IEEE Fraud Detection

▼ Part 1 - Fraudulent vs Non-Fraudulent Transaction

```
1 # TODO: code and runtime results
2 from google.colab import files
3 files.upload()
4 !pip install -q kaggle
5 !mkdir -p ~/.kaggle
6 !cp kaggle.json ~/.kaggle/
7 !chmod 600 ~/.kaggle/kaggle.json
8 !kaggle competitions download -c ieee-fraud-detection
```


Choose Files No file chosen Upload widget is only available when the cell has been executed in Saving kaggle.json to kaggle (2).json

Warning: Looks like you're using an outdated API Version, please consider updating (serv train_transaction.csv.zip: Skipping, found more recently modified local copy (use --forc train_identity.csv.zip: Skipping, found more recently modified local copy (use --force t test_transaction.csv.zip: Skipping, found more recently modified local copy (use --force test_identity.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.csv.zip: Skipping, found more recently modified local copy (use --force to sample_submission.cs

Write your answer here

```
1 import pandas as pd
2 transactions = pd.read_csv('train_transaction.csv.zip')
3 transactions.shape
4 identities = pd.read_csv('train_identity.csv.zip')
5 identities.shape
6 identities.head()
```


	TransactionID	id_01	id_02	id_03	id_04	id_05	id_06	id_07	id_08	id_09	id_10
0	2987004	0.0	70787.0	NaN							
1	2987008	-5.0	98945.0	NaN	NaN	0.0	-5.0	NaN	NaN	NaN	NaN
2	2987010	-5.0	191631.0	0.0	0.0	0.0	0.0	NaN	NaN	0.0	0.0
3	2987011	-5.0	221832.0	NaN	NaN	0.0	-6.0	NaN	NaN	NaN	NaN
4	2987016	0.0	7460.0	0.0	0.0	1.0	0.0	NaN	NaN	0.0	0.0

```
1 fraudTransactions = transactions[transactions['isFraud'] == 1]
 2 nonFraudTransactions = transactions[transactions['isFraud'] == 0]
 1 fraudTransactions1 = fraudTransactions[['TransactionID','TransactionDT','TransactionAmt','
                                            'P emaildomain', 'R emaildomain', 'addr1', 'addr2', 'd
 3 identitiesWithDTDI = identities[['TransactionID','DeviceType', 'DeviceInfo']]
 4 fraudTransactions1WithIdentities = pd.merge(fraudTransactions1, identitiesWithDTDI, on='Tr
 6 nonFraudTransactions1 = nonFraudTransactions[['TransactionID','TransactionDT','Transaction
                                            'P emaildomain', 'R emaildomain', 'addr1', 'addr2', 'd
 8 nonFraudTransactions1WithIdentities = pd.merge(nonFraudTransactions1, identitiesWithDTDI,
 9 fraudTransactions1WithIdentities.describe()
10 fraudTransactions1WithIdentities.head()
11
12 fraudTransactions1.shape
13 nonFraudTransactions1.shape
14 nonFraudTransactions1WithIdentities.shape
15 fraudTransactions1WithIdentities['DeviceInfo'].value_counts()
```


