扱いたい構造は以下の全てを持つ圏

- 自己双対コンパクト閉圏 (Self-Dual Compact Closed Category)
- トレース付き有限双積 (Traced Finite Biproduct)
- 半環圏 (Rig Category)
- 逆圏 (Inverse Category)
- 上限による豊穣化 (Sup enrichment)
- 余代数モーダリティの余クライスリ圏 (coKleisli Category of coAlgebra Modality)
- ダガーファイブレーション (Dagger Fibration)

0.1 圏

定義 1 (Category (圏)). 圏 C は以下の構造を備える

- 対象(Object)の類 Obj(\mathcal{C}) を持つ(各対象は A, B, C 等の大文字で表す)
- $A, B \in \text{Obj}(\mathcal{C})$ に対する射(Morphism)の類 $\text{Hom}_{\mathcal{C}}(A, B)$ を持つ(各射は単に $A \to B$ で表すか, f, g, h 等の小文字で表す)
 - 射 $f: A \to B$ の A を始域 (Domain), B を終域 (Codomain) と呼び, それぞれ Dom(f), Cod(f) で表す
- 任意の対象 A に対して恒等射 $\mathrm{id}_A:A\to A$ が存在する
- 任意の射 $f: A \to B$ 及び $g: B \to C$ に対して射の合成 $g \circ f: A \to C$ が存在する
- 任意の対象 A,B 及び射 $f:A\to B$ について、単位律 $\mathrm{id}_B\circ f=f$ $f\circ \mathrm{id}_A=f$ を満たす
- 任意の射 $f:A\to B, g:B\to C, h:C\to D$ に対して結合律 $(h\circ g)\circ f=h\circ (g\circ f)$ を満たす

定義 2 (Monomorphism (単射)). 射 $f: A \to B$ は、任意の射 $g_1, g_2: C \to A$ に対して $f \circ g_1 = f \circ g_2$ ならば $g_1 = g_2$ が成り立つとき、単射と呼ぶ.

定義 3 (Epimorphism (全射)). 射 $f: A \to B$ は、任意の射 $g_1, g_2: B \to C$ に対して $g_1 \circ f = g_2 \circ f$ ならば $g_1 = g_2$ が成り立つとき、全射と呼ぶ。

定義 4 (Bimorphism (双射)). 単射かつ全射である射を全単射もしくは双射と呼ぶ.

定義 5 (Isomorphism (同型射))。射 $f:A\to B$ が同型射(Isomorphism)であるとは, $g\circ f=\mathrm{id}_A$ かつ $f\circ g=\mathrm{id}_B$ を満たす $g:B\to A$ が存在することをいう.このとき g は f の逆射(Inverse morphism)と呼び f^{-1} で表す.二つの等式のうち,左のみ満たす場合の射 g を f の引き込み(Retraction)と呼び,右のみ満たす場合の g を f の断面(Section)と呼ぶ.射が同型射であることを強調する場合, $f:A\stackrel{\cong}{\to} B$ と表す.圏の対象 A,B の間に同型射が存在するとき,A と B は同型(Isomorphic)であるといい, $A\cong B$ で表す.

任意の同型射は双射だが、双射は必ずしも同型射ではないことに留意すること.

定義 6 (Functor (関手)). \mathcal{C} と \mathcal{D} を圏とする. 関手 $\mathbf{F}: \mathcal{C} \to \mathcal{D}$ は、 \mathcal{C} の対象を \mathcal{D} の対象へ写す関数 $\mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$ と、 \mathcal{C} の射を \mathcal{D} の射に写す関数 $\mathrm{Hom}_{\mathcal{C}}(A,B) \to \mathrm{Hom}_{\mathcal{D}}(\mathbf{F}A,\mathbf{F}B)$ であり、 $\mathbf{F}(g \circ f) = \mathbf{F}(g) \circ \mathbf{F}(f)$ と $\mathbf{F}(\mathrm{id}_A) = \mathrm{id}_{(\mathbf{F}A)}$ を満たす.

