Gamma-Hadron Separation with Deep Learning for the First G-APD Cherenkov Telescope

Bachelorvortrag – Jan Moritz Behnken

Gamma-Hadron Separation mit CNNs bei FACT

Gamma Rays breiten sich geradlinig im Kosmos aus

Luftschauer kosmischer Strahlung emittieren Tscherenkow-Licht

First G-APD Cherenkov Telescope (FACT)

Transformation von hexagonalen zu quadratischen Pixeln

Standardisiertes Input-Bild

Zeitreihen-Summation jedes Pixels reduziert die Komplexität

Aufbau der Datenstruktur

- 100 aufeinanderfolgende Zeitebenen
- Pixel enthalten Zählraten der Photonen
- Zeitebenen aufsummieren reduziert 144.000 Variablen auf 1.440

Herausschneiden des Events verringert das Bildrauschen

- Fester Trigger-Zeitpunkt bei FACT
- Histogram der hellsten Zeitebenen von 10.000 Events
- Herausschneiden des Peaks entfernt Bildrauschen und erhält das Signal

CNNs enthalten Convolution-, Pooling- und Connected Layers

Fully Connected Layer (f)

- Convolution Layers: Trainieren kleine neurale Netze mit Weight-Sharing um Features zu berechnen
- Maxpooling Layers: Reduzieren Parameter indem sie die wichtigsten Features auswählen.
- Fully Connected Layers: Kombinieren die Features und klassifizieren

Beispiel CNN einer 2c_2f Architektur

Beste Ergebnisse mit 6 Convolution und 4 Connected Layers

- Vergleich von 30 Netzwerk Architekturen
- 50 randomisierte Hyperparameter Grid-Searches pro Architektur

Tiefe Netze mit entrauschten Bildern liefern die besten Ergebnisse

Gute CNN Hyperparameter lassen sich nicht eindeutig bestimmen

Neuronen mit Dropout entfernen, regularisiert das Overfitting

Dropout wirkt gut zwischen Convolution und Connected Layer

- Vergleich von 10 Dropout-Layer Positionen
- 30 randomisierte Hyperparameter Grid-Searches für jede Architektur

Pretraining Layer ermöglicht die Konvergenz tiefer Netzwerke

Kurzes Pretraining hat einen positiven Effekt auf die Performance

- Vergleich von 5 Pretraining-Architekturen eines 6c 4f Netzwerkes
- 30 randomisierte Hyperparameter Grid-Searches für jede Architektur
- Dropoutraten; c: 0.9, c-f: 0.75, f: 0.5
- Kurzes Pretraining kann die Performance erhöhen; zu langes Pretraining hemmt die Performance

Eine Gamma/Hadron-Separation ist mit dem Netzwerk möglich

- Monte Carlo: Verhältnis von 1:1 (Hadronen:Gammas)
- Real: Verhältnis 10.000:1 (Hadronen:Gammas)

Der Netzwerk-Signifikanz fehlt ein Faktor 2 für den Krebsnebel

- Zuordnung klassifizierte Photonen zu Himmelsregion
- Vergleich der Aktivität einer Quell-Position ('On') mit 5 'Off'-Positionen
- Verhältnis von 'On'-Gammas zu 'Off'-Gammas bestimmt die Signifikanz der Quelle
- CNN erreicht Signifikanz von 24.4
 Sigma (Random Forest 39.89 Sigma).

Niedrige Signifikanz kann an den Daten und der CNN-Struktur liegen

Die Hexagone und die Zeit könnten bessere Features bieten

- Transformation der hexagonalen Struktur behandelt direkte Nachbarn nicht gleichwertig
- Transformation zu 3D-Tensor behandelt die Nachbarschaften identisch

- Aufsummieren der 100 Zeitebenen entfernt die Zeitinformationen
- CNN für 3D-Objekte/Videos kann Zeitinformationen auswerten

Reale Bilder und evolutionäre Algorithmen

- Simulierte Daten können immer MC-Missmatches enthalten
- Mit Random Forest gelabelte reale Bilder können als Trainingsquelle getestet werden

- Nur wenige Hyperparamter konnten abgesucht werden
- Evolutionäre Algorithmen könnten den Featurespace eigenständig optimieren

CNNs funktionieren und bieten weiteres Potential

