CS1231 Chapter 5

Relations

5.1 Basics

Definition 5.1.1. An *alphabet* is a finite set of symbols. A *string* over an alphabet Γ is a finite sequence of symbols from Γ . The set of all strings over an alphabet Γ is denoted Γ^* .

Definition 5.1.2. An *ordered pair* is an expression of the form

$$(x,y)$$
.

Let (x_1, y_1) and (x_2, y_2) be ordered pairs. Then

$$(x_1, y_1) = (x_2, y_2)$$
 \Leftrightarrow $x_1 = x_2$ and $y_1 = y_2$.

Example 5.1.3. (1) $(1,2) \neq (2,1)$, although $\{1,2\} = \{2,1\}$.

(2)
$$(3,0.5) = (\sqrt{9}, \frac{1}{2}).$$

Definition 5.1.4. Let A, B be sets. The *Cartesian product* of A and B, denoted $A \times B$, is defined to be

$$\{(x,y):x\in A \text{ and } y\in B\}.$$

Read $A \times B$ as "A cross B".

Example 5.1.5. $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$

Definition 5.1.6. Let A, B be sets.

- (1) A relation from A to B is a subset of $A \times B$.
- (2) Let R be a relation from A to B and $(x,y) \in A \times B$. Then we may write

$$x R y$$
 for $(x, y) \in R$ and $x \not R y$ for $(x, y) \notin R$.

We read "x R y" as "x is R-related to y" or simply "x is related to y".

Example 5.1.7. Let $\Gamma = \{A, B, ..., Z, 0, 1, 2, ..., 9\}$ and $\Phi = \{A, B, ..., Z, a, b, ..., z\}$. As in Figure 5.1, define

$$SN = \{(001R, Gates), (012B, Brin), (062E, Bezos), (126N, Ma), (254E, Zuckerberg)\}.$$

Then SN is a relation from Γ^* to Φ^* .

identity		
Student ID	name	$SN = \{ (001R, Gates), \}$
001R	Gates	(012B, Brin),
012B	Brin	(062E, Bezos),
062E	Bezos	(126N, Ma),
126N	Ma	(254E, Zuckerberg)
254E	Zuckerberg	

is enrolled in		
Student ID	module	$SM = \{ (126N, CS3234), $
126N	CS3234	(254E, CS3234),
254E	CS3234	(001R, MA2001),
001R	MA2001	(012B, MA2001),
012B	MA2001	(062E, MA2001),
062E	MA2001	(126N, MA2001),
126N	MA2001	(012B, MU2109),
012B	MU2109	(001R, PC2130),
001R	PC2130	(062E, PL3101),
062E	PL3103	(254E, PL3101)}
254E	PL3103	,

progress		
Student ID	faculty	year
062E	Arts	1
254E	Arts	2
012B	Science	2
001R	Science	1
126N	Science	3

teaching						
module	department	faculty	instructor			
CS3234	CS	Computing	Turing			
MA2001	Mathematics	Science	Gauss			
MU2109	Music	Arts	Mozart			
PC2130	Physics	Science	Newton			
PL3101	Psychology	Arts	Freud			

```
\begin{split} \mathit{MDFI} = \left\{ \begin{array}{ll} (\text{CS3234, CS,} & \text{Computing, Turing }), \\ (\text{MA2001, Mathematics, Science,} & \text{Gauss }), \\ (\text{MU2109, Music,} & \text{Arts,} & \text{Mozart }), \\ (\text{PC2130, Physics,} & \text{Science,} & \text{Newton}), \\ (\text{PL3101, Psychology,} & \text{Arts,} & \text{Freud }) \end{array} \right\} \end{split}
```

The set $\{SM,SN,SFY,MDFI\}$ represents the relational database.

Figure 5.1: A fictitious miniature university database and its set-theoretic representation

Example 5.1.8. Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$. Define the relation R from A to B by setting

$$x R y \Leftrightarrow x < y.$$

Then 0 R 1 and 0 R 2, but 2 R 1. Thus

$$R = \{(0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4)\}.$$

Arrow diagrams (for relations from a set to another set). One can use the figure below to represent the relation SN in Example 5.1.7, where the existence of an arrow from x to y indicates x is related to y.

Similarly, one can use the figure below to represent the relation R in Example 5.1.8.

