Master's thesis: Numerical comparison of MCMC methods for Quantum Tomography

Danila Mokeev

Supervisors: Estelle Massart and Andrew Thompson

21st of June 2024

Ecole Polytechnique de Louvain

Plan of this thesis

- This thesis main problem is Quantum Tomography
- We talk about algorithms that solve that problem, in particular MCMC
- In our experiments, we numerically compare 2 methods in different experimental setups
- We also introduce the 2 new algorithms to understand why one algorithm might work better than the other

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Thesis contributions

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Thesis contributions

Problem: quantum state reconstruction

Goal: Reconstitute a quantum state

Unfortunately, there are some challenges:

- Quantum systems are inherently probabilistic
- A measurement can ony be made once
- We can only measure the position or momentum, but not both

Quantum Tomography

Quantum tomography provides a solution to this problem.

Key steps:

- 1. Replicate the initial state of the system multiple times
- 2. Measure each clone once
- 3. Calculate the empirical probabilities
- 4. Estimate the quantum state with any appropriate method

Quantum Tomography: mathematical description (1)

The Born rule states that

$$p(m) = \operatorname{tr}(\rho P_m) \tag{1}$$

with

- ullet P_m the projector matrix associated to the eigenvalue m of an observable O
- p(m) the probability of occurrence of m
- ullet ho the *density matrix* representing the quantum state
 - positive semi-definite
 - Hermitian $(\rho = \rho^{\dagger})$
 - trace(ρ) = 1

Quantum Tomography: mathematical description (2)

If we flatten the matrices

$$A = \begin{bmatrix} \vec{P}_1 \\ \vec{P}_2 \\ \vec{P}_3 \\ \vdots \end{bmatrix} \qquad \vec{\rho} = \begin{bmatrix} \rho_{11} \\ \rho_{12} \\ \rho_{13} \\ \vdots \end{bmatrix}$$
 (2)

then we can estimate ρ by solving the resulting system of equations

$$A\vec{\rho} = \hat{p} \tag{3}$$

Existing methods

Direct methods:

$$\hat{\rho} = (A^T A)^{-1} A^T \hat{p} \tag{4}$$

Optimization-based methods:

$$\hat{\rho} = \operatorname{argmin}_{\vec{\rho}} ||A\vec{\rho} - \hat{p}|| \tag{5}$$

• Pauli basis expansion:

$$\hat{\rho} = \sum_{b \in \{I, x, y, z\}^n} \rho_b \sigma_b \tag{6}$$

• Bayesian methods, and in particular MCMC methods

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (7)

Existing methods: our focus in this thesis

Direct methods:

$$\hat{\rho} = (A^T A)^{-1} A^T \hat{p} \tag{8}$$

Optimization-based methods:

$$\hat{\rho} = \operatorname{argmin}_{\vec{\rho}} ||A\vec{\rho} - \hat{p}|| \tag{9}$$

Pauli basis expansion:

$$\hat{\rho} = \sum_{b \in \{I, x, y, z\}^n} \rho_b \sigma_b \tag{10}$$

Bayesian methods, and in particular MCMC methods

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (11)

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Thesis contributions

Bayesian inference

Context: We are working in the Bayesian framework:

$$\pi(\rho|\mathbf{D}) \propto \mathcal{L}(\mathbf{D}|\rho)\pi(\rho)$$
 (12)

In the context of Quantum Tomography:

- Likelihood $\mathcal{L}(\mathbf{D}|\rho) = ||A\vec{\rho} \hat{p}||$
- Prior $\pi(\rho)$ is method specific
- Posterior $\pi(\rho|\mathbf{D})$ corresponds to a distribution over density matrices ρ

Markov chain Monte Carlo methods

- Markov chain Monte Carlo (MCMC) methods sample from $\pi(\rho|\mathbf{D})$.
- They build a Markov chain of samples ρ_1, ρ_2, \ldots such that

$$f(x) = \pi(\rho|\mathbf{D}) \tag{13}$$

with the equilibrium distribution f(x) of the chain

The density matrix is then approximated as

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{with } \rho_i \sim \pi(\rho|\mathbf{D})$$
 (14)

