Dig Tek - Øving 5

Arve Nygård

16. april 2012

1.1 Deloppgave a

Figur 1: Inverter

Når V_{in} er høy, vil P-MOS transistoren blokkere strømen fra 5V, mens N-MOS transistoren vil slippe strøm igjennom fra jord, til V_{out} Når V_{in} er lav, vil det motsatte skje; signalet fra 5V slippes gjennom til V_{out} , mens signalet fra jord blokkeres.

1.2 Deloppgave b

$$P = \frac{1}{2}\alpha f C V_{dd}^2 \tag{1}$$

 α : aktivitetsfaktor, f: klokkefrekvens

Motstanden i N-MOS og P-MOS vil gi et effektforbruk ved overgang fra 0 til 1, og omvendt.

2.1 a

Degine altall	Binærtall Binærtall		
Desimaltall	(Sign-magnitude)	(2's komplement)	
7	0111	0111	
6	0110	0110	
5	0101	0101	
4	0100	0100	
3	0011	0011	
2	0010	0010	
1	0001	0001	
0	0000 / 1000	0000	
-1	1001	1111	
-2	1010	1110	
-3	1011	1101	
-4	1100	1100	
-5	1101	1011	
-6	1110	1010	
-7	1111	1001	
-8	-8 - 1000		

Tabell 1: Komplement tall aritmetikk. Merk at kun 15 distinkte verdier kan representeres med Sign-magnitude, mens 16 verdier kan representeres med 2's komplement. Grunnen til dette er at 0 har to forskjellige representasjoner i sign-magnitude.

2.2 b

$$A = 6_{10} = 0110$$
 , $-A = -6_{10} = 1010$
 $B = 5_{10} = 0101$, $-B = -5_{10} = 0111$

$$0001 = 1_{10}$$
. OK!

$$1111 = -1_{10}$$
. OK!

2.3 c

Hvis MSB i begge summandene er like, men MSB i resultatet er forskjellig fra disse to, har vi overflow.

$$\begin{array}{r}
\mathbf{A}xxxx \\
+\underline{\mathbf{A}}xxxx \\
=\underline{\overline{\mathbf{A}}xxxx}
\end{array}$$

Tabell 2: Eksempel på overflow.

2.4 d

$$C = -8_{10} = 1000_{2'skompl.}$$
 , $D = -3_{10} = 1101_{2'skompl.}$

$$B - A = B + (-A):$$

$$= 0101$$

$$= 1000$$

$$+ 1101$$

$$= 0101$$

Tabell 3: MSB til C og D er forskjellig fra MSB til svaret. Vi får overflow.

2.5 e

 10110_2 utvidet til 7 bits notasjon: Vi kopierer MSB, setter den inn på venstre siden, og får $1110110_2.$

Svaralternativ e3 er derfor korrekt.

3.1 a

$$A = -11_{10} = 10101_2$$
 , $B = -13_{10} = 10011_2$
 $A * B$:

	A	В	kommentar
1	10101	10011	
1	10101	00000	1.Partielle Produkt
1	11010	10000	Shift Right
1	10101	00000	2.PP
1	01111	10000	Sum
1	10111	11000	SR
1	11011	11100	$\beta.PP = 0, SR$
1	11101	11110	4.PP = 0, SR
1	10101	00000	5.PP, trekk fra siden vi brukte MSB.
0	01000	11110	Sum,SR
	00100	01111	Resultat

Tabell 4: Binær Multiplikasjon

3.2 b

Svar: $\underline{10110 + 110}$

4.1 a)

4.1.1 1)

 $1101011_{Gray} = \underline{1001101_{Bin}}$

$B_{i-1}G_iB_i$

- $0 \oplus 1 = 1$
- $1 \oplus 1 = 0$
- $0 \oplus 0 = 0$
- $0\oplus 1=1$
- $1\oplus 0=1$
- $1\oplus 1=0$
- $0\oplus 1=1$

4.1.2 2)

 $1001101_{Gray} = \underline{1110110_{Bin}}$

- $B_{i-1}G_iB_i$
- $0 \oplus 1 = 1$
- $1 \oplus 0 = 1$
- $1\oplus 0=1$
- $1\oplus 1=0$
- $0 \oplus 1 = 1$
- $1 \oplus 0 = 1$
- $1\oplus 1=0$

4.2 b)

4.2.1 1)

 $01111111Bin = \underline{0100000_{Grey}}$

$$0 \oplus 0 = 0$$

- $0 \oplus 1 = 1$
- $1 \oplus 1 = 0$

4.2.2 2)

 $1000000Bin = \underline{1100000_{Grey}}$

$$0 \oplus 1 = 1$$

- $1 \oplus 0 = 1$
- $0 \oplus 0 = 0$

5.1 a)

 Q_1 tilhører D-vippen (flip-flop) Q_2 tilhører D-låsen.

5.2 b)

 $T_{Oppsett}$ er tiden der innsignalet må være u
endret før en flanke for at endringen skal bli registrert av kretsen.

 T_{Hold} er tiden der inngangssignalet må være u
endret etter en flanke for at endringen skal bli registrert av kretsen.