# 成本效率的分解 Decomposition of cost efficiency

在线视频+DVD播放+现场培训 专注软件学习(www.peixun.net)



## 1.实际成本的分解

- □ Tone and Tsutsui (2004)发展了一种把实际成本分解成两部分的和:最小成本(最优成本)+投入无效率的损失
- □ 进一步,投入无效率的损失再分解为三个部分: 投入技术无效率+价格无效率+配置无效率





## (1) 缘于技术无效率的损失

设n个DMU,m个投入生产s个产出,特定DMU的投入、产出和投入价格为( $x_0,y_0,c_0$ ),则实际的投入成本为:

$$C_o = \sum_{i=1}^m c_{io} x_{io}. \ (o = 1, \dots, n)$$

对于传统成本效率的生产可能性集P,

$$P = \{(x, y) | x \ge X\lambda, \ y \le Y\lambda, \ \lambda \ge 0\}$$

运行CCR—I,得到DMU<sub>0</sub>的最优投入量 $x*_0$ , DMU<sub>0</sub>的最优成本为  $C_o^* = \sum_{i=1}^m c_{io} x_{io}^*$ . (o = 1, ..., n) ,则缘于技术无效率

的损失为 
$$L_o^* = C_o - C_o^* (\geq 0)$$



#### 缘于技术无效率的损失软件运行步骤

- (1.1) 计算每个DMU的实际投入成本,cx,即 $C_0$ ;
- (1.2) 把价格删除,得到仅有投入数量和产出数量的数据,运行
- CCR-I模型,得到DMU最优投入x\*,乘以实际价格c,得到 $C^*$ 
  - (1.3) 即可得到 $L_o^*$





# (2) 缘于投入价格无效率的损失

构造一个新生产可能性集  $\overline{P}_c = \{(\overline{x}, y) | \overline{x} \geq \overline{X}\lambda, y \leq Y\lambda, \lambda \geq 0\}$ 

$$\overline{X} = (\overline{x}_1, \dots, \overline{x}_n) \in R^{m \times n}, \ \overline{x}_j = (\overline{x}_{ij}, \dots, \overline{x}_{mj}) \ \overline{x}_{ij} = c_{ij} x_{ij}^*$$

注意到  $x_i^*$  是指有效的投入数量,用它乘以实际价格得到  $\overline{x}_{ij} = c_{ij}x_{ij}^*$ 把价格删除,得到一个新数据集,运行CCR—I,即下式

$$\begin{array}{ll} [\text{NTech-2}] & \rho^* = \min_{\rho, \boldsymbol{\mu}, \boldsymbol{t}^-, \boldsymbol{t}^+} \rho \\ \text{subject to} & \rho \overline{\boldsymbol{x}}_o = \overline{\boldsymbol{X}} \boldsymbol{\mu} + \boldsymbol{t}^- \\ & \boldsymbol{y}_o = \boldsymbol{Y} \boldsymbol{\mu} - \boldsymbol{t}^+ \\ & \boldsymbol{\mu} \geq \boldsymbol{0}, \ \boldsymbol{t}^- \geq \boldsymbol{0}, \ \boldsymbol{t}^+ \geq \boldsymbol{0} \end{array}$$

最优值为 
$$(\rho^*, \mu^*, t^{-*}, t^{+*})$$
 目标值为

$$\overline{\boldsymbol{x}}_{o}^{*} = \rho^{*} \overline{\boldsymbol{x}}_{o} - \boldsymbol{t}^{-*}, \ \boldsymbol{y}_{o}^{*} = \boldsymbol{y}_{o} + \boldsymbol{t}^{+*}$$
则定义

$$C_o^{**} = \sum_{i=1}^m \overline{x}_{io}^* = \sum_{i=1}^m (\rho^* \overline{x}_{io} - t_{io}^{-*})$$

$$L_o^{**} = C_o^* - C_o^{**} (\ge 0).$$

则缘于价格无效率的损失  $L_o^{**} = C_o^* - C_o^{**} (\geq 0)$ . 专注软件学习(www.peixun.net)

