Banco de Dados I

03 - Construção de DER

Marcos Roberto Ribeiro

Introdução I

Um DER é um modelo formal, preciso, não ambíguo:

- Se várias pessoas lerem um mesmo DER, estas devem interpretá-lo da mesma maneira;
- Um DER pode servir de entrada para um ferramenta computer aided software engineering (CASE).
- Apesar de ser uma representação de banco de dados em alto nível, todas as pessoas envolvidas com o projeto conceitual de banco de dados devem entender a semântica dos DER para evitar erros de comunicação.

Diferentes DER podem ser equivalentes

- Dois DER são equivalentes quando ambos geram o mesmo esquema lógico de banco de dados¹
- Exemplo de equivalência:

¹Veremos como fazer esta geração nas próximas aulas

Atributo x Entidade

Vamos considerar a seguinte situação:

Em uma indústria de automóveis, como registrar a cor dos automóveis?

- Como um atributo de automóvel?
- Ou como uma entidade associada a automóvel?

Atributo x Entidade

Vamos considerar a seguinte situação:

Em uma indústria de automóveis, como registrar a cor dos automóveis?

- Como um atributo de automóvel?
- Ou como uma entidade associada a automóvel?
- Caso o objeto a ser modelado esteja vinculado a outros objetos ou tenha propriedades próprias, este deve ser modelado como entidade;
- No caso da indústria de automóveis, isto poderia acontecer se fosse necessário armazenar dados do fabricante da tinta aplicada ao veículo:

Atributo x Entidade

Vamos considerar a seguinte situação:

Em uma indústria de automóveis, como registrar a cor dos automóveis?

- Como um atributo de automóvel?
- Ou como uma entidade associada a automóvel?
- Quando o objeto apresenta valores fixos, não possui propriedades próprias e não está relacionado com outros objetos, este pode ser modelado como atributo.

Atributo x Especialização

- Outro conflito que pode ocorrer na modelagem de um banco de dados é saber se um objeto deve ser modelado como atributo ou como especialização de uma entidade;
- Uma especialização deve ser usada quando um objeto é um refinamento de outro e possui propriedades particulares;
- Por exemplo, a categoria de funcionários de uma empresa.

Atributo x Especialização

- Outro conflito que pode ocorrer na modelagem de um banco de dados é saber se um objeto deve ser modelado como atributo ou como especialização de uma entidade;
- Uma especialização deve ser usada quando um objeto é um refinamento de outro e possui propriedades particulares;
- Por exemplo, a categoria de funcionários de uma empresa.

Atributo

Se for preciso guarda apenas qual categoria pertence um funcionário, pode-se usar um atributo

Especialização

Por outro lado, se a categoria de funcionário possuir propriedades próprias, o correto é usar a especialização.

Atributos Multi-Valorados e Compostos

Atributos multi-valorados e compostos são indesejáveis pelas seguintes razões:

- A manipulação de atributos deste tipo é mais dispendiosa tanto para o SGBD quanto para o desenvolvimento de aplicações;
- Atributos multi-valorados e compostos podem induzir a erros de modelagem, tais como ocultar entidades e relacionamentos.

Quais problemas podem ser observados?

7/27

Quais problemas podem ser observados?

- Cada dependente possui características próprias como nome e nascimento. Inclusive, alguma destas características pode impactar no salário do funcionário, como a idade do dependente;
- O contracheque deve ser uma entidade, pois é composto por atributos muito diferentes;
- Como exercício corrija este DER.

Quais problemas podem ser observados?

- Cada dependente possui características próprias como nome e nascimento. Inclusive, alguma destas características pode impactar no salário do funcionário, como a idade do dependente;
- O contracheque deve ser uma entidade, pois é composto por atributos muito diferentes;
- Como exercício corrija este DER.

Quais problemas podem ser observados?

- Cada dependente possui características próprias como nome e nascimento. Inclusive, alguma destas características pode impactar no salário do funcionário, como a idade do dependente;
- O contracheque deve ser uma entidade, pois é composto por atributos muito diferentes;
- Como exercício corrija este DER.

Verificação do DER

- Uma vez construído, o DER deve ser validado e verificado para garantir a construção de um "bom banco de dados";
- Para isto o DER deve ser correto, completo e livre de redundância.

DER Correto

• Um DER está correto quando não contém erros de modelagem. Há dois tipos de erros:

Erros sintáticos: quando o DER não respeita as regras de construção do modelo ER. Por exemplo, ligação entre entidades diretamente, especialização de relacionamentos, dentre outros;

Erros semânticos: ocorrem quando, mesmo sinteticamente correto, o DER reflete uma realidade inconsistente.

DER Correto

- Um DER está correto quando não contém erros de modelagem. Há dois tipos de erros:
 - Erros sintáticos: quando o DER não respeita as regras de construção do modelo ER. Por exemplo, ligação entre entidades diretamente, especialização de relacionamentos, dentre outros;

Erros semânticos: ocorrem quando, mesmo sinteticamente correto, o DER reflete uma realidade inconsistente.

DER Correto

- Um DER está correto quando não contém erros de modelagem. Há dois tipos de erros:
 - Erros sintáticos: quando o DER não respeita as regras de construção do modelo ER. Por exemplo, ligação entre entidades diretamente, especialização de relacionamentos, dentre outros;
 - **Erros semânticos:** ocorrem quando, mesmo sinteticamente correto, o DER reflete uma realidade inconsistente.

Exemplos de Erros Semânticos

Estabelecer associações incorretamente

- Um exemplo é associar a uma entidade um atributo que pertence a outra entidade;
- Por exemplo, em um DER com as entidade CLIENTE e VENDEDOR, associar o nome do vendedor ao cliente para indicar o vendedor de cada cliente. Como corrigir este erro?

Usar uma entidade como atributo de outra entidade

- Um exemplo seria um DER com uma entidade BANCO e no mesmo DER uma ENTIDADE cliente com um atributo banco;
- Cada objeto modelado deve aparecer uma única vez no DER.

Usar um número incorreto de entidade no relacionamento

• Como, por exemplo, fundir em um relacionamento ternário dois relacionamentos binários.

Exemplos de Erros Semânticos

Estabelecer associações incorretamente

- Um exemplo é associar a uma entidade um atributo que pertence a outra entidade;
- Por exemplo, em um DER com as entidade CLIENTE e VENDEDOR, associar o nome do vendedor ao cliente para indicar o vendedor de cada cliente. Como corrigir este erro?

Usar uma entidade como atributo de outra entidade

- Um exemplo seria um DER com uma entidade BANCO e no mesmo DER uma ENTIDADE cliente com um atributo banco;
- Cada objeto modelado deve aparecer uma única vez no DER.

Usar um número incorreto de entidade no relacionamento

 Como, por exemplo, fundir em um relacionamento ternário dois relacionamentos binários.

Exemplos de Erros Semânticos

Estabelecer associações incorretamente

- Um exemplo é associar a uma entidade um atributo que pertence a outra entidade;
- Por exemplo, em um DER com as entidade CLIENTE e VENDEDOR, associar o nome do vendedor ao cliente para indicar o vendedor de cada cliente. Como corrigir este erro?

Usar uma entidade como atributo de outra entidade

- Um exemplo seria um DER com uma entidade BANCO e no mesmo DER uma ENTIDADE cliente com um atributo banco;
- Cada objeto modelado deve aparecer uma única vez no DER.

Usar um número incorreto de entidade no relacionamento

• Como, por exemplo, fundir em um relacionamento ternário dois relacionamentos binários.

DER Completo

- Um DER completo deve fixar todas as propriedades desejáveis do banco de dados;
- Para verificar se o modelo está completo podem ser feitos dois testes:
 - Ver se todos os dados que devem ser obtidos do banco de dados estão presentes;
 - Ver se todas as transações de modificação do banco de dados podem ser executadas.

DER Livre de Redundâncias

- O DER deve ser mínimo, ou seja, não deve conter conceitos redundantes;
- Um tipo de redundância que pode aparecer são relacionamentos redundantes que são resultado da combinação de outros relacionamentos com as mesmas entidades.

- O relacionamento CLI-PRO é redundante, pois pode ser obtido por meio dos relacionamentos CLI-VEN e VEN-PRO;
- Como é possível obter a venda para cada cliente e os produtos de cada venda, por transição, é possível obter os produtos vendidos para cada cliente;
- Neste caso, o relacionamento pode ser eliminado sem perda de informação.

DER Livre de Redundâncias

- O DER deve ser mínimo, ou seja, não deve conter conceitos redundantes;
- Um tipo de redundância que pode aparecer são relacionamentos redundantes que são resultado da combinação de outros relacionamentos com as mesmas entidades.

- O relacionamento CLI-PRO é redundante, pois pode ser obtido por meio dos relacionamentos CLI-VEN e VEN-PRO;
- Como é possível obter a venda para cada cliente e os produtos de cada venda, por transição, é possível obter os produtos vendidos para cada cliente;
- Neste caso, o relacionamento pode ser eliminado sem perda de informação.

Aspecto Temporal

- Certos bancos de dados, por necessidades futuras de informações, ou até mesmo por questões legais, precisam guardar históricos de alterações das informações.
- Para estes bancos, devemos considerar o aspecto temporal para que a modelagem seja feita corretamente;

Atributos Cujos Valores Modificam com o Tempo

- Como exemplo, vamos considerar um sistema de pagamento, é preciso guardar todas as mudanças sobre o salário do funcionário e não somente o salário atual;
- Nesta situação o salário deixa de ser um atributo e passa a ser uma entidade.

Relacionamentos Cujos Valores Modificam com o Tempo

 Outra situação que pode acontecer é a necessidade de guardar informações históricas de um relacionamento. Como exemplo vamos considerar o seguinte DER:

- Uma pessoa pode alugar mais de um imóvel e um imóvel pode ser alugado por mais de uma pessoa;
- O problema é alugar o mesmo imóvel para a mesma pessoa mais de uma vez.

Relacionamentos Cujos Valores Modificam com o Tempo

 Para resolver o problema do aluguel temos que transformar o relacionamento ALUGUEL em entidade²:

²Alguns autores admitem a inclusão de atributos identificadores no próprio relacionamento para evitar esta transformação.

Separação de Dados Recentes e Antigos

- Em bancos de dados com enormes quantidades de informação em uma única entidade é possível duplicar tal entidade para obter um melhor desempenho;
- Desta forma separando os dados recentes de dados antigos. Um exemplo pode ser visto no seguinte DER:

Separação de Dados Recentes e Antigos

- Esta prática deve ser feita somente em situações extremas, já que acarreta uma alta complexidade ao banco e ao sistema que o utiliza;
- Em um banco de dados maior todas as entidades ligadas a VENDAS também devem ser ligadas a VENDAS ANTIGAS;
- Além disto os sistemas que trabalham com o banco de dados devem amenizar o máximo possível esta separação de dados para os usuários.

Estratégias de Modelagem

- O processo de modelagem é um processo incremental, ou seja, um modelo de banco de dados não é construído em um único passo, mas em muitos pequenos passos;
- Gradativamente, o modelo vai sendo enriquecido com novos conceitos e estes vão sendo ligados aos existentes ou os existentes vão sendo aperfeiçoados;
- Um estratégia de modelagem ER é uma sequência de passos de transformação de modelos;
- Normalmente, é aplicada uma combinação das diversas estratégias de modelagem;
- Quando construímos um modelo de um banco de dados, estamos aprendendo fatos sobre a realidade, a sequência de ideias que se tem durante um processo de aprendizagem é dificilmente controlada por uma estratégia.

Fontes de Informação

Basicamente existem duas fontes de informação a serem usadas durante o processo de modelagem:

Descrições de Dados Existentes Esta situação ocorre quando deseja-se obter um modelo de dados para um sistema computacional existente ou quando documentos de um sistema não automatizado como notas fiscais e outros;

Conhecimento de Pessoas Quando um novo sistema está sendo proposto, as informações são obtidas com as pessoas que possuem o conhecimento para o a construção do novo sistema.

Modelagem com Descrições Existentes

- A modelagem partindo de descrições de dados existentes utiliza a engenharia reversa para obter um modelo a partir de um sistema já existente:
- Nesta situação é utiliza-se a estratégia ascendente (botton-up);
- Esta estratégia parte de conceitos mais detalhados e abstrai gradativamente;
- A modelagem inicia com a identificação dos atributos, em seguida estes são agregados em entidades;
- As entidades são relacionadas e generalizadas.

Modelagem de Novos Bancos de Dados

- Para a modelagem de novos bancos de dados utilizando o conhecimento de pessoas sobre o sistema, exitem duas estratégias:
 - Descendente (top-down);
 - Inside-out.

Estratégia Top-Down

- A estratégia *top-down* parte de conceitos mais abstratos e, gradativamente, refina estes acrescentando mais detalhes;
- O processo de modelagem inicia com a identificação de entidades genéricas. A partir daí, são definidos seus relacionamentos e especializações;
- Por último são definidos os atributos das entidades e relacionamentos.

Estratégia Top-Down

A estratégia top-down pode ser dividida nos seguintes passos:

- 1. Enumeração das entidades;
- 2. Identificação dos relacionamentos e hierarquias;
- 3. Atribuição das cardinalidades máximas aos relacionamentos;
- 4. Determinação dos atributos das entidades e relacionamentos;
- 5. Determinação dos atributos identificadores;
- 6. Verificação do banco de dados quanto ao aspecto temporal.
- 7. Identificação de entidades fracas;
- 8. Atribuição das restrições de participação;
- 9. Procura-se construções redundantes;
- 10. Validação do com modelo com pessoas envolvidas.
 - Em qualquer destes passos, é possível retornar aos passos anteriores.
 - Por exemplo, durante a identificação de atributos é possível que sejam identificadas novas entidades, fazendo com que o processo retorne ao primeiro passo.

Estratégia Inside-Out

- A estratégia inside-out consiste em partir de conceitos considerados mais importantes (centrais) e ir gradativamente adicionando conceitos periféricos a eles relacionados;
- O processo inicia com a identificação de uma entidade particularmente importante e que, supostamente, está relacionada a muitas outras entidades;
- Em seguida, são procurados atributos, entidades relacionadas, generalizações e especializações da entidade em foco, e assim recursivamente até obter-se o modelo completo;
- A denominação da estratégia provém da ideia de que entidades mais importantes em um modelo e relacionadas a muitas outras são desenhadas no centro do DER, a fim de evitar o cruzamento de linhas.

Para exemplificar a estratégia *inside-out* vamos considerar um sistema de folha de pagamento.

FUNCIONÁRIO

Como se trata de uma folha de pagamento de funcionários podemos considerar que a entidade mais importante é FUNCIONÁRIO.

Para exemplificar a estratégia *inside-out* vamos considerar um sistema de folha de pagamento.

Podemos colocar os atributos de funcionários.

Para exemplificar a estratégia *inside-out* vamos considerar um sistema de folha de pagamento.

Como o cálculo do salário dos funcionários envolve seus dependentes devemos criar esta entidade e relacioná-la com FUNCIONÁRIO.

Para exemplificar a estratégia *inside-out* vamos considerar um sistema de folha de pagamento.

Em seguida, observamos que é preciso guardar o histórico de salários dos funcionários, então criamos uma entidade para isto e ligamos a funcionário.

Referências

Elmasri, R. and Navathe, S. B. (2011).

Sistemas de banco de dados.

Pearson Addison Wesley, São Paulo, 6 edition.

Heuser, C. A. (2009).

Projeto de banco de dados.

Bookman, Porto Alegre, 6 edition.

Ramakrishnan, R. and Gehrke, J. (2008). Sistemas de gerenciamento de banco de dados. McGrawHill, São Paulo, 3 edition.