

# Folding

Shao-Yi Chien





#### Introduction

- Folding transform is used to systematically determine the control circuits in DSP architectures where multiple algorithm operations are time-multiplexed to a single functional unit
  - □ Trading area for time in a DSP architecture
  - □ Reducing the number of hardware functional units by a factor of N at the expense of increasing the computation time by a factor of N





#### An Example of Folding



#### Scheduling

| Cycle | Adder Input | Adder Input | System Output      |
|-------|-------------|-------------|--------------------|
|       | (left)      | (top)       |                    |
| 0     | a(0)        | b(0)        | _                  |
| 1     | a(0) + b(0) | c(0)        | _                  |
| 2     | a(1)        | b(1)        | a(0) + b(0) + c(0) |
| 3     | a(1) + b(1) | c(1)        | _                  |
| 4     | a(2)        | b(2)        | a(1) + b(1) + c(1) |
| 5     | a(2) + b(2) | c(2)        | _                  |









$$D_F(U \xrightarrow{e} V) = [N(l+w(e))+v] - [Nl+P_U+u] = Nw(e) - P_U+v-u$$

- (1)U is executed in  $H_U$  and V is executed in  $H_V$
- (2) Data leave  $H_U$  at  $NI+\underline{u}$ , and reach  $H_V$  at  $NI+\underline{v}$
- $(3)H_U$  is pipelined by  $P_U$  stages





- Folding set
  - □ Ex: a folding set  $S_1 = \{A_1, \phi, A_2\}$  for N=3 for a functional unit means  $A_1$  is executed at time 3l+0 ( $S_1|0$ ), and  $A_2$  is executed at time 3l+2 ( $S_1|2$ )



Pu: Pipeline stages

V: Dest. node index eng (Sill) = 1

U: Source node index

$$D_F(U \xrightarrow{e} V) = [N(l+w(e))+v] - [Nl+P_U+u] = Nw(e) - P_U+v-u$$



$$D_{F}(1 \to 2) = 4(1) - 1 + 1 - 3 = 1$$

$$D_{F}(1 \to 5) = 4(1) - 1 + 0 - 3 = 0$$

$$D_{F}(1 \to 6) = 4(1) - 1 + 2 - 3 = 2$$

$$D_{F}(1 \to 7) = 4(1) - 1 + 3 - 3 = 3$$

$$D_{F}(1 \to 8) = 4(2) - 1 + 1 - 3 = 5$$

$$D_{F}(3 \to 1) = 4(0) - 1 + 3 - 2 = 0$$

$$D_{F}(4 \to 2) = 4(0) - 1 + 1 - 0 = 0$$

$$D_{F}(5 \to 3) = 4(0) - 2 + 2 - 0 = 0$$

$$D_{F}(6 \to 4) = 4(1) - 2 + 0 - 2 = 0$$

$$D_{F}(7 \to 3) = 4(1) - 2 + 2 - 3 = 1$$

$$D_{F}(8 \to 4) = 4(1) - 2 + 0 - 1 = 1$$

 $S_1$ ={4,2,3,1} for one adder with 1 stage pipelining  $P_A$ =1  $S_2$ ={5,8,6,7} for one multiplier with 2 stages pipelining  $P_M$ =2 N=4











$$D_F(1 \to 2) = 4(1) - 1 + 1 - 3 = 1$$
  
 $D_F(1 \to 5) = 4(1) - 1 + 0 - 3 = 0$ 

• 
$$D_F(1 \to 6) = 4(1) - 1 + 2 - 3 = 2$$

$$D_F(1 \to 7) = 4(1) - 1 + 3 - 3 = 3$$

• 
$$D_F(1 \to 8) = 4(2) - 1 + 1 - 3 = 5$$

• 
$$D_F(3 \to 1) = 4(0) - 1 + 3 - 2 = 0$$

$$D_F(4 \to 2) = 4(0) - 1 + 1 - 0 = 0$$

$$D_F(5 \to 3) = 4(0) - 2 + 2 - 0 = 0$$

$$^{\circ} D_F(6 \to 4) = 4(1) - 2 + 0 - 2 = 0$$

$$D_F(7 \rightarrow 3) = 4(1) - 2 + 2 - 3 = 1$$

$$D_F(8 \to 4) = 4(1) - 2 + 0 - 1 = 1.$$





#### Retiming for Folding (1/6)

- Realizable folding:  $D_F(U \stackrel{e}{\rightarrow} V) \ge 0$
- Once valid folding sets have been assigned, retiming can be used to either satisfy this property or determine that the folding sets are not feasible





