# Deflation type Preconditioners for Helmholtz Problem

**EMG 2014** 

AH Sheikh, guided by C. Vuik and D. Lahaye



### **Overview**

- Helmholtz and SLP
- Deflation preconditioning
- Variation in Deflation
- Analysis/Comparison
- Conclusions

# The Helmholtz equation

The Helmholtz equation without damping

$$-\Delta \mathbf{u}(x_i) - k^2(x_i)\mathbf{u}(x_i) = \mathbf{g}(x_i) \text{ in } \Omega$$

- Linear system  $A_h u_h = g_h$  is: Sparse & complex valued, for certain boundary conditions Symmetric & Indefinite for large  $\it k$
- For high resolution a very fine grid is required: 30 60 gridpoints per wavelength (or  $\approx 5 10 \times k$ )  $\rightarrow A_h$  is extremely large!
- Standard multigrid method does not work!
- Traditionally solved by a Krylov subspace method, which exploits the sparsity.



# **Complex Shifted Laplace Preconditioner**

$$M(\beta_1, \beta_2) := -\Delta - (\beta_1 - \iota \beta_2)k^2 I$$

Advantage: Spectrum is bounded in circle.

Disadvantage: That circle touches origin 0;

Spectrum encounters near-zero eigenvalues for large k.

Spectrum of CSLP preconditioned Helmholtz

$$k = 30$$



$$k = 120$$



### **Deflation**

Deflation, a projection preconditioner

$$P = I - AQ$$
, with  $Q = ZE^{-1}Z^T$  and  $E = Z^TAZ$ 

where,

$$Z \in \mathbb{R}^{n \times r}$$
, with deflation vectors  $Z = [z_1, ..., z_r], rank(Z) = r \leq n$ 

Along with a traditional preconditioner  ${\cal M}$ , deflated preconditioned system reads

$$PM^{-1}Au = PM^{-1}g.$$

The choice of deflation vectors: spectrum of matrix, physics of problem, etc

### **Deflation for Helmholtz**

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e.  $Z = I_{2h}^h$  and  $Z^T = I_{h}^{2h}$  then

$$P_h = I_h - A_h Q_h$$
, with  $Q_h = I_{2h}^h A_{2h}^{-1} I_h^{2h}$  and  $A_{2h} = I_h^{2h} A_h I_{2h}^h$ 

#### where

 $P_h$  can be interpreted as a coarse grid correction and

 $Q_h$  as the coarse grid operator

 $A_{2h}^{-1}$  How to solve this ? ?

MultiLevel approach; Krylov approximation of  $A_{2h}^{-1}$  preconditioned by CSLP and deflation again.



# **Deflation:** Approximate solve $A_{2h}^{-1}$





Exact inversion of  $A_{2h}$ 

In-exact inversion of  $A_{2h}$ 

# **Shifting Deflated-Spectrum**

Shift term

$$Q_h = I_h^{2h} A_{2h}^{-1} I_h^{2h}$$

Strategy: Solve  $A_{2h}$  iteratively to required accuracy on certain levels, and shift the deflated spectrum to  $\lambda_h^n$  by adding shift in deflation preconditioner, call it **ADEF1** preconditioner

$$P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^n Q_h$$

It is theoretically proved that term  $Q_h$  shifts the spectrum to  $\lambda_h^n$ 

### **Deflation: Shift to 1?**





Without Shift  $Q_{2h}$ 

With Shift  $Q_{2h}$ 

NEXT:  $\lambda_h(B_{h,2h})$  where  $B_{h,2h} = P_{(h,ADEF1)}M_h^{-1}A_h$ 

# Spectral formula

If  $c_{\ell} = cos(l\pi h)$ , spectral formulae of  $P_{h,ADEF}A_h$  is

$$\lambda_h \left( P_{h,ADEF} A_h \right) = -\frac{\left( c_{\ell}^2 + 1 \right) \kappa^4 + \left( -4 c_{\ell}^2 - 4 \right) \kappa^2 - 4 \left( c_{\ell}^4 - 1 \right)}{\left( \left( c_{\ell}^2 + 1 \right) \kappa^2 + 2 \left( c_{\ell}^2 - 1 \right) \right) h^2}$$

We also know, eigenvalues of Galerikin Helmholtz operator

$$A_{2h} = (I_h^{2h})^{\ell} A_h^{\ell} (I_{2h}^h)^{\ell} = \frac{2(1 - c_{\ell}^2) - \kappa^2 (1 + c_{\ell}^2)}{2h^2}$$

