Fundamental Mathematics (Engineering Mathematics)

Shinichi Nishizawa

Course schedule

- □ Guidance + Differential equations (#1,2)
- Differential equations and physics (#3)
- □ Array and vector (#4, 5)
- Vector analysis (#6, 7)
- □ Complex function theory (#8, 9)
- □ Fourier transform (#10, 11)
- □ Laplace transform (#12, 13)
- □ Final examination and explanation(#14)
- □ Score: Exam (70%) + Report (20%) + Attendance (10%)

Curvilinear integral

- Assume a smooth curve C from point A to B, and scalar function f(P) = f(x, y, z) is continuous in curve C
 - □ Think curve C can divide into several arcs $\Delta s_1 \cdots \Delta s_2$
 - $lue{}$ Points A_n divide a curve, these weight are points P_n
 - \blacksquare Assume limit of $n \to \infty$, $\Delta s_i \to 0$; curvilinear integral
 - $\lim_{\substack{n \to \infty \\ \Delta s_i \to 0}} \sum_{i=1}^n f(P_i) \Delta s_i = \int_C f(P) ds = \int_C f(x, y, z) ds$
 - \square Point D on curve C is function of the length (s) of arc \widehat{AD}

Curvilinear integral

- □ Point *D* on curve *C* is function of the length (s) of arc \widehat{AD}
 - \square (Any) point D can be expressed as function of length s

$$\mathbf{r} = \mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}$$

 \blacksquare If we use general parameter t to express the curve C;

$$\Box \mathbf{r} = \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

 \square where A, B of curve C are point α , = $t \beta = t$

Expressions of curvilinear integral

Several expressions are available for curvilinear integral

$$\Box \int_C f \, ds = \int_A^B f \, ds = \int_{AB} f \, ds$$

$$\Box \int_{AB} f \, ds = - \int_{BA} f \, ds$$

- □ If point *P* is on the curve *C*, $\int_{AB} f \, ds = \int_{AP} f \, ds + \int_{PB} f \, ds$
- □ If the curve C is a closed curve, $\oint_C f ds = \oint_{AB} f ds$

Example of curvilinear integral

- □ Calculate curvilinear integral of $f(x, y, z) = y^2z + z^2x + x^2y$
 - □ Route 1: $O(0,0,0) \rightarrow Q(3,0,0) \rightarrow R(3,1,0) \rightarrow P(3,1,2)$

 \square Route 2: \overrightarrow{OP}

$$\overrightarrow{OP} = r = 3ti + tj + 2tk \ (0 \le t \le 1)$$

$$ds = \sqrt{(3dt)^2 + (1dt)^2 + (2dt)^2} = \sqrt{14}dt$$

Curvilinear integral for vector

- Assume a smooth curve C from point A to B, and vector function $\mathbf{F}(P) = \mathbf{F}(x, y, z)$ is continuous in curve C
 - $\square r(s)$ is a position vector from origin O to the point P on C
 - \blacksquare Assume $t = \frac{dr}{ds}$ is a tangent of curve C at point P
 - □ Curvilinear integral for the vector \mathbf{F} : $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{t} \, ds$
- □ Assume func. of C: $\mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}$, $\mathbf{F} = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$
 - $\square \int_{C} \mathbf{F} \cdot \mathbf{t} \, ds = \int_{C} \left(\frac{F_{1} dx}{ds} + \frac{F_{2} dy}{ds} + \frac{F_{3} dz}{ds} \right)$
- \square Scalar $\mathbf{F} \cdot \mathbf{t}$ is a tangent component of vector \mathbf{F}

Characteristics of curvilinear integral for vector

- Curvilinear integral for vector has following characteristics
 - \Box For scalar field f(x,y,z) and vector field F(x,y,z)

$$\Box \int_C \mathbf{F}(x, y, z) ds = \mathbf{i} \int_C F_1 ds + \mathbf{j} \int_C F_2 ds + \mathbf{k} \int_C F_3 ds$$

