2 Non-Linear Systems

PVK 2019: MAD

bacdavid@student.ethz.ch

gitlab.ethz.ch/bacdavid

Schedule

1. Theory

- 1. Setup
- 2. Root of a Function
- 3. Bisection Method
- 4. Newton's Method in 1D
- 5. Newton's Method in nD
- 6. Secant Method
- 7. Convergence rate
- 2. Exercises
- 3. Homework

Theory

Setup

- Root of function in 1D
- Root of function in nD
- System of equations
- Jacobian at \vec{x}

$$\chi^*$$

$$\vec{x}^* = [x_1^*, \dots, x_n^*]^T$$

$$\vec{F}(\vec{x})$$

$$J(\vec{x})$$

Root of a function

• $f(x^*) = 0$, x^* is a root of f

• Intermediate Value Theorem:

- *f* is continuous
- $\operatorname{sign} f(a) \neq \operatorname{sign} f(b)$
- Then $x^* \in [a, b]$

Bisection Method

- Directly induced from intermediate value theorem
- Decrease interval size until sufficiently small, make sure that the bounds always have opposite sign

Newton's Method in 1D

• Approximate a function by Taylor expansion:

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

• Discretize:

$$f(x^{(k)})$$
= $f(x^{(k-1)}) + f'(x^{(k-1)})(x^{(k)} - x^{(k-1)})$

• Set $f(x^{(k)}) = 0$: $x^{(k)} = x^{(k-1)} - \frac{f(x^{(k-1)})}{f'(x^{(k-1)})}$

Newton's Method in 1D cont.

- Resulting algorithm:
 - 1. Start with initial guess x^0
 - 2. Iterate $x^{(k)} = x^{(k-1)} \frac{f(x^{(k-1)})}{f'(x^{(k-1)})}$ 3. Stop when $|x^{(k)} x^{(k-1)}| < \epsilon$

Newton's Method in 1D cont. Example

• Given:

• Cube of volume 10 m³ - What's the side length?

Task:

- Write down the function you are trying to find a root of
- Make an initial guess
- Iterate once using Newton's method
- Use $x^0 = 0$ as an initial guess what happens? Why?

Newton's Method in nD

 Replace the gradient with the Jacobian and the division by the inverse:

$$\vec{x}^{(k)} = \vec{x}^{(k-1)} - J^{-1}(\vec{x}^{(k-1)})\vec{F}(\vec{x}^{(k-1)})$$

• Define:

$$\vec{\boldsymbol{x}}^{(k)} - \vec{\boldsymbol{x}}^{(k-1)} = \vec{\boldsymbol{y}}^{(k-1)}$$

• Update rule:

$$J(\vec{x}^{(k-1)})\vec{y}^{(k-1)} = -\vec{F}(\vec{x}^{(k-1)})$$

Newton's Method in nD cont.

- Resulting algorithm:
 - 1. Start with initial guess \vec{x}^0
 - 2. Iterate
 - 1. Solve for \vec{y}^{k-1} in $J(\vec{x}^{(k-1)})\vec{y}^{(k-1)} = -\vec{F}(\vec{x}^{(k-1)})$
 - 2. Compute $\vec{x}^{(k)} = \vec{y}^{(k-1)} \vec{x}^{(k-1)}$
 - 3. Stop when $\|\vec{x}^{(k)} \vec{x}^{(k-1)}\|_2 < \epsilon$

Newton's Method in nD cont. Example

• Given:

- $x_1 + x_2 x_1x_2 + 2 = 0$; $x_1 \cdot \exp(-x_2) 1 = 0$
- Initial Guess: $x_1^{(0)} = 0$; $x_2^{(0)} = 0$

Task:

- Compute the Jacobian
- Solve $J(\vec{x}^{(0)})y^{(0)} = -\vec{F}(\vec{x}^{(0)})$
- Compute $\vec{x}^{(1)}$

Secant Method

• Approximation of a gradient:

$$f'(x^{(k)}) \approx \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

• Similar to Newton's Method but approximate gradient:

$$x^{(k-1)}$$

$$= x^{(k)} - \frac{f(x^{(k)})(x^{(k)} - x^{(k-1)})}{f(x^{(k)}) - f(x^{(k-1)})}$$

Convergence Rate

• The error at time k:

$$E^{(k)} = x^{(k)} - x^*$$

• The convergence rate r:

$$\lim_{k \to \infty} \frac{\left| E^{(k-1)} \right|}{\left| E^{(k)} \right|^r} = C$$

Exercises

Exercise 1

• Given:

- Starting point x_0
- The gray area is the area of termination

• Task:

- Perform Newton's method graphically, starting at x_0
- Is the given info enough to perform Secant method?

Exercise 2

- Task:
 - Solve $e^x x 1 = 0$ graphically
 - Solve $e^x = x + 2$ for the positive root using 3 Newton's Iterations
 - Justify your initial guess

Homework

HW 1

Write pseudo code for bisection method

HW 2

• Find the minimum of x^2 with Newton's Method

HW₃

- Find the convergence rate of the Bisection method
- Solution in script
- Tip:
 - Convergence rate are based on worst case errors
 - Solution in skript