Low-Speed Aerodynamics

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014

Learning Objectives

- · 2D lift and drag
- · Appreciate effects of Reynolds number
- Relationships between airplane shape and aerodynamic characteristics
- Distinguish between 2D and 3D lift and drag
- How to compute the static and dynamic effects of aerodynamic control surfaces
- Computational tools for simple calculations

Reading: Flight Dynamics Aerodynamic Coefficients, 65–84

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html

Assignment #2 due: End of day, Sept 26, 2014

- <u>Compute</u> the trajectory of a balsa glider
- Computer <u>simulation</u> of the equations of motion
- Compare to the <u>actual flight</u> of the glider (Assignment #1)
- Similar to the flight of a paper airplane
- 2-person team assignment

2-Dimensional Aerodynamic Lift and Drag

Lift and Drag

- Lift is perpendicular to the free-stream airflow direction
- Drag is parallel to the free-stream airflow direction

Longitudinal Aerodynamic Forces

- Non-dimensional force coefficients are dimensionalized by
 - dynamic pressure, q, N/m² or lb/sq ft
 - reference area, S, m² of ft²

$$Lift = C_L \overline{q} S = C_L \left(\frac{1}{2}\rho V^2\right) S$$

$$Drag = C_D \overline{q} S = C_D \left(\frac{1}{2}\rho V^2\right) S$$

Circulation of Incompressible Air Flow About a 2-D Airfoil

Bernoulli's equation (inviscid, incompressible flow)

$$p_{static} + \frac{1}{2}\rho V^2 = \text{constant along streamline} = p_{stagnation}$$

Vorticity

Vorticity at point
$$\mathbf{x}$$

$$V_{upper}(x) = V_{\infty} + \Delta V(x)/2$$
$$V_{lower}(x) = V_{\infty} - \Delta V(x)/2$$

$$\gamma_{2-D}(x) = \frac{\Delta V(x)}{\Delta z(x)}$$

Circulation about airfoil

$$\Gamma_{2-D} = \int_{0}^{c} \gamma_{2-D}(x) dx = \int_{0}^{c} \frac{\Delta V(x)}{\Delta z(x)} dx$$

Relationship Between Circulation and Lift

Differential pressure along chord section

$$\Delta p(x) = \left[p_{static} + \frac{1}{2} \rho_{\infty} (V_{\infty} + \Delta V(x)/2)^{2} \right] - \left[p_{static} + \frac{1}{2} \rho_{\infty} (V_{\infty} - \Delta V(x)/2)^{2} \right]$$

$$= \frac{1}{2} \rho_{\infty} \left[(V_{\infty} + \Delta V(x)/2)^{2} - (V_{\infty} - \Delta V(x)/2)^{2} \right]$$

$$= \rho_{\infty} V_{\infty} \Delta V(x) = \rho_{\infty} V_{\infty} \Delta z(x) \gamma_{2-D}(x)$$

2-D Lift (inviscid, incompressible flow)

$$\frac{\left(Lift\right)_{2-D} = \int\limits_{0}^{c} \Delta p(x) dx = \rho_{\infty} V_{\infty} \int\limits_{0}^{c} \gamma_{2-D}(x) dx = \rho_{\infty} V_{\infty} \left(\Gamma\right)_{2-D} }{\left(\Gamma\right)_{2-D}}$$

$$= \frac{1}{2} \rho_{\infty} V_{\infty}^{2} c(2\pi\alpha) [\text{thin, symmetric airfoil}] + \rho_{\infty} V_{\infty} (\Gamma_{camber})_{2-D}$$

$$= \frac{1}{2} \rho_{\infty} V_{\infty}^{2} c(C_{L_{\alpha}})_{2-D} \alpha + \rho_{\infty} V_{\infty} (\Gamma_{camber})_{2-D}$$

Lift vs. Angle of Attack

2-D Lift (inviscid, incompressible flow)

$$\left(\mathbf{Lift}\right)_{2\text{-}D} \simeq \left[\frac{1}{2}\rho_{\infty}V_{\infty}^{2}c\left(C_{L_{\alpha}}\right)_{2\text{-}D}\alpha\right] + \left[\rho_{\infty}V_{\infty}\left(\Gamma_{camber}\right)_{2\text{-}D}\right]$$

= [Lift due to angle of attack] + [Lift due to camber]

What Do We Mean by 2-Dimensional Aerodynamics?

Finite-span wing -> finite aspect ratio

Infinite-span wing -> infinite aspect ratio

What Do We Mean by 2-Dimensional Aerodynamics?

 Assuming constant chord section, the "2-D Lift" is the same at any y station of the infinite-span wing

$$Lift_{3-D} = C_{L_{3-D}} \frac{1}{2} \rho V^2 S = C_{L_{3-D}} \frac{1}{2} \rho V^2 (bc) \text{ [Rectangular wing]}$$

$$\Delta (Lift_{3-D}) = C_{L_{3-D}} \frac{1}{2} \rho V^2 c \Delta y$$

$$\lim_{\Delta y \to 0} \Delta \left(Lift_{3-D} \right) = \lim_{\Delta y \to 0} \left(C_{L_{3-D}} \frac{1}{2} \rho V^2 c \Delta y \right) \Rightarrow \text{"2-D Lift"} = C_{L_{2-D}} \frac{1}{2} \rho V^2 c \Delta y$$

Effect of Sweep Angle on Lift

- · Unswept wing, 2-D lift slope coefficient
 - Inviscid, incompressible flow
 - Referenced to chord length, c, rather than wing area

$$C_{L_{2-D}} = \alpha \left(\frac{\partial C_L}{\partial \alpha}\right)_{2-D} = \alpha \left(C_{L_{\alpha}}\right)_{2-D} = (2\pi)\alpha \quad \text{[Lifting-line Theory]}$$

- Swept wing, 2-D lift slope coefficient
 - Inviscid, incompressible flow

Classic Airfoil Profiles

NACA Airfoils

http://en.wikipedia.org/wiki/NACA airfoil

- NACA 4-digit Profiles (e.g., NACA 2412)
 - Maximum camber as percentage of chord
 (2)
 - Distance of maximum camber from leading edge, (4) = 40%
 - Maximum thickness as percentage of chord (12)
- Clark Y (1922): Flat lower surface, 11.7% thickness
 - GA, WWII aircraft
 - Reasonable L/D
 - Benign computed stall characteristics
 - Experimental result is more abrupt

Fluent, Inc, 2007

Clark Y Airfoil
http://en.wikipedia.org/wiki/Clark Y

Typical Airfoil Profiles

NACA 64₁-012 Chord Section Lift, Drag, and Moment (NACA TR-824)

Historical Factoid

Measuring Lift and Drag with Whirling Arms and Early Wind Tunnels

Whirling Arm Experimentalists

Wind Tunnel Experimentalists

Historical Factoid

Wright Brothers Wind Tunnel

Camber modification

- Trailing-edge flap deflection shifts C_L up and down
- Leading-edge flap (slat) deflection increases stall a
- Same effect applies for other control surfaces
 - Elevator (horizontal tail)
 - Ailerons (wing)
 - Rudder (vertical tail)

Flap Effects on Aerodynamic Lift

Aerodynamic Drag

$$Drag = C_D \frac{1}{2} \rho V^2 S \approx \left(C_{D_0} + \varepsilon C_L^2 \right) \frac{1}{2} \rho V^2 S$$
$$\approx \left[C_{D_0} + \varepsilon \left(C_{L_o} + C_{L_\alpha} \alpha \right)^2 \right] \frac{1}{2} \rho V^2 S$$

Parasitic Drag, C_{D_o}

Reynolds Number and Boundary Layer

Reynolds Number, Skin Friction, and Boundary Layer

Skin friction coefficient for a flat plate

$$C_{f} = \frac{Friction\ Drag}{\overline{q}S_{wet}}$$
 where $S_{wet} = wetted\ area$

Wetted Area: Total surface area of the wing or aircraft, subject to skin friction

 Boundary layer thickens in transition, then thins in turbulent flow

$$C_f \approx 1.33 \text{Re}^{-1/2}$$
 [laminar flow]
 $\approx 0.46 (\log_{10} \text{Re})^{-2.58}$ [turbulent flow]

Effect of Streamlining on Parasitic Drag

Subsonic C_{Do} Estimate (Raymer)

Table 12.3 Equivalent skin friction coefficients

$C_{D_0} = C_{fe} rac{S_{ m wet}}{S_{ m ref}}$	8	C_{fe} -subsonic
Bomber and civil transport		0.0030
Military cargo (high upsweep fuselage)		0.0035
Air Force fighter		0.0035
Navy fighter		0.0040
Clean supersonic cruise aircraft		0.0025
Light aircraft – single engine		0.0055
Light aircraft – twin engine		0.0045
Prop seaplane		0.0065
Jet seaplane		0.0040

Historical Factoid

Samuel Pierpoint Langley (1834-1906)

- Astronomer supported by Smithsonian Institution
- Whirling-arm experiments
- 1896: Langley's steam-powered Aerodrome model flies 3/4 mile
- Oct 7 & Dec 8, 1903: Manned aircraft flights end in failure

Historical Factoid

Wilbur (1867-1912) and Orville (1871-1948) Wright

- Bicycle mechanics from Dayton, OH
- Self-taught, empirical approach to flight
- Wind-tunnel, kite, and glider experiments
- Dec 17, 1903: Powered, manned aircraft flight ends in success

Description of Aircraft Configurations

A Few Definitions

Wing Planform Variables

Aspect Ratio

$$AR = \frac{b}{c} \quad rectangular \ wing$$
$$= \frac{b \times b}{c \times b} = \frac{b^2}{S} \quad any \ wing$$

Taper Ratio

$$\lambda = \frac{c_{tip}}{c_{root}} = \frac{\text{tip chord}}{\text{root chord}}$$

Wing Design Parameters

- Planform
 - Aspect ratio
 - Sweep
 - Taper
 - Complex geometries
 - Shapes at root and tip
- · Chord section
 - Airfoils
 - Twist
- Movable surfaces
 - Leading- and trailing-edge devices
 - Ailerons
 - Spoilers
- Interfaces
 - Fuselage
 - Powerplants
 - Dihedral angle

Mean Aerodynamic Chord and Wing Aerodynamic Center

• Mean <u>aerodynamic</u> chord (m.a.c.) ~ mean <u>geometric</u> chord

$$\overline{c} = \frac{1}{S} \int_{-b/2}^{b/2} c^2(y) dy$$

$$= \left(\frac{2}{3}\right) \frac{1 + \lambda + \lambda^2}{1 + \lambda} c_{root} \quad \text{[for trapezoidal wing]}$$

$$\lambda = \frac{c_{tip}}{c_{root}} = \frac{\text{tip chord}}{\text{root chord}}$$

- Axial location of the wing's <u>subsonic</u> aerodynamic center (a.c.)
 - Determine spanwise location of m.a.c.
 - Assume that aerodynamic center is at 25% m.a.c.

3-Dimensional Aerodynamic Lift and Drag

Airfoil Effects

- Camber increases zero-a lift coefficient
- Thickness
 - increases a for stall and softens the stall break
 - reduces subsonic drag
 - increases transonic drag
 - causes abrupt pitching moment variation (more to follow)
- Profile design
 - can reduce center-ofpressure (static margin, TBD) variation with a
 - affects leading-edge and trailing-edge flow separation

Talay, NASA SP-367

- Washout twist
 - reduces tip angle of attack

Wing Twist Effects

- typical value: 2° 4°
- changes lift distribution (interplay with taper ratio)
- reduces likelihood of tip stall
- allows stall to begin at the wing root
 - separation"burble" produces buffet at tail surface, warning of stall
- improves aileron effectiveness at high a

Aerodynamic Strip Theory

- · Airfoil section may vary from tip-to-tip
 - Chord length
 - Airfoil thickness
 - Airfoil profile
 - Airfoil twist
- 3-D Wing Lift: Integrate 2-D lift coefficients of airfoil sections across finite span
- · Incremental lift along span

$$dL = C_{L_{2-D}}(y)c(y)\overline{q}dy$$
$$= \frac{dC_{L_{3-D}}(y)}{dy}c(y)\overline{q}dy$$

• 3-D wing lift

$$L_{3-D} = \int_{-b/2}^{b/2} C_{L_{2-D}}(y) c(y) \overline{q} \, dy$$

Effect of Aspect Ratio on 3-Dimensional Wing Lift Slope Coefficient (Incompressible Flow)

High Aspect Ratio (> 5) Wing

$$C_{L_{\alpha}} \triangleq \left(\frac{\partial C_{L}}{\partial \alpha}\right)_{3-D} = \frac{2\pi AR}{AR+2} = 2\pi \left(\frac{AR}{AR+2}\right)$$

Low Aspect Ratio (< 2) Wing

$$C_{L_{\alpha}} = \frac{\pi AR}{2} = 2\pi \left(\frac{AR}{4}\right)$$

Effect of Aspect Ratio on 3-D Wing Lift Slope Coefficient (Incompressible Flow)

All Aspect Ratios (Helmbold equation)

$$C_{L_{\alpha}} = \frac{\pi AR}{\left[1 + \sqrt{1 + \left(\frac{AR}{2}\right)^{2}}\right]}$$

Effect of Aspect Ratio on 3-D Wing Lift Slope Coefficient

- All Aspect Ratios (Helmbold equation)
 - Wolfram Alpha

plot(pi A / (1+sqrt(1 + (A / 2)^2)), A=1 to 20)

Historical Factoids

- 1906: 2nd successful aviator: Alberto Santos-Dumont, standing!
 - High dihedral, forward control surface
- Wrights secretive about results until
 1908; few further technical contributions
- 1908: Glenn Curtiss *et al* incorporate ailerons
 - Wright brothers sue for infringement of 1906 US patent (and win)
 - 1909: Louis Bleriot's flight across the English Channel

Wing-Fuselage Interference Effects

- Wing lift induces
 - Upwash in front of the wing
 - Downwash behind the wing, having major effect on the tail
 - Local angles of attack over canard and tail surface are modified, affecting net lift and pitching moment
- Flow around fuselage induces upwash on the wing, canard, and tail

Longitudinal Control Surfaces

Angle of Attack and Control Surface Deflection

Control Flap Carryover Effect on Lift Produced By Total Surface

Lift due to Elevator Deflection

Lift coefficient variation due to elevator deflection

$$C_{L_{\delta E}} \triangleq \frac{\partial C_{L}}{\partial \delta E} = \tau_{ht} \eta_{ht} \left(C_{L_{\alpha}} \right)_{ht} \frac{S_{ht}}{S}$$
$$\Delta C_{L} = C_{L_{\delta E}} \delta E$$

$$au_{ht}$$
 = Carryover effect au_{ht} = Tail efficiency factor $\left(C_{L_{\alpha}}\right)_{ht}$ = Horizontal tail lift-coefficient slope S_{ht} = Horizontal tail reference area

Lift variation due to elevator deflection

$$\Delta L = C_{L_{\delta E}} \overline{q} S \delta E$$

Example of Configuration and Flap Effects

Next Time: Induced Drag and High-Speed Aerodynamics

Reading:
Flight Dynamics
Aerodynamic Coefficients, 85-96
Airplane Stability and Control
Chapter 1

Supplementary Material

Typical Effect of Reynolds Number on Parasitic Drag

Effect of Aspect Ratio on 3-Dimensional Wing Lift Slope Coefficient

- High Aspect Ratio (> 5) Wing
 - Wolfram Alpha

plot(2 pi (a/(a+2)), a=5 to 20)

- Low Aspect Ratio (< 2) Wing
 - Wolfram Alpha

plot(2 pi (a / 4), a=1 to 2)

Aerodynamic Stall, Theory and Experiment

- Flow separation produces stall
- Straight rectangular wing, AR = 5.536, NACA 0015
- Hysteresis for increasing/decreasing a

Fig. 3 Lift coefficient vs angle of attack for a rectangular wing with an NACA 0015 airfoil; comparison between experiment 7 and the present numerical technique.

Anderson et al, 1980

Maximum Lift of Delta Wings with Straight Trailing Edges

Aft Flap vs. All-Moving Control Surface

- Carryover effect of aft flap
 - Aft-flap deflection can be almost as effective as full surface deflection at subsonic speeds
 - Negligible at supersonic speed
- Aft flap
 - Mass and inertia lower, reducing likelihood of mechanical instability
 - Aerodynamic hinge moment is lower
 - Can be mounted on structurally rigid main surface

Multi-Engine Aircraft of World War II

- Large W.W.II aircraft had unpowered controls:
 - High foot-pedal force
 - Rudder stability problems arising from balancing to reduce pedal force
- Severe engine-out problem for twin-engine aircraft C_{n_o} , C_{l_o}

Medium to High Aspect Ratio Configurations

Uninhabited Air Vehicles

Stealth and Small UAVs

Subsonic Biplane

- · Compared to monoplane
 - Structurally stiff (guy wires)
 - Twice the wing area for the same span
 - Lower aspect ratio than a single wing with same area and chord
 - Mutual interference
 - Lower maximum lift
 - Higher drag (interference, wires)
- Interference effects of two wings
 - Gap
 - Aspect ratio
 - Relative areas and spans
 - Stagger

Some Videos

Flow over a narrow airfoil, with downstream vortices

http://www.youtube.com/watch?v=zsO5BQA_CZk

Flow over transverse flat plate, with downstream vortices

http://www.youtube.com/watch?v=0z_hFZx7qvE

Laminar vs. turbulent flow

http://www.youtube.com/watch?v=WG-YCpAGgQQ&feature=related

Smoke flow visualization, wing with flap

http://www.youtube.com/watch?feature=fvwp&NR=1&v=eBBZF_3DLCU/

1930s test in NACA wind tunnel

http://www.youtube.com/watch?v=3_WgkVQWtno&feature=related