

Équilibre d'un cors solide soumis à deux forces

Situation-problème

Malgré sa très grande masse, le navire flotte à la surface de l'eau.

- Quelles sont les forces responsables de l'équilibre du navire à la surface de l'eau?
- Quelles sont les conditions que ces forces doivent remplir pour assurer l'équilibre du navire ?

Objectifs

- Connaître les conditions d'équilibre d'un corps solide sous l'action de deux forces et savoir l'exploiter pour déterminer les caractéristiques de la force exercée par un ressort.
- \P Connaître et exploiter la relation T=K. $\Delta oldsymbol{l}$.
- 🥯 Définir la poussée d'Archimède et savoir déterminer ses caractéristiques .
- lacktreethy Connaître exploiter la relation $F_A=
 ho_f$. V. g

Équilibre d'un corps solide soumis à deux forces

① Activité

Un corps solide très léger (de masse négligeable) est en équilibre sous l'action de deux dynamomètres .

- Déterminer les forces exercées sur le solide (S)
- 2 Remplir le tableau suivant en identifiant les caractéristiques des forces appliquées au corps solide (S).

Force	Point d'application	Direction	Sens	Intensité (N)

- 3 Quelles sont les caractéristiques communes entre les deux forces
- Quelles sont les conditions d'équilibres d'un corps solide soumis à deux forces?
- **5** Représenter sur le schéma les deux forces exercées sur (S), en utilisant l'échelle: $5N \rightarrow 1cm$

Conclusion	1					
	• • • • • • • • • • • • • • • • • • • •					
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			
Application		nasse <mark>m</mark> à l'e	xtrémité libro	e du fil du dy	 namomètro	 e.
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 ys
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 ys
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
On attache un c Déterminer le Déterminer le	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Application On attache un c Déterminer le Calculer la m	orps (S) de r e bilan des f es caractéris	orces extérie stiques des fo	ures exercées	sur le corps	(S)	2.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

II >

La force exercée par un ressort

① Activité

On suspend successivement différentes masses marquées à l'extrémité libre d'un ressort de spires non jointives et de longueur à vide $l_0 = 10cm$ et on mesure sa longueur finale à l'équilibre et on enregistre les résultats obtenus dans le tableau suivant:

m(g)	0	20	40	60	80	100
l (cm)	0	11	12	13	14	15
$\Delta \boldsymbol{l}(cm)$						
T(N)						

- En étudiant l'équilibre d'une masse marquée (S), déterminer l'expression de l'intensité T de la force exercée par le ressort sur ce corps en fonction de m et g
- Compléter le tableau ci-dessus.
- 3 Tracer sur la figure ci-contre la courbe représentant les variations de l'intensité T en fonction de l'allongement Δl

2 Conclusion

••••	 	
••••		
• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		

* Remarque

Cas du ressort tendu $\begin{array}{c|c} & \text{On a: } l > l_0 \\ & \text{Donc: } \Delta l > 0 \end{array}$

***** Application

On accroche à l'extrémité libre d'un ressort de masse négligeable de longueur à vide $l_0 = 12cm$ et de raideur $K = 50N.m^{-1}$, une bille métallique de masse m.

À l'équilibre la longueur du ressort est l = 16cm

- 1 Faire l'inventaire des forces extérieures exercées sur la bille.
- 2 Calculer l'intensité de la tension du ressort.
- § Trouver l'expression de la masse m de la bille en fonction de g, K et Δl puis calculer sa valeur .

III La poussée d'Archimède

① Activité

☐ Manipulation :1

On suspend une masse marquée m=250g à l'extrémité libre du fil d'un dynamomètre (la figure \blacksquare)

- 1 Faire l'inventaire des forces extérieures exercées la masse (S).
- 2 Déterminer l'intensité du poids de (S) et celle de la tension du fil du dynamomètre. On donne l'intensité de pesanteur g = 10N. Kg^{-1}
- 3 Les deux conditions d'équilibre sont-elles vérifiées?

3 Les caractéristique de la poussée	e d'Archimède
Cas d'un corps solide partiellement immergé dans un fluide $\overrightarrow{F_a}$	Cas d'un corps solide complétement immergé dans un fluide $\overrightarrow{F_a}$