Instructor: Brian Rashap Due: 04/19/23 Final

Question 1 [15]

Use source transformation to find the Thevenin equivalent with respect to terminals A and B for the circuit below, if:

- $V_g = 240 \angle 0^\circ$
- $L_1 = j60\Omega$
- $C_1 = -j48\Omega$
- $R_1 = 36\Omega$

${\bf Question} \,\, {\bf 2} \,\, [15]$

Find the value of R that makes the below circuit Critically Damped.

Question 3 [15]

Use the Node-Voltage method to find the matrix representation of V_1 and V_2 if $i_g = 5\cos{(2500t)}A$ and $v_g = 20\cos{(2500t + 90^\circ)}V$. You do NOT need to solve for V_1 and V_2 , nor reduce the matrix to reduced row echelon form.

${\bf Question}~{\bf 4}~[15]$

Find Z_{eq} for the circuit below if

- $L_1 = j4\Omega$
- $L_2 = j20\Omega$
- $C_1 = -j8\Omega$
- $C_2 = -j20\Omega$

Question 5 [20]

- (a) What are the three Ideal Op Amp assumptions and their implications to voltages and currents in the circuit?
- (b) For the Op Amp Circuit above, use Kirchhoff's Laws to derive the gain.
- (c) If $v_1 = 1V$ and $v_2 = 3 * \cos(\frac{\pi}{2}t)$, draw a graph of v_o . Show at least two periods of the output.

Question 6 [20]

The two switches in the below circuit are synchronized. When the Switch 1 opens, Switch 2 closes, and vice versa. Switch 1 has been open for a long time before closing at t = 0. Find $i_L(t)$ for $t \ge 0$.

