Data Edvantage

Data Analysis of Majulah Junior College's Internal Physics Exams

Class: IBM IMVAI-1502

Team: 4

Team Members: Rahbeiatul Fazeria, Melodie Tay, Quek Wee Tong, Loretta Yong, Tan Siang Khim

Agenda

- Introduction
- Planning Analytics
- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics
- Summary & Reflections

Introduction

Project Objectives

To help Physics educators in Majulah Junior College:

Be more effective in setting better exam questions

Improve their overall teaching methods and learning journey for their students

Tools and Applications

Collaboration and project management

Descriptive statistics

Data compilation, refinery

AutoAI for building and deploying ML models

Planning Analytics

Our Target Users

"Who hired us?"

Majulah Junior College

Physics Department

"What are we hired to do?"

Analyse past exam data

Recommend actions to take

"Who do we work with?"

Level heads, who coordinate exams

Teachers, who help set and vet test items

Problem Statement

"How might we help Physics educators in Majulah Junior College be more effective in setting better exam questions?"

Motivations

Set better exam papers

Improve teaching & learning for their students

Goals

Gain insights from from past exam data

Use these insights improve processes in assessment and teaching

As-Is Scenario

How an exam paper is set?

Design paper

Setting

Peer vetting

Team vetting

HOD approval

How many questions? What topic to test? How many questions of each topic, etc... Teachers received guideline, sets the question

Teachers assigned a peer vetter
1st round of vetting

Group of teachers sit down together to look through entire paper Head of department final vetting

As-Is Scenario

How are exam questions set?

Teachers' thinking process

- Design from scratch
- Modify from past questions vs pure inspiration

Labelling test items

- Topic & learning outcomes (according to A-levels syllabus)
- Nature of question -
 - Calculation, graphical, conceptual, or mix?
- Predicted difficulty level: Easy, Moderate, Difficult

Collating item features

- All of these data are collated in a table called Table of Specifications (TOS)
- Used for reviewing test as a whole

- Exams statistics are generated for every MCQ paper
- Test statistics: Mean, quartile scores, test reliability score*
- Item statistics: Stats for choices, % correct, item reliability score*

- Data collected for every exam
- Post-mortem done only on single exam
- But no process/bandwidth to evaluate them over long term
- Data also not used to influence future setting decisions

As-is Scenario

What happens after exam?

Difficult to improve effectiveness in question setting No reliable way of predicting difficulty and reliability of whole test

No way to measure and verify the 'hunches' that teachers have towards students' weaknesses

Unable to distinguish topics or question types that tend to be less reliable as test questions

Let's uncover new insights!

Purpose of Exams

Assess learning, discriminate students ability

Provide feedback to both students and teachers

Guidance for subsequent teaching / learning strategies / intervention

Qualities of a good MCQ Exam Paper

- Objective: To discriminate students' level of competency
 - A test paper comprises exam questions of varying context and nature
 - Test, as a whole, must be reliable and accurate

Characteristics:

- Must be able to distinguish degree of competence
- Conceptually correct
- Question design: distractors (i.e. the 3 wrong answer options) are well-designed to capture common misconceptions / likely mistakes

What data do we have?

Descriptive Analytics

Implementation Architecture

Data Exploration

- Pre-Exam
 - Table of specifications for every exam, contains labels of questions
 - By Question
- Post Exam
 - Test statistics (by exam)
 - Item statistics (by questions)

Data Preparation

- Conversion of Word document format to PDF/CSV format
- Merging of two separate datasets into a single document via Power BI
- Merge via common reference column 'filename' e.g. 2016 C1 BT (Year/Level/Test)

