# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждения высшего образования «Национальный исследовательский технологический университет «МИСиС»

#### ЛАБОРАТОРНАЯ РАБОТА № 1

«Моделирование линейных динамических систем»

по дисциплине:

«Математическое моделирование»

Вариант № 6

| Выполнил:                               | Проверил:             |  |
|-----------------------------------------|-----------------------|--|
| Емельященкова Е.А.<br>(Ф.И.О. студента) | (Ф.И.О преподавателя) |  |
| БПМ-19-4<br>(№ группы)                  | (оценка)              |  |
| 19.10.2021г.                            |                       |  |
| (дата сдачи работы)                     | (дата проверки)       |  |

**Цель работы:** ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем.

## Ход работы:

#### 1. Исследование модели вход-выход:

Математическая модель линейной стационарной системы может быть представлена в виде скалярного дифференциального уравнения п-го порядка. Модель вход-выход:

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y^{(1)} + a_0y = b_mu^{(m)} + b_{m-1}u^{(m-1)} + \dots + b_1u^{(1)} + b_0u$$

Для нашего случая имеем:

$$n = 3$$
;  $a_0 = 15$ ;  $a_1 = 5$ ;  $a_2 = 10$ ;  $b_0 = 15$ ;  $b_1 = 0.5$ ;  $b_2 = 1$ 

Поэтому получаем:

$$y^{(3)} + a_2 y^{(2)} + a_1 y^{(1)} + a_0 y = b_2 u^{(2)} + b_1 u^{(1)} + b_0 u$$

$$y^{(3)} + 10y^{(2)} + 5y^{(1)} + 15y = u^{(2)} + 0.5u^{(1)} + 15u$$

Заменяем операцию дифференцирования оператором дифференцирования s = d / dt:

$$s^3y + 10s^2y + 5sy + 15y = s^2u + 0.5su + 15u$$

Выражаем выходную переменную:

$$y = \frac{1}{s^3}(15u - 15y) + \frac{1}{s^2}(0.5u - 5y) + \frac{1}{s}(u - 10y)$$

Получаем схему моделирования для вида входного воздействия u=1(t) и выходного сигнала y(t) (при нулевых начальных условиях):





Получаем схему моделирования для вида входного воздействия  $u=2\sin(t)$  и выходного сигнала y(t) (при нулевых начальных условиях):





Осуществляем моделирование свободного движения системы, то есть с нулевым входным воздействием и ненулевыми начальными условиями, изменив начальные условия интеграторов. По условию y(0) = 1;  $\dot{y}(0) = 0.5$ ;  $\ddot{y}(0) = 0.1$ 

Обозначим выходные сигналы интеграторов через  $z_1$ ,  $z_2$  и  $z_3$ , следовательно, искомые начальные условия — через  $z_1(0)$ ,  $z_2(0)$  и  $z_3(0)$ . Так как  $z_1=y$ , то  $z_1(0)=y(0)=1$ . Из схемы моделирования видно, что  $\dot{y}=\dot{z}\dot{1}=z_2+u-10y$  и, следовательно,  $z_2=\dot{y}-u+10y$ .

Подставляя начальные значения сигналов y(0), u(0) и  $\dot{y}(0)$ , вычисляем начальное условие для второго интегратора:

$$z_2(0) = \dot{y}(0) - u(0) + 10y(0) = 0.5 + 10 * 1 = 10.5$$
 (начальные условия  $u(0) = \dot{u}(0) = 0$ ).

Из структурной схемы получаем, что  $\dot{z_2}=z_3+0.5u-5y$  и, следовательно,  $z_3=\dot{z_2}-0.5u+5y$ .

Дифференцируя  $z_2$ , в силу уравнения  $z_2=\dot{y}-u+10y$  окончательно получаем:  $z_3=\ddot{y}-\dot{u}+10\dot{y}-0.5u+5y.$ 

Подставляя начальные значения соответствующих сигналов, вычисляем начальное условие для третьего интегратора:

$$z_3(0) = \ddot{y}(0) - \dot{u}(0) + 10\dot{y}(0) - 0.5u(0) + 5y(0) = 10.1$$

Получаем вид выходного сигнала y(t) при нулевом входном воздействии и ненулевых начальных условиях:



### 2. Исследование модели вход-состояние-выход

Система может быть представлена в компактной векторно-матричной форме

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx, \end{cases}$$

где  $A-n\times n$  матрица постоянных коэффициентов,  $B-n\times 1$  вектор-столбец постоянных коэффициентов,  $C-1\times n$  вектор-строка постоянных коэффициентов, а x-n-мерный вектор состояния. Подставив исходные данные получаем систему уравнений:

$$\begin{cases} \dot{x_1} = -12x_2 + 2u \\ \dot{x_2} = x_1 - 0.8x_2 \\ y = 3x_1 + 0.1x_2 \end{cases}$$

Осуществляем моделирование системы при двух видах входного воздействия -u=1(t) и  $u=2\sin(t)-u$  нулевых начальных условиях.

Получаем схему моделирования для вида входного воздействия u=1(t) и выходного сигнала y(t) (при нулевых начальных условиях):





Получаем схему моделирования для вида входного воздействия  $u=2\sin(t)$  и выходного сигнала y(t) (при нулевых начальных условиях):





Осуществляем моделирование свободного движения системы с начальными условиями, приведенными в исходных данных.  $x_1(0) = 0.33$  и  $x_2(0) = -0.5$ :



**Вывод:** выполняя лабораторную работу №1, я ознакомилась с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем. Данный пакет программ позволяет легко решать задачи моделирования процессов, происходящих в системах автоматического управления вне зависимости от вида представления математической модели системы.