Teoremas y resultados de Cálculo I

Alejandro Villanueva Prados

Funciones

Índice.

- Sobre Funciones
 - Teorema de los ceros de Bolzano.
 - Teorema del valor intermedio.
- Sobre Sucesiones

Sobre funciones

Teorema de los ceros de Bolzano

Toda función continua en un intervalo que toma valores positivos y negativos se anula en algún punto del intervalo

Demostración

- 1. Objetivo: probar que si $f : [a, b] \to \mathbb{R}$ es continua y f(a) < 0 < f(b), entonces f se anula en algún punto del intervalo a, b. Buscamos a, b tal que a, b. Buscamos a, b tal que a, b.
- 2. A la izquierda de c la función es negativa, y a la derecha positiva. Se define:

$$E = \{x \in [a.b] : f(t) < 0, \forall t \in [a, x]\}$$

- Nota: $E \subset [a, b]$ y $a \in E$
- 3. Usando el principio del supremo, llamamos c = sup(E), y $a \le c \le b$. Vamos a probar que la desigualdad es estricta.
- 4. Para ello, usamos la propiedad local de conservación del signo (porque f es continua): se tiene que para $\delta > 0$, $f(a+\delta) < 0$ y $f(b-\delta) > 0$. Ahora suponemos que a=c, si eso fuese cierto, $a+\delta > c$ y $a+\delta \in E$, lo cual es imposible porque c=sup(E) y por tanto se prueba que a < c. Análogamente c < b, por lo tanto nos queda: a < c < b
- 5. Ahora vamos a probar que $f(t) < 0, \forall t \in [a, c[$, equivalente a $[a, c[\subset E.$ Esto se hace usando que c es supremo de E, tomamos un $x : a < x_0 < c$ dado que c es supremo de E, entonces existe un $z_0 \in E$ tal que $x_0 < z_0 \le c$. Así que cualquier elemento de $[a, x_0]$ pertenence también a $[a, z_0]$, y como $z_0 \in E$, probamos que $f(t) < 0, \forall t \in [a, c[$.
 - Aclaración: como los números que escogemos $(x_0 \ y \ z_0)$ son arbitrarios, eso significa que el intervalo $[a,c]\subset E.$
- 6. Paso final: f(c) = 0. A la izquierda de c, la función toma valores negativos, así que por la continuidad de f y la conservación local del signo, no puede ser f(c) > 0, con lo cual $f(c) \le 0$, pero como a la derecha es positiva, no puede ser f(c) < 0, así que $f(c) \ge 0$ y **también** $f(c) \le 0$. Por tanto, f(c) = 0, con $c \in]a, b[$

Consecuencias

- 1. Existencia de raíces: Dados a>0 y $k\in\mathbb{N}$ hay un único número c>0 tal que $c^k=a$, en otras palabras, $\log_c a=k$ es único.
 - Demostración: La función $f: \mathbb{R}_0^+ \to \mathbb{R}$ tal que $f(x) = x^k a$ es continua y con distinto signo entre 0 y 1 + a, con lo cual $\exists c > 0: f(c) = 0$. Este número es único porque f es estrictamente creciente. (sea $\varepsilon > 0$, $f(x) < f(x + \varepsilon)$).
- 2. Ceros de polinomio de grado impar: Toda función polinómica de grado impar se anula en algún punto

Demostración: WIP

Teorema del valor intermedio consecuencia de Bolzano

La imagen de un intervalo por una función continua es un intervalo.

