Rappels et compléments d'algèbre linéaire

Exercice 1

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables sur \mathbb{C} . Montrer que A et B sont semblables sur \mathbb{R} .

Exercice 2

Rang du complément de Schur

Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ où $A \in GL_p(\mathbb{R})$ et $D \in \mathcal{M}_q(\mathbb{R})$. On pose $S = D - CA^{-1}B$. Montrer que rg(M) = rg(A) + rg(S).

Exercice 3 ***

Mines P' 1995

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E nilpotent d'indice n. On pose

$$\begin{array}{ccc} \Phi : & \mathcal{L}(\mathsf{E}) & \longrightarrow & \mathcal{L}(\mathsf{E}) \\ & g & \longmapsto & f \circ g - g \circ f \end{array}$$

- 1. Montrer que $\Phi^p(g) = \sum_{k=0}^p (-1)^k \binom{p}{k} f^{p-k} \circ g \circ f^k$. En déduire que Φ est nilpotent.
- **2.** Soit $a \in \mathcal{L}(E)$. Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$. En déduire l'indice de nilpotence de Φ .

Exercice 4 ★★

Soient p_1, \dots, p_n des projecteurs d'un espace vectoriel E de dimension finie tels que $p_1 + \dots + p_n = \mathrm{Id}_{\mathrm{E}}$.

Montrer que $\operatorname{Im} p_1 \oplus \cdots \oplus \operatorname{Im} p_n = \operatorname{E}$.

Exercice 5

Soient E l'ensemble des suites réelles constantes, F l'ensemble des suites réelles (u_n) vérifiant $u_{n+1}+u_n=0$ pour tout $n\in\mathbb{N}$, G l'ensemble des suites réelles (u_n) vérifiant $u_{n+2}+u_n=0$ pour tout $n\in\mathbb{N}$ et enfin H l'ensemble des suites réelles périodiques de période 4.

- **1.** Montrer que E, F, G, H sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- 2. Montrer que E, F, G sont inclus dans H.
- **3.** Montrer que $E \oplus F \oplus G = H$.

Exercice 6 ★

Pour $(A, B) \in \mathcal{M}_2(\mathbb{C})^2$, on note $A \otimes B$ la matrice de $\mathcal{M}_4(\mathbb{C})$ définie par blocs de la manière suivante : $A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$.

- **1.** Soit $(A, B, C, D) \in \mathcal{M}_2(\mathbb{C})^4$. Montrer que $(A \otimes B).(C \otimes D) = (AC) \otimes (BD)$.
- **2.** Calculer $\det(I_2 \otimes B)$, $\det(A \otimes I_2)$ et $\det(A \otimes B)$ en fonction de $\det A$ et $\det B$.
- **3.** A quelle condition nécessaire et suffisante $A \otimes B$ est-elle inversible ? Quel est alors son inverse ?

Exercice 7 ★

Déterminant du complément de Schur

Soit
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 où $A \in GL_p(\mathbb{R})$ et $D \in \mathcal{M}_q(\mathbb{R})$. On pose $S = D - CA^{-1}B$. Montrer que $det(M) = det(A) det(S)$.

Exercice 8 ★

Soit
$$A \in \mathcal{M}_2(\mathbb{R})$$
. On pose $m_A: \left\{ \begin{array}{ccc} M_2(\mathbb{R}) & \longrightarrow & M_2(\mathbb{R}) \\ M & \longmapsto & AM \end{array} \right.$.

- **1.** Justifier que m_A est un endomorphisme de $M_2(\mathbb{R})$.
- **2.** Montrer que det $m_A = (\det A)^2$.
- 3. Généraliser en dimension quelconque.

Eléments propres

Exercice 9 ★★

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer que si $\lambda \in \mathbb{K}$ est valeur propre de $g \circ f$, alors λ est également valeur propre de $f \circ g$.

Exercice 10 ★★★★

Vecteurs propres communs

Soient E est un \mathbb{C} -espace vectoriel de dimension finie et $(u, v) \in \mathcal{L}(E)^2$. Montrer que u et v ont un vecteur propre commun dans chacun des cas suivants.

