Transmission d'information dans les arbres binomiaux

Durée: 2 heures

Définitions

Un arbre $\mathcal{F} = (r, \mathcal{L})$ est défini par la donnée d'un entier r, appelé $n \alpha u d$, et d'une liste d'arbres \mathcal{L} , éventuellement vide. Si la liste \mathcal{L} est vide, on dit que r est un nœud externe. Dans le cas contraire, la liste \mathcal{L} comprend ℓ éléments $\mathcal{T}_i = (r_i, \mathcal{L}_i)$, $0 \le i \le \ell$, on dit que r est un nœud interne, que les nœuds r_i sont les fils de r, et que r est le p ere des r_i . Enfin, le nœud r sera appelé la racine de l'arbre \mathcal{F} .

On conviendra que dans un arbre, tous les nœuds sont des entiers distincts.

Dans un arbre, les voisins d'un nœud sont son père et ses fils (s'ils existent).

Entre deux nœuds s et t de \mathcal{T} il existe un unique chemin, composé de nœuds $x_0, x_1, ..., x_k$ deux à deux distincts, tels que $x_0 = s$, $x_k = t$, et x_i et x_{i+1} sont voisins pour $0 \le i \le k-1$. On dit que k est la *longueur* de ce chemin.

La *profondeur* d'un nœud est la longueur du chemin qui le relie à la racine ; en particulier, la racine a pour profondeur 0. La profondeur d'un arbre est le maximum de la profondeur de ses nœuds.

Les arbres seront représentés en CAML de la manière suivante :

```
type arbre = Noeud of int * arbre list ;;
```

Question 1. Écrire une fonction **profondeur** qui prend en argument un arbre \mathcal{T} et renvoie sa profondeur.

```
profondeur : arbre -> int
```

Partie I. Arbres binomiaux

Soit *k* un entier positif ou nul. Un *arbre binomial* d'ordre *k* est défini comme suit :

- un arbre binomial d'ordre 0 est réduit à sa racine;
- si k > 0, un arbre binomial d'ordre k est de la forme $(r_k, (\mathcal{T}_{k-1}, \dots, \mathcal{T}_1, \mathcal{T}_0))$, où chaque \mathcal{T}_i est un arbre binomial d'ordre i. Dans la suite, \mathcal{B}_k désignera un arbre binomial d'ordre k.

Question 2. Dessiner \mathcal{B}_4 avec une numérotation des nœuds de votre choix (on rappelle que dans un arbre, les nœuds sont des entiers deux à deux distincts).

- **Question 3.** Quelle est le nombre de nœuds de \mathcal{B}_k ? Combien sont externes?
- **Question 4.** Pour k > 0, montrer qu'on peut aussi définir récursivement \mathcal{B}_k à l'aide de deux copies de \mathcal{B}_{k-1} .

Question 5. Montrer que si $k \ge 1$, un arbre binomial d'ordre k à qui on a supprimé les nœuds terminaux se transforme en un arbre binomial d'ordre k-1.

Question 6. Écrire une fonction **copie** qui prend en arguments un entier n et un arbre \mathcal{T} et renvoie une copie de l'arbre \mathcal{T} dans laquelle chaque nœud de numéro i est remplacé par un nœud de numéro i+n.

```
copie : int -> arbre -> arbre
```

Question 7. Écrire une fonction **bin** qui prend en argument un entier $k \ge 0$ et qui renvoie l'arbre \mathcal{B}_k , avec une numérotation des nœuds de votre choix. On rappelle que dans un arbre, les nœuds sont des entiers deux à deux distincts.

```
bin : int -> arbre
```

Question 8. Quelle est la profondeur de \mathcal{B}_k ? Quelle est la longueur maximale d'un chemin entre deux nœuds?

Partie II. Diffusion dans les arbres

On étudie dans cette partie le problème de la diffusion dans les arbres. La racine r de l'arbre $\mathcal{F}=(r,\mathcal{L})$ possède un message qu'elle doit transmettre à tous les autres nœuds. La diffusion procède par étapes, toutes de temps unitaire. À une étape donnée, chacun des nœuds déjà en possession du message le transmet à un et un seul de ses fils (sauf si tous ses fils l'ont déjà reçu). Une diffusion est donc caractérisée par un ensemble de fonctions : à chaque nœud interne v ayant n_v fils on associe une fonction injective f_v qui numérote ses fils de 1 à n_v , dans l'ordre dans lequel v leur transmet le message.

Voici un exemple de diffusion dans un arbre, dans lequel chaque nœud porte la date à laquelle il a reçu le message :

La durée d'une diffusion est le nombre d'étapes nécessaire pour que tout nœud reçoive le message (elle est de 4 dans l'exemple ci-dessus). Une diffusion est optimale si sa durée est minimale parmi les durées de toutes les diffusions.

Diffusion dans un arbre binomial

Considérons l'arbre binomial \mathcal{B}_k défini dans la partie précédente. Tout nœud interne v a pour fils les racines r_1, \ldots, r_{n_v} d'arbres binomiaux $\mathcal{B}_0, \ldots, \mathcal{B}_{n_v-1}$. La numérotation naturelle s'obtient en posant $f_v(r_i) = i$, tandis que la numérotation inversée s'obtient en posant $f_v(r_i) = n_v + 1 - i$.

- Question 10. Quelle est la durée de diffusion qui choisit la numérotation naturelle pour chaque nœud?
- Question 11. Quelle est la durée de diffusion qui choisit la numérotation renversée pour chaque nœud?
- **Question 12.** Quelle est la durée d'une diffusion optimale dans \mathcal{B}_k ? Justifier votre réponse.

Diffusion dans un arbre quelconque

Question 13. Proposer un algorithme pour calculer la durée d'une diffusion optimale dans un arbre \mathcal{T} quelconque (on ne demande pas d'écrire la fonction Caml correspondante).

Question 14. Donner un majorant de la durée d'une diffusion optimale dans un arbre quelconque à n nœuds, et exhiber pour tout n un arbre pour lequel cette borne est atteinte.

Question 15. Donner un minorant de la durée d'une diffusion optimale dans un arbre arbitraire à n nœuds, et exhiber pour tout n un arbre pour lequel cette borne est atteinte.