Several Variable Calculus, MATH 34

Chapter 9: I can use and interpret multivariable and vector functions.

□ F.1	I can identify, evaluate and interpret functions of two variables using formulas, tables, graphs, and contour maps.	
□ F.2	I can compute dot products of vectors as well as use dot products to find lengths, angles, and projections. I can compute cross products of vectors and interpret them geometrically.	
□ F.3	I can find equations of lines and planes in space in various forms.	
□ F.4	I can draw curves in space and define vector-valued functions for space curves.	
□ F.5	I can evaluate and interpret derivatives and integrals of vector-valued functions.	
□ F.6	5 ** I can find arc length of space curves.	
Chapter 10: I can calculate, use, and interpret partial derivatives.		
□ D.1	** I can evaluate limits of functions of two variables.	
□ D.2	2 I can evaluate and interpret first-order partial derivatives of functions of two variables using formulas, tables, graphs, and contour maps.	
□ D.3	I can evaluate and interpret second-order partial derivatives of functions of two variables using formulas, tables, graphs, and contour maps.	
□ D.4	I can find equations of tangent planes for functions of two variables and use them to approximate function values.	
□ D.5	5 ** I can compute and interpret derivatives using various chain rules and the total derivative.	
□ D.6	3 I can evaluate and interpret directional derivatives and gradients of functions of multiple variables.	
□ D.7	7 I can find and classify critical points of functions of two variables.	
Chapter 11: I can calculate, use, and interpret multiple integrals.		
□ I.1	I can define and interpret double integrals of functions of two variables over rectangles and numerically approximate them using double Riemann sums.	
□ I.2	I can set up and evaluate double integrals over general regions. I can interchange the order of integration.	
□ I.3	I can set up and evaluate double integrals in polar coordinates.	
□ I.4	I can find surface areas for parametrically defined surfaces.	
□ I.5	I can set up and evaluate triple integrals over general regions. I can interchange the order of integration.	
□ I.6	** I can set up and evaluate triple integrals in spherical and cylindrical coordinates.	
□ I.7	** I can make change of coordinates to double and triple integrals by changing bounds and finding the Jacobian.	

□ I.8 I o	can define, evaluate, and interpret line integrals of scalar functions on parametrized lines.
□ I.9 I o	can define, evaluate, and interpret surface integrals of scalar functions across parametrized surfaces.
Cha	pter 12: I can calculate, use, and interpret vector calculus
□ VC.1	I can identify, evaluate, sketch and interpret vector fields in the plane and in space.
□ VC.2	I can define and interpret line integrals of vector fields along oriented curves. I can use parametrizations to evaluate line integrals of vector fields along oriented curves.
□ VC.3	I can use the Fundamental Theorem of Calculus for Line Integrals to evaluate line integrals of gradient fields.
□ VC.4	** I can define, evaluate, and interpret the divergence of vector fields. I can define, evaluate, and interpret the curl of vector fields.
□ VC.5	** I can use Green's Theorem to evaluate circulations of smooth vector fields along simple closed curves in the plane.
□ VC.6	** I can define, evaluate, and interpret flux integrals of vector fields across parametrized surfaces.
□ VC.7	$\ast\ast$ I can use Stokes' Theorem to evaluate circulations of smooth vector fields along simple closed curves in space.
□ VC.8	** I can use The Divergence Theorem to evaluate flux of continuous vector fields through closed surfaces in space.