<u>ĆWICZENIA 4</u> – ZADANIA (Granica i ciągłość funkcji, asymptoty)

Zadanie. 1. Obliczyć granice funkcji

a)
$$\lim_{x \to +\infty} \frac{3x^3 - 2x^2 - x - 1}{5x^3 + x - 4}$$

b)
$$\lim_{x \to -\infty} \frac{x-2}{x^2+3x+1}$$

c)
$$\lim_{x \to -\infty} \frac{2x^2 - 5x + 6}{x - 7}$$

c)
$$\lim_{x \to -\infty} \frac{2x^2 - 5x + 6}{x - 7}$$
 d) $\lim_{x \to \infty} \left[\sqrt{4x^2 + 5x - 2} - 2x \right]$

e)
$$\lim_{x \to 2} \frac{x^2 + 4}{x + 2}$$

f)
$$\lim_{x \to 2} \frac{x^2 - 1}{x - 2}$$

g)
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{2x - 6}$$
 h) $\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$

h)
$$\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$$

i)
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}$$

$$j) \lim_{x\to 0} \frac{\sin 3x}{4x}$$

k)
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{4x}$$

k)
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{4x}$$
 l) $\lim_{x \to 1} \frac{1}{1-x}$

m)
$$\lim_{x \to \infty} \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right]$$
 n) $\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right)$

n)
$$\lim_{x \to \infty} x \left(\sqrt{x^2 + 1} - x \right)$$

o)
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$

p)
$$\lim_{x \to 1} \frac{x^4 - 1}{x^2 - 1}$$

q)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$$
 r) $\lim_{x \to -1} \frac{x^2}{x+3}$ s) $\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x}$

r)
$$\lim_{x \to -1} \frac{x^2}{x+3}$$

s)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x}$$

t)
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$$

u)
$$\lim_{x\to 0} \frac{x-\sqrt{x}}{\sqrt{x}}$$

w)
$$\lim_{x \to 1} \frac{(x-1)\sqrt{2-x}}{x^2-1}$$
 x) $\lim_{x \to -\infty} \frac{1+x-3x^3}{1+x^2+3x^3}$

$$x) \lim_{x \to -\infty} \frac{1 + x - 3x^3}{1 + x^2 + 3x^3}$$

y)
$$\lim_{x \to -\infty} \frac{x^4 - 3x^3 + x - 1}{x^2 + x - 1}$$

z)
$$\lim_{x \to \infty} (\sqrt{4x^2 + 2} - 2x)$$
 aa) $\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$ ab) $\lim_{x \to -2} \frac{5-x}{x+2}$

aa)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$

ab)
$$\lim_{x \to -2} \frac{5-x}{x+2}$$

<u>**Odp**</u> a)3/5, b) 0, c) $-\infty$, d) 5/4 e) 2 f) $\pm \infty$, g) 1, h)1/10, i) 1, j)3/4, k) 1/4, l) $\pm \infty$, m)0, n)1/2, o)1/(2+2 $\sqrt{2}$), p)2,q)1, r)1/2 s)0 t) -2/5 u)-1 w) $\frac{1}{2}$ x) -1

Zadanie. 3. Znaleźć asymptoty pionowe, poziome i ukośne podanych funkcji (o ile istnieja):

a)
$$f(x) = \frac{x}{1-x}$$

b)
$$f(x) = \frac{\sin x}{x^2}$$

$$c) f(x) = \sqrt{x^2 - 1}$$

d)
$$f(x) = \frac{x}{arctgx}$$

e)
$$f(x) = \frac{x^3 + 8}{x^2 - 4}$$

a)
$$f(x) = \frac{x}{1-x}$$
 b) $f(x) = \frac{\sin x}{x^2}$ c) $f(x) = \sqrt{x^2 - 1}$ d) $f(x) = \frac{x}{arctgx}$ e) $f(x) = \frac{x^3 + 8}{x^2 - 4}$ f) $f(x) = x \ln\left(e + \frac{1}{x}\right)$ g) $f(x) = \frac{2x - 5}{2x - 1}$ h) $f(x) = \frac{3x^2}{x^2 - 4}$ i) $f(x) = x - \frac{1}{x}$ k) $f(x) = \frac{x^3 - 2x^2 + 1}{9 - x^2}$ l) $f(x) = \frac{3x^2 - 2x + 1}{x^2 + 1}$

$$g)f(x) = \frac{2x-5}{2x-1}$$

h)
$$f(x) = \frac{3x^2}{x^2 - 4}$$

i)
$$f(x) = \frac{2x^2 - 1}{x - 3}$$

$$j) f(x) = x - \frac{1}{x}$$

k)
$$f(x) = \frac{x^3 - 2x^2 + 1}{9 - x^2}$$

$$1) f(x) = \frac{3x^2 - 2x + 1}{x^2 + 1}$$

Odp a)asymptota pionowa obustronna x=1, pozioma y=1 w $\pm \infty$ b) asymptota pionowa obustronna x=0 pozioma y=0 w $\pm \infty$ c)pionowa- brak,ukośna y=x w+ ∞ oraz y=-x w- ∞ d) asymptota pionowa-brak, ukośne $y=\frac{2}{\pi}x+\frac{4}{\pi^2}$ $w+\infty$ $y = -\frac{2}{\pi}x + \frac{4}{\pi^2}$ w $-\infty$ e) asymptota pionowa obustronna x=2, $\pm \infty$, ukośna y=x w $\pm \infty$ f) asymptota pionowa lewostronna x= $-\frac{1}{\pi}$, ukośna $y = x + \frac{1}{\rho}$ $w \pm \infty$.