學號:B03902016 系級: 資工四 姓名: 周聖筌

1. (1%)請比較有無normalize(rating)的差別。並說明如何normalize.

normalize方法:(x - mean(x)) / std(x)

latent dimension: 256維

以kaggle上的public score來比較

沒有normalize: 0.85886 有做normalize: 0.86609

做normalize並沒有變好,反而變差了。

2. (1%)比較不同的latent dimension的結果。

以我自己切的validation rmse來比較結果(切法:取資料時先shuffle,再將後10%當作validation set)

Latent dimension	Validation rmse
128	0.8577
256	0.8562
512	0.8609
1024	0.8653

由此可以得知太大或太小的latent dimenstion都會造成結果變差,經過嘗試後,256應該是最佳的結果。

3. (1%)比較有無bias的結果。

以我自己切的validation rmse來比較結果(切法和上述相同),且所有的 model都是256 latent dimention。

	Validation rmse
同時加movie和user的bias	0.8562
只加movie的bias	0.8578
只加user的bias	0.8572
沒加bias	0.8605

發現同時加movie和user的bias結果會最好,因為每個user會有自己的評分習慣,而好的電影會被大家評的比較高分。

4. (1%)請試著用DNN來解決這個問題,並且說明實做的方法(方法不限)。 並比較MF和NN的結果,討論結果的差異。

DNN的model summary

Bitti gillodel ballillary				
Layer (type)	Output	Shape	Param #	Connected to
input_1 (InputLayer)	(None,	1)	0	
input_2 (InputLayer)	(None,	1)	0	
embedding_1 (Embedding)	(None,	1, 500)	3020500	input_1[0][0]
embedding_2 (Embedding)	(None,	1, 500)	1976500	input_2[0][0]
flatten_1 (Flatten)	(None,	500)	0	embedding_1[0][0]
flatten_2 (Flatten)	(None,	500)	0	embedding_2[0][0]
dropout_1 (Dropout)	(None,	500)		flatten_1[0][0]
dropout_2 (Dropout)	(None,	500)	0	flatten_2[0][0]
concatenate_1 (Concatenate)	(None,	1000)	0	dropout_1[0][0] dropout_2[0][0]
dense_1 (Dense)	(None,	128)	128128	concatenate_1[0][0]
dropout_3 (Dropout)	(None,	128)	0	dense_1[0][0]
batch_normalization_1 (BatchNor	(None,	128)	512	dropout_3[0][0]
dense_2 (Dense)	(None,	256)	33024	batch_normalization_1[0][0]
dropout_4 (Dropout)	(None,	256)	0	dense_2[0][0]
batch_normalization_2 (BatchNor	(None,	256)	1024	dropout_4[0][0]
dense_3 (Dense)	(None,	512)	131584	batch_normalization_2[0][0]
dropout_5 (Dropout)	(None,	512)	0	dense_3[0][0]
batch_normalization_3 (BatchNor	(None,	512)	2048	dropout_5[0][0]
dense_4 (Dense)	(None,	1)	513	batch_normalization_3[0][0]
Total params: 5,293,833 Trainable params: 5,292,041 Non-trainable params: 1,792				

以kaggle上的public score來比較。

MF: 0.85886 NN: 0.87792

經過許多嘗試還是無法超越MF。

5. (1%)請試著將movie的embedding用tsne降維後,將movie category當作 label來作圖。

我的分類:

- 1: ["Thriller", "Horror", "Crime", "Mystery", "Film-Noir"]
- 2: ["Drama", "Musical", "Romance"]
- 3: ["Children's", "Animation", "Comedy"]
- 4 : ["War", "Action", "Sci-Fi", "Fantasy", "Adventure", "Documentary", "Western"]

結果:可以看到第2類和第4類分得比較好、比較集中,第1類和第3類就 比較分散。

6. (BONUS)(1%)試著使用除了rating以外的feature, 並說明你的作法和結果, 結果好壞不會影響評分。

我的作法是將user的embedding加上了年齡和性別資訊。

在讀測資時,多開兩個age和gender的陣列儲存對應的資料(gender男生給0女生給1)

在embedding時,age給一個4維embedding,gender給一個60維embedding,而原先的userid就是256 – 64 = 192維的embedding。

將上述三個embedding concate起來後和movie的embedding做dot,同時也還是會add user和 movie的 bias。

結果在public score進步到0.85649的成績。