Fundamentos de Deep Learning

Sesión 1

Definición y Conceptos de Redes Neuronales

Estructura y Funcionamiento

Las redes neuronales artificiales imitan la estructura del cerebro humano, compuestas por neuronas artificiales organizadas en capas, permitiendo el aprendizaje y la identificación de patrones en datos complejos para diversas aplicaciones tecnológicas.

Elementos de una Red Neuronal

El **perceptrón:** la unidad básica de una red neuronal artificial. Representa el modelo más simple de una neurona artificial. Su formula es:

$$y = f\left(\sum (w_i \cdot x_i) + b
ight)$$

Capas en una Red Neuronal: Las redes neuronales están organizadas en distintas capas:

- 1. Capa de entrada
- 2. Capas ocultas
- 3. Capa de salida

Universidad Politécnica de Madrid

Elementos de una Red Neuronal

Función de activación: Son operaciones matemáticas que introducen no linealidad en la red, permitiendo resolver problemas complejos. Algunas de las más utilizadas son:

- Sigmoide
- > ReLu
- > Tangente
- Softmax

Pesos y sesgos

Los **pesos (w)** determinan la importancia de cada conexión en la red. Se ajustan durante el entrenamiento para mejorar la precisión del modelo.

El **sesgo (b)** es un valor adicional que permite desplazar la función de activación, lo que ayuda a la red a aprender patrones más complejos.

Arquitectura y Entrenamiento de una Red Neuronal

Las redes neuronales artificiales requieren una estructura bien definida y un proceso de entrenamiento que les permita aprender de los datos. A continuación, se explican los conceptos clave:

Arquitectura de una red neuronal densa

Una **red neuronal densa** (o totalmente conectada) es un tipo de red en la que cada neurona de una capa está conectada a todas las neuronas de la capa siguiente. Su estructura básica incluye:

Capa de entrada

Recibe los datos iniciales y los transmite sin modificaciones.

Capas ocultas

Procesan los datos aplicando pesos, sesgos y funciones de activación.

Capa de salida

Genera el resultado final del modelo.

Entrenamiento de una red neuronal

El entrenamiento de una red neuronal es el proceso mediante el cual el modelo ajusta sus pesos y sesgos para minimizar el error en sus predicciones. Se lleva a cabo en tres fases principales:

- 1. Loss Function (Función de Pérdida)
- 2. Forward Pass (Propagación hacia adelante)
- 3. Backpropagation (Retropropagación del error)

Loss-function (Función de Pérdida)

La **función de pérdida** es una medida del error entre la salida predicha por la red \hat{y} y el valor real y. Su objetivo es proporcionar una métrica que se pueda minimizar durante el entrenamiento.

Tipos de funciones de pérdida

> Para problemas de regresión

> Para problemas de clasificación:

Error cuadrático medio (MSE)

$$L = rac{1}{n} \sum (y_{
m real} - y_{
m predicho})^2$$

Error absoluto medio (MAE)

$$L = rac{1}{n} \sum |y_{
m real} - y_{
m predicho}|$$

Entropía cruzada binaria (para dos clases) Entropía cruzada categórica múltiples clases)

$$L = -rac{1}{n}\sum (y\log(\hat{y}) + (1-y)\log(1-\hat{y}))$$

$$L = -\sum y_i \log(\hat{y_i})$$

(para

Forward pass y Backpropagation

Pasos del forward pass:

- 1. Se toma una muestra de datos de entrada X.
- 2. Se multiplica por los pesos *W* y se suma el sesgo *b*.
- 3. Se aplica una **función de activación** f.
- 4. Se obtiene la salida \hat{y} de la red.

$$\hat{y} = f(WX + b)$$

Pasos de backpropagation:

- 1. Se calcula la **derivada del error** respecto a cada peso (gradientes).
- 2. Se propaga este error de la capa de salida a la capa de entrada.
- 3. Se ajustan los pesos con el **descenso de gradiente**:

$$W_{ ext{nuevo}} = W - \eta \cdot rac{\partial L}{\partial W}$$

Preguntas

Sección de preguntas

Fundamentos de

Deep Learning

Continúe con las actividades