The Metropolis-Hastings algorithm

Algorithm 1: Metropolis-Hastings algorithm

1 for $t \leftarrow 1 : T$ do

1. Generate a candidate
$$\rho^* \sim q(\rho|\rho^{(t-1)})$$

2. Set
$$\rho^{(t)} = \begin{cases} \rho^* & \text{with prob. } \alpha(\rho^*, \rho^{(t-1)}) \\ \rho^{(t-1)} & \text{with prob. } 1 - \alpha(\rho^*, \rho^{(t-1)}) \end{cases}$$

with

$$\underbrace{\alpha(\rho^*, \rho^{(t-1)})}_{\text{acceptance ratio}} = \frac{\pi(\rho^*|\mathbf{D})q(\rho^{(t-1)}|\rho^*)}{\pi(\rho^{(t-1)}|\mathbf{D})q(\rho^*|\rho^{(t-1)})}$$
(15)

2 end

Illustration of the Metropolis-Hastings algorithm

mcmc.gif

Advantages of MCMC algorithms

Why are we interested in MCMC methods?

- \bullet Prior $\pi(\rho)$: additional information about the density matrix low-rank for example
- Uncertainty quantification: working with distributions instead of point estimates

Prob-estimator (1)

Introduced in [MA17], it combines Metropolis-within-Gibbs sampling with a low-rank prior.

- \bullet Analogous to eigenvector factorization: $\rho = \sum_{i=1}^d \gamma_i V_i V_i^\dagger$
- $\pi_1(\gamma_1\dots\gamma_d)$ is a Dirichlet distribution with a small, constant parameter, leading to sparse values
- $\pi_2(V_1 \dots V_d)$ is a unit sphere distribution

Prob-estimator (2)

Algorithm: combination between Metropolis-Hastings and Gibbs sampling

Algorithm 2: Prob-estimator algorithm

```
1 for t \leftarrow 1 : T do
2
       for i \leftarrow 1 : d do
              1. Sample \gamma_i^* from \pi_1(\gamma_1,\ldots,\gamma_d)
              2. Update \gamma^{(t)} with accept/reject step
       end
3
       for i \leftarrow 1: d do
4
              1. Sample V_i^* from \pi_2(V_1,\ldots,V_d)
              2. Update V^{(t)} with an accept/reject step
       end
5
```

18/29

Projected Langevin algorithm (1)

Introduced in [ACMT2024], it combines the Unadjusted Langevin algorithm with a different low-rank prior.

- Burer-Monteiro factorization: $\rho = YY^\dagger$, with $\mathrm{rank}(Y) = r$
- Low-rank prior: spectral scaled Student-t distribution

$$\pi(Y) = C_{\theta} \det(\theta^2 I_d + YY^{\dagger})^{-(2d+r+2)/2}$$
 (16)

equivalent to

$$\pi(Y) = \prod_{j=1}^{r} (\theta^2 + s_j(Y)^2)^{-(2d+r+2)/2}$$
 (17)

with s_j the jth largest eigenvalue

Projected Langevin algorithm (2)

Note that there is no accept/reject step!

Algorithm 3: Projected Langevin algorithm

- 1 for $t \leftarrow 1 : T$ do
 - 1. Sample $\tilde{w}^{(t)} \sim N(\mathbf{0}, \mathbf{I})$

2.
$$\tilde{Y}^{(t)} \leftarrow \tilde{Y}^{(t-1)} - \eta^{(t)} \nabla f(\tilde{Y}^{(t-1)}, \mathbf{D}) + \frac{\sqrt{2\eta^{(t)}}}{\beta} \tilde{w}^{(t)}$$

with $\pi(Y|\mathbf{D}) = \exp(-f(Y, \mathbf{D}))$

2 end

Table of Contents

Brief introduction to Quantum tomography

Markov chain Monte Carlo methods

Thesis contributions

Thesis contributions

- Numerically compare the prob-estimator and the Projected Langevin algorithm
- 2. Propose 2 new algorithms to understand the impact of the prior vs the algorithm on the accuracy

Numerical comparison: convergence

⇒ Projected Langevin converges faster

Numerical comparison: convergence across qubits (1)

(b)
$$n = 4$$

24/29

Numerical comparison: computation time across qubits (2)

(c)
$$n = 5$$

25/29

Numerical comparison: number of shots

Shot: measurement we perform on a clone of the state

 \Longrightarrow The prob-estimator does not scale!

Numerical experiments: impact of knowledge of rank

Figure 4: Rank knowledge plot for n=3

 \Longrightarrow For Projected Langevin, the information about the rank only marginally affects the accuracy

References