CMR Technical Campus

B. Tech Mid Question Bank (R22 Regulation)

Academic Year: 2024-25 Semester: VI

Subject Name: FORMAL LANGUAGES AND AUTOMATA THEORY Faculty Name: DR N BHASKAR,G VINESH SHANKAR,A GANAPATHI

PART-A

MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No	
1	Differentiate DFA and NFA with examples.	2M	BL1	CO1	I	
2	List applications of finite automata.	2M	BL1	CO1	I	
3	Sketch DFA for $L = \{ w \mid w \text{ has even number of } \}$	2M	BL1	CO1	I	
	a's } where $\sum = \{a,b\}$					
4	Design DFA to accept strings divisible by 3 over $\sum = (0,1)$.	2M	BL2	CO1	I	
5	Define Alphabet, String.	2M	BL2	CO1	I	
6	Define transition diagram and transition table with suitable examples.	2M	BL2	CO1	I	
7	Define regular expression with an example	2M	BL2	CO2	II	
8	Write any five algebraic laws for regular expression.	2M	BL1	CO2	II	
9	Define pumping lemma for regular languages.	2M	BL2	CO2	П	
10	Construct automata for a*b + b*a.	2M	BL3	CO2	II	
11	Write about Applications of regular expressions.	2M		CO2	II	
12	List any Five Closure Properties.	2M	BL2	CO2	II	
13	Define context free grammar with suitable examples.	2M	BL2	CO3	III	
14	Derive LMD,RMD S→a aAb abSb ,A→aAAb bS	2M	BL2	CO3	III	
	for a string abababb.					
15	Define ambiguous grammar. Show that the following grammar is ambiguous on the string 'aab', S→aS aSbS ε	2M	BL3	CO3	III	
	MID-II Questions					
16	Short note on derivation tree with suitable examples.	2M	BL2	CO3	III	
17	Explain rightmost derivation and left most derivation with an suitable examples.	2M	BL3	CO3	III	
18	Define ambiguous grammar.	2M	BL2	CO3	III	
19	Let G be a CFG that generates the set of palindromes given by S→ a S a b S b a b	2M	BL2	CO4	IV	
	Find the PDA that accepts L(G).					

20	Define Parse Tree with suitable example.	2M	BL2	CO4	IV
21	Briefly Explain PDA with example.	2M	BL3	CO4	IV
22	Briefly Explain DPDA with example.	2M	BL2	CO4	IV
23	List applications of CFG.	2M	BL3	CO4	IV
24	Different between leftmost and Right derivation with example.	2M	BL2	CO4	IV
25	Write closure properties of CFL.	2M	BL2	CO5	V
26	Write Decision properties of CFL.	2M	BL2	CO5	V
27	Define CNF with suitable.	2M	BL3	CO5	V
28	Define GNF with suitable.	2M	BL2	CO5	V
29	Different between NP Hard and NP Complete with example.	2M	BL3	CO5	V
30	Define Turning Machine with suitable example.	2M	BL2	CO5	V

PART-B

MID-I Questions						
Q.No	Questions	Marks	BL	CO	Unit No	
1	Convert the following NFA to equivalent DFA	4M	BL1	CO1	I	
	0 1 €		7			
	→A B B,D		70	h.		
	B D E					
	C E					
	D B,C - E	A B	10	116		
	**E E E		DIA	001	· ·	
2	Construct a NFA for the given NFA with € moves	4M	BL2	CO1	1	
		MINE	CN	-		
		14 4	F 17			
	€					
3	Draw the transition diagram for the DFA	4M	BL3	CO1	I	
	accepting all strings with a substring 10.					
4	Design a NFA accept the following string over	4M	BL1	CO1	I	
	the alphabet $(0,1)$. The set of all string that begin					
	with 01 and end with 11. Check for the validity of					
5	01111 and 0110 string. Construct an NFA accepting binary string with	4M	BL4	CO1	I	
3	two consecutive 0's.	41VI	BL4	COI	1	
6	Design DFA to accept odd number of a's and	4M	BL1	CO1	I	
	even number of b's, where $\Sigma = (a,b)$. show the					
	acceptance of a string with an example.					
7	Design DFA for the following over (a,b)	8M	BL2	CO1	I	
	i). All string containing not more than three a's					

