Question1

Code explanation:

I first install "readxl" and "xlsx" packages, and then use library to call them. library(readxl); library(xlsx)

And then I read the death_cases dataset, (note that here it is lowercase d), and I read the excel file saved in my computer, location of the excel file is: C:/Users/USER/Downloads/COVID-19 in Alabama.xlsx.

Code: death_cases<-read_xlsx("C:/Users/USER/Downloads/COVID-19 in Alabama.xlsx"). now in the environment area (top right of the R studio), you can see the death_cases appears at here. If you click the drop down arrow, you can see what variables in this dataset named "death_cases":

Now I want to see the data type of each variable: I use code: str(death cases). Run it I get:

```
Console Jobs x

R R4.1.0 · 
> library(readxl)
> #scan the data information
> str(death_cases)
tibble [68 x 4] (53: tbl_df/tbl/data.frame)
$ Counties : chr [1:68] "Autauga" "Baldwin" "Barbour" "Bibb" ...
$ Cases : chr [1:68] "7241" "21868" "2345" "2685" ...
$ Total Tested By County: chr [1:68] "30404" "117931" "12786" "14728" ...
$ Deaths : chr [1:68] "113" "314" "59" "64" ...
```

and then I use table(is.na(death_cases)) to find the missing value, result is 271 False and 1 True, meaning we have 271 good values and only one missing values,

```
FALSE TRUE
271 1
```

so I use is.na(death_cases)to see who is that N/A value. If you run this code, you can see row 68th is N/A, because county in the code counts from 1 and excel counts from 2, so at the end, the 69th line of excel is blank, and the 68th line of the code is a missing value.

```
[65,] FALSE FALSE FALSE FALSE FALSE [66,] FALSE FALSE
```

And then I want to omit the only one missing value, and name the new dataset as "Death_cases" (capital D). Death_case<-na.omit(death_cases). You can see in the environment area, the Death_cases appears there.

from now on, the dataset name changes from "death cases" to "Death case"

Since I want to calculate Death rate, I need to convert the datatype,

Death_case\$Cases<-as.numeric(Death_case\$Cases)</pre>

Death case\$`Total Tested By County`<-as.numeric(Death case\$`Total Tested By County`)

Death_case\$Deaths<-as.numeric(Death_case\$Deaths)</pre>

str(Death case)

Run them, I get the result:

```
> Death_case$Cases<-as.numeric(Death_case$Cases)
> Death_case$`Total Tested By County`<-as.numeric(Death_case$`Total Tested By County`)
> Death_case$Deaths<-as.numeric(Death_case$Deaths)
> str(Death_case)
tibble [67 x 4] (53: tbl_df/tbl/data.frame)
$ Counties : chr [1:67] "Autauga" "Baldwin" "Barbour" "Bibb" ...
$ Cases : num [1:67] 7241 21868 2345 2685 6945 ...
$ Total Tested By County: num [1:67] 30404 117931 12786 14728 27790 ...
$ Deaths : num [1:67] 113 314 59 64 139 42 71 327 124 45 ...
- attr(*, "na.action")= 'omit' Named int 68
..- attr(*, "names")= chr "68"
```

As you can see, the data type has been changed.

And then I use Death_case\$Death_rate<-Death_case\$Deaths/Death_case\$Cases to calculate Death_rate, and put it to the new vector named: Death_case\$Death_rate. Note that the Death_rate is in the dataset named"Death_case". Now the Death_case increase a variable from 4 variables to 5 variables.

We have one variable added, which is the last one: \$Death_rate.

Now you can see the Death_rate table, you click the right side of R studio, which is Environment section, you click the "Death_case", (capital D). you will get the table as follows:

‡ Counties	¢ Cases	Total Tested By County		Death_rate
Autauga	7241	30404	113	0.015605579
Bald win	21868	117931	314	0.014358881
Barbour	2345	12786	59	0.025159915
Bibb	2685	14728	64	0.023836127
Blount	6945	27790	139	0.020014399
Bullock	1243	6239	42	0.033789220
Butler	2242	9135	71	0.031668153
Calhoun	14719	74731	327	0.022216183
Chambers	3728	18911	124	0.033261803
Cherokee	1873	9372	45	0.024025627
Chilton	4476	20225	116	0.025915996
Choctaw	621	2975	25	0.040257649
Clarke	3530	15893	61	0.017280453
Clay	1600	7733	59	0.036875000
Cleburne	1534	6502	44	0.028683181
Coffee	5635	28952	127	0.022537711
Colbert	6413	28993	140	0.021830656
Conecuh	1136	5108	30	0.026408451
Coosa	1117	4087	29	0.025962399
Covington	4275	21281	122	0.028538012
Crensha w	1559	6711	57	0.036561899

But, As of here, our code is not finished, it just shows us the result of death_rate, I need to sort them by decreasing order, but don't hurry, I want to plot the line chart for the death_rate first. So I use plot(Death_case\$Death_rate,type="o",xlab = "Counties",ylab = "Death_rate") to plot the line chart, in this code, \$ means the Death_rate is one variable in the dataset Death_case, and "o" means I want the line chart, and xlab is the name of the independent variable, ylab is the name of the dependent variable. And then you can run it and get the line chart as follows:

You may wonder what is the 0 - 68 means, each of them means one county, for example, 2 means Autauga, 3 means Baldwin, 4 means Barbour, etc. Furthermore, from the graph you can see, the death_rate is from 0.010 to 0.4380, each county match their own death_rate.

Ok, now I want to sort the death_rate by decreasing order. The code is: Death_case<Death_case[order(Death_case\$Death_rate, decreasing= T),] Finally, run this code, click the
Death_case(remember it is a name with Capital D) in the environment (top right side of R studio) area.
You will see the table as follows, the death_rate has been sorted by decreasing order:

*	Counties	Cases	Total Tested By County	Deaths	Death_rate
1	Dallas	3607	18733	158	0.043803715
2	Choctaw	621	2975	25	0.040257649
3	Walker	7338	31398	280	0.038157536
4	Lo wndes	1422	5125	54	0.037974684
5	Tallapoosa	4138	26180	155	0.037457709
6	Clay	1600	7733	59	0.036875000
7	Crenshaw	1559	6711	57	0.036561899
8	Greene	936	4678	34	0.036324786
9	Hale	2272	10748	78	0.034330986
10	Bullock	1243	6239	42	0.033789220
11	Chambers	3728	18911	124	0.033261803
12	Marion	3240	13388	107	0.033024691
13	Lawrence	3133	10849	100	0.031918289
14	Butler	2242	9135	71	0.031668153
15	Geneva	2579	13693	81	0.031407522
16	Macon	1630	9216	51	0.031288344
17	Sumter	1057	5416	32	0.030274361
18	Cleburne	1534	6502	44	0.028683181
19	Covington	4275	21281	122	0.028538012
20	Fayette	2188	9274	62	0.028336380
21	Houston	10781	63808	287	0.026620907
22	Conecuh	1136	5108	30	0.026408451
	Dickens 1 to 23 of 67 er	2360	11667	62	0.026171380

Showing 1 to 23 of 67 entries, 5 total columns

•	Counties	Cases	Total * Tested By County	Deaths	Death_rate
1	Dallas	3607	18733	158	0.043803715
2	Choctaw	621	2975	25	0.040257649
3	Walker	7338	31398	280	0.038157536
4	Lo wndes	1422	5125	54	0.037974684
5	Tallapoosa	4138	26180	155	0.037457709
6	Clay	1600	7733	59	0.036875000
7	Crenshaw	1559	6711	57	0.036561899
8	Greene	936	4678	34	0.036324786
9	Hale	2272	10748	78	0.034330986
10	Bullock	1243	6239	42	0.033789220
11	Chambers	3728	18911	124	0.033261803
12	Marion	3240	13388	107	0.033024691
13	Lawrence	3133	10849	100	0.031918289
14	Butler	2242	9135	71	0.031668153
15	Geneva	2579	13693	81	0.031407522
16	Macon	1630	9216	51	0.031288344
17	Sumter	1057	5416	32	0.030274361
18	Cleburne	1534	6502	44	0.028683181
19	Covington	4275	21281	122	0.028538012
20	Fayette	2188	9274	62	0.028336380

1 .	Counties	¢ Cases	Total Tested By County	Deaths	Death_rate
19	Covington	4275	21281	122	0.028538012
20	Fayette	2188	9274	62	0.028336380
21	Houston	10781	63808	287	0.026620907
22	Conecuh	1136	5108	30	0.026408451
23	Pickens	2369	11667	62	0.026171380
24	Lauderdale	9603	45401	250	0.026033531
25	Coosa	1117	4087	29	0.025962399
26	Marengo	2505	13168	65	0.025948104
27	Chilton	4476	20225	116	0.025915996
28	Eto wah	14175	64 2 3 9	364	0.025679012
29	Winston	2834	12118	72	0.025405787
30	Lamar	1468	6575	37	0.025204360
31	Barbour	2345	12786	59	0.025159915
32	Pike	3143	16078	78	0.024817054
33	St. Clair	10162	48252	251	0.024699862
34	Montgomery	25081	119591	614	0.024480683
35	Cherokee	1873	9372	45	0.024025627
36	Perry	1086	5103	26	0.023941068
37	Bibb	2685	14728	64	0.023836127
38	Wilcox	1269	6161	30	0.023640662
39	Dale	4928	28489	116	0.023538961
40	Randolph	1875	9769	44	0.023466667
41	Washington	1705	7696	39	0.022873900

Showing 19 to 41 of 67 entries, 5 total columns

*	Counties	Cases	Total Tested By County	Deaths	Death_rate
22	Conecuh	1136	5108	30	0.026408451
23	Pickens	2369	11667	62	0.026171380
24	Lauderdale	9603	45401	250	0.026033531
25	Coosa	1117	4087	29	0.025962399
26	Marengo	2505	13168	65	0.025948104
27	Chilton	4476	20225	116	0.025915996
28	Eto wah	14175	64239	364	0.025679012
29	Winston	2834	12118	72	0.025405787
30	Lamar	1468	6575	37	0.025204360
31	Barbour	2345	12786	59	0.02515991
32	Pike	3143	16078	78	0.024817054
33	St. Clair	10162	48252	251	0.024699862
34	Montgomery	25081	119591	614	0.024480683
35	Cherokee	1873	9372	45	0.02402562
36	Perry	1086	5103	26	0.023941068
37	Bibb	2685	14728	64	0.02383612
38	Wilcox	1269	6161	30	0.023640662
39	Dale	4928	28489	116	0.023538963
40	Randolph	1875	9769	44	0.02346666
41	Washington	1705	7696	39	0.022873900
42	Monroe	1800	9616	41	0.022777778
43	Coffee	5635	28952	127	0.022537713

Showing 21 to 44 of 67 entries, 5 total columns

	Counties	¢ Cases	Total Tested By County	Deaths	Death_rate
40	Randolph	1875	9769	44	0.023466667
41	Washington	1705	7696	39	0.022873900
42	Monroe	1800	9616	41	0.022777778
43	Coffee	5635	28952	127	0.022537711
44	Calhoun	14719	74731	327	0.022216183
45	Henry	1945	9467	43	0.022107969
46	Colbert	6413	28993	140	0.021830656
47	Talladega	8460	40210	184	0.021749409
48	DeKalb	8972	32886	190	0.021176995
49	Elmore	10293	54336	214	0.020790829
50	Cullman	9952	45311	201	0.020196945
51	Blount	6945	27790	139	0.020014399
52	Escambia	4016	16848	80	0.019920319
53	Mobile	42105	213507	831	0.019736373
54	Morgan	14629	58909	285	0.019481851
55	Jefferson	81003	457504	1566	0.019332617
56	Franklin	4313	16599	82	0.019012288
57	Marshall	12453	49320	230	0.018469445
58	Tuscaloosa	26173	164765	458	0.017498949
59	Clarke	3530	15893	61	0.017280453
60	Jackson	6932	32486	113	0.016301212
61	Autauga	7241	30404	113	0.015605579
62	Limestone	10179	41000	157	0.015423912

Showing 40 to 62 of 67 entries, 5 total columns

	10		Total		
	Counties	Cases	Tested By County	Deaths	Death_rate
47	Talladega	8460	40210	184	0.02174940
48	DeKalb	8972	32886	190	0.02117699
49	Elmore	10293	54336	214	0.02079082
50	Cullman	9952	45311	201	0.02019694
51	Blount	6945	27790	139	0.02001439
52	Escambia	4016	16848	80	0.01992031
53	Mobile	42105	213507	831	0.01973637
54	Morgan	14629	58909	285	0.01948185
55	Jefferson	81003	457504	1566	0.01933261
56	Franklin	4313	16599	82	0.01901228
57	Marshall	12453	49320	230	0.01846944
58	Tuscaloosa	26173	164765	458	0.01749894
59	Clarke	3530	15893	61	0.01728045
60	Jackson	6932	32486	113	0.01630121
61	Autauga	7241	30404	113	0.01560557
62	Limestone	10179	41000	157	0.01542391
63	Madison	35690	221616	525	0.01471000
64	Baldwin	21868	117931	314	0.01435888
65	Lee	16278	95075	176	0.01081213
66	Shelby	25607	134936	254	0.00991916
67	Russell	4548	21250	41	0.00901495

Showing 47 to 67 of 67 entries, 5 total columns

Then I want to do the summary statistics: summary(Death_case), the result is:

> summary(Death_case) Counties Cases Total Tested By County Deaths Min. : 25.0 Length:67 Min. : 621 Min. : 2975 1st Qu.: 52.5 Class :character 1st Qu.: 1874 1st Qu.: 9323 Median : 3728 Median : 16848 Median : 100.0 Mode :character Mean : 8189 Mean : 41835 Mean : 168.7 3rd Qu.: 9778 3rd Qu.: 43156 Max. :81003 Max. :457504 3rd Qu.: 195.5 мах. :1566.0 Death_rate :0.009015 Min. 1st Qu.: 0.020106 Median :0.024481 Mean :0.025075 3rd Qu.: 0.029479 Max. :0.043804

	Cases	Total Tested by County	Deaths	Death_rate
min	621	2975	25	0.009015
1 st Qu	1874	9323	52.5	0.020106
Median	3728	16848	100.0	0.024481
Mean	8189	41835	168.7	0.025075
3 rd Qu	9778	43156	195.5	0.029479
Max	81003	457504	1566.0	0.043804

As you can see, the Russell county has the lowest death_rate, 0.9%

Dallas county has the highest death_rate, 4.3%.

Pike county has 2.4% death_rate, under the mean death_rate of all alabama state.

There are 36 counties are under the mean, which is 2.5% death_rate.

Question2 of mid-term:

First, I install the package "dplyr", install.package("dplyr") and install.package(readxl). Or you can use tool to intall it.

Then I use library to recall it. library(dplyr). And then I recall the package readxl: library(readxl).

First, I want to read the excel document saved in my computer and assign it to provider: provider<-read_xlsx("C:/Users/USER/Downloads/COVID-19 in Alabama Vaccine Providers.xlsx"). Now you can see the environment group, the provider has 407 observations of 3 variables.

If you click the "provider" button, the file will appear in R studio like this:

Then I go back to the data source area, I want to know if there is N/A value in the provider table. Code: table(is.na(provider)). If you run it, it returns this:

FALSE 1221

This means, no N/A value in the total of 1221 values.

Then I want to group these providers by county, code: provider_group<- group_by(provider, provider\$County). After you run this code, the group_by variable will appear in the environment area

Then I want to view the table after groupby. Code: View(provider_group). Then the table appears automatically:

Next I want to sort the provider\$county by ascending order.

provider_group<- provider_group[order(provider_group\$`provider\$County`,decreasing=F),]
the result is:</pre>

You can see the providers have been grouped by the County. For example, Autauga county, we have four providers: 1. ADAMS DRUGS-PRATTVILLE, 2. AMERICAN FAMILY CARE-PPATTVILLE; 3.AUTAUGA CO HLTH DEPT; 4. WYBENGA FAMILY HEALTHCARE.

In the Autauga, we have 1st-4th providers; In the Baldwin county, we have 5th-10th county; In the Barbour county, we have 11th-14th providers.

In BIBB county, we have 15th -19th providers; In the BLOUNT County, we have 20th-25th providers; In the BULLOCK County, we have 26th-27th providers; In the BUTLER County, we have 28th – 31th providers;

In Calhoun County, we have 32th-38th providers; in Chambers County, we have 39th-44th providers; In Cherokee county, we have 45th-50th providers;

Until Winston County, we have 405th-407th providers.

Then I want to create a data frame and count the providers by county, and then assign it to a new name: provider_count, using code: provider_count<- summarise(provider_group,count = n()), now you can see provider_count appears in the environment group,

Then you click the provider count button:

Then you can see it counts the number of providers in each county.

Then I want to sort the table in decreasing order using code: provider_count<provider_count[order(provider_count\$count,decreasing=T),] and then run it, click the provider_count button in the new environment, you can get the table:

Showing 55 to 67 of 67 entries, 2 total columns

We have 67 counties in total.

So I have finished grouping all the vaccine providers in the same county in AL, and count the number of providers in each county.

Now, I want to do the data visualization, draw a bar chart, x-axis is County, y-axis is number of providers.

barplot(provider_count\$count, names.arg = NULL, beside = FALSE,

```
horiz = FALSE, density = NULL, angle = 45, col = NULL,
```

border = par("fg"), xlab = "COUNTY", ylab = "COUNT")

the result is:

The highest number of vaccine provider is Jefferson county, 28 providers.

The lowest number of vaccine provider is Coosa and Wilcox county, 1 providers.

```
> summary(provider_count$count)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 3.500 5.000 6.075 7.000 28.000
```

In this summary, in 67 counties, median number of providers is 5, the average number of providers is 6, the 1st quantile number of providers is 3.5, the 3rd quantile number of providers is 7.

Question3:

Code explanation:

First I install the package "readxl", then recall it using library(readxl)

Then I want to read the excel file and assign it to the new vector named "vaccine": vaccine<read xlsx("C:/Users/USER/Downloads/COVID-19 County Vaccine Data.xlsx").

After you run this code, at the environment area of R studio, you can see this data named"vaccine", 69 observations of 6 variables:

If you click the "vaccine" button, you can see the table has already imported into R studio:

Then I want to see how many N/A values in this dataset, I use code: table(is.na(vaccine)) to see how many N/A values in vaccine dataset. After you run this code, you can see the result:

FALSE 414

False means no N/A values, and 414 False means there are 414 values in the dataset. Since no true, we don't have missing values.

Since there is a -1 in the "poplation>16" group, I think it is not right, cause our data should greater than 16, so I name the numbers less than 16 as N/A, using code: vaccine\$`Population > 16`[which(vaccine\$`Population > 16`<=16)]=NA;

And then I want to ask R studio, is that value N/A? so I use code: is.na(vaccine), then I found that value who less than 16 is N/A.

[61,]	FALSE	FALSE	FALSE	FALSE
[62,]	FALSE	FALSE	FALSE	FALSE
[63,]	FALSE	FALSE	FALSE	FALSE
[64,]	FALSE	FALSE	FALSE	FALSE
[65,]	FALSE	TRUE	FALSE	FALSE
[66,]	FALSE	FALSE	FALSE	FALSE
[67,]	FALSE	FALSE	FALSE	FALSE
[68,]	FALSE	FALSE	FALSE	FALSE
[69,]	FALSE	FALSE	FALSE	FALSE

Now I want to delete/omit that value, cause it is a N/A, I use code: Vaccine<-na.omit(vaccine). Note that now it is capital V in vaccine.

Then I want to calculate completed rate, it equals to people completely vaccinated divided by population>16, I use code: Vaccine\$completed_rate<-as.numeric(Vaccine\$`People Completely Vaccinated`)/as.numeric(Vaccine\$`Population > 16`)

Then I plot the completed rate line chart, I assign county as independent value and completed rate as dependent value, the code is: plot(Vaccine\$completed_rate,type="o",xlab = "Counties",ylab = "completed_rate"). The line chart is bottom:

Our counties are in the range of 1-69, each number represents one county, and our completed rate are in the range of 0.1544 to 0.3505.

Then I want to sort the completed rate by the decreasing order, I use code: Vaccine<Vaccine[order(Vaccine\$completed_rate, decreasing= T),] Now, when you click the right side,
environment group, second Vaccine button (Capital V), you will get the table automatically, and also get
the completed rate in the decreasing order, the table is at bottom:

As you can see in the rightmost column of this table, the completed rate is ordered by decreasing order.

Then I want to do the summary statistics, summary (Vaccine), the result is as follows:

```
> summary(Vaccine)
                   Population > 16 People receiving at least one dose Min. : 8111 Min. : 3140 1st Qu.: 17852 1st Qu.: 5871
   County
 Length:68
class :character
Mode :character Median : 34944 Median : 9929
                   Mean : 144211 Mean : 51211
                    3rd Qu.: 85204 3rd Qu.: 26839
                   Max. :4903185 Max. :1778271
 % People receiving at least one dose People Completely Vaccinated Doses Administered
                                               2425
      :19.24
 Min.
                                      Min. :
                                                                  Min. :
                                                                             10390
 1st Qu.:29.02
                                      1st Qu.:
                                                4906
                                                                  1st Qu.:
                                     Median : 8408
Mean : 42207
                                                                  Median : 17515
 Median :32.42
                                                                  Mean : 90432
 Mean :32.69
                                     3rd Qu.: 23161
 3rd Qu.:35.55
                                                                 3rd Qu.: 48706
      :46.15
                                      Max. :1461323
                                                                 Max. :3135348
 Max.
 completed_rate
 Min.
       :0.1544
 1st Qu.: 0.2426
 Median :0.2622
 Mean :0.2681
 3rd Qu.: 0.2941
Max. :0.3506
```

	Population>16	People receiving at	People Completely	Completled rate
		least one dose	Vaccinted	
min	8111	19.24	2425	0.1544
1 st Qu	17852	29.02	4906	0.2426
Median	34944	32.42	8404	0.2622
Mean	144211	32.69	42207	0.2681
3 rd Qu	85204	26839	23161	0.2941
Max	4903185	46.15	1461323	0.3506

Then I want to see the bar chart of completed rate by county, code:

barplot(Vaccine\$completed_rate, names.arg =Vaccine\$County, beside = FALSE,

```
horiz = FALSE, density = NULL, angle = 45, col = NULL,
```

border = par("fg"), xlab = "COUNTY", ylab = "Completed rate")

result is:

Due to the fact that we have 68 counties, cannot fit the bar chart, so it only gives us several names at equal intervals.

Madison county has the highest completed rate, which is 35.05%,

Russell county has the lowest completed rate, which is 15.44%.

Mean completed rate is 26.81%, Pike county is little under the mean, has 24.54%.

Clay county is at the median level of completed rate, which is 26.22%.