Nombre: Eguiarte Morett Luis Andrés.

Titulo Tarea: Coeficientes de Fourier y Gráficas de series de Fourier en MATLAB.

Tarea No. 5

Para la siguiente señal:

t=∆

T=2∆

A=1

- a) Obtener los primeros 30 coeficientes A_n y Θ_n
 - i) $\Delta=10$ [mS]
 - ii) $\Delta=1[mS]$
 - iii) Δ =0.1[mS]

i)

n	an	bn	An	thetan
0	0.5	0	0.5	0
1	3.8982e-17	0.63662	0.63662	1.5708
2	-3.8982e-17	0	0	3.1416
3	3.8982e-17	0.21221	0.21221	1.5708
4	-3.8982e-17	0	0	3.1416
5	3.8982e-17	0.12732	0.12732	1.5708
6	-3.8982e-17	0	0	3.1416
7	3.8982e-17	0.090946	0.090946	1.5708
8	-3.8982e-17	0	0	3.1416
9	3.8982e-17	0.070736	0.070736	1.5708
10	-3.8982e-17	0	0	3.1416
11	1.4179e-16	0.057875	0.057875	1.5708
12	-3.8982e-17	0	0	3.1416
13	-4.8008e-17	0.048971	0.048971	1.5708
14	-3.8982e-17	0	0	3.1416
15	1.1437e-16	0.042441	0.042441	1.5708
16	-3.8982e-17	0	0	3.1416

17	-2.754e-17	0.037448	0.037448	1.5708
18	-3.8982e-17	0	0	3.1416
19	9.8501e-17	0.033506	0.033506	1.5708
20	-3.8982e-17	0	0	3.1416
21	-1.4869e-17	0.030315	0.030315	1.5708
22	-1.4179e-16	0	0	3.1416
23	8.815e-17	0.027679	0.027679	1.5708
24	-3.8982e-17	0	0	3.1416
25	-6.2528e-18	0.025465	0.025465	1.5708
26	4.8008e-17	0	0	0
27	8.0866e-17	0.023579	0.023579	1.5708
28	-3.8982e-17	0	0	3.1416
29	-1.3588e-20	0.021952	0.021952	1.5708

ii)

n	an	bn	An	thetan
_				
0	0.5	0	0.5	0
1	3.8982e-17	0.63662	0.63662	1.5708
2	-3.8982e-17	0	0	3.1416
3	3.8982e-17	0.21221	0.21221	1.5708
4	-3.8982e-17	0	0	3.1416
5	3.8982e-17	0.12732	0.12732	1.5708
6	-3.8982e-17	0	0	3.1416
7	3.8982e-17	0.090946	0.090946	1.5708
8	-3.8982e-17	0	0	3.1416
9	3.8982e-17	0.070736	0.070736	1.5708
10	-3.8982e-17	0	0	3.1416
11	1.4179e-16	0.057875	0.057875	1.5708
12	-3.8982e-17	0	0	3.1416
13	-4.8008e-17	0.048971	0.048971	1.5708
14	-3.8982e-17	0	0	3.1416
15	1.1437e-16	0.042441	0.042441	1.5708
16	-3.8982e-17	0	0	3.1416
17	-2.754e-17	0.037448	0.037448	1.5708
18	-3.8982e-17	0	0	3.1416
19	9.8501e-17	0.033506	0.033506	1.5708
20	-3.8982e-17	0	0	3.1416
21	-1.4869e-17	0.030315	0.030315	1.5708
22	-1.4179e-16	0	0	3.1416
23	8.815e-17	0.027679	0.027679	1.5708
24	-3.8982e-17	0	0	3.1416
25	-6.2528e-18	0.025465	0.025465	1.5708
26	4.8008e-17	0	0	1 5700
27	8.0866e-17	0.023579	0.023579	1.5708
28	-3.8982e-17	0	0	3.1416
29	-1.3588e-20	0.021952	0.021952	1.5708

