

Interpretable Machine Learning: Image Classification and Explanation

Moritz Knoell, Tim Konle

Agenda

Methods

Related work

Dataset

FruitNet: Indian fruits images - 6 fruits (bad, good, mixed)

https://www.sciencedirect.com/science/article/pii/S2352340921009616

Project:

Subset FruitNet

2 fruit types: (bad, good)

Apple_bad: 1141

Apple_good: 1134

Banana_bad: 1113

Banana_bad: 1087

Dimension: 3024x3024

https://ars.els-cdn.com/content/image/1-s2.0-S2352340921009616-gr1.jpg

Methods

Data Preprocessing

- Observe pictures
- Categorize data into four target classes
- Data Augmentation

Machine Learning Method

Train 2D-CNN

Validation Procedure

- Early stopping
- Train / Test / Val split

2D-CNN model architecutre

- Three consecutive Conv2D layers, each with ReLU as activation function followed by a MaxPooling2D layer
- A GlobalAveragePooling2D layer to reduce the feature maps
- A sequence of two Dense layers, each paired with a Dropout layer to reduce overfitting
- A Dense layer with a softmax activation function for classification

Perfomance – Machine Learning Model

Class	Precision	Recall	F1-Score
Apple bad	80%	66%	70%
Apple good	67%	68%	68%
Banana bad	84%	80%	82%
Banana good	80%	98%	88%

Related work

Deep learning-based plant classification and crop disease classification by thermal camera (Batchuluun et. al.) https://www.sciencedirect.com/science/article/pii/S1319157822004013

- Classification of plants and plant diseases based on thermal images
- Use of a Convolutional Neural Network (CNN) combined with Explainable Artificial Intelligence (XAI).
- Improvement of classification accuracy despite blurred thermal images and demonstration of the usefulness of thermal images at night

https://ars.els-cdn.com/content/image/1-s2.0-S1319157822004013-gr7.jpg

Related work

Understanding How CNNs Recognize Facial Expressions: A Case Study with LIME and CEM (Torres et. al.) https://www.mdpi.com/1424-8220/23/1/131

- Recognition of facial expressions
- Use of Convolutional Neural Networks (CNN)
- Explainable Artificial Intelligence (XAI) for interpreting the results of machine learning models
- Analysis of LIME and CEM as XAI techniques to explain classifications

https://www.mdpi.com/1424-8220/23/1/131

https://www.mdpi.com/1424-8220/23/1/131

Explainations

Banana good

PN: Bad Banana

Banana bad

PN: Good Banana

Apple good

PN: Bad Apple

Apple bad

PN: Good Apple

Demo

XAI Fruit Classification

Please select a picture, which should be classified

LIME-Explanation:

LIME Information will be shown here

Model Results:

Please select an image!

CEM Explanation:

CEM Information will be shown here

<>>

