1

AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS (NÚMEROS DE MOTZKIN)

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

• Os números de Motzkin1, 1, 2, 4, 9, 21, 51,... (https://oeis.org/A001006) são definidos pela seguinte relação de recorrência:

- Implemente uma função recursiva Motzkin(n) que use diretamente a relação de recorrência acima, sem qualquer simplificação.
- Construa um programa para executar a função **Motzkin(n)** para **sucessivos valores de n** e que permita **contar o número total de multiplicações efetuadas** para cada valor de n.
- Preencha a as primeiras colunas tabela seguinte com o resultado da função recursiva e o número de multiplicações efetuadas para os sucessivos valores de n.

n	Motzkin(n) – Versão Recursiva	Nº de Multiplicações	Motzkin(n) – Versão de Programação Dinâmica	Nº de Multiplicações
0	1	0	1	0
1	1	0	1	0
2	2	1	2	1
3	4	3	4	3
4	9	8	9	6
5	21	20	21	10
6	51	49	51	15
7	127	119	127	21
8	323	288	323	28
9	835	696	835	36
10	2188	1681	2188	45
11	5798	4059	5798	55
12	15511	9800	15511	66
13	41835	23660	41835	78
14	113634	57121	113634	91
15	310572	137903	310572	105

• Analisando os dados da tabela, estabeleça uma ordem de complexidade para a função recursiva.

Nº MEC: 93086

NOME: LÚCIA MARIA BESSA DE SOUSA

Programação Dinâmica

- Uma forma alternativa de resolver alguns problemas recursivos, para evitar o cálculo repetido de valores, consiste em efetuar esse cálculo de baixo para cima ("bottom-up"), ou seja, de Motzkin(0) para Motzkin(n), e utilizar um array para manter os valores entretanto calculados. Este método designa-se por programação dinâmica e reduz o tempo de cálculo à custa da utilização de mais memória para armazenar os valores intermédios.
- Usando **programação dinâmica**, implemente uma **função iterativa** para calcular Motzkin(n). **Não utilize um array global.**
- Construa um programa para executar a função iterativa que desenvolveu para **sucessivos valores de n** e que permita **contar o número de multiplicações efetuadas** para cada valor de n.
- Preencha as últimas colunas tabela anterior com o resultado da função iterativa e o número de multiplicações efetuadas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma **ordem de complexidade** para a **função iterativa**.

NOME: LÚCIA MARIA BESSA DE SOUSA Nº MEC: 93086

Função Recursiva - Análise Formal da Complexidade

• Escreva uma expressão recorrente (direta) para o número de multiplicações efetuadas pela função recursiva Motzkin(n). Obtenha, depois, uma expressão recorrente simplificada. Note que $\sum_{k=0}^{n-2} \text{Mult}(k) = \sum_{k=0}^{n-2} \text{Mult}(n-2-k)$. Sugestão: efetue a subtração Mult(n) – Mult(n-1).

• A equação de recorrência obtida é uma equação de recorrência linear não homogénea. Considere a correspondente equação de recorrência linear homogénea. Determine as raízes do seu polinómio característico. Sem determinar as constantes associadas, escreva a solução da equação de recorrência linear não homogénea.

multin)
$$\leq 2$$
 mult $(n-1) + mult (n \cdot 2)$
mult $(n) = 2mult (n-1) + mult (n-2)$
equações caracteristica : $x^2 - 2x - 1 = 0$
 $x = \frac{2 \pm \sqrt{(-2)^2 - 4x + x (-1)}}{2x \cdot 1}$ (=) $x = 1 + \sqrt{2}$ $v = 1 - \sqrt{2}$ (=) $v = 1 + \sqrt{2}$ $v = 1 - \sqrt{2}$ (=) $v = 1 + \sqrt{2}$ $v = 1 - \sqrt{2}$ (=) $v = 1 + \sqrt{2}$ $v = 1 - \sqrt{2}$ (=) $v = 1 + \sqrt{2}$ $v = 1 - \sqrt{2}$ (=) $v = 1 + \sqrt{2}$ v

Nº MEC: 93086

Nome: Lúcia Maria Bessa de Sousa

Usando a solução da equação de recorrência obtida acima, determine a ordem de complexidade do
número de multiplicações efetuadas pela função recursiva. Compare a ordem de complexidade que
acabou de obter com o resultado da análise experimental.

Da equação acima obtemos a seguinte expressão:

$$\rightarrow mult(n) = 2,414^n * C_1 + (-0,414)^n * C_2$$
, tal que $C_1, C_2 \in \mathbb{R}$;

Da tabela retiramos que:

```
\rightarrow \frac{\text{número de multiplicações}(i)}{\text{número de multiplicações}(i-1)} \approx 2,414;
```

Concluímos que, pela equação de recorrência e experimentalmente, a ordem de complexidade do número de multiplicações é exponencial, O(2,414ⁿ).

Programação Dinâmica - Análise Formal da Complexidade

 Considerando o número de multiplicações efetuadas pela função iterativa, efetue a análise formal da sua complexidade. Obtenha uma expressão exata e simplificada para o número de multiplicações efetuadas.

$$\text{mult(n)} = \sum_{k=2}^{n} \sum_{m=0}^{k-2} 1 = \sum_{k=2}^{n} (k-1) = \sum_{k=2}^{n} k - \sum_{k=2}^{n} 1 = \frac{(n-1)}{2} (n+2) - (n-1) = \frac{n^2 - n}{2}$$

 Usando a expressão obtida acima, determine a ordem de complexidade do número de multiplicações efetuadas pela função iterativa. Compare a ordem de complexidade que acabou de obter com o resultado da análise experimental.

A partir da expressão calculada, $\frac{n^2-n}{2}$, a ordem de complexidade do número de multiplicações é quadrática, $O(n^2)$, assim como foi concluído experimentalmente.

NOME: LÚCIA MARIA BESSA DE SOUSA Nº MEC: 93086