Durinn: Adversarial Memory and Thread Interleaving

for Detecting Durable Linearizability Bugs

Xinwei Fu*, Dongyoon Lee+, Changwoo Min*

NVM Correctness Condition

Durable Linearizability Example

The Gap between LP and DP

Durable Linearizability Bugs

DL1 Bug: An Incompletely-Durable Bug

DL2 Bug: An Unrecovered-Durable Bug

DL3 Bug: A Visible-But-Not-Durable Bug

Durinn Overall Architecture

Likely-Linearization Point Inference

Adversarial Test

DL3 Adversarial Test

Evaluation

Tested Applications:

- 13 concurrent NVM data structures
- Low-level and high-level persistency
- Lock-based and lock-free
- 1000 ops generated by AFL++ Fuzzer

Bug Detection:

- Detected 27 bugs from 12 data structures
- 15 new bugs and 7 are confirmed
- 10 DL1 bugs, 7 DL2 bugs, and 10 DL3 bugs.

Likely-LP Inference Effective and Sound

- Durinn only tested 35% and 82% of Total Stores
- Durinn did not miss true Linearization points

Comparison against Witcher

