作业12

1.(10') 设复平面 \mathbb{C} 上的函数f(z)定义如下:

$$f(z) = \begin{cases} e^{-\frac{1}{z^4}} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

试讨论f(z)在 \mathbb{C} 上的复可微性.

2.(10') 确定所有满足下列条件的整函数:

当
$$|z| > 1$$
时, $|f(z)| \le \frac{|z|}{\log|z|}$.

3.(15') 设见 = $\{z \in \mathbb{C}, |z| < 1\}$ 是 \mathbb{C} 上的单位圆盘, f(z)是见上全纯函数, |f(z)| < 1, 则

(1) $\left| \frac{f(z_1) - f(z_2)}{1 - \overline{f(z_1)} f(z_2)} \right| \le \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \ (z_1, z_2 \in \mathbb{D}, z_1 \ne z_2)$

(2)
$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2} \ (z \in \mathbb{D}),$$

其中等号成立当且仅当f(z)是D上的全纯自同构.

- **4.(15')** 设 Ω 是 \mathbb{C} 中的区域, $\{f_n(z)\}$ 是 Ω 上的全纯函数列, $\{f_n(z)\}$ 在 Ω 上内闭一致收敛于f(z).
- (1)证明: f(z)在 Ω 上全纯;
- (2)若每个 $f_n(z)$ 在 Ω 上无零点,则f(z)在 Ω 上恒为零,或者无零点.
- **5.(10')** 利用留数定理计算下列实积分: $(1)\int_{x=0}^{+\infty} \frac{x \sin x}{x^2+1} dx$, $(2)\int_{x=0}^{+\infty} \frac{\log x}{(x^2+1)^2} dx$.

答案: $(1)\frac{\pi}{2e}$; $(2)-\frac{\pi}{4}$.

6.(10') 设见 = {|z| < 1}, $\beta \in \mathbb{D}$, $\beta \neq 0$, $f(z) = \frac{z-\beta}{1-\overline{\beta}z}$, 函数族 $\mathcal{F} = \{f_n\}$ 定义如下:

$$f_1 = f, \ f_{n+1} = f \circ f_n,$$

证明: F是正规的, 并找出极限函数.

7.(30') 设 $\mathbb{D}=\{z\in\mathbb{C},\;|z|<1\}$ 是 \mathbb{C} 上的单位 圆盘, $\overline{\mathbb{D}}=\{z\in\mathbb{C},\;|z|\leq1\}$ 是闭单位 圆盘

- (1)证明: 黎曼球面 S^2 上的亚纯函数是有理函数;
- (2)若有理函数R(z)满足: 当|z| = 1时|R(z)| = 1, 求R(z)的一般表达式;
- (3)设f(z)在D上全纯,在D上连续,且当|z|=1时|f(z)|=1,f(1)=1,
- (i)若f(z)在D上无零点, 求f(z)的表达式;
- (ii)若f(z)在D上有二阶零点 $z_0 = 0$, 求f(z)的表达式.