OC-T08 Content

Preconditions

System definition, quantitative emergence

Objectives

Terminology for self-organization, robustness, and adaptivity Quantitative approach

Content

- Self-organization and autonomy
- □ 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- □ Control and degree of autonomy
- ☐ Controlled self-organization

ISE

Preconditions

System definition, quantitative emergence

Objectives

Terminology for self-organization and adaptivity

Quantitative approach

Content

- Self-organization and autonomy
- □ 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- Controlled self-organization

autonomy

robustness

flexibility

(self-) adaptivity

observation

control

self-organization

OC-T08

An ordering game

- Properties of each stick:
 - height
 - color

- Ordering objectives
 - a) increasing height
 - b) decreasing height
 - c) color clusters

Ordering process?

Global objective a := increasing height

- Local objective: right > myself
- Local observation: right < myself
- 3. Local decision: if right < myself then Switch places; else: nil
- Local enactment
- Go to 2

enactment = Ausführung, Umsetzung

Global objective := increasing height

© C. Müller-Schloer 2015

ISE

Autonomy? yes Self-organization? Maybe

- □ Autonomy: A system S' changes its structure without explicit external control.
 - There must be some kind of internal control mechanism CM!
- □ Self-organization: The internal control mechanism is distributed (to a certain degree).
- ☐ Adaptivity: A system S allows to be changed (passive property).

These definitions have to be refined and formulated quantitatively!

OC-T08

Aspects of adaptive systems

Preconditions

System definition, quantitative emergence

Objectives

Terminology framework for self-organization and adaptivity Quantitative approach

Content

- Self-organization and autonomy
- 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- Controlled self-organization

- ☐ An autonomous system S is characterized by 5 aspects:
 - 1. System state
 - 2. Utility and Acceptance space
 - 3. Disturbance
 - 4. Control mechanism
 - 5. Recovery (process)

- \Box At any given time t, the system S is in state z (t).
- ☐ If there are n attributes used to describe the state of S, \mathbf{z} (t) is a vector in n-dimensional state space Z^n .

© C. Müller-Schloer

- □ We assign a utility **U** to each state **z** by the evaluation functions η_i: **U** = η (**z**). U_i ∈ R
- ☐ The set of acceptable states (the acceptance space) corresponds to a minimal acceptable utility

$$U_{i, \text{ acceptable}} = \eta_i (z_{\text{acceptable}}) \text{ and } U_{i, \text{ acceptable}} \ge U_{\text{min}} \forall z_{\text{acceptable}}.$$

- \square The set of ideal states (the target space) is denoted by Z_{Ω} . In some cases, it might be a single state \mathbf{z}_{Ω} .
- ☐ The target space is a subset of the acceptance space.

cf. Objective function

- The system might be disturbed by environmental influences or disturbances δ .
- \Box A disturbance δ changes the state $\mathbf{z}(t)$ into the disturbed state $\mathbf{z}_{\delta}(t) = \delta(\mathbf{z}(t)).$
- Consequently the utility changes to

$$\mathbf{U}_{\delta} = \mathbf{\eta} \ (\mathbf{z}_{\delta}(t))$$

 \Box If $U_{\delta} < U_{\text{acceptable}}$ the system is outside the acceptance space.

- ☐ An internal control mechanism *CM* to controls the behavior of the system S by changing some of its attributes **c**_i.
 - See: Configuration space
- ☐ The control mechanism *CM* consists of an Observer O and a Controller C.
- \square S' can be controlled via \mathbf{c}_{e} .

ISE

- ☐ Disturbance and recovery behavior in state space
 - Phase I: A disturbance of strength δ is applied to the system, which changes its state to z_δ and its utility to U_δ < U_{acceptable}.
 - Phase II: A control mechanism (which in the case of an adaptive selforganizing system is part of the system itself) actively guides the system back into the acceptance space (recovery process).
 - The time needed for this recovery is t.rec.

- **OC-T08**
 - ☐ An adaptive system S will always try to return to the acceptance space.
 - ☐ Such a recovery is possible only from a certain subset of states, the Survival space.
 - Any disturbance δ moving z outside the survival space will be lethal for S:
 Dead Space.

OC-T08 Robustness

Preconditions

System definition, quantitative emergence

Objectives

Terminology framework for self-organization and adaptivity, quantitative approach

Content

- □ Self-organization and autonomy
- □ 5 aspects of adaptive systems
- Measuring Robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- Controlled self-organization

- ☐ It is a common misunderstanding that the goal of building OC systems is primarily the construction of (self-) adaptive or self-organizing systems or that OC systems generally have a higher performance (more general: utility) than conventional systems.
- ☐ OC systems are not per se faster than conventional systems.
 - But they return to a certain accepted utility in the presence of internal and/or external disturbances. We call this property "robustness".
 - Or they adapt to new goals (a new acceptance space). We call this property "flexibility".
- Active correction mechanisms (such as an observer/controller) counteract the temporary deviation of a system from an acceptable state (or in case of a multi-dimensional state space: the acceptance space).

