# Éléments de Programmation + Cours 03 - Boucles

#### Romain Demangeon

LU1IN011 - Section ScFo 11 + 13 + ...

26/09/2022



# Expressivité et Terminaison

#### Expressivité

L'expressivité d'un langage, c'est l'ensemble des fonctions mathématiques qui peuvent être calculées par des fonctions informatiques (programmes) écrites dans ce langage.

- Jusqu'ici, trois instructions:
  - return.
  - affectation =.
  - ▶ alternative if : / else :.
- Expressivité limitée (calculatrice): primalité ?
- Implémentation de formules mathématiques (conditionnées).

#### **Terminaison**

Une fonction (informatique) f termine sur l'entrée f quand l'exécution de f (e) finit par s'arrêter. Elle termine quand elle termine sur toutes ses entrées.

Toutes nos fonctions terminent trivialement.



# Actions Répétitives

### Objectif

Pouvoir répéter une action aussi longtemps que nécessaire.

- ► Analogie culinaire:
  - monter des blancs en neige,
  - cuire un gâteau.
- ▶ Répéter des actions similaires, potentiellement différentes.
- ► Comment exprimer aussi longtemps que nécessaire ?
- Terminaison ?









### Calcul de la somme des premiers entiers

#### Problème

Calculer la somme des n premiers entiers.



### Calcul de la somme des premiers entiers

#### Problème

Calculer la somme des *n* premiers entiers.

```
(willing suspension of disbelief: "Gauss n'a jamais existé: \sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} est inconnue.")
```

### Par exemple, si *n* vaut 5

```
def somme5() -> int:
    """retourne la somme des 5 premiers entiers naturels."""
    return 1 + 2 + 3 + 4 + 5
# Test
assert somme5() == 15
```



### Calcul de la somme des premiers entiers

#### Problème

Calculer la somme des *n* premiers entiers.

```
(willing suspension of disbelief: "Gauss n'a jamais existé: \sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} est inconnue.")
```

#### Par exemple, si *n* vaut 5

```
def somme5() -> int:
    """retourne la somme des 5 premiers entiers naturels."""
    return 1 + 2 + 3 + 4 + 5
# Test
assert somme5() == 15
```

- Malaise:
  - solution spécifique à n = 5.
    - définir une fonction pour chaque entier.
  - **E**criture fastidieuse quand n = 100000.
- On voudrait:
  - une définition générale def somme(n : int) ->int,



# Calcul de la somme des premiers entiers (II)

- Calculs répétitifs: nombre d'étapes n'est pas fixe.
- Math: formule générale  $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$ .
  - ightharpoonup n est paramètre de la formule (pas i).
- ► A la main, approche itérative:
  - la somme s vaut 0 initialement,
  - on ajoute le premier entier 1, s vaut 1,
  - on ajoute l'entier suivant 2, s vaut 3,
  - on ajoute l'entier suivant 3, s vaut 6,
  - on ajoute l'entier suivant 4, s vaut 10,
  - on ajoute l'entier suivant 5, s vaut 15,
  - on a atteint la borne 5, on s'arrête et la somme vaut 15.

```
def somme.ite5() -> int:
    """retourne la somme des 5 premiers entiers naturels."""

s: int = 0 # valeur temporaire de la somme

s = s + 1
    s = s + 2
    s = s + 3
    s = s + 4
    s = s + 5
    return s
```

# Calcul de la somme des premiers entiers (III)

- Même traitement à chaque étape.
  - Une instruction: affecter une nouvelle valeur à la variable s.
- ► Idée:
  - une variable i initialisée à 1 pour représenter, successivement les entiers de 1 à n.
  - une variable s initialisée à 0 pour représenter la somme des entiers jusqu'à l'entier courant.
  - a chaque étape (en tout *n* fois):
    - ▶ affecter à s sa valeur courante augmentée de i,
    - faire passer i à l'entier suivant (incrémentation).
  - arrêter quand on a fait *n* étapes avec *n* paramètre.
- Outil fourni dans tout (?) langage de prog.: les boucles.



# Calcul de la somme des premiers entiers (IV)

- Boucle while: répète un bloc d'instruction tant qu'une certaine condition (expression booléenne) est vérifiée.
- ► Ici, principe de répétition:
  - répéter tant que i <= 5 (condition) le bloc d'instructions suivant:
    - 1. Instr. ajouter s le contenu de i (s = s + i).
    - 2. Instr. incrémenter i (i = i + 1).

```
def somme.while5() -> int:
    """retourne la somme des 5 premiers entiers naturels."""
    i : int = 1 # entier courant
    s : int = 0 # la somme cumulee
    while i <= 5:
        s = s + i
        i = i + 1
    return s
# Test
assert somme.while5() == 1 + 2 + 3 + 4 + 5</pre>
```

► Terminaison ?: i vaut 6 au 5eme tour, condition fausse, on sort.



# Syntaxe du while

#### Syntaxe:

```
while cond:
   instruction_1
   instruction_2
   ...
   instruction_n
```

cond est la condition de la boucle, c'est une expression booléenne

```
instruction.1
instruction.2
...
instruction.n
```

est le corps de la boucle (ce qui est répété).

le corps est défini par l'indentation:

```
while cond
instruction.1
instruction.2
...
instruction.n
instruction.n
```

ici, instruction.n1 ne fait par partie du corps de la boucle, elle n'est pas répétée, elle est exécutée en sortie de la boucle.



# Calcul de la somme des premiers entiers (V)

- ► Grâce au while: écriture synthétique de somme5.
- ► Généraliser la somme: *n* comme paramètre, pour remplacer 5.

```
def somme.entiers(n : int) →> int:
    """Precondition: n >= 1
    retourne la somme des n premiers entiers naturels."""

i : int = 1 # entier courant, en commencant par 1

s : int = 0 # la somme cumulee

while i <= n:
    s = s + i
    i = i + 1

return s</pre>
```



#### Somme des carrés.

Donner une fonction somme carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

► Spécification:



#### Somme des carrés.

Donner une fonction somme\_carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

- ► Spécification: def somme\_carres(n : int) ->int
- ► Précondition:



#### Somme des carrés.

Donner une fonction somme\_carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

- ► Spécification: def somme\_carres(n : int) ->int
- ► Précondition: n >= 0
- ► Algorithme:



#### Somme des carrés.

Donner une fonction somme\_carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

- ► Spécification: def somme\_carres(n : int) ->int
- ► Précondition: n >= 0
- ► Algorithme: ajouter incrémentalement le carré de chaque entier, en partant de 0 et en s'arrêtant à n
- ► Implémentation:



#### Somme des carrés.

Donner une fonction somme\_carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

- ► Spécification: def somme\_carres(n : int) ->int
- ► Précondition: n >= 0
- ► Algorithme: ajouter incrémentalement le carré de chaque entier, en partant de 0 et en s'arrêtant à n
- ► Implémentation:

```
def somme.carres(n : int) ->> int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
while i <= n:
    s = s + i * i
    i = i + 1
return s</pre>
```

Validation:



#### Somme des carrés.

Donner une fonction somme\_carres qui prend en entrée un entier naturel  $\tt n$  et renvoie la somme des carrées des entiers de 0 jusque  $\tt n$ .

- ► Spécification: def somme\_carres(n : int) ->int
- ► Précondition: n >= 0
- Algorithme: ajouter incrémentalement le carré de chaque entier, en partant de 0 et en s'arrêtant à n
- Implémentation:

```
def somme.carres(n : int) ->> int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
    while i <= n:
        s = s + i * i
        i = i + 1
    return s</pre>
```

Validation:

```
#Test
assert somme_carres(4) == 30
```



#### Somme des entiers impairs.

Donner une fonction somme\_impairs qui prend en entrée un entier naturel n et renvoie la somme des entiers impairs compris entre 0 et n (inclus).

► Spécification:



#### Somme des entiers impairs

- Spécification: def somme\_impairs(n : int) ->int
- ▶ Précondition:



#### Somme des entiers impairs

- ► Spécification: def somme\_impairs(n : int) ->int
- ▶ Précondition: n >= 0
- Algorithme:



#### Somme des entiers impairs.

- ► Spécification: def somme\_impairs(n : int) ->int
- ▶ Précondition: n >= 0
- ► Algorithme:
  - parcourir incrémentalement les entiers, partant de 0 et en s'arrêtant à n, et n'ajouter que ceux impairs.
  - parcourir de 2 en 2, en partant de 1 et en s'arrêtant à n.
  - parcourir incrémentalement les entiers de 0 à (n 1) // 2, et ajouter le successeur de leur double à chaque étape.
- ► Implémentation:

```
def somme.impairs1(n : int) -> int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
    while i <= n:
        if i % 2 == 1:
            s = s + i
        i = i + 1
    return s</pre>
```

```
def somme.impairs2(n : int) -> int:
    """Precondition : n >= 0 """
    i : int = 1
    s : int = 0
    while i <= n:
        s = s + i
        i = i + 2
    return s</pre>
```

```
def somme.impairs3(n : int) → int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
    while i <= (n - 1) // 2:
        s = s + 2 * i + 1
        i = i + 1
    return s</pre>
```





### Somme des entiers impairs.

- Spécification: def somme\_impairs(n : int) ->int
- ▶ Précondition: n >= 0
- ► Algorithme:
  - parcourir incrémentalement les entiers, partant de 0 et en s'arrêtant à n, et n'ajouter que ceux impairs.
  - parcourir de 2 en 2, en partant de 1 et en s'arrêtant à n.
  - ▶ parcourir incrémentalement les entiers de 0 à (n-1) // 2, et ajouter le successeur de leur double à chaque étape.
- ► Implémentation:

```
def somme.impairs1(n : int) -> int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
    while i <= n:
        if i % 2 == 1:
            s = s + i
        i = i + 1
    return s</pre>
```

```
def somme.impairs2(n : int) -> int:
    """Precondition : n >= 0 """
    i : int = 1
    s : int = 0
    while i <= n:
        s = s + i
        i = i + 2
    return s</pre>
```

```
def somme.impairs3(n : int) → int:
    """Precondition : n >= 0 """
    i : int = 0
    s : int = 0
    while i <= (n - 1) // 2:
    s = s + 2 * i + 1
    i = i + 1
    return s</pre>
```



#### Racine cubique approchée.

Donner une fonction  $racine\_cubique\_entiere$  qui prend en entrée un entier naturel n et renvoie la partie entière de sa racine cubique.

