4.7. Hranice oblasti

Připomínám

hraničním bodemmnožiny $A \subset (M, \rho)$ v prostoru (M, ρ) je bod z tohoto prostoru, jestliže $\underline{každ\acute{e}}$ jeho okolí $(\delta$ -okolí bodu $z \in M$) obsahuje alespoň jeden bod patřící do množiny A a alespoň jeden bod nepatřící do množiny A;

- vnitřní hranice oblasti
- vnější hranice oblasti

a) <u>vnitřní hranice oblasti S</u>

je množina obrazových bodů oblasti S, z nichž každý má alespoň jednoho souseda {ve smyslu $4-\delta$ okolí nebo $8-\delta$ okolí}, který nepatří do oblasti S. Potom můžeme pro body vnitřní hranice oblasti S psát:

$$H_S = \{q \in S : \exists p \in \delta(q) \text{ AND } p \notin S\}, \text{ kde } \delta(q) \dots 4 - \delta(q) \text{ nebo } 8 - \delta(q)$$

Výsledná hranice pak vychází podle typu zvoleného okolí, $4-\delta$ okolí nebo $8-\delta$ okolí.

 H_S detekovaná podle $\mathbf{4-\delta(q)}$ (H_S je pak souvislá ve smyslu $\mathbf{8-\delta}$)

 H_S detekovaná podle $8-\delta(q)$ (H_S je pak souvislá ve smyslu $4-\delta$)

b) vnější hranice oblasti S

je množina obrazových bodů snímku IM, které nepatří do oblasti S, a současně jsou sousedy bodů vnitřní hranice H_S oblasti S.

Můžeme také psát, že vnější hranice H_E oblasti S je množina obrazových bodů snímku IM, které byly testovány při detekci vnitřní hranice H_S {ve smyslu $4-\delta$ okolí nebo $8-\delta$ okolí} a nepatřily do S.

 H_E detekovaná podle $\mathbf{4-\delta(q)}$ (H_E je pak souvislá ve smyslu $\mathbf{8-\delta}$)

			X	X	X		
		X	Х	Х	Х	X	
	x	Х			Х	X	
x	Х				Х	X	
x	х	Х	Х	Х	X		
	x	X	X	Х	X		
				X			

 H_E detekovaná podle **8–\delta**(q) (H_E je pak souvislá ve smyslu **4–\delta**)

		x	x	x	x	x	
	x	X	Х	Х	Х	X	
X	x	Х	Х		Х	X	
X	Х	Х		Х	Х	X	
X	Х	Х	Х	Х	X	X	
X	x	X	X	Х	X		
			x	x	X		

c) algoritmus pro detekci vnitřní hranice H_S oblasti S

$$H_S = \{q \in S : \exists p \in \delta(q) \text{ AND } p \notin S\}, \text{ kde } \delta(q) ... 4 - \delta(q) \text{ nebo } 8 - \delta(q)$$

- 1. nalezení prvního/počátečního bodu (px) P_0 oblasti S nejčastější je metoda skenování tzv. po řádcích IM,
 - I. nastavím řádek
 - II. prohledávám v řádku po sloupcích

nebo také

- 1) nastavím sloupec
- 2) prohledávám ve sloupci po řádcích

▶

2)

rozdíl ve výsledku detekce je patrný z příkladu a souvisí také s dalším krokem algoritmu, nastavením výchozího směru pro počáteční bod P_{θ} hranice H_{S} ;

2. definujeme pomocnou proměnnou *SMER*, do které budeme postupně zaznamenávat *směr*, ze kterého jsme se při hledání bodů vnitřní hranice *H_S* dostali z bodu *P_{k-I}* do bodu *P_k*; pro označení *směrů* platí konvence:

nastavíme proměnnou SMER pro počáteční bod P_0 hranice H_S : (vycházíme z předpokládaného postupu pro nalezení P_0)

$$SMER := 3$$
 pro $4-\delta$ okolí $SMER := 7$ pro $8-\delta$ okolí

- 3. hledáme následující bod hranice H_S oblasti S prohledáváním okolí aktuálního bodu P_k od počátečního směru, viz SMER (tj. směru, ze kterého jsme se dostali do bodu P_k) v kladném směru; prohledávání začínáme od směru DT:
 - a) pro $4-\delta$ okolí $DT = [SMER + 3] \bmod 4$ b) pro $8-\delta$ okolí ... pro sudý SMER $DT = [SMER + 7] \bmod 8$... pro lichý SMER $DT = [SMER + 6] \bmod 8,$ kde: sudý SMER ... hodnota v proměnné SMER je sudá

sudý *SMER* ... hodnota v proměnné *SMER* je sudá lichý *SMER* ... hodnota v proměnné *SMER* je lichá mod ... zbytek po dělení

4. po nalezení dalšího bodu P_{k+1} hranice H_S oblasti S nastavíme novou hodnotu proměnné SMER podle toho, z jakého směru jsme se "dostali" z předcházejícího (počátečního) bodu P_k do aktuálního bodu P_{k+1} ;

5. postupně provádíme kroky 3 a 4 algoritmu až do okamžiku, kdy bude platit:

$$(P_k \equiv P_1)$$
 AND $(P_{k-1} \equiv P_0) \rightarrow \text{KONEC algoritmu}$

Příklad detekce bodů P_k vnitřní hranice H_S (pro 4– δ okolí):

	1	2		4	5	6	7	8
1			+					
2			0	15				
3		2	1	14	13	12		
4		3	6	7	8	11		
5		4	5		9	10		
6								
7								
8								

P_k					
k	SMER	DT	[<i>i</i>]	[<i>j</i>]	
0	3	2	2	3	
1	3	2	3	3	
2	2	1	3	2	
3	3	2	4	2	
4	3	2	5	2	
5	0	3	5	3	
6	1	0	4	3	
7	0	3	4	4	
8	0	3	4	5	
9	3	2	5	5	
10	0	3	5	6	
11	1	0	4	6	
12	1	0	3	6	
13	2	1	3	5	
14	2	1	3	4	
15	1	0	2	4	
16	2	1	$\equiv P_0$		
17	3	2	≡	P ₁	

4.8. Plocha oblasti

Plocha (velikost, obsah) oblasti S odpovídá počtu obrazových bodů b(i,j), patřících do této oblasti.

a) plocha A₁ oblasti S

počítaná jako počet obrazových bodů $b(i,j) \in S$:

$$A_{1} = \sum_{\forall b(i,j) \in IM} b(i,j), kde \ b(i,j) = 1 \ pro \ \forall \ b(i,j) \in S$$

$$b(i, j) = 0 \text{ pro } \forall b(i, j) \notin S$$

tj. všechny body $b(i,j) \in S$ započítáváme hodnotou = 1 bez ohledu na skutečnou úroveň jasu na souřadnici $(i,j) \in S$; odtud se pak také odvíjí konkrétní realizace algoritmu výpočtu;

b) plocha A₂ oblasti S

metoda využívá *numerické integrace* (spec. lichoběžníkové metody), kdy předpokládáme, že máme definovánu <u>ohraničující</u> křivku C oblasti S, která je <u>orientovaná</u> a <u>uzavřená</u>; takovou křivkou může být vnitřní nebo vnější hranice oblasti, souvislá ve smyslu $4-\delta$ okolí nebo $8-\delta$ okolí, nebo také nesouvislá, orientovaná, uzavřená křivka, generovaná např. ručně pomocí vhodného interaktivního grafického nástroje (myší, perem, ...);