Natural Language Processing & Word Embeddings

Quiz, 10 questions

1 point	
1.	
Then th	e you learn a word embedding for a vocabulary of 10000 words. e embedding vectors should be 10000 dimensional, so as to capture range of variation and meaning in those words.
	True
	False
1 point	
2.	
What is	t-SNE?
	A linear transformation that allows us to solve analogies on word vectors
	A non-linear dimensionality reduction technique
	A supervised learning algorithm for learning word embeddings
	An open-source sequence modeling library
1	
point	
3.	

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train Natural Language Deolegasing of Word in Bappy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

False

1 point

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

$$e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$$

1 point

5.

Let E be an embedding matrix, and let e_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why

	Corresponding to	0 WOIG 1234, III	en to get the enn	Jeduing of Wo
NT / 1 T	' D ~	• 0 11	7 1 - 1	ı 1• Ŭ
Natural Lan	I CALLACIA LUMONO	$\Delta \mathcal{L} \subset 111.\Omega_{\Box} \mathcal{L}_{\Box} \mathcal{L}_{\Box} \mathcal{L}_{\Box}$	mra +mnac	lainac
maturar Lar.		CC-3 20 TILES LOXU (AM	MIG LITTOCC	lullies
	G-11-10-1-1	-01234 J J		

	5 5 22
Quiz, 10 questions	It is computationally wasteful.
	$igcup$ The correct formula is $E^T st e_{1234}.$
	This doesn't handle unknown words (<unk>).</unk>
	None of the above: Calling the Python snippet as described above is fine.
	$\begin{array}{c} \textbf{1} \\ \textbf{point} \\ \\ \textbf{6}. \\ \\ \textbf{When learning word embeddings, we create an artificial task of estimating} \\ P(target \mid context). \text{ It is okay if we do poorly on this artificial prediction} \\ \textbf{task; the more important by-product of this task is that we learn a useful set} \\ \textbf{of word embeddings.} \\ \hline \textbf{True} \\ \hline \textbf{False} \\ \end{array}$
	$7.$ In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and t chosen from the training set? Pick
	the best answer.
	igcup c and t are chosen to be nearby words.
	igcap c is a sequence of several words immediately before t .
	igcap c is the one word that comes immediately before $t.$
	igcap c is the sequence of all the words in the sentence before t .

Natural Language Processing & Word Embeddings

Quiz, 10 questions

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = rac{e_{ heta_t}^{Te_C}}{\sum_{t'=1}^{10000} e_{ heta_{t'}}^{Te_C}}$$

Which of these statements are correct? Check all that apply.

- $heta_t$ and e_c are both 500 dimensional vectors.
- $heta_t$ and e_c are both 10000 dimensional vectors.
- $heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
- After training, we should expect θ_t to be very close to e_c when t and c are the same word.

1 point

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- $heta_i$ and e_j should be initialized to 0 at the beginning of training.
- $heta_i$ and e_j should be initialized randomly at the beginning of training.
- X_{ij} is the number of times word i appears in the context of word i.
- The weighting function f(.) must satisfy f(0)=0.

Natural Language Processing & Word Embeddings

Quiz, 10 questions

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

$$m_1 \ll m_2$$

Upgrade to submit

