MA - 2010

EE24BTECH11064 - Harshil Rathan

SINGLE CORRECT 2 MARKS EACH

1) For the linear programming problem

Minimize
$$z = x - y$$
, subject to $2x + 3y \le 6, 0 \le x \le 3, 0 \le y \le 3$,

the number of extreme points of its feasible region and the number of basic feasible solutions respectively, are

a) 3 and 3

c) 3 and 5

1

b) 4 and 4

d) 4 and 5

- 2) Which one of the following statements is correct?
 - a) If a Linear Programming Problem (LPP) is infeasible, then its dual is also infeasible
 - b) If an LPP is infeasible, then its dual always has unbounded solution
 - c) If an LPP has unbounded solution, then its dual also has unbounded solution
 - d) If an LPP has unbounded solution, then its dual is infeasible
- 3) Which one of the following groups is simple?

a) S_3

c) $Z_2 \times Z_2$

b) GL(2,R)

d) A₅

4) Consider the algebraic extension $E = Q(\sqrt{2}, \sqrt{3}, \sqrt{5})$ of the field \mathbb{Q} of rational numbers. Then [E:Q], the degree of E over Q, is

a) 3

c) 7

b) 4

d) 8

5) The general solution of the partial differential equation $\frac{\partial^2 z}{\partial x \partial y} = x + y$ is of the form

a) $\frac{1}{2}xy(x+y) + F(x) + G(y)$ b) $\frac{1}{2}xy(x-y) + F(x) + G(y)$ c) $\frac{1}{2}xy(x-y) + F(x)G(y)$ d) $\frac{1}{2}xy(x+y) + F(x)G(y)$

6) The numerical value obtained by applying the two-point trapezoidal rule to the integral $\int_0^1 \frac{\ln(1+x)}{x}, dx$ is

a) $\frac{1}{2} (\ln 2 + 1)$ b) $\frac{1}{2}$

c) $\frac{1}{2} (\ln 2 - 1)$ d) $\frac{1}{2} \ln 2$

7) Let $l_k(x) = 0, 1, ..., n$ denote the Lagrange's fundamental polynomials of degree *n* for the nodes x_0, x_1, \ldots, x_n . Then the value of $\sum_{k=0}^n l_k(x)$ is

- a) 0
- b) 1

- c) $x^{n} + 1$
- d) $x^{n} 1$
- 8) Let X and Y be normed linear spaces and $\{T_n\}$ be a sequence of bounded linear operators from X to Y. Consider the statements:

 $P: \{||T_n x|| : n \in \mathbb{N}\}$ is bounded for each $x \in X$

 $Q: \{||T_n||: n \in \mathbb{N}\}$ is bounded

- a) If P implies Q, then both X and Y are Banach spaces
- b) If P implies Q, then only one of X and Y are Banach space
- c) If X is a Banach space, then P implies Q
- d) If Y is a Banach space, then P implies Q
- 9) Let X = C[0,1] with the norm $||x||_t = \int_0^1 |x(t)|, dt$, $x \in C[0,1]$ and $\Omega = \{f \in X' : ||f|| = 1\}$, where X' denotes the dual space of X. Let $C(\Omega)$ be the linear space of continuous functions on Ω with the norm $||u|| = \sup_{s \in \Omega} |u(s)|, u \in C(\Omega)$. Then
 - a) X is linearly isometric with $C(\Omega)$
 - b) X is linearly isometric with a proper subspace of $C(\Omega)$
 - c) there does not exist a linear isometry from X into $C(\Omega)$
 - d) every linear isometry from X to $C(\Omega)$ is onto
- 10) Let X = R equipped with the topology generated by open intervals of the form (a, b)and sets of the form $(a,b) \cup Q$. The which one of the following statements is correct?
 - a) X is regular

c) $\frac{X}{Q}$ is dense in Xd) O is dense in X

b) X is normal

- 11) Let H, T and V denote the Hamiltonian, the kinetic energy and the potential energy respectively of a mechanical system at time t. If H contains t explicitly, then $\frac{\partial H}{\partial t}$ is equal to
 - a) $\frac{\partial T}{\partial t} + \frac{\partial V}{\partial t}$ b) $\frac{\partial T}{\partial t} \frac{\partial V}{\partial t}$

c) $\frac{\partial V}{\partial t} - \frac{\partial T}{\partial t}$ d) $-\frac{\partial V}{\partial t} - \frac{\partial V}{\partial t}$

- 12) The Euler's equation for the variational problem: Minimize $I[y(x)] = \int_0^1 (2x - xy - y') y', dx$, is
 - a) 2y'' y = 2

c) y'' + 2y = 0d) 2y'' - y = 0

b) 2y'' + y = 2

- 13) Let X have a binomial distribution with parameter n and p, n = 3. For testing the hypothesis $H_0: p=\frac{2}{3}$ against $H_1: p=\frac{1}{3}$, let a test be :"Reject H_0 if $X\geq 2$ and accept H_0 if $X\leq 1$ ". Then the probabilities of Type 1 and Type 2 errors respectively are

a)	$\frac{20}{27}$	and	$\frac{20}{27}$
b)	7/27	and	$\frac{20}{27}$

c) $\frac{20}{27}$ and $\frac{7}{27}$ d) $\frac{7}{27}$ and $\frac{7}{27}$