Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Resistores Especiales

Definición

- En el apartado de resistores especiales caben toda una variedad de componentes resistivos no lineales que modifican su valor óhmico en función de algún factor externo.
 - Temperatura
 - PTC
 - NTC
 - Tensión aplicada
 - Varistores

- Luminosidad incidente
 - LDR
- Campo magnético
 - MDR

Resistores Especiales

Termistores

- Son aquellos que varían su valor resistivo en forma considerable en relación con el cambio de temperatura.
- Tipos
 - NTC Coeficiente de Temperatura Negativo
 - PTC Coeficiente de Temperatura Positivo

Resistores Especiales

NTC

- Coeficiente Negativo de Resistencia
 - Valores entre 5Ω $10M\Omega$. Dependen de la forma física
- La resistencia disminuye al aumentar la temperatura.
- Curva de ejemplo generada de datos tomados de tabla presente en Hoja de Datos
 - $R = 2252\Omega \rightarrow T = 25^{\circ}C$

NTC - Model 451 Miniature Tubular Probe

Símbolo NTC

- Parámetros Característicos
 - Resistencia Nominal Rn
 - Es el valor que se obtiene a una temperatura especificada sin que el calor que ésta genere provoque autocalentamiento.
 - Tolerancia
- Φ5mm~ Φ15mm

- Parámetros Característicos
 - Corriente Nominal In
 - Potencia Nominal Pn
 - Disipación Máxima
 - Coeficiente de Temperatura α
 - Se especifica en %/°C

$$\alpha = \frac{1}{R} \frac{dR}{dT} = -\frac{\beta}{T^2}$$

$$\beta = 3400K$$

$$T = 20^{\circ} C$$

$$\alpha = \frac{1}{R} \frac{dR}{dT} = -\frac{3400K}{(293.15K)^2}$$

$$\alpha = -4\% \frac{1}{{}^{\circ} C}$$

Resistencia vs Temperatura

- Se debe tener presente el valor de la corriente de polarización para evitar un efecto avalancha de la magnitud de la Resistencia.
- Depende del coeficiente de temperatura α [%/°C]
- · B depende del material
 - Entre 2000 y 6000

$$\alpha = \frac{1}{R} \frac{dR}{dT} = -\frac{\beta}{T^2}$$

Temperature (°C)

Resistencia vs Temperatura

$$\beta = \frac{\ln R_1 - \ln R_2 1}{\frac{1}{T_1} - \frac{1}{T_2}}$$

$$R_1 \to T_1$$

$$R_2 \to T_2$$

$$R_1 = 162.2K\Omega \to T_1 = 0^{\circ} C \to 273.15K$$

$$R_2 = 3.3KK\Omega \to T_2 = 100^{\circ} C \to 373.15K$$

$$\beta = \frac{\ln 3.3 - \ln 162.2}{\frac{1}{373.15}} \cong 3970K$$

Tensión vs Corriente

- Si polarizamos adecuadamente podemos leer la temperatura del medio en el que está el termistor.
- Si producimos autocalentamiento tendremos resistencia negativa.
- Se debe poner una R en serie como limitador de corriente.
- Se puede hacer trabajar al NTC entre las dos zonas de resistencia.
- Podemos determinar la variación de mV en virtud del cambio de temperatura.
 - Constante de Disipación →
 - $\delta = 8mV/^{\circ}C$ (disco de 0.4" diámetro colocado en aire)
 - $\delta = 35 \text{mV/°C}$ (disco de 0.4" diámetro colocado en flujo de aire de 1 pies/min)

Tensión vs Corriente

- Constante de Disipación
 - Depende del medio
 - Velocidad del medio
 - Tamaño y configuración del termistor.
 - $\delta = 8 \text{mV/}^{\circ}\text{C}$ (disco de 0.4" diámetro colocado en aire)
 - $\delta = 35 \text{mV/}^{\circ}\text{C}$ (disco de 0.4" diámetro colocado en flujo de aire de 1 pies/min) .

$$\delta = \frac{W}{T - T_a} \left[\frac{mW}{{}^{\circ}C} \right]$$

Ta→Temp. Ambiente T→Temp. Final

- Corriente vs Tiempo
 - Se puede establecer una constante de tiempo en la cual el termistor alcanza el 63% del valor de la temperatura final aplicada.
 - · Se determina en base a los parámetros del circuito.
 - Tensión Aplicada.
 - Resistencia serie conectada.
 - Medio.
 - Aire
 - Aceite
 - Flujo de Aire

NTC - Formatos

Aplicaciones

Fig.15 Flow measurement of liquids and gases. The temperature difference between T_1 and T_0 is measured for the velocity of the fluid.

Fig.14 Liquid level control.

Fig.10 Temperature measurement in industrial and medical thermometers.

Aplicaciones

Fig.17 Basic temperature sensing configuration.
The op-amp (e.g. NE532) acts as a
Schmitt-trigger. The transfer characteristic
is shown in Fig.18.

Aplicaciones

Catalogue number: 2322 593 32312.
 All resistors are 0.25 W.

Fig.24 Refrigerator thermostat using an NTC temperature sensor.

- Aplicaciones
 - Hipsómetro Medición de Altitud.
 - Determina la altitud midiendo la temperatura de ebullición del agua.
 - Determinación de β
 - · Utilizar la ecuación vista anteriormente

$$\beta = \frac{\ln R_1 - \ln R_2 1}{\frac{1}{T_1} - \frac{1}{T_2}}$$

$$R_1 \to T_1$$

$$R_2 \to T_2$$

- Aplicaciones
 - Linealización
 - Conectando una R en paralelo
 - Puedo determinar dos puntos por donde pasaría R a determinadas Temperaturas.
 - Tomando el NTC Model 451

$$RT_1 = 4.48K\Omega \rightarrow T_1 = 10^{\circ} C$$

 $RT_3 = 0.56K\Omega \rightarrow T_3 = 60^{\circ} C$
 $RT_2 = 1.47K\Omega \rightarrow T_2 = 35^{\circ} C$

$$R_{P} = \frac{RT_{2} * (RT_{1} + RT_{3}) - 2 * RT_{1} * RT_{3}}{RT_{1} + RT_{3} - 2 * RT_{2}}$$

$$R_{P} = \frac{1.47 K\Omega * (4.48 K\Omega + 0.56 K\Omega) - 2 * 4.48 K\Omega * 0.56 K\Omega}{4.48 K\Omega + 0.56 K\Omega - 2 * 1.47 K\Omega}$$

$$R_{P} = 1.109 K\Omega$$

Linealización

$$RT_1 = 4.48K\Omega \rightarrow T_1 = 10^{\circ} C$$

 $RT_3 = 0.56K\Omega \rightarrow T_3 = 60^{\circ} C$
 $RT_2 = 1.47K\Omega \rightarrow T_2 = 35^{\circ} C$

$$R_P = 1.109 K\Omega$$

NTC - Model 451 Miniature Tubular Probe

