

RE-ENGINEERING COMPUTING WITH SPIKE-BASED LEARNING: ALGORITHMS & HARDWARE

Priya Panda, Assistant Professor

Electrical engineering

Yale University

priya.panda@yale.edu

INTELLIGENT COMPUTING LAB

https://intelligentcomputinglab.yale.edu/

Acknowledgement:
Prof. Kaushik Roy
CBRIC, Purdue University

Neural Networks: Different Levels of Bio-fidelity

Efficiency Gap in Edge Devices

Case study: Object recognition in a smart glass with a state-of-the-art accelerator

Performance	
Frames/sec	13.3
Battery Life	
Energy/op	0.5 pJ/op
Energy/frame	0.15 J/frame
Time-to-die (2.1WH)	64 mins

*300 GOPs/inference

Where do the in-efficiencies come from?

Hardware Architecture

Circuits and Devices

Ref: Venkataramani, S., Roy, K. and Raghunathan, A. "Efficient embedded learning for IoT devices." In 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 308-311. IEEE.

SNN vs. ANN: Fundamental Differences

- Use spike timing dependent plasticity to perform local layerwise learning
- Use approximate gradient descent with straight through estimation

Can we efficiently train deep SNNs?

SNN Training

Binary Activation

STDP Learning

Pros: Unsupervised local learning

Cons: Limited accuracy and shallow networks

Reference	MNIST Accuracy
Cook <i>et al.</i> Frontiers 2015 (ETH Zurich)	95.00%
Masquelier <i>et</i> <i>al</i> . Neural Networks 2017	98.40%
Lee <i>et al</i> . TCDS 2018	91.10%

ANN-SNN Conv

Pros: Takes advantage of standard ANN training

Cons: Conversion limited by constraints

Reference	MNIST Accuracy	
Pfeiffer <i>et al</i> . IJCNN 2015 (ETH Zurich)	99.10%	
Eliasmith <i>et al.</i> arXiv 2016 (U Waterloo)	99.12%	
Liu <i>et al</i> . Frontiers 2017 (ETH Zurich)	99.44%	

Backprop in SNN

Pros: Higher accuracy

Cons: Limited scalability, Discontinuous spike activities

Reference	MNIST Accuracy
Pfeiffer <i>et al</i> . Frontiers 2016 (ETH Zurich)	99.31%
Shi <i>et al</i> . Frontiers 2018 (Tsinghua)	99.42%
Zhang et al. arXiv 2018 (TAMU)	99.49%

Stochastic STDP

Pros: Unsupervised local learning with binary synaptic weights

Cons: Limited accuracy

Reference	MNIST Accuracy
Gamrat <i>et al</i> . Proceedings of the IEEE '15	60.00%
Yousefzadeh et al. Frontiers 2018	95.70%
Roy <i>et al</i> . (Frontiers, 2019)	98.54%

Roy et al. Frontiers 2019

Neuron and Synaptic Models: STDP (local) Learning

neurons appear to be temporally correlated (uncorrelated)

STDP based Unsupervised Recognition: Overview

Excitatory neurons learn general input representations in the synaptic weights

Ref: Diehl, P.U. and Cook, M., 2015. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. *Frontiers in computational neuroscience*, *9*, p.99.

Can we utilize temporal property to do something more?

Lifelong Learning

- > How do we learn continually with resource constraints?
 - Can we reorganize or 'forget' something to accommodate new data coming in?

Learning to Forget: Adaptive Synaptic **Plasticity (ASP)**

- Recovery Phase when tpost-tpre >0 Decay phase
- Recovery Phase when tpost-tpre <0

Recovery Phase $\Delta w = \eta(t)[(Pre_{rec} - offset) - k_{const}/2^{Pre_{acc}}]$ $\eta(t) \in 1/Post(t)$

Decay Phase
$$au_{leak} rac{dw}{dt} = -lpha_{exp} w \quad au_{leak} rac{dw}{dt} = -lpha_{lin} \ au_{leak} \in Post(t), (v_{thresh} + heta)$$

- Neuron that has learnt patterns well will have lower learning rate in recovery phase
- Stable learning, prevents neuron from quick adaptation
- Input significance proportional to the number of training patterns shown
- Neurons learning significant patterns decay or forget less

Ref: Panda, P., Allred, J.M., Ramanathan, S. and Roy, K., 2017. Asp: Learning to forget with adaptive synaptic plasticity in spiking neural networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(1), pp.51-64. Ref: Zuo, F., Panda, P., ..., Roy, K., and Ramanathan, S., 2017. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. *Nature communications*, 8(1), p.240.

