

Electronic Control Unit and CAN Data Analysis

Jeremy Daily, Ph.D., P.E. jeremy-daily@utulsa.edu Associate Professor of Mechanical Engineering

- 1. CAN Logger (version 2) Update
- 2. Network and Application Based CAN Capture
- 3. Chip Level Capture
- 4. Analysis, Decoding and Presenting the Data

Some contents were originally published in SAE 2015-01-1450

Logging Heavy Vehicle Network Traffic

- Capture as much raw operational CAN data from heavy vehicles as possible.
 - Store Heavy Vehicle Network Messages on SD Card
 - Unique opportunity for a unique data set
 - Data is sanitized and stored by NMFTA
- Implementation
 - CAN Logger V2
 - Faster
 - More Networks
 - Better Enclosure
 - Open Source
 - Functional Tool

- Logging Interfaces
 - 3 High Speed CAN
 - 1 Single Wire CAN
 - 1 LIN
 - 1 J1708
- External Connectivity
 - Vehicle Network Interface
 - Wi-Fi
 - USB
- 180 MHz 32-bit ARM Cortex M4F
- Button for marking data
- Three LEDs

- Vehicle Network Interface
 - D-sub 15 to Deutsch 9-Pin
 - Deutsch 9-Pin is a Heavy Vehicle Standard
 - Uses Diagnostic Port for Logging
- Easy Data Collection of Heavy Vehicle Networks
- Common Learning Platform
 - Statistical Differences Between
 - Normal Drive
 - Normal Drive with Attacks
- 100% Open Source

THE UNIVERSITY of TULSA Student CyberTruck Experience

Testing: Two at a Time

FlexCAN CAN Channels

MCP 2515 CAN Channel

Testing: Other Vehicle Networks

J1708

Testing: SD Card Writing Speed

- Write Time
 - 512 Bytes ≈ 240µS
- Suitable For:
 - Full Bus Loads
 - Multiple CAN Channels
 - Logging Secondary Communications

Alternative Method of Acquiring Data:

LOGGING DATA WITH RP1210 APPLICATIONS

The TU-RP1210 Application

- A Graphical User Interface to log, decode, and display data in with an open framework.
- Python, Qt, and ctypes

J1939 Parameter Group Numbers

J1939 Suspect Parameter Numbers

J1939 Diagnostic Codes (DM1 and DM2)

ISO-14229: Unified Diagnostic Services (UDS)

Component Information Summary

PGP and Cryptography Implementations

Open Source Framework

- Available on PyPi
- Uses PyQT5
- REST for Web Applications

- Teaching Tool
- RP1210 Function Validation
- Data Analysis

Data Storage

- JSON file for decoded data
- CSV log files for Vehicle Networks
- PDF Report generator using Reportlab
- Pretty Good Privacy (PGP) implementation for file signing

```
PyQt5.QtGui import QIcon, QFont, QColor, QPalette
   import jwt
    import pgpy
    from pgpy.constants import (PubKeyAlgorithm,
22
                                KeyFlags,
23
                                HashAlgorithm,
24
                                SymmetricKeyAlgorithm,
25
                                CompressionAlgorithm,
                                EllipticCurveOID,
                                SignatureType)
        passlib.hash import
                             pbkdf2 sha256 as passwd
29
   from TURP1210.TU crypt.TU crypt import
```


Forget about the network...

CAN WE OBTAIN MEMORY CONTENTS THOUGH JTAG PORTS?

A Journey Into Chip Forensics

Duy Van

Undergraduate in Mechanical Engineering duy-van@utulsa.edu

- Born in Ho Chi Minh, Vietnam
- Former competitive badminton player
- Second home: Wichita, KS
- Been in the U.S for 6 years
- Car enthusiast

Additional Courses

- Intro to Cyber Security
- Computer Forensics
- Computer Security
- Secure Electronic Commerce

This is on top of a Mechanical Engineering degree...

Relevant Projects

- Password cracking
- Acquire and analyze computer's hard drive
- Writing AES encryption from scratch using C
- Attack a virtual website with XSS, SQL injection, directory traversal, etc. and fix the vulnerabilities by changing source codes.

Purposes and Procedures

- Explore data patterns between RP1210 traffic logs and raw memory
- Download Dataplate and Sudden Deceleration using Cummins PowerSpec
- Collect raw data from FLASH and EEPROM through JTAG
- Compare the data and decode raw binary

Cummins ECU CM870

DOWNLOADING DATA FROM POWERSPEC

Tools

Inline 7 (Diagnostic Adapter)

Connecting Harness

Setup

Cummins PowerSpec

Dataplate

Sudden Deceleration

Eom Code

Software Phase

Extraction Date

ECM Run time

AB10402.22

20159:29:14

D4-02-2018 05:45:12

6.5.A.E.

