COMP 4901Q: High Performance Computing (HPC)

Lecture 7: Introduction to GPU Computing

Instructor: Shaohuai SHI (shaohuais@cse.ust.hk)

Teaching assistants: Mingkai TANG (mtangag@connect.ust.hk)

Yazhou XING (yxingag@connect.ust.hk)

Course website: https://course.cse.ust.hk/comp4901g/

Outline

- Introduction to GPU Computing
 - History of processors
 - ▶ GPU architecture
- CUDA Programming Model: Basics
 - Workflow
 - Fundamental CUDA API
 - Examples

History of Processor Performance

Observations

- ▶ Before 2002, the CPU performance grows by increasing its working frequency
- ▶ Afterwards, the CPU frequency remains between 2GHz 4GHz
 - Challenge of CPU heat dissipation
 - The performance is mainly improved by introducing parallelism, such as multi-core and SIMD (MMX, SSE, AVX, etc.)

Multi-core Processors

- Multi-core CPU combines two or more independent cores into a single package
 - ▶ IBM introduced POWER4 in 2001, which places two complete CPU cores on a single chip.
 - POWER5, POWER6, POWER7 (4-8 cores)
 - Sun released Niagara with 8 cores UltraSPARC in 2005, and SPARC T3 with 16 cores in 2010
 - Intel and AMD released their dual-core processors in 2005
 - Intel launched its quad-core processor in 2006, 8-core in 2010, 10-core in 2011, 18-core in 2014
 - ▶ AMD released its quad-core processor in 2007, 12-core in 2010, 16-core in 2014

Many-core Processors

- Many-core processors have more processing units than multi-core processors
 - They are usually coprocessors to supplement the CPUs
- Intel's MIC: Many Integrated Core Architecture
 - Market name: Intel Xeon Phi
 - Around 60 cores, each with SIMD unit (vector processing unit)
 - ▶ x86-compatible
 - used by Tianhe-II and many other top500 supercomputers

GPU: Graphics Processing Unit

- Nvidia: GTX980, Tesla K40, RTX3090, Tesla A100
- AMD: FirePro \$10000, MI100
- Also popular in top500 supercomputers

Multi-core vs. Many-core

Year	Model	# of cores	Peak perf (SP) ¹	Peak perf (DP) ²	Peak perf (FP16) ³	Memory Bandwidth	Power
2010	Intel Xeon X5650	6	0.128T	0.064T	N/A	32GB/s	95W
2013	Intel Xeon Phi 7120p	61	2.4T	1.2T	N/A	352GB/s	300W
2013	Nvidia Tesla K40	2880	4.29T	1.43T	N/A	288GB/s	235W
2012	AMD FirePro S10000 ⁴	2x1792	5.91T	1.48T	N/A	480GB/s	375W
2020	Nvidia Tesla A100	6912	19.5T	9.7T	312T	1555GB/s	400W
2020	AMD Instinct™ MI100	7680	23.1T	11.5T	184.6T	1228.8GB/s	300W

¹SP: single precision; ²DP: double precision; ³ Half precision; ⁴AMD FirePro S10000 has two GPU chips

GPU: Graphics Processing Unit

- ▶ GPU is used to accelerate the creation of images intended for output to a display
 - A display with resolution 1920x1080 has 2 million pixels to process, and tens of frames per second!
- Today's GPUs use hundreds to thousands of processing cores for calculation
 - ▶ Each core is less powerful than a typical CPU core
 - But hundreds to thousands of GPU cores will make a big difference

Different Design Philosophies

- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation

GPGPU: General-Purpose Computing on GPUs

- ▶ GPUs are designed for 2D/3D graphics
- GPGPU refers to the usage of GPUs for accelerating applications other than graphics
 - Computational finance, data mining, machine learning, data analytics, imaging and vision, bioinformatics, CAD, molecular dynamics, quantum chemistry, etc.
 - Also known as "GPU Computing"

Small Changes, Big Speed-up

Heterogeneous Computing

GPUs Accelerate Science and Engineering

ACCELERATING HPC

All results are measured Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4 More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 1024^3, SPECFEM3D with Cartesian four material model BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100 in DGX A100

2013 2020

GPUs have almost been a must in deep learning!

