Problem set (mandatory):

- 1. Suppose you have a set {monyet, kodok, burung, ular}. Define a binary operator that turns it into a group using set-theoretic definitions.
 - (a) the group has an identity element
 - (b) for any element a in the group there exists an inverse element a^{-1} such that $a*a^{-1}=a^{-1}*a=e$
 - (c) the binary operator is associative ie (a * b) * c = a * (b * c)
 - (d) the group is closed under the binary operator ie a * b is in the group

to find such an operator we first need to define an identity element. let that be "monyet". TODO

- 2. Find a binary operator that is closed but not associative for real numbers. exponentiation ie for $a, b \in \mathbb{R} : a^b \in \mathbb{R}$ is not associative for real numbers.
- 3. Let our set be real numbers. Show a binary operator that is not closed. the binary operator \sqrt{a} is not closed because for $a \in -\mathbb{R}$
- 4. What algebraic structure is all odd integers under multiplication? All even integers under addition?
 - (a) odd integers under multiplication is not closed, associative, has identity element 1.
 - (b) a semigroup is a set with a binary operator that is associative and closed(you cannot get an uneven number from the addition of two even numbers)
- 5. Let our group be 3×2 matrices of integers under addition. What is the identity and inverse? Can this be a cyclic group, why or why not? (Pay very close attention to the definition of cyclic group)
 - (a) The identity is the zero matrix of shape 3x2
 - (b) The inverse of any matrix A is -A
 - (c) This cannot be a cyclic group because it is not generated by a single element. The group is infinite and has multiple generators.
- 6. Demonstrate that

$$n\pmod{p}, n = \dots -2, -1, 0, 1, 2, \dots$$

is a group under addition. Remember, you need to show that:

- the binary operator is closed
- the binary operator is associative
- an identity exists

- every element has an inverse
- (a) Closure: For any $a, b \in \mathbb{Z}/p\mathbb{Z}$, $(a+b) \mod p$ is also in $\mathbb{Z}/p\mathbb{Z}$. This is because the result of $(a+b) \mod p$ will always be in the range [0, p-1], which are precisely the elements of our group.
- (b) The binary operator is associative as addition is associative
- (c) The identity is 0
- (d) The inverse of an element a is $-a \mod p$ or equivalently $(p-a) \mod p$
- 7. Demonstrate that

$$g^n \pmod{p}, n = \dots -2, -1, 0, 1, 2\dots$$

Where g and p are relatively prime is a group under multiplication. That is, given elements g^a , g^b , $(g^a)*(g^b)$ is in the group and the binary operator follows the group laws.

we need to show

- (a) the binary operator is closed: Let $g^a \mod p$ and $g^b \mod p$ be any two elements in the group. Their product is $(g^a \mod p) \cdot (g^b \mod p) \mod p$ mod $p = g^{a+b} \mod p$. Since $g^{a+b} \mod p$ is of the form $g^n \mod p$ for some integer n, it is also an element of the group. Therefore, the binary operator is closed.
- (b) the binary operator is associative as $g^{a+b} = g^a * g^b$
- (c) an identity exists as $g^0 = 1$
- (d) every element has an inverse as $g^{-a} = \frac{1}{q^a}$
- 8. Both integers and polynomials with integer coefficients are rings. It is possible to define a homomorphism from integers to polynomials and polynomials to integers, but it isn't the same transformation.