模块通讯协议说明文档

- MPU6050
- 压力传感器
- 心电传感器
- 热电偶传感器
- 热电阻传感器
- 浊度传感器

1、协议概述

• 串口号和波特率:波特率默认为115200

• 协议内容如下 (校验码: 除帧头, 帧尾及校验码外的所有数据异或处理)

PC 发给模块	格式	帧头	传感 器类 型	传感 器型 号	设备地址	命令码	数据 长度 len	数据流	校 验 码	帧尾
	数据示例	0x4c 0x52	0x01	0x01	0x01	0x01	0/len	xxx	xx	0x55 0xaa
	字节数	2	1	1	1	1	1	XX	1	2
模块	格		传感	传感	设备	哈克	数据	数	校	
发 给 PC	式	帧头	型	器型 号	地址	响应 码	长度 len	据流	验 码	帧尾
		帧头 0x5a 0x4a								帧尾 0xaa 0x55

2、设计概述

- 波形图通过QCustomPlot进行设计
- MPU6050的3D模型通过Qt Quick 3D进行设计
- MPU6050增加WIFI通信的功能

3、详细说明

3.1、MPU6050 (传感器类型0x08, 传感器型号0x01)

姿态传感器需要注意事项如下:

- 通过获取到的数值为最终数值的一千倍,并且进行过校准
- 根据加速度和角速度计算出四元数
- 根据四元数计算出姿态角
- 使用四元数或者姿态角控制3D模型的旋转效果 (**注意**:用姿态角控制3D模型会出现万向锁现象,通过换成用四元数进行控制)
- 通过滤波进行优化3D效果
- 串口连接和WIFI连接: Windows端可以通过串口和WIFI进行连接而Android端只通过WIFI连接。

3.1.1、协议指令

WIFI:

上位机发送指令:

指令	帧	备注
开始采样	4C 52 08 01 01 01 00 09 55 AA	
停止采样	4C 52 08 01 01 02 00 0A 55 AA	

串口:

上位机发送指令:

指令	帧	备注
开始采样	01	HEX
停止采样	00	HEX

下位机发送指令:

指令	帧	备注
发送的 数据	5A 4A 08 01 01 01 0C (xx xx	第一个括号里的为数据,第二 个为校验码

第一个括号内的前六个xx分别表示两位数据acx, acy, acz, 后六个xx分别表示两位数据gyx, gyy, gyz。

3.1.2、通过获取到的数据计算出加速度和角速度

收到下位机上发的数据进行解包后的数据处理:

```
acfx = ((float)acx) / 1000;
acfy = ((float)acy) / 1000;
acfz = ((float)acz) / 1000;
gyfx = ((float)gyx) / 1000;
gyfy = ((float)gyy) / 1000;
gyfz = ((float)gyz) / 1000;
```

3.2、压力传感器(传感器类型0x04,传感器型号0x01)

压力传感器通过读取下位机上发的指令提取数据信息进行展示。

3.2.1、协议指令

上位机发送指令:

指令	帧	备注
开始 采集	4C 52 04 01 01 04 00 00 55 AA	
停止 采集	4C 52 04 01 01 05 00 01 55 AA	
读取 阈值	4C 52 04 01 01 09 00 0D 55 AA	
设置	4C 52 04 01 01 08 02 (05 DC) (D7) 55 AA	第一个括号里的为阈值,0x05DC为1500,将填入的阈值的值放在括号的位置,再计算校验码放在第二个括号位置

下位机发送指令:

指令	帧	备注
发送的数据	5A 4A 04 01 01 04 02 (xx xx) (xx) AA 55	第一个括号里的为数据,单位为克 (g),第二个为校验码
发送当前阈值给上 位机显示	5A 4A 04 01 01 30 02 (xx xx) (xx) AA 55	第一个括号里的为数据,第二个为校验码

3.3、心电传感器 (传感器类型0x05, 传感器型号0x01)

心电传感器通过读取下位机上发的指令提取数据信息进行展示。

3.3.1、协议指令

上位机发送指令:

指令	帧	备注
开始 采集	4C 52 05 01 01 04 00 01 55 AA	
停止 采集	4C 52 05 01 01 05 00 00 55 AA	
读取阈值	4C 52 05 01 01 09 00 0C 55 AA	
设置	4C 52 05 01 01 08 03 (DC 05 DC) (xx) 55 AA	第一个括号里的为阈值,0x05DC为1500将填入的阈值的值 放在括号的位置,再计算校验码放在第二个括号位置

下位机发送指令:

指令	帧	备注
发送的数据	5A 4A 05 01 01 04 03 (xx xx xx) (xx) AA 55	第一个括号里前一位为心率(BPM),后两位为血 氧值(%)的一 <mark>百倍</mark> ,第二个为校验码
发送当前阈值 给上位机显示	5A 4A 05 01 01 <mark>30</mark> 03 (xx xx xx) (xx) AA 55	第一个括号里前一位为心率(BPM),后两位为血 氧值(%)的一 <mark>百倍</mark> ,第二个为校验码

