Contents

Summary / Zusammenfassung	ii
Abbreviations	/ i
Introduction	1
Multiple Myeloma and Other Monoclonal Gammopathies	2
	3
· ·	4
·	5
	6
*	8
Multidimensional Data in Biomedical Research	1
Nontransparencies in Biomedical Data Analyses	
Semi-Big Data: Big Enough to Cause Problems	
The Shortcomings of Common Biomedical Analysis Tools	
Modern Standards of Software Development	
What makes Python an "Easy" Programming Language?	-
The Potential of Python Data Science Packages for Biomedicine	
Aims	
Chapter 1: Modelling Myeloma Dissemination in vitro 2	
Abstract	
Introduction	
Materials and Methods	
Results	
Discussion	0
Chapter 2: Semi-Automating Data Analysis with plotastic 5	4
Abstract	4
Introduction	5
Statement of Need	7
Example	8
Overview	0
Discussion	2
Summarising Discussion 6	7
How Exploratory Live-Cell Imaging Transformed the Research Focus	
Potential and Challenges of Image Cytometry	
Technical Considerations for Image Cytometry	
Conclusion 1: Microscopy On the Brink of Breakthrough, if Image Analysis is Becoming more Available 7	
Novel Methods of Isolating Adhering Subpopulations	
Dynamic Regulation of Adhesion Factors During Dissemination	
Subsets of Adhesion Factors Contribute To Different Steps of Adhesion	
What Triggers Release: One Master Switch, Many Small Switches, or is it just Random?	
Outlook: High-Value Research Topics for Myeloma Research Arising from this Work	
Conclusion 1: Cancer & Myeloma & Dissemination is bad	
Semi-Automation was Critical for Establishing in vitro Methods	

Contents

	plota	astic Exceled in Re-Doing Statistical Analyses and Plots	80
	Conc	clusion 2: Demonstrating the Advantages of Semi-Automation in Biomedical Research Methodologies $$.	82
Re	eferen	ces	84
Αŗ	pend	ices	103
A	Supp	plementary Data & Methods	103
	A.1	Figures	103
	A.2	Tables	122
	A.3	Materials & Methods	130
В	Doc	umentation of plotastic	146
	B.1	Class Diagram	147
	B.2	Readme	150
	B.3	Example Analysis "qpcr"	163
\mathbf{C}	Subi	mission Forms & Documents	170
	C.1	Author Contributions	170
	C.2	Affidavit	177
	C.3	Usage of Generative AI and Other Software	179
	C.4	Curriculum Vitae	183

Abbreviations

and a symptomatic multiple myeloma
BM Bone Marrow
BMME Bone Marrow Microenvironment
BMPC Bone Marrow Plasma Cell
BMSC Bone Marrow Stromal Cell
CM hMSC-conditioned medium
CM-INA6 MSC-Conditioned-Medium-treated INA-6
CAM Cell Adhesion Molecule
CLI Command Line Interface
ECM Extracellular Matrix
EMT Epithelial-Mesenchymal Transition
FACS Fluorescence-Activated Cell Sorting
GUI Graphical User Interface
hMSC human Mesenchymal Stromal Cell
LLM Large Language Model
MA MSC-adhering
MSC Mesenchymal Stromal Cell
MGUS Monoclonal Gammopathy of Undetermined Significance
MM Multiple Myeloma
MMR Multiple Myeloma Relapse
MBD Multiple Myleoma related Bone Disease
nMA non-MSC-adhering
OS Overall Survival
PCL Plasma Cell Leukemia
PFS Progression-Free Survival
SP Solitary Plasmacytoma
SASP Senescence-Associated Secretory Phenotype

Introduction

Aims

This PhD thesis is designed to bridge significant gaps in the understanding and analysis of myeloma cell behavior and the handling of complex biomedical datasets. The specific aims are as follows:

- Develop an *in vitro* model to elucidate the mechanisms of myeloma cell dissemination in interaction with mesenchymal stromal cells (hMSCs), focusing particularly on:
 - Observing and quantifying cell proliferation, attachment, and detachment dynamics using time-lapse microscopy.
 - Isolating and characterizing distinct myeloma subpopulations interacting with hMSCs to understand differential gene expression related to cell adhesion and patient survival.
- Design and implement a Python-based software tool, plotastic, to facilitate the analysis of multidimensional datasets generated in biomedical research. This tool will aim to:
 - Streamline the data analysis process, making it more efficient and reproducible.
 - Integrate visualization and statistical analysis capabilities to ensure that data analysis
 protocols are aligned with the ways in which data is visualized.
 - Provide a case study demonstrating the application of plotastic in the analysis of in vitro dissemination experiments, emphasizing the tool's ability to handle semi-big data and enhance reproducibility.
- Synthesize the findings from the experimental and software development components to advance the understanding of myeloma dissemination and improve research practices in biomedical data analysis.

These aims are crafted to address both the biological and technical challenges in current cancer research methodologies and data science applications in biomedicine, fostering advancements that could lead to novel therapeutic strategies and more robust scientific inquiries.

Summarising Discussion

How Exploratory Live-Cell Imaging Transformed the Research Focus

Exploratory experimentation emphasizes discovering and characterizing novel phenomena (Mättig, 2022). Exploratory cell biology often leverages emerging technologies to visualize and analyze the mechanisms of cell behavior dynamically. Such approaches allow real-time observations that can lead to unexpected insights and breakthroughs. In this project, the application of live-cell imaging proved pivotal.

Direct Observation of Complexity and Novelty: Initially, the project did not focus on in vitro myeloma cell dissemination. The project's research focus shifted when making the unexpected — or argueably insignificant — observation of cancer cells detaching from aggregates. This shows the transformative power of time-lapse microscopy or live cell imaging (Cole, 2014). For the author, live-cell imaging provides an observation method that's unmatched in intuition and directness. Unlike RNA sequencing, which can obscure biological processes behind cryptic data, live-cell imaging offers a clear view into the dynamic cellular events as they unfold.

Such clarity was particularly effective in revealing the detachment of cells following division, a phenomenon that might be overlooked in static analyses. Multiple parameters can be read out in parallel, such as both time and aggregate size for detachments to begin. Also, complex cellular behavior can be deduced from movement, or rather lack thereof, which was interpreted as re-attachment of INA-6 daughter cells to the human Mesenchymal Stromal Cell (hMSC) monolayer. This allowed for measuring the duration of nMA-INA6 existing until re-attaching and turning into MA-INA6. This information was helpful when designing experiments to prove that dissemination is initiated by cell division, requiring precise timing to capture the detached daughter cells right after cell division. Together, live cell imaging enabled key mechanistic insights in understanding the dynamics involved in multicellular interactions by integrating the study of multiple phenomena at once.

Difficulties Connecting Observation with Acedemic Terminology Exploring video data begins with the search of scientific novelties. In order to correctly identify cellular phenomena relevant to the research question, a deep understanding of cell biology is required, e.g. in field of cell dynamics to read migratory behavior (Nalbant & Dehmelt, 2018). This is a challenge for both students and experienced researchers, since finding the academically correct terms to describe observations is difficult, especially for novel phenomena or a sequence of events that can overlap. After all, cell biology is taught using textbooks, not videos. For this project in particular, the used terminology was revised frequently, being caused by the constant struggle of finding the middle-ground between

the precice description of observations, the compatibility with results from other experiments, comprehensability, and memorability. Ultimately, comprehensability and memorability were prioritized to maximize adoption of the new terminology by other researchers. For instance, non MSC adherence was chosen over mobile interaction, aggregation over homotypic interaction, and detachment event over in vitro metastasis. In general, the gap between observations and their description remains a challenge in exploratory cell biology that might be overlooked. This gap could be bridged by currently available multimodal Large Language Models (LLMs) like ChatGPT-40: These models could match recorded phenomena with descriptions and images that were amassed in the literature over decades. By doing so, researchers not only use established terminology instead of inventing new terms, but also minimize the risk of missing potential discoveries.

Why Hide Videos Behind a Download Link? A major challenge remains in how to effectively present these dynamic observations in a publishable format, as traditional scientific publications and websites are not equipped to display video data. Instead, it is common practice to assemble video frames into static figures, presumably to support both online and printed reading habits (Peras et al., 2023). Representative example videos are then relegated to supplementary data. Although supplementary data is downloaded often, most biomedical researchers favor a presentation of additional figures and tables directly on the journal's website (Price et al., 2018). Given the increasing availability of video data⁹, embedding video content next to figures and tables on the article's website does make a compelling case. In fact, the journal *Nature* does offer this feature already, but rarely used (*Nature Video Content*, n.d.). In the end, there is no reason to not present videos alongsife figures and tables, as they can be as informative, and potentially more so. Such new standards can benefit other fields of medicine, as videos provide the best medium for first aid, medical emergency and education (D. Gupta et al., 2023).

Overall, Live-cell imaging has proven indispensable in exploratory cell biology, uncovering dynamic cellular phenomena that static analyses often miss. This is exemplified in this work, where live-cell imaging shifted the research focus by revealing unexpected cell behaviors, like detachment during division, emphasizing the need for integrating real-time observations with molecular data. By making such dynamic processes visible, live-cell imaging not only enriches our understanding but also challenges us to enhance how scientific findings are presented, advocating for greater accessibility of video data in scientific publications.

⁹The number of PubMed articles with "live cell imaging" doubled from 2011 to 2023.

Potential and Challenges of Image Cytometry

Quantifying microscopy data is critical for both analytic and exploratory approaches to microscopy: For instance, microscopic assessment of live/dead cells should produce bar charts presenting cell viabilities (Spaepen et al., 2011), whereas describing novel phenomena should be supported by charts proving the reproducibility of claimed observations. Microscopy data is source of vast amount and types of information: cell morphology; organelle count, shape, and distribution; membrane and lipid distribution; protein localization, DNA content, et cetera. However, leveraging this information has always been limited by the ability to extract quantitative data from microscopy images (Galbraith, 2023). This extraction process is the essence of image cytometry, a field that has seen significant advances by integrating machine learning for automating image analysis tasks. (A. Gupta et al., 2019). The following sections discuss the experiences gained from this project in quantifying microscopy data and outlines potentials and challenges of image cytometry.

Manual Analysis Remains Robust for Complex and Unique Phenomena: Most biologists lack the computational expertise to automate analysis of microscopy data, often reverting to manual analysis. This project also utilized manual strategies for the detailed characterization of dynamic intercellular interactions such as attachment, aggregation, detachment, and division. This was very time-consuming and required a thoughtful categorization strategy and a disciplined, bias-free execution. However, some analysis tasks are simply unfeasable for automation. For example, this work manually counted if two INA-6 cells interacted homotypically due to coming into contact with each other, or by staying connected as two daughter cells after cell division. Automating such a task would require a very sophisticated algorithm and unfeasable for such unique task. Hence, manual analysis is unmatched in terms of flexibility and complexity of categorizations, when compared to computational techniques of image processing.

Considering Automated Analysis for Future Live-Cell Imaging: Despite the benefits of manual analyses, this work would have benefited from computational automation for the analysis of live-cell imaging. For example, the task of associating INA-6 cell detachment with INA-6 aggregate size and time could have been automated: Manual analysis consisted of zooming in closely and watching the time-lapse over and over again until a detachment event was found. A very tedious task that had to be repeated approx. 50 times for every one of four independent videos. Instead of manually counting the number of single INA-6 cells across time, a pixel segmentation algorithm could have been trained to detect cells and background. Single cells would be discernable from aggregates by filtering cells by size. The count of single cells would then be representative of detached cells, given that the vast majority of INA6 cells were part of aggregates.

The workload of manual video analysis motivated the purchase of Intellesis, a software package by Zeiss for the Zen microscopy software ecosystem. Intellesis is a machine learning-based pixel

segmentation software (Zeiss OAD Feature Extractors, n.d.). As a feature extractor¹⁰, it uses the first convolution layers of VGG19, which is convolutional neural network¹¹ (Simonyan & Zisserman, 2015). Intellesis does not contain a deep neural network for segmentation, but instead classifies pixel features using a random forest classifier. Random forest is a machine learning algorithm that — for small sets of training images — performs almost as well as deep neural networks, but are computationally far less demanding (Breiman, 2001; Richardson et al., 2023). A comparable hybrid approach was also used by Qamar et al. (2023) to segment images of bacterial spores into eight distinct pixel classes using only 50 training images.

Intellesis proved useful for segmenting single multi-channel images. However, live cell imaging adds another layer of complexity to image analysis: The addition of a time axis encodes the motion of objects and other image features. This concept can be described with the term *optical flow* (Niehorster, 2021). Mathematically speaking, optical flow is a vector field that describes the motion of image features¹⁰ between consecutive frames of a video. It can be used to train machine learning models on video data efficiently (Robitaille et al., 2022). Without tricks like optical flow, machine learning algorithms like Intellesis segment the video frame by frame, ignoring the feature similarities between frames. This makes segmentation computationally inefficient, but not impossible (Pylvänäinen et al., 2023).

Together, future analyses of live-cell imaging data could benefit from the use of modern machine learning based tools that have been released recently, as summarised in Pylvänäinen et al. (2023).

