PREDICTION OF PERSONAL LOAN APPROVAL USING MACHINE LEARNING

INTRODUCTION

OVERVIEW

A loan is the core business part of banks. The main portion the bank's profit is directly come from the profit earned from the loans. Though bank approves loan after a regress process of verification and testimonial but still there's no surety whether the chosen hopeful is the right hopeful or not. This process takes fresh time while doing it manually. We can prophesy whether that particular hopeful is safe or not and the whole process of testimonial is automated by machine literacy style. Loan Prognostic is really helpful for retainer of banks as well as for the hopeful also

PURPOSE

When you fill out a loan application, you may come across a section that asks you to specify the purpose of the loan. Some lenders do this to give you the right product. They may also use your loan objective to assess risk and specify loan terms. There are several reasons you might consider taking out a Personal Loan. Most people have something special on their minds when they decide to borrow money. Three out of every four people considering taking out a Personal Loan say the decision is driven by a specific upcoming need or life event

PROBLEM DEFINITION & DESIGN THINKING

EMPATHY MAP

IDEATION & BRAINSTORMING MAP

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

() 10 minutes to prepare

I hour to collaborate

2-8 people recommended

ideation phase brainstrom & idea prioritization template

date	16-03-2023
team	NM2023TMID19731 • DHARSHINI - THATCHAYINI • KAVJPRIYA • ANNAL
project name	prediction fpr personal loan approval using machine language

Before you collaborate

A little bit of preparation goes a long way with this session. Here's what you need to do to get going.

10 minutes

Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

B Set the goal

Think about the problem you'll be focusing on solving in the brainstorming session.

C Learn how to use the facilitation tools

Use the Facilitation Superpowers to run a happy and productive session.

Open article →

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

① 5 minutes

PROBLEM
PREDICTION FOR
PERSONAL LOAN
APPROVAL USING
MACHINE LEARNING

Brainstorm

Write down any ideas that come to mind that address your problem statement.

① 10 minutes

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

RESULT

Out[8]: <AxesSubplot:>

ApplicantIncome

LoanAmount

505

14k 12k 12k 16k 16k 17k 16k 17k 18k 18k

LoanAmount

ADVANTAGES & DISADVANTAGES

ADVANTAGES

The Loan Prediction System can can automatically calculate the weight of each features taking part in loan processing and on new test data same features are processed with respect to their associated weight. A time limit can be set for the applicant to check whether his/her loan can be sanctioned or not.

It is done by predicting if the loan can be given to that person on the basis of various parameters like credit score, income, age, marital status, gender, etc. The prediction model not only helps the applicant but also helps the bank by minimizing the risk and reducing the number of defaulters

Accuracy—one of the primary benefits of using machine learning for credit scoring is its accuracy. Unlike human manual processing, ML-based models are automated and less likely to make mistakes. This means that loan processing becomes not only faster but more accurate, too, cutting costs on the whole.

DISADVANTAGES

The disadvantage of this model is that it emphasize different weights to each factor but in real life sometime loan can be approved on the basis of single strong factor only, which is not possible through this system. Loan Prediction is very helpful for employee of banks as well as for the applicant also.

- 1.cons of personal loan
- 2.Interest rates can be higher than alternatives.
- 3. More eligibility requirements.
- 4. Fees and penalties can be high.
- 5.Additional monthly payment.
- 6.Increased debt load.
- 7. Higher payments than credit cards.
- 8. Potential credit damage

APPLICATION

Personal loans are borrowed money that can be used for large purchases, debt consolidation, emergency expenses and much more. These loans are paid back in monthly installments over the course of a few months or upwards of a few years. It can take longer depending on your circumstances and how diligent you are with making payments.

In some cases, you might want to try something else before taking out a personal loan, like a small purchase or negotiating a lower price or cost.

*Personal loans are loans that can cover a number of personal expenses.

*You can find personal loans through banks, credit unions, and online lenders.

with no collateral needed.

*Personal loans can vary greatly when it comes to their interest rates, fees, amounts, and repayment terms.

CONCLUSION

From a proper analysis of positive points and constraints on the member, it can be safely concluded that the product is a considerably productive member. This use is working duly and meeting to all Banker requisites. This member can be freely plugged in numerous other systems. There have been mathematics cases of computer glitches, violations in content and most important weight of features is fixed in automated prophecy system, so in the near future the so – called software could be made more secure, trustworthy and dynamic weight conformation. In near future this module of prophecy can be integrated with the module of automated processing system. The system is trained on old training dataset in future software can be made resembling that new testing date should also take part in training data after some fix time.

FUTURE SCOPE

This project work can be extended to higher level in future.for example, A predivtive model for loans that uses machine learning algorithms, where the result from each graph of the project can be taken as individual criteria for the machine learning algorithm can be created also, A risk score can be generated based on applicant to predict loan default rate

APPENDIX

A.Source code

```
: #Basic and most important libraries
  import pandas as pd , numpy as np
  from sklearn.utils import resample
  from sklearn.preprocessing import StandardScaler , MinMaxScaler
  from collections import Counter
  from scipy import stats
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly.express as px
  import plotly.figure_factory as ff
  import plotly
  #Classifiers
  from sklearn.ensemble import AdaBoostClassifier , GradientBoostingClassifier , VotingClassifier , RandomForestClassifier
  from sklearn.linear model import LogisticRegression , RidgeClassifier
  from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
  from sklearn.model selection import RepeatedStratifiedKFold
  from sklearn.neighbors import KNeighborsClassifier
  from sklearn.model selection import GridSearchCV
  from sklearn.tree import DecisionTreeClassifier
  from sklearn.naive bayes import GaussianNB
  from xgboost import plot importance
  from xgboost import XGBClassifier
  from sklearn.svm import SVC
  #Model evaluation tools
  from sklearn.metrics import classification_report , accuracy_score , confusion_matrix
  from sklearn.metrics import accuracy score,f1 score
  from sklearn.model selection import cross val score
  #Data processing functions
  from sklearn.preprocessing import StandardScaler
  from sklearn.model selection import train test split
  from sklearn import model selection
  from sklearn.preprocessing import LabelEncoder
```


