

ISYS90086 Data Warehousing

Summer Semester 2019

Assignment 1-Data Warehouse Design

Dinghao Yong 868878

Min Xue 897082

Content

Executive Summary	3
Introduction to data warehousing	4
Concept	4
Necessity	4
Benefits	4
Design of the data warehouse	6
Business Case Introduction and Analysis	6
Overall Design	7
Grain of fact tables and the other details	7
Dimensions and the details of dimension tables	8
Address business problems	10
Who are the key customers?	10
Which products are the most profitable?	10
Which store location is the most profitable?	11
Which time periods are the most profitable?	12
Who are the key employees?	12
Appendix 1-Data Dictionary	14
Appendix 2-SQL	18
Appendix 3-Work Breakdown	21
References	22

1. Executive Summary

Fantastic Fireworks is a firework selling company established in 1991 by Nancy Lightening with four stores in the capital city in Australia. With the continuous expansion of business and rapid growth of revenue, the owner tends to optimize the business further more in terms of opening times of stores, location of products and sites selection of new stores. The data warehouse which was used widely for the last few decades had been proved effectively and efficiently in accessing data and producing business analysis. The reasonable choice of architecture and modelling make contributions for the enduser to query in the data warehouse so as to support reporting and decision making. This document provides details in why and how to build a data warehouse for the owner of the company. A star schema is chosen as the design for the data warehouse which is implemented by using MYSQL. The data warehouse is created based on two existing information systems consisted of the inventory system and sales system and will be considered respectively.

The central purpose of this document is to introduce the importance and feasibility of establishing the data warehouse for the Fireworks, which will be realized through following parts. Firstly, some related information around the data warehouse will be explained from several perspectives, including the general concept, the necessity and benefits for using data warehouse. The following part is about the design of the data warehouse; moreover, different aspects of the dimensional modelling are demonstrated in detail. The next part is about how to use the data warehouse to address some specific problems about which the owner is concerned. The processes of querying the data warehouse to retrieve data are presented; besides, they are easily understood and can be implemented by the user. The last part is comprised of several appendixes, involving the data dictionary, the SQL statements and the work breakdown.

2. Introduction to data warehousing

This section provides details about the purpose, audience, limitations and the evolution of document.

Definition

A data warehouse is not a product or a data model which simply copy the transactional data for operations, but a single repository where stores a collection of data from multiple sources, whether they are historical or current, and to support users for better decision making. As stated by Inmon in 1992, it carries characteristics as subject-oriented, integrated, consistent, timevariant and non-volatile. [1]

The data warehouse is a database but it is more an information database than an operational database. It focuses more on producing strategic information and supporting decisional process rather than handling day to day operations. The process of handling data in the data warehouse involves a couple of functions like data extraction, transformation, storage, loading and delivery. Hence, a combination of multiple technologies is required to support those functions which includes data modelling, data acquisition, data analysis and etc. [2]

Necessity

As the expansion of corporations and accumulation of data stored in recent years, it becomes much more important for the business executives to use data available from various sources to make strategic decisions so as to improve the competitiveness of the company. The existing operational system is designed for processing daily routines which involves amounts of write operations for putting data into the database. However, we care more about extracting strategic information out of the database which is just the opposite of what the operational system meant to do. Far more than recording an order or processing a claim, managers focus more on key factors which influence the enterprise competitiveness. Information relates to customers' preferences, sales performance and quality of service is essential for making business decisions which can be integrated together as strategic information. The urgent need for those strategic data motivates the development of the data warehouse and the establishment of the data warehouse helps executives to make reasonable decisions, set business goals and control results.

The data warehouse provides integrated data which is associated with business process and can be easily accessed and queried by user without IT background. The flexibility and interactivity make the data warehouse even more attractive and compelling.

