WNIOSKI Z TW. 2, 6, 7

Tw. 9 Jeżeli

 $\forall n$ funkcja $f_n(x)$ jest różniczkowalna na [a, b],

szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny w przynajmniej jednym punkcie $c \in [a, b]$

oraz szereg $\sum_{n=0}^{\infty} f'_n(x)$ jest zbieżny jednostajnie na [a, b],

to suma szeregu $\sum_{n=1}^{\infty} f_n(x)$ jest funkcją różniczkowalną na

$$[a,b]$$
 oraz $\left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x) \ \forall x \in [a,b].$
Innymi słowy, przy powyższych założeniach można

różniczkować szereg wyraz po wyrazie.

Jeżeli

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a, b],

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a, b],

to
$$\int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Jeżeli

 $\forall n \text{ funkcja } f_n(x) \text{ jest ciągła na } [a, b],$

a szereg $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b],

to
$$\int_a^b \sum_{n=0}^\infty f_n(x) dx = \sum_{n=0}^\infty \int_a^b f_n(x) dx$$
.
Innymi słowy, przy powyższych założeniach można całkować

szereg wyraz po wyrazie.

Tw. 10 - Dowód:

▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].

Tw. 10 - Dowód:

- ▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].
- ▶ $\sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b], wyrazy szeregu ciągłe ⇒ suma tego szeregu jest funkcją ciągłą na [a,b] i $\int_a^b \sum_{n=0}^{\infty} f_n(x) dx$ jest dobrze określona;

Tw. 10 - Dowód:

- ▶ $\forall n \int_{a}^{b} f_n(x) dx$ dobrze określona, bo $f_n(x)$ ciągła na [a, b].
- $ightharpoonup \sum_{n=0}^{\infty} f_n(x)$ jest zbieżny jednostajnie na [a,b], wyrazy n=0 szeregu ciągłe ⇒ suma tego szeregu jest funkcją ciągłą na [a, b] i $\int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx$ jest dobrze określona;
- ▶ $\forall \varepsilon > 0 \exists N_0 \forall k \ge N_0 \forall x \in [a, b] \left| \sum_{n=k}^{\infty} f_n(x) \right| \le \varepsilon \text{ i stąd}$ $\left| \int_a^b \sum_{n=0}^{\infty} f_n(x) dx \sum_{n=0}^{k-1} \int_a^b f_n(x) dx \right| = \left| \int_a^b \sum_{n=k}^{\infty} f_n(x) dx \right| \le \varepsilon (b-a). \blacksquare$