

# Pre-midterm wrapup





# Single particle motion

m = 16amu, q = 1e   

$$T_{II}$$
 = 14MeV,  $T_{\perp}$  = 31MeV,  $\alpha_0$  = 56°   
t = 0.00s





# Single particle motion

m = 16amu, q = 1e   
 
$$T_{II}$$
 = 14MeV,  $T_{\perp}$  = 31MeV,  $\alpha_0$  = 56°   
 t = 0.00s



#### Diffusion vs. frozen-in



Fig. 5.1. Diffusion of magnetic field lines.



**Figure 1.2:** Illustration of the "frozen-in" theorem. **a)** A magnetic field penetrates a highly conducting plasma. **b)** As the plasma moves, the magnetic field is "frozen-in" and follows the motion of the plasma.



## Magnetic reconnection



Fig. 5.3. Evolution of field line merging.

Service of the servic

# Some solar features





## Butterfly diagram

#### DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS





http://science.msfc.nasa.gov/ssl/pad/solar/images/bfly.gif

NASA/MSFC/HATHAWAY 02/2001



## Gas dynamic model II



## Heliospheric current circuit









### Ballerina skirt



## Dayside magnetosphere



Fig. 1.3. Topography of the solar-terrestrial environment.



# The magnetotail





## Chapman production function



## Ionospheric densities and composition



# Atmospheric layers



Fig. 2.13. Classification and nomenclature of the terrestrial atmosphere



## Atmospheric temperature profile