定義 7 (Natural Transformation(自然変換)). \mathcal{C} と \mathcal{D} を圏とし, \mathbf{F} , \mathbf{G} : $\mathcal{C} \to \mathcal{D}$ を関手とする.自然変換 τ : $\mathbf{F} \Rightarrow \mathbf{G}$ は,射の族 τ_A : $\mathbf{F}A \to \mathbf{G}A$ から成り,圏 \mathcal{C} の任意の射 f : $A \to B$ について,以下の図式が可換(矢印をどの順番に通っても,射の合成に関して等式が成り立つこと)になる.

$$\begin{array}{ccc} \mathbf{F}A & \xrightarrow{\tau_A} \mathbf{G}A \\ \mathbf{F}f \downarrow & & \downarrow \mathbf{G}f \\ \mathbf{F}B & \xrightarrow{\tau_B} \mathbf{G}B \end{array}$$

任意の対象 $A \in \text{Obj}(\mathcal{C})$ について射 τ_A が \mathcal{D} の同型射であるとき, τ は自然同型(Natural Isomorphism)であるという.

定義 8 (Categorical Equivalence (圏同値)). 圏 \mathcal{C} と \mathcal{D} は、関手 $\mathbf{F}: \mathcal{C} \to \mathcal{D}$ と $\mathbf{G}: \mathcal{D} \to \mathcal{C}$ が存在して $\mathbf{Id}_{\mathcal{C}} \cong \mathbf{G} \circ \mathbf{F}$ かつ

 $\mathbf{Id}_{\mathcal{D}} \cong \mathbf{F} \circ \mathbf{G}$ であるとき、同値であるという($\mathbf{Id}_{\mathcal{C}}$ と $\mathbf{Id}_{\mathcal{D}}$ は各圏の恒等関手). 圏同値は $\mathcal{C} \simeq \mathcal{D}$ で表す.

定義 9 (Opposite Category (反対圏)). 圏 \mathcal{C} の反対圏 \mathcal{C}^{op} とは、 $\mathrm{Obj}(\mathcal{C}^{op}) = \mathrm{Obj}(\mathcal{C})$ かつ $\mathrm{Hom}_{\mathcal{C}^{op}}(A,B) = \mathrm{Hom}_{\mathcal{C}}(B,A)$ である圏である.

定義 10 (Adjunction (随伴) [1]). \mathcal{C} と \mathcal{D} を圏とする。関手 $\mathbf{L}: \mathcal{C} \to \mathcal{D}$ と $\mathbf{R}: \mathcal{D} \to \mathcal{C}$ が随伴 (Adjunction) であるとは、対象 $A \in \mathrm{Obj}(\mathcal{C})$ と $B \in \mathrm{Obj}(\mathcal{D})$ について自然となる以下の自然同型が成り立つときであり、 $\mathbf{L} \dashv \mathbf{R}$ であらわす.

$$\operatorname{Hom}_{\mathcal{D}}(\mathbf{L}A, B) \cong \operatorname{Hom}_{\mathcal{C}}(A, \mathbf{R}B)$$

$$\mathcal{C} \xrightarrow{\mathbf{L}} \mathcal{D}$$

0.2 モノイダル圏

定義 11 (Monoidal Category (モノイダル圏) [2]). モノイダル圏 C は以下の構造を備える

- 双関手 $(-) \otimes (-) : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ (モノイダル積と呼ばれる)
- 単位対象 $I \in Obj(C)$
- (自然同型) 結合子 $\alpha_{A,B,C}: (A \otimes B) \otimes C \xrightarrow{\cong} A \otimes (B \otimes C)$
- (自然同型) 左単位子 $\lambda_A : I \otimes A \xrightarrow{\cong} A$
- ullet (自然同型) 右単位子 $\rho_A:A\otimes I \xrightarrow{\cong} A$
- 二つの図式(五角等式,三角等式)が可換となる

定義 12 (Symmetric Monoidal Category (対称モノイダル圏) [2]). 対称モノイダル圏 $\mathcal C$ はモノイダル圏であり、以下の構造を備える.

- (自然同型) 対称子 $\sigma_{A,B}: A \otimes B \xrightarrow{\cong} B \otimes A$
- 等式 $\sigma_{A,B} = \sigma_{B,A}^{-1}$ を満たす
- 六角等式が可換となる

定義 13 (Symmetric Monoidal Closed Category (対称モノイダル閉圏) [3]). 対称モノイダル閉圏 $\mathcal C$ は対象モノイダル圏 であり、以下の構造を備える.

- 双関手 (-) \multimap $(-): \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$ (内部ホムと呼ばれる)
- 任意の対象 $A \in \mathrm{Obj}(\mathcal{C})$ について、モノイダル積 \otimes と内部ホム \multimap の随伴 $((-) \otimes A \dashv A \multimap (-)) : \mathcal{C} \to \mathcal{C}$ が存在する

命題 14. 対称モノイダル閉圏 $\mathcal C$ は任意の $A,B,C\in \mathrm{Obj}(\mathcal C)$ について、同型 $(A\otimes B)\multimap C\cong A\multimap (B\multimap C)$ を持つ.

