OBJECTIFS 3

- Savoir résoudre une équation, une inéquation produit ou quotient, à l'aide d'un tableau de signes.
- Relier sens de variation, signe et droite représentative d'une fonction affine.
- Étudier la position relative des courbes d'équation y = x, $y = x^2$ et $y = x^3$, pour $x \ge 0$.

1

Signe

1. Tableaux de signes

À RETENIR 99

Définition

Étudier le signe d'une fonction f définie sur un ensemble \mathcal{D} revient à déterminer le signe des images f(x) en fonction de $x \in \mathcal{D}$. On présente souvent ces résultats dans un **tableau de signes**.

EXEMPLE \$

La fonction cube $f: x \mapsto x^3$ est positive sur [-3;0] et négative sur [0;3]. Elle s'annule en 0. On peut regrouper cela dans le tableau de signes ci-contre.

Valeur de x	-3		0		3
Signe de $f(x)$		-	Ó	+	

EXERCICE 1

On a tracé la courbe représentative d'une fonction f ci-contre.

1. Dresser son tableau de signes sur l'intervalle [-2;2].

- **€** Voir la con

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/signes-fonctions/#correction-1.

2. Signe d'un produit, d'un quotient

À RETENIR ••

Propriété

On peut déduire le signe d'un produit ou d'un quotient en appliquant la règle des signes.

EXERCICE 2

Soient f et g deux fonctions dont la courbe représentative est tracée ci-contre sur l'intervalle [-3;3]. Dresser le tableau de signes de la fonction $h: x \mapsto \frac{f(x)}{g(x)}$.

▼Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/signes-fonctions/#correction-2

Fonctions usuelles

1. Fonctions affines

À RETENIR 99

Propriété

Soit $f: x \mapsto ax + b$ une fonction affine telle que $a \neq 0$. Alors le tableau de signes de f dépend du signe de

$$Si a > 0$$
:

Valeur de x	$-\infty$		$-\frac{b}{a}$		+∞
Signe de $f(x)$		-	Ó	+	

$$Si a < 0$$
:

Valeur de x	$-\infty$		$-\frac{b}{a}$		+∞
Signe de $f(x)$		+	ø	-	

EXERCICE 3

Établir le tableau de signes de la fonction $f: x \mapsto 5(1-x)$ sur [1; 10].

√Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/signes-fonctions/#correction-3

EXERCICE 4

Établir le tableau de signes de la fonction $g: x \mapsto (x-1)(2-x)$ sur [0;4].

2. Positions relatives des courbes de référence

À RETENIR 99

Propriété

On considère:

- la courbe \mathcal{C}_1 d'équation y = x;
- la courbe \mathscr{C}_2 d'équation $y = x^2$;
- la courbe \mathcal{C}_3 d'équation $y = x^3$.

Alors:

- Si $x \in [0;1[:x^3 \le x^2 \le x; \mathcal{C}_1]$ est située au-dessus de \mathcal{C}_2 qui est située au-dessus de \mathcal{C}_3 .
- Si x = 1: $x^3 = x^2 = x$; les courbes se coupent au point de coordonnées (1;1).
- $Si \ x \in]1; +\infty[: x \le x^2 \le x^3; \mathcal{C}_3 \text{ est située au-dessus de } \mathcal{C}_2 \text{ qui est située }$ au-dessus de \mathcal{C}_1 .

EXERCICE 5

L'objectif de cet exercice est de démontrer que $x^2 \le x$ si et seulement si $x \in [0; 1]$.

- **2.** Étudier le signe de la fonction $f: x \mapsto x^2 x$ sur \mathbb{R} .

3. Conclure.

▼Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/signes-fonctions/#correction-5

III Inéquations

À RETENIR 99

Méthode

Pour résoudre une inéquation produit ou quotient, il est possible de passer par une étude de signes.

EXERCICE 6

Résoudre l'inéquation $(2x + 1)(x + 3) \ge 0$.

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/signes-fonctions/#correction-6.