GPU Architecture: Two Main Components

Global memory

- Analogous to RAM in a CPU server
- Accessible by both GPU and CPU
- Currently up to 80 GB
- Bandwidth currently up to 2,039 GB/s for Tesla products
- ▶ ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)

- Perform the actual computations
- Each SM has its own:
 - Control units,
 - Registers,
 - Execution pipelines
 - Caches

Fermi: Streaming Multiprocessor (SM)

- 32 CUDA Cores per SM
 - ▶ 32 fp32 ops/clock
 - ▶ 16 fp64 ops/clock
 - ▶ 32 int32 ops/clock
- 2 warp schedulers
 - Up to 1536 threads concurrently
- ▶ 4 special-function units
- ▶ 64KB shared mem + LI cache
- ▶ 32K 32-bit registers

GPU Memory Hierarchy

GPU Memory Hierarchy

- Example: P100 (PCIe)
 - Registers: 14336 KB
 - LI cache/Shared mem: 64 KB per SM
 - L2 cache: 4096 KB
 - Global mem: 16 GB
 - Memory bandwidth: 732 GB/s

Multithreading to High Memory Latency

- Compute vs Memory
 - E.g., 9340GFLOPS vs 732 GB/s

Perspective from a single thread

Thread Life Cycle in Hardware

- Grid is launched on GPU
- Thread Blocks are serially distributed to all the SMs
 - Potentially > I Thread Block per SM
- ► Each SM launches Warps of Threads
 - 2 levels of parallelism
- SM schedules and executes Warps that are ready to run
- As Warps and Thread Blocks complete, resources are freed
 - GPU can distribute more Thread Blocks

SM Executes Blocks

Thread Scheduling/Execution

- Each Thread Blocks is divided in 32-thread Warps
 - This is an implementation decision, not part of the CUDA programming model
- Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each Block has 512 threads, how many Warps are there in an SM?
 - ► Each Block is divided into 512/32= 16 Warps
 - There are 16 * 3 = 48 Warps
 - At any point in time, some of the 48 Warps will be selected for instruction fetch and execution

SM Warp Scheduling

- SM hardware implements zero-overhead
 Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a Warp execute the same instruction when selected
- E.g., in G80, 4 clock cycles needed to dispatch the same instruction for all threads in a Warp
 - If one global memory access is needed for every 4 instructions
 - A minimal of 13 Warps are needed to fully tolerate 200-cycle memory latency

Review: Data Parallelism

In data parallelism, each processor performs the same task on different pieces of data

GPU Programming

- CUDA
 - Particularly for Nvidia GPUs
- OpenCL
 - Supports all popular operating systems across all major platforms
 - CPU, GPUs (Nvidia, AMD, Intel), FPGA,
- OpenACC
 - Directive-based performance-portable parallel programming model

CUDA: Compute Unified Device Architecture

- ▶ CUDA is a general-purpose programming model for heterogeneous computing
 - Created by Nvidia to ease GPU computing in 2007
 - User can generate batches of threads on the GPU
 - ▶ GPU becomes a dedicated super-threaded, massively data parallel coprocessor
 - ▶ CUDA includes libraries, compilers, and extensions to programming languages

CUDA Devices and Threads

- In CUDA, a compute device
 - is a coprocessor to the CPU or host
 - has its own DRAM (device memory)
 - runs many threads in parallel
 - is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - ▶ GPU threads are extremely lightweight
 - Very little creation overhead
 - ▶ GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

Compute Capability

• GPU devices are evolving rapidly, with many new features introduced by each generation of hardware

 "Compute capability" is used to identify the features supported by the GPU hardware

- "Compute capability" comprises a major and a minor version number (x.y), e.g.,
 1.3, 2.0, 3.5, 5.0, 7.0
 - Devices with the same major version number are of the same core architecture
 - The minor version number corresponds to an incremental improvement to the core architecture

CUDA Programming Model

SPMD

- Single Program/Process Multiple Data
- Tasks are split up and run simultaneously on multiple processors with different input
- MPI is an example of SPMD using distributed memory

SPMD on GPUs:

- CUDA is an example of SPMD using shared memory
- The GPU processes many elements in parallel using the same program
- Elements can read data from a shared global memory ("gather"), and also write back to arbitrary locations in memory ("scatter")

CUDA C/C++

- ▶ CUDA supports many programming languages, e.g., Fortran and C/C++
 - We choose CUDA C/C++ in this course

- ▶ CUDA C/C++ is an extension of C/C++ language
 - A set of new keywords
 - A set of API functions
- ► CUDA C/C++: Integrated host+device C/C++ program
 - Serial or modestly parallel parts in host C/C++ code, including the main() function
 - ▶ Highly parallel parts in device C/C++ code, called kernels

