STIC-ILL

From:

Sent:

Rao, Manjunath N. Tuesday, May 20, 2003 2:00 PM

To: Subject:

REferences for 09/922,067

Please provide a copy of the following references ASAP.

Thanks Manjunath

Mueller HW, Pritzker CR, Kubik A, Deykin D.

Characterization of phospholipase A2 secretion from human platelets.

Thromb Res. 1993 Dec 15;72(6):519-30.

PMID: 8128456 [PubMed - indexed for MEDLINE]

Minami T, Tojo H, Shinomura Y, Matsuzawa Y, Okamoto M.

Purification and characterization of a phospholipase A2 from human ileal mucosa.

mi. About sulf

Biochim Biophys Acta. 1993 Oct 13:1170(2):125-30.

PMID: 8399335 [PubMed - indexed for MEDLINE]

Hatala MA, Rayburn J, Rose DP.

Characterization of phospholipase A2 activity in MDA-MB-435 human breast cancer

cells.

Cancer Lett. 1993 Aug 16;72(1-2):31-7.

PMID: 8402571 [PubMed - indexed for MEDLINE]

Rehfeldt W, Resch K, Goppelt-Struebe M.

Cytosolic phospholipase A2 from human monocytic cells: characterization of substrate specificity and Ca(2+)-dependent membrane association.

Biochem J. 1993 Jul 1;293 (Pt 1):255-61.

PMID: 8328965 [PubMed - indexed for MEDLINE]

Stadel JM, Jones C, Livi GP, Hoyle K, Kurdyla J, Roshak A, McLaughlin MM, Pfarr DA, Comer S, Strickler J, et al.

Recombinant human secretory phospholipase A2: purification and characterization of the enzyme for active site studies.

J Mol Recognit. 1992 Dec;5(4):145-53.

PMID: 1339483 [PubMed - indexed for MEDLINE]

Jordan LM, Russo-Marie F.

.

					₹	01 1-10	oreme =			
PubMed	Νι	ucleotide	Protein	Genome	Struct	ure PM	C Ta	axonomy	OMIN	M Books
Search _	PubMed	▼ for			·				Go	Clear
		∠Limits	Previe	w/Index	History	Clipbo	ard	Details		
	_)									
	\sim	Display Ab	stract	▼ Sh	ow: 20	▼ Sort	▼	Send to	Text	▼
Entrez PubMed		□1: Thron	nb Res 19	993 Dec 1:	5;72(6):51	9-30		R	elated Ar	ticles, Links
		Chara platel		tion of p	ohosphol	ipase A2	2 secre	etion fro	m hun	nan
		Muelle	er HW, P	ritzker C	R, Kubik	A, Deyki	n D.			
PubMed Services		Boston	VA Med	lical Cente	er, Massac	husetts.				
Related Resource:	S	Human platelets secreted phospholipase A2 in a dose- and time-dependent manner when challenged with thrombin, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or collagen. Enzyme release was maximal at concentrations of 0.1 units/ml of thrombin, 100 nM TPA, or 2 micrograms/ml of collagen; and complete by 2 min in platelets treated with thrombin or TPA. Cells challenged with collagen required up to 5 min for maximal secretion. Besides dose and time functions, phospholipase A2 secretion was also dependent on platelet concentration and the levels of bovine serum albumin in the incubation medium. The secreted enzyme was soluble and exhibited substrate and Ca2+ requirements similar to a detergent-solubilized, partially purified phospholipase A2 from whole platelets [Kramer et al., Biochim. Biophys. Acta (1988) 959, 269-279]. The pH optimum of the secreted enzyme, however, was 1-2 units lower than the pH optimum of the								
		phosph phosph substra greatly employ formati	olipase A atidylethetes were p diminish red. Becar on of bio	A2 from wanolamine present in ed, though use phosp active ara	hole cells. at 5-12 ti pure form h, when 1: holipase A chidonate	Secreted p	phosphote of phe parent of ixtures a key es, the s	olipase Az osphatidy difference of the two reaction of	2 hydrolydcholines in action substrated this er	yzed when the vity were ates were
		PMID:	8128456	[PubMed	- indexed	for MEDI	LINE]			
		,			-			b 261oc. ananimipun		

Write to the Help Desk
NCBI | NLM | NIH
Department of Health & Human Services
Freedom of Information Act | Disclaimer

Sort

Send to

Text

▼ Show: 20

Display

Abstract

THROMBOSIS RESEARCH 72; 519–530, 1993 0049–3848/93 \$6.00 + .00 Printed in the USA. Copyright (c) 1993 Pergamon Press Ltd. All rights reserved.

CHARACTERIZATION OF PHOSPHOLIPASE A₂ SECRETION FROM HUMAN PLATELETS

Howard W. Mueller, Carole R. Pritzker, Anne Kubik and Daniel Deykin Boston VA Medical Center, Boston, Massachusetts, and Division of Cardiology, University of Texas Health Science Center, Houston, Texas

(Received 14.4.1993; accepted in revised form 21.9.1993 by Editor J.L. Moake) (Received by Executive Editorial Office 11.10.1993)

Abstract Human platelets secreted phospholipase A₂ in a dose- and time-dependent manner when challenged with thrombin, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or collagen. Enzyme release was maximal at concentrations of 0.1 units/ml of thrombin, 100 nM TPA, or 2 µg/ml of collagen; and complete by 2 min in platelets treated with thrombin or TPA. Cells challenged with collagen required up to 5 min for maximal secretion. Besides dose and time functions, phospholipase A₂ secretion was also dependent on platelet concentration and the levels of bovine serum albumin in the incubation medium. The secreted enzyme was soluble and exhibited substrate and Ca2+ requirements similar to a detergent-solubilized, partially purified phospholipase A, from whole platelets [Kramer et al., Biochim. Biophys. Acta (1988) 959, 269-279]. The pH optimum of the secreted enzyme, however, was 1-2 units lower than the pH optimum of the phospholipase A₂ from whole cells. Secreted phospholipase A₂ hydrolyzed phosphatidylethanolamine at 5-12 times the rate of phosphatidylcholine when the substrates were present in pure form. These apparent differences in activity were greatly diminished, though, when 1:1 molar mixtures of the two substrates were employed. Because phospholipase A2 catalyzes a key reaction during the formation of bioactive arachidonate metabolites, the secretion of this enzyme from platelets may be important in the regulation of thrombosis.

A primary function of blood platelets is to maintain the integrity of the systemic circulation by forming cellular aggregates at sites of vascular injury. One biochemical

Key words: Phospholipase A₂, platelet, human, secretion, arachidonic acid. Abbreviations: GPC, sn-glycero-3-phosphocholine; GPE, sn-glycero-3-phosphoethanolamine; HPLC, high performance liquid chromatography; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PGI₂, prostacyclin; PLA₂, phospholipase A₂; TLC, thin-layer chromatography; TPA, 12-O-tetradecanoyl-phorbol-13-acetate; TXA₂, thromboxane A₂. Corresponding author: Dr. Howard W. Mueller, Division of Cardiology, Univ. of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

mechanism by which platelet activation occurs is through the endogenous production of thromboxane A₂, a potent inducer of platelet aggregation and smooth muscle contraction. The pro-thrombotic effects of TXA₂ are directly opposed by prostacylin, an eicosanoid product of vascular endothelial cells which inhibits platelet aggregation and promotes smooth muscle relaxation (1-4). Both TXA₂ and PGI₂ are synthesized from arachidonic acid by prostaglandin endoperoxide synthase, a protein which contains both a cyclooxygenase and a peroxidase activity. These two activities convert arachidonate to the cyclic endoperoxides, prostaglandin G₂ and prostaglandin H₂, respectively. Prostaglandin H₂ is subsequently converted to TXA₂ by thromboxane synthase in the platelet, or to PGI₂ by PGI₂ synthase in the endothelial cell (5).

The arachidonic acid utilized for TXA₂ production is not free in the cell, but rather is esterified at the sn-2 position of membrane glycerophospholipids. Upon cellular activation, this arachidonate is released in a key reaction catalyzed by phospholipase A₂ (2,6,7). Although classically, platelet PLA₂ is thought to act intracellularly to hydrolyze endogenous phospholipid substrates, recent studies with sheep (8), rat (9), and rabbit (10) platelets have demonstrated that these cells also secrete this enzyme upon stimulation. Since secreted PLA₂ could act extracellularly to liberate arachidonate in other platelets or vascular endothelial cells, the release of this enzyme offers a potentially novel dimension for the regulation of hemostatic and thrombotic events.

In the present study, we examined the secretion of PLA₂ from human platelets. Although PLA₂ secretion from human platelets was not observed in a previous study (10), this work characterizes the release of PLA₂ from these cells in response to several physiological and non-physiological stimuli. Data regarding the substrate, Ca²⁺, and pH requirements of the secreted enzyme are also presented.

EXPERIMENTAL PROCEDURES

Materials

Bovine serum albumin (essentially fatty acid-free) and 12-O-tetradecanoyl-phorbol-13acetate were purchased from Sigma; the TPA was dissolved in dimethyl sulfoxide prior to use. 1-Stearoyl-2-arachidonyl-GPC, 1-stearoyl-2-arachidonyl-GPE, and phospholipid standards were purchased from Avanti Polar Lipids. Arachidonic acid was obtained from Nu-Chek Prep and Silica Gel G TLC plates were purchased from Analtech. Equine collagen was obtained from Horm-Chemie and human α -thrombin was a gift from Dr. John W. Fenton. 1-Stearoyl-2-[3H]arachidonyl-sn-glycero-3-phosphocholine (91 Ci/mmol) was purchased from New England Nuclear; this compound was used to synthesize 1-stearoyl-2-[3H]arachidonyl-sn-glycero-3-phosphoethanolamine in the presence of partially purified cabbage phospholipase D and free ethanolamine (11). Briefly, cabbage phospholipase D was purified through Stage 3 by the method of Davidson and Long (12). A small aliquot of the enzyme preparation was combined 1:1 (v/v) with a solution containing 160 mM sodium acetate (pH 5.6), 80 mM calcium chloride, and 15% ethanolamine. One ml of enzyme-buffer mixture was then added to 1 ml of diethyl ether containing the substrate, 1-stearoyl-2-[3H]arachidonyl-GPC (20-40 μ Ci), and the mixture was shaken vigorously at room temperature for 1 hour. The reaction was stopped by total lipid extraction (13), and product formation was confirmed by zonal TLC analysis of the chloroform extract on Silica Gel G using a solvent system of chloroform:methanol:NH₂OH (65:35:8, v/v). The [3H]PE was finally purified by normal phase HPLC (14) and stored at -20°C in chloroform:methanol (4:1, v/v). The product yield from this reaction was 40-50%.

Isolation of Human Platelets

Blood was drawn from healthy donors into a 1/6 volume of acid citrate dextrose (85 mM trisodium citrate, 64 mM citric acid, and 111 mM glucose) and platelet-rich plasma was prepared by centrifugation at 170 x g for 15 min. The platelet-rich plasma was removed and the cells were sedimented by centrifugation at 1,870 x g for 15 min. The platelet pellet was washed twice in a gel filtration buffer (15) (pH 6.5) containing 129 mM NaCl, 10.9 mM sodium citrate, 8.9 mM sodium bicarbonate, 1 mg/ml glucose, 10 mM Trizma base, 2.8 mM KCl, 0.8 mM KH₂PO₄, 2 mM EDTA, and 1 mg/ml BSA; and the cells were resedimented by centrifugation at 830 x g for 15 min. The washed platelet pellet was finally resuspended in gel filtration buffer (pH 7.5) without EDTA, or in later experiments in a HEPES-buffered medium (9) (pH 7.5) containing 137 mM NaCl, 2.7 mM KCl, 10 mM HEPES, and 0.1% glucose. The use of the HEPES buffer during cell challenge resulted in a 35-40% increase in secreted phospholipase activity. In some experiments, platelets were also obtained from two-day-old platelet concentrates from the Red Cross. These cells were isolated and washed in the same manner as described for fresh platelet-rich plasma above. All platelet preparation steps were performed at room temperature.

Incubation Procedures

Platelets at a final concentration of 0.5-1 x 10° cells/ml were incubated in a shaking water bath at 37°C for 0-15 min in gel filtration buffer or HEPES-buffered medium (pH 7.5) containing 2 mM CaCl₂, 1 mM MgCl₂, 1 mg/ml BSA, and the indicated stimuli. In later experiments using thrombin as a stimulus, the Ca²⁺ and Mg²⁺ were omitted and replaced with 1 mM EDTA without any loss of secreted PLA₂ activity. The reactions were stopped by placing the cells in an ice water bath for 10 min, and the cells were sedimented by centrifugation at 830 x g and 4°C for 10 min. The supernatants were removed and centrifuged at 2,400 x g and 4°C for 15 min to remove any unsedimented cells, and then assayed for phospholipase activity.

Assay of Secreted Phospholipase A,

Secreted PLA₂ activity was assayed as described by Kramer et al. (16) with slight modifications. Routinely, 1 stearoyl-2-[³H]arachidonyl-GPC or -GPE (100,000 dpm/sube; 0.5 pmol/tube) was dried under N₂ and sonicated on ice in 100 mM Tris buffer (pH 7.5-9.0); CaCl₂ and BSA were then added to concentrations of 10 mM and 1 mg/ml, respectively. The recovery of radiolabeled phospholipid in the buffer was increased from 60% to approximately 95% when the calcium was added after sonication. The sonicated substrate and platelet supernatant were combined 1:1 (v/v, 150 µl of each) for final CaCl₂ and BSA concentrations of 5 mM and 1 mg/ml, respectively, and the mixture was incubated for 1 hour at 37°C. The reactions were stopped by addition of Dole's reagent (17), and the radiolabeled fatty acid product was selectively extracted into heptane (16) and measured by liquid scintillation counting. In some experiments, the reactions were stopped by addition of chloroform:methanol (2:1, v/v) and the total lipids were extracted (13). The levels of labeled fatty acid product were then measured following separation by TLC on Silica Gel G plates developed in hexane:diethyl ether:glacial acetic acid (60:40:1, v/v). In experiments designed to measure the pH optima of the secreted PLA₂, a buffer containing