Benefits

One of the most significant benefits of the data warehouse is the integration of historical data which is composed of both past and current data. Different types of business events are measured as diverse facts which then described by multiple dimensions. One or more hierarchies are embedded in dimension tables which form the foundation of multidimensional analysis; that is to say, the data can be played through drilling down, rolling up, slicing or dicing to analyse business processes from many perspectives. [3]

Another obvious advantage is the flexibility and accessibility for users to query the database and get requested data. The structure of the star schema simplifies the complexity of the data warehouse to a large extent by minimizing the quantity of tables which means the reduction of

joins operations. Hence, even users without background in IT field can easily query the database and get the data for analysis. Furthermore, using star schema for organizing data ensures the effectiveness of managing and controlling data and makes it easily to understand and retrieve.

In a word, the adaption of data warehouse contributes to the analysis of the past, the assessment of current status and the forecast for the future development.

3. Design of the data warehouse

In this section, we will discuss the design of the date warehouse. A datagram is provided to show the overall structure of the design. Details of the fact tables and dimension tables are also introduced and justified.

Business Case Introduction and Analysis

In this case, the business owner wants to expand her business of Fantastic Fireworks, which already has four stores in different cities. The main process of the business is purchasing fireworks from supplier and selling them to customers. Two information systems have already been built to manage the business, including a sales system and an inventory system.

The business owner is thinking about having more stores, expanding floor area, adjusting opening time and finding out the key products in her stores. In order to expand her business in a suitable way, she wants to find valuable information from the recordings in the past years to support the decisions she will make.

For this purpose, a data warehouse is needed. The data warehouse should be able to provide the business owner the information she wants, including useful information about customers, products, employees, time periods and stores. Also, all the data required in the data warehouse should be able to be acquired from the two existing information systems.

Overall Design

The design can be divided into two parts, a <code>Sales_margin</code> transaction model and an <code>Sales_commission</code> transaction model. The <code>Sales_margin</code> transaction model includes the fact table <code>Sales_margin</code> and the <code>Sales_commission</code> transaction model includes the fact table <code>Sales_commission</code>. Generally, a row in the table <code>Sales_margin</code> is a record of selling products to a customer and a row in the table <code>Sales_commission</code> is a record of the commission for an employee in one sale. Data in the fact table <code>Sales_margin</code> have four dimensions, which are corresponding to five dimensions <code>tables</code>, <code>Date</code>, <code>Customer</code>, <code>Product</code> and <code>Store</code>. As for data in the <code>Sales_commission</code>, they have two dimensions, <code>Date</code> and <code>Employee</code>.

Grain of fact tables and the other details

A row in the fact table <code>Sales_margin</code> represents one sale of one product to a customer. To be specific, it represents that one particular customer buys some amounts of one particular product in a particular store in a particular day. Besides the four dimensions, the quantity of the products in the sale (<code>unit_sales</code>), the total sales amount (<code>dollar_sales</code>), and the total profit (<code>margin</code>) are included in this fact table. <code>Margin</code> equals to the difference between total sales amount and the total cost. Indexes are added on the four foreign keys to help with data retrieving.

A row in the table *Sales_commission* represents one sale which causes one commission. To be specific, it represents that one employee brings some amount dollar sales to the shop in

one particular day. Besides the two dimensions, *Date* and *Employee*, the unit sales (*unit_sales*), the total sales amount (*dollar_sales*) and the commission earned by the employee (*commission*) are included in this fact table. *Commission* equals to *dollar_sales* multiplies commission rate of the corresponding employee. Indexes are added on the two foreign keys to help with data retrieving.

Dimensions and the details of dimension tables

The Sales_margin part and the Sales_commission part of this design share one dimension, Date. Besides date, the Sales_margin facts have other three dimensions, customer, product and store, and the Sales commission facts have another dimension, employee.

