Neizrazito, evolucijsko i neuroračunarstvo Neizrazita logika.

prof.dr.sc. Bojana Dalbelo Bašić prof.dr.sc. Marin Golub dr.sc. Marko Čupić

> Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu Akademska godina 2013./2014.

> > 24. listopada 2013.

Osnovne operacije

U neizrazitoj logici, veznike interpretiramo djelovanjem na mjeru istinitosti propozicija nad kojima djeluju:

- Negacija: $\neg a = 1 a$
- Konjunkcija: $a \wedge b = \min(a, b)$
- Disjunkcija: $a \lor b = \max(a, b)$
- Implikacija: $a \rightarrow b = \min(1, 1 + b a)$

Osnovne operacije

Vrijede uobičajeni zakoni:

- involutivnost
- komutativnost
- asocijativnost
- distributivnost
- idempotencija
- rubni uvjeti
- DeMorganovi zakoni

Osnovne operacije

Ne vrijede:

- zakon kontradikcije: $a \wedge \neg a = 0$
- zakon isključenja trećega: $a \lor \neg a = 1$

$$a \wedge \neg a = \min(a, 1 - a) \neq 0$$
 ako je $a \notin \{0, 1\}$

$$a \lor \neg a = \max(a, 1 - a) \neq 1$$
 ako je $a \notin \{0, 1\}$

Primjerice, provjerite za a = 0.5 te a = 0.8.

Predikati

U klasičnoj logici, predikati su funkcije koje preslikavaju jedan ili više elemenata domene u jednu od vrijednosti istinitosti: *istinu* (1) ili *laž* (0).

- U neizrazitoj logici, neizraziti predikati su funkcije koji preslikavaju vrijednost iz intervala [0, 1].
- Opisuju svojstvo objekata domene.
- Neizraziti predikat je oblika "x je P", primjerice: "z je skup.",
 "w je mlad."
 - Izrazi skup i mlad su neizraziti izrazi.
 - Skup(z) i Mlad(w) su neizraziti skupovi tj. neizraziti predikati.

Predikati

Predikat oblika "x je P" može se interpretirati na dva načina:

- P(x) je neizraziti skup. Funkcija pripadnosti nekog x u P definirana je s $\mu_P(x)$.
- ② $\mu_P(x)$ predstavlja mjeru u kojoj element domene x zadovoljava svojstvo P. Vrijednost istintosti predikata P definirana je funkcijom $\mu_P(x)$.
- 3 Vrijednost istinitosti = $\mu_P(x)$.

Općenito "zaključivanje" je postupak izvođenja novog znanja iz već postojećeg.

Pravila tipa "Ako-Onda" su najvažniji oblik predstavljanja znanja

• "Ako x je A onda y je B."

Modus ponens

U klasičnoj logici, *modus-ponens* je sljedeće pravilo zaključivanja:

- Činjenica: x je A
- Pravilo: Ako x je A tada y je B
- Zaključak: y je B

Primjer.

- Činjenica: pada kiša
- Pravilo: Ako pada kiša tada ceste su mokre
- Zaključak: ceste su mokre

Kako se zove pravilo zaključivanja koje iz ceste su mokre i prethodnog pravila zaključuje pada kiša?

Neizrazito pravilo

Općenit oblik neizrazitog pravila je:

- Ako A(x) tada B(y)
- Uočiti: pravilo se može interpretirati kao binarna relacija R(x, y):
 - $R(x,y) = A(x) \rightarrow B(y)$

Generalizirani modus ponens

U neizrazitoj logici, klasični modus-ponens može se dati u nešto slobodnijem obliku:

- Činjenica: x je A'
- Pravilo: Ako x je A tada y je B
- Zaključak: y je B'

Pri tome:

- činjenicu "x je A'" možemo promatrati kao unarnu relaciju R(x) nad U,
- pravilo "Ako x je A tada y je B" možemo promatrati kao binarnu relaciju $R(x,y)\subseteq U\times V$,
- zaključak "y je B'" izvodimo kao kompoziciju $R(y) = R(x) \circ R(x,y)$ što je unarna relacija nad V (odnosno neizraziti skup).

Generalizirani modus ponens

Uočiti: zaključak kod generaliziranog modus ponensa može biti različit od konsekventa.

Primjerice: neka je $U = \{1, 2, 3, 4\}$, neka imamo pravilo "ako x je 3, tada y je 2" te neka imamo činjenicu "x je približno 3": očekujemo zaključak "y je približno 2".

Što je "približno zaključivanje"

Osnovna razlika od viševrijednosne logike:

- Zaključak u približnom zaključivanju zavisi od značenja koje je pridruženo neizrazitim propozicijama.
- Približno zaključivanje je računanje s neizrazitim skupovima koji predstavljaju značenja neizrazitih propozicija.
- Približno zaključivanje služi za predstavljanje znanja i zaključivanje kada je znanje izraženo prirodnim jezikom.

Osnovni pojam vezan uz približno zaključivanje: jezična varijabla (još se koristi pojam *lingvistička varijabla*).

Primjeri: visina, brzina, temperatura, pogreška...

Primjer jezične varijable "Pogreška"

Neka jezična varijabla *Pogreška* opisuje kakva može biti pogreška u izmjerenim podatcima (u smislu *odstupanja* od stvarne vrijednosti).

•
$$x = POGREŠKA$$

•
$$T_x = \{NB, NM, NS, ZO, PS, PM, PB\}$$

•
$$U = [-6, 6]$$

•
$$NB = \int_{-6}^{6} \frac{L(x;-6,-4)}{x}$$

•
$$NM = \int_{-6}^{6} \frac{\Lambda(x; -6, -4, -2)}{x}$$

•
$$NS = \int_{-6}^{6} \frac{\Lambda(x; -4, -2, 0)}{x}$$

•
$$ZO = \int_{6}^{6} \frac{\Lambda(x;-2,0,2)}{x}$$

•
$$PS = \int_{-6}^{6} \frac{\Lambda(x;0,2,4)}{x}$$

$$PM = \int_{-6}^{6} \frac{\Lambda(x; 2, 4, 6)}{x}$$

•
$$PB = \int_{-6}^{6} \frac{\Gamma(x;4,6)}{x}$$

Primjer jezične varijable

Atomarne (primitivne) propozicije su oblika:

"Pogreška je negativna-velika"

- Pogreška je fizička varijabla
- negativna-velika je vrijednost varijable Pogreška

Simbolički, ovo zapisujemo: **E** je **NB**.

Općenito, zapis **atomarne neizrazite propozicije** je:

x je A

- Značenje propozicije "E je NB" (engl. Error is Negative Big) definirano je neizrazitim skupom NB tj. njegovom funkcijom pripadnosti $\mu_{NB}(x)$ definiranom na [-6,6].
- μ_{NB}(x) definira u kojoj mjeri određena kvantitativna vrijednost (engl. crisp) numeričke varijable pogreška pripada skupu negativna velika pogreška.
- Određena numerička vrijednost pridružuje se varijabli E. (engl. variable assignment ili VA).
- Ako je dana određena numerička vrijednost, "značenje" određuje u kojoj je mjeri zadovoljen izraz "E je NB".

Primjer: VA(E)=-5.4 tj. varijabli je pridružena vrijednost -5.4. Ako je $\mu_{NB}(-5.4)=0.7$ onda je 0.7 stupanj valjanosti propozicije "E je NB".

Složene neizrazite propozicije grade se pomoću veznika "i", "ili", "ne", "ako-onda" (i sl.) iz atomarnih neizrazitih propozicija. Neka je varijabla X definirana nad univerzalnim skupom U. Primjeri složenih neizrazitih propozicija su:

- x je A i x je B
- x nije A
- Ako x je A onda x je B

Značenje složenih neizrazitih propozicija dano je interpretacijom "i", "ili", "ne", "ako-onda".

KONJUNKCIJA

x je Ax je B

x je $A \cap B$

Značenje $A \cap B$ određeno je s $\mu_{A \cap B}(x)$, primjerice, neka t-norma.

Primjer propozicije *Pritisak nije jako visok* i *Pritisak nije jako nizak* daje zaključak *Pritisak nije jako visok i nije jako nizak*, a njegovo značenje određeno je funkcijom pripadnosti:

 μ (nije vrlo visok) \cap (nije vrlo nizak).

DISJUNKCIJA

x je Ax je B

x je $A \cup B$

Značenje $A \cup B$ određeno je s $\mu_{A \cup B}(x)$, primjerice, neka s-norma.

Primjer propozicije *Pritisak nije jako visok* ili *Pritisak nije jako nizak* daje zaključak *Pritisak nije jako visok ili nije jako nizak*, a njegovo značenje određeno je funkcijom pripadnosti:

 μ (nije vrlo visok) \cup (nije vrlo nizak).

Proširenje neizrazitih propozicija

Na prethodnim primjerima slagali smo složene propozicije od atomarnih u kojima su varijable bile definirane nad istim univerzalnim skupom. Pogledajmo sada složeniji slučaj.

Neka je varijabla x definirana nad univerzalnim skupom U a varijabla y nad univerzalnim skupom V.

Značenje "
$$x$$
 je A i y je B " određeno je s
$$\int_{U\times V} \frac{\min(\mu_A(x),\mu_B(y))}{(x,y)}$$
 Značenje " x je A ili y je B " određeno je s
$$\int_{U\times V} \frac{\max(\mu_A(x),\mu_B(y))}{(x,y)}$$

NEGACIJA

Negacija propozicije "x je A" je propozicija "x nije A", a značenje je dano s $\mu_{\neg A}(x)$.

