Problem Set 6

COSC 290 Spring 2018

Caio Brighenti

April 15, 2018

1 Problem 1: Equivalence classes

1.1 DLN 8.110

 R_1 is an equivalence relationship if and only if it is reflexive, symmetric, and transitive.

- Reflexivity: If A is an empty set, then the $A = A = \emptyset$, so $\langle A, A \rangle \in R_1$. If A is not an empty set, then the greatest element in A will equal the greatest element in A, because A = A, thus $\langle A, A \rangle \in R_1$. Therefore R_1 is reflexive.
- Symmetry: In the case that $A = \emptyset$ and $\langle A, B \rangle \in R_1$, then by the second condition $B = \emptyset$. Therefore, also by the second condition, $\langle B, A \rangle \in R_1$. In the case that $\langle A, B \rangle \in R_1$ and $A \neq \emptyset$, the greatest element in A must equal the greatest element in B. This means that the greatest element of B must equal the largest element in A, and so $\langle B, A \rangle \in R_1$, making R_1 symmetric.
- Transitivity: If $\langle A, B \rangle \in R_1$ and $\langle B, C \rangle \in R_1$, and $A = \emptyset$, then $A = B = \emptyset$, and thus $B = C = \emptyset$. Therefore, if A, B, and C are all empty sets, then $A = C = \emptyset$, and so $\langle A, C \rangle \in R_1$. In the case that A is not an empty set, then the greatest element in A must equal the greatest element in A. Since $\langle B, C \rangle \in R_1$, then the greatest element in A must equal the greatest element

Since the relation R_1 is reflexive, symmetric, and transitive, it is an equivalence relationship. The equivalence clauses are as follows:

- {Ø}
- {{0}}
- {{1}, {0, 1}}
- {{2}, {0, 2}, {1, 2}, {0, 1, 2}}
- {{3}, {0,3}, {1,3}, {2,3}, {0,1,3}, {0,2,3}, {1,2,3}, {0,1,2,3}}

1.2 DLN 8.111

 R_1 is an equivalence relationship if and only if it is reflexive, symmetric, and transitive. $P = \mathcal{P}(\{0, 1, 2, 3\})$.

- Reflexivity: The sum of the items in A will always equal the sum of items in A. Thus, for every $A \in P, \langle A, A \rangle \in R_2$. Therefore, the relation is reflexive.
- Symmetry: If the sum of items in A equals the sum of items in B, the reverse must also be true. Therefore, for every $A, B \in P$, if $\langle A, B \rangle \in R_2$, then $\langle B, A \rangle \in R_2$. This means that R_2 is symmetric.
- Transitivity: If $\langle A, B \rangle \in R_2$, then the sum of elements in A equals the sum of elements in B. If $\langle B, C \rangle \in R_2$, then the sum of elements in B must equal the sum of elements in C. Thus, the sum of elements in all three sets (A, B, and C) must be equal, giving us $\langle A, C \rangle \in R_2$. This means that the relation R_2 is transitive.

Since the relation R_1 is reflexive, symmetric, and transitive, it is an equivalence relationship. The equivalence clauses are as follows:

- {Ø}
- {{0}}
- {{1}, {0, 1}}
- $\{\{2\},\{0,2\}\}$

- $\{\{3\},\{0,3\},\{1,2\},\{0,1,2\}\}$
- $\{\{1,3\},\{0,1,3\}\}$
- $\{\{2,3\},\{0,2,3\}\}$
- $\{\{1,2,3\},\{0,1,2,3\}\}$

1.3 DLN 8.113

Etc.

2 Problem 2: DLN 8.84

Claim: The claim is that for any relation $R \subseteq A \times A$ that is both irreflexive and transitive, R must also be asymmetric.

Proof. We will prove by assuming the claim is false and showing a contradiction.

- Given: Assume a relation $R \subseteq A \times A$ is irreflexive, transitive, and not asymmetric.
- Want to show: The assumption leads to a contradiction.

By the definition of asymmetry, since R is not asymmetric there must be one pair $\langle a,b\rangle \in R$ such that $\langle b,a\rangle \in R$. By the definition of transitivity, if $\langle a,b\rangle \in R$, and $\langle b,a\rangle \in R$, then $\langle a,a\rangle \in R$. Thus, if R is not asymmetric and transitive, then we must have $\langle a,a\rangle \in R$.

By the definition of irreflexivity, for every $a \in A, \langle a, a \rangle \notin R$. By the assumption, R is not asymmetric and is transitive, thus $\langle a, a \rangle \in R$, and is also irreflexive, thus for every $a \in A, \langle a, a \rangle \notin R$. These two statements are in direct contradiction, therefore if R is both irreflexive and transitive, it must be asymmetric, proving the claim.

3 Problem 3: DLN 8.130

Replace this with your answer to problem 3.