Forelesning 10

Korteste vei fra én til alle

- 1. Dekomponering
- 2. DAG-Shortest-Path

- 3. Kantslakking
- 4. Bellman-Ford
- 5. Dijkstras algoritme

SSSP

SSSP

Én til én: Har ikke noe bedre enn SSSP

All pairs shortest path: Alle til alle! (Neste gang)

Input: En rettet graf G = (V, E), vekt-funksjon $w : E \to \mathbb{R}$ og node $s \in V$.

Output: For hver node $v \in V$, en sti $p = \langle v_0, v_1, \dots, v_k \rangle$ med $v_0 = s$ og $v_k = v$, som har minimal vektsum

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Input: En rettet graf G = (V, E), vektfunksjon $w : E \to \mathbb{R}$ og node $s \in V$.

Output: For hver node $v \in V$, en sti $p = \langle v_0, v_1, \dots, v_k \rangle$ med $v_0 = s$ og $v_k = v$, som har minimal vektsum

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Dekomponering

Vi begynner med å anta en asyklisk graf

Vi kan da la grafen være sin egen delinstansgraf!

Vi vil finne avstand $\delta(s,t)$ fra startnoden s

Vi antar induktivt at vi har funnet $\delta(s,-)$ for inn-naboer

Inn-nabo x gir mulig stilengde $\delta(s,x) + w(x,t)$; velg minimum!

Vi får her $\delta(s,t) = \min\{\delta(s,u) + w(u,t), \delta(s,v) + w(v,t)\}$

```
1 \quad min = A[1]
2 \quad \mathbf{for} \ i = 2 \quad \mathbf{to} \ A.length
3 \quad \mathbf{if} \ min > A[i]
4 \quad min = A[i]
```

Helt vanlig algoritme for å finne minimum (s. 213)

```
1 \quad min = A[1]
2 \quad \mathbf{for} \ i = 2 \quad \mathbf{to} \ A.length
3 \quad \mathbf{if} \ min > A[i]
4 \quad min = A[i]
```

```
 \begin{array}{ll} 1 & min = \infty \\ 2 & \textbf{for } i = 1 \textbf{ to } A.length \\ 3 & \textbf{ if } min > A[i] \\ 4 & min = A[i] \end{array}
```

```
1 \quad min = A[1]
2 \quad \mathbf{for} \ i = 2 \quad \mathbf{to} \ A.length
3 \quad \mathbf{if} \ min > A[i]
4 \quad min = A[i]
```

```
1 \quad min = \infty
2 \quad \mathbf{for} \ \mathrm{each} \ x \in \mathbf{A}
3 \quad \mathbf{if} \ min > x
4 \quad min = x
```

```
1 \quad min = A[1]
2 \quad \mathbf{for} \ i = 2 \quad \mathbf{to} \ A.length
3 \quad \mathbf{if} \ min > A[i]
4 \quad min = A[i]
```

```
1 \quad min = \infty
2 \quad \mathbf{for} \ \mathrm{each} \ x \in \mathbf{A}
3 \quad \mathbf{if} \ min > x
4 \quad min = x
```

Vi vil ha $t.d = \min \text{minimum av } \delta(s, u) + w(u, t) \text{ for inn-naboer } u$

1
$$t.d = \infty$$

2 **for** each edge $(u, t) \in E$
3 **if** $t.d > \delta(s, u) + w(u, t)$
4 $t.d = \delta(s, u) + w(u, t)$

Vi vil ha $t.d = \min \text{minimum av } \delta(s, u) + w(u, t) \text{ for inn-naboer } u$

1
$$t.d = \infty$$

2 **for** each edge $(u, t) \in E$
3 **if** $t.d > \delta(s, u) + w(u, t)$
4 $t.d = \delta(s, u) + w(u, t)$

Anta at vi allerede har funnet $u.d = \delta(s, u)$

1
$$t.d = \infty$$

2 **for** each edge $(u, t) \in E$
3 **if** $t.d > u.d + w(u, t)$
4 $t.d = u.d + w(u, t)$

$$1 \quad t.d = \infty$$

$$2 \quad \text{for each edge } (u,t) \in E$$

$$3 \quad \text{if } t.d > u.d + w(u,t)$$

$$4 \quad t.d = u.d + w(u,t)$$

```
1 for each vertex v \in V

2 v.d = \infty

3 for each edge (u, v) \in E

4 if v.d > u.d + w(u, v)

5 v.d = u.d + w(u, v)
```

```
1 for each vertex v \in V

2 v.d = \infty

3 for each edge (u, v) \in E

4 if v.d > u.d + w(u, v)

5 v.d = u.d + w(u, v)
```

