Problem 6

Consider the problem of the reconstruction of a sparse signal $x \in \mathbb{R}^N$ from given incomplete measurements $y \in \mathbb{R}^M$ and the measurements matrix $K \in \mathbb{R}^{M \times N}$ with $M \ll N$. This problem can be solved by

$$\min_{x} \|x\|_1 + \frac{\alpha}{2} \|Kx - y\|_2. \tag{1}$$

where $\alpha > 0$ is the regularization parameter.

- 1. Create a signal $x \in \mathbb{R}^N$ with only $s \ll N$ non-zero entries and a Gaussian random matrix $K^{M \times N}$ with $M \ll N$. Normalize the columns of K and compute y = Kx.
- 2. Implement the proximal gradient method to solve the problem (1) for given y and K.
- 3. Investigate how does the reconstruction error change as you vary the number of measurements M and the sparsity level s.
- 4. Does the method still work if we add Gaussian noise to y?
- 5. Compare the reconstruction results obtained by (1) with the reconstruction results obtained by

$$\min_x \frac{1}{2} \|x\|_2^2 + \frac{\alpha}{2} \|Kx - y\|_2 \,.$$