MATH 355: HOMEWORK 11

ALEXANDER LEE

Exercise 1 (6.3.1). (a) We show that (g_n) converges uniformly on [0,1] to $g = \lim g_n = 0$. Given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that $N > 1/\epsilon$. Then, whenever $n \geq \mathbb{N}$ and $x \in [0,1]$, it follows that

$$|g_n(x) - g(x)| = \left| \frac{x^n}{n} - 0 \right| = \left| \frac{x^n}{n} \right| = \frac{x^n}{n} \le \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

g is differentiable since it is the constant function g(x) = 0 for all $x \in [0,1]$. Specifically, we have that g'(x) = 0 for all $x \in [0,1]$.

(b) By the Algebraic Differentiability Theorem, we have that

$$g'_n(x) = \frac{n(nx^{n-1}) - x^n(0)}{n^2} = x^{n-1}.$$

It follows that (g'_n) converges on [0, 1] to

$$h(x) = \lim g'_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

By the contrapositive of the Continuous Limit Theorem, since h is not continuous and g'_n is continuous on [0,1], we have that (g'_n) does not converge uniformly on [0,1] to h. Observe that h and g' are not the same.

Exercise 2 (6.3.2). (a) The pointwise limit of (h_n) is h(x) = x. To show that the convergence is uniform on \mathbb{R} , let $\epsilon > 0$ be arbitrary and choose $N \in \mathbb{N}$ such that $N > 1/\epsilon^2$. Then, whenever $n \geq N$ and $x \in \mathbb{R}$, it follows that

$$|h_n(x) - h(x)| = \left| \sqrt{x^2 - \frac{1}{n}} - x \right| \le \left| \sqrt{x^2} + \sqrt{\frac{1}{n}} - x \right| = \sqrt{\frac{1}{n}} \le \sqrt{\frac{1}{N}} < \epsilon.$$

(b) By the Chain Rule, we have that

$$h'_n(x) = \frac{1}{2\sqrt{x^2 + \frac{1}{n}}} \cdot 2x = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}.$$

It follows that

$$g(x) = \lim h'_n(x) = \lim \frac{x}{\sqrt{x^2 + \frac{1}{n}}} = \frac{x}{\sqrt{x^2}} = 1.$$

By the contrapositive of the Differentiable Limit Theorem, since $g(x) = 1 \neq x = h(x)$ and each h_n is differentiable, it must be that h'_n does not converge uniformly to g(x) on \mathbb{R} , i.e., any neighborhood of zero.

Exercise 3 (6.4.2). (a) True. Given that $\sum_{n=1}^{\infty} g_n$ converges uniformly, it follows from a special case of the Cauchy Criterion for Uniform Convergence of Series that that given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever

- $m \geq N$ and $x \in A$, where A is the domain of g_n , we have that $|g_{m+1}(x)| < \epsilon$.
- Therefore, (g_n) converges uniformly to zero. (b) True. Given that $0 \le f_n(x) \le g_n(x)$ and $\sum_{n=1}^{\infty} g_n$ converges uniformly, it follows from the Cauchy Criterion for Series that given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \ge N$, we have that

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| \le |g_{m+1}(x) + g_{m+2}(x) + \dots + g_n(x)| < \epsilon.$$

Therefore, $\sum_{n=1}^{\infty} f_n$ converges uniformly as well. (c) False. TODO

Exercise 4 (6.4.4). TODO

Exercise 5 (6.4.5a). Observe that each $\frac{x^n}{n^2}$ is continuous on [-1,1]. Also note that for each $n \in \mathbb{N}$, $\left|\frac{x^n}{n^2}\right| \leq \frac{1}{n^2}$ for all $x \in [-1,1]$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, it follows from the Weierstrass M-Test that $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ converges uniformly on [-1,1]. Therefore, h(x) is continuous on [-1,1] by the Term-by-term Continuity Theorem.

Exercise 6 (6.5.1).

Exercise 7 (6.5.2).

Exercise 8 (6.5.4).