100 mM glycylglycine, 100 mM piperazine, and 100 mM sodium formate (pH 2-11) was substituted for the Tris buffer.

Other Methods

Ionized calcium measurements were performed using a Calcium Selectrode from Radiometer. A calcium titration curve of electrode response (mV) vs. added calcium (µmol) was established by titrating known amounts of CaCl₂ into a buffer solution which mimicked the assay conditions; this solution contained 25 ml of HEPES buffered medium (pH 7.5) with 1 mM EDTA and 25 ml of 100 mM Tris buffer (pH 7.5). An equation for the curve, which was generated using Prophet curve-fitting software, was then used to calculate the amount of CaCl₂ required for a given ionized calcium level. Lipid phosphorus measurements of the unlabeled phospholipid substrates were performed by the method of Rouser et al. (18).

RESULTS

Agonist-Stimulated Secretion of Phospholipase A, from Human Platelets

When platelets were challenged with thrombin, TPA, or collagen and the extracellular medium was subsequently assayed for phospholipase A_2 , a dose-dependent release of activity was observed (Fig. 1). The secretion of PLA₂ was maximal at concentrations of 0.1 units/ml of thrombin, 100 nM TPA, or 2 μ g/ml of collagen. When the relative potencies of these stimuli were examined on the same preparation of platelets, TPA was the most effective agonist for eliciting PLA₂ release, followed by thrombin (80% of TPA) and collagen (66% of TPA) (data not shown). Time course experiments also shown in Fig. 1 demonstrated that PLA₂ release was complete by 2 min in cells challenged with thrombin or TPA; however, collagen-treated platelets required up to 5 min before maximal release was attained.

The secretion of phospholipase A_2 by human platelets was also dependent on cell concentration. As illustrated in Fig. 2, enzyme release increased as a function of platelet concentration up to 5×10^8 cells/ml, afterwhich a plateau in secreted activity was observed. Interestingly, control platelets also secreted PLA₂ when incubated at high cell densities, presumably due to the accumulation of low levels of an endogenous agonist such as ADP or thromboxane A_2 . Besides cell concentration, PLA₂ release was also affected by the concentration of BSA in the challenge medium. As shown in Fig. 3, the presence of BSA at concentrations ≥ 0.5 mg/ml resulted in a 2.5-fold enhancement of secreted activity. It should be noted that during this experiment, the BSA concentrations of all points were adjusted to the same level (2.83 mg/ml) prior to PLA₂ assay. Therefore, Fig. 3 reflects only the effect of BSA on enzyme secretion and not enzyme activity.

Characterization of Secreted Phospholipase A,

To determine if the secreted PLA₂ was soluble or associated with a particulate fraction, supernatants derived from control, thrombin-, TPA-, or collagen-treated platelets were centrifuged at 100,000 x g for 1 hour. Parallel samples were centrifuged under routine conditions at 2,400 x g for 15 min. When the PLA₂ activities in the high- and low-speed supernatants were assayed and compared, no loss of activity in the high-speed supernatants was observed, demonstrating that the enzyme is soluble (data not shown).

FIG. 1

Dose- and time-dependent secretion of phospholipase A2 by human platelets stimulated with thrombin, TPA, or collagen. Left-Hand Panels: As detailed under "Experimental Procedures", fresh platelets (3.6-7.1 x 108 cells/ml) were incubated for 5 min at 37°C in gel filtration buffer containing 2 mM CaCl₂, 1 mM MgCl₂, 1 mg/ml BSA, and the indicated concentrations of stimuli. Right-Hand Panels: Platelets were incubated for the indicated times in the same buffer containing one of the following additions: buffer (control), 0.1 units/ml of thrombin, 100 nM TPA, or 5 µg/ml of collagen. The supernatants from both sets of experiments were then assayed in duplicate for phospholipase A2 activity using 1-stearoyl-2-[3H]arachidonyl-GPC as substrate. The data, which are presented as the assay mean ± standard deviation, are representative of 4 separate dose experiments using thrombin, 2 dose experiments using TPA, and 3 dose experiments using collagen. The time course data are representative of 2 experiments using thrombin, 2 experiments using TPA, and 1 experiment using collagen as a stimulus. Closed circles, with stimulus; open circles, without stimulus.

