Exercícios em Sala ANÁLISE DE DADOS CATEGORIZADOS

Tailine J. S. Nonato

28 de março

Descrição da atividade

Estimar a proporção de casas com renda menor que 5 u.m.

Aula de inferências/estimativa de proporção.

```
set.seed(4)
n<-10
amostra <- sample(1:90,size=n, replace = FALSE)
salario<- c(9,2,2,8,3,5,8,3,6,8)
carac <- salario<5

df<-data.frame(amostra,salario,carac)
kable(df,align='c')</pre>
```

amostra	salario	carac
75	9	FALSE
51	2	TRUE
3	2	TRUE
71	8	FALSE
44	3	TRUE
58	5	FALSE
89	8	FALSE
56	3	TRUE
30	6	FALSE
62	8	FALSE
44 58 89 56 30	3 5 8 3 6	TRUE FALSE FALSE TRUE FALSE

Estimativa pontual

```
pia <-sum(df$carac)/10
kable(pia,align='c')</pre>
```

Estimativa do intervalo de confiância

Descrição da atividade

Jornal; preferem certa marca

$$\begin{cases} H_0: \pi=0.6 \\ H_1: \pi>0.6 \end{cases}$$

Dados

```
n=200
carac=156

prop<- carac/n
kable(prop,align='c')</pre>
```

 $\frac{x}{0.78}$

Teste de hipóteses

```
pib < -0.6
alpha<-0.025
z<- (prop-pib)/sqrt((pib*(1-pib))/n)</pre>
kable(z, align = 'c')
                                         \mathbf{X}
                                     5.196152
kable(z>qnorm(1-(alpha)),align='c')
                                         Х
                                      TRUE
\sup <- pib - qnorm(1-(alpha))*sqrt((pib*(1-pib))/n)
inf<- pib + qnorm(1-(alpha))*sqrt((pib*(1-pib))/n)</pre>
ic <- data.frame(sup,inf)</pre>
kable(round(ic,2),align='c')
                                           \inf
                                    sup
                                    0.53
                                          0.67
```

09 de abril

Descrição da atividade

Calcular o risco relativo pontual e intervalar. Dados de um estudo de caso-controle: aspirina e placebo para prevenção de infarto.

Dados

```
alpha < -0.05
n1=11034
n2=11037
p1=0.0171
p2=0.0094
p12=p1-p2
kable(p12,align='c')
                                   X
                                 0.0077
riscorelativo<-p1/p2
kable(riscorelativo,align='c')
                                   Х
                                1.819149
 \inf \log < -\log(p1/p2) + q norm(\frac{1}{(alpha/2)}) * sqrt(((\frac{1}{p1})/(n1*p1)) + ((\frac{1}{p2})/(n2*p2))) 
iclog<- c(suplog,inflog)</pre>
kable(iclog,align='c')
                                   X
                               0.3602717
                               0.8364658
ic<- exp(iclog)</pre>
kable(ic,align='c')
                                   \mathbf{X}
                                1.433719
                                2.308195
```

Agora testando outras proporções:

```
alpha < -0.05
n1=11034
n2=11037
p1=0.510
p2=0.501
p12=p1-p2
kable(p12,align='c')
                                   X
                                 0.009
riscorelativo<-p1/p2
kable(riscorelativo,align='c')
                                   Х
                                1.017964
 \inf \log < -\log(p1/p2) + q norm(\frac{1}{(alpha/2)}) * sqrt(((\frac{1}{p1})/(n1*p1)) + ((\frac{1}{p2})/(n2*p2))) 
iclog<- c(suplog,inflog)</pre>
kable(iclog,align='c')
                                   X
                               -0.0082944
                               0.0439036
ic<- exp(iclog)</pre>
kable(ic,align='c')
                                   \mathbf{X}
                               0.9917399
                               1.0448817
```

Calculando Odds Ratio

```
alpha<- 0.05
n11=189
n21=104
n12=10845
n22=10933
p1=0.0171
p2=0.0094
odds1<- p1/(1-p1)
kable(odds1,align='c')
                                        \mathbf{X}
                                    0.0173975
odds2<- p2/(1-p2)
kable(odds2,align='c')
                                        \mathbf{X}
                                    0.0094892
oddsratio<- odds1/odds2
kable(oddsratio,align='c')
                                        X
                                      1.8334
#ou
oddsratio<- (n11*n22)/(n12*n21)
kable(oddsratio,align='c')
                                        \mathbf{X}
                                     1.832054
```

```
ASE<- sqrt((1/n11)+(1/n12)+(1/n21)+(1/n22))
kable(ASE,align='c')
                                       Х
                                   0.1228416
suplog<- log(odds1/odds2) + qnorm(alpha/2)*ASE</pre>
inflog<- log(odds1/odds2) - qnorm(alpha/2)*ASE
iclog<- c(suplog,inflog)</pre>
kable(iclog,align='c')
                                       Х
                                   0.3654071
                                   0.8469374
ic<- exp(iclog)</pre>
kable(ic,align='c')
                                       Х
                                    1.441100
                                    2.332492
```

11 de abril

Descrição da atividade

Calcular o risco relativo pontual e intervalar. Dados de um estudo: acredita em vida após a morte e gênero.

Dados

```
alpha=0.05
n11=435
n21=375
n12=147
n22=134
```

```
n1=582
n2=509
p1<- n11/(n11+n12)
kable(p1,align='c')
                                  \mathbf{x}
                              0.7474227
p2<- n21/(n21+n22)
kable(p2,align='c')
                                  \mathbf{X}
                              0.7367387
p12<- p1-p2
kable(p12,align='c')
                               0.010684
riscorelativo11<- p1/p2
kable(riscorelativo11,align='c')
                                  \mathbf{X}
                               1.014502
inflog11 \leftarrow log(p1/p2) - qnorm(alpha/2) * sqrt(((1-p1)/(n1*p1)) + ((1-p2)/(n2*p2)))
iclog<- c(suplog11,inflog11)</pre>
kable(iclog,align='c')
```

 $\begin{array}{r} x \\ -0.0557973 \\ 0.0845924 \end{array}$

```
ic<- exp(iclog)
kable(ic,align='c')</pre>
```

 $\frac{x}{0.9457309}$ 1.0882734

O risco relativo é de 1.01, com intervalo de confiança de 0.95 a 1.09. Isso significa que a chance de acreditar em vida após a morte é 1.02 vezes maior para mulheres do que para homens, ou seja 1.01% maior.

Risco relativo -> **probabilidade** de um evento ocorrer em um grupo dividido pela probabilidade de um evento ocorrer em outro grupo.

```
odds1<- p1/(1-p1)
kable(odds1,align='c')

x
2.959184

odds2<- p2/(1-p2)
kable(odds2,align='c')

x
2.798507

theta<- odds1/odds2
kable(oddsratio,align='c')</pre>
```

```
1.832054
#ou
theta<- (n11*n22)/(n12*n21)
kable(oddsratio,align='c')
                                          х
                                      1.832054
ASE<- sqrt((1/n11)+(1/n12)+(1/n21)+(1/n22))
kable(ASE,align='c')
                                          \mathbf{X}
                                      0.1386756
suplog < - log(odds1/odds2) + qnorm(alpha/2)*ASE
inflog<- log(odds1/odds2) - qnorm(alpha/2)*ASE</pre>
iclog<- c(suplog,inflog)</pre>
kable(iclog,align='c')
                                          \mathbf{X}
                                     -0.2159720
                                      0.3276264
ic<- exp(iclog)</pre>
kable(ic,align='c')
                                          \mathbf{X}
```

 $\begin{array}{c} 0.8057579 \\ 1.3876705 \end{array}$

 \mathbf{x}

Odds ratio é de 1.22, com intervalo de confiança de 0.89 a 1.67. Isso significa que a chance de acreditar em vida após a morte é 1.22 vezes maior para mulheres do que para homens.

Odds ratio -> razão de chances de um evento ocorrer em um grupo dividida pela razão de chances de um evento ocorrer em outro grupo.

16 de abril

Descrição da atividade

Testes de Qui Quadrado (Independência) para os dados de identificação partidária.

Hipóteses:

```
\begin{cases} H_0: \mathbf{X} \in \mathbf{Y} \text{ independentes, ou seja } \pi_{ij} = \pi_{i.}\pi_{.j} \\ H_1: \mathbf{X} \in \mathbf{Y} \text{ dependentes, ou seja } \pi_{ij} \neq \pi_{i.}\pi_{.j} \end{cases}
```

```
alpha<- 0.05
quicrit<- qchisq(1-alpha,df=2)
kable(quicrit,align='c')</pre>
```

 $\frac{x}{5.991465}$

```
obs<- matrix(c(279,73,225,165,47,191),nrow=2,byrow=TRUE)
row.names(obs)<- c('Fem','Masc')
colnames(obs)<- c('Dem','Ind','Rep')
kable(obs,align='c')</pre>
```

