Année universitaire 2021/2022 Master II : Math.Appli & Stat Module : Stat Non Parametrique

Fiche TD N = 0 2: Estimation NP de la fonction de répartition

Exercice 01:Loi discrètes et lois continues

- 1. Dire si la fonction de répartition est (à priori) discrète ou continue
- on tire un ou plusieurs dès
- la taille des enfants d'une classe de maternelle
- -le nombre de fautes par tranche de 1000 mots
- le temps mis par des athlètes pour courire un 100 mètre
- les salaires dans une entreprise
- 2. Est-ce que la fonction de répartition des lois suivantes est discrète ou continue ? Donner la formule de la densitè/de la loi de probabilité suivant les cas.
- loi de Cauchy
- loi exponentielle de paramètre λ .
- loi binomiale
- loi multinomiale
- loi normale
- loi de Poisson

Exercice 02:

- 1. Donner un exemple de lois discrète, et absolument continu. Tracer les fonctions de répartitions de ces 2 lois.
- 2. Soit X une variable aléatoire dont la fonction de densité est donnée par : $f(x) = \begin{cases} x & six \in [0;1] \\ 2-x & six \in [1;2] \\ 0 & ailleurs \end{cases}$
 - 1. Déterminer la fonction de répartition F de X .
 - 2. Calculer son espérance et sa variance.
 - 3. Calculer P(|X-1| < 1/2).
- 3. Soit X une variable aléatoire continue de densité de proba. f(x) telque $f(x) = 4x(1-x^2)$ $0 \le x \le 1$ Trouver la moyenne, la médiane et le mode?
- 4. Soit $F: \mathbb{R} \longrightarrow \mathbb{R}$ définie par: $[F(x) = \begin{cases} 0, & \text{si } x \leq 0. \\ 1 \exp(-x/2) \left(1 + \frac{x}{2}\right), & \text{if } x > 0; \end{cases}$

Montrer que F est la fonction de répartition d'une loi de probabilité dont on déterminera la densité si elle existe.

- 5. Suppose the p.d.f. of a continuous random variable X is defined as: $[f(x) = \begin{cases} x+1, & \text{si } -1 < x < 0. \\ 1-x, & \text{if } 0 \le x < 1; \end{cases}$ Find and graph the c.d.f. F(x)?
- 6. Calculate and draw the empirical distribution function of the following sample: (-15.4, -8.8, 8.2, 3.4, -7.1, 4.5, -12.7, 5.2, -10.6, -11.2)
- 7. On lance une pièce de monnaie deux fois. Soit X le nombre de face observées. Trouvez le CDF de X?
- 8. Soit X une variable aléatoire réelle de denstié f_X . La variable aléatoire Y=X+1 admet pour densité :
 - (a) $f_X(y+1)$ (b) $1 + f_X(y)$ (c) $1 f_X(y)$ (d) $f_X(y-1)$ (e) une autre

Exercice 03: Soit $X_1, X_2, ..., X_n$ une suite de n v.a. i.i.d.. La fonction de répartition de X_i est F(x) inconnue. Soit $\widehat{F}_n(x)$ la fonction de répartition empirique estimateur de F(x).

- 1. Déterminer la loi de $\widehat{F}_n(x)$ pour un élément x fixé dans \mathbb{R} .
- 2. Calculer $\mathbb{E}[(\widehat{F}_n(x) F(x))^2]$ pour un élément x fixé dans \mathbb{R} ..
- 3. En déduire que $\widehat{F}_n(x)$ converge en moyenne quadratique vers F(x) lorsque n tend vers l'infini. Donner la vitesse de convergence.
- 4. Démontrer que pour tout $x \in \mathbb{R}$, $\widehat{F}_n(x) \longrightarrow_{n \to \infty}^p F(x)$.
- 5. Montrer que pour tout $x\mathbb{R}, \widehat{F}_n(x)$ vérifie un théorème de limite centrale que l'on établira.
- 6. Diterminer l'intervalle de confiance sur F(x) avec TCL.
- 7. Diterminer l'intervalle de confiance sur F(x) on utilisant l'inégalité de Dvoretzky-Kiefer-Wolfowitz (DKW). donner par la relation $\forall n \in \mathbb{N}, \forall \epsilon > 0, \mathbb{P}(\sup_{x \in \mathbb{R}} |\widehat{F}_n(x) F(x)| > \epsilon) \leq 2e^{-2n\epsilon^2}$. ensuite comparer les deux intervalle de confiance.

Exercice 04:

On dit que Q_p est un quantile d'ordre p de la v.a. X si :

$$P(X \le Q_p) \ge p$$
 et $P(X \ge Q_p) \ge 1 - p$.

On considère une suite de v.a. iid (X_i) de fonction de répartition continue F et strictement croissante. On associe à F son inverse généralisée F^{-1} définie par :

$$\forall p \in]0,1[; F^{-1}(p) = \inf\{x \in R; F(x) \ge p\}$$

Soit f_{θ} la densité définie sur \mathbb{R} par $f_{\theta}(t) = \frac{\theta}{1 + t\theta}$ où θ désigne un réel supérieur à 2.

- 1. Calculer la fonction de répartition associée et notée F_{θ} .
- 2. Calculer la fonction de répartition associée et notée F_{θ}^{-1} .
- 3. En déduire le quantile théorique d'ordre 1/4.
- 4. Montrer que $Q_{p,n}$ converge p.s. vers Q_p (utiliser le théorème de G.C.). Remarque : On peut montrer que si la loi de X admet une densité strictement positive au voisinage de x_p , alors $\sqrt{n}(Q_{p,n}-x_p)$ converge en loi vers la loi normale $N(0,\sigma_p^2)$ avec $\sigma_p^2 = p(1-p)/f(x_p)^2$..

Exercice 04: Loi uniforme

L'instruction rand(1,10) permet de générer n=10 nombres pseudo-aléatoires de loi \mathcal{U} , la loi uniforme sur [0,1]. Voici le résultat donné lors de l'appel de cette fonction :

- 1. Quelle est la fonction de répartition F de la loi \mathcal{U} ? Déterminer la fonction de répartition empirique $F_n(t)$ associée aux observations et tracer F et F_n sur un même graphique.
- 2. Construire le test de Kolmogorov-Smirnov de niveau 5% de l'hypothèse H_0 : "les nombres sont indépendants et de loi U " contre H_1 : "ils ne le sont pas".

Ex2

$$\mathbf{5.}F(x) = \begin{cases} 0, & \text{for } x \le -1\\ \frac{1}{2}(x+1)^2, & \text{for } -1 < x \le 0\\ 1 - \frac{(1-x)^2}{2}, & \text{for } 0 < x < 1\\ 1, & \text{for } x \ge 1 \end{cases} \qquad \mathbf{7.}F_X(x) = \begin{cases} 0 & \text{for } x < 0\\ \frac{1}{4} & \text{for } 0 \le x < 1\\ \frac{3}{4} & \text{for } 1 \le x < 2\\ 1 & \text{for } x \ge 2 \end{cases}$$