

WHAT WE CLAIMED IS

1. A compound represented by the formula (I) or its salt :

wherein

X is hydrogen or halogen;

Y is represented by hydrogen, halogen, nitro, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, (C₁₋₄)haloalkyl or (C₁₋₄)haloalkoxy;

T is represented by N or CH;

Z is one of the following groups;

A is oxygen, sulfur or NR₄;

R₁, R₂, R₃ and R₄ are independent of each other and may be selected from the group consisting of hydrogen, cyano, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkoxy, (C₁₋₆)haloalkoxy, (C₁₋₆)alkoxyalkyl, (C₂₋₆)alkynyl, (C₂₋₆)alkenyl, aryl, heteroaryl, aryloxy, heteroaryloxy, (C₃₋₆)cycloalkyl, (C₃₋₆)cyclocarbonyl, carboxy, (C₁₋₆)alkylcarbonyl, arylcarbonyl, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylthiocarbonyl, (C₁₋₆)

6)haloalkylthiocarbonyl, (C₁₋₆)alkoxythiocarbonyl, (C₁₋₆)haloalkoxythiocarbonyl,(C₁₋₆)alkylamino, arylsulfonylamino, arylamino, (C₁₋₆)alkylthio, arylthio, (C₂₋₆)alkenylthio, (C₂₋₆)alkynylthio, (C₁₋₆)alkylsulfinyl, (C₂₋₆)alkenylsulfinyl, (C₂₋₆)alkynylsulfinyl, (C₁₋₆)alkylsulfonyl, (C₂₋₆)alkenylsulfonyl, (C₂₋₆)alkynylsulfonyl, arylsulfonyl, where any of these groups may be optionally substituted with one or one more of the following group consisting of halogen, hydroxy, mercapto, cyano, nitro, amino, carboxy, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, haloaryl, alkoxyaryl, aryloxy, arylthio, haloaryloxy, heteroaryl, heteroaryloxy and (C₃₋₇)cycloalkyl;

When R₂ and R₃ are taken together with the atoms to which they are attached, they represent a three to seven membered substituted or unsubstituted ring optionally containing oxygen, carbonyl, S(O)_n** or nitrogen with following optional substitutions, one to three halogen, cyano, nitro, hydroxy, amino, carbonyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl or (C₃₋₇)cycloalkyl;

R₅ and R₆ are independent of each other and may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₂₋₆)alkynyl, (C₁₋₆)alkoxycarbonyl and heteroarylcarbonyl;

where any of these groups may be optionally substituted with one or more of the following groups consisting of halogen, hydroxy, cyano, nitro, amino, carboxyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl and (C₃₋₇)cycloalkyl;

When R₅ and R₆ are taken together with the atoms to which they are attached, they represent a three to seven membered substituted or unsubstituted ring optionally containing oxygen, carbonyl, S(O)_n** or nitrogen with following optional substitutions, one to three halogen,

cyano, nitro, hydroxy, amino, carbonyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl or (C₃₋₇)cycloalkyl;

R₇ may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₂₋₆)alkenyl or (C₂₋₆)alkynyl where any of these groups may be optionally substituted with one or more of the following groups consisting of halogen, hydroxy, cyano, nitro, amino, caboxyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl and (C₃₋₇)cycloalkyl;

M is halogen, dichloroiodate, tetrachloroiodate, sulfate, nitrate, formate, acetate, propionate or butylate.

Q is selected from;

Q₁

Q₂

Q₃

Q₄

Q₅

Q₆

Q₇

Q₈

Q₉

Q₁₀

Q₁₁

Q₁₂

wherein

A₁ and A₂ are independently oxygen or sulfur;

R₈ is hydrogen, halogen, cyano, nitro, formyl, (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, amino, (C₁₋₄)alkylamino, (C₁₋₄)haloalkylamino, (C₁₋₄)alkoxyamino, (C₁₋₄)haloalkoxyamino, (C₁₋₄)alkylcarbonyl, (C₁₋₄)haloalkylcarbonyl, (C₁₋₄)haloalkoxycarbonyl, (C₁₋₄)alkylcarbonylamino, (C₁₋₄)haloalkylcarbonylamino, (C₁₋₄)alkoxycarbonylamino, (C₁₋₄)haloalkoxycarbonylamino,

(C₁₋₆)alkoxyalkyl, (C₁₋₆)haloalkoxyalkyl, (C₁₋₆)alkylthio, (C₁₋₆)haloalkylthio, (C₂₋₆)alkenyl, (C₂₋₆)haloalkenyl, (C₂₋₆)alkynyl or (C₂₋₆)haloalkynyl;

R₉ and R₁₀ are independent of each other and may be selected from the group consisting of hydrogen, halogen, cyano, (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, (C₁₋₄)alkoxy, (C₁₋₄)haloalkoxy, (C₂₋₆)alkenyl, (C₂₋₆)haloalkenyl.

