Fourier Transform Table

Time Signal	Fourier Transform	
$1, -\infty < t < \infty$	$2\pi\delta(\omega)$	
-0.5 + u(t)	$1/j\omega$	
u(t)	$\pi\delta(\omega) + 1/j\omega$	
$\delta(t)$	$1, -\infty < \omega < \infty$	
$\delta(t-c)$, c real	$e^{-j\alpha x}$, c real	
$e^{-bt}u(t), b>0$	$\frac{1}{j\omega+b}$, $b>0$	
$e^{j\omega_o t}$, ω_o real	$2\pi\delta(\omega-\omega_{o})$, ω_{o} real	
$p_{\tau}(t)$	$\tau \operatorname{sinc}[\tau\omega/2\pi]$	
$\tau\operatorname{sinc}[\taut/2\pi]$	$2\pi p_{\tau}(\omega)$	
$\left[1-\frac{2 t }{\tau}\right]p_{\tau}(t)$	$\frac{\tau}{2}\mathrm{sinc}^2[\tau\omega/4\pi]$	
$\frac{\tau}{2}\operatorname{sinc}^2[\taut/4\pi]$	$2\pi \left[1 - \frac{2 \omega }{\tau}\right] p_{\tau}(\omega)$	
$\cos(\omega_o t)$	$\pi \left[\delta(\omega + \omega_o) + \delta(\omega - \omega_o) \right]$	
$\cos(\omega_o t + \theta)$	$\pi \Big[e^{-j\theta} \delta(\omega + \omega_o) + e^{j\theta} \delta(\omega - \omega_o) \Big]$	
$\sin(\omega_o t)$	$j\pi \left[\delta(\omega+\omega_o)-\delta(\omega-\omega_o)\right]$	
$\sin(\omega_o t + \theta)$	$j\pi \Big[e^{-j\theta} \delta(\omega + \omega_o) - e^{j\theta} \delta(\omega - \omega_o) \Big]$	

Fourier Transform Properties

Property Name	Property	
Linearity	ax(t) + bv(t)	$aX(\omega) + bV(\omega)$
Time Shift	x(t-c)	$e^{-j\omega c}X(\omega)$
Time Scaling	$x(at), a \neq 0$	$\frac{1}{a}X(\omega/a), a \neq 0$
Time Reversal	x(-t)	$X(-\omega)$
		$\overline{X(\omega)}$ if $x(t)$ is real
Multiply by t^n	$t^n x(t), n = 1, 2, 3, \dots$	$j^n \frac{d^n}{d\omega^n} X(\omega), n = 1, 2, 3, \dots$
Multiply by Complex Exponential	$e^{j\omega_o t}x(t)$, ω_o real	$X(\omega-\omega_o)$, ω_o real
Multiply by Sine	$\sin(\omega_o t)x(t)$	$\frac{j}{2} [X(\omega + \omega_o) - X(\omega - \omega_o)]$
Multiply by Cosine	$\cos(\omega_o t) x(t)$	$\frac{1}{2} [X(\omega + \omega_o) + X(\omega - \omega_o)]$
Time Differentiation	$\frac{d^n}{dt^n}x(t), n=1,2,3,\ldots$	$(j\omega)^n X(\omega), n=1,2,3,$
Time Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Convolution in Time	x(t) * h(t)	$X(\omega)H(\omega)$
Multiplication in Time	x(t)w(t)	$\frac{1}{2\pi}X(\omega)*W(\omega)$
Parseval's Theorem (General)	$\frac{1}{2\pi}X(\omega)*W(\omega)$ $\int_{-\infty}^{\infty}x(t)\overline{v(t)}dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)\overline{V(\omega)}d\omega$	
Parseval's Theorem (Energy)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega \text{if} x(t) \text{ is real}$	
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	
Duality: If $x(t) \leftrightarrow X(\omega)$	X(t)	$2\pi x(-\omega)$