Exercise

- \Box Calculate curvilinear integral $\int_C y dr$
 - \square C: $x = a \cos t$, $y = a \sin t$, z = ht, $(0 \le t \le 2\pi)$
- Solution
 - $\Box \int_C \underline{y} d\mathbf{r} = \int_C \underline{a} \sin t \left(\mathbf{i} dx + \mathbf{j} dy + \mathbf{k} dz \right)$

 - $\Box = -\pi a^2 i$

Potential

- □ If scalar function $\varphi(x, y, z)$ is available for $F(x, y, z) = \operatorname{grad}\varphi$; φ is called as <u>potential</u> or <u>scalar potential</u> of F
- Potential has following characteristics;
 - \square Assume vector field F(x,y,z) has potential φ

□ If curve C is a closed curve

Surface integral for scalar

- Assume smooth curved surface *S*
 - □ Scalar function f(P) = f(x, y, z) is continuous in S
 - Assume S can be divided into small area $\Delta S_1 \cdots \Delta S_n$, and any point of $P_1 \cdots P_n$
 - If $\lim_{n\to\infty} \sum_{i=1}^n f(P_i) \Delta S_i$ is available, this is called <u>surface</u> $\Delta S_{i} \to 0$
 - integral for scalar $\int_{S} f(x, y, z) dS$
 - □ If f(P) = 1, $\int_{S} f(x, y, z) dS$ is area of S
- For the curved surface, outside is the front

Formula of surface integral

□ If surface *S* is given for z = g(x, y), surface integral of f(x, y, z) on *S* can be expressed as follows,

$$\square \int_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{p^{2} + q^{2} + 1} dx dy$$

$$\Box = \iint_D f(x, y, g(x, y)) \frac{dxdy}{|\mathbf{n} \cdot \mathbf{k}|},$$

■ where, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, n is unit normal vector of S, D is projective of S to xy-coordinate

Formula of surface integral (proof)

- □ Think small surface dS on S, its projective in xy-coordinate can express dydx
- lacktriangle Define angle of unit normal vectors n, k as γ
 - $\Box dS |\cos \gamma| = dxdy$

$$\square n = \frac{\pm 1}{\sqrt{p^2 + q^2 + 1}}$$
 when $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

□ Thus,
$$|\cos \gamma| = |n \cdot k| = \frac{1}{\sqrt{p^2 + q^2 + 1}}$$

$$dS = \frac{dxdy}{|\cos y|} = \frac{dxdy}{|\mathbf{n} \cdot \mathbf{k}|}$$

Surface integral for vector

- \blacksquare For vector field F and unit vector n of surface S, integral of these inner products is called as <u>surface integral of vector</u>
 - $\Box \int_{S} \mathbf{F} \cdot \mathbf{n} \ dS$
 - $\square F_n$ is a n component of vector $\mathbf{F} (\mathbf{F} \cdot \mathbf{n} = F_n)$
 - \blacksquare Assume $\mathbf{n} dS = d\mathbf{S}$, $d\mathbf{S}$ is called area vector

$$\square \int_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S} \left(F_{1} dy dz + F_{2} dz dx + F_{3} dx dy \right)$$

Several expressions for surface integral of vectors

$$\Box \int_{S} \mathbf{F} dS = \mathbf{i} \int_{S} F_{1} dS + \mathbf{j} \int_{S} F_{2} dS + \mathbf{k} \int_{S} F_{3} dS$$

$$_{2023/11} \mathcal{F}_0 \int_{\mathcal{S}} \mathbf{F} \times \mathbf{n} dS = \int_{\mathcal{S}} \mathbf{F} \times d\mathbf{S}$$

Formula of surface integral

□ If surface *S* is given for z = g(x, y), surface integral of F(x, y, z) on *S* can be expressed as follows,

$$\square \int_{S} \mathbf{F}(x, y, z) dS = \iint_{D} \mathbf{F}(x, y, g(x, y)) \sqrt{p^{2} + q^{2} + 1} dx dy$$

where, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, D is projective of S to xycoordinate

Surface integral in physics

- □ In scalar: $\int_{S} \rho(x, y, z) dS$
 - \blacksquare In the case ρ is a function of mass density on surface S
 - □ Its integral: total mass of surface *S*
- □ In vector: $\int_{S} \boldsymbol{v}(x, y, z) \cdot \boldsymbol{n} dS$
 - \blacksquare In the case v is a function of liquid velocity on surface S
 - Its integral: total amount of liquid flow per unit time

