Alvarado ESFM Lista 4 de Problemas y Ejercicios Curso de Lógica Mata anel Alvarado 10 de enero de 2025

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

§1.4 LISTA 4

Ejercicio 1.4.1

Utilizando la definición de par ordenado de Kuratowski (a saber, $(a, b) = \{\{a\}, \{a, b\}\}\)$, demuestre que:

$$(a,b) = (c,d)$$
 si y sólo si $a = c$ y $c = d$

Demostración:

 \Rightarrow): Suponga que (a,b)=(c,d), entonces:

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$$

Analicemos por casos:

• a = b, en cuyo caso el conjunto de la izquierda se convierte en:

$$\{\{a\}\} = \{\{c\}, \{c, d\}\}\$$

por lo que $\{c\} = \{a\}$ y $\{c,d\} = \{a\}$. De la primera igualdad se sigue que a = c y de la segunda que c = d, esto es que a = c y b = d.

• $a \neq b$, en cuyo caso se tiene que $\{c\} = \{a\}$ o $\{c\} = \{a,b\}$. Afirmamos que lo segundo no puede suceder, ya que en tal caso a = c y b = c, lo cual implicaría que $a = b \#_c$. Por tanto, $\{c\} = \{a\}$ y, por ende a = c.

Ahora, tampoco puede suceder que $\{c,d\} = \{a\}$ ya que en tal caso $\{a,b\} = \{c\}$ lo que implicaría que $a = b\#_c$, por lo que $\{c,d\} = \{a,b\}$. Nuevamente, debe suceder que b=d.

Los diso incisos anteriores prueban el resultado.

 \Leftarrow): Es inmediata.

Ejercicio 1.4.2

Suponga que decidimos usar una definición alternativa para los pares ordenados:

$$(a,b) = \{a, \{a,b\}\}\$$

- (a) Suponga que existen tres conjuntos distintos x, y y z tales que $x = \{\{x, y\}, z\}$. Demuestre que entonces se tiene que $(x, y) = (\{x, y\}, z)$.
- (b) Demuestre que esta definición alternativa de par ordenado satisface que (a, b) = (c, d) si y sólo si a = b y c = d.

Sugerencia. Usar axioma de fundación.

Demostración:

De (1): veamos que:

$$(x,y) = \{x, \{x,y\}\}\$$

$$= \{\{x,y\}, \{\{x,y\},z\}\}\$$

$$= \{a, \{a,z\}\}\$$

$$= (a,z)$$

1

donde $a = \{x, y\}$. Por tanto, $(x, y) = (\{x, y\}, z)$.

De (2): La suficiencia es inmediata. Suponga que (a,b)=(c,d), es decir que $\{a,\{a,b\}\}=\{c,\{c,d\}\}$. Analicemos por casos:

• a = b, en cuyo caso se sigue que $(a, b) = \{a, \{a\}\}$, por tanto c = a o $c = \{a\}$. Si $c = \{a\}$, entonces tenemos que:

$$(c,d) = \{\{a\}, \{\{a\}, d\}\}\$$

no puede pasar que $\{\{a\},d\}=\{a\}$, ya que esto implicaría que $\{a\}\in\{a\}\#_c$. Por tanto, $a=\{\{a\},d\}$, así que en particular, $\{a\}\in a$.

Por axioma de fundación, para el conjunto $\{a, \{a\}\}$ existe $b \in \{a, \{a\}\}$ tal que $b \cap \{a, \{a\}\} = \emptyset$, en particular $b \neq \{a\}$, por lo que b = a, así que $a \cap \{a, \{a\}\} = \emptyset$, en particular, $\{a\} \notin a$. Esto contradice lo de arriba.

Por tanto, $c \neq \{a\}$, así que a = c. Ahora, se tiene que:

$${a, {a}} = {a, {a, d}}$$

se tiene que debe suceder que $\{a,d\} = \{a\}$, es decir que d=a. Por tano, a=c y b=d.

- $a \neq b$, en cuyo caso se tiene que $(a,b) = \{a,\{a,b\}\}\$ y $(c,d) = \{c,\{c,d\}\}\$. Se tienen dos casos:
 - a = c, en cuyo caso se sigue que:

$${a, {a, b}} = {a, {a, d}}$$

por lo que $\{a,b\} = \{a,d\}$ (en caso contrario se llega a que $a \in a\#_c$), se sigue así que b=d ya que en caso contrario se tendría que $b=a\#_c$.

• $a = \{a, d\}$, esto no puede suceder pues llegaríamos a una contradicción ya que implicaría que $a \in a\#_c$.

Por los dos incisos anteriores, se sigue que a = c y b = d.

Ejercicio 1.4.3

Definición 1.4.1

Un **ordinal límite** es un ordinal α no cero tal que α no es el sucesor de ningún ordinal.

Ejercicio 1.4.4

Demuestre que si γ es ordinal límite, entonces $\alpha + \gamma$ también lo es.

