<u>Tutorial -5</u> (07/10/2020)

1.	S -> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of a.) All Palindromes b.) All odd length palindromes c.) Strings that begin and end with the same symbol d.) All even length palindromes
2.	Context Free Grammars are of
3.	If a grammar is Regular it is definitely but if a grammar is context free it may not be
4.	The machine which is used to accept context free grammar is
5.	Consider the context-free grammars over the alphabet $\{a,b,c\}$ given below. S and T are non-terminals. G1:S \rightarrow aSb T,T \rightarrow cT \in G2:S \rightarrow bSa T,T \rightarrow cT \in The language L(G1) \cap L(G2) is (A) Finite (B) Not finite but regular (C) Context-Free but not regular (D) Recursive but not context-free
6.	Consider the following Context-Free Grammar (CFG) G: $S \rightarrow X \mid XY$ $X \rightarrow aXb \mid aYb$ $Y \rightarrow bYc \mid \varrho$ where S, X, Y are nonterminal symbols, S is the start symbol, and a,b,c are terminal symbols. Which of the following statements about the language $L(G)$ generated by G are correct? (i) $\varrho \in L(G)$ (ii) aaabbbcc $\subseteq L(G)$ (iii) aaabbbcc $\subseteq L(G)$ (iv) $\{a^{ib^{ib^{ib^{ib^{ic^{ij^{ij^{ij^{ij^{ij^{ij^{ij^{ij^{ij^{ij$

 $X \rightarrow aXb \mid ab$

$$Y \rightarrow bY c \mid Q$$

7. Is the following CFG ambiguous? If yes, show this. If no, explain why.

$$A \rightarrow aBbA \mid aBbAcA \mid d$$

$$B \rightarrow e$$

A and B are nonterminals, A is the start symbol, a, b, c, d, and e are terminals.

Questions to solve within 10/10/2020 (Saturday)

- 1. Convert the given CFG into an equivalent CNF. Explain all the steps.
 - (a) S→BSB|B|ε
 - $B\rightarrow 00|\epsilon$
 - (b) S \rightarrow S1| S2
 - $S1 \rightarrow S1b \mid Ab \mid \lambda$
 - A →aAb | ab
 - S2→S2a | Ba | λ
 - B →bBa | ba
- 2. Convert the given CFG into an equivalent GNF. Explain all the steps.
 - S→XA|BB
 - B→b|SB
 - X→b
 - A→a
- 3. Consider the following Context-Free Grammar (CFG):
 - $S \rightarrow ABC \mid BC$
 - $A \rightarrow aA \mid a$
 - $B \rightarrow b \mid C$
 - $C \rightarrow cc \mid dd \mid o$
- S, A, B, and C are nonterminals, a, b, c, and d are terminals, and S is the start symbol. What is the set N_Q of nullable nonterminals for this grammar? Provide a brief justification.

NOTE: Upload your solutions only through the given link. Name your pdf file with the format <**rollno_name_tutorialno>**. Do not mail your solutions elsewhere. Link to upload the solutions:

https://docs.google.com/forms/d/e/1FAIpQLSeRM98KwxVp-kSmCZEVmgGK2XNDSLnIxqfovMV5C-VXVtbyfw/viewform?usp=sf_link