Statistika pro informatiku

Souhrn látky

únor 2014

Obsah

1.1	Rozlišení pojmů
1.2	Pravděpodobnost jevu a jeho doplňku
1.3	Sjednocení jevů
1.4	Podmíněná pravděpodobnost
1.5	Nezávislost jevů (průnik)
1.6	Bayessova věta
Vla	stnosti
2.1	Střední hodnota
2.2	Rozptyl
2.3	Distribuční funkce
2.4	Hustota
Roz	zdělení pravděpodobnosti
3.1	Diskrétní (nespojité) rozdělení
	3.1.1 Bernoulliho rozdělení
	3.1.2 Binomické rozdělení
	3.1.3 Geometrické rozdělení
	3.1.4 Poissonovo rozdělení
3.2	Spojité rozdělení
	3.2.1 Rovnoměrné rozdělení
	3.2.2 Exponenciální rozdělení
	3.2.3 Normální (gaussovo) rozdělení
	5.2.5 Profiledin (gaussovo) Tožucičin

1 Základy statistiky a pravděpodobnosti

1.1 Rozlišení pojmů

Statistika TODO

Pravděpodobnost TODO

1.2 Pravděpodobnost jevu a jeho doplňku

$$\mathbb{P}\left(A\right) = \frac{size\left(A\right)}{size\left(\Omega\right)}$$

Obrázek 1: Vennův diagram základní pravděpodobnosti jevu

$$\mathbb{P}\left(A^{C}\right) = 1 - \mathbb{P}\left(A\right)$$

Obrázek 2: Vennův diagram doplňku jevu

1.3 Sjednocení jevů

Pro disjunktní jevy platí

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Obrázek 3: Disjunktní jevy

Pro jevy platí

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Oblast průniku by byla započítána dvakrát, proto je potřeba ji odečíst.

Obrázek 4: Jevy

1.4 Podmíněná pravděpodobnost

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \mathbb{P}(B) \neq 0$$

"Pravděpodobnost jevu Aza podmínky, že jsme vBa že jevBnastal."

Obrázek 5: Podmíněná pravděpodobnost

1.5 Nezávislost jevů (průnik)

Pro **nezávislé** jevy platí

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(B).$$

Jinak platí

$$\begin{array}{rcl} \mathbb{P}\left(A\cap B\right) & = & \mathbb{P}\left(A|B\right)\mathbb{P}\left(B\right) \\ \mathbb{P}\left(A\cap B\right) & = & \mathbb{P}\left(B|A\right)\mathbb{P}\left(A\right) \\ \mathbb{P}\left(A\cap B\cap C\ldots\right) & = & \mathbb{P}\left(A\right)\mathbb{P}\left(B|A\right)\mathbb{P}\left(C|A\cap B\right)\ldots \end{array}$$

1.6 Bayessova věta

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

$$\mathbb{P}\left(\vec{\sigma}|\bullet\right) = \mathbb{P}\left(\bullet|\vec{\sigma}\right) * \mathbb{P}\left(\vec{\sigma}\right) = \mathbb{P}\left(\vec{\sigma}\right) * \mathbb{P}\left(\bullet|\vec{\sigma}\right) = 0,7*0,2 = 0,14$$

Obrázek 6: Bayessova věta pomocí stromu

2 Vlastnosti

2.1 Střední hodnota

Pro diskrétní veličiny

$$\mathbb{E}X = \sum_{i} p_{i} x_{i} = \sum_{i} x_{i} * \mathbb{P}(X = x_{i})$$

Pro spojité veličiny

$$\mathbb{E}X = \int_{-\infty}^{+\infty} x * f_x(x) \, \mathrm{d}x$$

(P a f jsou funkce hustoty.)

Pro libovolné náhodné veličiny platí:

$$\begin{split} \mathbb{E}\left(aX+Y\right) &= a\mathbb{E}\left(X\right)+\mathbb{E}\left(Y\right) \text{ (linearita)} \\ \mathbb{E}\left(X+Y\right) &= \mathbb{E}\left(X\right)+\mathbb{E}\left(Y\right) \\ \mathbb{E}\left(X+Y\right) &= \mathbb{E}\left(\max\left\{X,Y\right\}\right)+\mathbb{E}\left(\min\left\{X,Y\right\}\right) \\ \mathbb{E}X^2 &= \sum_{i}p_{i}x_{i}^{2} \text{ (pro diskrétní jevy)} \\ \mathbb{E}\left(\max\left\{X,Y\right\}\right) &= \mathbb{E}\left(X\right)+E\left(Y\right)-\mathbb{E}\left(\min\left\{X,Y\right\}\right) \\ \mathbb{E}\left(XY\right) &= \mathbb{E}X*\mathbb{E}Y \text{ (platí jen pro nezávislé jevy)} \end{split}$$

2.2 Rozptyl

$$\sigma_x = varX = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

2.3 Distribuční funkce

• Funkce je zprava spojitá.

