WESTERN REGION

4 Unit Mathematics

1998 Trial HSC Examination

Question One.

- (a) Evaluate $\int_0^4 \frac{1}{\sqrt{x^2+9}} dx$.
- (b) Find the volume of the solid of revolution formed when the area underneath the curve $y = \frac{1}{\sqrt{x^2+9}}$ between the ordinates x = 0 and x = 3 is rotated about the x-axis.
- (c) Evaluate $\int_{-\pi/2}^{\pi/2} x \cos x \ dx$
- (d) Show that $\int_0^1 \frac{dx}{4-x^2} = \frac{1}{4} \ln 3$.
- (e) Show that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ equal to πab units².
- (f) Evaluate $\int_0^{\pi/4} x \cos^2 x \ dx$.

Question Two.

- (a) (i) Express $-1 + \sqrt{3}i$ in modulus-argument form.
- (ii) Hence evaluate $(-1 + \sqrt{3}i)^9$.
- (b) (i) Find the value of the product $(-1 + \sqrt{3}i)(1+i)$.
- (ii) Hence, or otherwise, find the exact value of $\cos \frac{11\pi}{12}$.
- (c) In an Argand diagram, the point A represents the complex number z, the point C represents the complex number w and the point B represents the complex number z + w with O being the origin. Describe the geometric properties of the quadrilateral OABC, providing full reasoning for your answer, given that z w = 2i(z + w).
- (d) If 1 2i is a root of the equation $z^2 (3 + i)z + c = 0$.
- (i) Explain why the conjugate 1 + 2i cannot be a root to the equation.
- (ii) Show that the other root is 2 + 3i.
- (iii) Find the value of c.

- (iv) Hence, or otherwise, find the two square roots of -24 + 10i.
- (e) The locus of a point P(x, y), which moves in the complex plane is represented by the equation |z 3i| = 2. Show that the minimum value of $\arg z$ is $\cos^{-1}\left(\frac{2}{3}\right)$ and find the modulus of z when P is in the position of the minimum argument.

Question Three.

The diagram shows the shaded region bounded by the parabola $y = x^2 - x$, the x axis and the line x = 2. Find the volume of the solid formed when this region is rotated about the y axis. Use the method of cylindrical shells.

- (b) Find the volume of the solid of revolution formed when the region enclosed between the circle $x^2 + y^2 = 16$ and the ellipse $4x^2 + y^2 = 16$ is rotated about the x-axis.
- (c) (i) Factorise $f(x) = x^6 + x^4 + x^2 + 1$ by grouping in pairs.
- (ii) Hence find all the roots of f(x) = 0.
- (d) (i) Find all the values of c for which the polynomial equation $3x^4 4x^3 + c = 0$ has no real roots.
- (ii) Determine the real roots of the polynomial when c=1.

Question Four.

(a) The graph of $f(x) = \sin x$ is shown below for the interval $-\pi \le x \le \pi$

On separate axes, draw neat sketches of the following functions:

(i)
$$y = [f(x)]^2$$

(ii)
$$y = \frac{1}{f(x - \frac{\pi}{2})}$$

(iii)
$$y^3 = f(x)$$

(i)
$$y = [f(x)]^2$$
 (ii) $y = \frac{1}{f(x - \frac{\pi}{2})}$ (iii) $y^3 = f(x)$ (iv) $y = f(\sqrt{|x|})$

- (b) (i) Show that the line y = x is a tangent to the curve $y = x \sin x$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- (ii) Using the sketch provided in part (a) of this question, or otherwise, sketch the graph of $y = x \sin x$, for the interval $-\pi \le x \le \pi$.
- (iii) Find the area enclosed by the line y = x and the curve $y = x \sin x$ for the interval $0 \le x \le \pi$.
- (c) Show that the function $f(x) = e^{-x} + x 1$ never crosses the x axis.

Question Five.

(a)

NOT TO SCALE

In the diagram, ABCD is a square. E and F are the mid-points of the sides AB and BC respectively and X is the point of intersection of the lines AF and ED.

- (i) Prove that DXFC is a cyclic quadrilateral.
- (ii) Hence, or otherwise, prove that CX = CD.