R₁₁ and R₁₂ are independent of each other and may be selected from the group consisting of hydrogen, halogen, (C₁₋₃)alkyl, (C₁₋₃)haloalkyl, hydroxy, (C₁₋₃)alkoxy, (C₁₋₃)haloalkoxy, cyano, nitro, amino or (C₁₋₆)alkylamino;

When R₁₁ and R₁₂ are taken together with the atoms to which they are attached, they represent a three to seven membered substituted or unsubstituted ring optionally containing oxygen, S(O)_n** or nitrogen with following optional substitutions, one to three halogen, cyano, nitro, hydroxy, amino, carbonyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl or (C₃₋₇cycloalkyl;

R₁₃ may be selected from the group consisting of hydrogen, halogen, cyano, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, (C₁₋₄)haloalkoxy, (C₁₋₄)alkylthio, (C₁₋₄)haloalkylthio, (C₁₋₄)alkylsulfinyl, (C₁₋₄)haloalkylsulfinyl, (C₁₋₄)alkylsulfonyl, (C₁₋₄)haloalkylsulfonyl, (C₂₋₆)alkenyl, (C₂₋₆)haloalkenyl.

G is nitrogen or CR₁₅;

G' is carbonyl, NR₁₄, oxygen, S(O)_n** or CR₁₅R₁₆;

R₁₄ may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)haloalkylcarbonyl, arylcarbonyl and heteroarylcarbonyl; where any of these groups may be optionally substituted with one or more of the following groups consisting of halogen, hydroxy, cyano, nitro, amino, caboxyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl and (C₃₋₇cycloalkyl;

R_{15} and R_{16} are independent of each other and may be selected from the group consisting of hydrogen, halogen, hydroxy, mercapto, amino, cyano, (C_{1-6})alkyl, (C_{1-6})haloalkyl, (C_{1-6})alkoxy, (C_{1-6})haloalkoxy, (C_{1-6})alkoxyalkyl, (C_{2-6})alkynyl, (C_{2-6})alkenyl, aryl, heteroaryl, aryloxy, heteroaryloxy, (C_{3-6})cycloalkyl, (C_{3-6})cyclocarbonyl, carboxy, (C_{1-6})alkylcarbonyl, arylcarbonyl, (C_{1-3})haloalkylcarbonyl, (C_{1-6})alkylcarbonyloxy, (C_{1-6})haloalkylcarbonyloxy, (C_{1-6})alkoxycarbonyl, (C_{1-6})haloalkoxycarbonyl, (C_{1-6})alkylthiocarbonyl, (C_{1-6})haloalkylthiocarbonyl, (C_{1-6})alkoxythiocarbonyl, (C_{1-6})haloalkoxythiocarbonyl, (C_{1-6})alkylamino, arylsulfonylamino, arylamino, (C_{1-3})alkylthio, arylthio, (C_{2-6})alkenylthio, (C_{2-6})alkynylthio, (C_{1-6})alkylsulfinyl, (C_{2-6})alkenylsulfinyl, (C_{2-6})alkynylsulfinyl, (C_{1-6})alkylsulfonyl, (C_{2-6})alkenylsulfonyl, (C_{2-6})alkynylsulfonyl, arylsulfonyl, where any of these groups may be optionally substituted with one or one more of the following group consisting of halogen, hydroxy, mercapto, cyano, nitro, amino, carboxyl, (C_{1-6})alkyl, (C_{1-6})haloalkyl, (C_{1-6})alkylcarbonyl, (C_{1-6})alkylcarbonyloxy, (C_{1-6})haloalkylcarbonyl, (C_{1-6})haloalkylcarbonyloxy, (C_{1-6})alkoxy, (C_{1-6})alkoxycarbonyl, aminocarbonyl, (C_{1-6})alkylaminocarbonyl, (C_{1-6})haloalkoxy, (C_{1-6})haloalkoxycarbonyl, (C_{1-6})alkylsulfonyl, (C_{1-6})haloalkylsulfonyl, aryl, heteroaryl and (C_{3-7})cycloalkyl;

n and m are independent of each other and represent an integer from 0 to 2; provided that $m+n$ is 2, 3 or 4;

n^* is 0 or 1;

n^{**} is represent an integer from 0 to 2;

