Design and Analysis of Algorithms Lecture-1: Introduction

Prof. Eugene Chang

Class Web Site

http://class.svuca.edu/~eugene.chang/class/CS502 2015 Fall/

Instructor: eugene.chang@svuca.edu

Grader:

12:30 — 3:30 <u>140301071@svuca.edu</u> (Aishwarya Sukumaran)

4 – 7 <u>130301044@svuca.edu</u> (Srujana Ramanam)

SVU CS502

Overview

- Class logistics and policies
- Introduction
 - Why should you study algorithms
 - What is an algorithm
 - Correctness and efficiency
 - Examples: Insertion sort
- Lecture materials are shared with Prof K. K. Low
- Part of the slides are based on material from Prof. Jianhua Ruan, The University of Texas at San Antonio, and Prof. Jennifer Welch, Texas A&M University

About Myself

- Me: Yuh-Lin Eugene Chang, originally from Taiwan
- MS from UCSB, PhD Computer Engineering from U of Texas Austin
- 22 years industry R&D (1993–now)
 - Large companies such as Panasonic, LG, and Intel
 - Small startups in SOC
 - Currently CTO of emReal Corp., working on e-commerce and mobile software
- Teaching
 - With SVU since 2008
 - Also teach Machine Learning and Data Mining

Class Structures

Textbook

• Introduction to Algorithms, Third Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Publisher: MIT Press (July 31, 2009). ISBN-10: 0262033844. ISBN-13: 978-0262033848

Course focus

- Algorithm analysis
- Sorting algorithms
- Data structures
- Optimization

Grades

Homework 30%, Midterm 25%, Final 35%, Others 10%

Course website

- http://class.svuca.edu/~eugene.chang/class/CS502 2015 Fall/
- Lecture notes, homework assignments, and solutions will be posted

Teaching Plan (subject to change)

Week	Topic	Reading/Homework/Case Assignment
1 (Sep 12)	Introduction	Ch. 1, Ch. 2
2	Asymptotic Analysis	Ch. 3, (HW-1)
3	Divide-and-Conquer	Ch. 4
4	Heapsort	Ch. 6, (HW-2)
5	Quicksort	Ch. 7
6	Sorting in Linear Time	Ch. 8, (HW-3)
7	Midterm Review	Class Notes
8 (Oct 31)	Mid-Term Exam	
9	Data Structures, Hash Tables	Ch. 10, Ch. 11
10	Binary Search Tree	Ch. 12, (HW-4)
11	Dynamic Programming	Ch. 15
12	Greedy Algorithms	Ch. 16, (HW-5)
13	Greedy Algorithms	Ch. 16
14	Final Review	Class Notes
15 (Dec 19)	Final Exam	

Class Policies

- Homework submission
 - Submit in e-mail form to the grader on the due date
 - 25% penalty each additional day after the submission deadline
 - Submission will not be accepted once the solution is posted online
- Exams
 - Close book, close note
 - Cannot be made up, cannot be taken early, and must be taken in class at the scheduled time. Proofs are needed for exceptions or true emergencies
- Cheating
 - Will not be tolerated!
 - Cheating in an exam will result in failing the course
- Attendance will be taken every lecture and counted as part of the grades

What is an algorithm?

- An algorithm is a sequence of computational steps that transform the input into the output
- An algorithm is a step-by-step procedure to solve a problem
- Every program is the instantiation of some algorithms
 - Algorithm1 + algorithm2 + ..., + algorithmN → Program
- Algorithm is the thing that stays the same regardless of programming language and the computing hardware

What kinds of problems are solved by algorithms?

