实验 3: 数值计算实验

目 录

1	数值计	算实验	ĺ
	1.1	基础训练	ı
		综合训练	

1 数值计算实验

1.1 基础训练

1. 方程求根

编程调用 fzero 求解方程 $2x^3-3x^2+4x-5=0$,并将所求根赋给变量 xp,编写一个函数调用 fzero,并返回 xp。

解:

```
function xp=myfun
xp=fzero(@(x)2.*x.^3-3.*x.^2+4.*x-5,1);
end
```

运行结果:

>> myfun

ans =

1.3711

2. 求解二阶微分方程

$$\begin{cases} \frac{d^2x}{dt^2} = 20(1 - x^2)\frac{dx}{dt} + 0.5x\\ x(0) = 2; \quad x'(0) = 0 \end{cases}$$

编写函数调用 ode 工具箱函数返回 x 在点 0:0.1:5 处的函数值,用列向量存储这些函数值。此列向量为 double 型数组.

解:

```
function A=myfun
x0=[2;0];
tn=0:0.1:5;
[t,y]=ode45(@vdpol,tn,x0);
```

```
A=y(:,1)
   function dfun=vdpol(t,x)
      dfun=[x(2);20.*(1-x(1).^2).*x(2)+0.5.*x(1)];
   end
end
```

运行结果:

运行结果:	
ans =	
	2.0407
2. 0000	2.0423
2. 0014	2.0439
2. 0031	2.0455
2. 0047	2.0471
2.0064	2.0487
2. 0080	2. 0503
2.0097	2. 0519
2. 0113	2. 0535
2. 0130	2. 0551
2. 0146	2. 0567
2. 0163	2. 0583
2. 0179	2. 0599
2.0196	2. 0615
2. 0212	2.0631
2. 0228	2.0647
2. 0245	2.0662
2. 0261	2.0678
2. 0277	2.0694
2. 0294	2.0710
2. 0310	2.0726
2. 0326	2.0741
2. 0342	2.0757
2. 0359	2.0773
2. 0375	2.0788
2. 0391	2.0804

3. 二次多项式拟合

某种产品在生产过程中的性能指标 y 与它所含的某种材料的含量 x 有关,现将试验所得 16 组数据记录列于下表。

х	20.05	22.09	24. 13	26. 24	28. 11	30. 29	32. 09	34. 23
У	26.5	10.46	2. 75	3. 53	11. 67	29. 98	52. 26	87. 19
x	36. 23	38. 2	40. 27	42. 27	44. 07	46.05	48. 47	50.08
у	128. 11	176. 24	235. 17	300. 25	365.66	445.1	552.84	631

要求拟合y与x的函数关系。用多项式拟合函数 polyfit 进行二次多项式拟合。编写函

数文件返回2个参数:

第1个返回参数为二次多项式系数组成的行向量 p (元素由高次到低次排列); 第2个返回参数为拟合函数在点 x=25:0.4:60 处的函数值(用1个行向量表示)。 程序文件第1行参考格式如下:

function [p, v] = myfun

解:

function [p,v]=myfun

x=[20.05 22.09 24.13 26.24 28.11 30.29 32.09 34.23 36.23 38.2 40.2742.27 44.07 46.05 48.47 50.08];

y=[26.5 10.46 2.75 3.53 11.67 29.98 52.26 87.19 128.11 176.24 235.17 300.25 365.66 445.1 552.84 631];

p=polyfit(x,y,2);

v=polyval(p,25:0.4:60);

end

运行结果:

>> myfile_3

p =

1.00 -50.00 626.99

列 1 至 11

70 1 1											
	1. 99	2. 15	2. 63	3. 44	4. 56	6. 00	7. 76	9. 84	12. 24	14. 96	18. 00
列 12	至 22										
	21. 36	25. 04	29. 04	33. 36	38. 00	42. 96	48. 24	53. 84	59. 76	66. 00	72. 56
列 23	至 33										
	79. 44	86. 64	94. 16	102.00	110. 16	118. 64	127. 44	136. 56	146. 00	155. 76	165. 84
列 34	至 44										
	176. 24	186. 96	198.00	209. 36	221. 04	233. 04	245. 36	258. 00	270. 96	284. 24	297. 84
列 45	至 55										
	311. 76	326.00	340. 56	355. 44	370.64	386. 16	402.00	418. 16	434. 64	451. 44	468. 56
列 56 至 66											
48	6. 00	503. 76	521. 84	540. 24	558. 96	578. 00	597. 36	617.04	637. 04	657. 36	678. 00
列 67 至 77											
69	8. 96	720. 24	741. 84	763. 76	786. 00	808. 56	831. 44	854. 64	878. 16	902. 00	926. 16
列 78 至 88											
95	0. 64	975. 44	1000. 56	1026. 00	1051.76	1077. 84	1104. 24	1130. 96	1158. 00	1185. 36	1213. 04

1.2 综合训练

一. 实验任务

请用 Euler 法和 Matlab 函数 ode23 求解下列微分方程:

$$\begin{cases} \frac{dy}{dt} = 0.02(1 - 0.001y)y\\ y(0) = 10 \end{cases}$$

并将 Euler 求解结果与 Matlab 的 ode23 函数求解结果対比。

二. 实验目的

认识 Euler 法。熟悉 Matlab 解微分方程数值解的函数.

三. 实验过程

```
h=0.2;
t=0:h:5;
n=length(t);
y=10.*ones(n,1);
for k=2:n
    y(k)=y(k-1)+h.*(0.02.*(1-0.001.*y(k-1)).*y(k-1));
end
[t,y2]=ode23(@(t,y)0.02.*(1-0.001.*y).*y,t,y(1));
plot(t,y,'o',t,y2)
legend('Euler','ode23函数');
fprintf(' t y_Euler y_ode23 error\n');
for k=1:n
fprintf('%9.4f %9.6f %9.6f %10.8f\n',t(k),y(k),y2(k),y(k)-y2(k));
end
```

运行结果:


```
y_Euler y_ode23
0.0000 10.000000 10.000000 0.00000000
0.2000 10.039600 10.039678 -0.00007772
0. 4000 10. 079355 10. 079511 -0. 00015603
0.6000 10.119266 10.119501 -0.00023493
 0.8000 10.159334 10.159648 -0.00031445
 1.0000 10.199558 10.199953 -0.00039459
1, 2000 10, 239940 10, 240416 -0, 00047535
1. 4000 10. 280481 10. 281037 -0. 00055673
1.6000 10.321180 10.321819 -0.00063873
1.8000 10.362038 10.362760 -0.00072135
2.0000 10.403057 10.403862 -0.00080460
 2. 2000 10. 444236 10. 445125 -0. 00088850
2. 4000 10. 485577 10. 486550 -0. 00097304
2,6000 10,527080 10,528138 -0,00105821
2. 8000 10. 568745 10. 569889 -0. 00114402
3.0000 10.610573 10.611803 -0.00123049
3. 2000 10. 652565 10. 653882 -0. 00131762
3. 4000 10. 694721 10. 696127 -0. 00140540
 3.6000 10.737042 10.738536 -0.00149383
3, 8000 10, 779530 10, 781112 -0, 00158292
4.0000 10.822183 10.823856 -0.00167269
4. 2000 10. 865003 10. 866766 -0. 00176314
4. 4000 10. 907991 10. 909845 -0. 00185426
4.6000 10.951147 10.953093 -0.00194604
4.8000 10.994472 10.996510 -0.00203851
 5,0000 11,037966 11,040098 -0,00213167
 5, 2000 11, 081631 11, 083856 -0, 00222553
 5. 4000 11. 125466 11. 127786 -0. 00232008
 5. 6000 11. 169473 11. 171888 -0. 00241532
 5. 8000 11. 213652 11. 216163 -0. 00251125
 6.0000 11.258003 11.260611 -0.00260790
 6. 2000 11. 302528 11. 305234 -0. 00270527
 6. 4000 11. 347227 11. 350031 -0. 00280335
 6.6000 11.392101 11.395003 -0.00290213
 6.8000 11.437151 11.440152 -0.00300163
 7. 0000 11. 482376 11. 485478 -0. 00310187
 7. 2000 11. 527778 11. 530981 -0. 00320284
 7.4000 11.573358 11.576662 -0.00330454
 7.6000 11.619115 11.622522 -0.00340697
 7.8000 11.665052 11.668562 -0.00351014
 8.0000 11.711168 11.714782 -0.00361405
 8. 2000 11. 757464 11. 761182 -0. 00371873
 8. 4000 11. 803941 11. 807765 -0. 00382416
 8.6000 11.850599 11.854529 -0.00393033
 8.8000 11.897440 11.901477 -0.00403727
 9.0000 11.944463 11.948608 -0.00414497
 9. 2000 11. 991670 11. 995924 -0. 00425345
 9. 4000 12. 039062 12. 043425 -0. 00436271
 9.6000 12.086638 12.091111 -0.00447275
 9. 8000 12. 134401 12. 138984 -0. 00458356
10.0000 12.182349 12.187044 -0.00469517
```

由图像和计算结果可以得出,两曲线基本吻合,Euler与ode23求解结果相差不大。

四. 实验自评与改进方向

本实验总体做起来耗时不长,但存在有些命令不熟悉的情况,例如:ode45 函数运行后会出现两列结果,我对每列的含义不清楚,需要用 help 和百度解决。

五. 实验体会, 收获及建议

基础实验和综合实验总体都不是很难,做题时,综合实验如何表示输出结论纠结了较长

时间,最终参考了课上 PPT 才解决;做题时发现对 ode45 命令掌握不是很好,于是通过重新看上课的 PPT,使用 help 命令和百度搜索相关博客深入学习,现在已经可以熟练掌握该命令。