- **1.** $u \circ v = 0$.
- **2.** $\exists a \in \mathbb{C}, \ u \circ v = au.$
- **3.** $\exists b \in \mathbb{C}, \ u \circ v = bv.$
- **4.** $u \circ v = \mathrm{Id}_{\mathrm{E}}$.
- 5. $\exists (a,b) \in \mathbb{C}^2$, $u \circ v = au + bv$.

Exercice 11 ★★

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie E. Montrer que $u \circ v$ et $v \circ u$ ont les mêmes valeurs propres.

Exercice 12 ★★★

Théorème de Gerschgorin

Soit $A \in \mathcal{M}_n(\mathbb{C})$ dont les coefficients sont notés $a_{i,j}$. Pour $1 \leq i \leq n$, on pose $R_i = \sum_{j \neq i} |a_{i,j}|$ et on note D_i le disque de centre $a_{i,i}$ et de rayon R_i . Montrer que toute valeur propre de A appartient à l'un au moins des disques D_i .

Exercice 13 ★★

Soit φ l'endomorphisme de $\mathbb{K}[X]$ défini par $\varphi(P)=XP'$ pour tout $P\in\mathbb{K}[X]$. Déterminer les éléments propres de φ .

Exercice 14 ***

Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Pour $f \in E$, on définit l'application T(f) par

$$\forall x \in \mathbb{R}, \ \mathrm{T}(f)(x) = e^{-x} \int_0^x f(t)e^t \ \mathrm{d}t$$

- 1. Montrer que T est un endomorphisme de E.
- 2. Déterminer les valeurs propres de T et les sous-espaces propres associés.

Exercice 15 ***

Soit $E = \{ f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}), \ f(0) = 0 \}.$

- 1. Soit $f \in E$. Montrer que $\int_0^x \frac{f(t)}{t} dt$ est définie pour tout $x \in \mathbb{R}_+$.
- **2.** Montrer que l'application Φ qui à $f \in E$ associe la fonction $x \in \mathbb{R}_+ \mapsto \int_0^x \frac{f(t)}{t} dt$ est un endomorphisme de E.
- 3. Déterminer les valeurs propres de Φ et les sous-espaces propres associés.

Exercice 16 ***

Soit $E = \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$.

- **1.** Soit $f \in E$. Montrer que l'application $x \in \mathbb{R}_+^* \mapsto \frac{1}{x} \int_0^x f(t) dt$ est prolongeable en 0 en une application continue sur \mathbb{R}_+ . On notera ce prolongement T(f).
- 2. Montrer que T est un endomorphisme de E.
- 3. Déterminer les valeurs propres de T et les sous-espaces propres associés.

Exercice 17 ★★★

Matrices stochastiques

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A_{ij} \geq 0$ pour tout $(i,j) \in [[1,n]]^2$ et $\sum_{j=1}^n A_{i,j} = 1$ pour tout $i \in [[1,n]]$.

- **1.** Montrer que $1 \in Sp(A)$.
- **2.** Montrer que $\forall \lambda \in \mathrm{Sp}_{\mathbb{C}}(A), |\lambda| \leq 1$.

Exercice 18 ★★★

Soit E l'ensemble des fonctions continues de [0,1] dans \mathbb{R} . A toute application $f\in E$, on associe l'application

$$\Phi(f): x \in [0,1] \mapsto \int_0^1 \min(x,t) f(t) dt$$

- 1. Montrer que Φ est un endomorphisme de E.
- 2. Déterminer les éléments propres de Φ .

Exercice 19 ★★

Mines-Ponts MP 2016

Soit E un espace euclidien de dimension finie. On considère des vecteurs unitaires a et b de E formant une famille libre.

Réduire l'endomorphisme

$$\phi: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ x & \longmapsto & \langle a \mid x \rangle a + \langle b \mid x \rangle b \end{array} \right.$$

Exercice 20 ***

Montrer que l'application $\varphi: P \in \mathbb{R}_n[X] \mapsto X(X+1)P' - nXP$ est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer ses éléments propres.