Merge file		T	eam 4\Data Sets	\Item analysis			
1×CSV			Date accessed	Date modified	Date created	Attributes	Fo
			1/1/1980 8:00:00 am	18/12/2021 3:14:40 pm	20/12/2021 9:33:45 am	Record	G:\My Drive\Data Scien
retim.pdf .pdf		.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:40 pm	20/12/2021 9:33:45 am	Record	G:\My Drive\Data Scien
Binary	2019 Prelim.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:40 pm	20/12/2021 9:33:48 am	Record	G:\My Drive\Data Scien
Binary	2021 C2 BT.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:40 pm	20/12/2021 9:33:49 am	Record	G:\My Drive\Data Scien
Binary	2020 C2 BT.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:48 am	Record	G:\My Drive\Data Scien
Binary	2020 C2 Prelim.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:48 am	Record	G:\My Drive\Data Scien
Binary	2021 C1 Promo.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:49 am	Record	G:\My Drive\Data Scien
Binary	2018 C1 BT.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:44 am	Record	G:\My Drive\Data Scien
Binary	2019 C1 BT.pdf	.pdf	30/12/2021 10:38:50 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:45 am	Record	G:\My Drive\Data Scien
Binary	2018 C1 Promo.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:44 am	Record	G:\My Drive\Data Scien
Binary	2021 C2 Prelim.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:49 am	Record	G:\My Drive\Data Scien
Binary	2019 C1 Promo.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:45 am	Record	G:\My Drive\Data Scien
Binary	2021 C1 BT.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:41 pm	20/12/2021 9:33:49 am	Record	G:\My Drive\Data Scien
Binary	2017 C1 Promo.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:42 pm	20/12/2021 9:33:41 am	Record	G:\My Drive\Data Scien
Binary	2015 C1 BT.pdf	.pdf	20/12/2021 10:08:54 am	18/12/2021 3:14:42 pm	20/12/2021 9:33:40 am	Record	G:\My Drive\Data Scien
Binary	2016 C1 BT.PDF	.PDF	20/12/2021 11:24:10 am	18/12/2021 3:14:42 pm	20/12/2021 9:33:40 am	Record	G:\My Drive\Data Scien
Binary	2016 C2 BT2.PDF	.PDF	1/1/1980 8:00:00 am	18/12/2021 3:14:42 pm	20/12/2021 9:33:41 am	Record	G:\My Drive\Data Scien
Binary	2017 C1 BT.pdf	.pdf	1/1/1980 8:00:00 am	18/12/2021 3:14:42 pm	20/12/2021 9:33:41 am	Record	G:\My Drive\Data Scien
Dinant	2014 C1 PT ndf	ndf	20/12/2021 10-27-40 000	10/12/2021 2-14-42 nm	20/12/2021 0-22-20 000	Docord	Col May Drived Data Scient

What comes out of the Big Merge...

Dataset: Table of Specifications and Item Analysis

Attribute	Description	Туре	Count
File Name	File name convention used for each paper	String	23 papers
Year of Exam	Year of when exam paper was conducted	Integer	6 years
Date of Exam	Date of when exam paper was conducted	String	23 dates
Name of Exam	Name of exam paper	String	23 papers
Cohort (Year of Graduation)	Graduation year for the respective cohort	Integer	6 years
Question	Question number for respective exam	Integer	475 questions
Topic Acronym	Acronyms used for Physics topic names	String	19 topics
Assessment Objective - Knowledge with Understanding [1/0]	Assessment objective #1 for specific exam question	Decimal	164 entries
Assessment Objective - Handling, Applying and Evaluating Information [1/0]	Assessment objective #2 for specific exam question	Decimal	320 entries

Dataset: Table of Specifications and Item Analysis

Attribute	Description	Туре	Count
Predicted Difficulty - Easy	Level of difficulty that is perceived for specific exam question	Decimal	137 entries
Predicted Difficulty - Moderate		Decimal	271 entries
Predicted Difficulty - Difficult		Decimal	75 entries
Nature of Question - Calculation [1/0]	Nature of question #1 for specific exam question	Decimal	255 entries
Nature of Question - Graphical / Diagram [1/0]	Nature of question #2 for specific exam question	Decimal	139 entries
Nature of Question - Qualitative / Conceptual [1/0]	Nature of question #3 for specific exam question	Decimal	183 entries
Learning Outcome 1	Possible learning outcome determined for specific exam question	String	315 entries
Remarks	Remarks relevant to specific exam question	String	144 entries

