

CPCI-6200 Installation and Use P/N: 6806800J66C August 2011

© 2011 Emerson All rights reserved.

Trademarks

Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. © 2011 Emerson Electric Co. All other product or service names are the property of their respective owners

Intel[®] is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java[™] and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries

 $Microsoft^{\otimes}$, $Windows^{\otimes}$ and $Windows Me^{\otimes}$ are registered trademarks of Microsoft Corporation; and $Windows XP^{\mathsf{TM}}$ is a trademark of Microsoft Corporation.

 $PICMG^{\otimes}$, Compact PCI^{\otimes} , Advanced TCA^{\top} and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the PCI Industrial Computer Manufacturers Group.

UNIX[®] is a registered trademark of The Open Group in the United States and other countries.

Notice

While reasonable efforts have been made to assure the accuracy of this document, Emerson assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Emerson reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Emerson to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to a Emerson website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of Emerson,

It is possible that this publication may contain reference to or information about Emerson products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that Emerson intends to announce such Emerson products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Emerson.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Contact Address

Emerson Network Power - Embedded Computing 2900 South Diablo Way, Suite 190 Tempe, AZ 85282

Contents

Ab	out th	nis Manual	15
1	Intro	oduction	21
	1.1	Features	21
	1.2	Standard Compliances	24
	1.3	Mechanical Data	
	1.4	Ordering Information	26
		1.4.1 Supported Board Models	
		1.4.2 Board Accessories	
	1.5	Product Identification	
2	Hard	lware Preparation and Installation	29
	2.1	Overview	29
	2.2	Unpacking the CPCI Baseboard	29
	2.3	Environmental Requirements	30
	2.4	Power Requirements	31
	2.5	Installing Accessories	
		2.5.1 Installing a PMC Module on the CPCI Baseboard	32
		2.5.2 Installing the Rear Transition Module	34
	2.6	Preparing the Baseboard for Installation	34
		2.6.1 Inspecting the CPCI Baseboard	34
		2.6.2 Equipment Required for Installation	35
		2.6.3 Hardware Configuration	35
		2.6.3.1 Board Configuration Switch, S1	36
		2.6.3.2 IPMI Configuration Switch, S2	38
	2.7	Installing the CPCI Baseboard	39
	2.8	Removing the CPCI Baseboard	41
	2.9	Connecting to a Console Port	42
	2.10	Factory-Installed Linux	42
3	Cont	trols, LEDs, and Connectors	45
	3.1	Board Layout	45
	3.2	Front Panel	
	3.3	Connectors and Headers	47

Contents

		3.3.1 CPCI Bus Connector, J1	48
		3.3.2 CPCI Bus Connector, J2	49
		3.3.3 CPCI User I/O Connector, J3	50
		3.3.4 CPCI Connector, J4	51
		3.3.5 CPCI User I/O Connector, J5	51
		3.3.6 PCI Mezzanine Card (PMC) Connectors	52
		3.3.7 Ethernet Connector	58
		3.3.8 USB Connector	58
		3.3.9 Serial Port Connector, J16	59
		3.3.10 Board Insertion/Extraction Connector, P1	59
		3.3.11 DDR3 SO-DIMM Connectors, XJ1 and XJ2	60
		3.3.12 PCI Express Expansion Connector, J17	62
		3.3.13 IPMI Debug and FW Programming Header, P3	64
		3.3.14 Processor Debug Header, P4	64
		3.3.15 Boundary Scan Header, P5	65
		3.3.16 Processor COP Header, P6	65
		3.3.17 PCI Express Switch Header, P7	66
	3.4	Switches	66
		3.4.1 Onboard Switches	66
		3.4.2 Reset/Abort Switch, P2	67
	3.5	Front Panel LEDs	67
	3.6	Status Indicators	68
4	Fund	ctional Description	71
	4.1	Overview	
	4.2	MPC8572 Integrated Processor	
	4.3	I2C Serial Interface and Devices	
		4.3.1 I2C Bus 0	
		4.3.2 I2C Bus 1	
		4.3.3 I2C Bus 2	
		4.3.4 I2C Bus 3	
		4.3.5 I2C Bus 4	
		4.3.6 I2C Bus 5	
	4.4	System Memory	
	4.5	Timers	75

4.6	Ethernet Interfaces	75
4.7	Local Bus Interface	
	4.7.1 Flash Memory	75
	4.7.2 MRAM (Magnetoresistive Random Access Memory)	77
	4.7.3 Control and Timers PLD	77
	4.7.4 Serial COM Ports	78
4.8	DUART Interface	78
4.9	PCI Express Port	79
4.10	PCI/PCI-X Bus	80
	4.10.1 PCI Mezzanine Card Sites (PCI-X Bus 1 and 2)	80
	4.10.2 PCI 6466 Universal Bridge (PCI Bus 3)	80
	4.10.3 USB (PCI Bus 4)	81
	4.10.4 PCI Bus Frequency	81
4.11	Operation Modes	81
	4.11.1 System Controller Mode	82
	4.11.2 Peripheral Mode	82
	4.11.3 Stand Alone Mode	83
4.12	PCI Express Expansion	84
4.13	System Interrupts	85
4.14	Clock Distribution	86
4.15	MPC8572 System Clock	87
4.16	Reset Control Logic	87
	4.16.1 Abort/Reset Switch	89
	4.16.2 Reset Timing	
4.17	RTC Battery	91
4.18	IPMI Controller	91
	4.18.1 Programming the IPMI Firmware	92
4.19	Programmable Devices	93
	4.19.1 Local Bus Control CPLD	94
	4.19.2 Reset CPLD	94
	4.19.3 CPCI Control CPLD	94
	4.19.4 Serial Multiplexer CPLD	
МОТ	Load Firmware	95
5.1	Overview	95
٠.,		

Contents

	5.2	MOTL	oad Description	95
	5.3	MOTL	oad Implementation and Memory Requirements	95
	5.4	MOTL	oad Commands	96
	5.5	MOTL	oad Utility Applications	96
	5.6	MOTL	oad Tests	96
	5.7	Using	MOTLoad	97
		5.7.1	Command Line Interface	97
		5.7.2	Command Line Help	99
		5.7.3	Command Line Rules	99
	5.8	MOTL	oad Command List	100
6	Cont	trol via	IPMI	107
	6.1	Standa	ard IPMI Commands	107
		6.1.1	Global IPMI Commands	107
		6.1.2	Watchdog Commands	107
		6.1.3	IPMI Messaging Commands	108
		6.1.4	SEL Device Commands	108
		6.1.5	SDR Repository Commands	109
		6.1.6	FRU Inventory Commands	109
		6.1.7	Sensor Device Commands	110
		6.1.8	Chassis Device Commands	111
	6.2	PICMO	3 2.9 Commands	111
	6.3	Emers	on Specific Commands	112
		6.3.1	Firmware Upgrade Commands	112
			6.3.1.1 Start Firmware Upgrade	113
			6.3.1.2 Continue Firmware Upgrade	114
			6.3.1.3 Finish Firmware Upgrade	114
		6.3.2	OEM Commands	115
			6.3.2.1 BMC/PM Change Role	116
			6.3.2.2 Get Geographical Address	116
	6.4	FRU In	formation	118
	6.5	Senso	Description	118

7	Men	nory Maps and Addresses	37
	7.1	Default Processor Memory Map1	37
	7.2	CPCI-6200 Memory Map1	
	7.3	Local Bus Controller Memory Map1	39
	7.4	System I/O Memory Map14	
		7.4.1 System Status Register	43
		7.4.2 System Control Register	44
		7.4.3 Front Panel LEDs Control and Status Register	45
		7.4.4 NOR Flash Control and Status Register14	46
		7.4.5 Interrupt Register 1	48
		7.4.6 Interrupt Register 2	49
		7.4.7 Interrupt Mask Register	50
		7.4.8 Presence Detect Register	51
		7.4.9 NAND Flash Chip 1 Control Register	53
		7.4.10 NAND Flash Chip 1 Select Register	54
		7.4.11 NAND Flash Chip 1 Presence Register	55
		7.4.12 NAND Flash Chip 1 Status Register	56
		7.4.13 NAND Flash Chip 2 Control Register	57
		7.4.14 NAND Flash Chip 2 Select Register	58
		7.4.15 NAND Flash Chip 2 Presence Register	59
		7.4.16 NAND Flash Chip 2 Status Register	60
		7.4.17 CPCI Control and Status Register10	61
		7.4.18 Geographic Address Read Register	62
		7.4.19 Watchdog Timer Load Register	63
		7.4.20 Watchdog Timer Control Register10	64
		7.4.21 Watchdog Timer Resolution Register	65
		7.4.22 Watchdog Timer Count Register	66
		7.4.23 PLD Revision Register10	67
		7.4.24 PLD Date Code Register10	68
		7.4.25 Test Register 1	
		7.4.26 Test Register 2	69
		7.4.27 External Timer Registers	
		7.4.27.1 Prescaler Register	
		7.4.27.2 Control Registers	
		7.4.27.3 Compare Registers	
		, 5	

Contents

		7.4.27.4 Counter Registers	172
	7.5	Interrupt Controller	173
	7.6	I2C Device Addresses	174
	7.7	PCI/PCI-X Configuration	175
		7.7.1 PCI IDSEL and Interrupt Assignment	176
		7.7.2 PCI Vendor and Device IDs	176
		7.7.3 PCI Arbitration Assignments	177
A	Repl	lacing the Battery	179
	A.1	Battery Location	179
	A.2	Replacing the Battery	
В	Rela	ted Documentation	181
	B.1	Emerson Network Power - Embedded Computing Documents	181
	B.2	Manufacturer's Publications	
	B.3	Related Specifications	183
Saf	ety N	otes	185
Sic	herhe	eitshinweise	189
Ind	ev		193

List of Tables

Table 1-1	Summary of Features	21
Table 1-2	Order Numbers for Baseboard Variants	26
Table 1-3	Order Numbers for Related Products	26
Table 2-1	CPCI-6200 Environmental Requirements	30
Table 2-2	Baseboard Power Requirements	31
Table 2-3	S1 Switch Settings	37
Table 2-4	S2 Switch Settings	
Table 3-1	Onboard Connectors	47
Table 3-2	CPCI Bus Connector Pinout, J1	48
Table 3-3	CPCI Bus Connector Pinout, J2	49
Table 3-4	CPCI User I/O Connector Pinout, J3	50
Table 3-5	CPCI User I/O Connector Pinout, J5	52
Table 3-6	PMC Connector Pinout, J11/J21	53
Table 3-7	PMC Connector Pinout, J12/J22	54
Table 3-8	PMC Connector Pinout, J13/J23	55
Table 3-9	PMC Connector Pin Assignments, J14/J24	56
Table 3-10	Front Panel Latch Pinout, P1	59
Table 3-11	DDR3 SO-DIMMs Pinout, XJ1 and XJ2	60
Table 3-12	PCI Express Expansion Connector Pinout, J17	62
Table 3-13	IPMI Debug Pinout, P3	64
Table 3-14	Processor Debug Header Pinout, P4	64
Table 3-15	Boundary Scan Header Pinout, P5	65
Table 3-16	COP Header Pinout, P6	65
Table 3-17	PCI Express Switch Header Pinout, P7	66
Table 3-18	Front Panel Reset Switch Pinout, P2	67
Table 3-19	CPCI-6200 Status Indicators	68
Table 4-1	PCI Buses 1 and 2 Frequency Requirements	81
Table 4-2	System Clock Frequencies	87
Table 4-3	Reset Sources	87
Table 4-4	Reset Functions	88
Table 4-5	Reset Timing Requirements	90
Table 4-6	Programming Devices	93
Table 5-1	MOTLoad Commands	100
Table 6-1	Supported Global IPMI Commands	107
Table 6-2	Supported Watchdog Commands	107
Table 6-3	Supported Watchdog Commands	108

List of Tables

Table 6-4	Supported SEL Device Commands	108
Table 6-5	Supported SDR Repository Commands	109
Table 6-6	Supported FRU Inventory Commands	109
Table 6-7	Supported Sensor Device Commands	110
Table 6-8	Supported Chassis Device Commands	
Table 6-9	Supported PICMG 2.9 Commands	
Table 6-10	Firmware Upgrade Commands	
Table 6-11	Response Data of Start Firmware Upgrade	
Table 6-12	Request Data of Continue Firmware Upgrade	114
Table 6-13	Response Data of Continue Firmware Upgrade	114
Table 6-14	Request Data of Finish Firmware Upgrade	
Table 6-15	Response Data of Finish Firmware Upgrade	115
Table 6-16	OEM Commands	
Table 6-17	Request Data of BMC/PM Change Role	116
Table 6-18	Response Data of BMC/PM Change Role	
Table 6-19	Request Data of Get Geographical Address	
Table 6-20	Response Data of Get Geographical Address	117
Table 6-21	FRU Information CPCI-6200	118
Table 6-22	IPMI Sensors Overview	118
Table 6-23	Aggregate T Sensor	120
Table 6-24	Aggregate V Sensor	121
Table 6-25	CPCI Signal Sensor	121
Table 6-26	CPU Status Sensor	122
Table 6-27	Critical IRQ Sensor	123
Table 6-28	Ejector Switch Sensor	
Table 6-29	Max1617Temp Sensor	
Table 6-30	CoreTemp Sensor	126
Table 6-31	SEL Fullness Sensor	127
Table 6-32	Signal Status Sensor	
Table 6-33	VCC1_2 Sensor	129
Table 6-34	VCC1_5 Sensor	130
Table 6-35	VCC1_8 Sensor	
Table 6-36	VCC3_3 Sensor	
Table 6-37	VCC2_5 Sensor	
Table 6-38	VCC5_0 Sensor	
Table 6-39	VCC1_0 Sensor	135

Table 6-40	VPCore Sensor	. 136
Table 7-1	Default Processor Address Map	. 137
Table 7-2	CPCI-6200 Address Memory Map	. 138
Table 7-3	LBC Memory Map and Chip Select Assignments	. 139
Table 7-4	System I/O Memory Map	. 140
Table 7-5	System Status Register, 0xF200_0000	. 143
Table 7-6	System Status Register Field Definition	. 143
Table 7-7	System Control Register, 0xF200_0001	. 144
Table 7-8	System Control Register Field Definition	. 145
Table 7-9	Front Panel LED Control/Status Register, 0xF200_0002	. 145
Table 7-10	Front Panel LED Control/Status Register Field Definition	. 146
Table 7-11	NOR Flash Control/Status Register, 0xF200_0003	. 146
Table 7-12	NOR Flash Control/Status Register Field Definition	. 146
Table 7-13	Interrupt Register 1, 0xF200_0004	. 148
Table 7-14	Interrupt Register 1 Field Definition	. 148
Table 7-15	Interrupt Register 2, 0xF200_0005	. 149
Table 7-16	Interrupt Register 2 Field Definition	. 149
Table 7-17	Interrupt Mask Register, 0xF200_0006	. 150
Table 7-18	Interrupt Mask Register	. 150
Table 7-19	Presence Detect Register, 0xF200_0008	. 151
Table 7-20	Presence Detect Register Field Definition	. 152
Table 7-21	NAND Flash Chip 1 Control Register, 0xF200_0010	. 153
Table 7-22	NAND Flash Chip 1 Control Register Field Definition	. 153
Table 7-23	NAND Flash Chip 1 Select Register, 0xF200_0011	. 154
Table 7-24	NAND Flash Chip 1 Select Register Field Definition	. 154
Table 7-25	NAND Flash Chip 1 Presence Register, 0xF200_0012	. 155
Table 7-26	NAND Flash Chip 1 Presence Register Field Definition	. 156
Table 7-27	NAND Flash Chip 1 Status Register, 0xF200_0013	. 156
Table 7-28	NAND Flash Chip 1 Status Register Field Definition	. 156
Table 7-29	NAND Flash Chip 2 Control Register, 0xF200_0014	. 157
Table 7-30	NAND Flash Chip 2 Control Register Field Definition	. 157
Table 7-31	NAND Flash Chip 2 Select Register, 0xF200_0015	. 158
Table 7-32	NAND Flash Chip 2 Select Register	. 158
Table 7-33	NAND Flash Chip 2 Presence Register, 0xF200_0016	. 159
Table 7-34	NAND Flash Chip 2 Presence Register Field Definition	. 159
Table 7-35	NAND Flash Chip 2 Status Register, 0xF200_0017	. 160

List of Tables

Table 7-36	NAND Flash Chip 2 Status Register Field Definition	160
Table 7-37	CPCI Control/Status Register, 0xF200_0018	161
Table 7-38	CPCI Control/Status Register Field Definition	161
Table 7-39	Geographic Address Read Register, 0xF200_0019	162
Table 7-40	Geographic Address Read Register Field Definition	163
Table 7-41	Watchdog Timer Load Register, 0xF200_0020	163
Table 7-42	Watchdog Timer Control Register, 0xF200_0024	164
Table 7-43	Watchdog Timer Control Register Field Definition	164
Table 7-44	Watchdog Timer Resolution Register, 0xE200_0025	165
Table 7-45	Watchdog Timer Resolution Register	
Table 7-46	Watchdog Timer Counter Register, 0xF200_0026	166
Table 7-47	PLD Revision Register, 0xF200_0030	167
Table 7-48	PLD Revision Register Field Definition	167
Table 7-49	PLD Date Code Register, 0xF200_0034	168
Table 7-50	PLD Date Code Register Field Definition	168
Table 7-51	Test Register 1, 0xF200_0038	168
Table 7-52	Test Register 2, 0xF200_003C	169
Table 7-53	Prescaler Register, 0xE202_0000	169
Table 7-54	Tick Timer Control Registers	170
Table 7-55	Tick Timer Control Field Definition	170
Table 7-56	Tick Timer Compare Registers	171
Table 7-57	Tick Timer Counter Register	172
Table 7-58	Interrupt Assignments	173
Table 7-59	I2C Bus Device Addressing	175
Table 7-60	IDSEL and Interrupt Mapping for PCI Devices	176
Table 7-61	Planar PCI Device Identification	176
Table 7-62	PCI Arbitration Assignments	177
Table B-1	Related Publications	181
Table B-2	Manufacturers' Publications	182
Table B-3	Related Specifications	183

List of Figures

Figure 1-1	Declaration of Conformity	25
Figure 1-2	Location of the Product Serial Number	27
Figure 2-1	Location of Configuration Switches	
Figure 3-1	Board Layout	45
Figure 3-2	USB Connector Pinout	58
Figure 3-3	Serial Port Connector Pinout, J16	59
Figure 4-1	CPCI-6200 Block Diagram	72
Figure 4-2	Boot Block A	76
Figure 4-3	Boot Block B	77
Figure 4-4	PCI Express Bus Topology	79
Figure 4-5	System Controller Mode	82
Figure 4-6	Peripheral Mode	83
Figure 4-7	Stand Alone Mode	84
Figure 4-8	Routing of Interrupt Sources	85
Figure 4-9	CPCI-6200 Clock Distribution Diagram	86
Figure 7-1	CPCI-6200 Memory Map Diagram	138
Figure 7-2	PCI Interrupt Mapping to Processor	174

List of Figures

About this Manual

Overview of Contents

This manual is divided into the following chapters and appendices.

- Introduction provides an overview of the features of the product, including ordering and other product information like the location of labels.
- Hardware Preparation and Installation discusses procedures on installing the CPCI baseboard, PMC modules, and other accessories.
- Controls, LEDs, and Connectors provides information on connector pinouts and board and front panel layouts.
- Functional Description discusses the main functional blocks on the product.
- MOTLoad Firmware
 provides an overview and description of basic MOTLoad use including
 implementation issues, a list of the initialization sequence, and a description of basic
 commands.
- Control via IPMI discusses the IPMI commands that the product supports.
- *Memory Maps and Addresses* provides details on the various registers and addresses used in the product.
- Replacing the Battery provides instructions on how to replace the onboard battery.
- Related Documentation provides a list of documentation relevant to the product.
- Safety Notes lists the safety notes applicable to the product.
- Sicherheitshinweise lists the German version of the safety notes.

Abbreviations

This document uses the following abbreviations:

Abbreviation	Definition
ANSI	American National Standard Institute
BMC	Base Board Management Controller
CE	Chip Enable
COM	Communications

Abbreviation	Definition
CPCI	Compact PCI
CPLD	Complex Programmable Logic Device
СОР	Common On-Chip Processor
CRC	Cyclic Redundancy Check
DDR	Double Data Rate
DIMM	Dual Inline Memory Module
DMA	Direct Memory Access
DRAM	Dynamic Random Access Memory
DUART	Dual Universal Asynchronous Receiver/Transmitter
ECC	Error Correction Code
EEPROM	Electrically Erasable Programmable Read-Only Memory
EPROM	Erasable Programmable Read-Only Memory
ESD	Electrostatic Sensitive Device
ETSI	European Telecommunication Standards Institute
FCC	Federal Communications Commission
FRU	Field Replaceable Unit
GMII	Gigabit Media Independent Interface
GPCM	General Purpose Chip select Machine
IEEE	Institute of Electrical and Electronics Engineers
IPMB	Intelligent Platform Management Bus
IPMC	Intelligent Platform Management Interface Controller
IPMI	Intelligent Platform Management Interface
I2C	Inter Integrated Circuit
JTAG	Joint Test Access Group
LBC	Local Bus Controller
LFM	Linear Feet per Minute
LSB	Least Significant Byte
MPU	Multi Purpose Unit

Abbreviation	Definition
MRAM	Magnetoresistive Random Access Memory
MSB	Most Significant Byte
Msb	Most Significant Bit
NEBS	Network Equipment Building System
NVRAM	Non-Volatile Random Access Memory
PCI	Peripheral Component Interconnect
PCle or PCI-E	Peripheral Component Interconnect Express
PCI-X	Peripheral Component Interconnect -X
PHY	Physical Interface
PIC	Programmable Interrupt Controller
PIM	PCI Mezzanine Card Input/Output Module
PICMG	PCI Industrial Computer Manufacturers Group
PMC	PCI Mezzanine Card
PM	Peripheral Management
PLD	Programmable Logic Device
PLL	Phase-Locked Loop
PrPMC	Processor PCI Mezzanine Card
Rcv	Receive
RTC	Real-Time Clock
RTM	Rear Transition Module
SBC	Single Board Computer
SDR	Sensor Data Record
SDRAM	Synchronous Dynamic Random Access Memory
SEL	System Event Log
SMBus	System Management Bus
SMT	Surface Mount Technology
SO-DIMM	Small-Outline Dual In-line Memory Module
SO-UDIMM	Small-Outline Unbuffered Dual In-line Memory Module

Abbreviation	Definition
SPD	Serial Presence Detect
SRAM	Static Random Access Memory
TSEC	Three-Speed Ethernet Controller
UART	Universal Asynchronous Receiver/Transmitter
VIO	Input/Output Voltage
VME	Versa Module Eurocard
VPD	Vital Product Data

Conventions

The following table describes the conventions used throughout this manual.

Notation	Description
0x00000000	Typical notation for hexadecimal numbers (digits are 0 through F), for example used for addresses and offsets
0Ь0000	Same for binary numbers (digits are 0 and 1)
bold	Used to emphasize a word
Screen	Used for on-screen output and code related elements or commands in body text
Courier + Bold	Used to characterize user input and to separate it from system output
Reference	Used for references and for table and figure descriptions
File > Exit	Notation for selecting a submenu
<text></text>	Notation for variables and keys
[text]	Notation for software buttons to click on the screen and parameter description
	Repeated item for example node 1, node 2,, node 12

Notation	Description
	Omission of information from example/command that is not necessary at the time being
	Ranges, for example: 04 means one of the integers 0,1,2,3, and 4 (used in registers)
1	Logical OR
▲ WARNING XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Indicates a hazardous situation which, if not avoided, could result in death or serious injury
A CAUTION SOCIODIO DO CONTROLO DO CONTROL	Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury
NOTICE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Indicates a property damage message
	No danger encountered. Pay attention to important information

Summary of Changes

This manual has been revised and replaces all prior editions.

Part Number	Publication Date	Description
6806800J66C	August 2011	Updated Appendix P, Safety Notes, on page 185
6806800J66B	December 2010	Updated MOTLoad Command List on page 100
6806800J66A	September 2009	First edition

About this Manual

1.1 Features

The CPCI-6200 is a high performance, hot swappable universal Compact PCI board based on the MPC8572 integrated processor.

