	GAGCCGCGCA	CACGGGATAC	GTCACCGACA	CCGCGCGAGC	36660

	GCCCGAGGGC	ACCGAGGGCT	ATCTGCTGAC	GGGCAACGCC	GATGCCGTCA	TCTCCGCCG	36720
5	GATCGCCTAC	TCCCTGGGTC	TGGAGGGGCC	GGCGCTGACG	ATCGGGACGG	CCTGCTCGTC	36780
	GTCGTTGGTG	GCGTTGCATC	TGGCGGTGCA	GTCGTTGCGG	CGGGGCGAGT	GCGACCTGGC	36840
	GTTGGCCGGC	GCCGTCGCCG	TCATGCCCGA	CCCGACGGTG	TTCGTGGAGT	TCTCGCGGCA	3690 0
10	GCGGGGGCTG	GCGGTGGACG	GGCGGTGCAA	GGCGTTCGCG	GAGGGTGCGG	ACGGGACGGC	36960
	GTGGGCGGAG	GGAGTGGGTG	TGCTGCTGGT	GGAGCGGCTT	TCCGACGCGC	GCCGCAATGG	37020
	CCATCGGGTG	CTGGCGGTGG	TGCGGGGCAG	TGCGGTCAAT	CAGGACGGG	CGAGCAATGG	37080
15	GCTGACGGCG	CCGAGTGGTC	CTGCGCAGCA	GCGGGTGATC	CGTGAGGCGC	TGGCTGATGC	37140
	GGGGCTGACG	CCCGCCGACG	TGGATGTGGT	GGAGGCGCAC	GGTACGGGGA	CGGCGTTGGG	37200
••	TGATCCGATC	GAGGCGGGTG	CGTTGCTGGC	CACGTACGGG	CGGGAGCGGG	TCGGTGATCC	37260
20	TITCTCCTTC	GGGTCGTTGA	AGTCGAACAT	CGGGCATGCG	CAGGCGGCTG	CGCGTGTGGG	37320
	TGGTGTGATC	AAGGTGGTGC	AGGCGATGCG	GCATGGGTCG	TTGCCGCGGA	CCCTCCATCT	37380
25	GGATGCGCCG	TCGTCGAAGG	TGGAGTGGGC	TTCGGGTGCG	GTGGAGCTGC	TGACCGAGGG	37440
	CCGGTCGTGG	ccccccccc	TGGAGCGGGT	GCGGCGGGCC	GCGCTGTCGG	CGTTCGGGGT	37500
	GAGCGGGACC	AACGCCCATG	TGGTCCTGGA	GGAAGCACCG	GTCGAGGCCG	GGAGCGAGCA	37560
30	CGGGGACGGC	CCCGGACCCG	ACCGGCCCGA	CGCCGTGACG	GCTCCGCTCC	CCTGGGTGCT	37620
	CTCGGCACGC	TCGCGGGAGG	CGCTGCGCGG	CCAGGCCGGA	CGACTCGCCG	CTCTCGCCCG	37680
	CCAGGGGCGC	ACGGAGGGCA	ccccccccc	CAGCGGACTC	GTCGTCCCCG	CGCCGACAT	37740
35	CGGATACTCC	CTGGCCACCA	CCAGGGAGAC	CCTGGAGCAC	CGGGCGGTGG	CGCTGGTGCA	37800
	GGAGAACCGG	ACGGCCGGGG	AGGACCTCGC	CGCGCTGGCC	GCCGCCGCA	CACCGGAGAG	37860
40	CGTGGTCACG	GGTGTCGCGC	GACGTGGCCG	CGGGATCGCC	TTCCTCTGCT	CGGGGCAGGG	37920
40	CGCCCAGCGG	CTCGGCGCCC	GTCGGGAGCT	CCGCGGCAGG	TTCCCCGTCT	TOGCCGACGC	37980
	CCTCGACGAG	ATCGCGGCGG	AGTTCGACGC	CCACCTCGAA	CGCCCTCTCC	TCTCCGTGAT	38040
45	GTTCGCCGAG	CCCGCCACGC	CGGACGCCGC	ACTCCTCGAC	CGCACCGACT	ACACCCAGCC	38100
	GGCCCTCTTC	GCGGTGGAGA	CCGCGCTCTT	CCGGCTCCTG	GAGAGCTGGG	GCCTGGTCCC	38160
	GGACGTCCTC	GTGGGCCACT	CGATCGGCGG	TCTGGTGGCG	GCTCACGTGG	CGGCGTCTT	38220
50	CTCTGCGGCC	GACGCGGCCC	GGCTGGTCTC	CGCACGCGGC	CGGCTCATGC	GGCCCTGCC	38280
	CGAGGGCGGC	GCGATGGCGG	CCGTGCAGGC	CACCGAGCGG	GAGGCCGCCG	CGCTGGAGCC	38340
	CGTCGCCGCC	GCCGCCGCG	TGGTCGCCGC	GGTCAACGGC	CCGCAGGCCC	TCCTCCTC	38400
55	CGGGGACGAG	GCGGCCGTAC	TGGCGGCGGC	CGGTGAACTG	GCCGCCCGCG	GACGCCGCAC	38460

	CAAGCGCCTG	AGGGTGAGCC	ACGCCTTCCA	CTCACCCCGT	ATGGACGCCA	TGCTCGCCGA	38520
5	CTTCCGCGCG	GTGGCGGACA	CGGTCGACTA	CCACGCCCCC	CGGCTGCCGG	TCGTCTCCGA	38580
	AGTGACCGGC	GACCTCGCCG	ACGCCGCCCA	GCTGACCGAC	CCCGGCTACT	GGACCCGCCA	38640
	GGTGCGGCAG	CCGGTGCGCT	TCGCCGACGC	CGTGCGCACC	GCGAGCGCCC	GGGACGCCGC	38700
10	GACCTTCATC	GAGCTCGGGC	CCGACGCCGT	CCTGTGCGGC	ATGGCGGAGG	ACTCCCTGGC	38760
	CGCGGAGGCC	GACGTCGTGT	TCGCCCCCGC	ACTGCGCCGC	GGGCGCCCGG	AGGCGACAC	38820
15	CGTGCTCCGG	GCCGCCGCGA	GCGCGTACGT	CCGCGGCGCG	GGCCTCGACT	GGCCGCGCT	38880
	CTACGGCGGC	ACGGGAGCCC	GCCGCACCGA	CCTGCCCACC	TACGCCTTCC	AGCACAGCCG	38940
	CTACTGGCTC	GCCCCCGCCT	CGGCCGCGGT	ceccccece	ACGGCCGCCC	CCTCCGTCCG	39000
20	ATCCGTGCCG	GAAGCCGAGC	AGGACGGGGC	GCTGTGGGCC	GCCGTGCACG	CCGGTGACGT	39060
	CGCCTCGGCC	GCGGCGCGAC	TGGGCGCCGA	CGACGCCGGT	ATCGAACACG	AACTGCGCGC	39120
	GGTCCTGCCG	CACCTGGCCG	CCTGGCACGA	CCGCGACCGC	GCGACCGCGC	GGACCGCGGG	39180
25	CCTGCACTAC	CGCGTCACCT	GGCAGGCGAT	CGAGGCAGAC	GCTGTCAGGT	TCAGCCCCTC	39240
	GGATCGCTGG	CTGATGGTCG	AGCATGGGCA	GCACACGGAA	TGCGCGGACG	CCGCGGAACG	39300
	GCCGCTGCGC	GCGGCCGGCG	CGGAGGTCAC	CCGCCTGGTG	TGGCCGCTGG	AGCAGCACAC	39360
30	CGGATCACCG	CGGACGGAGA	CCCCGGACCG	CGGCACCCTG	GCGGCCCGGC	TGGCCGAGCT	39420
	CGCACGGAGC	CCGGAGGGCC	TGGCCGGCGT	GCTGCTGCTC	CCCGACTCGG	GCGGTGCCGC	39480
35	GCTCCCCGGG	CACCCCGGGC	TGGACCAGGG	AACGGCGGCG	GTGCTGCTGA	CGATCCAGGC	39540
	ACTGACCGAC	GCCGCGGTGC	GGGCACCGCT	CTCCCTCCTC	ACGCGGGGTG	CGGTGGCGGT	39600
	GGGGTCGGGT	GAGGTGCCGT	CTCCCCTCCC	TGCGCGGGTG	TGGGGTCTGG	GCCGCGTGGC	39660
40	TGCGTTGGAG	GTGCCGGTGC	AGTGGGGTGG	GTTGGTCGAT	GTGGCGGTGG	GGCCGGTGT	39720
	GCGTGAGTGG	CGTCGTGTGG	TCCCTCTCCT	TGCGGGGGGT	GGTGAGGATC	AGGTGGCGGT	39780
	GCGTGGTGGG	GGTGTGTTCG	GTCGTCGTCT	CCTCCCTCTC	GGGGTGCGGG	GTGGTTCGGG	39840
45	GGTGTGGCGT	GCGCGGGGGT	CTCTCCTCCT	GACGGGTGGG	TTGGGTGGTG	TGGGGGTCA	39900
	TGTGGCGCGG	TGGTTGGCGC	GTTCGGGTGC	GGAGCATGTG	GTGTTGGCGG	GCCTCGGG	39960
	TGGTGGGGTT	CTGGGGGGGG	TCGACTTCGA	CCCCCACTTC	GTGGGGTTGG	GGCGAAGGT	40020
50	GACGTTCGTT	TOGTGTGATG	TGGGGGATCG	GCCTCGCTG	GTGGGGTTGT	TGGGTGTGGT	40080
	GGAGGGGTTG	GGGTGCCGT	TGCGTGGTGT	GTTTCATGCG	GCGGGGGTGG	CTCAGGTGTC	40140
55	GGGGTTGGGT	GAGGTGTCGT	TGGCGGAGGC	GGGTGCTGTG	TTGGGGGGTA	AGGCGGTGGG	40200

	GGCTGAGTTG	TTGGACGAGT	TGACGGCGGG	TGTGGAGCTG	GATGCGTTCG	TGTTGTTCTC	40260
5	GTCGGGTGCT	CCCCTCTCCC	GGAGTGGGGG	GCAGTCGGTG	TATGCGGCGG	CCAATGCGCA	40320
	TCTGGATGCG	TTGGCGGAGC	GTCGTCGTGC	GCAGGGGCGT	CCCGCGACCT	CCGTCGCCTG	40380
	OCCCCCTCC	GACGGCGACG	GCATGGGCGA	GATGGCGCCC	GAGGGCTACT	TCGCCCGCCA	40440
10	CGGCGTGGCC	CCGCTCCACC	CCGAGACGGC	GCTCACCGCC	CTGCACCAGG	CCATCGACGG	40500
	CGGCGAAGCC	ACGGTCACCG	TGGCGGACAT	CGACTGGGAA	CGGTTCGCCC	CCGGCTTCAC	40560
	CCCCTTCCCT	CCCAGCCCCC	TGATCGCCGG	CATCCCCGCG	GCCCGTACGG	cccccccc	40620
15	cescesses	GCCGAGGACA	CCCCCACCGC	CCCCGCCTC	CTGCGGGCGC	GCCCGAGGA	40680
	cceccecec	CTCGCCCTGG	ACCTGGTGCT	CCGCCACGTC	GCGGCGGTCC	TCGCCCACTC	40740
	CGAGGACGCC	CGGGTCGACG	ccccccccc	CTTCCGGGAC	CTCGGCTTCG	ACTCGCTCGC	40800
20	CCCCCTCCCC	CTGCGCCGCC	GGCTGGCCGA	GGACACCGGG	CTCGACCTGC	CCGCCACCCT	40860
	CCTCTTCGAC	CACGAGGACC	CCACCGCGCT	GGCCCACCAC	CTGGCCGGCC	TOGCOGACGC	40920
25	GGGGACCCCC	GGCCCCCAGG	AGGGCACGGC	TCGGGCCGAG	AGCGGGCTGT	TOGCCTCCTT	40980
	ccccccccc	GTCGAACAGC	GCAGGTCGAG	CGAGGTCGTG	GAGCTGATGG	CCGACCTGGC	41040
	GCCCTTCCGG	CCCGCCTACT	CCCGGCAGCA	CCCCGGCTCC	GCCCCCCC	CCCCCGTACC	41100
30	CCTCGCGACC	GGACCGGCGA	CGCGTCCCAC	GCTGTACTGC	TGCGCCGGCA	CCCCCCTCCC	41160
	CTCCGGGCCC	GCCGAGTACG	TCCCGTTCGC	CGAAGGACTG	CGCGGCGTCC	GGGAGACGGT	41220
	CCCCTTCCC	CTGTCCGGCT	TCGGCGACCC	CGCGGAACCG	ATGCCCGCAT	CCCTCGACGC	41280
35	GCTGATCGAG	GTCCAGGCCG	ACGTCCTCCT	GGAGCACACC	GCGGGCAAGC	CCTTCGCCCT	41340
	CGCCGGCCAC	TCCGCCGGCG	CGAACATCGC	CCACGCCCTG	GCCGCCCGGC	TGGAGGAACG	41400
40	CGGCTCGGGC	CCCGCAGCCG	TCGTACTGAT	GGACGTCTAC	CGTCCCGAGG	ACCCCGGTGC	41460
	GATGGGCGAG	TOGCGCGACG	ACCTGCTCAG	CTCGCCCCTC	GAACGCAGCA	CGGTGCCCCT	41520
	GGAGGACCAC	CGGCTCACCG	CCATGGCCGG	CTATCAGCGG	CTGGTGCTCG	GAACCCCCCT	41580
45	CACCGCCCTC	GAAGCCCCCG	TCCTGCTGGC	CCGGGCGTCC	GAACCCCTGT	GCGCCTGGCC	41640
	GCCCGCGGGC	GGGGCGCGGG	GCGACTGGCG	GTCCCAGGTC	CCGTTCGCAC	GGACCGTCGC	41700
	CGACGTGCCC	GGCAACCACT	TCACCATGCT	CACCGAACAC	GCCCGGCACA	CCCCCTCCCT	41760
50	GCTGCACGAA	TGGCTGGACA	GCCTCCCGCA	CCAGCCCGGT	ccccccccc	TCACCGGAGG	41820
	GAAACACTGA	TGTACGCCGA	CGACATCGCG	GCCGTCTACG	ACCTGGTCCA	CG A GGGGAAG	41880
	GGGAAGGACT	ACCGGCAGGA	GGCCGAGGAG	ATCGCCGCAC	TCGTGCGCGT	CCACCGGCCG	41940
55	GCCCCCGGA	CCCTGCTCGA	CGTGGCCTGC	GGCACCGGCC	AGCACCTGCA	CCACCTGGAC	42000

	GGCCTCTTCG	ACCACGTCGA	GGGCCTGGAA	CTCTCCGCCG	ACATGCTGGC	CCTCGCGACC	42060
5	GGCCGGAACC	CCGGTGTCAC	CTTCCACCAA	GGGGACATGC	GCTCGTTCTC	CCTGGGACGC	42120
	CGGTTCGACG	CGGTGACCTG	CATGTTCAGC	TCCATAGGCC	ACCTGCGGAC	CACCGACGAA	42180
	CTCGACAGCA	CGCTGCGGGC	CTTCACCGAC	CACCTCGAAC	CGTCCGGCGT	CATCGTCGTC	42240
10	GAACCCTGGT	GGTTCCCCGA	GTCCTTCACC	CCCGGTTACG	TCGGCGCCAG	CATCACGGAG	42300
	GCGGGCGAGC	GCACCGTCTG	CCGGGTCTCG	CACTCCGTAC	GGGAGGGGAA	CGCCACCCGC	42360
15	ATCGAGGTGC	ACTACCTCCT	CGCCGGACCC	GCCGCCGTCC	GTCACCTGAC	CGAGGACCAC	42420
	ACCATCACCC	TGTTCCCGCG	CGCCGACTAC	GAGGCGGCCT	TCGAGCGCGC	CGGCTGCGAC	42480
	GTGGTCTACC	AGGAAGGCGG	CCCGTCCGGT	CGCGGGCTGT	TCATCGGCAC	CCGCCGCTGA	42540
20	CCCGGTGCCG	ACGCGGACCG	ccccccccc	GAGGCGGGTT	GCCCCGACCC	ACCCGGCACA	42600
	CCCGGGTCCC	CCGATCGTGC	GAGCGCCCCC	ATCGACCCGA	GAAGAAAGGC	AGGGCAGCCA	42660
	TGCCCACCCT	TGCCACGGAA	ACGCCCCCG	CGAGCACGAG	CACGAGCGCG	GCCACGAGCA	42720
25	CCCCCCTCCC	TGCGCTCGGC	CGTCGGCTCC	AGCTGACCCG	GGCCGCACAC	TOGTOCCCCG	42780
	GCAACCAGGG	CGACCCGTAC	GCGCTGATCC	TGCGCGCCGT	CGCCGACCCC	GAGCCGTTCG	42840
20	AACGGGAGAT	CCGGCCCCGC	GGACCGTGGT	TCCGCAGCGA	ACAGCTGGAC	GCCTGGGTGA	42900
30	CCGCGGACCC	CGAGGTGGCG	GCGGCCGTCC	TGGCCGACCC	GCGCTTCGGC	ACGCTGGACC	42960
	GGGCCGGACG	CCGCCCGGAC	GAGGAACTGC	TGCCCCTCGC	CGAGGCGTTC	CCCCACCACG	43020
35	AACGCGCGGA	GCTCGTACGC	CTGCGGGCGC	TGGCCGCCCC	GGTGCTCAGC	CCCTACCCCC	43080
	CGGCCCAGGC	GCCCTGCGCG	GCGCGCACCA	CCGCCCGCAG	AGTGCTCGGC	CCCCTCCTGC	43140
	CCACCGGTGA	CGCCGGGTTC	GACCTTGTCG	GCGAGGTCGC	CCGGCCCTAC	GCCGTCGAGC	43200
40	TGATGCTCAG	GCTCCTCGGA	GTGCCGGGCC	GCGACCGCGC	CACCGCCGCG	COGGCACTCG	43260
	CCGCCTGCGG	CCCCCAGCTC	GACGCCCGGA	TGGCCCCGCA	ACTGCTGACC	CTCCCCCCCC	43320
	AGTCCGCCGA	CGCCGTCCGC	ACACTGGCCG	ACCTGGTCCC	CGAGCTCGTC	CCGGAGAAGT	43380
45	CCCGGGGCCT	CGGGAACGCC	GAGCCCCGGC	CCGACGACGT	GCTCGCCCTC	CTCCTCCACG	43440
	ACGGCGTCGC	CCCCGGCGAC	GTCGAGCGCA	TCGCGCTGCT	CCTCGCGGTC	GCCGCACCCG	43500
50	AACCCGTCGT	CACCGCCGTC	GCGCACACGG	TCCACCGGCT	GCTCGGCCGG	CCGGGGGAGT	43560
	GGGAGAGGGC	CCGCCGGACG	cccccccc	CGAACGCCGT	CGACCAGGTG	CTGCGCGAGC	43620
	GCCCCCGGC	CCGGCTGGAG	AACCGGGTCG	CGCACACCGG	CCTCGAACTC	occoccocc	43680
55	GGATCACCGC	CGACGAGCAC	GTCGTGGTGC	TGGCCGCCGC	CGGACGGGAG	ATCCCCCGGC	43740

