

LPC Bridge Core Specification

Author: Howard M. Harte hharte@opencores.org

Document rev. 0.4 July 26, 2008

Revision History

Rev.	Date	Author	Description
0.1	03/01/2008	Howard M. Harte	First Draft
0.2	03/05/2008	Howard M. Harte	Corrected some mistakes.
0.3	03/08/2008	Howard M. Harte	Added SERIRQ Information
0.4	07/26/2008	Howard M. Harte	Added Wishbone error reporting

Table of contents

INTRODUCTION	2
LPC HOST IO PORTS	2
LPC PERIPHERAL IO PORTS	2
SERIRQ HOST IO PORTS	2
SERIRQ SLAVE IO PORTS	2
OPERATION	2
ARCHITECTURE	2

Introduction

The core features a 32-bit wishbone interface.

FEATURES:

- Compliant to Intel(r) Low Pin Count (LPC) Interface Specification Revision 1.1
- Wishbone Slave to LPC Host Module
 - Memory Read and Write (1-byte)
 - o I/O Read and Write (1-byte)
 - o Firmware Memory Read and Write (1-, 2- and 4-byte)
 - o DMA
- Wishbone Master to LPC Peripheral Module
 - o Memory Read and Write (1-byte)
 - o I/O Read and Write (1-byte)
 - o Firmware Memory Read and Write (1-, 2- and 4-byte)
 - o DMA
- Serial IRQ Host Module
 - o Serial IRQ for PCI Systems 6.0 Compliant.
 - o Supports 32 serialized IRQ lines.
 - o Continuous and Quiet Modes.
- Serial IRQ Slave Module
 - o Serial IRQ for PCI Systems 6.0 Compliant.
 - Supports 32 serialized IRQ lines.
 - o Continuous and Quiet Modes.
- Fully static synchronous design with one clock domain
- Technology independent Verilog
- Fully synthesizable

LPC Host IO ports

2.1 WISHBONE Slave to LPC Host Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	Master clock input
nrst_i	1	Input	Asynchronous active low reset
wbs_inta_o	1	Output	Interrupt request signal
wbs_cyc_i	1	Input	Valid bus cycle
wbs_stb_i	1	Input	Strobe/Core select
wbs_adr_i	32	Input	Wishbone address bus bits
wbs_tga_i	2	Input	Determines LPC access type (I/O, Mem, FW,
			DMA)
wbs_sel_i	4	Input	Byte enables
wbs_we_i	1	Input	Write enable
wbs_dat_i	32	Input	Data input
wbs_dat_o	32	Output	Data output
wbs_ack_o	1	Output	Normal bus termination
wbs_err_o	1	Output	Wishbone error indication

2.1.1 clk i

All internal WISHBONE logic is registered to the rising edge of the [clk_i] clock input.

2.1.2 rst i

The active low asynchronous reset input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

2.1.3 wbs inta o

The interrupt request output is asserted when the core needs service from the host system.

2.1.4 wbs_cyc_i

When asserted, the cycle input [cyc_i] indicates that a valid bus cycle is in progress. The logical AND function of [cyc_i] and [stb_i] indicates a valid transfer cycle to/from the core.

2.1.5 wbs stb i

The strobe input [stb_i] is asserted when the core is being addressed. The core only responds to WISHBONE cycles when [stb_i] is asserted, except for the [rst_i], which always receive a response.

2.1.6 wbs adr i

The address array input [adr_i] is used to pass a binary coded address to the core. The most significant bit is at the higher number of the array.

2.1.7 wbs_tga_i

The address tag input, defines transfer type on LPC Bus (I/O, Memory, DMA, Firmware.

WB_TGA_MEM	Memory Cycle	2'b00
WB_TGA_IO	I/O Cycle	2'b01
WB_TGA_FW	Firmware Memory Cycle	2'b10
WB_TGA_DMA	DMA Cycle	2'b11

2.1.8 wbs sel i

Select lines that determine the access size and byte lanes on the Wishbone backplane.

2.1.9 wbs we i

When asserted, the write enable input [we_i] indicates that the current bus cycle is a write cycle. When negated, it indicates that the current bus cycle is a read cycle.

