Lezione del 7 Novembre di Gandini

Teorema 0.1. S^n è omeomorfo alla compattificazione di Alexandross di \mathbb{R}^n

Dimostrazione. Identifichiamo R^n con $S^n \setminus \{(1, 0, \dots, 0)\}$.

Mostriamo che $\mathbb{R}^{\hat{n}} \cong S^n$, Vale a dire che la topologia euclidea su S^n coincide con la topologia di Alexandross dove $\infty = (1, 0, \dots, 0)$. Sia $A \subseteq S^n$

$$A \text{ aperto} \quad \Leftrightarrow \quad \begin{cases} A \subseteq S^n \backslash (1, 0, \dots, 0) \text{ aperto} \\ A = S^n \backslash K \text{ con } K \subseteq S^n \backslash (1, 0, \dots, 0) \text{ compatto} \end{cases}$$

Osserviamo che basta richiedere che K sia compatto infatti lo spazio è di Hausdorff dunque compatto implica chiuso.

• $(1,0,\ldots,0) \notin A$ dunque $A \subseteq S^n \setminus (1,0,\ldots,0)$. Consideriamo $i: R^n \to S^n$ dove i con codominio ristretto a $S^n \setminus (1,0,\ldots,0)$ è l'inversa della proiezione stereografica, dunque immersione aperta. Ora essendo i aperta

$$A \subseteq S^n$$
 aperto \Leftrightarrow $A \subseteq S^n \setminus (1, 0, \dots, 0)$ aperto

• Supponiamo, adesso, $(1, 0, \dots, 0) \in A$

A aperto
$$\Leftrightarrow$$
 $S^n \setminus A$ chiuso \Leftrightarrow $K = S^n \setminus A$ compatto \Leftrightarrow $A = S^n \setminus K$ con $K \subseteq S^n \setminus (1, 0, \dots, 0)$ compatto

Proposizione 0.2. \hat{X} Hausdorff $\Leftrightarrow \begin{cases} X \text{ Hausdorff} \\ \forall x \in X \text{ } x \text{ } ammette \text{ } un \text{ } intorno \text{ } compatto \end{cases}$

Dimostrazione.

• Caso 1: $x, y \in X$. Gli aperti di \hat{X} sono aperti di X e viceversa quindi

 $\exists U, V$ aperti di \hat{X} che separano $x \in y \iff U, V$ aperti di X che separano $x \in y$

• Caso 2: $y = \infty$

$$\exists U\ni x\quad V\ni\infty \text{ aperti di } \hat{X} \text{ con } U\cap V=\emptyset \quad \Leftrightarrow \quad \begin{cases} x\in U\subseteq X \text{ aperto} \\ \infty\in V=\hat{X}\backslash K \text{ K compatto} \\ U\cap V=\emptyset \end{cases} \quad \Leftrightarrow \quad \begin{cases} x\in U\subseteq X \text{ aperto} \\ \infty\in V=X \text{ aperto} \\ 0 \text{ apertion } 0 \text{ apertion } 0 \text{ apertion } 0 \text{ apertion } 0 \text{ aperto} \end{cases}$$

$$\Leftrightarrow \begin{cases} \exists U\ni x \text{ aperto di } X\\ y\in V\subseteq K \text{ con } K \text{ intorno compatto di } y\\ U\cap V=\emptyset \end{cases}$$

Proposizione 0.3. Sia $f: X \to Y$ immersione aperta tra spazi di Hausdorff.

Definiamo
$$g: Y \to \hat{X}$$
 via $g(y) = \begin{cases} x \text{ se } x \in f^{-1}(y) = \{x\} \\ \infty \text{ se } f^{-1}(y) = \emptyset \end{cases}$.

Allora g è continua

Dimostrazione. Sia $U \subseteq \hat{X}$ aperto

- Caso 1: $\infty \notin U$. $U \subseteq X \Rightarrow g^{-1}(U) = f(U)$ e poichè f è aperta $g^{-1}(U)$ è un aperto
- Caso 2: $\infty \in U$. Allora $U = \hat{X} \setminus K \exists K$ compatto

$$g^{-1}(U) = Y \backslash g^{-1}(K) = Y \backslash f(K)$$

ora K è compatto dunque anche f(K) lo è, ora un compatto in un Hausdorff è chiuso quindi $q^{-1}(U)$ è aperto

Corollario 0.4. X compatto di Hausdorff, $x_0 \in X$ allora X è omeomorfo alla compattificazione di Alexandross di $X \setminus \{x_0\}$

Dimostrazione. Mostriamo che $X \setminus \{x_0\}$ è di Hausdorff utilizzando la proposizione 0.2.

Essendo X di Hausdorff anche $X\setminus\{x_0\}$ lo è, vediamo ora che ogni punto $x\neq x_0$ ammette un intorno compatto.

Essendo X di Hausdorff $\exists U, V$ aperti con $x \in U$ e $x_0 \in V$ tali che $U \cap V = \emptyset$ dunque $x_0 \notin \overline{U}$ ora essendo K chiuso in un compatto è compatto.

 \overline{U} è l'intorno compatto di x in $X_0 \setminus \{x_0\}$ ($x \in U \subseteq \overline{U}$ con U aperto).

Sia $g: X \to X \setminus \{x_0\}$