	CGC	SAGCO	CGCT	CGGG	GGCC	3CC (SACGO	SACCO	SC AC	CTG	CGC1	CGG	CCT	CCCG	CTG	ATCCGCC	4.	380
5	TGO	CCGC	CAC	CACC	GCGC	etc (CAGGI	CACC	G CC	CGCC	CCCI	GCC	CGGC	CTG	ccc	CCGAGG	4	386
	GAC	CCCC	CCT	GACC	CGGC	CCG C	CCTC	CACCO	G TO	CTGC	SCCC	CTC	CCCC	CGC	CTC	CGGTCC	4	392
	ACC	cccc	SATC	ACCC	cccc	CT (CGTA	CGCC	c cc	TCCC	AGAC	CGC	AGCC	CCT	CTC	CGCGTCC	4:	398
10	TGC	TGAC	CATC	CCTC	GCCC	AC A	ACAC	CCAC	T AC	TACA	GTCI	GG1	CCC	CTC	GCC	regecee	4	104
	TGC	GCGC	CGC	CGGG	CACG	AG C	TACC	CCTC	G CG	AGCC	CGCC	CTC	CCTC	ACC	GAC	STCATCA	4	110
	CCI	CCAC	CGG	TCTG	ACCG	ecc e	TACC	GGTG	G GC	GACC	ACCG	ACC	GGCC	:GCG	GAGO	TGCTCG	44	116
15	ccc	AGAT	CCC	CAGA	GACC	TC G	TCCC	CTAC	C AG	AGGG	GCTT	CGA	GTTC	CCT	GAGG	etogaga	44	122
	3GC	GAGG	AGGA	GAC	CACC	TGG	GAGT	'ACCI	GC I	CGGC	CAGC	A GA	GCAT	CATC	GCC	CCCCTG	T 4	142
20	GCI	TCGC	ccc	GTTC	AACG	GC G	CCGC	CACG	A TG	GACG	AGAT	CGI	CGAC	TTC	GCCC	GTGGCT	44	134
.0	GGC	GGCC	CGA	CCTG	GTCG	TG I	GGGA	ACCC	T GG	ACCT	'A						44	i37°
25	(2)) SE (TION QUEN A) L B) T D) T	CE C ENGT YPE:	HARA H: 4 ami	CTER 550 no a	ISTI amin cid	CS: o ac	ids								
30		(ii) MO	LECU	LE T	YPE:	pep	tiđe										
			۰ ۵۰															
	Wab.			QUEN														
35	net 1	Ser	GIĀ	GIU	Leu 5	VIS	He	Ser	Arg	Ser 10	Asp	Asp	Arg	Ser	Аэр 15	Ala		
	Val	Ala	, Val	Val 20	Gly	Met	Ala	Суз	Arg 25	Phe	Pro	Gly	Ala	Pro 30	Gly	Ile		
10	Ala	Glu	Phe 35	Trp	Lys	Leu	Leu	Thr 40	Asp	Gly	Arg	Asp	Ala 45	Ile	Gly	Arg		
	Asp	Ala 50	Asp	Gly	Arg	Arg	Arg 55				Glu			Gly	Asp	Phe		
15	Asp	Ala	Ala	Phe	Phe	Gly 70	Met	Ser	Pro	Arg	Glu 75	Ala	Ala	Glu	Thr	Asp 80		
50	Pro	Gln	Gln	Arg	Leu 85	Met	Leu	Glu	Leu	Gly 90	Trp	Glu	Ala	Leu	Glu 95	Asp		
	Ala	Gly	Ile	Val 100	Pro	Gly	Ser	Leu	Arg 105	Gly	Glu	Ala	Val	Gly 110	Val	Phe		
55	Val	Gly	Ala 115	Met	His	Asp	Asp	Tyr 120	Ala	Thr	Leu	Leu	His 125	Arg	Ala	Gly		

	Ala	Pro 130		Gly	Pro	His	Thr 135	Ala	Thr	Gly	Leu	Gln 140	Arg	Ala	Met	Leu
5	Ala 145	Asn	Arg	Leu	Ser	Tyr 150	Val	Leu	Gly	Thr	Arg 155	Gly	Pro	Ser	Leu	Ala 160
	Val	Asp	Thr	Ala	Gln 165	Ser	Ser	Ser	Leu	Val 170	Ala	Val	Ala	Leu	Ala 175	Val
10	Glu	Ser	Leu	Arg 180	Ala	Gly	Thr	Ser	Arg 185	Val	Ala	Val	Ala	Gly 190	Gly	Val
	asa	Leu	Val 195	Leu	Ala	Asp	Glu	Gly 200	Thr	Ala	Ala	Met	Glu 205	Arg	Leu	Gly
15	Ala	Leu 210	Ser	Pro	Asp	Gly	Arg 215	Cys	His	Thr	Phe	Asp 220	Ala	Arg	Ala	Asn
20	Gly 225	Tyr	Val	Arg	Gly	Glu 230	Gly	Gly	Ala	Ala	Val 235	Val	Leu	Lys	Pro	Leu 240
20	Ala	Asp	Ala	Leu	Ala 245	Asp	Gly	Asp	Pro	Val 250	Tyr	Суѕ	Val	Val	Arg 255	Gly
25	Val	Ala	Val	Gly 260	Asn	Asp	Gly	Gly	Gly 265	Pro	Gly	Leu	Thr	Ala 270	Pro	Asp
	Arg	Glu	Gly 275	Gln	Glu	Ala	Val	Leu 280	Arg	Ala	Ala	Суз	Ala 285	Gln	Ala	Arg
30	Val	Asp 290	Pro	Ala	Glu	Val	Arg 295	Phe	Val	Glu	Leu	His 300	Gly	Thr	Gly	Thr
	Pro 305	Val	Gly	Asp	Pro	Val 310	Glu	Ala	His	Ala	Leu. 315	Gly	Ala	Val	His	Gly 320
35	Ser	Gly	Arg	Pro	Ala 325	Asp	Asp	Pro	Leu	Leu 330	Val	Gly	Ser	Val	Lys 335	Thr
	Asn	Ile	Gly	His 340	Leu	Glu	Gly	Ala	Ala 345	Gly	Ile	Ala	Gly	Leu 350	Val	Lys
40	Ala	Ala	Leu 355	СЛа	Leu	Arg	Glu	Arg 360	Thr	Leu	Pro	Gly	Ser 365	Leu	Asn	Phe
	Ala	Thr 370	Pro	Ser	Pro	Ala	Ile 375	Pro	Leu	Asp	Gln	Leu 380	Arg	Leu	Lys	Val
45	Gln 385	Thr	Ala	Ala	Ala	Glu 390	Leu	Pro	Leu	Ala	Pro 395	Gly	Gly	Ala	Pro	Leu 400
50	Leu	Ala	Gly	Val	Ser 405	Ser	Phe	Gly	Ile	Gly 410	Gly	Thr	Asn	Cys	His 415	Val
	Val	Leu	Glu	His 420	Leu	Pro	Ser	Arg	Pro 425	Thr	Pro	Ala	Val	Ser 430	Val	Ala
55	Ala	Ser	Leu 435	Pro	Asp	Val		Pro 440	Leu	Leu	Leu	Ser	Ala 445	Arg	Ser	Glu

	Gly	/ Ala 450		Arg	Ala	Gln	Ala 455		Arg	Le u	Gly	Glu 460	_	Val	Glu	Arg ·
5	Val 465		Ala	Asp	Pro	Arg 470		Val	Ala	Tyr	Ser 475		Ala	Ser	Thr	Arg 480
	Thr	Leu	Phe	Glu	His 485	Arg	Ala	Val	Val	Pro	Суз	Gly	Gly	Arg	Gly 495	Glu
10	Leu	Val	Ala	Ala 500		Gly	Gly	Phe	Ala 505	Ala	Gly	Arg	Val	Ser 510	_	Gly
	Val	Arg	Ser 515		Arg	Ala	Val	Pro 520		Gly	Val	Gly	Val 525		Phe	Thr
15	Gly	Gln 530		Ala	Gln	Trp	Val 535	Gly	Met	Gly	Arg	Gly 540	Leu	Tyr	Ala	Gly
	Gly 545		Val	Phe	Ala	Glu 550	Val	Leu	Asp	Glu	Val 555	Leu	Ser	Met	Val	Gly 560
20	Glu	Val	Asp	Gly	Arg 565	Ser	Leu	Arg	Asp	Val 570	Met	Phe	Gly	Asp	Val 575	Asp
25	Val	qeA	Ala	Gly 580	Ala	Gly	Ala	Asp	Ala 585	Gly	Ala	Gly	Ala	Gly 590	Ala	Gly
	Val	Gly	Ser 595	Gly	Ser	Gly	Ser	Val 600	Gly	Gly	Leu	Leu	Gly 605	Arg	Thr	Glu
30	Phe	Ala 610	Gln	Pro	Ala	Leu	Phe 615	Ala	Leu	Glu	Val	Ala 620	Leu	Phe	Arg	Ala
	Leu 625	Glu	Ala	Arg	Gly	Val 630	Glu	Val	Ser	Val	Val 635	Leu	Gly	His	Ser	Val 640
35 .	Gly	Glu	Val	Ala	Ala 645	Ala	Tyr	Val	Ala	Gly 650	Val	Leu	Ser	Leu	Gly 655	Asp
	Ala	Val	Arg	Leu 660	Val	Val	Ala	Arg	Gly 665	Gly	Leu	Met	Gly	Gly 670	Leu	Pro
40	Val	Gly	Gly 675	Gly	Met	Trp	Ser	Val 680	Gly	Ala	Ser	Glu	Ser 685	Val	Val	Arg
	Gly	Val 690	Val	Glu	Gly	Leu	Gly 695	Glu	Trp	Val	Ser	Val 700	Ala	Ala	Val	Asn
45	Gly 705	Pro	Arg	Ser	Val	Val 710	Leu	Ser	Gly	Asp	Val 715	Gly	Val	Leu	Gl u	Ser 720
50	Val	Val	Ala	Ser	Leu 725	Met	Gly	Asp	Gly	Val 730	Glu	Суз	Arg	Arg	Leu 735	yab
50	Val	Ser		Gly 740	Phe	His	Ser		Leu 745	Met	Glu	Pro		Leu 750	Gly	Glu
55	Phe	Arg	Gly 755	Val	Val	Glu		Leu 760	Glu	Phe	Gly		Val 765	Arg	Pro	Gly

	Val	Val 770	Val	Val	Ser	Gly	Val 775	Ser	Gly	Gly	Val	Val 780	Gly	Ser	Gly	Glu
5	Leu 785		Ąsp	Pro	Gly	Tyr 790	Trp	Val	Arg	His	Ala 795	Arg	Glu	Ala	Val	Arg 800
. 10	Phe	Ala	Asp	Gly	Val 805	Gly	Val	Val	Arg	Gly 810	Leu	Gly	Val	Gly	Thr 815	Leu
	Val	Glu	Val	Gly 820		His	Gly	Val	Leu 825	Thr	Gly	Met	Ala	Gly 830	Glu	Cys
	Leu	Gly	Ala 835	Gly	Asp	Asp	Val	Val 840	Val	Val	Pro	Ala	Met 845	Arg	Arg	Gly
	Arg	Ala 850		Arg	Glu	Val	Phe 855	Glu	Ala	Ala	Leu	Ala 860	Thr	Val	Phe	Thr
20	Arg 865	Asp	Ala	Gly	Leu	Asp 870	Ala	Thr	Ala	Leu	His 875	Thr	Gly	Seŗ	Thr	Gly 880
	Arg	Arg	Ile	Asp	Leu 885	Pro	Thr	Tyr	Pro	Phe 890	Gln	Arg	Arg	Thr	His 895	Trp
25	Ser	Pro	Ala	Leu 900	Ser	Arg	Pro	Val	Thr 905	Ala	Asp	Ala	Gly	Ala 910	Gly	Val
	Thr	Ala	Thr 915	Asp	Ala	Val	Gly	His 920	Ser	Va1	Ser	Pro	Asp 925	Pro	Glu	Ser
30	Thr	Glu 930	Gly	Thr	Ser	His	Arg 935	Asp	Thr	Asp	Asp	Glu 940	Ala	Asp	Ser	Ala
	Ser. 945	Pro	Glu	Pro	Met	Ser 950	Pro	Glu	Asp	Ala	Val 955	Arg	Leu	Val	Arg	Glu 960
35	Ser	Thr	Ala	Ala	Val 965	Leu	Gly	His	Asp	Asp 970	Pro	Gly	Glu	Val	Ala 975	Leu
	Asp	Arg	Thr	Phe 980	Thr	Ser	Gln	Gly	Met 985	Asp	Ser	Val	Thr	Ala 990	Val	Glu
40	Leu	Cys	Asp 995	Leu	Leu	Lys	Gly	Ala 1000		Gly	Leu	Pro	Leu 1005		Ala	Thr
45	Leu	Val 1010		Asp	Leu	Pro	Thr 1015		Arg	Ala	Val	Ala 1020	Glu)	His	Ile	Val
45	Glu 1025		Ala	Gly	Gly	Pro 1030		Asp	Ser	Val	Ala 1035		Gly	Pro	Gly	Val 1040
50	Leu	Ser	Ser	Ala	Ala 1045		Gly	Val	Ser	Asp 1050		Arg	Gly	Gly	Ser 1055	•
	Asp	Asp	Asp	Asp 1060		Ile	Ala	Ile	Val 1065		Val	Gly	Сув	Arg 1070		Pro
55	Gly	Gly	Val 1075		Ser	Arg	Ala	Ala 1080		Trp	Glu	Leu	Leu 1085		Ser	Gly

	Ala Asp Ala 1090	Ile Ser Ser	Phe Pro Thr A	Asp Arg Gly Trp 1100	Asp Leu Asp
5	Gly Leu Tyr 1105	Asp Pro Glu		Pro Gly Lys Thr 1115	Tyr Val Arg 1120
	Glu Gly Gly	Phe Leu His		Glu Phe Asp Ala 1130	Glu Phe Phe 1135
10	Gly Ile Ser	Pro Arg Glu 1140	Ala Thr Ala M 1145	Met Asp Pro Gln	Gln Arg Leu 1150
15	Leu Leu Glu 115		Glu Ala Leu (1160	Glu Asp Ala Gly 116	
	Glu Ser Leu 1170	Arg Gly Gly	Asp Ala Gly V 1175	Val Phe Val Gly 1180	Ala Thr Ala
20	1185	119	0	Gly Ala Asp Gly 1195	1200
	Tyr Leu Leu	1205		Val Ala Ser Gly 1210	1215
25	Tyr Thr Leu	Gly Thr Gly 1220	Gly Pro Ala I 1225	Leu Thr Val Asp	Thr Ala Cys 1230
	Ser Ser Ser 123		Leu His Leu / 1240	Ala Val Gln Ala 1249	
30	Gly Glu Cys 1250	Gly Leu Ala	Leu Ala Gly 0 1255	Gly Ala Thr Val 1260	Met Ser Gly
	Pro Gly Met 1265	Phe Val Glu 127	_	Gln Arg Gly Leu 1275	Ala Pro Asp 1280
35	Gly Arg Cys	Met Pro Phe 1285		Ala Asp Gly Thr 1290	Ala Trp Ser 1295
	Glu Gly Val	Ala Val Leu 1300	Ala Leu Glu A 1305	Arg Leu Ser Asp	Ala Arg Arg 1310
40	Ala Gly His 131	_	Gly Val Val F 1320	Arg Gly Ser Ala 132	
	Asp Gly Ala 1330	Ser Asn Gly	Leu Thr Ala E 1335	Pro Asn Arg Ser 1340	Ala Gln Glu
45	Gly Val Ile 1345	Arg Ala Ala 135		Ala Gly Leu Ala 1355	Pro Gly Asp 1360
50	Val Asp Ala	Val Glu Ala 1365	-	Gly Thr Ala Leu 1370	Gly Asp Pro 1375
	Ile Glu Ala	Ser Ala Leu 1380	Leu Ala Thr 1 1385	Tyr Gly Arg Glu	Arg Val Gly 1390
. 55	Asp Pro Leu 139		Ser Leu Lys S 1400	Ser Asn Val Gly 140	

	Ala	Ala 141		Gly	Ala	Ala	Gly 141		Val	Lys	Met	Leu 142		Ala	Leu	Glu
5	His 142		Thr	Leu	Pro	Arg 143		Leu	His	Ala	Asp 1435		Pro	Ser	Thr	His 1440
10	Val	Asp	Trp	Ser	Ser 1449		Thr	Val	Ala	Leu 145		Ala	Glu	Ala	Arg 1455	
,,	Trp	Pro	Arg	Arg 146	Ser	Asp	λrg	Pro	Arg 146		Ala	Ala	Val	Ser 1470		Phe
15	Gly	Ile	Ser 147	-	Thr	Asn	Ala	His 1480		Ile	Ile	Glu	Glu 148		Pro	Glu
	Trp	Val 149		Asp	Ile	Asp	Gly 149		Ala	Ala	Pro	Asp 150(_	Gly	Thr	Ala
20	Asp 1509		Ala	Ala	Pro	Ser 1510		Leu	Leu	Leu	Ser 1515		Arg	Ser	Glu	Gly 1520
	Ala	Leu	Arg	Ala	Gln 1525		Val	Arg	Leu	Gly 1530		Tyr	Val	Glu	Arg 1535	
25	Gly	Ala	Asp	Pro 1540	Arg	Дsp	Val	Ala	Tyr 1545		Leu	Ala	Ser	Thr 1550	-	Thr
	Leu	Phe	Glu 1555		Arg	Ala	Val	Val 1560		Cys	Gly	Gly	Arg 1565		Glu	Leu
30	Val	Ala 1570		Leu	Gly	Gly	Phe 1575		Ala	Gly		Val 1580		Gly	Gly	Val
•	Arg 1585		Gly	Arg	Ala	Val 1590		Gly	Gly	Val	Gly 1595		Leu	Phe		Gly 1600
35	Gln	Gly	Ala	Gln	Trp 1605		Gly	Met	Gly	Arg 1610	_	Leu	Tyr	Ala	Gly 1615	-
	Gly	Val	Phe	Ala 1620	Glu	Val	Leu	λ sp	Glu 1625		Leu	Ser	Met	Val 1630		Glu
40	Val	qaA	Gly 1635		Ser	Leu	Arg	Asp 1640		Met	Phe	_	Asp 1645		Asp	Val
45		Ala 1650		Ala	Gly		Азр 1655		Gly		_		-	Ala	Gly	Val
	Gly 1665		Gly	Ser	Gly	Ser 1670		Gly	Gly		Leu 1675		Arg	Thr		Phe 1680
50	Ala	Gln	Pro	Ala	Leu 1685		Ala	Leu		Val 1690		Leu	Phe		Ala 1695	
	Glu	Ala		Gly 1700	Val	Glu	Val		Val 1705		Leu	Gly		Ser 1710		Gly
55	Glu	Val	Ala 1715		Ala	Tyr		Ala 1720		Val	Leu		Leu 1725		Asp .	Ala

_	Val	Arg 1730		Val	Val	Ala	Arg 173		Gly	Leu	Met	Gly 1740		Leu	Pro	Val
5	Gly 1745		Gly	Met	Trp	Ser 1750		Gly	Ala	Ser	Glu 175		Val	Val	Arg	Gly 1760
10	Val	Val	Glu	Gly	Leu 1765		Glu	Trp	Val	Ser 1770		Ala	Ala	Val	Asn 1775	Gly 5
	Pro	Arg	Ser	Val 1780		Leu	Ser	Gly	Asp 1785		Gly	Val	Leu	Glu 1790		Val
15	Val	Ala	Ser 1795		Met	Gly	ysb	Gly 1800		Glu	Cys	Arg	Arg 180		Asp	Val
	Ser	His 1810		Phe	His	Ser	Val 181		Met	Glu	Pro	Val 1820	Leu)	Gly	Glu	Phe
20	Arg 1825	_	Val	Val	Glu	Ser 1830		Glu	Phe	Gly	Arg 1835		Arg	Pro	Gly	Val 1840
	Val	Val	Val	Ser	Gly 1845		Ser	Gly	Gly	Val 1850	Val	Gly	Ser	Gly	Glu 1855	
25	Gly	Asp	Pro	Gly 1860		Trp	Val	Arg	His 1869		Arg	Glu	Ala	Val 1870		Phe
	Ala	Asp	Gly 1875		Gly	Val	Val	Arg 1880		Leu	Gly	Val	Gly 1885		Leu	Val
30	Glu	Val 1890		Pro	His	Gly	Val 1899		Thr	Gly	Met	Ala 1900		Glu	Сув	Leu
	Gly 1905		Gly	Asp	Asp	Val 1910		Val	Val	Pro	Ala 1915		Arg	Arg	Gly	Àrg 1920
35	Ala	Glu	Arg	Glu	Val 1925		Glu	Ala	Ala	Leu 1930	Ala	Thr	Val	Phe	Thr 1935	
	qzA	Ala	Gly	Leu 1940		Ala	Thr	Ala	Leu 1945		Thr	Gly	Ser	Thr 1950		Arġ
40	Arg	Ile	Asp 1955		Pro	Thr	Tyr	Pro 1960		Gln	Arg	qeA	Arg 1965		Trp	Leu
45	-	Pro 1970		Arg	Thr		Val 1975		Gly	Val	Glu	Pro 1980		Gly	Ser	Pro
	Ala 1985		Ala	Arg	Ala	Thr 1990		Arg	Gly	Arg	Ser 1995		Thr	Ala	_	Ile 2000
50	Arg	Tyr	Arg	Val	Ala 2005	_	Gln	Pro	Ala	Val 2010	Val	Asp	Arg	-	Asn 2015	
	Gly	Pro	Ala	Gly 2020		Val	Leu	Leu	Leu 2025		Pro	Asp	Glu	Asp 2030		Ala
55	Asp	Ser	Gly 2035		Ala	Pro	Ala	Ile 2040		Arg	Glu	Leu	Ala 2045		Arg	Gly

