

数据分析实践

第3课. 数据预处理

兰曼

计算机科学与技术学院 华东师范大学

- Why Preprocess the Data?
- 2 Data Cleaning
- 3 Data Integration
- 4 Data Reduction
- 5 Data Transformation and Data Discretization

1 Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - o e.g., occupation=""
 - **noisy:** containing errors or outliers
 - o e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - o e.g., Age="42" Birthday="03/07/1997"
 - o e.g., Was rating "1,2,3", now rating "A, B, C"
 - o e.g., discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - O Jan. 1 as everyone's birthday?

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - O Different considerations between the time when the data was collected and when it is analyzed.
 - O Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - O Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources
 - Functional dependency violation (e.g., modify some linked data)
- **Duplicate records also need data cleaning**

Why Is Data Preprocessing Important?

- ➤ No quality data, no quality mining results!
- ➤ Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

Multi-Dimensional Measure of Data Quality

- > Measures for data quality: A multidimensional view
 - O Accuracy: correct or wrong, accurate or not
 - O Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - **Timeliness:** timely update?
 - O Believability: how trustable the data are correct?
 - O Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

- Integration of multiple databases, data cubes, or files
- > Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - O Data compression
- > Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

Forms of Data Preprocessing

2 Data Cleaning

- ➤ data in the real world is dirty: lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - o <u>incomplete:</u> lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - o e.g., *Occupation* = "" (missing data)
 - o <u>noisy:</u> containing noise, errors, or outliers
 - \circ e.g., Salary = "-10" (an error)
 - o <u>inconsistent:</u> containing discrepancies in codes or names, e.g.,
 - O Age = "42", Birthday = "03/07/2010"
 - O Was rating "1, 2, 3", now rating "A, B, C"
 - <u>Intentional</u> (e.g., disguised missing data)
 - O Jan. 1 as everyone's birthday?

How to Handle Missing Data?

- ➤ Data is not always available, missing data may need to be inferred.
- ➤ <u>Ignore the tuple:</u> usually done when class label is missing (assuming the tasks in classification)—not effective when the percentage of missing values per attribute varies considerably.
- ➤ Fill in the missing value <u>manually:</u> tedious + infeasible?
- Fill in it <u>automatically</u> with:
 - o a global constant : e.g., "unknown", a new class?!
 - o the attribute mean
 - o the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

How to Handle Noisy Data?

- **▶** Noise: random error or variance in a measured variable
- **Binning**
 - o first sort data and partition into (equal-frequency) bins
 - o then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- **Regression**
 - smooth by fitting the data into regression functions
- **Clustering**
 - O detect and remove outliers
- > Combined computer and human inspection
 - o detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

> Data discrepancy detection

- O Use metadata (e.g., domain, range, dependency, distribution)
- Check field overloading
- O Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
 - O Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - O Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

> Data migration and integration

- O Data migration tools: allow transformations to be specified
- ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface

➤ Integration of the two processes

O Iterative and interactive (e.g., Potter's Wheels)

3 Data Integration

- **▶** Data integration:
 - O Combines data from multiple sources into a coherent store
- **>** Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- **Entity identification problem:**
 - O Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- > Detecting and resolving data value conflicts
 - O For the same real world entity, attribute values from different sources are different
 - O Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- ➤ Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - O Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- ➤ Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation (viewed as linear relationship)

- ➤ Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

$$a'_{k} = (a_{k} - mean(A)) / std(A)$$

$$b'_{k} = (b_{k} - mean(B)) / std(B)$$

$$correlation(A, B) = A' \bullet B'$$

Correlation Analysis (Nominal Data)

> X^2 (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- \triangleright The larger the X^2 value, the more likely the variables are related
- The cells that contribute the most to the X^2 value are those whose actual count is very different from the expected count
- **➤** Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - O Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

2*2 Contingency table

	Play chess	Not play chess	Sum
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

- \geq Expected = count(A=a_i) * count(B=b_j) / N
- $ightharpoonup X^2$ (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

> It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numerical Data)

> Correlation coefficient (also called <u>Pearson's product moment coefficient</u>)

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_{A}\sigma_{B}} = \frac{\sum (AB) - n\overline{AB}}{(n-1)\sigma_{A}\sigma_{B}}$$

where n is the number of tuples, \overline{A} and B are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Delta(AB)$ is the sum of the AB cross-product. $-1 \le r_{AB} \le +1$

- > If $r_{A,B}$ > 0, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- > $r_{A,B} = 0$: independent;
- $ightharpoonup r_{A,B} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

4 Data Reduction

- ➤ Data reduction: Obtain a reduced representation of the data set that is much smaller in volume (thus more efficient) but yet produce the same (or almost the same) analytical results
- ➤ Why data reduction? -- A database/data warehouse may store terabytes of data. Complex data analysis/mining may take a very long time to run on the complete data set.
- **▶** Data reduction strategies
 - O Dimensionality reduction, e.g., remove unimportant features (attributes)
 - O Feature (Attribute) subset selection, feature creation
 - O Principal Components Analysis (PCA)
 - Wavelet transforms
 - Numerosity reduction (some simply call it: Data Reduction)
 - O Regression and Log-Linear Models
 - O Histograms, clustering, sampling
 - O Data cube aggregation
 - Data compression

