TRIGONOMETRY Chapter 07

2nd SECONDARY

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES DE 30°, 45° y 60°

CUATRO SÍMBOLOS FAMILIARES ESCRITOS EN ESTILO ANTIGUO

Desde la primitiva Babilonia los matemáticos han ahorrado tiempo y esfuerzo al sustituir las palabras por símbolos.

SUMA

Entre dichas creaciones abreviadas se encuentran los

RESTA

breves signos +, -, × y ÷ que utilizamos para indicar suma, resta, multiplicación y división.

MULTIPLICACIÓN

Estos cuatro símbolos son relativamente nuevos en la historia matemática.- Al lado aparecen algunas formas primitivas de representarlos.

DIVISIÓN

HELICO THEORY

Resumen:

senα	cosα	tanα	cotα	secα	cscα
CO	CA	СО	CA	Н	Н
H	H	CA	CO	CA	CO

Resumen:						
R.T	30°	60 °	45°			
sen	<u>1</u>	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$			
cos	$\frac{\sqrt{3}}{2}$	1 2	1 √ 2			
tan	1 √ 3	√ 3	1			
cot	√ 3	1 √ 3	1			
sec	$\frac{2}{\sqrt{3}}$	2	√ 2			
CSC	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$			

Efectúe:

$$A = (3 sen 45^{\circ} + 4 cos 45^{\circ}) csc 45^{\circ}$$

senα	cosα	tanα	cotα	secα	cscα
CO	CA	<u>CO</u>	CA	<u>H</u>	<u>H</u>
Н	Н	CA	CO	CA	CO

RESOLUCIÓN

Reemplazamos valores:

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{3} & \left(\frac{\mathbf{1}}{\sqrt{2}} \right) + \mathbf{4} & \left(\frac{\mathbf{1}}{\sqrt{2}} \right) \end{array} \right] \left(\sqrt{2} \right)$$

$$\mathbf{A} = \left[\frac{7}{\sqrt{2}}\right] \left(\sqrt{2}\right)$$

Efectúe A =
$$(5 \tan 45^{\circ})^{\sec 60^{\circ}} + (12\sqrt{3} \tan 60^{\circ})^{\sin 30^{\circ}}$$

senα	cosα	tanα	cotα	secα	cscα
<u>CO</u>	CA H	$\frac{\text{CO}}{\text{CA}}$	$\frac{CA}{CO}$	$\frac{H}{CA}$	$\frac{H}{CO}$

$$A = [5(1)]^{2} + [12\sqrt{3}(\sqrt{3})]^{2}$$

$$A = 25 + [36]^{\frac{1}{2}}$$

$$A = 25 + \sqrt{36}$$

$$A = 25 + 6$$

Resuelva $3^{x} = \sqrt{2} \csc 45^{\circ} + 2\sqrt{3} \tan 60^{\circ} + 2 \sin 30^{\circ}$

$$3^{x} = \sqrt{2} \left(\sqrt{2} \right) + 2\sqrt{3} \left(\sqrt{3} \right) + 2 \left(\frac{1}{2} \right)$$

$$3^{x} = 2 + 6 + 1$$

$$3^{x} = 9$$

$$3^{x} = 3^{2}$$

$$x = 2$$

senα	cosα	tanα	cotα	secα	cscα
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

A partir del gráfico, calcule tan β.

senα	cosα	tanα	cotα	secα	cscα
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

$$tan \beta = \frac{2\sqrt{3} \cot 30^{\circ}}{\sec^2 45^{\circ}}$$

$$\tan \beta = \frac{2\sqrt{3} \left(\sqrt{3}\right)}{\left(\sqrt{2}\right)^2}$$

$$\tan\beta=\frac{6}{2}$$

$$\therefore$$
 tan $\beta = 3$

Resuelva e indique el valor de

x, **si x** > **0**:
$$\frac{8 \sec 60^{\circ}}{x+1} = \frac{x-1}{\sin 30^{\circ}}$$

senα	cosα	tanα	cotα	secα	cscα
СО	CA	СО	CA	Н	Н
H	H	CA	CO	CA	CO

$$(\mathbf{a} - \mathbf{b})(\mathbf{a} + \mathbf{b}) = \mathbf{a}^2 - \mathbf{b}^2$$

$$8 \sec 60^{\circ} \cdot \sec 30^{\circ} = (x-1)(x+1)$$

$$8(2)\left(\frac{1}{2}\right)=x^2-1$$

$$8 = x^2 - 1$$

$$x = 3$$

Un profesor de Matemáticas ha planteado un reto para sus alumnos, el cual consiste en operar con las razones trigonométricas de ángulos notables .- Para ello, ha elaborado cuatro tarjetas de colores que se presentan a continuación, las cuales indican una determinada cantidad de puntos:

$$8 \sec^2 45^\circ + 12 \csc 30^\circ$$

$$4\sqrt{3} \text{ sen}60^{\circ} + 5\sqrt{2} \cos 45^{\circ}$$

$$3 \tan^2 60^\circ + 6 \cot^2 30^\circ$$

¿ Cuál de las tarjetas tiene mayor puntaje?

RESOLUCIÓN

$$8 \sec^2 45^\circ + 12 \csc 30^\circ$$

$$8(\sqrt{2})^2 + 12(2) = 16 + 24 =$$

40

$$4\sqrt{3} \text{ sen} 60^{\circ} + 5\sqrt{2} \text{ cos} 45^{\circ}$$

$$4\sqrt{3} \operatorname{sen60^{\circ}} + 5\sqrt{2} \operatorname{cos45^{\circ}} + 4\sqrt{3} \left(\frac{\sqrt{3}}{2}\right) + 5\sqrt{2} \left(\frac{1}{\sqrt{2}}\right) = 6 + 5 = 11$$

$$5 \sec 60^{\circ} + 9 \cot 45^{\circ}$$
 $\Rightarrow 5(2) + 9(1) = 10 + 9 = 19$

$$3 \tan^2 60^\circ + 6 \cot^2 30^\circ$$

$$3(\sqrt{3})^2 + 6(\sqrt{3})^2 = 9 + 18 = 27$$

👶 La tarjeta con mayor puntaje es la rosada .

El siguiente diagrama muestra información sobre la exportación de alcachofa del Perú.

¿ Cuál fue el valor total, en millones de soles, de las exportaciones de alcachofas en el periodo 2019 – 2022 ?

RESOLUCIÓN

$$A = 25 \cot 45^{\circ} = 25(1) = 25$$

$$B = 25 \csc 30^{\circ} = 25 (2) = 50$$

$$C = 200 \text{ sen}^2 45^\circ = 200 \left(\frac{1}{\sqrt{2}}\right)^2$$

$$C = 200 \left(\frac{1}{2}\right) = 100$$

$$D = 50\sqrt{3} \tan 60^{\circ} = 50\sqrt{3} (\sqrt{3})$$

$$D = 50(3) = 150$$

El valor total de las exportaciones fue de 325 millones de soles.

