Certia: Certifying Interface Automata for Cyber-Physical Systems

Cong Sun, Qingsong Yao, and Jianfeng Ma

School of Cyber Engineering, Xidian University

Background & Introduction

- Component-based software development is widely considered as a promising approach on the design, and development of cyber-physical systems
- Components cooperate with each other via interfaces
 - Rigorous automaton-based interface models: I/O Automata, Component-Interaction Automata, Interface Automata, etc.
 - Impl. & tools: CHIC, TICC, Ptolemy II, etc.
- Interface automaton: Light-weighted automatatheoretic formalism capturing temporal behaviors of component-based systems
- Contributions of this work
 - A Coq-library of interface automata in purpose of certifying security properties of component-based CPS
 - Applications on compositional verification of information flow security for cyber-physical applications

Implementations

- Certia core
 - Definition of interface automata
 - Compatibility
 - Composition
 - Refinement
 - A simple parser
- Extension for compositional verification of information flow security
 - Subset construction algorithm
 - Refinement-based decision procedures for noninterference properties

Results & More Demos

TABLE I

Demos on Composition

Analysis Results							
No.	Origin	C_1	C_2	$C_1 \otimes C_2$ $\sharp S \sharp T$		$C_1 C_2$ $\sharp S \sharp T$	
1	[2, Fig.1]	User	Comp	7	8	6	7
2	[2, Fig.4]	@1	Channel	8	10	-	-
3	[18, Fig.2]	Buf	Recv	6	9	3	3
4	[9, Fig.1]	Prod	Pay	10	14	9	13
5	[9, Fig.4]	Prod	GenPay	10	15	10	15
6	[11, Fig.1]	TS	TPU	11	15	7	10
7	[11, Fig.1]	@6	Sup	24	32	11	14
8	[4, b-f]	CtrlU	FireD1	4	3	4	3
9	[4, b-f]	@8	FireD2	6	6	6	6
10	[4, f-d]	CtrlU	FireD1	8	9	-	-
11	[4, f-d]	FireD1	FireD2	9	22	9	22
12	[4, f-d]	CtrlU	@11	22	34	22	34

 Demos on compositional verification of information flow security

Figure 3. The interface automata of the CyCab components

98.4% cost reduction by compositional verification

Acknowledgements

- National High Technology Research and Development Program (863 Program) of China (No. 2015AA017203).
- National Natural Science Foundation of China (No. 61303033).
- Natural Science Basis Research Plan in Shaanxi Province of China (No. 2016JM6034).