Standard STDP vs ASP

SNN learnt with STDP

Catastrophic Forgetting

SNN learnt with ASP

Controlled Forgetting

Approaching large-scale SNNs for complex tasks

ANN-SNN Conversion

- Scaling up to ImageNet like tasks while being energy-efficient
- Burden of training is gone!
 - Use existing ML frameworks, PyTorch, TensorFlow etc for training
 - GOAL: Given learnt weights, need to transfer ReLU activations to Integrate-and-Fire activations

Learning with Spike-based Backpropagation

Global Supervised Gradient Descent Learning

Forward
$$A = f(Z_1) Z_1 = W_1^T X$$

$$Y = f(Z_2) Z_2 = W_2^T A$$

$$E = (Y - T)^2$$

Backward

$$\Delta W_2 = \frac{\partial E}{\partial W_2}$$

$$\frac{\partial E}{\partial W_2} = \frac{\partial E}{\partial Y} \frac{\partial Y}{\partial Z_2} \frac{\partial Z_2}{\partial W_2}$$

$$= \frac{\partial E}{\partial Y} (f'(Z_2)) \frac{\partial Z_2}{\partial W_2}$$

$$f'(Z_2)$$
 exists if f is **continuous**

$$f = LIF$$
 (discontinous) model for SNN

 $f_{approx} \approx \text{Approximate LIF for}$ conducting spike based
backpropagation

Surrogate Backpropagation CIFAR-10 Results

Spiking activity reduces exponentially with network depth

Network Model	Compariso n Criterion	SNN*	Converted SNN*	ANN
VCCO	#Operation	3.61x	28.18x	1x
VGG9	Efficiency	8.86x	1.13x	1x
DasNatO	#Operation	5.06x	11.94x	1x
ResNet9	Efficiency	6.32x	2.68x	1x
DocNot11	#Operation	2.09x	7.26x	1x
ResNet11	Efficiency	15.31x	4.4x	1x

Deep SNNs can offer 6-15× compute energy efficiency

 Estimated using the #synaptic operations per layer (ACC for SNNs and MAC for ANNs)

Ref: Lee, C., Sarwar, S. S., G.Srinivasan, P. Panda, & Roy, K. (2019). Enabling Spike-based Backpropagation in State-of-the-art Deep Neural Network Architectures. *arXiv preprint arXiv:1903.06379*.

Hybrid Training (Conversion + Backpropagation)

Architecture	ANN	ANN-SNN	ANN-SNN	SNN
	CIFAR10			
VGG5	87.88%	87.64% (T=2500)	84.56% (T=75)	86.91% (T=75)
VGG9	91.45%	90.98% (T=2500)	87.31% (T=100)	90.54% (T=100)
VGG16	92.81%	92.48% (T=2500)	90.2% (T=100)	91.13% (T=100)
ResNet8	91.35%	91.12% (T=2500)	89.5% (T=200)	91.35% (T=200)
ResNet20	93.15%	92.94% (T=2500)	91.12% (T=250)	92.22% (T=250)
CIFAR100				
VGG11	71.21%	70.94% (T=2500)	65.52% (T=125)	67.87% (T=125)
ImageNet				
ResNet34	70.2%	65.1% (T=2500)	56.87% (T=250)	61.48% (T=250)
VGG16	69.35%	68.12% (T=2500)	62.73% (T=250)	65.19% (T=250)

N. Rathi et al., Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation, To Appear in ICLR 2020. https://openreview.net/forum?id=B1xSperKvH

