A Book of Abstract Algebra (2nd Edition)

Let $a(x) = a_0 + a_1 x + \dots + a_n x^n$ be in A[x], and let c be any root of a(x). We will prove that $c \in A$.

To begin with, all the coefficients of a(x) are in (a_0, a_1, \dots, a_n) .

Step-by-step solution

Step 1 of 2

Consider a field F and an extension K of F. The objective is to prove that the set $E = \{x \in K : x \text{ is algebraic over } F\}$ is a subfield of K, containing F.

Comment

Step 2 of 2

Take $a, b \in E$.

Consider the subfield F(a,b) of K.

F(a,b) is a finite extension \cdot since a and b are algebraic over F and hence an algebraic extension.

Thus all the elements of F(a,b) are algebraic over F and so $F(a,b) \subseteq E$.

The elements a+b, a-b, ab and $1/a(a \ne 0)$ lie in F(a,b), and thus also in E.

So , E is a subfield of K.

Clearly, $F \subseteq E$, since any $\alpha \in F$ is a zero of polynomial $X - \alpha \in F[x]$ and therefore algebraic over F.

Comment