The *Customer* dimension is one of the dimensions of *Sales_margin* facts. In the dimension table, basic information of the customers is recorded including their names, addresses and IDs in existing sales system. As required, we should be able to aggregate customer reports into age groups – 30 years and under, 31-50, and over 50. In this case, birthdays are needed to calculate their age group. Also, postcodes and suburbs are needed as it is important to know the suburb in which they lived at the time of a sale. Customers may move houses and change the addresses, so we should add a surrogate key to show the changes and a *validUntilDate* to record when the address in this row becomes invalid. Every time a customer changes his address, there will be one new row in this table. In order to retrieving data, indexes are added in three columns, including *customer_id*, birthday, postcode and suburb.

The *Product* dimension is one of the dimensions of *Sales_margin* facts. In this dimension table, basic information of the products is recorded, including their IDs in existing systems, the advised price, the description and the first valid date of the price. As required, cost of one product is the cost of this product on the most recent purchasing from the supplier. In this case, the cost of one product may be changed, so a surrogate key is added to manage the changes and two date, *ValidFromDate* and *ValidUntilDate*, are added to record when the cost price becomes valid or invalid. Every time the cost of one product is changed, there will be one new row in this table. In order to retrieving data, indexes are added in the column *product id*.

The *Employee* dimension is one of the dimensions of *Sales_commission* facts. As the business owner requires, she wants to know the performance of each employee. For each sale, we should record who sells the product to the customer. This dimension can help with deciding who are the key employees. In this dimension table, first name and last name of the employees are recorded. The commission rates of employees are also included. Although the commission rate of an employee may be changed, the system will edit the row and modify the rate in that row. If an employee leaves the store, the row corresponding to him/her will be deleted.

The *Date* dimension is one dimension of both the fact tables. As the business owner requires, she wants to analyse the business in various time periods. This dimension table decides which time periods one particular date belongs to. For a particular date, we need to know it is in

which day of a week, which month, which quarter, which season and which year. Indexes are added in the column month to help with the data retrieving.

The *Store* dimension is a dimension of *Sales_margin* fact table. As the business owner requires, she wants to analyse the performance of each store. For a particular store, we need to know its address, opening time and closing time. We also need to record whether it opens on Sunday as only one of the existing stores opens on Sunday.

4. Address business problems

In this section, solutions to five key business problems are discussed. For each problem, we will identify the data that need to be retrieved, the main process of the solution, explanation of each steps and the final table that will be presented.

Who are the key customers?

Table Name	Retrieved Data
Sales_margin	Customer_CustomerID, Date_DateID, Unit_Sales, Dollar_Sales,
	Margin
Customer CustomerID, Birthday, Postcode	
Date DateID, Year, Month, Quarter	

Table 4.1 Retrieved Data for deciding key customers

The process to present the key customers:

1. Decide the time period for analysing and select the dates

Select the rows in the table Date according to the time period the business leader would like to choose. For example, when using the first quarter of 2018, select the rows in the table *Date*, in which '*Quarter*' is 'Q1' and '*Year*' is '2018'.

2. Select the sales data in that time period

According to the result of the step1, select the rows from the Table *Sales_margin*, in which *Date DateID* are from the result of step1.

3. Group sales data and calculate the required information for each customer in various time periods

Group the sales data by customers. When grouping, for each customer in the result of step2, calculate the total dollar sales in that time period by summing up *Dollar_sales*, calculate the margin by summing up *margin* and calculate the unit sales by summing up *Unit sales*. Then we get a customer performance table.

4. Sort the customer performance table

Sort the result table of Step3 by one of the three numbers, total unit sales, total dollar sales or total margin, in descending order. The top customers in the result table of this step are the key customers.

5. Find out where key customers live and which age groups they are in

Join the customer table to the result of step4. Add a new column *Age_group* for each customer and decide their age groups according to the date of their birth. Group the customers by the suburb or their age group and find out which suburbs or which age groups have more key customers.

The final presented table:

CustomerID	Unit Sales	Dollar Sales	Total Margin	Suburb	Age_group

Which products are the most profitable?

