Chapitre 1 Généralités sur les graphes / Notions fondamentales de la théorie des graphes

Présenté par :

Dr. H. BENKAOUHA

Bureau 222, Faculté d'Informatique, USTHB

haroun.benkaouha@usthb.edu.dz haroun.benkaouha@gmail.com

nseignant : Dr. H. BENKAOUHA Faculté d'Informatque - USTHB)

Introduction

- Un graphe est défini par 2 ensembles :
 - Un ensemble de sommets noté X
 - Un ensemble de relations entre les sommets noté *U* ou *E*. Selon le type de cette relation.
- On distingue 2 grandes classes de graphes :
 - Graphes orientés si la relation est orientée
 - Graphes non orientés dans le cas contraire

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB

Introduction - Graphe orienté

- *G*=(*X*, *U*) est défini par 2 ensembles :
- $X = \{x_1, x_2, ..., x_n\}$: Ensemble de sommets
 - n entier fini
 - -n ≥1,
 - chaque $x_i \in X$ est un sommet du graphe.
- $U = \{ u_1, u_2, ..., u_m \}$: Ensemble des arcs
 - -m ≥ 0 et fini,
 - Chaque $u_j \in U$ est une paire ordonnée de sommets $u_i = (x, y)$.
 - -x: extrémité initiale de u_i
 - -y: extrémité terminale de u_{j} .
 - − *U* peut être vide.

Enseignant : Dr. H. BENKAOUHA

Introduction – Graphe non orienté

- G=(X, E) est défini par 2 ensembles :
- $X = \{x_1, x_2, ..., x_n\}$: Ensemble de sommets
 - -n entier fini
 - $-n \ge 1$
 - chaque $x_i \in X$ est un sommet du graphe.
- $E = \{e_1, e_2, ..., e_m\}$: Ensemble des arêtes
 - $-m \ge 0$ et fini,
 - Chaque $e_j \in E$ est une paire non ordonnée de sommets
 - $-e_i = \{x, y\} = \{y, x\}.$
 - -x et y: extrémités de e_i
 - − E peut être vide.

Enseignant : Dr. H. BENKAOUHA

Introduction - Représentation

- Il n'y a pas vraiment de standard
- Généralement
 - sommet par un point ou un cercle
 - Un arc par une flèche
 - Une arête par un trait
 - La flèche et le trait peuvent être courbés
 - On peut rajouter des étiquettes

Enseignant : Dr. H. BENKAOUHA

Définitions (1/5)

- Ordre du graphe = |X| nombre de sommets
- Taille du graphe = |*U*| ou =|*E*| nombre d'arcs ou arêtes
- Extrémités confondues : boucle
- Mêmes extrémités : parallèles
- Graphe simple : pas de boucles, pas d'arcs (arêtes) parallèles

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB

Définitions (3/5)

- G=(X, U), x ∈ X, On a:
 - $-\Gamma^+(x) = Succ(x) = \{ y \in X / (x, y) \in U \}$
 - Ensemble des successeurs du sommet x.
 - $-\Gamma^{-}(x) = Pred(x) = \{ y \in X / (y, x) \in U \}$
 - Ensemble des prédécesseurs du sommet x.
- G=(X, U) (resp. G=(X, E)), Ens. voisins de $x \in X$:
 - $-V(x) = \{y \in X \{x\} / \{x, y\} \in E\}$ Cas non orienté
 - $-V(x) = V^+(x) \cup V^-(x)$ Cas orienté
 - $-V^{+}(x) = \{y \in X \{x\} / (x, y) \in U\}$
 - $V^{-}(x) = \{ y \in X \{ x \} / (y, x) \in U \}.$
 - $-V^+(x)$ (resp. $V^-(x)$) est appelé ensemble des voisins externes (resp. internes) de x.

eignant : Dr. H. BENKAOUHA culté d'Informatque - USTHB)

Définitions (4/5)

- Arcs (arêtes) adjacent(e)s: extrémité communes.
- Graphe orienté: 2 applications donnant l'extrémité initiale et terminale d'un arc donné:

(Faculté d'Informatque - USTHB)

Définitions (5/5)

- Multiplicité d'un arc (x_i, x_j)
 - = la valeur m_{ii}
 - = au nombre d'arcs qui relient x_i à x_i .
- Multiplicité d'un graphe G
 - $= m(G) = \text{maximum des } m_{ii}$.
- Si m(G) = k on dit que G est un k-graphe

inseignant : Dr. H. BENKAOUHA

Notion de degré - Général

- G = (X, E) ou G = (X, U)
- $x \in X$, on peut lui associer une valeur entière positive ou nulle : $d_G(x)$,
- · degré du sommet x.
- d_G(x) = nombre de fois où x est extrémité d'un arc (resp. d'une arête).

iculté d'Informatque - USTHB)

Notion de degré - Graphe orienté

- Soit G = (X, U) un graphe orienté.
 - demi-degré extérieur d'un sommet x ∈ X :
 - $-d_{G}^{+}(x) = |\{u \in U / I(u) = x\}|.$
 - − demi-degré intérieur d'un sommet $x \in X$:
 - $-d_{G}(x) = |\{u \in U / T(u)=x\}|.$
 - $-d_G(x)=d_{G^+}(x)+d_{G^-}(x)$

(Faculté d'Informatqiue - USTHB)

Notion de degré – Remarques (1/3)

- Pour tout graphe, nous avons:
 - $-d_G(x) \ge |V(x)|$.
 - Si *G* est simple Alors On a $d_G(x) = |V(x)|$.
- Pour tout graphe orienté, nous avons :
 - $-d_{G}^{+}(x) \ge |V^{+}(x)|$ et $d_{G}^{-}(x) \ge |V^{-}(x)|$.
 - Si G est 1-graphe sans boucles Alors On a $d_G^+(x) = |V^+(x)|$ et $d_G^-(x) = |V^-(x)|$.

nseignant : Dr. H. BENKAOUHA

Notion de degré – Remarques (2/3)

• On appelle degré minimal d'un graphe *G*, le plus petit degré dans le graphe *G*.

$$\delta(G) = \bigoplus \{d_G(x)\}$$

• On appelle degré maximal d'un graphe *G*, le plus grand degré dans le graphe *G*.

$$\Delta(G) = \operatorname{Max} \left\{ d_G(x) \right\}$$

nseignant : Dr. H. BENKAOUHA aculté d'Informatqiue - USTHB)

Notion de degré – Remarques (3/3)

- Si $d_G(x) = 0$ Alors x est dit sommet isolé.
- Si $d_G(x) = 1$ Alors x est dit sommet pendant.
- Un arc (resp. Une arête) incident(e) à un sommet pendant est appelé(e) pendant(e).

Notion de degré – Formule des degrés

· Cas non orienté :

Pour tout graphe : G = (X, E), On a :

 $\sum_{x} d_x(x) = 2 |E|.$

· Cas orienté :

Pour tout graphe : G = (X, U), On a :

 $\sum_{\alpha} d_{\alpha}(x) = 2 |U| \text{ et } \sum_{\alpha} d_{\alpha}(x) = \sum_{\alpha} d_{\alpha}(x) = |U|.$

· Conséquence :

 Déduction → nombre sommets degrés impairs toujours pair.

Représentation machine - Matrice d'adjacence (1/2)

- Tout graphe d'ordre *n*.
- Matrice *M* de *n* x *n*.
- Ligne i → sommet i
- Colonne $j \rightarrow$ sommet j
- M_{ij} : nombre d'arcs de i vers j.

Représentation machine - Matrice d'adjacence (2/2)

- La somme d'une ligne $i = d_{G}^{+}(i)$
- La somme d'une colonne $j = d_G(j)$
- Si le graphe n'est pas orienté :
 - matrice symétrique,
 - boucle compte double.
 - Somme d'une ligne i = somme colonne i = $d_G(i)$

eignant : Dr. H. BENKAOUHA ulté d'Informatqiue - USTHB)

Représentation machine - Représentation par listes (1/2)

- Tout graphe d'ordre *n* et de taille *m*.
- 2 tableaux (vecteurs) PS et LS.
- *PS* : *n*+1 éléments
- LS: m éléments
- PS[i]: case contenant le 1er successeur de i dans LS.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatquue - USTHB)

Représentation machine - Représentation par listes (2/2)

- PS[1]=1 et PS[n+1]=m+1
- $PS[i]=PS[i-1]+d_G^+(i-1)$. Si i n'a pas de successeur : PS[i]=PS[i+1]
- Les successeurs d'un sommet *i* se trouvent entre la case n° *PS*[*i*] et la case n° *PS*[*i*+1]-1 du tableau *LS*.

