COMP9414: Artificial Intelligence Lecture 10: Review

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2019

COMP9414 Review

Lectures

- Artificial Intelligence and Agents
- Problem Solving and Search
- Constraint Satisfaction Problems
- Logic and Knowledge Representation
- Reasoning with Uncertainty
- Machine Learning
- Natural Language Processing
- Knowledge Based Systems
- Neural Networks and Reinforcement Learning

COMP9414 Review

What is an Agent?

An entity

- **situated**: operates in a dynamically changing environment
- reactive: responds to changes in a timely manner
- autonomous: can control its own behaviour
- proactive: exhibits goal-oriented behaviour
- **communicating:** coordinate with other agents??

Examples: humans, dogs, ..., insects, sea creatures, ..., thermostats?

Where do current robots sit on the scale?

UNSW (C)W. Wobcke et al. 2019

COMP9414 Review 3

Environment Types

Fully Observable vs Partially Observable

Agent's sensors give access to complete state of environment (no internal state required)

Deterministic vs Stochastic

Next state of environment determined only by current state and agent's choice of action

Episodic vs Sequential

Agent's experience divided into "episodes"; agent doesn't need to think ahead in episodic environment

Static vs Dynamic

Environment changes while agent deliberates

Discrete vs Continuous

Limited number of distinct, clearly defined percepts and actions

UNSW © W. Wobcke et al. 2019 UNSW © W. Wobcke et al. 2019

COMP9414 Review 4 COMP9414 Review 6

Specifying Agents

- **percepts:** inputs to the agent via sensors
- **actions**: outputs available to the agent via effectors
- **goals:** objectives or performance measure of the agent
- **environment**: world in which the agent operates

Most generally, a function from percept sequences to actions

Ideally rational agent does whatever action is expected to maximize some performance measure – the agent may not know the performance measure (Russell and Norvig 2010)

Resource bounded agent must make "good enough" decisions based on its perceptual, computational and memory limitations (design tradeoffs)

UNSW ©.W. Wobcke et al. 2019

COMP9414 Review 5

Example Agents

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis system	Symptoms, findings, pa- tient responses	Questions, tests, treat- ments	Healthy patient, minimise costs	Patient, hospital
Satellite image system	Pixels of vary- ing intensity, colour	Print cate- gorisation of scene	Correct cate- gorisation	Images from or- biting satellite
Automated taxi driver	Cameras, speedometer, GPS, sonar, microphone	Steer, accelerate, brake, talk to passenger	Safe, fast, legal, comfortable trip, maximise profits	Roads, other traffic, pedestrians, customers
Robocup robot	Camera images, laser range finder readings, sonar readings	Move motors, "kick" ball	Score goals	Playing field with ball and other robots

Based on Russell and Norvig (2010) Figure 2.5.

State Space Search Problems

- State space set of all states reachable from initial state(s) by any action sequence
- Initial state(s) element(s) of the state space
- Transitions

UNSW

- ➤ Operators set of possible actions at agent's disposal; describe state reached after performing action in current state, or
- Successor function s(x) = set of states reachable from state x by performing a single action
- Goal state(s) element(s) of the state space
- Path cost cost of a sequence of transitions used to evaluate solutions (apply to optimization problems)

UNSW © W. Wobcke et al. 2019

COMP9414 Review

160

242

161

178

77

151

226

244

241

234

380

193

253

329

80

199

374

Example Problem — Romania Map

COMP9414 Review 8 COMP9414 Review 10

Summary — Blind **Search**

Criterion	Breadth	Uniform	Depth-	Depth-	Iterative	Bidirectional
	First	Cost	First	Limited	Deepening	
Time	b^d	b^d	b^m	b^l	b^d	$b^{\frac{d}{2}}$
Space	b^d	b^d	bm	bl	bd	$b^{rac{d}{2}}$
Optimal	Yes	Yes	No	No	Yes	Yes
Complete	Yes	Yes	No	Yes, if $l \ge d$	Yes	Yes

b — branching factor

d — depth of shallowest solution

m — maximum depth of tree

l — depth limit

UNSW © W. Wobcke et al. 2019

COMP9414 Review 9

A* Search

- **Idea:** Use both cost of path generated and estimate to goal to order nodes on the frontier
- $g(n) = \cos t$ of path from start to n; $h(n) = \operatorname{estimate} from n$ to goal
- Order priority queue using function f(n) = g(n) + h(n)
- = f(n) is the estimated cost of the cheapest solution extending this path
- \blacksquare Expand node from frontier with smallest f-value
- Essentially combines uniform-cost search and greedy search

Constraint Satisfaction Problems

- Constraint Satisfaction Problems are defined by a set of variables X_i , each with a domain D_i of possible values, and a set of constraints C
- Aim is to find an assignment to each the variables X_i (a value from the domain D_i) such that all of the constraints C are satisfied

UNSW © W. Wobcke et al. 2019

COMP9414 Review

Forward Checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

11

COMP9414

2.

COMP9414

15

Arc Consistency

Simplest form of constraint propagation makes each arc consistent

 $X \rightarrow Y$ is consistent if

for every value x in dom(X) there is some allowed y in dom(Y)

Review

Make $X \to Y$ arc consistent by removing any such x from dom(X)

UNSW

© W. Wobcke et al. 2019

13

COMP9414 Review

Hill Climbing by Min-Conflicts

- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic
 - Choose value that violates fewest constraints
 - ► Can (often) solve *n*-Queens for $n \approx 10,000,000$

Propositional Logic

- Use letters to stand for "basic" propositions; combine them into more complex sentences using operators for not, and, or, implies, iff
- Propositional connectives:

\neg	negation	$\neg P$	"not P"
\wedge	conjunction	$P \wedge Q$	"P and Q"
\vee	disjunction	$P \lor Q$	"P or Q"
\rightarrow	implication	$P \rightarrow Q$	"If P then Q"
\leftrightarrow	bi-implication	$P \leftrightarrow Q$	"P if and only if Q"

UNSW ©W. Wobcke et al. 2019

COMP9414 Review

Truth Table Semantics

■ The semantics of the connectives can be given by truth tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
True	True	False	True	True	True	True
True	False	False	False	True	False	False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

- One row for each possible assignment of True/False to variables
- **Important:** P and Q are **any** sentences, including complex sentences

Definitions

A sentence is valid if it is True under all possible assignments of True/False to its variables (e.g. $P \lor \neg P$)

Review

- A tautology is a valid sentence
- Two sentences are equivalent if they have the same truth table, e.g. $P \wedge Q$ and $Q \wedge P$
 - ▶ So *P* is equivalent to *Q* if and only if $P \leftrightarrow Q$ is valid
- A sentence is satisfiable if there is some assignment of True/False to its variables for which the sentence is True
- A sentence is unsatisfiable if it is not satisfiable (e.g. $P \land \neg P$)
 - ▶ Sentence is False for all assignments of True/False to its variables
 - ▶ So *P* is a tautology if and only if $\neg P$ is unsatisfiable

UNSW

© W. Wobcke et al. 2019

17

COMP9414

Review

414 Review

Conversion to Conjunctive Normal Form

- Eliminate \leftrightarrow rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \lor Q$
- Use De Morgan's laws to push ¬ inwards (repeatedly)
 - ▶ Rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
 - ightharpoonup Rewrite $\neg (P \lor Q)$ as $\neg P \land \neg Q$
- Eliminate double negations: rewrite $\neg \neg P$ as P
- Use the distributive laws to get CNF [or DNF] if necessary
 - Rewrite $(P \land Q) \lor R$ as $(P \lor R) \land (Q \lor R)$ [for CNF]
 - ▶ Rewrite $(P \lor Q) \land R$ as $(P \land R) \lor (Q \land R)$ [for DNF]

Resolution Rule of Inference

where B is a propositional variable and A_i and C_i are literals

- \blacksquare B and $\neg B$ are complementary literals
- \blacksquare $A_1 \lor \cdots \lor A_m \lor C_1 \lor \cdots \lor C_n$ is the resolvent of the two clauses
- Special case: If no A_i and C_i , resolvent is empty clause, denoted \square

UNSW

© W. Wobcke et al. 2019

19

COMP9414 Review

Applying Resolution Refutation

- Negate query to be proven (resolution is a refutation system)
- Convert knowledge base and negated query into CNF
- Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- If the empty clause is derived, answer 'yes' (query follows from knowledge base), otherwise answer 'no' (query does not follow from knowledge base)

Random Variables

■ Propositions are random variables that can take on several values

Review

P(Weather = Sunny) = 0.8P(Weather = Rain) = 0.1

P(Weather = Cloudy) = 0.09

P(Weather = Snow) = 0.01

- Every random variable *X* has a domain of possible values $\langle x_1, x_2, \dots, x_n \rangle$
- Probabilities of all possible values $P(Weather) = \langle 0.8, 0.1, 0.09, 0.01 \rangle$ is a probability distribution
- **P**(*Weather*, *Appendicitis*) is a combination of random variables represented by cross product (can also use logical connectives $P(A \land B)$ to represent compound events)

UNSW (©W. Wobcke et al. 2019

COMP9414 Review 21

Conditional Probability by Enumeration

	tooi	thache	¬ toothache		
	catch	catch		¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- AI systems abandon joint probabilities and work directly with conditional probabilities using Bayes' Rule
- Deriving Bayes' Rule:

$$P(A \wedge B) = P(A|B)P(B)$$
 (Definition)
 $P(B \wedge A) = P(B|A)P(A)$ (Definition)
So $P(A|B)P(B) = P(B|A)P(A)$ since $P(A \wedge B) = P(B \wedge A)$
Hence $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$ if $P(A) \neq 0$

Note: If P(A) = 0, P(B|A) is undefined

UNSW

© W. Wobcke et al. 2019

23

COMP9414 Review

Bayesian Networks

Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances

COMP9414

Example – Causal Inference

- \blacksquare P(JohnCalls|Burglary)
- $P(J|B) = P(J|A \land B).P(A|B) + P(J|\neg A \land B).P(\neg A|B)$ = $P(J|A).P(A|B) + P(J|\neg A).P(\neg A|B)$ = $P(J|A).P(A|B) + P(J|\neg A).(1 - P(A|B))$
- Now $P(A|B) = P(A|B \land E).P(E|B) + P(A|B \land \neg E).P(\neg E|B)$ = $P(A|B \land E).P(E) + P(A|B \land \neg E).P(\neg E)$ = $0.95 \times 0.002 + 0.94 \times 0.998 = 0.94002$
- Therefore $P(J|B) = 0.90 \times 0.94002 + 0.05 \times 0.05998 = 0.849017$
- **Fact 3**: $P(X|Z) = P(X|Y \land Z).P(Y|Z) + P(X|\neg Y \land Z).P(\neg Y|Z)$, since $X \land Z \Leftrightarrow (X \land Y \land Z) \lor (X \land \neg Y \land Z)$ (conditional version of Fact 2)

Review

UNSW

© W. Wobcke et al. 2019

COMP9414 Review 25

Bigram Model

Maximize $P(w_1, \dots, w_n | t_1, \dots, t_n).P(t_1, \dots, t_n)$

- Apply independence assumptions (Markov assumptions)
 - $P(w_1, \cdots, w_n | t_1, \cdots, t_n) = \prod P(w_i | t_i)$
 - ► Observations (words) depend only on states (tags)
 - $P(t_1, \dots, t_n) = P(t_n | t_{n-1}) \dots P(t_0 | \phi)$, where $\phi = \text{start}$
 - ▶ Bigram model: state (tag) depends only on previous state (tag)
- Estimate probabilities
 - $P(t_i|t_i) = \#((t_i,t_i \text{ occurs})/\#(t_i \text{ starts a bigram})$
 - ▶ Choose tag sequence that maximizes $\Pi P(w_i|t_i).P(t_i|t_{i-1})$
 - ▶ Parts of speech generated by finite state machine

Hidden Markov Model for POS Tagging

UNSW © W. Wobcke et al. 2019

COMP9414 Review 27

Viterbi Algorithm

- 1. Sweep forward (one word at a time) saving only the most likely sequence (and its probability) for each tag t_i of w_i
- 2. Select highest probability final state
- 3. Follow chain backwards to extract tag sequence

Supervised Learning

- Given a training set and a test set, each consisting of a set of items for each item in the training set, a set of features and a target output
- Learner must learn a model that can predict the target output for any given item (characterized by its set of features)
- Learner is given the input features and target output for each item in the training set
 - ▶ Items may be presented all at once (batch) or in sequence (online)
 - ▶ Items may be presented at random or in time order (stream)
 - Learner cannot use the test set at all in defining the model
- Model is evaluated by its performance on predicting the output for each item in the test set

UNSW © W. Wobcke et al. 2019

COMP9414 Review 29

Restaurant Training Data

	Alt	Bar	F/S	Hun	Pat	Price	Rain	Res	Type	Est	Wait?
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Т	Italian	0-10	T
<i>X</i> ₇	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	Т	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
<i>X</i> ₁₂	T	T	Т	T	Full	\$	F	F	Burger	30-60	T

Choosing an Attribute to Split

Patrons is a "more informative" attribute than Type, because it splits the examples more nearly into sets that are "all positive" or "all negative"

This notion of "informativeness" can be quantified using the mathematical concept of "entropy"

A parsimonious tree can be built by minimizing the entropy at each step

UNSW (©) W. Wobcke et al. 2019

COMP9414 Review 31

Information Gain

For Patrons, Entropy
$$= \frac{1}{6}(0) + \frac{1}{3}(0) + \frac{1}{2} \left[-\frac{1}{3} \log(\frac{1}{3}) - \frac{2}{3} \log(\frac{2}{3}) \right]$$
$$= 0 + 0 + \frac{1}{2} \left[\frac{1}{3} (1.585) + \frac{2}{3} (0.585) \right] = 0.459$$
For Type, Entropy
$$= \frac{1}{6}(1) + \frac{1}{6}(1) + \frac{1}{3}(1) + \frac{1}{3}(1) = 1$$

UNSW

COMP9414

33

Induced Decision Tree

Review

Review

Laplace Error and Pruning

Following Ockham's Razor, prune branches that do not provide much benefit in classifying the items (aids generalization, avoids over-fitting)

For a leaf node, all items will assigned the majority class at that node. Estimate error rate on the (unseen) test items using the Laplace error

$$E = 1 - \frac{n+1}{N+k}$$

N = total number of (training) items at the node

n = number of (training) items in the majority class

k = number of classes

If the average Laplace error of the children exceeds that of the parent node, prune off the children

Text Classification

- Input: A document (e-mail, news article, review, tweet)
- Output: One class drawn from a fixed set of classes
 - ▶ So text classification is a multi-class classification problem
 - ▶ ... and sometimes a multi-label classification problem
- Learning Problem
 - ▶ Input: Training set of labelled documents $\{(d_1, c_1), \dots\}$
 - ▶ Output: Learned classifier that maps d to predicted class c

UNSW ©W. Wobcke et al. 2019

COMP9414 Review 35

Bernoulli Model

Maximize $P(x_1, \dots, x_n | c).P(c)$

- Features are presence or absence of word w_i in document
- Apply independence assumptions
 - $P(x_1, \dots, x_n | c) = P(x_1 | c) \dots P(x_n | c)$
 - ightharpoonup Probability of word w (not) in class c independent of context
- Estimate probabilities
 - ightharpoonup P(w|c) = #(w in document in class c) / #(documents in class c)
 - $P(\neg w|c) = 1 P(w|c)$
 - ightharpoonup P(c) = #(documents in class c) / #(documents)

UNSW

COMP9414

Naive Bayes Classification

w_1	w_2	<i>w</i> ₃	W4	Class
1	0	0	1	1
0	0	0	1	0
1	1	0	1	0
1	0	1	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
0	1	0	0	1
0	1	0	1	0
1	1	1	0	0

	Class = 1	Class = 0
P(Class)	0.40	0.60
$P(w_1 Class)$	0.75	0.50
$P(w_2 Class)$	0.25	0.67
$P(w_3 Class)$	0.50	0.33
$P(w_4 Class)$	0.50	0.50

Review

Review

i To classify document with w2, w3, w4

- $P(Class = 1 | \neg w_1, w_2, w_3, w_4)$ = ((1-0.75)*0.25*0.5*0.5)*0.4=0.00625
- $P(Class = 0 | \neg w_1, w_2, w_3, w_4)$ = ((1-0.5)*0.5*0.67*0.33)*0.6=0.03333

UNSW

COMP9414

© W. Wobcke et al. 2019

MNB Example

	Words	Class
d_1	Chinese Beijing Chinese	с
d_2	Chinese Chinese Shanghai	С
d_3	Chinese Macao	с
d_4	Tokyo Japan Chinese	j
d_5	Chinese Chinese Tokyo Japan	?

Review

$$P(\text{Chinese}|c) = (5+1)/(8+6) = 3/7$$

 $P(\text{Tokyo}|c) = (0+1)/(8+6) = 1/14$
 $P(\text{Japan}|c) = (0+1)/(8+6) = 1/14$
 $P(\text{Chinese}|j) = (1+1)/(3+6) = 2/9$
 $P(\text{Tokyo}|j) = (1+1)/(3+6) = 2/9$
 $P(\text{Japan}|j) = (1+1)/(3+6) = 2/9$

To classify document d_5

- $P(c|d_5) \propto [(3/7)^3.1/14.1/14].3/4$ ≈ 0.0003
- $P(j|d_5) \propto [(2/9)^3.2/9.2/9].1/4$ ≈ 0.0001
- Choose Class c

Review

37

© W. Wobcke et al. 2019

39

Bag of Words Model

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

it 6 5 4 the 3 to 3 and 2 seen yet would whimsical times sweet satirical adventure genre fairy humor have great

© W. Wobcke et al. 2019

Natural Languages – Ambiguity

- Natural languages exhibit ambiguity
 - "The fisherman went to the bank" (lexical)
 - "The boy saw a girl with a telescope" (structural)
 - "Every student took an exam" (semantic)
 - "The table won't fit through the doorway because it is too [wide/narrow]" (pragmatic)
- Ambiguity makes it difficult to interpret meaning of phrases/sentences
 - ▶ But also makes inference harder to define and compute
- Resolve ambiguity by mapping to unambiguous representation

Typical (Small) Grammar

$$\begin{split} S &\rightarrow NP \ VP \\ NP &\rightarrow [Det] \ Adj^* \ N \ [AP \ | \ PP \ | \ Rel \ Clause]^* \\ VP &\rightarrow V \ [NP] \ [NP] \ PP^* \\ AP &\rightarrow Adj \ PP \\ PP &\rightarrow P \ NP \\ Det &\rightarrow a \ | \ an \ | \ the \ | \ \dots \\ N &\rightarrow John \ | \ park \ | \ telescope \ | \ \dots \\ V &\rightarrow saw \ | \ likes \ | \ believes \ | \ \dots \\ Adj &\rightarrow hot \ | \ hotter \ | \ \dots \\ P &\rightarrow in \ | \ \dots \end{split}$$

Special notation: * is "0 or more"; [..] is "optional"

UNSW ©.W. Wobcke et al. 2019

COMP9414 Review 41

Syntactic Structure

Syntactically ambiguous = more than one parse tree

Chart Parsing

- Use a chart to record parsed fragments and hypotheses
- Hypotheses $N \to \alpha \bullet \beta$ where $N \to \alpha \beta$ is a grammar rule means "trying to parse N as $\alpha \beta$ and have so far parsed α "
- One node in chart for each word gap, start and end
- One arc in chart for each hypothesis
- At each step, apply fundamental rule
 - If chart has N → α Bβ from n_1 to n_2 and B → γ• from n_2 to n_3 add N → αB β from n_1 to n_3
- Accept sentence when $S \to \alpha \bullet$ is added from start to end
- Can produce any sort of derivation

UNSW © W. Wobcke et al. 2019

COMP9414 Review 43

Example Chart

Review

First-Order Logic

■ **Terms:** constants, variables, functions applied to terms (refer to objects)

Review

- \triangleright e.g. $a, f(a), mother_of(Mary), ...$
- **Atomic formulae:** predicates applied to tuples of terms
 - \triangleright e.g. likes(Mary, mother_of(Mary)), likes(x, a)
- Quantified formulae:
 - \triangleright e.g. $\forall x \ likes(x, a), \exists x \ likes(x, mother_of(y))$
 - ▶ here the second occurrences of x are bound by the quantifier (\forall in the first case, \exists in the second) and y in the second formula is free

UNSW

© W. Wobcke et al. 2019

COMP9414 Review 45

Converting English into First-Order Logic

- Everyone likes lying on the beach $\forall x \, likes_lying_on_beach(x)$
- Someone likes Fido $\exists x \, likes(x, \, Fido)$
- No one likes Fido $\neg \exists x \, likes(x, \, Fido) \, (\text{or} \, \forall x \neg likes(x, \, Fido))$
- Fido doesn't like everyone $\neg \forall x \, likes(Fido, x)$
- All cats are mammals $\forall x (cat(x) \rightarrow mammal(x))$
- Some mammals are carnivorous $\exists x (mammal(x) \land carnivorous(x))$
- Note: $\forall x A(x) \Leftrightarrow \neg \exists x \neg A(x), \exists x A(x) \Leftrightarrow \neg \forall x \neg A(x)$

Defining Semantic Properties

Brothers are siblings

COMP9414

 $\forall x \forall y (brother(x, y) \rightarrow sibling(x, y))$

"Sibling" is symmetric

 $\forall x \forall y (sibling(x, y) \leftrightarrow sibling(y, x))$

One's mother is one's female parent

 $\forall x \forall y (mother(x, y) \leftrightarrow (female(x) \land parent(x, y))$

A first cousin is a child of a parent's sibling

 $\forall x \forall y (first cousin(x, y) \leftrightarrow \exists p \exists s \, parent(p, x) \land sibling(p, s) \land parent(s, y)$

UNSW (C) W. Wobcke et al. 2019

COMP9414 Review 47

First-Order Resolution

where B, B' are positive literals, A_i , C_j are literals, θ is an mgu of B and B'

- B and $\neg B'$ are complementary literals
- $(A_1 \vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n)\theta$ is the resolvent of the two clauses
- Special case: If no A_i and C_j , resolvent is empty clause, denoted \Box

Unification

- A unifier of two atomic formulae is a substitution of terms for variables that makes them identical
 - Each variable has at most one associated term
 - ► Substitutions are applied simultaneously
- Unifier of P(x, f(a), z) and $P(z, z, u) : \{x/f(a), z/f(a), u/f(a)\}$
- Substitution σ_1 is a more general unifier than a substitution σ_2 if for some substitution τ , $\sigma_2 = \sigma_1 \tau$ (i.e. σ_1 followed by τ)
- **Theorem.** If two atomic formulae are unifiable, they have a most general unifier (mgu).

UNSW ©W. Wobcke et al. 2019

COMP9414 Review 4

Examples

- \blacksquare {P(x,a),P(b,c)} is not unifiable
- \blacksquare {P(f(x),y),P(a,w)} is not unifiable
- \blacksquare {P(x,c),P(b,c)} is unifiable by {x/b}
- {P(f(x),y), P(f(a),w)} is unifiable by $\sigma = \{x/a, y/w\}, \tau = \{x/a, y/a, w/a\}, \upsilon = \{x/a, y/b, w/b\}$ Note that σ is an mgu and $\tau = \sigma\theta$ where $\theta = \dots$?
- \blacksquare {P(x), P(f(x))} is not unifiable (c.f. occur check!)

McCulloch & Pitts Model of a Single Neuron

Review

Perceptron Learning Rule

Adjust the weights as each input is presented

Recall
$$s = w_1 x_1 + w_2 x_2 + w_0$$

COMP9414

COMP9414

UNSW

if
$$g(s) = 0$$
 but should be 1, if $g(s) = 1$ but should be 0,

$$w_k \leftarrow w_k + \eta x_k \qquad w_k \leftarrow w_k - \eta x_k$$

$$w_0 \leftarrow w_0 + \eta \qquad w_0 \leftarrow w_0 - \eta$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_{k}^{2}\right)$$
 so $s \leftarrow s - \eta \left(1 + \sum_{k} x_{k}^{2}\right)$

otherwise weights are unchanged ($\eta > 0$ is called the **learning rate**)

Theorem: This will eventually learn to classify the data correctly, as long as they are linearly separable

51

Multi-Layer Neural Networks

Review

Question: Given an explicit logical function, we can design a multi-layer neural network by hand to compute that function – but if we are just given a set of training data, can we train a multi-layer network to fit this data?

UNSW © W. Wobcke et al. 2019

COMP9414 Review 53

Reinforcement Learning Framework

- Agent interacts with its environment
- There is a set *S* of *states* and a set *A* of *actions*
- At each time step t, the agent is in some state s_t and must choose an action a_t , whereupon it goes into state $s_{t+1} = \delta(s_t, a_t)$ and receives reward $r(s_t, a_t)$
- In general, r() and $\delta()$ can be multi-valued, with a random element
- The aim is to find an optimal *policy* $\pi: S \to A$ which maximizes the cumulative reward

Example: Delayed Rewards

Review

UNSW © W. Wobcke et al. 2019

COMP9414 Review 55

Calculation

Theorem: In a deterministic environment, for an optimal policy, the value function V^* satisfies the Bellman equations: $V^*(s) = r(s,a) + \gamma V^* \delta(s,a)$ where $a = \pi^*(s)$ is the optimal action at state s.

Let $\delta^*(s)$ be the transition function for $\pi^*(s)$ and suppose $\gamma = 0.9$.

- 1. Suppose $\delta^*(s_1) = s_1$. Then $V^*(s_1) = 5 + 0.9V^*(s_1)$ so $V^*(s_1) = 50$ Suppose $\delta^*(s_2) = s_2$. Then $V^*(s_2) = 10 + 0.9V^*(s_2)$ so $V^*(s_2) = 100$
- 2. Suppose $\delta^*(s_1) = s_2$. Then $V^*(s_1) = 2 + 0.9V^*(s_2)$ so $V^*(s_1) = 92$ Suppose $\delta^*(s_2) = s_2$. Then $V^*(s_2) = 10 + 0.9V^*(s_2)$ so $V^*(s_2) = 100$
- 3. Suppose $\delta^*(s_1) = s_2$. Then $V^*(s_1) = 2 + 0.9V^*(s_2)$ so $V^*(s_1) = 81.6$ Suppose $\delta^*(s_2) = s_1$. Then $V^*(s_2) = 15 + 0.9V^*(s_1)$ so $V^*(s_2) = 88.4$

So 2 is the optimal policy.

Examination Instructions

- (1) READING TIME 10 MINUTES
- (2) TIME ALLOWED 2 HOURS
- (3) TOTAL NUMBER OF PAGES 10
- (4) THIS EXAMINATION COUNTS FOR 60% OF THE FINAL MARK
- (5) TOTAL NUMBER OF QUESTIONS 35
- (6) ANSWER ALL QUESTIONS
- (7) ALL QUESTIONS ARE OF EQUAL WEIGHT
- (8) USE THE ONLINE ANSWER SHEET
- (9) UNIVERSITY APPROVED CALCULATORS MAY BE USED
- (10) THIS PAPER MAY **NOT** BE RETAINED BY THE CANDIDATE

UNSW

© W. Wobcke et al. 2019

COMP9414 Review 57

Examination Rules

Commencing Exam

If you are unwell do not commence this exam – contact an exam supervisor.

If you sit an exam you are declaring yourself fit to do so and cannot later apply for Special Consideration.

Submission

Submit your answers by pressing the "Submit" button on this application.

You may submit your answers as many times as you like. However, **ONLY the latest submission** will be marked.

Make sure to **submit your final answers** before leaving the exam room.

Rough Working

You will be provided with paper that can be used for rough working. This will not be marked.

Write your name on the top of each sheet of rough working paper that you use.

You must hand in ALL rough working paper at the end of the exam.

Sample Questions

Question 1. What does the PEAS model of an agent specify?

- (a) Perception, Evaluation, Action, System
- (b) Performance measure, Environment, Actuators, Sensors
- (c) ···

Question 2. Suppose best-first search is applied using the evaluation function f(n) = -g(n). The resulting search is equivalent to:

- (a) Greedy Search
- (b) Depth-First Search
- (c) ···

UNSW © W. Wobcke et al. 2019

COMP9414 Review 59

Sample Questions

Question 3. Consider the following propositional knowledge base:

$$A \lor B, \neg A \lor C \lor D, B \lor \neg C, \neg B \lor \neg D$$

Which of the following can be concluded using resolution?

- (a) $B \lor C \lor D$
- (b) ···

Question 4. Consider these sentences over proposition symbols K, L, M.

$$L \to K \land \neg M, \neg M \land \neg L \to K$$

What is the full list of models that satisfy both sentences?

- (a) $\{\}, \{L\}, \{L,M\}, \{K,L,M\}$
- (b) ···