Ako - onda neizrazita pravila opisuju uzročno posljedičnu vezu između varijabli (npr. stanja procesa i upravljačkih varijabli) i oblika su:

AKO (neizrazita propozicija) ONDA (neizrazita propozicija)

pri čemu neizrazite propozicije mogu biti atomarne ili složene.

Primjer.

Neka je dana jezična varijabla X na univerzalnom skupu U s vrijednostima $T_X = \{Z, S, M, B\}$ i neka je dana druga jezična varijabla Y na univerzalnom skupu V s vrijednostima $T_Y = \{Z, S, M, B\}$. Neka su dane interpretacije jezičnih vrijednosti funkcijama pripadnosti.

Pretpostavimo da postoji injektivna funkcijska zavisnost f između diskretnih vrijednosti X i diskretnih vrijednosti Y. Ta zavisnost tada nije kauzalne prirode već je dvosmjerna:

- ako je dana vrijednost x tada y možemo odrediti prema y = f(x);
- ako je dana vrijednost y tada x možemo odrediti prema $x = f^{-1}(y)$.

Primjer (nastavak).

Pretpostavimo da analitičku funkciju f možemo aproksimirati pravilima:

- Ako x je Z tada y je Z,
- Ako x je S tada y je S,
- Ako x je M tada y je M,
- Ako x je B tada y je B.

Ova pravila eksplicitno daju kako se računaju vrijednosti y za dane vrijednosti x. Ako su dane vrijednosti y, ne mogu se odrediti vrijednosti x. Uzročnost je samo u smjeru x prema y što je važna razlika naspram definiranja injektivne funkcijske zavisnosti.

U pravilu:

lijevi dio ("x je A"; uzrok) nazivamo antecedent a desni dio ("y je B"; posljedicu) konzekvens.

Značenje ovog pravila predstavljeno je neizrazitom relacijom definiranom na $U \times V$ čije je značenje dano s:

$$\mu_R(x,y) = \mu_A(x) * \mu_B(y)$$

gdje * može biti Kartezijev produkt ili neki drugi operator implikacije.

Pravilo: Generalizirani modus ponens

Generalizirani modus ponens

Činjenica: x je A

Pravilo: Ako x je B onda y je C

Zaključak: x je D

A, B, C i D su neizraziti skupovi. D može biti dano kao kompozicija $A \circ (\neg B \oplus C)$, gdje \oplus predstavlja ograničenu sumu, odnosno gdje je $\mu_{\neg B \oplus C}(x, y) = min(1, 1 - \mu_B(x) + \mu_C(y))$.

Pravilo: Pravilo kompozicije

Pravilo kompozicije

```
Činjenica: x je A
```

Dana relacija: (X, Y) je R (x je u relaciji R s y)

Zaključak: y je B

Umjesto ako-onda pravila dana je ekspicitna relacija između X i Y.

Prema Zadehu $B = proj[A \circ R]$ na Y tj.

$$\mu_B(y) = \max(\min(\mu_A(x), \mu_R(x, y)).$$

Činjenica: x je mali broj

Pravilo: x je nešto manji od y

Zaključak: y je dovoljno mali broj

Činjenica: x je mali broj

Pravilo: x je približno jednak kao y

Zaključak: y je manje-više mali broj

Činjenica: x je mali broj

Pravilo: x je približno jednak kao y

Zaključak: y je manje-više mali broj

Neka je $U=V=\{1,2,3,4\}$. Neka je značenje "x je mali~broj" dano funkcijom pripadnosti $\mu_{\mathsf{mali}}=\{1/1+0.6/2+0.2/3+0/4\}$. Relacija R približno jednako neka je:

$$R = \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{bmatrix}.$$

mali o približno jednako =
$$\begin{bmatrix} 1 & 0.6 & 0.2 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0.6 & 0.5 & 0.2 \end{bmatrix}$$

Rezultat $Y = \{1/1 + 0.6/2 + 0.5/3 + 0.2/4\}$ može se jezično aproksimirati kao *manje-više mali*.

Predstavljanje AKO-ONDA pravila

- veliki broj relacija može se koristiti za predstavljanje značenja ako-onda pravila
- većina je izvedena iz viševrijednosne logike
- ullet implikacija p o q je u binarnoj logici dana s:
 - $\bigcirc \neg p \lor q$ ili
- za proširenje na neizrazitu logiku mogu se, primjerice, koristiti ograničena suma u slučaju (1) ili max i min u slučaju (2), odnosno vrijednost istinitosti implikacije $p \rightarrow q$ interpretira se kao:

$$min(1, 1-p+q)$$
 ili $max(min(p, q), 1-q)$.

Neka imamo pravilo:

Ako
$$(x \text{ je } A) \text{ onda } (y \text{ je } B)$$

Neka su značenja (x je A) i (y je B) dana neizrazitim skupovima:

$$\mu_A = \{0.1/x1 + 0.4/x2 + 0.7/x3 + 1/x4\}$$

$$\mu_B = \{0.2/v1 + 0.5/v2 + 0.9/v3\}$$

"Ako A onda B" interpretirat ćemo kao "**not** A ili B" gdje je ili operacija max, a **ne** operacija 1- (Zadehov komplement).

Tada imamo:

$$\mu_{\text{not }A \text{ ili }B}(x,y) = \max(\mu_{cil(\neg A)}(x,y), \mu_{cil(B)}(x,y))$$
$$= \max(1 - \mu_{cil(A)}(x,y), \mu_{cil(B)}(x,y))$$

 $cil(\neg A)$ je cilindrično proširenje od $\neg A$ na univerzalni skup nad kojim je definiran B. cil(B) je cilindrično proširenje od B na univerzalni skup nad kojim je definiran A.

Relacija koja tada odgovara implikaciji (odnosno našem *ako-onda* pravilu) je:

$$\begin{bmatrix} 0.9 & 0.9 & 0.9 \\ 0.6 & 0.6 & 0.6 \\ 0.3 & 0.3 & 0.3 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} \cup \begin{bmatrix} 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.9 & 0.9 \\ 0.6 & 0.6 & 0.9 \\ 0.3 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \end{bmatrix}$$

Pogledajmo što daje kompozicija antecedenta i dobivene relacije (očekujemo li konsekvent?).

$$\begin{bmatrix} 0.1 & 0.4 & 0.7 & 1.0 \end{bmatrix} \circ \begin{bmatrix} 0.9 & 0.9 & 0.9 \\ 0.6 & 0.6 & 0.9 \\ 0.3 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.5 & 0.9 \end{bmatrix}$$

Zaključak dakle nije jednak konsekventu!

Kompozicija A i R ne daje B. To je pojava kod svih definicija implikacije i zove se interakcija.

Druge implikacije

Kleene-Diens implikacija

Dobije se iz binarne logike za $\neg p \lor q$ uz interpretaciju \lor kao max.

Relaciju gradimo kao: $R_b = cil(\neg A) \cup cil(B)$.

Funkcija pripadnosti je: $\mu_R(x, y) = \max(1 - \mu_A(x), \mu_B(y)).$

To je implikacija iz prethodnog primjera.

Lukasiewicz-eva implikacija

Dobije se iz binarne logike za $\neg p \lor q$ uz interpretaciju \lor kao ograničene sume.

Relaciju gradimo kao: $R_a = cil(\neg A) \oplus cil(B)$.

Funkcija pripadnosti je: $\mu_R(x,y) = \min(1,1-\mu_A(x)+\mu_B(y)).$

Vrijedi $R_b \subseteq R_a$ tj. R_b je jača implikacija.

Druge implikacije

Računamo li implikaciju prema Lukasiewiczu, rezultat je:

$$\begin{bmatrix} 0.9 & 0.9 & 0.9 \\ 0.6 & 0.6 & 0.6 \\ 0.3 & 0.3 & 0.3 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} \oplus \begin{bmatrix} 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \end{bmatrix} = \begin{bmatrix} 1.0 & 1.0 & 1.0 \\ 0.8 & 1.0 & 1.0 \\ 0.5 & 0.8 & 1.0 \\ 0.2 & 0.5 & 1.0 \end{bmatrix}$$

Druge implikacije

Zadehova implikacija

Dobije se iz binarne logike za $(p \land q) \lor \neg p$ uz interpretaciju preko min i max.

Relaciju gradimo kao: $R_z = (cil(A) \cap cil(B)) \cup cil(\neg A)$.

Funkcija pripadnosti je:

$$\mu_R(x, y) = \max(\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)).$$

Gödelova implikacija

Najpoznatija u viševrijednosnoj logici. Vrijednosti istinitosti p o q definirane su sa:

$$\begin{cases} 1, & \text{za } p \leq q, \\ q, & \text{inače.} \end{cases}$$

Računamo li implikaciju prema Gödelu, rezultat je:

$$\begin{bmatrix} 1.0 & 1.0 & 1.0 \\ 0.2 & 1.0 & 1.0 \\ 0.2 & 0.5 & 1.0 \\ 0.2 & 0.5 & 0.9 \end{bmatrix}$$

Mamdani implikacija

Koristi se izraz $p \wedge q$ uz interpretaciju \wedge kao min.

Relaciju gradimo kao: $R_c = cil(A) \cap cil(B)$.

Funkcija pripadnosti je: $\mu_R(x, y) = \min(\mu_A(x), \mu_B(y))$.

