Tutorial: Foundations of Non-truthful Mechanism Design

Part I: Equilibrium Analysis Tutor: Jason Hartline

Schedule:

Part la: 10-10:45am (http://ec20.sigecom.org/tech/tutorial)
Part lb: 11-11:45am (http://ec20.sigecom.org/tech/tutorial)

Exercises: 12-1pm (http://ec20.sigecom.org/tech/tutorial-exercises)

(https://tinyurl.com/non-truthful-exercises)

Protocol:

During session, panelest will answer clarifying questions in chat.

In post-session Q/A, "raise hand" to ask question.

Tutorial Cochairs

Brendan Lucier

Sigal Oren

Panelists

Yiding Feng

Yingkai Li

Foundations of Non-truthful Mechanism Design http://jasonhartline.com/tutorial-non-truthful/

Jason Hartline

Northwestern University

hartline@northwestern.edu

EC Tutorial 2020

Context: The Revelation Principle

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Issues:

- practical mechanisms are not truthful.
- not without loss for simple or prior-independent mechanisms.
- non-trivial to undo the revelation principle.

Goal: theory for non-truthful mechanism design.

Part I

Equilibrium Analysis

- 1 Warmup: Second-price and First-Price Auction Examples
- 2 Single-dimensional Environments
- Revenue Equivalence and Applications
 - Characterizing Bayes-Nash equilbrium
 - Solving for Equilibrium
 - Uniqueness of Equilibrium
- 4 Robust Analysis of Equilibria

Warmup: Second-price Auction

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

E.g.,
$$v_1, v_2 \sim U[0, 1]$$
 \Rightarrow $\mathbf{E}[v_{(1)}] = 2/3, \ \mathbf{E}[v_{(2)}] = 1/3$

Example (Two agents, uniform values, second-price auction)

- Expected welfare in equilibrium: $\mathbf{E}[v_{(1)}] = 2/3$
- Expected revenue in equilibrium: $\mathbf{E}[v_{(2)}] = 1/3$

First-price Auction

Definition (First-price Auction, FPA)

1 agents bid. 2 winner is highest bidder. 3 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

"Guess and verify" approach:

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{Pr[b_2 \le b] = Pr[v_2/2 \le b] = Pr[v_2 \le 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b = 2vb - 2b^2 \end{aligned}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.
- Equilibrium welfare: $\mathbf{E}[v_{(1)}] = \frac{2}{3}$; revenue: $\mathbf{E}[v_{(1)}/2] = \frac{2}{3}\frac{1}{2} = \frac{1}{3}$

Section 2

Single-dimensional Environments

References:

• Hartline (202?) "Mechanism Design and Approximation" Chapter 2

Single-dimensional Linear Environments

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$:
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\mathbf{z}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} \mathbf{z}_{i}(\mathbf{b})$

Example (Single-item Environments; First-price Auction)

- feasibility constraint: $\mathcal{X} = \{ \mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1 \}$
- highest-bid-wins: $\tilde{\boldsymbol{x}}(\mathbf{b}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{i} b_{i} x_{i}$
- winner-pays-bid: $\tilde{p}_i(\mathbf{b}) = b_i \, \tilde{x}_i(\mathbf{b})$

Encorporating Strategies and Prior Distribution

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

Interim Allocation and Payment Rules

- $\bullet \ \tilde{x}_i(\mathsf{b}_i) = \mathsf{E}_{\mathsf{v}}[\tilde{x}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]; \ \tilde{p}_i(\mathsf{b}_i) = \mathsf{E}_{\mathsf{v}}[\tilde{\varkappa}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]$
- $x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$ $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

Example: First-price Auction

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{x}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

Example (two agents, uniform values, first-price auction)

equilibrium bids: $b_i(\mathbf{v}_i) = \mathbf{v}_i/2$; feasibility: $\mathcal{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1\}$

	ex post	interim
bid allocation rule	$ ilde{m{x}}(\mathbf{b}) \in argmax_{\mathbf{x} \in \mathcal{X}} \sum_i b_i x_i$	$\tilde{x}_i(b_i) = 2b_i$
value allocation rule	$m{x}(\mathbf{v}) \in argmax_{\mathbf{x} \in \mathcal{X}} \sum_i v_i / 2 x_i$	$x_i(v_i) = v_i$

