Dans $\mathcal{M}_n(\mathbb{C})$, tout hyperplan rencontre $GL_n(\mathbb{C})$

- 1. Soit \mathscr{H} un hyperplan de $\mathscr{M}_n(\mathbb{C})$. Montrer que si $\mathscr{M}_n(\mathbb{C})$ contient toutes les matrices nilpotentes, alors \mathscr{H} contient une matrice inversible.
- 2. Montrer que tout hyperplan de $\mathscr{M}_n(\mathbb{C})$ rencontre $GL_n(\mathbb{C})$.
- 1. Soit \mathscr{H} un hyperplan de $\mathscr{M}_n(\mathbb{C})$, donc en particulier \mathscr{H} est un sous espace vectoriel de $\mathscr{M}_n(\mathbb{C})$. On sait que les matrices $(E_{i,j})_{i\neq j}$ sont des matrices nilpotentes, comme \mathscr{H} est stable par combinaison linéaire, alors la matrice

$$E = E_{n,1} + E_{1,2} + E_{2,3} + \dots + E_{n-1,n} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$

est un élément de ${\mathscr H}$ qui est clairement inversible.

2. Soit \mathscr{H} un hyperplan de $\mathscr{M}_n(\mathbb{C})$, par définition \mathscr{H} est le noyau d'une forme linéaire non nulle φ . Si \mathscr{H} contient toutes les matrices nilpotentes, c'est fini en vertu de la première question. Sinon, soit N une matrice nilpotente qui n'appartienne pas à \mathscr{H} . Par conséquent, $\varphi(N) \neq 0$. Si $I_n \in \mathscr{H}$, c'est fini, sinon supposons que $\varphi(I_n) = 0$. Cherchons $\lambda \in \mathbb{C}$ tel que $I_n - \lambda N \in \mathscr{H}$, i.e. $\varphi(I_n - \lambda N) = 0$, ce qui est équivalent à $\lambda = \varphi(I_n)/\varphi(N) \neq 0$. Puisque N est nilpotent, alors $I_n - \lambda N$ est inversible, c'est classique.