Inhaltsverzeichnis

1	Ein	Einleitung					
	1.1	Proble	emstellung und Motivation	1			
	1.2	Zielset	tzung	1			
2	Gru	ındlage	e n	3			
	2.1	Hocha	automatisiertes Fahren	3			
		2.1.1	Entwicklung von Fahrerassistenzfunktionen	4			
		2.1.2	Klassifizierung von Szenarien	7			
	2.2	Künst	liche Neuronale Netze	13			
		2.2.1	Einordnung im maschinellen Lernen	13			
		2.2.2	Entwicklung von künstlichen neuronalen Netzen	15			
		2.2.3	Convolutional Neural Networks	20			
		2.2.4	Recurrent Neural Networks und LSTMs	22			
		2.2.5	Training mit synthetischen Daten	22			
		2.2.6	Klassifizierung von Videos	23			
3	Kor	\mathbf{zept}		25			
	3.1	Strukt	tur	26			
	3.2	Ansät	ze, Methoden, Werkzeuge	27			
4	Um	setzun	\mathbf{g}	31			
	4.1	Definition der Fahrszenarien					
	4.2	.2 Vorbereitung synthetischer Daten					
		4.2.1	Simulation mit CarMaker	32			
		4.2.2	Daten Labeling	32			

INHALTSVERZEICHNIS

	4.3	Vorbereitung realer Daten	2
	4.4	Training	2
		4.4.1 Inputdaten	2
		4.4.2 Architektur des neuronalen Netzes	3
		4.4.3 Experimente	3
5	Erg	bnis 38	5
	5.1	Synthetische Daten	5
	5.2	Reale Daten	5
6	Zus	mmenfassung 3'	7
	6.1	Ergebnis und Diskussion	7
	6.2	Ausblick	7
Li	terat	ırverzeichnis xiv	7
\mathbf{A}	bkür	ungsverzeichnis xv	i
Ta	abelle	nverzeichnis xvi	i
\mathbf{A}	bbild	ingsverzeichnis xix	ζ.
\mathbf{A}	App	endix Title xx	i
	A.1	Teil 1 des Anhangs	i

Abstract

Abstract here, test mit Ö, ä und ß ...

Eidesstattliche Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, 23. Dezember 2018

Manuel Kaiser

1. Einleitung

1.1 Problemstellung und Motivation

Hochautomatisierte Fahrerassistenzsysteme werden zunehmend komplexer. Herkömmliche Testmethoden sind durch die Vielzahl an möglichen Szenarien nicht mehr praktisch testbar. Heutzutage wird schon vieles in Simulation getestet. Dabei git es aktuell noch Probleme..

Autonomes Fahren - kaum ein Trend ist aktuell ein stärkerer Treiber in der Automobilindustrie. Dabei spielt der Einsatz von Verfahren des maschinellen Lernens ein bedeutende Rolle. Eine große Herausforderung für diese Algorithmen ist, dass Trainingsdaten, sofern sie auf realen, aufgezeichneten Daten beruhen, manuell annotiert werden müssen, was diesen Prozess sehr aufwändig macht. Ein weiteres Problem von realen Daten ist Ihre geringe Varianz. Während Standardsituationen sehr häufig vorkommen und damit auch mit einem neuronalen Netz erlernt werden können, gibt es einige Situation die selten auftreten, allerdings sehr kritisch sind. Es ist daher schwieriger ein neuronales Netz für dieses Situationen, wie z.B. das "schneiden" eines anderen Fahrzeugs beim Spurwechsel, zu trainieren.

Genau hier soll diese Arbeit ansetzen. Es soll ein Konzept entwickelt und umgesetzt werden, wie eine bereits existierende Simulationsumgebung eingesetzt werden kann, um neuronale Netze zu trainieren und zu testen.

1.2 Zielsetzung

Das Ergebnis der Arbeit soll eine Methodik sein bisher unbekannte Testfälle zu finden. Dabei sollen Videodaten mit CarMaker erzeugt und mit diesen Daten ein neuronales Netz

trainiert werden um Fahrszenarien zu klassifizieren. Mit einem trainierten neuronalen Netz sollen auch Fahrszenarien mit realen Daten erkannt und klassifiziert werden.

Die oben genannten Probleme sollen mit der Verwendung von simulierten Trainingsdaten adressiert und weiter untersucht werden:

- Trainingsdaten müssen nicht mehr aufwendig manuell annotiert werden.
- Die Umgebung ist bei der Simulation der Daten vollständig kontrollierbar und die Datenerfassung wird effizienter.
- Bisher unbekannte Testfälle können gefunden werden.

Diese Arbeit soll einen theoretischen und praktischen Beitrag zum automatisierten Training von neuronalen Netzen im Bereich automatisiertem Fahren liefern. Der Fokus liegt dabei auf den Möglichkeiten und Herausforderungen, die sich durch die Verwendung von simulierten Trainingsdaten ergeben.

2. Grundlagen

In diesem Kapitel werden die zum Verständnis nötigen Grundlagen für diese Arbeit erklärt. Dabei wird im Abschnitt 2.1 der Stand der Technik von automatisierten Fahrfunktionen und deren Entwicklung beschrieben. Im Abschnitt 2.2 wird maschinelles Lernen im Allgemeinen und im Speziellen künstliche neuronale Netze (KNNs), die für die Umsetzung dieser Arbeit nötig sind, beschrieben.

2.1 Hochautomatisiertes Fahren

Hochautomatisiertes Fahren wird in den vergangenen Jahren zunehmend von der Automobilindustrie vorangetrieben. Aktuelle Fahrerassistenzsysteme (FAS) wie der Spurhalteassistant oder die Abstandsregelung sind nach der Norm SAE J3016 (Abbildung 2.1) bei Level 2 des autonomen Fahrens eingeordnet. Mit neuen Technologien werden immer mehr Funktionen für automatisiertes Fahren entwickelt und verknüpft. Es entstehen zunehmend komplexe Fahrfunktionen mit einer steigenden Anzahl möglicher Fahrsituationen und Szenarien [Kin17]. Das stellt Automobilhersteller und Automobilzulieferer vor eine große Herausforderung, da die Systemkomplexität wächst. Das schließt sowohl die Entwicklung von FAS als auch die dazu benötigten Testszenarien ein [PL16].

Zahlen, Daten Fakt

In den folgenden Abschnitten wird erläutert wie aktuell diesen Herausforderungen begegnet wird. In Abschnitt 2.1.1 wird ein allgemeiner Überblick über die aktuellen Entwicklungsmethodiken für FAS gegeben. Danach werden in Abschnitt 2.1.2 bisherige Ansätze für die Klassifizierung von Fahrszenarien vorgestellt.

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of <i>Dynamic</i> <i>Driving Task</i>	System Capability (Driving Modes)
Huma	<i>n driver</i> monito	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Autor	nated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Copyright © 2014 SAE International. The summary table may be freely copied and distributed provided SAE International and J3016 are acknowledged as the source and must be reproduced AS-IS.

Abbildung 2.1: Norm SAE J3016 für die Level des autonomen Fahrens [Com14]

2.1.1 Entwicklung von Fahrerassistenzfunktionen

FAS sind Funktionen im Kraftfahrzeug, die den Fahrer unterstützen. Diese Systeme nutzen Sensordaten, wie Radar-, Ultraschall-, oder Kameradaten, aus dem Fahrzeug um den Fahrer dann auf Basis der abgeleiteten Informationen zu unterstützen. Beispielsweise erkennt ein Spurhalteassistent wenn das Fahrzeug die Spur verlässt und kann die Fahrlinie korrigieren.

FAS werden in der Automobilindustrie mit dem V-Modell entwickelt. Das V-Modell ist ein chronologischer Entwicklungsprozess und aus der Softwareentwicklung adaptiert [Bun05]. Das V-Modell kann in einen linken absteigenden und einen rechten aufsteigenden Ast unterteilt werden. Der linke Ast enthält die Funktionsanforderungen, die nach unten weiter detailliert und aufgeschlüsselt werden. Der rechte Ast umfasst aufsteigend Funktionstests auf dem jeweiligen Detaillierungsgrad [HK15]. Das V-Modell ist in einer einfachen Version in Abbildung 2.2 dargestellt.

