Statistiques mathématiques

R. Petit

année académique 2016 - 2017

Table des matières

1	Thé	forie de l'échantillonnage
	1.1	Terminologie et définitions
	1.2	· ·
		1.2.1 Indicateurs
	1.3	Quantile
		1.3.1 Lemme de Fisher
2	Esti	mation ponctuelle
	2.1	Introduction
	2.2	Critères d'estimation
		2.2.1 Définitions de convergence
		2.2.2 Résultats élémentaires sur les convergences
		2.2.3 Estimateurs convergents
	2.3	
		2.3.1 Estimateurs non biaisés

Introduction

En probabilités, une variable aléatoire X donnée est entièrement définie par sa loi. On peut l'exprimer par la fonction de répartition F^X ou par la fonction de densité $f^X = \frac{d}{dx}F^X$. Ces fonctions permettent de déterminer :

$$\mathbb{P}[\alpha \leqslant X \leqslant b] = \int_{\alpha}^{b} f^{X}(x) dx = F^{X}(b) - F^{X}(\alpha).$$

Ou encore:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f^X(x) \, \mathrm{d}x.$$

Cependant, les fonctions f^X et F^X ne sont jamais connues précisément. Elles peuvent être approchées par des modélisations, mais les modèles ne sont jamais exacts. En probabilités, on cherche donc les observations sur base de la loi qui est connue, alors qu'en statistiques, on cherche à retrouver la loi sur base de n observations X_1, \ldots, X_n .

Nous allons nous intéresser à des *modèles statistiques* sous la forme $\left(\mathbb{R}^{n},\mathcal{B}\left(\mathbb{R}^{n}\right),\mathcal{P}^{(n)}\right)$ où :

$$\mathfrak{P}^{(\mathfrak{n})} = \left\{ \mathbb{P}^{(\mathfrak{n})} \right\} = \left\{ \mathbb{P}^{(\mathfrak{n})}_{\theta} \text{ t.q. } \theta \in \Theta \subset \mathbb{R}^k \right\},$$

et donc les $P^{(i)}$ sont chacun une loi possible pour (X_1, \dots, X_n) .

Ces modèles sont dits *paramétriques* car les différentes lois sont les mêmes au paramètre θ près. Nous n'étudierons que des modèles paramétriques où Θ est un espace de dimension $d \in \mathbb{N}$ finie.

Exemple 0.1. Soient X_1, \ldots, X_n des variables aléatoires iid (indépendantes et identiquement distribuées).

— Si les X_i sont de loi normale $\mathcal{N}(\mu, \sigma^2)$, alors le paramètre θ est donné par :

$$heta = egin{pmatrix} \mu \ \sigma^2 \end{pmatrix} \in \Theta = \mathbb{R} imes \mathbb{R}^+ \subset \mathbb{R}^2 \; ;$$

- si les X_i sont de loi uniforme $\mathrm{Unif}(0,\theta)$, le paramètre θ est donné par $\theta \in \Theta = \mathbb{R}_0^+ \subset \mathbb{R}$;
- si les X_i sont de loi Bern(p), le paramètre θ est donné par $\theta = p \in \Theta = [0, 1] \subset \mathbb{R}$.

Remarque. Une loi normale $\mathcal{N}(\mu, \sigma^2)$ est déraisonnable car les valeurs observables ne vont empiriquement pas vers les infinis alors que la distribution le permet théoriquement mais n'est pas **complètement** déraisonnable car ces probabilités sont négligeables grâce à l'exponentielle de $(-x^2)$ dans la formule de la densité.

Chapitre 1

Théorie de l'échantillonnage

1.1 Terminologie et définitions

Définition 1.1. On appelle *modèle d'échantillonnage* un modèle d'observations iid.

Définition 1.2. Soit un modèle statistique $\left(\mathbb{E}^n,\mathcal{B}\left(\mathbb{E}^n\right),\mathcal{P}^{(n)}\right)$ où $\mathcal{P}^{(n)}=\left\{P_{\theta}^{(n)} \text{ t.q. } \theta \in \Theta \subset \mathbb{R}^k\right\}$. On note ici $\mathbb{P}_{\theta}^{(n)}$ une loi possible pour (X_1,\ldots,X_n) et \mathbb{P}_{θ} une loi possible pour X_i avec i fixé. On dit alors que $\mathbb{P}_{\theta}^{(n)}$ est déterminé par \mathbb{P}_{θ} .

Remarque. Ici, deux visions vont s'opposer et se compléter : la vision *population* qui est associée à P_{θ} et la version *échantillonage* (ou *empirique*), qui, elle, est associée à $P_{\theta}^{(n)}$.

Définition 1.3. On définit la fonction indicatrice $I_{[\cdot]}$ qui vaut 1 quand l'expression entre crochets est vraie et 0 sinon.

Définition 1.4. Soit X_1, \ldots, X_n une suite de n observations. On définit la i*eme statistique d'ordre* par $X_{(i)} = X_k$ t.q. $|\{X_j \text{ t.q. } X_j < X_k, 1 \le j \le n\}| = i$. On définit également la *statistique d'ordre* par $\left(X_{(i)}\right)_i$. **Définition 1.5.** On définit les fonctions de répartitions comme suit :

— la fonction de répartition population :

$$F_{\theta}(x) = P_{\theta}[X_i \leqslant x]$$
;

— la fonction de répartition empirique :

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[X_i \leqslant x]}.$$

Remarque. La fonction F_n empirique est une fonction en escaliers. Elle fait des sauts de hauteur $\frac{1}{n}$, et est telle que :

$$\lim_{x\to +\infty} F_{\mathbf{n}}(x) = 1 \qquad \qquad \text{et} \qquad \qquad \lim_{x\to -\infty} F_{\mathbf{n}}(x) = 0.$$

On peut également remarquer que $F_n(X_{(i)}) = \frac{i}{n}$. En effet, par définition de $X_{(i)}$, il y a exactement i observations inférieures à $X_{(i)}$. Dès lors, la fonction indicatrice donnera i fois la valeur 1 et (n-i) fois la valeur 0. La somme donc donc i et la fonction donne $\frac{i}{n}$.

Définition 1.6. On appelle *statistique* toute fonction mesurable faisant intervenir **uniquement** des observations.

Exemple 1.1. Par exemple F_n est une statistique car seules les valeurs X_i sont utilisée, mais F_θ n'est pas une statistique car la valeur du paramètre θ apparaît et n'est pas une observation.

Remarque. Une statistique peut être à valeur scalaire $(X_{(i)})$ par exemple), à valeur vectorielle $((X_{(i)})_{1\leqslant i\leqslant n})$ par exemple), à valeur ensembliste $([X_i\pm \overline{X}])$ avec i fixé par exemple), ou encore à valeur fonctionnelle (F_n) par exemple).

