

Lecture 4: Coefficients of relatedness

Pedigree analysis in R

ISFG Summer School - Virtual Edition 2021 Magnus Dehli Vigeland

Plan

Part 1: Measures of relatedness

Part 2: Realised relatedness

• Part 3: Inference of pairwise relatedness

Part 4: Pedigree reconstruction

Plan: Today

Part 1: Measures of relatedness

Part 2: Realised relatedness

• Part 3: Inference of pairwise relatedness

• Part 4: Pedigree reconstruction

Relatedness part 1: Measures of relatedness

- Attempt 1
 - being connected through a pedigree
 - having a common ancestor...not too far back
- Attempt 2 genetic
 - sharing DNA?
 - (more than unrelated people)
- To make this precise, we need some terminology!

IBD and autozygosity

- IBD = Identical by descent
 - identical alleles with a common origin in the given pedigree

autozygous = homozygous + IBD

Inbreeding coefficient f = P(autozygosity)

Coefficient of kinship/inbreeding

Sewall Wright (1889 - 1988)

• Wright (1921): The kinship coefficient φ between P and Q

```
\varphi_{P,Q} = P(\text{ random allele of P is IBD with random allele of Q})

= P(\text{ R receive IBD alleles from her parents})

= P(\text{ R is autozygous})

= f_R \qquad \text{the inbreeding coefficient of R}
```

P and Q related

$$\varphi_{P,Q} > 0$$

Inbreding coefficient: Example

Wright's path formula:

$$\varphi_{P,Q} = \sum_{A} \sum_{n} \left(\frac{1}{2}\right)^{|\nu|+1} (1 + f_A)$$

By hand

In R

- library(ribd)
- x = cousinPed(1, child = T)
- inbreeding(x, ids = 9)

0.0625

More kinship & inbreeding coefficients

Relationship	Kinship	f (of child)
Parent-child	1/4	1/4
Full siblings	1/4	1/4
Half siblings	1/8	1/8
Grandparent- grandchild	1/8	1/8
Avuncular (uncle/aunt)	1/8	1/8
1st cousins	1/16	1/16
2nd cousins	1/64	1/64
3rd cousins	1/256	1/256


```
> x = nuclearPed(1, sex = 2)
> kinship(x, ids = c(1, 3))
[1] 0.25

> x = addchildren(x, 1, 3, nch = 1)
> inbreeding(x, 4)
[1] 0.25
```


The IBD triangle

Charles Cotterman (1914-1989)

Elisabeth Thompson (1949 -)

IBD coefficients: Warm-up

- Summary so far:
 - Two individuals are related if they can have IBD alleles
 - Their kinship coefficient meassures the amount of IBD sharing
- Natural generalisation:
 - How many alleles are IBD in each locus?

Humans are

IBD coefficients: Definition

Given two (non-inbred) individuals

For a random autosomal locus

$$\kappa_0 = P(0 \text{ alleles IBD})$$

$$\kappa_1 = P(1 \text{ alleles IBD})$$

$$\kappa_2 = P(2 \text{ alleles IBD})$$

• We always have: $\kappa_0 + \kappa_1 + \kappa_2 = 1$

The relatedness triangle

What are the coefficients of full sibs

ribd: Pedigree-based relatedness coefficients


```
> library(ribd)
```

```
> x = nuclearPed(2)
```

```
> kinship(x, ids = 3:4)
```

[1] 0.25

> kappaIBD(x)

```
id1 id2 kappa0 kappa1 kappa2
```

```
1 2 1.00 0.0 0.00
```

$$>$$
 k = kappaIBD(x, ids = 3:4)

The relatedness triangle

The relatedness triangle

An important identity:
$$\varphi = \frac{1}{4} \kappa_1 + \frac{1}{2} \kappa_2$$

Reminder

 κ -coefficients are only defined for non-inbred individuals. For the whole story, we need 9 coefficients!

Jacquard's identity coefficients

Covered in Chapter 3 of *Pedigree analysis in R*

Relatedness part 2:

Realised relatedness or
Why are some siblings more alike than others?

Recombination

Crossovers:

- The genetic distance between two loci:
 - = average number of crossovers between them per meiosis
- Units:
 - 1 Morgan (M) = 1 crossover per meiosis (on average)
 - 1 centiMorgan (cM) = 0.01 M
- The human genome: Ca 30 Morgan

Rule of thumb: One crossover per chromosome arm

Recombination in practice

Variation in realised inbreeding

1000 simulations

- R-package: ibdsim2
- Decode recombination map
- All 22 human autosomes

Variation in realised IBD coefficients

1000 simulations


```
> library(ibdsim2)
> x = nuclearPed(2)
> s = ibdsim(x, N = 1000)
> k = realisedKappa(s, ids = 3:4)
> ribd::showInTriangle(k)
```


Variation depends on the genome

Indistinguishable relationships?

$$\kappa_0 = 0.5
\kappa_1 = 0.5
\kappa_2 = 0$$

$$\kappa_1 = 0.5$$

$$\kappa_2 = 0$$

Simulated IBD distributions

Conclusion

In theory often distinguishable! In practice quite hard.

The probability of zero IBD

N'th cousins	P(zero IBD)
first	0.0 %
second	0.0 %
third	1.5 %
fourth	28 %
fifth	67 %

Third cousins: Expected fraction of the genome with IBD = 1:

$$k_1 = \frac{1}{64}$$

Two individuals can have a common ancestor without being genetically related

Relatedness: Summary

- Measuring relatedness with increasing precision:
 - the kinship/inbreeding coefficient φ
 - the IBD coefficients $\kappa = (\kappa_0, \kappa_1, \kappa_2)$
- Each coefficient is
 - the probability of observing a certain IBD pattern in a random locus
 - the expected proportion of the genome in this state
- IBD is not a pointwise phenomenon: Always in segments
 - determined by meiotic crossovers
 - consequence: Variation in the realised IBD!
- Family relation

 → genetic relation

So...what does it mean to be related?

- Pedigree based definition: $\varphi > 0$ <u>potentially</u> having alleles IBD
- Genomic definition (realised relatedness):
 <u>actually</u> having alleles IBD