### Retiming for Folding (2/6)

#### Retiming constraints:

$$w_{r}(e) = w(e) + r(V) - r(U),$$

$$D'_{F}(U \stackrel{e}{\to} V) \ge 0$$

$$Nw_{r}(e) - P_{U} + v - u \ge 0.$$

$$N(w(e) + r(V) - r(U)) - P_{U} + v - u \ge 0.$$

$$r(U) - r(V) \le \frac{D_{F}(U \stackrel{e}{\to} V)}{N}.$$

$$r(U) - r(V) \le \left\lfloor \frac{D_{F}(U \stackrel{e}{\to} V)}{N} \right\rfloor$$



## Retiming for Folding (3/6)



$$r(U) - r(V) \le \left| \frac{D_F(U \stackrel{e}{\to} V)}{N} \right|$$

| $\underline{\mathrm{Edge}}$ | Folding Equation    | Retiming for Folding Constraint   |
|-----------------------------|---------------------|-----------------------------------|
| $1 \rightarrow 2$           | $D_F(1 \to 2) = -3$ | $r(1) - r(2) \le -1 \ \checkmark$ |
| $1 \rightarrow 5$           | $D_F(1 \to 5) = 0$  | $r(1) - r(5) \le 0$               |
| $1 \rightarrow 6$           | $D_F(1 \to 6) = 2$  | $r(1) - r(6) \le 0$               |
| $1 \rightarrow 7$           | $D_F(1 \to 7) = 7$  | $r(1) - r(7) \le 1$               |
| $1 \rightarrow 8$           | $D_F(1 \to 8) = 5$  | $r(1) - r(8) \le 1$               |
| $3 \rightarrow 1$           | $D_F(3 \to 1) = 0$  | $r(3) - r(1) \le 0$               |
| $4 \rightarrow 2$           | $D_F(4 \to 2) = 0$  | $r(4) - r(2) \le 0$               |
| $5 \rightarrow 3$           | $D_F(5 \to 3) = 0$  | $r(5) - r(3) \le 0$               |
| $6 \rightarrow 4$           | $D_F(6 \to 4) = -4$ | $r(6) - r(4) \le -1$              |
| $7 \rightarrow 3$           | $D_F(7 \to 3) = -3$ | $r(7) - r(3) \le -1$ $\checkmark$ |
| $8 \rightarrow 4$           | $D_F(8 \to 4) = -3$ | $r(8) - r(4) \le -1 \checkmark$   |

<0: too less delay elements





## Retiming for Folding (4/6)

#### Constraint graph

- $\Box$  r(1)=-1
- $\Box$  r(2)=0
- $\Box$  r(3)=-1
- $\Box r(4)=0$
- $\Box$  r(5)=-1
- $\Box$  r(6)=-1
- $\Box$  r(7)=-2
- $\Box$  r(8)=-1





### Retiming for Folding (5/6)









## Retiming for Folding (6/6)

- Another point of view
  - □ Apply cutset retiming at c<sub>1</sub> and c<sub>2</sub> to add/subtract w delays
  - □ →add/subtract Nw onD<sub>F</sub>
  - □ To make  $D_F >= 0$



| $\underline{\text{Edge}}$ | Folding Equation    | Retiming for Folding Constraint |
|---------------------------|---------------------|---------------------------------|
| $1 \rightarrow 2$         | $D_F(1 \to 2) = -3$ | $r(1) - r(2) \le -1$            |
| $1 \rightarrow 5$         | $D_F(1 \to 5) = 0$  | $r(1) - r(5) \le 0$             |
| $1 \rightarrow 6$         | $D_F(1 \to 6) = 2$  | $r(1) - r(6) \le 0$             |
| $1 \rightarrow 7$         | $D_F(1 \to 7) = 7$  | $r(1)-r(7)\leq 1$               |
| $1 \rightarrow 8$         | $D_F(1 \to 8) = 5$  | $r(1) - r(8) \le 1$             |
| $3 \rightarrow 1$         | $D_F(3 \to 1) = 0$  | $r(3) - r(1) \leq 0$            |
| $4 \rightarrow 2$         | $D_F(4 \to 2) = 0$  | $r(4) - r(2) \le 0$             |
| $5 \rightarrow 3$         | $D_F(5 \to 3) = 0$  | $r(5) - r(3) \le 0$             |
| $6 \rightarrow 4$         | $D_F(6 \to 4) = -4$ | $r(6) - r(4) \le -1$            |
| $7 \rightarrow 3$         | $D_F(7 \to 3) = -3$ | $r(7) - r(3) \leq -1$           |
| $8 \rightarrow 4$         | $D_F(8 \to 4) = -3$ | $r(8) - r(4) \le -1$            |



# Register Minimization Techniques (1/8) Techniques (1/8)

#### Lifetime analysis

□ A procedure used to compute the minimum number of registers required to implement a DSP algorithm in hardware

#### □Ex:

- a lives during time unit {1, 2, 3, 4}
- b lives during time unit {2, 3, 4, 5, 6, 7}
- c lives during time unit {5, 6, 7}





# Register Minimization Techniques (2/8)

■ Lifetime analysis—linear lifetime chart



Minimum number of required registers





3 iterations with period N=6





- Lifetime analysis—lifetime table
- Ex: transpose matrix

abc defighi

a dig beh cfi

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Input in Rastor Scan Order

| odiput Ziodi i |             |             |            |              |                                          |  |  |
|----------------|-------------|-------------|------------|--------------|------------------------------------------|--|--|
| Sample         | $T_{input}$ | $T_{zlout}$ | $T_{diff}$ | $T_{output}$ | Life Period $(T_{input} \to T_{output})$ |  |  |
| $\overline{a}$ | 0           | 0           | 0          | 4            | $0 \rightarrow 4$                        |  |  |
| b              | 1           | 3           | 2          | 7            | 1 	o 7                                   |  |  |
| c              | 2           | 6           | 4          | 10           | $2 \rightarrow 10$                       |  |  |
| d              | 3           | 1           | -2         | 5            | $3 \rightarrow 5$                        |  |  |
| e              | 4           | 4           | 0          | 8            | $4 \rightarrow 8$                        |  |  |
| f              | 5           | 7           | 2          | 11           | $5 \rightarrow 11$                       |  |  |
| g              | 6           | 2           | -4         | 6            | $6 \rightarrow 6$                        |  |  |
| h              | 7           | 5           | -2         | 9            | $7 \rightarrow 9$                        |  |  |
| i              | 8           | 8           | 0          | 12           | $8 \rightarrow 12$                       |  |  |

T<sub>output</sub>=T<sub>zlout</sub>+latency

Illegal!→add latency 4





# Register Minimization Techniques (4/8)





Linear lifetime chart

Circular lifetime chart



9 c i/p p1 p2 p3 p4 o/p

0 a

1 b a

2 c b a

3 d c b a

4 e d c b a

5 f e d c b d

6 p f e b c p

7 h c f e b b

8 i h c f e e

9 x i b c f h

10 x x x i f c c

11 x x x x i f f

12 x x x x x 1 i



# Register Minimization Techniques (5/8)

Data allocation using forward-backward register

allocation



N=9 Hashing

| cycle | input    | R1         | R2 | R3  | R4  | output |
|-------|----------|------------|----|-----|-----|--------|
| 0     | a        |            |    |     |     |        |
| 1     | b\       | a          |    |     |     |        |
| 2     | c\       | b          | a  |     |     |        |
| 3     | d        | C          | b\ | a   |     |        |
| 4     | e 🔪      | <b>d</b> \ | c  | b \ | (a) | a      |
| 5     | f        | e          | d  | C   | b   | d      |
| 6     | g        | f          | e  |     | C   | g      |
| 7     | h        |            | f  | e   |     |        |
| 8     | i        | h          |    | f   | e   | e      |
| 9     |          | i          | h  |     | f   | h      |
| 10    |          |            | i  |     |     |        |
| 11    | <b>—</b> |            |    | i   |     |        |
| 12    |          |            |    |     | î   | i      |