Remarque. L'objectif est de pouvoir approximer la loi régissant les populations (F_{θ}) à l'aide de la loi observée empiriquement. Par la loi des grands nombres, on a :

$$F_n(x) \xrightarrow[n \to +\infty]{p.s. par \mathbb{P}_{\theta}} F_{\theta}(x).$$

Théorème 1.7 (Théorème de Glivenko-Cantelli). Si F_n et F_θ sont repsectivement une fonction de répartition empirique et de population, alors :

$$\sup_{\mathbf{x} \in \mathbb{R}} \left| \mathsf{F}_{\mathsf{n}}(\mathbf{x}) - \mathsf{F}_{\mathsf{\theta}}(\mathbf{x}) \right| \xrightarrow[n \to +\infty]{p.s.} 0$$

1.2 Moments

Définition 1.8 (Moments pour populations). On définit $\mu'_r(\theta)$ le *moment non-centré* d'ordre r avec $r \in \mathbb{N}^*$ par :

$$\mu_r'(\theta) := E_{\theta}[X_1^r].$$

On définit également $\mu_r(\theta)$, le *moment centré* d'ordre r avec $r \in \mathbb{N}^*$ par :

$$\mu_r(\theta) \coloneqq E_\theta \left[\left(X_1 - \mu_r'(\theta) \right)^r \right].$$

Définition 1.9 (Moments pour échantillon). On définit \mathfrak{m}'_r , le *moment non-centré* d'ordre r avec $r \in \mathbb{N}^*$ par :

$$\mathfrak{m}'_{r} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_{i}^{r}.$$

On définit également le *moment centré* d'ordre r avec $r \in \mathbb{N}^*$ par :

$$\mathfrak{m}_{r} \coloneqq \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mathfrak{m}'_{r})^{r}.$$

Remarque. La loi des grands nombres dit que :

$$m_r' \xrightarrow[n \to +\infty]{p.s.} \mu_r'(\theta),$$

mais on ne peut pas dire que:

$$m_r \xrightarrow[n \to +\infty]{p.s.} \mu_r(\theta).$$

Ce n'est donc pas possible car pour \mathfrak{m}'_{r} , il y a une somme de variables iid alors que pour \mathfrak{m}_{r} , les variables sommées ne sont pas iid (mais dépendent toutes de tous les X_{i}).

En réalité, il y a convergence, mais on ne peut pas l'exprimer de manière triviale par la loi des grands nombres.

1.2.1 **Indicateurs**

On peut observer que $\mu'_1(\theta) = \mathbb{E}_{\theta}[X_1]$. Pareil pour $\mathfrak{m}'_1 = \overline{X}$. Le moment d'ordre 1 est donc un indice de position. On a alors $\mu := \mu_1(\theta) = \mathbb{E}[(X - \mathbb{E}[X_1])] = \mathbb{E}[X_1] - \mathbb{E}[X_1] = 0$. Cette valeur n'est donc pas intéressante. Par contre:

$$\mu_2(\theta) = \mathbb{E}\left[(X_1 - \mathbb{E}[X_1])^2\right] \eqqcolon \mathrm{Var}(X) \qquad \qquad \mathrm{si} \qquad \qquad m_2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2 \eqqcolon s^2.$$

Le moment d'ordre 2 est donc un indice de dispersion.

Définition 1.10. On appelle le coefficient d'asymétrie de Fisher la quantité :

$$\gamma_1 \coloneqq \mu_3(\theta) \cdot \left(\mu_2(\theta)\right)^{-\frac{3}{2}}.$$

Remarque. Le dénominateur $\mu_2(\theta)^{\frac{3}{2}}$ apparait afin de rendre invariant le coefficient d'asymétrie de Fisher aux transformations affines.

Définition 1.11. Le coefficient d'asymétrie de Fisher *empirique* est donné par :

$$\mathfrak{m}_3 \cdot \mathfrak{m}_2^{-\frac{3}{2}}$$
.

Définition 1.12. On appelle coefficient d'applatissement de Fisher la quantité :

$$\gamma_2 \coloneqq \mu_4(\theta) \cdot (\mu_2(\theta))^{-2} - 3.$$

Définition 1.13. Le coefficient d'aplatissement de Fisher empirique est donné par :

$$\mathfrak{m}_4\cdot\mathfrak{m}_2^{-2}-3.$$

Remarque. Si $\gamma_2 \ngeq 0$, c'est que les événements extrêmes sont de plus haute probabilité et si $\gamma_2 \nleq 0$, c'est que les événements extrêmes sont de moins haute probabilité.

À nouveau, le dénominateur y a été ajouté afin de rendre le coefficient invariant aux transformations affines. Et le terme -3 sert à annuler le coefficient d'aplatissement de Fisher pour une normale $\mathcal{N}(\mu, \sigma^2)$.

Quantile 1.3

Définition 1.14. Si F_{θ} est inversible, alors on définit $x_{\alpha}(\theta) := F_{\theta}^{-1}(\alpha)$, et on appelle $x_{\alpha}(\theta)$ un *quantile*. Remarque. Il faut cependant faire attention car on peut avoir le cas de F_{θ} discontinue où on choisit $\alpha =$ F_{θ}^{-1} (point de discontinuité) ou alors le cas de F_{θ} admettant un plateau et où on choisit α sur le plateau. Définition 1.15. On définit alors :

$$x_{\alpha}(\theta)\coloneqq\inf\left\{x\in\mathbb{R}\ \text{t.q. }F_{\theta}(x)\geqslant\alpha\right\}.$$

Remarque. On donne les noms de médiane, quartile, décile, percentile pour α valant, avec k entier, respectivement $\frac{1}{2}$, $\frac{k}{4}$ avec k < 4, $\frac{k}{10}$ avec k < 10, et $\frac{k}{100}$ avec k < 100. **Définition 1.16.** Pour les échantillons, on définit le *quantile empirique d'ordre* α par :

$$x_\alpha^{(n)} \coloneqq \inf\{x \in \mathbb{R} \ \text{t.q.} \ F_n(x) \geqslant \alpha\}.$$

Remarque. On peut également définir des indices de position, dispersion, asymétrie, aplatissement, etc. sur les quantiles plutôt que sur les moments. Ils auront des propriétés différentes et une robustesse différente aux valeurs aberrantes.

Définition 1.17. La loi échantillonnée de $T(X^{(n)})$ est la loi déterminée par :

$$\mathbb{P}_{\theta}^{(\mathfrak{n})}\left[T(X^{(\mathfrak{n})}) \in B\right] = \mathbb{P}_{\theta}^{(\mathfrak{n})}\left[\left\{x^{(\mathfrak{n})} \in X^{(\mathfrak{n})} \text{ t.q. } T(x^{(\mathfrak{n})} \in B\right\}\right], B \in \mathfrak{B}(\mathbb{R}^m).$$

 $\textit{Exemple 1.2 (Bernoulli)}. \ \ X^{(\mathfrak{n})} = (X_1, \dots, X_{\mathfrak{n}}) \ \text{où les } X_i \ \text{sont iid Bern}(\mathfrak{p}). \ \text{On a alors} : T(X^{(\mathfrak{n})}) = \sum_{i=1}^{\mathfrak{n}} X_i, \text{sous alor$ $\mathbb{P}_{\theta}^{(n)}$, est de loi $\operatorname{Bin}(n,p)$.

Exemple 1.3 (Normale). $X^{(n)} = (X_1, \dots, X_n)$ où les X_i sont iid $\mathcal{N}(\mu, \sigma^2)$ et où $\theta = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} \in \Theta = \mathbb{R} \times \mathbb{R}_0^+ \subset \mathbb{R}^2$.

