

Report No.: EED32J00028403 Page 1 of 65

TEST REPORT

Product : Beyond Tablet
Trade mark : Beyond Screen

Model/Type reference : BYM001

Serial Number : N/A

Report Number : EED32J00028403 FCC ID : 2AK5X-BM2897 Date of Issue : Mar. 30, 2017

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Beyond Screen Limited
Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street,
Beijing, 100102, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Compiled by:

Report Seal

Ware Xin

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Ware xin (Project Engineer)

Date:

Mar. 30, 2017

Check No.: 1022560588

Page 2 of 65

2 Version

Version No.	Date	Description	
00	Mar. 30, 2017	Original	
	*	150	/05
	(2)		

Report No. : EED32J00028403 Page 3 of 65

3 Test Summary

5 rest Summary			_
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No.: EED32J00028403 Page 4 of 65

4 Content

1 C	OVER PAGE						1
2 VE	RSION	•••••	•••••		•••••		2
3 TE	ST SUMMARY	•••••	•••••	•••••	•••••	•••••	3
4 C	ONTENT	•••••					4
5 TE	ST REQUIREMENT			•••••		•••••	5
5	.1 Test setup						5
	5.1.1 For Conducted t	est setup					5
	5.1.2 For Radiated En		•				
_	5.1.3 For Conducted E		•				
	.2 Test Environment3 Test Condition						
	ENERAL INFORMATIO						
6	.1 CLIENT INFORMATION.						8
	2 GENERAL DESCRIPTIO						
	.3 PRODUCT SPECIFICAT						
	4 DESCRIPTION OF SUP						
	.5 TEST LOCATION						
	.0 TEST FACILITY						
	.8 ABNORMALITIES FROM						
6	.9 OTHER INFORMATION	REQUESTED BY T	HE CUSTOMER				10
6	.10 MEASUREMENT UNC	ERTAINTY (95% C	CONFIDENCE LE	/ELS, K=2)			11
7 E	QUIPMENT LIST			•••••		•••••	12
8 R	ADIO TECHNICAL REC	DUIREMENTS S	SPECIFICATIO	N			14
	Appendix A): Conduct						
	Appendix A): Conduct Appendix B): 6dB Occ						
	Appendix C): Band-ed						
	Appendix D): RF Cond						
	Appendix E): Power S	pectral Density.					37
	Appendix F): Antenna						
	Appendix G): AC Pow						
	Appendix I): Restricted						
	Appendix I): Radiated	Spurious Emiss	sions				56

Report No. : EED32J00028403 Page 5 of 65

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		6	
Temperature:	24°C		
Humidity:	54 % RH		-115
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel				
rest Mode	Tx	Low(L)	Middle(M)	High(H)		
902 11b/a/a/LIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)	24 12MHZ ~2462 MHZ	2412MHz	2437MHz	2462MHz		
802.11n(HT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7		
	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

Report No. : EED32J00028403 Page 7 of 65

Test mode:

Pre-scan under all rate at lowest channel 1

		802.11b						
1Mb _l	os 2Mb	ps 5.5Mbp	s 11Mbp	s				
15.9	8 16.0	7 16.14	16.14 16.17					
(10)		802.11g				- 6		
6Mb	ps 9Mb	ps 12Mbps	s 18Mbps	24Mbp	s 36Mbp	s 48Mbps	54Mbps	
) 15.0	7 15.0	03 15.00	14.97	14.92	14.88	14.67	14.58	
802.11n (HT20)								
6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps	
13.48	13.44	13.41	13.37	13.31	13.30	13.22	13.18	
802.11n (HT40)								
13.5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps	
11.90	11.84	11.80	11.76	11.71	11.70	11.64	11.55	
	6Mbp 15.0 6.5Mbps 13.48	1Mbps 2Mb 15.98 16.0	15.98 16.07 16.14 6Mbps 9Mbps 12Mbps 15.07 15.03 15.00 6.5Mbps 13Mbps 19.5Mbps 13.48 13.44 13.41 13.5Mbps 27Mbps 40.5Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 15.98 16.07 16.14 16.17 80 80 6Mbps 9Mbps 12Mbps 18Mbps 15.07 15.03 15.00 14.97 802.11n 6.5Mbps 13Mbps 19.5Mbps 26Mbps 13.48 13.44 13.41 13.37 802.11n 13.5Mbps 27Mbps 40.5Mbps 54Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 15.98 16.07 16.14 16.17 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbp 15.07 15.03 15.00 14.97 14.92 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 13.48 13.44 13.41 13.37 13.31 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 15.98 16.07 16.14 16.17 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbp 15.07 15.03 15.00 14.97 14.92 14.88 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 52Mbps 13.48 13.44 13.41 13.37 13.31 13.30 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps 108Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 15.98 16.07 16.14 16.17 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 15.07 15.03 15.00 14.97 14.92 14.88 14.67 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 52Mbps 58.5Mbps 13.48 13.44 13.41 13.37 13.31 13.30 13.22 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps 108Mbps 121.5Mbps	

