IN THE CLAIMS:

Please cancel claims 1-3, 12-13, 17, 20 and 22-28 without prejudice or disclaimer, amends claims 4-11, 14-16, 18-19, and 21, and add new claims 29-37 as follows:

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)

4. (Currently Amended) A display comprising:

a projector including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] flux emitted from the light source passes, a light valve for modulating the luminous input [[flex]] flux passed through the illumination lens, and a projection lens for projecting the luminous input [[flex] flux modulated at the light valve; and

a screen for displaying a projected image projected by the projection lens of the projector,

wherein the light valve [[of the projector]] is [[located roughly at]] <u>positioned</u> between the illumination lens and a focus point of the illumination lens <u>with a deviation range of ± 25% away from the focus point</u>, and

wherein in the case where the area of the light source is large, satisfying the relationship of the following expression (7):

$$W > 1.2 f/Fn$$
 ... (7)

where Fn denotes the F-number of the projection lens, f denotes the focal length of the illumination lens, and W denotes the diameter of the light source, the light source is positioned at a distance in the range of from zero to 3.5 times the focal length f of the illumination lens away from the illumination lens.

5. (Currently Amended) A display comprising:

a projector including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] <u>flux</u> emitted from the light source passes, a light valve for modulating the luminous input [[flex]] <u>flux</u> passed through the illumination lens, and a projection lens for projecting the luminous input [[flex]] <u>flux</u> modulated at the light valve; and

a screen for displaying a projected image projected by the projection lens of the projector,

wherein the light valve [[of the projector]] is [[located roughly at]] positioned between the illumination lens and a focus point of the illumination lens with a deviation range of \pm 25% away from the focus point, and

wherein in the case where the area of the light source is small, satisfying the relationship of the following expression (8):

$$W \le 1.2 f/Fn$$
 ... (8)

where Fn denotes the F-number of the projection lens, f denotes the focal length of the illumination lens, and W denotes the diameter of the light source, the light source is positioned at a distance of the focal length f of the illumination lens with a deviation in the range of from -40% to +80% away from the illumination lens.

- 6. (Currently Amended) The display according to claim [[1]]4, wherein the light source array comprises light-emitting diodes arranged in a one-dimensional or two-dimensional array.
- 7. (Currently Amended) The display according to claim [[1]]4, wherein the screen is formed to diffuse reflection thereon.
- 8. (Currently Amended) A display comprising:

a projector including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] <u>flux</u> emitted from the light source passes, a light valve for modulating the luminous input [[flex]] <u>flux</u> passed through the illumination lens, and a projection lens for projecting the luminous input [[flex]] <u>flux</u> modulated at the light valve; and

a screen for displaying a projected image projected by the projection lens of the projector,

wherein the light valve [[of the projector]] is [[located roughly at]] positioned between the illumination lens and a focus point of the illumination lens with a deviation range of \pm 25% away from the focus point,

wherein the light source is [[located roughly at the opposite focus point]] positioned away from the illumination lens at a distance in the range of 0-3.5 times of

a focal length of the illumination lens at the opposite side to [[from]] the focus point on which the light valve is located, and

wherein the following expression is satisfied:

 $\alpha H \ge \arctan (dH/2f)$,

where dH denotes the horizontal width of the light valve, f denotes the focal length of the illumination lens, and αH denotes the angle of radiation in the horizontal direction at each point of the light source.

9. (Currently Amended) A display comprising:

a projector including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] flux emitted from the light source passes, a light valve for modulating the luminous input [[flex]] flux passed through the illumination lens, and a projection lens for projecting the luminous input [[flex]] flux modulated at the light valve; and

a screen for displaying a projected image projected by the projection lens of the projector,

wherein the light valve [[of the projector]] is [[located roughly at]] <u>positioned</u> between the illumination lens and a focus point of the illumination lens with a deviation range of ± 25% away from the focus point,

wherein the light source is [[located roughly at the opposite focus point]] positioned away from the illumination lens at a distance in the range of 0-3.5 times of a focal length of the illumination lens at the opposite side to [[from]] the focus point on which the light valve is located, and

wherein the following expression is satisfied:

 $\alpha V \ge \arctan (dV/2f)$,

where dV denotes the vertical width of the light valve, f denotes the focal length of the illumination lens, and αV denotes the angle of radiation in the vertical direction at each point of the light source.

10. (Currently Amended) The display according to claim [[2]]8, wherein the light source array comprises light-emitting diodes arranged in a one-dimensional or two-dimensional array.

