# XCMS Workshop

Alignments with OBI-Warp Annotation using CAMERA

Ralf Tautenhahn

The Scripps Research Institute

5/31/2009

#### OBI-Warp

John T. Prince and Edward M. Marcotte Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping Analytical Chemistry, 2060 78 (17), 6140-6152

obi-warp.sourceforge.net

- Retention time correction based on spectra similarity
- Doesn't rely on detected feature
- No initial grouping needed
- Potentially useful for samples with high retention time deviations
- Recently integrated into XCMS
- CAVE: still experimental!

#### **OBI-Warp**



### Retention time correction using OBI-Warp

```
library(xcms)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xset <- xcmsSet(cdffiles)</pre>
```

#### OBI-Warp

#### **LOESS**

### Retention time correction using OBI-Warp

```
library(xcms)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xset <- xcmsSet(cdffiles)

OBI-Warp
LOESS

xrc <- retcor(xset, xg <- group(xset)
method="obiwarp") xrc <- retcor(xg)

final grouping</pre>
```

x <- group(xrc)

### Retention time correction using OBI-Warp

```
library(xcms)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xset <- xcmsSet(cdffiles)

OBI-Warp
LOESS

xrc <- retcor(xset, xg <- group(xset)
method="obiwarp") xrc <- retcor(xg)</pre>
final grouping
```

#### OR

x <- group(xrc)

x <- group(xrc, method="nearest")</pre>

Additional parameters see ?retcor.obiwarp

#### Example: faahKO dataset

#### **OBI-Warp**

Retention Time Deviation vs. Retention Time



#### **LOESS**

Retention Time Deviation vs. Retention Time



## Alignment using the "nearest" algorithm

- alternative to group.density (default)
- inspired by the alignment algorithm of mzMine
- main difference: no binning necessary
- usage

- mzCheck maximum tolerated distance for m/z
- rtCheck maximum tolerated distance for RT.
- *kNN* number of nearest neighbors to check

```
?group.nearest
To use this method, the R-package RANN has to be installed.
http://rforge.net/RANN/
```

| m/z    | Retention time | Intensity |
|--------|----------------|-----------|
| 135.05 | 280.43         | 97554     |
| 153.06 | 280.43         | 4207      |
| 175.04 | 280.43         | 7468      |
| 197.02 | 280.76         | 1015      |
| 117.04 | 278.07         | 995       |
| 145.03 | 278.07         | 20534     |
| 149.06 | 278.07         | 3561      |
| 177.05 | 278.07         | 31096     |
| 195.06 | 278.07         | 1925      |
| 217.05 | 277.74         | 1704      |
| 233.01 | 278.07         | 3541      |
| 427.07 | 278.07         | 1897      |
| 621.13 | 278.07         | 435       |
|        |                |           |

| m/z    | Retention time | Intensity | Compound No |
|--------|----------------|-----------|-------------|
| 135.05 | 280.43         | 97554     | 1           |
| 153.06 | 280.43         | 4207      | 1           |
| 175.04 | 280.43         | 7468      | 1           |
| 197.02 | 280.76         | 1015      | 1           |
| 117.04 | 278.07         | 995       | 2           |
| 145.03 | 278.07         | 20534     | 2           |
| 149.06 | 278.07         | 3561      | 2           |
| 177.05 | 278.07         | 31096     | 2           |
| 195.06 | 278.07         | 1925      | 2           |
| 217.05 | 277.74         | 1704      | 2           |
| 233.01 | 278.07         | 3541      | 2           |
| 427.07 | 278.07         | 1897      | 2           |
| 621.13 | 278.07         | 435       | 2           |

• Grouping of all features belonging to the same compound

| m/z    | Retention time | Intensity | lon                 | Compound No. |
|--------|----------------|-----------|---------------------|--------------|
| 135.05 | 280.43         | 97554     |                     | 1            |
| 153.06 | 280.43         | 4207      | [M+H] <sup>+</sup>  | 1            |
| 175.04 | 280.43         | 7468      | [M+Na] <sup>+</sup> | 1            |
| 197.02 | 280.76         | 1015      |                     | 1            |
| 117.04 | 278.07         | 995       |                     | 2            |
| 145.03 | 278.07         | 20534     |                     | 2            |
| 149.06 | 278.07         | 3561      |                     | 2            |
| 177.05 | 278.07         | 31096     |                     | 2            |
| 195.06 | 278.07         | 1925      | [M+H] <sup>+</sup>  | 2            |
| 217.05 | 277.74         | 1704      | [M+Na] <sup>+</sup> | 2            |
| 233.01 | 278.07         | 3541      | [M+K] <sup>+</sup>  | 2            |
| 427.07 | 278.07         | 1897      | [2M+K] <sup>+</sup> | 2            |
| 621.13 | 278.07         | 435       | [3M+K] <sup>+</sup> | 2            |

