USTHB

Faculté d'Électronique et d'Informatique Département d'Informatique Master 2 SII

Représentation des connaissances 2

TD N° 3
Théorie des possibilités – Fonctions de croyances

Année Universitaire: 2022-2023

Exercice 1:

Considérons trois variables binaires, relatives à l'apparition de la jaunisse (I) chez un malade, l'hépatite (H) et la cirrhose (C). La table suivante donne la distribution de possibilités initiale.

I	Н	С	$\pi(I \wedge H \wedge C)$
n	n	n	0.6
n	n	О	0.2
n	0	n	0.1
n	0	0	1
0	n	n	0.4
0	n	О	0.8
0	0	n	0.9
0	0	0	1

- 1- La distribution initiale est-elle normalisée.
- 2- Calculez le degré de possibilité de $\Pi(\phi)$ et le degré de nécessité $N(\phi)$.

Exercice 2 : (probabilités et possibilités)

Soit X={J, JPlus1, JPlus2, JPlus3, JPlus4, JPlusn} représentant les jours consécutifs à l'envoi d'un courrier.

Jour	Probabilité(Jour)	Possibilité(Jour)
J	0	0
JPlus1	0.25	1
JPlus2	0.55	1
JPlus3	0.1	1
JPlus4	0.07	0.5
JPlusn	0.03	0.3

- a- Le courrier peut-il parvenir au plus tôt à J+2?
- b- Le courrier peut-il parvenir entre 1 et 3 jours ?

Exercice 3:

Considérons le problème pour définir l'ère à laquelle appartient un fossile. Supposons que les géologues utilisent un test radioactif sur les fossiles afin de définir à quelle race ils appartiennent telles que race={Mammifère, poisson, oiseau} et ère ={Ceno,Méso,Paleo}.

Les distributions initiales sont données par le tableau suivant :

Ere	Race	$\pi(\text{Ere} \wedge \text{Race})$
Ceno	Mammifère	0.2
Ceno	Poisson	1
Ceno	Oiseau	0
Méso	Mammifère	0.3
Méso	Poisson	0.7
Méso	Oiseau	0.7
Paléo	Mammifère	0.5
Paléo	Poisson	0.2
Paléo	Oiseau	1

- 1- Calculez le degré de possibilité de $\Pi(\phi)$ et le degré de nécessité $N(\phi)$. Supposons que nous avons une information certaine indiquant que le fossile appartient à la classe des mammifères. La croyance est représentée par ϕ .
 - 2- En utilisant les deux équations du conditionnement, calculez les nouvelles distributions $\pi(\text{Ere } \wedge \text{Race}|\phi)$ dans les cas où le conditionnement est basé sur le minimum et sur le produit.

Exercice 4:

Trois experts tentent d'identifier une zone à partir d'une image aérienne.

- Le premier affirme qu'il s'agit d'un Hangar à 30%, d'un Champ à 40 % ou d'une zone Militaire à 30%.
- Le deuxième atteste que la zone correspond à 50% à un Hangar et elle pouvait appartenir à soit à un Hangar soit à Champ à 20%.
- Le dernier expert affirme qu'il s'agit d'un Hangar ou d'une zone Militaire à 60%.
- 1- Modélisez les connaissances avec la théorie des fonctions de croyance
- 2-Calculez les degrés de croyance et les degrés de plausibilité dans de la deuxième expertise.
- 3-Quelles sont les particularités des distributions de masses.