

08/706217 A/NO Fee

Express Mail[®] mailing number EM154142384US
Date of Deposit 8-30-96

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231

1

[Handwritten signature]

5

EW8423K8
INS>

29615/DAP/B472

10

METHOD AND APPARATUS FOR ENCAPSULATING PARTICULATES

This application claims the benefit of U.S. Provisional Application No. 60/003,106 filed September 1, 1995.

Field of the Invention

15

This invention relates to a method and apparatus for the encapsulation of hazardous materials found as particulates so as to prevent the particulates from becoming airborne. More particularly, it relates to the generation of an aerosol for use in the decontamination of an enclosed space by using the aerosol to encapsulate contaminants such as hazardous dust found in the enclosed space. By encapsulating the contaminants with a capture coating, the encapsulated particles can be either left in place or safely removed so as to eliminate the risk of resuspension of the contaminants.

20

Background of the Invention

25

The decontamination of certain contaminated environments has proven to be especially problematic. In particular, where contamination levels or physical configuration of the environment make conventional access impractical, removal of those dust particles can be difficult. For example, in nuclear laboratories and the nuclear power and nuclear weapons manufacturing industries, the generation of radioactive dust has led to severe contamination problems. Often entire rooms or systems of ventilation equipment including ducts contaminated with radioactive dust have had to be sealed because no practical method of decontamination was known.

30

35

1 In some instances, entire buildings have been sealed and
5 condemned in place because contamination prevents the
destruction of the building. Once an environment has been
sealed, the particles tend to fall out of the atmosphere
10 and deposit on the surfaces of the floors and walls of the
closed environment. However, the slightest disturbance of
the atmosphere of the closed environment can result in
15 resuspension of the particulates which will tend to float
freely within the atmosphere. Conventional contamination
control methods have been unable to effectively control
such contaminants. Such a result is often unacceptable,
especially if the particulates contain a highly hazardous
radioactive material such as plutonium.

20 Attempts to decontaminate, maintain, and even enter
15 many of these types of areas have resulted in the
resuspension of the contaminants. This resuspension can
lead to an airborne hazard for humans, resulting in an
uptake of the hazardous material.

20 Summary of the Invention

25 According to the present invention, a device and
method for encapsulating hazardous particulates found
within a process area are disclosed. The particulates are
encapsulated by forming an aerosol of a capture liquid
30 which is introduced to the process area. The aerosol
encapsulates the particulates and adheres them to the
surfaces of the process area. The individual droplets
that form the aerosol are of a defined size distribution
35 and can be produced without significant turbulence. The
device does not use heat to form the aerosol and,
therefore, avoids any undesirable separation or thermal
breakdown of the chemical constituents that are to be
formed into the aerosol. The aerosol generated is passive
in nature making it effective in process areas where
turbulence is to be avoided. The device can be used with
a broad range of liquids without the undesirable effects
of other aerosol generators.

1 It is important to recognize that an aerosol is
2 defined as a suspension of tiny droplets of liquid. In
3 many ways, an aerosol can be made to behave like a gas.
4 For example, it can be made to flow from areas of high
5 concentration to areas of low concentration. It can also
6 be used to fill an enclosed space like a gas.
7 Nonetheless, the individual droplets that form the aerosol
8 retain the chemical properties of a liquid. Therefore,
9 the individual droplets that form an aerosol are
10 technically already condensed as tiny droplets of liquid.
11 However, the use of the term "condense" herein is
12 generally meant to refer to the agglomeration of enough
13 aerosol droplets to form large droplets that can no longer
14 behave in the gas-like fashion of a true aerosol.

15 Process areas where this invention could prove useful
16 are ventilation ducts, process glove boxes, "infinity"
17 rooms, air locks, process piping, process vessel
18 internals, destruction work areas and large area hot
19 cells. It can also be useful for long-term mothballing of
20 industrial or manufacturing facilities. Chemically
21 reactive aerosols can also be useful in neutralizing
22 process areas such as fume hoods or areas of chemical
23 spills.

24 By encapsulating hazardous material with the device
25 and method of the present invention, the possibility of an
26 airborne hazard to humans can be reduced or even
27 eliminated. Consequently, the device and method can make
28 it possible for humans to work on or work in contaminated
29 areas which were previously inaccessible due to the
30 airborne hazard.

31 The device is especially useful for decontamination
32 of process areas contaminated with hazardous particulate
33 matter such as plutonium contamination or other
34 radioactive dust. A polymeric coating material or capture
35 liquid can be formed into an aerosol by the device and
 method of the present invention. The aerosol can then be
 introduced into the process area such as through existing

1 ventilation ducts to create a fog which passively fills
2 the enclosed space without generating significant
3 turbulence. The capture liquid is selected so as to form
4 a layer of encapsulant over the exposed surfaces of the
5 process area, thereby encapsulating the hazardous dust.
6 Once the dust is so encapsulated, it can be further
7 treated in various ways. For example, it can be collected
8 along with the encapsulant for proper disposal. As an
9 alternative, a second layer of more durable material can
10 be applied over the first layer before removal. The
11 initial capture liquid may also be selected so as to form
12 a permanent coating over the hazardous material so that it
13 can be permanently encapsulated in place.

14 The device includes a primary reservoir for
15 containing the capture liquid. Submerged below the
16 surface of the liquid within the reservoir are one or more
17 piezoelectric transducers for generating ultrasonic waves
18 focused to a point near the surface of the liquid.
19 Preferably six transducers are used in parallel. The
20 focused ultrasonic waves created by the transducers cause
21 a disturbance at the liquid surface which, in turn, causes
22 tiny droplets of the liquid to shear off and form the
23 aerosol.

24 The liquid level of the primary reservoir is
25 maintained by an overflow weir. By maintaining the liquid
26 level constant, the transducers are kept in focus as the
27 liquid is driven off. The liquid spills over the overflow
28 weir into an overflow reservoir located below the primary
29 reservoir. A recirculation pump is used to transfer the
30 overflowing liquid back from the overflow reservoir to the
31 primary reservoir and thereby maintain the liquid level
32 constant.

33 The reservoirs are enclosed within a pressurization
34 chamber with inlet and outlet ports. A fan at the inlet
35 port supplies ambient air into the pressurization chamber
36 in order to create a slight positive pressure in the
37 pressurization chamber. This air is used to carry the

1 aerosol from the pressurization chamber through the outlet
5 port where the aerosol can be directed into the process
area which is to be encapsulated. One advantage of such
a device is that the equipment used can be placed outside
the process area to minimize disturbances within the
process area.

10 Once the process area has been filled with a fog of
the encapsulating aerosol, a steady state condition can be
maintained by withdrawing an exhaust stream portion of the
atmosphere from the process area for treatment in a
recovery chamber while continuing to direct aerosol into
the process area. An exhaust fan draws the exhaust stream
from the process area into the recovery chamber. A spray
15 of liquid such as distilled water is used in the recovery
chamber for condensing the aerosol. The liquid spray
system also includes a sump for collecting the spray and
a recycle pump so that the spray can be reused. The
exhaust stream then passes through a moisture separator
for further removal of moisture from the exhaust stream.
20 From the moisture separator, the exhaust stream is
directed through a high-efficiency particulate air filter
for providing the final process filtration step to the
exhaust stream. A fully filtered exhaust stream ^{can} then
25 be released ^{into the} atmosphere or directed to further treatment
facilities.

By measuring the amount of aerosol removed from the
process area and calculating the amount of aerosol added
to the process area, the total amount of aerosol deposited
on the surfaces of the process area can be estimated.
30 Once the desired amount of aerosol has been deposited on
the surfaces, the aerosol generator can be shut down and
the recovery system used to recover the remaining airborne
aerosol from the process area.

Upon contact with the surfaces of the process area,
35 the aerosol forms a thin film which encapsulates the
hazardous material. Preferably the aerosol is formed from
a capture liquid that coalesces upon contact with the

1 surfaces so as to form a tacky or sticky coating over the
hazardous material. While it is preferred that the
aerosol be introduced passively into the process area,
that is, with little or no turbulence, by using a tacky
5 capture liquid, even if some of the particulates are
disturbed and resuspended, they will either tend to settle
onto the tacky surfaces of the thin film for
encapsulation, or will become encapsulated while airborne
and then settle onto the tacky surfaces of the process
10 area.

Once the aerosol treatment has been completed,
various clean up methods can be employed. For example,
workers wearing the appropriate protective gear can enter
the enclosed environment and either collect the
15 encapsulated hazardous material from the surfaces of the
enclosed environment or perhaps apply a second, more
durable coat of encapsulant. In some instances, the
process area can be entered without the need for
respiration or other protective equipment as the process
20 virtually eliminates the hazard of inhalation exposure.
So as to avoid human entry into the process area, robots
may also be used to scrape or otherwise remove the
hazardous material from the surfaces.

In some process areas, such as those contaminated
25 with asbestos dust, a more permanent coating can be
applied which need not be removed. Either the initial
capture liquid can be selected to form a permanent coat,
or a second coat can be applied with the aerosol generator
30 to permanently encapsulate the contaminants. In such
instances, the coating of the exposed surfaces effectively
eliminates the hazard without the need for removal or
further treatment.

