Fakulta matematiky, fyziky a informatiky Univerzity Komenského, Bratislava

Projekt z metód voľnej optimalizácie

Logistická regresia pomocou kvázinewtonovských metód – predikcia solventnosti klientov

Piati za optimalizáciu Tomáš Antal, 2DAV, 0.2 Erik Božík, 2DAV, 0.2 Róbert Kendereš, 2DAV, 0.2 Teo Pazera, 2DAV, 0.2 Andrej Špitalský, 2DAV, 0.2

Obsah

0	Predstavenie témy						
	0.1 Zavedenie značenia	2					
1	Odvodenie účelovej funkcie a jej gradientu 1.1 Kompaktnejší tvar účelovej funkcie						
2	Riešenie úlohy pomocou kvázinewtonovských metód						
3	Riešenie úlohy pomocou gradientných metód						
4	Vizualizácia konvergencie						
5	Binárna klasifikácia solventnosti klientov						
6	Nadstavba - všeobecný model pre logistickú regresiu pomocou kvázine- wtonovských alebo gradientných metód						
7	Záver a diskusia	10					
8	Prehľad kódu	11					

0 Predstavenie témy

0.1 Zavedenie značenia

- $m=699\ \mathrm{znač}$ í počet klientov, o ktorých máme dáta
- $v \in \mathbb{R}^m$, i-ta zložka má hodnotu 1, ak je klient i solventný, inak 0
- $u_j \in \mathbb{R}^m$, j=1,2,3, vektory údajov o klientoch
 - $\circ \ u_1$ počet mesiacov od otvorenia účtu
 - $\circ \ u_2$ pomer úspor a investícií
 - $\circ \ u_3$ počet rokov v súčasnom zamestnaní
- v^i, u^i_j označujú i-te položky jednotlivých vektorov pre $i=1,\dots,m,\,j=1,2,3$

1 Odvodenie účelovej funkcie a jej gradientu

V tejto časti sa budeme venovať odvodzovaniu účelovej funkcie a jej gradientu, ktorú v neskorších častiach budeme minimalizovať, pomocou čoho vytvoríme model na binárnu klasifikáciu.

Do logistickej funkcie $g(z)=\frac{1}{1+e^{-z}}$, ktorá bude odhadovať pravdepodobnosť solventnosti klienta, budeme dosádzať hodnoty $z=x^Tu^i$ pre vektor parametrov $x=(x_0,\ldots,x_3)$ a vektor údajov o klientovi $u^i=(1,u^i_1,u^i_2,u^i_3)$, pre $i=1,\ldots,m$.

Chceme odhadnúť zložky vektora x tak, aby čo najvierohodnejšie predpovedal solventnosť vzhľadom na naše dáta. To vedie k optimalizačnej úlohe:

$$\min J(x)$$
$$x \in \mathbb{R}^4$$

kde

$$J(x) = -\sum_{i=1}^{m} v^{i} \ln (g(x^{T}u^{i})) + (1 - v^{i}) \ln (1 - g(x^{T}u^{i}))$$

Z predpisu funkcie si môžeme všimnúť, že suma nadobúda záporné hodnoty, čiže J(x) nadobúda kladné hodnoty. Taktiež si môžeme všimnúť, že ak je klient i solventný, čiže $v^i=1$ a pre nejaký vektor parametrov x je hodnota $g\left(x^Tu^i\right)$ blízka nule, má to za následok "výrazné" zvyšovanie hodnoty účelovej funkcie. Podobnou logikou vidíme zvyšovanie hodnoty účelovej funkcie pre nesolventných klientov, ak pomocou vektora x mu prisúdime veľkú pravdepodobnosť solventnosti hodnotou $g\left(x^Tu^i\right)$. Chceme teda nájsť taký vektor x, že $g\left(x^Tu^i\right)$ bude blízke 1 pre solvetného klienta a blízke 0 pre nesolventného.

