Learning the Number of Neurons in Deep Networks

Jose M. Alvarez¹ Mathieu Salzmanno²

¹Data61 @ CSIRO, Canberra, ACT 2601, Australia

²CVLab, EPFL,CH-1015 Lausanne, Switzerland

NIPS.2016

Presenter: Arshdeep Sekhon

Motivation

- Designing a deep NN architecture
- Configure: number of layers number of units
- mostly hand-designed
- have redundant parameters

Automatic Model Selection: Constructive Approaches

- Incrementally add layers/parameters
- ② But Shallow networks are less expressive
- bad initialization when incrementally adding layers

Automatic Model Selection: Destructive Approaches

- Very Deep networks more expressive
- 2 Start from very deep networks, eliminate redundant parameters
- check influence of every parameter
- for example, check network Hessian wrt every parameter in an over complete network
- o not scalable to large networks

Automatic Model Selection

- Automatically get number of neurons for each layer
- 2 cancel effects of individual neurons
- jointly as we learn
- no preprocessing

Model Selection

- Start with an overcomplete network
- Find neurons for each layer
- A general deep network:
 L layers in network architecture
 N_I neurons in each layer
- weights $\Theta = [\theta_I, b_I]$ for layer $I \theta_I = [\theta_I^n] \ 1 \le I \le L$ and $1 \le n \le N_I$
- The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (1)

• The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (2)

@ Goal: Cancel entire neurons

1 The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (2)

- Goal: Cancel entire neurons
- $oldsymbol{0}$ traditional regularizers: ℓ_1 or ℓ_2
- cannot cancel entire neurons because they control weights individually.

The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (2)

- Qualification of the property of the proper
- $oldsymbol{0}$ traditional regularizers: ℓ_1 or ℓ_2
- cannot cancel entire neurons because they control weights individually.
- Neurons are groups of parameters
- **6** weights $\Theta = [\theta_I, b_I]$ for layer $I \theta_I = [\theta_I^n]$ $1 \le I \le L$ and $1 \le n \le N_I$

The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (2)

- @ Goal: Cancel entire neurons
- ullet traditional regularizers: ℓ_1 or ℓ_2
- cannot cancel entire neurons because they control weights individually.
- Neurons are groups of parameters
- **o** weights $\Theta = [\theta_I, b_I]$ for layer $I \theta_I = [\theta_I^n]$ $1 \le I \le L$ and $1 \le n \le N_I$
- Use new regularizer: group sparsity

Model Selection: Group Sparsity

- Parameters associated with a neuron are grouped together
- Penalty on groups of weights instead of individual weights
- \odot parameters of each neuron in layer I are grouped in a vector of size P_I
- New regularizer:

$$r(\Theta) = \sum_{l=1}^{L} \lambda_{l} \sqrt{P_{l}} \sum_{n=1}^{N_{l}} ||\theta_{n}^{l}||_{2}$$
 (3)

- \bullet θ_I^n are the parameters for neuron n in layer I
- **1** ℓ_2 norm followed by ℓ_1 norm
- \bullet λ_I sets the influence of the penalty.

Model Selection: Group Sparsity

But does not lead to sparsity within a group

$$r(\Theta) = \sum_{l=1}^{L} (1 - \alpha) \lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} ||\theta_n^l||_2 + \alpha \lambda_\ell ||\theta_\ell||_1$$
 (4)

o more general penalty that leads to sparsity both at and within group level.

Training: Proximal Gradient Descent

minimize
$$f(x) = g(x) + h(x)$$
 (5)

proximal gradient algorithm:

$$x^{k+1} = \mathbf{prox}_{t_k h} \Big(x^{k-1} - t_k (\nabla g(x^{k-1})) \Big)$$
 (6)

proximal operator:

$$\mathbf{prox}_{h}(x) = \arg\min_{u} h(u) + \frac{1}{2}||x - u||_{2}^{2}$$
 (7)

$$x^{k+1} = \arg\min_{u} \left(h(u) + \frac{1}{2t} ||u - x^{k-1} + t_k(\nabla g(x^{k-1}))||_2^2 \right)$$
 (8)

Training: Proximal Gradient Descent

The objective:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
 (9)

$$r(\Theta) = \sum_{l=1}^{L} (1 - \alpha) \lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} ||\theta_n^l||_2 + \alpha \lambda_\ell ||\theta_\ell||_1$$
 (10)

loss function is g(x) and regularizer h(x) in proximal gradient algorithm

Training: Proximal Gradient Descent

 Update: Take gradient of loss and apply proximal operator of the regularizer

$$\tilde{\theta_l^n} = \arg\min_{\tilde{\theta_l^n}} \frac{1}{2t} ||\tilde{\theta_l^n} - \hat{\theta_l^n}||_2^2 + r(\Theta)$$
 (11)

where $\hat{\theta}_{I}^{n}$ is update by gradient of loss function

This has a closed form solution:

$$\tilde{\theta}_l^n = \left(1 - \frac{t(1-\alpha)\lambda_l\sqrt{P_l}}{||S(\hat{\theta}_l^n, t\alpha\lambda_l)||_2)}\right)_+ S(\hat{\theta}_l^n, t\alpha\lambda_l)$$

$$(S(\mathbf{z}, \tau))_i = sign(z_i)(|\mathbf{z}_i| - \tau)_+$$

Experiments and Model Architectures

- Dataset: ImageNet , Places2-401
- Models:
 - VGG-B Net:10 convolutional layers followed by three fully-connected layers
 - DecomposeMe₈ (Dec₈): 16 Conv layers with 1D kernels

Experiments and Model Architectures

Table 1: Top-1 accuracy results for several state-of-the art architectures and our method on ImageNet.

Model	Top-1 acc. (%)
BNet	62.5
BNet ^C	61.1
ResNet50 ^a [He et al., 2015]	67.3
Dec ₈	64.8
Dec ₈ -640	66.9
Dec ₈ -768	68.1

Model	Top-1 acc. (%)
Ours-Bnet ^C _{GS}	62.7
Ours-Dec _{8-GS}	64.8
Ours-Dec ₈ -640 _{SGL}	67.5
Ours-Dec ₈ - 640_{GS}	68.6
Ours-Dec ₈ -768 $_{GS}$	68.0

^a Trained over 55 epochs using a batch size of 128 on two TitanX with code publicly available.

BNet ^C on ImageNet (in %)		
	GS	
neurons	12.70	
group param	13.59	
total param	13.59	
total induced	27.38	
accuracy gap	1.6	

Figure 1: Parameter reduction on ImageNet using BNet^C . (Left) Comparison of the number of neurons per layer of the original network with that obtained using our approach. (Right) Percentage of zeroed-out neurons and parameters, and accuracy gap between our network and the original one. Note that we outperform the original network while requiring much fewer parameters.