Spécification:



#### Racine cubique approchée.

Donner une fonction  $racine\_cubique\_entiere$  qui prend en entrée un entier naturel n et renvoie la partie entière de sa racine cubique.

- ► Spécification: def racine\_cubique\_entiere(n : int) ->int:
- Hypothèse:



#### Racine cubique approchée.

Donner une fonction  $racine\_cubique\_entiere$  qui prend en entrée un entier naturel n et renvoie la partie entière de sa racine cubique.

- ► Spécification: def racine\_cubique\_entiere(n : int) ->int:
- ► Hypothèse: n >= 0
- Algorithme:
  - Problème: pas de primitive pour faire directement la racine cubique.



#### Racine cubique approchée.

Donner une fonction  $racine\_cubique\_entiere$  qui prend en entrée un entier naturel n et renvoie la partie entière de sa racine cubique.

- ► Spécification: def racine\_cubique\_entiere(n : int) ->int:
- ► Hypothèse: n >= 0
- Algorithme:
  - Problème: pas de primitive pour faire directement la racine cubique.
  - Solution: on parcourt incrémentalement tous les entiers et on les élève au cube, on s'arrête quand on dépasse n.
  - Différence: on ne sait pas à l'avance combien de tours de boucle on va faire.
- ► Implémentation et Validation:

```
def racine.cubique.entiere(n : int) -> int:
    """Precondition : n >= 0 """
    racine : int = 0
    while (racine ** 3) <= n:
        racine = racine + 1
    return racine - 1

assert racine.cubique.entiere(30) == 3</pre>
```



#### Racine cubique approchée.

Donner une fonction  $racine\_cubique\_entiere$  qui prend en entrée un entier naturel n et renvoie la partie entière de sa racine cubique.

- ► Spécification: def racine\_cubique\_entiere(n : int) ->int:
- ► Hypothèse: n >= 0
- Algorithme:
  - Problème: pas de primitive pour faire directement la racine cubique.
  - Solution: on parcourt incrémentalement tous les entiers et on les élève au cube, on s'arrête quand on dépasse n.
  - Différence: on ne sait pas à l'avance combien de tours de boucle on va faire.
- Implémentation et Validation:

```
def racine.cubique.entiere(n : int) ->> int:
    """Precondition : n >= 0 """"
    racine : int = 0
    while (racine ** 3) <= n:
        racine = racine + 1
    return racine - 1

assert racine.cubique.entiere(30) == 3</pre>
```

return int(n \*\* (1 / 3)) fonctionne ... (intérêt pédagogique nul)



# Principe d'interprétation du while

#### Pour interpréter

```
while cond:
    instruction.1
    ...
    instruction.n
instruction.apres.1
...
```

- 1. on évalue cond
- 2. si la valeur de cond n'est pas False, on interprète en entier:

```
instruction.1
...
instruction.n
```

et on revient en 1.

 si la valeur de cond est False, on sort de la boucle et on interprète la suite:

```
instruction.apres.1 ...
```



#### Simulation de boucle

#### Tables de simulation

- 1. Fixer les valeurs des paramètres (on simule sur un exemple précis)
- 2. Fixer les valeurs des variables non modifiées par la boucle.
- 3. Créer un tableau avec:
  - 3.1 une colonne tour de boucle,
  - 3.2 une colonne par variable modifiée par la boucle.
- 4. Remplir une ligne *entrée* avec les valeurs avant la boucle.
- 5. Décider s'il y a un tour de boucle en évaluant la condition.
- 6. Si oui, remplir une nouvelle ligne avec les valeurs en fin de tour.
- 7. Sinon, on écrit (sortie) au dernier tour.



### Simulation de boucle: Exemple

```
def somme.entiers(n : int) -> int:
    """Precondition: n >= 1
    retourne la somme des n premiers entiers naturels."""
    i : int = 1 # entier courant, en commencant par 1
    s : int = 0 # la somme cumulee
    while i <= n:
        s = s + i
        i = i + 1
    return s</pre>
```

```
somme_entiers(5)
```

### Simulation de boucle: Exemple

```
def somme_entiers(n : int) -> int:
    """Precondition: n >= 1
    retourne la somme des n premiers entiers naturels."""

i : int = 1 # entier courant, en commencant par 1

s : int = 0 # la somme cumulee

while i <= n:
    s = s + i
    i = i + 1

return s</pre>
```

#### somme\_entiers(5)

| tour de boucle | variable s | variable i |
|----------------|------------|------------|
| entrée         | 0          | 1          |
| 1              | 1          | 2          |
| 2              | 3          | 3          |
| 3              | 6          | 4          |
| 4              | 10         | 5          |
| 5 (sortie)     | 15         | 6          |

### Utilisation de print

- print permet de tracer (obtenir une trace) des boucles,.
- ▶ on obtient exactement une simulation.

```
def somme_entiers_tracee(n : int) -> int:
   """Precondition: n >= 1
   retourne la somme des n premiers entiers naturels."""
   i : int = 1 # compteur
   s : int = 0 # somme
   print("======"")
   print("s en entree vaut ", s)
   print("i en entree vaut ", i)
   while i <= n:
       s = s + i
       i = i + 1
       print("s apres le tour vaut ", s)
       print("i apres le tour vaut ". i)
   print("_____")
   print("sortie")
   print("======"")
   return s
```



### Suites récursives

#### Définition

Une suite récursive  $(u_n)_{n\in\mathbb{N}}$  est définie par un premier terme k et une fonction de récursion f. On note:

$$\begin{cases} u_0 = k \\ u_{n+1} = f(u_n) \text{ pour } n \in \mathbb{N} \end{cases}$$

#### Exemple

$$(u_n)_{n\in\mathbb{N}}$$
 définie par  $\left\{ egin{array}{ll} u_0 &=& 7 \ u_{n+1} &=& 2*u_n+3 \end{array} 
ight.$  pour  $n\in\mathbb{N}$ 

- Objectif: définir une fonction valeur\_u(n) renvoyant la valeur du n-eme terme de la suite un donnée en exemple.
- problème similaire au précédent:
  - boucle while avec un compteur i et une accumulation u.



# Suites Récursives (II)

```
def suite.u(n : int) -> int:
    """Precondition: n >= 0
    retourne la valeur au rang n de la suite U."""

u : int = 7  # valeur au rang 0

i : int = 0  # initialement rang 0

while i < n:
    u = 2 * u + 3
    i = i + 1

return u</pre>
```

#### Simulation suite\_u(6)

# Suites Récursives (II)

```
def suite.u(n : int) -> int:
    """Precondition: n >= 0
    retourne la valeur au rang n de la suite U."""

u : int = 7  # valeur au rang 0

i : int = 0  # initialement rang 0

while i < n:
    u = 2 * u + 3
    i = i + 1

return u</pre>
```

#### Simulation suite\_u(6)

| tour de boucle | variable u | variable i |
|----------------|------------|------------|
| entrée         | 7          | 0          |
| 1              | 17         | 1          |
| 2              | 37         | 2          |
| 3              | 77         | 3          |
| 4              | 157        | 4          |
| 5              | 317        | 5          |
| 6 (sortie)     | 637        | 6          |

# Suites Récursives (III)

- ► Généraliser: définir suite\_rec(n,f,k) qui renvoie le n-ième terme de la suite de premier terme k et de fonction de récursion f.
- ▶ Difficulté: fonction de type callable[[int], int] en paramètre.
- Ordre supérieur:
  - ► fonctions comme paramètre ou résultat de fonction
  - ▶ pas au programme de LU1IN001 (système de types d'ordre 1).
  - style de programmation fonctionnelle (Cours 11, LU2IN019, LI101).
- Présent dans l'informatique moderne (par exemple, dans le Web).

```
def suite.rec(n : int, f : Callable[[int], int], k : int):
    """ Precondition: n >= 0
    retourne la valeur au rang n de la suite recursive
    de premier terme k et de fonction de recursion f."""

u : int = k  # valeur au rang 0
    i : int = 0  # initialement rang 0

while i < n:
    u = f(u)
    i = i + 1
    return u</pre>
```



## Somme et produit des termes d'une suite

### Objectif

Calcul des sommes et produits partiels des termes d'une suite.

### Suite dyadique:

$$\begin{array}{l} \forall n \in \mathbb{N}, \ u_n = \frac{1}{2^n} \\ \forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n \frac{1}{2^k} \end{array}$$

## Somme et produit des termes d'une suite

## Objectif

Calcul des sommes et produits partiels des termes d'une suite.

### Suite dyadique:

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{2^n}$$
  
$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n \frac{1}{2^k}$$

```
def somme.partielle.u(n : int) \Rightarrow float:
    """ Precondition: n >= 0
    retourne le n-ieme terme de la somme partielle :
    1 + 1/2 + 1/4 + ... + (1/2)^n"""

s : float = 0.0  # la somme vaut 0 initialement
    k : int = 0  # on commence au rang 0

while k <= n:
    s = s + ((1/2) ** k)
    k = k + 1
    return s</pre>
```

# Somme et produit des termes d'une suite (II)

#### Factorielle:

$$\forall n \in \mathbb{N}^*, \ n! = \prod_{k=1}^n k$$



## Somme et produit des termes d'une suite (II)

#### Factorielle:

```
\forall n \in \mathbb{N}^*, \ n! = \prod_{k=1}^n k
```

```
def factorielle(n : int) -> int:
    """Precondition : n > 0
    retourne le produit factoriel n!"""
    k : int = 1  # on demarre au rang 1
    f : int = 1  # factorielle au rang 1
    while k <= n:
        f = f * k
        k = k + 1
    return f</pre>
```



# Somme et produit des termes d'une suite (III)

- Objectif; calculer la somme des n-premiers termes d'une suite récursive à partir de son élément initial et de sa fonction de récursion.

