

Formati delle immagini mediche

Corso di «Strumentazione Diagnostica per Immagini» a.a. 2021 – 2022

Prof. Roberto Pirrone

Sommario

- Formato DICOM
 - Generalità
 - Storia
 - Modello dell'informazione
 - Modello dei dati
 - Modello della comunicazione
- Sistemi PACS, RIS, HIS
- Formato NIFTI

- DICOM (*Digital Imaging and COmmunications in Medicine*, immagini e comunicazione digitali in medicina) è uno standard che definisce i criteri per la comunicazione, la visualizzazione, l'archiviazione e la stampa di informazioni di tipo biomedico quali ad esempio immagini radiologiche (*Fonte: Wikipedia*)
- Lo <u>standard</u> è suddiviso in 18 parti che specificano i diversi aspetti relativi al formato dei dati, alla gestione dei media di storage, alla visualizzazione e così via e si estendono fino alla definizione dei servizi DICOM come Web services RESTful

Pubblico

- Consente una semplice ed efficace integrazione tra modalità diagnostiche, dispositivi/workstation di visualizzazione, server PACS (Picture Archiving and Communication System)
- E' sia un formato dati sia un protocollo applicativo che usa TCP/IP come infrastruttura di rete

Non specifica nulla circa l'architettura per implementare lo standard

- Storia
 - Sviluppato da ACR (American College of Radiology) e NEMA (National Electric Manufacturers Association)
 - 1983: ACR e NEMA formano un comitato congiunto
 - 1985: ACR-NEMA 300 «Digital Imaging and Communications» prima versione dello standard
 - 1988: ACR/NEMA V2.0
 - 1993: DICOM 3.0

- Modello dell'informazione
 - Lo standard DICOM si ispira alla *Object Oriented Programming* (OOP) per cui ogni elemento del mondo reale (il paziente, la modalità diagnostica, una immagine, etc.) è un oggetto
 - La gestione di tali oggetti è deputata ad una serie di servizi

- Modello dell'informazione
 - La coppia di un oggetto e di un servizio è detta Service Object Pair (SOP)
 - Una SOP Class fa riferimento a tutti i SOP definiti per un certo oggetto DICOM

- Modello dell'informazione
 - SOP Classes principali
 - VERIFICATION: Servizio che consente ad un dispositivo DICOM di verificare lo stato di connessione (e di funzionamento) di un altro dispositivo connesso alla rete
 - STORE: Questo servizio viene utilizzato per inviare immagini o altri oggetti persistenti (report strutturati, ecc) ad un PACS o ad una workstation.
 - STORAGE COMMITMENT: Il servizio di storage commitment viene utilizzato per confermare l'effettiva memorizzazione permanente di un'immagine su un dispositivo (sia su dischi RAID o su supporti di backup, ad esempio, masterizzazione su un CD).
 - QUERY/RETRIEVE: Consente ad una stazione di lavoro di trovare gli elenchi di immagini o altri oggetti e poi recuperarli da un PACS.

- Modello dell'informazione
 - SOP Classes principali
 - MODALITY WORKLIST: Consente ad una modalità di ottenere i dettagli dei pazienti e la worklist degli esami, per esempio prelevandoli da un Radiology Information System (RIS)
 - MODALITY PERFORMED PROCEDURE STEP (MPPS): È un servizio complementare alla Modality Worklist, questa modalità consente di inviare un report di un esame effettuato inclusi i dati sulle immagini acquisite, ora di inizio, ora di fine, e la durata di uno studio, dose somministrata (utile per fornire informazioni al reparto sulla gestione delle risorse)

- Modello dell'informazione
 - SOP Classes principali
 - PRINTING: Il servizio DICOM Print viene utilizzato per inviare le immagini ad una stampante DICOM, di solito per stampare una lastra radiografica. Esiste una calibrazione standard per tutti i dispositivi di visualizzazione
 - MEDIA STORAGE: gestione della memorizzazione su supporti di storage. Prevede la creazione di un'apposita struttura dati, su file separato, chiamata DICOMDIR che descriva l'organizzazione dei dati sul medium

- Modello dell'informazione
 - Lo standard definisce il SOP come l'unione di un *Information Object Definition* (IOD) e un *DICOM Message Service* (DIMSE)

dipartimento

- Modello dell'informazione
 - Un IOD è la specifica astratta di un oggetto del mondo reale mirata a fornire una interfaccia standardizzata alle applicazioni che manipolano le informazioni DICOM
 - Un IOD sarà caratterizzato da diversi attributi che sono logicamente raggruppati in *Information Modules* o anche *Information Object Module* (IOM)

- Modello dell'informazione principali IOM
 - Patient module
 - Name, ID, Birthdate...
 - Study module
 - Date and time, ID, Accession number...
 - Series module
 - Date and time, ID, Number of images, ...
 - Image module
 - Pixel spacing, pixel location, slice thickness...

