Wiederholung: Wie aus Atomen Moleküle konstruiert werden

1. Das Kugelwolkenmodell: erweiterte Vorstellung vom Aufbau der Atomhülle

Bisherige Vorstellung vom Aufbau der Atomhülle:

Das Schalenmodell nach Bohr

Bsp. Stickstoff

- 2. Periode = 2 Schalen
- 5. Hauptgruppe = 5 Außenelektronen

Das Kugelwolkenmodell (nach Kimball)

- Elektronen halten sich auf den jeweiligen Schalen nur in **kugelförmigen Bereichen** ("Kugelwolken") auf.
- Jede Kugelwolke enthält maximal 2 Elektronen (Pauli-Prinzip).
- Da sich höchstens 8 Elektronen auf einer Schale befinden, gibt es pro Schale bis zu 4 Kugelwolken.
- Die Kugelwolken auf einer Schale haben immer einen größtmöglichen Abstand voneinander*.
- Die Kugelwolken werden mit den Elektronen des Atoms zunächst einfach,
 dann erst doppelt besetzt (Hund'sche Regel)

1 Kugelwolke

2 Kugelwolken mit maximalem Abstand: linear

3 Kugelwolken mit maximalem Abstand: trigonal-planar (Dreieck in einer Ebene)

4 Kugelwolken mit maximalem Abstand: **tetraedrisch**

Atomkern

^{*} räumliche Anordnung der Kugelwolken:

Periodensystem und Atombau – Das Kugelwolkenmodell der Elektronenhülle

I	II	III	IV	V	VI	VII	VIII
Н							He
H●							
Li	Be	В	С	N	0	F	Ne
	00						
Li●	• Be •	• B •	• C •	• <u>N</u> •	• <u>o</u> l	<u>F</u> ●	Nel
Na	Mg	Al	Si	Р	S	Cl	Ar
							-
Na ●	• Mg •	• Al •	• Si •	• <u>P</u> •	• <u>S</u>	<u> C</u>	<u> Ar </u>
K •	Ca • Ca •						

Die Verbindung von zwei Atomen zu einem Molekül

Zwei Atome verbinden sich zu einem Molekül*, indem sich zwei einfach besetzte Kugelwolken überlappen und eine gemeinsame bindende Elektronenwolke bilden. Es entsteht eine Atombindung (kovalente Bindung).

Das bindende Elektronenpaar gehört zu beiden Atomen. Somit erreicht jedes Atom **Edelgaskonfiguration**, also 8 Elektronen in der äußersten Schale.

* Merke: Ein Molekül besteht aus 2 oder mehreren Atomen, die durch Atombindungen miteinander verbunden sind.

Beispiel 1: Aus 2 Wasserstoff-Atomen wird ein Wasserstoffmolekül

Die beiden einfach besetzten Kugelwolken der Wasserstoffatome überlappen und bilden ein bindendes Elektronenpaar, eine Atombindung. Es entsteht ein Wasserstoffmolekül. Im Molekül hat jedes Wasserstoffatom 2 Elektronen, also Edelgaskonfiguration.

Beispiel 2: Aus 2 Fluor-Atomen wird ein Fluormolekül

Beispiel 3: Aus 2 Sauerstoff-Atomen wird ein Sauerstoffmolekül

Je zwei doppelt besetzte Kugelwolken Je zwei einfach besetzte Kugelwolken

Zwei bindende Elektronenpaare durch Überlappung von je zwei einfach besetzten Kugelwolken

2 O-Atome

Sauerstoffmolekül O_2

$$O = O$$

2 bindende Elektronenpaare, **Doppelbindung**

Verändert nach: Peter Maisenbacher

Beispiel 4: Aus 2 Stickstoffatomen wird ein Stickstoffmolekül

Je eine doppelt besetzte Kugelwolke **Drei** bindende Elektronenpaare durch Überlappung von je drei Je drei einfach besetzte einfach besetzten Kugelwolken Kugelwolken e⁻ ee⁻ e 2 N-Atome Stickstoffmolekül N_2 Lewis: 3 bindende Elektronenpaare, **Dreifachbindung**

Konstruktion von Molekülen aus verschiedenen Atomen:

Stoff	LEWIS-Formeln <u>aller</u> beteiligten Atome	LEWIS-Formel des Moleküls	Summenformel des Moleküls
Wasser	O H		H ₂ O
Ammoniak	H	H-N-H	NH ₃
Methan	H C H	H H-C-H H	CH ₄
Kohlenstoff- dioxid		(O=C=O)	CO ₂

Hilfestellung zur Konstruktion: Animation Kugelwolkenmodell (Datei)

Bei der Konstruktion organischer Moleküle gilt:

- Kohlenstoffatome haben immer 4 Bindungen
- Wasserstoffatome haben immer 1 Bindung
- Sauerstoffatome haben immer 2 Bindungen und 2 nicht bindende Elektronenpaare
- Halogenatome haben immer 1 Bindung und 3 nicht bindende Elektronenpaare
- Stickstoff hat immer 3 Bindungen und 1 nicht bindendes Elektronenpaar