MA3227 Numerical Analysis II

Lecture 1: Poisson Equation

Simon Etter

2019/2020

Introduction

- Partial differential equations (PDEs) are equations in terms of an unknown function u(x) and its derivatives.
- Many different phenomena can be described in terms of PDEs, e.g.
 - ► fluid dynamics (Navier-Stokes),
 - electromagnetism (Maxwell),
 - quantum mechanics (Schrödinger),
 - option pricing (Black-Scholes).
- ▶ Poisson's equation is the simplest and most fundamental PDE.
- ➤ This module will present all numerical techniques for PDEs at the example of Poisson's equation for ease of exposition.

Poisson equation

Given $\Omega \subset \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\Delta u(x) = f(x) & \forall x \in \Omega, \\ u(x) = 0 & \forall x \in \partial \Omega. \end{cases}$$

$$\Delta:=rac{\partial^2}{\partial x_1^2}+\ldots+rac{\partial^2}{\partial x_n^2}$$
 is called the Laplacian operator.

Poisson equation describes diffusion (heat, particles, etc.).

- ightharpoonup f(x): distribution of heat / particle sources.
- \triangleright u(x): steady-state distr. of temperature / particle concentration.

Derivation of the Poisson equation (not examinable)

Fick's law of diffusion: net flux is given by

$$J = -D \nabla u = -D \begin{pmatrix} \frac{\partial u}{\partial x_1} \\ \vdots \\ \frac{\partial u}{\partial x_n} \end{pmatrix}.$$

ightharpoonup Conservation of mass: for all $\Omega' \subset \Omega$, we must have that

$$\frac{\partial}{\partial t} \int_{\Omega'} u \, dx = - \int_{\partial \Omega'} \mathbf{n} \cdot \mathbf{J} \, dx + \int_{\Omega'} f \, dx.$$

Divergence / Gauss's theorem:

$$\int_{\partial\Omega'} n \cdot J \, dx = \int_{\Omega'} \nabla \cdot J \, dx = \int_{\Omega'} \left(\frac{\partial J_1}{\partial x_1} + \ldots + \frac{\partial J_n}{\partial x_n} \right) dx$$

Derivation of the Poisson equation (not examinable)

Combining conservation of mass with divergence theorem yields

$$\int_{\Omega'} \left(\frac{\partial u}{\partial t} + \nabla \cdot J - f \right) dx = 0 \qquad \forall \Omega' \subset \Omega.$$

Hence

$$\frac{\partial u}{\partial t} + \nabla \cdot J - f = 0.$$

▶ Inserting steady-state condition $\frac{\partial u}{\partial t}=0$ and Fick's law $J=-D\,\nabla u$ with D=1 yields the Poisson equation

$$-\nabla \cdot (\nabla u) = -\Delta u = f.$$

▶ Boundary condition $u|_{\partial\Omega}=0$: temperature at boundary is zero / particles reaching the boundary never reenter. Other boundary conditions are possible. We focus on $u|_{\partial\Omega}=0$ for simplicity.

Exercise 1

Find $u:[0,1]\to\mathbb{R}$ such that

$$\begin{cases} -\Delta u(x) = 2 & \forall x \in (0,1), \\ u(x) = 0 & \forall x \in \{0,1\}. \end{cases}$$

Exercise 2

Find $u:[0,1]\to\mathbb{R}$ such that

$$\begin{cases} -\Delta u(x) = \sin(\pi x) & \forall x \in (0, 1), \\ u(x) = 0 & \forall x \in \{0, 1\}. \end{cases}$$

Discussion

- Unlike in the above examples, it is in general not possible to write down an explicit solution for Poisson's equation.
- Our aim in the next lecture is to discretise Poisson's equation, i.e. to transform it such that it can be solved numerically.

Summary

- ▶ Poisson's equation $-\Delta u = f$ is a simple PDE describing diffusion.
- Poisson's equation can be derived from conservation of mass and Fick's flux law $J = -\nabla u$.