

Retrospectives: Intersection of spaceflight stressors and microbial risk to crew and craft

Jared Broddrick, Ph.D.

Space Biosciences Research Branch

NASA Ames Research Center

Overview

- Retrospectives on the road to risk reduction
- Spaceflight stressors in scope
- Flight-relevant microbial populations
- Microbiome of the built environment
- Host-microbe interactions
- Conclusions and recommendations

Risk reduction roadmap

Iterative process requiring periodic evaluation and progress assessments

- Micro-102: Evaluate whether <u>deep-space radiation</u> has an additive or synergistic effect with weightlessness /isolation/ confinement on microbial types, numbers, and virulence.
- Micro-103: Evaluate whether atmospheric composition (for example, elevated CO₂ levels) is a significant contributor to changes in the microbial profile of spaceflight.

Stressors: ionizing radiation

Property of the spaceflight environment

Photon: e.g., x-ray, gamma-ray

Particle: e.g., GCR

Indirect effect of radiation

How does IR affect flight-relevant microbial populations?

Stressors: elevated CO₂

Spaceflight Maximum Allowance Concentration (SMAC): 0.4% (3 mm Hg) CO₂ (24-hour avg)

Chemical removal of CO₂

NASA-STD-3001 Technical Brief Carbon Dioxide (CO2) V2: 4015; 6001; 6004; 6020-22; 7041; 11034-39

How does elevated CO2 affect flight-relevant microbial populations?

Flight-relevant microbial populations

Microbiome of the built environment (MoBE)

Consistently sampled Concerns about crew health Concerns about craft systems

Image: Mora, M. et al. Nat Comm 10, 3990 (2019)

Host-microbe

Highly complex interactions

Multiple host tissues with their own microbiomes

Includes non-crew hosts, such as plants

Image credit: NASA

Effect of stressors on microbial risk

What is known about the univariate effect of these stressors on microorganisms?

Hierarchy of IR protection

DNA repair > physical protection (e.g., sporulation) > ROS detox

Adapted from: Straume, et. al. Life Sciences in Space Research, 2017, 13:51-59 Moeller, et. al. Astrobiology. Jun 2010.509-521. Harada, et. al., FEMS Micro Letters, 1998 164:1, 39-45

Effect of stressors on microbial risk

What is known about the univariate effect of these stressors on microorganisms?

Increased pCO₂

Phototrophs

Heterotrophic microbes

Image credit: ESA

Staphylococcus aureus

Enterococcus faecalis

No fitness defect at 13% CO₂

Fitness defect at 7% CO₂

But maintained virulence

Decreased pO₂

Adapted from: Jouhten *et al.*, *BMC Syst. Biol.*, Jul. 2008, 2:1

There is not a ubiquitous hypercapnic microbial phenotype

Microbiome of the spaceflight built environment

MoBE-Retrospective framework

Separated into host- and spacecraft-associated microbiomes Defined an ideal "end-state"

- 1. The **source** of microbial populations
- 2. The **viable** fraction of the population
- 3. The **taxonomic** and **functional** diversity
- 4. The duration/frequency of active vs. inactive metabolic periods
- 5. The <u>relative power</u> of CO₂/radiation stress versus other spaceflight stressors

Source and viability of microbial populations

Source and viability of microbial populations

Cultured microbial genomes and 16S sequencing dominate current analysis Currently funded projects are focused on full metagenomic sequencing

Source and viability of microbial populations

The crew is a dominant source of surface-associated microbial populations

Avila-Herrera A, et al. (2020) PLoS ONE 15(4): e0231838

Mora, M., et al. Nat Commun 10, 3990 (2019)

Taxonomic and functional diversity

Functional enrichment analysis is sparse Current data suggests enrichment in general built environment persistence

Active metabolism and relative stressors

Dormancy and sporulation

MoBE- Summary

1. The **source** of microbial populations

The crew microbiome is the dominant source

- 2. The <u>viable</u> fraction of the population Somewhat ambiguous, but skin microbes appear to have a fitness advantage
- 3. The taxonomic and functional diversity

Taxa associated with the skin microbiome are enriched

Functional assessments are nascent, but suggest metal detox and resistance to dormancy and starvation are enriched

- 4. The duration/frequency of <u>active vs. inactive</u> metabolic periods

 Poorly characterized, but active metabolic periods are hypothesized to be rare
- 5. The <u>relative power</u> of CO₂/radiation stress versus other spaceflight stressors

Unknown

Host-microbiome interactions in spaceflight

Host-microbe-Retrospective framework

- The <u>diversity</u> of microbial populations in each tissue
- 2. The **functional role** of different taxonomic groups
- 3. The mechanistic interaction with the host tissue
- 4. The <u>effect</u> of elevated CO₂/IR on these microbes and the host-microbe interaction
- 5. The <u>resilience</u> of the microbiome community composition and function to maintain homeostasis
- The effect of elevated CO₂/IR on the <u>host</u> and its reciprocal impact on the microbiome

Illustrative framework

illustialive irailiewoi

Host-microbe

interactions

Pathogen suppression

Host tissue

1. Diversity: what is basal population and population variability between hosts?

- 2. Functional role: how does each microbe help maintain, or degrade, homeostasis?
- 3. Mechanistic interaction with the host: what is the reciprocal dependencies that maintain functional homeostasis?
- 4. Stress effects: How do stressors disrupt equilibrium?
- 5. Resilience: Is there functional redundancy in the system to re-establish functional homeostasis?
- 6. Host effects: How do perturbations in the host system affect the mechanistic interaction with the microbiome?

Gut microbiome

16S rRNA sequencing is the norm High taxonomic variation between individuals¹ Functional variability is much lower

Visconti, A., et al. Nat Commun 10, 4505 (2019).

¹Vujkovic-Cvijin, et al. Nature **587**, 448-454 (2020).

Most data is from acute radiations doses

Host tissue is the likely target of damage

Gut microbial metabolites SCFA (propionate) Tryptophan metabolites

Guo H, et al. Science. 2020;370(6516):eaay9097

Lachnospiraceae

Elevated Hypoxia/hypercapnia reduced CO_2 intestinal barrier function

Links between gut microbiome and obstructive sleep apnea (OSA)

Conflicting data on the effect of inspired gas composition on circulating vital gas values

> ²Tripathi A, et. al. mSystems. 2018 Jun 5;3(3):e00020-18. ³Voorhies, A.A., et al. Sci Rep 9, 991

lonizing

Radiation

Skin microbiome

Site-specific strain heterogeneity

Flight studies are all 16S rRNA and often combine samples from multiple sites

Image credit: NASA

Studying the skin microbiome while still crewassociated may provide insights into MoBE populations

Conclusions and Recommendations

Conclusions

- MoBE:
 - Source of microbial populations is known
 - Relative impact of different stressors is unknown
- Host-microbe:
 - Characterizing flight dysbiosis has the same challenges as terrestrial studies

Recommendations

- 1) Focus on metagenomics, functional characterization, and predictive modeling
- 2) More realistic ground studies- e.g., inspired CO_2 and chronic IR exposure
- 3) Model systems such as tissues-on-a-chip and defined microbial communities

