® BUNDESREPUBLIK ® Offenlegungsschrift

29 35 689

C 08 L 27/06

C 08 L 27/00 C 08 L 23/28 C 08 K 5/13

6) Int. Cl. 3:

C 08 K 3/22

P 29 35 689.6-43 4. 9.79

19. 3.81

2 Anmeldetag: Offenlegungstag:

(2) Aktenzeichen:

PATENTAMT

(7) Anmelder:

Chemische Werke München Otto Bärlocher GmbH, 8000 München, DE

(7) Erfinder:

Hacker, Peter, 8000 München, DE; Lüttgen, Ludwig, 5160 Düren, DE; Szczepanek, Dipl.-Chem. Dr., Alfred, 8000 München, DE

BEST AVAILABLE COPY

Stabilisatorkombination für halogenhaltige Polymere

PATENTANWALTE

2935689

8 MÜNCHEN 22 MAXIMILIANSTRASSE 43

4. September 1979 P 13 597

CHEMISCHE WERKE MÜNCHEN OTTO BÄRLOCHER GMBH Postfach 500108 8000 München 50

Stabilisatorkombination für halogenhaltige Polymere

Patentansprüche

- 1. Stabilisatorkombination für halogenhaltige Polymere und deren Mischpolymerisate, enthaltend Calciumoxid und/oder -hydroxid, gekennzeichen et durch einen Gehalt mindestens eines phenolischen Antioxidans.
- 2. Stabilisatorkombination nach Anspruch 1, dadurch g e-k e n n z e i c h n e t, daß als phenolisches Antioxidans Bisphenol A, Butylhydroxyanisol, Butylhydroxytoluol und/oder 2,4-Dimethyl-6-tert.-butylphenol enthalten ist.
- 3. Stabilisatorkombination nach Anspruch 1 oder 2, dadurch gekennzeich net, daß 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid und 5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans enthalten sind.
- 4. Stabilisatorkombination nach einem der Ansprüche 1 bis 3, dadurch gekennzeich net, daß zusätzlich mindestens ein aliphatischer Polyalkohol und/oder mindestens

130012/0294

ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols enthalten sind.

- 5. Stabilisatorkombination nach Anspruch 4, dadurch g ek e n n z e i c h n e t, daß als aliphatischer Polyalkohol Pentaerythrit und/ der Trimethylolpropan und/oder deren Kondensationsprodukte und/oder deren Esterverbindungen enthalten sind.
- 6. Stabilisatorkombination nach Anspruch 4 oder 5, dadurch gekennzeich hnet, daß 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid, 5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans und 5 bis 20 Gewichtsteile mindestens eines aliphatischen Polyalkohols und/oder mindestens ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols enthalten sind.
- 7. Stabilisatorkombination nach einem der Ansprüche 4 bis 6, dadurch g e k e n n z e i c h n e t, daß zusätzlich mindestens eine Zink- und/oder Calciumseife mindestens einer aliphatischen Carbonsäure mit einer Kettenlänge von C₈ bis C₂₄ enthalten sind.
- 8. Stabilisatorkombination nach Anspruch 7, dadurch g ek en n z e i c h n e t, daß die der Zink- und/oder Calciumseife zugrundeliegenden aliphatischen Carbonsäuren eine Kettenlänge von C_{12} bis C_{20} aufweisen.
- 9. Stabilisatorkombination nach einem der Ansprüche 4 bis 6, dadurch g e k e n n z e i c h n e t, daß zusätzlich mindestens ein bekannter Barium-und/oder Cadmium- oder Bleistabilisator enthalten ist.

10. Stabilisatorkombination nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid, 5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans, 5 bis 20 Gewichtsteile mindestens eines aliphatischen Polyalkohols und/oder mindestens ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols und 10 bis 30 Gewichtsteile mindestens einer Zink- und/ der Calciumseife mindestens einer aliphatischen Carbonsäure mit einer Kettenlänge von C8 bis C24 oder 10 bis 30 Gewichtsteile mindestens eines bekannten Barium- und/oder Cadmium- oder Bleistabilisators enthalten sind.

Beschreibung

Die Erfindung betrifft eine Stabilisatorkombination für halogenhaltige Polymere und deren Mischpolymere, enthaltend Calciumoxid und/oder -hydroxid.