	Ala	Glu 2050		His	Thr	Val	Ala 2055		Pro	Val	Gly	Thr 2060	Gly)	Arg	Glu	λla
5	Ala 2065		qeA	Leu	Leu	Arg 207(Ala	Gly	Asp	Gly 2075	Ala	Ala	Arg	Ser	Thr 2080
10	Arg	Val	Leu	Trp	Leu 2085		Pro	Ala	Glu.	Pro 2090	Asp)	Ala	Ala	Asp	Ala 2095	
.•	Ala	Leu	Val	Gln 2100		Leu	Gly	Glu	Ala 2105		Pro	Glu	Ala	Pro 2110		Trp
15 .	Ile	Thr	Thr 2115		Glu	Ala	Ala	Ala 2120		Arg	Pro	qzA	Glu 2129		Pro	Ser
	Val	Gly 2130		Ala	Gln	Leu	Trp 2135		Leu	Gly	Gln	Val 2140		Ala	Leu	Glu
20	Leu 2149		Arg	Arg	Trp	Gly 2150		Leu	Ala	Asp	Leu 2159		Gly	Ser	Ala	Ser 2160
	Pro	Ala	Val	Leu	Arg 2165		Phe	Val	Gly	Ala 2170	Leu)	Leu	Ala	Gly	Gly 2175	
25	Asn	Gln	Phe	Ala 2180		Arg	Pro	Ser	Gly 2185		His	Val	Arg	Arg 2190		Val
	Pro	Ala	Pro 2195		Pro	Val	Pro	Ala 2200		Ala	Arg	Thr	Val 2205		Thr	Ala
30	Pro	Ala 2210		Ala	Val	Gly	Glu 2215		Ala	Arg	Asn	Asp 2220		Ser	Asp	Val
	Val 2225		Pro	qeA	qeA	Arg 2230	_	Ser	Ser	Gly	Thr 2235		Leu	Ile	Thr	Gly 2240
35	_				2245	;				2250					2255	.
	Gly	Ala	Ala	Arg 2260		Leu	Leu	Va1	Gly 2265		λrg	Gly	Ala	Ala 2270		Pro
40	Gly	Va1	Gly 2275		Leu	Val	Glu	Glu 2280		Thr	Ala	Leu	Gly 2285		Glu	Val
45	Ala	Val 2290		Ala	Cys	Asp	Val 2295		Asp	Arg	qaƙ	Ala 2300		λla	Ala	Leu
45	Leu 2305		Gly	Leu	Pro	Glu 2310		Arg	Pro	Leu	Val 2315		Val	Leu		Ala 2320
50	Ala	Gly	Val	Leu	Asp 2325		Gly	Val	Leu	Авр 2330	Ser	Leu	Thr	Ser	Asp 2335	
	Val	Asp	Ala	Val 2340		Arg	Asp	Lys	Val 2345		Ala	Ala	Arg	His 2350		Asp
55	Glu	Leu	Thr 2355		Asp	Leu		Leu 2360	-	Ala	Phe	Val	Leu 2365		Ser	Ser

	Ile	Val 237		Val	Trp	Gly	Asn 237		Gly	Gln	Ala	Val 238		Ala	Ala	Ala
5	Asn 238	Ala 5	Ala	Leu	Asp	Ala 239		Ala	Gln	Arg	Arg 239		Ala	Arg	Gly	Ala 2400
10	Arg	Ala	Ala	Ser	11e 240		Trp	Gly	Pro	Trp 241		Gly	Ala	Gly	Met 241	Ala 5
	Ser	Gly	Thr	Ala 242		Lys	Ser	Phe	G1u 242		Asp	Gly	Val	Thr 243		Leu
15	Asp	Pro	Glu 243		Ala	Leu	Asp	Val 244		Asp	Asp	Val	Val 244		Ala	Gly
	Gly	Thr 245		Ala	Ala	Gly	Thr 245		Ala	Ala	Gly	Glu 246		Ser	Leu	Leu
20	Val 2469		Asp	Val	Asp	Trp 247		Thr	Phe	Val	Gly 2479		Ser	Val	Thr	Arg 2480
	Arg	Thr	Trp	Ser	Leu 2485		Asp	Gly	Val	Ser 249		Ala	Arg	Ser	Ala 249	-
25	Ala	Gly	His	Ala 2500		As p	Asp	Arg	Ala 2509		Leu	Thr	Pro	Gly 2510		Arg
	Pro	Gly	Asp 2515		Ala	Pro	Gly	Gly 2520		Gly	Gln	Asp	Gly 2525	_	Glu	Gly
30	Arg	Pro 2530	Trp	Leu	Ser	Val	Gly 2535		Ser	Pro	Ala	Glu 25 4 0		Arg	Arg	Ala
05	Leu 2545		Thr	Leu	Val	Arg 2550		Glu	Ala	Ala	Gly 2555		Leu	Arg	His	Ala 2560
35	Ser	Ala	Asp	Ala	Val 2565		Pro	Glu	Leu	Ala 2570		Arg	Ser	Ala	Gly 2575	
40	Asp	Ser	Leu	Thr 2580		Leu	Glu	Leu	Arg 2585		Arg	Leu	Thr	Ala 2590		Thr
	Gly		2595					2600					2605	;		
45	Ser	Leu 2610	Ala	Ser	His						Phe			Asp	Ser	Glu
	Ala 2625	Glu	Pro	Ala		Ala 2630		Pro	Thr		Val 2635		Ala	yab		Arg 2640
50	Glu	Pro	Ile .	Ala	Ile 2645	Val	Gly	Met		Cys 2650		Tyr	Pro		Gly 2655	
	Ala	Ser		Asp 2660		Leu	Trp		Leu 2665		Ala (Gly		Gly 1 2670	His '	Thr
55	Leu		Pro 2675	Phe	Pro i	Ala .		Arg (2680	Gly '	Trp .	Asp '		Glu 2685	Gly i	Leu '	Tyr

	Asp	2690		Pro	Gly	Val	Pro 2699		Lys	Ser	Tyr	2700		GIU	GIÀ	GIY
5	Phe 2705		Arg	Ser	Ala	Ala 2710		Phe	qaA	Ala	Glu 2715		Phe	Gly	Ile	Ser 2720
10	Pro	Arg	Glu	Ala	Thr 2725		Met	Asp	Pro	Gln 273(Gln)	Arg	Leu	Leu	Leu 2735	Glu
	Thr	Ser	Trp	Glu 2740		Leu	Glu	Arg	Ala 2745		Ile	Val	Pro	Asp 2750		Leu
15	Arg	Gly	Thr 2755		Thr	Gly	Val	Phe 2760		Gly	Ile	Ser	Gln 2769		Asp	Tyr
	Ala	Thr 2770		Leu	Gly	yab	Ala 2775		Asp	Thr	Tyr	Gly 2780		His	Val	Leu
20	Thr 2785		Thr	Leu	Gly	Ser 2790		Ile	Ser	Gly	Arg 2795		Ala	Tyr	Ala	Leu 2800
	Gly	Leu	Glu	Gly	Pro 2805		Leu	Thr	Val	Asp 2810	Thr	Ala	Cys	Ser	Ser 2815	
25	Leu	Val	λla	Leu 2820		Leu	Ala	Val	Gln 2825		Leu	Arg	Arg	Gly 2830		Суз
	Asp	Leu	Ala 2835		Ala	Gly	Gly	Val 2840		Val	Met	Ala	Thr 2845		Thr	Val
30	Phe	Val 2850		Phe	Ser	Arg	Gln 2855	_	Gly	Leu	Ala	Ala 2860		Gly	Arg	Суз
		2850 Ala					2855 Ala		_		Ala Ala 2875	2860 Trp)			
35	Lys 2865	2850 Ala	Phe	Ala	Glu	Gly 2870 Glu	2855 Ala	Asp	Gly	Thr	Ala 2875 Ala	2860 Trp	Ala	Glu	Gly	Val 2880 His
35	Lys 2865 Gly	2850 Ala Val	Phe Leu	Ala Leu	Glu Val 2885 Val	Gly 2870 Glu	2855 Ala Arg	Asp Leu Gly	Gly Ser	Thr Asp 2890 Ala	Ala 2875 Ala	2860 Trp Arg	Ala Arg	Glu Asn	Gly Gly 2895 Gly	Val 2880 His
<i>35</i>	Lys 2865 Gly Arg	2850 Ala Val Val	Phe Leu Leu	Ala Leu Ala 2900 Leu	Glu Val 2885 Val	Gly 2870 Glu Val	2855 Ala Arg Arg	Asp Leu Gly	Gly Ser Ser 2905	Thr Asp 2890 Ala	Ala 2875 Ala	2860 Trp Arg Asn	Ala Arg Gln	Glu Asn Asp 2910 Arg	Gly Gly 2895 Gly	Val 2880 His
<i>35</i>	Lys 2865 Gly Arg Ser	2850 Ala Val Val	Phe Leu Leu Gly 2915	Ala Leu Ala 2900 Leu	Glu Val 2885 Val Thr	Gly 2870 Glu Val	2855 Ala Arg Arg	Asp Leu Gly Ser 2920	Gly Ser Ser 2905 Gly	Thr Asp 2890 Ala Pro	Ala 2875 Ala Val Ala	Trp Arg Asn	Ala Arg Gln Gln 2925 Asp	Glu Asn Asp 2910 Arg	Gly Gly 2895 Gly Val	Val 2880 His Ala
35 40 45	Lys 2865 Gly Arg Ser Arg Val 2945	2850 Ala Val Val Asn Glu 2930	Phe Leu Leu Gly 2915 Ala	Ala Leu Ala 2900 Leu Leu	Glu Val 2885 Val Thr	Gly 2870 Glu Val Ala Asp	Ala Arg Pro Ala 2935	Asp Leu Gly Ser 2920 Gly	Gly Ser Ser 2905 Gly Leu	Thr Asp 2890 Ala Pro Val	Ala 2875 Ala Val Ala Pro Gly 2955	Z860 Trp Arg Asn Gln Ala 2940 Asp	Ala Arg Gln Gln 2925 Asp	Glu Asn Asp 2910 Arg Val	Gly 2895 Gly Val Asp	Val 2880 His Ala Ile Val
35 40 45	Lys 2865 Gly Arg Ser Arg Val 2945 Gly	2850 Ala Val Val Asn Glu 2930 Glu	Phe Leu Leu Gly 2915 Ala Ala Leu	Ala Leu Ala 2900 Leu His Leu	Glu Val 2885 Val Thr Ala Gly Ala 2965	Gly 2870 Glu Val Ala Asp Thr 2950 Thr	Ala Arg Pro Ala 2935	Asp Leu Gly Ser 2920 Gly Thr	Gly Ser Ser 2905 Gly Leu Ala Arg	Asp 2890 Ala Pro Val Leu Glu 2970	Ala 2875 Ala Val Ala Pro Gly 2955 Arg	2860 Trp Arg Asn Gln Ala 2940 Asp	Ala Arg Gln 2925 Asp Pro Gly	Glu Asn Asp 2910 Arg Val Ile Asp	Gly Gly 2895 Gly Val Asp Glu Pro 2975	Val 2880 His Ala Ile Val Ala 2960 Leu
35 40 45	Lys 2865 Gly Arg Ser Arg Val 2945 Gly	2850 Ala Val Val Asn Glu 2930 Glu	Phe Leu Leu Gly 2915 Ala Ala Leu	Ala Leu Ala 2900 Leu His Leu	Glu Val 2885 Val Thr Ala Gly Ala 2965	Gly 2870 Glu Val Ala Asp Thr 2950 Thr	Ala Arg Pro Ala 2935	Asp Leu Gly Ser 2920 Gly Thr Gly	Gly Ser Ser 2905 Gly Leu Ala Arg	Asp 2890 Ala Pro Val Leu Glu 2970	Ala 2875 Ala Val Ala Pro Gly 2955 Arg	2860 Trp Arg Asn Gln Ala 2940 Asp	Ala Arg Gln 2925 Asp Pro Gly	Glu Asn Asp 2910 Arg Val Ile Asp	Gly Gly 2895 Gly Val Asp Glu Pro 2975	Val 2880 His Ala Ile Val Ala 2960 Leu

	Leu	Pro 301		Thr	Leu	His	Val 301		Ala	Pro	Ser	Ser 302		Val	Glu	Trp
5	Ala 302		Gly	Ala	Val	Glu 303		Leu	Thr	Glu	Thr 303!		Ser	Trp	Pro	Arg 3040
10	Arg	Val	Glu	Arg	Val 304		Arg	Ala	Ala	Val 305		Ala	Phe	Gly	Val 305	
10	Gly	Thr	Asn	Ala 306		Val	Val	Leu	Glu 306		Ala	Pro	Ala	Glu 307	Ala O	Gly
15	Ser	Glu	His 3079		Asp	Gly	Pro	Glu 308		Glu	Arg	Pro	Asp 308		Val	Thr
	Gly	Pro 309		Ser	Trp	Val	Leu 309		λla	Arg	Ser	Glu 310	-	Ala	Leu	Arg
20	Ala 3105		Ala	Val	Arg	Leu 311(_	Glu	Cys	Val	Glu 3115	_	Val	Gly	Ala	Asp 3120
	Pro	Arg	Asp	Val	Ala 3125		Ser	Leu	Val	Val 3130		Arg	Ala	Ser	Phe 3135	_
25	Glu	Arg	Ala	Val 3140		Val	Gly	Arg	Gly 3145		Glu	Glu	Leu	Leu 3150	Ala)	Gly
	Leu	Asp	Val 3155		Ala	Ala	Gly	Ala 3160		Val	Gly	Val	Ser 3169		Gly	Ala
30		Ala 3170		Val	Arg	Gly	Ser 3175		Val	Arg	Gly	Arg 3180		Val	Gly	Val
	Leu 3185		Thr	Gly	Gln	Gly 3190		Gln	Trp	Val	Gly 3195		Gly	Arg	Gly	Leu 3200
35	Tyr	Ala	Gly	Gly	Gly 3205		Phe	Ala	Glu	Val 3210		yab	Glu		Leu 3215	
40	Val	Val		Glu 3220		Asp	Gly	Arg	Ser 3225		Arg	Asp	Val	Met 3230		Ala
	Asp	Ala	Asp 3235		Val	Leu	Gly	Gly 3240		Leu	Gly		Thr 3245		Phe	Ala
45	Gln	Pro 3250		Leu	Phe		Leu 3255		Val	Ala		Phe 3260	_	Ala	Leu	Glu
	Ala 3265		Gly	Val		Val 3270		Val	Val		Gly 3275		Ser	Val	-	Glu 3280
50	Val	Ala	Ala		Tyr 3285		Ala	Gly		Leu 3290		Leu	Gly		Ala 1 3295	
	Arg			3300					3305					3310		
55	Gly (Met 3315	Trp	Ser '	Val (Ala 3320		Glu :	Ser '		Val 3325	Arg (Gly 1	Val

	Val	Glu 333		Leu	Gly	Glu	Trp 333		Ser	Val	Ala	Ala 3340	Val	Asn	Gly	Pro
5	Arg 334!		Val	Val	Leu	Ser 335		Asp	Val	Gly	Val 3355		Glu	Ser	Val	Val 3360
-0	Val	Thr	Leu	Met	Gly 3365		Gly	Val	Glu	Cys 3370		Arg	Leu	Asp	Val 337	
10	His	Gly	Phe	His 3380		Val	Leu	Met	Glu 3385		Val	Leu	Gly	Glu 3390		Arg
15	Gly	Val	Val 3395		Ser	Leu	Glu	Phe 3400		Arg	Val	Arg	Pro 3409		Val	Val
	Val	Val 3410		Gly.	Val	Ser	Gly 3419	_	Val	Val	Gly	Ser 3420	Gly)	Glu	Leu	Gly
	Asp 3425		Gly	Tyr	Trp	Val 3430		His	Ala	Arg	Glu 3435		Val	Arg	Phe	Ala 3440
	Asp	Gly	Val	Gly	Val 3445		Arg	Gly	Leu	Gly 3450		Gly	Thr	Leu	Val 3455	
25	Val	Gly	Pro	His 3460	_	Val	Leu	Thr	Gly 3465		Ala	Gly	Gln	Cys 3470		Glu
	Ala	Gly	Asp 3475		Val	Val	Val	Val 3480		Ala	Met	Arg	Arg 3489		Arg	Pro
30	Glu	Arg 3490		Val	Phe	Glu	Ala 3495		Leu	Ala	Thr	Val 3500	Phe	Thr	Arg	qeA
	Ala 3505		Leu	Asp	Ala	Thr 3510		Leu	His	Thr	Gly 3515		Thr	Gly	Arg	Arg 3520
35	Ile	Asp	Leu	Pro	Thr 3525		Pro	Phe	Gln	His 3530		Arg	Tyr	Trp	Ala 3535	
40	Gly	Ser	Val	Thr 3540		Ala	Thr	Gly	Thr 3545		λla	Ala	Ala	Arg 3550		Gly
	Leu	Glu	Trp 3555		Asp	His	Pro	Phe 3560		Ser	Gly	Ala	Thr 3565		Ile	Ala
45	Gly	Ser 3570		Ala	Leu		Leu 3575		Gly	Arg	Val	Gly 3580	Leu	Ala	Ala	His
	Pro 3585		Leu	Ala		His 3590		Ile	Ser	Gly	Thr 3595		Leu	Leu	Pro	Gly 3600
50	Thr	Ala	Ile	Ala	Asp 3605		Leu	Leu	Arg	Ala 3610		Glu	Glu	Val	Gly 3615	
	Gly	Gly	Val	Glu 3620		Leu	Thr	Leu	His 3625		Pro	Leu	Leu	Leu 3630		Glu
	Arg	Gly	Gly 3635		His	Val	Gln	Val 3640		Val	Glu	Ala	Ala 3645	•	Glu	Gln

