ID6040 Introduction to Robotics

Dr. T. Asokan asok@iitm.ac.in

Robot Motion Planning

- Motion Planning
- Trajectory Planning
 - Joint Space Planning
 - Cubic polynomial functions
 - Higher order polynomials

Refer: John J Craig, Intr. to Robotics

Motion Planning

The goal of motion planning is to generate a function according to which a robot will move.

Function generation depends on task.

A motion *Path* is defined as a sequence of robot configurations in particular order without regard for timing of these configurations.

Motion *trajectory* is a time specified path data.

Trajectory refers to a time history of position, velocity, and acceleration for each degree of freedom

Path planning develops feasible path data for a specific task

Trajectory planning develops corresponding trajectory data to control the robot to follow the path.

Joint Space Trajectory Planning

Path shapes are described in terms of functions of joint angles.

- Each path point is specified in terms of a desired position and orientation wrt base frame.
- These points are converted to set of joint angles through inverse kinematics
- A smooth function is found for each of the n joints that pass through the via points and reach end point.
- The time required for each segment is the same for each joint so that all joints will reach the via point at the same time.

$$\theta(0) = \theta_0$$

$$\theta(0) = \theta_0$$
$$\theta(t_f) = \theta_f$$

$$\dot{\theta}(0) = \dot{\theta}_0$$

$$\dot{\theta}(0) = \dot{\theta}_0$$

$$\dot{\theta}(t_f) = \dot{\theta}_f$$

CUBIC POLYNOMIAL FUNCTIONS

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

$$\dot{\theta}(t) = a_1 + 2a_2t + 3a_3t^2$$

$$\ddot{\theta}(t) = 2a_2 + 6a_3t$$

$$\theta(0) = \theta_0$$

$$\theta(t_f) = \theta_f$$

$$\theta_f = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3$$

For the case of initial and final velocity zero

$$\dot{\theta}(0) = \dot{\theta}_0 = 0$$

$$\dot{\theta}(t_f) = \dot{\theta}_f = 0$$

$$0 = a_1$$

$$0 = a_1 + 2a_2t_f + 3a_3t_f^2$$
Introduction to Robotics

Solving these, we get

$$a_0 = \theta_0$$

$$a_1 = 0$$

$$a_2 = \frac{3}{t_f^2} (\theta_f - \theta_0)$$

$$a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0)_5$$

Example:

A single link robot with a rotary joint is motionless at θ =15 degrees. It is desired to move the joint in a smooth manner to θ =75 degrees in 3 secs. Find the coefficients of a cubic that accomplishes this motion and brings the manipulator to rest at the goal. Plot the position, velocity, and acceleration of the joint as a function of time.

$$a_0 = \theta_0 = 15$$

$$a_1 = 0$$

$$a_2 = \frac{3}{t_f^2} (\theta_f - \theta_0) = 20$$

$$a_3 = -\frac{2}{t_f^3}(\theta_f - \theta_0) = -4.44$$

$$\theta(t) = 15 + 20t^2 - 4.4t^3$$

position

velocity

acceleration

Path with Via points

$$\dot{\theta}(0) = \dot{\theta}_0$$

$$\dot{\theta}(t_f) = \dot{\theta}_f$$

$$\theta_0 = a_0$$

$$\theta_f = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3$$

$$\dot{\theta}(0) = a_1$$

$$\dot{\theta}(t_f) = a_1 + 2a_2t_f + 3a_3t_f^2 = \dot{\theta}_f$$

$$a_0 = \theta_0$$

$$a_1 = \dot{\theta}_f$$

$$a_{2} = \frac{3}{t_{f}^{2}} (\theta_{f} - \theta_{0}) - \frac{2}{t_{f}} \dot{\theta}_{0} - \frac{1}{t_{f}} \dot{\theta}_{f}$$

$$a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0) + \frac{1}{t_f^2} (\dot{\theta}_f - \dot{\theta}_0)$$

Exercise

Solve for the coefficients of two cubics that are connected in a two-segment spline with continuous acceleration at the intermediate via point. The initial angle is θ_0 , the via point is θ_v , and the goal point is θ_g

$$\theta(t) = a_{10} + a_{11}t + a_{12}t^{2} + a_{13}t^{3}$$

$$\theta(t) = a_{20} + a_{21}t + a_{22}t^{2} + a_{23}t^{3}$$

$$t = t_{fi}; i = 1,2$$

Higher-Order Polynomials

If we want to specify position, velocity and acceleration at the beginning and end of a path segment, a quintic polynomial is required, namely

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$

$$\theta_0 = a_0$$

$$\theta_f = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 + a_4 t_f^4 + a_5 t_f^5$$

$$\dot{\theta}(0) = a_1$$

$$\dot{\theta}(t_f) = a_1 + 2a_2 t_f + 3a_3 t_f^2 + 4a_4 t_f^3 + 5a_5 t_f^4$$

$$\ddot{\theta}(0) = 2a_2$$

$$\ddot{\theta}(t_f) = 2a_2 + 6a_3 t_f + 12a_4 t_f^2 + 20a_5 t_f^3$$

$$a_0 = \theta_0$$

$$a_1 = \dot{\theta}_0$$

$$a_2 = \ddot{\theta}_0/2$$

$$a_3 = \frac{20 \theta_f - 20 \theta_0 - (8 \dot{\theta}_f + 12 \dot{\theta}_0) t_f - (3 \ddot{\theta}_0 - \ddot{\theta}_f) t_f^2}{2t_f^3}$$

$$a_4 = \frac{30 \,\theta_0 - 30 \,\theta_f + (14 \,\dot{\theta}_f + 16 \,\dot{\theta}_0)t_f - (3 \,\ddot{\theta}_0 - 2 \,\dot{\theta}_f)t_f^2}{2t_f^4}$$

$$a_5 = \frac{12 \theta_f - 12 \theta_0 - (6 \dot{\theta}_f + 6 \dot{\theta}_0) t_f - (\ddot{\theta}_0 - \ddot{\theta}_f) t_f^2}{2t_f^5}$$

Linear function with parabolic blend

duction to Robotics

Linear function with parabolic blends for path with via points

Interior Path Points

j=2,3 k=3,4.

$$\frac{\partial}{\partial x} = \frac{\partial_{h} - \partial_{j}}{t_{djh}}$$

$$= \frac{\partial_{3} - \partial_{2}}{t_{d23}}$$

$$\frac{\partial}{\partial_{34}} = \frac{\partial_{4} - \partial_{3}}{t_{d34}}$$

$$\dot{\partial}_{j} = SGN(\dot{\partial}_{jk} - \dot{\partial}_{j+1,j})|\dot{\partial}_{j}|$$

$$t_{j} = \frac{(\dot{\partial}_{jk} - \dot{\partial}_{j+,k})}{\ddot{\partial}_{j}}$$

$$t_2 = \frac{(\dot{\theta}_{13} - \dot{\theta}_{12})}{\dot{\theta}_2}$$

$$t_3 = (\dot{\theta}_{34} - \dot{\theta}_{23})$$

$$t_{ik} = t_{djk} - \frac{t_i}{2} - \frac{t_k}{2} = t_{23} = t_{23} = t_{23} = t_{23} = t_{23}$$

13

First Segment: $\dot{\partial}_{1}^{2} t_{1} = \frac{\partial_{2}^{2} - \partial_{1}}{t_{d12}^{2} t_{1}^{2}}$ $=\frac{t_{di2}-\sqrt{t_{di2}-\left(\frac{2(0z0i)}{0i}\right)}}{\sqrt{0i}}$ = tdin ti- tr (cornecting 83,04) 04 = SGN (02-04) | 04 Last Sagment $t_4 = t_{d34} - \left(\frac{2(0_4 - 0_3)}{\ddot{0}_4} \right)$

14

Home work

- 1. Sketch graphs of position, velocity, and acceleration for a two segment continuous acceleration spline. Sketch them for a joint for which θ_0 =5 deg., θ_v =15 deg., θ_g =-10 deg. And each segment lasts 2 secs.
- 2. Calculate θ_{12} , θ_{23} , t_1 , t_2 , t_3 for a two-segment linear spline with parabolic blends. For this joint θ_1 =5 deg., θ_2 =15 deg., θ_3 =-40 deg. Assume t_{d12} = t_{d23} =2 secs, default acceleration at blends = 60 degrees/sec². Sketch plots of position, velocity and acceleration of θ
- 3. A single link robot with a rotary joint is motionless at θ = -5 deg. It is desired to move the joint in a smooth manner to θ =80 degrees in 4 secs. and stop smoothly. Compute the corresponding parameters of a linear trajectory with parabolic blends. Plot the position, velocity, and acceleration of the joint as a function of time.

THANK YOU