Denominator in  $\lambda_h(P_{h,ADEF1}A_h)$  is scaled formula of  $A_{2h}$ 

# **Spectrum insights: ADEF1**

Plotting  $\lambda_h(B_{h,2h})$ 





Spectrum of  $B_{h,2h}$  for k=100 and k=1000, 20gp/wl

# **Spectrum insights: ADEF1**

Plotting  $Re(\lambda_h(P_{h,ADEF1}A_h))$ 





Real eigenvalues v/s index. k=100 and k=1000, 20gp/wl

# **Spectrum insights: ADEF1**



Real eigenvalues v/s index. k=160, h=320

### **Deflation: TLKM**

Two-Level Krylov Method a, if  $\hat{A}_h = M_h^{-1} A_h$  and  $\hat{P}_h$  is based upon  $\hat{A}_h$ (instead  $A_h$ )

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_{2h}^h \hat{A}_{2h}^{-1} I_h^{2h}$$
 and  $\hat{A}_{2h} = I_h^{2h} \hat{A}_h I_{2h}^h = I_h^{2h} (M_h^{-1} A_h) I_{2h}^h$ 

Construction of coarse matrix  $A_{2h}$  at level 2h costs inversion of preconditioner at level h.

Approximate  $A_{2h}$ ?

#### Ideal

$$A_{2h} = I_h^{2h} (M_h^{-1} A_h) I_{2h}^h$$

#### **Practical**

$$A_{2h} = I_h^{2h} (M_h^{-1} A_h) I_{2h}^h$$

$$A_{2h} = I_h^{2h} (M_h^{-1} A_h) I_{2h}^h$$

$$A_{2h} \approx \Theta_h M_{2h}^{-1} A_{2h}, \ \Theta_h = I_h^{2h} I_{2h}^h$$



<sup>&</sup>lt;sup>a</sup>Erlangga, Y.A and Nabben R., ETNA 2008

# **Spectral insights: TLKM**

Real part of spectrum of  $\hat{B}_h$  where  $\hat{B}_h = \hat{P}_h \hat{A}_h$ 

$$k = 100$$

$$k = 1000$$





# **Spectral insights: TLKM**

Real part eigenvalues of  $\hat{B}_h$  vs index. Also the Real part eigenvalues of  $\hat{A}_h$ ;

$$k = 100$$

$$k = 1000$$





## **ADEF1 v TLKM**

Differentiating ADEF1 and TLKM, assuming  $\lambda_{max}=1$  and left preconditioning

| ADEF1                                         | MLKM*                                                |
|-----------------------------------------------|------------------------------------------------------|
| $P_{(ADEF1)} = M_h^{-1}(I_h - A_h Q_h) + Q_h$ | $P_{(MLKM)} = I_h - \hat{A}_h \hat{Q}_h + \hat{Q}_h$ |
| Applocation on $Au = g$                       | Application on $\hat{A}u=\hat{g}$                    |

# **Fourier Analysis**

Spectrum of Helmholtz preconditioned by MLKM and ADEF1;

k = 160 and 10 gp/wl

**TLKM** 



#### ADEF1



# **Fourier Analysis**

Spectrum of Helmholtz preconditioned by TLKM and ADEF1;

k = 160 and 20 gp/wl

**TLKM** 



ADEF1



# **Cost comparison**

#### Application cost per iteration at two levels

For some vector v,

|                              | ADEF1 | TLMG |
|------------------------------|-------|------|
| $A_h v$                      | 1     | 1    |
| $M_h^{-1}v$                  | 1     | 2    |
| $Q_h v$ : $I_h^{2h} v$       | 1     | 1    |
| $Q_h v$ : $I_{2h}^h v$       | 1     | 1    |
| $Q_h v \colon A_{2h}^{-1} v$ | 1     | 1    |
| $Q_h v \colon M_{2h}^{-1}$   | 0     | 1    |
| $\Theta_h v$                 | 0     | 1    |

One Dimensional Helmholtz with Som. BCs. Wave number against Krylov iterations
Two level solver



Comparison of number of iterations by ADEF1 and MLKM.



# **Adapted Marmousi Problem**

Reduced velocity contrast:  $2587 \le c(x, y) \le 3325$ 

Adapted geomegry convenient for geometric vectors.



## Results

Mamousi Problem: Solve time and iterations

| Frequency f | Solve Time    |        | Iterations |         |
|-------------|---------------|--------|------------|---------|
|             | SLP-F ADEF1-F |        | SLP-F      | ADEF1-F |
| 1           | 1.25          | 5.06   | 13         | 7       |
| 10          | 9.63          | 9.35   | 106        | 13      |
| 20          | 70.45         | 57.47  | 181        | 21      |
| 40          | 522.90        | 424.74 | 333        | 38      |

### Results

Mamousi Problem: Solve time and iterations; discretization 20 gp/wl

| Frequency $f$ | Solve Time    |        | Iterations |         |
|---------------|---------------|--------|------------|---------|
|               | SLP-F ADEF1-F |        | SLP-F      | ADEF1-F |
| f=1           | 1.23          | 5.08   | 13         | 7       |
| f = 10        | 40.01         | 21.83  | 106        | 8       |
| f = 20        | 280.08        | 131.30 | 177        | 12      |
| f = 40        | 20232.6       | 3997.7 | 340        | 21      |

Three Dimensional Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that  $kh \approx 0.3125$ 

| Wave number | Solve Time    |        | Iterations |         |
|-------------|---------------|--------|------------|---------|
| k           | SLP-F ADEF1-F |        | SLP-F      | ADEF1-F |
| 5           | 0.04          | 0.32   | 7          | 8       |
| 10          | 0.48          | 2.32   | 9          | 9       |
| 20          | 8.14          | 17.28  | 20         | 9       |
| 40          | 228.29        | 155.52 | 70         | 10      |
| 60          | 1079.99       | 607.45 | 97         | 11      |

# Results

Solve time per grid points .

