Lemma 3.1. Assume that $T \in \mathcal{T}_h$ and $S \in \mathcal{S}_h$ satisfy $\emptyset \neq T \cap \Gamma_h \subset S$. Then we have

$$\|\nabla^m (v_h - \mathring{I}_h v_h)\|_{L^p(T)} \le C h_T^{1/p-m} \|v_h\|_{L^p(S)} \quad \forall v_h \in V_h,$$

where $m = 0, 1, \ldots$ and $1 \le p \le \infty$.

We recall from [3, Theorem 5] standard interpolation error estimates for I_h :

Lemma 3.2. Let $l, m \in \mathbb{N}$ satisfy $0 \le l \le m \le k+1$ and $p \in [1, \infty]$. Assume the embedding $W^{m,p} \hookrightarrow C^0$ holds for subsets in \mathbb{R}^N . Then we have

$$||v - I_h v||_{W^{l,p}(T)} \le Ch^{m-l} ||v||_{W^{m,p}(T)} \quad (T \in \mathcal{T}_h, v \in W^{m,p}(T)).$$

Estimates for \mathring{I}_h are, however, more involved because of domain perturbation (u=0 on Γ does not necessarily imply $\tilde{u}=0$ on Γ_h). We state it in the following form, whose proof is similar to that of Proposition 5.1 below (we only have to consider global Ω_h and set $v_2=0$ there) and thus omitted here.

Proposition 3.1. Under the assumptions of Lemma 3.2, let $m \geq 2$ and $v \in W^{m,p}(\tilde{\Omega})$ satisfy v = 0 on Γ . Then we have

$$\left(\sum_{T \in \mathcal{T}_h} \|\nabla^l (v - \mathring{I}_h v)\|_{L^p(T)}^p\right)^{1/p} \le C h^{m-l} \|v\|_{W^{m,p}(\Omega_h)} + C h^{k+1-l} \|\nabla^2 v\|_{L^p(\Gamma(\delta))},$$

with the obvious modification for $p = \infty$.

4. Reduction to $W^{1,1}$ -analysis of a regularized Green function

Fixing arbitrary $K \in \mathcal{T}_h$ and $z \in K$, we try to bound the pointwise error $\tilde{u}(z) - u_h(z)$. We construct a regularized delta function; the proof is given in the appendix.

Proposition 4.1. For $K \in \mathcal{T}_h$ and $\mathbf{z} \in K$, there exists $\eta = \eta_{K,\mathbf{z}} \in C_0^{\infty}(K)$ such that $\operatorname{dist}(\operatorname{supp} \eta, \partial K) \geq Ch_K$, $\|\nabla^m \eta\|_{L^{\infty}(K)} \leq Ch_K^{-N-m}$ (m=0,1), and

$$(v_h, \eta)_K = v_h(z)$$
 for $v_h = \hat{v}_h \circ F_K^{-1}$ with arbitrary $\hat{v}_h \in \mathbb{P}_k(\hat{T})$,

where the constant C is independent of K, z, and h_K .

Next we introduce a "dyadic decomposition" of Ω_h . We set a sequence of scales:

$$d_0 = Lh$$
, $d_j = 2^j d_0$ for $j = 1, \dots, J := \left\lceil \frac{\log(\operatorname{diam} \Omega_h / d_0)}{\log 2} \right\rceil$,

where L means the ratio of the "initial stride" d_0 to the "minimum scale" h. As we see later, L will be taken sufficiently large (but independently of h). Then we define a subset $\Omega_{h,j}$ of Ω_h —which has the scale d_j in terms of the distance from K—by

$$\Omega_{h0} = \bigcup \{ T \in \mathcal{T}_h \mid d(T, K) \le d_0 \},
\Omega_{h,j} = \bigcup \{ T \in \mathcal{T}_h \mid d_{j-1} < d(T, K) \le d_j \} \ (j = 1, \dots, J),$$

where $d(T,T') = \min\{|\boldsymbol{x}-\boldsymbol{x}'| \mid \boldsymbol{x} \in T, \boldsymbol{x}' \in T'\}$ denotes a distance function between two elements $T,T' \in \mathcal{T}_h$. They are compatible with a standard ball $B(\boldsymbol{z};r) = \{\boldsymbol{x} \mid |\boldsymbol{x}-\boldsymbol{z}| \leq r\}$ and annulus $A(\boldsymbol{z};r,R) = \{\boldsymbol{x} \mid r \leq |\boldsymbol{x}-\boldsymbol{z}| \leq R\}$. In fact, by triangle inequalities, combined with $d_J \geq \operatorname{diam} \Omega_h$ and $\operatorname{diam} T \leq Ch$ for $T \in \mathcal{T}_h$, we obtain

$$\Omega_h = \bigcup_{j=0}^J \Omega_{h,j} \text{ (disjoint union)}, \quad \Omega_{h0} \subset \Omega_h \cap B(z; 2d_0),$$

$$\Omega_{h,j} \subset \Omega_h \cap A_j^{(s)} \subset \Omega_{h,j-1} \cup \Omega_{h,j} \cup \Omega_{h,j+1} =: \Omega_{h,j}' \, (j \geq 1),$$

where $A_j^{(s)} := A(\boldsymbol{z}; (1 - \frac{s}{2})d_{j-1}, (1+s)d_j)$ for all $s \in (0,1)$, provided that L is sufficiently large. We also remark that $\sum_{j=\ell_1}^{\ell_2} d_j^{\alpha}$ is bounded by $Cd_{\ell_1}^{\alpha}$ if $\alpha < 0$, by $C|\log d_0|$ if $\alpha = 0$, and by $Cd_{\ell_2}^{\alpha}$ if $\alpha > 0$, for $0 \le \ell_1 \le \ell_2 \le J$.

Now let us start the first part of the proof of Theorem 1.1. For any $v_h \in \mathring{V}_h$ we use the regularized delta function η constructed in Proposition 4.1 to get

$$(\tilde{u} - u_h)(z) = (\tilde{u} - v_h)(z) + (v_h - \tilde{u}, \eta)_{\Omega_h} + (\tilde{u} - u_h, \eta)_{\Omega_h}.$$

The first two terms on the right-hand side are bounded by $C\|\tilde{u}-v_h\|_{L^{\infty}(K)}$. To address the last term we define a regularized Green function $g \in W^{3,\infty}(\Omega)$ by solving

$$-\Delta g = \eta$$
 in Ω , $g = 0$ on Γ ,

where η is extended by zero outside supp $\eta \subset \Omega$ (this inclusion holds if h is small). We also utilize its finite element approximation $g_h \in \mathring{V}_h$ obtained by solving

$$a_h(v_h, g_h) = (\nabla v_h, \nabla g_h)_{\Omega_h} = (v_h, \eta)_{\Omega_h} \quad \forall v_h \in \mathring{V}_h.$$