| cycle | input | RI | R2       | R3  | R4       | output |
|-------|-------|----|----------|-----|----------|--------|
| 0     | a     |    |          |     |          |        |
| 1     | b     | a  |          |     |          |        |
| 2     | c     | b\ | a        |     | -        |        |
| 3     | d\    | C  | <b>b</b> | a   | <u> </u> |        |
| 4     | e 🔪   | d_ | c        | b   | a        | a      |
| 5     | f     | e  | (d)      | c   | b        | d      |
| 6     | (g)   | f  | e        | 63  | C        | g      |
| 7     | h     | C) | f        | e   | <b>D</b> | b      |
| 8     | i     | h  |          | f   | (e)      | e      |
| 9     |       | i  | h        | (C) | f        | h      |
| 10    |       |    | i        | (f) | (C)      | C      |
| 11    |       |    |          | i   | f        | (f)    |
| 12    |       |    |          |     | 1        | i      |





# Register Minimization Techniques (6/8)

| cycle | input | RI  | R2         | R3          | R4 | output |
|-------|-------|-----|------------|-------------|----|--------|
| 0     | a     |     |            |             |    |        |
| 1     | b     | a   |            |             |    |        |
| 2     | c     | b \ | a          |             | -  |        |
| 3     | d\    | C \ | <b>b</b> \ | a           |    |        |
| 4     | e     | d   | c          | <b>a</b> b/ | a  | a      |
| 5     | f     | e/  | (d)        | C           | b  | d      |
| 6     | (g)   | f   | e          | b           | C  | g      |
| 7     | h     | c < | f          | e           | Ъ  | b      |
| 8     | i     | h   | c          | f           | C  | e      |
| 9     |       | i   | h          | c           | f  | h      |
| 10    |       |     | i          | f           | 0  | С      |
| 11    |       |     |            | i           | f  | f      |
| 12    |       |     |            |             | Î  | i      |







# Register Minimization Techniques (7/8)

| cycle 0 | $\frac{a_0 b_0 c_0}{a_0 c_0}$ | † live |
|---------|-------------------------------|--------|
| 1       | <del></del>                   | 1      |
| 2       |                               | 2      |
| 3       |                               | 2      |
| 4       | <del></del>                   | 2      |
| 5       |                               | 2      |
| 6       |                               | 2+0=2  |
| 7       |                               | 2+1=3  |

| cycle | input | R1 | R2  | R3       | output |
|-------|-------|----|-----|----------|--------|
| 0     | a     |    |     |          |        |
| 1     | b\    | a  |     | :<br>:   |        |
| 2     |       | b  | a   |          |        |
| 3     |       |    | b \ | a        |        |
| 4     | c     |    |     | b        |        |
| 5     |       | C/ |     |          |        |
| 6     |       |    | c   | <u>!</u> |        |
| 7     |       |    |     | C        | c      |

| cycle | input | R1 | R2  | R3  | output |
|-------|-------|----|-----|-----|--------|
| 0     | a     |    | -   |     |        |
| 1     | b\    | a  |     |     |        |
| 2     |       | b  | a   |     |        |
| 3     |       |    | b   | a   |        |
| 4     | c     |    | a   | b   | a      |
| 5     |       | C  | b   |     |        |
| 6     |       |    | c   | ь   |        |
| 7     |       |    | (b) | (C) | b,c    |





# Register Minimization Techniques (8/8)

| cycle | input | R1 | R2 | R3 | output |
|-------|-------|----|----|----|--------|
| 0     | a     |    |    |    |        |
| 1     | b\    | a  |    |    |        |
| 2     |       | b  | a  |    |        |
| 3     |       |    | b  | a  |        |
| 4     | c \   |    | a  | b  | a      |
| 5     |       | C  | b  |    |        |
| 6     |       |    | c  | ь  |        |
| 7     |       |    | b  | C  | b,c    |