- (b) The point $P\left(cp, \frac{c}{p}\right)$ lies on the rectangular hyperbola $xy = c^2$ in the first quadrant. The tangent to the hyperbola at the point P, crosses the x axis at the point A and the y axis at the point B.
- (i) Find the equation of the tangent to the hyperbola at the point P.
- (ii) Show that the equation of the normal to the hyperbola at the point P is

$$p^3 - py = cp^4 - c.$$

- (iii) If the normal at P meets the other branch of the hyperbola at the point Q, determine the coordinates of Q.
- (iv) Show that the area of the triangle ABQ is $c^2 \left(p^2 + \frac{1}{p^2}\right)^2$
- (v) Prove that the area of this triangle is a minimum when p=1.

Question Six.

- (a) A polynomial of degree n is given by $P(x) = x^n + ax b$. It is given that the polynomial has a double root at $x = \alpha$.
- (i) Find the derived polynomial P'(x) and show that $\alpha^{n-1} = -\frac{\alpha}{n}$.
- (ii) Show that $\left(\frac{a}{n}\right) + \left(\frac{b}{n-1}\right)^{n-1} = 0$.
- (iii) Hence deduce that the double root is $\frac{bn}{a(n-1)}$.
- (b) A bucket, in the shape of an inverted frustrum of a cone has a base radius of r units, a top radius of R units and a height of h units, as shown in the diagram. A typical slice of thickness ∂y units, at a height of y units above the base of the bucket has been drawn on the diagram.

- (i) Write down an expression for ∂V , the volume of the slice in terms of x and ∂y .
- (ii) By using similar triangles, or otherwise, show that $x = \frac{(R-r)y}{h} + r$.
- (iii) Hence show that the volume of the bucket is $\frac{\pi h}{3} [R^2 + rR + r^2]$ unit³.
- (c) Show that $\int_0^{\frac{\pi}{3}} \frac{d\theta}{1+\sin\theta} = \sqrt{3} 1$.

Question Seven.

- (a) The point $P(2\cos\theta, \sqrt{3}\sin\theta)$ lies on the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$. The point N is where the normal at P crosses the x axis.
- (i) Determine the coordinates of the foci S and S' of the ellipse.
- (ii) Show that the equation of the normal to the ellipse at point P is

$$y - \sqrt{3}\sin\theta = \frac{4\sqrt{3}\sin\theta}{6\cos\theta}(x - 2\cos\theta)$$

- (iii) Hence show that N has coordinates $(\frac{1}{2}\cos\theta, 0)$.
- (iv) By considering the ration S'P:SP, or otherwise, prove that the normal PN bisects the angle S'PS.
- **(b)** By rearranging $I_n = \int \tan^n hx \ dx$ as $\int \tan^{n-2} x \cdot \tan^2 x \ dx$
- (i) Show that $I_n = \frac{\tan^{n-1} x}{n-1} I_{n-2}$
- (ii) Hence show that $\int_0^{\frac{\pi}{4}} \tan^4 x \ dx = \frac{\pi}{4} \frac{2}{3}$.
- (c) For two positive real numbers a, b prove that their arithmetic mean $\frac{a+b}{2}$ is always greater than or equal to their geometric mean \sqrt{ab} .

Question Eight.

(a) Two circles are touching externally at point P. From point A on the smaller circle a tangent is drawn to cut the larger circle at points B and C. The points C, P and D are collinear. If $\angle ACP = \theta$ and $\angle ADP = \beta$,

- (i) Prove that $\angle APD = \theta + \beta$.
- (ii) Prove that $\angle APB = \theta + \beta$.
- (iii) Hence, deduce that the point A is equidistant from the lines PB and PD.

(b) A particle of mass m is tied by a string of length l to a fixed point O. The particle moves with a uniform speed v m/s in a horizontal circle of radius r whose centre is directly below O. If the particle is to maintain its motion in a horizontal circle, show by resolving forces vertically and horizontally, that the particle's velocity is given by $V = \sqrt{rg \tan \theta}$.

0

NOT TO SCALE

- (c) A singles tennis tournament has 8 players entered to compete. The tournament is organised on a knockout basis, with the defeated player of each match being eliminated and the winning player progressing to the next round.
- (i) Write down the number of possible ways that the 8 players could be paired to play in any match of the tournament.
- (ii) Assuming the players are of equal ability, what is the probability that two specified players, Alex and Ben, would meet to play each other in this tournament?
- (iii) If Alex and Ben are entered in another tournament with a total of 2^n players competing. Find the probability, in its simplest form, that they meet to play each other somewhere in the tournament.