

BTP FINAL PPT 2021

VRFT Control on Pendulum Systems

Department of Electrical Engineering, IITD

Supervisor - Professor Shaunak Sen

Made By-

Mukul Yadav 2018EE10479

Amarjeet Kumar 2018EE10438

OBJECTIVES

- Understanding the VRFT needs to be applied on Pendulum Systems
- Deriving and plotting the differential equations of motion for Simple Pendulum
- VRFT Control and PID Tuning Algorithm for Simple Pendulum
- Deriving and plotting the differential equations of motion for Inverted Pendulum
- VRFT Control and PID Tuning Algorithm for Inverted Pendulum
- Deriving and plotting the differential equations of motion for Double Pendulum
- VRFT Control and PID Tuning Algorithm for Double Pendulum
- Comparing the results from VRFT Control with PID Tuning Method

Work Done

Flow chart for our work

VRFT Control

VRFT is a data-driven method that allows you to choose a controller based on data alone, without the requirement for a plant model.

It is a straightforward procedure in which no model identification of the plant is needed.

It can be used with a single set of data received from the plant, and no specific experiments or iterations are required.

Designing algorithm

1. Given or chosen:
$$M(z)$$
, $C(z, \theta)$, $\{u(t), y(t)\}_{t=1,2,...,N}$
2. Calculate $M(z)$. $r(t) = y(t)$ and $e(t) = r(t) - y(t)$

2. Calculate
$$M(z) . r(t) = y(t)$$
 and $e(t) = r(t) - y(t)$

Filter L(z) or we can set pre-filter is equal to 1

$$e_L(t) = L(z).e(t)$$

$$u_L(t) = L(z) . u(t)$$

Select θ_N so that cost function should be minimized

$$J^{N}_{VR}(\theta) = \frac{1}{N} \sum_{l=1}^{N} \left(u_{l}(t) - C(z,\theta) \cdot e_{l}(t) \right)^{2}$$

Simple Pendulum

Fig. Schematic diagram of simple pendulum

Nonlinear Equation of motion:

$$\ddot{\theta}(t) = -\frac{g}{L}sin(\theta) + \frac{T_e}{mL^2}$$

After linearizing the equation of motion becomes

$$\ddot{\theta}(t) = -\frac{g}{L}\theta + \frac{T_e}{mL^2}$$

Nonlinear step response of the pendulum system

Fig1.Impulse Response of the nonlinear pendulum system

Parameters From PID Tuning Method

1.Linear model

Controller	K_p	K_i	K_d
Type	-		
P	8.274	n/a	n/a
PID	5.6847	0.022233	0.0000003

2.Non-Linear Model

Controller	K_p	K_i	K_d
Type			
PID	0.82225	0.029867	0
P	1.1732	0	0
I	0	0.041873	0

Response after using P and PID controller for Linear model

Fig1. For P controller

Fig2. For PID controller

Response after using P, I and PID controller for nonlinear model

Fig1.For I controller

Fig2.For P controller

Fig3. For PID Controller

Parameters from VRFT Algorithm

1.Linear model

Controller	K_d	K_p	K_i
Type			
PID	0.01898263	-0.02087513	0.0181956

2.Non-Linear Model

Controller	K_d	K_p	K_i
Type			
Р	0	0.00015683	0
PI	0	-0.0099513	0.0100749
PD	0.013433	-0.0132689	0
PID	1.0011337	-1.98791531	0.998827

Response after using P,PD,PI and PID controller for nonlinear model

Fig2. For PD controller Fig4. For PID controller

Observations

- From the figures, we can see that they are quite different from what we observed in PID Tuning Algorithm.
- this can be due to the change in references and the different procedures of both algorithms to find the parameters of controllers.
- We found the parameters for P, PD, PI, PID controllers. We see different parameters in each cases.
- The system tends to stabilize faster using PID Controller than using PD Controller.
- Although, PD controllers stabilize the system after a long time.
- The P and PI controllers don't seem to stabilize the system very well as they don't provide damping that stabilize the system.

Inverted Pendulum on a cart

Equation of motion:

$$\ddot{X} = \frac{u + mlsin(\theta)\dot{\theta}^2 - mgcos(\theta)sin(\theta)}{M + m - mcos^2(\theta)}$$

$$\ddot{\theta} = \frac{ucos(\theta) + (M+m)gsin(\theta) + ml((cos(\theta)sin(\theta))\dot{\theta}^2}{mlcos^2(\theta) - (M+m)l}$$

Fig. Schematic Diagram of inverted pendulum on a Cart

Non-linear step response of the Inverted pendulum system

Fig1.Impulse Response of the non-linear pendulum system

Parameters from PID tuning method

1.Linear model

Controller	K_p	K_i	K_d
Type			
P	3.43806264e- 24	0	0
I	0	5.5797e-26	0
PD	3.9976e-24	NA	0
PID	2.8e-24	3.98e-26	0

