TOPOLOGÍA. Examen del Tema 3

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08 Profesor: Rafael López Camino

Nombre:

- 1. Sean dos espacios topológicos (X_1, τ_1) y (X_2, τ_2) y $x_1 \in X_1, x_2 \in X_2$. Probad que $\mathcal{U}_{x_1}^1 \times \mathcal{U}_{x_2}^2$ es base de entornos del punto (x_1, x_2) en la topología $\tau_1 \times \tau_2$.
- 2. Sean dos conjuntos X e Y y $p \in X$ y $q \in Y$. Consideramos las topologías del punto incluído τ_p y τ_q en X e Y respectivamente. Denotamos por τ la topología del punto incluído en $X \times Y$ para el punto (p,q). Comparad las topologías τ y $\tau_p \times \tau_q$.
- 3. Denotamos por τ_S la topología de Sorgenfrey en \mathbb{R} . Tomamos en $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ la topología $\tau_S \times \tau_S$. Sea $A = \{(x, -x); x \in \mathbb{R}\}$. Probad que la topología inducida en A es la topología discreta.
- 4. Sean (X, τ) , (Y, τ') dos espacios topológicos y $A \subset X \times Y$. Para cada $x \in X$ se define $A_x = \{y \in Y; (x, y) \in A\}$. Probad que si A es abierto, entonces A_x es un abierto de Y. Dad un ejemplo en \mathbb{R}^2 de un subconjunto suyo A que no sea abierto pero que A_x sí lo sea para cada $x \in \mathbb{R}$.

TOPOLOGÍA. Examen del Tema 2

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

1. Sean dos espacios topológicos (X_1, τ_1) y (X_2, τ_2) y $x_1 \in X_1$, $x_2 \in X_2$. Probad que $\mathcal{U}_{x_1}^1 \times \mathcal{U}_{x_2}^2$ es base de entornos del punto (x_1, x_2) en la topología $\tau_1 \times \tau_2$.

Solución: Consideramos $\mathcal{U}^1_{x_1} \times \mathcal{U}^2_{x_2} = \{U_1 \times U_2; U_1 \in \mathcal{U}^1_{x_1}, U_2 \in \mathcal{U}^2_{x_2}\}$. Probamos primero que $U_1 \times U_2$ es un entorno de (x_1, x_2) . Para ello probamos que existe un abierto $G \in \tau_1 \times \tau_2$ tal que $(x_1, x_2) \in G \subset U_1 \times U_2$. Como U_i es entorno de x_i , existe $O_i \in \tau_i$ tal que $x_i \in O_i \subset U_i$. Tomamos $G = O_1 \times O_2$.

Sea ahora un entorno U de (x_1, x_2) . Veamos que existe $U_i \in \mathcal{U}_{x_i}^i$ tal que $(x_1, x_2) \in U_1 \times U_2 \subset U$. Como U es entorno de (x_1, x_2) , existe $O_i \in \tau_i$ tal que $(x_1, x_2) \in O_1 \times O_2 \subset U$. Tomamos $U_i = O_i$.

2. Sean dos conjuntos X e Y y $p \in X$ y $q \in Y$. Consideramos las topologías del punto incluído τ_p y τ_q en X e Y respectivamente. Denotamos por τ la topología del punto incluído en $X \times Y$ para el punto (p,q). Comparad las topologías τ y $\tau_p \times \tau_q$.

Solución: Si $O \in \tau_p$ y $O' \in \tau_q$, entonces el conjunto $O \times O'$ contiene al punto (p,q). En particular, $O \times O' \in \tau$. Esto prueba que $\tau_p \times \tau_q \subset \tau$. La inclusión $\tau \subset \tau_p \times \tau_q$ no es cierta. Basta con tomar $X = \{a, p\}, Y = X$ y q = p. Entonces

$$\tau = \{\emptyset, X \times X, \{(p,p)\}, \{(p,p), (a,p)\}, \{(p,p), (p,a)\}, \{(p,p), (a,a)\}, \{(p,p), (a,p), (p,a)\}\}.$$

$$\tau_p \times \tau_p = \{\emptyset, X \times X, \{(p, p)\}\}.$$

Otro ejemplo: Sea $X = Y = \mathbb{R}$, p = 0. Sea $G = \{(0,0), (1,1)\} \in \tau$. Si fuera un abierto en la topología producto, habría $O \times O'$ tal que $(1,1) \subset O \times O' \subset G$. Como $0,1 \in O$ y $0,1 \in O'$, entonces $O \times O'$ tiene al menos cuatro puntos, en contradicción con que G tiene sólo dos.

3. Denotamos por τ_S la topología de Sorgenfrey en \mathbb{R} . Tomamos en $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ la topología $\tau_S \times \tau_S$. Sea $A = \{(x, -x); x \in \mathbb{R}\}$. Probad que la topología inducida en A es la topología discreta.

Solución: Una base de entornos de x es $\beta_x = \{[x,y),y>x\}$. Una base de entornos de (x,-x) en la topología producto es $\beta_x \times \beta_{-x} = \{[x,y) \times [-x,z); y>x,z>-x\}$. Una base de entornos de (x,-x) en la topología inducida es $\beta_{(x,-x)} = \{([x,y) \times [-x,z)) \cap A; y>x,z>-x\}$. Pero es evidente que

$$([x,y) \times [-x,z)) \cap A = \{(x,-x)\}.$$

Si la base de entornos de (x, -x) es el conjunto formado por dicho punto, entonces la topología es la discreta.

4. Sean (X, τ) , (Y, τ') dos espacios topológicos y $A \subset X \times Y$. Para cada $x \in X$ se define $A_x = \{y \in Y; (x, y) \in A\}$. Probad que si A es abierto, entonces A_x es un abierto de Y. Dad un ejemplo en \mathbb{R}^2 de un subconjunto suyo A que no sea abierto pero que A_x sí lo sea para cada $x \in \mathbb{R}$.

Solución: La aplicación $f: Y \to X \times Y$ dada por f(y) = (x, y) es continua: $p_1 \circ f$ es constante y $p_2 \circ f$ es la identidad. Es evidente que $A_x = f^{-1}(A)$, luego es un conjunto abierto.

Para el contraejemplo: Sea $A=\{0\}\times\mathbb{R}$, que no es abierto. Entonces $A_x=\emptyset$ si $x\neq 0$ y $A_0=\mathbb{R}$, en ambos casos, conjuntos abiertos.