

North South University

Department of Electrical & Computer Engineering

LAB REPORT

Course Code: EEE211. L

Course Title: Digital Electronics

Section: 01

Experiment Number: 01

Experiment Name: Combinational Logic Design

Experiment Date: 16th of November2020

Date of Submission: 17th of November, 2020

Course Instructor: FHE

Submitted To: Fatema Zahra

Submitted by: Mohammed Mahmudur Rahman

Student ID# 1520386043

Experiment Name!

Combinational Logic Design.

Objective:

ramiliarize with the analysis of combinational logic network,

- Learn the implement of networks wring the two canonical forms.

- Devine combinational logic using waiver oal godes.

- Acquaint with books bimary suithmotic circuitsthe half & full adders.

Theory!

Combinational logic is a type of digital logic which is implemented by Boodean circuits, where the output is a pure function at the present impail only.

Minteress is a Boodean expression resulting in 1 for the output of a single cell & or for all other cells in a truth lable. Marteress is Goodean expression resulting in a 0 for the output of a single cell expression.

Two dual canonical forms of any Boodean function are a sum of minteress. & a product of marteress.

Appondus:

- · Trainer Board.
- . 7411 10 Triple 3 input AND godes.
- . 743270 Quadruple quimput OR gates.
- . 7404 10 Her enventero (NOT gates)

Touth Table:

Input Reference	A	8	e	F	Menteron	Maxlen
0	0	, 0	0	0	A'B'C'	A+B+C
Ī	0	0	1	- 1	A'B'C	A+B+c/
2	6	11	0	1	A'BC'	A+B'+C
3	0	1	1	0	A'BC	A + B'+C'
. 4	1	C	6	0	AB'C'	AHBHC
. 5	1		- 1	0	AB'C	A'+B+C'
6	1	1	0	1	ABC'	A'4B'+C
7	1	1	1	0	ABC	A'+8'+e1

Figure . Truth Table to a combinational circuit.

	Shorthand Notation	Function.
10+ Cononical From	F= £ (1, 2, 6)	F= (A'B'C)+ (A'BC') + (ABC')
2nd Kanonical Form.	F= H (0,3,4,5,7)	(A'+B+C) . (A+B+C).
For Pable, 10.	1 & 2nd Canonical y birational Cincuit	(AI+BI+ci)

Simulation:

Figure 1:Simulation for Input 0 0 1

Figure 2: Simulation for Input 1 0 1

Figure 3: Simulation for input 0 0 0