MATH 477/577. DUE OCT. 2	Name:
Homework/Computer Assignment	ID:
Homework set # 3	
	D ате:

Please read lecture 9, 10, 11, 12 and 13 in your textbook and review your lecture notes. Graduate students do problems with a star ONLY; undergraduate students do problems without a star ONLY. There are three computer problems in the assignment, please start to work on these problems **as soon as you can.**

Question 1.

One more practice on QR factorization

Let $A \in \mathbb{C}^{m \times n}$, m > n, rank A = n.

- (a): Show that the operation count for modified GS is also $2mn^2$ (same as the classical GS).
- (b*): In class, I showed an example of $A_{3\times3}$ and the modified GS can be described in matrix multiplications $AR_1R_2R_3 = Q$ with $R = (R_1R_2R_3)^{-1}$, all Rs are upper triangular matrices with positive diagonal elements. Show that the classical GS can also be expressed in matrix multiplication form.

Question 2.

Fundamental concepts on Householder reflection

- (a): Problem 10.1 and 10.4
- (b*): Problem 10.1 and 10.4.

Question 3.

Perturbed by a rank-one matrix (for both undergraduates and graduates). let $||x||_2 = 1$ and $U = I - 2xx^*$,

- (a) show that $U^2 = I$,
- (b) if $x^*x = 2$, what is $(I xx^*)^{-1}$?
- (c) show that $I xx^*$ is singular iff $x^*x = 1$, find the inverse in all nonsingular cases.

Question 4.

Fundamental concepts on Condition numbers

- (a): Find the condition number of the addition of the two components of vector $x = (x_1, x_2)$:
- $f(x) = x_1 + x_2$ and the multiplication, $f(x) = x_1 * x_2$. explain your results.
- (b*): Let $A \in \mathbb{R}^{100 \times 100}$ be a lower bi-diagonal matrix that entries on the main diagonal are $\frac{1}{2}$ and the entries on the sub-diagonal is -1. Note that det(A) is very small and this matrix is close to singular. Show that there is an element in A^{-1} is 2^{100} and the condition number of this matrix using ∞ norm $\kappa(A)_{\infty} > 2^{101}$. hint: consider matrix of cofactors, i.e. an adjugate matrix.

(c*): Problem 12.1.

Computer Assignment #3 for ALL students: If you are new to Matlab, please go through

the Matlab Demos by first clicking the Matlab icon on the computer desktop, then clicking the "Demos" under the "Help" menu.

- (1): Do problem 8.2.
- (2): Do problem 10.2.
- (3): Do problem 11.3.