D	D	NI	
г	П	IV	

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program	Third Year B. Tech. (CS)	Day &Date	Monday,24/06/2019
Course Code	[CSL-301]	Time	10 am To 1 pm
Course Title	Operating System-I	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

	No No	Question			Marks	BL	CC
1	Α	Write and explain o	perating system componen	ts and their functionalities.	8	2	1
	В	Explain five major gro	7	2	1		
2	Α	Assume you have the	following jobs to execute v	vith one processor with the job	8	3	2
		arranging in the orde	r				
		Processes	Arrival time	Burst time			
		P1	0	8			
		P2	1	4			
		P3	2	9			
)		P4	3	5			
>		P5	4	6			
		====					
			st-remaining-time-first sche	eduling and calculate the			
		average waiting time					
(Attempt any one o					
_	В		term scheduler and short term	7	[2]		
		scheduler in Operatir	7				
	С	7	[2]				
2	_	models	tion graph can be used to check	8	1		
3	Α	for deadlock in a syst	8	1 1			
	В		a solution for the same using	7	2		
	"	semaphores. Write th	'	[[]			
4	Α		TLB improves the performance	8	2		
•	^	of a demand paging s	TEB improves the performance	°	[2]		
		Attempt any one o					
	В			and z and following events,	7	[₁]	
		*		v) B requests z v) C requests z	'	4	
		vi) C requests x vii) C		1, 1			
		' '	' '	be allocated to the request			
				ation graph for the sequences.			
		And also mention wh	ether it is a deadlock? If it is	s, how to recover the deadlock			
	С	Describe the FIFO pag	ge replacement algorithm, a	assuming there are 3 frames and	7	3	
		the page reference st	ring is				
		701203042303					
		Find the number of p	age faults				
	1				1	1	

PRN			QP Code	CM-	156				
Que	No	Question	Marks	BL	СО				
5		Attempt any one of A&B							
24	Α	Explain paging scheme of memory management. What hardware support is	8	2	[5]				
		needed for its implementation?							
+ `	В	Explain the following	8	2	5				
7		i) file types ii) file operation iii) file attributes							
		Attempt any twoof C, D & E							
_5	С	Explain Sequential and Direct file access methods	6	[2]	[5]				
\$	D	Draw and explain two level Directory structure.	6	[2]	[5]				
\leftarrow	Ε	What is Directory? Explain which different operations can be performed on	6	2	5				
ר ב		Directory]							
6	Attempt any one ofA&B								
	Α	Explain Direct Memory Access as I/O hardware.	8	[2]	[5]				
	В	Draw and explain a typical bus structure in computer architectute.	8	2	[5]				
		Attempt any twoof C, D & E							
	С	Draw and explain the interrupt driven I/O system in detail	6	2	5				
\mathcal{K}	D	Write note on "Interrupt".	6	1	5				
$ \mathcal{U} $	Ε	Explain four different types of registers for I/O port.	6	2	5				

PRN	

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program	Third Year B.Tech. (CS)	Day & Date	Monday,17/06/2019
Course Code	[CSL302]	Time	10 am To 1 pm
Course Title	Database Engineering	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

	Que	No	Question	Marks	BL	СО
2	1	Α	Write SQL queries to perform following tasks on given schema. Student(snum: integer, sname: string, major: string, level: string, age: integer) Class(cname: string, room: string, fid: integer) Enrolled(snum: integer, cname: string) Faculty(fid: integer, fname: string, deptid: integer) 1] Find the names of all Juniors (Level = JR) who are enrolled in a class taught by I. Teach. 2] Find the age of the oldest student who has History major 3] Find the age of the oldest student who is enrolled in a course taught by I. Teach. 4] Find the names of all classes that meet in room R128 5] Find the names of all classes that have five or more students enrolled. 6] Find the names of all students who are enrolled in two classes	8	[6]	[4
2	_	В	List and Explain different Data Manipulation Language (DML) Statements with their syntax	7	[1]	1
1	2	Α	Draw E-R diagram for National Hockey League (NHL), with following assumptions. The NHL has many teams, each team has a name, a city, a coach, a captain, and a set of players, each player belongs to only one team, each player has a name, a position (such as left wing or goalie), a skill level, and a set of injury records, a team captain is also a player, a game is played between two teams (referred to as host_team and guest_team) and has a date and a score.	8	[6]	[2
			Attempt any one of B & C	1	1	
١		В	Explain – generalization, specialization and aggregation with example	7	[2]	1
		С	Explain strong entity set and weak entity set with example.	7	2	1
4	3	Α	Explain B+ tree indexing with example.	8	[2]	5
l		В	Compare Dense Indices with Sparse Indices	7	[4]	5

PRN			QP Code	CM	014
Que	No	Question	Marks	BL	СО
3	Α	Apply different applicable normal forms on the schema given in un-normalized form. video(title,director,serial) customer(name,addr,memberno) hire(memberno,serial,date)	8	[3]	3
		Attempt any one of B & C			<u> </u>
) B	What is functional dependency? Explain different types of functional dependency with example.	7	[1]	[3]
(-)	5 °	Explain First Normal Form (1NF) and Second Normal Form (2NF) with example.	7	[1]	[3]
5		Attempt any one of A & B	•		
	Α	Explain Lock-based protocols for concurrency control.	8	[1]	[6]
	В	Explain Timestamp-Based Protocols for concurrency control.	8	[1]	[6]
		-1	I		
	С	What is transaction? Give ACID properties of transaction.	6	[1]	6
	D	Describe the following terms i] Conflict Serializability ii] View Serializability	6	[1]	6
	Ε	What is granularity? What are the different types of granularity?	6	[1]	[6]
6		Attempt any one of A & B		I	
	Α	Explain Log-based Recovery Mechanism.	8	2	1
0	В	Explain use of Shadow Paging for Data Recovery. Give advantages and disadvantages of shadow paging.	8	[2]	[1]
		Attempt any two of C, D & E	-		
	С	Give different Deadlock Prevention Strategies.	6	[2]	[1]
	D	Explain different types of failure in DBMS.	6	[2]	[1]
9	E	Explain the following terms i] Volatile Storage ii] Non-volatile Storage iii]Stable Storage	6	[2]	[1]

----- X ------ X -----

DDN	
PRIN	•

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program	Third Year B.Tech. (CS)	Day & Date	Wednesday,26/06/2019
Course Code	[CSL303]	Time	10 am To 1 pm
Course Title	[Machine Learning]	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	e No	Question	1						Marks	BL	СО
1	А	[Identify two clusters in following data using K-mean clustering technique Data: 43,13, 17,37,9								[3]	[3]
	Attempt any one of B & C										
	В	Find the r	root node	of the De	ecision T	ree to classify fit	tness using follo	wing Data	10	[3]	[3]
		Age	Eat	fastfood		Do Exercise	Fitness				
		< 30	yes			No	Unfit				
		< 30	No			No	fit				
		< 30	No			Yes	fit				
		> 30	yes	1		No	Unfit				
		> 30	No			No	fit				
		> 30	No			Yes	fit				
		1									
	С	LIse data	in ∩ 1 R 1	to predict	fitnass	of narson having	attributes as a	πο > 3Ω Fat	10	3	3
				•		s using Bayesiar		gc > 30 , Lat		[5]	[5]
2		Attempt any three of A, B, C & D									
	Α	Explain le	earning ra	ite in regr	ession.				5	2	[1]
	В	How cent	troid is ca	lculated f	or multi _l	ole attribute dat	a in clustering		5	2	[1]
	С	Write hyp	oothesis f	unction fo	or logisti	c regression.			5	2	[1]
	D	What is g	ini index	? How is it	calculat	ed.			5	2	[1]
3		Attempt	t any th	ree of A	A, B, C 8	. D					
	Α	Explain co	ollaborati	ive filter b	ased red	ommender syst	em.		5	2	[1]
	В	How Simi	ilarity is n	neasured	in cluste	ring Techniques	?]		5	2	[1]
	С	Explain th	ne gradie	nt decent	learning	algorithm for si	mple perceptro	n.]	5	[2]	[1]
	D	Explain m	nerits and	l demerits	of Decis	ion Tree Classifi	er]		5	2	2
4	Α	i) Determ with K =3		of iris flo	wer havi	ng following attr	ibutes using K-n	n classifier	15	[3]	[3]
		sepal length	sepal width	petal length	petal width						
		5	3.2	1.2	0.2	1					
			1	ı	ı	_					

Que	No	Question					Ma	arks	BL	СО
		Training	Dataset							
		sepal	sepal	petal	petal					
		length	width	length	width	class				
		5.1	3.5	1.4	0.2	Iris-setosa				
		4.9	3	1.4	0.2	Iris-setosa				
		4.7	3.2	1.3	0.2	Iris-setosa				
		7	3.2	4.7	1.4	Iris-versicolor				
		6.4	3.2	4.5	1.5	Iris-versicolor				
		6.9	3.1	4.9	1.5	Iris-versicolor				
		ii) Design	an artific	rial neuro	n to reco	gnize logical AND operation.				
		ii) Design	an artific	lai neuro	ii to reco	gnize logical AND operation.				
5	_	· ·		vo of A,			4		T. 1	-
	Α				_	sion for following data when $W_{ m o}$ ch parameter are more appropriate	*	10	4	2
		101 - 40	mu // ₀ —	$-1, w_1$	— Z VVIII	cii parameter are more appropriati	z: vviiy:			
		Х	Υ							
		5	21							
		10	38							
		15	62							
		20	83							
		25	101							
	R	Δnalyze t	he follow	ing Δrtifi	rial Neur	al with hardlimit Thresholding func	tion and	10	4	2
	В	_				is implemented.	tion and	10	[4]	[2]
				1		, and a second				
				•						
				w	=- 0.5					
		X ₁	$W_1 = 1$	""	0.5					
		A1 —								
				∖ኔታ		Y				
		X ₂	W ₂ = 1	$\overline{}$						
		1								
	С	compare	simple lir	near, mul	tiple line	ar and polynomial regression.	<u> </u>	10	4	2
6	-		_	ur of A					r. 1	
	Α					is it needed? List applications of		5	2	1
		recomme		4						r 1
	В	Explain p	erforman	ice param	eters of	classification techniques.		5	[2]	[1]
	С	What the	assumpt	ions mad	e for line	ar regression?		5	2	1
	D	Explain R	egulariza	tion in mu	ultiple lin	ear regression.		5	2	1
	Е	Explain s	tructure c	of a biolog	gical neur	on.]		5	2	[1]

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program Third Year B. Tech. (CS)		Day &Date	Friday,21/06/2019
Course Code	Course Code CSL304		10 am To 1 pm
Course Title	Information Security]	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	No.	Question	Marks	Marks BL C	
1	Α	Explain following substitution cipher techniques	8	2	1
		a. Caeser Cipher			
		b. Playfair Cipher		, ,	ļ.,
	В	Explain X.500 security architecture	7	2	1
2	Α	Discuss public key cryptosystems to achieve secrecy and authentication		2	2
		Attempt any one of B & C			
	В	Explain Key generation schedule of DES]	7	2	2
	С	Explain Single round in DES encryption scheme	7	2	[2]
3	Α	What are the four ways of public key distribution	8	1	2
	В	Define simple hash functions? List the basic uses of Hash functions.	7	1	2
4	Α	Solve using RSA algorithm to perform encryption & decryption using RSA	8	3	3
		algorithm if p= 3, q = 11, e = 7, M = 5. Find C			
		Attempt any one of B & C			
	В	List the details of message authentication dialog for Kerberos version 4		1	3
	С	What is direct digital signature and arbitrated digital signature?	7	1	[3]
5		Attempt any one ofA&B			
	Α	Explain Pretty Good Privacy operation in detail	8	2	4
	В	Explain IPSec ESP format	8	2	4
		Attempt any twoof C, D & E	T .		
	С	List the applications of IPSec Protocol	6	1	4
	D	What is S/MIME?	6	1	4
	E	What is enveloped data and signed data in S/MIME	6	1	4
6		Attempt any one ofA&B	<u>l</u>		<u>, </u>
	Α	Explain Secure Socket Layer (SSL) architecture with block diagram?	8	2	4
	В	Explain SSL alert protocol	8	2	4
		Attempt any twoof C, D & E	I	1	1
	С	Explain are the Web security threats	6	2	4
	D	Explain SSL record header format	6	2	4
	E	Briefly explain Secure Electronics Transaction	6	2	4

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program Third Year B.Tech. (CS)		Day & Date	Wednesday,19/06/2019
Course Code	[CSL305]	Time	10 am To 1 pm
Course Title	System Programming]	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	e No	Question	Marks	BL	СО
1	Α	Discuss the Pass Structure of Assembler. How is the problem of forward	8	2	2
		reference resolved in single pass & two pass translation?			
	В	List and explain Advanced Assembler Directives.	7	2	2
2	Α	[Illustrate the Front End of Toy Compiler with neat diagram.]	8	2	[1]
	Attempt any one of B & C				
	В	Explain the fundamentals of language specification.	7	2	[1]
	С	[Illustrate Language Processor Development Tools.]	7	2	1
3	Α	Enlist and explain various data structures used in Macro Preprocessor Design.	8	2	2
	В	Illustrate Macro definition & Macro Call with example.	7	2	2
4	Α	Explain triple, quadruple & expression tree in Intermediate Code for expression.	8	2	3
		Attempt any one of B & C	<u> </u>		
	В	Illustrate Code Optimization in detail.	7	2	3
	С	Explain Operand Descriptor & Register Descriptor with example.	7	2	3
5		Attempt any one of A & B			
	Α	Illustrate with a neat diagram the structure of an Editor.	8	2	4
	В	[Illustrate Enhancement of Program Performance.]	8	2	4
		Attempt any two of C, D & E	•		
	С	Illustrate Program Testing & Debugging.	6	2	4
	D	How Command Dialogs are implemented?	6	2	4
	Е	Explain structure of User Interface.	6	2	4
6		Attempt any one of A & B			
	Α	What is Program Linking? Explain the use of ENTRY & EXTRN statements in	8	2	3
		relocation along with example.			
	В	What steps are involved in execution of a program? Explain translated, linked &		2	[3]
		load time addresses with example.			
		Attempt any two of C, D & E	ı	1 7	
	С	Write a note on Object Module.	6	2	3
	D	Discuss about Self- Relocating programs.	6	2	3
	E	Explain Linking for overlays with example.		2	3

PRN		

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Makeup 2018-19

Class - Program Third Year B.Tech. (CS)		Day & Date	Monday,25/06/2019
Course Code	[CS314]	Time	10 am To 1 pm
Course Title	[Data Science]	Max.Marks	100

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	No	Question	Marks	BL	СО
1	Α	Explain Statistical Data Modeling techniques.	8	2	[1]
	В	Explain Bonferroni's Principle with suitable example.	7	2	[1]
2	Α	What are four ways to handle missing data in dataset? Of the four	8	2	2
		methods for handling missing data, which method is preferred?			
		Attempt any one of B & C	1		
	В	For the stock price data given below, find the decimal scaling stock price	7	3	2
		for all the stock prices.			
		10 7 20 12 75 15 9 18 4 12 8 14			
	С	For the stock price data given below, identify all possible stock prices that	7	3	2
		would be outliers using Interquartile Range (IQR) method.			
		12 9 22 14 77 17 11 20 6 14 10 17			
		12 9 22 14 // 17 11 20 0 14 10 17			
3	Α	What is Exploratory Data Analysis (EDA)? What are objectives of EDA?	8	1	[2]
	В	Explain method of binning based on predictive value.	7	2	2
4	Α	What is Feature Selection? Explain methods of Feature Selection used in text	8	2	3
		categorization.		1 1	L 1
		Attempt any one of B & C	_		
	В	Explain Text Categorization (TC) using Example-Based Classifiers and Support	7	2	3
	С	Vector Machines. Explain document clustering algorithms.	7	2	3
5	-	Attempt any one of A & B	,	<u>[</u> 2]	[5]
•	Α	What is Betweenness? How Betweenness can be used to find Communities in	8	2	4
		Social Network Graph?		<u>[</u>	[[]
	В	How to discover Communities in Social-Network Graph directly?	8	2	[4]
		Attempt any two of C, D & E			
	С	How Social-Network Graph can be partitioned to identify Communities?	6	2	4
	D	How to find overlapping communities in Social Network Graph?	6	2	4
	E	Why triangles in Social-Network Graph are counted? Explain algorithm for	6	2	4
6		finding triangles in Social Network Graph.			
6		Attempt any one of A & B Explain classification evaluation measures accuracy, overall error rate, sensitivity	0	[₂]	
	Α	and specificity.	8	2	[5]
	В	Why do we not use the average deviation as a model evaluation measure? How	8	2	[5]
		is the square root of the MSE interpreted?			

PRN	QP Code CM-185
	J

Que No (Question	Marks	BL	СО
	Attempt any two of C, D & E				
	C What is the minimum descriptive length principle, and how does it represent the principle of Occam's razor?		6	2	5
	D	What might be a drawback of evaluation measures based on squared error? How might we avoid this?		2	5
	Ε	With suitable example explain decision cost/benefit analysis.	6	[2]	[5]

