Summary of tight lower bounds for divergences

P, Q: Probability distributions on real line with given means and variances.

$$R_P \coloneqq \frac{\sqrt{\operatorname{Var}[X]_P}}{\left|\operatorname{E}[X]_P - \operatorname{E}[Y]_Q\right|}, \qquad R_Q \coloneqq \frac{\sqrt{\operatorname{Var}[Y]_Q}}{\left|\operatorname{E}[X]_P - \operatorname{E}[Y]_Q\right|}, \quad \text{where } X \sim P \text{ and } Y \sim Q.$$

Divergence	Lower bound	Equality condition
KL-divergence $^{[1]}$ $\sum p_i \ln rac{p_i}{q_i}$	$\int_0^1 \frac{\lambda}{(1-\lambda)R_P^2 + \lambda R_Q^2 + \lambda(1-\lambda)} d\lambda$	2-point distributions
χ^2 -divergence $\frac{\sum (p_i - q_i)^2}{q_i}$	$\frac{1}{R_Q^2}$ (Hammersley–Chapman–Robbins bound)	2-point distributions
Squared Hellinger distance ^[2] $\frac{1}{2}\sum(\sqrt{p_i}-\sqrt{q_i})^2$	$1 - (R_P + R_Q) \sqrt{\frac{1}{(R_P + R_Q)^2 + 1}}$	2-point distributions
Total variation distance ^[3] $\frac{1}{2}\Sigma p_i-q_i $	$\frac{1}{\left(R_P + R_Q\right)^2 + 1}$	3-point distributions

^{[1] &}quot;On Relations Between the Relative Entropy and χ^2 -Divergence, Generalizations and Applications."

^[2] arXiv [2105.12972]

^[3] arXiv [2212.05820]