- The Human Genome Project
- The Internet
- Electronic commerce
- Optimization of resource allocation for manufacturing and other commercial enterprises
- Human face detection and recognition
- Stock prediction and trading
- Many others

Why Study Algorithms

- There are only a handful of classical problems
 - Nice algorithms have been designed for them
- If you know how to solve a classical problem (e.g., the shortest-path problem), you can use it to do a lot of different things
 - Abstract ideas from the classical problems
 - Map your requirement to a classical problem
 - Solve with classical algorithms
 - Modify it if needed
- Learn meta algorithms to design new algorithms
 - A meta algorithm is a class of algorithms for solving similar abstract problems
 - There are only a handful of them, e.g. divide and conquer, greedy algorithm, dynamic programming
 - Learn the ideas behind the meta algorithms to design new ones

Modeling the Real World

• Cast your application in terms of well-studied abstract data structures

Concrete	Abstract
arrangement, tour, ordering, sequence	permutation
cluster, collection, committee, group, packaging, selection	subsets
hierarchy, ancestor/descendants, taxonomy	trees
network, circuit, web, relationship	graph
sites, positions, locations	points
shapes, regions, boundaries	polygons
text, characters, patterns	strings

Some Important Problem Types

- Sorting
 - a set of items
- Searching
 - among a set of items
- String processing
 - text, bit strings, gene sequences
- Graphs
 - model objects and their relationships

- Combinatorial
 - find desired permutation, combination or subset
- Geometric
 - graphics, imaging, robotics
- Numerical
 - continuous math: solving equations, evaluating functions

Algorithm Design Techniques

- Brute Force & Exhaustive Search
 - follow definition / try all possibilities
- Divide & Conquer
 - break problem into distinct subproblems
- Transformation
 - convert problem to another one

- Dynamic Programming
 - break problem into overlapping subproblems
- Greedy
 - repeatedly do what is best now
- Iterative Improvement
 - repeatedly improve current solution
- Randomization
 - use random numbers

How to express algorithms?

Increasing precision

Nature language (e.g. English)

Pseudocode

Real programming languages

Ease of expression

Describe the *ideas* of an algorithm in nature language.

Use pseudocode to clarify sufficiently tricky details of the algorithm.

9/12/2015

How to express algorithms?

Increasing precision

Nature language (e.g. English)

Pseudocode

Real programming languages

To understand / describe an algorithm:

Ease of expression

Get the big idea first.

Use pseudocode to clarify sufficiently tricky details

Example: sorting

- Input: A sequence of N numbers a₁...a_n
- Output: the permutation (reordering) of the input sequence such that $a_1 \le a_2 \dots \le a_n$.
- Possible algorithms you've learned so far
 - Insertion, selection, bubble, quick, merge, ...
 - More in this course
- We seek algorithms that are both correct and efficient

Insertion Sort

9/12/2015

```
InsertionSort(A, n) {
  for j = 2 to n \{
         ▶ Pre condition: A[1..j-1] is sorted
           1. Find position i in A[1..j-1] such that A[i] ≤ A[j] < A[i+1]
           2. Insert A[j] between A[i] and A[i+1]
           ▶ Post condition: A[1..j] is sorted
                                                   pick I member in the unsorted
partition & insert into the sorted
partition orderly
                                         move fest to right gradually
                       sorted
                                     SVU CS502
                                                                                           17
```

Insertion Sort

```
InsertionSort(A, n) {
 for j = 2 to n {
    key = A[j];
    while (i > 0) and (A[i] > key) {
         A[i+1] = A[i];
         i = i - 1;
    A[i+1] = key
            sorted
                   SVU CS502
```

9/12/2015

Correctness

- What makes a sorting algorithm correct?
 - In the output sequence, the elements are ordered nondecreasingly
 - Each element in the input sequence has a unique appearance in the output sequence
 - [2 3 1] => [1 2 2] X
 - [2 2 3 1] => [1 1 2 3] X

Correctness

- For any algorithm, we must prove that it always returns the desired output for all legal instances of the problem.
- For sorting, this means even if (1) the input is already sorted, or (2) it contains repeated elements.
- Algorithm correctness is NOT obvious in some problems (e.g., optimization)

How to prove correctness?

• Given a concrete input, eg. <4,2,6,1,7> trace it and prove that it works.