2. A compound or its salt according to the claim 1 wherein

X is hydrogen or halogen;

Y is represented by hydrogen, halogen, nitro, (C_{1-4})haloalkyl or (C_{1-4})haloalkoxy;

T is CH;

Z is selected from group (II), (III) or (V);

A is oxygen or sulfur;

R_1 , R_2 , R_3 and R_4 are independent of each other and may be selected from the group consisting of hydrogen, (C_{1-6})alkyl, (C_{1-6})haloalkyl, (C_{1-6})alkoxy, (C_{1-6})haloalkoxy, (C_{1-6})alkoxyalkyl, (C_{2-6})alkynyl, (C_{2-6})alkenyl, aryl, heteroaryl, aryloxy, heteroaryloxy, (C_{3-6})cycloalkyl, (C_{3-6})cyclocarbonyl, carboxy, (C_{1-6})alkylcarbonyl, arylcarbonyl, (C_{1-3}), (C_{1-6})

6)alkoxycarbonyl, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylthiocarbonyl, (C₁₋₆)alkoxythiocarbonyl, (C₁₋₆)alkylamino, arylsulfonylamino, arylamino, (C₁₋₆)alkylthio, arylthio, (C₂₋₆)alkenylthio, (C₁₋₆)alkylsulfinyl, (C₂₋₆)alkenylsulfinyl, (C₂₋₆)alkynylsulfinyl, (C₁₋₆)alkylsulfonyl, (C₂₋₆)alkenylsulfonyl, arylsulfonyl, where any of these groups may be optionally substituted with one or one more of the following group consisting of halogen, hydroxy, mercapto, cyano, nitro, amino, carboxy, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, haloaryl, alkoxyaryl, aryloxy, arylthio, haloaryloxy, heteroaryl, heteroaryloxy and (C₃₋₇)cycloalkyl;

R₅ and R₆ are independent of each other and may be selected from the group consisting of (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₂₋₆)alkynyl, (C₁₋₆)alkoxycarbonyl and heteroarylcarbonyl; where any of these groups may be optionally substituted with one or more of the following groups consisting of halogen, hydroxy, cyano, nitro, amino, carboxyl, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkylcarbonyl, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)haloalkylcarbonyl, (C₁₋₆)haloalkylcarbonyloxy, (C₁₋₆)alkoxy, (C₁₋₆)alkoxycarbonyl, aminocarbonyl, (C₁₋₆)alkylaminocarbonyl, (C₁₋₆)haloalkoxy, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylsulfonyl, (C₁₋₆)haloalkylsulfonyl, aryl, heteroaryl and (C₃₋₇)cycloalkyl;

R₇ may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₂₋₆)alkenyl or (C₂₋₆)alkynyl;

Q is selected from Q₁, Q₃, Q₅, Q₇, Q₉ or Q₁₀;

wherein

A₁ and A₂ are independently oxygen or sulfur;

R₈ is hydrogen, (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, amino;

R₉ and R₁₀ are independent of each other and may be selected from the group consisting of hydrogen, halogen, cyano, (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, (C₁₋₄)alkoxy, (C₁₋₄)haloalkoxy, (C₂₋₆)alkenyl, (C₂₋₆)haloalkenyl.

R_{13} may be selected from the group consisting of hydrogen, halogen, (C_{1-4})alkyl, (C_{1-4})alkoxy, (C_{1-4})haloalkoxy, (C_{1-4})alkylthio, (C_{1-4})haloalkylthio, (C_{1-4})alkylsulfinyl, (C_{1-4})haloalkylsulfinyl, (C_{1-4})alkylsulfonyl or (C_{1-4})haloalkylsulfonyl;

G' is carbonyl, NR_{14} , oxygen, $S(O)_{n**}$ or $CR_{15}R_{16}$;

R_{14} is hydrogen or (C_{1-6})alkyl;

