Proposition 2.19. Given a homomorphism of rings $h: A \to B$, the rings A/Ker h and Im h = h(A) are isomorphic.

A field is a commutative ring K for which $K - \{0\}$ is a group under multiplication.

Definition 2.22. A set K is a *field* if it is a ring and the following properties hold:

- (F1) $0 \neq 1$;
- (F2) For every $a \in K$, if $a \neq 0$, then a has an inverse w.r.t. *;
- (F3) * is commutative.

Let $K^* = K - \{0\}$. Observe that (F1) and (F2) are equivalent to the fact that K^* is a group w.r.t. * with identity element 1. If * is not commutative but (F1) and (F2) hold, we say that we have a *skew field* (or *noncommutative field*).

Note that we are assuming that the operation * of a field is commutative. This convention is not universally adopted, but since * will be commutative for most fields we will encounter, we may as well include this condition in the definition.

Example 2.9.

- 1. The rings \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- 2. The set of (formal) fractions f(X)/g(X) of polynomials $f(X), g(X) \in \mathbb{R}[X]$, where g(X) is not the null polynomial, is a field.
- 3. The ring C(a,b) of continuous functions $f:(a,b)\to\mathbb{R}$ such that $f(x)\neq 0$ for all $x\in (a,b)$ is a field.
- 4. Using Proposition 2.17, it is easy to see that the ring $\mathbb{Z}/p\mathbb{Z}$ is a field iff p is prime.
- 5. If d is a square-free positive integer and if $d \geq 2$, the set

$$\mathbb{Q}(\sqrt{d}) = \{ a + b\sqrt{d} \in \mathbb{R} \mid a, b \in \mathbb{Q} \}$$

is a field. If $z=a+b\sqrt{d}\in\mathbb{Q}(\sqrt{d})$ and $\overline{z}=a-b\sqrt{d}$, then it is easy to check that if $z\neq 0$, then $z^{-1}=\overline{z}/(z\overline{z})$.

6. Similarly, If $d \ge 1$ is a square-free positive integer, the set of complex numbers

$$\mathbb{Q}(\sqrt{-d}) = \{a + ib\sqrt{d} \in \mathbb{C} \mid a, b \in \mathbb{Q}\}\$$

is a field. If $z = a + ib\sqrt{d} \in \mathbb{Q}(\sqrt{-d})$ and $\overline{z} = a - ib\sqrt{d}$, then it is easy to check that if $z \neq 0$, then $z^{-1} = \overline{z}/(z\overline{z})$.