Consider an ordered triple (S, i, j), $1 \le i, j \le n$ and S is a subset of the vertices that includes v_i and v_j . Let B[S, i, j] denote the answer to the question, "Is there a Hamiltonian path on G[S] that starts at v_i and ends at v_j ?" Clearly, we are looking for the answer to B[V, 1, n].

We now show how to construct the answers to all B[S, i, j], starting from the smallest sets and working up to larger ones, spending O(n) time on each. Thus the total running time will be $O(2^n \cdot n^3)$.

B[S,i,j] is true if and only if there is some vertex $v_k \in S - \{v_i\}$ so that (v_i,v_k) is an edge, and there is a Hamiltonian path from v_k to v_j in $G[S - \{v_i\}]$. Thus, we set B[S,i,j] to be true if and only if there is some $v_k \in S - \{v_i\}$ for which $(v_i,v_k) \in E$ and $B[S - \{v_i\},k,j]$ is true. This takes O(n) time to determine.

 $^{^{1}}$ ex386.623.944