FIG. 2

Effect of platelet concentration on phospholipase A_2 secretion. Fresh platelets were incubated for 10 min at the indicated cell concentrations in gel filtration buffer containing 2 mM CaCl₂, 1 mM MgCl₂, 1 mg/ml BSA, and either 0.5 units/ml thrombin (closed circles) or buffer alone (control, open circles). The supernatants were then assayed in duplicate for phospholipase A_2 activity using 1 stearoyl-2-[³H]arachidonyl-GPC as substrate. These data, which are presented as the assay mean \pm standard deviation, are representative of 3 separate experiments.

In experiments to characterize further the secreted phospholipase A_2 , the effects of substrate concentration, Ca^{2+} concentration, and pH on the enzyme were evaluated. When 1-stearoyl-2-[3 H]arachidonyl-GPC was employed as substrate, the enzyme's activity approached saturation at phospholipid concentrations above 2 μ M. Similar substrate concentration dependency was also observed in preliminary experiments utilizing 1-stearoyl-2-[3 H]arachidonyl-GPE (data not shown). The secreted PLA₂ exhibited an absolute requirement for calcium and a biphasic response during Ca^{2+} titration experiments (Fig. 4). At Ca^{2+} levels of 20-100 μ M, a plateau of enzyme activity was observed representing 60% of maximal hydrolysis. As the calcium concentration was increased further, a second plateau of PLA₂ activity was seen at Ca^{2+} levels ≥ 1 mM. This biphasic reponse to calcium concentration has also been observed with phospholipase A₂ partially purified from detergent-solubilized whole platelets (19). The effect of pH on secreted PLA₂ is shown in Fig. 5. The enzyme, which had a pH optimum of 7.5-8, exhibited significant activity over a pH range of 6.5-10.

FIG. 3

Enhancement of phospholipase A₂ secretion by BSA. Fresh platelets (4.9 x 10⁸ cells/ml) were incubated for 5 min in gel filtration buffer containing 2 mM CaCl₂, 1 mM MgCl₂, 0.5 units/ml thrombin, and the indicated concentrations of BSA. The supernatants were then assayed in triplicate for phospholipase A₂ activity using 1-stearoyl-2-[³H]arachidonyl-GPC as substrate; the concentration of BSA during the assay was 2.83 mg/ml for all points. The data are presented as the assay mean ± standard deviation.

FIG. 4

Effect of Ca^{2+} concentration on secreted PLA_2 activity. Red Cross platelets (9.2 x 10^8 cells/ml) were incubated for 5 min in HEPES-buffered medium containing 0.5 units/ml thrombin, 1 mM EDTA, and 1 mg/ml BSA. The supernatant from this reaction was then assayed in triplicate for phospholipase A_2 activity in the presence of the indicated concentrations of Ca^{2+} . The data, which are presented as the assay mean \pm standard deviation, are representative of 4 experiments.

To determine the effect of the substrate's polar head group on secreted PLA₂ activity, the relative hydrolysis of 1-stearoyl-2-[3 H]arachidonyl-GPC and 1-stearoyl-2-[3 H]arachidonyl-GPE were compared. As shown in Table I, PE hydrolysis was 5-12 times greater than PC hydrolysis when the substrates were present in pure form. However, since pure PC and PE vesicles have different physical structures (bilayer vs. hexagonal H_{II} phase) in an aqueous environment (20), the enhanced activity observed with PE could be due to a preference for physical structure rather than a selectivity for the ethanolamine head group. This hypothesis is supported by additional data in Table I demonstrating that when the substrates were present in 1:1 molar mixtures, differences in the hydrolysis of these two substrates were greatly diminished.

FIG. 5

Effect of pH on secreted PLA, activity. Platelet supernatant prepared as described in Fig. 4 was assayed in duplicate for phospholipase A₂ activity at the indicated pH using 1-stearoyl-2-[3H]arachidonyl-GPC (202,000 dpm/trial) as substrate. A buffer containing 100 mM glycylglycine, 100 mM piperazine, and 100 mM sodium formate was substituted for the normal Tris assay buffer. The reactions were stopped by total lipid extraction (13) and the levels of radiolabeled fatty acid were measured following separation by TLC. The data, which are presented as the assay mean ± standard deviation, are representative of 2 separate experiments.

