Analysis Final

Michael Nameika

May 2022

1. (a) Consider a sequence $\{x_n\}$ on the interval [0,1]. If every *convergent* subsequence of $\{x_n\}$ has the same limit x_0 . Prove that $\lim x_n = x_0$.

Proof: Let $\{x_n\}$ be a sequence on [0,1] and suppose that every convergent subsequence of $\{x_n\}$ has the same limit x_0 . Suppose by way of contradiction that $\{x_n\}$ does not converge to x_0 . Then for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$, $\{x_{n_k}\}$ does not converge to x_0 .

Fix $\epsilon > 0$. Then for some $n_k > N_1 \in \mathbb{N}$, since $\{x_{n_k}\}$ does not converge to x_0 ,

$$|x_{n_k} - x_0| \ge \epsilon$$

But since $\{x_{n_k}\}$ is a sequence on [0,1], a closed, bounded interval, Bolzano-Weierstrass guarantees that there exists a convergent subsequence $\{x_{n_k}\}$ of $\{x_{n_k}\}$. But by the above inequality, we have that for some $n_{k_m} > N_2 \in \mathbb{N}$,

$$|x_{n_{k_m}} - x_0| \ge \epsilon$$

That is, $\{x_{n_{k_m}}\}$ does not converge to x_0 . But $\{x_{n_{k_m}}\}$ is a convergent subsequence of $\{x_n\}$, contradicting our hypothesis that every convergent subsequence of $\{x_n\}$ converges to x_0 .

(b) Let $f_n(x) = x^n(1-x^n)$. Show that $\{f_n\}$ is not a convergent sequence in C[0,1] with metric $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$.

To begin, we will find the maximum value of f_n . Using the first derivative test, we find

$$f'_n = nx^{n-1}(1-x^n) - nx^{2n-1} = 0$$

and we find f_n attains a maximum value at

$$x_{max} = \left(\frac{1}{2}\right)^{1/n}$$

Plugging this value of x into $f_n(x)$, we get

$$f_n(x_{max}) = \frac{1}{2} \left(1 - \frac{1}{2} \right)$$
$$= \frac{1}{4}$$

That is, for every n, the maximum value of f_n on [0,1] is $\frac{1}{4}$. Now we will show that f_n does not converge on C[0,1]. We will do so by showing that $\{f_n\}$ is not Cauchy. Let $\epsilon = \frac{1}{32}$ and let $m, n > N \in \mathbb{N}$ and consider

$$\sup_{x \in [0,1]} |f_n(x) - f_m(x)|$$

and notice that

$$|f_n(x) - f_m(x)| \le \sup_{x \in [0,1]} |f_n(x) - f_m(x)|$$

Now, choose m = 2n. Then

$$|f_n(x) - f_m(x)| = |f_n(x) - f_{2n}(x)| = |x^n(1 - x^n) - x^{2n}(1 - x^{2n})|$$

Let's check the point $\left(\frac{1}{2}\right)^{1/n}$:

$$\left| f_n \left(\frac{1}{2^{1/n}} \right) - f_{2n} \left(\frac{1}{2^{1/n}} \right) \right| = \left| \frac{1}{4} - \frac{3}{16} \right|$$
$$= \left| \frac{1}{16} \right| > \frac{1}{32}$$

So for any choice of m, n > N, choosing m = 2n, we get that $|f_n(x_{max}) - f_m(x_{max})| > \frac{1}{32}$ So $\{f_n\}$ is not Cauchy, and therefore does not converge.

2. (a) Let (X, d) be a metric space. Show that $\delta(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$, defines a metric on X, and that every subset $E \subset X$ is bounded with respect to the metric δ .

Proof: To show $\delta(x, y)$ is a metric, we must show that symmetry, non-negativity, and the triangle inequality holds. To begin, we will show symmetry holds. Since d(x, y) is a metric, notice that

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = \delta(y,x)$$

So symmetry holds. Now we will show non-negativity holds. We have that $d(x,y) \ge 0$, so $1 + d(x,y) \ge 1$ and so $\delta(x,y) \ge 0$. Now we must show $\delta(x,y) = 0$ if and only if x = y. To begin, let x = y. Then

$$\delta(x,y)=\delta(x,x)=\frac{d(x,x)}{1+d(x,x)}=\frac{0}{1}=0$$

Now suppose $\delta(x,y) = 0$. Then $\frac{d(x,y)}{1+d(x,y)} = 0$ and so we must have d(x,y) = 0. And since d(x,y) is a metric, we have x = y. So non-negativity holds.

