Unidad Profesional interdisciplinaria de Ingeniería y Tecnologías Avanzadas

PROYECTO TERMINAL II

SIMULADOR DE MODELOS DE TRÁFICO PARA NODOS IOT EN UNA RED CELULAR DE 5G

Autores:
Luis Fernando SALAZAR
ORDOÑEZ
Rolando SOTELO
ALARCON

Asesores:
Dr. Domingo LARA
RODRIGUEZ
Dr. Noe TORRES CRUZ

Una tesis presentada en cumplimiento de los requisitos para el grado de Ingeniería en Telemática

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y TECNOLOGÍAS AVANZADAS

Abstract

Ingeniería en Telemática

SIMULADOR DE MODELOS DE TRÁFICO PARA NODOS IOT EN UNA RED CELULAR DE 5G

by

Resumen: En este documento se presenta el desarrollo de un simulador a nivel de sistema, programado bajo el paradigma de eventos discretos, que permite modelar el servicio que la red de comunicación celular de quinta generación (5G), ofrece a nodos de Internet de las cosas (IoT). El simulador se enfocó en el caso de uso mIoT, el cual comprende principalmente de nodos IoT estáticos de baja complejidad que además se encuentran en gran cantidad dentro de los escenarios de esta red. La arquitectura del simulador contempló cuatro módulos clave para su ejecución: un modelo de despliegue de UEs, un modelo de canal, un esquema de acceso múltiple al medio no ortogonal y modelos de tráfico adecuados para modelar distintos servicios. Asimismo, se consideró el fundamentar la fiabilidad de los resultados obtenidos por el simulador mediante la previa prueba e implementación de modelos de tráfico ya estudiados en la literatura concerniente al desempeño de sistemas celulares. Con los resultados del simulador se determinaron qué configuraciones y parámetros iniciales de la arquitectura de red propuesta satisfacen una óptima calidad de servicio (QoS) para el caso de uso mIoT.

Palabras clave: mMTC, NB-IoT, PD-NOMA, 5G, simulador de eventos discretos, QoS.

Abstract:

Keywords: mMTC, NB-IoT, PD-NOMA, 5G, simulador de eventos discretos, QoS.

TODO: Realizar una mejor versión del abstract y agregar su traducción

Acknowledgements

The acknowledgments and the people to thank go here, don't forget to include your project advisor...

Contents

Al	ostrac	e t	iii
A	knov	wledgements	v
1	_	ítulo 1: Presentación del Proyecto	1
	1.1	Introducción	1
		1.1.1 Subsection 1	1
		1.1.2 Subsection 2	1
	1.2	Main Section 2	1
A	Frec	quently Asked Questions	3
	A.1	How do I change the colors of links?	3
Bi	bliog	graphy	5

List of Figures

List of Tables

List of Abbreviations

LAH List Abbreviations HereWSF What (it) Stands For

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}}$ (exact)

xvii

List of Symbols

a distance

P power $W(J s^{-1})$

m

 ω angular frequency rad

xix

For/Dedicated to/To my...

Chapter 1

Capítulo 1: Presentación del Proyecto

1.1 Introducción

Imaginar nuestra vida sin los beneficios brindados por los sistemas de comunicación de hoy en día, o tan sólo sin la tecnología presente en este ámbito desde los últimos 20 años es ya muy difícil, y esto se debe a que en el presente una gran parte de las tareas y actividades, muchas de ellas cruciales para el funcionamiento de nuestras sociedades, operan eficientemente sí y sólo sí se está propiamente conectado y en facultades de compartir información (Fettweis2014).

Los sistemas de comunicación celular han tenido saltos generacionales desde la conocida como primera generación, la cual saldría al mercado a finales de la década de los 70's e inicio de los 80's, hasta el presente con el desarrollo de la próxima generación (5G), la cual comenzará su implementación en el año 2020. En (**Fettweis2014**) encontramos que:

1.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

1.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullam-corper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

1.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.