Численное моделирование по физике

Задание 2.

«Частица в конденсаторе»

Электрон влетает в цилиндрический конденсатор с начальной скоростью V, посередине между обкладками, параллельно образующим цилиндра. При какой **минимальной** разности потенциалов, приложенной к обкладкам, электрон не успеет вылететь из конденсатора. Краевыми эффектами пренебречь.

Построить графики зависимости y(x), $V_y(t)$, $a_y(t)$, y(t). Координатные оси направлены как показано на рисунке.

Рассчитать время полета t и конечную скорость электрона $V_{\text{кон}}$.

Данные по размерам конденсатора и скорости электрона взять из таблицы. Номер варианта соответствует номеру по списку группы.

№	Внутренний	Внешний	Начальная	Длина
	радиус г, см	радиус R, см	скорость V,	конденсатора
			м/с	L, см
1	1	3	$9*10^{6}$	11
2	1.5	4	$8.5*10^6$	12
3	2	5	8*10 ⁶	13
4	2.5	6	$7.5*10^6$	14
5	3	7	7*10 ⁶	15
6	3.5	8	$6.5*10^6$	16
7	4	9	6*10 ⁶	17
8	4.5	10	$5.5*10^6$	18
9	5	11	$4.5*10^6$	19
10	5.5	12	$4*10^6$	20
11	6	13	$3.5*10^6$	21
12	6.5	14	3*10 ⁶	22
13	7	15	2.5*10 ⁶	23
14	7.5	16	2*10 ⁶	24

15	8	17	$1.5*10^6$	25
16	8.5	18	10^{6}	26
17	9	19	$9.5*10^5$	27
18	9.5	20	9*10 ⁵	28
19	10	21	$8.5*10^5$	29
20	10.5	22	8*10 ⁵	30
21	11	23	$7.5*10^5$	31
22	11.5	24	$7*10^5$	32
23	12	25	6*10 ⁵	33
24	12.5	26	$5.5*10^5$	34
25	13	27	5*10 ⁵	35
26	13.5	28	$4.5*10^5$	36
27	14	29	$4*10^5$	37
28	14.5	30	$3.5*10^5$	38
29	15	31	3*10 ⁵	39
30	16	32	$2.5*10^5$	40