Data Exploration

	Year of Exam	Question	Assessment Objective - Knowledge with Understanding [1/0]	Assessment Objective - Handling, applying and Evaluating Information [1/0]	Predicted difficulty - Easy	Predicted difficulty - Moderate	Predicted difficulty - Difficult	Difficulty	Nature of Question - Calculation [1/0]	Nature of Question - Graphical /Diagram [1/0]	Nature of Question - Qualitative / Conceptual [1/0]	Graded	Correct	Point Biserial	P-Valu
ount	475.000000	475.000000	164.000000	320.000000	137.000000	271.000000	75.000000	475.000000	255.000000	139.000000	183.000000	475.000000	475.000000	475.000000	475.000000
nean	2018.235789	12.132632	0.975610	0.981250	0.992701	0.992620	0.973333	1.858947	0.858824	0.748201	0.836066	504.244211	317.983158	0.349811	0.631078
std	1.769164	8.205772	0.108034	0.110393	0.085436	0.074168	0.215816	0.642302	0.234081	0.250898	0.246759	22.585593	93.191761	0.091133	0.184376
min	2016.000000	1.000000	0.500000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000	0.000000	466.000000	50.000000	-0.020000	0.101000
25%	2016.500000	6.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.500000	0.500000	0.500000	488.000000	252.500000	0.290000	0.502000
50%	2018.000000	11.000000	1.000000	1.000000	1.000000	1.000000	1.000000	2.000000	1.000000	0.500000	1.000000	497.000000	329.000000	0.360000	0.659000
75%	2020.000000	16.500000	1.000000	1.000000	1.000000	1.000000	1.000000	2.000000	1.000000	1.000000	1.000000	512.000000	390.000000	0.420000	0.778000
max	2021.000000	40.000000	1.000000	1.000000	1.000000	1.000000	2.000000	3.000000	1.000000	1.000000	1.000000	556.000000	523.000000	0.560000	0.957000

Data Cleansing / Transformation

Within PowerBI:

- Align on appropriate headers for data [Cohort/Topic/Difficulty/Nature of Qn]
- Remove unnecessary columns [e.g. Filename, date, question number]
- Data cleansing to arrive at standard list of Physics topics

Within Excel:

- Further formatting of data type (numbers, date, string)
- Data transformation of difficulty from Easy/Moderate/Difficult to ranking system
- Align topics based on standardised legend

Topic	I Easy(E)	II Moderate (C)	III Difficult (A)	Difficulty
Kinematics+Dynamics			1	3
Dynamics		1		2
Dynamics	1			1

Data Transformation

Acronym	Names of Physics topic and sub-topics
AC	Alternating Current
СМ	Motion in a Circle
DC_COE	DC/Current of Electricity, Current of Electricity
Dynamics	Dynamics
E_field	Electric Fields, Electric Potential
EM	Electromagnetism, B Field of Solenoid
EMI	Electromagnetic Induction, Magnetic Flux Linkage, Faraday's Law
Forces	Forces, Torque
WEP	Work, Energy, Power

Acronym	Names of Physics topic and sub-topics
Gravitation	Gravitation, G-force, Gravitational Field
Kinematics	Kinematics
Measurement	Measurement, Vectors
Nuclear	Nuclear Physics
Quantum	Quantum Physics, Photoelectric, Modern Physics, Line Spectra
SHM	Oscillations, Max Speed (SHM), Energy (SHM)
Superposition	Superposition, Standing Waves, Single Slit
Thermal	Thermal Physics, Temperature & Ideal Gases, First Law of Thermodynamics, Ideal Gases
Waves	Wave Motion, Phase, Polarisation

Data Transformation

```
dummy_variable_1 = pd.get_dummies(df['Topic Acronym'])
dummy variable 1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 473 entries, 0 to 472
Data columns (total 18 columns):
     Column
                    Non-Null Count
                                    Dtype
     AC
                    473 non-null
                                    uint8
                    473 non-null
     CM
                                    uint8
    DC COE
                    473 non-null
                                    uint8
    Dynamics
                    473 non-null
                                    uint8
 4
     EM
                    473 non-null
                                    uint8
     FMT
                    473 non-null
                                    uint8
                    473 non-null
    E Field
                                    uint8
    Forces
                    473 non-null
                                    uint8
    Gravitation
                    473 non-null
                                    uint8
     Kinematics
                    473 non-null
                                    uint8
    Measurement
                    473 non-null
                                    uint8
     Nuclear
                    473 non-null
                                    uint8
                    473 non-null
    Ouantum
                                    uint8
     SHM
                    473 non-null
                                    uint8
     Superposition 473 non-null
                                    uint8
    Thermal
                    473 non-null
                                    uint8
    WEP
                    473 non-null
                                    uint8
    Waves
                    473 non-null
                                    uint8
dtypes: uint8(18)
```

- In preparation to generate AutoAl models, we also performed One-Hot Encoding of topic acronyms
- Numerical values were assigned to the 18 physics topics using Python

Data Transformation

- Merged the indicator variables to the main dataframe using pandas' concat method
- Removed the column 'Topic Acronym'

Overview of Transformation

Data Validation

- Data quality assurance
 - Created a formula to flag missing values as 'FALSE'
 - Exclude rows with missing/incomplete data
 - Run validation check on finalised data attributes (e.g. topic subjects)
 - Check that data attributes are correctly identified (String/Integer/Decimal/Date)

Diagnostic Analytics

Diagnostics

Big picture view

- Find global trends
- Sense-making, relating back to business understanding

Deep Dive

- Outcomes* vs Topics
- Outcomes vs Type of questions

*Outcomes: p-value, point-biserial

End Goal

- Develop insights
- Angle to focus on for our predictive analytics

Recall...

P-Value and Point Biserial

P-Value

Measure of: Difficulty

How to get this: Proportion of candidates who

get test item correct

>0.85	Very easy, not discriminating
0.7 - 0.85	Easy
0.5 - 0.7	Moderate; Ideal range
0.25 - 0.5	Difficult
< 0.25	Very difficult, not discriminating

Point Biserial

Measure of: Reliability and Discrimination

How to get this: Correlation of candidate's overall score (less that test item) vs candidate's mark for that item

Negative	Big problem; may indicate major error
Around 0	No relationship between question score and assessment score; need to review what's wrong with item
0.05 - 0.2	Poor discrimination
0.21 - 0.3	So-so
0.31 - 0.45	Quite discriminating, served purpose.
>0.45	Very discriminating, good as a model

Overview: Point Biserial vs P-value

Interpretation:

- Question too easy (p-value high), everyone also wrong, point bi-serial low
- Question too difficult, everyone also wrong, point bi-serial also low
- Good question should aim for band of 0.5-0.7

Point biserial

Deep Dive: P-value vs Nature of questions

No significance difference in p-values across question types ("Nature of Questions")

Deep Dive: P-value vs Predicted Difficulty

- $R^2 = 0.12$
- Setters are not too good at predicting the difficulty of the questions they set!

Deep Dive: Point Biserial vs Predicted Difficulty

- $R^2 = 0.004$
- Predicted difficulty has no correlation with point-biserial
- Questions perceived to be easy, moderate, or difficult all have similar occurrence of not being discriminating (point biserial)

Deep Dive: P-value and Point Biserial vs Topics

- Getting a feel of how of the variation across topics
- Absolute values not so good to compare
- Next step: normalise

Normalised P-values across Topics

- Standard deviation tells us the spread of questions in terms of difficulty
- Mean tells us on average, are questions of this topic difficult
- Difficult test items:
 - EMI large spread
 - Measurement small spread

Normalised Point Biserial across Topics

- Standard deviation tells us the spread of questions in terms of how well they discriminate
- Mean tells us on average, are questions of this topic discriminating
- Topics of concern:
 - EM, EMI
- Doing well:
 - Measurement

Insights from Diagnostics

- Study by topics alone most meaningful, due to greater diversity
 - Couple topics with "predicted difficulty" or "nature of questions"?
 - Predicted difficulty more relevance
- Predicted difficulty bears greater correlation to p-value than to point-biserial
 - Our data is to primed to provide more predictive power in p-value
- Good direction:
 - By topic + predicted difficulty
 - Need to refine data further

Predictive Analytics

What data we eventually run AutoAl on...

P-Value		_	COE	Dynamics	field		_	s a.	Gravitation	Kinematics	asurement	Nuclear	Quantum	5	oerposition	Thermal	Waves	9 .
- <u>-</u>	AC	N C	2	Ā	Ī	E	EM	For	Ę.	출	Z e	Ž	₹	SHM	Sup	Ĕ	¥	WEP
0.69	0	0	0	0	0	0	0	0	0	0	1.38	0	0	0	0	0	0	0
0.647	0	0	0	0	0	0	0	0	0	0	1.294	0	0	0	0	0	0	0
0.44	0	0	0	0	0	0	0	0	0	1.32	0	0	0	0	0	0	0	0
0.669	0	0	0	0	0	0	0	0	0	2.007	0	0	0	0	0	0	0	0
0.841	0	0	0	1.682	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.516	0	0	0	0.516	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.595	0	0	0	1.19	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.572	0	0	0	0	0	0	0	1.144	0	0	0	0	0	0	0	0	0	0
0.798	0	0	0	0	0	0	0	1.596	0	0	0	0	0	0	0	0	0	0
0.746	0	0	0	0	0	0	0	1.492	0	0	0	0	0	0	0	0	0	0
0.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.58
0.322	0	0.966	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.38	0	0.76	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.616	0	0	0	0	0	0	0	0	0.616	0	0	0	0	0	0	0	0	0
0.61	0	0	0	0	0	0	0	0	1.22	0	0	0	0	0	0	0	0	0
0.93	0	0	0	0	0	0	0	0	0	0	0.93	0	0	0	0	0	0	0

Training Data Models with IBM Watson Studio's AutoAl

Progress Map

Target Variable: P-Value

Use of AutoAl toolkit in IBM Watson Studio to:

- Automatically prepare data 90:10 split ratio of training and holdout data
- Apply machine learning algorithms
- Build model pipelines that best suit our dataset and business case

Training Data Models with IBM Watson Studio's AutoAl

Pipeline Leaderboard: Top 4

Determined linear regression to be most basic model to start with:

- Dealing with numerical values
- Values are linearly related to each other
- Function is multiple linear regression

Training Data Models with IBM Watson Studio's AutoAl

Ranked #1: Pipeline 3 - (Multiple) Linear Regression

Considering that the dataset is restrictive, the model's performance is deemed to be satisfactory

Multiple Linear Regression Equation:
$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p$$

Validation of Data Model

P-Value Threshold Ranges:

>0.85	Very easy, not discriminating
0.7 - 0.85	Easy
0.5 - 0.7	Moderate; Ideal range
0.25 - 0.5	Difficult
< 0.25	Very difficult, not discriminating

Results from Testing Model:

```
"predictions": [
                "fields": [
                    "prediction"
                "values": [
                        0.5651962757110596
                        0.5269246101379395
                        0.535916268825531
15
16
17
                        0.5866577625274658
18
19
20
                        0.30093348026275635
21
22
24
25 }
```

	By Subject Ma	tter Experts	By Model			
Feature (i.e. Topic)	Level of Difficulty	P-Value	Predicted P-Value	Predicted Level of Difficulty		
Superposition	3 (Difficult)	0.271	0.565	2 (Moderate)		
EMI	3 (Difficult)	0.269	0.527	2 (Moderate)		
EM	3 (Difficult)	0.316	0.536	2 (Moderate)		
Dynamics	3 (Difficult)	0.248	0.587	2 (Moderate)		
Gravitation	3 (Difficult)	0.201	0.301	3 (Difficult)		

Prescriptive Analytics

Model Deployment

- Web-based interface that focuses on user's experience convenient, hassle free and concise
- Automation of data pre-processing based on user's inputs
- Zero downtime at all times
- Consistent monitoring and managing of current model using DevSecOps methodology

Website Interface - Wireframe

We will help you to determine the quality of your exam questions

Upload the question that you have set:	Browse	Upload
	File type: .xls, .pdf, .doc	

Provide your inputs for the following parameters:

Question Topic:	EMI -
P-Value: (Indicate desired value to achieve)	0.30
Level of Difficulty: (Select: 1 = Easy, 2 = Moderate, 3 = Difficulty)	3

Very difficult, not discriminating

P-Value Threshold Range

0.25 - 0.4 < 0.25

Submit

Environment Feedback

User-friendliness of website

Periodic re-fitting of model triggered by changes in data attributes

Continuous refining of model to reduce RMSE of prediction accuracy

Subject matter experts' guidance on how they want to set the exam questions, write conditions

Summary & Reflections

Constraints

Insufficient variant of datasets due to students competency level being too similar

Difficulty in getting more quantity of data

With single dataset, limited fields result in limited angles to analyze data

Challenges

Consolidation of data from files of differing formats

Limitations of CUH (capacity unit hour) available for Machine Learning in IBM Watson Studio Lite plan

Adapting to using data analytics tools (PowerBI, Python, IBM Watson) instead of reverting to manual data transformation

Finding trends/correlation between attributes and limited fields

Conclusion

Design thinking plays a crucial role in enabling all parties to align focus and keep our target users in addressing their pain points

Beneficial to possess knowledge and skills in using tools that enable a more efficient way of handling huge datasets

Machine learning serves to make visible the gap between expectations of teachers vs students' actual level of performance for specific topics

Future Plan/Enhancement/Consideration

Possible work directions:

- Use of dummy datasets (through data manipulation) to simulate different scenarios to test the model's elasticity using extreme values and improve the model's understanding of our data
- Additional data preprocessing required to achieve consistent formatting of data obtained from other junior colleges
- Further exploration of more complex algorithms for our data to achieve greater accuracy of results

"If we lack domain knowledge, it is best to first start with looking at the data." - Loretta

"Must learn to love 'Data' like a commodity for its intrinsic value." - Siang Khim

"Business understanding is the north-star in the midst of chaos." - Wee Tong

Learning Takeaways

"The aim is to turn data into information, and information into insight." - Melodie

"Teamwork is very important."

- Faz

Thank You