

Menu

- Main Timer System for
 - > XMEGA Timer System
 - >68HC11/12
- Real-Time Interrupt/Counter (RTI/RTC)
 - >68HC11/12
 - RTI Hardware and Registers
 - RTI Programming Examples
 - " Use RTI interrupt; use RTIF & polling
 - Free-running Counter & Timer Overflow (TOF)
 - Example using TOF

>XMEGA

- RTC specs
- RTC Hardware
- RTC Registers
- RTC example

University of Florida, EEL 3744 – File **90** © Drs. Schwartz & Arroyo

Bring uPAD for RTC example!

See docs/examples on web-site:

doc8331 (sec 18), doc8385 (sec 20),

M&M: Ch 14, doc8047, RTC.asm

68HC11/12: S&HE (Ch 10), M68HC12B/D.pdf
(Sec 10,12), RTIa*.asm, RTIb.asm,

TimeOver.asm

EEL 3744

XMEGA 16-bit Timer/Counter Type 0 and Type 1

- & doc8385, Sec 16
- XMEGA has a set of eight 16-bit timer/counters (TC)
- Two TCs can be combined to create a 32-bit TC
- A TC consists of a base counter and a set of compare or capture (CC) channels
 - > Waveform generation available
- TC 0 has four CC channels; TC 1 has two CC channels
- TC 0 has the split mode feature that splits it into two 8-bit Timer/Counters with four compare channels each

University of Florida, EEL 3744 – File 00

University of Florida, EEL 3744 – File 00
© Drs. Schwartz & Armyo
3

Insertion

Protection

Capture

Control

Generation

Comparator

Buffer

University of Florida, EEL 3744 – File **00** © Drs. Schwartz & Arroyo

XMEGA Clock and Event Selection

EEL 3744

68HC12 Clock Generation

Module (CGM) Block Diagram

- P-Clock and E-clock are at same frequency, but 90° out of phase
- T-Clock and E-clock are at same frequency (when not in wait mode)

6

University of Florida, EEL 3744 – File **00** © Drs. Schwartz & Arroyo

68HC12 (& ~11) RTI (Real-Time Interrupt) Hardware

EEL 3744

68HC12 RTI (Real-Time Interrupt) Rate Control

• RTR bits in register RTICTL

	Divide	E = 2MHz
RTR2:0	E by	Timeout Period
000	OFF	OFF
001	2^13	4.096ms
010	2^14	8.192ms
011	2^15	16.384ms
100	2^16	32.768ms
101	2^17	65.536ms
110	2^18	131.072ms
111	2^19	262.144ms

© Drs. Schwartz & Arroyo

EEL 3744 **68HC12** RTICLT: Real-Time Interrupt Control Register

• Crystal Freq. vs. RTR2:0 $> f_{RTI} = (E/2^{13})/X$, where X=1, 2, 4, 8, 16, 32, 64

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo $T_{RTI}(E=2MHz) \approx 4.10ms, 8.19ms, 16.38ms, \dots 263.14ms, f_{RTI}(E=2MHz) \approx 244.1Hz, 122.1Hz, 61.4Hz, \dots 3.815Hz$

11

EEL 3744 **68HC12** RTIFLG: Real-Time Interrupt Flag Register

Real-Time Interrupt Flag:

- Set automatically at the end of every RTI period
- Clear by writing 1 to RTIF, bit-7 of RTIFLG
- Writing a 1 is a strange way to clear a bit!
 - >Direct clearing flag
 - >Show FF example of clearing flag

University of Florida, EEL 3744 – File 00

68HC12 RTI

Programming Examples

- Running a single process
 - >See example

RTIb.asm

>Note that the time between interrupts is 32.768 ms assuming E=2MHz (and 8.196 ms if E=8MHz)

>Also available is

RTIa.asm

>A polling version of first example above

RTIa_p.asm

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

13

68HC12 RTI

Co-Procesing Example

- Running two processes
 - >See example

Co_Proc_RTI.asm

>We will get more on co-processing later in the semester (if time permits)

© Drs. Schwartz & Arroyo

XMEGA 16-bit Real-Time Counter (RTC)

