Teoria dos Grafos

Rômulo César Silva

Unioeste

Agosto de 2021

Sumário

- Conceitos Básicos
- 2 Representação de grafos
- 3 Famílias de grafos simples não-orientados
- 4 Conectividade
- Árvore e Florestas
- 6 Medidas
- Clique e Conjunto Independente
- 8 Cobertura e Emparelhamento
- Oloração
- Planaridade
- Parâmetros
- Bibliografia

Definição

Grafo

Um grafo é um sistema G = (V, E) tal que:

- V é conjunto de vértices (ou nós)
- E é conjunto de arestas (ou arcos) tal que $E = \{(u, v) | u, v \in V\}$
- se u = v, a aresta é (u, v) é chamada de **laço**
- se (u, v) é considerada diferente de (v, u) então G é dito grafo orientado
- se (u, v) é considerada a mesma aresta que (v, u) então G é dito **grafo não-orientado**

Conceitos Básicos e Terminologia

- se existem arestas múltiplas entre 2 ou mais vértices ou ainda laços, o grafo é chamado multigrafo
- se não existem arestas múltiplas e nem laços, o grafo é dito grafo simples
- e = (u, v) uma aresta de E:
 - e é incidente aos vértices u e v
 - u e v são os vértices (nós) terminais de e
 - e conecta (liga) os vértices u e v
 - u e v são ditos adjacentes

Conceitos Básicos e Terminologia

- G₁ é grafo simples não-orientado
- G₂ é multigrafo não-orientado
- *G*₃ é grafo orientado

Conceitos Básicos e Terminologia

Exemplos de aplicação:

- mapa rodoviário: nós representam cidades e arestas representam rodovias ligando as cidades. No caso se existem mais de uma rodovia ligando o mesmo par de cidades, é um multigrafo
- relações de amizade: vértices são pessoas e arestas são a relação conhece. Assim uma pessoa p₁ conhece a pessoa p₂, existe aresta (p₁, p₂), sendo grafo simples não-orientado se assume que p₁ conhece p₂ implica que p₂ conhece p₁
- relações de seguimento em redes sociais: vértices são pessoas e arestas são a relação segue. Assim uma pessoa p₁ segue a pessoa p₂ na rede social, existe aresta (p₁, p₂), sendo grafo orientado se assume que p₁ segue p₂ não implica necessariamente que p₂ segue p₁

Conceitos Básicos

00000000

Grau de vértice

Seja G = (V, E) grafo não-orientado. Seja $v \in V$. O grau do vértice v, denotado por $d_G(v)$, é o número de arestas incidentes a ν.

- um laço é contado como 2 incidências
- um vértice v é isolado se $d_G(v) = 0$

Teorema:
$$\sum_{v \in V} d_G(v) = 2|E|$$

Conceitos Básicos

- $d_G(a) = 3$, $d_G(b) = 2$, $d_G(c) = 3$, $d_G(d) = 3$, $d_G(e) = 3$, $d_G(f) = 2$, $d_G(g) = 0$
- f não é vértice isolado, pois $d_G(f) = 2$
- g é vértice isolado, pois $d_G(g) = 0$

Isomorfismo

00000000

Isomorfismo

Dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ são **isomorfos** se são iguais a menos de uma rotulação de vértices. Isto significa que existe uma bijeção $h: V_1 \to V_2$ tal que a aresta $(u, v) \in E_1$ se e somente se a aresta $(h(u), h(v)) \in E_2$.

Notação $G_1 \sim G_2$

 $G_1 \sim G_2$: considere a bijeção $h = \{(1, b), (2, e), (3, c), (4, d), (5, a)\}$

Conceitos Básicos

As principais formas de representação de grafos são:

- matriz adjacência
- matriz incidência
- listas de adjacência

Matriz Adjacência

$$A = a_{ij}$$
 é matriz $n \times n$, onde $|V| = n$ e $a_{ij} = \begin{cases} 1 & \text{se} \quad (i,j) \in E \\ 0 & \text{se} \quad (i,j) \notin E \end{cases}$

Matriz Adjacência

Matriz Incidência

 $B = b_{ij}$ é matriz $n \times m$, onde |V| = n e |E| = m e:

• se o grafo é não-orientado:

$$b_{ij} = egin{cases} 1 & ext{se} & v_i ext{ \'e incidente \'a aresta } e_j \ 0 & ext{caso contr\'ario} \end{cases}$$

• se o grafo é orientado:

$$b_{ij} = egin{cases} +1 & ext{se } v_i ext{ \'e oridem da aresta } e_j \ -1 & ext{se } v_i ext{ \'e destino da aresta } e_j \ 0 & ext{caso contr\'ario} \end{cases}$$

Matriz Incidência

$$B_G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Matriz Incidência

$$B_G = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} \begin{pmatrix} a & b & c & d & e & f \\ +1 & +1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & 0 & -1 & -1 & +1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Listas de Adjacência

Consiste em um vetor de n posições, em que |V| = n e cada elemento vet[i] aponta para a cabeça da lista dos vértices adjacentes ao vértice i.

Listas de Adjacência

Grafo Completo

Grafo Completo

Um grafo G é **completo** se todos os vértices são adjacentes entre si.

Notação: K_n , onde n é o número de vértices.

Ciclo

Ciclo

Um grafo G=(V,E) é um **ciclo** de n vértices, se $n\geq 3$, tal que os vértices podem ser rotulados $v_1,v_2,...,v_n$ e

$$E = \{(i, i+1) \mid i = 1, 2, ..., n-1\} \cup \{v_n, v_1\}\}.$$

Notação: C_n

Roda

Roda

Um grafo G=(V,E) é uma **roda** com n vértices, se |V|-n+1 e $V=\{v_0,v_1,v_2,...,v_n\}$, tal que $E=\{(i,i+1)\,|\,i=1,2,...,n-1\}\cup\{v_n,v_1\}\}\cup\{(v_0,v_k)\,|\,k=12,...,n\}$. Ou seja, $\{v_0,v_1,v_2,...,v_n\}$ formam um ciclo e v_0 , denominado vértice central liga-se a todos os vértices do ciclo.

Notação: W_n

Grafo Bipartido Completo

Grafo Bipartido Completo

Um grafo G=(V,E) é dito **bipartido completo** se G é bipartido com partições X e Y tal que |X|=m e |Y|=n e todos os vértices em X são adjacentes aos vértices em Y.

Notação: $K_{m,n}$

N-Cubos

N-cubo

Seja $n \ge 1$. O **n-cubo**, denotado Q_n é o grafo com 2^n vértices tal que:

- cada vértice é representado por uma cadeia distinta de bits
- existe aresta ligando os vértices u e v se as cadeias de bits que representam u e v diferem exatamente em uma única posição

Subgrafo Induzido

Subgrafo Induzido

Considere G = (V, E) grafo não-orientado. Seja $V' \subseteq V$ e $V' \neq \emptyset$. O **subgrafo induzido** por V', denotado G[V'], é formado por V' e todas as arestas ligando elementos em V' que estão em E.

Subgrafo Induzido por Arestas

Subgrafo Induzido por Arestas

Considere G = (V, E) grafo não-orientado. Seja $E' \subseteq E$ e $E' \neq \emptyset$. O **subgrafo induzido** por E', denotado G[E'], é formado pelo conjunto de vértices que tem extremo em alguma aresta de E'.

Subgrafo Induzido

Notações:

- G-V': subgrafo induzido pelos vértices que estão em V e não estão em V'
- G v: subgrafo tirando vértice v e arestas incidentes a v
- G E': possuit todos os vértices de G, mas apenas as arestas que não estão em E'
- G e: G tirando a aresta e

Subgrafo Gerador

Subgrafo Gerador

Dado um grafo G, um subgrafo gerador é um grafo $H \subseteq G$ tal que $V_H = V_G$.

Grafo Regular

Grafo Regular

G é dito k-regular se todos os vértices têm grau k.

Grafo Complementar

Grafo Complementar

Dado grafo G não-orientado simples, o **grafo complementar** de G, denotado \overline{G} , é o grafo tal que $(u, v) \in E_{\overline{G}}$ se e somente se $(u, v) \notin E_G$.

Alerta!

Os conceitos aqui apresentados estão de acordo com a referência de Bondy e Murty.

Dependendo da referência, os conceitos são definidos de maneira distinta dos aqui apresentados.

