

智能外控集成 LED 光源

主要特点

- IC控制电路与LED点光源共用一个电源。
- 控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 内置上电复位和掉电复位电路。
- 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示。
- 端口扫描频率2KHz/s。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 任意两点传输距离在不超过5米时无需增加任何电路。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 光的颜色高度一致,性价比高。

主要应用领域

- LED全彩发光字灯串,LED全彩软灯条硬灯条,LED护栏管。
- LED点光源,LED像素屏,LED异形屏,各种电子产品,电器设备跑马灯。

产品概述

WS2812B是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和可编程定电流控制部分,有效保证了像素点光的颜色高度一致。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅受限信号传输速度要求。

高达 **2KHz** 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。 **280**µs以上的**RESET**时间,出现中断也不会引起误复位,可以支持更低频率、价格便宜的MCU。

LED具有低电压驱动、环保节能、亮度高、散射角度大、一致性好超、低功率及超长寿命等优点。将控制电路集成于LED上面,电路变得更加简单,体积小,安装更加简便。

机械尺寸(单位mm)

智能外控集成 LED 光源

引出端排列

引脚功能

序号	符号	管脚名	功 能 描 述
1	VDD	电源	供电管脚
2	DOUT	数据输出	控制数据信号输出
3	VSS	地	信号接地和电源接地
4	DIN	数据输入	控制数据信号输入

最大额定值(如无特殊说明, T_A=25℃,V_{SS}=0V)

参数	符号	范围	单位
电源电压 V _{DD}		+3.5~+5.3	V
逻辑输入电压	$V_{\rm I}$	-0.5∼VDD+0.5	V
工作温度	Topt	-25~+ 8 5	$^{\circ}$
储存温度	Tstg	-40~+105	$^{\circ}$

电气参数(如无特殊说明,T_A=-20~+70℃,V_{DD}=4.5~5.5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
输入电流	$I_{\rm I}$			±1	μΑ	$V_I = V_{DD}/V_{SS}$
高电平输入	V_{IH}	$0.7V_{DD}$			V	D _{IN} , SET
低电平输入	V_{IL}			$0.3~\mathrm{V_{DD}}$	V	D _{IN} , SET
滞后电压	V_{H}		0.35		V	D _{IN} , SET

开关特性(如无特殊说明,T_A=-20~+70℃,V_{DD}=4.5~5.5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF, DIN→DOUT, RL=10KΩ
下降时间	t_{THZ}			120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	C_{I}			15	pF	

智能外控集成 LED 光源

LED 特性参数

	参考值
静态电流	0.7mA
RGB 通道恒流	16mA
红光亮度(中心值)	600mcd
绿光亮度(中心值)	1200mcd
蓝光亮度(中心值)	300mcd
白光亮度(中心值)	2100mcd
红光波长	620-630nm
绿光波长	520-530nm
蓝光波长	465-475nm

数据传输时间

ТОН	0 码, 高电平时间	220ns~380ns
T1H	1码, 高电平时间	580ns~1.6μs
TOL	0码, 低电平时间	580ns~1.6μs
T1L	1码, 低电平时间	220ns~420ns
RES	帧单位,低电平时间	280µs 以上

时序波形图

输入码型:

连接方法:

数据传输方法

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

智能外控集成 LED 光源

24bit 数据结构

注: 高位先发,按照 GRB 的顺序发送数据。

典型应用电路

其中 C1 为灯珠 VDD 脚的滤波电容,一般取值 100NF.

无铅回流焊指引

曲线说明	无铅回流焊
最低预热温度(Tsmin)	150℃
最高预热温度(Tsmax)	200℃
预热区时间(Tsmin to Tsmax)(ts)	60-180 S
平均升温速率(Tsmax to Tp)	<3°C/S
液相温度(TL)	217℃
液相区保温时间(tL)	60-150 S
峰值温度(Tp)	245℃
高温区(峰值温度-5℃)停留时间(tp)	<10 S
降温速率	<6°C/S
室温至峰值温度停留时间	<6 min

智能外控集成 LED 光源

回流焊说明

- 1. 回流焊不可以做两次以上
- 2. 当回焊时,不要在材料受热时用力压胶体表面

烙铁焊接说明

- 1. 当手工焊接时,烙铁的温度必须小于300℃,时间不可超过3秒
- 2. 手工焊接只可焊接一次

修补说明

LED 回流焊后不应该修补,当修复是不可避免时,必须使用双头烙铁 (如下图),但必须事先确认此种方式会或不会损坏 LED 本身的特性。

运输及存储

1. 运输及适用范围

所有产品在运输过程中, 需保持正面朝上, 防潮防水, 运输过程中逼免挤压、碰撞和剧烈震动。

2. 产品储存及期限

室温密封存储: 20 $^{\circ}$ $^{\circ}$

3. 除湿处理

LED 产品超出以上规定期限,或者由于其他原因受潮,建议客户做除湿处理后再使用。除湿方法: 70℃-75℃/48±2 小时。

4. 静电防护

LED 是静电敏感器件,虽然 LED 产品具有优异的抗静电能力,但每经历一次静电释放产生的冲击,都会对 LED 造成一定程度的损坏。因而在使用 LED 产品过程中需要做好静电防护措施,例如佩戴防静电手套及防静电手环等。

智能外控集成 LED 光源

注意事项

LED 封装为硅胶,用力按压胶体表面会影响 LED 可靠性,因此应有预防措施避免在封装的零件上的强大压力,当使用吸嘴时,胶体表面的压力应是恰当的。硅胶封装较柔软且有弹性,因它的特性大大减少了热应力,易受机械外力损坏,因此在手工处理方面须要对硅胶封装材料做预防措施,若未按要求操作,可能会导致 LED 损坏和光衰。

1. 通过使用适当的工具从材料侧面夹取

2. 不可直接用手或尖锐金属压胶体表面,它可能会损坏内部电路

3. 不可将模组材料堆积在一起,它可能会损坏内部电路

4. 不可用在 PH<7 的酸性场所

智能外控集成 LED 光源

载带规格(单位: mm)

卷轴尺寸

防潮袋包装

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20170523	沈金国	尹华平

智能外控集成 LED 光源

注: 初始版本号V1.0; 每次修订批准后,版本号顺序加"0.1";

状态包括: N--新建, A--增加, M--修改, D--删除。