- Robustness
 - The system S' is expected to maintain a required behavior or functionality in spite of certain disturbances.
 - The standard notion for this behavior is robustness.
- □ Flexibility
 - The requirement to modify the behavior because of changed objectives corresponds to the notion of flexibility.
- Both capabilities, robustness and flexibility, are enabled by the (self-) adaptivity of the system.

- We call a system more robust if it has a large number of states that do not lead to a permanently reduced utility.
- Definition: Let *D* be a non-empty set of disturbances.
 - a) A system S is called strongly robust with respect to D, iff all the disturbances $\delta \in D$ map the target space into itself.
 - b) A system S is called weakly robust with respect to D, iff all the disturbances $\delta \in D$ map the target space into the acceptance space.
- ☐ Flexibility can be treated like robustness if we define a change of goals (i.e. a change of acceptance space) as a special case of a disturbance.

Observations

- The (degree of) robustness of a system increases with the size of the set of disturbances D and the strength of the disturbance δ the system can handle (i.e. fulfilling the requirements a or b above).
- A system A is more robust than a system B if it returns to the target or the acceptance space in a shorter time after the disturbance occurs.
- ☐ If we want to quantify robustness (for comparison between different systems) we have to take into account the following observables:
 - the strength of the disturbance, δ
 - the deviation of the system utility U_{δ} from the acceptable utility $U_{\text{acceptable}}$, ΔU , and
 - the duration of the deviation (the recovery time t_{rec}).

- ☐ Disturbance and recovery behavior in state space
 - Phase I: A disturbance of strength δ is applied to the system, which changes its state to z_δ and its utility to U_δ < U_{acceptable}.
 - Phase II: A control mechanism (which in the case of an adaptive selforganizing system is part of the system itself) actively guides the system back into the acceptance space (recovery).
 - The time needed for this recovery is t_{rec}.

- ☐ Utility degradation behavior over time
 - The deviation begins when the utility drops below $U_{acceptable}$, i.e. at time t_{δ} (and not when the disturbance occurs).
 - A disturbance taking effect at time t_{δ} will lead to a utility drop from $U \ge U_{\text{acceptable}}$ to U_{δ} . The drop occurs within t_{drop} .

■ Given an effective control mechanism the system will return back to $U \ge U_{\text{acceptable}}$ within time t_{rec} .

Phases I and II are called deviation phase.

- ☐ The deviation phase shows 2 sub-phases:
 - Phase I: Passive robustness (or drop) phase: There is not yet a control mechanism active. The system utility drops by ΔU . The drop ΔU and the time t_{drop} are a function (1) of the strength of the disturbance, δ , and (2) of the structural stability of the system.
 - Phase II: Active robustness phase: The active O/C mechanism tries to reorganize/repair the system.
- ☐ It might be difficult to discriminate between the 2 phases, they might overlap.
- ☐ Usually t_{drop} is very short, the drop occurs "instantaneously" in many cases.

The utility deviation ΔU is the cost caused by the disturbance.

ISE

☐ Passive robustness

- Passive robustness $R_{passive}$ is the sensitivity of U against a change of δ , i.e. $dU/d\delta = 1/R_{passive}$
- R_{passive} is a measure of the *structural* stability of a system in the presence of a disturbance δ.
- If δ has no effect on a system ($\Delta U = 0$) its structural stability $R_{passive} = \infty$.

- \Box Example 1: A very stable concrete tower, which does not move ($\Delta U = 0$) under a storm of strength δ, is structurally infinitely stable.
- \Box Example 2: A communication link with an error correcting code, which corrects errors up to 3 bits, is structurally infinitely stable under a disturbance of strength $\delta = 1$ bit.

© C. Müller-Schloer

- ☐ Active robustness R_{active}
 - R_{active} is defined as the (averaged) recovery speed of the system, i.e.

U_{acceptable}

- R_{active} is a property of the Observer/Controller
- Without an O/C the system stays at U_ō as long as the disturbance remains.

- \Box The robustness of a system under a given disturbance of strength δ is characterized by the triple (δ , ΔU , t_{rec}) or (δ , $R_{passive}$, R_{active}).
- ☐ We can use the area A of the utility deviation from U_{acceptable} until full recovery to U_{acceptable} as a measure for the effective utility degradation:
 - Effective utility degradation 1) $A = \Delta U \times (t_{drop} + t_{rec}) 1$
- ☐ To achieve a minimal degradation we have to minimize A (i.e. ΔU and t_{rec}).

