Simulación fuente de ²⁵²Cf

La simulación de una fuente de fisiones espontáneas de 252 Cf en MCNP depende mucho de qué fenómenos se quieran simular (fotones, neutrones, correlaciones temporales, angulares, etc).

Si se lo ordena en orden creciente de complejidad y dificultad (y tal vez en tiempo de máquina) se pueden plantear los siguientes ecenarios en base a lo que se quiere obtener de la fuente:

1) Neutrones no correlacionados

• Se simulan neutrones utilizando un espectro de fisión de Watt

$$f(E) = Ce^{-E/a} \sinh(\sqrt{bE}) \tag{1}$$

- EN SDEF se utiliza:
 - PAR=n ENG=d1
 - SP1 -3 a b (ver apéndice C del manual)

2) Fotones no correlacionados

- No está implementado en MCNP, pero sí en MCNP-DSP, igualmente es relativamente sencillo.
- Se utiliza una función fenomenológica que ajusta el espectro experimental (T.E. Valentine, ver manual de MCNP-DSP):

$$N(E) = \begin{cases} 38.13(E - 0.085)e^{1.648E} & E < 0.3 \,MeV \\ 26.8e^{-2.3E} & 0.3 < E < 1.0 MeV \\ 8.0e^{-1.10E} & 1.0 < E < 8.0 MeV \end{cases}$$
 (2)

(en verdad es un ajuste al espectro de emisión del ^{235}U , pero son muy similares.)

- EN SDEF se utiliza:
 - PAR=p ENG=d1
 - SP1 (de la forma que se quiera)

3) Neutrones correlacionados

- Está implementado en MCNP6
- En SDEF se utiliza:
 - PAR=SF (y debe muestrearse una celda que contenga al ²⁵²Cf

- FMULT METHOD=3 (no es necesario, se activa automáticamente con lo anterior)
- La energía se muestrea del espectro de Watt con los parámetros adecuados (a,b)
- El generador de eventos no produce fotones

4) Neutrones y fotones correlacionados

- Existen tres métodos con generadores de eventos en MCNP capaces de simular el proceso de fisión y la emisión de fotones y neutrones.
- Estos generadores de eventos se pueden utilizar por separado, y algunos están implementados en otros programas (GEANT4.10, TRIPOLI-4.10 y MORET).
- En SDEF se utiliza
 - PAR=SF (y debe muestrearse una celda que contenga al ²⁵²Cf
 - FMULT METHOD=i
- El número j puede ser:
 - j=5 método LLNL
 - j=6 método FREYA (Fission Reaction Event Yield Algorithm)
 - j=7 método CGMF (Cascading Gamma-ray Multiplicity + Fission
- Activar estos métodos anula la capacidad de MCNP6 de paralelizar. Se debe paralelizar a mano (script en bash/python que mande muchas corridas con distintas semillas y luego se juntan los resultados).
- Los tiempos de corrida con CGMF son órdenes de magnitud mayores al resto (> x100)

Figure 1: Espectro de neutrones

Figure 2: Espectro de fotones

Código de MCNP6.2 utilizado para los ejemplos

```
Caracteristicas de emision del Cf252 usando metodo CGMF (METHOD=7)
С
100 1 -1e-10 -1000 imp:n,p=1 $ Cf252
             1000 imp:n,p=0 $ Nada
1000 SD 0.000000001
                            $ Esfera para Cf252
    98252.80c 1
                            $ Cf252
C ***********************************
c FUENTE
C *********************************
c Fuente puntual
SDEF PAR=-SF
C *****************
FC11 Neutrones que salen de la fuente
F11:n 1000
E11 1e-5 198ILOG 100
FC21 Fotones que salen de la fuente
F21:p 1000
E21 2e-2 198ILOG 50
C ****************
c PTRAC - opcional, ojo con el tamaño (1.7GB)
C ****************
PTRAC BUFFER=1000 FILE=bin MAX=1e9 TYPE=n,p WRITE=all EVENT=ter
FMULT METHOD=7
c TOTNU NO
MODE n p
CUT:n J J O O
                 $ Fuerza captura analógica
CUT:p J J 0 0
                   $ Fuerza captura analógica
RAND GEN=2 SEED=1
NPS 1e6
PRINT
```