

Recherche Opérationnelle Modélisation

3GC

2020-2021

■ Temps de résolution d'un problème selon sa complexité (10ns par étape)

Not.	Complexite	n=20	n=50	n=250	n=1000	n=10 ⁴	n=10 ⁶
<i>O</i> (<i>n</i>)	lineaire	200ns	500ns	$2.5 \mu s$	$10 \mu s$	$100 \mu s$	10 <i>ms</i>
$O(n^2)$	quadratique(P)	4 <i>μs</i>	25 μs	625 μs	10ms	1s	2.8h
$O(n^3)$	cubique(P)	80ms	1.25ms	156ms	10s	2.7h	316ans
$O(e^n)$	exponentielle	10ms	130jours	10 ⁵⁹ ans	?	?	?
O(n!)	factorielle	770ans	10 ⁴⁸ ans	?	?	?	?

Exercice 1 (Exemple de production)

Une compagnie fabriquant des Climatiseurs et des Ventilateurs voudrait connaitre le nombre optimal de produits finis à fabriquer par semaine pour maximiser son profit hebdomadaire. Elle vous demande de l'aider en vous informant que les heures-machine et heures de Main d'œuvre sont limitées comme indiqué dans le tableau suivant :

	Heures-Machine min/unité	Heures-Main d'œuvre min/unité	Profit unitaire
Climatiseur	183	174	200 Dt
Ventilateur	112	214	270 Dt
Total			

Exercice 1 (Exemple de production)

On donne:

- Une semaine: 5 jours ouvrables
- Il y a deux équipes
- 8h de travail par équipe par jour
- Chaque équipe compte 10 opérateurs
- 15 machines exploitables par les deux équipes
- Toutes les machines sont identiques

Exercice 2 (Exemple de production)

- Une usine de fabrication d'adjuvants pour béton et mortiers a la capacité de produire 3 sortes de ceux-ci. La fabrication de chaque adjuvant donne un profit mais produit aussi des déchets toxiques dont la quantité dépend de la quantité d'adjuvant fabriquée.
- La capacité maximale de production, des 3 adjuvants, est de 2000Kg par semaine.
- Dans le tableau suivant, on donne la quantité en Kg de chaque produit toxique obtenu par la fabrication de 100Kg de chacun des 3 adjuvants. On donne également le profit en Dinars par Kg d'adjuvant.

Exercice 2 (Exemple de production)

			Adjuvants	
		A1	A2	A3
	T1	30	40	20
Déchet Toxique	T2	20	20	10
Profit		15	20	10

Les lois en vigueur limitent la production maximale des déchets toxiques T1 et T2 respectivement à 21 et 14Kg par semaine.

- Un hôpital sert chaque jour quatre types de plats à ses patients.
- Le tableau suivant nous donne la quantité de vitamines V1, V2, V3 et
 V4 dans chaque plat ainsi que le coût correspondant à chacun :

par unité	V1	V2	V3	
Plat1	400	3	2	0.7
Plat2	200	2	2	0.9
Plat3	150	0	4	0.6
Plat4	500	0	4	0.8
	500	6	10	

 Chaque patient doit manger, chaque jour, au moins : 500 unités de V1, 6 unités de V2, 10 unités de V3 et 8 unités de V4. Déterminer le régime optimal à servir par l'hôpital.

Un agriculteur veut déterminer les quantités de 3 types de grains à donner à son bétail au coût minimum.

Type de grains Nutri-ments	Mais	Blé	Orge	Minimum Requis
Protéines mg/Kg	10	9	11	200 mg
Fer mg/Kg	9	8	7	120 mg
Calories _{/kg}	1000	800	850	4000 cal
Coût / Kg	0,55Dt	0,47Dt	0,45Dt	

- On annonce à la gérante d'une charcuterie qu'elle dispose de 112 Kg de mayonnaise dont 70 Kg seront bientôt périmés. Pour écouler cette mayonnaise, elle a décidé de l'utiliser pour préparer une mousse au jambon et une autre aux épices. Les mousses sont préparées par lots. Un lot de mousse au jambon nécessite 1.4Kg de mayonnaise contre 1Kg pour la mousse aux épices. La gérante reçoit une commande de 10 lots de mousse au jambon et 8 aux épices. Elle désire garder (au moins) 10 lots par type pour la vente locale.
- Chaque lot coûte 3Dt à préparer et se vend à 5Dt le lot au jambon et 7Dt aux épices.

