system_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl and ps for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_wrapper

```
module system_wrapper #(
parameter
FPGA_TECHNOLOGY
=
1,
parameter
FPGA_FAMILY
=
4,
parameter
SPEED_GRADE
```

```
= 20, parameter
DEV_PACKAGE
= 3, parameter
DELAY_REFCLK_FREQUENCY
= 200, parameter
ADC_INIT_DELAY
= 20, parameter
DAC_INIT_DELAY
= 0) ( inout [14:0] ddr_addr, inout [ 2:0] ddr_ba, inout ddr_cas_n, inout ddr_c
```

System wrapper for pl and ps for zc702 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 14 is for cl.

DELAY_REFCLK_FREQUENCY

parameter

Y Reference clock frequency used for ad_data_in instances

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

oarameter

Ports

ddr_addr	DDR interface
ddr_ba	DDR interface
ddr_cas_n	DDR interface
ddr_ck_n	DDR interface
ddr_ck_p	DDR interface
ddr_cke	DDR interface
ddr_cs_n	DDR interface
ddr_dm	DDR interface
ddr_dq	DDR interface
ddr_dqs_n	DDR interface
ddr_dqs_p	DDR interface
ddr_odt	DDR interface
ddr_ras_n	DDR interface

ddr reset n DDR interface ddr_we_n DDR interface fixed_io_ddr_vrn DDR interface fixed_io_ddr_vrp DDR interface fixed_io_mio ps mio fixed_io_ps_clk ps clk fixed_io_ps_porb ps por fixed_io_ps_srstb ps rst

iic_scl_fmcfmcomms5 i2ciic_sda_fmcfmcomms5 i2c

gpio_bd gpio

rx_clk_in_0_p fmcomms5 0 rx clk rx clk in 0 n fmcomms5 0 rx clk rx_frame_in_0_p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data rx_data_in_0_n fmcomms5 0 rx data tx_clk_out_0_p fmcomms5 0 tx clk tx_clk_out_0_n fmcomms5 0 tx clk tx_frame_out_0_p fmcomms5 0 tx frame tx frame out 0 n fmcomms5 0 tx frame tx_data_out_0_p fmcomms5 0 tx data

fmcomms5 0 tx data tx_data_out_0_n gpio_status_0 fmcomms5 0 gpio gpio_ctl_0 fmcomms5 0 gpio gpio_en_agc_0 fmcomms5 0 gpio gpio_resetb_0 fmcomms5 0 gpio gpio_debug_1_0 fmcomms5 0 gpio gpio_debug_2_0 fmcomms5 0 gpio gpio_calsw_1_0 fmcomms5 0 gpio fmcomms5 0 gpio gpio_calsw_2_0 gpio ad5355 rfen fmcomms5 0 gpio gpio_ad5355_lock fmcomms5 0 gpio txnrx_0 fmcomms5 0 txnrx enable_0 fmcomms5 0 enable rx_clk_in_1_p fmcomms5 1 rx clk rx_clk_in_1_n fmcomms5 1 rx clk rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame fmcomms5 1 rx data rx data in 1 p rx_data_in_1_n fmcomms5 1 rx data fmcomms5 1 tx clk tx_clk_out_1_p

```
tx_clk_out_1_n
                    fmcomms5 1 tx clk
tx_frame_out_1_p
                    fmcomms5 1 tx frame
tx_frame_out_1_n
                    fmcomms5 1 tx frame
tx_data_out_1_p
                    fmcomms5 1 tx data
tx_data_out_1_n
                    fmcomms5 1 tx data
gpio_status_1
                    fmcomms5 1 gpio
gpio_ctl_1
                    fmcomms5 1 gpio
                    fmcomms5 1 gpio
gpio_en_agc_1
gpio_resetb_1
                    fmcomms5 1 gpio
gpio_debug_1_1
                    fmcomms5 1 gpio
gpio_debug_2_1
                    fmcomms5 1 gpio
gpio_calsw_1_1
                    fmcomms5 1 gpio
gpio_calsw_2_1
                    fmcomms5 1 gpio
gpio_ad5355_rfen
                    fmcomms5 1 gpio
gpio_ad5355_lock
                    fmcomms5 1 gpio
txnrx_1
                    fmcomms5 1 txnrx
enable 1
                    fmcomms5 1 enable
                    fmcomms5 sync
mcs_sync
spi_ad9361_0
                    fmcomms5 ad9361 0 spi select
spi_ad9361_1
                    fmcomms5 ad9361 1 spi select
spi_ad5355
                    fmcomms5 ad5355 spi select
spi_clk
                    fmcomms5 spi clock
spi_mosi
                    fmcomms5 spi master out
spi_miso
                    fmcomms5 spi master in
ref_clk_p
                    fmcomms5 ref clock p
ref_clk_n
                    fmcomms5 ref clock n
```

INSTANTIANTED MODULES

i_ref_clk_ibuf

```
IBUFGDS i_ref_clk_ibuf (

I

ref_clk_p),

IB

ref_clk_n),

(

ref_clk_s)
)
```

i_ref_clk_rbuf

```
BUFR #(

BUFR_DIVIDE

("

BYPASS")

) i_ref_clk_rbuf ( .CLR (1'b0), .CE (1'b1), .I (ref_clk_s), .0 (ref_clk))
```

Module instance of BUFR for cmos clock to clock region.

i iobuf

```
ad_iobuf #(

DATA_WIDTH(42)
) i_iobuf ( .dio_t ({gpio_t[59:46], gpio_t[43:16]}), .dio_i ({gpio_o[59:46]})
```

Module instance of ad iobuf for tristate GPIO control.

i_gpio_bd

```
ad_iobuf #(

DATA_WIDTH(16)
) i_gpio_bd ( .dio_t (gpio_t[15:0]), .dio_i (gpio_o[15:0]), .dio_o (gpio_i
```

 ${\bf Module\ instance\ of\ ad_iobuf\ for\ tristate\ GPIO\ bd\ control.}$

inst_system_pl_wrapper

```
system_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

) inst_system_pl_wrapper ( .axi_aclk(s_axi_clk), .axi_aresetn(s_axi_aresetn))
```

Module instance of system_pl_wrapper for the fmcomms5 device.