2.1.10 wbs_dat_i

The data array input [dat_i] is used to pass binary data from the current WISHBONE Master to the core. All data transfers are 8 bit wide.

2.1.11 wbs dat o

The data array output [dat_o] is used to pass binary data from the core to the current WISHBONE Master. All data transfers are 8 bit wide.

2.1.12 wbs ack o

When asserted, the acknowledge output [ack_o] indicates the normal termination of a valid bus cycle.

2.1.13 wbs err o

When asserted, the error output [err_o] indicates that an error occurred during the LPC bus transfer. Errors can happen in all cases, except for Firmware Memory cycles, where errors are forbidden by the LPC Specification.

2.2 External (LPC Host Port) Connections

Port	Width	Direction	Description
lpc_clk_o	1	Output	LPC clock
lframe_o	1	Output	LPC LFRAME Signal
lad_o	4	Output	LPC Address/Data Bus Out
lad_i	4	Input	LPC Address/Data Bus In
lad_oe	1	Output	LPC Address/Data Output Enable

2.2.1 lpc_clk_o

Lpc_clk_o is generated by the master device and synchronizes data movement on the LPC Bus.

2.2.2 Iframe_o

Frame: Indicates start of a new cycle, termination of broken cycle.

2.2.3 lad_o

The multiplexed LPC Command, Address, and Data Bus output.

2.2.4 lad i

The multiplexed LPC Command, Address, and Data Bus input.

2.2.5 lad_oe

The multiplexed LPC Command, Address, and Data Bus output enable.

LPC Peripheral IO ports

3.1 WISHBONE Master to LPC Peripheral Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	Master clock input
rst_i	1	Input	Asynchronous active low reset
wbm_inta_i	1	Input	Interrupt request signal
wbm_cyc_o	1	Output	Valid bus cycle
wbm_stb_o	1	Output	Strobe/Core select
wbm_adr_o	32	Output	Wishbone address bus bits
wbm_tga_o	2	Output	LPC access type (I/O, Mem, FW, DMA)
wbm_sel_o	4	Output	Byte enables
wbm_we_o	1	Output	Write enable
wbm_dat_i	32	Input	Data input
wbm_dat_o	32	Output	Data output
wbm_ack_i	1	Input	Normal bus termination
Wbm_err_i	1	Input	Wishbone Error input.

3.1.1 clk i

All internal WISHBONE logic is registered to the rising edge of the [clk_i] clock input.

3.1.2 rst i

The active low asynchronous reset input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

3.1.3 inta_i

The interrupt request output is asserted when the core needs service from the host system.

3.1.4 cyc_o

When asserted, the cycle input [cyc_i] indicates that a valid bus cycle is in progress. The logical AND function of [cyc_i] and [stb_i] indicates a valid transfer cycle to/from the core.

3.1.5 stb o

The strobe input [stb_i] is asserted when the core is being addressed. The core only responds to WISHBONE cycles when [stb_i] is asserted, except for the [rst_i], which always receive a response.

3.1.6 adr o

The address array input [adr_i] is used to pass a binary coded address to the core. The most significant bit is at the higher number of the array.

3.1.7 wbm_tga_o

The address tag output, indicates transfer type on LPC Bus (I/O, Memory, DMA, Firmware.

WB_TGA_MEM	Memory Cycle	2'b00
WB_TGA_IO	I/O Cycle	2'b01
WB_TGA_FW	Firmware Memory Cycle	2'b10
WB_TGA_DMA	DMA Cycle	2'b11

3.1.8 wbm sel o

Select lines that determine the access size and byte lanes on the Wishbone backplane.

3.1.9 wbm we o

When asserted, the write enable input [we_i] indicates that the current bus cycle is a write cycle. When negated, it indicates that the current bus cycle is a read cycle.

3.1.10 wbm_dat_i

The data array input [dat_i] is used to pass binary data from the current WISHBONE Master to the core. All data transfers are 8 bit wide.

3.1.11 wbm dat o

The data array output [dat_o] is used to pass binary data from the core to the current WISHBONE Master. All data transfers are 8 bit wide.