TABLE I

Comparison of PC and PE Hydrolysis by Secreted Phospholipase A₂

	Arachidonate Released (pmol)							
Substrate	PC*	PE*	PC*/PE	PE*/PC				
Experiment 1	0.42 ± 0.11	1.92 ± 0.08	0.71 ± 0.15	0.81 ± 0.06				
Experiment 2	0.39 ± 0.12	4.82 ± 0.18	0.92 ± 0.10	1.22 ± 0.10				

Human platelets (9 x 10⁸ cells/ml) from the Red Cross were incubated in HEPES buffered medium containing 0.5 units/ml of thrombin and 1 mM EDTA for 5 min at 37°C. The phospholipase A_2 activity in the supernatant was then assayed in the presence of 1-stearoyl-2-[3 H]arachidonyl-GPC, 1-stearoyl-2-[3 H]arachidonyl-GPE, or a 1:1 molar mixture of these two glycerophospholipids in which either the PC or PE was radiolabeled. The concentration of total phospholipid for each trial was 200 pmol/300 μ l. Product mass was calculated from the specific radioactivity of the substrate mixtures. The data are presented as the mean from triplicate determinations \pm the standard deviation; * denotes the glycerophospholipid labeled with [3 H]arachidonate.

DISCUSSION

A number of reports have been published recently demonstrating the secretion of phospholipase A, from various cell types. The cell sources and their stimuli have included rabbit peritoneal neutrophils treated with the chemotactic peptide, N-formyl-methionylleucyl-phenylalanine (21); human neutrophils challenged with ionophore A23187 (22); and sheep (8), rat (9), and rabbit (10) platelets incubated with agents including thrombin, platelet activating factor, ionophore A23187, and ADP. PLA₂ activity has also been observed in the pulmonary secretions of patients with alveolar proteinosis (23); and in the peritoneal exudates of rats (24) and rabbits (25) following intraperitoneal adminstration of caseinate or glycogen, respectively. In the case of rat peritoneal PLA₂, the neutrophil was implicated as the source of the enzyme since a correlation was observed between the number of neutrophils and the PLA₂ activity found in the ascitic fluid (24). Although the secretion of phospholipase A₂ from human platelets was not observed in a previous study (10), the data presented here demonstrate that these cells also release PLA₂ in response to thrombin, collagen, or TPA. In addition to this study, another paper has recently reported that thrombin stimulates PLA₂ release from human platelets (26); however, the secreted PLA₂ in this study was detectable only when radiolabeled Escherichia coli membranes were used as substrate, and characterizations of the secreted PLA₂ or the optimal conditions for its release were not reported. To our knowledge, the present study is also the first to document PLA₂ secretion in response to phorbol ester treatment.

Several recent studies suggest that PLA_2 secreted from platelets is identical to intracellular, membrane-associated phospholipase A_2 . For example, in both rat (27) and rabbit (10) platelets the secreted and membrane-bound forms of the enzyme exhibit

identical biochemical characteristics. Moreover, comparisons of N-terminal or total sequence data for the rat (27,28) and rabbit (10) enzymes have shown complete homology between the secreted and membrane-bound forms. In human platelets, the data to support the existence of a single PLA₂ are less clear-cut. Based on the effects of substrate and Ca²⁺ concentration, the secreted PLA₂ in the present study is very similar to phospholipase A₂ partially purified from detergent-solubilized human platelets (19). However, PLA₂ purified to homogeneity from acid-extracted human platelets (26) requires a 10-fold higher concentration of Ca²⁺ for maximal activation than the secreted PLA₂ (10 mM vs 1 mM). In addition, the secreted PLA₂ has a pH optimum 1-2 units lower than the whole-cell enzyme (16,19,26) and is not stimulated by 1,2-dioleoylglycerol (data not shown), which reportedly enhances human platelet PLA₂ activity by 2-3 fold (19,29).

An interesting observation in the present study is that BSA augments the secretion of PLA_2 from human platelets by nearly 2.5-fold. This effect is saturable at BSA concentrations ≥ 0.5 mg/ml. Kramer et al. (16,19) have previously shown that BSA enhances phospholipase A_2 activity isolated from human platelets, presumably by binding to a fatty acid inhibitor (30). As noted earlier, though, the data in Figure 3 represent only the effect of BSA on PLA_2 secretion since all points were assayed at the same BSA concentration. One explanation for this phenomenon may be that BSA prevents binding of the secreted PLA_2 to the sides of the reaction tubes, thereby enhancing its recovery. However, it has also been demonstrated that BSA can extract free fatty acid from biological membranes (31,32). Therefore, an alternative explanation may be that BSA is removing fatty acid or an eicosanoid product from the platelet membrane which otherwise inhibits the secretory mechanism.