#### 缘于价格无效率的损失软件运行步骤

- (1.1) 删除价格的数据集CCR—I, 得到DMU最优投入x\*,
- (1.2)乘以实际价格c,得到 $\bar{x}_{ij} = c_{ij}x_{ij}^*$ ,把其和产出数据构成的新数据集运行CCR—I,用得到的(技术效率值\*投入-slacks)求和,
  - (1.3) 和即为C\*\*
  - (1.4) C\*-C\*\*=L\*\*, 称作缘于价格无效率的损失





## (3)缘于配置无效率的损失

使用价格无效率的生产可能性集, 求解下列成本效率

$$[NCost-2] C_o^{***} = \min_{\overline{x}, \mu} e \overline{x}$$
subject to  $\overline{x} \ge \overline{X} \mu$ 

$$y_o \le Y \mu$$

$$\mu \ge 0.$$

从成本效率的目标projection中得到每个DMU的最优成本,即生产需要的最小成本C\*\*\*

则配置效率=  $\alpha^* = \frac{C_o^{***}}{C_o^{**}}$ 

缘于配置无效率损失

$$L_o^{***} = C_o^{**} - C_o^{***} (\ge 0)$$



#### 下列关系成立

 $L_o^* = C_o - C_o^* (\geq 0)$  Loss due to Technical Inefficiency  $L_o^{**} = C_o^* - C_o^{**} (\geq 0)$  Loss due to Price Inefficiency  $L_o^{***} = C_o^{**} - C_o^{***} (\geq 0)$  Loss due to Allocative Inefficiency  $C_o = L_o^* + L_o^{**} + L_o^{***} + C_o^{***}$ .

$$C^{***}/C = \text{cost efficiency (CE)}$$

$$C^*/C$$
 = technical efficiency (TE)

$$C^{**}/C^* = \text{price efficiency (PE)}$$

$$C^{***}/C^{**}$$
 = allocative efficiency (AE)

$$CE = TE \times PE \times AE$$



## 分解的例子及步骤

| DMU | (I)Doctor | (C)Doctor | (I)Nurse | (C)Nurse | (O)Outpat. | (O)Inpat. |
|-----|-----------|-----------|----------|----------|------------|-----------|
| Α   | 20        | 500       | 151      | 100      | 100        | 90        |
| В   | 19        | 350       | 131      | 80       | 150        | 50        |
| С   | 25        | 450       | 160      | 90       | 160        | 55        |
| D   | 27        | 600       | 168      | 120      | 180        | 72        |
| Е   | 22        | 300       | 158      | 70       | 94         | 66        |
| F   | 55        | 450       | 255      | 80       | 230        | 90        |
| G   | 33        | 500       | 235      | 100      | 220        | 88        |
| Н   | 31        | 450       | 206      | 85       | 152        | 80        |
| - 1 | 30        | 380       | 244      | 76       | 190        | 100       |
| J   | 50        | 410       | 268      | 75       | 250        | 100       |
| K   | 53        | 440       | 306      | 80       | 260        | 147       |
| L   | 38        | 400       | 284      | 70       | 250        | 120       |





#### 第一步,缘于技术效率的成本损失

A删除价格数据列(见下表), B 运行CCR—I,得到最优的Doctor和Nurse

| DMU | (I)Doctor | (I)Nurse | (O)Outpat. | (O)Inpat. |
|-----|-----------|----------|------------|-----------|
| Α   | 20        | 151      | 100        | 90        |
| В   | 19        | 131      | 150        | 50        |
| С   | 25        | 160      | 160        | 55        |
| D   | 27        | 168      | 180        | 72        |
| E   | 22        | 158      | 94         | 66        |
| F   | 55        | 255      | 230        | 90        |
| G   | 33        | 235      | 220        | 88        |
| Н   | 31        | 206      | 152        | 80        |
| 1   | 30        | 244      | 190        | 100       |
| J   | 50        | 268      | 250        | 100       |
| K   | 53        | 306      | 260        | 147       |
| L   | 38        | 284      | 250        | 120       |

乘以实际的价格或单位成本,得到 $C_{\bullet}^{*}$ 

则  $L_o^* = C_o - C_o^* (\geq 0)$ 

| DMU | (I)Doctor | (I)Nurse |
|-----|-----------|----------|
| Α   | 10000     | 15100    |
| В   | 6650      | 10480    |
| С   | 9382.5    | 12711    |
| D   | 16200     | 20160    |
| E   | 5039.1    | 8444.3   |
| F   | 15210     | 17029.3  |
| G   | 14882.4   | 20861.2  |
| Н   | 11108.9   | 13943.8  |
| I   | 10948.5   | 15741.8  |
| J   | 15375     | 17500    |
| К   | 19052     | 23380.8  |
| L   | 14564.7   | 18167.1  |

