Back propagation algorithm:

We have a neural network consisting of L layers, each labeled by l for $l=1,2,\ldots,L$.

The layer l consists of N_l nodes, each with N_{l-1} weights.

We label the weights by w_{ij}^l where the subscript i indicates what neuron in layer l it belongs to, while the subscript j indicates that it is multiplied by the input received from neuron j in layer l-1.

We label the biases by b_i^l where the subscript i again indicates what neuron in layer l it belongs to.

We label the activations a_i^l and the activities $z_i^l = \sum_j w_{ij}^l a_j^{l-1} + b_i^l$.

Finally we label the desired outputs \mathbf{y}_k for k = 1, ..., K where K is the amount of training data.

The cost function is C which is a direct function of the activities a_i^L of the last layer.

The output function is f and the activity function is σ .

We need to find the weights w_{ij}^l and the biases b_i^l such that the cost function is minimized, i.e we want

$$\frac{\partial C}{\partial w_{ij}^l} = \frac{\partial C}{\partial b_i} = 0$$

for all weights and biases.

The cost function can be written as a sum over the data set

$$C = \sum_{k=1}^{K} C_k$$

where a possible choice of each term C_k can be

$$C_k = rac{1}{2} \left(\widetilde{\mathbf{y}}_k - \mathbf{y}_k \right)^2$$

We start by considering only a single term C_k and pretend that there is only a single desired output \mathbf{y} and a single prediction $\mathbf{\tilde{y}}$.

$$C_k = rac{1}{2} \left(\widetilde{\mathbf{y}} - \mathbf{y}
ight)^2 = rac{1}{2} \sum_i \left(a_i^L - y_i
ight)^2$$

We will use this to derive an algorithm which can be extended by simply looping over the data set $\{\mathbf{y}_k\}$. Since C_k is a direct function of the outputs a_i^L we start by finding the derivatives with respect to the weights w_{ij}^L of the output layer.

$$\frac{\partial C_k}{\partial w_{ij}^L} = \frac{\partial C_k}{\partial a_i^L} \frac{\partial a_i^L}{\partial z_i^L} \frac{\partial z_i^L}{\partial w_{ij}^L}$$

Here $\partial a_i^L/\partial z_i^L=f'\Big(z_i^L\Big)$ and $\partial z_i^L/\partial w_{ij}^L=a_i^{L-1}.$ Thus

$$\frac{\partial C_k}{\partial w_{ij}^L} = \frac{\partial C_k}{\partial a_i^L} f'(z_i^L) a_i^{L-1}$$

The first couple of factors will appear a lot, so we define

$$\delta_i^L \equiv rac{\partial C_k}{\partial a_i^L} f^!ig(z_i^Lig)$$

to write

$$\frac{\partial C_k}{\partial w_{ij}^L} = \delta_i^L a_i^{L-1}$$

Now we find the derivatives of C_k with respect to the biases b_i^L

$$\frac{\partial C_k}{\partial b_i^L} = \frac{\partial C_k}{\partial a_i^L} \frac{\partial a_i^L}{\partial z_i^L} \frac{\partial z_i^L}{\partial b_i^L}$$

Here $\partial a_i^L / \partial z_i^L = f' \Big(z_i^L \Big)$ and $\partial z_i^L / \partial b_i^L = 1$, so

$$\frac{\partial C_k}{\partial b_i^L} = \frac{\partial C_k}{\partial a_i^L} f'(z_i^L) = \delta_i^L$$

Now even though C_k is a direct function of the activations a_i^L of the last layer, we could just as well (if we wanted to) write C_k as a direct function of the activities z_i^L of the last layer as well. The derivatives of C_k with respect to the activities of the last layer are

$$\frac{\partial C_k}{\partial z_i^L} = \frac{\partial C_k}{\partial a_i^L} \frac{\partial a_i^L}{\partial z_i^L} = \frac{\partial C_k}{\partial a_i^L} f'(z_i^L) = \delta_i^L$$

We can use these to find an expression for the total derivative of C_k , which will help us to find the derivatives of C_k with respect to the weights and biases of the next-to-last layer.

$$dC_k = \sum_i \frac{\partial C_k}{\partial z_i^L} dz_i^L = \sum_i \delta_i^L dz_i^L$$

Now, since

$$\frac{\partial z_i^L}{\partial w_{pq}^{L-1}} = \frac{\partial z_i^L}{\partial a_j^{L-1}} \frac{\partial a_j^{L-1}}{\partial z_j^{L-1}} \frac{\partial z_j^{L-1}}{\partial w_{pq}^{L-1}} = w_{ij}^L \sigma' \left(z_j^{L-1}\right) a_{pq}^{L-2}$$

and

$$\frac{\partial z_i^L}{\partial b_n^{L-1}} = \frac{\partial z_i^L}{\partial a_i^{L-1}} \frac{\partial a_j^{L-1}}{\partial z_i^{L-1}} \frac{\partial z_j^{L-1}}{\partial b_n^{L-1}} = w_{ij}^L \sigma' \left(z_j^{L-1} \right)$$

we have

$$\frac{\partial C_k}{\partial w_{pq}^{L-1}} = \sum_i \delta_i^L \frac{\partial z_i^L}{\partial w_{pq}^{L-1}} = \sum_i \delta_i^L w_{ij}^L \sigma' \left(z_j^{L-1}\right) a_{pq}^{L-2}$$

and

$$rac{\partial C_k}{\partial b_p^{L-1}} = \sum_i \delta_i^L rac{\partial z_i^L}{\partial b_p^{L-1}} = \sum_i \delta_i^L w_{ij}^L \sigma' \left(z_j^{L-1}
ight)$$

Defining

$$\delta_p^{L-1} \equiv \sum_i \delta_i^L w_{ij}^L \sigma^{\scriptscriptstyle \mathsf{I}} ig(z_j^{L-1}ig)$$

we can write

$$\frac{\partial C_k}{\partial w_{pq}^{L-1}} = \delta_p^{L-1} a_{pq}^{L-2}$$

and

$$\frac{\partial C_k}{\partial b_p^{L-1}} = \delta_p^{L-1}$$

So the derivatives of the cost function with respect to the weights and biases of the next-tolast layer can be written on the same form as the derivatives with respect to the weights and biases of the outer layer.