¹) for
$$U_{\delta} = 0$$

C. Müller-Schloer 2015

- ☐ For simplification we approximate the deviation area by a triangle:
 - The drop occurs very fast, hence $t_{drop} = 0$.
 - The recovery is assumed to be linear.

□ Effective utility degradation
$$A = \frac{1}{2} \frac{\delta^2}{R_{\textit{passive}}^2 \times R_{\textit{active}}}$$

A is a cost x time product

- □ Observations
 - An increase of R_{passive} decreases A more effectively than a R_{active} increase. The reason is that $R_{passive}$ influences ΔU as well as t_{rec}.
 - There is a trade-off possible between R_{passive} and R_{active} .

Experimental recovery behaviors from TC-enhanced computing grid (1)

- ☐ Trust Community experiments:3 experimental recoverybehaviors
 - with identical δ (attack size)
 - 3 different O/C solutions
- The O/C solutions mETC and sETC counteract the attack so fast, that ΔU is reduced as well.
- □ For the practical comparison of experimental evaluations the determination of A (the colored areas under the 3 curves) seems to be best suited.

OC-T08

Experimental recovery behaviors from TC-enhanced computing grid (2)

ISE

 t_{rec}^{sETC} t_{rec}^{mETC}

 $t^{iTC}_{\it rec}$

Experimental recovery behaviors from TC-enhanced computing grid (3)

Evaluation

	ΔU	t _{rec}	A [x10 ³]	R _{passive}	Ractive	δ
iTC	11	140k	770	4.5.	8 · 10 ⁻⁵	50
mETC	3	130k	195	17	2.3 · 10 ⁻⁵	50
sETC	3	70k	105	17	4.3 · 10 ⁻⁵	50

A is a cost x time product: [A] = [speed-up x time]

OC-T08

Self-organization and adaptivity

Preconditions

System definition, quantitative emergence

Objectives

Terminology for self-organization and adaptivity Quantitative approach

Content

- Self-organization and autonomy
- 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- Controlled self-organization

© C. Müller-Schloer 2015

S is adaptable.

S' is adaptive.

- \Box Definition: Let D be a non-empty set of disturbances.
- A system is called (self-) adaptive iff it is capable to move into the acceptance space after any of the disturbances D without* needing external control.
 - That means for a robust system S, if δ transforms state $\mathbf{z}(t)$ of S into state $\delta(\mathbf{z}(t))$ then, after some time interval t_{rec} the state of S will be acceptable.
 - That means for a flexible system S, if δ is a change of goals (i.e. a change of acceptance space) then, after some time interval t_{rec} the state of S will be acceptable.
- ☐ The adaptivity of a system is quantitatively specified by its degree of autonomy (see below).

adaptive = robust or flexible!

* "without" must be quantified!

OC-T08 Adaptability

□ A system S is called adaptable or controllable iff explicit (external) control actions are possible.

- The behavior of an adaptable system S can be modified from the outside via control inputs c_i by
 - changing parameters and/or
 - changing its structure (elements and links).

S is adaptable.

Adaptability is a passive property!

Notation: $\mathbf{c_i}$ is equivalent to $\vec{c_i}$!

- \square We have to specify the range of possibilities for influencing the SuOC. This changeability (or plasticity) is described by the configuration space representing the capability of S to be changed (passively!).
- ☐ It is determined by the control parameters c of the system that can be changed directly by the external control mechanism CM.
 - These control parameters refer to all the components of the system structure and to further parameters.
- ☐ A control input **c** selects a certain configuration.
- ☐ In the following we assume that S is an adaptable system.

- ☐ The configuration space comprises the set of configurations that *S* can assume.
- Every configuration is specified by the values of a collection of system or environmental parameters c, which are open to be modified by control actions.
- □ These parameters are called configuration parameters.
- **c** can be regarded as a pointer into the configuration space. The dimension of this pointer corresponds to the dimension of the configuration space.

OC-T08 Variability

- □ The Variability V equals the number of bits necessary to address all the different configurations in the configuration space.
 - The variability of a system is measured by V = Id (number of configurations).
 This is the number of bits in c.
- □ The configuration space and the variability represent the possible modifications by CM.
- Every control action modifies the values of a subset of the configuration attributes.
- □ We denote the number of bits actually modified by a specific control action
 c by #c.

 - #c can be greater than V (multiple steps of modifications).

Possible modifications ≠ Actual modifications

Autonomy

Preconditions

System definition, quantitative emergence

Objectives

Terminology for self-organization and adaptivity

Quantitative approach

Content

- Self-organization and autonomy
- □ 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- □ Controlled self-organization

Internal and external configuration space

- With respect to S' we can distinguish two types of configuration spaces:
 - The internal configuration space is the configuration space of S, its variability is denoted by V_i .
 - The external configuration space is the configuration space of S', its variability is denoted by V_e .