## Somme et produit des termes d'une suite (III)

- Objectif; calculer la somme des n-premiers termes d'une suite récursive à partir de son élément initial et de sa fonction de récursion.

```
def somme.suite.rec(n : int, f : Callable[[float], float], k : float):
    """ Precondition: n >= 0
    renvoie la valeur de la somme partielle des n premiers termes
    de la suite recursive de premier terme k
    et de fonction de recursion f"""

i : int = 0 # iterateur
    u : int = k # premier terme de la suite
    s : int = k # somme accumulee

while i < n:
    u = f(u)
    s = s + u
    i = i + 1
    return s</pre>
```

### Calcul du PGCD

### Problème

Calculer le plus grand commun diviseur de deux entiers positifs.

#### Méthode standard

- pgcd doit calculer le pgcd de ses paramètres.
- deux paramètres a et b, entiers tels que a>= b >= 0.
- résultat est un entier.
  - def pgcd(n : int, m : int) → int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""
- ► Comment calculer le résultat ?
  - Trouver un algorithme pour résoudre le problème.



## Calcul du PGCD: Rappels

- ▶ si  $(k, n) \in \mathbb{N}^2$ , k divise n s'il existe  $m \in \mathbb{N}$  tel que k.m = n.
  - ▶ 3 divise 12 (car 3.4 = 12).
  - 5 ne divise pas 12.
  - 42 divise 0 (car 42.0 = 0).
- ▶ l'ensemble des diviseurs de  $n \in \mathbb{N}$ , noté div(n), est l'ensemble des entiers de  $\mathbb{N}$  qui divisent n.
  - $\triangleright$  div(12) = {1, 2, 3, 4, 6, 12}
  - ightharpoonup div(9) =  $\{1,3,9\}$
  - $ightharpoonup div(13) = \{1, 13\}$
  - ightharpoonup div(0) =  $\mathbb{N}$
- ▶ l'ensemble des diviseurs communs de  $n \in \mathbb{N}$  et de  $m \in \mathbb{N}$ , noté  $\operatorname{div}(n, m)$ , est l'intersection des diviseurs de n et m (i.e.  $\operatorname{div}(n) \cap \operatorname{div}(m)$ )
  - $\triangleright$  div(12,9) = {1,3}
  - ightharpoonup div(12,0) = {1,2,3,4,6,12}
- ▶ le pgcd de  $n \in \mathbb{N}^*$  et de  $m \in \mathbb{N}$ , noté pgcd(n, m), est le plus grand diviseur commun à n et m (i.e. max(div(n, m)))
  - ightharpoonup pgcd(12,9) = 3
  - ightharpoonup pgcd(12,0) = 12



### Solution Naïve

▶ Utilise les ensembles (Cours 09) et les compréhensions (Cours 10)

```
def diviseurs(n : int) -> Set[int]:
    """Precondition : n > 0"""
    return {k for k in range(1, n + 1) if n % k == 0}
def max_ensemble(E : Set[int]) -> int:
    """Precondition: E != set()
    Precondition: les elements de E sont positifs"""
    m : int = -1
    e · int
    for e in E:
        if e > m:
    return m
def pgcd_naif(n : int ,m : int) -> int:
    """Precondition: n > 0. m >= 0"""
    if m == 0.
        return n
    else.
        return max_ensemble(diviseurs(n) & diviseurs(m))
assert pgcd_naif(12, 9) == 3
```

Meilleur algorithme ?



## Algorithme d'Euclide

- Soit  $n \in \mathbb{N}^*$  et  $m \in \mathbb{N}$ , la division euclidienne de n par m est l'unique couple  $(q, r) \in \mathbb{N} \times [0, n-1]$  tel que n = q.m + r
  - q est le quotient, obtenu avec n // m,
  - r est le reste, obtenu avec n % m,
  - ightharpoonup avec 12 et 9 on a (1,3) car 12 = 1.9 + 3
  - ightharpoonup avec 12 et 6 on a (2,0) car 12 = 2.6 + 0
- Propriété: Si (q, r) est la division euclidienne de n par m, alors pgcd(n, m) = pgcd(m, r).
- ▶ Algorithme d'Euclide: Pour calculer pgcd(n, m):
  - 1. si m est 0, le pgcd est n,
  - 2. sinon
    - 2.1 on calcule r le reste de la division euclidienne de m par n
    - 2.2 on calcule pgcd(m, r). (récursion)
- Terminaison: on sait que r < m, donc "quelque chose" (ici la somme des deux nombres) décroît à chaque étape.



## Algorithme d'Euclide: Exemples

- ▶ le pgcd de 56 et 42 est le pgcd de 42 et 14 (56 = 42 \* 1 + 14)
- le pgcd de 42 et 14 est le pgcd de 14 et 0 (42 = 14 \* 3 + 0)
- le pgcd de 14 et 0 est 14.

le pgcd de 56 et 42 est 14.

- ightharpoonup le pgcd de 4199 et 1530 est le pgcd de 1530 et 1139 (4199 = 1530 \* 2 + 1139)
- ightharpoonup le pgcd de 1530 et 1139 est le pgcd de 1139 et 391 (1540 = 1139 \* 1 + 391)
- ▶ le pgcd de 1139 et 391 est le pgcd de 391 et 357 (1139 = 391 \* 2 + 357).
- le pgcd de 391 et 357 est le pgcd de 357 et 34 (391 = 357 \* 1 + 34).
- le pgcd de 357 et 34 est le pgcd de 34 et 17 (357 = 34 \* 10 + 17).
- le pgcd de 34 et 17 est le pgcd de 17 et 0 (34 = 17 \* 10 + 0).
- le pgcd de 17 et 0 est 17.

le pgcd de 4199 et 1530 est 17.

```
\begin{array}{l} \text{def pgcd(n : int, m : int)} \to \text{int:} \\ \text{"""Precondition: } n >= m > 0 \\ \text{Retourne le plus grand commun diviseur de n et m."""} \end{array}
```

► Variables:



```
\begin{array}{l} \text{def pgcd(n: int, m: int)} \to \text{int:} \\ \text{"""Precondition: } n >= m > 0 \\ \text{Retourne le plus grand commun diviseur de n et m."""} \end{array}
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - elles contiennent initialement n et m.
- ► Condition de la boucle:



```
\begin{array}{l} \text{def pgcd(n : int, m : int)} \to \text{int:} \\ \text{"""Precondition: } n >= m > 0 \\ \text{Retourne le plus grand commun diviseur de n et m."""} \end{array}
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - elles contiennent initialement n et m.
- Condition de la boucle: continuer à faire des divisions euclidiennes tant que r est différent de 0
  - sinon, le résultat est d
- Corps de la boucle:



```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - le elles contiennent initialement n et m.
- Condition de la boucle: continuer à faire des divisions euclidiennes tant que r est différent de o
  - sinon, le résultat est d
- Corps de la boucle: mettre d % r dans r et r dans d.

```
r = d % r
d = r
```



```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - le elles contiennent initialement n et m.
- Condition de la boucle: continuer à faire des divisions euclidiennes tant que r est différent de 0
  - sinon, le résultat est d
- Corps de la boucle: mettre d % r dans r et r dans d.

```
r = d % r
d = r
```

Problème: instructions exécutées en séquence (r change)



```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - le elles contiennent initialement n et m.
- Condition de la boucle: continuer à faire des divisions euclidiennes tant que r est différent de 0
  - sinon, le résultat est d
- Corps de la boucle: mettre d % r dans r et r dans d.

```
r = d % r
d = r
```

- Problème: instructions exécutées en séquence (r change)
- ► Solution: variable temporaire (pour la future valeur de r):

```
temp = d % r
d = r
r = temp
```



```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""
```

- Variables: deux variables d et r pour stocker les deux nombres à chaque étape.
  - le elles contiennent initialement n et m.
- ► Condition de la boucle: continuer à faire des divisions euclidiennes tant que r est différent de 0
  - sinon, le résultat est d
- Corps de la boucle: mettre d % r dans r et r dans d.
  - r = d % r d = r
  - Problème: instructions exécutées en séquence (r change)
  - ► Solution: variable temporaire (pour la future valeur de r):

```
temp = d % r
d = r
r = temp
```

Cours 07: d, r = r, d % r



```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""

d : int = n
    r : int = m
    temp :int = 0  # variable temporaire

while r != 0:
    temp = d % r
    d = r
    r = temp
    return d
```

### Simulation de pcgd(56, 42)

```
def pgcd(n : int, m : int) -> int:
    """Precondition: n >= m > 0
    Retourne le plus grand commun diviseur de n et m."""

d : int = n
    r : int = m
    temp :int = 0  # variable temporaire

while r != 0:
    temp = d % r
    d = r
    r = temp
    return d
```

### Simulation de pcqd(56, 42)

| tour de boucle | variable temp | variable q | variable r |  |
|----------------|---------------|------------|------------|--|
| entrée         | 0             | 56         | 42         |  |
| 1              | 14            | 42         | 14         |  |
| 2 (sortie)     | 0             | 14         | 0          |  |

# Boucles imbriquées: couples d'entiers

### Problème

Pour un entier positif n fixé, combien y existe t'il de couples d'entiers (i,j) tels que i+j soit divisible par 3.

- pour n = 0 on en a 1: (0,0).
- pour n = 1 on en a 1: (0,0).
- pour n = 2 on en a 3: (0,0), (1,2), (2,1).
- ► Algorithme: impossible avec une boucle.
  - ll faut faire varier *i* et *j* indépendamment.
  - $\triangleright$  pour chaque valeur de i, on parcourt toutes les valeurs possibles de j
  - espace quadratique
- Solution: boucles imbriquées.



# Boucles imbriquées: couples d'entiers (II)

