ITEC 3040 – Assignment 1

Iason Kotakis 214617732

Prof: Xing Tan

I have read and understood the Academic Honesty Statement specified in the course outline, and I have adhered fully at all times to the academic honesty rules and policies laid by the instructor, the School of Information Technology and York University Senate's Academic Integrity Policy.

QUESTION 1

Use the same in-class Play Tennis training example (which includes 14 days).

(a) Construct a Naive-Bayes classifier to determine Outlook Rain; Temperature Hot; Humidity High; Wind Weak; Play Tennis =?

Answer

DAY	OUTLOOK	TEMPERATURE	HUMIDITY	WIND	PLAY TENNIS
D1	SUNNY	HOT	HIGH	WEAK	NO
D2	SUNNY	HOT	HIGH	STRONG	NO
D3	OVERCAST	HOT	HIGH	WEAK	YES
D4	RAIN	MILD	HIGH	WEAK	YES
D5	RAIN	COOL	NORMAL	WEAK	YES
D6	RAIN	COOL	NORMAL	STRONG	NO
D7	OVERCAST	COOL	NORMAL	STRONG	YES
D8	SUNNY	MILD	HIGH	WEAK	NO
D9	SUNNY	COOL	NORMAL	WEAK	YES
D10	RAIN	MILD	NORMAL	WEAK	YES
D11	SUNNY	MILD	NORMAL	STRONG	YES
D12	OVERCAST	MILD	HIGH	STRONG	YES
D13	OVERCAST	HOT	NORMAL	WEAK	YES
D14	RAIN	MILD	HIGH	STRONG	NO

$$P[YES] = 9/14$$
$$P[NO] = 5/14$$

I [IVO]	- <i>5/1</i> +	
OK	VFS	

OUTLOOK	YES	NO
SUNNY	2/9	3/5
OVERCAST	4/9	0/5
RAIN	3/9	2/5

TEMPERATURE	YES	NO
НОТ	2/9	2/5
MILD	4/9	2/5
COLD	3/9	1/5

WIND	YES	NO
WEAK	6/9	2/5
STRONG	3/9	3/5

HUMIDITY	YES	NO
HIGH	3/9	4/5
NORMAL	6/9	1/5

$$P[X|YES] = P[YES] * P[RAINY|YES] * P[HOT|YES] * P[HIGH|YES] * P[WEAK|YES]$$

$$P[X|YES] = \frac{9}{14} * \frac{3}{9} * \frac{2}{9} * \frac{3}{9} * \frac{6}{9} = 0. \ 010582$$

$$P[X|NO] = P[NO] * P[RAINY|NO] * P[HOT|NO] * P[HIGH|NO] * P[WEAK|NO]$$

$$P[X|NO] = \frac{8}{14} * \frac{2}{5} * \frac{2}{5} * \frac{4}{5} * \frac{2}{5} = 0.018285$$

$$P[X|NO] > P[X|YES]$$

X= Outlook Rain; Temperature Hot; Humidity High; Wind Weak; Play Tennis = NO

QUESTION 2

- a) Use the Play Tennis training example again.
 - Construct a Decision Tree. Note that the order of attributes selection is based on the entropy theory for information gain.
- b) Us the classifier to determine

Outlook Rain; Temperature Hot; Humidity High; Wind Weak; Play Tennis =?

ANSWER

Part A

Step 1

Information gain measures the expected reduction in entropy by partitioning the examples according to an attribute.

$$Gain(S,A) = Entropy(S)$$
 — $(|Sv| / |S|)$ Entropy(Sv)
S — a collection of examples
A — an attribute

