Hadamard Codes

DIGITAL CIRCUIT IMPLEMENTATION

Decoder - Parallel Implementation

- O ponto de partida foram as expressões dadas pelo professor, onde o c11, c12, c13, c14 são as combinações para o m0 e assim sucessivamente.
- Através do mapa de karnaugh e tendo calculado os c's, para cada m, obtemos as seguintes fórmulas que nos ajudaram a obter o m'0, m'1 e m'2.

```
M#mOne = C3C2(C1 + C0) + C1C0(C3 + C2)

M#mZero = ~C3~C2(~C1 + ~C2) + ~C1~C0(~C3+~C2)

M#Error = ~(M#One + M#Zero)

Valid = ~(M#0Error + M#1Error + M#2Error)
```

M'0 = m0One * Valid M'1 = m1One * Valid M'2 = m2One * Valid

c_{11}	=	${\mathcal Y}_0$	Ф	y_1
c_{12}	=	y_2	\oplus	y_3
c_{13}	=	y_4	\oplus	y_5
c_{14}	=	y_6	\oplus	y_7
c_{21}	=	y_0	\oplus	y_2
c_{22}	=	y_1	\oplus	y_3
c_{23}	=	y_4	\oplus	y_6
c_{24}	=	y_5	\oplus	<i>y</i> ₇
c_{31}	=	y_0	\oplus	y_4
c_{32}	=	y_1	\oplus	y_5
c_{33}	=	y_2	\oplus	y_6
c_{34}	=	y_3	\oplus	<i>y</i> ₇

Decoder - Parallel Implementation

- Para calcular o m'3 foi usado parallel encoder(Partial) e um popcounter de 8 bits.
- Implementation cost:
 - ▶ 43 XOR
 - ▶ 34 AND
 - ▶ 13 OR
 - ▶ 18 NOT
- Propagation delay:
 - ▶ 7 XOR + 1 AND + 1 OR

Encoder – Serial Implementation

- A ROM em cada posição tem 11 bits porque, os primeiros 8 bits são para guardar os valores do k para cada m e os retantes 3 bits são para guardar os resets, sets e clks.
- Por exemplo:
 Na posição 01 está guardado o valor 2AF ->
 01010101111 -> 01010101 111, ou seja, os primeiros
 8 bits correspondem ao valor do k para m0 e os
 outros 3 bits são o valor do nRst, nSet0 e nEnClk.
- Na posição 01,02,03 e 04 são guardados os valores correspondentes ao m1, m2, m3 e m4 e os restantes é para o start e reset.

ROM contents

Add[20]	CLines[100]
00	5
01	2AF
02	19F
03	7F
04	7FE
05	6
06	1
07	7

Encoder – Serial Implementation

- ▶ Implementation cost:
 - ▶ 20 FlipFlops
 - ▶ 10 AND
 - ▶ 10 XOR
 - ▶ 4 NAND
 - ▶ 2 NOR

