Privacy Proofs for OpenDP: Binary Randomized Response Measurement

Vicki Xu, Hanwen Zhang, Zachary Ratliff

Summer 2022

Contents

1	Algorithm Implementation		
	1.1	Code in Rust	1
	1.2	Pseudo Code in Python	1
2	Pro	of	2

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_randomized_response_bool function implementing the binary randomized response measurement. This is defined in lines 28-53 of the file mod.rs in the Git repository https://github.com/opendp/opendp/blob/main/rust/src/meas/randomized_response/mod.rs#L28-L53

In make_randomized_response_bool, which accepts a parameter prob of type Q and a parameter constant_time of type bool, the function takes in a boolean data point arg and returns the truthful value arg with probability prob and the untruthful value !arg with probability 1 - prob (in constant time, if the flag is turned on).

1.2 Pseudo Code in Python

We present a simplified Python-like pseudocode of the Rust implementation below. The necessary definitions for the pseudocode can be found at "List of definitions used in the pseudocode".

The use of code-style parameters in the preconditions section below (for example, input_domain) means that this information should be passed along to the Measurements constructor.

Preconditions

To ensure the correctness of the output, we require the following preconditions:

• User-specified types:

- Variable prob must be of type Q

- Variable constant_time must be of type bool
- Type bool must have trait SampleBernoulli<Q>
- Type Q must have traits float, ExactIntCast<IntDistance>,
 DistanceConstant<IntDistance>, InfSub, InfLn
- Variable IntDistance must have trait InfCast<Q>

Postconditions

• A Measurement is returned (i.e., if a Measurement cannot be returned successfully, then an error should be returned).

```
def make_randomized_response_bool(prob : Q, constant_time : bool):
      input_domain = AllDomain(bool)
2
      output_domain = AllDomain(bool)
3
      input_metric = DiscreteMetric()
4
      similarity_metric = MaxDivergence()
5
6
      if (prob < 0.5 or prob >= 1):
          raise Exception("probability must be in [0.5, 1)")
9
      c = inf_ln(inf_div(prob, neg_inf_sub(1, prob)))
10
      def privacy_map(d_in: u_32) -> u_32:
          return d_in * c;
12
      def function(arg : bool) -> bool:
14
          if (sample_bernoulli(prob, constant_time)):
15
16
              return arg
          else:
17
              return !arg
18
19
      return Measurement (input_domain, output_domain, function, input_metric,
       similarity_metric, privacy_map)
```

Warning 1 (Code is not constant-time). make_randomized_response_bool takes in a boolean constant_time parameter that protects against timing attacks on the Bernoulli sampling procedure. However, the current implementation does not guard against other types of timing side-channels that can break differential privacy, e.g., non-constant time code execution due to branching.

2 Proof

The necessary definitions for the proof can be found at "List of definitions used in the proofs".

Theorem 2.1. For every setting of the input parameters prob, constant_time to randomized_response such that the given preconditions hold, randomized_response raises an exception (at compile time or runtime) or returns a valid measurement with the following privacy quarantee:

1. (Domain-metric compatibility.) The domain input_domain matches one of the possible domains listed in the definition of input_metric.

2. (Privacy guarantee.) Let d_in be the associated metric on input_domain and has the associated type for input_metric, and let D be the similarity measure on probability distributions with the associated type for similarity_metric. For every pair of elements v, w in input_domain and every d_in, if v, w are d_in-close under input_metric, then function(v), function(w) are privacy_map(d_in)-close with respect to D.

Proof.

- 1. (Domain-metric compatibility.) For binary_randomized_response, this corresponds to showing AllDomain(bool) is compatible with DiscreteMetric. This follows directly from the definition of DiscreteMetric, as stated in the "List of definitions used in the pseudocode".
- 2. (Privacy guarantee.)

Note 1 (Proof relies on correctness of Bernoulli sampler). The following proof makes use of the following lemma that asserts the correctness of the Bernoulli sampler function.

Lemma 2.2. sample_bernoulli(prob, constant_time), the Bernoulli sampler function used in make_randomized_response_bool, returns true with probability (prob) and returns false with probability (1 - prob).

(vicki) to do: need to relax the epsilon-delta defns.

Let v and w be datasets that are d_in-close with respect to input_metric. Here, the metric is DiscreteMetric which enforces that d_in = 1 if $v \neq w$ and d_in = 0 if v = w. The case where v = w is trivial so we only consider $v \neq w$ and assume without loss of generality that v = true and w = false. For shorthand, we let p represent prob, the probability that sample_bernoulli returns true. Observe that p = [0.5, 1.0) otherwise make_randomized_response_bool raises an error.

We now consider the max-divergence $D_{\infty}(Y||Z)$ over the random variables Y = function(v) and Z = function(w).

$$\begin{split} D_{\infty}(Y||Z) &= \max_{S \subseteq Supp(Y)} [\ln \left(\frac{\Pr[Y \in S]}{\Pr[Z \in S]}\right)] \\ &= \max (\ln \left(\frac{\Pr[Y = \mathtt{true}]}{\Pr[Z = \mathtt{true}]}\right), \ln \left(\frac{\Pr[Y = \mathtt{false}]}{\Pr[Z = \mathtt{false}]}\right)) \\ &= \max (\ln \left(\frac{p}{1-p}\right), \ln \left(\frac{1-p}{p}\right)) \\ &= \ln \left(\frac{p}{1-p}\right) \end{split}$$

Note that $\ln\left(\frac{p}{1-p}\right)$ is \leq privacy_map(d_in) when d_in = 1. Therefore we've shown that for every pair of elements $v, w \in \{\text{false}, \text{true}\}$ and every $d_{DM}(v, w) \leq d_{in}$

with $d_{in} \leq 1$, if v, w are d_{in} -close then function(v), $function(w) \in \{false, true\}$ are $privacy_map(d_{in})$ -close under output_metric (the Max-Divergence). \square

Implementation note: $c = \inf_{n \in \mathbb{N}} (\inf_{n \in \mathbb{N}} (prob), neg_{\inf_{n \in \mathbb{N}}} (1, prob)))$ rounds upward in the presence of floating point rounding errors. This is because $neg_{\inf_{n \in \mathbb{N}}} (1, prob)))$ appears in the denominator, and to ensure that the bound holds even in the presence of rounding errors, the conservative choice is to round down (so the quantity as a whole is bounded above). Similarly, $\inf_{n \in \mathbb{N}} (1, prob))$ and $\inf_{n \in \mathbb{N}} (1, prob))$ appears in the denominator, and to ensure that the

This does not entirely complete the proof, because we still need to account for failure cases within the code. Going up the chain of failure, there are three cases in which the code raises an exception:

- (a) neg_inf_sub fails. By the implementation of neg_inf_sub, given in the pseudocode definitions doc, the code will raise an exception and terminate here if subtraction overflow occurs.
- (b) inf_div fails. This step is only reached if neg_inf_sub succeeds, which means subtraction overflow did not occur (otherwise the Rust compiler would have thrown an error). As defined in the pseudocode definitions doc, inf_div throws an exception if division overflows from a 32-bit integer.
- (c) inf_ln fails. This step is only reached if inf_div succeeds, which means neg_inf_sub also had to succeed. Hence, neither subtraction nor division over-flow occurred. Given in the pseudocode definitions doc, inf_ln throws an exception if the natural log function overflows a 32-bit integer.