Théorème de CARTAN-VON NEUMANN

Clarence Kineider

Leçons: 106, 156, 214

Référence(s): Bernis, Bernis, Analyse pour l'agrégation de mathématiques.

Théorème: Tout sous-groupe fermé de $GL_n(\mathbf{R})$ est une sous-variété de $\mathcal{M}_n(\mathbf{R})$.

Démonstration : Soit G un sous-groupe fermé de $GL_n(\mathbf{R})$. On veut montrer que G est localement difféomorphe à un ouvert d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R}) \simeq \mathbf{R}^{n^2}$. Puisque la translation (multiplication par une matrice dans G) est un difféomorphisme, il suffit de montrer le résultat pour un voisinage de I_n dans G.

— Construction de l'espace vectoriel (espace tangent).

Soit $\mathcal{L}_G = \{M \in \mathcal{M}_n(\mathbf{R}) \mid \forall t \in \mathbf{R}, \ exp(tM) \in G\}$. Montrons que c'est un sous-espace vectoriel de \mathcal{M}_n . La seule propriété non-triviale à montrer est la stabilité par addition. Soit $A, B \in \mathcal{L}_G$ et $t \in \mathbf{R}$. Montrons que $exp(t(A+B)) \in G$.

La différentielle de exp en 0 est $I_n \in GL_n(\mathbf{R})$, donc exp est localement inversible au voisinage de 0 (théorème d'inversion local), notons L cet inverse local. Il existe donc V un voisinage de 0, W un voisinage de I_n tels que $L: W \to V$ vérifie $L \circ exp = Id_{\mathcal{M}_n}$. Pour $M \in V$, on a $exp(M) = I_n + M + o(||M||)$ et $L(I_n + M) = M + o(||M||)$. Pour $k \in \mathbf{N}$ assez grand, on a $\frac{tA}{k}, \frac{tB}{k} \in V$ donc

$$\underbrace{\left(exp\left(\frac{tA}{k}\right)exp\left(\frac{tB}{k}\right)\right)^{k}}_{\in G} = exp\left[kL\left(exp\left(\frac{tA}{k}\right)exp\left(\frac{tB}{k}\right)\right)\right]$$

$$= exp\left[kL\left(I_{n} + \frac{t}{k}\left(A + B\right) + o\left(\frac{1}{k}\right)\right)\right]$$

$$= exp(t(A + B) + o(1))$$

$$\xrightarrow{k \to +\infty} exp(t(A + B)).$$

Le groupe G étant fermé, on a donc $exp(t(A+B)) \in G$, et donc $A+B \in \mathcal{L}_G$.

— Construction de l'homéomorphisme.

Soit S un supplémentaire de \mathcal{L}_G dans $\mathcal{M}_n(\mathbf{R})$, i.e. $\mathcal{M}_n(\mathbf{R}) = \mathcal{L}_G \oplus S$. On pose

$$\varphi: \begin{array}{ccc} \mathcal{M}_n(\mathbf{R}) = \mathcal{L}_G \oplus S & \longrightarrow & GL_n(\mathbf{R}) \\ M = A + B & \mapsto & exp(A)exp(B) \end{array}.$$

L'application φ est de classe \mathcal{C}^{∞} et $d\varphi_0 = I_n$. D'après le théorème d'inversion local, il existe U un voisinage de 0 dans $\mathcal{M}_n(\mathbf{R})$ tel que φ réalise un \mathcal{C}^{∞} -difféomorphisme de U dans $\varphi(U)$.

— Restriction de l'ouvert U.

Montrons que quitte à restreindre $U, \varphi(U \cap \mathcal{L}_G) = \varphi(U) \cap G$. On aura alors le résultat.

On a toujours $\varphi(U \cap \mathcal{L}_G) \subset \varphi(U) \cap G$ par définition de \mathcal{L}_G .