Finally, we will show that $\delta(x,y)$ satisfies the triangle inequality.

To begin, let $x, y, z \in X$ and consider $\delta(x, z) = \frac{d(x, z)}{1 + d(x, z)}$ and $\delta(z, y) = \frac{d(z, y)}{1 + d(z, y)}$. Notice that since $d(x, y) \ge 0$ for any $x, y \in X$, we have that

$$\delta(x,z) = \frac{d(x,z)}{1 + d(x,z)} \ge \frac{d(x,z)}{1 + d(x,z) + d(z,y)}$$

similarly,

$$\delta(z,y) = \frac{d(z,y)}{1+d(z,y)} \geq \frac{d(z,y)}{1+d(z,y)+d(x,z)}$$

That is,

$$\frac{d(x,z) + d(z,y)}{1 + d(x,z) + d(z,y)} \le \delta(x,z) + \delta(z,y)$$

Now notice if we divide the numerator and denominator on the left hand side of the above equation by d(x, z) + d(z, y), we get

$$\frac{d(x,z) + d(z,y)}{1 + d(x,z) + d(z,y)} = \frac{1}{\frac{1}{d(x,z) + d(z,y)} + 1}$$

And since d(x, y) is a metric,

$$d(x,y) \le d(x,z) + d(z,y)$$

$$\begin{split} \frac{1}{d(x,y)} &\geq \frac{1}{d(x,z) + d(z,y)} \\ \frac{1}{d(x,y)} + 1 &\geq \frac{1}{d(x,z) + d(z,y)} + 1 \\ \frac{1}{\frac{1}{d(x,y)} + 1} &\leq \frac{1}{\frac{1}{d(x,z) + d(z,y)} + 1} \end{split}$$

That is,

$$\frac{d(x,y)}{1+d(x,y)} \leq \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)}$$

Finally, we have

$$\delta(x, y) \le \delta(x, z) + \delta(z, y)$$

And so the triangle inequality holds. Thus, $\delta(x,y)$ defines a metric.

Quickly note that since $d(x,y) \geq 0$ for all $x,y \in X$, $\delta(x,y) = \frac{d(x,y)}{1+d(x,y)} \leq d(x,y)$

To see that any subset $E \subset X$ is bounded with respect to δ , consider the following cases:

Case 1: $E \subset X$ is bounded with respect to d. That is, for any $x, y \in E$, $\sup_{x,y \in E} d(x,y) < M$ for some $M \in \mathbb{R}$. Then since $\delta(x,y) \leq \sup_{x,y \in E} \delta(x,y) \leq \sup_{x,y \in E} d(x,y)$

$$\delta(x,y) \leq \sup_{x,y \in E} \delta(x,y) \leq \sup_{x,y \in E} d(x,y) = M$$

That is, E is bounded with respect to δ .

Case 2: $E \subset X$ is unbounded with respect to d. That is, $\sup_{x,y\in E} d(x,y) = +\infty$. We wish to show that E is bounded with respect to δ . Notice the following:

$$\sup_{x,y\in E} \delta(x,y) = \sup_{x,y\in E} \frac{d(x,y)}{1+d(x,y)}$$
$$= \sup_{x,y\in E} \frac{1}{\frac{1}{d(x,y)}+1}$$

and since $d(x,y) \to \infty$, we have that $\delta(x,y) \to \frac{1}{0+1} = 1$.

So if E is unbounded with respect to d, then $\sup_{x,y\in E} \delta(x,y) = 1$, meaning that E is bounded with respect to δ .

(b) Prove that $S = \{1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\} \subset \mathbb{R}$ is compact with the usual metric $d(x, y) = |x - y|, x, y \in \mathbb{R}$.

