Ollscoil na hÉireann The National University of Ireland

Coláiste na hOllscoile, Corcaigh University College, Cork

Summer Examination 2011

CS4407 Algorithm Analysis

Prof. G. Provan
Prof. J. Bowen (HoD)
Dr Carron Shankland (extern)

Attempt all questions

Total marks: 100

90 minutes

Please answer all questions Points for each question are indicated by [xx]

- 1. [15] Consider the *UniqueElements* problem, where we check whether all the elements in a given array are distinct.
 - a. [10] Use the loop invariance approach to analyse this algorithm.
 - b. [5] Use this approach to specify the complexity of the algorithm.
- 2. [15] Solve the following recurrence relation using repeated substitution. Do an inductive proof to show your formula is correct.

$$\begin{split} T(1) &= 1 \\ T(n) &= T(n\text{-}1) + O(n) \end{split}$$

- 3. [15] Given the weighted graph G shown below,
 - a. [10] Find a minimum spanning tree (MST) for *G*; show the steps of generating the MST.
 - b. [5] What is the complexity of this algorithm?

- 4. [15] Consider a weighted graph G(V,E), with source node S and sink node T.
 - i. [8] For the instance of a flow network shown below, compute the maximum flow. Give the actual flow as well as its value.
 - ii. [4] Justify why your answer is maximum.

- iii. [3] Consider a decision problem defined for such a flow network: Flow:= $\{(G,S,T,k)/G(V,E) \text{ is a flow network, } S,T \in V, \text{ and the value of a optimal flow from } S \text{ to } T \text{ in } G \text{ is } k\}$. What is the complexity of Flow?
- 5. [20] Prove that SET PACKING (SP) is NP-complete. We define SP as follows:

INSTANCE: A collection C of finite sets over a universal set U, and integer $k \le |C|$.

QUESTION: Does C contain k disjoint sets?

(Assume that you need to define a reduction from one of the following NP-complete problems: HAMILTON CIRCUIT, CLIQUE, INDEPENDENT SET, 3-SAT)

- 6. [20] Consider a class of graphs G(V,E) which contain an independent set of size 3/4|V|. An independent set is a subset V' of vertices such that no two vertices in V' are connected by an edge of G.
 - i. [10] Provide an approximation algorithm for G that can provably compute an independent set of size at least $\frac{1}{2}|V|$.
 - ii. [10] Prove that your algorithm can meet such bounds.

(Hint: you may make use of the 2-approximation algorithm for vertex cover that was described in class, i.e., you may assume that this algorithm exists and can be called as a subroutine. A vertex cover of a graph G is a subset of vertices V' such that all edges in G are adjacent to at least one node of V'.)