	Задача 1	Задача 2	Задача 3	Задача 4	Задача 5
Студент 1	+	+	+		
Студент 2		+	+		+
Студент 3				+	

Ребра - подмножество декартового произведения множества студентов и задач

$$G = (V, E)$$

$$G = (V, E)$$

- множество различимых объектов

$$G = (V, E)$$

- множество различимых объектов

$$E^{<}$$
 множество упорядоченных пар (x,y)

$$G = (V, E)$$

$$oldsymbol{F}$$
 множество упорядоченных пар (x,y)

$$G = (V, E)$$

- множество различимых объектов

$$E$$
 — множество упорядоченных пар (x,y) множество неупорядоченных пар $(x,y)=(y,x)$

$$G = (V, E)$$

- множество различимых объектов

$$E$$
 — множество упорядоченных пар (x,y) множество неупорядоченных пар $(x,y)=(y,x)$

Вершина степени 4

Простой путь 1-2-3-4, длины 3

Маршрут 4-3-2-5-3-2-1

Расстояние - минимальная длина пути между двумя вершинами

Графы: определения

Расстояние - минимальная длина пути между двумя вершинами

Графы: определения

Расстояние - минимальная длина пути между двумя вершинами

$$dist(1,3) = 2$$

Виды графов: полные

Виды графов: полные

Виды графов: полные

Виды графов: пустые

Дерево - связный граф без циклов

Лес - несвязный граф без циклов

Лес - несвязный граф без циклов

Виды графов: Гамильтонов граф

Виды графов: Гамильтонов граф

Граф, в котором существует путь, содержащий в себе все вершины

Виды графов: Эйлеров граф

Граф, в котором существует путь, содержащий в себе все ребра

Мосты Кёнигсберга

В связном графе не существует Эйлерова пути, если количество вершин нечетной степени не равно двум

В связном графе не существует Эйлерова пути, если количество вершин нечетной степени не равно двум

В связном графе не существует Эйлерова цикла, если в нем есть вершины нечетной степени

В связном графе существует Эйлеров цикл, если в нем все вершины четной степени

Почему цикл всегда заканчивается в вершине из которой мы начали?

AB - BC - CD - DE - EC - CF - FA - AE - EA

AB - BC - CD - DE - EC - CF - FA - AE - EA

AB-BC-CD-DF-FD-DE-EC-CF-FA-AE-EA

Эйлеров цикл:

В связном графе существует Эйлеров путь, если в нем ровно две вершины нечетной степени

2-раскрашиваемые графы - графы, ребра которых раскрашены в один из двух цветов

2-раскрашиваемые графы - графы, ребра которых раскрашены в один из двух цветов

 $R(s)\,$ - малое число Рамсея

Какой размер должен иметь полный двураскрашиваемый граф, чтобы в нем обязательно содержался полный одноцветный подграф размера S

 $R(s)\,$ - малое число Рамсея

Какой размер должен иметь полный двураскрашиваемый граф, чтобы в нем обязательно содержался полный одноцветный подграф размера S

$$R(s,t)\,$$
 - большое число Рамсея

Какой размер должен иметь полный двураскрашиваемый граф, чтобы в нем обязательно содержался полный одноцветный подграф цвета 1 размера s или полный одноцветный подграф цвета 2 размера t

R(s,t)	3	4	5	6	7	8	9
3	6	9	14	18	23	28	36
4	9	18	25				
5	14	25					
6	18						
7	23						
8	28						
9	36						

Теорема Рамсея 1

Теорема Рамсея 1

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

1)P(0)

- 1)P(0)
- (2)P(x)

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

- 1) P(0)
- 2) P(x)
- 3) $P(x) \rightarrow P(x+1)$

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

План доказательства:

- 1) Доказать R(s,1) конечно, R(1,t) конечно 2) Доказать, что если R(s-1,t) конечно и R(s,t-1) конечно, то R(s,t) конечно