Definition 5.1.9. Let $n \in \{x \in \mathbb{Z} : x \geq 2\}$. An *ordered n-tuple* is an expression of the form

$$(x_1,x_2,\ldots,x_n).$$

Let (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) be ordered *n*-tuples. Then

$$(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2 \text{ and } \dots \text{ and } x_n = y_n.$$

Example 5.1.10. (1) $(1,2,5) \neq (2,1,5)$, although $\{1,2,5\} = \{2,1,5\}$.

(2)
$$(3, (-2)^2, 0.5, 0) = (\sqrt{9}, 4, \frac{1}{2}, 0)$$

Definition 5.1.11. Let $n \in \{x \in \mathbb{Z} : x \ge 2\}$ and A_1, A_2, \ldots, A_n be sets. The *Cartesian product* of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$, is defined to be

$$\{(x_1, x_2, \dots, x_n) : x_1 \in A_1 \text{ and } x_2 \in A_2 \text{ and } \dots \text{ and } x_n \in A_n\}.$$

If A is a set, then $A^n = \underbrace{A \times A \times \cdots \times A}_{n\text{-many }A\text{'s}}$.

Example 5.1.12. $\{0,1\} \times \{0,1\} \times \{x,y\} = \{(0,0,x),(0,0,y),(0,1,x),(0,1,y),(1,0,x),(1,0,y),(1,1,x),(1,1,y)\}.$

Definition 5.1.13. Let $n \in \{x \in \mathbb{Z} : n \ge 2\}$ and A_1, A_2, \ldots, A_n be sets. A *n-ary relation over* A_1, A_2, \ldots, A_n is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

Example 5.1.14. Following Example 5.1.7, let $\Gamma = \{A, B, \dots, Z, 0, 1, 2, \dots, 9\}$ and $\Phi = \{A, B, \dots, Z, a, b, \dots, z\}$. As in Figure 5.1, define

$$\begin{split} \mathit{MDFI} &= \{ (\text{CS3234}, \text{CS}, \text{Computing}, \text{Turing}), (\text{MA2001}, \text{Mathematics}, \text{Science}, \text{Gauss}), \\ &\quad (\text{MU2109}, \text{Music}, \text{Arts}, \text{Mozart}), (\text{PC2130}, \text{Physics}, \text{Science}, \text{Newton}), \\ &\quad (\text{PL3101}, \text{Psychology}, \text{Arts}, \text{Freud}) \}. \end{split}$$

Then *MDFI* is a 4-ary relation over Γ^* , Φ^* , Φ^* , Φ^* .

5.2 Operations on relations

Figure 5.2: Relation composition and inversion

Definition 5.2.1. Let R be a relation from A to B, and S be a relation from B to C. Then $S \circ R$ is the relation from A to C defined by

$$S \circ R = \{(x, z) \in A \times C : (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y \in B\}.$$

We read $S \circ R$ as "S composed with R" or "S circle R".

Note 5.2.2. We compose two binary relations together only when there is a common middle set.

Definition 5.2.3 (recall). The *floor* of a real number x, denoted $\lfloor x \rfloor$, is the greatest integer that is less than or equal to x.

Example 5.2.4. Define a relation R from $\mathbb{Q}_{\geq 0}$ to $\mathbb{Z}_{\geq 0}$ and a relation S from $\mathbb{Z}_{\geq 0}$ to \mathbb{R} by:

$$R = \{(x, y) \in \mathbb{Q}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} : \lfloor x \rfloor = y\}, \text{ and }$$

$$S = \{(y, z) \in \mathbb{Z}_{\geqslant 0} \times \mathbb{R} : y = z^2\}.$$

- $(4.8,2) \in S \circ R$ because $4 \in \mathbb{Z}_{\geq 0}$ such that $(4.8,4) \in R$ and $(4,2) \in S$.
- $(5/2, -\sqrt{2}) \in S \circ R$ because $2 \in \mathbb{Z}_{\geq 0}$ such that $(5/2, 2) \in R$ and $(2, -\sqrt{2}) \in S$.

In general, we have $S \circ R = \{(x, z) \in \mathbb{Q}_{\geq 0} \times \mathbb{R} : \lfloor x \rfloor = z^2 \}.$

Definition 5.2.5. Let R be a relation from A to B. Then the *inverse of* R is the relation R^{-1} from B to A defined by

$$R^{-1} = \{ (y, x) \in B \times A : (x, y) \in R \}.$$

Example 5.2.6. As in Example 5.1.8, let R be the relation from A to B where

$$\begin{split} A &= \{0,1,2\}, \qquad B &= \{1,2,3,4\}, \\ R &= \{(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)\}. \end{split}$$

Then $R^{-1} = \{(1,0), (2,0), (3,0), (4,0), (2,1), (3,1), (4,1), (3,2), (4,2)\}.$

Proposition 5.2.7. Let R be a relation from A to B, and S be a relation from B to C. Then $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Proof. Since $S \circ R$ is a relation from A to C, we know $(S \circ R)^{-1}$ is a relation from C to A. Since S^{-1} is a relation from C to B, and R^{-1} is a relation from B to A, we know $R^{-1} \circ S^{-1}$ is a relation from C to A as well. Now for all $(z, x) \in C \times A$,

$$(z,x) \in (S \circ R)^{-1} \quad \Leftrightarrow \quad (x,z) \in S \circ R$$

by the definition of inverses;

 \Leftrightarrow $(x,y) \in R$ and $(y,z) \in S$ for some $y \in B$

by the definition of composition;

 \Leftrightarrow $(y,x) \in R^{-1}$ and $(z,y) \in S^{-1}$ for some $y \in B$ by the definition of inverses;

$$\Leftrightarrow \quad (z,x) \in R^{-1} \circ S^{-1}$$

by the definition of composition.

So
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
.

Exercise 5.2.8. Let $A = \{0, 1, 2\}$. Define two relations R, S from A to A by:

Ø 5a

$$R = \{(x,y) \in A^2 : x < y\} \quad \text{and} \quad S = \{(0,1), (1,2), (2,0)\}.$$

Is $R \circ S = S \circ R$? Prove that your answer is correct.

5.3 Graphs

Definition 5.3.1. A (binary) relation on a set A is a relation from A to A.

Remark 5.3.2. It follows from Definition 5.1.6 and Definition 5.3.1 that the relations on a set A are precisely the subsets of $A \times A$.

Definition 5.3.3. A directed graph is an ordered pair (V, D) where V is a set and D is a binary relation on V. In the case when (V, D) is a directed graph,

- (1) the vertices or the nodes are the elements of V;
- (2) the edges are the elements of D;
- (3) an edge from x to y is the element $(x, y) \in D$;
- (4) a *loop* is an edge from a vertex to itself.

Example 5.3.4. Let

$$V = \{B, P, F, M, K, N\}, \text{ and }$$

$$D = \{(B, P), (P, B), (F, M), (M, F), (B, B), (P, P), (F, F), (M, M), (K, K), (N, N)\}.$$

Then (V, D) is a directed graph.

Arrow diagrams (for relations on a set). One can draw an arrow diagram representing a relation R on a set A as follows.

- (1) Draw all the elements of A.
- (2) For all $x, y \in A$, draw an arrow from x to y if and only if x R y.

Example 5.3.5. The arrow diagram

represents the relation D on the set V from Example 5.3.4.

Definition 5.3.6. A undirected graph is an ordered pair (V, E) where V is a set and E is a set all of whose elements are of the form $\{x, y\}$ with $x, y \in V$. In the case when (V, E) is an undirected graph,

- (1) the vertices or the nodes are the elements of V;
- (2) the *edges* are the elements of E;
- (3) an edge between x and y is the element $\{x, y\} \in E$;
- (4) a loop is an edge between a vertex and itself.

Example 5.3.7. Following Example 5.3.5, define

$$\begin{split} V &= \{ \mathcal{B}, \mathcal{P}, \mathcal{F}, \mathcal{M}, \mathcal{K}, \mathcal{N} \}, \quad \text{and} \\ E &= \{ \{ \mathcal{B}, \mathcal{P} \}, \{ \mathcal{F}, \mathcal{M} \}, \{ \mathcal{B}, \mathcal{B} \}, \{ \mathcal{P}, \mathcal{P} \}, \{ \mathcal{F}, \mathcal{F} \}, \{ \mathcal{M}, \mathcal{M} \}, \{ \mathcal{K}, \mathcal{K} \}, \{ \mathcal{N}, \mathcal{N} \} \}. \end{split}$$

Then (V, E) is an undirected graph.

Drawings of an undirected graph. One can make a drawing representing an undirected graph (V, E) as follows:

- (1) Draw all the elements of V.
- (2) For all $x, y \in A$, draw a line between x and y if and only if $\{x, y\} \in E$.

Example 5.3.8. Here is a drawing of the undirected graph from Example 5.3.7.

