Joonyi Kim ₩Readme.doc

Last update: 200616

GUIDE LINES

- for sequential robust optimization (well placement, well operation)
- with proxy models (CNN, LSTM)

You can do the optimizations with the following steps. (Folder names represent each step)

1. Well placement

1.1. Proxy modeling (CNN-TOF)

1) Move to the directory for the target field

- 2) Run 'main_for_data_sampling.m'
 - A. The permeability models are stored in the 'PERM.mat'
 - B. Indexes for the representative models are stored in the 'PERM_selected_idx.mat'
 - C. The number of sample data depends on the value in the "Np" variable
 - D. The operation conditions depend on the values in the "wset" variable
 - E. Set *file name* for saving sampled data at the end of the code

3) Run 'main_for_model_training.m' (recommended to run each section sequentially)

- A. In Initial conditions section, set "varname" variable same as the *file name*
- B. In Initial conditions section, set "Nall" variable same as the number of sample data
- C. In Input data section, the input data is incorporated as different ways according to the "case_sensitivity" variable
- D. In CNN model section, set structure and hyperparameters of the CNN model and train the model
- E. In later sections, visualize regression plots for the training, validation, and test data and save the CNN model

Joonyi Kim ₩Readme.doc

Last update: 200616

4) Copy 'trainedNet.mat' in the defined directory to the ₩1.2. Optimization\text{\psi} target field\text{\psi} data

1.2. Optimization

- 1) Move to the directory for the target field
- 2) Run 'main_for_PSOwCNNup.m'
 - A. In the first section, load the CNN model in 'trainedNet.mat'
 - B. For several runs, label each run with the "casename" variable
 - C. The generations for the retraining process depend on the value in the "rtgen" variable
- 3) Copy 'pos_opt"casename".mat' to the ₩2.1. Proxy modeling (LSTM)\tag{LSTM}\tag{LSTM}

2. Well operation

2.1. Proxy modeling (LSTM)

- 1) Move to the directory for the target field
- 2) Run 'main_for_data_sampling.m'
 - A. In the first section, load the well placement opt. result in 'pos_opt"casename".mat'
 - B. The number of sample data depends on the value in the "Np" variable
 - C. The ranges of operation conditions depend on the values in the "wset" variable
 - D. Set *file name* for saving sampled data at the end of the code
- 3) Run 'main_for_model_training.m' (recommended to run each section sequentially)
 - A. In Data preprocessing section, data structure is transformed to be used in the LSTM model
 - B. In Initial conditions section, set "varname" variable same as the *file name*

Joonyi Kim ₩Readme.doc

Last update: 200616

- C. In Initial conditions section, set "Nall" variable same as the number of sample data
- D. In LSTM model section, set structure and hyperparameters of the LSTM model and train the model
- E. In later sections, visualize regression plots for the training, validation, and test data and save the LSTM model
- 4) Copy 'trainedNet.mat' in the defined directory to the ₩2.2. Optimization\text{\psi} target field\text{\psi} data

2.2. Optimization

- 1) Move to the directory for the target field
- 2) Run 'main_for_PSOwLSTMup.m'
 - A. In the first section, load the LSTM model in 'trainedNet.mat'
 - A. In the first section, lead the well placement opt. result in 'pos_opt"casename".mat'
 - B. For several runs, label each run with the "casename" variable
 - C. The generations for the retraining process depend on the value in the "rtgen" variable
- 3) Get the final solution in 'pos_opt"casename".mat'