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

6 General Information

6.1 Client Information

Applicant:	Beyond Screen Limited
Address of Applicant:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Manufacturer:	Beyond Screen Limited
Address of Manufacturer:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Factory:	Shenzhen Han-Shine Electronic Co., Ltd.
Address of Factory:	No. 2, Lane 3, 2nd Industrial Park, Yulv Village, Gongming Town, Guangming New District, Shenzhen City, Guangdong Province, 518132, China

6.2 General Description of EUT

Product Name:	Beyond Ta	blet		
Model No.(EUT):	BYM001		6	
Trade Mark:	Beyond Sc	creen	(6)	
EUT Supports Radios application:	Wlan 2.4G NFC(13.56	Hz 802.11b/g/n(HT20&HT40), Bluetooth V3.0 MHz))+EDR, BT 4.0	
Power Supply:	Adapter:	MODEL: RS-200/120-S336 INPUT: 100-240VAC, 50/60Hz, 1.5A Max OUTPUT: DC 12V-2A	(1)	
AC Adapter line:	137cm(Uns	137cm(Unshielded)		
Sample Received Date:	Mar. 02, 2017			
Sample tested Date:	Mar. 02, 20	017 to Mar. 30, 2017		

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz					
operation requestey.	IEEE 802.11n(HT40): 2422MHz to 2452MHz					
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels					
Ondriner Nambers.	IEEE 802.11n HT40: 7 Channels					
Channel Separation:	5MHz					
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)					
Type of Modulation.	IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK)					
	IEEE for 802.11n(HT20and HT40): OFDM (64QAM, 16QAM, QPSK,BPSK)					
	BY2.MB_V0.3 BY2.TB_V0.3 BY2.LRB V0.35 BY2.KB_V0.3					
Hardware Version:	(manufacturer declare)					
Software Version:	V1.0(manufacturer declare)					
Test Power Grade:	802.11b: 45; 802.11g: 42; 802.11n(HT20&HT40): 39(manufacturer declare)					
Test Software of EUT:	SoFia RFTestTool V1.1 (manufacturer declare)					
Antenna Type and Gain:	PIFA antenna, 3.74dBi					
Test Voltage:	AC 120V/60Hz					

Report No. : EED32J00028403 Page 9 of 65

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		6.
Operation	Frequency ea	ch of channe	el(802.11n HT4	10)			
Channe	l Frequ	ency	Channel	Frequenc	cy Cha	nnel I	requency
10	2422	MHz	4	2437MH	z 7	(28)	2452MHz
2	2427	MHz	5	2442MH	z		
3	2432	MHz	6	2447MH	z		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Courieus emission tost	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

_ 906		The Assert Control of the Control of	7 272		A36.7				
	RF test system								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017				
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017				
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017				
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018				
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017				
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017				
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017				

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018		

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No.: EED32J00028403 Page 13 of 65

	204	Camilfull anach	aia Chambar			
3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	16.17	PASS
11B	МСН	16.6	PASS
11B	НСН	16.93	PASS
11G	LCH	15.07	PASS
11G	MCH	15.54	PASS
11G	нсн	15.96	PASS
11N20SISO	LCH	13.48	PASS
11N20SISO	MCH	13.78	PASS
11N20SISO	нсн	15.16	PASS
11N40SISO	LCH	11.9	PASS
11N40SISO	MCH	12.43	PASS
11N40SISO	HCH	12.59	PASS

Test Graph

Page 18 of 65

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.06	15.080	PASS	(47)
11B	MCH	10.06	15.091	PASS	
11B	НСН	10.06	15.073	PASS	
11G	LCH	16.34	16.475	PASS	
11G	MCH	16.36	16.478	PASS	
11G	НСН	16.35	16.498	PASS	Peak
11N20SISO	LCH	17.56	17.671	PASS	detector
11N20SISO	MCH	17.58	17.671	PASS	(1)
11N20SISO	НСН	17.59	17.668	PASS	6,
11N40SISO	LCH	35.46	35.999	PASS	
11N40SISO	МСН	35.62	36.022	PASS	
11N40SISO	НСН	35.46	36.004	PASS	

Test Graph

Page 24 of 65

Appendix C): Band-edge for RF Conducted Emissions **Result Table**

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	2.571	-50.226	-27.43	PASS
11B	HCH	3.330	-49.920	-26.67	PASS
11G	LCH	-4.044	-50.159	-34.04	PASS
11G	HCH	-2.835	-50.235	-32.84	PASS
11N20SISO	LCH	-3.646	-50.494	-33.65	PASS
11N20SISO	HCH	-2.935	-49.557	-32.94	PASS
11N40SISO	LCH	-7.569	-50.081	-37.57	PASS
11N40SISO	HCH	-6.740	-49.302	-36.74	PASS

Test Graph

Page 27 of 65

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	2.586	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	2.789	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	3.376	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-4.517	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-3.789	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-2.939	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.582	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.047	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	-2.74	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-7.097	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-6.997	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	нсн	-6.971	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32J00028403 Page 29 of 65

Test Graph

Report No. : EED32J00028403 Page 31 of 65

Report No. : EED32J00028403 Page 33 of 65

Report No. : EED32J00028403 Page 35 of 65

Puw/11N40SIS O/MCH

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-15.181	8	PASS
11B	MCH	-13.553	8	PASS
11B	НСН	-13.113	8	PASS
11G	LCH	-19.868	8	PASS
11G	MCH	-19.744	8	PASS
11G	НСН	-16.586	8	PASS
11N20SISO	LCH	-18.082	8	PASS
11N20SISO	MCH	-16.379	8	PASS
11N20SISO	НСН	-16.941	8	PASS
11N40SISO	LCH	-22.845	8	PASS
11N40SISO	MCH	-22.661	8	PASS
11N40SISO	нсн	-22.585	8	PASS

Test Graph

Page 39 of 65

11N20SISO/LCH

11N20SISO/MCH

Report No.: EED32J00028403

11N20SISO/HCH

Page 41 of 65

Report No.: EED32J00028403 Page 42 of 65

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3.74dBi.

Report No.: EED32J00028403 Page 43 of 65

Appendix G): AC Power Line Conducted Emission

(-43)	
Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not
(FI)	exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground

of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units

Limit:

Fraguency range (MUT)	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com

NOTE: The lower limit is applicable at the transition frequency

Page 44 of 65

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	(dBuV)			nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	32.84	32.13	14.82	9.76	42.60	41.89	24.58	65.56	55.56	-23.67	-30.98	P	
2	0.2819	28.16	20.93	10.46	9.77	37.93	30.70	20.23	60.76	50.76	-30.06	-30.53	P	
3	0.5580	31.63	30.25	21.10	9.73	41.36	39.98	30.83	56.00	46.00	-16.02	-15.17	P	
4	3.2860	22.62	18.32	5.99	9.68	32.30	28.00	15.67	56.00	46.00	-28.00	-30.33	P	
5	13.5340	22.94	14.23	1.06	9.97	32.91	24.20	11.03	60.00	50.00	-35.80	-38.97	P	
6	25.3140	15.49	8.50	-2.07	10.18	25.67	18.68	8.11	60.00	50.00	-41.32	-41.89	P	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2112 4 CH	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was turned from 0 degree. The test-receiver systems and believed a marker at the systems and the systems and the systems are systems.	on the top of a rotal choic camber. The of the highest radieters away from the pop of a variable-heil varied from one man value of the field tenna are set to maission, the EUT will to heights from 1 grees to 360 degreem was set to Peal num Hold Mode.	table wa iation. e interfere ight anter leter to fo d strength ake the n was arran meter to es to find k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas above the groizontal and vent. worst case an and the rotata and Specified	to, which
	frequency to show cor bands. Save the speci for lowest and highest	npliance. Also mea trum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the lower in the radiation measure Transmitting mode, ar	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form in the channel the content of the channel in the content of the demand the X axis	change fr table 0.8 is 1.5 me Highest ned in X,	or each portion of each portion Semi- meter to 1 eter). channel Y, Z axis p	Anechoic Ch. 5 meter(Abo	ambe ove
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low. i. The radiation measure	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form in the channel the content of the channel in the content of the demand the X axis	change fr table 0.8 is 1.5 me Highest hed in X, positioni	emissions for each posterior semi- meter to 1 eter). channel Y, Z axis ping which is easured was	Anechoic Ch. 5 meter(Abo	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Charans 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, ar j. Repeat above procedures.	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form to the change form to the control of the control of the X axis the X a	change fr table 0.8 is 1.5 me Highest hed in X, positioni	emissions for each position of each posi	Anechoic Ch. 5 meter(About tis worse cases complete.	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Charans 18GHz the distance is h. Test the EUT in the lower in the radiation measure and the transmitting mode, and j. Repeat above procedure. Frequency	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form of the channel, the ements are performed found the X axis ures until all freque Limit (dBµV/m).	change fr table 0.8 is 1.5 me Highest hed in X, positioni	remissions for each por each each por each each each each each each each each	Anechoic Ch. 5 meter (About 15 meter) for the worse cases complete.	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, arg. Repeat above procedure Frequency 30MHz-88MHz	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form of the test site owest channel, the ements are performed found the X axis the test sures until all freques Limit (dBµV/m 40.0)	change fr table 0.8 is 1.5 me Highest hed in X, positioni	or each portion of each portio	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Charans 18GHz the distance is h. Test the EUT in the low it. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form to the change form to the control of the	change fr table 0.8 is 1.5 me Highest hed in X, positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter (Aboositioning for tis worse cases complete. mark eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Charanset 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, ar j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also meatrum analyzer plot. channel ure as below: ve is the test site, on the change form of the powest channel, the ements are performed found the X axis sures until all freque Limit (dBµV/m 40.0 43.5 46.0	change fr table 0.8 is 1.5 me Highest hed in X, positioni	remissions for each por each p	Anechoic Ch. Anechoic Ch. S meter (Above Consitioning for this worse cases complete. Mark Beak Value Beak Value Beak Value Beak Value	ambe ove

Test plot as follows:

Worse case mode:	802.11b (11Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Page 47 of 65

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No.: EED32J00028403 Page 48 of 65

Worse case mode:	802.11b (11Mbps)	(5.72)	(65)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11b (11Mbps)

Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: Peak

Report No.: EED32J00028403 Page 49 of 65

Worse case mode:	802.11g (6Mbps)	(25)	(25)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No.: EED32J00028403 Page 50 of 65

Worse case mode:	802.11g (6Mbps)	(5.75)	(5.5)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11g (6Mbps)

Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: Peak

Report No.: EED32J00028403 Page 51 of 65

Worse case mode:	802.11n(HT20) (6.5M	bps)	(25)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

W	/orse case mode:	802.11n(HT20) (6.5Mbps)		
Fı	requency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Report No. : EED32J00028403 Page 53 of 65

Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (135Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No.: EED32J00028403 Page 54 of 65

Worse case mode:	case mode: 802.11n(HT40) (13.5Mbps)			
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode: 802.11n(HT40) (135Mbps)		s)	(6.)
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Vertical	Remark: Peak

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

Page 55 of 65

equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver S	Setup:
------------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Abovo 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

im	١ıt

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	0	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32J00028403 Page 57 of 65

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

			Ant	Cable	Read		Limit	0ver		
		Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		71.080	10.19	1.46	20.17	31.82	40.00	-8.18	Horizontal	QP
2		90.855	11.38	1.59	12.76	25.73	43.50	-17.77	Horizontal	QP
3	1	143.830	10.06	1.58	24.72	36.36	43.50	-7.14	Horizontal	QP
4	2	250.301	12.41	2.35	23.98	38.74	46.00	-7.26	Horizontal	QP
5	рр 3	372.005	15.48	2.75	24.23	42.46	46.00	-3.54	Horizontal	QP
6	-	710 200	20 82	3 9/1	11 01	36 67	16 00	0 33	Honizontal	ΛD

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	2.51	44.39	53.10	41.44	74.00	-32.56	Pass	Horizontal	
1759.638	31.33	3.05	43.72	56.24	46.90	74.00	-27.10	Pass	Horizontal	
4824.000	34.73	5.10	44.60	48.23	43.46	74.00	-30.54	Pass	Horizontal	
5925.863	35.85	7.27	44.51	48.32	46.93	74.00	-27.07	Pass	Horizontal	
7236.000	36.42	6.69	44.80	47.75	46.06	74.00	-27.94	Pass	Horizontal	
9648.000	37.93	7.70	45.57	47.48	47.54	74.00	-26.46	Pass	Horizontal	
1162.051	30.13	2.47	44.44	58.65	46.81	74.00	-27.19	Pass	Vertical	
1326.513	30.52	2.66	44.21	57.65	46.62	74.00	-27.38	Pass	Vertical	
4824.000	34.73	5.10	44.60	49.40	44.63	74.00	-29.37	Pass	Vertical	
5895.771	35.82	7.20	44.51	49.05	47.56	74.00	-26.44	Pass	Vertical	
7236.000	36.42	6.69	44.80	47.65	45.96	74.00	-28.04	Pass	Vertical	
9648.000	37.93	7.70	45.57	48.44	48.50	74.00	-25.50	Pass	Vertical	

Test mode:	802.11b(11	Mbps)	Test Freq	juency: 24	37MHz	Remark: P	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	2.51	44.39	53.64	41.97	74.00	-32.03	Pass	Horizontal
1702.361	31.24	3.00	43.78	55.52	45.98	74.00	-28.02	Pass	Horizontal
4874.000	34.84	5.09	44.60	47.83	43.16	74.00	-30.84	Pass	Horizontal
6017.064	35.91	7.41	44.50	48.53	47.35	74.00	-26.65	Pass	Horizontal
7311.000	36.43	6.76	44.86	47.94	46.27	74.00	-27.73	Pass	Horizontal
9748.000	38.03	7.61	45.55	47.53	47.62	74.00	-26.38	Pass	Horizontal
1162.051	30.13	2.47	44.44	60.66	48.82	74.00	-25.18	Pass	Vertical
1759.638	31.33	3.05	43.72	60.13	50.79	74.00	-23.21	Pass	Vertical
4874.000	34.84	5.09	44.60	49.56	44.89	74.00	-29.11	Pass	Vertical
6315.233	36.07	7.11	44.53	48.97	47.62	74.00	-26.38	Pass	Vertical
7311.000	36.43	6.76	44.86	47.43	45.76	74.00	-28.24	Pass	Vertical
9748.000	38.03	7.61	45.55	48.01	48.10	74.00	-25.90	Pass	Vertical

/ 2						Z*2				
Test mode:	802.11b(11	Mbps)	Test Fred	uency: 24	62MHz	Remark: P	eak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1201.149	30.23	2.52	44.38	53.02	41.39	74.00	-32.61	Pass	Horizontal	
1668.044	31.18	2.98	43.81	53.50	43.85	74.00	-30.15	Pass	Horizontal	
4924.000	34.94	5.07	44.60	46.76	42.17	74.00	-31.83	Pass	Horizontal	
5776.922	35.73	6.93	44.52	49.29	47.43	74.00	-26.57	Pass	Horizontal	
7386.000	36.44	6.83	44.92	47.95	46.30	74.00	-27.70	Pass	Horizontal	
9848.000	38.14	7.53	45.53	47.79	47.93	74.00	-26.07	Pass	Horizontal	
1162.051	30.13	2.47	44.44	57.89	46.05	74.00	-27.95	Pass	Vertical	
1329.894	30.52	2.66	44.21	56.37	45.34	74.00	-28.66	Pass	Vertical	
3662.775	33.04	5.50	44.63	49.98	43.89	74.00	-30.11	Pass	Vertical	
4924.000	34.94	5.07	44.60	48.35	43.76	74.00	-30.24	Pass	Vertical	
7386.000	36.44	6.83	44.92	47.47	45.82	74.00	-28.18	Pass	Vertical	
9848.000	38.14	7.53	45.53	48.54	48.68	74.00	-25.32	Pass	Vertical	

Test mode:	802.11g(6N	1bps)	Test Fred	juency: 24	12MHz	Remark: P			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	53.21	41.55	74.00	-32.45	Pass	Horizontal
1759.638	31.33	3.05	43.72	55.15	45.81	74.00	-28.19	Pass	Horizontal
4824.000	34.73	5.10	44.60	47.29	42.52	74.00	-31.48	Pass	Horizontal
6235.364	36.02	7.19	44.52	48.89	47.58	74.00	-26.42	Pass	Horizontal
7236.000	36.42	6.69	44.80	46.64	44.95	74.00	-29.05	Pass	Horizontal
9648.000	37.93	7.70	45.57	47.82	47.88	74.00	-26.12	Pass	Horizontal
1201.149	30.23	2.52	44.38	57.54	45.91	74.00	-28.09	Pass	Vertical
1698.033	31.23	3.00	43.78	59.52	49.97	74.00	-24.03	Pass	Vertical
4824.000	34.73	5.10	44.60	47.05	42.28	74.00	-31.72	Pass	Vertical
5910.798	35.83	7.23	44.51	48.94	47.49	74.00	-26.51	Pass	Vertical
7236.000	36.42	6.69	44.80	47.84	46.15	74.00	-27.85	Pass	Vertical
9648.000	37.93	7.70	45.57	48.05	48.11	74.00	-25.89	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Fred	quency: 24	37MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	2.51	44.39	59.01	47.35	74.00	-26.65	Pass	Horizontal	
1668.044	31.18	2.98	43.81	53.98	44.33	74.00	-29.67	Pass	Horizontal	
3747.656	32.98	5.48	44.62	49.60	43.44	74.00	-30.56	Pass	Horizontal	
4874.000	34.84	5.09	44.60	47.05	42.38	74.00	-31.62	Pass	Horizontal	
7311.000	36.43	6.76	44.86	47.92	46.25	74.00	-27.75	Pass	Horizontal	
9748.000	38.03	7.61	45.55	47.47	47.56	74.00	-26.44	Pass	Horizontal	
1162.051	30.13	2.47	44.44	57.57	45.73	74.00	-28.27	Pass	Vertical	
1326.513	30.52	2.66	44.21	57.76	46.73	74.00	-27.27	Pass	Vertical	
4874.000	34.84	5.09	44.60	46.88	42.21	74.00	-31.79	Pass	Vertical	
6001.768	35.90	7.43	44.50	48.86	47.69	74.00	-26.31	Pass	Vertical	
7311.000	36.43	6.76	44.86	48.50	46.83	74.00	-27.17	Pass	Vertical	
9748.000	38.03	7.61	45.55	47.86	47.95	74.00	-26.05	Pass	Vertical	

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	58.71	47.05	74.00	-26.95	Pass	Horizontal
1746.251	31.31	3.04	43.73	55.51	46.13	74.00	-27.87	Pass	Horizontal
4924.000	34.94	5.07	44.60	46.73	42.14	74.00	-31.86	Pass	Horizontal
5895.771	35.82	7.20	44.51	49.42	47.93	74.00	-26.07	Pass	Horizontal
7386.000	36.44	6.83	44.92	47.77	46.12	74.00	-27.88	Pass	Horizontal
9848.000	38.14	7.53	45.53	48.41	48.55	74.00	-25.45	Pass	Horizontal
1329.894	30.52	2.66	44.21	57.34	46.31	74.00	-27.69	Pass	Vertical
1746.251	31.31	3.04	43.73	54.36	44.98	74.00	-29.02	Pass	Vertical
4924.000	34.94	5.07	44.60	47.01	42.42	74.00	-31.58	Pass	Vertical
5836.044	35.78	7.07	44.52	49.26	47.59	74.00	-26.41	Pass	Vertical
7386.000	36.44	6.83	44.92	47.80	46.15	74.00	-27.85	Pass	Vertical
9848.000	38.14	7.53	45.53	48.04	48.18	74.00	-25.82	Pass	Vertical

