

Transformers and BERT

Mohammad Taher Pilehvar

Deep Learning 99 https://teias-courses.github.io/dl99/

Sequence to Sequence model

Sequence to Sequence model

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Je suis étudiant

- Look at the set of encoder hidden states it received each encoder hidden states is most associated with a certain word in the input sentence
- 2. Give each hidden states a score (let's ignore how the scoring is done for now)
- 3. Multiply each hidden state by its softmaxed score, thus amplifying hidden states with high scores, and drowning out hidden states with low scores

Attention at time step 4

- I. The attention decoder RNN takes in the embedding of the <END> token, and an initial decoder hidden state.
- 2. The RNN processes its inputs, producing an output and a new hidden state vector (h4). The output is discarded.
- 3. Attention Step: We use the encoder hidden states and the h4 vector to calculate a context vector (C4) for this time step.
- 4. We concatenate h4 and C4 into one vector.
- 5. We pass this vector through a feedforward neural network (one trained jointly with the model).
- 6. The output of the feedforward neural networks indicates the output word of this time step.
- 7. Repeat for the next time steps

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoder hidden state hidden Je state #1 hidden suis state #2 hidden étudiant state #3

Transformers

Transformer Encoder

Transformer Encoder - Decoder

Encoder

Encoder

• "The animal didn't cross the street because it was too tired"

For first word: thinking

For each word, we create a Query vector, a Key vector, and a Value vector

Score

Divide the scores by 8, then pass through a softmax

Multiply each value vector by the softmax score.

Sum up the weighted value vectors.

This gives the output for thinking

Self attention (matrix calculation)

Self attention — from https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

- It expands the model's ability to focus on different positions.
- It gives the attention layer multiple "representation subspaces".

• Just do the same self-attention calculation (eight times) with different weight matrices

The feedforward layer is not expecting eight matrices.

What to do?

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

1) This is our input sentence*

2) We embed each word*

3) Split into 8 heads. We multiply X or R with weight matrices

 W_0Q

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Thinking Machines

Mo

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Self attention

• "The animal didn't cross the street because it was too tired"

What about word order?

Positional encoding

 To address this, the transformer adds a vector to each input embedding

Positional encoding

Each row corresponds the a positional encoding of a vector.

Each row contains 512 values — each with a value between I and -1.

positional encoding for 20 words (rows) with an embedding size of 512 (columns)

The residuals

The encoder

Transformer with 2 stacked encoders and decoders

Decoder side

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax **DECODER ENCODER ENCODER DECODER EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** étudiant suis Je **INPUT**

Decoder side

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis Je **INPUT OUTPUTS**

Final softmax layer

Transformers

• Impressive results on machine translation

- Replacement for LSTMs?
 - Better at capturing long-distance dependencies

- But, how to use encoder-decoder for sentence classification?
 - BERT solves this!

Contextualised word embeddings

A solution to both meaning conflation and itegration difficulty

Word are **dynamic** in nature; they change role depending on the **context** in which they appear

Word are **dynamic** in nature; they change role depending on the **context** in which they appear

We need dynamic word embeddings!

I ordered a wireless mouse from my laptop

Mouse has a high breeding rate

Context-dependent word embedding (eg. ELMo)

ELMo: Embeddings from Language Models

BERT

Input

Encoder (BERT-base)

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Generate Contexualized Embeddings

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

What's wrong with BERT?

- The [MASK] token used in training does not appear during fine-tuning
- BERT generates predictions independently
 - BERT predicts masked tokens in parallel.
 - During training, it does not learn to handle dependencies between predicting simultaneously masked tokens

Newer models

- Transformer XL
- XLNet
- RoBERTa
- DistillBERT
- ALBERT
- XLM-Roberta
- •
- ParsBERT

GPT-3

175 billion parameters

GPT-2 had 1.5B The largest so far (by Microsoft) had 17B

Training cost: \$12M

Questions