Chapter 7 Probability – (Study) Formula Sheet

7.1 - Introduction to Probability

Probability:

$$P(Event) = \frac{\textit{Number of outcomes in the event}}{\textit{Number of outcomes in the sample space}} = \frac{\textit{Number of successes}}{\textit{Number of possibilities}} \\ 0 \leq P(Event) \leq 1$$

Sample space:

- All possible outcomes

- Ex: Rolling a die, $S = \{1, 2, 3, 4, 5, 6\}$

7.2 - Counting our Way to Probabilities

Fundamental Counting Principle:

- Total number of ways a job can be done

- Just multiply the number of ways to do each individual task)

Task 1	Task 2		Task n	Total Outcomes	_
k ₁	k ₂	•••	k _n	$k_1 \times k_2 \times \cdots \times k_n$	

Ex: Total # of ways to get dressed

$$\frac{3 \times 4 \times 7 \times 3}{\text{socks}} = \frac{72}{\text{pants}} = \frac{1}{\text{belts}} = \frac{72}{\text{ties}}$$

Factorial:

$$- n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

Combinations and Permutations:

- How many ways to "select r objects from a total of n objects" (without replacement).
 - Combinations: nCr → Order does NOT matter

- Ex: Selecting a committee

Permutations: nPr → Order DOES matter (meaning to the "slots")

- Ex: Selecting a President, Vice President and Secretary

7.3 – Using Counting Methods to Find Probabilities

Compliments:

- $E^c \rightarrow$ All outcomes in the sample space that are not in event E (think: NOT, opposite, take it out)
- Complement rules of probability

1)
$$P(E) + P(E^{c}) = 1$$

2)
$$P(E) = 1 - P(E^{c})$$

3)
$$P(E^{c}) = 1 - P(E)$$

Calculating (harder) probabilities:

- TWO Approaches: Ex: Select 3 Hearts 52 cards without replacement

$$P(Event) = \frac{\text{# Successes}}{\text{# Possibilitie}}$$

- Counting methods

Solve numerator and denominator separately

7.4 - Addition and Multiplication Rules of Probability

Addition rules:

- The probability of <u>A or B</u> occurring P(A or B) = P(A) + P(B) - P(A and B)

$$P(\text{king or spade}) = P(\text{king}) + P(\text{spade}) - P(\text{king and spade})$$

$$K(S) = K(S) + K(S) - K(S)$$

- Mutually Exclusive Events:
 - No outcomes in common (no overlap)
- Addition Rule for Mutually Exclusive Events:
 - P(A or B) = P(A) + P(B)

P(Club or Heart) = P(Club) + P(Heart) Club Heart Heart

Conditional Probability:

- P(B | A) = The conditional probability of Event B, given that Event A has already occurred
- Event A is the "additional info" (GOES SECOND); then we are interested in Event B (GOES FIRST)

		Stats	Art	Ex) Find probability a	student is a stats major given they have Good attendance
	Perfect	100	40	140	+r 60 pd) = 20
	Good	20	50	70	70
	Total	120	90		

Multiplication Rules:

- Independent Events:
 - The result of one event does not influence the probability of the other
 - With replacement, unrelated experiments
- Dependent Events:
 - The result of one event does influence the probability of the other
 - Without replacement
- Multiplication Rule for Independent Events:
 - The probability of <u>A and B</u> occurring is: $P(A \text{ and } B) = P(A) \times P(B)$
- Multiplication Rule for Dependent Events:
 - The probability of A and B occurring is: $P(A \text{ and } B) = P(A) \times P(B \mid A)$ "Both events occurred" = "A occurred, then B occurred later"

7.5 - Expected Value

Expected value: $E(X) = x_1 P(X_1) + x_2 P(X_2) + \dots + x_n P(X_n)$

- Steps to find:
 - 1) Make a table; 2) Think about X values first; 3) Then find probabilities; 4) Then calculate E(X)

Sum of Expected Values:

- To find the combined expected value of multiple events, just add the individual expected values.
- E(X or Y) = E(X) + E(Y)

Odds for
$$=\frac{P(Win)}{P(Lose)}$$
 Odds against $=\frac{P(Lose)}{P(Win)}$

- To convert from probability to odds: $P(A) \rightarrow a$: b, First write the probabilities as fractions
- To convert from odds to a probability: $a: b \to P(A) = \frac{a}{a+b}$