10gp/wl



### 20gp/wl





Three Dimensional Layered Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that  $kh \approx 0.625$ 

| Wave number k | Solve Time    |       | Iterations |         |
|---------------|---------------|-------|------------|---------|
|               | SLP-F ADEF1-F |       | SLP-F      | ADEF1-F |
| 5             | 0.09          | 0.24  | 9          | 11      |
| 10            | 1.07          | 1.94  | 15         | 12      |
| 20            | 16.70         | 18.89 | 32         | 16      |
| 30            | 73.82         | 78.04 | 43         | 21      |
| 40            | 1304.2        | 214.7 | 331        | 24      |
| 60            | _             | 989.5 | 500+       | 34      |

Three Dimensional Layered Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that  $kh \approx 0.3125$ 

| Wave number $k$ | Solve Time    |       | Iterations |         |
|-----------------|---------------|-------|------------|---------|
|                 | SLP-F ADEF1-F |       | SLP-F      | ADEF1-F |
| 5               | 0.6           | 1.4   | 9          | 9       |
| 10              | 7.5           | 10.04 | 14         | 9       |
| 20              | 324.1         | 79.2  | 72         | 9       |
| 30              | 3810.9        | 361.7 | 285        | 11      |

#### Algebraic deflation vectors?

- FEM regular mesh triangular element discretization.
- Algebraically constructed deflation; AMG cycle.
- ADEF1 preconditioner.
- Comparison with FDM.
- Algebraic vectors proceed the coarsening slower than geometric.
- Mesh is refined enough till satisfactory the wavelength resolution.

|        |          |          |          | I         |            | ı          |           |
|--------|----------|----------|----------|-----------|------------|------------|-----------|
| Solver | k=10     | 20       | 40       | 80        | 120        | 160        | 200       |
| SLPD*  | 15(0.02) | 30(0.07) | 57(0.57) | 108(5.8)  | 157(22.6)  | 204(59.6)  | 252(130.5 |
| SLPF*  | 22(0.05) | 43(0.16) | 72(0.85) | 128(6.33) | 178(21.8)  | 232(55.7)  | 278(115.9 |
| 2Lev   | 7(0.00)  | 10(0.03) | 14(0.27) | 23(2.17)  | 37(8.8)    | 61(27.9)   | 87( 67.8) |
| 2Lev*  | 6(0.02)  | 8(0.05)  | 10(0.32) | 15(2.46)  | 20(8.4)    | 26(21.4)   | 32( 43.8) |
| MLV    | 16(0.25) | 27(0.8)  | 58(3.6)  | 116(18.4) | 177(50.3)  | 235(125.2) | 292(233.1 |
| MLV*   | 22(0.27) | 40(1.27) | 66(5.4)  | 118(32.8) | 166(110.8) | 214(240.6) | 258(447.0 |
| MLF    | 10(0.6)  | 11(1.6)  | 15(4.5)  | 24(15.7)  | 32(28.2)   | 41(70.1)   | 51(103.9) |
| MLF*   | 7(0.25)  | 8(0.85)  | 10(2.4)  | 16(15.2)  | 19(38.3)   | 24(81.4)   | 27(144.5  |
| MLD    | 7(0.05)  | 10(.2)   | 14(1.26) | 21(9.04)  | 29(31.6)   | 36(76.3)   | 43(149.8  |
| MLD*   | 6(0.07)  | 8(0.5)   | 10(2.9)  | 15(23.7)  | 19(80.4)   | 24(191.8)  | 27(387.3  |

### **Conclusion and Discussion**

- Near null space modes in  $A_h$  persist. Same time extraordinary gain in Krylov iterations. Ritz testing in progress.
- How to treat near-null space modes in coarser operators?
- FEM discretization and algebraic deflation vectors in 3-dimension failed. Mass matrix NOT diagonal, it has negative entries off-diagonal.
- Flexible in choosing larger imaginary shift in CSLP. Reported!
- Adapted coarse grid operator. Work in progress!
- Different shifts in SLP at different levels. Future!



### References

- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- J.M. Tang. Two level preconditioned Conjugate Gradient methods with applications to bubbly flow problems. PhD Thesis, DIAM TU Delft 2008.
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. NLAA Volume 20, Issue 4, pages 645-662, August 2013

# Thank you!