Algorithms

Sipser 3.3 (pages 154-159)

Computability

Hilbert's Tenth Problem:

Find "a process according to which it can be determined by a finite number of operations" whether a given a polynomial

$$p(x_1, x_2, \dots, x_n)$$

has an integral root.

Algorithms

- Intuitively:
 - An algorithm is a finite sequence of operations, each chosen from a finite set of well-defined operations, that halts in a finite time.
 - Sometimes also called procedures or recipes

Church-Turing Thesis

Algorithm

Decider

Languages and Problems

Let

 $D = \{p \mid p \text{ is a polynomial with an integral root}\}$

• Hilbert's Tenth Problem: Determine if D is Turing-decidable

CS 311 Mount Holyoke College

$D = \{p \mid p \text{ is a polynomial with an integral root}\}$

- Turing-recognizable
- M = "On input p, where p is a polynomial $p(x_1, x_2, ..., x_n)$.
 - 1. Lexicographically generate integer values for $(x_1, x_2, ..., x_n)$.
 - 2. Evaluate p as each set of values is generated.
 - If, at any point, the polynomial evaluates to 0, accept."

Hierarchy of languages