Passeio

Passeio

Passeio é uma sequência não nula finita $w = v_0 e_1 v_2 e_2 ... e_k v_k$, cujos termos são vértices e arestas alternadamente tal que $1 \le i \le k$ onde os extremos de e_i são v_{i-1} e v_i

Exemplos:

- $w_1 = 1a2c5d4$
- $w_2 = 3e4g6f3e4d5$

Trilha

Trilha

Trilha é um passeio com arestas distintas.

Exemplos:

- 3e4g6h5c2b3f6
- 1a2b3e4g6

Caminho

Caminho

Caminho é um passeio com arestas e vértices distintos.

Exemplo: 1a2c5d4

Conectividade

Conectividade

Dado um grafo G não-orientado, um vértice u está conectado a um vértice v se existe caminho de u para v.

Isto define uma relação de equivalência (simétrica, transitiva e reflexiva):

- u está conectado a u (caminho de comprimento zero)
- u está conectado a v implica que v está conectado a u (caminho inverso)
- u está conectado a v e v está conectado a w implicam que u está conectado a w (concatenação de caminhos)

As **componentes conexas** de *G* correspondem aos subgrafos induzidos pelas classes de equivalência gerada pela relação de conexão.

Grafo conexo

Grafo conexo

Um grafo G é **conexo** se tem uma única componente conexa, ou seja, se existe caminho entre quaisquer pares de vértices.

Vértice de corte

Vértice de corte

Um vértice v de um grafo G é dito ser **vértice de corte** (ou **ponto de articulação**) se ao removermos v e suas arestas incidentes aumenta o número de componentes conexas de G.

Exemplo: o vértice 2

Aresta de corte

Aresta de corte

Uma aresta e de um grafo G é dito ser **aresta de corte** (ou **ponte**) se ao removermos e aumenta o número de componentes conexas de G. Neste caso, sempre aumenta de uma unidade.

Exemplo: a aresta a

Grafo k-conexo

Grafo k-conexo

Um grafo G é dito ser **k-conexo** se é necessário retirar pelo menos k vértices para torná-lo desconexo.

Exemplo: $G \notin 2$ -conexo.

Grafo k-aresta-conexo

Grafo k-aresta-conexo

Um grafo G é dito ser **k-aresta-conexo** se é necessário retirar pelo menos k arestas para torná-lo desconexo.

Exemplo: G é 3-aresta-conexo.

Conectividade em Grafos orientados

Componente Fortemente Conexa

Uma **componente fortemente conexa** é um subgrafo induzido maximal em que existe caminho entre quaisquer pares de vértices do subgrafo induzido.

Exemplo: cada cor em G indica uma componente fortemente conexa

Trilha de Euler

Uma **Trilha de Euler** é uma trilha que passa por todas as arestas.

Exemplo: 1a2b3f6g4d5h6e2c5

Circuito

Um **circuito** é um passeio fechado que passa por todas as arestas de G pelo menos uma vez.

Exemplo: 1a2b3f6g4d5h6e2c5h6e2a1

Circuito de Euler

Um circuito de Euler é um circuito que passa por todas as arestas de G uma única vez (uma trilha de Euler fechada).

Grafo Euleriano

Um grafo é dito **euleriano** se possui um circuito de Euler.

G é euleriano, pois possui o seguinte circuito de Euler:

$$1-2-3-4-5-3-7-6-4-1$$

Teorema

Um grafo G é **euleriano** se e somente todos os vértices de G têm grau par.

Caminho Hamiltoniano

Um caminho é dito ser **hamiltoniano** se passa por todos os vértices.

Grafo Hamiltoniano

Um grafo G é **hamiltoniano** se possui um ciclo que passa por todos os vértices.

- G₁ não é hamiltoniano
- ullet G_2 é hamiltoniano, pois possui o ciclo hamiltoniano

Árvore

Árvore

Uma árvore é um grafo conexo e acíclico.

Observação: em qualquer árvore |E| = |V| - 1

Floresta

Floresta

Uma **floresta** é um grafo acíclico. Suas componentes conexas são árvores.

Cintura e Diâmetro

Cintura

A cintura de um grafo é o comprimento do menor ciclo.

Observação: se o grafo é acíclico, então a cintura é infinita.

Diâmetro

O diâmetro de um grafo é a distância máxima entre 2 vértices.

