tinvurl.com/mivuki-feedback

1. Building a classifier

We would like to develop a classifier to classify points based on their distance from the origin.

You are presented with the following data. Each data point $\vec{d_i}^T = [x_i y_i]^T$ has the corresponding label $l_i \in \{-1,1\}.$

Labels for data you are classifying

Li x xxi + By: +8 -1 2 x (-2)+ B(1) + 8 1 2x(-1)+B(1)+8

(a) You want to build a model to understand the data. You first consider a linear model, i.e. you want to find $\alpha, \beta, \gamma \in \mathbb{R}$ such that $l_i \approx \alpha x_i + \beta y_i + \gamma$.

Set up a least squares problem to solve for α , β and γ . If this problem is solvable, solve it; i.e. find the

$$\begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \approx \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

Solvable? is it possible to solve for x and ATA is not invertible $x_1, x_1, \dots + x_n, x_n = 5$

> to prove think about N(A) and how it

> N(ATA) = N(A) is toivial

> ATA is invertible

-> if cols are lining N(A) is torvial

& how ATA is a square matrix

if you can find some a; not all equal

but not all square matrices are invertible # ATA is only invertible if cols of A

relates to N(ATA)

are linearly independent

(b) (3 points) Plot the data points in the plot below with axes (x_i, y_i). Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line

x_i	y _i	l_i
-2	1	(-1
T	1	1
1		1
2	1	-1

Table 2: * Table repeated for your convenience: Labels for data you are classifying

no cont find a line where + are on one side and - one on the

(c) (6 points) You now consider a model with a quadratic term: $t_i \approx \alpha x_i + \beta x_i^2$ with $\alpha, \beta \in \mathbb{R}$. Read the

Set up a least squares problem to fit the model to the data. If this problem is solvable, solve it, i.e, find the best values for α, β . If it is not solvable, justify why.

y	i l	ļ,
]	-	1
1		1
1		1
1	-	1

Table 3: *

Table repeated for your convenience: Labels for data you are classifying

$$\frac{y_{i} l_{i}}{\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1$$

can we find ??

yes because cols of A are linind

$$\vec{X} = (A^T A)^T A^T b^T$$

$$= \begin{bmatrix} 0 \\ -\frac{3}{17} \end{bmatrix}$$

The repeated for your convenience: Lanels
$$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

(d) (3 points) Plot the data points in the plot below with axes (x_i,x_i²). Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

the line.					xi	0.
X_i	y_i	l_i	7	Ci	^i	6
2	1	-1	4-	2	4	-1
	1	1	4	1		- 1
	1	1	70			
2	1	-1	*	1	1	1
	555	200	4 3	2	4	-1
Гъ	blo 4	. 8				

Table repeated for your convenience: Labels for data you are classifying

(e) (4 points) Finally you consider the model: \(\begin{align*} \alpha \omega_t \gamma^2 \to \mathbb{g}_t^2 \quad \mathbb{y}, \quad \text{where } \alpha, \gamma \in \mathbb{R}. \quad \text{Independent of the work you have done so far, would you expect this model or the model in part (c) (i.e. \(\beta_t \in \alpha_t \in \alpha_t) \rightarrow \text{fix} \quad \text{P} \text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$

x_i	y _l	I_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 5: *

Table repeated for your convenience: Labels for data you are classifying

 $L_i \propto \alpha \times_i + \beta \times_i^2 + \delta$ $\begin{bmatrix} \alpha \\ \beta \\ \beta \end{bmatrix}$

$$\begin{cases} \int_{i}^{\infty} \alpha \times i + \beta \times i^{2} \\ \int_{i}^{\infty} \beta = 0 \end{cases}$$

* Smaller error
one more parameter to vary (8)
* can find lines not
going though origin

though orgin

2. Orthonormal Matrices and Projections

An orthonormal matrix, A, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|^2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix A ∈ R^{N×M} has linearly independent columns. The vector ȳ in R^N is not in the subspace spanned by the columns of A. What is the projection of ȳ onto the subspace spanned by the columns of A?

$$\hat{\vec{g}} = \text{proj}_{C(A)} \vec{\vec{y}} = A(A^TA)^{-1} A^T \vec{\vec{y}}$$

Dets: orthonormal matrix $A = \begin{bmatrix} 1 \\ a_1 \\ 1 \end{bmatrix}$

 $\langle \vec{a}_i, \vec{a}_j \rangle = 0$ $\langle \vec{a}_i, \vec{a}_i \rangle = ||\vec{a}_i||^2 = 1$

basis for \mathbb{R}^{N} \star need exactly N linearly independent vectors $\{\vec{v}_{i}, ..., \vec{v}_{N}\}$ \star $\{\vec{v}_{i}, ..., \vec{v}_{N}\}$ for some $\alpha_{i}, ..., \alpha_{n}$

linear independence $\alpha_1 \vec{v}_1 + \cdots + \alpha_N \vec{v}_N = \vec{0}$ if $\alpha_1 = \cdots = \alpha_{N-1} = \vec{0}$ then $\{\vec{v}_1, \dots, \vec{v}_N\}$ are lin ind