Husk: v.d er minimum av u.d + w(u, v) for inn-naboer u

```
1 for each vertex v \in V

2 v.d = \infty

3 for each edge (u, v) \in E

4 if v.d > u.d + w(u, v)

5 v.d = u.d + w(u, v)
```

```
1 for each vertex v \in V

2 v.d = \infty

3 for each edge (u, v) \in E

4 if v.d > u.d + w(u, v)

5 v.d = u.d + w(u, v)
```

```
1 for each vertex v \in V

2 v.d = \infty

3 for each edge (u, v) \in E

4 if v.d > u.d + w(u, v)

5 v.d = u.d + w(u, v)
```

Hvis s.d = 0 (grunntilfelle) og G er sortert topologisk...

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

Hvis s.d = 0 (grunntilfelle) og G er sortert topologisk...

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

... så følger $\delta(s, v) = v.d$ (for alle $v \in V$), ved induksjon!

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

Samme dekomponering fortsatt. Klassisk dynamisk programmering!

DAG-Shortest-Path

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 s.d = 0

3 for each vertex v \in V

4 v.d = \infty

5 for each edge (u, v) \in E

6 if v.d > u.d + w(u, v)

7 v.d = u.d + w(u, v)
```

Hvis vi skiller ut initialiseringen...

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex v \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

Hvis vi skiller ut initialiseringen...

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex v \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

...kan vi kjøre Minimum for flere noder, flettet sammen!

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex v \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex v \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 s.d = 0

5 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 v.\pi = nil

5 s.d = 0

6 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)

v.\pi = u
```

I dette tilfellet: Hvilken forgjenger $v.\pi$ ga oss minimum, v.d?

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 v.\pi = nil

5 s.d = 0

6 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)

10 v.\pi = u
```

```
1 topologically sort G

2 for each vertex v \in V

3 v.d = \infty

4 v.\pi = nil

5 s.d = 0

6 for each vertex u \in V

7 for each edge (u, v) \in E

8 if v.d > u.d + w(u, v)

9 v.d = u.d + w(u, v)

v.\pi = u
```

```
1 topologically sort G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u \in V

4 for each edge (u, v) \in E

5 if v.d > u.d + w(u, v)

6 v.d = u.d + w(u, v)

7 v.\pi = u
```

```
1 topologically sort G

2 Initialize-Single-Source(G, s)

3 for each vertex u \in V

4 for each edge (u, v) \in E

5 if v.d > u.d + w(u, v)

6 v.d = u.d + w(u, v)

7 v.\pi = u
```

La oss kalle dette Relax(u, v, w)

```
1 topologically sort G

2 Initialize-Single-Source(G, s)

3 for each vertex u \in V

4 for each edge (u, v) \in E

5 Relax(u, v, w)
```

La oss kalle dette Relax(u, v, w)

```
1 topologically sort G

2 Initialize-Single-Source(G, s)

3 for each vertex u \in V

4 for each edge (u, v) \in E

5 Relax(u, v, w)
```

G grafw vektings startnode

Dag-Shortest-Path(G, w, s)1 topologically sort the vertices of G G graf
w vekting
s startnode

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)

G grafw vektings startnode

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)
- 3 for each vertex u, in topsort order

G graf

w vekting

s startnode

u fra-node

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)
- 3 for each vertex u, in topsort order
- for each vertex $v \in G.Adj[u]$

G graf

w vekting

s startnode

u fra-node

v til-node