Execution of a CUDA C Program

Memory Management

In CUDA, host (i.e., CPU) and device (i.e., GPU) have separate memory spaces

- To execute a kernel on GPU, we need to
 - I. allocate memory on the device
 - 2. transfer data from host memory to allocated device memory
- After device execution, we need to transfer the result data from device memory back to host

CUDA Memory Model

- ▶ Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
- The host can R/W global, constant, and texture memories

Memory Functions

Standard C Functions	CUDA C Functions
malloc	cudaMalloc
memcpy	cudaMemcpy
memset	cudaMemset
free	cudaFree /

cudaMemcpyKind
cudaMemcpyHostToHost
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

cudaError_t: {cudaSuccess, cudaErrorMemoryAllocation, ...}

CUDA Device Memory Allocation

- cudaMalloc()
 - Allocates object in the device Global Memory
 - Requires two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object
- cudaFree()
 - Frees object from device Global Memory
 - Pointer to freed object

Code Example

- Code example:
 - ▶ Allocate a 64 * 64 single precision float array
 - ▶ Attach the allocated storage to pointer M_d
 - "d" is often used to indicate a device data structure

```
TILE_WIDTH = 64;
float* M_d;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&M_d, size);
cudaFree(M_d);
```

CUDA Host-Device Data Transfer

- cudaMemcpy()
 - memory data transfer between host and device
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device
- Cannot be used for GPU-GPU data transfer

Code Example

- Code example:
 - ▶ Transfer a 64 * 64 single precision float array
 - ▶ M is in host memory and M_d is in device memory
 - cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(M_d, M, size, cudaMemcpyHostToDevice); cudaMemcpy(M, M_d, size, cudaMemcpyDeviceToHost);

Synchronous Memory Copy

cudaMemcpy() is synchronous (or, blocking)

- It won't begin until all previously issued CUDA calls have completed.
- Subsequent CUDA calls cannot begin until the synchronous cudaMemcpy() has completed.

Vector Addition on GPU

```
#include <cuda.h>
                                                                Host memory
void vecAdd(float *A, float *B, float *C, int n)
                                                                           step 3
                                                            step 1
 int size = n * sizeof(float);
                                                                 GPU (device)
 float *A_d, *B_d, *C_d;
                                                                   memory
 //step 1: allocate device memory for A, B, and C; then copy A and B to device memory
 //step 2: launch the kernel code to perform the actual vector addition on GPU
//step 3: copy C from device memory and free device memory
```

CUDA Kernel Functions

- A kernel function specifies the code to be executed by all threads during a parallel phase.
 - All threads execute the same code: SPMD
- When a host code launches a kernel, a grid of threads will be generated. These threads are organized in a two-level hierarchy:
 - ▶ Each grid is organized into many thread blocks
 - ▶ Each block has a unique ID within its grid: blockldx
 - ▶ Each block contains many threads
 - Each thread has a unique ID within its block: threadIdx

CUDA Thread Blocks

- ▶ Threads in a grid are organized as multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - ▶ Threads in different blocks cannot cooperate

Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: ID, 2D, or 3D
 - ▶ Thread ID: ID, 2D, or 3D
 - CUDA introduces dim3 as the data type for 3D vector
 - dim3 is actually a C struct with three unsigned integer fields x, y, and z
- Predefined built-in variables
 - dim3 gridDim: grid dimensions
 - dim3 blockDim: block dimensions
 - dim3 blockldx: three-dimensional index of a block
 - dim3 threadldx: three-dimensional index of a thread

Example of 2-D grid and 2-D block

CUDA Function Declarations

	Executed on the:	Only callable from the:
device float DeviceFunc()	device	device
global void KernelFunc()	device	host
host float HostFunc()	host	host

- __global___ defines a kernel function
 - Must return void
- device and host can be used together
 - ▶ The compiler will generate two versions of the function

Calling a Kernel Function

A kernel function must be called with an execution configuration:

```
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>> (...);
```

 Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking

Kernel Launch is Asynchronous

In CUDA, launching a kernel is asynchronous

- The CPU will continue executing the subsequence statements, without waiting for the kernel to finish
 - When the CPU encounters a synchronous CUDA API, such as cudaMemcpy(), it will wait for the previous kernel function to finish
 - A synchronous CUDA API, cudaDeviceSynchronize(), can be used to block the CPU until the GPU has completed all preceding requested tasks

cudaError_t cudaDeviceSynchronize(void);

