Deuxième contrôle continu

[Aucun document n'est autorisé. Les exercices sont indépendants. Seules les réponses soigneusement justifiées seront prises en compte.]

Exercice 1 [1]. Soit $(X_n)_{n\geq 1}$ une suite de v.a. iid.

- a) Déterminer la loi des X_n telle que, pour tout $n \ge 1$, $S_n = X_1 + \cdots + X_n$ soit une v.a. avec loi $\Gamma(n,3)$.
- b) On pose $Y_n = a_n(S_n b_n)$ avec a_n, b_n des suites numériques. Déterminer a_n, b_n de sorte que Y_n converge en loi vers $\mathcal{N}(0,1)$.

Exercice 1 [2]. Soit $(X_n)_{n\geq 1}$ une suite de v.a. iid.

- a) Déterminer la loi des X_n telle que, pour tout $n \ge 1$, $S_n = X_1 + \cdots + X_n$ soit une v.a. de loi P(3n).
- b) On pose $Y_n = a_n(S_n b_n)$ avec a_n, b_n des suites numériques. Déterminer a_n, b_n de sorte que Y_n converge en loi vers $\mathcal{N}(0,1)$.

Exercice 1 [3]. Soit $(X_n)_{n\geq 1}$ une suite iid de loi $\operatorname{Ber}(p)$ avec $p\in]0,1[$ et $S_n=X_1\times X_2\times \cdots \times X_n.$

- a) Calculer la moyenne de S_n .
- b) Montrer que S_n converge en probabilité vers 0.

Exercice 1 [4]. Soit $Z \sim \operatorname{Ber}(p)$ et $(X_n)_{n\geq 1}$ une suite des v.a. telles que $X_n = (1-Z)(1+1/n)^n + Z(1-1/n)^n$.

- a) Montrer que $\lim_{n\to\infty} \mathbb{E}[X_n] = \frac{p}{e} + (1-p)e$
- b) Montrer que X_n converge en probabilité vers la v.a. Y = (1 Z)e + Z/e.

Exercice 2 [1]. Soit (X_1, \ldots, X_n) un échantillon de loi correspondant à la densité

$$f(x) = e^{-(x-a)} \mathbb{I}_{x>a}$$

avec $a \in \mathbb{R}$ paramètre inconnu. Déterminer l'estimateur de maximum de vraisemblance pour a.

Exercice 2 [2]. Soit (X_1, \ldots, X_n) un échantillon de loi $\mathcal{N}(0, s)$ et s > 0 le paramètre inconnu. Déterminer l'estimateur de maximum de vraisemblance pour s.

Exercice 2 [3]. Soit (X_1, \ldots, X_n) un échantillon de loi de loi correspondant à la densité

$$f(x) = (1+a)x^{a} \mathbb{I}_{x \in [0,1]}$$

avec a > -1 paramètre inconnu. Déterminer l'estimateur de maximum de vraisemblance pour a.

Exercice 2 [4]. Soit $(X_1, ..., X_n)$ un échantillon de loi $\mathcal{U}([0, 2a])$ avec a > 0 paramètre inconnu. Déterminer l'estimateur de maximum de vraisemblance pour a.

Exercice 3 [1]. Soit (X_1, \ldots, X_n) un échantillon de loi correspondant à la densité

$$f(x) = e^{-(x-a)} \mathbb{I}_{x>a}$$

avec $a \in \mathbb{R}$ paramètre inconnu. Déterminer un estimateur pour a avec la méthode des moments.

Exercice 3 [2]. Soit (X_1, \ldots, X_n) un échantillon de loi $\mathcal{U}([m-1, m+1])$ et $m \in \mathbb{R}$ le paramètre inconnu. Déterminer un estimateur pour m avec la méthode des moments.

Exercice 3 [3]. Soit (X_1, \ldots, X_n) un échantillon de loi $\mathcal{U}([a, 2a])$ avec a > 0 paramètre inconnu. Déterminer un estimateur pour a avec la méthode des moments.

Exercice 3 [4]. Soit (X_1, \ldots, X_n) un échantillon de loi $\mathcal{N}(0, s)$ et $s \in \mathbb{R}_+$ le paramètre inconnu. Déterminer un estimateur pour s avec la méthode des moments.