

Javier Salmeron and Kevin Wood, Naval

Ross Baldick, University of Texas at Austin Sponsored by Department of Justice

Postgraduate School

July 2004

What is VEGA?

VEGA is a tool for analyzing the vulnerability and defense of electric power systems under threats posed by terrorist attacks.

- VEGA determines the worst possible disruption that could be caused by a terrorist attack,
- Compares multiple attack plans terrorists might undertake under different resourceconstrained assumptions,
- Assesses security enhancement through preemptive measures, and
- VEGA is based on powerful optimization

Integrating Three Levels of Optimization

- Level 1: Optimal power flow model to minimize "disruption":
 - (disruption = load shedding + increased costs)
 - Data: Power grid data
 - Level 2: Interdiction model to maximize "Level-1
- lisruption"
 - Data: Power grid data and terrorist resources
 - Level 3: Protective model to minimize "Level-2"
- interdiction"

Data: Power grid data, terrorist resource and counterterrorist resources (budget for expansion, spares, upgrades, hardening)

VEGA

Main Menu:

File mgmt

Grid data

Optimizatio

Results

One-Line GUI

Help

Power Grid Data

One-Line GUI: Power Flow After Optimal Interdiction

Energy Disruption over Time

Optimizing Disruption over Time with System

Restoration

Total Load: 2,850 MW

Attack	Time	Power	Energy	
Plan	Period	Shed (MW)	Shed	
			(MWh)	
2	0-72 h	1,373	98,856	
	Total: 98,856 MWh			
	0-72 h	902	64,944	
3	72-768 h	708	492,768	
	Total: 557,712 MWh			
<u> </u>	0-360 h	756	272,160	
•		Total: 27	72,160 MWh	

Salmeron, Wood and Baldick, IEEE Trans. on Power Systems, May 2004

Technical Features

Hardware

500 MHz processor 1Gb RAM

Operating system

Windows 98, 2000, XP or above

Prototype Features

	VEGA 1.0	VEGA 2.0	VEGA 3.0
Expected date	J un-03	J un-04	J un-05
Database interface	Х	X	X
Network interface	X	X	X
Grid size limit	100 buses	1000 buses	1000+buses
Disruption analysis	Pseudo- optimal	Optimal	Optimal
Disruption period	Short-term	Short- and Long- term	Short- and Long- term
Analysis of protective measures	Manual	Manual	Optimized automatically