Universidad Monteávila Álgebra Lineal

Ingenierías Ciencia de Datos, Mecatrónica y Telemática Ejercicios de Espacios Vectoriales

(1) Determinar si el conjunto de vectores dado es linealmente dependiente o independiente.

(a)
$$\begin{bmatrix} 9 \\ -8 \end{bmatrix}$$
, $\begin{bmatrix} -11 \\ -3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -2 \\ 7 \end{bmatrix}$ (d) $\begin{bmatrix} -6 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 12 \\ -2 \end{bmatrix}$ (e) $\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -2 \\ 8 \end{bmatrix}$ (f) $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ (g) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (h) $\begin{bmatrix} -10 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 10 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 9 \end{bmatrix}$ (i) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ (j) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

(2) Determinar si el conjunto dado de vectores genera el espacio vectorial especificado.

(a)
$$\mathbb{R}^2:\begin{bmatrix}10\\9\end{bmatrix},\begin{bmatrix}18\\6\end{bmatrix}$$
 (b) $\mathbb{R}^2:\begin{bmatrix}2\\4\end{bmatrix},\begin{bmatrix}4\\5\end{bmatrix}$ (c) $\mathbb{R}^2:\begin{bmatrix}11\\2\end{bmatrix},\begin{bmatrix}1\\2\end{bmatrix}$ (d) $\mathbb{R}^2:\begin{bmatrix}1\\4\end{bmatrix},\begin{bmatrix}-2\\-8\end{bmatrix}$ (f) $\mathbb{R}^4:\begin{bmatrix}1\\-12\\5\\0\end{bmatrix},\begin{bmatrix}1\\-3\\0\\-8\end{bmatrix}$ (h) $\mathbb{R}^3:\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}$ (i) $\mathbb{R}^3:\begin{bmatrix}-6\\5\\9\end{bmatrix},\begin{bmatrix}-7\\-12\\6\end{bmatrix},\begin{bmatrix}1\\-7\\15\end{bmatrix}$ (k) $\mathbb{R}^3:\begin{bmatrix}-5\\6\\8\end{bmatrix},\begin{bmatrix}-3\\7\\-1\end{bmatrix}$

(3) Sea \mathcal{P}_2 el conjunto de los polinomios de grado menor o igual que 2, determinar si el conjunto B es una base para el espacio vectorial \mathcal{P}_2 .

$$\begin{array}{ll} \text{(a) } B = \{x, 1+x, x-x^2\} \\ \text{(c) } B = \{1, 1+2x+3x^2\} \\ \text{(e) } B = \{x^2, 2+x, x-x^2\} \end{array} \\ \begin{array}{ll} \text{(b) } B = \{1-x, 1-x^2, x-x^2\} \\ \text{(d) } B = \{1, 2-x, 3-x^2, x+2x^2\} \\ \text{(f) } B = \{x^2, 2+x\} \end{array}$$

(4) Encuentre una base para $\operatorname{Span}\{-2x, 2x - x^2, 1 - x^2, 1 + x^2\}$ en \mathcal{P}_2 .

- (5) Encuentre una base para Span $\{1-x, x-x^2, 1-x^2, 1-2x+x^2\}$ en \mathcal{P}_2 .
- (6) ¿Por qué dos polinomios de grado menor o igual a dos, no pueden generar P_2 ?.
- (7) Para qué valor(es) de α serán linealmente dependientes los vectores

$$\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \\ -2 \end{bmatrix}, \begin{bmatrix} \alpha \\ 1 \\ 2 \end{bmatrix}?$$

(8) Encuentre una base en \mathbb{R}^3 para el conjunto de los vectores contenidos en el plano

$$3x - 2y + 5z = 0.$$

(9) Encuentre una base en \mathbb{R}^3 para el conjunto de los vectores contenidos en el plano

$$3x - 2y + z = 0.$$

(10) Demuestre que para cualquier número real t, los vectores

$$\begin{bmatrix} \sin t \\ \cos t \end{bmatrix}, \quad \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$

forman una base ortonormal de \mathbb{R}^2 .

