Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR

THINKTech

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

lili@speechtex.com

What is the problem with Latin speech recognition?

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
 - the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

Text data

Regions of origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)

- In-domain data (Monasterium): medieval charters (HU), 480k/35k token/type
- Background data (Latin Library): historical texts, 1.3M/115k token/type

Speech data

- CZ: 76 hours
- HU: 567 hours (G2P) or 112 hours (grapheme and USG)
- PL: 31 hours
- RO: 35 hours

Baseline Grapheme Model

- All graphemes are trained
- Only those grapheme models are retained that are part of the Latin alphabet, e.g.
- -keeping model of r
- throwing away model of ř

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

	S				
AM Language	CZ	HU	PL	SK	\sum
CZ	53.6	73.8	62.9	45.7	59.0
HU	33.7	28.6	47.1	29.1	34.6
PL	65.0	67.6	46.4	51.1	57.5
RO	53.6	69.1	44.7	43.8	52.8

Knowledge-based grapheme-to-phoneme (G2P) mapping

Figure 2: Latin digraph context-insensitive rewrite rules and context-sensitive rewrite rules. V: vowel, VP: palatal vowel, ^VP: everything but a palatal vowel, C: consonant, *: zero or any, ^: beginning of word, $[\hat{s}tx]$: not s, t or x.

Perplexity measures on test Table 1: Perplexity/OOV rate (%)

Corpus	CZ	HU	PL	All
Monasterium	I .			l .
Latin Library	3266/7.8	3549/1.6	2305/5.5	2992/9.7
Interpolated	924/3.9	82/0.9	2288/5.5	672/3.5

Table 3: WER[%] for Czech-Latin sourcetarget G2P model. Acoustic model training set: 76 hours.

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ			49.1			
HU	48.7	40.0	58.7	49.1		
PL	53.3	18.2	53.2	41.6		
SK	30.3	30.0	44.0	34.8		
\sum	43.9	28.9	50.8	41.2		

Table 4: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours.

	Latin Test Text				
Speaker	CZ	HU	PL	\sum	
CZ	19.4	6.4	28.0	17.9	
HU		25.4			
PL		15.4			
SK	20.4	9.1	22.9	17.5	
\sum	22.6	12.5	28.1	21.1	

Language model

Spelling variants

jam

judex

gracia

Test data

PL, SK

iam

iudex

gratia

• Independent medieval charters

• Region of read text: CZ, HU, PL

• Native language of test speakers: CZ, HU,

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora
- SRILM [2]

Dimensions of data

- Region of training text: HU, mixed
- Speech data: CZ, HU, PL, RO
- Model type: grapheme, G2P, USG
- Native language of test speakers: CZ, HU, PL, SK
- Region of test text: CZ, HU, PL

Acoustic model

- Mel-Frequency Cepstrum + Energy features were used with Linear Discriminant Analysis (LDA) + Maximum Likelihood Linear Transformation (MLLT), with a splice context of ± 4 frames, 10 ms of frame shift.
- 9×40 dimensional spliced up feature vectors served as input to the feed-forward, 6 hidden-layer neural network with p-norm [1] activation function.
- Prior to DNN training, a Gaussian Mixture Model (GMM) pre-training was performed.
- Clustering and Regression Tree (CART) [1] was applied to obtain acrossword context dependent shared state phone (or graph) models and their time alignment.
- The number of senones (and so the size of the DNN softmax output layer) was between 7.000 and 11.000 depending on the nature of the training data.
- The size of the hidden layers was kept constantly on 2.000.
- A minibatch size of 512, an initial learning rate of 0.1, and final learning rate of 0.01 was applied in 20 epochs using the Kaldi toolkit [1].

Unified Simplified Grapheme (USG) Model

• Utilizing many available language resources in the hopes that statistical variations help generalizing over different pronunciations

Table 5: Simplification examples for the unified model.

Language	CZ	HU	PL	RC
Orthographic form	řekl	őz	miś	apă
USG transcription	rekl	ΟZ	mis	apa

Table 6: WER[%] for all the three-language TICC

Speaker				
CZ	HU	PL	SK	\sum
28.2	28.2	27.7	22.4	26.6
23.3	21.4	23.9	19.2	21.9
24.6	33.1	25.6	19.8	25.8
24.8	21.5	25.7	20.7	23.2
	CZ 28.2 23.3 24.6	CZ HU 28.2 28.2 23.3 21.4 24.6 33.1	CZ HU PL 28.2 28.2 27.7 23.3 21.4 23.9 24.6 33.1 25.6	Speaker CZ HU PL SK 28.2 28.2 27.7 22.4 23.3 21.4 23.9 19.2 24.6 33.1 25.6 19.8 24.8 21.5 25.7 20.7

WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ			30.7			
HU			25.7			
PL	23.0	10.0	33.0	22.0		
SK	14.5	12.7	24.8	17.3		
\sum	19.9	12.2	29.0	20.4		

Conclusions

- Knowledge-based G2P modeling is good, but time consuming and restricted
- Four-language USG modeling is the best
- It is able to generalize over different speaker test sets

References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)

System diagram

GRA: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Figure 1: Medieval Latin Speech Recognizer