1. Детерменированный автомат для регулярного выражения $b^*a((a|b)b^*a)^*$ выглядит так:

Заметим, что $((a|b)^*ba|a)(aa)^* = ((a|b)^*a)(aa)^* = (a|b)^*(aa)^*a$, так как в первой части регулярки матчится произвольная строка, которая заканчивается а(строки, которые заканчиваются на ba это подмножество строк, заканчивающихся на a). Так же множно заметить что $(aa)^*$ в регулярке не имеет смысла, так как с одной стороны все выражения $(a|b)^*a$ это подмножество $(a|b)^*(aa)^*a$ (просто количество подстрок соответствующих $(aa)^*$ это 0), с другой стороны $(a|b)^*(aa)^*a$ это подмножество $(a|b)^*a$ (так как $(aa)^*$ это подмножество $(a|b)^*$). Значит, они равны. Значит, ищем автомат для $(a|b)^*a$, детерменированный автомат которого, выглядит ровно так:

Ответ: равны.

2. В первой строке после слова alphabet алфавит в виде номеров символов(ведущие нули допускаются и при построении автомата просто игнорируются) в кодировке аscii через нижнее подчеркивание, символы алфавита записываются через пробел. Далее в каждой новой строчке идет название вершины и все ребра, которые из нее исходят в формате q_0 q_1 with a, q_1 with b - значит, что из q_0 можно перейти в q_1 по ребру с символом, который кодируется последовательностью чисел a, и по ребру с символом, который кодируется последовательностью чисел, b. Если состояние терминальное, добавим перед названием вершины слово terminal. Перед стартовыми вершинами стоит ключевое слово start.

Пример:

alphabet 97_98 start q_0 q_1 with 97_98 terminal q_1

3. Запускается как python3 main.py *название файла*