

SYSTÈMES BIO-INSPIRÉS POUR L'AIDE À LA NAVIGATION CHEZ LES PERSONNES AVEUGLES

Paul Fricker - Équipe DEVI

Thèse dirigée par :
Benoit Cottereau, CerCo, CNRS
Christophe Hurter, ENAC

CONTEXTE

 Projet INCA: Implants rétiniens pour la Navigation Contextuelle basée sur l'Apprentissage

- Implants rétiniens + Caméra
- Réseau de neurones artificiels

L Bio-inspirés par le système visuel humain

OBJECTIFS

Limitations des systèmes actuels

• Charge de calculs importante

Adaptabilité compliquée

Contraintes biologiques ignorées

Solutions

Caméra asynchrone

 Réseau de neurones artificiels non supervisé

 Systèmes inspirés par la rétine et le cortex visuel

RÉFÉRENCES

- Travaux présentés aux conférences internationales :
 - Bernstein Computational Neuroscience Conference 2021
 - VISAPP Conference 2022

• Travaux publiés :

Event-based Extraction of Navigation Features from Unsupervised Learning of Optic Flow Patterns

Paul Fricker^{1,2} oa, Tushar Chauhan¹ b, Christophe Hurter² c, and Benoit R. Cottereau Cotte