Prídavná informácia a zložitosť nedeterministických konečných automatov diplomová práca

Šimon Sádovský

Školiteľ: Branislav Rovan

FMFI UK

21. apríla 2017

Úvod do problematiky, motivácia

• Chceme nedeterministickým konečným automatom akceptovať jazyk $\{w \in \{a\}^* \mid |w| \equiv 0 \pmod{6}\}$. Koľko stavov potrebujeme?

Úvod do problematiky, motivácia

• Čo ak by sme automatu niečo o vstupe " našepkali "?

 Ak budeme šepkať, či je dĺžka slova na vstupe delitelná tromi, tak stačí NKA s dvomi stavmi.

Úvod do problematiky, motivácia

• Ak budeme šepkať, či je slovo dĺžky aspoň 78, tak sme automatu vo všeobecnosti velmi nepomohli.

- Skúmame otázku, aké našepkávanie je zmysluplné a pomôže a aké nie.
- Ako formalizovať tento problém?

Definícia problému

Definícia

Stavovou zložitosťou nedeterministického konečného automatu A (označujeme $\#_S(A)$) rozumieme počet jeho stavov.

Definícia

Nedeterministickú stavovú zložitosť jazyka $L \in \mathcal{R}$ (označujeme nsc(L) - z anglického nondeterministic state complexity) definujeme $nsc(L) = min\{\#_S(A)|L(A) = L\}.$

Definícia

Nech $L \in \mathcal{R}$. Minimálnym nedeterministickým konečným automatom pre jazyk L rozumieme ľubovolný nedeterministický konečný automat A taký, že $\#_S(A) = nsc(L)$.

Definícia problému

Definícia

Nech A je nedeterministický konečný automat. Potom dva nedeterministické konečné automaty A_1, A_2 také, že $L(A) = L(A_1) \cap L(A_2)$ nazveme **rozklad automatu** A. Ak navyše platí $\#_S(A_1) < \#_S(A)$ a $\#_S(A_2) < \#_S(A)$, nazývame tento rozklad **netriviálny**. Ak existuje netriviálny rozklad automatu A, tak automat A nazývame **rozložitelný**.

Definícia

Nech $L \in \mathcal{R}$ a A je nejaký minimálny NKA pre jazyk L. **Jazyk** L nazývame **nedeterministicky rozložitelný** práve vtedy, keď je automat A rozložitelný.

Príklad rozložiteľného

Veta

Jazyk $\{w \in \{a\}^* \mid |w| \equiv 0 \pmod{6}\}$ je rozložiteľný.

Príklad nerozložiteľného

Veta

Jazyk {a⁵} je nerozložieľný.

- Nech existuje rozklad, tj. NKA A_1, A_2 také, že $L(A_1) \cap L(A_2) = \{a^5\}, \#_S(A_1) < \#_S(A), \#_S(A_1) < \#_S(A).$
- $a^5 \in L(A_1), a^5 \in L(A_2)$
- lebo málo stavov, tak viem pumpovať nejakú časť a^5 v A_1 aj A_2 , t.j. $\exists k, l \leq 5 \ \forall n : a^{5+kn} \in L(A_1), a^{5+ln} \in L(A_2)$
- $a^{5+kl} \in L(A_1) \cap L(A_2)$, spor

Jazyky založené na dĺžke slov

Veta

Nech pre $Z \in \mathbb{N}, Z > 0$ je $L_Z = \{a^{kZ} \mid k \in \mathbb{N}\}$. Potom ak Z nie je mocninou prvočísla, tak jazyk L_Z je rozložitelný.

- $p_1^{m_1}p_2^{m_2}...p_r^{m_r}$ je prvočíselný rozklad čísla Z
- automaty A_1^Z, A_2^Z tvoriace rozklad akceptujú jazyky $L(A_1^Z) = \{a^{kp_1^{m_1}} | k \in \mathbb{N}\}$ a $L(A_2^Z) = \{a^{kp_2^{m_2}...p_r^{m_r}} | k \in \mathbb{N}\}$

Jazyky založené na dĺžke slov

Veta

Pre $n \ge 1$ a p je prvočíslo definujeme $L_{p^n} = \{a^{kp^n} | k \in \mathbb{N}\}$. Potom je jazyk L_{p^n} nerozložitelný.

