EECE5550 — Mobile Robotics Closed-loop Feedback Control

Reference Books

Why close the loop?

Types of control

Figures are from Data-Driven Science and Engineering Book by J. Nathan Kutz and Steven L. Brunton

Why close the loop?

- Uncertainty
 - System model inaccuracies
- Instability
 - Stabilizing system dynamics
- Disturbances
 - Unmodelled errors on system
- Efficiency

Open-loop Control Diagram

Closed-loop Control Diagram

System dynamics and measurements

- $\dot{x} = f(x, u, w_d)$
- $y = g(x, u, w_n)$
- Goal is to design a controller $u=k(x,w_r)$ that will hold the system in a desired state
 - $\dot{x} = f(x, k(x, w_r), w_d)$

Motivating example: Cruise control

- Let y be the car's speed and u be the gas fed into the engine
 - A simple model: y = u
 - An open-loop controller: $u = w_r$
 - Error is zero: $e = y w_r$
- BUT
 - If we have incorrect model i.e., in actuality y = 2u
 - What if go from driving flat to up hill? i.e., if $y = u + \sin(t)$
 - Open-loop would not work!
- In contrast, the closed-loop control would reduce the error:
 - Closed-loop control: $u = K(y w_r)$
 - For the actual model: $y = 2u \ y = \frac{2K}{2K+1} w_r$ and K=50 then we have 1% steady-state error.

• Linear time-invariant systems (LTI)

- $\dot{x} = Ax$
- Where $x \in R^n$, $A \in R^{n \times n}$ constant
- We know that $x(t) = e^{At}x(0)$ where x(0) is the initial state.
- Stability:
 - An LTI system is **asymptotically stable** if and only if all the eigenvalues of *A* have **strictly negative real parts**.
- The simplest case: single-input single-output (SISO)
 - $x(t) = e^{at}x(0)$ if $a \ge 0$ the state blows as time goes to infinity.

• Stability:

- Multi-input multi-output (MIMO)
 - $x(t) = e^{At}x(0)$
 - Eigen decomposition of **A** : $AT = T\Lambda$ where T is the eigenvector and Λ is the diagonal matrix of eigenvalues.
 - $e^{At} = e^{T\Lambda T^{-1}} = Te^{\Lambda t}T^{-1}$
 - For full derivation -> Section 8.2 of
- $= e^{-\alpha t} = Te^{\alpha t}T^{-1}$ For full derivation -> Section 8.2 of
 Data Driven Science and Engineering Book $e^{\Delta t} = \begin{bmatrix} e^{-\alpha t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ddots & 1 \end{bmatrix}$
 - Eigenvalues may be complex values:
 - $\lambda = a + ib$
 - If ALL of the eigen values have real negative real part i.e., $Re(\lambda) = a < 0$ then the system is stable.

- Eigenvalues and Linear Phase Portraits
 - Visualization in Wolfram Player

- Controlling LTI systems
 - $\dot{x} = Ax + Bu \rightarrow \dot{x} = (A BK)x$
 - y = Cx
 - The problem is reduced to an autonomous system of differential equations.
 - Select a K such that the system is stabilized:
 - Assuming C is identity
 - No control input $x(t) = e^{At}x(0)$
 - With control input $x(t) = e^{(A-BK)t}x(0) = e^{\tilde{A}t}x(0)$
 - Analyze \tilde{A} and select the eigenvalues that would stabilize the system

Linearization

- Majority of the systems are nonlinear
 - $\dot{x} = f(x, u)$ y = g(x, u)
- To apply linear control theory, we linearize the system at fixed points:
 - Find fixed points (\hat{x}, \hat{u}) where $f(\hat{x}, \hat{u}) = 0$
 - Expand the input-output functions in a Tyler series for small displacements $\Delta x = x \tilde{x}$ $\Delta u = u \tilde{u}$

$$\mathbf{f}(\bar{\mathbf{x}} + \Delta \mathbf{x}, \bar{\mathbf{u}} + \Delta \mathbf{u}) = \mathbf{f}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) + \underbrace{\frac{d\mathbf{f}}{d\mathbf{x}}\bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})}}_{\mathbf{A}} \cdot \Delta \mathbf{x} + \underbrace{\frac{d\mathbf{f}}{d\mathbf{u}}\bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})}}_{\mathbf{B}} \cdot \Delta \mathbf{u} + \cdots \ . \qquad \mathbf{g}(\bar{\mathbf{x}} + \Delta \mathbf{x}, \bar{\mathbf{u}} + \Delta \mathbf{u}) = \mathbf{g}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) + \underbrace{\frac{d\mathbf{g}}{d\mathbf{x}}\bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})}}_{\mathbf{C}} \cdot \Delta \mathbf{x} + \underbrace{\frac{d\mathbf{g}}{d\mathbf{u}}\bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})}}_{\mathbf{D}} \cdot \Delta \mathbf{u} + \cdots \ .$$

