Remark.
$$L^2 \subseteq L^1$$

Pf Let $X \in L^2$. Let $A = \{|X| < 1\}$, $B = \{|X| > 1\}$.

Then $|X| = |X| 1_A + |X| 1_B$

$$= 1_A + |X|^2 1_B$$

$$= 1 + |X|^2$$
Lepends on the fact that $\int 1 \cdot P = 1 < \infty$.

So $E(|X|) = 1 + E(|X|^2) < \infty$,

Then, $X \in L^1$.

The analogue for an infinite measure space is false.

Remark: Let
$$X \in L'$$
. Then

Var $(X) = E(X^2) - E(X)^2$,

because, if we let $f = E(X)$, Then

$$E[(X-5)^2] = E(X^2 - 25X + 5^2)$$

$$= E(X^2) - 23E(X) + 5^2$$

$$= E(X^2) - 7^2$$
.

Remark let
$$X \in L'$$
 and let $a, b \in R$.

Then $(aX + b)^{\circ} = aX^{\circ}$, and so

 $Var(aX + b) = a^{2} Var(X)$.

Hence $\sigma_{aX + b} = |a| \sigma_{X}$

Note let $u, v \in \mathbb{R}$. Since $(u-v)^2 \gg 0$, $2uv \leq u^2 + v^2$. Hence $(u+v)^2 = u^2 + 2uv + V^2 \leq 2(u^2+v^2)$ Hence, for instance, if $X, Y \in L^2$, $X+Y \in L^2$

Remark Let
$$X \in L^{\circ}$$
, for all $a, b \in \mathbb{R}$, we have
$$(X - b)^{2} = (X - \alpha + \alpha - b)^{2}$$

$$\leq 2(X - \alpha)^{2} + 2(\alpha - b)^{2}$$
Constant

Thus if $E((x-\alpha)^2) < \infty$, so is $E((x-\omega)^2)$. This holds \forall $\alpha, b \in \mathbb{R}$. So \forall $\alpha \in \mathbb{R}$, $E((X-\alpha)^2) < \infty$ iff $X \in L^2$. In particular, $V_{or}(X) < \infty$ iff $X \in L^2$.

Remark: Let $X \in L^2$. $\forall a \in \mathbb{R}$, $E((x-a)^2) \geqslant Var(X)$,

With equality if a = E(X).

 $Ff: Clowe Know, L^{2} \subseteq L' So X \in L'. Let J = E(X).$ $E((X-a)^{2}) = E((X-J+J-a)^{2}) = E((X-J)^{2} + 2(X-J)(J-a) + (J-a)^{2})$ $= E((X-J)^{2}) + 2(J-a)E(X-J) + (J-a)^{2}$ Parallel

AXIS
Thereof

Remark_: Jet $X, Y \in L'$. Jet $\mathfrak{F} = E(X)$ and $\mathfrak{T} = E(Y)$.

Then $X^{\circ}Y^{\circ} = (X - \mathfrak{F})(Y - \mathfrak{T}) = XY - \mathfrak{T}X - \mathfrak{T}Y + \mathfrak{T}Z$.

Thus $XY \in L'$ iff $X^{\circ}Y^{\circ} \in L'$.

Remark if $X, Y \in L'$ and X and Y are independent, Then $XY \in L'$.

Remark if $X, Y \in L^2$, Then $XY \in L'$ because $|XY| \leq |X|^2 + |Y|^2$ (since $(|X| - |Y|)^2 > 0$)

Defo Suppose $X,Y \in L'$ and $XY \in L'$. The covariance of $X \in Y$ is $Cov(X,Y) = E(X^{\circ}Y^{\circ})$.

Remark: Let $X, Y \in L'$ Such that $X Y \in L'$. Then

(a) Cov(X, Y) = E(XY) - E(X) E(Y).

(b) Var(X+Y) = Var(X) + 2 Cov(X, Y) + Var(Y).

(c) for all $a,b,c,d \in \mathbb{R}$, Cov(aX+b,cY+d) = ac Cov(X,Y).

Remark: Let $X, Y \in L^2$. We seek $a, b \in \mathbb{R}$ which minimize $\mathbb{E}\left[\left(Y - (aX + b)\right)^2\right].$

Let's assume that $Vor(X) \pm 0$ (we already howled that case).

Recall that for each $Z \in L^2$, $var(Z) = E(Z^2) - E(Z)^2$

$$D0 E(2^2) = Var(Z) + E(Z)^2$$
.

Hence for all a, b ∈ IR,

$$E[(Y-(\alpha X+b))^{2}] = E[((Y-\alpha X)-b)^{2}]$$

$$= V\alpha (Y-\alpha X) + (E((Y-\alpha X)-b))^{2}$$

$$= V\alpha (Y) - 2\alpha Cov(X,Y) + \alpha^{2} V\alpha(X)$$

$$+ (E((Y-\alpha X)-b))^{2}$$

$$= \left[\alpha \sigma_{X} - \frac{cov(X,Y)}{\sigma_{X}}\right]^{2} + \left[v\alpha(Y) - \frac{cov(X,Y)^{2}}{V\alpha(X)}\right]$$

$$+ (E((Y-\alpha X)-b))^{2}$$

Thus $E(y-(aX+b))^2$ is minimized exactly when

$$\alpha = \frac{\text{Cov}(X,Y)}{\text{Voc}(X)} \quad \text{and} \quad b = E(Y-\alpha X).$$
 (1)

And its minimum value is $Vor(y) - \frac{(ov(x,y)^2}{Vor(x)}$.

Page 4

Dince $\mathbb{E}[(Y-(aX+b))^2] \geqslant 0$, it follows that $|cov(X,Y)| \leq \sigma_X \sigma_Y$.

equality holds in (2) iff y = aX + b a.s. for Some $a, b \in \mathbb{R}$.

Defin Let $X \in L^2$ with $Vor(X) \neq 0$. Then $X^* = \frac{X - E(X)}{\sigma_X}$ is called "X standardized".

> Note: $E(X^*) = 0$, $\sigma_{X^*} = 1$. $X = \sigma_X X^* + E(X)$.

Defin let $X, Y \in L^2$ with $Vor(X) \neq 0$ and $Vor(Y) \neq 0$. The correlation coefficient of X and Y is $\rho(X,Y) = \frac{Cov(X,X)}{\sqrt{x}\sqrt{x}}.$

Note: $\rho(X,Y) = Cov(X^*, Y^*)$ so $-1 = \rho(x,y) \leq 1$.

$$\begin{split} \rho(X,Y) &= 1 & \text{iff} \quad Y = aX + b \text{ a.s. for some a >0, beR.} \\ \rho(X,Y) &= -1 & \text{iff} \quad \text{``a < o''} \quad \text{``a < o''} \quad \text{``}. \\ &\text{iff} \quad \rho(X,-Y) &= 1. \end{split}$$

Remark: Let $X, Y \in L^2$ with $var(X) \neq 0$ and $var(Y) \neq 0$. Then $E[(Y^* - (aX^* + b))^2]$ is minimized when $a = \rho(X, Y)$ and b = 0.

Deh Let $X, Y \in L'$. To Say X = Y are uncorrelated means $X y \in L'$ and E(X y) = E(X)E(y).

Remore: Let $X, Y \in L'$. Then $X \neq Y$ are uncorrelated iff $XY \in L'$ and (ov(X, Y) = 0.

Remye Let $X, Y \in L^2$. Then $X \neq Y$ are uncorrelated iff X° and Y° are orthogonal as elements of the inver product space L^2 .

Remore: Let X, Y \in L'. Suppose X & Y are independent.
Then X and Y are uncorrelated.