5	3650	3655	A Ala Arg Pro Glu 366 Arg His Ala Glu	
	3665	3670	3675	3680
10	Ser Thr Glu Th	r Ala Val Pro Ası 3685	Met Gly Trp Ala 3690	Ala Gly Ala Trp 3695
	Pro Pro Pro Gly		a Asp Val Glu Glu 3705	Leu Tyr Asp Ala 3710
15	Phe Ala Ala Asp 3715	Gly Tyr Gly Tyr 372	Gly Pro Ala Phe	Thr Ala Leu Ser 3725
	Gly Val Trp Arg	J Leu Gly Asp Glu 3735	Leu Phe Ala Glu 374	
20	Ala Gly Gly Ala 3745	Gly Thr Thr Gly 3750	Asp Gly Phe Cly 3755	Val His Pro Ala 3760
	Leu Phe Asp Ala	Ala Leu His Pro 3765	Trp Arg Ala Gly 3770	Gly Leu Leu Pro 3775
25	Asp Thr Gly Gly 378	•	Pro Phe Ser Trp 3785	Gln Gly Ile Ala 3790
	Leu His Thr Thr 3795	Gly Ala Glu Thr	Leu Arg Val Arg	Leu Ala Pro Ala 3805
30	Ala Gly Gly Thi 3810	: Glu Ser Ala Phe 3815	Ser Val Gln Ala 382	· ·
35	Gly Thr Pro Val 3825	Leu Thr Leu Asp 3830	Ala Leu Leu Leu 3835	Arg Pro Val Thr 3840
	Leu Gly Arg Ala	Asp Ala Pro Gla 3845	Pro Leu Tyr Arg 3850	Val Asp Trp Gln 3855
40	Pro Val Gly Glr 386	_	Ser Gly Ala Gln 3865	Gly Trp Thr Val 3870
	Leu Gly Gln Ala 3875	Ala Ala Glu Thr 388	Val Ala Gln Pro 0	Ala Ala His Ala 3885
45	Asp Leu Thr Ala 3890	Leu Arg Thr Ala 3895	Val Ala Ala Ala 390	
	Pro Arg Leu Val 3905	. Val Val Ser Pro 3910	Val Asp Thr Arg 3915	Leu Asp Glu Gly 3920
50	Pro Val Leu Ala	Asp Ala Glu Ala 3925	Arg Ala Arg Ala 3930	Gly Asp Gly Trp 3935
	Asp Asp Asp Pro	-	Leu Gly Arg Gly 3945	Leu Thr Leu Val 3950
55	Arg Glu Trp Val	Glu Asp Glu Arg 396	Leu Ala Asp Ser 0	Arg Leu Val Val 3965

5	Leu Th		Gly	Ala	Val	Ala 3975	Ala 5	Gly	Pro	Gly	Asp 3980	Val	Pro	Asp	Leu
	Thr Gly 3985	/ Ala	Ala	Leu	Trp 3990		Leu	Leu	Arg	Ser 399	Ala	Gln	Ser	Glu	Tyr 4000
10	Pro As			4005	5				4010)				4015	5
	Ala Al	a Leu	Pro 4020		Ala	Leu	Gly	Ser 4025		Glu	Arg	Gln	Leu 4030	Ala)	Leu
15	Arg Th	Gly 4035		Val	Leu	Ala	Pro 4040		Leu	Val	Pro	Met 4045	Ala	Thr	Arg
	Pro Ala		Thr	Thr	Pro	Ala 4059		Ala	Val	Ala	Ser 4060		Thr	Thr	Gln
20 .	Thr Gl: 4065	n Val	Thr	Ala	Pro 4070		Pro	qeA	Авр	Pro 4075		Ala	Дзр	Ala	Val 4080
	Phe As	Pro		Gly 4085		Val	Leu	Ile	Thr 4090		Gly	Thr	Gly	Ala 4095	
25	Gly Ar	g Arg	Val 4100		Ser	His	Leu	Ala 4105		Arg	Tyr		Val 4110		His
	Met Le	1 Leu 4115		Ser	Arg	Arg	Gly 4120		Авр	Ala	Pro	Glu 4125		Gly	Pro
30	Leu Gl		Glu	Leu	Ala	Gly 4135		Gly	Val	Thr	Ala 414(Phe	Leu	Ala
as	Cys As 4145	Leu	Thr	yab	Ile 415(Ala	Val	Arg	Lys 415		Val	Ala	Ala	Val 4160
35	Pro Se	qeA :		Pro 4165		Thr	Gly	Val	Val 4170		Thr	Ala	Gly	Val 4175	
40	Asp As		Ala 4180		Thr	Gly	Leu	Thr 4185		Gln	Arg	Leu	Asp 4190		Val
	Leu Ar	Pro 4195	-	Ala	Asp	Ala	Val 4200		Asn	Leu	His	Glu 4209		Thr	Leu
45	Asp Ar		Leu	Arg	Ala	Phe 4215	-	Leu	Phe	Ser	Ala 4220		Ala	Gly	Leu
	Leu Gly 4225	y Arg	Pro	Gly	Gln 4230		Ser	Tyr	Ala	Ala 4239		Asn	Ala	Val	Leu 4240
50	Asp Al	a Leu		Gly 4245		Arg	Arg	Ala	Ala 4250		Leu	Pro	Ala	Val 4255	
	Leu Al	a Trp	Gly 4260		Trp	Asp	Glu	Gln 4265		Gly	Met	Ala	Gly 4270		Leu
55	Asp Gl	Met 4275		Leu	Arg	Val	Leu 4280	-	Arg	Asp	Gly	Ile 428		Ala	Met

5	Pro	Pro 429	Glu 0	Gln	Gly	Leu	Glu 429		Leu	deY	Leu	Ala 430		Thr	Gly	His
	Arg 430		Gly	Pro	Ala	Val 431		Val	Pro	Leu	Leu 431		Asp	Gly	Àla	Ala 4320
10	Leu	Arg	Arg	Thr	Ala 4329		Glu	Arg	Gly	Ala 433		Thr	Met	Ser	Pro 433	
	Leu	Arg	Ala	Leu 434(Pro	Ala	Ala	Leu 434	-	Arg	Ser	Gly	Gly 435		Gly
15	Ala	Pro	Ala 4355		Ala	Asp	Arg	His 436		Ľуз	Glu	Ala	Asp 436		Gly	Ala
	Gly	Arg 4370		Ala	Gly	Met	Val 437		Leu	Glu	Ala	Ala 438		Arg	Ser	Ala
20	Ala 4389	Val	Leu	Glu	Leu	Val 4390		Glu	Gln	Val	Ala 4399		Val	Leu	Gly	Tyr 4400
	Ala	Ser	Ala	Ala	Glu 4405		Glu	Pro	Glu	Arg 4410		Phe	Arg	Glu	Ile 441	_
25	Val	Asp	Ser	Leu 4420		Ala	Val	Glu	Leu 4425		Asn	Arg	Leu	Ser 4430	_	Leu
	Val	Gly	Leu 4435	Arg	Leu	Pro	Thr	Thr 4440		Ser	Phe	Asp	His 4449	_	Thr	Pro
30	ГЛа	Азр 4450	Met	Ala	Gln	His	Ile 4455		Gly	Gln	Leu	Pro 4460		Pro	Ala	Gly
35	Ala 4465	Ser	Pro	Ala		Ala 4470		Leu	Glu		Ile 4475		Asp	Leu	Ala	Arg 4480
	λla	Val	Ala		Leu 4485		Thr	Gly	Asp	Ala 4490		Arg	Ala	Glu	Val 4495	-
40	Glu	Gln		Val 4500		Leu	Leu		Ala 4505		Asp	Pro	Pro	Gly 4 510		Thr
	Gly	Thr	Ala 4515	Ala	Pro (Gly	Val	Pro 4520		Gly	Ala	Asp	Gly 4525		Glu	Pro
45		Val 4530		Asp .	Arg :		Asp 4535		Ala	Thr		Asp 4540		Ile	Phe	Ala
	Phe 4545	Leu .	yab (Glu (Leu 4 550										
50 -	(2)	INFO	RMAT	ION :	FOR :	SEQ	ID N	0:3:								
		(i)) LE		: 19	96 a	mino		ds						
55					POLO											

(ii) MOLECULE TYPE: peptide

5		(xi) SE	QUEN	CE DI	escr:	IPTI(ON:	SEQ :	ID N	0:3:					
	Met 1	Thr	Ala	Glu	Asn 5	Asp	Lys	Ile	Arg	Ser 10	Tyr	Leu	Lys	Arg	Ala 15	Thr
10	Ala	Glu	Leu	His 20	Arg	Thr	Lys	Ser	Arg 25	Leu	Ala	Glu	Val	Glu 30	Ser	Ala
	Ser	Arg	Glu 35	Pro	Ile	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly
	Gly	Val 50	Ala	Ser	Pro	Ąsp	Asp 55	Leu	Trp	Asp	Leu	Val 60	Ala	Ala	Gly	Thr
	Asp 65	λla	Val	Ser	Ala	Phe 70	Pro	Val	Asp	Arg	Gly 75	Trp	Asp	Val	Glu	Gly 80
		Tyr	Авр	Pro	Asp 85	Pro	Glu	Ala	Val	Gly 90	Arg	Ser	Tyr	Val	Arg 95	Glu
	Gly	Gly	Phe	Leu 100	His	Ser	Ala	Ala	Glu 105	Phe	Ąsp	Ala	Glu	Phe 110	Phe	Gly
25	Ile	Ser	Pro 115	Arg	Glu	Ala	Ala	Ala 120	Met	Asp	Pro	Gln	Gln 125	Arg	Leu	Leu
30	Leu	Glu 130	Thr	Ser	Trp	Glu	Ala 135	Leu	Glu	Arg	Ala	Gly 140	Ile	Val	Pro	Ala
	Ser 145	Leu	Arg	Gly	Thr	Arg 150	Thr	Gly	Val.	Phe	Thr 155	Gly	Val	Met	Tyr	Asp 160
35	Asp	Tyr	Gly	Ser	Arg 165	Phe	Asp	Ser	Ala	Pro 170	Pro	Glu	Tyr	Glu	Gly 175	Tyr
	Leu	Val	Asn	Gly 180	Ser	Ala	Gly	Ser	Ile 185	Ala	Ser	Gly	Arg	Val 190	Ala	Tyr
40	Ala	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200	Leu	Thr	Val	Asp	Thr 205	Ala	Cys	Ser
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	Arg	Arg	Gly
45	Glu 225	Суз	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Thr 235	Val	Met	Ala	Thr	Pro 240
	Thr	Val	Leu	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Ala	Asp 255	Gly
50	Arg	Cys	Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	Asp	Gly	Thr	Ala	Trp 270	Ala	Glu
55	Gly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
	Gly	His	Arg	Val	Leu	Ala	Val	Val	Arg	Gly	Ser	Ala	Val	Asn	Gln	Asp

		290					295					300				
5	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	Ala	Asp	Ala	Gly 330	Leu	Thr	Pro	Ala	А вр 335	Val
10	Asp	Ala	Val	Glu 340	Ala	His	Gly	Thr	Gly 3 4 5	Thr	Pro	Leu	Gly	Asp 350	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	Ala	Thr 360	Tyr	Gly	Ser	Glu	Arg 365	Gln	Gly	Gln
15	Gly	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	ГЛа	Ser	Asn	Ile 380	Gly	His	Ala	Gln
20	Ala 385	Ala	Ala	Gly	Val	Gly 390	Gly	Val	Ile	Lys	Val 395	Val	Gln	Ala	Met	Arg 400
	His	Gly	Ser	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ser 415	Lys
25	Val	Glu	Trp	Ala 420	Ser	Gly	Ala	Val	Glu 425	Leu	Leu	Thr	Glu	Thr 430	Arg	Ser
23	Trp	Pro	Arg 435	Arg	Val	Glu	Arg	Val 440	Arg	Arg	Ala	Ala	Val 445	Ser	Ala	Phe
30	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Val	Leu	Glu 460	Glu	Ala	Pro	Ala
	Glu 465	Ala	Gly	Ser	Glu	His 470	Gly	Asp	Gly	Pro	Glu 475	Pro	Glu	Arg	Pro	Asp 480
<i>35</i>	Ala	Val	Thr	Gly	Pro 485	Leu	Ser	Trp	Val	Leu 490	Ser	Ala	Arg	Ser	Glu 495	Gly
	Ala	Leu	Arg	Ala 500	Gln	Ala	Val	Arg	Leu 505	Arg	Glu	Суз	Val	Glu 510	Arg	Val
40	Gly	Ala	А зр 515	Pro	Arg	λsр	Val	Ala 520	Gly	Ser	Leu	Val	Val 525	Ser	Arg	Ala
	Ser	Phe 530	Gly	Glu	Arg	Ala	Val 535		Val	Gly	Arg	Gly 540	Arg	Glu	Glu	Leu
45	Leu 545	Ala	Gly	Leu	Asp	Val 550	Val	Ala	Ala	Gly	Ala 555	Pro	Val	Gly	Val	Ser 560
	Gly	Gly	Val	Ser	Ser 565	Gly	Ala	Gly	Ala	Val 570	Val	Arg	Gly	Ser	Ala 575	Val
50	Arg	Gly	Arg	Gly 580	Val	Gly	Val	Leu	Phe 585	Thr	Gly	Gln	Gly	Ala 590	Gln	Trp
55	Val	Gly	Met 595	Gly	Arg	Gly	Leu	Tyr 600	Ala	Gly	Gly	Gly	Val 605	Phe	Ala	Glu
	Val	Leu	Asp	Glu	Val	Leu	Ser	Val	Val	Gly	Glu	Val	Gly	Gly	Trp	Ser

		610					615					620				
5	Leu 625	Arg	Asp	Val	Met	Phe 630	Gly	Asp	Val	Asp	Val 635	Asp	Ala	Gly	Ala	Gly 640
	Ala	Asp	Ala	Gly	Val 645	Gly	Ser	Gly	Val	Gly 650	Val	Gly	Gly	Leu	Leu 655	Gly
10	Arg	Thr	Glu	Phe 660	Ala	Gln	Pro	Ala	Leu 665	Phe	Ala	Leu	Glu	Val 670	Ala	Leu
	Phe	Arg	Ala 675	Leu	Glu	Ala	Arg	Gly 680	Val	Glu	Val	Ser	Val 685	Val	Leu	Gly
15	His	Ser 690	Val	Gly	Glu	Val	Ala 695	Ala	Ala	Tyr	Val	Ala 700	Gly	Val	Leu	Ser
20	Leu 705	Gly	Asp	Ala	Val	Arg 710	Leu	Val	Val	Ala	Arg 715	Gly	Gly	Leu	Met	Gly 720
	Gly	Leu	Pro	Val	Gly 725	Gly	Gly	Met	Trp	Ser 730	Val	Gly	Ala	Ser	Glu 735	Ser
25	Val	Val	Arg	Gly 740	Val	Val	Glu	Gly	Leu 7 4 5	Gly	Glu	Trp	Val	Ser 750	Val	Ala
	Ala	Val	Asn 755	Gly	Pro	Arg	Ser	Val 760	Val	Leu	Ser	Gly	Asp 765	Val	Gly	Val
30	Leu	Glu 770	Ser	Val	Val	Ala	Ser 775	Leu	Met	Gly	Asp	Gly 780	Val	Glu	Cys	Arg
	Arg 785	Leu	Asp	Val	Ser	His 790	Gly	Phe	His	Ser	Val 795	Leu	Met	Glu	Pro	Val 800
35	Leu	Gly	Glu	Phe	Arg 805	Gly	Val	Val	Glu	Ser 810	Leu	Glu	Phe	Gly	Arg 815	Val
	Arg	Pro	Gly	Val 820	Val	Val	Val	Ser	Ser 825	Val	Ser	Gly	Gly	Val 830	Val	Gly
40	Ser	Gly	Glu 835	Leu	Gly	Ąsp	Pro	Gly 840	Tyr	Trp	Val	Arg	His 845	Ala	A rg	Glu
	Ala	Val 850	Arg	Phe	Ala	Ąsp	Gly 855		Gly	Val	Val	Arg 860	Gly ,	Leu	Sly	Val
45	Gly 865	Thr	Leu	Val	Glu	Val 870	Gly	Pro	His	Gly	Val 875	Leu	Thr	Gly	Met	Ala 880
	Gly	Glu	Суз	Leu	Gly 885	Ala	Gly	Asp	Asp	Val 890	Val	Val	Val	Pro	Ala 895	Met
50	Arg	Arg	Gly	Arg 900	Ala	Glu	Arg	Glu	Val 905	Phe	Glu	Ala	Ala	Leu 910	Ala	Thr
. 55	Val	Phe	Thr 915	Arg	qeA	Ala	Gly	Leu 920	Asp	Ala	Thr	Thr	Leu 925	His	Thr	Gly
	Ser	Thr	Gly	Arg	Arg	Ile	Asp	Leu	Pro	Thr	Tyr	Pro	Phe	Gln	His	Asp

	!	930					935					940				
5	Arg '	Tyr	Trp	Leu	Ala	Ala 950	Pro	Ser	Arg	Pro	Arg 955	Thr	Asp	Gly	Leu	Ser 960
	Ala	Ala	Gly	Leu	Arg 965	Glu	Val	Glu	His	Pro 970	Leu	Leu	Thr	Ala	Ala 975	Val
10	Glu I	Leu	Pro	Gly 980	Thr	Asp	Thr	Glu	Val 985	Trp	Thr	Gly	Arg	Ile 990	Ser	Ala
	Ala i	Asp	Leu 995	Pro	Trp	Leu	Ala	Asp 100		Leu	Val	Trp	Asp		Gly	Val
15	Val'	Pro 1010	-	Thr	Ala	Leu	Leu 101		Thr	Val	Leu	Gln 102		Gly	Ser	Arg
20	Ile (1025	Gly	Leu	Pro	Arg	Val 103		Glu	Leu	Val	Leu 1035		Thr	Pro	Leu	Thr 1040
	Trp ?	Thr	Ser	Asp	Arg 1049		Leu	Gln	Val	Arg 1050		Val	Val	Thr	Ala 1055	
25	Ala	Thr	Ala	Pro 1060	_	Gly	Ala	Arg	Glu 1069		Thr	Leu	His	Ser 1070	_	Pro
	Glu I	Pro	Val 1079		Ala	Ser	Ser	Ser 1080		Pro	Ser	Pro	Ala 1089		Pro	Arg
30	His I	Leu 1090		Ala	Gln	Glu	Ser 1095	-	Дзр	Asp	Trp	Thr 1100	_	His	Ala	Ser
	Gly I 1105	Leu	Leu	Ala	Pro	Ala 1110		Gly	Leu	Ala	Asp 1115		Phe	Ala	Glu	Leu 1120
35	Thr C	3ly	Ala	Trp	Pro 1125		Val	Gly	Ala	Glu 1130		Leu	Asp	Leu	Ala 1135	-
	Gln 7	lyr	Pro	Leu 1140		Ala	Ala	Ala	Gly 1145		Arg	Tyr	Glu	Gly 1150		Phe
40	Arg G	_	Leu 1155	_	Ala	Ala	Trp	Arg 1160	_	Gly	Asp	Glu	Val 1169		Ala	Asp
	Val A	arg 1170		Pro	Asp	Ala	His 1179		Val	Asp	Ala	Asp 1180	_	Tyr	Gly	Val
45	His F 1185	Pro	Ala	Leu	Leu	Asp 1190		Val	Leu	His	Pro 1195		Ala	Ser		Asp 1200
	Pro L	eu	Gly	Asp	Gly 1205	_	His	Gly	Leu	Leu 1210		Phe	Ser	Trp	Thr 1215	-
50 .	Val G	Sln	Gly	His 1220	_	Ala	Gly	Gly	His 1225		Leu	Arg	Val	Arg 1230		Ala
55	Ala V		Asp 1235	-	Gly	Ala	Val	Ser 1240		Thr	Ala	Ala	Asp 1245		Ala	Gly
33	Asn P	ro	Val	Leu	Ser	Ala	Arg	Ser	Leu	Ala	Leu	Arg	Arg	Ile	Thr	Ala

