Homework 2 MATH CS 120 Convex Optimization

Harry Coleman

June 2, 2020

4.2

Consider the optimization problem

minimize
$$f_0(x) = -\sum_{i=1}^m \log(b_i - a_i^T x)$$

with domain $\operatorname{dom} f_0 = \{x : Ax < b\}$, where $A \in \mathbb{R}^{m \times n}$ (with rows a_i^T). We assume that $\operatorname{dom} f_0$ is nonempty. Prove the following facts

4.2.a

 $\operatorname{dom} f_0$ is unbounded if and only if there exists a $v \neq 0$ with $Av \leq 0$.

Proof. Suppose $\operatorname{dom} f_0$ is unbounded. Then for any $n \in \mathbb{N}$, there exists some $x_n \in \operatorname{dom} f_0$ such that $||x_n|| > n$. Let $\{x_n\}$ be a sequence in $\operatorname{dom} f_0$ such that $||x_n|| > n$ for all $n \in \mathbb{N}$. Now consider the sequence $\{y_n\}$ given by

$$y_n = \frac{x_n}{||x_n||}$$

for each $n \in \mathbb{N}$. This is a sequence in the set of unit vectors $\{x \in \mathbb{R}^n : ||x|| = 1\}$, which is bounded. So by the Bolzano-Weierstrass theorem, there is a convergent subsequence $\{y_{n_k}\}$ with $y_{n_k} \to y$. We also take the corresponding subsequence $\{x_{n_k}\}$ of $\{x_n\}$, noting that $||x_{n_k}|| \to \infty$. We now consider for some row a_i^T of A,

$$a_i^T y_{n_k} = \frac{a_i^T x_{n_k}}{||x_{n_k}||} < b_i \frac{1}{||x_{n_k}||}.$$

Now letting $k \to \infty$, we find

$$a_i^T y \le b_i \cdot 0 = 0.$$

Since this is true for each a_i^T row of A, we in fact have $Ay \leq 0$. Also note that since $||y_n|| = 1$ for all $n \in \mathbb{N}$, we have ||y|| = 1, so $y \neq 0$.

Now suppose there exists some $v \neq 0$ with $Av \leq 0$. Since $\operatorname{dom} f_0$ is nonempty, we also pick a point $x \in \operatorname{dom} f_0$. Now for any $t \geq 0$, we have

$$A(x+tv) = Ax + tAv \le Ax + 0 < b,$$

so $x + tv \in \mathbf{dom} f_0$. And for any $M \in \mathbb{R}_+$, we can pick

$$t = \frac{\|x\| + M}{\|v\|},$$

then by the reverse triangle inequality,

$$||x + tv|| \ge |||x|| - t||v||| = \left|||x|| - \frac{||x|| + M}{||v||}||v||\right| = M.$$

So $\operatorname{dom} f_0$ is unbounded.

4.2.b

 f_0 is unbounded below if and only if there exists a v with $Av \leq 0$, $Av \neq 0$. Hint. There exists v such that $Av \leq 0$, $Av \neq 0$ if and only if there exists no z > 0 such that $A^Tz = 0$.

Proof. Suppose there exists a v with $Av \leq 0$ and $Av \neq 0$. Let $M_1 \in \mathbb{R}$ be given and let $x \in \operatorname{dom} f_0$. Now for any $t \geq 0$, we have

$$A(x+tv) = Ax + tAv \le Ax + 0 < b,$$

so $x + tv \in \mathbf{dom} f_0$. We want to pick t such that

$$f_0(x+tv) = -\sum_{i=1}^m \log(b_i - a_i^T(x+tv)) \le M_1.$$

This will be true if and only if

$$\sum_{i=1}^{m} \log(b_i - a_i^T(x + tv)) \ge -M_1.$$

Notice that since for each i, we have $a_i^T(x+tv) < b$, we also have $b_i - a_i^T(x+tv) > 0$, which implies $\log(b_i - a_i^T(x+tv)) > 0$. We now choose j such that $a_j^T v < 0$ since $Av \neq 0$. Then since each term is positive,

$$\sum_{i=1}^{m} \log(b_i - a_i^T(x + tv)) \ge \log(b_j - a_j^T(x + tv)).$$

Since the log function is increasing and unbounded above, we can pick some M_2 such that

$$y \ge M_2 \implies \log(y) \ge -M_1$$
.

Now since

$$b_j - a_j^T(x - vt) = b_j - a_j^T - (a_j^T v)t$$

is linear with respect to t and has slope $-a_i^T v > 0$, we can pick t large enough such that

$$b_j - a_j^T(x + vt) \ge M_2.$$

This now implies that

$$\sum_{i=1}^{m} \log(b_i - a_i^T(x + tv)) \ge \log(b_j - a_j^T(x + tv)) \ge -M_1.$$

which gives us

$$f_0(x+vt) \le M_1,$$

so f_0 is unbounded below.

Suppose f_0 is unbounded below. Then let $\{x_n\}$ be a sequence in $\operatorname{dom} f_0$ such that $f_0(x_n) \to -\infty$. This implies that

$$\sum_{i=1}^{m} \log(b_i - a_i^T x_n) \to +\infty,$$

$$\sum_{i=1}^{m} (b_i - a_i^T x_n) \to +\infty.$$

Assume for contradiction that there exists some $z \in \mathbb{R}^m$, such that z > 0 and $A^T z = 0$. In particular, we choose z such that $z_i \geq 1$ for all i; this is possible since any positive scalar multiple of z has the same properties. Then since

$$(b_i - a_i^T x_n) > 0$$
 and $z_i \ge 1$,

we have

$$\sum_{i=1}^{m} (b_i - a_i^T x_n) \le \sum_{i=1}^{m} z_i (b_i - a_i^T x_n)$$

$$= \sum_{i=1}^{m} z_i b_i - \sum_{i=1}^{m} z_i (a_i^T x_n)$$

$$= z^T b - z^T A x_n$$

$$= z^T b - (A^T z)^T x_n$$

$$= z^T b - 0 x_n$$

$$= z^T b.$$

This implies that $z^Tb \to +\infty$ as $n \to +\infty$, which is as contradiction as z^Tb is constant with respect to n. Therefore, no such z exists. Then from the hint, this implies that there exists a v such that $Av \le 0$, $Av \ne 0$.

4.2.c

If f_0 is bounded below then its minimum is attained, i.e., then there exists an x that satisfies the optimality condition (4.23).

Proof. Suppose f_0 is bounded below, then by the contrapositive of 4.2.b and the hint, there exists some z > 0 such that $A^T z = 0$. That is,

$$0 = A^{T}z = \sum_{i=1}^{m} z_{i}a_{i} = \sum_{i=1}^{m} \frac{1}{b_{i} - a_{i}^{T}w} a_{i} = \nabla f_{0}(w)$$

if w is the vector such that

$$Aw = b - \begin{bmatrix} 1/z_1 \\ \vdots \\ 1/z_m \end{bmatrix}.$$

This vector w can be shown to exist if $\operatorname{rank} A = n$. In which case, z > 0 implies Aw < b so $w \in \operatorname{dom} f_0$. Then we would have that w satisfies the optimality condition.

I was unable to prove rank A = n.

4.2.d

The optimal set is affine: $X_{\text{opt}} = \{x^* + v : Av = 0\}$, where x^* is any optimal point.

Proof. Let x^* be an optimal point and let $v \in \ker A$. Then

$$\nabla f_0(x^* + v) = \sum_{i=1}^m \frac{1}{b_i - a_i^T(x^* + v)} a_i$$

$$= \sum_{i=1}^m \frac{1}{b_i - a_i^T x^* + a_i^T v} a_i$$

$$= \sum_{i=1}^m \frac{1}{b_i - a_i^T x^* + 0} a_i$$

$$= \nabla f_0(x^*)$$

$$= 0.$$

So $x^* + v$ is optimal. This implies that $\{x^* + v : Av = 0\} \subseteq X_{\text{opt}}$. Now suppose $y^* \in X_{\text{opt}}$. Then $y^* = x^* + z$ for some vector z. We aim to prove $z \in \ker A$, as this will imply that $y^* \in \{x^* + v : Av = 0\}$ and therefore $X_{\text{opt}} = \{x^* + v : Av = 0\}$.

I was unable to complete this.

4.3

Prove that $x^* = (1, 1/2, -1)$ is optimal for the optimization problem

minimize
$$f_0(x) = \frac{1}{2}x^T P x + q^T x + r$$

subject to $-1 \le x_i \le 1$, $i = 1, 2, 3$,

where

$$P = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}, \quad q = \begin{bmatrix} -22.0 \\ -14.5 \\ 13.0 \end{bmatrix}, \quad r = 1.$$

Proof. We first note that x^* satisfies the constraints, and is therefore feasible. Let y be another feasible point. We verify the first order optimality condition on x^* .

$$\nabla f_0(x^*)^T (y - x^*) = (Px^* + q^T)^T (y - x^*)$$

$$= \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 - 1 \\ y_2 - 1/2 \\ y_3 + 1 \end{bmatrix}$$

$$= -y_1 + 2y_3 + 4.$$

Since $-1 \le y_1, y_3 \le 1$, then

$$\nabla f_0(x^*)^T (y - x^*) \ge -1 + 2(-1) + 4 = 1 \ge 0.$$

So x^* satisfies the first order optimality condition and is therefore optimal.

4.8

Give an explicit solution of each of the following LP's.

4.8.a

Minimizing a linear function over an affine space.

minimize
$$c^T x$$

subject to $Ax = b$.

Proof. If the system Ax = b is inconsistent, then the feasible set is empty and the minimization problem has no solution. Otherwise, Ax = b is consistent, and we let x_0 be such that Ax = b. Then we can express by

$$X = \{x_0 + y : y \in \ker A\}$$

the feasible set. If $c \perp \ker A$, then for any $x \in X$, we have $x = x_0 + y$ where $y \in \ker A$. So

$$c^{T}x = c^{T}(x_0 + y)$$
$$= c^{T}x_0 + c^{T}y$$
$$= c^{T}x_0 + 0$$
$$= c^{T}x_0.$$

This tells us that $c^T x = c^T x_0$ for all $x \in X$, so $c^T x_0$ is the solution. Now if $c \not\perp \ker A$, then for some $y \in \ker A$, we have $c^T y \neq 0$. Now for any $t \in \mathbb{R}$,

$$A(x_0 + ty) = Ax_0 + tAy = b + 0 = b.$$

So $x_0 + ty \in X$ for all $t \in \mathbb{R}$. Consider now

$$c^{T}(x_0 + ty) = c^{T}x_0 + (c^{T}y)t.$$

So if $c^T y > 0$, then

$$\lim_{t \to -\infty} c^T(x_0 + ty) = -\infty.$$

And if $c^T y < 0$, then

$$\lim_{t \to +\infty} c^T(x_0 + ty) = -\infty.$$

So $c^T x$ is unbounded below for $x \in X$. In conclusion, the optimal value is

$$\begin{cases} c^T x, \text{ for any } x \in X & \text{if } Ax = b \text{ is consistent and } c \perp \ker A, \\ -\infty & \text{if } Ax = b \text{ is consistent and } c \not\perp \ker A, \\ \text{none} & \text{otherwise.} \end{cases}$$

4.8.b

Minimizing a linear function over a halfspace.

minimize
$$c^T x$$

subject to $a^T x \le b$,

where $a \neq 0$.

Proof. Let $X = \{x : a^T x \leq b\}$ denote the feasible set. For each x, we write $x = t_x a + d_x$, where $d_x \perp a$. In other words, $t_x a$ is the projection of x onto a. Then

$$a^{T}x = a^{T}(t_{x}a + d_{x}) = t_{x}(a^{T}a) + a^{T}d_{x} = t_{x}(a^{T}a) + 0 = t_{x}(a^{T}a).$$

So $x \in X$ if and only if $t_x \leq b/(a^T a)$. Consider now $c = t_c a + d_c$. If $t_c > 0$, then for any $t \leq b/(a^T a)$, we have $t \in X$ and

$$c^{T}(ta) = (t_{c}a + d_{c})^{T}(ta) = t(t_{c}a^{T}a).$$

Then

$$\lim_{t \to -\infty} c^{T}(ta) = \lim_{t \to -\infty} t(t_c a^{T} a) = -\infty,$$

so $c^T x$ is unbounded below for $x \in X$. If $t_c < 0$, then for any $x \in X$,

$$c^{T}x = (t_{c}a + d_{c})^{T}(t_{x}a + d_{x}) = t_{x}(t_{c}a^{T}a) + d_{x}d_{c}.$$

If $d_c = 0$, then $c^T x$ decreases as t_x increases, and since $t_x \leq b/(a^T a)$, we know that $c^T x$ attains a minimum at $t_x = b/(a^T a)$, that is

$$\frac{b}{a^T a}(t_c a^T a) = bt_c = c^T x = (t_c a)^T x,$$

which implies $a^T x = b$. So $c^T x$ is minimized by any point on the hyperplane $a^T x = b$. If $d_c \neq 0$, then for any $x \in X$ and $k \in \mathbb{R}$,

$$a^T(x + kd_c) = a^Tx + ka^Td_c = a^Tx + 0 \le b.$$

So $x + kd_c \in X$ for any $x \in X$ and $k \in \mathbb{R}$. Then

$$c^T(x + kd_c) = c^T x + kc^T d_c,$$

which is linear with respect to k, and is therefore unbounded below. In conclusion, the optimal value is

$$\begin{cases} c^T x, \text{ for any } x \text{ s.t } ax = b & \text{if } a | |c \text{ and } a^T c > 0, \\ -\infty & \text{otherwise.} \end{cases}$$

4.8.c

Minimizing a linear function over a rectangle.

minimize
$$c^T x$$

subject to $\ell \le x \le u$,

where ℓ and u satisfy $\ell \leq u$.

Proof. For each index i = 1, ..., n, if $c_i > 0$, then $c_i x_i$ is increasing with respect to x_i , and attains a minimum at $x_i = \ell_i$. If $c_i < 0$, the $c_i x_i$ is decreasing with respect to x_i , and attains a minimum at u_i . If $c_i = 0$, then $c_i x_i$ is constant for all x_i . We choose x^* in the feasible set such that

$$x_i^* = \begin{cases} \ell_i & \text{if } c_i \ge 0, \\ u_i & \text{otherwise.} \end{cases}$$

Then for any y in the feasible set,

$$c^{T}y - c^{T}x^{*} = \sum_{i=1}^{n} c_{i}y_{i} - \sum_{i=1}^{n} c_{i}x_{i}^{*}$$

$$= \sum_{i=1}^{n} c_{i}y_{i} - c_{i}^{*}x_{i}^{*}) \geq 0,$$

Since each term is minimized by x^* . So the solution is $c^T x^*$.

4.8.d

Minimizing a linear function over the probability simplex.

minimize
$$c^T x$$

subject to $\mathbf{1}^T x = 1, \quad x \ge 0.$

What happens if the equality is replaces by an inequality $\mathbf{1}^T x \leq 1$?

Proof. Define x^* to be the vector with

$$x_i = \begin{cases} 1 & \text{if } c_i = \min\{c_j : j = 1, \dots, n\} \text{ and } i \leq j \text{ for all } c_i = c_j, \\ 0 & \text{otherwise.} \end{cases}$$

In other words, x^* is the vector with all zeros except for a 1 at the same index as the first index of the minimum value of c. The given feasibility conditions mean that for any feasible x, c^Tx is a convex combination of the elements of c. And any x which has a nonzero value at an index which is not a minimum of c will have a greater value than x^* . So

$$c^T x^* = \min\{c_i : i = 1, \dots, n\}$$

is the solution.

If the equality is replaced with an inequality, then we construct x^* similarly, except if all the elements of c are positive, we take $x^* = 0$. So the solution is

$$\min(\{c_i : i = 1, \dots, n\} \cup \{0\}).$$

4.8.e

Minimizing a linear function over a unit box with a total budget constraint.

minimize
$$c^T x$$

subject to $\mathbf{1}^T x = \alpha, \quad 0 \le x \le \mathbf{1}.$

where α is an integer between 0 and n. What happens if α is not an integer (but satisfies $0 \le \alpha \le n$)? What if we change the equality to an inequality $\mathbf{1}^T x \le \alpha$?

Proof. Similar to 4.8.d, for any feasible x, c^Tx is a linear combination of the elements of c, with each index of x limited between 0 and 1. In this case, we pick x^* such that it has 1's at the α indices which are least in c. In other words, if we sort the indices of c such that $c_{i_1} \leq \cdots \leq c_{i_n}$, then x^* will have 1's at indices i_1, \ldots, i_{α} and 0's elsewhere.

If α is not an integer, then we construct x^* similarly for $\lfloor \alpha \rfloor$ and define $x_{i_{\alpha+1}} = \alpha - \lfloor \alpha \rfloor$. That is, we similarly 'distribute' a total value of α across the indices of x^* starting with the indices which are minimum in c. Then as each index of x is 'filled up' to 1, we move to the next index which is the next smallest in c. In either case, the solution is

$$\sum_{k=1}^{\lfloor \alpha \rfloor} c_{i_k} + (\alpha - \lfloor \alpha \rfloor) c_{i_{\lfloor \alpha \rfloor + 1}},$$

where $(i_k)_{k=1}^n$ is a permutation of $\{1,\ldots,n\}$ with $c_{i_1} \leq \cdots \leq c_{i_n}$.

Also similar to 4.8.d, if the equality is replaced with an inequality, then we only 'fill up' indices of x so long as they are nonpositive indices of c. So the solution is

$$\sum_{k=1}^{\lfloor \alpha \rfloor} \min\{0, c_{i_k}\} + (\alpha - \lfloor \alpha \rfloor) \min\{0, c_{i_{\lfloor \alpha \rfloor + 1}}\},\,$$

where $(i_k)_{k=1}^n$ is a permutation of $\{1,\ldots,n\}$ with $c_{i_1}\leq\cdots\leq c_{i_n}$.

4.8.f

Minimizing a linear function over a unit box with a weighted budget constraint.

minimize
$$c^T x$$

subject to $d^T x = \alpha$, $0 \le x \le 1$.

with d > 0, and $0 \le \alpha \le \mathbf{1}^T d$.

Proof. This is equivalent to minimizing c^Tx subject to $\mathbf{1}^Tx = \alpha, 0 \le x \le d$. In other words, this is the same as 4.8.e, except instead of each index of x being able to hold a maximum value of 1, each index can hold a maximum value of the corresponding index of d. So we have a similar solution as 4.8.e, but each term is multiplied by it's weight in d:

$$\sum_{k=1}^{\lfloor \alpha \rfloor} c_{i_k} d_{i_k} + (\alpha - \lfloor \alpha \rfloor) c_{i_{\lfloor \alpha \rfloor + 1}} d_{i_{\lfloor \alpha \rfloor + 1}},$$

where $(i_k)_{k=1}^n$ is a permutation of $\{1,\ldots,n\}$ with $c_{i_1} \leq \cdots \leq c_{i_n}$.

4.9

Consider the LP

minimize
$$c^T x$$

subject to $Ax \le b$,

with A square and nonsingular. Show that the optimal value is given by

$$p^* = \begin{cases} c^T A^{-1} b & \text{if } A^{-T} c \le 0, \\ -\infty & \text{otherwise.} \end{cases}$$

Proof. Denote the original minimization problem by (1). Denote by (2) the problem

minimize
$$c^T x$$

subject to $Ax + z = b$,
 $z \ge 0$.

We claim problems (1) and (2) are equivalent. Let X and Z be the feasible sets for (1) and (2), respectively. If $x \in X$, then $Ax \leq b$, which implies Ax + z = b for some $z \geq 0$. Then the pair $(x, z) \in Z$. Likewise, if $(x, z) \in Z$, then $z \geq 0$ and Ax + z = b, so $Ax \leq b$. Then $x \in X$. This gives us a correspondence between the feasible sets of (1) and (2) and the objective function of each are the same. Thus, problems (1) and (2) are equivalent.

Now given some $z \ge 0$, we can find the necessary x such that $(x, z) \in Z$, by solving for x in the equality constraint. That is,

$$Ax + z = b$$

$$Ax = b - z$$

$$x = A^{-1}(b - z).$$

So for any $z \ge 0$, $(A^{-1}(b-z), z) \in Z$. So we can now write problem (3), equivalent to (2), which is found by substituting the solved value of x into the objective function:

minimize
$$f_0(z) = c^T A^{-1}(b-z)$$

subject to $z \ge 0$.

We claim that if $A^{-T}c \leq 0$, then z = 0 minimizes (3). To prove this, suppose $A^{-T}c \leq 0$ and let $y \geq 0$ be feasible for (3). Then consider

$$f_0(y) - f_0(z) = c^T A^{-1}(b - y) - c^T A^{-1}(b - z)$$

= $c^T A^{-1}b - c^T A^{-1}y - c^T A^{-1}b + c^T A^{-1}0$
= $-c^T A^{-1}y$.

Now since $A^{-T}c \leq 0$, then $-c^TA^{-1} = -(A^{-T}c)^T \geq 0$. And since $y \geq 0$, we have

$$f_0(y) - f_0(z) \ge 0.$$

So $f_0(z) \leq f_0(y)$ for all feasible y. Thus, z = 0 is an optimal point for (3). This now implies that $(A^{-1}b, 0)$ is and optimal point for (2), and that $A^{-1}b$ is an optimal point for (1). Therefore, the optimal value of (1) is

$$c^T A^{-1} b.$$

Now if it is not the case that $A^{-T}c \leq 0$, then for some index i, we have $(A^{-T}c)_i = (c^TA^{-1})_i > 0$. Then for any $t \geq 0$, the point te_i is feasible for (3). Consider now

$$c^{T}A^{-1}(b - te_{i}) = c^{T}A^{-1}b - c^{T}A^{-1}te_{i} = c^{T}A^{-1}b - (c^{T}A^{-1})_{i}t,$$

which goes to $-\infty$ as $t \to \infty$. Thus (3) is unbounded below, and similarly, (2) and (1). Thus the optimal value of (1) is

$$p^* = \begin{cases} c^T A^{-1} b & \text{if } A^{-T} c \le 0, \\ -\infty & \text{otherwise.} \end{cases}$$