DIGITAL DESIGN

CS/ECE/EEE/INSTR F215

Sarang Dhongdi

Example on MEV

 $\textbf{Ex 2:} \ \ \text{Find the minimum Sum of Product form for function } \ F_1 \ \text{and } \ F_2 \ \text{using Variable Entered Mapping (VEM) technique.} \ \ \text{Assume D as Map Entered Variable (MEV).}$

Example on MEV

 $\textbf{Ex 2:} \ \ \text{Find the minimum Sum of Product form for function } F_1 \ \text{and} \ F_2 \ \text{using Variable Entered}$ Mapping (VEM) technique. Assume D as Map Entered Variable (MEV).

Step 2

- MEV →0MEV' →00→0

- $\phi \rightarrow \phi$ MEV. $\phi \rightarrow 0$ MEV'. $\phi \rightarrow 0$
- 1 → 1 (If not completely covered)
- 1 \rightarrow ϕ (If completely covered)
- MEV+MEV' $\phi \rightarrow 1$ (If not covered at all or only ϕ covered)
- ${}^{_{\circ}}$ MEV+MEV' $\phi \rightarrow \phi$ (If completely covered or necessary terms are covered)
- Same for MEV'+MEV ϕ

Example on MEV

 $\mbox{\bf Ex 2:}$ Find the minimum Sum of Product form for function $\mbox{\bf F}_1$ and $\mbox{\bf F}_2$ using Variable Entered Mapping (VEM) technique. Assume D as Map Entered Variable (MEV).

е	D a	IS M	lap I	nte	red \	/arıa
	Α	В	С	D	Fı	F ₂
	0	0	0	0	0	1
	0	0	0	1	0	1
	0	0	1	0	1	1
	0	0	1	1	1	Χ
	0	1	0	0	X	1
	0	1	0	1	0	0
	0	1	1	0	1	Χ
	0	1	1	1	0	0
	1	0	0	0	1	0
	1	0	0	1	1	1
	1	0	1	0	0	1
	1	0	1	1	1	1
	1	1	0	0	Х	Х
	1	1	0	1	0	Х
	1	1	1	0	0	0
	1	1	1	1	0	0

Example on MEV

 $\textbf{Ex 2:} \ \ \text{Find the minimum Sum of Product form for function } \ F_1 \ \text{and } \ F_2 \ \text{using Variable Entered}$ Mapping (VEM) technique. Assume D as Map Entered Variable (MEV).

BC 00	01	11	10
D+D'	D'+Dφ	D' φ	D'
D	D+D'	0	φ

TWO LEVEL IMPLEMENTATION

Two level implementations

- · 4 types of gates AND, OR, NAND, NOR
- $\,{}^{_{\circ}}\,\text{Use}$ 1 type of gate for level 1 and one type for level 2.
- Same type can be used for level 2.
- · Total 16 combinations.
- 8 combinations degenerate form
- Remaining 8 Non-degenerate form

Two level implementations

- Degenerate
 - AND-AND
 - · OR-OR
- AND-NAND
- · OR-NOR
- NAND-NOR
- · NAND-OR
- · NOR-NAND
- NOR-AND

- Nondegenerate
 - AND-OR
 - NAND-NAND
- OR-ANDNOR-NOR
- NOR-OR
- NAND-AND
- OR-NAND
- AND-NOR

AND-OR-INVERT (AND-NOR)												
X YZ	00	01	11	10								
0	1	0	0	0								
1	0	0	0	1								
Combine 0's to obtain complement of function in SOP form $F' = z + xy' + x'y$												
	F	= (z+ xy'	+x'y)'									

Four	variable	e Ex-Ol	R		
AB	00	01	11	10	
00		1		1	
01	1		1		
11		1		1	
10	1		1		

ВС	D/	4dd	er							
						_				
No.			inary					BCD s		
	K	Z8	Z4	Z2	Z1	С	S8	S4	S2	S1
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1

Binary Multiplier

- · Multiplication of two 2-bit numbers
- Multiplicand B1B0
- Multiplier A1A0
- - Solve using k-map (and minimum gate implementation)
- · Implement using adders

١		Inp	outs			Ou	tputs	
	A1	A0	B1	В0	Р3	P2	P1	P0
	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	1	1	0	0	0	0
	0	1	0	0	0	0	0	0
	0	1	0	1	0	0	0	1
	0	1	1	0	0	0	1	0
	0	1	1	1	0	0	1	1
	1	0	0	0	0	0	0	0
	1	0	0	1	0	0	1	0
	1	0	1	0	0	1	0	0
	1	0	1	1	0	1	1	0
	1	1	0	0	0	0	0	0
	1	1	0	1	0	0	1	1
	1	1	1	0	0	1	1	0
	1	1	1	1	1	0	0	1

Equations

- $P3 = F(A1,A0,B1,B0) = \sum (15)$
- $P2 = F(A1,A0,B1,B0) = \sum (10,11,14)$
- P1 = $F(A1,A0,B1,B0) = \sum (6,7,9,11,13,14)$
- $P0 = F(A1,A0,B1,B0) = \sum (5,7,13,15)$
- P3 = A1A0B1B0
- P2 = A1A0'B1+A1B1B0' = A1B1(A0B0)'
- P1 = A1'A0B1+A0B1B0'+A1B1'B0+A1A0'B0 =
- = A0B1(A1B0)'+A1B0(B1A0)'
- P0 =A0B0

