let's recap some important definitions

- A set of vectors $\in \mathbb{R}^n$ is called a **basis**, if they are **linearly independent** and every vector $\in \mathbb{R}^n$ can be expressed as a linear combination of these vectors.
- A set of n vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, ..., $\overrightarrow{v_n}$ is linearly independent if no vector in the set can be expressed as a linear combination of the remaining n-1 vectors. In other words, the only solution to $c_1\overrightarrow{v_1}+c_2\overrightarrow{v_2}+\cdots+c_n\overrightarrow{v_n}=0$ is $c_1=c_2=\ldots=c_n=0$ (where c_i are scalars)

• In other words, the coefficients c_1, c_2, \ldots, c_n must all be zero for the linear combination to result in the zero vector and properly characterizing linear independence.

example

- Consider space \mathbb{R}^2
- Consider vectors $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$