Hurtigtaster

v ==							
^~	Gir	tilnærmet	løsning	av ei	ı ligning	som	desimaltall.
	OII	0111100111100	100111116	ar o		50111	accilitatean.

≈	Gir tilnærmet	verdi av e	t uttrykk som	desimaltall
		verai av e	o doory KK Som	acsiliara.

	PC	Mac
	alt+r	
π	alt+p	
∞	alt+p	
\otimes	alt+shift+8	
e	alt+e	
0	alt+o	

Kommandoer

abs[<x>]

Finner lengden til et objekt x. (Merk: kan brukes til å finne lengden av en vektor).

Asymptote[<Funksjon>]

Finner asymptotene til en funksjon.

Avstand[<Punkt>, <Objekt>]

Gir avstanden fra et punkt til et objekt (som gjerne kan være et annet punkt).

ByttUt[<Uttrykk>, <Liste med forandringer>] (CAS) Viser et gitt uttrykk etter endring av variabler, gitt i en liste.

Deriverte[<Funksjon>]

Gir den deriverte av en funksjon. (Merk: For en definert funksjon f(x), kan man like gjerne skrive f'(x))

Determinant[<Matrise>]

Finner determinanten til en matrise.

Ekstremalpunkt[<Polynom>]

Finner alle ekstremalpunkter (altså lokale og globale topp/bunnpunkter) til et polynom.

Ekstremalpunkt[<Funksjon>, <Start>, <Slutt>]

Finner alle ekstremalpunkter (altså lokale og globale topp/bunnpunkter) på et gitt intervall til en hvilken som helst funksjon.

HøyreSide[<Likning>] (CAS)

Gir høyresiden til en likning.

HøyreSide[<Liste med likninger>] (CAS)

Gir en liste med høyresidene i en liste med ligninger.

Integral[<Funksjon>]

Gir uttrykket til det ubestemte integralet av en funksjon. (Merk: Hvis kommandoen skrives i inntastingsfeltet, blir konstantleddet utelatt).

Integral[<Funksjon>, <Start>, <Slutt>]

Gir det bestemte integralet av en funksjon på et intervall.

Integral[<Funksjon>], <Variabel> (CAS)

Gir uttrykket til det ubestemte integralet til en funksjon av gitt variabel. (Brukes dersom man ønsker å integrere funksjoner avhengig av en annen variabel enn x).

Kurve[<Uttrykk>, <Uttrykk>, <Parametervariabel>, <Start>, <Slutt>]

Viser parameteriseringen av en kurve i Grafikkfelt 3D på et gitt intervall. Uttrykkene er henholdsvis uttrykkene for x, y og z-koordinatene, bestemt av en gitt parametervariabel.

Kule[<Punkt>, <Radius>]

Viser en kule i Grafikkfelt 3D med sentrum i et gitt punkt og med en gitt radius.

Løs[<Likning med x>] (CAS)

Løser en likning med x som ukjent.

Løs[<Likning>, <Variabel>] (CAS)

Finner alle løsninger av en gitt likning med en gitt variabel som ukjent.

LøsODE[<Likning>] (CAS)

Finner generell løsning av en gitt differensialligning av første eller andre orden. LøsODE[<Likning>, $(x_0, y(x_0))$, $(x_1, y'(x_1))$] (CAS) Finner løsningen av en gitt differensialligning av første eller andre orden, for randverdier gitt som punkter.

Nullpunkt[<Polynom>]

Finner alle nullpunkter til et polynom.

NullpunktIntervall[<Funksjon>, <Start>, <Slutt>]

Finner alle nullpunkter på et gitt intervall til en hvilken som helst funksjon.

Plan[<Punkt>, <Punkt>, <Punkt>]

Viser et plan i Grafikkfelt 3D, utspent av to av vektorene mellom tre gitte punkt.

Prisme[<Punkt>, <Punkt>, ...]

Framstiller en prisme i Grafikkfelt 3D. Prisme [A,B,C,D] lager en prisme med grunnflate ABC og tak DEF, Prisme [A,B,C,D, E] har grunnflate ABCD og tak EFG. F,G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram. Under kategorien Prisme i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Pyramide[<Punkt>, <Punkt>, ...]

Framstiller en pyramide i Grafikkfelt 3D. Pyramide [A,B,C,D] lager en pyramide med grunnflate A,B,C og toppunkt D, mens Pyramide [A,B,C,D, E] har grunnflate A,B,C,D og toppunkt E. Under kategorien Pyramide i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Retningsdiagram[f(x,y)] (Inntastingsfelt)

Lager et retningsdiagram for en differensialligning hvor f(x,y) = y'.

Skalarprodukt[<Vektor>, <Vektor>]

Finner skalarproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive u^*v).

Skjæring[<Objekt>, <Objekt>]

Finner skjæringspunktene mellom to objekter. (Merk: fungerer ikke for vektorer, og gir bare ett av punktene dersom funksjonene har flere skjæringspunkt).

Skjæring[<Funksjon>, <Funksjon>, <Start>, <Slutt>] Finner skjæringspunktene mellom to funksjoner på et gitt intervall.

Sum [<Uttrykk>, <Variabel>, <Start>, <Slutt>] (CAS) Finner summen av en rekke med en løpende variabel på et intervall.

Vektorprodukt[<Vektor>, <Vektor>] (CAS)

Finner vektorproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$. Hurtigtast for \otimes er alt+shift+8).

TrigKombiner[<Funksjon>]

Skriver om et uttrykk på formen $a\sin(kx)+b\cos(kx)$ til et kombinert uttrykk på formen $R\cos(kx-\phi)$

TrigKombiner[<Funksjon>, sin(x)]

Skriver om en funksjon på formen $a\sin(kx) + b\cos(kx)$ til et kombinert uttrykk på formen $r\sin(kx+c)$.

Vektorprodukt[<Vektor>, <Vektor>] (CAS)

Finner vektorproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$. Hurtigtast for \otimes er alt+shift+8).

Vendepunkt[<Polynom>]

Finner vendepunktene til et polynom.

Regresjon

Alle Reg-kommandoer fungerer bare i inntastingsfeltet, og må ha en liste med punkt som første input.

RegLin[<Liste>]

Bruker regresjon med en rett linje.

RegEksp[<Liste>]

Bruker regresjon med en eksponentialfunksjon.

RegPoly[<Liste>, <Grad>]

Bruker regresjon med et polynom av gitt grad.

RegPot[<Liste>]

Bruker regresjon med en potensfunksjon.

RegSin[<Liste>]

Bruker regresjon med en sinusfunksjon.