2020/4/15 CS109

Python for Probability

Python Basics

This handout only goes over probability functions for Python. For a tutorial on the basics of python, there are many good online tutorials. CS109 has a good set of notes from our Python review session (including installation instructions)! Check out:

https://github.com/yulingl/cs109_python_tutorial/blob/master/cs109_python_tutorial.ipynb. The functions in this tutorial come from the scipy python library. It is essential that you have this library installed!

Counting Functions

Factorial

Compute n! as an Integer. This example computes 20!

import math
print math.factorial(20)

Choose

Computes $\binom{n}{m}$ as a float. This example computes $\binom{10}{5}$

from scipy import special
print special.binom(10, 5)

Discrete Random Variables

Binomial

Make a Binomial Random variable X and compute its probability mass function (PMF) or cumulative density function (CDF). We love the scipy stats library because it defines all the functions you would care about for a random variable, including expectation, variance, and even things we haven't talked about in CS109, like entropy. This example declares $X \sim \text{Bin}(n=10,p=0.2)$. It calculates a few statistics on X. It then calculates P(X=3) and $P(X \le 4)$. Finally it generates a few random samples from X:

2020/4/15 CS109

```
from scipy import stats
X = \text{stats.binom}(10, 0.2) \# \text{ Declare } X \text{ to be a binomial random variable}
print X.pmf(3)
                           \# P(X = 3)
print X.cdf(4)
                           \# P(X \leq 4)
print X.mean()
                           # E[X]
print X.var()
                           # Var(X)
print X.std()
                           # Std(X)
print X.rvs()
                           # Get a random sample from X
print X.rvs(10)
                           # Get 10 random samples form X
```

From a **terminal** you can always use the "help" command to see a full list of methods defined on a variable (or for a package):

```
from scipy import stats
X = stats.binom(10, 0.2) # Declare X to be a binomial random variable
help(X) # List all methods defined for X
```

Poisson

Make a Poisson Random variable Y. This example declares $Y \sim \text{Poi}(\lambda = 2)$. It then calculates P(Y = 3):

```
from scipy import stats
Y = stats.poisson(2) # Declare Y to be a poisson random variable
print Y.pmf(3) # P(Y = 3)
print Y.rvs() # Get a random sample from Y
```

Geometric

Make a Geometric Random variable X, the number of trials until a success. This example declares $X \sim \text{Geo}(p=0.75)$:

```
from scipy import stats
X = stats.geom(0.75) # Declare X to be a geometric random variable
print X.pmf(3) # P(X = 3)
print X.rvs() # Get a random sample from Y
```

Continuous Random Variables

Normal

Make a Normal Random variable A. This example declares $A \sim N(\mu = 3, \sigma^2 = 16)$. It then calculates $f_Y(0)$ and $F_Y(0)$. **Very Imporatant!!!** In class the second parameter to a normal was the variance (σ^2) . In the scipy library the second parameter is the standard deviation (σ) :

2020/4/15 CS109

```
import math
from scipy import stats
A = stats.norm(3, math.sqrt(16)) # Declare A to be a normal random variable
print A.pdf(4)  # f(3), the probability density at 3
print A.cdf(2)  # F(2), which is also P(Y < 2)
print A.rvs()  # Get a random sample from A</pre>
```

Exponential

Make an Exponential Random variable B. This example declares $B \sim \text{Exp}(\lambda = 4)$:

```
from scipy import stats
B = stats.expon(4)  # Declare B to be a normal random variable
print B.pdf(1)  # f(1), the probability density at 1
print B.cdf(2)  # F(2) which is also P(B < 2)
print B.rvs()  # Get a random sample from B</pre>
```

Beta

Make an Beta Random variable X. This example declares $X \sim \text{Beta}(\alpha = 1, \beta = 3)$:

```
from scipy import stats
X = stats.beta(1, 3) # Declare X to be a beta random variable
print X.pdf(0.5)  # f(0.5), the probability density at 1
print X.cdf(0.7)  # F(0.7) which is also P(X < 0.7)
print X.rvs()  # Get a random sample from X</pre>
```

© Stanford 2019 | Website design by Chris. CS109 has been developed by many talented teachers. Special thanks to Mehran Sahami.