	Dem	Ind	Rep
Fem	279	73	225
Masc	165	47	191

```
pim<- rowSums(obs)/sum(obs)
pjm<- colSums(obs)/sum(obs)</pre>
```

```
qui <- chisq.test(obs)
quis <- data.frame(qui$statistic,qui$p.value)
colnames(quis)<- c('Qui','p-value')
kable(quis,align='c')</pre>
```

	Qui	p-value
X-squared	7.009544	0.0300536

```
residuals <- (obs - qui$expected)/sqrt(qui$expected*(1-pim)*(1-pjm))
residualsf <- qui$residuals</pre>
```

Odds ratio

Ou seja, a chance de se identificar como Democrata (em vez de Republicano) é 1.44 vezes maior para mulheres do que para homens.

```
oddsratioh <- 1/oddsratio
kable(oddsratioh,align='c')

x

0.6966729
```

Ou seja, a chance de se identificar como Republicano (em vez de Democrata) é 0.7% menor para homens do que para mulheres.

18 de abril

Descrição da atividade

Calcular Razao de Verossimilhança para os dados de identificação partidária.

Hipóteses:

$$\begin{cases} H_0: \mathbf{X} \in \mathbf{Y} \text{ independentes, ou seja } \pi_{ij} = \pi_{i.}\pi_{.j} \\ H_1: \mathbf{X} \in \mathbf{Y} \text{ dependentes, ou seja } \pi_{ij} \neq \pi_{i.}\pi_{.j} \text{ para qualquer } i,j \end{cases}$$

$$\frac{x}{7.002594}$$

 G^2 tem distribuição Qui Quadrado com V graus de liberdade, onde V é o nº de parâmetros sob H_1 - o nº de parâmetros sob H_0 ,

Sob
$$H_1, V_1 = (i * j) - 1$$

Sob
$$H_0$$
, $V_0 = (i-1) + (j-1)$

Logo,

$$V = V_1 - V_0$$

$$V = (i * j) - 1 - [(i - 1) + (j - 1)]$$

$$V = (j-1)(i-1)$$

Como
$$i=2$$
 e $j=3$, então $V=2$

Sabe-se que para $\alpha=0.05,\,G_{crit}=5.99.$ Logo, como G^2 é maior que $G_{crit},$ rejeita-se $H_0.$

Em amostras grandes, G^2 terá um resultado muito próximo ao de χ^2 . Mas em amostras pequenas, G^2 é mais confiável/robusto.

Exercício - Consumo de álcool e mal formação congênita

- 1. Identifique as variáveis em estudo e classifique quanto ao tipo.
- 2. Identifique a variável resposta e a variável explicativa.
- 3. Determine a proporção de presença de malformação congênita para cada nível de consumo de álcool e analise os resultados obtidos.
- 4. Verifique se a presença de malformação congênita está associada ao consumo de álcool das mães a um nível de significância de 5%. e tratando as variáveis como qualitativas nominais e ordinais.

- a. Comente a decisão tomada considerando o nível de significância solicitado. A decisão seria a mesma para outro nível de significância? Qual seria sua recomendação?
- b. Os pressupostos do teste foram atendidos? O que poderia ser feito?
- 5. Refaça o teste utilizado no item 4 agregando categorias para contornar o problema indicado no item 4b. Comente o a decisão tomada com relação aos aspectos considerados nos itens 4a e 4b.
- 6. Os resultados dos testes realizados permitem concluir sobre a existência de tendências na associação entre as variáveis considerando o nível de consumo de álcool? Justifique sua resposta.
- 7. Construa tabelas 2 x 2 que permitam medir a associação entre presença de mal formação congênita para cada nível de consumo de álcool em relação a ausência de consumo de álcool. Comente os resultados. Eles sugerem alguma tendência?