Enseignant : Dr. H. BENKAOUHA Faculté d'Informatqiue - USTHB)

Propriétés des Graphes – Graphe simple

- · Ni boucles,
- · Ni arcs parallèles,
- Si G est simple, on a $d_G(x) = |V(x)|$.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque - USTHB)

Propriétés des Graphes – Graphe complet

- · Cas orienté:
 - -G est complet **ssi** $\forall x \neq y \in X$, $(x, y) \notin U \Rightarrow (y, x) \in U$
- · Cas non orienté:
 - -G est complet **ssi** $\forall x \neq y \in X$, $\{x, y\} \in E$.
- Un graphe simple complet d'ordre n est noté K_n

Enseignant : Dr. H. BENKAOUHA

Propriétés des Graphes – Graphe régulier

- G est k-régulier : $\forall x$ sommet de G, on a $d_G(x) = k$.
- En d'autres termes, $\delta(G) = \Delta(G) = k$.
- Si k = 0, G est un graphe sans arêtes (sans arcs) appelé <u>stable</u>. G est constitué seulement de sommets isolés.
- Si *k* = 1, *G* est constitué d'arcs (arêtes) dispersé(e)s dans l'espace.

(Faculté d'Informatque - USTHB)

toine - USTHR) 68

Propriétés des Graphes – Graphe symétrique

- Uniquement graphes orientés.
- *G* est symétrique **ssi**

 $-\forall x,y\in X,(x,y)\in U\Rightarrow (y,x)\in U$

gnant : Dr. H. BENKAOUHA té d'Informatqiue - USTHB)

Propriétés des Graphes – Graphe antisymétrique

- · Uniquement graphes orientés.
- G est antisymétrique ssi

 $-\forall x, y \in X, (x, y) \in U \Rightarrow (y, x) \notin U$

Propriétés des Graphes – Graphe transitif

- · Uniquement graphes orientés.
- G est transitif ssi

 $-\forall x, y, z \in X, (x, y) \in U \text{ et } (y, z) \in U \Rightarrow (x, z) \in U$

Propriétés des Graphes – Graphe biparti

- *G* biparti ssi *X* admet une partition en 2 sous ensembles X_1 et X_2 avec $X_1 \cap X_2 = \emptyset$ et $X_1 \cup X_2 = X$.
- Cas orienté : $\forall (x,y) \in U \Rightarrow x \in X_1 \text{ et } y \in X_2$
- Cas non orienté : $\forall \{x, y\} \in E \ (x \in X_1 \text{ et } y \in X_2) \text{ ou } (x \in X_1 \text{ et } y \in X_2)$ $\in X_2 \text{ et } y \in X_1$
- *G* biparti complet ssi *G* biparti et $\forall x \in X_1$ et $\forall y \in X_2$ $\Rightarrow (\bar{x}, y) \in U.$
- Un graphe biparti complet et simple $G=(X_1 \cup X_2, U)$ (resp. $G = (X_1 \cup X_2, E)$) avec $|X_1| = p$ et $|X_2| = q$ est noté $K_{p,q}$.

Graphes particuliers – Sous-graphe

- Un sous graphe de *G* engendré par l'ensemble de sommets *A* est le graphe :
- $G_A = (A, U_A)$ où $U_A = \{u \in U \mid I(u) \in A \text{ et } T(u) \in A\}$ dans le cas orienté.
- $G_A = (A, E_A)$ où $E_A = \{e = \{x, y\} \in E \mid x \in A \text{ et } y \in A\}$ dans le cas non orienté.
- Si on pose B=X-A, on note G_A aussi G-B

aculté d'Informatque - USTHB)

Le sous graphe de G_1 engendré par l'ensemble de sommets $A=\{1,3,4,6\}$ G_{1A} ou $G_1-\{2,5,7\}$

Graphes particuliers – Graphe partiel

- Un graphe partiel de *G* engendré par l'ensemble d'arcs (resp. d'arêtes) *V* est :
- Le graphe $G_V = (X, V)$.
- Si on pose W=U-V, on note G_V aussi G-W

(Faculté d'Informatque - USTHB)

Graphes particuliers – Sous-graphe partiel

- Un sous graphe partiel de G engendré par l'ensemble de sommets A et l'ensemble d'arcs (resp. d'arêtes) V est le graphe $G_{A,V} = (A, V_A)$.
- V_A est l'ensemble d'arcs (resp. arêtes) qui ont leurs deux extrémités dans le sous ensemble V.

culté d'Informatque - USTHB)

Graphes particuliers – Complément d'un graphe

- Le graphe complémentaire de G est noté
 - $-\overline{\mathbf{G}} = (X, \overline{\mathbf{U}}) \text{ (resp.} \overline{\mathbf{G}} = (X, \overline{\mathbf{E}})) \text{ où :}$
 - $\bar{U} = \{(x, y) \in X^2 / x \neq y \text{ et } (x, y) \notin U\}$
 - -resp. $\mathbf{E} = \{ \{x, y\} \in X^2 / x \neq y \text{ et } \{x, y\} \notin E \}$