Proof: We will use the Heine-Borel Theorem to show S is compact. That is, we must show that S is closed and bounded. We will begin by showing that S is bounded. Notice that $S = \{\frac{n}{n+1}\}_{n \in \mathbb{N}} \cup \{1\}$ and that n < n+1, so $\frac{n}{n+1} < 1$. Additionally, $1 \le 1$. That is, 1 is an upper bound for S. I claim that $\frac{1}{2}$ is a lower bound for S. To show this, I will show that $\{\frac{n}{n+1}\}$ is increasing. Consider $\frac{n+1}{n+2} - \frac{n}{n+1}$ for any $n \in \mathbb{N}$:

$$\frac{n+1}{n+2} - \frac{n}{n+1} = \frac{(n+1)^2 - n(n+2)}{(n+1)(n+2)}$$
$$= \frac{n^2 + 2n + 1 - n^2 - 2n}{(n+2)(n+1)}$$
$$= \frac{1}{(n+2)(n+1)} \ge 0$$

That is, $\{\frac{n}{n+1}\}$ is an increasing sequence for all $n \in \mathbb{N}$. So $\frac{1}{2}$ is a lower bound for $\{\frac{n}{n+1}\}$, and is therefore a lower bound for S. That is, for any element $s \in S$, $\frac{1}{2} \leq s \leq 1$. Or, in terms of the given metric, $\sup_{x,y \in S} d(x,y) = |1-1/2| = 1/2$. So S is bounded.

Now we must show that S is closed. Consider $\mathbb{R} \setminus S$:

$$\mathbb{R} \setminus S = \left(-\infty, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \frac{2}{3}\right) \cup \left(\frac{2}{3}, \frac{3}{4}\right) \cup \ldots \cup (1, \infty)$$

Notice that $\mathbb{R} \setminus S$ is a countable union of open sets, and since an arbitrary union of open sets is open, we have that $\mathbb{R} \setminus S$ is open. Then S is closed.

So we have that S is closed and bounded, so by the Heine-Borel Theorem, we have that S is compact.

3. (a) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin\left(\frac{\cos x}{2}\right)$ is a contraction mapping. (Hint: Use MVT for derivatives.)

Proof: Recall that $\cos(x)$ is continuous on \mathbb{R} , and thus $\frac{\cos(x)}{2}$ is also continuous on \mathbb{R} . Also recall that $\sin(x)$ is continuous on \mathbb{R} , so $f(x) = \sin\left(\frac{\cos(x)}{2}\right)$ is continuous on \mathbb{R} .

Now let $x, y \in \mathbb{R}$. We have that f(x) is continuous on [x, y], and so by the mean value theorem, there exists some $c \in (x, y)$ such that

$$f'(c) = \frac{f(x) - f(y)}{x - y}$$

Rearranging, we find

$$|f(x) - f(y)| = |f'(c)||x - y|$$

Well, $f'(x) = -\frac{\sin(x)}{2}\sin\left(\frac{\cos(x)}{2}\right)$, and $|f'(x)| = |\frac{\sin(x)}{2}\sin\left(\frac{\cos(x)}{2}\right)| \le \frac{1}{2}|\sin\left(\frac{\cos(x)}{2}\right)| \le \frac{1}{2}$ That is, we have

$$|f(x) - f(y)| \le \frac{1}{2}|x - y|$$

for some $x, y \in \mathbb{R}$. By definition, f is a contraction map.

(b) Suppose $\gamma:[0,1]\to\mathbb{R}^3$ be continuous with $\gamma(0)=(0,0,0),\ \gamma(1)=(1,1,1).$ Show that the curve $\gamma(t)$ intersects the plane x+y+z=2 in \mathbb{R}^3 .

Proof: We have $\gamma:[0,1]\to\mathbb{R}$ is continuous. Let $f:\mathbb{R}^3\to\mathbb{R}$ f(x,y,z)=x+y+z. f is continuous since f is the sum of polynomials, which are continuous. Since γ and f are continuous, we have that $f\circ\gamma$ is also continuous. Now, notice that

$$(f \circ \gamma)(0) = f((0,0,0)) = 0 + 0 + 0 = 0$$

and

$$(f \circ \gamma)(1) = f((1,1,1)) = 1 + 1 + 1 = 3$$

Then by the intermediate value theorem, there exists some value $c \in [0,1]$ such that $(f \circ \gamma)(c) = 2$. That is to say, for some c, $\gamma(c)$ will map to a point on the plane x + y + z = 2.

4. (a) Suppose that $f:[0,1] \to \mathbb{R}$ is a continuous function such that 0 < f(x) < 1 for all $0 \le x < 1$, and f(1) = 1. Suppose in addition that $\lim_{x \to 1^-} \frac{f(1) - f(x)}{1 - x} = \ell > 1$. Prove that there is some number c with 0 < c < 1 such that f(c) = c. (Hint: Apply IVT to an appropriate function).

Proof: Let $f:[0,1] \to \mathbb{R}$ be continuous with 0 < f(x) < 1 for all $0 \le x < 1$ and f(1) = 1, and in addition, $\lim_{x \to 1^-} \frac{f(1) - f(x)}{1 - x} = \ell > 1$.

Let $\{x_n\}$ be a sequence in [0,1] converging to 1. Then since f is continuous, and from the given limit, for some $n > N \in \mathbb{N}$ $\frac{f(1) - f(x_n)}{1 - x_n} \ge 1$. Rearranging, we have

$$1 - f(x_n) > 1 - x_n$$

$$x_n - f(x_n) > 0$$

Let g(x) = x - f(x). Notice that g is continuous since f is continuous, and x is a polynomial. Now, notice that g(0) = 0 - f(0) = -f(0) < 0. Then we have the following inequality:

$$g(0) < 0 < g(x_n)$$

And by the intermediate value theorem, we have that there exists some $c \in (0, x_n)$ such that

$$g(c) = 0$$

That is, c - f(c) = 0 or f(c) = c.

(b) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with the property: $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$. Prove that f is uniformly continuous.

Proof: Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 0$ and fix $\epsilon > 0$. Since $\lim_{x\to\infty} f(x) = 0$, there exists some $m_1 \in \mathbb{R}$, whenever $x > m_1$, $m_1 > 0$ $|f(x) - 0| < \epsilon/3$.

Similarly, there exists some $m_2 \in \mathbb{R}$, $m_2 < 0$ such that whenever $x < m_2$, $|f(x) - 0| < \epsilon/3$. Now, let $M = \max\{|m_1|, |m_2|\}$ and consider the interval [-M, M]. Since this is a closed, bounded interval, and f continuous on \mathbb{R} , we have that f is uniformly continuous on [-M, M].

That is, for some $\delta > 0$, whenever $|x - y| < \delta$ for $x, y \in [-M, M]$, $|f(x) - f(y)| < \epsilon/3$. To show f is uniformly continuous continuous on \mathbb{R} , let $|x - y| < \delta$ for some $\delta > 0$ and consider the following three cases:

Case 1: Both $|x| \ge M$ and $|y| \ge M$. Then $|f(x) - f(y)| \le |f(x)| + |f(y)| < \epsilon/3 + \epsilon/3 = 2\epsilon/3 < \epsilon$.

Case 2: Both $x, y \in [-M, M]$. Then from above, we have that $|f(x) - f(y)| < \epsilon/3 < \epsilon$

Case 3: One of $x, y \in [-M, M]$ and the other in $(-\infty, -M) \cup (M, \infty)$. Without loss of generality, assume $x \in [-M, M]$ and $y \in (M, \infty)$. Then

$$|f(x) - f(y)| = |f(x) - f(M) + f(M) - f(y)|$$

 $\leq |f(x) - f(M)| + |f(M)| + |f(y)|$
 $< \epsilon/3 + \epsilon/3 = \epsilon$

In any of these cases, we have that f is uniformly continuous on \mathbb{R} .

- 5. Suppose a real valued function f(x,y) is defined on an open set $U \in \mathbb{R}^2$. Assume that the first partial derivatives of f(x,y) exist and are uniformly bounded on U.
 - (a) Prove that f(x,y) is continuous on U.

Proof: Let $x_0 \in U$ and since U is open, we have for some r > 0, $B_r(x_0) \subseteq U$. Now let $\{\mathbf{x}_n\}$ be a sequence in $B_r(x_0)$ such that x_n converges to x_0 . Let $\{\mathbf{h}_n\}$ be a sequence in $B_r(x_0)$ defined by $\mathbf{h}_n = \mathbf{x}_n - x_0$. Notice that $\mathbf{h}_n + x_0 = \mathbf{x}_n \in B_r(x_0)$. Then by the mean value proposition, we have that

$$f(x_0 + \mathbf{x}_n) - f(x_0) = h_n^1 \frac{\partial f}{\partial x}(z_1) + h_n^2 \frac{\partial f}{\partial y}(z_2)$$

for some $z_1, z_2 \in B_r(x_0)$. Then since the first partial derivatives of f are uniformly bounded, we have that

$$\left| \frac{\partial f}{\partial x} \right| \le M, \ \left| \frac{\partial f}{\partial y} \right| \le M$$

for some $M \in \mathbb{R}$ for all $(x, y) \in U$. Define $\mathbf{M} = [M, M]^T$. Then we have

$$|f(x_0 + \mathbf{h}_n) - f(x_0)| \le \langle \mathbf{M}, \mathbf{h}_n \rangle$$

Now, as $n \to \infty$, we have $|\mathbf{h}_n| \to 0$ so as $n \to \infty$,

$$|f(x_0 + \mathbf{h}_n) - f(x_0)| \rightarrow 0$$

Then $f(x_0 + \mathbf{h}_n) \to f(x_0)$ as $n \to \infty$. So f is continuous at x_0 . Since $x_0 \in U$ was arbitrary, we have that f is continuous on U.

(b) Let $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Show explicitly that the first partial derivatives of f(x,y) exist but are *not* bounded in an open neighborhood of (0,0). Then show that f(x,y) is not continuous at (0,0).

We wish to show that the first partial derivatives of f exist. To do so, we must show that $\lim_{t\to 0} \frac{f(x_0+t,y_0)-f(x_0,y_0)}{t}$ and $\lim_{t\to 0} \frac{f(x_0,y_0+t)-f(x_0,y_0)}{t}$ exist for some point $(x_0,y_0)\in\mathbb{R}^2$.

To begin, we will show $\frac{\partial f}{\partial x}$ exists. To do so, consider

$$\lim_{t \to 0} \frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t} = \lim_{t \to 0} \frac{\frac{(x_0 + t)y_0^2}{(x_0 + t)^2 + y^4} - \frac{x_0 y_0^2}{x_0^2 + y_0^4}}{t}$$

$$= \lim_{t \to 0} \frac{(x_0 y_0^2 + t y_0^2)(x_0^2 + y_0^4) - x_0 y_0^2((x_0 + t)^2 + y_0^4)}{t(x_0^2 + y_0^4)((x_0 + t)^2 + y_0^4)}$$

$$= \lim_{t \to 0} \frac{x_0^3 y_0^2 + t x_0^2 y_0^2 + t y_0^6 + x_0 y_0^6 - x_0^3 y_0^2 - 2t x_0^2 y_0^2 - x_0 y_0^6}{t(x_0^2 + y_0^4)((x_0 + t)^2 + y_0^4)}$$

$$= \lim_{t \to 0} \frac{y_0^6 - x_0^2 y_0^2}{(x_0^2 + y_0^4)((x_0 + t)^2 + y_0^4)}$$

$$= \frac{y_0^6 - x_0^2 y_0^2}{(x_0^2 + y_0^4)^2}$$

so $\frac{\partial f}{\partial x}$ exists. It remains to be seen that $\frac{\partial f}{\partial x}|_{(x,y)=(0,0)}$ exists. Using the limit definition of the derivative.

$$\begin{split} \frac{\partial f}{\partial x}\bigg|_{(x,y)=(0,0)} &= \lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = \lim_{t\to 0} \frac{\frac{t(0)^2}{t^2+0^4}-0}{t} \\ &= \lim_{t\to 0} \frac{0}{t} \\ &\frac{\partial f}{\partial x}\bigg|_{(x,y)=(0,0)} = 0 \end{split}$$

Now we will show $\frac{\partial f}{\partial y}$ exists. Using the limit definition, we have

$$\frac{\partial f}{\partial y} = \lim_{t \to 0} \frac{f(x_0, y_0 + t) - f(x_0, y_0)}{t}$$
$$= \lim_{t \to 0} \frac{\frac{x_0(y_0 + t)^2}{x_0^2 + (y_0 + t)^4} - \frac{x_0 y_0^2}{x_0^2 + y_0^4}}{t}$$

$$\begin{split} &=\lim_{t\to 0}\frac{\frac{x_0y_0^2+2ty_0x_0+x_0t^2}{x_0^2+(y_0+t)^4}-\frac{x_0y_0^2}{x_0^2+y_0^4}}{t}\\ &=\lim_{t\to 0}\frac{(x_0y_0^2+2tx_0y_0+x_0t^2)(x_0^2+y_0^4)-x_0y_0^2(x_0^2+(y_0+t)^4)}{t(x_0^2+y_0^4)(x_0^2+(y_0+t)^4)}\\ &=\lim_{t\to 0}\frac{x_0^3y_0^2+2tx_0^3y_0+x_0^3t^2+x_0y_0^6+2tx_0y_0^5+t^2x_0y_0^4-x_0^3y_0^2-x_0y_0^2(y_0+t)^4}{t(x_0^2+y_0^4)(x_0^2+(y_0+t)^4)}\\ &=\lim_{t\to 0}\frac{2tx_0^3y_0+t^2x_0^3-2tx_0y_0^5+t^2x_0y_0^4-6t^2x_0y_0^4-4t^3y_0^3x_0-t^4x_0y_0^2}{t(x_0^2+y_0^4)(x_0^2+(y_0+t)^4)}\\ &=\lim_{t\to 0}\frac{2x_0^3y_0+tx_0^3-2x_0y_0^5+tx_0^4-6tx_0y_0^4-4t^2y_0^3x_0-t^3x_0y_0^2}{(x_0^2+y_0^4)(x_0^2+(y_0+t)^4)}\\ &=\frac{2x_0^3y_0-2x_0y_0^5}{(x_0^2+y_0^4)^2} \end{split}$$

Now it remains to be seen that $\frac{\partial f}{\partial y}$ exists at (0,0). Using the limit definition of partial derivatives,

$$\left. \frac{\partial f}{\partial y} \right|_{(x,y)=(0,0)} = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{0(0)^2}{t(0^2 + t^4)}$$

$$= \lim_{t \to 0} 0$$

So $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist for all $(x, y) \in \mathbb{R}^2$.

Now we must show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are unbounded in an open neighborhood around (0,0). Let $B_r((0,0))$ be an open ball of radius r>0 around (0,0) and notice that $\left(0,\frac{r}{2n}\right)\in B_r((0,0))$ for all $n\in\mathbb{N}$. Similarly, $\left(\frac{r}{2n},\frac{r}{2n}\right)\in B_r((0,0))$ for all $n\in\mathbb{N}$. Using the expressions we found for $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ and the sequences above, notice

$$\lim_{n \to \infty} \left| \frac{\partial f}{\partial x} \left(0, \frac{r}{2n} \right) \right| = \lim_{n \to \infty} \frac{\left(\frac{r}{2n} \right)^6 - 0}{\left(\frac{r}{2n} \right)^8}$$

 $=+\infty$

and

$$\lim_{n \to \infty} \left| \frac{\partial f}{\partial y} \left(\frac{r}{2n}, \frac{r}{2n} \right) \right| = 2$$

?? (I've had trouble finding a sequence that causes $\frac{\partial f}{\partial y}$ to diverge near 0:()

To see that f(x,y) is discontinuous at (0,0), it suffices to be shown that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist. Consider the limit along the path y=x:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} f(x,x) = \lim_{x\to 0} \frac{x^3}{x^2 + x^4}$$
$$= \lim_{x\to 0} \frac{x}{1+x^2}$$
$$= 0$$

Now consider the path $y = \sqrt{x}$:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^2}{x^2 + x^2}$$

$$= \lim_{x\to 0} \frac{1}{2}$$

$$= \frac{1}{2}$$

So $\lim_{(x,y)\to(0,0)} f(x,y)$ along the path y=x does not equal the limit along the path $y=\sqrt{x}$. That is, f(x,y) is discontinuous at (0,0).

Extra Credit Show that $T: C[0,\pi/2] \to C[0,\pi/2]$ defined by $T(f)(x) = \int_0^x f(t) \sin t dt$ is not a contraction map, yet it has a unique fixed point. Take $d(f,g) = \sup_{x \in [0,\pi/2]} |f(x) - g(x)|$ as the metric on $C[0,\pi/2]$. (Hint: Check T^2 .)