Volume integral

- Connect divergence on vector field and flow at the surface
 - Assume volume V surrounded by surface S
 - □ Volume integral of scalar f: $\int_V f(x, y, z) dV$
 - □ Volume integral of vector F: $\int_V F(x, y, z) dV$
- Preliminary
 - □ For volume V surrounded by surface S, $n = \cos \alpha i + \cos \beta j + \cos \gamma k$, following equation satisfies,
 - $\Box \int_{V} \frac{\partial f}{\partial x} dV = \int_{S} f \cos \alpha \, dS, \ \int_{V} \frac{\partial f}{\partial y} dV = \int_{S} f \cos \beta \, dS,$ $\int_{V} \frac{\partial f}{\partial z} dV = \int_{S} f \cos \gamma \, dS$

Volume integral (proof)

- □ Proof $\int_{V} \frac{\partial f}{\partial z} dV = \int_{S} f \cos \gamma dS$;
- \blacksquare Assume two points P_1 , P_2 on S
 - $\square z_2 \ge z_1$: z_2 coves upper side of S, z_1 coves lower side of S
 - $\Box \int_{V} \frac{\partial f}{\partial z} dV$ means volume difference in z-axis, thus
- $\Box \int_{V} \frac{\partial f}{\partial z} dV = \iiint_{V} \frac{\partial f}{\partial z} dx dy dz = \iint_{D} \left\{ \int_{z_{1}}^{z_{2}} \frac{\partial f}{\partial z} dz \right\} dx dy = \iint_{D} \left[f \right]_{z_{1}}^{z_{2}} dx dy = \iint_{D} \left\{ f(x, y, z_{2}) f(x, y, z_{1}) \right\} dx dy$
- □ For z-axis, z_2 is upper $(dS\cos\gamma = dxdy)$, z_1 is lower thus $(dS\cos\gamma = -dxdy)$

Divergence theorem (Gauss' theorem)

- Connect divergence on vector field and flow at the surface
 - \blacksquare Assume volume V surrounded by surface S w/ unit vec. n

- Physical meaning
 - $\square \int_{S} \mathbf{F} \cdot \mathbf{n} dS$: amount of flow which path through the area S
 - $\square \int_V \operatorname{div} \mathbf{F} dV$: amount of flow out

For $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, div $\mathbf{r} = 3$

For v = -yi + xj, and if volume V is outside of v, div r = 0

Extension of Gauss' theorem

- \square Assume the point *P* on close surface *S*, express vector from origin O(0,0,0) to P as $\overrightarrow{OP} = r$, n is unit normal vector of S
- Following equation satisfy the following

$$\int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 4\pi$$

$$\int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 4\pi \qquad \int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 2\pi$$

Exercise

- □ For function $f(x, y, z) = x^2 yz + z^2$, calculate its curvilinear integral $\int_C f \, ds$
 - □ Case 1: *C* is a line from $P_1(1,2,0)$ to $P_2(1,2,3)$
 - □ Case 2: *C* is a line from $P_1(0,0,0)$ to $P_2(1,2,3)$
- Assume the surface func. 2x + 2y + z 4 = 0, and its intercepts are points A, B, C, and ABC create surface S
 - □ Calculate surface integral of $f(x, y, z) = 4x y^2 + 2z 12$

Exercise

- Assume the surface func. x + y + z 1 = 0, and its intercepts are points P, Q, R and PQR create surface S
 - \square Calculate surface integral $\int_{S} \mathbf{F} \times \mathbf{n} \, dS$ for $\mathbf{F} = y\mathbf{k}$
- \blacksquare Assume the volume and surface of unit sphere as V, S, and

$$F = axi + byj + czk$$
. Calculate integral $\int_S F \cdot n \, dS$

Sample solution

$$Of = \chi^2 - Jz + Z^2$$
, take $\int_C f ds$

$$\int_{C} f ds = \int_{0}^{3} (1^{2} - 2z + z^{2}) dz = \left[z - z^{2} + \frac{z^{3}}{3}\right]_{0}^{3} = 3,$$

