Modelo de Predição de Cancelamento de Reservas em Hotéis

SCC0230 Inteligência Artificial

Descrição da Problemática:

- Novos métodos de reserva de estadias em hotéis facilitam a experiência do usuário, porém podem trazer novos problemas para os hotéis.
- A comodidade pode fazer com que o cliente trate com menor importância a reserva.
- Reservas via site de domínio próprio ou aplicativos e/ou portais de reserva de terceiros distanciam o cliente da empresa.
- Maior comprometimento nas reservas mais "analógicas", como via telefone ou até presencialmente.
- Cabe aos hotéis buscarem soluções para amenizar as chances do cliente não honrar com sua reserva, ou ao menos se preparar para isso.
- Busca-se mitigar o ônus dos hotéis utilizando modelos preditivos inteligentes.

Os dados:

- Booking ID
- no_of_adults
- no_of_childrens
- no_of_weekend_nights
- no_of_week_nights
- type_of_meal_plan
- required_car_parking_space
- room_type_reserved
- lead_time
- arrival_year
- arrival_month
- arrival_date
- market_segment_type
- repeated_guest
- no_of_previous_cancellations
- no_of_previous_bookings_not_canceled
- avg_price_per_room
- no_of_special_requests
- booking_status

Pré-processamento dos dados:

O dataset já se encontrava limpo, sem dados duplicados ou nulos, dispensando a necessidade de pré-processamento dos dados. Houve apenas uma preparação - distinta para cada modelo - antes de cada modelagem.

Análise dos dados:

Histograma das variáveis categóricas

A investigação dessas variáveis visa fornecer insights sobre preferências, comportamentos e características distintas dos clientes. Os resultados dessa análise estão apresentados no slide seguinte.

Análise dos dados: Correlação entre as variáveis

Conduzimos uma análise de correlação com o objetivo de explorar as relações entre as variáveis em nosso conjunto de dados de reservas de hotel, buscando entender as interconexões e padrões subjacentes. Os resultados estão detalhados no slide subsequente.

Análise dos dados:

Distribuição das variáveis contínuas

Fizemos uma análise exploratória com o intuito de obter uma visão abrangente das características de algumas das variáveis contínuas em nosso conjunto de dados de reservas de hotel, como apresentado no slide a seguir.

- Examina a distribuição da presença de crianças nas reservas.
- Ajuda a observar a frequência de reservas com ou sem criancas.

- Analisa a distribuição das reservas em relação às noites
 de semana
- Pode revelar se a maioria das reservas é para viagens de negócios ou lazer durante a semana.

- O histograma revela a distribuição do número de adultos nas reservas.
- Permite identificar se a maioria das reservas é para casais, grupos ou viajantes individuais.

- Exibe a distribuição do tempo entre a data da reserva e a data de chegada.
- Ajuda a entender padrões de reservas de última hora ou planejadas com antecedência.

- Mostra como as reservas estão distribuídas em relação às noites de fim de semana.
- Pode indicar preferências por estadias durante a semana ou nos fins de semana.

- Mostra como os preços dos quartos estão distribuídos.
- Pode fornecer insights sobre a faixa de preço preferida pelos clientes.

Avaliação de modelos

Utilizamos algumas métricas para analisar qual o melhor modelo dentre os testados, que estão listadas no slide a seguir.

Métrica	O que Mede	Como é Calculada	Uso
Acurácia	Proporção de acertos do modelo.	(Verdadeiros Positivos + Verdadeiros Negativos) / Total de Previsões.	Avaliação geral de desempenho.
Pontuação F1	Equilíbrio entre precisão e recall.	2 * (Precisão * Recall) / (Precisão + Recall).	Útil em conjuntos de dados desbalanceados.
Precisão	Exatidão das previsões positivas.	Verdadeiros Positivos / (Verdadeiros Positivos + Falsos Positivos).	Importante quando os falsos positivos são custosos.
Recall	Capacidade de identificar casos positivos.	Verdadeiros Positivos / (Verdadeiros Positivos + Falsos Negativos).	Crucial quando os falsos negativos são custosos.

Resultados

Testamos 3 modelos diferentes, de 3 paradigmas diferentes, e avaliamos o desempenho de cada um, com o objetivo de averiguarmos qual modelo se adequa melhor aos dados apresentados.

- 1. Random Forest
- 2. KNN
- 3. Naive Bayes

Resultados:

1) Random Forest

Paradigma: Aprendizado Simbólico + Ensemble

Ao combinar diversas árvores, cada uma treinada em subconjuntos diferentes dos dados, o modelo oferece estabilidade, reduzindo overfitting e proporcionando uma visão abrangente das relações nas variáveis.

Desempenho do Modelo:

Model	Accuracy Score	F1 score	Precision	Recall
0 Random forest	0.904179	0.849263	0.893757	0.808989

Resultados:

2) KNN

Paradigma: Aprendizado baseado em instâncias

O KNN, é uma técnica de aprendizado de máquina que se baseia na proximidade entre os pontos de dados. Ao classificar ou prever com base nos vizinhos mais próximos, o KNN destaca-se por sua simplicidade conceitual e eficácia em identificar padrões em conjuntos de dados.

Desempenho do Modelo:

	Model	Accuracy Score	F1 score	Precision	Recall
0	KNN	0.876172	0.808329	0.835863	0.782551

Resultados:

3) Naive Bayes: Categorical Naive Bayes

Paradigma: Aprendizado estatístico

Baseado no teorema de Bayes, o algoritmo calcula a probabilidade condicional de uma classe dado um conjunto de características. É especialmente útil quando as variáveis são independentes (hipótese ingênua).

O Naive Bayes categorico foi escolhido a partir da análise exploratória, onde foi percebida a grande quantidade de variáveis categoricas presentes nos dados.

Desempenho do Modelo:

	Model	Accuracy Score	F1 score	Precision	Recall
0	Categorical_nb	0.801522	0.671293	0.729365	0.621786

Modelo escolhido:

Random Forest

Interpretabilidade das Features:

As barras no gráfico representam a importância de cada feature na previsão do modelo, calculada usando o critério Mean Decrease in Impurity (MDI).

Esta decisão foi motivada por sua boa performance, expressa por uma Accuracy Score de 90.4%, indicando sua eficácia em prever com precisão se um hóspede irá cancelar ou não.

O Random Forest também se destacou com um F1 Score de 84.9%, uma métrica essencial quando lidamos com desequilíbrio nos dados, como é comum em previsões de cancelamentos. Esta pontuação leva em consideração tanto a precisão quanto o recall, equilibrando a preocupação com falsos positivos e falsos negativos.

Além de sua performance sólida, o Random Forest é conhecido por lidar bem com diferentes tipos de dados, oferecendo robustez contra o sobreajuste e se mostrando eficaz em tarefas de classificação. Dessa forma, acreditamos que o Random Forest é a escolha mais adequada para atender às nossas necessidades específicas de previsão de cancelamentos de reservas.

Aplicações práticas dos resultados:

- Munida das análises aqui mostradas as empresas hoteleiras podem tomar diversas ações:
 - Dada a predição da reserva em tempo real, um prazo, valor e multas adaptativas podem ser implementadas;
 - Avaliando as estatísticas de cancelamento das reservas, novos métodos de contato com o cliente podem ser pensados, retomando a proximidade de antigamente.
 - Pode-se explorar também diferentes fontes de reserva, uma vez que uma empresa pode ter mais de um canal de atendimento.

Fonte dos dados

https://www.kaggle.com/datasets/ahsan81/hotel-reservations-classification-dataset/data

Integrantes:

Ana Vitória Gouvea de Oliveira Freitas

Eduardo Vinícius Barbosa Rossi

Matheus Luis Oliveira da Silva

Pedro Augusto Ribeiro Gomes

Sofhia de Souza Gonçalves

Thiago Henrique dos Santos Cardoso