Thes: HW by 5pm

Thurs: 12,1,1, 12,1,3,12,1,4.

Oscillating dipole

We have consider a dipole, arranged as illustrated and where the charge oscillates

q(+) = q.ocos(wt)

We use the dipole approximation $\Gamma \gg d$

and the non-relativistic approximation

and this gives

$$V(\vec{r},t) \approx \frac{1}{4\pi60} P_0 \cos\theta \left\{ -\frac{\omega}{c} \sin\left[\omega(t-\tau_c)\right] + \frac{1}{r}\cos\left[\omega(t-\tau_c)\right] \right\}$$

$$\vec{A}(\vec{r},t) = -\frac{\mu_0 p_0 \omega}{4 \pi r} \sin[\omega(t-\%)] \hat{z}$$

where Po= god is the amplitude of the dipole moment.

We now need to compute:

- 1) the electric field E
- 2) the magnetic field B
- 3) the Poynting vector 3

that this produces. We anticipale that it may yield waves that propagate spherically outwards. We can see that the potentials form sinusoidal waves with spherical wavefronts and presumably so will the fields.

We thus introduce the wavenumber

and the wavelength

Radiation zone

In the radiation zone approximation

$$= 0 \ r >> \frac{2\pi}{k} = \frac{2\pi c}{\omega}$$

$$=0 \frac{1}{\Gamma} \ll \frac{0}{C} \frac{1}{2\Pi}$$

This further simplifies the potentials.

Radiation zone opproximation:

$$V(\vec{r},t) \approx -\frac{p_o \omega \cos \Theta}{4\pi 6 \sigma \Gamma C} \sin (\omega t - kr)$$

$$\vec{A}(\vec{r},t) \approx -\frac{\mu_o p_o \omega}{4\pi \Gamma} \sin (\omega t - kr) \approx 4\pi \Gamma C$$

We get the fields via:

$$\vec{E} = -\vec{\nabla} V - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

The results are:

If
$$r \gg d$$
 and $d \ll \%$ and $r \gg \lambda$ then an oscillating dipole $\vec{p} = p_0 \cos \omega t \hat{z}$ produces fields:

$$\stackrel{?}{E} = -\frac{Pok^2}{4\pi60\Gamma} \sin\theta \cos(\omega t - kr) \hat{\theta}$$

$$\vec{B} = -\frac{Pok^2}{4\pi\epsilon_0 r} \frac{1}{c} \sin\theta \cos(\omega t - kr) \hat{\phi}$$

$$\nabla V = \frac{\partial V}{\partial \Gamma} \hat{\Gamma} + \frac{1}{\Gamma} \frac{\partial V}{\partial \Theta} \hat{\Theta}$$

$$= \left[\frac{P_0 W \cos \Theta}{4 \pi 6_0 \Gamma^2 c} \sin (\omega t - kr) + \frac{P_0 \omega k}{4 \pi 6_0 \Gamma c} \cos \Theta \cos (\omega t - kr) \right] \hat{\Gamma}$$

$$+ \frac{1}{\Gamma} \frac{P_0 \sin \Theta}{4 \pi 6_0 \Gamma} \frac{\omega}{c} \sin (\omega t - kr) \hat{\Theta}$$

$$\frac{\partial \vec{A}}{\partial t} = \frac{-\mu_0 p_0 w^2}{4\pi r} \cos(\omega t - kr) \hat{z}$$

$$= \frac{-\mu_0 p_0 w^2}{4\pi r} \cos(\omega t - kr) \left[\cos\theta \hat{r} - \sin\theta \hat{\theta}\right]$$

$$= \frac{-p_0 w^2}{4\pi G_0 C^2 r} \cos(\omega t - kr) \left[\cos\theta \hat{r} - \sin\theta \hat{\theta}\right]$$

Thus.

$$\vec{E} = -\vec{\nabla} V - \frac{\partial \vec{A}}{\partial t} = -\frac{P_0 \cos \Theta}{4 \pi \epsilon_0 r^2} \frac{\omega}{c} \sin(\omega t - tr) \hat{r}$$

$$-\frac{P_0 \sin \Theta}{4 \pi \epsilon_0 r^2} \frac{\omega}{c} \sin(\omega t - tr) \hat{\Theta}$$

$$-\frac{P_0 \sin \Theta}{4 \pi \epsilon_0 r} \frac{\omega^2}{c^2} \cos(\omega t - tr) \hat{\Theta}$$

$$4 \pi \epsilon_0 r$$

The first two tems have magnifudes:

The last has

The ratio of this to the first is
$$\frac{1}{\Gamma}\frac{\omega^2}{c^2}/\frac{1}{\Gamma^2}\frac{\omega}{c} = \Gamma\frac{\omega}{c} \gg 1$$
.

Thus

Now for B

$$\vec{A} = -\frac{\mu_0 \rho_0 \omega}{4\pi r} \sin(\omega t - kr) \left[\cos \theta \hat{r} - \sin \theta \hat{\theta}\right]$$

$$\vec{\nabla} \times \vec{A} = \frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \rho} \hat{\rho} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_{\theta}}{\partial \rho} \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\theta}) - \frac{\partial A_{r}}{\partial \theta} \hat{\theta} \right] \hat{\theta} \right]$$

$$= \frac{1}{r} \left[\frac{\partial}{\partial r} \left(+ \frac{\mu_{\theta} p_{\theta} w}{4 \pi} \sin(\omega t - kr) \sin(\omega t - kr) \frac{\partial}{\partial \theta} \cos(\partial \theta) \hat{\theta} \right]$$

$$= \left[-\frac{\mu_0 p_0 \omega}{4\pi r^2} \text{ k sine } \cos(\omega t - kr) - \frac{\mu_0 p_0 \omega}{4\pi r^2} \sin(\omega t - kr) \right] \hat{\phi}.$$

=
$$\left[\frac{-P_0}{4\pi\epsilon_0}\frac{\omega k}{\Gamma^2c^2}\cos(\omega t-kr) - \frac{P_0\omega}{4\pi\epsilon_0}\frac{\sin(\omega t-kr)}{\sin(\omega t-kr)}\right]\sin(\omega t-kr)$$

now compare
$$\frac{k}{\Gamma}$$
 to $\frac{1}{\Gamma^2}$, i.e. $\frac{2\pi}{\Gamma\lambda}$ to $\frac{1}{\Gamma^2}$. If $\Gamma \gg \lambda$ then $\Gamma^2 \gg \Gamma\lambda = 0$ $\frac{1}{\Gamma^2} \ll \frac{1}{\Gamma\lambda}$ and the $\frac{k}{\Gamma}$ dominates. Thus

$$\vec{B} = \frac{Po \, \omega \, k}{4 \, \text{TT60} \, \text{CC}^2} \sin \theta \, \cos (\omega t - k r) \, \hat{\phi}$$

Thus we see that

An oscillating dipole produces electromagnetic waves

These fields satisfy:

$$\vec{B} = \frac{1}{c} \hat{f} \times \vec{E}$$

2) the amplitude depends on the "angle of observation"

1 Poynting Vector for an Oscillating Electric Dipole

An electric dipole oscillates as $\mathbf{p} = p_0 \cos(\omega t)\hat{\mathbf{z}}$. The following refer to the radiation zone approximation.

- a) Determine the Poynting vector
- b) In which direction does the energy propagate?
- c) Determine the time-averaged Poynting vector.
- d) Determine the total rate at which energy radiates in all directions.

a)
$$\vec{S} = \frac{1}{\mu_0} \sum_{k=0}^{\infty} \vec{k} + \frac{4}{16\pi^2 k_0^2} \vec{k}^2 C$$
 $\sin^2 \theta \cos^2(\omega t - kr) \cdot \hat{\theta} \times \hat{\phi}$

$$= \frac{1}{\mu_0} \frac{1}{6\sigma^2 C} \sum_{k=0}^{\infty} \vec{k}^2 C \cos^2(\omega t - kr) \cdot \hat{r}$$

$$= \frac{1}{\mu_0} \frac{1}{6\sigma^2 C} \sum_{k=0}^{\infty} \frac{1}{16\pi^2} \sum_{k=0}^{\infty} \sin^2 \theta \cos^2(\omega t - kr) \cdot \hat{r}$$
Then $\vec{k} = \frac{1}{\mu_0 C^2} \sum_{k=0}^{\infty} \frac{1}{16\pi^2} \cos^2(\omega t - kr) \cdot \hat{r}$

$$= \frac{\mu_0 p_0^2 \omega^4}{16\pi^2 C} \frac{\sin^2 \theta}{r^2} \cos^2(\omega t - kr) \cdot \hat{r}$$

$$= \frac{\mu_0 p_0^2 \omega^4}{16\pi^2 C} \frac{\sin^2 \theta}{r^2} \cos^2(\omega t - kr) \cdot \hat{r}$$

c) We need the time-average of
$$\cos^2(\omega t - kr)$$
. This is $\langle \cos^2(\omega t - kr) \rangle = \frac{1}{2}$.

Thus

$$\langle \vec{s} \rangle = \frac{\mu_0 p^2 w^4}{32 \pi^2 c} \frac{\sin^2 \theta}{\Gamma^2} \hat{r}$$

d)
$$\int (\vec{s}) \cdot d\vec{a}$$
 over a sphere of radius $R = 0$ $d\vec{a} = R^2 \sin \theta d\theta d\phi \hat{r}$

So
$$\int (\vec{s}) \cdot d\vec{a} = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \int_0^{\mu_0} p^2 \omega^4 \sin^2\theta \sin^2\theta$$

$$= \frac{2\pi \mu_{0} p^{2} \omega_{4}}{32 \pi^{2} c} \int_{0}^{\pi} \sin(1-\cos^{2}\theta) d\theta$$

$$-\cos\theta + \frac{1}{3} \cos^{3}\theta \Big|_{0}^{\pi}$$

$$= 1 - \frac{1}{3} - \left(-1 + \frac{1}{3}\right) = 4/3$$

$$= \sqrt{\langle \hat{S} \rangle \cdot d\hat{a}} = \frac{\mu_0 p^2 \omega^4}{12 \sqrt{11} c}$$

So we find that:

$$\langle \vec{S} \rangle = \frac{\mu_0 P^2 \omega^4}{32 \pi^2 c} \frac{\sin^2 \theta}{\Gamma^2} \hat{r}$$

and the total power radiated is

$$P = \frac{\mu_0 P_0^2 \omega^4}{12 \, \text{TC}}$$

This can explain various phenomona in which electromagnetic waves interact with matter, particularly charged atoms. Such atoms have non-zero dipole moments.

Various phenomena can be explained using this model:

- 1) The reradiated (scattored) light is more intense as the frequency increases blue light is scattered more strongly than red.
- 2) Scattered light can have polarization effects.

The horizontally polarized light causes horizontal oscillations - as the radiation along the direction of oscillation is zero, such radiation will be absent in the illustrated perspective. On the other hand vertical oscillations produced radiation strongly along this direction. This will be observed.

So, if the observe's line of sight is perpendicular to the direction of the incident beam, then this observer will predominantly detect scattered light that is polarized perpendicular to the plane containing the incident beam and the line of sight.

3) If the incident light is linearly polarized, then there will be no scaltered light along the direction of polarization.

Dono! Dono last two with water, laser + polarizer.

Radiation from a moving point charge

We were able to determine the fields produced by a moving point charge.

For held at
$$\vec{r}$$
 at time t and trajectory $\vec{w}(t)$ get retarded time to $\vec{v}(t)$ when the fields are:

Retarded separation vector $\vec{v}(t)$ acceleration $\vec{v}(t)$ acceleration $\vec{v}(t)$ acceleration $\vec{v}(t)$ acceleration $\vec{v}(t)$ and $\vec{v}(t)$ $\vec{v}(t)$ $\vec{v}(t)$

$$\vec{E} = \frac{9}{4\pi60} \frac{8r}{(8r \cdot \vec{u})^3} \left\{ (c^2 - v^2) \vec{u} + 8r \times (\vec{u} \times \vec{a}) \right\}$$

$$\vec{B} = \frac{1}{6} \hat{8} \times \vec{E}$$

We want to determine whether this radiates energy and if so how. We address this via the Poynting vector

$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B}) = \frac{1}{\mu_0} \vec{E} \times \frac{1}{2} (\hat{s}_r \times \vec{E})$$

$$= \frac{1}{\mu_0} c \left[\hat{s}_r (\vec{E} \cdot \vec{E}) - \vec{E} (\hat{s}_r \cdot \vec{E}) \right]$$

$$\vec{S} = \frac{1}{\mu_{oC}} \left[\vec{E}^2 \hat{s}_r - (\hat{s}_r \cdot \vec{E}) \vec{E} \right].$$

We will need to integrate over a surface at one instant. We could do so over a spherical surface centered on the particle location at a retarded time to since all signals will arrive on this surface at time

Then we let 85-0 00. The

power radiated is

$$P = \int \vec{S} \cdot d\vec{a} = \int \vec{S} \cdot \hat{s_r} s_r^2 ded d$$

Then

$$\vec{s} \cdot \hat{s}_{\Gamma} = \frac{1}{\mu_{o}c} \left[\vec{E}^2 - (\hat{s}_{\Gamma} \cdot \vec{E})^2 \right]$$

and thus varies as E^2 . In the expression for E there is an overall factor of $\frac{1}{812}$ in front of both terms. Then

dominates.

Thus the radiation part of the field $\vec{E}_{rad} = \frac{9}{4\pi\epsilon_0} \frac{1}{8r} \frac{1}{(\$r \cdot \vec{u})^3} \cdot \$r \times (\vec{u} \times \vec{a})$

dominates

$$\vec{E}_{rad} = \frac{9}{4\pi60} \frac{1}{8r} \frac{1}{c^3} \hat{s}_r \times (\hat{s}_r \times \hat{a})$$

50

$$\hat{S} \cdot \hat{sr} = \frac{1}{\mu_{oC}} \left[E^{2}_{rad} - (\hat{sr} \cdot \vec{E}_{rad})^{2} \right]$$

$$= 0$$

$$= \frac{1}{\mu_{oC}} E^{2}_{rad} = \frac{\mu_{o}^{2} q^{2}}{\mu_{oC} 16 \pi^{2}} \frac{1}{8_{r}^{2}} \left[(\hat{sr} \cdot \vec{a})^{2} + \alpha^{2} - 2(\hat{sr} \cdot \vec{a})^{2} \right]$$

$$= \frac{\mu_0 q^2}{C 16 \pi^2} \frac{1}{8 q^2} \left[a^2 - (8 \vec{r} \vec{o})^2 \right]$$

So in the radiation zone if vac then

$$\vec{S} = \frac{\mu_0 \, q^2}{16\pi^2 c} \, \frac{1}{g_{r^2}} \left[a^2 - (\hat{g}_r \cdot \vec{a})^2 \right] \, \hat{g}_r$$

We can choose the axes so that instantaneous the acceleration is along 2. Then:

$$= \frac{1}{16 \, \text{Tr}^2 c} \frac{1}{9 \, \text{F}^2} \, \alpha^2 \sin^2 \theta \, \hat{\varphi}_F$$

The total power radiated is:

sphere radius &,

$$= \frac{\mu_0 q^2}{16\pi^2 c} \frac{1}{8r^2} a^2 8r^2 \int_{0}^{\pi} \sin^3 \theta d\theta \int_{0}^{2\pi} d\phi$$

This gives the Larmor formula:

If
$$V \ll c$$
 then the power radiated by a charge is
$$P = \frac{\mu_0 q^2 a^2}{6\pi c}$$