```
def nombre.couples(n : int) → int:
    """Precondition : n >= 0
    calcule le nombre de couple (i,j) tels que i.j est divisible par 3"""

i : int = 0
    j : int = 0
    nb : int = 0

while i <= n:
    j = 0
    while j <= n:
    if (i + j) % 3 == 0:
        nb = nb + 1
    j = j +1
    i = i + 1
    return nb</pre>
```

- ► l'indentation est cruciale,
- on ne doit pas oublier de remettre j à 0



# Boucles imbriquées: couples d'entiers (III)

#### Simulation de nombre\_couples(2)

| tour de boucle externe | tour de boucle interne | variable i | variable j | variable nb |
|------------------------|------------------------|------------|------------|-------------|
| entrée                 | -                      | 0          | 0          | 0           |
| 1                      | entrée                 | 0          | 0          | 0           |
| 1                      | 1                      | 0          | 1          | 1           |
| 1                      | 2                      | 0          | 2          | 1           |
| 1                      | 3 (sortie)             | 0          | 3          | 1           |
| 2                      | entrée                 | 1          | 0          | 1           |
| 2                      | 1                      | 1          | 1          | 1           |
| 2                      | 2                      | 1          | 2          | 1           |
| 2                      | 3 (sortie)             | 1          | 3          | 2           |
| 3                      | entrée                 | 2          | 0          | 2           |
| 3                      | 1                      | 2          | 1          | 2           |
| 3                      | 2                      | 2          | 2          | 3           |
| 3                      | 3 (sortie)             | 2          | 3          | 3           |
| 3 (sortie)             | -                      | 3          | 3          | 3           |

- ▶ Une colonne par boucle, classées de l'extérieur vers l'intérieur.
- ► Simulation multiples : pas au programme des examens.
  - mais les boucles imbriquées, oui.
- Facilement traçable.



## Zéro d'une fonction sur intervalle (I)

#### Problème

Décider si une fonction des entiers f s'annule sur l'intervalle entier [a; b].

#### Méthode standard

- la fonction annule doit décider si une fonction est égale à 0.0 sur un entier x compris entre deux bornes.
- trois arguments: une fonction f de type callable[[int], float], une borne inférieure a entière et une borne supérieure b entière.
- un résultat booléen.
- ► Algorithme: utiliser une boucle pour calculer successivement toutes les valeurs de f sur les entiers entre a et b
  - l'itérateur x va commencer à a puis être incrémenté successivement jusque valoir b.



# Zéro d'une fonction sur un intervalle (II)

```
def annulation(a : int, b : int, f : Callable[[int], float]) ->> bool:
    """ Precondition : a <= b
    Retourne True si la fonction f s'annule sur l'intervalle [a;b]."""

x : int = a # element courant, au debut de l'intervalle

while (x <= b):
    if f(x) == 0.0:
        return True # la fonction s'annule !
    else: # sinon on continue avec l'element suivant
        x = x + 1

return False # on sait ici que la fonction ne s'annule pas</pre>
```

► Il faut des fonctions utilisables en argument, par exemple:

```
def parabole(x : float) -> float:
    """ Calcule la valeur de X^2+X=6    """
    return x * x + x - 6

assert annulation(0, 10, parabole) == True
assert annulation(10, 20, parabole) == False
```

Sous-typage contravariant avec l'argument:
Comme on a float ⊆ int, on a int ->float ⊆ float->float



## Typage

### Typage

Donner un type à une expression c'est indiquer la nature d'une expression.

- Objectifs:
  - Vérifier les appels de fonctions.
  - ► Valider le code (homogénéité).
  - Gérer la mémoire.
- ► Typage plus ou moins forts
  - ► OCaml: float\_of\_int(x) +. 2.3
  - Javascript: (2 + 3) + " saucisses"
- ► Typage explicite: le programmeur doit lui-même indiquer les types (déclarations).
- ► Typage implicite: le type est inféré par un programme (algorithme d'unification).



## Sous-Typage

### Définition

Un type A est un sous-type de B si toutes les expressions (les objets) de type A sont aussi de type B.

- int est un sous-type de float.
  - "entier naturel" est un sous-type de "entier".
  - "poisson" est un sous-type de "animal".
- ▶ Si on a besoin d'une expression de type *B*, et que *A* est un sous-type de *B*, on peut prendre une expression de type *A*.
  - $\triangleright$  si f prend un entier, je peux calculer f(3).
  - si j'ai besoin d'un animal, je peux prendre un poisson.
- Attention au sens:
  - ▶ si f prend un entier naturel, je ne peux pas (forcément) calculer f(-3).
  - si j'ai besoin d'un poisson, je ne peux pas (forcément) prendre un serpent.
- ▶ Dans les signatures des fonctions: + général pour les paramètres, + particulier pour le résultat.
- ► Héritage dans les langages objets (11).

## Grammaires d'expressions

- Compilation: domaine de l'informatique qui s'intéresse à la traduction d'un langage dans un autre.
- ► Fondement de la programmation: traduction d'un langage "compréhensible" (Python) en langage machine.
  - point de détail: Python est interprété et non compilé.
- Analyse lexicale: séparation du code en jetons.
  - math.sqrt(3 + 4) → reconnaitre sqrt, 3, 4, l'opérateur +, les parenthèses.
- ► Analyse syntaxique: organisation des jetons en arbre syntaxique.





# Grammaires d'expressions (II)

- Les Grammaires permettent d'exprimer le code reconnaissable par le compilateur/l'interprêteur.
- ▶ Définition à l'aide de "graines" S ::= E1 | E2 | ... | EN
   ▶ formellement, point fixe d'une fonction (théorème de Knaster-Tarski).
- ► Grammaire des entiers N ::= 0 | Succ(N)
- ► Grammaire de l'arithmétique N ::= 0 | Succ(N) | Plus(N,N)
  | Sous(N,N) | Mult(N,N)
- Grammaire de la Carte de référence.



### Effets de bords

#### Définition

Un effet de bord est une instruction d'une fonction qui modifie un état (la mémoire, l'affichage) autre que la valeur de retour de la fonction.

- souvent son interprétation n'a pas d'effet direct sur le calcul.
- Affichage: print est un effet de bord, elle affiche sur la sortie standard.
- ▶ la modification de fichiers ("disque dur") est un effet de bord.
- Nécessaires, mais difficile à analyser.
  - ▶ idempotence des fonctions ?
- print fait un effet de bord: affichage à l'écran
  - utile pour connaître les valeurs intermédiaires des variables.



### Valeurs Intermédiaires

```
def essai.var3(x : int) -> int:
    n : int = 0
    print("la valeur de n est:", format(n))

m : int = x
    print("la valeur de n est:", format(n), "la valeur de m est:", format(m))

n = m + x
    print("la valeur de n est:", format(n), "la valeur de m est:", format(m))
    m = n + 1
    print("la valeur de n est:", format(n), "la valeur de m est:", format(m))
    n = m + x
    print("la valeur de n est:", format(n), "la valeur de m est:", format(m))
    n = m + x
    print("la valeur de n est:", format(n), "la valeur de m est:", format(m))
    return n
```

► A utiliser en TME.



- primitive print:
  - utilisation courante: afficher des chaînes de caractères.
  - peut contenir des expressions de différents types.
  - la valeur de retour de print est



- primitive print:
  - utilisation courante: afficher des chaînes de caractères.
  - peut contenir des expressions de différents types.
  - ▶ la valeur de retour de print est Rien



- primitive print:
  - utilisation courante: afficher des chaînes de caractères.
  - peut contenir des expressions de différents types.
  - ▶ la valeur de retour de print est Rien (en Python: None).
  - ► le type de None est



- primitive print:
  - utilisation courante: afficher des chaînes de caractères.
  - peut contenir des expressions de différents types.
  - ▶ la valeur de retour de print est Rien (en Python: None).
  - le type de None est None:
- Fonctions qui n'ont pas de valeur de retour:

```
def affiche.trois.fois(n : int) -> None:
    print(n)
    print(n)
    print(n)
    assert affiche.trois.fois(10) == None
```

- Est-ce vraiment des fonctions ?
- ► Plus tard dans I'UE, types optionnels
  - renvoyer soit un entier (quand ça "marche"), soit rien (quand ce n'est pas possible)



- print est une instruction qui affiche la valeur d'une expression sur la sortie standard.
- return renvoie la valeur de son argument à l'appelant.
  - Si l'appelant est le top-level de mrpython, il affiche la valeur qu'il reçoit.
  - ► Si l'appelant est une expression, il utilise cette valeur.

```
def h2(x : int) ->> int:
    return x + 1

def h3(x : int) ->> None:
    print(x + 1)
```

Comparer les expressions 1 + 2 \* h2(10) et 1 + 2 \* h3(10)



## Variables Globales

- On peut affecter des variables en dehors des fonctions ("globales").
  - elle doivent être déclarées.
- Ces variables ne sont pas accessibles dans les fonctions.
- Ces variables ne sont pas modifiables.
- Ces variables sont, en fait, des constantes.
- Utiles pour les tests et les essais.
  - surtout avec des structures de données (cours 05-10).