```
Dag-Shortest-Path(G, w, s)
1 topologically sort the vertices of G
2 Initialize-Single-Source(G, s)
3 for each vertex u, in topsort order
4 for each vertex v \in G.Adj[u]
5 Relax(u, v, w)
```

G graf
w vekting
s startnode

u fra-node

v til-node

Dag-Shortest-Path(G, w, s)

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)
- 3 for each vertex u, in topsort order
- for each vertex $v \in G.Adj[u]$
- 5 Relax(u, v, w)

korteste vei > DAG-SP

Dag-Shortest-Path(G, w, s)

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)
- 3 for each vertex u, in topsort order
- 4 for each vertex $v \in G.Adj[u]$
- 5 Relax(u, v, w)

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source(G, s)
- 3 for each vertex u, in topsort order
- 4 for each vertex $v \in G.Adj[u]$
- 5 Relax(u, v, w)

Sykler forbudt!

3.d er nå feil

- God mental modell for dynamisk programmering; erkeeksempel
- Delproblemer er avstander fra s til innnaboer; velg den som gir deg best resultat
- › Bottom-up: Kantslakking av inn-kanter i topologisk sortert rekkefølge (såkalt pulling)
- Gir samme svar: Kantslakking av ut-kanter i topologisk sortert rekkefølge (såkalt reaching)

DAG-SP > Kjøretid

Operasjon	Antall	Kjøretid
Topologisk sortering	1	$\Theta(V + E)$
Initialisering	1	$\Theta(\mathrm{V})$
Relax	${ m E}$	$\Theta(1)$

Totalt: $\Theta(V + E)$

Kantslakking er altså en oppspalting av minimums-operasjonen fra dekomponeringen. Vi har foreløpig ikke vært så kreative med hvordan vi har brukt det – la oss studere teknikken litt mer i detalj.

$$\delta(s, v) \leq v.d$$

$$\delta(s, v) \leq v.d$$

Avstanden $\delta(s,v)$ er ukjent til å begynne med

Vi leter etter bedre veier; v.d er best så langt

Vi kan naturligvis aldri få v.d mindre enn $\delta(s,v)$

Hver gang vi finner en snarvei $s \leadsto u \to v$, synker estimatet

Hver gang vi finner en snarvei $s \leadsto u \to v$, synker estimatet

Her er s startnoden, og avstans-overestimatet u.d er 6

Men esimtatet her trenger ikke være mer enn 3

Men esimtatet her trenger ikke være mer enn 3

Kanskje det finnes en kortere vei, men avstanden er maks 3

Her er u.d for stor; trenger maks være 2

Men nå ser vi at v.d er for stor; trenger maks være d.u + 2 = 4

Finnes andre kanter, så kan veien være kortere; ikke lengre!

Er dette den korteste stien, så er u.d og v.d nå korrekte

- 1 Relax(s, x)
- 2 Relax(s, y)
- 3 Relax(s, z)
- 4 Relax(s, u)
- 5 Relax(s, v)
- 6 Relax(s, t)

- 1 Relax(s, x)
- 2 Relax(s, y)
- 3 Relax(s, z)
- 4 Relax(s, u)
- 5 Relax(s, v)
- 6 Relax(s, t)

Ferdig...

- 1 Relax(s, x)
- 2 Relax(s, y)
- 3 Relax(s, z)
- 4 Relax(s, u)
- 5 Relax(s, v)
- 6 Relax(s, t)

 \dots med mindre s.d endres!

- 1 Relax(s, x)
- 2 Relax(s, y)
- 3 Relax(s, z)
- 4 Relax(s, u)
- 5 Relax(s, v)
- 6 Relax(s, t)

- 1 Relax(x, s)
- 2 Relax(y, s)
- 3 Relax(z, s)
- 4 Relax(u, s)
- 5 Relax(v, s)
- 6 Relax(t,s)

- 1 Relax(x, s)
- $2 \quad \text{Relax}(y, s)$
- 3 Relax(z, s)
- 4 Relax(u, s)
- 5 Relax(v, s)
- 6 Relax(t,s)

s.d er min. over inn-kanter

korteste vei > slakking

- 1 Relax(x, s)
- 2 Relax(y, s)
- 3 Relax(z, s)
- 4 Relax(u, s)
- 5 Relax(v, s)
- 6 Relax(t,s)

x.d, y.d... rett $\implies s.d$ rett

For å sikre oss mot «juks» starter vi med uendelige estimater

Vi «reparerer» så ett og ett estimat...

...helt til alle er korrekte

Sti-slakkings-egenskapen

Om p er en kortest vei fra s til v og vi slakker kantene til p i rekkefølge, så vil v få riktig avstandsestimat. Det gjelder uavhengig av om andre slakkinger forekommer, selv om de kommer innimellom.

- 1 Relax(y, z)
- 2 Relax(x, y)
- 3 Relax(s, x)
