I Questions de cours : programme de base

- 1 Donner l'espérance de X lorsque X suit la loi de Poisson de paramètre $\lambda>0$ puis démontrer ce résultat.
- 2 Donner l'espérance de X lorsque X suit la loi géométrique de paramètre $p \in]0;1[$ puis démontrer ce résultat en utilisant la somme des $\mathbb{P}(X > n)$.
- 3 Donner la covariance de deux variables aléatoires indépendantes et démontrer ce résultat.
- 4 Donner la variance d'une somme de n variables aléatoires dans le cas général puis dans le cas de variables aléatoires indépendantes puis démontrer ce résultat.
- 5 Donner la fonction génératrice d'une variable aléatoire suivant une loi géométrique de paramètre $p \in]0;1[$ et en déduire son espérance et sa variance.
- 6 Donner la fonction génératrice d'une somme de deux variables aléatoires indépendantes puis démontrer ce résultat.
- 7 Donner l'espérance et la variance de la moyenne $\overline{X_n}$ de n variables aléatoires indépendantes et identiquement distribuées.

II Questions de cours : programme renforcé

- 1 Montrer que toute variable aléatoire admettant un moment d'ordre 2 est d'espérance finie.
- 2 Énoncer et démontrer les propriétés générales de la variance (positivité, formule de König-Huygens et expression de Var(aX + b)).
 - 3 Démontrer que la covariance est une forme bilinéaire symétrique et positive.
- 4 Donner la fonction génératrice d'une variable aléatoire suivant une loi de Poisson de paramètre $\lambda>0$ et en déduire son espérance et sa variance.
 - 5 Énoncer et démontrer la loi faible des grands nombres.

III Questions de cours : programme ultime

- 1 Énoncer et démontrer l'inégalité de Markov.
- 2 Énoncer et démontrer l'inégalité de Bienaymé-Tchebychev.

IV Exercices d'application du cours

Exercice 1:

Calculer $\mathbb{E}(X^2)$ lorsque X suit la loi $\mathcal{U}(\llbracket 0; n-1 \rrbracket)$ pour un entier $n \in \mathbb{N}^*$ fixé.

Exercice 2:

Calculer la fonction génératrice d'une variable X dont la loi est donnée par :

$$X(\Omega) = \{0; 1; 4; 5\}, \ \mathbb{P}(X = 0) = \mathbb{P}(X = 1) = \frac{1}{4}, \ \mathbb{P}(X = 4) = \frac{1}{3} \ \text{et} \ \mathbb{P}(X = 5) = \frac{1}{6}$$

Exercice 3:

Soit X une variable aléatoire suivant la loi $\mathcal{B}(n,p)$ avec $n \in \mathbb{N}^*$ et $p \in]0;1[$. Retrouver l'espérance et la variance de X via sa fonction génératrice.

V Exercices d'approfondissement

Exercice 4:

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $p \in]0; 1[$.

On considère $X:\mathcal{B}\longrightarrow \mathbb{N}^*$ telle que :

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = p^2 k (1 - p)^{k-1}$$

- 1 Montrer que X suit une loi de probabilité.
- 2 Montrer l'existence et calculer l'espérance de X-1.
- 3 Montrer l'existence et calculer l'espérance de (X-1)(X-2)
- 4 En déduire l'existence de l'espérance et de la variance de X.

Exercice 5:

Soient $N \in \mathbb{N}^*$, $p \in]0; 1[$ et q = 1 - p.

On considère N variables aléatoires $X_1, X_2, ..., X_N$ définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, indépendantes et de même loi géométrique de paramètre p.

1 - Soient $i \in [1; N]$ et $n \in \mathbb{N}^*$.

Déterminer $\mathbb{P}(X_i \leq n)$, puis $\mathbb{P}(X_i > n)$.

2 - On considère $n \in \mathbb{N}^*$ ainsi que la variable aléatoire Y définie par $Y = \min_{i \in [1;N]} X_i$.

Calculer $\mathbb{P}(Y>n)$ puis en déduire $\mathbb{P}(Y\leq n)$ et $\mathbb{P}(Y=n)$.

3 - Reconnaître la loi de Y et en déduire que $\mathbb{E}(Y)$ existe et donner sa valeur.

Exercice 6:

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans \mathbb{N} .

On suppose que la loi du couple (X,Y) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}((X=i) \cap (Y=j)) = \frac{1}{e2^{i+1}j!}$$

- 1 Déterminer les lois de X et de Y.
- 2 Prouver que 1+X suit une loi géométrique et en déduire l'espérance ainsi que la variance de X.
- 3 Déterminer l'espérance et la variance de Y.
- 4 Les variables X et Y sont-elles indépendantes?
- 5 Calculer $\mathbb{P}(X = Y)$.