

¡Manos a la obra!

1- Desafío 🎯

Consigna del desafío:

Elabora un documento o presentación breve (máximo 1 página o 2-3 diapositivas) en el que expliques de forma sencilla el proceso de contenerización de una aplicación monolítica utilizando Docker, basándote en los contenidos del manual "IMPLEMENTACIÓN MEDIANTE CONTENEDORES DE APLICACIÓN". Tu respuesta debe incluir:

• Conceptos Básicos de Docker:

 Define los términos: Contenedor, Imagen, Dockerfile, Docker Engine, Docker Hub, Volúmenes, Red de Docker, Docker Compose y Capas de Imagen.

• Implementación Práctica:

- Describe el proceso de instalación y configuración de Docker (utilizando Docker Desktop, por ejemplo).
- Explica cómo crear una imagen Docker mediante un Dockerfile, resaltando buenas prácticas en su construcción.
- Detalla cómo ejecutar un contenedor Docker, incluyendo aspectos básicos como el monitoreo de logs y el manejo del networking entre el host y el contenedor.

• Despliegue en la Nube (Opcional):

 Menciona brevemente cómo se podría desplegar un contenedor en la nube utilizando AWS ECS (Servicio Elástico de Contenedores), si lo deseas.

2-¿Dónde se lleva a cabo? 🇖

- Entorno Local: Docker Desktop para la práctica de contenerización.
- En la Nube (Opcional): AWS Academy para simular el despliegue en AWS ECS.

3- Tiempo de dedicación 🔀

• Tiempo estimado: 1 hora

4- Recursos X

- Contenidos del manual "IMPLEMENTACIÓN MEDIANTE CONTENEDORES DE APLICACIÓN".
- Documentación oficial de Docker (docs.docker.com) y de AWS ECS para despliegues en la nube (opcional).

5- Plus 🕂

• **Opcional:** Agrega un diagrama sencillo (usando herramientas gratuitas como Lucidchart o Draw.io) que ilustre el flujo de creación, ejecución y despliegue de contenedores.

6- 1 Condición

Esta práctica es para autoevaluación y no requiere entrega formal. Se recomienda compartir tus resultados con compañeros para fomentar el aprendizaje colaborativo.

Resolución del Desafío: Implementación Mediante Contenedores de Aplicación

Esta resolución está diseñada para completarse en 1 hora. A continuación, se muestra un ejemplo de cómo estructurar tu respuesta:

1. Introducción

Objetivo:

Explicar de forma sencilla el proceso de contenerización de una aplicación monolítica utilizando Docker, resaltando conceptos básicos y pasos prácticos para crear y ejecutar contenedores.

Contexto:

La contenerización permite empaquetar una aplicación junto con todas sus dependencias, garantizando portabilidad y consistencia entre entornos de desarrollo, pruebas y producción.

2. Conceptos Básicos de Docker

• Contenedor:

Una instancia aislada que ejecuta una aplicación y sus dependencias de forma consistente en cualquier entorno.

• Imagen:

Una plantilla inmutable que define el entorno y la aplicación, a partir de la cual se crean contenedores.

• Dockerfile:

Un archivo de texto con instrucciones para construir una imagen Docker de forma automatizada.

• Docker Engine:

El motor que permite construir, ejecutar y gestionar contenedores.

Docker Hub:

Un repositorio central para almacenar y compartir imágenes Docker.

Volúmenes:

Permiten la persistencia de datos fuera del ciclo de vida de un contenedor.

• Red de Docker:

Configuración que define cómo se comunican los contenedores entre sí y con el host.

• Docker Compose:

Herramienta para definir y ejecutar aplicaciones multi-contenedor a través de un archivo YAML.

• Capas de Imagen:

Cada instrucción en un Dockerfile crea una capa, permitiendo la reutilización y optimización de imágenes.

3. Implementación Práctica con Docker

Instalación y Configuración

Instalación:

Utiliza Docker Desktop (gratuito) para instalar Docker en tu equipo.

Verificación:

Ejecuta docker --version en la terminal para confirmar la instalación.

Creación de una Imagen Docker

• Escribir un Dockerfile:

Crea un archivo Dockerfile que defina:

- Una imagen base (por ejemplo, FROM ubuntu:20.04).
- o Instalación de dependencias necesarias.
- o Copia de la aplicación.

o Comando para iniciar la aplicación.

• Construcción de la Imagen:

Ejecuta el comando docker build -t nombre-imagen . para crear la imagen.

• Buenas Prácticas:

- o Minimiza el número de capas combinando comandos.
- o Limpia archivos temporales para reducir el tamaño de la imagen.

Ejecución de un Contenedor Docker

• Iniciar un Contenedor:

Usa el comando docker run -d -p 80:80 nombre-imagen para ejecutar el contenedor y mapear puertos.

Monitoreo:

Emplea docker logs <container-id> para ver los logs y docker ps para listar contenedores en ejecución.

Networking:

Explica brevemente cómo se establece la comunicación entre el contenedor y el host.

4. Despliegue en la Nube (Opcional)

AWS ECS:

Menciona que, opcionalmente, se puede utilizar AWS ECS para desplegar contenedores en la nube sin gestionar la infraestructura subyacente.

• Beneficios:

 Simplifica la escalabilidad y el manejo de contenedores en producción.

o Integración con otros servicios de AWS.

5. Conclusión

• Resumen:

La contenerización con Docker permite crear entornos consistentes y portables.

• Importancia:

Facilita el desarrollo, pruebas y despliegue, garantizando que la aplicación funcione de forma idéntica en todos los entornos.

• Resultado Esperado:

Un documento breve que explique claramente los conceptos, pasos prácticos para crear y ejecutar contenedores, y una mención (opcional) del despliegue en AWS ECS.

Recomendación:

Complementa tu respuesta con un diagrama sencillo que ilustre el proceso de creación de una imagen, ejecución de un contenedor y, opcionalmente, el flujo hacia AWS ECS.