Table 1-1 Summary of Features

Function	Features
Processor	One 8572 integrated processor
Host Controller	Two e500 cores with integrated 1 MB L2 cache
Memory Controller	32 KB data and instruction cache on each core
	Core frequency from 1.3 to 1.5 GHz
	Two integrated DDR3 SDRAM controllers
	Two integrated four-channel DMA controller
	 Two integrated PCI Express interfaces (8 lanes of 2.5 Gb/s each)
	Four integrated 10/100/1000 Ethernet controllers
	One integrated DUART
	Two integrated I ² C controllers
	One integrated programmable interrupt controller
	One integrated local bus controller
System Memory	Two banks of DDR3 SDRAM with error-correcting code (ECC)
	Supports 2 or 4 GB
	Provides up to 800 MHz DDR3 data rate
I ² C	One 8 KB VPD serial EEPROM
	Two 64 KB user configuration serial EEPROMs
	One real time clock (RTC) with battery back-up
	Dual temperature sensors
	Two SPDs for memory
	Connection to the PCIE expander and RTM
Flash	128 MB soldered flash with two alternate 1 MB boot sectors that can be selected via a hardware switch
	HW switch or SW bit write protection for the entire logical bank
	Minimum of 4 GB user flash

Table 1-1 Summary of Features (continued)

Function	Features	
NVRAM	One 512 KB MRAM	
PCI Express	4x port to PCI Express expansion	
	 4x port to 6-port PCI Express switch for PCI Express interface 	
1/0	 One mini DB9 connector on the face plate (one serial channel) 	
	 Two RJ-45 connectors on the face plate with integrated LEDs for two 10/100/1000 Ethernet channels 	
	Two 10/100/1000 Ethernet chanels for rear J3 I/O	
	One USB 2.0 channel on the face plate	
	PMC site 1 front I/O and rear J3 I/O	
	PMC site 2 front I/O and rear J5 I/O	
Timers	Eight 32-bit MCP8572 timers	
	Four 32-bit timers in a PLD	
	One watchdog timer in PLD	
CPCI Interface	Complies with the following:	
	PCI Specification Revision 2.2	
	 PICMG 2.1 R2.0 CompactPCI Hot Swap Specification, January 17, 2001 	
	 PICMG 2.0 R3.0 CompactPCI Core Specification, October 1, 1999 	
	 PICMG 2.16 R1.0 CompactPCI Packet Switching Backplane Specification, September 5, 2001 	
	 PICMG 2.9 R1.0 CompactPCI System Management Specification 	
IPMI Controller	Renesas HD65F2166 processor	
	• Six I ² C bus	
	8-channel analog/digital converter	
	Three serial ports	
	• 512 KB flash	
	• 40 KB SRAM	
	• 1 MB (64K x 16 bit) external SRAM	
	• External user EEPROM, SDR/FRU, SEL flash of 512 KB each	

Table 1-1 Summary of Features (continued)

Function	Features
Others	 One RESET/ABORT switch on the face plate User/Fail LED on the face plate Blue hot swap LED on the face plate One standard 16-pin JTAG/COP header Support for boundary scan
Software Support	VxWorksLinux
RTM	Compatible with RTM-CPCI-6115 (01-W3766F11A)

1.2 Standard Compliances

The CPCI-6200 is designed to be CE compliant and to meet the following standard requirements.

Standard	Description
UL 60950-1	Safety Requirements (legal)
EN 60950-1	
IEC 60950-1	
CAN/CSA C22.2 No 60950-1	
CISPR 22	EMC requirements (legal) on system level
CISPR 24	(predefined Emerson system)
EN 55022	
EN 55024	
FCC Part 15	
Industry Canada ICES-003	
VCCI Japan	
AS/NZS CISPR 22	
EN 300 386	
NEBS Standard GR-1089 CORE	
NEBS Standard GR-63-CORE	Environmental Requirements
ETSI EN 300 019 series	
Directive 2002/95/EC	Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

Figure 1-1 Declaration of Conformity

EC Declaration of Conformity

According to EN 45014:1998

Manufacturer's Name: Emerson Network Power

Embedded Computing

Manufacturer's Address: Emerson Network Power

104 Laguna Boulevard Laguna Technopark, Sta. Rosa Laguna 4026, Philippines

Declares that the following product, in accordance with the requirements of 2004/108/EC and amending directives,

Product: CPCI6200 Compact PCI Processor Board

Model Name/Number: CPCI6200-13-2G, CPCI6200-15-2G, CPCI6200-15-4G

has been designed and manufactured to the following specifications:

EN55022: 2006

EN55024: 1998 (A1:2001+A2:2003)

As manufacturer we hereby declare that the product named above has been designed to comply with the relevant sections of the above referenced specifications. This product complies with the essential health and safety requirements of the above specified directives. We have an internal production control system that ensures compliance between the manufactured products and the technical documentation.

Thomas Tuttle Manager, Test Engineering

Issue date: Sept 23, 2009

CE

1.3 Mechanical Data

The CPCI-6200 is a full 6U 18-layer board. It is designed with ruggedization holes to support ruggedization application. This board occupies a single CPCI card slot with PMC modules installed.

1.4 Ordering Information

Use the information in the following sections when ordering boards and accessories.

1.4.1 Supported Board Models

Table 1-2 Order Numbers for Baseboard Variants

Marketing Number	Description
CPCI6200-13-2G	MPC8572, 1.33 GHz, 2 GB SO-DIMM DDR3, 6E
CPCI6200-15-4G	MPC8572, 1.5 GHz, 4 GB SO-DIMM DDR3, 6E

1.4.2 Board Accessories

Table 1-3 Order Numbers for Related Products

Marketing Number	Description
CPCI-6115-MCPTM-02	Transition module/PIM carrier, two RJ-45 Ethernet connectors, one RJ-45 asynchronous serial port connector, COM2 accessible via PIM slots, two PIM slots.

1.5 Product Identification

Figure 1-2 Location of the Product Serial Number

Introduction

Hardware Preparation and Installation

2.1 Overview

This chapter provides instructions on preparing and installing the CompactPCI board.

A fully implemented CPCI-6200 consists of the baseboard, PMC modules, and an optional rear transition module.

2.2 Unpacking the CPCI Baseboard

- 1. Make sure that you receive all items of your shipment:
 - Printed Quick Start Guide and Safety Notes
 - CPCI-6200 baseboard
 - Optional items that were ordered
- 2. Check the board for damages, and report any damage to Emerson.
- 3. Remove the desiccant bag shipped together with the board and dispose of it according to your country's legislation.

The product is thoroughly inspected before shipment. If any damage occurred during transportation or any items are missing, contact Emerson immediately.

2.3 Environmental Requirements

The environmental conditions must be tested and proven in the used system configuration. These conditions refer to the surroundings of the board within the user environment.

- Operating temperatures refer to the temperature of the air circulating around the board and not to the component temperature.
- To ensure that the operating conditions are met, forced air cooling is required within the shelf environment.
- The environmental values given in the table below only apply to the board without any accessories. If installing accessories, their environmental requirements must also be taken into account.

NOTICE

Product Damage

High humidity and condensation on surfaces cause short circuits.

Do not operate the product outside the specified environmental limits. Make sure the product is completely dry and there is no moisture on any surface before applying power.

Table 2-1 CPCI-6200 Environmental Requirements

Characteristics	Operating	Non-Operating
Operating Temperature	0°C to +55°C (32°F to 131°F) entry air with forced-air cooling	-40°C to +70°C (104°F to 158°F)
Temperature Change	+/-0.5°C/min according to NEBS Standard GR-63-CORE	
Forced Air Flow	8.7 LFM at 55°C (131 °F) ambient temperature	
Relative Humidity	5% to 90% Non-Condensed	5% to 90%Non-Condensed
Vibration	1.0 G sine sweep, 5–200 Hz, 0.25 octaves/min, all 3 axis (operating)	5–20 Hz at 0.01 g/Hz 20–200 Hz at -3.0 dB/octave Random 5–20 Hz at 1 m/sec Random 20–200 Hz at -3 dB/Octave

Table 2-1 CPCI-6200 Environmental Requirements (continued)

Characteristics	Operating	Non-Operating
Shock	Half-sine, 11 ms, 30 ms	Blade-level packaging Half-sine, 6 ms at 180 ms
Free Fall		Blade-level packaging 100 mm (unpackaged) per GR-63- CORE

2.4 Power Requirements

The board's power requirements depend on the installed hardware accessories. The following table gives examples of typical power requirements for a processor running without any accessories.

If you want to install any accessories, the load of the respective accessory has to be added to the load of the board variant you are using. For information on the accessories' power requirements, refer to the documentation delivered with the respective accessory or ask your local representative.

Table 2-2 Baseboard Power Requirements

Configuration	Maximum Power Requirement
CPCI6200-13-2G (1.3 GHz, 2 GB memory)	3.3 V, 4.1 A, 13.5 W
	5.0 V, 4.6 A, 23 W
CPCI6200-15-4G (1.5 GHz, 4 GB memory)	3.3 V, 4.2 A, 13.8 W
	5.0 V, 5.7 A, 28.5 W (Estimated)

2.5 Installing Accessories

2.5.1 Installing a PMC Module on the CPCI Baseboard

One double-width or two single-width PCI mezzanine cards (PMC) can be mounted on the CPCI-6200 baseboard. Each PMC slot has four connectors that provide a PCI interface to two PMC slots that provide user I/O to the backplane.

NOTICE

Damage of Circuits

Electrostatic discharge and incorrect installation and removal of the product can damage circuits or shorten their life.

Before touching the product make sure that your are working in an ESD-safe environment or wear an ESD wrist strap or ESD shoes. Hold the product by its edges and do not touch any components or circuits.

This procedure assumes that the CPCI-6200 is installed in the system chassis.

- Attach an ESD strap to your wrist, and then attach the other end of the ESD strap to the chassis as a ground.
 The ESD strap must be secured to your wrist and to ground throughout the procedure.
- **2.** Remove chassis or system cover(s) as necessary for access to the board.

A WARNING

Personal Injury or Death

This product operates with dangerous voltages that can cause injury or death. Use extreme caution when handling, testing, and adjusting this equipment and its components.

3. Carefully remove the CPCI-6200 from the card slot and lay it flat, with connectors J1 through J5 facing you.

5. Make sure that hole on the PMC matches the voltage key on CPCI-6200. Do not remove the PMC voltage key.

CPCI-6200 supports only 3.3 V I/O PMC modules.

6. Slide the edge connector of the PMC module into the front panel opening from behind, and then place the PMC module on top of the baseboard.

The four connectors on the underside of the PMC module should then connect smoothly with the corresponding connectors (J11/12/13/14) or (J21/22/23/24) on CPCI-6200.

7. Insert the four short Phillips screws, provided with the PMC, through the holes on the bottom side of CPCI-6200 and into the PMC front bezel and rear standoffs, and then tighten the screws.

2.5.2 Installing the Rear Transition Module

For information on installing the rear transition module, see the "Transition Module Preparation and Installation" chapter in the CPCI-6115 CompactPCI Single Board Computer Installation and Use manual.

2.6 Preparing the Baseboard for Installation

- Install the accessory kits, before installing the board, if necessary.
- If memory modules have been installed, check that all socket locks of the board are closed before board installation.

2.6.1 Inspecting the CPCI Baseboard

You can use the CPCI-6200 as a system controller in a system slot, an intelligent I/O board in a peripheral slot, or in stand-alone mode.

The board is fully compliant to CompactPCI Hot Swap Specification PICMG 2.1 R2.0, and can run in both 3.3 V and 5 V CompactPCI system.

Before installing the CPCI-6200, make sure that switches are configured as desired. For more information, see *Hardware Configuration* on page 35.

Perform the following steps before you install your board into the CompactPCI backplane to prevent possible backplane pin damage.

- Inspect the board connectors to ensure that they are not damaged by previous insertions or accidental mishandling.
 If any connector is damaged, do not install the board into the backplane to prevent the bending of pins.
- 2. Inspect the slot where the board will be installed for any bent pins on the backplane.

2.6.2 Equipment Required for Installation

You need the following items to do a complete installation:

- CompactPCI or compatible system enclosure
- System console terminal
- Operating system and/or application software
- Disk drives or other I/O, and controllers

2.6.3 Hardware Configuration

To produce the desired configuration and ensure proper operation of the board, you may need to carry out certain hardware modifications before installing the module.

Most options on the board are configured by software. Configuration changes are made by setting the bits in control registers after the board is installed in a system. The control registers are described in *Memory Maps and Addresses* on page 137 and other vendor publications.

Switches are used to control options that are not software configurable. The switch settings are described in the succeeding sections.

Figure 2-1 Location of Configuration Switches

2.6.3.1 Board Configuration Switch, S1

The CPCI-6200 uses an 8-position SMT configuration switch to:

- Control the flash bank write-protect.
- Select the flash boot image.
- Control the safe start ENV settings.

The default switch position is OFF.

Table 2-3 S1 Switch Settings

Switch	Name	ON	OFF (Default)
SW1	SAFE_START	Use safe ENV setting	Use normal ENV setting
SW2	BOOT_SEL	Board is booted from block B of Flash A	Board is booted from block A of Flash A
SW3	FLASH_WP	Flash A is write protected	Flash A write protection is off
SW4	JTAG_MODE	JTAG operates in pass through mode	Normal operation
SW5	PMC1_PCI_FSEL	Max PCI freq can be 133 MHz on PMC1	Max PCI freq can be 100 MHz on PMC1
SW6	SA_MODE	Board operates in Stand Alone Mode	Normal operation
SW7	LRO_SW	Reset caused by front panel switch, RTC, IPMI, COP header is propagated to backplane PCI reset	Reset caused by the front panel switch, RTC, IPMI, COP header is not propagated to backplane PCI reset
SW8	PWR12V_EN	+-12 V supplies are disabled	+-12 V supplies are enabled

When the SAFE_START switch is OFF, the normal ENV setting should be used. When it is on, the safe ENV settings should be used. This switch status is readable from System Status register 1, bit 5.

When the BOOT_SEL switch is OFF, the flash memory map is normal and boot block A is selected. When the switch is ON, boot block B is selected and mapped to the highest address.

When the FLASH_WP switch is OFF, the flash is not write-protected. When it is ON, the flash is write-protected i.e., writes to the flash devices are blocked by hardware.

When the JTAG_MODE switch is OFF, board operation is normal. When it is ON, the board is in pass through mode.

When the PMC1_PCI_FSEL switch is OFF, the maximum PCI bus operation is 100 MHz on PMC1. When it is ON, the maximum PCI bus operation is 100 MHz on PMC1. For more information, see *PCI Bus Frequency* on page 81.

When the SA_MODE switch is OFF, board operation is normal. When the switch is ON, the board operates in stand-alone mode i.e., it operates in a peripheral slot without the system board in the chassis.

When the LRO_SW switch is OFF, if the board is placed in reset, it is only a local reset. When the switch in ON, the board reset is propagated to CPCI bus. For more information, see *Reset Control Logic* on page 87.

When the PWR12V_EN switch is OFF, the 12 V supply is enabled on the board and is available for the RTM. When the switch is ON, the 12 V supply is disabled. Use the switch at ON position when a 12 V supply is not available in the system or chassis.

2.6.3.2 IPMI Configuration Switch, S2

The CPCI-6200 uses an 8-position SMT configuration switch to control the IPMI controller settings.

The default switch position is OFF.

Table 2-4 S2 Switch Settings

Switch	Name	ON	OFF (Default)
SW1	IPMI_DISABLE	Keep the IPMI controller in reset and thereby disable it	IPMI controller is enabled
SW2	IPMI_MODE_2	JTAG Debug mode	Normal operation
SW3	IPMI_MODE_1	Reserved	Normal operation
SW4	-	Reserved	Reserved
SW5	IPMI_SYSEN	Force IPMI in system mode	IPMI operates in non-system mode
SW6	FORCE_PM	Force IPMI in PM mode	IPMI operates in non-PM mode
SW7	-	Reserved	Reserved
SW8	PMC2_PCI_FSEL	Max PCI freq can be 133 MHz on PMC2	Max PCI freq can be 100 MHz on PMC2

When the IPMI_DISABLE switch is OFF, the IPMI device is enabled. When the switch ON, IPMI is disabled by asserting its reset.

When the IPMI_MODE_1 and IPMI_MODE_2 switches are OFF, the IPMI controller operates normally. When both switches are ON, the IPMI controller enters programming mode. Any other switch setting is not supported and treated as reserved.

When the IPMI_SYSEN switch is OFF, the IPMI operates in non-system mode. When the switch is ON, IPMI operates in system mode.

When the FORCE_PM switch is OFF, the IPMI operates in non-peripheral management mode. When the switch is ON, IPMI operates in peripheral management (PM) mode.

When the PMC2_PCI_FSEL switch is OFF, the maximum 100 MHz PCI bus frequency can be used on PMC2. When the switch is ON, the maximum PCI bus frequency is 133 MHz. For more information, see *PCI Bus Frequency* on page 81.

2.7 Installing the CPCI Baseboard

- Attach an ESD strap to your wrist, and then attach the other end of the ESD strap to the chassis as a ground.
 The ESD strap must be secured to your wrist and to ground throughout the
 - procedure.
- **2.** For a non-hot swap system, shut down the operating system.

A WARNING

Personal Injury or Death

This product operates with dangerous voltages that can cause injury or death. Use extreme caution when handling, testing, and adjusting this equipment and its components.

- **3.** Turn off the AC or DC power, and then remove the AC cord or DC power lines from the system.
- **4.** Remove the chassis or system cover(s) as necessary for access to the CompactPCI modules.

- **5.** Remove the filler panel from the appropriate card slot.
- **6.** Set the VIO on the backplane to either +3.3 V or +5 V, depending on your CompactPCI system signaling requirements, and ensure the backplane does not bus J3 or J5 signals.
- 7. Slide the baseboard into the appropriate slot.
 Grasping the top and bottom injector handles, be sure the module is well seated in the P1 through P5 connectors on the backplane. Make sure you do not damage or bend connector pins.
- **8.** Secure the baseboard in the chassis with the screws provided, making good contact with the transverse mounting rails to minimize RF emissions.
- **9.** Replace the chassis or system cover(s), and make sure no cables are pinched.
- **10.**Cable the peripherals to the panel connectors, and then reconnect the system to the AC or DC power source.
- **11.**Turn the equipment power on.

After you have verified that all necessary hardware preparation has been done, that all connections have been made correctly and that the installation is complete, you can power up the system. The MPU, hardware and firmware initialization process is performed by the MOTLoad power-up or system reset. The firmware initializes the devices on the baseboard in preparation for booting the operating system.

The firmware is shipped from the factory with an appropriate set of defaults. In most cases there is no need to modify the firmware configuration before you boot the operating system.

For more information on MOTLoad, see MOTLoad Firmware on page 95.

2.8 Removing the CPCI Baseboard

The board is fully compliant to Compact PCI Hot Swap Specification PICMG 2.1 R2.0, and can run in both 3.3 V and 5 V Compact PCI systems.

NOTICE

Data Loss

Removing the RTM with the system power on and the blue LED on the front blade still flashing causes data loss.

Before removing the RTM from a powered system, power down the slot and the front blade's payload by opening the lower handle of the front blade and wait until the blue LED is permanently ON.

Damage of Circuits

Electrostatic discharge and incorrect installation and removal of the product can damage circuits or shorten their life.

Before touching the product make sure that your are working in an ESD-safe environment or wear an ESD wrist strap or ESD shoes. Hold the product by its edges and do not touch any components or circuits.

The following procedure describes how to remove the board from a system. It assumes that the system is powered and running system level management software. If the system is unpowered, disregard the blue LED and skip the respective step.

- 1. Unfasten the two screws on the front panel until the board is detached from the rack frame.
- 2. Press the red button to unlock handles.
- **3.** Open handles until resistance is encountered. The hot swap switch opens automatically.

4. Wait until blue hot swap LED lights up.

NOTICE

Data Loss

Removing the product with the blue LED still blinking causes data loss. Wait until the blue LED is permanently illuminated before removing the product.

5. Remove the board from the slot by fully opening the ejector handles.

2.9 Connecting to a Console Port

When the CPCI-6200 is installed in the chassis, you are ready to connect peripherals and apply power to the board.

On the CPCI-6200 baseboard, the standard serial console port (COM1) serves as the MOTLoad debugger console port. The firmware console should be set up as follows:

- Eight bits per character
- One stop bit per character
- Parity disabled (no parity)
- Baud rate of 9600

9600 baud is the power-up default for serial ports on CPCI-6200 boards. After power-up you can reconfigure the baud rate if you wish, using the MOTLoad PF (Port Format) command via the command line interface. Whatever the baud rate, some type of hardware handshaking—either XON/OFF or via the RTS/CTS line—is desirable if the system supports it.

2.10 Factory-Installed Linux

A bootable ramdisk-based Linux image based on the 2.6.29.6 or later kernel is available in the NOR flash. To boot this image, use the following MOTLoad commands:

```
CPCI6200> bmw -af8000000 -bf8ff0000 -c2000000 CPCI6200> execP -12000400
```

The image should boot to the following prompt:

Emerson Network Power Embedded Computing Linux Kernel 2.6.29.6 on a 2-processor CPCI6200

localhost login:

Login as root with no password.

If you want to use IPMI, load the IPMI SMBus driver using:

modprobe ipmi_smb

Contact Emerson for kernel patches and additional information on using Linux on the CPCI-6200.

3.1 Board Layout

Figure 3-1 Board Layout

3.2 Front Panel

For more information on the front panel connectors, see *Front Panel LEDs* on page 67.

3.3 Connectors and Headers

Table 3-1 Onboard Connectors

Reference Designator	Function	
J1	CPCI five-row J1	
	CPCI bus connector	
J2	CPCI five-row J2	
	CPCI bus connector	
J3	CPCI five-row J3	
	User I/O connector	
J4	Not used	
J5	CPCI five-row J5	
	User I/O connector	
J6	10/100/1000 Ethernet	
	Ethernet port on the front panel (ENET 1 and ENET2)	
J7	USB port on the front panel	
J11, J12, J13, J14	PMC1	
J21, J22, J23, J24	PMC2	
J16	Serial Port 1 (COM1)	
	Mini DB9 serial port on the front panel	
J17	PMC expansion to PMCspan	
P1	Board insertion/ejection	
	Switch connector on the front panel	
P2	Reset/abort switch on the front panel	
P3	IPMI serial port (COM2)	
	Planar header for debugging IPMI Serial Port	
P4	Processor debug header	
	Planar header for probing debug signals	
P5	Boundary scan header	
	Planar header for boundary scan and PLD/flash programming	

Table 3-1 Onboard Connectors (continued)

Reference Designator	Function
P6	Processor COP header
	Planar header for processor COP emulation
P7	Planar header for debugging the PCI Express switch device
XJ1, XJ2	DDR3 DIMM 1 and 2 Socket
	204-pin SO-UDIMM socket for DDR3 DIMM
S1	8-position switch
S2	8-position switch for IPMI functionality

3.3.1 CPCI Bus Connector, J1

J1 is a five-row CPCI bus connector.

Table 3-2 CPCI Bus Connector Pinout, J1

Pin	Row A	Row B	Row C	Row D	Row E	
25	+5.0 V	REQ64#	ENUM#	+3.3 V	+5.0 V	
24	AD[1]	+5.0 V	V(IO)1	AD[0]	ACK64#	
23	+3.3 V	AD[4]	AD[3]	+5.0 V1	AD[2]	
22	AD[7]	GND	+3.3 V1	AD[6]	AD[5]	
21	+3.3 V	AD[9]	AD[8]	M66EN	C/BE[0]#	
20	AD[12]	GND	V(IO)	AD[11]	AD[10]	
19	+3.3 V	AD[15]	AD[14]	GND1	AD[13]	
18	SERR#	GND	+3.3 V	PAR	C/BE[1]#	
17	+3.3 V	IPMB0_SCL	IPMB0_SDA	GND1	PERR#	
16	DEVSEL#	PCIXCAP	V(IO)	STOP#	LOCK#	
15	+3.3 V	FRAME#	IRDY#	BD_SEL#	TRDY#	
KEY AF	KEY AREA (Pins 12 - 14)					
11	AD[18]	AD[17]	AD[16]	GND1	C/BE[2]#	
10	AD[21]	GND	+3.3 V	AD[20]	AD[19]	

Table 3-2 CPCI Bus Connector Pinout, J1 (continued)

Pin	Row A	Row B	Row C	Row D	Row E
9	C/BE[3]#	IDSEL	AD[23]	GND1	AD[22]
8	AD[26]	GND	V(IO)	AD[25]	AD[24]
7	AD[30]	AD[29]	AD[28]	GND1	AD[27]
6	REQ#	GND	+3.3 V1	CLK	AD[31]
5	BRSVR1A5	BRSVR1B5	RST#	GND1	GNT#
4	IPMB_PWR	HEALTHY#	V(IO)1	INTP	INTS
3	INTA#	INTB#	INTC#	+5.0 V1	INTD#
2	TCK	+5.0 V	TMS	TDO	TDI
1	+5.0 V	-12 V	TRST#	+12 V	+5.0 V

3.3.2 CPCI Bus Connector, J2

J2 is a five-row CPCI bus connector.

Table 3-3 CPCI Bus Connector Pinout, J2

Pin	Row A	Row B	Row C	Row D	Row E
22	GA4	GA3	GA2	GA1	GA0
21	RSV	GND	RSV	RSV	RSV
20	RSV	GND	RSV	GND	RSV
19	GND	GND	RSV	RSV	RSV
18	BRSVP2A18	BRSVP2B18	BRSVP2C18	GND	BRSVP2E18
17	BRSVP2A17	GND	RSV	RSV	RSV
16	BRSVP2A16	BRSVP2B16	RSV	GND	BRSVP2E16
15	BRSVP2A15	GND	RSV	RSV	RSV
14	AD[35]	AD[34]	AD[33]	GND	AD[32]
13	AD[38]	GND	V(IO)	AD[37]	AD[36]
12	AD[42]	AD[41]	AD[40]	GND	AD[39]
11	AD[45]	GND	V(IO)	AD[44]	AD[43]

Table 3-3 CPCI Bus Connector Pinout, J2 (continued)

Pin	Row A	Row B	Row C	Row D	Row E
10	AD[49]	AD[48]	AD[47]	GND	AD[46]
9	AD[52]	GND	V(IO)	AD[51]	AD[50]
8	AD[56]	AD[55]	AD[54]	GND	AD[53]
7	AD[59]	GND	V(IO)	AD[58]	AD[57]
6	AD[63]	AD[62]	AD[61]	GND	AD[60]
5	C/BE[5]#	64EN#	V(IO)	C/BE[4]#	PAR64
4	V(IO)	BRSVP2B4	C/BE[7]#	GND	C/BE[6]#
3	RSV	GND	RSV	RSV	RSV
2	RSV	RSV	SYSEN# ¹	RSV	RSV
1	RSV	GND	RSV	RSV	RSV

^{1.} Defined as SYSEN#. This OV allows the CPCI-6200 to ensure that it is installed into a peripheral slot.

