(Math 104) objects => real # functions designed over R will talk about completeness axioms 52 is not rational # 1 To not converge if we only consider Q Some Series such as 1-2+1/4+1/5- ... converges Some Series such as It tt tt + ... not converge * fil => check continuous differentiable, integrable. Fundamental Theorem of calculus * Seguence of functions Sex) fifz, -, In converge f Spointwise uniform I find the existence of f. $N \Rightarrow N \text{ atural number} = \{1,2,3,--3\}$ Jet does not have to be infinite. $\int = \{ x \in N | x = y^2 \text{ for Some yeN} \} = \{ 1, 4, 9, 16, \dots \}$ $= \{ x \mid x \in N \text{ and } x = y^2 \text{ for Some yeN} \}$

Speano axioms = For each nEN, there is a Unique sucessor called n+1.

3 There is no number n such that 1 is the successor of n. AIT S is a subset of N st. a) IES and 6) if nes, then n+1es, then S=N. (Mathematical induction) Suppose you have Pifa. I ph's are true? Steps => 1) check P1 2) Assume that Pn is true, and check that Pn+1 is also true. Then, all Pn are true. ex) Show that for each neN \

1+3+5+ -- + (2n+1) = (n+1)^2 (*) Sol 1) Sol 2) P1: (*) when n=1 Assume p_n is true where (*) $n = n_1$ and we want to show that p_{n+1} is also true. So, assume p_n is true where p_n and p_n are p_n and p_n and p_n and p_n and p_n and p_n and p_n are p_n and p_n and p_n and p_n are p_n and p_n and p_n and p_n are p_n are p_n and p_n are p_n are p_n and p_n are p_n are p_n are p_n and p_n are p_n are p_n are p_n and p_n are p_n are By assumption $(n+1)^2 + (2n+3) = (n+2)^2$ So, check, n2+2n+1+2n+3=n2+4n+4.

The	cretore by induction In is true for all neN.
	ow that for every neN Sin nx = n Sinx or every XER.
701)	113 Jin 1-X = 11/1X For all XEX
P	2 => Sinzx = 2 Sinx for all xCER
Piss As	obviously true. sume that Pn is true, we need to show Pn+1
15	Mrs Croc.
Assum	$\frac{ Sinnx \leq n Sinx \text{ for } \forall x \in R, need to}{w Sin(n+1) \times \leq (n+1) Sinx \forall x \in R}$
1	(x+x) = sinnx.cosx + cosnx.sinxc trig identity
John Chi	< Sin nx. cosx/+ / cosnx. Sinx) triangular quality
	= Sinnx cosx + Sinx cosnx) //
	$\leq Sinnx + Sinx $ $\leq n Sinx + Sinx = (n+1) Sinx $
	:, proved.