- (11) Dar un ejemplo de una base ortonormal de \mathbb{R}^3 que no sea la base canónica.
- (12) Sea $H = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : a_1x_1 + a_2x_2 + \dots + a_nx_n = 0\}, \text{ donde } a_1, a_2, \dots, a_n \text{ son } a_1, a_2, \dots, a_n \text{ son } a_1, a_2, \dots, a_n \text{ son } a_1, \dots,$ números reales no todos cero. Demuestre que H es un subespacio propio de \mathbb{R}^n . A H se le conoce como hiperplano en \mathbb{R}^n que pasa por el origen.
- (13) Sean v_1 y v_2 dos vectores en \mathbb{R}^2 . Demuestre que $H = \{v : v = av_1 + bv_2; a, b \in \mathbb{R}\}$ es un subespacio de \mathbb{R}^2 .
- (14) Sean H_1 y H_2 subespacios de un espacio vectorial V y sea

$$H_1 + H_2 = \{v : v = v_1 + v_2 \text{ con } v_1 \in H_1 \text{ y } v_2 \in H_2\}.$$

Demuestre que $H_1 + H_2$ es un subespacio de V.

(15) Determinar si el conjunto de vectores dado es linealmente dependiente o independiente.

(a)
$$\begin{bmatrix} 8 \\ -7 \\ -8 \end{bmatrix}$$
, $\begin{bmatrix} -11 \\ -12 \\ -7 \end{bmatrix}$, $\begin{bmatrix} 12 \\ -3 \\ 7 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$ (d) $\begin{bmatrix} -1 \\ 0 \\ 11 \end{bmatrix}$, $\begin{bmatrix} 7 \\ -20 \\ -29 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -5 \\ 1 \end{bmatrix}$

- (16) Sea \mathcal{P}_n el conjunto de los polinomios de grado menor o igual que n, determinar si el conjunto de elementos de \mathcal{P}_2 dado es linealmente dependiente o independiente.
 - (a) $4-3x+3x^2, 4-2x-2x^2$
 - (b) $P_2: 1-x, x$
 - (c) $P_2 : -x, x^2 2x, 3x + 5x^2$
 - (d) x-1, x-2, x-3.x-4
- (17) Determinar si el conjunto dado de vectores genera el espacio vectorial dado.

rimhar si el conjunto dado de vectores genera el espacio vectorial dado.

(a)
$$\mathbb{R}^3 : \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$

(b) $\mathbb{R}^3 : \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$

(c) $P_2 : 1 - x, 3 - x^2$

(d) $P_2 : -10 + 3x + 11x^2, 10 + 9x - 4x^2, 5 + x + 4x^2$

Tentre una base para Span $\{1, 1 + x, 2x\}$ en \mathcal{P}_2

- (18) Encuentre una base para Span $\{1, 1+x, 2x\}$ en \mathcal{P}_1 .
- (19) Encuentre una base para Span $\{1 2x, 2x x^2, 1 x^2, 1 + x^2\}$ en \mathcal{P}_2 .
- (20) Encuentre una base para Span $\{1 x, x x^2, 1 x^2, 1 2x + x^2\}$ en \mathcal{P}_2 .
- (21) Sea $\{v_1,\ldots,v_n\}$ una base para un espacio vectorial V y sean c_1,c_2,\ldots,c_n escalares distintos de cero. Demuestre que $\{c_1, c_2, \dots, c_n, v_n\}$ también es una base para V.
- (22) Determine una condición sobre los números a, b, c y d para que

$$\begin{bmatrix} a \\ b \end{bmatrix} y \begin{bmatrix} c \\ d \end{bmatrix}$$

sean vectores linealmente dependientes.

(23) Para cuál(es) valor(es) de α serán linealmente dependientes los vectores

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ \alpha \\ 4 \end{bmatrix}?$$

- (24) Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x=2,y=-2t,z=3t.
- (25) Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x=3t, y=-2t, z=t.
- (26) Determinar si el conjunto dado es una base para el espacio vectorial a que se refiere.

- (a) $\mathcal{P}_2: -2 11x + 7x^2, -5 x 5x^2$ (b) $\mathcal{P}_2: 1 x^2, x$ (c) $\mathcal{P}_2: -3x, 1 + x^2, x^2 5$ (d) $\mathcal{P}_2: 1 + 3x + 7x^2, 5 + 12x + 35x^2, 8 + 5x 12x^2$ (e) $\mathcal{P}_3: 1, 1 + x, 1 + x^2, 1 + x^3$ (f) $\mathcal{P}_3: 3, x^3 4x + 6, x^2$

- (27) Expresar el vector $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ en términos de la base dada.

