Доп. задачи из книг "Сборник задач по математическому анализу". Том 3. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упражнениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Дифференцирование сложных отображений

В некоторых задачах удобнее считать второй дифференциал, пользуясь правилами дифференцирования, а в некоторых лучше считать частные производные высших порядков в лоб.

- 1. Найдите частные производные первого и второго порядка функции φ , если:
- a) $\varphi(x,y) = f(u), \ u = \sqrt{x^2 + y^2};$ 6) $\varphi(x,y) = f(u,v,w), \ u = x^2 + y^2, \ v = x^2 y^2, \ w = 2xy.$ Cm. c. 94, $N_{2}271$ [1], $N_{2}8.28 - 8.33$ [2].
- **2.** Найдите дифференциалы первых двух порядков функции u (φ дважды непрерывно дифференцируема, x, y, z – независимые переменные):
- a) $u = \varphi(xy, x/y)$; 6) $u = \varphi(x + z^2, y + x^2, z + y^2)$.
- Cm. c. 94, N = 28 N = 30 [1], N = 8.46 8.64 [2].
- **3.** Найдите матрицу Якоби отображения $\varphi = f \circ q$ (где указано, нужно найти в точке M_0), если:
- a) $g: x = \sin u, y = \cos u, z = e^u, f: p = \arctan xyz;$
- **6)** $g: x = uv, y = u^2 v^2, z = e^u, f: p = \arctan(\frac{x}{y}, q = \ln(x^2 + y^2), r = x y;$
- **B)** $g: u = x^2 + y^2 + z^2, f: p = \arcsin \frac{1}{u}; M_0: x_0 = 1, y_0 = 2, z_0 = 3.$ Cm. $N_{\overline{2}}8.28 - 8.37$ [2].
- 4. Проверьте равенство $\cos y \frac{\partial z}{\partial x} + \cos x \frac{\partial z}{\partial y} = \cos x \cos y$, если $z = \sin y + \varphi(\sin x \sin y)$, а функция φ дифференцируема достаточное число раз.

См. с. 94 – с. 97,
$$N$$
29 – N 40 [1], N 8.125 – 8.141 [2].

Замена переменных

Иногда замена переменных и выражение частных производных через эти новые переменные приводит к более простым выражениям, содержащим частные производные. Замена переменных широко используется при решении уравнений с частными производными.

- **5.** Приняв u и v за новые независимые переменные, преобразуйте уравнение:
- a) $2y\frac{\partial z}{\partial x} + e^x\frac{\partial z}{\partial y} = 4ye^x$, $u = y^2 + e^x$, $v = y^2 e^x$; 6) $y\frac{\partial z}{\partial y} + x\frac{\partial z}{\partial x} + xy = 0$, $u = \frac{y}{x}$, $v = yx^3$.

Cm. c. 98 - c. 100, $N_{2}50 - N_{2}61$ [1], $N_{2}8.163 - 8.198$ [2].

Дифференцирование неявных отображений

Здесь полезно пользоваться теоремами о неявных функциях и неявных отображениях. Иногда для нахождения частных производных и дифференциалов удобно взять дифференциал от обеих частей уравнения и рассмотреть его как линейное уравнение относительно одного или нескольких дифференциалов.

6. Найдите y'(x) и y''(x), если: **a)** $x + y = e^{x-y}$; **б)** $x^3 + 4y^3 - 3yx^2 = 2$.

Cm. c. 97, $N^{0}42 - N^{0}44$ [1], $N^{0}5.101 - 5.106$ [2].

7. Найдите z'_x , z'_y , z''_{xy} , если:

a)
$$x + y + z = \cos(xyz)$$
; 6) $z^4 + zx^3 + zy^3 = a^4$.

Cm. c. 97, $N^{0}41 - N^{0}44$ [1], $N^{0}8.73 - 8.85$ [2].

8. Найдите $z_x', \ z_y', \ z_{xy}'', \ \text{если} \ x = e^u \sin v, \ y = e^u \cos v, \ z = uv.$

Cm. c. 97 - c. 98, $N^{0}49 - N^{0}50$ [1], $N^{0}8.95 - 8.97$ [2].

9. Найдите $d^2u(-1,1),\ d^2v(-1,1),$ если $xu+yv=0,\ uv-xy=5,\ u(-1,1)=v(-1,1)=2.$ См. №8.109 – 8.115 [2].