* need to show a, ..., an are lin ind and spon RN

 $\beta_{i}\vec{a}_{i} + \cdots + \beta_{n}\vec{a}_{n} = \vec{0}$ $\langle \vec{a}_{i}, \beta_{i}\vec{a}_{i} + \cdots + \beta_{n}\vec{a}_{n} \rangle = \langle \vec{a}_{i}, \vec{0} \rangle$ $\beta_{i}\langle \vec{a}_{i}, \vec{a}_{i} \rangle + \cdots + \beta_{i}\langle \vec{a}_{i}, \vec{a}_{i} \rangle + \cdots + \beta_{n}\langle \vec{a}_{i}, \vec{a}_{n} \rangle = 0$ $O + \cdots + O + \beta_{i} + 0 + \cdots + O = 0 \implies \beta_{i} = 0$

 $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 \\ \vec{a}_1 & \vec{a}_2 \end{bmatrix} \vec{\beta} = \vec{D}$

Can be shown for any $\beta i \Rightarrow \vec{\beta} = \vec{0}$ therefore cols of A are bin ind

now we need to show that it spans \mathbb{R}^N for some $\vec{x} \in \mathbb{R}^N$ $\vec{x} = A\vec{\beta} = \beta, \vec{\alpha}_1 + \cdots + \beta_N \vec{\alpha}_N$ have to show we can find a unique $\vec{\beta}$

B, [0] +B[0] =

because cols of A are lin ind \Rightarrow A is invertible $\vec{\beta} = A^{-1} \hat{\times}$ have a unique sol \Rightarrow tols of A span \mathbb{R}^N

=> cols of A are a basis for AN

(c) When $A \in \mathbb{R}^{N \times M}$ and $N \ge M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $A^T A =$

$$A = \begin{bmatrix} 1 & 1 \\ \bar{a}_{1} & \bar{a}_{m} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -\bar{a}_{1}^{T} \\ \bar{a}_{m}^{T} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} \bar{a}_{1}^{T} \bar{a}_{1}^{T} & \bar{a}_{1}^{T} \bar{a}_{2}^{T} \\ \bar{a}_{1}^{T} \bar{a}_{1}^{T} & \bar{a}_{2}^{T} \bar{a}_{2}^{T} \end{bmatrix}$$

$$A^{T} A = \begin{bmatrix} \bar{a}_{1} & \bar{a}_{2} \\ \bar{a}_{1} & \bar{a}_{2}^{T} & \bar{a}_{2}^{T} \\ \bar{a}_{1}^{T} \bar{a}_{2}^{T} & \bar{a}_{2}^{T} \\ \bar{a}_{2}^{T} \bar{a}_{2}^{T} \end{bmatrix} = \begin{bmatrix} \bar{a}_{1}^{T} \bar{a}_{2}^{T} & \bar{a}_{2}^{T} \bar{a}_{2}^{T} \\ \bar{a}_{2}^{T} \bar{a}_{2}^{T} & \bar{a}_{2}^{T} \bar{a}_{2}^{T} \end{bmatrix} = I_{mem}$$

(d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \ge M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of A is now $AA^T\vec{y}$.

the subspace spanned by the columns of A is now
$$AA^Ty$$
.

$$\hat{\vec{y}} = A (A^TA)^{-1} A^T \vec{y}$$

$$= A (I)^{-1} A^T \vec{y}$$

$$= A I A^T \vec{y}$$

$$= A A^T \vec{y}$$

(e) Given $\mathbf{A} \in \mathbb{R}^{N \times M} = \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and the columns of \mathbf{A} are orthonormal, find the least squares solution

to remember for matrices
$$w$$
 orthogonal cols
$$\hat{X} = (A^{T}A)^{T}A^{T}\vec{y} = \begin{bmatrix} \langle \vec{a}_{1}, \vec{y} \rangle \\ |\vec{a}_{2}|^{2} \\ |\vec{a}_{2}|^{2} \end{bmatrix} = \begin{bmatrix} \langle \vec{a}_{1}, \vec{y} \rangle \\ \langle \vec{a}_{2}, \vec{y} \rangle \\ |\vec{a}_{3}|^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 8 \\ 7 \\ |78| \end{bmatrix}$$
The orthogonal cols

The orthogonal cols

The properties of the properties o

* alternatively can compute using the least squares formula $\hat{x} = (A^TA)^{-1}A^T\hat{y}$ but takes more time