$$dS = \int_{1^{2}+2^{2}+3^{2}}^{2} dt = \int_{14}^{14} dt$$

$$=4\sqrt{14}\int_{0}^{1}t^{2}dt=\frac{4\sqrt{14}}{3}$$

Surface func
$$Z=g(x,y)=4-2x-2y$$

$$p = \frac{\partial z}{\partial x} = -2$$
, $Q = \frac{\partial z}{\partial x} = -2x$

$$\int_{S} f dS = -\int_{D} (\frac{1}{4} + 2)^{2} \cdot 3 dx dy$$

$$= -\int_{0}^{2} \int_{0}^{2-x} 3(\frac{1}{4} + 2)^{2} dy dx$$

$$= -\int_{0}^{2} [(\frac{1}{4} + 2)^{3}]_{0}^{2-x} dx$$

$$= -\int_{0}^{2} ((4-x)^{3} - 8) dx$$

$$= \left[\frac{1}{4} (4-x)^{3} + 8x \right]_{0}^{2}$$

$$= -44$$

Sample solution

$$P = \frac{\partial^2}{\partial x} = -1$$
, $Q = \frac{\partial^2}{\partial y} = -1$

unit normal vector of S is: $In = \frac{1 + j + lk}{J_2}$

$$Fxn = i(0.\frac{1}{2} - \frac{1}{2}) + i(3\frac{1}{2} - \frac{1}{2}0) + k(0.\frac{1}{2} - \frac{1}{2}0)$$

$$dS = \sqrt{p_+^2 + q_+^2} dxdz = \sqrt{3} dxdz$$
 thus

$$= -(i-j) \int_0^1 \frac{(1-x^2)}{2} dx$$

=
$$(i-i)$$
 $\left[\frac{(i-i)}{6}\right]_{0}^{1} = -\frac{1}{6}(i-i)$

$$= \int_{V} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dV$$

$$= \int_{V} (a+l+c) dV$$

$$=\frac{4}{3}\pi(\alpha+k+c)$$

=
$$(\alpha + k + c) \int_{V} dV$$
 (Volume of unit sphere)
= $\frac{4}{3}\pi(\alpha + k + c)$ $V = \frac{4}{3}\pi L^{2}$, $r = 1$.)

Fundamental Mathematics

- Vector and Maxwell's equation-

Motivation

- Many physics can be expressed by vectors
 - Good to explain in simple way (if we know vectors)
- Target: understand the meaning of Maxwell's equation
 - \square div $\boldsymbol{D} = \rho$
 - \square $\iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho dV$ (Gauss's eq of electric field)
 - \Box div $\mathbf{B} = 0$
 - \square $\iint \mathbf{B} \cdot d\mathbf{S} = \iiint \operatorname{div} \mathbf{B} dV$ (Gauss's eq of magnetic field)
 - □ rot $\mathbf{H} = i + \frac{\delta D}{\delta t}$: $\oint \mathbf{H} \cdot d\mathbf{r} = \iint \left(i + \frac{\delta \mathbf{D}}{\delta t}\right) \cdot d\mathbf{S}$ (Ampele's law)
 - ightharpoonup rot $\mathbf{E} = -\frac{\delta B}{\delta t}$: $\oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$ (Faraday's law)

Electron and Electric field

- \blacksquare Two electrons q_1 q_2 with distance r have attracting/repulsion force F
 - \square Coulomb's law $F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$
 - $\Box \epsilon = \epsilon_0 \epsilon_r$,
 - \blacksquare ϵ is dielectric constant (permittivity)
 - \blacksquare ϵ_0 is vacuum space permittivity (=8.854 × 10⁻¹² C²N⁻¹m⁻²)
 - \bullet ϵ_r is relative permittivity
- □ Electron Q create vector field $E(r) = \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \frac{r}{r}$
 - lacksquare Coulomb's law in vector $m{F} = \frac{1}{4\pi\epsilon} \frac{qQ}{r^2} \frac{r}{r} = q m{E}(r)$

E(r)