n	an	bn	An	thetan
				
0	0.5	0	0.5	0
1	3.8982e-17	0.63662	0.63662	1.5708
2	-3.8982e-17	0	0	3.1416
3	3.8982e-17	0.21221	0.21221	1.5708
4	-3.8982e-17	0	0	3.1416
5	3.8982e-17	0.12732	0.12732	1.5708
6	-3.8982e-17	0	0	3.1416
7	3.8982e-17	0.090946	0.090946	1.5708
8	-3.8982e-17	0	0	3.1416
9	3.8982e-17	0.070736	0.070736	1.5708
10	-3.8982e-17	0	0	3.1416
11	1.4179e-16	0.057875	0.057875	1.5708
12	-3.8982e-17	0	0	3.1416
13	-4.8008e-17	0.048971	0.048971	1.5708
14	-3.8982e-17	0	0	3.1416
15	1.1437e-16	0.042441	0.042441	1.5708
16	-3.8982e-17	0	0	3.1416
17	-2.754e-17	0.037448	0.037448	1.5708
18	-3.8982e-17	0	0	3.1416
19	9.8501e-17	0.033506	0.033506	1.5708
20	-3.8982e-17	0	0	3.1416
21	-1.4869e-17	0.030315	0.030315	1.5708
22	-1.4179e-16	0	0	3.1416
23	8.815e-17	0.027679	0.027679	1.5708
24	-3.8982e-17	0	0	3.1416
25	-6.2528e-18	0.025465	0.025465	1.5708
26	4.8008e-17	0	0	0
27	8.0866e-17	0.023579	0.023579	1.5708
28	-3.8982e-17	0	0	3.1416
29	-1.3588e-20	0.021952	0.021952	1.5708

b) Graficas de x^(t) a partir de su serie de Fourier para cada uno de los tres casos anteriores.

$$x^{\hat{}}(t) = a_0 + \sum_{n=0}^{N} (A_n \cos 2\pi f_0 t - \theta_n)$$

j) Para lo obtenido anteriormente, tanto para las tablas como para las gráficas, los códigos en Matlab son los siguientes:

a. i,ii,iii código para las tablas (basta con cambiar la definición de delta para cada caso).

```
%%Definiendo variables
delta=.01;%definiendo ancho de pulso
%para cada caso:
%delta=.001
%delta=.0001
T0=2*delta;%definiendo duracion del pulso
a0=(1/T0)*delta;%componente de directa
n=1:1:29; %definiendo valores de n
%%Obteniendo valores de An, thetan, an, bn
An=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
thetan=atan2(bn,an);
n=[0,n];
an=[a0,an];
bn=[0,bn];
An=[a0,An];
thetan=[0,thetan];
an=an';
bn=bn';
An=An';
thetan=thetan';
n=n';
tabla=table(n,an,bn,An,thetan);
disp(tabla);
```

b. códigos de las gráficas.

