Applicant: Ian P. Shaeffer et al.

Filed: Herewith

Docket No.: 10002500-2

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

**Divisional Application of:** Applicant: Ian P. Shaeffer et al.

Serial No.: 09/561,591 Filed: May 1, 2000 Docket No.: 10002500-1

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

## **IN THE CLAIMS**

Please cancel claims 1-13 and 24-25 and add new claims 26-29 aas follows:

| 1.(Cancelled)  |  |  |  |
|----------------|--|--|--|
| 2.(Cancelled)  |  |  |  |
| 3.(Cancelled)  |  |  |  |
| 4.(Cancelled)  |  |  |  |
| 5.(Cancelled)  |  |  |  |
| 6.(Cancelled)  |  |  |  |
| 7.(Cancelled)  |  |  |  |
| 8.(Cancelled)  |  |  |  |
| 9.(Cancelled)  |  |  |  |
| 10.(Cancelled) |  |  |  |
| 11.(Cancelled) |  |  |  |
| 12.(Cancelled) |  |  |  |
| 13.(Cancelled) |  |  |  |

Applicant: Ian P. Shaeffer et al.

Filed: Herewith

Docket No.: 10002500-2

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

**Divisional Application of:** Applicant: Ian P. Shaeffer et al.

Serial No.: 09/561,591 Filed: May 1, 2000 Docket No.: 10002500-1

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

14.(Original) A method of fabricating a substantially zero signal degradation electrical connection on a printed circuit board, the method comprising the steps of:

providing a printed circuit board defined by a dielectric structure core having a first surface, the first surface including a first conducting pad having an edge and a second conducting pad having an edge separated from and adjacent to the edge of the first conducting pad, the edges of the first and second conducting pads defining therebetween a surface area of the first surface;

applying a solder paste on the first and second conducting pads and on the first surface of the dielectric structure core, the solder paste at least partially covering the surface area of the first surface between the edges of the first and second conducting pads to form a substantially zero signal degradation electrical connection between the first and second conducting pads.

15.(Original) The method of claim 14, and further including the step of:

performing reflow soldering of the solder paste applied to the first and second conducting pads and the surface area of the first surface of the dielectric structure core.

16.(Original) The method of claim 14 wherein the step of applying the solder paste includes the steps of:

placing a stencil on the first surface of the dielectric structure core, the stencil defining a first opening sized to substantially correspond to the first conducting pad, a second opening sized to substantially correspond to the second conducting pad and a third opening that links the first opening to the second opening and is sized to correspond to a partial portion of the surface area of the first surface between the edges of the first and second conducting pads; and

Applicant: Ian P. Shaeffer et al.

Filed: Herewith

Docket No.: 10002500-2

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

**Divisional Application of:** Applicant: Ian P. Shaeffer et al.

Serial No.: 09/561,591 Filed: May 1, 2000 Docket No.: 10002500-1

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

applying the solder paste onto the stencil so that the solder paste flows through the first, second and third openings and onto the first and second conducting pads and the first surface of the dielectric structure core.

17.(Original) The method of claim 16, and further including the steps of:
removing the stencil from the first surface of the dielectric structure core; and
performing reflow soldering of the solder paste applied to the first and second
conducting pads and the surface area of the first surface of the dielectric structure core.

18.(Original) The method of claim 14 wherein the step of applying the solder paste includes: applying the solder paste on the first surface of the dielectric structure core such that the solder paste covers substantially all of the surface area of the first surface between the edges of the first and second conducting pads to form a substantially zero signal degradation electrical connection between the first and second conducting pads.

19.(Original) The method of claim 18 wherein the step of applying the solder paste includes the steps of:

placing a stencil on the first surface of the dielectric structure core, the stencil defining an opening sized to substantially correspond to the first conducting pad, the second conducting pad and substantially the entire surface area of the first surface between the edges of the first and second conducting pads; and

applying the solder paste onto the stencil so that the solder paste flows through the opening and onto the first and second conducting pads and the first surface of the dielectric structure core.

20.(Original) The method of claim 19, and further including the steps of:
removing the stencil from the first surface of the dielectric structure core; and

Applicant: Ian P. Shaeffer et al.

Filed: Herewith

Docket No.: 10002500-2

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

**Divisional Application of:** Applicant: Ian P. Shaeffer et al.

Serial No.: 09/561,591 Filed: May 1, 2000 Docket No.: 10002500-1

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

performing reflow soldering of the solder paste applied to the first and second conducting pads and the surface area of the first surface of the dielectric structure core.

21.(Original) The method of claim 19 wherein the stencil includes a plurality of openings in addition to the opening, and wherein prior to the step of placing the stencil on the first surface of the dielectric core the method includes the step of:

masking off at least one opening of the plurality of openings such that the solder paste is prevented from flowing through the at least one opening.

22.(Original) The method of claim 14 wherein the edge of the second conducting pad is separated from the edge of the first conducting pad by a pad edge-to-pad edge separation distance of less than 12 mils.

23.(Original) The method of claim 22 wherein the pad edge-to-pad edge separation distance is 8 mils.

24.(Cancelled)

25.(Cancelled)

26.(New) The method of claim 14, wherein the step of applying the solder paste includes the steps of:

placing a stencil on the first surface of the dielectric structure core, the stencil defining a first opening sized to correspond to a portion of the first conducting pad, a second opening sized to correspond to a portion of the second conducting pad, and a third opening that links the first opening to the second opening and is sized to correspond to a partial

Applicant: Ian P. Shaeffer et al.

Filed: Herewith

Docket No.: 10002500-2

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

**Divisional Application of:** Applicant: Ian P. Shaeffer et al.

Serial No.: 09/561,591 Filed: May 1, 2000 Docket No.: 10002500-1

Title: PRINTED CIRCUIT BOARD HAVING SOLDER BRIDGES FOR ELECTRONICALLY CONNECTING CONDUCTING PADS AND METHOD FOR FABRICATING SOLDER BRIDGES

portion of the surface area of the first surface of the dielectric structure core between the edges of the first and second conducting pads; and

applying the solder paste onto the stencil so that the solder paste flows through the first, second, and third openings and onto the portions of the first and second conducting pads and onto the partial a portion of the surface area of the first surface of the dielectric structure core.

27.(New) The method of claim 26, and further including the steps of:
removing the stencil from the first surface of the dielectric structure core; and
performing reflow soldering of the solder paste applied to the first and second
conducting pads and the surface area of the first surface of the dielectric structure core.

28.(New) The method of claim 14 wherein the step of applying the soldering paste includes the steps of:

placing a stencil on the first surface of the dielectric structure core, the stencil defining an opening sized to correspond to a portion of the first conducting pad, a portion of the second conducting pad and a portion of the surface area of the first surface of the dielectric structure core between the edges of the first and second conducting pads; and

applying the solder paste onto the stencil so that the solder paste flows through the opening and onto portions of the first and second conducting pads and onto the portion of the surface area of the first surface of the dielectric structure core.

29.(New) The method of claim 28, and further including the steps of:
removing the stencil from the first surface of the dielectric structure core; and
performing reflow soldering of the solder paste applied to the first and second
conducting pads and the surface area of the first surface of the dielectric structure core.