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

1) Доказать R(s,1) - конечно, R(1,t) - конечно

$$K_1$$
 \circ

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

1) Доказать R(s,1) - конечно, R(1,t) - конечно

$$K_1 \circ$$

$$R(s,1) = R(1,t) = 1$$

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

1) Доказать R(s,1) - конечно, R(1,t) - конечно

$$K_1 \circ$$
 $R(s,1) = R(1,t) = 1$
 $R(s,2) = R(2,s) = s$

Для любых $s,t\in\mathbb{N}$ существует конечное R(s,t)

2) Доказать, что если R(s-1,t) - конечно и R(s,t-1) - конечно, то R(s,t) - конечно

$$n = R(s-1,t) + R(s,t-1)$$

$$n = R(s - 1, t) + R(s, t - 1)$$

$$n = R(s-1,t) + R(s,t-1)$$

$$n = R(s-1,t) + R(s,t-1)$$

$$n = R(s-1,t) + R(s,t-1)$$

$$B_x \ge R(s,t-1)$$

$$B_x$$

$$n=R(s-1,t)+R(s,t-1)$$
 $B_x \geq R(s,t-1)$ Красный K_s Синий K_{t-1} $DONE!$

$$n=R(s-1,t)+R(s,t-1)$$
 $B_x \geq R(s,t-1)$
 K_{t-1}
Красный K_s Синий K_{t-1}

DONE!

$$n=R(s-1,t)+R(s,t-1)$$
 $B_x \geq R(s,t-1)$
Красный K_s Синий K_{t-1}

DONE!

В бесконечном полном графе $K_{\mathbb{N}}$ существует бесконечный одноцветный полный подграф

В бесконечном полном графе $K_{\mathbb{N}}$ существует одноцветный бесконечный полный подграф

Доказательство:

$$V = \{x, y, z, \dots \}$$
 - вершины покрашены в два цвета

В бесконечном полном графе $K_{\mathbb{N}}$ существует одноцветный бесконечный полный подграф

Доказательство:

$$V = \{x,y,z,\dots\}$$
 - вершины покрашены в два цвета

есть цвет, в который покрашено бесконечно количество вершин

В бесконечном полном графе $K_{\mathbb{N}}$ существует одноцветный бесконечный полный подграф

Доказательство:

$$V=\{x,y,z,\dots\}$$
 - вершины покрашены в два цвета v_1,v_2,v_3,\dots есть цвет, в который покрашено бесконечно количество вершин

В бесконечном полном графе $K_{\mathbb{N}}$ существует одноцветный бесконечный полный подграф

Доказательство:

$$V = \{x, y, z, \dots \}$$
 - вершины покрашены в два цвета v_1, v_2, v_3, \dots есть цвет, в который покрашено бесконечно количество вершин

Образуют бесконечный одноцветный подграф

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число n , что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число n , что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что
$$R(\underbrace{3,3,\ldots,3}_r)=x$$
 - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что
$$R(\underbrace{3,3,\ldots,3}_r)=x$$
 - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что $R(\underbrace{3,3,\ldots,3}_r)=x$ - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что $R(\underbrace{3,3,\ldots,3}_r)=x$ - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что $R(\underbrace{3,3,\ldots,3}_r)=x$ - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что $R(\underbrace{3,3,\ldots,3}_r)=x$ - конечно

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

Из теории Рамсея известно, что
$$R(\underbrace{3,3,\ldots,3}_r)=x$$
 - конечно

$$c-b,b-a,c-a$$
 - одного цвета

Все натуральные числа покрашены в r цветов. Доказать, что найдется такое число что всегда найдется тройка чисел x,y,z < n такие что x+y=z

$$c-b,b-a,c-a\,$$
 - одного цвета

$$(c-b) + (b-a) = (c-a)$$

$$x = (c - b)$$

$$y = (b - a)$$

$$z = (c - a)$$