Inteligência Artificial

Recuperação de Informação

Prof. Fabio Augusto Faria

1° semestre 2015

World Wide Web (WWW)

Existem centenas de milhões de paginas na web tratando de variados assuntos.

World Wide Web (WWW)

Dado esse grande número de paginas, como encontrar de forma eficiente a informação desejada?

Sites de Busca

Recuperação de Informação

- Corpus de documentos: é o escopo do sistema (e.g., parágrafo, página ou textos);
- Consulta: uma consulta especifica sobre o que o usuário quer saber;
- **Resultados:** subconjunto de documentos que o sistema julga ser relevante para a consulta;
- Apresentação dos resultados: geralmente uma lista ordenada, mas pode ser utililizadas técnicas de visualização.

Recuperação de Informação (RI)

Recuperação de Informação (RI)

- Dois problemas diferentes e igualmente desafiadores:
 - recuperar informação de forma eficiente;
 - estimar a **relevância** dos documentos recuperados para a ordenação do conjunto resposta.

RI na Web - Engenhos de Busca

- ALIWEB (outubro de 1993)
 - Desenvolvido por Martijn Koster
 - Permitia que usuários submetesses suas paginas WEB juntamente com a descrição e keywords
 - Poucas pessoas submetiam suas paginas o que fazia com que o ALIWEB n\u00e3o fosse muito utilizado

- JumpStation (dezembro de 1993)
 - Primeiro engenho de busca a usar um agente na web (web crawler) para encontrar as paginas
 - Devido a limitações de recursos, o processo de indexação e, consequentemente, de busca era limitado ao titulo e cabeçalho das paginas encontradas.

- AltaVista (1995)
 - Possuía recursos de rede ilimitados para época.
 - Primeiro a fornecer recursos de pesquisa em vários idiomas,
 - Primeiro a permitir busca por conteúdo multimídia
 - 300 mil requisições no primeiro dia e após 1 ano recebia 19 milhões de requisições por dia

- Yahoo! (1994)
 - Um dos principais sites utilizados para busca na internet.
 - Funcionava como um diretório web, onde as paginas web eram divididas em categorias e subcategorias.
 - Em 2000 Yahoo comprou a inktomi e utilizou o seu sistema de busca até 2004, quando lançou seu próprio sistema.
 - Em julho de 2009 o yahoo! entrou em acordo com a Microsoft para utilizar o Bing como sistema de busca.

- Google (2000)
 - Melhores resultados que os concorrentes ao utilizar o algoritmo PageRank
 - Diferentemente de seus concorrentes, fornecia uma interface de busca simples ao invés de um portal web
 - Se tornou o maior engenho de busca do mundo.

RI na Web - Engenhos de Busca

Web Crawler

- Agente que navega pela web de maneira automática e sistematicamente;
- Captura informações que serão utilizadas na etapa de indexação.
- Utiliza um conjunto de URL iniciais e segue para outra páginas através de hiperlinks

Arquitetura Geral Web Crawler

Indexação

- Processo de atribuir termos/códigos a um documento com objetivo de recuperá-lo mais rapidamente quando necessário;
- "Índices são, portanto, estruturas de dados auxiliares cujo único propósito é tornar mais rápido o acesso a registros baseado em certos campos, chamados campos de indexação";
- O índice possui uma descrição sobre a pagina como: data de criação, tamanho, o titulo e as primeiras linhas;
- "Atualmente os <u>engenhos de busca</u> oferecem buscas por frases, porém detalhes dessa funcionalidade não é publicamente conhecida", Berthier Ribero-Neto.

Modelo de Recuperação de Informação

□ Definição Formal de modelo em IR:

- É definido pela quádrupla [\mathbf{D} , \mathbf{Q} , \mathbf{f} , $\mathbf{r}(\mathbf{q}_i, \mathbf{d}_i)$]
 - **D** é um conjunto composto por representações para os documentos em uma coleção
 - **Q** é um conjunto formado por representações (consultas) para uma necessidade de informação do usuário
 - f é um arcabouço para modelagem de representações de documentos, consultas e seus relacionamentos
 - $\mathbf{r}(\mathbf{q}_i, \mathbf{d}_j)$ é uma função de ordenação que associa um número real a uma consulta $\mathbf{q}_i \in \mathbf{Q}$ uma representação de documento $\mathbf{d}_j \in \mathbf{D}$ para ordenar os documentos de acordo com a consulta.

Modelo de Recuperação de Informação

- Booleano
- TF-IDF
- BM25 (Projeto Okapi)
- PageRank (Google)
- HITS (Hiperlink Induced Topic Search)

Modelo Booleano (palavra chave)

- Mais simples de entender e implementar;
- Cada palavra do documento é tratada como uma característica booleana (V ou F);
- Não reflete o grau de relevância de um documento com relação aos outros (apresentação dos resultados);
- Consulta com mais de um termo de-se usar AND e OR.

Modelo Vetorial TF-IDF

- **TF (term frequency)**: é a freqüência de um termo em um documento ou o número de vezes que um termo **ki** ocorre em um documento **dj**;
- IDF (inverse document frequency): é o inverso da frequência do documento ou o número de documentos nos quais um termo ki é encontrado, considerando toda uma coleção de documentos.

Modelo Vetorial TF-IDF

$$w_{i,j} = f(tf_{i,j}) \times idf_i = (1 + \log t f_{i,j}) \times \log \left(1 + \frac{N}{df_i}\right)$$
(2.2)

onde $tf_{i,j}$ é a frequência de um termo k_i em um documento d_j , N é o número de documentos da coleção e dfi é o número de documentos onde um termo k_i ocorre;

$$w_{i,q} = f(tf_{i,q}) \times idf_i = (1 + \log t f_{i,q}) \times \log \left(1 + \frac{N}{df_i}\right)$$
(2.3)

onde N é o número de documentos da coleção, dfi é o número de documentos onde um termo k_i ocorre e $tf_{i,q}$ é o número de ocorrências de um termo k_i em uma consulta q.