La statistique $T_1(X^{(n)}) = \sum_{i=1}^n X_i$, sous $P_{\theta}^{(n)}$, est de loi $\mathcal{N}(n\mu, n\sigma^2)$.

La statistique $T_2(X^{(n)}) = \frac{1}{n} \sum_{i=1}^n X_i$, sous $\mathbb{P}^{(n)}_{\theta}$, est de loi $\mathbb{N}(\mu, \frac{\sigma^2}{n})$. Exemple 1.4 (Uniforme). $X^{(n)} = (X_1, \dots, X_n)$ où les X_i sont iid $\mathrm{Unif}(0, \theta)$, pour $\theta \in \Theta = \mathbb{R}^+_0 \subset \mathbb{R}$. On a donc $f_{\theta}^{X_i}(x) = \theta^{-1}I_{[0 \leqslant x \leqslant \theta]}$. Et donc :

$$\mathsf{F}^{\mathsf{X}_{\mathfrak{i}}}_{\theta}(\mathsf{x}) = \begin{cases} 0 & \text{si } \mathsf{x} < 0 \\ \frac{\mathsf{x}}{\theta} & \text{si } 0 \leqslant \mathsf{x} \leqslant \theta \\ 1 & \text{sinon} \end{cases}.$$

 $La \ statistique \ T(X^{(\mathfrak{n})}) = X_{(\mathfrak{n})} = \max_{1 \leqslant k \leqslant \mathfrak{n}} \{X_k\} \ a \ pour \ fonction \ de \ répartition, sous \ P_{\theta}^{(\mathfrak{n})}:$

$$F_{\theta}^{(n)}(x) = \mathbb{P}[X_{(n)} \leqslant x] = \mathbb{P}[X_1 \leqslant x, X_2 \leqslant x, \dots, X_n \leqslant x].$$

La seconde forme est plus agréable car on a une intersection d'événements indépendants. Donc :

$$F_{\theta}^{(n)}(x) = \prod_{i=1}^n \mathbb{P}[X_i \leqslant x] = \prod_{i=1}^n F_{\theta}^{X_i}(x) = \begin{cases} 0 & \text{si } x < 0 \\ \left(\frac{x}{\theta}\right)^n & \text{si } 0 \leqslant x \leqslant \theta \\ 0 & \text{sinon} \end{cases}.$$

On a alors la fonction de densité:

$$\begin{split} f_{\theta}^{X_{(n)}}(x) &= \frac{\mathrm{d}}{\mathrm{d}x} F_{\theta}^{X_{(n)}} \bigg|_{x} = \begin{cases} 0 & \text{si } x < 0 \\ \frac{nx^{n-1}}{\theta^{n}} I_{[0 \leqslant x \leqslant \theta]} & \text{si } 0 \leqslant x \leqslant \theta \\ 0 & \text{sinon} \end{cases} \\ &= \frac{nx^{n-1}}{\theta^{n}} I_{[0 \leqslant x \leqslant \theta]}. \end{split}$$

Remarque. La loi échantillonnée n'est pas toujours possible à déterminer exactement analytiquement. Dans ce cas, on donne:

- (i) les/des moments de la loi échantillonnée exacte;
- (ii) la loi échantillonnée asymptotique.

Et pour de grandes valeurs de n, la loi asymptotique donne une assez bonne approximation de la loi exacte. Remarque. Ici, les termes exact et asymptotique s'opposent : on parle d'objet exact lorsque l'objet est connu pour n fixé, et d'objet *asymptotique* lorsque l'objet n'est connu que pour $n \to +\infty$.

Exemple 1.5. Voici un cas où on ne peut exprimer de loi exacte mais où il est possible d'exprimer une loi asymptotique. Soit $X^{(n)}=(X_1,\ldots,X_n)$ où les X_i sont iid F avec la fonction F telle que $\mathrm{Var}_F(X_i)=\sigma^2<+\infty$ et donc $E_F(X_i) = \mu < +\infty$. On peut dès lors appliquer le théorème central limite (TCL) :

$$\sqrt{n}(\overline{X}^{(n)} - \mu) \xrightarrow[n \to +\infty]{\mathcal{D}} \mathcal{N}(0, \sigma^2).$$

Pour $n \gg$, on peut alors dire :

$$\overline{X}^{(n)} \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right),$$

où le symbole \approx se lit est à peu près de même loi.

On en conclut donc qu'avec $\mathfrak n$ suffisamment grand, on peut approximer $\overline X^{(\mathfrak n)}$, même sans connaitre sa loi exacte.

1.3.1 Lemme de Fisher

Définition 1.18. La variable aléatoire Q est de loi χ^2 (chi-carrée) à $k \in \mathbb{N}^*$) degrés de liberté lorsque :

$$Q \stackrel{\mathcal{D}}{=} \sum_{i=1}^k Z_i^2,$$

où les Z_i sont iid $\mathcal{N}(0,1)$ et où « $\stackrel{\mathcal{D}}{=}$ » veut dire *a la même distribution que*. Cela se note :

$$Q \sim \chi_k^2$$

Remarque. Si Q ~ χ_k^2 , alors :

$$\mathsf{f}^Q(\mathsf{x}) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} \mathsf{x}^{\frac{k}{2}-1} \exp\left(-\frac{\mathsf{x}}{2}\right) I_{[\mathsf{x}>0]},$$

où Γ est la fonction Gamma d'Euler définie par :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} \exp(-t) dt.$$

De plus, Var(Q) = 2k, et E(Q) = k.

On peut également noter que les χ^2 sont stables par la somme : si $Q_1 \sim \chi^2_{k_1}$ et $Q_2 \sim \chi^2_{k_2}$, alors :

$$Q_1 + Q_2 \sim \chi^2_{k_1 + k_2}$$
.

Lemme 1.19. Soit $W=(W_1,\ldots,W_k)$ un vecteur de variables aléatoires, où $f^W:\mathbb{R}^k\to\mathbb{R}^+$ est la fonction de densité du vecteur W. Alors :

- 1. $\mathbb{P}[W \in B] = \int_B f^W(x) dx$;
- 2. $si\ V = AW + b\ où\ A\ est\ une\ matrice\ k \times k\ inversible,\ alors$:

$$f^{V}(v) = \left| \det A^{-1} \right| f^{W} \left(A^{-1}(v - b) \right).$$

Théorème 1.20 (Lemme de Fisher). Soient X_1, \ldots, X_n iid $\mathcal{N}(\mu, \sigma^2)$ où $n \geqslant 2$. Alors :

- (i) $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$;
- (ii) $\frac{ns^2}{\sigma^2} \sim \chi^2_{n-1}$;
- (iii) $\overline{X} \sqcup s^2$.

