GRADIENT SEARCH IN THE SPACE OF PERMUTATIONS

AN APPLICATION FOR THE LINEAR ORDERING PROBLEM

Valentino Santucci, Josu Ceberio, Marco Baioletti

WHAT IS IT?

A classical technique for optimizing continuous and differentiable functions.

High popularity due to its application in Neural Network training...

HOW IT WORKS?

Key Elements:

- Loss function (differentiable) to minimize
- Starting point, x_t
- The gradient indicates the direction and magnitude towards adjust the parameter

Gradient of f at point x_t $x_{t+1} \leftarrow x_t + \eta \nabla f(x_t)$ Learning rate

FOR COMBINATORIAL OPTIMIZATION?

Combinatorial problems do not have differentiable objective functions!

Probability mass function differentiable w.r.t. θ

A solution:

1. Define a random variable that follows a model with continuous parameters over the combinatorial space

2. Optimize the expected value of the objective function

FOR COMBINATORIAL OPTIMIZATION?

Compute the gradients over the parameters of the model!

$$\nabla_{\theta} F(\theta) = \nabla_{\theta} \sum_{x \in X} f(x) p_{\theta}(x)$$

$$= \dots$$

$$= E_{\theta} [f(x) \nabla_{\theta} \log p_{\theta}(x)]$$

Non-affordable, prohibitive size

 $\nabla_{\theta} F(\theta) = \nabla_{\theta} \sum_{x \in X} f(x) p_{\theta}(x) \qquad F(\theta) = E_{\theta}[f(x)] = \sum_{x \in X} f(x) p_{\theta}(x)$

Probability mass function differentiable w.r.t. θ

Objective function

A solution:

1. Define a random variable that follows a model with **continuous parameters** over the combinatorial space

2. Optimize the expected value of the objective function

FOR COMBINATORIAL OPTIMIZATION?

Compute the gradients over the parameters of the model!

 p_{θ}

$$\nabla_{\theta} F(\theta) = \nabla_{\theta} \sum_{x \in X} f(x) p_{\theta}(x)$$

$$= \dots$$

$$= E_{\theta} [f(x) \nabla_{\theta} \log p_{\theta}(x)]$$

Objective function

$$\nabla_{\theta} F(\theta) = \nabla_{\theta} \sum_{x \in X} f(x) p_{\theta}(x) \qquad F(\theta) = E_{\theta}[f(x)] = \sum_{x \in X} f(x) p_{\theta}(x)$$

$$= \dots$$

$$= E_{\theta}[f(x) \nabla_{\theta} \log p_{\theta}(x)]$$

Probability mass function differentiable w.r.t. θ

Non-affordable, prohibitive size

$$\longrightarrow$$
 $\nabla_{\theta} F(\theta) \approx \frac{1}{\lambda} \sum_{i=1}^{\lambda} f(x_i) \nabla_{\theta} \log p_{\theta}(x_i)$

THE SPACE OF PERMUTATIONS

COMBINATORIAL OPTIMIZATION

Algebraic group → SYMMETRIC GROUP

Search space for many problems

Challenges

- Factorial size
- Mutual exclusivity constraint
- Dependencies between items

The 'Butterfly effect' in Cayley graphs, and its relevance for evolutionary genomics. Vincent Moulton, Mike A. Steel. 2011.

LINEAR ORDERING PROBLEM

A CASE OF STUDY

0	16	11	15	7
21	0	14	15	9
26	23	0	26	12
22	22	11	0	13
30	28	25	24	0

$$f(\sigma) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{\sigma(i),\sigma(j)}$$

LINEAR ORDERING PROBLEM

A CASE OF STUDY

	5	3	4	2	1
5	0	25	24	28	30
3	12	0	26	23	26
4	13	11	0	22	22
2	9	14	15	0	21
1	7	11	15	16	0

$$f(\sigma) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{\sigma(i),\sigma(j)}$$

Probability Models for Permutations

THE BRIDGE BETWEEN DOMAINS

ORDER STATISTIC MODELS

- BABINGTON-SMITH
- Bradley-Terry
- THURSTONE MODELS
- PLACKETT-LUCE

DISTANCE-BASED MODELS

- MALLOWS
- GENERALIZED MALLOWS
- ...

