

Instituto Tecnológico de Aeronáutica Departamento de Eletrônica Aplicada

EEA-21

2º Experiência

Análise e síntese de funções combinacionais de múltiplas saídas

COMP 25

Componentes do Grupo:

Cauê Marçal Guimarães

Daniel Araujo Cavassani

Professores:

Rogério Ferraz de Camargo Osamu Saotome

4.1

Simulação: sendo A a entrada, En a entrada de habilitação, S0 e S1 as seletoras, e F0, F1, F2, F3 as saídas. (a simulação funcionou como esperado)

		Value at	0 ps 125,0 ns 25	50,0 ns 37	5,0 ns 50	0,0 ns	625,0 ns	750,0 ns	875,0 ns	1.0 us ^
	Name		0 ps							
in_	Α	B 0		unnnnnn		mmmmm	wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	wwwwwww	wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	vv
18_	En	B 0								_
<u> </u>	✓ seletora	B 00	00	X	01	Х	10	X	11	
is.	S1	B 0								
in_	50	B 0								
out	F0	B 0		VĹ						
out	F1	B 0			nnnnnnnn	Л				
out	F2	B 0						ιπί <u></u>		
out	F3	B 0								w

4.2

Binorio pura	Código gay
4.2.) az - az a	10 6. 8, 80°
Tar= ord o majo	de co of 11 19
a12 2501 + 2501 20 70	The second secon
[a]= 510002]	
9,	D. 1
0	20

Simulação: sendo g2, g1, g0 a entrada, e a2, a1, a0 a saída. (a simulação funcionou como esperado)

	Name	Value at 0 ps	0 ps 0 ps	125,0 ns	250,0	ns 37	5,0 ns	00,0 ns	625 ₁ 0 ns	750 ₁ 0 ns	875 ₁ 0 ns	1.0 us ^
<u> </u>	∨ Entrada	B 000	000	X	001	011	010	110	X 111	X1	101 10	00
is.	g2	B 0										
in_	g1	B 0										
is.	g0	B 0										
eut	∨ Saida	B 000	000	X	001	010	011	100	101	. \ 1	110 1:	11
out	a2	B 0										
out	a1	B 0										
out	a0	B 0										

4.3

. 6	24.3		DE	COD		3x8		* .					
	Tab.												
	×a	X4	×°	En	Y2	1/4	Ys	Yy	γ,	Y2	γ,	ž.	
	×	×	×	0	0	0	0	0	0	0	0	0	
	Q '	0	0	1	0	0	0	Q	0	0	0	1	
	0	0	1	1	0	0	0	0	0	0	1	0	
	0	1	0	1	0	0	0	0	0	1	0	0	
	0	1	1	1	0	0	0	0	1	0	0	0	
	1	0	0.	1	0	0	0	1	0	0	0	0	
	1	0	1	. 1	0	0	1	0	0	0	0	0	
-	1	1	0	1	0	1	0	0	0	0	0	0	
	1	1	1	1	1	0	0	0	0	a	0	0	
1	pressi												
1	· Y.	=	E, . X	44%			1	. Y	= [*. ×	4%		
) .	Y,	,	En X	, X, X,)	. Ys	= E	n ×2	X X0		
).	Y2	=	En. X	× × ×			1	. 16	= E	n. ×2	4.76		
			- X	. v. v			1	. y.	= E	n. Xa	× %		
1	· Y3	=	-n -/-	643			('1		"			
. 8	squem	a					1,						
×	6 -	1		>		-	1	-	-	+	_		
×	4 -	-	_		_	_	+	-		+	_		
,	χ,			Do-	1	,	I,		,	J			
	-	10	~	3	1		Ĭ	I		L			
	-		-fi	, 中		7	35				-		
					Î	,	ļ	Ţ		J	f	Î Î Î	Λ÷i
					1/0		Y.	1/2		1	7,	Ys Y4 Y4	Au

Simulação: sendo, X2, X1, X0 as entradas, En a entrada de habilitação, e Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 as saídas. (a simulação funcionou como esperado)

. Expressões minimizadas na forma de Produto de Somas

TOBS: Notemos que A=O em somente 1 caso.]
. Consideremos então os seguintes mapas de Karnough.

V					
1	XXX	œ	01	4	10
	00	0	0	0	0
	01	1	1-	1	1
	11	1	-1	1	1
	10	1	1	1	1

You was	43×2	00	01	11	10
	00	0	0	1	1
	01	0	0)	0	0
	11	1	1	1	1
	10	1	1	1	1

Logo:
$$\begin{cases} A = (x_3 + x_2 + x_1 + x_0) \\ . y_1 = (x_3 + x_2) \\ . y_0 = (x_3 + x_1).(x_3 + \overline{x_2}) \end{cases}$$

Ativa Acesse

Simulação: (a simulação funcionou como esperado)

Ativar o W Acesse Config

Circuito Quartus bloco H:

Simulação bloco H: (a simulação funcionou como esperado)

Circuito Quartus completo:

Simulação circuito completo: (a simulação funcionou como esperado)