Die Schritte auf dem absteigenden und aufsteigenden Ast haben jeweils eine Beziehung. Jeder Test auf dem aufsteigenden Ast verifiziert bzw. validiert den dazugehö-

Abbildung 2.2: V-Modell [HK15]

rigen Entwicklungsschritt auf dem absteigenden Ast. Demenstsprechend werden oben im V-Modell die Kundenanforderungen auf dem absteigenden Ast erfasst und auf dem aufsteigenden Ast validiert. Unten im V-Modell werden einzelne Hardware- oder Softwarekomponenten entwickelt, die die entsprechenden Kundenanforderungen von oben lösen sollen, und auf dem aufsteigenden Ast verifiziert [HK15].

Testfälle für die Validierung und Verifikation

Die Validierung und Verifikation von FAS folgt dem Testkonzept. Ein Testkonzept umfasst die Analyse des Testobjektes, die Generierung von Testfällen, die Durchführung von Tests und schließlich die Testauswertung [Sch13]. Diese Schritte sind der Abbildung 2.3 abgebildet.

Abbildung 2.3: Schritte zur Testfallerstellung [Sch13]

Testfälle werden bereits möglichst früh im Entwicklungsprozess erstellt um die Qualität von FAS und einzelnen Komponenten möglichst hoch zu halten [WW15]. Hierfür werden in der Praxis virtuelle Fahrversuche eingesetzt. Die Idee ist eine stufenweise Digitalisierung von Komponenten aus dem realen Fahrversuch mit den Zielen die Reproduzierbarkeit zu steigern, den Aufwand zu reduzieren und insgesamt flexibler zu werden. Im virtuellen Fahrversuch werden in der frühen Konzeptphase alle Komponenten virtuell getestet und dann schrittweise durch Hardwarekomponenten ersetzt. Schließlich werden alle Komponenten im realen Fahrversuch auf der Straße mit einem realem Fahrer und anderen Verkehrsteilnehmern getestet [HK15].

Beim virtuellen Fahrversuch spielen die Konzepte Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), Hardware-in-the-Loop (HiL) und Vehicle-in-the-Loop (ViL) eine wichtige Rolle. Mit MiL und SiL werden Funktionen auf Basis von Simulationsmodellen getestet [BF15], indem Hardwarekomponenten simuliert werden. Mit fortschreitender Entwicklung werden immer mehr Simulationskomponenten durch die entsprechende Hardware ersetzt und mit HiL getestet [HK15]. ViL schließt schließlich die Lücke zwischen virtuellem Fahrversuch und realem Fahrversuch. Dieses Testkonzept macht die Komplexität bei der Entwicklung von FAS beherrschbar und reduziert den Testaufwand [Sch14]. Für die Freigabe von FAS ist die Realfahrt die wichtigste Methode, da sie aktuell die beste Validierung bei annehmbaren ökonomischen Aufwand ist [WW15].

Mit steigender Automatisierung von FAS steigt auch die Anzahl möglicher Situationen in denen die Funktionen ohne Fahrer ablaufen müssen. Um alle Funktionen ausreichend testen zu können, steigt die Anzahl der benötigten Testfälle. Testfälle müssen alle potentiell möglichen Situationen, in denen das FAS zum Einsatz kommen kann, abdecken. Dadurch steigt mit hochautomatisierten Funktionen der Aufwand für Validierung und Verifikation mit Testfällen [Bac17]. Eine Möglichkeit für die Reduzierung von Testfällen ist es kritische Situationen zu finden und Testfälle mit weniger kritischen Situationen zu entfernen [WW15].

Heute werden Testfälle auf der Basis von Szenarienkatalogen abgeleitet [Püt17]. Diese Kataloge enthalten alle bekannten Szenarien in denen sich ein Fahrzeug befinden kann. Sie sind jedoch vor dem Hintergrund erstellt worden, dass zu jeder Zeit ein Fahrer das Kraftfahrzeug überwacht und steuert [WW15]. Bei neuen hochautomatisierten FAS für Stufe 3 und 4 des autonomen Fahrens, ist dies nicht mehr gegeben. Die Sicherheit des Gesamtsystems muss in breiterem Spektrum mit einer Vielzahl hochkomplexer Szenarien ohne Eingriff des Fahrers garantiert werden können. Da bedeutet, dass die bisherigen Szenarienkataloge um neue Szenarien erweitert werden müssen [Sur18].

Für die Erstellung von Testfällen müssen daher alle potentiell möglichen kritischen Szenarien bekannt sein. Der Ansatz in dieser Arbeit ist es bekannte Szenarien zu klassifizieren und auf diese Weise bisher unbekannte und möglicherweise kritische Szenarien zu finden. Dies soll mit Hilfe von simulierten Daten geschehen, um die Skalierbarkeit mit angemessenem Aufwand garantieren zu können. Das Konzept hierzu wird im Detail in Kapitel 3 vorgestellt.

Im nächsten Abschnitt werden andere Arbeiten, die die Klassifizierung von Szenarien untersucht haben, vorgestellt und wichtige Grundbegriffe definiert.

2.1.2 Klassifizierung von Szenarien

In diesem Abschnitt werden zu Beginn die Terminologien von Szene, Situation und Szenario unterschieden und definiert. Im Anschluss wird auf bisherige Arbeiten zur Szenarienerkennung eingegangen.

In dieser Arbeit werden Szene, Situation und Szenario nach Ulbrich et al. [Ulb15] definiert. In Abbildung 2.4 wird die Beziehung zwischen Szene und Szenario dargestellt.

Szene

Eine Szene ist eine Momentaufnahme von der Umgebung einschließlich der räumlichen Szenerie, allen dynamischen Elementen, der Selbstdarstellung aller Akteure und Beobachter, sowie die Beziehung zwischen diesen Entitäten. Nur in einer Simulation kann eine Szene vollständig und allumFASsend beobachtet und erfasst werden (Ground Truth). In der realen Welt dagegen, ist die Beschreibung einer Szene immer unvollständig, fehlerhaft, unsicher und subjektiv von einem oder mehreren Beobachtern.

Situation

Eine Situation ist die Gesamtheit aller Umstände, die für die Auswahl einer angemessenen Entscheidung zu einem bestimmten Zeitpunkt berücksichtigt werden müssen. Sie umfasst alle relevanten Zustände, Möglichkeiten und Einflussgrößen für ein Verhalten. Eine Situation wird abgeleitet von einer Szene durch die Auswahl von Informationen basierend auf kurzzeitigen sowie langfristigen Zielen und Werten. Eine Situation ist daher per Definition immer subjektiv von einem Beobachter.

Szenario

Ein Szenario besteht aus mehrerer aufeinander folgenden Szenen und beschreibt diese zeitliche Entwicklung. Handlungen, Ereignisse, Ziele und Werte können für eine Charakterisierung der zeitlichen Entwicklung eines Szenarios spezifiziert werden. Anders als eine Szene, umfasst ein Szenario einen definierten Zeitraum.

Neben den Begriffen Szene, Situation und Szenario wird auch oft der Begriff Manö-

Abbildung 2.4: Zusammenhang zwischen Szene und Szenario [Ulb15]

ver verwendet. Bach et al. [BOS16] definieren ein Manöver als einen Status innerhalb eines Szenarios. Dabei sind Situation jeweils Übergangsbedingungen zwischen einzelnen Manövern. So setzt sich beispielsweise das Szenario Überholen aus den Manövern Spurwechsel nach links, Beschleunigung, Spurwechsel nach rechts und Bremsvorgang zusammen. Zwischen den einzelnen Manövern gibt es Situation wie langsameres Auto voraus oder langsameres Auto links überholt, die jeweils ein neues Manöver einleiten.

Je nachdem wie granular Szenarien bzw. wie grob Manöver definiert werden, können Szenarien und Manöver nicht klar voneinander abgegrenzt werden. So kann ein einzelnes Manöver auch bereits ein gesamtes Szenario darstellen. Zum Beispiel kann das Manöver Spurwechsel bereits als Szenario definiert werden. Aus diesem Grund wird in dieser Arbeit im Folgenden ausschließlich von Szenarios gesprochen.

