Notes on Algebraic Geometry

Kei Thoma

 $\mathrm{June}\ 25,\ 2024$

Contents

[1]

4 CONTENTS

For this section, let K be a fixed algebraically closed field, and $A = K[X_1, X_2, \dots, X_n]$

Definition 0.0.1. We define affine n-space over K, denoted \mathbb{A}^n or simply \mathbb{A}^n , to be the set of all n-tuples of elements of K. An element $p \in \mathbb{A}^n$ will be called a point, and if $p = (a_1, a_2, \ldots, a_n)$ with $a_i \in k$, then the a_i will be called the coordinates of p.

Definition 0.0.2. 1. The set of zeros for $f \in A = K[X_1, X_2, \dots, X_n]$ is

$$\{ p \in \mathbb{A}^n \mid f(p) = 0 \}.$$

2. For a subset T of the polynomial ring $A = k[X_1, ..., X_n]$, we define the zero set of T to be the common zeros of all the elements of T, i.e.

$$Z(T) = \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for all } f \in T \}.$$

Remark 0.0.3. 1. If \mathfrak{a} is generated by T, then $Z(T) = Z(\mathfrak{a})$.

2. Z(T) can be written in finitely many generators.

Definition 0.0.4. A subset Y of \mathbb{A}^n is an algebraic set if there exists a subset $T \subset A = k[X_1, \dots, X_n]$ such that Y = Z(T).

Definition 0.0.5. An affine algebraic variety is an irreducible closed subset of \mathbb{A}^n . An open subset of an affine variety is a quasi-affine variety.

Definition 0.0.6. If $Y \subset \mathbb{A}^n$ is an affine algebraic set, we define the affine coordinate ring A(Y) of Y, to be A/I(Y).

Definition 0.0.7. If X is a topological space, we define the dimension of X (denoted $\dim X$) to be the supremum of all integers n such that there exists a chain $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ of distinct irreducible closed subsets of X. We define the dimension of an affine or quasi-affine variety to be its dimension as a topological space.

Exercise 0.0.1. Let $Y \subset \mathbb{A}^3$ be the set $Y = \{t, t^2, t^3 \mid t \in k\}$.

- 1. Show that Y is an affine variety of dimension 1.
- Solution. 1. By definition 0.0.5, affine algebraic varieties are irreducible closed subsets of \mathbb{A}^n . Thus we have to show that $Y = \{t, t^2, t^3 \mid t \in k\}$ is irreducible and closed in \mathbb{A}^n . In \mathbb{A}^n , we have the Zariski topology, hence closed sets are algebraic sets. Which means we have to show Y is an algebraic set. Choose $f(X, Y, Z) = XY Z^3$. Then Y is closed.

Is
$$XY - Z^3$$
 prime?

Bibliography

 $[{\it Har77}] \quad {\it Robin Hartshorne}. \ {\it Algebraic Geometry}. \ {\it New York: Springer}, \ 1977.$