HAX501X – Groupes et anneaux 1

Contrôle continu 2

- Durée: 1h.
- Tout matériel électronique est interdit ainsi que les documents de cours.
- Une partie du barème sera consacrée à la clarté de la rédaction ainsi qu'à la propreté/lisibilité de la copie.

Exercice 1 : anneaux noethériens, et non noethériens. On rappelle une définition entrevue en cours : un anneau commutatif A est dit noethérien si toute suite croissante d'idéaux de A est stationnaire, c'est-à-dire si pour toute suite croissante

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset I_{n+1} \subset \cdots$$

d'idéaux de A, il existe un $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $I_n = I_N$.

- 1) On redémontre le fait, vu en cours, qu'un anneau principal est noethérien. Soit A un anneau principal, et soit $(I_n)_{n\in\mathbb{N}}$ une suite croissante d'idéaux de A comme ci-dessus.
 - a) Rappeler la définition de la notion d'anneau principal.
 - b) On pose $I=\bigcup_{n\in\mathbb{N}}I_n.$ Montrer que I est un idéal de A.c) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est stationnaire.
- 2) On considère l'anneau $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} . Pour E une partie de \mathbb{R} , on note I(E) l'ensemble des applications $f: \mathbb{R} \to \mathbb{R}$ qui vérifient : $\forall x \in E, f(x) = 0$.
 - a) Montrer que I(E) est un idéal de $\mathbb{R}^{\mathbb{R}}$.
 - b) Montrer que c'est un idéal principal.
 - c) Montrer que l'anneau $\mathbb{R}^{\mathbb{R}}$ n'est pas noethérien.

Exercice 2: automorphismes de groupes. Pour un groupe G, on note Aut(G) l'ensemble des automorphismes de groupes de G.

- 1) Montrer que Aut(G) est un sous-groupe de Bij(G), le groupe des permutations de G.
- 2) Pour un élément $g \in G$ on définit une application

$$\gamma_g: G \to G \ , \ x \mapsto gxg^{-1}.$$

Montrer que γ_g est un automorphisme de G. On l'appelle la conjugaison par g dans G.

3) Montrer que l'application

$$C: G \to \operatorname{Aut}(G), g \mapsto \gamma_g$$

est un morphisme de groupes. Quel est son noyau?