In [4]: data.describe() Out[4]: Applicantincome Coapplicantincome LoanAmount Loan_Amount_Term Credit_History 614 000000 592 000000 614 000000 600,00000 564,000000 count 5403 459283 1621 245798 146 412162 342,00000 mean 0.842199 atd 6109 041673 2926 248369 85 587325 65 12041 0.384878 min 150,000000 0.000000 9 000000 12,00000 0.000000 25% 0.000000 100.000000 2877.500000 360.00000 1.0000000 50% 3812.500000 1188.500000 128.000000 380,00000 1.0000000 75% 5795,000000 2297.250000 168.000000 360.00000 1.0000000 max 81000,000000 41667.000000 700.000000 480.00000 1.0000000 In [5]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 614 entries, 0 to 613 Data columns (total 13 columns): # Column Non-Null Count Dtype 0 Loan_ID 614 non-null 1 Gender 601 non-null object Married 611 non-null object Dependents 599 non-null object object object Education 614 non-null Self_Employed 582 non-null ApplicantIncome 614 non-null int64 CoapplicantIncome LoanAmount 614 non-null float64 592 non-null float64 9 Loan_Amount_Term 10 Credit_History 11 Property_Area 600 non-null float64 564 non-null float64 614 non-null object 12 Loan_Status 614 non-null dtypes: float64(4), Int64(1), object(8) nemory usage: 62.5+ KB object In [6]: fig = px.scatter_matrix(data["ApplicantIncome"]) fig.update_layout(width=700,height=400) fig.show()

Seems need to work on data preperation

-Loan Amount column does is not fit in Normal Distribution

-Outliers in Applicant's Income and Co-applicant's income

Out[8]: <AxesSubplot:>


```
In [9]: WChecking if the non-categorical variables are Normally Distributed or Not. i.e. Checking outliers...
            print("Data distribution analysis:->-----\n")
            print("\nMean:->\n")
            print("ApplicantIncome: ",np.mean(data["ApplicantIncome"]))
            print("CoapplicantIncome" ",np.mean(data("CoapplicantIncome" ]))
print("LoanAmount: ",np.mean(data["LoanAmount"]))
            print("\nMode:->\n")
            print("ApplicantIncome: ",stats.mode(data["ApplicantIncome"])[0])
print("CoapplicantIncome: ",stats.mode(data["CoapplicantIncome"])[0])
print("LoanAmount: ",stats.mode(data["LoanAmount"])[0])
            print("\nMedian:->\n")
            print("ApplicantIncome: ",np.median(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.median(data["CoapplicantIncome"]))
print("LoanAmount: ",np.median(data["LoanAmount"]))
            print("\nStandard Deviation:->\n")
print("ApplicantIncome: ",np.std(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.std(data["CoapplicantIncome"]))
            print("LoanAmount: ",np.std(data["LoanAmount"]))
            fig = px.histogram(data["ApplicantIncome"],x ="ApplicantIncome" ,y = "ApplicantIncome" )
fig.update_layout(title="ApplicantIncome")
            fig.show()
            fig = px.histogram(data["CoapplicantIncome"],x ="CoapplicantIncome" ,y = "CoapplicantIncome" )
fig.update_layout(title="CoapplicantIncome")
            \label{eq:fig}  \mbox{fig = px.histogram(data["loanAmount"],x ="LoanAmount" ,y = "LoanAmount" )}   \mbox{fig.update\_layout(title="LoanAmount")} 
            fig.show()
            Data distribution analysis:->-----
            Mean: ->
```

```
ApplicantIncome: 5403.459283387622
CoapplicantIncome: 1621.245798027101
LoanAmount: 146.41216216216216
Mode:->
ApplicantIncome: [2500]
CoapplicantIncome: [0.]
LoanAmount: [120.]
```

Mode: -

ApplicantIncome: [2500] CoapplicantIncome: [0.] LoanAmount: [120.]

Median:->

ApplicantIncome: 3812.5 CoapplicantIncome: 1188.5 LoanAmount: nan

Standard Deviation:->

ApplicantIncome: 6104.864856533888 CoapplicantIncome: 2923.8644597700627 LoanAmount: 85.51500809120331

ApplicantIncome

CoapplicantIncome


```
In [10]: plt.figure(figsize=(10,5))
    fig = px.bar(data,x=data["Gender"])
    fig.show()

fig = px.bar(data,x=data["Married"])
    fig.show()

fig = px.bar(data,x=data["Education"],color="Education")
    fig.show()

fig = px.bar(data,x=data["Self_Employed"])
    fig.show()

fig = px.bar(data,x=data["Dependents"])
    fig.show()

fig = px.bar(data,x=data["Property_Area"])
    fig.show()

fig = px.bar(data,x=data["Loan_Status"],color="Loan_Status")
    fig.show()
```



```
In [11]: print(data["Gender"].value_counts())
    print(data["Married"].value_counts())
    print(data["Self_Employed"].value_counts())
    print(data["Dependents"].value_counts())
             print(data["Credit_History"].value_counts())
print(data["Loan_Amount_Term"].value_counts())
             Male
                          489
             Female
                           112
             Name: Gender, dtype: int64
             Yes
                      398
             No
                      213
             Name: Married, dtype: int64
             No
                      500
             Yes
                       82
                     Self_Employed, dtype: int64
             Name:
             0
                     345
                     102
             2
                     101
             3+
                      51
             Name: Dependents, dtype: int64
             1.0
                      475
             0.0
                       89
                     Credit_History, dtype: int64
             Name:
             360.0
                         512
             180.0
                          44
             480.0
                           15
             300.0
                           13
             84.0
                            4
             240.0
                            4
             120.0
                            3
             36.0
                            2
             60.0
             12.0
             Name: Loan_Amount_Term, dtype: int64
             ->Taking mode of values in a column will be best way to fill null values. ->Not mean because
             values are not ordinal but are categorical.
In [12]: #Filling all Nan values with mode of respective variable
   data["Gender"].fillna(data["Gender"].mode()[0],inplace=True)
   data["Married"].fillna(data["Married"].mode()[0],inplace=True)
             data["Self_Employed"].fillna(data["Self_Employed"].mode()[0],inplace=Tru
             data["Loan_Amount_Term"].fillna(data["Loan_Amount_Term"].mode()[0],inpla
             ce=True)
             data["Dependents"].fillna(data["Dependents"].mode()[0],inplace=True)
data["Credit_History"].fillna(data["Credit_History"].mode()[0],inplace=T
             rue)
             #All values of "Dependents" columns were of "str" form now converting to
             "int" form.
             data["Dependents"] = data["Dependents"].replace('3+',int(3))
             data["Dependents"] = data["Dependents"].replace('1',int(1))
data["Dependents"] = data["Dependents"].replace('2',int(2))
             data["Dependents"] = data["Dependents"].replace('0',int(0))
             data["LoanAmount"].fillna(data["LoanAmount"].median(),inplace=True)
             print(data.isnull().sum())
             #Heat map for null values
             plt.figure(figsize=(10,6))
             sns.heatmap(data.isnull())
             Loan_ID
             Gender
                                          0
             Married
                                          0
             Dependents
                                          0
             Education
                                          0
             Self_Employed
                                          0
             ApplicantIncome
                                          0
```

Out[12]: <AxesSubplot:>

CoapplicantIncome LoanAmount

Loan_Amount_Term Credit_History

Property_Area Loan_Status dtype: int64 0

0


```
#Treating outliers and Converting data to Normal Distribution
#Before removing outlier
print("ApplicantIncome: ",np.mean(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.mean(data["CoapplicantIncome"]))
print("LoanAmount: ",np.mean(data["LoanAmount"]))
print("\nMode:->\n")
print("ApplicantIncome: ",stats.mode(data["ApplicantIncome"])[0])
print("CoapplicantIncome: ",stats.mode(data["CoapplicantIncome"])[0])
print("LoanAmount: ",stats.mode(data["LoanAmount"])[0])
print("\nMedian:->\n")
print("ApplicantIncome: ",np.median(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.median(data["CoapplicantIncome"]))
print("LoanAmount: ",np.median(data["LoanAmount"]))
print("\nStandard Deviation:->\n")
print("ApplicantIncome: ",np.std(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.std(data["CoapplicantIncome"]))
print("LoanAmount: ",np.std(data["LoanAmount"]))
fig = px.histogram(data["ApplicantIncome"],x ="ApplicantIncome" ,y = "Ap
plicantIncome"
fig.update_layout(title="ApplicantIncome")
fig.show()
fig = px.histogram(data["CoapplicantIncome"],x ="CoapplicantIncome" ,y =
"CoapplicantIncome"
fig.update_layout(title="CoapplicantIncome")
fig.show()
fig = px.histogram(data["LoanAmount"],x ="LoanAmount",y = "LoanAmount"
fig.update_layout(title="LoanAmount")
fig.show()
*********************
#Getting log value :->
data["ApplicantIncome"] = np.log(data["ApplicantIncome"])
#As "CoapplicantIncome" columns has some "0" values we will get log valu
es except "0
data["CoapplicantIncome"] = [np.log(i) if i!=0 else 0 for i in data["Coa
pplicantIncome"]]
data["LoanAmount"] = np.log(data["LoanAmount"])
******************************
print("-----
                                -----After converting to Normal Distributed
       -----")
print("\nMean:->\n")
print("ApplicantIncome: ",np.mean(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.mean(data["CoapplicantIncome"]))
print("LoanAmount: ",np.mean(data["LoanAmount"]))
print("\nMode:->\n")
print("ApplicantIncome: ",stats.mode(data["ApplicantIncome"])[0])
print("CoapplicantIncome: ",stats.mode(data["CoapplicantIncome"])[0])
print("LoanAmount: ",stats.mode(data["LoanAmount"])[0])
print("\nMedian:->\n")
print("ApplicantIncome: ",np.median(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.median(data["CoapplicantIncome"]))
print("LoanAmount: ",np.median(data["LoanAmount"]))
print("\nStandard Deviation:->\n")
print("ApplicantIncome: ",np.std(data["ApplicantIncome"]))
print("CoapplicantIncome: ",np.std(data["CoapplicantIncome"]))
print("LoanAmount: ",np.std(data["LoanAmount"]))
plt.figure(figsize=(10,4))
fig = px.histogram(data["ApplicantIncome"],x ="ApplicantIncome" ,y = "Ap
plicantIncome"
fig.update_layout(title="ApplicantIncome")
fig.show()
fig = px.histogram(data["CoapplicantIncome"],x ="CoapplicantIncome",y =
"CoapplicantIncome"
fig.update_layout(title="CoapplicantIncome")
fig.show()
fig = px.histogram(data["LoanAmount"],x ="LoanAmount" ,y = "LoanAmount"
fig.update_layout(title="LoanAmount")
fig.show()
```

Mean:->

ApplicantIncome: 5403.459283387622 CoapplicantIncome: 1621.245798027101 LoanAmount: 145.75244299674267

Mode: ->

ApplicantIncome: [2500] CoapplicantIncome: [0.] LoanAmount: [128.]