在线视频+DVD播放+现场培训 专注软件学习(www.peixun.net)



# 缘于技术无效率损失结果

| C0    | C*       | L*       |
|-------|----------|----------|
| 25100 | 25100    | 0        |
| 17130 | 17130    | 0        |
| 25650 | 22093.5  | 3556.5   |
| 36360 | 36360    | 0        |
| 17660 | 13483.4  | 4176.599 |
| 45150 | 32239.33 | 12910.67 |
| 40000 | 35743.53 | 4256.471 |
| 31460 | 25052.66 | 6407.338 |
| 29944 | 26690.31 | 3253.694 |
| 40600 | 32875    | 7725     |
| 47800 | 42432.8  | 5367.2   |
| 35080 | 32731.76 | 2348.235 |





# 第二步,缘于价格无效率损失结果

A把缘于技术无效率结果中,运行CCR—I得到的最优投入乘以各自的实际价格,DMU (I)Doctor (I)Nurse (O)Outpat. (O)Inpat. 如下左表。

| DMU | (I)Doctor | (I)Nurse | (O)Outpat. | (O)Inpat. |
|-----|-----------|----------|------------|-----------|
| А   | 10000     | 15100    | 100        | 90        |
| В   | 6650      | 10480    | 150        | 50        |
| С   | 9382.5    | 12711    | 160        | 55        |
| D   | 16200     | 20160    | 180        | 72        |
| E   | 5039.1    | 8444.3   | 94         | 66        |
| F   | 15210     | 17029.3  | 230        | 90        |
| G   | 14882.4   | 20861.2  | 220        | 88        |
| Н   | 11108.9   | 13943.8  | 152        | 80        |
| I   | 10948.5   | 15741.8  | 190        | 100       |
| J   | 15375     | 17500    | 250        | 100       |
| K   | 19052     | 23380.8  | 260        |           |
| L   | 14564.7   | 18167.1  | 250        | 120       |

B对左表再运行CCR—I,得到相应的技术效率值、slacks以及目标值 C对两个投入的目标值求和,或对(技术效率值\*投入-slacks)求和,即得

$$C_o^{**} = \sum_{i=1}^m \overline{x}_{io}^* = \sum_{i=1}^m (\rho^* \overline{x}_{io} - t_{io}^{-*})$$

$$L_o^{**} = C_o^* - C_o^{**} (\ge 0)$$



# 分解结果

| Score |          | C**      | L**      |
|-------|----------|----------|----------|
|       | 0.76258  | 18386.46 | 6713.544 |
|       | 1        | 17130    | 0        |
|       | 0.87971  | 18704.5  | 3389     |
|       | 0.629547 | 22890.33 | 13469.67 |
|       | 1        | 13483.4  | 0        |
|       | 0.945193 | 29726    | 2513.333 |
|       | 0.750146 | 26812.86 | 8930.67  |
|       | 0.831164 | 20297.51 | 4755.157 |
|       | 0.939411 | 25073.18 | 1617.129 |
|       | 1        | 32875    | 0        |
|       | 0.88146  | 35291.65 | 7141.146 |
|       | 1        | 32731.76 | 0        |





# 第三步,缘于配置效率成本的损失

A把第二步的数据表拆分成数量和价格,或直接把价格记作1,如下表

| DMU | (I)Doctor | (c)Doctor | (I)Nurse | (c)Nurse | (O)Outpat. | (O)Inpat. |
|-----|-----------|-----------|----------|----------|------------|-----------|
| А   | 10000     | 1         | 15100    | 1        | 100        | 90        |
| В   | 6650      | 1         | 10480    | 1        | 150        | 50        |
| С   | 9382.5    | 1         | 12711    | 1        | 160        | 55        |
| D   | 16200     | 1         | 20160    | 1        | 180        | 72        |
| Е   | 5039.1    | 1         | 8444.3   | 1        | 94         | 66        |
| F   | 15210     | 1         | 17029.3  | 1        | 230        | 90        |
| G   | 14882.4   | 1         | 20861.2  | 1        | 220        | 88        |
| Н   | 11108.9   | 1         | 13943.8  | 1        | 152        | 80        |
| I   | 10948.5   | 1         | 15741.8  | 1        | 190        | 100       |
| J   | 15375     | 1         | 17500    | 1        | 250        | 100       |
| К   | 19052     | 1         | 23380.8  | 1        | 260        | 147       |
| L   | 14564.7   | 1         | 18167.1  | 1        | 250        | 120       |