3.1.12 wbm ack i

When asserted, the acknowledge input [ack_i] indicates the normal termination of a valid bus cycle.

3.1.13 wbs err i

When asserted, the error input [err_i] indicates that an error occurred during the Wishbone master cycle. This error will be propagated to the LPC host in all cases, except for Firmware Memory cycles, where errors are forbidden by the LPC Specification.

3.2 External (LPC Peripheral Port) Connections

Port	Width	Direction	Description
lpc_clk_i	1	Input	LPC Clock
lframe_i	1	Input	LPC LFRAME Signal
lad_o	4	Output	LPC Address/Data Bus Out
lad_i	4	Input	LPC Address/Data Bus In
lad_oe	1	Output	LPC Address/Data Output Enable

3.2.1 lpc_clk_i

Lpc_clk_o is generated by the master device and synchronizes data movement on the LPC Bus.

3.2.2 Iframe_i

Frame: Indicates start of a new cycle, termination of broken cycle.

3.2.3 lad_o

The multiplexed LPC Command, Address, and Data Bus output.

3.2.4 lad i

The multiplexed LPC Command, Address, and Data Bus input.

3.2.5 lad_oe

The multiplexed LPC Command, Address, and Data Bus output enable.

SERIRQ Host IO ports

4.1 SERIRO Host Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	Master clock input
nrst_i	1	Input	Active-low reset
serirq_mode_i	1	Input	SERIRQ Mode Control
irq_o	32	Output	Interrupt request bit vector.
serirq_o	1	Output	SERIRQ serial output.
serirq_i	2	Input	SERIRQ serial input
serirq_oe	1	Output	SERIRQ output enable

4.1.1 clk i

All internal WISHBONE logic is registered to the rising edge of the [clk_i] clock input.

4.1.2 rst i

The active low asynchronous reset input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

4.1.3 serirq_mode_i

This input sets the Serial IRQ mode. When 0, the SERIRQ Host transitions to "continuous mode." In this mode, the host continually generates SERIRQ frames to check for device interrupts. When 1, the SERIRQ Host transitions to "quiet mode." In this mode, the SERIRQ Host waits for a SERIRQ slave to generate a request by driving the serirq_i line low. When the host detects this condition, it completes the SERIRQ Start Cycle, and SERIRQ frame to check for device interrupts. The SERIRQ Host will generate a SERIRQ frame when transitioning from Continuous mode to Quiet mode, and vice-versa. This is required because SERIRQ Slaves count the number of bits in the SERIRQ Stop cycle to determine the mode. All SERIRQ Slaves are required to default to "Continuous Mode."

4.1.4 irg o

The irq_o output contains the current interrupt request lines as determined by the previous SERIRQ Cycle.

4.1.5 sering o

The serirg_o output is the serialized SERIRQ output stream.

4.1.6 serirg i

The serirq_i input is the serialized SERIRQ input stream.

4.1.7 serirq_oe

The serirq_oe output is the output enable for serirq_o. When high, serirq_o should be driven onto the serirq line. When 0, serirq should be tri-stated.

SERIRQ Slave IO ports

5.1 SERIRQ Slave Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	LPC_CLK, clock input
nrst_i	1	Input	LPC_RST, Active-low reset
irq_i	32	Input	Interrupt request bit vector.
serirq_o	1	Output	SERIRQ serial output.
serirq_i	2	Input	SERIRQ serial input
serirq_oe	1	Output	SERIRQ output enable

5.1.1 clk i

This is the LPC_CLK input, all internal logic is registered to the rising edge of the [clk_i] clock input.

5.1.2 rst i

The active low LPC_RST input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

5.1.3 irq_i

The irq_i input contains the current interrupt request lines to be transmitted over the SERIRQ interface.

5.1.4 serirg_o

The serirq_o output is the serialized SERIRQ output stream.

5.1.5 serirg i

The serirq_i input is the serialized SERIRQ input stream.

5.1.6 serirg oe

The serirq_oe output is the output enable for serirq_o. When high, serirq_o should be driven onto the serirq line. When 0, serirq should be tri-stated.

Operation

6.1 LPC Transfers

Architecture