```
nombre : int = 42

def increm(x : int) -> int:
    return x + 1

assert increm(nombre) == 43

def ajoute.n(x : int) -> int:
    return x + nombre # ERREUR

nombre = nombre + 1 # ERREUR
```



## Modèle mémoire

- ► Mémoire est un espace indicé:
  - ► chaque "tiroir" a une taille et une adresse.
- une variable, c'est un nom pour l'adresse d'un tiroir,
  - une table de symboles lie noms et adresses.
- deux "zones" de mémoire:
  - le tas: où vivent les variables globales, les données, les objets, les fonctions (le code),
  - la pile: qui sert à l'execution de fonction.
    - contient les variables locales et les arguments,
    - durée de vie limitée,
    - cas des fonctions qui appellent d'autres fonctions
- ► En LU1IN002: modèle mémoire formel.



## Décidabilité

### Définition

Un problème de décision est décidable quand il existe un algorithme pour le résoudre.

- Problème de décision: résultat booléen.
- ► Solution: un unique algorithme qui marche dans tous les cas particuliers.
- Primalité d'un entier.
  - décider si un entier est premier  $div(n) = \{1, n\}$
  - entrée: un entier, résultat: booléen.
  - ▶ algorithme: crible d'Eratosthene (par exemple)

## Décidabilité informatique vs. Décidabilité logique

- ▶ Décidabilité logique: une formule est décidable (par rapport a un système logique) quand il existe une preuve (dans le système logique) de sa vérité ou de sa fausseté.
- ► En fait c'est pareil (Curry-Howard).

## Indécidabilité

- ► Il existe des problèmes indécidables.
  - des problèmes qu'aucun algorithme ne peut résoudre.



## Indécidabilité

- ► Il existe des problèmes indécidables.
  - des problèmes qu'aucun algorithme ne peut résoudre.

## Théorème: Incomplétude de Gödel

Tout système logique un peu intéressant contient au moins une formule indécidable.

- "un peu intéressant": contient l'arithmétique de Peano (0, S, +, .)
- ▶ Logique → Informatique: il existe des problèmes indécidables dès que l'expressivité est suffisante.
- Utilisée (de manière discutable) en philosophie (cf. Debray, Bouveresse)
- Exemple: Correspondance de Post
  - ▶ Instance: dominos, chacun en quantité illimitée:  $\left(\frac{a}{baa}\right)\left(\frac{ab}{aa}\right)\left(\frac{bba}{bb}\right)$
  - Question: existe t-il une suite (finie) de dominos telle que le mot lu au-dessus est le même que le mot lu en dessous ?



## Indécidabilité

- ► Il existe des problèmes indécidables.
  - des problèmes qu'aucun algorithme ne peut résoudre.

## Théorème: Incomplétude de Gödel

Tout système logique un peu intéressant contient au moins une formule indécidable.

- ightharpoonup "un peu intéressant": contient l'arithmétique de Peano (0, S, +, .)
- ▶ Logique → Informatique: il existe des problèmes indécidables dès que l'expressivité est suffisante.
- Utilisée (de manière discutable) en philosophie (cf. Debray, Bouveresse)
- Exemple: Correspondance de Post
  - ► Instance: dominos, chacun en quantité illimitée:  $\left(\frac{a}{baa}\right)\left(\frac{ab}{aa}\right)\left(\frac{bba}{bb}\right)$
  - Question: existe t-il une suite (finie) de dominos telle que le mot lu au-dessus est le même que le mot lu en dessous ?
  - lci:  $\left(\frac{bba}{bb}\right)\left(\frac{ab}{aa}\right)\left(\frac{bba}{bb}\right)\left(\frac{a}{baa}\right)$ , mot bbaabbbaa
  - Il n'existe pas d'algorithme qui prend en entrée un jeu de domino et décide la question.
    - ► PCP est indécidable.



## **Terminaison**

- ▶ Une boucle s'arrête quand sa condition est fausse.
  - peut-on être sur qu'elle sera forcément fausse au bout d'un certain temps?

```
def infini() -> int:
    """compte pendant l'eternite et renvoie 1 ensuite """
    i : int = 0 # compteur
    while True:
        i = i + 1
        return 1
```

```
def somme_entiers2(n : int) -> int:
    """retourne la somme des n premiers entiers naturels. """
    i : int = 1 # entier courant, en commencant par 1
    s : int = 0 # la somme cumulee
    while i <= n:
        s = s + i
        i = i - 1
    return s</pre>
```

- ▶ Peut-on détecter les programmes divergents ?
- ► La Terminaison est t-elle décidable ?



## Problème de l'arrêt

Supposons qu'on a la fonction (non-typée) suivante:

```
def arret(fonc, argu ):
    """renvoie True si l'appel de fonction fonc avec l'argument argu termine, False sinon."""
```

On définit alors:

```
def diago(f):
    i = 0
    if arret(f,f):
        while True:
        i = i + 1
    else:
        return i
```

► Que dire de diago(diago) ?



## Problème de l'arrêt

Supposons qu'on a la fonction (non-typée) suivante:

```
def arret(fonc, argu ):
    """renvoie True si l'appel de fonction fonc avec l'argument argu termine, False sinon."""
```

On définit alors:

```
def diago(f):
    i = 0
    if arret(f, f):
        while True:
        i = i + 1
    else:
        return i
```

- Que dire de diago(diago) ?
  - si diago(diago) s'arrête, c'est que arret(diago, diago) vaut False. Contradiction!
  - si diago(diago) ne s'arrête pas, c'est que arret(diago, diago) vaut True. Contradiction!
  - On a montré par l'absurde, qu'il n'existe pas de fonction arret.
- La terminaison d'un programme est indécidable.
  - énormes conséquences pour l'informatique.



## Comparer des programmess

## Question fondamentale

Qu'est-ce qu'un bon programme ? et aussi "Qu'est ce qu'un meilleur programme ?"

### Propriétés

- Correction: Est-ce que le programme calcule la bonne fonction ?
- Terminaison: Est-ce que le programme finit toujours pas renvoyer une valeur ?
- Efficacité: Est-ce que le programme est rapide et économe en mémoire ?



### Correction

#### Définition

Un programme f est *correct* vis à vis d'une fonction  $\mathcal{F}$ , quand à chaque calcul f(x) pour x satisfaisant les hypothèses, si le programme renvoie v, alors  $\mathcal{F}(x) = v$  (avec (x,v) représentations de (x,v)).

```
def somme_entiers(n : int) -> int:
                                                              def somme_entiers(n : int) -> int:
    """ Precondition : n >= 0
                                                                  """ Precondition : n >= 0
    renvoie la somme des entiers jusque n inclus"""
                                                                  renvoie la somme des entiers jusque n inclus"""
    s \cdot int = 0
                                                                  s \cdot int = 0
    i \cdot int = 0
                                                                  i \cdot int = 0
    while i <= n:
                                                                  while i < n:
        s = s + i
                                                                       s = s + i
        i = i + 1
                                                                       i = i + 1
    return i
                                                                  return s
```

- Propriété indécidable.
- ► Analyses statiques des programmes pour les vérifier.
  - types (par exemple la signature), modèle.
- Tests, Simulations: pas de preuve, peut convaincre.



## Terminaison

### Définition

Un programme f termine sur l'entrée e quand l'exécution de f(e) finit par s'arrêter. Il termine quand il termine sur toutes ses entrées qui satisfont ses hypothèses.

```
def somme.entiers(n : int) -> int:
    """ Precondition : n >= 0
    renvoie la somme des entiers jusque n inclus"""
    s : int = 0
    i : int = 0
    while i <= n:
        s = s + i
        i = i - 1
    return s</pre>
```

```
def somme_entiers(n : int) -> int:
    """ Precondition : n >= 0
    renvoie la somme des entiers jusque n inclus"""
    s : int = 0
    i : int = 0
    while i <= i:
        s = s + i
        i = i + 1
    return s</pre>
```

- Propriété indécidable.
- Analyses statiques.
  - ightharpoonup types du  $\lambda$ -calcul, analyses de boucles.
- ► Terminaison à la volée (stopper les calculs trop longs).



#### Définition

Un programme f est plus efficace en moyenne qu'un programme g:

- ▶ f et g calculent la même fonction mathématique.
- ► sur toutes les entrées d'une même taille, en moyenne, f utilise moins d'opérations élémentaires que g.
- entrée de même taille ?
- opérations élémentaires ?
  - affectations, comparaisons, multiplications, . . .
- complexité en espace (utilisation de mémoire)

```
def somme.entiers(n : int) -> int:
    """ Precondition : n >= 0
    renvoie la somme des entiers jusque n inclus"""
    s : int = 0
    i : int = 0
    while i <= n:
        s = s + i
        i = i + 1
    return s</pre>
```

```
def somme.entiers(n : int) -> int:
    """ Precondition : n >= 0
    renvoie la somme des entiers jusque n inclus"""
    return n * (n + 1) / 2
```



# Efficacité (II)

#### Définition

Un programme f est plus efficace dans le pire des cas que g:

- f et g calculent la même fonction mathématique.
- sur toutes les entrées d'une même taille, dans le pire des cas, f utilise moins d'opérations élémentaires que g.

```
def mention(m : int) -> str:
                                                           def mention(m : int) -> str:
   """ Precondition : m >= 0 and m <= 20
                                                               """ Precondition : m >= 0 and m <= 20
   renvoie la mention du bac associee a la moyenne m"""
                                                               renvoie la mention du bac associee a la moyenne m
   if m <= 10:
                                                               if m <= 14:
       return ''Flimine''
                                                                   if m <= 12:
   else.
                                                                        if m <= 10:
        if m <= 12:
                                                                            return ''Flimine''
            return ''Passable''
                                                                        else.
        else.
                                                                            return ''Passable''
            if m <= 14:
                                                                    else.
                return ''Assez Bien''
                                                                        return ''Assez Rien''
            else.
                if m <= 16:
                                                                   if m <= 16:
                    return ''Bien''
                                                                        return ''Bien''
                else.
                    return ''Tres hien''
                                                                        return ''Tres bien''
```

### Correction

- On veut étudier la correction d'une fonction Python 101.
- On peut distinguer deux choses:
  - la correction de l'algorithme,
  - la correction de l'implémentation.

