Predicting Class (State) of a Person

Anil Kumar J 27 June 2018

Overview

As part of this project we trained models using various Machine Learning Algorithms to use quantified self movement variables as predictors to get the state of a person. Compared these models and Random Forest seemed to give the best Accuracy. Used Random Forest Model to predict on test data.

Simulations

Loading the datasets

dim(training data)

```
training_data <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
,na.strings=c("","NA"))
testing_data<-read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv")</pre>
```

Basic Exploratory Data Analyses

```
## [1] 19622 160
```

There seem to be various columns that can be used as predictors but from the notes mentioned it is better to use columns that have on of these terms - belt,arm,forearm,dumbbell in the name and also avoiding various variable that have lot of NA's (non measured values) should help us decrease the variables (features) count.

```
na_stats<-lapply(training_data, function(x) sum(is.na(x)))
na_stats<-do.call(rbind.data.frame, na_stats)
colnames(na_stats)<-c("no_of_nas")
na_stats <- which(na_stats$no_of_nas>15000)
col_rm<-c(na_stats)
col_av<-c(grep(("belt|arm|forearm|dumbbell"),names(training_data)))
col_consi<-setdiff(col_av, col_rm)</pre>
```

Building Models

Using the columns which we had considered to be important, we predict the classe variable using various Algorithms like Random Forest, Gradient Dissent, Linear Discrimante Analysis, Navie Bayes, Trees.

```
library(caret)
library(parallel)
library(doParallel)
cluster <- makeCluster(detectCores() - 1)
registerDoParallel(cluster)
fitControl <- trainControl(method = "cv",number = 5,allowParallel = TRUE)
model_fit_rf <- train(training_data[,c(col_consi)],as.factor(training_data[,c("classe")]), metho
d="rf",trControl = fitControl)
model_fit_gbm <- train(training_data[,c(col_consi)],as.factor(training_data[,c("classe")]), metho
od="gbm",trControl = fitControl)</pre>
```

```
## Iter
           TrainDeviance
                             ValidDeviance
                                               StepSize
                                                           Improve
##
         1
                   1.6094
                                                 0.1000
                                                            0.2331
                                        nan
##
         2
                   1.4604
                                        nan
                                                 0.1000
                                                            0.1606
         3
##
                   1.3586
                                        nan
                                                 0.1000
                                                            0.1277
##
         4
                   1.2789
                                                 0.1000
                                                            0.1101
                                        nan
##
         5
                   1.2098
                                                 0.1000
                                                            0.0955
                                        nan
##
         6
                   1.1500
                                                 0.1000
                                                            0.0685
                                        nan
##
         7
                   1.1065
                                                 0.1000
                                                            0.0638
                                        nan
##
         8
                   1.0665
                                                 0.1000
                                                            0.0568
                                        nan
##
         9
                   1.0293
                                                 0.1000
                                                            0.0630
                                        nan
##
        10
                   0.9913
                                                 0.1000
                                                            0.0446
                                        nan
##
        20
                   0.7626
                                                 0.1000
                                                            0.0268
                                        nan
##
        40
                   0.5318
                                                 0.1000
                                                            0.0108
                                        nan
##
        60
                   0.4112
                                        nan
                                                 0.1000
                                                            0.0093
                                                            0.0046
##
        80
                   0.3291
                                                 0.1000
                                        nan
##
      100
                   0.2736
                                                 0.1000
                                                            0.0052
                                        nan
##
      120
                   0.2301
                                                 0.1000
                                                            0.0022
                                        nan
##
      140
                   0.1968
                                                 0.1000
                                                            0.0016
                                        nan
##
      150
                   0.1828
                                                 0.1000
                                                            0.0016
                                        nan
```

```
model_fit_lda <- train(training_data[,c(col_consi)],as.factor(training_data[,c("classe")]), meth
od="lda",trControl = fitControl)
model_fit_nb <- train(training_data[,c(col_consi)],as.factor(training_data[,c("classe")]), metho
d="nb",trControl = fitControl)
model_fit_rpart<- train(training_data[,c(col_consi)],as.factor(training_data[,c("classe")]), met
hod="rpart",trControl = fitControl)
stopCluster(cluster)
registerDoSEQ()</pre>
```

From stats in Appendix it can be seen that Random Forest has the best Accuracy.

Predicting on test data

Using Random FOrest to predict Classe for test data.

```
predict(model_fit_rf,testing_data)
```

```
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```

Appendix

Random Forest Stats

```
confusionMatrix.train(model_fit_rf)
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
  (entries are percentual average cell counts across resamples)
##
##
##
            Reference
## Prediction
                Α
                     В
                          C
                                    Ε
                               D
##
           A 28.4 0.1 0.0 0.0
##
             0.0 19.2 0.1 0.0 0.0
              0.0 0.0 17.3 0.3 0.0
##
##
             0.0 0.0 0.0 16.1 0.0
##
           E 0.0 0.0 0.0 0.0 18.3
##
   Accuracy (average): 0.9943
```

Gradient Dissent Stats

```
confusionMatrix.train(model_fit_gbm)
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
  (entries are percentual average cell counts across resamples)
##
##
##
            Reference
## Prediction
                Α
                          C
##
           A 28.0 0.6 0.0 0.0 0.0
           B 0.3 18.3 0.5
##
                            0.1 0.2
##
           C 0.1 0.4 16.6 0.6 0.2
##
           D 0.1 0.0 0.2 15.6 0.2
##
           E 0.0 0.0 0.0 0.1 17.7
##
##
   Accuracy (average): 0.9623
```

Linear Discrimnate Analysis

```
confusionMatrix.train(model_fit_lda)
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
  (entries are percentual average cell counts across resamples)
##
##
             Reference
## Prediction
                Α
                     В
                          C
                                    Ε
                               D
##
            A 23.2 3.0 1.7 0.9
##
              0.6 12.4 1.7
                             0.7
              2.3 2.3 11.4 1.9 1.7
##
              2.2 0.8 2.1 12.2 1.8
##
            E 0.1 0.9
                        0.4 0.7 11.0
##
##
##
   Accuracy (average): 0.7027
```

Navie Bayes

```
confusionMatrix.train(model_fit_nb)
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
  (entries are percentual average cell counts across resamples)
##
##
##
             Reference
## Prediction
                Α
                          C
                                    Ε
                     В
                               D
##
            A 24.5 3.5 3.4 2.8 0.9
              0.7 12.9 1.2
                             0.0
##
##
              1.2 1.8 12.1
                             2.2 0.7
##
              1.9
                   1.0
                        0.7 10.6 0.6
##
              0.2 0.2 0.1 0.8 14.4
##
##
   Accuracy (average): 0.7449
```

Predicting with Trees

```
confusionMatrix.train(model_fit_rpart)
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
##
             Reference
## Prediction
                Α
                          C
                   8.2
                        8.1 7.3
##
            A 25.8
                                  2.6
##
              0.5
                   6.5
                        0.6
                             2.9
##
           C
              1.8
                   3.7
                        8.3
                             4.6
                                  3.9
              0.2 0.9
                        0.5 1.5 1.0
##
           D
##
            Ε
              0.2 0.0 0.0 0.0
                                  8.4
##
   Accuracy (average): 0.5044
##
```