Mamdani implikacija je najvažnija implikacija u neizrazitom upravljanju!

Računamo li implikaciju prema Mamdaniju, rezultat je:

$$\begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.4 & 0.4 & 0.4 \\ 0.7 & 0.7 & 0.7 \\ 1.0 & 1.0 & 1.0 \end{bmatrix} \cap \begin{bmatrix} 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \\ 0.2 & 0.5 & 0.9 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.1 & 0.1 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.5 & 0.7 \\ 0.2 & 0.5 & 0.9 \end{bmatrix}$$

Mamdani imlikacija na prvi pogled može izgledati vrlo čudno: nema jasnog uporišta u klasičnoj logici.

- Pogledajmo stoga još jedan primjer.
- Neka je dan univerzalni skup $U = \{1, 2, 3, 4\}.$
- ullet Neka su definirana dva neizrazita skupa nad U:

• mali broj =
$$\left\{\frac{1}{1} + \frac{0.5}{2} + \frac{0.1}{3} + \frac{0}{4}\right\}$$

• veliki broj = $\left\{\frac{0}{1} + \frac{0.1}{2} + \frac{0.5}{3} + \frac{1}{4}\right\}$

Pretpostavimo da ovisnost varijable $y \in U$ o varijabli $x \in U$ definiramo uporabom *ako-onda* pravila:

AKO x je mali broj ONDA y je veliki broj AKO x je veliki broj ONDA y je mali broj

Izračunajmo relaciju $R_1 \subseteq U \times U$ koja odgovara pravilu:

AKO x je mali broj ONDA y je veliki broj

uporabom Kleene-Diens implikacije $(\neg p \lor q)$.

$$\begin{split} R_1 &= \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.9 & 0.9 & 0.9 & 0.9 \\ 1.0 & 1.0 & 1.0 & 1.0 \end{bmatrix} \cup \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \end{bmatrix} \\ &= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.5 & 0.5 & 0.5 & 1.0 \\ 0.9 & 0.9 & 0.9 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \end{bmatrix} \end{split}$$

Izračunajmo relaciju $R_2 \subseteq U \times U$ koja odgovara pravilu:

AKO x je veliki broj ONDA y je mali broj

uporabom Kleene-Diens implikacije $(\neg p \lor q)$.

$$R_2 = \begin{bmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 0.9 & 0.9 & 0.9 & 0.9 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \cup \begin{bmatrix} 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

$$= \begin{bmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 0.9 & 0.9 & 0.9 \\ 1.0 & 0.5 & 0.5 & 0.5 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Usporedimo pravila i dobivene relacije.

- AKO x je mali broj ONDA y je veliki broj
- AKO x je veliki broj ONDA y je mali broj

$$R_1 = \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.5 & 0.5 & 0.5 & 1.0 \\ 0.9 & 0.9 & 0.9 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \end{bmatrix} \qquad R_2 = \begin{bmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 0.9 & 0.9 & 0.9 \\ 1.0 & 0.5 & 0.5 & 0.5 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Možemo li razaznati kakvu strukturu u relacijama?

- R₁ kao da kaže: "nije istina da je x mali i da je y mali"; sve ostalo je OK.
- R₂ kao da kaže: "nije istina da je x veliki i da je y veliki"; sve ostalo je OK.

Implikacije koje dolaze iz klasične logike u određenom smislu imaju globalno djelovanje.

- Krenemo od univerzalnog neizrazitog skupa (tj. relacije koja tvrdi da je svaki element u maksimalnoj relaciji sa svakim drugim elementom).
- Potom iz te relacije isključimo dio koji prva relacija (prvo pravilo) isključuje.
- Potom iz te relacije isključimo dio koji druga relacija (drugo pravilo) isključuje.
- ...

Konačnu relaciju stoga ćemo dobiti kao:

$$R = (U \times U) \cap R_1 \cap R_2 \cap \dots$$

ldeja je slična načinu kako se u Booleovoj algebri gradi zapis funkcije u obliku produkta suma: krećemo od pretpostavke da je f=1, i potom to korigiramo množeći izraz sa sumama koje za odgovarajuće kombinacije varijabli "ruše" vrijednost funkcije u 0.

U određenom smislu, s ako-onda pravilima postupamo kao da sva moraju vrijediti *istovremeno*.

