mk 27-07-2023

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\2_2015.csv")
a

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fre
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.
				•••					
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.:
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.
150	v 10	I							

158 rows × 12 columns

```
In [3]: a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):
```

#	Column	Non-	-Null Count	Dtype
0	Country	158	non-null	object
1	Region	158	non-null	object
2	Happiness Rank	158	non-null	int64
3	Happiness Score	158	non-null	float64
4	Standard Error	158	non-null	float64
5	Economy (GDP per Capita)	158	non-null	float64
6	Family	158	non-null	float64
7	Health (Life Expectancy)	158	non-null	float64
8	Freedom	158	non-null	float64
9	Trust (Government Corruption)	158	non-null	float64
10	Generosity	158	non-null	float64
11	Dystopia Residual	158	non-null	float64
	67 (64/0) (164/4) (1	1 (0)		

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

```
In [4]: a.columns
```

In [5]: a.head()

Out[5]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freed
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.628
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.649
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.669
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.632
4									>

In [6]: a.describe()

Out[6]:

	Happiness Rank	Happiness Score	Standard Error	(GDP per Capita)	Family	Health (Life Expectancy)	Freedom	(Gc C
cou	nt 158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	1
mea	n 79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	
st	d 45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	
mi	n 1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	
25	4 0.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	
50	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	
75	6 118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	
ma	x 158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	
4								•

In [7]: sns.pairplot(a)

Out[7]: <seaborn.axisgrid.PairGrid at 0x25f7ba3d790>


```
In [8]: |sns.distplot(a['Family'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Family', ylabel='Density'>


```
In [29]: sns.heatmap(x1.corr())
```

Out[29]: <AxesSubplot:>


```
In [36]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[36]: LinearRegression()

```
In [37]: print(lr.intercept_)
```

-0.0015805488823738

```
In [38]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[38]:

	Co-efficient
Happiness Rank	0.000004
Happiness Score	1.000223
Standard Error	0.000785
Economy (GDP per Capita)	-1.000113
Health (Life Expectancy)	-1.000012
Freedom	-0.999781
Trust (Government Corruption)	-0.999858
Generosity	-1.000017
Dystopia Residual	-1.000002

```
In [39]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[39]: <matplotlib.collections.PathCollection at 0x25f078d45b0>


```
In [40]: print(lr.score(x_test,y_test))
```

0.9999982527928005