Module 2 – Syntax Analysis Bottom Up Parsing

Parsing Methods

Handle & Handle pruning

- **Handle**: A "handle" of a string is a substring of the string that matches the right side of a production, and whose reduction to the non terminal of the production is one step along the reverse of rightmost derivation.
- Handle pruning: The process of discovering a handle and reducing it to appropriate left hand side non terminal is known as handle pruning.

E→E+E

E→E*E String: id1+id2*id3

E→id

Rightmost Derivation
E
E+ <u>E</u>
E+E*E
E+E*id3
E+id2*id3
id1+id2*id3

1	Right sentential form	Handle	Production
	id1+id2*id3		

Shift reduce parser

- The shift reduce parser performs following basic operations:
- **1. Shift**: Moving of the symbols from input buffer onto the stack, this action is called shift.
- 2. Reduce: If handle appears on the top of the stack then reduction of it by appropriate rule is done. This action is called reduce action.
- 3. Accept: If stack contains start symbol only and input buffer is empty at the same time then that action is called accept.
- **4. Error**: A situation in which parser cannot either shift or reduce the symbols, it cannot even perform accept action then it is called error action.

Example: Shift reduce parser

```
Grammar:
```

 $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$ $F \rightarrow id$

String: id+id*id

Consider the following grammar-

```
S \rightarrow TL;

T \rightarrow int \mid float

L \rightarrow L, id \mid id
```

Parse the input string int id , id ; using a shift-reduce parser.

Operator precedence parsing

- Operator Grammar: A Grammar in which there is no \bigcirc in RHS of any production or no adjacent non terminals is called operator grammar.
- Example: $E \rightarrow EAE \mid (E) \mid id$ $A \rightarrow + \mid * \mid -$
- Above grammar is not operator grammar because right side *EAE* has consecutive non terminals.
- In operator precedence parsing we define following disjoint relations:

Relation	Meaning
a<·b	a "yields precedence to" b
a=b	a "has the same precedence as" b
a·>b	a "takes precedence over" b

Precedence & associativity of operators

Operator	Precedence	Associative
↑	1	right
*,/	2	left
+, -	3	left

Steps of operator precedence parsing

- 1. Find Leading and trailing of non terminal
- 2. Establish relation
- 3. Creation of table
- 4. Parse the string

Leading & Trailing

Leading:- Leading of a non terminal is the first terminal or operator in production of that non terminal.

Trailing:- Trailing of a non terminal is the last terminal or operator in production of that non terminal.

Example:
$$E \rightarrow E+T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow id$$

Non terminal	Leading	Trailing
E		
Т		
F		

Rules to establish a relation

- 1. For a = b, $\Rightarrow aAb$, where A is ϵ or a single non terminal [e.g : (E)]
- 2. $a < b \Rightarrow Op .NT then Op < .Leading(NT) [e.g : +T]$
- 3. $a > b \Rightarrow NT . Op then (Trailing(NT)) > Op [e.g : E+]$
- 4. \$ < Leading (start symbol)
- 5. Trailing (start symbol) -> \$

Example: Operator precedence parsing

Step 1: Find Leading & Trailing of NT

Nonterminal	Leading	Trailing
E	{+,*,id}	{+,*,id}
Т	{*,id}	{*,id}
F	{id}	{id}

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow id$

Step 2: Establish Relation

a $< \cdot$ b $Op \cdot NT \mid Op < \cdot Leading(NT)$ $+T \quad + < \cdot \{*, id\}$ $*F \quad * < \cdot \{id\}$

Step3: Creation of Table

	+	*	id	\$
+				
*				
id				
\$				

Example: Operator precedence parsing

Step 1: Find Leading & Trailing of NT

Nonterminal	Leading	Trailing
E	{+,*,id}	{+,*,id}
Т	{*,id}	{*,id}
F	{id}	{id}

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T^* F \mid F$
 $F \rightarrow id$

Step2: Establish Relation

a \cdot >b $NT \cdot Op$ $|(Trailing(NT)) \cdot > Op|$ $E + \{+,*,id\} \cdot > +$ $T * \{*,id\} \cdot > *$

Step3: Creation of Table

	+	*	id	\$
+		\	÷	
*			<.	
id				
\$				

Example: Operator precedence parsing

Step 1: Find Leading & Trailing of NT

Nonterminal	Leading	Trailing
E	{+,*,id}	{+,*,id}
Т	{*,id}	{*,id}
F	{id}	{id}

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow id$

Step 2: Establish Relation

Step 3: Creation of Table

	+	*	id	\$
+	·>	<.	<.	
*	·>	·>	<.	
id	·>	·>		
\$				

1. Create functions f_a and g_a for each a that is terminal or \$.

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow id$

$$a = \{+,*,id\} \ or \ $$$

$$g_{id}$$

$$g_{\S}$$

• Partition the symbols in as many as groups possible, in such a way that f_a and g_b are in the same group if a = b.

	+	*	id	\$
+	·>	<∙	<∙	.>
*	.>	.>	<.	.>
id	·>	.>		.>
\$	<.	<.	<.	

3. if a < b, place an edge from the group of g_b to the group of f_a if a > b, place an edge from the group of f_a to the group of g_b

	g					
		+	*	id	\$	
	+	·>	<∙	<∙	·>	
f	*	·>	·>	<.	.>	
	id	·>	·>		.>	
	\$	<.	< ·	<.		

$$f_{+} > g_{+} \qquad f_{+} \rightarrow g_{+}$$

$$f_{*} > g_{+} \qquad f_{*} \rightarrow g_{+}$$

$$f_{id} > g_{+} \qquad f_{id} \rightarrow g_{+}$$

$$f_{\xi} < g_{+} \qquad f_{\xi} \leftarrow g_{+}$$

3. if a < b, place an edge from the group of g_b to the group of f_a if a > b, place an edge from the group of f_a to the group of g_b

			g		
		+	*	id	\$
	+	·>	<∙	<∙	·>
f	*	·>	·>	<.	·>
	id	.>	.>		.>
	\$	<.	<.	<.	

$$f_{+} < g_{*}$$

$$f_{+} \leftarrow g_{*}$$

$$f_{*} > g_{*}$$

$$f_{id} > g_{*}$$

$$f_{id} \Rightarrow g_{*}$$

$$f_{jd} \Rightarrow g_{*}$$

$$f_{j} \leftarrow g_{*}$$

3. if a < b, place an edge from the group of g_b to the group of f_a if a > b, place an edge from the group of f_a to the group of g_b

			g		
		+	*	id	\$
	+	·>	<∙	<∙	·>
f	*	·>	·>	<.	·>
	id	.>	.>		.>
	\$	<.	<.	<.	

$$f_{+} < g_{id} \qquad f_{+} \leftarrow g_{id}$$

$$f_{*} < g_{id} \qquad f_{*} \leftarrow g_{id}$$

$$f_{\$} < g_{id} \qquad f_{\$} \leftarrow g_{id}$$

3. if $a \lt b$, place an edge from the group of g_b to the group of f_a if $a \gt b$, place an edge from the group of f_a to the group of g_b

	$oldsymbol{g}$						
		+	*	id	\$		
	+	·>	<.	<.	·>		
f	*	·>	÷	<.	÷		
	id	.>	·>		·>		
	\$	<.	Ÿ	·			

$$f_{+} < g_{\S}$$
 $f_{+} \rightarrow g_{\S}$
 $f_{*} < g_{\S}$ $f_{*} \rightarrow g_{\S}$
 $f_{id} < g_{\S}$ $f_{id} \rightarrow g_{\S}$

	+	*	id	\$
f				
g				

4. If the constructed graph has a cycle then no precedence functions exist. When there are no cycles collect the length of the longest paths from the groups of f_a and g_b respectively.

	+	*	id	\$
f	2			
g				

	+	*	id	\$
f	2			
g	1			

	+	*	id	\$
f	2	4		
g	1			

	+	*	id	\$
f	2	4		
g	1	3		

	+	*	id	\$
f	2	4	4	
g	1	3		

	+	*	id	\$
f	2	4	4	
g	1	3	5	