Stoga je konačna relacija R koja odgovara napisanim pravilima:

$$R = R_1 \cap R_2$$

$$= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.5 & 0.5 & 0.5 & 1.0 \\ 0.9 & 0.9 & 0.9 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \end{bmatrix} \cap \begin{bmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 0.9 & 0.9 & 0.9 \\ 1.0 & 0.5 & 0.5 & 0.5 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.5 & 0.5 & 0.5 & 0.9 \\ 0.9 & 0.5 & 0.5 & 0.5 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Izračunajmo relaciju $R_1 \subseteq U \times U$ koja odgovara pravilu:

AKO x je mali broj ONDA y je veliki broj

uporabom Mamdani implikacije $(p \land q)$.

$$\begin{split} R_1 &= \begin{bmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.1 & 0.1 & 0.1 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \cap \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 1.0 \end{bmatrix} \\ &= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 0.5 \\ 0.0 & 0.1 & 0.1 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \end{split}$$

Izračunajmo relaciju $R_2 \subseteq U \times U$ koja odgovara pravilu:

AKO x je veliki broj ONDA y je mali broj

uporabom Mamdani implikacije $(p \land q)$.

$$R_2 = \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.1 & 0.1 & 0.1 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 1.0 & 1.0 & 1.0 & 1.0 \end{bmatrix} \cap \begin{bmatrix} 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.1 & 0.1 & 0.0 \\ 0.5 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Usporedimo pravila i dobivene relacije.

- ◆ AKO x je mali broj ONDA y je veliki broj
- AKO x je veliki broj ONDA y je mali broj

$$R_1 = \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 0.5 \\ 0.0 & 0.1 & 0.1 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \qquad R_2 = \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.1 & 0.1 & 0.0 \\ 0.5 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Možemo li razaznati kakvu strukturu u relacijama?

- R₁ direktno postavlja elemente koji odgovaraju prvom pravilu; ostalo ne dira.
- R₂ direktno postavlja elemente koji odgovaraju prvom pravilu; ostalo ne dira.

Ova implikacija u određenom smislu imaju lokalno djelovanje.

- Krenemo od praznog neizrazitog skupa (tj. relacije koja tvrdi da niti jedan element nije u relaciji niti sa jednim drugim elementom).
- Potom u tu relaciju uključimo dio koji prva relacija (prvo pravilo) uključuje.
- Potom u tu relaciju uključimo dio koji druga relacija (drugo pravilo) uključuje.
- ...

Konačnu relaciju stoga ćemo dobiti kao:

$$R = (\emptyset \times \emptyset) \cup R_1 \cup R_2 \cup \dots$$

ldeja je slična načinu kako se u Booleovoj algebri gradi zapis funkcije u obliku sume produkata: krećemo od pretpostavke da je f=0, i potom to korigiramo zbrajanjem s produktima koji za odgovarajuće kombinacije varijabli "postavljaju" vrijednost funkcije u 1.

U određenom smislu, s ako-onda pravilima postupamo kao da svako od njih vrijedi samo lokalno.

Stoga je konačna relacija R koja odgovara napisanim pravilima:

$$R = R_1 \cup R_2$$

$$= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.0 & 0.1 & 0.5 & 0.5 \\ 0.0 & 0.1 & 0.1 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \cup \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.1 & 0.1 & 0.0 \\ 0.5 & 0.5 & 0.1 & 0.0 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.0 \\ 0.1 & 0.1 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.1 & 0.1 \\ 1.0 & 0.5 & 0.1 & 0.0 \end{bmatrix}$$

Tri načina izgradnje relacije implikacije

U klasičnoj logici, implikacija $x \rightarrow y$ određena je sljedećom tablicom istinitosti:

X	у	$x \rightarrow y$
0	0	1
0	1	1
1	0	0
1	1	1

Neki od načina kako ovo možemo zapisati su:

$$\begin{array}{l} \textbf{1} \quad x \to y \equiv \\ \begin{cases} 1, & \text{ako je } x \le y \\ 0, & \text{inače,} \end{cases}$$

2
$$x \to y \equiv (1 - x + y) \land 1$$
, gdje je \land minimum,

$$x \to y \equiv (1 - x) \lor y, \text{ gdje}$$
 je $\lor \text{ maksimum}.$

Tri načina izgradnje relacije implikacije

Tri su osnovna načina konstrukcije neizrazitih implikacija:

- $(x \to y) \equiv \forall \{z : x \land z \le y\}$ odnosno $\mu_{x \to y}(x, y) = z$ gdje je z najveći element koji zadovoljava gornju nejednakost
- $(x \to y) \equiv \neg x \lor y$

U nastavku ćemo za svaki od ta tri načina pogledati primjere implikacija koje tako nastaju.

Izgradnja implikacija: R-implikacije

Definition (R-implikacija)

R-implikacija je preslikavanje $[0,1] \times [0,1] \rightarrow [0,1]$ oblika $(x \rightarrow y) \equiv \forall \{z \in [0,1] : x \Delta z \leq y\}$ gdje je Δ neka *t*-norma. Funkciju \rightarrow zovemo *R*-implikacija povezana s Δ .

Izgradnja implikacija: R-implikacije

Uvjerimo se da je ovo doista implikacija kada se napravi restrikcija s[0,1] na $\{0,1\}$.

- $(0 \to 0) = \bigvee \{z \in [0, 1] : 0\Delta z \le 0\} = 1$ jer je $0\Delta z = 0$ što je $\le 0 \ \forall z \in [0, 1]$ pa je maksimalni z koji ovo zadovoljava z = 1
- $(0 \to 1) = \bigvee \{z \in [0,1] : 0\Delta z \le 1\} = 1$ jer je $0\Delta z = 0$ što je $\le 1 \ \forall z \in [0,1]$ pa je maksimalni z koji ovo zadovoljava z = 1
- $(1 \to 0) = \bigvee \{z \in [0,1] : 1\Delta z \le 0\} = 0$ jer je $1\Delta z = z$ što je ≤ 0 samo za $z \in [0,1] \le 0$; jedini z koji to zadovoljava je 0
- $(1 \to 1) = \vee \{z \in [0,1] : 1\Delta z \le 1\} = 1$ jer je $1\Delta z = z$ što je $\le 1 \ \forall z \in [0,1]$ pa je maksimalni z upravo z = 1

Izgradnja implikacija: R-implikacije - primjeri

Primjer 1. Odaberimo $x\Delta y = x \wedge y$ (tj. min). Slijedi:

$$x \to y = \bigvee \{z : x \land z \le y\}$$
$$= \begin{cases} 1, & \text{ako je } x \le y \\ 0, & \text{inače} \end{cases}$$

Primjer 2. Odaberimo $x\Delta y = x \cdot y$ (tj. umnožak). Slijedi:

$$x \to y = \bigvee \{z : x \cdot z \le y\}$$

$$= \begin{cases} 1, & \text{ako je } x \le y \\ \frac{y}{x}, & \text{inače} \end{cases}$$

Primjer 3. Odaberimo $x\Delta y = 0 \lor (x+y-1)$ (tj. ograničen produkt). Slijedi:

$$x \to y = \bigvee \{z : 0 \lor (x + z - 1) \le y\}$$

= 1 \land (1 - x + y).

Izgradnja implikacija: ∇-implikacije

Definition (∇ -implikacija)

abla-implikacija je preslikavanje [0,1] imes [0,1] o [0,1] oblika $(x o y) \equiv \eta(x)
abla y$ gdje je abla neka s-norma a η negacija.

Izgradnja implikacija: ∇ -implikacije - primjeri

Primjer 1. Odaberimo $x \nabla y = x \vee y$ (tj. max) i $\eta(x) = 1 - x$. Slijedi:

$$x \to y = (1 - x) \vee y$$

Primjer 2. Odaberimo $x \nabla y = x + y - x \cdot y$ i $\eta(x) = 1 - x$. Slijedi:

$$x \to y = \eta(x)\nabla y$$

= $(1-x)\nabla y$
= $(1-x) + y - (1-x) \cdot y$
= $1-x+x\cdot y$

Primjer 3. Odaberimo $x \nabla y = 1 \wedge (x+y)$ (tj. ograničena suma) i $\eta(x) = 1-x$. Slijedi:

$$x \rightarrow y = 1 \land (1 - x + y)$$
 implikacija Lukasiewicz!

Izgradnja implikacija: Q-implikacije

Definition (Q-implikacija)

Neka (Δ, ∇, η) čine DeMorganov sustav. To znači da su Δ i η međusobno dualni s obzirom na negaciju η , odnosno da vrijedi $x\Delta y=\eta(\eta(x)\nabla\eta(y))$. Q-implikacija je preslikavanje $[0,1]\times[0,1]\to[0,1]$ oblika $(x\to y)\equiv\eta(x)\nabla(x\Delta y)$.

Izgradnja implikacija: Q-implikacije - primjeri

Primjer 1. Odaberimo DeMorganov sustav $x\Delta y = x \wedge y$ (tj. min), $x\nabla y = x \vee y$ (tj. max) i $\eta(x) = 1 - x$. Slijedi:

$$x o y = (1 - x) \lor (x \land y)$$
 implikacija Zadeh!

Primjer 2. Odaberimo DeMorganov sustav $x\Delta y = (x+y-1)\vee 0$ (ograničen produkt), $x\nabla y = (x+y)\wedge 1$ (ograničena suma) i $\eta(x) = 1-x$. Slijedi:

$$\begin{aligned} x &\to y = \eta(x) \nabla (x \Delta y) \\ &= (1-x) \nabla (x \Delta y) \\ &= ((1-x)+(x \Delta y)) \wedge 1 \\ &= ((1-x)+((x+y-1) \vee 0)) \wedge 1 \\ &= \left\{ \begin{array}{ll} y, & \text{ako je } x+y-1 \geq 0 \\ 1-x, & \text{inače} \end{array} \right. \\ &= (1-x) \vee y. \quad \textit{implikacija Kleene-Diens!} \end{aligned}$$

Prilikom zaključivanja generaliziranim modus-ponensom postupak zaključivanja provodimo kompozicijom. Ako imamo činjenicu a(x) te relaciju koja je izgrađena temeljem implikacije $R(x,y)=a(x)\to b(y)$, zaključak dobivamo kao $R(a)(y)=\bigvee \left[(a(x)\to b(y))\Delta a(x)\right]$ gdje je Δ neka t-norma.

