DM 5

Exercice 1 (TOMBER DANS LE CERCLE). Soit $X = (X_1, X_2)^\top, Y = (Y_1, Y_2)^\top, Z = (Z_1, Z_2)^\top$ trois vecteurs aléatoires indépendants à valeurs dans \mathbb{R}^2 de loi gaussienne standard. L'objectif de l'exercice est de montrer que la probabilité que Z tombe dans le cercle de diamètre ||Y - X|| qui passe par X et Y vaut 1/4 (où $||\cdot||$ la norme euclidienne standard sur \mathbb{R}^2).

- a) Montrer que si ε_1 et ε_2 sont deux variables aléatoires réelles i.i.d. Gaussiennes standards alors $\varepsilon_1^2 + \varepsilon_2^2$ suit une loi exponentielle Exp(1/2) de paramètre 1/2.
- b) On pose $U = (U_1, U_2, U_3, U_4)^{\top}$ où

$$U_1 = Z_1 - \frac{(X_1 + Y_1)}{2}, U_2 = Z_2 - \frac{(X_2 + Y_2)}{2}, U_3 = \frac{X_1 - Y_1}{2} \text{ et } U_4 = \frac{X_2 - Y_2}{2}.$$
 (1)

Montrer que U est un vecteur Gaussien. Déterminer sa moyenne et sa matrice de covariance. En déduire que U_1, U_2, U_3 et U_3 sont indépendantes et déterminer leurs lois.

c) Conclure à l'aide des deux questions précédentes.