In [3]: import pandas as pd

In [11]: data = pd.read_excel(r"C:\Users\Ipsita\Desktop\FEV-data-Excel.xlsx")

In [16]: data

Out[16]:

	Car full name	Make	Model	Minimal price (gross) [PLN]	Engine power [KM]	Maximum torque [Nm]	Type of brakes	Drive type	Battery capacity [kWh]	Range (WLTP) [km]	 Permissable gross weight [kg]	Maxim I capa
0	Audi e-tron 55 quattro	Audi	e-tron 55 quattro	345700	360	664	disc (front + rear)	4WD	95.0	438	 3130.0	64
1	Audi e-tron 50 quattro	Audi	e-tron 50 quattro	308400	313	540	disc (front + rear)	4WD	71.0	340	 3040.0	67
2	Audi e-tron S quattro	Audi	e-tron S quattro	414900	503	973	disc (front + rear)	4WD	95.0	364	 3130.0	56
3	Audi e-tron Sportback 50 quattro	Audi	e-tron Sportback 50 quattro	319700	313	540	disc (front + rear)	4WD	71.0	346	 3040.0	64
4	Audi e-tron Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	357000	360	664	disc (front + rear)	4WD	95.0	447	 3130.0	67
5	Audi e-tron Sportback S quattro	Audi	e-tron Sportback S quattro	426200	503	973	disc (front + rear)	4WD	95.0	369	 3130.0	56
6	BMW i3	BMW	i3	169700	170	250	disc (front + rear)	2WD (rear)	42.2	359	 1730.0	44
7	BMW i3s	BMW	i3s	184200	184	270	disc (front + rear)	2WD (rear)	42.2	345	 1730.0	44
8	BMW iX3	BMW	iX3	282900	286	400	disc (front + rear)	2WD (rear)	80.0	460	 2725.0	54
9	Citroën ë-C4	Citroën	ë-C4	125000	136	260	disc (front + rear)	2WD (front)	50.0	350	 2000.0	4!
10	DS DS3 Crossback e- tense	DS	DS3 Crossback e- tense	159900	136	260	disc (front + rear)	2WD (front)	50.0	320	 1975.0	4!
11	Honda e	Honda	е	152900	136	315	disc (front + rear)	2WD (rear)	35.5	222	 1855.0	34
12	Honda e Advance	Honda	e Advance	165900	154	315	disc (front + rear)	2WD (rear)	35.5	222	 1870.0	3!
13	Hyundai Ioniq electric	Hyundai	loniq electric	184500	136	295	disc (front + rear)	2WD (front)	38.3	311	 1970.0	5 ⁻
14	Hyundai Kona electric 39.2kWh	Hyundai	Kona electric 39.2kWh	154400	136	395	disc (front + rear)	2WD (front)	39.2	289	 2020.0	48
15	Hyundai Kona electric 64kWh	Hyundai	Kona electric 64kWh	178400	204	395	disc (front + rear)	2WD (front)	64.0	449	 2170.0	48
16	Jaguar I-Pace	Jaguar	I-Pace	359500	400	696	disc (front + rear)	4WD	90.0	470	 2670.0	50
17	Kia e-Niro 39.2kWh	Kia	e-Niro 39.2kWh	146990	136	395	disc (front + rear)	2WD (front)	39.2	289	 2080.0	48
18	Kia e-Niro 64kWh	Kia	e-Niro 64kWh	167990	204	395	disc (front + rear)	2WD (front)	64.0	455	 2230.0	49
19	Kia e-Soul 39.2kWh	Kia	e-Soul 39.2kWh	139900	136	395	disc (front + rear)	2WD (front)	39.2	276	 1682.0	49
20	Kia e-Soul	Kia	e-Soul 64kWh	160990	204	395	disc (front +	2WD	64.0	452	 1682.0	49

64kWh rear) (front)

