CALCULUS III FINAL REVIEW

CONVERGENCE. 10.3-10.5	
Convergence Notes	2
Tests for Positive Series	2
Tests for Non-Positive Series	3
Convergence Problems	4
Power Series: 10.6	
Power Series Notes	7
Power Series Problems	8
TAYLOR SERIES: 10.7-10.8	
Taylor Series Notes	9
Taylor Series Problems	10
PARAMETRIC EQUATIONS: 11.1	
Parametric Notes	11
Parametric Problems	12
ARC LENGTH, POLAR COORDINATES: 11.2–11.4	
Polar Coordinates Notes	13
Polar Coordinate Problems	14
CONIC SECTIONS: 11.5	
Conic Sections Notes	15
Conic Section Problems	16
Quiz Questions	
Quiz 3	17
Quiz 4	18

FINAL REVIEW QUESTIONS

CONVERGENCE: 10.3–10.5

Convergence Notes

• Let $\sum_{n=1}^{\infty} a_n$ be given and note for which series convergence is known, i.e.:

Geometric: let $c \neq 0$, if |r| < 1, then **p-Series**: converges if p > 1.

$$\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^p}$$

 $|r| > 1 \implies$ diverges $p < 1 \implies$ diverges

• The n^{th} Term Divergence Test: a relatively easy test that can be used to quickly determine if a test diverges if the $\lim_{n\to\infty} a_n \neq 0$. If $\lim_{n\to\infty} a_n = 0$, then the test is inconclusive and other tests must be applied.

Tests for Positive Series

• **Direct Comparison Test**: use if dropping terms from the denominator or numerator gives a series b_n wherein convergence is easily found, then compare to the original series a_n as follows:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges } \leftarrow 0 \le a_n \le b_n$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges } \leftarrow 0 \le b_n \le a_n$$

• **Limit Comparison Test**: use when the direct comparison test isn't convenient or when comparing two series. One can to take the dominant term in the numerator and denominator from a_n to form a new positive sequence b_n if needed.

Assuming the following limit $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then:

$$L>0 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges } \Longleftrightarrow \sum_{n=1}^{\infty} b_n \text{ converges}$$
 $L=0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges } \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges}$
 $L=\infty \text{ and } \sum_{n=1}^{\infty} a_n \text{ converges } \Longrightarrow \sum_{n=1}^{\infty} b_n \text{ converges}$

• Ratio Test: often used in the presence of a factorial (n!) or when the are constants raised to the power of $n(c^n)$.

Assuming the following limit
$$\rho = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$$
 exists, then

$$ho < 1 \implies \sum a_n$$
 converges absolutely

$$\rho > 1 \implies \sum a_n$$
 diverges

$$ho=1 \implies$$
 test is inconclusive

• Root Test: used when there is a term in the form of $f(n)^{g(n)}$

Assuming the following limit
$$C=\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$$
 exists, then

$$C < 1 \implies \sum a_n$$
 converges absolutely

$$C > 1 \implies \sum a_n$$
 diverges

$$C = 1 \implies$$
 test is inconclusive

• Integral Test: if the other tests fail and $a_n = f(n)$ is a decreasing function, then one can use the improper integral $\int_1^\infty f(x)dx$ to test for convergence.

Let $a_n = f(n)$ be a positive, decreasing, and continuous function $\forall x \geq 1$, then:

$$\int_{1}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}$$

Tests for Non-Positive Series

• Alternating Series Test: used for series in the form $\sum_{n=0}^{\infty} (-1)^n a_n$

Converges if $|a_n|$ decreases monotonically $(|a_n+1|\leq |a_n|)$ and if $\lim_{n\to\infty}a_n=0$

• Absolute Convergence: used if the series $\sum a_n$ is not alternating; simply test if $\sum |a_n|$ converges using the test for positive series.

Convergence Problems

Determine convergence or divergence using any method.

1.
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{7^n}$$

$$\implies \sum_{n=1}^{\infty} \frac{2^n}{7^n} + \sum_{n=1}^{\infty} \frac{4^n}{7^n}$$

$$\implies r = \frac{2}{7} < 1, \quad r = \frac{4}{7} < 1$$

Separate into two geometric series

Both geometric series converge, thus the original series converges.

$$2. \sum_{n=1}^{\infty} \frac{n^3}{n!}$$

$$3. \sum_{n=1}^{\infty} \frac{n}{2n+1}$$

4.
$$\sum_{n=1}^{\infty} 2^{\frac{1}{n}}$$

$$5. \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

6.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$$

$$7. \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$

$$8. \sum_{n=1}^{\infty} \frac{1}{n(\ln n)^3}$$

$$9. \sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

10.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 (\ln n)^3}$$

11.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 - n^2}}$$

12.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{3n^4 + 9}$$

13.
$$\sum_{n=1}^{\infty} n^{-0.8}$$

14.
$$\sum_{n=1}^{\infty} (0.8)^{-n} n^{-0.8}$$

15.
$$\sum_{n=1}^{\infty} 4^{-2n+1}$$

16.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

$$17. \sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

18.
$$\sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

$$19. \sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}}$$

$$20. \sum_{n=1}^{\infty} \left(\frac{n}{n+12} \right)^n$$

21.
$$\sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

Power Series: 10.6

Power Series Notes

• Power series: a infinite series in the form:

$$F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

Where the constant c is the center of the power series F(x).

- Radius of convergence R: the range of values of the variable x whereby the power series F(x) converges.
 - Every power series converges at x = c, as $(x c)^0 = 1$, though the series may diverge for other values of x.
 - $\circ F(x)$ converges for |x-c| < R and diverges for |x-c| > R
 - \circ F(x) may converge of diverge at endpoints c-R and c+R
 - **Interval of convergence**: the open interval (c R, c + R) and possibly one of both of the endpoints, each must be tested.
 - In most cases, the ratio test † can be used to find R.

Power Series Problems

TAYLOR SERIES: 10.7–10.8

Taylor Series Notes

Taylor Series Problems

PARAMETRIC EQUATIONS: 11.1

Parametric Notes

Parametric Problems

ARC LENGTH, POLAR COORDINATES: 11.2-11.4

Polar Coordinates Notes

Polar Coordinate Problems

CONIC SECTIONS: 11.5

Conic Sections Notes

Conic Section Problems

QUIZ QUESTIONS

Quiz 3

Quiz 4

FINAL REVIEW QUESTIONS