10. Найдите $d^2z(1,0)$, если $xz^5+y^3z-x^3=0,\ z(1,0)=1.$ См. №8.109 — 8.115 [2].

Интегрирование полных дифференциалов.

На старших курсах будет показано, что выражение

$$P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$

является полным дифференциалом некоторой функции U (то есть справедливы равенства $U_x'=P,\ U_y'=Q,\ U_y'=R)$ в точности тогда, когда $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\ \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$ и $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$. В задачах ниже мы научимся восстанавливать функции, чьи дифференциалы даны.

11. Убедившись, что выражения являются полными дифференциалами некоторых функций, найдите эти функции:

a)
$$\frac{x+2y}{x^2+y^2}dx - \frac{2x-y}{x^2+y^2}dy$$
; 6) $\left(\frac{1}{y} - \frac{z}{x^2}\right)dx + \left(\frac{1}{z} - \frac{x}{y^2}\right)dy + \left(\frac{1}{x} - \frac{y}{z^2}\right)dz$.

Простейшие уравнения в частных производных.

После замены переменных уравнения с частными производными часто сводятся к простейшим, которые можно решать непосредственным интегрированием. Ниже приведены примеры таких простейших уравнений.

12. Решите уравнения:

a)
$$\frac{\partial^2 z}{\partial x \partial y} = xy$$
; 6) $\frac{\partial^2 z}{\partial x \partial y} = x^2 \frac{\partial z}{\partial y}$.

Домашнее задание 16

- **1.** Найдите частные производные первого и второго порядка функции φ , если:
- a) $\varphi(x, y, z) = f(u), \ u = xyz;$ 6) $\varphi(x, y) = f(u, v), \ u = \sin(xy^2), \ v = \cos(x^2y).$
- **2.** Найдите дифференциалы первых двух порядков функции u (φ дважды непрерывно дифференцируема, x, y, z независимые переменные):
- a) $u = \varphi(x^2/y, y/x^2)$; 6) $u = \varphi(x^2 + y^2, y^2 + z^2, x^2 + z^2)$.
- **3.** Найдите матрицу Якоби отображения $\varphi = f \circ g$ (где указано, нужно найти в точке M_0), если:
- **a)** $g: x = u^v, f: p = \sin x, q = \cos x, r = \operatorname{tg} x;$
- **6)** $g: u = \ln x, v = x^2, w = x + \ln x, f: p = \frac{u}{v}, q = w + u; M_0: x_0 = 1.$
 - **4.** Приняв u и v за новые независимые переменные, преобразуйте уравнение:
- a) $\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$, u = x at, v = x + at; 6) $x^2 \frac{\partial z}{\partial x} xy \frac{\partial z}{\partial y} = 2$, u = xy, $v = \frac{y}{x}$.
 - **5.** Найдите z'_x , z'_y , z''_{xy} , если:
- a) $x^2 + y^2 + z^2 = R^2$; **6**) $x^y + y^z = 3$.

6. Найдите:

- а) d^2z , если $x = u\cos v$, $y = u\sin v$, z = uv;
- **б)** $d^2u(\frac{\pi}{2},0),\ d^2v(\frac{\pi}{2},0),\ \text{если}\ x+y=u+v,\ y\cos u=x\sin v,\ u(\frac{\pi}{2},0)=\frac{\pi}{2},v(\frac{\pi}{2},0)=0;$
- в) $d^2z(1,1)$, если $5x^2 + 5y^2 + 5z^2 2xy 2yz 2xz 72 = 0$, z(1,1) = 4.

Дополнительные вопросы к коллоквиуму

(Разные задачи на дифференцируемость)

- **1.** (1 балл) Докажите, что если F(x,y,z)=0, то $\frac{\partial x}{\partial y}\cdot\frac{\partial y}{\partial z}\cdot\frac{\partial z}{\partial x}=-1$.
- **2.** Формула Даламбера для уравнения колебаний. (1 балл) Предполагая, что функции φ и ψ дифференцируемы достаточное число раз, проверьте равенство $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$, если

$$z(x,y) = \frac{\varphi(x-y) + \varphi(x+y)}{2} + \frac{1}{2} \int_{x-y}^{x+y} \psi(t)dt.$$

3. Оператор Лапласа в полярных координатах. (1,5 балла) Уравнение Лапласа

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

преобразуйте к полярным координатам, полагая $x = r \cos \varphi$, $y = r \sin \varphi$.