Importing Libraries and Datasets

```
import numpy as np
In [12]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [13]: data = pd.read_csv('onlinefraud.csv')
          data.head()
Out[13]:
                              amount
                                        nameOrig oldbalanceOrg newbalanceOrig
                                                                                nameDest oldb
             step
                        type
                    PAYMENT
                              9839.64 C1231006815
                                                       170136.0
                                                                    160296.36
                                                                             M1979787155
                                                                     19384.72 M2044282225
          1
                    PAYMENT
                              1864.28 C1666544295
                                                       21249.0
                1
          2
                1 TRANSFER
                               181.00 C1305486145
                                                         181.0
                                                                         0.00
                                                                               C553264065
                1 CASH_OUT
          3
                               181.00
                                      C840083671
                                                         181.0
                                                                         0.00
                                                                                C38997010
                    PAYMENT 11668.14 C2048537720
                                                                     29885.86 M1230701703
                                                       41554.0
In [14]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 6362620 entries, 0 to 6362619
          Data columns (total 11 columns):
               Column
           #
                                Dtype
               _____
           0
               step
                                int64
           1
               type
                                object
           2
                                float64
               amount
           3
                                object
               nameOrig
           4
               oldbalanceOrg
                                float64
           5
               newbalanceOrig float64
           6
               nameDest
                                object
           7
               oldbalanceDest float64
           8
               newbalanceDest float64
           9
               isFraud
                                int64
           10 isFlaggedFraud int64
          dtypes: float64(5), int64(3), object(3)
          memory usage: 534.0+ MB
```

```
In [15]: data.describe()
```

Out[15]:

	step	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalance[
coun	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e
mear	2.433972e+02	1.798619e+05	8.338831e+05	8.551137e+05	1.100702e+06	1.224996e
sto	1.423320e+02	6.038582e+05	2.888243e+06	2.924049e+06	3.399180e+06	3.674129e
mir	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e
25%	1.560000e+02	1.338957e+04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e
50%	2.390000e+02	7.487194e+04	1.420800e+04	0.000000e+00	1.327057e+05	2.146614e
75%	3.350000e+02	2.087215e+05	1.073152e+05	1.442584e+05	9.430367e+05	1.111909e
max	7.430000e+02	9.244552e+07	5.958504e+07	4.958504e+07	3.560159e+08	3.561793e
4						>

Exploring transaction type

```
In [16]: print(data.isnull().sum())
                            0
         step
         type
                            0
         amount
                            0
                            0
         nameOrig
         oldbalanceOrg
                            0
         newbalanceOrig
                            0
         nameDest
         oldbalanceDest
         newbalanceDest
                            0
         isFraud
                            0
         isFlaggedFraud
         dtype: int64
In [17]: print(data.type.value_counts())
         CASH_OUT
                      2237500
         PAYMENT
                      2151495
         CASH IN
                      1399284
         TRANSFER
                       532909
         DEBIT
                        41432
```

Name: type, dtype: int64

Distribution of Transaction Type

Checking correlation

```
In [8]: | data["type"] = data["type"].map({"CASH_OUT": 1, "PAYMENT": 2,
                                         "CASH_IN": 3, "TRANSFER": 4,
                                         "DEBIT": 5})
        data["isFraud"] = data["isFraud"].map({0: "No Fraud", 1: "Fraud"})
        print(data.head())
           step
                 type
                         amount
                                    nameOrig oldbalanceOrg newbalanceOrig \
                    2
        0
              1
                        9839.64 C1231006815
                                                   170136.0
                                                                  160296.36
        1
              1
                        1864.28 C1666544295
                                                    21249.0
                                                                   19384.72
        2
              1
                    4
                         181.00 C1305486145
                                                      181.0
                                                                       0.00
        3
              1
                    1
                         181.00
                                  C840083671
                                                      181.0
                                                                       0.00
                    2 11668.14 C2048537720
                                                    41554.0
                                                                   29885.86
              nameDest oldbalanceDest newbalanceDest
                                                         isFraud isFlaggedFraud
        0 M1979787155
                                   0.0
                                                   0.0 No Fraud
        1 M2044282225
                                   0.0
                                                   0.0 No Fraud
                                                                               0
        2
            C553264065
                                   0.0
                                                   0.0
                                                           Fraud
                                                                               0
        3
             C38997010
                               21182.0
                                                   0.0
                                                           Fraud
                                                                               0
        4 M1230701703
                                   0.0
                                                   0.0 No Fraud
```

splitting the data

```
In [9]: from sklearn.model_selection import train_test_split
x = np.array(data[["type", "amount", "oldbalanceOrg", "newbalanceOrig"]])
y = np.array(data[["isFraud"]])
```

training a machine learning model