- Modello dell'informazione
 - IOD composti: raggruppano al loro interno diverse entità correlate appartenenti al modello del mondo reale
 - IOD normalizzati: fanno riferimento a singole entità del modello del mondo reale

- Modello dell'informazione
 - Ogni oggetto DICOM è caratterizzato da un Unique ID (UID)
 - La struttura di un UID è basata sulla forma numerica dello standard OSI Object Identification (ISO 8824)
 - Ogni UID si compone di due parti, una radice (riferita alla specifica organizzazione/azienda produttrice) e un suffisso:

UID = <radice><suffisso>

• Modello dell'informazione

<radice>=1.2.840.xxxxx</radice>	<suffisso>=3.152.235.2.12.187636473</suffisso>
1: ISO	3: tipo di apparecchiatura
2: ANSI	152: numero di serie dell'apparecchiatura
840: codice ANSI per gli U.S.A.	235: studio
xxxxx: codice ANSI fornito all'organizzazione/azienda	2: serie
	12: immagine
	187636473: codifica per data e ora di acqui-
	sizione

Fonte: https://moodle2.units.it/pluginfile.php/282426/mod_resource/content/1/TRM-08-DICOM.pdf

- Modello dell'informazione
 - Un DIMSE specifica un'operazione che può essere effttuata sull'oggetto DICOM
 - Anche i DIMSE sono compositi (DIMSE-C) o normalizzati (DIMSE-N) a seconda del tipo di IOD manipolato
 - Un insieme di DIMSE compongono un servizio che, unito a un particolare IOD, crea un'istanza di una SOP Class sui dati immagine su cui agisce

• Modello dell'informazione – Esempio di SOP Class e SOP instance

Fonte: https://moodle2.units.it/pluginfile.php/282426/mod_resource/content/1/TRM-08-DICOM.pdf

- Modello dei dati
 - Le singole istanze di classi SOP vengono memorizzate su file distinti
 - Ogni file è strutturato in una intestazione, contenente metainformazione, e in un data set
 - Ogni data set è una sequenza di data element

Fonte: DICOM PS3.3 2021b - Media Storage and File Format for Media Interchange

- Modello dei dati
 - Preambolo: predisposto per esigenze applicative
 - Prefisso: stringa «DICM»
 - Header: sequenza di data element (attributi valorizzati degli IOD) raggruppati eventualmente in gruppi
 - Sequenza dei valori dei pixel, in realtà l'ultimo data element

Preamble (128 bytes)

Prefix - 'D', 'I', 'C', 'M'

Header:

Data Set

- Group 1 (0002)
 - Element 1 (0002,0000)
 - Element 2 (0002,0001)
 - Element 3...etc.
- Group 2 (0008)
- Group 3...etc.

Image Pixel Intensity Data:

Fonte: http://europepmc.org/article/PMC/3354356

- Modello dei dati
 - Ogni data element è caratterizzato da:
 - Tag: (<gruppo>, <elemento>) in 4 cifre esadecimali ciascuno che indicano le coordinate del dato
 - Value Representation (VR) in 2 byte che indica il tipo di dato: LO → Long String,
 LT → Long Text, PN → Person Name ...

Fonte: http://199.116.233.101/index.php/DICOM Structure and Interfaces

- Modello dei dati
 - Ogni data element è caratterizzato da:
 - Value Length: numero di byte di lunghezza del campo che dev'essere sempre pari secondo lo standard
 - Value Field: l'effettivo valore del dato

