Notes:

• y_Q : present state

• y_D : present state

State transitions are specified by two separate always blocks.

The first block describes the required combinational circuit. It uses a case statement to give the value of the next state for each value of the present state. Each case alternative corresponds to a present state of the machine, and the associated if-else statement specifies the next state to be reached according to the value of input.

The second always block introduces flip-flops into the circuit. Its sensitivity list comprises the reset and clock signals.

Part 1 State Table

Table 1: State Table

State	w = 0	w = 1	\mathbf{z}
A	A	В	0
В	A	С	0
С	E	D	0
D	E	F	0
Е	A	G	0
F	E	F	1
G	A	С	1

Part 1 Output Logic

z is only 1 when the states are F and G. Therefore, the output is:

assign
$$z = ((y_Q == F) | (y_Q == G));$$