B对左表运行传统成本效率模型COST-C,或对拆分成数量和价格的数据运行新成本效率模型NCOST-C模型C从目标值中把每个DMU的最优成本求和,得到*C*\*\*\*

$$L_o^{***} = C_o^{**} - C_o^{***} (\ge 0)$$





# 分解结果

| C***     | L***     | C***/C   |
|----------|----------|----------|
| 18386.46 | 0        | 0.732528 |
| 17130    | 0        | 1        |
| 18404.14 | 300.3557 | 0.71751  |
| 21507.44 | 1382.894 | 0.591514 |
| 13483.4  | 0        | 0.763499 |
| 27323.15 | 2402.846 | 0.605164 |
| 26286.87 | 525.9895 | 0.657172 |
| 19684.14 | 613.3663 | 0.625688 |
| 24605.17 | 468.0032 | 0.821706 |
| 29871.44 | 3003.557 | 0.73575  |
| 34475.62 | 816.0311 | 0.721247 |
| 31457.17 | 1274.591 | 0.896727 |



# 汇总

| CO |       | C**      | C*       | L*       | L**      | C***     | L***     | C***/C   | C*/C     | C**/C*   | C***/C** |
|----|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|    | 25100 | 18386.46 | 25100    | 0        | 6713.544 | 18386.46 | 0        | 0.732528 | 1        | 0.732528 | 1        |
|    | 17130 | 17130    | 17130    | 0        | 0        | 17130    | 0        | 1        | 1        | 1        | 1        |
|    | 25650 | 18704.5  | 22093.5  | 3556.5   | 3389     | 18404.14 | 300.3557 | 0.71751  | 0.861345 | 0.846606 | 0.983942 |
|    | 36360 | 22890.33 | 36360    | 0        | 13469.67 | 21507.44 | 1382.894 | 0.591514 | 1        | 0.629547 | 0.939586 |
|    | 17660 | 13483.4  | 13483.4  | 4176.599 | 0        | 13483.4  | 0        | 0.763499 | 0.763499 | 1        | 1        |
|    | 45150 | 29726    | 32239.33 | 12910.67 | 2513.333 | 27323.15 | 2402.846 | 0.605164 | 0.714049 | 0.922041 | 0.919167 |
|    | 40000 | 26812.86 | 35743.53 | 4256.471 | 8930.67  | 26286.87 | 525.9895 | 0.657172 | 0.893588 | 0.750146 | 0.980383 |
|    | 31460 | 20297.51 | 25052.66 | 6407.338 | 4755.157 | 19684.14 | 613.3663 | 0.625688 | 0.796334 | 0.810194 | 0.969781 |
|    | 29944 | 25073.18 | 26690.31 | 3253.694 | 1617.129 | 24605.17 | 468.0032 | 0.821706 | 0.891341 | 0.939411 | 0.981335 |
|    | 40600 | 32875    | 32875    | 7725     | 0        | 29871.44 | 3003.557 | 0.73575  | 0.809729 | 1        | 0.908637 |
|    | 47800 | 35291.65 | 42432.8  | 5367.2   | 7141.146 | 34475.62 | 816.0311 | 0.721247 | 0.887715 | 0.831707 | 0.976878 |
|    | 35080 | 32731.76 | 32731.76 | 2348.235 | 0        | 31457.17 | 1274.591 | 0.896727 | 0.933061 | . 1      | 0.96106  |

在线视频+DVD播放+现场培训 专注软件学习(www.peixun.net)



## 小提示

- 1.分解是成本效率中的难点! 分解过程务 必掌握分解的基本原理!
- 2.每一步该对数据如何处理、运行什么模型要非常清楚!
- 3.手工的计算要认真,任何一个步骤确保 不能出错!

收入效率和利润效率也可参照进行分解,不再讲解,可另提供!