	ii).All strings that has at least two occurrences of b between any two occurrence of a.				
8	Explain procedure for converting NFA with €	8M	BL2	CO1	I
	moves to without € with suitable example.				
9	Convert following NFA with epsilon to DFA.	8M	BL6	CO1	I
	all b c				
	$A \in B$ a	4			
	a b				
	D)				
10	State and prove Arden's theorem.	4M	BL2	CO2	II
	Construct DFA with reduced states equivalent to		BL2	CO2	II
	regular expression.	1111	BLZ		11
	10+(0+11)0*1				
12	Prove L= $\{a^n b^{2n} \mid n \ge 0\}$ is not regular language	4M	BL2	CO2	II
	using pumping lemma.				
1	Construct Minimum state automata for the	4M	BL3	CO2	II
	following.				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.		
	B A C				
	C D B		1		
	D (final D A		A.		
	state) E D F		N	h	
	F G E				
	G F G	A B	ım	110	
1.4	H G D	4)(DIA	000	**
14	Write a RE for the following FA	4M	BL2	CO2	II
	a b	NV	EΝ		
	\rightarrow P Q P				
	O* O P				
15	Construct the regular expression corresponding to	4M	BL3	CO2	II
	the language accepted by following DFA.				
	\bigcap_0 \bigcap_1				
	(42) 0,1				
16	Minimize the given DFA	8M	BL3	CO2	II
10	Minimize the given D171	0171	DLS	202	11

	$\frac{1}{1}$ $\frac{1}$				
	Explain about pumping Lemma Theorem and Determine whether the following language are regular or not with proper justification $L = \{a^n b^n \mid n \ge 1\}$		BL4	CO2	II
1	Check whether following automata are equivalent or not. Machine 1 C D \rightarrow q1 q2 \downarrow q1 \downarrow * \downarrow q2 q3 q1 \downarrow q3 q2 q3 Machine 2 Machine 2 \downarrow C D \rightarrow q4 q4 q5 \downarrow * \downarrow q5 q6 q4 \downarrow q6 q7 q6 \downarrow q7 q6 q4 \downarrow q6 q7 q6 q4	8M AN N V	BL3	CO2	П
20	Show that the following grammar is ambiguous E→E+E E-E E*E E/E (E) a where E is the start symbol.	4M	BL3	CO3	III
21	Write CFG for the language $\{0^n1^n / n \ge 1\}$.	4M	BL3	CO3	III
	MID-II Questions Explain rightmost derivation and left most derivation with an suitable examples.	4M	BL2	CO3	III

23	Show that the following grammar is ambiguous:	4M	BL3	CO3	III
	S→SbS/a				
24	Construct the CFG representing the set of palindrome over (0+1)*.	4M	BL3	CO3	III
25	Explain about pumping lemma algorithm	4M	BL3	CO4	IV
26	Write about closure properties of context free language	4M	BL3	CO4	IV
27	Enumerate normal forms for context free language	4M	BL2	CO4	IV
	Convert the following context free language to CNF S→ABC A→Aa/epsilon B→bB/epsilon	4M	BL3	CO4	IV
	C→cC/epsilon				
29	Convert the following CFG into GNF. S->AB A->a B-> CA C->AB/b	4M	BL3	CO4	IV
30	Construct a PDA for accepting a language $\{L{=}a^n\;b^n\; \;n\geq 1\}$	4M	BL2	CO4	IV
31	Construct PDA for the given CFG S→0BB	8M	BL3	CO4	IV
	B→0S 1S 0 Test whether 01044 is accepted by this PDA	ΑN	IP	US	5
32	Convert the following CFG into Chomsky's Normal Form (CNF)	8M	BL3	CO4	IV
	$S \rightarrow A B A B a A A$				
	$A \rightarrow B a \mid S \mid E$				
	$B \rightarrow B a \mid b \mid Ca$				
	$C \rightarrow C$ a				
	$D \rightarrow D a D a$				
33	Different between PDA and DPDA with suitable	8M	BL2	CO4	IV

	examples				
34	Different between Chomsky's Normal Form	4M	BL3	CO5	V
	(CNF) and GNF(Greibach Normal Form)				
	with suitable examples				
35	Explain decidability and undesirability with examples	4M	BL3	CO5	V
36	Explain Post correspondence problem with	4M	BL2	CO5	V
	example				
37	Discuss about Modified Post correspondence	4M	BL3	CO5	V
	problem with example				
38	Explain about the Decision Properties and	4M	BL3	CO5	V
	Closure Properties of CFL.				
39	Construct a Turing Machine(TM) that accepts	4M	BL2	CO5	V
	the language $L=\{0^n1^n \mid \text{where } n > 1\}$				
40	short notes on:	8M	BL3	CO5	V
	i) P ii) NP iii) NP Hard iv) NP Complete with		1		
	example.		1		
41	Illustrate the process of Recursive languages and	8M	BL3	CO5	V
	Recursively enumerable Languages with	ΔN	IP	HS	in.
	suitable examples?				
42	Construct a Turing Machine	8M	BL2	CO5	V
	$L=\{ a^n b^n c^n \mid n \ge 1 \}$				