

EXAMEN PARCIAL DE FUNDAMENTOS DE COMPUTADORES

CURSO 2016-17, PRIMER PARCIAL, SEPTIEMBRE DE 2017

- (1 punto)Dados los siguientes números: A= +31₁₀, B=-11110₂, C=+7₈ y D=+F₁₆.
 a)(0,5 puntos) Exprese los cuatro números con el mismo número de bits en representación en complemento a dos.
 - b) (0,5 puntos) Efectúe las operaciones A+D y B-C en complemento a dos, indicando si existe o no desbordamiento o acarreo.
- (2,5 puntos) sea un circuito combinacional que tiene una entradas de cuatro bits codificada en exceso a tres y dos salidas una que representa un dígito codificado en BCD y otra que es una señal de error E. El circuito se comporta de la siguiente manera, si X_{exc_3}<=5 entonces Z_{BCD}=X*3, en caso contrario Z_{BCD}=Xmod3. E=1 cuando en resultado Z no se puede representar en BCD.
 - a) (1 puntos) implementar el diagrama de transición de estados.
 - b) (1 puntos) implementar el digito de salida mediante una memoria ROM.
 - c) (0,5 puntos) implementar el error mediante un decodificador
- 3. (1 punto)Implementar un sumardor/incrementador/decrementador utilizando un sumador binario de 8 bits, multiplexores y puertas XOR. El sistema tendrá una señal de control S y otra J/D, de manera que S=1 el sistema realiza una suma de 8 bits, si S=0 el sistema incrementará cuando J/D=0 y decrementará cuando J/D=1.
- 4. (3 puntos) Sea un sistema secuencial con una entrada de 1-bit (x) y una salida (z) de 3 bits cuyo funcionamiento corresponde a un generador de secuencias descrito por la siguiente expresión:

 $z(t+1) = ((z(t)+3) \mod 8) \text{ si } x=0$

 $z(t+1) = ((z(t)-3) \mod 8) \text{ si } x=1$

Es decir el generador produce la siguiente salida 0,3,6,1,4,6,2,5,0,3... para x=0 y la secuencia inversa si x=1. Se pide:

- a) (1 puntos) Especificar el sistema mediante un diagrama de estados Moore
- b) (0,5 puntos) Obtener la tabla de transición de estados
- c) (1,5 puntos) Implementar el sistema con biestables de tipo D y puertas lógicas
- 5. (2,5puntos) utilizando registros y el menor número de puertas lógicas implementar un circuito secuencial que recibe dígitos de 8 bits codificados en complemento a dos y que se comporta de la siguiente manera: Z(t)=1 cuando x(t-3)=par y negativo, x(t-2) es par y positivo, y x(t-1) es impar y negativo, y vale 0 en el resto de los casos

ALUMNOS QUE SE PRESENTAN AL EXAMEN FINAL TIENEN QUE REALIZAR LOS SIGUIENTES EJERCICIOS

- Ejercicio 1 los apartados a) y b) (1 punto),
- Ejercicio 2 (2 puntos)
- Ejercicio 4 los apartados a) y b) (1.5 puntos).

Soluciones

SOLUCIÓN 1:

a)

A=011111_{C2} B=100010_{C2}

 $C = 000111_{C2}$

 $D=001111_{C2}$

b)

A+D	B-C
011111	100010
001111	111001
101110 (NO CARRY, SÍ DESB.)	1011011 (SÍ CARRY, SÍ DESB.)

SOLUCION 2:

Especificación en alto nivel

Entrada exceso a tres	Salida bcd	error
0	0	0
1	3	0
2	6	0
3	9	0
4	12	1
5	15	1
6	2	0
7	2	0
8	2	0
9	3	0

Codificación

Ex3		bcd	error	
	$e_3e_2e_1e_0$	$b_3b_2b_1b_0$		
	0000	dddd	D	
	0001	dddd	D	
	0010	dddd	d	
0	0011	0000	0	
1	0100	0011	0	
2	0101	0110	0	
3	0110	1001	0	
4	0111	dddd	1	
5	1000	dddd	1	
6	1001	0010	0	
7	1010	0010	0	
8	1011	0010	0	
9	1100	0011	0	
	1101	dddd	D	
	1110	dddd	D	
	1111	dddd	d	

Solución 3

SOLUCION 4 b) tabla transición de estados

S2	S1	S0	Х	S2'	S1'	S0'
0	0	0	0	0	1	1
			1	1	0	1
0	0	1	0	1	0	0
			1	1	1	0
0	1	0	0	1	0	1
			1	1	1	1
0	1	1	0	1	1	0
			1	0	0	0
1	0	0	0	1	1	1
			1	0	0	1
1	0	1	0	0	0	0
			1	0	1	0
1	1	0	0	0	0	1
			1	0	1	1
1	1	1	0	0	1	0
			1	1	0	0

c)

D2		S0,x			
		'00'	'01'	'11'	'10'
S2,S1	'00'		1	1	1
	'01'	1	1		1
	'11'			1	
	'10'	1			

D2=S2·S1·x+ S2·S1·S0+ S2·S0·x+S2·S1·S0·x+S2·S1·S0·x

D1		S0,x			
		'00'	'01'	'11'	'10'
S2,S1	'00'	1		1	
	'01'		1		1
	'11'		1		1
	'10'	1			1

D1=S1·S0·x+ S1·S0·x+ S1·S0·x+S1·S0·x

DO		S0,x			
		'00'	'01'	'11'	'10'
S2,S1	'00'	1	1		
	'01'	1	1		
	'11'	1	1		
	'10'	1	1		

D0= S0

SOLUCION 5