Median:->

ApplicantIncome: 3812.5 CoapplicantIncome: 1188.5

LoanAmount: 128.0

Standard Deviation:->

ApplicantIncome: 6104.064856533888 CoapplicantIncome: 2923.8644597700627 LoanAmount: 84.03871423798938

In [14]: data.head(5)

Out[14]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicantine
0	LP001002	Male	No	0	Graduate	No	8.674026	0.000
1	LP001003	Male	Yes	1	Graduate	No	8.430109	7.318
2	LP001005	Male	Yes	0	Graduate	Yes	8.006368	0.000
3	LP001006	Male	Yes	0	Not Graduate	No	7.856707	7.765
4	LP001008	Male	No	0	Graduate	No	8.699515	0.000

```
In [15]: data["Gender"] = le.fit_transform(data["Gender"])
    data["Married"] = le.fit_transform(data["Married"])
    data["Education"] = le.fit_transform(data["Education"])
    data["Self_Employed"] = le.fit_transform(data["Self_Employed"])
    data["Property_Area"] = le.fit_transform(data["Property_Area"])
    data["Loan_Status"] = le.fit_transform(data["Loan_Status"])

#data = pd.get_dummies(data)
    data.head(5)
```

Out[15]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicantine
0	LP001002	1	0	0	0	0	8.674026	0.000
1	LP001003	1	1	1	0	0	8.430109	7.318
2	LP001005	1	1	0	0	1	8.006368	0.000
3	LP001006	1	1	0	1	0	7.856707	7.765
4	LP001008	1	0	0	0	0	8.699515	0.000

```
In [16]: #Dividing data into Input X variables and Target Y variable
         X = data.drop(["Loan_Status","Loan_ID"],axis=1)
         y = data["Loan_Status"]
In [17]: print("Feature importance by XGBoost:->\n")
         XGBR = XGBClassifier()
         XGBR.fit(X,y)
         features = XGBR.feature_importances_
         Columns = list(X.columns)
         for i,j in enumerate(features):
             print(Columns[i],"->",j)
         plt.figure(figsize=(16,5))
         plt.title(label="XGBC")
         plt.bar([x for x in range(len(features))], features)
         plt.show()
         plot_importance(XGBR)
         print("Feature importance by Random Forest:->\n")
         RF = RandomForestClassifier()
         RF.fit(X,y)
         features = RF.feature_importances_
         Columns = list(X.columns)
         for i,j in enumerate(features):
             print(Columns[i],"->",j)
         plt.figure(figsize=(16,5))
         plt.title(label="RF")
         plt.bar([x for x in range(len(features))], features)
         plt.show()
         print("Feature importance by Decision Tree:->\n")
         DT = DecisionTreeClassifier()
         DT.fit(X,y)
         features = DT.feature_importances_
         Columns = list(X.columns)
         for i, j in enumerate(features):
             print(Columns[i],"->",j)
         plt.figure(figsize=(16,5))
         plt.title(label="DT")
         plt.bar([x for x in range(len(features))], features)
         plt.show()
         print("Feature importance by Suppoprt Vector Machine:->\n")
         SVM = SVC(kernel="linear")
         SVM.fit(X,y)
         features = SVM.coef_[0]
         Columns = list(X.columns)
         for i,j in enumerate(features):
             print(Columns[i],"->",j)
         plt.figure(figsize=(16,5))
         plt.bar([x for x in range(len(features))], features)
         plt.show()
         print("Feature importance by Logistic Regression:->\n")
         LOGC = LogisticRegression()
         LOGC.fit(X,y)
         features = LOGC.coef_[0]
         Columns = list(X.columns)
         for i,j in enumerate(features):
             print(Columns[i],"->",j)
         plt.figure(figsize=(16,5))
         plt.title(label="LOGC")
         plt.bar([x for x in range(len(features))], features)
         plt.show()
```

Gender -> 0.032498196 Married -> 0.038461618 Dependents -> 0.042435512 Education -> 0.06297734 Self_Employed -> 0.04353367 ApplicantIncome -> 0.04360314 CoapplicantIncome -> 0.057352304 LoanAmount -> 0.04579362 Loan_Amount_Term -> 0.049817037 Credit_History -> 0.53902644 Property_Area -> 0.044501156

Feature importance by Random Forest:->

Gender -> 0.018900487204807852
Married -> 0.02462931105690738
Dependents -> 0.047052466747390456
Education -> 0.022639340128868403
Self_Employed -> 0.01657632874630836
ApplicantIncome -> 0.20779381878351624
CoapplicantIncome -> 0.1145844478048256
LoanAmount -> 0.1839704267368444
Loan_Amount_Term -> 0.046140336171376174
Credit_History -> 0.27057938232022927
Property_Area -> 0.047133654298925964

Feature importance by Decision Tree:->

Gender -> 0.024418005090398452 Married -> 0.016326588769442065 Dependents -> 0.06400168357447024 Education -> 0.026528466142634998 Self_Employed -> 0.020983027101584565 ApplicantIncome -> 0.21759903699076355 CoapplicantIncome -> 0.10665253394698983 LoanAmount -> 0.18273808075459913 Loan_Amount_Term -> 0.024630673969621018 Credit_History -> 0.2922008668920113 Property_Area -> 0.023921036767484947

Feature importance by Suppoprt Vector Machine:->

Gender -> -0.011153748611395287

Married -> 0.016433621802949716

Dependents -> -0.0003948864299205823

Education -> -0.007897250281862611

Self_Employed -> -0.0045186612877454735

ApplicantIncome -> 0.009509713938893327

CoapplicantIncome -> 0.0099391121595605512

LoanAmount -> -0.012713675348784648

Loan_Amount_Term -> 8.910680668350324e-05

Credit_History -> 2.0812104159306477

Property_Area -> -0.0006557085562250223

Feature importance by Logistic Regression:->

Gender -> -0.1615139600532564
Married -> 0.4341098090301747
Dependents -> 0.05871757548193793
Education -> -0.415446117064946
Self_Employed -> 0.04313150698288537
ApplicantIncome -> 0.1020827246750018
CoapplicantIncome -> 0.04475513414904771
LoanAmount -> -0.5526893355733061
Loan_Amount_Term -> -0.0012174092655106736
Credit_History -> 3.28383317084153
Property_Area -> 0.05809243644023144

From feature importance => Credit History , ApplicantIncome , CoapplicantIncome, LoanAmount are the most important features

Is data Balanced?

```
In [18]: #Heat map of dataset with relative importance
   matrix = data.drop(["Gender", "Married", "Dependents", "Education", "Self_Em
   ployed"],axis=1).corr()
   #f, ax = plt.subplots(figsize=(18,6))
   plt.figure(figsize=(18,8))
   sns.heatmap(matrix,vmax=0.8,square=True,cmap="BuPu")
```