1 Brief Description of the Drawings

5 The process and device for decontamination of process areas contaminated with hazardous particulates or dust are best understood with reference to the following detailed description of the invention and drawings in which:

FIG. 1 is a block flow diagram illustrating the method and apparatus for decontamination of a process area;

10 FIG. 2 is a partly schematic elevation view of an aerosol generator according to the present invention;

FIG. 3 is a block diagram illustrating the electronics used in generating the ultrasonic signals used in the present inventions; and

15 FIG. 4 is a partly schematic elevation view of a recovery chamber according to the present invention.

20

25

30

35

1 Detailed Description of the Invention

5 The process and device of the present invention includes two key components: an aerosol generator and an aerosol recovery chamber. As illustrated in the block flow diagram of FIG. 1, the aerosol generator 10 is used to produce an aerosol of a capture liquid such as a polymeric encapsulant which is carried by ambient air 12. An aerosol stream 13 is generated and used to fill an enclosed environment such as a process area 14 in order to capture any hazardous dust that may be present in the process area. Once the process area has been suitably filled with aerosol, a portion of the aerosol can optionally be purged by removing an exhaust aerosol stream 15 from the process area for recovery of the aerosol in an aerosol recovery chamber 16 while continuing to add aerosol to the process area. The aerosol recovery chamber is used to capture the aerosol and any other airborne contaminants before the exhaust air 18 is released ^{into the} ~~to~~ atmosphere. A Technical Manual and an Operations and User Manual for a commercial embodiment of the invention are attached as Appendix A and Appendix B, respectively, and are herein incorporated by reference.

20 The use of such equipment is especially useful for decontamination of a hazardous dust-laden atmosphere. For example, in the nuclear power, and the nuclear weapons manufacturing industries and in nuclear laboratories, process areas have been known to become contaminated with radioactive dust. By creating an aerosol of a capture liquid, the dust can be encapsulated within a film of a coating material which is formed on the exposed surfaces of the process area. Once the hazardous dust has been so encapsulated by the film, the hazardous material can be removed from the surfaces along with the coating material and disposed of properly.

30 This method is also useful for collection of other hazardous dusts including lead dust, asbestos dust and beryllium dust. Moreover, it can be useful for the

1 neutralization of chemical hazards which may be present in
the form of airborne droplets, vapor or particulates as
well as chemical hazards that exist as surface
contamination.

5 Many different liquids can be used for the capture
liquid. For radioactive dust, the liquid should be
selected to aid in managing the dust, and perhaps to allow
personnel to enter the contaminated area. However, it
generally cannot be used to neutralize the hazard. A
10 tacky capture liquid such as a water-based urethane
suspended in a two-part organic solution works well. The
encapsulant formed by such a capture liquid stays somewhat
tacky, even after it has coalesced on the surfaces of the
process area. This allows any residual or airborne
15 contaminates to adhere to the layer of encapsulant.

When treating a process area contaminated with
radioactive dust, it is also preferred that the capture
liquid be selected so as to avoid creation of a mixed
waste. If a chemically hazardous material is used for the
capture liquid, the encapsulated radioactive dust would be
20 classified as a mixed waste as it would be both chemically
and radioactively hazardous. The disposal of mixed waste
is very difficult as most hazardous waste facilities are
designed for the handling of only one, but not both types
25 of waste.

Depending on the amount and type of radioactive
material to be encapsulated, criticality concerns can
arise by the encapsulation of the radioactive material.
Moreover, the addition of an encapsulant containing
30 hydrogen can increase criticality concerns as hydrogen is
known to increase the reactivity of nuclear material by
moderating or reducing the energy level of the neutrons
emitted. By proper selection of the type and amount of
the capture liquid, such criticality concerns can be
35 mitigated. Moreover, by adding a suitable neutron poison
such as boron, a neutral, or even a negative reactivity

1 coefficient can be achieved for a particular capture
liquid.

5 For many hazardous dusts such as asbestos dust or
lead dust, the encapsulation of the particulates can often
render them harmless. For treating a process area
contaminated with these particulates, an encapsulant that
10 hardens into a durable, permanent layer may be preferred.
In the alternative, a tacky encapsulant may first be used
to capture all the particulates including the airborne
particulates. Then, a more permanent and harder outer
coating can be applied over the tacky coating. Either the
aerosol generator or conventional spray techniques can be
used to provide this outer coating.

15 One example where such a method of permanently
encapsulating hazardous particulates might be particularly
useful is in the treatment of ventilation ducts
contaminated with asbestos fibers. By permanently
20 encapsulating the fibers against the walls of the ducts so
as to prevent them from becoming airborne, the risk of
asbestos exposure can be mitigated while allowing the
continued use of the ducts. A periodic treatment of the
ducts with added layers of coating material at established
intervals will ensure that the fibers are prevented from
breaking loose.

25 Such a permanent encapsulation method can also be
useful in permanently mothballing a process area
containing radioactive or other hazardous dust. Periodic
recoating can also be useful where the contaminated
particulates are susceptible to atomic recoil.