• Formuler le problème pour maximiser le profit de la gérante.

Un agriculteur voudrait cultiver 2 sortes de légumes : des carottes et des courgettes.

Il pourrait pour cela planter toute sa terre si le besoin nécessite (10 000m²).

Il utilise 2 sortes d'engrais (A et B) et 1 sorte d'antiparasite,

Les rendements des carottes et des courgettes sont de 4Kg/m² et 5Kg/m² respectivement.

Ses stocks sont de 80 litres d'engrais A, 70 litres d'engrais B et 30 litres d'antiparasites.

Les besoins en ces matières sont de 2 litres/m² d'engrais A et 1 litre/m² d'engrais B pour les carottes contre 1.2 litre/m² d'engrais A et 2.3 litres/m² d'engrais B pour les courgettes.

L'antiparasite n'est utilisé que pour les courgettes à raison de 1.5litre/m²

L'agriculteur voudrait produire le maximum de poids de légumes. Il vous demande de l'aider ©

des conregettes = au noins le double que celle Carotto => 5 x2 > 4.2

Exercice 6 (Exemple de découpe)

 Une compagnie de papier produit du papier en rouleau standard de 100cm de large et 10m de longueur.

Quoique la plupart des commandes soient pour ce rouleau standard, la compagnie reçoit néanmoins des commandes pour des rouleaux de moindre largeur. Ainsi, elle reçoit la commande suivante:

Stock. 1000 rouleanx

Largeur	Quantité
75 m	389
35 M	521
25 Cm	356

La compagnie doit décider comment couper les rouleaux standards pour répondre à cette commande en utilisant le moins de rouleaux total.

Exercice 7 (Exemple de découpe)

<u>Problème de couverture</u>: Le département de sécurité d'un campus veut installer des téléphones d'urgence. Chaque rue doit être servie au moins par un téléphone, le but étant de minimiser le nombre de téléphones à installer (installation aux carrefours)

Exercice 8 (Exemple de mélange)

Un industriel veut fabriquer deux types de Mélanges A₁
 et A₂ à partir de trois alliages C₁, C₂ et C₃

	Spécifications 🛩	Prix de vente (Dt/tonne)
, A ₁	Pas moins de 30% de Zinc Pas plus de 40% de Fer	680
, A ₂	Pas moins de 15% de Cuivre Pas Plus de 60% de Fer	570

Les caractéristiques des trois alliages C₁, C₂ et C₃

	% Fe	%Zn	%Cu	Disponibilité (tonne)	Prix d'Achat (Dt/tonne)
C_1	10	50	40	200	300
C_2	30	40	30	250	200
C_3	80	10	10	120	100

1.2.3 Un problème de mélange

Exemple 1.8 Un industriel veut fabriquer deux sortes d'alliages A1 et A2 dont les caractériques sont les suivantes :

type	$sp\'{e}cifications$	$prix\ de\ vente$ $(euros/tonnes)$
A1	pas moins de 30% de zinc pas plus de 40% de fer	680
A2	pas moins de 15% de cuivre pas plus de 60% de fer	570

Il trouve disponibles sur le marché trois sorte d'alliages C1, C2 et C3 dont les composition es disponibilités et les prix d'achat sont les suivants :

alliage	fer (en %)	zinc (en %)	cuivre (en %)	disponibilité (en tonnes)	$prix\ d$ 'achat $(euros/tonnes)$
C1	10	50	40	200	300
C2	30	40	30	250	200
C3	80	10	10	120	100

Quels alliages faut-il acheter et dans quelles proportions les mélanger pour maximiser le pro

- Etant donné N produits assemblés avec M types de Matière première.
- P_i: profit d'un produit de type « i ».
- X_i: le nombre des produits « i » à fabriquer (1=< i =< N)
- Les « M » types des matières premières sont limitées en stocks.
- A_{k:} nombre maximal de pièces (MP) de type K (1=< k =< M)
- a_{ik}: nombre des pièces (MP) requises pour fabriquer une unité de produit de type « i ».