Table Name	Retrieved Data
Sales_margin	Product_ProductID, Date_DateID, Unit_sales, Dollar_sales, margin

Date	DateID, Year, Month, Season
Product	ProductID, Description

Table 4.2 Retrieved Data for deciding key products

The process to present the key customers:

1. Decide the time period of the data for analysing the key products

Select the rows in the table Date according to the time period the business leader would like to choose. For example, when using the spring of 2018, select the rows in the table *Date*, in which 'Season' is 'Spring' and 'Year' is '2018'.

2. Select the sales data in that time period

According to the result of the step1, select the rows from the Table *Sales_margin*, in which *Date DateID* are from the result of step1.

3. Group sales data and calculate the required information for each product

Group the sales data by products. When grouping, for each product in the result of step2, calculate the total dollar sales, the total margin and the total unit sales by summing up the

4. Sort the product performance table

Sort the result table of Step3 by one of the three numbers, unit sales, total dollar sales or total margin, in descending order. The top products in the result of this step are the key product.

The final presented table:

ProductID	Unit Sales	Dollar Sales	Margin

Which store location is the most profitable?

Table Name	Retrieved Data		
Sales_margin	Store_StoreID, Date_DateID, Unit_sales, Dollar_sales, margin		
Date	DateID, Year, Month		
Store	StoreID, StoreName		

Table 4.3 Retrieved Data for deciding the most profitable store

The process to present the key customers:

1. Decide the time period of the data for analysing the key products

Select the rows in the table Date according to the time period the business leader would like to choose. For example, when using the first month of 2018, select the rows in the table **Date**, in which 'month' is 'Jan' and 'Year' is '2018'.

2. Select the sales data in that time period

According to the result of the step1, select the rows from the Table *Sales_margin*, in which *Date DateID* are from the result of step1.

3. Group sales data and calculate the required information in each store

Group the sales data by stores. When grouping, for each store in the result of step2, calculate the total dollar sales, total margin and the total unit sales by summing up the data.

4. Sort the store performance table

Sort the result table of Step3 by one of the three numbers, unit sales, total dollar sales or total margin, in descending order. The first store in the result of the sorting is the most profitable store.

The final presented table:

StoreID	Unit Sales	Dollar Sales	Margin

Which time periods are the most profitable?

Table Name	Retrieved Data
Sales_margin	StoreID, DateID, Unit_sales, Dollar_sales, margin
Date DateID, Year, Month, DayofWeek	

Table 4.4 Retrieved Data for deciding the most profitable time periods

The process to present the key customers:

1. Join the table Date into the table Sales margin

Join the table *Date* into the table *Sales*, with the date type 'Month', 'Year' and 'DayOfWeek'. Then group all the sales data by the chosen time period. For example, if the business leader wants to compare different months, group the table *Sales_margin* by 'Month'

2. Group all the sales data by time period and calculate the required information in each time period

Group all the sales data by the chosen time period. For example, if the business leader wants to compare different months, group the sales table by 'Month'. When grouping, for each time period (for example, Jan, Feb, ...Dec), calculate the total dollar sales, total margin and the total quantity by summing up the data. Calculate the unit sales, which equals to the total quantity divides the total sales.

3. Sort the time period performance table

Sort the result table of Step2 by one of the three numbers, unit sales, total dollar sales or total margin in descending order. The top time periods in the result of the sorting is the most profitable time period.

The final presented table:

Month/Year/DayofWeek	Unit Sales	Total Sales	Total Margin

Who are the Key employees?

Table Name	Retrieved Data
Sales_employee	Employee_EmployeeID, Date_DateID, Unit_sales, Dollar_sales,
	Commission
Date DateID, Year, Month, Quarter	
Employee EmployeeID, LastName, FirstName	

Table 4.5 Retrieved Data for deciding key products

The process to present the key employees:

1. Decide the time period of the data for analysing the key employees

Select the rows in the table Date according to the time period the business leader would like to choose. For example, when using the first quarter of 2018, select the rows in the table *Date*, in which 'Quarter' is 'Q1' and 'Year' is '2018'.

