Fibonacci.exe

Assembly	Instruction (in Binary)	Instruction (in Hex)
main: addi \$a0, \$zero 5 #set n=5	000011 00000 00100 00000000000000101	0c040005
jal fib #function call	000111 00000100000000000000000000000000	1c100002
fib: addi \$sp, \$sp, -12 #make room on stack	000011 11101 11101 111111111111110100	0fbdfff4
sw \$ra, 8(\$sp) #push \$ra	000000 00000 01000 0001000000100000	0bbf0008
sw \$s0, 4(\$sp) #push \$s0	000010 11101 10000 00000000000000100	0bb00004
sw \$a0, 0(\$sp) #push \$a0 (N)	000010 11101 00100 00000000000000000	0ba40000
beq \$a0, \$0, next #if n>0, test if n=1	000100 00100 00000 0000000000000010	10800002
j test2	000110 000001000000000000000001010	1810000a
next: add \$v0, \$0, \$0 #else fib(0) = 0	000000 00000 00000 00010 00000 100000	00001020
j rtn	000110 000001000000000000000010101	18100015
test2: addi \$t0, \$0, 1 #if n=1, rtn 1	000011 00000 01000 000000000000000001	0c080001
beq \$t0, \$a0, cont	000100 01000 00100 00000000000000001	11040001
j gen #else if n!=1 and n!=0	000110 000001000000000000000001111	1810000f
cont: add \$v0, \$0, \$t0 #v0 = t0 = 1,	000000 00000010000001000000100000	00081020
j rtn #rtn 1 from v0	000110 000001000000000000000010101	18100015
addi \$a0, \$a0, -1 #set n = n-1	000011 001000010011111111111111111	0c84ffff
jal fib #call fib(n-1)	000111 00000100000000000000000000000000	1c100002
add \$s0, \$v0, \$0 #store fib(n-1)	000000 00010 00000 10000 00000 100000	00408020
sub \$a0, \$a0, 1 #n=n-2	000011 00100001001111111111111111	0c84ffff
jal fib #call fib(n-2)	000111 00000100000000000000000000000000	1c100002
add \$v0, \$v0, \$s0#fib(n-1) + fib(n-2)	000000 00010 10000 00010 00000 100000	00501020
rtn: lw \$a0, 0(\$sp) #pop \$a0	000001 111010010000000000000000000	07a40000
lw \$s0, 4(\$sp) #pop \$s0	000001 11101100000000000000000000000000	07ь00004

lw \$ra, 8(\$sp)	#pop \$ra	000001 111011111100000000000001000	07bf0008
addi \$sp, \$sp, 12 #re	estore sp	000011 11101111010000000000001100	0fbd000c
jr \$ra	#return	001000 111111111100000000000000000	23ff0000

Leaf.exe

Assembly	Instruction (In Binary)	Instruction (in Hex)
main: addi \$a0, \$zero, 4 #set \$a0 to 4	000011 00000 00100 0000000000000100	0c040004
addi \$a1, \$zero, 4 #set \$a1 to 4	000011 00000 00101 0000000000000100	0c050004
addi \$a2, \$zero, 2 #set \$a2 to 2	000011 00000 00110 00000000000000010	0C060002
addi \$a3, \$zero, 5 #set \$a3 to 5	000011 00000 00111 0000000000000101	0C070005
jal leaf #leaf function call	000111 000001000000000000000000101	1c100005
leaf: Addi \$sp, \$sp, -4 #adjust stack pointer	000011 11101 11101 111111111111111100	Ofbdfffc
sw, \$s0, 0(\$sp) #save address of \$sp	000010 11101 10000 00000000000000000	0bb00000
add , \$t0, \$a0, \$a1 #t0 = a0+a1 = 8	000000 00100 00101 01000 00000 100000	00854020
add, \$t1, \$a2, \$a3 #t1 = a2+a3 = 7	000000 00110 00111 01001 00000 100000	00c74820
sub, \$s0, \$t0, \$t1 #s0 = t0-t1 = 1	000000 01000 01001 10000 00000 100010	01098022
add, \$v0, \$s0, \$zero #v0 = s0 = 1	000000 10000 00000 00010 00000 100000	02001020
lw, \$s0, 0(\$sp) #reload stack pointer	000001 11101 10000 00000000000000000	07B00000
addi, \$sp, \$sp, 4 #restore stack pointer	000011 11101 11101 00000000000000000	0FBD0004
jr \$ra #return	001000 11111 11111 0000000000000000	23FF0000

Stack Pointer'

Fibonacci (Not Stackpointer)

Assembly	Instruction (In Binary)	Instruction (in Hex)
Main: addi \$t1, \$zero, 1	000011 00000 01001 0000000000000001	0c090001
addi \$s1, \$zero, 1	000011 00000 10001 0000000000000001	0c110001
addi \$t2, \$zero, 2	000011 00000 01010 0000000000000010	0C0A0002
addi \$t3, \$zero, 9	000011 00000 01011 0000000000001001	0C0B0009
Loop: beq \$t2, \$t3, finish	000100 01011 01010 0000000000000110	116A0006
add \$s2, \$t1, \$s1	000000 01001 10001 10010 00000 100000	01319020
add \$t1, \$zero, \$s1	000000 10001 00000 01001 00000 100000	02204820
add \$s1, \$zero, \$s2	000000 00000 10010 10001 00000 100000	00128820
addi \$t2, \$t2, 1	000011 01010 01010 00000000000000000	0d4a0001
j loop	000110 000001000000000000000000100	18100004 #18100008
finish: sw \$s1, 0(\$zero)	000010 00000 10001 0000000000000000	08110000
lw \$t1, 0(\$zero)	000001 00000 01001 0000000000000000	04090000

Leaf.exe (No stack pointer)

Assembly	Instruction (In Binary)	Instruction (in Hex)
main: addi \$a0, \$zero, 4 #set \$a0 to 4	000011 00000 00100 0000000000000100	0c040004
addi \$a1, \$zero, 4 #set \$a1 to 4	000011 00000 00101 0000000000000100	0c050004
addi \$a2, \$zero, 2 #set \$a2 to 2	000011 00000 00110 0000000000000010	0C060002
addi \$a3, \$zero, 5 #set \$a3 to 5	000011 00000 00111 0000000000000101	0C070005
add , \$t0, \$a0, \$a1 #t0 = a0+a1 = 8	000000 00100 00101 01000 00000 100000	00854020
add, \$t1, \$a2, \$a3 #t1 = a2+a3 = 7	000000 00110 00111 01001 00000 100000	00c74820
sub, \$s0, \$t0, \$t1 #s0 = t0-t1 = 1	000000 01000 01001 10000 00000 100010	01098022
add, \$v0, \$s0, \$zero #v0 = s0 = 1	000000 10000 00000 00010 00000 100000	02001020