証明. モノイダル積⊗と内部ホム → の随伴から自然同型

$$\operatorname{Hom}_{\mathcal{C}}(A \otimes B, C) \cong \operatorname{Hom}_{\mathcal{C}}(A, B \multimap C)$$

が得られる. 任意の $X \in \text{Obj}(\mathcal{C})$ について、自然同型の合成により、

$$\operatorname{Hom}_{\mathcal{C}}(X,(A\otimes B)\multimap C)\stackrel{\cong}{\to} \operatorname{Hom}_{\mathcal{C}}(X\otimes (A\otimes B),C)$$

$$\stackrel{\cong}{\to} \operatorname{Hom}_{\mathcal{C}}((X\otimes A)\otimes B,C)$$

$$\stackrel{\cong}{\to} \operatorname{Hom}_{\mathcal{C}}(X\otimes A,B\multimap C)$$

$$\stackrel{\cong}{\to} \operatorname{Hom}_{\mathcal{C}}(X,A\multimap (B\multimap C))$$

を得る. 米田の補題より、同型 $(A \otimes B) \multimap C \cong A \multimap (B \multimap C)$ が存在する.

命題 15. 対称モノイド閉圏 $\mathcal C$ は任意の $X\in \mathrm{Obj}(\mathcal C)$ について、同型 $\mathbf I\multimap A\cong A$ を持つ.

証明. 任意の $X \in \mathrm{Obj}(\mathcal{C})$ について、自然同型の合成により、

$$\operatorname{Hom}_{\mathcal{C}}(X, \mathcal{I} \multimap A) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X \otimes \mathcal{I}, A)$$

 $\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X, A)$

を得る. 米田の補題より、同型 $I \multimap A \cong A$ が存在する.

命題 16. 対称モノイド閉圏 \mathcal{C} は任意の $A,B,C\in \mathrm{Obj}(\mathcal{C})$ について、以下の 3 つの射を持つ.

$$\eta_A': \mathcal{I} \to A \multimap A$$

$$\operatorname{eval}_{A,B}: (A \multimap B) \otimes A \to B$$

$$\operatorname{comp}_{ABC}: (A \multimap C) \otimes (B \multimap C) \to A \multimap C$$

証明. 恒等射 id_A より、射の同型

$$\operatorname{Hom}_{\mathcal{C}}(A,A) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(\operatorname{I} \otimes A,A)$$
$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(\operatorname{I},A \multimap A)$$

を得るので、射 η_A は存在する. 次に、恒等射 $\mathrm{id}_{A\multimap B}$ より、射の同型

$$\operatorname{Hom}_{\mathcal{C}}(A \multimap B, A \multimap B) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}((A \multimap B) \otimes A, B)$$

を得るので、射 $\operatorname{eval}_{A,B}$ は存在する. 次に、合成射 $\operatorname{eval}_{B,C} \circ (\operatorname{id}_{B \to C} \otimes \operatorname{eval}_{A,B})$ より、射の同型

$$\operatorname{Hom}_{\mathcal{C}}((B \multimap C) \otimes ((A \multimap B) \otimes A), C) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(((B \multimap C) \otimes (A \multimap B)) \otimes A, C)$$
$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}((B \multimap C) \otimes (A \multimap B), A \multimap C)$$

を得るので、射 $comp_{A.B.C}$ は存在する.

命題 14, 命題 15, 命題 16 は,対称子を使用せず証明しており,モノイド閉圏でも成り立つ. 命題 16 で用いた射 $\mathrm{eval}_{A,B}$ より,射の同型から

$$\operatorname{Hom}_{\mathcal{C}}((A \multimap B) \otimes A, B) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A \otimes (A \multimap B), B)$$
$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A, (A \multimap B) \multimap B)$$

を得る.

定義 17 (*-autonomous Category (*- 自立圏) [3]). *- 自立圏 $\mathcal C$ は対称モノイド閉圏であり、以下の構造を備える.