Modelo Probabilístico BM25

"Modelo probabilístico tenta estimar a relevância de um documento baseada na idéia de que os termos das consultas têm diferentes distribuições nos documentos relevantes e não-relevantes" [2]

Modelo Probabilístico BM25

$$score(D,Q) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{\mathsf{TF}(q_i,D) \cdot (k_1+1)}{\mathsf{TF}(q_i,D) + k_1 \cdot (1-b+b \cdot \frac{|D|}{\operatorname{avgdl}})},$$

IDF
$$(q_i) = \log \frac{N - \text{DF}(q_i) + 0.5}{\text{DF}(q_i) + 0.5},$$

 ${\bf k}$ e ${\bf b}$ são parâmetros que podem ser encontrados por validação cruzada (k=2 e k=0.75); ${\bf DF}$ é número de documentos que o termo ${\bf q}i$ ocorre; ${\bf avgdl}$ é o comprimento médio do documento no corpus.

PageRank

- Criado por um dos fundadores da Google, Larry Page;
- Estima a importância de um site pela contagem e qualidade dos links da página;
- Um site de alta qualidade está ligado a outros sites de alta qualidades;

PageRank

- Dado que o usuário está em uma determinada pagina é possível:
 - Pular pra uma pagina aleatória com probabilidade d
 - Seguir um dos hiperlinks da pagina com probabilidade 1 d
 - ullet A pagina pi é apontada pelas paginas pj
 - $L(pj) = N^o$ de hyperlinks de saída em pj
 - N é o número total de páginas consideradas
 - M(pi) é o número de páginas que apontam pi

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

HITS - Hypertext Induced Topic Search

- Cada pagina possui dois scores
 - Autoridades = Paginas que s\u00e3o apontadas por muitas outras
 - **Hubs** = Paginas que apontam para muitas outras.

Sistema de Extração de Informações

Sistema de Extração de Informações

Baseados em PLN

Extrair informações de textos em linguagem natural (livre) Padrões lingüísticos

Processamento de Liguagem Natural

Processo de extração

Extração de fatos (unidades de informação)

Através da análise local do texto

Integração e combinação de fatos

Produção de fatos maiores ou novos fatos

Estruturação de fatos relevantes

- Padrão de saída

Processamento de Liguagem Natural

Arquitetura

Processador Léxico

Separação dos termos (tokenization) pelo reconhecimento de espaços em branco e sinais de pontuação que delimitam o texto;

Análise léxica e morfológica dos termos para determinar suas possíveis classes (substantivo, verbo, etc.) e outras características (masculino, feminino);

É comum o uso de autômatos finitos para o reconhecimento das informações

Reconhecimento de Nomes

Identifica nomes próprios;

Itens que têm estrutura interna como da data e hora;

Nomes são identificados por expressões regulares expressos em função das classes morfossintáticas (part-of-speech) e características sintáticas e ortográficas (letras maiúsculas) presentes nos termos.

Analisador sintático/semântico

Recebe uma seqüência de itens léxicos e tenta construir uma estrutura sintática junto com alguma semântica;

Identifica os segmentos de texto e para cada um associa alguma característica que podem ser combinadas na fase seguinte.

Padrões de extração

Consiste na indução de um conjunto de regras de extração para o domínio tratado;

Esses padrões baseiam-se em restrições sintáticas e semânticas aplicadas as sentenças.

Analisador do Discurso

Relaciona diferentes elementos do texto;

Análise de frases nominais, reconhece apostos e outros grupos nominais complexos;

Resolução de conferência, identifica quando uma frase nominal se refere a outra já citada;

Descoberta de relacionamento entre as partes do texto, para estruturar palavras do texto em uma rede associativa.

Integração e Preenchimento de templates

As informações são combinadas

Os templates são preenchidos com as informações relevantes ao domínio

Recuperação Inteligente de Informação - CIN - UFPE - 2008.2

Como Avalidar um SRI?

Precisão (Precision)

```
precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{retrieved\ documents\}|}
```

Revocação (Recall)

```
\operatorname{recall} = \frac{|\{\operatorname{relevant\ documents}\} \cap \{\operatorname{retrieved\ documents}\}|}{|\{\operatorname{relevant\ documents}\}|}
```

Curva Precision x Recall

Referência

- 1- Aulas Profa. Flávia de Almeida Barros em http://www.cin.ufpe.br/~in1152/aulas/.
- 2- Dissertação de H. M. de Almeida (UFMG). Uma Abordagem de Componentes Combinados para a Geração de Funções de Ordenação usando Programação Genética, 2007.
- 3- Dissertação de C. Zambenedetti (UFRGS). Extração de Informação sobre Bases de Dados Textuais, 2002.
- 4- R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The concepts and technology behind search.

RI

- "Recuperação de informação lida com os aspecto
- informação e sua especificação para busca, e tan
- ou máquinas que são empregadas para realizar e
- apud Saracevic, 1999)
- Para Baeza-Yates e Ribeiro-Neto [3], recuperação
- · lida com a representação, armazenamento, organ
- possam acessar de forma fácil a informação na q

RI

- •Um tópico essencial em RI é o conceito de relevância;
- Relevância está associada à necessidade de informação de um u
- •a relevância descreve o grau de aceitação ou rejeição de um documento retornado por um sistema em relação a uma consulta fornecida por um usuário.