3.4、热电偶传感器

(传感器类型0x03, 传感器型号K:0x03, T:0x05, J:0x06, E:0X07)

热电偶传感器类型分为: K、T、J、E型。不同型号的传感器开始采集和停止采集指令不同。T、J、E型 号指令如下:

指令	帧	备注
开始采集T	4C 52 03 05 01 04 00 03 55 AA	
停止采集T	4C 52 03 05 01 05 00 02 55 AA	
开始采集	4C 52 03 06 01 04 00 00 55 AA	
停止采集」	4C 52 03 06 01 05 00 01 55 AA	
开始采集E	4C 52 03 07 01 04 00 01 55 AA	
停止采集E	4C 52 03 07 01 05 00 00 55 AA	

3.4.1、协议指令

以下是基于K型传感器的指令进行说明。

上位机发送指令:

指令	帧	备注
开始采集	4C 52 03 03 01 04 00 05 55 AA	
停止采集	4C 52 03 03 01 05 00 04 55 AA	
读取阈值	4C 52 03 03 01 09 00 08 55 AA	
设置阈值	4C 52 03 03 01 08 04 00 00 75 30 48 55 AA	阈值300

下位机发送指令:

指令	帧	备注
发送的数据	5A 4A 03 03 01 04 06 (xx xx xx xx) (xx xx) (xx) AA 55	第一个括号里的为热电偶温度(已冷端补偿)的 <mark>一</mark> 百倍,第二个为冷端温度,第三个为校验码
发送当前阈值 给上位机显示	5A 4A 03 03 01 30 04 (xx xx xx xx) (xx) AA 55	第一个括号里的为热电偶温度(已冷端补偿)的一 百倍,第二个为校验码

3.4.2、量程范围

类型	量程下限	量程上限
K型	-200	1372
T型	-200	400
J型	-210	1200
E型	-200	1000

3.5、热电阻传感器

(传感器类型0x03, 传感器型号PT100:0x01, PT1000:0x02)

热电阻传感器有两种型号: PT100/PT1000。其指令有区别, 例如开始采集指令:

指令	帧	备注
PT100开始采集	4C 52 03 <mark>01</mark> 01 04 00 XX 55 AA	01
PT1000开始采集	4C 52 03 <mark>02</mark> 01 04 00 XX 55 AA	02

3.5.1、协议指令

以下是基于PT100的指令进行说明。

上位机发送指令:

指令	帧	备注
开始采集	4C 52 03 01 01 04 00 07 55 AA	
停止采集	4C 52 03 01 01 05 00 06 55 AA	
读取阈 值	4C 52 03 01 01 09 00 0A 55 AA	
设置阈值	4C 52 03 01 01 08 04 00 00 13 88 94 55 AA	"低温阈值0,高温阈值500" 前两位为低温阈值,后两位为高温阈值,放 大10倍
写电流值	4C 52 03 01 01 0D 02 09 1D 18 55 AA	091D: 2333uA 上位机写电流值单位为uA

下位机发送指令:

指令	帧	备注
发送的数据	5A 4A 03 xx 01 04 02 (xx xx) (xx) AA 55	第一个括号里的为热电阻温度的 <mark>十倍</mark> ,第二个 为校验码
发送当前阈值给 上位机显示	5A 4A 03 xx 01 30 04 (xx xx) (xx xx) (xx) AA 55	第一个括号里的为热电阻温度的低温阈值,第 二个为高温阈值,第三个为校验码

3.5.2、量程范围

类型	量程下限	量程上限
PT100	-200	850
PT1000	-50	300

3.6、浊度传感器 (传感器类型0x09, 传感器型号0x01)

浊度传感器通过读取下位机上发的指令提取数据信息进行展示。

3.2.1、协议指令

上位机发送指令:

指令	帧	备注
开始 采集	4C 52 09 01 01 04 00 0D 55 AA	
停止 采集	4C 52 09 01 01 05 00 0C 55 AA	
读取 阈值	4C 52 09 01 01 09 00 00 55 AA	开始采集后该指令失效,停止采集后可用
设置	4C 52 09 01 01 08 02 (05 DC) (DA) 55 AA	第一个括号里的为阈值,0x05DC为1500,将填入的阈值的值放在括号的位置,再计算校验码放在第二个括号位置
设置 采样 率	4C 52 09 01 01 07 01 (05) (0A) 55 AA	例: 采样率为5

下位机发送指令:

指令	帧	备注
发送的数据	5A 4A 09 01 01 04 02 (XX XX) (XX) AA 55	第一个括号里的为数据(NTU),第二 个为校验码
发送当前阈值给上位 机显示	5A 4A 09 01 01 30 02 (05 DC) (E2) AA 55	第一个括号里的为数据(NTU),第二 个为校验码

4、工具

• Bus Hound:可以实时采集到上下位机发送的指令

• Serial Port Utility: 串口工具