Realističnost syntetických notopisů výrazně zlepšuje generalizaci natrénovaného modelu

Postprocessing syntetických notopisů v kontextu jejich rozpoznávání

Kristýna Harvanová Autor práce: Vedoucí práce: Mgr. Jiří Mayer

Cíl práce

 Vylepšit současné metody syntézy trénovacích dat pro optické rozpoznávání hudební notace (OMR).

Shrnutí

- Námi definovanými metodami postprocessingu přeměňujeme černo-bílý syntetický notopis na barevný a degradovaný. Tak, aby simuloval vzhled skenu fyzického reálného dokumentu.
- Pomocí těchto metod chceme zlepšit kvalitu trénovacích dat a tím i přesnost OMR modelů.
- Úspěšnost navržených postprocessingových metod testujeme na jednodušší zástupné úloze - rozpoznávání objektů.

Kanungo šum

- Šum napodobuje stárnutí notopisů, projevující se vyblednutím inkoustu nebo nečistotami na papíře.
- Algoritmus převede obrázek na jeho černo-bílou variantu. Dále aplikuje pravděpodobnostní transformaci pro změnu pixelů, do které je přidaná i náhoda. Pixely blíže k okrajům se spíše překlopí, což simuluje roztírání inkoustu.

Prosak zadní strany

- Prosak zadní strany nastává, když inkoust nebo jemný papír umožní viditelnost symbolů z druhé strany papíru.
- Tento jev může zmást optické rozpoznávání notopisů (OMR).
- Implementace zahrnuje překlopení symbolů z druhé strany papíru, jejich rozmazání a zesvětlení, aby vypadaly jako skutečně prosáknuté.

Kaligrafický rukopis

- Napodobení rukopisu se zaměřuje na variace tloušťky čar způsobené různým tlakem a sklonem pera.
- Transformace jako dilatace (rozšíření čar) a eroze (ztenčení čar) se používají k simulaci těchto odchylek.
- Výsledkem je realistický vzhled rukopisného textu, který se odráží v tazích pera. Proces zajišťuje variabilitu a realističnost syntetických notopisů

Textura papíru pozadí

- Textura papíru je klíčová, protože reálné notopisy jsou psány na různých druzích papíru s odlišnou barvou a strukturou.
- Metoda "image quilting" je použita k vytvoření realistické textury papíru, kdy se z malého vzorku textury skládá nový obrázek bez viditelných hranic mezi vzorky.
- Postup zahrnuje kvantifikaci chyby mezi hranami jednotlivých vzorků a výběr těch nejvhodnějších pro minimalizaci rozdílů.

Průběh experimentů

- V úloze rozpoznávání objektů detekujeme hudební symboly (takty a osnovy). K vyhodnocení vlivu jednotlivých postprocessingových metod jsme provedli ablační analýzu.
- Pro každý experiment jsme změřili "mean Average Precision" (mAP), pro zjištění vlivu dané degradace na výkonnost modelu.

Výsledky experimentů	
Použité degradace	mAP pro takty
Žádné	0,869
Všechny	0,921
Všechny kromě textury	0,906
Všechny kromě prosaku	0,954
Všechny kromě rukopisu	0,931
Všechny kromě šumu	0,954

Matice záměn (confusion matrices)

- Matice záměn ukazuje, jak dobře model klasifikuje třídu objektů "takty".
- Model natrénovaný na degradovaných datech (matice vpravo) má výrazně větší podíl správně klasifikovaných objektů a minimální počet nesprávně klasifikovaných či nedetekovaných objektů oproti modelu trénovanému na stejných datech bez degradací (vlevo).

Závěr

- Výsledky ukázaly, že použití degradací na trénovací data zlepší schopnost modelů generalizovat a klasifikovat objekty na notopisech. Největší zlepšení přináší degradace syntéza pozadí.
- Dá se tak očekávat, že výsledky práce zlepší výkonnost modelů i na dalších úlohách oblasti OMR.