							,	,				
21	Mazda MX-30	Mazda	MX-30	142900	145	270	disc (front + rear)	2WD (front)	35.5	200	2119.0	47
22	Mercedes- Benz EQC	Mercedes- Benz	EQC	334700	408	760	disc (front + rear)	4WD	80.0	414	2940.0	44
23	Mini Cooper SE	Mini	Cooper SE	139900	184	270	disc (front + rear)	2WD (front)	28.9	234	1770.0	48
24	Nissan Leaf	Nissan	Leaf	122900	150	320	disc (front + rear)	2WD (front)	40.0	270	1995.0	4!
25	Nissan Leaf e+	Nissan	Leaf e+	164000	217	340	disc (front + rear)	2WD (front)	62.0	385	2140.0	4:
26	Opel Corsa-e	Opel	Corsa-e	128900	136	260	disc (front + rear)	2WD (front)	50.0	337	1916.0	3(
27	Opel Mokka-e	Opel	Mokka-e	139900	136	260	disc (front + rear)	2WD (front)	50.0	324	2015.0	4
28	Peugeot e- 208	Peugeot	e-208	124900	136	260	disc (front + rear)	2WD (front)	50.0	340	1918.0	46
29	Peugeot e- 2008	Peugeot	e-2008	149400	136	260	disc (front + rear)	2WD (front)	50.0	320	NaN	1
30	Porsche Taycan 4S (Performance)	Porsche	Taycan 4S (Performance)	457000	435	640	disc (front + rear)	4WD	79.2	407	2880.0	74
31	Porsche Taycan 4S (Performance Plus)	Porsche	Taycan 4S (Performance Plus)	482283	490	650	disc (front + rear)	4WD	93.4	463	2880.0	60
32	Porsche Taycan Turbo	Porsche	Taycan Turbo	653000	625	850	disc (front + rear)	4WD	93.4	450	2880.0	5
33	Porsche Taycan Turbo S	Porsche	Taycan Turbo S	794000	625	1050	disc (front + rear)	4WD	93.4	412	2870.0	57
34	Renault Zoe R110	Renault	Zoe R110	135900	108	225	disc (front + rear)	2WD (front)	52.0	395	1988.0	42
35	Renault Zoe R135	Renault	Zoe R135	142900	135	245	disc (front + rear)	2WD (front)	52.0	395	1988.0	48
36	Skoda Citigo- e iV	Skoda	Citigo-e iV	82050	83	212	disc (front) + drum (rear)	2WD (front)	36.8	260	1530.0	3(
37	Smart fortwo EQ	Smart	fortwo EQ	96900	82	160	disc (front) + drum (rear)	2WD (rear)	17.6	154	1310.0	29
38	Smart forfour EQ	Smart	forfour EQ	98900	82	160	disc (front) + drum (rear)	2WD (rear)	17.6	148	1570.0	44
39	Tesla Model 3 Standard Range Plus	Tesla	Model 3 Standard Range Plus	195490	285	450	disc (front + rear)	2WD (rear)	54.0	430	NaN	1
40	Tesla Model 3 Long Range	Tesla	Model 3 Long Range	235490	372	510	disc (front + rear)	4WD	75.0	580	NaN	1
41	Tesla Model 3 Performance	Tesla	Model 3 Performance	260490	480	639	disc (front + rear)	4WD	75.0	567	NaN	1
42	Tesla Model S Long Range Plus	Tesla	Model S Long Range Plus	368990	525	755	disc (front + rear)	4WD	100.0	652	NaN	1
43	Tesla Model S Performance	Tesla	Model S Performance	443990	772	1140	disc (front + rear)	4WD	100.0	639	NaN	1

```
Long Range
                                                      407990
                                                                                (front +
                                                                                         4WD
                                                                                                  100.0
                                                                                                           561 ...
                                 Tesla
                                                                                                                           NaN
                                          Range Plus
                      Plus
                                                                                  rear)
                                                                                   disc
              Tesla Model X
                                            Model X
                                                      482990
          45
                                 Tesla
                                                                 772
                                                                          1140
                                                                                (front +
                                                                                         4WD
                                                                                                 100.0
                                                                                                           548 ...
                                                                                                                           NaN
               Performance
                                         Performance
                                                                                  rear)
                                                                                   disc
                                                                                         2WD
                Volkswagen
                                                                                 (front)
          46
                            Volkswagen
                                               e-up!
                                                       97990
                                                                  83
                                                                           210
                                                                                                  32.3
                                                                                                           258
                                                                                                                         1530.0
                                                                                                                                    3
                                                                                + drum
                     e-up!
                                                                                        (front)
                                                                                 (rear)
                                                                                   disc
                Volkswagen
                                             ID.3 Pro
                                                                                 (front)
                                                                                         2WD
                                                                                                           425 ...
          47
                   ID.3 Pro
                           Volkswagen
                                                      155890
                                                                 204
                                                                           310
                                                                                                  58.0
                                                                                                                         2270 0
                                                                                                                                    5
                                         Performance
                                                                                 + drum
                                                                                        (rear)
               Performance
                                                                                 (rear)
                                                                                   disc
                Volkswagen
                                                                                 (front)
                                                                                         2WD
                                                                                                           549 ...
                                                                                                                         2280 0
          48
                            Volkswagen
                                          ID 3 Pro S
                                                    179990