Sugerencia. Proceder por contradicción.

Demostración:

Sea γ un ordinal límite y α ordinal. Supongamos que $\alpha + \gamma$ no es ordinal límite, entonces existe un ordinal β tal que:

$$\alpha + \gamma = S(\beta)$$

en particular, $\beta < \alpha + \gamma$.

Ahora, como γ es ordinal límite, se tiene que:

$$\alpha + \gamma = \sup \left\{ \alpha + \eta \middle| \eta < \gamma \right\}$$

por lo anterior se tiene que existe $\eta < \gamma$ tal que:

$$\beta = \alpha + \eta$$

luego,

$$S(\beta) = S(\alpha + \eta) = \alpha + S(\eta)$$

en particular, se tiene que:

$$\alpha + S(\eta) = \sup \left\{ \alpha + \eta \middle| \eta < \gamma \right\}$$

pero, $\alpha + S(\eta) < \sup \left\{ \alpha + \eta \middle| \eta < \gamma \right\}$ ya que γ es ordinal límite# $_c$. Por tanto, $\alpha + \gamma$ es ordinal límite.

Ejercicio 1.4.5

Demuestre que, para todos los ordinales α, β se cumple que $\beta \leq \alpha + \beta$ y, si $\beta > 0$, entonces $\alpha < \alpha + \beta$.

Demostración:

Sea α ordinal. Probaremos la afirmación por inducción transfinita. En efecto, supongamos que para todo γ ordinal tal que $\gamma < \beta$ se tiene que $\gamma \leq \alpha + \gamma$, probaremos que $\beta \leq \alpha + \beta$. Se tienen tres casos:

- $\beta = 0$, en cuyo caso se tiene que como α es ordinal, entonces $0 \le \alpha$ y, $\alpha + 0 = \alpha$, por lo cual $0 \le \alpha + 0$, es decir que $\beta \le \alpha + \beta$.
- β es el sucesor de alguien, en cuyo caso existe η tal que $\beta = S(\eta)$, por hipótesis se tiene que $\eta \leq \alpha + \eta$. Como:

$$\alpha + \eta < S(\alpha + \eta) = \alpha + S(\alpha) = \alpha + \beta$$

y además, debe suceder que $S(\eta) \le \alpha + \beta$, esto es que $\beta \le \alpha + \beta$.

 \blacksquare Suponga que β no es el sucesor de nadie. Veamos que:

$$\alpha + \beta = \sup \left\{ \alpha + \eta \middle| \eta < \beta \right\}$$

en particular, se tiene que:

$$\alpha + \eta < \alpha + \beta$$
, $\forall \eta < \beta$

y, por hipótesis de inducción:

$$\eta \le \alpha + \eta, \quad \forall \eta < \beta$$

por lo que:

$$\eta < \alpha + \beta, \quad \forall \eta < \beta$$

Recordemos que:

$$\beta = \sup \left\{ \eta \middle| \eta < \beta \right\} = \left\{ \eta \middle| \eta < \beta \right\}$$

así que:

$$\beta \le \alpha + \beta$$

aplicando inducción transfinita por los tres incisos anteriores se sigue el resultado.

Ahora, probaremos que:

$$\alpha < \alpha + \beta$$

para todo par de ordinales α, β tales que $\beta > 0$. En efecto, procederemos por inducción transfinita sobre β . Suponga que para todo ordinal

Ejercicio 1.4.6

Para todo ordinal α , $0 + \alpha = \alpha$.

Demostración:

Procederemos por inducción transfinita sobre α : Supongamos que existe un ordinal γ tal que para todo $\beta < \gamma$ se tiene que $0 + \beta = \beta$. Se tienen tres casos:

- $\gamma = 0$, en cuyo caso se sigue que $0 + \gamma = \gamma + \gamma = \gamma + 0 = \gamma$.
- γ es el sucesor de algún ordinal η , en particular, como $\eta < \gamma$, entonces por hipótesis de inducción: $0 + \eta = \eta$, luego:

$$0 + \gamma = 0 + S(\eta) = S(0 + \eta) = S(\eta) = \gamma$$

 \bullet γ no es el sucesor de nadie, entonces es ordinal límite. Veamos que:

$$0 + \gamma = \sup \left\{ 0 + \beta \middle| \beta < \gamma \right\}$$
$$= \sup \left\{ \beta \middle| \beta < \gamma \right\}$$
$$= \gamma$$

por los tres incisos anterioes y aplicando inducción transfinita se sigue el resultado.

Ejercicio 1.4.7

Demuestre que la adición ordinal satisface la propiedad cancelativa por la izquierda: Para cualesquiera ordinales α, β, γ se tiene que:

$$\beta + \alpha = \beta + \gamma \Rightarrow \alpha = \gamma$$

Demostración:

Procederemos por inducción sobre β . Suponga que existe un ordinal η tal que $(\forall \chi < \eta)(\chi + \alpha = \chi + \beta \Rightarrow \alpha = \gamma)$. Se tienen tres casos:

• $\eta = 0$, en cuyo caso se tiene que:

$$\eta + \alpha = \eta + \gamma \Rightarrow 0 + \alpha = 0 + \gamma \Rightarrow \alpha = \gamma$$

por el ejercicio anterior.

• Suponga que η es el sucesor de algún ordinal χ , entonces por hipótesis de inducción se sigue que:

$$\chi + \alpha = \chi + \gamma \Rightarrow \alpha = \gamma$$

Se sigue así que:

$$\eta + \alpha = \eta + \gamma \Rightarrow S(\chi) + \alpha = S(\chi) + \gamma$$

Se tiene tres casos:

• $\alpha = 0$, en cuyo caso se sigue que:

$$S(\chi) = S(\chi) + \gamma$$

Si $\gamma > 0$, entonces por el ejercicio anterior se seguiría que: $S(\chi) < S(\chi) + \gamma \#_c$. Por tanto, $\gamma = 0$.

4

• α es el sucesor de algún número, digamos v, entonces:

$$S(\chi) + \alpha = S(\chi) + S(\upsilon)$$

= $S(S(\chi) + \upsilon)$

por lo que:

$$S(S(\chi) + \upsilon) = S(\chi) + \gamma$$

se tiene que $\gamma \neq 0$ (en caso contrario por un ejercicio llegaríamos a una contradicción). Si γ no fuera el sucesor de nadie, por un ejercicio anterior se tendría que $S(\chi) + \gamma$ tampoco lo es $\#_c$. Por ende, γ es el sucesor de alguien, así que existe ν ordinal tal que $\gamma = S(\nu)$. Se tiene pues que:

$$S(S(\chi) + \upsilon) = S(S(\chi) + \upsilon)$$

por lo cual, $S(\chi) + v = S(\chi)$

Observación 1.4.1

Se modificó el siguiente ejercicio.

Ejercicio 1.4.8

Demuestre que para un número ordinal α no cero, las siguientes condiciones son equivalentes:

- (1) α es ordinal límite.
- (2) $\forall \beta < \alpha$ se tiene que $S(\beta) < \alpha$.
- (3) $\alpha = \bigcup_{\beta \in \alpha} \beta$.

Demostración:

 $(1) \Rightarrow (2)$: Suponga que α es ordinal límite, entonces no es sucesor de ningún ordinal. Suponga que existe un ordinal β tal que $\beta < \alpha$ y $\alpha \leq S(\beta)$. Se tienen dos casos:

- $\alpha = S(\beta)$, lo cual es una contradicción ya que α no es sucesor de ningún ordinal.
- $\alpha < S(\beta)$, debe tenerse que $\alpha \leq \beta \#_c$, pues $\beta < \alpha$.

en ambos incisos anteriores se llega a una contradicción, por lo que $\forall \beta < \alpha(S(\beta) < \alpha)$.

- $(2) \Rightarrow (3)$: Suponga que $\forall \beta < \alpha(S(\beta) < \alpha)$. Veamos que $\alpha = \bigcup_{\beta \in \alpha} \beta$. Antes de empezar, ambos conjuntos son ordinales:
 - Para todo $\beta \in \alpha$, luego $\beta \subseteq \alpha$, lo cual implica que $\bigcup_{\beta \in \alpha} \subseteq \alpha$.
 - Sea $\gamma \in \alpha$, entonces $\gamma < \alpha$, en particular $S(\gamma) < \alpha \Rightarrow S(\gamma) \in \alpha$ y $\gamma \in S(\gamma)$, por lo que $\gamma \in S(\gamma) \subseteq \bigcup_{\beta \in \alpha} \beta$. Así que $\alpha \subseteq \bigcup_{\beta \in \alpha} \beta$.

por ambos incisos se sigue la igualdad.

 $(3) \Rightarrow (1)$: Suponga que $\alpha = \bigcup_{\beta \in \alpha} \beta$. Si α no fuese ordinal límite, existiría $\eta < \alpha$ tal que $\alpha = S(\eta)$.

Si sucede lo segundo, entonces:

$$S(\eta) = \alpha$$
$$= \bigcup_{\beta \in \alpha} \beta$$

en particular, para todo $\beta \in \alpha$ se tiene que $\beta \leq \eta$ pues en caso contrario α no podría ser el sucesor de η , así que:

$$\beta \subseteq \eta, \quad \forall \beta \in \alpha$$

por ende,

$$\bigcup_{\beta\in\alpha}\beta\subseteq\eta$$

y, $\eta \subseteq \bigcup_{\beta \in \alpha} \beta$ pues $\eta \in \alpha.$ Por tanto:

$$\bigcup_{\beta \in \alpha} \beta = \eta$$

lo que implica:

$$S(\eta) = \eta$$

cosa que es una contradicción $\#_c$. Por tanto, α es ordinal límite.

Ejercicio 1.4.9 (Nombre)