Da sich diese Arbeit größtenteils auf die Klassifizierung von Szenarien fokussiert, wird in den folgenden Absätzen eine erweiterte Definition von Szenarien nach Bagschik et al. [Bag17] gegeben. Diese Definition unterteilt den Begriff in drei weitere Abstraktionsebenen: Funktionale, logische und konkrete Szenarien.

Funktionale Szenarien sind auf der semantischen Ebene formuliert. Entitäten und Beziehungen werden widerspruchsfrei in sprachlichen Texten beschrieben. Dabei ist das Vokabular klar definiert und wird eindeutig für alle zu beschreibenden Szenarien verwendet. Je nachdem wie detailliert ein Szenario beschrieben werden soll, muss ein geeignetes Vokabular definiert werden. Funktionale Szenarien können in einzelne oder mehrere logische Szenarien überführt werden.

Logische Szenarien sind detaillierter als funktionale Szenarien, indem Entitäten und Beziehung in quantitive Parameterbereiche übersetzt werden. Parameterbereiche können dabei mit statistischen Verteilungen (Normalverteilung, Gleichverteilung etc.) modelliert

werden. Zusätzlich können Beziehungen zwischen Entitäten mit numerischen Bedingungen (e.g. Fahrzeug A muss auf derselben Spur fahren wie Fahrzeug B) oder Korrelationsfunktionen (e.g. Abstand zwischen Fahrzeug A und Fahrzeug B in Abhängigkeit der Geschwindigkeit) ausgedrückt werden.

Konkrete Szenarien haben den höchsten Detailgrad und Entitäten und Beziehungen werden mit festen Parametern definiert. Logische Szenarien können in einzelne oder mehrere konkrete Szenarien überführt werden.

Ein Beispiel zu jeder Abstraktionsebene (funktional, logisch, konkret) ist in Abbildung 2.5 gegeben.

Funktionales Szenario Logisches Szenario Konkretes Szenario <u>Basisstrecke</u> <u>Basisstrecke</u> Basisstrecke 3- streifige Autobahn in Kurve Breite Fahrstreifen [2,3..3,5] m Breite Fahrstreifen [3.2] m Begrenzung auf 100 km/h durch Kurvenradius [0,6..0,9] km Kurvenradius [0,7] km Verkehrszeichen rechts und links Pos_Verkerszeichen [0..200] m Pos_Verkerszeichen [150] m Stationäre Objekte Stationäre Objekte Stationäre Objekte Bewegliche Objekte Bewegliche Objekte Bewegliche Objekte Stauende_Pos [10..200] m Ego, Stau; Stauende_Pos [40] m Stau_Geschw [0..30] km/h Stau_Geschw [30] km/h Interaktion: Ego in Manöver "Annähern" auf mittleren Ego_Abstand [50..300] m Ego Abstand [300] m Fahrstreifen, Stau zähfließend Ego_Geschw [80..130] km/h Ego_Geschw [100] km/h **Umwelt** <u>Umwelt</u> Umwelt Sommer, Regen Temperatur [10..40] °C Temperatur [20] °C Tröpfchengröße [20..100] µm Tröpfchengröße [30] µm Szenarienanzahl Abstraktionslevel

Abbildung 2.5: Beispiel für ein funktionales, logisches und konkretes Szenario [Bag17]

Klassifizierung von Fahrszenarien

Wie in Abschnitt 2.1.1 beschrieben ist die Klassifizierung von Szenarien ein wichtiges Element für die Erstellung von Testfällen und die Sicherung von FAS. In den vergangenen Jahren wurden bereits einige Methoden zur Klassifizierung von Szenarien veröffentlicht. In den folgenden Absätzen werden die relevanten Arbeiten (Anzahl 12) seit 2014 kurz vorgestellt.

Für die Klassifizierung wurden verschiedene Sensordaten aus dem Fahrzeug verwendet. Die Autoren von fünf Arbeiten haben ein Smartphone im Fahrzeug platziert und Beschleunigungs-, Gyroskop-, GPS- und Magnetometer-Daten für die Klassifizierung

ausgelesen und verwendet [XHK18; Cer16; WK16; CHK16; ABR16]. Die Verwendung von Smartphone-Daten wurde mit der einfachen und kostengünstigen Umsetzung begründet. Vier andere Arbeiten verwendeten Sensordaten wie Lenkwinkel, Fahrzeuggeschwindigkeit, laterale Geschwindigkeit, Giergeschwindigkeit und die Position des Gasund Bremspedals, die sie aus dem CAN-Bus des Fahrzeugs ausgelesen haben [ZH17; ZSH15; Li15; ZSH14]. Drei weitere Arbeiten basierten ihre Experimente auf Daten aus einem Fahrsimulator [Sun17; Zhe16] und realen Testfahrten [Gru17]. Die verwendeten Daten waren der laterale Abstand zwischen Fahrzeug und Fahrbahnmarkierung, Spurabfahrtsbetrag, Beschleunigung, Lenkwinkel, Lenkgeschwindigkeit, Lenkmoment und Ort, Ausrichtung, und Geschwindigkeit des Ego-Fahrzeugs und benachbarten Objekten. Dabei wurde nicht weiter spezifiziert wie die Daten ausgelesen wurden.

Auf Basis der Sensordaten wurden verschiedene Klassifikatoren erstellt. Es wurden die Methoden Support Vector Machine (SVM) [Sun17; Cer16; WK16; CHK16; Zhe16; ZSH15], Random Forest (RF) [XHK18; Cer16; Zhe16], k-Nearest-Neighbor (kNN) [ZH17; CHK16; Zhe16], Hidden Markov Model (HMM) [ZH17; Li15], Fuzzy Rule-Based Classifier (FRC) [Cer16; ABR16], Bayesian Inference Model [Sun17], Convolutional Neural Network (CNN) [Gru17], Decision Tree [ZSH14] und Naive Bayes [CHK16] verwendet. Da es für diese Arbeit nicht relevant ist, werden die Methoden an dieser Stelle nicht im Detail erläutert, es wird lediglich auf die jeweiligen Quellen verwiesen.

In Tabelle 2.1 sind alle Arbeiten zusammengefasst. Neben den verwendeten Methoden zur Klassifizierung sind die jeweils verwendeten Sensordaten und die klassifizierten Szenarien aufgeführt.

\mathbf{Quelle}	Sensordaten	Klassifikator	Szenarien
[XHK18]	Beschleunigung, Gy-	RF	Abbiegen, links abbiegen, rechts
	roskop und GPS von		abbiegen, beschleunigen, brem-
	einem Smartphone das im		sen, stoppen, Spurwechsel nach
	Fahrzeug platziert ist		links, Spurwechsel nach rechts
[ZH17]	Lenkwinkel und Fahrzeug-	kNN, HMM	Spurwechsel nach links, Spur-
	geschwindwigkeit aus dem		wechsel nach rechts, Spur halten
	CAN-Bus		
[Sun17]	Lateraler Abstand zwi-	SVM, Bayesian	Spurwechsel nach links, Spur-
	schen Fahrzeug und Fahr-	Inference Model	wechsel nach rechts, Spur halten
	bahnmarkierung von ei-		
	nem Fahrsimulator		