- The 16-bit RTC typically runs continuously, **including** in low-power sleep modes
- The reference clock is typically the 1.024 kHz output from a high-accuracy crystal of 32.768 kHz
 - > With a 32.768 kHz clock source, the maximum resolution is $1/(32.768 \text{ kHz}) = 1 \text{ s} / 2^{15} \approx 30.5 \mu\text{s}$
 - > With a 32.768 kHz clock source, time-out periods can range up to 2 seconds (at max resolution) = $2^{16} \times 30.5 \ \mu s = 2^{16} / 2^{15} = 2 \ s$
- The RTC has a 10-bit programmable prescaler that can scale down the reference clock before it reaches the counter
 - > With max prescaler (of 2^{10} =1024) & 32 kHz clock, range is \approx 2000 s

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arrovo

15

XMEGA 16-bit Real-Time Counter (RTC)

- With a resolution of 30.5 μ s ($\approx 1/[32.768 \text{ kHz}]$), the maximum time-out is 2000 s ($\approx 1024 \times 2^{16} \times 30.5 \mu$ s) > Prescaler above is 1024
- With a resolution of 1s, the maximum time-out is 65,536s (= $2^{16} \times 1s \approx 18.2$ hours), i.e., no prescaling
- RTC can generate two types of interrupts
 - > The RTC can give a **compare interrupt** and/or event when the counter equals the compare register value
 - Occurs at first count after the counter value equals Compare register value
 - > The RTC has an **overflow interrupt** and/or event when it equals the period register value
 - Occurs at first count after the counter value equals the **Period** register value
 - Overflow will also reset the counter value to zero
- RTC is asynchronous with respect to the system clock

University of Florida, EEL 3744 – File 00

EEL 3744 **XMEGA** Real-Time Counter (RTC) Overview

EEL 3744 RTC CTRL – Control

Register

• PRESCALER[2:0]: Clock Prescaling factor

>These bits define the prescaling factor for the RTC clock

	PRES	CALER[2	0]	Grou	ıp Config	TRC clo	ck prescal	ling	
		000			OFF	No clock	sours; RT	C stopped	
		001]	DIV1	RTC cloc	k / 1 (no p	rescaling)	
		010]	DIV2	RTC cloc	k/2		
See doc	8331,	011]	DIV8	RTC cloc	k/8		
Table	18-1	100		Ι	DIV16	RTC cloc	k / 16		
		101		Ι	DIV64	RTC cloc	k / 64		
		110		D	IV256	RTC cloc	k / 256		
		111		D	IV1024	RTC cloc	k / 1024		
Bit	7	6	5		4	3	2	1	0
+0x00	-	-	-		-	-		PRESCALER[2:0	0]
Read/Write	R	R	R		R	R	R/W	R/W	R/W
Initial Value	0	0	0	_	0	0	0	0	0
University of Florida, EEI © Drs. Schwartz &				R	RTC_CTR	L			

RTC INTCTRL -

Interrupt Control Register

- COMPINTLVL: Compare Match Interrupt Enable
 - >These bits enable the RTC compare match interrupt and select the interrupt level
 - >The enabled interrupt will trigger when COMPIF in the INTFLAGS register is set

	Inte	errupt Lev	vel Confi	g Grou	p Config	Desc		
		00			Off	Interru	ł	
		01			Lo	Low-lev	ot	
		10			Med	Mid-lev	el interrup	ot
		11			Hi	High-le	vel interru	pt
Bit	7	6	5	4	3	2	1	0
+0x02	-	-	-	-	COMPIN	TLVL[1:0]	OVFINT	LVL[1:0]
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0
University of Florida, EEL 37 © Drs. Schwartz & Ar			I	RTC_INT	ΓCTRL			

RTC INTCTRL -

Interrupt Control Register

- OVFINTLVL[1:0]: Overflow Interrupt Enable
 - >These bits enable the RTC overflow interrupt and select the interrupt level
 - >The enabled interrupt will trigger when OVFIF in the INTFLAGS register is set

11	111 11/1	CD ICE	,13101 13	SCI					
	Inte	rrupt Lev	vel Config	Group	Config	Desc	ription		
		00		(Off	Interruj	ot disable	d	
		01			Lo	Low-lev	el interru	pt	
		10			/led	Mid-lev	el interruj	ot	
		11			Hi	High-lev	el interru	pt	
Bit	7	6	5	4	3	2	1	0	
-0x02	-	-	-	-	COMPIN	ITLVL[1:0]	OVFINT	LVL[1:0]	7
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
nitial Value	0	0	0	0	0	0	0	0	
© Drs. Schwartz			R	TC_INT	CTRL				20

