EXAMEN DE ÁLXEBRA (16-01-2015)

1.- Se considera la matriz
$$A=\left(\begin{array}{ccc}1&-2&1\\-1&1&b\\2&b&4\end{array}\right)\in\mathcal{M}_{3\times3}(\mathbb{R}).$$

- 1. Calcular los valores de b para los que A tiene inversa,
- 2. Para b = -1, calcular A^{-1} y expresarla como producto de matrices elementales.
- 3. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal tal que $(f)_{\mathcal{C},\mathcal{C}} = A$; Para que valores de b no existe ningún vector $(x,y,z) \in \mathbb{R}^3$ tal que f(x,y,z) = (-2,1,-2)?
- 4. Para b = 0, calcular $|E_{3F_2} \cdot E_{F_1 \leftrightarrow F_2} \cdot ((-2)A) \cdot E_{F_1 3F_2}|$.

2.- Se consideran los subespacios de \mathbb{R}^4 siguientes: $U_b = \langle (1, -1, b, 1), (0, 0, 0, 1) \rangle$ y $W = \{(x, y, z, t) \in \mathbb{R}^4 / x - 2t = 0, y + 2t = 0\}.$

- 1. Calcular el valor de b para el cual la dim $(U_b + W) = 3$.
- 2. Calcular una base de $U_1 \cap W$.
- 3. Definir una aplicación lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ verificando que $Ker \ f = U_0$ e $Im \ f = W$.
- 3.- Sea la aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por:

$$f(x, y, z) = (-x + y - z, x - y - z, -x - y + z).$$

- 1. Si $U = \langle (1, -1, 1), (0, 0, 1) \rangle$ calcular unas ecuaciones implícitas para $f^{-1}(U)$ y otras para $f(\{(x, y, z) \in \mathbb{R}^3/x + y + z = 0, x y + z = 0\})$.
- 2. Probar que f es diagonalizable.
- 3. Encontrar una base \mathcal{B} de \mathbb{R}^3 y una matriz no singular P tales que $(f)_{\mathcal{B},\mathcal{B}}$ sea diagonal y $(f)_{\mathcal{C},\mathcal{B}} \cdot P = (f)_{\mathcal{B},\mathcal{B}}$.

4.- Demostrar que:

- 1. Si U y W son subespacios de un espacio vectorial V, entonces $U \cap W$ también es un subespacio de V.
- 2. Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es una aplicación lineal tal que $Ker \ f = Im \ f$, entonces n es un número par.
- 3. Si $\{u, v, w\}$ es un subconjunto de \mathbb{R}^n linealmente independiente, entonces $\{u-v-w, v-w, w\}$ también es linealmente independiente.

Puntuación: 20+15+20+15