## Strongly interacting dark matter with real gauge group representations

Joachim Pomper

21.06.2022





Strongly interacting dark matter (SIDM)

Dark matter problems

Properties of SIDM

QCD-like Lagrangian with real representations
Weyl, Dirac and Majorana fermions
Real gauge group representations
Symmetries
Particle content

Outlook - Bringing it together

Low energy effective field theory (EFT)

Extensions

Strongly interacting dark matter (SIDM)

## Let's start with the usual story

There is a non-negligible non-visible matter component in the universe



No experimentally verified description on the fundamental level so far

#### Dark matter evidence

Evidence for dark matter on various scales

- Galaxy scale: Rotational curves
- Galaxy cluster scale: Visible mass to little to hold together coma cluster
- Cosmological scales: CMB anisotropies

More evidence from Gravitational Lensing, Numerical Simulations, BBN, Galaxy correlation functions, ...

#### Evidence from rotational curves

Visible matter suggests  $v \approx \frac{1}{r}$ 

We observe that  $v \approx \text{const.}$ 



## Problems of Cold Dark Matter (CDM)

## Missing satellite problem: Simulations predict significantly more DM-subhalos than the number of satellite galaxies of the Milky-Way we observe.

# • Too big to fail problem: Simulations predict too much mass in the central region of the halo. The simulation results are in conflict with the number of observed satellites of Milky-Way and Andromeda.

# Cusp vs. Core problem: Simulations suggest cuspy density profiles for DM halos, while observations point towards more cored profiles.

## Cusp vs. Core problem

#### Data from the DDO 154 dwarf galaxy



Figure: Taken from the talk on Dark QCD of [Murayama (2022)]

## Self interacting dark matter

Introduction of self interactions within the dark sector may solve these problems as shown by N-body simulations. [arXiv:astro-ph/9909386v2]

Required self interaction cross section:

$$\frac{\sigma}{m}=0.1-1.0~\frac{\mathrm{cm}^2}{g}$$



#### Constraints:

• Bullet cluster constraint:  $\frac{\sigma}{m} \lesssim 0.7~\frac{\rm cm^2}{g}~_{\rm [arXiv:astro-ph/0704.0261]}$ 



## What is a strongly interacting gauge theory?

We look at gauge theories with a non-abelian gauge group and fermionic matter such that:

- The theory is asymptotically free
  - ⇒ Gaussian UV fixed point
- The theory has a rich infrared phenomenology
  - $\Rightarrow$  No IR fixed point

We expect that at low temperatures such theories are in a chirally broken phase and elementary degrees of freedom confine into bound states. **Above**: Asymptotic freedom lost / no trivial UV fixed point



Below: Chiral symmetry breaking / no IR fixed point

## Strongly interacting dark matter

- Cold dark matter from bound states of a QCD like dark sector
- Larger  $\frac{\sigma}{m}$  due to nature of underlying strongly interacting force
- Might provide velocity dependent  $\frac{\sigma}{m}$
- Effective field theory description of IR and dimensional suppression of interactions
- UV symmetries may constrain effective field theory description, leading to sufficient stability of DM

Dark matter depletes via a  $3 \rightarrow 2$  cannibalization process



- Problem: If DM is not coupled to SM, dark sector heats up
- Opportunity: Additional motivation, besides detectability, for SM coupling

Dark sector dumps heat into SM via  $2 \leftrightarrow 2$  processes



- Implementation via a dark photon e.g.  $U_D(1)$  gauge symmetry and kinetic mixing
- Implementation of 4-point vertex via Higgs-portal

## Summary - Strongly interacting DM

- CDM as bound states of strongly interacting sector (Theory below conformal window)
- Natural implementation of sufficiently large  $\frac{\sigma}{m}$  with potential velocity dependence
- SIMP mechanism gives potential freeze out mechanism and additional motivation for SM coupling
- Rich (IR) phenomenology and spectrum



#### **Left-handed Weyl**

$$\psi_I \in W$$

Lorentz transformation  $\Lambda$ :

$$\psi'_L(x') = M[\Lambda]\psi_L(\Lambda x')$$

#### Right-handed Weyl

$$\psi_R \in \overline{W}^*$$

Lorentz transformation  $\Lambda$ :

$$\psi_R'(x') = (M[\Lambda]^{-1})^{\dagger} \psi_R(\Lambda x')$$

$$\tilde{C}: W \to \overline{W}^*$$

$$\psi_L \mapsto -E\psi_L^*$$

$$E = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

## Weyl: Spin invariant "scalar" products

Product on W:

$$(\psi_L,\phi_L)_W := \psi_L^\top E \phi_L$$

Product on  $\overline{W}^*$ :

$$(\psi_R, \phi_R)_{\overline{W}^*} := \psi_R^\top E^{-1} \phi_R$$

#### What is important?

- i) Invariant under Lorentz transformation
- ii) Linear in both components
- iii) Symmetric for anticommuting spinors
- iv) Non degenerate products

