Hochschule RheinMain

Fachbereich Design Informatik Medien Studiengang Angewandte Informatik Prof. Dr. Bernhard Geib

Fehlertolerante Systeme

Sommersemester 2021 (LV 7201)

4. Übungsblatt

Aufgabe 4.1

Die folgende Abbildung zeigt das Zuverlässigkeits-Blockschaltbild eines 3-Komponenten-Systems. Die einzelnen Komponenten seien voneinander statistisch unabhängig und jeweils reparierbar.

- a) Zeichnen Sie einen Fehlerbaum des Systems und geben Sie die entsprechende Redundanz-Strukturfunktion X_s an.
- b) Die beiden Komponenten 1 und 2 haben eine Ausfallrate $\lambda = 10^{-2} \ h^{-1}$ sowie eine Reparaturrate $\mu = 0.5 \ h^{-1}$. Die Verfügbarkeit der Komponente 3 beträgt V₃ = 0.96. Berechnen Sie hieraus die System-Verfügbarkeit V_s.

Aufgabe 4.2

Skizzieren bzw. berechnen Sie für das nachstehende Zuverlässigkeits-Blockschaltbild mit einer Serien-Parallel-Struktur:

Üb FTS 4N 1

- a) den zugehörigen Fehlerbaum,
- b) die Systemverfügbarkeit V_s bei gegebener Verfügbarkeit V_i der Einzelkomponenten (i = 1, 2, 3, 4) und
- c) das entsprechende Zustandsdiagramm des Systems.

Aufgabe 4.3

Ein Betrieb fertigt elektronische Bauteile als Massenware. Vom Fertigungsprozess her weiß man, dass die Ausschussquote durchschnittlich 10 % beträgt. Mit insgesamt sechs Bauteilen B₁ bis B₆ aus der laufenden Produktion werden nun folgende zwei Schaltungen aufgebaut:

Schaltung I funktioniert genau dann, wenn die beiden Bauteile B₁ und B₂ intakt sind. Schaltung II funktioniert dagegen genau dann, wenn entweder die Bauteile B₃ und B₄ oder die Bauteile B₅ und B₆ intakt sind.

- a) Mit welcher Wahrscheinlichkeit Pı funktioniert die Schaltung I?
- b) Mit welcher Wahrscheinlichkeit PII funktioniert die Schaltung II?
- c) Um wie viel Prozent ist die Verfügbarkeit der Schaltung II größer als die der Schaltung I?

Aufgabe 4.4

Ein Autofahrer ist mit seinem PKW unterwegs. Wir interessieren uns für die Wahrscheinlichkeitsverteilung $P_r(t)$, dass das Fahrzeug nicht mit einem Reifenschaden stehen bleibt, wenn genau ein Reservereifen mitgeführt wird. Für die Wahrscheinlichkeit des Ausgangszustands gelte: P_r (t=0) = 1, d. h. alle vier Reifen sowie der Reservereifen seien zum Zeitpunkt t=0 intakt. Bekannt seien zur Lösung der Aufgabenstellung ferner die Ausfallraten der Reifen (Versagen eines Reifens λ_R und Versagen des Reservereifens λ_r) sowie die Reparaturdauer für einen Reifenwechsel (T_r). Für die Modellierung der Aufgabe werden zwei unterschiedliche Modelle betrachtet.

a) Skizzieren Sie für die beschriebene Situation das zugehörige einfache Zustandsübergangsdiagramm. Betrachten Sie hierbei die folgenden 3 Zustände (vereinfachte Modellierung):

Üb_FTS_4N 2

- 0: alle 4 Reifen intakt (Reservereifen wird nicht benutzt)
- 1: genau ein Reifen defekt (Reservereifen wird benutzt)
- 2: sowohl ein Reifen als auch der Reservereifen defekt
- b) Skizzieren Sie für die beschriebene Situation das zugehörige genauere Zustandsübergangsdiagramm. Betrachten Sie hierbei die folgenden 5 Zustände (genauere Modellierung):
 - 0: alle 4 Reifen intakt und Reservereifen wird nicht benutzt (kalte Reserve)
 - 1: genau ein Reifen defekt und Reservereifen steht zur Verfügung
 - 2: genau ein Reifen defekt und Reservereifen wird benutzt
 - 3: genau zwei Reifen defekt und Reservereifen schon aufgezogen
 - 4: genau ein Reifen und der Reservereifen defekt
- c) Skizzieren Sie den Verlauf von $P_r(t)$ für $t \ge 0$. Im Endzeitpunkt mögen sich stationäre Verhältnisse eingestellt haben.

Üb FTS 4N 3