Probability Models for Permutations

THE BRIDGE BETWEEN DOMAINS

ORDER STATISTIC MODELS

- Babington-Smith
- Bradley-Terry
- THURSTONE MODELS
- PLACKETT-LUCE

DISTANCE-BASED MODELS

- MALLOWS
- GENERALIZED MALLOWS
- ..

$$P(\sigma) = \prod_{i=1}^n \left(\frac{w_{\sigma_i}}{\sum_{j=i}^n w_{\sigma_j}}\right)$$
• Each item in the permute the permute of the permute of

- Each item in the permutation has a weight associated.
- The weight associated to each item represents its probability to appear at first rank.

$$P(\sigma) = \prod_{i=1}^n \left(\frac{w_{\sigma_i}}{\sum_{j=i}^n w_{\sigma_j}} \right)$$
 • Each item in the permutation of the permutation of

- Each item in the permutation has a weight associated.
- The weight associated to each item represents its probability to appear at first rank.

$$P(\sigma) = \prod_{i=1}^n \left(\frac{w_{\sigma_i}}{\sum_{j=i}^n w_{\sigma_j}}\right)$$
• Each item in the permute the permute of the weights sum up 1. The weight associated to

- Each item in the permutation has a weight associated.
- The weight associated to each item represents its probability to appear at first rank.

$$w_2 = 0.03$$

$$w_3 = 0.17$$

$$P(\#i)=rac{w_i}{w_2+w_3}$$

$$P(\sigma) = \prod_{i=1}^n \left(\frac{w_{\sigma_i}}{\sum_{j=i}^n w_{\sigma_j}}\right)$$
• Each item in the permutation has a weight associated.
• The weights sum up 1.
• The weight associated to each item represents its probability to

- Each item in the permutation has a weight associated.
- appear at first rank.

$$w_4 = 0.6$$

$$P(\sigma) = \frac{w_4}{w_1 + w_2 + w_3 + w_4} \cdot \frac{w_1}{w_1 + w_2 + w_3} \cdot \frac{w_3}{w_2 + w_3} \cdot \frac{w_2}{w_2}$$

THE PROPOSAL

Gradient search in the space of permutations

Advantages of the PL model:

- Continuous parameters
- Differentiable probability function
- Unbiased sampling procedure

$$P(\sigma|\tilde{\boldsymbol{w}}) = \prod_{i=1}^{n-1} \frac{\exp\left(\tilde{w}_{\sigma(i)}\right)}{\sum_{j=i}^{n} \exp\left(\tilde{w}_{\sigma(j)}\right)}$$

Soft restart of \widetilde{w} when convergence

Feasibility Trick!
$$\tilde{w} = \log w$$

Approximated gradient

$$\nabla_{\tilde{w}} F(\tilde{w}) \approx \frac{1}{\lambda} \sum_{i=1}^{\lambda} U(f(\sigma_i)) \nabla_{\tilde{w}} \log P(\sigma_i | \tilde{w})$$
 Utility function

Utility functions

- **Fitness**
- Normalized Fitness
- Super linear

Impact of utility functions

Experimental design

- $-\eta = 0.01$
- $\lambda = \{10^2, 10^3, 10^4\}$
- Stop after 10⁵ iterations
- Entropy of the vector of weights

$$H(\mathbf{w}) = -\sum_{i=1}^{n} p_i \log p_i, \qquad p_i = \frac{w_i}{\sum_{j=1}^{n} w_j}$$

 λ is not affecting convergence

Preferred convergence

Tuning η and λ parameters

Experimental design

- $\eta = \{0.01, 0.05, 0.1\}$
- $\lambda = \{10^2, 10^3, 10^4\}$
- Stop after 10⁵ iterations

Best average of 10 repetitions

The smaller λ , the better Slower convergence with small η

Comparison to Plackett-Luce EDA

Experimental design

- 20 Repetitions
- Plackett-Luce EDA^[1]
- LOLIB benchmark (50 instances)
- $1000n^2$ evaluations
- Median Relative Deviation

Gradient Search better in 40 instances out of 50

Bayesian statistical analysis [2] - Expected probabilites

- Gradient Search: 0.835
- **PL-EDA**: 0.097
- Rope: 0.066

^[1] The Plackett-Luce Estimation of Distribution Algorithm. J. Ceberio, A. Mendiburu, J.A. Lozano, 2013.

^[2] This statistical analysis is available in the development version of the scmamp R package available at https://github.com/b0rxa/scmamp.

COMPARISON TO PLACKETT-LUCE EDA

Experimental design

- 20 Repetitions
- Plackett-Luce EDA^[1]
- LOLIB benchmark (50 instances)
- $1000n^2$ evaluations
- Computation time (s)

CONCLUSION & FUTURE LINES

Conclusions

- Devised the mathematical tools for using Gradient Search on the Space of Permutations
- Appropiatedly tuned, promissing performance
- Good computational time

Future lines

- Is the Plackett-Luce coherent to any permutation problem? Bradley-Terry...
- Other utility functions?
- Self-adapting η and λ parameters?

Gradient Search in the Space of Permutations

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Valentino Santucci, Josu Ceberio, Marco Baioletti