If we want parity as a good symmetry we work with Dirac fermions

**Dirac bi-spinor** 
$$Q \in V_D := W \oplus \overline{W}^*$$

$$Q = \left(\begin{array}{c} Q_L \\ Q_R \end{array}\right)$$

Lorentz transformation  $\Lambda$ :

$$\left(\begin{array}{c}Q_L\\Q_R\end{array}\right)\mapsto \left(\begin{array}{cc}M[\Lambda]&0\\0&(M[\Lambda]^{-1})^{\dagger}\end{array}\right)\left(\begin{array}{c}Q_L\\Q_R\end{array}\right)$$

## Dirac: Spin invariant "scalar" products

#### **Dirac product**

$$\langle Q,P\rangle_D:=\left(\tilde{C}^{-1}(Q_R),P_L\right)_W+\left(\tilde{C}(Q_L),P_R\right)_{\overline{W}^*}=:\overline{Q}P$$

- Anti-linear in first component
- Parity invariant

#### Majorana product

$$(Q,P)_M:=(Q_L,P_L)_W+(Q_R,P_R)_{\overline{W}^*}$$

- Linear in both components
- Not parity invariant

## Charge conjugation for Dirac fermions

#### Charge conjugation $C: V_D \rightarrow V_D$

$$\begin{pmatrix} Q_L \\ Q_R \end{pmatrix} \xrightarrow{\text{anti-linear}} \eta_C \begin{pmatrix} \tilde{C}^{-1}(Q_R) \\ \tilde{C}(Q_L) \end{pmatrix} =: Q^C$$

- Interchanges left- and right-handed information
- Self-inverse i.e.  $C^2 = 1$
- Compatible with Lorentz group structure

#### **C-Eigenstates**

$$C(M) = +M$$

## Decomposition

$$Q = M[\psi_L] + i M[\phi_L]$$

#### **Parametrization**

$$M[\psi_L] = \left( egin{array}{c} \psi_L \ ilde{\mathcal{C}}(\psi_L) \end{array} 
ight)$$

Follows solely from the properties of Charge Conjugation!

## (Pseudo) Real representations

A representation  $U: G \to Aut(V)$  is called **(pseudo) real** if there exists an **anti-linear** map  $J: V \to V$  such that

#### "Self" - Inversion

$$J^2 = \left\{ egin{array}{ll} +1 & {
m real} \ -1 & {
m pseudo-real} \end{array} 
ight.$$

#### **Equivalence of conjugate representations**

$$J\ U\ J^{-1}=U^*$$

### Structural consequences

If the gauge-group representation is (pseudo-)real there exist a gauge-invariant bilinear product  $(.,.)_G:V_C\times V_C\to\mathbb{C}$  on color-space.

If the gauge-group representation is  $\operatorname{real}$  the maps J and C have the  $\operatorname{same}$  properties.

## Extending the representation by the gauge-group



## The Lagrangian



#### Covariant derivative

$$D_{\mu}(Q) := \partial_{\mu}Q - g \ U_*[A_{\mu}](Q)$$

 $U_*[A_\mu]$  ... induced Lie-algebra rep of the gauge group G

**Example:**  $\exp(-iA^{\alpha}\tau_{\alpha}) \in G$ 

Fundamental :  $U_*[A_\mu](Q) = -\mathrm{i} A_\mu^lpha au_lpha Q$ 

(2,0)-Tensor :  $U_*[A_\mu](Q) = -\mathrm{i} A^lpha_\mu \left( oldsymbol{ au}_lpha Q + Q oldsymbol{ au}_lpha^ op 
ight)$ 

Adjoint :  $U_*[A_\mu](Q) = -\mathrm{i}A^\alpha_\mu \left( au_\alpha Q - Q au_\alpha \right)$ 

## Rewriting the Lagrangian - Nambu-Gorkov formalism

Decompose  $N_F$  Dirac fermions into  $N_f = 2N_F$  Majorana fermions, parametrized by  $N_f$  Weyl Femions.