		125	0				125	5				126	0			
5	Asp 126		Leu	Pro	Ala	Ala 127		Val	Ala	Pro	Leu 127		Arg	Val	Asp	Trp 1280
	Leu	Pro	Phe	Pro	Gly 128		Val	Pro	Val	Ser 129		Gly	Gly	Arg	Trp 129	Ala 5
10	Val	Val	Gly	Pro 130		Ala	Glu	Ala	Thr 130		Ala	Gly	Leu	Arg 131		Val
	Gly	Leu	Asp 131		Arg	Thr	His	Ala 132		Pro	Leu	Gly	Glu 132		Leu	Pro
15	Pro	Gln 133		Gly	Thr	Asp	Ala 133		Val	Ile	Ile	Leu 134	_	Leu	Thr	Thr
20	Thr 1349		Ala	Gly		Thr 135		Ser	Asp	Gly	Gly 1359		Leu	Ser	Leu	Leu 1360
	Asp	Glu	Val	Arg	Ala 1369		Val	Arg	Arg	Thr 1370		Glu	Ala	Val	Gln 1375	Ala
25	Arg	Leu	Ala	Asp 1380		Glu	Thr	Ala	Pro 1385		Val	Asp	Val	Arg 1390		Ala
	Ala	Arg	Pro 1399		Thr	Ala	Ala	Arg 1400		Ser	Pro	Arg	Val 1405		Thr	Arg
30	Thr	Gly 1410		Arg	Thr	Ala	Asp 1419	_	Pro	Arg	Leu	Val 1420		Leu	Thr	Arg
	Gly 1425		Ala	Gly	Pro	Glu 1430		Gly	λla	Ala	Asp 1435		Ala	Gly	Ala	Ala 1440
35	Val	Trp	Gly	Leu	Val 1445		Val	Ala	Gln	Ala 1450		Gln	Pro	Gly	Arg 1455	
	Thr	Leu	Val	Asp 1460		qeƙ	Gly	Thr	Gln 1465		Ser	Leu	λrg	Ala 1470		Pro
40	Gly	Leu	Leu 1475		Thr	qeA	Ala	Gly 1480		Ser	Ala	Val	Arg 1485		Gly	Arg
	Val	Thr 1490	Val		Arg		Val 1495	Pro		Ala	Asp	Pro 1500	Val		His	Gly
45	Gly 1505		Thr	Ala	Ala	Asp 1510		Thr	Gly	Ala	Gly 1515		Pro	Ser		Thr 1520
	Leu	Asp	Pro	Glu	Gly 1525		Val	Leu	Ile	Thr 1530		Gly	Thr	_	Ala 1535	
50	Ala	Ala		Thr 1540		Arg	His		Val 1545		Arg	His		Val 1550		His
	Leu	Leu	Leu 1555		Gly	Arg		Gly 1560		Asp	Ala	Pro	Gly 1565		Asp .	Arg
55	Leu	Val	Ala	Glu	Leu	Thr	Glu	Ser	Gly	Ala	Glu	Val	Ala	Val.	Arg i	Ala

	1570	157	15	1580
5	Cys Asp Val Thr 1585	Asp Arg Asp 1590	Ala Leu Arg Arg 1595	Leu Leu Asp Ala Leu 1600
	Pro Asp Glu His	Pro Leu Thr 1605	Cys Val Val His 1610	Thr Ala Gly Val Leu 1615
10	Asp Asp Gly Val		Gln Thr Ala Glu 1625	Arg Ile Asp Thr Val 1630
	Leu Arg Pro Lys 1635	Ala Asp Ala	Ala Val His Leu 1640	Asp Glu Leu Thr Arg 1645
15	Glu Ile Gly Arg 1650	Val Pro Leu 165	_	Ser Val Ser Ala Thr 1660
20	Leu Gly Ser Ala 1665	Gly Gln Ala 1670	Gly Tyr Ala Ala 1675	Ala Asn Ala Phe Met 1680
	Asp Ala Leu Ala	Ala Arg Arg 1685	Cys Ala Ala Gly 1690	His Pro Ala Leu Ser 1695
25	Leu Gly Trp Gly 170		Gly Val Gly Leu 1705	Ala Thr Gly Leu Asp 1710
	Gly Ala Asp Ala 1715	Ala Arg Val	Arg Arg Ser Gly 1720	Leu Ala Pro Leu Asp 1725
30	Ala Gly Ala Ala 1730	Leu Asp Leu 173		Leu Thr Arg Pro Glu 1740
	Pro Ala Leu Leu 1745	Pro Val Arg 1750	Leu Asp Leu Arg 1755	Ala Ala Ala Gly Ala 1760
35	Thr Ala Leu Pro	Glu Val Leu 1765	Arg Asp Leu Ala 1770	Gly Val Pro Ala Asp 1775
	Ala Arg Ser Thr 178		Ala Ala Gly Thr	Gly Asp Glu Asp Gly 1790
40	Ala Val Arg Pro 1795	Ala Pro Ala	Pro Ala Asp Ala . 1800	Ala Gly Thr Leu Ala 1805
45	Ala Arg Leu Ala 1810	Gly Arg Ser 1815		Thr Ala Leu Leu Leu 1820
	1825	1830	1835	Gly His Gly Asp Pro 1840 Ala Gly Phe Asp Ser
50		1845	1850	1855 Thr Arg Thr Gly Leu
	186	0	1865	1870
55	1875		1880	Thr Pro Leu Ala Leu 1885
	Aia Glu Leu Leu	Leu Asp Gly	Leu Glu Ala Ala (Gly Pro Ala Glu Pro

		189	0				189	5				190	0			
5	Ala 190		Glu	Val	Pro	Asp 191		Ala	Ala	Gly	Ala 191		Thr	Leu	Ser	Gly 192
	Val	Ile	Asp	Arg	Leu 192	_	Arg	Ser	Leu	Ala 193	_	Thr	Asp	Asp	Gly 193	Asp 5
10	Ala	Arg	Val	Arg 194		Ala	Arg	Arg	Leu 194		Gly	Leu	Leu	Asp 195		Leu
	Pro	Ala	Gly 195		Gly	Ala	Ala	Ser 196		Pro	Asp	Ala	Gly 196		Ris	Ala
15	Pro	Gly 197		Gly	Asp	Val	Val 197		Asp	Arg	Leu	Arg 198		Ala	Ser	Asp
20	Asp 198		Leu	Phe	Yab	Leu 199	Leu 0	Asp	Ser	Asp	Phe 199					
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO : 4	:							
25		(i)	()	A) LI B) Th	engti (PE:	H: 3'	724 a no a unki	amino cid		ids						
30		(ii)) MOI	LECUI	LE T	PE:	pep	tide								
		(xi)) SIEX	QUEN	E DI	ESCR:	IPTIC	on: s	SEQ :	ID N	0:4:					
35	Met 1	Ser	Ala	Thr	Asn 5	Glu	Glu	Lys	Leu	Arg 10	Glu	Tyr	Leu	Arg	Arg 15	Ala
55	Met	Ala	Asp	Leu 20	His	Ser	Ala	λrg	Glu 25	Arg	Leu	Arg	Glu	Val 30	Glu	Ser
40	Ala	Ser	Arg 35	Glu	Pro	Ile	Ala	Ile 40	Val	Gly	Met	λla	Сув 4 5	Arg	Tyr	Pro
	Gly	Gly 50	Val	Ala	Ser	Pro	Glu 55	Glu	Leu	Trp	Asp	Leu 60	Val	Ala	λla	Gly.
45	Thr 65	Asp	Ala	Ile	Ser	Pro 70	Phe	Pro	Val	Asp	Arg 75	Gly	Trp	Asp		Glu 80
	Gly	Leu	Tyr	qeA	Pro 85	Glu	Pro	Gly	Val	Pro 90	Gly	Lys	Ser	Tyr	Val 95	Arg
50				100			Ser		105					110		
	Gly	Ile	Ser 115	Pro	Arg	Glu	Ala	Ala 120	Ala	Met	Asp	Pro	Gln 125	Gln	Arg	Leu
55	Leu	Leu 130	Glu	Thr	Ser	Trp	Glu 135	Ala	Leu	Glu	Arg	Ala 140	Gly	Ile	Val	Pro

	Ala 145	Ser	Leu	Arg	Gly	Thr 150	Arg	Thr	Gly	Val	Phe 155	Thr	Gly	Val	Met	Tyr 160
5	His	Asp	Tyr	Gly	Ser 165	His	Gln	Val	Gly	Thr 170	Ala	Ala	As p	Pro	Ser 175	Gly
10	Gln	Leu	Gly	Leu 180	Gly	Thr	Ala	Gly	Ser 185	Val	Ala	Ser	Gly	Arg 190	Val	Ala
	Tyr	Thr	Leu 195	Gly	Leu	Gln	Gly	Pro 200	Ala	Val	Thr	Met	Asp 205	Thr	Ala	Сув
15	Ser	Ser 210	Ser	Leu	Val	Ala	Leu 215	His	Leu	Ala	Val	Gln 220	Ser	Leu	Arg	Arg
	Gly 225	Glu	Суз	yab	Leu	Ala 230	Leu	Ala	Gly	Gly	Ala 235	Thr	Val	Leu	Ala	Thr 240
20	Pro	Thr	Val	Phe	Val 245	Glu	Phe	Ser	Arg	Gln 250	Arg	Gly	Leu	Ala	Ala 255	Asp
	Gly	Arg	Сув	Lys 260	Ala	Phe	Ala	Glu	Gly 265	Ala	Asp	Gly	Thr	Ala 270	Trp	Ala
25	Glu	Gly	Ala 275	Gly	Val	Leu	Leu	Val 280	Glu	Arg	Leu	Ser	Asp 285	Ala	Arg	Arg
	Asn	Gly 290	His	Arg	Val	Leu	Ala 295	Val	Val	Arg	Gly	Ser 300	Ala	Val	Asn	Gln
30	qeA 305	Gly	Ala	Ser	Asn	Gly 310	Leu	Thr	Ala	Pro	Ser 315	Gly	Pro	Ala	Gln	Gln 320
35	Arg	Val	Ile	Arg	A ap 325	Ala	Leu	Ala	Asp	Ala 330	Gly	Leu	Thr	Pro	Ala 335	Asp
	Val	Asp	Ala	Val 340	Glu	Ala	His	Gly	Thr 345	Gly	Thr	Pro	Leu	Gly 350	Asp	Pro
40	Ile	Glu	Ala 355	Gly	Ala	Leu	Met	Ala 360	Thr	Tyr	Gly	Ser	Glu 365	Arg	Val	Gly
		370				_	375					380	Gly			
45 .	Ala 385	Ala	Ala	Gly	Ala	Ala 390	Gly	Val	Ile	ŗÃa	Met 395	Val	Gln	Ala	Leu	Arg 400
	Gln	Ser	Glu	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ala 415	Lys
50	Val	Glu	Trp	Asp 420	Ala	Gly	Ala	Val	Gln 425	Leu	Leu	Thr	Gly	Val 430	Arg	Pro
	Trp	Pro	Arg 435	Arg	Glu	His	Arg	Pro 440	Arg	λrg	Ala	Ala	Val 445	Ser	Ala	Phe
55	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Ile	Ile	Glu 460	Glu	Pro	Pro	Ala

	Ala 465		Asp	Thr	Ser	Pro 470	Ala	Gly	Asp	Thr	Pro 475	Glu	Pro	Gly	Glu	Ala 480
5	Thr	Ala	Ser	Pro	Ser 485	Thr	Ala	Ala	Gly	Pro 490	Ser	Ser	Pro	Ser	Ala 495	Val
10	Ala	Gly	Pro	Leu 500	Ser	Pro	Ser	Ser	Pro 505	Ala	Val	Val	Trp	Pro 510	Leu	Ser
	Ala	Glu	Thr 515	Ala	Pro	Ala	Leu	Arg 520	Ala	Gln	Ala	Ala	Arg 525	Leu	Arg	Ala
15	His	Leu 530	Glu	Arg	Leu	Pro	Gly 535	Thr	Ser	Pro	Thr	Asp 540	Ile	Gly	His	Ala
	Leu 545	Ala	Ala	Glu	Arg	Ala 550	Ala	Leu	Thr	Arg	Arg 555	Val	Val	Leu	Leu	Gly 560
20	Asp	Asp	Gly	Ala	Pro 565	Val	Asp	Ala	Leu	Ala 570	Ala	Leu	Ala	Ala	Gly 575	Glu
	Thr	Thr	Pro	Asp 580	Ala	Val	His	Gly	Thr 585	Ala	Ala	Asp	Ile	A rg 590	Arg	Val
25	Ala	Phe	Val 595	Phe	Pro	Gly	Gln	Gly 600	Ser	Gln	Trp	Ala	Gly 605	Met	Gly	Ala
	Glu	Leu 610	Leu	Asp	Thr	Ala	Pro 615	Ala	Phe	Ala	Ala	Glu 620	Leu	Asp	Arg	Cys
30	Gln 625	Gly	Ala	Leu	Ser	Pro 630	Tyr	Val	Asp	Trp	Asn 635	Leu	Ala	Asp	Val	Leu 640
35	Arg	Gly	Ala	Pro	Ala 645	Ala	Pro	Gly	Leu	Asp 650	Arg	Val	Asp	Val	Val 655	Gln
	Pro	Ala	Thr	Phe 660	Ala	Val	Met	Val	G1y 665	Leu	Ala	Ala	Leu	Trp 670	Arg	Ser
40	Leu	Gly	Val 675	Glu	Pro	Ala	Ala	Val 680	Ile	Gly	His	Ser	Gln 685	Gly	Glu	Ile
	Ala	Ala 690	Ala	Сув	Val	Ala	Gly 695	Ala	Leu	Ser	Leu	Glu 700	Asp	Ala	Ala	Arg
45	Ile 705	Val	Ala	Leu	Arg	Ser 710	Gln	Val	Ile	Ala	Arg 715	Glu	Leu	Ala	Gly	Arg 720
	Gly	Gly	Met	Ala	Ser 725	Val	Ala	Leu	Pro	Ala 730	Ala	Glu	Val	Glu	Ala 735	Arg
50	Leu	Ala	Gly	Gly 740	Val	Glu	Ile	Ala	Ala 745	Val	Asn	Gly	Pro	Gly 750	Ser	Thr
	Val	Val	Cys 755	Gly	Glu	Pro	Gly	Ala 760	Leu	Glu	Ala	Leu	Leu 765	Val	Thr	Leu
55	Glu	Ser 770	Glu	Gly	Thr	Arg	Val 775	Arg	Arg	Ile		Val 780	Asp	Tyr	Ala	Ser

5	His 785	Ser	His	Tyr	Val	Glu 790	Ser	Ile	Arg	Ala	Glu 795	Leu	Ala	Thr	Val	Leu 800
	Gly	Pro	Val	Arg	Pro 805	Arg	Arg	Gly	Asp	Val 810	Pro	Phe	Tyr	Ser	Thr 815	Val
10	Glu	Ala	Ala	Leu 820		Asp	Thr	Ala	Thr 825		Asp	Ala	Asp	Tyr 830	_	Tyr
	Arg	Asn	Leu 835	Arg	Leu	Pro	Val	Arg 840	Phe	Glu	Pro	Thr	Val 845	Arg	Ala	Met
15	Leu	Asp 850	Asp	Gly	Val	Yab	Ala 855	Phe	Val	Glu	Суз	Ser 860	Ala	His	Pro	Val
	Leu 865	Thr	Val	Gly	Va1	Arg 870	Gln	Thr	Val	Glu	Ser 875	Ala	Gly	Gly	Ala	Val 880
20	Pro	Ala	Leu	Ala	Ser 885	Leu	Arg	Arg	Asp	Glu 890	Gly	Gly	Leu	Arg	Arg 895	Phe
	Leu	Thr	Ser	Ala 900	Ala	Glu	Ala	Gln	Val 905	Val	Gly	Val	Pro	Val 910	Asp	Trp
25	Ala	Thr	Leu 915	Arg	Pro	Gly	Ala	Gly 920	Arg	Val	Asp	Leu	Pro 925	Thr	Tyr	Ala
	Phe	Gln 930	Arg	Glu	Arg	His	Trp 935	Val	Gly	Pro	Ala	Arg 940	Pro	ysb	Ser	Ala
30	Ala 945	Thr	Ala	Ala	Thr	Thr 950	Gly	Asp	qaA	Ala	Pro 955	Glu	Pro	Gly	Asp	Arg 960
35	Leu	Gly	Tyr	His	Val 965	Ala	Trp	Lya	Gly	Leu 970	Arg	Ser	Thr	Thr	Gly 975	Gly
	Trp	Arg	Pro	Gly 980	Leu	Arg	Leu	Leu	Ile 985	Val	Pro	Thr	Gly	Asp 990	Gln	Tyr
40	Thr	Ala	Leu 995	Ala	Asp	Thr	Leu	Glu 1000		Ala	Val	Ala	Ser 1005		Gly	Gly
	Thr	Val 1010		Arg	Val	Ala	Phe 1015	-	Pro	Ala	λrg	Thr 1020	-	Arg	Ala	Glu
45	Leu 1025	Phe	Gly	Leu	Leu	Glu 1030		Glu	Ile	Asn	Gly 1035		Thr	Ala	Val	Thr 1040
	Gly	Val	Val		Leu 1045		Gly	Leu	Суз	Thr 1050		Gly	Arg	Pro	Asp 1055	
50	Pro	Ala	Val	Pro 1060		Ala	Val	Thr	Ala 1065		Leu	Ala	Leu	Val 1070		Ala
	Leu	Ala	Asp 1075		Gly	Ser	Thr	Ala 1080		Leu	Trp	Thr	Val 1085		Cys	Gly
55	Ala	Val 1090		Thr	Ala	Pro	Asp 1095		Leu	Pro	Cys	Thr 1100		Gly	Ala	Gln

5	Leu Trp Gly Leu 1105	Gly Arg Val Ala Ala 1110	Leu Glu Leu Pro Glu Val T 1115 1	1p 120
	Gly Gly Leu Ile	Asp Leu Pro Ala Arg	Pro Asp Ala Arg Val Leu A 1130 1135	зp
10	Arg Leu Ala Gly 1140		Gly Gly Glu Asp Gln Ile A 1150	la
	Val Arg Met Ala 1155	Gly Val Phe Gly Arg 1160	Arg Val Leu Arg Asn Pro A 1165	la
15	Asp Ser Arg Pro 1170	Pro Ala Trp Arg Ala 1175	Arg Gly Thr Val Leu Ile A 1180	la
	Gly Asp Leu Thr 1185	Thr Val Pro Gly Arg 1190	Leu Val Arg Ser Leu Leu G 1195 1	1u 200
20			Gly Pro Asp Ala Pro Ala G 1210 1215	ln
	Ala Ala Ala Ala 1220		Ser Leu Val Pro Val Arg Cy 1230	γs
25	Asp Val Thr Asp 1235	Arg Ala Ala Leu Ala . 1240	Ala Leu Leu Asp Glu His Al 1245	la
	Pro Thr Val Ala 1250	Val His Ala Pro Pro 1 1255	Leu Val Pro Leu Ala Pro Le 1260	eu
30	Arg Glu Thr Ala 1265	Pro Gly Asp Ile Ala . 1270	Ala Ala Leu Ala Ala Lys Ti 1275 12	nr 280
35			Ala Pro Ala Ala Gly Leu As 1290 1295	sp
	Ala Leu Val Leu : 1300		Gly Val Trp Gly Gly Ala Al 1310	la .
40	Gln Gly Gly Tyr i 1315	Ala Ala Ala Ser Ala 1 1320	His Leu Asp Ala Leu Ala Gl 1325	lu
	Arg Ala Arg Ala 2 1330	Ala Gly Val Pro Ala 1 1335	Phe Ser Val Ala Trp Ser Pr 1340	:o
45	Trp Ala Gly Gly 5	Thr Pro Ala Asp Gly 1 1350	ala Glu Ala Glu Phe Leu Se 1355 13	er 60
			sp Gln Ala Val Arg Thr Le 370 1375	u
50	Arg Arg Met Leu (Glu Arg Gly Ser Ala (1385	ys Gly Ala Val Ala Asp Va 1390	1
	Glu Trp Ser Arg I 1395	Phe Ala Ala Ser Tyr 1 1400	hr Trp Val Arg Pro Ala Va . 1405	.1
55	Leu Phe Asp Asp 1	Ile Pro Asp Val Gln A 1415	rg Leu Arg Ala Ala Glu Le 1420	u

	Ala 1425		Ser	Thr	Gly	143		Thr	Thr	Ser	Glu 143		Val	Arg	Glu	Leu 1440
5	Thr	Ala	Gln	Ser	Gly 144		Lys	Arg	His	Ala 1450		Leu	Leu	Arg	Leu 1455	
	Arg	Ala	His	Ala 1460		Ala	Val.	Leu	Gly 146		Ser	Ser	Gly	Asp 1470		Val
10	Ser	Ser	Ala 147		Ala	Phe	Arg	Asp 148		Gly	Phe	Asp	Ser 148		Thr	Ala
15	Leu	Glu 1490		Arg	Asp	Arg	Leu 149		Thr	Ser	Thr	Gly 1500		Ļys	Leu	Pro
	1505	5				1510)				1519	5				His 1520
	Leu	Gly	Glu	Glu	Leu 1525		Gly	Arg	Asn	Asp 1530		Ala	Asp	Arg	Ala 1535	
20	Pro	Asp	Thr	Pro 1540		Arg	Thr	Asp	Glu 1545		Ile	Ala	Ile	Ile 1550		Met
25	Ala	Cys	Arg 1555		Pro	Gly	Gly	Val 1560		Sér	Pro	Glu	Asp 1565		Trp	Asp
	Leu	Leu 1570		Gly	Gly	Thr	Asp 1575		Ile	Thr	Pro	Phe 1580		Thr	Asn	Arg
30	Gly 1585		Asp	Asn	Glu	Thr 1590		Tyr	Ąsp	Pro	Азр 1595		Asp	Ser	Pro	Gly 1600
	His	His	Thr	Tyr	Val 1605	_	Glu	Gly	Gly	Phe 1610		His	Asp	Ala	Ala 1615	
35	Phe	Asp	Pro	Gly 1620		Phe	Gly	Ile	Ser 1629		Arg	Glu	Ala	Leu 1630		Met
	Asp	Pro	Gln 1635		Arg	Leu	Ile	Leu 1640		Thr	Ser	Trp	Glu 1645		Phe	Glu
40	Arg	Ala 1650		Ile	Ąsp	Pro	Val 1655		Leu	Arg	Gly	Ser 1660		Thr	Gly	Val
45	Phe 1665		Gly	Thr	Asn	Gly 1670	Gln	His	Tyr	Val	Pro 1675		Leu	Gln		Gly 1680
	Asp	Glu	Asn	Phe	Asp 1685	_	Tyr	Ile	Ala	Thr 1690	_	Asn	Ser	Ala	Ser 1695	
50	Met	Ser	Gly	Arg 1700		Ser	Tyr	Val	Phe 1705		Leu	Glu	Gly	Pro 1710		Val
	Thr	Val	Asp 1715		Ala	Суз	Ser	Ala 1720		Leu	Ala	Ala	Leu 1725		Leu	Ala
55	Val	Gln 1730		Leu	Arg	Arg	Gly 1735		Cys	Asp	Tyr	Ala 1740		Ala	Gly	Gly

	Ala 174		Val	Met	Ser	Thr 175		Glu	Met	Leu	Val 175		Phe	Ala	λrg	Gln 1760
5	Arg	Ala	Val	Ser	Pro 176		Gly	Arg	Ser	Lys 177		Phe	Ala	Glu	Ala 177	Ala 5
	Asp	Gly	Val	Gly 178		Ala	Glu	Gly	Ala 178		Met	Leu	Leu	Val 179		Arg
10	Leu	Ser	Glu 179		Gln	Lys	Lys	Gly 180		Pro	Val	Leu	Ala 180		Val	Arg
15	Gly	Ser 181		Val	Asn	Gln	Asp 181		Ala	Ser	Asn	Gly 182		Thr	Ala	Pro
	Ser 182		Pro	Ala	Gln	Gln 183		Val	Ile	Arg	Glu 183		Leu	Ala	Asp	Ala 1840
20	Gly	Leu	Thr	Pro	Ala 184		Val	Asp	Ala	Val 185		Ala	His	Gly	Thr 1855	_
	Thr	Pro	Leu	Gly 1860		Pro	Ile	Glu	Ala 186	_	Ala	Leu	Leu	Ala 1870		Tyr
25	Gly	Arg	Asp 1875		Arg	Asp	Gly	Pro 188		Trp	Leu	Gly	Ser 188		Lys	Ser
	Asn	Ile 1890		His	Thr	Gln	Ala 189		Ala	Gly	Val	Ala 1900	-	Val	Ile	Lys
30	Met 190	Val	Leu	Ala	Leu	Arg 191		Gly	Glu	Leu	Pro 1919		Thr	Leu	His	Ala 1920
	Ser	Thr	Ala	Ser	Ser 1929		Ile	Азр	Trp	Asp 1930		Gly	Ala	Val	Glu 1935	
35	Leu	Asp	Glu	Ala 1940		Pro	Trp	Leu	Gln 1949		Ala	Glu	Gly	Pro 1950	-	Arg
	Ala	Gly	Ile 1955		Ser	Phe	Gly	Ile 1960		Gly	Thr	Asn	Ala 1969		Leu	Val
40 .	Ile	Glu 1970		Pro	Pro	Glu	Pro 1975		Ala	Pro	Glu	Leu 1980		Ala	Pro	Glu
45	Pro 1985	Ala	Ala	Asp	Gly	Asp 1990		Trp	Ser	Glu	Glu 1995		Trp	His		Val 2000
,	Thr	Val	Pro	Leu	Met 2005		Ser	Ala	His	Asn 2010		Ala	Ala		Arg 2015	_
50	Gln	Ala	Arg	Arg 2020		Arg	Ala	Asp	Leu 2025		Ala	His	Pro	Glu 2030		His
	Pro	Ala	Asp 2035		Gly	Tyr	Thr	Leu 2040		Thr	Thr		Thr 2045		Phe	Glu ^ʻ
55	Gln	Arg 2050		Ala	Val	Val	Gly 2055		Asn	Phe	Thr	Glu 2060		Ile	Ala	Ala

	Leu 206	-	Asp	Leu	Val	Glu 207	_	Arg	Pro	Hls	207!		Val	Leu	Arg	2080
5	Thr	Ala	Gly	Thr	Ser 2089		Gln	Val	Val	Phe 2090		Phe	Pro	Gly	Gln 2099	
	Ser	Gln	Trp	Pro 210		Met	Ala	Asp	Gly 2105		Leu	Ala	Arg	Ser 211		Gly
10	Ser	Gly	Ser 2115		Leu	Glu	Thr	Ala 2120	Arg)	Ala	Cys	Asp	Leu 212		Leu	Arg
15	Pro	His 2130		Gly	Trp	Ser	Val 213		Asp	Val	Leu	Arg 2140		Glu	Pro	Gly
	Ala 214		Ser	Leu	Asp	Arg 215		Asp	Val	Val	Gln 215		Val	Leú	Phe	Thr 2160
20	Met	Met	Val	Ser	Leu 216		Glu	Thr	Trp	Arg 217		Leu	Gly	Val	Glu 2175	
	Ala	Ala	Val [°]	Val 2180		His	Ser	Gln	Gly 2185		Ile	Ala	Ala	Ala 2190		Val
25	Ala	Gly	Ala 2199		Thr	Leu	Asp	Asp 2200	Ala)	Ala	Arg	Ile	Val 2209		Leu	Arg
	Ser	Gln 2210		Trp	Leu	Arg	Leu 221		Gly	Lys	Gly	Gly 2220		Val	λla	Val
30	Thr 2225	Leu		Glu	Arg	Asp 2230	Leu		Pro	Arg	Leu 2235	Glu		Trp	Ser	Asp 2240
	Arg	Leu	Ala	Val	Ala 2245		Val	Asn	Gly	Pro 2250		Thr	Сув	Ala	Val 2255	
35	Gly	Asp	Pro	Asp 2260		Leu	Ala	Glu	Leu 2265		Ala	Glu	Leu	Gly 2270		Glu
	Gly	Val	His 2275		Arg	Pro	Ile	Pro 2280	Gly)	Val	Asp	Thr	Ala 2289		His	Ser
40	Pro	Gln 2290		yab	Thr	Leu	Glu 2295		His	Leu	Arg	Lys 2300		Leu	Ala	Pro
45	Val 2309		Pro	Arg	Thr	Ser 2310		Ile	Pro	Phe	Tyr 2315	_	Thr	Val	Thr	Gly 2320
	Gly	Leu	Ile	qeA	Thr 2325		Glu	Leu	Asp	Ala 2330	_	Tyr	Trp	Tyr	Arg 2335	
50	Met	Arg	Glu	Pro 2340		Glu	Phe	Glu	Gln 2345		Thr	Arg	Ala	Leu 2350		Ala
	Asp	Gly	His 2355	-	Val	Phe	Leu	Glu 2360	Ser	Ser	Pro	His	Pro 2365		Leu	Ala
55	Val	Ser 2370		Gln	Glu	Thr	Ile 2375		Asp	Ala	Gly	Ser 2380		Ala	Ala	Val

	238	_	Thr	Leu	Arg	Arg 239	-	Gin	GIY	GIY	239		пр	Leu	GIĀ	2400
5	Ala	Leu	Cys	Arg	Ala 240		Thr	His	Gly	Leu 241		Ile	Asp	Ala	Glu 241	
	Ile	Phe	Gly	Pro 242	-	Ser	Arg	Gln	Val 242		Leu	Pro	Thr	Tyr 243		Phe
10	Gln	Arg	Glu 243!		Tyr	Trp	Tyr	Ser 244		Gly	His	Arg	Gly 244		ДSP	Pro
15	Ala	Ser 245		Gly	Leu	Asp	Ala 245		Asp	His	Pro	Leu 246		Gly	Ser	Gly
	Val 246		Leu	Pro	Glu	Ser 247	_	Азр	Arg	Met	Tyr 247		Ala	Arg	Leu _.	Gly 2480
20	Ala	Ąsp	Thr	Thr	Pro 2485		Leu	Ala	Asp	His 249		Leu	Leu	Gly	Ser 2495	
	Leu	Leu	Pro	Gly 2500		Ala	Phe	Ala	Asp 250		Ala	Leu	Trp	Ala 2510		Arg
25	Gln	Ala	Gly 251		Gly	Arg	Val	Glu 2520		Leu	Thr	Leu	Ala 2525		Pro	Leu
	Val	Leu 2530		Gly	Ser	Gly	Gly 253		Arg	Leu	Arg	Leu 2540		Val	Gly	Ala
30	Pro 2545	Gly	Thr	Asp	Asp	Ala 255(Arg	Phe	Ala	Val 2559		Ala	Arg	Ala	Glu 2560
	Gly	Ala	Thr	qeA	Trp 2565		Leu	His	Ala	Glu 2570	_	Leu	Leu	Thr	Ala 2575	
35	Asp	Thr	Ala	Asp 2580		Pro	Asp	Ala	Ser 2585		λla	Thr	Pro	Pro 2590		Gly
	Ala	Glu	Gln 2595		Asp	Ile	Gly	Asp 2600		Tyr	Gln	Arg	Phe 2605		Glu	Leu
40	Gly	Tyr 2610		Tyr	Gly	Pro	Phe 2615		Arg	Gly	Leu	Val 2620		Ala	His	Arg
45	Cys 2625	Gly	Pro	qeA	Ile	His 2630		Glu	Val	Ala	Leu 2635		Val	Gln	Ala	Gln 2640
	Gly	Asp	Ala	Ala	Arg 2645		Gly	Ile	His	Pro 2650		Leu	Leu		Ala 2655	
50	Leu	Gln	Thr	Met 2660		Leu	Gly	Gly	Phe 2665		Pro	Glu	Asp	Gly 2670	_	Val
	Arg	Met	Pro 2675		Ala	Leu	Arg	Gly 2680		Arg	Leu		Arg 2685		Gly	Ala
55	Asp	Arg 2690		His	Val	Arg	Val 2695		Pro	Val	Ser	Glu 2700	_	Ala	Val	Arg

	Ile Ar 2705	g Cys	Ala	Asp	Gly 2710		Gly	Arg	Pro	Val 2715	Ala	Glu	Ile	Glu	Ser 2720
5	Phe Il	e Met	Arg	Pro 2725		qeA	Pro	Gly	Gln 2730		Leu	Gly	Gly	Arg 2735	Pro
	Val Gl	/ Ala	Asp 2740		Leu	Phe	Arg	11e 2745		Trp	Arg	Glu	Leu 2750		Ala
10	Gly Pr	Gly 275		Arg	Thr	Gly	Asp 2760		Thr	Pro	Pro	Pro 2765	Val	Arg	Trp
15	Val Le 27		Gly	Pro	qeA	Ala 277		Gly	Leu	Ala	Glu 2780	Ala)	Ala	Asp	Ala
	His Le 2785	ı Pro	Ala	Val	Pro 2790		Pro	Asp	Gly	Ala 2799		Pro	Ser	Pro	Thr 2800
20	Gly Ar	g Pro	Ala	Pro 2805		Ala	Val	Val	Phe 2810		Val	Arg	Ala	Gly 281	
	CJA ya	o Val	Ala 2820		Asp	Ala	His	Thr 2825		Ala	Суз	Arg	Val 2830		Asp
25	Leu Va	l Gln 283	-	Arg	Leu	Ala	Ala 2840		Glu	Gly	Pro	Asp 2845		Ala	Arg
	Leu Va 28		Ala	Thr	Arg	Gly 2855		Val	Ala	Val	Arg 2860		Авр	Ala	Glu
30	Val As 2865	p Asp	Pro	Ala	Ala 2870			Ala	Trp	Gly 2875		Leu	Arg	Ser	Ala 2880
					2870 Gly)	Ala			2879 Val	•				2880 Asp
30 35	2865	a Glu	Glu	Pro 2885 Arg	2870 Gly	Arg	Ala Phe	Leu	Leu 2890	2875 Val	Asp	Leu	yab	Asp 2899 Glu	2880 Asp
	2865 Gln Al Pro Al Gln Th	a Glu a Ser r Ala 291	Glu Ala 2900 Val	Pro 2885 Arg	2870 Gly Ala Ala	Arg Leu Gly	Ala Phe Thr Thr 2920	Leu Asp 2905 Val	Leu 2890 Ala Tyr	Val Leu Val	Asp Ala Pro	Leu Ser Arg 2925	Asp Gly 2910 Leu	Asp 2899 Glu Glu	Asp Pro
35	2865 Gln Al Pro Al	a Glu a Ser r Ala 291 a Asp	Glu Ala 2900 Val	Pro 2885 Arg	2870 Gly Ala Ala	Arg Leu Gly	Ala Phe Thr Thr 2920 Pro	Leu Asp 2905 Val	Leu 2890 Ala Tyr	Val Leu Val	Asp Ala Pro	Leu Ser Arg 2925 Asp	Asp Gly 2910 Leu	Asp 2899 Glu Glu	Asp Pro
35	2865 Gln Al Pro Al Gln Th Ala Al	a Glu a Ser r Ala 2919 a Asp	Glu Ala 2900 Val Arg	Pro 2889 Arg Arg	Gly Gly Ala Ala Asp	Arg Leu Gly Gly 2935	Phe Thr Thr 2920	Leu Asp 2905 Val) Leu	Leu 2890 Ala Tyr	Val Leu Val Pro	Asp Ala Pro Pro 2940 Asp	Leu Ser Arg 2925 Asp	Asp Cly 2910 Leu Asp	Asp 2899 Glu Glu Gly	Asp Pro
<i>35 40</i>	2865 Gln Al Pro Al Gln Th Ala Al 29 Trp Ar	a Glu a Ser r Ala 2919 a Asp 30	Glu Ala 2900 Val Arg Gly	Pro 2885 Arg Arg Thr	Gly Ala Ala Asp Gly 2950	Arg Leu Gly Gly 2935	Ala Phe Thr Thr 2920 Pro	Leu Asp 2905 Val Leu Leu	Leu 2890 Ala Tyr Thr	Val Leu Val Pro Leu 2955	Asp Pro Pro 2940 Asp	Leu Ser Arg 2925 Asp	Asp Cly 2910 Leu Asp	Asp 2895 Glu Glu Gly Ala	Asp Pro Arg Ala Leu 2960 Arg
<i>35 40</i>	2865 Gln Al Pro Al Gln Th Ala Al 29 Trp Ar 2945	a Glu a Ser r Ala 2919 a Asp 30 g Leu c Ala	Glu Ala 2900 Val Arg Gly Pro	Pro 2885 Arg Arg Thr Arg Asp 2965	Gly Ala Ala Asp Gly 2950	Arg Leu Gly 2935 Thr	Ala Phe Thr Thr 2920 Pro Asp	Leu Asp 2905 Val Leu Leu Pro	Leu 2890 Ala Tyr Thr Leu 2970 Phe	Val Val Pro Leu 2955	Asp Ala Pro Pro 2940 Asp	Leu Ser Arg 2925 Asp Gly	Asp Gly 2910 Leu Asp Leu Gln	Asp 2895 Glu Glu Gly Ala Val 2975	Asp Pro Arg Ala Leu 2960
35 40	Gln Al Pro Al Gln Th Ala Al 29 Trp Ar 2945 Val Pr	a Glu a Ser c Ala 2919 a Asp 30 g Leu b Ala a Val	Glu Ala 2900 Val Arg Gly Pro Arg 2980	Arg Thr Arg Asp 2965	Gly Ala Ala Asp Gly 2950 Ala	Arg Leu Gly 2935 Thr Glu	Phe Thr Thr 2920 Pro Asp Ala	Leu Asp 2905 Val Leu Leu Pro Asn 2985	Leu 2890 Ala Tyr Thr Leu 2970 Phe	Val Val Pro Leu 2955 Glu	Asp Ala Pro Pro 2940 Asp Pro	Leu Ser Arg 2925 Asp Gly Gly	Asp Gly 2910 Leu Asp Leu Gln Leu 2990	Asp 2895 Glu Glu Gly Ala Val 2975	Asp Pro Arg Ala Leu 2960 Arg

	302		Leu	Gly	Leu	303	_	Gly	GIA	Leu	303		Leu	Cys	Val	3040
5	Asp	His	Arg	Leu	Leu 304		Pro	Val	Pro	Asp 305		Trp	Ser	Tyr	Ala 305	Gln 5
	Ala	Ala	Ser	Val 306		Ala	Val	Phe	Leu 306		Ala	Tyr	Tyr	Gly 307		Val
10	Thr	Leu	Ala 307		Leu	Arg	Pro	Gly 308		Arg	Val	Leu	Val 308		Ala	Ala
15	Ala	Gly 309		Val	Gly	Met	Ala 309		Val	Gln	Ile	Ala 310	-	His	Leu	Gly
	Ala 310		Val	Leu	Ala	Thr 311		Ser	Pro	Gly	Lys 311		Asp	Ala	Leu	Arg 3120
20	Ala	Met	Gly	Ile	Thr 3129		Asp	His	Leu	Ala 313		Ser	Arg	Thr	Leu 3139	-
	Phe	Ala	Thr	Ala 3140		Thr	Gly	Ala	Asp 314	_	Thr	Ser	Arg	Ala 3150	_	Val
25	Val	Leu	Asn 315	Ser	Leu	Thr	Lys	Glu 316		Val	Asp	Ala	Ser 316		Gly	Leu
	Leu	Arg 3170		Gly	Gly	Arg	Phe 3175		Glu	Leu	Gly	Lys 3180		qeA	Val	Arg
30	Asp 3185		Glu	Arg	Ile	Ala 3190		Glu	His	Pro	Gly 3199		Arg	Tyr	Arg	Ala 3200
35	Phe	Asp	Leu	Asn	Glu 3205		Gly	Pro	Asp	Ala 3210		Gly	Arg	Leu	Leu 3215	
	Glu	Leu	Met	Asp 3220		Phe	Ala	Ala	Gly 3225		Leu	His	Pro	Leu 3230		Val
40	Val	Thr	His 3235	Asp	Val	Arg	Arg	Ala 3240		Asp	Ala	Leu	Arg 3245		Ile	Ser
	Gln	Ala 3250	Arg	His	Thr	Gly	Lys 3255		Val	Leu	Thr	Met 3260		Pro	Ala	Trp
45	His 3265		Tyr	Gly	Thr	Val 3270		Val	Thr	Gly	Gly 3275		Gly	Ala	Leu	
			Ile	Ala	Arg 3285	His		Ala	Ser	Arg 3290	His		Val	Arg	Arg. 3295	
50	Leu	Ile	Ala	Ala 3300		Arg	Gly	Pro	3305 3305		Glu	Gly	Ala	Ala 3310		Leu
	Val	Ala	Asp 3315	Leu	Ala	Ala		Gly 3320		Ser	Ala		Val 3325		Ala	Cys
55	Asp	Val 3330		Дзр	Ala		Ala 3335		Arg	Gly	Leu	Leu 3340		Gly	Ile	Pro

