

Basic Derivative Rules

by Sophia

≔

WHAT'S COVERED

In this lesson, you will learn more derivative rules for specific types of functions. Specifically, this lesson will cover:

- 1. Derivatives of x^n
- 2. Derivatives of $\sin x$ and $\cos x$
- 3. Derivatives of Absolute Value Functions
- 4. Finding the Slope of a Tangent Line

1. Derivatives of x^n

So far, here is what we know about the derivative of $f(x) = x^n$:

Value of <i>n</i>	f(x)	<i>f</i> *(x)
n = 1	f(x) = x	f'(x) = 1 (Derivative of linear function)
n = 2	$f(x) = x^2$	f'(x) = 2x (Derived in last challenge)

Now, let's look at other values of n:

If
$$n = 3$$
, then $f(x) = x^3$.

Also,
$$f(x+h) = (x+h)^3 = x^3 + 3hx^2 + 3h^2x + h^3$$

Then, evaluate the limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 Apply the limit definition of a derivative.

$$= \lim_{h \to 0} \frac{x^3 + 3hx^2 + 3h^2x + h^3 - x^3}{h}$$
 Replace $f(x + h)$ and $f(x)$ with their expressions.
$$= \lim_{h \to 0} \frac{3hx^2 + 3h^2x + h^3}{h}$$
 Simplify the numerator.
$$= \lim_{h \to 0} \left(\frac{3hx^2}{h} + \frac{3h^2x}{h} + \frac{h^3}{h} \right)$$
 Divide each term by h .
$$= \lim_{h \to 0} \left(3x^2 + 3hx + h^2 \right)$$
 Remove the common factor of h in each fraction.
$$= 3x^2$$
 Substitute 0 for h .

Thus, when $f(x) = x^3$, its derivative is $f'(x) = 3x^2$.

Let's look at one more power:

If
$$n = 4$$
, then $f(x) = x^4$.

Also,
$$f(x+h) = (x+h)^4 = x^4 + 4hx^3 + 6h^2x^2 + 4h^3x + h^4$$
.

Then, evaluate the limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 Apply the limit definition of a derivative.
$$= \lim_{h \to 0} \frac{x^4 + 4hx^3 + 6h^2x^2 + 4h^3x + h^4 - x^4}{h}$$
 Replace $f(x+h)$ and $f(x)$ with their expressions.
$$= \lim_{h \to 0} \frac{4hx^3 + 6h^2x^2 + 4h^3x + h^4}{h}$$
 Simplify the numerator.
$$= \lim_{h \to 0} \left(\frac{4hx^3}{h} + \frac{6h^2x^2}{h} + \frac{4h^3x}{h} + \frac{h^4}{h}\right)$$
 Divide each term by h .
$$= \lim_{h \to 0} \left(4x^3 + 6hx^2 + 4h^2x + h^3\right)$$
 Remove the common factor of h in each fraction.
$$= 4x^3$$
 Substitute 0 for h .

Thus, when $f(x) = x^4$, its derivative is $f'(x) = 4x^3$.

Now, let's put the derivatives we've seen together:

Value of <i>n</i>	f(x)	<i>f</i> *(x)
n = 1	f(x) = x	f'(x) = 1
n=2	$f(x) = x^2$	f'(x) = 2x
n=3	$f(x) = x^3$	$f'(x) = 3x^2$

In these functions, it appears that the original exponent becomes the coefficient, while the new exponent is 1 less than the original exponent.

FORMULA TO KNOW

Power Rule

$$\frac{d}{dx}[x^n] = n \cdot x^{n-1}$$

This is also written in other ways:

•
$$D[x^n] = n \cdot x^{n-1}$$

• If
$$y = x^n$$
, then $y' = n \cdot x^{n-1}$ or $\frac{dy}{dx} = n \cdot x^{n-1}$

Пин 🗆

Recall the other functions that can be written with exponents:

- Radical functions: $f(x) = \sqrt[n]{x} = x^{1/n}$
- Reciprocal functions: $f(x) = \frac{1}{x^n} = x^{-n}$

 \Leftrightarrow EXAMPLE Find the derivative of $f(x) = x^7$.

Apply the power rule: $f'(x) = 7x^{7-1} = 7x^6$

 \Leftrightarrow EXAMPLE Find the derivative of $g(x) = \frac{1}{x^3}$.

First, rewrite as $g(x) = x^{-3}$.

Now apply the power rule: $g'(x) = -3x^{-3-1} = -3x^{-4}$

Since there is a negative exponent in the answer, this is not considered to be in simplest form. Using properties of exponents, write $g'(x) = \frac{-3}{x^4}$.

 \Leftrightarrow EXAMPLE Find the derivative of $h(x) = \sqrt{x}$.

First, rewrite as $h(x) = x^{1/2}$.

Now apply the power rule: $h'(x) = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2}$

Since there is a negative exponent in the answer, this is not considered to be in simplest form. Using properties of exponents, write $h'(x) = \frac{1}{2x^{1/2}}$. This could also be written as $h'(x) = \frac{1}{2\sqrt{x}}$.

ピ TRY IT

Consider the functions $f(x) = x^{14}$, $g(x) = \frac{1}{x}$, and $h(x) = \frac{1}{\sqrt[3]{x}}$.

Find the derivative of f.

 $f'(x) = 14x^{13}$

Find the derivative of g.

 $g'(x) = -\frac{1}{x^2}$

Find the derivative of h.

