Passing Power:
Social Network
Insights for
Scoring Success
in the NBA

SNAP Team 21 Lucas, Evan, Josie, Michael June 4, 2025

Client: Chicago Bulls

What network properties are associated with high team performance?

- Are successful teams more likely to have reciprocal passing ties between players?
- Are more evenly distributed pass networks more successful?

What metrics are correlated with the most success when recruiting new players?

Coach: Billy Donovan

GM: Marc Eversley

Data Landscape

Top 10 players per team by total season minutes

2023-24, 2024-25 seasons

30 teams in the NBA

2 seasons

weighted, directed graph

nodes = players edges = passes with weights representing pass volume

Examples of Passing Networks

Chicago Bulls Passes | 39 Wins | 9 Seed | 2023-24

Dallas Mavericks Passes | 50 Wins | 5 Seed | 2023-24

Star Player vs. Young Team Networks

star player (MVP Nikola Jokic) directs the offense

young team, rebuilding after trading their star player (Damian Lillard)

Passing vs Assist Networks

passing networks

Denver Nuggets Passes | 57 Wins | 2 Seed | 2023-24

Denver Nuggets Assists | 57 Wins | 2 Seed | 2023-24

assist networks

Binarize

mean_weight <- mean(E(g)\$weight)
g <- delete_edges(g, E(g)[weight <= mean_weight])
E(g)\$weight <- 1</pre>

Global Network Properties

Wins	39
Seed	9
Nodes	10
Edges	26
Density	0.2889
Reciprocity	0.9231
Transitivity	0.66
AvgDegree	5.2
OutDegreeCentralization	0.3778
BetweennessCentralization	0.2963
AssortativityOut	-0.6142
AssortativityIn	-0.6245
AvgPathLength	1.47
Diameter	2

Results: Network Level Regression Analysis

Passing Networks:

Edge Counts, Density, and Average Degree correlated with team success (p-value < 0.05)

Note: These properties are related since the networks have the same number of nodes (10 players)

Assist Networks:

Average Path Length predictive of more wins (p-value < 0.05)

Hypotheses

(high scoring = 20 points per game)

- 1. There is a negative contagion effect for high scoring.
- 2. Older players are more likely to be high scorers.
- 3. Players who have been on their current team longer are more likely to be high scorers.
- 4. Players who are drafted higher (selected earlier) are more likely to be high scorers.
- 5. Players who *pass* the ball with more teammates are more likely to be high scorers.
- 6. Players who *receive* the ball from more teammates are more likely to be high scorers.

ALAAM Analysis (Attribute Data)

Continuous

- Points per Game (PPG)
- Age
- Years on current team
- Draft pick $(1 \rightarrow 61)$

Binary

- First round pick
- In their "prime" $(25 \rightarrow 30)$

Player	PPG	age	tenure_years	guard	prime_age	first_round	draft_pick
Coby White	19.1	24	5	1	0	1	7
Nikola Vučević	18.0	34	4	0	0	1	16
DeMar DeRozan	24.0	35	3	1	0	1	9
Alex Caruso	10.1	30	3	1	1	0	61
Ayo Dosunmu	12.2	24	3	1	0	0	38
Patrick Williams	10.0	23	4	0	0	1	4
Zach LaVine	19.5	29	7	1	1	1	13
Torrey Craig	5.7	34	1	0	0	0	61
Andre Drummond	8.4	31	2	0	0	1	9
Jevon Carter	5.0	29	1	1	1	0	32
Jalen Johnson	16.0	23	3	0	0	1	20
Dejounte Murray	22.5	28	2	1	1	1	29
Bogdan Bogdanović	16.9	32	4	1	0	1	27
De'Andre Hunter	15.6	27	5	1	1	1	4
Trae Young	25.7	26	6	1	1	1	5
Saddiq Bey	13.7	25	2	1	1	1	19
Clint Capela	11.5	30	4	0	1	1	25

ALAAM Analysis (Adjacency Matrix)

Teams in block diagonal for higher ESS

ALAAM Analysis (ESS)

NBA Passing Network (2023–24)

The large ESS values (> 200) support the validity of the model.