inst_system_ps_wrapper

```
system_ps_wrapper inst_system_ps_wrapper (
GPIO_I(gpio_i),
GPIO_O(gpio_o),
GPIO_T(gpio_t),
SPI0_SCLK_I(1'b0),
SPI0_SCLK_0(spi_clk),
SPI0_MOSI_I(1'b0),
SPI0_MOSI_O(spi_mosi),
SPI0_MISO_I(spi_miso),
SPI0_SS_I(1'b1),
SPI0_SS_0(spi_ad9361_0),
SPI0_SS1_0(spi_ad9361_1),
SPI0_SS2_0(spi_ad5355),
SPI1_SCLK_I(1'b0),
SPI1_SCLK_0(),
SPI1_MOSI_I(1'b0),
SPI1_MOSI_O(),
SPI1_MISO_I(1'b0),
SPI1_SS_I(1'b1),
SPI1_SS_0(),
SPI1_SS1_0(),
SPI1_SS2_0(),
M_AXI_araddr(w_axi_araddr),
M_AXI_arprot(w_axi_arprot),
M_AXI_arready(w_axi_arready),
M_AXI_arvalid(w_axi_arvalid),
M_AXI_awaddr(w_axi_awaddr),
M_AXI_awprot(w_axi_awprot),
M_AXI_awready(w_axi_awready),
M_AXI_awvalid(w_axi_awvalid),
M_AXI_bready(w_axi_bready),
M_AXI_bresp(w_axi_bresp),
```

```
M_AXI_bvalid(w_axi_bvalid),
M_AXI_rdata(w_axi_rdata),
M_AXI_rready(w_axi_rready),
M_AXI_rresp(w_axi_rresp),
M_AXI_rvalid(w_axi_rvalid),
M_AXI_wdata(w_axi_wdata),
M_AXI_wready(w_axi_wready),
M_AXI_wstrb(w_axi_wstrb),
M_AXI_wvalid(w_axi_wvalid),
S_AXI_HP0_arready(),
S_AXI_HP0_awready(adc_hp0_axi_awready),
S_AXI_HP0_bvalid(adc_hp0_axi_bvalid),
S_AXI_HP0_rlast(),
S_AXI_HP0_rvalid(),
S_AXI_HP0_wready(adc_hp0_axi_wready),
S_AXI_HP0_bresp(adc_hp0_axi_bresp),
S_AXI_HP0_rresp(),
S_AXI_HP0_bid(),
S_AXI_HP0_rid(),
S_AXI_HP0_rdata(),
S_AXI_HP0_ACLK(s_delay_clk),
S_AXI_HP0_arvalid(1'b0),
S_AXI_HP0_awvalid(adc_hp0_axi_awvalid),
S_AXI_HP0_bready(adc_hp0_axi_bready),
S_AXI_HP0_rready(1'b0),
S_AXI_HP0_wlast(adc_hp0_axi_wlast),
S_AXI_HP0_wvalid(adc_hp0_axi_wvalid),
S_AXI_HP0_arburst(2'b01),
S_AXI_HP0_arlock(0),
S_AXI_HP0_arsize(3'b011),
S_AXI_HP0_awburst(adc_hp0_axi_awburst),
S_AXI_HP0_awlock(0),
S_AXI_HP0_awsize(adc_hp0_axi_awsize),
```

```
S_AXI_HP0_arprot(0),
S_AXI_HP0_awprot(adc_hp0_axi_awprot),
S_AXI_HP0_araddr(0),
S_AXI_HP0_awaddr(adc_hp0_axi_awaddr),
S_AXI_HP0_arcache(4'b0011),
S_AXI_HP0_arlen(0),
S_AXI_HP0_arqos(0),
S_AXI_HP0_awcache(adc_hp0_axi_awcache),
S_AXI_HP0_awlen(adc_hp0_axi_awlen),
S_AXI_HP0_awqos(0),
S_AXI_HP0_arid(0),
S_AXI_HP0_awid(0),
S_AXI_HP0_wid(0),
S_AXI_HP0_wdata(adc_hp0_axi_wdata),
S_AXI_HP0_wstrb(adc_hp0_axi_wstrb),
S_AXI_HP1_arready(dac_hp1_axi_arready),
S_AXI_HP1_awready(),
S_AXI_HP1_bvalid(),
S_AXI_HP1_rlast(dac_hp1_axi_rlast),
S_AXI_HP1_rvalid(dac_hp1_axi_rvalid),
S_AXI_HP1_wready(),
S_AXI_HP1_bresp(),
S_AXI_HP1_rresp(dac_hp1_axi_rresp),
S_AXI_HP1_bid(),
S_AXI_HP1_rid(),
S_AXI_HP1_rdata(dac_hp1_axi_rdata),
S_AXI_HP1_ACLK(s_delay_clk),
S_AXI_HP1_arvalid(dac_hp1_axi_arvalid),
S_AXI_HP1_awvalid(1'b0),
S_AXI_HP1_bready(1'b0),
S_AXI_HP1_rready(dac_hp1_axi_rready),
S_AXI_HP1_wlast(1'b0),
S_AXI_HP1_wvalid(1'b0),
```

```
S_AXI_HP1_arburst(dac_hp1_axi_arburst),
S_AXI_HP1_arlock(0),
S_AXI_HP1_arsize(dac_hp1_axi_arsize),
S_AXI_HP1_awburst(2'b01),
S_AXI_HP1_awlock(0),
S_AXI_HP1_awsize(3'b011),
S_AXI_HP1_arprot(dac_hp1_axi_arprot),
S_AXI_HP1_awprot(0),
S_AXI_HP1_araddr(dac_hp1_axi_araddr),
S_AXI_HP1_awaddr(0),
S_AXI_HP1_arcache(dac_hp1_axi_arcache),
S_AXI_HP1_arlen(dac_hp1_axi_arlen),
S_AXI_HP1_arqos(0),
S_AXI_HP1_awcache(4'b0011),
S_AXI_HP1_awlen(0),
S_AXI_HP1_awqos(0),
S_AXI_HP1_arid(0),
S_AXI_HP1_awid(0),
S_AXI_HP1_wid(0),
S_AXI_HP1_wdata(0),
S_AXI_HP1_wstrb(~0),
IRQ\_F2P(\{\{2\{1'b0\}\}, s\_adc\_dma\_irq, s\_dac\_dma\_irq, s\_iic2intc\_irpt, \{11\{1'b0\}\}, s\_adc\_dma\_irq, s\_iic2intc\_irpt, s\_adc\_dma\_irq, s\_adc\_dma_irq, s\_adc\_dma_irq, s\_adc\_dma_irq, s\_adc\_dma_irq, s\_adc\_dma_irq,
FCLK_CLK0(s_axi_clk),
FCLK_CLK1(s_delay_clk),
FIXED_IO_mio(fixed_io_mio),
DDR_cas_n(ddr_cas_n),
DDR_cke(ddr_cke),
DDR_ck_n(ddr_ck_n),
DDR_ck_p(ddr_ck_p),
DDR_cs_n(ddr_cs_n),
DDR_reset_n(ddr_reset_n),
DDR_odt(ddr_odt),
DDR_ras_n(ddr_ras_n),
```

```
DDR_we_n(ddr_we_n),

DDR_ba(ddr_ba),

DDR_addr(ddr_addr),

FIXED_IO_ddr_vrn(fixed_io_ddr_vrn),

FIXED_IO_ddr_vrp(fixed_io_ddr_vrp),

DDR_dm(ddr_dm),

DDR_dq(ddr_dq),

DDR_dqs_n(ddr_dqs_n),

FIXED_IO_ps_srstb(fixed_io_ps_srstb),

FIXED_IO_ps_clk(fixed_io_ps_clk),

FIXED_IO_ps_porb(fixed_io_ps_porb),

peripheral_aresetn(s_axi_aresetn)
)
```

 ${\bf Module\ instance\ of\ inst_system_ps_wrapper\ for\ the\ built\ in\ CPU}.$