- 双対化対象 \bot ∈ Obj(\mathcal{C})
- 双対化関手 $(-)^* := (-) \longrightarrow \bot : \mathcal{C}^{op} \to \mathcal{C}$
- (自然同型) 二重双対 $A \stackrel{\cong}{\to} A^{**}$

双対化関手 (-)* から射の同型

$$\begin{split} \operatorname{Hom}_{\mathcal{C}}(A \otimes B, C^{\star}) &= \operatorname{Hom}_{\mathcal{C}}(A \otimes B, C \multimap \bot) \\ &\stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}((A \otimes B) \otimes C, \bot) \\ &\stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(A \otimes (B \otimes C), \bot) \\ &\stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(A, (B \otimes C) \multimap \bot) \\ &= \operatorname{Hom}_{\mathcal{C}}(A, (B \otimes C)^{\star}) \end{split}$$

を得る.

二重双対により,以下の同型

$$A \otimes B \cong (A \multimap B^*)^*$$

$$A \multimap B \cong (A \otimes B^*)^*$$

$$A \multimap B \cong B^* \multimap A^*$$

を得る.

証明.

$$A \otimes B \xrightarrow{\cong} (A \otimes B)^{**} \qquad A \multimap B \xrightarrow{\cong} A \multimap B^{**} \qquad A \multimap B \xrightarrow{\cong} A \multimap B^{**}$$

$$= ((A \otimes B) \multimap \bot)^{*} \qquad = A \multimap (B^{*} \multimap \bot) \qquad = A \multimap (B^{*} \multimap \bot)$$

$$\xrightarrow{\cong} (A \multimap (B \multimap \bot))^{*} \qquad \xrightarrow{\cong} (A \otimes B^{*}) \multimap \bot \qquad \xrightarrow{\cong} (B^{*} \otimes A) \multimap \bot$$

$$= (A \multimap B^{*})^{*} \qquad = (A \otimes B^{*})^{*} \qquad \xrightarrow{\cong} (B^{*} \otimes A) \multimap \bot$$

$$= B^{*} \multimap A^{*}$$

同様に、自然同型の合成により $\operatorname{Hom}_{\mathcal{C}}(A,B)\cong\operatorname{Hom}_{\mathcal{C}}(B^{\star},A^{\star})$ を得る. また、命題 15 より、同型 $\operatorname{I}^{\star}\cong\bot$ を得る.

定義 18 (Compact Closed Category (コンパクト閉圏) [4][5]). コンパクト閉圏 $\mathcal C$ は \star - 自立圏であり、以下の構造を備える.

- (自然同型) 自己双対 $\varsigma_{A,B}: (A \otimes B)^* \xrightarrow{\cong} A^* \otimes B^*$
- (自然同型) 自己双対 $\varsigma_{\rm I}:{\rm I}^\star\stackrel{\cong}{\longrightarrow}{\rm I}$

コンパクト閉圏の定義から同型を得る.

$$A \multimap B \xrightarrow{\cong} (A \otimes B^{\star})^{\star}$$
$$\xrightarrow{\cong} (A^{\star} \otimes B^{\star \star})$$
$$\xrightarrow{\cong} A^{\star} \otimes B$$

また、コンパクト閉圏 C の任意の対象 A, B, C について、以下の射の同型を得る.

$$\operatorname{Hom}_{\mathcal{C}}(A, B^{\star} \otimes C) \cong \operatorname{Hom}_{\mathcal{C}}(A, B \multimap C) \cong \operatorname{Hom}_{\mathcal{C}}(A \otimes B, C)$$

コンパクト閉圏 \mathcal{C} の任意の対象 $A \in \mathrm{Obj}(\mathcal{C})$ の恒等射 id_A について、二つの射の同型

$$\operatorname{Hom}_{\mathcal{C}}(A,A) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(\operatorname{I} \otimes A,A) \qquad \operatorname{Hom}_{\mathcal{C}}(A,A) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,\operatorname{I} \multimap A)$$

$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(\operatorname{I},A \multimap A) \qquad \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,A^{\star} \multimap \operatorname{I}^{\star})$$

$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,A^{\star} \multimap \operatorname{I})$$

$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,A^{\star} \multimap \operatorname{I})$$

$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,A^{\star} \multimap \operatorname{I})$$

$$\xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(A,A^{\star} \multimap \operatorname{I})$$

