Universidad "Mayor de San Andrés"

[Nombre de la Facultad]

TEMPERATURA DEL AGUA EN EL ALTO Y LA PAZ (INFORME)

Integrantes: Cinthia Molina Cutile

Marcelo Chambi

Carrera: Informática

Docente: Brígida Carvajal

Fecha: 10/10/24

Año: 01 de enero de 2024

La Paz – Bolivia

Introducción:

La temperatura de ebullición del agua disminuye conforme se incrementa la altitud debido a la reducción en la presión atmosférica. Este fenómeno es especialmente relevante en áreas geográficas elevadas como La Paz y El Alto, en Bolivia, donde la altitud tiene un impacto directo sobre la temperatura a la cual el agua hierve. En este informe, analizaremos una tabla de datos que muestra las temperaturas de ebullición a diferentes altitudes y derivaremos una ecuación lineal que permita predecir la temperatura de ebullición en cualquier altitud dada. Además, calcularemos la temperatura a 5,000 pies de altura y a las altitudes correspondientes a La Paz y El Alto.

Desarrollo:

Para este análisis, se ha utilizado una tabla que proporciona las temperaturas de ebullición del agua (T_b) a varias altitudes (h) en pies. La relación entre la altitud y la temperatura se ha ajustado a una ecuación lineal de la forma:

$$T_B = mh + b$$

Donde m es la pendiente y b es la intersección en el eje T_B. A partir de un análisis de regresión lineal utilizando los datos proporcionados, se obtuvo la siguiente ecuación:

$$T_B = -0.00176h + 211.47$$

Esta ecuación muestra que, por cada incremento de 1 pie en altitud, la temperatura de ebullición del agua disminuye aproximadamente en 0.00176 grados Fahrenheit. Con esta ecuación, se pueden predecir las temperaturas de ebullición a diferentes altitudes.

A continuación, se realizaron las siguientes predicciones:

• A una altitud de **5,000 pies**, la temperatura de ebullición es aproximadamente **202.68°F**.

- En La Paz, situada a 3,650 metros (11,975 pies), la temperatura de ebullición es aproximadamente 190.41°F.
- En **El Alto**, situada a 4,000 metros (13,123 pies), la temperatura de ebullición es aproximadamente **188.39°F**.

¿A CUANTO HIERVE EL AGUA EN LA PAZ Y EL ALTO?

El agua hierve a una temperatura más baja a mayor altitud debido a la disminución de la presión atmosférica.

En La Paz, que está a unos 3,650 metros sobre el nivel del mar, el agua hierve alrededor de 88 °C.

En El Alto, que está a aproximadamente 4,000 metros, la temperatura de ebullición puede ser aún un poco más baja, cerca de **87 °C**.

Esto significa que al cocinar alimentos, los tiempos pueden variar y es importante tenerlo en cuenta.

Para afirmara la veracidad de estos resultados resolveremos este siguiente ejercicio aplicando los datos reales tanto de la ciudad de La Paz y El Alto para luego comparar los resultados.

Calcularemos el siguiente ejercicio mediante el método Newton

The boiling temperature of water T_B at various altitudes h is given in the following table. Determine a linear equation in the form $T_B = mh + b$ that best fits the data. Use the equation for calculating the boiling temperature at 5,000 m. Make a plot of the points and the equation.

$h(\mathrm{ft})$	-1,000	0	3,000	8,000	15,000	22,000	28,000
<i>T</i> (°F)	213.9	212	206.2	196.2	184.4	172.6	163.1

Para la ciudad de La Paz tenemos una altura de **3640 m** el cual convertido a pies es **11942.26 ft** en la siguiente tabla procedemos a resolver dicho ejercicio utilizando la siguiente formula.

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_n(x - x_{n-1}),$$

	LA PAZ 3640 m/11942.26 ft					
#	х	у	1er nivel	2do nivel	3er nivel	
0	3000	206,2	-0,002	2,61905E-08	-1,3784E-12	
1	8000	196,2	-0,00168571	-2,94283E-22		
2	15000	184,4	-0,00168571			
3	22000	172,6				
	11942,26					

 $p(x)^{\circ}C=$

 $p(x)^{Q} =$

189,387353

Para la ciudad de el Alto tenemos una altura de **4150 m** el cual convertido a pies es **13615.49 ft** en la siguiente tabla procedemos a resolver dicho ejercicio

87,43741838

	EL ALTO 4150 m/13615.49 ft					
#	х	у	1er nivel	2do nivel	3er nivel	
0	3000	206,2	-0,002	2,61905E-08	-1,3784E-12	
1	8000	196,2	-0,00168571	-2,94283E-22		
2	15000	184,4	-0,00168571			
3	22000	172,6				
	13615,49					
p(x)ºf= 186,644031		p(x))ºC= 85,91335	079		

Y finalmente procedemos a resolver con el valor que nos da el ejercicio, el cual es de 5000 ft convertido a metros es 1524 m

	5000 ft / 1524 m						
#	Х	У	1er nivel	2do nivel	3er nivel		
0	3000	206,2	-0,002	2,61905E-0	08 -1,3784E-12		
1	8000	196,2	-0,00168571	-2,94283E-2	22		
2	15000	184,4	-0,00168571				
3	22000	172,6					
	1524						
p(x)ºf=	209,579	903 p	o(x)ºC= 98,65	550177		

UTILIZANDO POLINOMIOS DE LA LAGRANGE

Para la cuidad de La Paz con una altitud de 3640 m convertido a pies 11942.26

Puntos de interpolación 11942,26

Polinomio de Lagrange

$$L(x) = -\frac{11}{7980000000000}x^3 + \frac{33}{532000000}x^2 - \frac{10169}{3990000}x + \frac{141861}{665}$$

Puntos Interpolados

Para la cuidad de El Alto con una altitud de 4150 m convertido a pies 13615.49 ft

Puntos de datos, un punto por línea, separados por el espacio -

Polinomio de Lagrange

$$L(x) = -\frac{11}{7980000000000}x^3 + \frac{33}{532000000}x^2 - \frac{10169}{3990000}x + \frac{141861}{665}$$

Puntos Interpolados

х	13615.49
у	186.64

CONCLUSION

Como conclusión y comparando los resultados que buscamos con los resultados que calculamos al realizar el ejercicio podemos ver que para la ciudad de La Paz con una altura de **3640 m** el agua se hierve a **87.43 ºC** con un error de **E = 0.57** y para la ciudad de El Alto con una altura de **4150 m** el agua hierve a **85.91 ºC** con un error de **E = 1.09**, de estos cálculos podemos afirmar que a mayor altitud el agua hierve a menos grados y a menor altitud el hervor del agua aumenta.