Primitives	$\int x^n = \frac{x^{n+1}}{n+1}$	$\frac{x^3}{3}$	$\frac{x^4}{4}$ sans intérêt		$\ln x$		$\sin x$	- cos x	$-\ln \cos x $
Dérivées	$(x^n)' = nx^{n-1}$	2x	$3x^2$	$ \cdot $ n'est pas dérivable en 0 si $x \neq 0$, $(\cdot)'(x) =$ sign (x)	$-\frac{1}{x^2}$	ors les limites	$-\sin x$	$x \cos x$	$\frac{1}{\cos^2 x}$ $= = $ $1 + \tan^2 x$
Limites	gré.	$\lim_{x \to -\infty} x^2 = +\infty$ $\lim_{x \to +\infty} x^2 = +\infty$ $\lim_{x \to +\infty} x^2 = +\infty$	$\lim_{x \to -\infty} x^3 = -\infty$ $\lim_{x \to +\infty} x^3 = +\infty$	$\lim_{x \to +\infty} x = +\infty$ $\lim_{x \to -\infty} x = +\infty$	$\lim_{x \to 0+} \frac{1}{x} = +\infty$ $\lim_{x \to 0-} \frac{1}{x} = -\infty$ $\lim_{x \to 0-} \frac{1}{x} = 0$ $\lim_{x \to +\infty} \frac{1}{x} = 0$ $\lim_{x \to -\infty} \frac{1}{x} = 0$	Si F est une fraction rationnelle, c'est-à-dire si N et D sont des polynômes, alors les limites à l'infini de F sont les limites des termes de plus haut degré	pas de limite en l'infini	pas de limite en l'infini	$\lim_{x \to -\pi/2^+} \tan x = -\infty$ $\lim_{x \to \pi/2^-} \tan x = +\infty$
Graphes	'infini sont les limites des termes de plus haut deg 0 sont les limites des termes de plus bas degré					Si F est une fraction rationnelle, c'est-à-dire si N et D sont à l'infini de F sont les limites des termes de plus haut degré			<u></u>
Propriétés	Les limites à l'infini sont les limites des termes de plus haut degré. Les limites en 0 sont les limites des termes de plus bas degré	$(A+B)^2 = A^2 + 2AB + B^2$ $(A.B)^2 = A^2.B^2$ $(\frac{A}{B})^2 = \frac{A^2}{B^2}$ $\sqrt{A^2} = A $ $(\sqrt{A})^2 = A$	$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$ $(A.B)^3 = A^3.B^3$	$ A.B = A . B $ $\left \frac{A}{B}\right = \frac{ A }{ B }$	$\frac{A+B}{C} = \frac{A}{C} + \frac{B}{C}$ $\frac{A}{B} \cdot \frac{C}{D} = \frac{AC}{BD}$ $\frac{A}{B} \cdot \frac{B}{B} = \frac{A}{B}$ $\frac{B}{C} = \frac{A}{B} \cdot \frac{D}{C}$	Si F est une fracti à l'infini de F som	paire et 2π -périodique	impaire et 2π -périodique	impaire et π-périodique
Valeurs	M	± + ₩	ĸ	# +	* #	$O(x) \neq 0$	[-1;1]	[-1;1]	ĸ
Domaines de définition	H	ď	ď	ď	**	$D_N \cap \{x \in D_D D(x) \neq 0\}$	Ľ		$\mathbb{R}\setminus\left\{\frac{\frac{n}{2}+k\pi }{k\in\mathbb{Z}}\right\}$
Noms	$(n \in \mathbb{N})$	x^2	x^3		$\begin{array}{c} \frac{1}{x} \\ \text{ou} \\ x^{-1} \end{array}$	$F = \frac{N}{D}$	$x \cos x$	$\sin x$	$\tan x$
Types		lynômes	$^{ m O}$		anoitasrī		səupirtəmonogirT		

Primitives	$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\frac{2}{3}x^{\frac{3}{2}}$	$\frac{3}{4}x^{\frac{4}{3}}$	e^{s}	$x \ln x - x$	$\frac{x^{a+1}}{a+1}$	$\frac{a^x}{\ln a}$	
Dérivées	$\frac{x^{\frac{1}{n}-1}}{n}$	$\frac{1}{2\sqrt{x}}$	$x^{-\frac{2}{3}}$	Θ^x	$\frac{1}{x}$	ax^{a-1}	$\ln(a).a^x$	
Limites	$\lim_{x \to +\infty} x^{1/n} = +\infty$ $$	$\lim_{x \to +\infty} \sqrt{x} = +\infty$	$\lim_{x \to -\infty} \sqrt[3]{x} = -\infty$ $\lim_{x \to +\infty} \sqrt[3]{x} = +\infty$	$\lim_{x \to -\infty} e^x = 0$ $\lim_{x \to +\infty} e^x = +\infty$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ $\lim_{x \to +\infty} x e^x = 0$ $\lim_{x \to -\infty} x e^x = 0$	$\lim_{x \to 0} \ln x = -\infty$ $\lim_{x \to +\infty} \ln x = +\infty$ $\lim_{x \to +\infty} \ln x = 0$ $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Graphes	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$(x^a)^b = \exp(a \ln x)$	$\exp(x \ln a)$	
Propriétés	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sqrt{A.B} = \sqrt{A}.\sqrt{B}$ $\sqrt{\frac{A}{B}} = \frac{\sqrt{A}}{\sqrt{B}}$	$\sqrt[3]{A.B} = \sqrt[3]{A}.\sqrt[3]{B}$ $\sqrt[3]{\frac{A}{B}} = \frac{\sqrt[3]{A}}{\sqrt[3]{B}}$	$e^{0} = 1, e \simeq 2, 71$ $e^{a+b} = e^{a} e^{b}$ $e^{a-b} = \frac{e^{a}}{e^{b}}$ $(e^{a})^{b} = e^{ab}$	$\ln 1 = 0, \ln e = 1, \ln 2 \approx 0,69$ $\ln(ab) = \ln a + \ln b$ $\ln(a/b) = \ln a - \ln b$ $\ln(a^n) = n \ln a$	si a est un réel non nul, $x^a = \exp(a \ln x)$ $x^a x^b = x^{a+b}, \frac{x^a}{x^b} = x^{a-b}, (x^a)^b = x^{ab}$	si $a > 0$ et $a \neq 1$, $a^x = \exp(x \ln a)$ si $a = 1$, $a^x = 1$	
Valeurs	+1 2	#	E	* ⁺ £	出	* ⁺ Ľ	*+ ¤	
Domaines de définition	+1	# # E		Æ	*+	* ⁺	凶	
Noms	$\frac{x^{\frac{1}{n}}}{(n \in \mathbb{N}^*)}$	\sqrt{x} $\begin{array}{c} \text{ou} \\ x^{\frac{1}{2}} \\ \sqrt[3]{x} \\ \text{ou} \\ x^{\frac{1}{3}} \end{array}$		$\exp(x)$ ou e^x $\ln x$		$(a \neq 0)$	a^x	
Types		səlsəibsA	[Exponentielles-Logarithmes				