Lecture 22: Constrained Subgradient Methods

Niao He

1st May 2019

Niao He

Constrained
Convex Problems

Constrained Subgradient Method Algorithm

Convergence Proof

Method

Lower Bound Complexity

Outline

Constrained Convex Problems

Constrained Subgradient Method Algorithm Convergence Proof

Constrained Level Method

Lower Bound Complexity

Niao He

Constrained Convex Problems

Subgradio Method Algorithm

Proof
Constrained L

Method

Complexity

Recap: Simple Constrained Convex Problems

min
$$f(x)$$

s.t. $x \in X$

Subgradient Method

$$x_{t+1} = \Pi_X(x_t - \gamma_t g_t), \quad g_t \in \partial f(x_t)$$

Problem Class	Stepsize	Convergence
Convex Lipschitz	$O(\frac{1}{\sqrt{t}})$	$O(\frac{D_X M_f}{\sqrt{t}})$
Strongly Convex Lipschitz	$O(\frac{1}{\mu t})$	$O(\frac{M_f^2}{\mu t})$

Bundle Methods

- Kelley method
- ► Level-set method

Niao He

Constrained Convex Problems

Constraine Subgradier Method Algorithm

Constrained Leve

Lower Boun Complexity

General Constrained Convex Problems

We will focus on the general convex problem:

$$\min_{x \in X} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, \dots m$

Assumptions

- ► X is simple and admits easy-to-compute projections
- ▶ First-order oracles for $f_0(x)$, $f_i(x)$ are available

Note $f_0(x)$, $f_i(x)$ are not necessarily differentiable or smooth

Niao He

Constrained Convex Problems

Constrained Subgradient Method Algorithm

Constrained Leve

Lower Bound

Problem Reformulation

The problem can be rewritten as

$$\min_{x \in X} f_0(x)$$
s.t. $f(x) \le 0$ (P)

where

$$f(x) = \max_{1 \le i \le m} f_i(x).$$

Remark. We can easily compute the subgradient for f(x).

Niao He

Constrained Convex Problems

Constrained Subgradient Method Algorithm

Constrained Leve

Lower Bound

Problem Reformulation

The problem can be rewritten as

$$\min_{x \in X} f_0(x)
s.t. $f(x) \le 0$ (P)$$

where

$$f(x) = \max_{1 \le i \le m} f_i(x).$$

Remark. We can easily compute the subgradient for f(x).

So how to solve (P) given access to $f'_0(f)$, f'(x)?

Niao He

Constrained
Convex Problems

Constrained Subgradient Method

Algorithm

Convergence Proof

Constrained Leve Method

Lower Bound

Constrained Subgradient Method

- 0. Initialize $x_1 \in X$
- 1. For $t \ge 1$, compute

$$g_t = \begin{cases} f_0'(x_t), & \text{if } f(x_t) < \gamma_t || f'(x_t) ||_2 \\ f'(x_t), & \text{if } f(x_t) \ge \gamma_t || f'(x_t) ||_2 \end{cases}$$

$$x_{t+1} = \Pi_X(x_t - \gamma_t \frac{g_t}{\|g_t\|_2})$$

Niao He

Constrained
Convex Problems

Constrained Subgradient

Algorithm

Convergence Proof

Constrained Leve

Lower Bound Complexity

Convergence of Constrained Subgradient Method

Theorem. Let f_0 and f be Lipschitz continuous with constant $M_{f_0} > 0$ and $M_f > 0$. Let D_X be the diameter of the set X such that $\forall x, y \in X, \|x - y\|_2 \leq D_X$. Set the stepsize $\gamma_t = \frac{D_X}{\sqrt{t + 0.5}}$. We have, for any $T \geq 3$,

$$\min_{1 \le t \le T} f_0(x_t) - f_0^* \le \frac{\sqrt{3}D_X M_{f_0}}{\sqrt{T - 1.5}}$$

$$\min_{1 \le t \le T} f(x_t) \le \frac{\sqrt{3}D_X M_f}{\sqrt{T - 1.5}}$$

Niao He

Constrained Convex Problems

Constrained Subgradient Method

Algorithm

Convergen Proof

Constrained Le

Lower Bound Complexity

Proof of Convergence

First, we have

$$||x_{t+1} - x^*||_2^2 \le ||x_t - x^*||_2^2 - 2\gamma_t \underbrace{\frac{g_t'(x_t - x^*)}{||g_t||_2^2}}_{\nu_t} + \gamma_t^2$$

Define

$$I = \{t \in [\frac{T}{3}, T] : g_t = f'_0(x_t)\}$$
$$I^c = \{t \in [\frac{T}{3}, T] : g_t = f'(x_t)\}$$

▶ For $t \in I^c$, $\nu_t \ge \gamma_t$. This is because

$$f'(x_t)^T(x_t - x^*) \ge f(x_t) - f(x^*) \ge f(x_t) \ge \gamma_t ||f'(x_t)||_2$$

Niao He

Constrained
Convex Problems

Constrained Subgradient Method

Algorithm Convergence

Convergen Proof

Constrained Leve Method

Lower Bound Complexity

Proof of Convergence (cont'd)

- ▶ Claim: There exists $t^* \in I$, such that $\nu_{t^*} < \gamma_{t^*}$.
 - ▶ Otherwise, suppose $\nu_t \ge \gamma_t, \forall t \in I$. Then

$$||x_{t+1} - x^*||_2^2 \le ||x_t - x^*||_2^2 - \gamma_t^2, \forall t \in [\frac{T}{3}, T].$$

► This implies that

$$\sum_{t=\lfloor T/3\rfloor}^T \gamma_t^2 \le D_X^2.$$

On the other hand,

$$\sum_{t \in T(2)} \gamma_t^2 \ge D_X^2 \int_{T/3}^{T-1} \frac{1}{t - 0.5} dt = D_X^2 \ln 3 > D_X^2.$$

Niao He

Constrained

Constrained Subgradient

Algorithm

Converge

Proof

Constrained Leve Method

Lower Bound

Proof of Convergence (cont'd)

▶ Since $\nu_{t^*} < \gamma_{t^*} \le \gamma_{|T/3|}$, we have

$$f_0(x_{t^*}) - f_0^* \le f_0'(x_{t^*})^T (x_{t^*} - x^*) \le \nu_{t^*} \|g_{t^*}\|_2 \le \frac{\sqrt{3}D_X M_{f_0}}{\sqrt{T - 1.5}}.$$

▶ Since $t^* \in I$, we have

$$f(x_{t^*}) \le \gamma_{t^*} \|f'(x_{t^*})\|_2 \le \frac{\sqrt{3}D_X M_f}{\sqrt{T - 1.5}}$$

Niao He

Constrained
Convex Problems

Subgradie Method Algorithm Convergence

Constrained Level Method

Lower Bound Complexity

Constrained Convex Problem

Constrained Convex Problem:

$$\min_{x \in X} f_0(x)$$
s.t. $f(x) \le 0$ (P)

with optimal value being $\alpha^* := \operatorname{Opt}(P)$.

Parametric Function: Define

$$\Phi(x; \alpha) = \max\{f_0(x) - \alpha, f(x)\}\$$

$$\phi(\alpha) = \min_{x \in X} \Phi(x; \alpha)$$

Note that $\phi(\alpha)$ is a one-dimensional function.

Niao He

Constrained Convex Problems

Constraine Subgradier

Algorithm

Convergen Proof

Constrained Level Method

Lower Boun Complexity

Properties

Lemma. The following results hold:

- $1. \ \phi(\alpha^*) = 0$
- 2. $\phi(\alpha) \leq 0, \forall \alpha \geq \alpha^*$.
- 3. $\phi(\alpha) > 0, \forall \alpha < \alpha^*$
- 4. $\phi(\alpha) \beta \le \phi(\alpha + \beta) \le \phi(\alpha), \forall \beta \ge 0.$

Remark.

- $\phi(\alpha)$ is non-increasing, 1-Lipschitz continuous, and convex.
- The smallest root of function $\phi(\alpha)$ corresponds to the optimal value of (P).
- Procedures for finding the root: Bisection, Newton's method, etc.

Niao He

Constrained
Convex Problems

Constrained Subgradien Method Algorithm

Constrained Level Method

Lower Boun Complexity

Generic Two-stage Scheme

- 0. Initialize α_1
- 1. For i = 1, ..., N
 - ► (Approximately) solve the subproblem:

$$\min_{x \in X} \left\{ \Phi(x; \alpha_i) := \max\{f_0(x) - \alpha_i, f(x)\} \right\}$$

through some subgradient routines (e.g., subgradient method, bundle methods)

▶ Update $\alpha_i \rightarrow \alpha_{i+1}$ through some route-finding procedure (e.g., approximate Newton step)

Remark. Total number of complexity is expected to be

$$O\left(\frac{1}{\epsilon^2}\log(\frac{1}{\epsilon})\right)$$
.

Niao He

Constrained
Convex Problems

Constrained Subgradient Method Algorithm

Constrained Level Method

Lower Bound Complexity

Constrained Level Method

Model:

$$f_{0,t}(x) = \max_{1 \le i \le t} \left\{ f_0(x_i) + f'_0(x_i)^T (x - x_i) \right\}$$

$$f_t(x) = \max_{1 \le i \le t} \left\{ f(x_i) + f'(x_i)^T (x - x_i) \right\}$$

$$\Phi_t(x; \alpha) = \max \{ f_{0,t}(x) - \alpha, f_t(x) \}$$

$$\phi_t(\alpha) = \min_{x \in X} \Phi_t(x; \alpha)$$

Model's Smallest Root:

$$\alpha_t^* := \min\{\alpha : \phi_t(\alpha) = 0\} = \min_{x \in X} \{f_{0,t}(x) : f_t(x) \le 0\}$$

Remark.