Out[18]: <AxesSubplot:>

It seems Application income and Loan Amount is correlated, also Coapplication income correlated with Loan Aount then Credit history is correlated with Loan Status

```
In [19]: A = list(data.Loan_Status).count(1)
B = list(data.Loan_Status).count(0)
print("Count of 1<Approved>: ",A,"\nCount of 0<Rejected>: ",B)
                 \label{eq:color}  \mbox{fig = px.bar((A,B),x=["Approved","Rejected"],y=[A,B],color=[A,B])}  \mbox{fig.show()}
```

Count of 1<Approved>: 422 Count of 0<Rejected>: 192


```
In [20]: #To keep original data as it is to use the same for later.
         new_data = data.copy()
         #Getting seperated data with 1 and 0 status.
         df majority = new data[new data.Loan Status==11
         df minority = new data[new data.Loan Status==0]
         #Here we are downsampling the Majority Class Data Points.
         #i.e. We will get equal amount of datapoint as Minority class from Major
         ity class
         df_manjority_downsampled = resample(df_majority,replace=False,n_samples=
         192, random state=123)
         df_downsampled = pd.concat([df_manjority_downsampled,df_minority])
         print("Downsampled data:->\n", df_downsampled.Loan_Status.value_counts())
         #Here we are upsampling the Minority Class Data Points.
         #i.e. We will get equal amount of datapoint as Majority class from Minor
         ity class
         df_monority_upsampled = resample(df_minority,replace=True,n_samples=422,
         random state=123)
         df_upsampled = pd.concat([df_majority,df_monority_upsampled])
         print("Upsampled data:->\n",df_upsampled.Loan_Status.value_counts())
         Downsampled data:->
              192
          1
              192
         Name: Loan_Status, dtype: int64
         Upsampled data:->
              422
              422
         Name: Loan_Status, dtype: int64
```

```
In [21]: #Experiment 1: Only Scaled data with all variables
                       #X = new_data.drop(["Loan_ID", "Gender", "Married", "Education", "Self_Emplo
yed", "Loan_Amount_Term", "Loan_Status", "Property_Area"], axis=1)
X = new_data.drop(["Loan_Status", "Loan_ID"], axis=1)
y = new_data["Loan_Status"]
counter = Counter(y)
print("Counter: ", counter)
                        X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.2
5,random_state=0)
                        #5caling data here: --
                       StSc = StandardScaler()
                       X_train = StSc.fit_transform(X_train)
X_test = StSc.fit_transform(X_test)
                       #Check mean is 0 and Standard deviation is 1
print("After Standardization\nWean ",np.mean(X_train),"Standard Deviation ",np.std(X_train),"\n")
                         #Voting ensemble mathod. Combining all tree based algorithms.
                       #Voting ensemble matter
models = []
models.append(("KB", XGBClassifier()))
models.append(("RF", RandomForestClassifier()))
models.append(("T", DecisionTreeClassifier()))
models.append(("ADB", AdaBoostClassifier()))
models.append(("GB", GradientBoostingClassifier()))
                       ensemble = VotingClassifier(estimators=models)
ensemble.fit(X_train,y_train)
y_pred = ensemble.predict(X_test)
print(classification report(y_pred,y_test))
print("Voting Ensemble:>",accuracy_score(y_pred,y_test))
                       SVM = SVC(kernel="linear",class_weight="balanced",probability=True)
SVM.fit(X_train,y_train)
y_pred = SVM.predict(X_test)
print(classification_report(y_pred,y_test))
print("SVM:>",accuracy_score(y_pred,y_test))
                       XGBC = XGBClassifier(learning_rate =0.1,n_estimators=10000,max_depth=4,m
in_child_weight=6,gamma=0,subsample=0.6,colsample_bytree=0.8,
    reg_alpha=0.005, objective= 'binary:logistic', nthread=2, scale_pos_wei
ght=1, seed=27)
XGBC.fit(X_train,y_train)
y_pred = XGBC.predict(X_test)
print(classification_report(y_pred,y_test))
print("XGBoost:>",accuracy_score(y_pred,y_test))
                       Model1 = RandomForestClassifier(n_estimators=1000,random_state=0,n_jobs=1000,max_depth=70,bootstrap=True)
Model1.fit(X_train,y_train)
y_pred = Model1.predict(X_test)
print(classification_report(y_pred,y_test))
print("RandomForestClassifier:>",accuracy_score(y_pred,y_test))
                       Model2 - GradientBoostingClassifier()
Model2.fit(X_train,y_train)
y_pred - Model2.predict(X_test)
print(classification_report(y_pred,y_test))
print("GradientBoostingClassifier:>",accuracy_score(y_pred,y_test))
                       Model4 = AdaBoostClassifier()
Model4.fit(X_train,y_train)
y_pred = Model4.predict(X_test)
print(classification_report(y_pred,y_test))
print("AdaBoostClassifier:>",accuracy_score(y_pred,y_test))
                       Model5 = LinearDiscriminantAnalysis()
Model5.fit(X_train,y_train)
y_pred = Model5.predict(X_test)
print(classification_report(y_pred,y_test))
print("LinearDiscriminantAnalysis:>",accuracy_score(y_pred,y_test),"\n")
                       KNN = KNeighborsClassifier(leaf_size=1,p=2,n_neighbors=20)
KNN.fit(X_train,y_train)
y_pred = KNN.predict(X_test)
print(classification_report(y_pred,y_test))
print("KNeighborsClassifier:>",accuracy_score(y_pred,y_test))
                       Model7 = GaussianNB()
Model7.fit(X_train,y_train)
y_pred = Model7.predict(X_test)
print(classification_report(y_pred,y_test))
print("GaussianNB:>",accuracy_score(y_pred,y_test))
                       Model8 = LogisticRegression(C=1.0, class_weight-None, dual=False, fit_in
tercept=True,
                                                 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=
                                                penalty='12', random_state=None, solver='liblinear', tol=0.000
                       verbose=0, warm_start=False)
Model8.fit(X_train,y_train)
y_pred = Model8.predict(X_test)
print(classification_report(y_pred,y_test))
print(*Logistic Regression:>",accuracy_score(y_pred,y_test))
```