30 If a process area is contaminated by chemically
reactive vapors or particulates, the aerosol generator can
be used with an appropriate neutralizing agent and/or
buffers to chemically neutralize the hazard. Such a
35 procedure can be useful in process piping where the piping
is unable to withstand the hydrostatic pressure that would
be realized if a method of liquid treatment were
undertaken. As just one example, an acidic process system

1 can be effectively neutralized through the generation of
a caustic aerosol.

5 It can also be useful in some instances to add a
pigment or dye to the capture liquid. By adding color to
the capture liquid, a simple visual inspection of the
surfaces of the process area can be used to confirm that
an even layer of encapsulant has been applied.

10 It should also be recognized that very simple
chemical compositions can be quite effective at
encapsulating hazardous dust. For example, a balanced
mixture of monosaccharides and polysaccharides dissolved
in deionized water can be produced into an aerosol for
effectively capturing hazardous dust. The inherent
stickiness of such a solution adds to its effectiveness.

15 As pointed out, many different materials can be used
for forming the aerosol depending upon the type of hazard
to be removed from the process area. While solvent based
solutions will often work well, water based solutions are
generally preferred so as to avoid the possibility of
20 creating an explosive atmosphere within the process area.
Since the process area to be treated generally includes
air, suitable capture liquids include those that will
oxidize in air to encapsulate the particulates.

25 The aerosol is formed by an aerosol generator as
illustrated in FIG. 2. The aerosol generator includes a
cabinet 19 containing a pressurization chamber 22 in which
the aerosol is produced. Preferably the pressurization
chamber is a stainless steel tank. By providing a
30 stainless steel pressurization chamber that is generally
resistant to chemical attack, many different chemical
materials can be used with a single generator for forming
the aerosol.

35 Within the pressurization chamber are two internal
liquid reservoirs, a primary reservoir 24 and an overflow
reservoir 26. The capture liquid 28 to be formed into an
aerosol is placed in the overflow reservoir. The use of
a fill tube will simplify the addition of liquid. The

1 liquid in the overflow reservoir flows into a sump 32
where it is drawn to a suction tube 34 for a capture
liquid recirculation pump 36. The recirculation pump
circulates the liquid through a recirculation tube 38 up
5 to the primary reservoir. The total liquid capacity of
the combined reservoirs is about three gallons with about
one gallon in the primary reservoir and about two gallons
in the overflow reservoir.

10 The suction and recirculation tubes are preferably
provided as a single, continuous, flexible tube. The
recirculation pump is preferably a peristaltic pump that
recirculates the liquid within the tubing by acting on the
external walls of the tubing. Such pumps are well known
15 in the medical device industry. Such pumps are powered by
variable speed d.c. motors that allow the recirculation
rate to be varied between about 1 and 20 ml per minute.
A peristaltic pump is preferred as it does not come in
direct contact with the liquid. This makes cleaning the
aerosol generator easier and eliminates the possibility
20 that the capture liquid may be incompatible with the pump
or that leakage of lubricants from the pump could
contaminate the capture liquid. In the preferred
embodiment, the tubing is also disposable to further
simplify cleaning. The use of an inexpensive, disposable
25 pump is also contemplated so as to avoid the expense of a
peristaltic pump.

30 Between the primary and overflow reservoir is an
overflow weir 42 which maintains the capture liquid level
44 in the primary reservoir at a constant level. Once the
level of the capture liquid in the primary reservoir
reaches the height of the overflow weir, excess liquid
spills over the weir and into the overflow reservoir.

35 Under the surface of the capture liquid in the
primary reservoir are a plurality of piezoelectric
ultrasonic transducers 46. Preferably six transducers are
placed within the reservoir at the vertices of a normal
hexagon. The six transducers are arranged to point upward

1 towards the surface of the liquid in the primary
reservoir. The depth of each transducer is adjusted to
focus its output to a point near the surface of the
liquid. Each transducer is of a cup shape that helps to
5 focus the output signal to a point. Each of the six
transducers is preferably fastened to a mounting plate 48
by a stainless steel mounting tube 52 so that all of the
transducers can be moved up or down within the primary
reservoir as a unit.

10 In the preferred embodiment, transducers made from
lead-zirconite-titanite-four are used. This material
yields high power drive transmission characteristics which
are ideally suited to high driving fields. The
transducers are approximately one inch in diameter and
15 focus at approximately one inch in demineralized water.
The precise focus can vary based on a number of factors
which will be addressed in further detail later. The
transducers are mounted to the stainless steel mounting
tubes by a conductive O-ring which provides the ground
20 contact. Nickel electrodes are used for the power supply.
Such preferred transducers have a resonance frequency of
about 2300 kilohertz. In order to avoid interference
between the signals of the six transducers, they should be
separated from one another by about 2 to 2-1/2 inches. By
25 mounting the six transducers on the apexes of a normal
hexagon with 2-1/2 inch sides, interference effects are
negligible.

30 The mounting plate is located below the primary
reservoir. Each of the six mounting tubes extends through
an orifice 54 at the bottom of the primary reservoir. The
orifices include seals so that the height of the
transducers can be adjusted up or down by sliding the
mounting tubes up or down through the bottom of the
primary reservoir without the capture liquid leaking. The
35 efficiency of the transducers is improved by having the
inside of the mounting tubes exposed to air rather than
liquid as this causes the transducers to focus their

1 output toward the denser capture liquid rather than back
through the air of the mounting tubes.

5 A transducer level adjusting assembly 58 is used to
adjust the height of the mounting plate to thereby adjust
the level of the transducers within the primary reservoir.
10 The adjusting assembly preferably includes three threaded
drive heads, three threaded drive posts, and a belt that
turns the three drive heads simultaneously. A drive knob
with a drive pulley is used to turn the belt. By turning
the belt, the transducer mounting plate can be raised or
lowered as necessary to simultaneously change the position
of all of the transducers relative to the surface of the
liquid in the primary reservoir.

15 The electronic equipment used for driving the
transducers is best illustrated in FIG. 3. A variable
frequency oscillator 62 is used to generate a high
frequency sine wave 64. A preferred oscillator is a
digital function generator/counter capable of producing
sine, square, triangle, pulse and ramp wave forms. The
20 unit has an adjustable frequency range from 0.1 hertz to
2.3 megahertz in seven ranges. It has a variable output
amplitude from 5 mv to 20 Vp-p, variable symmetry/duty
cycle from 5% to 95% in the ramp or pulse mode, continuous
25 or externally controlled outputs. A d.c. offset between
-10 v to +10 v can be added to any of the output wave
forms.

30 The wave generated by the oscillator is amplified by
a continuous wave power amplifier 66. The preferred
amplifier is a solid state amplifier with a flat frequency
response from 100 kilohertz to 5 megahertz. It provides
50 watts of linear power with low harmonic and
intermodulation distortion. The amplified signal 68 from
the amplifier is split and used to drive the six
35 transducers.

35 When the transducers are vibrated at their resonance
frequency, they are positively displaced. The movement of
each transducer creates a high frequency sound wave.

1 Because the transducers are cup-shaped, the output of each
is focussed to a point. The useful range of frequencies
in generating an aerosol are from 0.025 to 2.3 megahertz.
5 While the choice of transducer will determine the
resonance frequency at which the oscillator will be set,
a variable frequency oscillator is useful for allowing
fine tuning of the aerosol generator, as well as the
substitution of different transducers in different
applications.

10 When the longitudinal sound waves generated by the
transducers impinge a boundary between two materials
having different sound velocities, such as the liquid-air
interface in the primary reservoir, a shear wave is
generated. The transducers are focused so that the shear
15 wave is approximately at the liquid level of the primary
reservoir so as to shear off a portion of the liquid and
form tiny droplets of the liquid as an aerosol. While the
tiny droplets act similar to a gas in their flow
properties, they maintain the physical properties of a
20 liquid.

25 Referring back to FIG. 2, it is preferred that the
overflow reservoir include a heating element 72 for
heating the capture liquid before generating the aerosol.
The heating element is located below the overflow
reservoir. A thermocouple is located in the primary
reservoir and a temperature controller is provided to
allow the temperature of the capture liquid to be set. By
adjusting the temperature of the capture liquid, the
properties of the aerosol to be generated can be varied.
30 For example, if the liquid is maintained at a temperature
10 to 15 degrees Fahrenheit higher than the temperature of
the process area, the resulting aerosol will tend to fill
the process area from the top downward. Conversely, if
the liquid is maintained at a temperature 10 to 15 degrees
35 Fahrenheit lower than the temperature of the process area,
the process area will tend to fill from the bottom upward.

1 Depending on the ventilation and air flow paths of the particular process area, such flexibility can be useful.

5 The aerosol droplets formed by the transducers are transported from the pressurization chamber by the use of pressurized air. A pressurization fan 76 located at a pressurization chamber inlet builds the pressure within the pressurization chamber such that the aerosol can be carried by the air into a collection funnel 78, through a discharge chimney 82 and out a pressurization chamber outlet 84. The pressurization fan is preferably a variable speed d.c. powered fan with an adjustable flow rate of between 2 and 20 cubic feet per minute. The pressure maintained in the pressurization chamber should be high enough to cause flow of aerosol into the process area without stirring up the hazardous dust contained in the process area. The aerosol stream from the pressurization chamber outlet port is directed to the process area by the use of a flexible conduit connected to an existing ventilation system.

10 The aerosol generator cabinet also includes four adjustable feet 86 for leveling the primary reservoir. Each foot is attached to a threaded stud with a knurled head. Each stud mates with the threads of a threaded aperture on the cabinet frame such that the feet can be individually adjusted by turning the knurled heads. A bubble level can also be provided on the transducer mounting plate to assist in levelling the cabinet. It is important that the reservoirs be perfectly level so that the transducers are properly focused.

