The Battle of Neighborhoods: John Data is looking for the best neighborhood to live in Vancouver

Gabriel Gomez
IBM Applied Data Science
01/19/2021

Introduction

- Vancouver is one of the most populated cities in province of British Columbia
- The population at Vancouver is about 631,486 as per the 2016 census, this makes it the 8th city with most population in Canada
- There are approximately 79,989 businesses, while most businesses employ less than 20 employees, most employees work in larger businesses
- The University of British Columbia is a global center of research, consistently ranked among the top 20 public universities in the world.

Problem Description

John Data is going to start a Master program at the University of British Columbia at Vancouver and he's looking for an apartment to rent.

He tried to look for the nearest apartment to the school, but they are out of his budget, so he wants to look for other options. John already checked the price range of the apartments and the best neighborhoods are Kitsilano, Fairview, West Point Grey, and Arbutus-Ridge the only thing that keeps him from deciding is the venues near each neighborhood in which he could work part-time.

I'll check each neighborhood to select the one with the most venues where he could work at and create a list of venues

Data Exploration

In order to get the coordinates of the neighborhoods, the City of Vancouver Open Data Portal was our primary data source. Using Pandas and the CSV file from the source we got a list of neighborhoods and location as shown below.

```
In [6]: c[['lat','lon']] = c.geo point 2d.str.split(",",expand=True)
In [7]: c.drop(columns=['geo point 2d','Geom'])
Out[7]:
             MAPID
                                    Name
                                                     lat
                                                                   lon
             AR
                    Arbutus-Ridge
                                           49.2468049108 | -123.161669238
             CBD
                    Downtown
                                           49.2807470711 | -123.116567008
             FAIR
                    Fairview
                                           49 2645404871 -123.131048865
             GW
                    Grandview-Woodland
                                           49.2764396102 | -123.066728221
             HS
                    Hastings-Sunrise
                                           49.277934053
                                                        -123.040269923
```

Coordinates of each neighborhood

```
In [8]: #Kitsilano
       Kitlat = (c[c['Name'].str.contains("Kitsilano")].reset index(drop=True)).loc[0]["lat"]
       Kitlon = (c[c['Name'].str.contains("Kitsilano")].reset index(drop=True)).loc[0]["lon"]
        #Fairview
       Fairlat = (c[c['Name'].str.contains("Fairview")].reset index(drop=True)).loc[0]["lat"]
       Fairlon = (c[c['Name'].str.contains("Fairview")].reset_index(drop=True)).loc[0]["lon"]
        #West Point Grey
       Westlat = (c[c['Name'].str.contains("West Point Grey")].reset_index(drop=True)).loc[0]["lat"]
       Westlon = (c[c['Name'].str.contains("West Point Grey")].reset index(drop=True)).loc[0]["lon"]
        #Arbutus-Ridge
       Arblat = (c[c['Name'].str.contains("Arbutus-Ridge")].reset index(drop=True)).loc[0]["lat"]
       Arblon = (c[c['Name'].str.contains("Arbutus-Ridge")].reset index(drop=True)).loc[0]["lon"]
       print("Kitsilano:","(", Kitlat , Kitlon,")")
       print("Fairview:","(",Fairlat , Fairlon,")")
       print("West Point Grey:","(", Westlat , Westlon,")")
       print("Arbutus-Ridge:","(",Arblat , Arblon,")")
          Kitsilano: (49.2675398494 -123.16329474)
          Fairview: ( 49.2645404871 -123.131048865 )
          West Point Grey: ( 49.2684012111 -123.203467483 )
          Arbutus-Ridge: ( 49.2468049108 -123.161669238 )
```

With the neighborhoods data frame, the coordinates of the specified neighborhoods were retrieved and stored in variables