- Grouping of all features belonging to the same compound
- Detect charge state
- Assignment of ion species

| m/z    | Retention time | Intensity | lon                 | Molecular mass | Compound No. |
|--------|----------------|-----------|---------------------|----------------|--------------|
| 135.05 | 280.43         | 97554     |                     |                | 1            |
| 153.06 | 280.43         | 4207      | [M+H] <sup>+</sup>  | ] M 150.05     | 1            |
| 175.04 | 280.43         | 7468      | [M+Na]+             | M = 152.05     | 1            |
| 197.02 | 280.76         | 1015      |                     |                | 1            |
| 117.04 | 278.07         | 995       |                     |                | 2            |
| 145.03 | 278.07         | 20534     |                     |                | 2            |
| 149.06 | 278.07         | 3561      |                     |                | 2            |
| 177.05 | 278.07         | 31096     |                     |                | 2            |
| 195.06 | 278.07         | 1925      | [M+H] <sup>+</sup>  | )              | 2            |
| 217.05 | 277.74         | 1704      | [M+Na] <sup>+</sup> | 1              | 2            |
| 233.01 | 278.07         | 3541      | [M+K] <sup>+</sup>  | M = 194.05     | 2            |
| 427.07 | 278.07         | 1897      | [2M+K] <sup>+</sup> | ı              | 2            |
| 621.13 | 278.07         | 435       | [3M+K] <sup>+</sup> | )              | 2            |

- Grouping of all features belonging to the same compound
- Detect charge state
- Assignment of ion species
- Calculate molecular mass
- → Database search, molecular formula calculation

# Grouping all features of the same compound (1)

- Electrospray ionization
  - Molecule M: Formation of different ion species e.g. [M+H]<sup>+</sup>, [M+Na]<sup>+</sup>
  - in the same ratio
- Features belonging to the same compound
  - Same retention time
  - Feature intensities have a linear relationship



# Grouping all features of the same compound (1)

- Electrospray ionization
  - Molecule M: Formation of different ion species e.g. [M+H]<sup>+</sup>, [M+Na]<sup>+</sup>
  - in the same ratio
- Features belonging to the same compound
  - Same retention time
  - Feature intensities have a linear relationship



## Grouping all features of the same compound (1)

- Electrospray ionization
  - Molecule M: Formation of different ion species e.g. [M+H]<sup>+</sup>, [M+Na]<sup>+</sup>
  - in the same ratio
- Features belonging to the same compound
  - Same retention time
  - Feature intensities have a linear relationship







### Grouping all features of the same compound (2)

- Compute correlation coefficients
- Create graph
  - Node: Feature
  - Edge:  $r > r_{Thr}$



# Grouping all features of the same compound (2)

- Compute correlation coefficients
- Create graph
  - Node: Feature
  - Edge:  $r > r_{Thr}$



## Grouping all features of the same compound (2)

- Compute correlation coefficients
- Create graph
  - Node: Feature
  - Edge:  $r > r_{Thr}$
- HCS-Clustering [Hartuv and Shamir 2000]
- highly connected subgraphs



 Ion formation depends on the compound



- Ion formation depends on the compound
  - quasi-molecular ion, e.g. [M+H]+
  - cluster ions, e.g. [2M+Na]+
  - fragment ions, e.g. [M+H-R]+



- Ion formation depends on the compound
  - quasi-molecular ion, e.g. [M+H]<sup>+</sup>
  - cluster ions, e.g. [2M+Na]<sup>+</sup>
  - fragment ions, e.g. [M+H-R]<sup>+</sup>

Observed m/z value s for a single ion species:

$$s = \frac{n \cdot \mathsf{mass}(M) + \mathsf{mass}(I) - \mathsf{mass}(R)}{7}$$



- Ion formation depends on the compound
  - quasi-molecular ion, e.g. [M+H]<sup>+</sup>
  - cluster ions, e.g. [2M+Na]<sup>+</sup>
  - fragment ions, e.g. [M+H-R]<sup>+</sup>

Observed m/z value s for a single ion species:

$$s = \frac{n \cdot \mathsf{mass}(M) + \mathsf{mass}(I) - \mathsf{mass}(R)}{z}$$



#### Example

$$[M+Na]^+$$
, mass $(M)$ =284,  
n=1,z=1, mass $(I)$ =23

$$s = \frac{1 \cdot 284 + 23}{1}$$
$$= 307 m/z$$

- Ion formation depends on the compound
  - quasi-molecular ion, e.g. [M+H]+
  - cluster ions, e.g. [2M+Na]<sup>+</sup>
  - fragment ions, e.g. [M+H-R]+

Observed m/z value s for a single ion species:

$$s = \frac{n \cdot \mathsf{mass}(\mathit{M}) + \mathsf{mass}(\mathit{I}) - \mathsf{mass}(\mathit{R})}{z}$$
$$\mathsf{mass}(\mathit{M}) = \frac{z \cdot s - \mathsf{mass}(\mathit{I}) + \mathsf{mass}(\mathit{R})}{n}$$
$$n, z > 0$$



#### Example

$$[M+Na]^+$$
, mass $(M)=284$ ,  
n=1,z=1, mass $(I)=23$ 

$$s = \frac{1 \cdot 284 + 23}{1}$$
$$= 307 m/z$$

| feature | group |
|---------|-------|

|             | 0 1 |  |
|-------------|-----|--|
| $s_i [m/z]$ |     |  |
| 270.05      |     |  |
| 285.07      |     |  |
| 307.06      |     |  |
| 591.12      |     |  |
| 607.09      |     |  |
|             |     |  |

| rule table           | (z, n, I, R) |
|----------------------|--------------|
| rule j               | $mass(I_j)$  |
| [M+H] <sup>+</sup>   | 1.01         |
| $[M+2H]^{2+}$        | 2.01         |
| [M+Na] <sup>+</sup>  | 22.99        |
| $[M+K]^+$            | 38.96        |
| [2M+Na] <sup>+</sup> | 22.99        |
| [2M+K] <sup>+</sup>  | 38.96        |
|                      |              |

Creation of mass-hypotheses

$$M_{i,j} = \frac{\mathbf{z}_j \cdot \mathbf{s}_i - \mathbf{I}_j + \mathbf{R}_j}{\mathbf{n}_j}$$

#### feature group

|                      | . o a. a. a g. o a.p |
|----------------------|----------------------|
| s <sub>i</sub> [m/z] |                      |
| 270.05               |                      |
| 285.07               |                      |
| 307.06               |                      |
| 591.12               |                      |
| 607.09               |                      |
|                      |                      |

. . .

| rule table           | (z, n, I, R) |
|----------------------|--------------|
| rule j               | $mass(I_j)$  |
| [M+H] <sup>+</sup>   | 1.01         |
| $[M+2H]^{2+}$        | 2.01         |
| [M+Na] <sup>+</sup>  | 22.99        |
| $[M+K]^+$            | 38.96        |
| [2M+Na] <sup>+</sup> | 22.99        |
| [2M+K] <sup>+</sup>  | 38.96        |
|                      |              |

Creation of mass-hypotheses

$$M_{i,j} = \frac{\mathbf{z}_j \cdot \mathbf{s}_i - \mathbf{I}_j + \mathbf{R}_j}{\mathbf{n}_i}$$

#### feature group

|                      | <u> </u> |
|----------------------|----------|
| s <sub>i</sub> [m/z] |          |
| 270.05               |          |
| 285.07               |          |
| 307.06               |          |
| 591.12               |          |
| 607.09               |          |
|                      |          |

| 1010 (2,77,7,77)     |             |  |
|----------------------|-------------|--|
| rule j               | $mass(I_j)$ |  |
| [M+H] <sup>+</sup>   | 1.01        |  |
| $[M+2H]^{2+}$        | 2.01        |  |
| [M+Na] <sup>+</sup>  | 22.99       |  |
| $[M+K]^+$            | 38.96       |  |
| [2M+Na] <sup>+</sup> | 22.99       |  |
| [2M+K] <sup>+</sup>  | 38.96       |  |
|                      |             |  |

$$M_{i,i} =$$

| / | 269   | 538.1  | 247.1 | 231.1 | 123.5 | 115.5 | , |
|---|-------|--------|-------|-------|-------|-------|---|
| ( | 284.1 | 568.1  | 262.1 | 246.1 | 131   | 123.1 |   |
| ı | 306.1 | 612.1  | 284.1 | 268.1 | 142   | 134.1 |   |
| 1 | 590.1 | 1180.2 | 568.1 | 552.2 | 284.1 | 276.1 |   |
| / | 606 1 | 1212 2 | 584 1 | 568 1 | 292 1 | 284 1 |   |