- 4 Relax(y, z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 Relax(s, x)

- 1 Relax(y, z)
- 2 Relax(x, y)
- 3 Relax(s, x)
- 4 Relax(y, z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 Relax(s, x)

Flere kall var bortkastet

- 1 Relax(y, z)
- 2 Relax(x, y)
- 3 Relax(s, x)
- 4 Relax(y, z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 Relax(s, x)

La oss droppe dem!

- $1 \quad \text{Relax}(y, z)$
- $2 \quad \text{Relax}(x,y)$
- 3 Relax(s, x)
- 4 Relax(y,z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 $\frac{\text{Relax}(s,x)}{s}$

- 1 Relax(y, z)
- $2 \quad \text{Relax}(x,y)$
- 3 Relax(s, x)
- 4 Relax(y,z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 $\frac{\text{Relax}(s,x)}{s}$

Samme utvikling; samme svar

- 1 Relax(y, z)
- $2 \quad \text{Relax}(x,y)$
- 3 Relax(s, x)
- 4 Relax(y,z)
- 5 Relax(x, y)
- 6 Relax(y, z)
- 7 $\frac{\text{Relax}(s,x)}{s}$

Følger rekkefølgen langs stien!

- 1 Relax(s, x)
- 2 Relax(x, y)
- 3 Relax(y, z)
- 4 Relax(b, c)
- 5 Relax(a, b)
- 6 Relax(t,a)

Slakk alle kanter én gang

- 1 Relax(s, x)
- 2 Relax(x, y)
- 3 Relax(y, z)
- 4 Relax(b, c)
- 5 Relax(a, b)
- 6 Relax(t, a)

Flaks? Ferdig!

- 1 Relax(s, x)
- 2 Relax(x, y)
- 3 Relax(y, z)
- 4 Relax(b, c)
- 5 Relax(a, b)
- 6 Relax(t, a)

Uflaks? Ett hakk videre

- 1 Relax(s, x)
- 2 Relax(x, y)
- 3 Relax(y, z)
- 4 Relax(b, c)
- 5 Relax(a, b)
- 6 Relax(t, a)

Tre pass: Garantert ferdig

- 1 Relax(s, x)
- 2 Relax(x, y)
- 3 Relax(y, z)
- 4 Relax(b, c)
- 5 Relax(a, b)
- 6 Relax(t, a)

Hvorfor akkurat tre?

korteste vei > slakking > sykler

- 1 Relax(x, y)
- 2 Relax(y, z)
- 3 Relax(z, x)

Positiv sykel

- 1 Relax(x, y)
- $2 \quad \text{Relax}(y, z)$
- 3 Relax(z, x)

Unødvendig ekstrakostnad

- 1 Relax(x, y)
- $2 \quad \text{Relax}(y, z)$
- 3 Relax(z, x)

Vil ikke bli del av kortest vei

- 1 Relax(x, y)
- 2 Relax(y, z)
- 3 Relax(z, x)
- 4 Relax(x, y)
- 5 Relax(y, z)
- 6 Relax(z, x)
- 7 Relax(x, y)
- 8 Relax(y, z)
- 9 Relax(z, x)

Negativ sykel

- 1 Relax(x, y)
- 2 Relax(y, z)
- 3 Relax(z, x)
- 4 Relax(x, y)
- 5 Relax(y, z)
- 6 Relax(z, x)
- 7 Relax(x, y)
- 8 Relax(y,z)
- 9 Relax(z, x)

Etc.

Ingen sti er kortest!

- En enkel sti er en sti uten sykler
- En kortest sti er alltid enkel
- Negativ sykel? Ingen sti er kortest!
- Det finnes fortsatt en kortest enkel sti
- Å finne den effektivt: Uløst (NP-hardt)

La $\langle v_1, v_2, \dots, v_k \rangle$ være korteste vei til z.

Vi vil slakke kantene langs stien, men kjenner ikke rekkefølgen.

Løsning:

Slakk absolutt alle kanter k-1 ganger!

La $\langle v_1, v_2, \dots, v_k \rangle$ være korteste vei til z.

Vi vil slakke kantene langs stien, men kjenner ikke rekkefølgen.

Løsning:

Slakk absolutt alle kanter k-1 ganger!

Bellman-Ford

1958]

RICHARD BELLMAN

ON A ROUTING PROBLEM*

By RICHARD BELLMAN (The RAND Corporation)

Summary. Given a set of N cities, with every two linked by a required to traverse these roads. we wish to detain the another given city which minimizes the portional to the distances de traffic.

Flere har publisert metoden før/ etter, inkl. Shimbel, Ford og Moore.

87

Bellman-Ford(G, w, s)

G grafw vektings startnode

Bellman-Ford(G, w, s)1 Initialize-Single-Source(G, s) G grafw vektings startnode

Bellman-Ford(G, w, s)

- 1 Initialize-Single-Source(G, s)
- 2 **for** i = 1 **to** |G.V| 1

G graf

w vekting

s startnode

i teller

Bellman-Ford(G, w, s)

- 1 Initialize-Single-Source(G, s)
- 2 **for** i = 1 **to** |G.V| 1
- for each edge $(u, v) \in G.E$

- w vekting
- s startnode
- *i* teller
- u fra-node
- v til-node

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)
```

