Single Source Shortest Path(Bellman-Ford Algorithm)

we make the following observations:

- 1. If the shortest path from v to u with at most k, k > 1, edges has no more than k 1 edges, then $dist^{k}[u] = dist^{k-1}[u]$.
- 2. If the shortest path from v to u with at most k, k > 1, edges has exactly k edges, then it is made up of a shortest path from v to some vertex j followed by the edge
- $\{j, u\}$. The path from v to j has k-1 edges, and its length is dist^{k-1}[j]. All vertices i such that the edge (i, u) is in the graph are candidates for j. Since we are interested in a shortest path, the i that minimizes dist^{k-1}[i] + cost[i, u] is the correct value for j.

These observations result in the following recurrence for dist:

$$dist^{k}[u] = min \{dist^{k-1}[u], min_{i}\{dist^{k-1}[i] + cost[i, u]\}\}$$

This recurrence can be used to compute dist^k from dist^{k-1} for, k = 2,3,...,n-1.

Example

The following figure gives a seven-vertex graph, together with the arrays $dist^k$, k = 1,...6... These arrays were computed using the above equation.

For instance, $dist^{k}[1]=0$ for all k since 1 is the source node. Also, $dist^{1}[2]=6$, $dist^{1}[3]=5$, and $dist^{1}[4]=5$, since there are edges from 1 to these nodes. The distance $dist^{k}[1]$ is ∞ for the nodes 5, 6, and 7 since there are no edges to these from 1.

Adjacency matrix or cost matrix of the above graph is following

	1	2	3	4	5	6	7
1	0	6	5	5	8	8	∞
2	8	0	8	8	-1	8	∞
3	8	-2	0	8	1	8	∞
4	8	8	-2	0	8	-1	∞
5	8	8	8	8	0	8	3
6	8	8	8	8	8	0	3
7	8	8	8	8	8	8	0

$$dist^{2}[2] = min\{dist^{1}[2], min_{i}\{dist^{1}[i] + cost[i, 2]\}\}$$

$$= min\{6, min\{0+6, 5-2, 5+\infty, \infty+\infty, \infty+\infty, \infty+\infty\}\}$$

$$= min\{6, 3\}$$

$$= 3$$

Here the terms 0 + 6, 5 - 2, $5 + \infty$, $\infty + \infty$, $\infty + \infty$, $\infty + \infty$ correspond to a choice of i = 1,3,4,5,6,and 7 respectively.

$$\begin{aligned} \text{dist}^2[3] &= \min\{\text{dist}^1[3], \min_i\{\text{dist}^1[i] + \text{cost}[i, 3]\} \\ &= \min\{5, \min\{0+5, 6+\infty, 5-2, \infty+\infty, \infty+\infty, \infty+\infty\} \\ &= \min\{5, 3\} \\ &= 3 \end{aligned}$$

here i = 1,2,4,5,6,7 respectively. Similarly you solve

 $\label{eq:dist2} dist^2[4],, dist^2[7], dist^3[2],, dist^4[2],, dist^4[7], dist^5[2],, dist^6[7], dist^6[7].$

k	Dist ^k [17]								
	1	2	3	4	5	6	7		
1	0	6	5	5	8	8	∞		
2	0	3	3	5	5	4	8		
3	0	1	3	5	2	4	7		
4	0	1	3	5	0	4	5		
5	0	1	3	5	0	4	3		
6	0	1	3	5	0	4	3		

Algorithm

Time Complexity

Time complexity of Bellman-Ford algorithm is $\Theta(|V||E|)$ where |V| is number of vertices and |E| is number of edges.

If the graph is complete, the value of

$$|E| = |V|(|V|-1)/2 \approx \Theta(|V|^2).$$

So overall time complexity becomes $\Theta(|V|^3)$.