 $h'(x) = -\frac{1}{3x^{4/3}}$

2. Derivatives of sinx and cosx

In order to use the limit definition, let's keep the following identities and limits in mind:

- $\sin(x+h) = \sin x \cos h + \sin h \cos x$
- cos(x + h) = cosxcosh sinxsinh
- $\lim_{h \to 0} \frac{\sinh}{h} = 1$
- $\lim_{h \to 0} \frac{\cos h 1}{h} = 0$

For the derivative of $f(x) = \sin x$, we set up the limit definition as usual:

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$
 Apply the limit definition of a derivative.

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \qquad \text{Replace } \sin(x+h) \text{ with } \sin x \cos h + \cos x \sin h.$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$
 Factor $\sin h$.

$$= \lim_{h \to 0} \left(\frac{\sin x (\cos h - 1)}{h} + \frac{\cos x \sin h}{h} \right) \quad \text{Write each part over } h.$$

$$= \lim_{h \to 0} \left(\sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right) \quad \text{Group "h" terms together.}$$

$$= \sin x(0) + \cos x(1)$$
 $\lim_{h \to 0} \frac{\cos h - 1}{h} = 0, \lim_{h \to 0} \frac{\sin h}{h} = 1$

$$= 0 + \cos x$$
 Simplify.

Thus, if
$$f(x) = \sin x$$
, $f'(x) = \cos x$.

For the derivative of $f(x) = \cos x$, we again set up the limit definition as follows:

$$f'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$
 Apply the limit definition of a derivative.

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} \qquad \text{Replace } \cos(x+h) \text{ with } \cos x \cos h - \sin x \sin h.$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \cos x - \sin x \sin h}{h}$$
 Group $\cos x$ and $\sin x$ terms.

$$= \lim_{h \to 0} \frac{\cos x(\cos h - 1) - (\sin x)\sin h}{h}$$
 Factor cosx.

$$= \lim_{h \to 0} \left(\frac{\cos x (\cos h - 1)}{h} - \frac{(\sin x) \sin h}{h} \right) \quad \text{Write each part over } h.$$

$$= \lim_{h \to 0} \left(\cos x \left(\frac{\cos h - 1}{h} \right) - \sin x \left(\frac{\sin h}{h} \right) \right) \quad \text{Group "} h \text{" terms together.}$$

$$= \cos x(0) - \sin x(1)$$
 $\lim_{h \to 0} \frac{\sinh h}{h} = 1$, $\lim_{h \to 0} \frac{\cosh - 1}{h} = 0$

$$= 0 - \sin x$$
 Simplify.

Thus, if
$$f(x) = \cos x$$
, $f'(x) = -\sin x$.

FORMULA TO KNOW

Derivative of Sine

$$\frac{d}{dx}[\sin x] = \cos x$$

Derivative of Cosine

$$\frac{d}{dx}[\cos x] = -\sin x$$

3. Derivatives of Absolute Value Functions

Recall the piecewise definition of |x| and its graph:

$$|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

- When x < 0, the graph is the line y = -x, which has slope -1.
- When x > 0, the graph is the line y = x, which has slope 1.
- When x = 0, the slope changes abruptly from -1 to 1, suggesting that there is no derivative when x = 0.

We can investigate this more closely using the limit definition of derivative for f'(0).

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|0+h| - 0}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

Now, let's examine the expression $\frac{|h|}{h}$ when h < 0 and when h > 0.

• When
$$h < 0$$
, $|h| = -h$, therefore $\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} (-1) = -1$.

• When
$$h > 0$$
, $|h| = h$, therefore $\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} (1) = 1$.

Thus, $\lim_{h\to 0} \frac{|h|}{h}$ does not exist. Since this limit is f'(0), we also say that f'(0) does not exist.

This means that the derivative of f(x) = |x| is as follows:

$$D[|x|] \begin{cases} -1 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined if } x = 0 \end{cases}$$

This idea can be applied to any absolute value function. We tend to analyze absolute value functions graphically rather than by using formulas.

 \Leftrightarrow EXAMPLE Find the derivative of f(x) = 3|x-2| graphically.

The graph of f(x) is shown below.

When x < 2, the slope of the graph is -3.

When x > 2, the slope of the graph is 3.

When x = 2, the graph has a corner point and therefore the derivative is undefined there.

Therefore,

$$f'(x) = \begin{cases} -3 & \text{if } x < 2\\ 3 & \text{if } x > 2\\ \text{undefined if } x = 2 \end{cases}$$

4. Finding the Slope of a Tangent Line

Now that we have some "shortcut" rules for finding derivatives, finding the slope of a tangent line is now a much easier process.

 \Leftrightarrow EXAMPLE Find the slope of the tangent line to the graph of $f(x) = \frac{1}{x}$ when x = 3 and x = 6.

First, we need to find f'(x). To do so, we need to rewrite $f(x) = \frac{1}{x} = x^{-1}$.

Now apply the power rule: $f'(x) = -1x^{-2} = \frac{-1}{x^2}$

The slope of the tangent line when x = 3 is $f'(3) = \frac{-1}{3^2} = -\frac{1}{9}$.

The slope of the tangent line when x = 6 is $f'(6) = \frac{-1}{6^2} = -\frac{1}{36}$.

SUMMARY

In this lesson, you learned that the limit definition of derivative is useful in establishing "shortcut" rules for finding derivatives of x^n , $\sin x$, $\cos x$, and absolute value functions. Using these rules enables us to solve problems involving derivatives and rates of change much more quickly and succinctly, such as finding the slope of a tangent line.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 2 OF ${\it CONTEMPORARY CALCULUS}$ BY DALE HOFFMAN.

FORMULAS TO KNOW

Derivative of Cosine

$$\frac{d}{dx}[\cos x] = -\sin x$$

Derivative of Sine

$$\frac{d}{dx}[\sin x] = \cos x$$

Power Rule

$$\frac{d}{dx}[x^n] = n \cdot x^{n-1}$$