ECE5884 Wireless Communications ASSivers New Technology (Stuble-Internal Instant) Technology (Stuble-Internal Instant) Clp

https://powcoder.com

ARC Future Fellow at The University of Melbourne Sessional Lecturer at Monash University

Add Wechat powcoder

Course outline

This week: Ref. Ch. 7 of [Goldsmith, 2005]

- Week 1: Overview of Wireless Communications
- ssignment-Projects Exam Help Week 3: Wireless Channel Models

 - Week 4: Capacity of Wireless Channels
 - Week 6: Performance Analysis Coder.com

 - Week 7: Equalization

 - Week 3: Multiparties Modulation (OFDM)
 Week 9: Multiple-Anter a Systema. Di Provy WcConcider
 - Week 10: Multiple-Antenna Systems: MIMO Communications
 - Week 11: Multiuser Systems
 - Week 12: Guest Lecture (Emerging 5G/6G Technologies)

Introduction

- Independent signal paths have a low probability of experiencing deep fades simultaneously.
- Spaths links. These independent paths links are combined in such a p way that the fading of the resultant signal is reduced.

Figure 1: Information symbols are passed through multiple links, each of which fades independently.

 Reliable communication is possible as long as one of the links is strong.

Received signal (with single antenna)

Assignment Project Exam Help

Link 1

https://powcoder.com

Example: $h_1 = -1.22 + j0.67$; $h_2 = 0.5 + j2.3$; $h_3 = 1.2 - j0.7$; $h_4 = 0.45 - j2.2$

If only Link 1 is available:

 r = h₁ At ded = W e nat powcoder

 If all Links are available:

- If all Links are available: $r = (h_1 + h_2 + h_3 + h_4) s + n \Rightarrow \gamma_{all} = \frac{|h_1 + h_2 + h_3 + h_4|^2 P_s}{N_0} = \frac{|0.9|^2 P_s}{N_0}$
- $\gamma_1 > \gamma_{all}$ Do we really get benefits of having multiple paths?
- We need a smarter receiving architecture!

Received signal (with multiple antennas)

- If the atternal ary back sufficantly prayly it on the mat they all experience deep fades at the same time.
- h_1, h_2, h_3, h_4 are random values which change every coherence time.
- Example: By selecting the antenna with the strongest signal, a technique known as selection combining, we obtain a much better signal than if we had just one (fixed) antenna.

Multiple antennas techniques

Diversity

- A diversity scheme refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a method for improving the reliability of a smeasure refers to a smeasure refers to
 - Diversity techniques mitigate the effect of multipath fading microdiversity
 - We next fringe identification to the elements of the array are separated in distance space diversity.
 - 1 multiple receive antennas receiver diversity
 - 2 multiple transmit antennas transmitter diversity
 - · Changal state information (Csh and tability) WCOCET
 - 1 CSI at Rx (will focus more on this!)
 - 2 CSI at Tx
 - We also have Time Diversity and Frequency Diversity.

Receiver Diversity - System Model

Figure 3: Linear combiner at the receiver with *M*-branch diversity.

- Linear combiner: the output of the combiner is just a weighted sum of the different fading paths or branches.
- CSI at Rx: The complex fading of the *i*th branch is $h_i = r_i e^{j\theta_i}$

Branch coherent detection

- The receiver knows n_i s, i.e., amplitude $p_i = n_i$ and or phase p_i .
- Combining more than one branch signal requires co-phasing, where the phase θ_i of the *i*th branch is removed through multiplication by $\alpha_i = a_i e^{-j\theta_i}$ for some real-valued a_i .
- Without co-phasing, the branch signals would not add up coherently in the combiner.

Saman Atapattu

Diversity/combining techniques

Techniques entail various trade-offs between performance/complexity.

 $r_1e^{j\theta_1}s(t) = r_2e^{j\theta_2}s(t) = r_3e^{j\theta_3}s(t)$

Assignment Project Exam Help https://pow.coder.com

- 1 Selection Combining (SC): the combiner outputs the signal on the
- branch with the highest SNR.

 Maximal Rid Convince (MR) are approved the of all branches, and the weights $(\alpha_i s)$ are determined to maximize the SNR.
- 3 Equal-Gain Combining (EGC): co-phases the signals on each branch and then combines them with equal weighting.
- Threshold Combining: outputting the first signal whose SNR is above a given threshold γ_T .

September 19, 2022

Recap

1 Received signal over the *i*th channel, $i \in \{1, \dots, M\}$:

$$y_i(t) = h_i s(t) + n_i(t) = r_i e^{i\theta_i} s(t) + n_i(t); i = 1, \dots, M$$
 (1)

Assignment it Project Exam Help $\gamma_i = \frac{|h_i|^2 P_s}{N_0} = |h_i|^2 \bar{\gamma} = g_i \bar{\gamma}; \quad i = 1, \dots, M$ (2)

- 3 Channeldistribution/circularly symmet is complex Gaussian random variables with zero mean and unit variance $n_i \sim N(0, 1)$
 - $|h_i| \sim \text{Rayleigh distribution, i.e.,}$
 - . Add We Chair is the power of the power o

$$f_{g_i}(x) = e^{-x} \tag{4}$$

• SNR $\gamma_i = g_i \bar{\gamma} \sim$ Exponential distribution, i.e.,

$$f_{\gamma_i}(x) = \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}}$$
 and $F_{\gamma_i}(x) = 1 - e^{-\frac{x}{\bar{\gamma}}}$ (5)

Selection Combining (SC)

Selection combiner outputs the signal on the branch with the highest

As only one branch is used at a time, SC requires just one receiver that is switched into the active antenna branch.

3 End-to-end SNR of SG: the path output from the combiner has an SNR equal ptipe of the sequence of the sequen

$$\gamma_{SC} = \max_{i \in \{1, \dots, M\}} (\gamma_1, \dots, \gamma_M)$$
 (6)

• Selected of the national week of the national wee

$$i^* = \arg\max_{i \in \{1, \dots, M\}} (\gamma_1, \dots, \gamma_M)$$
 (7)

SC: Outage probability

The SNR outage is

$$P_{o,SC} = \Pr(\gamma_{SC} < \gamma_{th}) = \Pr(\max(\gamma_1, ..., \gamma_M) < \gamma_{th})$$

$$Assignment = \Pr(\text{otherwise} + \text{Projecte} + \text{Projecte})$$

- $|h_i|$ is the multipath fading channel, e.g., Rayleigh, Rician, Nakagami-m.
- For Nakagami-*m* fadiling channels: Oder.com $f_{|h_i|}(x) = 2\left(\frac{m}{\Omega}\right)^m \frac{x^{2m-1}}{\Gamma(m)} e^{-\frac{mx^2}{\Omega}}; m \ge \frac{1}{2}$ (9)
 - Add We Chath powicoder (10)
 - $f_{\gamma_i}(x) = \left(\frac{m}{\Omega \bar{\gamma}}\right)^m \frac{x^{m-1}}{\Gamma(m)} e^{-\frac{mx}{\Omega \bar{\gamma}}}; m \ge \frac{1}{2}$ (11)
 - $F_{\gamma_i}(x) = 1 \frac{\Gamma\left(m, \frac{mx}{\Omega \bar{\gamma}}\right)}{\Gamma(m)}$ (12)

SC: Outage probability

AssignmentiProjectiExamiHelp

$$https://power_{x_{i}}^{p_{o,SC}} = \prod_{j=1}^{M} F_{\gamma_{i}}(\gamma_{th})$$

$$https://power_{x_{i}}^{p_{o,SC}} = \prod_{j=1}^{M} F_{\gamma_{i}}(\gamma_{th})$$
(13)

SC: Asymptotic Analysis

• The SNR outage probability behavior at high SNR regime, i.e., $\bar{\gamma} \to \infty$.

Assignment Project Exam Help $\lim_{\bar{\gamma} \to \infty} P_{o,SC} = \lim_{\bar{\gamma} \to \infty} \left[1 - \frac{\Gamma\left(m, \frac{m\gamma_{th}}{\bar{\gamma}}\right)}{\Gamma(m)} \right]^{m}$ (16) https://pow.coder.com• By using $\lim_{x \to 0} \Gamma[n, x] = \Gamma[n] - \frac{x}{n}$,

$$\underbrace{Add}_{\substack{\lim_{\bar{\gamma}\to\infty}P_{o,SC}}} \approx \underbrace{1 - \underbrace{C_{D}h_{a_{m}}^{m+}}_{\Gamma(m)}}^{\text{Move}} \underbrace{0 \times \underbrace{C_{D}der}_{\Gamma(m)}}^{\text{Move}} = \underbrace{\underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}^{m}}_{\Gamma(m)}}^{\text{Move}} \underbrace{0 \times \underbrace{n_{m}}_{\bar{\gamma}_{th}}^{m}}_{\bar{\gamma}_{th}} = \underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}^{m}}_{\Gamma(m)} \underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}^{m}}_{\bar{\gamma}_{th}} = \underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}^{m}}_{\Gamma(m)} \underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}^{m}}_{\Gamma(m)} = \underbrace{1 - \underbrace{m_{m}}_{\gamma_{th}}$$

Diversity order and array gain

To For large enough SNR ($\bar{\gamma} \to \infty$), the outage probability P_o as a function $Assign E Project Exam Help <math>P_o \approx (G_c \bar{\gamma})^{-G_d}$ or $P_o \approx G_c \bar{\gamma}^{-G_d}$ (18)

where G_c is termed the coding gain or array gain, and G_d is referred to as the different gain of the sty gain of the sty gain.

- 2 The diversity order G_d determines the slope of the outage versus average SNR curve, at high SNR, in a log-log scale.
- 3 The array gain $G_{\overline{G}}$ (in dB) determines the shift of the curve in SNR relative of the curve in SNR relative of the curve in SNR
- When the diversity order equals the number of independent fading paths that are combined via diversity, the system is said to achieve full diversity order.

SC: Diversity order and array gain

1 For large enough SNR ($\bar{\gamma} \to \infty$), the outage probability P_o as a function Assignment Project Exam Help

where G_c is termed the coding gain or array gain, and G_d is referred to as the diversity gain diversity order resimply diversity.

2 Previous example:

Add We at powcoder

- Diversity order: $G_d = mM$ which is full diversity order.
- Array gain: $G_c = \left(\frac{m^{m-1}\gamma_{th}^m}{\Gamma(m)}\right)^M$

Maximal-Ratio Combining (MRC)

And with the weighter sum of all branches, so the grane at the containe poutput's SNR.

- 2 For a branch with $h_i = r_i e^{i\theta_i}$,
 - The bit mals are do phased to the Coder. com
 - $\alpha_i = r_i e^{-j\theta_i}$
- 3 End-to-end SNR of MRC: the SNR of the combiner output is the sum of SNRs an each practice $e^{-\frac{1}{\gamma_{MRC}}} = \sum_{\gamma_i} \sqrt{\frac{1}{\gamma_i}}$ (21)

MRC: Outage probability

The SNR outage is

Assignment Project Exam Help

- For Rayleigh fading channels: i.i.d. Rayleigh fading on each branch with equal average branch SNR $\bar{\gamma}$, the distribution of γ_{MBC} (which is a sum of i.i.d. exponential RVs) is a consequential RVs) is a consequence distribution with 200 legisles of free Conference value
 - $\bar{\gamma}_{MBC} = M\bar{\gamma}$ and variance $2M\bar{\gamma}$.
 - a gamma distribution with shape parameter M and scale parameter $\bar{\gamma}$.

Add We Chat powcoder $f_{\gamma_{MRC}(x)} = \frac{1}{\bar{\gamma}^{M}(M-1)!}$

FCF5884 Wireless Communications @ Monash Uni.

$$f_{\gamma_{MBC}}(x) = \frac{x}{\overline{\gamma}^M (M-1)!} \tag{23}$$

$$F_{\gamma_{MRC}}(x) = 1 - \frac{\Gamma\left(M, \frac{x}{\bar{\gamma}}\right)}{\Gamma(M)} = 1 - e^{-\frac{x}{\bar{\gamma}}} \sum_{k=0}^{M-1} \frac{\left(\frac{x}{\bar{\gamma}}\right)^k}{k!}$$
(24)

MRC: Outage probability

Assignment Project Exam Help The SAR outage probability over i.i.d. Rayleigh fading channels

https://powerder.com
$$= 1 - e^{-\frac{\gamma_{th}}{\hat{\gamma}}} \sum_{k=0}^{M-1} \frac{\left(\frac{\gamma_{th}}{\hat{\gamma}}\right)^{k}}{k!}$$
Add WeChat powcoder
$$(25)$$

Equal-Gain Combining (EGC)

A Systi graph them Project Exam Help For a Branch with $h_i = r_i e^{j\theta_i}$,

- The signals are co-phased: $e^{-j\theta_i}$
- The weight is: $a_i = 1$ The weight is: a_i

Add We Charle po Coder

4 The distribution PDF and CDF of γ_{FGC} do not exist in closed form for M > 2.

Threshold Combining

- **1** Select the the first signal whose SNR is above a given threshold γ_t .
- Once a branch is chosen, the combiner outputs that signal as long as the SNR on that branch remains above the desired threshold.
- estines in the spectre of the Gelovich Atmessible, the Combiner switches to another branch (e.g., switch randomly to another branch).
- 4 There are several criteria the combiner can use for determining which branch to small figure 1.5. F.g., 100 WCOCET. COM
 - Switch-and-stay combining (SSC): Switching when the SNR falls below a threshold does not always select the branch with the highest SNR.

Assignment Project Exam Help

A. Goldnettps://powcoder.com/, 2005.

Add WeChat powcoder

Assignment Project Exam Help Thank You!

https://powcoder.com

Add WeChat powcoder