	Fields institute mini-course: Lecture 4 April 17, 2018
	Continuing with the solution of the ID Schroedinger - Poisson equations.
~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Todoy:
	- Quick summary
	- ID schroedinger-Equation — Eigensystem computation - Self-consistent iteration
	- Motlob (or Octore) sample code.
~	N-particle Schroedinger ->> Schroedinger - Poisson.
\sim	~
Last time	: * many models of systems involving QM behavior involve
	solving Prisson's equation and some form of Schroedingers
	equation
	> Me Senroedinger-Poissin equations are a system of
	equations where one con relatively easily develop
	experience with solution procedures for both of
	The types of equations. (For some problems it is a
	useful model to use) Also, by starting out with the
	ID Schroedinger - Poisson problem, one is working on a problem
	l a contract of the contract o
	whose solutions can be obtained quickly and get an understanding about practices and procedures to follow for ZD and SD prolaums
	_

GIVM a problem de arzid u=f with u(zn) = u(zs) =0 we know

how to create madvices so that an approximate solution is obtained by solving a matrix problem

Lu = Df

Using the same discretization technique we can construct matrices so that eigenfunctions of \$\omega\$ are obtained by solving the matrix eigenvolve problem

$$\begin{cases} x + DPu = xDu \\ y + DPu =$$

(K for kinetic) (P for pertential) diagonal matrix of mesh sizes.

This is a generalited eigenproblem becouse it's λ Dir and not λ id. There are standard wors to twn such problems in to standard eigenvalue problems - we'll use one that uses $D^{1/2}$.

$$\Rightarrow K \vec{D}^{\frac{1}{2}} \vec{v} + DP \vec{D}^{\frac{1}{2}} \vec{v} = \lambda \vec{D}^{\frac{1}{2}} \vec{v}$$

Con diagonal matrices commute.

$$\vec{k}\vec{v}$$
 + $\vec{P}\vec{v}$ = $\vec{x}\vec{v}$

so, solve (K+P)V = XV; MM $V_{ij} = D^{-1}kJ$ K=DKD => a symmetric tri-diagonal matrix I mentioned that it's important (or at least very insetul) when solving linear problems with self-asjoint operators that the matrices that arise in the discrete approximations be symmetric, when approximating eigenfunctions of self-adjoint operators it is very very important that the matrices are symmetric. Note: The discrete eigenvectors v; will be orthonormal with respect to the standard inner product < v, w>= & wivibut the rectors u; will in general not be, < up, v, > > Sing-However, <\vec{v},\vec{v}_0\) = \(\vec{v}_{P18} \Rightarrow < \vec{v} \D \vec{v}_P, \D \vec{v}_Q\) = <\vec{v}_P, \D \vec{v}_Q\) = \(\vec{v}_P, \D \vec{v}_Q\) = \(\vec{v}_P, \D \vec{v}_Q\) But (Tip, Drig) = Trapezoidol vale approximation to Sup(Z)Ug(Z) &Z. which is actually what we want, since we are letting the mesh.

Spacing. >0 we need a mesh weighted inner product (and now in),

Page 5 GK. One can inevertive create approximations to me solutions of each part of the IP Schroedinger - Poisson equations. $\Delta_{\mathcal{X}} \phi_{D} = - \beta_{P} \phi_{D}(Z_{A}) = g_{A} \phi_{D}(Z_{B}) = g_{B} \left(\Delta_{\mathcal{X}} = \frac{1}{42} \chi(Z_{A}) \Delta_{A} \right)$ (\mathcal{F}) $\Delta_{x}\tilde{\phi} = -\rho_{e} \tilde{\phi}(z_{s}) = 0$ Electro staticy Pe= & +; (2)+; W(FE,);) Eignsystm. (Am + [&+ do + do])+; = >; 4; (II) But they are coupled - and of and pe have to be self-consistent" To see this more clearly, I'm going to express operators at a higher level. Let dons = OB + OD. It need only be evaluated once. One can than formally write the salf-consistant solution as $d = -\Delta_{\chi} \rho e(\phi, \phi_{base})$ where $\rho e(\phi, \phi_{base})$ is the construction of pe by solving the eigenproblem using \$= \$ + \$ bose. of finding a self-consistent solution is one of solving a 'fixed point' problem. Simple iteration (or "fixed point iteration") takes the form ¢° given $\frac{\partial^{k+1}}{\partial x} = -\Delta_{x} P_{e}(\dot{\phi}^{k}, \dot{\phi}_{base})$ $\frac{\partial^{k}}{\partial x} = -\Delta_{x} P_{e}(\dot{\phi}^{k}, \dot{\phi}_{base})$

Sot \$= \$\psi + B_D + B_B \ \bar{k} iterate of converged \$\bar{\psi}\$.

Sometimes Mis doesn't converge - su you use a reloxation factor J.

Self-Consistent iteration with a relexation factor 8.

00 given

$$\phi^{x} = -\Delta_{x} \int_{\mathbb{R}^{2}} e(\phi^{x}, \phi_{base})$$

ØKN = (1-8) ØK + 8 Ø*

typically 821, so one is adding less of the most recently evaluated &

Problem: Haw do you pick T? Pick a volve, see what happens

This is not particularly efficient, and the values of of Mot lead to rapid convergence (if convergence at all) are problem dependent.

m Another approars "evolve" to the solution.

do Solve (22) $\frac{d\phi}{dt} = -\overrightarrow{A}_K Pe(\overrightarrow{\phi}, \phi_{base}) - \overrightarrow{\phi}$ to steely state.

m where did this idea come from?

$$\phi^{*} = -\Delta_{x} \int_{e}^{1} (d^{k}, d_{base}) \Rightarrow \phi^{k+1} - \phi^{k} = -\Delta_{x} \int_{e}^{1} (d^{k}) - \phi^{k}$$

$$\phi^{k+1} = (1-x)\phi^{k} + y\phi^{k} \Rightarrow \phi^{k+1} - \phi^{k} = -\Delta_{x} \int_{e}^{1} (d^{k}) - \phi^{k}$$

Farword Eular for (**)

so, observe $||\mathring{\phi}^{k}||$, $||\mathring{\phi}^{k+1}||$, $||\mathring{\phi}^{k+2}||$ - etc: and "roll back and refine the Homestep" when a guaraty sum as $||\mathring{\phi}^{k+1}|| - ||\mathring{\phi}^{k}||$) - $(||\mathring{\phi}^{k}|| - ||\mathring{\phi}^{k-1}||)$ is large

 ϕ^{k} ϕ^{k+1} ϕ^{k+2} ϕ^{k+3} ϕ^{k+2} ϕ^{k+3} ϕ^{k+2} ϕ^{k+3} ϕ^{k+4} ϕ^{k+3} ϕ^{k+4} ϕ^{k+2} ϕ^{k+4} ϕ^{k+4

Point: since we want to get to
steady state, we're not everly concerned with time accuracy along
the way - we try to prok dt as large as possible and
still have numerical stability.

https://github.com/canderson6151/SP1D.git

The sample code is written in matteb syntox, and runs in mattab or Octove.

It's an implementation of the discretization procedures and self-consistent solution procedure I've previously described.

- It's a type of code that I would typically develop/use while teaching.

Exercise #1: Using the scripts to create the sparse metrices
used to croate approximate solutions, think up a fest problem and
verify the accuracy and rate of convergence of the approximation.

Exercise #2: Validate the engansystim compatation. Verity accuracy and rate of convergence.

Exercise #3: Investigate the use of other ODE me thous to obtain the self-consistent solution.

But, we don't have time for the exercises, so you are just bring presented with the complete code. It's there fore an alpha" version, since the component validations heren't been completed.

Structure:

- x sof material properties, volves of physical constants. (nm, eV, sec)
- * specify layer structure and material proper tits
- * create sperse matrix representations of operators
- x Do some number of sets of forward Euler. D

_	Page
	When I started working on methods to simulate a grantum system,
	I was just shown the Schroddinger - Poisson equations. I too
	wondered how they were related to the other types of approximations. I'd heard about density functional theory, Hartree-Fock,
•	Ld heard about density tunctional theory, Hartree - tock,
	Without going into very great detail, a sketch of a 'derivation' is
	it of = HT H-particle sonvoidinger operator for electrons
_	in a potential VIX)
_	coattel coord-
	A Zuin coerd.
_	See solvhine = e + (r, r, v, o, o, o, o, o)
_	·
	⇒ Y sofisfies en eigenvolve problem HY= XY.
_	Solutions of A4 = x4?
1	Use a representation of t that is a product or sums of products of unctions of (\vec{r}, σ) $\vec{r} \in \mathbb{R}^3$ $\sigma \in \mathbb{Z}^2$. spin (bordinate)
1	
_	. Restrict to one special
_	Product representation of 4 product (single Stater determinant)
_	with undefermined >>> t
	coefficients use fact min $\lambda = min < 4 H + 5$ $24, + 5$
	11,
	Hartree- Fock equations
	1/01/11/2-10-1-2

If you ignore one type of from in Hartver-Fock >> Senruedwayer - Poisson.

If one likewith first undividual electrons with the functions in the product (the orbitals), then it really isn't a non-interacting approximation it's just that one is ignoring a particular type of interaction.

There are still electrostatic interaction ((olomb terms)) because of the I terms in the original Homiltonian.

 \sim

multi-dimensional Fourier approximation.

Equations for the coefficients => A very large matrix eigenproblem

Hc= >c

size grows very fast as

X (# particle) and M (# orbitals).

inrreases.

Today! 3D eignproblem on 100×100×100 guid > 10 besis functions.

Also, if you have problems where the potential isn't a nuclear.

potential then you may be able to get good results with a

small # of orbitals

(Nuclear potentials aren't very confining => . 4 s fill up more space => more functions to represent them).