第 35 届全国信息学奥林匹克竞赛

CCF NOI 2018

模拟训练

时间: 2018 年 5 月 15 日 20:00 ~ 20:00

题目名称	红绿灯	自动排序机	区间求和
题目类型	传统型	传统型	传统型
目录	light	auto	interval
可执行文件名	light	auto	interval
输入文件名	light.in	auto.in	interval.in
输出文件名	light.out	auto.out	interval.out
每个测试点时限	1 秒	1 秒	1 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	20	10
每个测试点分值	5	5	10

提交源程序文件名

对于 C++ 语言	light.cpp	auto.cpp	interval.cpp
对于 C 语言	light.c	auto.c	interval.c
对于 Pascal 语言	light.pas	auto.pas	interval.pas

编译选项

对于 C++ 语言	-02 -lm	-02 -lm	-02 -lm
对于 C 语言	-02 -lm	-02 -lm	-02 -lm
对于 Pascal 语言	-02	-02	-02

红绿灯 (light)

【题目描述】

在一条直线上有 n+1 个车站,编号为 $0,1,\dots,n$ 。n 条公路连接着这 n+1 个车站,公路编号为 $1,2,\dots,n$,第 i 条公路连接着车站 i-1 和 i。一辆汽车从公路 i 的一端开到另一端需要 a_i 分钟(无论哪种方向)。

一些公路是单行的,即同一时刻公路上的汽车必须沿相同方向行驶(与传统的单行公路不同的是,在不同时刻方向可以不同);另一些公路是双行的,即允许两种方向的汽车同时在上面行驶。

每条公路的两端均有红绿灯,可以控制每辆汽车驶入公路的时间(一旦驶入公路则必须等 a_i 分钟离开公路后才能再控制)。我们的任务是控制每个车站的红绿灯,使得每 k 分钟有一趟从车站 0 到车站 n 的汽车和一趟从车站 n 到车站 n 的汽车,且汽车遵循单行公路的规则。

具体规则如下:

- 1. 有两类汽车,一类从车站 0 到车站 n,一类从车站 n 到车站 0;
- 2. 如果一辆汽车在时刻 t 从某车站驶入公路 i,则该汽车必在时刻 $t + a_i$ 从另一车站驶出公路 i;
- 3. 如果一辆汽车在时刻 t 从某车站驶入公路 i,则下一辆与该汽车同类的驶入该公路的汽车驶入的时间为 t+k,上一辆同类的汽车驶入该公路的时间为 t-k;
- 4. 两类汽车不能在单行公路同时行驶。

你的目标是最小化两类汽车的每趟行驶时间之和。

【输入格式】

从文件 light.in 中读入数据。

第一行包含两个正整数 n,k。

接下来 n 行,第 i 行包含两个正整数 a_i, b_i ,其中 a_i 表示汽车通过公路 i 的时间, b_i 表示公路类型, $b_i = 1$ 表示公路 i 单行, $b_i = 2$ 表示公路 i 双行。

【输出格式】

输出到文件 light.out 中。

输出一行一个整数表示答案,可以证明答案一定是个整数。如果不存在满足规则的方案,输出 -1。

【样例1输入】

- 3 10
- 4 1
- 3 1
- 4 1

【样例1输出】

26

【样例1解释】

【样例 2 输入】

- 1 10
- 10 1

【样例 2 输出】

-1

【样例3输入】

- 6 4
- 1 1
- 1 1
- 1 1
- 1 1
- 1 1
- 1 1

【样例3输出】

12

【样例 4】

见选手目录下的 light/light4.in 与 light/light4.ans。

【样例 5】

见选手目录下的 light/light5.in 与 light/light5.ans。

【子任务】

测试点编号	n	k	a_i	b_i
1	≤ 2			
2	≤ 3			
3	> 0	≤ 10		≤ 2
4	≤ 4			
5	2.4			
6				= 1
7	≤ 20	$\leq 10^{5}$		≤ 2
8				
9				= 1
10	≤ 2000	$\leq 2 \times 10^6$	$\leq k$	≤ 2
11			≥ <i>K</i>	
12				= 1
13	$\leq 10^5$			= 2
14				≤ 2
15				= 1
16	$\leq 3 \times 10^5$	$\leq 10^9$		=2
17				≤ 2
18				= 1
19	$\leq 5 \times 10^5$			≤ 2
20				<u> </u>