Bit +0x02

INTFLAGS – Interrupt Flag Register

COMPIF: Compare Match Interrupt Flag

- >Flag set on the next count after compare match occurs
 - Cleared automatically when the RTC compare match interrupt vector is executed
 - Flag can also be cleared by writing a one to it

• OVFIF: Overflow Interrupt Flag

- >Flag set on the next count after an overflow occurs
 - Cleared automatically when the RTC overflow interrupt vector is executed
 - Flag can also be cleared by writing a one to it

Bit	7	6	5	4	3	2	1	0	_
+0x03	-	-	-	-	-	-	COMPIF	OVFIF	
Read/Write	R	R	R	R	R	R	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	
University of Florida, E © Drs. Schwart			F	RTC_INT	FLAGS			:	21

RTC CNTL – Counter Register Low

PER

- CNTH and CNTL represent the 16-bit value, CNT
- CNT counts rising clock edges on prescaled RTC clock
- Latency of two RTC clock cycles from write to effect
- CNT[7:0]: Counter Value low byte
 - >These bits hold the LSB of the 16-bit real-time counter value

See doc8331

Fig 18-1

Bit	7	6	5	4	3	2	1	0
+0x08				CNT	[7:0]			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0
University of Florida, © Drs. Schwar				RTC_0	CNT			2

RTC CNTH – Counter Register High

• CNT[15:8]: Counter Value high byte

0

0

Read/Write Initial Value

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

RTC PERL – Period Register Low

- PERH and PERL represent the 16-bit value, PER
- PER is constantly compared with the counter value (CNT)
- A match will set OVFIF in the INTFLAGS register and clear CNT
- Latency of two RTC clock cycles from write to effect
- PER[7:0]: Period low byte
 - >These bits hold the LSB of the 16-bit RTC TOP value

0

RTC PERH – Period Register High

• PER[15:8]: Period high byte

>These bits hold the MSB of the 16-bit real-time counter value

EEL 3744 RTC COMPL – Compare See doc8331, Sec 18.3.6 Register Low

- COMPH and COMPL represent the 16-bit value, COMP
- COMP is constantly compared with the counter value (CNT)
- A compare match will set COMPIF in the INTFLAGS register
- Latency of two RTC clock cycles from write to effect

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo RTC COMP

• RTCSRC[2:0]: RTC Clock Source

>These bits select the clock source for the real-time counter

- 1 HC	SC OIL	S SCICCE	tile c	TOCK SOU	100 101	tiic i cai	tillic	Ounter
RTCSR	C[2:0]	Group C	Config		De	escription		
000)	ULI	P	1 k	Hz from 32	kHz interna	al oscillato	r
00	1	TOS	С	1.024kHz f	from 32.768	kHz crystal	loscillator	on TOSC
010)	RCO	SC	1.024k	Hz from 32	768kHz in	ternal osci	llator
011	1	-				-	II DE	
100)	-				CL_	K_RTC	CCTRL
10	1	TOSC	232	32.768kHz from 32.768kHz crystal oscillator on TOSC				
110)	RCOS	C32	32.768kHz from 32.768kHz internal oscillator				
111	1	EXTC	LK		External c	lock from	TOSC1	
Bit	7	6 5		4	3	2	1	0
+0x03	-	-	-	-		RTCSRC[2:0]		RTCEN
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

CLK RTCCTRL – RTC

Control Register

- RTCEN: RTC Clock Source Enable
 - >Setting the RTCEN bit enables the selected RTC clock source for the real-time counter

CLK RTCCTRL

Bit	7	6	5	4	3	2	1	0	_
+0x03	-	-	-	-		RTCSRC[2:0]		RTCEN]
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	9

EEL 3744 RTC: Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
+0x00	CTRL	-	PRESCALER[2:0]						
+0x01	STATUS	-	-	-	-	-	-	-	SYNCBUSY
+0x02	INTCTRL	-	COMPINTLVL[1:0] OVFINTLVL[1:0]						TLVL[1:0]
+0x03	INTFLAGS	-	COMPIF OVFIF						OVFIF
+0x04	TEMP	-	COMPIF OVFII						OVFIF
+0x08	CNTL				TEN	иР[7:0]			
+0x09	CNTH				CN	IT[7:0]			
+0x0A	PERL				CN	T[15:8]			
+0x0B	PERH		PER[7:0]						
+0x0C	COMPL		PER[15:8]						
+0x0D	COMPH				COI	MP[7:0]			

