Appendix 1

MECHANISTIC MODEL TO SIMULATE MICROALGAE GROWTH

This ordinary differential equation (ODE)-based model for microalgae growth was adopted from the work of Solimeno, Samsó [1]: Solimeno, A., et al., *New mechanistic model to simulate microalgae growth.* Algal Research, 2015. **12**: p. 350-358. This model follows the same structure as the ADM1 and ASM3 formulated by the International Water Association.

The reaction rate for each component of the model r_i is formulated using the following expression: $r_i = \sum_j (v_{j,i} \times \rho_i)$, where i is the chemical component, j is the process, ρ_i is the rate expression for i, and $v_{j,i}$ is the stoichiometric coefficient.

The ODEs for each model variable is consequently formulated as:

Key definitions for algae model:

Photosynthetic factor: $\eta_{PS}(I, S_{O2}) = f_L(I) \cdot f_{PR}(S_{O2})$

where f_L is the light factor and f_{PR} the photorespiration factor.

 $f_L(I) = \frac{\alpha \delta I}{\alpha \beta I^2 + (\alpha + \beta) \delta I + \gamma \delta'} \alpha$ is rate of activation, γ is rate of constant production, β is rate of inhibition, δ is rate of recovery

$$f_{PR}(S_{02}) = \begin{cases} 1 - \tanh\left(\frac{K_{PR} \cdot \left(\frac{SO_2}{\tau \cdot S_{02}^{SAT}}\right)}{1 - \frac{SO_2}{\tau \cdot S_{02}^{SAT}}}\right), SO_2 \le \tau \cdot S_{02}^{SAT} \\ 0, SO_2 > \tau \cdot S_{02}^{SAT} \end{cases}$$

where τ is the coefficient of excess dissolved oxygen.

Thermic photosynthetic factor: $f_{T,FS}(T) = e^{-(\frac{T-T_{opt}}{s})^2}$

where T_{opt} is assumed 25°C and s is a parameter value for empirical fitting

Table 1. Process rate expressions.

Processes:	Process rate expression
Microalgae growth on ammonia	Process rate expression $\rho_{1a} = \mu_{ALG} * f_{T,FS}(T) * \eta_{PS}(I,S_{O2}) * \frac{S_{CO2} + S_{HCO3}}{K_{C,ALG} + S_{CO2} + S_{HCO3} + \left(\frac{S_{CO2}^2}{I_{CO2,ALG}}\right)} * \frac{S_{NH3} + S_{NH4}}{K_{N,ALG} + S_{NH3} + S_{NH4}} * X_{ALG}$ $\rho_{1b} = \mu_{ALC} * f_{T,FS}(T) * \eta_{PS}(I,S_{O2}) * \frac{S_{CO2} + S_{HCO3}}{S_{CO2} + S_{HCO3}} * \frac{S_{NO3}}{S_{NO3}} * \frac{S_{NO3}}{S_{NO3}}$
Microalgae growth on nitrate	$K_{C,ALG} + S_{CO2} + S_{HCO3} + \left(\frac{S_{CO2}^2}{I_{CO2,ALG}}\right) K_{N,ALG} + S_{NO3}$
	$*\frac{K_{N,ALG}}{K_{N,ALG} + S_{NH3} + S_{NH4}} * X_{ALG}$
Microalgae endogenous respiration	$*\frac{K_{N,ALG}}{K_{N,ALG} + S_{NH3} + S_{NH4}} * X_{ALG}$ $\rho_2 = k_{resp,ALG} * f_{T,FS}(T) * \frac{S_{O2}}{K_{O2,ALG} + S_{O2}} * X_{ALG}$
Microalgae inactivation	$\rho_3 = k_{death,ALG} * f_{T,FS}(T) * X_{ALG}$
Chemical equilibrium $CO_2 \leftrightarrow HCO_3^-$	$\rho_4 = k_{eq,1} * (S_{CO2} - \frac{S_H S_{HCO3}}{V})$
Chemical equilibrium $HCO_3^- \leftrightarrow CO_3^{2-}$	$\rho_5 = k_{eq,2} * (S_{HCO3} - \frac{S_H S_{CO3}}{K_{eq,2}})$
Chemical equilibrium $NH_4^+ \leftrightarrow NH_3$	$\rho_6 = k_{eq,3} * (S_{NH4} - \frac{S_H S_{NH3}}{K_{eq,3}})$
Chemical equilibrium $H^+ \leftrightarrow OH^-$	$\rho_7 = k_{eq,w} * (1 - \frac{S_H S_{OH}}{K_{eq,w}})$
Oxygen transfer to the atmosphere	$ \rho_{O2} = Ka, O_2 * (S_{O2}^{WAT} - S_{O2}) $
Carbon dioxide transfer to the atmosphere	$\rho_{CO2} = Ka, CO_2 * (S_{CO2}^{WAT} - S_{CO2})$
Ammonia transfer to the atmosphere	$\rho_{NH3} = Ka, NH_3 * (S_{NH3}^{WAT} - S_{NH3})$

