Etapa Județeană și a Municipiului București, 9 Martie 2013

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a VIII-a

Problema 1. Determinați tripletele de numere întregi (x, y, z) cu proprietatea că

$$x^{2} + y^{2} + z^{2} = 16(x + y + z).$$

Soluţie.

Egalitatea din enunţ revine la $(x-8)^2+(y-8)^2+(z-8)^2=192...$ 2p Împărţind un pătrat perfect la 4 obţinem fie restul 0, fie restul 1. Numărul 192 este divizibil cu 4, prin urmare numerele x-8, y-8 şi z-8 sunt pare. Rezultă că există numerele întregi a_1,b_1,c_1 astfel încât $x-8=2a_1,\ y-8=2b_1$ şi $z-8=2c_1.$ Astfel, ecuaţia iniţială devine $a_1^2+b_1^2+c_1^2=48...$ 2p Repetând de două ori raţionamentul, găsim numerele întregi a_2,b_2,c_2 astfel încât $a_1=2a_2,b_1=2b_2,c_1=2c_2,$ iar $a_2^2+b_2^2+c_2^2=12,$ respectiv numerele întregi a_3,b_3,c_3 astfel încât $a_2=2a_3,b_2=2b_3,c_2=2c_3,$ iar $a_3^2+b_3^2+c_3^2=3...$ 1p Această egalitate este adevărată atunci când fiecare dintre numerele a_3,b_3,c_3 ia, la întâmplare, una dintre valorile 1 sau -1... 1p Ecuaţia din enunţ are deci soluţiile: (0,0,0),(0,0,16),(0,16,0),(16,0,0),(0,16,16),(16,0,16),(16,0,0),(16,16,16)... 1p

Problema 2. Determinați toate numerele reale x pentru care numărul $a = \frac{2x+1}{x^2+2x+3}$ este întreg.

Gazeta Matematică

Solutie.

Problema 3. Fie prisma hexagonală regulată ABCDEFA'B'C'D'E'F' cu muchia bazei AB = 12 și înălțimea $AA' = 12\sqrt{3}$. Notăm cu N mijlocul muchiei CC'.

- a) Demonstrați că dreptele BF' și ND sunt perpendiculare.
- b) Aflati dinstanta dintre dreptele BF' si ND.

Soluţie.

- a) Fie M mijlocul muchiei BB'; atunci $MN\|AD$, deci punctele A, D, M și N sunt coplanare. Dreapta de intersecție a planelor (BFF') și (ADN) este MQ, unde Q este mijlocul segmentului [BF]. Observăm că BFF'B' este pătrat și atunci $BF' \perp MQ$. Apoi, $AD \perp (BFF')$, de unde $BF' \perp AD$. Rezultă că $BF' \perp (ADN)$, prin urmare $BF' \perp ND$3p

Pentru a afla lungimea segmentului [SP], calculăm în două moduri aria triunghiului SND. Avem:

$$\mathcal{A}_{SND} = \mathcal{A}_{MNDQ} - \mathcal{A}_{SDQ} - \mathcal{A}_{SMN} = \frac{1}{2}SP \cdot ND.$$

Cum
$$MN = 12$$
, $QD = 18$, $ND = 6\sqrt{7}$, $MQ = 6\sqrt{6}$, obţinem $SP = \frac{15\sqrt{42}}{7}$ **2p**

Problema 4. Considerăm numărul natural nenul fixat n. Determinați numerele naturale nenule $x_1 < x_2 < \cdots < x_n < x_{n+1}$ cu proprietatea că

$$x_n \cdot x_{n+1} < 2(x_1 + x_2 + \dots + x_n).$$

Solutie.

Cum x_n şi x_{n+1} sunt numere naturale cu $x_n < x_{n+1}$, deducem că $x_{n+1} = x_n + 1$2p Atunci toate inegalitățile din (1) se vor transforma în egalități. Din $x_1 + x_2 + \cdots + x_n =$

 $1+2+\cdots+x_n$ şi $x_n\geq n$, rezultă că $x_n=n$ şi, apoi, $x_k=k$ pentru orice $k\in\{1,2,\ldots,n\}$. **3p** Notă. Pentru observarea faptului că $x_n\geq n$ (sau în general că $x_k\geq k$, $k=\overline{1,n}$) se acordă 1 punct.