 $U(2N_F)$  - Flavor symmetry Pauli - Gürsey - symmetry  $\mathcal{L}_{M} = \mathrm{i} \sum_{k=1}^{2N_{F}} \left( \tilde{C} \left( \psi_{L}^{(k)} \right), \ \overline{\sigma}^{\mu} \ D_{\mu} \left( \psi_{L}^{(k)} \right) \right)$  $- \sum_{k=1}^{2N_F} m^{(k)} \left( \left( \psi_L^{(k)}, \psi_L^{(k)} \right) - \left( \psi_L^{(k)}, \psi_L^{(k)} \right)^* \right)$ SO - Flavor symmetry

#### **Chiral condensate (Order parameter)**

$$\Sigma := \sum_{k=1}^{2N_F} \overline{Q^{(k)}} Q^{(k)} = \sum_{k=1}^{2N_F} \left( \psi_L^{(k)}, \psi_L^{(k)} \right) - \left( \psi_L^{(k)}, \psi_L^{(k)} \right)^*$$

#### **Breaking pattern**

$$SU(2N_F)$$
 – Fund.  $\xrightarrow{\Sigma \neq 0}$   $SO(2N_F)$  – Fund.

## Breaking pattern



## Comparison of 2-flavor theories



## Spatial reflection parity

#### Parity operation

$$\hat{oldsymbol{P}}Q^{(k)}(ec{x},t)\hat{oldsymbol{P}}^{\dagger}=\eta_{P}\gamma_{0}Q^{(k)}(-ec{x},t)$$

#### Convenient choice of $\eta_P$

• QCD choice :  $\eta_P = 1$ 

 $\Rightarrow$  Not all Goldstones are psedoscalars

• D-Parity :  $\eta_P = i$ 

 $\Rightarrow$  all Goldstones are psedoscalars

## C-parity

#### C-Symmetry for Weyl flavors

$$\mathcal{C}\left(\begin{array}{c} \psi^{2k-1} \\ \psi^{2k} \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} \psi^{2k-1} \\ \psi^{2k} \end{array}\right)$$

- Every Dirac flavor (k) gives rise to two Weyl flavors of opposite C-Parity.
- Independent of  $\eta_C$  definition.
- Extends SO(2)-Flavor symmetry to O(2) symmetry.
- Particles are their own anti-particles.



 $\Rightarrow N_f(N_f+1)$  independent scalar operators.

### Quantum numbers of Goldstone modes

Goldstone modes are characterized by the quantum numbers of conserved current components  $j_{\alpha}^{0}$  corresponding to broken generators  $\tau_{\alpha}$ .

$$0 \neq \langle 0 | j_A^0 | GB \rangle$$

$$= \langle 0 | \hat{\mathbf{P}}^{\dagger} \hat{\mathbf{P}} j_A^0 \hat{\mathbf{P}}^{\dagger} \hat{\mathbf{P}} | GB \rangle$$

$$= \eta_P(J) \eta_P(GB) \langle 0 | j_A^0 | GB \rangle$$

$$\eta_P(J) = 1 \qquad \Rightarrow \qquad \eta_P(GB) = 1$$
 $\eta_P(J) = -1 \qquad \Rightarrow \qquad \eta_P(GB) = -1$ 

# Goldstones in Sp(4) antisymmetric 2-tensor gauge theory

| Name      | $T_{kj}(\chi^{(k)},\chi^{(l)}) + T_{kj}^*(\chi^{(k)},\chi^{(l)})^*$         | $J^P$ | J <sup>D</sup> |
|-----------|-----------------------------------------------------------------------------|-------|----------------|
| $\pi_1$   | $\overline{u}\gamma_5 d$                                                    | 0-    | 0-             |
| $\pi_2$   | $\overline{d}\gamma_5 u$                                                    | 0-    | 0-             |
| $\pi_3$   | $rac{1}{\sqrt{2}}\left(\overline{u}\gamma_5u-\overline{d}\gamma_5d\right)$ | 0-    | 0-             |
| $\pi_{4}$ | $\textit{d}^{\mathcal{C}\dagger}\gamma_5\textit{u}^*$                       | 0+    | 0-             |
| :         | ÷                                                                           | :     | :              |
| $\pi_9$   | $\mathit{d^{\mathcal{C}^{\top}}}\gamma_{5}\mathit{u}$                       | 0+    | 0-             |