- Etant donné 3 produits (Chaise, porte et fenêtre) assemblés avec 4 types de Matière première (vis, bois, acier et vitre).
- P_i: profit d'un produit « i »:
 - P₁: 95 Dnt
 - $-P_2$: 160 Dnt
 - P₃: 150 Dnt
- X_i: le nombre des produits de type « i » à fabriquer

$$(1=< i =< N; N=3):$$

 Les « M » types des matières premières sont limitées en stocks (M=4).

- A_{k:} nombre maximal de pièces (MP) de type K (1=< k =< M):
 - $A_1: 375 \text{ vis}$
 - $-A_2$: 233 unités
 - A₃: 341 unités
 - A₄: 187 unités
- Une chaise demande 8 vis, 3 unités de bois et 2 unités d'acier.
- Une porte demande 16 vis, 7 unités de bois, 1 unité d'acier et 2 unités de vitre.
- Une fenêtre demande 12 vis, 4 unités de bois et 6 unités de vitre.

- Un fast-food vend des Hamburgers et des Cheeseburgers. Un Hamburger utilise 125g de viande alors qu'un Cheeseburger n'en utilise que 100g.
- Le fast-food démarre chaque journée avec 10kg de viande mais peut commander de la viande supplémentaire avec un coût additionnel de 2 dinars par 1kg pour la livraison.
- Le profit est de 1900millimes pour un Hamburger et 1700millimes pour un Cheeseburger.
- La demande ne dépasse pas 900 Sandwichs par jour.
- Comment on peut avoir un gain maximal par jour ?
 Quelle est la valeur de ce gain ?

- Fonction Objectif:
 - Max 1,900 A + 1,700 B 0.002 C⁻

- Fonctions Contraintes:
 - -A + B = < 900
 - -125 A + 100 B + C = 10000
 - -A >= 0, B >= 0, C non restreinte

- Un fast-food vend des Hamburgers et des Cheeseburgers. Un Hamburger utilise 125g de viande alors qu'un Cheeseburger n'en utilise que 100g.
- Le profit est de 1900millimes pour un Hamburger et 1700millimes pour un Cheeseburger.
- La demande ne dépasse pas 900 Sandwichs par jour.
- Avec un stock de viande égale 30kg

- Choisir de nouveaux emplacements pour construire des usines et des entrepôts. Deux emplacements possibles: Tunis et Sfax.
- On ne peut construire un entrepôt que dans une ville là où il y'en a une usine.
- On ne peut pas construire plus qu'un entrepôt dans les deux villes.
- Un emplacement ne peut recevoir qu'une seule usine.
- On associe à chaque construction (d'une usine ou d'un entrepôt dans chacun des lieux envisagés):
 - Sa valeur estimée
 - Son coût de construction

- Objectif: maximiser la valeur totale estimée, en ne dépassant pas une limite maximum sur les coûts.
- Données du problème :

	Valeur (mille dnt)	Coûts de construction (mille dnt)
Usine à Tunis	90	600
Usine à Sfax	50	300
Entrepôt à Tunis	60	500
Entrepôt a Sfax	40	200
Limite maximum	-	2500

- Max (9Ut+5Us+6Et+4Es)
- Sc
- 6Ut+3Us+5Et+2Es =< 15
- Et =< Ut
- Es =< Us
- Et + Es = < 1
- Us =< 1
- Ut =< 1

Les variables sont binaires

Une entreprise de relations publiques veut faire un sondage d'opinions.

Chaque employé fait par jour 80 interviews par téléphone ou bien 40 interviews en direct.

Un employé ne peut faire qu'un seul type d'interviews pendant une journée.

Afin d'avoir un échantillon représentatif, on doit satisfaire les 3 critères suivants

- ✓ Au moins 3000 interviews
- ✓ Au moins 1000 interviews par téléphone
- ✓ Au moins 800 interviews en direct.

L'employé qui conduit l'interview par téléphone est payé 50Dt/jour L'employé qui conduit l'interview en direct est payé 70Dt/jour.