1 Transformée de Fourier

Remarque : dans cet exercice, les intégrales considérées sont des intégrales de Lebesgue par rapport à la mesure de Lebesgue.

1. Soit $\lambda > 0$. On pose $f_{\lambda}(x) = e^{-\lambda |x|}$ pour $x \in \mathbb{R}$. Calculer sa transformée de Fourier \widehat{f}_{λ} (on demande un calcul explicite, et pas seulement de fournir le résultat donné par une table ou autre).

On cherche maintenant les fonctions g de $L^1(\mathbb{R})$ telles que, pour tout $x \in \mathbb{R}$,

$$g(x) = e^{-|x|} + \alpha \int_{\mathbb{R}} e^{-|x-t|} g(t) dt \tag{1}$$

où α est un réel quelconque.

- 2. Ecrire cette équation sous la forme d'une équation faisant intervenir un produit de convolution.
- 3. En utilisant la transformée de Fourier, exprimer \hat{g} en fonction de \hat{f}_1 .
- 4. En déduire qu'il existe une solution à l'équation (1) si et seulement si $\alpha < \frac{1}{2}$. Aide : on utilisera le fait qu'une transformée de Fourier d'une fonction de $L^1(\mathbb{R})$ est nécessairement continue sur \mathbb{R} .
- 5. Montrer alors que pour $\alpha < \frac{1}{2}$, cette solution est unique, et la déterminer.

2 Distributions : transformée de Fourier d'une distribution homogène

Soit φ une fonction quelconque de $S(\mathbb{R})$. Soit $\alpha > 0$. On note φ_{α} la fonction définie par : $\varphi_{\alpha}(x) = \varphi(\alpha x)$, $\forall x \in \mathbb{R}$. On dit qu'une distribution T de $S'(\mathbb{R})$ est homogène de degré d si et seulement si :

$$\forall \varphi \in \mathcal{S}(\mathbb{R}), \quad \langle T, \varphi_{\alpha} \rangle = \alpha^{-(d+1)} \langle T, \varphi \rangle$$

- 1. Exprimer $\widehat{\varphi}_{\alpha}$ en fonction de $\widehat{\varphi}$.
- 2. Montrer alors, en calculant $\langle \widehat{T}, \varphi_{\alpha} \rangle$, que si T est homogène de degré d, alors \widehat{T} est homogène, d'un degré que l'on précisera.