Improved Algorithms for Linear Stochastic Bandits (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Charlie Godfrey, Oliver Knitter, Kapila Kottegoda, Yunpeng Shi

January 20, 2020

• At each time $t \in \mathbb{N}$, there's a **decision set** $D_t \subset \mathbb{R}^d$, and

- At each time $t \in \mathbb{N}$, there's a **decision set** $D_t \subset \mathbb{R}^d$, and
- player must choose an **action** $X_t \in D_t$.

- At each time $t \in \mathbb{N}$, there's a **decision set** $D_t \subset \mathbb{R}^d$, and
- player must choose an **action** $X_t \in D_t$.
- The reward is

$$Y_t = \langle X_t, \theta_* \rangle + \eta_t \in \mathbb{R}$$

- At each time $t \in \mathbb{N}$, there's a **decision set** $D_t \subset \mathbb{R}^d$, and
- player must choose an **action** $X_t \in D_t$.
- The reward is

$$Y_t = \langle X_t, \theta_* \rangle + \eta_t \in \mathbb{R}$$

• Here η_t is a 1 sub-Gaussian random variable (noise) such that

$$E[\eta_t | X_{1:t}, \eta_{1:t-1}] = 0$$

- At each time $t \in \mathbb{N}$, there's a **decision set** $D_t \subset \mathbb{R}^d$, and
- player must choose an **action** $X_t \in D_t$.
- The reward is

$$Y_t = \langle X_t, \theta_* \rangle + \eta_t \in \mathbb{R}$$

• Here η_t is a 1 sub-Gaussian random variable (noise) such that

$$\mathrm{E}[\eta_t|X_{1:t},\eta_{1:t-1}]=0$$

ullet $heta_*$ is an unknown vector in \mathbb{R}^d , which the player needs to estimate.

Reward and Regret

reward at time t	$E[\sum_{s \le t} Y_s] = \sum_{s \le t} \langle X_s, \theta_* \rangle$
optimal strategy	$x_t^* = \arg\max_{x \in D_t} \langle x, \theta_* \rangle$
$\label{eq:maxpossible} \mbox{max possible reward at time } t$	$\sum_{s \leq t} \langle x_s^*, \theta_* \rangle$
(pseudo-)regret at time t	$R_t = \sum_{s \le t} \langle x_s^* - X_s, \theta_* \rangle$

Optimism in the Face of Uncertainty (Linearized)

```
input: decision sets D_t, initial confidence set C_0 loop t=1,2,3,\dots \\ (X_t,\tilde{\theta}_t)=\arg\max_{(x,\theta)\in D_t\times C_{t-1}}\langle x,\theta\rangle \\ \text{play } X_t, \text{ observe } Y_t \\ \text{update } C_t \\ \text{end loop}
```

Confidence Ellipsoids

• confidence sets C_t are updated to **ellipsoids** computed via **ridge regression** on the (X_s, Y_s) $(s \le t)$

Confidence Ellipsoids

- confidence sets C_t are updated to **ellipsoids** computed via **ridge regression** on the (X_s, Y_s) $(s \le t)$
- set \bar{V}_t = $\lambda I + \sum_{s \leq t} X_s X_s^T$ and $\hat{\theta}_t$ = $\bar{V}_t^{-1} \sum_{s \leq t} Y_s X_s$

Confidence Ellipsoids

- confidence sets C_t are updated to **ellipsoids** computed via **ridge** regression on the (X_s, Y_s) $(s \le t)$
- set $\bar{V}_t = \lambda I + \sum_{s \le t} X_s X_s^T$ and $\hat{\theta}_t = \bar{V}_t^{-1} \sum_{s \le t} Y_s X_s$
- then

$$C_t = \{ \theta \in \mathbb{R}^d \mid \|\theta - \hat{\theta}_t\|_{\bar{V}_t} \le \epsilon_t \}$$

where

$$\epsilon_t = \sqrt{2\log(\frac{\det(\bar{V}_t)^{\frac{1}{2}}\det(\lambda I)^{-\frac{1}{2}}}{\delta})} + \lambda^{\frac{1}{2}}S$$

.

