Introduction to Machine Learning

Perceptrons

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Perceptrons

Geometric Interpretation Perceptron Training

Perceptron Convergence

Perceptron Learning in Non-separable Case

Gradient Descent and Delta Rule

Objective Function for Perceptron Learning

2 / 15

Artificial Neurons

Cal body
Auon Telodeners

Aunn Nicke

Aunn Nicke

Dryage terminals

Cody apparatus

retoloium

Micorbondos

Dendrite branches

Figure: Src: Wikipedia

- ► Number of neurons 10^{10-11}
- ► Connections per neuron 10⁴⁻⁵
- ▶ Switching time 0.001 seconds
- ▶ Scene recognition time 0.1 seconds
- ▶ Number of cycles per scene recognition 100

Perceptron [3, 1]

inputs weights

4 / 15

Geometric Interpretation

Eliminating Bias

- ▶ Add another attribute $x_{d+1} = 1$.
- ▶ w_{d+1} is $-\Theta$
- ▶ Desired hyperplane goes through origin in (d + 1) space

Hypothesis Space

- ▶ **Assumption**: \exists **w** \in \mathbb{R}^{d+1} such that **w** can *strictly* classify all examples correctly.
- ▶ Hypothesis space: Set of all hyperplanes defined in the (d+1)-dimensional space passing through origin
 - The target hypothesis is also called decision surface or decision boundary.

Perceptron Training - Perceptron Learning Rule

1:
$$\mathbf{w} \leftarrow (0,0,\dots,0)_{d+1}$$

2: for $i=1,2,\dots$ do
3: if $\mathbf{w}^{\top}\mathbf{x}^{(i)} > 0$ then
4: $c(\mathbf{x}^{(i)}) = +1$
5: else
6: $c(\mathbf{x}^{(i)}) = -1$
7: end if
8: if $c(\mathbf{x}^{(i)}) \neq c_*(\mathbf{x}^{(i)})$ then
9: $\mathbf{w} \leftarrow \mathbf{w} + c_*(\mathbf{x}^{(i)})\mathbf{x}^{(i)}$
10: end if
11: end for

- Every mistake tweaks the hyperplane
 - Rotation in (d+1) space
 - Accomodate the offending point
- Stopping Criterion:

CSE 4/574

- Exhaust all training examples, or
- No further updates

8 / 15

Mingchen Gao

Convergence Assumptions

- 1. Linearly separable examples
- 2. No errors
- 3. $|\mathbf{x}| = 1$
- 4. A positive δ gap exists that "contains" the target concept (hyperplane)
 - $(\exists \delta)(\exists \mathbf{v})$ such that $(\forall \mathbf{x})\mathbf{v}^{\top}\mathbf{x} > c_*(\mathbf{x})\delta$.

Perceptron Convergence Theorem

Theorem

For a set of unit length and linearly separable examples, the perceptron learning algorithm will converge after a finite number of mistakes (at most $\frac{1}{\hbar^2}$).

Proof discussed in Minsky's book [2].

Target concept $c_* \notin \mathcal{H}$

- ▶ Expand \mathcal{H} ?
- Lower expectations
 - Principle of good enough

Perceptron Learning in Non-separable Case

Perceptron Learning in Non-separable Case

Gradient Descent and Delta Rule

- Which hyperplane to choose?
- Gives best performance on training data
 - Pose as an optimization problem
 - Objective function?
 - Optimization procedure?

Mingchen Gao

Objective Function for Perceptron Learning

► An unthresholded perceptron (a linear unit)

- ▶ Training Examples: $\langle \mathbf{x}_i, y_i \rangle$
- ▶ Weight: w

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

References

W. Mcculloch and W. Pitts.

A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

M. L. Minsky and S. Papert.

Perceptrons: An Introduction to Computational Geometry. MIT Press. 1969.

F. Rosenblatt.

The perceptron: A probabilistic model for information storage and organization in the brain.

Psychological Review, 65(6):386-408, 1958.

15 / 15