Rendszertervezés FPGA eszközökkel

1. előadás Programozható logikai eszközök

2011.04.13.

Tartalom

- Bevezetés: alkalmazási lehetőségek
- Nem programozható és programozható eszközök összehasonlítása
- Programozható eszközök kronológiája
- FPGA-k felépítése, működése (ennek illusztrációja Xilinx Virtex-II architektúrán)
- Néhány FPGA család bemutatása
- Kitekintés hibrid és újgenerációs eszközökre

Bevezetés

Mikor tervezünk egyedi hardvert?

- Nagy számításigényű és / vagy speciális, időkritikus feladatot kell megoldanunk
- Az integráltságot szeretnénk növelni

Manapság gyakori elvárások

Alkalmazás

Alkalmazási példa: autóipar

Alkalmazási példa: videofelügyelet

Alkalmazási példa: broadcast

Alkalmazási példa: LHC ALICE

- 540 párhuzamos detektor
- 2,7 Tb/s
- 120 db Xilinx Virtex-4 FX FPGA

Alkalmazási példa: űrkutatás

Virtex-5VQ Rad-Hard eszközök

Nem programozható logikai eszközök

VS.

Programozható logikai eszközök

ASIC

- ASIC: Application-Specific Integrated Circuit
- Előnye:
 - Nincsenek programozható összeköttetések
 - Magas belső órajel

ASIC

- ASIC: Application-Specific Integrated Circuit
- Hátránya:
 - Nem programozható
 - Hosszú fejlesztési idő
 - Kisszéria esetén nagyon költséges

ASIC Design

Estimated Worldwide ASIC Design Starts, 1994-2013

PLD

PLD: Programmable Logic Device

- Mit jelent a programozhatóság?
- SPLD: Simple PLD
- CPLD: Complex PLD

Programozható logikai eszközök kronológiája

PLD-k csoportosítása

- SPLD: Simple PLD
 - PLA, FPLA
 - PAL, GAL
 - PLD
- CPLD: Complex PLD
- FPGA: Field-Programmable Gate Array

1970-es évek...

SPLD: PLA, FPLA

- PLA: Programmable Logic Array
- FPLA: Field Programmable Logic Array
- Ron Cline, Signetics[™], 1975
- ÉS-VAGY kapuhálózat

SPLD: PLA, FPLA

- Programozás "kiégetéssel"
- Előnyök:
 - Rugalmas architektúra
 - Tetszőleges kombinációs hálózat megvalósítására alkalmas
- Hátránya:
 - Növekvő komplexitás

Növekvő kapukésleltetési idők

SPLD: PAL

- PAL: Programmable Array Logic
- MMI, 1978

- Előnye:
 - Gyorsabb működés
- Hátránya:
 - Kevésbé rugalmas

SPLD: GAL

- GAL: Generic Array Logic
- Lattice Semiconductor, 1985
- Elektromosan törölhető és újraprogramozható

SPLD: PLD

- A CPLD előfutára
- Felépítése:
 - PAL struktúra
 - Minden VAGY kapu kimenetén dedikált flip-flop
- Kombinációs és szekvenciális hálózat is megvalósíthatóvá vált

CPLD: általános makrocella

- Alapkoncepció: több PLD blokk egy chipen
- Makrocella: PLD blokk

CPLD architektúra

CPLD példa: Xilinx CoolRunner-II

Architektúra

CPLD példa: Xilinx CoolRunner-II

Makrocella

FPGA

Ross Freeman, Xilinx[®], 1985

Ross Freeman Bernie Vonderschmitt

FPGA: általános logikai cella

LUT: Look-Up Table

FPGA architektúra

Néhány nagyobb gyártó FPGA családjai (Altera, Lattice, Xilinx)

Altera FPGA családok

- Cyclone
 - Low-cost megoldás
- Arria
 - Mid-range, SerDes célra
- Stratix
 - High-end FPGA-k

Lattice FPGA családok

- LatticeXP
 - Low-cost, Flash-alapú FPGA-k
- LatticeSC
 - Mid-range, SerDes célra
- LatticeECP
 - High-end FPGA-k

Xilinx FPGA családok

- Spartan (low-cost megoldások)
 - Spartan-3
 - Spartan-3E
 - Spartan-3A
 - Spartan-3AN
 - Flash-alapú
 - Spartan-3A DSP
 - Spartan-6
 - 6-bites LUT

Xilinx FPGA családok

- Virtex (high-end)
 - Virtex
 - Virtex-E
 - Virtex-E EM (Extended Memory)
 - Virtex-II
 - Virtex-II Pro
 - Újdonság: hard CPU + SerDes
 - Virtex-4
 - Virtex-5

Xilinx FPGA családok

- Virtex (high-end)
 - Virtex-4-5Q
 - Defense grade
 - Virtex-4-5QV
 - Space grade, radiation-tolerant
 - Virtex-6
 - 6-bites LUT

Xilinx Series-7

- Artix-7
- Kintex-7
- Virtex-7

Xilinx Series-7

FPGA-k felépítésének részletesebb bemutatása Xilinx Virtex-II FPGA architektúrán

Xilinx terminológia

- Logic cell
 - LUT + flip-flop
- Slice
 - Logic cell + extra logika
- CLB: Configurable Logic Block
 - meghatározott számú Slice-ból épül fel
- IOB: I/O Block
- DCM: Digital Clock Manager