Exercice 21 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ M & \longmapsto & M + \operatorname{tr}(M)I_n \end{array} \right.$$

Déterminer les valeurs propres de u, ainsi que les espaces propres associés.

Exercice 22 ***

Mines-Ponts MP 2022

Soit $p \in]-1,1[\setminus \{0\}$. Posons q=1-p et $E=\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$. On pose pour $f\in E$ et $x\in \mathbb{R}$, u(f)(x)=f(px+q).

- 1. Montrer que u est un automorphisme de E.
- **2.** Montrer que $Sp(u) \subset]-1,1] \setminus \{0\}.$
- **3.** Montrer que si f est un vecteur propre de u, alors il existe $k \in \mathbb{N}^*$ tel que $f^{(k)} = 0$.
- **4.** Déterminer les éléments propres de *u*.

Exercice 23 ★★★

Vecteur propre commun

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $(u, v) \in \mathcal{L}(E)^2$ tel que $u \circ v = v \circ u$. Montrer que u et v ont un vecteur propre commun.

Polynôme caractéristique

Exercice 24 ★★

Matrice compagnon

Soient
$$(a_0,\ldots,a_{n-1})\in\mathbb{K}^n$$
 et $\mathbf{A}=\begin{pmatrix}0&\cdots&\cdots&0&-a_0\\1&\ddots&&\vdots&-a_1\\0&\ddots&\ddots&\vdots&\vdots\\\vdots&\ddots&\ddots&0&-a_{n-2}\\0&\cdots&0&1&-a_{n-1}\end{pmatrix}$. Déterminer le polynôme

caractéristique de A.

Exercice 25 ★★

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que $\chi_A = \chi_{A^T}$.
- **2.** Montrer que $Sp(A) = Sp(A^T)$.
- 3. Montrer que pour tout $\lambda \in Sp(A)$, dim $E_{\lambda}(A) = \dim E_{\lambda}(A^{T})$.

Exercice 26 ★★

E3A MP 2015 Maths 1

A toute suite $(a_n)_{n\in\mathbb{N}^*}$ de réels et toute suite $(b_n)_{n\in\mathbb{N}^*}$ de réels non nuls, on associe la suite de matrices (A_n) où A_n est la matrice de $\mathcal{M}_n(\mathbb{R})$ suivante

$$\mathbf{A}_{n} = \begin{pmatrix} a_{1} & b_{1} & 0 & \cdots & 0 \\ b_{1} & a_{2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & a_{n-1} & b_{n-1} \\ 0 & \cdots & 0 & b_{n-1} & a_{n} \end{pmatrix}$$

On note $P_n(X) = \det(XI_n - A_n)$ le polynôme caractéristique de A_n .

- 1. Déterminer une relation de récurrence entre les polynômes $P_{n+1}(X)$, $P_n(X)$ et $P_{n-1}(X)$.
- **2. a.** Justifier que la matrice A_n est diagonalisable.
 - **b.** Soit λ une valeur propre de la matrice A_n . Calculer le déterminant de la matrice extraite de $\lambda I_n A_n$ en supprimant sa première colonne et sa dernière ligne.
 - c. En déduire le rang de la matrice $\lambda I_n A_n$ pour λ valeur propre de la matrice A_n .
 - **d.** En déduire que le polynôme caractéristique $P_n(X)$ de la matrice A_n admet n racines réelles distinctes.
- 3. On appelle $\Delta_n(x)$ le déterminant de la matrice $\begin{pmatrix} P'_{n+1}(x) & P'_n(x) \\ P_{n+1}(x) & P_n(x) \end{pmatrix}$.
 - **a.** Soit $n \ge 2$. Montrer que

$$\forall x \in \mathbb{R}, \ \Delta_n(x) = P_n^2(x) + b_n^2 \Delta_{n-1}(x)$$

- **b.** Montrer que $\Delta_1(x) > 0$ pour tout $x \in \mathbb{R}$. En déduire le signe de $\Delta_n(x)$ pour tout $n \in \mathbb{N}^*$.
- **4.** Montrer que l'application $x \in \mathbb{R} \mapsto P_{n+1}(x)$ s'annule une unique fois entre deux zéros consécutifs de P_n .

