

Solution 2	[F. rom .	slide 59, lec 6 2. : How much misclassifyi	27, one wants to awaid example. ing every training example.
	f c >0, smaller hyperpl	the hyperplan	e margin will be isation results in a ectly classifies all the
N	ow, if	C < 0 OR C =	
to	veger mar	gin hyperplan	
- th	ere is n	o penalty imp	any misclassification,
Co	nstraints i	i (winth) =	sahsfied by (wine + b) O J.
3	Tus, we retack varia	reed to ensur	ie that c>0 in the ion of soft-margin SVM.

a) The algorithm matches every element of the given two character strings in and y of length m and a respectively and returns the number of almost at a less continued and returns the Sol 6 number of characters (5) common in both storings. b.) The kernel k: SXS -> PR (where S = set of strings. ouer a finite alphabet v) on a pair of strings n and y is a valid kernel. where we define s(i)=s(i) s(i) --- s(i) and &' be the number of common characters b/w 2 strings (26 away and y in this case) he define a parameter 2 such that 0 < 2 < 1 and it defines [\$\frac{1}{2}n(s)] a map with [\$\frac{1}{2}n(s)] components $\frac{\delta}{\delta \delta} = \sum_{i=1}^{6} \lambda^{i}$ The kernel gives the number of elements common in n and y as a scalar product.

j. e n'y which is a valid inner product. Thus, a valid kernel too.