Windows	3121
iOS Device	1240
MacOS	278
hi6210sft Build/MRA58K	180
SM-A300H Build/LRX22G	169
rv:57.0	103
Trident/7.0	96
rv:11.0	76
LG-D320 Build/KOT49I.V10a	61
SM-J700M Build/MMB29K	60
SM-J320M Build/LMY47V	57
CRO-L03 Build/HUAWEICRO-L03	51
KFFOWI Build/LVY48F	51
rv:58.0	49
SM-A510M Build/MMB29K	45
rv:59.0	44
Moto G (4) Build/NPJ25.93-14.7	40
SM-J500M Build/LMY48B	39
SM-G920P Build/NRD90M	39
SM-G610M Build/MMB29K	37
Moto G (5) Plus Build/NPNS25.137-15-11	35
VS5012 Build/NRD90M	34
SM-G950F Build/NRD90M	34
SM-G531H Build/LMY48B	33
SM-G955U Build/NRD90M	33
Hisense L675 Build/MRA58K	32
Moto E (4) Plus Build/NMA26.42-69	32
SM-G935F Build/NRD90M	31
Moto Z2 Play Build/NPSS26.118-19-14	30
SM-J701M Build/NRD90M	30
M4 SS4450 Build/MRA58K	1
SAMSUNG SM-G925P Build/MMB29K	1
Beat	1
SM-N950U Build/R16NW	1
SAMSUNG SM-J730GM Build/NRD90M	1
LG-SP320	1
LG-M327 Build/NRD90U	1
•	_
SM-T530	1
rv:45.0	1
MotoG3 Build/MPI24.65-33.1-2	1
rv:61.0	1
Moto G (5) Plus Build/NPNS25.137-92-8	1
SM-T285M	1
SAMSUNG SM-G935A Build/NRD90M	1
ALCATEL	1
HUAWEI RIO-L03 Build/HUAWEIRIO-L03	1
SAMSUNG SM-G930F Build/NRD90M	1
LG-H420 Build/LRX21Y	1
4047G Build/NRD90M	1
SM-G900F Build/KOT49H	1
P5526A Build/NRD90M	1
SAMSUNG SM-N900W8 Build/LRX21V	1
iPhone	1
E2104	1
H1711 Build/HUAWEIH1711	1
LG-H542 Build/MRA58K	1
	_

AERIAL 1
A5002 1
LG-H870 Build/NRD90U 1
VTR-L09 Build/HUAWEIVTR-L09 1
Name: DeviceInfo, Length: 420, dtype: int64

It looks like the most number of fraudulent transactions have been done through a Windows PC, with iOS comes a distant 2nd with around 1200 fraudulent transactions.

1 fraudTransactions1['TransactionAmt'].value_counts()

117.000 59.000 150.000 100.000 49.000 200.000 226.000 300.000 50.000 171.000 77.000 39.000 335.000 445.000 107.950 97.000 250.000 29.000 554.000 994.000 994.000 911.000 500.000 34.000 15.000 25.000 75.000 87.000 54.000	719 646 561 523 469 423 390 355 353 272 266 242 234 231 221 213 205 201 179 175 145 143 141 140 137 135 131 128 113 106
191.913 36.438 17.952 114.230 355.440 58.898 177.985 9.591 244.950 39.025 11.435 295.596 794.950 33.490 385.990 93.818 7.255 15.741 106.500 39.178 570.000 3076.970 109.127 28.579 17.082 73.838	

Here we get a very **interesting insight**. The** maximum number** of fraudulent transactions has beer **117**. It means that it's **easy** to do a fraudulent transaction for a **particular product**.

Same is the case for **some other items** with a particular price tag.

We perform this operation **only on the Transaction table** as when we join the table with the Identity ta **11k from 21k**, which I feel is a significant reduction in the sample size.

1 fraudTransactions1['ProductCD'].value_counts()


```
W 8969
C 8008
H 1574
R 1426
S 686
```

Name: ProductCD, dtype: int64

1 fraudTransactions1['card4'].value_counts()

8	visa	13373		
	mastercard	6496		
	discover	514		
	american express	239		
	Name: card4, dtype:	int64		

When we take it as a percentage

The most fraudulent transactions have been done through the visa card

On the second place is a distant mastercard with as many as half the transactions than that done through the other values are too few relative to **mastercard** and **visa**

1 nonFraudTransactions1['card4'].value_counts()

visa	371394		
mastercard	182721		
american express	8089		
discover	6137		
Name: card4, dtype:	int64		

When we look for the percentage,

- Visa and mastercard have similar percentage of fraudulent transactions out of overall transaction
- 8% of all Discover card transactions are fraudulent which is quite high for a reputed firm.
- American Express stands at around 5%

1 nonFraudTransactions1['card6'].value_counts()


```
debit 429264
credit 139036
debit or credit 30
charge card 15
Name: card6, dtype: int64
```

▼ Part 2 - Transaction Frequency

```
1 trnFreq = transactions[['TransactionID', 'TransactionDT', 'addr2', 'isFraud']]
 2 trnFreq.head()
 3 trnFreq['addr2'].value_counts()
 4 trnFreq['TransactionDT'].value_counts()
 5
 6 trnFreq87 = trnFreq[trnFreq['addr2'] == 87.0]
 7 import matplotlib.pyplot as plt
 8
 9 import numpy as np
10 def make_hour_feature(df, tname='TransactionDT'):
11
      hours = df[tname] / (3600)
12
      encoded hours = np.floor(hours) % 24
13
      return encoded hours
14
15
16 trnFreq87['hours'] = make hour feature(trnFreq87)
17 plt.plot(trnFreq87.groupby('hours').mean()['isFraud'], color='k')
18 ax = plt.gca()
19 ax2 = ax.twinx()
20 _ = ax2.hist(trnFreq87['hours'], alpha=0.3, bins=24)
21 ax.set xlabel('Hours')
22 ax.set ylabel('Fraction of fraudulent transactions')
23
24 ax2.set ylabel('Number of transactions')
25
```


/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:16: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexi app.launch_new_instance()

Text(0, 0.5, 'Number of transactions')

Double-click (or enter) to edit

TransactionID

DeviceType (mobile/desktop/...)

DeviceInfo (Windows/MacOS/...)

TransactionDT (time delta from reference)

TransactionAmt (amount in USD)

ProductCD (product code - W/C/H/R/...)

card4 (card issuer)

card6 (debit/credit)

P_emaildomain (purchaser email)

R_emaildomain (recipient email)

addr1 / addr2 (billing region / billing country)

dist1 / dist2 (some form of distance - address, zip code, IP, phone, ...)

```
1 # TODO: code to generate the frequency graph
```

Write your answer here

▼ Part 3 - Product Code

The product code R corresponds to the most expensive products with the mean of all the amounts co.

The product code C corresponds to the least expensive products with the mean of 42.87

▼ Part 4 - Correlation Coefficient

```
1 # TODO: code to calculate correlation coefficient
 2 todAmt = transactions[['TransactionID', 'TransactionDT', 'addr2', 'TransactionAmt','Produc
 3 todAmt.head()
 4 todAmt['addr2'].value counts()
 5 todAmt['TransactionDT'].value_counts()
 7
 8 todAmt87 = todAmt[todAmt['addr2'] == 87.0]
 9 import matplotlib.pyplot as plt
10
11 import numpy as np
12 def make hour feature(df, tname='TransactionDT'):
13
      hours = df[tname] / (3600)
14
      encoded hours = np.floor(hours) % 24
15
      return encoded_hours
16
17 todAmt87['hours'] = make hour feature(todAmt87)
18 plt.plot(todAmt87.groupby('hours')['TransactionAmt'].sum(), color='k')
19 ax = plt.gca()
20 ax2 = ax.twinx()
21 _ = ax2.hist(todAmt87['hours'], alpha=0.3, bins=24)
```

```
22 ax.set_xlabel('Encoded hour')
23 ax.set_ylabel('Product Amount')
24 ax2.set_ylabel('Number of transactions')
25
26 from scipy.stats import pearsonr
27 hour = []
28 for i in range(24):
29    hour.append(i)
30 todAmt87SumGB = todAmt87.groupby('hours')['TransactionAmt'].sum()
31 todAmt87SumGB.describe()
32 list(todAmt87SumGB)
33 corr,_ = pearsonr(hour,todAmt87SumGB)
34 print('Pearsons correlation considering sum of Transaction Amount: %.3f' % corr)
35
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexi
Pearsons correlation considering sum of Transaction Amount: 0.651