15 The cabinet includes a control panel 92 which allows the adjustment of the oscillator frequency, the power amplifier output, the temperature of the capture liquid and the speeds of the pressurization fan and recirculation pump. Displays for transducer output, oscillator frequency, reservoir temperature, recirculation pump rate, power amplifier output, and pressurization fan flow rate

20

25

30

35

1 are also included. The control panel is preferably cooled
with a 45 cubic foot per minute a.c. powered cooling fan.

5 In order to simplify clean up, the cabinet for the
aerosol generator includes a pair of hinged side doors.
Removable rear and lower front panels also provide easy
access to the pressurization chamber. The pressurization
chamber is mounted in the cabinet on a track which allows
it to be slid out for maintenance and cleaning. A pair of
10 threaded studs lock the pressurization chamber in position
along the track during operation. The pressurization
chamber also includes a removable top section to further
simplify cleaning.

15 In order to clean the pressurization chamber, the
cabinet is opened, then the primary and overflow
reservoirs are drained of any excess liquid through drain
openings. The pressurization chamber is unlocked and slid
out along the track and the top is removed. The surfaces
of the funnel and chimney are wiped with a cloth and the
20 reservoirs are rinsed with a suitable cleaning solution
depending on the capture liquid used. The surfaces of the
reservoirs and pressurization chamber are then wiped with
a clean cloth. The tubing for the liquid recirculation
can be either cleaned or discarded.

25 Because the aerosol is generated by ultrasonic waves
rather than by mechanical nozzles or other conventional
methods for generating an aerosol, there is very little
turbulence generated. Therefore, the resulting aerosol
can be used to gently fill the process area without
30 resuspending a significant portion of the contaminants.
Most of the contaminants remain on the surfaces of the
process area where they can be encapsulated by the capture
liquid. The aerosol droplets encapsulate the particulates
35 by colliding with the surfaces of the process area to form
a thin film. Only a small amount, if any, if the
hazardous material is caused to become resuspended by the
aerosol stream. In order to further prevent the
particulates from becoming resuspended, low aerosol stream

1 rates are desired. Preferred flow rates are between 2 and
20 cubic feet per minute. By maintaining low flow rates,
streaking or puddling of the encapsulant on the surfaces
of the process area is avoided.

5 One important advantage of the aerosol generator of
the present invention is that by properly selecting the
transducers and the capture liquid, and by properly
controlling the various operating parameters, an aerosol
of a fairly uniform droplet size can be produced.
10 Moreover, the size of the aerosol droplets can also be
controlled.

15 In general, small aerosol droplets are preferred.
The droplets should be small enough to behave like a gas
in that they flow from areas of high concentration to
areas of low concentration without condensing. The size
of the droplets can be controlled by selection of the
transducer and capture liquid. Generally, the higher the
resonance frequency of a transducer, the smaller the
aerosol droplet. For the preferred transducer described
20 above as having a resonance frequency of about 2300
kilohertz, 95% of the aerosol droplets will be in the
range of 0.3 to 5 microns for distilled water with a mean
droplet diameter of about 2 microns. For the capture
25 liquid, higher frequency is required to produce aerosol
droplets of a smaller mean droplet size. If larger
aerosol droplets are produced, higher aerosol stream flow
rates are generally required.

30 In general, low aerosol stream flow rates are desired
so as to minimize turbulence in the process area.
However, the physical properties of the particular capture
liquid used can affect the flow rate. The viscosity and
surface tension are the properties that can most affect
the flow rate. Changes in these properties can also have
35 an impact on the power requirements, and hence, the
efficiency of the process. For highly viscous capture
liquids, the efficiency decreases and higher flow rates
are required. As surface tension of the capture liquid

1 increases, the efficiency of the aerosol generation
5 increases. However, the efficiency curve generally
10 includes a critical point after which further increases in
 surface tension can decrease the efficiency of aerosol
 generation. The temperature of the capture liquid can
 also affect the flow rate and efficiency due to its
 affects on the surface tension of a capture liquid.
 Surface tension generally decreases as temperature rises.
 Therefore, in addition to using the capture liquid heater
20 to vary the temperature of the aerosol generated, it can
 be used to vary the surface tension and thereby vary the
 aerosol generator efficiency.

15 Other factors can also affect the flow rates required
 for the aerosol stream. An increase in the temperature of
 the process area will result in lower flow requirements.
 Conversely, increases in the humidity of the process area
20 can require increased flow rates. The properties of the
 materials to be coated within the process area can also
 impact the flow rates. A higher coefficient of friction
 allows increased flow rates. Furthermore, if the process
 area is a great distance from the aerosol generator or at
 a higher elevation than the aerosol generator, higher flow
25 rates may be required. Finally, if multiple coats of
 encapsulant are to be applied, higher flow rates may be
 required.