i.

```
%%Definiendo variables
clc;
delta=.01;%definiendo ancho de pulso
delta1=.001;
delta2=.0001;
T0=2*delta;%definiendo duracion del pulso
T01=2*delta1;
T02=2*delta2;
a0=(1/T0)*delta;%componente de directa
n=1:1:29; %definiendo valores de n
```

```
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
fm=3000;
t=0:1/fm:0.3;
%%Obteniendo valores de An, thetan, an, bn
An=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
thetan=atan2(bn,an);%vector de theta sub n
n=[0,n];
An=[a0,An];
thetan=[0,thetan];
x=a0;
x1=a0;
x2=a0;
for i=1:5
    x=An(i)*cos(2*pi*n(i)*(1/T0)*t-thetan(i))+x;
    x1=An(i)*cos(2*pi*n(i)*(1/T01)*t-thetan(i))+x1;
    x2=An(i)*cos(2*pi*n(i)*(1/T02)*t-thetan(i))+x2;
end
%% Se definien subplots y donde estara situado cada uno en la ventana
subplot(3,1,1);
plot(t,x, 'b');
title('x(t) a N=5 (delta=0.01)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.1 0 2]);
grid;
%%
subplot(3,1,2);
plot(t,x1, 'red');
title('x(t) a N=5 (delta=0.001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.01 0 2]);
grid;
%%
subplot(3,1,3);
plot(t,x2, 'black');
title('x(t) a N=5 (delta=0.0001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.01 0 2]);
grid;
ii.
%%Definiendo variables
delta=.01;%definiendo ancho de pulso
delta1=.001;
```

```
delta2=.0001;
T0=2*delta;%definiendo duracion del pulso
T01=2*delta1;
T02=2*delta2;
a0=(1/T0)*delta;%componente de directa
n=1:1:29; %definiendo valores de n
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
fm=3000;
t=0:1/fm:0.3;
%%Obteniendo valores de An, thetan, an, bn
An=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
thetan=atan2(bn,an); %vector de theta sub n
n=[0,n];
An=[a0,An];
thetan=[0,thetan];
x=a0;
x1=a0;
x2=a0;
for i=1:15
    x=An(i)*cos(2*pi*n(i)*(1/T0)*t-thetan(i))+x;
    x1=An(i)*cos(2*pi*n(i)*(1/T01)*t-thetan(i))+x1;
    x2=An(i)*cos(2*pi*n(i)*(1/T02)*t-thetan(i))+x2;
end
%% Se definien subplots y donde estara situado cada uno en la ventana
subplot(3,1,1);
plot(t,x, 'b');
title('x(t) a N=15 (delta=0.01)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.05 0 2]);
grid;
%%
subplot(3,1,2);
plot(t,x1, 'red');
title('x(t) a N=15 (delta=0.001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.005 0 2]);
grid;
%%
subplot(3,1,3);
plot(t,x2, 'black');
title('x(t) a N=15 (delta=0.0001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.005 0 2]);
grid;
```

```
%%Definiendo variables
clc;
delta=.01;%definiendo ancho de pulso
delta1=.001;
delta2=.0001;
T0=2*delta;%definiendo duracion del pulso
T01=2*delta1;
T02=2*delta2;
a0=(1/T0)*delta;%componente de directa
n=1:1:30; %definiendo valores de n
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
fm=3000;
t=0:1/fm:0.3;
%%Obteniendo valores de An, thetan, an, bn
An=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
thetan=atan2(bn,an); %vector de theta sub n
n=[0,n];
An=[a0,An];
thetan=[0,thetan];
x=a0;
x1=a0;
x2=a0;
for i=1:30
    x=An(i)*cos(2*pi*n(i)*(1/T0)*t-thetan(i))+x;
    x1=An(i)*cos(2*pi*n(i)*(1/T01)*t-thetan(i))+x1;
    x2=An(i)*cos(2*pi*n(i)*(1/T02)*t-thetan(i))+x2;
end
%% Se definien subplots y donde estara situado cada uno en la ventana
subplot(3,1,1);
plot(t,x, 'b');
title('x(t) a N=30 (delta=0.01)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.05 0 2]);
grid;
%%
subplot(3,1,2);
plot(t,x1, 'red');
title('x(t) a N=30 (delta=0.001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.005 0 2]);
grid;
%%
subplot(3,1,3);
```

```
plot(t,x2, 'black');
title('x(t) a N=30 (delta=0.0001)');
xlabel('Tiempo [segundos]');
ylabel('x(t)');
axis([0 0.005 0 2]);
grid;
```

c. Código de los espectros de amplitud y fase

```
%%Definiendo variables
clc;
delta=.01;%definiendo ancho de pulso
T0=10*delta;%definiendo duracion del pulso
a0=(1/T0)*delta;%componente de directa
n=1:1:29; %definiendo valores de n
%%Obteniendo valores de An, thetan, an, bn
An=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
thetan=atan2(bn,an);
n=[0,n];
an=[a0,an];
bn=[0,bn];
An=[a0,An];
thetan=[0,thetan];
an=an';
bn=bn';
An=An';
thetan=thetan';
n=n';
tabla=table(n,an,bn,An,thetan);
disp(tabla);
%% Graficas del espectro en amplitud y en fase
subplot(2,1,1);
stem(n.*(1/T0), An);
title('Espectro de Amplitud');
xlabel('Frecuencia [Hz]');
ylabel('An');
grid;
%%
subplot(2,1,2);
stem(n.*(1/T0), thetan);
title('Espectro de Fase');
xlabel('Frecuencia [Hz]');
ylabel('Theta_n');
grid;
```