Virtex-II architektúra

CLB: Configurable Logic Block

- 1 CLB-ben 4 Slice
- Local routing: a CLBben lévő slice-ok és a szomszédos CLB-k között
- 2 carry-továbbító lánc

Egyszerűsített Slice felépítés

- 2 LUT
- 2 carry-továbbító lánc
- 4 kimenet:
 - 2 kombinációs
 - 2 regiszter

Function Generator

- 4-bites Function Generator konfigurációi:
 - LUT4: 4-bites LUT
 - RAM16: 16-bites distributed RAM
 - SRL16: 16-bites shift-regiszter

Virtex-II Slice

Virtex-II Slice (Top)

MAC a MULT_AND kapuval

Multiply & Accumulate művelet 1 Slice-on belül

Globális órajel

- 16 globális órajel multiplexer
 - Meghajthatja: bemeneti láb, DCM vagy local routing

IOB: I/O Block

- Különböző singleended logikai standardok (pl. LVTTL, LVCMOS)
- Differenciális jelátviteli standardok, mint pl. LVDS
- DCI (Digital Controlled Impedance)

Későbbi architektúrák újdonságai

- Virtex család:
 - Virtex-II Pro
 - Virtex-4
 - Virtex-5
 - Virtex-6
 - Virtex-7
- Spartan család:
 - Spartan-3
 - Spartan-6

Virtex-II Pro architektúra

Virtex-4 architektúra

Virtex-5 architektúra

Enhanced

36Kbit Dual-Port Block RAM / FIFO with Integrated ECC

550 MHz Clock Management Tile with DCM and PLL

SelectIO with ChipSync Technology and XCITE DCI

Advanced Configuration Options

25x18 DSP Slice with Integrated ALU

Tri-Mode 10/100/1000 Mbps Ethernet MACs

New

Most Advanced High-Performance Real 6LUT Logic Fabric

PCI Express® Endpoint Block

System Monitor Function with Built-in ADC

Next Generation PowerPC® Embedded Processor

RocketIO™ Transceiver Options

Low-Power GTP: Up to 3.75 Gbps

High-Performance GTX: Up to 6.5 Gbps

Series-6 FPGA architektúrák

Virtex-6 FPGAs

FIFO Logic

Tri-mode EMAC

System Monitor

Common Resources

LUT-6 CLB

BlockRAM

DSP Slices

High-performance Clocking

Parallel I/O

HSS Transceivers*

PCle® Interface

Spartan-6 FPGAs

Hardened Memory Controllers

3.3 Volt compatible I/O

^{*}Optimized for target application in each family

Series-6 FPGA architektúrák

- Továbbfejlesztett CLB-k 6bites LUT-okkal
- Fogyasztás jelentős csökkentése
- Rendszer monitorozás (hőmérséklet és feszültségek)
- Fejlettebb DSP slice-ok

Series-7 FPGA architektúrák

	ARTIX."	KINTEX.**	VIRTEX:
	Lowest Power & Cost	Industry's Best Price/Performance	Industry's Highest System Performance
Logic Cells	20K – 355K	30K - 410K	285K – 2,000K
DSP Slices	40 – 700	120 – 1540	700 – 3,960
Max. Transceivers	4	16	80
Transceiver Performance	3.75Gbps	6.6Gbps 10.3Gbps	10.3Gbps 13.1Gbps 28Gbps
Memory Performance	800Mbps	2133Mbps	2133Mbps
Max. SelectiO™	450	500	1200
SelectiO™ Voltages	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

Spartan-3 család

Mainstream

- Broad range of densities, general functionality and targeted specific application solutions
- Lower total system cost while increasing functionality

Non-Volatile

- Combines leading-edge technology FPGAs & Flash technologies
- New evolution in security, protection and functionality

Költségkímélő megoldás

DSP

Alapja a Virtex-II architektúra

Spartan-3E: CLB felépítés

Spartan-3E: Slice felépítés

Spartan-3E: Slice részlet (top)

Kitekintés

Hibrid eszközök

- FPSLIC: Field Programmable System Level Integrated Circuits
 - Gyártó: Atmel
 - AVR + FPGA egy chipben
- PSoC: Programmable System-on-Chip
 - Gyártó: Cypress Semiconductor
 - M8C kontroller + konfigurálható digitális és analóg blokkok

Újgenerációs eszközök

- FPOA: Field-Programmable Object Array
 - Gyártó: MathStar[™]
 - Objektumok programozható összeköttetésekkel
 - ALU
 - Multiply Accumulator
 - Register file
 - Stb.
- Morpheus projekt
 - Embedded FPGA + ARM926EJ-S + PACT XPP + DREAM

EPP (Extensible Processing Platform)

- Xilinx[®] ZYNQ[™] (2011. március)
- Egy chipen:
 - Dual ARM[®] Cortex[™]-A9 MPCore (@ 800 MHz)
 - Xilinx Series-7 programozható logika
 - Hard perifériák

EPP (Extensible Processing Platform)

Érdekesség

- FPAA: Field-Programmable Analog Array
 - Konfigurálható analóg blokkokat (CAB) tartalmaz programozható összeköttetésekkel
 - Az FPGA analóg társa

Befejezésül...

Szakirodalom Állás / gyakornoki program

Xcell Journal

Dini Group

Dini Group

- La Jolla, California
- Tehetséges gyakornokokat is keresnek

Mike Dini

Köszönöm a figyelmet!