自动排序机 (auto)

【题目描述】

小G有一个神奇的自动排序机,可以瞬间将一个数列中的元素进行排序。

为了检验这个机器的功能,小 G 准备了一个长度为 n 的数列 $\{a\}_{i=1}^n$,然后进行了 m 次操作,每次操作为以下两种之一:

- <u>1 1 r f</u>: 将数列中下标在区间 [*l*, *r*] 内的元素按照升序 (f = 0) 或降序 (f = 1) 排序:
- 2 1 r: 询问 $\sum_{i=1}^{r} a_i$ 的值。

请你帮助小 G 计算正确的结果,以检验小 G 的自动排序机是否正常工作。

【输入格式】

从文件 auto.in 中读入数据。

第一行两个正整数 n,m,分别表示数列长度和操作个数。

接下来一行 n 个正整数 a_i 表示该数列。

接下来 m 行每行一个操作,格式见题目描述。

【输出格式】

输出到文件 auto.out 中。

对于每个询问,输出一行一个整数,表示答案。

【样例1输入】

- 10 11
- 1 5 10 3 9 2 8 6 4 7
- 2 5 8
- 1 1 3 0
- 2 2 6
- 1 6 8 1
- 2 1 10
- 2 4 9
- 1 2 5 0
- 1 4 8 1
- 1 3 6 0
- 2 1 10
- 2 3 8

【样例1输出】

25

29

55

32

55

40

【样例 2】

见选手目录下的 auto/auto2.in 与 auto/auto2.ans。

【子任务】

测试点编号	n	m	约定
1	≤ 100	≤ 100	
2	≥ 100	≥ 100	
3	≤ 500	≤ 500	无
4		≤ 1000	
5		≤ 2000	
6	≤ 1000		
7		≤ 200000	f = 0
8		≤ 200000	J = 0
9		≤ 5000	无
10		≥ 5000	儿
11			没有操作 1
12		≤ 200000	
13			操作1都在操作2
14	200000		之前
15	≤ 200000		∠刑
16		≤ 50000	
17		Z 20000	
18		≤ 100000	无
19		≤ 150000	
20		≤ 200000	

区间求和 (interval)

【题目描述】

有 n 个区间,第 i 个区间为 $[l_i, r_i]$,这 n 个区间构成的集合有 $2^n - 1$ 个非空子集。 求这 $2^n - 1$ 个子集中,满足 $\max\{l_i\} \leq \min\{r_i\}$ 的子集的 $(\min\{r_i\} - \max\{l_i\} + 1)(\max\{r_i\} - \min\{l_i\} + 1)$ 之和对 $10^9 + 7$ 取模的结果。

【输入格式】

从文件 interval.in 中读入数据。

第一行一个整数 n ($1 \le n \le 10^5$)。

接下来 n 行, 第 i 行两个整数 l_i , r_i $(1 \le l_i \le r_i \le 2n)$ 。

【输出格式】

输出到文件 *interval.out* 中。 输出一行一个整数表示答案。

【样例1输入】

2

1 2

2 3

【样例1输出】

11

【样例1解释】

样例中,存在3种非空集合{[1,2],[2,3]},{[1,2]},{[2,3]},它们的值分别为3,4,4。

【子任务】

对于 20% 的数据, $n \le 20$;

对于 50% 的数据, $n \le 2000$;

对于 100% 的数据, $n \le 10^5$ 。