V406 Beugung am Spalt

Alina Landmann, alina.landmann@tu-dortmund.de Jannine Salewski, jannine.salewski@tu-dortmund.de

Durchführung: 17.04.2018 Abgabe: 24.04.2018

TU Dortmund - Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	1
2	Theorie	1
3	Durchführung	4
4	Auswertung4.1Erster Einzelspalt	8
5	Diskussion	13
Lit	teratur	13

1 Zielsetzung

Im Versuch wird Licht als elektromagnetische Welle am Spalt gebeugt und anschließend das hinter dem Spalt entstehende Interferenzmuster untersucht. Es werden Spaltbreiten zweier Einzelspalten und die Spaltbreite eines Doppelspalts untersucht.

2 Theorie

Unter Beugung wird verstanden, dass Wellen an einem Hindernis abgelenkt werden und sich auf Grund dessen neue Wellenfronten nach dem Huygen'schen Prinzip bilden. Licht wird immer dann gebeugt, wenn es durch Öffnungen in Schirmen scheint, deren Breite etwas schmaler als der Strahldurchmesser des Lichtes ist. Es können dabei zwei Arten der Beugung beobachtet werden: Die Fresnel'sche und die Frauenhofer'sche Beugung.Beide Arten der Beugung sind schematisch in Abbildung 1 zu sehen. Bei der Fresnel'schen Beugung ist der Abstand zwischen Lichtquelle und Öffnung und zwischen Öffnung und Bild endlich. Bei der Frauenhofer'schen Beugung hingegen sind diese Abstände unendlich groß. Dadurch sind die miteinander inteferierenden Lichtstrahlen parallel und werden im Gegensatz zur Fresnel'schen Beugung alle unter dem selben Winkel gebeugt. Da es mathematisch deutlich einfacher ist, wenn alle Lichtstrahlen unter dem selben Winkel gebeugt werden, wird im Versuch lediglich die Frauenhofer'sche Beugung betrachtet.

Abbildung 1: Fresnel'sche und Frauenhofer'sche Beugung im Vergleich mit der geometrischen Optik(gestrichelte Linien). [Dor]

Die Frauenhofer'sche Beugung ist lediglich die mathematische Formulierung des Huygen'schen Prinzips, welches besagt, dass von jedem Punkt einer Wellenfront eine Elementarwelle ausgeht, die eine Kugelwelle ist. Diese Elementarwellen interferieren miteinander und deren Einhüllende ist die neue Wellenfront. Der Schwingungszustand am Beobachtungspunkt ergibt sich, wenn alle an diesem Punkt gleichzeitig eintreffenden Elementarwellen aufsummiert werden. Am Einzelspalt muss demnach über alle Strahlen

summiert werden muss, die unter dem selben Winkel Φ gebeugt werden. Dabei beträgt die Feldstärke, der in z-Richtung einfallenden ebenen Welle:

$$A(z,t) = A_0 \mathrm{exp} \left(i \left(\omega \ t - \frac{2\pi \ z}{\lambda} \right) \right)$$

In Abbildung 2 wird deutlich, dass der Phasenunterschied der einzelnen eintreffenden Lichtstrahlen

$$\delta = \frac{2 \pi s}{\lambda} = \frac{2 \pi x \sin(\varphi)}{\lambda}$$

beträgt.

Richtung der einfallenden Lichtwelle

Abbildung 2: Phasenbeziehung zweier eintreffender Lichtstrahlen bei der Frauenhofer'schen Beugung am Spalt. [Dor]

Um die Amplitude in φ Richtung zu bekommen, wird über die gesamte Spaltbreite b imtegriert, da die einfallenden Lichtsrahlen infenitessimal klein sind:

$$B(z,t,\varphi) = A_0 \exp\left(i\left(\omega\ t - \frac{2\pi\ z}{\lambda}\right)\right) \exp\left(\frac{\pi\ i\ b \sin(\varphi)}{\lambda}\right) \frac{\lambda}{\pi\ \sin(\varphi)} \sin\left(\frac{\pi\ b\ \sin(\varphi)}{\lambda}\right)$$

Dabei werden nur reellwertige Faktoren betrachtet. Eine Amplitudenfunktion ist in Abbildung 3 zu sehen. Aufgrund der sehr hohen Amplitude des einfallnden Lichts wird die zeitlich gemittelte Intensität des Lichts gemessen, welche sich mit Hilfe folgender Formel berechnen lässt:

$$I(\varphi) \propto B(\varphi)^2 = A_0^2 \ b^2 \left(\frac{\lambda}{\pi \, \sin(\varphi)}\right)^2 \sin^2 \left(\frac{\pi \ b \, \sin(\varphi)}{\lambda}\right)$$

