Задача регрессии

Объект, отклик

і-я строка матрицы - описание і-го объекта (конкретного экземпляра)

$$x^i = (x_1^i, x_2^i, x_3^i, x_4^i)$$

Каждому объекту сопоставлена непрерывная величина у (непрерывнозначный отклик, целевая переменная)

$$(x_1^i, x_2^i, x_3^i, x_4^i) \to y^i$$

$$y^i \in \mathbb{R}$$

Обучение с учителем. Регрессия

Есть образцы

Есть целевая переменная (непрерывная)

Есть новые образцы

Требуется для новых образцов используя размеченные данные смоделировать связь между признаками и целевой переменной как можно более точно

Задача регрессии. Одномерный случай

- Смоделировать связь между признаком и откликом
- ▶ Уравнение линейной модели $y=w_0+w_1x$
- ightharpoonup Задача найти веса w_0 и w_1 чтобы смоделировать связь

Как решать задачу?

- Минимизировать сумму квадратичных вертикальных расстояний (остатков) до точек образцов
- ▶ Введем следующую функцию издержек среднеквадратическая ошибка предсказания (Sum of Squared Error), ŷ - предсказанное значение

$$S(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

По сути постановка задачи такая же как в методе наименьших квадратов

Нормальное уравнение

Задача: при обучении найти веса, по которым для новых экземпляров будем получать прогноз $\hat{y}=w_0+w_1x$

- Возможно решение в матричном виде
- X матрица объектов
- у целевая переменная для имеющихся объектов
- Связь объектов с целевой переменной:

$$Xw = y$$

Решение в явном виде:

$$w = (X^T X)^{-1} X^T y$$

```
if y.ndim < 2:
    self.coef_, self._residues = optimize.nnls(X, y)
else:
    # scipy.optimize.nnls cannot handle y with shape (M, K)

OB outs = Parallel(n_jobs=n_jobs_)(
    delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1])
)
    self.coef_, self._residues = map(np.vstack, zip(*outs))</pre>
```

```
def nnls(A,b): SCipy
"""

Solve `argmin_x || Ax - b ||_2` for `x>=0`. This is a wrapper
for a FORTAN non-negative least squares solver.
```

B sklearn этот метод реализован в классе sklearn.linear_model.LinearRegression, который по сути делает то же самое (просто обертка над данным решением)

lection_5_lin

Задача регрессии. Многомерный случай

- Смоделировать связь между признаками и откликом
- Уравнение модели (гиперплоскость)

$$y = w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \mathbf{w}^T \mathbf{x}$$

> Задача - найти веса $w_{0,}w_{1,}w_{2..}$ чтобы смоделировать связь

Что если зависимость нелинейная? Превращение линейной регрессии в полиномиальную

▶ Добавим в модель полиномиальные члены, где d - степень полинома

$$y = w_0 + w_1 x + w_2 x^2 + \ldots + w_d x^d$$

Несмотря на нелинейные связи, модель по прежнему линейная (относительно коэффициентов w)

В sklearn есть специальный класс, который позволяет получить полиномиальные коэффициенты sklearn.preprocessing.PolynomialFeatures. Для его применения удобно использовать конвейер (Pipeline)

lection_5_nonlin

Анализ остатков

Остатки: $e_i = \hat{y}_i - y_i$

После того, как проверили модель на отложенных данных, от остатков хотим получить следующее:

- ▶ Гомоскедастичность постоянство дисперсии
- Нормальное распределение остатков
- Независимость (актуально для временных рядов, там проверяется автокорреляция)

Сравнение моделей между собой. Метрики

▶ MSE - mean square error, RMSE - корень из MSE

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

MAE - mean absolute error

$$ext{MAE} = rac{\sum_{i=1}^{n} |e_i|}{n}$$

Отличие: MSE придает дополнительный вес большим ошибкам

Лучшее значение: 0.0

Коэффициент детерминации

> это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью - соответствие модели данным

$$R^2=1-rac{D[y|x]}{D[y]}$$
 или $R^2=1-rac{MSE}{D[y]}$

- Изменяется от 0 до 1. Чем ближе к 1, тем сильнее литературе Var(у)
 зависимость
- ightharpoonup Достаточно хорошие модели с $R^2 > 0.9$
- ► R² = 1 функциональная зависимость между переменными

lection_5_compareModels

Процесс обучения (правило Видроу-Хоффа)

Минимизируем функцию
$$S(\mathbf{w}) = \frac{1}{2} \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right)^2$$
 Изменяем веса
$$\Delta \mathbf{w} = -\eta \nabla S(\mathbf{w})$$

lection_5_lin_gd

Регрессор на базе дерева решений

- Задача найти расщепление признака, которое максимизирует прирост информации (сокращает неоднородность в дочерних узлах)
- В качестве меры вместо энтропии будем использовать MSE внутриузловая дисперсия

$$I_t = MSE(t) = \frac{1}{N_t} \sum_{i \in D_t}^{n} \left(y^{(i)} - \hat{y}_t \right)^2$$

> Оценка внутри узла - среднее значение

$$\hat{y}_t = \frac{1}{N} \sum_{i \in D_t} y^{(i)}$$

Результат работы регрессора на базе дерева

Результат работы регрессора на базе kNN

Локальная интерполяция на основе ближайших соседей из тренировочного набора

