CS5120 Final Project

Student ID: 107065507 Name: 盧允凡

1. Design Concept

Goal:

Design a RSA engine $\,^{9}$ public key = (E, N), private key = (D, N), input data = A $\,^{9}$ E, D, N and A are all 2048-bit. The IO width is 32-bit. i.e., to compute A^{E} (mod N).

我使用 LR algorithm 實作 RSA,因為要處理大數運算,所以使用 word-based multiplication 來實作乘法的部分。

LR Algorithm

```
LR Binary Method

Input: M, e, n

Output: C := M^e \mod n

1. if e_{h-1} = 1 then C := M else C := 1

2. for i = h - 2 downto 0

2a. C := C \cdot C \pmod n

2b. if e_i = 1 then C := C \cdot M \pmod n

3. return C
```

Finite State Machine (FSM)

NTHU CS 1/4

KEY_E, KEY_D, KEY_N and DATA_FEED: 為 2048-bit 的資料,花費 64 cycles 輸入 LR algorithm (圖中橘色部分):

LR_1: 找到 most significant bit (msb),需花費 O(2048)

LR_2_MUL and LR_4_MUL: word-based multiplication,需花費 64*64 cycles

RELOAD: 將完成乘法後的新 C 值,重新 load 回 register,需花費 64 cycles

LR_3: if statement in LR algorithm (演算法中第 2b 行)

LR_4: 演算法是否結束的判別

OUTPUT: 將加密後的 text 輸出,需花費 64 cycles

Block Diagram

SRAM

使用 32-bit*256 的 single-port memory

面積估測:

The area of a single-port 32*256 SRAM is 43400 um2.

Cycle Analysis

Input key: 3*64

N data feeding: N*64

LR algorithm: N*(O(2048)*64*64+64)

Output: N*64

NTHU CS 2/4

Word-Based Multiplication

因為 2048-bit 很大,直接做乘法的 multiplier 會太大,所以使用 word-based 的方式做乘法。 將 2048-bit 切成 64 個 32-bit 的 word,需花費 64*64 cycles 做乘法。

Word-Based

2. Simulation and Discussion

我的 RTL simulation 可以成功,但是無法 synthesis (合成時間過久,2 小時後 Design_Vision 回報合成失敗)。推測原因如下:

雖然做了 word-based 去處理乘法,但是 LR algorithm 中還需要做 modulo 運算,這個部分也是 2048-bit。所以這是造成除法器過大的原因。

RTL simulation

Example 1

Public key: (E, N) = (7, 143) Message: 03, 08, 23, 01, 14, 07

```
A = 3
ciper = 42
A = 8
ciper = 57
A = 23
ciper = 23
A = 1
ciper = 1
A = 14
ciper = 53
A = 7
ciper = 6
A = 7
ciper = 6
IN DONE
********
finished!!!
Simulation complete via $finish(1) at time 1130265 NS + 0
```

The cipher text is: 42, 57, 23, 01, 53, 06

Private key: (D, N) = (103, 143) Message: 42, 57, 23, 01, 53, 06

NTHU CS 3 / 4

```
A = 42
ciper = 3
A = 57
ciper = 8
A = 23
ciper = 23
A = 1
ciper = 1
A = 53
ciper = 14
A = 6
ciper = 7
A = 6
ciper = 7
IN DONE
*********
finished!!!
Simulation complete via $finish(1) at time 2628105 NS + 0
```

After the decryption, the message is: 03, 08, 23, 01, 14, 07

Example 2

Public key: (E, N) = (157, 2773)

Message: 948

```
A = 948

ciper = 920

A = 948

ciper = 920

IN DONE

*******

finished!!!

Simulation complete via $finish(1) at time 26165 NS + 0
```

The cipher text is 920

3. Summary

因為我 modulo 的問題尚未解決,所以沒有合成後的 gate-level code。

後來發現 Montgomery algorithm 可以解決一次 multiplication 與 modulo 的問題,或許一開始就要用這個方法而不是用 LR 演算法,會比較簡單。但很遺憾因為時間的關係,沒辦法重做了。 其中有遇到 testbench 多筆 data 要 input 64 cycles,數量很大,所以用 script language (python)寫了簡單的腳本語言幫忙自動化工作。

因為我的 RTL code 合成失敗,所以無法提供 area, timing 以及 power reports。

總結這學期的 VLSI 課程受益良多,從完全不會 Verilog 到可以設計出一些 projects,也學習到了 VLSI 和 IC design flow 的相關知識。

NTHU CS 4 / 4