University of Texas, Dallas Department of Electrical and Computer Engineering

CE/EEDG 6325: VLSI Design INVERTER DESIGN AND LAYOUT

Submitted by
Dhruvi Shah (DDS200004)
Navya Bandari (NXB210004)
Naga Mutya Kumar Kumtsam (NXK210028)

Analysis of Inverter

Energy: $-1.602 \, fJ$

Delay : 183 *ps*

EDP : 1.943 e^-23 *Js* Area : 32.5e^-24sq.m

HSPICE TEST SETUP FILE

\$transistor model

.include

.include "inverter_1.pex.netlist"

.option post run lvl=5

xi GND! OUT VDD! IN inverter_1

vdd VDD! GND! 1.2v

vin IN GND! pwl(0ns 1.2v 1ns 1.2v 1.007ns 0v 6ns 0v 6.007ns 1.2v 12ns 1.2v)

cout OUT GND! 70f

\$transient analysis

.tr 100ps 12ns

\$example of parameter sweep, replace numeric value W of pfet with WP in invlvs.sp \$.tr 100ps 12ns sweep WP 1u 9u 0.5u

.measure tran trise trig v(IN) val=0.6v fall=1 targ v(OUT) val=0.6v rise=1 \$measure tlh at 0.6v

.measure tran tfall trig v(IN) val=0.6v rise=1 targ v(OUT) val=0.6v fall=1 \$measure tpl at 0.6v

.measure tavg param = '(trise+tfall)/2' \$calculate average delay

.measure tdiff param='abs(trise-tfall)' \$calculate delay difference

.measure delay param='max(trise,tfall)' \$calculate worst case delay

\$ method 1

.measure tran iavg avg i(vdd) from=0 to=10n \$average current in one clock cycle

.measure energy param='1.2*iavg*10n' \$calculate energy in one clock cycle

.measure edp1 param='abs(delay*energy)'

.end

Energy Delay Product:

Minimized EDP is defined as the product of energy and worst-case delay.

That is,

Given: Cload = 70 fF and VDD= 1.2 V where Energy can be calculated as,

Esupply = Cload * Vdd^2

Theoretical calculation:

Esupply = Cload * Vdd^2

Esupply =
$$(70 * 10-15 * 1.2^2)$$

= $100.8 \ fJ$

From SPICE Setup file:

a) Energy in one clock cycle can be calculated as:

Energy =
$$1.2 * iavg* 10n$$

=1.2 * (0.885 * 10-5) * 10 * 10-9
= $106.2 \, fJ$

b)Worst case Delay can be calculated as:

Delay =
$$max(trise,tfall)$$

= $max(178ps, 183ps)$
= $183ps$

Minimized EDP=
$$(106.2 * 10-15) * (183 * 10-12)$$

=1.9434 * 10-23 J

OUTPUT WAVEFORM:

Figure 1: Output waveform showing tLH and tHL

Rising time (trise/tLH) = 178 ps

Falling time(tfall/tHL) = 183 ps

Delay difference between tPLH and tPHL (tdiff) = 5ps

Fig 1: Inverter Layout

Figure 2: Inverter Layout with measurements represented in ruler

Figure 3; Pin pitching Distance