1. Частотная модуляция. ЧМ- сигнал. Спектр ЧМ - сигнала.

Из учебника:

Модуляция - преобразование символов в сигналы, пригодные для передачи по каналу.

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (переносчика) f(a, b,, t) в соответствии с передаваемым сообщением. Так, например, если в качестве переносчика выбрано гармоническое колебание $f(t) = u_0 \cos(\omega_0 t + \phi)$, то можно образовать три вида модуляции: амплитудную (AM), частотную (ЧМ) и фазовую (ФМ).

Из лекций:

Временная и спектральная диаграммы сигнала ЧМ

При ЧМ частота ВЧ колебания (несущей) изменяется в соответствии с НЧ модулирующим сигналом.

$$\omega_{\text{чм}}(t) = \omega_0 + \Delta \omega U_{\text{нч}}(t)$$
, где $\omega_{\text{чм}}(t)$ - частота ЧМ сигнала; ω_0 - среднее значение несущей частоты; $U_{\text{нч}}(t)$ -модулирующий сигнал;

∆ю-девиация частоты, т.е. максимальное отклонение частоты от среднего значения.

Если модулирующий сигнал гармонический, т.е. $U_{Hq} = \cos \Omega t$, то

$$\omega_{\text{\tiny MM}}(t) = \omega_0 + \Delta\omega\cos\Omega t$$

а выражение для ЧМ сигнала имеет вид:

$$U_{u_{M}}(t) = U_{m} \cos \underbrace{\varphi_{u_{M}}(t)}_{\phi \alpha \beta \alpha}$$

$$\varphi_{u_{M}}(t) = \int_{0}^{t} \omega_{u_{M}}(t) dt = \int_{0}^{t} (\omega_{0} + \Delta \omega \cos \Omega t) dt = \omega_{0} t + \frac{\Delta \omega}{\Omega} \sin \Omega t$$

$$U_{u_{M}}(t) = U_{m} \cos(\omega_{0} t + \frac{\Delta \omega}{\Omega} \sin \Omega t)$$

$$\frac{\Delta \omega}{\Omega} = M_{u_{M}} - \text{индекс ЧМ}.$$

$$U_{u_{M}}(t) = U_{m} \cos(\omega_{0} t + M_{u} \sin \Omega t)$$

Временная диаграмма модулирующего сигнала имеет вид:

Временная диаграмма соответствующего ЧМ сигнала принимает вид:

Как видно из рис.4.2, там, <u>где модулирующий сигнал больше, там и частота ЧМ сигнала больше, а период колебаний меньше.</u>

$$\omega_{\rm qM}(t) = \omega_0 + \Delta\omega\cos\Omega t$$

$$\omega_{\text{max}} = \omega_0 + \Delta \omega$$

$$\omega_{\min} = \omega_0 - \Delta \omega$$

Амплитуда при ЧМ постоянна, меняется только частота.

Для получения спектра ЧМ сигнала разложим $U_{\scriptscriptstyle \text{ЧМ}}(t)$ в ряд Фурье.

$$U_{\text{\tiny YM}}(t) = U_{\text{\tiny m}} \cos(\omega_0 t + \frac{\Delta \omega}{\Omega} \sin \Omega t) = U_{\text{\tiny m}} \Im_0(M_{\text{\tiny Y}}) \cos(\omega_0 t + U_{\text{\tiny m}} \Im_1(M_{\text{\tiny Y}}) \cos(\omega_0 + \Omega) t - U_{\text{\tiny m}} \Im_1(M_{\text{\tiny Y}}) \cos(\omega_0 \Omega) t + U_{\text{\tiny m}} \Im_2(M_{\text{\tiny Y}}) \cos(\omega_0 + 2\Omega) t + U_{\text{\tiny m}} \Im_2(M_{\text{\tiny Y}}) \cos(\omega_0 \Omega) t + U_{\text{\tiny m}} \Im_3(M_{\text{\tiny Y}})^* \cos(\omega_0 \Omega) t + U_{\text{\tiny m}} \Im_3(M_{\text\tiny Y})^* \cos(\omega_0 \Omega) t + U_{\text{\tiny m}} \Im_3(M_{\text\tiny Y})^* \cos(\omega_0 \Omega) t + U_{\text{\tiny M}} \Im_3(M_{\text\tiny Y})^* \cos(\omega_0 \Omega) t + U_{\text{\tiny M}} \Im_3(M_{\text\tiny Y})^*$$

 $s(\omega_0+3\Omega)t-U_m\mathfrak{I}_3(M_q)cos(\omega_0-3\Omega)t+...$

 $\mathfrak{I}_k(M_{\scriptscriptstyle \mathrm{q}})$ - функция Бесселя к-ого порядка.

Вид спектра зависит от М.,

Спектр ЧМ сигнала при $M_{\rm u}$ <<1 (т.е. порядка 0,1; 0,05;...)

При $M_{\text{ч}}$ <<1 спектр ЧМ сигнала похож на спектр АМ сигнала (несущая, 2 боковых), но для ЧМ этот спектр приближенный. Все остальные боковые тоже есть, но они очень малы.

Спектр ЧМ сигнала при M₄>1 выглядит так (Мч=5):

Полоса частот сигнала ЧМ.

$$\begin{array}{c} \Pi_{\text{чм}} \cong 2\Omega(M_{\text{ч}}+1) \\ M_{\text{ч}} <<1 \quad \Pi_{\text{чм}} \cong 2\Omega, \quad (\text{ как при AM }) \\ M_{\text{ч}} >>1 \quad \Pi_{\text{чм}} \cong 2\Omega M_{\text{ч}} = 2\Omega \frac{\Delta \omega}{\Omega} = 2\Delta \omega \end{array}$$

Ширина спектра при Mч>>1 не зависит от модулирующей частоты. Это широкополосный сигнал.

2. Обнаружение детерминированного сигнала на фоне АБГШ (аддитивный белый гауссовский шум). Корреляционный прием.

Обнаружение детерминированных сигналов на фоне аддитивного ГБШ.

Пусть $\eta_i \sim N(0, \sigma_\eta^2)$ - ГБШ. Мгновенные значения такой помехи распределены по гаусовскому закону $w_\eta(x) = \frac{1}{\sqrt{2\pi}\sigma_\eta}e^{\frac{-x^2}{2\sigma_\eta^2}}$, с нулевым математическим ожиданием и дисперсией σ_η^2 . Отсчёты такой помехи независимы, спектральная плотность мощности равномерна. Тогда функция правдоподобия факторизуется:

$$w(\vec{\mathbf{y}}_n|\mathbf{H}_k) = \prod_{i=1}^n w(y_i|\mathbf{H}_k), \ \mathbf{k} = \overline{0;1}$$

Мгновенные значения входного воздействия при гипотезе H_0 распределены по закону: $w(y_i|H_0)=\frac{1}{\sqrt{2\pi}\sigma_n}e^{\frac{-y_i^2}{2\sigma_\eta^2}}$, при гипотезе H_1 :

$$w(y_i|H_1) = \frac{1}{\sqrt{2\pi}\sigma_{\eta}}e^{\frac{-(y_i-S_i)^2}{2\sigma_{\eta}^2}} =>$$

$$w(\vec{\mathbf{y}}_{n}|\mathbf{H}_{0}) = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} \prod_{i=1}^{n} e^{\frac{-y_{i}^{2}}{2\sigma_{\eta}^{2}}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} e^{\frac{-\sum_{i=1}^{n} y_{i}^{2}}{2\sigma_{\eta}^{2}}}$$

$$w(\vec{\mathbf{y}}_n|\mathbf{H}_1) = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n \prod_{i=1}^n e^{\frac{-(y_i - S_i)^2}{2\sigma_{\eta}^2}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}} = >$$

$$\begin{split} &\Lambda(\vec{\mathbf{y}_n}) = \frac{\left(\frac{1}{\sqrt{2\pi}\sigma_\eta}\right)^n e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_\eta^2}}}{\left(\frac{1}{\sqrt{2\pi}\sigma_\eta}\right)^n e^{\frac{-\sum_{i=1}^n y_i^2}{2\sigma_\eta^2}}} = \frac{e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_\eta^2}}}{e^{\frac{-\sum_{i=1}^n y_i^2}{2\sigma_\eta^2}}} = e^{\frac{\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_\eta^2}} = e^{\frac{\sum_{i=1}^n (y_i - S$$

Тогда получим алгоритм обнаружения:

если
$$\sum_{i=1}^{n} y_i S_i \ge C' => \gamma_1$$

если $\sum_{i=1}^{n} y_i S_i < C' => \gamma_0$

 $\mathbf{E} = \sum_{i=1}^{n} {S_i}^2$ - энергия сигнала =>

$$C' = \sigma_{\eta}^2 \ln C + \frac{E}{2} \tag{2.14}$$

Формулы (2.13) и (2.14)- обработка дискретного детерминированного сигнала на фоне ГБШ.