Abbildung 3: Amplitudenverteilung bei Frauenhofer'scher Beugung am Einzelspalt. [Dor]

Die Intensitätsverteilung bei der Beugung am Doppelspalt lässt sich als Überlagerung zweier Einzelspalte betrachten, was in Abbildung 4 gut zu sehen ist. Folglich ergibt sich für die Intensität am Beobachtungspunkt:

$$I(\varphi) \propto B(\varphi)^2 = 4\cos^2\left(\frac{\pi \ s \sin(\varphi)}{\lambda}\right) \left(\frac{\lambda}{\pi \sin(\varphi)}\right)^2 \sin^2\left(\frac{\pi \ b \sin(\varphi)}{\lambda}\right).$$

Abbildung 4: Schematische Darstellung der Beugung am Doppelspalt. [Dor]

3 Durchführung

Der versuchsaufbau ist in Abbildung 5 gut zu sehen. Er besteht aus einem Helium-Neon-Laser, der eine möglichst ebene Lichtwelle emittiert. Um den, bei der Frauenhofer'schen Beugung geforderten, unendlichen Abstand zwischen Spalt und Detektor zu nähern, muss dieser Abstand L mindestens einen Meter betragen. Der Detektor muss dabei senkrecht zum Lichtstrahl zu verschieben sein. Da die Messung nicht bei absoluter Dunkelheit

Abbildung 5: Versuchsaufbau [Dor]

durchgeführt werden kann, ist zu beachten, dass vor der Durchführung des Experiments der Dunkelstrom einmal gemessen wird und von den Messwerten abgezogen werden muss. Um die Längenskala am Detektor in den Beugungswinkel ϕ umzurechnen, wird folgende Formel verwendet:

$$\phi \approx tan(\varPhi) = \frac{\zeta - \zeta_0}{L}.$$

 ζ_0 beschreibt dabei die Detektorstellung für die Richtung des ungebeugten Strahls. Um die Beugungsmuster zu analysieren, werden zunächst die Maxima grob bestimmt, um zu ermittlen, in welchen Bereichen mehr Messwerte aufgenommen werden. anschließend werden die Beugunsgmuster zweier Einzelspalte und eines Doppelspalts untersucht, indem die Intensitäten der einfallenden gebeugten und interferierenden Lichtsrahlen in verschiedenen Detektorstellungen gemessen werden. Die Lichtintensität und die jeweilig dazugehörige Detektorstellung werden notiert.

4 Auswertung

Der Abstand L
 zwischen dem optischen Element und der Messsonde und die Wellenlänge
 λ beträgt

$$L = 1.12 \,\mathrm{m}$$

 $\lambda = 633 \,\mathrm{nm}.$

Da der Raum nicht ganz abgedunkelt werden kann, wird der Dunkelstrom $I_{\rm du}$ von der Intensität bzw. dem Strom I abgezogen. Außerdem wird eine Verschiebung der Nulllinie um den Wert δd durchgeführt.

$$I_{\rm du} = 8 \, \rm nA$$

$$\Delta d = 24.75 \, \rm mm \, .$$

4.1 Erster Einzelspalt

Die Werte zur Messung des ersten Einzelspaltes sind in Tabelle 1 aufgelistet. Die nichtlineare Regression (siehe Abbildung 6) der Form

$$I(\varphi) = A_0^2 b^2 \left(\frac{\lambda}{\pi b \sin(\varphi)} \right) \cdot \sin^2 \left(\frac{\pi b \sin(\varphi)}{\lambda} \right) \tag{1}$$

wobei b die Spaltbreite und ${\cal A}_0$ eine Proportionalitätskonstante ist, ergibt

$$b = (14.97 \pm 0.07) \cdot 10^{-5} \text{ m}.$$

 ${\bf Abbildung} \ {\bf 6:} \ {\bf Messwerte} \ {\bf und} \ {\bf Regression} \ {\bf der} \ {\bf Messung} \ {\bf am} \ {\bf ersten} \ {\bf Spalt}.$

Tabelle 1: Messwerte erster Einzelspalt.