```
def aire.triangle(a : float, b : float, c : float):
    """ Precondition : (a>0) and (b>0) and (c>0)
        Precondition : les cotes a, b et c definissent bien un triangle.
    retourne l'aire du triangle dont les cotes sont de longueur a, b, et c."""
    s : float = (a + b + c) / 2
    return math.sqrt(s * (s - a) * (s - b) * (s - c))
```

- Cas de aire\_triangle:
  - algorithme:
    - preuve mathématique de la formule.
  - ▶ implémentation:
    - on suppose l'interpréteur correct (ce n'est pas toujours le cas),
    - on vérifie que l'expression calcule bien la formule.
- ► Fonction avec boucle ?

## Correction et boucles

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n>=0
    retourne la valeur de x eleve a la puissance n."""

res : float = 1 # valeur de x^0

i : int = 1 # compteur

while i != n + 1:
    res = res * x
    i = i + 1

return res
```

#### Simulation puissance(2.5)

## Correction et boucles

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n>=0
    retourne la valeur de x eleve a la puissance n."""

res : float = 1 # valeur de x^0

i : int = 1 # compteur

while i != n + 1:
    res = res * x
    i = i + 1
    return res
```

### Simulation puissance(2,5)

| tour de boucle | variable res | variable i |
|----------------|--------------|------------|
| entrée         | 1            | 1          |
| 1              | 2            | 2          |
| 2              | 4            | 3          |
| 3              | 8            | 4          |
| 4              | 16           | 5          |
| 5 (sortie)     | 32           | 6          |

## Correction et boucles

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n>=0
    retourne la valeur de x eleve a la puissance n."""

res : float = 1 # valeur de x^0
i : int = 1 # compteur

while i != n + 1:
    res = res * x
    i = i + 1
    return res
```

#### Simulation puissance(2,5)

| tour de boucle | variable res | variable i |
|----------------|--------------|------------|
| entrée         | 1            | 1          |
| 1              | 2            | 2          |
| 2              | 4            | 3          |
| 3              | 8            | 4          |
| 4              | 16           | 5          |
| 5 (sortie)     | 32           | 6          |

La fonction est-elle correcte ?

#### Invariant

#### Malaise

- la simulation nous prouve formellement que puissance est correcte quand elle est appelée sur les arguments 2, 5.
- la simulation ne nous dit rien, formellement, sur le cas général.
- la simulation nous suggère informellement une méthode générale:
  - à chaque étape, on voit qu'on multiplie res par x,
  - on s'arrête après n étapes.

#### Définition

Un invariant de boucle est une expression logique:

- Qui est vraie en entrée de boucle.
- Qui est vraie après chaque tour de boucle.
- on ne dit rien de l'invariant au cours du calcul d'une boucle.
- on veut des invariants utiles: pas i >= 1 ni True.
- l'invariant est une expression logique (pas Python)

# Invariant (II)

Qu'est ce qu'un invariant utile ?

▶ il faut que "(Invariant) + (Sortie de boucle) ⇒ Correction"

#### Méthode Standard

- 1. Comprendre le problème posé.
  - exprimer la correction.
- 2. Simuler la fonction (plusieurs fois).
  - intuition de ce qui reste vrai à chaque tour de boucle.
  - relation entre les variables et arguments.
- 3. Expérience et vision mathématique.
  - penser à ce qui entraîne la correction.

#### Invariant pour puissance



# Invariant (II)

Qu'est ce qu'un invariant utile ?

▶ il faut que "(Invariant) + (Sortie de boucle) ⇒ Correction"

#### Méthode Standard

- 1. Comprendre le problème posé.
  - exprimer la correction.
- 2. Simuler la fonction (plusieurs fois).
  - intuition de ce qui reste vrai à chaque tour de boucle.
  - relation entre les variables et arguments.
- 3. Expérience et vision mathématique.
  - penser à ce qui entraîne la correction.

#### Invariant pour puissance

$$x^{i-1} = res$$



# Invariant (III)

Simulation avec invariant de puissance(2, 5)



# Invariant (III)

#### Simulation avec invariant de puissance(2, 5)

| tour de boucle | variable res | variable i | Invariant $x^{i-1} = res$ |
|----------------|--------------|------------|---------------------------|
| entree         | 1            | 1          | $2^{1-1} = 1$ (Vrai)      |
| 1              | 2            | 2          | $2^{2-1} = 2$ (Vrai)      |
| 2              | 4            | 3          | $2^{3-1} = 4$ (Vrai)      |
| 3              | 8            | 4          | $2^{4-1} = 8$ (Vrai)      |
| 4              | 16           | 5          | $2^{5-1} = 16$ (Vrai)     |
| 5 (sortie)     | 32           | 6          | $2^{6-1} = 32$ (Vrai)     |

## Cas général

On veut montrer que l'invariant reste vrai à chaque tour de boucle:

- Preuve par récurrence:
  - Invariant vrai en entrée.
  - On suppose que l'invariant est vrai au début d'un tour de boucle, on montre qu'il est vrai à la fin du tour de boucle.
  - par récurrence, l'invariant est vrai en sortie de boucle.



## Invariant (IV) - Preuve Formelle

Montrons, par récurrence, que  $x^{i-1} = res$  est toujours vrai en sortie de boucle:

- ▶ On a  $x^{1-1} = 1$ , donc l'invariant est vrai en entrée de boucle.
- On appelle x, n les valeurs de x et n, on appelle i, r les valeurs de i et res au début du tour et i', r' leurs valeurs en fin de tour.
  - Supposons que l'invariant est vrai au début d'un tour. On a  $x^{i-1} = r$ .
  - en regardantle corps de la boucle, on sait que:
    - i' = i + 1,r' = r \* x.
  - on calcule  $r' = r * x = x^{i-1} * x = x^i = x^{i'-1}$
  - et l'invariant est vrai à la fin du tour.
- par récurrence, l'invariant est toujours vrai en fin de tour, donc en sortie de boucle (si jamais ça arrive, cf. terminaison).

On a montré que notre invariant est invariant. Est-il utile ?



## Invariant (V) - Preuve Formelle

Montrons que "(Invariant) + (Sortie de boucle)  $\Rightarrow$  Correction"

- ► En sortie de boucle, l'invariant est vrai (cf. slide précédent): donc  $x^{i-1} = res$  (1)
- ► En sortie de boucle, la condition de boucle est fausse (par définition): donc i = n + 1 (2)
- ▶ De (1) et (2) on déduit:  $x^n = res$
- La fonction renvoie la valeur de res, donc elle est correcte (pour la fonction mathématique "puissance").

#### Aux Examens de LU1IN001

- ► Recherche d'invariant: pas vraiment (QCM).
- Preuve d'invariance: non (L2 Info).
  - Test de l'invariant dans une simulation.
- Preuve de correction en sortie de boucle: oui.



#### **Terminaison**

- La méthode de correction suppose que la fonction termine (que la sortie de boucle existe).
- ► Comment prouver qu'une fonction avec un while termine ?
  - Pas de preuve générale (indécidabilité).
  - ldée: montrer que quelque chose décroît strictement à chaque tour.
  - Corollaire de Bolzano-Weierstrass (caractérisation des espaces métriques compacts): il n'existe pas de suite infinie d'entiers naturels strictement décroissante.

#### **Définition**

Un variant de boucle est une expression arithmétique:

- Qui est un entier naturel positif en entrée de boucle.
- Qui décroit strictement à chaque tour de boucle.
- Qui vaut 0 en sortie de boucle.

#### Trouver un bon variant:

- même méthode que pour l'invariant,
- ▶ intuition de ce qui décroît.



### Variant

Variant pour puissance:

## Variant

Variant pour puissance:n - i + 1

Simulation de puissance(2, 5) avec variant

## Variant

#### Variant pour puissance:n - i + 1

### Simulation de puissance(2, 5) avec variant

| tour de boucle | variable res | variable i | Variant n - i + 1 |
|----------------|--------------|------------|-------------------|
| entree         | 1            | 1          | 5 - 1 + 1 = 5     |
| 1              | 2            | 2          | 5 - 2 + 1 = 4     |
| 2              | 4            | 3          | 5 - 3 + 1 = 3     |
| 3              | 8            | 4          | 5 - 4 + 1 = 2     |
| 4              | 16           | 5          | 5 - 5 + 1 = 1     |
| 5 (sortie)     | 32           | 6          | 5 - 6 + 1 = 0     |

## Cas général

On veut montrer qu'une expression est un variant:

- Montrer que sa valeur est un entier positif en entrée de boucle.
- Montrer que sa valeur décroit strictement entre le début et la fin d'un tour de boucle.
- ► Montrer qu'on sort de la boucle quand il vaut 0.

# Variant (II) - Preuve formelle

- Montrons que n i + 1 est bien un variant de boucle:
  - Appelons n la valeur de n et  $i_0$  la valeur de i en entrée de boucle.
  - En entrée l'expression  $n i_0 + 1 = n 1 + 1$  vaut n qui est un entier positif.
  - Appelons i la valeur de i au début d'un tour et i' la valeur de i à la fin d'un tour.
    - ightharpoonup on sait que i'=i+1,
    - b donc n i' + 1 = n (i + 1) + 1 = n i < n i + 1
    - le variant décroit scrictement à chaque tour de boucle.
  - ▶ quand le variant vaut 0, on a n-i+1=0 soit i=n+1 ce qui correspond à la condition de sortie de boucle.
- Comme la fonction admet un variant de boucle, elle termine.

#### Aux Examens de LU1IN001

- Recherche de variant: oui.
- Preuve de terminaison: non (simulation).
  - Test du variant sur une simulation.

## Efficacité

### Points à examiner en LU1IN001

- Calculs redondants.
- Raccourcis logiques.
- ► Algorithme plus efficace.

#### Contexte

- Conjecture empirique de Moore: la densité des transistors double tous les deux ans.
  - croissance exponentielle de la puissance de calcul
- ► Taille des données croît aussi (graphismes).
- Méthodes basées sur la non-efficacité des programmes: cryptographie.
- ► Classes de complexité des fonctions mathématiques: P, NP, ...
  - ▶  $f \in \mathcal{P}$  si il existe un programme f et un polynôme P tel que pour tout x f(x) calcule f(x) en temps  $t \leq P(|x|)$ .

