ECE2 - Concours blanc 1

MATHÉMATIQUES 1-TYPE HEC

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs.

Il ne doivent faire usage d'aucun document. L'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidate repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les initiatives qu'il sera amené à prendre.

EXERCICE

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 3 à coefficients réels. On pose pour toute matrice $A = (a_{i,j})_{1 \le i,j \le 3} \in \mathcal{M}_3(\mathbb{R})$:

$$s_1(A) = \sum_{j=1}^{3} a_{1,j}$$
; $s_2(A) = \sum_{j=1}^{3} a_{2,j}$; $s_3(A) = \sum_{j=1}^{3} a_{3,j}$ (somme des coefficients des lignes),

$$s_4(A) = \sum_{i=1}^{3} a_{i,1}$$
; $s_5(A) = \sum_{i=1}^{3} a_{i,2}$; $s_6(A) = \sum_{i=1}^{3} a_{i,3}$ (somme des coefficients des colonnes)

$$s_7(A) = \sum_{i=1}^3 a_{i,i}$$
; $s_8(A) = \sum_{i=1}^3 a_{i,4-i}$ (somme des coefficients des diagonales).

Pour tout couple $(k, l) \in [1, 3]^2$, on note $E_{k, l}$ la matrice de $\mathcal{M}_3(\mathbb{R})$ dont tous les coefficients sont nuls excepté celui situé à l'intersection de la k-ième ligne et de la l-ième colonne qui vaut 1.

On rappelle que la famille $(E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}, E_{3,1}, E_{3,2}, E_{3,3})$ est une base de $\mathcal{M}_3(\mathbb{R})$; on note \mathscr{B} cette base.

- 1. Soit \mathscr{E} l'ensemble des matrices $A \in \mathscr{M}_3(\mathbb{R})$ telles que $s_7(A) = 0$.
 - (a) Montrer que \mathscr{E} est un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$.
 - (b) Quelle est la dimension de \mathscr{E} ?

Soit f l'application de $\mathcal{M}_3(\mathbb{R})$ dans \mathbb{R}^8 définie par :

$$\forall A \in \mathcal{M}_3(\mathbb{R}), \quad f(A) = (s_1(A), s_2(A), s_3(A), s_4(A), s_5(A), s_6(A), s_7(A), s_8(A)).$$

- 2. (a) Montrer que f est une application linéaire.
 - (b) On note \mathscr{C} la base canonique de \mathbb{R}^8 . Écrire la matrice F de f dans les bases \mathscr{B} et \mathscr{C} .
- 3. On note \mathcal{G} l'ensemble des matrices $A \in \mathcal{M}_3(\mathbb{R})$ telles que :

$$s_1(A) = s_2(A) = s_3(A) = s_4(A) = s_5(A) = s_6(A) = s_7(A) = s_8(A)$$
.

- (a) Montrer que \mathcal{G} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- (b) On note $\ker(f)$ le noyau de l'application linéaire f. Montrer que $\mathscr{G} \cap \mathscr{E} = \ker(f)$.
- (c) On note J la matrice de $\mathcal{M}_3(\mathbb{R})$ dont tous les coefficients sont égaux à 1. Montrer que toute matrice de \mathcal{G} s'écrit de manière unique comme la somme d'une matrice de ker(f) et d'une matrice de Vect(J).
- (d) Quel est le rang de l'application f?
- (e) Déterminer la dimension de ker(f) ainsi qu'une base de ker(f).

PROBLÈME

• La fonction de répartition de la loi normale centrée réduite est notée Φ :

$$\forall x \in \mathbb{R}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

- La notation exp désigne la fonction exponentielle.
- Les trois parties du problème sont très largement indépendantes.

Partie I. Un équivalent d'une intégrale

1. Soit N la fonction définie sur l'intervalle [0, 1[, à valeurs réelles, telle que :

$$N(x) = x^2 - 2x - 2(1-x)\ln(1-x)$$
.