d / mm	$d / \text{mm} I / \mu A \parallel$		Ι / μΑ
12.00	0.038	23.75	2.25
12.50	0.046	24.25	2.50
13.00	0.056	24.75	2.60
13.50	0.058	25.25	2.55
14.00	0.051	25.75	2.25
14.50	0.040	26.25	1.85
15.00	0.027	27.00	1.15
15.50	0.023	27.40	0.84
15.65	0.024	28.00	0.39
15.80	0.026	28.50	0.18
16.00	0.031	29.00	0.058
16.50	0.052	29.50	0.029
17.20	0.094	29.80	0.042
17.50	0.103	30.25	0.082
17.75	0.115	30.75	0.125
17.90	0.120	31.25	0.155
18.10	0.120	31.50	0.160
18.30	0.115	31.75	0.155
18.50	0.110	32.25	0.130
19.00	0.085	33.00	0.080
19.75	0.046	33.50	0.048
19.40	0.062	34.00	0.029
20.00	0.044	34.25	0.025
20.25	0.055	34.75	0.028
20.50	0.082	35.50	0.044
21.00	0.21	36.00	0.051
21.75	0.58	36.50	0.050
22.50	1.10	37.00	0.042
23.25	1.80	37.50	0.032

4.2 Zweiter Einzelspalt

Die Werte zur Messung des zweiten Einzelspaltes sind in Tabelle 2 aufgelistet. Die nichtlineare Regression (siehe Abbildung 7) der Form

$$I(\varphi) = A_0^2 b^2 \left(\frac{\lambda}{\pi b \sin(\varphi)} \right) \cdot \sin^2 \left(\frac{\pi b \sin(\varphi)}{\lambda} \right) \tag{2}$$

ergibt für die Spaltbreite b

$$b = (7.87 \pm 0.08) \cdot 10^{-5} \,\mathrm{m}.$$

Abbildung 7: Messwerte und Regression der Messung am zweiten Spalt.

Tabelle 2: Messwerte zweiter Einzelspalt.

d / mm	$d / \text{mm} I / \mu A$		Ι / μΑ	
2.00	0.023	25.00	0.60	
2.25	0.023	25.50	0.58	
2.75	0.0225	26.00	0.54	
3.75	0.0210	27.00	0.46	
4.75	0.0180	28.50	0.30	
5.25	0.0165	30.00	0.15	
5.75	0.0150	31.50	0.05	
6.25	0.0150	32.50	0.034	
7.00	0.0160	33.00	0.025	
7.75	0.0195	33.50	0.021	
8.75	0.0260	34.00	0.021	
9.75	0.032	34.50	0.025	
10.50	0.042	35.00	0.030	
11.00	0.046	36.00	0.041	
11.50	0.048	37.00	0.048	
12.00	0.048	37.50	0.048	
12.50	0.048	38.50	0.044	
13.00	0.046	39.00	0.040	
13.50	0.042	40.00	0.029	
14.50	0.034	41.00	0.019	
15.00	0.030	42.00	0.012	
15.50	0.029	42.50	0.010	
16.00	0.031	43.00	0.010	
17.50	0.068	43.50	0.010	
17.50	0.068	44.00	0.012	
19.00	0.14	44.50	0.013	
20.50	0.28	45.50	0.016	
22.00	0.44	46.50	0.019	
23.00	0.53	47.00	0.020	
23.75	0.58	47.50	0.019	
24.25	0.59	48.50	0.016	
24.75	0.59			

4.3 Doppelspalt

Zur Messung der Spaltbreite b und des Abstandes s der beiden Spalten wird eine Regression der Form

$$I(\varphi) = A_0^2 \cos^2 \left(\frac{\pi s \sin(\varphi)}{\lambda} \right) \cdot \left(\frac{\lambda}{\pi b \sin(\varphi)} \right)^2 \cdot \sin^2 \left(\frac{\pi b \sin(\varphi)}{\lambda} \right) \tag{3}$$

zu den Messwerten aus Tabelle 3 durchgeführt, wobei A_0 erneut eine Proportionalitätskonstante ist. Diese Regression liefert die Werte

$$s = (47.2 \pm 0.5) \cdot 10^{-5} \text{ m}$$

 $b = (15.7 \pm 0.6) \cdot 10^{-5} \text{ m}$.

Die Messwerte und die Regression sind in Abbildung 8 dargestellt.

Abbildung 8: Messwerte und Regression des Doppelspaltes.

Eine Überlagerung der Regressionen von dem ersten Einzelspalt und dem Doppelspalt in in Abbildung 9 zu sehen. Um Die Regressionen vergleichen zu können, muss die Regression des Einzelspaltes mit einem Faktor von a = 2,26 multipliziert werden.