Distribuční funkce pro diskrétní veličiny

$$F = \mathbb{P}(X \le x_i) = \sum_{x_i \le x} p_x(x_i)$$

Distribuční funkce pro spojité veličiny

$$F = \mathbb{P}(X \le x_i) = \int_{-\infty}^{x} f_x(u) du \ \forall x \in \mathbb{R}$$

2.4 Hustota

Funkce hustoty pro diskrétní veličiny

$$p(X) = \mathbb{P}(X = x)$$

Funkce hustoty pro spojité veličiny

$$f\left(x\right) = F_x'(x)$$

3 Rozdělení pravděpodobnosti

3.1 Diskrétní (nespojité) rozdělení

Diskrétní veličiny mohou nabývat pouze spočetného počtu hodnot (i nekonečného).

3.1.1 Bernoulliho rozdělení

$$X \sim Be(p)$$

Hustota

$$\mathbb{P}\left(1\right) = p, \ \mathbb{P}\left(0\right) = 1 - p$$

Střední hodnota

$$\mathbb{E}X = p$$

Rozptyl

$$varX = p\left(1 - p\right)$$

3.1.2 Binomické rozdělení

$$X \sim Bi(n, p)$$

Hustota

$$\mathbb{P}_X(k) = \binom{n}{k} p^k \left(1 - p\right)^{n-k}$$

Střední hodnota

$$\mathbb{E}X = n * p$$

Rozptyl

$$varX = np(1-p)$$

3.1.3 Geometrické rozdělení

$$X \sim geom\left(p\right)$$

• "Počet hodů mincí než padne první panna. Tedy čekání na úspěch."

Hustota

$$\mathbb{P}_x\left(k\right) = \left(1 - p\right)^{k - 1} * p$$

Distribuční funkce

$$\mathbb{P}\left(T \le n\right) = 1 - \left(1 - p\right)^n$$

Funkce přežití

$$\mathbb{P}\left(T>n\right) = \left(1-p\right)^n$$

Střední hodnota

$$\mathbb{E}X = \frac{1}{p}$$

Rozptyl

$$varX = \frac{1}{p} \left(\frac{1}{p} - 1 \right)$$

3.1.4 Poissonovo rozdělení

TODO

3.2 Spojité rozdělení

Spojité náhodné veličiny nabývají na rozdíl od diskrétních veličin nějakého intervalu.

3.2.1 Rovnoměrné rozdělení

TODO

3.2.2 Exponenciální rozdělení

$$X \sim \exp(\lambda)$$

$$f(x) = \lambda e^{-\lambda x}, x \ge 0$$

$$P(X \le x) = 1 - e^{-\lambda x}$$

$$\mathbb{E}X = \frac{1}{\lambda}$$

$$\operatorname{var}X = \frac{1}{\lambda^2}$$

Obrázek 7: Graf distribuční funkce exponenciálního rozdělení[1]

3.2.3 Normální (gaussovo) rozdělení

TODO

4 Entropie

Entropie diskrétní veličiny

$$H\left(X\right) = -\sum p_i \log p_i$$

Entropie spojité veličiny

$$H(X) = -\int f(x) \log f(x) dx$$

Aditivita entropie

$$H(X,Y) = H(X) + H(Y|X).$$

Sdružená entropie

$$H(X,Y) = -\sum_{i,j} p_{i,j} \log p_{i,j}$$

Podmíněná entropie

$$H(X|Y) = -\sum_{i,j} p(x_i, y_i) \log p(y_i|x_i)$$

$$I(X, Y) = \sum_{i,j} p_{i,j} \log \frac{p_{i,j}}{p_i * p_j} = \dots = -H(X|Y) + H(X)$$

5 Náhodné procesy

Značení procesu

$$X\left(t,\ \omega\right) = X_{t} = X\left(t\right)$$

Střední hodnota

$$\eta_x(t) = \mathbb{E}X(t) = \int x(t) * f_{X_t}(x) dx$$

$$\mathbb{E}X(t) = \sum x_i(t) \mathbb{P}(X_t = x_i(t))$$

Autokorelační funkce

$$R_x(t_1, t_2) = \mathbb{E}X(t_1) * \overline{X(t_2)} \text{ v } \mathbb{C}$$

= $\mathbb{E}X(t_1) * X(t_2) \text{ v } \mathbb{R}$

REFERENCE

Reference

 $\left[1\right]$ The Free Encyclopedia Wikipedia. Exponential distribution. 2014.