Basic properties of homomorphisms

Suppose $\phi: G \rightarrow H$ is a homomorphism.

Pf:
$$\forall x \in G$$
, $\phi(x) = \phi(x \cdot e_G)$ (def. of iden.)

$$= \phi(x) \cdot \phi(e_G) \qquad (\phi \text{ is a hom.})$$

$$(\text{cancellation law})$$

$$\Rightarrow \phi(e_G) = e_H. \quad \square$$

(inverse in G)

(b)
$$\forall g \in G$$
, $\phi(g^{-1}) = \phi(g)^{-1}$
(inverse in H)

Pf:
$$\phi(g^{-1}) \phi(g) = \phi(g^{-1}g) = \phi(e_G) = e_H$$

 $\phi \text{ is a hom.}$

$$\Rightarrow \phi(g^{-1}) = \phi(g)^{-1}. \quad \square$$

$$z)\phi(G) \leq H$$
 (image of a hom. is a subgroup of codomain)

Pf: Use subgroup criteria. $\phi(G)$ is:

• Non-empty
$$/$$
 $\phi(e_G) \in \phi(G)$

· Closed under multiplication/

If
$$h_{1}, h_{2} \in \emptyset(G)$$
 then $\exists g_{1}, g_{2} \in G$ s.t. $\emptyset(g_{1}) = h_{1}, \emptyset(g_{2}) = h_{2}$.

Then
$$g_1g_2 \in G$$
, so $h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \phi(G)$.

· Closed under inverses /

Then
$$g^{-1} \in G$$
 and $\emptyset(g^{-1}) = \emptyset(g)^{-1}$.

There fore $\phi(G) \leq H$.

Ex:
$$G=H=\mathbb{Z}$$
, $\phi:G\to H$, $\phi(k)=nk$ $(n\in\mathbb{Z})$

$$\phi$$
 is a hom. $\Rightarrow \phi(G) = n\mathbb{Z} = \{nk: k \in \mathbb{Z}\} \leq \mathbb{Z}$.

kernel of a hom. is a subgroup of domain

the <u>kernel</u> of ϕ (a so 3) Define $\ker(\phi) = \{g \in G : \phi(g) = e_H \}$. Then $\ker(\phi) \leq G$.

Pf: Subgroup crit. ker(\$) is:

• Non-empty $/ \phi(e_G) = e_H \Rightarrow e_G \in \ker(\phi)$.

·Closed under multiplication/

If $g_{y}g_{z} \in \ker(\phi)$ then $\phi(g_{1}g_{z}) = \phi(g_{1}) \phi(g_{z}) = e_{H} \cdot e_{H} = e_{H}$

 \Rightarrow $q_1q_2 \in \ker(\phi)$.

·Closed under inverses /

If $g \in \ker(\phi)$ then $\phi(g^{-1}) = \phi(g)^{-1} = e_H^{-1} = e_H \Rightarrow g^{-1} \in \ker(\phi)$.

Therefore $ker(\phi) \leq G$. \square

Ex: $G=(GL_2(\mathbb{R}), \cdot)$, $H=(\mathbb{R}\setminus\{0\}, \cdot)$, $\phi: G\rightarrow H$, $\phi(A)=def(A)$.

 $ker(\phi) = \{A \in G: \phi(A) = e_{H}\}$

= { A \in GLz(\mathbb{R}): \det(A) = 1 } = SLz(\mathbb{R}) \leq G.

4) If ϕ is an isomorphism then its inverse function $\phi^{-1}: H \rightarrow G$ is also an isomorphism.

Pf: ϕ^{-1} is a bijection, so we just need to show that it is a homomorphism. Suppose $h_1, h_2 \in H$, $\phi^{-1}(h_1) = g_1$, $\phi^{-1}(h_2) = g_2$.

Then $\phi(g_1) = h_1$ and $\phi(g_2) = h_2$ (def. of inv. fn.) $\Rightarrow h_1 h_2 = \phi(g_1) \phi(g_2) = \phi(g_1 g_2)$ (ϕ is a hom.)

 $\Rightarrow \phi^{-1}(h_1h_2) = q_1 q_2 = \phi^{-1}(h_1) \phi^{-1}(h_2) \quad \text{(def. of inv. fn.)} \quad \mathbb{Z}$

Ex:
$$G=(\mathbb{R},+)$$
, $H=(\mathbb{R},0,+)$, $\phi: G \to H$, $\phi(x)=e^x$.

 ϕ is an isom. $\Rightarrow \phi^{-1}: \mathbb{R}_{>0} \to \mathbb{R}$ is an isom.

Note:
$$\phi^{-1}(x) = \log x$$
, so $\phi^{-1}(xy) = \phi^{-1}(x) + \phi^{-1}(y)$

$$\implies \log(xy) = \log x + \log y$$
.