Fonte: http://199.116.233.101/index.php/DICOM Structure and Interfaces

Modello dei dati

```
<bound method Dataset.dir of Dataset.file meta -----</pre>
(0002, 0000) File Meta Information Group Length UL: 202
(0002, 0001) File Meta Information Version
                                                 OB: b'\x00\x01'
(0002, 0002) Media Storage SOP Class UID
                                                 UI: MR Image Storage
                                                 UI: 1.2.840.113619.2.244.6945.3969092.27569.1380867370.328
(0002, 0003) Media Storage SOP Instance UID
                                                 UI: Explicit VR Little Endian
(0002, 0010) Transfer Syntax UID
(0002, 0012) Implementation Class UID
                                               UI: 1.2.276.0.7238010.5.0.3.5.4
(0002, 0013) Implementation Version Name
                                         SH: 'OSIRIX'
(0002, 0016) Source Application Entity Title
                                                 AE: 'MINI1'
(0008, 0005) Specific Character Set
                                                 CS: 'ISO IR 100'
(0008, 0008) Image Type
                                                 CS: ['ORIGINAL', 'PRIMARY', 'OTHER']
(0008, 0016) SOP Class UID
                                                 UI: MR Image Storage
                                                 UI: 1.2.840.113619.2.244.6945.3969092.27569.1380867370.328
(0008, 0018) SOP Instance UID
(0008, 0020) Study Date
                                                 DA: '20131004'
                                                 DA: '20131004'
(0008, 0021) Series Date
                                                 DA: '20131004'
(0008, 0022) Acquisition Date
(0008, 0023) Content Date
                                                 DA: '20131004'
(0008, 0030) Study Time
                                                 TM: '090434.000000'
(0008, 0031) Series Time
                                                 TM: '090600'
(0008, 0032) Acquisition Time
                                                 TM: '090600'
(0008, 0033) Content Time
                                                 TM: '090600'
```


- Modello dei dati
 - DICOM non specifica nulla circa il formato dei dati pittorici
 - In genere si conservano in forma non compressa, ma i DICOM viewer sono in genere compatibili con pixel codificati in JPEG, JPEG Lossless, JPEG 2000 o anche Run Length Encoding (RLE)
 - Lo standard definisce anche una apposita funzione di visualizzazione dei livelli di grigio (GSDF) per mostrare le immagini in maniera omogenea sui vari device o per stamparla su lastra

- Modello della comunicazione
 - I servizi DICOM si implementano attraverso comunicazione definita su stack TCP/IP con paradigma client/server (porta 104 TCP e UDP)

SOP CLASS

SERVICE CLASS
PROVIDER
(SCP)

- Modello della comunicazione
 - I diversi dispositivi implementano diversi profili di SCU e/o SCP per differenti Service Class
 - Esempio: il dispositivo XXX supporta il CT image storage SCU e SCP, MR image storage SCU e SCP, DR image storage SCP → il dispositivo XXX può inviare e ricevere CT e MR, ma può solo ricevere radiografie digitali (DR)

- Modello della comunicazione
 - Verification Service Class SCP/SCU: Le richieste SCU verificano che SCP, se attivo, fornisce una risposta.
 - Storage Service Class SCP/SCU: Quando SCU richiede che un'immagine venga memorizzata, chiede semplicemente al SCP di ricevere l'immagine. La SCP non garantisce alcuna durata o la sicurezza della memorizzazione, ma accetta semplicemente l'immagine dal mittente.
 - Query/Retrieve Service Class SCP/SCU: In questo caso vengono offerti due servizi distinti, appunto di Query e Retrieve. Quando l'SCU invia una query (il nome del paziente, l'ID di studio, ...) relativa alle immagini che il provider ha a disposizione, l'SCP risponde con le informazioni richieste di cui dispone.

Modello della comunicazione

LABORATORIO DI INTERAZIONE UOMO-MACCHINA
CHILAB

Fonte: https://moodle2.units.it/pluginfile.php/282426/mod resource/content/1/TRM-08-DICOM.pdf

CLIENT CT SCANNER (C-STORE SCU) SERVER PACS CONTROLLER (C-STORE SCP)

Modello della comunicazione

Requests for (0) Association request establishing association Association response (0) Association granted

Requests for (9) Dropping association request dropping association Dropping association response

LABORATORIO DI INTERAZIONE UOMO-MACCHINA CHILAB

Fonte: https://moodle2.units.it/pluginfile.php/282426/mod resource/content/1/TRM-08-DICOM.pdf

- Il modello della comunicazione DICOM basato sulle coppie SCU/SCP ha dato luogo alla creazione di una classe di sistemi denominati *Picture* Archiving and Communication Systems (PACS)
- Un sistema PACS è normalmente composto da una parte di archiviazione, utilizzata per gestire dati e immagini e una di visualizzazione, che presenta l'immagine diagnostica su speciali monitor ad altissima risoluzione, sui quali è possibile effettuare la diagnosi
- I sistemi PACS più evoluti permettono anche l'elaborazione dell'immagine, come per esempio le ricostruzioni 3D

• I PACS si integrano all'interno di un ecosistema di sistemi informativi più ampio