CUDA Kernel Restrictions

- ▶ At present, CUDA kernel function has the following restrictions
 - Access to device memory only
 - Must have void return type
 - No support for a variable number of arguments
 - No support for static variables
 - No support for function pointers

GPU Example 1

- ▶ Allocate CPU memory for *n* integers
- ▶ Allocate GPU memory for *n* integers
- ▶ Initialize GPU memory to 0s
- Copy from GPU to CPU
- Print the values

```
#include <cuda.h>
#include <stdio.h>
int main() {
         int dimx= 16;
         int num bytes= dimx* sizeof(int);
         int*d a=0, *h a=0; // device and host pointers
         h_a= (int*)malloc(num_bytes);
         cudaMalloc((void**)&d_a, num_bytes);
         if (0 == h_a || 0 == d_a) {
                  printf("couldn't allocate memory\n");
                  return 1;
         cudaMemset(d_a, 0, num_bytes);
         cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);
         for (int i=0; i < dimx; i++)
                  printf("%d\n", h_a[i]);
         free(h a);
         cudaFree(d_a);
         return 0;
```

GPU Example 2

- Use GPU to initialize an array by thread IDs
- Copy the array to CPU
- Print the values

A kernel function:

```
__global__ void mykernel(int* a)
{
    int idx= blockIdx.x* blockDim.x+ threadIdx.x;
    a[idx] = 7;
}
```

```
#include <cuda.h>
#include <stdio.h>
__global___ void mykernel(int* a) {
           int idx= blockIdx.x* blockDim.x+ threadIdx.x; // locate the data item handled by this thread
           a[idx] = threadIdx.x;
int main() {
           int dimx= 16, num bytes= dimx*sizeof(int);
           int*d a=0, *h a=0; // device and host pointers
           h_a= (int*)malloc(num_bytes);
           cudaMalloc((void**)&d_a, num_bytes);
           cudaMemset(d_a, 0, num_bytes);
           dim3 grid, block;
           block.x=4;
                                              // each block has 4 threads
           grid.x= dimx / block.x;
                                              // # of blocks is calculated
           mykernel << grid, block >>> (d a);
           cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);
           for(inti= 0; i< dimx; i++)
                       printf("%d\n", h_a[i]);
           free(h_a);
           cudaFree(d a);
           return 0;
```

The output will be: 0 1 2 3 0 1 2 3 0 1 2 3

GPU Example 3: Vector Addition

A kernel function which will be executed on GPU

```
// compute vector sum C = A + B
// each thread performs one pair-wise addition
__global__ void vecAdd( float *A, float *B, float *C, int n)
          // locate the memory
          int i = threadIdx.x + blockDim.x * blockIdx.x;
          // perform the addition
          if(i < n) C[i] = A[i] + B[i];
```

Example: Vector Addition (Cont.)

Host code which will be executed on CPU

```
int main ()
          int n = 10000;
          // allocate and initialize host (CPU) memory
          float *H_A = ..., *H_B = ..., *H_C = ...;
          // allocate device (GPU) memory
          float *A d, *B d, *C d;
          cudaMalloc(...); ...
          // copy host memory to device
          cudaMemcpy(...);...
          // run 16 blocks of 256 threads each
          vecAdd<<< ceil(n/256.0), 256 >>>(d_A, d_B, d_C, n);
          // copy result to host
          cudaMemcpy(...);
          cudaFree(A d);...
```

Error Handling

CHECK(cudaMemcpy(...));

- It is very common to use an error-handling macro to wrap all CUDA API calls
 - To simplify the error checking process

```
#define CHECK(call)
  const cudaError_t error = call;
  if (error != cudaSuccess)
    printf("Error: %s:%d, ", __FILE___, __LINE___);
    printf("code:%d, reason: %s\n", error, cudaGetErrorString(error);
    exit(1);
E.g.:
```

__FILE__ and __LINE__ are standard predefined macros that represent the current input file and input line number, respectively.

Reading List

Chapter 2, David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Processors, 2nd Edition, Morgan Kaufmann, 2013. [PDF:

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=2013_programming_massively_parallel_processors_a_hands-on_approach_2nd.pdf]

References

1. David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Processors, 2nd Edition, Morgan Kaufmann, 2013.

2. CUDA C/C++ Programming Guide: https://docs.nvidia.com/cuda/cuda-c-programming-guide/