Solução

```
obs<- matrix(c(17066,48,14464,38,788,5,126,1,37,1),nrow=5,byrow=TRUE)
row.names(obs)<- c('0','<1','1-2','3-5','6+')
colnames(obs)<- c('Ausente','Presente')
kable(obs,align='c')</pre>
```

	Ausente	Presente
0	17066	48
<1	14464	38
1-2	788	5
3-5	126	1
6+	37	1

```
expected <- outer(rowSums(obs),colSums(obs))/sum(obs)
kable(expected,align='c')</pre>
```

	Ausente	Presente
0	17065.13888	48.8611162
<1	14460.59624	41.4037576
1-2	790.73596	2.2640449
3-5	126.63741	0.3625898
6+	37.89151	0.1084914

- 1. Consumo de álcool (quantitativa discreta categorizada em faixas ordinais) e malformação congênita (qualitative nominal).
- 2. Variável resposta: malformação congênita. Variável explicativa: consumo de álcool.
- 3. Proporção de malformação congênita para cada nível de consumo de álcool:

```
p_i <- 100*obs[,2]/rowSums(obs)
kable(p_i,align='c')</pre>
```

	X
0	0.2804721
<1	0.2620328
1-2	0.6305170
3-5	0.7874016
6+	2.6315789

barplot(p_i,main='Proporção de malformação congênita por nível de consumo de álcool',xlab=

4. Teste de Qui Quadrado para associação/independência.

Hipóteses:

 $\begin{cases} H_0: \text{Consumo de álcool e malformação congênita são independentes} \\ H_1: \text{Consumo de álcool e malformação congênita são dependentes} \end{cases}$

em termos de proporções:

$$\begin{cases} H_0: \pi_{ij} = \pi_{i.}\pi_{.j} \\ H_1: \pi_{ij} \neq \pi_{i.}\pi_{.j} \end{cases}$$

```
gl <- (nrow(obs)-1)*(ncol(obs)-1)
qui_crit<- qchisq(1-alpha,df=gl)
kable(qui_crit,align='c')</pre>
```

 $\frac{x}{9.487729}$

qui <- chisq.test(obs)
qui\$residuals</pre>

```
Ausente Presente
0 0.006591843 -0.1231913
<1 0.028305154 -0.5289794
1-2 -0.097295603 1.8183038
3-5 -0.056641925 1.0585496
6+ -0.144828680 2.7066232
```

```
quis <- data.frame(qui$statistic,qui$p.value)
colnames(quis)<- c('Qui','p-value')
kable(quis,align='c')</pre>
```

	Qui	p-value
X-squared	12.08205	0.0167514

Com $\alpha = 0.05$,

```
\chi^2_{obs} > \chi^2_{crit} p-valor < \alpha Logo, rejeita-se H_0.
```

No entanto, é possível identificar algumas limitações:

- No teste de Qui Quadrado, como a necessidade de amostras grandes (na amostra existem caselas com frequência esperada menor que 5).
- No teste Qui Quadrado não é levada em consideração de ordem entre as categorias (consumo de álcool é uma variável ordinal).
- É possível identificar uma associação, mas não a direção da associação (quanto maior o consumo de álcool, maior a probabilidade de malformação congênita?). O apoio gráfico é útil para identificar a direção da associação.
- a. A decisão muda para outros níveis de significância. Para $\alpha=0.01$, a decisão seria a mesma. Para $\alpha=0.10$, a decisão seria diferente. A recomendação é que sejam realizados testes de associação com amostras maiores e que sejam consideradas outras técnicas de análise.
- b. Os pressupostos do teste Qui Quadrado são: independência entre as categorias, frequências esperadas maiores que 5 e amostras grandes. Uma solução possível é agrupar as categorias de consumo de álcool em três categorias: Zero consumo (0), Baixo consumo (1-2) e Alto consumo(3+). E caso ainda haja frequências esperadas menores que 5, é possível agrupar as categorias em duas categorias: Zero consumo (0) e Consumo (1+).

Realizando o teste de razão de verossimilhança:

```
G<- 2*sum(obs*log(obs/qui$expected))
pvalorG <- 1-pchisq(G,df=g1)
g2 <- data.frame(G,pvalorG)
colnames(g2)<- c('G','p-valor')
kable(g2,align='c')</pre>
```

G	p-valor
6.201998	0.1845623

Nesse caso, a decisão seria não rejeitar H_0 , já que G^2 é menor que G_{crit} .

Calculando a Odds Ratio para consumo 0 e consumo 1-2:

De forma que sucesso é a presença de malformação congênita e fracasso é a ausência de malformação congênita.

```
oddsratio<- (obs[1,1]*obs[3,2])/(obs[1,2]*obs[3,1])
kable(oddsratio,align='c')

_____
x
2.255975
```

Assim, a chance de malformação congênita é 2.26 vezes maior para mães que consomem de 1 a 2 doses de álcool por dia do que para mães que não consomem álcool. Ou seja, a chance de malformação congênita é 0.44% menor para que não consomem álcool.

5. Teste de Qui Quadrado para associação/independência com categorias agrupadas.

```
obs2<- matrix(c(17066,48,14464,38,951,7),nrow=3,byrow=TRUE)
row.names(obs2)<- c('0','<1','1+')
colnames(obs2)<- c('Ausente','Presente')
kable(obs2,align='c')</pre>
```

	Ausente	Presente
0	17066	48
<1	14464	38
1+	951	7

```
expected2 <- outer(rowSums(obs2),colSums(obs2))/sum(obs2)
kable(expected2,align='c')</pre>
```

	Ausente	Presente
0	17065.1389	48.861116
<1	14460.5962	41.403758
1+	955.2649	2.735126

Hipóteses:

$$\begin{cases} H_0: \pi_{ij} = \pi_{i.}\pi_{.j} \\ H_1: \pi_{ij} \neq \pi_{i.}\pi_{.j} \end{cases}$$

```
gl2 <- (nrow(obs2)-1)*(ncol(obs2)-1)
qui_crit2<- qchisq(1-alpha,df=gl2)
kable(qui_crit2,align='c')

x
5.991465

qui2 <- chisq.test(obs2)
quis2 <- data.frame(qui2$statistic,qui2$p.value)
qui2$residuals

Ausente Presente
0 0.006591843 -0.1231913
<1 0.028305154 -0.5289794
1+ -0.137988941 2.5787991

colnames(quis2)<- c('Qui','p-value')
kable(quis2,align='c')
```

	Qui	p-value
X-squared	6.965085	0.0307292

```
\begin{aligned} &\text{Com } \alpha = 0.05, \\ &\chi^2_{obs} > \chi^2_{crit} \\ &\text{p-valor} < \alpha \end{aligned}
```

Logo, rejeita-se H_0 . No entanto, é possível observar que ainda com esse agrupamento, existem frequências esperadas menores que 5 e que H_0 não é rejeitada em todos os níveis de significância. Assim, é possível tentar mais uma vez mas agrupando as categorias em duas categorias: Zero consumo (0) e Consumo (1+).

```
obs3<- matrix(c(17066,48,15415,45),nrow=2,byrow=TRUE)
row.names(obs3)<- c('Não consome alcool','Consome')
colnames(obs3)<- c('Ausente','Presente')
kable(obs3,align='c')</pre>
```

	Ausente	Presente
Não consome alcool	17066	48
Consome	15415	45

expected3 <- outer(rowSums(obs3),colSums(obs3))/sum(obs3)
kable(expected3,align='c')</pre>

	Ausente	Presente
Não consome alcool Consome		48.86112 44.13888

Hipóteses:

$$\begin{cases} H_0: \pi_{ij} = \pi_{i.}\pi_{.j} \\ H_1: \pi_{ij} \neq \pi_{i.}\pi_{.j} \end{cases}$$

```
gl3 <- (nrow(obs3)-1)*(ncol(obs3)-1)
qui_crit3<- qchisq(1-alpha,df=gl3)
kable(qui_crit3,align='c')</pre>
```

 $\frac{x}{3.841459}$

```
qui3 <- chisq.test(obs3)
quis3 <- data.frame(qui3$statistic,qui3$p.value)
colnames(quis3)<- c('Qui','p-value')
kable(quis3,align='c')</pre>
```

	Qui	p-value
X-squared	0.0056394	0.9401383

 $Com \alpha = 0.05,$

$$\chi^2_{obs} < \chi^2_{crit}$$

p-valor $> \alpha$

Logo, não rejeita-se ${\cal H}_0$ para nenhum nível de significância.

30 de abril

Dados: Pena de morte

```
obs <- matrix(c(53,430,15,176),nrow=2,byrow=TRUE)
row.names(obs) <- c('B','N')
colnames(obs) <- c('Sim','Não')
kable(obs, align='c')</pre>
```

	Sim	Não
В	53	430
N	15	176

Hipóteses:

 $\begin{cases} H_0: \text{Veredito de pena de morte independe da raça do réu}\\ H_1: \text{Existe dependência entre veredito de pena de morte e raça do réu} \end{cases}$

```
qui <- chisq.test(obs)
kable(qui$expected, align='c')</pre>
```

	Sim	Não
В	48.72997	434.27
N	19.27003	171.73

```
res <- data.frame(qui$statistic, qui$p.value)
kable(res,align='c')</pre>
```

	qui.statistic	qui.p.value
X-squared	1.144741	0.2846528