第 1 讲: Advanced OS Overview

第三节: Rethink OS Components

陈渝

清华大学计算机系

yuchen@tsinghua.edu.cn

2020年2月15日

OS Overview

History of OS: Change!

Porperty	Element	1980	2020	Factor
Speed	CPU	1 MIPS	97,000 MIPS	9.7×10^{5}
	Memory	500 ns	0.4 ns	3.6×10^{3}
	Disk	18 ms	4 ms	2.2×10^{1}
	Network	300 b/sec	100 Gb/sec	3.3×10^{8}
Capacity	Memory	64 KB	1 TB	2.5×10^{5}
	Disk	1 MB	4 TB	4.0×10^{6}
Other	Address bits	8	64	8
	Users/machine	10	0.1	1.0×10^{-2}
Cost	Per MIP	\$100K/MIP	\$.007899	1.0×10^{7}

Roles of the OS

- OS depends on
 - available hardware and software
 - changing uses of machines
 - changing expectations of users

OS Concepts

- Single-Machine OS/VMM
 - Memory management
 - Process management
 - Synchronization
 - File systems and device support

OS Concepts

- Single-Machine OS/VMM
 - Memory management
 - Process management
 - Synchronization
 - File systems and device support
- Security
- Correctness
- Distributed System

Single-Machine OS/VMM

- Clean virtual machine
- Hardware independence
- Resource sharing and management
- Persistent Data Storage
- Protection
- Real time support
- Parallelism
- human interface

Single-Machine OS/VMM

Purposes

- Clean virtual machine
- Hardware independence
- Resource sharing and management
- Persistent Data Storage
- Protection
- Real time support
- Parallelism
- human interface

- How do we organize the OS effectively for development, evolution, performance, and security?
- How do we use multi- processor machines effectively?

Single-Machine: Memory Management

- Virtual memory: provides the illusion of infinite physical memory
- Swapping: moves processes to disk as necessary
- Paging: allows processes to run with only the active pages in memory
- Buffer Cache: speedup the IO access

Single-Machine: Memory Management

Purposes

- Virtual memory: provides the illusion of infinite physical memory
- Swapping: moves processes to disk as necessary
- Paging: allows processes to run with only the active pages in memory
- Buffer Cache: speedup the IO access

- How do we coordinate machines to share memory?
- How can we simplify memory management as memory becomes abundant?

Single-Machine: Process Scheduling

- Provides the illusion of multiple processes running at the same time on a single processor
- Context switching: changing the attention of the processor
 - Involves saving and restoring states
 - Necessary to cross kernel boundary

Single-Machine: Process Scheduling

Purposes

- Provides the illusion of multiple processes running at the same time on a single processor
- Context switching: changing the attention of the processor
 - Involves saving and restoring states
 - Necessary to cross kernel boundary

- How do we achieve fairness, high throughput, and responsiveness at the same time?
- How do we reduce or avoid the cost of context switching?

Single-Machine: Synchronization

Purposes

 Provides correct execution or coordinating threads in the face of arbitrary context switching

Single-Machine: Synchronization

Purposes

 Provides correct execution or coordinating threads in the face of arbitrary context switching

- Atomic actions: all or nothing
- Mutual exclusion: one thread in the critical section at a time
- Semaphores: atomic, counterbased locks
- Avoid Deadlock: circular waiting on resources

Single-Machine: File Systems

- Purposes
 - File: data + attributes
 - File system services:
 - Organization
 - Naming
 - Access
 - Synchronization
 - Protection and security

Single-Machine: File Systems

- Purposes
 - File: data + attributes
 - File system services:
 - Organization
 - Naming
 - Access
 - Synchronization
 - Protection and security

- How do we make different file systems work together, even across machines?
- How do we provide consistency, availability, and reliability to copies of a file across multiple machines?
- How do we handle very large data sets?

Single-Machine: I/O Device

- I/O devices tend to be a lot slower than memory speed
- Caching: stores extra data in memory in hope of near-term reuse

Single-Machine: I/O Device

- Purposes
 - I/O devices tend to be a lot slower than memory speed
 - Caching: stores extra data in memory in hope of near-term reuse

- How do we coordinate the memory resources across machines to enhance performance?
- How do we handle new devices with new characteristics?