Counter: Counter({1: 422, 0: 192}) After Standardization Mean -1.2357264969740873e-16 Standard Deviation 1.0 precision recall f1-score support 0.47 0.74 154 154 154 accuracy 0.70 macro avg weighted avg 0.72 0.81 Voting Ensemble:> 0.8051948051948052 precision recall f1-score support accuracy macro avg weighted avg 0.83 0.71 0.83 0.85 154 SVM:> 0.8311688311688312 precision recall f1-score 0.36 0.70 154 accuracy macro avg weighted avg 0.58 0.58 XGBoost:> 0.7012987012987013 precision re recall f1-score 26 128 0.94 0.87 0.80 0.71 0.82 154 154 154 accuracy macro avg weighted avg 0.69 RandomForestClassifier:> 0.7987012987012987 support precision recall f1-score 0.80 0.47 25 129 0 accuracy macro avg weighted avg GradientBoostingClassifier:> 0.8181818181818182 precision support recall f1-score 0.44 0.90 154 accuracy 0.83 0.71 macro avg weighted avg 0.74 DecisionTreeClassifier:> 0.8311688311688312 precision recall f1-score support 0.82 accuracy 0.72 macro avg weighted avg 0.82 154 154 0.75 AdaBoostClassifier:> 0.8246753246753247 precision recall 0.44 0.90 21 133 0.89 0.83 0.74 0.85 accuracy macro avg weighted avg 0.71 0.86 0.83 LinearDiscriminantAnalysis:> 0.8311688311688312 recall f1-score precision accuracy macro avg weighted avg 154 154 154 KNeighborsClassifier:> 0.8376623376623377 precision recall f1-scor support f1-score 0.44 0.90 0.59 0 0.98 0.82 0.89 133 0.83 0.74 0.85 154 154 154 accuracy macro avg weighted avg GaussianNB:> 0.8311688311688312 precision recall f1-score support 154 154 154 accuracy 0.83 0.71 macro avg weighted avg 0.74 0.83 Logistic Regression:> 0.8311688311688312

```
In [22]: #Experiment 2: Sclaed + Down Sampled Data
                         #X = df_downsampled.drop(["Loan_ID", "Gender", "Married", "Education", "Self_
_Employed", "Loan_Amount_Term", "Loan_Status", 'Property_Area'], axis=1)
X = df_downsampled.drop(["Loan_Status", "Loan_ID"], axis=1)
y = df_downsampled.loan_Status
X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.2
5,random_state=0)
                         #Scaling data here:--
                         StSc = StandardScaler()
X_train = StSc.fit_transform(X_train)
X_test = StSc.fit_transform(X_test)
                         #Check mean is 0 and Standard deviation is 1
print("After Standardization\nMean ",np.mean(X_train),"Standard Deviatio
n ",np.std(X_train),"\n")
                         #Voting ensemble mathod. Combining all tree based algorithms models = []
                        #Wofing ensemble metrod models = [] models append(("KGB", KGBClassifier())) models.append(("RF", RandomForestClassifier())) models.append(("DT", DecisionTreeClassifier())) models.append(("ADB", AdaBoostClassifier())) models.append(("GB", GradientBoostingClassifier()))
                         ensemble = VotingClassifier(estimators=models)
ensemble.fit(X_train,y_train)
y_pred = ensemble.predict(X_test)
print(classification_report(y_pred,y_test))
print("Voting_Ensemble:>",accuracy_score(y_pred,y_test))
                         SVM = SVC(kernel="linear",class_weight="balanced",probability=True)
                         SVM.fit(X_train,y_train)
y_pred = SVM.predict(X_test)
print(classification_report(y_pred,y_test))
print("SVM:>",accuracy_score(y_pred,y_test))
                         XGBC = XGBClassifier(learning_rate =0.1,n_estimators=10000,max_depth=4,m
in_child_weight=6,gemma=0,subsample=0.6,colsample_bytree=0.8,
reg_alpha=0.005, objective= 'binary:logistic', nthread=2, scale_pos_wei
                         reg_alpha=0.005, objective= binary:logistic,,
ght=1, seed=27)
XGBC.fit(X_train,y_train)
y_pred = XGBC.predict(X_test)
print(classification_report(y_pred,y_test))
print("XGBoost:>",accuracy_score(y_pred,y_test))
                         Model1 = RandomForestClassifier(n_estimators=1000,random_state=0,n_jobs=1000,max_depth=70,bootstrap=True)
Model1.fit(X_train,y_train)
y_pred = Model1.predict(X_test)
print(classification_report(y_pred,y_test))
print("RandomForestClassifier:>",accuracy_score(y_pred,y_test))
                         Model2 = GradientBoostingClassifier()
Model2.fit(X_train,y_train)
y_pred = Model2.predict(X_test)
print(classification_report(y_pred,y_test))
print("GradientBoostingClassifier:>",accuracy_score(y_pred,y_test))
                         Model3 = DecisionTreeClassifier(class_weight=None, criterion='gini', max depth=100.
                        Model3 = DecisionTrectabase. Actives and depth=100, max_features=1.0, max_leaf_nodes=10, min_mpurity_split=le=07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.10, presort=False, random_state=27, splitter='best')
Model3.fit(X_train,y_train)
y_pred = Model3.predict(X_test)
print(classification_report(y_pred,y_test))
print("DecisionTreeClassifier:>",accuracy_score(y_pred,y_test))
                         Model4 = AdaBoostClassifier()
Model4.fit(X_train,y_train)
y_pred = Model4.predict(X_test)
print(classification_report(y_pred,y_test))
print("AdaBoostClassifier:>",accuracy_score(y_pred,y_test))
                         Model5 = LinearDiscriminantAnalysis()
Model5.fit(X_train,y_train)
y_pred = Model5.predict(X_test)
print(classification_report(y_pred,y_test))
print("LinearDiscriminantAnalysis:>",accuracy_score(y_pred,y_test))
                         KNN = KNeighborsClassifier(leaf_size=1,p=2,n_neighbors=20)
KNN.fit(X_train,y_train)
y_pred = KNN.predict(X_test)
print(classification_report(y_pred,y_test))
print("KNeighborsClassifier:>",accuracy_score(y_pred,y_test))
                         Model7 = GaussianNB()
Model7.fit(X_train,y_train)
y_pred = Model7.predict(X_test)
print(classification_report(y_pred,y_test))
print("GaussianNB:>",accuracy_score(y_pred,y_test))
                         Model8 = LogisticRegression(C=1.0, class_weight=None, dual=False, fit_in
tercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=
                         1,
                                                    penalty='12', random_state=None, solver='liblinear', tol=0.000
                         1.
```