Dôkaz.

 sporom, založený na pumpovaní časti slova a^{pn} v automatoch v netriviálnom rozklade a algebraických vlastnostiach následne vyplývajúcich

Uzáverové vlastnosti tried nedeterministicky rozložiteľných a nedeterministicky nerozložteľných jazykov

Nepekné uzáverové vlastnosti

	\cap	U		h	$\mid h^{-1} \mid$	*
R	Х	Х	X	Х	?	X
NR	X	Х	Х	Х	Х	X

 nepojali ani podozrenie, že by niektorá z tried mohla byť na niečo rozumné uzavretá

Príliš malé NKA

Veta

Nech L je jazyk, pričom nsc $(L) \le 2$. Potom L je nerozložiteľný.

- jednostavové NKA dokážu iba $\emptyset, \{\varepsilon\}, \Sigma^*$
- $\bullet \ \emptyset \subset \{\varepsilon\} \subset \Sigma^*$

Vypchávkové jazyky

Veta

Nech $L \in \mathcal{R}$ a $b \notin \Sigma_L$. Definujeme homomorfizmus $h_b : \Sigma_L \cup \{b\} \to \Sigma_L$ nasledovne - $h_b(b) = \varepsilon$, $\forall a \in \Sigma_L : h_b(a) = a$. Potom L je rozložiteľný práve vtedy, keď $h_b^{-1}(L)$ je rozložiteľný

Veta

Existuje nedeterministicky nerozložiteľný deterministicky rozložiteľný regulárny jazyk.

- rozdielový jazyk je $(\{a\}\{a,b\}\{a\}\{a,b\})^*$
- nedeterministicky nerozložiteľný opäť pomocou pumpovania

Dôkaz.

• chyba krásy - rozložiteľ nosť je spôsobená nutnosťou trash-stavu v DKA

Veta

Existuje postupnosť jazykov $(L_i)_{i=2}^{\infty}$, taká, že platí:

- (a) Jazyk L_i je nedeterministicky nerozložiteľný a súčasne deterministicky rozložiteľný pre ľubovolné $i \in \mathbb{N}, i \geq 2$.
- (b) Nech pre l'ubovolné $i \in \mathbb{N}$, $i \geq 3$ je A_i minimálny DKA akceptujúci L_i . Potom existuje taký rozklad A_i na A_1^i a A_2^i , že platí $\#_S(A_1^i) = \#_S(A_2^i) = \frac{\#_S(A_i) + 3}{2}$.

- postupnosť jazykov $(L_i)_{i=2}^{\infty}$, kde $L_i = (\{a^{i-1}\}\{b\}^*\{a,b\})^*$
- hľadanú postupnosť dostaneme z tejto postupnosti vynechaním niektorých jej členov
- L_i je nerozložiteľný ak i je mocninou prvočísla.

Charakterizácia singleton jazykov

Veta

Nech $w \in \Sigma^*$ je slovo a $L = \{w\}$. Potom L je rozložiteľný práve vtedy, keď $w = w_1 abw_2$ pre nejaké $a, b \in \Sigma$ a $w_1, w_2 \in \Sigma^*$

Dôkaz.

• $L = \{a^n\}$ je nerozložiteľný

Predošlý výskum

- Idea skúmať užitočnosť informácie vznikla na našej katedre u profesora Rovana
- Skúmané v súvislosti s deterministickými konečnými automatmi Gaži (2006)
- Skúmané v súvislosti s deterministickými zásobníkovými automatmi -Labath (2010)
- Náš prínos je hlavne v otvorení témy v súvislosti s nedeterminizmom

Ďakujem za vašu pozornosť!