Niao He

Constrained Convex Problems

Subgradie Method Algorithm

Constrained Level Method

Lower Bound Complexity

Constrained Level Method

- 0. Initialize $\alpha_1 < \alpha^*, \kappa \in (0, 1/2)$
- 1. For i = 1, ..., N
 - ► Run Level-set Method to solve $\min_{x \in X} \Phi(x; \alpha_i)$ and generate $\{x_\tau\}_{\tau=1}^t \in X$ until

$$\min_{\substack{x \in X}} \Phi_t(x; \alpha_i) \ge (1 - \kappa) \underbrace{\min_{\substack{1 \le \tau \le t \\ \text{model's record value}}} \Phi_t(x_\tau; \alpha_i)$$

- ightharpoonup Set t(i) = t
- ► Terminate if $\min_{1 < \tau < t} \Phi_t(x_\tau; \alpha_i) \le \epsilon$
- ▶ Otherwise, set $\alpha_{i+1} = \alpha_{t(i)}^*$

Niao He

Constrained Level Method

Complexity of Constrained Level Method

Number of master steps is at most

$$N(\epsilon) \leq \frac{1}{\ln(2-2\kappa)} \ln \frac{t^* - t_0}{(1-\kappa)\epsilon}$$

Number of Level Method iterations at each step is at most

$$t(i) \le \frac{D_X^2 M_f^2}{\kappa^2 \epsilon^2 (1 - \alpha)^2 \alpha (2 - \alpha)}$$

Niao He

Constrained
Convex Problems

Method
Algorithm
Convergence

Constrained Level

Lower Bound Complexity

Lower Bound Complexity

Theorem. (Nemirovski & Yudin, 1979) For any $1 \le t \le n$, $x_1 \in \mathbb{R}^n$, there exists a M-Lipschitz continuous convex function f and a convex set X with diameter D_X , such that for any first-order algorithm that generates:

$$x_{t+1} \in x_1 + span(g_1, ..., g_t)$$

where $g_i \in \partial f(x_i)$, we always have

$$\min_{1\leq s\leq t} f(x_s) - f_* \geq \frac{D_X M_f}{(1+\sqrt{t})}$$

Niao He

Constrained Convex Problems

Subgradie Method Algorithm Convergence

Constrained Leve Method

Lower Bound Complexity

Lower Bound Complexity

Theorem. (Nemirovski & Yudin, 1979) For any $1 \le t \le n$, $x_1 \in \mathbb{R}^n$, there exists a μ -strongly convex, M-Lipschitz continuous function f and a convex set X, for any first-order method that generates

$$x_{t+1} \in x_1 + span(g_1, ..., g_t)$$

where $g_i \in \partial f(x_i)$, we always have

$$\min_{1\leq s\leq t} f(x_s) - f_* \geq \frac{M^2}{8\mu t}$$

Niao He

Constrained
Convex Problems

Constrained Subgradient Method Algorithm

Constrained Lev

Lower Bound Complexity

Worse-case Example

Consider the problem $\min_{x \in X} f(x)$ where

$$f(x) = C \cdot \max_{1 \le i \le t} x_i + \frac{\mu}{2} ||x||_2^2,$$
$$X = \{x \in \mathbb{R}^n : ||x||_2 \le R := D_X/2\}$$

► The subdifferential set of function *f* :

$$\partial f(x) = \mu x + C \cdot \mathsf{Conv}\{e_i : i \text{ that } x_i = \max_{1 \le i \le t} x_j\}$$

- Oracle example: Given an input x, it returns $g = C \cdot e_i + \mu x$, with $i = \min\{i : x_i = \max_{1 \le j \le t} x_j\}$.
- ▶ The optimal solution and optimal value:

$$x_{*i} = \left\{ \begin{array}{ll} -\frac{\mathcal{C}}{\mu t} & 1 \leq i \leq t \\ 0 & t < i \leq n \end{array} \right. \text{ and } f_* = -\frac{\mathcal{C}^2}{2\mu t}.$$

Niao He

Constrained
Convex Problems

Constrained Subgradient Method

Algorithm Convergence Proof

Constrained Leve Method

Lower Bound Complexity

Worst-case Example

- ▶ W.I.o.g., set $x_1 = 0$.
- ▶ By induction, we can show that $x_t \in span(e_1, ..., e_{t-1})$.
- ▶ This implies for $1 \le s \le t$, $f(x_s) \ge 0$.

$$\min_{1\leq s\leq t} f(x_s) - f_* \geq \frac{C^2}{2\mu t}.$$

If $C = \frac{M\sqrt{t}}{1+\sqrt{t}}$, $\mu = \frac{M}{R(1+\sqrt{t})}$, then f(x) is M-Lipschitz continuous. Moreover,

$$\min_{1 \le s \le t} f(x_s) - f_* \ge \frac{C^2}{2\mu t} = \frac{MD_X}{4(1 + \sqrt{t})}$$

If $C = \frac{M}{2}$, $\mu = \frac{M}{2R}$, then f(x) is M-Lipschitz continuous and μ -strongly convex. Moreover,

$$\min_{1 \le s \le t} f(x_s) - f_* \ge \frac{C^2}{2\mu t} = \frac{M^2}{8\mu t}$$

Niao He

Constrained
Convex Problems

Constrained Subgradient Method

Convergence

Constrained Leve

Lower Bound Complexity

References

► Nesterov (2004), Chapter 3.2-3.3