## In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors  $\vec{b}_1$  and  $\vec{b}_2$ .

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

If possible, on the grids below, draw

- (i) the two vectors and the span of the columns of A,
- (ii) the solution set of  $A\vec{x} = \vec{b}_1$ .
- (iii) the solution set of  $A\vec{x} = \vec{b}_2$ .





ii) solution set 
$$Ax = \vec{b}_1$$



iii) solution set 
$$Ax = \vec{b}_2$$



counterexample

2. Indicate **true** if the statement is true, otherwise, indicate **false**. For the statements that are false, give a counterexample.

true

false

a) If  $A \in \mathbb{R}^{M \times N}$  has linearly dependent columns, then the columns of A cannot span  $\mathbb{R}^M$ .

b) If there are some vectors  $\vec{b} \in \mathbb{R}^M$  that are not in  $\bigcirc$ the range of  $T(\vec{x}) = A\vec{x}$ , then there cannot be a pivot in every row of A.

c) If the transform  $\vec{x} \to A\vec{x}$  projects points in  $\mathbb{R}^2$  $\bigcirc$ onto a line that passes through the origin, then the transform cannot be one-to-one.

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
  - (a) A linear system that is homogeneous and has no solutions.
  - (b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and  $T_A: \mathbb{R}^3 \to \mathbb{R}^4$  is one-to-one.
  - (c) A  $3 \times 7$  matrix A, in RREF, with exactly 2 pivot columns, such that  $A\vec{x} = \vec{b}$  has exactly 5 free variables.

4. Consider the linear system  $A\vec{x} = \vec{b}$ , where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(a) Express the augmented matrix (  $A \mid \vec{b}$  ) in RREF.

(b) Write the set of solutions to  $A\vec{x} = \vec{b}$  in parametric vector form. Your answer must be expressed as a vector equation.