

hic2gfa: phasing assembly graphs with chromosome conformation capture

Nadège Guiglielmoni

Hi-C scaffolding

Hi-C scaffolding

High-throughput genome scaffolding from in vivo DNA interaction frequency

Noam Kaplan ≥ & Job Dekker ≥

dnaTri

Lachesis

Chromosome-scale scaffolding of *de novo* genome assemblies based on chromatin interactions

Joshua N Burton ⊡, Andrew Adey, Rupali P Patwardhan, Ruolan Qiu, Jacob O Kitzman & Jay Shendure

High-quality genome (re)assembly using chromosomal contact data

Hervé Marie-Nelly ☑, Martial Marbouty, Axel Cournac, Jean-François Flot, Gianni Liti, Dante Poggi Parodi, Sylvie Syan, Nancy Guillén, Antoine Margeot, Christophe Zimmer ☑ & Romain Koszul ☑ **GRAAL**

Hi-C scaffolding

De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds

3D-DNA

Olga Dudchenko^{1,2,3,4}, Sanjit S. Batra^{1,2,3,*}, Arina D. Omer^{1,2,3,*}, Sarah K. Nyquist^{1,3}, <a>[Marie Hoeger^{1,3}, Neva C. Durand^{1,...}

SALSA2

Integrating Hi-C links with assembly graphs for chromosome-scale assembly

Jay Ghurye, Arang Rhie, Brian P. Walenz, Anthony Schmitt, Siddarth Selvaraj, Mihai Pop, Adam M. Phillippy ☑, Sergey Koren ☑

instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder

Lyam Baudry, Nadège Guiglielmoni, Hervé Marie-Nelly, Alexandre Cormier, Martial Marbouty, Komlan Avia, Yann Loe Mie, Olivier Godfroy, Lieven Sterck, J. Mark Cock, Christophe Zimmer, Susana M. Coelho & Romain Koszul

instaGRAAL

Limits to current assemblies

→ Scaffolds usually have gaps

Limits to current assemblies

- → Scaffolds usually have gaps
- → Haploid representations of diploid/polyploid genomes
 - = partial representation
 - → uncollapsed phased assemblies

Limits to current assemblies

- → Scaffolds usually have gaps
- → Haploid representations of diploid/polyploid genomes
 - = partial representation
 - → uncollapsed phased assemblies
- → Phased assembly = correctly associating alleles

Example of assembly graph for a diploid organism

contig

___ link

hic2gfa

★ input: assembly graph + Hi-C data

★ output: phased supercontigs

hic2gfa

phased supercontigs

Adineta vaga

Reads	Contigs total length	Contig N50	Supercontigs total length	Supercontigs N50
Corrected PacBio	182 Mb	269 kb	205 Mb	4.2 Mb
Corrected Nanopore	199 Mb	4.0 Mb	209 Mb	6.3 Mb
HiFi	190 Mb	4.8 Mb	207 Mb	13.5 Mb

Corrected PacBio contigs + hic2gfa

Further works

★ hic2gfa + long reads = GraphUnzip https://github.com/nadegeguiglielmoni/GraphUnzip

★ Testing, testing, testing

Acknowledgements

EBE, Université libre de Bruxelles

Jean-François Flot

Roland Faure

<u>Université de Namur</u> Karine van Doninck Alessandro Derzelle

Antoine Houtain
Paul Simion

Looking for a post-doc from August 1^{rst}, 2021

Thank you for your attention! Questions?