武汉大学2021级弘毅班《数字逻辑》期末试题(A卷)答案

题号	_	=	三	四	五.	六	总分
得分							

一、(10分)化简下列逻辑表达式。

- 1. 用 数 将 $F = (A + \overline{B})(\overline{A} + B)(B + C)(\overline{A} + C)$ 化简为 " " ; (5 分)
- 2. 用 图 将 F(A, B, C, D) = \sum m(0, 2, 7, 13, 15)+ \sum d(1, 3, 4, 5, 6, 8, 10)为 " " 。 (5分)

解: 1. 先求得 F 的对偶式 F*并进行化简:

$$F^* = A \overline{B} + \overline{A} B + BC + \overline{A} C$$

$$= A \overline{B} + \overline{A} B + (\overline{A} + B)C$$

$$= A \overline{B} + \overline{A} B + \overline{A} \overline{B} C$$

$$= A \overline{B} + \overline{A} B + C$$

$$\therefore$$
 F = $(F^*)^*$ = $(A + \overline{B})(\overline{A} + B)C$

2. 作出 F 的卡诺图如下:

得
$$F = \overline{A} + BD$$

- 二、(12分)分析图1所示组合逻辑电路,回答问题:
- 1. 求输出函数的逻辑表达式; (4分)
- 2. 列出函数真值表; (4分)
- 3. 判断此逻辑电路功能。(4分)

$$y_1 = \overline{A_0} + A_1 + \overline{E}$$

$$y_2 = A_0 + \overline{A_1} + \overline{E}$$

$$y_3 = \overline{A_0} + \overline{A_1} + \overline{E}$$

2. 当E = 1 时,函数值均为 1,当E = 0 时,函数真值表如下:

A_1	A_0	y 0	y 1	y 2	y 3		
0	0	0	1	1	1		
0	1	1	0	1	1		
1	0	1	1	0	1		
1	1	1	1	1	0		

3. 该电路输入一个两位二进制数,为 2-4 译码器。

三、(22 分)设 ABCD 输入值为 8421BCD 码,试设计一个电路判断其输入数值是否为质数的电路,当输入为质数(含 1)时 F=1,否则 F=0。

- 1. 写出函数 F 与 ABCD 的真值表; (3分)
- 2. 写出逻辑函数表达式并化简; (3分)
- 3. 用适当门电路实现该函数并画出逻辑电路图; (3分)
- 4. 用三—八译码器 74LS138 及适当门电路实现该电路的逻辑功能; (3分)
- 5. 用中规模集成电路八选一74LS151及适当门电路实现其逻辑功能; (3分)
- 6. 用 Verilog HDL 语言设计该逻辑电路; (4分)
- 7. 用如图 2 所示的可编程逻辑器件 PLA 设计该逻辑函数。(3 分)

解: 1. 真值表如下:

ABCD	F	ABCD	F
0000	0	1000	0
0001	1	1001	0
0010	1	1010	d
0011	1	1011	d
0100	0	1100	d
0101	1	1101	d
0110	0	1110	d
0111	1	1111	d

2. 函数逻辑表达式为 $F(A, B, C, D) = \sum m(1, 2, 3, 5, 7) + \sum d(10, 11, 12, 13, 14, 15)$ 作出卡诺图:

得
$$F = \overline{A}D + \overline{B}C$$

3. 实现的参考电路如下(形式最简):

4-5. 用 74LS138 连线与 74LS151 连线如下:

6. 参考代码如下:

assign
$$F = ((\sim A) \& D) \mid ((\sim B) \& C);$$
 endmodule

7. 用可编程逻辑器件 PLA 设计图如图:

四、(18分)分析图3的时序逻辑电路,回答问题:

- 1. 写出激励函数与输出函数的表达式; (4分)
- 2. 写出次态方程组; (4分)
- 3. 作出电路的状态表及状态图; (6分)
- 4. 分析电路的逻辑功能。(4分)

解: 1. 由图可知,该电路为一个同 步时序逻辑电路

$$J_1=\,K_1=\,1$$

$$J_2 = \, \mathbf{Q}_1 \oplus A \, = \, K_2$$

$$\begin{array}{lll} J_2 = & \underbrace{\overline{Q_1 \oplus A} \ = \ K_2} \\ y \ = & \overline{\overline{\overline{A \cdot Q_1 \cdot Q_2} \cdot \overline{A} \ Q_1 \ Q_2}} \ = \ \overline{A \cdot \overline{Q_2 \cdot Q_1}} \ + \ A \ Q_2 \ Q_1 \end{array}$$

2. JK 触发状态方程为 $Q^{n+1} = JQ + KQ$

$$\mathbf{Q}_1^{n+1} = \mathbf{Q}_1$$

$$\mathbf{Q_2}^{\textit{n}+1} \, = \, (A \oplus \mathbf{Q_1}) \, \bullet \, \mathbf{Q_2} \, + \, (\overset{-}{A \oplus \mathbf{Q_1}}) \bullet \, \mathbf{Q_2} \, = \, A \oplus \mathbf{Q_1} \oplus \mathbf{Q_2}$$

$$y = \overline{A} \cdot \overline{Q}_2 \cdot \overline{Q}_1 + A Q_2 Q_1$$

3. 状态转移真值表和状态图如下:

Α	\mathbf{Q}_2	\mathbf{Q}_1	Q_2^{n+1}	\mathbf{Q}_{1}^{n+1}	У
0	0	0	0	1	1

0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	1

4. 当 A=0 时,状态由 00→01→10→11→00 状态之间循环,00 状态时 y=1 当 A=0 时,状态由 00→11→10→01 状态之间循环,11 状态时 y=1 则该电路为模 4 加减法可控计数电路,A=0 时作为加法计数,A=1 时作为减法计数

- 1、请说明设计思路(8分)
- 2、画出实现原理图(8分)

1. 设计思路:将 74LS161 设计成一个模 6 的六进制计数电路,则 6 进制输出状态为 $Q_2Q_1Q_0$: 000,001,010,011,100,101,将 6 进制输出状态 $Q_2Q_1Q_0$ 分别接入 74LS138 的输入端 A_2 、 A_1 、 A_0 ,将其控制端 ST_A 、 ST_B 、 ST_C 接为有效状态,则其输出信号 $y_0\sim y_1$ 5,分别表示为 CS_0 、 CS_1 、 CS_2 、 CS_3 、 CS_4 、 CS_5 ,通常 CS_i 为高电平,在 CP 脉冲作用下 $Q_2Q_1Q_0$ 的状态依次输出为 000,001,010,011,100,101;则 $CS_0\sim CS_5$ 依次输出低电平。

2. 具体连线图如下:

法一: 选用同步置数法,即从 $000\sim101$ 状态, $\overline{LD}=\overline{Q_2Q_0}$,启动信号接 \overline{CR} 端。

法二: 选用异步清零法,即从 $000\sim101$ 状态,110 为暂态, $\overline{\rm CR}=\overline{\rm Q_2Q_1}$,不受 CP 影响即产生 $\overline{\rm CR}$ 。

武汉大学 2021 级弘毅班《数字逻辑》期末试题 (A卷) 答案 第 6 页 共 10 页

六、 $(22 \, f)$ 用正边缘 D 触发器作为存储元件,设计一个同步时序逻辑电路"110"序列检测器。该电路有一个输入 x 和一个输出 Z, 当随机输入信号中出现"110"序列时,输出一个 1 信号。典型输入/输出序列如下:

输入 x	0	0	1	1	1	0	1	1	0	1	0	0
输出 Z	0	0	0	0	0	1	0	0	1	0	0	0

- 1. 作出原始状态图、状态表及二进制状态表; (6分)
- 2. 求 D 触发器的各输入端的激励表达式及输出函数表达式; (6分)
- 3. 画出相应电路图、并分析该电路是否能够自启动; (5分)
- 4. 用 Verilog HDL 语言描述状态图。(5 分)

解: 1 采用 mealy 电路,设 S_0 状态为初态, S_1 为输入"1", S_2 为输入"11", S_3 为输入"110",可作出原始状态图与状态表如下:

1 □ /-	次态 Z				
现态	x =0	x=1			
S_0	$S_0/0$	$S_1/0$			
S_1	$S_0/0$	$S_2/0$			
S_2	$S_{3}/1$	$S_2/0$			
S_3	$S_0/0$	$S_{1}/0$			

从上表可看出, S₀ 与 S₃ 状态等效, 故可简化状态表:

T同 人	次态 Z						
现态	x =0	x=1					
S_0	$S_0/0$	$S_1/0$					
S_1	$S_0/0$	$S_2/0$					
S_2	$S_0/1$	$S_2/0$					

状态分配时,按照三个规则分配,可得 S_0 与 S_1 相邻, S_0 与 S_2 相邻。将"00"分配给 S_0 ,"01"分配给 S_1 ,"10"分配给 S_2 ,二进制状态表如下:

Ī	现态		次态/Z		
	\mathbf{Q}_2	\mathbf{Q}_1	$\mathbf{x} = 0$	x=1	
	0	0	00/0	01/0	
	0	1	00/0	10/0	
	1	0	00/1	10/0	

2. 分别作出 Q_2^{n+1} 、 Q_1^{n+1} 、Z 的真值表,

٤.	1 WI	/ C 11334	ഥ1人,			
	\boldsymbol{x}	\mathbf{Q}_2^n	\mathbf{Q}_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
	0	0	0	0	0	0
	0	0	1	0	0	0
	0	1	0	0	0	1
	0	1	1	d	d	d
	1	0	0	0	1	0
	1	0	1	1	0	0
	1	1	0	1	0	0
	1	1	1	d	d	d

用卡诺图化简,得:

$$Q_2^{n+1} = xQ_1^n + xQ_2^n \qquad Q_1^{n+1} = x\overline{Q_2^n} \overline{Q_1^n} \qquad Z = \overline{x}Q_2^n$$

则
$$D_2 = xQ_1^n + xQ_2^n$$
 $D_1 = x\overline{Q_2^n}\overline{Q_1^n}$ $Z = \overline{x}Q_2^n$

附: 当采取另一种状态分配方法时,即将"00"分配给 S_0 , "01"分配给 S_1 , "11"分配给 S_2 ,二进制状态表如下:

现态		次态/Z		
\mathbf{Q}_2	\mathbf{Q}_1	$\mathbf{x} = 0$	x=1	
0	0	00/0	01/0	
0	1	00/0	11/0	
1	1	00/1	11/0	

真值表略,则
$$\mathbf{Q}_2^{n+1} = x\mathbf{Q}_1^n$$
 $\mathbf{Q}_1^{n+1} = x$ $\mathbf{Z} = \mathbf{x}\mathbf{Q}_2^n$

3. 相应电路图如下(另一种状态分配图略):

因为两个触发器使用了 00,01,10 三个状态,看其是否能自启动,即分析在"11"状态时,电路是否能回到正常状态。

由上图分析得,

$$Q_2^{n+1} = xQ_1^n + xQ_2^n$$

 $Q_1^{n+1} = xQ_2^n Q_1^n$
当 $Q_2^nQ_1^n$ 为 "11" 时, $Q_2^{n+1} = x$, $Q_1^{n+1} = 0$
即 $x=0$ 时,由 "11" 转变为 "00",
 $x=1$ 时,由 "11" 转变为 "10",均能回到正常状态,
∴该电路能自启动。

4. 法一:

```
module mealy_test(clock, x, z);
input clock, x;
output reg z;
reg [1:0] y;
parameter[1:0] A=2' b00, B=2' b01, C=2' b10;
always @ (posedge clock)
case(y)

A: if(x) begin y<=B; z<=0; end
else begin y<=A; z<=0; end
B: if(x) begin y<=C; z<=0; end
clse begin y<=A; z<=0; end
else begin y<=A; z<=0; end
C: if(~x) begin y<=A; z<=1; end
else begin y<=B; z<=0; end
```

default: begin y<=A; z<=0; end

```
end case
end module
法二:
module moore_test(clock, x, z);
  input clock, x;
  output reg z;
  reg [3:0] y;
  parameter[3:0] A=4' b0001, B=4' b0010, C=4' b0100, D=4' b1000;
  always @ (posedge clock)
  case(y)
    A: if(x) y \le B;
       else y<=A;
    B: if(x) y \le C;
       else y \le A;
    C: if(-x) y \le D;
       else y \le C;
    D: if(x) y \le B;
       else y<=A;
  end case
  assign z = (y==D);
end module
```