2. Nonlinear model

Controller	K_p	K_i	K_d
Type			
Р	0.0098002	0	0
Ι	0	0.00034979	0
PID	0.0068687	0.0002495	0

Response after using P,I,PD and PID controller for linear model

Fig3. For PD controller

Fig4. For PID controller

Response after using P, I and PID controller for nonlinear model

Fig1. For P controller

Fig2. For I controller

Fig3. For PID controller

Parameters From VRFT Method

1.Linear model

Controller	K_d	K_p	K_i
Type			
PID	-0.03885	0.06144325	-0.3217711

2. Nonlinear model

Controller	K_d	K_p	K_i
Type			
PD	0.1376276	-0.171969	0
PI	-0.3615385	0	-0.3603846
PID	-97.537377	194.586162	-97.781841

Response after using PD,PI and PID controller for nonlinear model

Fig2. For PI controller

Fig1. For PD controller

Double pendulum

Fig. Schematic diagram of double pendulum

Nonlinear Equation of Motion is given below

$$\ddot{\theta}_1(t) = \frac{-g(2m_1 + m_2)sin(\theta_1 - m_2gsin(\theta_1 - 2\theta_2) - 2sin(\theta_1 - \theta_2)m_2(\dot{\theta}_2^2L_2 + \dot{\theta}_1^2L_1cos(\theta_1 - \theta_2))}{L_1(2m_1 + m_2 - m_2cos(2\theta_1 - 2\theta_2))}$$

$$\ddot{\theta}_2(t) = \frac{2sin(\theta_1 - \theta_2)(\dot{\theta}_1^2L_1(m_1 + m_2) + g(m_1 + m_2)cos(\theta_1) + \dot{\theta}_2^2L_2m_2cos(\theta_1 - \theta_2))}{L_2(2m_1 + m_2 - m_2cos(2\theta_1 - 2\theta_2))}$$

Nonlinear step response of the Inverted pendulum system

Fig1.Impulse Response of the non-linear pendulum system

Results from PID tuning for non-linear model

1. For θ_1

Controller	K_p	K_i	K_d
Type			
P	-1.4808	NA	0
Ι	0	-0.24419	NA
PI	-0.75571	021	NA
PID	-1.0378	-0.17418	0

2.For θ_2

Controller	K_{p}	K_i	K_d
Type	_		
P	2.6007	NA	NA
Ι	NA	0.42887	NA
PI	1.3272	0.36882	NA
PID	1.8227	0.30591	0

Response after using P,I,PD and PID controller for Linear model

Fig3. For PI controller

Fig4. For PID controller

Response after using P,I,PD and PID controller for Linear model for θ_2

Results from VRFT for non-linear model

Controller	K_p	K_i	K_d
Type			
PID(C 1)	-0.00800682	0.0172235	-0.01218325
PID(C 2)	-0.00117727	-0.00367201	0.00758266
PID(C 3)	-0.01140614	0.02433635	-0.0169803
PID(C 4)	-0.0153887	-0.00506457	0.01018464
PI(C 1)	-0.00351299	0.0041632	0
PI(C 2)	-0.0080388	-0.00874665	0
PI(C 3)	-0.00495979	-0.00595447	0
PI(C 4)	-0.01150534	0.0124133	0
P(C 1)	-0.00089219	0	0
P(C 2)	-0.00091696	0	0
P(C 3)	-0.00151058	0	0
P(C 4)	-0.00133139	0	0
I(C 1)	0	-0.00093575	0
I(C 2)	0	0.000094044	0
I(C 3)	0	-0.00158467	0
I(C 4)	0	0.00133139	0

Final Thoughts

- We learnt about the stabilization of pendulums using various controllers with VRFT and PID Tuning Algorithm.
- We simulated and observed the values of controller parameters obtained by VRFT method and PID Tuning Algorithm which makes the system stable.
- We plotted the results obtained after using the parameters provided by both of these methods for various systems like Simple Pendulum, Inverted Pendulum, Double Pendulum.
- The parameters differ in every of the cases, most of them tend to stabilize the system.

References

- 1.Code accessed from https://github.com/rssalessio/PythonVRFT/
- 2.MarcoC.Campi,SergioM.Savaresi,"DirectNonlinearControlDesign:TheVirtual ReferenceFeedbackTuning(VRFT)Approach",IEEETRANSACTIONSONAUTOMA TICCONTROL,VOL.51,NO. 1, JANUARY 2006
- 3. Fabio Previdi, Maurizio Ferrarin, Sergio M. Savaresi, Sergio Bittanti, "Closed-loop control of FESsupported standing upand sitting down using Virtual Reference Feedback Tuning", Control Engineering Practice 13 (2005) 1173–1182

THANK YOU