Linear Regression

Areej Alasiry

- Linear Regression
- Errors in linear regression
- Finding Optimal Fit
- How to improve the regression models

Linear Regression

General Concept

$$y = w_0 + w_1 x$$

x independent variable

y dependent variable

 w_0 intercept

 w_1 slope

Error in Linear Regression

Finding the Optimal Fit

x	у	$x-\bar{x}$	$y - \overline{y}$	$(x-\bar{x})^2$	$(x - \bar{x}) \times (y - \overline{y})$
1	2	-2	-2	4	4
2	4	-1	0	1	0
3	5	0	1	0	0
4	4	1	0	1	0
5	5	2	1	4	2

$$b_1 = \frac{\sum (x - \overline{x}) (y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{6}{10} = 0.6$$

$$y = w_0 + w_1 x$$

$$4 = w_0 + (0.6 * 3)$$

$$4 = w_0 + (1.8)$$

$$b_0 = 4 - 1.8 = 2.2$$

$$y = 2.2 + 1.8 x$$

Ref: "https://bit.ly/2wwqaUW

Finding the Optimal Fit

 Linear regression find the line y=f(x) that minimizes the sum of squared errors over all the training dataset.

$$\sum_{i=1}^{n} (y_i - f(x_i)), where f(x_i) = w_0 + \sum_{i=1}^{m-1} w_i x_i$$

 $w = (A^T A)^{-1}A^T b$, where b vector of target values

Nice example: https://www.youtube.com/watch ?v=Qa_FI92_qo8

Better Regression Models

Removing Outlier

From: The Data Science Design MANUAL. Steven S. Skiena, ISBN: 978-3-319-55444-0 ©2017.[Chapter 9]

Figure 9.4: Removing outlier points (left) can result in much more meaningful fits (right).

Fitting non-linear functions

From: The Data Science Design MANUAL. Steven S. Skiena, ISBN: 978-3-319-55444-0 ©2017.[Chapter 9]

Figure 9.5: Higher-order models (red) can lead to better fits than linear models (green).

Feature and Target Scaling

• Example:

- $GDP = \$10,000 x_1 + \$10,000,000,000,000 x_2$
- $x_1 = Population Size$
- $x_2 = Literacy Rate$

• Problems:

- Unreadable coefficients
- Numerical Optimization
- Inappropriate formulations

Feature and Target Scaling

Feature Scaling: Z-Scores

$$Z(x) = \frac{(x - \mu)}{\sigma}$$

Sublinear Feature Scaling

$$\log(x)$$
 and \sqrt{x}

Sublinear Target Scaling

Dealing with Highly Correlated Variables

• In order to build a highly-predictive model, where we have a feature that is highly correlated with the target.

 However, there is the issue when the features are highly correlated with each other.

11/03/2024

How to Build a Linear Regression Model

The steps:

- Split the dataset into training and test dataset.
- Use the training the dataset to fit the model
- Performs the prediction over the test dataset
- Evaluate the performance

11/03/2024 Areej Alasiry 1

Evaluating Score-based Model

R-Squared

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (p - o)^{2}}{\sum_{i=1}^{n} (\mu - o)^{2}}$$

References

• The Data Science Design MANUAL. Steven S. Skiena, ISBN: 978-3-319-55444-0 ©2017.[Chapter 9]

11/03/2024 Areej Alasiry 17