

The 2025 ICPC Vietnam Southern Provincial Contest

Problem A

Two arrays

Time limit: 1 second Memory limit: 256 megabytes

You are given two integer arrays a and b, each containing n elements: a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n . You are allowed to perform the following operation any number of times:

• Choose an index i $(1 \le i \le n)$, and increase both a_i and b_i by one.

Given two integers C and D, determine the **minimum number of operations** required to make the two arrays satisfy:

$$\max(a) - \min(a) \le C$$
 and $\max(b) - \min(b) \le D$.

Here, $\max(a)$ and $\min(a)$ denote the maximum and minimum elements of array a, respectively; similarly for $\max(b)$ and $\min(b)$.

Input

The first line contains an integer T, which is the number of test cases. For each test case:

- The first line contains three integers n, C, D $(1 \le n \le 10^5, 0 < C, D \le 10^9)$.
- The second line contains n integers $a_1, a_2, \ldots, a_n \ (-10^9 \le a_i \le 10^9)$.
- The third line contains n integers $b_1, b_2, \ldots, b_n \ (-10^9 \le b_i \le 10^9)$.

The sum of n over all test cases is at most 10^5 .

Output

For each test case, print a single integer on a single line - the minimum number of operations required to make both arrays satisfy the given constraints. In case we cannot find a way to satisfy the condition, print -1.

Sample Input	Sample Output
2	1
4 2 3	-1
-1 -2 -3 -4	
-1 -2 -3 -4	
5 2 1	
-1 0 1 2 3	
2 2 2 2 2	