Demostración

- 1. Objetivo: Probar que dado $I \neq \emptyset, I \subset \mathbb{R}$, entonces f(I) = J siendo J un intervalo.
- 2. Sea un intervalo I y $f: I \to \mathbb{R}$ continua. Probar el teorema equivale a probar que dados dos puntos cualesquiera de J = f(I), todos los puntos entre ellos también pertenecen a J (Definición de intervalo). Sean pues, u, v: u < v elementos de J.
- 3. Al ser u y v imágenes de puntos de I, deben existir $\alpha \in I$: $f(\alpha) = u$ y $\beta \in I$: $f(\beta) = v$, no puede ser $\alpha = \beta$ por ser f función. Suponngamos que $\alpha < \beta$
- 4. Tomamos un z tal que u < z < v y definimos $h: I \to \mathbb{R}$, h(x) = z f(x) para todo $x \in I$. h es continua (composición de funciones continuas) en I.
- 5. Ahora realizamos $h(\alpha) = z f(\alpha) = z u > 0$ (recordemos z > u). Del mismo modo $h(\beta) < 0$. Así que por el Teorema de los ceros de Bolzano, existe λ tal que $\alpha < \lambda < \beta$ y $h(\lambda) = z f(\lambda) = 0 \implies f(\lambda) = 0$
- 6. Dado que $\lambda \in]\alpha, beta[\subset I,$ debe ocurrir que $f(\lambda) = z \in J$ como esto ocurre para cualquier u < z < v, deducimos que $]u,v[\subset J]$ y que J es un intervalo.

Además, se da el recíproco: si suponemos que la imagen de un intervalo por una función continua es un intervalo, y la función toma valores positivos y negativos, entonces la función debe anularse en algún punto del intervalo.

Sobre sucesiones

Teorema de Complitud de \mathbb{R} . Límites superior e inferior.

• **Definición**: Condición de Cauchy. Se dice que una sucesión $\{x_n\}$ satisface la condición de Cauchy, si para cada número positivo $\varepsilon > 0$, existe un número natural m_{ε} , tal que para todos $p, q \in \mathbb{N}$ con $p \geq m_{\varepsilon}$ y $q \geq m_{\varepsilon}$ se verifica que $|x_p - x_q| < \varepsilon$

Teorema de Complitud de \mathbb{R}

Una sucesión de números reales converge si, y sólo si, verifica la condición de Cauchy.

Demostración

- 1. Partimos de $\{x_n\}$ cumple la condición de Cauchy. Vamos a probar que está acotada.
- 2. La condición de Cauchy implica que existe $m_0 \in \mathbb{N}$ tal que $|x_p x_{m_0}| < 1$ para todo $p \ge m_0$. Manipulando la desigualdad se obtiene $|x_p| \le |x_p x_{m_0}| + |x_{m_0}| \implies |x_p| < 1 + |x_{m_0}|$
- 3. Definimos $M = m \acute{a} x\{|x_1|, |x_2|, \dots, |x_{m_0}|, 1+|x_{m_0}|\}$. Así que obtenemos que $x_n \leq M$ para todo $n \in \mathbb{N}$, por lo tanto, concluimos que $\{x_n\}$ está acotada.
- 4. Ahora, aplicamos el teorema de Bolzano-Weierstrass, que nos garantiza que existe una sucesión parcial que converge a $x \in \mathbb{R}$, a la que notamos como $\{x_{\sigma(n)}\} \to x \in \mathbb{R}$. Hemos de probar que $\{x_n\}$ también converge a x.
- 5. Sea $\varepsilon > 0$, existe un cierto $n_0 \in \mathbb{N}$ tal que $|x_p x_q| < \frac{\varepsilon}{2}$ siempre que $p, q \ge n_0$ (Esto se obtiene aplicando la hipótesis de que $\{x_n\}$ es de Cauchy). También se tiene que existe $n_1 \in \mathbb{N}$ tal que $|x_{\sigma(n)} x| < \frac{\varepsilon}{2}$ (Porque la sucesión parcial es convergente a x). Si tomamos $m = m \acute{a} x \{n_0, n_1\}$, entonces para todo $n \ge m$ se tiene que $\sigma(n) \ge n \ge m$ por lo cual se verifican ambas igualdades. Las sumamos:

$$|x_n - x| \le |x_n - x_{\sigma(n)}| + |x_{\sigma(n)} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$