Técnicas de Tolerância a Falhas

Taisy Silva Weber UFRGS

Meios para alcançar dependabilidade

dependabilidade depende de decisões de projeto: para alcançar dependabilidade (e seus atributos) são necessária técnicas de projeto adequadas

Dependabilidade sem TF?

- dependabilidade pode ser alcançada sem TF
 - bons componentes podem levar a uma boa confiabilidade dos sistema
 - bons processos de produção e teste resultam em aumento de dependabilidade
 - manutenção frequente aumenta a qualidade

Meios

Avizienis - meios para alcançar dependabilidade: remoção, previsão, prevenção e tolerância a falhas

Meios: validação

Meios: remoção > verificação

durante do desenvolvimento

Meios: previsão

Meios: prevenção

Meios: tolerância a falhas

Meios

Técnicas de TF

- prevenção e remoção de falhas não são suficientes:
 - quando o sistema exige alta confiabilidade,
 - ou alta disponibilidade
- técnicas de TF exigem
 - componentes adicionais
 - algoritmos especiais

Técnicas de TF

Técnicas de TF: outra classificação

mais classificações

4 fases (Anderson & Lee):

última fase

tratamento da falha

recuperação

confinamento e avaliação

detecção

primeira fase

- múltiplas fases (Nelson)
 - mascaramento, detecção, confinamento, diagnóstico, reparo, configuração, recuperação

Nelson, V. Fault Tolerant Computing: Fundamental Concepts. IEEE Computer, 1990

Técnicas de TF

recuperação: troca do estado incorreto para um estado livre dos erros detectados e de falhas que possam ser ativadas

Técnicas de TF: Avizienis

Técnicas de TF: Avizienis

concorrente: durante período normal de operação preemptiva: com serviço normal suspenso

Avizienis, Laprie, Randell, Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans. on dep. and secure comp. 2004

Técnicas de detecção de erros

- duplicação e comparação
- codificação
- testes:
 - testes de limites de tempo
 - time-out, cão de guarda (watchdog timers)
 - testes reversos
 - teste de limites ou compatibilidade
 - testes de consistência
- diagnóstico
 - pode ser concorrente à operação normal ou preemptivo

Duplicação e comparação

detecção

Duplicação e comparação

Técnicas de TF

Recuperação

objetivo

- troca do estado atual incorreto (que contém um ou mais erros e possivelmente falhas) para um estado livre dos erros detectados e de falhas que possam ser novamente ativadas
- ocorre sempre após detecção
- tipos
 - tratamento de erros
 - elimina erros do estado do sistema
 - tratamento de falhas
 - previne reativação de falhas

Técnicas de TF

Tratamento de erros

recuperação por retorno

condução a **estado anterior**

recuperação por avanço

condução a **novo estado**

Retorno

- condução a estado anterior consistente
 - implica no salvamento do estado anterior livre de erros
 - alto custo mas de aplicação genérica

Retorno: exemplo

 salvamento de todo o estado do sistema periodicamente (checkpoints)

- simples em um único processo isolado
 - backup e log de operações
- complexa em processamento distribuído
 - sem restrições a comunicação pode provocar efeito dominó

Avanço

- recuperação por avanço
 - condução a novo estado consistente ainda não ocorrido desde a última manifestação de erro
 - eficiente, mas específica a cada sistema
 - danos devem ser previstos acuradamente

 os dois tipos de recuperação (avanço e retorno) não são mutuamente excludentes

mais usada em sistemas de **tempo** real, onde o retorno para um estado anterior (no tempo) seja inviável

Compensação

- o estado errôneo contém redundância suficiente para permitir que o erro seja mascarado
 - aplicação sistemática de compensação leva a mascaramento de falhas
 - mascaramento pode levar a perda progressiva da redundância de proteção (caso ocorram falhas permanentes e não envolva detecção de erros)
 - exemplos de mascaramento:
 - ECC
 - TMR (serão vistos posteriormente)

Técnicas de TF

Tratamento de falhas

tratamento da falha:

previne reativação de falhas;
geralmente seguida de
manutenção corretiva

Tratamento de falhas

- diagnóstico
 - identifica a causa do erro e armazena informação de localização e tipo

Isolamento

confinamento

- latência de falha pode provocar espalhamento de dados inválidos
- o confinamento estabelece limites para a propagação do dano

depende de decisões de projeto do sistema facilita isolamento

restringir fluxo de informações: evitar fluxos acidentais, estabelecer interfaces de verificação para detecção

isolamento

- exclui componente com falha do sistema
- o isolamento pode ser físico ou lógico
- falhas isoladas devem ser posteriormente removidas

Reconfiguração

chaveia para componentes redundantes em

espera

redistribui tarefas entre componentes não

Reinicialização

- verifica, atualiza e guarda a nova configuração
- atualiza informações de configuração do sistema

TF vs manutenção

- reparo e TF são temas relacionados
 - manutenção envolve a ação de um agente externo
 - manutenção
 - reparo
 - modificação
 - reparo é uma atividade de remoção de falhas
 - remoção de falhas e tolerância a falhas são meios para alcançar dependabilidade

Avizienis, Laprie, Randell, Landwehr. **Basic Concepts** and **Taxonomy of Dependable and Secure Computing.** IEEE Trans. on dep. and secure comp. 2004

Manutenção

Bibliografia

capítulo de livro

Johnson, Barry. An introduction to the design na analysis of the fault-tolerante systems, cap 1. Fault-Tolerant System Design. Prentice Hall, New Jersey, 1996

artigos

- Avizienis, Laprie, Randell, Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans. on dep. and secure comp. 2004
- Nelson, V. Fault Tolerant Computing: Fundamental Concepts. IEEE Computer. 1990