Enseignant : Dr. H. BENKAOUHA

Stable / Clique

- Stable dans G:
 - -Sous-ensemble de sommets S⊆X
 - —Sous graphe engendré par *S* est formé de sommets isolés.
 - Chaque partition d'un graphe biparti forme un stable.
- Clique dans G:
 - -Sous-ensemble de sommets $C \subseteq X$
 - − Sous graphe engendré par *C* est complet.

seignant : Dr. H. BENKAOUHA

Coloration des sommets d'un graphe

• <u>k-coloration</u> de G=(X, E): une application φ

$$\varphi: X \rightarrow \{1, 2, ..., k\}$$

$$x \rightarrow \varphi(x)$$

- −Tel que $\forall y \neq x \in X$ si $\{x, y\} \in E$ Alors $\varphi(x) \neq \varphi(y)$.
- -2 sommets adjacents : 2 couleurs différentes.
- Tous les sommets doivent être coloriés.
- Une k-coloration partitionne X en k stables où tous les sommets du même stable ont la même couleur.

(Faculté d'Informatque - USTHE

104

Coloration des sommets d'un graphe - Nombre chromatique

- Nombre chromatique de G=(X, E):
 - Nombre min. de couleurs nécessaires pour colorier les sommets de *G*.
 - Ce nombre est noté $\chi(G)$.
 - \Rightarrow $1 \le \chi(G) \le n = |X|$.

Enseignant : Dr. H. BENKAOUHA

d'Informatqiue - USTHB)

Coloration des sommets d'un graphe - Problème de coloration

- Réaliser *k*-coloration d'1 graphe *G*.
- k doit être le plus proche possible de $\chi(G)$.
- L'<u>algorithme de *Welsh & Powell*</u> est l'un des plus connus pour résoudre ce problème.

(Faculté d'Informatque - USTHE

106

Coloration des sommets d'un graphe – Algorithme de Welsh et Powell

- Ordonner les sommets par de degrés
- Ordre décroissant : du plus grand au plus petit.
- $X = \{x_1, x_2, ..., x_n\}$ tel que $d_G(x_i) \ge d_G(x_{i+1})$
- Pour *i* de 1 à *n* :
 - -Affecter à x_i la plus petite couleur possible distincte des couleurs de $V(x_i)$ colorés.

nseignant : Dr. H. BENKAOUHA

Coloration des sommets d'un graphe - Propositions

- $\forall G = (X, E : \chi(G) \le \Delta(G) + 1.$
- \forall G=(X, E) complet K_n où $n \ge 2$ est l'ordre de $G: \chi(G) = \Delta(G) + 1 = n$.
- \forall G=(X, E) où $C\subseteq X$ est la plus grande clique dans $G: \chi(G) \ge |C|$.

Enseignant : Dr. H. BENKAOUHA Faculté d'Informatqiue - USTHB) 108

Isomorphisme (≡)

- 2 graphes orientés G_1 = (X_1, U_1) et G_2 = (X_2, U_2) .
 - $-G_1 \equiv G_2$ **ssi** $\exists f: X_1 \to X_2$ et $\exists g: U_1 \to U_2$ 2 bijections avec $\forall u \in U_1, u = (x, y) \Leftrightarrow g(u) = (f(x), f(y)).$
- 2 graphes non orientés G_1 = (X_1, E_1) et G_2 = (X_2, E_2) .
 - $-G_1$ ≡ G_2 **ssi** ∃ φ : $X_1 \to X_2$ bijection avec \forall $x, y ∈ X_1$, e={x, y}∈ E_1 ⇒ { φ (x), φ (y)} ∈ E_2 .

Enseignant : Dr. H. BENKAOUHA

Isomorphisme (≡)

- $G_1 = (X_1, U_1) \equiv G_2 = (X_2, U_2)$ (resp. $G_1 = (X_1, E_1) \equiv G_2 = (X_2, E_2)$)
- Alors $|X_1| = |X_2|$ et $|U_1| = |U_2|$ (resp. $|E_1| = |E_2|$) et $\forall x \in X_1$ de degré $d_G(x)$, $\exists y \in X_2$ de degré $d_G(y) = d_G(x)$.
- La réciproque n'est pas toujours vraie. On peut trouver deux graphes non isomorphes ayant le même nombre de sommets et le même nombre d'arc (ou arêtes).

gnant : Dr. H. BENKAOUHA

USTHB, F.I., 2è ING. Info. A, Th. GRA Chapitre 1 : Concepts fondamentaux

2023/2024