Ako napravimo kompoziciju antecedenta i relacije dobivene uporabom implikacije, općenito, rezultat može biti različit od konzekventa – pojava koju smo nazvali *interakcija* implikacije. U posebnim slučajevima moguće je osigurati da je zaključak jednak konzekventu. Evo dva primjera.

Dalbelo Bašić, Golub, Čupić

Primjer 1. Neka se implikacija računa prema:

$$u \to v \equiv \left\{ \begin{array}{ll} 1, & \text{ako je } u \le v \\ rac{v}{u} & \text{ako je } u > v \end{array} \right.$$

te neka je $u\Delta v=u\cdot v$, odnosno radimo max-produkt kompoziciju. Tada je:

$$R(x,y) = a(x) \rightarrow b(y) = \begin{cases} 1, & \text{ako je } a(x) \leq b(y) \\ \frac{b(y)}{a(x)} & \text{ako je } a(x) > b(y) \end{cases}$$

Slijedi:

$$R(x,y)\Delta a(x) = R(x,y) \cdot a(x)$$

$$= \begin{cases} 1, & \text{ako je } a(x) \le b(y) \\ \frac{b(y)}{a(x)} & \text{ako je } a(x) > b(y) \end{cases} \cdot a(x)$$

$$= \begin{cases} a(x), & \text{ako je } a(x) \le b(y) \\ b(y) & \text{ako je } a(x) > b(y) \end{cases}$$

$$= \min(a(x), b(y))$$

$$R(a)(y) = \bigvee_{x \in U} [R(x, y) \Delta a(x)] = \bigvee_{x \in U} \min(a(x), b(y)) = b(y)$$

(vrijedi uz pretpostavku da je a normalan).

Primjer 2. Neka se implikacija računa prema:

$$u \rightarrow v \equiv 1 \wedge (1 - u + v)$$

te neka je $u\Delta v=(u+v-1)\vee 0$, odnosno radimo max-ograničeni_produkt kompoziciju. Tada je:

$$R(x,y) = a(x) \to b(y) = 1 \land (1 - a(x) + b(y))$$

Slijedi:

$$R(x,y)\Delta a(x) = (R(x,y) + a(x) - 1) \vee 0$$

= $((1 \wedge (1 - a(x) + b(y))) + a(x) - 1) \vee 0$
= $\max(\min(1, 1 - a(x) + b(x)) + a(x) - 1, 0)$

Pogledajmo ovo po slučajevima.

• ako je $1 - a(x) + b(y) \le 1$ odnosno $b(y) \le a(x)$, tada je $\min(1, 1 - a(x) + b(y)) = 1 - a(x) + b(y)$ pa imamo:

$$R(x,y)\Delta a(x) = \max(1 - a(x) + b(y) + a(x) - 1, 0)$$

= $\max(b(y), 0)$
= $b(y)$

• ako je 1 - a(x) + b(y) > 1 odnosno a(x) < b(y), tada je $\min(1, 1 - a(x) + b(y)) = 1$ pa imamo:

$$R(x,y)\Delta a(x) = \max(1 + a(x) - 1,0)$$
$$= \max(a(x),0)$$
$$= a(x)$$

Zaključujemo da je $R(x,y)\Delta a(x)=\min(a(x),b(y)).$ Tada je:

$$R(a)(y) = \bigvee_{x \in U} [R(x, y) \Delta a(x)]$$
$$= \bigvee_{x \in U} \min(a(x), b(y))$$
$$= b(y)$$

(vrijedi uz pretpostavku da je a normalan).

Time smo pokazali da iz pravila $a(x) \to b(y)$ i činjenice a(x) doista dobivamo b(y).

Zadatak 1

Provjerite je li sljedeće korektno definirana neizrazita implikacija:

$$(u \rightarrow v) \equiv (u \wedge v) \vee (1 - v)$$

gdje je ∧ maksimum a ∨ minimum.

Zadatak 2

Razmatramo interakciju implikacije. Je li b=R(a), gdje je $R(x,y)=a(x)\to b(y)$ u sljedećim slučajevima (\land označava min, \lor max):

$$u\Delta v = (u + v - 1) \vee 0, u \rightarrow v = 1 - u + u \cdot v$$

3
$$u\Delta v = (u + v - 1) \vee 0, u \rightarrow v = (1 - u) \vee v$$