RIS: Radiology Information System

• HIS: Hospital Information System

• RIS

- Il Radiology Information System viene utilizzato nelle Radiologie per gestire il flusso dei dati legati ai pazienti.
- Le funzionalità del RIS permettono di gestire tutta la serie di azioni o eventi, che partono dall'approccio del paziente con la struttura e terminano con la consegna del referto

- HIS
 - strumento informatico o meglio l'insieme integrato di strumenti informatici utilizzati in ambito sanitario per gestire i flussi amministrativi e clinici di un ospedale:
 - Anagrafica Centrale
 - Archivio dei referti
 - Sistema di gestione dei pazienti (Accettazione/Dimissione/Trasferimento ADT)
 - Rendiconto
 - Analisi dei costi
 - Un HIS in genere gestisce in maniera integrata due grandi strutture di dati
 - Electronic Health Record (EHR) / Cartella Clinica Elettronica (CCE): i dati clinici di cui può disporre il cittadino
 - Electronic Medical Record (EMR) / Cartella Clinica Sanitaria (CCS): i dati di proprietà del sistema sanitario.

- Integrating the Healthcare Enterprise (IHE)
 - La <u>Integrating the Healthcare Enterprise</u> (IHE) è una organizzazione no profit che collabora con le varie istituzioni internazionali legate alla sanità per promuovere l'adozione di standard informatici unificati per la condivisione di informazioni
 - Lo scambio di informazioni tra HIS, RIS e PACS corrisponde ad un particolare *Profilo di Integrazione* (ovvero uno scenario standardizzato) denominato *Scheduled Workflow* e definito da IHE

• IHE

Sistemi PACS, RIS, HIS

• IHE

Sistemi PACS, RIS, HIS

- Health Level 7 (HL7)
 - HL7 è una organizzazione no profit che si occupa di gestire standard per la sanità
 - Per estensione il nome è stato dato ad alcuni standard internazionali da essa definiti per il trasferimento di dati clinici e amministrativi tra applicazioni software usate dalle organizzazioni sanitarie
 - «Level 7» è una metafora per il livello applicativo dello standard ISO/OSI che definisce la comunicazione tra applicazioni su rete
 - Lo IHE Structured Workflow prevede una comunicazione tra PACS, RIS e HIS che utilizza HL7

- Il formato NIFTI (Neuroimaging Informatics Technology Initiative) è stato sviluppato come supporto per la descrizione di immagini e volumi per il neuroimaging
 - Pensato principalmente per scansioni di Risonanza Magnetica
- Lo standard è stato definito nel 2003 dal comitato denominato Data Format Working Group (DFWG) riunitosi presso il National Institute of Health (NIH)
- Sostituisce il precedente standard ANALYZE ed è pensato per rappresentare i dati in un sistema di riferimento pensato per l'imaging neurologico piuttosto che radiologico

- In medicina si possono considerare tre sistemi di coordinate:
 - Sistema di Coordinate Mondo
 - Sistema di Coordinate Anatomico
 - Sistema di coordinate Immagine

Fonte: https://www.slicer.org/wiki/Coordinate systems

- Sistema di coordinate anatomico:
 - Piano assiale: separa la parte inferiore (I) da quella superiore (S) del corpo
 - Piano Coronale: separa anteriore (A) da posteriore (P)
 - Piano Sagittale: separa destra (R) da sinistra (L)

Fonte: https://www.slicer.org/wiki/Coordinate systems

- Sistema di coordinate anatomico:
 - RAS (Right, Anterior, Superior) esprime la vista «radiologica» di fronte e dai piedi
 - LPS (Left, Posterior, Superior) esprime la vista «neurologica» da dietro

Fonte: https://www.slicer.org/wiki/Coordinate systems

- Il formato NIFTI nasce per gestire anche sequenze di volumi di dati, acquisite lungo un certo intervallo di tempo
- Fornisce informazioni dettagliate sulla posizione spaziale dei voxel e sulla trasformazione affine cui il volume è soggetto
- Riferimenti:
 - https://brainder.org/2012/09/23/the-nifti-file-format/
 - https://www.nitrc.org/docman/view.php/26/204/TheNIfTI1Format2004.pdf

- Estensione .nii ovvero .nii.gz poiché il dato può essere compresso usando gzip e il formato compresso viene decompresso in pipeline all'apertura del file
- Un file NIFTI è composto da un header e dall'immagine vera e propria
 - Riunisce i due file .hdr e .img che costituivano il dato ANALYZE
 - Lo header ha una dimensione di 348 B (NIFTI-1) ovvero 540 B (NIFTI-2) se contiene una serie di informazioni, ciascuna con il suo tipo, che fanno riferimento alla dimensione e al tipo del dato, alle dimensioni fisiche spazio/temporali della scansione e alla eventuale trasformazione affine cui è soggetto il volume di dati

- Principali campi dello header
 - short dim[8]: informazioni sulle dimensioni
 - dim[0]: dimensioni del dato in (1-7); se non appartiene a questo intervallo, i dati hanno *endianess* opposta al sistema che li legge e l'ordine dei loro byte va invertito
 - dim[1-4]: dimensioni spaziali e temporali (x, y, z, t) della sequenza acquisita
 - dim[5]: dimensioni del dato conservato in ogni voxel
 - dim[6-7]: analoghi a dim[5], in genere non usati

- Principali campi dello header
 - short intent_code: codice numerico che indica ciò che il dato dovrebbe contenere
 - float intent_p*: tre parametri che indicano valori che valgono per l'intero volume di dati, altrimenti i dati a livello di voxel sono conservati nella quinta dimensione del volume
 - char intent_name[16]: descrizione esplicita del contenuto

- Principali campi dello header
 - short datatype: codice numerico che esprime il tipo del dato per singolo pixel/voxel
 - short bitpix: numero di bit per voxel; deve essere quello richiesto dal codice espresso da datatype
 - float cal_min, float cal_max: gamma dinamica per il display di contenuti scalari

- Principali campi dello header
 - char dim_info: codifica in un byte la direzione di codifica della frequenza, della fase e la direzione di scansione
 - short slice_start, short slice_end, float slice_duration: informazioni sul numero di slice della scansione e sulla durata di ogni acquisizione di una slice
 - char slice_code: indica l'ordinamento (crescente/decrescente e interallacciato) delle slice

- Principali campi dello header
 - float pixdim[8]: dimensioni dei voxel sulle diverse direzioni; il comportamento è analogo a dim[8]
 - char xyzt_units: unità di misura spaziali e temporali per pixdim[1-4]:
 - bit 0-2: unità di misura spaziali
 - bit 3-5: unità di misura temporali
 - bit 6-7: non usati
 - Es. codice $10 \rightarrow |00|01|010|$ cioè codice 8 temporale (sec.) e 2 spaziale (mm)

- Principali campi dello header
 - Orientamento dei voxel nello spazio Metodo 1: scaling diretto delle posizioni dei voxel

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} i \\ j \\ k \end{bmatrix} \odot \begin{bmatrix} \operatorname{pixdim}[1] \\ \operatorname{pixdim}[2] \\ \operatorname{pixdim}[3] \end{bmatrix}$$

Compatibilità con ANALYZE, non usato

- Principali campi dello header
 - Orientamento dei voxel nello spazio Metodo 2: rotazione tramite quaternione
 - short qform code > 0 (valori ammessi: 0, 1, 2)
 - float quatern_b, float quatern_c, float quatern_d rappresentano i coefficienti di un quaternione unitario di rotazione espresso come (a, b, c, d) per cui $a = \sqrt{(1 b^2 c^2 d^2)}$
 - float q_fac ovvero pixdim[0] contengono il fattore di scala q usato nel calcolo dell'effettiva rotazione che dev'essere 1 o -1

- Principali campi dello header
 - Orientamento dei voxel nello spazio Metodo 2: rotazione tramite quaternione

$$\mathbf{R} = \begin{bmatrix} a^2 + b^2 - c^2 - d^2 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & a^2 + c^2 - b^2 - d^2 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & a^2 + d^2 - b^2 - c^2 \end{bmatrix}$$

- Principali campi dello header
 - Orientamento dei voxel nello spazio Metodo 3: uso esplicito di una trasformazione affine
 - short sform_code è il codice, in questo caso diverso da 0, di allineamento del volume con un sistema di coordinate o atlante anatomico

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \operatorname{srow_x[0]} & \operatorname{srow_x[1]} & \operatorname{srow_x[2]} & \operatorname{srow_x[3]} \\ \operatorname{srow_y[0]} & \operatorname{srow_y[1]} & \operatorname{srow_y[2]} & \operatorname{srow_y[3]} \\ \operatorname{srow_z[0]} & \operatorname{srow_z[1]} & \operatorname{srow_z[2]} & \operatorname{srow_z[3]} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} i \\ j \\ k \\ 1 \end{bmatrix}$$

