Course code	Course Name	L-T-P - Credits	Year of Introduction
FS202	TRANSFER OPERATIONS IN CHEMICAL ENGINEERING	3-1-0-4	2016

Course Objectives

- To familiarize the concept of heat conduction ,convection and radiation
- To describe the application of different types of heat exchangers used in industries.
- To illustrate with examples the different types of evaporators used in chemical industries.
- To understand the principle of mass transfer, theories and application.
- To describe absorbers with the help of relevant examples.
- To compute number of stages in a distillation column with the help of McCabe Thiele method.
- To describe drying and extraction principles with their application.

Syllabus

Heat transfer -conduction, convection, radiation - Heat exchangers- evaporators. Mass transfer -

Fick's law of molecular diffusion- theories of mass transfer - Absorption – Distillation- Drying,

liquid –liquid extraction, solid-liquid extraction

Expected outcome.

The students will be able to

- i. Understand the modes of heat transfer
- ii. Analyse heat exchanger performance
- iii. Understand gas- liquid, liquid- liquid, gas-solid and solid –liquid operations

Text Books:

- 1. Binay K. Dutta, Heat Transfer Principles and Applications, PHI, New Delhi
- 2. Binay K. Dutta, MassTransfer and Separation Processes, PHI, New Delhi

References:

- 1. W.L. McCabe, J.C. Smith and P. Harriott Unit Operations of Chemical Engineering, 7th Edition, McGraw Hill, 2005.
- 2. J.P. Holman Heat Transfer, 8th Edition, McGraw Hill, New York, 1997.
- 3. Incropera, DeWitt, Bergmann, Lavine Fundamentals of Heat and Mass Transfer, 6th Edition, Wiley Publications, 2010.
- 4. Necati Ozisik, Heat Transfer: A Basic Approach, Vol 1, McGraw Hill, 1985.
- 5. Donald Q. Kern, Process Heat Transfer, Tata McGraw Hill Education Pvt. Ltd., 2001.
- 6. Robert W. Serth, Process Heat Transfer: Principles and Applications, Academic Press, 2007.
- 7. K. V. Narayanan & B. Lakshmikutty, Mass Transfer Theory and Applications, CBS, New Delhi
- 8. R.E. Treybal, Mass Transfer Operations, McGraw Hill
- 9. Badger & Banchero, Introduction to Chemical Engineering, TMH
- 10. Geankoplis C.J., Transport processes and Separation Process Principles, 4th Ed., Prentice-Hall India, 2003

11.

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Heat Transfer by Conduction	6	
	Importance of heat transfer in Chemical Engineering operations -		
	Modes of heat transfer -Concept of heat conduction in solids -		
	Fourier's law of heat conduction - Steady state heat conduction-		
	Concept of heat transfer coefficient, Individual and overall heat transfer coefficient		10%
	Heat Transfer by Convection and Radiation	8	
П	Convection: Concept of heat transfer by convection concept of	O	
	boundary layers- Natural and forced convection - Heat transfer	-	
	from condensing vapours, Heat transfer to boiling liquids		
	Radiation: Concept of thermal radiation -Black body concept -		
	Laws of radiation -concept of grey body, radiation between		15%
	surfaces		1370
	FIRST INTERNAL EXAMINATION		_
Ш	Evaporators and Heat Exchangers		
	Heat Exchangers: Parallel and counterflow heat exchangers Single		
	pass and multipass heat exchangers; plate heat exchangers; - Log	10	150/
	mean temperature difference - heat exchangers effectiveness; number of transfer unit	10	15%
	Evaporators: Types of evaporation -single effect and multiple		
	effect evaporator, natural and forced circulation evaporator		
	Principles of Mass Transfer & Absorption		
	Principles of mass transfer-Fick's law of molecular diffusion		
IV	diffusion in solids and liquids. Concept of mass transfer		
	coefficients, theories of mass transfer and their applications,	10	15%
	interphase mass transfer and overall mass transfer coefficients in		
	binary systems		
	Absorption: Types of absorbers- plate column packed column-		
	Operating characteristics of stage wise and differential contactors.		<u> </u>
	SECOND INTERNAL EXAMINATION		
	Distillation Relative volatility-simple distillation, steam distillation, distillation		
${f V}$	with reflux, principle of azeotropic and extractive distillation.		
	McCabe Thiele method of calculation of number of theoretical	8	20%
	stages, total, minimum and optimum reflux	O	2070
VI	Drying and Extraction	10	20%
	Drying: Equilibrium moisture and free moisture, critical moisture		
	content, bound and unbound water, rate of drying curves, drying		
	equipments-tray dryers, tower dryers, rotary dryers, fluid-bed		
	dryers, spray dryers		
	Extraction & Leaching: Liquid extraction liquid-liquid		
	equilibrium, equipment for liquid extraction - mixer settlers, spray		
	towers, Solid- liquid extraction- simple leaching, Bollmann		
	extractor. END SEMESTER EXAM		<u> </u>
	END SEIVIESTER EAAIVI		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Duration: 3 Hours

Part – A: 5 MARK QUESTIONS

There will be two questions from module 2 and module 3 and one question each from remaining modules (5x8 = 40)

PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions ($3 \times 10 = 30 \text{ marks}$)

PART C: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

imum of four sub questions, if needed. Student has to answer any two questions ($2 \times 15 = 30 \text{ marks}$)