

Shift Registers

Flip-Flop 正反器設計

• T型正反器

• D型正反器

PR	CL	СК	T	Q	$\overline{\overline{Q}}$
0	1	-	_	1	0
1	0	-	-	0	1
1	1	↑	0	Q	$\overline{\overline{Q}}$
1	1	↑	1	$\overline{\overline{Q}}$	Q

PR	CL	СК	D	Q	\overline{Q}
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	0	1
1	1	↑	1	1	0

Flip-Flop 正反器設計

• VHDL for T 型正反器

```
Library IEEE;
Use IEEE.std logic 1164.all;
Entity TFF1 is
    Port( PR,CL,CK,T:in std logic;
          Q, Qbar:out std logic);
End TFF1;
Architecture ARCH of TFF1 is
Begin
    Process (PR, CL, CK)
        Variable TMP:std logic;
    Begin
        If PR='0' Then TMP := '1';
        Elsif CL='0' Then TMP := '0';
        Elsif Rising edge (CK) Then
             If T='1' Then TMP := not TMP;
            Else null;
            End If;
        End If;
        Q <= TMP;
        Obar <= not TMP;</pre>
    End Process;
End ARCH;
```

PR	CL	CK	T	Q	$\overline{\overline{Q}}$
0	1	-	-	1	0
1	0	-	-	0	1
1	1	↑	0	Q	\overline{Q}
1	1	↑	1	Q	Q

序列移位暫存器

環形計數器 (Ring Counter)

 環形計數器是一種特殊的序列移位暫存器,在每個clock 下將數據移動一位,並且輸出從最後一個元件重新連接到 第一個元件,從而形成一個閉環。

S ₁	S ₀	Function	D ₃	D ₂	D_1	D_0
1	1	Hold	Q_3	Q_2	Q_1	Q_0
0	1	Shift Right	RSI	Q_3	Q_2	Q_1
1	0	Shift Left	Q_2	Q_1	Q_0	LSI
0	0	Load	P ₃	P_2	P_1	P_0

RSI: Right-Shift Input

LSI: Left-Shift Input

作業

• 設計一個跑馬燈的電路,讓LED週期性的向左右位 移,電路運作如下:

SW[0:4]:控制 LED[0:4] 的亮暗,作為初始狀態。

SW[8]:觸發時,將初始為亮的LED每次向右位移1格。

SW[9]:觸發時,將初始為亮的LED每次向左位移1格。

• 同組一起完成DEMO,且由一位代表上傳專案壓縮檔,檔名:lab12_Gxx.zip (xx為組別)。

• 註:**有DEMO才算分**,若當週未完成DEMO,統一 於日後公布之日期補DEMO。

• 註:可參考 Lab5

作業參考

- 跑馬燈設計可參考環型計數器
- 請注意,當 SW[8:9] 狀態皆未開啟時, SW[0:4] 的設定 值才能順利導入 LED[0:4]

PD ₂	PD ₁	Function	LED ₄	LED ₃	LED ₂	LED ₁	LED ₀
1	1	Hold	LED ₄	LED ₃	LED ₂	LED_1	LED ₀
1	0	Shift Right	LED ₀	LED ₄	LED ₃	LED ₂	LED ₁
0	1	Shift Left	LED ₃	LED ₂	LED_1	LED ₀	LED ₄
0	0	Load	SW_4	SW_3	SW_2	SW_1	SW ₃

加分

• 增加新功能,按下按鈕來改變位移的頻率。

BUTTON[0]:降低位移速率。

BUTTON[1]:增加位移速率。

同組一起完成DEMO,且由一位代表上傳專案壓縮檔,檔名:lab12_bonus_Gxx.zip (xx為組別)。

• 註:**有DEMO才算分**,若當週未完成DEMO,統一 於日後公布之日期補DEMO。

作業參考

- clk, pb1, pb2: in std_logic
- btn1, btn2: in std_logic
- LED_data: in std_logic_vector(4 downto 0)
- LEDs: out std_logic_vector(9 downto 0)

功能解釋

- pd1, pd2: SW[8:9],控制資料讀入及傳遞方向。
- btn1, btn2: DEO Pushbutton,控制資料傳送速度。
- LED_data: SW[0:4],導入 LEDs 的初始狀態。

作業及加分範例

https://youtu.be/lwXO2rVgEnM?si=yi5f4zcwFmhLLiaw

模式選取

• Switch RUN 設定為JTAG模式

Switch 腳位

Signal Name	FPGA Pin No.	Description
SW[0]	PIN_J6	Slide Switch[0]
SW[1]	PIN_H5	Slide Switch[1]
SW[2]	PIN_H6	Slide Switch[2]
SW[3]	PIN_G4	Slide Switch[3]
SW[4]	PIN_G5	Slide Switch[4]
SW[5]	PIN_J7	Slide Switch[5]
SW[6]	PIN_H7	Slide Switch[6]
SW[7]	PIN_E3	Slide Switch[7]
SW[8]	PIN_E4	Slide Switch[8]
SW[9]	PIN_D2	Slide Switch[9]

10 Slide switches (Sliders):
Up → Logic High
Down → Logic Low

LED 腳位

Signal Name	FPGA Pin No.	Description
LEDG[0]	PIN_J1	LED Green[0]
LEDG[1]	PIN_J2	LED Green[1]
LEDG[2]	PIN_J3	LED Green[2]
LEDG[3]	PIN_H1	LED Green[3]
LEDG[4]	PIN_F2	LED Green[4]
LEDG[5]	PIN_E1	LED Green[5]
LEDG[6]	PIN_C1	LED Green[6]
LEDG[7]	PIN_C2	LED Green[7]
LEDG[8]	PIN_B2	LED Green[8]
LEDG[9]	PIN_B1	LED Green[9]

10 LEDs
Output High → LED ON
Output Low → LED OFF

Clock 腳位

Signal Name	FPGA Pin No.	Description
CLOCK_50	PIN_G21	50 MHz clock input
CLOCK_50_2	PIN_B12	50 MHz clock input

Button 腳位

Signal Name	FPGA Pin No.	Description
BUTTON [0]	PIN_H2	Pushbutton[0]
BUTTON [1]	PIN_G3	Pushbutton[1]
BUTTON [2]	PIN_F1	Pushbutton[2]

3 Pushbutton:

Not pressed → Logic High Pressed → Logic Low