Stochastic-Binary SNNs

- Binarized SNNs with low-precision weights
 - Stochastic STDP training for binary weight updates
 - Backpropagation too!
- Advantage
 - Compatible with low-energy learning and inference on edge devices
- Even suitable for emerging-technologies
 Yale University

Stochastic STDP

STDP Learning

$$\Delta w \approx \exp(t_{post} - t_{pre})$$

Stochastic STDP Learning

$$p(\Delta w) \approx \exp(t_{post} - t_{pre})$$

$$if t_{post} - t_{pre} \text{ is small, p } \rightarrow 1 \Rightarrow w = w_{max}$$

$$else, p \rightarrow 0 \quad \Rightarrow w \text{ does not change}$$

Potentiation Rules

• Switching probability $p(\Delta w)$ of a binary synapse depends on the degree of timing correlation between pre- and post-spikes.

Ref: Srinivasan, G., Sengupta, A. and Roy, K., 2016. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. *Scientific reports*, 6, p.29545.

Results on the CIFAR-10 dataset

- Trained up to 5-layer deep ReStoCNet (36C3-36C3-36C3-1024FC-10FC) on CIFAR-10
 - Classification accuracy saturates for depth greater than 4 layers
 - STDP has limitations! Cannot extract finer features in deeper layers.

Model	Training Method	Accuracy (%)
Panda and Roy, 2016	Regenerative learning with backpropagation	70.16
Ferré et al., 2018	STDP + backpropagation	71.20 21× kernel memory
Srinivasan and Roy, 2019	Stoch-STDP + backpropagation	66.23 compression (lower for deeper networks)

Ref: Srinivasan, G. and Roy, K., 2019. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing. *Frontiers in Neuroscience*, 13, p.189.

SNN Hardware Efficiency: A Benchmarking Study

- Sparse spike-based event-driven computing capability can enable energy-efficient on-chip neuromorphic computing
- Case study: Keyword spotting task using SNN on Intel's Loihi

SNN on Loihi outperforms ANN on GPU/CPU on energy per inference while maintaining nearly-equivalent inference accuracy

Yale University

Dynamic Energy Cost Per Inference (batchsize = 1) 0.030 0.025 0.020 0.015 0.015 0.010 0.005 8.2x 1x 1.9x 7.3x38.6x 0.000 MOVIDIUS LOIHI **JETSON** CPU **GPU**

Ref: Peter Blouw et al. "Benchmarking Keyword Spotting Efficiency on Neuromorphic Hardware", arXiv preprint arXiv:1812.01739 (2018)

LIQUID STATE MACHINES

- 1) Panda, P., & Roy, K. (2017). Learning to generate sequences with combination of hebbian and non-hebbian plasticity in recurrent spiking neural networks. *Frontiers in neuroscience*, *11*, 693.
- 2) Panda, P., & Srinivasa, N. (2018). Learning to recognize actions from limited training examples using a recurrent spiking neural model. *Frontiers in neuroscience*, *12*, 126.
- 3) Wijesinghe, P., Srinivasan, G., Panda, P., & Roy, K. (2019). Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines. *Frontiers in neuroscience*, *13*, 504.
- 4) Srinivasan, G., Panda, P., & Roy, K. (2018). Spilinc: spiking liquid-ensemble computing for unsupervised speech and image recognition. *Frontiers in neuroscience*, *12*, 524.

Post-CMOS Devices as Synaptic Memory Elements

Where do SNNs fit?

- Energy-efficiency is the primary advantage at this point!
- Potential for Edge Computing (training/inference)

Yale University

 Emerging devices can effectively harness spiking synapse/neuron functionality

Algorithm-Hardware co-design guided by biological principles can be the pathway for next-generation neural computing.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda.
"Towards spike-based machine intelligence with neuromorphic computing"
Nature 575.7784 (2019): 607-617.

THANK YOU!**

**A majority of slides comprise of the work done by Priya Panda while she was a PhD student at Purdue University working with Prof. Kaushik Roy.

Prof. Priya Panda

INTELLIGENT

COMPUTING LAB

https://intelligentcomputinglab.yale.edu/