Class 18

April 3, 2024

Integral Domains

In a commutative ring R we call a non-zero element $a \in R$ a zero-divisor if $\exists b \in R$ such that $b \neq 0$ and ab = 0.

$\mathbf{E}\mathbf{x}$

Consider the ring of 2×2 real matrices $M_2(\mathbb{R})$. Then $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is a zero divisor as $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is not a zero divisor as for any matrix $A \in M_2(\mathbb{R})$

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) A = 0$$

$$A = 0$$

so there cannot exist a nonzero A such that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} A = 0$.

Def

An integral domain (ID) is a commutative ring with unity and no zero-divisors.

Ex 1

 \mathbb{Z} is an integral domain under the usual definition of multiplication and addition. We know the integers are commutative and that 1 is an integer. If we consider two integers, a, b such that

$$ab = 0$$

we know

$$a = 0 \text{ or } b = 0$$

by the properties of the integers.

Ex 2

Consider the Gaussian integers $R = \mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$. First, let's show R is a ring under the usual definition of multiplication and addition. We have previously shown the complex numbers form a group under addition, so we will use the first subgroup test to show R is a subgroup of \mathbb{C} under addition. Let $a + bi, c + di \in R$. Then

$$(a+bi) - (c+di) = (a-c) + (b-d)i$$

As (a-c), $(b-d) \in \mathbb{Z}$, then $(a+bi)-(c+di) \in R$. As the Gaussian integers are a subset of the complex numbers, we know they will obey associativity and the distributive laws. We need to show they remain closed under multiplication. Let $a+bi, c+di \in R$. Then using foil:

$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i$$

as (ac - bd), $(bc + ad) \in \mathbb{Z}$, then (a + bi) $(c + di) \in R$, thus R is a ring. Now, we will show R is a commutative ring with unity. As the Gaussian integers are a subset of \mathbb{C} and the complex numbers are commutative, then R is commutative. Finally, consider $1 + 0i \in R$. For any $a + bi \in R$,

$$(1+0i)(a+bi) = 1(a+bi) = a+bi$$

thus 1 is a unity in R, so R is a ring with unity. Now, we show that R is an integral domain. Let a + bi, $c + di \in R$ both be non-zero such that

$$(a+bi)(c+di) = 0$$

Then

$$(ac - bd) + (bc + ad) i = 0 + 0i$$

We can match the real and imaginary parts to yield

$$(ac - bd) = 0$$

$$(bc + ad) = 0$$

Suppose WLOG $a \neq 0$. As the integers are a subset of the real numbers, then we can rearrange the first equation to yield (even though $\frac{1}{a}$ is not an integer)

$$ac = bd$$

$$c = \frac{bd}{a}$$

Substitute back into the second equation to yield

$$b\left(\frac{bd}{a}\right) + ad = 0$$

$$\frac{b^2d}{a} + ad = 0$$

multiply both sides by a to yield

$$b^2d + a^2d = 0$$

Factor out a d to yield

$$(b^2 + a^2) d = 0$$

As $a \neq 0$, then $(b^2 + a^2) > 0$ thus d = 0. If d = 0, then we can plug into the equation for c

$$c = \frac{bd}{a} = 0$$

thus c, d = 0 and c + di = 0 a contradiction! Thus R cannot contain any zero divisors and as such R is an integral domain.

Ex 3

Consider \mathbb{Z}_p such that p is prime. I claim \mathbb{Z}_p is a commutative ring with unity (it would be good practice to prove this). Let's show \mathbb{Z}_p contains no zero divisors. Let $a, b \in \mathbb{Z}_p$ such that $1 \le a, b < p$. Then

$$ab \neq_p 0$$

To show this, first suppose WLOG a=1. Then $ab=_p b\neq_p 0$ as $1\leq b< p$. Now suppose $a,b\neq 1$. Then a,b cannot be factors of p as p is prime and can only have factors of 1 or p. As such, the product a,b cannot be divisible by p, so $ab\neq_p 0$. Thus \mathbb{Z}_p cannot be an integral domain.

Non Ex 4

Consider \mathbb{Z}_n such that n is not prime. Suppose n = ab for $a, b \in \mathbb{Z}_n$ such that $a, b \neq 1, n$. Then a, b are zero divisors as

$$ab = n =_{p} 0$$

$\mathbf{Ex} \ \mathbf{5}$

Consider $I = \mathbb{Z}[x]$, the set of all polynomials with integer coefficients. This example was given in class without a full proof. First, note I is a ring. We will show I is commutative, has a unity, and has no zero divisors. Let p(x), $q(x) \in I$ with $p(x) = \sum_{i=0}^{n} c_i x^i$ and $q(x) = \sum_{j=0}^{m} d_j x^j$. Then

$$p(x) q(x) = \sum_{i=0}^{n+m} \left(\sum_{j=0}^{i} c_j d_{i-j} \right) x^i = \sum_{i=0}^{n+m} \left(\sum_{j=0}^{i} d_j c_{i-j} \right) x^i = q(x) p(x)$$

as each c_i, d_j is an integer and the product of integers is commutative. The unity will be the polynomial 1, as 1 is an integer, thus $1 \in \mathbb{Z}[x]$. To show there are no zero divisors, consider any two $p(x), q(x) \in \mathbb{Z}[x]$ with the same rules as above. Then if p(x) q(x) = 0 then $\sum_{j=0}^{i} d_j c_{i-j} = 0$ for all $0 \le i \le n+m$. But if we take the highest order term in both p(x), q(x), then we have

$$\sum_{j=0}^{n+m} d_j c_{i-j} = c_n d_m$$

as these are the only terms in the polynomial that will contribute to the x^{n+m} term of the product. As $c_n, d_m \neq 0$ and c_n, d_m are both integers, then $c_n d_m \neq 0$, thus $p(x) q(x) \neq 0$. This means I has no zero divisors and when combined with the other results implies I is an integral domain.

Thm

If I is an integral domain and $a, b, c \in I$ such that $a \neq 0$ if ab = ac then b = c (and as I is commutative, if ba = ca then b = c)

Pf

$$ab = ac$$

$$ab - ac = 0$$

$$a\left(b-c\right)=0$$

as I is an integral domain, then a=0 or b-c=0 but we already are assuming $a\neq 0$, thus

$$b - c = 0$$

$$b = c$$

Fields

A field F is a commutative ring with unity such that every non-zero element is a unit. This is analogous to stating $F \setminus \{0\}$ is an abelian group under multiplication (Can you see why?).

Non-Ex 1

 $R_1 = \mathbb{Z}$ is not a field under the usual definition of addition and multiplication. Consider a = 2. Then

$$ab = 1$$

$$2b = 1$$

is only possible for

$$b = \frac{1}{2} \notin R_1$$

Thus 2 is not a unit and R_1 is not a field.

$\mathbf{Ex} \ \mathbf{2}$

 $R_2 = \mathbb{Q}$ under the usual definition of addition and multiplication. The rational numbers are a commutative ring with unity 1. Let's show each element is a unit. Let $\frac{a}{b} \in R_2$ such that $a, b \neq 0$. Then

$$\frac{a}{b} * \frac{b}{a} = 1$$

As $a,b \neq 0$, then $\frac{b}{a} \in \mathbb{Q}$ and every non-zero rational number is a unit.

Ex 3

 $R_3 = \mathbb{Q}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2}|a,b \in \mathbb{Q}\right\}$ under the usual addition and multiplication of real numbers. First, let's show this is a ring. As \mathbb{R} is a ring, we can use the subring test to show this. Let $a + b\sqrt{2}$, $c + d\sqrt{2} \in R_3$. Then

$$\left(a+b\sqrt{2}\right)-\left(c+d\sqrt{2}\right)=\left(a-c\right)+\left(b-d\right)\sqrt{2}$$

as $a-c, b-d \in \mathbb{Q}$, then

$$(a+b\sqrt{2})-(c+d\sqrt{2}) \in R_3$$

Now, to show closure under multiplication:

$$(a+b\sqrt{2})(c+d\sqrt{2}) = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd$$

$$= (ac + 2bd) + (ad + bc)\sqrt{2}$$

as (ac+2bd), $(ad+bc) \in \mathbb{Q}$, then $(a+b\sqrt{2})$ $(c+d\sqrt{2}) \in R_3$. As the real numbers are commutative, then $R_3 \subseteq \mathbb{R}$ must also be commutative. As $1=1+0\sqrt{2} \in R_3$, R_3 is a ring with unity. Now, let's show that R_3 is a field. To do so, we will show each non-zero element in R_3 has a multiplicative inverse. Let $a+b\sqrt{2} \in R_3$. We want to show the following holds for $c+d\sqrt{2} \neq 0$

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = 1$$

Let's show $\frac{1}{c+d\sqrt{2}} \in R_3$. We will multiply the numerator and denominator by the conjugate of the denominator.

$$\frac{a + b\sqrt{2}}{c + d\sqrt{2}} * \frac{c - d\sqrt{2}}{c - d\sqrt{2}} = \frac{ac - 2bd + (bc - ad)\sqrt{2}}{c^2 - 2d^2} = \frac{ac - 2bd}{c^2 - 2d^2} + \frac{bc - ad}{c^2 - 2d^2}\sqrt{2}$$

As long as $c^2-2d^2\neq 0$, then $\frac{ac-2bd}{c^2-2d^2}, \frac{bc-ad}{c^2-2d^2}\in \mathbb{Q}$. Let's show $c^2-2d^2\neq 0$. If we try solving the equation we get

$$c^2 = 2d^2$$

$$c = 0$$

or

$$c = \pm \sqrt{2d^2} = \pm d\sqrt{2}$$

but if d is rational, then c must be irrational, as $\sqrt{2}$ is irrational. This is a contradiction, as we assume c is rational, thus $c^2-2d^2\neq 0$ and $\frac{ac-2bd}{c^2-2d^2}, \frac{bc-ad}{c^2-2d^2}\in \mathbb{Q}$, so for $a+b\sqrt{2}\in R_3$, $\exists \frac{1}{c+d\sqrt{2}}\in R_3$ such that

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = 1$$

so R_3 is a field.

Thm

Every finite integral domain is a field.

\mathbf{Pf}

Let I be a finite integral domain. Then for each $a \in R$, there exist $i, j \in \mathbb{Z}$ such that $i \neq j$ and $a^i = a^j$. Thus

$$a^i = a^j$$

Suppose WLOG i > j

$$a^{i-j}a^j = 1a^j$$

By our previous theorem for integral domains implies

$$a^{i-j} = 1$$

Thus

$$aa^{i-j-1} = 1$$

As i > j, then $i - j - 1 \ge 0$, so $a^{i - j - 1} \in R$ and a is a unit.

$\mathbf{E}\mathbf{x}$

As \mathbb{Z}_p is a finite integral domain for prime p, then \mathbb{Z}_p is a field.

Thm

Every field is an integral domain.

\mathbf{Pf}

Let F be a field. Suppose $\exists a, b \in F$ such that a, b are zero divisors. Then

$$ab = 0$$

As F is a field, there exists $a^{-1} \in F$, thus

$$a^{-1}ab = a^{-1}0$$

$$1b = b = 0$$

but $b \neq 0$ as b is a zero-divisor! Thus to avoid contradiction, there cannot be any zero divisors in a field. This means F is an integral domain.