Section 3

Revenue Equivalence and Applications

References:

- Myerson (1981) "Optimal Auction Design"
- 2 Chawla, Hartline (2013) "Auctions with unique equilibria"
- Martline (202?) "Mechanism Design and Approximation" Chapter 2

Bayes-Nash Equilibrium

Definition (Bayes-Nash equilibrium, BNE)

A strategy profile \boldsymbol{b} such that for all i and v_i , bidding $b_i = b_i(v_i)$ is a best response when other agents bid $\boldsymbol{b}_{-i}(\boldsymbol{v}_{-i})$ with $\boldsymbol{v}_{-i} \sim \boldsymbol{F}_{-i}|_{v_i}$.

Example (Two agents, uniform values, first-price auction)

Strategies **b** as " $\forall i$, $b_i(v_i) = v_i/2$ " is a Bayes-Nash equilibrium.

- values are U[0,1]
- bids under **b** are U[0, 1/2]
- best response to bid U[0, 1/2] is $b_i(v_i) = v_i/2$

Notation

- value profile w.o. agent i's value: $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n)$
- conditional distribution of F given v_i : $F_{-i}|_{v_i}$ (if indep. $F_{-i}|_{v_i} = F_{-i}$)

Characterizing Bayes-Nash Equilibrium

Proposition

(x, p) are induced by BNE of some b, F, and (\tilde{x}, \tilde{p}) if and only if: $\forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z)$ (and bids not in the range of b are weakly dominated.)

Theorem (Myerson '81)

(x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:

- (monotonicity) x_i is monotonically non-decreasing
- (payment identity) $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of **b** are weakly dominated; often $p_i(0) = 0$)

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalence

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Two examples: for i.i.d. first-price auctions

- solving for symmetric Bayes-Nash equilibrium
- non-existence of symmetric Bayes-Nash equilbrium

Consequence: BNE of FPA is unique, symmetric, and welfare-maximal.

Solving for Bayes-Nash Equilibrium

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

Proof.

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.
- by mech. rules: $\mathbf{E}[SPA \text{ payment for } v \mid v \text{ wins}] = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$
- by mech. rules: **E**[FPA payment for $v \mid v$ wins] = b(v)
- revenue equivalence: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$
- check guess: $\mathbf{E}[v_{(2)} \mid v_{(2)} < v]$ is monotone in v

Non-existence of Asymmetric BNE

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

Proof of Corollary.

- agent 1 and 2 face random reserve "max($b_3, ..., b_n$)"
- by theorem, their strategies are symmetric.
- same for player 1 and i.
- so all strategies are symmetric.

Proof of Theorem

Revenue equivalence \Rightarrow two formulas for agent's utility:

(first-price payment rule)

$$u(v) = \int_0^v x(z) dz$$

(paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

- \bullet assume strategies cross twice at v' and v''
- ullet so by Lemma, $x_1({\sf v})>x_2({\sf v})$ for ${\sf v}\in({\sf v}',{\sf v}'')$

- so by (2): $u_1(v'') u_1(v') = \int_{v'}^{v''} x_1(z) dz$
 - $> \int_{\mathsf{v}'}^{\mathsf{v}''} x_2(\mathsf{z}) \, \mathsf{d}\mathsf{z} = u_2(\mathsf{v}'') u_2(\mathsf{v}')$
- ullet but by Lemma and (1): $u_1(\mathsf{v}') = u_2(\mathsf{v}')$ and $u_1(\mathsf{v}'') = u_2(\mathsf{v}'')$

Lem: At v if $b_1(v) > b_2(v)$ then $x_1(v) > x_2(v)$, and equal if equal.

Proof of Lemma

Lem: At v if $b_1(v) > b_2(v)$ then $x_1(v) > x_2(v)$, and equal if equal.

Proof by Picture.