## **Factorisation**

```
def aire.triangle(a : float, b : float, c : float) -> float:
    """ Precondition : (a>0) and (b>0) and (c>0)
    Precondition : les cotes a, b, et c definissent
    bien un triangle.

retourne l'aire du triangle dont les cotes
    sont de longueur a, b, et c. """

p : float = (a + b + c) / 2  # demi-perimetre

return math.sqrt(p * (p - a) * (p - b) * (p - c))
```

- ► Calcul (a + b + c) / 2 répété 4 fois.
- Factorisation du calcul grâce à une variable.
- ► Complexité en espace / Coût d'une affectation.



# Sortie anticipée (I)

On veut calculer le plus petit diviseur non-trivial (différent de 1) d'un entier naturel.

```
def plus.petit.diviseur(n : int) -> int:
    """ retourne le plus petit diviseur non-trivial de n"""
    d : int = 0 # pas encore trouve
    m : int = 2
    while m <= n:
        if (d == 0) and (n % m == 0):
            d = m
            m = m + 1
        return d</pre>
```



# Sortie anticipée (I)

On veut calculer le plus petit diviseur non-trivial (différent de 1) d'un entier naturel.

```
def plus.petit.diviseur(n : int) -> int:
    """ retourne le plus petit diviseur non-trivial de n""" retourne le plus petit diviseur non-trivial de n""" retourne le plus petit diviseur non-trivial de n'"" retourne le plus
```

- On évite (quand *n* n'est pas premier) beaucoup de tours de boucle inutiles.
- Raffinement de la condition de la boucle.



# Sortie anticipée (II)

```
def plus.petit.diviseur(n : int) -> int:
    """ retourne le plus petit diviseur non-trivial de n"""

d : int = 0 # pas encore trouve

m : int = 2

while m <= n:
    if (d == 0) and (n % m == 0):
        return m
    m = m + 1
    return d</pre>
```

- Sortie directe de la fonction (avec return).
- return fait sortir de la fonction, donc *a fortiori* de toutes les boucles.
- Analyse de terminaison ?



# Compter l'efficacité

- ► Définir ce que l'on compte:
  - dépend du contexte:
    - avion:



- ▶ Définir ce que l'on compte:
  - dépend du contexte:
    - avion: nombre d'opérations numériques.
    - micro-onde:



- ► Définir ce que l'on compte:
  - dépend du contexte:
    - avion: nombre d'opérations numériques.
    - micro-onde: espace mémoire.
    - jeux vidéo:



- ► Définir ce que l'on compte:
  - dépend du contexte:
    - avion: nombre d'opérations numériques.
    - micro-onde: espace mémoire.
    - jeux vidéo: appels aux fonctions de la la librairie graphique.
    - appli web:



- Définir ce que l'on compte:
  - dépend du contexte:
    - avion: nombre d'opérations numériques.
    - micro-onde: espace mémoire.
    - jeux vidéo: appels aux fonctions de la la librairie graphique.
    - appli web: envoi et réception de messages asynchrones (AJAX).
  - temps:
    - multiplications, comparaisons, appels à des primitives, . . .
  - espace:
    - nombre de variables, appels de fonctions.
- Definir par rapport à quoi on compte:
  - dans quel cas ?
    - en moyenne, pire des cas, ...
  - taille des arguments:
    - longueur d'une liste,
    - taille d'un entier (son log<sub>2</sub>, correspondant à la mémoire qu'il prend)
- On s'intéresse souvent à la complexité asymptotique:
  - $\frac{n.(n+1)}{2}$  est similaire à  $3.n^2 + 180.n$ .
  - ▶  $n.\log_2(n)$  est meilleur que  $\frac{n.(n+1)}{2}$ .



# Efficacité d'algorithmes

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    retourne x eleve a la puissance n."""

res : float = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n
- Peut-on faire mieux ?



# Efficacité d'algorithmes

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    retourne x eleve a la puissance n."""

res : float = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n
- Peut-on faire mieux ?

```
x^{n} = \begin{cases} x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} & \text{si } n \text{ est pair} \\ x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} * x & \text{sinon} \end{cases}
```

```
def puissance.rapide(x : float, n ; int) -> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""
    res : float = 1
    acc : float = x
    i : int = n
    while i > 0:
        if i % 2 == 1:
            res = res * acc
        acc = acc * acc
        i = i // 2
    return res
```

Est-ce que ça calcule vraiment  $x^n$ ?



# Efficacité d'algorithmes

```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    retourne x eleve a la puissance n."""

res : float = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n
- Peut-on faire mieux ?

```
x^{n} = \begin{cases} x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} & \text{si } n \text{ est pair} \\ x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} * x & \text{sinon} \end{cases}
```

```
def puissance.rapide(x : float, n ; int) -> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

res : float = 1
    acc : float = x
    i : int = n

while i > 0:
    if i % 2 == 1:
        res = res * acc
    acc = acc * acc
    i = i // 2
return res
```

- Est-ce que ça calcule vraiment  $x^n$ ?
- Preuve de correction



# Puissance rapide - Terminaison

Variant?



## Puissance rapide - Terminaisor

Variant i.

Simulation puissance\_rapide(2,10) avec variant



# Puissance rapide - Terminaison

#### Variant i.

#### Simulation puissance\_rapide(2,10) avec variant

| tour de boucle | variable res | variable acc | Variant i |
|----------------|--------------|--------------|-----------|
| entree         | 1            | 2            | 10        |
| 1              | 1            | 4            | 5         |
| 2              | 4            | 16           | 2         |
| 3              | 4            | 256          | 1         |
| 4 (sortie)     | 1024         | 65536        | 0         |

#### Preuve Formelle

- $i_0$  valeur initiale de i vaut n valeur de n.
- i valeur de i en début de boucle, i' valeur en fin de boucle:

$$i' = |i/2| < i$$

ightharpoonup quand i=0 on sort de la boucle (condition fausse)

Ainsi, puissance\_rapide termine.



# Puissance rapide - Correction

Invariant?



# Puissance rapide - Correction

Invariant res = 
$$\frac{x^n}{acc^i}$$
.



## Puissance rapide - Correction

Invariant res = 
$$\frac{x^n}{acc^i}$$
.

| tour de boucle | variable res | variable acc | variable i | Invariant res = $\frac{x^n}{acc^i}$   |
|----------------|--------------|--------------|------------|---------------------------------------|
| entree         | 1            | 2            | 10         | $1 = \frac{1024}{210}$ (Vrai)         |
| 1              | 1            | 4            | 5          | $1 = \frac{1024}{45}$ (Vrai)          |
| 2              | 4            | 16           | 2          | $4 = \frac{1024}{16^2}$ (Vrai)        |
| 3              | 4            | 256          | 1          | $4 = \frac{1024}{256^{\circ}}$ (Vrai) |
| 4 (sortie)     | 1024         | 65536        | 0          | $1024 = \frac{1024}{655360}$ (Vrai)   |

- Soit n, x les valeurs de n, x, invariant vrai en entrée:  $1 = \frac{x^n}{x^n}$ .
- ▶ Soit i, a, r les valeurs de i, acc, res en début de tour et i', a', r' leurs valeurs en fin de tour.
  - Supposons l'invariant vrai en début de tour:  $r = \frac{x^n}{a^i}$
  - Si i = 2 \* p, alors i' = p, r' = r, a' = a \* a, on a  $r' = \frac{x^n}{a^2p} = \frac{x^n}{(a*a)^p} = \frac{x^n}{a'^{i'}}$  et l'invariant reste vrai.
  - Si i = 2 \* p + 1, alors i' = p, r' = r \* a, a' = a \* a, on a  $r' = a * \frac{x^n}{a^2p+1} = a * \frac{x^n}{(a*a)^p*a} = \frac{x^n}{a'^{i'}}$  et l'invariant reste vrai.
- Par récurrence, invariant vrai en sortie, quand i = 0 soit  $res = \frac{x^n}{acc^0}$ La fonction renvoie bien  $x^n$ .



```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""
    res : Number = 1
    i : int = 1
    while i != (n + 1):
        res = res * x
        i = i + 1
    return res
```

- Autant de multiplications que la valeur n.
- On fait une de multiplication à chaque tour de boucle.
- On fait *n* tours de boucle.
- Dans tous les cas,  $n \times 1 = n$  multiplications.



```
def puissance(x : float, n : int) ->> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

res : Number = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n.
- On fait une de multiplication à chaque tour de boucle.
- On fait *n* tours de boucle.
- Dans tous les cas,  $n \times 1 = n$  multiplications.

```
def puissance.rapide(x : float, n : int):
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

# res : Number
    res = 1

# val : Number
    acc = x

# i : int
    i = n

while i > 0:
    if i % 2 == 1:
        res = res * acc
    acc = acc * acc
    i = i // 2
    return res
```

Combien de multiplications ?



```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

res : Number = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n.
- On fait une de multiplication à chaque tour de boucle.
- On fait *n* tours de boucle.
- Dans tous les cas,  $n \times 1 = n$  multiplications.

```
def puissance.rapide(x : float, n : int):
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

# res : Number
    res = 1

# val : Number
    acc = x

# i : int
    i = n

while i > 0:
    if i % 2 == 1:
        res = res * acc
    acc = acc * acc
    i = i // 2
    return res
```

- Combien de multiplications ?
- On fait une ou deux multiplications à chaque tour de boucle.
- On fait



```
def puissance(x : float, n : int) -> float:
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

res : Number = 1

i : int = 1

while i != (n + 1):
    res = res * x
    i = i + 1
    return res
```

- Autant de multiplications que la valeur n.
- On fait une de multiplication à chaque tour de boucle.
- On fait *n* tours de boucle.
- Dans tous les cas,  $n \times 1 = n$  multiplications.

```
def puissance.rapide(x : float, n : int):
    """ Precondition : n >= 0
    donne x eleve a la puissance n."""

# res : Number
    res = 1

# val : Number
    acc = x

# i : int
    i = n

while i > 0:
        if i % 2 == 1:
            res = res * acc
        acc = acc * acc
        i = i // 2
    return res
```

- Combien de multiplications ?
- On fait une ou deux multiplications à chaque tour de boucle.
- On fait  $log_2(n)$  tours de boucle.
- Dans le pire des cas,  $2.\log_2(n)$  multiplications.



### Tracer la complexité

- On peut stocker le nombre d'opérations élémentaires que fait une fonction dans une variable.
  - et l'afficher avec print juste avant la sortie de la fonction.