Quelle	Sensordaten	Klassifikator	Szenarien
[Gru17]	Ort, Ausrichtung und Geschwindigkeit des Ego-Fahrzeugs und be- nachbarten Objekten von realen Testfahrten	CNN auf Basis von gestapelten Positionsgittern der Objekte	Frei fahren, anderes Fahrzeug voraus, anderes Fahrzeug über- holt Ego-Fahrzeug, Querverkehr vor Ego-Fahrzeug
[Cer16]	Beschleunigung von einem Smartphone das im Fahr- zeug platziert ist	RF, SVM, FRC	Einparken, geparkt, frei fahren, stoppen
[WK16]	Beschleunigung, Gyroskop, GPS und Magnetometer von einem Smartphone das im Fahrzeug platziert ist	SVM	Stoppen, beschleunigen, bremsen, links abbiegen, rechts abbiegen
[CHK16]	Beschleunigung, Gy- roskop und GPS von einem Smartphone das im Fahrzeug platziert ist	SVM, kNN, Naive-Bayes	Stoppen, beschleunigen, frei fahren, bremsen, Spurwechsel nach links, Spurwechsel nach rechts, links abbiegen, rechts abbiegen, in Kreisverkehr eintreten, aus Kreisverkehr austreten
[Zhe16]	Spurabfahrtsbetrag, Beschleunigung, Lenkwinkel, Lenkgeschwindigkeit und Lenkmoment von einem Fahrsimulator	SVM, kNN, RF	Spurwechsel nach links, Spurwechsel nach rechts, Spur halten
[ABR16]	Beschleunigung, Gy- roskop und GPS von einem Smartphone das im Fahrzeug platziert ist	FRC	Lenken, beschleunigen, bremsen, Bodenwelle
[ZSH15]	Fahrzeuggeschwindigkeit und Lenkwinkel aus dem CAN-Bus	SVM	links abbiegen, rechts abbiegen, Spurwechsel nach links, Spur- wechsel nach rechts, Kurve nach links, Kurve nach rechts, gerade- aus fahren, stoppen

Quelle	Sensordaten	Klassifikator	Szenarien
[Li15]	Fahrzeuggeschwindigkeit,	HMM	Spurwechsel nach links, Spur-
	Position des Gas- und		wechsel nach rechts, Spur halten
	Bremspedals, Lenkwinkel,		
	Laterale Beschleunigung		
	und Giergeschwindigkeit		
	aus dem CAN-Bus		
[ZSH14]	Fahrzeuggeschwindigkeit,	Decision Tree	links abbiegen, rechts abbiegen,
	Lenkwinkel, Drehzahl und	auf Basis von	Spurwechsel nach links, Spur-
	Position des Gas- und	Schwellenwerten	wechsel nach rechts, Kurve nach
	Bremspedals aus dem		links, Kurve nach rechts, gerade-
	CAN-Bus		aus fahren, stoppen

Tabelle 2.1: Bisherige Arbeiten zur Szenarienerkennung

Die Datenerhebungen in den vergangenen Arbeiten wurde vor dem Hintergrund durchgeführt vordefinierte Szenarien zu erkennen. Von diesen Szenarien wurden die benötigten Sensordaten abgeleitet und dann mit bestimmten Methoden verschiedene Klassifikatoren erstellt. Bis auf in der Arbeit von Gruner [Gru17] werden für die Klassifizierung von Fahrszenarien bisher keine Deep Neural Networks (DNNs) verwendet. Und in seiner Arbeit verwendet er keine Kamerabildern, sondern mit gespapelten Matritzen, auf denen jeweils die Positionen aller Verkehrsteilnehmer markiert sind. Nach Grunder [Gru17] wird sich die zukünftige Forschung mit tieferen Netzstrukturen wie Recurrent Neural Networks (RNNs) beschäftigen, um zeitabhängige Szenarien noch besser zu verstehen.

Mit den bisherigen Ansätzen können bekannte Szenarien gut klassifiziert werden. Unbekannte bzw. neue Szenarien werden allerdings nur sehr bedingt erkannt, weil die Datengrundlage für die bekannten Szenarien optimiert ist. Das bedeutet, dass Daten, die für die Erkennung von bisher unbekannten Szenarien möglicherweise relevant sind, nicht erfasst und daher nicht für die Erstellung des Klassifikators verwendet werden.

Im Gegensatz zu den bisherigen Arbeiten, soll in dieser Arbeit die Verwendung von Kameradaten für die Klassifizierung von Szenarien untersucht werden. Als Klassifikator soll ein bild- und zeitsensitives DNN verwendet werden. Damit sollen auch bisher unbekannte Einflüsse, die auf den Bildern zu sehen sind, für die Klassifizierung berücksichtigt werden. Der Ansatz wird im Detail in Kapitel 3 erklärt.

2.2 Künstliche Neuronale Netze

In diesem Kapitel werden KNNs mit mit einem Schwerpunkt auf Bilderkennung mit CNNs und Sequenzerkennung mit Long Short-Term Memorys (LSTMs) eingeführt. Im folgenden Abschnitt 2.2.1 werden KNNs in den Gesamtkontext von maschinellem Lernen gestellt. Im Anschluss werden in Abschnitt 2.2.2 die Grundlagen zu KNNs erläutert. Dann werden komplexe Architekturen von KNNs zur Bilderkennung in Abschnitt 2.2.3 und zur Sequenzerkennung in Abschnitt 2.2.4 erklärt. In Abschnitt 2.2.5 wird auf das Training mit synthetischen Daten eingegangen und im letzten Abschnitt 2.2.6 wird die aktuelle Forschung zu Videoklassifizierung vorgestellt.

2.2.1 Einordnung im maschinellen Lernen

Maschinelles Lernen wird oft als ein Teil des Bereichs künstliche Intelligenz beschrieben. Dabei wird maschinelles Lernen nach Mitchell [Mit97] wie folgt definiert:

"Ein Computerprogramm lernt aus der Erfahrung E in Bezug auf eine Klasse von Aufgaben T und dem Leistungsmaß P, wenn seine Leistung, gemessen mit P, bei Aufgaben aus T sich mit Erfahrung E verbessert."

Da maschinelles Lernen sehr viele Bereiche umfasst, wird hier nur auf die relevanten Teile für diese Arbeit eingegangen und auf [Mit97] verwiesen. Maschinelles Lernen kann in drei verschiedenen Kategorien eingeteilt werden. Diese werden in den folgenden Absätzen beschrieben.

Überwachtes Lernen (engl. supervised learning) beschreibt einen Lernprozess in dem die Trainingsdaten sowohl Inputvektoren als auch die zugehörigen Zielvektoren enthalten [Bis06]. Ein Beispiel dafür ist ein Klassifizierungsproblem von Buchstaben bei dem sowohl die Bilder der einzelnen Buchststaben als auch deren zugehörige Klasse (abgebildeter Buchstabe) einem Trainingsalgorithmus übergeben werden. Neben Klassifizierungsproblemen fallen auch Regressionsprobleme in diese Kategorie.

Beim unüberwachten Lernen (engl. unsupervised learning) enthalten die Trainingsdaten ausschließlich die Inputvektoren, ohne die dazugehörigen Zielvektoren. Das Ziel dabei ist es Muster in den gegebenen Daten zu erkennen um beispielsweise Cluster zu bilden [Bis06]. Das Clustering von Kundengruppen, die bisher unbekannt waren, fällt in diese Kategorie des maschinellen Lernens.

Das verstärkende Lernen (engl. reinforcement learning) ist eine Methodik in der der Trainingsalgorithmus mit Situationen konfrontiert wird und jeweils aus einer Reihe von gegebenen Handlungen wählen kann. Das Ziel dabei ist es das Endergebnis, das auf der Wahl aller Handlungen basiert, zu maximieren [SB98]. Ein Beispiel hierfür ist selbstständige Erlernen des Brettspiels Schach.

Klassifizierung

In dieser Arbeit wird ein Konzept für die Klassifizierung von Fahrszenarien - damit in der Kategorie überwachtes Lernen - entwickelt und umgesetzt. Das Ziel von Klassifizierungsalgorithmen ist es gegebene Objekte auf Basis ihrer Eigenschaften einer Klasse zuzuordnen. Dabei sollen die Objekte innerhalb einer Klasse eine möglichst geringe Varianz und zwischen verschiedenen Klassen eine möglichst hohe Varianz besitzen. Klassifizierungsalgorithmen arbeiten dafür mit Trainingsdaten, die aus Inputvektoren und Zielvektoren bestehen. Ein Inputvektor enthält alle Eigenschaften und der Zielvektor die jeweilige Klasse des Objekts. In Abbildung 2.6 ist beispielhaft ein Datensatz mit zwei Klassen dargestellt. Die Objekte im Datensatz haben jeweils die Eigenschaften x_1 und x_2 .

Abbildung 2.6: Beispiel einer Klassifizierung mit zwei Klassen

In den folgenden Abschnitten werden schrittweise CNNs und LSTMs eingeführt mit denen in dieser Arbeit ein Klassifikator für die Erkennung von Fahrszenarien entwickelt und trainiert wird.

