HW 13 Due: May 4^{th} 2025

1. We know that the language $L = \{0^n 1^m : n, m \in \mathbb{N}, n = m\}$ is context-free, but not regular. Consider now the language $L' = \{0^n 1^m : n, m \in \mathbb{N}, n \text{ mod } 3 = m \text{ mod } 3\}$. Is it regular? Is it context-free?

Answer

This language is regular and can be expressed by the following regular expression:

$$(000)^*(111)^* + 0(000)^*1(111)^* + 00(000)^*11(111)^*$$

2. Prove or disprove that the language $L = \{a^n b^m a^n b^m : n, m \in \mathbb{N}\}$ is context-free.

Answer

We will prove by contradiction that this language is not context-free.

Proof. Assume the contrary that L is context-free. Let p be the given pumping length. Now, consider the string $s = a^p b^p a^p b^p \in L$. $|s| \ge p$, and based on pumping lemma, s may be divided into five pieces s = uvxyz satisfying the conditions:

- (a) for each $i \geq 0$, $uv^i x y^i z \in L$,
- (b) |vy| > 0, and
- (c) $|vxy| \le p$.

The restriction $|vxy| \le p$ guarantees that v and y can only span at most two consecutive runs out of the four runs. That is whether they span at:

(a) the first run of a's and the first run of b's, and **not** the **second** run of a's and the **second** run of b's:

$$\underbrace{a^p b^p}_{vxy} a^p b^p$$

In this case, consider the string uv^0xy^0z . Since vxy contains at least one a or b, then either $|uv^0xy^0|_a < p$ or $|uv^0xy^0|_b < p$. However, the second run of a's and the second run of b's has length p, which mean the run of a's and b's don't match with each other anymore. Therefore, we arrive at a contradiction that $uv^0xy^0z \notin L$ and conclude that L is not context-free.

(b) the first run of b's and the **second** run of a's, but not the **first** run of a's or the **second** run of b's:

$$a^p \underbrace{b^p a^p}_{vxy} b^p$$

In this case, consider the string uv^0xy^0z . Since vxy contains at least one a or b, then either $|uv^0xy^0|_a < p$ or $|uv^0xy^0|_b < p$. However, the first run of a's and the second run of b's has length p, which mean the run of a's and b's don't match with each other anymore. Therefore, we arrive at a contradiction that $uv^0xy^0z \notin L$ and conclude that L is not context-free.

(c) the second run of a's and the second run of b's, and **not** the **first** run of a's and the **first** run of b's:

$$a^p b^p \underbrace{a^p b^p}_{vxy}$$

In this case, consider the string uv^0xy^0z . Since vxy contains at least one a or b, then either $|uv^0xy^0|_a < p$ or $|uv^0xy^0|_b < p$. However, the first run of a's and the first run of b's has length p, which mean the run of a's and b's don't match with each other anymore. Therefore, we arrive at a contradiction that $uv^0xy^0z \notin L$ and conclude that L is not context-free.

3. Prove or disprove that the language $L = \{a^n b^m a^m b^n : n, m \in \mathbb{N}\}$ is context-free.

Answer

Let M be $(Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where

$$Q = \{q_0, q_1, q_2, q_f\},\$$

 $\Sigma = \{a, b\},\$
 $\Gamma = \{A, z\},\$
 $F = \{q_f\},\ \text{and}$

We can also consider the grammar $G = (\{S, T\}, \{a, b\}, R, S)$ where the set of rules, R, is

$$S \to aSb \mid T$$
$$T \to bTa \mid \epsilon.$$

- 4. Are the following languages Turing-decidable? Turing-acceptable but not Turing-decidable? Not even Turing-acceptable? For each answer, give an explanation of your reasoning (just as in class, M is a generic deterministic Turing machine, w a generic input string to it, and ρ is an encoding function).
 - $L_1 = {\rho(M) : |L(M)| > 10}$ **Answer.** We show that the language $L_1 = {\rho(M) | |L(M)| > 10}$ is **undecidable** by applying

Rice's Theorem.

Rice's Theorem states that any non-trivial semantic property of the language recognized by a Turing machine is undecidable. A property is semantic if it depends only on the language L(M), not the syntax of M, and it is *non-trivial* if it is true for some Turing machines and false for others.

The property "|L(M)| > 10" depends only on the language recognized by M, and not on the internal structure of M. It is also non-trivial because:

- There exists a Turing machine M_1 such that $L(M_1) = \Sigma^*$, so $|L(M_1)| > 10$,
- And there exists a Turing machine M_2 that accepts fewer than or equal to 10 strings.