	precision	recall	f1-score	support
0	0.60	0.76		38 58
accuracy				96
macro avg eighted avg	0.71	0.72	0.71 0.71 0.71	96 96
ting Ensemb	ole:> 0.70833 precision	333333333 recall	34 f1-score	support
0	0.42	1.00	0.59	20 76
accuracy macro avg	0.71 0.88	0.82 0.71	0.71 0.68 0.74	96 96
/M:> 0.7083	33333333334 precision	recall	f1-score	support
0	0.48	0.62	0.54	37
1 accuracy	0.71	0.58	0.64	59 96
macro avg eighted avg	0.59 0.62	0.60	0.59	96 96
Boost:> 0.5	precision	recall	f1-score	support
0	0.58	0.78	0.67	36 60
accuracy macro avg eighted avg	0.71 0.74	0.72 0.71	0.71 0.70 0.71	96 96
andomForest(Classifier:> precision	0.7083333 recall	333333334 f1-score	support
0	0.56	0.64 0.61	0.60 0.65	42 54
accuracy macro avg ighted avg	0.62 0.63	0.63 0.62		96 96 96
radientBoos	tingClassifie precision	r:> 0.625	f1-score	support
0	0.54	0.87	0.67	30 66
accuracy macro avg eighted avg	0.73 0.80	0.77	0.73 0.72 0.74	96 96 96
	Classifier:>	0.7291666	66666666	
0	precision 0.58	0.85		33
1 accuracy	0.90	0.68	0.77	63 96
macro avg	0.74	0.77	0.73	96 96
laBoostClas:	sifier:> 0.73 precision		33334 f1-score	support
0	0.50 0.85	0.77	0.61 0.73	31 65
accuracy macro avg	0.68 0.74	0.70	0.68 0.67 0.69	96 96 96
	mimantAnalysi	s:> 0.677	0833333333	334
0	precision 0.50	0.83 0.64		29
1 accuracy	0.90	0.64	0.75	67 96
macro avg	0.70 0.78	0.73 0.70	0.69	96 96
eighborsCl	essifier:> 0. precision	697916666 recall	6666666 f1-score	support
0	0.42	0.91	0.57	22 74
accuracy macro avg eighted avg	0.69	0.77	0.69 0.66 0.71	96 96 96
aussianNB:>			f1-score	
0	0.54	0.74	0.63	35
1 accuracy	0.81	0.64	0.68	61 96
macro avg	0.68	0.69	0.67	96 96

```
In [23]: #Experiment 3: Sclaed + Up Sampled Data
                          #X = df_upsampled.drop(["Loan_ID", "Gender", "Married", "Education", "Self_E
mployed", "Loan_Amount_Term", "Loan_Status", 'Property_Area'], axis=1)
X = df_upsampled.drop(["Loan_Status", "Loan_ID"], axis=1)
y = df_upsampled.loan_Status
print(len(X),len(Y))
X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.2
5,random_state=0)
                           #Scaling data here:
                         StSc = StandardScaler()
X_train = StSc.fit_transform(X_train)
X_test = StSc.fit_transform(X_test)
                          #Check mean is 0 and Standard deviation is 1 print("After Standardization\nMean ",np.mean(X_train), "Standard Deviation ",np.std(X_train), "\n")
                           #Voting ensemble mathod. Combining all tree based algorithms
                          #Woting ensemble mathod. Combining all tree based a models = [] models.append(("X6B",XGBClassifier())) models.append(("RF",RandomForestClassifier())) models.append(("DT",DecisionFreeClassifier())) models.append(("ADB",AdaBoostClassifier())) models.append(("GB",GradientBoostingClassifier()))
                          ensemble = VotingClassifier(estimators=models)
ensemble.fit(X_train,y_train)
y_pred = ensemble.predict(X_test)
print(classification_report(y_pred,y_test))
print("Voting Ensemble:>",accuracy_score(y_pred,y_test))
                         SVM = SVC(kernel="linear",class_weight="balanced",probability=True)
SVM.fit(X_train,y_train)
y_pred = SVM.predict(X_test)
print(classification_report(y_pred,y_test))
print("SVM:>",accuracy_score(y_pred,y_test))
                          XGBC = XGBClassifier(learning_rate =0.1,n_estimators=10000,max_depth=4,m
in_child_weight=6,gdmma=0,subsample=0.6,colsample_bytree=0.8,
reg_alpha=0.005, objective= 'binary:logistic', nthread=2, scale_pos_weight=1, seed=27)
                          reg_aspina-0.003, objective
ght=1, seed=27)
XGBC.fit(X_train,y_train)
y_pred = XGBC.predict(X_test)
print(classification_report(y_pred,y_test))
print("XGBoost:>",accuracy_score(y_pred,y_test))
                         Model1 = RandomForestClassifier(n_estimators=1000,random_state=0,n_jobs=1000,max_depth=70,bootstrap=True)
Model1.fit(X_train_v_train_)
y_pred = Model1.predict(X_test)
print(classification_report(y_pred_y_test))
print(classification_report(y_pred_y_test))
print("RandomForestClassifier:>",accuracy_score(y_pred_y_test))
                          Model2 = GradientBoostingClassifier()
Model2.fit(X_train,y_train)
y_pred = Model2.predict(X_test)
print(classification_report(y_pred,y_test))
print("GradientBoostingClassifier:>",accuracy_score(y_pred,y_test))
                          Model3 = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=100,
                          depth=100,
    max_features=1.0, max_leaf_nodes=10,
    main_impurity_split=1e-07, min_samples_leaf=1,
    min_impurity_split=1e-07, min_samples_leaf=0.10,
    min_samples_split=2, min_weight_fraction_leaf=0.10,
    presort=false, random_state=27, splitter='best')
Model3.fit(X_train,y_train)
y_pred = Model3.predict(X_test)
print(classification_report(y_pred,y_test))
print("DecisionTreeClassifier:>",accuracy_score(y_pred,y_test))
                         Model4 = AdaBoostClassifier()
Model4.fit(X_train,y_train)
y_pred = Model4.predict(X_test)
print(classification_report(y_pred,y_test))
print("AdaBoostClassifier:>",accuracy_score(y_pred,y_test))
                          Model5 = LinearDiscriminantAnalysis()
Model5.fit(X_train,y_train)
y_pred = Model5.predict(X_test)
print(classification_report(y_pred,y_test))
print("LinearDiscriminantAnalysis:>",accuracy_score(y_pred,y_test))
                          KNN = KNeighborsClassifier(leaf_size=1,p=2,n_neighbors=20)
KNN.fit(X_train,y_train)
y_pred = KNN.predict(X_test)
print(classification_report(y_pred,y_test))
print("KNeighborsClassifier:>",accuracy_score(y_pred,y_test))
                         Model7 = GaussianNB()
Model7.fit(X_train,y_train)
y_pred = Model7.predict(X_test)
print(classification_report(y_pred,y_test))
print("GaussianNB:>",accuracy_score(y_pred,y_test))
                          \label{eq:model} Model 8 = \texttt{LogisticRegression}(\texttt{C=1.0}, \texttt{ class\_weight=} \textbf{None}, \texttt{ dual=} \textbf{False}, \texttt{ fit\_intercept=} \textbf{True}, \\
                                                       intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=
                          1.
                                                      penalty='12', random_state=None, solver='liblinear', tol=0.000
                          1,
```