3.3.3 CPCI User I/O Connector, J3

J3 is a five-row user I/O CPCI connector.

Note: Row F is ground and is not shown in the table.

Table 3-4 CPCI User I/O Connector Pinout, J3

Pin	Row A	Row B	Row C	Row D	Row E
1	IPMI_PWR	PMCIO64	PMCIO63	PMCIO62	PMCIO61
2	PMCIO60	PMCIO59	PMCIO58	PMCIO57	PMCIO56
3	PMCIO55	PMCIO54	PMCIO53	PMCIO52	PMCIO51
4	PMCIO50	PMCIO49	PMCIO48	PMCIO47	PMCIO46
5	PMCIO45	PMCIO44	PMCIO43	PMCIO42	PMCIO41
6	PMCIO40	PMCIO39	PMCIO38	PMCIO37	PMCIO36
7	PMCIO35	PMCIO34	PMCIO33	PMCIO32	PMCIO31
8	PMCIO30	PMCIO29	PMCIO28	PMCIO27	PMCIO26

Table 3-4 CPCI User I/O Connector Pinout, J3 (continued)

Pin	Row A	Row B	Row C	Row D	Row E
9	PMCIO25	PMCIO24	PMCIO23	PMCIO22	PMCIO21
10	PMCIO20	PMCIO19	PMCIO18	PMCIO17	PMCIO16
11	PMCIO15	PMCIO14	PMCIO13	PMCIO12	PMCIO11
12	PMCIO10	PMCIO9	PMCIO8	PMCIO7	PMCIO6
13	PMCIO5	PMCIO4	PMCIO3	PMCIO2	PMCIO1
14	+3.3V	+3.3V	+3.3V	+5V	+5V
15	G1_DB+ (RX2+)	G1_DB- (RX2-)	GND	G1_DD+	G1_DD-
16	G1_DA+ (TX2+)	G1_DA- (TX2-)	GND	G1_DC+	G1_DC-
17	G0_DB+ (RX1+)	G0_DB- (RX1-)	GND	G0_DD+	G0_DD-
18	G0_DA+ (TX1+)	G0_DA- (TX1-)	GND	G0_DC+	G0_DC-
19	GND	+12V	-12V	GND	GND

10/100/1000Base-T Ethernet signals:

- G0_Dx-CH1 10/100/1000Base-T Ethernet
- G1_Dx-CH2 10/100/1000Base-T Ethernet

PMC User I/O signals:

- PMCIO(64:1)-PMC I/O
- IPMI_PWR-+3.3 V derived from IPMB input power

3.3.4 CPCI Connector, J4

 $\slash\hspace{-0.6em}$ J4 is a five-row CPCI connector that is not used on the CPCI-6200. It is not populated.

3.3.5 CPCI User I/O Connector, J5

J5 is a five-row user I/O CPCI connector.

Row F is ground and is not shown in the table.

Table 3-5 CPCI User I/O Connector Pinout, J5

Pin	Row A	Row B	Row C	Row D	Row E
1	TM_PRSNT#	PMCIO64	PMCIO63	PMCIO62	PMCIO61
2	PMCIO60	PMCIO59	PMCIO58	PMCIO57	PMCIO56
3	PMCIO55	PMCIO54	PMCIO53	PMCIO52	PMCIO51
4	PMCIO50	PMCIO49	PMCIO48	PMCIO47	PMCIO46
5	PMCIO45	PMCIO44	PMCIO43	PMCIO42	PMCIO41
6	PMCIO40	PMCIO39	PMCIO38	PMCIO37	PMCIO36
7	PMCIO35	PMCIO34	PMCIO33	PMCIO32	PMCIO31
8	PMCIO30	PMCIO29	PMCIO28	PMCIO27	PMCIO26
9	PMCIO25	PMCIO24	PMCIO23	PMCIO22	PMCIO21
10	PMCIO20	PMCIO19	PMCIO18	PMCIO17	PMCIO16
11	PMCIO15	PMCIO14	PMCIO13	PMCIO12	PMCIO11
12	PMCIO10	PMCIO9	PMCIO8	PMCIO7	PMCIO6
13	PMCIO5	PMCIO4	PMCIO3	PMCIO2	PMCIO1
14	NC	NC	NC	NC	NC
15	NC	NC	GND	NC	NC
16	NC	NC	NC	NC	NC
17	GND	NC	NC	NC	NC
18	NC	NC	TMCOM3#	I2C_CLK	I2C_DATA
19	NC	NC	NC	MXCLK	MXSYNC#
20	NC	NC	NC	MXDI	MXDO
21	NC	NC	NC	COM4_RXD	COM3_RXD
22	NC	NC	NC	COM4_TXD	COM4_TXD

3.3.6 PCI Mezzanine Card (PMC) Connectors

There are four 64-pin connectors for each PMC slot on the CPCI-6200.

Connectors J11, J12, J13 and J14 are used for PMC1 while J21, J22, J23 and J24 are used for PMC2.

Table 3-6 PMC Connector Pinout, J11/J21

Pin		J11/J21	Pin
1	TCK	-12 V	2
3	GND	INTA#	4
5	INTB#	INTC#	6
7	PRESENT#	+5 V	8
9	INTD#	PCI_RSVD	10
11	GND	NC (+3.3Vaux)	12
13	CLK	GND	14
15	GND	GNT#/XREQ0#	16
17	REQ#/XGNT0#	+5 V	18
19	VIO	AD31	20
21	AD28	AD27	22
23	AD25	GND	24
25	GND	C/BE3#	26
27	AD22	AD21	28
29	AD19	+5 V	30
31	VIO	AD17	32
33	FRAME#	GND	34
35	GND	IRDY#	36
37	DEVSEL#	+5 V	38
39	PCIXCAP	LOCK#	40
41	PCI_RSVD	PCI_RSVD	42
43	PAR	GND	44
45	VIO	AD15	46
47	AD12	AD11	48
49	AD09	+5 V	50

Table 3-6 PMC Connector Pinout, J11/J21 (continued)

Pin	J1 ⁻	Pin	
51	GND	C/BEO#	52
53	AD06	AD05	54
55	AD04	GND	56
57	VIO	AD03	58
59	AD02	AD01	60
61	AD00	+5 V	62
63	GND	REQ64#	64

Table 3-7 PMC Connector Pinout, J12/J22

Pin	J12	J22	Pin
1	+12 V	TRST#	2
3	TMS	TDO	4
5	TDI	GND	6
7	GND	PCI_RSVD	8
9	PCI_RSVD	PCI_RSVD	10
11	MOT_RSVD	+3.3 V	12
13	RST#	MOT_RSVD	14
15	+3.3 V	MOT_RSVD	16
17	NC (PME#)	GND	18
19	AD30	AD29	20
21	GND	AD26	22
23	AD24	+3.3 V	24
25	IDSEL	AD23	26
27	+3.3 V	AD20	28
29	AD18	GND	30
31	AD16	C/BE2#	32
33	GND	IDSELB	34

Table 3-7 PMC Connector Pinout, J12/J22 (continued)

Pin	J12	J22	Pin
35	TRDY#	+3.3 V	36
37	GND	STOP#	38
39	PERR#	GND	40
41	+3.3 V	SERR#	42
43	C/BE1#	GND	44
45	AD14	AD13	46
47	M66EN	AD10	48
49	AD08	+3.3 V	50
51	AD07	REQB_L	52
53	+3.3 V	GNTB_L	54
55	MOT_RSVD	GND	56
57	MOT_RSVD	EREADY	58
59	GND	NC (RESETOUT_L)	60
61	ACK64#	+3.3 V	62
63	GND	NC (MONARCH#)	64

Table 3-8 PMC Connector Pinout, J13/J23

Pin	J1	Pin	
1	PCI_RSVD	GND	2
3	GND	C/BE7#	4
5	C/BE6#	C/BE5#	6
7	C/BE4# (Note 1)	GND	8
9	VIO	PAR64	10
11	AD63	AD62	12
13	AD61	GND	14
15	GND	AD60	16
17	AD59	AD58	18

Table 3-8 PMC Connector Pinout, J13/J23 (continued)

Pin	J1	3/J23	Pin
19	AD57	GND	20
21	VIO	AD56	22
23	AD55	AD54	24
25	AD53	GND	26
27	GND	AD52	28
29	AD51	AD50	30
31	AD49	GND	32
33	GND	AD48	34
35	AD47	AD46	36
37	AD45	GND	38
39	VIO	AD44	40
41	AD43	AD42	42
43	AD41	GND	44
45	GND	AD40	46
47	AD39	AD38	48
49	AD37	GND	50
51	GND	AD36	52
53	AD35	AD34	54
55	AD33	GND	56
57	VIO	AD32	58
59	PCI_RSVD	PCI_RSVD	60
61	PCI_RSVD	GND	62
63	GND	PCI_RSVD	64

Table 3-9 PMC Connector Pin Assignments , J14/J24

Pin	J14/	Pin	
1	PMCIO1	PMCIO2	2

Table 3-9 PMC Connector Pin Assignments , J14/J24 (continued)

Pin		J14/J24	Pin
3	PMCIO3	PMCIO4	4
5	PMCIO5	PMCIO6	6
7	PMCIO7	PMCIO8	8
9	PMCIO9	PMCIO10	10
11	PMCIO11	PMCIO12	12
13	PMCIO13	PMCIO14	14
15	PMCIO15	PMCIO16	16
17	PMCIO17	PMCIO18	18
19	PMCIO19	PMCIO20	20
21	PMCIO21	PMCIO22	22
23	PMCIO23	PMCIO24	24
25	PMCIO25	PMCIO26	26
27	PMCIO27	PMCIO28	28
29	PMCIO29	PMCIO30	30
31	PMCIO31	PMCIO32	32
33	PMCIO33	PMCIO34	34
35	PMCIO35	PMCIO36	36
37	PMCIO37	PMCIO38	38
39	PMCIO39	PMCIO40	40
41	PMCIO41	PMCIO42	42
43	PMCIO43	PMCIO44	44
45	PMCIO45	PMCIO46	46
47	PMCIO47	PMCIO48	48
49	PMCIO49	PMCIO50	50
51	PMCIO51	PMCIO52	52
53	PMCIO53	PMCIO54	54
55	PMCIO55	PMCIO56	56

Table 3-9 PMC Connector Pin Assignments, |14/|24 (continued)

Pin	J14/	Pin	
57	PMCIO57	PMCIO58	58
59	PMCIO59	PMCIO60	60
61	PMCIO61	PMCIO62	62
63	PMCIO63	PMCIO64	64

3.3.7 Ethernet Connector

There are two Ethernet ports on the front panel through a single connector J6.

J6 is a single housing with two RJ-45 ports. The pin configuration is based on IEEE standards 802.3ab-1999.

3.3.8 USB Connector

There is one standard 4-pin USB connector located on the front panel.

Figure 3-2 USB Connector Pinout

3.3.9 Serial Port Connector, J16

The serial port connector (COM1) is located on the front panel.

Figure 3-3 Serial Port Connector Pinout, J16

Note: G1 and G2 are connected to ground.

3.3.10 Board Insertion/Extraction Connector, P1

A board insertion and extraction connector is located near the front panel. This connector is used to detect a board insertion or extraction event. The latch connector on the front panel is connected to this connector.

Table 3-10 Front Panel Latch Pinout, P1

Pin Number	Signal
1	GND
2	BOARD_EJECT
3	FP_EJECTSW
G1	NC
G2	NC

Pins 1 and 2 indicate board insertion or extraction status. Pin 2 is used with the PCI Bridge while pin 3 is used with the IPMI controller.

A closed latch indicates board insertion. In this case, pin 2 and 3 are shorted and FP_EJECTSW = 1, BOARD_EJECT = 0.

3.3.11 DDR3 SO-DIMM Connectors, XJ1 and XJ2

The CPCI-6200 provides two 204-pin DDR3 SO-UDIMM connectors for installing DDR3 SDRAMs.

Table 3-11 DDR3 SO-DIMMs Pinout, XJ1 and XJ2

Pin Number	Signal						
1	VREFDQ	2	VSS	103	A3	104	A4
3	VSS	4	DQ4	105	A1	106	A2
5	DQ0	6	DQ5	107	A0	108	BA1
7	DQ1	8	VSS	109	VDD	110	VDD
9	VSS	10	DQS0#	111	CK0	112	PAR_IN/CK1
11	DM0	12	DQS0	113	CK0#	114	ERR_OUT/CK1#
13	DQ2	14	VSS	115	VDD	116	VDD
15	DQ3	16	DQ6	117	A10/AP	118	CS3#
17	VSS	18	DQ7	119	BA0	120	CS2#
19	DQ8	20	VSS	121	WE#	122	RAS#
21	DQ9	22	DQ12	123	VDD	124	VDD
23	VSS	24	DQ13	125	CAS#	126	ODT0
25	DQS1#	26	VSS	127	CS0#	128	ODT1
27	DQS1	28	DM1	129	CS1#	130	A13
29	VSS	30	RESET#	131	VDD	132	VDD
31	DQ10	32	VSS	133	DQ32	134	DQ36
33	DQ11	34	DQ14	135	DQ33	136	DQ37
35	VSS	36	DQ15	137	VSS	138	VSS
37	DQ16	38	VSS	139	DQS4#	140	DM4
39	DQ17	40	DQ20	141	DQS4	142	DQ38
41	VSS	42	DQ21	143	VSS	144	DQ39
43	DQS2#	44	DM2	145	DQ34	146	VSS
45	DQS2	46	VSS	147	DQ35	148	DQ44

Table 3-11 DDR3 SO-DIMMs Pinout, XJ1 and XJ2 (continued)

Pin Number	Signal	Pin Number	Signal	Pin Number	Signal	Pin Number	Signal
47	VSS	48	DQ22	149	VSS	150	DQ45
49	DQ18	50	DQ23	151	DQ40	152	VSS
51	DQ19	52	VSS	153	DQ41	154	DQS5#
53	VSS	54	DQ28	155	VSS	156	DQS5
55	DQ24	56	DQ29	157	DM5	158	VSS
57	DQ25	58	VSS	159	DQ42	160	DQ46
59	DM3	60	DQS3#	161	DQ43	162	DQ47
61	VSS	62	DQS3	163	VSS	164	VSS
63	DQ26	64	VSS	165	DQ48	166	DQ52
65	DQ27	66	DQ30	167	DQ49	168	DQ53
67	VSS	68	DQ31	169	VSS	170	VSS
69	CB0	70	VSS	171	DQS6#	172	DM6
71	CB1	72	CB4	173	DQS6	174	DQ54
73	VSS	74	CB5	175	VSS	176	DQ55
75	DQS8#	76	DM8	177	DQ50	178	VSS
77	DQS8	78	VSS	179	DQ51	180	DQ60
79	VSS	80	CB6	181	VSS	182	DQ61
81	CB2	82	CB7	183	DQ56	184	VSS
83	CB3	84	VREFCA	185	DQ57	186	DQS7#
85	VDD	86	VDD	187	VSS	188	DQS7
87	CKE0	88	A15	189	DM7	190	VSS
89	CKE1	90	A14	191	DQ58	192	DQ62
91	BA2	92	A9	193	DQ59	194	DQ63
93	VDD	94	VDD	195	VSS	196	VSS
95	A12/BC#	96	A11	197	SA0	198	EVENT#
97	A8	98	A7	199	VDDSPD	200	SDA
99	A5	100	A6	201	SA1	202	SCL

Table 3-11 DDR3 SO-DIMMs Pinout, XJ1 and XJ2 (continued)

Pin Number	Signal						
101	VDD	102	VDD	203	VTT	204	VTT

3.3.12 PCI Express Expansion Connector, J17

The CPCI-6200 provides PCI Express expansion capability through 76-pin Mictor connector.

Table 3-12 PCI Express Expansion Connector Pinout, J17

Pin Number	Signal	Pin Number	Signal
1	GND	2	GND
3	TX0_P	4	RX0_P
5	TX0_N	6	RX0_N
7	GND	8	GND
9	TX1_P	10	RX1_P
11	TX1_N	12	RX1_N
13	GND	14	GND
15	TX2_P	16	RX2_P
17	TX2_N	18	RX2_N
19	GND	20	GND
21	TX3_P	22	RX3_P
23	TX3_N	24	RX3_N
25	GND	26	GND
27	CLK_P	28	NC
29	CLK_N	30	NC
31	GND	32	GND
33	NC	34	NC
35	NC	36	END#
37	INT#	38	RESET#
39	GND	40	GND

Table 3-12 PCI Express Expansion Connector Pinout, J17

Pin Number	Signal	Pin Number	Signal
41	NC	42	NC
43	NC	44	NC
45	GND	46	GND
47	NC	48	NC
49	NC	50	NC
51	GND	52	GND
53	NC	54	NC
55	NC	56	NC
57	GND	58	GND
59	NC	60	NC
61	NC	62	NC
63	GND	64	GND
65	NC	66	NC
67	NC	68	NC
69	TDI	70	TDO
71	TRST#	72	I2C_CLK
73	TMS	74	I2C_DATA
75	TCK	76	PRESENT#
G1	GND	G2	GND
G3	GND	G4	GND
G5	GND	G6	GND
G7	GND	G8	GND
G9	GND	G10	GND

3.3.13 IPMI Debug and FW Programming Header, P3

The CPCI-6200 provides one 4-pin planar header connected to IPMI serial port 2 for debugging and programming IPMI firmware.

Table 3-13 IPMI Debug Pinout, P3

Pin Number	Signal
1	TXD
2	GND
3	RXD
4	GND

3.3.14 Processor Debug Header, P4

The CPCI-6200 has a 10-pin header for debugging. This header can debug a DDR or LBC interface.

Table 3-14 Processor Debug Header Pinout, P4

Pin Number	Signal	Signal	Pin Number
1	GND	MCRCID_0	2
3	TRIG_IN	MCRCID_1	4
5	TRIG_OUT	MCRCID_2	6
7	MDVAL	MCRCID_3	8
9	3.3V	MCRCID_4	10

3.3.15 Boundary Scan Header, P5

The CPCI-6200 uses a standard 20-pin boundary scan port header that provides an interface for programming the onboard PLDs, and boundary scan testing and debugging.

Table 3-15 Boundary Scan Header Pinout, P5

Pin Number	Signal	Signal	Pin Number
1	TCK	GND	2
3	TDO	GND	4
5	TMS	GND	6
7	TRST#	GND	8
9	TDI	BSCAN_EN#	10
11	Key (no pin)	NC	12
13	GND	BSCAN_AW#	14
15	GND	NC	16
17	GND	NC	18
19	GND	NC	20

3.3.16 Processor COP Header, P6

The CPCI-6200 uses one standard 16-pin header to provide access to the COP function.

Table 3-16 COP Header Pinout, P6

Pin Number	Signal	Signal	Pin Number
1	CPU_TDO	Not Connected	2
3	CPU_TDI	CPU_TRST#	4
5	Pull up	CPU_VIO pull-up	6
7	CPU_TCK	CPU_CKSTPI#	8
9	CPU_TMS	Not Connected	10
11	CPU_SRST#	GND (optional pull-down)	12
13	CPU_HRST#	Key (no pin)	14

Table 3-16 COP Header Pinout, P6 (continued)

Pin Number	Signal	Signal	Pin Number
15	CPU_CKSTPO#	GND	16

3.3.17 PCI Express Switch Header, P7

There is one standard 10-pin header located on the CPCI-6200 that provides the debug capability of the PCI Express device PLX8624 using the I^2C bus. The connector connects to the Aardvark I^2C/SPI Host Adapter. This header is only used for prototype debugging and is not installed in the released product.

Table 3-17 PCI Express Switch Header Pinout, P7

Pin Number	Signal	Signal	Pin Number
1	SCL	GND	2
3	SDA	NC	4
5	NC	NC	6
7	NC	NC	8
9	NC	GND	10

3.4 Switches

3.4.1 Onboard Switches

For information on switch settings, see *Hardware Configuration* on page 35.

3.4.2 Reset/Abort Switch, P2

There is one push button switch located on the front panel that provides access to board reset and abort function.

Table 3-18 Front Panel Reset Switch Pinout, P2

Pin Number	Signal	
1	FP_SWITCH	
2	GND	

This is a multifunction switch. When the switch is pushed for one to three seconds, an abort is issued. When switch is pushed for five or more seconds, it is treated as reset function.

3.5 Front Panel LEDs

The CPCI-6200 provides two physical (three logical) LEDs on the front panel.

The blue LED indicates hot swap status, and is used during board insertion and extraction.

The second LED is a bi-color LED: green and yellow.

- The green LED is completely controlled by the user through the programmable register Front Panel LEDs Control and Status Register.
- The yellow LED indicates failure. The yellow LED lights up when any one or more of the following conditions occur:
 - HRESET is asserted.
 - +5 V supply failed (5V_PGOOD signal is low).
 - The system watchdog times out.
 - A user has set bit 0=0 in Front Panel LEDs Control and Status Register.

3.6 Status Indicators

The CPCI-6200 provides four front panel status indicators as well as multiple planar status indicators that are used for general board function status and Ethernet link/speed/activity status.

Table 3-19 CPCI-6200 Status Indicators

Function	Location	Label	Color	Description
Board Fail/User 1	Front panel	User / Fail	Orange	This indicator lights up during a hard reset and remains lit until software turns it off.
User 2	Front panel	User / Fail	Green	This LED is completely user programmable.
TSEC1 Link/Speed	Front panel	ENET 1 SPEED	Off	No link
			Yellow	10/100 BASE-T operation
			Green	1000 BASE-T operation
TSEC1 Activity	Front panel	ENET 1	Off	No activity
		ACT	Blinking Green	Activity is proportional to bandwidth utilization.
TSEC2 Link/Speed Front panel	ENET 2 SPEED	Off	No link	
			Yellow	10/100 BASE-T operation
			Green	1000 BASE-T operation
TSEC2 Activity	Front panel	ENET 2	Off	No activity
		ACT	Blinking Green	Activity is proportional to bandwidth utilization.
TSEC3 Link/Speed	Onboard	Yellow - D31	Off	No link
		Green - D32	Yellow	10/100 BASE-T operation
			Green	1000 BASE-T operation
TSEC3 Activity	Onboard	D28	Off	No activity
			Blinking Green	Activity is proportional to bandwidth utilization.

Table 3-19 CPCI-6200 Status Indicators (continued)

Function	Location	Label	Color	Description		
TSEC4 Link/Speed	Onboard	Yellow - D30	Off	No link		
			Green - D29	Green - D29	Yellow	10/100 BASE-T operation
			Green	1000 BASE-T operation		
TSEC4 Activity	Onboard	D27	Off	No activity		
			Blinking Green	Activity is proportional to bandwidth utilization.		

Controls, LEDs, and Connectors

Functional Description

4.1 Overview

The CPCI-6200 is based on Freescale's MPC8572 integrated processor. CPCI-6200 provides the following:

- A USB 2.0 interface
- Compact PCI interfaces
- Dual 32–64 bit/33–133 MHz PCI/PCI-X PMC sites
- 128 MB of NOR flash and up to 8 GB of NAND flash
- Up to 4 GB of DDR3 SDRAM
- Quad 10/100/1000 Ethernet and three serial ports

This board supports front and rear I/O. Access to rear I/O is available with a rear transition module (RTM).

The CPCI-6200 provides front panel access to one serial port with a mini DB-9 connector, two10/100/1000 Ethernet ports with two RJ-45 connectors, and one USB port with a type A connector.

The front panel includes a bi-color LED as User/Fail indicator, hot swap blue LED, and a reset/abort switch.

The RTM provides rear panel access to two serial ports (one with an RJ-45 connector) and two 10/100/1000 Ethernet ports with two RJ-45 connectors. The RTM also provides two planar connectors for one PMC I/O Module (PIM) with front I/O.

71

Figure 4-1 CPCI-6200 Block Diagram

4.2 MPC8572 Integrated Processor

TheCPCI-6200 supports the MPC8572 (dual e500 core) processor. The MPC8572 is an integrated processor with built-in DDR2/3 memory controllers (it supports two sides, up to four banks per side), PCI Express interfaces, four 10/100/1000 Ethernet fast ports, dual universal asynchronous receiver and transmitter (DUART), I²C controller, local bus interface, etc.

The processor is configured to operate at 1.33 or 1.5 GHz core frequency with up to 800 MHz data rate DDR3 memory bus.

4.3 I²C Serial Interface and Devices

The CPCI-6200 has several I²C buses, including two on the processor. The following sections describe each bus and the serial devices connected to each bus.

4.3.1 I²C Bus 0

Bus 0 is connected between the IPMI controller and J1 connector as required by PICMG 2.0. There is no onboard I^2C device on this bus.

4.3.2 I²C Bus 1

Bus 1 is connected between the IPMI controller and J2 connector as required by PICMG 2.0. There is no onboard I^2C device on this bus.

4.3.3 I²C Bus 2

Bus 2 is connected between the IPMI controller and PCI Express expansion connector. There is no onboard I²C device on this bus.

4.3.4 I²C Bus 3

Bus 3 is connected between the IPMI controller and the following onboard I²C devices:

- ADT7461 temperature sensor
- 64 KB user EEPROM
- 64 KB FRU/SDR EEPROM
- 64 KB SEL EEPROM used for system event log data

4.3.5 I²C Bus 4

Bus 4 is connected between the IPMI controller, processor, J5 connector and the following onboard I²C devices:

- 8 KB VPD EEPROM
- Two 64 KB EEPROM for user configuration data storage
- M41T83 Real Time Clock
- SPD EEPROMs of DDR3 (on DIMM modules)

The I²C interface is routed to the J5 connector to provide access to the serial EEPROM located on the rear transition module.

