

CONTENT

赛题和数据介绍

13.信息提取方案

2. 预训练语言模型

04.实验结果

赛题和数据介绍

比赛任务介绍、数据介绍

信息提取

信息抽取 (information extraction) ,即从自然语言文本中,抽取出特定的事件或事实信息,帮助我们将海量内容自动分类、提取和重构。**文本智能抽取**是信息检索、智能问答、智能对话等人工智能应用的重要基础,它可以克服自然语言非形式化、不确定性等问题,发掘并捕获其中蕴含的有价值信息,进而用于业务咨询、决策支持、精准营销等方面,对产业界有着重要的实用意义。

输入数据

2240_7105_4246_21224_962_13514_2203_17735_16929_4531_5025_17145_9685_6601_6905_2128_21224_9460_3424_19421_5815_6601_18736_21224_6441_7230

输出数据

2240_7105_4246_21224_962_13514_2203_17735/a 16929_4531_5025_17145/b 9685_6601_6905_2128_21224_9460/c 3424_19421_5815_6601_18736/o 21224_6441_7230/a

预训练语言模型

对全量数据进行语言模型训练

训练策略: 8层BERT

数据

- 语料大小: 916786 (去重) 过短文本: 删除长度小于5
- 动态mask: 10次
- Input_length: 128
- masked_lm_prob: 0. 15
- max_predictions_per_seq: 20
- Mask:
 - 80%: 使用[MASK]代替
 - 10%: 保持原token
 - 10%: 随机任意taken代替

● 模型

{"attention_probs_dropout_prob": 0. 2, "hidden_act": "gelu", "hidden_dropout_prob": 0. 2, "num_hidden_layers": 8}

● 训练

0-2epoch: 学习率 1e-4 3-4epoch: 学习率 5e-5

开发环境: GPU:GTX1070 CPU: i5 内存: 32G 系统: ubuntu16.04

注: 动态mask参考RoBerta,论文地址; https://arxiv.org/pdf/1907.11692.pdf

训练策略: 12层BERT

数据

• 动态mask+混合mask: 7次随机+3次n-gram(2-5)

• 语料大小: 916786 (去重)

• 过短文本:删除长度小于5

• Input_length: 128

• masked_lm_prob: 0. 15

• max_predictions_per_seq: 20

Mask:

• 80%: 使用[MASK]代替

• 10%: 保持原token

• 10%: 随机任意token代替

● 模型

《 "attention_probs_dropout_prob": 0. 2, "hidden_act": "gelu", "hidden_dropout_prob": 0. 2, "num_hidden_layers": 12

2240

2240

2240

2240

2240

2240

[CLS]

[CLS]

[CLS]

[CLS]

[CLS]

7105

7105

[MASK]

7105

[MASK]

[MASK

4246

21224

21224

[MASK]

21224

21224

962

13514

[MASK]

13514

17735

[MASK]

17735

17735

17735

16929

2531

2531

2531

2531

2531

[SEP]

[SEP]

[SEP]

[SEP]

[SEP]

2203

2203

2203

● 训练

0-2 epoch: **学习率 1e-4** 3-4 epoch: **学习**率 **5e-5**

信息提取方案

介绍整个信息提取方案以及数据处理

整体方案

数据增强

对原始train数据进行数据增强处理

方案1: BERT+LSTM+CRF

基于BERT+LSTM+CRF的方案1介绍

方案2: BERT+LSTM+MDP+CRF

基于BERT+LSTM+MDP+CRF的方案2介绍

方案3: BERT+LSTM+SPAN

基于BERT+LSTM+SPAN的方案3介绍

数据增强

原始数据

● 对原始数据采用BIDS标注方案

增强方案1

多实体序列中,删除实体:,即:

- oabc obc
- oac ---- oa
- obc —— ol

数据增强

增强方案2

包含的实体句子中, 提取的实体, 即:

- oabc —— oa
- oab —— oa

增强方案3

包含abc实体句子中,提取ac和bc实体, [

- oabc obc
- oabc ____ oac

方案1: BERT+LSTM+CRF

训练策略

● 模型: 8层BERT+BiLSTM+CRF

Train length: 148Test length: 512

• Epochs: 30

• Warmup-proportion: 0.05

gradient_accumulation_steps: 1

Weight_decay: 0. 01

Optimizer: adam

• Grad_clip: 5.0

• 分层学习率:

• bert_param: 1e-4

• lstm_param: 0. 001

• crf_param: 0. 001

• linear_param: 0.001

Lr scheduler: linear warmup + ReduceLROnPlateau (factor=0. 5, patience=5)

● 详细: 当第一次满足patience时,降低lstm、crf和linear层学习为1e-4,并关闭warm-up继续训练

方案2: BERT+LSTM+MDP+CRF

训练策略

- 模型: 12层BERT+BiLSTM+MDP+CRF, dropout rate: 0.5
- 输入长度: 128
- Epochs: 30
- Warmup-proportion: 0.05
- gradient accumulation steps: 1
- Weight decay: 0. 01
- Optimizer: adam + Lookahead
- Grad clip: 5.0
- 分层学习率:
 - bert param: 1e-4
 - lstm param: 0.001
 - crf param: 0.001
 - linear param: 0.001
- Lr scheduler: linear warmup + ReduceLROnPlateau (factor=0.5, patience=5)
 - 详细: 当第一次满足patience时,降低lstm、crf和linear层学习为1e-4,并关 闭warm-up继续训练
- 注: 1. MDP表示 multi-sample dropout, 论文地址: https://arxiv.org/pdf/1905.09788.pdf

2. Lookahead 优化器,论文地址: https://github.com/lonePatient/lookahead pytorch

方案3: BERT+LSTM+SPAN

数据处理

- 数据中存在嵌套关系。
- 常规: bios编码, 无法得到嵌套输出
- 指针输出:
 - 类似SQUAD等阅读数据集的构造数据
 - 对每个序列构造start span和end span

方案3: BERT+LSTM+SPAN

训练策略

● 模型: 12层BERT+LSTM+SPAN

● 输入长度: 128

• Epochs: 50

• Warmup-proportion: 0.05

gradient accumulation steps: 1

• Weight_decay: 0. 01

Optimizer: adam + Lookahead

• Grad_clip: 5.0

● 分层学习率:

• bert param: 1e-4

• lstm param: 0. 0005

• crf param: 0. 0005

• linear param: 0. 0005

Lr scheduler: linear warmup + ReduceLROnPlateau (factor=0. 5, patience=5)

● 详细: 当第一次满足patience时,降低lstm、crf和linear层学习为1e-4,并关闭warm-up继续训练

实验结果

各个方案在。榜和時的实验结果

实验结果

● 5折以结果提交:

BERT+LSTM+MDP+CRF