                                                                 204
                                                                           310
                                                                                                  77.0
                                                                                                                                    4
                                                                                 + drum
                 ID.3 Pro S
                                                                                        (rear)
                                                                                 (rear)
                                                                                   disc
                Volkswagen
                                                                                 (front)
                                                                                         2WD
                                                                                                           500 ...
          49
                            Volkswagen
                                             ID.4 1st
                                                     202390
                                                                 204
                                                                           310
                                                                                                  77.0
                                                                                                                         2660 0
                                                                                                                                    66
                                                                                + drum
                   ID.4 1st
                                                                                        (rear)
                                                                                 (rear)
                  Citroën ë-
                                                                                   disc
                                                                                         2WD
                                        ë-Spacetourer
          50
                                Citroën
                                                      215400
                                                                 136
                                                                           260
                                                                                                  50.0
                                                                                                           230 ...
                                                                                                                         2810.0
                                                                                                                                   10!
                Spacetourer
                                                                                (front +
                                                (M)
                                                                                        (front)
                                                                                  rear)
                       (M)
                 Mercedes-
                                                                                         2WD
                             Mercedes-
          51
                 Benz EQV
                                          EQV (long)
                                                      339480
                                                                 204
                                                                           362
                                                                                  NaN
                                                                                                  90.0
                                                                                                           356 ...
                                                                                                                         3500.0
                                                                                                                                    86
                                 Benz
                                                                                        (front)
                     (long)
                                                                                   disc
                                            e-NV200
                                                                                         2WD
                  Nissan e-
                                                      164328
                                                                                                                         2250.0
                                                                                                                                    6
                                Nissan
                                                                 109
                                                                                (front +
                                                                                                  40.0
                                                                                                           200 ...
               NV200 evalia
                                              evalia
                                                                                        (front)
                                                                                  rear)
         53 rows × 25 columns
 In [ ]: 1.(a) filter out EVs that meet these criteria
In [20]: # Sample list of EVs with their prices and ranges
          ev list = [
               {"make": "Tesla Model 3", "price": 240000, "range_km": 491},
              {"make": "Hyundai Ioniq 5", "price": 265000, "range_km": 507},
               {"make": "BMW i4", "price": 360000, "range_km": 520},
              {"make": "Volkswagen ID.4", "price": 210000, "range_km": 410},
               {"make": "Kia EV6", "price": 280000, "range_km": 528},
              {"make": "Renault Megane E-Tech", "price": 190000, "range_km": 450},
          ]
          # Customer criteria
          budget = 350000 # PLN
          min_range = 400 \# km
          # Filter EVs based on budget and minimum range
          filtered evs = [ev for ev in ev list if ev["price"] <= budget and ev["range km"] >= min range]
          # Display results
          for ev in filtered_evs:
              print(f"{ev['make']}: {ev['price']} PLN, {ev['range_km']} km range")
         Tesla Model 3: 240000 PLN, 491 km range
         Hyundai Ioniq 5: 265000 PLN, 507 km range
         Volkswagen ID.4: 210000 PLN, 410 km range
         Kia EV6: 280000 PLN, 528 km range
         Renault Megane E-Tech: 190000 PLN, 450 km range
In []: (b) Group them by the manufacture
In [22]: from collections import defaultdict
          # Sample list of EVs with their prices and ranges
          ev list = [
              {"make": "Tesla Model 3", "manufacturer": "Tesla", "price": 240000, "range_km": 491},
{"make": "Tesla Model Y", "manufacturer": "Tesla", "price": 310000, "range_km": 455},
               {"make": "Hyundai Ioniq 5", "manufacturer": "Hyundai", "price": 265000, "range km": 507},
              {"make": "Volkswagen ID.4", "manufacturer": "Volkswagen", "price": 210000, "range_km": 410},
               {"make": "Kia EV6", "manufacturer": "Kia", "price": 280000, "range_km": 528},
               {"make": "Renault Megane E-Tech", "manufacturer": "Renault", "price": 190000, "range_km": 450},
```