Data Reduction 1: Dimensionality Reduction

> Curse of dimensionality

- O When dimensionality increases, data becomes increasingly sparse
- O Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- O The possible combinations of subspaces will grow exponentially

→ Dimensionality reduction

- O Avoid the curse of dimensionality
- O Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

> Dimensionality reduction techniques

- O Supervised and nonlinear techniques (e.g., feature selection)
- Principal Component Analysis
- O Wavelet transforms

(A) Attribute Subset Selection (i.e. Feature selection)

- ➤ Reduce the data set size by removing irrelevant or redundant attributes (or dimensions).
- > Redundant attributes
 - O Duplicate much or all of the information contained in one or more other attributes
 - O E.g., purchase price of a product and the amount of sales tax paid

> Irrelevant attributes

- O Contain no information that is useful for the data mining task at hand
- **E.g.**, students' ID is often irrelevant to the task of predicting students' GPA

(A) Attribute Subset Selection (i.e. Feature selection)

- ➤ How can we find a 'good' subset of the original attributes?
 - \circ For *n* attributes, there are 2^n possible subsets.
- ➤ Heuristic methods (due to exponential # of choices):
 - O Best single features under the feature independence assumption: choose by significance tests
 - Step-wise forward selection
 - The best single-feature is picked first
 - O Then next best feature condition to the first, ...
 - O Step-wise backward elimination
 - Repeatedly eliminate the worst feature
 - Best combined forward selection and backward elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Feature Selection Functions

Function	Denoted by	Mathematical form
DIA association factor	$z(t_k,c_i)$	$P(c_i \mid t_k)$
Information gain	$\mathit{IG}(t_k,c_i)$	$\sum_{c \in \{c_i, \mathcal{C}_i\}} \sum_{t \in \{t_k, f_k\}} P(t, c) \cdot \log \frac{P(t, c)}{P(t) \cdot P(c)}$
Mutual information	$MI(t_k, c_i)$	$\log \frac{P(t_k, c_i)}{P(t_k) \cdot P(c_i)}$
Chi-square	$\chi^2(t_k,c_i)$	$\frac{ Tr \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]^2}{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}$
NGL coefficient	$NGL(t_k, c_i)$	$\frac{\sqrt{ Tr } \cdot [P(t_k, c_i) \cdot P(\bar{t}_k, \bar{c}_i) - P(t_k, \bar{c}_i) \cdot P(\bar{t}_k, c_i)]}{\sqrt{P(t_k) \cdot P(\bar{t}_k) \cdot P(c_i) \cdot P(\bar{c}_i)}}$
Relevancy score	$RS(t_k, c_i)$	$\log \frac{P(t_k \mid c_i) + d}{P(\bar{t}_k \mid \bar{c}_i) + d}$
Odds ratio	$OR(t_k, c_i)$	$\frac{P(t_k \mid c_i) \cdot (1 - P(t_k \mid \bar{c_i}))}{(1 - P(t_k \mid c_i)) \cdot P(t_k \mid \bar{c_i})}$
GSS coefficient	$GSS(t_k,c_i)$	$P(t_k,c_i)\cdot P(\bar{t}_k,\bar{c}_i) - P(t_k,\bar{c}_i)\cdot P(\bar{t}_k,c_i)$

Heuristic methods for feature selection

Forward selection	Backward elimination	Decision tree induction
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
Initial reduced set: {} => $\{A_1\}$ => $\{A_1, A_4\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	=> $\{A_1, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_4, A_5, A_6\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Attribute Creation (Feature Generation)

- > Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- ➤ Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - **E.g.**, Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - O Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
 - Data discretization

Data Reduction 2: Numerosity Reduction

- > Reduce data volume by choosing alternative, smaller forms of data representation
- **▶** Parametric methods (e.g., regression)
 - O Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Example: Log-linear models obtain value at a point in m-D space as the product on appropriate marginal subspaces
- ➤ Non-parametric methods
 - O Do not assume models
 - Major families: histograms, clustering, sampling

Regression and Log-Linear Models

- **Linear regression:** Y = w X + b (w: slope, b: Y-intercept)
 - O Data modeled to fit a straight line
 - O Two regression coefficients, w and b, specify the parameters of model
 - Often uses the least squares criterion to fit the line based on the known values of

$$Y_1, Y_2, ..., X_1, X_2, ...$$

- ightharpoonup Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$.
 - o allows a response variable Y to be modeled as a linear function of multidimensional feature vector
 - O Many nonlinear functions can be transformed into the above

► Log-linear model:

