Théorie des Langages Rationnels The Pumping Lemma

Adrien Pommellet, LRE

March 29, 2023

Rationality and decidability

Theorem

Rational languages are decidable.

Proof. Given a rational language $L \in \mathsf{Rat}_{\Sigma}$, there exists a DFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$. And for any word $w \in \Sigma^*$ we can decide whether \mathcal{A} accepts a word or not. Thus L is decidable.

Do **non-rational yet decidable** languages exist?

A word too long

What if a DFA \mathcal{A} with n states accepts a word w of length |w| > n?

By the **pigeonhole principle**, w must visit a state q of \mathcal{A} at least twice, hence the following path such that $w = x \cdot y \cdot z$ and $y \neq \varepsilon$.

Finding a loop

There is therefore a **loop** in A of which q is part.

As a consequence, \mathcal{A} also accepts $x \cdot z$, $x \cdot y^2 \cdot z$, $x \cdot y^3 \cdot z$, and any word that follows the regular pattern $x \cdot y^* \cdot z$.

Formalizing the property

This property of automata can be generalized to rational languages:

Lemma (Pumping lemma)

Given a rational language $L \in \mathsf{Rat}_{\Sigma}$, there exists a **pumping threshold** $n_0 \in \mathbb{N}^*$ such that for any word $w \in L$ of length $n \geq n_0$, there exist three words $x, y, z \in \Sigma^*$ such that $w = x \cdot y \cdot z$, $y \neq \varepsilon$, and $\mathcal{L}(x \cdot y^* \cdot z) \subseteq L$.

Proof. It has been proven that there exists a DFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$. If \mathcal{A} has n states, then any $n_0 > n$ is a suitable pumping threshold.

A long sought-after example

Theorem

The language $L = \{a^n b^n \mid n \in \mathbb{N}\}$ on the alphabet $\Sigma = \{a, b\}$ is **decidable** but **not rational**.

Proof. We will prove that L is not rational by **contradiction**. Let us assume that L is rational.

Then the pumping lemma applies to L.

A tricky split

Let n_0 be a pumping threshold of L and consider $w = a^{n_0}b^{n_0}$. Since w is of length greater than n_0 , it can be iterated upon.

Thus, there exist three words $x, y, z \in \Sigma^*$ such that $w = x \cdot y \cdot z, y \neq \varepsilon$, and $\mathcal{L}(\mathbf{x} \cdot \mathbf{y}^* \cdot \mathbf{z}) \subseteq L$.

Now consider the three following cases:

- There are more a's than b's in y.
- 2 There are as many a's as bs in y.
- 3 There are more b's than a's in y.

aaabbb

aaabbb

aaabbb

Handling the first case

Let us assume that there are more a's than b's in y: y is then of the form $y = a^u b^v$ where u > v.

Since $w = x \cdot y \cdot z \in L$, $|w|_a = |w|_b$, hence:

$$|x|_a + u + |z|_a = |x|_b + v + |z|_b$$

However, by the pumping lemma, $w' = x \cdot y^2 \cdot z \in L$. Thus:

$$|w'|_{a} = |w'|_{b}$$

$$|x|_{a} + 2u + |z|_{a} = |x|_{b} + 2v + |z|_{b}$$

$$u = v$$

But $\mu > \nu$ and there is a contradiction.

Handling the third case

Intuitively, if $w = a \cdot aa \cdot bbb$, then $w' = a \cdot aa \cdot aa \cdot bbb$ has 5 a's and 3 b's, hence is obviously not in L.

The third case is obviously similar to the first case.

Handling the second case

Let us assume that there are as many a's as bs in y: y is then of the form $y = a^u b^u$.

By the pumping lemma, $w' = x \cdot y^2 \cdot z = x \cdot a^u b^u \cdot a^u b^u \cdot z \in L$.

But a a can't follow a b in a word of L and there is a contradiction.

The three cases all lead to a contradiction. Thus L can't be rational.

Practical Application

Exercise 1. Prove that the language $L = \{a^n b^n \mid n \in \mathbb{N}\}$ on the alphabet $\Sigma = \{a, b\}$ is **decidable**.

Answer

Consider the following algorithm on an input $w \in \Sigma^*$ that **decides** L:

```
0:
   def algo(w):
1:
  if (len(w) == 0):
2:
      return true
3: i, n = 0
4: while (w[i] == a):
5:
    i, n = i+1, n+1
6: while (w[i] == b):
7:
    i, n = i+1, n-1
8:
    if (i == len(w)) and (n == 0):
9:
      return true
10:
   else:
11:
   return false
```

The intuition

A rational language is recognized by an algorithm that uses a constant amount of memory that does not depend on the size of the input.

Each state of the DFA represents a possible configuration of the memory.

The language L here requires a **counter** n that can take unbounded values, hence can't be rational.

An important remark

A language may follow the pumping lemma yet **not be** rational!

Practical Application

Exercise 2. Prove that the language $L_1 = \{n \in \mathbb{N} \mid 3 \text{ divides } n\}$ on the alphabet $\Sigma = \{0, \dots, 9\}$ is **rational**.

Answer I

An integer is a multiple of three if and only if the **sum of his digits** is a multiple of 3 as well.

Our intuition is therefore to read the input integer from left to right, updating the sum modulo 3 of its digits each time a digit is read.

We will need to design a DFA with only **three** states: one for each possible remainder of the sum.

Answer II

The following DFA accepts L_1 :

Practical Application

Exercise 3. Prove that the language L_2 of words on the alphabet $\Sigma = \{a, b\}$ that have an even number of a's and an odd number of b's is rational.

Answer I

In a similar fashion, we keep count of the number of a's modulo 2 and the number of b's modulo 2 using **two different bits**.

We will need to design a DFA with only **four** states: we encode on two bits relevant information kept in memory.

Answer II

The following DFA accepts L_2 :

See you next class!