- Given an abstract input, eg. <a₁, ... a_n> trace it and prove that it works.
- Sometimes it is easier to find a counterexample to show that an algorithm does NOT work.
 - Think about all small examples
 - Think about examples with extremes of big and small
 - Think about examples with ties
 - Failure to find a counterexample does **NOT** mean that the algorithm is correct

- Suppose
 - S(k) is true for fixed constant k
 - Often k = 0 or 1
 - $S(n) \rightarrow S(n+1)$ for all $n \ge k$
- Then S(n) is true for all n >= k

Proof By Induction

- Claim: S(n) is true for all n >= k
- Basis:
 - Show formula is true when n = k
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Step:
 - Show that formula is then true for n+1

Induction Example: Gaussian Closed Form

- Prove 1 + 2 + 3 + ... + n = n(n+1) / 2
 - Basis:
 - If n = 0, then 0 = 0(0+1) / 2
 - Inductive hypothesis:
 - Assume 1 + 2 + 3 + ... + n = n(n+1) / 2
 - Step (show true for n+1):

```
1 + 2 + ... + n + n+1 = (1 + 2 + ... + n) + (n+1)
= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2
= (n+1)(n+2)/2 = (n+1)(n+1+1)/2
```

Induction Example: Geometric Closed Form

- Prove $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$ for all $a \ne 1$
 - Basis: show that $a^0 = (a^{0+1} 1)/(a 1)$ $a^0 = 1 = (a^1 - 1)/(a - 1)$
 - Inductive hypothesis:
 - Assume $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$
 - Step (show true for n+1):

$$a^{0} + a^{1} + ... + a^{n+1} = a^{0} + a^{1} + ... + a^{n} + a^{n+1}$$

= $(a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1+1} - 1)/(a - 1)$

9/12/2015 SVU CS502 25

Induction

- We've been using weak induction
- Strong induction also holds
 - Basis: show S(0)
 - Hypothesis: assume S(k) holds for arbitrary k <= n
 - Step: Show S(n+1) follows
- Another variation:
 - Basis: show S(0), S(1)
 - Hypothesis: assume S(n) and S(n+1) are true
 - Step: show S(n+2) follows

An Example: Insertion Sort

```
InsertionSort(A, n) {
 for j = 2 to n {
      key = A[j];
i = j - 1;
      ☐ Insert A[j] into the sorted sequence A[1..j-1]
      while (i > 0) and (A[i] > key) {
    A[i+1] = A[i];
      A[i+1] = key
                            Key
                sorted
                          SVU CS502
```

9/12/2015 27

Example of insertion sort

9/12/2015

Use loop invariants to prove the correctness of loops

- A loop invariant (LI) is a formal statement about the variables in your program which holds true throughout the loop
- Claim: at the start of each iteration of the for loop, the subarray
 A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted
 order.
- Proof by induction
 - Initialization: the LI is true prior to the 1st iteration
 - Maintenance: if the LI is true before the j^{th} iteration, it remains true before the $(j+1)^{th}$ iteration
 - Termination: when the loop terminates, the LI gives us a useful property to show that the algorithm is correct

9/12/2015 SVU CS502 29

Prove correctness using loop invariants

9/12/2015 SVU CS502 30

Initialization

```
InsertionSort(A, n)
                                          Subarray A[1] is sorted. So
  for j = 2 to n {
                                          loop invariant is true before the
       key = A[j];
i = j - 1;
                                          loop starts.
        ▷ Insert A[j] into the sorted sequence A[1..j-1]
       while (i > 0) and (A[i] > key) {
    A[i+1] = A[i];
    i = i - 1;
       A[i+1] = key
              Loop invariant: at the start of each iteration of the for
              loop, the subarray A[1..j-1] consists of the elements
              originally in A[1..j-1] but in sorted order.
```