Image Cytometry Achieved Competitive Precision and Throughput: In particular, this project required validation of recent cell divisions within the nMA-INA6 cell population by fluorescently profiling their DNA content. Fluorescence-Activated Cell Sorting (FACS) is a common method for this task, especially for suspension cells like INA-6(Darzynkiewicz & Juan, 1997). However, this experiment included up to 24 samples for each independent experiment, combining three subpopulations, four timepoints, and two experimental conditions (Appendix A.1: Fig. 3). Although automated FACS allow for high throughput and are available at the university of Würzburg, the author sought to challenge the limits of microscopy equipment available in his laboratory, especially when such technique is applicable to adherent cells (Roukos et al., 2015).

This method enabled the automated extraction and quantification of fluorescence brightness across tens of thousands of DNA-stained nuclei, simplifying the subsequent data analysis like plotting DNA

¹⁰ Features are structural elements of an image, such as edges, corners, directions, colors. These features are mathematically extractable using filters—also referred to as convolution kernels—, which are functions or algorithms applied to the pixel values of an image. For instance, gabor filters can extract edges of one particular direction, resulting in an image of the same size as the input, but showing only edges of one direction. Feature extraction is the process of applying multiple filters, resulting in a stack of filtered images called a feature vector. (Szeliski, 2011; A. Gupta et al., 2019)

¹¹Convolutional neural networks (CNN) are algorithms that use the output of a feature extractor¹⁰ to feed into a neural network. The network then learns to associate these feature vectors with a label, such as *cell* or *background*. This is called *supervised learning*.

content distributions.

achieving high levels of automation along with a single-cell precision that's comparable to flow cytometry (Appendix A.1: Fig. 2). Although this work has not applied *Intellesis* to live-cell imaging, this exemplifies the vast quantitative potential of microscopy — or rather image cytometry — in general.

Making Image Cytometry Accessible to Biology? Computational approaches to image analysis, such as those provided by *Intellesis*, are invaluable as they offer unmatched objectivity and throughput in data interpretation. At the time of this project, the author had no prior experience with image processing. Still, using *Intellesis* was straightforward, as it integrates well with Zen, the software used for image acquisition using microscopes by *Zeiss*. This allowed the conversion of complex image data into quantifiable outputs.

Achieving high throughput and precision using *Intellesis*, this project effectively entered the field of *image cytometry* (A. Gupta et al., 2019). Image cytometry distinguishes itself from other microscopy techniques by achieving high levels of automation along with a single-cell precision that's comparable to flow cytometry

Together, this work exemplifies the quantitative potential of image cytometry (A. Gupta et al., 2019), achieving high levels of automation and single-cell precision without dedicated education in image analysis. Such accessibility could prove crucial for a generalized adoption of automated image analysis among biologists.

Benefits of Image Cytometry over FACS: High throughput (96 Samples scanned in 1.5h) Applicable to adherent cultures (compared to FACS) (Roukos et al., 2015) Staining often unnecessary No analytic chemicals needed AI-assisted detection of structures + removal of false positives "Infinite" types of readouts (Structure, Brightness, Size, Shape, etc.) » Researching diagnostic value of cell characteristics accelerated by Artificial Intelligence

Challenges: Sophisticated Automation of Microscopic Scans (Autofocus, Shading, etc.) AI is Computation Intensive Spread cells evenly Intellesis is only available for Zeiss microscopses

Technical Considerations for Image Cytometry

Acquiring Accurate Image Data: In order to capture rare cellular events with a frequency sufficient for statistical analysis, this study chose high temporal resolution and spatial depth: We utilized 1 frame every 15 min, suitable for tracking cell migration (Huth et al., 2010), but too slow for intricate movements or intracellular processes. Spatial resolution is a compromise between detail and the total observed surface area. We favored the latter to allow the exploration of potentially rare

events, and acquired a —somewhat arbitrarily — large surface area of up to $13\,\mathrm{mm}^2$. Ultimately, we assessed only approx. a quarter of the acuired surface area, as that was sufficient to gather enough events for each time bin. Such extensive automated video acquisition poses high demands on microscopy equipment, including an incubation setup and motorized stage top. The total size of video files can also complicate storage, transfer and analysis. The raw video data from chapter 1 comprises 80 GB (BioStudies, n.d.); however, far more data was acquired due to protocol optimizations and treatments not shown in this work. File size could have been reduced by acquiring in an 8-bit image format, although a larger bit-depth could be necessary for precise and/or sensitive fluorescence microscopy. Minimizing the acquired surface area could have reduced file size as well, however the meniskus of the medium led to significant shading effects that complicated the choice of the surface area for phase contrasting. Also, archiving large surface scans allows for the search of very rare events in the course of future projects. After all, HDD space is cheap, while re-acquiring data is not. Hence, exploratory live cell imaging benefits from settings that are higher-than-required, if raw data is properly documented and remain accessible.

Generating Training Datasets: This project has invested a lot of time in training the machine learning software *Intellesis* to segment images.

Some image types remain challenging for machine learning-based software like *Intellesis*, such as phase contrast images, which have low contrast between cell edges and the background, making cell separation difficult during pixel segmentation.

phase contrast images are more challenging for machine learning based software like *Intellesis*, since cell edges have low contrast to the background and single cells are hard to distinguish. This can require extensive annotation of training images, which can be time-consuming and frustrating. This could be alleviated by introducing pre-processing steps that emphasize the features of interest and/or reduce image features that are irrelevant for the analysis. For example when discerning cell morphology, cell edges can be enhanced using edge enhancing filters, while noise and irrelevant small details can be removed by applying a median filter that preserves edges. Both filters are available in Zen. This approach simplifies the task for machine learning algorithms and reduces the amount of training data required by avoiding the classifier to learn irrelevant image features.

Conclusion 1: Microscopy On the Brink of Breakthrough, if Image Analysis is Becoming more Available

Novel Methods of Isolating Adhering Subpopulations

In this work, innovative *in vitro* methodologies (Well Plate Sandwich Centrifugation and V-Well adhesion Assay) were developed. this was required to fill in gaps of isolating cells with minimized variability introduced by user-bias to clearly separate subpopulations and precisely quantify them.

It is evident that direct or indirect contact with MM can have different effects on both hMSCs and Myeloma cells and methods to differentiate between those are crucial for understanding the change of the Bone Marrow Microenvironment (BMME) during Multiple Myeloma (MM) progression (Fairfield et al., 2020; Dziadowicz et al., 2022)

cite all those methods for cell isolation! - Turning around wellplates: Doesn't allow isolation, just quantification - The author did not show all his washing experiments - Washing is very bad (data not shown): Highly dependent on user: position of cell on well bottom (border cells receive less force), position of pipette tip in well (depth, angle and position on bottom) - This motivated us to explore more reproducible methods

It's a challenge: either quantify cell population, or isolate them! - It's better to specialize in one method, than to do both poorly - Well Plate Sandwich Centrifugation is badly suited for quantification, but possible - we switched to developing V-well adhesion assay for quantification - We realized, V-well isolation allows both ultra precise quantification and isolation of small amounts of cells! - unmatched precision through centrifugation, no washing - But V-well pellets comprise only few cells requiring a lot of technical replicates and an untiring pipetting hand

The Well Plate Sandwich Centrifugation (WPSC) used two different techniques to dissociate MA-INA6 cells from the hMSC monolayer. This had no impact on the ratio of isolated MA-INA6 to nMA-INA6, since nMA-INA6 isolation was performed prior to dissociation using the same protocol consistently. We tried this to test if MACS was really necessary, after all it is costly, time-consuming, introduces an antibody bias and requires cell cold-treatment during antibody: Strong pipetting ('Wash') and repeated Accutase treatment followed by magnetic activated cell sorting ('MACS').

Dynamic Regulation of Adhesion Factors During Dissemination

One main question arises:

INA-6 was initially isolated from plasma cell leukemia as an extramedullary plasmacytoma located in the pleura from a donor of age. There is not much more information available on the background of that patient (Two New Interleukin-6 Dependent Plasma Cell Lines Carrying a Chromosomal Abnormality

Involving the IL-6 Gene Locus. Abstract Two Plasma Cell Lines, INA-6 and JK-6, Have Been Initiated and Continuously Cultured from Two Patients with Malignant Plasma Cell Diseases. Both Cell Lines Are EBNA Negative and Show Morphological and Immunophenotypical Features of Plasma Cells. INA-6 Expresses the CD39 and CDw75 Antiquens, JK-6 Is Strongty Positive with CD38 and CD39 Antibodies. By Flow Cytometry They Were Non-Reactive with Ia Antibodies and B Ceil Reagents CD19, CD20, CD21, CD22, and CD24. While INA-6 Cells Are Releasing Kappa Light Chains Only, JK-6 Cells Produce IgG Kappa. Both Cell Lines Could Only Be Initiated with IL-6 Supplemented Medium and Remained IL-6 Responsive throughout Continuous Culture. INA-6 Is Strictly Dependent on IL-6. No Spontaneously Secreted IL-6 Was Found nor Could It Be Induced by IL-1beta /TNFalpha Stimulation. Molecular Analysis with RT-PCR Revealed mRNA for the IL-6 Receptor in Both Lines. No IL-6 mRNA Was Detectable in INA-6 Cells, While in JK-6 Minute Amounts Were Observed. Cytogenetic Analysis of Both Lines Revealed, among Other Abnormalities, a Deletion (7)(P13). Lnterestingly, the 7p Deletion Affects the Location Ot the IL-6 Gene. Ln Both Cell Lines, IL-6 Dependent Proliferation Could Be Inhibited by IFNalpha. IFNalpha Had Growth Regulatory Effects Only on JK-6: While High Concentrations Were Inhibitory, Low IFNalpha Amounts Were Clearly Stimulatory. A Wide Variety of Other Cytokines Including GM-CSF and IL-11 Did Not Have the Capacity to Influence Proliferation. These Plasma Cell Lines Do Not Only Allow to Turther Characterize Regulatory Events in Plasma Cell Neoplasias but Also Provide Tools to Study Therapeutic Interventions., n.d.; Burger, Guenther, et al., 2001). But assuming that This is a highly advanced stage of myeloma. However, Chapter 2 shows that adhesion factors are lost during MM progression. INA-6 are highly adhesive to hMSCs.

This is a contradiction that needs to be resolved.

For example, circulating MM cells show lower levels of integrin $\alpha 4\beta 1$ compared to those residing in the BM. Furthermore, treatment with a syndecan-1 blocking antibody has been shown to rapidly induce the mobilization of MM cells from the BM to peripheral blood in mouse models, suggesting that alterations in adhesion molecule expression facilitate MM cell release (Zeissig et al., 2020).

However, INA-6 do not express adhesion factors. They do that only in hMSC presence Hence MAINA-6 could be a smaller fraction of MM cells, specialized on preparing a new niche for the rest of the MM cells. This could be a reason why they are so adhesive.

This assumption dictates that aggressive myeloma cells gain the ability to dynamically express adhesion factors. It could be that INA-6 has gained the capability to express adhesion factors fast in order to colonize new niches, such as pleura from which they were isolated.

This shows that not just the stage of the disease, but also the location of the myeloma cells plays a role when considering adhesion factors. According to this, this thesis predicts a low expression of adhesion factors in circulating myeloma cells, but a high expression in adhesive cells, e.g. non-circulating, or rather those

indeed CD138 paper isolated cells from circulating MM cells (Akhmetzyanova et al., 2020) indeed, temporal subclones have been identified (Keats et al., 2012).

Subsets of Adhesion Factors Contribute To Different Steps of Adhesion

- adhesion molecules during vascular involvement have these adhesion molecules: JAM-C and CD138. NONE of Them were shown in Chapter 2 of this study, (except for JAM-B)
- One has to consider that intravasation and/or extravasation would require a different set of adhesion factors than adhesion to BM or extramedullary environments.

This has great implications for targeting adhesion factors for therapy, as it suggests that different adhesion factors should either be antagonized or agonized depending on the function of the adhesion factor. According to this assumption, adhesion factors involved in intra- and extravasation adhesion should be antagonized, while adhesion factors involved in BM adhesion — as identified in Chapter 2 — should be agonized. Indeed, Adhesion factors for endothelium were shown to decrease tumour burden in mouse models (Asosingh et al., 2001; Mrozik et al., 2015)

Bou Zerdan et al. (2022): "Classically, the BMM has been divided into endosteal and vascular niches"

Together, a detailed mapping of the niches available in the bone marrow is required to understand the adhesion factors required for each niche. This is a highly complex task, as the bone marrow is a highly complex organ.

What Triggers Release: One Master Switch, Many Small Switches, or is it just Random?

Papers like Akhmetzyanova et al. (2020) make it seem as if there is one molecule that decides if a myeloma cell is circulating or not.

It's less about one clear (molecular) mechanism that decides that a myeloma cell decides to become a disseminating cell, but rather a indirect consequence of a combination of many processes. These processes are: - Loss of adhesion factors or dynamic expression of adhesion factors - Loss of dependency from bone marrow microenvironment - asdf

Our thesis postulates that there is no big switch that decides if a myeloma cell detaches from the bone marrow, it simply happens once these processes are present.

Outlook: High-Value Research Topics for Myeloma Research Arising from this Work

As an Outlook, the Author lists research topics arising from this work that have great potential for breakthroughs in myeloma research.

Anti tumor effects of MSCs: This thesis has discussed the pro-tumor effects of MSCs. However, MSCs have also been shown to have anti-tumor effects (Galderisi et al., 2015). This work has also shown that primary hMSCs can induce apoptosis in INA-6 6 cells initially — probably through the action of death domain receptors—, but inhibit apoptosis during prolonged culturing.

This shows that hMSCs could be leveraged as a therapeutic target that could prevent myloma progression.

Cell Division as a Mechanism for Dissemination Initiation: The author describes how the detachment of daughter cells from the mother cell after a cycle of hMSC-(re)attachment and proliferation could be a key mechanism in myeloma dissemination. This mechanism was shown in other studies of extravasation. The author sees great potential in this mechanism as a target for future research. It is probably under-researched due to requirement of sophisticated time-lapse equipment, yet the simplicity of detachment through cell division is intriguing through its simplicity. It implies asymmetric cell division. Cancer cells are known to divide asymmetrically, e.g. moving miRNAs to one daughter cell.

Lists of Adhesion Gene Associated With Prolonged Patient Survival: The author lists adhesion genes that are associated with prolonged patient survival. These genes are highly expressed in myeloma samples from patients with longer overall

At this time we could be on the verge of a new era of myeloma therapy, including bi-specific antibodies and cell based approaches (Morè et al., 2023; Engelhardt et al., 2024). Currently, available CAR-T Cell therapies (ide-cel, cilta-cel) are extremely expensive, but show complete remission rates of up to 80 % and a 18-month progression free survival rate of 66 % (Bobin & Leleu, 2022). An affordable "off-the-shelf" CAR-T Cell product could become reality since the problem of deadly graft-versus-host disease during allogeneic transplantation seems to be solvable (Qasim et al., 2017), hence, research groups and biotech companies are racing towards developing a safe allogeneic CAR-T Cell technology (Depil et al., 2020).

Conclusion 1: Cancer & Myeloma & Dissemination is bad

lorem ipsum yes yes very bad

References

- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Zheng, X. (2016, March). *TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems* (No. arXiv:1603.04467). arXiv. Retrieved 2024-03-07, from http://arxiv.org/abs/1603.04467 doi: 10.48550/arXiv.1603.04467
- Abdallah, N. H., Lakshman, A., Kumar, S. K., Cook, J., Binder, M., Kapoor, P., ... Rajkumar, S. V. (2024, January). Mode of progression in smoldering multiple myeloma: A study of 406 patients. *Blood Cancer Journal*, 14(1), 1—7. Retrieved 2024-05-22, from https://www.nature.com/articles/s41408-024-00980-5 doi: 10.1038/s41408-024-00980-5
- Abdelrazik, H. (2023, August). Mesenchymal Stem Cells: A Hope or a Hype? International Journal of Molecular Sciences, 24(17), 13218. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487858/doi: 10.3390/ijms241713218
- Adamik, J., Jin, S., Sun, Q., Zhang, P., Weiss, K. R., Anderson, J. L., ... Galson, D. L. (2017, April). EZH2 or HDAC1 Inhibition Reverses Multiple Myeloma-Induced Epigenetic Suppression of Osteoblast Differentiation. *Molecular cancer research: MCR*, 15(4), 405–417. doi: 10.1158/1541-7786.MCR-16-0242-T
- Adamik, J., Silbermann, R., Marino, S., Sun, Q., Anderson, J. L., Zhou, D., ... Galson, D. L. (2018). XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Frontiers in Endocrinology, 9, 344. doi: 10.3389/fendo.2018.00344
- Aggarwal, R., Ghobrial, I. M., & Roodman, G. D. (2006, October). Chemokines in multiple myeloma. Experimental hematology, 34(10), 1289–1295. Retrieved 2023-04-02, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134145/ doi: 10.1016/j.exphem.2006.06.017
- Akhmetzyanova, I., McCarron, M. J., Parekh, S., Chesi, M., Bergsagel, P. L., & Fooksman, D. R. (2020). Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. *Leukemia*, 34(1), 245–256. Retrieved 2023-04-04, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923614/ doi: 10.1038/s41375-019-0519-4
- Allegra, A., Casciaro, M., Barone, P., Musolino, C., & Gangemi, S. (2022, May). Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. *Cancers*, 14(11), 2597. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179362/ doi: 10.3390/cancers14112597
- Alsayed, Y., Ngo, H., Runnels, J., Leleu, X., Singha, U. K., Pitsillides, C. M., ... Ghobrial, I. M. (2007, April). Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. *Blood*, 109(7), 2708–2717. doi: 10.1182/blood-2006-07-035857
- Anders, S., Pyl, P. T., & Huber, W. (2015, January). HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics (Oxford, England)*, 31(2), 166–169. doi: 10.1093/bioinformatics/btu638
- Andrews, S. (2010). FASTQC. A quality control tool for high throughput sequence data.
- Arefin, S. E., Heya, T. A., Al-Qudah, H., Ineza, Y., & Serwadda, A. (2023, July). Unmasking the giant: A comprehensive evaluation of ChatGPT's proficiency in coding algorithms and data structures (No. arXiv:2307.05360). arXiv. Retrieved 2024-05-03, from http://arxiv.org/abs/2307.05360 doi: 10.48550/arXiv.2307.05360
- Armstrong, R. A. (2014, September). When to use the Bonferroni correction. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), 34(5), 502–508. doi: 10.1111/opo.12131
- Asosingh, K., Günthert, U., De Raeve, H., Van Riet, I., Van Camp, B., & Vanderkerken, K. (2001). A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. *Cancer Research*, 61(7), 2862–2865.

- Baker, M. (2016, May). 1,500 scientists lift the lid on reproducibility. *Nature*, 533(7604), 452–454. Retrieved 2024-04-22, from https://www.nature.com/articles/533452a doi: 10.1038/533452a
- Bao, L., Lai, Y., Liu, Y., Qin, Y., Zhao, X., Lu, X., ... Huang, X. (2013, September). CXCR4 is a good survival prognostic indicator in multiple myeloma patients. *Leukemia Research*, 37(9), 1083–1088. doi: 10.1016/j.leukres.2013.06.002
- Barnes, D. G., Vidiassov, M., Ruthensteiner, B., Fluke, C. J., Quayle, M. R., & McHenry, C. R. (2013, September). Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files. *PLOS ONE*, 8(9), e69446. Retrieved 2024-06-13, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069446 doi: 10.1371/journal.pone.0069446
- Barzilay, R., Ben-Zur, T., Bulvik, S., Melamed, E., & Offen, D. (2009, May). Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. *Stem cells and development*, 18(4), 591–601. doi: 10.1089/scd.2008.0138
- Begley, C. G., & Ioannidis, J. P. A. (2015, January). Reproducibility in science: Improving the standard for basic and preclinical research. *Circulation Research*, 116(1), 116–126. doi: 10.1161/CIRCRESAHA.114.303819
- Bianco, P. (2014). "Mesenchymal" stem cells. Annual review of cell and developmental biology, 30, 677–704. doi: 10.1146/annurev-cellbio-100913-013132
- BioStudies. (n.d.). BioStudies < The European Bioinformatics Institute < EMBL-EBI. Retrieved 2024-06-12, from https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1092?key=69bafe9c-74ff-492b-9e68-bd42655c4d1b
- Bladé, J., Beksac, M., Caers, J., Jurczyszyn, A., von Lilienfeld-Toal, M., Moreau, P., ... Richardson, P. (2022, March). Extramedullary disease in multiple myeloma: A systematic literature review. *Blood Cancer Journal*, 12(3), 1–10. Retrieved 2023-03-24, from https://www.nature.com/articles/s41408-022-00643-3 doi: 10.1038/s41408-022-00643-3
- Blonska, M., Zhu, Y., Chuang, H. H., You, M. J., Kunkalla, K., Vega, F., & Lin, X. (2015, February). Junregulated genes promote interaction of diffuse large B-cell lymphoma with the microenvironment. *Blood*, 125(6), 981–991. Retrieved 2023-03-01, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319238/ doi: 10.1182/blood-2014-04-568188
- Bobin, A., & Leleu, X. (2022, September). Recent advances in the treatment of multiple myeloma: A brief review. Faculty Reviews, 11, 28. Retrieved 2024-03-27, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523543/doi: 10.12703/r/11-28
- Bokeh Development Team. (2018). Bokeh: Python library for interactive visualization [Manual]. Retrieved from https://bokeh.pydata.org/en/latest/
- Bolado-Carrancio, A., Rukhlenko, O. S., Nikonova, E., Tsyganov, M. A., Wheeler, A., Garcia-Munoz, A., ... Kholodenko, B. N. (2020, July). Periodic propagating waves coordinate RhoGTPase network dynamics at the leading and trailing edges during cell migration. *eLife*, 9, e58165. Retrieved 2024-04-25, from https://elifesciences.org/articles/58165 doi: 10.7554/eLife.58165
- Bondi, A. B. (2000, September). Characteristics of scalability and their impact on performance. In *Proceedings of the 2nd international workshop on Software and performance* (pp. 195–203). New York, NY, USA: Association for Computing Machinery. Retrieved 2024-03-07, from https://dl.acm.org/doi/10.1145/350391.350432 doi: 10.1145/350391.350432
- Bosch-Queralt, M., Tiwari, V., Damkou, A., Vaculčiaková, L., Alexopoulos, I., & Simons, M. (2022, March). A fluorescence microscopy-based protocol for volumetric measurement of lysolecithin lesion-associated de- and remyelination in mouse brain. *STAR protocols*, 3(1), 101141. doi: 10.1016/j.xpro.2022.101141
- Boswell, D., & Foucher, T. (2011). The Art of Readable Code: Simple and Practical Techniques for Writing Better Code. "O'Reilly Media, Inc.".

- Bou Zerdan, M., Nasr, L., Kassab, J., Saba, L., Ghossein, M., Yaghi, M., ... Chaulagain, C. P. (2022). Adhesion molecules in multiple myeloma oncogenesis and targeted therapy. *International Journal of Hematologic Oncology*, 11(2), IJH39. Retrieved 2023-02-01, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136637/ doi: 10.2217/ijh-2021-0017
- Brandl, A., Solimando, A. G., Mokhtari, Z., Tabares, P., Medler, J., Manz, H., ... Beilhack, A. (2022, March). Junctional adhesion molecule C expression specifies a CD138low/neg multiple myeloma cell population in mice and humans. *Blood Advances*, 6(7), 2195–2206. Retrieved 2023-04-04, from https://doi.org/10.1182/bloodadvances.2021004354 doi: 10.1182/bloodadvances.2021004354
- Brankatschk, R., Bodenhausen, N., Zeyer, J., & Bürgmann, H. (2012, June). Simple Absolute Quantification Method Correcting for Quantitative PCR Efficiency Variations for Microbial Community Samples. *Applied and Environmental Microbiology*, 78(12), 4481–4489. Retrieved 2023-05-27, from https://journals.asm.org/doi/10.1128/AEM.07878-11 doi: 10.1128/AEM.07878-11
- Breiman, L. (2001, October). Random Forests. *Machine Learning*, 45(1), 5–32. Retrieved 2024-06-14, from https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324
- Brooke, J. (1996, January). SUS a quick and dirty usability scale. In (pp. 189–194).
- Bubendorf, L. (2001, August). High-throughput microarray technologies: From genomics to clinics. European Urology, 40(2), 231-238. doi: 10.1159/000049777
- Burger, R., Guenther, A., Bakker, F., Schmalzing, M., Bernand, S., Baum, W., ... Gramatzki, M. (2001). Gp130 and ras mediated signaling in human plasma cell line INA-6: A cytokine-regulated tumor model for plasmacytoma. *The Hematology Journal: The Official Journal of the European Haematology Association*, 2(1), 42–53. doi: 10.1038/sj.thj.6200075
- Burger, R., Günther, A., Bakker, F., Schmalzing, M., Bernand, S., Baum, W., ... Gramatzki, M. (2001, January). Gp130 and ras mediated signaling in human plasma cell line INA6: A cytokine-regulated tumor model for plasmacytoma. Hematology Journal - HEMATOL J, 2, 42–53. doi: 10.1038/sj.thj.6200075
- Bustin, S. A. (2014, December). The reproducibility of biomedical research: Sleepers awake! *Biomolecular Detection and Quantification*, 2, 35–42. Retrieved 2024-03-18, from https://www.sciencedirect.com/science/article/pii/S2214753515000030 doi: 10.1016/j.bdq.2015.01.002
- Bustin, S. A., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., ... Vandesompele, J. (2013, November). The need for transparency and good practices in the qPCR literature. *Nature Methods*, 10(11), 1063–1067. Retrieved 2024-05-16, from https://www.nature.com/articles/nmeth.2697 doi: 10.1038/nmeth.2697
- Caplan, A. (1991). Mesenchymal stem cells. Journal of orthopaedic research: official publication of the Orthopaedic Research Society, 9(5), 641–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1870029 doi: 10.1002/jor.1100090504
- Caplan, A. I. (1994, July). The mesengenic process. Clinics in plastic surgery, 21(3), 429-435.
- Carlson, M. (2016). Org.Hs.eg.db. *Bioconductor*. Retrieved 2023-06-09, from http://bioconductor.org/packages/org.Hs.eg.db/doi: 10.18129/B9.bioc.org.Hs.eg.db
- Chacon, S., & Straub, B. (2024, March). Git Book. Retrieved 2024-03-07, from https://git-scm.com/book/de/v2
- Charlier, F., Weber, M., Izak, D., Harkin, E., Magnus, M., Lalli, J., ... Repplinger, S. (2022, October). Trevismd/statannotations: V0.5. Zenodo. Retrieved 2023-11-16, from https://zenodo.org/record/7213391 doi: 10.5281/ZENODO.7213391
- Chatterjee, M., Hönemann, D., Lentzsch, S., Bommert, K., Sers, C., Herrmann, P., ... Bargou, R. C. (2002, November). In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. *Blood*, 100(9), 3311–3318. doi: 10.1182/blood-2002-01-0102
- Chauhan, D., Uchiyama, H., Akbarali, Y., Urashima, M., Yamamoto, K., Libermann, T., & Anderson, K. (1996, February). Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves

- activation of NF-??B. Blood, 87, 1104-12. doi: 10.1182/blood.V87.3.1104.bloodjournal8731104
- Chen, H., & Zhou, L. (2022, June). Treatment of ischemic stroke with modified mesenchymal stem cells. *International Journal of Medical Sciences*, 19(7), 1155–1162. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339408/ doi: 10.7150/ijms.74161
- Cippitelli, M., Stabile, H., Kosta, A., Petillo, S., Lucantonio, L., Gismondi, A., ... Fionda, C. (2023, January). Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. *International Journal of Molecular Sciences*, 24(3), 1823. Retrieved 2024-06-08, from https://www.mdpi.com/1422-0067/24/3/1823 doi: 10.3390/ijms24031823
- Codecov. (2024). Retrieved 2024-05-02, from https://github.com/codecov
- Cole, R. (2014). Live-cell imaging. Cell Adhesion & Migration, 8(5), 452–459. doi: 10.4161/cam.28348
- Committee on Strategies for Responsible Sharing of Clinical Trial Data, Board on Health Sciences Policy, & Institute of Medicine. (2015). Sharing Clinical Trial Data: Maximizing Benefits, Minimizing Risk. Washington (DC): National Academies Press (US). Retrieved 2024-04-23, from http://www.ncbi.nlm.nih.gov/books/NBK269030/
- Cooper, G. M. (2000). The Cell: A Molecular Approach. 2nd Edition. Sinauer Associates, Proliferation in Development and Differentiation. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK9906/
- da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006, June). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. *Journal of cell science*, 119(Pt 11), 2204–2213. doi: 10.1242/jcs.02932
- Darzynkiewicz, Z., & Juan, G. (1997, April). DNA Content Measurement for DNA Ploidy and Cell Cycle Analysis. Current Protocols in Cytometry, 00(1). Retrieved 2021-08-26, from https://onlinelibrary.wiley.com/doi/10.1002/0471142956.cy0705s00 doi: 10.1002/0471142956.cy0705s00
- Davidson-Pilon, C. (2019, August). Lifelines: Survival analysis in Python. *Journal of Open Source Software*, 4(40), 1317. Retrieved 2024-05-02, from https://joss.theoj.org/papers/10.21105/joss.01317 doi: 10.21105/joss.01317
- Depil, S., Duchateau, P., Grupp, S. A., Mufti, G., & Poirot, L. (2020, March). 'Off-the-shelf' allogeneic CAR T cells: Development and challenges. *Nature Reviews Drug Discovery*, 19(3), 185–199. Retrieved 2024-03-27, from https://www.nature.com/articles/s41573-019-0051-2 doi: 10.1038/s41573-019-0051-2
- Ding, W., Goldberg, D., & Zhou, W. (2023, August). PyComplexHeatmap: A Python package to visualize multimodal genomics data. *iMeta*, 2(3), e115. doi: 10.1002/imt2.115
- Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., ... Gingeras, T. R. (2013, January). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15–21. Retrieved 2023-05-27, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/ doi: 10.1093/bioinformatics/bts635
- Doddi, S., & Rashid, M. H. (2024). Disparities in Multiple Myeloma Mortality Rate Trends by Demographic Status in the USA. *Cancer Diagnosis & Prognosis*, 4(3), 288–294. doi: 10.21873/cdp.10322
- Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., ... Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy*, 8(4), 315–317. doi: 10.1080/14653240600855905
- Dotterweich, J., Schlegelmilch, K., Keller, A., Geyer, B., Schneider, D., Zeck, S., ... Schütze, N. (2016, December). Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease. *Bone*, 93, 155–166. doi: 10.1016/j.bone.2016.08.006
- D'souza, N., Rossignoli, F., Golinelli, G., Grisendi, G., Spano, C., Candini, O., ... Dominici, M. (2015, August). Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. *BMC medicine*, 13, 186. doi: 10.1186/s12916-015-0426-0
- D'Souza, S., del Prete, D., Jin, S., Sun, Q., Huston, A. J., Kostov, F. E., ... Galson, D. L. (2011, December). Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. *Blood*, 118(26), 6871–6880. Retrieved 2024-06-08, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245209/ doi: 10.1182/blood-2011-04-346775

- Dunn, W., Burgun, A., Krebs, M.-O., & Rance, B. (2017, November). Exploring and visualizing multidimensional data in translational research platforms. *Briefings in Bioinformatics*, 18(6), 1044–1056. Retrieved 2024-04-23, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862238/ doi: 10.1093/bib/bbw080
- Duvall, P., Matyas, S., & Glover, A. (2007). Continuous integration: Improving software quality and reducing risk. Pearson Education. Retrieved from https://books.google.de/books?id=PV9qfEdv9L0C
- Dziadowicz, S. A., Wang, L., Akhter, H., Aesoph, D., Sharma, T., Adjeroh, D. A., ... Hu, G. (2022, January). Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma. *Cancers*, 14(4), 927. Retrieved 2022-10-25, from https://www.mdpi.com/2072-6694/14/4/927 doi: 10.3390/cancers14040927
- Ekmekci, B., McAnany, C. E., & Mura, C. (2016, July). An Introduction to Programming for Bioscientists: A Python-Based Primer. *PLOS Computational Biology*, 12(6), e1004867. Retrieved 2024-03-10, from https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004867 doi: 10.1371/journal.pcbi.1004867
- Engelhardt, M., Kortüm, K. M., Goldschmidt, H., & Merz, M. (2024, February). Functional cure and long-term survival in multiple myeloma: How to challenge the previously impossible. *Haematologica*. doi: 10.3324/haematol.2023.283058
- Evers, M., Schreder, M., Stühmer, T., Jundt, F., Ebert, R., Hartmann, T. N., ... Leich, E. (2023, March). Prognostic value of extracellular matrix gene mutations and expression in multiple myeloma. *Blood Cancer Journal*, 13(1), 43. doi: 10.1038/s41408-023-00817-7
- Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016, October). MultiQC: Summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–3048. Retrieved 2023-06-09, from https://doi.org/10.1093/bioinformatics/btw354 doi: 10.1093/bioinformatics/btw354
- Excel, M. (2023, August). Announcing Python in Excel: Combining the power of Python and the flexibility of Excel. Retrieved 2024-03-11, from https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-combining-the-power-of-python-and-the/ba-p/3893439
- Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D'Amico, A., ... Reagan, M. R. (2020). Multiple Myeloma Cells Alter Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes. Frontiers in Oncology, 10, 584683. doi: 10.3389/fonc.2020.584683
- Federer, L. M., Lu, Y.-L., & Joubert, D. J. (2016, January). Data literacy training needs of biomedical researchers. Journal of the Medical Library Association: JMLA, 104(1), 52–57. Retrieved 2024-04-24, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722643/ doi: 10.3163/1536-5050.104.1.008
- Fermand, J.-P., Bridoux, F., Dispenzieri, A., Jaccard, A., Kyle, R. A., Leung, N., & Merlini, G. (2018, October). Monoclonal gammopathy of clinical significance: A novel concept with therapeutic implications. *Blood*, 132(14), 1478–1485. doi: 10.1182/blood-2018-04-839480
- Fernandez-Rebollo, E., Mentrup, B., Ebert, R., Franzen, J., Abagnale, G., Sieben, T., ... Wagner, W. (2017, July). Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells. *Scientific Reports*, 7, 5132. Retrieved 2023-05-02, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506010/doi: 10.1038/s41598-017-05207-1
- Flier, J. S. (2022). The Problem of Irreproducible Bioscience Research. *Perspectives in Biology and Medicine*, 65(3), 373–395. doi: 10.1353/pbm.2022.0032
- Forster, S., & Radpour, R. (2022, July). Molecular Impact of the Tumor Microenvironment on Multiple Myeloma Dissemination and Extramedullary Disease. *Frontiers in Oncology*, 12. Retrieved 2024-05-23, from https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.941437/full doi: 10.3389/fonc.2022.941437
- Frassanito, M. A., Cusmai, A., Iodice, G., & Dammacco, F. (2001, January). Autocrine interleukin-6 production and highly malignant multiple myeloma: Relation with resistance to drug-induced apoptosis. *Blood*, 97(2), 483–489. doi: 10.1182/blood.v97.2.483

- Friedenstein, A., & Kuralesova, A. I. (1971, August). Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation, 12(2), 99–108.
- Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966, December). Osteogenesis in transplants of bone marrow cells. *Journal of embryology and experimental morphology*, 16(3), 381–390.
- Gabr, M. M., Zakaria, M. M., Refaie, A. F., Ismail, A. M., Abou-El-Mahasen, M. A., Ashamallah, S. A., ... Ghoneim, M. A. (2013). Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. *Cell transplantation*, 22(1), 133–145. doi: 10.3727/096368912X647162
- Galbraith, C. G. (2023, January). Pumping up the volume. *Journal of Cell Biology*, 222(2), e202212042. Retrieved 2024-06-14, from https://doi.org/10.1083/jcb.202212042 doi: 10.1083/jcb.202212042
- Galderisi, U., Özcan, S., Alessio, N., Acar, M. B., Toprak, G., Onal, Z. B., & Peluso, G. (2015, October). Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity. *Oncotarget*, 6(37), 39482–39492. Retrieved 2024-06-10, from https://www.oncotarget.com/article/5430/text/ doi: 10.18632/oncotarget.5430
- Gao, D., Ji, L., Bai, Z., Ouyang, M., Li, P., Mao, D., ... Shou, M. Z. (2024, January). ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation (No. arXiv:2312.13108). arXiv. Retrieved 2024-05-16, from http://arxiv.org/abs/2312.13108 doi: 10.48550/arXiv.2312.13108
- Gao, S., Wang, Y.-T., Ma, G.-Y., Lu, M.-Q., Chu, B., Shi, L., ... Bao, L. (2024, April). Solitary bone plasmacytoma: Long-term clinical outcomes in a single center. Current Problems in Cancer, 50, 101095. doi: 10.1016/j.currproblcancer.2024.101095
- Garcés, J.-J., Simicek, M., Vicari, M., Brozova, L., Burgos, L., Bezdekova, R., ... Paiva, B. (2020, February). Transcriptional profiling of circulating tumor cells in multiple myeloma: A new model to understand disease dissemination. Leukemia, 34(2), 589–603. doi: 10.1038/s41375-019-0588-4
- García-Ortiz, A., Rodríguez-García, Y., Encinas, J., Maroto-Martín, E., Castellano, E., Teixidó, J., & Martínez-López, J. (2021, January). The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers, 13(2). Retrieved 2021-02-02, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827690/ doi: 10.3390/cancers13020217
- Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V. N., Komm, B. S., ... Lian, J. B. (2005, September). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. *The Journal of Biological Chemistry*, 280(39), 33132–33140. doi: 10.1074/jbc.M500608200
- Gentleman. (n.d.). *Bioconductor Bioc Views*. Retrieved 2023-06-09, from https://bioconductor.org/packages/3.17/BiocViews.html
- Ghobrial, I. M. (2012, July). Myeloma as a model for the process of metastasis: Implications for therapy. *Blood*, 120(1), 20-30. Retrieved 2022-10-15, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390959/ doi: 10.1182/blood-2012-01-379024
- Giorgi, F. M., Ceraolo, C., & Mercatelli, D. (2022, April). The R Language: An Engine for Bioinformatics and Data Science. *Life*, 12(5), 648. Retrieved 2024-04-21, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148156/doi: 10.3390/life12050648
- Glavey, S. V., Naba, A., Manier, S., Clauser, K., Tahri, S., Park, J., ... Ghobrial, I. M. (2017, November). Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. *Leukemia*, 31(11), 2426–2434. Retrieved 2023-09-05, from https://www.nature.com/articles/leu2017102 doi: 10.1038/leu.2017.102
- Gomez-Cabrero, D., Abugessaisa, I., Maier, D., Teschendorff, A., Merkenschlager, M., Gisel, A., ... Tegnér, J. (2014, March). Data integration in the era of omics: Current and future challenges. *BMC Systems Biology*, 8(2), I1. Retrieved 2024-03-18, from https://doi.org/10.1186/1752-0509-8-S2-I1 doi: 10.1186/1752-0509-8-S2-I1
- Gómez-López, G., Dopazo, J., Cigudosa, J. C., Valencia, A., & Al-Shahrour, F. (2019, May). Precision medicine needs pioneering clinical bioinformaticians. *Briefings in Bioinformatics*, 20(3), 752–766. doi: 10.1093/bib/bbx144

- Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016, June). What does research reproducibility mean? *Science Translational Medicine*, 8(341), 341ps12-341ps12. Retrieved 2024-03-18, from https://www.science.org/doi/10.1126/scitranslmed.aaf5027 doi: 10.1126/scitranslmed.aaf5027
- Gorelick, M., & Ozsvald, I. (2020). High Performance Python: Practical Performant Programming for Humans. "O'Reilly Media, Inc.".
- Gosselin, R.-D. (2021, February). Insufficient transparency of statistical reporting in preclinical research: A scoping review. *Scientific Reports*, 11(1), 3335. Retrieved 2024-03-11, from https://www.nature.com/articles/s41598-021-83006-5 doi: 10.1038/s41598-021-83006-5
- Gramatzki, M., Burger, R., Trautman, U., Marschalek, R., Lorenz, H., Hansen-Hagge, T., ... Kalden, J. (1994). Two new interleukin-6 dependent plasma cell lines carrying a chromosomal abnormality involving the IL-6 gene locus., 84 Suppl. 1, 173a-173a. Retrieved 2023-03-24, from https://www.cellosaurus.org/cellopub/CLPUB00060
- GraphPad Prism 10 User Guide. (2024). Retrieved 2024-05-14, from https://www.graphpad.com/guides/prism/latest/user-guide/multiple-variable-tables.htm
- Greenstein, S., Krett, N. L., Kurosawa, Y., Ma, C., Chauhan, D., Hideshima, T., ... Rosen, S. T. (2003, April). Characterization of the MM.1 human multiple myeloma (MM) cell lines: A model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. *Experimental Hematology*, 31(4), 271–282. doi: 10.1016/s0301-472x(03)00023-7
- Gronthos, S., Graves, S. E., Ohta, S., & Simmons, P. J. (1994, December). The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. *Blood*, 84(12), 4164–4173.
- Gupta, A., Harrison, P. J., Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., ... Wählby, C. (2019). Deep Learning in Image Cytometry: A Review. *Cytometry Part A*, 95(4), 366–380. Retrieved 2022-04-08, from https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23701 doi: 10.1002/cyto.a.23701
- Gupta, D., Attal, K., & Demner-Fushman, D. (2023, March). A dataset for medical instructional video classification and question answering. *Scientific Data*, 10(1), 158. doi: 10.1038/s41597-023-02036-y
- Hannun, A., Digani, J., Katharopoulos, A., & Collobert, R. (2023). MLX: Efficient and flexible machine learning on Apple silicon. Retrieved from https://github.com/ml-explore
- Harada, T., Hiasa, M., Teramachi, J., & Abe, M. (2021, September). Myeloma—Bone Interaction: A Vicious Cycle via TAK1—PIM2 Signaling. *Cancers*, 13(17). Retrieved 2024-06-05, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431187/ doi: 10.3390/cancers13174441
- Harrington, D. P., & Fleming, T. R. (1982). A Class of Rank Test Procedures for Censored Survival Data. *Biometrika*, 69(3), 553-566. Retrieved 2023-08-07, from https://www.jstor.org/stable/2335991 doi: 10.2307/2335991
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020, September). Array programming with NumPy. *Nature*, 585(7825), 357–362. Retrieved 2023-08-09, from https://www.nature.com/articles/s41586-020-2649-2 doi: 10.1038/s41586-020-2649-2
- Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., & Anderson, K. C. (2007, August). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. *Nature Reviews Cancer*, 7(8), 585–598. Retrieved 2023-02-07, from https://www.nature.com/articles/nrc2189 doi: 10.1038/nrc2189
- Hose, D., Rème, T., Hielscher, T., Moreaux, J., Messner, T., Seckinger, A., ... Goldschmidt, H. (2011, January). Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. *Haematologica*, 96(1), 87–95. doi: 10.3324/haematol.2010.030296
- Hothorn, T., & Lausen, B. (n.d.). *Maximally Selected Rank Statistics in R.* Retrieved from http://cran.r-project.org/web/packages/maxstat/index.html.
- Howe, A., & Chain, P. S. G. (2015). Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial). Frontiers in Microbiology, 6, 678. doi: 10.3389/fmicb.2015.00678

- Hu, X., Villodre, E. S., Larson, R., Rahal, O. M., Wang, X., Gong, Y., ... Debeb, B. G. (2021, January). Decorinmediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. *Communications Biology*, 4(1), 72. doi: 10.1038/s42003-020-01590-0
- Huang, S.-Y., Lin, H.-H., Yao, M., Tang, J.-L., Wu, S.-J., Hou, H.-A., ... Tien, H.-F. (2015). Higher Decorin Levels in Bone Marrow Plasma Are Associated with Superior Treatment Response to Novel Agent-Based Induction in Patients with Newly Diagnosed Myeloma A Retrospective Study. PloS One, 10(9), e0137552. doi: 10.1371/journal.pone.0137552
- Hunter, J. D. (2007, May). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. Retrieved 2023-11-15, from https://ieeexplore.ieee.org/document/4160265 doi: 10.1109/MCSE.2007.55
- Huth, J., Buchholz, M., Kraus, J. M., Schmucker, M., von Wichert, G., Krndija, D., ... Kestler, H. A. (2010, April). Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. *BMC Cell Biology*, 11(1), 24. Retrieved 2024-06-12, from https://doi.org/10.1186/1471-2121-11-24 doi: 10.1186/1471-2121-11-24
- Inc., P. T. (2015). Collaborative data science. Montreal, QC: Plotly Technologies Inc. Retrieved from https://plot.ly Incerti, D., Thom, H., Baio, G., & Jansen, J. P. (2019, May). R You Still Using Excel? The Advantages of Modern Software Tools for Health Technology Assessment. Value in Health, 22(5), 575–579. Retrieved 2024-03-11, from https://www.sciencedirect.com/science/article/pii/S1098301519300506 doi: 10.1016/j.jval.2019.01.003
- Ioannidis, J. P. A. (2005, August). Why Most Published Research Findings Are False. *PLOS Medicine*, 2(8), e124. Retrieved 2024-04-22, from https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124 doi: 10.1371/journal.pmed.0020124
- Ito, S., Sato, T., & Maeta, T. (2021, April). Role and Therapeutic Targeting of SDF-1α/CXCR4 Axis in Multiple Myeloma. *Cancers*, 13(8), 1793. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069569/doi: 10.3390/cancers13081793
- Jansen, B. J. H., Gilissen, C., Roelofs, H., Schaap-Oziemlak, A., Veltman, J. A., Raymakers, R. A. P., ... Adema, G. J. (2010, April). Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem cells and development, 19(4), 481–490. doi: 10.1089/scd.2009.0288
- Jung, S.-H., & Lee, J.-J. (2022, April). Update on primary plasma cell leukemia. *Blood Research*, 57(S1), 62–66. doi: 10.5045/br.2022.2022033
- Kaplan, E. L., & Meier, P. (1958, June). Nonparametric Estimation from Incomplete Observations. *Journal of the American Statistical Association*, 53(282), 457–481. Retrieved 2023-08-07, from http://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452 doi: 10.1080/01621459.1958.10501452
- Kastritis, E., Moulopoulos, L. A., Terpos, E., Koutoulidis, V., & Dimopoulos, M. A. (2014, December). The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. *Leukemia*, 28(12), 2402–2403. Retrieved 2024-05-23, from https://www.nature.com/articles/leu2014230 doi: 10.1038/leu.2014.230
- Katz, B.-Z. (2010, June). Adhesion molecules—The lifelines of multiple myeloma cells. Seminars in Cancer Biology, 20(3), 186-195. Retrieved 2021-07-04, from https://linkinghub.elsevier.com/retrieve/pii/S1044579X10000246 doi: 10.1016/j.semcancer.2010.04.003
- Kawano, M. M., Huang, N., Tanaka, H., Ishikawa, H., Sakai, A., Tanabe, O., ... Kuramoto, A. (1991, December). Homotypic cell aggregations of human myeloma cells with ICAM-1 and LFA-1 molecules. *British Journal of Haematology*, 79(4), 583–588. doi: 10.1111/j.1365-2141.1991.tb08085.x
- Kazman, R., Bianco, P., Ivers, J., & Klein, J. (2020, December). Maintainability (Report). Carnegie Mellon University. Retrieved 2024-03-07, from https://kilthub.cmu.edu/articles/report/Maintainability/12954908/1 doi: 10.1184/R1/12954908.v1
- Keats, J. J., Chesi, M., Egan, J. B., Garbitt, V. M., Palmer, S. E., Braggio, E., ... Bergsagel, P. L. (2012, August).

- Clonal competition with alternating dominance in multiple myeloma. Blood, 120(5), 1067-1076. doi: 10.1182/blood-2012-01-405985
- Kelleher, R. (2024, January). NVIDIA CEO: 'This Year, Every Industry Will Become a Technology Industry'. Retrieved 2024-05-03, from https://blogs.nvidia.com/blog/nvidia-ceo-ai-drug-discovery-jp-morgan-healthcare-2024/
- Kelly, B. S., Kirwan, A., Quinn, M. S., Kelly, A. M., Mathur, P., Lawlor, A., & Killeen, R. P. (2023, May). The ethical matrix as a method for involving people living with disease and the wider public (PPI) in near-term artificial intelligence research. *Radiography (London, England: 1995)*, 29 Suppl 1, S103-S111. doi: 10.1016/j.radi.2023.03.009
- Kibler, C., Schermutzki, F., Waller, H. D., Timpl, R., Müller, C. A., & Klein, G. (1998, June). Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules. *Cell Adhesion and Communication*, 5(4), 307–323. doi: 10.3109/15419069809040300
- Kim, D., Langmead, B., & Salzberg, S. L. (2015, April). HISAT: A fast spliced aligner with low memory requirements. *Nature methods*, 12(4), 357–360. Retrieved 2024-04-26, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655817/ doi: 10.1038/nmeth.3317
- Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., ... Jupyter Development Team (2016). *Jupyter Notebooks—a publishing format for reproducible computational workflows*. Retrieved 2024-04-20, from https://ui.adsabs.harvard.edu/abs/2016ppap.book...87K doi: 10.3233/978-1-61499-649-1-87
- Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., & Bruhin, F. (2004). *Pytest.* Retrieved from https://github.com/pytest-dev/pytest
- Krzywinski, M., & Savig, E. (2013, July). Multidimensional data. *Nature methods*, 10(7), 595. Retrieved 2024-04-22, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092027/
- Kundu, S., Jha, S. B., Rivera, A. P., Flores Monar, G. V., Islam, H., Puttagunta, S. M., ... Sange, I. (2022, February). Multiple Myeloma and Renal Failure: Mechanisms, Diagnosis, and Management. *Cureus*, 14(2), e22585. Retrieved 2024-05-23, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958144/ doi: 10.7759/cureus.22585
- Kuric, M. (2024, April). Markur4/plotastic. Retrieved 2024-05-02, from https://github.com/markur4/plotastic
- Kuric, M., Beck, S., Schneider, D., Rindt, W., Evers, M., Meißner-Weigl, J., ... Ebert, R. (2024, April). Modeling Myeloma Dissemination In Vitro with hMSC-interacting Subpopulations of INA-6 Cells and Their Aggregation/Detachment Dynamics. *Cancer Research Communications*, 4(4), 1150–1164. Retrieved 2024-05-14, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057410/ doi: 10.1158/2767-9764.CRC-23-0411
- Kuric, M., & Ebert, R. (2024, March). Plotastic: Bridging Plotting and Statistics in Python. *Journal of Open Source Software*, 9(95), 6304. Retrieved 2024-03-11, from https://joss.theoj.org/papers/10.21105/joss.06304 doi: 10.21105/joss.06304
- Kyle, R. A. (1997, February). Monoclonal gammopathy of undetermined significance and solitary plasmacytoma. Implications for progression to overt multiple myeloma. *Hematology/Oncology Clinics of North America*, 11(1), 71–87. doi: 10.1016/s0889-8588(05)70416-0
- Lai, T.-Y., Cao, J., Ou-Yang, P., Tsai, C.-Y., Lin, C.-W., Chen, C.-C., ... Lee, C.-Y. (2022, April). Different methods of detaching adherent cells and their effects on the cell surface expression of Fas receptor and Fas ligand. *Scientific Reports*, 12(1), 5713. Retrieved 2023-06-01, from https://www.nature.com/articles/s41598-022-09605-y doi: 10.1038/s41598-022-09605-y
- Lakhlifi, C., Lejeune, F.-X., Rouault, M., Khamassi, M., & Rohaut, B. (2023, April). Illusion of knowledge in statistics among clinicians: Evaluating the alignment between objective accuracy and subjective confidence, an online survey. Cognitive Research: Principles and Implications, 8, 23. Retrieved 2024-04-24, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118231/ doi: 10.1186/s41235-023-00474-1
- Leek, J. T., & Peng, R. D. (2015, April). Statistics: P values are just the tip of the iceberg. *Nature*, 520(7549), 612–612. Retrieved 2024-04-22, from https://www.nature.com/articles/520612a doi: 10.1038/520612a

- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... 1000 Genome Project Data Processing Subgroup (2009, August). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. Retrieved 2023-06-09, from https://doi.org/10.1093/bioinformatics/btp352 doi: 10.1093/bioinformatics/btp352
- Liu, Z., Liu, H., He, J., Lin, P., Tong, Q., & Yang, J. (2020, May). Myeloma cells shift osteoblastogenesis to adipogenesis by inhibiting the ubiquitin ligase MURF1 in mesenchymal stem cells. *Science signaling*, 13(633), eaay8203. Retrieved 2024-06-08, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376968/ doi: 10.1126/scisignal.aay8203
- Localio, A. R., Goodman, S. N., Meibohm, A., Cornell, J. E., Stack, C. B., Ross, E. A., & Mulrow, C. D. (2018, June). Statistical Code to Support the Scientific Story. *Annals of Internal Medicine*, 168(11), 828–829. Retrieved 2024-04-23, from https://www.acpjournals.org/doi/10.7326/M17-3431 doi: 10.7326/M17-3431
- Love, M. I., Huber, W., & Anders, S. (2014, December). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550. Retrieved 2024-04-26, from https://doi.org/10.1186/s13059-014-0550-8 doi: 10.1186/s13059-014-0550-8
- Mai, E. K., Hielscher, T., Kloth, J. K., Merz, M., Shah, S., Raab, M. S., ... Hillengass, J. (2015, June). A magnetic resonance imaging-based prognostic scoring system to predict outcome in transplant-eligible patients with multiple myeloma. *Haematologica*, 100(6), 818–825. Retrieved 2024-05-23, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450628/ doi: 10.3324/haematol.2015.124115
- Maichl, D. S., Kirner, J. A., Beck, S., Cheng, W.-H., Krug, M., Kuric, M., ... Jundt, F. (2023, September). Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival. *Blood Cancer Journal*, 13(1), 1–6. Retrieved 2023-09-05, from https://www.nature.com/articles/s41408-023-00907-6 doi: 10.1038/s41408-023-00907-6
- Majithia, N., Rajkumar, SV., Lacy, MQ., Buadi, FK., Dispenzieri, A., Gertz, MA., ... Kumar, SK. (2016, November). Early relapse following initial therapy for multiple myeloma predicts poor outcomes in the era of novel agents. *Leukemia*, 30(11), 2208–2213. Retrieved 2022-10-15, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541860/doi: 10.1038/leu.2016.147
- Mangolini, M., & Ringshausen, I. (2020, February). Bone Marrow Stromal Cells Drive Key Hallmarks of B Cell Malignancies. *International Journal of Molecular Sciences*, 21(4), 1466. Retrieved 2023-05-02, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073037/ doi: 10.3390/ijms21041466
- Manifesto for Agile Software Development. (2001). Retrieved 2024-05-14, from http://agilemanifesto.org/
- Martin, S. K., Diamond, P., Williams, S. A., To, L. B., Peet, D. J., Fujii, N., ... Zannettino, A. C. W. (2010, May). Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. *Haematologica*, 95(5), 776–784. doi: 10.3324/haematol.2009.015628
- Mateos María-Victoria, Hernández Miguel-Teodoro, Giraldo Pilar, de la Rubia Javier, de Arriba Felipe, Corral Lucía López, ... San Miguel Jesús-F. (2013). Lenalidomide plus Dexamethasone for High-Risk Smoldering Multiple Myeloma. New England Journal of Medicine, 369(5), 438–447. Retrieved 2024-05-22, from https://www.nejm.org/doi/full/10.1056/NEJMoa1300439 doi: 10.1056/NEJMoa1300439
- Mättig, P. (2022, November). Classifying exploratory experimentation three case studies of exploratory experimentation at the LHC. European Journal for Philosophy of Science, 12(4), 66. Retrieved 2024-06-14, from https://doi.org/10.1007/s13194-022-00496-4 doi: 10.1007/s13194-022-00496-4
- McCall, M. N., McMurray, H. R., Land, H., & Almudevar, A. (2014, August). On non-detects in qPCR data. Bioinformatics, $3\theta(16)$, 2310-2316. Retrieved 2023-04-25, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133581/ doi: 10.1093/bioinformatics/btu239
- McKay, B. S., Irving, P. E., Skumatz, C. M., & Burke, J. M. (1997, November). Cell-cell adhesion molecules and the development of an epithelial phenotype in cultured human retinal pigment epithelial cells. *Experimental Eye Research*, 65(5), 661–671. doi: 10.1006/exer.1997.0374
- McKinney, W. (2010, January). Data Structures for Statistical Computing in Python. In (pp. 56–61). doi: 10.25080/

- Majora-92bf1922-00a
- Mckinney, W. (2011, January). Pandas: A Foundational Python Library for Data Analysis and Statistics. *Python High Performance Science Computer*.
- Mesirov, J. P. (2010, January). Accessible Reproducible Research. *Science*, 327(5964), 415–416. Retrieved 2024-04-22, from https://www.science.org/doi/10.1126/science.1179653 doi: 10.1126/science.1179653
- Moleiro, A. F., Conceição, G., Leite-Moreira, A. F., & Rocha-Sousa, A. (2017). A Critical Analysis of the Available In Vitro and Ex Vivo Methods to Study Retinal Angiogenesis. *Journal of Ophthalmology*, 2017, 3034953. doi: 10.1155/2017/3034953
- Moñivas Gallego, E., & Zurita Castillo, M. (2024, April). Mesenchymal stem cell therapy in ischemic stroke trials. A systematic review. *Regenerative Therapy*, 27, 301–306. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021793/ doi: 10.1016/j.reth.2024.03.026
- Moran, M. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. *Oikos*, 100(2), 403-405. Retrieved 2024-04-24, from https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0706.2003.12010.x doi: 10.1034/j.1600-0706.2003.12010.x
- Morè, S., Corvatta, L., Manieri, V. M., Morsia, E., Poloni, A., & Offidani, M. (2023, November). Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment. *Pharmaceuticals*, 16(11), 1628. Retrieved 2024-05-22, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675193/ doi: 10.3390/ph16111628
- Motulsky, H. (2018). Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking. Oxford University Press.
- Mrozik, K. M., Cheong, C. M., Hewett, D., Chow, A. W., Blaschuk, O. W., Zannettino, A. C., & Vandyke, K. (2015). Therapeutic targeting of N-cadherin is an effective treatment for multiple myeloma. *British Journal of Haematology*, 171(3), 387–399. Retrieved 2024-05-26, from https://onlinelibrary.wiley.com/doi/abs/10.1111/bjh.13596 doi: 10.1111/bjh.13596
- Muruganandan, S., Roman, A. A., & Sinal, C. J. (2009, January). Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program. *Cellular and molecular life sciences: CMLS*, 66(2), 236–253. doi: 10.1007/s00018-008-8429-z
- Myers, G. J., Sandler, C., & Badgett, T. (2011). *The art of software testing* (3rd ed.). Wiley Publishing. Retrieved from https://malenezi.github.io/malenezi/SE401/Books/114-the-art-of-software-testing-3-edition.pdf
- Nalbant, P., & Dehmelt, L. (2018, August). Exploratory cell dynamics: A sense of touch for cells? *Biological Chemistry*, 399(8), 809–819. Retrieved 2024-06-12, from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0341/html doi: 10.1515/hsz-2017-0341
- Narzt, W., Pichler, J., Pirklbauer, K., & Zwinz, M. (1998, January). A Reusability Concept for Process Automation Software..
- Nature Video Content. (n.d.). Retrieved 2024-06-13, from https://support.nature.com/en/support/solutions/articles/6000210836-requirements-to-play-video-content-on-the-site
- Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. (2014, September). *LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python*. Zenodo. Retrieved 2023-05-30, from https://zenodo.org/record/11813 doi: 10.5281/zenodo.11813
- Niehorster, D. C. (2021, December). Optic Flow: A History. *i-Perception*, 12(6), 20416695211055766. Retrieved 2024-06-14, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652193/ doi: 10.1177/20416695211055766
- Nilsson, K., Bennich, H., Johansson, S. G., & Pontén, J. (1970, October). Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clinical and Experimental Immunology, 7(4), 477–489.
- Nowotschin, S., & Hadjantonakis, A.-K. (2010, August). Cellular dynamics in the early mouse embryo: From axis formation to gastrulation. Current opinion in genetics & development, 20(4), 420–427. doi: 10.1016/j.gde.2010.05

.008

- Oba, Y., Lee, J. W., Ehrlich, L. A., Chung, H. Y., Jelinek, D. F., Callander, N. S., ... Roodman, G. D. (2005, March). MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. *Experimental Hematology*, 33(3), 272–278. doi: 10.1016/j.exphem.2004.11.015
- Ocias, L. F., Larsen, T. S., Vestergaard, H., Friis, L. S., Abildgaard, N., Frederiksen, H., & Academy of Geriatric Cancer Research (AgeCare). (2016). Trends in hematological cancer in the elderly in Denmark, 1980-2012. *Acta Oncologica (Stockholm, Sweden)*, 55 Suppl 1, 98–107. doi: 10.3109/0284186X.2015.1115124
- O'Connor, B. P., Raman, V. S., Erickson, L. D., Cook, W. J., Weaver, L. K., Ahonen, C., ... Noelle, R. J. (2004, January). BCMA Is Essential for the Survival of Long-lived Bone Marrow Plasma Cells. *The Journal of Experimental Medicine*, 199(1), 91–98. Retrieved 2024-05-26, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887725/doi: 10.1084/jem.20031330
- Okuno, Y., Takahashi, T., Suzuki, A., Ichiba, S., Nakamura, K., Okada, T., ... Imura, H. (1991, February). In vitro growth pattern of myeloma cells in liquid suspension or semi-solid culture containing interleukin-6. *International Journal of Hematology*, 54(1), 41–47.
- Ordak, M. (2023, September). ChatGPT's Skills in Statistical Analysis Using the Example of Allergology: Do We Have Reason for Concern? *Healthcare (Basel, Switzerland)*, 11(18), 2554. doi: 10.3390/healthcare11182554
- Paiva, B., Paino, T., Sayagues, J.-M., Garayoa, M., San-Segundo, L., Martín, M., ... San Miguel, J. F. (2013, November). Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. *Blood*, 122(22), 3591–3598. doi: 10.1182/blood-2013-06-510453
- Paiva, B., Pérez-Andrés, M., Vídriales, M.-B., Almeida, J., de las Heras, N., Mateos, M.-V., ... Myeloma Stem Cell Network (MSCNET) (2011, April). Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia, 25(4), 697–706. doi: 10.1038/leu.2010.320
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... Chintala, S. (2019, December). *PyTorch: An Imperative Style, High-Performance Deep Learning Library* (No. arXiv:1912.01703). arXiv. Retrieved 2024-03-07, from http://arxiv.org/abs/1912.01703 doi: 10.48550/arXiv.1912.01703
- Peng, R. D. (2011, December). Reproducible Research in Computational Science. Science, 334(6060), 1226–1227. Retrieved 2024-03-18, from https://www.science.org/doi/10.1126/science.1213847 doi: 10.1126/science.1213847
- Peras, I., Klemenčič Mirazchiyski, E., Japelj Pavešić, B., & Mekiš Recek, Ž. (2023, September). Digital versus Paper Reading: A Systematic Literature Review on Contemporary Gaps According to Gender, Socioeconomic Status, and Rurality. European Journal of Investigation in Health, Psychology and Education, 13(10), 1986–2005. Retrieved 2024-06-13, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606230/ doi: 10.3390/ejihpe13100142
- Perez, F., & Granger, B. E. (2007, May). IPython: A System for Interactive Scientific Computing. *Computing in Science & Engineering*, 9(3), 21–29. Retrieved 2024-04-20, from https://ieeexplore.ieee.org/document/4160251 doi: 10.1109/MCSE.2007.53
- Pérez-Andrés, M., Almeida, J., Martín-Ayuso, M., Moro, M. J., Martín-Nuñez, G., Galende, J., ... Spanish Network of Cancer Research Centers (C03/10) (2005, March). Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. *Leukemia*, 19(3), 449–455. doi: 10.1038/sj.leu.2403647
- Perneger, T. V. (1998, April). What's wrong with Bonferroni adjustments. *BMJ*: *British Medical Journal*, 316(7139), 1236–1238. Retrieved 2021-11-24, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1112991/
- Pfaffl, M. W. (2001, May). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Research*, 29(9), e45. Retrieved 2024-05-16, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55695/
- Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., ... Marshak, D. R. (1999).

- Multilineage Potential of Adult Human Mesenchymal Stem Cells. , 284(April), 143–148. doi: 10.1126/science.284.5411.143
- Podar, K., & Leleu, X. (2021, October). Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. *Cancers*, 13(20), 5154. Retrieved 2024-05-22, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534171/ doi: 10.3390/cancers13205154
- Polager, S., & Ginsberg, D. (2009, October). P53 and E2f: Partners in life and death. *Nature Reviews Cancer*, 9(10), 738–748. Retrieved 2023-02-14, from https://www.nature.com/articles/nrc2718 doi: 10.1038/nrc2718
- Price, A., Schroter, S., Clarke, M., & McAneney, H. (2018, September). Role of supplementary material in biomedical journal articles: Surveys of authors, reviewers and readers. *BMJ Open*, 8(9), e021753. Retrieved 2024-06-13, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157527/ doi: 10.1136/bmjopen-2018-021753
- Purschke, M., Rubio, N., Held, K. D., & Redmond, R. W. (2010, November). Phototoxicity of Hoechst 33342 in time-lapse fluorescence microscopy. *Photochemical & Photobiological Sciences*, 9(12), 1634–1639. Retrieved 2022-03-03, from https://pubs.rsc.org/en/content/articlelanding/2010/pp/c0pp00234h doi: 10.1039/C0PP00234H
- Pylvänäinen, J. W., Gómez-de-Mariscal, E., Henriques, R., & Jacquemet, G. (2023, December). Live-cell imaging in the deep learning era. *Current Opinion in Cell Biology*, 85, 102271. Retrieved 2024-06-14, from https://www.sciencedirect.com/science/article/pii/S0955067423001205 doi: 10.1016/j.ceb.2023.102271
- PyMOL. (2024). Retrieved 2024-04-30, from https://pymol.org/
- The Python Language Reference. (2024). Retrieved 2024-03-07, from https://docs.python.org/3/reference/index.html
- Qamar, S., Öberg, R., Malyshev, D., & Andersson, M. (2023, October). A hybrid CNN-Random Forest algorithm for bacterial spore segmentation and classification in TEM images. *Scientific Reports*, 13(1), 18758. Retrieved 2024-06-14, from https://www.nature.com/articles/s41598-023-44212-5 doi: 10.1038/s41598-023-44212-5
- Qasim, W., Zhan, H., Samarasinghe, S., Adams, S., Amrolia, P., Stafford, S., ... Veys, P. (2017, January). Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine, 9(374), eaaj2013. doi: 10.1126/scitranslmed.aaj2013
- Qiang, Y.-W., Barlogie, B., Rudikoff, S., & Shaughnessy, J. D. (2008, April). Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. *Bone*, 42(4), 669–680. doi: 10.1016/j.bone.2007.12.006
- Quanbeck, A., Hennessy, R. G., & Park, L. (2022, November). Applying concepts from "rapid" and "agile" implementation to advance implementation research. *Implementation Science Communications*, 3(1), 118. doi: 10.1186/s43058-022-00366-3
- Qureshi, R., Shaughnessy, D., Gill, K. A. R., Robinson, K. A., Li, T., & Agai, E. (2023, April). Are ChatGPT and large language models "the answer" to bringing us closer to systematic review automation? *Systematic Reviews*, 12, 72. Retrieved 2024-05-03, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148473/ doi: 10.1186/s13643-023-02243-z
- R Core Team. (2018). R: A language and environment for statistical computing [Manual]. Vienna, Austria. Retrieved from https://www.R-project.org/
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. Retrieved 2024-03-07, from https://www.semanticscholar.org/paper/Language-Models-are -Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
- Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos, M.-V., ... Miguel, J. F. S. (2014, November). International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. *The Lancet. Oncology*, 15(12), e538-548. doi: 10.1016/S1470-2045(14)70442-5
- Rajkumar, S. V., & Kumar, S. (2020, September). Multiple myeloma current treatment algorithms. *Blood Cancer Journal*, 10(9), 94. Retrieved 2023-07-03, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523011/ doi:

- 10.1038/s41408-020-00359-2
- Ramakers, C., Ruijter, J. M., Deprez, R. H., & Moorman, A. F. (2003, March). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neuroscience Letters*, 339(1), 62–66. Retrieved 2022-11-27, from https://linkinghub.elsevier.com/retrieve/pii/S0304394002014234 doi: 10.1016/S0304-3940(02)01423-4
- Rayhan, A., & Gross, D. (2023). The Rise of Python: A Survey of Recent Research. doi: 10.13140/RG.2.2.27388.92809 Read the Docs. (2024). Retrieved 2024-05-03, from https://docs.readthedocs.io/en/stable/index.html
- Rebl, H., Finke, B., Schroeder, K., & Nebe, J. B. (2010, October). Time-dependent metabolic activity and adhesion of human osteoblast-like cells on sensor chips with a plasma polymer nanolayer. *The International Journal of Artificial Organs*, 33(10), 738–748.
- Ribatti, D., Tamma, R., & Annese, T. (2020, June). Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. *Translational Oncology*, 13(6), 100773. doi: 10.1016/j.tranon.2020.100773
- Richardson, G., Knudby, A., Chen, W., Sawada, M., Lovitt, J., He, L., & Naeni, L. Y. (2023, November). Dense neural network outperforms other machine learning models for scaling-up lichen cover maps in Eastern Canada. *PLOS ONE*, 18(11), e0292839. Retrieved 2024-06-14, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659193/doi: 10.1371/journal.pone.0292839
- Rigsby, R. E., & Parker, A. B. (2016, September). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 44(5), 433–437. doi: 10.1002/bmb.20966
- Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010, January). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics (Oxford, England)*, 26(1), 139–140. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19910308 doi: 10.1093/bioinformatics/btp616
- Robitaille, M. C., Byers, J. M., Christodoulides, J. A., & Raphael, M. P. (2022, November). Self-supervised machine learning for live cell imagery segmentation. *Communications Biology*, 5(1), 1–8. Retrieved 2024-06-14, from https://www.nature.com/articles/s42003-022-04117-x doi: 10.1038/s42003-022-04117-x
- Roccaro, A. M., Mishima, Y., Sacco, A., Moschetta, M., Tai, Y.-T., Shi, J., ... Ghobrial, I. M. (2015, July). CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. *Cell Reports*, 12(4), 622–635. doi: 10.1016/j.celrep.2015.06.059
- Roukos, V., Pegoraro, G., Voss, T. C., & Misteli, T. (2015, February). Cell cycle staging of individual cells by fluorescence microscopy. *Nature protocols*, 10(2), 334-348. Retrieved 2024-06-16, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318798/ doi: 10.1038/nprot.2015.016
- Roy, P., Mukherjee, T., Chatterjee, B., Vijayaragavan, B., Banoth, B., & Basak, S. (2017, March). Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway. *Oncogene*, 36(10), 1417–1429. Retrieved 2024-06-08, from https://www.nature.com/articles/onc2016309 doi: 10.1038/onc.2016.309
- Roy, P., Sarkar, U., & Basak, S. (2018, May). The NF- κ B Activating Pathways in Multiple Myeloma. *Biomedicines*, 6(2), 59. Retrieved 2021-07-25, from http://www.mdpi.com/2227-9059/6/2/59 doi: 10.3390/biomedicines6020059
- Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017, November). ImageJ2: ImageJ for the next generation of scientific image data. *BMC Bioinformatics*, 18(1), 529. Retrieved 2024-04-25, from https://doi.org/10.1186/s12859-017-1934-z doi: 10.1186/s12859-017-1934-z
- Ruijter, J. M., Barnewall, R. J., Marsh, I. B., Szentirmay, A. N., Quinn, J. C., van Houdt, R., ... van den Hoff, M. J. B. (2021, June). Efficiency Correction Is Required for Accurate Quantitative PCR Analysis and Reporting. Clinical Chemistry, 67(6), 829-842. Retrieved 2023-05-27, from https://doi.org/10.1093/clinchem/hvab052 doi: 10.1093/clinchem/hvab052
- Ruiz-Villalba, A., Ruijter, J. M., & van den Hoff, M. J. B. (2021, May). Use and Misuse of Cq in qPCR Data Analysis and Reporting. *Life*, 11(6), 496. Retrieved 2023-04-25, from https://www.ncbi.nlm.nih.gov/pmc/articles/

- PMC8229287/ doi: 10.3390/life11060496
- Ruksakulpiwat, S., Kumar, A., & Ajibade, A. (2023, May). Using ChatGPT in Medical Research: Current Status and Future Directions. *Journal of Multidisciplinary Healthcare*, 16, 1513–1520. Retrieved 2024-05-03, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239248/ doi: 10.2147/JMDH.S413470
- Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., ... Bianco, P. (2016). No identical "mesenchymal stem cells" at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. *Stem Cell Reports*, 6(6), 897–913. Retrieved from http://dx.doi.org/10.1016/j.stemcr.2016.05.011 doi: 10.1016/j.stemcr.2016.05.011
- Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013, October). Ten Simple Rules for Reproducible Computational Research. *PLoS Computational Biology*, 9(10), e1003285. Retrieved 2024-03-07, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812051/ doi: 10.1371/journal.pcbi.1003285
- Santos, B. S., Silva, I., Ribeiro-Dantas, M. d. C., Alves, G., Endo, P. T., & Lima, L. (2020, October). COVID-19: A scholarly production dataset report for research analysis. *Data in Brief*, 32, 106178. doi: 10.1016/j.dib.2020.106178
- Sanz-Rodríguez, F., Ruiz-Velasco, N., Pascual-Salcedo, D., & Teixidó, J. (1999, December). Characterization of VLA-4-dependent myeloma cell adhesion to fibronectin and VCAM-1: VLA-4-dependent Myeloma Cell Adhesion. British Journal of Haematology, 107(4), 825–834. Retrieved 2023-04-02, from http://doi.wiley.com/10.1046/j.1365-2141.1999.01762.x doi: 10.1046/j.1365-2141.1999.01762.x
- Sarin, V., Yu, K., Ferguson, I. D., Gugliemini, O., Nix, M. A., Hann, B., ... Wiita, A. P. (2020, October). Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis. *Leukemia*, 34(10), 2754–2765. doi: 10.1038/s41375-020-0785-1
- Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and Statistical Modeling with Python. In *Python in Science Conference* (pp. 92-96). Austin, Texas. Retrieved 2023-05-29, from https://conference.scipy.org/proceedings/scipy2010/seabold.html doi: 10.25080/Majora-92bf1922-011
- Seckinger, A., Delgado, J. A., Moser, S., Moreno, L., Neuber, B., Grab, A., ... Vu, M. D. (2017, March). Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. *Cancer Cell*, 31(3), 396–410. Retrieved 2023-07-21, from https://www.cell.com/cancer-cell/abstract/S1535-6108(17)30016-8 doi: 10.1016/j.ccell.2017.02.002
- Seckinger, A., Hillengass, J., Emde, M., Beck, S., Kimmich, C., Dittrich, T., ... Hose, D. (2018). CD38 as Immunother-apeutic Target in Light Chain Amyloidosis and Multiple Myeloma-Association With Molecular Entities, Risk, Survival, and Mechanisms of Upfront Resistance. Frontiers in Immunology, 9, 1676. doi: 10.3389/fimmu.2018.01676
- Shenghui, H., Nakada, D., & Morrison, S. J. (2009). Mechanisms of Stem Cell Self-Renewal. *Annual Review of Cell and Developmental Biology*, 25(1), 377–406. Retrieved from https://doi.org/10.1146/annurev.cellbio.042308.113248 doi: 10.1146/annurev.cellbio.042308.113248
- Sherina, V. (2020). Multiple imputation and direct estimation for qPCR data with non-detects.
- Siclari, V., Guise, T., & Chirgwin, J. (2007, January). Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. *Cancer metastasis reviews*, 25, 621–33. doi: 10.1007/s10555-006-9023-1
- Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74(1), 12-49. Retrieved 2024-05-21, from https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21820 doi: 10.3322/caac.21820
- Simonyan, K., & Zisserman, A. (2015, April). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs]. Retrieved 2022-05-12, from http://arxiv.org/abs/1409.1556
- Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M., ... Vanderplas, J. T. (2018). Journal of Open Source Software (JOSS): Design and first-year review. *PeerJ Preprints*, 4, e147. doi: 10.7717/peerj-cs.147
- Solimando, A. G., Malerba, E., Leone, P., Prete, M., Terragna, C., Cavo, M., & Racanelli, V. (2022, September). Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Frontiers in Oncology, 12,

- 973836. Retrieved 2022-10-23, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533079/ doi: 10.3389/fonc.2022.973836
- Spaepen, P., De Boodt, S., Aerts, J.-M., & Sloten, J. V. (2011). Digital image processing of live/dead staining. *Methods in Molecular Biology (Clifton, N.J.)*, 740, 209–230. doi: 10.1007/978-1-61779-108-6_21
- Sphinx. (2024). Retrieved 2024-05-03, from https://docs.readthedocs.io/en/stable/intro/getting-started-with -sphinx.html
- Sprynski, A. C., Hose, D., Caillot, L., Rème, T., Shaughnessy, J. D., Barlogie, B., ... Klein, B. (2009, May). The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood, 113(19), 4614–4626. Retrieved 2023-06-29, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691749/doi: 10.1182/blood-2008-07-170464
- Standal, T., Seidel, C., Plesner, T., Sanderson, R., Waage, A., Børset, M., & Sundan, A. (2002, November). Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. *Blood*, 100, 3002–7. doi: 10.1182/blood-2002-04-1190
- Stock, P., Bruckner, S., Winkler, S., Dollinger, M. M., & Christ, B. (2014, April). Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. *International journal of molecular sciences*, 15(4), 7004–7028. doi: 10.3390/ijms15047004
- Sullivan, G. M., & Feinn, R. S. (2021, August). Facts and Fictions About Handling Multiple Comparisons. *Journal of Graduate Medical Education*, 13(4), 457–460. Retrieved 2024-03-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370375/ doi: 10.4300/JGME-D-21-00599.1
- Szeliski, R. (2011). Feature detection and matching. In R. Szeliski (Ed.), Computer Vision: Algorithms and Applications (pp. 181–234). London: Springer. Retrieved 2024-06-16, from https://doi.org/10.1007/978-1-84882-935-0_4 doi: 10.1007/978-1-84882-935-0_4
- Tabolacci, C., De Martino, A., Mischiati, C., Feriotto, G., & Beninati, S. (2019, January). The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. *Medical Sciences*, 7(2), 19. Retrieved 2023-03-17, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409630/ doi: 10.3390/medsci7020019
- Tai, Y.-T., Li, X.-F., Breitkreutz, I., Song, W., Neri, P., Catley, L., ... Anderson, K. C. (2006, July). Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Research, 66(13), 6675–6682. doi: 10.1158/0008-5472.CAN-06-0190
- Tam, P. P., & Beddington, R. S. (1987, January). The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. *Development (Cambridge, England)*, 99(1), 109–126.
- Taskiran, I. I., Spanier, K. I., Dickmänken, H., Kempynck, N., Pančíková, A., Ekşi, E. C., ... Aerts, S. (2024, February). Cell-type-directed design of synthetic enhancers. *Nature*, 626(7997), 212–220. Retrieved 2024-04-21, from https://www.nature.com/articles/s41586-023-06936-2 doi: 10.1038/s41586-023-06936-2
- Team, T. P. D. (2020, February). *Pandas-dev/pandas: Pandas*. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.3509134 doi: 10.5281/zenodo.3509134
- Teoh, G., & Anderson, K. C. (1997, February). INTERACTION OF TUMOR AND HOST CELLS WITH ADHESION AND EXTRACELLULAR MATRIX MOLECULES IN THE DEVELOPMENT OF MULTIPLE MYELOMA. *Hematology/Oncology Clinics of North America*, 11(1), 27–42. Retrieved 2021-01-29, from http://www.sciencedirect.com/science/article/pii/S0889858805704135 doi: 10.1016/S0889-8588(05)70413-5
- Teramachi, J., Silbermann, R., Yang, P., Zhao, W., Mohammad, K. S., Guo, J., ... Kurihara, N. (2016, February). Blocking the ZZ Domain of Sequestosome1/p62 Suppresses Myeloma Growth and Osteoclast Formation In Vitro and Induces Dramatic Bone Formation in Myeloma-Bearing Bones In Vivo. *Leukemia*, 30(2), 390–398. Retrieved 2024-06-08, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740189/ doi: 10.1038/leu.2015.229
- Terpos, E., Migkou, M., Christoulas, D., Gavriatopoulou, M., Eleutherakis-Papaiakovou, E., Kanellias, N., ... Dimopoulos, M. A. (2016, May). Increased circulating VCAM-1 correlates with advanced disease and poor survival

- in patients with multiple myeloma: Reduction by post-bortezomib and lenalidomide treatment. *Blood Cancer Journal*, 6(5), e428. Retrieved 2021-02-03, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916305/ doi: 10.1038/bcj.2016.37
- Terpos, E., Ntanasis-Stathopoulos, I., Gavriatopoulou, M., & Dimopoulos, M. A. (2018, January). Pathogenesis of bone disease in multiple myeloma: From bench to bedside. *Blood Cancer Journal*, 8(1), 7. doi: 10.1038/s41408-017-0037-4
- Thompson, S., Dowrick, T., Ahmad, M., Xiao, G., Koo, B., Bonmati, E., ... Clarkson, M. J. (2020, July). SciKit-Surgery: Compact libraries for surgical navigation. *International Journal of Computer Assisted Radiology and Surgery*, 15(7), 1075–1084. doi: 10.1007/s11548-020-02180-5
- Thumallapally, N., Meshref, A., Mousa, M., & Terjanian, T. (2017, January). Solitary plasmacytoma: Population-based analysis of survival trends and effect of various treatment modalities in the USA. *BMC Cancer*, 17, 13. Retrieved 2024-05-21, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216567/ doi: 10.1186/s12885-016-3015-5
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., ... Pachter, L. (2012, March). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature Protocols*, 7(3), 562–578. doi: 10.1038/nprot.2012.016
- Tsubaki, M., Seki, S., Takeda, T., Chihara, A., Arai, Y., Morii, Y., ... Nishida, S. (2020, October). The HGF/Met/NFκB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells. *International Journal*of Molecular Sciences, 21(21), 7905. Retrieved 2024-06-08, from https://www.ncbi.nlm.nih.gov/pmc/articles/
 PMC7663721/ doi: 10.3390/ijms21217905
- Turesson, I., Bjorkholm, M., Blimark, C. H., Kristinsson, S., Velez, R., & Landgren, O. (2018, April). Rapidly changing myeloma epidemiology in the general population: Increased incidence, older patients, and longer survival. *European journal of haematology*, 10.1111/ejh.13083. Retrieved 2024-05-22, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195866/doi: 10.1111/ejh.13083
- Two new interleukin-6 dependent plasma cell lines carrying a chromosomal abnormality involving the IL-6 gene locus. Abstract Two plasma cell lines, INA-6 and JK-6, have been initiated and continuously cultured from two patients with malignant plasma cell diseases. Both cell lines are EBNA negative and show morphological and immunophenotypical features of plasma cells. INA-6 expresses the CD39 and CDw75 antigens, JK-6 is strongty positive with CD38 and CD39 antibodies. By flow cytometry they were non-reactive with Ia antibodies and B ceil reagents CD19, CD20, CD21, CD22, and CD24. While INA-6 cells are releasing kappa light chains only, JK-6 cells produce IgG kappa. Both cell lines could only be initiated with IL-6 supplemented medium and remained IL-6 responsive throughout continuous culture. INA-6 is strictly dependent on IL-6. No spontaneously secreted IL-6 was found nor could it be induced by IL-1beta /TNFalpha stimulation. Molecular analysis with RT-PCR revealed mRNA for the IL-6 receptor in both lines. No IL-6 mRNA was detectable in INA-6 cells, while in JK-6 minute amounts were observed. Cytogenetic analysis of both lines revealed, among other abnormalities, a deletion (7)(p13). Interestingly, the 7p deletion affects the location of the IL-6 gene. In both cell lines, IL-6 dependent proliferation could be inhibited by IFNalpha. IFNalpha had growth regulatory effects only on JK-6: While high concentrations were inhibitory, low IFNalpha amounts were clearly stimulatory. A wide variety of other cytokines including GM-CSF and IL-11 did not have the capacity to influence proliferation. These plasma cell lines do not only allow to turther characterize regulatory events in plasma cell neoplasias but also provide tools to study therapeutic interventions. (n.d.). Retrieved 2023-03-22, from https://www.cellosaurus.org/cellopub/CLPUB00060
- Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells current trends and future prospective Bioscience Reports.
 - doi: 10.1042/BSR20150025
- Ullah, T. R. (2019, August). The role of CXCR4 in multiple myeloma: Cells' journey from bone marrow to beyond. Journal of Bone Oncology, 17, 100253. doi: 10.1016/j.jbo.2019.100253
- Urashima, M., Chauhan, D., Uchiyama, H., Freeman, G., & Anderson, K. (1995, April). CD40 ligand triggered

- interleukin-6 secretion in multiple myeloma. Blood, 85(7), 1903-1912. Retrieved 2021-02-01, from https://ashpublications.org/blood/article/85/7/1903/123565/CD40-ligand-triggered-interleukin6-secretion-in doi: 10.1182/blood.V85.7.1903.bloodjournal8571903
- Väänänen, H. K. (1993, August). Mechanism of bone turnover. Annals of Medicine, 25(4), 353–359. doi: 10.3109/07853899309147297
- Vallat, R. (2018, November). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 1026. Retrieved 2023-05-29, from https://joss.theoj.org/papers/10.21105/joss.01026 doi: 10.21105/joss.01026
- van Rossum, G., Lehtosalo, J., & Langa, L. (2014). PEP 484 Type Hints | peps.python.org. Retrieved 2024-03-08, from https://peps.python.org/pep-0484/
- Vande Broek, I., Vanderkerken, K., Van Camp, B., & Van Riet, I. (2008). Extravasation and homing mechanisms in multiple myeloma. Clinical & Experimental Metastasis, 25(4), 325–334. doi: 10.1007/s10585-007-9108-4
- Van Valckenborgh, E., Croucher, P. I., De Raeve, H., Carron, C., De Leenheer, E., Blacher, S., ... Vanderkerken, K. (2004, September). Multifunctional role of matrix metalloproteinases in multiple myeloma: A study in the 5T2MM mouse model. The American Journal of Pathology, 165(3), 869–878. doi: 10.1016/S0002-9440(10)63349-4
- Verzella, D., Cornice, J., Arboretto, P., Vecchiotti, D., Di Vito Nolfi, M., Capece, D., ... Franzoso, G. (2022, September). The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. *Biomedicines*, 10(9), 2233. Retrieved 2024-06-10, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496094/ doi: 10.3390/biomedicines10092233
- Wadgaonkar, R., Phelps, K. M., Haque, Z., Williams, A. J., Silverman, E. S., & Collins, T. (1999, January). CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. The Journal of Biological Chemistry, 274(4), 1879–1882. doi: 10.1074/jbc.274.4.1879
- Wang, W., Yang, X., Dai, J., Lu, Y., Zhang, J., & Keller, E. T. (2019, June). Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. *Oncogene*, 38(23), 4540–4559. doi: 10.1038/s41388-019-0736-3
- Waskom, M. L. (2021, April). Seaborn: Statistical data visualization. *Journal of Open Source Software*, 6(60), 3021. Retrieved 2023-03-26, from https://joss.theoj.org/papers/10.21105/joss.03021 doi: 10.21105/joss.03021
- Webster, G. A., & Perkins, N. D. (1999, May). Transcriptional Cross Talk between NF-κB and p53. *Molecular and Cellular Biology*, 19(5), 3485-3495. Retrieved 2023-07-04, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC84141/
- Weetall, M., Hugo, R., Maida, S., West, S., Wattanasin, S., Bouhel, R., ... Friedman, C. (2001, June). A Homogeneous Fluorometric Assay for Measuring Cell Adhesion to Immobilized Ligand Using V-Well Microtiter Plates. *Analytical Biochemistry*, 293(2), 277–287. Retrieved 2022-09-25, from https://linkinghub.elsevier.com/retrieve/pii/S0003269701951401 doi: 10.1006/abio.2001.5140
- Weiss, C. J. (2022, September). Visualizing protein big data using Python and Jupyter notebooks. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 50(5), 431–436. doi: 10.1002/bmb.21621
- West, K. (2018, July). Reinventing Research: Agile in the Academic Laboratory / Agile Alliance. Retrieved 2024-05-14, from https://www.agilealliance.org/resources/experience-reports/reinventing-research-agile-in-the-academic-laboratory/
- Wickham, H. (2014, September). Tidy Data. Journal of Statistical Software, 59, 1-23. Retrieved 2023-11-15, from https://doi.org/10.18637/jss.v059.i10 doi: 10.18637/jss.v059.i10
- Wilkins, A., Kemp, K., Ginty, M., Hares, K., Mallam, E., & Scolding, N. (2009, July). Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem cell research, 3(1), 63-70. doi: 10.1016/j.scr.2009.02.006
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ... Mons, B. (2016, March). The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data*, 3(1), 160018. Re-

- trieved 2024-03-18, from https://www.nature.com/articles/sdata201618 doi: 10.1038/sdata.2016.18
- Witwer, K. W. (2013, February). Data submission and quality in microarray-based microRNA profiling. *Clinical chemistry*, 59(2), 392–400. Retrieved 2024-04-22, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037921/doi: 10.1373/clinchem.2012.193813
- Wong, A. D., & Searson, P. C. (2017, November). Mitosis-mediated intravasation in a tissue-engineered tumor-microvessel platform. Cancer research, 77(22), 6453-6461. Retrieved 2023-07-14, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690825/ doi: 10.1158/0008-5472.CAN-16-3279
- Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J., ... Chen, Y. (2004, July). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. *Experimental biology and medicine* (Maywood, N.J.), 229(7), 623–631.
- Yang, A., Troup, M., & Ho, J. W. (2017, July). Scalability and Validation of Big Data Bioinformatics Software. Computational and Structural Biotechnology Journal, 15, 379–386. Retrieved 2024-03-07, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537105/ doi: 10.1016/j.csbj.2017.07.002
- Yang, P., Qu, Y., Wang, M., Chu, B., Chen, W., Zheng, Y., ... Qian, Z. (2022, June). Pathogenesis and treatment of multiple myeloma. *MedComm*, 3(2), e146. Retrieved 2024-05-21, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162151/ doi: 10.1002/mco2.146
- Yang, Y., Macleod, V., Bendre, M., Huang, Y., Theus, A. M., Miao, H.-Q., ... Sanderson, R. D. (2005, February). Heparanase promotes the spontaneous metastasis of myeloma cells to bone. *Blood*, 105(3), 1303–1309. doi: 10.1182/blood-2004-06-2141
- Zeissig, M. N., Zannettino, A. C. W., & Vandyke, K. (2020, December). Tumour Dissemination in Multiple Myeloma Disease Progression and Relapse: A Potential Therapeutic Target in High-Risk Myeloma. *Cancers*, 12(12). Retrieved 2021-02-03, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761917/ doi: 10.3390/cancers12123643
- Zeiss OAD Feature Extractors. (n.d.). Retrieved 2024-06-14, from https://github.com/zeiss-microscopy/OAD/blob/master/Machine_Learning/Feature_Extractors/feature_extractors.md
- Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., ... Flicek, P. (2018, January). Ensembl 2018. Nucleic Acids Research, 46(D1), D754-D761. Retrieved 2023-05-27, from https://doi.org/10.1093/nar/gkx1098 doi: 10.1093/nar/gkx1098
- Zhou, F., Meng, S., Song, H., & Claret, F. X. (2013, November). Dickkopf-1 is a key regulator of myeloma bone disease: Opportunities and challenges for therapeutic intervention. *Blood reviews*, 27(6), 261–267. Retrieved 2023-02-18, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133945/ doi: 10.1016/j.blre.2013.08.002
- Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., ... Chanda, S. K. (2019, April). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nature Communications*, 10(1), 1523. Retrieved 2023-02-09, from https://www.nature.com/articles/s41467-019-09234-6 doi: 10.1038/s41467-019-09234-6
- Ziemann, M., Eren, Y., & El-Osta, A. (2016, August). Gene name errors are widespread in the scientific literature. Genome Biology, 17(1), 177. Retrieved 2024-04-30, from https://doi.org/10.1186/s13059-016-1044-7 doi: 10.1186/s13059-016-1044-7

Appendices

A Supplementary Data & Methods

A.1 Figures

9

A.2 Tables

A.3 Materials & Methods

B Documentation of plotastic