Если обработке подвергается непрерывный сигнал y(t), то сумма заменяется интегралом: $\lambda(y(t)) = \int_0^T y(t) \, S(t) dt$ - корреляционный интеграл, Т-длительность сигнала C' находится по (2.14), где $E = \int_0^T S(t)^2 \, dt = >$

Если
$$\lambda(y(t)) \ge C' => \gamma_1$$
, (2.15) если $\lambda(y(t)) < C' => \gamma_0$

Т. о. получили корреляционную обработку сигнала в непрерывном времени.

Рисунок 2.1. Корреляционная обработка детерминированного дискретного сигнала (а), непрерывного сигнала (б) на фоне ГБШ.

Дополнительно (скорее всего не нужно)

Обнаружение радиосигнала со случайной начальной фазой на фоне АБГШ.

Пусть по гипотезе H_1 на вход приемного устройства поступает аддитивная смесь сигнала и шума: $y_i = S_i + \eta_i$, где $S_i = A\cos\left(\omega i + \varphi\right)$. Здесь A – известная амплитуда, $\omega = \frac{2\pi}{T}\Delta t$, T – период сигнала, Δt – шаг (интервал) дискретизации, φ - начальная фаза колебания, которая является случайной величиной с равномерным распределением: $\varphi \sim \mathbb{R}\left[-\pi,\pi\right]$, т.е. $\Phi\Pi B$ фазы имеет

вид:
$$w(\varphi) = \begin{cases} \frac{1}{2\pi}, & -\pi \le \varphi \le \pi, \\ 0, & \text{иначе.} \end{cases}$$

Запишем отношение правдоподобия: $\Lambda(\overrightarrow{\mathbf{y}}_{n}, \varphi) = \frac{w(\overrightarrow{\mathbf{y}}_{n}, \varphi \mid H_{1})}{w(\overrightarrow{\mathbf{y}}_{n}, \varphi \mid H_{0})},$

где
$$w(\overrightarrow{\mathbf{y}_{\mathrm{n}}}, \varphi \mid \mathbf{H}_{1}) = \frac{1}{\left(\sqrt{2\pi}\sigma_{\eta}\right)^{n}} exp \left(-\sum_{i=1}^{n} \frac{\left(y_{i} - Acos(\omega i + \varphi)\right)^{2}}{2\sigma_{\eta}^{2}}\right),$$

$$w(\overrightarrow{\mathbf{y}}_{n}, \varphi \mid \mathbf{H}_{0}) = \frac{1}{\left(\sqrt{2\pi}\sigma_{\eta}\right)^{n}} exp\left(-\sum_{i=1}^{n} \frac{y_{i}^{2}}{2\sigma_{\eta}^{2}}\right).$$

Т.к. отношение правдоподобия зависит от фазы φ , то оно тоже является случайной величиной. Поэтому $\Lambda(\overrightarrow{\mathbf{y}_{\scriptscriptstyle n}},\varphi)$ можно усреднить по фазе \Rightarrow

$$\Lambda_{1}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \int_{-\pi}^{\pi} \Lambda\left(\overrightarrow{\mathbf{y}_{n}}, \varphi\right) w(\varphi) d\varphi = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Lambda\left(\overrightarrow{\mathbf{y}_{n}}, \varphi\right) d\varphi.$$

Далее, приняв во внимание, что $\sum_{i=1}^{n} A^2 cos(\omega_i + \varphi) = E$ - энергия сигнала и введя

обозначения
$$X_{nc} = \sum_{i=1}^{n} y_i \cos(\omega i)$$
, $X_{ns} = \sum_{i=1}^{n} y_i \sin(\omega i)$, получим

$$\Lambda_{l}(\overrightarrow{\mathbf{y}_{n}}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} exp\left(\frac{A(X_{nc}\cos\varphi - X_{nS}\sin\varphi)}{\sigma_{\eta}^{2}} - \frac{E}{2\sigma_{\eta}^{2}}\right) d\varphi = \\
= exp\left(-\frac{E}{2\sigma_{\eta}^{2}}\right) \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} exp\left(\frac{A(X_{nc}\cos(\varphi + \chi))}{\sigma_{\eta}^{2}}\right) d\varphi$$

где
$$X_n = \sqrt{X_{nc}^2 + X_{nS}^2}$$
, $\chi = arctg\left(\frac{X_{ns}}{X_{nc}}\right)$.

