ML Lab

Lab 4 - Submission

Name: Gauthamdev R Holla SRN: PES2UG23CS197

Branch: CSE

Sem: V Section: C

1) Introduction

The Lab involves training and comparing three classifiers: Decision Tree, KNN, and Logistic Regression.

The tasks performed were:

- Load the 3 classifiers.
- Preprocess the dataset.
- Run Manual & Built-In Grid Search.
- Evaluate the performance of individual models.
- Combine model results using a soft voting ensemble.
- Visualize the results by plotting a graph.

2) Dataset

- **Description:** Dataset provides employee details. It is to help predict whether an employee will leave the company or stay.
- No. of Instances: 1470 employees
- No. of Features: 34 input features
- Target Variable: Attrition

3) Methodology

Key Concepts:

- *Hyperparameter Tuning:* Process of selecting the best combo of model parameters that aren't learned during training.
- *Grid Search:* Method that tests all combinations of specified hyperparameters to find the best one.

• *K-Fold Cross-Validation:* Splits data into k subsets, trains on k–1 subsets, and validates on the remaining subset. This is repeated k times.

ML Pipeline:

- StandardScaler: Normalizes features to have zero mean and unit variance.
- SelectKBest: Picks the top k features.
- *Classifier:* Applies one of the models (Decision Tree, k-NN, Logistic Regression) for prediction.

Grid Search:

- *Manual:* Iterates over all parameter combinations, measures each combination, and then finds the best one.
- **Built-In:** Does everything that the Manual Grid Search does by using the *GridSearchCV* tool.

4) Results & Analysis

Performance Table:

Classifier	Method	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual	0.8231	0.3333	0.0986	0.1522	0.7107
Decision Tree	Built-In	0.8231	0.3333	0.0986	0.1522	0.7107
KNN	Manual	0.8254	0.4286	0.2535	0.3186	0.7172
KNN	Built-In	0.8254	0.4286	0.2535	0.3186	0.7172
Logistic Regression	Manual	0.8571	0.6333	0.2676	0.3762	0.7759
Logistic Regression	Built-In	0.8571	0.6333	0.2676	0.3762	0.7759
Voting Classifier	Manual	0.8322	0.4595	0.2394	0.3148	0.7675
Voting Classifier	Built-In	0.8345	0.4688	0.2113	0.2913	0.7675

Implementation Comparison:

- Results for both Manual and Built-In are nearly identical.
- Results were identical because the same parameter combinations were used
- Slight variation in voting classifier metrics due to averaging and rounding.

Visualizations:

- Logistic Regression and Voting Classifier show the highest AUC values.
- Voting classifiers indicate balanced predictions.

Best Model:

 Logistic Regression is the best model as it has the highest ROC AUC value of 0.7759.

5) Screenshots

6) Conclusion

Key Findings:

- Logistic Regression was the best model with the highest ROC AUC score.
- The Voting Classifier had better overall accuracy and precision by combining predictions from all three models.
- Both manual and built-in grid search methods gave identical results.

Main Takeaways:

- Manual Grid Search gives more control but is time-consuming.
- Built-In Grid Search is faster, easier to use, and just as effective as Manual.