Halogenhaltige Polymere und deren Mischpolymere zeigen unter Einwirkung von Licht und Wärme sowie mechanischer Beanspruchung Zersetzungserscheinungen. Dies führt in den meisten Fällen zu einer Verschlechterung der mechanischen und physikalischen Eigenschaften. Besonders bei Einwirkung von Wärme treten unerwünschte Farbveränderungen auf.

Die Verarbeitung halogenhaltiger thermoplastischer Polymere erfolgt fast ausschließlich über einen Schmelzprozeß. Ohne ausreichende Stabilisierung ist daher eine Verarbeitung dieser Stoffe nicht möglich. Zusammensetzung und Konzentration dieser Stabilisatoren müssen auch im Hinblick auf die individuellen Anforderungen der zu erstellenden Endprodukte abgestimmt werden.

Zur Verhinderung dieser Zersetzungserscheinungen sind bereits verschiedene Zusatzstoffe empfohlen worden. In der
Hauptsache sind dies anorganische Salze, metallorganische
und organische Verbindungen. Es ist bekannt, Calciumhydroxid
als Hitzestabilisator für Polyvinylchloridharze einzusetzen.
Bei der Stabilisierung chlorhaltiger Polymere sind jedoch
mehrere Faktoren zu berücksichtigen. Beispielsweise ist es
erwünscht, die durch Wärmeeinwirkung hervorgerufene HCl-Abspaltung so weit und so lange wie möglich zurückzudrängen.
Ein weiteres Anliegen ist es, ebenso bei erhöhter Temperatur
auftretende Farbveränderungen durch Zusatz farbstabilisierender Mittel verhindern zu können.

Für spezielle Anwendungsgebiete ist es weiterhin notwendig, einer Verschlechterung der elektrophysikalischen Eigenschaften wirksam entgegenzutreten. Die Verwendung von Calciumhydroxid als Stabilisator für Polyvinylchlorid kann zwar erwartungsgemäß die HCl-Abspaltung zurückdrängen, jedoch tritt schon nach relativ kurzzeitigem Erhitzen eine Rotbraunverfärbung des Kunststoffs auf. Calciumhydroxid ist deshalb nur in beschränkter Form als Stabilisator für chlorhaltige Polymere anwendbar.

Aufgabe der Erfindung war es deshalb, einen Stabilisator für halogenhaltige Polymere zu schaffen, der eine hohe Farbstabilität sowie weiterhin eine hohe Stabilität bezüglich der Halogenwasserstoff-Abspaltung der damit stabilisierten Polymeren gewährleistet.

Erfindungsgemäß wurde diese Aufgabe durch eine Stabilisatorkombination der eingangs genannten Art dadurch gelöst, daß zusätzlich mindestens ein phenolisches Antioxidans enthalten ist. Die vorgenannte erfindungsgemäße Stabilisatorkombination, nachstehend auch als "Zweierkombination" bezeichnet, enthält als phenolisches Antioxidans bevorzugt Bisphenol A, Butylhydroxyanisol, Butylhydroxytoluol und/oder 2,4-Dimethyl-6-tert.-Butylphenol. Sie stabilisiert halogenhaltige Polymere hinsichtlich ihrer Farbe und Halogenwasserstoff-Abspaltungszeit in hervorragender Weise. Überraschenderweise hat sich gezeigt, daß die erfindungsgemäße Stabilisatorkombination eine synergistische Wirkung zeigt, da die durch Kombination erzielte Wirkung die Wirkung aus der Summe der Einzelkomponenten merklich übersteigt.

Die "Zweierkombination" enthält vorzugsweise 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid und 5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans.

In der Praxis wird die erfindungsgemäße Stabilisatorkombination meist zur Stabilisierung von chlorhaltigen Polymeren, insbesondere von Polyvinylchlorid und dessen Mischpolymere, verwendet.

Ferner hat sich gezeigt, daß eine noch bessere Stabilisierung erreicht werden kann, wenn die "Zweierkombination" aus Calciumoxid und/oder -hydroxid

und mindestens einem phenolischen Antioxidans zusätzlich mindestens einen aliphatischen Polyalkohol und/oder mindestens ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols enthält. Diese Ausführungsform wird in der vorliegenden Beschreibung auch als "Dreierkombination" bezeichnet.

Bevorzugt werden Pentaerythrit und/oder Trimethylolpropan als Polyalkohole eingesetzt.

