Tree searches for Sequential Ordering Problem

Contradicting conventional wisdom

<u>Luc Libralesso</u> - Abdel-Malik Bouhassoun - Hadrien Cambazard - Vincent Jost January, 30, 2020 - RealOpt Seminar

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France email: luc.libralesso@grenoble-inp.fr

Before starting

Please feel free to ask me questions at any time!

About the subtitle

Reference to [2]

Closing the open shop: Contradicting conventional wisdom (2009)

Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert

About the subtitle

Reference to [2]

Closing the open shop: Contradicting conventional wisdom (2009)

Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert

- solves the open shop (by the time, known to be hard)
- uses a simple CP model (weighted degree)
- learning which task is "hard" outperform sophisticated inferences.

About the subtitle

Reference to [2]

Closing the open shop: Contradicting conventional wisdom (2009)

Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert

- · solves the open shop (by the time, known to be hard)
- uses a simple CP model (weighted degree)
- learning which task is "hard" outperform sophisticated inferences.

we identify some simple components that outperform state-of-the-art (on the SOPLIB).

Table of contents

- 1. Context & Methodology
- 2. Sequential Ordering Problem
- 3. Wrapping-up

Context & Methodology

Conventional wisdom - Exact Methods and Metaheuristics

- Two ways to solve a problem
- Exact methods: MIPs, CP, Branch and Price ...

Conventional wisdom - Exact Methods and Metaheuristics

- Two ways to solve a problem
- Exact methods: MIPs, CP, Branch and Price ...
- · (Meta-)heuristics: local-search, evolutionary algorithms ...

Conventional wisdom - about Tree Search

Mathematical Programming Solver based on Local Search ([1]):

"Tree search approaches like branch-and-bound are in essence designed to prove optimality [...] Moreover, tree search has an exponential behavior which makes it not scalable faced with real-world combinatorial problems inducing millions of binary decisions."

Conventional wisdom - about Tree Search

Mathematical Programming Solver based on Local Search ([1]):

"Tree search approaches like branch-and-bound are in essence designed to prove optimality [...] Moreover, tree search has an exponential behavior which makes it not scalable faced with real-world combinatorial problems inducing millions of binary decisions."

We believe it is false considering anytime tree searches

Anytime tree searches - some (trivial) definitions

Tree searches: usually constructive algorithms (explore a tree)

Anytime tree searches - some (trivial) definitions

Tree searches: usually constructive algorithms (explore a tree)

Anytime: Find quickly good solutions, then later try to improve

them (similar to meta-heuristics)

Anytime tree searches

Many presented in AI/planning conferences

- some famous ones: LDS, Beam Search, wA* ...
- · some recent: Anytime pack search, Anytime Focal Search

Anytime tree searches

Many presented in AI/planning conferences

- · some famous ones: LDS, Beam Search, wA* ...
- · some recent: Anytime pack search, Anytime Focal Search

Sometimes in Operations Research (successful in Cutting & Packing)

Anytime tree searches

Many presented in AI/planning conferences

- · some famous ones: LDS, Beam Search, wA* ...
- · some recent: Anytime pack search, Anytime Focal Search

Sometimes in Operations Research (successful in Cutting & Packing)

Not used much compared to classical meta-heuristics (tabu search, genetic algorithms ...)

why anytime tree searches are not used more?

two hypothesis (on SOP):

- 1. They are not efficient?
- 2. They are underestimated?

We believe the latter is true

Our experiment

- We consider a well known benchmark (SOP)
- Apply anytime tree searches

Sequential Ordering Problem

Asymmetric Traveling Salesman Problem with precedence constraints

Asymmetric Traveling Salesman Problem with precedence constraints

• a,d,c,b,e is a feasible and costs 10

Asymmetric Traveling Salesman Problem with precedence constraints

- a,d,c,b,e is a feasible and costs 10
- a,b,c,d,e is not feasible

Asymmetric Traveling Salesman Problem with precedence constraints

- · a,d,c,b,e is a feasible and costs 10
- a,b,c,d,e is not feasible
- a,b,d,c,e is optimal and costs 6

The benchmark: SOPLIB

- proposed in 2006
- · Standard for meta-heuristics
- "large" instances (200 to 700 cities)
- · different densities (1, 15, 30, 60) % precedence constraints
- 15% precedence-dense instances remain open (7 instances)

The benchmark: SOPLIB

- · proposed in 2006
- · Standard for meta-heuristics
- "large" instances (200 to 700 cities)
- · different densities (1, 15, 30, 60) % precedence constraints
- 15% precedence-dense instances remain open (7 instances)

- 1% precedences are easy (using MIP + lazy constraints)
- · 15% precedences are "hard"
- 30% and 60% precedences are easy (solved by dynamic programming)

Literature

Many methods implemented during the 30 last years to solve SOP

- **Exact methods:** Branch and cuts
 - · Decision diagrams + CP
 - Branch & Bounds with advanced bounds/fathomings

Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods:

- Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/fathomings

Meta-heuristics:

- Local searches (3-opt)
- Ant Colony Optimization
- · Various searches (GA, ABC, parallel roll-out, LKH ...)

Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods:

- Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/fathomings

Meta-heuristics:

- Local searches (3-opt)
- Ant Colony Optimization
- · Various searches (GA, ABC, parallel roll-out, LKH ...)

- Exact methods tend to build stronger bounds
- meta-heuristics strongly rely on 3-opt (local search)

Tree Search

Two parts:

Implicit tree: how to branch, bounds ...

