CS 207 Digital Logic - Spring 2020 Lab 6

James Yu

Mar. 25, 2020

Objective

1. Implement basic combinational logic circuits.

Lab Exercise Submission

- 1. You should name all source code as instructed. Mis-named files will not be recognized.
- 2. You should submit all source code files with an extension ".v".
- 3. You should submit all source code directly into the sakai system below. **Do not compress them** into one folder.

https://sakai.sustech.edu.cn/portal/site/ebf68254-68c5-4cfe-9d42-b26758f854ee

4. Lab exercises should be submitted before the deadline, typically one week after the lab session. No late submission policy applies to lab exercises.

1 2-4 Decoder

Implement a 2-4 decoder as follows:

Compared with gate-leveling modeling, behavioral modeling can be more expressive and easier to understand by human.

dec2to4.v

```
module dec2to4(Y, E, A, B);
input E;
input A, B;
output [3:0] Y;
```



```
5 reg [3:0] Y;
 always @(E or A or B)
      if (E)
          Y <= 4'b1111;
      else begin
10
          case({B, A})
11
          0: Y <= 4'b1110;
          1: Y <= 4'b1101;
13
          2: Y <= 4'b1011;
14
          3: Y <= 4'b0111;
          endcase
16
      end
17
18 endmodule
```

Or, we can have an even straight-forward Boolean logic function-based modeling:

dec2to4.v

```
module dec2to4(Y, E, A, B);
input E;
input A, B;
output [3:0] Y;

assign Y[0] = ~(~A & ~B & ~E);
assign Y[1] = ~(A & ~B & ~E);
assign Y[2] = ~(~A & B & ~E);
assign Y[3] = ~(A & B & ~E);
endmodule
```

To test the code, we have the following testbench:

dec2to4.v

```
module dec2to4_tb;
wire [3:0] IN;
reg A,B;
```

```
18 reg E;
19 dec2to4 dec(E, A, B, IN);
  initial E=0;
21
22
23 initial begin
    $monitor("IN0 = %b, IN1 = %b, IN2 = %b, IN3 = %b",IN[0],IN[1],IN[2],IN[3]);
24
    $display("%3t: B = %b, A = %b, E = %b",$time,B,A,E);
25
    #5 B=0; A=0;
    #5 B=0; A=1;
27
    #5 B=1; A=0;
28
    #5 B=1; A=1;
    #10 $finish;
31 end
32 endmodule
```

Try them out and see if the results are same.

2 Exercise

2.1 Exercise 1

Implement a 3-8 decoder 74LS138, whose truth table is as follows:

	Int	Output										
E_1	$E_2' + E_3'$	A_2	A_1	A_0	Y_0'	Y_1'	Y_2'	Y_3'	Y_4'	Y_5'	Y_6'	Y_7'
0	-	-	-	-	1	1	1	1	1	1	1	1
-	1	_	-	-	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

The module should follow the design below:

```
74LS138.v
```

```
module dec3to8(nY, E1, nE2, nE3, A);
```

```
// Module Code

endmodule
```

and save in file 74LS138.v.

Save the source code in **74LS138.v**. Upload this file to Sakai under **Assignments** → **Lab Exercise 6**.

2.2 Exercise 2

Implement a priority encoder 74LS148, whose truth table is as follows:

Input									Output					
E_{I}	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	Y_2	Y_1	Y_0	E_{S}	E_{O}	
1	-	-	-	-	-	-	-	-	1	1	1	1	1	
0	1	1	1	1	1	1	1	1	1	1	1	1	0	
0	0	-	-	-	-	-	-	-	0	0	0	0	1	
0	1	0	-	-	-	-	-	-	0	0	1	0	1	
0	1	1	0	-	-	-	-	-	0	1	0	0	1	
0	1	1	1	0	-	-	-	-	0	1	1	0	1	
0	1	1	1	1	0	-	-	-	1	0	0	0	1	
0	1	1	1	1	1	0	-	-	1	0	1	0	1	
0	1	1	1	1	1	1	0	-	1	1	0	0	1	
0	1	1	1	1	1	1	1	0	1	1	1	0	1	

The module should follow the design below:

74LS148.v

```
module enc8to3(Y, ES, EO, EI, I);
// Module Code
endmodule
```

and save in file 74LS148.v.

Save the source code in 74LS148.v. Upload this file to Sakai under Assignments \rightarrow Lab Exercise 6

2.3 Exercise 3

Implement the display logic of a numeric nixie tube, which shows numbers:

Starting from the top most bar, the tubes are labelled a to f clockwisely (or F_0 to F_5). The tube in the middle is g or F_6 . When applied with low voltage (logic θ), the tube will light up. Therefore, the truth table of the logic is:

	0	1	2	3	4	5	6	7	8	9	Others
D_3	0	0	0	0	0	0	0	0	1	1	-
D_2	0	0	0	0	1	1	1	1	0	0	-
D_1	0	0	1	1	0	0	1	1	0	0	-
D_0	0	1	0	1	0	1	0	1	0	1	-
F_0	0	1	0	0	1	0	0	0	0	0	1
F_1	0	0	0	0	0	1	1	0	0	0	1
F_2	0	0	1	0	0	0	0	0	0	0	1
F_3	0	1	0	0	1	0	0	1	0	0	1
F_4	0	1	0	1	1	1	0	1	0	1	1
F_5	0	1	1	1	0	0	0	1	0	0	1
F_6	1	1	0	0	0	0	0	1	0	0	1

The module should follow the design below:

led.v

```
module led(F, D);
// Module Code
endmodule
```

and save in file led.v.

Assignment

Save the source code in led.v. Upload this file to Sakai under Assignments → Lab Exercise 6.

Assignment

When you finished Lab Exercise 6, there should be three .v files in the Sakai system: **74LS138.v**, **74LS148.v**, and **led.v**.