Chapitre 4 Problèmes de cheminement dans les graphes

Présenté par :

H. BENKAOUHA

Bureau 222, Faculté d'Informatique, USTHB haroun.benkaouha@gmail.com haroun.benkaouha@usthb.edu.dz

Graphe sans circuits (S.C.)

- Un graphe orienté G=(X, U) est dit S.C.
- Ssi toute composante fortement connexe est réduite à un sommet.
- · Ssi il est isomorphe à son graphe réduit.
- Ssi tout chemin dans *G* est élémentaire.

Source et Puits

- Un sommet s est appelé source Ssi $d^{-}(s)=0$.
- Un sommet p est appelé <u>puits</u> Ssi $d^+(p)=0$.
- Tt graphe S.C. possède une source et un puits.
- Dans un graphe S.C. $G=(X, U) \ \forall x \in X$,
 - L'extrémité initiale (s ∈X) du plus long chemin vers x est une source.
 - L'extrémité terminale (p ∈X) d'un plus long chemin commençant en x est un puits.

Niveau d'un sommet

- Soit *G*=(*X*, *U*), un graphe orienté sans circuits. A tout $x \in X$, on associe un entier :
 - -v(x): **niveau** de x = la longueur max. d'un chemin élémentaire se terminant à x.
- On affecte par convention à une source s la valeur v(s)=0.
- On note par $\lambda(G)$ le plus grand niveau dans G.
- $\lambda(G)$ correspond au niveau d'un puits.

Partition en niveaux

- Soit G=(X,U) est un graphe S.C.
- L'ensemble des sommets *X* peut être partitionné au maximum en $\lambda(G)+1$ stables. Où
 - chaque sommet de niveau i sera placé dans le stable N_i.
 - Chaque stable N_i représente un niveau de G.
- *G*=(*X*,*U*) est S.C. <u>Ssi</u>
 - -X admet une partition $\{N_0 \cup N_1 \cup \cup N_p\}$ / $x \in N_i \Leftrightarrow v(x)=i$

Partitionnement en niveaux -Exemple Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatque – USTHB

Enseignant: Dr. H. BENKAOUHA (haroun.benkaouha@usthb.edu.dz)

Poids d'un chemin

- On définit le poids d'un chemin γ comme la somme des poids des arcs de γ , $p(\gamma)$ =. On l'appelle aussi distance.
- Un circuit γ est dit absorbant si son poids est négatif ($p(\gamma)$ < 0).

eignant : Dr. H. BENKAOUHA

Chemin optimal

- A chaque sommet x ∈ X, on veut associer un chemin de poids optimal joignant la source du graphe r ∈ X à x dans le réseau R=(X, U, p)
- Consiste à affecter à chaque sommet x d'un réseau R=(X,U,p) une valeur π(x) (appelée potentiel de x) qui représente le poids du chemin optimal reliant r à x.

Enseignant : Dr. H. BENKAOUHA Faculté d'Informatqiue – USTHB) 22

Algorithme de Bellman-Ford

- Condition:
 - Graphe sans circuits
 - Afin d'éviter les circuits absorbants

Enseignant : Dr. H. BENKAOUHA

Algorithme de Bellman-Ford

```
\begin{split} &S \leftarrow \{r\}; \\ &\text{Pour tout } x \in X \\ &\text{Faire} \\ &\pi[x] \leftarrow +\infty \; ; \; & \text{Pr\'e}[x] \leftarrow \text{NULL} \; ; \\ &\text{Fait} \\ &\pi[r] \leftarrow 0; \\ &\text{Pour tout } (x \in X - S) \; \text{tel que } (\forall u \in U \; \text{si } T(u) = x \; \text{on a } I(u) \in S) \\ &\text{Faire} \\ &\text{Pour tout } ((y, x) \in U) \\ &\text{Faire} \\ &\text{Si } \pi[x] > \pi[y] + p[(y, x)] \\ &\text{Alors } \pi[x] \leftarrow \pi[y] + p[(y, x)]; \; & \text{Pr\'e}[x] \leftarrow y; \\ &\text{fSi} \\ &\text{Fait} \\ &\text{S} \leftarrow S \cup \{x\} \; ; \\ &\text{Fait} \end{split}
```


Bellman-Ford - Remarques

- L'algorithme retourne une arborescence optimale.
- Si le chemin optimal est le chemin de poids maximal, on change dans l'algorithme « min » par « max » et « +∞ » par « -∞ ».
- Si $\forall x \in X \ p(x)=1$, l'algorithme calculera le plus court chemin en nombre d'arcs.
- La complexité de l'algorithme est $o(n^2)$.

(Faculté d'Informatque – USTHB)

OUHA 33

Bellman-Ford - Remarques

- Si le graphe contient plusieurs sources ou le sommet initial r n'est pas la source du graphe, il est exigé de :
 - partitionner le graphe en niveaux au préalable
 - mettre tous les sommets de niveau ≤ v(r) dans S.
 - A chaque itération, faire le choix du prochain sommet celui qui n'est pas dans S ayant le plus petit niveau.

gnant : Dr. H. BENKAOUHA

Algorithme de Dijkstra Condition: Tous les poids positifs ou nuls Pour éviter les circuits absorbants Enseignant: De H. BENKACHHA

```
Algorithme de Dijkstra
                 k←1;
                                 f[k]\leftarrow r;
s←{r};
Pour tout x \in X faire \pi[x] \leftarrow +\infty; fait
\pi[r] \leftarrow 0;
Tant que (k \le n) et (\pi[x] \le +\infty)
   Faire
   Pour tout u \in U / (I(u)=f[k]) et (T(u) \notinS)
       Faire
        x = T(u);
        Si (\pi[x] > \pi[f[k]] + p[u])
                Alors \pi(x) \leftarrow \pi[f[k]]+p[u]; Pré[x] \leftarrow
   f[k];
        fSi
        Fait
   x \leftarrow y / y \in X-S \text{ et } \pi[y] \text{ minimal};
   k \leftarrow k+1; f[k] \leftarrow x; S \leftarrow S \{x\};
                             Enseignant : Dr. H. BENKAOUHA
(Faculté d'Informatque – USTHB)
```


	Dijkstra - Exemple															7			
k	x	(x,y)		π															
			1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	
			0	æ	æ	æ	æ	æ	æ	æ	-	-	-	-	-	-	-	-	
1	1	(1,2) (1,3)		2	1							1	1						
2	3	(3,6)						3								3			
3	2	(2,3) (2,4) (2,5)				5	5							2	2				
4	6	(6,7) (6,8)							5	7							6	6	
5																			
6																			
7																			1
									Dr. H. E ormatqi										47

			D	ijl	ks	tra) -	E	хe	m	р	le						
k	x	(x,y)	π PRE															
			1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
			0	œ	œ	æ	æ	æ	œ	œ	-	-	-	-	-	-	-	-
1	1	(1,2) (1,3)		2	1							1	1					
2	3	(3,6)						3								3		
3	2	(2,3) (2,4) (2,5)				5	5							2	2			
4	6	(6,7) (6,8)							5	7							6	6
5	4	(4,3) (4,6) (4,7)							8									
6																		
7																		
									Dr. H. E ormatqi									

Dijkstra - Remarques

- On dit que l'algorithme retourne une arborescence optimale.
- La complexité de l'algorithme est $o(m^2)$ où mest le nombre d'arcs.
- · Si le graphe est non orienté, on peut associer à chaque arête $\{x,y\}$ de poids p, deux (2) arcs (x,y) et (y,x) de même poids p, puis on applique l'algorithme de Dijkstra.