2. Select the sales data in that time period

According to the result of the step1, select the rows from the Table Sales_employee, in which Date are from the result of step1.

3. Group selected sales data and calculate the required information for every employee Group the selected sales data by employees. When grouping, for each employee in the result of step2, calculate the total dollar sales by summing up *Dollar_sales*, calculate the margin by summing up *Margin* and calculate the total unit sales by summing up *Unit sales*.

4. Sort the employee performance table

Sort the result table of Step3 by one of the three numbers, unit sales, dollar sales, margin or total commission, in descending order. The top employees in the result of this step are the key product.

The final presented table:

The thin presented were.					
EmployeeID	Unit Sales	Total Sales	Total Margin	Total	
				Commission	

Words count:3258

Appendix 1- Data Dictionary

Sales_margin Fact Table

Attribute	Description	Source
SalesID	Unique identifier of an order	A surrogate key generated by the data warehouse load process
Customer_CustomerID	The identifier of each customer consisted of digits and characters	The CustomerID attribute of Customer table stored in the sales system
Store_StoreID	Unique identifier of a store	The StoreID attribute of Store table stored in the sales system
Date_DateID	Unique identifier of a date which is described differently as daily, monthly, seasonally, quarterly and yearly	A surrogate key generated by the data warehouse load process
Product_ProductID	The identifier of each product consisted of digits, characters and symbols	The ProductID attribute of Product Price List table stored in the sales system
Dollar_Sales	The total price of each kind of product for each sale	Generated by the product of Quantity and unit price values stored in the Sales Item table
Unit_Sales	The total amount of each kind of product for each sale	The Quantity attribute of Sales Item table stored in the sales system
Margin	The profit for selling each type of product for each sale	The differences between the Dollar_Sales values and Cost values
fk_Sale_Customer_idx	The index on the foreign key Customer_CustomerID	System generated index
fk_Sale_Store_idx	The index on the foreign key Store StoreID	System generated index
k_Sale_Date1_idx	The index on the foreign key Date_DateID	System generated index
fk_Sale_Product1_idx	The index on the foreign key Product_ProductID	System generated index

Customer Dimension Table

Attribute	Description	Source
Customer_rid	The numeric identifier of each customer which is unique	A surrogate key generated by the data warehouse load process
CustmoerID	The identifier of each customer consisted of digits and characters	The CustomerID attribute of Customer table stored in the sales system
FirstName	The first name of each customer	The Name attribute of Customer table stored in the

		sales system which is transformed into the first name of each customer
LastName	The last name of each customer	The Name attribute of Customer table stored in the sales system which is transformed into the last name of each customer
Birthday	The birthday of each customer which is presented as date and used for customer grouping based on age	The Date of Birth attribute of Customer table stored in the sales system
Address	The address of each customer	Extracted from the system which stores the customers' personal information
Postcosde	The postcode of every customer's living address	The Postcode attribute of Customer table stored in the sales system
Suburb	The suburb in which each customer lives	Extracted from the system which stores the customers' personal information
ValidUntilDate	The period of validity of each customer's data	The Valid until date attribute of Customer table stored in the sales system
Customer_idx	The index on the key CustomerID	System generated index
Suburb_idx	The index on the key Suburb	System generated index
Birthday_idx	The index on the key Birthday	System generated index
Postcode_idx	The index on the key Postcode	System generated index

Date Dimension Table

Attribute	Description	Source
DateID	Unique identifier of a date which is described differently as daily, monthly, seasonally, quarterly and yearly	A surrogate key generated by the data warehouse load process
DayofWeek	The weekday of each sale	Aggregated based on the analysis needs
Month	The current month of each sale	Aggregated based on the analysis needs
Season	The current season of each sale	Aggregated based on the analysis needs
Quarter	The current quarter of each sale	Aggregated based on the analysis needs
HalfYear	Whether the sale belongs to the first half of the year or the latter half of the year	Aggregated based on the analysis needs
Year	The current year of each sale	Aggregated based on the analysis needs