Since this is a non-trivial property of L(M), Rice's Theorem implies that L_1 is undecidable. To show that L_1 is **Turing-acceptable**, simulate M on all strings in Σ^* using dovetailing. Keep a counter n, initialized to 0, and increment it each time M accepts a string. If n exceeds 10, accept $\rho(M)$.

- $L_2 = {\rho(M) : |L(M)| \le 10}$ Answer. Since $L_2 = \overline{L_1}$, and L_1 is only Turing-acceptable, then L_2 is not even Turing-acceptable.
- $L_3 = \{\rho(M)\rho(w) : M \searrow w \text{ in } 10 \text{ steps or less}\}$ Answer. We will show that L_3 is decidable by constructing the following Turing machine S:
 - $S = \text{On input } \rho(M)\rho(w), \text{ where } M \text{ is a Turing machine and } w \text{ is a string:}$

Simulate M on input w for at most 10 configurations.

If M halts then **accept**.

rejects

Since S only needs to simulate M for a finite number of steps (at most 10), this procedure always halts. Therefore, L_3 is decidable.

• $L_4 = \{\rho(M)\rho(w) : M \searrow w \text{ in more than 10 steps}\}$ Answer. We know that K_0 , the problem of determining whether a Turing machine accepts a given input w, is undecidable:

$$K_0 = \{ \rho(M)\rho(w) : M \searrow w \}.$$

We will prove by contradiction that if L_4 is decidable, then K_0 would also be decidable.

Proof by Contradiction. Assume there exists a Turing machine R that decides L_4 . We will construct a Turing machine S that decides K_0 as follows:

S = "On input $\rho(M)\rho(w)$, where M is a Turing machine and w is a string:

- (a) Run R on input $\rho(M)\rho(w)$.
 - If R accepts, then accepts.
 - If R rejects:
 - * Simulate M on input w.
 - * If M halts in at most ten steps, **accept**.
 - * Otherwise reject.

On input $\rho(M)\rho(w)$, machine S first queries R. If R accepts, we conclude that M accepts w in more than 10 steps and thus accept. If R rejects, it means M either does not accept w at all or does so in 10 steps or fewer. We then simulate M on w for at most 10 steps: if it accepts within that time, we accept; otherwise, we reject. This process allows S to decide whether M accepts w, which contradicts the known undecidability of K_0 . Therefore, our assumption must be false, and L_4 is not decidable.

Note that $L_4 \subseteq K_0$, and since K_0 is Turing-acceptable, L_4 is also Turing-acceptable. To construct a Turing machine R that accepts L_4 , we can use a Turing machine S that accepts K_0 and refine its acceptance condition as follows:

R = "On input $\rho(M)\rho(w)$, where M is a Turing machine and w is a string:

- (a) Run S on $\rho(M)\rho(w)$.
- (b) If S accepts, simulate M on w.
 - If M goes beyond ten configurations (step) while being simulated on w, accept.

Since S accepts exactly those pairs where M accepts w, and R further filters to ensure the acceptance happens in more than 10 steps, R semidecides L_4 . Hence, L_4 is Turing-acceptable.

5. Use reduction to prove that the language

$$L = {\rho(M_1)\rho(M_2) : L(M_1) \subseteq L(M_2)}$$

is not decidable (M_1 and M_2 are Turing machines, of course).

Answer. We have already established the undecidability of K_0 , the problem of determining whether a Turing machine accepts a given input w.

$$K_0 = \{ \rho(M)\rho(w) : M \searrow w \}.$$

By proving by contradiction, we will show that if L is decidable, then K_0 is also decidable.

Prove by Contradiction. Let R be a TM that decides L. We'll construct TM S to decide K_0 by working in the following manner:

S = "On input $\rho(M_2)\rho(w)$, where M_2 is a TM and w is a string:

- 1. Run R on input $\rho(M_1)\rho(M_2)$, where M_1 is a TM that rejects everything and only accepts w
 - 1. If R accepts, accept;
 - 2. If R rejects, reject."

If R accepts, then $\{w\} = L(M_1) \subseteq L(M_2)$, which implies $w \in L(M_2)$, so S accepts. If R rejects, then $\{w\} = L(M_1) \not\subset L(M_2)$ which implies $w \notin L(M_2)$ and S rejects. Thus, S decides K_0 using R, implying K_0 is decidable, contradicting the known undecidability of K_0 . Therefore, L is not decidable.