- w vekting
- s startnode
- *i* teller
- u fra-node
- v til-node

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |GV| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E
```

- w vekting
- s startnode
- *i* teller
- u fra-node
- v til-node

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)
```

- w vekting
- s startnode
- *i* teller
- u fra-node
- v til-node

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return false
```

G graf w vekting s startnode i teller u fra-node v til-node

I så fall: Vi må ha kommet borti en negativ sykel

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return false

8 return true
```

G graf w vekting s startnode i teller u fra-node v til-node

Ellers: Svaret vi fant må være rett!

korteste vei > bellman-ford

Bellman-Ford(G, w, s) 1 Initialize-Single-Source(G, s) 2 for i = 1 to |G.V| - 13 for each edge $(u, v) \in G.E$ 4 Relax(u, v, w)5 for each edge $(u, v) \in G.E$ 6 if v.d > u.d + w(u, v)7 return false 8 return true

korteste vei > bellman-ford

Bellman-Ford(G,
$$w, s$$
)

1 Initialize-Single-Source(G, s)

2 for $i = 1$ to $|G.V| - 1$

3 for each edge $(u, v) \in G.E$

4 Relax (u, v, w)

5 for each edge $(u, v) \in G.E$

6 if $v.d > u.d + w(u, v)$

7 return false

8 return true

 \rightarrow true

Negative sykler skaper trøbbel ... det finnes fortsatt en kortest enkel sti, men vi klarer ikke finne den med denne fremgangsmåten.

Bellman-Ford(G, w, s)

- 1 Initialize-Single-Source(G, s)
- 2 **for** i = 1 **to** |G.V| 1
- for each edge $(u, v) \in G.E$
- 4 Relax(u, v, w)
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
- 7 return false
- 8 return TRUE

i,u,v = -,-,-

korteste vei > bellman-ford


```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return false

8 return true

\rightarrow False
```


Merk at om ingen stier fra startnoden når frem til den negative sykelen, så skaper den *ikke* problemer, og løsningen vår er gyldig.

Bellman-Ford(G, w, s)

- 1 Initialize-Single-Source(G, s)
- 2 **for** i = 1 **to** |G.V| 1
- for each edge $(u, v) \in G.E$
- 4 Relax(u, v, w)
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
- 7 return false
- 8 return TRUE

i, u, v = -, -, -

korteste vei > bellman-ford


```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return false

8 return true
```


Bellman-Ford > Kjøretid

Se også oppg. 24-1

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Relax	V-1	

(Altså slakking av alle kantene)

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(\mathrm{V})$
Relax	V - 1	$\Theta(\mathrm{E})$
Relax	1	O(E)

Totalt: $\Theta(VE)$

Her oppgir boka bare den øvre grensen, O(VE).

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Relax	V - 1	$\Theta(\mathrm{E})$
Relax	1	O(E)

Totalt: $\Theta(VE)$

Om et estimat endres, så var tidligere slakking fra noden bortkastet.

Konklusjon:

Slakk kanter fra v når v.d ikke kan forbedres.

Om et estimat endres, så var tidligere slakking fra noden bortkastet.

Konklusjon:

Slakk kanter fra v når v.d ikke kan forbedres.

Det vi startet med!

Strategi 1 av 2:

Slakk kanter ut fra noder i topologisk sortert rekkefølge.

Strategi 1 av 2:

Slakk kanter ut fra noder i topologisk sortert rekkefølge.*

Hvorfor blir det rett?

Når alle inn-kanter er slakket kan ikke noden forbedres, og kan trygt velges som neste.

^{*} Krever en rettet asyklisk graf

Strategi 1 av 2:

Slakk kanter ut fra noder i topologisk sortert rekkefølge.*

Hvorfor blir det rett?

Når alle inn-kanter er slakket kan ikke noden forbedres, og kan trygt velges som neste.

^{*} Krever en rettet asyklisk graf

Hva om vi vil ha sykler?

Hva om vi vil ha sykler?

Strategi 2 av 2:

Velg den gjenværende med lavest estimat.

Hvorfor blir det rett?

Gjenværende noder kan kun forbedres ved slakking fra andre gjenværende. Det laveste estimatet kan dermed ikke forbedres.*

^{*} Stemmer ikke hvis vi har negative kanter!

