Quadro resumo das distribuições das estatísticas amostrais

Parâmetro a estimar	σ^2 conhecido?	Tipo de população	Dimensão da amostra	Variável fulcral e correspondente distrbuição amostral
μ	Sim	Normal	Qualquer	
		Qualquer	n > 30	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ $\frac{\overline{X} - \mu}{S' / \sqrt{n}} \sim t_{(n-1)}$
	Não	Normal	<i>n</i> ≤ 30	$\frac{\overline{X} - \mu}{S' / \sqrt{n}} \sim t_{(n-1)}$
		Normal ou outra	n > 30	$\frac{\overline{X} - \mu}{S / \sqrt{n}} \stackrel{\sim}{\sim} N(0,1)$ $(n-1) \frac{S'^2}{\sigma^2} \sim \chi^2_{(n-1)}$
σ^2		Normal	Qualquer	$(n-1)\frac{S'^2}{\sigma^2} \sim \chi^2_{(n-1)}$
р		Bernoulli	n > 30	$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1)$
$\mu_1 - \mu_2$	$\sigma_{\!\scriptscriptstyle 1}^{^2}$ e $\sigma_{\!\scriptscriptstyle 2}^{^2}$ conhecidas	Normais	Quaisquer	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
$\mu_1 - \mu_2$	$\sigma_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}$ e $\sigma_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}$ desconhecidas	Normais ou outras	$n_1 > 30 \text{ e } n_2 > 30$	$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \sim N(0,1)$
$\mu_1 - \mu_2$	$\sigma_1^2 \ \ \text{e} \ \ \sigma_2^2$ desconhecidas $(\sigma_1^2 = \sigma_2^2)$	Normais	$n_1 \le 30 \text{ e } n_2 \le 30$	$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{(n_{1} - 1).S_{1}^{\prime 2} + (n_{2} - 1)S_{2}^{\prime 2}}{n_{1} + n_{2} - 2}} \cdot \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} \sim t_{n_{1} + n_{2} - 2}$
$p_1 - p_2$		Bernoulli	$n_1 > 30 \text{ e } n_2 > 30$	$\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \stackrel{\sim}{\sim} N(0, 1)$
$rac{\sigma_{ exttt{1}}^{2}}{\sigma_{ exttt{2}}^{2}}$		Normais	Quaisquer	$\left(\frac{S_1'^2}{S_2'^2}.\frac{\sigma_2^2}{\sigma_1^2}\right) \sim F(n_1 - 1, n_2 - 1)$