R_{15} and R_{16} are independent of each other and may be selected from the group consisting of hydrogen, halogen, hydroxy, amino, cyano, (C_{1-6})alkyl, (C_{1-6})haloalkyl, (C_{1-6})alkoxy, (C_{1-6})haloalkoxy, (C_{1-6})alkoxyalkyl, (C_{2-6})alkynyl, (C_{2-6})alkenyl, aryl, heteroaryl, aryloxy, heteroaryloxy, (C_{3-6})cycloalkyl, (C_{3-6})cyclocarbonyl, carboxy, (C_{1-6})alkylcarbonyl, arylcarbonyl, (C_{1-3})haloalkylcarbonyl, (C_{1-6})alkylcarbonyloxy, (C_{1-6})haloalkylcarbonyloxy, (C_{1-6})alkoxycarbonyl, (C_{1-6})haloalkoxycarbonyl, (C_{1-6})alkylthiocarbonyl, (C_{1-6})haloalkylthiocarbonyl, (C_{1-6})alkylamino, arylsulfonylamino, arylamino, (C_{1-3})alkylthio, arylthio, (C_{2-6})alkenylthio, (C_{2-6})alkynylthio, (C_{1-6})alkylsulfinyl, (C_{2-6})alkenylsulfinyl, (C_{2-6})alkynylsulfinyl, (C_{1-6})alkylsulfonyl, (C_{2-6})alkenylsulfonyl, (C_{2-6})alkynylsulfonyl, arylsulfonyl, where any of these groups may be optionally substituted with one or one more of the following group consisting of halogen, hydroxy, mercapto, cyano, nitro, amino, caboxyl, (C_{1-6})alkyl, (C_{1-6})haloalkyl, (C_{1-6})alkylcarbonyl, (C_{1-6})alkylcarbonyloxy, (C_{1-6})haloalkylcarbonyl, (C_{1-6})haloalkylcarbonyloxy, (C_{1-6})alkoxy, (C_{1-6})alkoxycarbonyl, aminocarbonyl, (C_{1-6})alkylaminocarbonyl, (C_{1-6})haloalkoxy, (C_{1-6})haloalkoxycarbonyl, (C_{1-6})alkylsulfonyl, (C_{1-6})haloalkylsulfonyl, aryl, heteroaryl and (C_{3-7})cycloalkyl;

n and m are independent of each other and represent an integer from 0 to 2; provided that $m+n$ is 2, 3 or 4;

n^{**} is represent an integer from 0 to 2;

3. A compound or its salt according to the claim 2 wherein

X and Y are independent of each other represent hydrogen or halogen;

T is CH ;

Z is selected from group (II) or (V);

A is oxygen;

R₁, R₂, R₃ and R₄ are independent of each other and may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₁₋₆)haloalkyl, (C₁₋₆)alkoxy, (C₁₋₆)haloalkoxy, (C₁₋₆)alkoxyalkyl, (C₂₋₆)alkynyl, (C₂₋₆)alkenyl, aryl, heteroaryl, aryloxy, heteroaryloxy, (C₃₋₆)cycloalkyl, (C₃₋₆)cyclocarbonyl, carboxy, (C₁₋₆)alkylcarbonyl, arylcarbonyl, (C₁₋₃, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)haloalkoxycarbonyl, (C₁₋₆)alkylthiocarbonyl, (C₁₋₆)alkoxythiocarbonyl, (C₁₋₆)alkylamino, arylsulfonylamino, arylamino, (C₁₋₆)alkylthio, arylthio, (C₂₋₆)alkenylthio, (C₁₋₆)alkylsulfinyl, (C₂₋₆)alkenylsulfinyl, (C₂₋₆)alkynylsulfinyl, (C₁₋₆)alkylsulfonyl, (C₂₋₆)alkenylsulfonyl, arylsulfonyl,

R₅ and R₆ are independent of each other and may be selected from the group consisting of (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₂₋₆)alkynyl;

R₇ may be selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₂₋₆)alkenyl or (C₂₋₆)alkynyl;

Q is selected from Q₁, Q₃ or Q₅;

wherein

A₁ and A₂ are oxygen;

R₈ is (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, amino;

R₉ and R₁₀ are independent of each other and may be selected from the group consisting of hydrogen, (C₁₋₄)alkyl, (C₁₋₄)haloalkyl, (C₁₋₄)alkoxy, (C₁₋₄)haloalkoxy, (C₂₋₆)alkenyl, (C₂₋₆)haloalkenyl;

R₁₃ may be selected from the group consisting of hydrogen, halogen, cyano, (C₁₋₄)alkoxy, (C₁₋₄)haloalkoxy, hydroxy ;

4. A herbicidal composition, characterized in that it contains at least one compound according to claim 1.
5. A herbicidal composition which comprises an effective amount of a compound or its salt of claim 1 and an agricultural adjuvant.
6. The herbicidal composition according to claim 5 wherein the compounds are formulated into a practical use form such as emulsifiable concentrate (EC), aqueous or oil based suspension concentrate (SC), wettable powder (WP), water dispersible granule (WDG) or

microencapsulated (ME) form.