- o cintura: 4
- diâmetro: 3

Clique

Clique

Dado um grafo G = (V, E), $X \subseteq V$ é uma **clique** em G se o subgrafo induzido G[X] é grafo completo.

Exemplos:

- $\{1, 2, 3, 4\}$ é uma clique de tamanho 4
- {3,5,7} é uma clique de tamanho 3

Conjunto Independente

Conjunto Independente

Dado um grafo G = (V, E), $X \subseteq V$ é um **conjunto independente** (ou **estável**) em G se e somente se $\forall u, v \in X$ tem que $(u, v) \notin E$.

Exemplos: $\{1,4,7\}$ e $\{2,6,3\}$ são conjuntos independentes de tamanho 3.

Cobertura

Cobertura

Dado um grafo G = (V, E), $C \subseteq V$ é uma **cobertura** em G se e somente se toda aresta em E tem pelo menos um extremo em C.

Exemplos: $\{1, 4, 5, 7\}$ e $\{2, 3, 6, 7\}$ são coberturas.

Emparelhamento

Emparelhamento

Dado um grafo G = (V, E), $M \subseteq E$ é um **emparelhamento** em G se e somente se M não contém arestas adjacentes duas a duas em G.

Exemplos: $\{(1,2),(3,4),(5,6)\}$ e $\{(1,3),(2,4),(5,6)\}$ são emparelhamentos.

Número Cromático

Número Cromático

O **número cromático** de um grafo G é o número mínimo de cores para se colorir os **vértices** de G tal que vértices adjacentes tenham cores distintas.

Notação: $\chi(G)$

Índice Cromático

Índice Cromático

O **índice cromático** de um grafo G é o número mínimo de cores para se colorir as **arestas** de G tal que arestas adjacentes tenham cores distintas.

Notação: $\chi'(G)$

Número Cromático e Índice Cromático

•
$$\chi(G) = 3$$

•
$$\chi'(G) = 4$$

Grafo Plano (Mapa)

Grafo Plano (Mapa)

Um **grafo plano** ou **mapa** é um grafo desenhado no plano tal que as arestas não se cruzam, definindo regiões ou faces nas quais divide o plano.

G tem 4 faces, sendo f_4 a face externa.

Grafo Dual

Grafo Dual

Dado um grafo plano (mapa) G, o seu **grafo dual**, denotado por G^* é tal que:

- faces de G são vértices em G*
- arestas em G são arestas em G^* (cada aresta tem uma face de cada lado)
- vértices de G são faces em G*

Grafo Planar

Grafo Planar

Um grafo é planar se existe mapa (grafo plano) isomorfo a ele.

Teorema

Um grafo G é **planar** se e somente se G não contém subgrafos que sejam subdivisões de K_5 ou $K_{3,3}$

Teorema

Para todo grafo planar G, tem-se que $(G^*)^*$ é isomorfo a G.

Fórmula de Euler

Fórmula de Euler

Para todo grafo plano conexo *G*:

$$|V| - |E| + |f| = 2$$

onde |f| é o número de faces de G.

Teorema das 4 cores

Teorema das 4 cores

Todo grafo planar pode ser colorido com no máximo 4 cores.

Parâmetros de um Grafo

- δ : grau mínimo de vértices
- Δ: grau máximo de vértices
- ω : número de componentes conexas
- κ: número mínimo de vértices a serem retirados de G tal que aumente o número de componentes conexas
- κ' : número mínimo de arestas a serem retiradas de G tal que aumente o número de componentes conexas
- ullet α : número de vértices em um conjunto independente máximo
- β: número de vértices em uma cobertura mínima

Parâmetros de um Grafo

•
$$|V| = 7$$

•
$$|E| = 12$$

•
$$\Delta = 4$$

•
$$\omega = 1$$

•
$$\kappa' = 3$$

•
$$\alpha = 3$$

planar: SIM

Bibliografia I

[Bondy 1982] Bondy, J. A.; Murty, U.S.R. Graph Theory with Applications. Elsivier, 1982.

[Netto 1996] P.O. Boaventura Netto.

Grafos: Teoria, Modelos, Algoritmos. Edgard Blucher, São Paulo, 1996.

[Diestel 1997] R. Diestel.

Graph Theory. Springer, New York, 1997.