Report No. : EED32J00028403 Page 62 of 65

Test mode:	802.11n(HT	T20)(6.5N	(lbps)	Test Frequ	ency: 2412M	nark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	55.24	43.58	74.00	-30.42	Pass	Horizontal
1439.090	30.75	2.77	44.07	53.91	43.36	74.00	-30.64	Pass	Horizontal
3757.208	32.97	5.48	44.62	50.03	43.86	74.00	-30.14	Pass	Horizontal
4824.000	34.73	5.10	44.60	46.69	41.92	74.00	-32.08	Pass	Horizontal
7236.000	36.42	6.69	44.80	48.17	46.48	74.00	-27.52	Pass	Horizontal
9648.000	37.93	7.70	45.57	47.36	47.42	74.00	-26.58	Pass	Horizontal
1076.613	29.91	2.36	44.57	51.95	39.65	74.00	-34.35	Pass	Vertical
1518.111	30.90	2.84	43.98	49.35	39.11	74.00	-34.89	Pass	Vertical
3757.208	32.97	5.48	44.62	50.03	43.86	74.00	-30.14	Pass	Vertical
4824.000	34.73	5.10	44.60	45.69	40.92	74.00	-33.08	Pass	Vertical
7236.000	36.42	6.69	44.80	46.16	44.47	74.00	-29.53	Pass	Vertical
9648.000	37.93	7.70	45.57	47.36	47.42	74.00	-26.58	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz Remark: Peak						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lim (dBµV		Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	56.36	44.70	74.0	00	-29.30	Pass	Horizontal
3325.070	33.31	5.56	44.66	50.19	44.40	74.0	00	-29.60	Pass	Horizontal
4874.000	34.84	5.09	44.60	47.13	42.46	74.0	00	-31.54	Pass	Horizontal
5821.207	35.77	7.03	44.52	48.47	46.75	74.0	00	-27.25	Pass	Horizontal
7311.000	36.43	6.76	44.86	47.19	45.52	74.0	00	-28.48	Pass	Horizontal
9748.000	38.03	7.61	45.55	48.63	48.72	74.0	00	-25.28	Pass	Horizontal
1162.051	30.13	2.47	44.44	56.81	44.97	74.0	00	-29.03	Pass	Vertical
1329.894	30.52	2.66	44.21	57.64	46.61	74.0	00	-27.39	Pass	Vertical
4874.000	34.84	5.09	44.60	48.13	43.46	74.0	00	-30.54	Pass	Vertical
6017.064	35.91	7.41	44.50	48.85	47.67	74.0	00	-26.33	Pass	Vertical
7311.000	36.43	6.76	44.86	46.67	45.00	74.0	00	-29.00	Pass	Vertical
9748.000	38.03	7.61	45.55	49.02	49.11	74.0	00	-24.89	Pass	Vertical

Page 63 of 65

Test mode:	802.11n(H	T20)(6.5Mbps) Test Frequ			ency: 2462MHz Rem			nark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lin (dBµ)	-	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	55.30	43.64	74.	00	-30.36	Pass	Horizontal
1439.090	30.75	2.77	44.07	56.48	45.93	74.	00	-28.07	Pass	Horizontal
4924.000	34.94	5.07	44.60	46.61	42.02	74.	00	-31.98	Pass	Horizontal
5806.408	35.76	7.00	44.52	49.16	47.40	74.	00	-26.60	Pass	Horizontal
7386.000	36.44	6.83	44.92	48.33	46.68	74.	00	-27.32	Pass	Horizontal
9848.000	38.14	7.53	45.53	48.41	48.55	74.	00	-25.45	Pass	Horizontal
1162.051	30.13	2.47	44.44	59.14	47.30	74.	00	-26.70	Pass	Vertical
1326.513	30.52	2.66	44.21	57.25	46.22	74.	00	-27.78	Pass	Vertical
4924.000	34.94	5.07	44.60	47.39	42.80	74.	00	-31.20	Pass	Vertical
6251.257	36.03	7.17	44.53	48.45	47.12	74.	00	-26.88	Pass	Vertical
7386.000	36.44	6.83	44.92	47.12	45.47	74.	00	-28.53	Pass	Vertical
9848.000	38.14	7.53	45.53	48.16	48.30	74.	00	-25.70	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2422MHz Remark: P						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit ıV/m)	Over Limit (dB)	Result	Antenna Polaxis
1364.182	30.60	2.52	44.16	48.78	37.74	74	.00	-36.26	Pass	Horizontal
1800.416	31.40	2.77	43.68	48.61	39.10	74	.00	-34.90	Pass	Horizontal
4844.000	34.77	6.73	44.60	46.21	43.11	74	.00	-30.89	Pass	Horizontal
5762.235	35.72	6.15	44.52	48.17	45.52	74	.00	-28.48	Pass	Horizontal
7266.000	36.43	8.40	44.82	46.55	46.56	74	.00	-27.44	Pass	Horizontal
9688.000	37.97	7.60	45.56	46.59	46.60	74	.00	-27.40	Pass	Horizontal
1270.334	30.39	2.45	44.29	48.44	36.99	74	.00	-37.01	Pass	Vertical
1814.218	31.42	2.77	43.67	48.28	38.80	74	.00	-35.20	Pass	Vertical
4844.000	34.77	6.73	44.60	45.78	42.68	74	.00	-31.32	Pass	Vertical
5895.771	35.82	6.05	44.51	48.72	46.08	74	.00	-27.92	Pass	Vertical
7266.000	36.43	8.40	44.82	46.61	46.62	74	.00	-27.38	Pass	Vertical
9688.000	37.97	7.60	45.56	47.38	47.39	74	.00	-26.61	Pass	Vertical

