

(1) (2)nathongo	3 (0.0)	• (0)	4 (0:0)	- /				
	2. (9.9)	3. (0) /// mathongo	4. (210)	5. (1) /// mgthongo	6. (2) /// mathongo	7. (3) /// mgthongo	8. (3) ///. mathongo	
(2)	10. (4)							
(1) In $(1+x)^r$	n^{i} , if n is even, then t	he middle term is ($\left(\frac{n}{2}+1\right)^{th}$ term.					
So, Coefficien	t of middle term in ($\left(1+x ight)^{20}={}^{20}C_{10}$, matrioligo					
In $(1+x)^n$, if	n is odd, then the m	niddle term is $\left(\frac{n+1}{2}\right)$	$\& \left(\frac{n+3}{2}\right)^{th}$ term	/// mathonas				
So, Sum of Co	efficient of two mid	dle terms in						
$(1+x)^{19} = {}^{19}$	$C_{9}^{2}C_{10}^{20}C_{10}^{20}$	$^{20}C_{10}$						
		$\frac{1}{C_{10}} = 1$ athongo						
	$^{11} = 3^{11} \left(1 - \frac{5}{3}x\right)^{11}$	`						
Now, $m = \frac{ }{ }$	$\frac{\frac{5x}{3} (11+1)}{ -\frac{5x}{3} + 1} = \frac{\frac{1}{3} \times 12}{\frac{4}{3}} =$	= 3. mathongo						
⇒ The greates	t terms in the expan	sion are T_3 and T_4						
Greatest term Z	$T_3 = T_{2+1}$ thongo							
$= 3^{11} \Big ^{11} C_2 \Big(-$	/							
$=3^9 imes{}^{11}C_2=$	$=\left(rac{11 imes10}{2} imes3^3 ight) imes3^6$							
=55 imes27 imes(5) $\Rightarrow\lambda=55 imes2$,							
$\Rightarrow \frac{\lambda}{150} = 9.9$								
(0) Here, n = 1	10, which is even.							
Middle term =	$=\left(\frac{10}{2}+1\right)^{\text{th}}$ term =	= 6 th term						
$\mathrm{T}_6={}^{10}\mathrm{C}_5ig(rac{1}{\mathrm{x}}$	$\int_{0}^{5} (x \sin x)^{5}$							
$\Rightarrow \frac{63}{5} = 252(s)$	$\sin x)^5$							
•								
$\Rightarrow (\sin x)^5 = ($	(-)							
$\Rightarrow \sin x = \frac{1}{2}$ $\Rightarrow 2\sin x - 1 =$	/// mathongo							
	$egin{array}{l} -0 \ \mathrm{nx} -2 = & (2\mathrm{sinx} -1) \end{array}$	$(3\sin x + 2) = 0$						
$\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}\right)$	$\frac{x-1}{x-x^{1/2}}$							
$=\left(\left(x^{1/3}+1 ight)$	$-\left(\frac{x^{1/2}+1}{x^{1/2}}\right)^{10}$							
$= \left(x^{1/3} - \frac{1}{x^{1/3}}\right)$	-)10							
Now the $(r+1)$	$1)^{th}$ Term							
$T_{r+1} = {}^{10}C_r (x$	$\left(-rac{1}{x^{1/2}} ight)^{10-r}\cdot\left(-rac{1}{x^{1/2}} ight)^{r}$							
For independent	nt term							
$\Rightarrow T_5 = {}^{10}C_4 :$								
(1)								
To get sum of		0. Given that sum of	f coefficients is 64					
$2^n = 64 \Rightarrow n$		ia 6 <i>C</i>						
Now given tha	t $T_4 - T_3 = 6 - 1$ =	is °C ₃ . mathongo						
8	$^{3}\left(3^{rac{5x}{4}} ight)^{3}-{}^{6}C_{2}\left(3^{rac{-x}{4}} ight)^{3}$							