- 7 A method for controlling the growth of undesired plant species in plantation crops which comprises applying to the locus of the crop a herbicidally effective amount of a compound or its salt according to claim 1.
- 8 A method for controlling undesired vegetation in a crop field such as corn, peanut, cotton, wheat, sorghum, sunflower, soybean or rice by applying to the locus of the crop to be protected a herbicidally effective amount of a compound or its salt of claim 1.
9. A method for controlling weeds, which comprises applying to the locus to be protected a herbicidally effective amount of a compound or its salt of claim 1 in combination with one or more other herbicides for providing an additive or synergistic herbicidal effect.
10. A method for controlling weeds of claim 7 wherein the compound or its salt of claim 1 is applied to the soil as a pre-plant incorporated, pre-emergent or delayed pre-emergent herbicide.
11. A method for controlling weeds of claim 9 wherein the compound or its salt of claim 1 is applied to the soil as a pre-plant incorporated, pre-emergent or delayed pre-emergent herbicide.
12. A method for controlling weeds of claim 7 wherein the compound or its salt of claim 1 is applied as a post-emergent herbicide to plant foliage.
13. A method for controlling weeds of claim 9 wherein the compound or its salt of claim 1 is applied as a post-emergent herbicide to plant foliage.
14. A method for controlling weeds of claim 9 wherein the other herbicide is an acetanilide,

oxyacetamide, sulfonylurea, triazine, triketone, urea, amide, glyphosate or any referenced in the text.

15. A method to defoliate potato and cotton using a compound or its salt of claim 1.
16. A process for the preparation of the compound or its salt represented by the formula (XI) in said claim 1, which comprises reacting a compound according to formula (IX) with a compound of the formula (X).

wherein

X, Y, A₁, A₂, T, R₁, R₂, R₃, R₈ and R₉ are as previously.

17. A process for the preparation of the compound or its salt represented by the formula (XVI) in said claim 1, which comprises reacting a compound of formula (IX) with a compound of the formula (X').

IX

XVI

X'

wherein

X, Y, A₁, A₂, T, R₁, R₅, R₆, R₈ and R₉ are as previously.

18. A process for the preparation of the compound or its salt represented by the formula (XVII) in said claim 1, which comprises reacting a compound according to formula (XXII) with aldehyde or ketone.

XXII

XVII

wherein

X, Y, A, A₁, A₂, T, R₂, R₃, R₈ and R₉ are previously defined.

19. A process for the preparation of the compound or its salt represented by the formula (XXVII) in said claim 1, which comprises transformation of a compound according to formula (XXIV) by Lawesson's reagent and reacting it with R₄-M and R₇-M.

XXIV

XXVII

wherein

X, Y, T, R₁, R₂, R₃, R₄, R₇, R₈, R₁₀ and R₁₃ are previously defined.

20. A process of the preparation of the compound or its salt represented by the formula (XV) in said claim 1, which comprises reacting a compound according to formula (XIV) with R₇-M.

XIV

XV

wherein

X, Y, A, A₁, A₂, T, R₂, R₃, R₄, R₇, R₈, R₉ and M are previously defined.

21. A process of the preparation of the compound or its salt represented by the formula (XIII) in said claim 1, which comprises reacting a compound according to formula (XII) with R₇-M.

XII

XIII

wherein

X, Y, A, A₁, A₂, T, R₁, R₂, R₃, R₇, R₈ and R₉ are previously defined.

22. A process of the preparation of the compound or its salt represented by the formula (XIV) and (XII) in said claim 1, which comprises reacting a compound according to formula (IV) with R₄-M and R₁-M respectively.

IV

wherein

X, Y, A, A₁, A₂, T, R₁, R₂, R₃, R₄, R₈ and R₉ are previously defined.

23. A process of the preparation of the compound or its salt represented by the formula (XVI) and (XVIII) in said claim 1, which comprises reacting a compound according to formula (XVII) with R₁-M and R₄-M respectively.

XVII

XVI

XVIII

wherein

X, Y, A, A₁, A₂, T, R₁, R₄, R₅, R₆, R₈ and R₉ are previously defined.

24. A process of the preparation of the intermediate represented by the formula (XXX), which comprises reducing a compound according to formula (XXIX).

wherein

X, Y, T and Z are previously defined.

25. A process for the preparation of the intermediate represented by the formula (XXIX) in said claim 24, which comprises nitrating a compound according to formula (XXVIII)

XXVIII

wherein

X, Y, T and Z are previously defined.