

Satellite Navigation

Precise Point Positoning (PPP) allows a single GNSS receiver user to determine his position with dm/cm uncertainty in kinematic / static mode using precise satellite orbits and clocks.

In doing so PPP uses state space representation (SSR) correction products such as precise satellite orbits, clocks and signal biases from either commercial or/and public (e.g., IGS) that are delivered to the user via satellite and/or internet.

The mathematical Model for PPP (compare to module 10!)

$$L_{k}^{p} = \rho_{k}^{p} + c(dt_{k} - dT^{p}) - I_{k}^{p} + T_{k}^{p} + \lambda B_{k}^{p} + d_{k}^{p} + \varepsilon_{L}$$

$$P_{k}^{p} = \rho_{k}^{p} + c(dt_{k} - dT^{p}) + I_{k}^{p} + T_{k}^{p} + \varepsilon_{P}$$
(11.1)

where

 L_k^p, P_k^p : undifferenced carrier phase and code observations (meters)

 ρ_k^p : geometric distance (satellite-receiver)

 dt_k, dT^p : receiver and satellite clock offsets

 I_k^p : ionospheric delay

 ${\cal T}_k^p$: tropospheric delay

 B_k^p : carrier phase bias (incl. ambiguities)

 d_k^p : model corrections

arepsilon : random error or residual

PPP error budget

Effect	magnitude	mitigation method	Residual error
Ionosphere	10-100 m	dual-freq. lin. comb.	mm
Troposphere	1-10 m	modelling; estimation	mm-cm
Relativity	10 m	modelling.	mm
sat. phase center	1 m	modelling;	mm-cm
code multipath	1 m	filtering	mm-dm
Solid Earth tides	20 cm	modelling	mm
phase windup	10 cm	modelling	mm
Ocean loading	5 cm	modelling	mm
sat. orb & clocks	a few cm	filtering	mm-cm
phase multipath	1 cm	filtering	mm-cm
rcv. phase center	a few cm	modelling;	mm

IGS orbit and clock products

Туре		Accuracy	Latency	Updates	Sample Interval
Broadcast	orbits	~100 cm	real time		daily
	Sat. clocks	~5 ns RMS ~2.5 ns SDev			
Ultra-Rapid (predicted half)	orbits	~5 cm	real time	at 03, 09, 15, 21 UTC	15 min
	Sat. clocks	~3 ns RMS ~1.5 ns SDev			
Ultra-Rapid (observed half)	orbits	~3 cm	3 - 9 hours	at 03, 09, 15, 21 UTC	15 min
	Sat. clocks	~150 ps RMS ~50 ps SDev			
Rapid	orbits	~2.5 cm	17 - 41 hours	at 17 UTC daily	15 min
	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev			5 min
Final	orbits	~2.5 cm	—— 12 – 18 days	every Thursday	15 min
	Sat. & Stn. clocks	~75 ps RMS ~20 ps SDev			Sat.: 30s Stn.: 5 min

(source: http://www.igs.org/products)

PPP accuracy

Processing Mode	RMS (cm)			
	East	North	Up	
Daily static	<0.5	<0.5	<1	
Hourly static	~4	~2	~3	
Post-processed kinematic	~5	~4	~10	
Real-time kinematic	<10	<10	<20	

Note: Based on dual-frequency measurements

Work in progress:

- PPP ambiguity resolution (PPP-AR), requires additional (external) information, e.g. satellite phase biases
- reduction of filter convergence; currently between 30 min and 1 h;
- PPP-RTK; obtain ionosphere and troposphere correction from RTK-like service

Overview of GNSS positioning modes

(source: https://www.novatel.com/)