Exercício #10

Considere o mesmo problema e sua solução ótima obtida no Exercício #9 letra b).

Parte 1: Para tentar melhorar um pouco a dieta, a nutricionista sugere ao Edmundo a ingestão de amendoim na refeição. Sabendo que cada porção de amendoim contém 20,3g de carboidratos, 27,2g de proteínas, 43,9g de gordura e 10,2 mg de

Proble Maxim			Problema de Minimização		
	≥ 0	\leftrightarrow	≥		
Variáveis	≤ 0	\leftrightarrow	≤	Restrições	
	Livre	\leftrightarrow	=		
	\leq	\leftrightarrow	≥ 0		
Restrições	\geq	\leftrightarrow	≤ 0	Variáveis	
	=	\leftrightarrow	Livre		

Niacina, determine o custo máximo dessa porção para que seu uso na dieta seja vantajoso.

Para resolver esta questão, transforma a nova coluna do modelo primal em sua correspondente restrição dual, e use os preços duais já conhecidos para resolver o problema. Obs.: Como o problema é de **minimização**, você deve ajustar os sinais dos Preços Duais conforme indicado no quadro acima.

x1 e x2 = número de porções de Bife e Batatas, respectivamente, a consumir na refeição.

Base	x1	x2	s1	s2	s3	s4	RHS
g	0	0	0	0	0,708	3,416	-25,839
x2	0	1	0	0	-0,665	-2,329	6,708
x1	1	0	0	0	0,155	0,311	3,106
s1	0	0	1	0	-9,193	-33,385	66,149
s2	0	0	0	1	-0,217	-5,435	55,652

```
Minimizar Custo = 4x1 + 2x2 + c3·x3

sujeito a:

Carb) 5x1 + 15x2 + 20.3x3 >= 50

Prot) 20x1 + 5x2 + 27.2x3 >= 40

Gord) 15x1 + 2x2 + 43.9x3 <= 60

Niac) 4.28x1 + x2 + 10.2x3 >= 20

x3

c3 = Custo

amendoim

20.3

27.2

43.9

10.2
```

Para que a Base seja mantida, devemos ter no modelo Dual:

$$20.3*y_1 + 27.2*y_2 + 43.9*y_3 + 10.2*y_4 \le c3$$

 $43.9*(-0.708) + 10.2*3.416 \le c3$
 $3.76 \le c3$

Resposta: o custo da porção de amendoim deve ser de no máximo R\$ 3,76 para seu uso na dieta compense.

Parte 2:

Suponha que o custo da porção de amendoim está sendo vendida no supermercado Amantino por R\$ 1,99. Use as equações do Simplex p/ problemas de Maximização ao lado para determinar toda a coluna da variável x3 (amendoim) no quadro ótimo atual. Ou seja, use a equação a seguir para calcular o custo reduzido para x3:

	X _B	X _N	
f	0	$-c_j + \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a_j}$	c _B B-1b
X _B	I	B-1N	B-1b

$$c.r. = 1.99 + c_B B^{-1} a_3$$

onde:
$$c_B = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 0 & -0.665 & -2.329 \\ 0 & 0 & 0.155 & 0.311 \\ 1 & 0 & -9.193 & -33.385 \\ 0 & 1 & -0.217 & -5.435 \end{bmatrix}$$

$$a_3 = \begin{bmatrix} -20.3 \\ -27.2 \\ 43.9 \\ -10.2 \end{bmatrix}$$

Obs.: o valor de $c_B B^{-1} a_3$ é justamente o valor limite de c3 que você deve ter calculado na primeira parte do exercício, mas com sinal trocado. Ou seja, c.r. = 1.99 - (valor máximo de c3 calculado anteriormente).

A coluna abaixo do custo reduzido pode ser calculada usando a equação: $B^{-1}a_3$

Base	x1	x2	х3	s1	s2	s3	s 4	RHS
g	0	0	c.r.	0	0	0,708	3,416	-25,839
x2	0	1		0	0	-0,665	-2,329	6,708
x1	1	0	$B^{-1}a_{3}$	0	0	0,155	0,311	3,106
s1	0	0		1	0	-9,193	-33,385	66,149
s2	0	0		0	1	-0,217	-5,435	55,652

Depois de montar esse quadro, continue o Simplex até obter a nova solução ótima.

Base	x1	x2	х3	s1	s2	s3	s4	RHS
g	0	0	-1,77	0	0	0,708	3,416	-25,839
x2	0	1	-5,418	0	0	-0,665	-2,329	6,708
x1	1	0	3,649	0	0	0,155	0,311	3,106
s1	0	0	-83,325	1	0	-9,193	-33,385	66,149
s2	0	0	18,691	0	1	-0,217	-5,435	55,652
g	0,485	0	0	0	0	0,783	3,567	-24,332
x2	1,485	1	0	0	0	-0,434	-1,868	11,319
x3	0,274	0	1	0	0	0,043	0,085	0,851
s1	22,835	0	0	1	0	-5,647	-26,293	137,065
s2	-5,122	0	0	0	1	-1,013	-7,026	39,745

A nova dieta será composta de 11,3 porções de batata e 0,85 porções de amendoim, com redução de custo de da refeição de R\$ 1,50.