Vorzugsweise enthalten solche "Dreierkombinationen" 25 bis

130012/0294

ORIGINAL INSPECTED

100 Gewichtsteile Calciumoxid und/oder -hydroxid;

5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans und 5 bis 20 Gewichtsteile mindestens eines aliphatischen Polyalkohols und/oder mindestens ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols, da hiermit besonders hervorragende Stabilisierungswirkungen erzielt werden.

Wie schon im vorigen Fall, bei Kombination von Substanzen aus zwei Stoffklassen, zeigt sich auch hier bei der "Dreierkombination" ein Synergismus hinsichtlich der stabilisierenden Wirkung.

Weiterhin kann die stabilisierende Wirkung nochmals gesteigert werden, wenn die "Dreierkombination", aus Calciumoxid und/oder -hydroxid,
mindestens einem phenolischen Antioxidans und mindestens einem Ronnem aliphatischen Polyalkohol und/oder mindestens einem Kondensationsprodukt und/oder mindestens einer Esterverbindung mindestens eines aliphatischen Polyalkohols zusätzlich mindestens eine Zink- und/der Calciumseife mindestens einer aliphatischen Carbonsäure mit einer Kettenlänge von C8 bis C24 enthält ("Viererkombination I").

Bevorzugt enthält diese Stabilisatorkombination mindestens eine Zink- und/oder Calciumseife von aliphatischen Carbonsäuren mit einer Kettenlänge von C_{12} bis C_{20} .

Vorzugsweise enthalten die erfindungsgemäßen Viererkombinationen I 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid,

5 bis 25 Gewichtsteile mindestens eines phenolischen Antioxidans, 5 bis 20 Gewichtsteile mindestens eines aliphatischen Polyalkohols und/ oder mindestens ein Kondensationsprodukt und/oder mindestens

130012/0294

eine Esterverbindung mindestens eines aliphatischen Polyalkohols und 10 bis 30 Gewichtsteile mindestens einer Zinkund/oder Calciumseife mindestens einer aliphatischen Carbonsäure mit einer Kettenlänge von C₈ bis C₂₄, da hiermit besonders gute Stabilisierungswirkungen erzielt werden.

Für die meisten Einsatzzwecke halogenhaltiger Thermoplaste, wie Rohre, Profile, Fittings, Kabelmäntel und -adern, werden wegen des günstigen Preis-Wirkungsverhältnisses bevorzugt Bleiverbindungen eingesetzt. Aufgrund der bekannten toxischen Eigenschaften dieser Verbindungen können verarbeitendes Personal und Umwelt nachteilig belastet werden. Die gesetzlich vorgeschriebenen Schutzmaßnahmen, z.B. Einhaltung bestimmter Emissions- und Immissionswerte, führen zu erheblicher finanzieller Belastung von Herstellern und Verarbeitern der betroffenen Industriezweige. Die erfindungsgemäße Neuentwicklung von Stabilisatorkombinationen ermöglicht die Substitution marktüblicher, schwermetellhaltiger, insbesondere bleihaltiger Stabilisatoren und stellt somit eine wirtschaftliche Alternative dar, welche ein den herkömmlichen Bleistabilisatoren vergleichbares Preis-Wirkungsverhältnis aufweist.

In erfindungsgemäßen Stabilisatorkombinationen können jedoch auch bekannte Bleiverbindungen sowie bekannte Barium-und/oder

Cadmiumstabilisatoren in einer wesentlich geringeren Konzentration als herkömmlich enthalten sein ("Viererkombination II"). Auch solche Stabilisatorkombinationen zeigen eine ausgezeichnete Stabilisierungswirkung.

Vorzugsweise enthalten solche Stabilisatorkombinationen 25 bis 100 Gewichtsteile Calciumoxid und/oder -hydroxid, 5 bis 25 Gewichtsteile

mindestens eines phenolischen Antioxidans, 5 bis 20 Gewichtsteile mindestens eines aliphatischen Polyalkohols und/oder mindestens ein Kondensationsprodukt und/oder mindestens eine Esterverbindung mindestens eines aliphatischen Polyalkohols und 10 bis 30 Gewichtsteile eines bekannten Barium- und/oder Cadmium- oder Bleistabilisators. Der prozentuelle Anteil an Bleiverbindungen, bezogen auf die Gesamtmenge des zu stabilisierenden halogenhaltigen Polymeren, wird durch Einsatz einer solchen, erfindungsgemäßen Vierkombination II im Gegensatz zu herkömmlicher Bleistabilisierung wesentlich verringert.

