Algorithm for Constructing Piecewise Quintic Monotone Interpolating Splines

Thomas C.H. Lux

September 8, 2019

Forward

When provided data that has no assigned first and second derivative values, the derivative data is filled by a linear fit of neighboring data points. End points are set to be the slope between the end and its nearest neighbor.

The method for finding the transition point of a boolean function on a line is the Golden Section search. This will be referred to in pseudo code as line_search(g, a, b) where $a, b \in S$ for S closed under convex combination, $g: S \to \{0,1\}$ is a boolean function, and g(b) = 1. If g(a) = 1 then a is returned, otherwise the smallest $c \in [0,1]$ such that g(a(1-c)+cb)=1 is returned.

After assigning function values and derivative values, an interpolating function is constructed from a quintic B-spline basis.

1 Verifying Monotonicity of a Quintic Polynomial

Let f be a quintic polynomial over a closed interval $[x_0, x_1] \subset \mathbb{R}$. Now f is uniquely defined by the evaluation tuples $(x_0, f(x_0), f'(x_0), f''(x_0))$ and $(x_1, f''(x_0), f''(x_0))$ $f(x_1), f'(x_1), f''(x_1)$. Assume without loss of generality that $f(x_0) < f(x_1)$, where the case of monotonic decreasing f would consider the negated the function values. The following algorithm will determine whether or not f is monotone increasing on the interval $[x_0, x_1]$.

Algorithm 1a: is_monotone

0: if
$$(f'(x_0)=0$$
 or $f'(x_1)=0)$ return is_monotone_simplified 1: if $(f'(x_0)<0$ or $f'(x_1)<0)$ return FALSE

This can be seen clearly from the fact that f is analytic; there will exist some nonempty ball about x_0 or x_1 on which f is decreasing.

2:
$$A = f'(x_0) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

3: $B = f'(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$

3:
$$B = f'(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

The variables A and B correspond directly to the theoretical foundation for positive quartic polynomials established in [3], first defined after equation 18.

8:
$$\gamma_0 = 4 \frac{f'(x_0)}{f'(x_1)} (B/A)^{3/4}$$

9: $\gamma_1 = \frac{x_1 - x_0}{f'(x_1)} (B/A)^{3/4}$
4: $\alpha_0 = 4 (B/A)^{1/4}$
5: $\alpha_1 = -\frac{x_1 - x_0}{f'(x_1)} (B/A)^{1/4}$
6: $\beta_0 = 30 - \frac{12 (f'(x_0) + f'(x_1))(x_1 - x_0)}{(f(x_1) - f(x_0))\sqrt{A}\sqrt{B}}$
7: $\beta_1 = \frac{-3(x_1 - x_0)^2}{2(f(x_1) - f(x_0))\sqrt{A}\sqrt{B}}$

The γ , α , and β terms with subscripts 0 and 1 are algebraic reductions of the simplified conditions for satisfying Theorem 2 in [3] (equation 16). These terms with subscripts 0 and 1 give the computation of α , β , and γ the form seen in lines 10-12 below.

```
10: \gamma = \gamma_0 + \gamma_1 f''(x_0)

11: \alpha = \alpha_0 + \alpha_1 f''(x_1)

12: \beta = \beta_0 + \beta_1 \left( f''(x_0) - f''(x_1) \right)

13: if (\beta \le 6) then return \alpha > -(\beta + 2)/2

14: else return \gamma > -2\sqrt{\beta - 2}
```

Given the same initial conditions there are special circumstances which allow for the usage of simpler monotonicity conditions. In this case, consider when the quintic function has either $f'(x_0) = 0$ or $f'(x_1) = 0$, which can be tested for monotonicity via the cubic positivity conditions established by [2].

Algorithm 1b: is_monotone_simplified

0:
$$\alpha = 30 - \frac{(x_1 - x_0) \left(14f'(x_0) + 16f'(x_1) - \left(f''(x_1) - f''(x_0)\right)(x_1 - x_0)\right)}{2\left(f(x_1) - f(x_0)\right)}$$
1: $\beta = 30 - \frac{(x_1 - x_0) \left(2f'(x_0) + 24f'(x_1) - \left(f''(x_0) + 3f''(x_1)\right)(x_1 - x_0)\right)}{2\left(f(x_1) - f(x_0)\right)}$
2: $\gamma = \frac{(x_1 - x_0) \left(7f'(x_0) + f''(x_0)(x_1 - x_0)\right)}{f(x_1) - f(x_0)}$
3: $\delta = \frac{f'(x_0)(x_1 - x_0)}{f(x_1) - f(x_0)}$

The variables above are algebraic expansions of the coefficients for the cubic derivative function in [2].

$$\begin{array}{l} 4: \text{ if } \left(\min(\alpha,\delta)<0\right) \text{ return FALSE} \\ 5: \text{ else if } \left(\beta<\alpha-2\sqrt{\alpha\delta}\right) \text{ return FALSE} \\ 6: \text{ else if } \left(\gamma<\delta-2\sqrt{\alpha\delta}\right) \text{ return FALSE} \\ 7: \text{ else return TRUE} \end{array}$$

Next the modification of a quintic spline to enforce monotonicity will be discussed.

