Oscillatore di Wien

Francesco Sacco

Dicembre 2018

1) Per il primo punto ho usato un segnale in ingresso V_s con un ampiezza picco picco di $260\pm11mV$, e ho fatto delle misurazioni con dei segnali con frequenza compresa tra i 500Hz e 3kHz. I valori delle misure e i grafici sono riportati qui sotto

$f[\mathrm{kHz}]$	$V_A[\mathrm{mV}]$	$V_A/V_{in}[dB]$	fase [gradi]
0.4495 ± 0.00001	$(1.25 \pm 0.05) \times 10^2$	-6.4 ± 0.5	43.4 ± 0.9
0.6811 ± 0.00001	$(1.55 \pm 0.07) \times 10^2$	-4.5 ± 0.5	29.4 ± 0.6
1.0047 ± 0.0001	$(1.72 \pm 0.09) \times 10^2$	-3.6 ± 0.6	15.9 ± 0.3
1.2169 ± 0.0001	$(1.78 \pm 0.09) \times 10^2$	-3.3 ± 0.6	9.0 ± 0.2
1.5983 ± 0.0001	$(1.82 \pm 0.09) \times 10^2$	-3.1 ± 0.6	$0\pm8.0 imes10^{-2}$
2.17434 ± 0.00001	$(1.74 \pm 0.09) \times 10^2$	-3.5 ± 0.6	-11.6 ± 0.2
2.89413 ± 0.00001	$(1.66 \pm 0.08) \times 10^2$	-3.9 ± 0.6	-24.2 ± 0.5

dalla figura 1 si evince chiaramente che lo sfasamento diminuisce al'aumentare della frequenza e si ha uno zero alla frequenza di taglio $f_t = 1/2\pi\sqrt{R_1R_2C_1C_2}$, i valori delle componenti indicate nel circuito in figura 4 sono disponibili nella lista qui sotto

- $R_1 = 9.99 \pm 0.08 k\Omega$
- $R_2 = 9.91 \pm 0.08 k\Omega$
- $C_1 = 11.1 \pm 0.4 nF$
- $C_2 = 9.8 \pm 0.4 nF$

Ne consegue che $f_t = 1.5 \pm 0.4 k Hz^1$. Essendo in un regime con frequenze vicine a quella di taglio mi sono permesso di fare un fit lineare per vedere nel grafico dei residui gli errori (fig 2)

Per quanto riguarda l'attenuazione si nota dall'immagine 3 un massimo nella frequenza di taglio, mentre le altre frequenze vengono attenuate di più il valore teorico dell'attenuazione è $A \times \beta(f)$ dove A è l'attenuazione del partitore di tenzione messo a feedback, mentre $\beta(f)$ è l'attenuazione del partitore di tenzione

 $^{^1\}mathrm{L'errore}$ risulta grande perchè quando ho propagato $R_1R_2C_1C_2$ sull'inverso della radice, essendo la derivata intorno allo zero molto alta l'errore è esploso. Infatti $R_1R_2C_1C_2=(1.07\pm0.06)\times10^{-8}$

Figura 1: sfasamento del segnale in funzione della frequenza in ingresso

generalizzato composto dalle resistenze e capacità.

- 2) girando il potenziometro il segnale aumenta o diminuisce di ampiezza, finchè a un certo punto scompare, perchè $|A\beta|<1$
- 3) La frequenza varia in modo insignificante al variare della posizione del potenziometro, come detto prima l'ampiezza è il parametro che varia di più al variare dell'oscillazione
- 4) Misurando con l'oscilloscopio i voltaggi si ottiene che $V_A=242\pm 1mV$ e $V_{out}=716\pm 3mV$, facendo il rapporto si ottiene $V_{out}/V_A=2.9\pm 0.2$, che è in linea con la teoria
- 5) Succede che non si trovano più nel circuito

Figura 2: Residui dello sfasamento

Figura 3: Attenuazione del segnale in funzione della frequenza in infresso

Figura 4: Circuito 1