Experiment 16

Sunday, January 29, 2023 3:32 PM

Lillian Tucker

Objectives:

- 1. Demonstrate the storage capability of a capacitor.
- 2. Calculate and measure time constants in capacitor charge/discharge circuits.
- 3. Demonstrate the characteristics of a supercapacitor.

Pre-Lab Information:

- CAPACITOR POLARITY MATTERS
- Steady State = 5τ (time constant)
- $-\tau = RC$
- Charging Equation for voltage drop over C:

$$v(t) = V_{ss}(1 - e^{-\frac{t}{\tau}})$$
 where τ = RC and Vss = steady state

- Discharging Equation for voltage drop over C:

$$v(t) = V_0(e^{-\frac{t}{\tau}})$$
 where $\tau = RC$ and $V0 = initial$ voltage

Procedure:

- Step 1-2:

When the hookup wire is only connected to the capacitor, nothing happens. When the hookup wire is connected to both the capacitor and the LED/resistor, it lights to yellow for a fraction of a second then quickly turns on to a constant orange light. When the supply is turned off, the light fades to yellow (noticeably slower than when turned on) and then turns off

- Step 3-6:

Charging Capacitor:

$$v(t) = V_{SS} \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$v(\tau) = V_{SS} \left(1 - e^{-\frac{\tau}{\tau}}\right)$$

$$v(\tau) = 15\left(1 - e^{-1}\right)$$

$$v(\tau) = 9.48 V$$

au [s] (theoretical)	au [s] (real)	5 au [s] (real)
7.5 (ideal)	7.60	48.98
6.01 (actual)	7.55	44.33
	7.49	44.65

- Step 7:

Charging Capacitor:

$$v(t) = V_{ss} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$v(\tau) = V_{ss} \left(1 - e^{-1} \right)$$

$$v(\tau) = 15 \left(1 - e^{-1} \right)$$

$$v(\tau) = 9.48 V$$

au [ms] (theoretical)	au [ms] (real)	5 au [ms] (real)
150 (ideal)	115 (LTSpice)	929 (LTSpice)
137 (actual)	210 (measured)	850 (measured)

LTSpice Simulation:

Page 2

- Step 8: A decrease in resistance would result in a smaller time constant, which means a shorter amount of time for the capacitor to charge and discharge.
- Step 9-11:

Discharging Capacitor:

$$v(t) = V_0 \left(e^{-\frac{t}{\tau}} \right)$$

$$v(\tau) = 15(e^{-1})$$

$$v(\tau) = 5.18 V$$

τ [s] (theoretical)	au [s] (real)	5 au [s] (real)
3.4 (ideal)	4.08	25.87
2.94 (actual)	4.24	24.84
	4.15	24.71

- Step 12:

An increase in capacitance would result in a larger time constant, which means a longer amount of time for the capacitor to charge and discharge.

- Step 13-15:

Charging Capacitor:

$$v(t) = V_{SS} \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$v(\tau) = V_{SS} \left(1 - e^{-1}\right)$$

$$v(\tau) = 5\left(1 - e^{-1}\right)$$

$$v(\tau) = 3.16 V$$

τ [s] (theoretical)	au [s] (real)	5 au [s] (theoretical)
1000 (ideal)	1060.61	5303.05 (actual)
992 (actual)		5599.75 (measured)

Discharging Capacitor:

$$v(t) = V_0 \left(e^{-\frac{t}{\tau}} \right)$$

$$v(\tau) = 5(e^{-1})$$

$$v(\tau) = 1.16 V$$

τ [s] (theoretical)	τ [s] (real)	5 au [s] (theoretical)
1000 (ideal)	1119.95	5303.05 (actual)
992 (actual)		5599.75 (measured)

Questions:

- 1. A supercapacitor makes a good replacement for a(n) ______ for some high-resistance, low-current circuits.
- Battery
- 2. What would be the capacitance and voltage rating of two 1-F, 5.5-V supercapacitors in series?

$$C_{eq} = \frac{C_1 * C_2}{C_1 + C_2} = \frac{1 * 1}{1 + 1}$$

$$C_{eq} = 0.5 F$$

$$V_{eq} = V_1 + V_2 = 5.5 + 5.5$$

 $V_{eq} = 11 V$

3. Write the formulas for the charge and discharge curves of an RC circuit.

Charge:
$$v(t) = V_{SS}(1 - e^{-\frac{t}{\tau}})$$
 where τ = RC and Vss = steady state

Discharge:
$$v(t) = V_0(e^{-\frac{t}{\tau}})$$
 where τ = RC and V0 = initial voltage