Alls	ver neys and solutions					JEE Main Crasii	Course
6.	(2) thongo /// mathongo /// mathongo						
	$P + \beta = \left(\sqrt{2} + 1\right)^n$ (1) where p in integer and β is fraction.						
	$\beta^1 = \left(\sqrt{2} - 1\right)^n$ β^1 will be fraction math(2) mathons added (1) & (2)						
	$p+eta+eta^1=\left(\sqrt{2}+1 ight)^n+\left(\sqrt{2}-1 ight)^n \ dots\ eta^k\ eta^1\in(0,1) \ egin{array}{c} eta+eta^1 \ =1 \end{array} \ ext{(integral Part of }eta+eta^1) \end{array}$						
	$P+1 = \left(\sqrt{2} + 1\right)^{6} + \left(\sqrt{2} - 1\right)^{6}$ mathona						
	$P+1 = 2\left[\left(\sqrt{2}\right)^{6} = {}^{6}C_{2}\left(\sqrt{2}\right)^{4} + {}^{6}C_{4}\left(\sqrt{2}\right)^{2} + {}^{6}C_{4}\left(\sqrt{2}\right$						
	$P+1 = 2 \times [8+60+30+1]$ = 2 × 99 P+1 = 198 mathongo mathongo						
7.	$\Rightarrow P = 197$ (3) General term in the expansion of						
	(3) General term in the expansion of $\left(1+3x+2x^2\right)^6 = \Sigma \frac{6!}{r_1! r_2! r_3!} (1)^{r_1} (3x)^{r_2} \left(2x^2\right)^{r_3}$ Where $r_1+r_2+r_3=6\ldots(i)$						
	For coefficient of x^{11} , we have $r_2+2\ r_3=11\ldots(ii)$ Now, from Eqs. $(i),(ii)$, we get						
	For $r_3=5$, $r_1=0$						
	And $r_2 = 1$ \therefore Coefficient of $x^{11} = \frac{6!}{0!1!5!} (1)^0 (3)^1 (2)^5$ $= 6 \times 3 \times 2^5 = 18 \times 32 = 576$						
8. ///.	(3) Given expansion: $(x+y^2)^{13} + (x^2+y)^{14}$						
	Total no. of terms = no. of terms in $(x+y^2)^{13}$ - No of terms in $(x+y^2)^{13} = 14$	$+$ no. of terms in $(x^2 -$					
	For common terms, powers of x and y must be same	i.e., power of x and y in	the terms of $(x \dashv$	$+y^2\big)^{13} = \text{power of } 3$	x and y in the terms	of $\left(x^2+y\right)^{14}$	
	$\Rightarrow x^{r_1} (y^2)^{13-r_1} = (x^2)^{r_2} (y)^{14-r_2}$ Comparing powers of x and y on both sides, we get						
	$r_1=2r_2$ \dots (1) and though m mathons m mathons $26-2r_1=14-r_2$ \dots (2)						
	Solving (1) and (2) $r_1=8$ and $r_2=4$ Hence, we have only one ordered pair (r_1, r_2) for w \therefore No. of common terms $=1$	hich terms are common.					
///. 9.	Hence, Total terms = $14 + 15 - 1 = 28$ (2) $\left(1 - \frac{2}{x} + \frac{4}{x^2}\right)^n$ as the question is having three v	mathongo // ariables the total number	mathongo of terms would b	///. mathongo			
	$\frac{(n+1)(n+2)}{1.2} \text{ which is equal to } 28$ $\therefore (n+1)(n+2) = 56$ Which gives $n=6$, and sum of coefficients would be						

Answer Keys and Solutions

10.			mathongo ${}^1C_3+\ldots+{}^{21}$										
	$-(10C_{1} \pm 10C_{2})$	$C_2 + {}^{10}C_2 + {}^{10}C_2$	$^{0}C_{3}+\ldots+^{10} \ +^{21}C_{3}+\ldots+$	C_{ro}	$_{0}+^{21}C_{11}+\ldots$	$+^{21}$	$C_{20}ig] - ig(2^{10} - 1$) ///.					
	$= 2^{20} - 1 - 2$ $= 2^{20} - 2^{10}.$	2 ¹⁰ +	1 mathongo										