On pourra considérer l'application
$$x \mapsto \frac{P_{n+1}(x)}{P_n(x)}$$
.

Exercice 27 ***

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel ($\mathbb{K}=\mathbb{R}$ ou \mathbb{C}) de dimension finie E.

- **1.** On suppose u inversible. Montrer que $u \circ v$ et $v \circ u$ ont même polynôme caractéristique.
- **2.** Traiter le cas où u est non inversible.

Exercice 28

Algorithme de Faddeev

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note P le polynôme caractéristique de A. Pour $\lambda \in \mathbb{K}$, on pose $B(\lambda) = \text{com}(\lambda I_n - A)^T$.

1. Montrer qu'il existe des matrices $B_0, B_1, \dots B_{n-1}$ de $\mathcal{M}_n(\mathbb{K})$ telles que :

$$B(\lambda) = \sum_{k=0}^{n-1} \lambda^{n-1-k} B_k$$

- **2.** Montrer que $P'(\lambda) = tr(B(\lambda))$ pour tout $\lambda \in \mathbb{K}$.
- 3. On pose $P = X^n \sum_{k=1}^n p_k X^{n-k}$ et $B_n = 0$. Montrer que pour $k \in [1, n]$,

$$\begin{cases} p_k = \frac{1}{k} \operatorname{tr}(AB_{k-1}) \\ B_k = AB_{k-1} - p_k I_n \end{cases}$$

et préciser B₀.

- **4.** Montrer que, si A est inversible, $A^{-1} = \frac{1}{p_n} B_{n-1}$.
- **5.** Ecrire un algorithme en Python calculant le polynôme caractéristique d'une matrice donnée et un autre calculant son inverse grâce aux questions précédentes.

Exercice 29 ★★★

Soit $p \in \mathbb{N}^*$. On note E_p l'ensemble des «suites» de $\mathbb{C}^{\mathbb{Z}}$ p-périodiques. On note D_p l'endomorphisme de E_p qui à une suite (u_n) associe la suite $(2u_n-u_{n+1}-u_{n-1})$. Déterminer le coefficient de X dans le polynôme caractéristique de D_p .

Exercice 30 ***

Mines-Ponts MP 2018

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$, et $(f,g) \in \mathcal{L}(E)^2$.

On suppose qu'il existe $h \in \mathcal{L}(E)$ de rang $r \ge 1$ tel que $h \circ g = f \circ h$. Montrer que χ_f et χ_g ont un facteur commun de degré r.

La réciproque est-elle vraie?

Exercice 31 ***

Soient $\lambda \in \mathbb{K}$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. On pose

$$\mathbf{M} = \begin{pmatrix} \lambda \mathbf{I}_n & -\mathbf{A} \\ -\mathbf{B} & \mathbf{I}_p \end{pmatrix}$$

En multipliant M à gauche et à droite par des matrices bien choisies, montrer que

$$\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_{BA}(\lambda)$$

En déduire que $\chi_{AB} = \chi_{BA}$ si n = p.

Exercice 32 ★★

CCP 2015

Soient E un espace vectoriel de dimension 2n+1 et de base (e_1,\ldots,e_{2n+1}) ainsi que u l'endomorphisme de E tel que $u(e_1)=e_1+e_{2n+1}$ et $u(e_i)=e_{i-1}+e_i$ pour tout $i\in [\![2,2n+1]\!]$.

- 1. Déterminer le polynôme caractéristique de u.
- **2.** Montrer que u est inversible et déterminer un polynôme P tel que $u^{-1} = P(u)$.
- 3. Déterminer les valeurs propres complexes de u.
- **4.** En déduire $\prod_{k=0}^{2n} \cos\left(\frac{k\pi}{2n+1}\right).$

Diagonalisation

Exercice 33

Calculer la trace de l'endomorphisme Φ : $\left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ \mathrm{M} & \longmapsto & \mathrm{M}^\top \end{array} \right.$

Exercice 34 ***

Soient u et v deux endomorphismes d'un espace vectoriel E de dimension finie. On suppose u diagonalisable.

Montrer que u et v commutent si et seulement si tout sous-espace propre de u est stable par v.

Exercice 35 ***

Soit u un endomorphisme diagonalisable d'un espace vectoriel E de dimension finie. Montrer que le commutant de E est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\sum_{\lambda \in \operatorname{Sp}(u)} \dim E_{\lambda}(u)$

Exercice 36 ★★

Calcul d'un commutant

On pose A =
$$\begin{pmatrix} 2 & -2 & 1 \\ 1 & -1 & 1 \\ 2 & -4 & 3 \end{pmatrix}$$
. Déterminer le commutant de A.

Exercice 37 ★★★

Soient u un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension finie.

- **1.** Soit F un sous-espace vectoriel de E. On pose $G = \bigoplus_{\lambda \in Sp(u)} F \cap E_{\lambda}(u)$. Montrer que G est stable par u.
- **2.** Soit F un sous-espace vectoriel de E stable par u. Montrer que $F = \bigoplus_{\lambda \in Sp(u)} F \cap E_{\lambda}(u)$.
- 3. Montrer que les sous-espaces vectoriels de E stables par u sont exactement les sous-espaces vectoriels de la forme $\bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{F}_{\lambda}$ où pour tout $\lambda \in \operatorname{Sp}(u)$, $\operatorname{F}_{\lambda}$ est un sous-espace vectoriel de $\operatorname{E}_{\lambda}(u)$.

Exercice 38 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On pose
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
.

- 1. Étudier la diagonalisabilité de A, et la diagonaliser si possible.
- **2.** Résoudre l'équation $M^2 = A$ pour $M \in \mathcal{M}_2(\mathbb{R})$.

Exercice 39 ★

Mines-Télécom (hors Mines-Ponts) MP 2021

On pose : A =
$$\begin{pmatrix} -1 & -4 & 2 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{pmatrix}$$
 et B = $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ -1 & 0 & 2 \end{pmatrix}$. A et B sont-elles semblables?

Exercice 40 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On considère la matrice : $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$.

- **1.** Montrer que A s'écrit PDP⁻¹ avec $P \in GL_2(\mathbb{R})$ et D matrice diagonale de $\mathcal{M}_2(\mathbb{R})$.
- 2. On cherche à résoudre l'équation $X^2 = A$. Montrer que si X est solution de cette équation alors $P^{-1}XP$ commute avec D puis qu'elle est diagonale. Résoudre l'équation.

Exercice 41

Mines-Télécom (hors Mines-Ponts) PSI 2021

Soit A =
$$\begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}) \text{ et J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 1. Exprimer A en fonction de J et J^2 .
- 2. Calculer le polynôme caractéristique de J. La matrice J est-elle diagonalisable?
- **3.** Diagonaliser A.

Exercice 42 ★★

Soient $a \in \mathbb{K}$ et u l'endomorphisme de $\mathbb{K}_n[X]$ défini par u(P) = (X - a)P' pour tout $P \in \mathbb{K}_n[X]$. Déterminer les éléments propres de u. u est-il diagonalisable?

Exercice 43 ★★

Soit Φ : $P \in \mathbb{R}_n[X] \mapsto (X+1)P(X) - XP(X+1)$.

- **1.** Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- **2.** Déterminer les éléments propres de Φ . Φ est-il diagonalisable?

CCP 2018 Exercice 44 ★

Soit $A \in \mathcal{M}_n(\mathbb{C})$ avec $n \ge 2$, telle que rg(A) = 1. Montrer que A est diagonalisable si et seulement si $tr(A) \neq 0$.

Exercice 45 ★★

CCINP (ou CCP) MP 2021

On considère $f: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M} + 2\mathrm{M}^\top \end{array} \right.$

- **1.** Montrer que f est un endomorphisme.
- **2.** Donner les valeurs propres et les sous-espaces propres de f.
- **3.** L'endomorphisme *f* est-il diagonalisable?
- **4.** Calculer tr(f) et det(f).

Exercice 46 ★

Etudier la diagonalisabilité sur $\mathbb R$ des matrices réelles suivantes :

1.

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{array} \right);$$

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix};$$

2.

$$B = \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix}; \qquad \qquad D = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$D = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Exercice 47

Mines-Télécom (hors Mines-Ponts) MP 2018

Soient $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable et $B = \begin{pmatrix} 0 & 2A \\ -A & 3A \end{pmatrix}$. Montrer que B est diagonalisable.

Exercice 48 **

CCINP (ou CCP) PSI 2021

On définit : $\forall m \in \mathbb{R}$, $A_m = \begin{pmatrix} -m-1 & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$.

- 1. Donner les valeurs propres et sous-espaces propres de A_m .
- **2.** Donner les valeurs de m pour lesquelles A_m soit diagonalisable. Même question pour l'inversibilité.
- 3. Si A_m est diagonalisable, déterminer une matrice inversible P telle que $P^{-1}AP$ soit diagonale.

Exercice 49 ***

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension finie.

Montrer que u est diagonalisable si et seulement si tout sous-espace vectoriel de E admet un supplémentaire dans E stable par u.

Exercice 50 ★★

CCINP (ou CCP) MP 2019

Soit E un \mathbb{K} -espace vectoriel de dimension finie. On note f et g deux endomorphismes de E et on note A et B leurs matrices dans une même base de E.

- 1. On suppose f et g bijectifs dans cette question.
 - **a.** Montrer que $\chi_{AB} = \chi_{BA}$.
 - **b.** Montrer que si $f \circ g$ est diagonalisable, alors $g \circ f$ l'est aussi.
- **2. a.** Montrer que $f \circ g$ et $g \circ f$ ont le même spectre.
 - **b.** Donner un exemple de matrices telles que AB soit diagonalisable mais pas BA.

Exercice 51 ★★★

Soit $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K})$. On suppose que AB est diagonalisable est inversible. Montrer que BA est diagonalisable.

Exercice 52 ★★★

Mines-Télécom (hors Mines-Ponts) PSI 2019

Soient f et g deux endomorphismes d'un \mathbb{R} -espace vectoriel de dimension finie E vérifiant $f \circ g = f + g$.

- **1.** Montrer que Ker f = Ker g et Im f = Im g.
- **2.** On suppose g diagonalisable. Montrer que f et $f \circ g$ sont aussi diagonalisables et que $Sp(f \circ g) \subset \mathbb{R} \setminus]0, 4[$.

Exercice 53 ★★★

Soient f et g deux endomorphismes diagonalisables d'un \mathbb{R} -espace vectoriel E de dimension n. Soit également k un entier naturel impair.

- 1. Montrer que tout vecteur propre de f^k est un vecteur propre de f.
- **2.** On suppose que $f^k = g^k$. Montrer que f = g.

Trigonalisation

Exercice 54 ★

On pose A =
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

- 1. La matrice A est-elle diagonalisable?
- 2. Montrer que A est semblable sur \mathbb{R} à la matrice $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- **3.** Calculer A^n pour tout $n \in \mathbb{N}$.
- **4.** Calculer exp(A).

Exercice 55 X PC 2010

Déterminer les matrices de $GL_3(\mathbb{C})$ semblables à leur inverse.

Exercice 56 ★ CCP MP 2010

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ à spectres disjoints.

- 1. Montrer que $\chi_A(B)$ est inversible.
- **2.** Soit X dans $\mathcal{M}_n(\mathbb{C})$ telle que AX = XB. Montrer que pour tout $P \in \mathbb{C}[X]$, P(A)X = XP(B) et en déduire que X = 0.
- **3.** Montrer que pour tout $M \in \mathcal{M}_n(\mathbb{C})$, il existe $X \in \mathcal{M}_n(\mathbb{C})$ telle que AX XB = M.