 $\label{eq:definition} \textit{D\'{e}monstration}. \ \textit{Posons} \ Z_i \coloneqq \frac{X_i - \mu}{\sigma} \ \textit{pour} \ i \in \llbracket 1, n \rrbracket. \ \textit{Puisque les} \ X_i \ \textit{sont iid, les} \ Z_i \ \textit{le sont \'egalement (m\'{e}me transformation appliqu\'{e} \ \grave{a} \ \textit{tous les} \ X_i \ \textit{et chaque} \ Z_i \ \textit{ne fait intervenir que le} \ X_i \ \textit{correspondant)}. \ \textit{Notons que} :$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} \sum_{i=1}^n \left(\sigma Z_i + \mu \right) = \sigma \overline{Z} + \mu,$$

où \overline{Z} est la moyenne empirique des Z_i . Notons également que :

$$ns^2 = \sum_{i=1}^n (X_i - \overline{X})^2 = \sum_{i=1}^n \left((\sigma Z_i + \mu) - \left(\sigma \overline{Z} + \mu \right) \right)^2 = \sigma^2 \sum_{i=1}^n \left(Z_i - \overline{Z} \right)^2 = n\sigma^2 s_Z^2.$$

Il nous faut alors montrer que $\overline{Z} \sim \mathcal{N}(0,1)$ et $ns_Z^2 \sim \chi_{n-1}^2$, avec $\overline{Z} \sqcup s_Z^2$.

Pour cela, on sait que le vecteur $Z^{(n)} = (Z_1, \dots, Z_n)$ a pour densité :

$$f^{Z^{(n)}}(z^{(n)}) = \prod_{i=1}^{n} f^{Z_{i}}(z_{i}) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi}} \exp\left(\frac{z_{i}^{2}}{2}\right) \right) = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} \exp\left(-\sum_{i=1}^{n} \frac{z_{i}^{2}}{2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} \exp\left(-\frac{1}{2} \left\|z^{(n)}\right\|^{2}\right).$$

Soit O une matrice orthogonale de dimension $n \times n$ telle que $\forall j \in [1, n] : O_{1j} = \frac{1}{\sqrt{n}}$. On pose alors :

$$(Y_1, ..., Y_n) = Y^{(n)} = OZ^{(n)}.$$

Puisque la matrice O est orthogonale, on sait que O^{-1} existe et que $|\det O| = |\det O^{-1}| = 1$. Par le lemme 1.19, on peut dire :

$$f^{Y^{(n)}}(y^{(n)}) = \left| \det O^{-1} \right| f^{Z^{(n)}} \left(O^{-1} y^{(n)} \right) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp\left(-\frac{1}{2} \left\| O^{-1} y^{(n)} \right\| \right) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp\left(-\frac{1}{2} \left\| y^{(n)} \right\| \right).$$

On a donc $f^{Y^{(n)}} = f^{Z^{(n)}}$, ce qui implique que les Y_i sont iid $\mathcal{N}(0,1)$.

En particulier, $Y_1=(Y^{(n)})_1=(OZ^{(n)})_1=\sum_{i=1}^nO_{1i}Z_i=\sum_{i=1}^n\frac{Z_i}{\sqrt{n}}=\sqrt{n}\overline{Z}\sim \mathcal{N}(0,1).$ On peut alors en déduire que $\overline{Z}\sim \mathcal{N}(0,n^{-1}).$

Montrons alors que $ns_Z^2 \sim \chi_{n-1}^2$:

$$ns_Z^2 = \sum_{i=1}^n (Z_i - \overline{Z})^2 = \sum_{i=1}^n Z_i^2 - n(\overline{Z})^2 = \left\| Z^{(n)} \right\|^2 - (\sqrt{n}\overline{Z})^2 = \left\| Y^{(n)} \right\| - Y_1^2 = \sum_{i=2}^n Y_i^2.$$

Or, les Y_i sont $\mathcal{N}(0,1)$. On a alors bien $ns_Z^2 \sim \chi_{n-1}^2$ (car la somme sur i commence à 2, il y a donc (n-1) variables sommées).

De plus, puisque les Y_i sont indépendantes deux à deux, que \overline{Z} ne dépend que de Y_1 et que ns_Z^2 ne dépend pas de Y_1 , on sait que $\overline{Z} \sqcup ns_Z^2$.

Chapitre 2

Estimation ponctuelle

2.1 Introduction

 $Considérons \ toujours \ un \ modèle \ statistique \left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right), \mathcal{P}^{(n)}\right) \ avec \ \theta \ le \ paramètre \ vectoriel \in \Theta \subset \mathbb{R}^{k}.$

Définition 2.1. Soit $g: \Theta \to \mathbb{R}^k \mathfrak{m}$. Une statistique est appelée *estimateur de* $g(\theta)$ lorsqu'elle est à valeurs dans $g(\Theta)$.

Définition 2.2. Soit $\theta \in \Theta \subset \mathbb{R}^k$. Si $g : \Theta \to \mathbb{R}^m : \theta \mapsto (\theta_{\varphi(1),...,\theta_{\varphi(m)}})$, on appelle les paramètres $\theta_{\varphi(i)}$ les paramètres *d'intérêt*, et on appelle les autres paramètres les paramètres *de nuisance*.

Exemple 2.1. Soient X_1, \ldots, X_n iid $\mathcal{N}(\mu, \sigma^2)$. On sait $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^+_0 \subset \mathbb{R}^2$. Soit $g : \Theta \to \mathbb{R} : \theta \mapsto \mu$. μ est le paramètre d'intérêt et σ^2 est le paramètre de nuisance.

Remarque. Ne pas connaître le paramètre de nuisance induit une nuisance pour déterminer le paramètre d'intérêt.

2.2 Critères d'estimation

Remarque. Afin de définir les estimateurs convergents, il faut définir la notion de convergence, or il n'existe pas une manière canonique de la définir. Il existe donc plusieurs définitions de convergences différentes.

2.2.1 Définitions de convergence

Soient $Z^{(n)} = (Z_1, \dots, Z_n)$ définis pour $n \ge 1$ et sur $(\Omega, \mathcal{F}, \mathbb{P})$.

Définition 2.3. On dit que $Z^{(n)}$ converge presque sûrement (ou stochastiquement) vers Z lorsque :

$$\mathbb{P}\left[\left\{\omega\in\Omega\ \text{t.q.}\ \mathsf{Z}^{(\mathfrak{n})}\xrightarrow[\mathfrak{n}\to+\infty]{}\mathsf{Z}(\omega)\right\}\right]=1.$$

Cela se note:

$$Z^{(n)} \xrightarrow[n \to +\infty]{p.s.} Z.$$

Définition 2.4. On dit que $Z^{(n)}$ converge *en probabilités* vers Z lorsque :

$$\forall \varepsilon > 0 : \mathbb{P}\left[\left| \mathsf{Z}^{(\mathfrak{n})} - \mathsf{Z} \right| > \varepsilon \right] \xrightarrow[\mathfrak{n} \to +\infty]{} 0.$$

Cela se note:

$$Z^{(n)} \xrightarrow[n \to +\infty]{\mathbb{P}} Z$$
.