- o approximates discrete multidimensional probability distributions
- Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
- Useful for dimensionality reduction and data smoothing

Histogram Analysis

Divide data into buckets and store average (sum) for each bucket

Partitioning rules:

- Equal-width: equal bucket range
- Equal-frequency (or equaldepth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- ➤ Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth later

Sampling

- > Sampling: obtaining a small sample s to represent the whole dataset N
- ➤ Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- ➤ Key principle: Choose a representative subset of the data
 - O Simple random sampling may have very poor performance in the presence of skew
 - O Develop adaptive sampling methods, e.g., stratified sampling
- ➤ Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

- **➤** Simple random sampling
 - There is an equal probability of selecting any particular item
- > Sampling without replacement
 - Once an object is selected, it is removed from the population
- **➤** Sampling with replacement
 - A selected object is not removed from the population
- Cluster sampling
 - O Group data into clusters and draw samples from each cluster
- > Stratified sampling
 - Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
 - Used in conjunction with skewed data

Sampling: with or without Replacement

Sampling: Cluster or Stratified Sampling

Data Reduction 3: Data Compression

- ➤ Data encoding or transformations are applied so as to obtain a reduced or "compressed" representation of the original data.
 - O Lossless: If the original data can be reconstructed from the compressed data without any loss of information.
 - **Lossy:** we can reconstruct only an approximation of the original data.

Data Reduction 3: Data Compression

- **►** String compression
 - O There are extensive theories and well-tuned algorithms
 - Typically lossless
 - But only limited manipulation is possible without expansion
- ➤ Audio/video compression
 - O Typically lossy compression, with progressive refinement
 - O Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- > Time sequence is not audio
 - Typically short and vary slowly with time
- ➤ Dimensionality and numerosity reduction may also be considered as forms of data compression

5 Data Transformation and Data Discretization 华东师范大学计算机科学与技术学院 School of Computer Science and Technology

Data Transformation

- ➤ A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values.
- **➤ Smoothing:** Remove noise from data
- ➤ Attribute/feature construction
 - New attributes constructed from the given ones
- > Aggregation: Summarization, data cube construction
- ➤ Normalization: scaled to fall within a small, specified range
 - o min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- **▶** Discretization: concept hierarchy climbing

Normalization

►Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

• Ex. Let *income* range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

>**Z-score normalization (zero-mean)** $v' = \frac{v - \mu_A}{\sigma_A}$

(μ : mean, σ : standard deviation):

• Ex. Let
$$\mu = 54,000$$
, $\sigma = 16,000$. Then $\frac{73,600 - 54,000}{16,000} = 1.225$

➤Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Discretization

➤ Three types of attributes

- O Nominal—values from an unordered set, e.g., color, profession
- Ordinal—values from an ordered set, e.g., military or academic rank
- O Numeric—real numbers, e.g., integer or real numbers

▶ Discretization: Divide the range of a continuous attribute into intervals

- O Interval labels can then be used to replace actual data values
- Reduce data size by discretization
- Supervised vs. unsupervised
- O Split (top-down) vs. merge (bottom-up)
- O Discretization can be performed recursively on an attribute
- O Prepare for further analysis, e.g., classification

Data Discretization Methods

- > Typical methods: All the methods can be applied recursively
 - **>** Binning
 - Top-down split, unsupervised
 - > Histogram analysis
 - O Top-down split, unsupervised
 - > Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - ➤ Decision-tree analysis (supervised, top-down split)
 - \triangleright Correlation (e.g., χ 2) analysis (unsupervised, bottom-up merge)

Simple Discretization Methods: Binning

Equal-width (distance) partitioning

- O Divides the range into N intervals of equal size: uniform grid
- o if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
- O The most straightforward, but outliers may dominate presentation
- O Skewed data is not handled well

Equal-depth (frequency) partitioning

- O Divides the range into N intervals, each containing approximately same number of samples (equal number)
- Good data scaling
- Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

> Step1: Sort & Partition

- * Sorted data for *price* (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency

(equal-depth) bins:

4 data per bin

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

- **>**Step 2: Smooth
- * Smoothing by bin means:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

- * Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels

≻(Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results

Concept Hierarchy Generation

- ➤ Concept hierarchy organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
- ➤ Concept hierarchies facilitate drilling and rolling in data warehouses to view data in multiple granularity
- ➤ Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for *age*) by higher level concepts (such as *youth*, *adult*, *or senior*)
- ➤ Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- ➤ Concept hierarchy can be automatically formed for both numeric and nominal data—For numeric data, use discretization methods shown

Concept Hierarchy Generation for Nominal Data

- > Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country</p>
- > Specification of a hierarchy for a set of values by explicit data grouping
 - {Urbana, Champaign, Chicago} < Illinois
- > Specification of only a partial set of attributes
 - O E.g., only *street < city*, not others
- ➤ Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - **E.g.**, for a set of attributes: {street, city, state, country}

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - O The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