you have done 40000 iterations out of 40000 theta: -10.256 -1.499 0.242 0.475 0.421 -1.228 -2.616 -0.059 -4.086 0.991 4.065 0.121 summaries of the posterior draws: ESS SACF 10 SACF 30 sd 7.06905748 377.77657666 0.81435423 0.55603966 intercept -10.42155678 contagion 0.77597994 414.75080728 0.79715241 0.53430935 -1.50596747 0.78823030 age 0.18471364 0.17043303 423.47124719 0.49470771 0.49030949 0.33293813 399.70742053 0.80397339 0.53799461 tenure_vears -2.73188886 1.96964808 342.36696296 0.82845406 0.56933987 guard prime_age 1.48010541 1.57299096 421.76473404 0.79154356 0.51388661 first_round -1.07828417 3.80310083 286.01631723 0.85140366 0.62171738 draft_pick -0.12468188 0.09763363 375.63616065 0.80747243 0.53222002 2.50078804 268.75547752 out.degree -3.68504986 0.86612589 0.65989377 in.degree 2.28186567 0.98859751 407.55172553 0.80188634 0.54242886 2.73172101 reciprocity 2.36372490 332.65229170 0.83456831 0.59843948 transitive.triangles 0.13382643 0.28194685 258.74564357 0.86613406 0.65033567

ALAAM Results

(high scoring = 20 points per game)

1. There is a negative contagion effect for high scoring.

The 95% credibility interval for the contagion effect [-2.91, -0.157] does not include 0, so we can reject the null hypothesis. The negative estimate (-1.378) and odds-ratio of 0.252 means a player is about 75% less likely to be high scoring if they are connected to others who do.

2. Older players are more likely to be high scorers.

Although the estimate is positive (0.166), the 95% credibility interval for the effect of age [-0.175, 0.543] includes 0, so the estimate is not conclusive. Therefore, we **FAIL** to reject the null hypothesis.

3. Players who have been on their current team longer are more likely to be high scorers.

Although the estimate is positive (0.466), the 95% credibility interval for the effect of team tenure [-0.097, 1.10] includes 0, so the estimate is not conclusive. As a result. we **FAIL** to reject the null hypothesis.

ALAAM Results

(high scoring = 20 points per game)

- 4. Players who are drafted higher (selected earlier) are more likely to be high scorers. Although the estimate is negative (-0.125), in the direction of our hypothesis, the 95% credibility interval for the effect of higher draft pick [-0.346, 0.044] includes 0, so the estimate is not conclusive. We FAIL to reject the null hypothesis.
- 5. Players who pass the ball with more teammates are more likely to be high scorers. The 95% credibility interval for the out.degree effect [-8.516, 0.231] (high standard deviation) includes 0, so the estimate is not conclusive and we FAIL to reject the null hypothesis. The estimate is negative (-3.302), in the opposite direction of our hypothesis.
- 6. Players who receive the ball from more teammates are more likely to be high scorers. The 95% credibility interval for the in.degree effect [0.647, 4.488] does not include 0, so we can REJECT the null hypothesis. Given the positive estimate (2.271), the odds-ratio of 9.689 means a player is about 869% more likely to be high scoring if they receive the ball from more teammates.

Results: Goodness-of-Fit (gof) Test

The gof results indicate that our NBA model provides a satisfactory fit to the observed data.

Simulating GOF took 7.348319				
Calculating statistics took 0.871665				
	obs	mean	p-val	
intercept	50.000	48.654	0.153	
simple cont.	44.000	41.028	0.165	
recip cont.	22.000	20.148	0.151	
indirect cont.	147.000	146.780	0.199	
closedind cont.	143.000	131.778	0.164	
transitive cont.	12.000	17.092	0.253	
outdegree	243.000	230.548	0.110	
indegree	293.000	274.628	0.087	
reciprochation	238.000	226.274	0.114	
instar	798.000	734.014	0.078	
outstar	542.000	508.098	0.115	
twopath	1306.000	1212.730	0.097	
in3star	1296.000	1190.112	0.099	
out3star	707.000	664.570	0.143	
transitive	566.000	542.724	0.147	
cyclic	617.000	584.874	0.111	
indirect	731.000	708.300	0.158	
excl.indirect	95.000	101.318	0.170	

GOF p-values for the NBA model ranged from 0.078 to 0.253, with no values near 0 or 1. The absence of any p-values below 0.05 further supports the model's overall adequacy.

