模拟与数字电路

Analog and Digital Circuits

课程主页 扫一扫

第四讲: 布尔代数的化简,译码,编码

Lecture 4: **Boolean Logic and Simplification**

主 讲: 陈迟晓

Instructor: Chixiao Chen

提纲

- 复习
 - 见0得0, 与见1得1, 分别是什么逻辑门?
 - 什么是demorgan定律?
- 布尔代数的公式化简法
- 布尔代数的一般表达式
- 译码器与编码器
- 卡诺图

Maurice Karnaugh (1924 -) 美国知名物理学、数学家

布尔代数化简例题-i

• 化简
$$A + AB + A\overline{B}C$$

•
$$\rightarrow A + A\bar{B}C$$

$$\bullet \to A$$

$$A + AB = A$$

• 化简
$$AB + A(B + C) + B(B + C)$$

$$\bullet \rightarrow AB + AB + AC + BB + BC$$

$$\bullet \rightarrow AB + AC + B + BC$$

$$\bullet \rightarrow AB + B + AC$$

$$\bullet \rightarrow B + AC$$

布尔代数化简例题-i

• 根据公式 A + A = A, 为某项配上其所能合并的项

• 化简
$$ABC + A\bar{B} + A\bar{C}$$

•
$$\rightarrow ABC + A(\bar{B} + \bar{C})$$

•
$$\rightarrow ABC + A\overline{BC}$$

•
$$\rightarrow A(BC + \overline{BC})$$

$$\bullet \to A$$

$$Y = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$

$$= (ABC + AB\overline{C}) + (ABC + A\overline{B}C) + (ABC + \overline{A}BC)$$

$$= AB(C + \overline{C}) + AC(B + \overline{B}) + BC(A + \overline{A})$$

$$= AB + AC + BC$$

布尔代数化简例题

将
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

化简为最简与或式。

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$

$$=\overline{A}B(\overline{C}+C)+A\overline{B}C+AB(\overline{C}+C)$$

$$=\overline{A}B+A\overline{B}C+\underline{A}B$$

利用C+C=1

$$=(\overline{A}+A)B+A\overline{B}C$$

$$=B+\overline{B}AC$$

利用A+AB=A+B

$$=B+AC$$

将Y化简为最简与或式。

$$Y = A\overline{B} + (\overline{A} + B)CD$$

解:
$$Y = A\overline{B} + (\overline{A} + B)CD$$

$$= A\overline{B} + (\overline{A} + B)CD$$

$$= A\overline{B} + A\overline{B} CD$$

$$=A\overline{B}+CD$$

$$: A = \overline{\overline{A}}$$

布尔代数的一般表达:SOP及其电路实现

- SOP(Sum-of-Product) Form
 - e.g. AB + ABC, $ABC + CDE + \bar{B}CD$
 - SOC表达式的AND/OR实现

AND/OR实现

NAND/NOR实现

SOP表达法及其电路

- 将一般表达式转化为SOP形式
 - e.g. $AB + B(CD + EF) \rightarrow AB + BCD + BEF$
- 标准SOP形式
 - 所有变量都要出现在表达式中
 - e.g. $A\bar{B}CD + \bar{A}\bar{B}CD$
 - $A\bar{B}C + \bar{A}\bar{B} + AB\bar{C}D$ 转化为标准SOP形式

$$\begin{split} A\,\bar{B}\,C &= A\,\bar{B}\,C(D + \bar{D}) = A\,\bar{B}\,C\,D + A\,\bar{B}\,C\,\bar{D} \\ \bar{A}\,\bar{B} &= \bar{A}\,\bar{B}\,(C + \bar{C}) = \bar{A}\,\bar{B}\,C + \bar{A}\,\bar{B}\,\bar{C} \\ \bar{A}\,\bar{B} &= \bar{A}\,\bar{B}\,C + \bar{A}\,\bar{B}\,\bar{C} = \bar{A}\,\bar{B}\,C(D + \bar{D}) + \bar{A}\,\bar{B}\,\bar{C}\,(D + \bar{D}) = \bar{A}\,\bar{B}\,C\,D + \bar{A}\,\bar{B}\,C\,\bar{D} + \bar{A}\,\bar{B}\,\bar{C}\,D + \bar{A}\,\bar{B}\,\bar{C}\,$$

真值表与SOP表达法

- 将SOP表达式转化为真值表
 - e.g. 求表达式 $\bar{A}B\bar{C} + A\bar{B}C$ 的 真值表

	Inputs		Output	
A	В	C	X	Product Term
0	0	0	0	
0	0	1	0	
0	1	0	1	$\overline{A}B\overline{C}$
0	1	1	0	
1	0	0	0	
1	0	1	1	$A \overline{B} C$
1	1	0	0	
1	1	1	0	

真值表与SOP表达法(例题)

• 举重比赛A、B、C三个裁判,判杠铃完全举起为成功。按一下按钮,只有当两个或两个以上裁判判断成功才表明成功,表决电路灯亮。

Α	В	C	Y
	0	0	0
0 0 0	0	1	0
Manual Control of the	1	0	0
0	1		1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
		F. 8	

译码器 Decoder

- A decoder has
 - N inputs
 - 2^N outputs

W = A'.B'

X = A.B'

Y = A'.B

Z = A.B

A decoder selects one of 2^N outputs (one-hot, 独热码) by decoding the binary value on the N inputs.

A	В	W	X	Y	Z
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Active-high outputs

3-8 line decoder (3-8译码器)

注:左图与右图的msb顺序相反

BCD-7段显示译码器

- BCD=Binary coded decimal
- 7段显示, 共同端接电源

BCD-7段显示译码器

Digit	A	В	С	D	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	0	0	1	1	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	0	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	1	0	0

BCD-7段显示译码器

$$a = A + C + BD + \overline{B} \overline{D}$$

$$b = \overline{B} + \overline{C} \overline{D} + CD$$

$$c = B + \overline{C} + D$$

$$d = \overline{B} \overline{D} + C \overline{D} + B \overline{C} D + \overline{B} C + A$$

$$e = \overline{B} \overline{D} + C \overline{D}$$

$$f = A + \overline{C} \overline{D} + B \overline{C} + B \overline{D}$$

$$g = A + B \overline{C} + \overline{B} C + C \overline{D}$$

基于译码器的逻辑表达

- 译码器的结果可以与真值表一一对应
- 用译码器函数与SoP表达式联合,可以表达任意逻辑
 - 将输出为高的部分穷举
- 举例:
- 基于3-8线译码器的3输入逻辑表达: $F(A,B,C) = \Sigma m(2,3,5,6,7)$

编码器

- An encoder has
 - 2^N inputs
 - N outputs
- An encoder outputs the binary value of the selected (or active) input.
- An encoder performs the inverse operation of a decoder.
- Is all input valid?

A	В	C	D	Y	Z
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

优先编码器

• 允许所有的输入编码模式,但是仅根据优先级编码

在有X的条件下,如何完成逻辑化简?

从真值表到卡诺图

Four Variable K-Map

• 最小项:包含全部变量的乘积项,且变量仅出现一次

• 卡诺图:将n 变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻在几何位置上,所得图地排列起来,所得图形叫做卡诺图

• 例题:已知Y的真值表, 求其卡诺图

A B C	Y
0 0 0	0
0 0 1	1
0 1 0	1
0 1 1	0
1 0 0	1
1 0 1	0
1 1 0	0
111	1

• 二变量卡诺图

• 三变量卡诺图