Data Geocoding

After getting the coordinates of each neighborhood, the venues location was retrieving using the Foursquare API. The radius from each coording is 500 m

```
In [11]: rad = 500
          #Kitsilano
         Kiturl = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
              CLIENT SECRET,
              VERSION,
              Kitlat,
              Kitlon,
              rad,
             LIMIT)
          #Fairview
         Fairurl = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client secret={}&v={}&il={},{}&radius={}&limit={}'.format(
              CLIENT ID,
              CLIENT SECRET,
              VERSION,
              Fairlat,
              Fairlon,
              rad,
             LIMIT)
          #West Point Grey
         Westurl = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client secret={}&v={}&il={},{}&radius={}&limit={}'.format(
              CLIENT SECRET,
              VERSION,
              Westlat,
              Westlon,
              rad,
             LIMIT)
          #Arbutus-Ridge
         Arburl = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
             CLIENT ID,
              CLIENT SECRET,
             VERSION,
             Arblat,
              Arblon,
              rad,
              LIMIT)
         print(Kiturl)
         print (Fairurl)
         print (Westurl)
         print (Arburl)
```

Data Geocoding

```
In [13]: filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng']

#Kitsilano

Kitnearby_ven = Kitnearby_ven.loc[:, filtered_columns]

Kitnearby_ven['venue.categories'] = Kitnearby_ven.apply(get_category_type, axis=1)

Kitnearby_ven.columns = [col.split(".")[-1] for col in Kitnearby_ven.columns]

#Fairview

Fairnearby_ven = Fairnearby_ven.loc[:, filtered_columns]

Fairnearby_ven.columns = [col.split(".")[-1] for col in Fairnearby_ven.columns]

#West Point Grey

Westnearby_ven = Westnearby_ven.loc[:, filtered_columns]

Westnearby_ven['venue.categories'] = Westnearby_ven.apply(get_category_type, axis=1)

Westnearby_ven.columns = [col.split(".")[-1] for col in Westnearby_ven.columns]

#Arbutus-Ridge

Arbnearby_ven = Arbnearby_ven.loc[:, filtered_columns]

Arbnearby_ven['venue.categories'] = Arbnearby_ven.apply(get_category_type, axis=1)

Arbnearby_ven.columns = [col.split(".")[-1] for col in Arbnearby_ven.columns]
```

```
In [12]: Kit_ven = (req.get(Kiturl).json())['response']['groups'][0]['items']
    Fair_ven = (req.get(Fairurl).json())['response']['groups'][0]['items']
    West_ven = (req.get(Westurl).json())['response']['groups'][0]['items']
    Arb_ven = (req.get(Arburl).json())['response']['groups'][0]['items']

    Kitnearby_ven = json_normalize(Kit_ven)
    Fairnearby_ven = json_normalize(Fair_ven)
    Westnearby_ven = json_normalize(West_ven)
    Arbnearby_ven = json_normalize(Arb_ven)
Kitnearby_ven
```

Results

Neighborhood with most venues

With the result divided per neighborhood, the last step to get the quantity of venues near each neighborhood is to count the results

```
In [14]: print("Kitsilano has", Kitnearby_ven['name'].count(),"ven
    print("Fairview has", Fairnearby_ven['name'].count(),"ven
    print("West Point Grey has", Westnearby_ven['name'].count
    print("Arbutus-Ridge has", Arbnearby_ven['name'].count(),
```

Kitsilano has 49 venues

Fairview has 26 venues West Point Grey has 6 venues Arbutus-Ridge has 2 venues

Results

List of venues

With Kitsilano being the neighborhood with most venues, the list of all the venues is retrieved

	name	categories	lat	Ing
0	The Only Cafe	Café	49.2682	-123.16554
1	Cafe Lokal	Coffee Shop	49.26817	-123.16471
2	Guanaco Salvadoran Cuisine food truck	Food Truck	49.26825	-123.16175
3	Terra Breads	Bakery	49.26814	-123.15928
4	Raisu	Japanese Restaurant	49.26824	-123.15843
5	Dark Table	Restaurant	49.26832	-123.16466
6	Thomas Haas Patisserie	Dessert Shop	49.26397	-123.16326
7	The Naam Restaurant	Vegetarian / Vegan Restaurant	49.2683	-123.16705
8	Au Comptoir	French Restaurant	49.2682	-123.15704
9	Nat's New York Pizzeria	Pizza Place	49.26403	-123.166
10	Maria's Taverna	Greek Restaurant	49.26809	-123.15808
11	Market Meats	Deli / Bodega	49.2681	-123.15821
12	Semperviva Yoga	Yoga Studio	49.26397	-123.16494
13	Burgoo Bistro	Mac & Cheese Joint	49.26821	-123.15681
14	Chewie's Biscuit Co	Southern / Soul Food Restaurant	49.26825	-123.16879
15	Darby's Public House	Pub	49.26834	-123.16838
16	Sunshine Diner	Diner	49.26404	-123.16552
17	Dairy Queen	Ice Cream Shop	49.26423	-123.16489
18	Linh Cafe	Breakfast Spot	49.26824	-123.16906
19	Whole Foods Market	Grocery Store	49.26827	-123.15705
20	White Spot	Burger Joint	49.26395	-123.16327
21	Feastro	Food Truck	49.26813	-123.15671
22	Drexoll Games	Toy / Game Store	49.26842	-123.16993
23	COBS Bread	Bakery	49.26817	-123.15795

24	Mr. Red Cafe	Vietnamese Restaurant	49.26406	-123.16589
25	Menchie's	Frozen Yogurt Shop	49.26395	-123.16399
26	Broadway International Wine Shop	Wine Shop	49.26406	-123.16746
27	Kitsilano Wine Cellar	Wine Shop	49.26829	-123.15656
28	Iki Japanese Restaurant	Japanese Restaurant	49.26404	-123.16751
29	Starbucks	Coffee Shop	49.26443	-123.16717
30	Shoppers Drug Mart	Pharmacy	49.26797	-123.15781
31	Peaceful Restaurant 和平饭店	Chinese Restaurant	49.26822	-123.15958
32	Rowan's Roof	American Restaurant	49.268	-123.15838
33	Browns Socialhouse Kitsilano	Gastropub	49.2682	-123.15748
34	Starbucks	Coffee Shop	49.26877	-123.15849
35	Starbucks	Coffee Shop	49.26799	-123.15672
36	Darby's Cold Beer and Wine	Liquor Store	49.26819	-123.1683
37	RBC Royal Bank	Bank	49.26837	-123.15965
38	Safeway Canada	Supermarket	49.26853	-123.1584
39	RBC Royal Bank	Bank	49.2643	-123.16806
40	Hi Nippon Japanese Restaurant	Japanese Restaurant	49.2682	-123.15693
41	Uncle Fatih's Pizza	Pizza Place	49.26412	-123.16776
42	New Apple Farm Market	Grocery Store	49.26836	-123.15831
43	Nusa Coffee	Coffee Shop	49.26914	-123.1661
44	Buen Café	Coffee Shop	49.26813	-123.15857
45	Bus Stop 50063 (2,22,32)	Bus Stop	49.26866	-123.16814
46	Mistral French Bistro	French Restaurant	49.26402	-123.16438
47	Big Johnny's Pizza House	Pizza Place	49.26841	-123.16896
48	Rogers	Electronics Store	49.26375	-123.16621

Discussion

- The results on this analysis are based only on the venues near each neighborhood, they
 might or might not be hiring, but with more venues the probability of finding a part-time
 job increases
- A further investigation about the best place to rent was attempted but since an open database with the price and location of apartments in rent couldn't be found, only the 4 specified neighborhoods were used.

Conclusion

- Pandas was a great help in order to retrieve the information of the Vancouver neighborhoods, since there were some issues with the API.
- Data analysis techniques used in this project were of great help and will be helpful in the solution of future business problems.
- Thanks to this project I was able to pinpoint the areas that I still lack in and will keep practicing to improve.
- Although the problem in this project was created just for the sake of this assignment, investigating about the university and the area made me consider the master degree in Vancouver, and if I ever decide to go there, I will most likely improve this investigation to help me find a place to live in.