#install the ChEMBL database

#ChEMBL is a manually curated database of bioactive molecules with drug-like properties.

#It brings together chemical, bioactivity, and genomic data to aid the translation of genomic information into effective pip install chembl_webresource_client

#accessing the database
import pandas as pd
from chembl_webresource_client.new_client import new_client

#searching the database - here we have chosen coronavirus
target = new_client.target
target_query = target.search('coronavirus')
targets = pd.DataFrame.from_dict(target_query)
targets

	cross_references	organism	<pre>pref_name</pre>	score	species_group_flag	target_chembl_id	target_components	ta:
0	0	Coronavirus	Coronavirus	17.0	False	CHEMBL613732		(
1		SARS coronavirus	SARS coronavirus	14.0	False	CHEMBL612575	0	(
2		Feline coronavirus	Feline coronavirus	14.0	False	CHEMBL612744	0	(
3	0	Murine coronavirus	Murine coronavirus	14.0	False	CHEMBL5209664	0	(
4	П	Human coronavirus 229E	Human coronavirus 229E	12.0	False	CHEMBL613837	0	(
5	0	Human coronavirus OC43	Human coronavirus OC43	12.0	False	CHEMBL5209665	0	(
6	[{'xref_id': 'P0C6U8', 'xref_name': None, 'xre	SARS coronavirus	SARS coronavirus 3C-like proteinase	10.0	False	CHEMBL3927	[{'accession': 'P0C6U8', 'component_descriptio	

7	0	Middle East respiratory syndrome- related coron	Middle East respiratory syndrome- related coron	9.0	Fa	alse	CHEMBL4296578	0	(
8	[{'xref_id': 'P0C6X7', 'xref_name': None, 'xre	SARS coronavirus	Replicase polyprotein 1ab	4.0	Fa	alse	CHEMBL5118	[{'accession': 'P0C6X7', 'component_descriptio	
9		Severe acute respiratory syndrome coronavirus 2	Replicase polyprotein 1ab	4.0	Fa	alse	CHEMBL4523582	[{'accession': 'P0DTD1', 'component_descriptio	

Next steps: Generate code with targets

View recommended plots

#this project we are interested in target types particulary single protein
#we are going to investigate further SARS coronavirus 3C-like proteinase
selected_target = targets.target_chembl_id[6]
selected_target

'CHEMBL3927'

```
#here we filter off the standard type
#the standard type is the measured property or activity of a chemical compound
#here we use half maximal inhibitory concentration (IC50)
activity = new_client.activity
res = activity.filter(target_chembl_id=selected_target).filter(standard_type='IC50')
```

#this dataframe shows us key values
#for example standard value which tells us the needed concentration of the compound in order to reach half maximal in
#the lower the standard value the less of the compound that is needed
df = pd.DataFrame.from_dict(res)
df

	action_type	activity_comment	activity_id	activity_properties	assay_
0	None	None	1480935	0	CHE
1	None	None	1480936	0	CHE
2	None	None	1481061	0	CHE
3	None	None	1481065	0	CHE
4	None	None	1481066	0	CHE
128	None	None	12041507	0	CHEN
129	None	None	12041508	0	CHEN
130	None	None	12041509	0	CHEN
131	None	None	12041510	0	CHEN
132	None	None	12041511	0	CHEN

```
#save our pulled data into a csv file
df.to csv('Coronavirus bioactivity data.csv', index=False)
Bio act data = pd.read csv('Coronavirus bioactivity data.csv')
! head Coronavirus bioactivity data.csv
    activity comment, activity id, activity properties, assay chembl id, assay description, assay type, assay variant access
    , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
    , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
    , CHEMBL830868, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
   , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
    , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
   , CHEMBL828143, In vitro inhibitory concentration SARS coronavirus main protease (SARS CoV 3C-like protease), B,,, Bl
   , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease
    , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
    , CHEMBL829584, In vitro inhibitory concentration against SARS coronavirus main protease (SARS CoV 3C-like protease)
Bio act data.standard value.count()
    133
#evaluate for missing data
#none in this sample
print(Bio act data.standard value.notna().sum())
    133
#we are now going to create classes to define the compounds bioactivity off of the standard value (nM)
bioactivity class = []
for i in Bio act data.standard value:
  if float(i) >= 10000:
    bioactivity class.append('inactive')
  elif float(i) <= 1000:
    bioactivity class.append('active')
```

```
else:
    bioactivity class.append('indeterminate')
#iterate the molecule ChEMBL id to a list
#here we are labeling the molecules that have a modulatory effect on the target protein
#we are doing this to remove redundacy
mol cid = []
for i in Bio act data.molecule chembl id:
  mol cid.append(i)
#simplified molecular input line entry system
#unique textual representation of a molecular structure
canonical smiles = []
for i in Bio act data.canonical smiles:
  canonical smiles.append(i)
standard value = []
for i in Bio act data.standard value:
  standard_value.append(i)
data tuples = list(zip(mol cid, canonical smiles, bioactivity class, standard value))
df2 = pd.DataFrame(data tuples, columns=['molecule chembl id', 'canonical smiles', 'bioactivity class', 'standard val
df2.head(5)
```

molecule chembl id canonical smiles bioactivity cla 0 Cc1noc(C)c1CN1C(=O)C(=O)c2cc(C#N)ccc21 CHEMBL187579 indetermin 1 CHEMBL188487 O=C1C(=O)N(Cc2ccc(F)cc2Cl)c2ccc(I)cc21 indetermin 2 CHEMBL185698 O=C1C(=O)N(CC2COc3ccccc3O2)c2ccc(I)cc21 inac 3 CHEMBL426082 O=C1C(=O)N(Cc2cc3ccccc3s2)c2ccccc21 inac O=C1C(=O)N(Cc2cc3ccccc3s2)c2c1cccc2[N+] **CHEMBI 187717** 4 indetermin