

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Course <u>Progress</u> **Dates Discussion Resources**

Course / Unit 0. Brief Prerequisite Reviews, Homework 0, and Project 0 / Homework 1

< Previous 8 of 15 ~

8. 1D Optimization via Calculus

 \square Bookmark this page

Homework0 due Feb 8, 2023 08:59 -03 Completed

Review: 1D Optimization via Calculus

4/4 points (graded)

(For this problem, you are welcome to use any computational tools that would be helpf

Let
$$f(x)=rac{1}{3}x^3-x^2-3x+10$$
 defined on the interval $[-4,4]$.

Let x_1 and x_2 be the critical points of f, and let's impose that $x_1 < x_2$. Fill in the next values of x_1 and x_2 , respectively: (Recall that the **critical points** of f are those $x \in \mathbb{R}$

$$oldsymbol{x}_1 = oldsymbol{oldsymbol{-1}}$$

$$x_2 = \begin{vmatrix} 3 \end{vmatrix}$$

Fill in the next two boxes with the values of $f''\left(x_{1}
ight)$ and $f''\left(x_{2}
ight)$, respectively:

$$f''\left(x_{2}
ight)=igg|$$
 4

Submit

You have used 1 of 3 attempts

Review: 1D Optimization via Calculus (Continued)

3/4 points (graded)

(For this problem, you are welcome to use any computational tools that would be helpf

Recall that x_1 and x_2 are the critical points of the function $f(x)=rac{1}{3}x^3-x^2-3x$ -

According to the second derivative test, $oldsymbol{x_1}$ is a ...

Local Maximum

None of the above

Strict Concavity

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Do Not Sell My Personal Information

Connect

Blog