Supposons par l'absurde que $\varphi(V) \cap G \not\subset \varphi(V \cap \mathcal{L}_G)$ pour tout voisinage V de 0. Alors, pour tout $k \in \mathbf{N}^*$, il existe $X_k = L_k + M_k \in B_{\mathcal{M}_n(\mathbf{R})}(0, 1/k)$ $(L_k \in \mathcal{L}_G \text{ et } M_k \in S)$ tel que $\varphi(X_k) \in G$ et $X_k \notin \mathcal{L}_G$, i.e. $M_k \neq 0$.

On a $\varphi(X_k) = exp(L_k)exp(M_k) \in G$ et $exp(L_k) \in G$, donc $exp(M_k) \in G$.

Soit $\epsilon_k = \frac{M_k}{||M_k||} \in S$. La sphère \mathbb{S}^{n^2-1} est compacte, donc on peut extraire de la suite $(\epsilon_k)_k$ une sous-suite $(\epsilon_{\psi(k)})$ tel que $\epsilon_{\psi(k)} \xrightarrow[k \to +\infty]{} \epsilon$ avec $||\epsilon|| = 1$.

Soit $t \in \mathbf{R}$, on écrit $\frac{\dot{t}}{||M_k||} = \lambda_k + \mu_k$ avec $\lambda_k \in \mathbf{Z}$ et $-\frac{1}{2} < \mu_k \leqslant \frac{1}{2}$. Alors $exp(\mu_k M_k) \longrightarrow I_n$ car $M_k \longrightarrow 0$. On a donc

$$exp(t\epsilon) = \lim_{k \to +\infty} exp\left(t\frac{M_{\psi(k)}}{||M_{\psi(k)}||}\right)$$

$$= \lim_{k \to +\infty} exp(\lambda_k M_k + \mu_k M_k)$$

$$= \lim_{k \to +\infty} exp(\lambda_k M_k)$$

$$= \lim_{k \to +\infty} exp(M_k)^{\lambda_k}$$

$$\in G \text{ car } G \text{ est ferm\'e}$$

Ainsi, $\epsilon \in \mathcal{L}_G \cap S = \{0\}$, contradiction avec $||\epsilon|| = 1$.

Remarques:

- L'espace vectoriel \mathcal{L}_G est l'espace tangent à G en I_n . En effet, pour tout $M \in \mathcal{L}_G$, $\gamma : t \mapsto exp(tM)$ est une courbe de G telle que $\gamma(0) = I_n$ et $\gamma'(0) = M$. Donc $\mathcal{L}_G \subset T_{I_n}G$ et ces deux espaces vectoriels ont même dimension.
- On a $\mathcal{L}_G = 0$ si et seulement si G est discret.
- L'espace tangent \mathcal{L}_G est stable par [A, B] = AB BA (se démontre comme pour la stabilité par l'addition, en écrivant le développement à l'ordre 2). C'est une algèbre de Lie.
- En fait, tout sous-groupe de $GL_n(\mathbf{R})$ peut être muni d'une structure de variété en prenant la topologie induite par l'exponentielle (i.e. une base d'ouverts de I_n est l'ensemble des $U \subset G$ tels que $exp^{-1}(U)$ est ouvert dans \mathcal{L}_G). On appelle cette topologie la topologie intrinsèque à G. Le théorème de Cartan-Von Neumann dit alors que cette topologie coïncide avec la topologie induite par $GL_n(\mathbf{R})$ si le groupe est fermé pour la topologie induite par $GL_n(\mathbf{R})$.
- Un exemple de groupe qui a une topologie intrinsèque différente de la topologie induite par $GL_n(\mathbf{R})$ est $GL_n(\mathbf{Q})$. En effet, $\mathcal{L}_{GL_n(\mathbf{Q})} = \{0\}$, donc sa topologie intrinsèque est la topologie discrète, alors que la topologie induite par $GL_n(\mathbf{R})$ n'est pas discrète.

Merci à David Xu et Maxence Brévard pour ce développement ♡