

MACHINE LEARNING BASICS TRACK – 2025 EDITION

"From zero to your first ML model."

Market Demand Note

Machine Learning (ML) is one of the most in-demand tech skills globally, powering applications from recommendations to fraud detection. Even a basic understanding of ML concepts can open career opportunities in data science, Al, and analytics. This program gives participants hands-on exposure to ML fundamentals.

Duration: 6 weeks | **Mode**: Online/Offline

Machine Learning basics Track — 2025 Edition

Table of Contents

Week 1: Introduction to Machine Learning

- What is Machine Learning?
- Real-world ML use cases
- Types of ML: Supervised, Unsupervised, Reinforcement
- Python and Jupyter Notebook setup
- Hands-on: First steps in Jupyter, loading a dataset

Week 2: Data Preparation

- Loading CSV & Excel data (Pandas)
- Data cleaning: handling missing values, outliers
- Basic feature engineering
- Hands-on: Clean and explore a dataset

Week 3: Supervised Learning – Part 1

- Linear regression basics
- Classification: introduction to logistic regression
- Model evaluation: accuracy, precision, recall
- Hands-on: Build and evaluate a regression & classification model

Week 4: Unsupervised Learning

- Clustering: K-Means basics
- Dimensionality reduction: PCA basics
- Hands-on: Apply clustering and PCA to a dataset

Week 5: Improving ML Models

- Train/test splits and cross-validation
- Avoiding overfitting
- Feature scaling: standardization and normalization
- Hands-on: Apply cross-validation, feature scaling, and assess model performance

Week 6: Final Project – Predicting House Prices

- End-to-end ML project
- Data cleaning, feature engineering, model training, evaluation, visualization
- Hands-on: Deliver a Jupyter Notebook with code, visualizations, and insights

Detailed Content

Week 1: Introduction to Machine Learning

- Understand what Machine Learning (ML) is (Computers learn from data without explicit programming; examples: spam detection, recommendation systems)
- Explore real-world ML applications (Healthcare, finance, retail, automation)
- Learn the three main types of ML:
 - Supervised Learning (labeled data, e.g., regression, classification)
 - Unsupervised Learning (unlabeled data, e.g., clustering)
 - Reinforcement Learning (learning by interaction, e.g., robotics, games)
- Set up Python, Jupyter Notebook, and essential libraries (Install Anaconda/Miniconda, create your first notebook)
- Hands-on:
 - Install Python and Jupyter Notebook
 - Load a sample dataset (e.g., iris, diabetes)
 - Write and execute your first Python code in Jupyter

Week 2: Data Preparation

- Load datasets from CSV and Excel files using Pandas
- Inspect data: head, tail, info, describe
- Handle missing values: fill, drop, impute
- Detect and handle outliers: visual and statistical methods
- Perform basic feature engineering: create new features, transform existing ones

Hands-on:

- Import and clean a real-world dataset (e.g., housing, sales)
- Practice handling missing data and outliers
- · Create and document feature engineering steps

Week 3: Supervised Learning - Part 1

- Linear Regression:
 - Understand the concept of fitting a line to data
 - Implement using scikit-learn
 - Interpret coefficients and predictions
- Logistic Regression (Classification):
 - Binary classification basics
 - Implement using scikit-learn
 - Understand decision boundaries
- Model Evaluation:
 - Accuracy, precision, recall (for classification)
 - Mean squared error, R² (for regression)
- Hands-on:
 - Train and evaluate a linear regression model
 - Train and evaluate a logistic regression model
 - Compare model performance using metrics

Week 4: Unsupervised Learning

- Clustering with K-Means:
 - Group similar data points
 - Choose the number of clusters (elbow method)
 - Interpret cluster results
- Dimensionality Reduction with PCA:
 - Reduce the number of features while preserving variance
 - Visualize high-dimensional data in 2D/3D

- Hands-on:
 - Apply K-Means to a dataset (e.g., customer segmentation)
 - Reduce dimensions using PCA and visualize the results

Week 5: Improving ML Models

- Train/Test Split:
 - . Why separate training and test data
 - Avoid data leakage
- Cross-Validation:
 - k-fold cross-validation for robust evaluation
- Avoid Overfitting:
 - Understand bias-variance tradeoff
 - Regularization basics
- Feature Scaling:
 - Standardization (Z-score normalization)
 - Normalization (Min-Max scaling)
- Hands-on:
 - Implement and compare train/test split vs. cross-validation
 - Apply feature scaling and observe impact on model performance
 - Discuss best practices to avoid overfitting

Week 6: Final Project - Predicting House Prices

- Understand the problem: Predict house prices using historical data
- Data Preparation:
 - Load, clean, and explore the dataset
 - · Perform feature engineering
- Model Training:
 - Choose and train regression models (e.g., linear regression, decision tree)
 - Evaluate using appropriate metrics

- Visualization:
 - Plot actual vs. predicted values
 - Visualize feature importances
- Documentation:
 - Write clear comments and markdown in Jupyter Notebook
 - · Present findings and insights
- Hands-on:
 - Deliver a complete Jupyter Notebook with code, visualizations, and explanations
 - Present your project to peers, explain your approach and results

Tools Covered

- Python (core programming)
- scikit-learn (ML algorithms)
- Pandas (data manipulation)
- NumPy (numerical operations)
- Matplotlib & Seaborn (data visualization)
- Jupyter Notebook (interactive coding and reporting)

Final Project Guidelines

Title: Predicting House Prices

Goal: Build a complete ML pipeline from raw data to predictions

Tasks:

- Load and clean the dataset
- Perform exploratory data analysis and feature engineering
- Train and evaluate ML models
- Visualize results and document your process
 Output: Jupyter Notebook with working code, visualizations, and a clear explanation of each step

Assessment & Certification

- Weekly assignments: Labs, quizzes, and mini projects.
- Final project: End-to-end ML solution with code, visualizations, and presentation.
- Certification: Awarded upon successful completion of all assignments and final project.