Définition 2.5. On dit que $Z^{(n)}$ converge *en* L_r vers Z lorsque :

$$\mathbb{E}\left[\left|\mathsf{Z}^{(n)}-\mathsf{Z}\right|\right]\xrightarrow[n\to+\infty]{}0.$$

Cela se note:

$$Z^{(n)} \xrightarrow[n \to +\infty]{L_r} Z.$$

Remarque. Lorsque r = 2, on parle de convergence en moyenne quadratique. **Définition 2.6.** On dit que $Z^{(n)}$ converge *en loi* (ou *en distribution*) vers Z lorsque :

 $\forall z \text{ point de continuité de } F^{Z} : F^{Z^{(n)}}(z) \xrightarrow[n \to +\infty]{} F^{Z}(z).$

Cela se note:

$$Z^{(n)} \xrightarrow{\mathcal{D}} Z$$
.

Remarque. Ces définitions sont faites pour des variables aléatoires réelles mais peuvent être étendues à \mathbb{R}^n en appliquant la convergence composante par composante.

Résultats élémentaires sur les convergences

Proposition 2.7. *Les convergences sont induites mutuellement par les assertions suivantes :*

1.
$$si\ Z^{(n)}\xrightarrow[n\to+\infty]{p.s.} Z$$
, $alors\ Z^{(n)}\xrightarrow[n\to+\infty]{\mathbb{P}} Z$;

2.
$$si \ Z^{(n)} \xrightarrow[n \to +\infty]{\mathbb{P}} Z$$
, $alors \ Z^{(n)} \xrightarrow[n \to +\infty]{\mathfrak{D}} Z$;

3.
$$si \ \mathsf{Z}^{(\mathfrak{n})} \xrightarrow[\mathfrak{n} \to +\infty]{\mathsf{L_r}} \mathsf{Z}, alors \ \mathsf{Z}^{(\mathfrak{n})} \xrightarrow[\mathfrak{n} \to +\infty]{\mathbb{P}} \mathsf{Z}.$$

3. $si\ Z^{(n)} \xrightarrow[n \to +\infty]{L_r} Z$, alors $Z^{(n)} \xrightarrow[n \to +\infty]{\mathbb{P}} Z$.

Théorème 2.8. Les convergences presque sûre, en probabilités, et en loi sont stables par transformations continues. **Théorème 2.9.** Notons \rightarrow une convergence soit presque sûre, soit en probabilités. Si $Z^{(n)} \rightarrow Z$, et $Y^{(n)} \rightarrow Y$, alors:

- $\begin{array}{cc} (i) & Z^{(n)} + Y^{(n)} \rightarrow Z + Y; \\ (ii) & Z^{(n)} \cdot Y^{(n)} \rightarrow Z \cdot Y; \end{array}$
- (iii) $si \mathbb{P}[Y^{(n)} = 0] = 0$, $alors \frac{Z^{(n)}}{Y^{(n)}} \to \frac{Z}{Y}$.

Lemme 2.10 (Lemme de Slutzky). Si $Z^{(n)} \xrightarrow[n \to +\infty]{\mathcal{D}} Z$, et $Y^{(n)} \xrightarrow[n \to +\infty]{\mathcal{D}} c \neq 0$, alors:

$$(i) \ Z^{(n)} + Y^{(n)} \xrightarrow[n \to +\infty]{\mathcal{D}} Z + c;$$

(ii)
$$Z^{(n)} \cdot Y^{(n)} \xrightarrow[n \to +\infty]{\mathcal{D}} Z \cdot c;$$

(iii) $\frac{Z^{(n)}}{Y^{(n)}} \xrightarrow[n \to +\infty]{\mathcal{D}} \frac{Z}{c}.$

(iii)
$$\frac{Z^{(n)}}{Y^{(n)}} \xrightarrow[n \to +\infty]{\mathcal{D}} \frac{Z}{c}$$
.

Théorème 2.11 (Loi forte des grands nombres). Soient Z_1, Z_2, \dots iid avec $\mathbb{E}\left[|Z_1|\right] < +\infty$. Alors :

$$\overline{Z}^{(n)} = \frac{1}{n} \sum_{k=1}^{n} Z_k \xrightarrow[n \to +\infty]{p.s.} \mu = \mathbb{E}[Z_1].$$

Théorème 2.12 (Loi faible des grands nombres). *Soient* Z_1, Z_2, \dots *iid avec* $\mathbb{E}[|Z_1|] < +\infty$. *Alors*:

$$\overline{Z}^{(n)} = \frac{1}{n} \sum_{k=1}^n Z_k \xrightarrow[n \to +\infty]{\mathbb{P}} \mu = \mathbb{E}[Z_1].$$

Théorème 2.13 (Théorème central limite (TCL)). *Soient* Z_1, Z_2, \dots *iid, avec* $\mathbb{E}[Z_1^2] < +\infty$. *Alors* :

$$\sqrt{n}\left(\mathsf{Z}^{(\mathfrak{n})} - \mu\right) \xrightarrow[\mathfrak{n} \to +\infty]{\mathcal{D}} W,$$

où:

$$W \sim \mathcal{N}(0, \sigma^2)$$
,

avec $\sigma^2 = \operatorname{Var}(\mathsf{Z}_1)$.

2.2.3 Estimateurs convergents

Définition 2.14. Un estimateur $T^{(n)}(X^{(n)})$ de $q(\theta)$ est dit *faiblement convergent* lorsque :

$$\forall \theta \in \Theta : T^{(n)}(X^{(n)}) \xrightarrow[n \to +\infty]{\mathbb{P}} g(\theta) \qquad \text{ sur } \mathbb{P}_{\theta}^{(n)}.$$

Définition 2.15. Un estimateur $T^{(n)}(X^{(n)})$ de $g(\theta)$ est dit *fortement convergent* lorsque :

$$\forall \theta \in \Theta : \mathsf{T}^{(n)}(\mathsf{X}^{(n)}) \xrightarrow[n \to +\infty]{p.s.} g(\theta) \qquad \text{sur } \mathbb{P}_{\theta}^{(n)}.$$

Exemple 2.2. Soient X_1, \ldots, X_n iid $\mathfrak{N}(\mu, \sigma^2)$. Prenons $g(\theta) = \mu$ et $\mathsf{T}^{(n)}(\mathsf{X}^{(n)}) = \overline{\mathsf{X}}$. On a bien :

$$\mathsf{T}^{(\mathfrak{n})}(\mathsf{X}^{(\mathfrak{n})}) = \overline{\mathsf{X}}^{(\mathfrak{n})} \xrightarrow[\mathfrak{n} \to +\infty]{p.s.} \mu = \mathbb{E}[\mathsf{X}_1] \qquad \text{ sur } \mathbb{P}^{(\mathfrak{n})}_{\mu,\sigma^2}.$$

 $T^{(n)}(X^{(n)})$ est donc un estimateur fortement convergent.