ECM Run Time at Occurrence: 19377:34:58

Occurrence Distance (ml): 469655.5.

COLLECTING RAW DATA FROM K-TAG

Tool

AlienTech KTAG Master Kit from a European Chip Tuning shop

Software Interaction

Connect KTAG device to the computer

Software Interaction

Run the K-Suite software from AlienTech

Software Interaction

Select purchased version (KTAG in this case)

- Purchased chip protocols will be in black font color and can be selected.
- Vehicle types can also be selected if chip protocol is unknown at this moment.

If chip protocol is known, choose the protocol

If vehicle type is known, choose the vehicle

Search option is also available

 After choosing the correct ECU, click on the book mark icon for wiring instruction

After following the instruction, click on the check icon for the

main functions

Hardware Interaction

Follow the instruction on the software, solder the port and attach the ribbon:

Hardware Interaction

- Attach the D-sub cable to the ECU connector
- Power
- Ignition

Connect the KTAG to the ECU and the computer

Retrieving Data

- Select the desired function in the software
- In this case, select Maps and Read function

Retrieving Data

Wait for the process to complete

Retrieving Data

Save the files separately

Use Hexinator to open the output MPC file

Some meaningful strings are present indicating that the data

is not encrypted

```
..H..U....H..........H..........H....
0 00 00 00 48 00
              ....H......H......H.........H.
 82 00 00 00 00
              00 04 82 00 00
 00 48 00 04 82
              00 28 D0 00 00
              01 09 02 2E 00
              ..121802.... ÿÿÿ@b ......
 05 07 02 40 00
              .....@....Cummins Inc...Cummins Inc.
 20 49 6E 63 2E
              Engine Control Module..Self-powered w
   65 64 20 77
 20 66 6F 72 20
              ith one Interface, Bulk connection for
 C6 97 A3 80 E6
              applications..ÿÿ.!ÿØ|..|...,<À.±8Æ.£.æ
A 14 2C 05 00 02
              ...F..|.PP,...@.. 8 ÿbH...8 .b|x*.,...
              Q....á. .á.... 9..... ,...Q.. 8à.dH.
 E0 00 64 48 00
              .<,...@.. 8à.tH...8à.u,...@...H...=...
0 14 3D 80 00 01
              9..D\c..|1Z.=..±°1.....9`...1...A. 9J
 41 00 0B 39 4A
              ...A. .....ì...a. 9k...a. .A. 9......
 02 99 8A 00 00
 08 03 A6 38 21
              .!. .&...a...f..9@...C..H..}.....|...!8!
 76 90 01 00 14
```


Customer Name

Vehicle Unit Number

Closer look between PowerSpec vs EEPROM

central utah 25175

	Lingine Da	itapiate neport	<u> </u>		
Engine Type Engine Serial Number Unit Number	ISX 02 79076145 25175	Ecm Code Software Phase Extraction Date	AB10402.22 6.5.4.2 04-02-2018 05:48		
ECM Informati	on				
Module Name Ecm Code Software Phase ECM Serial Number ECM Part Number		CM870 AB10402.22 6.5.4.2 23052876 3683289			
Engine Informa	ation				
Engine Model Engine Build Date Engine Serial Number Do Option SC Option		N 7 1	SX 02 I/A 9076145 325 1145		
Vehicle Inform	ation				
Vehicle Identification Nu Vehicle or Equipment Ye	1.50	4	V4NC9TG25N391063		
OEM Vehicle Equipment	t Model	S	TA15		

Engine Dataplate Report

¶.1 P388.r.°	!н .тs.83ùâ		FC0
+	_		
		STA15	4
V4NC9TG25N3910	63	central	
utah	25175	497294010	049729
45200340916730	0497294340	049728955004	972882
60049729267004	972951800		
.XÃnjdb@@0000	0000000000	000000000000	0000
d.!		ì	