Based on the time course of PLA₂ secretion relative to the release of various platelet granule markers, the α-granule has been implicated as the source of the secreted enzyme in rat (9) and rabbit platelets (10). The present findings that PLA₂ secretion from human platelets exhibits a plateau in response to both stimulus dose and time, and that relatively low levels of activity are released, are consistent with a discrete, granule pool of enzyme. In contrast, two earlier papers have reported that stimulated platelets release a large proportion (50-66%) of their total cellular PLA₂ activity (26,27), findings which are not consistent with a specific platelet granule as the sole source of secreted enzyme. However, an inherent complication in comparing secreted to cell-associated phospholipid relative to the supernatants (data not shown). These large differences in phospholipid content could distort a direct comparison of secreted vs. cell-associated PLA₂ activity by altering the specific radioactivity of the substrate, a potential pitfall which may have been overlooked in these earlier studies.

Mizushima et al. (10) have previously demonstrated that the infusion of platelet activating factor into rabbits results in a rapid increase of PLA₂ activity in the plasma. This increase in enzyme activity is paralleled by a significant loss of platelets from the circulation. Therefore, the secretion of PLA₂ by platelets may have *in vivo* significance in the regulation of thrombotic events. As a positive effector, secreted PLA₂ could target other platelets, leading to the hydrolysis of arachidonic acid in the platelet membrane and the generation of TXA₂. As a negative mediator, the PLA₂ could act at the endothelial cell membrane to increase PGI₂ production, thereby serving to limit the area of platelet

deposition during thrombus formation. Due to the prevalence of phospholipase A₂ secretion from platelets of various animal species, these mechanisms warrant further consideration in future studies.

Acknowledgements

The authors thank Dr. Joseph Jakubowski for his helpful suggestions on the isolation of human platelets. This work was supported by grant HL18586 from the National Heart, Lung, and Blood Institute, and grants from the Veterans Administration Medical Research Service and the American Heart Association, Texas Affiliate.

REFERENCES

- 1. SIESS, W. Molecular mechanisms of platelet activation. Physiol. Rev. 69, 58-178, 1989.
- 2. ROTH, G.J. Platelet arachidonate metabolism and platelet-activating factor. In: *Biochemistry of Platelets*. D.R. Phillips and M.A. Shuman (Eds.), pp 69-113, Academic Press, Orlando, FL (1986).

3. MONCADA, S., and HIGGS, E.A. Arachidonate metabolism in blood cells and the

vessel wall. Clin. Haematol. 15, 273-292, 1985.

- 4. AIKEN, J.W. Contribution of endogenous prostacyclin in control of platelet-vessel wall interaction. In: *Interaction of Platelets with the Vessel Wall*. J.A. Oates, J. Hawiger, and R. Ross (eds.), pp 79-87, Waverly Press, Baltimore, MD (1985).
- 5. NEEDLEMAN, P., TURK, J., JAKSCHIK, B.A., MORRISON, A.R., and LEFKOWITH, J.B. Arachidonic acid metabolism. Ann. Rev. Biochem. 55, 69-102, 1986. 6. BROEKMAN, M.J., WARD, J.W., and MARCUS, A.J. Phospholipid metabolism in stimulated human platelets. J. Clin. Invest. 66, 275-283, 1980.
- 7. MCKEAN, M.L., SMITH, J.B., and SILVER, M.J. Formation of lysophosphatidylcholine by human platelets in response to thrombin. J. Biol. Chem. 256, 1522-1524, 1981. 8. VADAS, P., and HAY, J.B. The release of phospholipase A₂ from aggregated platelets and stimulated macrophages of sheep. Life Sci. 26, 1721-1729, 1980.

9. HORIGOME, K., HAYAKAWA, M., INOUE, K., and NOJIMA, S. Selective release of phospholipase A₂ and lysophosphatidylserine-specific lysophospholipase from rat

platelets. J. Biochem. 101, 53-61, 1987.

- 10. MIZUSHIMA, H., KUDO, I., HORIGOME, K., MURAKAMI, M., HAYAKAWA, M., KIM, D.-K., KONDO, E., TOMITA, M., and INOUE, K. Purification of rabbit platelet secretory phospholipase A₂ and its characteristics. J. Biochem. 105, 520-525, 1989. 11. YANG, S.F., FREER, S., and BENSON, A.A. Transphosphatidylation by phospholipase D. J. Biol. Chem. 242, 477-484, 1966.
- 12. DAVIDSON, F.M., and LONG, C. The structure of naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem. J. 69, 458-466, 1958.

13. BLIGH, E.G., and DYER, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-918, 1959.

14. MUELLER, H.W., O'FLAHERTY, J.T., GREENE, D.G., SAMUEL, M.P. and WYKLE, R.L. 1-O-Alkyl-linked glycerophospholipids of human neutrophils: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. J. Lipid Res. 25, 383-388, 1984.

