Preperation code for Mapbox lab (Solution)

Written by Raechel Portelli November 10, 2021

Add a line to import geopandas, pandas, and numpy

```
import geopandas as gp
import pandas as pd
import numpy as np
```

Add a line to read in the CSV file and call it tri2019

```
In [3]: tri2019 = gp.read_file("C:/Users/raechel/tri_2019_us.csv")
```

Out[3]:

,].		1. YEAR	2. TRIFD	3. FRS ID	4. FACILITY NAME	5. STREET ADDRESS	6. CITY	7. CC
	0	2019	98421SLRFN3001M	1.1E+11	US OIL & REFINING CO	3001 MARSHALL AVE	TACOMA	
	1	2019	46808DRLBR4611D	1.10001E+11	DR LUBRICANTS INC	4611-D NEWAYGO RD	FORT WAYNE	
	2	2019	41105RMCSHUSROU	1.10067E+11	AK STEEL CORP	170 ARMCO ROAD	ASHLAND	
	3	2019	41105RMCSHUSROU	1.10067E+11	AK STEEL CORP	170 ARMCO ROAD	ASHLAND	
	4	2019	19934CMDLMRTE10	1.10042E+11	HANDYTUBE CORP	124 VEPCO BOULEVARD	CAMDEN	
	•••							
	79414	2019	22801WMPLR590MT	1.10002E+11	PILGRIM'S PRIDE CORP HARRISONBURG FEEDMILL	590 MT CLINTON PIKE	HARRISONBURG	HARRISON
	79415	2019	50213PLMLL1000T	1.1E+11	PAUL MUELLER CO	1715 TIEKEN DR	OSCEOLA	C
	79416	2019	24124HCHSTRT460	1.10057E+11	CELANESE ACETATE LLC - CELCO P LANT	3520 VIRGINIA AVE	NARROWS	
	79417	2019	80916NCRMD1635A	1.1E+11	DPIX LLC	1635 AEROPLAZA DR	COLORADO SPRINGS	El
	79418	2019	54311FCNTR3913A	1.10002E+11	FEECO INTERNATIONAL	3913 ALGOMA RD	GREEN BAY	В

79419 rows × 119 columns

 \triangleleft

Obtain a list of column names for the TRI dataset

In [4]:

```
for col in tri2019.columns:
    print(col)
```

- 1. YEAR
- 2. TRIFD
- 3. FRS ID
- 4. FACILITY NAME
- 5. STREET ADDRESS
- 6. CITY
- 7. COUNTY
- 8. ST
- 9. ZIP
- 10. BIA
- 11. TRIBE
- 12. LATITUDE
- 13. LONGITUDE
- 14. HORIZONTAL DATUM
- 15. PARENT CO NAME
- 16. PARENT CO DB NUM
- 17. STANDARD PARENT CO NAME
- 18. FEDERAL FACILITY
- 19. INDUSTRY SECTOR CODE
- 20. INDUSTRY SECTOR
- 21. PRIMARY SIC
- 22. SIC 2
- 23. SIC 3
- 24. SIC 4
- 25. SIC 5
- 26. SIC 6
- 27. PRIMARY NAICS
- 28. NAICS 2
- 29. NAICS 3
- 30. NAICS 4
- 31. NAICS 5
- 32. NAICS 6
- 33. DOC_CTRL_NUM
- 34. CHEMICAL
- 35. ELEMENTAL METAL INCLUDED
- 36. TRI CHEMICAL/COMPOUND ID
- 37. CAS#
- 38. SRS ID
- 39. CLEAN AIR ACT CHEMICAL
- 40. CLASSIFICATION
- 41. METAL
- 42. METAL CATEGORY
- 43. CARCINOGEN
- 44. PFAS
- 45. FORM TYPE
- 46. UNIT OF MEASURE
- 47. 5.1 FUGITIVE AIR
- 48. 5.2 STACK AIR
- 49. 5.3 WATER
- 50. 5.4 UNDERGROUND
- 51. 5.4.1 UNDERGROUND CL I

- 52. 5.4.2 UNDERGROUND C II-V
- 53. 5.5.1 LANDFILLS
- 54. 5.5.1A RCRA C LANDFILL
- 55. 5.5.1B OTHER LANDFILLS
- 56. 5.5.2 LAND TREATMENT
- 57. 5.5.3 SURFACE IMPNDMNT
- 58. 5.5.3A RCRA SURFACE IM
- 59. 5.5.3B OTHER SURFACE I
- 60. 5.5.4 OTHER DISPOSAL
- 61. ON-SITE RELEASE TOTAL
- 62. 6.1 POTW TRNS RLSE
- 63. 6.1 POTW TRNS TRT
- 64. POTW TOTAL TRANSFERS
- 65. 6.2 M10
- 66. 6.2 M41
- 67. 6.2 M62
- 68. 6.2 M40 METAL
- 69. 6.2 M61 METAL
- 70. 6.2 M71
- 71. 6.2 M81
- 72. 6.2 M82
- 73. 6.2 M72
- 74. 6.2 M63
- 75. 6.2 M66
- 76. 6.2 M67
- 77. 6.2 M64
- 78. 6.2 M65
- 78. 0.2 MOS
- 79. 6.2 M73 80. 6.2 - M79
- 81. 6.2 M90
- 82. 6.2 M94
- 83. 6.2 M99
- 84. OFF-SITE RELEASE TOTAL
- 85. 6.2 M20
- 86. 6.2 M24
- 87. 6.2 M26
- 88. 6.2 M28
- 89 6.2 M93
- 90. OFF-SITE RECYCLED TOTAL
- 91. 6.2 M56
- 92. 6.2 M92
- 93. OFF-SITE ENERGY RECOVERY T
- 94. 6.2 M40 NON-METAL
- 95. 6.2 M50
- 96. 6.2 M54
- 97. 6.2 M61 NON-METAL
- 98. 6.2 M69
- 99. 6.2 M95
- 100. OFF-SITE TREATED TOTAL
- 101. 6.2 UNCLASSIFIED
- 102. 6.2 TOTAL TRANSFER
- 103. TOTAL RELEASES
- 104. 8.1 RELEASES
- 105. 8.1A ON-SITE CONTAINED
- 106. 8.1B ON-SITE OTHER
- 107. 8.1C OFF-SITE CONTAIN
- 108. 8.1D OFF-SITE OTHER R
- 109. 8.2 ENERGY RECOVER ON
- 110. 8.3 ENERGY RECOVER OF
- 111. 8.4 RECYCLING ON SITE
- 112. 8.5 RECYCLING OFF SIT

