Completar las siguientes afirmaciones:

1. Sean $X_1, ..., X_m$ son independientes si y sólo sí, para cualquiera $B_i \in \mathcal{B}^{n_i}$, i = 1, ..., m se tienen las siguientes identidades:

$$P_{X_1,...,X_m}(B_1 \times ... \times B_m) = P(X_1 \in B_1,...,X_n \in B_n) = P_{X_1}(B_1)...P_{X_n}(B_n) = P(X_1 \in B_1)...P(X_n \in B_n)$$

2. Supongamos que existen las funciones generatrices de momentos de $X_1,...,X_n$, respectivamente, definidas en los intervalos $I_i = \prod_{j=1}^{n_i} (-a_{j,i},b_{j,i}), a_{j,i},b_{j,i} > 0, I_i \subseteq R^{n_i}, i=1,...,m$. Entonces, $X_1,...,X_m$ son independientes si y sólo sí, para cualesquiera $(t_1,...,t_m) \in I_1 \times ... \times I_m$, se tiene:

$$M_{X_1,...,X_m}(t_1,...,t_m) = M_{X_1}(t_1)...M_{X_m}(t_m)$$

- 3. Si $X_1, ..., X_m$ son independientes, cualquier subconjunto $X_{i_1}, ..., X_{i_k}, 0 < k < n$, de $X_1, ..., X_m$ son también independientes.
- 4. Si $X_1, ..., X_m$, son variables aleatorios independientes, para cualesquiera $g_i, i = 1, ..., m$, aplicaciones medibles, las variables aleatorias $g_1(X_1), ..., g_m(X_m)$ también son independientes.