See doc8331, Sec 18.4 RTC Registers

RTC_CTRL RTC_TEMP

RTC_STATUS RTC_CNT

RTC_INTCTRL RTC_PER

RTC_INTFLAGS RTC_COMP

And don't forget CLK_RTCCTRL and PMIC_CTRL

Also OSC_CTRL and OSC_STATUS (see doc8047)

University of Florida, EEL 3744 – File (
© Drs. Schwartz & Arroyo

RTC Example uPAD

- Demo with emulator
- Change the interrupt periods

RTC.asm

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

68HC11/12 Free-Running Counter and TOI

• Free-running Counter and TOI (Timer Overflow Interrupt)

S&HE: Fig 10.2

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

35

Free-Running Counter

- TCNT Free-Running Counter (@ E-rate/Prescaler)
 - >TCNT effects Output Compare (OC), Input Capture (IC), Timer Overflow (TOF), Pulse Accumulator (PA)
 - >TCNT does **not** effect RTI

	7	6	5	4	3	2	1	0	
\$0084	Bit 15	-	-	-	-	-	-	Bit 8	TCNT High
RESET	0	0	0	0	0	0	0	0	Tingii
	7	6	5	4	3	2	1	0	
\$0085	Bit 7	-	-	-	-	-	-	Bit 0	TCNT Low
RESET	0	0	0	0	0	0	0	0	Low

© Drs. Schwartz & Arroyo

- TSCR: Timer System Control Register
 - >TEN (Timer Enable): 1 = enable (activates the timer)
 - >TSWAI (Timer Stops While in Wait)
 - >TSBCK (Timer Stops While in Background Mode)
 - >TFFCA (Timer Fast Flag Clear All): [S&HE: Sec 10.10]

	7	6	5	4	3	2	1	0	
\$0086	TEN	TSWAI	TSBCK	TFFCA	0	0	0	0	TSCR
RESET	0	0	0	0	0	0	0	0	•

University of Florida, EEL 3744 – File 00
© Drs. Schwartz & Arroyo
37

EEL 3744

68HC12 TMSK2: Timer Interrupt Mask Register 2 (Prescaler bits)

• TMSK2 - Timer Interrupt Mask Register 2

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

EEL 3744 **68HC12** Timer Prescaler bits in TMSK2

 Prescaler and resultant count period and overflow period

Tech: Table 12.3

RTI is **NOT** affected by the prescaler

	Prescale	
	Factor	E = 2MHz
PR2:0	(2^{PR})	Count/Overflow
000	1	500ns / 32.77ms
001	2	$1\mu s / 65.54ms$
010	4	$2\mu s / 131.7ms$
011	8	4μs / 262.1ms
100	16	$8\mu s / 524.3ms$
101	32	16μs / 1048.6ms
11X		

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

39

EEL 3744

68HC12 TFLG2:

Timer Interrupt Flag 2

	7	6	5	4	3	2	1	0	
\$008F	TOF	0	0	0	0	0	0	0	TFLG2
RESET	0	0	0	0	0	0	0	0	_

Timer Overflow Interrupt Flag:

- Set automatically at TCNT = \$FFFF \rightarrow \$0000
- Clear by writing 1 to TOF, bit-7 of TFLG2
- Notice that the flag bit is in same position as the corresponding interrupt enable bit
 - > Bit 7 of TFLG2 has the TOF flag and bit 7 of TMSK2 has the TOI interrupt enable
 - > Bit 7 of RTIFLG has the RTIF and bit 7 of RTICTL has the RTIE

University of Florida, EEL 3744 – File 00

• Reverse all Port A bits every 32.768 ms >See example

TimeOver.asm

>Note that the time between interrupts is 32.768 ms assuming E=2MHz (and 8.196 ms if E=8MHz)

University of Florida, EEL 3744 – File 00 © Drs. Schwartz & Arroyo

41

The End!

© Drs. Schwartz & Arroyo