# Figures, Tables, and Important Values

#### Ariane Stark

# **Data Editing**

# Important Values

#### Quartile Values

Spearman Rank Correlation Cases and Prop. Black Residentd

```
#race
cor(x=all_the_data_pull_cutoff$`total cases`,
   y=all_the_data_pull_cutoff$Total_Black/
      all_the_data_pull_cutoff$Total_Pop,
   method="spearman")
## [1] 0.4493985
cor.test(x=all_the_data_pull_cutoff$`total cases`,
   y=all_the_data_pull_cutoff$Total_Black/
      all_the_data_pull_cutoff$Total_Pop,
   method="spearman")
##
## Spearman's rank correlation rho
##
## data: all_the_data_pull_cutoff$'total cases' and all_the_data_pull_cutoff$Total_Black/all_the_data_
## S = 2779051013, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
         rho
## 0.4493985
```

#### Spearman Rank Correlation Cases and Prop. Households in Poverty

```
cor(x=x_case[-c(1814)],
   y=y_pov[-c(1814)],
   method="spearman")
## [1] -0.04914091
cor.test(x=x_case[-c(1814)],
    y=y_pov[-c(1814)],
   method="spearman")
##
   Spearman's rank correlation rho
##
## data: x_{case}[-c(1814)] and y_{pov}[-c(1814)]
## S = 5290233922, p-value = 0.006076
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
           rho
## -0.04914091
```

## MAE Wilcoxon Tests

Wilcoxon rank sum between proportion of black constituent quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: quart_1_mae and quart_2_mae
## W = 173277, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
##
##
  Wilcoxon rank sum test with continuity correction
##
## data: quart_1_mae and quart_3_mae
## W = 101894, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: quart_1_mae and quart_4_mae
## W = 108750, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
## data: quart_3_mae and quart_4_mae
## W = 306424, p-value = 0.7352
## alternative hypothesis: true location shift is not equal to 0
```

## Within Covid Case Quartile 1 Compare Across Race Quartiles

```
##
   Wilcoxon rank sum test with continuity correction
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_2
## W = 30054, p-value = 0.001876
## alternative hypothesis: true location shift is not equal to 0
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_3
## W = 14052, p-value = 2.005e-06
## alternative hypothesis: true location shift is not equal to 0
##
   Wilcoxon rank sum test with continuity correction
##
##
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_4
## W = 11432, p-value = 1.595e-10
## alternative hypothesis: true location shift is not equal to 0
```

#### Within Covid Case Quartile 2 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_2
## W = 22173, p-value = 0.02819
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_3
## W = 10671, p-value = 3.572e-07
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_4
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_4
## W = 16340, p-value = 0.0002577
## alternative hypothesis: true location shift is not equal to 0
```

#### Within Covid Case Quartile 3 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
```

```
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_2
## W = 11556, p-value = 0.009097
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_3
## W = 8962, p-value = 4.621e-07
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_4
## W = 8308, p-value = 1.754e-05
## alternative hypothesis: true location shift is not equal to 0
```

### Within Covid Case Quartile 4 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_2
## W = 2478, p-value = 0.3154
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_3
## W = 4146, p-value = 0.1204
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_4
## W = 3000, p-value = 0.0006125
## alternative hypothesis: true location shift is not equal to 0
```

#### RMAE Wilcoxon Tests

#### Wilcoxon rank sum between proportion of black constituent quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: quart_1_rmae and quart_2_rmae
## W = 293350, p-value = 0.2393
## alternative hypothesis: true location shift is not equal to 0
```

```
##
## Wilcoxon rank sum test with continuity correction
## data: quart_1_rmae and quart_3_rmae
## W = 290569, p-value = 0.1363
\#\# alternative hypothesis: true location shift is not equal to 0
##
   Wilcoxon rank sum test with continuity correction
##
## data: quart_1_rmae and quart_4_rmae
## W = 222676, p-value < 2.2e-16
\#\# alternative hypothesis: true location shift is not equal to 0
##
   Wilcoxon rank sum test with continuity correction
## data: quart_3_rmae and quart_4_rmae
## W = 230807, p-value = 2.887e-16
## alternative hypothesis: true location shift is not equal to 0
```

### Within Covid Case Quartile 1 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_2
## W = 34835, p-value = 0.5787
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_3
## W = 21029, p-value = 0.5765
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_1_race_quart_1 and case_quart_1_race_quart_4
## W = 12860, p-value = 1.232e-07
## alternative hypothesis: true location shift is not equal to 0
```

