Supervised Learning

R Basheer Ahammad

1 Introduction

Given a set of data points $\{x^{(1)},\ldots,x^{(m)}\}$ associated with a set of outcomes $\{y^{(1)},\ldots,y^{(m)}\}$, we want to build a model that learns how to predict y from x.

Type Of Prediction

The different types of predictive models are summed up in the table below:

	Regression	Classifier
Outcome	Continuous	Class
Examples	Linear regression	Logistic regression, SVM, Naive Bayes

Type Of Model

The different models are summed up in the table below:

	Discriminative model	Generative model	
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to deduce $P(y x)$	
What's learned	Decision boundary	Probability distributions of the data	
Illustration			
Examples	Regressions, SVMs	GDA, Naive Bayes	

2 GENERAL CONCEPTS

Hypothesis

The hypothesis is noted h_{θ} and is the model that we choose. For a given input data $x^{(i)}$, the model prediction output is $h_{\theta}(x^{(i)})$.

Loss Function

A loss function is a function $L:(z,y)\in\mathbb{R}\times Y\to L(z,y)\in\mathbb{R}$ that takes as inputs the predicted value z corresponding to the real data value y and outputs how different they are. The common loss functions are summarized in the table below:

Least squared	Logistic	Hinge	Cross-entropy
$\frac{1}{2}(y-z)^2$	$\log(1 + \exp(-yz))$	$\max(0,1-yz)$	$-\left[y\log(z)+(1-y)\log(1-z)\right]$
$y \in \mathbb{R}$	y1 z y-1	y = -1 z	y = 0 $y = 0$ $y = 0$ $y = 1$
Linear regression	Logistic regression	SVM	Neural Network

Cost Function

The cost function J is commonly used to assess the performance of a model, and is defined with the loss function L as follows:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(h_{\theta}(x^{(i)}), y^{(i)})$$

Gradient Descent

By noting $\alpha\in\mathbb{R}$ the learning rate, the update rule for gradient descent is expressed with the learning rate and the cost function J as follows:

$$\theta \leftarrow \theta - \alpha \nabla J(\theta)$$

Likelihood

The likelihood of a model $L(\theta)$ given parameters θ is used to find the optimal parameters θ through maximizing the likelihood. In practice, we use the log-likelihood $\ell(\theta) = \log(L(\theta))$ which is easier to optimize. We have:

$$\theta_{\mathsf{opt}} = \arg\max_{\theta} L(\theta)$$

3 SUPPORT VECTOR MACHINES

The goal of support vector machines is to find the line that maximizes the minimum distance to the line

Optimal margin classifier

The optimal margin classifier h is such that:

$$h(x) = \operatorname{sign}(w^T x - b)$$

where $(w,b) \in \mathbb{R}^n \times \mathbb{R}$ is the solution of the following optimization problem:

$$\min_{rac{1}{2}||w||^2}$$
 such that $y^{(i)}(w^Tx^{(i)}-b)>0$

Hinge Loss

The hinge loss is used in the setting of SVMs and is defined as follows:

$$L(z, y) = [1 - yz]^{+} = \max(0, 1 - yz)$$

Kernel

Given a feature mapping ϕ , we define the kernel K to be defined as:

$$K(x,z) = \phi(x)^T \phi(z)$$

In practice, the kernel K defined by $K(x,z)=\exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$ is called the Gaussian kernel and is commonly used.

4 BAYESIAN CLASSIFIER

Suppose we have K classes $C1,C2,\ldots,CK$ and a set of n training examples $(x_1,y_1),\ldots,(x_n,y_n)$, where $x_i\in\mathbb{R}^{d\times 1}$ is a d-dimensional feature vector and $y_i\in\{1,2,\ldots,K\}$ is the corresponding class label. Let $P(C_k)$ be the prior probability of class C_k , i.e., the probability that a randomly chosen example belongs to class C_k . Let μ_k and Σ_k be the mean vector and covariance matrix for class C_k . To classify a new example x, we compute the posterior probability of each class C_k given x using Bayes' rule:

$$P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)}$$

$$= \frac{\frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\right) P(C_k)}{\sum_{j=1}^K \frac{1}{(2\pi)^{d/2}|\Sigma_j|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_j)^T \Sigma_j^{-1}(x-\mu_j)\right) P(C_j)}$$

where $|\Sigma_k|$ denotes the determinant of Σ_k , and Σ_k^{-1} is the inverse of Σ_k . The class with the highest posterior probability is then selected as the predicted class for x:

$$\hat{y} = \arg \max_{k \in \{1, 2, \dots, K\}} P(C_k | x)$$

5 DECISION TREE

6 K Nearest Neighbour

The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification and regression settings.

Algorithm 1: K-nearest Neighbors (KNN) Algorithm in K-means Style

Input: Training examples $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, New example x, Number of neighbors K

Output Predicted class \hat{y}

 $\mathbf{1} \ \ \mathbf{for} \ i=1 \ \mathbf{to} \ n \ \mathbf{do}$

- 2 Calculate distance: $d_i = ||x x_i||^2$;
- **3** Sort distances d_1, d_2, \ldots, d_n in ascending order;
- 4 Initialize empty list *neighbors*;
- 5 for i=1 to K do
- **6** Find index j corresponding to d_i in the sorted list;
- 7 Append training example (x_j, y_j) to neighbors;
- 8 Initialize empty dictionary class_votes;
- 9 forall (x_i, y_i) in neighbors do
- 10 Increment $class_votes[y_j]$ by 1;
- 11 Select predicted class: $\hat{y} = \arg \max_{x} class_votes[y];$