1.1 Kompaktnejší tvar účelovej funkcie

Pre lepšiu manipuláciu a neskoršiu implementáciu si zjednodušíme tvar účelovej funkcie nasledovne:

$$J(x) = -\sum_{i=1}^{m} v^{i} \ln \left(g\left(x^{T}u^{i}\right)\right) + (1 - v^{i}) \ln \left(1 - g\left(x^{T}u^{i}\right)\right)$$

$$= -\sum_{i=1}^{m} v^{i} \ln \left(\left(1 + e^{-x^{T}u^{i}}\right)^{-1}\right) + (1 - v^{i}) \ln \left(\frac{e^{-x^{T}u^{i}}}{1 + e^{-x^{T}u^{i}}}\right)$$

$$= -\sum_{i=1}^{m} -v^{i} \ln \left(1 + e^{-x^{T}u^{i}}\right) + (1 - v^{i}) \left(\ln \left(e^{-x^{T}u^{i}}\right) - \ln \left(1 + e^{-x^{T}u^{i}}\right)\right)$$

$$= -\sum_{i=1}^{m} -v^{i} \ln \left(1 + e^{-x^{T}u^{i}}\right) - (1 - v^{i})x^{T}u^{i} - (1 - v^{i}) \ln \left(1 + e^{-x^{T}u^{i}}\right)$$

$$= \sum_{i=1}^{m} (1 - v^{i})x^{T}u^{i} + \ln \left(1 + e^{-x^{T}u^{i}}\right)$$

S takýmto vyjadrením funkcie J(x) budeme pracovať v nasledujúcich častiach.

1.2 Gradient účelovej funkcie

Vyjadríme si najprv parciálnu deriváciu podľa x_0 , potom podľa x_j , j=1,2,3, keďže tie sa správajú symetricky.

$$\frac{\partial}{\partial x_0} J(x) = \frac{\partial}{\partial x_0} \sum_{i=1}^m (1 - v^i) x^T u^i + \ln\left(1 + e^{-x^T u^i}\right)$$

$$= \sum_{i=1}^m \frac{\partial}{\partial x_0} \left((1 - v^i) (x_0 + x_1 u_1^i + x_2 u_2^i + x_3 u_3^i) + \ln\left(1 + e^{-x^T u^i}\right) \right)$$

$$= \sum_{i=1}^m (1 - v^i) - \frac{e^{-x^T u^i}}{1 + e^{-x^T u^i}}$$

$$= \sum_{i=1}^m 1 - v^i - \frac{1}{1 + e^{x^T u^i}}$$

$$\frac{\partial}{\partial x_{j}} J(x) = \frac{\partial}{\partial x_{j}} \sum_{i=1}^{m} (1 - v^{i}) x^{T} u^{i} + \ln\left(1 + e^{-x^{T} u^{i}}\right)$$

$$= \sum_{i=1}^{m} \frac{\partial}{\partial x_{j}} \left((1 - v^{i}) (x_{0} + x_{1} u_{1}^{i} + x_{2} u_{2}^{i} + x_{3} u_{3}^{i}) + \ln\left(1 + e^{-x^{T} u^{i}}\right) \right)$$

$$= \sum_{i=1}^{m} (1 - v^{i}) u_{j}^{i} - u_{j}^{i} \frac{e^{-x^{T} u^{i}}}{1 + e^{-x^{T} u^{i}}}$$

$$= \sum_{i=1}^{m} \left(1 - v^{i} - \frac{1}{1 + e^{x^{T} u^{i}}} \right) u_{j}^{i} \qquad j = 1, 2, 3$$

Toto vieme kompaktne zapísať nasledovne:

$$\nabla J(x) = \sum_{i=1}^{m} \begin{pmatrix} 1 \\ u_1^i \\ u_2^i \\ u_3^i \end{pmatrix} \left(1 - v^i - \frac{1}{1 + e^{x^T u^i}} \right)$$

2	Riešenie tód	úlohy	pomocou	kvázinew	tonovských	me-

3	Riešenie úlohy pomocou gradientných metó			

4 Vizualizácia konvergencie

6 Nadstavba - všeobecný model pre logistickú regresiu pomocou kvázinewtonovských alebo gradientných metód

7 Záver a diskusia

8 Prehľad kódu