Values(A) — possible values of attribute

Sv – the subset of S for which attribute A has value v

Step 2

ID3 - Selecting Next Attribute

Step 3

ID3 - Selecting Next Attribute

Gain(S, Outlook) = 0.940-(5/14)*0.971 - (4/14)*0.0 - (5/14)*0.0971 = 0.247

Step 4

ID3 - Selecting Next Attribute

Gain(S, Outlook) = 0.940-(4/14)*1.0 - (6/14)*0.911 - (4/14)*0.811 = 0.029

Step 5

ID3 - Selecting Next Attribute

Step 6

$$ID3 - S \ sunny$$

$$Gain(S \ sunny \ , \ Humidity) = 0.970 - (3/5)0.0 - 2/5(0.0) = \textbf{0.970}$$

$$Gain(S \ sunny \ , \ Temp. \) = 0.970 - (2/5)0.0 - 2/5(1.0) - (1/5)0.0 = \textbf{0.570}$$

$$Gain(S \ sunny \ , \ Wind) = 0.970 - (2/5)1.0 - 3/5(0.918) = \textbf{0.019}$$

So, Humidity will be selected

Step 7Decision Tree for above dataset is

Part B

Predicted value v for Play Tennis by Naive-Bayes model:

For
$$v = Yes$$
: $P(Yes) * P(O=Rain | Yes) * P(T=Hot | Yes) * P(H=High | Yes) * P(W=Weak | Yes)$

$$= (10/16) * (4/12) * (4/12) * (4/11) * (6/11) = 0.01377$$

For v = No: P(No) * P(O=Rain | No) * P(T=Hot | No) * P(H=High | No) * P(W=Weak | No)
$$= (6/16) * (3/8) * (3/8) * (4/7) * (3/7) = 0.01291$$

Since 0.01377 > 0.01291, the naïve Bayes model predict **Play Tennis = Yes**.

Question 3

MATLAB Code

```
clear
tic
disp('--- start ---')
distr='normal';
distr='kernel';
% read data
tennis = dataset('xlsfile', 'tennis.xlsx');
X = double(tennis(:,1:11));
Y = double(tennis(:,12));
c = cvpartition(Y, 'holdout', .2);
% Create a training set
x = X(training(c, 1), :);
y = Y(training(c, 1));
% test set
u=X(test(c,1),:);
v=Y(test(c,1),:);
yu=unique(y);
nc=length(yu);
ni=size(x,2);
ns=length(v);
% compute class probability
for i=1:nc
    fy(i) = sum(double(y==yu(i)))/length(y);
switch distr
    case 'normal'
        for i=1:nc
            xi=x((y==yu(i)),:);
            mu(i,:) = mean(xi,1);
            sigma(i,:)=std(xi,1);
        end
        % probability for test set
        for j=1:ns
            fu=normcdf(ones(nc,1)*u(j,:),mu,sigma);
            P(j,:) = fy.*prod(fu,2)';
        end
    case 'kernel'
        % kernel distribution
        % probability of test set estimated from training set
        for i=1:nc
            for k=1:ni
                xi=x(y==yu(i),k);
```

```
ui=u(:,k);
                fuStruct(i,k).f=ksdensity(xi,ui);
            end
        end
        for i=1:ns
            for j=1:nc
                for k=1:ni
                     fu(j,k) = fuStruct(j,k).f(i);
                end
            end
            P(i,:) = fy.*prod(fu,2)';
        end
    otherwise
        disp('invalid distribution stated')
        return
end
[pv0,id] = max(P,[],2);
for i=1:length(id)
    pv(i,1) = yu(id(i));
end
confMat=myconfusionmat(v,pv);
disp('confusion matrix:')
disp(confMat)
conf=sum(pv==v)/length(pv);
disp(['accuracy = ',num2str(conf*100),'%'])
disp('total number of yes players = 9')
disp('total number of no players = 5')
disp('probability of NO = 0.6000, 0.2000, 0.8000, 0.6000')
disp('probability of YES = 0.2222,0.3333,0.3333,0.3333')
disp('prob NO = 0.02514')
disp('prob YES = 0.00501')
disp('As the probability of NO is somehow highee...')
disp('Answer = NO')
toc
function confMat=myconfusionmat(v,pv)
yu=unique(v);
confMat=zeros(length(yu));
for i=1:length(yu)
    for j=1:length(yu)
        confMat(i,j)=sum(v==yu(i) & pv==yu(j));
    end
end
```

Results

