First-Order Term-Indexing

Alexander Maringele

January 27th, 2016

References

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov, *Term indexing*, Handbook of Automated Reasoning (Alan Robinson and Andrei Voronkov, eds.), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2001, pp. 1853–1964.

Outline

- 1 Motivation
- 2 Term Structure
- 3 Path Indexing
- 4 Discrimination Trees
- 5 Substitution Trees
- 6 Search times

Refutation

$$\left\{ \begin{array}{l} \mathsf{P}(\mathsf{f}(x)) \vee \mathsf{f}(x) \not\approx \mathsf{a}, \ \mathsf{g}(x,y) \approx \mathsf{a} \vee \neg \mathsf{Q}(x,y), \ \mathcal{C}_3 \end{array} \right\} \\ \equiv \\ \forall x \left(\mathsf{P}(\mathsf{f}(x)) \vee \mathsf{f}(x) \not\approx \mathsf{a} \right) \\ \wedge \\ \forall xy \left(\mathsf{g}(x,y) \approx \mathsf{a} \vee \neg \mathsf{Q}(x,y) \right) \\ \wedge \\ \forall \mathcal{V}\mathsf{ar}(\mathcal{C}_3) \left(\mathcal{C}_3 \right) \end{aligned}$$

Goal

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C})\sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

and the empty clause will be derived eventually.

Observation

Usually the set grows too fast to obtain a result.

Goal

A sound, refutation complete, and *effective* calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, . . .
 - ... with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses
 - ...depending on the calculus

Example (forward subsumption)

$$S = \{^{^{1:}}\mathsf{P}(x,y),^{^{2:}}\neg\mathsf{P}(\mathsf{a},z)\} \cup \{^{^{3:}}\!\mathsf{P}(\mathsf{a},z')\}$$

$$t_1$$
 subsumes t_3

$$\frac{\mathsf{P}(x,y) \quad \neg \mathsf{P}(\mathsf{a},z)}{\Box} \ \{x \mapsto \mathsf{a}, y \mapsto z\}$$

Resolution

$$S \perp = \{ \mathsf{P}(\perp, \perp), \neg \mathsf{P}(\mathsf{a}, \perp), \mathsf{P}(\mathsf{a}, \perp) \}$$

InstGen / SMT

Goal

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances generalizations

 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

Observation

Deduction rate drops quickly with sequential search.

Term Indexing

Data structures and algorithms for fast retrieval of matching terms.

Definition (Position Strings)

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P} os^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h}\rangle, \langle 1,\mathsf{f}\rangle, \langle 11,\mathsf{a}\rangle, \langle 12,y\rangle\}$$

$$\langle \epsilon,\mathsf{h}\rangle$$

$$\langle 1,\mathsf{f}\rangle$$

$$\langle 1,\mathsf{f}\rangle$$

$$\langle \epsilon,\mathsf{h}\rangle\langle 1,\mathsf{f}\rangle\langle 12,y\rangle$$
 path from root to leaf
$$\langle \epsilon,\mathsf{h}\rangle\langle 1,\mathsf{f}\rangle\langle 11,\mathsf{a}\rangle\langle 12,y\rangle$$
 pre-order traversal
$$\langle 11,\mathsf{a}\rangle$$

$$\langle 12,\mathsf{y}\rangle$$

Variables

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

• and traversal strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 11, * \rangle \langle 12, * \rangle$ when traversal order and arities of symbols are fixed.

h.f.a.*

Retrieve

$$\begin{array}{c} ^{t_1}\mathsf{h}(\mathsf{f}(x,y)),^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h}.\mathsf{f}.*,\mathsf{h}.\mathsf{f}.\mathsf{b}\} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & g:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{\} \\ & v:\mathsf{h}(\mathsf{f}(x',x')) \mapsto \{t_1,t_2\} \cap \{t_1\} \end{array}$$

Unit Superposition Inference Rules

$$\frac{s \approx t \quad L[s']}{(L[t]) \cdot \sigma} \quad \underset{\text{paramodulation}}{\text{unit}}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma$

$$\frac{s \approx t \quad u[s'] \not\approx v}{(u[t] \not\approx v) \cdot \sigma} \text{ } \underset{\text{superposition}}{\text{unit}} \quad \frac{s \approx t \quad u[s'] \approx v}{(u[t] \approx v) \cdot \sigma}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma, v\sigma \not\succeq u[s']\sigma$

where s and t (A and B respectively) are unifiable

Insert t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$:h(f(h(a),a))

 $t_1 \Rightarrow \text{h.f.}*.*$

 $t_2 \Rightarrow h.f.*.h.a$

 $t_3 \Rightarrow h.f.h.a.a$

Retrieve

$$\begin{array}{c} ^{t_1} \dot{\cdot} \mathsf{h}(\mathsf{f}(x,y)), ^{t_2} \dot{\cdot} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), ^{t_3} \dot{\cdot} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ & u : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\} \\ & i : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\} \\ & g : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{\ \} \end{array}$$

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115
1 000	128 000	127 500 000	1479	160s	13s	12
1 000	256 000	255 500 000	1097	320s	440s	1
1 000	512 000	511 500 000	1440	640s	348s	2
1 000	1 024 000	1023 500 000	1534	1280s	348s	4