

Who do I start?

How can past performance help predict future performance in NFL fantasy football

Rory Breslin

- Springboard Capstone Project (May 2020 Cohort)
- Thanks to Springboard mentor Max Sopp

Week 7 of your season and you are already in desperate need for a win...which 3 WRs do you start?

Robby Anderson

New York Jets

ELIG MANAGER Tmp

Healthy .

WEE	K OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	Dal	5	125	25.0	1	8	0	0	0	0	20.5
5	@Phi	1	16	16.0	0	3	0	0	0	0	1.6
4	BYE										
3	@NE	3	11	3.7	0	5	0	0	0	0	1.1
2	Cle	4	81	20.3	0	6	0	0	0	0	8.1
1	Buf	3	23	7.7	0	7	0	0	0	0	2.3

WE	EK OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	Det	2	48	24.0	0	2	1	9	0	0	5.7
5	@Dal	1	18	18.0	0	4	0	0	0	0	1.8
4	Phi	3	47	15.7	0	7	0	0	0	0	4.7
3	Den	6	99	16.5	1	10	0	0	0	0	15.9
2	Min	3	19	6.3	0	5	0	0	0	0	1.9
1	@Chi	4	52	13.0	0	6	1	0	0	0	5.2

WE	EK OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	Ten	1	0	0.0	0	3	0	0	0	0	0.0
5	@LAC	1	9	9.0	0	1	0	0	0	0	0.9
4	Jax	5	104	20.8	0	9	0	0	0	0	12.4
3	@GB	2	10	5.0	0	5	0	0	0	0	1.0
2	Chi	11	98	8.9	1	13	0	0	0	0	17.8
1	@Oak										

WEEK	OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	@Bal	3	10	3.3	0	7	0	0	0	0	1.0
5	Ari	10	123	12.3	1	14	0	0	0	0	20.3
4	@Pit	3	33	11.0	0	6	0	0	0	0	3.3
3	@Buf	6	68	11.3	0	11	0	0	0	0	6.8
2	SF	10	122	12.2	0	10	0	0	0	0	14.2
1	@Sea	8	60	7.5	0	11	1	3	0	0	6.3

WE	EK OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	Phi	6	57	9.5	1	8	1	0	0	0	11.7
5	@NYG	7	130	18.6	2	8	0	0	0	0	27.0
4	@Chi	2	6	3.0	0	6	0	0	0	0	0.6
3	Oak	3	55	18.3	1	5	1	1	1	0	17.6
2	@GB	5	75	15.0	0	8	0	0	0	0	7.5
1	Atl	3	43	14.3	1	3	0	0	0	0	10.3

Corey Davis

Tennessee Titans

ELIG

MANAGER Free Agent Healthy .

WE	EK OPP	REC	YDS	AVG	TD	TAR	CAR	YDS	TD	MISCTD	FPTS
6	@Den	3	36	12.0	0	5	0	0	0	0	3.6
5	Buf	2	28	14.0	0	4	0	0	0	0	2.8
4	@Atl	5	91	18.2	1	6	0	0	0	0	15.1
3	@Jax	3	44	14.7	0	4	0	0	0	0	4.4
2	Ind	3	38	12.7	0	5	0	0	0	0	3.8
1	@Cle	0	0	0.0	0	3	0	0	0	0	0.0

Every week fantasy owners have to decide who to start on their team to give them the best chance of winning

- Each week you have to predict which players are going to score the most fantasy points
- Calculation of fantasy points can differ by league but usually based on:
 - Yards (passing, rushing, receiving)
 - TDs
 - Turnovers (i.e. Interception or fumble)
 - Defence / Special Team / Kicking statistics

But often it is not clear who the best person to start is

Do I pick the player who is...

- Accumulating the most fantasy points this season? (i.e. consistent)
- After putting up a monster fantasy day last week? (i.e. the hot hand)
- Gaining the most yards?
- Scoring the most touchdowns? (after all, they get me more points)
- Playing the weaker opposition defence this week?
- Playing on the better offense in the league?

Objective is to help fantasy football owners make better decisions on who to start in their fantasy team each week

Dataset

Looked at player performance data between 2015 and 2019 seasons

Where fantasy points related to a specific league scoring system

How were Fantasy Points calculated?

Players are assigned fantasy points for the following statistics

Yards

Every 25 passing yards = 1 pt Every 10 rushing yards = 1 pt Every 10 receiving yards = 1 pt

300-399 passing yards (bonus) = 2 pt 400+ passing yards (bonus) = 3 pt

100-199 rushing yards (bonus) = 2 pt 200+ rushing yards (bonus) = 3 pt

100-199 receiving yards (bonus) = 2 pt 200+ receiving yards (bonus) = 3 pt

Scores

Touchdown (Passing, Rushing or Receiving) = 6 point

2pt Conversion (Passing, Rushing or Receiving) = 2

point

Negative Plays

Interception = -2pt Sacked = -0.5pts

Fumble (Lost) = -2pt

Exploratory Data Analysis

Focus on understanding what influences a player's fantasy performance each week

How many fantasy points do players score?

Histogram of Fantasy Point Distribution

- 7.2 average fantasy points per player
- 73% of players score 10 points or less
- **61.3** points is the highest in dataset by QB Drew Brees (Week 8, 2015 vs New York Giants)

Exploring this data threw up interesting insights

However, there were issues relating to player and game statistics

Issues

Solution

Not independent

 Fantasy statistics are calculated from raw player statistics, meaning they are not independent Convert player, score and result statistics into rolling averages for previous 4-weeks

Information not available at decision time

Fantasy owners don't have access to the score of a game or how player performs until after the game – when it is too late

Which were rectified by calculating 4-week average for all these statistics

PLAYER_NAME	DATE	FAN_TOT	FAN_4WK_AVG	FAN_4WK_AVG_SHIFT
Calvin Ridley	2018-09-16	1 12.7	12.700	6 NaN
Calvin Ridley	2018-09-23	35.5	24.100	12.700
Calvin Ridley	2018-09-30	17.5	21.900	24.100
Calvin Ridley	2018-10-07	3.8	2 17.375	21.900
Calvin Ridley	2018-10-14	4.7	15.375	3 17.375
Calvin Ridley	2018-10-22	4.3	7.575	15.375
Calvin Ridley	2018-11-04	13.7	6.625	7.575
Calvin Ridley	2018-11-11	4.0	6.675	6.625

Steps to calculate

- 1 Fantasy Points scored in a week
- Average fantasy points scored in last 4 weeks (including this week)
- Average fantasy points scored in previous 4 weeks (not including this week)
- 4 Drop values calculated in Step 2

The process of creating 4-week rolling averages created 1,107 rows with missing data – these were dropped from dataset*

Calculate 4-week rolling averages with a shift for all player and game statistics (and drop actual and 4 week average used to calculate)

PLAYER	TEAM	OPP	DATE	WIN/TIE_AVG	PTS_FOR_AVG	PTS_AGT_AVG	PASSYDS_AVG	PASSTD_AVG	INT_AVG	RUSHYDS_AVG	RUSHTD_AVG	REC_AVG	RECYDS_AVG	RECTD_AVG	FAN_AVG	FAN_ACTUAL
Demaryius Thomas	Broncos	Chiefs	2017-10-30	0.25	10.50	20.00	0.0	0.0	0.0	0.0	0.0	4.75	62.75	0.00	6.275	6.6
Allen Lazard	Packers	Raiders	2019-10-20	0.75	27.75	24.00	0.0	0.0	0.0	0.0	0.0	2.50	36.00	0.50	6.600	4.2
C.J. Uzomah	Bengals	Colts	2018-09-09	0.50	17.75	27.75	0.0	0.0	0.0	0.0	0.0	1.75	13.25	0.25	2.825	0.4
Seth Roberts	Raiders	Broncos	2016-11-06	0.75	26.75	24.25	0.0	0.0	0.0	0.0	0.0	3.00	40.50	0.25	5.550	3.2
Chris Hogan	Patriots	Chiefs	2018-10-14	0.50	26.50	22.00	0.0	0.0	0.0	0.0	0.0	2.50	33.00	0.50	6.300	7.8

Found that fantasy performance is significantly correlated with fantasy performance over the previous 4 weeks

0.56 pearson coefficient

Statistically significant after running permutation test for higher correlation coefficient and achieving a 0.0 p-value

While the correlation of other statistics varies by position

Using K-means analysis we could identify four interesting clusters in the data

Four distinct groups of players

- Three groups are fantasy relevant players split by the type of statistics they perform best at
- One group is not fantasy relevant but consists of over half the player in dataset

Cluster	Scoring	Count	Prominent Position	Main Statistics
0	2 nd	4 th	RB	Rushing
1	3 rd	2 nd	WR/TE	Receiving
2	4 th	1 st	All	None
3	1 st	3 rd	QB	Passing

Feature Selection

EDA identified columns and rows to remove or transform in our dataset

Drop Columns

- Player Name column
- All team and coaches columns
- Week and date columns
- Game statistic columns (replaced with 4-week rolling averages)
- Player statistic columns (replaced with 4-week rolling averages)

Create Binary & Dummy Columns

- Transform Home/Away, Surface, Stadium, Day and Result into binary columns (i.e. 1 if True, 0 if False)
- Create dummy variables columns for Season, Month and Position features

Drop Rows

- NaN values
- 'Other' position group

Why?

Remove high dimension columns where proxy information available

Replace columns with information that reflects that available to fantasy owner at decision time

Transform to binary and dummy columns to support modelling

Remove rows that will impact on modelling

This means left with 2 targets and 48 features to split & scale for before modelling

- FAN_ACTUAL
- CLUSTER

- FAN_AVG
- PASSCOMP AVG
- PASSATT AVG
- PASSCOMP% AVG
- PASSYDS_AVG
- PASSTD AVG
- INT AVG
- QBRAT AVG
- SACK AVG
- SACKYDS AVG
- PASSYDS 300 AVG
- PASSYDS 400 AVG
- RUSHATT AVG
- RUSHYDS_AVG
- RUSHTD AVG
- FUM AVG
- FUMLST AVG
- RUSHYDS 100 AVG
- RUSHYDS_200_AVG
- TGTS_AVG
- REC AVG
- RECYDS AVG
- RECTD AVG
- RECYDS 100 AVG
- RECYDS 200 AVG
- PTS FOR AVG
- PTS_AGT_AVG
- WIN/TIE AVG
- OPP_PTS_FOR_AVG
- OPP PTS AGT AVG
- OPP WIN/TIE AVG

HOME

- DOME GRASS
- SUNDAY
 - POS RB
 - POS TE
 - POS_WR SEASON 2016
 - SEASON 2017

 - SEASON 2018
 - SEASON 2019 MONTH January

 - MONTH November
 - MONTH October
 - MONTH September
 - TIME Night
 - TIME_Noon

Train / Test Split

Y = FAN ACTUAL

X = Features

75% / 25% split – Training to Test

Scaling

- Standardization applied to all continuous variables (leftside of features list)
- Dummy and binary variables are not scaled (right-side features list)

^{*} Two potential target variables for our model. Initial focus is on 'FAN_ACTUAL' and building a model to predict the number of fantasy points.

Variance, covariance and recursive feature elimination used to further reduce features

Eliminated Features

Variance Feature Elimination

Eliminate all columns where the 90%+ of the variables are similar

MONTH_January

1

Covariance Feature Elimination

Eliminate columns which have 0.8 or higher correlation (or Pearson coefficient)

'PASSATT_AVG', 'PASSCOMP%_AVG', 'PASSYDS_AVG', 'PASSTD_AVG',
'INT_AVG', 'QBRAT_AVG', 'SACK_AVG', 'SACKYDS_AVG',
'RUSHYDS_AVG', 'REC_AVG', 'RECYDS_AVG'

11

Recursive Feature Elimination

Recursively run estimator (SVR with 'linear' kernel) over features to rank and prune features to attain optimal number of features for dataset

'PASSYDS_400_AVG', 'FUM_AVG', 'RUSHYDS_100_AVG',
'RUSHYDS_200_AVG', 'RECYDS_100_AVG', 'RECYDS_200_AVG',
'PTS_FOR_AVG', 'PTS_AGT_AVG', 'OPP_PTS_FOR_AVG',
'OPP_WIN/TIE_AVG', 'POS_RB', 'SEASON_2016', 'SEASON_2017',
'SEASON_2018', 'SEASON_2019', 'MONTH_November',
'MONTH_October'

17

TOTAL ELIMINATED

29

For our final dataset with 19 features and our target variable

 1_{target}

FAN_ACTUAL

19 features

- FAN_AVG
- PASSCOMP AVG
- PASSYDS 300 AVG
- RUSHATT_AVG
- RUSHTD_AVG
- FUMLST AVG
- TGTS AVG
- RECTD AVG
- WIN/TIE_AVG
- OPP_PTS_AGT_AVG
- HOME
- DOME
- GRASS
- SUNDAY
- POS_TE
- POS_WR
- MONTH September
- TIME Night
- TIME_Noon

Modelling

Four regression models were chosen for machine learning

^{*} Regression models used as our target variable is continuous

Each model had hyperparameters tuned using cross-validation

Each model was evaluated with three metrics

1 Root mean squared error (RMSE)

2 Mean absolute error (MAE)

Average absolute difference between the predicted values and the observed values

3 R-Squared (R2)

Explains how well features in model explain the variability in our target variable (fantasy points)

The models were fitted and evaluated on training data

Model	RMSE	MAE	R-Squared
Linear	6.39	4.65	0.364
SGD Regressor	6.39	4.66	0.363
ElasticNet	6.39	4.65	0.363
Random Forest	5.66	4.24	0.501

Random Forest was the best model when applied to all training data

- Lowest RMSE
- Lowest MAE
- Highest R-squared

As well as evaluated with cross-validation to understand how performance would generalise

Model	RMSE	MAE	R-Squared
Linear	6.40	4.66	0.361
SGD Regressor	6.41	4.66	0.358
ElasticNet	6.68	5.03	0.304
Random Forest	6.65	4.90	0.310

Linear was the best model when 5-fold cross-validation was applied to the training data

- Lowest RMSE
- Lowest MAE
- Highest R-squared

Finally, models were evaluated on our test data

Model	RMSE	MAE	R-Squared
Linear	6.45	4.69	0.350
SGD Regressor	6.45	4.69	0.350
ElasticNet	6.45	4.69	0.350
Random Forest	6.44	4.71	0.350

Very little to differentiate models when applied to test data

- Random Forest model performed best in relation to RMSE
- Other models performed better in relation to MAE
- R-squared consistent across all models
- Preference depends on whether RMSE or MAE is better evaluation metric for the data
- RMSE considered better metric for this data set ability to penalise higher differences

Random Forest model proves to be the best model when focusing on RMSE

^{*} Applied 5-fold cross-validation (using cross_val_score) on training set to judge how well results would generalise

Fantasy performance over previous weeks proved to be the most important feature in model

4.71 fantasy points is the average prediction error of this model

4-week fantasy performance is most important feature

 Pass completion, Targets, and Rushing attempts are the next most important features – make sense given they are indicators for each of the key positions on the field (QB, RB, WR/TE)

Conclusion

Who did you pick?

?

?

?

?

?

?

Our model suggested picking Adam Thielen, Tyler Boyd, and Marquez Valdes-Scantling

4.7

9.3

6.9 8.0

6.2

In real life, Corey Davis overperformed Tyler Boyd but are other two players were the right choice

21.3 3.5 14.0

I did not make the right choice

Model would not have selected the optimal team...

...but using it would've gotten me the win!

Colour Legend

Selection same as Model and best in reality

Selection same as Model but wrong in reality

Selection opposite of Model and wrong in reality

Conclusions

- As example shows, this model can be a useful aid to help fantasy owners make decisions on who to select in a given game week
- Predictions will error on average by +/- 4.7 fantasy points using the model
- Often fantasy owners need to pick between players and not guess precise numbers
- Model also helps our understanding of fantasy performance and that previous 4-week performance across fantasy performance and other player statistics are useful indicators

- One point can make a huge difference in fantasy football (see previous slide)
- Aim would be to reduce error term to make more accurate predictions
- This would give fantasy football owners more comfort they are making the right decision

Next Steps

Develop rolling averages further

 Our model used 4-weeks weighted equally but alternatives should be used and tested

Better use of clusters

 Clusters were identified in EDA but not worked into the modelling. In future could look to use as target variable or feature

Model by Position Group

• EDA identified that performance differs significantly by position group so future models could be built to focus on one position for more accurate results

New Data

 Look to include more seasons of data or look for new data sources and information to contribute to the model (i.e. Offensive Line performance or Player Salary)

Different Feature Engineering Models

 Look to use different models to feature engineer like Principal Component Analysis

New Technique to handle missing values

 We removed missing values from the dataset but could to replace these values with appropriate estimate

Thank You