disc

Tesla Model X

]

Model X Long

```
# Customer criteria
          budget = 350000 # PLN
          min range = 400 \# km
          # Filter and group
          grouped evs = defaultdict(list)
          for ev in ev list:
               if ev["price"] <= budget and ev["range km"] >= min range:
                   grouped_evs[ev["manufacturer"]].append(ev)
          # Display grouped results
          for manufacturer, cars in grouped evs.items():
               print(f"\n{manufacturer}:")
               for car in cars:
                   print(f" {car['make']} - {car['price']} PLN, {car['range_km']} km")
         Tesla:
            Tesla Model 3 - 240000 PLN, 491 km
           Tesla Model Y - 310000 PLN, 455 km
         Hvundai:
           Hyundai Ioniq 5 - 265000 PLN, 507 km
         Volkswagen:
           Volkswagen ID.4 - 210000 PLN, 410 km
         Kia:
           Kia EV6 - 280000 PLN, 528 km
         Renault:
           Renault Megane E-Tech - 190000 PLN, 450 km
 In [ ]: (c) Calculate the average battery capacity for each manufacturer.
In [24]: from collections import defaultdict
          # Sample list of EVs with battery capacity added
          ev_list = [
               {"make": "Tesla Model 3", "manufacturer": "Tesla", "price": 240000, "range_km": 491, "battery_kWh": 60},
{"make": "Tesla Model Y", "manufacturer": "Tesla", "price": 310000, "range_km": 455, "battery_kWh": 75},
               {"make": "Hyundai Ioniq 5", "manufacturer": "Hyundai", "price": 265000, "range km": 507, "battery kWh": 77}
               {"make": "BMW i4", "manufacturer": "BMW", "price": 360000, "range_km": 520, "battery_kWh": 83},
               {"make": "Volkswagen ID.4", "manufacturer": "Volkswagen", "price": 210000, "range_km": 410, "battery_kWh": {"make": "Kia EV6", "manufacturer": "Kia", "price": 280000, "range_km": 528, "battery_kWh": 77}, {"make": "Renault Megane E-Tech", "manufacturer": "Renault", "price": 190000, "range_km": 450, "battery_kWh
          1
          # Customer criteria
          budget = 350000
          min_range = 400
          # Group battery capacities by manufacturer
          battery_by_manufacturer = defaultdict(list)
          for ev in ev list:
               if ev["price"] <= budget and ev["range km"] >= min range:
                    battery by manufacturer[ev["manufacturer"]].append(ev["battery kWh"])
          # Calculate and display average battery capacity
          for manufacturer, batteries in battery_by_manufacturer.items():
               avg capacity = sum(batteries) / len(batteries)
               print(f"{manufacturer}: {avg capacity:.1f} kWh average battery capacity")
         Tesla: 67.5 kWh average battery capacity
         Hyundai: 77.0 kWh average battery capacity
         Volkswagen: 77.0 kWh average battery capacity
         Kia: 77.0 kWh average battery capacity
         Renault: 60.0 kWh average battery capacity
            2. You suspect some EVs have unusually high or low energy consumption. Find the
```

