Seifert van Kampen Lecture

MAT327

Let (G, \cdot) be an arbitrary group. Denote its identity element as 1, and for arbitrary $x \in G$, denote its inverse as x^{-1} , and $x^0 = 1$. Let $x^n = \underbrace{x \cdot x \cdot \cdots x}_n$.

Definition 1. Suppose $\{G_{\alpha}\}$ is a collection of subgroups of G. These subgroups generate G if for any $x \in G$ we have

$$x = x_1 \cdot x_2 \cdots x_n$$

where $x_i \in G_{\alpha_i}$. The above product is a word representing x. A reduced word is one where no two adjacent elements in the product are in the same subgroup.

Definition 2. Let G have a collection $\{G_{\alpha}\}$ as subgroups. Suppose $G_{\alpha_1} \cap G_{\alpha_2} = \{1\}$ when $\alpha_1 \neq \alpha_2$. Then G is the **free product** of G_{α} is for any $x \in G$, there is a unique reduced word representing x:

$$G = \prod_{\alpha \in J} G_{\alpha}$$