湖南科技大学考试试题纸 (A卷)

(2021 - 2022 学年度 第 2 学期)

课程名称	:机器学	习概论	开课单	位:	女学学院	_命题教师	ī: <u>汤健</u>	
授课对象	:数学	学院 <u>20</u> 1	2019 年级 信息与计算科学 1-4			班		
考试时量	:: <u>100</u> 分	钟 考	核方式:_	考查	<u> </u>	考试方式	: 开卷	
审核人:_			_	审核田	寸间:	年月]目	
一. 填空匙	 (每空2分	·, 共30分)						
1. 根排	1. 根据训练数据是否拥有标记信息,学习任务可以大致划分为两大类:							
和	;		_是前者的	的代表,而	是后者的	的代表; 机岩	器学习学的	
 模型适用∃	 模型适用于新样本的能力,称之为 。							
2	和		推理的两	大基本手	段。			
3. 当等	岁习器把训练	样本学得"	太好了"自	的时候,往	艮可能已经把训练	东样本自身f	的一些特点	
当作了所有潜在样本都会具有的一般性质,这样就会导致泛化性能下降,这种现象在机器学								
习中称之为,与之相对的是。								
4. 线性判别分析(LDA)的思想非常朴素:给定训练样例集,设法将样例投影到一条直线								
上,使得的投影点尽可能接近,的投影点尽可能远离。								
5. 多分类学习中最经典的拆分策略主要有哪三种:、和。								
二. 计算题(第 1 题 16 分,第 2 题 24 分,共 40 分)								
1. 给定数据集中的样本共分为 5 类,对样本 1 和样本 2, 分别采用"一对一" (0 v 0) 和"一对其								
余"(0 v R)两种策略进行分类,试写出分类结果。数据集为:								
C1 C2 C3 C4 C5								
对样本 1, 采用 "一对一" (0 v 0) 策略,该样本属于;(8分)								
		的两类样例	训练	分类器	输入样本1	预测结果		
	+ C1		→	F1	→ ·	+		
	C1	C3	→	F2	→			
	C1	C4	→	F3	→			
	C1	C5	→	F4	→			
	C2	C3	→	F5	→	+		

机器学习概论(A卷) 第 1 页 共 2 页

F6

C4

C2	C5	→	F7	→	_
СЗ	C4	→	F8	→	+
СЗ	C5	→	F9	→	_
C4	C5	→	F10	→	_

对样本 2, 采用 "一对多" (0 v R) 策略,该样本属于_____;(8分)

	用于训练的两类样例	训练	分类器	输入样本 2	预测结果
+	_				
C1	C2, C3, C4, C5,	→	G1	→	+
C2	C1, C3, C4, C5	→	G2	→	_
СЗ	C1, C2, C4, C5	→	G3	→	_
C4	C1, C2, C3, C5	→	G4	→	_
C5	C1, C2, C3, C4	→	G5	→	_

- 2. 根据样本集 D(P86 表 4.4) 上的属性"敲声"数据,
 - ① . 写出该属性上无缺失值的样例子集 \tilde{D} ; (6 分)
 - ②. 计算该样例子集的信息熵(保留到小数点后三位);(6分)
 - ③ . 令 \tilde{D}^1 、 \tilde{D}^2 与 \tilde{D}^3 分别表示在属性"敲声"上取值为"浊响"、"沉闷"以及"清脆"的样本子集,分别计算该三个样本子集的信息熵(保留到小数点后三位);(9 分)
 - ④. 计算样本子集Ď上属性"敲声"的信息增益(保留到小数点后三位)。(3分)。
- 三. 证明题 (第小题 10 分, 共 30 分)
 - 1. 对于图 5.7, 试推导出 BP 算法中的更新公式(5.12)和(5.13).
 - 2. 试证明样本空间中任意点 x 到超平面 (w, b) 的距离公式 (6.2).
 - 3. 书本 P59, 为什么说最大化(3.25 式)等价于最小化(3.27 式), 试证明之。

机器学习概论(A卷) 第 2 页 共 2 页