Révision contrôle : Modèles Statistiques

Exercice 1 : Régression Linéaire

Une entreprise lance une campagne publicitaire dans plusieurs villes et souhaite analyser l'effet de la dépense publicitaire sur le nombre de produits vendus. On mesure :

- X: le budget publicitaire investi dans chaque ville (en milliers de dirhams),
- Y : le nombre de produits vendus dans cette ville.

Les données pour 10 villes sont présentées ci-dessous :

Ville	Budget Publicité (X)	Produits Vendus (Y)
1	2	18
2	3	24
3	5	32
4	4	27
5	6	36
6	8	45

Table 1: Données de budget publicitaire et ventes

- 1. Calculer les moyennes \bar{X} et \bar{Y} , ainsi que les variances Var(X) et Var(Y).
- 2. Calculer la covariance Cov(X,Y) entre les deux variables.
- 3. Déterminer le coefficient de corrélation linéaire entre X et Y. Interprétez ce coefficient.
- 4. Déterminer la droite de régression Y = a + bX. Tracez également cette droite sur le nuage de points (X, Y).
- 5. Évaluer la performance du modèle (par exemple à l'aide du coefficient de détermination \mathbb{R}^2).
- 6. À l'aide du modèle obtenu, estimer combien de produits seront vendus si le budget publicitaire est de 4,5 milliers de dirhams.

1 Exercice 2 : Classification des fruits avec K-means

On considère le tableau suivant ayant comme individus des fruits avec 2 caractéristiques :

- Feature 1 représente le poids du fruit (en grammes).
- Feature 2 représente la teneur en sucre (en grammes).

Fruit	Poids (g)	Teneur en sucre (g)
Fruit1	150	12
Fruit2	160	14
Fruit3	180	15
Fruit4	40	5
Fruit5	50	7
Fruit6	60	6

- 1. Représenter le nuage des points en identifiant les fruits par F1, F2, etc.
- 2. Appliquer l'algorithme K-means pour K=2 en affectant les centroïdes aux fruits suivants :
 - Centroïde 1 = Fruit1
 - Centroïde 2 = Fruit4

Représenter les deux clusters en nuage de points.

Exercice 3: Forêt aléatoire (Crédit Bancaire)

1.1 Données Initiales

On s'intéresse cette fois à un mini-jeu de données de classification illustrant si une **demande de crédit** est acceptée (**Oui**) ou refusée (**Non**) en fonction de plusieurs facteurs : le **revenu du client**, la **durée du contrat de travail**, et l'âge.

ID	Revenu	Contrat	$\hat{\mathbf{A}}\mathbf{g}\mathbf{e}$	Crédit Accepté?
1	Bas	Court	Moyen	Non
2	Bas	Long	Jeune	Oui
3	Moyen	Court	Moyen	Non
4	Élevé	Long	Jeune	Oui
5	Élevé	Long	Âgé	Oui
6	Bas	Long	Âgé	Non
7	Moyen	Long	Âgé	Non
8	Élevé	Court	Moyen	Oui
9	Moyen	Long	Jeune	Oui

Table 2: Jeu de données initial (crédit bancaire)

1.2 Premier Bootstrap (Échantillon n°1)

Supposons avoir obtenu l'échantillon suivant :

ID tiré	Revenu	Contrat	Âge	Crédit Accepté?
3	Moyen	Court	Moyen	Non
1	Bas	Court	Moyen	Non
4	Élevé	Long	Jeune	Oui
5	Élevé	Long	Âgé	Oui
6	Bas	Long	Âgé	Non
3	Moyen	Court	Moyen	Non
7	Moyen	Long	Âgé	Non
2	Bas	Long	Jeune	Oui
8	Élevé	Court	Moyen	Oui

Table 3: Premier échantillon Bootstrap

Premier Arbre: Construisez un arbre en se basant sur cet échantillon: Sélectionnez pour la première séparation les deux attributs (Revenu et Âge) et calculez de l'indice de Gini pour chaque séparation, puis Choisissez celui qui minimise l'impureté. Continuez à splitter jusqu'à obtenir des feuilles pures ou presque pures (toutes Oui ou toutes Non).

1.3 Autres échantillons et résultats d'arbres

Les arbres de décision obtenus en se basant sur deux autres échantillon sont :

• Arbre 2: Si Contrat = Long, alors Oui; sinon Non.

• Arbre 3 : Si Revenu = Élevé, alors Oui ; sinon Non.

1.4 Prédiction avec la Forêt Aléatoire

Supposons qu'un client se présente avec les caractéristiques suivantes :

Revenu = Moyen, Contrat = Court,
$$\hat{A}ge = \hat{A}g\acute{e}$$

Question : La demande de crédit est-elle acceptée ou refusée selon la forêt