Electron and Electric field

- Electric field follows superposition law
 - For electron q_i for vector r_i (j = 1, ..., N)

$$\blacksquare E(r) = \frac{1}{4\pi\epsilon} \sum_{j=1}^{N} \frac{(r-r_j)}{|r-r_j|^3}$$

- \square For continuous distribution of electron $\rho_s dV$, where ρ_s : electron density
 - For volume dV: $E(r) = \frac{1}{4\pi\epsilon} \iiint \frac{\rho_S(r-s)}{|r-s|^3} dV$
 - For surface dS: $E(r) = \frac{1}{4\pi\epsilon} \iint \frac{\rho_S(r-s)}{|r-s|^3} dS$
 - □ For line dl: $E(r) = \frac{1}{4\pi\epsilon} \int \frac{\eta_s(r-s)}{|r-s|^3} dl$

Electric flux

- Assume electron generate line of divergence
 - □ Electric flux (similar: electric line)
 - \blacksquare Electron Q generate Q-lines of electric flus
 - \square Density D should be changed by the position

$$\Box D = \epsilon E$$

$$\Box S = nS$$

Amount of electric flux penetrate area S

$$\Box \phi = D \cdot S$$

□ For small area dS

$$\mathbf{D} d\phi = \mathbf{D} \cdot d\mathbf{S}, \ \phi = \iint d\phi = \iint \mathbf{D} \cdot d\mathbf{S}$$

Gauss's law for electric field

 \blacksquare Relationship between electric flux $d\phi$ generated by electron q, and its penetrating area $d\mathbf{S}$ on any shape

$$\Box d\phi = \mathbf{D} \cdot d\mathbf{S}$$

■ For the sphere w/ diameter of one, electric flux ratio should

$$\square q \frac{d\Omega}{4\pi} = \begin{cases} \mathbf{D} \cdot d\mathbf{S} & (\mathbf{r} \cdot d\mathbf{S} > 0) \\ -\mathbf{D} \cdot d\mathbf{S} & (\mathbf{r} \cdot d\mathbf{S} < 0) \end{cases}$$

□ If $r \cdot dS > 0$ (curve is convex)

$$\Box \phi = \iint \mathbf{D} \cdot d\mathbf{S} = \iint q \frac{d\Omega}{4\pi} = q$$

 \blacksquare For volume w/ electron density ρ

$$\Box \iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho \, dV$$

Physical meaning of Gauss's law for electric field

- $\square \iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho \, dV \text{ (integral from)}$
 - \square \iint $D \cdot dS$: Total amount of electric flux flow-outs from the surface
 - $\square \iiint \rho \, dV$: Total amount of electrons inside the volume

- - □ div **D**: divergence electric flux (density)
 - $\square \rho$: electron (density)

Magnetics and magnetic field

- \blacksquare Two amount of magnetics q_{m1} q_{m2} with distance r have attracting/repulsion force F
 - \square Coulomb's law for magnetics $F = \frac{1}{4\pi\mu} \frac{q_{m1}q_{m2}}{r^2}$
 - $\square \mu = \mu_0 \mu_r,$
 - \square μ is magnetic permeability (permeability)
 - \square μ_0 is permeability in vacuum (= $4\pi \times 10^{-7}$ H/m)
 - $\blacksquare \mu_r$ is relative permeability
- Monopole Q_m create magnetic field $H(r) = \frac{1}{4\pi\epsilon} \frac{Q_m}{r^2} \frac{r}{r}$
 - lacksquare Coulomb's law in vector $m{F} = \frac{1}{4\pi\epsilon} \frac{q_m Q_m}{r^2} \frac{m{r}}{r} = q_m m{H}(m{r})$

Gauss's law for magnetic field

- lacktriangle Magnetic pole of q_m generates q_m -lines of magnetic flux
 - Magnetic flux density B create magnetic field H
 - $\Box B = \mu H$
- Magnetic should in dipole (set of S and N, no monopole)
 - Same amount of flux from N to S
 - $\square \iint \mathbf{B} \cdot d\mathbf{S} = \iiint \operatorname{div} \mathbf{B} dV = 0 \text{ (integral form)}$
 - \Box div $\mathbf{B} = 0$ (differential form)
- Gauss's law for magnetic field
 - No divergence in magnetic field (not monopole).

