Face Recognition using PCA + ANN – Interview Cheat Sheet

Workflow:

- 1. Dataset: 450 images (100×100 pixels, 9 persons)
- 2. Preprocessing: Resize → Grayscale → Flatten
- 3. PCA:
- Compute mean face
- Extract eigenfaces (principal components)
- Project images into k-dim feature space (k=50)
- 4. ANN:
- Input: PCA features (50)
- Hidden Layers: Dense + ReLU
- Output: Softmax (9 classes)
- Loss: Categorical Cross-Entropy
- Optimizer: Adam
- 5. Results:
- Accuracy: ~50%
- Saved model (face_ann_model.h5)
- Visualizations: mean face, eigenfaces
- 6. Prediction: New image \rightarrow PCA \rightarrow ANN \rightarrow Predicted Person

Key Concepts:

- PCA: Reduces dimensionality, keeps max variance → eigenfaces
- Eigenfaces: Principal components representing max variance in faces
- ANN vs CNN: ANN after PCA, CNN learns features directly
- Why PCA? Avoids training on 10,000 pixels → reduced to 50 features
- Why ANN? Learns non-linear boundaries on PCA features

Q: Why PCA?	A: To reduce dimensionality, remove noise, and avoid overfitting.	
Q: Why ANN (not CNN)?	A: Simplicity – PCA extracts features. CNN would perform better.	
Q: Accuracy is only ~50%. Why?	A: Small dataset, ANN overfitting. CNN or transfer learning would help.	
Q: Challenges?	A: Dataset structuring, imports, preventing overfitting, ensuring PCA→ANN co	ompat
Q: Improvements?	A: Use CNN (e.g., VGGFace), data augmentation, larger dataset, real-time de	eployr

Workflow Diagram:

```
Image (100x100) → Flatten → PCA (50 comps)
↓
PCA Features
↓
ANN Classifier
↓
Predicted Person (Softmax)
```