

Description

The HSM3214 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The HSM3214 meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

Product Summary

V _{DS}	30	V
RDS(ON),max	12	mΩ
lo	10	Α

Dual SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	Drain-Source Voltage 30	
Vgs	Gate-Source Voltage	±20	V
Id@Ta=25°C	Continuous Drain Current, Vgs @ 10V1	10	Α
Id@Ta=70°C	Continuous Drain Current, Vgs @ 10V1	8	А
Ірм	Pulsed Drain Current ₂	36	
EAS	Single Pulse Avalanche Energy ₃	Single Pulse Avalanche Energy ₃ 24.2	
las	Avalanche Current	22	А
Pd@Ta=25°C	Total Power Dissipation₄	Total Power Dissipation ₄ 1.5	
Тѕтс	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter		Max.	Unit
Reja	Thermal Resistance Junction-Ambient 1 85		°C/W	
ReJL	Thermal Resistance Junction-Case ₁		25	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVpss	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30			V	
△BVdss/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , I□=1mA		0.023		V/°C	
Descour	Static Drain-Source On-Resistance ₂	Vgs=10V , Ip=8A			12	mΩ	
RDS(ON)		Vgs=4.5V , ID=6A			18		
VGS(th)	Gate Threshold Voltage	V V I- 250	1.2		2.5	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	──Vgs=Vbs , lb =250uA		-5.08		mV/°C	
Ipss	Drain Source Leekege Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	- uA	
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5		
Igss	Gate-Source Leakage Current	Vgs=±20V, Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =8A		24		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω	
Qg	Total Gate Charge (4.5V)			9.63			
Qgs	Gate-Source Charge	Vps=15V , Vgs=4.5V , Ip=8A		3.88		nC	
Qgd	Gate-Drain Charge			3.44			
Td(on)	Turn-On Delay Time			4.2			
Tr	Rise Time	V_{DD} =15 V , V_{GS} =10 V , R_{G} =1.5 Ω		8.2			
Td(off)	Turn-Off Delay Time	ID=8A		31		ns	
Tf	Fall Time			4			
Ciss	Input Capacitance		760	940	1175		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz	92	131	163	pF	
Crss	Reverse Transfer Capacitance		76	109	153		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,5}	V _G =V _D =0V , Force Current			9	Α
Vsp	Diode Forward Voltage2	Vgs=0V , Is=1A , TJ=25°C			1	V
trr	Reverse Recovery Time	IF=8A , di/dt=100A/μs ,		8		nS
Qrr	Reverse Recovery Charge	T _J =25°C		2.9		nC

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is $V_{DD}=25V$, $V_{GS}=10V$, L=0.1 mH, $I_{AS}=22$ A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

HSM3214

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

Dual N-Ch 30V Fast Switching MOSFETs

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Ordering Information

Part Number	Package code Packaging	
HSM3214	SOP-8	4000/Tape&Reel

Symbol	Dimensions II	n Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°