Product Dimension Table

Attribute	Description	Source
Product_rid	The numeric identifier of each product which is unique	A surrogate key generated by the data warehouse load process
ProductID	The identifier of each product consisted of digits, characters and symbols	The PartNumber attribute of Product table stored in the inventory system
Name	The name of each kind of product	Extracted from the system which stores the products' information
Description	The description of each product, involving the appearance, size, colour and etc	The Description attribute of Product table stored in the inventory system
Advised_Price	The selling price of each product	The Price attribute of Product table stored in the inventory system
Cost	The cost of each product which may change over time	The Cost per item attribute of Product Order table stored in the inventory system
ValidFromDate	The valid-from date of each product's data	The ValidFrom attribute of Product table stored in the inventory system
ValidUntilDate	The period of validity of each product's data	Added when the data of the product is updated
Supplier	The name of the supplier of the product	Extracted from the system which stores suppliers' relevant information
PRIMARY	The index on the primary key Product_rid	System generated index

Store Dimension Table

Attribute	Description	Source
StoreID	Unique identifier of each store	The StoreID attribute of Store table stored in the sales system
StoreName	The name of each store	Extracted from the system which stores the customers' personal information
Address	The address of each store	The Address attribute of Store table stored in the sales system which is transformed without the postcode

Postcode	The postcode of each store's address	The data extracted from the Address attribute of Store table in the sales system
OpeningTime	The opening time of each store	Extracted from the system which records stores' relevant information
ClosingTime	The clsoing time of each store	Extracted from the system which records stores' relevant information
AvaOnSun	Whether the store is opened on Sunday or not	Extracted from the system which records stores' relevant information

Employee Dimension Table

Attribute	Description	Source
EmployeeID	Unique identifier of each employee	The ID attribute of Sales Person table stored in the sales system
FirstName	The first name of each employee	The Name attribute of Sales Person table stored in the sales system which is transformed into the first name of each employee
LastName	The last name of each employee	The Name attribute of Sales Person table stored in the sales system which is transformed into the last name of each employee
CommissionRate	The commission rate of each sales person for each sale	The Commission rate attribute of Sales Person table stored in the sales system

Sales_commission Fact Table

Attribute	Description	Source
SalesID	Unique identifier of an inventory	A surrogate key generated by the data warehouse load process
Employee_EmployeeID	Unique identifier of an employee	The ID attribute of Sales Person table stored in the sales system
Date_DateID	Unique identifier of a date	A surrogate key generated by the data warehouse load process
Dollar_Sales	The total price of each kind of product for each sale	Generated by the product of Quantity and Unit Price values stored in the Sales Item table

Unit_Sales	The total amount of each kind of product for each sale	The Quantity attribute of Sales Item table stored in the sales system
Commission	The amount of commission that an employee earns for different time periods	Generated by the product of Dollar sales and commission values of the employee stored in the Sales Item table
fk_Sale_Employee1_idx	The index on the foreign key EmployeeID	System generated index
fk_Sales_withEmployee_Date1_idx	The index on the foreign key DateID	System generated index

Appendix 2- SQL

```
1. CREATE TABLE IF NOT EXISTS 'mydb'. 'Sales margin' (
```

PRIMARY KEY ('SalesID'),

CONSTRAINT 'fk Sale Customer0'

FOREIGN KEY ('Customer CustomerID')

REFERENCES 'mydb'.'Customer' ('CustomerID')

ON DELETE NO ACTION

ON UPDATE NO ACTION,

CONSTRAINT 'fk Sale Location10'

FOREIGN KEY ('Store_StoreID')