## Goldstones in Sp(4) antisymmetric 2-tensor gauge theory



# Summary - QCD-like Lagrangian with real representations

- For real representations of the gauge group the representation-theoretical features of the ungauged fermions are mostly preserved
- Discussed the breaking patterns occurring in this class of theories
- Discussed C and P/D-parity in this class of theories
- Discussed construction and identification of interpolation operators of the Goldstone bosons



#### Pion field

$$\Sigma = \mathrm{e}^{\mathrm{i}\pi/f_\pi} \ \Sigma_0 \ \mathrm{e}^{\mathrm{i}\pi^\top/f_\pi}$$

$$\pi = \sum_{broken} \pi_i \, T_i$$

 $f_{\pi}$  . . . Pion decay constant



Figure: Taken from [arXiv:hep-ph/1804.05664]

 $\Sigma$  transforms in the symmetric (2,0)-Tensor repr. of  $SU(2N_F)$ 

$$\Sigma \mapsto U\Sigma U^{\top}$$

#### Chiral lagrangian

#### **Chiral Lagrangian**

$$\mathcal{L} = rac{f_{\pi}^2}{4} \mathrm{Tr} \left[ \partial_{\mu} \Sigma \partial^{\mu} \Sigma 
ight] - rac{\mu^3}{2} \mathrm{Tr} \left[ \mathcal{M} \Sigma + \textit{h.c.} 
ight] + \ldots$$

- Incorporates all UV-symmetries
- Organisation via Weinberg power-counting theorem
- Vacuum alignment  $\Sigma_0$  minimizes static part

$$\min_{\pi=0} \left( \operatorname{Tr} \left[ M \Sigma + h.c. \right] \right) = M \operatorname{Tr} \left[ M \Sigma_0 + h.c. \right]$$

### Chiral perturbation theory

Expand exponential function and organise terms in powers of momenta  $\mathcal{O}\left(p^{k}\right)$ .

**Example**: Expansion including  $\mathcal{O}(p^2)$  of kinetic term

$$\mathcal{L}_{\textit{Kin}} = \frac{1}{2} \sum_{k} \partial_{\mu} \pi_{k} \partial^{\mu} \pi_{k}$$

$$+ \frac{1}{2} \sum_{k,n} C_{kn}^{(2,1)} \pi_{n}^{2} (\partial_{\mu} \pi_{k})^{2} + C_{kn}^{(2,2)} \pi_{n} \partial_{\mu} \pi_{k} \pi_{k} \partial_{\mu} \pi_{n}$$

$$+ \mathcal{O}(\frac{\pi^{6}}{f_{\pi}^{4}})$$

### Wess-Zumino-Witten (WZW) Term

Additional topological term that **must** be included in the Chiral Lagrangian in order to incorporate effects of the **axial anomaly**.

#### WZW term in first order Chiral-PT.

$$\mathcal{L}_{WZW} \propto rac{ extstyle N_C}{f_\pi^5} \epsilon^{\mu,
u
ho\sigma} \operatorname{Tr}\{\pi \,\,\partial_\mu\pi \,\,\partial_
u\pi \,\,\partial_
ho\pi \,\,\partial_\sigma\pi \,\,\} + \mathcal{O}\left(rac{\pi^6}{f_\pi^6}
ight)$$

- Incorporates 3 → 2 processes for SIMP mechanism.
- Non vanishing if  $N_f \ge 3$  since [arXiv:hep-ph/1411.3727]

$$\pi_5(SU(N_f)/SO(N_f)) = \mathbb{Z}$$
 if  $N_f \ge 3$ 

#### $U_D(1)$ - Dark photon

Couple the dark sector to the standard model via a dark Photon:

- Charge assignment of Weyl fermions under  $U_D(1)$  restricted by anomaly cancellation
- Use Brout-Englert-Higgs mechanism to make dark photon massive
- Couple to standard model photon via kinetic mixing

$$\mathcal{L}\supsetrac{\epsilon}{2\mathrm{cos}( heta_W)}F'_{\mu
u}F^{\mu
u}$$

#### Including further parts of the particle spectrum

- Will include ρ-mesons as massive vector mediators via a gauged copy of the flavor symmetry
  - Covariant derivatives in Chiral Lagrangian
  - Add terms to make WZW term gauge invariant
- What about "Baryons"?
  - Can we build interpolating operators out of 3 or more fields (find gauge singlets)?
  - Are they stable? (Is there a baryon number symmetry?)
  - Are they, besides stability, relevant for IR dynamics?



#### Representations over $\mathbb C$



#### Representation theory of Charge Conjugation