■ For CM870, EEPROM carries data plate information via ASCII

Flash file from KTAG

Flash data can also be retrieved using individual chip reader

Xeltek Superpro 6000

- Flash chip data should carry Sudden Decel Information (vehicle speed, engine RPM, etc.)
- Not easy to find the data location

```
DODGOLFFSO OF PE ST FF SF FF SF FF-FF SF FF SF FF SF FF SF FF
DODGGIFFBO FF PF SF FF FF FF FF FF-PF FF FF FF FF FF FF FF FF FF
DOCCOLUMNO OF SECTION 
DOCCOLUMNO OF MY AN AN AN AN AN AN AN-AN AN AN AN AN AN AN AN
0000020000 94 21 FF F0 7c 98 02 A6-93 EL 00 0c 90 01 00 14 .1..
 D1 ....
. . . . . . . . .
0000020010 3F E0 00 B2 A3 FF 5m 96-30 E0 00 B2 38 ET 30 BA
7-1-14<---B.O.
0000020020 70 E6 36 78 30 00 00 82-39 D6 30 B6 7D 05 43 78
1-18"---900-11 Ca
DDDCC20030 3D 20 DO 81 A1 29 E3 74-70 09 PE 00 41 E1 00 10 -
0000025040 39 80 20 90 B1 88 90 90-30 80 90 B1 A0 84 E3 76 5.
0000020050 BC 87 00 00 42 00 00 24-30 80 00 81 AD 84 83 70
....#..94....p
0000020060 m0 88 00 00 mm 00 00 m1-a1 88 m3 72 m1 07 00 00 ....
=.........
0000020070 7p 44 40 50 38 8a 20 00-3p 80 00 82 80 8c 30 8c
Dese. . .... 0.
0000020080 3c E0 00 82 A0 E7 62 68-A1 45 00 00 7b 07 51 b6
<.... http://doi.org/10.100/
0000020090 3C A0 00 B0 38 A5 5A 58-A1 65 00 00 A1 36 00 00
DDDCCQQQQQQ 7C 68 49 D6 3C CD CD 80-38 C6 5A 5A A1 46 00 D0 (NI.
<... 8-22-F...
DDDDDDDDDDD 54 89 04 3E 7C 8A 49 D6-7D 83 4D 50 7D 04 62 14 7.7>
D000020000 2C 08 00 00 40 81 00 2C-7D 08 6E 70 3D 40 00 00 ...
00000200D0 61 68 8C A0 7C 08 58 00-40 80 00 0C 7D 04 43 78 mk..
 (Dx.9...
```


One approach:

Vehicle speed for Record 1 has 150 mph for the first 60s

Record 1								
Time (Seconds	Vehicle Speed (mph)	Engine Speed	Engine Load (%)	Throttle (%)	Brake Status	Clutch Status	Cruise Status	Lamp Status
)	20170280	(rpm)	V VVOICE	0.0000				2000
-59	150	0	0.0	0.0		**	*	On
-58	150	0	0.0	0.0		20		On
-57	150	0	0.0	0.0			-	On
-56	150	0	0.0	0.0		7.5	•	On
-55	150	0	0.0	0.0		-		On
-54	150	0	0.0	0.0	100	*2	*2	On
-53	150	0	0.0	0.0	-		-	On
-52	150	0	0.0	0.0		*3	**	On
-51	150	0	0.0	0.0	-	43	23	On
-50	150	0	0.0	0.0		**	9.7	On
-49	150	0	0.0	0.0		2	-	On
-48	150	0	0.0	0.0		+		On
-47	150	0	0.0	0.0		70.	*:	On
-46	150	0	0.0	0.0		*3	*	On
-45	150	0	0.0	0.0	100	2.5	25	On
-44	150	0	0.0	0.0				On
-43	150	0	0.0	0.0		20	**	On
-42	150	0	0.0	0.0	-	2-		On
-41	150	0	0.0	0.0		20	*:	On
-40	150	0	0.0	0.0		29	20	On
-39	150	0	0.0	0.0		*3		On
-38	150	0	0.0	0.0			- 23	On
-37	150	0	0.0	0.0		*	*	On

Converting the actual vehicle speed into data format using J-1939-71

SPN 84 Wheel-Based Vehicle Speed

Speed of the vehicle as calculated from wheel or tailshaft speed.

Data Length: 2 bytes

Resolution: 1/256 km/h per bit, 0 offset

Data Range: 0 to 250.996 km/h Operational Range: same as data range

Type: Measured

Supporting Information:

PGN reference: 65265

- Convert 150 mph to km/h: 241.4 km/h
- Convert 241.4 km/h to bit:
 241.4 km/h x 256 bit/km/h = 64798.4 bit
- Convert 64798.4 to Hex: F1 66
- Look for repeating F1 66 pattern in the FLASH memory

NO PATTERN! WHAT NOW?!

- Convert 150 mph to data format without converting to km/h
- Convert 150 to bit:

Convert 38,400 to Hex: 96 00

WOOHOO! We got something

- But is it the vehicle speed log?
- Tracing the speed along to compare with the report. The 2byte is 12 bytes apart

- Convert 58 8A to actual vehicle speed number:
- 58 8A to Decimal: 22,666
- Convert 22,666 to actual number:

)	Vehicle Speed (mph)	Engine Speed (rpm)	Engine Load (%)	Throttle (%)			Cruise Status	Status		
	-16 -15 -14 -13	150 150 150 150	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		:		On On On On		
-1 0	150 150		0	0.	0	0.0	1	-		-	On On
1 2 3	6		0	0.0	0	0.0		-	-	-	On On
	-3 -2 -1 0 1 2 3 4	150 150 150 150 150 89 6 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				On On On On On On On On		

- What about engine RPM, load, throttle, etc.?
- Take a look at 14-byte block in Record 2 data

	00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F	
0x0FB950	00	00	00	02	14	F8	12	BD	00	00	00	00	00	00	00	00	ø.½
0x0FB960	00	03	01	81	12	7C	00	00	00	00	00	00	00	00	00	02	
0x0FB970	00	1B	12	${\tt BF}$	00	09	00	00	00	00	00	00	00	02	00	02	
0x0FB980	11	3E	00	21	80	C4	00	00	00	00	00	02	00	00	11	42	.>.!.ÄB
0x0FB990	00	2C	29	03	00	00	00	00	00	02	00	5C	11	E7	00	3E	.,)\.ç.>
0x0FB9A0	42	8E	00	00	00	00	00	02	02	7D	19	38	00	76	10	8 F	B
0x0FB9B0	00	00	00	00	00	00	03	AB	15	37	00	3E	00	00	00	00	«.7.>
0x0FB9C0	00	00	00	00	04	0A	17	82	00	94	20	В5	00	00	00	00	μ
0x0FB9D0	00	00	04	C1	21	E3	00	A4	1F	7в	00	00	00	00	00	02	Á!ã.¤ {
0x0FB9E0	05	96	1A	5C	00	00	00	00	00	00	00	00	00	02	05	E8	\è
0x0FB9F0	1A	40	00	81	0E	9D	00	00	00	00	00	00	06	72	21	77	.@r!w
0x0FBA00	00	В6	26	8D	00	00	00	00	00	00	07	BE	26	98	00	99	
0x0FBA10	17	84	00	00	00	00	00	00	08	75	28	36	00	20	00	00	u(6
0x0FBA20	00	00	00	00	00	02	08	6F	1D	BF	00	5B	00	00	00	00].; 0
0x0FBA30	00	00	1E	FA	15	9в	78	6F	12	F7	01	D2	79	DC	00	00	úxo.÷.ÒyÜ
0x0FBA40	96	00	00	00	00	00	00	00	00	00	00	01	00	00	96	00	
0x0FBA50	00	00	00	00	00	00	00	00	00	01	00	00	96	00	00	00	

Byte	3 & 4	5 & 6	7 & 8	9 & 10
Hex	07 BE	26 98	00 99	17 84
Convert to Decimal	1,982	9,880	153	6020
Resolution	1/256 mph/bit	1/8 RPM/bit	1/4 %/bit	1/256 %/bit
Actual Number	7.74 mph	1,235 RPM	38.25%	23.52%
	Vehicle Speed	Engine Speed	Throttle	Engine Load

Record 2

Time (Seconds	Vehicle Speed (mph)	Engine Speed (rpm)	Engine Load (%)	Throttle (%)		Clutch Status		
11	6	840	14.6	32.3	=	On	-	-
12	6	1071	38.6	45.5	=	-	2	-
13	8	1235	23.5	38.3		8	5	5
14	8	1287	0.0	8.0	-	_	-	+
15	8	952	0.0	22.8	7.	On		

Comparing memory data with CAN traffic from PowerSpec

CAN Traffic from PowerSpec

FLASH Memory

 The results show CAN traffic delivers the exact data from the memory with 7 bytes for every package

Next Steps

- Write a script to parse through raw data to obtain sudden deceleration information
- Explore the specific pattern to find the location of sudden decel for different ECUs
- Write a Hexinator Grammar to automatically analyze binary data
- Correlate network traffic with memory contents
- Publish SAE papers
- Maybe: patch memory to subvert normal functions

- Analyze multiple ECMs
- Recover data from wrecked ECMs
- Recover data without setting fault codes
- Virtual Chip Swap
- Deep Dive: Build our own KTAG tool

- Three ways of collecting data
 - CAN Data Loggers
 - Version 1 produced over 4000 hours
 - Version 2 has more tool-like features
 - RP1210 Application Logging
 - Fuzzing and Requesting
 - Eavesdropping
 - Memory Interrogation
- Data Analysis
 - Counts and timing
 - Standards based meaning
 - Pattern matching