2.2.2 Entwicklung von künstlichen neuronalen Netzen

KNNs wurden ursprünglich als ein Modell der Informationsverarbeitung von biologischen Gehirnen entwickelt [MP43]. Dabei ist die kleinste Einheit in einem KNN ein einzelnes Neuron. Rosenblatt [Ros58] entwickelte ein Modell eines Neurons als binären Klassifikator. Dieses sogenannte Perzeptron setzt sich aus einem Eingangsvektor $x_1, ..., x_n$, einem Vektor mit Gewichten $w_1, ..., w_n$, einer Summenfunktion \sum , einer Aktivierungsfunktion φ mit einem Schwellenwert θ und einem Aktivierungswert $o(\vec{x})$ zusammen. Abbildung 2.7 zeigt das Modell eines Perzeptrons.

Eingangsvektor

Abbildung 2.7: Modell eines Perzeptrons [Ros58]

Um den Aktivierungswert $o(\vec{x})$ zu berechnen wird zunächst die gewichtete Summe mit dem Eingangsvektor \vec{x} und den Gewichten \vec{w} gebildet. Dann wird mit der Aktivierungsfunktion φ eine Klasse bestimmt. Beim ursprünglichen Perzeptron handelt es sich dabei um eine Schwellenwertfunktion, die die zwei Werte -1 und 1 annehmen kann. Damit ist das Perzeptron ein binärer Klassifikator und kann die logischen Operationen AND, OR und NOT ausführen. Die logische Operation XOR kann mit mit einem einzelnen Perzeptron nicht abgebildet werden [MP69].

$$\varphi(\vec{x}, \vec{w}) = \begin{cases} 1 & \text{wenn } \vec{x} * \vec{w} \ge \theta \\ 0 & \text{sonst} \end{cases}$$
 (2.1)

Die Klassifizierung eines Objekts aus der Klasse t mit den Eigenschaften \vec{x} ist richtig, wenn das Ergebnis o der Aktivierungsfunktion $\varphi(\vec{x}, \vec{w})$ der tatsächlichen Klasse des Objekts t entspricht. Wenn die Klasse nicht richtig erkannt wurde $o(\vec{x}) \neq t$, werden

die Gewichte \vec{w} entsprechend der Perzeptron-Lernregel angepasst. Diese Lernregel ist ein wichtiger Vorteil von Rosenblatts Perzeptron [Ros58] gegenüber des Neurons von McCulloch und Pitts [MP43], weil die Gewichte erlernt werden können.

Vor dem Training werden die Gewichte \vec{w} zufällig bestimmt und initialisiert. In jedem Trainingsschritt wird überprüft ob die berechnete Klasse $o(\vec{x})$ der tatsächlichen Klasse t entspricht. Wenn $o(\vec{x}) = t$ werden die Gewichte nicht verändert und der nächste Trainingsschritt wird ausgeführt. Wenn $o(\vec{x}) \neq t$ werden die Gewichte nach der Perzeptron-Lernregel aktualisiert:

$$w_i^{neu} = w_i^{alt} + \Delta w_i \tag{2.2}$$

$$\Delta w_i = \eta * (t - o) * x_i \tag{2.3}$$

Die Lernrate η kann angepasst werden und bestimmt wie stark die Gewichte in jedem Trainingsschritt verändert werden. Üblicherweise werden Lernraten zwischen 1e-2 und 1e-4 gewählt.

Neben der Schwellenwertfunktion werden für die Aktivierung von einzelnen Neuronen verschiedene Aktivierungsfunktionen verwendet. Die am meisten verwendeten Funktionen hierfür sind die Tangens Hyperbolicus (tanh)-Funktion

$$\varphi(x) = \tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1},$$
(2.4)

die Sigmoid- oder S-Funktion

$$\varphi(x) = \frac{1}{1 + e^{-x}} \tag{2.5}$$

und die Rectified Linear Unit (ReLU)-Funktion

$$\varphi(x) = \max(0, x). \tag{2.6}$$

Diese Funktionen sind, zusammen mit der zuvor vorgestellten Schwellenwertfunktion, in Abbildung 2.8 dargestellt.

Mit diesen Aktivierungsfunktionen und der Verwendung mehrerer Perzeptronen werden mehrschichtige KNNs modelliert. Dadurch können diese auf unterschiedliche Probleme angewendet werden und überwinden die Schwächen eines einzelnen Perzeptrons (ausschließlich binäre Klassifizierung, keine XOR-Operation). Ein mehrschichtiges KNN besteht aus mindestens zwei Schichten, einer Ergebnis-Schicht und mindestens einer verborgenen Schicht. Der Eingangsvektor \vec{x} wird nicht als eine Schicht gezählt. Jede Schicht

Abbildung 2.8: Aktivierungsfunktionen für Neuronen

besteht aus 1, ..., n Neuronen (Perzeptronen), die im Modell als Knoten modelliert sind. Die Neuronen einer Schicht bestehen jeweils aus einer gewichteten Summe und einer Aktivierungsfunktion und sind jeweils mit dem Eingangsvektor, dem Ergebnisvektor oder den Neuronen der vorherigen und nachfolgenden Schichten verbunden. Diese Verbindungen werden als Kanten modelliert und repräsentieren die Gewichte mit denen die Neuronen verknüpft sind. Abbildung 2.9 zeigt das Schema eines dreischichtigen KNN.

Das Training eines mehrschichtigen KNN funktioniert analog zu dem Training eines einzelnen Perzeptrons. In jedem Trainingsschritt wird ein Ergebnis $o(\vec{x})$ berechnet und mit dem richtigen Ergebnis t verglichen. Mit dem Eingangsvektor \vec{x} werden die Aktivierungswerte y_j des Vektors \vec{y} der ersten verborgenen Schicht wie folgt berechnet:

$$y_j = \varphi(\sum_i w_{ij} * x_i) \tag{2.7}$$

Künstliches Lernen: Trainingsdaten aus dem virtuellen Fahrversuch für Deep Learning Algorithmen

Abbildung 2.9: Dreischichtiges künstliches neuronales Netz

Dabei ist w_{ij} die Gewichtung der Kante zwischen dem Eingangswert x_i und dem verborgenem Neuron j. Alle weiteren verborgenen Schicht und der Ergebnisvektor werden auf die gleiche Weise berechnet mit den Aktivierungswerten der vorherigen Schicht als Eingangsvektor. Für binäre Klassifizierungsprobleme kann beispielsweise die Sigmoid-Funktion als Aktivierungsfunktion für die Ergebnisschicht gewählt werden. Dann ist das Ergebnis o eine Zahl zwischen 0 und 1 und beschreibt die Wahrscheinlichkeit, dass der Eingangsvektor \vec{x} zur Klasse c_1 gehört. Dementsprechend beschreibt 1-o die Wahrscheinlichkeit der Klasse c_2 . Bei Klassifizierungsproblemen mit mehreren Klassen wird häufig die Softmax-Funktion als Aktivierungsfunktion φ gewählt, um die Wahrscheinlichkeiten der einzelnen Klassen c_k zu bestimmen [Bri90]:

$$o_k = p(c_k|x) = \frac{e^{x^\top w}}{\sum_{j=1}^C e^{x_j^\top w}}$$
 (2.8)

Dabei beschreibt x den Vektor mit Aktivierungswerten aus der vorherigen Schicht, w den Gewichtsvektor und C die Anzahl der Klassen c_k . Auf diese Weise können die Wahrscheinlichkeiten $p(c_k|x)$ für jede Klasse c_k , gegeben den Aktivierungswerten x, berechnet werden.