Search strategy: DFS, best-first, Beam Search ...

Forward branching

0(a)

Implicit tree - Branching

Forward branching

We consider 3 (simple) bounds:

Prefix bound: only arcs between selected vertices (previous example)

We consider 3 (simple) bounds:

Prefix bound: only arcs between selected vertices (previous example)

MST: compute a MST using remaining vertices

We consider 3 (simple) bounds:

Prefix bound: only arcs between selected vertices (previous example)

MST: compute a MST using remaining vertices

We consider 3 (simple) bounds:

Prefix bound: only arcs between selected vertices (previous example)

MST: compute a MST using remaining vertices

Out of our experiments, the prefix bound (despite its simplicity) provides the same guiding quality as other bounds. For simplicity, we only show results using it.

Depth First Search - Drawbacks

Stuck in early sub-optimal choices near the root

Limited Discrepancy Search (LDS) - key idea

Correct DFS drawback: early bad decisions

Explore more the most promising but still keep exploring others

Limited Discrepancy Search (LDS) - key idea

Correct DFS drawback: early bad decisions

Explore more the most promising but still keep exploring others

Limited Discrepancy Search (LDS) - key idea

Correct DFS drawback: early bad decisions

Explore more the most promising but still keep exploring others

Iterative Beam Search

- Runs a beam of size 1 (greedy)
- Then runs a beam of size 2, then 4, then 8 ...

Stops when no heuristic fathoming is done (proves optimality)

Prefix equivalence fathomings

Inspired from dynamic programming

Example, two partial equivalent¹ solutions:

- 1. **a,b,c,d** cost 10
- 2. **a,c,b,d** cost 12

Discard (2) as it is "dominated" by (1).

¹have the same sub-trees. The node contains the same subset of visited nodes and the same last vertex

Results - New best-so-far solutions

6 over 7 new-best-so-far solutions (the other one is probably optimal)

Instance	best known	BS+PE (600s)
R.500.100.15	5.284	5.261
R.500.1000.15	49.504	49.366
R.600.100.15	5.472	5.469
R.600.1000.15	55.213	54.994
R.700.100.15	7.021	7.020
R.700.1000.15	65.305	64.777

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: poor results. too many choices and too simple guides

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: poor results. too many choices and too simple guides

15% precedence constraints: state of the art. small number of choices (5 children per node in average)

How this simple tree search behaves on the SOPLIB:

- 1% precedence constraints: poor results. too many choices and too simple guides
- **15% precedence constraints:** state of the art. small number of choices (5 children per node in average)
- **30,60% precedence constraints:** depletes the search tree (proves optimality) in a few seconds. 10 to 100 faster than other exact methods.

How this simple tree search behaves on the SOPLIB:

- 1% precedence constraints: poor results. too many choices and too simple guides
- **15% precedence constraints:** state of the art. small number of choices (5 children per node in average)
- **30,60% precedence constraints:** depletes the search tree (proves optimality) in a few seconds. 10 to 100 faster than other exact methods.

The SOPLIB mainly contains heavily constrained instances:

- · hard for MIPs and local searches
- but (relatively) easy for constructive algorithms

How this simple tree search behaves on the SOPLIB:

- 1% precedence constraints: poor results. too many choices and too simple guides
- **15% precedence constraints:** state of the art. small number of choices (5 children per node in average)
- **30,60% precedence constraints:** depletes the search tree (proves optimality) in a few seconds. 10 to 100 faster than other exact methods.

The SOPLIB mainly contains heavily constrained instances:

- · hard for MIPs and local searches
- but (relatively) easy for constructive algorithms
- thus the need to consider anytime tree searches

Wrapping-up

Conclusions

 At least on the SOPLIB, anytime tree searches outperform classical meta-heuristics

Conclusions

- At least on the SOPLIB, anytime tree searches outperform classical meta-heuristics
- · The search-strategy choice is crucial

Conclusions

- At least on the SOPLIB, anytime tree searches outperform classical meta-heuristics
- · The search-strategy choice is crucial
- An analysis of the impact of each algorithmic component leads to interesting insights

My thesis (goal)

- · Study tree searches (from AI/planning, OR, and heuristics)
- Combine them and study their efficiency on OR problems

My thesis (goal)

- · Study tree searches (from AI/planning, OR, and heuristics)
- · Combine them and study their efficiency on OR problems
- · Results on SOP
- cutting & packing (EURO/ROADEF challenge and variants)

My thesis (goal)

- · Study tree searches (from AI/planning, OR, and heuristics)
- · Combine them and study their efficiency on OR problems
- · Results on SOP
- cutting & packing (EURO/ROADEF challenge and variants)
- · Generic tree search framework

Tree searches for Sequential Ordering Problem

Contradicting conventional wisdom

<u>Luc Libralesso</u> - Abdel-Malik Bouhassoun - Hadrien Cambazard - Vincent Jost January, 30, 2020 - RealOpt Seminar

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France email: luc.libralesso@grenoble-inp.fr

References

- [1] Frédéric Gardi, Thierry Benoist, Julien Darlay, Bertrand Estellon, and Romain Megel. *Mathematical programming solver based on local search*. Wiley Online Library, 2014.
- [2] Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert. Closing the open shop: Contradicting conventional wisdom. In International Conference on Principles and Practice of Constraint Programming, pages 400–408. Springer, 2009.