Watch Out for Scoring Contagion (Negative Effect)

Insight:

A negative contagion effect shows that players connected to high scorers are about 75% less likely to be high scorers themselves (OR = 0.252).

- **Avoid lineups overloaded with primary scorers**. Instead, spread them out so others stay aggressive.
- **Rethink rotations**. Players may defer to high scorers rather than developing confidence or asserting themselves. Consider developing second-unit lineups that let emerging scorers take more initiative. Encourage players in non-star roles to stay aggressive rather than defer automatically to top scorers.

Inbound Passing Drives Scoring

Insight:

Players who receive passes from more teammates are significantly more likely to be high scorers (odds \sim 9.7x higher).

- **Design offensive plays that facilitate scorers from multiple positions on the court** (drive-and-kick, reverse ball screens, high-post hubs).
- **Encourage unselfish passing patterns** that enable scoring opportunities for a diverse set of players

Draft Status Isn't Everything: Prioritize Development

Insight:

While the data shows a slight negative relationship between draft position and scoring (i.e., higher picks tend to score more), the result is not statistically conclusive. This suggests that being a top draft pick may not be as predictive of scoring success as commonly assumed. Scoring success is likely influenced by role clarity, coaching, system fit, and opportunity, not only draft status.

- **Prioritize internal development systems** and performance analytics over draft pedigree
- Encourage a longer-term view on player evaluation

Final Takeaways

- Stagger top scorers across lineups.
- Encourage secondary players to stay aggressive rather than defer.
- Run plays that route passes to scorers from multiple teammates.
- Reinforce unselfish ball circulation.
- Create a culture where work ethic, skill progression, and basketball IQ outweigh draft pedigree in determining playing time and role elevation.

Coach: Billy Donovan

GM: Marc Eversley

Supplemental Slides

Passing Networks: Western Conference

Denver Nuggets Passes | 57 Wins | 2 Seed | 2023-24

Dallas Mavericks Passes | 50 Wins | 5 Seed | 2023-24

Passing Networks: Eastern Conference

ALAAM Analysis

Steps:

- 1. Binarize (mean) ✓
- 2. Define success high scorer = 20 points per game (PPG)
- 3. Improve low ESS of Chicago Bulls combine the entire league into a network*
- 4. Hypothesize
- 5. ALAAM!
- 6. Analyze results

Results: ALAAM

parameter	mean	sd	0.025	0.975
intercept	-9.953	6.949	-24.442	2.784
contagion	-1.378	0.713	-2.91	-0.157
age	0.166	0.18	-0.175	0.543
tenure_years	0.466	0.307	-0.097	1.1
guard	-2.736	1.845	-6.688	0.582
prime_age	1.353	1.506	-1.468	4.474
first_round	-0.82	3.925	-8.303	7.075
draft_pick	-0.125	0.1	-0.346	0.044
out.degree	-3.302	2.232	-8.516	0.231
in.degree	2.271	0.977	0.647	4.488
reciprocity	2.215	2.208	-1.563	7.297
transitive.triangles	0.174	0.258	-0.317	0.676

	NBA (30)	WC (15) Western Conference	EC (15) Eastern Conference
Significant	contagion in.degree	contagion in.degree tenure	contagion in.degree player position
Not significant	age/prime_age first round pick out.degree tenure player position (guard)	age/prime_age first round pick out.degree player position (guard)	age/prime_age first round pick out.degree tenure

Team tenure may matter

Insight:

While the effect of team tenure on scoring was not statistically conclusive, the direction of the estimate was positive, suggesting a potential link between a player's time on the team and their likelihood of becoming a high scorer. This trend implies that familiarity with the team's system, culture, and playbook may contribute to increased offensive output over time.

- Invest minutes and development in players who have been with the team longer.
- Stability in player roles and mentorship from veteran teammates may help newer players grow into scoring roles over time.