REFERENCES 'mydb'.'Store' ('StoreID')

ON DELETE NO ACTION

ON UPDATE NO ACTION,

CONSTRAINT 'fk Sale Date10'

FOREIGN KEY ('Date DateID')

REFERENCES 'mydb'.'Date' ('DateID')

ON DELETE NO ACTION

ON UPDATE NO ACTION,

CONSTRAINT 'fk Sale Product10'

FOREIGN KEY ('Product ProductID')

REFERENCES 'mydb'. 'Product' ('ProductID')

ON DELETE NO ACTION

^{&#}x27;SalesID' INT NOT NULL,

^{&#}x27;Customer Customer ID' INT NOT NULL,

^{&#}x27;Store StoreID' INT NOT NULL,

^{&#}x27;Date DateID' INT NOT NULL,

^{&#}x27;Product ProductID' INT NOT NULL,

^{&#}x27;Dollar_Sales' DECIMAL(9,2) NOT NULL,

^{&#}x27;Unit sales' INT NOT NULL,

^{&#}x27;Margin' DECIMAL(9,2) NOT NULL,

ON UPDATE NO ACTION)

CREATE INDEX `fk_Sale_Customer_idx` USING BTREE ON `mydb`.`Sales_margin` (`Customer_CustomerID` ASC);

CREATE INDEX `fk_Sale_Store_idx` USING BTREE ON `mydb`.`Sales_margin` (`Store_StoreID` ASC);

CREATE INDEX `fk_Sale_Date1_idx` USING BTREE ON `mydb`.`Sales_margin` (`Date_DateID` ASC);

CREATE INDEX `fk_Sale_Product1_idx` USING BTREE ON `mydb`.`Sales_margin` (`Product_ProductID` ASC);

2. CREATE TABLE IF NOT EXISTS 'mydb'. 'Customer' (

'Customer rid' INT NOT NULL AUTO INCREMENT,

'CustomerID' VARCHAR(20) NOT NULL,

'FirstName' VARCHAR(45) NOT NULL,

'LastName' VARCHAR(45) NOT NULL,

'Birthday' DATE NOT NULL,

'Postcode' CHAR(4) NOT NULL,

'Address' VARCHAR(200) NULL,

'Suburb' VARCHAR(45) NULL,

'ValidUntilDate' DATE NULL,

PRIMARY KEY ('Customer rid'))

CREATE INDEX 'Customer_idx' USING BTREE ON 'mydb'.'Customer' ('CustomerID' ASC);

CREATE INDEX 'Suburb_idx' USING BTREE ON 'mydb'.'Customer' ('Suburb' ASC);

CREATE INDEX 'Birthday_idx' USING BTREE ON 'mydb'.'Customer' ('Birthday' ASC);

CREATE INDEX 'Postcode idx' ON 'mydb'. 'Customer' ('Postcode' ASC);

3. CREATE TABLE IF NOT EXISTS 'mydb'. 'Date' (

'DateID' INT NOT NULL,

'DayofWeek' ENUM('Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun') NOT NULL,

'Month' ENUM('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec') NOT NULL,

'Season' ENUM('Spring', 'Summer', 'Fall', 'Winter') NOT NULL,

'Quarter' ENUM('Q1', 'Q2', 'Q3', 'Q4') NOT NULL,

'HalfYear' CHAR(2) NOT NULL,

```
'Year' CHAR(4) NOT NULL, PRIMARY KEY ('DateID'))
```

CREATE INDEX 'Month idx' USING BTREE ON 'mydb'. 'Date' ('Month' ASC);

4. CREATE TABLE IF NOT EXISTS 'mydb'. 'Product' (

'Product_rid' INT NOT NULL AUTO_INCREMENT,

'ProductID' VARCHAR(45) NOT NULL,

'Name' VARCHAR(45) NULL,

'Description' VARCHAR(100) NULL,

'Advised Price' DECIMAL(7,2) NOT NULL,

'Cost' DECIMAL(7,2) NOT NULL,

'VaildFromDate' DATE NOT NULL,

'ValidUntilDate' DATE NULL,

'Supplier' VARCHAR(45) NOT NULL,

PRIMARY KEY ('Product rid'))

