M8.2. I punkt Niech $\bar{T}_k(x)$ będą standardowymi wielomianami ortogonalnymi w przedziale [-1,1], z wagą $(1-x^2)^{-1/2}$. Znaleźć związek rekurencyjny spełniany przez te wielomiany.

Wielomiany ortogonalne $\{\bar{P}_k\}$ nazwiemy **standardowymi**, jeśli dla każdego k wielomian \bar{P}_k ma współczynnik 1 przy x^k . Zauważmy, że jeśli $\{P_k\}$ jest dowolnym ciągiem wielomianów ortogonalnych w tej przestrzeni i $P_k(x) = a_k x^k + \dots$ $(k \geqslant 0)$, to $P_k = a_k \bar{P}_k$ $(k \geqslant 0)$.

wieny, we not [-11] i do

$$p(x) = \frac{1}{\sqrt{1-x^2}}$$
 wielomiany $T_K(x)$

so ortogonalne (7.1)

Twierdzenie

Wielomiany ortogonalne $\{\bar{P}_k\}$ spełniają związek rekurencyjny

$$\bar{P}_0(x) = 1, \tag{3}$$

$$\bar{P}_1(x) = x - c_1,\tag{4}$$

$$\bar{P}_k(x) = (x - c_k)\bar{P}_{k-1}(x) - d_k\bar{P}_{k-2}(x)$$
 $(k = 2, 3, ...), (5)$

gdzie

$$c_k = \langle x\bar{P}_{k-1}, \bar{P}_{k-1} \rangle / \langle \bar{P}_{k-1}, \bar{P}_{k-1} \rangle \qquad (k = 1, 2, ...),$$
 (6)

$$d_k = \langle \bar{P}_{k-1}, \bar{P}_{k-1} \rangle / \langle \bar{P}_{k-2}, \bar{P}_{k-2} \rangle \qquad (k = 2, 3, \ldots).$$
 (7)

many zatem
$$T_k(x)=2^{k-1}T_k(x) = 60$$
 The major wspotezynnik wiodogy rowny 2^{k-1}

Soukarry Statych
$$C_{k}$$
 i d_{k} . marry

$$\forall k \quad C_{k} = \frac{\langle \times T_{k-1}, T_{k-1} \rangle}{\langle T_{k-1}, T_{k-1} \rangle} = \frac{\left(\frac{1}{2^{k-2}}\right)^{2} \langle \times T_{k-1}, T_{k-1} \rangle}{\left(\frac{1}{2^{k-2}}\right)^{2} \langle T_{k-1}, T_{k-1} \rangle} = \frac{\frac{1}{2} \langle 2 \times T_{k-1}, T_{k-1} \rangle}{\langle T_{k-1}, T_{k-1} \rangle} = \frac{1}{2} \langle T_{k-1}, T_{k-1} \rangle$$

$$= \frac{\frac{1}{2} < T_{k} + T_{k-2}, T_{k-1} >}{< T_{k-1}, T_{k-1} >} = \frac{\frac{1}{2} \left[< T_{k}, T_{k-1} > + < T_{k-2}, T_{k-1} >}{< T_{k-1}, T_{k-1} >} \right] = 0$$

oraz
$$d_{k} = \frac{\langle \overline{T}_{k-1}, \overline{T}_{k-1} \rangle}{\langle \overline{T}_{k-2}, \overline{T}_{k-2} \rangle} = \frac{\left(\frac{1}{2^{k-2}}\right)^{2} \langle T_{k-1}, T_{k-1} \rangle}{\left(\frac{1}{2^{k-2}}\right)^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle} = \frac{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}{(\frac{1}{2^{k-2}})^{2} \langle T_{k-2}, T_{k-2} \rangle}$$

$$= \frac{1}{4} \cdot \frac{\langle T_{k-1}, T_{k-1} \rangle}{\langle T_{k-2}, T_{k-2} \rangle} = \frac{1}{4} \cdot \frac{\overline{\Gamma/2}}{\overline{\Gamma/2}} = \frac{1}{4} , \quad \partial_2 = \frac{\langle T_1, T_1 \rangle}{\langle T_{0_1}, T_0 \rangle} = \frac{\overline{\Sigma}}{\overline{\Sigma}} = \frac{1}{2}$$

zoten
$$\overline{T}_0=1$$
 $\overline{T}_1(x)=x$

$$\overline{T}_k(x)=x\overline{T}_{k-1}(x)-\chi_k\overline{T}_{k-2}(x), \text{ gdzie}$$

$$\chi_2=\frac{1}{2}, \chi_k=\frac{1}{4} \text{ dia } k \neq 2$$