 - (a) $\left\{ \begin{bmatrix} 7 \\ -12 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 0 \\ -7 \end{bmatrix}, \begin{bmatrix} -8 \\ 7 \end{bmatrix} \right\}$ (e) $\left\{ \begin{bmatrix} 5 \\ 7 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \end{bmatrix} \right\}$ (f) $\left\{ \begin{bmatrix} a \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix} \right\}$, donde $ad bc \neq 0$
- (28) Expresar el vector $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^3$ en términos de la base dada.

 - (a) $\left\{ \begin{bmatrix} -5 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$
- (29) Expresar el polinomio $a_0 + a_1x + a_2x^2$ en \mathcal{P}_2 en términos de la base dada.
 - (a) $\{1, x-1, x^2-1\}$
- (a) $\{1, x = 1, x = 1\}$ (b) $\{1 + x + 4x^2, -3 + 4x 2x^2, 3 2x + 4x^2\}$ (c) $\{-2 4x x^2, -4 + 4x 4x^2, -1 + 5x + 5x^2, -1 + 5x + 15^2\}$ (30) En \mathbb{R}^2 suponga que $x_{B_1} = \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}$, donde $B_1 = \{\begin{bmatrix} 3 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -4 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ -5 \end{bmatrix} \}$.

Escriba x en términos de la base $B_2 = \left\{ \begin{bmatrix} -4 \\ -2 \\ -4 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \\ -5 \end{bmatrix} \right\}.$

(31) En \mathcal{P}_2 , se tiene que $q_{B_1} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, donde $B_1 = \{1 - x, 3x, x^2 - x - 1\}$.

Exprese q en términos de la base $B_2 = \{3 - 2x, 1 + x, x + x^2\}.$

(32) Construir una base ortonormal de \mathbb{R}^2 cuyo primer vector tenga la dirección y el sentido del vector

(a)
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ (c) $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

- (33) Construir una base ortonormal para el espacio o subespacio vectorial dado.
 - (a) $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}.$
 - (b) $H = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}.$
 - (c) $H = \{(x, y, z) \in \mathbb{R}^3 : 2x + y = 0\}.$
 - (d) $H = \{(x, y, z) \in \mathbb{R}^3 : x = 3t, y = 4t, z = 0; t \in \mathbb{R}\}.$
 - (e) $L = \{(x, y, z) \in \mathbb{R}^3 : x = t, y = 2t, z = -2t; t \in \mathbb{R}\}.$
- (34) Sea $\{v_1, v_2, \dots, v_k\}$ un conjunto de vectores linealmente independientes en un espacio vectorial V. Pruebe que $v_i \neq 0$ para $i = 1, 2, \dots, k$. (Sugerencia: Si $v_i = 0$, entonces es sencillo encontrar constantes c_1, c_2, \ldots, c_k con $c_i \neq 0$ tales que $c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0$.)
- (35) En los siguientes problemas se da un subespacio H de un espacio vectorial V y un vector v. Debe hallar la proyección ortogonal de v sobre H y escribir v como $v_1 + v_2$, donde $v_1 \in H$ $y v_2 \in H^{\perp}$
 - (a) $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\} ; v = (-1, 2).$
 - (b) $H = \{(x, y) \in \mathbb{R}^2 : x y = 0\}$; v = (2, -1).
 - (c) $H = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}; v = (2, -1).$
 - (d) $H = \{(x, y, z) \in \mathbb{R}^3 : \frac{x}{2} = \frac{y}{3} = \frac{z}{4} = 0\} ; v = (-1, 2, 0).$ (e) $H = \{(x, y, z) \in \mathbb{R}^3 : x y + z = 0\} ; v = (1, 2, 0).$

 - (f) $H = \{(x, y, z) \in \mathbb{R}^3 : x y + z = 0\}$; v = (2, 3, 1).
- (36) Encuentre una condición sobre los números a, b para que el conjunto

$$\left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix} \right\}$$

sea una base ortonormal de \mathbb{R}^2 .