- (a) Montrer que la fonction N est de classe \mathscr{C}^1 sur [0,1[.
- (b) Montrer que pour tout $x \in [0, 1[$, on a : $\ln(1 x) \le -x$.
- (c) On note N' la fonction dérivée de la fonction N. Montrer que pour tout $x \in [0, 1[$, on a : N' $(x) \le 0$.
- (d) En déduire pour tout $x \in [0, 1]$, un encadrement de N(x).
- 2. Soit *f* la fonction définie sur l'intervalle]0,1[, à valeurs réelles, telle que : $f(x) = -2 \frac{x + \ln(1-x)}{x^2}$.
 - (a) Rappeler le développement limité en 0 à l'ordre 2 de ln(1-x).
 - (b) Calculer $\lim_{x\to 0} f(x)$. En déduire que la fonction f est prolongeable par continuité en 0. On note encore f la fonction ainsi prolongée.
 - (c) Sous réserve d'existence, on note f' la fonction dérivée de f. Montrer que pour tout $x \in]0,1[$, on a : $f'(x) = -2\frac{N(x)}{x^3(1-x)}$.
 - (d) Dresser le tableau de variation de la fonction f sur [0,1[. En déduire que f réalise une bijection strictement croissante de [0,1[dans $[1,+\infty[$.
- 3. On pose pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0, 1[: g_n(x) = \exp(-\frac{nx^2}{2}f(x))]$.
 - (a) Établir la convergence de l'intégrale $\int_0^1 g_n(x) dx$. On pose alors pour tout $n \in \mathbb{N}^*$: $I_n = \int_0^1 g_n(x) dx$.
 - (b) Montrer que pour tout $x \in [0,1[$, on $a: 0 \le g_n(x) \le \exp\left(-\frac{nx^2}{2}\right)$.
 - (c) En déduire l'encadrement : $0 \le I_n \le \sqrt{\frac{2\pi}{n}} \left(\Phi\left(\sqrt{n}\right) \frac{1}{2}\right)$.
 - (d) Montrer que pour tout $n \in \mathbb{N}^*$, on $a : 0 \le I_n \le \sqrt{\frac{\pi}{2n}}$.
- 4. Soit $(v_n)_{n\in\mathbb{N}}$ * la suite réelle définie par : pour tout $n\in\mathbb{N}^*$, $v_n=\frac{1}{\ln(n+2)}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}^*$, on a : $0 < v_n < 1$.
 - (b) On pose pour tout $n \in \mathbb{N}^*$: $w_n = f(v_n)$. Établir la convergence de la suite $(w_n)_{n \in \mathbb{N}^*}$; déterminer sa limite.
 - (c) Établir pour tout $n \in \mathbb{N}^*$ les inégalités suivantes :

$$I_n \geqslant \int_0^{v_n} g_n(x) dx \geqslant \int_0^{v_n} \exp\left(-\frac{nx^2}{2}w_n\right) dx \geqslant \frac{1}{\sqrt{nw_n}} \int_0^{v_n\sqrt{nw_n}} \exp\left(-\frac{u^2}{2}\right) du.$$

- (d) Établir pour tout $n \in \mathbb{N}^*$, l'encadrement : $\frac{2}{\sqrt{w_n}} \left(\Phi \left(v_n \sqrt{nw_n} \right) \frac{1}{2} \right) \leqslant I_n \sqrt{\frac{2n}{\pi}} \leqslant 1$.
- (e) En déduire un équivalent de I_n lorsque n tend vers $+\infty$.

Partie II. Quelques propriétés asymptotiques de la loi de Poisson

2/4

Les notations sont identiques à celles de la Partie I.

- 5. On pose pour tout réel x > 0 et pour tout $n \in \mathbb{N}^*$: $J_0(x) = 1 e^{-x}$ et $J_n(x) = \frac{1}{n!} \int_0^x t^n e^{-t} dt$.
 - (a) Calculer pour tout réel x > 0, $J_1(x)$.

- (b) Établir pour tout réel x > 0 et pour tout $n \in \mathbb{N}^*$, la relation : $J_n(x) = J_{n-1}(x) \frac{1}{n!}x^n e^{-x}$.
- (c) En déduire pour tout réel x > 0 et pour tout $n \in \mathbb{N}^*$, une expression de $J_n(x)$ sous forme de somme.
- (d) Montrer que pour tout $n \in \mathbb{N}^*$, l'intégrale $\int_0^{+\infty} t^n e^{-t} dt$ est convergente et calculer sa valeur.
- (e) À l'aide du changement de variable t = n(1 x), montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$I_n = n! \frac{e^n}{n^{n+1}} J_n(n).$$

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes, définies sur un espace probabilisé (Ω, \mathcal{A}, P) , de même loi de Poisson de paramètre 1. On pose pour tout $n \in \mathbb{N}^*$: $S_n = \sum_{i=1}^n X_i$.

