Проверочная работа по ФИЗИКЕ

8 класс

Вариант 1

Инструкция по выполнению работы

На выполнение работы по физике даётся 45 минут. Работа содержит 11 заданий.

Ответом на каждое из заданий 1, 3-7, 9 является число или несколько чисел. В заданиях 2 и 8 нужно написать текстовый ответ. В заданиях 10 и 11 нужно написать решение задач полностью. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы можно пользоваться непрограммируемым калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	Сумма баллов	Отметка за работу
Баллы													

1	У Нади стал быстро разряжаться мобильный телефон. Напряжение, которое должно
	подаваться при зарядке на телефон с зарядного устройства, равно 2,6 В (если подаваемое
	напряжение больше указанного значения, то это может быть причиной порчи аккумулятора
	телефона, приводящей, в том числе, к его быстрой разрядке). На рисунке изображены три
	вольтметра. Определите цену деления того вольтметра, который наилучшим образом
	подойдёт Наде для проверки напряжения, подаваемого зарядным устройством на телефон.

	Ответ: В.
2	Что обладает большей внутренней энергией: водяной пар при 100 °C или вода той же массы при той же температуре? Объясните свой ответ.
	Ответ:

3	Определите напряжение в дуге при эле тока в ней достигает 110 A.	ктросварке, если сопротивление дуги 0,2 Ом, а сила
	Ответ:	_ B.

Витя делал лабораторную работу в школе. В результате он построил график зависимости температуры некоторого вещества от количества подведённой к нему теплоты. Масса вещества равна 100 г. Какова температура кипения этого вещества, если изначально оно находилось в твёрдом состоянии?

Ответ:	$^{\circ}C$

5

У Жени есть два электрочайника: белый и синий. На белом чайнике написано, что его мощность равна 1600 Вт, а на синем надпись стёрлась. Женя захотел узнать мощность синего чайника. Он набрал одинаковое количество воды в оба чайника и одновременно включил их. Белый чайник вскипел за 15 минут, а синий — за 20 минут. Определите мощность синего чайника, если потерями теплоты в обоих случаях можно пренебречь (чайники с термоизоляцией корпуса в настоящее время довольно широко распространены).

Ответ:	Вт

(6)

Папа Феди работает машинистом башенного крана. Он знает, что мощность двигателя, который обеспечивает подъём груза, равна 40500 Вт, поэтому, когда Федя спросил, с какой скоростью поднимается бетонная плита массой 4500 кг, то папа, немного подумав, дал верный ответ. Что ответил папа? Ускорение свободного падения g = 10 H/кг.

:	:	
		M/C
	Ответ:	

Васе подарили кубик Рубика, и он решил измерить его массу с помощью динамометра, рассчитанного на 1 Н. Но кубик оказался слишком тяжёлым — при подвешивании его к крюку динамометра прибор «зашкаливал». Тогда Вася стал медленно опускать подвешенный к динамометру кубик в кастрюлю с водой и измерять, как зависят показания динамометра от того, какая часть объёма кубика погружена в воду. Результаты своих измерений Вася записал в таблицу. Определите при помощи этой таблицы массу кубика, если ускорение свободного падения равно 10 Н/кг.

Показания динамометра, Н	Какая часть объёма кубика погружена
1,0	0,0
1,0	0,1
1,0	0,2
1,0	0,3
0,9	0,4
0,8	0,5
0,7	0,6
0,6	0,7
0,5	0,8
0,4	0,9
0,3	1,0

	Ответ:	КΓ

8

Подковообразный магнит поднесли к длинному прямому медному проводу (провод расположен перпендикулярно плоскости рисунка). При пропускании по этому проводу электрического тока I в направлении «на нас» провод начинает смещаться вправо. В каком направлении будет смещаться провод, если поменять полюса магнита местами, оставив направление тока в проводе прежним? Ответ кратко обоснуйте.

Ответ и объяснение:		

КОД	

Дачник собирал дождевую воду в бак. Первая часть бака заполнилась со скоростью, в 3 раза меньшей, чем средняя скорость заполнения всего бака. Но затем дождь усилился, и скорость заполнения оставшейся части бака выросла в 6 раз по сравнению со скоростью заполнения первой части бака. Скорость заполнения — это количество литров воды, попадающих в бак за один час.

- 1) Чему равно отношение времён, затраченных на заполнение первой и второй частей бака?
- 2) Найдите отношение объёмов второй и первой частей бака.

Ответ: 1)	
 2)	

10

В жаркий день для охлаждения яблочного сока массой $m_{\rm c}=300~{\rm r}$, находящего при температуре $t_1=30~{\rm °C}$, Вася использовал кубики льда из морозилки. Длина ребра кубика $a=2~{\rm cm}$, начальная температура $t_2=-10~{\rm °C}$. Теплообменом сока и кубиков с окружающей средой и стаканом можно пренебречь. Удельная теплоёмкость сока $c_c=4200~{\rm Дж/(kr\cdot °C)}$, удельная теплоёмкость льда $c_{\rm n}=2100~{\rm Дж/(kr\cdot °C)}$, удельная теплота плавления льда $\lambda=330~{\rm кДж/kr}$.