#### Within Covid Case Quartile 2 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_2
## W = 26228, p-value = 0.4504
## alternative hypothesis: true location shift is not equal to 0
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_3
## W = 16610, p-value = 0.3087
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_2_race_quart_1 and case_quart_2_race_quart_4
## W = 16328, p-value = 0.0002473
## alternative hypothesis: true location shift is not equal to 0
```

#### Within Covid Case Quartile 3 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_2
## W = 14352, p-value = 0.6376
\#\# alternative hypothesis: true location shift is not equal to 0
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_3
## W = 13443, p-value = 0.9551
\#\# alternative hypothesis: true location shift is not equal to 0
##
##
  Wilcoxon rank sum test with continuity correction
## data: case_quart_3_race_quart_1 and case_quart_3_race_quart_4
## W = 8858, p-value = 0.0003257
## alternative hypothesis: true location shift is not equal to 0
```

#### Within Covid Case Quartile 4 Compare Across Race Quartiles

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_2
## W = 2616, p-value = 0.121
## alternative hypothesis: true location shift is not equal to 0
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_3
## W = 5553, p-value = 0.2804
## alternative hypothesis: true location shift is not equal to 0
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: case_quart_4_race_quart_1 and case_quart_4_race_quart_4
## W = 4364, p-value = 0.4485
## alternative hypothesis: true location shift is not equal to 0
```

#### **Summary Statistics Case Quartile**

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.271 4.763 8.144 8.474 11.987 23.814

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 53.32 104.81 159.10 289.31 298.12 6227.05
```

#### Summary Statistics By Race Quartile

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.271 6.373 13.941 24.617 27.390 671.542

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.068 24.559 51.458 157.423 152.212 4675.458
```

## Regression Equations

```
regressionData<-data.frame(all_the_data_pull_cutoff$FIPS_CODE,</pre>
                           all_the_data_pull_cutoff$Total_Pop,
                 all_the_data_pull_cutoff$Total_Black/all_the_data_pull_cutoff$Total_Pop,
                 all_the_data_pull_cutoff$`total cases`,
                 all_the_data_pull_cutoff$Total_Households_Below_Poverty/
                   (all_the_data_pull_cutoff$Total_Households_Below_Poverty+
                      all_the_data_pull_cutoff$Total_Households_Above_Poverty),
                    (all_the_data_pull_cutoff$`total cases`/
                       all_the_data_pull_cutoff$Total_Pop)*1,
                 all_the_data_pull_cutoff$`1 week ahead MAE`,
                 all_the_data_pull_cutoff$`4 week ahead MAE`
                 ) %>%
  rename("Tot_Pop"=2) %>%
  rename("Tot Cases" = 4) %>%
  rename("Prop Black" = 3) %>%
  rename("Prop_Pov" = 5) %>%
  rename("Prop Cases" = 6) %>%
  rename("One_Week_MAE" = 7) %>%
  rename("Four_Week_MAE" = 8)
summary(lm(One_Week_MAE~Tot_Cases,data = regressionData))
```

