Microsoft Student Partners | 2020 Desision Trees & Random Forest * Decision tree is a classifier. * Simple thee like structure, model makes a decision at every node. * Useful in simple tasks, One of the most popular algorithm # Easy explainability, easy to show how a desvision provess works. why so popular? * Easy to implement & present. # Well defined logic, minic human level thought * Remodon forests, Ensembles of descision trees are more powerful classifiers. * Feature volves are preferred to be categorial. If the values are continuous then they are discretized prior to building the model. Build Desusion Trees: Two Common algorithms: & CART (Classification & Repression Trees) 4 1D3 (Iterative Dishotomiser 3) -> v Junction & information gain

Microsoft Student Partners | 2020

Problem	To pre	did whe	Mer a u	istomer
10000	را اند،	um a se	y- of driving	y car.
	1 orthibu	tes		/
liver &	eatures about	person:		T. I
-		Car (current)	Tech Saray	Age
Sex		Yes	Yes	10-20
M	25 led			1 -(1
F	5-10	No	No	20-50
	>10 lac			50+
Example:				
	70	Hge 50	<u>+</u>	
		20-50	Tech	
	\bigcirc	Y	(Sany)	
		Macome	Y	N
		>10		
	4/	N (14	come	(χ)
		\overline{x}	10	
			/ <i>N</i>	
			(X)	
		\vee		K
& Import	aut Jactor	isto devide	which of	eagline E
t- 14	oose at	every nod	V	
<u> 10 W</u>	oofe as	every wod		

Microsoft Student Partners | 2020

Example of	training o	data:		(outrome)
outlook	temp	humidity	windy	play
Sunny	Not	High	f	No
5	1	N	T	N
overcast	Ŋ	И	F	Yes
Rainy	M:/d	Ŋ	F	Y
R	Cool	Normal	F	γ
R	C	N	T	N
0	C	N	T	Y
<u> </u>	M	H	6	N
5	C	۲	F	У
R	M	N	F	y
<u> </u>	M	N	T	У
0	M	n	T	ý
•	h	N	+	y
R	M	n	T	N
			,	

Microsoft Student Partners | 2020 Derision trees can overfit, say you have 5 examples & no. of leaf notes = 5. * You can reduce overfitting by restricting a tree to a vertain depth. Training Testing Validation (early stopping foint) An You can also grevent over fitting by Post Prunning, weate full tree then remove those nodes that give poor goneralisation. # (1) Early stopping: Stop at a Contain depth. on also overfit if one node (say leaf node) has only low no. of examples life for 2 pt. Mence, you can build tree such as min. no. of examples at a node required to split that node.