Sejam a, b, c e d constantes reais. A notação R (...) indica que se trata de uma função racional (envolvendo apenas somas, diferenças, produtos e quocientes) do que se encontra entre parêntesis.

Tipo de função	Substituição
$\frac{1}{\left(x^2+a^2\right)^k}, k \in \square, k > 1$	x = a tg t
$\frac{P(x)}{\left(ax^2 + bx + c\right)^k}, k \in \square, k > 1, b^2 - 4ac < 0,$ onde $P(x)$ é um polinómio de grau inferior a $2k$	$ax + \frac{b}{2} = t$
$\frac{P(x)}{\left(\left(x-p\right)^2+q^2\right)^k}, k \in \square, k > 1,$ onde $P(x)$ é um polinómio de grau inferior a $2k$	x = p + qt
$R(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p}{q}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}, \dots)$	$\frac{ax+b}{cx+d} = t^{m}, \text{ onde } m = \text{m.m.c}(q,s,)$
$R(x,(ax+b)^{\frac{p}{q}},(ax+b)^{\frac{r}{s}},)$	$ax + b = t^m$, onde $m = m.m.c(q, s,)$
$R(x, x^{\frac{p}{q}}, x^{\frac{r}{s}},)$	$x = t^m$, onde $m = m.m.c(q, s,)$
$R(x, \sqrt{a^2 - b^2 x^2})$	$x = \frac{a}{b} \operatorname{sen} t$ ou $x = \frac{a}{b} \cos t$
$R(x,\sqrt{a^2+b^2x^2})$	$x = -\frac{a}{b} tg t$
$R(x,\sqrt{b^2x^2-a^2})$	$x = \frac{a}{b} \sec t$
$R(x,\sqrt{x},\sqrt{a-bx})$	$x = -\frac{a}{b} \operatorname{sen}^2 t \text{ ou } x = -\frac{a}{b} \cos^2 t$
$R(x,\sqrt{x},\sqrt{a+bx})$	$x = -\frac{a}{b}tg^2t$
$R(x,\sqrt{x},\sqrt{bx-a})$	$x = \frac{a}{b} \sec^2 t$
	•Se a > 0 faz – se $\sqrt{ax^2 + bx + c} = \sqrt{a}x + t$
$R(x, \sqrt{ax^2 + bx + c})$	•Se a < 0 e c > 0 faz - se $\sqrt{ax^2 + bx + c} = \sqrt{c} - xt$
	•Se $ax^2 + bx + c = a(x - r_1)(x - r_2)$ faz – se
	$\sqrt{ax^2 + bx + c} = (x - r_1)t$ ou $\sqrt{ax^2 + bx + c} = (x - r_2)t$
$R(a^{rx}, a^{sx},)$	$a^{mx} = t$, onde $m = m.d.c(r,s,)$
$R(x, \log_a x)$	$t = \log_a x$

$x^{m}\left(a+bx^{n}\right)^{\frac{p}{q}}$	•Se $\frac{m+1}{n} \in \Box$ faz-se $a + b x^n = t^q$ •Se $\frac{m+1}{n} + \frac{p}{q} \in \Box$ faz-se $a + b x^n = x^n t^q$
$R(\operatorname{sen} x, \cos x)$:	
a. Se R é ímpar em sen x, isto é, $R(-\sin x, \cos x) = -R(\sin x, \cos x)$	$\cos x = t$
b. Se R é ímpar em cos x, isto é, $R (\operatorname{sen} x, -\cos x) = -R (\operatorname{sen} x, \cos x)$	$\operatorname{sen} x = t$
c. Se R é par em sen x e cos x, isto é, $R(-\operatorname{sen} x, -\cos x) = R(\operatorname{sen} x, \cos x)$	tg x = t, sendo então (supondo x \in]0, $\frac{\pi}{2}$ [) sen x = $\frac{t}{\sqrt{1+t^2}}$, cos x = $\frac{t}{\sqrt{1+t^2}}$
d. Nos restantes casos (e até nos anteriores)	$tg\frac{x}{2} = t$, sendo então sen $x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$

ı