30 While the focus point for the transducers is
 generally at the capture liquid level of the primary
 reservoir, the precise level to which the transducers
 should be submerged in the capture liquid can vary. The
 precise depth to which the transducers should be adjusted
 is determined by the chemistry and temperature of the
 capture liquid, and the power and frequency applied to the
 transducers. Variations of 1 to 2 mils can have an impact
35 on the efficiency of the aerosol generator. Fine tuning
 of the precise depth of the transducers can be achieved by
 adjusting the depth while visually checking the
 characteristics of the aerosol generated. The depth

1 should be adjusted so that a dense fog of aerosol is
produced. The need for fine tuning of the transducer
depth may also be due to the effects that the transducers
have on the surface of the capture liquid when operating.
5 For the transducers described above, a cone-shaped node
approximately 1/4 inch in height forms above each
transducer. The aerosol is produced from the tips and
sides of the nodes.

10 An optional aerosol recovery system of the present
invention is illustrated in FIG. 4. In using such a
recovery system, an exhaust aerosol stream is withdrawn
from the process area through a flexible duct. The
exhaust stream then enters the lower portion of a recovery
15 chamber 101. The recovery chamber includes a plurality of
spray nozzles 102 which are used to expose the exhaust to
a spray bath. The spray generated by the nozzles is used
to form a spray to both saturate the exhaust and cause the
droplets to increase in size. As the droplets increase in
20 size, they start to condense and fall to the bottom of the
recovery chamber. Preferably distilled water is used for
the spray though solvent based solutions may also be used
so as to be compatible with the capture liquid selected.

25 The condensed liquid collects in a sump 104 in the
recovery chamber and flows to a suction tube 106 of a
peristaltic spray recirculating pump 108. The spray
recirculating pump discharge is recycled through a recycle
tube to the spray nozzles to produce additional spray.
The preferred flow rate is about one gallon per minute,
30 although this can be varied depending on the aerosol to be
recovered.

35 Preferably the initial volume of spray liquid is
measured so that the increase in volume and, therefore,
the amount of aerosol recovered can be calculated. The
difference between the increase in the volume of liquid in
the recovery system and the decrease in volume in the
aerosol generator allows for a mass balance calculation in

1 which the total amount of capture liquid can be
calculated.

5 The preferred recovery chamber includes a cabinet
with a hinged top and removable side and back panels for
access. A disposable glove bag liner with a capacity of
about 16 cubic feet is used to line the cabinet. The
glove ports 114 in the liner are useful for adjusting the
nozzles. Preferably, the nozzles and recycle tubing are
10 also disposable to simplify clean up. Because the
peristaltic pump does not contact the spray, it need not
be cleaned. However, as with the recirculation pump of
the aerosol generator, an inexpensive disposable spray
recirculation pump is contemplated to eliminate the cost
associated with a peristaltic pump.

15 After the exhaust stream flows through the spray
nozzles of the recovery chamber for aerosol removal, it
proceeds to a moisture separator 116 where most of the
entrained liquid will be removed. The preferred moisture
separator is a disposable, lightweight stainless steel
20 mesh filter.

25 From the moisture separator, the flow proceeds to a
high-efficiency particulate air filter 118 in which
approximately 99.7% of particulate 0.3 microns in diameter
and larger are removed. Preferably, the filter is
disposable.

30 Disposable materials are preferred for the recovery
system since some of the hazardous material from the
process area may be carried from the process area by the
aerosol. Such hazardous material will generally be at
least partially encapsulated by the aerosol and will be
collected by the spray bath, the moisture separator or the
filter.

35 An exhaust fan 122 is used to maintain the recovery
chamber at a slight negative pressure and to assist in
drawing exhaust through the recovery system. Preferably
a variable speed d.c. fan is used so that the flow rate of
gas through the recovery system can be adjusted. The

1 preferred range for the exhaust fan is between about 4 and
25 cubic feet per minute. A differential pressure
indicator can also be used to monitor the pressure
differential between the aerosol generator and the
5 recovery system so as to maintain the desired flow of
aerosol through the system. A preferred pressure
differential between the aerosol generator and recovery
system is about 0.5 inches of water or less. In order to
10 maintain flow through the system in the correct direction,
the exhaust fan is generally run at a slightly higher flow
rate than the pressurization fan.

15 The aerosol recovery system also includes a control
panel for monitoring and controlling the spray flow and
the exhaust flow. The liquid level in the sump can be
visually inspected to calculate the volume of aerosol
recovered. The nozzle spray pattern can also be visually
inspected and adjusted manually through the glove ports.

20 In practice, the aerosol generator is first started
so as to fill the process area with a fog of aerosol. An
aerosol rate of about 1 liter per hour is generally
adequate. Once the process area has been filled with this
25 fog and an optimum concentration of aerosol in the process
area has been reached, the aerosol recovery system is then
started to allow the simultaneous feeding and purging of
the process area. By maintaining a flow of aerosol
through the system, the surfaces of the process area will
be evenly coated with the encapsulant.

