

VIGILADA MINEDUCACIÓN - SNIES 1732

Solución de ecuaciones No lineales

$$h(0) = 0$$

 $h(2) = 1,81859$

$$h(0) = 0$$

 $h(2) = 1,81859$

$$h(0) = 0$$

 $h(2) = 1,81859$

$$h(0) = 0$$

 $h(2) = 1,81859$

$$h(0) = 0$$

 $h(2) = 1,81859$

$$h(0) = 0$$

 $h(2) = 1,81859$

iteración	punto inicial (xl)	punto medio (xr)	punto final (xu)	f(xl)	f(xr)	f(xu)	ea
1	0	1	2	0,00000	0,84147	1,81859	
2	1	1,5	2	0,84147	1,49624	1,81859	33,3333333
3	1	1,25	1,5	0,84147	1,18623	1,49624	20
4	1	1,125	1,25	0,84147	1,01505	1,1862 3	11,1111111
5	1	1,0625	1,125	0,84147	0,92817	1,01505	5,88235294
6	1,0625	1,09375	1,125	0,92817	0,97164	1,01505	2,85714286
7	1,09375	1,109375	1,125	0,97164	0,99336	1,01505	1,4084507
8	1,109375	1,1171875	1,125	0,99336	1,00421	1,01505	0,6993007
9	1,109375	1,11328125	1,1171875	0,99336	0,99878	1,00421	0,35087719

Ejemplo:

Utilice el método de la bisección para determinar el coeficiente de arrastre c necesario para que un paracaidista de masa m = 68.1 kg tenga una velocidad de 40 m/s después de una caída libre de t = 10 s. *Nota*: La aceleración de la gravedad es 9.8 m/s^2 .

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $V = 40$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Ejemplo:

Utilice el método de la bisección para determinar el coeficiente de arrastre c necesario para que un paracaidista de masa m = 68.1 kg tenga una velocidad de 40 m/s después de una caída libre de t = 10 s. *Nota*: La aceleración de la gravedad es 9.8 m/s^2 .

$$9 = 9.8$$

 $m = 68.1$
 $t = 10$
 $v = 40$

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Entre 14 y 16

Estimación del error

$$\varepsilon_a = \frac{x_r^{\text{nuevo}} - x_r^{\text{anterior}}}{x_r^{\text{nuevo}}} 100\%$$

Continúe el ejercicio del paracaidista hasta que el error sea inferior que el criterio de terminación ε_s = 0,5%

Estimación del error

$$\varepsilon_a = \frac{x_r^{\text{nuevo}} - x_r^{\text{anterior}}}{x_r^{\text{nuevo}}} 100\%$$

Continúe el ejercicio del paracaidista hasta que el error sea inferior que el criterio de terminación ε_s = 0,5%

Iteración	\mathbf{x}_{l}	Χυ	\mathbf{x}_r	ε _a (%)
1	12	16	14	
2	14	16	15	6.667
3	14	15	14.5	3.448
4	14.5	15	14.75	1.695
5	14.75	15	14.875	0.840
6	14.75	14.875	14.8125	0.422

Ejercicio

Determine las raíces reales de $f(x) = -0.5x^2 + 2.5x + 4.5$:

- a) Gráficamente
- b) Empleando la fórmula cuadrática
- C) Usando el método de bisección con tres iteraciones para determinar la raíz más grande. Emplee como valores iniciales $x_l = 5$ y $x_u = 10$. Calcule el error estimado ε_a y el error verdadero ε_t para cada iteración.

Ejercicio

Determine las raíces reales de $f(x) = -0.5x^2 + 2.5x + 4.5$:

a) Gráficamente

Ejercicio

Determine las raíces reales de $f(x) = -0.5x^2 + 2.5x + 4.5$:

b) Empleando la fórmula cuadrática

$$X_{1,2} = -b \pm \sqrt{b^2 - 49c}$$

$$2a$$

$$X_{1,12} = -2.5 \pm \sqrt{(2.5)^2 - 4(-0.5)(4.5)}$$

$$2(-0.5)$$

$$X_i = -1.405$$

 $X_2 = 6.405$

Ejercicio EN CASA

Determine las raíces reales de $f(x) = -0.5x^2 + 2.5x + 4.5$:

C) Usando el método de bisección con tres iteraciones para determinar la raíz más grande. Emplee como valores iniciales $x_l = 5$ y $x_u = 10$. Calcule el error estimado ε_a y el error verdadero ε_t para cada iteración.

Referencia bibliográfica

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja