From Constraints to Application Conditions Presentation

Robin Oppermann and Patrick Robrecht

06/02/2017

Fundamentals of Model-Driven Engineering
Jun.-Prof. Anthony Anjorin
Research Group Database and Information Systems
Department of Computer Science
Paderborn University

Introduction

Constraint Example: Each List J with a card X has a previous list K

Introduction

Rule Example: Moving Card C from List L to L^\prime

Introduction

Why do we want to construct application conditions from constraints?

- model transformation system containing sets of rules and constraints
- need to ensure: graph after rule application does not violate a constraint
- idea: construct application conditions to check this before rule application
- regeneration after changes in rules / constraints necessary
 ⇒ construction needs to be automatized

Contents

1 Introduction

2 Construction of Right Application Conditions from Constraints

3 Construction of Left from Right Application Conditions

4 Conclusion

Contents

Introduction

2 Construction of Right Application Conditions from Constraints

3 Construction of Left from Right Application Conditions

4 Conclusion

Construct possible epimorphic gluings S – Schema

Construct possible epimorphic gluings S – Example Step 1

Construct possible epimorphic gluings S – Example Step 2

Construction of Application Conditions from Constraints Construct pushout T – Schema

Construct pushout T – Example

Construct epimorphic gluings T_i – Schema

Construct epimorphic gluings T_i – Example

Contents

Introduction

2 Construction of Right Application Conditions from Constraints

3 Construction of Left from Right Application Conditions

4 Conclusion

What we have done so far: Right Application Conditions

Right Application Condition - Example

Left and Right Application Conditions

Right application condition

Rule is applicable if the right application condition holds in H (i. e. after rule application).

Left application condition

Rule is applicable if the left application condition holds in G (i. e. before rule application), so the application of the rule doesn't result in a graph violating one of the constraints.

From Right to Left Application Conditions – Schema

Construct pushout complement Z – Example

Construct pushout Y – Example

Construct pushout complements Z_i – Example

Construct pushout D_i – Example

Left Application Condition – Example

Rule Application allowed?

Rule Example: Moving Card C from List L to L^\prime

Contents

Introduction

2 Construction of Right Application Conditions from Constraints

3 Construction of Left from Right Application Conditions

4 Conclusion

Conclusion

Our implementation

- interesting topic, worth repeating with focus on current performance limitations on larger examples
- The construction of application conditions can be implemented with the code from the exercises
 - currently only implemented for constraint $c: P \to C$ (not multiple conclusions)

Problems during implementation

- difficult to output diagrams in PlantUML as labels are used to identify objects in the diagrams (but there exist multiple objects with the same label) - only limited help for debugging
- choose left or right and first or second in corners/spans? (missing documentation!)
- ⇒ code generation from category diagrams would be great!

Literature

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer: Fundamentals of Algebraic Graph Transformation.

Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2006.

Sections 7.2 and 7.3 (pp. 156-164)