Report No. : EED32J00028403 Page 64 of 65

			J-070		- 2100				200		
Test mode:	802.11n(HT	40)(13.5N	Mbps)	Test Fi	Test Frequency: 2437MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m	n)	Over Limit (dB)	Result	Antenna Polaxis	
1232.117	30.30	2.43	44.34	48.18	36.57	74.00	-93	-37.43	Pass	Horizontal	
1715.411	31.26	2.72	43.77	47.05	37.26	74.00	6	-36.74	Pass	Horizontal	
4874.000	34.84	6.73	44.60	44.91	41.88	74.00		-32.12	Pass	Horizontal	
6478.053	36.15	7.06	44.55	47.45	46.11	74.00		-27.89	Pass	Horizontal	
7311.000	36.43	8.44	44.86	44.59	44.60	74.00		-29.40	Pass	Horizontal	
9748.000	38.03	7.55	45.55	45.99	46.02	74.00		-27.98	Pass	Horizontal	
1257.465	30.36	2.44	44.30	49.07	37.57	74.00		-36.43	Pass	Vertical	
1737.384	31.29	2.73	43.74	48.77	39.05	74.00		-34.95	Pass	Vertical	
3776.385	32.96	5.94	44.62	49.91	44.19	74.00		-29.81	Pass	Vertical	
4874.000	34.84	6.73	44.60	45.93	42.90	74.00		-31.10	Pass	Vertical	
7311.000	36.43	8.44	44.86	46.54	46.55	74.00	0	-27.45	Pass	Vertical	
9748.000	38.03	7.55	45.55	46.05	46.08	74.00		-27.92	Pass	Vertical	

Test mode: 802.11n(HT40)(13.5Mbps) Test Frequency: 2452MHz Remark: Peak										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1082.109	29.93	2.31	44.56	48.43	36.11	74.00		-37.89	Pass	Horizontal
1529.749	30.93	2.62	43.96	47.35	36.94	74.00		-37.06	Pass	Horizontal
4904.000	34.90	6.74	44.60	45.28	42.32	74.00		-31.68	Pass	Horizontal
5895.771	35.82	6.05	44.51	48.39	45.75	74.00		-28.25	Pass	Horizontal
7356.000	36.44	8.48	44.90	45.75	45.77	74.00		-28.23	Pass	Horizontal
9808.000	38.10	7.50	45.54	45.83	45.89	74.00		-28.11	Pass	Horizontal
1201.149	30.23	2.40	44.38	48.01	36.26	74.00		-37.74	Pass	Vertical
1672.296	31.18	2.70	43.81	47.44	37.51	74.00		-36.49	Pass	Vertical
2060.463	31.84	2.91	43.59	48.21	39.37	74.00		-34.63	Pass	Vertical
4904.000	34.90	6.74	44.60	45.93	42.97	74.00		-31.03	Pass	Vertical
7356.000	36.44	8.48	44.90	45.53	45.55	74.00		-28.45	Pass	Vertical
9808.000	38.10	7.50	45.54	46.60	46.66	74.00		-27.34	Pass	Vertical

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 65 of 65

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