- 6. (a) Rappeler, sans démonstration mais en citant le résultat de cours utilisé, la loi de la variable aléatoire S_n.
 - (b) Exprimer pour tout $n \in \mathbb{N}^*$, $P([S_n \le n])$ et $P([S_n \ge n])$ en fonction de $J_n(n)$ et $J_{n-1}(n)$ respectivement
- 7. Pour tout $n \in \mathbb{N}^*$, on note h_n la fonction définie sur \mathbb{R}_+ à valeurs réelles, telle que : $h_n(x) = x^n e^{-x}$.
 - (a) Étudier les variations de h_n sur \mathbb{R}_+ .
 - (b) Établir pour tout $n \in \mathbb{N}^*$, la relation :

$$P([S_{n+1} \le n+1]) - P([S_n \le n]) = -\frac{1}{(n+1)!} \int_n^{n+1} (h_{n+1}(t) - h_{n+1}(n)) dt.$$

- (c) En déduire que la suite $(P([S_n \le n]))_{n \in \mathbb{N}}$ * est décroissante.
- (d) Étudier la monotonie de la suite $(P([S_n \ge n]))_{n \in \mathbb{N}^*}$.
- (e) Montrer que les deux suites $(P([S_n \le n]))_{n \in \mathbb{N}^*}$ et $(P([S_n \ge n]))_{n \in \mathbb{N}^*}$ sont convergentes.

8.

- (a) À l'aide du théorème central limite, déterminer $\lim_{n \to +\infty} P([S_n \le n])$.
- (b) En déduire, à l'aide des questions 4 et 5, un équivalent de n! lorsque n tend vers $+\infty$
- (c) Donner un équivalent et la limite de $P([S_n = n])$ lorsque n tend vers $+\infty$.
- (d) Déterminer $\lim_{n \to +\infty} P([S_n \ge n])$.

Partie III. Médianes : cas des variables aléatoires discrètes et des variables aléatoires à densité

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) , de fonction de répartition F. On appelle médiane de X , tout réel m vérifiant les deux conditions : $P([X \le m]) \ge \frac{1}{2}$ et $P([X \ge m]) \ge \frac{1}{2}$. On admet qu'un tel réel m existe toujours.

9. On suppose que l'on a défini un entier N supérieur ou égal à 1. Soit X une variable aléatoire discrète à valeurs dans [1,N]. On suppose que la loi de X est stockée dans une variable loi :

$$loi = [P(X = 1), ..., P(X = N)].$$

Écrire un script Scilab qui renvoie une médiane de X.

- 10. Dans cette question, X est une variable aléatoire discrète à valeurs dans $\mathbb N$ admettant une espérance E(X).
 - (a) Montrer que pour tout $r \in \mathbb{N}^*$, on a : $\operatorname{E}(|\mathbf{X} r|) = \operatorname{E}(\mathbf{X}) r + 2\sum_{k=0}^{r-1} (r-k)\operatorname{P}([\mathbf{X} = k])$.
 - (b) Montrer que: $\sum_{k=0}^{r-1} F(k) = \sum_{k=0}^{r-1} (r-k) P([X=k]).$

En déduire que pour tout $r \in \mathbb{N}^*$, on a : $\mathbb{E}(|\mathbf{X} - r|) = \mathbb{E}(\mathbf{X}) + 2\sum_{k=0}^{r-1} \left(\mathbb{F}(k) - \frac{1}{2}\right)$.

- (c) Soit m une médiane de X. On suppose que $m \in \mathbb{N}^*$. Déterminer, pour tout $r \in \mathbb{N}^*$, le signe de E(|X - r|) - E(|X - m|). Conclure.
- (d) On suppose que X suit la loi de Poisson de paramètre n $(n \in \mathbb{N}^*)$. En utilisant les questions 7 et 8, justifier que n est une médiane de X.

En utilisant les questions 10a et 8, montrer que $\mathbb{E}(|X-n|)$ est équivalent à $\sqrt{\frac{2n}{\pi}}$ quand n tend vers $+\infty$.

- 11. Dans cette question, X est une variable aléatoire à densité dont une densité f est continue sur \mathbb{R} . On suppose que X admet une espérance E(X). Soit M la fonction de \mathbb{R} dans \mathbb{R} définie par M(x) = E(|X-x|).
 - (a) Établir pour tout $x \ge 0$ l'encadrement : $0 \le x (1 F(x)) \le \int_x^{+\infty} t f(t) dt$. En déduire que $\lim_{x \to +\infty} x (1 F(x)) = 0$. En considérant la variable aléatoire -X. montrer que $\lim_{x \to -\infty} x F(x) = 0$.
 - (b) Établir pour tout x réel, la relation : $M(x) = \int_{-\infty}^{x} F(t) dt + \int_{x}^{+\infty} (1 F(t)) dt$.
 - (c) Montrer que pour tout couple $(a, b) \in \mathbb{R}^2$, on a : M(b) M(a) = $\int_a^b (2F(t) 1) dt$.
 - (d) On note m une médiane de X. Montrer que m est un point en lequel la fonction M atteint son minimum.

• FIN •