- \square We distinguish between high-level control inputs \mathbf{c}_{obj} , specifying system objectives to be followed by the control mechanism CM,
- □ and control actions c_{low} directly controlling attributes of the internal configuration space (low-level control).

- We use the relation between external and internal control actions to characterize the degree of autonomy.
- The origin of the control actions \mathbf{c}_i determines how autonomous a system is:
 - External origin of c_i, i. e. c_i = c_{low}: direct control by an external (e. g. human) operator, no autonomy.
 - Internal origin of c_i: S is fully controlled by CM. CM is part of the system S'. Full autonomy.
 - Intermediate: Control actions of type c_i and c_{low} are both used to control S.

☐ The autonomy of the system S' can be characterized by the complexity reduction R

$$R = V_i - V_e$$

- ☐ If the system has been designed with the objective of having increasingly higher levels of abstraction, R will be a positive value.
- ☐ A negative value of R would indicate that the control mechanism leads to an additional complexity of the system. →

 \Box The (static) degree of autonomy α of system S' is defined by

$$lpha = rac{R}{V_i} = rac{V_i - V_e}{V_i}$$

- \Box The value of α will be at most 1 (if $V_e = 0$).
 - In this case, there is no external variability, i. e. there is no possibility to modify any attributes of S' by external control actions.
 - Such a system is called fully autonomous.

OC-T08 Discussion

 \Box If α = 0, the internal and the external variabilities are the same, which indicates that there is no complexity reduction.

□ If α drops below zero, we have a situation where the external configuration space contains more controllable attributes than the internal configuration space.

- To characterize the actual degree of autonomy we must consider the total number of bits that have been actually used in all control actions over some time period $[t_1, t_2]$.
- Definition: Let $\#c_e(t_i)$ and $\#c_i(t_i)$ be the number of bits of the external and internal control actions at a certain discrete time t_i .
- The dynamic complexity reduction r in S' over some time interval $[t_1, t_2]$ is defined as

$$r = \sum_{t_1}^{t_2} \left[\#_{{C}_i}(t_i) - \#_{{C}_e}(t_i)
ight]$$

The dynamic degree of autonomy β in S' over some time interval $[t_1, t_2]$ is defined as

$$eta = rac{\sum\limits_{t_1}^{t_2} \left[\#c_i(t_i) - \#c_e(t_i)
ight]}{\sum\limits_{t_1}^{t_2} \left[\#c_i(t_i)
ight]}$$

OC-T08

Controlled self-organization

Preconditions

System definition, quantitative emergence

Objectives

Terminology for self-organization and adaptivity

Quantitative approach

Content

- Self-organization and autonomy
- □ 5 aspects of autonomous systems
- Measuring robustness
- Measuring adaptivity: Configuration space and variability
- Control and degree of autonomy
- Controlled self-organization

- ☐ Intuition suggests that a self-organizing system is
 - a multi-element system (consisting of m elements, m > 1)
 - which needs no external control to restructure itself (i. e. it has a high degree of autonomy).
- □ A common assumption is that the control mechanism CM of a selforganizing system is (to a certain degree) distributed over the m elements.

- ☐ The control mechanism (CM) can be:
 - centralized (one CM)
 - distributed over the m elements (m CMs)
 - distributed over a hierarchy of CMs
- Definition: Degree of self-organization
 - Count the number of CMs (= k) in relation to the number of elements m of the system (k : m).

- Definition: Let S be an adaptive system consisting of m elements (m > 1) with large degrees of autonomy (α and β) and fully or partially distributed k control mechanisms CM (k ≥ 1) leading to a degree of self-organization of (k : m).
 - S is called strongly self-organised, if k = m, i. e. the degree of self-organization is (m : m).
 - S is called self-organised, if k > 1, i. e. it has a medium degree of self-organization (k : m).
 - S is called weakly self-organised, if k = 1, i. e. there is a central control mechanism and the degree of self-organization is (1 : m).

OC-T08 Controlled SO

- □ Definition: A self-organized system *S* 'allows for <u>controlled</u> self-organization, iff:
 - it has a nonempty external configuration space, i. e. we have V_e > 0, and
 - it allows for external control actions of type c_{obj}. (This implies an internal control mechanism CM!)

 \vec{c}_{obj} Goal := increasing height **System System System** Quicksort Quicksort C. Müller-Schloer 2015 Quicksort **Quantitative OC Organic Computing**

OC-T08 Quantitative OC

© C. Müller-Schloer 2015

self-organization