Creation of mass-hypotheses

$$M_{i,j} = rac{\mathbf{z}_j \cdot \mathbf{s}_i - \mathbf{I}_j + \mathbf{R}_j}{\mathbf{n}_j}$$
 e.g.  $M_{5,6} = rac{1 \cdot 607.09 - 38.96 + 0}{2}$  = 284.1

#### feature group

| ioatai o gi oap      |  |  |  |
|----------------------|--|--|--|
| s <sub>i</sub> [m/z] |  |  |  |
| 270.05               |  |  |  |
| 285.07               |  |  |  |
| 307.06               |  |  |  |
| 591.12               |  |  |  |
| 607.09               |  |  |  |
|                      |  |  |  |

#### rule table (z, n, I, R)

| Taio table (2, 11, 1, 11) |             |  |
|---------------------------|-------------|--|
| rule j                    | $mass(I_j)$ |  |
| [M+H] <sup>+</sup>        | 1.01        |  |
| $[M+2H]^{2+}$             | 2.01        |  |
| [M+Na] <sup>+</sup>       | 22.99       |  |
| $[M+K]^+$                 | 38.96       |  |
| [2M+Na] <sup>+</sup>      | 22.99       |  |
| [2M+K] <sup>+</sup>       | 38.96       |  |
|                           |             |  |

$$M_{i,i} =$$

Creation of mass-hypotheses

$$M_{i,j} = rac{\mathbf{z}_{j} \cdot \mathbf{s}_{i} - \mathbf{I}_{j} + \mathbf{R}_{j}}{\mathbf{n}_{j}}$$
 e.g.  $M_{5,6} = rac{1 \cdot 607.09 - 38.96 + 0}{2}$  = 284.1

feature group

|                      | . o a. a. a g. o a.p |                                                     |        |   |
|----------------------|----------------------|-----------------------------------------------------|--------|---|
| s <sub>i</sub> [m/z] | lon                  | Mass                                                | •      |   |
| 270.05               |                      |                                                     | •      |   |
| 285.07               | $[M+H]^+$            | )                                                   |        |   |
| 307.06               | [M+Na] <sup>+</sup>  | L <sub>M</sub>                                      | =284.1 | 1 |
| 591.12               | [2M+Na] <sup>+</sup> | \begin{align*} \text{IVI} = \text{IVI} = \text{IVI} | =204.1 |   |
| 607.09               | [2M+K] <sup>+</sup>  | j                                                   |        |   |
|                      |                      |                                                     |        | ' |

rule table (z, n, I, R)

| Taic table (2, 11, 1, 11) |             |  |
|---------------------------|-------------|--|
| rule j                    | $mass(I_j)$ |  |
| [M+H] <sup>+</sup>        | 1.01        |  |
| $[M+2H]^{2+}$             | 2.01        |  |
| [M+Na] <sup>+</sup>       | 22.99       |  |
| $[M+K]^+$                 | 38.96       |  |
| [2M+Na] <sup>+</sup>      | 22.99       |  |
| [2M+K] <sup>+</sup>       | 38.96       |  |
|                           |             |  |

 $M_{i,i} =$ 

284.1

306.1

590 1

606.1

#### Usage

- http://bioconductor.org/packages/devel/bioc/html/ CAMERA.html
- or (within R) type:

```
source("http://bioconductor.org/biocLite.R")
biocLite("CAMERA")
```

example using the faahKO dataset

```
library(CAMERA)
xs <- xcmsSet(...)
## group, retcor, etc.
an <- annotate(xs)
peaklist <- getPeaklist(an)
write.csv(peaklist,file='xsannotated.csv')</pre>
```

# Interpretation of the Results

| id | mz     | rt     | isotopes    | adduct               | рс |
|----|--------|--------|-------------|----------------------|----|
| 65 | 176.04 | 280.09 |             |                      |    |
| 76 | 136.05 | 280.43 | [14][M+1]1+ |                      | 5  |
| 77 | 135.05 | 280.43 | [14][M]1+   |                      | 5  |
| 74 | 153.06 | 280.43 |             | [M+H]+ 152.05437     | 5  |
| 75 | 175.04 | 280.43 |             | [M+Na]+ 152.05437    | 5  |
| 73 | 197.02 | 280.76 |             | [M+2Na-H]+ 152.05437 | 5  |
| 78 | 377.74 | 286.15 |             |                      |    |
| 79 | 732.5  | 286.49 |             |                      |    |
| 83 | 488.32 | 286.82 |             | [M+Na]+ 465.33205    | 7  |
| 82 | 466.34 | 286.82 |             | [M+H]+ 465.33205     | 7  |
|    |        |        |             |                      |    |