	334	_	nıs	PIO	Deu	335		Vai	V 4.1		335		U1	741	204	3360
5	Asp	Gly	Val	Leu	Pro 336		Leu	Thr	Pro	Glu 337		Met	Arg	Arg	Val 3379	
	Arg	Pro	Lys	Val 338		Ala	Ala	Val	His 338	Leu 5	Asp	Glu	Leu	Thr 339		qeA
10	Leu	Asp	Leu 339!		Ala	Phe	Val	Leu 340		Ser	Ser	Ser	Ala 340		Leu	Leu
15	Gly	Ser 341		Ala	Gln	Gly	Asn 341		Ala	Ala	Ala	Asn 3420		Thr	Leu	Asp
	Ala 3425		Ala	Ala	Arg	Arg 343(Ser	Leu	Gly	Leu 343!		Ser	Val	Ser	Leu 3440
20	Ala	Trp	Gly	Leu	Trp 3445		Asp	Thr	Ser	Arg 3450		Ala	His	Ala	Leu 3459	-
	Gln	Glu	Ser	Leu 3 46 0		Arg	Arg	Phe	Ala 3469	Arg 5	Ser	Gly	Phe	Pro 3470		Leu
25	Ser	Ala	Thr 3475		Gly	Ala	Ala	Leu 3480		Asp	Ala	Ala	Leu 3489	-	Val	Asp
	Glu	Ala 3490		Gln	Val	Pro	Met 3495	_	Phe	Asp	Pro	Ala 3500		Leu	Arg	Ala
30	Thr 3509		Ser	Val	Pro	Ala 3510		Leu	Ser	Asp	Leu 3519		Gly	Ser	Ala	Pro 3520
35	Ala	Thr	Gly	Ser	Ala 3525		Pro	Ala	Ser	Gly 3530		Leu	Pro	Ala	Pro 3535	
	Ala	Gly	Thr	Val 3540		Glu	Pro	Leu	Ala 3549	Glu	Arg	Leu	Ala	Gly 3550		Ser
40	Ala	Glu	Glu 3555		His	Asp	Arg	Leu 3560		Gly	Leu		Gly 3565		His	Val
	Ala	Ala 3570		Leu	Gly	His	Gly 3575		Ala	Ala	Glu	Val 3580		Pro	Asp	Arg
45	Pro 3585		Arg	G1u	Val	Gly 3590		Asp	Ser	Leu	Thr 3595		Val	Glu		Arg 3600
	Asn	Arg	Met		Ala 3605		Thr	Gly	Val	Arg 3610		Pro	Ala	Thr	Leu 3615	
		_		3620					3625					3630	•	
	Leu	Ala	Pro 3635		GIn	Pro		Thr 3640		Thr	Pro		Leu 3645		Glu	Leu
										Leu						

	Glu 366		Ala	Pro	Ala	Pro 367		Asp	Arg	Ala	Glu 367		Ala	Leu	Arg	Leu 3680
5	yab	Ala	Leu	Ala	Asp 368		Trp	Arg	Ala	Leu 369		Asp	Gly	Ala	Pro 369	Gly 5
	Ala	Asp	yab	Asp 3700		Thr	Asp	Val	Leu 370		Ser	Ala	Asp	Asp 371		Glu
10	Ile	Phe	Ala 371	Phe 5	Ile	Asp	Glu	Arg 372		Gly	Thr	Ser				
15	(2)			rion		_										;
		(i)	() (1	QUENC A) LI B) TY D) TC	engti (PE:	4: 1: amii	580 a	amino cid		ids						
20		(ii)) MOI	LECUI	E T	PE:	pept	tide								
25		(xi)) SE(QUENC	CE DE	ESCR:	[PTI	ON: S	SEQ :	ID NO	5:5:					,
	Met 1	Ala	Asn	Glu	Glu 5	Lys	Leu	Arg	Ala	Tyr 10	Leu	Lys	Arg	Val	Thr 15	Gly
30	Glu	Leu	His	Arg 20	Ala	Thr	Glu	Gln	Leu 25	Arg	Ala	Leu	qeA	Arg 30	Arg	Ala
	His	Glu	Pro 35	Ile	Ala	Ile	Val	Gly 40	Ala	Ala	Суз	Arg	Leu 45	Pro	Gly	Gly
35	Val	Glu 50	Ser	Pro	Asp	Asp	Leu 55	Trp	Glu	Leu	Leu	His 60	Ala	Gly	Ala	Asp
	Ala 65	Val	Gly	Pro	Ala	Pro 70	Ala	Asp	Arg	Gly	Trp 75	Asp	Val	Glu	Gly	Arg , 80
40	Tyr	Ser	Pro	Asp	Pro 85	Asp	Thr	Pro	Gly	Thr 90	Ser	Tyr	Суз	Arg	Glu 95	Gly
	Gly	Phe		Gln 100	Gly	Ala	Asp		Phe 105		Pro	Ala	Leu	Phe 110	Gly	Ile
45	Ser	Pro	Asn 115	Glu	Ala	Leu	Thr	Met 120	Asp	Pro	Gln	Gln	Arg 125	Leu	Leu	Leu
50	Glu	Thr 130	Ser	Trp	Glu	Ala	Leu 135	Glu	Arg	Ala	Gly	Leu 140	Asp	Pro	Gln	Ser
	Leu 145	Ala	Gly	Ser	Arg	Thr 150	Gly	Val	Phe	Ala	Gly 155	Ala	Trp	Glu	Ser	Gly 160
55	Tyr	Gln	Lys	Gly	Val 165	Glu	Gly	Leu	Glu	Ala 170	Asp	Leu	Glu	Ala	Gln 175	Leu
	Leu	Ala	Gly	Ile		Ser	Phe	Thr	Ala		Arg	Val	Ala	Tyr		Leu

				180					185					190		
5	Gly	Leu	Glu 195	Gly	Pro	Ala	Leu	Thr 200	Ile	Asp	Thr	Ala	Суя 205		Ser	Ser
	Leu	Val 210	Ala	Leu	His	Leu	Ala 215	Val	Gln	Ser	Leu	Arg 220	Arg	Gly	Glu	Cys
10	Asp 225	Leu	Ala	Leu	Ala	Gly 230	Gly	Ala	Thr	Val	Ile 235	Ala	Asp	Phe	Ala	Leu 240
	Phe	Thr	Gln	Phe	Ser 245	Arg	Gln	Arg	Gly	Leu 250	Ala	Pro	Asp	Gly	Arg 255	Суз
15	Lys	Ala	Phe	Gly 260	Glu	Thr	Ala	Asp	Gly 265	Phe	Gly	Pro	Ala	Glu 270	Gly	Ala
	Gly	Met	Leu 275	Leu	Val	Glu	Arg	Leu 280	Ser	yab	Ala	Arg	Arg 285	Asn	Gly	His
20	Pro	Val 290	Leu	Ala	Val	Val	Arg 295	Gly	Ser	Ala	Val	Asn 300	Gln	Asp	Gly	Ala
25	Ser · 305	Asn	Gly	Leu	Thr	Ala 310	Pro	Ser	Gly	Pro	Ala 315	Gln	Gln	Arg	Val	Ile 320
	Arg	Glu	Ala	Leu	Ala 325	yab	Ala	Gly	Leu	Thr 330	Pro	Ala	Аsp	Val	Asp 335	Ala
30		Glu		340					345				·	350		
		Ala	355					360					365			
35		Leu 370					375					380				
	385	Val				390					395					400
40		Pro			405					410					415	
		Ala		420					425					430		
45		Ala	435					440					445			
50	Gly	Thr 450	Asn	Ala	His	Leu	Val 455	Ile	Glu	Glu	Glu	Pro 460	Pro	Ala	Arg	Pro
	Glu 465	Pro	Glu	Glu	Ala	Ala 470	Gln	Pro	Pro	Ala	Pro 475	Ala	Thr	Thr	Val	Leu 480
55	Pro	Leu	Ser	Ala	Ala 485	Gly	Ala	Arg	Ser	Leu 490	Arg	Glu	Gln	Ala	A rg 4 95	Arg

	Leu	Ala	Ala	His 500	Leu	Ala	Gly	His	Glu 505	Glu	Ile	Thr	Ala	Ala 510	Asp	Ala
. 5			515			Thr		520					525			
	Val	Leu 530	Ala	Asp	Asp	Arg	Arg 535	Ala	Leu	Ile	Asp	Arg 540	Leu	Thr	Ala	Leu
10	Ala 545	Glu	qeA	Arg	Lys	Asp 550	Pro	Gly	Val	Thr	Val 555	Gly	Glu	Ala	Gly	Ser 560
	Gly	Arg	Pro	Pro	Val 565	Phe	Val	Phe	Pro	Gly 570	Gln	Gly	Ser	Gln	Trp 575	Thr
15	Gly	Met	Gly	Ala 580	Glu	Leu	Leu	Asp	Arg 585	Ala	Pro	Va1	Phe	Arg 590	Ala	Lys
	Ala	Glu	Glu 595	Cys	Ala	Arg	Ala	Leu 600	Ala	Ala	His	Leu	902 Yab	Trp	Ser	Val
20	Leu	Asp 610	Val	Leu	Arg	Asp	Ala 615	Pro	Gly	Ala	Pro	Pro 620	Ile	Asp	Arg	Ala
0.0	Asp 625	Va1	Va1	Gln	Pro	Thr 630	Leu	Phe	Thr	Met	Met 635	Val	Ser	Leu	Ala	Ala 640
25	Leu	Trp	Glu	Ser	His 645	Gly	Val	Arg	Pro	Ala 650	Ala	Val	Val	Gly	His 655	Ser
30 .	Gln	Gly	Glu	Ile 660	Ala	Ala	Ala	His	Ala 665	Ala	Gly	Ala	Leu	Ser 670	Leu	Asp
	Asp	Ala	Ala 675	Arg	Val	lle	Ala	Glu 680	Arg	Ser	Arg	Leu	Trp 685	Lys	Arg	Leu
35	Ala	Gly 690	Asn	Gly	Gly	Met	Leu 695	Ser	Val	Met	Ala	Pro 700	Ala	Asp	Arg	Val
	Arg 705	Glu	Leu	Met	Glu	Pro 710	Trp	Ala	Glu	Arg	Met 715	Ser	Val	Ala	Ala	Val 720
40	Asn	Gly	Pro	Ala	Ser 725	Val.	Thr	Val	Ala	Gly 730	Asp	Ala	Arg	Ala	Leu 735	Glu
	Glu	Phe	Gly	Gly 740	Arg	Leu	Ser	Ala	Ala 745	Gly	Val	Leu	λrg	Trp 750	Pro	Leu
45	Ala	Gly	Val 755	Asp	Phe	Ala	Gly	His 760	Ser	Pro	Gln	Val	Glu 765	Gln	Phe	Arg
	Ala	Glu 770	Leu	Leu	Asp	Thr	Leu 775	Gly	Thr	Val	Arg	Pro 780	Thr	Ala	Ala	Arg
	Leu 785	Pro	Phe	Phe	Ser	Thr 790	Val	Thr	Ala	Ala	Ala 795	His	Glu	Pro	Glu	Gly 800
55	Leu	Asp	Ala	Ala	Tyr 805	Trp	Tyr	Arg	Asn	Met 810	Arg	Glu	Pro	Val	Glu 815	Phe

	Ala	Ser	Thr	Leu 820	Arg	Thr	Leu	Leu	Arg 825	Glu	Gly	His	Arg	Thr 830	Phe	Val
5	Glu	Met	Gly 835	Pro	His	Pro	Leu	Leu 840	Gly	Ala	Ala	Ile	Asp 845	Glu	Val	Ala
	Glu	Ala 850	Glu	Gly	Val	His	Ala 855	Thr	Ala	Leu	Ala	Thr 860	Leu	His	Arg	Gly
10	Ser 865	Gly	Gly	Leu	Asp	Arg 870	Phe	Arg	Ser	Ser	Val 875	Gly	Ala	Ala	Phe	Ala 880
	His	Gly	Val	Arg	Val 885	Asp	Trp	Asp	Ala	Leu 890	Phe	Glu	Gly	Ser	Gly 895	Ala
15	Arg	Arg	Val	Pro 900	Leu	Pro	Thr	Tyr	Ala 905	Phe	Ser	Arg	Asp	Arg 910	Tyr	Trp
	Leu	Pro	Thr 915	Ala	Ile	Gly	Arg	Arg 920	Ala	Val	Glu	Ala	Ala 925	Pro	Val	yab
20	Ala	Ser 930	Ala	Pro	Gly	Arg	Tyr 935	Arg	Val	Thr	Trp	Thr 940	Pro	Val	Ala	Ser
25	Asp 945	Asp	Ser	Gly	Arg	Pro 950	Ser	Gly	Arg	Trp	Leu 955	Leu	Val	Gln	Thr	Pro 960
	Gly	Thr	Ala	Pro	Asp 965	Glu	Ala	Asp	Thr	Ala 970	Ala	Ser	Ala	Leu	Gly 975	Ala
30	Ala	Gly	Val	Val 980	Val	Glu	Arg	Cys	Leu 985	Leu	Asp	Pro	Thr	Glu 990	Ala	Ala
			995					1000)			Asp	1005	5		
35	Gly	Leu 101(Gly	Val	Leu	Val 101		Pro	Gly	Arg	Pro 1020		Ser	Thr	Ala
	Pro 1025		Asp	Ala	Ser	Pro 1030		qzA	Pro	Gly	Thr 1035		Ala	Val	Leu	Leu 1040
40	Val	Val	Gln	Ala	Val 1045		qaA	Ala	Ala	Pro 1050	_	Ala	Arg	Ile	Trp 1055	_
	Val	Thr	Arg	Gly 1060		Val	Ala	Val	Gly 1065		Gly	Glu	Val	Pro 1070	_	Ala
45	Val	Gly	Ala 1075		Val	Trp	Gly	Leu 1080		Arg	Val	Ala	Ala 1085		Glu	Val
50	Pro	Val 1090		Trp	Gly	Gly	Leu 1095		Ąsp	Val	Ala	Val 1100	_	Ala	Gly	Val
	Arg 1109		Trp	Arg	Arg	Val 1110		Gly	Val	Val	Ala 1119	Gly	Gly	Gly	Glu	Asp 1120
55	Gln	Val	Ala	Val	Arg 1125		Gly	Gly	Val	Phe 1130		Arg	Arg	Leu	Val 1135	_

	Val	Gly	Val	Arg 114	_	Gly	Ser	Gly	Val 114	_	Arg	Ala	Arg	Gly 115	-	Val
5	Val	Val	Thr 115		Gly	Leu	Gly	Gly 116		Gly	Gly	His	Val 116		Arg	Trp
	Leu	Ala 117		Ser	Gly	Ala	Glu 117		Val	Val	Leu	Ala 118	Gly 0	Arg	Arg	Gly
10	Gly 118		Val	Val	Glý	Ala 119		Glu	Leu	Glu	Arg 119		Leu	Val	Gly	Leu 1200
	Gly	Ala	Lys	Val	Thr 120		Val	Ser	Cys	Asp 121		Gly	Asp	Arg	Ala 121	
15	Met	Val	Gly	Leu 1220		Gly	Val	Val	Glu 1225		Leu	Gly	Val	Pro 1230		Arg
	Gly	Val	Phe 1235		Ala	Ala	Gly	Val 124		Gln	Val	Ser	Gly 1245		Gly	Glu
20	Val	Ser 125		Ala	Glu	Ala	Gly 125		Val	Leu	Gly	Gly 126	Lys)	Ala	Val	Gly
	Ala 1269	Glu 5	Leu	Leu	Asp	Glu 1270		Thr	Ala	Gly	Val 1279		Leu	Asp	Ala	Phe 1280
	Val	Leu	Phe	Ser	Ser 1285		Ala	Gly	Val	Trp 129		Ser	Gly	Gly	Gln 1295	
30	Va1	Tyr	Ála	Ala 1300		Asn	Ala	His	Leu 1305		Ala	Leu	Ala	Glu 1310		Arg
	Arg	Ala	Gln 1315	Gly	Arg	Pro	Ala	Thr 1320		Val	Ala	Trp	Gly 1325		Trp	Gly
35	Gly	Glu 1330	Gly	Met	Gly	Ala	Asp 1335		Gly	Val	Thr	Glu 1340	Phe	Tyr	Ala	Glu
	Arg 1345	Gly	Leu	Ala	Pro	Met 1350	Arg	Pro	Glu	Ser	Gly 1355		Glu	Ala	Leu	His 1360
40 .	Thr	Ala	Leu	Asn	Glu 1365	Gly	qeA	Thr	Cys	Val 1370		Val	Ala	dsy	Ile 1375	
	Trp	Glu	His	Phe 1380		Thr	Gly	Phe	Thr 1385		Tyr	Arg	Pro	Ser 1390		Leu
45	Ile	Ser	Asp 1395	Ile	Pro	Gln	Val	Arg 1400	Ala	Leu	Arg	Thr	Pro 1405		Pro	Thr
	Val	Asp 1410	Ala	Ser	Asp	Gly	Leu 1415		Arg	Arg	Val	Asp 1420	Ala	Ala	Leu	Thr
50	Pro 1425	Arg	Glu	Arg	Thr	Lys 1430	Val	Leu	Val	Asp	Leu 1435		Arg	Thr		Ala 1440
55	Ala	Glu	Val	Leu	Gly 1445	His	Ąsp	Gly		Gly 1450		Ile	Gly		Asp 1455	Val

	YIG	Fire	AL Y	146		Gly	·	Yab	146		ALG	ALG	VQ1	147		πŷ
5	Gly	Arg	Leu 147		Glu	Ala	Thr	Gly 1480		Val	Leu	Pro	Ala 148		Val	Ile
	Phe	Asp 1490		Pro	Thr	Val	Asp 1495		Leu	Gly	Gly	Ala 1500		Leu	Glu	Arg
10	Leu 150		Ala	Asp	Glu	Pro 1510		Pro	Gly	Gly	Ala 1515		Glu	Pro	Ala	Gly 1520
	Gly	Arg	Pro	Ala	Thr 152		Pro	Pro	Ala	Pro 1530		Pro	λla	Val	His 153	Asp 5
15	Ala	Asp	Ile	Asp 1540		Leu	Asp	Ala	Asp 1549		Leu	Ile	Arg	Leu 155		Thr
20	Gly	Thr	Ala 1559		Pro	Ala	Asp	Gly 1560		Pro	Ala	Asp	Gly 156	_	Pro	Asp
	Ala	Ala 1570		Thr	Ala	Pro	Asp 1575	_	Ala	Pro	Glu	Gln 1580)			
25	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	10:6:	:							
30		(i)	(<i>I</i>	() LE 3) TY	NGTI PE:	i: 18				ids						
		(ii)	MOI	ECUI	ÆΤ	PE:	pept	ide								
35		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: 9	EQ 1	D NO	:6:					
	Met 1	Ser	Pro	Ser	Met 5	Asp	Glu	Val	Leu	Gly 10	Ala	Leu	Arg	Thr	Ser 15	Val
40	Lys	Glu	Thr	Glu 20	Arg	Leu	Arg	Arg	His 25	Asn	Arg	Glu	Leu	Leu 30	Ala	Gly
	Ala	His	Glu 35	Pro	Val	Ala	Ile	Val 40	Gly	Met	Ala	Сув	Arg 45	Tyr	Pro	Gly
45	Gly	Val 50	Ser	Thr	Pro	yab	92 73	Leu	Trp	Glu	Leu	Ala 60	Ala	Asp	Gly	Val
٠	Asp 65	Ala	Ile	Thr	Pro	Phe 70	Pro	Ala	Asp	Arg	Gly 75	Trp	Asp	Glų	A sp	Ala 80
50	Val	Tyr	Ser	Pro	Asp 85	Pro	Asp	Thr	Pro	Gly 90	Thr	Thr	Tyr	Cys	A rg 95	Glu
	Gly	Gly	Phe	Leu 100	Thr	Gly	Ala	Gly	Asp 105	Phe	Asp	Ala	Ala	Phe 110	Phe	Gly
55	Ile	Ser	Pro	Asn	Glu	Ala	Leu	Val	Met	Asp	Pro	Gln	Gln	Arg	Leu	Leu