Известно, что
$$\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}exp\bigg(\frac{AX_{n}\cos(\varphi+\chi)}{\sigma_{\eta}^{\ 2}}\bigg)d\varphi=I_{\theta}\bigg(\frac{AX_{n}}{\sigma_{\eta}^{\ 2}}\bigg) \ - \ \ \varphi$$
 функция Бесселя нулевого порядка
$$\Rightarrow \varLambda_{l}\bigg(\overrightarrow{\mathbf{y}_{n}}\bigg)=exp\bigg(-\frac{E}{2\sigma_{\eta}^{\ 2}}\bigg)I_{\theta}\bigg(\frac{AX_{n}}{\sigma_{\eta}^{\ 2}}\bigg).$$

Т.к. функция Бесселя монотонная от X_n при отношении сигнал/шум $h_{\text{вых}} > 1$ \Rightarrow решение можно принимать но, $\Rightarrow X_n$:

если
$$X_n \ge C_a \Longrightarrow \gamma_1$$
 (есть сигнал) если $X_n < C_a \Longrightarrow \gamma_0$ (нет сигнала)

Поиск порога C_a .

Порог будем искать по критерию Неймана-Пирсона:

оптимальным решающем правилом является сравнение с некоторым порогом выбирающимся из условия получения заданной вероятности ложной тревоги а. При этом минимизируется вероятность пропуска сигнала β

 α - задано $\Rightarrow \beta = \min$

В отсутствии радиосигнала случайная величина X_n характеризуется плотностью распределения Релея: $w(X_n \mid H_\theta) = \frac{X_n}{\sigma_X^{\ 2}} exp \left(-\frac{X_n^2}{2\sigma_X^{\ 2}} \right), \ \sigma_x^2 = \frac{\sigma_\eta^2 T_H}{2}$ дисперсия, составляющих X_{nc}, X_{ns} , T_H = n Δt - время наблюдения.

$$\begin{aligned} &\text{ По} & \text{ заданной } & \alpha = \int\limits_{c_a}^{\infty} w(X_n \,|\, H_{\scriptscriptstyle \theta}) dX_n & \text{ находим } & \text{ C_a} \colon & C_\alpha = \sqrt{\frac{n\sigma_\eta^2}{f_d} ln\! \left(\frac{l}{\alpha}\right)} = \\ & C_\alpha = \sqrt{\sigma_\eta^2 T_H \, ln\! \left(\frac{l}{\alpha}\right)}, \text{ где } f_\text{d} = \frac{1}{\Delta t} \text{ - частота дискретизации сигнала.} \end{aligned}$$

Затем можно вычислить вероятность пропускания сигнала β и вероятность обнаружения D=1- β .

По формуле:
$$\beta = \int_{-\infty}^{c_a} w(X_n \mid H_1) dX_n \text{ , где}$$

$$w(X_n \mid H_1) = \frac{X_n}{\sigma_X^2} exp \left(-\frac{X_n^2 + m_c^2 + m_S^2}{2\sigma_X^2} \right) I_0 \left(\frac{X_n^2 \sqrt{m_c^2 + m_S^2}}{\sigma_X^2} \right) \qquad \text{плотность}$$
 распределения Релея - Райса, где m_c, m_s — условие мат. ожидания,

составляющих:
$$X_{nc}$$
, X_{ns} : $m_c = E(X_{nc}/\varphi) = \frac{AT_H}{2}\cos\varphi$,

$$m_s = E(X_{ns}/\varphi) = -\frac{AT_H}{2} \sin \varphi$$
, Е – оператор мат. ожидания.

Задача. Определить математическое ожидание, дисперсию и среднюю мощность на единичном сопротивлении эргодического процесса с ФПВ $w(x) = 0.1\delta(x+1) + 0.3\delta(x) + A\delta(x-1)$.

Эргодические случайные процессы.

Стационарный СП называется **эргодическим**, если при нахождении любых вероятностных характеристик, усреднение по множеству реализаций может быть заменено усреднением по времени:

$$m_{x} = \lim_{T_{H} \to \infty} \frac{1}{T_{H}} \int_{0}^{T_{H}} x^{(k)}(t) dt ,$$

$$\sigma_{x}^{2} = \lim_{T_{H}} \frac{1}{T_{H}} \int_{0}^{T_{H}} (x^{(k)}(t) - m_{x})^{2} dt ,$$

$$m_{2x} = \lim_{T_{H}} \frac{1}{T_{H}} \int_{0}^{T_{H}} (x^{(k)}(t))^{2} dt ,$$

$$R_{x}(\tau) = \lim_{T_{H} \to \infty} \frac{1}{T_{H}} \int_{0}^{T_{H}} x^{(k)}(t) x^{(k)}(t + \tau) dt ,$$
(5.14)

где $x^{(k)}(t)$ - k - ая реализация случайного процесса $\zeta(t)$, T_H - ее длительность. Здесь m_x можно рассматривать как постоянную составляющую реализации $x^{(k)}(t)$, а m_{2x} как среднюю мощность сигнала.