Regret bound of the OFUL algorithm

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Assume that $\|X_t\| \le L$ and $\|\theta_*\| \le S$, for some constants L, S > 0, and that $\langle x, \theta_* \rangle \in [-1, 1]$ for all $x \in D_t$. Suppose $\lambda \ge 1$. Then with probability at least $1 - \delta$ the OFUL algorithm achieves

$$R_t \le 4\sqrt{td\log(\lambda + \frac{tL}{d})}\left(\sqrt{\lambda}S + \sqrt{2\log(\frac{1}{\delta}) + d\log(1 + \frac{tL}{\lambda d})}\right)$$

Comparison of Regret Bounds

	Dani et al. 08 ¹	This Work
Linear Bandits	$O\left(d\log(t)\sqrt{t\log(\frac{t}{\delta})}\right)$	$O\left(d\log(t)\sqrt{t} + \sqrt{dt\log(\frac{t}{\delta})}\right)$
d-armed	$O(d\log(t)/\Delta)$	$O(d\log(\frac{1}{\delta})/\Delta)$
Problem Dependent	$O(\frac{d^2}{\Delta}\log(\frac{t}{\delta})\log^2(t))$	$O(\frac{\log(1/\delta)}{\Delta}(\log(t) + d\log\log(t))^2)$

¹(Dani, Hayes, and Kakade 2008)

A Self-Normalized Bound for Vector-Valued Martingales

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Let

•
$$F_t = \sigma(X_1,...,X_{t+1},\eta_1,...,\eta_t)$$
, so $\{F_t\}_{t=0}^{\infty}$ is a filtration of σ -algebras

•
$$\eta_t$$
 be 1-sub-Gaussian conditioned on F_{t-1} , with $\mathrm{E}[\eta_t \, | \, F_{t-1}] = 0$

•
$$\overline{V}_t = V_t + \lambda I$$
, $V_t = \sum_{s=1}^t X_s X_s^{\mathsf{T}}$ $S_t = \sum_{s=1}^t \eta_s X_s$.

Then, for any $\delta > 0$, with probability at least $1 - \delta$

$$||S_t||_{\overline{V}_t^{-1}}^2 \le 2\log\left(\frac{\det(\overline{V}_t)^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right)$$

for all t > 0.

Proof Ideas

Lemma

In the setting of the theorem, let τ be any stopping time w.r.t $\{F_t\}_{t=0}^{\infty}$, then for any $\delta > 0$, with probability $1 - \delta$

$$||S_t||_{\overline{V}_\tau^{-1}}^2 \le 2\log\left(\frac{\det(\overline{V}_\tau)^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right)$$

- $B_t(\delta) = \left\{ w \in \Omega : \|S_t\|_{\overline{V}_t^{-1}}^2 > 2\log\left(\frac{\det(\overline{V}_t)^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right) \right\}$
- τ = the first time that a bad event $B_t(\delta)$ occurs
- au is a stopping time

- $B_t(\delta) = \left\{ w \in \Omega : \|S_t\|_{\overline{V}_t^{-1}}^2 > 2\log\left(\frac{\det(\overline{V}_t)^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right) \right\}$
- τ = the first time that a bad event $B_t(\delta)$ occurs
- ullet au is a stopping time

$$\Pr\left(\bigcup_{t\geq 0} B_t(\delta)\right) = \Pr(\tau < \infty)$$

$$\leq \Pr\left(\|S_{\tau}\|_{\overline{V}_{\tau}^{-1}}^2 > 2\log\left(\frac{\det(\overline{V}_{\tau})^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right)\right)$$

$$< \delta$$

Conclusion

- OFUL is a UCB-type algorithm for **linear** bandits, with an $\mathcal{O}(d\log(t)\sqrt{t} + \sqrt{dt\log(\frac{t}{\delta})})$ regret bound.
- Self-normalized martingale bound has many further applications, e.g. to finite-time identification of linear dynamical systems (Sarkar and Rakhlin 2018).

References

```
Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). "Improved Algorithms for Linear Stochastic Bandits". In: NIPS.

Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade (2008). "Stochastic Linear Optimization under Bandit Feedback". In: COLT.

Sarkar, Tuhin and Alexander Rakhlin (2018). Near optimal finite time identification of arbitrary linear dynamical systems. arXiv: 1812.01251v7 [cs.SY].
```