Für das Erlernen von Gewichten in mehrschichtigen KNNs wird die Fehlerrückführung (engl. Error Backpropagation) verwendet. Die Idee bei diesem Verfahren ist es eine Fehlerfunktion, die die Abweichung zwischen der berechneten und der tatsächlichen Klasse beschreibt, zu definieren und dann zu minimieren [Bis06]. Dafür wird die Funktion

$$E = \frac{1}{2} \sum_{j=1}^{n} (t_j - o_j)^2$$
 (2.9)

verwendet. Dabei beschreiben t_j die tatsächliche Klasse, o_j die errechnete Klasse und n die Anzahl der Klassen. Auf Basis dieser Fehlerfunktion läuft die Fehlerrückführung iterativ in den folgenden Schritten ab [Bis06]:

- 1. Auf Basis eines Eingangsvektors \vec{x} werden alle Aktivierungswerte $\vec{y_j}$ aller versteckter Schichten j und der Ergebnisvektor \vec{o} berechnet.
- 2. Der errechnete Ergebniswert o_j wird mit dem erwarteten Ergebnis t_j verglichen und die Differenz wird berechnet.
- 3. Auf Basis dieser Differenz werden die Gewichte zwischen allen Neuronen geändert, mit dem Ziel diese Differenz bei der nächsten Iteration zu verringern. Die Änderung wird wie folgt berechnet:

$$w_{ij}^{neu} = w_{ij}^{alt} + \Delta w_{ij} \tag{2.10}$$

mit

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} \tag{2.11}$$

Dabei beschreibt w_{ij} das Gewicht zwischen Neuron i und Neuron j, η eine feste Lernrate die beeinflusst wie stark Gewichte geändert werden und E die oben definierte Fehlerfunktion.

Mit diesem Algorithmus werden die Gewichte von mehrschichtigen KNNs bei jedem Trainingsschritt angepasst. Eine Herausforderung beim Training von KNNs ist es mit bisher unbekannten Daten gute Ergebnisse zu erzielen [Sri14]. Das bedeutet, dass im Laufe des Trainings die Gewichte so angepasst werden müssen, dass das Modell nach dem Training nicht nur mit den Trainingsdaten gute Ergebnisse erzielen kann. Dabei spricht man auch von Generalisierbarkeit. Wenn ein Modell dagegen nur mit den Trainingsdaten gute Ergebnisse erzielt, spricht man von Überanpassung (engl. Overfitting). Im Gegensatz dazu spricht man von Unteranpassung (engl. Underfitting), wenn ein Modell schon mit den Trainingsdaten sehr schlechte Ergebnisse erzielt. In Abbildung 2.10 ist beispielhaft eine Unter- und Überanpassung eines binären Klassifikators dargestellt.

Heute werden in Anwendungen häufig tiefe neuronale Netze (engl. Deep Neural Networks) verwendet. Von einem tiefen neuronalen Netz spricht man, wenn es viele versteckte Schichten besitzt. Damit können Merkmale auf verschiedenen Abstraktionsebenen erkannt werden [LBH15]. In den folgenden Absätzen 2.2.3 und 2.2.4 werden zwei

Abbildung 2.10: Beispiel einer Unter- und Überanpassung eines Klassifikators

verschiedene Architekturen von tiefen neuronalen Netzen vorgestellt, die in Kapitel 4 für das Klassifizierungsproblem dieser Arbeit angewendet werden.

2.2.3 Convolutional Neural Networks

Ein Convolutional Neural Network (CNN) ist eine Architektur von KNNs und gilt heute als Stand der Technik für Probleme in der Bilderkennung. Die Architektur eines CNN besteht grundsätzlich aus einer oder mehreren Convolution-Schicht und einer Pooling-Schicht [LKF10]. Diese Abfolge kann sich beliebig oft wiederholen und wird am Ende mit einer oder mehreren Fully-Connected-Schicht für die Klassifizierung ergänzt. In den folgenden Absätzen werden die Funktionsweisen der Convolution- und der Pooling-Schicht erklärt. Eine Fully-Connected-Schicht entspricht einer Schicht wie sie im vorherigen Abschnitt 2.2.2 beschrieben wurde. In Abbildung 2.13 ist ein gesamtes CNN dargestellt.

Die Convolution-Schicht besteht aus einer Convolution-Operation gefolgt von einer Aktivierungsfunktion. Die Idee dieser Schicht ist es Merkmale aus einem Bild (oder anderen Inputdaten) zu extrahieren. Dabei werden in den ersten Schichten Merkmalen auf einer niedrigen Ebene und in späteren Schichten zunehmend abstraktere Merkmale extrahiert. Bei der Convolution-Operation (oder auch Faltung) wird ein ausgewählter Filter mit einer festgelegten Schrittgröße über das Bild bewegt und bei jedem Schritt der entsprechende Ausgabewert berechnet. Diese Operation ist in Abbildung 2.11 dargestellt.

In diesem Beispiel handelt es sich um ein Bild mit den Dimensionen 5x5x1 Pixel, also einem zweidimensionalen Bild mit einem Farbkanal. Der Filter hat die Dimension

Abbildung 2.11: Beispiel einer Convolution-Operation

3x3x1. In dem Beispiel ist die aktuell dargestellte Rechnung wie folgt:

$$0*33 + 0*15 + 1*1 + 0*93 + 0*84 + 0*17 + 1*36 + 0*72 + 0*83 = 37$$
 (2.12)

Nach dieser Berechnung bewegt sich der Filter einen Schritt nach rechts und der nächste Wert wird berechnet. Dies wiederholt sich bis der Filter am rechten unteren Rand des Bildes angekommen ist. Bei einem dreidimensionalen Bild, mit den drei Farbkanälen als dritte Dimension, hat der Filter ebenfalls drei Dimensionen und die Berechnung wird analog durchgeführt. Bei dieser Operation kann die Größe des Filters und die Schrittgrüße variiert werden. Es können auch verschiedenen Filter eingesetzt werden um bestimmte Merkmale zu extrahieren. Außerdem können sogenannte Padding-Methoden eingesetzt werden um den Rand der Bilder künstlich zu erweitern. Somit kann sich ein Filter auch über die existierenden Ränder hinweg bewegen und Muster an den Rändern besser erkennen. Das Ergebnis einer Convolution Schicht ist eine sogenannte Feature Map, also eine Schicht die aus extrahierten Merkmalen besteht.

Das Ziel der Pooling-Schicht ist es, die Größe der Feature Map zu reduzieren und dabei die wichtigsten Merkmale beizubehalten. In Abbildung 2.12 ist die oft verwendete Max-Pooling-Operationen dargestellt.

Abbildung 2.12: Beispiel einer Max-Pooling-Operation

Wie bei der Convolution-Operation, gibt es auch beim Pooling verschiedene Operationen (e.g. Average-Pooling). Es können auch die Größe des Pooling-Fensters und die Schrittgröße variiert werden.

Mit Convolution-, Pooling- und Fully-Connected-Schichten kann die Architektur eines CNNs zusammengesetzt werden. In Abbildung 2.13 ist beispielhaft die Architektur eines CNN abgebildet.

Abbildung 2.13: Beispiel eines CNN

[KSH12] [LB97] [LKF10]

2.2.4 Recurrent Neural Networks und LSTMs

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

2.2.5 Training mit synthetischen Daten

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

2.2.6 Klassifizierung von Videos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

3. Konzept

Wie in Abschnitt 2.1 beschrieben, stellt die Sicherung von hochautomatisierten FAS die Automobilindustrie vor große Herausforderungen. Die Menge der bekannten Fahrszenarien ist nur eine Teilmenge aller Szenarien, die zukünftige FAS abdecken müssen. Diese Beziehung ist schematisch in Abbildung 3.1 dargestellt. Die Folge ist eine steigende Anzahl benötigter Testkilometer, die in Zukunft mit ökonomischem Aufwand nicht mehr umsetzbar sein wird. Es müssen neue Methoden gefunden werden, relevante Szenarien für die Generierung von Testfällen zu identifizieren, um die Sicherung von hochautomatisierten FAS mit ökonomischen Aufwand garantieren zu können.

Genau hier soll diese Arbeit einen Beitrag leisten. Das Ziel, wie bereits in Abschnitt 1.2 erläutert, ist die Identifikation von bisher unbekannten Fahrszenarien. Die Grundidee ist es einen Klassifikator mit einem großen Anteil synthetischer Daten und einem kleinen Anteil realer Daten von bisher bekannten Szenarien zu trainieren. Dieser Klassifikator kann dann bekannte Szenarien erkennen, liefert aber keine eindeutigen Ergebnisse bei bisher unbekannten Szenarien. Mit dieser Methodik soll es möglich sein bisher unbekannte Fahrszenarien zu identifizieren, um auf der Basis neue Testfälle für die Sicherung hochautomatisierter Fahrfunktionen zu generieren.

In dieser Arbeit soll ein Proof-of-Concept für diese Methodik entwickelt werden. Dafür wird im folgenden Abschnitt 3.1 das Konzept im Detail und die Vorgehensweise vorgestellt. Anschließend wird in Abschnitt 3.2 die Methodik erklärt mit welcher dieses Konzept umgesetzt werden soll.

Abbildung 3.1: Beziehung zwischen bekannten und unbekannten Fahrszenarien

3.1 Struktur

Die Umsetzung in dieser Arbeit lässt sich in drei Teile untergliedern. Im ersten Teil werden die zu klassifizierenden Szenarien als logische Szenarien definiert. Auf der Basis werden im zweiten Teil synthetische und reale Trainingsdaten generiert. Im dritten Teil wird schließlich ein KNN als Klassifikator trainiert und evaluiert. Diese Struktur ist schematisch in Abbildung 3.2 abgebildet und wird in den folgenden Absätzen weiter beschrieben.

Abbildung 3.2: Konzept dieser Arbeit

Im ersten Schritt der Umsetzung werden bestimmte Fahrszenarien ausgewählt und wie in Abschnitt 2.1.2 definiert. In dieser Arbeit werden Szenarien auf der Ebene der logischen Szenarien definiert. Nachdem Szenarien ausgewählt und definiert sind, werden synthetische und reale Daten für das Training eines Klassifikators benötigt.

Für die Generierung von synthetischen Daten wird mit der Simulationssoftware Car-

Maker gearbeitet. Mit dieser Software können das Ego-Fahrzeug, Straßen, Verkehr und die Trajektorien aller Fahrzeuge generiert und beliebig verändert werden. Die Idee ist es, Fahrten des Ego-Fahrzeugs zu simulieren, entsprechende Bild- und Signaldaten aufzuzeichnen und die Bilddaten anhand der Signaldaten zu labeln. Auf diese Weise können ohne großen Aufwand beliebig viele synthetische Daten erzeugt und gelabelt werden. Mit CarMaker können sowohl Rohdaten, wie zum Beispiel Radarsignale des Ego-Fahrzeugs, als auch abstrakte Informationen, wie die Position und Geschwindigkeit von anderen Objekten, simuliert werden. Amersbach und Winner [AW17] stellen einen Ansatz für die funktionale Dekomposition von hochautomatisierten FAS vor. In diesem Ansatz werden Informationen über sechs Schichten, von den Ground Truth Daten über die Szenenerkennung bis zur entsprechenden Aktion des Ego-Fahrzeugs, abgeleitet. Ein Schema dieses Ansatzes ist in Abbildung 3.3 dargestellt. In dieser Arbeit werden für das Labeln der Bilddaten Signaldaten generiert, die nach Schicht 1 (e.g. Geschwindigkeit des Ego-Fahrzeugs) und Schicht 2 (e.g Position des vorausfahrenden Fahrzeugs) eingeordnet werden können. Jeder generierte Zeitpunkt stellt eine Szene, wie in Abschnitt 2.1.2 beschrieben, dar. Jede Szene wird separat auf Basis der entsprechenden Signaldaten nach festgelegten Regeln klassifiziert. Die Aneinanderreihung von mehreren Szenen ergibt schließlich ein Szenario. Für die Generierung von realen Trainingsdaten werden Videosequenzen verwendet und manuell gelabelt.

Für das Training und die Evaluation eines Klassifikators werden KNNs verwendet. Wie in Abschnitt 2.2 beschrieben, sind CNNs nach dem Stand der Technik die besten Architekturen um Merkmale aus Bildern zu extrahieren. LSTMs sind besonders für Zeitreihen geeignet. Daher wird ein Klassifikator aus einer Kombination dieser Architekturen erstellt. Um die Skalierbarkeit dieses Ansatzes zu gewährleisten, wird für das Training nur ein kleiner Teil realer und ein großer Teil synthetischer Daten verwendet. Damit wird auch für die Zukunft der Aufwand des manuellen Labelns gering gehalten.

3.2 Ansätze, Methoden, Werkzeuge

In diesem Abschnitt wird ein Überblick gegeben, welche Ansätze, Methoden und Werkzeuge in den jeweiligen Teilen der Umsetzung verwendet werden. Diese Zuordnung ist in der folgenden Tabelle 3.1 dargestellt. Die detaillierte Beschreibung folgt in Kapitel 4.

Teil der Umsetzung	Ansätze, Methoden, Werkzeuge	$\mathbf{Quellen}$
Auswahl und Definition geeigne-	Konzept der logischen Szenarien	[Ulb15],
ter Fahrszenarien		[Bag17]

Teil der Umsetzung	Ansätze, Methoden, Werkzeuge	Quellen
Simulation und Labeln syntheti-	Generierung von Bild- und Signaldaten mit	Gegenstand
scher Trainingsdaten	${\bf Car Maker, regel basier te\ Klassi fizier ung\ auf}$	dieser Ar-
	Basis von vorher festgelegten Signaldaten	beit
Generierung realer Trainingsda-	Auswahl geeigneter Videosequenzen von	Gegenstand
ten	YouTube, manuelles Labeln	dieser Ar-
		beit
Vorbereitung der Daten, Erstel-	Architektur eines KNN mit einer Kombi-	[Cho15],
lung des Klassifikators und Eva-	nation von CNN und LSTM, implemen-	CNN,
luation der Experimente	tiert mit Python und Keras	LSTM

Tabelle 3.1: Ansätze, Methoden und Werkzeuge dieser Arbeit

Abbildung 3.3: Schema der funktionalen Dekomposition [AW17]

4. Umsetzung

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Code Darstellung

```
commentstylefor x commentstylein commentstylexrange(a):
    commentstyleprint(something.__len__())
```

4.1 Definition der Fahrszenarien

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

4.2 Vorbereitung synthetischer Daten

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Künstliches Lernen: Trainingsdaten aus dem virtuellen Fahrversuch für Deep Learning Algorithmen

4.2.1 Simulation mit CarMaker

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

4.2.2 Daten Labeling

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

4.3 Vorbereitung realer Daten

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

4.4 Training

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

4.4.1 Inputdaten

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

4.4.2 Architektur des neuronalen Netzes

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

4.4.3 Experimente

Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, At accusam aliquyam diam diam dolore dolores duo eirmod eos erat, et nonumy sed tempor et et invidunt justo labore Stet clita ea et gubergren, kasd magna no rebum. sanctus sea sed takimata ut vero voluptua. est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur

5. Ergebnis

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

5.1 Synthetische Daten

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

5.2 Reale Daten

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

6. Zusammenfassung

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

6.1 Ergebnis und Diskussion

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

6.2 Ausblick

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis.

Literaturverzeichnis

- [ABR16] Cesar Arroyo, Luis M. Bergasa und Eduardo Romera. "Adaptive fuzzy classifier to detect driving events from the inertial sensors of a smartphone". In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). 2016.
- [AW17] Christian Amersbach und Hermann Winner. "Functional Decomposition: An Approach to Reduce the Approval Effort for Highly Automated Driving". In: 8. Tagung Fahrerassistenz. 2017.
- [Bac17] Johannes Bach u. a. "Reactive-replay approach for verification and validation of closed-loop control systems in early development". In: *SAE World Congress* (2017).
- [Bag17] Gerrit Bagschik u. a. "Szenarien für Entwicklung, Absicherung und Test von automatisierten Fahrzeugen". In: 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren. 2017.
- [BF15] Guy Berg und Berthold Färber. "Vehicle in the Loop". In: *Handbuch Fah*rerassistenzsysteme. 2015.
- [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
- [BOS16] Johannes Bach, Stefan Otten und Eric Sax. "Model based scenario specification for development and test of automated driving functions". In: *Intelligent Vehicles Symposium (IV)*. 2016.
- [Bri90] John S. Bridle. "Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition". In: *Neurocomputing*. 1990.

- [Bun05] Der Beauftragte der Bundesregierung für Informationstechnik. V-Modell XT. 2005. URL: https://www.cio.bund.de/Web/DE/Architekturen-und-Standards/V-Modell-XT/vmodell_xt_node.html (besucht am 19.10.2018).
- [Cer16] Javier Cervantes-Villanueva u. a. "Vehicle maneuver detection with accelerometer-based classification". In: *Sensors* (2016).
- [CHK16] Zehra Camlica, Allaa Hilal und Dana Kulić. "Feature abstraction for driver behaviour detection with stacked sparse auto-encoders". In: *IEEE International Conference on Systems, Man, and Cybernetics (SMC)*. 2016.
- [Cho15] François Chollet. Keras. 2015. URL: https://keras.io (besucht am 15.11.2018).
- [Com14] SAE On-Road Automated Vehicle Standards Committee u. a. "Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems". In: *SAE Standard* (2014).
- [Gru17] Richard Gruner u. a. "Spatiotemporal representation of driving scenarios and classification using neural networks". In: *Intelligent Vehicles Symposium*. 2017.
- [HK15] Stephan Hakuli und Markus Krug. "virtuelle Integration". In: *Handbuch Fahrerassistenzsysteme*. 2015.
- [Kin17] Christian King u. a. "Identifikation von Fahrszenarien während einer virtuellen Testfahrt". In: *INFORMATIK 2017*. 2017.
- [KSH12] Alex Krizhevsky, Ilya Sutskever und Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks". In: Advances in Neural Information Processing Systems. 2012.
- [LB97] Yann LeCun und Yoshua Bengio. "Convolutional networks for images, speech, and time series". In: *The handbook of brain theory and neural networks* (1997).
- [LBH15] Yann LeCun, Yoshua Bengio und Geoffrey Hinton. "Deep learning". In: *nature* (2015).
- [Li15] Guofa Li u. a. "Lane change maneuver recognition via vehicle state and driver operation signals—Results from naturalistic driving data". In: *Intelligent Vehicles Symposium (IV)*. 2015.
- [LKF10] Yann LeCun, Koray Kavukcuoglu und Clément Farabet. "Convolutional Networks and Applications in Vision". In: International Symposium on Circuits and Systems. 2010.
- [Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

- [MP43] Warren S. McCulloch und Walter Pitts. "A logical calculus of the ideas immanent in nervous activity". In: *Bulletin of Mathematical Biophysics* (1943).
- [MP69] Marvin L. Minski und Seymour A. Papert. *Perceptrons: an introduction to computational geometry*. The MIT Press, 1969.
- [PL16] Raphael Pfeffer und Tobias Leichsenring. "Continuous development of highly automated driving functions with vehicle-in-the-loop using the example of Euro NCAP scenarios". In: Simulation and Testing for Vehicle Technology. 2016.
- [Püt17] Andreas Pütz u.a. "System validation of highly automated vehicles with a database of relevant traffic scenarios". In: (2017).
- [Ros58] Frank Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the brain." In: Psychological Review (1958).
- [SB98] Richard S. Sutton und Andrew G. Barto. Introduction to reinforcement learning. The MIT Press, 1998.
- [Sch13] Fabian Schuldt u. a. "Effiziente systematische Testgenerierung für Fahrerassistenzsysteme in virtuellen Umgebungen". In: AAET 2013. 2013.
- [Sch14] Sebastian Schwab u.a. "Durchgängige Testmethode für Assistenzsysteme". In: ATZ-Automobiltechnische Zeitschrift (2014).
- [Sri14] Nitish Srivastava u. a. "Dropout: a simple way to prevent neural networks from overfitting". In: *The Journal of Machine Learning Research* (2014).
- [Sun17] Hao Sun u. a. "Robust Traffic Vehicle Lane Change Maneuver Recognition". In: SAE Technical Paper. 2017.
- [Sur18] Sebastian Surmund u. a. "Neue Szenarien für autonome Fahrsysteme". In: $ATZ\ extra\ (2018)$.
- [Ulb15] Simon Ulbrich u. a. "Defining and substantiating the terms scene, situation, and scenario for automated driving". In: 18th IEEE International Conference on Intelligent Transportation Systems. 2015.
- [WK16] Christopher Woo und Dana Kulić. "Manoeuvre segmentation using smartphone sensors". In: Intelligent Vehicles Symposium (IV). 2016.
- [WW15] Walther Wachenfeld und Hermann Winner. "Die freigabe des autonomen Fahrens". In: *Autonomes Fahren*. 2015.

- [XHK18] Jie Xie, Allaa R Hilal und Dana Kulić. "Driving Maneuver Classification: A Comparison of Feature Extraction Methods". In: *IEEE Sensors Journal* (2018).
- [ZH17] Yang Zheng und John H. L. Hansen. "Lane-change detection from steering signal using spectral segmentation and learning-based classification". In: *IEEE Transactions on Intelligent Vehicles* (2017).
- [Zhe16] Zhixiao Zheng u. a. "Drivers' Lane-Changing Maneuvers Detection in Highway". In: *Man-Machine-Environment System Engineering*. 2016.
- [ZSH14] Yang Zheng, Amardeep Sathyanarayana und John HL Hansen. "Threshold based decision-tree for automatic driving maneuver recognition using CAN-Bus signal". In: *IEEE 17th International Conference on Intelligent Transportation Systems (ITSC)*. 2014.
- [ZSH15] Yang Zheng, Amardeep Sathyanarayana und John Hansen. "Non-Uniform time window processing of in-vehicle signals for maneuvers recognition and route recovery". In: *SAE Technical Paper*. 2015.

Abkürzungsverzeichnis

Items einrücken wie andere Verzeichniss

 ${f MiL}$ Model-in-the-Loop

SiL Software-in-the-Loop

HiL Hardware-in-the-Loop

ViL Vehicle-in-the-Loop

FAS Fahrerassistenzsysteme

RF Random Forest

SVM Support Vector Machine

FRC Fuzzy Rule-Based Classifier

 \mathbf{kNN} k-Nearest-Neighbor

HMM Hidden Markov Model

 \mathbf{KNN} künstliches neuronales Netz

 \mathbf{DNN} Deep Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

Künstliches Lernen: Trainingsdaten aus dem virtuellen Fahrversuch für Deep Learning Algorithmen

tanh Tangens Hyperbolicus

ReLU Rectified Linear Unit

Tabellenverzeichnis

2.1	Bisherige Arbeiten zur Szenarienerkennung	12
3.1	Ansätze, Methoden und Werkzeuge dieser Arbeit	28

Abbildungsverzeichnis

2.1	Norm SAE J3016 für die Level des autonomen Fahrens [Com14]	4
2.2	V-Modell [HK15]	5
2.3	Schritte zur Testfallerstellung [Sch13]	5
2.4	Zusammenhang zwischen Szene und Szenario [Ulb15]	8
2.5	Beispiel für ein funktionales, logisches und konkretes Szenario [Bag17] $$	9
2.6	Beispiel einer Klassifizierung mit zwei Klassen	14
2.7	Modell eines Perzeptrons [Ros58]	15
2.8	Aktivierungsfunktionen für Neuronen	17
2.9	Dreischichtiges künstliches neuronales Netz	18
2.10	Beispiel einer Unter- und Überanpassung eines Klassifikators	20
2.11	Beispiel einer Convolution-Operation	21
2.12	Beispiel einer Max-Pooling-Operation	21
2.13	Beispiel eines CNN	22
3.1	Beziehung zwischen bekannten und unbekannten Fahrszenarien	26
3.2	Konzept dieser Arbeit	26
3.3	Schema der funktionalen Dekomposition [AW17]	29

A. Appendix Title

A.1 Teil 1 des Anhangs

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Nam liber tempor cum soluta nobis eleifend option conque nihil imperdiet doming id

quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis.

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, At accusam aliquyam diam diam dolore dolores duo eirmod eos erat, et nonumy sed tempor et et invidunt justo labore Stet clita ea et gubergren, kasd magna no rebum. sanctus sea sed takimata ut vero voluptua. est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur