

DDC FILE COPY

ADA091088

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER National Dam Safety AD-A091088	2. GOVT ACCESSION NO. Number NY 715	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Phase I Inspection Program.	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program	6. PERFORMING ORG. REPORT NUMBER
Millbrook Watershed Project Site Susquehanna River Basin, Chenango County, NY Inventory No. 215 New York. Phase I	7. CONTRACT OR GRANT NUMBER(s) DACW 51-79-C-0001	8. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 11
9. PERFORMING ORGANIZATION NAME AND ADDRESS New York State Department of Environmental Conservation 50 Wolf Road Albany, NY 12233	10. REPORT DATE 30 September 1980	11. NUMBER OF PAGES 15
11. CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environmental Conservation 50 Wolf Road Albany, NY 12233	12. SECURITY CLASS. (of this report) UNCLASSIFIED	13. DECLASSIFICATION/DOWNGRADING SCHEDULE
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Department of the Army 26 Federal Plaza New York District, CofE New York, NY 10287	15. SECURITY CLASS. (of this report) UNCLASSIFIED	16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	<i>"Original contains color plates: All DTIC reproductions will be in black and white"</i>	
18. SUPPLEMENTARY NOTES THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINS A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.	19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability Mill Brook Chenango County Susquehanna River	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.	<i>NOV 3 1980</i>	
The examination of documents and a visual inspection of the Mill Brook Site 1 Dam did not reveal conditions which constitute a hazard to human life or property.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

> The total discharge capacity of the spillways is adequate to impound and safely discharge the floodwaters resulting from the Probable Maximum Flood (PMF). <

Several minor deficiencies were noted which should be corrected within 6 months of the date of final approval of this report. The required actions are establishing a good grass cover on the upstream slope, repairing the sloughing on the outer auxiliary spillway slope, and regrading the eroded area at the end of the rock sill on the downstream end of the auxiliary spillway channel. In addition, an emergency action plan for notification of downstream residents should be developed within the same time frame.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

**SUSQUEHANNA RIVER BASIN
MILLBROOK WATERSHED PROJECT
SITE I**

CHENANGO COUNTY, NEW YORK
INVENTORY NO. N.Y. 715

**PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM**

00

DA-CW-51-79-C-0001

NEW YORK DISTRICT CORPS OF ENGINEERS

AUGUST, 1980

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED
CONTRACT NO. DACW-51-79-C0001

80 10 29 007

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
Bv	
Distrib	
Availability Codes	
Avail and/or	
Dist	Special

29
84

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
MILL BROOK WATERSHED PROJECT SITE I I.D. No. NY-715
(#117B-4340 SUSQUEHANNA RIVER BASIN)
CHENANGO COUNTY

TABLE OF CONTENTS

	<u>PAGE NO.</u>
- ASSESSMENT	-
- OVERVIEW PHOTOGRAPH	-
1 PROJECT INFORMATION	1
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1
1.3 PERTINENT DATA	2
2 ENGINEERING DATA	4
2.1 GEOTECHNICAL DATA	4
2.2 DESIGN RECORDS	4
2.3 CONSTRUCTION RECORDS	4
2.4 OPERATION RECORDS	5
2.5 EVALUATION OF DATA	5
3 VISUAL INSPECTION	6
3.1 FINDINGS	6
3.2 EVALUATION OF OBSERVATIONS	7
4 OPERATION AND MAINTENANCE PROCEDURES	8
4.1 PROCEDURES	8
4.2 MAINTENANCE OF DAM	8
4.3 WARNING SYSTEM IN EFFECT	8
4.4 EVALUATION	8

	<u>PAGE NO.</u>
5 HYDROLOGIC/HYDRAULIC	9
5.1 DRAINAGE AREA CHARACTERISTICS	9
5.2 ANALYSIS CRITERIA	9
5.3 SPILLWAY CAPACITY	9
5.4 RESERVOIR CAPACITY	9
5.5 FLOODS OF RECORD	9
5.6 OVERTOPPING POTENTIAL	9
5.7 EVALUATION	9
6 STRUCTURAL STABILITY	10
6.1 EVALUATION OF STRUCTURAL STABILITY	10
7 ASSESSMENT/RECOMMENDATIONS	11
7.1 ASSESSMENT	11
7.2 RECOMMENDED MEASURES	11

APPENDIX

- A. PHOTOS
- B. VISUAL INSPECTION CHECKLIST
- C. HYDROLOGIC/HYDRAULIC: ENGINEERING DATA AND COMPUTATIONS
- D. STABILITY COMPUTATIONS
- E. REFERENCES
- F. DRAWINGS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Mill Brook Watershed Project Site 1
I.D. No. NY-715

State Located: New York

County Located: Chenango

Watershed: Susquehanna River Basin

Date of Inspection: July 31, 1980

ASSESSMENT

The examination of documents and a visual inspection of the Mill Brook Site 1 Dam did not reveal conditions which constitute a hazard to human life or property.

The total discharge capacity of the spillways is adequate to impound and safely discharge the floodwaters resulting from the Probable Maximum Flood (PMF).

Several minor deficiencies were noted which should be corrected within 6 months of the date of final approval of this report. The required actions are establishing a good grass cover on the upstream slope, repairing the sloughing on the outer auxiliary spillway slope, and regrading the eroded area at the end of the rock sill on the downstream end of the auxiliary spillway channel. In addition, an emergency action plan for notification of downstream residents should be developed within the same time frame.

George Koch
Chief, Dam Safety Section
New York State Department
of Environmental Conservation
NY License No. 45937

Colonel W. M. Smith Jr.
New York District Engineer

Approved By:

Date:

30 Sep 80

OVERVIEW
MILL BROOK WATERSHED PROJECT
SITE 1
I.D. No. NY-715

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
MILL BROOK WATERSHED PROJECT
SITE 1
I.D. No. NY-715
(#117B-4340)
SUSQUEHANNA RIVER BASIN
CHENANGO COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection

This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam

The Mill Brook Watershed Project Site 1 Dam consists of an earth dam with a service spillway pipe passing through the embankment and an excavated auxiliary spillway passing around the southern end of the dam.

The dam consists of a compacted earth embankment which is 52 feet high, has a crest length of 475 feet and a crest width of 14 feet. The upstream slope is 1 vertical on 3.5 horizontal with a 10 foot wide berm near the base of the slope. The downstream slope is 1 vertical on 2.5 horizontal with a 12 foot wide berm at approximately the mid-point of the slope. Below the berm, the slope flattens to a 1 on 3 (V:H). The crest and exposed slopes are covered with grass. An earth cutoff trench of varying depth and width keys the embankment into the foundation soils.

The service spillway consists of a rectangular reinforced concrete drop inlet structure, a 30 inch diameter reinforced concrete pipe with anti-seepage collars and a riprapped plunge pool. A reservoir drain consisting of an 18 inch diameter concrete pipe extends from the upstream toe of the embankment to the base of the spillway riser. A vertical slide gate mechanism mounted along the inside of the riser controls the flow through the reservoir drain. The auxiliary spillway is an earth cut with a bottom width of 100 feet.

An internal drainage system consisting of a gravel and stone filter is located at the base of the embankment near the downstream toe. Seepage is conducted through this drain to beyond the toe of the embankment via twin 6 inch diameter asbestos-cement pipes.

b. Location

The Mill Brook Watershed Project Site 1 dam is located off the Sherburne Turnpike in the Town of New Berlin. The structure is approximately 1 mile north-west of the Village of New Berlin.

c. Size Classification

The dam is 52 feet high and has a maximum storage capacity of almost 400 acre-feet. Therefore, the dam is in the intermediate size category as defined by the "Recommended Guidelines for Safety Inspection of Dams."

d. Hazard Classification

This dam is classified as "high" hazard due to the presence of a number of homes in the Village of New Berlin located downstream of the dam.

e. Ownership

The dam is owned by Chenango County, New York. The contracting officer is Mr. Phillip Cummings whose telephone number is (607)334-4632.

f. Purpose of Dam

The dam is a floodwater retarding structure.

g. Design and Construction History

The dam was designed by the U.S. Department of Agriculture, Soil Conservation Service (SCS). The SCS office at the Broome County Airport has a design folder containing hydrologic, hydraulic and structural design information. The dam was constructed between 1977 and 1979 by J.R. Hall, Inc. of Waterville, New York. The Howdy Jones Construction Company was the earthwork subcontractor for the structure.

h. Normal Operating Procedures

Normal flows are discharged through the service spillway. This structure has sufficient capacity to store and discharge a 100 year flood without discharge occurring in the auxiliary spillway. For storms in excess of the 100 year flood, discharge through the auxiliary spillway can be expected.

1.3 PERTINENT DATA

a. Drainage Area (acres) 1338

b. Discharge at Dam (cfs)

Service Spillway at maximum high water	158
Service Spillway at auxiliary spillway crest elev.	144
Auxiliary Spillway at maximum high water	8850
Reservoir drain at service spillway crest elevation	79

c. Elevation(USGS Datum)

Top of Dam	1349.0
Auxiliary Spillway Crest	1339.5
Service Spillway Crest	1306.3
Reservoir Drain (invert elevation)	1302.0

d. Reservoir Surface Area (acres)

Top of Dam	22.7
Auxiliary Spillway Crest	15.0
Service Spillway Crest	0.9

e. Storage Capacity (acre-feet)

Top of Dam	397.9
Auxiliary Spillway Crest	222.6
Service Spillway Crest	2.2

f. Dam

Embankment type - A compacted earth fill with a keyed earth cut-off trench, and a drain parallel to the axis of dam

Embankment length (ft) 475

Slopes - Upstream 1 vertical on 3.5 horizontal
Downstream 1 vertical on 2.5 horizontal
with 12 foot wide berm - slope below.
berm is 1 vertical on 3 horizontal

Crest Width (ft) 14

g. Service Spillway

Type: Ungated, reinforced concrete drop inlet (2.5 x 7.5 ft), rising 8.3 feet above the invert of the 30 inch diameter concrete conduit; length of conduit 340 feet

Keir length (ft). 15

h. Auxiliary Spillway

Type: An excavated, trapezoidal channel with a grass lining.

Bottom Width (ft) 10'

Side Slopes (V:H) 1:3

Exit Slope (ft/ft) 0.02

i. Reservoir Drain

Type: 18 inch diameter reinforced concrete pipe

Control: Manually operated vertical slide gate mounted along the inside of the service spillway riser.

SECTION 2: ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. Geology

The Mill Brook Watershed Project Site 1 Dam is located in the glaciated portion of the Appalachian uplands (northern extreme of the Appalachian Plateau) physiographic province of New York State. These uplands were formed by dissection of the uplifted but flat lying sandstones and shales of the Middle and Upper Catskill Delta. The plateau surface is represented by flat-topped divides with drainage generally southwest toward the Susquehanna River system. The bedrock in the vicinity of this dam is predominantly shale.

The present surficial deposits consist of a thin layer of topsoil over glacial till. There is a small amount of outwash and alluvial gravel in the vicinity of the present stream channel. These deposits have resulted from glaciations during the Cenozoic Era, the last of which was the Wisconsin glaciation.

b. Subsurface Investigations

A subsurface investigation program was conducted by SCS. The initial test pits and drill holes were progressed in 1969 and a supplemental program was undertaken in 1977. A total of 17 borings and 14 test pits were taken at locations along the dam, auxiliary spillway, structural elements and borrow area. Applicable subsurface information has been included in Appendix F.

The centerline of the structure was shifted a short distance downstream from the originally proposed location because of foundation conditions encountered during the drilling program. In general, the foundation consists of glacial till over bedrock. The depth to bedrock in the vicinity of the dam varies from 5' to 50 feet. The soils encountered varied from slightly to moderately permeable.

2.2 DESIGN RECORDS

This dam was designed by the Soil Conservation Service, who prepared a design report. A folder containing the design report and other design information was available at the SCS office at the Broome County Airport. Twenty four drawings, several of which have been included in Appendix F, were prepared for the construction of this dam.

2.3 CONSTRUCTION RECORDS

Complete construction records are available from the SCS office at the Broome County Airport. Several changes from the original design were made during construction. These changes have been indicated on the as-built plans shown in Appendix F. Among the changes were the flattening of the southern cut slope which forms the auxiliary spillway and the addition of rock creases at the embankment-abutment interface.

2.4 OPERATION RECORDS

Since the dam is an uncontrolled, floodwater retarding structure, no operating records are maintained regarding water levels. However, during periods of heavy rainfall, SCS personnel do monitor reservoir levels.

2.5 EVALUATION OF DATA

The data presented in this report has been compiled from information obtained from the Soil Conservation Service as well as the New York State Department of Environmental Conservation files. It appears to be adequate and reliable for Phase I inspection purposes.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of the Site 1 dam was conducted on July 31, 1980. The weather was clear and the temperature was in the seventies. The water surface at the time of the inspection was 3.74 feet below the top of the concrete riser.

b. Embankment

No signs of distress were observed in the earth embankment and no evidence of seepage, misalignment, subsidence or surface cracking were noted on the embankment. The only deficiencies noted were of a minor nature and most were related to the fact that construction of the dam was completed only last September. The grass cover on the upstream slope had not yet established itself. There was minor rill erosion between the top of the riser and the northern abutment contact. There was also some minor erosion on the lower portion of the downstream slope between the principal spillway outlet pipe and the northern abutment.

An internal drainage system composed of 2 - 6 inch diameter pipes surrounded by drain-fill material provides drainage at the base of the embankment. At the time of the inspection, there was no flow coming from the pipes. However, Gary Page of SCS reported that the drains had operated during the construction of the dam.

c. Service Spillway

The service spillway consists of a vertical drop inlet structure, a reinforced concrete pipe and a plunge pool at the conduit outlet. The elements which were visible appeared to be in good condition. The pipe interior had been closely inspected in June of 1980 by Mr. Page. His inspection indicated that the maximum joint extensibility along the conduit was three-quarters of an inch. This compares favorably with the maximum closure achieved during construction of one-half inch.

d. Auxiliary Spillway

The auxiliary spillway is located in an earth cut at the southern end of the dam. The cut slope on the outside of the channel was sloughing in several areas. This sloughing was caused by water coming out of the hillside. The downstream portion of this slope had been flattened during construction in an attempt to remedy these problems. However, even in the flattened area there were several locations where sloughing was observed. In addition, there was some erosion at the end of the rock sill which extends across the downstream end of the auxiliary spillway channel.

e. Reservoir Drain

The 18 inch diameter reservoir drain and manually operated slide gate may be used to lower the reservoir. The drain was reported to be operational.

f. Reservoir

There were no signs of serious soil instability in the reservoir area. However, there was a minor sedimentation delta in the reservoir from an old haul road which extends into the pool.

g. Downstream Channel

The downstream channel below the plunge pool was gravel and stone filled for a distance. Beyond the area which was disturbed by construction, the channel was cut into natural ground. Trees and heavy brush were growing at the edge of the channel.

3.2 EVALUATION OF OBSERVATIONS

Visual inspection of this dam revealed the following deficiencies:

1. The grass cover on the upstream slope was relatively sparse.
2. There was substantial sloughing on the outside cut slope of the auxiliary spillway channel.
3. There was some erosion at the end of the rock sill at the downstream end of the auxiliary spillway channel.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

The normal water surface elevation is at the crest of the principal spillway riser. Downstream flows are limited by flow into the riser, except during periods of extremely heavy runoff when the auxiliary spillway is in service.

4.2 MAINTENANCE OF DAM

The dam is maintained by the owner. Construction of the dam was completed in September 1979. The grass on the upstream slope has not come in uniformly and might need further attention. In other respects, the dam appeared to be satisfactorily maintained.

4.3 WARNING SYSTEM IN EFFECT

There is no warning system in effect.

4.4 EVALUATION

The operation and maintenance procedures for this dam are satisfactory.

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the 1338 acre watershed of the Site 1 dam was made using the USGS 7.5 minute quadrangles for New Berlin North and Sherburne, New York. The watershed consists of open grassed fields and woodlands. Relief in the drainage area ranges from moderate to steep.

5.2 ANALYSIS CRITERIA

The analysis of the floodwater retarding capability of this dam was performed using the Corps of Engineers HEC-1 computer program, Dam Safety version. This program develops an inflow hydrograph using the Snyder Synthetic Unit Hydrograph method and then uses the "Modified Puls" flood routing procedure. The spillway design flood selected was the Probable Maximum Flood (PMF) in accordance with the Recommended Guidelines of the U.S. Army Corps of Engineers.

5.3 SPILLWAY CAPACITY

The principal and auxiliary spillways are uncontrolled structures. The capacities for both spillways were taken from the stage-discharge data included in the SCS design report.

The spillways have sufficient capacity for discharging the peak outflow from the PMF. For this storm, the peak inflow is 3584 cfs and the peak outflow is 3542 cfs. When the spillways are discharging the peak outflow, the water surface will be 4.5 feet below the top of the dam. Further information concerning this analysis is included in Appendix C.

5.4 RESERVOIR CAPACITY

Normal flood control storage capacity of the reservoir between the principal and auxiliary spillways is 220.4 acre-feet which is equivalent to a runoff depth of 2.0 inches over the drainage area. Surcharge storage capacity to the maximum high water elevation is an additional 175.3 acre-feet, equivalent to a runoff depth over the drainage area of 1.6 inches. Total storage capacity of the dam is 397.9 acre-feet.

5.5 FLOODS OF RECORD

The maximum known flood occurred during March, 1978 while the dam was under construction. The pool level at this time was reported to be about elevation 1323.5. No higher water has been recorded since the dam was completed in September, 1979.

5.6 OVERTOPPING POTENTIAL

Analysis indicates that the total discharge capacity is sufficient to prevent overtopping from the PMF.

5.7 EVALUATION

This dam has sufficient capability to impound and adequately discharge floodwaters expected to result from the PMF.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

No signs of distress were observed in connection with the earth embankment.

b. Design and Construction Data

Design data was obtained from SCS. Stability analyses were performed using the Swedish circle method of analysis. Two undrained triaxial shear tests were performed on compacted soil samples from the proposed borrow area. These tests were used to select soil parameters for use in the analysis. Several cases were analyzed on the upstream slope. For rapid drawdown from the permanent pool elevation, the minimum factor of safety was 1.45. For rapid draw down from the water surface which would result from the 100 year storm, the factor of safety was 1.2. While this is lower than desireable, it is acceptable due to the low frequency of occurrence of this storm. For the downstream slope, long term steady seepage was analyzed. The minimum factor of safety for this case was 1.34.

c. Seismic Stability

No records of any seismic stability analysis performed for this structure could be located.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

The Phase I inspection of the Mill Brook Site 1 Dam did not reveal conditions which constitute a hazard to human life or property. The earth embankment is considered to be stable and the spillways are capable of retarding and safely discharging floodwaters resulting from the Probable Maximum Flood (PMF).

b. Adequacy of Information

Information reviewed for Phase I inspection purposes is considered to be adequate.

c. Need for Additional Investigations

No additional investigations are necessary at this time.

7.2 RECOMMENDED MEASURES

The following actions should be taken within 6 months of the date of final approval of this report:

- a. Take actions which will assist in the development of a good grass cover on the upstream slope.
- b. Investigate the sloughing on the outside cut slope of the auxiliary spillway channel and take actions necessary to correct this problem.
- c. Repair the erosion at the end of the rock sill at the downstream end of the auxiliary spillway channel.
- . Develop an emergency action plan for notification of downstream residents and the proper authorities in the event of large auxiliary spillway discharges.

APPENDIX A

PHOTOGRAPHS

Service Spillway Riser

Upstream Slope of Dam and Service
Spillway Riser

Downstream Slope - Auxiliary Spillway
Channel in Background

Outlets of Principal Spillway Conduit
and Drainage System Pipes

Crest of Dam Looking Across
Auxiliary Spillway Channel

Rock Trench Carrying Flow Off
Road into Pool, Slight Delta Forming at Toe

Auxiliary Spillway Channel Looking Downstream
Note Sloughing on Slope

Sloughing on Outer Slope of Auxiliary
Spillway Channel

APPENDIX B
VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST1) Basic Data

a. General

Name of Dam MILL BROOK WATERSHED PROJECT SITE 1Fed. I.D. # NY 715 DEC Dam No. 117B-4340River Basin SUSQUEHANNALocation: Town NEW BERLIN County CHENANGOStream Name MILL BROOKTributary of UNADILLA RIVERLatitude (N) 42° 37.9' Longitude (W) 75° 20.8'Type of Dam EARTH EMBANKMENTHazard Category CDate(s) of Inspection JULY 31, 1980Weather Conditions SUNNY 75°Reservoir Level at Time of Inspection 3.74' BELOW TOP OF RISERb. Inspection Personnel W. LYNICK R. WARRENDER

c. Persons Contacted (Including Address & Phone No.)

GARY PAGE - SCS Broome Co. AIRPORT OFFICE607-773-2751

d. History:

Date Constructed 9/79 COMPLETED Date(s) Reconstructed _____Designer SOIL CONSERVATION SERVICEConstructed By J.R. HALL INC.-WATERVILLE, N.Y. Sub-Howdy JONES CONST.
(EARTH)Owner CHENANGO COUNTY

2) Embankment

a. Characteristics

(1) Embankment Material COMPACTED TILL

(2) Cutoff Type COMPACTED EARTH

(3) Impervious Core NONE

(4) Internal Drainage System YES

(5) Miscellaneous GRASS COVER - NO CROWNVETCH AVAILABLE
AT TIME OF CONSTRUCTION

b. Crest

(1) Vertical Alignment GOOD

(2) Horizontal Alignment CURVED

(3) Surface Cracks NONE

(4) Miscellaneous _____

c. Upstream Slope

(1) Slope (Estimate) (V:H) 1 ON 3

(2) Undesirable Growth or Debris, Animal Burrows NONE - GRASS
COVER WAS SOMEWHAT SPARSE

(3) Sloughing, Subsidence or Depressions MINOR RILL EROSION
BETWEEN TOP OF RISER & NORTH ABUTMENT CONTACT &
AROUND RISER AREA ON SLOPE

(4) Slope Protection NONE

(5) Surface Cracks or Movement at Toe NONE

d. Downstream Slope

(1) Slope (Estimate - V:H) 1 ON 2 UPPER 1 ON 3 LOWER

(2) Undesirable Growth or Debris, Animal Burrows NONE

(3) Sloughing, Subsidence or Depressions MINOR EROSION RILL ON
LOWER BERM SLOPE (1/2 WAY BETWEEN PIPE & NORTH ABUTMENT)

(4) Surface Cracks or Movement at Toe NONE

(5) Seepage NONE

(6) External Drainage System (Ditches, Trenches; Blanket) RIPRAP AT
ALL 4 SLOPE-ABUTMENT CONTACTS

(7) Condition Around Outlet Structure SATISFACTORY - RIPRAP

(8) Seepage Beyond Toe NONE

e. Abutments - Embankment Contact

RIPRAP ON CREASES

(1) Erosion at Contact NONE

(2) Seepage Along Contact NONE

3) Drainage System

a. Description of System 2- 6" DIAMETER ASBESTOS-CEMENT
PIPE WITH ANIMAL GUARDS

b. Condition of System OKAY- GARY PAGE SAID HIGH WATER DURING
CONSTRUCTION CAUSED PIPES TO FLOW SUBSTANTIALLY

c. Discharge from Drainage System NONE

4) Instrumentation (Monumentation/Surveys, Observation Wells, Weirs,
Piezometers, Etc.)

NONE

5) Reservoir

a. Slopes STEEP WITH BRUSH & TREES

b. Sedimentation MINOR DELTA AT OLD HAUL ROAD & DITCH
ENTRANCE FROM RIGHT ABUTMENT AT AUXILIARY SPILLWAY ENTRANCE

c. Unusual Conditions Which Affect Dam NONE

6) Area Downstream of Dam

a. Downstream Hazard (No. of Homes, Highways, etc.) VILLAGE OF
NEW BERLIN

b. Seepage, Unusual Growth NONE

c. Evidence of Movement Beyond Toe of Dam NONE

d. Condition of Downstream Channel HEAVY BRUSH & TREES IN
STREAM

7) Spillway(s) (Including Discharge Conveyance Channel)

a. General CONCRETE RISER → CONDUIT → PLUNGE POOL FOR
SERVICE SPILLWAY
AUXILIARY SPILLWAY - CHANNEL IN EARTH CUT

b. Condition of Service Spillway SATISFACTORY
GARY PAGE CRAWLED PIPE IN JUNE, 1980 - HE SAID
MAXIMUM JOINT EXTENSIBILITY WAS $\frac{3}{4}$ " - THE MAXIMUM
CLOSURE AT THE TIME OF CONSTRUCTION WAS $\frac{1}{2}$ ".
MOST OF THE JOINTS HAD $< \frac{3}{8}$ " GAP.

c. Condition of Auxiliary Spillway SLoughing ON OUTSIDE CUT SLOPE
(CAUSED BY HILLSIDE SEEPAGE 2 MONTHS EACH YEAR). SLOPE
WAS FLATTENED DURING CONSTRUCTION ON PART OF CHANNEL BUT
THERE WAS STILL MINOR SLoughING IN FLAT AREA
ROCK SICK AT OUTLET TO AUX SPILLWAY WAS ERODED AT ONE END

d. Condition of Discharge Conveyance Channel

DOWNSTREAM OF SITE - HEAVY BRUSH & TREES LINING
EXISTING STREAM

8) Reservoir Drain/Outlet

Type: Pipe Conduit _____ Other _____

Material: Concrete Metal _____ Other _____

Size: 18" Length 30'

Invert Elevations: Entrance 1302.0 Exit 1302.0

Physical Condition (Describe): Unobservable

Material: _____

Joints: _____ Alignment _____

Structural Integrity: _____

Hydraulic Capability: _____

Means of Control: Gate Valve _____ Uncontrolled _____

Operation: Operable Inoperable _____ Other _____

Present Condition (Describe): _____

REPORTED TO BE OPERATIONAL

9) Structurala. Concrete Surfaces ALL SATISFACTORY

b. Structural Cracking NONE

c. Movement - Horizontal & Vertical Alignment (Settlement)

NONE

d. Junctions with Abutments or Embankments GOOD

e. Drains - Foundation, Joint, Face

f. Water Passages, Conduits, Sluices SLIGHT SEPARATION OF
SOME JOINTS

g. Seepage or Leakage NONE

h. Joints - Construction, etc. _____

NONE

i. Foundation OKAY

j. Abutments OKAY

k. Control Gates _____

l. Approach & Outlet Channels _____

m. Energy Dissipators (Plunge Pool, etc.) RIP RAP PLUNGE POOL

n. Intake Structures Good Condition

o. Stability _____

p. Miscellaneous _____

APPENDIX C

HYDROLOGIC/HYDRAULIC
ENGINEERING DATA AND COMPUTATIONS

CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

1

AREA-CAPACITY DATA:

	Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1) Top of Dam	<u>1349.0</u>	<u>22.7</u>	<u>397.9</u>
2) Design High Water (Max. Design Pool)	_____	_____	_____
3) Auxiliary Spillway Crest	<u>1339.5</u>	<u>15.0</u>	<u>222.6</u>
4) Pool Level with Flashboards	_____	_____	_____
5) Service Spillway Crest	<u>1306.3</u>	<u>0.9</u>	<u>2.2</u>

DISCHARGES

	Volume (cfs)
1) Average Daily	_____
2) Spillway @ Maximum High Water	<u>158.4</u>
3) Spillway @ Design High Water	_____
4) Spillway @ Auxiliary Spillway Crest Elevation	<u>143.5</u>
5) Low Level Outlet	<u>79.2</u>
6) Total (of all facilities) @ Maximum High Water	<u>9009</u>
7) Maximum Known Flood	_____
8) At Time of Inspection	_____

CREST:

ELEVATION: 1349.0Type: GRASSED EARTHWidth: 16'Length: 475'Spillover AUXILIARY CHANNELLocation SOUTH END OF DAM

SPILLWAY:

PRINCIPAL

EMERGENCY

1306.3

Elevation

1339.5R/C DROP INLET

Type

EARTH CUT CHANNELWEIR LENGTH 15'

Width

100'

Type of Control

✓✓

Uncontrolled

Controlled:

Type

(Flashboards; gate)

Number

Size/Length

Invert Material

Anticipated Length
of operating service

Chute Length

Height Between Spillway Crest
& Approach Channel Invert
(Weir Flow)

HYDROMETEROLOGICAL GAGES:

Type : NONE

Location: _____

Records:

Date - _____

Max. Reading - _____

FLOOD WATER CONTROL SYSTEM:

Warning System: NONE

Method of Controlled Releases (mechanisms):

RESERVOIR DRAIN

DRAINAGE AREA: 2.09 Sq.M.

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type: FARMS, WOODLANDS

Terrain - Relief: GRASS - FORESTS

Surface - Soil: TISSUE

Runoff Potential (existing or planned extensive alterations to existing
(surface or subsurface conditions)

None

Potential Sedimentation problem areas (natural or man-made; present or future)

CONSTRUCTION ROAD GOES INTO RESERVOIR

Potential Backwater problem areas for levels at maximum storage capacity
including surcharge storage:

None

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the
Reservoir perimeter:

Location: _____

Elevation: _____

Reservoir:

Length @ Maximum Pool _____ (Miles)

Length of Shoreline (@ Spillway Crest) _____ (Miles)

PROJECT GRID

JOB	SHEET NO.	CHECKED BY	DATE
MILL BROOK WATERSHED PROJECT	1		
HYDROLOGIC/HYDRAULIC COMPUTATIONS	(LJ)	- 37 -	
Drainage Area = 2.09 Sq Mi = 1338 Acres			
NUMBER SYNTHETIC UNIT HYDRAULIC			
L = 2.46 mi	L _n = 1.21 mi		
$t_f = C + (L - L_{n})^{1/2} = 2.09(2.46)^{1/2} = 2.77$			
$t_f = \frac{1}{2} + \frac{2.77}{5.5} = .50$	Use $\frac{1}{2}$ hour increments		
$t_f = t_f + .25(\frac{1}{2} + \frac{1}{2}) = 2.77 + .25(1.5) = 4.11$			
HR #33 PMP RAINFALL			
Flow = PMP Runoff = 20 in			
6 in/s = 1111 s	24 hr = 183 min		
125 = 1125% (125)	1.1 = 142%		
TRSPC = $1 - \frac{1.3225}{1.42} = .79$			
Base Flow = USE 2 cfs			

**** FLUID HYDROGRAPH PACKAGE (H.C.-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 26 FEB 79
 MODIFIED FOR MURFYNELL SPQ 79
 **** AL WILL BROOK WATERSHED PROJECT SITE 1

 1 A1 DATE 0 30 0 0 0 C 2 0 0
 2 A2 ANALYSIS 0 30 0 0 0 C 2 0 0
 3 A3 DATE 0 30 0 0 0 C 2 0 0
 4 B 20C 0 30 0 0 0 C 2 0 0
 5 B1 5
 6 J 1 2 1
 7 J1 .5 1
 8 K C 1
 9 K1 INFLOW HYDROGRAPH
 10 H 1 1 2.09 .74 1
 11 P C 20 111 123 132 142
 12 T
 13 W 2.77 .625
 14 X 2 2 1
 15 K 1 1 1
 16 K1 Routed Hydrograph at Dam No Breach
 17 Y 1 1 1 -1306.3 -1
 18 Y1 1
 19 Y41306.3 1339.5 1343.1 1348.9
 20 Y5 C 129 1834 9009
 21 \$5 2.2 222.6 281.2 397.9
 22 \$61306.3 1339.5 1343.1 1348.9
 23 \$61306.3
 24 \$61348.9 2.6 1.5 475
 25 K 99
 26 A
 27 A
 28 A
 29 A
 30 A

**** NEW YORK STATE
 DEPT OF ENVIRONMENTAL CONSERVATION
 NYDEC PROTECTION BUREAU

FLUORONIC RAITH PACKAGE (HFC-1)
(A) SAFETY VERSION 1 JULY 1974
LAST MODIFICATION 26 FEB 79
MODIFIED FOR HONEYWELL APR 79

NEW YORK STATE
DEPT OF ENVIRONMENTAL CONSERVATION
FLCC PROTECTION BUREAU

MILL BROOK WATERSHED PROJECT SITE 1
ANALYSIS PKF WITH RATIUS
DATE

JOB SPECIFICATION		IPLT	IPAT	NSTAN	
NHR	NHIN	IWAY	IHP	IMIN	METRC
0	30	0	0	0	0
NC	JUPPER	5	NWT	LROPT	TRACE
20C		0	0	0	0

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN = 1 NRTIO = 2 LRTIO = 1

卷之三

SINGAPORE DISEASES SURVEY

```

I FLOW HYDROGRAPH
 1STAQ 1COMP 1ECON 1TAPE 1PLT 1PRC 1NAME 1STAGE 1AUTO
    1      0      0     .0      0      0      C      1      0      0
 1HYDGF 1UHG 1TAREA 1SNAP 1HYDROGRAPH DATA
    1      2.09   0.        TRSDA  TRSPC  RATIC  ISNCW  ISAME  LOCAL
    0.      2.09   0.74    0.        0.        0.        0.        0.        0.
 1HYDGF 1SPFE 1PMS 1PRECIP DATA
    1      20.00  111.00  R6      R12     R24     R48     R72     R96
    0.      20.00  111.00  123.00  132.00  142.00  142.00  142.00  142.00

```

LQOPT 0 STKRN C. DLTKR 0. RTOL 1.00 ERAIN 0. STRKS 0. RATIO 1.00 STRTL 1.00 CNSTL 0.10 ALSMX 0. RTIMP 0.

APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDERS
STRTQ = 2.00 QRCSSN = 2.00 RTCR = 1.00
INTERVAL = 5.00 ANGR = 5.00
RFCESSION DATA
GIVEN SNYDERS ARE TC = 6.41

UNIT	HYDROGRAPH	31 END-OF-PERIOD ORDINATES,	LAG =	2.79	1 GUL.	CP = C.63	VOL = 1.00
21.	76.	150.	226.	305.	285.	240.	162.
133.	11C.	90.	74.	61.	41.	34.	28.
17.	15.	13.	10.	9.	7.	5.	4.
3.							

	H.P.	IN	PEPERID	RAIN	EXCS	LOSS	COMP Q	END-OF-PERIOD FLOW	MU.DA	FR.MA	PERIOD	RAIN	EXCS	LGSS	CORR Q
0	0.00	0.00	1	0.00	0	0.00	2	1.03	2.30	101	0.	0.	0.	263.	
1.01	0.30	1	1.00	2	0.00	0.00	2	1.03	3.00	102	0.	0.	0.	263.	
1.01	1.00	2	0.00	3	0.00	0.00	2	1.03	3.00	102	0.	0.	0.	263.	
1.01	1.30	3	0.00	4	0.00	0.00	2	1.03	3.00	102	0.	0.	0.	263.	

1.02	11.00	70	0.15	0.10
1.02	11.30	71	0.15	0.10
1.02	12.00	72	0.15	0.05
1.02	12.30	73	0.82	0.77
1.02	13.70	74	0.82	0.77
1.02	13.30	75	0.99	0.94
1.02	14.00	76	0.99	0.94
1.02	14.30	77	1.23	1.18
1.02	15.00	78	1.23	1.18
1.02	15.30	79	1.50	1.45
1.02	16.00	80	4.74	4.69
1.02	16.30	81	1.15	1.10
1.02	17.00	82	1.15	1.10
1.02	17.30	83	0.90	0.85
1.02	18.00	84	0.90	0.85
1.02	18.30	85	0.97	0.92
1.02	19.00	86	0.97	0.92
1.02	19.30	87	0.97	0.92
1.02	21.30	88	0.97	0.92
1.02	20.30	89	0.97	0.92
1.02	21.00	90	0.97	0.92
1.02	21.30	91	0.97	0.92
1.02	22.00	92	0.97	0.92
1.02	22.30	93	0.97	0.92
1.02	23.00	94	0.97	0.92
1.02	23.30	95	0.97	0.92
1.03	0.30	96	0.97	0.92
1.03	1.00	97	0.97	0.92
1.03	1.30	98	0.99	0.94
1.03	2.00	99	0.99	0.94
		100	0.00	0.00

1.04	193.	13.00	170	0.
1.04	206.	13.30	171	2.
1.04	217.	14.00	172	2.
1.04	239.	14.30	173	0.
1.04	298.	15.00	174	0.
1.04	4C9.	15.30	175	0.
1.04	578.	16.00	176	0.
1.04	802.	16.30	177	0.
1.04	1067.	17.00	178	0.
1.04	1351.	17.30	179	0.
1.04	1779.	18.00	180	0.
1.04	2172.	18.30	181	0.
1.04	2672.	19.00	182	0.
1.04	3129.	19.30	183	0.
1.04	3455.	20.00	184	0.
1.04	3504.	20.30	185	0.
1.04	3468.	21.00	186	0.
1.04	3168.	21.30	187	0.
1.04	2798.	22.00	188	0.
1.04	2405.	22.30	189	0.
1.04	2019.	23.00	190	0.
1.04	1673.	23.30	191	0.
1.04	1384.	24.00	192	0.
1.05	1146.	24.30	193	0.
1.05	950.	1.00	194	0.
1.05	769.	1.30	195	0.
1.05	657.	2.00	196	0.
1.05	548.	2.30	197	0.
1.05	457.	3.00	198	0.
1.05	361.	3.30	199	0.
1.05	317.	4.00	200	0.

SLR	21.02	17.41	47119.
(534.	442.	1334.26)

PEAK	6-H'UR	24-H'UR	72-H'OLR
CFS	2674.	963.	326.
CHS	76.	27.	9.
INCHES	11.90	17.14	1334.
KM	3C7.35	435.26	17.44
AC-FT	1326.	1909.	442.85
THOUS CU M	1636.	2355.	443.89
			1942.
			2462.
			2396.

14.001241	
14.301251	
15.501261	
15.301271	
16.601281	
16.301291	
17.001301	
17.301311	
18.001321	
18.301331	
19.001341	
19.301351	
20.001361	
20.301371	
21.001381	
21.301391	
22.001401	
22.301411	
23.001421	
23.301431	
24.001441	
0.301451	
1.001461	
1.301471	
2.001481	
2.301491	
3.001501	
3.301511	
4.001521	
4.301531	
5.001541	
5.301551	
6.001561	
6.301571	
7.001581	
7.301591	
8.001601	
8.301611	
9.001621	
9.301631	
10.001641	
10.301651	
11.001661	
11.301671	
12.001681	
12.301691	
13.001701	
13.301711	
14.001721	
14.301731	
15.001741	
15.301751	
16.001761	
16.301771	
17.001781	
17.301791	
18.001801	
18.301811	
19.001821	
19.301831	
20.001841	
20.301851	
21.001861	
21.301871	
22.001881	

* १८५ *

HYDROGRAPH AT STA - 1 FOR PLAN 1 RIVER 1

2

CFS	1792.	1337.	491.	163.	23359.
CMS	51.	38.	14.	5.	667.
INCHES		5.95	8.57	8.72	8.74
MM		151.17	217.63	221.43	221.95
AC-FT		663.	955.	971.	973.
T-T-U-S C-U H		818.	1177.	1198.	1261.

HYDROGRAPH AT STATION 1 FOR PLAN 18112

卷之三

4 35 09 26

HYDROGRAPH ROUTING

ROUTED HYDROGRAPH AT DAM NO		BREACH	I TAPE	JPLT	JPRF	I NAME	I STAGE	I AUTO
1	1	1	0	0	.0	0	0	0
			ROUTING DATA					
QLOSS	CLOSS	Avg	IRFS	I SAME	I DPT	I PMP		LSTR
0.	0.	0.	1	1	0	.0		0
NSTPS	NSTDL	LAG	AMSKK		X	TSK	STURA	ISPRAT
1	0	0	0.			0.	"1306.	"1

STAGE	1306.30	1339.50	1343.10	1348.90				
FLW	0.	129.00	1834.00	9009.00				
CAPACITY	2.	223.	281.	398.				
ELEVATION	1306.	1340.	1343.	1349.				
	CREL 1306.3	SPWID 0.	CDQW 0.	EXPW 0.	ELEV. 0.	CCQL 0.	CAREA 0.	EXPL 0.

END-OF-PERIOD HYDROGRAPH CROWNING RATIO
STATION 10 PLAN 10 RATIO .4750 DYNAMIC COOD EXPD DYNAMIC
TOPEL 1348.9 2.6 1.5 475.

	STAGE	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
17.0	720.	255.	47.	47.	276.	271.
252.	746.	241.	237.	231.	226.	265.
224.	222.	221.	219.	217.	211.	227.
195.	191.	187.	182.	177.	174.	162.
155.	151.	148.	144.	141.	130.	159.
122.	120.	117.	114.	111.	109.	128.
97.	95.	93.	90.	89.	106.	125.
77.	75.	74.	72.	72.	84.	99.
61.	61.	59.	57.	55.	67.	75.
49.	48.	48.	46.	44.	54.	64.
39.	38.	38.	37.	35.	43.	53.
32.	31.	30.	30.	29.	34.	40.
					28.	32.
					27.	26.
1306.3	1306.3	1306.3	1306.3	1306.3	1306.3	1306.4
1306.4	1306.4	1306.4	1306.4	1306.4	1306.4	1306.4
1306.4	1306.4	1306.4	1306.4	1306.4	1306.4	1306.4
1306.4	1306.4	1306.4	1306.4	1306.4	1306.4	1306.4
1307.4	1307.5	1307.5	1307.5	1307.5	1307.5	1307.5
1307.7	1307.7	1307.7	1307.7	1307.7	1307.7	1307.7
1307.7	1307.6	1307.6	1307.7	1307.7	1307.7	1307.7
1310.3	1310.8	1310.8	1311.4	1312.1	1312.8	1307.6
1332.2	1339.0	1341.5	1342.4	1342.4	1342.4	1309.2
1341.3	1341.0	1340.7	1340.4	1340.2	1342.9	1326.4
1339.6	1329.5	1339.3	1339.0	1338.6	1339.0	1339.7
1335.4	1324.7	1334.1	1333.5	1332.8	1332.2	1336.6
1329.3	1328.7	1328.2	1327.7	1327.2	1326.7	1331.0
1324.4	1324.0	1323.6	1323.2	1322.8	1326.2	1325.8
1320.6	1320.2	1319.9	1319.6	1319.3	1322.4	1324.8
1317.6	1317.3	1317.0	1316.8	1316.5	1319.0	1321.3
1315.2	1315.0	1314.8	1314.6	1314.4	1316.3	1317.8
1313.3	1313.2	1313.0	1312.9	1312.7	1314.2	1315.6
1311.9	1311.8	1311.6	1311.5	1311.4	1312.6	1313.7
1310.7	1310.6	1310.5	1310.4	1310.3	1311.3	1312.1
					1310.2	1310.8
					1310.1	1310.0
					1309.9	1309.9

PEAK DUTPLUM IS 1746. AT TIME 43.00 HOURS

CFS	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CMS	1746.	1215.	413.	2297.
INCHES	49.	34.	12.	65.
MM		5.41	7.36	4.
AC-FIT		137.41	186.84	8.52
THOLS CU M		603.	820.	216.48
		743.	1011.	950.
				1166.
				1171.

UVF

STATION

INFLOW(1), DUFFLOW(0) AND OBSERVED FLOW(*)

A large grid of black dots on a white background, forming a 10x10 pattern. The grid consists of 100 individual dots arranged in a single row and column. The dots are evenly spaced and form a perfect square.

**STATION 10 PLAN 1, RATIC 2
END-OF-PERIOD HYDROGRAPH COORDINATES**

	1325.7	1325.3	1324.9	1324.4	1324.0	1323.6	1323.2
1321.7	1321.3	1321.0	1320.6	1320.3	1320.0	1319.7	1319.4
1318.5	1318.2	1317.9	1317.7	1317.4	1317.2	1316.9	1316.6
1316.0	1315.8	1315.5	1315.3	1315.1	1314.9	1314.7	1314.4
1314.6	1313.8	1313.7	1313.5	1313.3	1313.2	1313.0	1312.7
1312.5	1312.3	1312.2	1312.1	1311.9	1311.8	1311.7	1311.5
1311.2	1311.1	1311.0	1310.9	1310.8	1310.7	1310.7	1310.5

PEAK OUTFLOW IS 3542. AT TIME 42.50 HOURS

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	3542.	2644.	889.	221.	46463.
CMS	100.	75.	25.	9.	1316.
INCHES		11.77	15.82	17.15	17.23
MM		298.89	401.82	435.70	437.73
AC-FT		1311.	1762.	1911.	1920.
TH-OLS CU M		1617.	2174.	2357.	2368.

PEAK FLOWS AND STORAGE (END OF PERIOD) SUMMARY FORM ULTIPLE PLAN-RATION ECONOMIC COMPUTATIONS
FLOWS IN CURIC FEET PER SECOND (CURIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILLCMETERS)

OPERATION	STATION	ARFA	PLAN	RATIO 1	RATIO 2	RATIOS APPLIED TO FLOWS
HYDROGRAPH AT	1	2.09 (0.00)	1	1792. (50.74)(3584. 101.43)(
ROUTED TO	1	2.09 (0.00)	1	1746. (49.45)(3542. 100.29)(

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELEVATION STORAGE OUTLEW	INITIAL VALUE	SPILLWAY CREST	TCP OF DAM
1	1306.30	1306.30	1306.30	1340.90
	2.	2.	2.	398.
	0.	0.	0.	9009.
RATIO	MAXIMUM RESERVOIR ELEV	MAXIMUM DEPTH OVER JAM	MAXIMUM STORAGE AC-FT	DURATION OVER TCP HOURS
CF/PF	1342.91	0.	278.	43.00
0.50	1344.48	0.	309.	42.50
1.00			3542.	0.

APPENDIX D
STABILITY COMPUTATIONS

New York

DEW

5-12.

MILL BROOK - SITE 1

5-13-77

NY-2682-D

SLOPE STABILITY - Homogeneous fill

4-3

Borrow materials will consist of GM, SM & GM-GC from the emergency spillway excavation.

typically the materials are represented by samples by field samples 3.1, 203.1 & 206.1

These mats contain:

42- 45% Fines

LL = 18-25

24- 41% Sands

PI = 1-9

25- 35% Gravel

density - ASTM D-698, method A

$$\gamma_d = 119.5 - 121.0 \text{ psf}$$

@ cpt moisture = 11.5%

Shear strength -

$$@ 95\% \text{ of } \gamma_d \quad \left\{ \begin{array}{l} \text{a. total stress : } \phi = 12^\circ - 13.5^\circ \\ \qquad \qquad \qquad c = 325 \text{ psf} \\ \text{b. effective stress : } \phi = 30^\circ - 30.5^\circ \\ \qquad \qquad \qquad c = 125 \text{ psf} \end{array} \right.$$

CONDITION	Select embankment properties for slope stability					
	REC'D F.S.	f_m	f_sit	f_say	ϕ	c
1. Steady Seepage w/seismic	1.5	133.2	137.1	74.7	$\phi' = 30^\circ, 13^\circ$	$c' = 125, 325$
	1.1	133.2	137.1	74.7	$\phi = 13^\circ$	$c = 325$
2. Drawdown w/seismic	1.3	133.2	137.1	74.7	$\phi = 13^\circ$	$c = 325$
3. End of Cycles	1.4	133.2	137.1	74.7	$\phi' = 30^\circ$	$c' = 125$

The structure is located Chittenden County, N.Y. which is seismic zone I, therefore a seismic coefficient of 0.05 will be used.

(1334.7)

Drawdown will be assumed to take place from the 14% peak.

New York
D.E.W.

Slope Stability

Mill Brook - Site 1

5-13-77

NY-2682-D

z

4-4

@ 95% of std. $\gamma_d = 119.5\text{pcf}$

95% $\gamma_d = 113.5\text{pcf}$

let w be $\pm 2\%$ or 9.5% to 13.5% ✓

$$\gamma_d = \frac{\gamma_m}{1+w}$$

$$\gamma_m = \gamma_d(1+w) = 119.5(1.115) = 133.2\text{pcf}$$

$$\text{for } \gamma_{sat} = W_s + W_{wat} = 119.5 + \gamma_{H_2O}$$

$$\text{and } V_s = \frac{W_s}{\gamma_w G_s} = \frac{119.5}{2.67(62.4)} = 0.717 \text{ ft}^3$$

$$@ 100\% \text{ std. } V_w = 0.283$$

$$\text{and } W_{wat} = 0.283(62.4) = 17.6\text{pcf}$$

$$\therefore \gamma_{sat} = 119.5 + 17.6 = 137.1\text{pcf}$$

$$\gamma_{buoyant} = 137.1 - 62.4 = 74.7$$

Foundations soils

outwash rather than fill

- Soils are much the same as embankments where ^{BORROW} soil will be taken, densities are good. Therefore use the same soil properties as for the embankment. Surface weathered soils will be removed

ESTIMATED FOR ML-CL IN FOUNDATION $\phi = 10^\circ$ (TOTAL) $C = 400$ $\gamma_{sat} 130$
 $\phi = 25^\circ$ $C = 150$ (EEP) $\gamma_{buoy} = 67.6$

- Rock - shale and sandstone. For Slope Stability use a $\phi = 50^\circ$, $\gamma_{sat} = 160\text{pcf}$ and $C = 2,000\text{psf}$

BASED ON ELOW COUNT DATA & PRECONSOLIDATION MATERIAL USE $\phi = 12^\circ$ (Total) $C = 600$ (STATE OF ~~7/11/77~~)

NEW YORK
WALTER 6-29-77

MILL BROOK - SITE 1

SLOPE STABILITY - UPSTREAM FACE - SUMMARY

NY-2682-1

A-7

UPSTREAM FACE.

DRAWDOWN FROM PERM POOL (ELEV 1307)

USING TOTAL STRESS PARAMETERS (CU)

$$\text{MIN FS} = 1.45 > \text{REQ'D } 1.3$$

∴ UPSTREAM FACE OK

NOTE:

FOR U.S. FACE WITH DRAWDOWN FROM
100' WATER SURFACE ELEV (1334.7)

USING TOTAL STRESS (CU) PARAMETERS

FS = 1.16 WITH FAILURE SURFACE
ENTIRELY WITHIN EMBANKMENT
IN WHICH CASE A FS OF 1.2 IS ALLOW.

$$FS 1.16 \approx 1.2$$

THIS EMBANKMENT IS CONSIDERED STABLE
BECAUSE OF LOW FREQUENCY OF OCCURENCE
OF HIGH WATER CONDITION

APPENDIX E

REFERENCES

APPENDIX E
REFERENCES

- 1) U.S. Department of Commerce, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, May 1961.
- 2) H.W. King and E.F. Brater, Handbook of Hydraulics, 5th edition, McGraw-Hill, 1963.
- 3) University of the State of New York, Geology of New York, Education Leaflet 20, Reprinted 1973.
- 4) Elwyn E. Seelye, Design, 3rd edition, John Wiley and Sons, Inc., 1960
- 5) U.S. Department of the Interior, Bureau of Reclamation; Design of Small Dams, 2nd edition (rev. reprint), 1977.

APPENDIX F

DRAWINGS

VICINITY MAP
MILL BROOK WATERSHED PROJECT
SITE I
NY-715

TOPOGRAPHIC MAP
MILLBROOK WATERSHED PROJECT
SITE 1
NY 715

CONSTRUCTION DETAILS

LEGEND

- (○) TEST PIT, LOGGED ONLY
- (○) TEST PIT, LOGGED & SAMPLED
- (○) DRILL HOLE, LOGGED ONLY
- (○) DRILL HOLE, LOGGED & SAMPLED
- SEDIMENT POOL ELEV.
- DESIGN HIGH WATER ELEV.
- (X) FENCE LINE (EXISTING, TO BE REMOVED)
- (—) FENCE LINE (TO BE CONSTRUCTED)
- ▲ TRANSIT HUB
- CONSTRUCTION LIMIT
- (Hatched) FOUNDATION EXCAVATION
AVERAGE DEPTH - 3FT.

- ✓ 1 WOODED AND BRUSH AREAS UNDER THE DAM AND LEVEE (INCLUDING 15 FEET OUTSIDE THE UPSTREAM AND DOWNSTREAM TOES) SHALL BE CLEARED AND GRUBBED
- ✓ 2 WOODED AND BRUSH AREAS UNDER THE EMERGENCY SPILLWAY, INCLUDING 15 FEET OUTSIDE THE CUT SLOPE, SHALL BE CLEARED AND GRUBBED
- ✓ 3 LIMITS TO BE CLEARED AND GRUBBED WILL BE STAKED IN THE FIELD BY THE ENGINEER
- ✓ 4 AREA UPSTREAM FROM THE DAM AND BELOW ELEVATION 1308 SHALL BE CLEARED
- ✓ 5 AREA 100 FEET WIDE LEADING TO THE EMERGENCY SPILLWAY FROM THE SEDIMENT POOL SHALL BE CLEARED
- ✓ 6 WASTE AREA, ACCESS ROAD, AND PRINCIPAL SPILLWAY CUTLET SHALL BE CLEARED
- ✓ 7 LIMITS TO BE CLEARED WILL BE STAKED IN THE FIELD BY THE ENGINEER
- ✓ 8 DEPTHS AND LIMITS OF BORROW EXCAVATION WILL BE DETERMINED IN THE FIELD BY THE ENGINEER
- ✓ 9 AT COMPLETION OF EARTH FILL OPERATIONS, THE BORROW AND WASTE AREAS SHALL BE LEFT GENTLY SLOPING, GENERALLY SMOOTH AND FREE-Draining
- ✓ 10. BOTTOM SECTION OF THE EMERGENCY SPILLWAY SHALL BE COVERED WITH 6 INCHES OF TOPSOIL THROUGH ENTIRE LENGTH

ACCESS ROAD SECTIONS

QUANTITIES

PEP MODIFICATION 1A-5
EXCAVATION
EMBANKMENT 1500 CY
24" DA CULVERT PIPE 84 LF

CONSTRUCTION
LIMIT LINE

ING 15 FEET
RED AND GRUBBED
INCLUDING 15 FEET
FIELD
ILL BE
THE SEDIMENT
ALL BE CLEARED
ENGINEER
ED IN THE
WASTE AREAS
-DRAINING
ED WITH 6

31
40.24° DRA
CULVERT
+84
CONSTRUCTION
LIMIT LINE
TIES
STATION NO. 5
1500 CY
PIPE 84 LF
1343.1

SHREBBER
SHERBBER

BH#2 ELEV. 1328.23 DOUBLE BEADED RAIL + S.C.S. DISC 3' UP
From 2018 In 6" SUGAR MAPLE.
BH#3 ELEV. 1314.16 DOUBLE BEADED RAIL + S.C.S. DISC 3'
IN POPLAR 2' ABOVE THE GROUND. SOUTH
SIDE OF TREE, UPSIDE OF DAN O-LT. ABOV
BH#10 ELEV. 1307.88 DOUBLE BEADED RAIL + S.C.S. DISC. 3'
TOP OF 8" YELLOW B-RCH STUMP ON SIDE
OF DIRT ON LT. ABOV.

PROFILE ALONG E OF CUTOFF TRENCH

0	2	4	8	16	0	10	20	40	80
VERT SCALE IN FEET					HORIZ SCALE IN FEET				

5'00 4'00 3'00 2'00 1'00 0'00

DAM
PLAN VIEW

CUTOFF TRENCH

GROUND LINE

CUTOFF TRENCH AND CHIMNEY DR
TYPICAL FROM STA 1

CUTOFF TRENCH

VARIATION

ADJUSTMENT DRAIN BE
CHIMNEY DRAIN

100 200 300

1350

APPROX EXISTING
GROUND LINE

E OF OUTLET P.P. 6" DIA
INV ELEV 12967

1330

E OF PRINCIPAL SPILLWAY

1310

E OF OUTLET PIPE, 6" DIA
INV ELEV. 12967

1290

0 10 20 40
HORIZ SCALE IN FT.
0 4 8 16
VERT SCALE IN FT.

9.083'
TOP PERFORATED
PIPE 6" DIA. W/END
CAP S: 0.005 FT/FT
ELEV. 12971'

100

500

600

TOP OF CHIMNEY DRAIN 13100

PROFILE ALONG E OF DRAIN
(LOOKING DOWNSTREAM)

PLAN OF DRAIN OUTLETS

PROFILE ALONG DRAIN OUTLETS

SMALL ANGLE - 45° D TO S

1

13-1001
8/13/78

MILLBROOK WATERSHED PROJECT	
FLOODWATER RETARDING DAM NO 1	
CHEMANGO COUNTY, NEW YORK	
DRAINAGE SYSTEM	

U S DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

D WALKER	6-77
COM	6-77
W.A.H.	NY-2132-P

2

JOINT NUMBER	COLLAR NUMBER	DISTANCE FROM OUTLET	INVERT OF 30 DIA CONCRETE PIPE	GRADE SET
J1	1	0	1294.75	1294.77
J2	2	20	1294.94	1294.97
J3	3	40	1295.13	1295.12
J4	4	60	1295.32	1295.33
J5	5	80	1295.51	1295.52
J6	6	100	1295.70	1295.73
J7	7	120	1295.90	1295.93
J8	8	140	1296.09	1296.09
J9	9	160	1296.28	1296.33
J10	10	180	1296.47	1296.52
J11	11	200	1296.66	1296.67
J12	12	220	1296.85	1296.87
J13	13	240	1297.04	1297.06
J14	14	260	1297.24	1297.26
J15	15	280	1297.43	1297.45
J16	16	300	1297.62	1297.63
J17	17	320	1297.81	1297.81
J18	18	340	1298.00	1298.02

ACTUAL LENGTHS FOR LENGTHS OF PIPE ARE BASED ON
NOTHICAL LENGTHS AND DO NOT INCLUDE CREEP.

COLLAR	DISTANCE FROM OUTLET	INVERT OF 30 DIA CONCRETE PIPE
I	150	1295.57
II	210	1296.75
III	250	1296.95
IV	250	1297.14
V	270	1297.33
VI	290	1297.52
VII	310	1297.72
VIII	320	1297.92

MAIN PIPE IS SURFACED IN ELLIPSIS OTHER THAN SHOWN.
THE ENGINEER WILL PROVIDE THE CONTRACTOR WITH
A REVISION OF THIS SHEET.

ROCK RIPRAP

3:5 SLOPE

24' 0" OF CONCRETE PIPE,
18" DIA, DETAILS SHT. 18
ELBOW NOT USED

1:2 SLOPE

1:1 SLOPE

<p

SHEET

- E OF DRAIN PIPE
DETAIL SHT 9

MATCH LINE

1350

38

37

36

35

34

33

32

1340

1330

1320

1310

1300

1290

1280

1270

1260

1250

1240

1230

1220

STATION 5+50

5+75

6+00

6+25

6+50

6+75

SEE CEDAR DATA SHT 9 ✓

- E OF DRAIN PIPE DETAIL SHT 8

TOP OF CONSTRUCTED FILL - DETAIL SHT 5
TOP OF SETTLED FILL

PLAN OF PRINCIPAL SPILLWAY

AND PLUNGE POOL

APPX EXISTING GROUND LINE

ELEV 1294.0

ELEV 1285.5

SECTION

1300

1290

1280

1270

1260

1250

1240

1230

1220

- E OF DRAIN PIPE DETAIL SHT 8

ELEV 300

CHEMICAL DRAIN

DETAIL SHT 7

CUT OFF TRENCH

DETAIL SHT 5

6' OF DRAIN PIPE

AVG ELEV 1296.7

APPX EXISTING GROUND LINE

6' OF CUT OFF

TRENCH

SECTION OF STRUCTURE EXHAUSTION

15' 0"

30' 0"

45' 0"

60' 0"

75' 0"

90' 0"

105' 0"

120' 0"

135' 0"

150' 0"

165' 0"

180' 0"

195' 0"

210' 0"

225' 0"

240' 0"

255' 0"

270' 0"

285' 0"

300' 0"

315' 0"

330' 0"

345' 0"

360' 0"

375' 0"

390' 0"

405' 0"

420' 0"

435' 0"

450' 0"

465' 0"

480' 0"

495' 0"

510' 0"

525' 0"

540' 0"

555' 0"

570' 0"

585' 0"

600' 0"

615' 0"

630' 0"

645' 0"

660' 0"

675' 0"

690' 0"

705' 0"

720' 0"

735' 0"

750' 0"

765' 0"

780' 0"

795' 0"

810' 0"

825' 0"

840' 0"

855' 0"

870' 0"

885' 0"

900' 0"

915' 0"

930' 0"

945' 0"

960' 0"

975' 0"

990' 0"

1005' 0"

1020' 0"

1035' 0"

1050' 0"

1065' 0"

1080' 0"

1095' 0"

1110' 0"

1125' 0"

1140' 0"

1155' 0"

1170' 0"

1185' 0"

1200' 0"

1215' 0"

1230' 0"

1245' 0"

1260' 0"

1275' 0"

1290' 0"

1305' 0"

1320' 0"

1335' 0"

1350' 0"

1365' 0"

1380' 0"

1395' 0"

1410' 0"

1425' 0"

1440' 0"

1455' 0"

1470' 0"

1485' 0"

1500' 0"

1515' 0"

1530' 0"

1545' 0"

1560' 0"

1575' 0"

1590' 0"

1605' 0"

1620' 0"

1635' 0"

1650' 0"

1665' 0"

1680' 0"

1695' 0"

1710' 0"

1725' 0"

1740' 0"

1755' 0"

1770' 0"

1785' 0"

1800' 0"

1815' 0"

1830' 0"

1845' 0"

1860' 0"

1875' 0"

1890' 0"

1905' 0"

1920' 0"

1935' 0"

1950' 0"

1965' 0"

1980' 0"

1995' 0"

2010' 0"

2025' 0"

2040' 0"

2055' 0"

2070' 0"

2085' 0"

2100' 0"

2115' 0"

2130' 0"

2145' 0"

2160' 0"

2175' 0"

2190' 0"

2205' 0"

2220' 0"

2235' 0"

2250' 0"

2265' 0"

2280' 0"

2295' 0"

2310' 0"

2325' 0"

2340' 0"

2355' 0"

2370' 0"

2385' 0"

2400' 0"

2415' 0"

2430' 0"

2445' 0"

2460' 0"

2475' 0"

2490' 0"

2505' 0"

2520' 0"

2535' 0"

2550' 0"

2565' 0"

2580' 0"

2595' 0"

2610' 0"

2625' 0"

2640' 0"

2655' 0"

2670' 0"

2685' 0"

2700' 0"

2715' 0"

2730' 0"

2745' 0"

2760' 0"

2775' 0"

2790' 0"

2805' 0"

2820' 0"

2835' 0"

2850' 0"

2865' 0"

2880' 0"

2895' 0"

2910' 0"

2925' 0"

2940' 0"

2955' 0"

2970' 0"

2985' 0"

3000' 0"

3015' 0"

3030' 0"

3045' 0"

3060' 0"

3075' 0"

3090' 0"

SECTION A-A as scale

WILDCRICK WATERSHED PROJECT
SOUTHERN PENNSYLVANIA
ALLEGHENY COUNTY, PENNSYLVANIA
PLAN TITLE: STORMWATER POLLUTION B
U.S. ENVIRONMENTAL PROTECTION AGENCY

SECTION @ R SIR					
EXCAVATION PAY UNITS					
EXCAVATION PAY UNITS	MAX. HGT. FEET 0 IN	EXCAV. IN FEET	REQ'D. HGT. IN FEET	COMBINATION HGT. IN FEET	DEPT. IN FEET
3+30	3	3'	3	3	0
3+32	3	3'	3	3	0
3+34	3	3'	3	3	0
3+36	3	3'	3	3	0

1) All pervious materials, except, considered as of no value.
 2) All rock face in structure required to be removed by blasting or other
 forms of demolition. This shall be done prior to any excavation work.
 3) Cuttings material, sand, gravel, all types of fill, etc., resulting from
 removal of the structure, cuttings, debris, etc., resulting from
 removal of the structure.

4) All earthwork details.

GENERAL NOTES: 1) All earthwork to be done by hand labor, unless otherwise specified.
 2) All earthwork to be done by hand labor, unless otherwise specified.
 3) All earthwork to be done by hand labor, unless otherwise specified.
 4) All earthwork to be done by hand labor, unless otherwise specified.

MANHOLE ASSEMBLY DETAILS

Circular Manhole 4'-0" x 4'-0" x 4'-0"
Clear Open Top 3' 0" x 3' 0" x 3' 0"
Go-Mat® P-6461-HH 11-11 S 2-355
Steel Cap Screws, or Eq. to 10"

The Lifting Device Shall Consist of a
Hook at The Edge of the Lid Underneath
and a 2-1/2" x 2" With a Hex Bolt
at the opposite edge

(See Fig. 2000-105, A11-2)

PLAN - TOP

SECTION A-A

1/4" x 6" Carbon steel plate
to conform to Spec 55,
Contractors Threaded
Screws Shall Be Spec'd
1/2" Headed
2-1/2" diameter hole
1/2" head diameter

10-11-11-11-11

ASSEMBLY DETAILS

hole Assembly
9 30° Angle Flange
6451-FM H-11 Slab Class
Items, or Equivalent

Device Shall Consist of a
3" From the Outside
the Lid

Device Shall Consist of a
Edge of the Lid Under the
ing Bar with a Hex Set
ite edge

(See, A.T. - E2)

Construction Details
Sheet 15

E Type Wall Thimble
8" Deep, 18" Dia., and
Bell Ring Wall Fitting
Details Sheet 19

- Spigot Ring Wall Fitting ✓
Detail Sheet 17

SECTION B-BSLIDE GATE DETAILS

- 1 18" Dia Flat Frame Slide Gate
Class O-20
- 2 Gate shall Conform to Spec 573
and shall be MHS-1
- 3 E Type Wall Thimble 8" Deep
- 4 Stem shall be Stainless Steel.
(See Shop Drawings, A. 'CHED')

M. LINDEN "INTERCOASTAL PROJECT"

FLORENTINE TERRACE, FLA.

ONE MILE SOUTH OF FT. LAUDERDALE,

ROCK ST. AT 100 FT. DEEP

MATERIAL DESCRIPTIONS

A
Gravel, mostly gravel - 1¹/₂" max. size, small; 12°, varied lithology; approx. 15% gravel, 15% matrix (which is approx. 65% gravel, 35% sand); 100% matrix (which is approx. 15-30% gravel); coarse; wet to sat rated; rapid permeability; gray brown; calcareous; 2-5-15, mostly <20; alluvial and outwash gravel; thick; (D.S. 1.1, GC-CN)

B
Gravel, silty-clayey - 1¹/₂" max. size, varied lithology; approx 15-60%, 15-60%, 15-60% matrix (which is approx. 15-30% gravel, 20-30% sand, and 60-65% non-plastic fines); coarse; wet to sat rated; rapid permeability; gray white; coarse; slight permeability; loess-like, 100-200, usually 2-4, medium till; (D.S. 1.1, SN: 20-31, GC; 20-31, GC-CN)

C
Sand, silty - 1¹/₂" max. size, varied lithology; 15-60%, 15-30%, 15% matrix (which is approx. 25% gravel, 15% sand and 60% non-plastic fines); gray brown; moist-saturated; moderate permeability; red; very dense, 100-150, mostly; loess; (D.S. 1.1, SN)

D
Sand, white sand and fine gravel - 1¹/₂" max size; 100% matrix (which is approx. 15% gravel, 15% sand and 70% non-plastic fines); coarse; moist; slight permeability; loess-very, coarse, 100-150, small; A+; lacustrine; HL
(D.S. 1.1, SN)

E
Loess - gray, sand and silt w/roots and organic materials; coarse; moist; moderate permeability; loess; ave thickness 1.0'; HL

F
Sand with w/one or more small interbedded sandstone layers; fine grained; moderately hard; coarse; extremely hard; thin bedded (small; 1-3"); highly fractured; core breaks into walnut sized pieces or smaller; 1-2"; SN: 10-15, GC: 10-15; joint system WSW-N, SSW-E; Sevres Co., 100-150, mostly; loess; (SN: 10-15, GC: 10-15)

G
Sand, stiff yellow and greenish; gray; moist; moderate plasticity; slightly yellow; fine to coarse; coarse; yellow; thick; SN: 10-15, GC: 10-15

17-12, Centerline of Bore 5/8/62, SN: 1154.1

0.0 - 1.0 Topsoil
E
1.0 - 9.0 Gravel - sandy, silty
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 40% gravel, 40% sand and 20% non-plastic fines)
Gray brown; moist-saturated; moderate-rapidly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

9.0 - 12.0 Sand 2 silty, w/gravel
15° max.
100% matrix (which is approx. 25% gravel, ~35% sand and 35% non-plastic fines)
Brown; moist; slight to moderately permeable; loess; lacustrine; SN
D.S. 1.1 (ML)

12.0 - 19.0 Gravel - sandy, silty
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 40% gravel, 40% sand and 20% non-plastic fines)
Gray brown; moist-saturated; moderate-rapidly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

Note: Test pit dug partially in left channel and partially in flood plain; heavy storage
0-6.0 ft.

17-12, Centerline of Bore 5/8/62, SN: 1154.1

0.0 - 0.5 Topsoil
E
0.5 - 10.0 Gravel - sandy, silty, poorly sorted
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 50% gravel, 40% sand and 10% non-plastic fines)
Brown; saturated; rapidly permeable; loess; alluvial gravel and sand; GC-G
D.S. 1.1 (GC-CN)

Note: Pit walls due to cutting; heavy storage
0-2.0 ft.; Pit channels 0-10.0 ft. due to
caving and collapse water; no indication of
any change in material; water level 0-4.0

17-12, Centerline of Bore 5/8/62, SN: 1154.2

0.0 - 1.0 Topsoil
E
1.0 - 15.0 Gravel - silty, sandy
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 35% gravel, 40% sand and 25% non-plastic fines)
Brown; moist; slightly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

Note: Hill side has broken surface due
ft. due to oxidation; soil
has become loose w/ft. due to
about 20-30' below hill side.

17-12, Bore, SN: 5/8/62, SN: 1154.2

0.0 - 1.0 Topsoil
E
1.0 - 15.0 Gravel - silty, sandy
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 35% gravel, 40% sand and 25% non-plastic fines)
Brown; moist; slightly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

17-12, Bore, SN: 5/8/62, SN: 1154.3

0.0 - 1.0 Topsoil
E
1.0 - 14.0 Gravel - silty, sandy
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 35% gravel, 40% sand and 25% non-plastic fines)
Brown; moist; slightly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

14.0 - 15.0 Gravel - silty, sandy
15° max., varied shape and lithology
approx. 15 + 6%, 15-3-6%, 15% matrix (which is approx. 35% gravel, 40% sand and 25% non-plastic fines)
Brown; moist; slightly permeable; loess; lacustrine; SN
D.S. 1.1 (SN)

17-12, Bore, SN: 5/8/62

0.0 - 0.5 Topsoil
0.5 - 5.0 Gravel - sand
15° max., 15°
approx. 15 + 6%,
40% gravel,
gray brown;
gravel, sand

A
5.0 - 12.5 Alluvial sand
12.5 - 6.0 Gravel - sand
15° max., 15°
approx. 15 + 6%,
40% gravel,
brown, yellow
gravel, sand

A
Note: SN =
SN: 10-15, 5/8/62
Note: SN =
SN: 10-15, 5/8/62

0.0 - 0.5 Topsoil
0.5 - 5.5 Gravel - sand
15° max., 15°
approx. 15 + 6%,
40% gravel,
brown, yellow
gravel, sand

A
Note: Yellow
SN: 10-15, 5/8/62
Note: Yellow
SN: 10-15, 5/8/62

0.0 - 0.5 Topsoil
0.5 - 5.5 Gravel - sand
15° max., 15°
approx. 15 + 6%,
40% gravel,
brown, yellow
gravel, sand

A
Note: Yellow
SN: 10-15, 5/8/62
Note: Yellow
SN: 10-15, 5/8/62

1

12/1968 - 1/1969, W. 1304.0

0.0 - 0.5 Topsoil
0.5 - 1.0 Gravel - sandy, silty
13' max. - varied shape and lithology
approx. 25% 6"-6.5" 3-6", 90% matrix (which is approx.
40% gravel, 30% sand and 30% non-plastic fines)
Gray brown, wet; rapidly permeable; loose; alluvial
gravel, cobbles; OM

1.0 - 1.5 Bedrock
1.5 - 2.0 Channel, 1/12-1/4, 100 ft.

2.0 - 2.5 Alluvial silt, brick and peat

2.5 - 3.0 Gravel - sandy, silty
13' max. - varied shape and lithology
approx. 25% 6"-6.5" 3-6", 90% matrix (which is approx.
40% gravel, 30% sand and 30% non-plastic fines)
brown, saturated; rapidly permeable; loose, alluvial
gravel, cobbles; OM

Note: GVL = ground surface

2.5 - 3.5 Channel, 1/12-1/4, 100 ft.

3.0 - 3.5 Topsoil
3.5 - 4.5 Gravel - sandy, silty
13' max. - varied shape and lithology
approx. 25% 6"-6.5" 3-6", 90% matrix (which is approx.
40% gravel, 30% sand and 30% non-plastic fines)
brown, saturated; rapidly permeable; loose; alluvial
gravel, cobbles; OM

Note: Material is moist in upper portion of test
pit; contains 10-15% fines. Water level is
4.0 ft.

LEGEND

TEST PIT NUMBERING SYSTEM

Test Pit No. Drill Hole No.

Bottom of pit	1-1	1-100
Borrow Area	1-1-10	100-100
Emergent Soil Layer	1-1-100	100-100
Centerline of Outcrop Structure	1-1-100	100-100
Outcrop Channel	1-1-100	100-100
Drain Line	1-1-100	100-100
Other	1-1-100	100-100

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) SYMBOLS

CL	Well graded gravelly sand to clayey sand
CH	Poorly graded gravel
CL	Silty gravel; gravel-sand mixture
SM	Well graded silt; uniform fine sand
SP	Poorly graded silt
SM	Silty sand; sand-silt mixture
SC	Clayey sand; sand-clay mixture
CL	Silt; fine sand; sandy silt
CL	Clay of low to high plasticity; silty sand, or gravelly clay
CH	Clay of high plasticity; fat clay
CH	Silty silt; siliceous or carbonaceous silt
CL	Organic silt and organic silty clays of low plasticity
CH	Organic clay or silt of medium to high plasticity

(I) Unified Classification by visual inspection in the field

(II) Unified Classification by laboratory analysis

Key to Drill Hole (DH) Logs

A	B	C	D
		Material (USCS)	Depth (ft.)
		No. 1000 - 1/12-1/4	
		- 2 ft. standard penetration	
		- 1/2 in. 0.01 in. aggregate	
		- 1 in. 1/2 in. sand and	
		- 1 in. (ASTM D 373-57)	
33		Drill barrel dry after	
34		Solier bit to advance rate of	
35		wave bore	
36		Hole made too "v" cutter	
37		Rock core, 1.1 8" diameter	
38		Percent rock core recovery	
39		each drill run / m	
40		Permeability test (fpm) -	
41		14.8	

100 - 1000 - 1/12-1/4 - 1000 ft. of core run

See other 2 of 24 test sections of drill 1, 12-1/4 ft. test pit

2

Soil Survey Data	
Geological Column	
SH #31, C/L Dm., 5/21-5/23/69, 21, 1302.5	0.0
B 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1	

TP #131, S.E. Corner Barres, 4/13/77, B.Y. 1353 3

0.0' - 1.0' Topsoil

E

1.0' - 10.0' Gravel-sand-clay mixture

12" max.

B

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% slightly plastic fines)

Brown; moist; slightly permeable; stiff; glacial till
SC

D.S. 131.1 (62)

Note: Topsoil depth 1.0'

TP #231, E End Along E. Eros. Soil, 4/13/77, B.Y. 1341 3

1.0' - 11.0' Gravel-sand-clay mixture

12" max.

B

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% slightly plastic fines)

Brown; moist; slightly permeable; stiff; glacial till
SC

Note: Topsoil depth 1.0'

TP #232, S.E. Side of Eros. Soil II, 4/13/77, B.Y. 1355 3

1.0' - 13.0' Gravel-sand-clay mixture

12" max.

B

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% slightly plastic fines)

Brown; moist; slightly permeable; stiff; glacial till
SC

Note: Topsoil depth 1.0'

TP #231, E End Pres. Soil II, 4/13/77, B.Y. 1235 6

1.0' - 3.0' Silty gravels

5"-6" max.

A

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% fines)

Dark brown; wet; moderately permeable; medium; flood
plain, GM-60

3.0' - 7.0' Clayey silts

G

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
15% gravel, 12% sand, 73% low plasticity)

Gray; moist; very slight permeability; very stiff;
glacial till, GL-GL

7.0' - 11.0' Silty gravels

A

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% fines)

Brown; very wet; rapid permeability; loose; glacial
till, GL-GL

11.0' - 14.0' Clayey silts

G

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
15% gravel, 12% sand, 73% low plasticity)

Gray; moist; very slightly permeable; very stiff;
glacial till, GL-GL

Note: Topsoil depth 1.0'. Seepage in gravel layer
below 1.0'. Bedrock @ 14.0'.

TP #531, N Side Drain Line, 4/13/77, B.Y. 1233 3

1.0' - 3.0' Clayey silts

12" max.

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
15% gravel, 12% sand, 73% low plasticity fines);
gray, moist; very slightly permeable; very stiff; glacial till
GL-GL

Note: Rock depth 1.0'. This area has surface water seepage
soft and sticky

3.0' - Very firm till

TP #532, S. Side Drain Line, 4/13/77, B.Y. 1233 4

1.0' - 3.0' Silty gravels

5" - 6" max.

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
15% gravel, 12% sand, 73% low plasticity fines)
Dark brown; wet; moderately permeable; medium; flood plain,
GM-60; D.S. 532.1 (63-60)

3.0' - 8.0' Clayey silts

G

3" - 5" max.

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
15% gravel, 12% sand, 73% low plasticity fines)
Gray; moist; very slightly permeable; very stiff; glacial
till, GL-GL; D.S. 532.2 (63-60)

Note: Topsoil depth 1.0'. Water seepage @ 3.5'

TP #533, S. End Drain Line, 4/13/77, B.Y. 1313 3

1.0' - 11.0' Gravel-sand-clay mixture

12" max.

Approx. 50-60%, 100 3-6", 30% matrix (which is approx.
27% gravel, 24% sand, 49% slightly plastic fines);
Brown; moist; slightly permeable; stiff; glacial till,
SC

Note: Topsoil depth 1.0'

7

1299.3

soil matrix (which is approx.
slightly plastic) "less
permeable, very stiff" glaciol till

this area has surface water - seepage

1297.4

soil matrix (which is approx.
slightly plastic "less
permeable, medium" - see 1299.3
etc)

soil matrix (which is approx.
less plasticity fines,
permeable, very stiff glaciol
till-CL)

water seepage < 5"

1316.0

soil matrix (which is approx.
slightly plastic "less
permeable, stiff; glaciol till,

22-111-
100-0001
8/17/79

2

MILLEROOK WATERSHED PROJECT	
FLOODWATER RETARDING DAM NO 1	
CHENANGO COUNTY, NEW YORK	
LOGS OF TEST HOLES	
U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE	
NAME	A. H. MURKIN
DATE	8/17/79
TEST HOLE NUMBER	
TEST HOLE NUMBER	

WILL DICK WATERSHED PROJECT
SITE NO. 1
SUMMARY OF QUANTITIES
FINAL PAYMENT

<u>Bid Item No. 1</u>	Mobilization Unit Price - \$22,700.00	Total Quantity - 1 JCS Final Cost - \$22,700.00
<u>Bid Item No. 2</u>	Tearing, Class 3 Unit Price - \$1,500.00	Total Quantity - 1.5 Acre Final Cost - \$1,500.00
<u>Bid Item No. 3</u>	Tearing and Grubbing Unit Price - \$2,000.00	Total Quantity - 1.4 Acre Final Cost - \$2,800.00
<u>Bid Item No. 4</u>	Removal of Water Unit Price - \$5,000.00	Total Quantity - 1 JCS Final Cost - \$5,000.00
<u>Bid Item No. 5</u>	Excavation, Common, Type A Unit Price - \$1.00	Total Quantity - 10,153 C.Y. Final Cost - \$10,153.00
<u>Bid Item No. 6</u>	Excavation, Common, Type A Unit Price - \$1.00	Total Quantity - 1,487 C.Y. Final Cost - \$1,487.00
<u>Bid Item No. 7</u>	Excavation, Common, Type A Unit Price - \$1.00	Total Quantity - 371 C.Y. Final Cost - \$371.00
<u>Bid Item No. 8</u>	Excavation, Common, Type 3 Unit Price - \$2.00	Total Quantity - 1,200 C.Y. Final Cost - \$2,400.00
<u>Bid Item No. 9</u>	Excavation, Common, Type 3 Unit Price - \$2.00	Total Quantity - 143 C.Y. Final Cost - \$286.00
<u>Bid Item No. 10</u>	Excavation, Common, Excavator Spillway Unit Price - \$1.00	Total Quantity - 38,813 C.Y. Final Cost - \$38,813.00
<u>Bid Item No. 11</u>	Excavation, Common, Boring Areas AS3 Unit Price - \$1.00	Total Quantity - 19,473 C.Y. Final Cost - \$19,473.00
<u>Bid Item No. 12</u>	Excavation, Common Spillway Unit Price - \$10.00	Total Quantity - 17 C.Y. Final Cost - \$170.00
<u>Bid Item No. 13</u>	Compaction, Common, Soil-Cut Soil Surface Unit Price - \$1.00	Total Quantity - 1000 C.Y. Final Cost - \$1,000.00
<u>Bid Item No. 14</u>	Access Roads Unit Price - \$5,000.00	Total Quantity - 1 JCS Final Cost - \$5,000.00
<u>Bid Item No. 15</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 10,000 C.Y. Final Cost - \$10,000.00
<u>Bid Item No. 16</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 17</u>	Earth Fill, Common, Backfill Unit Price - \$1.00	Total Quantity - 1000 C.Y. Final Cost - \$1,000.00
<u>Bid Item No. 18</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 19</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 20</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 21</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 22</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 23</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 24</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 25</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 26</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 27</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 28</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 29</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 30</u>	Earth Fill Unit Price - \$1.00	Total Quantity - 100 C.Y. Final Cost - \$100.00
<u>Bid Item No. 31</u>	Concrete, Reinforced, Class 1000 Unit Price - \$100.00	Total Quantity - 9.7 C.Y. Final Cost - \$970.00
<u>Bid Item No. 32</u>	Concrete, 7-Reinforced, Class 1000 Unit Price - \$70.00	Total Quantity - 13.1 C.Y. Final Cost - \$917.00
<u>Bid Item No. 33</u>	Concrete, Non-Reinforced, Non-Class 1000 Unit Price - \$53.00	Total Quantity - 10.7 C.Y. Final Cost - \$563.00
<u>Bid Item No. 34</u>	Steel Reinforcement Unit Price - \$5.00	Total Quantity - 2,000 lbs. Final Cost - \$10,000.00
		\$ 200,076.76

1

Std Item No. 16 Reinforced Concrete Pressure
Pipes, 32" Diameter
Unit Price - \$21.00
Total Quantity - 240 L.F.
Total Cost - \$50,400.00

Std Item No. 17 Reinforced Concrete Pressure
Pipes, 18" Diameter
Unit Price - \$12.00
Total Quantity - 14 L.F.
Total Cost - \$168.00

Std Item No. 18 Asbestos-Cement Pipe, Combust
& Drilled - 4" Diameter
Unit Price - \$2.00
Total Quantity - 425 L.F.
Total Cost - \$850.00

Std Item No. 19 Loose Back Shovel, Equipment
Plated
Unit Price - \$10.00
Total Quantity - 135 C.T.
Total Cost - \$1,350.00

Std Item No. 20 Modified Loose Back Shovel,
Equipment Plated, Blue
Area
Unit Price - \$10.00
Total Quantity - 27 C.T.
Total Cost - \$270.00

Std Item No. 21 Shovels
Unit Price - \$14.00
Total Quantity - 27 C.T.
Total Cost - \$378.00

Std Item No. 22 Modified Shovels, Blue Area
Unit Price - \$14.00
Total Quantity - 13 C.T.
Total Cost - \$182.00

Std Item No. 23 Power Commtl Dredge, 17' Dia.
Unit Price - \$1,000.00
Total Quantity - 1 C.T.
Total Cost - \$1,000.00

Std Item No. 24 Miscellaneous Dredge
Unit Price - \$1,000.00
Total Quantity - 1 C.T.
Total Cost - \$1,000.00

Std Item No. 25 Farm Field Dredges
Unit Price - \$10.00
Total Quantity - 100 L.F.
Total Cost - \$1,000.00

Std Item No. 26 Farm Field Dredges
Unit Price - \$10.00
Total Quantity - 600 L.F.
Total Cost - \$6,000.00

Std Item No. 27 Tugboat
Unit Price - \$100.00
Total Quantity - 10.0 Hrs.
Total Cost - \$1,000.00

Std Item No. 28 Tugboat
Unit Price - \$100.00
Total Quantity - 10.0 Hrs.
Total Cost - \$1,000.00

Total Estimated Cost - \$102,872.00

100-1000
100-1000

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE