Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithmns and Datastructures, March 2016

Structure

Feedback

Exercises

Lecture

O-Notation

Motivation / Definition

Examples

Ω-Notation

Θ-Notation

Runtime

Summary

Limit / Convergence

L'Hôpital / l'Hospital

Practical use

- Mathematical exercises mostly easy
- Programming exercise took more time, but still mostly manageable
- Python programming gradually gets more comfortable
- The first two problems were quite easy. I just wondered why it was stated to prove them with strong induction.

Tipps:

- Try and test small pieces, do not postpone the testing
- Try to first write (some) tests and then the code (Test Driven Development)
 - ightarrow Proven to be more straight, faster, less time for debugging
- Python programming gradually gets more comfortable
 - → Please use the forum such that everyone can participate and learn from each other

Feedback from the lecture

No feedback yet, please let us know what we can improve.

Motivation

We are interested in:

- Example: sorting
 - Runtime of Minsort "is growing as"
 - Runtime of HeapSort "is growing as" $n \log n$
- Growth of a function in runtime T(n)
 - The role of constants (e.g. 1ns) is minor
 - it is enough if relation holds for some $n \geq \dots$
- Describe the growth of the function more formally
 - By the means of Landau-Symbols [Wik]):
 - \blacksquare $\mathcal{O}(n)$ (Big O of n),
 - \square $\Omega(n)$ (Omega of n),
 - $\Theta(n)$ (Theta of n)

Big *∅*-Notation:

- Consider the function: $f: \mathbb{N} \to \mathbb{R}, n \mapsto f(n)$
 - N: Natural numbers → input size
 - \mathbb{R} : Real numbers \rightarrow runtime

Example:

- $\blacksquare f(n) = 3n$
- $\blacksquare f(n) = 2n \log n$
- $f(n) = \frac{1}{10}n^2$
- $f(n) = n^2 + 3n \log n 4n$

Big \mathcal{O} -Notation:

 \blacksquare Given two functions f and g:

 $f,g:\mathbb{N}\to\mathbb{R}$

- **Intuitive:** f is Big-O of g (f is $\mathcal{O}(g)$)
 - ... if f relative to g does not grow faster than g
 - the growth rate matters, not the absolute values

Big *𝑉*-Notation:

- Informal: $f = \mathcal{O}(g)$
 - "=" corresponds to is not isequal
 - ... if for some value n_0 for all $n \ge n_0$
 - $f(n) \le C \cdot g(n)$ for a constant C
 - $(f = \mathcal{O}(g))$: From a value n_0 for all $n \ge n_0 \to f(n) \le C \cdot g(n)$
- Formal: $f \in \mathcal{O}(g)$

Formal: $f \in \mathcal{O}(g)$

$$\mathscr{O}(g) = \{ \text{ f } : \mathbb{N} \to \mathbb{R} \mid \exists n_0 \in \mathbb{N}, \ \exists C > 0, \ \forall n > n_0 \colon f(n) \leq C \cdot g(n) \}$$
 "set of "for which" "it exists" "for all" "such that" all functions"

Illustration of the Big O-Notation:

Figure: Runtime of two algorithms f_1, f_2

Example:

■
$$f(n) = 5n + 7$$
, $g(n) = n$
⇒ $5n + 7 \in \mathcal{O}(g)$
⇒ $f \in \mathcal{O}(g)$

Intuitive:

$$f(n) = 5n + 7 \rightarrow \text{linear growth}$$

Attention

 $f(n) \le g(n)$ is not guaranteed, better is $f(n) \le C \cdot g(n) \ \forall n > n_0$.

We have to proof: $\exists n_0, \exists C, \forall n \geq n_0$: $5n + 7 \leq C \cdot n$.

$$5n+7 \leq 5n+n \text{ (for } n \geq 7)$$

= $6n$

$$\Rightarrow$$
 $n_0 = 7$, $C = 6$

Alternate proof:

$$5n+7 \le 5n+7n \text{ (for } n \ge 1)$$

= 12n

$$\Rightarrow n_0 = 1, C = 12$$

Big O-Notation:

- We are only interested in the term with the highest-order, the fasted growing summand, the others will be ignored
- \blacksquare f(n) is limited from above by $C \cdot g(n)$

Examples:

$$2n^{2}+7n-20 \in \mathscr{O}(n^{2})$$

$$2n^{2}+7n\log n-20 \in$$

$$7n\log n-20 \in$$

$$5 \in$$

$$2n^{2}+7n\log n+n^{3} \in$$

Harder Example:

- Polynomes are simple
- More problematic: combination of complex functions

$$2\sqrt{x} + 3\ln x \in \mathcal{O}(\ref{eq:condition})$$

Omega-Notation:

- Intuitive:
 - $f \in \Omega(g)$, f is growing at least as fast as g
 - So the same as Big-O but with at-least and not at-most

Formal: $f \in \Omega(g)$

$$\Omega(g) = \{f: \mathbb{N} \rightarrow \mathbb{R} \mid \exists n_0 \in \mathbb{N}, \exists C > 0, \forall n > n_0 : f(n) \geq C \cdot g(n)\}$$

"in *O*(*n*) we had <"

Example:

Proof

Proof of $f(n) = 5n + 7 \in \Omega(n)$:

$$\underbrace{5n+7}_{f(n)} \geq \underbrace{1 \cdot n}_{g(n)} \quad (\text{for } n \geq 1)$$

$$\Rightarrow$$
 $n_0 = 1$, $C = 1$

Illustration of the Omega-Notation:

Figure: Runtime of two algorithms f_1, f_2

Big Omega-Notation:

- We are only interested in the term with the highest-order, the fasted growing summand, the others will be ignored
- \blacksquare f(n) is limited from underneath by $c \cdot g(n)$

Examples:

$$2n^{2} + 7n - 20 \in \Omega(n^{2})$$

$$2n^{2} + 7n \log n - 20 \in$$

$$7n \log n - 20 \in$$

$$5 \in$$

$$2n^{2} + 7n \log n + n^{3} \in$$

Theta-Notation:

- Intuitive: f is Theta of g ...
 - \blacksquare ... if f is growing as much as g
 - $f \in \Theta(g)$, f is growing at the same speed as g

Formal: $f \in \Theta(g)$

$$\Theta(g) = \underbrace{\mathscr{O}(g) \cap \Omega(g)}_{}$$

Intersection

Example:

$$f(n) = 5n + 7, f(n) \in \mathcal{O}(n), f(n) \in \Omega(n)$$

$$\Rightarrow f(n) \in \Theta(n)$$

Proof for $\mathcal{O}(g)$ and $\Omega(g)$ look at slides 15 and 21

■ f and g have the same "growth"

Big O-Notation $\mathcal{O}(n)$:

- \blacksquare *f* is growing at most as fast as *g*
- \blacksquare $C \cdot g(n)$ is the upper bound

Big Omega-Notation $\Omega(n)$:

- \blacksquare f is growing at least as fast as g
- $C \cdot g(n)$ is the lower bound

Big Theta-Notation $\Theta(n)$:

- \blacksquare *f* is growing at the same speed as *g*
 - Arr $C_1 \cdot g(n)$ is the lower bound
 - $C_2 \cdot g(n)$ is the upper bound

Runtime	Growth
$f \in \Theta(1)$	constant time
$f \in \Theta(\log n) = \Theta(\log_k n)$	logarithmic time
$f \in \Theta(n)$	linear time
$f \in \Theta(n \log n)$	n-log-n time (nearly linear)
$f \in \Theta(n^2)$	squared time
$f \in \Theta(n^3)$	cubic time
$f \in \Theta(n^k)$	polynomial time
$f \in \Theta(k^n), f \in \Theta(2^n)$	exponential time

- So far discussed:
 - Membership in O(...) proofed by hand: Explicit calculation of n_0 and C
 - However: Both hint at limits in calculus

Definition of "Limit"

- The limit L exists for an infinite sequence f_1, f_2, f_3, \ldots if for all $\varepsilon > 0$ one $n_0 \in \mathbb{N}$ exists, such that for all $n \ge n_0$ the following holds true: $|f_n L| \le \varepsilon$
- A function $f: \mathbb{N} \to \mathbb{R}$ can be written as a sequence $\Rightarrow \lim_{n \to \infty} f_n = L$

The limit is converging:

 $\forall \epsilon > 0 \; \exists n_0 \in \mathbb{N} \; \; \forall n \geq n_0 \colon \; |f_n - L| \leq \epsilon$

- Example for the proof of a limit
- Function $f(n) = 2 + \frac{1}{n}$ with limes $\lim_{n\to\infty} f(n) = 2$
- "Engineering" solution: use $n = \infty$

$$\frac{1}{\infty} = 0 \Rightarrow \lim_{n \to \infty} f(n) = \lim_{n \to \infty} 2 + \frac{1}{n} = 2$$

■ We need to show: for all given ε there is an n_0 such that for all $n \ge n_0$

$$\left|2+\frac{1}{n}-2\right|=\left|\frac{1}{n}\right|\leq\varepsilon$$

- E.g.: for ε = 0.01 we get $\frac{1}{n} \le \varepsilon$ for $n \ge 100$
- In general

$$n_0 = \left\lceil \frac{1}{\varepsilon} \right\rceil$$

Then we get:

$$\left|\frac{1}{n}\right| = \frac{1}{n} \le \frac{1}{n_0} = \frac{1}{\left\lceil \frac{1}{\varepsilon} \right\rceil} \le \frac{1}{\frac{1}{\varepsilon}} = \varepsilon \quad \Box$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=L$$

Hence the following holds:

$$f \in \mathscr{O}(g)$$
 \Leftrightarrow $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$ (1)

$$f \in \Omega(g)$$
 \Leftrightarrow $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$ (2)

$$f \in \Theta(g)$$
 \Leftrightarrow $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$ (3)

$$f \in \mathscr{O}(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

Forward proof (\Rightarrow) :

$$f \in \mathscr{O}(g) \overset{\mathsf{def.}}{\Rightarrow} \overset{\mathsf{of}}{\Rightarrow} \mathscr{O}(n) \ \exists n_0, \ C \ \forall n \geq n_0 : \ f(n) \leq C \cdot g(n)$$

$$\Rightarrow \exists n_0, \ C \ \forall n \geq n_0 : \frac{f(n)}{g(n)} \leq C$$

$$\Rightarrow \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq C \quad \Box$$

UNI FREIBL

Backward proof (⇐):

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$$

$$\Rightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)} = C \qquad \text{For some } C \in \mathbb{R} \text{ (Limit)}$$

$$\stackrel{\text{def. limes}}{\Rightarrow} \exists n_0, \forall n \geq n_0 : \qquad \frac{f(n)}{g(n)} \leq C + \varepsilon \quad (e.g. \ \varepsilon = 1)$$

$$\Rightarrow \exists n_0, \forall n \geq n_0 : \qquad f(n) \leq \underbrace{(C+1)}_{O-notation \ constant} \cdot g(n)$$

$$\Rightarrow$$

$$f \in \mathscr{O}(g)$$

Prof. Dr. Rolf Backofen - beamer-ufcd

Intuitive:

$$\lim_{n \to \infty} 2 + \frac{1}{n} = 2 + \frac{1}{\infty} = 2$$

■ With L'Hôpital:

Let
$$f, g : \mathbb{N} \to \mathbb{R}$$
If $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty/0$

$$\Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Holy inspiration

you need a doctoral degree for that

The Limit can not be determined in the way of an Engineer:

$$\lim_{n\to\infty}\frac{\ln(n)}{n}=\frac{\lim_{n\to\infty}\ln(n)}{\lim_{n\to\infty}n}\qquad \stackrel{\text{plugging in}}{\longrightarrow}\qquad \stackrel{\infty}{\longrightarrow}$$

Determine the limit with using L'Hôpital:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Using L'Hôpital:

Numerator: $\mathbf{f}(\mathbf{n}): n \mapsto \ln(n)$

Denominator: $q(n): n \mapsto n$

$$\Rightarrow f'(n) = \frac{1}{n}$$
 (derivation from Numerator)
\Rightarrow g'(n) = 1 (derivation from Denominator)

$$\lim_{n\to\infty}\frac{f'(n)}{g'(n)}=\lim_{n\to\infty}\frac{1}{n}=0 \ \Rightarrow \ \lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{\ln(n)}{n}=0$$

What can we take for granted without proofing?

- Only things that are trivial
- It is always better to proof it

Examples:

$$\lim_{n \to \infty} \frac{1}{n} = 0 \qquad \text{is trivial}$$

$$\lim_{n \to \infty} \frac{1}{n^2} = 0 \qquad \text{is trivial}$$

$$\lim_{n \to \infty} \frac{\log(n)}{n} = 0 \qquad \text{use L'Hopital}$$

Practical use

Practical use:

- It is much easier to determine the runtime of an algorithm by using the \(\mathcal{O}\)-Notation
 - Computing rules
 - Practical use

Characteristics

Transitivity:

$$f \in \Theta(g) \land g \in \Theta(h) \rightarrow f \in \Theta(h)$$

$$f \in \mathcal{O}(g) \land g \in \mathcal{O}(h) \rightarrow f \in \mathcal{O}(h)$$

$$f \in \Omega(g) \, \wedge \, g \in \Omega(h) \ o \ f \in \Omega(h)$$

Symmetry:

$$f \in \Theta(g) \leftrightarrow g \in \Theta(f)$$

$$f \in \mathscr{O}(g) \ \leftrightarrow \ g \in \Omega(f)$$

Reflexivity:

$$f \in \Theta(f)$$
 $f \in \Omega(f)$ $f \in \mathcal{O}(f)$

Trivial:

$$f \in \mathcal{O}(f)$$

$$k \cdot \mathcal{O}(f) = \mathcal{O}(f)$$

$$\mathcal{O}(f+k) = \mathcal{O}(f)$$

Addition:

$$\mathcal{O}(f) + \mathcal{O}(g) = \mathcal{O}(\max\{f, g\})$$

Multiplication:

$$\mathcal{O}(f) \cdot \mathcal{O}(g) = \mathcal{O}(f \cdot g)$$

- The input size for all examples is *n*
- Basic operations

$$i1 = 0$$
 $\mathcal{O}(1)$

Sequences of basic operations

$$\begin{vmatrix}
i1 &= 0 & & & & & & & & & & \\
i2 &= 0 & & & & & & & & \\
... & & & & & & & \\
i327 &= 0 & & & & & & & \\
\end{vmatrix}$$

$$327 \cdot \mathcal{O}(1) = \mathcal{O}(1)$$

Loops

for i in range(0, n):

$$a[i] = 0$$

$$\boxed{\mathcal{O}(n)}$$

$$a1[i] = 0$$

$$\boxed{\mathcal{O}(n)}$$

$$\boxed{\mathcal{O}(n)$$

Loops

Runtime Complexity

Conditions

if
$$x < 100$$
:
$$y = x$$
else:
for i in range(0, n):
if $a[i] > y$:
$$y = a[i]$$

$$\mathcal{O}(1)$$

$$\mathcal{O}(1)$$

$$\mathcal{O}(1)$$

$$\mathcal{O}(n) \cdot \mathcal{O}(1)$$

- Input: List *x* with *n* numbers
- Output: a[i] is the arithmetic mean of x[0] to x[i]

```
def arithMean(x):
    a = [0] * len(x)
    for i in range(0, len(x)):
        s = 0
        for j in range(0, i+1):
            s = s + x[j]
        a[i] = s / (i+1)
```

for i in range(0, len(x)):

$$s = 0$$

$$for j in range(0, i+1):$$
 $s = s + x[j]$
 $a[i] = s / (i+1)$

$$O(n)$$

$$O(i)$$

$$O(i)$$

$$O(i)$$

$$O(i)$$

$$O(n)$$

$$O(i)$$

$$O(n)$$

$$O(i)$$

$$O(n)$$

$$O(i)$$

$$O(1)$$

■ How often will the instructions in the loop be executed, when the problem has size *n*?

$$1+2+\ldots+n=\frac{n\cdot(n+1)}{2}\in\mathscr{O}(n^2)$$

Discussion

Way of speaking:

- With the Ø-Notation we look at the behavior of a function when $n \to \infty$
- We only analyze the runtime when $n \ge n_0$
- We talk about asymptotic analysis, when we discuss cost, runtime, etc. as $\mathcal{O}(...)$, $\Omega(...)$ or $\Theta(...)$

- If you are using **asymptotic analysis**, you can not make any predictions about the runtime of smaller input sizes $(n < n_0)$
- For small input sizes (mostly n < 10), the runtime is predictably small
- \blacksquare n_0 does not necessarily have to be small

Discussion

Examples:

- Let A and B be algorithms
 - A has the runtime f(n) = 80n
 - B has the runtime $f(n) = 2n \log_2 n$
- So $f = \mathcal{O}(q)$ but **not** $\Theta(q)$
 - ⇒ A is asymptotic faster than B
 - ⇒ There is a n_0 for that $n \ge n_0$: $f(n) \le g(n)$

When is A faster then B?

We search the minimal n_0 :

$$f(n_0) = g(n_0)$$

$$80 n_0 = 2n_0 \log_2 n_0$$

$$40 = \log_2 n_0$$

$$n_0 = 2^{40}$$

$$= (2^{10})^4 = (1024)^4$$

$$\approx (10^3)^4 = 10^{12}$$

$$\approx 1 \text{ trillion}$$

A ist faster than B if n_0 has more than 1 trillion elements

Runtime Examples

Continued

Logarithm of different bases differ only by a constant

$$\log_a n = \frac{\log_b n}{\log_b a} = \frac{1}{\log_b a} \cdot \log_b n$$

- Hence: $\log_a n \in \Theta(\log_b n)$
- For exponent this does not hold

$$3^n\not\in\Theta(2^n)$$

Proof: Use equation (1) from Slide 35

$$3^n \in \mathscr{O}(2^n) \Leftrightarrow \lim_{n \to \infty} \frac{3^n}{2^n} < \infty$$

However:

$$\lim_{n\to\infty}\frac{3^n}{2^n}=\lim_{n\to\infty}\left(\frac{3}{2}\right)^n=\infty$$

■ Figure for Slide 32

■ General

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Big O notation

[Wik] Big O notation

https://en.wikipedia.org/wiki/Big_O_notation