Formeln zur Antriebsberechnung	Translation	Rotation
Geschwindigkeit	$V = \frac{s}{t}$	$\mathbf{v} = \boldsymbol{\omega} \cdot \mathbf{r} \; ; \; \boldsymbol{\omega} = 2\pi \cdot \frac{\mathbf{n}}{60}$
Weg	$s = v \cdot t$	$\rho = \omega \cdot \mathbf{t} = 2\pi \cdot \frac{n}{60} \cdot t$
Beschleunigung	$a = \frac{v}{t_a}$	$\alpha = \frac{\omega}{t_{a}}$
Drehmoment		$M = F \cdot r$
Leistung	$P = F \cdot v$	$P = M \cdot \omega = M \cdot 2\pi \cdot \frac{n}{60} = \frac{M \cdot n}{9,55}$
Kraft	F = m · a	$M = J_R \cdot \alpha$
Arbeit	$W = F \cdot s = \frac{m \cdot v^2}{2}$	$W = M \cdot \rho = \frac{J \cdot \omega^2}{2}$
Trägheitsmoment	$\label{eq:JT} \textbf{J}_{T}=\textbf{m}_{T}\cdot\textbf{r}^{2}$ (bez. linear bewegte Masse)	$J_R = \frac{1}{2} \cdot m_T \cdot r^2$ (bez. rotierende Masse)
Zentrifugalkraft	$Z = \frac{m \cdot v^2}{r}$	$Z = \mathbf{m} \cdot \boldsymbol{\omega}^2 \cdot \mathbf{r}$
Es bedeuten: P = Leistung [W]	J_T = Translatorisches Trägheitsmoment [kg m ²] J_R = Rotatorisches Trägheitsmoment [kg m ²]	n = Drehzahl [1/min] a = Beschleunigung [m/sec ²]

Es bedeuten:	J⊤ = Translatorisches Trägheitsmoment [kgˌm²]	n = Drehzahl [1/min]
P = Leistung [W]	J _R = Rotatorisches Trägheitsmoment [kg m ²]	a = Beschleunigung [m/sec ²]
F = Kraft [N]	v = Geschwindigkeit [m/sec]	r = Radius [m]
W = Arbeit [Nm]	S = Weg [m]	α = Winkelbeschleunigung [1/sec ²]
Z = Zentrifugalkraft [N]	t = Zeit [sec]	ρ = Drehwinkel
M = Drehmoment [Nm]	t _a = Beschleunigungszeit [sec]	ω = Winkelgeschwindigkeit [1/sec]

Formeln zur	Spindelantrieb	Zahnstangenantrieb	Hubantrieb, Rolle
Antriebsberechnung			
Maschinendrehzahl n	$n_2 = \frac{v \cdot 60}{h} [1/min]$	$n_2 = \frac{v \cdot 60}{h} [1/min]$ $n_2 = \frac{v \cdot 60}{\pi \cdot d_2} [1/min]$	
▼ Berechnung d. statischen Drehmoments Lastmoment d. Maschine M _L (statisch)	$M_{L2} = h \cdot \frac{m_T \cdot g \cdot \mu + F_L}{2 \cdot \pi} \cdot \frac{1}{\eta} \; [Nm]$	$M_{L2} = r_2 \cdot m_T \cdot g \cdot \mu + F_L \cdot \frac{1}{\eta} [Nm]$	$M_{L2} = m_T \cdot g \cdot r_2 \cdot \frac{1}{\eta} [Nm]$
▼ Berechnung d. dynamischen Drehmoments Translatorisches Trägheitsmoment d. Maschine J _T	$J_{T} = m_{T} \cdot \left(\frac{h}{2\pi}\right)^{2} [kg m^{2}]$	$J_T = m_T \cdot$	r ₂ ² [kg m ²]
Rotatorisches Trägheitsmoment d. Maschine J _R	$J_R = 1/2$	$\mathbf{m} \cdot \mathbf{r}^2 = \gamma \cdot \mathbf{d}^4 \cdot \mathbf{l} \cdot 100 \text{ [kg m}^2] (\gamma = 7.7 \text{ für Stahl})$; 2,7 für Alu)
Summe d. Trägheitsmomente d. Maschine		$J_g = J_T + J_R [kg m^2]$	
Trägheitsmoment d. Getriebemotors (auf Getriebewelle bezogen)	$J_{A2} = J_{M} \cdot i_{getr.}^{2} + J_{getr.} [kg m^{2}]$		
Gesamtträgheitsmoment (auf Getriebewelle bezogen)	$J_{g2} = J_g + J_{A2} = J_T + J_R + J_M \cdot i_{getr.}^2 + J_{getr.} [kg m^2]$		
Beschleunigungs- oder Bremsmoment (auf Getriebewelle bezogen)	$M_{B2} = \frac{n_2 \cdot J_{g2}}{9.55 \cdot t_{B}} \; [Nm]$		
Beschleunigungs- oder Bremszeit	$t_{B} = \frac{n_2 \cdot J_{g2}}{9,55 \cdot M_{B2}} [sec]$		
▼ Berechnung gesamt			
Gesamtes vom Antrieb aufzubringendes Drehmoment (auf Getriebewelle bezogen)	$M_2 = M_{L2} + M_{B2} [Nm]$		
Gesamte Antriebsleistung	$P_2 = \frac{M_2 \cdot n_2}{9,55} [W]$		
Motorleistung	$P_1 = \frac{P_2}{\eta_{\text{getr.}}} [W]$		

Es bedeuten:		t _B = Beschleunigungs- oder Bremszeit [sec]	d = Durchmesser d. rotierenden Teile (Spindel, Wellen) [m]	ı
	J _T = Translatorisches Trägheitsmoment [kg __ m ²]	v = Geschwindigkeit [m/sec]	d ₂ = Durchmesser d. treibenden Rades [m]	ı
M _{L2} = Lastmoment [Nm]	J _R = Rotatorisches Trägheitsmoment [kg m ²]	η = Wirkungsgrad	r ₂ = Radius d. treibenden Rades [m]	ı
M _{B2} = Beschleunigungsmoment [Nm]	J _g = gesamtes Trägheitsmoment d. Maschine [kg m ²]	I = Länge d. rotierenden Teile [m]	F _L = Vorschubkraft [N]	ı
M ₂ = Antriebsmoment [Nm]	J _{A2} = Trägheitsmoment d. Getriebemotors [kg m ²]	m_T = Masse d. linear bewegten Teile [kg]	h = Spindelsteigung [m]	l
n ₂ = Maschinendrehzahl [1/min]	J _M = Trägheitsmoment d. Motors [kg m ²]	m = Masse d. rotierenden Teile [kg]	i _{getr.} = Getriebeuntersetzung	ı
P ₁ = Motorleistung [W]	J _{getr.} = Trägheitsmoment d. Getriebes [kg m ²]	α = Steigungswinkel	μ = Reibwert	l
P ₂ = Antriebsleistg. auf der Getriebewelle [W]	J _{g2} = gesamtes Trägheitsmoment (auf Getr. bez.) [kg m ²]	$g = 9.81 \text{ m/s}^2$	w = Fahrwerksreibwert (ca. 0,02 – 0,04)	i

Formeln zur	Waagerechte Bewegung	Fahrwerk	Schrägförderer	
Antriebsberechnung				
Maschinendrehzahl n		$n_2 = \frac{v \cdot 60}{\pi \cdot d_2} [1/min]$		
▼ Berechnung d. statischen Drehmoments				
Lastmoment d. Maschine M _L (statisch)	$M_{L2} = m_T \cdot g \cdot v$	$\mathbf{w} \cdot \mathbf{r}_2 \cdot \frac{1}{\eta}$ [Nm]	$M_{L2} = m_{T} \cdot g \cdot w \cdot r_{2} \cdot \frac{\sin \alpha + \mu \cdot \cos \alpha}{\eta} \; [Nm]$	
▼ Berechnung d. dynamischen Drehmoments		·		
Translatorisches Trägheitsmoment d. Maschine J_T		$J_{T} = m_{T} \cdot r_{2}^{2} \text{ [kg m}^{2}\text{]}$		
Rotatorisches Trägheitsmoment d. Maschine J _R	$J_R = 1/2$	$m \cdot r^2 = \gamma \cdot d^4 \cdot l \cdot 100 \text{ [kg m}^2]$ (γ = 7,7 für Sta	ahl; 2,7 für Alu)	
Summe d. Trägheitsmomente d. Maschine		$J_g = J_T + J_R [kg m^2]$		
Trägheitsmoment d. Getriebemotors (auf Getriebewelle bezogen)		$J_{A2} = J_{M} \cdot i_{getr.}^{2} + J_{getr.} [kg m^{2}]$		
Gesamtträgheitsmoment (auf Getriebewelle bezogen)	$J_{g2} = J_g + J_{A2} = J_T + J_R + J_M \cdot i_{getr.}^2 + J_{getr.} [kg m^2]$			
Beschleunigungs- oder Bremsmoment (auf Getriebewelle bezogen)	$M_{B2} = \frac{n_2 \cdot J_{g2}}{9,55 \cdot t_{B}} \; [Nm]$			
Beschleunigungs- oder Bremszeit	$t_{B} = \frac{n_2 \cdot J_{g2}}{9,55 \cdot M_{B2}} \text{ [sec]}$			
▼ Berechnung gesamt				
Gesamtes vom Antrieb aufzubringendes Drehmoment (auf Getriebewelle bezogen)	$M_2 = M_{L2} + M_{B2} [Nm]$			
Gesamte Antriebsleistung	$P_2 = \frac{M_2 \cdot n_2}{9,55} [W]$			
Motorleistung	$P_1 = \frac{P_2}{\eta_{\text{getr.}}} [W]$			

Es bedeuten:		t _B = Beschleunigungs- oder Bremszeit [sec]	d = Durchmesser d. rotierenden Teile (Spindel, Wellen) [m]
	J_T = Translatorisches Trägheitsmoment [kg m ²]	v = Geschwindigkeit [m/sec]	d ₂ = Durchmesser d. treibenden Rades [m]
M _{L2} = Lastmoment [Nm]	J _R = Rotatorisches Trägheitsmoment [kg m ²]	η = Wirkungsgrad	r ₂ = Radius d. treibenden Rades [m]
M _{B2} = Beschleunigungsmoment [Nm]	J _g = gesamtes Trägheitsmoment d. Maschine [kg m ²]	I = Länge d. rotierenden Teile [m]	F _L = Vorschubkraft [N]
M ₂ = Antriebsmoment [Nm]	J _{A2} = Trägheitsmoment d. Getriebemotors [kg m ²]	m _T = Masse d. linear bewegten Teile [kg]	h = Spindelsteigung [m]
n ₂ = Maschinendrehzahl [1/min]	J _M = Trägheitsmoment d. Motors [kg m ²]	m = Masse d. rotierenden Teile [kg]	i _{getr.} = Getriebeuntersetzung
P ₁ = Motorleistung [W]	J _{getr.} = Trägheitsmoment d. Getriebes [kg m ²]	α = Steigungswinkel	μ = Reibwert
P ₂ = Antriebsleistg, auf der Getriebewelle [W]	J_{02} = gesamtes Trägheitsmoment (auf Getr. bez.) [kg m ²]	$q = 9.81 \text{ m/s}^2$	w = Fahrwerksreibwert (ca. 0,02 – 0,04)