```
##
## Call:
## lm(formula = One_Week_MAE ~ Tot_Cases, data = regressionData)
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1421.30 -14.82
                       -8.90
                                 1.95 1639.73
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.972e+01 1.163e+00
                                    16.95
                                             <2e-16 ***
              3.914e-03 1.799e-05 217.55
## Tot Cases
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 62.16 on 3115 degrees of freedom
## Multiple R-squared: 0.9382, Adjusted R-squared: 0.9382
## F-statistic: 4.733e+04 on 1 and 3115 DF, p-value: < 2.2e-16
summary(lm(One_Week_MAE~Tot_Cases+Prop_Black*Prop_Pov,
          data = regressionData))
##
## Call:
## lm(formula = One_Week_MAE ~ Tot_Cases + Prop_Black * Prop_Pov,
       data = regressionData)
##
## Residuals:
       Min
                 1Q
                      Median
                                   ЗQ
                                           Max
## -1385.83 -13.01
                       -8.07
                                 2.38 1645.45
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
                       1.158e+01 3.530e+00
## (Intercept)
                                              3.279 0.00105 **
## Tot Cases
                       3.895e-03 1.827e-05 213.148 < 2e-16 ***
                       1.422e+02 2.428e+01
## Prop_Black
                                             5.855 5.28e-09 ***
## Prop Pov
                       3.261e+01 2.271e+01
                                              1.436 0.15107
## Prop_Black:Prop_Pov -5.279e+02 1.018e+02 -5.184 2.32e-07 ***
```

## Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' 1

## Residual standard error: 61.85 on 3111 degrees of freedom

## Multiple R-squared: 0.9389, Adjusted R-squared: 0.9389 ## F-statistic: 1.196e+04 on 4 and 3111 DF, p-value: < 2.2e-16

(1 observation deleted due to missingness)

# Figures

Figure 1



Figure 2







Figure 4: 1 and 4 week MAE and RMAE for Poverty



# Tables

Table 1

|                                                                                                                                                                                                                                                                             | R Squared                                      | Adj. R Squared                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1 wk Ahead MAE as a funct. of Prop. Black and Prop. Pov<br>1 wk Ahead MAE as a funct. of Total Population<br>1 wk Ahead MAE as a funct. of Total Cases<br>1 wk Ahead MAE as a funct. of Cases and Minority Prop.<br>4 wk Ahead MAE as a funct. of Prop. Black and Prop. Pov | 0.0472<br>0.8711<br>0.9382<br>0.9389<br>0.0405 | 0.0463<br>0.8711<br>0.9382<br>0.9389<br>0.0396 |
| 4 wk Ahead MAE as a funct. of Total Population 4 wk Ahead MAE as a funct. of Total Cases 4 wk Ahead MAE as a funct. of Cases and Minority Prop.                                                                                                                             | 0.9437<br>0.9767<br>0.9768                     | 0.9437<br>0.9767<br>0.9768                     |

|                |                              | County Group Based on Quartile of % Black Residents |                                    |                                     |                   |         |
|----------------|------------------------------|-----------------------------------------------------|------------------------------------|-------------------------------------|-------------------|---------|
|                | based on Quartile otal Cases | Lowest 25%                                          | Q2                                 | Q3                                  | Highest 25%       | Overall |
|                |                              | $\overline{[\ 0.0\%\ , 0.7\%\ ]}$                   | $\overline{(\ 0.7\%\ ,\ 2.3\%\ ]}$ | $\overline{(\ 2.3\%\ ,\ 10.3\%\ ]}$ | ( 10.3% , 87.4% ] |         |
| Lowest 25%     | [8,1945]                     | 6.61                                                | 8.746                              | 9.339                               | 10.72             | 8.144   |
| Q2             | (1945, 4906]                 | 21.229                                              | 22.424                             | 25.89                               | 24.22             | 22.966  |
| Q3             | (4906, 13002]                | 42.822                                              | 45.61                              | 50.542                              | 48.551            | 47.373  |
| Highest $25\%$ | (13002, 1948984]             | 120.915                                             | 117.847                            | 151.203                             | 215.237           | 159.102 |
| Overall        | •                            | 13.941                                              | 30.542                             | 55.695                              | 51.458            | 32.746  |

|             |                                | County Group Based on Quartile of % Black Residents |                                    |                                     |                                      |         |
|-------------|--------------------------------|-----------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|---------|
|             | p based on Quartile otal Cases | Lowest 25%                                          | Q2                                 | Q3                                  | Highest 25%                          | Overall |
|             |                                | $\overline{[\ 0.0\%\ , 0.7\%\ ]}$                   | $\overline{(\ 0.7\%\ ,\ 2.3\%\ ]}$ | $\overline{(\ 2.3\%\ ,\ 10.3\%\ ]}$ | $\overline{(\ 10.3\%\ ,\ 87.4\%\ ]}$ |         |
| Lowest 25%  | [8,1945]                       | 0.956                                               | 0.96                               | 0.941                               | 0.994                                | 0.961   |
| Q2          | (1945, 4906]                   | 0.992                                               | 0.987                              | 0.986                               | 1.009                                | 0.992   |
| Q3          | (4906, 13002]                  | 0.986                                               | 0.982                              | 0.984                               | 1.003                                | 0.99    |
| Highest 25% | (13002, 1948984]               | 0.987                                               | 0.972                              | 0.971                               | 0.99                                 | 0.979   |
| Overall     |                                | 0.974                                               | 0.979                              | 0.977                               | 0.997                                | 0.983   |

|                                                         | Adj. R Squared |
|---------------------------------------------------------|----------------|
| 1 wk Ahead MAE as a funct. of Prop. Black and Prop. Pov | 0.0463         |
| 1 wk Ahead MAE as a funct. of Total Population          | 0.8711         |
| 1 wk Ahead MAE as a funct. of Total Cases               | 0.9382         |
| 1 wk Ahead MAE as a funct. of Cases and Minority Prop.  | 0.9389         |
| 4 wk Ahead MAE as a funct. of Prop. Black and Prop. Pov | 0.0396         |
| 4 wk Ahead MAE as a funct. of Total Population          | 0.9437         |
| 4 wk Ahead MAE as a funct. of Total Cases               | 0.9767         |
| 4 wk Ahead MAE as a funct. of Cases and Minority Prop.  | 0.9768         |

Table 2 - code

Table 2- MAE pvalues

Table 2 - LaTex

Table 3 - code

Table 3- RMAE pvalues

Table 3 - LaTex

# Potential Supplementary Materials

## Counts by Quartile Quartile Breakdown

```
##
                Prop. Black Quartile
## Case Quartile lowest 25% Q2 Q3 highest 25% Overall
##
    lowest 25%
                        410 175 99
                                            96
                                                    780
     Q2
                        220 229 142
                                            188
                                                    779
##
    QЗ
                        118 236 227
                                            198
                                                    779
##
##
    highest 25%
                        32 139 311
                                            297
                                                    779
                       780 779 779
##
    Overall
                                            779
                                                   3117
```

## Figure 2 just 4th case quartile



# **Exploratory Analysis of RMAE**