Table 2. Matrix of stoichiometric parameters that relates processes through stoichiometric coefficients

State variables→i		S_{NH4}	S_{NH3}	S_{NO3}	S_{02}	S_{CO2}	S_{HCO3}	S_{CO3}	S_H	S_{OH}	X_{ALG}
Processes↓j		gNm ⁻³	gNm ⁻³	gNm ⁻³	gO₂m ⁻³	gCm ⁻³	gCm ⁻³	gCm ^{−3}	gHm ⁻³	gHm ⁻³	gCODm ⁻³
Microalgae growth on	$ ho_{1a}$	$v_{1,1a}$			$v_{4,1a}$	$v_{5,1a}$			$v_{8,1a}$		$v_{10,1a}$
ammonia											
Microalgae growth on nitrate	$ ho_{1b}$			$v_{3,1b}$	$v_{4,1b}$	$v_{5,1b}$			$v_{8,1b}$		$v_{10,1b}$
Microalgae endogenous respiration	$ ho_2$	$v_{1,2}$			$v_{4,2}$	$v_{5,2}$			$v_{8,2}$		$v_{10,2}$
Microalgae inactivation	$ ho_3$	$v_{1,3}$			$v_{4,3}$	$v_{5,3}$			$v_{8,3}$		$v_{10,3}$
Chemical equilibrium $CO_2 \leftrightarrow HCO_3^-$	$ ho_4$					$v_{5,4}$	$v_{6,4}$		$v_{8,4}$		
Chemical equilibrium $HCO_3^- \leftrightarrow CO_3^{2-}$	$ ho_5$						$v_{6,5}$	$v_{7,5}$	$v_{8,5}$		
Chemical equilibrium $NH_4^+ \leftrightarrow NH_3$	$ ho_6$	$v_{1,6}$	$v_{2,6}$						$v_{8,6}$		
Chemical equilibrium $H^+ \leftrightarrow OH^-$	$ ho_7$								$v_{8,7}$	$v_{9,7}$	
Oxygen transfer to the atmosphere	$ ho_{02}$				$v_{4,02}$						
Carbon dioxide transfer to the atmosphere	$ ho_{CO2}$					v _{5,C02}					
Ammonia transfer to the atmosphere	$ ho_{NH3}$		$v_{2,NH3}$								

Table 3. Values of biokinetic and physic parameters.

Parameters	Description		Value	Unit	Source		
Microalgae processes							
μ_{ALG}	Maximum growth rate of microalgae		1.6	d ⁻¹	Calibrated		
k _{resp,ALG}	Endogenous respiration constant		0.1	d-1	[49]		
k _{death,ALG}	Inactivation constant		0.1	d-1	[49]		
K _{C,ALG}	Affinity constant of microalgae on carbon species		0.00432	gC m ⁻³	[43]		
I _{CO2,ALG}	CO ₂ inhibition constant of microalgae		120	gC m ⁻³	[53]		
K _{N,ALG}	Affinity constant of microalgae on nitrogen species		0.1	gN m ⁻³	[49]		
K _{O2,ALG}	Affinity constant of microalgae on dissolved oxygen		0.2	gO ₂ m ⁻³	[49]		
Photorespirati	on factor						
K _{PR}	Inhibition constant of photorespiration	ı	0.01	_	Assumption		
τ	Coefficient of excess dissolved oxygen		4	_	[15]		
S_{02}^{SAT}	Saturation concentration of oxygen in the air		7.1904	gO ₂ m ⁻³	[14]		
Photosynthet	ic thermal factor						
T _{OPT}	Optimum temperature for microalgae growth		25	°C	[19]		
S	Normalized parameter		13	_	[19]		
Light factor							
α	Parameter activation		01935	(μE m ⁻²) ⁻¹	[58]		
β	Parameter inhibition		848E ⁻⁷	(μE m ⁻²) ⁻¹	[58]		
γ	Parameter production	0.14		S ⁻¹	[58]		
δ	Parameter recovery	0.0	004796	S ⁻¹	[58]		
Irradiance solar incident							
E _f	Photosynthetic efficiency of solar radiation	1.7	4	μΕ J ⁻¹	[38]		
Х	Index atmospheric clarity	0.74			[38]		
ζ	Universal solar constant 1		53	W m ⁻²	[38]		
3	Hour angle		culated	Q	[36]		
ωs	Sunset hour angle		culated	ō	[36]		
ф	Latitude		served	ō	-		
δ	Sun declination		culated	ō	[36]		
Transfer of gases to the atmosphere							
K _{a,O2}	Mass transfer coefficient for oxygen			d ⁻¹	Calibrated		
K _{a,CO2}	Mass transfer coefficient for dioxide carbon			d-1	Calibrated		
K _{a,NH3}	Mass transfer coefficient for ammonia	0.7		d-1	Calibrated		

Table 4. Values of chemical parameters.

Parameters	Equations
Chemical equilibrium $CO_2 \leftrightarrow HCO_3^-$.	$K_{eq,1} = 10^{17.843 - \frac{3404.71}{273.15 + T} - 0.032786(273.15 + T)}$
Chemical equilibrium $HCO_3^- \leftrightarrow CO_3^{2-}$	$K_{eq,2} = 10^{9.494 - \frac{2902.39}{273.15 + T} - 0.02379(273.15 + T)}$
Chemical equilibrium $\mathrm{NH_4^+} \leftrightarrow \mathrm{NH_3}$	$K_{eq,3} = 10^{2.891 - \frac{2727}{(273.15 + T)}}$
Chemical equilibrium $H^+ \leftrightarrow 0H^-$	$K_{eq,w} = 10^{-\frac{4470.99}{273.15+T} + 12.0875 - 0.01706(273.15+T)}$

Kinetics parameters						
k _{eq,1}	Dissociation constant of $CO_2 \leftrightarrow HCO_3^-$.	10000	d ⁻¹	[49]		
k _{eq,2}	Dissociation constant of $HCO_3^- \leftrightarrow CO_3^{2-}$	1000	d ⁻¹	[49]		
k _{eq,3}	Dissociation constant of $\mathrm{NH_4^+} \leftrightarrow \mathrm{NH_3}$	1000	d ⁻¹	[49]		
k _{eq,w}	Dissociation constant of $H^+ \leftrightarrow OH^-$	1000	g m ⁻¹ d ⁻¹	[49]		

Table 5. Mathematical expressions of the stoichiometric coefficients of each process.

Stoichiometric coefficient	Unit
Microalgae growth on ammonia	<u>, </u>
$v_{1,1a} = -i_{N,ALG}$	gN gCOD-1
$v_{4,1a} = \frac{8i_{C,ALG}}{3} + 8i_{H,ALG} - i_{O,ALG} - \frac{12i_{N,ALG}}{7}$	gO ₂ gCOD ⁻¹
$v_{5,1a} = -i_{C,ALG}$	gC gCOD-1
$v_{8,1a} = \frac{i_{N,ALG}}{14}$	gH gCOD ⁻¹
$v_{10,1a} = 1$	gCOD gCOD ⁻¹
Microalgae growth on nitrate	
$v_{3,1b} = -i_{N,ALG}$	gN gCOD ⁻¹
$v_{4,1b} = \frac{8i_{C,ALG}}{3} + 8i_{H,ALG} - i_{O,ALG} - \frac{20i_{N,ALG}}{7}$	gO₂ gCOD ⁻¹
$v_{5,1b} = -i_{C,ALG}$	gC gCOD-1
$v_{8,1b} = -\frac{i_{N,ALG}}{14}$	gH gCOD-1
$v_{10,1b} = 1$	gCOD gCOD-1
Microalgae endogenous respiration	
$v_{1,2} = i_{N,ALG}$	gN gCOD ⁻¹
$v_{4,2} = (i_{0,ALG}) - 8(i_{H,ALG}) - \frac{8}{3}(i_{C,ALG}) + \frac{12}{7}(i_{N,ALG})$	gO ₂ gCOD ⁻¹
$v_{5,2} = i_{C,ALG}$	gC gCOD ⁻¹
$v_{8,2} = -\frac{1}{14} (i_{N,ALG})$	gH gCOD ⁻¹
$v_{10,2} = -1$	gCOD gCOD ⁻¹
Microalgae inactivation	
$v_{1,3} = i_{N,ALG}$	gN gCOD ⁻¹
$v_{4,3} = (i_{0,ALG}) - 8(i_{H,ALG}) - \frac{8}{3}(i_{C,ALG}) + \frac{12}{7}(i_{N,ALG})$	gO ₂ gCOD ⁻¹
$v_{5,3} = i_{C,ALG}$	gC gCOD ⁻¹
$v_{8,3} = -\frac{1}{14} (i_{N,ALG})$	gH gCOD ⁻¹
$v_{10,3} = -1$	gCOD gCOD-1
Chemical equilibria $CO_2 \leftrightarrow HCO_3^-$	<u> </u>
$v_{5,4} = -1$	gC gC ⁻¹
$v_{6,4} = 1$	gC gC ⁻¹
$v_{8,4} = 1/12$	gH gC ⁻¹
Chemical equilibria $HCO_3^- \leftrightarrow CO_3^{2-}$	1
$v_{6,5} = -1$	gC gC ⁻¹
$v_{7,5} = 1$	gC gC ⁻¹
$v_{8,5} = 1/12$	gH gC ⁻¹
Chemical equilibria $NH_4^+ \leftrightarrow NH_3$	1 5: 5:1
$v_{1,6} = -1$	gN gN ⁻¹
$v_{2,6} = 1$	gN gN-1
v _{8,6} = 1/14	gH gN ⁻¹
Chemical equilibria H ⁺ ↔ OH ⁻	

$v_{8,7} = 1$	gH gH ⁻¹
$v_{9,7} = 1$	gH gH ⁻¹
Oxygen transfer to the atmosphere	
$v_{4,02} = 1$	_
Carbon dioxide transfer to the atmosphere	
$v_{5,CO2} = 1$	_
Ammonia transfer to the atmosphere	
$v_{2,NH3} = 1$	_

Table 6. Values of fraction of carbon, hydrogen, oxygen and nitrogen in microalgae biomass.

Parameter	Description	Value	Unit	Source	
Fractions of microalgal biomass					
i _{C,ALG}	Fraction of carbon in microalgae	0.387	gC gCOD ⁻¹	[49]	
i _{H,ALG}	Fraction of hydrogen in microalgae	0.075	gH gCOD ⁻¹	[49]	
i _{O,ALG}	Fraction of oxygen in microalgae	0.538	gO ₂ gCOD ⁻¹	[49]	
i _{N,ALG}	Fraction of nitrogen in microalgae	0.065	gN gCOD ⁻¹	[49]	

Table 7. Values of calibrated parameters.

Parameter	Description	Value
μ_{ALG}	Maximum specific growth rate of algae	1.5 d ⁻¹
Ka, O_2	Mass transfer coefficient for oxygen	4 d ⁻¹
Ka, CO ₂	Mass transfer coefficient for carbon dioxide	0.6 d ⁻¹
Ka, NH_3	Mass transfer coefficient for ammonia	0.6 d ⁻¹

References

[36] B. Liu, R. Jordan, The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Sol. Energy 4 (3) (July 1960) 1–19.

[38] E. Molina Grima, G. Acién Fernández, Y. Chisti, Photobioreactors: light regime, mass transfer, and scaleup, J. Biotechnol. 70 (1999) 231–247.

[43] J.T. Novak, D.E. Brune, Inorganic carbon limited growth kinetics of some freshwater algae, Water Res. 19 (1985) 215–225.

1. Solimeno, A., et al., *New mechanistic model to simulate microalgae growth.* Algal Research, 2015. **12**: p. 350-358.