Contents

Chapter 1 What is Miqualat Database	1
Chapter 2 Setting Up the Working Environment	2
2.1 Install Jupyter Notebook	2
2.2 Install Mysql Server	2
2.3 Install Mysqlclient	3
2.4 Install Required Python Libraries	3
Chapter 3 Folder and Content Description	4
3.1 Description of the FUNCTIONS Folder	4
3.2 Description of the OUTPUT Folder	4
3.3 Description of the DATABASE Folder	4
Chapter 4 Miqualat Notebooks Description and Usage	5
Chapter 5 Create Biomart File	6
Chapter 6 Create Table File	8
Chapter 7 Database Description	9
7.1 Database Schema	9
7.2 Database Description	10
7.3 Check Description	

Chapter 1 What is Miqualat Database

With Miqualat Notebooks you have access to an easy-to-use Jupyter Notebook interface.

Miqualat Notebook allows you to save data from publications, genes, variants, tecnique and other and associate them with descriptions and tags.

A control system has been implemented to maintain flexibility and freedom to import data while maintaining control over them.

You can get this data from different databases as pubmed, ensembl, kegg and make automatically links.

This relational database allows you to link and export information from different tables.

Chapter 2 Setting Up the Working Environment

2.1 Install Jupyter Notebook

Update and upgrade your system (recommended).

\$ sudo apt update && sudo apt upgrade

Install python3-pip.

\$ sudo apt install python3-pip

Install jupyter notebook.

\$ sudo apt install jupyter-notebook

If you need to configure the configuration file is located in /root/.jupyter/jupyter notebook config.py

\$ sudo jupyter-notebook --generate-config

To access Jupyter Notebook you may need to set up a password.

\$ sudo jupyter-notebook password

Run jupyter notebook (on port 8888 by default).

\$ sudo jupyter-notebook

2.2 Install Mysql Server

Install apache2 and mysql-server.

\$ sudo apt install apache2

\$ sudo apt install mysql-server

If you use raspberry or a similar system.

\$ sudo apt install mariadb-server-10.0

Create user and set password for database (this user can be used to access in phpmyadmin, keep your credentials).

\$ sudo mysql -u root

\$ CREATE USER 'user'@'localhost' IDENTIFIED BY 'password';

Grant privileges on all databases.

\$ GRANT ALL PRIVILEGES ON * . * TO 'user'@'localhost';

Grant privileges on one databases (safer).

\$ GRANT ALL PRIVILEGES ON DATABASE. * TO 'user'@'localhost';

\$ FLUSH PRIVILEGES:

!! IMPORTANT (pay attention before continuing with the command below), when you install phpmyadmin (command below) after select apache2 (with TAB) and press SPACE, after leave all

empty (press ENTER) !! \$ sudo apt install phpmyadmin \$ sudo systemctl restart apache2

Connect phpmyadmin using your browser (on port 80: /phpmyadmin). http://192.168.0.(continue_your_ip).../phpmyadmin

Show your IP. \$ hostname -I

http://localhost/phpmyadmin (work only on local computer not for remote server)

2.3 Install Mysqlclient

Install mysqlclient (connect database remotely using python). Get more information at: https://pypi.org/project/mysqlclient/ \$ sudo apt-get install python3-dev default-libmysqlclient-dev build-essential \$ pip3 install mysqlclient

Update and upgrade your system (recommended). \$ sudo apt update && sudo apt upgrade

2.4 Install Required Python Libraries

The following libraries are required for use miqualat notebooks.

\$ sudo pip3 install biopython

\$ sudo pip3 install ensembl-rest

\$ sudo pip3 install mygene

Chapter 3 Folder and Content Description

3.1 Description of the FUNCTIONS Folder

The functions in FUNCTIONS folder, contain python code that is recalled in the notebooks.