Dijkstras algoritme

Numerische Mathematik 1, 269-271 (1959)

A Note on Two Problems in Connexion with Graphs

E. W. DIJKSTRA

declared or all pairs of which are connected by a

DIJKSTRA(G, w, s)

G grafw vektings startnode

Dijkstra(G, w, s) 1 Initialize-Single-Source(G, s) G grafw vektings startnode

Dijkstra(G, w, s)

- 1 Initialize-Single-Source(G, s)
- $2 S = \emptyset$

- w vekting
- s startnode
- 5 ferdige

Dijkstra(G, w, s)

- 1 Initialize-Single-Source(G, s)
- $2 S = \emptyset$
- 3 Q = G.V

G graf

w vekting

s startnode

S ferdige

Q pri-kø

Dijkstra(G, w, s)

- 1 Initialize-Single-Source(G, s)
- $2 S = \emptyset$
- 3 Q = G.V
- 4 while $Q \neq \emptyset$

G graf

w vekting

s startnode

S ferdige

Q pri-kø

Så lenge det er noen vi ikke har avstanden til...

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{Extract-Min}(Q)
```

G graf w vekting s startnode S ferdige Q pri-kø

u fra-node

korteste vei > dijkstra

```
Dijkstra(G, w, s)

1 Initialize-Single-Source(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{Extract-Min}(Q)

6 S = S \cup \{u\}
```

G graf

w vekting

s startnode

S ferdige

Q pri-kø

u fra-node

```
Dijkstra(G, w, s)

1 Initialize-Single-Source(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{Extract-Min}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in \text{G.Adj}[u]
```

G graf

w vekting

s startnode

S ferdige

Q pri-kø

u fra-node

v til-node

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{Extract-Min}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in \text{G.Adj}[u]

8 Relax(u, v, w)
```

G graf w vekting s startnode S ferdige Q pri-kø u fra-node v til-node

korteste vei > dijkstra

En liten forskjell fra boka: De farger en node svart idet den legges i S, mens jeg farger den svart idet den er ferdigbehandlet – dvs., etter vi har slakket utkantene.

Dijkstra(G, w, s)

1 Initialize-Single-Source(G, s)

$$2 S = \emptyset$$

$$3 Q = G.V$$

4 while
$$Q \neq \emptyset$$

$$5 u = \text{Extract-Min}(Q)$$

$$6 \qquad S = S \cup \{u\}$$

for each vertex $v \in G.Adj[u]$

8 RELAX(u, v, w)

u, v = -, -

korteste vei > dijkstra

$\operatorname{Dijkstra}(G, w, s)$

- 1 Initialize-Single-Source(G, s)
- $2 S = \emptyset$
- 3 Q = G.V
- 4 while $Q \neq \emptyset$
- 5 u = Extract-Min(Q)
- $6 \qquad S = S \cup \{u\}$
- for each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

DIJKSTRA(G, w, s)

- 1 Initialize-Single-Source(G, s)
- $2 S = \emptyset$
- 3 Q = G.V
- 4 while $Q \neq \emptyset$

- $6 \qquad S = S \cup \{u\}$
- for each vertex $v \in G.Adj[u]$
- RELAX(u, v, w)

Negative kanter forbudt! 3.d er nå feil

Dijkstra > Kjøretid

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${f E}$	$O(\lg V)$

Totalt: $O(V \lg V + E \lg V)$

*Nødvendig i Relax

Med binærheap; bedre enn lineært søk for $E = o(V^2/\lg V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${f E}$	$O(\lg V)$

Totalt: $O(V \lg V + E \lg V)$

*Nødvendig i Relax

Boka bruker $V \times INSERT$; fortsatt $O(E \lg V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${ m E}$	$O(\lg V)$

Totalt: $O(V \lg V + E \lg V)$

*Nødvendig i Relax

- 1. Dekomponering
- 2. DAG-Shortest-Path
- 3. Kantslakking
- 4. Bellman-Ford

5. Dijkstras algoritme

Bonusmateriale

Korteste vei > Dijkstra > Korrekthet

korteste vei > dijkstra > korrekthet

La u være den neste som skal besøkes; kan u.d være feil?

(x,y) ligger på en av de korteste stiene fra s til u

xligger i S; vi kan has=xeller $y=u;\,y\leadsto u$ kan gå innom S

Ikke-negative vekter \implies avstandene synker ikke

y.d

u.d

Når u velges, så er u.d lik $\delta(s,u)$, altså korrekt