Homework 02 (Solutions)

1.(电路图略)

a.
$$X = NOT (NOT(A) OR (A AND B AND C))$$

 $X = \overline{A} + ABC = \overline{A} + BC = A\overline{BC}$

b. Y = NOT ((A OR B) AND (A AND B AND C))

$$Y = \overline{(A + B)ABC} = \overline{ABC}$$

Α	В	С	Х	Υ
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

2. a.
$$Z = A \text{ XOR } B = A \overline{B} + \overline{A} B = (\overline{A} + \overline{B})(A + B) = \overline{(\overline{A} + B)(A + \overline{B})}$$
 使用 **2-1 mux:**
$$Z = A \text{ XOR } B = A \overline{B} + \overline{A} B = \overline{A} B + A(\overline{B} \cdot 1 + B \cdot 0)$$

S1	S0	OUT
0	0	Α
0	1	В
1	0	С
1	1	D

3.

- 4. Figure 3.36 is a 2-input mux, which combinational logic i.e., D is the output of the circuit. Figure 3.37 is a storage element, which stores the data value previously stored in latch.
- 5. a. 3
 - b. 12
 - c. You can construct a tree-like structure:

Z=(A AND B)AND(C AND D) AND E

6.

7. $Z = A(C+D)+BD+\overline{B}C$

(warning:C and D can't be true at same time.)

A	В	С	D		ALARM
0	0	0	0	_	0
0	0	0	1	ĺ	0
0	0	1	0		1
0	0	1	1		x
0	1	0	0		0
0	1	0	1		1
0	1	1	0		0
0	1	1	1		x
1	0	0	0		0
1	0	0	1		1
1	0	1	0		1
1	0	1	1		x
1	1	0	0		0
1	1	0	1		1
1	1	1	0		1
1	1	1	1		x

8. a.

Α	В	G	E	L
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

b.
$$G = A\overline{B}$$
 $E = A\overline{B} + \overline{A}B$ $L = \overline{A}B$

- c. Y = G[3] + E[3]G[2] + E[3]E[2]G[1] + E[3]E[2]E[1]G[0]
- 9. Every 6 clock cycles a pattern repeats.

Because 50 = 6*8+2, after 50 cycles the state will be the same as after 2 cycles.

It will be in state 111000 after 50 cycles

10.

a.
$$(100*100)*4*100*4*101*2*901 = 2912032000000$$
.

 $2^41 < 2912032000000 < 2^42$ so we need **42 bits**

- b. Total 43 bits
 - 1. 7 x 2 bits
 - 2. 2 bits
 - 3. 7 bits
 - 4. 2 bits
 - 5. 7 bits
 - 6. 1 bit
 - 7. 4 bits for minutes 6 bits for seconds
- c. The assignments in part b are easier to decode.

11.

a. Since there are four floors, you will need 2 bits to represent a floor. Let the logic variable C[1:0] represent the current floor, R[1:0] represent the requested floor, and D[1:0] represent the floor the elevator should go to given a current floor and a requested floor. Shown below is the truth table for this combinational logic circuit.

C1	C0	R1	R0	D1	D0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	0

b.00 for 1^{st} floor,01 for 2^{nd} floor,10 for 3^{rd} floor,11 for 4^{th} floor.