CREATE INDEX 'Product_idx' USING BTREE ON 'mydb'.'Product' ('ProductID' ASC);

5. CREATE TABLE IF NOT EXISTS 'mydb'. 'Store' (

'StoreID' INT NOT NULL,

'StoreName' VARCHAR(45) NOT NULL,

'Address' VARCHAR(200) NOT NULL,

'Postcode' CHAR(4) NOT NULL,

'OpeningTime' TIME(12) NOT NULL,

'ClosingTime' TIME(12) NOT NULL,

'AvaOnSun' ENUM('Y', 'N') NOT NULL,

PRIMARY KEY ('StoreID'))

6. CREATE TABLE IF NOT EXISTS 'mydb'. 'Sales commission' (

'SalesID' INT NOT NULL,

'Employee EmployeeID' VARCHAR(10) NOT NULL,

'Date DateID' INT NOT NULL,

'Dollar_Sales' DECIMAL(9,2) NOT NULL,

'Unit Sales' INT NOT NULL,

'Commission' DECIMAL(9,2) NOT NULL,

PRIMARY KEY ('SalesID'),

CONSTRAINT 'fk Sale Employee1'

FOREIGN KEY ('Employee_EmployeeID')

REFERENCES 'mydb'. 'Employee' ('EmployeeID')

ON DELETE NO ACTION

ON UPDATE NO ACTION,

CONSTRAINT 'fk Sales with Employee Date1'

```
FOREIGN KEY ('Date_DateID')
REFERENCES 'mydb'.'Date' ('DateID')
ON DELETE NO ACTION
ON UPDATE NO ACTION)

CREATE INDEX 'fk_Sale_Employee1_idx' USING BTREE ON 'mydb'.'Sales_commission' ('Employee_EmployeeID' ASC);

CREATE INDEX 'fk Sales withEmployee Date1 idx' ON
```

7. CREATE TABLE IF NOT EXISTS 'mydb'. 'Employee' (
'EmployeeID' VARCHAR(10) NOT NULL,
'FirstName' VARCHAR(45) NOT NULL,
'LastName' VARCHAR(45) NOT NULL,
'CommisionRate' DECIMAL(4,2) NOT NULL,
PRIMARY KEY ('EmployeeID'))

'mydb'.'Sales commission' ('Date DateID' ASC);

Appendix 3- Work Breakdown

Both members participate in the design of the data warehouse and the accomplishment of the report.

To be more specific, Dinghao Yong (868878) completes following parts:

- 1. Design of the data warehouse and Draw the model on the workbench;
- 2. Implement the data warehouse to address business problems;
- 3. Complete the report in terms of the design and problem-solving parts.

Min Xue (897082) finishes tasks below:

- 1. Design of the data warehouse and Draw the model on the workbench;
- 2. Discuss about the implementation of the data warehouse;
- 3. Complete the report in terms of executive summary, introduction of the data warehousing and appendixes.

References

- [1] Golfarelli and Rizzi, "Data Warehouse Design: Modern Principles and Methodologies," *Amazon*. [Online]. Available: https://www.amazon.com/Data-Warehouse-Design-Principles-Methodologies/dp/0071610391. [Accessed: 11-Jan-2019].
- [2] P. Ponniah, *Data warehousing fundamentals: a comprehensive guide for IT professionals*. San Franciso, CA: Wiley, 2011.
- [3] D. L. Moody and M. A. R. Kortink, "From ER Models to Dimensional Models: Bridging the Gap between OLTP and OLAP Design, Part I," *From ER Models to Dimensional Models: Bridging the Gap between OLTP and OLAP Design, Part I*, 2003.