10. Torre de π sa

Elexioma de l'acció

Tot i que amb el problema inicial ens haviem plantejat mostrar el camí a la Joana per arribar a la torre de Pisa, un cop s'ha enviat el pdf modificat hem vist la demostració mes accessible que els vols a Italia.

Demostració. Sigui $a_n = T_n(\sqrt[2]{\pi})$ la successió de nombres reals. Veiem primer que $a_n \leq \sqrt{\pi}$.

En primer lloc tenim $a_0 = \sqrt[2]{\pi}$ que trivialment es cumpleix $a_0 \leq \sqrt{\pi}$. Suposem ara que $a_n \leq \sqrt{\pi}$

$$a_{n+1} = \sqrt{\pi}^{\frac{a_n}{\sqrt{\pi}}} \le \sqrt{\pi} \iff a_n \le \sqrt{\pi}$$

Veiem ara que la successió es creixent.

$$a_{n+1} = \sqrt{\pi}^{\frac{a_n}{\sqrt{\pi}}} \ge a_n \iff a_n log(\sqrt{\pi}) \ge \sqrt{\pi} log(a_n)$$

Aquesta ultima desigual
tat es certa al tenir que $a_n \le \sqrt{\pi}$ i també tenim que la derivada de
 $g(x) = \frac{x}{\log(x)}$ es

$$g'(x) = \frac{\ln(x) - 1}{\ln^2(x)}$$

que es negativa en el interval $[a_0, \sqrt{\pi}]$.

Ara doncs tenim que a_n creixent amb $a_0 = \sqrt[2]{\pi}$ i $a_n \leq \sqrt{\pi} \implies \exists l$ limit i $a_0 \leq l \leq \sqrt{\pi}$. Veiem que si $l \neq \sqrt{\pi} \implies l$ no es limit.

Suposem que si $\Longrightarrow \pi^{\frac{l}{2\sqrt{\pi}}} - l = 0$. Sigui $f(x) = \pi^{\frac{x}{2\sqrt{\pi}}} - x$. Te com a derivada

$$f'(x) = \frac{\ln(\pi) \, \pi^{\frac{x}{2\sqrt{\pi}} - \frac{1}{2}}}{2} - 1$$

¹Això demostra també que els Telecos algo de mates dominen

Que es negativa al interval $[a_0, \sqrt{\pi})$. Tambe tenim que $f(\sqrt{\pi}) = 0$. I com que la funció es continua arribem a contradicció, ja que no existeix cap $l \in [a_0, \sqrt{\pi})|f(l) = 0$.