

# Introduction to Microprocessors

Department of Computer Science and Engineering

BRAC University

Course ID: CSE 341

**Course Title: MICROPROCESSORS** 

#### Instructors



#### Aminul Huq

Lecturer, Department of Computer Science & Engineering

#### Saadat Hasan Khan

Lecturer and Lab Coordinator, Department of Computer Science & Engineering

#### Ramkrishna Saha

Lecturer, Department of Computer Science & Engineering

#### ■ Sifat Tanvir

Lecturer, Department of Computer Science & Engineering

#### Ragib Morshed

Lecturer, Department of Computer Science & Engineering

#### ☐ Syed Zamil Hasan Shoumo

Lecturer and Theory Coordinator, Department of Computer Science & Engineering

# BRAC UNIVERSITY

## Topics to be Covered

- Microprocessors and Microcontrollers
- Applications of microprocessors and microcontrollers
- Intel 8086 Microprocessor: Internal architecture, Register structure, Addressing modes, Instruction set etc.
- An overview of Intel 80186, 80286, 80386, 80486 and Pentium microprocessors
- □ RISC and CISC processors.
- Coprocessors.
- Assembly language programming



#### Recommended Texts

- Microprocessors and Interfacing: Programming and Hardware, by Douglas V. Hall
- Assembly Language Programming and Organization of the IBM PC, by Ytha Y. Yu, Charles Marut
- Microprocessor, architecture, programming & application with the 8085, by Ramesh Gaonkar
- The Intel Microprocessor, by Barry B. Bray
- ☐ Microprocessor and Microcomputer Based System Design, by Mohamed Rafiquzzaman



## Some tips before we begin

- Number Systems and their Conversion
- Basics of "Digital Logic Design"
- Basics of "Computer Architecture"
- Basic Programming



## Concept of Computer





## Major Components of Computer





## Central Processing Unit

- A central processing unit (CPU) is a description of a class of logic machines that can execute <u>computer</u> <u>programs</u>.
- The form, design and implementation of CPUs have changed dramatically since the earliest examples, but their fundamental operation has remained much the same.



### Central Processing Unit

To synchronize and control the overall operation of the CPU Control Unit & Instruction Decoder To perform the arithmetic and To decode instruction and logical pass the necessary control signals to operations within the CPU CU Arithmetic/Logic Unit A set of internal storage locations within the CPU To perform shift and rotate Registers operations that may either be arithmetic or logical in nature Control and Status Registers User-Variable Registers CSE – 341: Microprocessors

**BRAC** University



#### So .. What is Microprocessor?

A microprocessor (abbreviated as  $\mu P$ ) is a Silicon Chip that contains an electronic central processing unit (CPU). In the world the word  $\mu P$  or CPU is now used interchangeably. It is made from miniaturized transistors and other circuit elements on a single semiconductor integrated circuit (IC).

The integration of the whole CPU onto a single **VLSI** Chip therefore greatly reduced the cost of processing capacity.

#### **Architectures of Microprocessors:**

- RISC (Reduced Instruction Set Computer)
- CISC (Complex Instruction Set Computer)
- Special-purpose designs: Microcontrollers, Digital Signal Processors (DSP) and Graphics Processing Units (GPU).



### Concept about Microprocessor

A microprocessor incorporates most or all of the functions of a <u>central processing unit (CPU)</u> on a single integrated circuit (IC).
Die of an Intel 80486DX2

microprocessor (actual size: 12×6.75 mm)

in its packaging







## List of Microprocessors

- 1971 Intel 4004, 1st single chip CPU, 4-bit processor, 46 instructions
- 1972 Intel 4040, enhanced 4004, 60 instructions
- **1972** Intel 8008, 8-bit μP
- 1972 Texas Instrument TMS 1000, 1st single μC, 4-bit
- 1974 Intel 8080, successor to the 8008, used in Altair 8800
- 1975 Motorola 6800, used MOS technology
- **1976** Intel 8085, updated 8080, +5V power supply
- **1976** Zilog Z80, improved 8080
- **1976** TITMS 9900, 1st 16-bit μP
- **1978** Zilog Z8000, Motorola 68000, 16-bit μP
- 1978 Intel 8086, 16-bit, IBM's choice...



### Microcontroller (μC)

Microcontroller is an IC dedicated to perform simpler tasks.

- A microcontroller is the integration of
  - Processor
  - ☐ Memory (RAM, ROM)
  - □ I/O ports





#### List of Microcontrollers

- **1972** Texas Instrument TMS 1000, 1st single μC, 4-bit
- **1976** Intel 8048, 8-bit μC, 1k ROM, 64b RAM, 27 I/O
- 1980 Intel 8051, 4k ROM, 128b RAM, 32 I/O, 2 16-bits timers

#### 1980s -

(MCS-51 family)

- Intel 8031, 8052, 8751, ...
- Atmel AT89C51, AT 89C1052/2051,...
- Dallas Semiconductor DS5000 series...
- -Philips, National Semiconductor, ...
- Freescale S32K MCU, Renesas RL 78G1F



#### Microprocessor System Vs Microcontroller System

| Microprocessor                                                                | Microcontroller                                                   |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Used where intensive processing is required                                   | Used where task is fixed and predefined                           |  |
| Only CPU is in the chip. Memory, I/O port are connected externally            | CPU, Memory, I/O port – all are connected on the same single chip |  |
| Higher Clock speed and external RAM used is also higher                       | Lower Clock speed and RAM used is also lower                      |  |
| The program for the microprocessor can be changed for different applications. | The program for the microcontroller is fixed once it is designed  |  |
| Cost is comparatively higher                                                  | Cost is comparatively lower                                       |  |
| Power consumption is higher                                                   | Power consumption is lower                                        |  |
| Overall size of the system is large                                           | Overall size of the system is smaller                             |  |
| Applications include personal computers                                       | Applications include washing machines, camera etc.                |  |

## Food for thought

We know that your computer uses a microprocessor. But what about your keyboard?



#### Microprocessor System Vs Microcontroller System



| CPU           | RAM   | ROM                   |
|---------------|-------|-----------------------|
| I / O<br>Port | Timer | Serial<br>COM<br>Port |

**Microprocessor System** 

Microcontroller



### Assembly Language

#### Assembly language:

Assembly language is used in programming because it is difficult to program a microprocessor in its native machine language.

#### Assembler:

- An assembler is a program that converts assembly language into machine language.
- Assemblers are similar to compilers in that they produce executable code. However, assemblers are more simplistic.



### High level language vs Machine language

```
int a, b, c;
a = 83;
b = -2;
                     // high level language
c = a + b;
0010 0001 0000 0100
0001 0001 0000 0101
0011 0001 0000 0110
                            //machine language
0111 0000 0000 0001
0000 0000 0101 0011
```

1111 1111 1111 1110



## Example of Assembly Language

```
□ Add 2 with 3
```

mov cl, 3 : copy the value 3 in the internal register cl // so currently cl is holding the value 3

add cl, 2 : add the value 2 with the current value of cl // after adding 2, cl is now and store sum in cl holding the value 5

#### ■ Subtract 2 from 3

mov cl, 3: copy the value 3 in the internal register cl

holding the value 3

//so currently cl is

sub cl, 2 : sub the value 2 from the current value of cl //after subtracting 2, cl is now holding the value 1

mov, add, sub --- *opcodes or instructions* cl, 3, 2 ---- **operands** 



## Food for thought

Using cl register show assembly code for the following expression :

$$5 + 6 - 10$$

- □ mov cl, 5
- add cl, 6
- □ sub cl, 10