				115					120)				125	;		
5	;	Leu	Glu 130	Thr	Ser	Trp	Glu	Thr 135		Glu	Arg	Ala	Gly 140		· Val	Pro	Ala
		Ser 145	Leu	Arg	Gly	Ser	Arg 150		Gly	Va]	. Phe	Val 155		Ala	Ala	His	Thr 160
10	(Gly	Tyr	Val	Thr	Asp 165		Ala	Arg	Ala	Pro 170		Gly	Thr	Glu	Gly 175	Tyr
	1	Leu	Leu	Thr	Gly 180	Asn	Ala	. Asp	Ala	Val 185		Ser	Gly	Arg	Ile 190		Tyr
15		Ser	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200		Thr	Ile	Gly	Thr 205		Cys	Ser
		Ser	Ser 210	Leu	Val	Ala	Leu	His 215		Ala	Val	Gln	Ser 220		Arg	Arg	Gly
20	2	31u 225	Cys	Asp	Leu	Ala	Leu 230		Gly	Gly	Val	Ala 235		Met	Pro	Asp	Pro 240
25	· 1	Thr	Val	Phe	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Val	Asp 255	Gly
23					260					265					270		Glu
	G	Sly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
30	G	ly	His 290	Arg	Val	Leu	Ala	Val 295	Val	Arg	Gly	Ser	Ala 300	Val	Asn	Gln	Asp
35	3	1y 05	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	V	al	Ile	Arg	Glu	Ala 325	Leu	Ala	Asp	Ala	Gly 330	Leu	Thr	Pro	Ala	Asp 335	Val
40	A	ap	Val	Val	Glu 340	Ala	His	Gly	Thr	Gly 345	Thr	Ala	Leu	Gly	Asp 350	Pro	Ile
	G	lu	Ala	G1y 355	Ala	Leu	Leu	Ala	Thr 360	Tyr	Gly	Arg	Glu	Arg 365	Val	Gly	Asp
45	P	ro	Leu 370	Trp	Leu	Gly	Ser	Leu 375	Lys	Ser	λsn	Ile	Gly 380	His	Ala	Gln	Ala
	A 3	la . 85	Ala	Gly	Val	Gly	Gly 390	Val	Ile	Lys	Val	Val 395	Gln	Ala	Met	Arg	His 400
50	G	ly :	Ser	Leu	Pro	Arg 405	Thr	Leu	His	Val	Asp 410	Ala	Pro	Ser	Ser	Lys 415	Val
	. G	lu '	Trp	Ala	Ser 420	Gly	Ala	Val	Glu	Leu 425	Leu	Thr	G1u	Gly	Arg 430	Ser	Trp
55	Þ:	ro i	Arg	Arg	Val	Glu .	Arg	Val	Arg	Arg	Ala	Ala	Val	Ser	Ala	Phe	Gly

			435	;				440)				445	5		
5	Val	Ser 450		Thr	Asn	Ala	His 455		. Val	. Leu	Glu	Glu 460		Pro	Val	Glu
	Ala 465	Gly	Ser	Glu	His	Gly 470		Gly	Pro	Gly	Pro 475		Arg	Pro) Asp	Ala 480
10	Val	Thr	Gly	Pro	Leu 485		Trp	Val	Leu	Ser 490		Arg	Ser	Arg	Glu 495	
	Leu	Arg	Gly	Gln 500	Ala	Gly	Arg	Leu	Ala 505		Leu	Ala	Arg	Gln 510		Arg
15	Thr	Glu	Gly 515	Thr	Gly	Gly	Gly	Ser 520		Leu	Val	Val	Pro 525		Ala	Asp
	Ile	Gly 530	Tyr	Ser	Leu	Ala	Thr 535		Arg	Glu	Thr	Leu 540		His	Arg	Ala
20	Val 545	Ala	Leu	Val	Gln	Glu 550		Arg	Thr	Ala	Gly 555		Asp	Leu	Ala	Ala 560
25				Gly	565					570					575	
				Gly 580					585					590		
30			595	Gly				600					605			
		610		Glu			615					620				
35	625			Val		630					635					640
				Thr	645					650					655	
40				Arg 660					665					670		
	Val	Gly	His 675	Ser	Ile	Gly	Gly	Leu 680	Val	Ala	Ala	His	Val 685	Ala	Gly	Val
45	Phe	Ser 690	Ala	Ala	Asp	Ala	Ala 695	Arg	Leu	Val	Ser	Ala 700	Arg	Gly	Arg	Leu
	Met 705	Arg	Ala	Leu	Pro	Glu 710	Gly	Gly	Ala	Met	Ala 715	Ala	Val	Gln	Ala	Thr 720
50	Glu	Arg	Glu	Ala	Ala 725	Ala	Leu	Glu	Pro	Val 730	Ala	Ala	Gly	Gly	Ala 735	Val
EE	Val	Ala	Ala	Val 740	Asn	Gly	Pro	Gln	Ala 745	Leu	Val	Leu	Ser	Gly 750	qaA	Glu
55	Ala	Ala	Val	Leu	Ala	Ala	Ala	Gly	Glu	Leu	Ala	Ala	Arg	Gly	Arg	Arg

		755		760		765	
5	Thr Lys 770		Arg Val	Ser His	Ala Phe His	Ser Pro Ai 780	rg Met Asp
	Ala Met 785	Leu Ala	Asp Phe 790		Val Ala Asp 795		sp Tyr His 800
10	Ala Pro	Arg Leu	Pro Val 805	Val Ser	Glu Val Thr 810	Gly Asp Le	eu Ala Asp 815
	Ala Ala	Gln Leu 820	_	Pro Gly	Tyr Trp Thr 825	Arg Gln Va	-
15	Pro Val	Arg Phe 835	Ala Asp	Ala Val 840	Arg Thr Ala	Ser Ala Ar 845	g Asp Ala
	Ala Thr 850	Phe Ile	Glu Leu	Gly Pro 855	Asp Ala Val	Leu Cys Gl 860	ly Met Ala
20	Glu Glu 865	Ser Leu	Ala Ala 870	Glu Ala	Asp Val Val 875		o Ala Leu 880
25	Arg Arg	Gly Arg	Pro Glu 885	Gly Asp	Thr Val Leu 890	Arg Ala Al	la Ala Ser 895
	Ala Tyr	Val Arg 900	Gly Ala	Gly Leu	Asp Trp Ala 905	Ala Leu Ty 91	
30 .	Thr Gly	Ala Arg 915	Arg Thr	Asp Leu 920	Pro Thr Tyr	Ala Phe Gl 925	n His Ser
	Arg Tyr 930	Trp Leu	Ala Pro	Ala Ser 935	Ala Ala Val	Ala Pro Al 940	a Thr Ala
35	Ala Pro 945	Ser Val	Arg Ser 950	Val Pro	Glu Ala Glu 955	Gln Asp Gl	y Ala Leu 960
			965		Val Ala Ser 970		975
40	Gly Ala	Asp Asp 980	Ala Gly	Ile Glu	His Glu Leu 985	Arg Ala Va	
	His Leu	Ala Ala 995	Trp His	Asp Arg 100	Asp Arg Ala)	Thr Ala Ar 1005	g Thr Ala
45	Gly Leu 1010		Arg Val	Thr Trp 1015	Gln Ala Ile	Glu Ala As 1020	p Ala Val
	Arg Phe 1025	Ser Pro	Ser Asp 103		Leu Met Val		y Gln His 1040
50	Thr Glu	Cys Ala	Asp Ala 1045	Ala Glu	Arg Ala Leu 1050	Arg Ala Al	a Gly Ala 1055
	Glu Val	Thr Arg		Trp Pro	Leu Glu Gln 1065	His Thr Gl	
55	Arg Thr	Glu Thr	Pro Asp	Arg Gly	Thr Leu Ala	Ala Arg Le	u Ala Glu

	1075	1080	1085
5	Leu Ala Arg Ser Pro	Glu Gly Leu Ala Gly	Val Leu Leu Leu Pro Asp
	1090	1095	1100
	Ser Gly Gly Ala Ala	Val Ala Gly His Pro	Gly Leu Asp Gln Gly Thr
	1105	1110	1115 1120
10	Ala Ala Val Leu Leu 112		Thr Asp Ala Ala Val Arg
	Ala Pro Leu Trp Val	Val Thr Arg Gly Ala 1145	Val Ala Val Gly Ser Gly 1150
15	Glu Val Pro Cys Ala	Val Gly Ala Arg Val	Trp Gly Leu Gly Arg Val
	1155	1160	1165
	Ala Ala Leu Glu Val	Pro Val Gln Trp Gly	Gly Leu Val Asp Val Ala
	1170	1175	1180
20	Val Gly Ala Gly Val	Arg Glu Trp Arg Arg	Val Val Gly Val Val Ala
	1185	1190	1195 1200
25	Gly Gly Gly Glu Asp 120		Gly Gly Gly Val Phe Gly
-	Arg Arg Leu Val Gly	Val Gly Val Arg Gly	Gly Ser Gly Val Trp Arg
	1220	1225	1230
30	Ala Arg Gly Cys Val	Val Val Thr Gly Gly	Leu Gly Gly Val Gly Gly
	1235	1240	1245
	His Val Ala Arg Trp	Leu Ala Arg Ser Gly	Ala Glu His Val Val Leu
	1250	1255	1260
35	Ala Gly Arg Arg Gly	Gly Gly Val Val Gly	Ala Val Glu Leu Glu Arg
	1265	1270	1275 1280
	Glu Leu Val Gly Leu	Gly Ala Lys Val Thr	Phe Val Ser Cys Asp Val
	128	5 1290	1295
40	Gly Asp Arg Ala Ser	Val Val Gly Leu Leu	Gly Val Val Glu Gly Leu
	1300	1305	1310
	1315	1320	Ala Gly Val Ala Gln Val
45	1330	1335	Ala Gly Gly Val Leu Gly 1340
	1345	1350	Glu Leu Thr Ala Gly Val 1355 1360
50	136	5 1370	
55	1380	1385	Asn Ala His Leu Asp Ala 1390
	Leu Ala Glu Arg Arg	Arg Ala Gln Gly Arg	Pro Ala Thr Ser Val Ala

	1395						140	1400					1405			
5	Trp	Gly 141		Trp	Asp	Gly	Asp 141		Met	Gly	Glu	Met 142		Pro	Glu	Gly
	Tyr 142		Ala	Arg	His	Gly 143		Ala	Pro	Leu	His 143		Glu	Thr	Ala	Leu 1440
10	Thr	Ala	Leu	His	Gln 144		Ile	Asp	Gly	Gly 145		Ala	Thr	Val	Thr 145	
	Ala	Asp	Ile	Asp 146		Glu	Arg	Phe	Ala 146		Gly	Phe	Thr	Ala 147		Arg
15	Pro	Ser	Pro 147		Ile	Ala	Gly	Ile 148		Ala	Ala	Arg	Thr 148		Pro	Ala
	Ala	Gly 149		Pro	Ala	Glu	Asp 149		Pro	Thr	Ala	Pro 150		Leu	Leu	Arg
20	Ala 1509		Pro	Glu	Asp	Arg 151	Pro 0	Arg	Leu	Ala	Leu 151		Leu	Val	Leu	Arg 1520
25	His	Val	Ala	Ala	Val 152		Gly	His	Ser	Glu 153		Ala	Arg	Val	Asp 1539	
	Arg	Ala	Pro	Phe 1540		Asp	Leu	Gly	Phe 1549		Ser	Leu	Ala	Ala 1550		Arg
30	Leu	Arg	Arg 1559		Leu	Ala	Glu	Asp 1560		Gly	Leu	Asp	Leu 156		Gly	Thr
	Leu	Val 1570	Phe	yab	His	Glu	Asp 1579		Thr	Ala	Leu	Ala 1580		His	Leu	Ala
35	Gly 1585	Leu	Ala	Азр	Ala	Gly 1590	Thr)	Pro	Gly	Pro	Gln 1595		Gly	Thr	Ala	Arg 1600
	Ala	Glu	Ser	Gly	Leu 1605		Ala	Ser	Phe	Arg 1610		Ala	Val	Glu	Gln 1615	
40	Arg	Ser	Ser	Glu 1620	Val	Val	Glu	Leu	Met 1625		Asp	Leu	Ala	Ala 1630		Arg
	Pro	Ala	Tyr 1635	Ser	Arg	Gln	His	Pro 1640	Gly	Ser	Gly	Arg	Pro 1645	Ala	Pro	Val
45	Pro	Leu 1650	Ala	Thr	Gly	Pro	Ala 1655		Arg	Pro	Thr	Leu 1660		Cys	Cys	Ala
50	Gly 1665	•				1670)				1675					1680
50	Gly				1685					1690	ł				1695	
55	Gly			1700)				1705					1710		
	Val	Gln	Ala	yab	Val	Leu	Leu	Glu	His	Thr	Ala	Gly	Lys	Pro	Phe	Ala'

1720

1725

1715

			_															
5		•	Leu	Ala 173		His	Ser	Ala	Gly 173		Asn	Ile	Ala	His 174		Leu	Ala	Ala
			Arg 1749		Glu	Glu	Arg	Gly 175		Gly	Pro	Ala	Ala 175		Val	Leu	Met	Asp 1760
10			Val	Tyr	Arg	Pro	Glu 176	_	Pro	Gly	Ala	Met 1770	_	Glu	Trp	Arg	Asp 1775	•
			Leu	Leu	Ser	Trp 178	Ala D	Leu	Glu	Arg	Ser 1785		Val	Pro	Leu	Glu 1790	•	His
15			Arg	Leu	Thr 1799		Met	Ala	Gly	Tyr 1800		Arg	Leu	Val	Leu 1809	_	Thr	Arg
			Leu	Thr 181		Leu	Glu	Ala	Pro 181		Leu	Leu	Ala	Arg 1820		Ser	Glu	Pro
20			Leu 1825		Ala	Trp	Pro	Pro 1830		Gly	Gly	λla	Arg 1835		Asp	Trp	Arg	Ser 1840
25		(Gln	Val	Pro	Phe	Ala 1845	Arg	Thr	Val	Ala	Asp 1850		Pro	Gly	Asn	His 1855	
		•	Thr	Met	Leu	Thr 1860	Glu)	His	Ala	Arg	His 1865		Ala	Ser	Leu	Val 1870		Glu
30		•	Prp	Leu	Asp 1875		Leu	Pro	His	Gln 1880		Gly	Pro	Ala	Pro 1885		Thr	Gly
		(Gly	Lys 1890														
35	Cla	ims																
	1.	An isola					_			ide se	quenc	e that	t enco	des a	polype	eptide	where	ein said polypep
40	2.	กเ	ıcleot	ides 3	892 to	1603,	1922	to 299	95, 31	73 to :	3424,	3527	to 479	98, 51	35 to 6	3208,	7043 1	up consisting of to 7597, 7946 to 15422, 15789 to
45		16844, 24484 t	1691 o 246 3142	4 to 1 378, 2 8 to 3	7510, 4742 t 2696,	18612 o 260 33024	2 to 19 16, 26 4 to 3	9166, 6371 to 4022,	19479 2738 34770	to 19 31, 27 0 to 35	9730, 442 to 5327,	20215 2796 35586	to 21 6, 288 to 35	1486, 1 343 to 5837,	21889 29892	to 22 2, 299	872, 2 05 to 3	23638 to 24159 30462, 30760 to 37898 to 38905
50		A polype	•	e cons	sisting	of an	amino	acid :	seque	nce w	herein	said	polype	eptide	consis	sts of a	a plate	enolide synthas

2641 to 3064, 3184 to 3520, 3546 to 3727, 4083 to 4268, and 4374 to 4457 all in SEQ ID NO: 2;

(a) amino acids 15 to 418, 525 to 882, 942 to 1025, 1060 to 1483, 1596 to 1953, 2232 to 2416, 2533 to 2616,

(b) amino acids 35 to 459, 582 to 933, 957 to 1155, 1523 to 1707, and 1812 to 1895 all in SEQ ID NO: 3; (c) amino acids 36 to 459, 594 to 921, 1177 to 1350, 1459 to 1523, 1545 to 1969, 2088 to 2424, 2445 to 2619,

4. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:

2912 to 3261, 3266 to 3451, and 3551 to 3631 all in SEQ ID NO: 4;

55

- (d) amino acids 34 to 456, 566 to 898, 1148 to 1333, and 1420 to 1503 all in SEQ ID NO: 5; and (e) amino acids 35 to 458, 582 to 917, 1233 to 1418, 1502 to 1585, 1715 to 1747 all in SEQ ID NO: 6.
- 5. The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 392 to 3424, 3527 to 8197, 8270 to 13720, 14148 to 19730, 20215 to 24678, 24742 to 31002, 31428 to 35837, and 36257 to 41395 all in SEQ ID NO: 1.
 - 6. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
 - (a) amino acids 15 to 1025, 1060 to 2616, and 2641 to 4457 all in SEQ ID NO: 2;
 - (b) amino acids 35 to 1895 in SEQ ID NO: 3:
 - (c) amino acids 36 to 1523, and 1545 to 3631 all in SEQ ID NO: 4;
 - (d) amino acids 34 to 1503 in SEQ ID NO: 5; and
 - (e) amino acids 35 to 1747 in SEQ ID NO: 6.

15

10

- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 350 to 14002, 14046 to 20036, 20110 to 31284, 31329 to 36071, and 36155 to 41830 all in SEQ ID NO: 1.
- 8. A homogenous preparation of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, and 6.
 - 9. An isolated DNA molecule consisting of nucleotide sequence of SEQ ID NO: 1
- 25 10. A recombinant DNA vector comprising the DNA molecule of claim 1.
 - 11. A recombinant DNA vector comprising the DNA molecule of claim 2.
 - 12. A recombinant DNA vector comprising the DNA molecule of claim 5.

30

- 13. A recombinant DNA vector comprising the DNA molecule of claim 7.
- 14. A recombinant DNA vector comprising the DNA molecule of claim 9.
- 35 15. A host cell transformed with a recombinant DNA vector of Claim 10.
 - 16. A host cell transformed with a recombinant DNA vector of Claim 11.
 - 17. A host cell transformed with a recombinant DNA vector of Claim 12.

40

- 18. A host cell transformed with a recombinant DNA vector of Claim 13.
- 19. A host cell transformed with a recombinant DNA vector of Claim 14.
- 20. The recombinant DNA vector deposited under accession number NRRL B-21500.
 - 21. The recombinant DNA vector deposited under accession number NRRL B-21499.

50

55

ORF 5 Module 7

srmG ~44kb

KS-7 AT KR ACP TE KS-6 AT DH KR ACP Module 6 ORF 4 KS-4 AT KR ACP KS-5 AT DH ER KR ACP Module 5 ORF 3 Module 4 KS-3 AT DH KR ACP Module 3 ORF 2 KS AT ACP | KS-1 AT KR ACP | KS-2 AT DH KR ACP Module 2 ORF1 Module 1

Starter Module

Fig. 2