- 11. (Currently Amended) The display according to claim [[2]]8, wherein the screen is formed to diffuse reflection thereon.
- 12. (Cancelled)
- 13. (Cancelled)
- 14. (Currently Amended) A stereoscopic display comprising:

a left and right pair of projectors each including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] <u>flux</u> emitted from the light source passes, a light valve for modulating the luminous input [[flex]] <u>flux</u> passed through the illumination lens, and a projection lens for projecting the luminous input [[flex]] <u>flux</u> modulated at the light valve; and

a screen for displaying respective projected images projected by the projection lenses of the pair of the projectors on the same panel,

wherein the light valve [[of the projector]] is [[located roughly at]] <u>positioned</u> between the illumination lens and a focus point of the illumination lens with a deviation range of + 25% away from the focus point, and

wherein in the case where the area of the light source is large, satisfying the relationship of the following expression (7):

$$W > 1.2 f/Fn$$
 ... (7)

where Fn denotes the F-number of the projection lens, f denotes the focal length of the illumination lens, and W denotes the diameter of the light source, the light source is positioned at a distance in the range of from zero to 3.5 times the focal length f of the illumination lens away from the illumination lens.

15. (Currently Amended) A stereoscopic display comprising:

a left and right pair of projectors each including a light source extending at least one-dimensionally or two dimensionally, an illumination lens through which a luminous input [[flex]] <u>flux</u> emitted from the light source passes, a light valve for modulating the luminous input [[flex]] <u>flux</u> passed through the illumination lens, and

a projection lens for projecting the luminous input [[flex]] flux modulated at the light valve; and

a screen for displaying respective projected images projected by the projection lenses of the pair of the projectors on the same panel,

wherein the light valve [[of the projector]] is [[located roughly at]] positioned between the illumination lens and a focus point of the illumination lens with a deviation range of \pm 25% away from the focus point, and

wherein in the case where the area of the light source is small, satisfying the relationship of the following expression (8):

$$W \le 1.2 f/Fn$$
 ... (8)

where Fn denotes the F-number of the projection lens, f denotes the focal length of the illumination lens, and W denotes the diameter of the light source, the light source is positioned at a distance of the focal length f of the illumination lens with a deviation in the range of from -40% to +80% away from the illumination lens.

16. (Currently Amended) A stereoscopic display comprising:

a left and right pair of projectors each including a light source extending at least one-dimensionally or two-dimensionally, an illumination lens through which a luminous input [[flex]] <u>flux</u> emitted from the light source passes, a light valve for modulating the luminous input [[flex]] <u>flux</u> passed through the illumination lens, and a projection lens for projecting the luminous input [[flex]] <u>flux</u> modulated at the light valve; and

a screen for displaying respective projected images projected by the projection lenses of the pair of the projectors on the same panel,

wherein the light valve [[of the projector]] is [[located roughly at]] positioned between the illumination lens and a focus point of the illumination lens with a deviation range of ± 25% away from the focus point, and

wherein the following expression is satisfied:

 $\alpha \ge V \arctan (dV/2f)$,

where dV denotes the vertical width of the light valve, f denotes the focal length of the illumination lens, and αV denotes the angle of radiation in the vertical direction at each point of the light source.

17. (Cancelled)

- 18. (Currently Amended) The display according to claim [[10]]14, wherein the light-emitting diodes constituting the light source array are arranged at least in two or more different directions in combination.
- 19. (Currently Amended) A display comprising the projector according to claim [[10]]14, wherein the screen is formed to diffuse reflection thereon.

20. (Cancelled)

21. (Currently Amended) The display according to claim [[20]] 18, wherein the screen comprises a corner reflector, and an anisotropic diffusion means for causing wider diffusion in a direction parallel to a ridgeline of the corner reflector than in a vertical direction.

22-28. (Cancelled)

- 29. (New) The display according to claim 5, wherein the light source array comprises light-emitting diodes arranged in a one-dimensional or two-dimensional array.
- 30. (New)The display according to claim 5, wherein the screen is formed to diffuse reflection thereon.
- 31. (New) The display according to claim 9, wherein the light source array comprises light-emitting diodes arranged in a one-dimensional or two-dimensional array.
- 32. (New) The display according to claim 9, wherein the screen is formed to diffuse reflection thereon.
- 33. (New) The display according to claim 15, wherein the light-emitting diodes constituting the light source array are arranged at least in two or more different directions in combination.

- 34. (New) The display comprising the projector according to claim 15, wherein the screen is formed to diffuse reflection thereon.
- 35. (New) The display according to claim 16, wherein the light-emitting diodes constituting the light source array are arranged at least in two or more different directions in combination.
- 36. (New) The display comprising the projector according to claim 16, wherein the screen is formed to diffuse reflection thereon.
- 37. (New) The display according to claim 19, wherein the screen comprises a corner reflector, and an anisotropic diffusion means for causing wider diffusion in a direction parallel to a ridgeline of the corner reflector than in a vertical direction.