Maintenance

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

```
InsertionSort(A, n)
  for j = 2 to n {
       key = A[j];
i = j - 1;
                                         Assume loop variant is true
                                         prior to iteration j
        ▷ Insert A[j] into the sorted sequence A[1..j-1]
       while (i > 0) and (A[i] > key) {
    A[i+1] = A[i];
    i = i - 1;
                     = key
                                         Loop variant will be true
                                         before iteration j+1
                                <sup>SVU CS50</sup> Key
                        sorted
```

9/12/2015

Termination

Loop invariant: at the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

```
InsertionSort(A, n) {
 for j = 2 to n {
       key = A[j];
i = j - 1;
                                      The algorithm is correct!
       ▷ Insert A[j] into the sorted sequence A[1..j-1]
      while (i > 0) and (A[i] > key) {
    A[i+1] = A[i];
    i = i - 1;
       A[i+1] = key
                                       Upon termination, A[1..n]
                                       contains all the original
                                       elements of A in sorted order.
                                                           n = n+1
                             Svu cs502
Sorted
                                                                        33
```

Efficiency

- Correctness alone is not sufficient
- Brute-force algorithms exist for most problems
- To sort *n* numbers, we can enumerate all permutations of these numbers and test which permutation has the correct order
 - Why cannot we do this?
 - Too slow!
 - By what standard?

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, function calls
 - Constant word size
 - Unless we are explicitly manipulating bits

How to measure complexity?

- Raw running time is not a good measure
 - It depends on input
 - It depends on the machine you used and who implemented the algorithm
- We would like to have an analysis that does not depend on those factors

n (list size)	Computer A run-time	Computer B run-time
15	7	100,000
65	32	150,000
250	125	200,000
1,000	500	250,000
•••	•••	•••
1,000,000	500,000	500,000
4,000,000	2,000,000	550,000
16,000,000	8,000,000	600,000

Machine-independent

- A generic uniprocessor random-access machine (RAM) model
 - No concurrent operations
 - Each simple operation (e.g. +, -, =, *, if, for) takes 1 step.
 - Loops and subroutine calls are not simple operations.
 - All memory equally expensive to access
 - Constant word size
 - Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
 - This is generally a function of the input size
 - E.g., sorting, multiplication
 - How we characterize input size depends:
 - Sorting: number of input items
 - Multiplication: total number of bits
 - Graph algorithms: number of nodes & edges
 - Etc

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - y = m * x + b
 - c = 5 / 9 * (t 32)
 - z = f(x) + g(x)
- We can be more exact if need be

Asymptotic Analysis

- Running time depends on the size of the input
 - Larger array takes more time to sort
 - T(n): the time taken on input with size n
 - Look at **growth** of T(n) as $n \rightarrow \infty$.

"Asymptotic Analysis"

- Size of input is generally defined as the number of input elements
 - In some cases may be tricky

Running time of insertion sort

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Kinds of analyses

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Best case not very useful
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

Analysis of insertion Sort

```
InsertionSort(A, n) {
  for j = 2 to n {
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
          A[i+1] = A[i]
          i = i - 1
     }
     A[i+1] = key
}
How many times will
this line execute?
```

9/12/2015 SVU CS502 43

Analysis of insertion Sort

```
InsertionSort(A, n) {
    for j = 2 to n {
        key = A[j]
        i = j - 1;
        while (i > 0) and (A[i] > key) {
              A[i+1] = A[i]
              i = i - 1
        }
        A[i+1] = key
    }
}
How many times will this line execute?
```

9/12/2015 SVU CS502 44

Analysis of insertion Sort

```
Statement
                                                       cost time
InsertionSort(A, n) {
 for j = 2 to n \{
                                                               n
                                                       C_1
       key = A[j]
                                                               (n-1)
                                                       C_2
       i = j - 1;
                                                               (n-1)
                                                       C_3
       while (i > 0) and (A[i] > key) {
                                                               S
               A[i+1] = A[i]
                                                               (S-(n-1))
                                                       C_5
               i = i - 1
                                                               (S-(n-1))
                                                       \mathsf{C}_6
       }
                                                       0
       A[i+1] = key
                                                               (n-1)
                                                       C_7
                                                       0
 S = t_2 + t_3 + ... + t_n where t_i is number of while
 expression evaluations for the jth for loop iteration
```

