

IN THE CLAIMS:

1 1. (amended) An interferometric strain gage sensor which comprises:
2 a support;
3 a first layer of polymeric material having a first refractive index;
4 a second layer of polymeric material having a second refractive index which second
5 refractive index is distinct from the first refractive index, the sensor having a gage factor of at
6 least 100 and light energy communicates with the sensor, when a strain is applied to the
7 sensor, the light energy is partly absorbed and the change in light energy correlates to the
8 strain applied, the sensor being passive and one of said layers being filled with particulate.

1 2. (original) The sensor of claim 1 which comprises:
2 a plurality of alternating first and second layers.

1 3. (original) The sensor of claim 2 wherein the first layer has a refractive index of
2 approximately 1.6 to 1.7 and is selected from the group consisting of polyimides and
3 polycarbonates.

1 4. (original) The sensor of claim 3 wherein the first layer is polyimide.

1 5. (original) The sensor of claim 2 wherein the second layer has a refractive index
2 of about 1.4 and is selected from the group consisting of polysiloxane, polyethylene,
3 polypropylene, Teflon®, polyvinylidene fluoride and polyester.

1 6. (original) The sensor of claim 5 wherein the second layer is polysiloxane.

1 7. (original) The sensor of claims 4 or 6 wherein the thicknesses of the layers are
2 between about 1 to 20 microns.

1 8. (cancelled) The sensor of claim 1 which comprises:

2 means for contacting the sensor with light energy; and

3 means for measuring changes in the light energy.

1 9. (cancelled) The sensor of claim 1 wherein the sensor is a passive sensor and
2 one of said layers is filled with particulate.

1 10. (amended) The sensor of claim 9 1 wherein there are multiple first and second
2 layers in alternating relationship, the first layer selected from the group consisting of
3 polyimides and polycarbonates, the second layer selected from the group consisting of
4 polysiloxane, polyethylene, polypropylene, Teflon®, polyvinylidene fluoride and polyester.

1 11. (original) The sensor of claim 10 wherein the first layer is polyimide and the
2 second layer is polysiloxane filled with aluminum oxide particulate.

1 12. (amended) The sensor of claim 9 1 which comprises:

2 means for contacting the sensor with light energy; and

3 means for measuring changes in the light energy.

1 13. (amended) An interferometric strain gage sensor which comprises:
2 a first layer of polymeric material having a first refractive index;
3 a second layer of polymeric material having a second refractive index which second
4 refractive index is distinct from the first refractive index, the sensor having a gage factor of at
5 least 100 and light energy communicates with the sensor, when a strain is applied to the
6 sensor, the light energy is partly absorbed and the change in light energy correlates to the
7 strain applied, the sensor being an active strain gage and further comprising ~~The sensor of~~
8 ~~claim 1 wherein the sensor is an active strain gage and comprises-~~ a tube-like support for the
9 first and second layers.

1 14. The sensor of claim 13 wherein the first layer has a refractive index of
2 approximately 1.6 to 1.7 and is selected from the group consisting of polyimides and
3 polycarbonates, and wherein the second layer has a refractive index of about 1.4 and is
4 selected from the group consisting of polysiloxane, polyethylene, polypropylene, Teflon®,
5 polyvinylidene fluoride and polyester.

1 15. The sensor of claim 14 ~~wherein the~~ which further comprises a third layer
2 comprised of outer most layer is coated with aluminum.

1 16. The sensor of claim 15 which comprises:
2 means for contacting the sensor with light energy; and
3 means for measuring changes in the light energy.