单摆

$$I\frac{d^2\theta}{dt^2} = M_z$$

$$I = ml^2$$
 $M_z = -mgl\sin\theta$

因此:

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

 $\sin \theta \approx \theta$, 当 θ 较小时($\theta < 0.4 rad$)

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

角度 θ	弧度 $ heta$	$\sin \theta$	
1°	0.017453	0.017452	
3°	0.052360	0.052336	
5°	0.087266	0.087156	
10°	0.174532	0.173648	
30°	0.523599	0.5	
60°	1.047198	0.866	

单摆

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

小角度下,单摆简谐振动的角频率为:

$$w_0 = \sqrt{\frac{g}{l}},$$

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$

单摆的小角度近似

$$T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{1^2}{2^2} \sin^2 \frac{\Theta}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} \sin^4 \frac{\Theta}{2} + \cdots \right)$$

弹簧的近似

复摆(真实摆)

$$I\frac{d^{2}\theta}{dt^{2}} = M_{z} \qquad M_{z} = -mgr_{c}\sin\theta$$

$$\frac{d^{2}\theta}{dt^{2}} + \frac{mgr_{c}}{I}\theta = 0$$

自由谐振子的能量

$$x(t) = A\cos(w_0 t + \varphi_0)$$

谐振子包含动能 $\frac{1}{2}mv^2$ 和弹性势能: $\frac{1}{2}kx^2$

$$E_k(t) = \frac{1}{2}m(\frac{dx}{dt})^2 = \frac{1}{2}mA^2w_0^2\sin^2(w_0t + \varphi_0)$$

$$E_p(t) = \frac{1}{2}kx^2 = \frac{1}{2}mw_0^2A^2\cos^2(w_0t + +\varphi_0)$$

所以:
$$E = E_k(t) + E_p(t) = \frac{1}{2} mA^2 w_0^2$$

机械能守恒

The total mechanical energy E is constant.

At $x = \pm A$ the energy is all potential; the kinetic energy is zero.

At x = 0 the energy is all kinetic; the potential energy is zero.

At these points the energy is half kinetic and half potential.

自由谐振子的能量

简谐运动和匀速圆周运动相 似性

(a) Apparatus for creating the reference circle

(b) An abstract representation of the motion in (a)

$$x = A\cos\theta$$
$$\theta = w_0 t$$
$$x = A\cos(w_0 t + \varphi_0)$$

投影

简谐运动和圆周运动相似性

振幅A=半径

简谐运动是匀速圆周运动的投影

求本征频率的其他方法-等效劲度 系数

方法1:考察力

$$f=-k_e x, w_0 = \sqrt{\frac{k_e}{m}}$$

力相加

 $k_e = k_1 + k_2$

弹簧被拉伸x

 $f = -k_1 x + (-k_2 x) = -(k_1 + k_2) x = -k_e x$

力相等

 $k_e = \frac{k_1 k_2}{k_1 + k_2}$
 $f = -k_e x = -k_e (x_1 + x_2)$

弹簧被拉伸x

 $f = -k_1 x_1 = -k_2 x_2$
 $k_e = -\frac{f}{x_1 + x_2} = -\frac{f}{-\frac{f}{k_1} + (-\frac{f}{k_2})} = \frac{k_1 k_2}{k_1 + k_2}$
 $k_e = k_1 + k_2$

(c) 又一种弹簧并联

物理学中的微分方程

$$\nabla^2 \psi = 0.$$

拉普拉斯方程(电磁现象,包括静电、介电、稳恒电流、静磁现象)

$$\nabla^2 \psi = -\rho/\varepsilon_0$$
.

泊松方程 (右边是源)

$$\nabla^2 \psi \pm k^2 \psi = 0.$$

波(亥姆赫兹)和时间独立的扩散方程(固体中的弹性波、声波、电磁波)

$$\nabla^2 \psi = \frac{1}{a^2} \frac{\partial \psi}{\partial t}$$

时间相关的扩散方程

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

含时薛定谔方程

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$$

不含时薛定谔方程

线性微分方程

对时间微分的简写
$$\dot{x} = \frac{dx}{dt}$$
 $\ddot{x} = \frac{d^2x}{dt^2}$

线性微分方程:未知数及各阶导数都为1次方。

$$3\ddot{x} + 7\dot{x} + x = 0$$
 线性微分方程

$$3\ddot{x} + 7\dot{x}^2 + x = 0$$
 非线性微分方程

线性微分方程的解

$$\frac{d^2x}{dt^2} = ax$$
猜解x(t)=Ae^{at},代入原方程
$$\alpha = \pm \sqrt{a}$$

线性组合的通解:

$$x(t) = Ae^{\sqrt{at}} + Be^{-\sqrt{at}}$$

如果 $a < 0, a = -w^2$

其中w是实数

$$x(t) = Ae^{iwt} + Be^{-iwt}$$

利用
$$e^{i\theta} = \cos\theta + i\sin\theta$$

等价表示(根据情况任选一种)

$$x(t) = Ae^{i\omega t} + Be^{-i\omega t},$$

$$x(t) = C\cos\omega t + D\sin\omega t,$$

$$x(t) = E\cos(\omega t + \phi_1),$$

$$x(t) = F\sin(\omega t + \phi_2).$$

简谐振动

运动方程:

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

引入
$$w_0^2 = \frac{k}{m}$$

$$x(t) = A\cos(w_0 t + \varphi_0)$$

$$\frac{d^2x}{dt^2} = ax$$

如果 $a < 0, a = -w^2$

其中w是实数

线性微分方程的解

$$\frac{d^2x}{dt^2} = ax$$

猜解 $x(t) = Ae^{\alpha t}$,代入原方程

$$\alpha = \pm \sqrt{a}$$

线性组合的通解:

$$x(t) = Ae^{\sqrt{at}} + Be^{-\sqrt{at}}$$

如果 $a > 0, a \equiv \alpha^2$

$$x(t) = Ae^{\alpha t} Be^{-\alpha t}$$

利用
$$e^{\theta} = \cosh \theta + \sinh \theta$$

等价表示(根据情况任选一种)

$$x(t) = Ae^{\alpha t} + Be^{-\alpha t},$$

$$x(t) = C \cosh \alpha t + D \sinh \alpha t,$$

$$x(t) = E \cosh(\alpha t + \phi_1),$$

$$x(t) = F \sinh(\alpha t + \phi_2).$$

上海中心 阻尼器

弹簧振子在液体中振荡,液体粘滞力

$$f = -\gamma \frac{dx}{dt}$$

大小正比于速度,方向与速度方向相反

质点受力:
$$m\frac{d^2x}{dt^2} = f_1 + f_2 = -kx - \gamma \frac{dx}{dt}$$
 弹性力 阻尼力

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

无阻尼自由振动

$$\frac{d^2x}{dt^2} + \frac{\gamma}{m} \frac{dx}{dt} + \frac{k}{m} x = 0$$

阻尼振动

引入阻尼因子 β

$$2\beta = \frac{\gamma}{m}$$

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + w_0^2 x = 0$$

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + w_0^2 x = 0$$

猜想一个解 $x = Ae^{\alpha t}$

需要:
$$\alpha^2 + 2\alpha\beta + w_0^2 = 0$$

该方程解为:

$$\alpha = -\beta \pm \sqrt{\beta^2 - w_0^2}$$

原方程通解为:

$$x(t) = Ae^{a_1t} + Be^{a_2t}$$

$$= e^{-\beta t} (Ae^{t\sqrt{\beta^2 - w_0^2}} + Be^{-t\sqrt{\beta^2 - w_0^2}})$$

1.弱阻尼振动, $\beta^2 < w_0^2$

定义
$$w = \sqrt{w_0^2 - \beta^2}$$

因此

$$x(t) = e^{-\beta t} (Ae^{iwt} + Be^{-iwt})$$

$$= \operatorname{Ce}^{-\beta t} \cos(wt + \phi_0)$$

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + w_0^2 x = 0$$

猜想一个解 $x = Ae^{\alpha t}$

需要:
$$\alpha^2 + 2\alpha\beta + w_0^2 = 0$$

该方程解为:

$$\alpha = -\beta \pm \sqrt{\beta^2 - w_0^2}$$

原方程通解为:

$$x(t) = Ae^{a_1t} + Be^{a_2t}$$

$$= e^{-\beta t} \left(Ae^{t\sqrt{\beta^2 - w_0^2}} + Be^{-t\sqrt{\beta^2 - w_0^2}} \right)$$

1.强阻尼振动, $\beta^2 > w_0^2$

定义
$$\beta_0 = \sqrt{\beta^2 - w_0^2}$$

因此

$$x(t) = Ae^{-(\beta - \beta_0)t} + Be^{-(\beta + \beta_0)t}$$

因为 $\beta > \beta_0$,两项指数均为负数,衰减

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + w_0^2 x = 0$$

猜想一个解 $x = Ae^{\alpha t}$

需要:
$$\alpha^2 + 2\alpha\beta + w_0^2 = 0$$

该方程解为:

$$\alpha = -\beta \pm \sqrt{\beta^2 - w_0^2}$$

临界阻尼振动

$$\beta = w_0^2$$

$$x(t) =$$

$$= e^{-\beta t} (A + Bt)$$

受迫振动

自由振动

周期性的驱动力 $f(t) = F \cos wt$

受迫振动

弹性系统的受迫振动

周期性的驱动力 $f(t) = F \cos wt$

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + w_0^2 x = f(t)$$

非其次线性二阶微分方程