Gruppe C14

15. März 2016

Gedämpfter LC Schwingkreis Messung mit Oszilloskop, Teilversuch 4.4.1

Versuchsaufbau und Durchführung

Abbildung: Versuchsaufbau

- Alle Versuche wurden bei einer Eingangspannung von $U_0 = 5.6 V$ durchgeführt, dabei wurde das Oszilloskop auf "Single Sequence" eingestellt.
- Aus dem resultierenden Standbild wurden die Spannungsmaxima mit entsprechenden Zeitwerten abgelesen.
- Die Ablesefehler wurden zu $\sigma_U = \frac{0.08}{\sqrt{12}} V$ und $\sigma_T = \frac{100 \cdot 10^{-6}}{\sqrt{12}} s$ bestimmt.

Rohdaten (beispielhaft)

Tabelle: 1. Messung

$U_1 = 3.12V$	$t_1 = 0.5 ms$
$U_2=1.76V$	$t_2 = 4.4 ms$
$U_3 = 1.04 V$	$t_3 = 8.2 ms$
$U_4=0.56V$	$t_4 = 12.0$ ms

Transformation der Rohdaten

Tabelle: Messung 1

Frequenz in Hz	σ_f in Hz	Abklingkoeffizient in $\frac{1}{s}$	σ_{δ} in $\frac{1}{s}$
f = 256.410	$\sigma_f = 1.898$	$\delta=150.047$	$\sigma_{\delta} = 4.264$
f = 263.158	$\sigma_f = 1.999$	$\delta = 143.827$	$\sigma_{\delta}=7.260$
f = 263.158	$\sigma_f = 1.999$	$\delta=174.551$	$\sigma_{\delta}=13.535$

Hier wurden die Fehler aus den folgenden Gleichungen ermittelt:

$$\sigma_f = \frac{\sigma_T}{T^2} \tag{1}$$

$$\sigma_{\delta_n} = \frac{1}{T_n} \cdot \sqrt{\left(\frac{\sigma_{U_n}}{U_n}\right)^2 + \left(\frac{\sigma_{U_{n+1}}}{U_{n+1}}\right)^2 + \left(\delta_n \cdot \sigma_{T_n}\right)^2} \tag{2}$$

Der Abklingkoeffizient δ wird bestimmt aus:

$$\delta_n = \frac{\ln \frac{U_n}{U_{n+1}}}{t_{n+1} - t_n} \tag{3}$$

Ergebnis

Aus den Einzelmessungen haben wir für die Frequenz und den Abklingkoeffizient den gewichteten Mittelwert mit seinem Fehler bestimmt:

Tabelle: Ergebnis

$ar{f}$ in Hz	$\sigma_{ar{f}}$ in Hz	f_{Theo}	$\bar{\delta}$ in $\frac{1}{s}$	$\sigma_{\bar{\delta}}$ in $\frac{1}{s}$	δ_{Theo}
259.960	0.617	264.426	148.025	1.994	131.944

Abbildung: Frequenz

Abbildung: Abklingkoeffizient

Zusammenfassung der Analyse/ Fazit

- Es fällt auf, dass δ größer ist als δ_{theo} . Der Grund dafür ist, dass $\delta \sim R$ und wir bei R mit Sicherheit einen höheren Wert erwarten müssten, da zum Beispiel alle Bauteile einen Innenwiderstand aufweisen.
- Die jeweiligen Fehler auf die Mittelwerte liegen in einem realistischen Rahmen.

Gedämpfter LC Schwingkreis Messung mit Cassy, Teilversuch 4.4.2

Versuchsbeschreibung

- Aufzeichnung von mindestens einem Kriechfall $(D = \frac{\delta}{\omega} > 1)$ und einem Aperiodischen Grenzfall(D = 1).
- Messung der Frequenz f und des Dämpfungskoeffizienten δ nur diesmal mit Sensor-Cassy statt Oszilloskop. Hierzu Messung von Schwingfällen (D < 1).
- Bestimmung der Frequenz über Fast-Fourier-Transformation(FFT).
- Bestimmung der Induktivität der Spule aus:

$$\delta = \underbrace{\frac{1}{2L}}_{Steigung} \cdot R \tag{4}$$

Versuchsaufbau

(a) Versuchsaufbau aus dem Skript

(b) unser Versuchsaufbau

Abbildung: Versuchsaufbau

Durchführung

- 34 Einzelmessungen.
- Aufzeichnung des Kriechfalls: Drehwiderstand durch $1k\Omega$ ersetzt.
- Aufzeichnung des Aperiodischen Grenzfalls: zunächst abgeschätzt:

$$R_{ap} = 2 \cdot \sqrt{\frac{L}{C}} - R_i \approx 110.5\Omega \tag{5}$$

dann Drehwiderstand auf diesen Wertebereich eingestellt und gewünschte Charakteristik aufgezeichnet.

- für Messung der Frequenz und Dämpfungskoeffizienten Schwingungsmessung über denselben Widerstand. $R \ll R_{ap}$
- Offsetmessung ⇒ verlängerte Messzeit.
- für Messung der Induktivität unterschiedliche Widerstände über den Drehwiderstand.

dieselbe Spule, derselbe Kondensator und dieselbe Eingangsspannung wie in Teilversuch 4.4.1

Abbildung: Schwingfall bei $R \approx 0.02\Omega$ mit Bestimmung des Offsets

Abbildung: Schwingfall bei 2.4Ω

Abbildung: Kriechfall bei R=1k Ω

Abbildung: Bestimmung der Frequenz bei $R=2.4\Omega$ durch FFT

$$f = 261.06Hz, \qquad \sigma = 32, 3Hz.$$
 (6)

Bestimmung der Frequenz und des Dämpfungskoeffizienten durch Ablesen.

Abbildung: Messung der Maxima

Ergebnisse:

R in Ω	\bar{f} in Hz	$\sigma_{ar{f}}$ in Hz	f_{Theo}	$\bar{\delta}$ in $\frac{1}{s}$	$\sigma_{\bar{\delta}}$ in $\frac{1}{s}$	δ_{Theo}
0.02	258.896	0.290	264.422	150.997	0.527	132.222
2.4	258.398	0.334	263.951	175.023	0.654	165.278
5.5	257.046	0.331	263.178	225.027	1.050	208.333
11.8	254.030	0.395	261.046	285.786	1.552	295.833

Abbildung: Bestimmung der Induktivität mittels Linearer Regression

Abbildung: Residuenplot für Induktivität

Bestimmung der Induktivität mittels Linearer Regression: Ergebnisse:

$$\delta(R) = A * R + B$$

$$A = 12.087 \frac{1}{H} \qquad B = 35.297 \frac{1}{s}$$

$$\frac{\chi^2}{f} = 0.738$$

$$\Rightarrow L = \frac{1}{2A} = 0.0414 \pm 0.0033H, \qquad L_{Hersteller} = 0.036H$$

Abbildung: Aperiodischer Grenzfall

$$R_{ap} = 100.1\Omega < R_{Theo} \approx 110.5\Omega. \tag{7}$$

Vielen Dank für ihre Aufmerksamkeit