 Tabelle 3: Messwerte Doppelspalt.

d / mm	Ι / μΑ	d / mm	Ι / μΑ	d / mm	Ι / μΑ
11.40	0.015	23.20	3.6	30.00	0.105
11.80	0.018	23.40	4.3	30.20	0.175
12.20	0.020	23.44	4.4	30.40	0.22
12.60	0.022	23.60	4.0	30.60	0.25
13.00	0.052	23.80	3.0	30.70	0.25
13.40	0.083	24.00	2.0	30.80	0.23
13.80	0.062	24.06	1.9	31.00	0.195
14.20	0.040	24.20	2.1	31.20	0.145
14.60	0.056	24.40	3.2	31.40	0.130
14.80	0.060	24.60	5.1	31.60	0.175
15.00	0.056	24.80	6.2	31.80	0.230
15.40	0.033	24.88	6.3	32.00	0.25
15.80	0.020	25.00	5.8	32.20	0.21
16.00	0.023	25.20	4.2	32.40	0.15
16.40	0.034	25.40	2.6	32.60	0.094
16.80	0.040	25.60	1.9	32.80	0.051
17.00	0.062	25.80	2.4	33.00	0.035
17.20	0.105	26.00	3.6	33.20	0.032
17.60	0.22	26.20	4.3	33.40	0.020
17.80	0.21	26.28	4.4	33.60	0.024
18.00	0.16	26.40	4.1	33.80	0.019
18.20	0.13	26.60	3.0	33.92	0.018
18.40	0.11	26.80	1.7	34.20	0.028
18.60	0.13	27.00	0.8	34.40	0.044
18.80	0.17	27.20	0.7	34.60	0.064
19.00	0.21	27.40	0.9	34.80	0.082
19.40	0.16	27.60	1.1	35.00	0.086
19.80	0.066	27.80	1.0	35.20	0.075
20.00	0.037	80.00	0.91	35.40	0.060
20.20	0.032	28.20	0.52	35.60	0.054
20.40	0.044	28.40	0.25	35.80	0.067
20.80	0.065	28.60	0.12	36.00	0.093
21.20	0.13	28.80	0.078	36.20	0.105
21.60	0.68	29.00	0.070	36.40	0.105
22.00	1.30	29.20	0.060	36.60	0.090
22.20	1.20	29.40	0.049	36.80	0.060
22.60	0.92	29.56	0.044	37.00	0.036
22.80	1.3	29.70	0.050	37.20	0.026
23.00	2.5	29.90	0.082	37.37	0.024

 ${\bf Abbildung}$ 9: Überlagerung Einzelspalt und Doppelspalt

5 Diskussion

Die Messwerte werden mit den Literaturwerten mit Hilfe von prozentualen Abweichungen in Tabelle 4 verglichen. Zu erkennen sind geringe Abweichungen bis zu 6 %. Zu erklären lassen sich diese Abweichungen durch mögliche Messfehler. Einer davon könnte durch das Umgebungslicht entstanden sein, welches nie ganz abgeschirmt werden konnte, auch wenn der Dunkelstrom von dem gemessenen Strom schon abgezogen wird. In Abbildung 9 sind die Regressionen des ersten Einzelspaltversuches und des Doppelspaltversuches mit einem Proportinalitätsfaktor übereinander gelegt. Zu erkennen ist, dass die Einzelspaltfunktion die Doppelspaltfunktion perfekt einhüllt.

 Tabelle 4: Vergleich Literaturwerte und Messwerte

	Literaturwert	Messwert	prozentuale Abweichung
Einzelspalt 1	$b = 15 \cdot 10^{-5} \mathrm{m}$	$b = (14.97 \pm 0.07) \cdot 10^{-5} \mathrm{m}$	0.02%
Einzelspalt 1	$b = 7.5 \cdot 10^{-5} \mathrm{m}$	$b = (7.87 \pm 0.08) \cdot 10^{-5} \mathrm{m}$	4.93%
Doppelspalt	$\begin{vmatrix} b = 15 \cdot 10^{-5} \text{ m} \\ s = 50 \cdot 10^{-5} \text{ m} \end{vmatrix}$	$b = (15.7 \pm 0.6) \cdot 10^{-5} \text{ m}$ $s = (47.2 \pm 0.5) \cdot 10^{-5} \text{ m}$	$\begin{array}{ c c c }\hline 4.67\% \\ 5.6\% \\ \end{array}$

Literatur

- [Dor] TU Dortmund. Versuchsanleitung zu Versuch Nr. 406 Beugung am Spalt. URL: http://129.217.224.2/HOMEPAGE/MEDPHYS/BACHELOR/AP/SKRIPT/V406.pdf (besucht am).
- [Spe] Spektrum.de. *Brechzahl*. URL: https://www.spektrum.de/lexikon/physik/brechzahl/1958 (besucht am).