ROBOTICS PROJECT

TRACKROBOT

MECHANICAL:

Design:

- <u>Challenges</u>: Ensuring proper traction, durability, and stability within CAD design while considering physical constraints.
- <u>Tasks</u>: Designing track layout, incorporating physical constraints, optimizing for durability.

Fabrication:

- <u>Challenges</u>: Material selection and fabrication techniques for tracks.
- <u>Tasks</u>: Selecting appropriate materials, considering 3D printing or other fabrication methods, assembly.

Mechanical Systems:

- <u>Challenges</u>: Understanding actuator properties and motion mechanisms for effective track movement.
- <u>Tasks</u>: Selecting actuators suitable for track propulsion, optimizing motion efficiency.

ELECTRICAL:

Circuit Design:

- <u>Challenges</u>: Designing PCB layout for motor control circuits.
- Tasks: PCB layout for motor drivers, considering space constraints, soldering.

Components Integration:

- Challenges: Selecting and integrating components while considering specifications.
- <u>Tasks</u>: Specifying motor controllers, analyzing datasheets, integrating components into the electrical system.

Power Systems:

- <u>Challenges</u>: Distributing power efficiently to motor drivers and other components.
- <u>Tasks</u>: Designing power distribution system, regulating voltage, managing current.

SOFTWARE:

Programming:

- <u>Challenges</u>: Developing algorithms for robot movement.
- <u>Tasks</u>: Implementing control algorithms in C++ or Python, optimizing for efficiency. Optional Vision control using neural networks.

ROS:

- <u>Challenges</u>: Configuring ROS nodes and topics for communication.
- <u>Tasks</u>: Setting up ROS nodes for track control, configuring topics for sensor data exchange.

WHEELROBOT

THE SAFE OPTION

OVERAL TASKS:

Mechanical Engineering:

- D<u>esign</u>: Designing chassis layout, selecting appropriate materials, optimizing weight distribution.
- <u>Fabrication</u>: Selecting materials, 3D printing or machining, assembly.
- <u>Mechanical Systems</u>: Selecting motors, designing gear trains, optimizing wheel traction.

Electrical Engineering:

- Circuit Design: PCB layout for motor drivers, soldering, considering space constraints.
- <u>Components Integration</u>: Specifying motors, integrating encoders, sensors, and motor drivers.
- <u>Power Systems</u>: Selecting power source, designing power distribution, managing power consumption.

Software Engineering:

- P<u>rogramming</u>: Implementing forward/backward movement, turning algorithms.
- ROS: Configuring ROS nodes for wheel control, communication topics.

THANK YOU

JULIAN LECLERC