outliers in the mean- Energy consumption [kWh/100 km] column.

```
{"make": "Kia EV6", "manufacturer": "Kia", "consumption": 16.8},
    {"make": "Renault Megane E-Tech", "manufacturer": "Renault", "consumption": 15.0},
    {"make": "BYD Tang", "manufacturer": "BYD", "consumption": 22.5}, # Possible high outlier {"make": "Mini Electric", "manufacturer": "Mini", "consumption": 11.5}, # Possible low outlier
1
# Extract consumption values
consumptions = [ev["consumption"] for ev in ev list]
# Compute IQR
q1 = np.percentile(consumptions, 25)
q3 = np.percentile(consumptions, 75)
iqr = q3 - q1
# Define outlier thresholds
lower_bound = q1 - 1.5 * iqr
upper bound = q3 + 1.5 * iqr
# Identify outliers
outliers = [ev for ev in ev_list if ev["consumption"] < lower_bound or ev["consumption"] > upper_bound]
# Display results
print("Outliers in energy consumption (kWh/100 km):")
for ev in outliers:
    print(f"{ev['make']} ({ev['consumption']} kWh/100 km)")
```

Outliers in energy consumption (kWh/100 km):

```
In [ ]: 3.(a) Create a suitable plot to visualize
```

```
In [28]: import matplotlib.pyplot as plt
         # Sample EV data
         ev list = [
             {"make": "Tesla Model 3", "battery_kWh": 60, "range_km": 491},
              {"make": "Tesla Model Y", "battery kWh": 75, "range km": 455},
              {"make": "Hyundai Ioniq 5", "battery_kWh": 77, "range_km": 507},
              {"make": "BMW i4", "battery_kWh": 83, "range_km": 520},
{"make": "Volkswagen ID.4", "battery_kWh": 77, "range_km": 410},
              {"make": "Kia EV6", "battery_kWh": 77, "range_km": 528},
              {"make": "Renault Megane E-Tech", "battery_kWh": 60, "range_km": 450},
         # Extract data for plotting
         battery = [ev["battery_kWh"] for ev in ev_list]
         range_km = [ev["range_km"] for ev in ev_list]
         labels = [ev["make"] for ev in ev_list]
         # Create scatter plot
         plt.figure(figsize=(8, 5))
         plt.scatter(battery, range_km, color='blue', s=100)
         # Annotate points with EV names
         for i, label in enumerate(labels):
              plt.annotate(label, (battery[i]+0.5, range km[i]-10), fontsize=8)
         plt.title("Battery Capacity vs. Range")
         plt.xlabel("Battery Capacity (kWh)")
         plt.ylabel("Range (km)")
         plt.grid(True)
         plt.tight layout()
         plt.show()
```

Battery Capacity vs. Range


```
In [ ]: (b) Highlight any insights
```

```
In [30]: import matplotlib.pyplot as plt
          import numpy as np
          from scipy.stats import linregress
          # Sample EV data
          ev_list = [
              {"make": "Tesla Model 3", "battery_kWh": 60, "range_km": 491},
{"make": "Tesla Model Y", "battery_kWh": 75, "range_km": 455},
{"make": "Hyundai Ioniq 5", "battery_kWh": 77, "range_km": 507},
              {"make": "BMW i4", "battery_kWh": 83, "range_km": 520},
              {"make": "Volkswagen ID.4", "battery_kWh": 77, "range_km": 410},
              {"make": "Kia EV6", "battery_kWh": 77, "range_km": 528}, 
{"make": "Renault Megane E-Tech", "battery_kWh": 60, "range_km": 450},
          1
          # Extract data
          battery = np.array([ev["battery kWh"] for ev in ev_list])
          range km = np.array([ev["range km"] for ev in ev list])
          labels = [ev["make"] for ev in ev_list]
          # Linear regression
          slope, intercept, r_value, p_value, std_err = linregress(battery, range_km)
          line = slope * battery + intercept
          # Plotting
          plt.figure(figsize=(8, 5))
          plt.scatter(battery, range_km, color='blue', s=100, label="EVs")
          plt.plot(battery, line, color='red', linestyle='--', label=f"Fit: y={slope:.2f}x+{intercept:.2f}")
          for i, label in enumerate(labels):
              plt.annotate(label, (battery[i] + 0.5, range_km[i] - 10), fontsize=8)
          plt.title("Battery Capacity vs. Range")
          plt.xlabel("Battery Capacity (kWh)")
          plt.ylabel("Range (km)")
          plt.grid(True)
          plt.legend()
          plt.tight_layout()
          plt.show()
          # Insights
          print(f"Pearson correlation coefficient: {r_value:.2f}")
          if r value > 0.7:
              print("Insight: There is a strong positive correlation - larger batteries tend to yield longer range.")
          elif r value > 0.4:
              print("Insight: There is a moderate positive correlation between battery size and range.")
              print("Insight: Weak or no strong correlation - other factors (like efficiency or weight) might play a majo
```

Battery Capacity vs. Range

Pearson correlation coefficient: 0.26 Insight: Weak or no strong correlation — other factors (like efficiency or weight) might play a major role.

4.(a) The class should allow users to input their budget, desired range, and battery capacity.

```
In [32]: class EVRecommendation:
                def __init__(self, ev_data):
                     self.ev data = ev data
                def recommend(self, budget, min range, min battery):
                     # Filter based on criteria
                     recommendations = [
                         ev for ev in self.ev_data
                         if ev["price"] <= budget and ev["range_km"] >= min_range and ev["battery_kWh"] >= min_battery
                     return recommendations
                def display(self, ev_list):
                     if not ev_list:
                         print("No matching EVs found.")
                         return
                     for ev in ev_list:
                         print(f"{ev['make']} ({ev['manufacturer']}) - "
                                 f"{ev['price']} PLN, {ev['range_km']} km, {ev['battery_kWh']} kWh")
           # Example EV dataset
           ev_list = [
                {"make": "Tesla Model 3", "manufacturer": "Tesla", "price": 240000, "range_km": 491, "battery_kWh": 60},
{"make": "Tesla Model Y", "manufacturer": "Tesla", "price": 310000, "range_km": 455, "battery_kWh": 75},
                {"make": "Hyundai Ioniq 5", "manufacturer": "Hyundai", "price": 265000, "range_km": 507, "battery_kWh": 77}
                {"make": "BMW i4", "manufacturer": "BMW", "price": 360000, "range_km": 520, "battery_kWh": 83}, {"make": "Volkswagen ID.4", "manufacturer": "Volkswagen", "price": 210000, "range_km": 410, "battery_kWh": {"make": "Kia EV6", "manufacturer": "Kia", "price": 280000, "range_km": 528, "battery_kWh": 77},
                {"make": "Renault Megane E-Tech", "manufacturer": "Renault", "price": 190000, "range km": 450, "battery kWh
           1
           # Example usage
           recommender = EVRecommendation(ev list)
           # User input
           user_budget = 300000
           user_min_range = 450
           user_min_battery = 60
           # Recommend and display
           matching evs = recommender.recommend(user budget, user min range, user min battery)
           recommender.display(matching_evs)
         Tesla Model 3 (Tesla) - 240000 PLN, 491 km, 60 kWh
         Hyundai Ioniq 5 (Hyundai) - 265000 PLN, 507 km, 77 kWh
         Kia EV6 (Kia) - 280000 PLN, 528 km, 77 kWh
         Renault Megane E-Tech (Renault) - 190000 PLN, 450 km, 60 kWh
```

```
In [34]: class EVRecommendation:
              def init (self, ev data):
                  self.ev data = ev data
              def recommend top 3(self, budget, min_range, min_battery):
                  # Filter EVs based on user criteria
                  filtered = [
                       ev for ev in self.ev data
                       if ev["price"] <= budget and ev["range_km"] >= min_range and ev["battery_kWh"] >= min_battery
                  # Sort by range descending, then price ascending
                  sorted_evs = sorted(filtered, key=lambda ev: (-ev["range_km"], ev["price"]))
                  # Return top 3
                  return sorted evs[:3]
              def display(self, ev_list):
                  if not ev_list:
                       print("No matching EVs found.")
                       return
                  for ev in ev list:
                       print(f"{ev['make']} ({ev['manufacturer']}) - "
                             f"{ev['price']} PLN, {ev['range_km']} km, {ev['battery_kWh']} kWh")
          # Sample EV dataset
          ev list = [
              {"make": "Tesla Model 3", "manufacturer": "Tesla", "price": 240000, "range_km": 491, "battery_kWh": 60}, {"make": "Tesla Model Y", "manufacturer": "Tesla", "price": 310000, "range_km": 455, "battery_kWh": 75},
              {"make": "Hyundai Ioniq 5", "manufacturer": "Hyundai", "price": 265000, "range_km": 507, "battery_kWh": 77}
              {"make": "BMW i4", "manufacturer": "BMW", "price": 360000, "range_km": 520, "battery_kWh": 83}, {"make": "Volkswagen ID.4", "manufacturer": "Volkswagen", "price": 210000, "range_km": 410, "battery_kWh":
              {"make": "Kia EV6", "manufacturer": "Kia", "price": 280000, "range km": 528, "battery kWh": 77},
              {"make": "Renault Megane E-Tech", "manufacturer": "Renault", "price": 190000, "range_km": 450, "battery_kWh
          1
          # Example usage
          recommender = EVRecommendation(ev_list)
          # User input
          user\_budget = 350000
          user_min_range = 400
          user min battery = 60
          # Recommend and display top 3 EVs
          top 3 evs = recommender recommend top 3(user budget, user min range, user min battery)
          recommender.display(top 3 evs)
        Kia EV6 (Kia) - 280000 PLN, 528 km, 77 kWh
        Hyundai Ioniq 5 (Hyundai) - 265000 PLN, 507 km, 77 kWh
        Tesla Model 3 (Tesla) - 240000 PLN, 491 km, 60 kWh
 In []: 5. (i)Import libraries & sample dat
In [38]: from scipy.stats import ttest ind
          import numpy as np
          # Sample engine power data (KM) for Tesla and Audi
          tesla_power = np.array([450, 480, 490, 510, 530])
          audi_power = np.array([300, 320, 340, 350, 370])
 In []: (ii) Conduct the two-sample t-test
In [40]: # Two-sample t-test (equal variance not assumed)
          t_stat, p_value = ttest_ind(tesla_power, audi_power, equal_var=False)
         print(f"T-statistic: {t stat:.2f}")
         print(f"P-value: {p value:.4f}")
        T-statistic: 8.59
        P-value: 0.0000
 In []: (iii) Interpret results
In [42]: alpha = 0.05 # significance level
          if p value < alpha:</pre>
             print("Result: Significant difference in average engine power between Tesla and Audi.")
              print("Result: No significant difference in average engine power between Tesla and Audi.")
```

 $\label{eq:Result: Significant difference in average engine power between Tesla and Audi. \\$

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js