Termodynamik - Slafs

Aron Granberg, Daniel Kempe, Mårten Wiman

Utvidgning

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T [Pa^{-1}]$ Isobar volymutvidgningskoefficient $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p [\text{K}^{-1}]$ Relativa volymändringen $\frac{dV}{V} = -\kappa \cdot dp + \alpha_V \cdot dT$

Kinetisk gasteori

m = massan per partikel [kg]Molara massan $M = mN_A$ $\nu R = N k_B$ $n = \frac{N}{V}$ $v_p = \sqrt{2} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle v \rangle = \sqrt{\frac{8}{\pi}} \cdot \sqrt{\frac{k_B T}{m}}$ $v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{3} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle E_k \rangle = \frac{3k_BT}{2}$ Ekvipartitionsprincipen

$$U=Nk_BT\cdot\frac{1}{2}\cdot(\#\text{frihetsgrader})$$
 [J] Energi i enatomig gas
$$U=N\frac{m\langle v^2\rangle}{2}=\frac{3}{2}Nk_BT$$
 [J] Notera $Nk_BT=pV$
$$pV=\frac{2}{2}U$$

Medelfri väg
$$\begin{split} l &= \frac{k_B T}{\sqrt{2\pi} d^2 p} = \frac{1}{n\sigma\sqrt{2}} \\ \text{Där } d &= \text{partikelns diameter} \end{split}$$
 $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4} n \langle v \rangle [s^{-1} m^{-2}]$ Maxwell-Boltzmanns hastighetsfördelning
$$\begin{split} n(v) &= \mathbf{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_BT}} \\ \text{om } \int n(v) &= \frac{N}{V}, \text{ dvs om normaliserat} \end{split}$$
 $K = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}}$

Värme

Energi för att förändra temp. $\Delta Q = mC\Delta T$ [J] Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \frac{dU}{dT} [\text{J mol}^{-1} \hat{K}^{-1}]$ Enatomig ideal gas har $C_V = \frac{3}{2}R$

Molar isobar värmekapacitet ideal gas $C_n = C_V + R [\text{J mol}^{-1} \text{K}^{-1}]$ Molar värmekapacitet fast kropp $C_m = 3R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$

Adiabiska processer

 C_p = isobara molara värmekapaciteten $C_V = isokora molara värmekapaciteten$ $\gamma = \frac{C_p}{C_V} = \frac{c_p}{c_V}$ $pV^{\gamma} = \text{konst.}$ $Tp^{(1-\gamma)/\gamma} = \text{konst.}$ $TV^{\gamma-1} = \text{konst.}$ Adiabatiskt arbete på en gas $W = -\int_0^1 p dV = \frac{p_1 V_1 - p_2 V_2}{1 - \gamma}$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{3}$

Värmetransport

 $\lambda = V$ ärmekonduktivitet $\alpha = V$ ärmeövergångskoefficient Ledning $U = \frac{\lambda}{d} [\text{W K}^{-1} \text{ m}^{-2}]$ Konvektion $U=\alpha~[\mathrm{W\,K^{-1}\,m^{-2}}]$ Värmemotstånd

$$rac{1}{U} = \sum rac{1}{U_i}$$

Värmeflöde

 $\Phi = UA \left(T_i - T_u \right)$ Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas dW = -pdVEnergiutbyte med omgivningen dQ = dU + pdVDerivatan av inre energi dU = dQ + dW = dQ - pdVVid isokor process $dU = \nu C_V dT$ Entalpi H = U + pVArbete på en gas $W = -\int_{V_1}^{V_2} p dV$ Isotermt kompressionsarbete på en gas $W_T = -\nu RT \ln \left(\frac{V2}{V_1} \right)$ Isobart kompressionsarbete på en gas $W_p = -p_2(V_2 - V_1)$ Isokort arbete på en gas

 $W_V = 0$

Andra huvudsatsen

Tillförs dQ reversibelt till ett system så är $dS = \frac{dQ}{T}$ Reversibel process i slutet system $\Delta S = 0$

Irreversibel process i slutet system $\Delta S > 0$

Ovrigt om entropi

 $T = 0 \Rightarrow S = 0$

 $W=\,$ antal möjliga mikroskopiska tillstånd $S = k_B \ln W$

Om S_A är entropi för system A och S_B entropi för system B så har S_A och S_B sett som ett enda system entropin

 $S_{A\cup B} = S_A + S_B$

Need proof $\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_1} + \nu R \cdot \ln \frac{V_2}{V_1}$

Carnotprocesser

 $T_H \ge T_C$ Q_H Värme som tillförs vid T_H Q_C Värme som tillförs vid T_C $\frac{|Q_H|}{T_H} = \frac{|Q_C|}{T_C}$ $-W = Q_H + Q_C$ (termer kan vara negativa) $|W| = |Q_H| - |Q_C|$

$\left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT$

Van der Waals tillståndsekvation

Konstanter

LIGHTSUATION			
Massenhet	u	$1.66054 \cdot 10^{-27}$	kg
Avogadros	N_A	$6.02214 \cdot 10^{23}$	mol^{-1}
Boltzmanns	k_B	$1.38065 \cdot 10^{-23}$	$ m JK^{-1}$
Gaskonstanten	R	8.3145	$J \text{ mol}^{-1} \text{ K}^{-1}$
Stefan-Boltzmanns	σ	$5.6704 \cdot 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
Plancks	h	$6.62607 \cdot 10^{-34}$	Js
Ljushastigheten	c	299 792 458	${ m ms}^{-1}$

Vettiga värden

Arbete vid sömn	1	$\rm Wkg^{-1}$
Lätt arbete utvecklar vid 25% eff.	55-75	W
Energibehov människa (3000 kcal)	12	$ m MJd^{-1}$
Jordens radie	$6.4 \cdot 10^{6}$	m
Månens radie	$1.7 \cdot 10^{6}$	m
Sveriges area	$4.5 \cdot 10^{11}$	m^2
Värmekapacitet c_{luft}	1.007	$kJ kg^{-1} K^{-1}$
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$
Energidensitet trä	16	${ m MJkg^{-1}}$
Energidensitet kol	24	${ m MJkg^{-1}}$
Energidensitet fett	37	$MJ kg^{-1}$
Energidensitet bensin	44	${ m MJkg^{-1}}$
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W
Världens elkonsumption	$2.1 \cdot 10^{12}$	W
Sveriges energikonsumption	$7.4 \cdot 10^{10}$	W
Världens energikonsumption	$1.5 \cdot 10^{13}$	W

Komi

Atom	Atomnum	mer -	Substans	C_V/R	$\ddot{\mathrm{A}}\mathrm{mne}$	γ
Kol		6	He	1.52	Luft	1.4
Kväve		7	H_2	2.44	CO_2	1.3
Svre		8	N^2	2.49	H_2O	1.3
Neon		10	O^2	2.51	H_2	1.4
	nte bort	att	CO	2.53		
molekyler	är flera ato	mer				

Ämne	Densitet	$[\mathrm{kg}\mathrm{m}^{-3}]$
Kol		1050
Vatten		1000
Järn		7844
Luft		1.275
Helium		0.1785
Väte		0.0899
Nysnö		60
Packad snö		400
Is		850

Tillståndsekvationer för gaser

$$M=$$
molara massan [kg mol $^{-1}$]; $m=$ totala massan i systemet [kg]
$$\rho=\frac{m}{V}; p=\frac{\rho RT}{M}=\frac{Nk_BT}{V}=\frac{\nu RT}{V}; \nu=\frac{m}{M}$$
 $b\approx$ molekylens volym; $a\approx$ växelverkan mellan partiklar
$$p=\frac{Nk_BT}{V-Nb}-a\left(\frac{N}{V}\right)^2 \qquad \qquad \text{Van der Waals tillståndsekvation}$$

$$b_0=bN_A; a_0=aN_A^2; v=\frac{V}{V}$$

Strålning

 $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$ $\nu = \text{frekvens} = \frac{c}{\lambda}$ Svartkropp $\Rightarrow \varepsilon = 1$ $\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3}$

 $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$ $\varepsilon(\nu) = \alpha(\nu)$ Kirchoffs lag $\varphi = \varepsilon \sigma T^4 \, [W/m^2]$ Strålningstäthet $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$ Strålningsintensitet $\frac{h\nu_{max}}{k_{B}T} = 2.821$ Wiens förskjutningslag

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{\frac{h\nu}{k_B T}} [\text{J s m}^{-3}]$ Planck-fördelningen

 $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 [J]$ Total energi hålrumsstrålning

 $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$ Strålningstäthet hålrumsstrålning

 $E = h\nu = \frac{hc}{\lambda}$ [J] Fotonenergi