Enforcing Monotonicity of a Quintic Polynomial

Algorithm 2a: make_monotone

- 0: if $(f(x_1) f(x_0) = 0)$ return $f'(x_0) = f'(x_1) = f''(x_0) = f''(x_1) = 0$
- 1: $f'(x_0) = \text{median}(0, f'(x_0), 14\frac{f(x_1) f(x_0)}{x_1 x_0})$
- 2: $f'(x_1) = \text{median}(0, f'(x_1), 14\frac{f(x_1) f(x_0)}{x_1 x_0})$

This selection of value for $f'(x_0)$ and $f'(x_1)$ is suggested by [3] (originally from [1]), and quickly enforces upper and lower bounds on derivative values to allow for quintic monotonicity.

- 3: $A = f'(x_0) \frac{x_1 x_0}{f(x_1) f(x_0)}$ 4: $B = f'(x_1) \frac{x_1 x_0}{f(x_1) f(x_0)}$
- 5: if $AB \leq 0$ return make_monotone_simplified
- 6: if $(\max(A, B) > 6)$

$$f'(x_0) = 6f'(x_0) / \max(A, B)$$

$$f'(x_1) = 6f'(x_1) / \max(A, B)$$

This simple box bound ensures that (A, B) remains within a viable region of monotonicity (satisfying Theorem 4, seen in Fig. 6 of [3]).

7:
$$\hat{f}''(x_0) = -\sqrt{A} \left(7\sqrt{A} + 3\sqrt{B}\right) \frac{f(x_1) - f(x_0)}{(x_1 - x_0)^2}$$

 $\hat{f}''(x_1) = \sqrt{B} \left(3\sqrt{A} + 7\sqrt{B}\right) \frac{f(x_1) - f(x_0)}{(x_1 - x_0)^2}$

This selection of values of f'' is guaranteed to satisfy Theorem 4 from [3] and is chosen because it is (reasonably) the average of the two endpoints of the interval of monotonicity for second derivative values.

8:
$$\eta = (f''(x_0), f''(x_1))$$

 $\eta_0 = (\hat{f}''(x_0), f''(x_1))$
 $f''(x_0), f''(x_1) = line_search(is_monotone, \eta, \eta_0)$

Similar to the simplified check for monotonicity, when the derivative value at one endpoint of the interval is 0, a simplified set of steps can be taken to enforce monotonicity.

Algorithm 2b: make_monotone_simplified

0:
$$f''(x_0) = \max\left(f''(x_0), \frac{-6f'(x_0)}{x_1 - x_0}\right)$$

Considering the α , γ , β , and δ defined in [2], this first step enforces $\gamma > \delta$. It is already guaranteed that $\delta = \frac{f'(x_0)(x_1 - x_0)}{f(x_1) - f(x_0)} > 0$. Only two conditions remain to guarantee monotonicity.

1:
$$f''(x_1) = \max \left(f''(x_1), f''(x_0) + \frac{14f'(x_0) + 16f'(x_1) + 60(f(x_1) - f(x_0))/(x_1 - x_0)}{x_1 - x_0} \right)$$

Now it is guaranteed that $\alpha \geq 0$.

2:
$$f''(x_1) = \max \left(f''(x_1), 6f'(x_0) - 4f'(x_1) - f''(x_0) \right)$$

Lastly, this guarantees that $\beta \geq \alpha$. All conditions are met to satisfy proposition 2 of [2] and ensure monotonicity.

3 Constructing a Piecewise Quintic Monotone Spline

Finally, the construction of a full piecewise quintic spline is outlined using the above algorithms.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function in C^2 . Proceed given evaluation tuples $(x_i, f(x_i), f'(x_i), f''(x_i))$ for i = 0, ..., N such that $x_i < x_{i+1}$ and (without loss of generality) $f(x_i) \le f(x_{i+1})$ for i = 1, ..., N-1.

Algorithm 3: monotone_spline

Compute

References

- [1] Huynh, H.T.: Accurate monotone cubic interpolation. SIAM Journal on Numerical Analysis **30**(1), 57–100 (1993)
- [2] Schmidt, J.W., Hess, W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numerical Mathematics **28**(2), 340–352 (1988)
- [3] Ulrich, G., Watson, L.T.: Positivity conditions for quartic polynomials. SIAM Journal on Scientific Computing 15(3), 528–544 (1994)