- 1) Определите массу одного кубика льда, если плотность льда $\rho = 900$ кг/м³.
- 2) Вася опускал кубики в сок до тех пор, пока они не перестали таять. Какой стала температура содержимого стакана?
- 3) Какое минимальное количество кубиков для этого понадобилось? Напишите полное решение этой задачи.

Борис нашёл среди книг прадедушки практическое пособие для ремесленных училищ и решил, следуя этому пособию, попробовать самостоятельно сварить мыло. Согласно приведённым в книге указаниям, сначала нужно было изготовить водный раствор глицерина с массовым соотношением компонентов 1 : 1. Борис взял m=1.5 кг глицерина и такую же массу воды и смешал их. Плотность воды $\rho_{\rm B}=1$ г/см³, плотность глицерина $\rho_{\rm r}=1,261$ г/см³.

- 1) Рассчитайте суммарный объём компонентов смеси.
- 2) Рассчитайте плотность полученного раствора, считая, что объём полученного раствора равен суммарному объёму компонентов смеси.
- 3) Проведённые Борисом измерения показали, что на самом деле плотность полученной смеси составила $\rho_p = 1,126 \ {\rm г/cm}^3$. Причина отличия в том, что после смешивания молекулы воды и глицерина занимают меньший объём, чем в чистом состоянии до смешивания. Рассчитайте по полученным данным, на сколько объём полученного раствора отличается от суммарного объёма его исходных частей.

Система оценивания проверочной работы

Правильный ответ на каждое из заданий 1, 3-7 оценивается 1 баллом.

Полный правильный ответ на задание 9 оценивается 2 баллами. Если в ответе допущена одна ошибка (одно из чисел не записано или записано неправильно), выставляется 1 балл; если оба числа записаны неправильно или не записаны – 0 баллов.

№ задания	Ответ
1	0,1
3	22
4	90
5	1200
6	0,9
7	0,13
9	1,5; 4

Решения и указания к оцениванию заданий 2, 8, 10 и 11

\bigcirc	Решение
(2)	Пар. При конденсации стоградусного пара, сопровождающейся образованием стоградусной
	воды той же массы, выделяется некоторое количество теплоты. Следовательно, пар обладает
	большей внутренней энергией.

Указания к оцениванию		
Дан правильный ответ на вопрос задачи и приведено полностью правильное	2	
объяснение.		
В решении имеется один или несколько из следующих недостатков.	1	
Дан правильный ответ на вопрос задачи без объяснения.		
И (ИЛИ)		
В решении имеется неточность в объяснении.		
Все случаи решения, которые не соответствуют вышеуказанным критериям	0	
выставления оценок в 1 или 2 балла.		
Максимальный балл	2	

Решение

Провод будет смещаться влево.

Так как провод изначально смещается вправо, то действующая на него сила также направлена вправо. Если поменять полюса магнита местами, то направление поля изменится на противоположное, и направление силы также изменится на противоположное. То есть она будет направлена влево, а значит, провод будет смещаться влево.

Указания к оцениванию		
Приведён полностью правильный ответ на вопрос и дано правильное объяснение.		
В решении имеется один или несколько из следующих недостатков.		
Приведён только правильный ответ на вопрос без объяснения.		
ИЛИ		
В решении дан правильный ответ на вопрос, но в объяснении имеется неточность.		
Все случаи решения, которые не соответствуют вышеуказанным критериям	0	
выставления оценок в 1 или 2 балла.		
Максимальный балл	2	

Решение

- 1) Масса одного кубика льда $m = \rho a^3 = 7.2$ г.
- 2) Так как лёд в стакане перестал таять, конечная температура содержимого стакана 0 °С.
- 3) Масса всего льда, опущенного в стакан, $M = mN = N \rho a^3$ (где N искомое число кубиков). Запишем уравнение теплового баланса: $c_{\pi}M(0-t_2) + \lambda M = c_{c}m_{c}(t_1-0)$. Отсюда масса льда: $M = c_{c}m_{c}t_{1}/(\lambda-c_{\pi}t_{2})\approx 107,7$ г. Значит, необходимо $N = M/m \approx 14,96$ кубиков. Это значение необходимо округлить в большую сторону, так как количество кубиков целое, т.е. кубиков понадобится 15.

Ответ: 1) 7,2 г; 2) 0 °С; 3) 15 кубиков.

Допускается другая формулировка рассуждений

Указания к оцениванию	
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным способом	
(связь массы, объёма и плотности; уравнение теплового баланса, выражения для	
количеств теплоты при нагревании (охлаждении) и плавлении);	
ІІ) проведены нужные рассуждения, верно осуществлена работа с графиками, схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлены правильные численные ответы на все три вопроса задачи	
с указанием единиц измерения искомых величин	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

(11)

Решение

- 1) Суммарный объём исходных компонентов раствора: $V = (m/\rho_B) + (m/\rho_C) = 2,690$ л.
- 2) Таким образом, расчётная плотность раствора составит: $\rho = 2\text{m/V} \approx 1{,}115\text{ г/cm}^3$.
- 3) Объём полученного раствора составляет: V_p = 2m/ ρ_p \approx 2,664 л.

Таким образом, $V - V_p \approx 25$ мл.

Указания к оцениванию	
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным способом;	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлен правильный численный ответ на все три вопроса задачи	
с указанием единиц измерения искомой величины	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -18.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–4	5–7	8–10	11–18