コンパクト閉圏 $\mathcal C$ の任意の対象 A について, η_A から射 $\operatorname{decomp}_{A,B,C}:A\multimap C\to (A\multimap B)\otimes (B\multimap C)$ を以下の射の合成として得る

$$A \multimap C \xrightarrow{\cong} (A^* \otimes C)$$

$$\xrightarrow{\rho_{A^* \otimes C}} (A^* \otimes C) \otimes I$$

$$\xrightarrow{\operatorname{id}_{A^* \otimes C} \otimes \eta_B} (A^* \otimes C) \otimes (B^* \otimes B)$$

$$\xrightarrow{\operatorname{id}_{A^* \otimes C} \otimes \sigma_{B^*,B}} (A^* \otimes C) \otimes (B \otimes B^*)$$

$$\xrightarrow{\alpha_{A^*,C,B \otimes B^*}} A^* \otimes (C \otimes (B \otimes B^*))$$

$$\xrightarrow{\operatorname{id}_{A^*} \otimes \sigma_{C,B \otimes B^*}} A^* \otimes ((B \otimes B^*) \otimes C)$$

$$\xrightarrow{\alpha_{A^*,B \otimes B^*,C}} (A^* \otimes (B \otimes B^*)) \otimes C$$

$$\xrightarrow{\alpha_{A^*,B,B^*} \otimes \operatorname{id}_C} ((A^* \otimes B) \otimes B^*) \otimes C$$

$$\xrightarrow{\alpha_{A^*,B,B^*} \otimes \operatorname{id}_C} ((A^* \otimes B) \otimes (B^* \otimes C)$$

$$\xrightarrow{\alpha_{A^*,B,B^*} \otimes \operatorname{id}_C} (A^* \otimes B) \otimes (B^* \otimes C)$$

$$\xrightarrow{\cong} (A \multimap B) \otimes (B \multimap C)$$

0.3 ダガー圏

定義 19 (†-Category (†- 圏) [2]). †- 圏 C は、以下の構造を備える.

- 関手 \dagger : $\mathcal{C}^{op} \to \mathcal{C}$
- † は対象に対して恒等
- 対合的 $\dagger \circ \dagger = \mathbf{Id}_{\mathcal{C}}$

†- 圏の定義から、任意の射: $A \to B, g: B \to C$ について、以下の等式が導かれる.

$$\begin{split} \mathrm{id}_A^\dagger &= \mathrm{id}_A \quad : A \to A \\ (g \circ f)^\dagger &= f^\dagger \circ g^\dagger \colon C \to A \\ f^{\dagger\dagger} &= f \qquad : A \to B \end{split}$$

 $f^{\dagger}=f^{-1}$ となる f をユニタリーと呼び、 $f^{\dagger}=f$ となる f を自己随伴と呼ぶ.

定義 20 (†-Functor (†- 関手)). **ToDo**

定義 21 (†-Symmetric Monoidal Category (†- 対称モノイド圏)[2][4]). †- 対称モノイド圏 $\mathcal C$ は、対称モノイド圏かつ †- 圏であり、以下の構造を備える.

- 任意の $A, B, C \in \text{Obj}(\mathcal{C})$ について、 $\alpha_{A,B,C}, \lambda_A, \rho_A, \sigma_{A,B}$ がユニタリ
- 関手†が厳密モノイド関手であり、任意の射 f,g について、 $(f\otimes g)^\dagger=f^\dagger\otimes g^\dagger$

定義 22 (†-Comact Category (†- コンパクト圏) [4]). †- コンパクト圏 $\mathcal C$ は,コンパクト閉圏かつ †- 対称モノイド圏であり,以下の構造を備える.

• 任意の $A \in \mathrm{Obj}(\mathcal{C})$ について、以下の図式が可換

$$\begin{array}{c}
I \xrightarrow{\eta_A} A^* \otimes A \\
\downarrow^{\sigma_{A^*,A}} \\
A \otimes A^*
\end{array}$$

定義から ϵ_A は $\epsilon_A=\eta_A^\dagger\circ\sigma_{A,A^\star}$ として定義可能となる.逆に ϵ_A から η_A を定義することもできる.

†- コンパクト圏 $\mathcal C$ は,任意の対象 A,B の内部ホム $A\multimap B$ について,以下の図式を可換にする射 $\mathrm{dagger}_{A,B}:A\multimap B\to B\multimap A$ を持つ.

$$\operatorname{Hom}(\operatorname{I}, A \multimap B) \xrightarrow{\operatorname{Hom}(\operatorname{I}, \operatorname{dagger}_{A,B})} \operatorname{Hom}(\operatorname{I}, B \multimap A)$$

$$\cong \downarrow \qquad \qquad \cong \uparrow$$

$$\operatorname{Hom}(A, B) \xrightarrow{(-)^{\dagger}} \operatorname{Hom}(B, A)$$

0.4 豊饒圏

定義 23 (\mathcal{V} -圏 (\mathcal{V} -category)). [6] \mathcal{V} をモノイダル圏とする. \mathbb{A} が \mathcal{V} で豊穣化された圏(あるいは単に \mathcal{V} -圏)とは以下の要素からなる.

- ▲ の対象 Obj(▲)
- 任意の対象 $A, B \in \text{Obj}(\mathbb{A})$ に対してホム対象 $\mathbb{A}(A, B) \in \text{Obj}(\mathcal{V})$
- 任意の対象 $A \in \text{Obj}(\mathbb{A})$ に対する \mathcal{V} の射 $u_A : I \to \mathbb{A}(A, A)$
- 任意の対象 $A, B, C \in \text{Obj}(\mathbb{A})$ に対する \mathcal{V} の射 $c_{A,B,C} : \mathbb{A}(B,C) \otimes \mathbb{A}(A,B) \to \mathbb{A}(A,C)$
- 任意の対象 $A,B,C,D\in \mathrm{Obj}(\mathbb{A})$ に対して以下の可換図式を満たす

ToDo 必要なら V-関手,V-自然変換も定義する.

0.5 有限双積

定義 24 (Finite Product (有限積) [2]). 圏 $\mathcal C$ における対象 A,B に対して有限積 $A\times B$ は、以下の構造を備える.

- 射 $\pi_1: A \times B \to A$ と $\pi_2: A \times B \to B$
- 任意の対象 C と射の組 $f:C \to A, g:C \to B$ に対して一意な射 $h:C \to A \times B$ が存在して以下の図式が可換

$$\begin{array}{c|c}
C \\
\downarrow h \\
A & \downarrow \\
\hline
A \times B & \xrightarrow{\pi_2} B
\end{array}$$

射 h は $\langle f, g \rangle$ と表記されることが多い.

ullet (終対象) 任意の対象 C に対して一意な射 $h:C \to I$ が存在する対象 I

有限積からなる圏(デカルト圏)は、以下の構造と満たすべきいくつかの公理 [2] を持つ対称モノイド圏と同値である.

- (自然な射の族) 複製 $\Delta_A: A \to A \otimes A$
- (自然な射の族) 削除 $\Diamond_A: A \to I$

定義 25 (Finite Coproduct(有限余積)[2]).] 圏 $\mathcal C$ における対象 A,B に対して有限余積 A+B は,以下の構造を備える.

- 射 $\iota_1:A\to A\oplus B$ と $\iota_2:B\to A\oplus B$
- 任意の対象 C と射の組 $f:A\to C,g:B\to C$ に対して一意な射 $h:A+B\to C$ が存在して以下の図式が可換

射 h は [f,g] と表記されることが多い.

• (始対象) 任意の対象 C に対して一意な射 $h: I \to C$ が存在する対象 I

有限余積からなる圏 (余デカルト圏) は、以下の構造と満たすべきいくつかの公理 [2] を持つ対称モノイド圏と同値である.

- (自然な射の族) 合併 $\nabla_A: A \oplus A \to A$
- ullet (自然な射の族) 追加 $\square_A: I \to A$

定義 26 (Finite Biproduct (有限双積) [2]). 圏 C における対象 A_1, A_2 に対して有限双積 $A_1 \oplus A_2$ は,以下の構造を備える.

- (零対象) 任意の対象 A_1,A_2 に対して一意な零射 $0_{A_1,A_2}:A_1\to O\to A_2$ が存在する対象 O
- 射 $\pi_1: A_1 \oplus A_2 \to A_1$ と $\pi_2: A_1 \oplus A_2 \to A_2$
- π₁, π₂ に関して有限積
- ι₁, ι₂ に関して有限余積

•
$$\delta_{ij} = \pi_i \circ \iota_j = \begin{cases} id_A & \text{if} \quad i = j \\ 0_{A_j, A_i} & \text{if} \quad i \neq j \end{cases}$$

ここで零射 $0_{A_1,A_2}$ は任意の対象 $X,Y,Z\in \mathrm{Obj}(\mathcal{C})$ および任意の射 $f:Y\to Z,g:X\to Y$ に対して,以下の図式を可換にする射である.

有限双積からなる圏は、以下の構造と満たすべきいくつかの公理[2]を持つ対称モノイド圏と同値である.

- (自然な射の族) 複製 $\Delta_A: A \to A \otimes A$
- (自然な射の族) 削除 $\Diamond_A: A \to I$
- (自然な射の族) 合併 $\nabla_A: A \otimes A \to A$
- (自然な射の族) 追加 $\square_A:I\to A$

有限双積を持つ圏は半加法圏 [7] である.半加法圏 $\mathcal C$ の任意の射 f,g:A o B に対して射の加法

$$f + g = \nabla_B \circ (f \oplus g) \circ \Delta_A : A \to B$$

と定義できる [8]. よって有限双積を持つ圏は可換モノイドで豊穣化された圏(\mathbf{CMon} -圏)である [9, Def. 2.7.6]. (ここで \mathbf{CMon} は対象を可換モノイド,射を可換モノイド間の準同型射とする圏)

射の加法は任意の射 $f, g, h: A \rightarrow B$ について以下の等式を満たす.

$$(f+g)+h=f+(g+h)$$

$$0_{A,B}+f=f=f+0_{A,B}$$

$$f+g=g+f$$

また、射の合成は射の加法を保存し、任意の対象 X,Y と任意の射 $f,g:A\to B,e:X\to A,h:B\to Y$ について、以下の

等式を満たす.

$$(f+g) \circ e = f \circ e + g \circ e$$
$$h \circ (f+g) = h \circ f + h \circ g$$
$$f \circ 0_{X,A} = 0_{X,B}$$
$$0_{B,Y} \circ f = 0_{A,Y}$$

また,モノイダル圏 C について有限双積が保存されるとき,モノイダル積は射の加法を保存し,任意の対象 X,Y と任意の射 $f,g:A\to B,e,h:C\to D$ に対して,以下の等式を満たす.

$$(f+g) \otimes h = f \otimes h + g \otimes h$$
$$f \otimes (e+h) = f \otimes e + f \otimes h$$
$$0_{X,Y} \otimes f = 0_{X,Y}$$

可換モノイドが冪等率 f+f=f も満たす,すなわち射の加法が交わり(join)になっており,さらに完備上半束(sup-lattice),つまりホム対象の任意の部分集合について交わりを持つとき,**CMon**-圏はむしろ **Sup**-圏である.

定義 27 (Sup-Category (Sup-圏)). [10, Def. 1.3.(i)] Sup は対象が完備上半束、射が完備上半束を保存する写像からなる圏である. Sup-圏 $\mathcal C$ のホム対象 $\mathcal C(A,B)$ の任意の部分集合 S に対して, $\mathcal C(A,B)$ 上の半順序に関する上限 $\bigvee_{s\in S} s$ を持つ. 射の合成は上限を保存し,任意の射 $f:X\to A,g:B\to Y$ について,以下の等式を満たす.

$$\left(\bigvee_{s \in S} s\right) \circ f = \bigvee_{s \in S} (s \circ f)$$
$$g \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} (g \circ s)$$

また,射の加法と同様に,モノイダル圏でもある \mathbf{Sup} -圏 $\mathcal C$ について,モノイダル積が上限を保存するとき,以下の等式を満たす.

$$\left(\bigvee_{s \in S} s\right) \otimes f = \bigvee_{s \in S} (s \otimes f)$$
$$g \otimes \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} (g \otimes s)$$

定義 28 (Sup-Functor (Sup-関手)). [10, Def. 1.3.(ii)] Sup-圏間の関手 $\mathbf{F}: \mathcal{C} \to \mathcal{D}$ が射の上限を保存するとき,Sup-関手と呼ぶ.

$$\mathbf{F}\left(\bigvee_{s\in S}s\right) = \bigvee_{s\in S}\mathbf{F}(s)$$

Sup-圏はクオンタロイド(Quantaloid)という名前でも知られており [11], multi-valued な論理やファジィ論理などに応用されている.

0.6 制限圏

定義 29 (Restriction Category (制限圏)). [12, Def. 2.1.1.] 圏 $\mathcal C$ について, $\mathcal C$ の任意の射 $f:A\to B$ に対して射 $\overline f:A\to A$ が割り当てられ,次の 4 つの条件を満たすとき,圏 $\mathcal C$ は制限構造を持ち,圏 $\mathcal C$ を制限圏と呼ぶ.

- 任意の射 $f: A \to B$ について、 $f \circ \overline{f} = f$
- 任意の射 $f: A \to B$ と $g: A \to C$ について、 $g \circ \overline{f} = \overline{g} \circ \overline{f}$

ここで、射 \overline{f} は f の restriction idempotent (制限べき等) と呼ばれる.

制限圏の射 $f: A \to B$ は $\overline{f} = \mathrm{id}_A$ であるとき total と呼ぶ.

制限圏は半順序集合 poset で豊穣化された圏となる [12, p.237][13, Lemma 1.6.3]. 射の半順序関係は次の形で与えられる.

$$f \le g \Leftrightarrow f = g \circ \overline{f}$$

定義 30 (Restriction Functor (制限関手)). [13, 1.6.3 p.22] 制限圏間の関手 $\mathbf{F}:\mathcal{C}\to\mathcal{D}$ が制限構造を保存するとき, \mathbf{F} を制限関手と呼ぶ.

$$\overline{\mathbf{F}(f)} = \mathbf{F}(\overline{\mathbf{f}})$$

制限圏において,同型射を弱めた射を考える.制限圏 $\mathcal C$ の射 $f:A\to B$ に対して $f^\circ\circ f=\overline f$ と $f\circ f^\circ=\overline f^\circ$ を満たす唯一の射を制限同型射(restricted isomorphism)あるいは部分同型射(partial isomorphism)と呼ぶ.

定義 31 (Inverse Category (逆圏)). [12, section 2.3.2][14, Def. 3] 制限圏 \mathcal{C} について,全ての射 $f:A\to B$ が部分同型射 f° を持つとき, \mathcal{C} を逆圏 (Inverse Category) と呼ぶ.

定義 32 (Join Restriction Category (結び制限圏)). 要調査

結び制限圏は poset というよりは完備上半束(sup–lattice)で豊穣化された圏

定義 33 (Join Inverse Category (結び逆圏)). 要調査

Giles の論文の Def. 10.3.1. で射の加法とモノイダル積,射の合成の組み合わせについて定義している(お互いを保存する形)

0.7 その他構造

定義 34 (Rig Category (半環圏) [15]). 半環圏 C は以下の構造を備える.

- (加法としての) 対称モノイド構造 (\mathcal{C}, \oplus, O)
- \bullet (乗法としての) モノイド構造 (\mathcal{C}, \otimes, I)
- (自然同型) 左分配子 $\delta_l: A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C)$
- (自然同型) 右分配子 $\delta_r: (A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$
- (自然同型) 左吸収子 $\kappa_l: A \otimes O \cong O$
- (自然同型) 右吸収子 $\kappa_r: O \otimes A \cong O$
- 諸々のコヒーレンス公理 [15]

定義 35 (Trace (トレース)). 要調査

参考文献

- [1] Saunders Mac Lane. Categories for the Working Mathematician, Vol. 5 of Graduate Texts in Mathematics. Springer.
- [2] Peter Selinger. A survey of graphical languages for monoidal categories. *Lecture Notes in Physics*, Vol. 813, , 08 2009.
- [3] Michael Barr. *-autonomous categories and linear logic. *Mathematical Structures in Computer Science*, Vol. 1, No. 2, p. 159–178, 1991.
- [4] Samson Abramsky. No-cloning in categorical quantum mechanics. Semantic Techniques in Quantum Computation, 10 2009.
- [5] G.M. Kelly and M.L. Laplaza. Coherence for compact closed categories. *Journal of Pure and Applied Algebra*, Vol. 19, pp. 193–213, 1980.
- [6] G M Kelly. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY.
- [7] Stephen Lack. Non-canonical isomorphisms. Journal of Pure and Applied Algebra, Vol. 216, No. 3, pp. 593–597, 2012.

- [8] Saunders MacLane. Duality for groups. Bulletin of the American Mathematical Society, Vol. 56, No. 6, pp. 485–516, 1950.
- [9] Brett Giles. An investigation of some theoretical aspects of reversible computing. Publisher: Graduate Studies.
- [10] Andrew M. Pitts. Applications of sup-lattice enriched category theory to sheaf theory. Vol. s3-57, No. 3, pp. 433–480.
- [11] Isar Stubbe. An introduction to quantaloid-enriched categories. Vol. 256, pp. 95–116.
- [12] J.R.B. Cockett and Stephen Lack. Restriction categories i: categories of partial maps. Vol. 270, No. 1, pp. 223–259.
- [13] Xiuzhan Guo. Products, joins, meets, and ranges in restriction categories. Ph.d. thesis, University of Calgary.
- [14] Robin Kaarsgaard, Holger Bock Axelsen, and Robert Glück. Join inverse categories and reversible recursion. Vol. 87, pp. 33–50.
- [15] Miguel L. Laplaza. Coherence for distributivity. In G. M. Kelly, M. Laplaza, G. Lewis, and Saunders Mac Lane, editors, *Coherence in Categories*, pp. 29–65, Berlin, Heidelberg, 1972. Springer Berlin Heidelberg.