```
def puissance.complex(x : float, n : int):
    """ Precondition : n>= 0 """

res : float = 1

i : int = 1

nb.mult : int = 0

while i <= n:
    res = res * x
    nb.mult = nb.mult + 1
    i = i + 1

print("Nombre de multiplications =", nb.mult)
return res</pre>
```

```
def puissance.rapide.complex(x : float, n : int) -> int:
    """ Precondition : n >= 0 """
    res : float = 1
    acc : float = x
    i : int = n
    nb.mult : int = 0
    while i > 0:
        if i % 2 == 1:
            res = res * acc
            nb.mult = nb.mult + 1
        acc = acc * acc
        nb.mult = nb.mult + 1
        i = i // 2
    print("Nombre de multiplications = ",nb.mult)
    return res
```



#### Récursion

- Autre approche (que la boucle) pour les calculs répétitifs.
- ► Fonction qui s'utilise elle-même.
- Dans le corps d'une fonction f on peut appliquer une fonction g
  - exemple: divise dans est\_premier
  - et quand g = f?



#### Récursion

- Autre approche (que la boucle) pour les calculs répétitifs.
- ► Fonction qui s'utilise elle-même.
- Dans le corps d'une fonction f on peut appliquer une fonction g
  - exemple: divise dans est\_premier
  - ightharpoonup et quand g = f?

```
def factorielle(n : int) -> int:
    """ Precondition : n >= 0
    donne la factorielle de n."""

if n <= 1:
    return 1
else:
    return n * factorielle(n - 1)</pre>
```

- ► Proche de la définition mathématique.
- ► Correction ? Terminaison ?
- Pas particulièrement efficace (récursivité terminale).
- Pas au programme de LU1IN001 (cf. LU2IN019, LI101).



```
def racine.cubique.entiere(n : int) -> int:
    """ Precondition : n >= 0 """

    racine : int = 0
    while (racine ** 3) <= n:
        racine = racine + 1
    return racine - 1</pre>
```

#### ► Variant ?



```
def racine.cubique.entiere(n : int) -> int:
    """ Precondition : n >= 0 """

racine : int = 0
    while (racine *** 3) <= n:
        racine = racine + 1
    return racine - 1</pre>
```

- ightharpoonup Variant max $(n racine^3, 0)$ ,
- ► Invariant ?



```
def racine.cubique.entiere(n : int) -> int:
    """ Precondition : n >= 0 """

racine : int = 0
while (racine ** 3) <= n:
    racine = racine + 1
return racine - 1</pre>
```

- ightharpoonup Variant max $(n racine^3, 0)$ ,
- ▶ Invariant " $(racine 1)^3 \le n$ ",
- ► Correction ?



```
def racine.cubique.entiere(n : int) -> int:
    """ Precondition : n >= 0 """

racine : int = 0
while (racine ** 3) <= n:
    racine = racine + 1
return racine - 1</pre>
```

- ightharpoonup Variant max $(n racine^3, 0)$ ,
- Invariant " $(racine 1)^3 \le n$ ",
- Correction en fin de boucle,  $racine^3 > n$  donc  $(racine 1)^3 \le n < racine^3$ .
- Complexité (en comparaison, pire des cas) ?



```
def racine.cubique.entiere(n : int) -> int:
    """ Precondition : n >= 0 """

    racine : int = 0
    while (racine ** 3) <= n:
        racine = racine + 1
    return racine - 1</pre>
```

- ightharpoonup Variant max $(n racine^3, 0)$ ,
- Invariant " $(racine 1)^3 \le n$ ",
- Correction en fin de boucle,  $racine^3 > n$  donc  $(racine 1)^3 \le n < racine^3$ .
- Complexité (en comparaison, pire des cas)
  - pire des cas: indifférent.
  - complexité:  $n^{\frac{1}{3}}$



```
def pgcd(n : int, m : int) -> int:
    """ Precondition : n >= m>= 0 """

d : int = n

r : int = m

# temp : int
temp = 0

while r != 0:
    temp = d % r
    d = r
    r = temp

return d
```

#### ► Variant ?



```
def pgcd(n : int, m : int) -> int:
    """ Precondition : n >= m>= 0 """

d : int = n

r : int = m

# temp : int
temp = 0

while r != 0:
    temp = d % r
    d = r
    r = temp

return d
```

- ► Variant *r*,
- ► Invariant ?



```
def pgcd(n : int, m : int) -> int:
    """ Precondition : n >= m>= 0 """

d : int = n

r : int = m

# temp : int
temp = 0

while r != 0:
    temp = d % r
    d = r
    r = temp

return d
```

- ► Variant *r*,
- ► Invariant "div(n,m) = div(d,r)",
- ► Correction ?



```
def pgcd(n : int, m : int) -> int:
    """ Precondition : n >= m>= 0 """

d : int = n

r : int = m

# temp : int
temp = 0

while r != 0:
    temp = d % r
    d = r
    r = temp

return d
```

- ► Variant *r*,
- ► Invariant "div(n, m) = div(d, r)",
- Correction en fin de boucle, r = 0 donc div(n, m) = div(d, 0) = div(d), puis passage au max.
- ► Complexité (en modulo, pire des cas) ?



```
def pgcd(n : int, m : int) -> int:
    """ Precondition : n >= m>= 0 """

d : int = n

r : int = m

# temp : int
temp = 0

while r != 0:
    temp = d % r
    d = r
    r = temp

return d
```

- ► Variant *r*,
- ► Invariant "div(n, m) = div(d, r)",
- Correction en fin de boucle, r = 0 donc div(n, m) = div(d, 0) = div(d), puis passage au max.
- Complexité (en modulo, pire des cas)
  - pire des cas: nombres consécutifs de Fibonacci.
  - complexité: inférieure à  $k.\log_2(m) + 1$  avec  $k \approx 2.0781$



### Correction de programmes

- ▶ Domaine Systèmes Embarqués: comment être sûr que l'avion ne va pas s'écraser ? (ou que le missile va s'écraser)
  - Le problème de la correction d'un programme est indécidable.
  - Deux approches:
    - le Test: soumettre le programme à des jeux de test couvrant.
    - la Vérification: regarder le code du programme, prouver la correction.
  - Avantages
    - Test: peu coûteux, pas d'accès au code.
    - Vérification: à faire une seule fois, garantie formelle.
  - Inconvénients
    - ► Test: pas de garantie (cas improbables mais possibles ?).
    - Vérification: très difficile.
  - ► En pratique: beaucoup de test, mais de plus en plus de vérification.



### Vérification

- Systèmes de Types: des types garantissent certaines propriétés: correction, terminaison, absence de blocage, . . .
  - exemple: typeur de MrPython
- ► Modèles: considérer l'espace d'état (les configurations possibles de la mémoire) et le diviser en zone.
  - montrer que certaines zones sont inatteignables.

#### Vérification automatique

- Des assistants de preuves (Coq, Isabelle) peuvent prouver des programmes.
- Utile pour vérifier les interpréteurs et compilateurs des langages de programmation.

#### Modèles de Calcul

#### Définition

Un modèle de calcul est un langage formel de termes liés par une relation de réduction.

- syntaxe: langage de termes, construit depuis des briques de base (Python 101: instructions et expressions, "arbres" du Cours01)
- sémantique: règles de réduction (Python 101: principes d'interprétation et d'évaluation)

#### Exemples de modèles de calcul

- Fonctions Récursives (Kleene 1940):
  - la fonctions des entiers définies récursivement.
  - syntaxe: définition, successeur, projection, composition, récursion, minimisation.
  - exemple:  $Add(a, b) = R^2[U_1^1, S_1^3(Succ, U_2^3)]$
  - sémantique: remplacement en utilisant des égalités.



### Modèles de Calcul

- ► Lambda-Calcul (Church 1930):
  - ▶ tout est fonction, calcul = substitution de variables.
  - ightharpoonup syntaxe:  $M, N ::= x \mid \lambda x.M \mid M N$ .
  - exemple: Add(a, b) =  $\lambda abfe.(a f) (b f e)$
  - **sémantique**:  $\beta$ -reduction:  $(\lambda x.M) N \to M[N/x]$
  - origine du lambda de Python.
- ► Machine de Turing (Turing 1930):
  - modèle opérationnel de calcul: "ordinateur".
  - syntaxe: un ruban (de 0 et de 1), une tête de lecture, un état.
  - sémantique: règles, en fonction de la position de la tête et de la case du ruban, on modifie (ou non) la case et on se déplace à gauche ou à droite
  - en Lego (par les étudiants de l'ENS de Lyon)





### Thèse de Church

(Rappel) Expressivité: ensembles des fonctions mathématiques atteignables par un modèle de calcul.

#### Théorème

Les machines de Turing, le  $\lambda$ -calcul de Church et les fonctions récursives de Kleene:

- 1. ont la même expressivité,
- 2. qui est la notion naturelle du calcul.
- ▶ partie mathématique (1.): preuves formelles, encodages.
- ▶ partie philosophique (2.): notion de "calcul du cerveau humain".
- ▶ introduction de la Turing-complétude (Turing-puissance): "être aussi expressif que ces 3 modèles".
  - les langages usuels sont (évidemment) Turing-puissant.
  - notre langage (à quatre instructions) est Turing-puissant.



### Conclusion

- boucle: instruction while.
- simulation de boucles.
- boucles imbriquées.
- correction (invariant)
- terminaison (variant)
- efficacité
- ► Culture Générale :
  - ► Problème de l'arrêt
  - ► Thèse de Church

# Conclusion (II)

#### TD-TME 03

► Thèmes 03 et 04 du cahier d'exercices.

#### Activité 03

► Validation

### Cours 04 - 04/10/2021

"ces séquences qui nous gouvernent"