- Drop the higher order terms as they are negligible:
 - $\dot{x} = Ax + Bu \ y = Cx + Du$

Example: Inverted pendulum

- System dynamics: $\ddot{\theta} = -\frac{g}{L}\sin(\theta) + u$.
- State: angular position and velocity. Control input: torque.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \qquad \Longrightarrow \qquad \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) + u \end{bmatrix}$$

- Take the derivative: $\frac{\mathbf{df}}{\mathbf{dx}} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{L}\cos(x_1) & 0 \end{bmatrix}, \quad \frac{\mathbf{df}}{\mathbf{du}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$
- Linearize at fixed points: up $(x_1 = \pi, x_2 = 0)$ down $(x_1 = 0, x_2 = 0)$
- $\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{d}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u}_{\text{Pendulum up, } \lambda = \pm \sqrt{g/L}} \qquad \underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u}_{\text{Pendulum down, } \lambda = \pm i\sqrt{g/L}} \qquad \text{(Assume } \sqrt{g/L} = 1)$

Example: Inverted pendulum

- Is the system stable?
- $\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \iota}_{\text{Pendulum up, }} \lambda = \pm \sqrt{g/L}$
- $\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u}_{\text{Pendulum down, } \lambda = \pm i \sqrt{g/L}}$

- Yes, if pendulum down
- No, if pendulum up because positive eigen value

•
$$\lambda = \pm 1$$

- Let's apply closed-loop control $\dot{x} = (A BK)x$
- Can you find a K that will stabilize the pendulum when it is up?
 - Assume $\sqrt{g}/L=1$

Example: Inverted pendulum

- Is the system stable?
- $\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u}_{\text{Pendulum up, } \lambda = \pm \sqrt{g/L}}$
- $\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{L} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u}_{\text{Pendulum down, } \lambda = \pm i \sqrt{g/L}}$

- Yes, if pendulum down
- No, if pendulum up because positive eigen value

•
$$\lambda = \pm 1$$

- Let's apply closed-loop control $\dot{x} = (A BK)x$
- Select K = [4, 4] and analyze eigenvalues ->
 - The new eigenvalues are -1, -7
 - The system is stabilized for the up position for small displacements of control input

- Is selecting K naively a good strategy?
 - System might be stabilized but it might not be *optimal*
 - Overly stable eigenvalues might use large control inputs
 - The controller can overreact to disturbances and noise
- Solution: Optimal Control
 - Formulate the selection of K as an optimization problem
 - Find a balance between the controller stability and and aggressiveness of control
 - E.g., Linear-Quadratic Controller (LQR)

Proportional-Integral-Derivative Controller (PID)

- Goal is to minimize the error term: e(t) = r(t) y(t)
 - $\lim_{t\to\infty} e(t) = 0$
- PID control law: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$

Proportional-Integral- ** Derivative Controller (PID)

- PID control law: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$
 - P term: proportional gain $u(t) = K_p e(t)$
 - The control input is proportional to the error.
 - Steady-state error: As the error gets close to 0, small P would not reach the desired state and large P would overshoot.
 - The control input would be 0 at the system at the desired state. Thus, the

system would oscillate

Proportional-Integral- ** Derivative Controller (PID)

- PID control law: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$
 - I term: integrator gain $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$
 - Uses the history of error accumulation
 - Can overcome the steady-state error

Proportional-Integral- ** Derivative Controller (PID)

- PID control law: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$
 - D term: derivative gain $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$
 - Measures the rate of error change
 - · Looks at he future

Effects of PID Gains

Effects of different PID gains

Effects of increasing a parameter independently [22][23]

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Figures are from Wikipedia: https://en.wikipedia.org/wiki/PID controller

Tuning PID Gains

- Manual tuning:
 - Set K_i and K_d to 0
 - Increase K_p until the system oscillates
 - Set K_p to half the oscillated value
 - Increase K_i until the steady-state error disappears (if exists)
 - Large K_i can contribute to overshooting
 - If needed, increase K_d until the the system is acceptably quick to reach to desired state

Effects of <i>increasing</i> a parameter independently.					
Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Tuning PID Gains

 $P \qquad K_{s}e(t)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

- Ziegler-Nichols method:
 - Set K_i and K_d to 0
 - ullet Increase K_p until the system oscillates K_u
 - Measure the oscillation rate T_u
 - ullet Use the following values to set the gains using T_u and K_u

Zioal	ler–Nic	shale	math	hod
Liegi	IGI -IAIC	,,,,,,,	meu	IUu

Control Type	K_p	K_i	K_d	
P	$0.50K_u$	-	-	
PI	$0.45K_u$	$0.54K_u/T_u$	-	
PID	$0.60K_u$	$1.2K_u/T_u$	$3K_uT_u/40$	

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Tuning PID gains

