

Linjiang Li 7/3/2014

Post Office: What is the area of service?

Definition of Voronoi Diagram

- Let P be a set of n distinct points (sites) in the plane.
- The Voronoi diagram of *P* is the subdivision of the plane into *n* cells, one for each site.
- A point q lies in the cell corresponding to a site p_i ∈ P
 iff

Euclidean_Distance(q, p_i) < Euclidean_distance(q, p_j), for each $p_i \in P, j \neq i$.

Typical Voronoi Diagram

Half Plane Intersection Algorithm

Repeat for each site

Running Time:

 $O(n^2 \log n)$

It is an incremental construction

A horizontal line is swept among the sites from top to bottom

It maintains portion of Voronoi diagram which does not change due to the appearance of new sites below sweep line;

It keeps track of incremental changes of the Voronoi diagram that is caused for the appearance of each site on the sweep line.

What is the invariant we are looking for?

Maintain a representation of the locus of points q that are closer to some site p_i above the sweep line than to the line itself (and thus to any site below the line).

circle event

Beach Line properties

- Voronoi edges are traced by the break points as the sweep line moves down.
 - Emergence of a new break point(s) (from formation of a new arc or a fusion of two existing break points) identifies a new edge
- Voronoi vertices are identified when two break points meet (fuse).
 - Decimation of an old arc identifies new vertex

Total Running Time

- Each new site can generate at most two new arcs
 - \rightarrow beach line can have at most 2n-1 arcs
 - \rightarrow at most O(n) site and circle events in the queue
- Site/Circle Event Handler O(log *n*)
- \rightarrow O($n \log n$) total running time

site event

circle event

Arc(p3) -> ArcList

Arc(p3)<->Arc(P1)<->Arc(p3)

 $\operatorname{Arc}(p_3)<->\operatorname{Arc}(p_1)<->\operatorname{Arc}(p_3)<->\operatorname{Arc}(p_4)<->\operatorname{Arc}(p_3)$

 $Arc(p_3) < -\lambda Arc(p_1) < -\lambda Arc(p_3) < -\lambda Arc(p_4) < -\lambda Arc(p_3)$

Arc(p3)<->Arc(P1)<->Arc(p4)<->Arc(p3)

 $\operatorname{Arc}(p_3)<->\operatorname{Arc}(p_1)<->\operatorname{Arc}(p_2)<->\operatorname{Arc}(p_1)<->\operatorname{Arc}(p_4)<->\operatorname{Arc}(p_3)$

Arc(p3)<->Arc(P1)<->Arc(p2)<->Arc(p1)<->Arc(p4)<->Arc(p3)

 $\operatorname{Arc}(p_3) < -> \operatorname{Arc}(p_1) < -> \operatorname{Arc}(p_2) < -> \operatorname{Arc}(p_4) < -> \operatorname{Arc}(p_3)$

Arc(p₃)<->Arc(p₁)<->Arc(p₂)<->Arc(p₄)<->Arc(p₃)