I.i.d. winner-pays-bid position auctions

Definition (Winner-pays-bid Position Auction [cf. Edelman, Ostrovsky, Schwarz '07])

- *n* positions, allocation probabilities **w** with $w_1 \ge ... \ge w_n$,
- agents assigned to positions in order of bid,
- agents pay bid if allocated.

Example

Theorem (Chawla, Hartline '13)

BNE of i.i.d. winner-pays-bid postion auction is unique, symmetric, and welfare-optimal.

Section 4

Robust Analysis of Equilibria

References:

- Borodin, Lucier (2010) "Price of anarchy for greedy auctions"
- Syrgkanis, Tardos (2013) "Composable and efficient mechanisms"
- O Hoy, Hartline, Taggart (2014) "Price of anarchy for auction revenue"
- Dütting, Kesselheim (2015) "Algorithms against anarchy: Understanding non-truthful mechanisms"
- Hoy, Nekipelov, Syrgkanis (2017) "Welfare guarantees from data"
- Martline (202?) "Mechanism Design and Approximation" Chapter 6

Winner-pays-bid Mechanisms

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Robust Analysis of Welfare

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid b
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathbf{z})) d\mathbf{z}$$

Lem: In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathsf{OPT}(\hat{\mathbf{B}})/\mathsf{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Proof.

From lemma:

$$u_i(v_i) + \hat{B}_i \ge e - 1/e v_i$$

For welfare-otimal $\boldsymbol{x}^{\star}(\mathbf{v})$:

$$u_i(v_i) + \hat{B}_i \, \boldsymbol{x}_i^{\star}(\mathbf{v}) \geq e - 1/e \, v_i \, \boldsymbol{x}_i^{\star}(\mathbf{v})$$

Sum over agents *i*:

$$\mathsf{Util}(\mathbf{v}) + \mu \, \mathsf{Rev}(\mathbf{v}) \geq e^{-1/e} \, \mathsf{OPT}(\mathbf{v})$$

Take expectations:

$$\mu$$
 Welfare \geq e $^{-1}\!/_{e}$ OPT

Proof of Lemma

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

 \bullet By geometry: $u(v)+\hat{\mathrm{B}}\geq 1/\!2\,v$

• More careful analysis gives e - 1/e.

Analysis of Conversion Ratio

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathrm{OPT}(\hat{\mathbf{B}}) / \mathrm{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

Proof.

- for any b
- expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j \neq i} \mathrm{b}_j$
- $Rev(\mathbf{b}) = \max_i b_i \ge \max_i \hat{B}_i = OPT(\hat{\mathbf{B}})$

Properties of Conversion Ratio

- not an equilibrium property.
- closed under simultaneous composition.
- tight in some environments. closed under randomization.

Example: Single-minded Combinatorial Auctions

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, ..., m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

A Nash equilibrium:

- agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, ..., m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Nash welfare = 1; optimal welfare = m.

Conversation ratio is $\mu = m$:

$$\hat{\mathbf{B}}_i = 1; \ \hat{\mathbf{B}}_h = 1; \ \mathsf{OPT}(\hat{\mathbf{B}}) = m; \ \mathsf{Rev}(\mathbf{b}) = 1.$$

Greedy Single-minded Combinatorial Auction

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Theorem (Lehmann, O'Callaghan, Shoham '02)

Greedy by $b_i/\sqrt{|S_i|}$ winner-pays-bid algorithm is $\beta=\sqrt{m}$ approximation.

Corollary (cf. Borodin, Lucier '10)

The BNE welfare of the greedy winner-pays-bid mechanism is $\sqrt{m} e/e - 1$.

Theorem (Dütting, Kessleheim '15)

Conversion ratio μ for any winner-pays-bid single-minded CA is $\Omega(\sqrt{m})$.

Qstn How can near optimal non-truthful mechaisms be designed?

Parts II and III

Part II: Non-truthful Sample Complexity

- Counterfactual Estimation
- 2 I.i.d. Position Auctions
- General Reduction to I.i.d. Position Auctions

Part III: Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 2 Implementation Theory