- 15. RITTENHOUSE-SIMMONS, S., and DEYKIN, D. Isolation of membranes from normal and thrombin-treated gel-filtered platelets using a lectin marker. Biochim. Biophys. Acta 426, 688-696, 1976.
- 16. KRAMER, R.M., CHECANI, G.C., DEYKIN, A., PRITZKER, C.R., and DEYKIN, D. Solubilization and properties of Ca²⁺-dependent human platelet phospholipase A₂. Biochim. Biophys. Acta 878, 394-403, 1986.
- 17. DOLE, V.P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. Clin. Invest. 35, 150-154, 1956.
- 18. ROUSER, G., SIAKOTOS, A.N., and FLEISCHER, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1, 85-86, 1966.
- 19. KRAMER, R.M., JAKUBOWSKI, J.A., and DEYKIN, D. Hydrolysis of 1-alkyl-2-arachidonyl-sn-glycero-3-phosphocholine, a common precursor of platelet-activating factor and eicosanoids, by human platelet phospholipase A₂. Biochim. Biophys. Acta 959, 269-279, 1988.
- 20. CULLIS, P.R., and HOPE, M.J. Physical properties and functional roles of lipids in membranes. In: *Biochemistry of Lipids and Membranes*. D.E. Vance and J.E. Vance (eds.), pp 25-72, Benjamin/Cummings Publishing Co., Menlo Park, CA (1985).
- 21. LANNI, C., and BECKER, E.L. Release of phospholipase A₂ activity from rappit peritoneal neutrophils by f-Met-Leu-Phe. Amer. J. Pathol. 113, 90-94, 1983.
- 22. BALSINDE, J., DIEZ, E., SCHULLER, A., and MOLLINEDO, F. Phospholipase A₂ activity in resting and activated human neutrophils. Substrate specificity, pH dependence, and subcellular localization. J. Biol. Chem. 263, 1929-1936, 1988.
- 23. SAHU, S., and LYNN, W.S. Phospholipase A in pulmonary secretions of patients with alveolar proteinosis. Biochim. Biophys. Acta 487, 354-360, 1977.
- 24. CHANG, H.W., KUDO, I., HARA, S., KARASAWA, K., and INOUE, K. Extracellular phospholipase A_2 activity in peritoneal cavity of casein-treated rats. J. Biochem. 100, 1099-1101, 1986.
- 25. FORST, S., WEISS, J., ELSBACH, P., MARAGANORE, J.M., REARDON, I., and HEINRIKSON, R.L. Structural and functional properties of a phospholipase A₂ purified from an inflammatory exudate. Biochem. 25, 8381-8385, 1986.
- 26. KRAMER, R.M., HESSION, C., JOHANSEN, B., HAYES, G., MCGRAY, P., CHOW, E.P., TIZARD, R., and PEPINSKY, R.B. Structure and properties of a human non-pancreatic phospholipase A₂. J. Biol. Chem. 264, 5768-5775, 1989.
- 27. HAYAKAWA, M., KUDO, I., TOMITA, M., and INOUE, K. Purification and characterization of membrane-bound phospholipase A₂ from rat platelets. J. Biochem. 103, 263-266, 1988.
- 28. HAYAKAWA, M., KUDO, I., TOMITA, M., NOJIMA, S., and INOUE, K. The primary structure of rat platelet phospholipase A₂. J. Biochem. 104, 767-772, 1988.
- 29. KRAMER R.M., CHECANI, G.C., and DEYKIN, D. Stimulation of Ca²⁺-activated human platelet phospholipase A₂ by diacylglycerol. Biochem. J. 248, 779-783, 1987.
- 30. BALLOU, L.R., and CHEUNG, W.Y. Inhibition of human platelet phospholipase A₂ activity by unsaturated fatty acids. Proc. Natl. Acad. Sci. USA 82, 371-375, 1985.
- 31. WEINHOLD, P.H., ROUNSIFER, M., WILLIAMS, S., BRUBAKER, P., and FELDMAN, D.A. CTP:phosphorylcholine cytidylyltransferase in rat lung. The effect of free fatty acids on the translocation of activity between microsomes and cytosol. J. Biol. Chem. 259, 10315-10321, 1984.

32. CORNELL, R., and VANCE, D.E. Translocation of CTP:phosphocholine cytidylyl-transferase from cytosol to membranes in HeLa cells: Stimulation by fatty acid, fatty alcohol, mono- and diacylglycerol. Biochim. Biophys. Acta 919, 26-36, 1987.