- Perform retiming for folding
- Write the folding equations
- Use the folding equations to construct a lifetime table
- Draw the lifetime chart and determine the required number of registers
- Perform forward-backward register allocation
- Draw the folded architecture that uses the minimum number of registers



# Register Minimization in Folded Architecture (2/4)

- Lifetime table
  - □ T<sub>input</sub> of node U is u+P<sub>U</sub>



| oath                   | <i>,</i> |                       |                            | •                                           |
|------------------------|----------|-----------------------|----------------------------|---------------------------------------------|
| $D_E(1 \rightarrow 2)$ | =        | 4(1) - 1 + 1 - 3 = 1  | $\overline{\mathrm{node}}$ | $T_{input}  ightarrow T_{output}$           |
| $D_F(1 \rightarrow 5)$ | =        | 4(1) - 1 + 0 - 3 = 0  | 1                          | $4 \rightarrow 9 (S_1 3) + 4 - 0 = 3+1 = 4$ |
|                        |          | 4(1) - 1 + 2 - 3 = 2  | 2                          | <u> </u>                                    |
| _ ` ,                  |          | 4(1) - 1 + 3 - 3 = 3  | 3                          | $3 \rightarrow 3$                           |
| - \                    |          | 4(2) - 1 + 1 - 3 = 5/ | . 1                        | $1 \rightarrow 1$                           |
| - (                    |          | 4(0) - 1 + 3 - 2 = 0  | <b>+</b> 4                 | _ ' _                                       |
| - (                    |          | 4(0) - 1 + 1 - 0 = 0  | 5                          | 2 	o 2                                      |
|                        |          | 4(0) - 2 + 2 - 0 = 0  | 6                          | $4 \rightarrow 4$                           |
| $D_F(6 \rightarrow 4)$ | =        | 4(1) - 2 + 0 - 2 = 0  | 7                          | 5, 0 (S213)+ (1-20) = 3+2=5                 |
| $D_F(7 \to 3)$         | =        | 4(1) - 2 + 2 - 3 = 1  | 0                          |                                             |
| $D_F(8 \rightarrow 4)$ | =        | 4(1) - 2 + 0 - 1 = 1. | 8                          | $3 \sim 4$                                  |

 $\square$  T<sub>output</sub> of the node U is  $u + P_U + \max_V \{D_F(U \to V)\}$ 





| cycle | input            | R1      | R2          | output         |
|-------|------------------|---------|-------------|----------------|
| 0     |                  |         |             |                |
| 1     |                  |         |             |                |
| 2     |                  |         |             |                |
| 3     | n <sub>8</sub> \ |         |             |                |
| 4     | $n_1$            | $n_8$   |             | n <sub>8</sub> |
| 5     | n <sub>7</sub>   | $n_1$   |             |                |
| 6     |                  | $n_{7}$ | $n_{11}$    | n <sub>7</sub> |
| 7     |                  |         | $n_{\perp}$ |                |
| 8     |                  |         | $n_{11}$    |                |
| 9     |                  |         | $n_1$       | $n_1$          |



# Register Minimization in Folded Architecture (4/4) Register Minimization in Folded $D_{F(1\to5)} = 4(1)$ $D_{F(1\to5)} = 4(1)$ $D_{F(1\to6)} = 4(1)$ $D_{F(1\to6)} = 4(1)$ $D_{F(1\to6)} = 4(1)$ $D_{F(1\to8)} = 4(1)$

■ Number of registers: 6→2







 $\{p,q\}$  denotes 4l + p and 4l + q

| cycle | input            | R1           | R2             | output         |
|-------|------------------|--------------|----------------|----------------|
| 0     |                  |              |                |                |
| 1     |                  |              |                |                |
| 2     |                  |              |                |                |
| 3     | n <sub>8</sub> \ |              |                |                |
| 4     | $n_1$            | $n_8$        |                | n <sub>8</sub> |
| 5     | n <sub>7</sub>   | $n_1$        |                |                |
| 6     |                  | $n_{\gamma}$ | $n_{1\lambda}$ | n <sub>7</sub> |
| 7     |                  |              | $n_{11}$       |                |
| 8     |                  |              | $n_{\perp}$    |                |
| 9     |                  |              | $n_1$          | n <sub>1</sub> |