- 1. ensembl_search.py
 Use the ensembl-rest library to get information about genes from the Ensembl database.
- 2. ensembl_to_kegg_id.py
 Convert Ensembl gene id to the Kegg id of the gene and related pathways, using mygene
 and Bio.KEGG.REST (in biopython library).
- 3. MIQUALAT_data_import_and_check.py
 Import and check the csv files processed with previous notebooks, using MySQLdb (in mysqlclient library).
- 4. pubmed_search.py
 Carry out searches within the pubmed database using biopython.
- 5. python_parser_biomart_gene_csv.py
 Convert the biomart file (which contains all biomart genes) into the right format for the
 GENE table.

3.2 Description of the OUTPUT Folder

In the OUTPUT folder are saved all the files processed by the notebook, to be imported into the miqualat database.

3.3 Description of the DATABASE Folder

In the OUTPUT folder are saved all the files processed by the notebook, to be imported into the miqualat database

Chapter 4 Miqualat Notebooks Description and Usage

To use notebooks select the code cell and click on run, below will describe the notebooks and their functions.

Five notebooks have been built, that allow you to search, import and check into the miqualat database.

1. MIQUALAT PUBLICATION data assess.ipynb

Carry out searches within the pubmed database, automatize data collection for PUBLICAITON table.

Creates PUBLICATION.csv file and move all searches (PUBMED_SEARCH_DATA_Y-m-d H-M-S.txt format) in the OUTPUT folder.

2. MIQUALAT_KEGG_data_assess.ipynb

Download genes and pathways from kegg database (from kegg code), automatize data collection for KEGG table.

Creates ALL_KEGG_GENE.csv (all kegg genes from kegg code) in the OUTPUT folder. Creates ALL_KEGG_PATH.csv (all kegg pathways from kegg code) in the OUTPUT folder.

3. MIQUALAT_GENE_data_assess.ipynb

Allows you to download genes from ensembl database, automatize data collection for GENE table.

Option 1) get information from specific genes (ensembl gene id required).

Option 2) convert all genes downloaded from biomart (GENE.csv required).

In any case creates GENE.csv and move it in the OUTPUT folder.

4. MIQUALAT_GEN_KEGG_data_assess.ipynb

Correlates the ensembl gene id to the kegg id (if possible) of the gene and related pathway, automatize data collection for GEN_KEGG table.

Option 1) correlates the ensembl gene id to the kegg id of the gene and related pathways for specific gene (ensembl gene id required), for specific gene.

Option 2) processes the entire GENE.csv file.

Creates ENS_GENE_ID.csv (Ensembl gene id to Kegg gene id) in the OUTPUT folder. Creates ENS_PATH_ID.csv (Ensembl gene id to Kegg pathways id) in the OUTPUT folder.

5. MIQUALAT_data_import_and_check.ipynb

Allows the import of files processed with previous notebooks, once checked.

An error control system prevents the import of incorrect information.

Chapter 5 Create Biomart File

Go to https://www.ensembl.org/biomart/martview/afe982e758c87b06e672bc93a42a4f30.

Export all results to File CSV.

Select dataset Ensembl Gene 101.

Select Species (refseq) (ex Cow genes (ARS-UCD1.2)).

Go to Attributes, Gene and create the biomart file following this header (select in the right order).

Gene stable ID,Gene name,Gene description,Chromosome/scaffold name,Gene start (bp),Gene end (bp),Strand

Attributes Gene stable ID	○ Structures ○ Sequences ○ Homologues (Max select 6 orthologues)				
Gene name Gene description Chromosome/scaffold name Gene start (bp) Gene end (bp) Strand	☐ GENE: Ensembl Gene stable ID Gene stable ID version Transcript stable ID Transcript stable ID version Protein stable ID	☐ Transcript length (including ☐ APPRIS annotation ☑ Gene name ☐ Source of gene name ☐ Transcript name			
Dataset	☐ Protein stable ID version	☐ Source of transcript name			
None Selected]	□ Exon stable ID ☑ Gene description ☑ Chromosome/scaffold name ☑ Gene start (bp) ☑ Gene end (bp) ☑ Strand □ Karyotype band	☐ Transcript count ☐ Gene % GC content ☐ Gene type ☐ Transcript type ☐ Source (gene) ☐ Source (transcript) ☐ Version (gene)			

Chapter 6 Create Table File

To pass the check the csv must have the following headers.

!! Create the Table file following this headers (create the header as it is written, do not add quotes or anything else). !!

1. PUB_GEN_TEC_VAR_TAG TABLE

integer_progressive_ID,pubmed_ID,ensembl_gene_ID,variant_name,tecnique,keyword_t ags,relationship_note

2. PUBLICATION TABLE

pubmed_ID,doi,article_title,article_authors,article_journal,publication_year

3. TECNIQUE TABLE

tecnique,tecnique_short_description

4. TAG TABLE

keyword_tags,tags_short_description

5. GENE TABLE

ensembl_gene_ID,gene_name,gene_short_description,refseq,species,chromosome,start_c oordinate,end_coordinate,strand

6. KEGG TABLE

kegg_ID,kegg_object_type,kegg_object_name

7. GEN_KEGG TABLE

ensembl_gene_ID,kegg_ID

8. VARIANT TABLE

 $variant_name, variant_type, chromosome, chromosome_position, allele_reference, alternative_allele_reference$

Chapter 7 Database Description

7.1 Database Schema

Below the physical Entity-Relationship diagram (ERD) of the Miqualat database.


```
##using the MIQUALAT database and displaying tables##
mysql> use MIQUALAT;
Database changed
mysql> SHOW TABLES;
```

Tables_in_MIQUALAT
GENE GEN_KEGG KEGG PUBLICATION PUB_GEN_VAR_TEC_TAG TAG TECNIQUE VARIANT
+

8 rows in set (0.00 sec)

##description of the structure of the tables and the type of data
of the attributes of each entity and relation##
mysql> DESCRIBE GENE;

Field	Туре	Null	Key	Default	Extra
ensembl_gene_ID gene_name gene_short_description refseq species chromosome start_coordinate end_coordinate	varchar(20) varchar(20) varchar(300) varchar(50) varchar(50) tinyint int unsigned int unsigned	NO YES YES NO	PRI	NULL NULL NULL NULL NULL NULL NULL NULL	

9 rows in set (0.00 sec)

mysql> DESCRIBE GEN_KEGG;

Field	 Null	Key	Default	Extra	ĺ
ensembl_gene_ID kegg_ID	NO	PRI			

2 rows in set (0.00 sec)

mysql> DESCRIBE KEGG;

Field	Туре	Null	Key	Default	Extra
kegg_ID kegg_object_type kegg_object_name		NO		NULL NULL NULL	

3 rows in set (0.00 sec)

5 rows in set (0.01 sec)

mysql> DESCRIBE PUB_GEN_VAR_TEC_TAG;

Field	Туре	Null	Key	Default	Extra
integer_progressive_ID pubmed_ID ensembl_gene_ID variant_name tecnique keyword_tags relationship_note	int unsigned int unsigned varchar(20) varchar(30) varchar(50) varchar(50) varchar(200)	NO NO YES YES YES YES YES	PRI MUL MUL MUL MUL MUL	NULL NULL NULL NULL NULL NULL	auto_increment

7 rows in set (0.01 sec)

mysql> DESCRIBE TAG;

Field	Туре			Default	
keyword_tags tags_short_description	varchar(50)	NO	PRI		

2 rows in set (0.01 sec)

mysql> DESCRIBE TECNIQUE;

Field	Туре	Null	Key	Default	Extra
tecnique tecnique_short_description	varchar(50)	NO	PRI		

2 rows in set (0.01 sec)

mysql> DESCRIBE VARIANT;

	L	L					ı
	Field	Туре	Null	Key	Default	Extra	ĺ
	variant_name variant_type chromosome chromosome_position allele_reference alternative_allele_reference	varchar(30) varchar(30) tinyint unsigned int unsigned varchar(50) varchar(50)	NO NO NO NO NO NO	PRI	NULL NULL NULL NULL NULL NULL		
_							

6 rows in set (0.00 sec)

7.3 Check Description

- 1) entries fields number
- 2) entry duplicates
- 3) entries already present in the database
- 4) entry fields of a whole numerical nature
- 5) existence of foreign_keys for relational tables
- 6) special check for table PUB_GEN_VAR_TEC_TAG
- 7) special check for table GEN_KEGG