```
1 plt.plot(todAmt87.groupby('hours')['TransactionAmt'].mean(), color='k')
2 axM = plt.gca()
3 axM2 = axM.twinx()
4 _ = axM2.hist(todAmt87['hours'], alpha=0.3, bins=24)
5 axM.set_xlabel('Encoded hour')
6 axM.set_ylabel('Product Amount')
7 axM2.set_ylabel('Number of transactions')
8
9 todAmt87MeanGB = todAmt87.groupby('hours')['TransactionAmt'].mean()
10 todAmt87MeanGB.describe()
11 list(todAmt87MeanGB)
12 corr,_ = pearsonr(hour,todAmt87MeanGB)
13 print('Pearsons correlation considering mean of Transaction Amount: %.3f' % corr)
```


Write your answer here

▼ Part 5 - Interesting Plot

1 # TODO: code to generate the plot here.

The plots of time of day vs product is interesting and it's getting a correlation co-efficient of 0.65 Also, the plost of card6 variable vs isFraud is interesting. The percentage of number of fraudulent trar than that of debit card!!!! Beware credit card holders!

▼ Part 6 - Prediction Model

Write your answer here

```
1 # TODO: code for your final model
2 import seaborn as sns
3 sns.countplot(x='isFraud',hue = 'card6', data=transactions)
4 transactionAmtByFraudness = transactions.groupby('isFraud')['TransactionAmt'].sum()
5 list(transactionAmtByFraudness)
6
7 transactions.isnull().sum()
8 transactions.groupby('isFraud').mean()
9
```

```
10 from sklearn.model_selection import train_test_split
11 cleanup Prod = {"ProductCD":
                                    {"C": 4, "H": 2, "S": 3, "R":4, "W":5}}
12 cleanup card6 = {"card6": {"debit":1, "credit":2, "debit or credit":3, "charge card": 4}}
13 todAmtReplaced = todAmt87.replace(cleanup Prod)
14 feature cols = ['TransactionAmt', 'hours', 'ProductCD']
15
16 X = todAmtReplaced[feature cols] # Features
17 y = todAmtReplaced.isFraud # Target variable
18 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25, random_state=0)
19
20 #split dataset in features and target variable
21
22 from sklearn.linear model import LogisticRegression
23
24 # instantiate the model (using the default parameters)
25 logreg = LogisticRegression()
26
27 # fit the model with data
28 logreg.fit(X train,y train)
29
```

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432: FutureWarni FutureWarning)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```



```
1 todAmtReplaced['card6'].fillna(0, inplace=True)
2 todAmtReplaced['card6'].isna().sum()
3 transactions['DeviceType'].value_counts()

1 transactions_test = pd.read_csv('test_transaction.csv.zip')
2 transactions_test.replace(cleanup_Prod, inplace=True)
3
```

```
4 transactions_test['hours'] = make_hour_feature(transactions_test)
5 cleanup_Prod = {"ProductCD": {"C": 4, "H": 2, "S": 3, "R":4, "W":5}}
1 transactions_test.head()
2 transactions_test_columns = transactions_test[['TransactionAmt', 'hours', 'ProductCD']]
3 transactions_test_columns.head()
```

	TransactionAmt	hours	ProductCD
0	31.95	0.0	5
1	49.00	0.0	5
2	171.00	0.0	5
3	284.95	0.0	5
4	67.95	0.0	5

```
1 y_pred=logreg.predict(transactions_test_columns)
2
3 sampleSubmission = pd.read_csv("sample_submission.csv.zip")
4 sampleSubmission['isFraud'] = y_pred
5 sampleSubmission.head()
6
7 sampleSubmission.to_csv("sampleSubmission1.csv")
8 sampleSubmission.head()
```

	TransactionID	isFraud
0	3663549	0
1	3663550	0
2	3663551	0
3	3663552	0
4	3663553	0

▼ Part 7 - Final Result

Score: 0.88