SE375 2021-2022 SUMMER

Laboratory Assignments #1 and #2.

1 August 2022

Goal: Non-threaded and Threaded Super Store Program

Super Store

Assume that you have a store of products to sell. This store has three kinds of products that are sold either in-store or online. An example sales data of the store for one month is given below:

January	SALES		
Products	In-store (Kg)	Online (kg)	Unit Price (TL)
A	20	35	15
В	15	42	20
С	18	38	25

You can find the dataset along with this document on Blackboard. The dataset consists of 12 .csv files, each corresponding to a month's worth of sales. Read each one and store the contents separately. The official of the store wants to know certain information about the sales of these products:

- (1) The total in-store sales for a month,
- (2) The total online sales for a month,
- (3) The total in-store sales for a year,
- (4) The total online sales for a year
- (5) The total sale amount for the full year (3 + 4)
- (6) The total yearly sale for a particular products.

Example Monthly calculations:

January	SALES		
Products	In-store	Online	
A	20 * 15 = 300	35 * 15 = 525	
В	15 * 20 = 300	42 * 20 = 840	
С	18 * 25 = 450	38 * 25 = 950	
Total	1050	2315	

Yearly Calculations:

$$\underline{Jan} \quad \underline{Feb} \quad \underline{Mar} \quad \underline{Apr} \quad \dots \dots \quad \underline{Dec} \quad \underline{Total \ Year}$$

$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} s_3 \\ s_4 \end{bmatrix} + \begin{bmatrix} s_5 \\ s_6 \end{bmatrix} + \begin{bmatrix} s_7 \\ s_8 \end{bmatrix} + \dots + \begin{bmatrix} s_{23} \\ s_{24} \end{bmatrix} = \begin{bmatrix} s_{ins_total} \\ s_{onl\ total} \end{bmatrix}$$

Where s1 and s2 are total in-store and online sales for the month of January.

Part 1 Read and Process Files.

You will have three primary data structures:

	Data Structure	Description
1	<pre>HashMap<string, arraylist<integer="">></string,></pre>	This will contain monthly data read from the file which includes Product Name, Price, In-store and Online sales
2	HashMap <string, ArrayList<integer>></integer></string, 	This will store monthly In-store and Online sale total for each product.
3	HashMap <string, arraylist<integer="">> This will store yearly In-store and Online sale total for each product</string,>	

Implement these methods:

```
---- readFiles -----
```

HashMap<String, ArrayList<Integer>> readFiles(String month);

readFiles accepts a month name and returns a HashMap in the following format: <Product Name, (Price, In-Store Sales Quantity, Online Sales Quantity)>

Example:

```
<A, (15,20,35)>, <B, (20, 15, 42)>, ...
```

----calculateMonthlySales -----

HashMap<String, ArrayList<Integer>>

calculateMonthlySales(HashMap<String, ArrayList<Integer>> sales)

 $\hbox{\it calculateMonthlySales} \ \ accepts \ sales \ data \ read \ from \ the \ file \ and \ calculates \ the \ monthly \ Instore \ and \ Online \ sales \ amount \ (TL) \ for \ a \ product.$

<Product Name, (In-Store Month, Online Month)>

Example:

```
<A, (300,525)>, <B, (300, 840)>, ...
```

---- calculateYearlySales -----

void calculateYearlySales(HashMap<String, ArrayList<Integer>> monthlySales)

calculateYearlySales accepts monthly sale totals for each product and stores the yearly results in the 3rd data structure given above.

<Product Name, (In-Store Year Total, Online Year Total)>

Part 2 Add User Interaction

Add user interaction to your program. Your program will ask a particular product name and display data for that product.

Sample Run

```
C:\java ThreadedSuperStore

Thread processing 02-February.csv...
Thread processing 03-March.csv...
Thread processing 01-January.csv...

Threads are complete.

Which product do you want to search?

B

For the product B,
In-store sales: 23435₺
Online sales: 32235₺
Total sales: 55670₺
```

If the use enters "X" it will display the sum of in-store and online sales for all products.

Part 3 Add Threads

In this task, you will make your program multi-threaded.

- 1) Create 12 threads to process each month.
- 2) Pass the file name as a parameter to the thread. Each thread reads the file and calculates monthly sales data.
- 3) Each thread then aggregates their results in the yearly sales data structure.
- 4) Compare your results with the version that does not use threads.

