https://bit.ly/2ZdCHGy

KYOTO UNIVERSITY

CVPR2019読み会 「カーネル畳み込みニューラルネットによる 畳み込み操作の非線形化」 *Kervolutional Neural Networks*

Cheng Wang, Jianfei Yang, Lihoa Xie, Junsong Yuan 読み手: Hisashi Kashima (KU)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

論文の概要: 畳み込み操作をカーネル関数で非線形化した

- 背景: 畳み込みニューラルネットワーク (CNN) はその高性能からあらゆる領域で用いられている
 - 畳み込み操作は線形
- 貢献: CNN + カーネル = カーネル 畳み込み操作 (Kervolution)
 - 畳み込み操作をカーネル関数で非線形化する
 - これで畳み込みを置き換えると性能が上がった
 - 他に非線形性のないネットワークでも、これひとつでかなりいく

畳み込み操作: 畳み込み操作は線形関数

- 畳み込み操作: $f(x) = x \oplus w$
 - x:入力ベクトル;w:パラメータベクトル

【提案手法】カーネル畳み込み: 畳み込み操作の内積部分を非線形化

- $\mathbf{f}(\mathbf{x}) = \mathbf{x} \oplus \mathbf{w} \, \mathcal{O} d$ 次元めは $f_i(\mathbf{x}) = \langle \mathbf{x}_{(i)}, \mathbf{w} \rangle$ (線形関数)
- - $\mathbf{-}$ (シフトした)入力 $\mathbf{x}_{(i)}$ を高次元空間に飛ばす $\mathbf{\Phi}(\mathbf{x}_{(i)})$ - $_{\mathrm{ ext{B}}}$ 化
 - パラメータ \mathbf{w} も同様に飛ばす $\mathbf{\Phi}(\mathbf{w})$
 - 飛んだ先で両者の内積をとる $g_i(\mathbf{x}) = \langle \mathbf{\Phi}(\mathbf{x}_{(i)}), \mathbf{\Phi}(\mathbf{w}) \rangle$

カーネル関数:

高次元空間での内積を効率的なカーネル関数で置き換え

- ・ 内積 $g_i(\mathbf{x}) = \langle \mathbf{\Phi}(\mathbf{x}_{(i)}), \mathbf{\Phi}(\mathbf{w}) \rangle$ をカーネル関数で置き換える: $g_i(\mathbf{x}) = \langle \mathbf{\Phi}(\mathbf{x}_{(i)}), \mathbf{\Phi}(\mathbf{w}) \rangle = \kappa(\mathbf{x}_{(i)}, \mathbf{w})$
- カーネル関数のバリエーション:
 - 多項式カーネル: $\kappa(\mathbf{x}_{(i)},\mathbf{w}) = (\langle \mathbf{x}_{(i)},\mathbf{w} \rangle + C)^d$
 - d個までの特徴量の組み合わせを考慮できる
 - ガウシアンカーネル: $\kappa(\mathbf{x}_{(i)}, \mathbf{w}) = \exp(-\gamma \|\mathbf{x}_{(i)} \mathbf{w}\|)$
 - あと、カーネルではないが単に距離 $\|\mathbf{x}_{(i)} \mathbf{w}\|$ なども利用

注目すべき実験結果①: カーネル畳み込みを用いると収束が早い

- LeNet-5の2つの畳み込み層をカー畳層で置き換えてみる
 - データセット: MNIST
- カーネル畳み込み層を使ったほうが収束が早い

注目すべき実験結果②: 畳み込み層の置き換えで性能アップ 11

- 画像認識(CIFER-10/100, ImageNet)で検証
- 定番ネットワーク(GoogLeNet, ResNet, DenseNet)の1層目を カーネル畳み込み層で置き換えると性能向上

Network	CIFAR-10	CIFAR-100
CNN [26]	13.63	44.74
KNN	10.85	37.12

Table 2. Validation error (%) of ResNets on CIFAR-10 and CIFAR-100 without data augmentation.

Architecture	CIFAI	R-10+	CIFAF	R-100+
	CNN	KNN	CNN	KNN
GoogLeNet [13] ResNet [20]	13.37	5.16	26.65	20.84
	6.43	4.69	27.22	22.49
DenseNet [25]	5.24	5.08	24.42	24.92

Table 3. Validation error (%) on CIFAR-10 and CIFAR-100 on different architectures with data augmentation.

注目すべき実験結果③: カーネル畳み込みが入れる非線形はかなり強力

- CNNにおいて、モデルに非線形性をもたらす部分を除く
 - ReLUを恒等写像(線形)に
 - 最大プーリングを平均値プーリング(線形)に
 - ⇒ MNISTで 98.0% → 92.2% と大幅悪化
- そこに、非線形要素としてカー畳をいれると、これだけで 99.11%
 - 2つの畳み込み層をカーネル畳み込み層にする
- NNに入れる非線形性はこれで十分である可能性も

論文の概要:

畳み込み操作をカーネル関数で非線形化したらよかった

- CNNにおける畳み込み操作を、カーネル化することで、収束が早く、精度が向上した
- 考察:この論文での「カーネル化」は従来のカーネル化よりも ちょっと弱い
 - 通常のカーネル法ではΦで行った先での任意の線形関数(が元の食空間では非線形にみえる)を考えるが、この論文ではとれる関数に制約がかかる
 - 本来の形: $g_i(\mathbf{x}) = \langle \mathbf{\Phi}(\mathbf{x}_{(i)}), \mathbf{w} \rangle$
 - この論文: $g_i(\mathbf{x}) = \langle \mathbf{\Phi}(\mathbf{x}_{(i)}), \mathbf{\Phi}(\mathbf{w}) \rangle$ (自由度低い)