6.3 The Runge-Kutta Method

The RK4 method numerically approximates The sol'n y(x) of an initial value problem

$$\frac{dy}{dx} = f(x,y), \quad y(x_0) = y_0$$

 $\frac{dx}{dx} = f(x,y), \quad y(x_0) = y_0$ at evenly spaced points x_1, \dots, x_N , with step size h, yielding values Yi,..., YN approximating y(xi),..., y(xN) and satisfying:

$$|y_n-y(x_n)|\leq Ch^4$$

This means that if we divide The <u>step size</u> by 10, The error will also be divided by approximately 104 = 10,000.

For n=0,1,2,..., the RK4 method is:

$$X_{n+1} = X_n + h$$

 $K_1 = f(X_n, y_n)$ initial slope estimate
 $K_2 = f(X_n + \frac{1}{2}h, y_n + \frac{1}{2}h \cdot k_1)$ $\frac{1}{2}$ -step slope
 $K_3 = f(X_n + \frac{1}{2}h, y_n + \frac{1}{2}h \cdot k_2)$ estimates
 $K_4 = f(X_{n+1}, y_n + h \cdot k_3)$ full-step slope
estimate
 $K = \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$ Weighted
average of
 $K_1 = K_2 + K_3 + K_4$ Slope estimates

Example: (#4) Y' = X - Y, Y(0) = 1; $Y(x) = 2e^{-X} + x - 1$ Use step size h = 0.25 to approx.

The solin Y(x) at x = 0.25, 0.5

using RK4.

Sol'n: f(x,y) = x-y, $(x_0,y_0) = (0,1)$

 $X_{1} = X_{0} + h = 0.25$ $k_{1} = f(X_{0}, Y_{0}) = -1$ $k_{2} = f(X_{0} + \frac{1}{2}h, Y_{0} + \frac{1}{2}h \cdot k_{1}) = -0.75$ $k_{3} = f(X_{0} + \frac{1}{2}h, Y_{0} + \frac{1}{2}h \cdot k_{2}) = -0.78125$ $k_{4} = f(X_{1}, Y_{0} + h \cdot k_{3}) = -0.5546875$ $k = \frac{1}{6}(k_{1} + \frac{1}{2}k_{2} + \frac{1}{2}k_{3} + k_{4}) = -0.76953125$ $Y_{1} = Y_{0} + h \cdot k = 0.8076171875$

 $X_{2} = X_{1} + h = 0.5$ $k_{1} = f(X_{1}, Y_{1}) = -0.5576171875$ $k_{2} = f(X_{1} + \frac{1}{3}h_{1}, Y_{1} + \frac{1}{3}h_{1} \cdot k_{1}) = -0.3629150390625$ $k_{3} = f(X_{1} + \frac{1}{3}h_{1}, Y_{1} + \frac{1}{3}h_{1} \cdot k_{2}) = -0.3872528076171875$ $k_{4} = f(X_{2}, Y_{1} + h_{1} \cdot k_{3}) = -0.21080398559570312$ $k_{5} = \frac{1}{6}(k_{1} + \lambda k_{2} + \lambda k_{3} + k_{4}) = -0.3781261444091797$ $Y_{2} = Y_{1} + h_{1} \cdot k_{2} = 0.7130856513977051$

Improved Euler Method: (10 function evaluations in total)

N	Xn	Yn	y(xn)	1/(xn) - yn/
0	0	1	1	0
1	0.1	0.91	0.90967	0.00033
2	0.7	0.83805	0.83746	0.00059
3	0.3	0.782435	0.78164	0.00080
4	0.4	0.741604	0.74064	0.00096
5	0.5	0.714152	0.71306	0.00109

RK4: (8 function evaluations in total)

N	Xn	Yn	y(xn)	$ \gamma(x_n)-\gamma_n $
0	0	1	1	0
1	0.25	0.807617	0.807602	0.0000156
2	0.5	0.713086	0.713061	0.0000156 0.0000243

[Julia code demo]