개별연구 주간 보고서								
활동일	4주차	2020.08.03 08.07.	작성자	이혜민				
주간 목표	☑ Ref1의 classifying까지 코딩 완료하기							

날짜	요일	활동 요약			
08.03.	SPB	당일 목표	□ 질문 답변 내용 코드에 적용 □ feature extraction, classifier 구현		
		작업 내용	- 사수님께서 답변해주신 내용을 적용시키려고 전체 코드를 점검하던 중 for 문이 필요 이상으로 많이 사용되고 있는 것 같아서 실행 시간 단축을 위해 for문 개수를 줄이고자 시도		
08.04.	화	당일 목표	☑ Median filter 수정 ☑ feature extraction		
		작업 내용	- 저번주 질문 내용 적용 완료 - Active filter에서 발견된 버그 수정 완료		
08.05.	수	당일 목표	□ Naive Bayes classifier 적용하기 □ Calibration : Ulna position 시작하기		
		작업 내용	- Naives Bayes classifier library를 이용해서 적용 시도		
	목	당일 목표	☑ Naive Bayes classifier 적용하기 ☑ Confusion matrix plot 하기		
08.06.		작업 내용	- Naives Bayes classifier 적용 완료 - 논문에서 제시한 방식으로 processing한 후에 classifying하니 accuracy 가 많이 떨어짐. 이것은 내가 한 subject의 한 session의 4개의 gesture만 이용해서 그렇기도 함.		
08.07.	급	당일 목표	☑ Method 2 구현하기 □ Calibration 구현 시작하기		
		작업 내용	- Accuracy를 증가시키기 위해서 사수님께서 data를 processing하는 다른 방식을 제시해주셨고 해당 방법 적용 결과 Accuracy가 확연히 증가함		

- Ref 1의 Classifying 단계까지 구현 완료
- Notion) Programming Timeline link https://www.notion.so/SubNote-c44b5edc2bce4f158651a44a88177dc6
- 논문에서 제시한 data processing 방식과 다른 방식으로 classify한 결과 accuracy가 훨씬 증가함

주간 요약

그림 4 . test_ratio=0.3, method1 N=3, 그림 5 . test_ratio=0.3, method2, confusion matrix confusion matrix

느낀 점

Classifying을 완료해서 confusion matrix가 잘 나오는 것을 본 순간 정말 행복했다. 4주 동안의 내 노력이 결실을 맺은 느낌이었다. 앞으로 해야할 일과 넘어야할 산이 많겠지만 한 단계 한 단계 이겨나갈 때마다 나에게 상을 주면서 꾸준히 할 수 있도록 관리해야겠다! Classfiying을 끝낸 나에게 준 상은 당일 조기 퇴근이었다ㅎㅎ

Programming Timeline

# Order	:≣ category	Aa To-do	progress		Due	Done	Ē Done
1	Signal Preprocessing	Apply butterworth band-pass filter	Done			2주차	Jul 21, 2020
2	Segmentation Data processing	Divide continuous data into 150 samples window	Done			2주차	Jul 21, 2020
3	Segmentation Data processing	Discard useless data : 192ch → 168ch	Done			2주차	Jul 22, 2020
4	Segmentation Data processing	Compute RMS for each channel	Done			2주차	Jul 22, 2020
5	Segmentation Data processing	Perform baseline normalization	Done	Jul 23, 2020	2주차	2주차	Jul 24, 2020
6	Segmentation Data processing	Check whether each window is represented by a 168-dimensional vector of RMS values	Done	Jul 23, 2020	2주차	2주차	Jul 24, 2020
7	Segmentation Data processing	Apply spatial order 3 1-dimensional median filter on the vector to compensate local artifacts	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
8	Segmentation Determine whether ACTIVE	Compute average of the summarized RMS values per window — threshold	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
9	Segmentation Determine whether ACTIVE	If the sum of RMS vector elements of one window is greater than the threshold, it's ACTIVE	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
10	Segmentation Determine whether ACTIVE	If the predecessor and successor is active, it's ACTIVE	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
	Debugging	Check whether it's well operating until now	Done	Jul 28, 2020	3주차	3주차	Aug 1, 2020
	Segmentation	Select the longest contiguous sequence of active windows → gesture segment	Done	Jul 30, 2020	3주차	3주차	Aug 1, 2020
11	Feature Extraction	compute RMS for each channel on all windows → feature (of each channel)	Done	Aug 3, 2020	3주차	4주차	Aug 3, 2020
		Edit code to be more effective (decrease the number of for loops)	Quit	Aug 3, 2020			
		Apply feedbacks from mento	Done	Aug 3, 2020		4주차	Aug 4, 2020

12	Feature Extraction	Normalize the mean RMS over all channels	Done	Aug 4, 2020	3주차	4주차	Aug 4, 2020
13	Feature Extraction	Result : 168 * N dimensional feature RMS vector. With RMS is length normalized	Done	Aug 4, 2020	3주차	4주차	Aug 4, 2020
14	Naive Bayes classifier	Model the feature distribution by kernel density estimation with Gaussian kernel function	Done	Aug 5, 2020	3주차	4주차	Aug 6, 2020
15	Naive Bayes classifier	Apply naive Bayes classifier for each 27 classes	Quit		3주차		
16	Estimation of Electrode Displacen Ulna position	Apply penalty function to favor the region in the middle of the array's x range			4주차		
17	Estimation of Electrode Displacen Ulna position	Apply Watershed algorithm in order to find possible paths	Not understanded		4주차		
18	Estimation of Electrode Displacen Ulna position	Apply Dijkstra's algorithm to choose the lowest cost path			4주차		
19	Estimation of Electrode Displacen Center of main muscle activity	Apply Gaussain Mixture Model (GMM)			4주차		
20	Estimation of Electrode Displacen Center of main muscle activity	Take mean of two estimation shift			4주차		