45

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 S + c_5 (S (n-1)) + c_6 (S (n-1)) + c_7 (n-1)$ = $c_8 S + c_9 n + c_{10}$
- What can S be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow S = n 1$
 - T(n) = an + b is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = j \rightarrow S = 2 + 3 + ... + n = n(n+1)/2 1$
 - $T(n) = an^2 + bn + c$ is a quadratic function
 - Average case
 - Can assume that on average, we have to insert A[j] into the middle of A[1..j-1], so $t_{\rm j}$ = j/2
 - $S \approx n(n+1)/4$
 - T(n) is still a quadratic function

Asymptotic Analysis

- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
 - Highest-order term is what counts
 - As the input size grows larger it is the high order term that dominates

Comparison of functions

	log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ	n!
10	3.3	10	33	10 ²	10 ³	10 ³	10 ⁶
10 ²	6.6	10 ²	660	104	10 ⁶	1030	10 ¹⁵⁸
10 ³	10	10 ³	104	10 ⁶	10 ⁹		
104	13	104	10 ⁵	108	10 ¹²		
10 ⁵	17	10 ⁵	10 ⁶	10 ¹⁰	10 ¹⁵		
10 ⁶	20	10 ⁶	10 ⁷	10 ¹²	10 ¹⁸		

For a super computer that does 1 trillion operations per second, it will be longer than 1 billion years

Order of growth

 $1 << log_2 n << n << n log_2 n << n^2 << n^3 << 2^n << n!$

(We are slightly abusing of the "<<" sign. It means a smaller order of growth).

Asymptotic Performance

- In this course, we care most about asymptotic performance
 - How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- By now you should have an intuitive feel for asymptotic (big-O) notation:
 - What does O(n) running time mean? $O(n^2)$? $O(n \log n)$?
 - How does asymptotic running time relate to asymptotic memory usage?
- Our task is to define this notation more formally and completely
 - Job for the next lecture

Practice: Analyze this...

```
AllUnique(A[1..n])
for I = 1 to n
for j = 1 to n
if A[i] = A[j] and i \neq j return false
return true
```

Best case?
Worst case?
Average case?

Analyze this...

```
AllUnique(A[1..n]) for I = 1 to n  for j = 1 to n \\ if A[i] = A[j] and i \neq j return false \\ return true
```

Average case?
Quit halfway through, O(n*n/2)
Still O(n²)
Often, Average case = Worst case.

Analyze this...

```
AllUnique(A[1..n])
for I = 1 to n
    for j = i to n
    if A[i] = A[j] return false
return true
```

9/12/2015

SVU CS502

54

Analyze this...

```
\begin{aligned} & \text{AllUnique}(A[1..n]) \\ & \text{for I = 1 to n} \\ & \text{for j = i to n} \\ & \text{if A[i] = A[j] return false} \\ & \text{return true} \end{aligned}
```

$$n + (n-1) + (n-2) + ... + 3 + 2 + 1 = n(n+1)/2 \rightarrow Still O(n^2)$$

9/12/2015

Extra Material


```
i = \emptyset j = \emptyset key = \emptyset

A[j] = \emptyset A[j+1] = \emptyset
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 10

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

```
    10
    30
    40
    20

    1
    2
    3
    4
```

```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

```
10 20 30 40 i = 4 \quad j = 1 \quad key = 20
A[j] = 10 \quad A[j+1] = 20
InsertionSort(A, n) {
for i = 2 to n {
    key = A[i]
    j = i - 1
    while (j > 0) and (A[j] > key) {
        A[j+1] = A[j]
        j = j - 1
}
```

A[j+1] = key

SVU CS502

```
    10
    20
    30
    40

    1
    2
    3
    4
```

```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```