4.3.6 I²C Bus 5

Bus 5 is connected between the IPMI controller and processor providing intercommunication between the two. There is no onboard I²C device on this bus.

4.4 System Memory

The MPC8572 includes two memory controllers, which operate in asynchronous mode i.e., the DDR3 clocks are derived from a separate external clock oscillator.

This board supports one bank of memory on each controller, using either 1 GB or 2 GB DDR3 SODIMM. This provides memory configurations of 2 and 4 GB. This board also supports memory speeds of up to 400 MHz.

DDR3 memory is implemented using external SO-UDIMM, unbuffered, ECC-supported modules.

4.5 Timers

The timing functions are provided by eight 32-bit timers that are integrated into the processor. These timers are clocked by the real-time clock (RTC) input, which is driven by a 1 MHz clock. There are also four independent 32-bit timers in a programmable logic device (PLD). The clock source for the four 32-bit timers in the PLD is derived from 25 MHz. The timer prescaler register must be configured to generate the desired timer reference (default is 1 MHz).

4.6 Ethernet Interfaces

This board provides four 10/100/1000 full duplex Ethernet interfaces using the MPC8572 integrated Ethernet controllers. Two Broadcom BCM5482S PHYs are used. The Ethernet ports on the processor are configured to operate in reduced Gigabit media independence interface (RGMII) mode. Two Gigabit Ethernet interfaces are routed to the RJ-45 connectors on the face plate. These connectors have integrated LEDs. The other two Gigabit Ethernet interfaces are routed to J3 for rear I/O.

4.7 Local Bus Interface

This board uses the processor's local bus controller (LBC) for access to onboard flash memory and I/O registers. The LBC has programmable timing modes to support devices of different access times, as well as device widths of 8, 16, and 32 bits. The CPCI-6200 uses the LBC in general purpose chip select machine (GPCM) mode to interface to two physical banks of onboard flash, MRAM, and onboard 32-bit timers, along with control and status registers.

4.7.1 Flash Memory

This board provides 128 MB of soldered NOR flash memory. Two AMD Spansion MirrorBit 3.0 V devices are configured to operate in 16-bit mode to form a 32-bit flash bank. This flash bank is connected to LBC Chip Select 0, and it also acts as the boot bank.

CPCI-6200 also includes a second NAND flash bank that is connected to LBC Chip Select 1. This bank can be up to 16 GB. However, only 4 and 8 GB are supported at this time.

A hardware flash bank write protect switch is provided on the CPCI-6200 to enable write protection of the NOR flash. Regardless of the state of the software flash write protect bit in the NOR Flash Control/Status register, write protection is enabled when this switch is ON. When this switch is OFF, write protection is controlled by the state of the software flash write protect bits and can only be disabled by clearing this bit in the NOR FLASH Control/Status register. Note that the F_WE_HW bit reflects the state of the switch and is only software readable whereas the F_WP_SW bit supports both read and write operations.

CPCI-6200 provides a dual boot option. You can boot from one of two separate boot images in the boot flash bank called boot block A and boot block B. Boot blocks A and B are both 1 MB in size and are located at the top (highest address) 2 MB of the boot flash memory space. Boot block A is located at the highest 1 MB block, while boot block B is in the next highest 1 MB block. A flash boot block switch is used to select between block A and block B. When the switch is OFF, the flash memory map is normal and block A is selected. When the switch is ON, block B is mapped to the highest address. The MAP_SELECT bit in the Flash Control/Status register can disable the jumper and restore the memory map to the normal configuration where block A is selected.

For additional information, see NOR Flash Control and Status Register on page 146 and Local Bus Controller Memory Map on page 139.

Figure 4-2 Boot Block A

Figure 4-3 Boot Block B

4.7.2 MRAM (Magnetoresistive Random Access Memory)

This board includes a 512 KB MRAM device that is connected to the processor's local bus. This memory device provides a non-volatile memory that has unlimited writes, fast access, and long term data retention without power. The MRAM is organized as 256 K by 16.

4.7.3 Control and Timers PLD

The CPCI-6200 control and timers PLD resides on the local bus. This device provides the following functions:

- Local bus address latch
- Chip selects for flash banks and real time clock
- System control and status registers
- Four 32-bit tick timers
- Watchdog timer
- Real time clock 1 MHz reference clock

4.7.4 Serial COM Ports

This board supports four serial ports. Two serial ports, COM1 and COM2, are provided through the built-in DUART interface of the processor. The remaining two ports, COM3 and COM4, are provided by TL16C2550 on the local bus.

COM1 is routed to the front panel.

COM2 is for internal use only.

COM3 and COM4 are multiplexed through the serial MUX PLD and routed to the RTM through the J5 connector.

4.8 **DUART Interface**

The DUART interface provides two serial ports COM1 and COM2 to CPCI-6200. COM1 provides a front access asynchronous serial port interface using Serial Port 0 from the MPC8572 DUART. The TTL-level signals SIN, SOUT, RTS and CTS from Serial Port 0 are routed through onboard EIA-232 drivers and receivers to the mini DB-9 front panel connector.

COM2 provides an asynchronous serial port interface using Serial Port 1 from the MPC8572 DUART. COM2 is routed to the IPMI controller and is used internally to facilitate communication between processor and IPMI controller.

4.9 PCI Express Port

The processor is configured for two x4-lane PCI Express ports. PCIe 1 is connected to a six-port PEX8624 PCI Express switch. PCIe 2 is connected to a PCI Express expansion connector. Port 0 of PEX8624 is configured as an upstream port while the rest is configured as downstream ports. Each downstream port is connected to a PCI/PCI-X bridge. Each PCI Express lane is capable of supporting a data rate of 2.5 Gb/s.

Figure 4-4 PCI Express Bus Topology

4.10 PCI/PCI-X Bus

Four separate PCI/PCI-X bus segments are implemented. These segments are connected to the processor through PCI Express bridges and a PCI Express switch.

PCI-X bus 1 and PCI-X bus 2 connect to PMC site 1 and PMC site 2, respectively, using a Tsi384 bridge. Both buses are configured dynamically to operate in 25/33/66 MHz PCI or 100/133 MHz PCI-X mode depending on the PMC installed.

PCI bus 3 connects to the PCI bridge (PCI6466) using a Tsi384 bridge and is configured for 66 MHz PCI mode.

PCI bus 4 connects to the USB controller using a Tsi381 bridge and is configured for 33 MHz PCI mode.

4.10.1 PCI Mezzanine Card Sites (PCI-X Bus 1 and 2)

This board provides two PMC sites that support standard PMCs or PrPMCs. Each PMC site has a separate PCI Express to PCI-X bridge.

The PMC connectors are placed to support two single-width PMCs or one double-width PMC. Both PMC sites 1 and 2 support front PMC I/O and rear PMC I/O via the J3/J5 connectors. PMC 1 I/O is routed to the J3 connector while PMC 2 I/O is routed to J5 connector.

Only 3.3 V I/O PMC modules are supported.

4.10.2 PCI 6466 Universal Bridge (PCI Bus 3)

The Compact PCI interface for CPCI-6200 is provided by the PLX PCI6466 universal bridge.

The PCI6466 can operate in transparent and non-transparent mode, allowing CPCI-6200 to operate in the system slot or peripheral slot of a chassis. The primary side PCI bus operates with 64-bit, 66 MHz with PCI Express to PCI-X bridge. The secondary side (CPCI bus) can operate at 32-bit/33 MHz and 32–64 bit/66 MHz depending on the system configuration.

4.10.3 USB (PCI Bus 4)

The USB 2.0 host controller (NEC uPD720101) provides USB ports with integrated transceivers for connectivity with any USB-compliant device or hub. USB channel 1 is routed to a single USB connector located on the front panel. DC power to the front panel USB port is supplied via a USB power switch. This power switch provides soft-start, current limiting, over current detection, and power enable for port 1.

4.10.4 PCI Bus Frequency

PCI 1 and 2 buses can operate from 33 MHz to 133 MHz depending on the PMC. The following table shows the frequency selection and supported configurations. The switch setting is controlled by the user while the rest of the signals are set automatically by the hardware.

Table 4-1 PCI Buses 1 and 2 Frequency Requirements

	Switch S1, Position 5				
Mode and Bus Rate	1	PCI_PCIXCAP	PCI_SEL100	PCI_M66EN	Note
PCI 25 MHz	ON	GND	1	0	Supported
PCI 33 MHz	OFF	GND	0	0	Supported
PCI 50 MHz	ON	GND	1	1	Supported
PCI 66 MHz	OFF	GND	0	1	Supported
PCI-X 50 MHz	OFF	10K to ground	1	1	Not Supported
PCI-X 66 MHz	OFF	10K to ground	0	1	Not Supported
PCI-X 100 MHz	OFF	HIGH	1	1	Supported
PCI-X 133 MHz	ON	HIGH	0	1	Supported

^{1.} Switch S1, Position 5 selects PCI 1 bus frequency, while Switch S2, position 8 selects PCI 2 bus frequency.

4.11 Operation Modes

CPCI-6200 can be operated in three modes, with the PCI to PCI bridge (PCI6466) behaving differently in each mode.

4.11.1 System Controller Mode

In this mode, PCI6466 is configured in universal transparent mode.

The red lines indicate active signals, while the gray lines indicate inactive signals.

Figure 4-5 System Controller Mode

4.11.2 Peripheral Mode

In this mode, PCI6466 is configured in universal non-transparent mode.

The red lines indicate active signals, while the gray lines indicate inactive signals.

Figure 4-6 Peripheral Mode

4.11.3 Stand Alone Mode

In this mode, PCI6466 is configured in non-transparent mode.

The red lines indicate active signals, while the gray lines indicate inactive signals.

Figure 4-7 Stand Alone Mode

4.12 PCI Express Expansion

CPCI-6200 provides an additional module capability through the a 76-pin stacking connector. This connector is connected to the second PCI Express port on the processor.

4.13 System Interrupts

CPCI-6200 provides several sources of interrupts that are handled by the processor. The processor supports 12 external interrupts. Interrupts coming through PCI Express switch (PEX8624) are routed to the first four interrupts (IRQ0 – IRQ3). Interrupts coming through the PCI Express expansion interface are routed to the next four interrupts (IRQ4-IRQ7). The remaining processor interrupts (IRQ8-IRQ11) are connected to LBPC CPLD interrupt sources.

GIGE1_INT_N XMC INT N PHY 1 PCIE IRQ5 N Ехр. IRQ6_N GIGE3 INT N IRQ7 N CPU PHY 2 GIGE4_INT_N 8572 IRQ10 N COM3 INT COM 3/4 TL16C2550 COM4 INT LBPC PCI1 INTA N RTC_INT_N CPLD PCI1_INTB_N PCI1_INTC_N M41T83 Tsi384 Temp TEMP INT N Sensor IPMI INT N PCI2_INTA_N PCI2 INTB N PCI2 INTC N PMC Tsi384 PCI2_INTD_N Switch PEX8624 C_PLD_INT_N PCI4_INTA_N PCI4_INTB_N PCI 4 PCI4_INTC_N Tsi381 PB_P_INTA PB_S_INTA PCI C_PLD_INTA_N Bridge PCI6466 PCI3_INTA_N PCI3_INTB_N PCI3_INTC_N CPCI Tsi384 CPLD PCI3 INTO N PCI_T_INTB_N PCI_T_INTC_N PCI BP INTB N CMP J1/ 102B J2 PCI T INTO N PCI BP INTD N

Figure 4-8 Routing of Interrupt Sources

4.14 Clock Distribution

The clock function generates and distributes all of the clocks that are required for system operation.

The PCI Express clocks are generated using an eight-output differential clock driver. The PCI/PCI-X bus clocks are generated by the bridge chips from the PCI Express clock. Additional clocks required by individual devices are generated near the devices using individual oscillators.

Figure 4-9 CPCI-6200 Clock Distribution Diagram

4.15 MPC8572 System Clock

An oscillator drives the MPC8572 system clock. The following table details the clock frequencies for various processor configurations.

Table 4-2 System Clock Frequencies

Clock/CPU Configuration	1.33 GHz CPU Blade	1.5 GHz CPU Blade
SYSCLK (a)	66.67 MHz	100 MHz
CCB (Platform) (b)	533 MHz	600 MHz
Core 0/1 (c)	1.33 GHz	1.5 GHz
DDRCLK (d)	66.66 MHz	66.66 MHz
DDR3 clock to DIMM (e)	333 MHz	400 MHz
Notes	b:a = 8:1	b:a = 6:1
	c:b = 5:2	c:b = 5:2
	e:d = 10:1	e:d = 12:1
	(divide by 2 internally)	(divide by 2 internally)

4.16 Reset Control Logic

There are multiple sources of reset on the CPCI-6200. The following table shows the reset sources and their effect on board reset. The effect of each reset source depends on the board's current status such as LRO switch setting, board in system or peripheral slot, Watchdog Control Register value (WD_EN and SYS_RST), System Control Register value (SW_RST), CPCI Control and Status Register value (BP_RST_MASK), etc.

Table 4-3 Reset Sources

Reset Source	WD_EN	SYS_RST	SW_RST 1	PB_RST_MASK	LRO SW	System Slot	Function
Power-up or Hot	Χ	X	Х	Х	Х	YES	Note 1
Insertion	Х	Χ	Х	Х	ON	NO	Note 1
	Х	Х	Х	Х	OFF	NO	Note 2

Table 4-3 Reset Sources (continued)

Reset Source	WD_EN	SYS_RST	SW_RST	PB_RST_MASK	LRO SW	System Slot	Function
Abort/Reset	X	X	X	X	ON	YES	Note 1
Switch, RTC, IPMI, COP	X	X	X	X	OFF	YES	Note 1
HRESET	Х	Х	Х	X	ON	NO	Note 1
	Х	Х	Х	Х	OFF	NO	Note 2
Software Reset	0	Х	1	0	Х	YES	Note 1
	0	Х	1	1	Х	YES	Note 2
	0	Х	1	0	Х	NO	Note 1
	0	Х	1	1	Х	NO	Note 2
Watch Dog Local	1	0	0	Х	Х	Х	Note 2
Watch Dog System	1	1	0	Х	Х	Х	Note 1
CPU	Х	Х	Х	Х	Х	YES	Note 1
	Х	Х	Х	Х	ON	NO	Note 1
	Х	Х	Х	Х	OFF	NO	Note 2
COP SRESET	Х	Х	Х	Х	Х	Х	Note 3
COPTRESET	Х	Х	Х	Х	Х	Х	Note 4
HSC Reset	Х	Х	Х	Х	Х	Х	Note 5
IPMI Watch Dog	Х	Х	Х	Х	Х	Х	Note 6
CPCI Backplane Reset	Х	Х	Х	Х	Х	NO	Note 1

^{1.} Software reset (SW_RST) is generated whenthe software writes a valid pattern in the System Control Register.

Table 4-4 Reset Functions

Note	Note 1	Note 2	Note 3	Note 4	Note 5	Note 6
Reset Type	System Wide	Local Reset	CPU SRESET	CPU TRESET	HSC Reset	IPMI Reset
CPU, HRESET	YES	YES	NO	NO	NO	NO
CPU, SRESET	NO	NO	YES	NO	NO	NO

Table 4-4 Reset Functions (continued)

Note	Note 1	Note 2	Note 3	Note 4	Note 5	Note 6
Reset Type	System Wide	Local Reset	CPU SRESET	CPU TRESET	HSC Reset	IPMI Reset
CPU, TRESET	NO	NO	NO	YES	NO	NO
PCI / PCI-X	YES	YES	NO	NO	NO	NO
PHYs, COMs	YES	YES	NO	NO	NO	NO
USB, Flash, CPLDs	YES	YES	NO	NO	NO	NO
HSC Power	NO	NO	NO	NO	YES	NO
IPMI	NO	NO	NO	NO	NO	YES
PCI Bridge Primary	YES	YES	NO	NO	NO	NO
PCI Bridge Secondary	YES	NO	NO	NO	NO	NO
CPCI Backplane	YES	NO	NO	NO	NO	NO

4.16.1 Abort/Reset Switch

CPCI-6200 uses a single push button switch to provide both the abort and reset functions.

When the switch is depressed for less than three seconds, an abort interrupt is generated to the MPC8572 PIC.

If the switch is held for more than three seconds, a board level reset is generated. For more information, see Table 4-4 on page 88.

4.16.2 Reset Timing

 $Different \ devices \ have \ different \ reset \ timing \ requirements. \ CPCI-6200 \ uses \ a \ Reset \ Control \ PLD \ to \ meet \ their \ requirements.$

Table 4-5 Reset Timing Requirements

Device	Reset Signal	Source of Reset	Minimum Reset Time	Actual Reset Time
8572	CPU_HRESET_N ¹	Reset CPLD	100 μs	260 μs
	SRESET_N ²	Reset CPLD	45 ns	
PEX8624 ¹	HRESET_N	Reset CPLD	100 μs	125 μs
Tsi384 ¹	HRESET_N	Reset CPLD	1 μs	125 μs
Tsi384 ¹	HRESET_N	Reset CPLD	1 μs	125 μs
Tsi384 ¹	HRESET_N	Reset CPLD	1 μs	125 μs
Tsi384 ¹	HRESET_N	Reset CPLD	1 μs	125 μs
5482, PHY_1 ¹	HRESET_N	Reset CPLD	2 μs	125 μs
5482, PHY_2 ¹	HRESET_N	Reset CPLD	2 μs	125 μs
CPCI CPLD ¹	HRESET_N	Reset CPLD	1 μs	125 μs
SMUX CPLD ¹	HRESET_N	Reset CPLD	1 μs	125 μs
LBPC CPLD ¹	HRESET_N	Reset CPLD	1 μs	125 μs
Reset CPLD	5V_PGOOD	MAX811M		200 ms
	3.3V_PGOOD	MAX811S		225 ms
LT1646, HSC	HSC_RST_REQ_N	Reset CPLD		
PCI-E Conn ¹	HRESET_N	Reset CPLD		125 μs
TL16C2550 ¹	HRESET	Reset CPLD	1 μs	125 μs
JTAG Router	3.3V_PGOOD	MAX811S		225 ms
PCI6466	P_PB_RST_N	Reset CPLD		1.35 ms
	S_PB_RST_N	Reset CPLD		1.35 ms
PMC_1 ²	PCI1_RST_N	Tsi384_1	1 ms	1.35 ms
PMC_2 ³	PCI2_RST_N	Tsi384_2	1 ms	1.35 ms

Table 4-5 Reset Timing Requirements (continued)

Device	Reset Signal	Source of Reset	Minimum Reset Time	Actual Reset Time
USB ³	PCI4_RST_N	Tsi381	1 ms	1.35 ms
CPCI Backplane Reset ³	PCI_BP_RST_N	CPCI CPLD	1 ms	1.35 ms
Flash A ¹	FRESET_N	Reset CPLD	500 ns	125 μs

^{1.} With MotLoad reset command

4.17 RTC Battery

The CPCI-6200 provides onboard battery clips for holding a coin cell type battery. The clips allow for the quick and easy replacement of a 3 V button cell lithium battery (CR2430), which provides back-up power to the onboard M41T83 real-time clock (RTC). A battery switching circuit that is built into the RTC provides automatic switching between the 3.3 V and battery voltages. The battery is capable of providing backup power to the RTC for up to 12 years at nominal temperature.

For information on replacing the battery, see *Replacing the Battery* on page 179.

4.18 IPMI Controller

The CPCI-6200 uses the Renesas 16-bit microcontroller H8S/2166 as IPMI controller. The controller has the following features:

- 115 I/O ports
- Eight-channel analog-to-digital converter
- Six I²C bus
- Three serial ports
- 512 KB flash memory
- 40 KB SRAM

^{2.} PCI Specification

The controller operates at 32 MHz clock frequency derived from 7.37 MHz external oscillator.

An external SRAM is also added to increase the size of total SRAM available to IPMI firmware. IPMI firmware resides in internal flash memory. A serial port and I²C bus is connected between IPMI controller and processor for inter-communication.

You can set the IPMI controller to function as a baseboard management controller (BMC) or a peripheral management (PM) controller. The mode can be selected by a switch provided on the board. For more information on setting the IPMI controller, see *IPMI Configuration Switch*, *S2* on page 38.

Various board signals are connected to the controller for managing and maintaining system event log functions.

4.18.1 Programming the IPMI Firmware

The CPCI-6200 provides a 4-pin planar header (P3) for programming IPMI firmware.

The IPMI firmware is programmed at the factory before the board is shipped. This section is included to explain how the firmware can be upgraded in the field if needed.

- 1. Set the switch S2 positions 2 and 3 to ON.
 The IPMI controller enters programming mode. For more information, see IPMI Configuration Switch, S2 on page 38.
- **2.** Connect custom-made RS-232 cable to the computer and 4-pin planar header. For more information, see *IPMI Debug and FW Programming Header, P3* on page 64. For information on custom RS-232 cable, contact Emerson.
- **3.** Download the firmware from the computer to the IPMI controller.

4.19 Programmable Devices

The CPCI-6200 uses many programmable devices that include Boot Flash, CPLDs and SROMs. The following table shows the all programmable devices, their functions and programming methods.

Table 4-6 Programming Devices

Reference Designator	Description	Function	Pgm Method	Remark
U26	EEPROM, 16KX8	PLX8624 Configuration	N/A	Not Used
U27	EEPROM,16KX8	Tsi384_1 Configuration	N/A	Not Used
U28	EEPROM,16KX8	Tsi384_2 Configuration	N/A	Not Used
U30	EEPROM, 16KX8	Tsi384_3 Configuration	N/A	Not Used
U31	EEPROM, 16KX8	Tsi381 Configuration	N/A	Not Used
U36	EEPROM, 2 KB	PCI6466 Configuration	MotLoad	
U43	CPLD, LC4128V, 100P TQFP	CPCI Control PLD	ICT	
U69	CPLD, LC4064V, 48P TQFP	Serial Mux PLD	ICT	
U5	CPLD 2210, BGA256	Local Bus Control PLD	ICT	
U39	NOR FLASH, 512 MB	BOOT Flash	MotLoad	
U57	NOR FLASH, 512 MB	BOOT Flash	MotLoad	
U34	NAND FLASH, 4GX8, SLC	Customer Use	Customer Software	For customer use only
U42	NAND FLASH, 4GX8, SLC,	Customer Use	Customer Software	May not be populated on some boards
U67	CPLD, LC4128V, 100P TQFP	Reset Control PLD	ICT	
U49	EEPROM, 64K, SOIC-8	CPCI-6200 VPD	ICT	
U47	EEPROM 512K, 8P SOIC	Customer Use	Customer Software	For customer use only
U48	EEPROM 512K, 8P SOIC	Customer Use	Customer Software	For customer use only
U74	EEPROM 512K, 8P SOIC	IPMI, Customer Use	Customer Software	For customer use only

Table 4-6 Programming Devices (continued)

Reference Designator	Description	Function	Pgm Method	Remark
U84	EEPROM 512K, 8P SOIC	IPMI, SEL	Customer Software	For customer use only
U12	Microcontroller, TQFP144	IPMI Controller	ICT or through P3 header	
U83	EEPROM 512K, 8P SOIC	IPMI FRU and SDR	ICT or through P3 header	0 to 1800 is address for FRU data; above 1800 is SDR data

4.19.1 Local Bus Control CPLD

This connects to the local bus controller of the processor. It provides access to boot flash, NAND flash, MRAM, DUART and board registers. It also provides one watchdog timer, four tick timers, and collects interrupts from various sources and routes them to processor. It operates on a 25 MHz clock frequency.

4.19.2 Reset CPLD

This controls the reset function of the board. It generates reset for various board components with varying timings. It also enables various power supplies. For more information, see *Reset Control Logic*.

4.19.3 CPCI Control CPLD

This complex programmable logic device (CPLD) configures the PLX PCI bridge device for various operating modes. It controls PCI reset on back plane, enables CPCI signal terminations, collects interrupts from CPCI sources (in system slot) and routes them to the local bus control CPLD. It also controls the hot swap LED. For more information, see *Operation Modes*.

4.19.4 Serial Multiplexer CPLD

This multiplexes the control lines of two serial port interfaces and routes them to the RTM through the backplane. This allows fewer signals to be routed to the RTM thereby conserving the total pin count requirement on J5 connector.

5.1 Overview

This chapter describes the basic features of the MOTLoad firmware product. It is designed by Emerson as the next generation initialization, debugger and diagnostic tool for high-performance embedded board products.

In addition to an overview of the product, this chapter includes a list of standard MOTLoad commands and the default Compact PCI settings that you can change, as allowed by the firmware.

5.2 MOTLoad Description

The MOTLoad firmware package serves as a board power-up and initialization package, as well as a vehicle from which user applications can be booted. A secondary function of the MOTLoad firmware is to serve, in some respects, as a test suite that provides individual tests for certain devices.

MOTLoad is controlled through an easy-to-use, UNIX-like, command line interface. The MOTLoad software package is similar to many end-user applications designed for the embedded market, such as the real time operating systems currently available.

For more information, see the MOTLoad Firmware Package User's Manual listed in Related Documentation on page 181.

5.3 MOTLoad Implementation and Memory Requirements

The implementation of the CPCI-6200 and its memory requirements are product specific. The CPCI-6200 is offered with a wide range of memory (for example, DRAM, flash). Typically, the smallest amount of onboard DRAM that an Emerson SBC has is 32 MB. Each supported Emerson product line has its own unique CPCI-6200 binary image(s). Currently the largest CPCI-6200 compressed image is less than 1 MB in size.

5.4 MOTLoad Commands

CPCI-6200 supports two types of commands (applications): utilities and tests. Both types of commands are invoked from the CPCI-6200 command line in a similar fashion. Beyond that, CPCI-6200 utilities and CPCI-6200 tests are distinctly different.

5.5 MOTLoad Utility Applications

The definition of a MOTLoad utility application is very broad. Simply stated, it is considered a MOTLoad command if it is not a MOTLoad test. Typically, MOTLoad utility applications are applications that aid the user in some way (that is, they do something useful). From the perspective of MOTLoad, examples of utility applications are: configuration, data/status displays, data manipulation, help routines, data/status monitors, etc.

Operationally, MOTLoad utility applications differ from MOTLoad test applications in several ways:

- Only one utility application operates at any given time (that is, multiple utility applications cannot be executing concurrently).
- Utility applications may interact with the user. Most test applications do not.

5.6 MOTLoad Tests

A MOTLoad test application determines whether or not the hardware meets a given standard. Test applications are validation tests. Validation is conformance to a specification. Most MOTLoad tests are designed to directly validate the functionality of a specific single board computer (SBC) subsystem or component. These tests validate the operation of such SBC modules as: dynamic memory, external cache, NVRAM, real time clock, etc.

All MOTLoad tests are designed to validate functionality with minimal user interaction. Once launched, most MOTLoad tests operate automatically without any user interaction. There are a few tests where the functionality being validated requires user interaction (that is, switch tests, interactive plug-in hardware modules, etc.). Most MOTLoad test results (errordata/status-data) are logged, not printed. All MOTLoad tests/commands have complete and separate descriptions. For more information on these tests/commands, see the MOTLoad Firmware Package User's Manual.

All devices that are available to MOTLoad for validation/verification testing are represented by a unique device path string. Most MOTLoad tests require the operator to specify a test device at the MOTLoad command line when invoking the test.

A listing of all device path strings can be displayed through the **devshow** command. If an SBC device does not have a device path string, it is not supported by MOTLoad and cannot be directly tested. There are a few exceptions to the device path string requirement, like testing RAM, which is not considered a true device and can be directly tested without a device path string. Refer to the **devshow** command description page in the MOTLoad Firmware Package User's Manual.

Most MOTLoad tests can be organized to execute as a group of related tests (a test suite) through the use of the testSuite command. The expert operator can customize their testing by defining and creating a custom testSuite(s). The list of built-in and user-defined MOTLoad testSuites, and their test contents, can be obtained by entering testSuite - dtestSuite at the MOTLoad prompt. All testSuites that are included as part of a product specific MOTLoad firmware package are product specific. For more information, refer to the command description page in the MOTLoad Firmware Package User's Manual.

Test results and test status are obtained through the testStatus, errorDisplay and taskActive commands. For more information, refer to the appropriate command description page in the MOTLoad Firmware Package User's Manual.

5.7 Using MOTLoad

Interaction with MOTLoad is performed via a command line interface through a serial port on the SBC, which is connected to an X-terminal or other terminal emulator (for example, Window's Hypercomm). The default MOTLoad serial port settings are: 9600 baud, 8 bits, no parity.

5.7.1 Command Line Interface

The MOTLoad command line interface is similar to a UNIX command line shell interface. Commands are initiated by entering a valid MOTLoad command (a text string) at the MOTLoad command line prompt and pressing the carriage-return key to signify the end of input. MOTLoad then performs the specified action. An example of a MOTLoad command line prompt is shown below. The MOTLoad prompt changes according to what product it is used on (for example, HXEB100, CPCI6200, MVME5500).

Example:

CPCI6200>

If an invalid MOTLoad command is entered at the MOTLoad command line prompt, MOTLoad displays a message that the command was not found.

Example:

```
CPCI6200> mytest
"mytest" not found
CPCI6200>
```

If the user enters a partial MOTLoad command string that can be resolved to a unique valid MOTLoad command and presses the carriage-return key, the command will be executed as if the entire command string had been entered. This feature is a user-input shortcut that minimizes the required amount of command line input. MOTLoad is an ever changing firmware package, so user-input shortcuts may change as command additions are made.

Example:

```
CPCI6200> version
Copyright(C)2008-2009, Emerson Network Power-Embedded Computing, Inc.
All Rights Reserved
Copyright Motorola Inc. 1999-2007, All Rights Reserved
MOTLoad RTOS Version 2.0, PAL Version 1.1 RM02
Fri Sep 11 09:20:17 MST 2009
```

Example:

```
CPCI6200> ver
Copyright(C)2008-2009, Emerson Network Power-Embedded Computing, Inc.
All Rights Reserved
Copyright Motorola Inc. 1999-2007, All Rights Reserved
MOTLoad RTOS Version 2.0, PAL Version 1.1 RM02
Fri Sep 11 09:20:17 MST 2009
```

If the partial command string cannot be resolved to a single unique command, MOTLoad will inform the user that the command was ambiguous.

Example:

```
CPCI6200> te "te" ambiguous CPCI6200>
```

5.7.2 Command Line Help

Each MOTLoad firmware package has an extensive, product-specific help facility that can be accessed through the help command. The user can enter **help** at the MOTLoad command line to display a complete listing of all available tests and utilities.

Example

```
CPCI6200>help
```

For help with a specific test or utility the user can enter the following at the MOTLoad prompt:

help <command_name>

The help command also supports a limited form of pattern matching. Refer to the help command page.

Example

```
CPCI6200>help testRam
Usage: testRam [-aPh] [-bPh] [-iPd] [-nPh] [-tPd] [-v]
Description: RAM Test [Directory]
Argument/Option Description
-a Ph: Address to Start (Default = Dynamic Allocation)
-b Ph: Block Size (Default = 16KB)
-i Pd: Iterations (Default = 1)
-n Ph: Number of Bytes (Default = 1MB)
-t Ph: Time Delay Between Blocks in OS Ticks (Default = 1)
-v O : Verbose Output
CPCI6200>
```

5.7.3 Command Line Rules

There are a few things to remember when entering a MOTLoad command:

- Multiple commands are permitted on a single command line, provided they are separated by a single semicolon(";").
- Spaces separate the various fields on the command line (command/arguments/options).

- The argument/option identifier character is always preceded by a hyphen ("-") character.
- Options are identified by a single character.
- Option arguments immediately follow (no spaces) the option.
- All commands, command options, device tree strings, etc., are case sensitive.

Example:

CPCI6200> flashProgram -d/dev/flash0 -n00100000

For more information on MOTLoad operation and function, refer to the MOTLoad Firmware Package User's Manual.

5.8 MOTLoad Command List

The following table provides a list of all current MOTLoad commands. Products supported by MOTLoad may or may not employ the full command set. Typing help at the MOTLoad command prompt displays all commands supported by MOTLoad for a given product.

Table 5-1 MOTLoad Commands

Command	Description
as	One-Line Instruction Assembler
bcb bch bcw	Block Compare Byte/Halfword/Word
bdTempShow	Display Current Board Temperature
bfb bfh bfw	Block Fill Byte/Halfword/Word
blkCp	Block Copy
blkFmt	Block Format
blkRd	Block Read
blkShow	Block Show Device Configuration Data
blkVe	Block Verify
blkWr	Block Write
bmb bmh bmw	Block Move Byte/Halfword/Word
br	Assign/Delete/Display User-Program Break-Points

Table 5-1 MOTLoad Commands (continued)

Command	Description
bsb bsh bsw	Block Search Byte/Halfword/Word
bvb bvh bvw	Block Verify Byte/Halfword/Word
cdDir	ISO9660 File System Directory Listing
cdGet	ISO9660 File System File Load
clear	Clear the Specified Status/History Table(s)
cm	Turns on Concurrent Mode
csb	Checksum Byte/Halfword/Word
, csh	
CSW	
devShow	Display (Show) Device/Node Table
diskBoot	Disk Boot (Direct-Access Mass-Storage Device)
downLoad	Down Load S-Record from Host
ds	One-Line Instruction Disassembler
echo	Echo a Line of Text
elfLoader	ELF Object File Loader
errorDisplay	Display the Contents of the Test Error Status Table
eval	Evaluate Expression
execProgram	Execute Program
fatDir	FAT File System Directory Listing
fatGet	FAT File System File Load
fdShow	Display (Show) File Discriptor
flashProgram	Flash Memory Program
flashShow	Display Flash Memory Device Configuration Data
gd	Go Execute User-Program Direct (Ignore Break-Points)
gevDelete	Global Environment Variable Delete

Table 5-1 MOTLoad Commands (continued)

Command	Description	
gevDump	Global Environment Variable(s) Dump (NVRAM Header + Data)	
gevEdit	Global Environment Variable Edit	
gevlnit	Global Environment Variable Area Initialize (NVRAM Header)	
gevList	Global Environment Variable Labels (Names) Listing	
gevShow	Global Environment Variable Show	
gn	Go Execute User-Program to Next Instruction	
go	Go Execute User-Program	
gt	Go Execute User-Program to Temporary Break-Point	
hbd	Display History Buffer	
hbx	Execute History Buffer Entry	
help	Display Command/Test Help Strings	
I2CacheShow	Display state of L2 Cache and L2CR register contents	
I3CacheShow	Display state of L3 Cache and L3CR register contents	
mdb mdh mdw	Memory Display Bytes/Halfwords/Words	
memShow	Display Memory Allocation	
mmb mmh mmw	Memory Modify Bytes/Halfwords/Words	
mpuFork	Execute program from idle processor	
mpuShow	Display multi-processor control structure	
mpuSwitch	Resets board switching master MPU	
netBoot	Network Boot (BOOT/TFTP)	
netShow	Display Network Interface Configuration Data	
netShut	Disable (Shutdown) Network Interface	
netStats	Display Network Interface Statistics Data	
noCm	Turns off Concurrent Mode	
pciDataRd	Read PCI Device Configuration Header Register	
pciDataWr	Write PCI Device Configuration Header Register	

Table 5-1 MOTLoad Commands (continued)

Command	Description
pciDump	Dump PCI Device Configuration Header Register
pciShow	Display PCI Device Configuration Header Register
pciSpace	Display PCI Device Address Space Allocation
ping	Ping Network Host
portSet	Port Set
portShow	Display Port Device Configuration Data
rd	User Program Register Display
reset	Reset System
rs	User Program Register Set
set	Set Date and Time
sromRead	SROM Read
sromWrite	SROM Write
sta	Symbol Table Attach
stl	Symbol Table Lookup
stop	Stop Date and Time (Power-Save Mode)
taskActive	Display the Contents of the Active Task Table
tc	Trace (Single-Step) User Program
td	Trace (Single-Step) User Program to Address
testDisk	Test Disk
testEnetPtP	Ethernet Point-to-Point
testNvramRd	NVRAM Read
testNvramRdWr	NVRAM Read/Write (Destructive)
testRam	RAM Test (Directory)
testRamAddr	RAM Addressing
testRamAlt	RAM Alternating
testRamBitToggle	RAM Bit Toggle
testRamBounce	RAM Bounce

Table 5-1 MOTLoad Commands (continued)

Command	Description
testRamCodeCopy	RAM Code Copy and Execute
testRamEccMonitor	Monitor for ECC Errors
testRamMarch	RAM March
testRamPatterns	RAM Patterns
testRamPerm	RAM Permutations
testRamQuick	RAM Quick
testRamRandom	RAM Random Data Patterns
testRtcAlarm	RTC Alarm
testRtcReset	RTC Reset
testRtcRollOver	RTC Rollover
testRtcTick	RTC Tick
testSerialExtLoop	Serial External Loopback
testSerialIntLoop	Serial Internal Loopback
testStatus	Display the Contents of the Test Status Table
testSuite	Execute Test Suite
testSuiteMake	Make (Create) Test Suite
testThermoOp	Thermometer Temperature Limit Operational Test
testThermoQ	Thermometer Temperature Limit Quick Test
testThermoRange	Test That Board Temperature Is Within Range
testWatchdogTimer	Tests the accuracy of the watchdog timer device.
tftpGet	TFTP Get
tftpPut	TFTP Put
time	Display Date and Time
transparentMode	Transparent Mode (Connect to Host)
tsShow	Display Task Status
upLoad	Up Load Binary-Data from Target
version	Display Version String(s)

Table 5-1 MOTLoad Commands (continued)

Command	Description
vmeCfg	Manages user specified VME configuration parameters
vpdDisplay	VPD Display
vpdEdit	VPD Edit
waitProbe	Wait for I/O Probe to Complete

Note:

Due to the difference in endianness of the board, the sromWrite command automatically swaps bytes as these are written into memory. The sromRead command accesses the actual memory contents and does not swap bytes as it reads. Therefore, the memory that is read through sromRead will look different from the source used by sromWrite.

For example, if the data being written start with this sequence:

15 16 1E 00 10 B5 65 40 00 CB 06 04 40 01 06 09

Then, the data retrieved through the sromRead command will appear as:

16 15 00 1E B5 10 40 65 CB 00 04 06 01 40 09 06

This behavior is normal for these commands on the CPCI-6200.

MOTLoad Firmware

6.1 Standard IPMI Commands

The IPMC is fully compliant to the Intelligent Platform Management Interface v.1.5. This section provides information on which IPMI commands are supported.

6.1.1 Global IPMI Commands

The IPMC supports the following global IPMI commands.

Table 6-1 Supported Global IPMI Commands

Command	NetFn (Request/Response)	CMD	Comments
Get Device ID	0x06/0x07	0x01	-
Master Write-Read	0x06/0x07	0x52	Only for accessing private I ² C buses.
Cold Reset	0x06/0x07	0x02	-
Get Selftest Results	0x06/0x07	0x04	-
GetDeviceGUID	0x06/0x07	0x08	-

6.1.2 Watchdog Commands

The watchdog commands are supported by boards providing a system interface and a watchdog type 2 sensor.

Table 6-2 Supported Watchdog Commands

Command	NetFn (Request/Response)	CMD
Reset Watchdog Timer	0x06/0x07	0x22
Set Watchdog Timer	0x06/0x07	0x24
Get Watchdog Timer	0x06/0x07	0x25

6.1.3 IPMI Messaging Commands

The IPMC supports the following IPMI messaging commands.

Table 6-3 Supported Watchdog Commands

Command	NetFn (Request/Response)	CMD
Set BMC Global Enables	0x06/0x07	0x2E
Get BMC Global Enables	0x06/0x07	0x2F
Clear Message Flags	0x06/0x07	0x30
Get Message Flags	0x06/0x07	0x31
Enable Message Channel Receive	0x06/0x07	0x32
Get Message	0x06/0x07	0x33
Send Message	0x06/0x07	0x34
Read Event Message Buffer	0x06/0x07	0x35
Get BT Interface Capabilities	0x06/0x07	0x36

6.1.4 SEL Device Commands

The IPMC supports the following SEL device commands.

Table 6-4 Supported SEL Device Commands

Command	NetFn (Request/Response)	CMD
Get SEL Info	0x0A/0x0B	0x40
Get SEL Allocation Info	0x0A/0x0B	0x41
Reserve SEL	0x0A/0x0B	0x42
Get SEL Entry	0x0A/0x0B	0x43
Add SEL Entry	0x0A/0x0B	0x44
Clear SEL	0x0A/0x0B	0x47
Get SEL Time	0x0A/0x0B	0x48
Set SEL Time	0x0A/0x0B	0x49

6.1.5 SDR Repository Commands

The IPMC supports the following SDR repository commands.

Table 6-5 Supported SDR Repository Commands

Command	NetFn (Request/Response)	CMD
Get SDR Repository Info	0x0A/0x0B	0x20
Get SDR Repository Allocation Info	0x0A/0x0B	0x21
Reserve SDR Repository	0x0A/0x0B	0x22
Get SDR	0x0A/0x0B	0x23
Partial Add SDR	0x0A/0x0B	0x25
Clear SDR Repository	0x0A/0x0B	0x27
Get SDR Repository Time	0x0A/0x0B	0x28
Set SDR Repository Time	0x0A/0x0B	0x29

6.1.6 FRU Inventory Commands

The IPMC supports the following FRU inventory commands.

Table 6-6 Supported FRU Inventory Commands

Command	NetFn (Request/Response)	CMD	Comments
Get FRU Inventory Area Info	0x0A/0x0B	0x10	-
Read FRU Data	0x0A/0x0B	0x11	-
Write FRU Data	0x0A/0x0B	0x12	This command returns the error code 0x80 if you attempt to write to the common header, Product Info Area, Board Info Area, Chassis Info Area, Board Connectivity record, Board Address table, Board Power Distribution Record of FRU ID 0.

6.1.7 Sensor Device Commands

The IPMC supports the following sensor device commands.

Table 6-7 Supported Sensor Device Commands

Command	NetFn (Request/Response)	CMD	Comments
Get Device SDR Info	0x04/0x05	0x20	-
Get Device SDR	0x04/0x05	0x21	-
Reserve Device SDR Repository	0x04/0x05	0x22	-
Get Sensor Reading Factors	0x04/0x05	0x23	-
Set Sensor Hysteresis	0x04/0x05	0x24	-
Get Sensor Hysteresis	0x04/0x05	0x25	-
Set Sensor Threshold	0x04/0x05	0x26	Most of the threshold-based sensors have fixed thresholds. Before using this command, check whether threshold setting is supported by using the Get Device SDR command.
Get Sensor Threshold	0x04/0x05	0x27	-
Set Sensor Event Enable	0x04/0x05	0x28	-
Get Sensor Event Enable	0x04/0x05	0x29	-
Rearm Sensor Events	0x04/0x05	0x2A	-
Get Sensor Reading	0x04/0x05	0x2D	-
Set Sensor Type		0x2E	
Get Sensor Type	0x04/0x05	0x2F	-
Set Event Receiver	0x04/0x05	0x00	-
Get Event receiver	0x04/0x05	0x01	-
Platform Event	0x04/0x05	0x02	-

6.1.8 Chassis Device Commands

The IPMC supports the following chassis device commands.

Table 6-8 Supported Chassis Device Commands

Command	NetFn (Request/Response)	CMD
Get Chassis Capabilities	0x00/0x01	0x00
Get Chassis Status	0x00/0x01	0x01
Chassis Control	0x00/0x01	0x02
Get System Restart Cause	0x00/0x01	0x07
Set System Boot Options	0x00/0x01	0x08
Get System Boot Options	0x00/0x01	0x09

6.2 PICMG 2.9 Commands

The IPMC supports the following CompactPCI commands as defined in the PICMG 2.9 specification.

Table 6-9 Supported PICMG 2.9 Commands

Command	NetFn (Request/Response)	CMD
Get PICMG Properties	0x2C/0x2D	0x00
Get Address Info	0x2C/0x2D	0x01
Get Shelf Address Info	0x2C/0x2D	0x02

6.3 Emerson Specific Commands

The Emerson IPMC supports several commands which are not defined in the IPMI or PICMG 2.9 specification but are introduced by Emerson: Firmware upgrade and status change commands.

- Before sending any of these commands, the shelf management software must check whether the receiving IPMI controller is an Emerson IPMI controller, that means IPMC, by using the IPMI command 'Get Device ID'. Sending Emerson specific commands to IPMI controllers which are not delivered by Emerson will lead to no or undefined results.
- Implementing any of the Emerson specific IPMI commands means that the software is not portable to other IPMI controllers that do not use the Emerson IPMC firmware.
- Make sure to use these commands with care. For example, it would be possible to use the BMC/PM Change Role command to set the IPMC to active, even though the system already has an active BMC. As a result, the two IPMCs set as active BMC might not work or even conflict with each other. If such a mistake happens, reset the IPMC and correct the software.

6.3.1 Firmware Upgrade Commands

Emerson offers three commands to upgrade the IPMC firmware which can be used to write an upgrade function:

- Start Firmware Upgrade
- Continue Firmware Upgrade
- Finish Firmware Upgrade

The firmware upgrade session has to start with the Start Firmware Upgrade command which makes the target IPMC enter the firmware upgrade mode. The firmware image is sent to the target IPMC in several parts with multiple Continue Firmware Upgrade commands. Each part can have the size of an IPMB message length. When the whole firmware image is on the target IPMC, the process has to be finished with the Finish Firmware Upgrade command. During the firmware upgrade mode, the Emerson IPMC may only execute the Continue Firmware Upgrade and Get Device ID commands.

The following table shows the firmware upgrade commands together with their network function and command code.

Table 6-10 Firmware Upgrade Commands

Command Name	NetFn (Request/Response)	CMD	Description
Start Firmware Upgrade	0x08/0x09	0x1B	See Start Firmware Upgrade on page 113
Continue Firmware Upgrade	0x08/0x09	0x1C	See Continue Firmware Upgrade on page 114
Finish Firmware Upgrade	0x08/0x09	0x1E	See Finish Firmware Upgrade on page 114

6.3.1.1 Start Firmware Upgrade

The Start Firmware Upgrade command puts the target IPMC into firmware upgrade mode. The command must be sent twice. Only the Firmware Upgrade commands and the Get Device ID command are supported in firmware upgrade mode.

6.3.1.1.1 Request Data

No request data needs to be provided for this command.

6.3.1.1.2 Response Data

The following table lists the response data applicable to the Start Firmware Upgrade command.

Table 6-11 Response Data of Start Firmware Upgrade

Byte	Data Field
1	Completion Code
	0x00: Command executed successfully and target IPMC entered firmware upgrade mode
	0x010xFF: Error, that means IPMC cannot enter into firmware upgrade mode

6.3.1.2 Continue Firmware Upgrade

The Continue Firmware Upgrade command writes a part of the firmware image to the target IPMC. It also checks file integrity and makes the target IPMC leave the firmware upgrade mode if an error occurs. If an error occurs, the whole firmware upgrade sequence must be repeated beginning from the Start Firmware Upgrade command and the whole firmware upgrade image must be retransmitted.

6.3.1.2.1 Request Data

The following table lists the request data applicable to the Continue Firmware Upgrade command.

Table 6-12 Request Data of Continue Firmware Upgrade

Byte	Data Field	
123	Firmware content to be sent to the target IPMC.	
	The firmware image is a Motorola SREC file.	
	The whole message length is defined by the maximum IPMB message length.	

6.3.1.2.2 Response Data

The following table lists the response data of the Continue Firmware Upgrade command.

Table 6-13 Response Data of Continue Firmware Upgrade

Byte	Data Field
1	Completion Code
	0x00: Command executed successfully
	0x10xFF: Error, that means the IPMC left the firmware upgrade mode

6.3.1.3 Finish Firmware Upgrade

The Finish Firmware Upgrade command makes the target IPMC leave the firmware upgrade mode.

6.3.1.3.1 Request Data

The following table lists the request data applicable to the Finish Firmware Upgrade command.

Table 6-14 Request Data of Finish Firmware Upgrade

Byte	Data Field
123	None

6.3.1.3.2 Response Data

The following table lists the response data applicable to the Finish Firmware Upgrade command.

Table 6-15 Response Data of Finish Firmware Upgrade

Byte	Data Field
1	Completion Code
	0: Command executed successfully
	0x010xFF: Error

6.3.2 OEM Commands

The following table shows the OEM commands together with their network function and command code.

Table 6-16 OEM Commands

Command Name	NetFn (Request/Response)	CMD	Description
BMC/PM Change Role	0x30	0x03	See BMC/PM Change Role on page 116
Get Geographical Address	0x30	0x04	See Get Geographical Address on page 116

6.3.2.1 BMC/PM Change Role

The BMC/PM Change Role command switches between the role of a BMC/PM. As a result its I2C addresses on IPMB0 and IPMB1 are configured to 0x20. Any message addressed to the system management software are passed to the host interface. The system management software must ensure that only one BMC is in the system. SDR will be updated to reflect I2C address changes.

The role of BMC/PM can also be defined via the onboard DIP switches. For a description refer to the Configuring the Board section.

6.3.2.1.1 Request Data

The following table lists the request data applicable to the BMC/PM Change Role command.

Table 6-17 Request Data of BMC/PM Change Role

Byte	Data Field
1	Role:
	0: BMC
	1: reserved
	2: PM

6.3.2.1.2 Response Data

The following table lists the response data applicable to the BMC/PM Change Role command.

Table 6-18 Response Data of BMC/PM Change Role

Byte	Data Field
1	Completion code (IPMI)

6.3.2.2 Get Geographical Address

This command is used to get the geographical address of the slot which contains the management controller.

6.3.2.2.1 Request Data

The following table lists the request data applicable to the Get Geographical Address command.

Table 6-19 Request Data of Get Geographical Address

Byte	Data Field
-	-

6.3.2.2.2 Response Data

The following table lists the response data applicable to the Get Geographical Address command.

Table 6-20 Response Data of Get Geographical Address

Byte	Data Field
1	Completion code (IPMI)
2	Geographical address
3	I2C address of the management controller on the IPMB(s) bus(ses) in its current role
4	I2C address of the management controller on the IPMB(s) bus(ses) in PM role

If the management controller acts as PM, byte 3 and 4 are equal. If the management controller acts as BMC, byte 3 is 0x20 and byte 4 is the I2C address it will have if acting as PM. This last fixed information is needed by system management software to identify the management controller.

6.4 FRU Information

The CPCI-6200 provides the following FRU information in FRU ID 0.

Table 6-21 FRU Information CPCI-6200

Area	Description	Value	Access
Internal use area	Not used		
Board info area	Manufacturing date/time	According to Intel's Platform Management FRU information Storage Definition v1.0	г
	Board manufacturer	Emerson Network Power, Embedded Computing	г
	Board product name	CPCI-6200	r
	Board serial number	Defined by Emerson	r
	Board part number	Defined by Emerson	г
Product info area	Product manufacturer	Emerson Network Power, Embedded Computing	Г
	Product name	CPCI-6200	r
	Product serial number	Defined by Emerson	r
	Product part number	Defined by Emerson	r
Multi record area	User Info Area	This section is not applicable to CPCI-6200.	-
	Custom usage	Min. 256 Byte available	r/w

6.5 Sensor Description

The CPCI-6200 provides the following sensors:

Table 6-22 IPMI Sensors Overview

Sensor Name	Sensor Type	Sensor Number	Detailed SDR Description
Aggregate T	Emerson-specific Discrete Digital	0x99	See Table 6-23 on page 120

Table 6-22 IPMI Sensors Overview (continued)

Sensor Name	Sensor Type	Sensor Number	Detailed SDR Description
Aggregate V	Emerson-specific Discrete Digital	0x98	See Table 6-24 on page 121
CPCI Signal	Emerson-specific Discrete Digital	0x83	See Table 6-25 on page 121
CPU Status	Processor	0x87	See Table 6-26 on page 122
Critical IRQ	Emerson-specific Discrete Digital	0x82	See Table 6-27 on page 123
Ejector Switch	Emerson-specific Discrete Digital	0x80	See Table 6-28 on page 124
ADT7461Temp	Temperature	0x09	See Table 6-29 on page 125
Core Temp	Temperature	0x0A	See Table 6-30 on page 126
SEL Fullness	OEM	0x64	See Table 6-31 on page 127
Signal Status	Emerson-specific Discrete Digital	0x85	See Table 6-32 on page 128
VCC1_2	Voltage	0x08	See Table 6-33 on page 129
VCC1_5	Voltage	0x06	See Table 6-34 on page 130
VCC1_8	Voltage	0x01	See Table 6-35 on page 131
VCC3_3	Voltage	0x02	See Table 6-36 on page 132
VCC2_5	Voltage	0x05	See Table 6-37 on page 133
VCC5_0	Voltage	0x03	See Table 6-38 on page 134
VCC1_0	Voltage	0x07	See Table 6-39 on page 135
VPCore	Voltage	0x04	See Table 6-40 on page 136

The following tables describe the IPMI sensors in detail.

The AggregateT sensor reads all on-board temperature sensors and indicates whether a threshold of any evaluated sensor is asserted or not. The following table shows the main sensor data record field values of the AggregateT sensor.

Table 6-23 Aggregate T Sensor

Feature	Raw Value	Description
Sensor Name	Aggregate T	-
Sensor LUN	0x00	-
Sensor Number	0x99	-
Entity ID	0x06	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x3F	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x3F	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x3F	-
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

The AggregateV sensor reads all on-board voltage sensors and indicates whether a threshold of any evaluated sensor is asserted or not. The following table shows the main sensor data record field values of the AggregateV sensor.

Table 6-24 Aggregate V Sensor

Feature	Raw Value	Description
Sensor Name	Aggregate V	-
Sensor LUN	0x00	-
Sensor Number	0x98	-
Entity ID	0x06	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x3F	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x3F	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x3F	-
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

Table 6-25 CPCI Signal Sensor

Feature	Raw Value	Description
Sensor Name	CPCI Signal	-
Sensor LUN	0x00	-
Sensor Number	0x83	-

Table 6-25 CPCI Signal Sensor (continued)

Feature	Raw Value	Description
Entity ID	0x07	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x03	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x03	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x03	-
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

Table 6-26 CPU Status Sensor

Feature	Raw Value	Description
Sensor Name	CPU Status	-
Sensor LUN	0x00	-
Sensor Number	0x87	-
Entity ID	0x03	-
Sensor Type	0x07	Processor
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x02	-
Assertion Event Mask(Byte 16)	0x00	-
Assertion Events	-	-

Table 6-26 CPU Status Sensor (continued)

Feature	Raw Value	Description
-	Event Offset: 1	Thermal Trip
Deassertion Event Mask(Byte 17)	0x02	-
Deassertion Event Mask(Byte 18)	0x00	-
Deassertion Events	-	-
-	Event Offset: 1	Thermal Trip
Threshold Mask(Byte 19)	0xFF	-
Threshold Mask(Byte 20)	0x07	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

Table 6-27 Critical IRQ Sensor

Feature	Raw Value	Description
Sensor Name	Critical IRQ	-
Sensor LUN	0x00	-
Sensor Number	0x82	-
Entity ID	0x07	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x0B	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x0B	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x0F	-

Table 6-27 Critical IRQ Sensor (continued)

Feature	Raw Value	Description
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

Table 6-28 Ejector Switch Sensor

Feature	Raw Value	Description
Sensor Name	Ejector Switch	-
Sensor LUN	0x00	-
Sensor Number	0x80	-
Entity ID	0x07	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x01	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x01	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x01	-
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State

Table 6-28 Ejector Switch Sensor (continued)

Feature	Raw Value	Description
Reading Definition	-	-

Table 6-29 Max1617Temp Sensor

Feature	Raw Value	Description
Sensor Name	ADT7461Temp	-
Sensor LUN	0x00	-
Sensor Number	0x09	-
Entity ID	0x03	-
Sensor Type	0x01	Temperature
Event/Reading Type	0x01	Threshold
Assertion Event Mask(Byte 15)	0x95	-
Assertion Event Mask(Byte 16)	0x7A	-
Deassertion Event Mask(Byte 17)	0x95	-
Deassertion Event Mask(Byte 18)	0x7A	-
Threshold Mask(Byte 19)	0x3F	-
Threshold Mask(Byte 20)	0x3F	-
Base Unit	0x01	deg. C
Nominal Reading	0xAA	42
Upper non-recoverable threshold	0xEE	110
Upper critical threshold	0xE4	100
Upper non-critical threshold	0xDA	90
Lower non-recoverable threshold	0x76	-10
Lower critical threshold	0x79	-7
Lower non-critical threshold	0x7B	-5
Rearm mode	0x01	Auto
Hysteresis Support	0x03	Readable and Setable
Threshold Access Support	0x03	Readable and Setable

Table 6-29 Max1617Temp Sensor (continued)

Feature	Raw Value	Description
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	Analog reading byte	Analog sensor reading

Table 6-30 CoreTemp Sensor

Feature	Raw Value	Description
Sensor Name	CoreTemp	-
Sensor LUN	0x00	-
Sensor Number	0x0A	
Entity ID	0x03	
Sensor Type	0x01	Temperature
Event/Reading Type	0x01	Threshold
Assertion Event Mask (Byte 15)	0x95	-
Assertion Event Mask (Byte 16)	0x7A	-
Deassertion Event Mask (Byte 17)	0x95	-
Deassertion Event Mask (Byte 18)	0x7A	
Threshold Mask (Byte 19)	0x3F	
Threshold Mask (Byte 20)	0x3F	
Base Unit	0x01	deg. C
Normal Reading	0xAA	42
Upper non-recoverable threshold	0xEE	110
Upper critical threshold	0xE4	100
Upper non-critical threshold	0xDA	90
Lower non-recoverable threshold	0x76	-10
Lower critical threshold	0x79	-7
Lower non-critical threshold	0x7B	-5
Rearm mode	0x01	Auto
Hysteresis Support	0x03	Readable and Setable

Table 6-30 CoreTemp Sensor (continued)

Feature	Raw Value	Description
Threshold Access Support	0x03	Readable and Setable
Event Message Control	0x00	Per Threshold/Discrete State
Reading Definition	Analog reading byte	Analog sensor reading

Table 6-31 SEL Fullness Sensor

Feature	Raw Value	Description
Sensor Name	SEL Fullness	-
Sensor LUN	0x00	-
Sensor Number	0x64	-
Entity ID	0x06	-
Sensor Type	0xD0	OEM
Event/Reading Type	0x01	Threshold
Assertion Event Mask(Byte 15)	0x80	-
Assertion Event Mask(Byte 16)	0x7A	-
Deassertion Event Mask(Byte 17)	0x80	-
Deassertion Event Mask(Byte 18)	0x7A	-
Threshold Mask(Byte 19)	0x38	-
Threshold Mask(Byte 20)	0x38	-
Base Unit	0x00	(unspecified)
Nominal Reading	0x00	0
Upper non-recoverable threshold	0x5A	90
Upper critical threshold	0x50	80
Upper non-critical threshold	0x4B	75
Lower non-recoverable threshold	0x00	(unspecified)
Lower critical threshold	0x00	(unspecified)
Lower non-critical threshold	0x00	(unspecified)
Rearm mode	0x01	Auto

Table 6-31 SEL Fullness Sensor (continued)

Feature	Raw Value	Description
Hysteresis Support	0x02	Readable and Setable
Threshold Access Support	0x02	Readable and Setable
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	Analog reading byte	Analog sensor reading

Table 6-32 Signal Status Sensor

Feature	Raw Value	Description
Sensor Name	Signal Status	-
Sensor LUN	0x00	-
Sensor Number	0x85	-
Entity ID	0x07	-
Sensor Type	0xD2	Emerson-specific Discrete Digital
Event/Reading Type	0x6F	Discrete (sensor-specific)
Assertion Event Mask(Byte 15)	0x08	-
Assertion Event Mask(Byte 16)	0x00	-
Deassertion Event Mask(Byte 17)	0x08	-
Deassertion Event Mask(Byte 18)	0x00	-
Threshold Mask(Byte 19)	0x0F	-
Threshold Mask(Byte 20)	0x00	-
Base Unit	0x00	(unspecified)
Rearm mode	0x01	Auto
Hysteresis Support	0x00	No Hysteresis or unspecified
Threshold Access Support	0x00	No Tresholds
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	-	-

Table 6-33 VCC1_2 Sensor

Feature	Raw Value Description		
Sensor Name	VCC1_2	-	
Sensor LUN	0x00	-	
Sensor Number	0x08	-	
Entity ID	0x07	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0x7C	1.2	
Upper non-recoverable threshold	0x88	1.32	
Upper critical threshold	0x85	1.29	
Upper non-critical threshold	0x82	1.26	
Lower non-recoverable threshold	0x70	1.14	
Lower critical threshold	0x73	1.11	
Lower non-critical threshold	0x76	1.08	
Rearm mode	0x01	Auto	
Hysteresis Support	0x02	Readable and Setable	
Threshold Access Support	0x02	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Table 6-34 VCC1_5 Sensor

Feature	Raw Value Description		
Sensor Name	VCC1_5	-	
Sensor LUN	0x00	-	
Sensor Number	0x06	-	
Entity ID	0x07	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0x9B	1.5	
Upper non-recoverable threshold	0xAA	1.65	
Upper critical threshold	0xA6	1.61	
Upper non-critical threshold	0xA2	1.58	
Lower non-recoverable threshold	0x8C	1.35	
Lower critical threshold	0x8F	1.4	
Lower non-critical threshold	0x93	1.42	
Rearm mode	0x01	Auto	
Hysteresis Support	0x03	Readable and Setable	
Threshold Access Support	0x03	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Table 6-35 VCC1_8 Sensor

Feature	Raw Value Description		
Sensor Name	VCC1_8	-	
Sensor LUN	0x00	-	
Sensor Number	0x01	-	
Entity ID	0x07	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0xB8	1.8	
Upper non-recoverable threshold	0xCA	1.98	
Upper critical threshold	0xC5	1.93	
Upper non-critical threshold	0xC1	1.89	
Lower non-recoverable threshold	0xA6	1.62	
Lower critical threshold	0xAA	1.67	
Lower non-critical threshold	0xAF	1.71	
Rearm mode	0x01	Auto	
Hysteresis Support	0x03	Readable and Setable	
Threshold Access Support	0x03	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Table 6-36 VCC3_3 Sensor

Feature	Raw Value	Description	
Sensor Name	VCC3_3	-	
Sensor LUN	0x00	-	
Sensor Number	0x02	-	
Entity ID	0x07	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0xA4	3.3	
Upper non-recoverable threshold	0xB4	3.63	
Upper critical threshold	0xB0	3.54	
Upper non-critical threshold	0xAC	3.46	
Lower non-recoverable threshold	0x94	2.97	
Lower critical threshold	0x98	3.06	
Lower non-critical threshold	0x9C	3.14	
Rearm mode	0x01	Auto	
Hysteresis Support	0x03	Readable and Setable	
Threshold Access Support	0x03	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Table 6-37 VCC2_5 Sensor

Feature	Raw Value Description		
Sensor Name	VCC2_5	-	
Sensor LUN	0x00	-	
Sensor Number	0x05	-	
Entity ID	0x07	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0xB8	2.5	
Upper non-recoverable threshold	0xCA	2.75	
Upper critical threshold	0xC5	2.68	
Upper non-critical threshold	0xC1	2.62	
Lower non-recoverable threshold	0xA6	2.25	
Lower critical threshold	0xAA	2.31	
Lower non-critical threshold	0xAF	2.38	
Rearm mode	0x01	Auto	
Hysteresis Support	0x03	Readable and Setable	
Threshold Access Support	0x03	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Table 6-38 VCC5_0 Sensor

Feature	Raw Value	Description
Sensor Name	VCC5_0	-
Sensor LUN	0x00	-
Sensor Number	0x03	-
Entity ID	0x07	-
Sensor Type	0x02	Voltage
Event/Reading Type	0x01	Threshold
Assertion Event Mask(Byte 15)	0x95	-
Assertion Event Mask(Byte 16)	0x7A	-
Deassertion Event Mask(Byte 17)	0x95	-
Deassertion Event Mask(Byte 18)	0x7A	-
Threshold Mask(Byte 19)	0x3F	-
Threshold Mask(Byte 20)	0x3F	-
Base Unit	0x04	Volt
Nominal Reading	0xAC	5.00
Upper non-recoverable threshold	0xBD	5.50
Upper critical threshold	0xB8	5.35
Upper non-critical threshold	0xB4	5.23
Lower non-recoverable threshold	0x9B	4.50
Lower critical threshold	0x9F	4.62
Lower non-critical threshold	0xA3	4.74
Rearm mode	0x01	Auto
Hysteresis Support	0x03	Readable and Setable
Threshold Access Support	0x03	Readable and Setable
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	Analog reading byte	Analog sensor reading

Table 6-39 VCC1_0 Sensor

Feature	Raw Value Description	
Sensor Name	VCC1_0	-
Sensor LUN	0x00	-
Sensor Number	0x07	-
Entity ID	0x07	-
Sensor Type	0x02	Voltage
Event/Reading Type	0x01	Threshold
Assertion Event Mask(Byte 15)	0x95	-
Assertion Event Mask(Byte 16)	0x7A	-
Deassertion Event Mask(Byte 17)	0x95	-
Deassertion Event Mask(Byte 18)	0x7A	-
Threshold Mask(Byte 19)	0x3F	-
Threshold Mask(Byte 20)	0x3F	-
Base Unit	0x04	Volt
Nominal Reading	0x66	1.0
Upper non-recoverable threshold	0x70	1.10
Upper critical threshold	0x6D	1.07
Upper non-critical threshold	0x6B	1.05
Lower non-recoverable threshold	0x5C	0.90
Lower critical threshold	0x5E	0.92
Lower non-critical threshold	0x61	0.95
Rearm mode	0x01	Auto
Hysteresis Support	0x02	Readable and Setable
Threshold Access Support	0x02	Readable and Setable
Event Message Control	0x00	Per Threshold / Discrete State
Reading Definition	Analog reading byte	Analog sensor reading

Table 6-40 VPCore Sensor

Feature	Raw Value Description		
Sensor Name	VPCore	-	
Sensor LUN	0x00	-	
Sensor Number	0x04	-	
Entity ID	0x03	-	
Sensor Type	0x02	Voltage	
Event/Reading Type	0x01	Threshold	
Assertion Event Mask(Byte 15)	0x95	-	
Assertion Event Mask(Byte 16)	0x7A	-	
Deassertion Event Mask(Byte 17)	0x95	-	
Deassertion Event Mask(Byte 18)	0x7A	-	
Threshold Mask(Byte 19)	0x3F	-	
Threshold Mask(Byte 20)	0x3F	-	
Base Unit	0x04	Volt	
Nominal Reading	0x71	1.10	
Upper non-recoverable threshold	0x9E	1.54	
Upper critical threshold	0x92	1.42	
Upper non-critical threshold	0x87	1.31	
Lower non-recoverable threshold	0x44	0.66	
Lower critical threshold	0x4F	0.77	
Lower non-critical threshold	0x5A	0.88	
Rearm mode	0x01	Auto	
Hysteresis Support	0x07	Readable and Setable	
Threshold Access Support	0x07	Readable and Setable	
Event Message Control	0x00	Per Threshold / Discrete State	
Reading Definition	Analog reading byte	Analog sensor reading	

Memory Maps and Addresses

7.1 Default Processor Memory Map

The following table describes a default memory map from the point of view of the processor after a processor reset. Note that the e500 core only provides one default TLB entry to access boot code and it allows for accesses within the highest 4 KB of memory. In order to access the full 8 MB of default boot space (and the 1 MB of CCSR space), additional TLB entries must be set up within the e500 core for mapping these regions. For more information, see to the MPC8572 Reference Manual.

Table 7-1 Default Processor Address Map

Processor Address		Size	Definition
Start	End		
0x0_0000_0000	0x0_FF6F_FFFF	4087 MB	Not mapped
0x0_FF70_0000	0x0_FF7F_FFFF	1 MB	MPC8572 CCSR Registers
0x0_FFF8_0000	0x0_FFFF_FFFF	8 MB	Flash

7.2 CPCI-6200 Memory Map

The following diagram and the succeeding table detail the physical memory map implemented by the MotLoad firmware.

Figure 7-1 CPCI-6200 Memory Map Diagram

Table 7-2 CPCI-6200 Address Memory Map

Processor Address		Size	Definition
Start	End		
0x0_0000_0000	top_dram - 1	dram_size (3.5 GB max)	System Memory (DDR3 SO-DIMMs)
0x0_E000_0000	0x0_EFF_FFFF	256 MB	PCI 0 Memory Space
0x0_F000_0000	0x0_F07F_FFFF	8 MB	PCI 0 I/O Space
0x0_F080_0000	0x0_F0BF_FFFF	4 MB	PCI 1 Memory Space

Table 7-2 CPCI-6200 Address Memory Map (continued)

Processor Address		Size	Definition
0x0_F0C0_0000	0x0_F0FF_FFFF	8 MB	PCI 1 I/O Space
0x0_F100_0000	0x0_F10F_FFFF	1 MB	MPC8572 CCSR
0x0_F110_0000	0x0_F1FF_FFFF	15 MB	Reserved
0x0_F200_0000	0x0_FFFF_FFFF	224 MB	Local Bus Controller

7.3 Local Bus Controller Memory Map

Table 7-3 LBC Memory Map and Chip Select Assignments

LBC Bank/Chip Select	Local Bus Function	Size	Data Bus Width	Address Range
0	Boot flash bank	128 MB	32 bits	F800_0000 - FFFF_FFFF
1	NAND flash bank	64 KB	8 bits	F203_0000 - F203_FFFF
2	MRAM	512 KB	16 bits	F240_0000 - F247_FFFF
3	Control/Status Registers	64 KB	32 bits	F200_0000 - F200_FFFF
4	Dual UART	64 KB	8 bits	F201_0000 - F201_FFFF
5	32-bit Timers	64 KB	32 bits	F202_0000 - F202_FFFF

7.4 System I/O Memory Map

System resources, including system control and status registers, external timers, flash, and DUART, are mapped to a 224 MB address range that is accessible from the CPCI-6200 local bus via the MPC8572 LBC. The memory map is defined in the following table including the LBC bank chip select used to decode the register.

Table 7-4 System I/O Memory Map

Address	Definition	LBC Bank/Chip Select
F200 0000 ³	System Status Register	3
F200 0001 ³	System Control Register	3
F200 0002 ³	FP LEDs Control & Status Register	3
F200 0003 ³	NOR Flash Control/Status Register	3
F200 0004 ³	Interrupt Register 1	3
F200 0005 ³	Interrupt Register 2	3
F200 0006 ³	Interrupt Mask Register	3
F200 0007 ¹	Reserved	3
F200 0008 ³	Presence Detect Register	3
F200 0009-F200 000F ¹	Reserved	3
F200 0010 ³	Nand Flash Chip 1 Control Register	3
F200 0011 ³	Nand Flash Chip 1 Select Register	3
F200 0012 ³	Nand Flash Chip 1 Presence Register	3
F200 0013 ³	Nand Flash Chip 1 Status Register	3
F200 0014 ³	Nand Flash Chip 2 Control Register	3
F200 0015 ³	Nand Flash Chip 2 Select Register	3
F200 0016 ³	Nand Flash Chip 2 Presence Register	3
F200 0017 ³	Nand Flash Chip 2 Status Register	3
F200 0018 ³	CPCI Control & Status Register	3
F200 0019 ³	Geographic Address Read Register	3
F200 001A-F200 001F ¹	Reserved	3

Table 7-4 System I/O Memory Map (continued)

Address	Definition	LBC Bank/Chip Select
F200 0020 ³	Watchdog Timer Load	3
F200 0021 ¹	Reserved	3
F200 0022 ¹	Reserved	3
F200 0023 ¹	Reserved	3
F200 0024 ³	Watchdog Timer Control	3
F200 0025 ³	Watchdog Timer Resolution	3
F200 0026 ³	Watchdog Timer Count (16 bits)	3
F200 0028-F200 002F ¹	Reserved	3
F200 0030 ³	PLD Revision	3
F200 0031 ¹	Reserved	3
F200 0032 ¹	Reserved	3
F200 0033 ¹	Reserved	3
F200 0034 ³	PLD Date Code (32 bits)	3
F200 0038 ³	Test Register 1 (32 bits)	3
F200 003C ³	Test Register 2 (32 bits)	3
F200 0040-F200 FFFF ¹	Reserved	3
F201 0000-F201 2FFF ¹	Reserved	4
F201 3000-F201 3FFF	COM 3 (DUART channel 1)	4
F201 4000-F201 4FFF	COM 4 (DUART channel 2)	4
F201 5000-F201 FFFF ¹	Reserved	
F202 0000 ²	External PLD Tick Timer Prescaler Register	5
F202 0010 ²	External PLD Tick Timer 1 Control Register	5
F202 0014 ²	External PLD Tick Timer 1 Compare Register	5
F202 0018 ²	External PLD Tick Timer 1 Counter Register	5

Table 7-4 System I/O Memory Map (continued)

Address	Definition	LBC Bank/Chip Select
F202 001C ²	Reserved	5
F202 0020 ²	External PLD Tick Timer 2 Control Register	5
F202 0024 ²	External PLD Tick Timer 2 Compare Register	5
F202 0028 ²	External PLD Tick Timer 2 Counter Register	5
F202 002C ²	Reserved	5
F202 0030 ²	External PLD Tick Timer 3 Control Register	5
F202 0034 ²	External PLD Tick Timer 3 Compare Register	5
F202 0038 ²	External PLD Tick Timer 3 Counter Register	5
F202 003C ²	Reserved	5
F202 0040 ²	External PLD Tick Timer 4 Control Register	5
F202 0044 ²	External PLD Tick Timer 4 Compare Register	5
F202 0048 ¹	External PLD Tick Timer 4 Counter Register	5
F202 004C-F202 FFFF ²	Reserved	5
F203 0000 ³	Nand Chip 1 Data Register	1
F203 0001-F203 7FFF	Reserved	1
F203 8000 ³	Nand Chip 2 Data Register	1
F203 8001-F203 FFFF	Reserved	1

^{1.} Reserved for future implementation.

^{2. 32-}bit write only

^{3.} Byte read/write capable

7.4.1 System Status Register

This is a read-only register that provides general board status information.

Table 7-5 System Status Register, 0xF200_0000

Bit	Field	Operation	Reset
7	PWR12V_EN_STS	R	X
6	PWR_12P_STS	R	Х
5	PWR_12N_STS	R	Х
4	SW5	R	Х
3	SAFE_START	R	Х
2	PEX_8624_ERROR	R	Х
1	BD_TYPE	R	10
0			

Table 7-6 System Status Register Field Definition

PWR12V_EN_STS	12V Power Enable Status from Switch		
	1	12 V is enabled.	
	0	12 V is disabled.	
PWR_12P_STS	+12V Power Status		
	1	+12 V is good.	
	0	+12 V is not good.	
PWR_12N_STS	-12V Power Status		
	1	-12 V is good.	
	0	-12 V is not good.	
SW5	Switch 5 Status		
	1	Switch 5 is in OFF position (reserved).	
	0	Switch 5 is in ON position (reserved).	

Table 7-6 System Status Register Field Definition

SAFE_START	ENV Safe S	ENV Safe Start		
	1	Indicates that firmware should use the safe ENV settings		
	0	Indicates the ENV settings programmed in NVRAM should be used by the firmware		
PEX_8624_ERROR	PEX8624 F	PEX8624 Fatal Error		
	1	Indicates that the Fatal Error signal from the PEX8624 is active		
	0	Indicates no Fatal Error signal from the PEX8624		
BD_TYPE	Board Type. These bits indicate the board type.			
	00	VME SBC		
	01	PrPMC		
	10	CPCI		
	11	Reserved		

7.4.2 System Control Register

This register provides general board control bits.

Table 7-7 System Control Register, 0xF200_0001

Bit	Field	Operation	Reset
7	BRD_RST	R/W	000
6			
5			
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	EEPROM_WP	R/W	1
0	RSVD	R	0

Table 7-8 System Control Register Field Definition

BRD_RST	Board Reset. These bits are used to force a hard reset of the board		
	101	Hard reset is generated.	
	XXX	Does not generate hard reset for any other bit patterns	
RSVD	Reserved		
EEPROM_WP	EEPROM Write Protect		
	1	Disable writes to the onboard EEPROM devices	
	0	Enable writes to the onboard EEPROM devices	

7.4.3 Front Panel LEDs Control and Status Register

This register controls the front panel LEDs. It may be read by the system software to determine the state of the onboard status indicator LEDs, or written to by system software to make the corresponding onboard LEDs light up.

Table 7-9 Front Panel LED Control/Status Register, 0xF200_0002

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	USR1_LED	R/W	0
0	USR2_LED	R/W	1

Table 7-10 Front Panel LED Control/Status Register Field Definition

RSVD	Reserved	
USR1_LED	User Green LED	
	1	Turn on the green LED.
	0	Turn off green LED.
USR2_LED	User / Failure Indica	ting Yellow LED
	1	Turn on the yellow LED
	0	Turn off yellow LED. The board can also turn on the LED if a failure condition is detected.

7.4.4 NOR Flash Control and Status Register

This register provides software-controlled bank write protect and map select functions as well as boot block select, bank write protect, and activity status for the NOR flash.

Table 7-11 NOR Flash Control/Status Register, 0xF200_0003

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	MAP_SEL	R/W	0
3	F_WP_SW	R/W	1
2	F_WP_HW	R	Х
1	FBT_BLK_SEL	R	Х
0	FLASH_RDY	R	1

Table 7-12 NOR Flash Control/Status Register Field Definition

RSVD	Reserved	
------	----------	--

Table 7-12 NOR Flash Control/Status Register Field Definition

MAP_SEL	Memory	/ Map Select	
	1	Flash memory boot block A is selected and mapped to the highest address. See Figure 4-2 on page 76.	
	0	Flash memory map is controlled by the Flash Boot Block Select switch.	
F_WP_SW	controll	e flash bank write protect. This bit provides software- ed protection against inadvertent writes to the flash y devices.	
	1	Flash is write-protected.	
	0	Flash bank is not write-protected, if the HW write-protect bit is not set. This bit is set during reset and must be cleared by the system software to enable writing of the flash devices.	
F_WP_HW	Hardware flash bank write protect switch status reflects the current state of the FLASH BANK WP switch.		
	1	Flash is write-protected.	
	0	Flash is not write-protected.	
FBT_BLK_SEL	Flash Boot Block Select. This reflects the current state of the BOOT BLOCK B SELECT switch.		
	1	Boot block B is selected and mapped to the highest address. See Figure 4-3 on page 77.	
	0	Boot block A is selected and mapped to the highest address. See Figure 4-2 on page 76.	
FLASH_RDY	Flash Ready. This bit provides the current state of the flash devices' Ready/Busy# pins.		
	1	FLASH is ready.	
	0	FLASH is not ready.	

7.4.5 Interrupt Register 1

This register may be read by the system software to determine which of the Ethernet PHYs originated their combined (OR'd) interrupt.

Table 7-13 Interrupt Register 1, 0xF200_0004

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	RSVD	R	0
3	PHY 4	R	0
2	PHY 3	R	0
1	PHY 2	R	0
0	PHY 1	R	0

Table 7-14 Interrupt Register 1 Field Definition

RSVD	Reserved			
PHY 4	TSEC4 Inte	TSEC4 Interrupt		
	1	TSEC4 interrupt is asserted.		
	0	TSEC4 interrupt is not asserted.		
PHY 3	TSEC3 Inte	rrupt		
	1	TSEC3 interrupt is asserted.		
	TSEC3 interrupt is not asserted.			
PHY 2	TSEC2 Interrupt			
	1	TSEC2 interrupt is asserted.		
	0	TSEC2 interrupt is not asserted.		
PHY 1	TSEC1 Interrupt			
	1 TSEC1 interrupt is asserted.			
	0	TSEC1 interrupt is not asserted.		

7.4.6 Interrupt Register 2

The CPCI CPLD, IPMI Controller, RTC, temperature sensor and abort switch interrupts are OR'd together. This register may be read by the system software to determine which device originated the interrupt.

Table 7-15 Interrupt Register 2, 0xF200_0005

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	CPCI_PLD_INT	R	0
3	IPMI_INT	R	0
2	RTC_INT	R	0
1	TEMP_INT	R	0
0	ABORT	R	0

Table 7-16 Interrupt Register 2 Field Definition

RSVD	Reserved		
CPCI_PLD_INT	Interrupt from CPCI Control CPLD		
	1	CPCI CPLD interrupt is asserted.	
	0 CPCI CPLD interrupt is not asserted.		
IPMI_INT	IPMI Controller Interrupt		
	1 IPMI interrupt is asserted.		
	0 IPMI interrupt is not asserted.		
RTC_INT	RTC Interrupt		
	1 RTC interrupt is asserted.		
	0	RTC interrupt is not asserted.	

Table 7-16 Interrupt Register 2 Field Definition

TEMP_INT	Interrupt fromTemperature Sensor		
	1	Temp sensor interrupt is asserted.	
	0	Temp sensor interrupt is not asserted.	
ABORT	Abort Status. This bit reflects the current state of the onboard abort signal. This is a debounced version of the abort switch and may be used to determine the state of the abort switch.		
	1 Abort push button switch is pressed for let than three seconds.		
	0	Abort push button switch is not pressed.	

7.4.7 Interrupt Mask Register

This register is used to enable or disable interrupts from the CPCI CPLD, IPMI Controller, RTC, TEMP sensor and Abort switch. This register can be read or written by the system software.

Table 7-17 Interrupt Mask Register, 0xF200_0006

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	CPCI_PLD_INT_MASK	R/W	1
3	IPMI_INT_MASK	R/W	1
2	RTC_INT_MASK	R/W	1
1	TEMP_INT_MASK	R/W	1
0	ABORT_MASK	R/W	1

Table 7-18 Interrupt Mask Register

RSVD	Reserved
------	----------

Table 7-18 Interrupt Mask Register (continued)

	_	1	
CPCI_PLD_INT_MASK	Interrupt Mask for CPCI Control CPLD		
	1	CPCI CPLD interrupt generation is disabled.	
	0	CPCI CPLD is allowed to generate interrupt.	
IPMI_INT_MASK	IPMI Conti	roller Interrupt Mask	
	1	IPMI interrupt generation is disabled.	
	0	IPMI is allowed to generate interrupt.	
RTC_INT_MASK	RTC Interr	upt Mask	
	1	RTC interrupt generation is disabled.	
	0	RTC is allowed to generate interrupt.	
TEMP_INT_MASK	Interrupt Mask for Temperature Sensor		
	1 Temperature interrupt generation is disabled		
	0	Temperature sensor is allowed to generate interrupt.	
ABORT_MASK	Abort Mask		
	1	Abort interrupt generation is disabled from push button switch.	
	0	Abort interrupt generation is allowed from push button switch.	

7.4.8 Presence Detect Register

This register may be read by the system software to determine the presence of optional devices.

Table 7-19 Presence Detect Register, 0xF200_0008

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	ERDY2	R	0
4	ERDY1	R	0

Table 7-19 Presence Detect Register, 0xF200_0008 (continued)

Bit	Field	Operation	Reset
3	RTM_PRSNT	R	X
2	XEP	R	Х
1	PMC2P	R	Х
0	PMC1P	R	X

Table 7-20 Presence Detect Register Field Definition

D.C.) (D.	- I	
RSVD	Reserved	
ERDY2	EREADY2. Indicates the enumeration status of PrPMC module installed in PMC site 2	
	1	PrPMC module installed in PMC site 2 is ready for enumeration. ¹
	0	PrPMC module is not ready for enumeration
ERDY1		Indicates the enumeration status of PrPMC stalled in PMC site 1
	1	PrPMC module installed in PMC site 1 is ready for enumeration. ¹
	0	PrPMC module is not ready for enumeration.
RTM_PRSNT	RTM Present Status	
	1	RTM is installed.
	0	RTM is not installed.
XEP	PCI Expres	ss Expander Present Status
	1	PCI Express Expander module is installed.
	0	PCI Express Expander module is not installed.
PMC2P	PMC Module 2 Present	
	1	PMC module is installed at PMC site 2.
	0	PMC module is not installed at PMC site 2.

Table 7-20 Presence Detect Register Field Definition

PMC1P	PMC Module 1 Present	
	1 PMC module is installed at PMC site 1.	
	0	PMC module is not installed at PMC site 1.

^{1.} If PrPMC module is not installed, this bit is always 1.

7.4.9 NAND Flash Chip 1 Control Register

Table 7-21 NAND Flash Chip 1 Control Register, 0xF200_0010

Bit	Field	Operation	Reset
7	CLE	R/W	0
6	ALE	R/W	0
5	WP	R/W	1
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-22 NAND Flash Chip 1 Control Register Field Definition

CLE	Command Latch Enable	
	1	CLE is asserted when the device is accessed.
	0	CLE is not asserted when the device is accessed.
ALE	Address Latch Enable	
	1	ALE is asserted when the device is accessed.

Table 7-22 NAND Flash Chip 1 Control Register Field Definition

	0	ALE is not asserted when the device is accessed.
WP	Write Protect	
	1	WP is asserted when the device is accessed.
	0	WP is not asserted when the device is accessed.
RSVD	Reserved	

7.4.10 NAND Flash Chip 1 Select Register

Table 7-23 NAND Flash Chip 1 Select Register, 0xF200_0011

Bit	Field	Operation	Reset
7	CE1	R/W	0
6	CE2	R/W	0
5	CE3	R/W	0
4	CE4	R/W	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-24 NAND Flash Chip 1 Select Register Field Definition

CE1	Chip Enable 1	
	1	CE1 is asserted when the device is accessed.
	0	CE1 is not asserted when the device is accessed.

Table 7-24 NAND Flash Chip 1 Select Register Field Definition

CE2	Chip Enable 2	
	1	CE2 is asserted when the device is accessed.
	0	CE2 is not asserted when the device is accessed.
CE3	Chip Enable 3	
	1	CE3 is asserted when the device is accessed.
	0	CE3 is not asserted when the device is accessed.
CE4	Chip Enable 1	
	1	CE4 is asserted when the device is accessed.
	0	CE4 is not asserted when the device is accessed.
RSVD	Reserved	

7.4.11 NAND Flash Chip 1 Presence Register

Table 7-25 NAND Flash Chip 1 Presence Register, 0xF200_0012

Bit	Field	Operation	Reset
7	C1P	R	Х
6	RSVD	R	0
5	RSVD	R	0
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-26 NAND Flash Chip 1 Presence Register Field Definition

C1P	Chip 1 Present		
	1 Chip 1 is installed on the board.		
	0 Chip 1 is not installed on the board.		
RSVD	Reserved		

7.4.12 NAND Flash Chip 1 Status Register

Table 7-27 NAND Flash Chip 1 Status Register, 0xF200_0013

Bit	Field	Operation	Reset
7	RB1	R	1
6	RB2	R	1
5	RB3	R	1
4	RB4	R	1
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-28 NAND Flash Chip 1 Status Register Field Definition

RB1	Ready/Busy 1		
	1	Device 1 is ready.	
	0 Device 1 is		
RB2	Ready/Busy 2		
	1 Device 2 is ready.		
	0	Device 2 is busy.	

Table 7-28 NAND Flash Chip 1 Status Register Field Definition (continued)

RB3	Ready/Busy 3		
	1	Device 3 is ready.	
	0	Device 3 is busy.	
RB4	Ready/Busy 4 1 Device 4 is ready.		
	0 Device 4 is busy.		
RSVD	Reserved		

7.4.13 NAND Flash Chip 2 Control Register

Table 7-29 NAND Flash Chip 2 Control Register, 0xF200_0014

Bit	Field	Operation	Reset
7	CLE	R/W	0
6	ALE	R/W	0
5	WP	R/W	1
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-30 NAND Flash Chip 2 Control Register Field Definition

CLE	Command Latch Enable		
	1 CLE is asserted when the device is accessed.		
	0 CLE is not asserted when the device is accessed.		

Table 7-30 NAND Flash Chip 2 Control Register Field Definition

ALE	Address Latch Enable			
	1	ALE is asserted when the device is accessed.		
	0	ALE is not asserted when the device is accessed.		
WP	Write Protect			
	1 WP is asserted when the device is accessed.			
	0	WP is not asserted when the device is accessed.		
RSVD	Reserved			

7.4.14 NAND Flash Chip 2 Select Register

Table 7-31 NAND Flash Chip 2 Select Register, 0xF200_0015

Bit	Field	Operation	Reset
7	CE1	R/W	0
6	CE2	R/W	0
5	CE3	R/W	0
4	CE4	R/W	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-32 NAND Flash Chip 2 Select Register

CE1	Chip Enable 1	
	1 CE1 is asserted when the device is accessed.	
	0 CE1 is not asserted when the device is accessed.	

Table 7-32 NAND Flash Chip 2 Select Register (continued)

CE2	Chip Enable 2		
	1	CE2 is asserted when the device is accessed.	
	0	CE2 is not asserted when the device is accessed.	
CE3	Chip Ena	ble 3	
	1	CE3 is asserted when the device is accessed.	
	0	CE3 is not asserted when the device is accessed.	
CE4	Chip Enable 4		
1		CE4 is asserted when the device is accessed.	
	0	CE4 is not asserted when the device is accessed.	
RSVD	Reserved		

7.4.15 NAND Flash Chip 2 Presence Register

Table 7-33 NAND Flash Chip 2 Presence Register, 0xF200_0016

Bit	Field	Operation	Reset
7	C2P	R	Х
6	RSVD	R	0
5	RSVD	R	0
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-34 NAND Flash Chip 2 Presence Register Field Definition

C2P	Chip 2 Present
-----	----------------

Table 7-34 NAND Flash Chip 2 Presence Register Field Definition

1		Chip 2 is installed on the board.
0		Chip 2 is not installed on the board.
RSVD	SVD Reserved	

7.4.16 NAND Flash Chip 2 Status Register

Table 7-35 NAND Flash Chip 2 Status Register, 0xF200_0017

Bit	Field	Operation	Reset
7	RB1	R	1
6	RB2	R	1
5	RB3	R	1
4	RB4	R	1
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-36 NAND Flash Chip 2 Status Register Field Definition

RB1	Ready/Busy 1		
	1	Device 1 is ready.	
	0 Device 1 is busy.		
RB2	Ready/Busy 2		
	1 Device 2 is ready.		
	0 Device 2 is busy.		

Table 7-36 NAND Flash Chip 2 Status Register Field Definition (continued)

RB3	Ready/Busy 3		
	1	Device 3 is ready.	
	0 Device 3 is busy.		
RB4	Ready/Busy 4		
	1 Device 4 is ready.		
	0 Device 4 is busy.		
RSVD	Reserved		

7.4.17 CPCI Control and Status Register

This register controls CPCI functions.

Table 7-37 CPCI Control/Status Register, 0xF200_0018

Bit	Field	Operation	Reset
7	HS_LED_MASK	R/W	0
6	BP_RST_MASK	R/W	X ¹
5	HS_LED_ON	R/W	0
4	SA_MODE	R	0
3	SYS_EN_STS	R	Х
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

^{1.} Reset value is 0 for system slot and 1 for peripheral slot.

Table 7-38 CPCI Control/Status Register Field Definition

HS_LED_MASK	Hot Swap (Blue) LED Mask		
	1	Disable the illumination of Blue LED.	
	0	Enable the illumination of Blue LED.	

Table 7-38 CPCI Control/Status Register Field Definition (continued)

DD DCT MACK	CDCI De almilam a Decent Marala		
BP_RST_MASK	CPCI Backplane Reset Mask		
	1	Disable backplane CPCI bus reset.	
	0	Enable backplane CPCI bus reset.	
HS_LED_ON ¹	Hot Swap	(Blue) LED ON	
	1	Turn on Blue LED.	
	0	Don't turn on Blue LED.	
SA_MODE	Stand alone mode		
	1	Board operates in stand alone mode e.g. operate in non-system slot and without system slot board.	
	0	Board operates in normal mode.	
SYS_EN_STS	System Slot Operation Status		
	1	Board is operating in CPCI system slot.	
	0	Board is operating in CPCI peripheral slot.	

^{1.} The software cannot turn off the hot swap LED by writing this bit to 0 if the hardware has turned on the LED. To turn it off, software must write 1 to mask bit above.

7.4.18 Geographic Address Read Register

Table 7-39 Geographic Address Read Register, 0xF200_0019

Bit	Field	Operation	Reset
7	GA4	R	Х
6	GA3	R	Х
5	GA2	R	Х
4	GA1	R	Х
3	GA0	R	Х
2	RSVD	R	0

Table 7-39 Geographic Address Read Register, 0xF200_0019 (continued)

Bit	Field	Operation	Reset
1	RSVD	R	0
0	RSVD	R	0

Table 7-40 Geographic Address Read Register Field Definition

GA[4:0]	Geographic Address Bits from Backplane. The value will depend upon the chassis slot used for the board.
RSVD	Reserved

7.4.19 Watchdog Timer Load Register

Table 7-41 Watchdog Timer Load Register, 0xF200_0020

Bit	Field	Operation	Reset
7	LOAD	Write only, read returns zero	0x0
6			
5			
4			
3			
2			
1			
0			

LOAD—Counter Load; When the pattern 0xDB is written, the watchdog counter is loaded with the count value.

7.4.20 Watchdog Timer Control Register

Table 7-42 Watchdog Timer Control Register, 0xF200_0024

Bit	Field	Operation	Reset
7	WDG_EN	R/W	0
6	SYS_RST	R/W	0
5	RSVD	R	0
4	RSVD	R	0
3	RSVD	R	0
2	RSVD	R	0
1	RSVD	R	0
0	RSVD	R	0

Table 7-43 Watchdog Timer Control Register Field Definition

WDG_EN	Watch Dog Timer Enable		
	1	Watchdog timer is enabled.	
	0	Watchdog timer is disabled.	
SYS_RST	System Reset		
	1 Board and CPCI Backplane reset is generated when a time- out occurs.		
	0	Board level reset is generated when a time out occurs.	
RSVD	Reserved		

7.4.21 Watchdog Timer Resolution Register

Table 7-44 Watchdog Timer Resolution Register, 0xE200_0025

Bit	Field	Operation	Reset
7	RSVD	R	0
6	RSVD	R	0
5	RSVD	R	0
4	RSVD	R	0
3	WDG_RES	R/W	0x9
2			
1			
0			

Table 7-45 Watchdog Timer Resolution Register

RSVD	Reserved
------	----------

Table 7-45 Watchdog Timer Resolution Register (continued)

WDG_RES	Watchdog Tim	er Resolution
	0000	2 μs
	0001	4 μs
	0010	8 μs
	0011	16 μs
	0100	32 μs
	0101	64 μs
	0110	128 μs
	0111	256 μs
	1000	512 μs
	1001	1 ms (default)
	1010	2 ms
	1011	4 ms
	1100	8 ms
	1101	16 ms
	1110	32 ms
	1111	64 ms

7.4.22 Watchdog Timer Count Register

Table 7-46 Watchdog Timer Counter Register, 0xF200_0026

Bit	Field	Operation	Reset
15:0	WDG_COUNT	R/W ¹	XX

^{1.} This register is not byte writable. It must be written half word (16 bits).

WDG_COUNT—Count; These bits define the watchdog timer count value. When the watchdog counter is enabled or there is a write to the load register, the watchdog counter is set to the count value. When enabled, the watchdog counter will decrement at a rate defined by the resolution register. The counter will continue to decrement until it reaches zero or the software writes to the load register. If the counter reaches zero, a system or board level reset is generated.

7.4.23 PLD Revision Register

This register may be read by the system software to determine the current revision of the timers/registers PLD.

Table 7-47 PLD Revision Register, 0xF200_0030

Bit	Field	Operation	Reset
7	MAJOR_REV	R	XX
6			
5			
4	MINOR_REV	R	XX
3			
2			
1			
0			

Table 7-48 PLD Revision Register Field Definition

MAJOR_REV	PLD's Major Revision Bits. It starts from 00.
MINOR_REV	PLD's Minor Revision Bits. It starts with 01.

7.4.24 PLD Date Code Register

This is a 32-bit register that contains the build date code of the timers/registers PLD.

Table 7-49 PLD Date Code Register, 0xF200_0034

Bit	Field	Operation	Reset
31:24	YEAR	R	XX
23:16	MONTH	R	XX
15:8	DATE	R	XX
7:0	DAY REV	R	XX

Table 7-50 PLD Date Code Register Field Definition

YEAR	Four-digit year value of PLD's build date in decimal
MONTH	Two-digit month value of PLD's build date in decimal
DATE	Two-digit date value of PLD's build date in decimal
DAY REV	Revision of the day

7.4.25 Test Register 1

This is a 32-bit general purpose read/write register that is used by software for PLD test or general status bit storage.

Table 7-51 Test Register 1, 0xF200_0038

Bit	Field	Operation	Reset
31:0	TEST_1	R/W	XX

TEST_1— General purpose 32-bit R/W field

7.4.26 Test Register 2

This is a second 32-bit test register that reads back the complement of the data in Test Register 1.

Table 7-52 Test Register 2, 0xF200_003C

Bit	Field	Operation	Reset
31:0	TEST_2	R/W	XX

TEST_2—A read from this address will return the complement of the data pattern in Test Register 1. A write to this address will write the uncomplemented data to register TEST_1.

7.4.27 External Timer Registers

The CPCI-6200 provides a set of tick timer registers that is used to access four external timers implemented in the PLD. These registers are 32-bit registers and are not byte writable.

7.4.27.1 Prescaler Register

Table 7-53 Prescaler Register, 0xE202_0000

Bit	Field	Operation	Reset
31:8			
7:0	PRESCALE_ADJUST	R/W	0xE7

The PRESCALE_ADJUST value is determined by the following formula:

Prescaler Adjust = 256 - (CLKIN/CLKOUT)

Where:

- CLKIN is the input clock source in MHz.
- CLKOUT is the desired output clock reference in MHz.

The prescaler provides the clock required by each of the four timers. The input clock to the prescaler is 25 MHz. The default value is set for \$E7 which gives a 1 MHz reference clock for a 25 MHz input clock source.

7.4.27.2 Control Registers

- Tick Timer 1 Control Register—0xF202_0010 (32 bits)
- Tick Timer 2 Control Register—0xF202_0020 (32 bits)
- Tick Timer 3 Control Register—0xF202_0030 (32 bits)
- Tick Timer 4 Control Register—0xF202_0040 (32 bits)

Table 7-54 Tick Timer Control Registers

Bit	Field	Operation	Reset
31:11	RSVD	R	0
10	INTS	R	0
9	CINT	R/W	0
8	EN_INT	R/W	0
7	OVF	R	0
6			
5			
4			
3	RSVD	R	0
2	COVF	R/W	0
1	COC	R/W	0
0	ENC	R/W	0

Table 7-55 Tick Timer Control Field Definition

RSVD	Reserved
INTS	Interrupt Status
CINT	Clear Interrupt

Table 7-55 Tick Timer Control Field Definition (continued)

EN_INT	Enable Inter	rupt	
	1	Interrupt is enabled.	
	0	Interrupt is disabled.	
OVF	Overflow bits. These bits are the output of the overflow counter. The overflow counter is incremented each time the tick timer sends an interrupt to the local bus interrupter. The overflow counter can be cleared by writing a 1 to the COVF bit.		
COVF	Clear overflow bits. The overflow counter is cleared when a 1 is written to this bit.		
COC	Clear counter on compare		
	1	Counter is reset to 0 when it compares with the compare register.	
	0	Counter is not reset when it compares with the compare register.	
ENC	Enable coun	iter	
	1	Enable the counter increments.	
	0	Disable the counter increments.	

7.4.27.3 Compare Registers

- Tick Timer 1 Compare Register—0xF202_0014 (32 bits)
- Tick Timer 2 Compare Register —0xF202_0024 (32 bits)
- Tick Timer 3 Compare Register—0xF202_0034 (32 bits)
- Tick Timer 4 Compare Register—0xF202_0044 (32 bits)

Table 7-56 Tick Timer Compare Registers

Bit	Field	Operation	Reset
31:0	Tick Timer Compare Value	R/W	0

The Tick Timer Counter is compared to the Compare Register. When they are equal, the tick timer interrupt is asserted and the Overflow Counter is incremented. If the clear-on-compare mode is enabled, the counter is also cleared. For periodic interrupts, this equation should be used to calculate the compare register value for a specific period (T):

Compare register value = $T(\mu s) x (1 / Reference clock frequency in MHz)$

When programming the tick timer for periodic interrupts, the counter should be cleared to zero by software and then enabled. If the counter does not initially start at 0, the time to the first interrupt may be longer or shorter than expected. The rollover time for the counter is 71.6 minutes with the default 1 MHz reference clock.

7.4.27.4 Counter Registers

- Tick Timer 1 Counter Register—0xF202_0018 (32 bits)
- Tick Timer 2 Counter Register—0xF202_0028 (32 bits)
- Tick Timer 3 Counter Register—0xF202_0038 (32 bits)
- Tick Timer 4 Counter Register—0xF202_0048 (32 bits)

Table 7-57 Tick Timer Counter Register

Bit	Field	Operation	Reset
31:0	Tick Timer Counter Value	R/W	0

When enabled, the tick timer counter register increments with the reference clock value. Software may read or write the counter at any time.

7.5 Interrupt Controller

The CPCI-6200 uses the MPC8572 integrated programmable interrupt controller (PIC) to manage locally generated interrupts. The following table shows the external interrupting devices and interrupt assignments along with corresponding edge/levels and polarities.

Table 7-58 Interrupt Assignments

Interrupt Number	Edge/Level	Polarity	Interrupt Source
0	Level	Low	PCI Express Port 1
1	Level	Low	PCI Express Port 1
2	Level	Low	PCI Express Port 1
3	Level	Low	PCI Express Port 1
4	Level	Low	PCI Express Port 2
5	Level	Low	PCI Express Port 2
6	Level	Low	PCI Express Port 2
7	Level	Low	PCI Express Port 2
8	Level	Low	PCI Express Expander
9	Level	Low	RTC, TEMP, Abort, IPMI, CPCI PLD
10	Level	Low	PHY's
11	Level	Low	UARTs, External Timer ¹²

^{1.} External timers are implemented in a PLD.

Refer to the MPC8572 reference manual for additional details regarding the operation of the MPC8572 PIC.

^{2.} External UARTs are implemented using a DUART.

The following figure shows how PCI interrupts are mapped to processor interrupts.

Figure 7-2 PCI Interrupt Mapping to Processor

7.6 I²C Device Addresses

A two-wire serial interface for the CPCI-6200 is provided by an I^2C compatible serial controller integrated into the MPC8572. The MPC8572 I^2C controller is used by the system software to read the contents of the various I^2C devices located on the CPCI-6200.

Table 7-59 I²C Bus Device Addressing

I ² C Bus	I ² C Bus Address	Device Address A2 A1 A0 (binary)	Size (bytes)	Function
Bus 4	0xA0	000	N/A	Reserved
	0xA2	001	256 x 8	DDR3 memory bank 1 SPD ¹
	0xA4	010	256 x 8	DDR3 memory bank 2 SPD ¹
	0xA6	011	64K x 8	User configuration 1
	0xA8 / 0xAA	100	512 x 8	RTM VPD (off-board configuration)
	0xAC	110	64K x 8	User configuration 2
	0xAE	111	8K x 8	VPD (on-board configuration)
	0xD0	N/A	N/A	M41T83 real-time clock
Bus 3	0x4C or 0x98	NA	N/A	ADT7461 temperature sensor
	0xA0	000	64K x 8	User configuration
	0xA2	001	64K x 8	VPD (on-board configuration)
	0xA4	010	64K x 8	System Event Log (SEL)
	0xA6	011		Reserved
	0xA8	100		Reserved
	0xAA	101		Reserved
	0xAC	110		Reserved
	0xAE	111		Reserved

^{1.} Each SPD defines the physical attributes of each bank of memory.

7.7 PCI/PCI-X Configuration

The following sections detail the PCI/PCI-X configuration of the onboard PCI devices.

7.7.1 PCI IDSEL and Interrupt Assignment

Each PCI device has an associated address line connected via a resistor to its IDSEL pin for Configuration Space accesses. Refer to the MPC8572, Tsi384, Tsi381 and PEX8624 datasheets for details on generating configuration cycles on each of the PCI buses.

Table 7-60 IDSEL and Interrupt Mapping for PCI Devices

PCI Bus	Device Number Field	AD Line for IDSEL	PCI Device or Slot	Device/	Slot INT to I	MPC8572	IRQ
				INTA#	INTB#	INTC#	INTD#
PCI1 (Tsi384)	0Ь0_0000	20	PMC1 Primary	IRQ1	IRQ2	IRQ3	IRQ0
	0b0_0001	21	PMC1 Secondary	IRQ2	IRQ3	IRQ0	IRQ1
PCI2 (Tsi384)	0b0_0000	22	PMC2 Primary	IRQ0	IRQ1	IRQ2	IRQ3
	0b0_0001	23	PMC2 Secondary	IRQ1	IRQ2	IRQ3	IRQ0
PCI3 (Tsi384)	0b0_0010	18	CPCI CPLD	IRQ2	IRQ3	IRQ0	IRQ1
PCI4 (Tsi381)	0b0_0010	18	uPD720101 USB	IRQ3	IRQ0	IRQ1	NC

7.7.2 PCI Vendor and Device IDs

The following table shows the Vendor ID and the Device ID for each of the planar PCI devices on the CPCI-6200.

Table 7-61 Planar PCI Device Identification

Function	Device	Vendor ID	Device ID
System Controller	MPC8572	0x1957	0x0041
PCI-E Switch	PEX8624	0x10B5	0x8624
PCI-E-to-PCI Bridge	Tsi381	0x10E3	0x8111
PCI-E-to-PCI-X Bridge	Tsi384	0x10E3	0x8114
PCI - PCI Bridge	PCI6466	0x10B5	0x6540
USB Controller	μPD720101	0x1033	0x0035

7.7.3 PCI Arbitration Assignments

The integrated PCI/X arbiters internal to the Tsi381, Tsi384, and PCI6466 bridges provide PCI arbitration for the CPCI-6200.

Table 7-62 PCI Arbitration Assignments

PCI Bus	Arbitration Assignment	PCI Master(s)
1	Tsi384 REQ/GNT[0]	PMC site 1 primary master
1	Tsi384 REQ/GNT[1]	PMC site 1 secondary master
2	Tsi384 REQ/GNT[0]	PMC site 2 primary master
2	Tsi384 REQ/GNT[1]	PMC site 2 secondary master
3	Tsi384 REQ/GNT[0]	PCI6466 primary Side
4	Tsi381 REQ/GNT[0]	USB Controller
CPCI Bus	PCI6466 Secondary Side REQ/GNT[6:0]	Backplane CPCI Devices ¹

^{1.} When CPCI-6200 operates in system slot

Replacing the Battery

A.1 Battery Location

For information on the battery's functional description, see *RTC Battery* on page 91.

NOTICE

Product Damage

Incorrect replacement of lithium batteries can result in a hazardous explosion.

When exchanging the on-board lithium battery, make sure that the new and the old battery are exactly the same battery models.

If the respective battery model is not available, contact your local Emerson sales representative for the availability of alternative officially approved battery models.

PCB and Battery Holder Damage

Removing the battery with a screw driver may damage the PCB or the battery holder. Do not use a screw driver to remove the battery from its holder.

Data Loss

Installing another battery type than the one that is mounted at product delivery may cause data loss since other battery types may be specified for other environments or may have a shorter lifetime.

Only use the same type of lithium battery as is already installed.

A.2 Replacing the Battery

- 1. Remove the old battery.
- 2. Install the new battery with the plus sign (+) facing up.
- **3.** Dispose of the old battery according to your country's legislation and in an environmentally safe way.

B.1 Emerson Network Power - Embedded Computing Documents

The publications listed below are referenced in this manual. You can obtain electronic copies of the publications by contacting your local Emerson sales office.

For documentation of released products, you can also visit http://www.emersonnetworkpower.com/embeddedcomputing. Navigate to **Solution**Services > Technical Documentation Search. Use the search field to look for the appropriate publication.

This Web site provides the up-to-date copies of Emerson product documentation.

Table B-1 Related Publications

Document Title and Source	Publication Number
CPCI-6200 Quick Start Guide	6806800J85
CPCI-6200 Safety Notes	6806800J86
CPCI-6115 CompactPCI Single Board Computer Installation and Use	6806800A68
MOTLoad Firmware Package User's Manual	6806800C24

B.2 Manufacturer's Publications

For additional information, refer to the following table for manufacturers' data sheets or user's manuals. A source for the listed document is provided. Please note that, while these sources have been verified, the information is subject to change without notice.

Table B-2 Manufacturers' Publications

Company	Document Title and Publication Number	
Advanced Micro Devices http://www.amd.com	S29GLxxxN MirrorBitTM Flash Family S29GL512N, S29GL256N, S29GL128N 512 Megabit, 256 Megabit, and 128 Megabit, 3.0 Volt-only Page Mode Flash Memory featuring 110 nm MirrorBit process technology, 27631 Revision A Amendment 4, May 13, 2004	
	http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/27631a4.pdf	
Analog Devices, Inc. http://www.analog.com	ADT7461 Temperature Monitor, ADT7461 Rev B	
Atmel Corporation http://www.atmel.com/	2-Wire Serial EEPROM 32K (4096 x 8), 64K (8192 x 8) AT24C32C, AT24C64C, 5174B-SEEPR-12/06 http://www.atmel.com/dyn/resources/prod_documents/doc5174.pdf 2-Wire Serial EEPROM 512K (65,536 x 8), Rev. 1116K-SEEPR-1/04	
Broadcom http://www.broadcom.com	http://www.atmel.com/dyn/resources/prod_documents/doc1116.pdf BCM5482S 10/100/1000BASE-T Gigabit Ethernet Transceiver, 5482S-DS06-R 2/15/07	
Freescale http://www.freescale.com	MPC8572 Integrated Host Processor Reference Manual MPC8572 Integrated Processor Hardware Specifications MPC8572 Errata	
Maxim/Dallas Semiconductor http://www.maxim-ic.com/	MAX3221E/MAX3223E/MAX3243E, 19-1283 Rev 5, 10/03 MAX811/MAX812 4-Pin $_\mu P$ Voltage Monitors with Manual Reset Input, 19-0411 Rev 3, 3/99	
NEC Electronics America http://www.necelam.com	μPD720101 USB2.0 HOST CONTROLLER, S16265EJ3V0DS00, April 2003 http://www.necelam.com/docs/files/S16265EJ3V0DS00.pdf	

Table B-2 Manufacturers' Publications (continued)

Company	Document Title and Publication Number
PLX Technology http://www.plxtech.com/	PCI6466 PC I-to-PCI Bus Bridge User Manual, Version 1.0, April, 2005 ExpressLane PEX 8624AA 5-Port/24-Lane Versatile PCI Express Switch Data
пертичнова	Book, Version 0.92
STMicroelectronics	M41T83 Serial Real-Time Clock, Rev 6, November 2007
http://www.st.com/stonline/	
Texas Instruments	TL16C2550, Dual UART with 16-Byte FIFO's, October 2006
http://www.ti.com	
Tundra	Tsi384 PCI Express-to-PCI/PCI-X Bridge Data Book, 80E1000_MA001_06, October 2007
www.tundra.com	Tsi381 PCI Express-to-PCI Bridge Data Book, 80F1100_MA001_05, December
	2007

B.3 Related Specifications

For additional information, refer to the following table for related specifications. As an additional help, a source for the listed document is provided. Please note that, while these sources have been verified, the information is subject to change without notice.

Table B-3 Related Specifications

Source	Document Title and Publication Number
Institute of Electrical and Electronics Engineers, Inc.	IEEE Standard for a Common Mezzanine Card Family: CMC, IEEE1386, October 25, 2001
	IEEE Standard Physical and Environmental Layer for PCI Mezzanine Cards: IEEE1386.1, October 25, 2001
PCI Special Interest Group	PCI Local Bus Specification, PCI Rev 2.2 December 18, 1998
http://www.pcisig.com	PCI-X Electrical and Mechanical Addendum to the PCI Local Bus Specification, PCI-X EM 2.0a, August 22, 2003
	PCI-X Protocol Addendum to the PCI Local Bus Specification, PCI-X PT 2.0a, July 22, 2003

Related Documentation

Table B-3 Related Specifications (continued)

Source	Document Title and Publication Number
PCI Industrial Manufacturers Group (PICMG) http://www.picmig.com	CPCI Hot Swap Specification, PICMG 2.1 R 2.0 CPCI Base Specification, PICMG 2.0 R 3.0 CPCI System Management Specification, PICMG 2.9 R 1.0 CPCI Packet Switching Backplane Specification, PICMG 2.16 R1.0
Universal Serial Bus http://www.usb.org/developers /docs/	Universal Serial Bus Specification, Revision 2.0 April 27, 2000
VITA Standards Organization http://www.vita.com/	PPMC, ANSI/VITA 32-2003 PCI-X on PMC, ANSI/VITA 39-2003

Safety Notes

This section provides warnings that precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed during all phases of operation, service, and repair of this equipment. You should also employ all other safety precautions necessary for the operation of the equipment in your operating environment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result in personal injury or damage to the equipment.

Emerson intends to provide all necessary information to install and handle the product in this manual. Because of the complexity of this product and its various uses, we do not guarantee that the given information is complete. If you need additional information, ask your Emerson representative.

This product is a Safety Extra Low Voltage (SELV) device designed to meet the EN60950-1 requirements for Information Technology Equipment. The use of the product in any other application may require safety evaluation specific to that application.

Only personnel trained by Emerson or persons qualified in electronics or electrical engineering are authorized to install, remove or maintain the product. The information given in this manual is meant to complete the knowledge of a specialist and must not be used as replacement for qualified personnel.

Keep away from live circuits inside the equipment. Operating personnel must not remove equipment covers. Only factory authorized service personnel or other qualified service personnel is allowed to remove equipment covers for internal subassembly or component replacement or any internal adjustment.

Do not install substitute parts or perform any unauthorized modification of the equipment or the warranty may be voided. Contact your local Emerson representative for service and repair to make sure that all safety features are maintained.

Emerson and our suppliers take significant steps to make sure that there are no bent pins on the backplane or connector damage to the boards prior to leaving the factory. Bent pins caused by improper installation or by inserting boards with damaged connectors could void the Emerson warranty for the backplane or boards.

This product operates with dangerous voltages that can cause injury or death. Use extreme caution when handling, testing, and adjusting this equipment and its components.

EMC

FCC Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules, EN55022. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, can cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the interference at his own expense.

Use only shielded cables when connecting peripherals to assure that appropriate radio frequency emissions compliance is maintained. Installed blades must have the face plates installed and all vacant slots in the shelf must be covered.

For applications where this product is provided without a face plate, or where the face plate has been removed, your system chassis/enclosure must provide the required electromagnetic interference (EMI) shielding to maintain EMC compliance.

Board products are tested in a representative system to show compliance with the above mentioned requirements. A proper installation in a compliant system maintains the required performance.

As soon as you modify the product or change the default configuration you are responsible for complying with all relevant regulatory standards.

Installation

Damage of Circuits

Electrostatic discharge and incorrect installation and removal of the product can damage circuits or shorten their life.

Before touching the product make sure that your are working in an ESD-safe environment or wear an ESD wrist strap or ESD shoes. Hold the product by its edges and do not touch any components or circuits.

Operation

Product Damage

High humidity and condensation on surfaces cause short circuits.

Do not operate the product outside the specified environmental limits. Make sure the product is completely dry and there is no moisture on any surface before applying power.

Personal Injury or Death

This product operates with dangerous voltages that can cause injury or death. Use extreme caution when handling, testing, and adjusting this equipment and its components.

Battery

Data Loss

Installing another battery type than the one that is mounted at product delivery may cause data loss since other battery types may be specified for other environments or may have a shorter lifetime.

Only use the same type of lithium battery as is already installed.

PCB and Battery Holder Damage

Removing the battery with a screw driver may damage the PCB or the battery holder.

Do not use a screw driver to remove the battery from its holder.

Product Damage

Incorrect replacement of lithium batteries can result in a hazardous explosion.

When exchanging the on-board lithium battery, make sure that the new and the old battery are exactly the same battery models.

If the respective battery model is not available, contact your local Emerson sales representative for the availability of alternative officially approved battery models.

Hot Swap

Data Loss

Removing the product with the blue LED still blinking causes data loss. Wait until the blue LED is permanently illuminated before removing the product.

Data Loss

Removing the RTM with the system power on and the blue LED on the front blade still flashing causes data loss.

Before removing the RTM from a powered system, power down the slot and the front blade's payload by opening the lower handle of the front blade and wait until the blue LED is permanently ON.

Sicherheitshinweise

Dieses Kapitel enthält Hinweise, die potentiell gefährlichen Prozeduren innerhalb dieses Handbuchs vorrangestellt sind. Beachten Sie unbedingt in allen Phasen des Betriebs, der Wartung und der Reparatur des Systems die Anweisungen, die diesen Hinweisen enthalten sind. Sie sollten außerdem alle anderen Vorsichtsmaßnahmen treffen, die für den Betrieb des Systems innerhalb Ihrer Betriebsumgebung notwendig sind. Wenn Sie diese Vorsichtsmaßnahmen oder Sicherheitshinweise, die an anderer Stelle diese Handbuchs enthalten sind, nicht beachten, kann das Verletzungen oder Schäden am System zur Folge haben.

Emerson ist darauf bedacht, alle notwendigen Informationen zum Einbau und zum Umgang mit dem System in diesem Handbuch bereit zu stellen. Da es sich jedoch bei dem System um ein komplexes Produkt mit vielfältigen Einsatzmöglichkeiten handelt, können wir die Vollständigkeit der im Handbuch enthaltenen Informationen nicht garantieren. Falls Sie weitere Informationen benötigen sollten, wenden Sie sich bitte an die für Sie zuständige Geschäftsstelle von Emerson.

Das Produkt wurde entwickelt, um die Sicherheitsanforderungen für SELV Geräte nach der Norm EN 60950-1 für informationstechnische Einrichtungen zu erfüllen. Die Verwendung des Produkts in einer anderen Anwendung erfordert eine Sicherheitsüberprüfung für diese spezifische Anwendung.

Einbau, Wartung und Betrieb dürfen nur von durch Emerson ausgebildetem oder im Bereich Elektronik oder Elektrotechnik qualifiziertem Personal durchgeführt werden. Die in diesem Handbuch enthaltenen Informationen dienen ausschließlich dazu, das Wissen von Fachpersonal zu ergänzen, können dieses jedoch nicht ersetzen.

Halten Sie sich von stromführenden Leitungen innerhalb des Systems fern. Entfernen Sie auf keinen Fall die Systemabdeckung. Nur werksseitig zugelassenes Wartungspersonal oder anderweitig qualifiziertes Wartungspersonal darf die Systemabdeckung entfernen, um Systemkomponenten zu ersetzen oder andere Anpassungen vorzunehmen.

Installieren Sie keine Ersatzteile oder führen Sie keine unerlaubten Veränderungen am System durch, sonst verfällt die Garantie. Wenden Sie sich für Wartung oder Reparatur bitte an die für Sie zuständige Geschäftsstelle von Emerson. So stellen Sie sicher, dass alle sicherheitsrelevanten Aspekte beachtet werden.

Emerson und unsere Zulieferer unternehmen größte Anstrengungen um sicherzustellen, dass sich Pins und Stecker von Boards vor dem Verlassen der Produktionsstätte in einwandfreiem Zustand befinden. Verbogene Pins, verursacht durch fehlerhafte Installation oder durch Installation von Boards mit beschädigten Steckern kann die durch Emerson gewährte Garantie für Boards und Backplanes erlöschen lassen.

Dieses Produkt wird mit gefährlichen Spannungen betrieben, die zu Verletzungen und Tod führen können. Seien Sie im Umgang mit dem Produkt und beim Testen und Anpassen des Produktes und seiner Komponenten äußerst vorsichtig.

EMV

FCC Class A

Das Produkt wurde getestet und erfüllt die für digitale Geräte der Klasse A gültigen Grenzwerte gemäß den FCC-Richtlinien Abschnitt 15 bzw. EN 55022 Klasse A. Diese Grenzwerte sollen einen angemessenen Schutz vor Störstrahlung beim Betrieb des Produkts in Geschäfts-, Gewerbe- sowie Industriebereichen gewährleisten. Das Produkt arbeitet im Hochfrequenzbereich und erzeugt Störstrahlung. Bei unsachgemäßem Einbau und anderem als in diesem Handbuch beschriebenen Betrieb können Störungen im Hochfrequenzbereich auftreten.

Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen; in diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen und dafür aufzukommen.

Benutzen Sie zum Anschließen von Peripheriegeräten ausschließlich abgeschirmte Kabel. So stellen Sie sicher, dass ausreichend Schutz vor Störstrahlung vorhanden ist. Die Blades müssen mit der Frontblende installiert und alle freien Steckplätze müssen mit Blindblenden abgedeckt sein.

Änderungen, die nicht ausdrücklich von Emerson erlaubt sind, können Ihr Recht das System zu betreiben zunichte machen.

Wenn dieses Produkt ohne Frontblende ausgeliefert wird oder wenn die Frontblende entfernt wird, muss Ihr System die notwendigenSchutzmechnismen gegen elektromagnetische interferenzen bereitstellen, um die Einhaltung der eletromagnetischen Verträglichkeit des Systems zu gewährleisten.

Boardprodukte werden in einem repräsentativen System getestet, um zu zeigen, dass das Board den oben aufgeführten EMV-Richtlinien entspricht. Eine ordnungsgemäße Installation in einem System, welches die EMV-Richtlinien erfüllt, stellt sicher, dass das Produkt gemäß den EMV-Richtlinien betrieben wird.

Sobald Sie das Produkt oder seine Standardkonfiguration verändern, müssen Sie dafür sorgen, dass alle relevanten Richtlinien eingehalten werden.

System Installation

Beschädigung von Schaltkreisen

Elektrostatische Entladung und unsachgemäßer Ein- und Ausbau des Produktes kann Schaltkreise beschädigen oder ihre Lebensdauer verkürzen.

Bevor Sie das Produkt oder elektronische Komponenten berühren, vergewissern Sie sich, daß Sie in einem ESD-geschützten Bereich arbeiten.

Betrieb

Beschädigung des Systems

Hohe Luftfeuchtigkeit und Kondensat auf den Oberflächen der Produkte kann zu Kurzschlüssen führen.

Betreiben Sie die Produkte nur innerhalb der angegebenen Grenzwerte für die relative Luftfeuchtigkeit und Temperatur und stellen Sie vor dem Einschalten des Stroms sicher, dass sich auf den Produkten kein Kondensat befindet.

Batterie

Datenverlust

Wenn Sie einen anderen Batterietyp installieren als der, der bei Auslieferung des Produktes installiert war, kann Datenverlust die Folge sein, da die neu installierte Batterie für andere Umgebungsbedingungen oder eine andere Lebenszeit ausgelegt sein könnte.

Verwenden Sie daher den gleichen Batterietyp, der bei Auslieferung des Produktes installiert war.

Beschädigung des PCBs und der Batteriehalterung

Wenn Sie die Batterie mit einem Schraubendreher ausbauen, können das PCB und die Batteriehalterung beschädigt werden.

Benutzen Sie keinesfalls einen Schraubendreher, um die Batterie aus der Halterung zu nehmen.

Beschädigung des Produktes

Fehlerhafter Austausch von Lithium-Batterien kann zu gefährlichen Explosionen führen.

Wenn Sle die Lithium-Batterie auf dem Produkt austauschen, stellen Sie sicher, dass die alte und die neue Batterie vom gleichen Typ sind.

Ist der Batterietyp nicht verfügbar, wenden Sie sich an Emerson um herauszufinden, welcher Batterietyp offiziell alternativ verwendet werden darf.

Hot Swap

Datenverlust

Wenn Sie das Produkt ausbauen, obwohl die blaue Hot-Swap LED noch blinkt, kann dies zu Datenverlust führen.

Warten Sie daher, bis die blaue LED durchgehend leuchtet, bevor Sie das Produkt ausbauen.

Beschädigung des Produktes

Wenn Sie das RTM ausbauen, während das System läuft und die blaue LED auf dem Front Board noch blinkt, können Daten verloren gehen.

Schalten Sie deshalb vor dem Ausbau des RTMs den Slot, in dem es sich befindet, ab und fahren Sie die Payload des Front Boards herunter, indem Sie den unteren Griff des Front Boards öffnen und warten, bis die blaue LED leuchtet ohne zu blinken.

Index

A abbreviations 15 accessories 26 installing 32 ordering 26	onboard 47 PCI Express expansion connector, J17 6 serial port, J16 59 USB 58 conventions 18 CPCI 50		
B baseboard features 21 installing 39 mechanical information 26 ordering 26 removing 41	CPCI-6200 configuring 35 features 21 installing 39 removing 41		
size 26	DUART interface 78		
battery replacing 179 board	E ethernet interface 75		
configuring 35 features 21 layout 45 ordering 26 removal 41 status indicators 67	F features 21 front panel 46 LED 67		
command line rules MOTLoad 99 compliances 24 configuring baseboard 35 board 35 CPCI-6200 35 connectors COM1 59 CPCI bus connector, J1 48 CPCI bus connector, J2 49 CPCI connector, J4 51 CPCI user I/O connector, J3 50 CPCI user I/O connector, J5 51 DDR3 memory module 60 Ethernet connector, J6 58 front panel 46	H headers boundary scan, P5 65 firmware programming 64 IPMI debug, P3 64 PCI Express switch, P7 66 processor COP, P6 65 processor debug, P4 64 help command MOTLoad 99 I installing accessories 32 baseboard 39 CPCI-6200 single board computer 39 PMC module 32 RTM 32 installing PMC 32 interrupts 85		
front panel latch, P1 59 memory module, X 1 and X 2 60	IPMI controller 91		

L list of commands MOTLoad 100 local bus interface 75 M MOTLoad command characteristics 97 command line help 99 command types 96 command types 96	removing baseboard 41 board 41 CPCI-6200 41 single board computer 41 replacing battery 179 requirements environmental 30 operating 30
command versus test 96 described 95	reset timing 90
how employed 95	S
interface 97 list of commands 100 memory requirements 95 prompt explained 97 test suites 97 tests described 96	serial interface 73 serial number location 27 single board computer removing 41 standard compliances 24
0	status indicators 68 front panel 68
operation modes 81	onboard 68
ordering 26 board 26	switch abort 67
P	board configuration 36 IPMI configuration 38
PCI Express expansion 84 PCI Express port 79 pin assignments	reset, P2 67 switches configuration switches 66 onboard 66 system interrupts 85 system memory 74
installing 32 PMC module installing 32 PMC sites 80 processor 73 programmable devices 93	T timers 75 U unpacking 29 board 29

HOW	TO REACH LITER	ATURE AND TECHNICAL SUPF	PORT:	
Ear liter	esturo training an	d tochnical assistance and suppor	t programs visit	
For literature, training, and technical assistance and support programs, visit www.emersonnetworkpower.com/embeddedcomputing				
	n Network Power. bal leader in enabl	ing Business-Critical Continuity™	www.emersonnetworkpower	.com/embeddedcomputing
AC P	ower Systems	■ Embedded Computing	Outside Plant	Services
	nectivity	Embedded Power	Power Switching & Control	Site Monitoring
■ DC P	ower Systems	Integrated Cabinet Solutions	Precision Cooling	Surge & Signal Protection
Emerson, Busine All other produc © 2009 Emerso	t or service names are t	Emerson Network Power and the Emerson N the property of their respective owners.	letwork Power logo are trademarks and so	ervice marks of Emerson Electric Co.