30 While flexible ducts are generally described for
connecting the aerosol generator and aerosol recovery
system to the process area, hard ducts may also be used
and are preferred in systems that will operate for
prolonged periods. Moreover, various other modifications
35 to the presently described invention would be apparent to
one skilled in the art and are intended to be included
within the scope of this invention. For example, while
air is generally described for use as the carrier gas for
carrying the aerosol into the process area; other gases

1 may also be used. An inert gas such as nitrogen may be
useful as a carrier gas, especially if a flammable capture
liquid is used. By maintaining an inert atmosphere, the
risk of explosion can be reduced. If nitrogen or some
5 other gas is used as the carrier gas, it can be provided
in pressurized cylinders and the pressurization fan can be
replaced by a pressure regulator.

The process and apparatus will be described further
by the following examples.

10 **EXAMPLE 1**

A test booth was constructed measuring eight feet
long by four feet deep by eight feet high for a total
volume of 256 cubic feet. Various test coupons were
placed within the booth. The test coupons included
15 samples of stainless steel plate, carbon steel piping,
carbon steel valves, glass, plastic, painted drywall, wood
and wire insulation. Certain of the test coupons were
covered with a conventional strippable coating. The
booth, including the test coupons, was then dusted with a
20 fine, highly mobile dust of fluorescent powder to simulate
contamination of a process area with hazardous
particulates. The individual dust particles ranged in
size from about 1 to about 100 microns in diameter with a
mean particle diameter of about 40 microns. A
25 contamination survey using standard disc smears quantified
that 60 to 80% of the smear surface was covered with the
powder.

The booth was closed and the discharge of an aerosol
generator of the present invention was connected to an
30 opening on the lower third of the test booth door. A
total of 1000 milliliters of capture coating was
introduced to the test booth as an aerosol through a
four-inch filtered airway. The flow rate of the aerosol
was controlled to a rate of less than ten cubic feet per
35 minute through an injection nozzle with a nominal diameter
of six inches. The total discharge time was approximately
four hours.

1 During the test, the temperature and humidity of the
test booth were measured and compared to the ambient
atmosphere. The initial temperature of 76°F and humidity
of 40% for the test booth matched the measurements for the
5 ambient atmosphere. The temperature and humidity of the
ambient atmosphere did not change during the test. While
the temperature of the test booth did not change during
the test, the humidity increased to over 99%.

10 The capture coating used for generating the aerosol
was a sugar mixture comprising 2 parts by weight
polysaccharide, 18 parts by weight monosaccharide and 80
parts by weight deionized water.

15 About one hour after stopping the generation of
aerosol, the test booth was entered for visual inspection.
Inspection with a black light revealed the fluorescent
glow of the simulated contamination under and within the
capture coat which had deposited on all interior surfaces
20 of the test booth including the test coupons. A survey
using standard disc smears indicated that insignificant
levels of fluorescent powder remained airborne in the test
booth. The surfaces of the test booth and the test
coupons were fairly evenly covered with a thin, viscous
layer of capture coating about 3 mils thick.

25 Additionally, gentle rubbing of the coated surfaces
while observing the fluorescent powder under a black light
revealed that the fluorescent powder was captured or
"stuck" in place. Subsequent testing of the test coupons
up to a year after the application of the capture coating
revealed that the fluorescent powder was still-captured or
30 "stuck."

EXAMPLE 2

A capture liquid useful for many different hazardous
materials can be produced as follows:

1 PART A

WEIGHT	MATERIAL
3.95	1-methyl-2-pyrrolidinone
5 0.71	triethyl amine
0.06	ammonium hydroxide
2.71	dipropylene glycol methyl ether
1.35	texanol ester alcohol
10 0.02	silicone glycol
0.23	isopropyl alcohol
0.69	butyl benzyl phthalate
0.08	ammonium benzoate
15 8.78	polyurethane dispersion
16.20	acrylic copolymer
40.22	water
75.00	TOTAL

20

PART B

WEIGHT	MATERIAL
25 5.00	aliphatic polyisocyanate
0.13	hexamethylene diisocyanate (HDI)
19.87	HDI based polyisocyanate
25.00	TOTAL

30 The polyurethane dispersion and acrylic copolymer used in this example were products manufactured by Imperial Chemicals Limited and sold under the names Neorez R-9679 and Neocryl A-5045, respectively.

35 Part A and Part B are combined in the weight ratio of 3:1 to form a capture liquid. Upon collision with the hazardous dust and the surfaces of the process area to be treated, the aerosol formed by this capture liquid begins

1 to coalesce to form a tacky layer that can encapsulate the
hazardous dust.

5

10

15

20

25

30

35