Magnetics and current flow

- Biot-Savart law: Constant current I create magnetic field H at the position of r
 - $\square H = \frac{I}{2\pi r}$
 - Right-hand turning (clockwise)
- Ampele's law: relationship of current I and magnetic field H

 - □ For the continuous current, use current density *i* then

$$\Box \oint \mathbf{H} \cdot d\mathbf{r} = \iint \mathbf{i} \cdot d\mathbf{S}$$

■ Include current change term

$$\Box \oint \mathbf{H} \cdot d\mathbf{r} = \iint \left(\mathbf{i} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$$

Physical meaning of Ampele's law

- - $\square \oint H \cdot dr$: line integral of magnetic field H

$$\Box$$
 rot $H = i + \frac{\delta D}{\delta t}$

□ If rotating vector H exists, constant current \mathbf{i} or current change $\frac{\partial \mathbf{D}}{\partial t}$ exists

Fleming's left-hand rule

- Current create magnetic flux
 - Behave like magnetic dipole
 - □ Constant current I in length I in uniform magnetic flux density I is force I is I in I in uniform magnetic flux I is I is force I and I is I in uniform magnetic flux I is I in uniform magnetic flux I in I i
 - $\blacksquare F = Il \times B$ (outer product)

Lorentz force

- □ Fleming's left-hand rule: current I receive a force F from magnetic field density B
 - Moving electron receive a power by magnetic field
- \blacksquare Assume electrons qn with speed v, cross section of line S
 - $\square I = nqSv \text{ thus } F = nqSv \times Bl$
 - \blacksquare For one electron: $\mathbf{f} = q\mathbf{v} \times \mathbf{B}$: Lorentz force

Faraday's electromagnetic induction law

- lacktriangle Change of magnetic flux ϕ on inductor create electromotive force V
 - $\square V = -\frac{d\phi}{dt}$ (Faraday's electromagnetic induction law)
 - Change of magnetic flux:
- □ Change of magnetic flux ϕ : try to create magnetic flux $-\phi$ to cancel out

- \blacksquare Total sum of electro motive force $V = \oint \mathbf{E} \cdot d\mathbf{r}$
- lacksquare Total sum of magnetic flux $\phi = \iint \mathbf{B} \cdot d\mathbf{S}$

$$\Box \oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\partial}{\partial t} \iint \mathbf{B} \cdot d\mathbf{S}$$

Physical meaning of Faraday's electromagnetic induction law

$$\Box \oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S} \text{ (integral form)}$$

- $\Box \frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$: amount of magnetic flux change in area S
- $\square \oint E \cdot dr$: Total sum of electro motive force

$$ightharpoonup$$
 rot $\boldsymbol{E} = -\frac{\delta B}{\delta t}$ (differential form)

$$\Box - \frac{\delta B}{\delta t}$$
: amount of magnetic flux changes

Conclusion

- Understand the meaning of Maxwell's equation using vector form
 - Gauss's eq of electric field
 - lacksquare div $m{D}=
 ho$, $\iint m{D}\cdot dm{S}=\iiint
 ho dV$
 - □ Gauss's eq of magnetic field
 - \Box div $\mathbf{B} = 0$, $\iint \mathbf{B} \cdot d\mathbf{S} = \iiint \text{div } \mathbf{B} dV$
 - No divergence in magnetic field (not monopole)

Conclusion

■ Ampele's law

$$rot \mathbf{H} = i + \frac{\delta D}{\delta t} : \oint \mathbf{H} \cdot d\mathbf{r} = \iint \left(i + \frac{\delta \mathbf{D}}{\delta t} \right) \cdot d\mathbf{S}$$

- □ If constant current i or current change $\frac{\partial \mathbf{D}}{\partial t}$ exists, it generate magnetic filed \mathbf{H} as rotating vector
- □ Faraday's law

$$ho$$
 rot $\mathbf{E} = -\frac{\delta B}{\delta t}$: $\oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$

- □ If $-\frac{\delta B}{\delta t}$ amount of magnetic flux changes, it generate electromotive force E as rotating vector
- nishizawa@aoni.waseda.jp