Opamp

Opamp Block Diagram

 An op amp is an active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation, and integration, etc.

741 Package and Pin Details

Schematic Symbol

An Ideal Op-Amp

- Infinite open loop gain
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth
- Infinite CMRR

Ideal versus Real Op-Amp

Parameter	Ideal Op-Amp	Real Op-Amp
Differential Voltage Gain	∞	10 ⁵ - 10 ⁹
Gain Bandwidth Product (Hz)	∞	1-20 MHz
Input Resistance (R)	∞	$10^6 - 10^{12} \Omega$
Output Resistance (R)	0	100 - 1000 Ω

Equivalent Circuit Non – Ideal Opamp

Basics of an Op-Amp Circuit

- An op-amp amplifies the difference of the inputs V_{\perp} and V_{\perp} (known as the differential input voltage)
- This is the equation for an open loop gain amplifier:

$$V_{out} = A(V_{+} - V_{-})$$

- K is typically very large at around 10,000 or more for IC Op-Amps
- This equation is the basis for all the types of amps we will be discussing

Open Loop vs Closed Loop

 A closed loop op-amp has feedback from the output to the input, an open loop op-amp does not

Open Loop

Closed Loop

Analysis Steps

Ideal Opamp

- Opamp does not accepts any input current
- Voltage at inverting Terminal = Voltage at noninverting terminal.
- Apply KCL at the input nodes.
- No KCL at the output nodes (Reason?)

KCL

$$|_{1}-|_{2}-|_{3}+|_{4}+|_{5}=0$$
(a)

$$I_1+I_2+I_3=0$$
(b)

KVL

$$V = V_1 + V_2 + V_3$$

Current Division & Voltage Division

$$i_{1} = \frac{R_{2}}{R_{1} + R_{2}} i_{s}$$

$$i_{2} = \frac{R_{1}}{R_{1} + R_{2}} i_{s}$$

Inverting Amplifier

Gain Equation

$$i_1 = i_2 \implies \frac{v_i - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$$

$$v_o = -\frac{R_f}{R_1} v_i$$

To Be Continued...