Prenons maintenant $T_2^{(n)}(X^{(n)}) = \sigma^2$. On ne peut pas appliquer la loi des grands nombres car les variables aléatoires $(X_i - \overline{X})^2$ sommées ne sont pas indépendantes. On a alors :

$$\begin{split} T_2^{(n)}(X^{(n)}) &= s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n \left((X_i - \mu)^2 + (\mu - \overline{X})^2 - 2(X_i - \overline{X})(\overline{X} - X_i) \right) \\ &= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\overline{X} - \mu)^2, \end{split}$$

où $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2\xrightarrow[n\to+\infty]{p.s.}\mathbb{E}\left[(X_i-\mu)^2\right]=\sigma^2$, par la loi forte des grands nombres, et $(\overline{X}-\mu)\xrightarrow[n\to+\infty]{p.s.}0$. Donc, par le théorème 2.9, on a $T_2^{(n)}(X^{(n)})\xrightarrow[n\to+\infty]{p.s.}\sigma^2$

Remarque. On a également :

$$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2=\frac{n}{n-1}s^2\xrightarrow[n\to+\infty]{p.s.}1\cdot\sigma^2.$$

Exemple 2.3. Soient X_1, \ldots, X_n iid $\mathrm{Unif}(0,\theta)$, avec $\theta \in \Theta \subset \mathbb{R}$. On veut estimer $g(\theta) = \theta$. L'estimateur $\mathsf{T}^{(n)}(\mathsf{X}^{(n)}) = \overline{\mathsf{X}}$ n'est pas un estimateur convergent car :

$$\overline{X} \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}_{\theta}(X_1) = \frac{\theta}{2} \neq \theta \qquad \text{sur } \mathbb{P}_{\theta}^{(n)}.$$

Par contre, si on prend $T_2^{(n)}(X^{(n)}) = 2\overline{X}$, on a :

$$2\overline{X} \xrightarrow[n \to +\infty]{p.s.} 2\mathbb{E}_{\theta}(X_1) = 2\frac{\theta}{2} = \theta \qquad \text{sur } \mathbb{P}_{\theta}^{(n)}.$$

Si on prend $T_3^{(n)}(X^{(n)}) = X_{(n)}$, à savoir l'observation maximale, on a :

$$\mathsf{F}^{\mathsf{X}_{(\pi)}}_{\theta}(\mathsf{x}) = \begin{cases} 0 & \text{si } \mathsf{x} < 0 \\ \frac{\mathsf{x}^{\pi}}{\theta^{\pi}} & \text{si } 0 \leqslant \mathsf{x} \leqslant \theta \\ 1 & \text{sinon} \end{cases}.$$

Posons donc $\varepsilon > 0$. On calcule :

$$\begin{split} \mathbb{P}_{\theta}^{(n)} \left[\left| X_{(n)} - \theta \right| > \epsilon \right] &= \mathbb{P}_{\theta}^{(n)} \left[X_{(n)} \leqslant \theta - \epsilon \right] + \mathbb{P}_{\theta}^{(n)} \left[X_{(n)} \geqslant \theta + \epsilon \right] = \mathbb{P}_{\theta}^{(n)} \left[X_{(n)} \leqslant \theta - \epsilon \right] = \mathbb{F}_{\theta}^{X_{(n)}} (\theta - \epsilon) \\ &= \begin{cases} 0 & \text{si } \epsilon \geqslant \theta \\ \left(\frac{\theta - \epsilon}{\theta} \right)^n & \text{si } 0 < \epsilon < \theta \end{cases} \longrightarrow 0 \end{split}$$

on a alors convergence en probabilité de $X_{(n)}$ vers θ . On en déduit que $T_3^{(n)}(X^{(n)})$ est un estimateur faiblement convergent.

Remarque. L'estimateur $\frac{n+1}{n}X_{(n)}$ est également faiblement convergent. Remarque. Il n'est pas toujours possible de s'en sortir en invoquant le TCL ou la loi des grands nombres pour déterminer la convergence d'un estimateur. Prenons par exemple X_1, \dots, X_n iid de densité :

$$f^{X}(x) = \frac{1}{\pi(1 + (x - \theta)^{2})}$$

On a effectivement $\mathbb{E}[X_1] = +\infty$. En réalité :

$$\neg \left(\overline{X}^{(n)} \xrightarrow[n \to +\infty]{\mathbb{P}} \theta \qquad \text{ sur } P_{\theta}^{(n)} \right),$$

mais bien:

$$\overline{X}^{(n)} \xrightarrow[n \to +\infty]{} X_1$$

2.3 **Estimateur exhaustif**

Définition 2.16. Soit $T^{(n)}(X^{(n)})$, une statistique. On la dit *exhaustive* lorsque :

$$\forall B\in \mathcal{B}(\mathbb{R}^n): \forall t\in \mathsf{T}^{(n)}(\mathbb{R}^n): \mathbb{P}_{\theta}^{(n)}\left[X^{(n)}\in \mathsf{B}|\mathsf{T}^{(n)}(X^{(n)})=t\right] \text{ ne dépend pas de θ}.$$

Remarque. Puisque l'on travaille sur des modèles paramétriques $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mathcal{P}^{(n)})$, il existe toujours un $B \in \mathcal{B}(\mathbb{R}^n)$ tel que $\mathbb{P}_{\theta}[X^{(n)} \in B]$ dépende de θ .

Remarque. On peut en comprendre qu'une statistique est exhaustive si la valeur prise par $T^{(n)}(X^{(n)})$ donne toutes les informations contenues par $X^{(n)}$ sur θ .

Exemple 2.4. La statistique identité $x^{(n)} \mapsto x^{(n)}$ est une statistique exhaustive car :

$$\mathbb{P}\left[X^{(n)} \in B | X^{(n)} = x^{(n)}\right] = \begin{cases} 1 & \text{si } x^{(n)} \in B \\ 0 & \text{sinon} \end{cases}.$$

Exemple 2.5. Prenons X_1, \ldots, X_n iid $\operatorname{Bern}(p)$ avec la statistique $T^{(n)}(X^{(n)}) = \sum_{i=1}^n X_i$. Pour évaluer la probabilité:

$$\mathbb{P}_p^{(n)}\left[X^{(n)}\in\{x^{(n)}\}|\sum_{i=1}^nX_i=t\right],$$

on est en présence d'une binomiale. Dès lors, si $\sum_{i=1}^n X_i \neq t$, alors la probabilité est nulle. Sinon, la probabilité est $\frac{1}{\binom{n}{t}}$ car il y a $\binom{n}{t}$ moyens d'avoir n observations dont t valant 1 et n-t valant 0. Ces probabilités ne dépendent donc pas de θ , la statistique $T^{(n)}(X^{(n)}) = \sum_{i=1}^n X_i$ est donc une statistique exhaustive. Remarque. Si $T^{(n)}(X^{(n)})$ est une statistique bijective, alors elle est exhaustive. Cependant, les estimateurs intéressants sont ceux qui « réduisent » l'information de manière à ce qu'elles soient plus facilement analysables.

