

Universidade do Minho

Mestrado Integrado em Engenharia de Telecomunicações e Informática

Projeto de Telecomunicações e Informática I

Relatório da Primeira Fase

Grupo 2

Guimarães

25/10/2018

Índice

1.	Introdução6		
2.	Planeamento		
3.	Ferra	amentas necessárias8	
4.	Enqu	adramento do projeto9	
4.	.1.	Arquitetura do sistema10	
	4.1.1.	Fase offline11	
	4.1.2.	Fase online	
5.	Requ	isitos	
6.	Estuc	do dos algoritmos	
6	.1.	Algoritmo base	
6	.2.	Algoritmo adaptado14	
7.	Servi	ço de posicionamento15	
8.	Mode	elo de dados17	
8.	.1. [Modelo concetual de dados18	
8.	.2. 1	Modelo relacional18	
9.	Aplic	ação de posicionamento21	
10.	Aplicação de gestão de posicionamento24		
11.	Segurança no acesso aos recursos29		
12.	Desempenho do sistema29		
12	Roforô	ncias 30	

Índice de figuras

Figura 1 - Diagrama de Gantt [1]	7
Figura 2 - Diagrama de Gantt [2]	7
Figura 3 – Arquitetura do sistema.	10
Figura 4 - Modelo concetual de dados	18
Figura 5 - Menu login da aplicação de posicionamento	21
Figura 6 - Menu de registo do utilizador na aplicação de posicionamento	22
Figura 7 - Lista de espaços detetados	23
Figura 8 - Menu lateral	24
Figura 9 - Menu login na aplicação de gestão de posicionamento	25
Figura 10 - Menu da aplicação de gestão de posicionamento	26
Figura 11 - Criação de um novo espaço	27
Figura 12 - Aprovação de utilizadores para um espaço	28
Figura 13 - Lista dos utilizadores com permissão para aceder a um espaço	28

Índice de tabelas

Tabela 1 - Identificação das tecnologias utilizadas e a sua descrição	8
Tabela 2 - Identificação do hardware utilizado e a sua descrição	8
Tabela 3 - Identificação do software utilizado e a sua descrição	9
Tabela 4 - Pedidos das aplicações	15

Lista de abreviaturas

PTI – Projeto de Telecomunicações e Informática

RSS – Received Signal Strength

SQL – Structured Query Language

RP – Reference Point

AP – Access Point

HTTP – Hypertext Transfer Protocol

API – Application Programming Interface

MAC – Media Access Protocol

1. Introdução

No âmbito da Unidade Curricular de Projeto de Telecomunicações e Informática I, lecionada no primeiro semestre do quarto ano do curso de Mestrado Integrado em Engenharia de Telecomunicações e Informática, foi-nos proposta a realização de um projeto.

O projeto assenta na implementação de um sistema de *software* que permite a criação e disponibilização de um serviço que numa determinada área descubra o posicionamento dos utilizadores deste mesmo. Para isso baseia-se em WIFI *fingerprint*.

Este relatório encontra-se dividido em diversos tópicos de estudo: arquitetura global do sistema, componentes individuais da infraestrutura de *software* e das aplicações, modelos de dados de cada componente e segurança.

2. Planeamento

A realização deste projeto encontra-se dividida em duas fases. Para garantir que o grupo se organiza da melhor forma possível, optámos pela realização do seguinte diagrama de Gantt. Aqui encontram-se assinaladas as datas de entrega bem como outras datas associadas à divisão e execução de tarefas associadas à primeira fase deste projeto.

Figura 1 - Diagrama de Gantt [1].

Figura 2 - Diagrama de Gantt [2].

3. Ferramentas necessárias

Para a realização deste projeto é necessária a utilização de diversas ferramentas de *Hardware* e *Software*. É também necessária a adoção de algumas tecnologias.

Na tabela 1 são referidas todas as tecnologias necessárias à implementação do projeto.

Nas tabelas 2 e 3 encontram-se visíveis as ferramentas de *Hardware* e *Software* que serão utilizadas ao longo de todo o projeto.

Tabela 1 - Identificação das tecnologias utilizadas e a sua descrição.

Tecnologias	Descrição
Linguagem Java	Desenvolvimento da aplicação Android
Linguagem SQL	Elaboração da base de dados rmazenamento de dados
Protocolo http	Comunicação entre as aplicações Android/Web e o servidor
JavaScript	Desenvolvimento da aplicação de gestão do serviço de posicionamento

Tabela 2 - Identificação do hardware utilizado e a sua descrição.

Hardware	Descrição
Computadores	Desenvolvimento de código e relatório, pesquisas e partilha de informação
Access Point	Conexão dos dispositivos à rede
Telemóveis Android	Utilização da aplicação

Tabela 3 - Identificação do software utilizado e a sua descrição.

Software	Descrição
Microsoft Word	Edição de texto
Microsoft PowerPoint	Desenvolvimento de apresentações
Android Studio	Desenvolvimento da aplicação Android
GanttProject	Elaboração do diagrama de Gantt
Visual Studio Code	IDE para programação em JavaScript
MySQL	Desenvolvimento da base de dados
Facebook	Comunicação entre os elementos do grupo
OneDrive	Partilha de conteúdo e backup de
	documentos

4. Enquadramento do projeto

O objetivo primordial deste projeto é o desenvolvimento de um sistema que permita realizar a monitorização de um serviço de posicionamento.

Para o efeito, o sistema possui três tipos distintos de utilizadores, que são responsáveis pela criação de espaços, atribuição de autorização de entrada, de novos utilizadores, em espaços previamente criados e cálculo da posição relativa de um dado dispositivo que se encontra associado a um determinado utilizador.

Para solucionar o projeto iremos recorrer à conceção de uma aplicação, compatível com os dispositivos Android. Esta aplicação encontrar-se-á conectada a um servidor que guarda todas as informações úteis numa base de dados, sendo possível o acesso a esta em tempo real, solucionando assim o problema proposto.

4.1. Arquitetura do sistema

Com o objetivo de ilustrar o sistema a implementar ao longo do semestre, foi por nós elaborado o seguinte modelo, representado na figura 3, referente à arquitetura do sistema.

Figura 3 – Arquitetura do sistema.

Na figura anterior, as setas presentes pretendem indicar qual o sentido da comunicação, sendo este bidirecional ou unidirecional.

A obtenção do posicionamento encontra-se divida em duas fases:

- Fase offline;
- Fase online.

Seguidamente, encontra-se uma breve descrição das fases anteriormente referidas.

4.1.1. Fase offline

O dono do espaço define um espaço que vai ser usado na obtenção das localizações dos Users:

- Eleição dos RP (Reference Point) que vão ser utilizados na aquisição das localizações;
- Aquisição dos valores de RSS (Received Signal Strength) de todos os AP (Access Point) em cada RP;
- Cálculo da média do valor do RSS em cada um dos RP bem como do desvio padrão;
- Envio dos cálculos para a base de dados.

4.1.2. Fase online

A fase online é utilizada de forma diferente dependendo do utilizador.

Utilizador basic:

- Coleciona os valores de RSS;
- Visualiza a sua localização e a dos restantes utilizadores do espaço, quando se encontram online nesse espaço.

Utilizador premium:

- Coleciona os valores de RSS;
- Visualiza a sua localização;
- Se a localização indicada não corresponder à localização real, este pode adicionar novos RP's.

5. Requisitos

Nesta secção explicaremos os aspetos discutidos e decididos pelo grupo relativamente às funcionalidades do promo. No futuro, aquando o desenvolvimento do sistema, poderão ser acrescentados mais requisitos.

Haverá três donos de espaços, predefinidos, cada um associado a um elemento do grupo.

Um AP só pode estar associado a um espaço.

O dono de um espaço pode ou não ser um utilizador *basic* ou *premium* de um espaço criado por outro dono. Em caso de necessidade de adição de um dono, é necessário recorrer diretamente ao servidor, sem intervenção da aplicação.

Para um utilizador aceder a um espaço terá de pedir permissão ao dono deste. O dono de um espaço dá permissão, ou não. O utilizador, que realizou o pedido, recebe uma mensagem com a confirmação ou recusa de acesso ao espaço.

Quando um utilizador obtém permissão de um determinado dono para aceder a um espaço, é adquirida automaticamente permissão para todos os espaços desse dono. A permissão a um espaço pode ser retirada a um utilizador, no entanto este pode voltar.

Aquando do registo de um novo utilizador, este é automaticamente classificado como sendo do tipo *basic*.

Um utilizador basic pode obter a sua localização e a localização de outros utilizadores num espaço. Ao fim de trinta minutos de utilização da aplicação, o utilizador evolui para premium.

Um utilizador *premium* para além de ter a mesma funcionalidade de um basic pode corrigir a sua localização, quando esta está errada. Cabe ao utilizador aceitar ou não a posição atribuída pelo sistema. A opção de correção, da posição, encontra-se sob responsabilidade do utilizador, não tendo o sistema qualquer tipo de influência.

Um utilizador *premium* pode ter diversas reputações que evoluem quando este faz correções.

Um dono de espaço pode consultar as adições de RP feitas nos seus espaços por parte dos utilizadores *premium*. Este consegue ver qual o utilizador que fez as alterações.

6. Estudo dos algoritmos

Neste tópico vamos realizar a descrição detalhada do algoritmo no qual nos baseámos para a base de dados *fingerprint*, assim como do algoritmo que vamos utilizar durante a realização deste projeto.

A escolha do algoritmo a utilizar não foi uma tarefa fácil. Inicialmente pensamos numa abordagem bastante eficaz, mas ao mesmo tempo bastante complexa que iremos explicar a seguir.

6.1. Algoritmo base

O algoritmo base no qual nos baseámos para o desenvolvimento do nosso, utiliza a abordagem probabilística. [2]

A fingerprint database consiste numa matriz de matrizes.

$$\mathbf{D} = |R1, R2, ..., Rw|$$

Onde D representa o conjunto de matrizes de cada RP e w o número de RP de um espaço.

Cada RP possui uma matriz com as probabilidades de distribuição RSS de todos os AP em cada RP existente. Onde A_N é o número de AP presentes no espaço, T representa as medidas dos RSS.

$$\mathbf{Ri} = \begin{vmatrix} P_{A1}(T1) & P_{A2}(T1) & \dots & P_{AN}(T1) \\ P_{A1}(T2) & P_{A2}(T2) & \dots & P_{AN}(T2) \\ \dots & \dots & \dots & \dots \\ P_{AN}(TM) & P_{AN}(TM) & \dots & P_{AN}(TM) \end{vmatrix}$$

A probabilidade é expressa como:

$$P_{An}(T_m) = \frac{Ctm}{Ni} ,$$

Onde N_i é o número total de amostras coletadas no RP_i, C_{tm} é o número de vezes que uma amostra aparece para cada RP. Posto isto, a base de dados geral pode ser escrita como:

 $D = [R_1, R_2, ..., R_W]$, onde w é o número total de RP no espaço.

6.2. Algoritmo adaptado

Como dito, após a análise do algoritmo base, o grupo efetuou algumas alterações que aqui serão indicadas.

A tabela da base de dados fingerprint, D, contém o conjunto das tabelas para cada espaço, R_w, que por sua vez contêm as médias e desvio-padrão das medições feitas em cada AP para cada RP.

$$D = [R_1, R_2, ..., R_w]$$

A tabela de cada RP, que será guardada na base de dados, é a seguinte.

$$\mathbf{Rw} = \begin{bmatrix} M1_{A1} & M1_{A2} & \dots & M1_{AN} \\ M2_{A1} & M2_{A2} & \dots & M2_{AN} \\ \dots & \dots & \dots \\ Mm_{A1} & Mm_{A2} & \dots & Mm_{AN} \end{bmatrix}$$

Sendo w o número de RP; m o número total de RP; A_N o número total de AP do espaço; M a média calculada com N amostras de RSS e T a soma de todas as amostras.

$$M = \frac{T}{N}$$

O desvio padrão pode ser calculado utilizando a seguinte fórmula.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (xi - M)^2}{N}},$$

onde M é a média dos valores das amostras, xi é o valor de cada amostra e N é o número de amostras obtidas.

Exemplo: $M1_{A1} = T / N$ é a média de RSS feitas no RP_1 para o AP_1 .

7. Serviço de posicionamento

Como indicado no enunciado do projeto, o serviço de posicionamento será responsável por processar e armazenar as WIFI *fingerprints* de cada utilizador enviadas pela aplicação de posicionamento. É também responsável pelos restantes dados que serão guardados numa <u>base de dados</u>.

Relativamente ao acesso dos recursos, que será feito através de uma API (*Application Programming Interface*) baseada em REST *Web Services*, o grupo não conseguiu fazer um grande avanço a nível concecional, porque, para além de não haver conhecimento sobre o assunto, não conseguimos fazer uma pesquisa avançada até ao momento. Assim sendo, o que conseguimos fazer foi uma pequena definição dos pedidos que as aplicações vão fazer ao serviço de posicionamento para aceder aos recursos disponibilizados. Esses pedidos encontram-se apresentados na tabela 4 sob a forma de métodos.

Tabela 4 - Pedidos das aplicações.

Nome do método	Explicação
getNome()	Devolve o nome do utilizador
setNome(String nome)	Atribui o nome de utilizador
gePassword()	Obtenção da password
setPassword(String pass)	Define ou altera a password de utilizador
getTipo()	Obtenção do tipo de utilizador
setTipo()	Altera o tipo após ultrapassado o tempo
	mínimo de utilização
getID_espaco()	Obtenção ID do espaço
setEmail(String mail)	Atribuição do email de utilizador
GetMAC_AP()	Obtenção do MAC do AP
setMac_AP(String ap)	Define o MAC do AP
setRSS_medio(float RSS)	Envio da média de RSS para o servidor
setDesvio_padro(float desv)	Envio do valor de desvio padrão para o
	servidor

Universidade do Minho

getX_RP()	Obtenção da coordenada x de um
	determinado RP
setX_RP(int x)	Atribuição da coordenada x de um
	determinado RP
getY_RP()	Obtenção da coordenada y de um
	determinado RP
SetY_RP(int y)	Atribuição da coordenada y de um
	determinado RP
getX_AP()	Obtenção da coordenada x de um
	determinado AP
setX_AP(int x)	Atribuição da coordenada x de um
	determinado AP
getY_AP()	Obtenção da coordenada y de um
	determinado AP
setY_AP(int y)	Atribuição da coordenada y de um
	determinado AP
getX_user()	Obtenção da coordenada x do utilizador
setX_user(int x)	Atribuição da coordenada x do utilizador
getY_user()	Obtenção da coordenada y do utilizador
setY_user(int y)	Atribuição da coordenada y do utilizador
setMAC_dispositivo(String mac)	Associação do MAC de um dispositivo a um
	utilizador
setTempo(time)	Atualização do tempo de atualização da
	aplicação

8. Modelo de dados

No contexto deste projeto, todas as informações necessárias para a boa utilização das aplicações encontrar-se-ão armazenadas numa base de dados, possuindo tudo o que é importante para as fases online e offline. Esta possui como principais funções a realização do controlo de utilizadores e também o armazenamento de dados relativamente a cada RP associado a um ou mais AP.

As bases de dados são organizadas em linhas, colunas e tabelas com objetivo de facilitar o acesso à informação. Os dados são atualizados ou excluídos à medida que novas informações são adicionadas. [1]

Para este projeto, a base de dados será concebida com recurso à linguagem SQL (Structured Query Language). Para a sua conceção foi necessário refletir acerca das suas tabelas e atributos.

Primeiramente foi necessário desenvolver o modelo concetual de dados, que se encontra a seguir apresentado, tendo sido posteriormente desenvolvido o modelo relacional.

8.1. Modelo concetual de dados

Após uma discussão foi obtido o modelo concetual representado na figura 4.

Figura 4 - Modelo concetual de dados.

8.2. Modelo relacional

Em seguida encontra-se apresentado o modelo relacional, obtido após a elaboração do modelo concetual.

Através do modelo relacional podemos verificar quais os atributos são utilizados como chave principal e/ou chave primária.

User (id user, nome_user, tipo, password, email, pergunta, resposta)

Espaco (<u>id_espaco</u>, MAC_AP, id_user)

FingerPrint (<u>Id espaco</u>, <u>id RP</u>, RSS_medio, desvio_padrao, <u>MAC AP</u>)

Dispositivos_espaco (id espaco, id RP, MAC AP, x_RP, y_RP, x_AP,y_AP)

Localizacao_user (<u>id_espaco, id_user</u>, x_user, y_user)

Dispositivos (MAC, id_user)

Autorizados (<u>id user</u>, <u>id espaco</u>, tempo_online)

Historico (*id user, id espaco,* data, hora)

Tabela User

A tabela User é utilizada para guardar as credenciais de todos os utilizadores existentes, garantindo unicamente o acesso ao sistema através de credenciais autorizadas. Esta tem como chave primária o atributo id_user, atributo do tipo *auto increment*. Outros atributos são o nome de utilizador, nome_user, tipo de utilizador, *password* e email. Encontram-se ainda associados os atributos relacionados com a segurança.

Tabela Espaco

A tabela Espaco tem como chave primária o atributo id_espaco, chave primária que será do tipo *auto increment*, tem o endereço MAC de cada AP, MAC_AP e o id_user do dono do espaço, atributo que é chave estrangeira da tabela.

Tabela Autorizados

A cada um dos espaços existentes, id_espaco, encontram-se associados os utilizadores que possuem autorização para lhe aceder, id_user, sendo isto definido na tabela Autorizados. A chave primária desta tabela são ambos os atributos, sendo que estes são também chaves estrangeiras. Esta possui também um atributo, tempo_online, que guarda o tempo que um utilizador passa num espaço.

Tabela Dispositivos

Cada utilizador pode aceder ao serviço através de diversos dispositivos. Para tal, a tabela Dispositivos associa cada um dos endereços MAC (*Media Access Control*) do

dispositivo ao usuário correspondente, id_user. A chave primária desta tabela é o atributo MAC e tem como chave estrangeira o atributo id_user.

Tabela Fingerprint

A tabela FingerPrint é aproveitada para o armazenamento dos cálculos, estando estes associados ao espaço, AP e RP correspondentes. Esta tem como chave primária os atributos id_espaco, id_RP e MAC_AP e chave estrangeira id_espaco. No espaço x, vai ser guardado a média das amostras de RSS, RSS_medio, e o desvio padrão, desvio_padrao, feitas d+/0 um RP, id_RP, para cada AP, MAC_AP, para orientações diferentes.

Dispositivos_espaco

A tabela Dispositivos_espaco identifica quais os dispositivos contidos num espaço. Esta tem como chave primária o id_user, o id_RP e o MAC_AP. Id_user é também chave estrangeira. Para além disso, a tabela armazena as posições dos RP e dos AP, com as coordenadas x RP, y RP, x AP, y AP.

Localizacao user

A tabela Localizacao_user tem como chave primária o id_espaco e o id_user, que usa para obter a posição deste, x_user e y_user. Esta tem como chaves estrangeiras os atributos id_user e id_espaco.

Historico

A tabela Historico tem como chave primária e estrangeiras os atributos id_user e id_espaco, assim como os atributos data e hora onde é guardado o momento em que um utilizador está num espaço.

9. Aplicação de posicionamento

Após discussão, o grupo decidiu desenvolver as aplicações de posicionamento em linguagem Android. Optámos por desenvolver uma única aplicação Android, permitindo realizar todas as funcionalidades dos utilizadores básico e *premium*, mesmo quando os utilizadores *premium* pretendem realizar correções ao nível do posicionamento.

Em seguida, irá ser descrito o que foi delineado pelo grupo relativamente à aplicação Android. Destacamos o facto das seguintes estruturas serem esboços que poderão sofrer grandes alterações.

Primeiramente, quando um utilizador abre a aplicação irá deparar-se com um menu login que terá a seguinte estrutura, figura 5.

Figura 5 - Menu login da aplicação de posicionamento.

Para efetuar login, um utilizador, que não se tenha registado previamente, deverá efetuar o seu registo, como representado na figura 6. Para isso, terá de escolher um nome de utilizador, que deverá ser comparado com a base de dados. Será necessário introduzir a palavra-passe, que tem de ser confirmada no campo seguinte. Deverá ser ainda introduzido o seu email, para que no futuro seja possível recuperar/alterar a palavra-passe. Para além de tudo isto, irá ainda ser pedida a elaboração de uma pergunta de segurança, bem como a resposta à mesma. Irá ser explicado detalhadamente, mais à frente, o porquê desta pergunta de segurança.

Todos os campos do registo são de preenchimento obrigatório.

Figura 6 - Menu de registo do utilizador na aplicação de posicionamento.

Após efetuar o registo, um utilizador irá encontrar de novo o ecrã com o menu login, onde poderá colocar as suas credenciais, nome de utilizador e *password*. Como referido no último parágrafo, caso o utilizador se esqueça da password, poderá selecionar o botão

"Esqueceu-se da sua palavra-passe?" e indicar o seu email. Desta forma, o número introduzido é comparado com o que se encontra associado ao utilizador. Se os números coincidem, sucede o envio de uma mensagem com a palavra-passe correspondente.

Após efetuar o login, um utilizador irá deparar-se com uma lista dos espaços que o dispositivo deteta, através dos AP, figura 7.

Figura 7 - Lista de espaços detetados.

Terá também acesso a um menu lateral que contém um botão para efetuar *logout,* um para aceder a informações sobre o utilizador e possibilidade de mudança de *password,* um para aceder ao histórico de visita de espaços e um para aceder a uma lista dos espaços na área que tem permissão ou não para entrar, figura 8.

Quando um utilizador recebe permissão para aceder a um espaço, este poderá visualizar a planta do espaço assim como cada RP e os utilizadores que lá se encontram.

Figura 8 - Menu lateral.

10. Aplicação de gestão de posicionamento

Neste tópico encontra-se a descrição de como será desenvolvida a aplicação Web.

O primeiro *layout* disponível na interface Web é utilizado para o início de sessão, este pode ser visualizado na figura 9.

Figura 9 - Menu login na aplicação de gestão de posicionamento.

A aplicação de gestão apenas pode ser utilizada por utilizadores tipo dono. Para tal, durante o início de sessão, as credenciais de acesso introduzidas são comparadas com as existentes na base de dados, verificando assim o tipo de utilizador. Em caso de esquecimento da palavra-passe de acesso, o "dono" pode recuperar a sua palavra-passe via receção de um *email*, tal como acontece com a aplicação em Android.

Em todos os layouts da aplicação Web, exceto no login, existe uma barra superior com a possibilidade de realização de pesquisas. Na pesquisa deverá ser possível o procurar os dados dos utilizadores associados. Nesta barra, é possível ver também o nome de utilizador e notificações pendentes, para além das opções de termine-o de sessão.

Após início de sessão com sucesso, ser-lhe-á apresentado um menu com as diversas opções que possui, sendo selecionada a ação que pretende. Este menu encontra-se ilustrado na figura 10.

Figura 10 - Menu da aplicação de gestão de posicionamento.

Para que um novo espaço seja criado, é necessário que seja detetado pelo menos um AP. Para tal, após selecionada a opção de deteção de AP, o período de deteção ocorrerá durante 30 segundos. Passados os 30 segundos, a deteção será interrompida.

A criação de um novo espaço, com determinado AP, só poderá ocorrer se esse AP não se encontra ainda associado a nenhum espaço existente até ao momento. Para que tal verificação possa ocorrer, é utilizado o endereço MAC de cada um dos AP (este endereço encontra-se guardado na base de dados). O endereço MAC é único para cada dispositivo.

Caso sejam detetados AP passíveis de utilização, surge a opção para colocação de uma planta. Para que se tenha certeza de que os AP detetados se encontram a área pretendida, são utilizadas as coordenadas x e y (a explicação destas encontram-se na parte referente ao algoritmo). O *layout* referente à criação de um novo espaço pode ser visualizado na figura 11.

Figura 11 - Criação de um novo espaço.

Após o registo de um novo utilizador, é necessário que o "dono" conceda aprovação. Para tal este recebe uma notificação, podendo carregar no sino das notificações, onde é encaminhado para o menu de utilizadores pendentes. Em vez disso, pode aceder ao menu de opções e abrir a opção "Utilizadores pendentes", onde surge o ecrã apresentado na figura 12. Neste ecrã surge uma lista com o nome dos utilizadores pendentes, onde se pode consultar o seu id e o seu *email*, surgindo assim a opção de aprovação ou recusa.

Figura 12 - Aprovação de utilizadores para um espaço.

Existe ainda um *layout* onde são apresentados todos os utilizados que possuem acesso aos espaços do dono. Aqui é possível, caso se pretenda eliminar um utilizador. A figura 13 mostra como isto é possível.

Figura 13 - Lista dos utilizadores com permissão para aceder a um espaço.

11. Segurança no acesso aos recursos

A política de segurança de acesso aos recursos é definida na API. Aqui são apresentados quais os métodos de segurança utilizados.

Para um utilizador aceder à aplicação, este tem de introduzir os dados corretos no login. Os dados de registo de um utilizador, particularmente o nome_user e a *password*, vão ser comparados com os dados inseridos no *login*.

A forma que encontrámos para elevar a segurança dos utilizadores, que possuem acesso à aplicação, foi a introdução de uma pergunta. Esta pergunta é definida pelo utilizador aquando do seu registo, assim como a sua resposta. Nesta situação, se o utilizador for a única pessoa que conhece a sua resposta, é mais difícil aceder à palavrapasse. Resposta correta permite que a palavra-passe seja enviada por *email*. No entanto, isto não concede segurança total, uma vez que outra pessoa pode ter acesso ao *email* e assim descobrir este parâmetro de autenticação.

Relativamente à segurança no acesso a espaços, um utilizador só poderá aceder a um espaço se receber permissão, por parte do dono.

12. Desempenho do sistema

O algoritmo no qual baseámos é probabilístico, possuindo as seguintes vantagens:

- Comparando com os algoritmos determinísticos este possui maior precisão;
- Necessita do valor anterior para saber o atual;
- Precisa de altos recursos computacionais.

13. Referências

- [1] Margaret Rouse, database(DB), https://searchsqlserver.techtarget.com/definition/database, 2017.
- [2] Lina Chen, Binghao Li, Kai Zhao, Chris Rizos, Zhengqi Zheng, An Improved Algorithm to Generate a Wi-Fi Fingerprint Database for Indoor Positioning, Sensors, 2013.
- [3] João Paulo da Fonseca Fernandes, Localização em Redes Wi-Fi, Universidade do Minho, Outubro de 2012.