localhost:8888/nbconvert/html/Data Prep for Mapbox Student Version.ipynb?download=false

Out[26]:

```
113. 8.6 - TREATMENT ON SITE
114. 8.7 - TREATMENT OFF SITE
115. PRODUCTION WSTE (8.1-8.7)
116. 8.8 - ONE-TIME RELEASE
117. PROD_RATIO_OR_ ACTIVITY
118. 8.9 - PRODUCTION RATIO
geometry
```

Examine the properties for attribute "100. OFF-SITE TREATED TOTAL." This value represents the total quantity of chemicals reported as transferred offsite for treatment. (See Data File Documentation on the website for details about other attributes).

Next, create a subset of the dataset using the following properties: Facility Name, City, ST, the OFF-SITE TREATED TOTAL and the geographic coordinates and call it tri2019_subset

```
In [25]: tri2019_subset = tri2019[["4. FACILITY NAME", "6. CITY", "8. ST","12. LATITUDE", "13. L
```

How many rows does the dataframe have? 79419

```
In [26]: tri2019_subset
```

	4. FACILITY NAME	6. CITY	8. ST	12. LATITUDE	13. LONGITUDE	100. OFF- SITE TREATED TOTAL
0	US OIL & REFINING CO	TACOMA	WA	47.257694	-122.395259	2.2
1	DR LUBRICANTS INC	FORT WAYNE	IN	41.11999	-85.15772	0
2	AK STEEL CORP	ASHLAND	KY	38.498333	-82.663611	0
3	AK STEEL CORP	ASHLAND	KY	38.498333	-82.663611	0
4	HANDYTUBE CORP	CAMDEN	DE	39.10974	-75.55563	0
•••						
79414	PILGRIM'S PRIDE CORP HARRISONBURG FEEDMILL	HARRISONBURG	VA	38.468592	-78.871151	0
79415	PAUL MUELLER CO	OSCEOLA	IA	41.02471	-93.79055	0
79416	CELANESE ACETATE LLC - CELCO P LANT	NARROWS	VA	37.3451	-80.76293	0
79417	DPIX LLC	COLORADO SPRINGS	СО	38.80957	-104.73373	0
79418	FEECO INTERNATIONAL	GREEN BAY	WI	44.5394	-87.886	0

79419 rows × 6 columns

Find the unique cities within the dataset and write this list to a csv file to open in excel. How many cities are represented in the dataset? 5259

```
In [23]: uniqueCities = pd.unique(tri2019_subset["6. CITY"])
```

In [24]:

pd.DataFrame(uniqueCities).to_csv("file.csv")

Next, subset the data based on a state you are interested in. If you need help with subsetting based on rows, see this page. https://stackoverflow.com/questions/17071871/how-do-i-select-rows-from-a-dataframe-based-on-column-values

In [32]:

Out[32]:

	4. FACILITY NAME	6. CITY	8. ST	12. LATITUDE	13. LONGITUDE	100. OFF-SITE TREATED TOTAL
304	FEDERAL CARTRIDGE CO-CCI	LEWISTON	ID	46.396389	-117.035004	0
317	BIG TEX TRAILER MANUFACTURING INC-CALDWELL	CALDWELL	ID	43.670219	-116.701127	0
946	CS BEEF PACKERS	KUNA	ID	43.44488	-116.27435	0
979	POTLATCHDELTIC LAND & LUMBER LLC ST MARIES COM	SAINT MARIES	ID	47.323441	-116.586195	0
1030	US SILVER - IDAHO INC	WALLACE	ID	47.48289	-115.961552	0
78494	TRINITY TRAILER MANUFACTURING INC	BOISE	ID	43.525979	-116.153474	0
78727	COLEMAN OIL CO	LEWISTON	ID	46.421089	-116.982239	0
78792	ROCKY MOUNTAIN HARDWARE INC (SHOSHONE)	SHOSHONE	ID	42.936491	-114.398042	0
78959	HART & COOLEY LLC	NAMPA	ID	43.60172	-116.54829	0
79102	BASIC AMERICAN FOODS REXBURG FACILITY	REXBURG	ID	43.838063	-111.783121	0

395 rows × 6 columns

Export the file as a CSV file. There is no reliable direct way to conver the CSV to a geojson in python that doesn't require somewhat difficult to understand code, so you will use a different tool to convert your CSV file to a geojson.

In []: