Wan Thornam

SANTA CLARA UNIVERSITY

ECEN 122 Winter 2024

Hoeseok Yang

and tag matches, Mit. It invex most ches but

tag doesn't,

replacement

Homework #8: Memory Hierarchy and Caches

Answer the following problems and upload your answers to Camino in pdf format.

Posted: March 7, 2024, Due by: 9pm on March 13, 2024

1. [2.0 pts] For a direct-mapped cache design with a 32-bit address, the following bits of the address are used to access the cache:

Tag	Index	Offset		
31-16	15 - 6	5 - 0		

A. (0.3 pts) What is the <u>cache block size</u> (in bytes)?

B. (0.3 pts) How many entries (blocks) does this cache have?

C. (0.5 pts) What is the ratio of the <u>total bits</u> required for such a cache implementation to the <u>data bits</u>? (Hint: The total bits include all "valid", "tag" and "data" fields.)

D. (0.6 pts) Since reset, the following byte-address cache references are observed.

How many cache misses have been observed? (Answer by filling in the table)

									10		0.0	. 4
order	Addr (hex)		Tag	(bin)),	Inc	lex (bi	n)	Offs	et (bin)	Hit/Miss?	1
1	deadbeef	110	11110	1010	1101	101	11110	11	10	1111	miss	
2	00c0ffee	0006	0000	1100	9900	[1]	1/111	11	10	1111	mis5	
3	deadbef6	1101	1110	1010	1101	(01)	/110	()	- 11	0110	hit	
4	00c07fae	Ova	0000	Noa	alon	0/11	[[1]	10	10	1110	miss	
5	00c0ffe0	0000	0 000	1100	ogao	(())	1111	11.	10	0 000	hit	
6	deafbee0	101	1110	1010	[111	1011	(110	1)	10	0000	miss)	
7	00e07fae	0000	0000	1110	0000	0111	(111)	10	10	1110	miss	
8	deafbee4	1101	1110	1010	1111	1011	1110	11	10	0100	hites	

1st time hit rate: 33%

E. (0.3 pts) Within the above sequence, how many cache blocks are replaced?

2 rache blocks

Name:	Student ID:	
Name:	Student 117.	

2. [1.0 pts] Below is a chart showing how the cache miss rate of the cache changes as the cache block size changes for different cache memory sizes.

A. (0.5 pts) Briefly explain why the cache miss rate decreases (for all memory sizes) when the block size is changed from 16B to 32B.

UP to a point, larger block sizes will reduce miss rate block they exploit spatial locality more. If the block size starts to become a significant fraction of the back size however, it will start to increase the miss rate.

B. (0.5 pts) Briefly explain why the cache miss rate increases (for most memory sizes) when the block size is changed from 128B to 256B.

It increases ble the block size becomes too large relative
for the open size. This is also why the larger cache sizes (64% cmo 256t)
fort increase as much as 16% and 4%.

			1 1
1 22 C 2 N N Y 22 P	whereas h	revil data	can be changed
Fx Tf any data is change	W	and only	one block
Che whole block has	1 2	11-64	eds to be
to be remotion Split	duta		rewritten
Alldata C	M	whi	ich lowers
30 B 10 B			missrate
	345		

Name: Student ID: