Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2023 CS3CO13 / IT3CO06

Design & Analysis of Algorithms

	Programme: B.Tech.	Branch/Spe	cialisation: CS	SE - All / IT
Duration: 3 Hrs.			Maximum	Marks: 60
Note: All questions	are compulsory. Internal	choices, if any,	are indicated.	Answers of

if

		(s) should be written in full instead Notations and symbols have their	of only a, b, c or d. Assume suitable dusual meaning.	lata		
Q .1	i.	What is the complexity of following for(i=n;i>=1;i=i/2) {print i;}		1		
		(a) $O(n\log \sqrt{n})$ (b) $O(\log n)$		1		
	ii.		Which of the following is a property of an algorithm?			
		(a) Finiteness	(b) Definiteness			
		(c) Effectiveness	(d) All of these			
	iii.	Complexity of quick sort when ar		1		
		(a) $O(nlog n)$ (b) $O(n^2)$	(c) O(1) (d) O(\sqrt{n})			
iv.		Which of the following method recurrence relation?	is used to solve divide and conquer	1		
		(a) Back substitution method	(b) Master method			
		(c) Tree method	(d) All of these			
v.		How many edges are there in miffrom graph with 'n' vertices?	nimum cost spanning tree generated	1		
		(a) n-1 (b) $n/2 - 1$	(c) $n-2$ (d) $n/2$			
	vi.	In Greedy method we get	feasible solutions.	1		
		(a) One	(b) More than one			
		(c) Zero	(d) Two			
	vii.	Which of the following is/are programming problem?	property/properties of a dynamic	1		
		(a) Optimal substructure	(b) Overlapping sub problems			
		(c) Greedy approach	(d) Both (a) and (b)			

P.T.O.

[2]

	viii.	Which of the following problems should be solved using dynamic programming?			
		(a) Merge sort	(b) Binary search		
		(c) Longest common subsequence	(d) Quick sort		
	ix.	Graph Colouring Problems solution	. , .	1	
	17.	(a) Address Space	(b) State space tree	•	
		(c) E-Node	(d) Dead node		
	v	The group of problems which are be		1	
	х.	6 1 1	out iii NF and NF-hard are known	1	
		as-	(b) ND Complete		
		(a) NP-hard	(b) NP-Complete		
		(c) NP Real	(d) NP Subclass		
Q.2	Q.2 i. Write algorithm for bubble sort and also analyse the complexity to bubble sort.			4	
	ii.	Solve the following recurrence relati	ions and find out the complexity-	6	
		(a) $4T(n/2)+n^2$	(b) $T(n/2)+1$		
OR	iii.	What do you mean by space and	time complexity? What are the	6	
		various asymptotic notations? Expla	in it.		
Q.3	i.	Explain the concept of max. heap an	d min. heap with example.	4	
	ii.	Write recursive binary search algori	ithm. Also analyse the complexity	6	
		for binary search.			
OR	iii.	How Strassen's matrix multiplication improved matrix multiplication efficiency from simple matrix multiplication? Also analyse its complexity.			
Q.4	i.	Write basic algorithm for greedy tec	hnique	3	
Q.4	ii.	Explain knapsack problem. Consider	*	7	
	111.	greedy knapsack problem: $n=3, m=15$, $(p1, p2, p3) = (12, 24, 20)$,			
		(w1,w2,w3) = (5,8,10). Find the opt			
		earned.	mai solution and maximum profit		
OR	iii.	A networking company uses a con	ppression technique to encode the	7	
OK	111.	message before transmitting over the		,	
		contains the following characters wi			
		character Frequency			
		a: 45, b:13, c:12, d:16, e:9, f:5			
		If the compression technique used	is Huffman Coding what will be		
		the Huffman code for the above char			
		the Hullingh code for the above char	140101		

[3]

- Q.5 i. What do you mean by principle of optimality? Also write difference **4** between greedy method and dynamic programming.
 - Explain reliability design and Design three stage systems with device type d1, d2, d3. The cost is Rs. 30, 15 and 20 respectively. The overall cost of system is to be not more than Rs. 105. The reliability of each device type is 0.9, 0.8, and 0.5 respectively.
- OR iii. Define multistage graph and find shortest path from S to T using 6 forward approach.

Q.6 Attempt any two:

- i. Elaborate how backtracking technique can be used to solve the 5 n-queen problem. Explain with an example.
- ii. Explain P, NP and NP hard problems with an example.
- iii. Explain the method of reduction to solve TSP problem using branch 5 and bound?

Marking Scheme

IT3CO06 [T] Design and Analysis of Algorithms

Q.1	i) ii) iii) iv) v) vi) vii) viii) ix)	B D B D C B B D C B B B	1 1 1 1 1 1 1 1
Q.2 OR	i. ii. iii.	2 mark for algorithm and 2 mark for analysis3 marks for each2 marks for complexity and 4 marks for notations	4 6 6
Q.3 OR	i. ii. iii.	2 marks for concept and 2 marks for example 4 marks for algorithm and 2 marks for analysis 4 marks for formula and explanation and 2 marks for analysis	4 6 6
Q.4 OR	i. ii. iii.	3 marks for algorithm 2 Marks for explanation,5 Marks for the numerical (steps modelling will be given even if answer is incorrect) 5 marks for huffman tree and 2 marks for coding	3 7
Q.5 OR	i. ii. iii.	2 marks for definition and 2 marks for difference 1 mark for definition and 5 marks for solution 1 mark for definition and 5 marks for solution	4 6 6
Q.6	i. ii. iii.	3 marks for explanation and 2 marks for example 3 marks for definition and 2 marks for example 5 marks for explanation	5 5 5
