William Stallings Computer Organization and Architecture

Chapter 11
CPU Structure
and Function

CPU Structure

#CPU must:

Registers

- **#CPU** must have some working space (temporary storage)
- **#**Called registers
- ****Number and function vary between processor designs**
- **#**One of the major design decisions
- **X**Top level of memory hierarchy

User Visible Registers

- **#**General Purpose
- **X** Data
- **#**Address
- **#**Condition Codes

General Purpose Registers (1)

General Purpose Registers (2)

- ****** Make them general purpose
 - ✓ Increase flexibility and programmer options
 - □ Increase instruction size & complexity
- ******Make them specialized

How Many GP Registers?

- Between 8 32
 ■
- #Fewer = more memory references
- ******More does not reduce memory references and takes up processor real estate
- **#**See also RISC

How big?

```
%Large enough to hold full address

%Large enough to hold full word

%Often possible to combine two data registers

△C programming

△double int a;

△long int a;
```

Condition Code Registers

- **#**Sets of individual bits
 - △e.g. result of last operation was zero
- ******Can be read (implicitly) by programs
- **#**Can not (usually) be set by programs

Control & Status Registers

- **#Program Counter**
- **#** Instruction Decoding Register
- ****Memory Address Register**
- ******Memory Buffer Register

#Revision: what do these all do?

Program Status Word

- **#**A set of bits
- **X** Includes Condition Codes
- **#**Sign of last result
- **X**Zero
- **#**Carry
- **#**Equal
- **#**Overflow
- **#** Interrupt enable/disable
- **#**Supervisor

Supervisor Mode

- **#** Intel ring zero
- *****Kernel mode
- **#**Allows privileged instructions to execute
- **#**Used by operating system
- ******Not available to user programs

Pipelining

- #Fetch instruction
- **#** Decode instruction
- **#**Calculate operands (i.e. EAs)
- #Fetch operands
- **#** Execute instructions
- **#**Write result
- **#**Overlap these operations

Timing of Pipeline

Branch in a Pipeline

Dealing with Branches

- **#**Multiple Streams (Fluxos)
- **#Prefetch Branch Target**
- **%**Loop buffer
- **#**Branch prediction
- **₩** Delayed branching

Multiple Streams

- **#**Have two pipelines
- #Prefetch each branch into a separate pipeline
- **#**Use appropriate pipeline
- **#**Leads to bus & register contention
- **Multiple branches lead to further pipelines being needed

Prefetch Branch Target

- **X**Target of branch is prefetched in addition to instructions following branch
- *****Keep target until branch is executed
- **#**Used by IBM 360/91

Loop Buffer

```
XVery fast memory
XMaintained by fetch stage of pipeline
XCheck buffer before fetching from memory
XVery good for small loops or jumps
XC.f. cache
XUsed by CRAY-1
```

Branch Prediction (1)

#Predict never taken

- △Assume that jump will not happen
- △Always fetch next instruction
- △68020 & VAX 11/780

#Predict always taken

- △Assume that jump will happen

Branch Prediction (2)

#Predict by Opcode

- Some instructions are more likely to result in a jump than thers
- □ Can get up to 75% success
- **X**Taken/Not taken switch

Branch Prediction (3)

★ Delayed Branch

- □ Do not take jump until you have to
- ☑ Rearrange instructions