Définition 2.17. Soit $X^{(n)} = (X_1, \dots, X_n)$. On appelle la fonction de vraissemblance de $X^{(n)}$ la fonction :

$$L_{\theta}^{(n)}: \mathbb{R}^n \to \mathbb{R}: x^{(n)} \mapsto \begin{cases} \mathbb{P}[X^{(n)} = x^{(n)}] & \text{ si } X^{(n)} \text{ est de loi discrète} \\ f_{\theta}^{X^{(n)}}(x^{(n)} & \text{ sinon} \end{cases}$$

Remarque. Dans le cas de variables X_1, \dots, X_n iid, la fonction de vraissemblance correspond toujours à un produit :

$$L_{\theta}^{(n)}(X^{(n)}) = \mathbb{P}[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n] \stackrel{\sqcup}{=} \prod_{i=1}^n \mathbb{P}[X_i = x_i].$$

Théorème 2.18 (Critère de factorisation de Neymann-Fisher). Dans un modèle paramétrique $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mathcal{P}^{(n)})$, une statistique $\mathsf{T}^{(n)}(\mathsf{X}^{(n)})$ est exhaustive **si et seulement si** pour tout $\theta \in \Theta$, la fonction de vraissemblance $\mathsf{L}^{(n)}_{\theta}(\mathsf{X}^{(n)})$ est factorisable sous la forme :

$$L_{\theta}^{(\mathfrak{n})}(X^{(\mathfrak{n})}) \left(= g_{\theta} \circ T^{(\mathfrak{n})} \right) h(x^{(\mathfrak{n})}),$$

et ce $\mathbb{P}_{\theta}^{(n)}$ -sûrement.

Remarque. Dans cette factorisation, la fonction h ne peut dépendre de θ , et seule la fonction g_{θ} peut en dépendre, mais uniquement par l'intermédiaire de $T^{(n)}$.

Exemple 2.6. En reprenant l'exemple d'au-dessus : X_1, \ldots, X_n iid $\operatorname{Bern}(p)$ et $\mathsf{T}^{(n)}(\mathsf{X}^{(n)}) = \sum_{i=1}^n X_i$, on a :

$$L_{\theta}^{(n)}(x^{(n)}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}.$$

Dès lors, en posant $g_{\theta}(x) = p^{x}(1-p)^{n-x}$ et $h(x^{(n)}) = 1$, on a bien une factorisation de Neymann-Fisher, ce qui implique que la statistique est exhaustive.

Remarque. Pour chaque statistique exhaustive, il en existe une infinité définies à bijection près. En effet, si $T(X^{(n)})$ est une statistique exhaustive et si H est une fonction bijective quelconque, alors :

$$L_{\alpha}^{(n)}(x^{(n)}) = q_{\theta}(T(x^{(n)})h(x^{(n)}) = (q_{\theta} \circ H^{-1} \circ H \circ T)(x^{(n)})h(x^{(n)}).$$

La fonction $H \circ T$ est donc également une statistique exhaustive.

Remarque. Le critère précédent peut également donner une manière de *deviner* des statistiques exhaustives. Prenons par exemple $X^{(n)} = (X_1, \dots, X_n)$ iid $\mathcal{N}(\mu, \sigma^2)$. Si $\theta = (\mu, \sigma^2) \in \Theta \subset \mathbb{R}^2$, on peut écrire :

$$\begin{split} L_{\theta}^{(n)}(x^{(n)}) &= \prod_{i=1}^n f_{\theta}^{X_i}(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\sum_{i=1}^n \frac{(x_i-\mu)^2}{2\sigma^2}\right) \\ &= \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{2}{2\sigma^2}\sum_{i=1}^n x_i^2 - \frac{n\mu}{2\sigma^2} + \frac{\mu}{\sigma^2}\sum_{i=1}^n x_i\right). \end{split}$$

Dès lors, en prenant $T(X^{(n)}) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2\right)$, on a bien une statistique exhaustive. Alors, de même, on peut dire que $\left(\frac{1}{n}\sum_{i=1}^n x_i, \frac{1}{n}\sum_{i=1}^n x_i^2\right)$ est un estimateur exhaustif (composition avec une bijection).

On peut également dire que $\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}, \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}\right)$ est un estimateur exhaustif (même argument). Or ce dernier vecteur correspond à (\overline{X}, s^2) .

En prenant cette fois $X^{(n)} = (X_1, \dots, X_n)$ iid $\mathrm{Unif}(0, \theta)$, on peut à nouveau construire des statistiques exhaustives:

$$L_{\theta}^{(\mathfrak{n})}(\boldsymbol{x}^{(\mathfrak{n})}) = \prod_{i=1}^{\mathfrak{n}} f_{\theta}^{X_i}(\boldsymbol{x}_i) = \prod_{i=1}^{\mathfrak{n}} \frac{1}{\theta} I_{[0\leqslant x_i\leqslant \theta]} = \frac{1}{\theta^{\mathfrak{n}}} I_{[0\leqslant x_1,\dots,x_{\mathfrak{n}}\leqslant \theta]}.$$

Cela garantit bien que $x^{(n)}$ est une statistique exhaustive. Mais de plus, par commutativité du produit :

$$L_{\theta}^{(n)}(x^{(n)}) = \prod_{i=1}^{n} f_{\theta}^{X_{(i)}}(x_{i}) = \frac{1}{\theta^{n}} I_{[0 \leqslant x_{(1)}, \dots, x_{(n)} \leqslant \theta)]}.$$

On a donc que la statistique d'ordre est une statistique exhaustive. Or, la condition $0 \le x_{(1)}, \dots, x_{(n)} \le \theta$ revient à la condition $0 \leqslant x_{(1)}, x_{(n)} \leqslant \theta$. La statistique $(x_{(1)}, x_{(n)})$ est donc également une statistique exhaustive. Pour aller plus loin, décomposant la fonction caractéristique $I_{[0 \leqslant x_{(1)}, x_{(n)} \leqslant \theta)]}$ en $I_{[0 \leqslant x_{(1)}]}I_{[x_{(n)} \leqslant \theta]}$, on peut poser $h(x^{(n)}) = I_{[0 \leqslant x_{(1)}]}$, ce qui amène à une nouvelle statistique exhaustive : $x_{(n)}$.

À chaque étape du raisonnement, la statistique exhaustive contient de moins en moins d'information générale mais conserve l'information sur θ qui est donc en quelque sorte contenue dans $x_{(n)}$.

2.3.1 Estimateurs non biaisés

En se situant toujours dans un modèle statistique $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mathcal{P}^{(n)})$, on veut estimer $g(\theta)$, avec $g: \Theta \to \mathbb{R}^n$

Définition 2.19. Un estimateur $T^{(n)}(X^{(n)})$ de $g(\theta)$ est dit *non biaisé* lorsque :

$$\forall \theta \in \Theta : \mathbb{E}_{\theta}[\mathsf{T}^{(\mathfrak{n})}(\mathsf{X}^{(\mathfrak{n})})] = \mathsf{g}(\theta).$$

Définition 2.20. Un estimateur $T^{(n)}(X^{(n)})$ de $g(\theta)$ est dit asymptotiquement non biaisé lorsque :

$$\forall \theta \in \Theta : \mathbb{E}_{\theta}[\mathsf{T}^{(\mathfrak{n})}(\mathsf{X}^{(\mathfrak{n})})] \xrightarrow[\mathfrak{n} \to +\infty]{} g(\theta).$$

Définition 2.21. Le *biais* d'un estimateur $T^{(n)}(X^{(n)})$ est la quantité :

$$b_{\theta}^{(\mathfrak{n})} = b^{(\mathfrak{n})}(\theta) = \mathbb{E}_{\theta}[\mathsf{T}^{(\mathfrak{n})}(\mathsf{X}^{(\mathfrak{n})})] - \mathsf{g}(\theta).$$

Remarque. On remarque donc qu'un estimateur non biaisé a un biais de 0 et qu'un estimateur asymptotiquement non biaisé a un biais qui tend vers 0 pour n tendant vers $+\infty$.

Exemple 2.7. X_1, \ldots, X_n iid $\mathrm{Unif}(0,\theta)$, avec $\theta \in \Theta = \mathbb{R}^+_0 \subset \mathbb{R}$. — Si $\mathsf{T}^{(n)}(\mathsf{X}^{(n)}) = 2\overline{\mathsf{X}}$, on a :

— Si
$$T^{(n)}(X^{(n)}) = 2X$$
, on a :

$$\mathbb{E}_{\theta}^{(n)}\left[2\overline{X}\right] = \frac{2}{n}\mathbb{E}_{\theta}^{(n)}\left[\sum_{i=1}^{n}X_{i}\right] = \frac{2}{n}\sum_{i=2}^{n}\mathbb{E}_{\theta}[X_{i}] = \frac{2}{n}\frac{n\theta}{2} = \theta.$$

— Si $T^{(n)}(X^{(n)}) = X_{(n)}$, on a:

$$\mathbb{E}_{\theta}^{(n)}[X_{(n)}] = \int_{\mathbb{R}} x f_{\theta}^{X_{(n)}}(x) \, \mathrm{d}x = \int_{0}^{\theta} x \frac{n x^{n-1}}{\theta^{n}} \, \mathrm{d}x = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n} \, \mathrm{d}x = \frac{n}{\theta^{n}} \left[\frac{x^{n+1}}{n+1} \right]_{0}^{\theta} = \frac{n}{n+1} \theta.$$

On en déduit que $\mathsf{T}^{(n)}(\mathsf{X}^{(n)})$ est biaisé car il *vise en moyenne trop à gauche* et a un biais de $-\frac{\theta}{n+1}$. Il est cependant asymptotiquement non biaisé car $\frac{n}{n+1} \xrightarrow[n \to +\infty]{} 1$.

Remarque. Si le biais d'un estimateur est négatif, alors c'est que l'estimateur sous-estime en moyenne, alors que si le biais est positif, c'est que l'estimateur surestime.

Remarque. On peut tout de même dire que l'estimateur $\frac{n+1}{n}X_{(n)}$ est non biaisé car :

$$\mathbb{E}_{\theta}^{(n)}\left[\frac{n+1}{n}X_{(n)}\right] = \frac{n+1}{n}\mathbb{E}_{\theta}^{(n)}[X_{(n)}] = \frac{n+1}{n}\frac{n}{n+1}\theta = \theta.$$

- $$\begin{split} &\textit{Exemple 2.8. Soient } X_1, \dots, X_n \; \text{iid} \; \mathbb{N}(\mu, \sigma^2) \text{, avec} \; \theta = (\mu, \sigma^2). \\ &- \; \text{pour tout} \; \theta \in \Theta \text{, on a} : \mathbb{E}_{\theta}[\overline{X}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i) = \frac{n\mu}{n} = \mu. \; \overline{X} \; \text{est donc un estimateur sans biais de } \mu; \\ &- \; \mathbb{E}_{\theta}[s^2] = \mathbb{E}_{\theta}[X_1^2] \mathbb{E}_{\theta}[\overline{X}^2]. \; \text{On remarque que pour toute variable aléatoire Z, on a} : \end{split}$$

$$\operatorname{Var}(\mathsf{Z}) = \mathbb{E}[\mathsf{Z}^2] - \mathbb{E}[\mathsf{Z}]^2 \qquad \Longleftrightarrow \qquad \mathbb{E}[\mathsf{Z}^2] = \operatorname{Var}(\mathsf{Z}) + \mathbb{E}[\mathsf{Z}]^2$$

On peut donc remplacer dans la formule de l'espérance de s², et on obtient :

$$\mathbb{E}_{\theta}[s^2] = \operatorname{Var}_{\theta}(X_1) + \mathbb{E}(X_1)^2 - \operatorname{Var}_{\theta}(\overline{X}) - \mathbb{E}(\overline{X})^2.$$

Or on sait $\mathbb{E}_{\theta}(X_1) = \mathbb{E}_{\theta}(\overline{X}) = \mu$. On a donc :

$$\mathbb{E}_{\theta}[s^2] = \operatorname{Var}_{\theta}(X_1) - \operatorname{Var}_{\theta}(\overline{X}) = \sigma^2 - \frac{1}{n^2} \operatorname{Var}_{\theta}\left(\sum_{i=1}^n X_i\right) = \sigma^2 - \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}_{\theta}(X_i) = \sigma^2 - \frac{n\sigma^2}{n^2} = \frac{n-1}{n}\sigma^2.$$

On en conclut que l'estimateur s^2 est biaisé pour σ^2 et de biais $\frac{-\sigma^2}{n}\xrightarrow[n\to+\infty]{}0.$

Notons alors $S^2 \coloneqq \frac{n}{n-1} s^2$. On a que $\mathbb{E}_{\theta}[S^2] = \sigma^2$, et donc S^2 est un estimateur sans biais. *Remarque.* Le non biais est une propriété fragile. Soient X_1, \ldots, X_n iid $\mathcal{N}(\mu, \sigma^2)$ où l'on veut estimer $g(\theta) = \sigma$ (et pas σ^2).

Que vaut $\mathbb{E}_{\theta}[S]$? On sait $\operatorname{Var}_{\theta}(S) = \mathbb{E}_{\theta}[S^2] - \mathbb{E}_{\theta}[S]^2 = \sigma^2 - \mathbb{E}_{\theta}[S]^2$. Or $\operatorname{Var}_{\theta}(S) \gneq 0$, et donc $\sigma^2 \nsupseteq \mathbb{E}_{\theta}[S]^2$. On

Remarque. De plus, il n'existe pas toujours d'estimateur sans biais. Soit $X_1 \sim \operatorname{Bern}(\mathfrak{p})$. On veut estimer $g(p) = p^2 \in [0, 1]$. L'estimateur $T(X^{(n)})$ est entièrement déterminé par T(0) et T(1). Imposons donc pour tout $\mathfrak{p} \in [0,1] : \mathbb{E}_{\theta}[\mathsf{T}(\mathsf{X}_1)] = \mathfrak{p}^2$. On a donc :

$$\mathfrak{p}^2 = \mathbb{E}_{\theta}[\mathsf{T}(\mathsf{X}_1)] = \mathsf{T}(0)\mathbb{P}[\mathsf{X}_1 = 0] + \mathsf{T}(1)\mathbb{P}[\mathsf{X}_1 = 1] = \mathsf{T}(0)(1-\mathfrak{p}) + \mathsf{T}(1)\mathfrak{p}.$$

En réarrangeant cette équation du second degré, on obtient :

$$\forall p \in [0,1] : p^2 + (T(0) - T(1))p - T(0) = 0.$$

Or une telle équation ne peut avoir que 2 racines tout au plus, et ici, une infinité non-dénombrable est requise. Il n'existe donc pas de telle fonction T, et donc par extension, il n'existe pas d'estimateur sans biais de p^2 .