Die Herstellung der erfindungsgemäßen Stabilisatorkombinationen kann in an sich bekannter Weise, beispielsweise durch einfaches Vermischen der Komponenten oder durch Einrühren der anorganischen Substanzen in die Schmelze der organischen Bestandteile etc., erfolgen. Durch geeignete Verfahrensschritte können auch Pellets oder nicht-staubende Granulate erhalten werden.

Gute Stabilisierungswirkungen wurden erreicht, wenn zu 100 Gewichtsteilen zu stabilisierendem Polyvinylchlorid 3,5 Gewichtsteile der jeweiligen, erfindungsgemäßen Stabilisatorkombination zugegeben wurden.

Die nachstehenden Beispiele erläutern die Erfindung.

Für die Untersuchungen wurde folgender Grundansatz gewählt:

- 100,0 Gewichtsteile S-PVC, K-Wert 70
- 80,0 Gewichtsteile Dioctylphthalat
- 80,0 Gewichtsteile Calciumcarbonat
- 0,5 Gewichtsteile Paraffin, Schmelzbereich 54/56°C
- 3,5 Gewichtsteile erfindungsgemäße Stabilisatorkombination.

Zur Beurteilung der Stabilisierungswirkung werden 2 Methoden herangezogen. Dies ist einmal der nach VDE 0271 § 17 (Verband deutscher Elektrotechniker) festgelegte HCl-Abspaltungstest bei 200°C und der sogenannte Ofentest im Wärmeschrank mit rotierenden Probeträgern bei 180°C. Im Ofentest wird als Kriterium für die Stabilisierung einer Polymerenprobe die Farbveränderung in Abhängigkeit von Zeit und Temperatur herangezogen.

Die in der mchfolgenden Tabelle angegebenen Zahlen geben die Zusammensetzung der jeweiligen Stabilisatorkombination in Gewichtsteilen an.

In den Vergleichsbeispielen 1 bis 4 ist die Wirkung der reinen Einzelkomponenten zu sehen. Die erfindungsgemäßen Beispiele 1 bis 3 zeigen die Wirkungen bei erfindungsgemäßer Zweierkombination (Beispiel 1), erfindungsgemäßer Dreierkombination (Beispiel 2) und erfindungsgemäßer Viererkombination I (Beispiel 3). Die Vergleichsbeispiele 5 bis 9 zeigen die Wirkung nicht erfindungsgemäßer Zweierkombinationen. Die Vergleichsbeispiele 10 bis 12 zeigen schließlich die Wirkung nicht erfindungsgemäßer Dreierkombinationen.

CRIGINAL INSPECTED

Beispiel Nr.	Calcium- hydroxid	Bisphenol A	Pentaery- thrit	Zink- stearat	Farbumschlag im Hitzetest bei 180° G nach min	HCl-Ab- speltung in min
Vergleichs-Bsp	sp.					
~	100	ı	ı	ı	45 braun	46
N	ı	100	ı	ı	75 bräunlich	22
N	ı	1	100	1	315 bräunlich	25
7	1	ŧ	1	100	45 всрмага	5
enfind.gem.	83,4	16,6	-		60 rötlich	48
	2 74,0	74,9	11,1		45 rötlich	66
	5 57,1	71,5	8,5	22,9	580 bräunlich	86
	6,98	1	13,1	1	45 rötlich	25
Bsp.	6 71,4	1	ł	28,6	195 bräunlich	42
1		57,1	42,9	1	135 bräunlich	75
	1 80	33,4	ı	9,99	30 grau/schwarz	80
-	- 6	1	27,4	72,6	60 braun	12
10	64,6	1	9,7	25,7	195 bräunlich	40
7	1 62,3	.12,6	1	25,1	165 bräunlich	58
72		26,6	20,02	53,4	19 dunkelbraun	19
•		•	_			_

Aus den erfindungsgemäßen Beispielen 1, 2 und 3 sowie den Vergleichsbeispielen geht hervor, daß zwar durch eine nicht erfindungsgemäße Kombination von Einzelkomponenten hinsichtlich der HCl-Abspaltung oder der Farbstabilität teilweise annehmbare Ergebnisse erzielt werden konnten; jedoch werden nur bei den erfindungsgemäßen Beispielen 1, 2 und 3 gleichzeitig gute Ergebnisse hinsichtlich beider Eigenschaften erreicht.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.