CS5340: Uncertainty Modeling in AI

Tutorial 1

Released: Jan 14, 2024

Problem 1. (Two Numbers Game)

Consider the following game involving two teams:

Team 1:

- 1. Pick 2 different numbers between 0 and 10, inclusive.
- 2. Write each number on a piece of paper each.
- 3. Turn the papers face down.

Team 2: Objective is to pick the larger number.

- 1. Pick one of the pieces of paper.
- 2. Have a peek at the number.
- 3. Decides to keep the number or switch.

Problem 1.a. Can Team 2 win more than 50% of the time? If so, what should their strategy be?

Problem 1.b. How can Team 1 minimize the win percentage of Team 2?

Problem 2. (Legal Reasoning)

(Source: Kevin Murphy, Machine Learning, Chapter 2. Original Source: Peter Lee)

Suppose a crime has been committed and blood is found at a scene. The blood type is present in only 1% of the population. The prosecutor claims: "There is a 1% chance that the defendant would have the crime blood type if he were innocent. Thus, there is a 99% chance that he is guilty!" Is the prosecutor correct? If not, what is wrong with this argument?

 Hint : Let the event 'person has blood of this type' and event B be the event 'person is innocent'.

Problem 3. (Conjugate Distributions)

Problem 3.a. (*Beta-Binomial*) Show that the Beta distribution is conjugate to the Binomial distribution. Suppose we have $x \sim \text{Bin}(n, \pi), \pi \sim \text{Beta}(\alpha, \beta)$, then

$$p(x|n,\pi) = \binom{n}{x} \pi^x (1-\pi)^{n-x}$$
(1)

$$p(\pi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \pi^{\alpha-1} (1-\pi)^{\beta-1}$$
(2)

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$
 (3)

Problem 3.b. (Normal with unknown mean, Challenge) Show that the (univariate) Normal distribution is conjugate to the (univariate) Normal distribution with unknown mean, but known variance. Let the known variance be σ^2 and denote the observed data $\{x_1, \ldots, x_n\}$ as \mathcal{X} . The prior and likelihood distributions are given by

$$p(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}$$
 (4)

$$p(\mathcal{X}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\}$$
 (5)

Problem 4. (Variance of a Sum)

(Source: Kevin Murphy, Machine Learning, Chapter 2.)

We learnt that the expectation of a sum is equal to the sum of the expectations. In this exercise, we consider the variance:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Show that the variance of a sum of two random variables is:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathrm{Cov}[X,Y]$$

where Cov[X, Y] is the covariance of X and Y,

$$Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

 $\it Extra:$ What happens to the variance sum formula above when the random variables $\it X$ and $\it Y$ are independent?