1 Encontros

* Preferem horários fixos. * Enquete no moodle sobre horários.

2 Questões

$$\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$$

 $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$

Como \vec{u} e \vec{v} estão no plano XY, $u_3=v_3=0$. Como $\|\vec{v}\|=0,\,\vec{v}=\vec{0}$. Já \vec{u} é unitario, então $u_1^2+u_2^2=1$.

$$u_1 = \cos(\theta), \quad u_2 = \sin(\theta).$$

Obs.: Quando $\theta = 0$, $\vec{u} = \vec{i}$. Quando $\theta = \pi/2$, $\vec{u} = \vec{j}$,

3 Produto misto

$$\vec{u} \times \vec{v} \cdot \vec{w} = (\vec{u} \times \vec{v}) \cdot \vec{w} = \underbrace{\vec{u} \times (\vec{v} \cdot \vec{w})}_{ERRADO}$$

$$\vec{u} = \vec{i} + 2\vec{j} + 3\vec{k}$$

$$\vec{v} = \vec{i} - \vec{k}$$

$$\vec{w} = \vec{i} + 2\vec{j} + \vec{k}$$

$$\left| \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 0 & -1 \\ 1 & 2 & 1 \end{array} \right| = 1 \cdot 0 \cdot 1 + 2 \cdot (-1) \cdot 1 + 3 \cdot 1 \cdot 2 - 3 \cdot 0 \cdot 1 - 2 \cdot 1 \cdot 1 - 1 \cdot (-1) \cdot 2$$

4 Ângulo entre vetores

Usaremos:

$$\vec{u} \cdot \vec{v} = ||u|| ||v|| \cos(\alpha)$$
$$|\vec{u} \times \vec{v}| = ||u|| ||v|| \sin(\alpha)$$

5 Funções vetoriais

$$\vec{u}(t) = u_1(t)\vec{i} + u_2(t)\vec{j} + u_3(t)\vec{k}$$

Exemplo: vetor posição.

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

A velocidade é a derivada:

$$\vec{v}(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}$$

Teorema: Se $\|\vec{r}(t)\|$ é constante, então:

$$\vec{r}(t) \cdot \vec{r}'(t) = 0$$

Aplicação na cinemática: Se a velocidade de uma partícula tem módulo constante, isto é, velocidade escalar constante, então:

$$\vec{v}(t) \cdot \vec{v}'(t) = \vec{v}(t) \cdot \vec{a}(t) = 0$$

Generalização: Se $\vec{v}(t) = v(t) \vec{T}(t)$ onde $\vec{T}(t)$ é o vetor tangente unitário dado por:

 $\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$

Diferenciando, temos:

$$\vec{a} = \vec{v}'(t) = \frac{d}{dt} \left[v(t) \vec{T}(t) \right]$$
$$= \underbrace{v'(t) \vec{T}(t)}_{tangencial} + \underbrace{v(t) \vec{T}'(t)}_{normal}$$

Observação. Como $\|\vec{T}(t)\|=1$, o teorema citado anteriormente garante que $\vec{T}(t)\cdot\vec{T}'(t)=0$.

6 Curvatura

A curvatura de uma curva descrita por $\vec{r}(t)$ é dada por:

$$\kappa(t) = \left\| \frac{d}{ds} \vec{T}(s) \right\|$$

onde s(t) é o comprimento da curva.

Ex. Circunferência:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j}$$

$$\vec{r}'(t) = -\sin(t)\vec{i} + \cos(t)\vec{j}$$

$$||\vec{r}'(t)|| = \sqrt{\sin^2(t) + \cos^2(t)} = 1$$

Assim:

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} = -\sin(t)\vec{i} + \cos(t)\vec{j}.$$

$$\kappa(t) = \left\| \frac{d}{ds} \vec{T}(s) \right\|$$

$$= \left\| \frac{d}{dt} \vec{T}(t) \right\| / \frac{ds}{dt}$$

$$= \left\| \frac{d}{dt} \vec{T}(t) \right\| / \|\vec{r}'(t)\|$$

$$= \left\| \frac{d}{dt} \vec{T}(t) \right\|$$

$$= \left\| -\cos(t)\vec{i} - \sin(t)\vec{j} \right\| = 1$$