844 844 After Standardization

	recision	recall	f1-score	support
0	0.71	0.86	0.78	90 121
accuracy macro avg	0.79	0.80	0.79	211 211
weighted avg Voting Ensemble	0.81	0.79	0.79 0.79	211
	recision	recall	f1-score	support
0	0.38	0.95	0.54	43 168
accuracy macro avg weighted avg	0.68 0.86	0.78 0.67	0.67 0.64 0.70	211 211 211
SVM:> 0.6729857	7819905213 precision	recal1	f1-score	support
0	0.67	0.76	0.71	116
accuracy macro avg weighted avg	0.72 0.73	0.72 0.72	0.72 0.72 0.72	211 211 211
XGBoost:> 0.720	3791469194 recision	313 recall	f1-score	support
0	0.80	0.88	0.83	98
accuracy	0.00	0.01	0.84	211
macro avg weighted avg	0.84	0.84 0.84	0.84	211
RandomForestCla F	ssifler:> recision	0.8388625 recall	592417062 f1-score	support
0	0.59	0.77	0.67	83 128
accuracy macro avg weighted avg	0.70 0.73	0.71	0.70 0.70 0.70	211 211 211
GradientBoostin		r:> 0.701		
0	0.54	0.70	0.61	83
1 accuracy	0.76	0.61	0.68	128
macro avg weighted avg	0.65 0.67	0.65	0.64	211 211
DecisionTreeCla F	ssifier:> recision	0.6445497 recall	630331753 f1-score	support
0	0.63	0.76	0.69	122
accuracy macro avg weighted avg	0.71 0.73	0.72 0.71	0.71 0.71 0.71	211 211 211
AdaBoostClassif	ier:> 0.71 precision	090047393 recall	36493 f1-score	support
0	0.44	0.78	0.56	60 151
accuracy macro avg weighted avg	0.65 0.75	0.69	0.65 0.63 0.67	211 211 211
LinearDiscrimin	nantAnalysi precision	s:> 0.649 recall	2890995260 f1-score	664 support
0	0.55 0.86	0.81	0.65 0.74	73 138
accuracy			0.70	211
macro avg weighted avg	0.71 0.75	0.73 0.70	0.70 0.71	211
KNeighborsClass F	ifier:> 0. recision	701421800 recall	9478673 f1-score	support
0	0.40	0.88	0.55 0.73	49 162
accuracy macro avg weighted avg	0.67 0.82	0.74 0.66	0.66 0.64 0.69	211 211 211
GaussianNB:> 0.		047393	f1-score	support
0	0.45 0.87	0.79	0.58	62 149
accuracy macro avg	0.66	0.70	0.66	211 211
weighted avg	0.75	0.66	0.67	211

Logistic Regression:> 0.6587677725118484

```
In [24]: # Experiment 4: Sclaed + Selected features with respective importance
#Droping features which are less important and keeping features as per i
mportance analysis.
  X = new_data_drop(["Loan_ID","Gender","Married","Education","Self_Employ
ed","Loan_Amount_Term", "Loan_Status", "Property_Area"],axis=1)
#X = new_data_drop(["Loan_Status","Loan_ID"], axis=1)
y = new_data_loan_Status
print(len(X),len(y))
X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.2
5,random_state=0)
                              #Scaling data here:-
                             StSc = StandardScaler()
X_train = StSc.fit_transform(X_train)
X_test = StSc.fit_transform(X_test)
                             #Check mean is 0 and Standard deviation is 1 print("After StandardIzation\nMean ",np.mean(X_train),"Standard Deviation ",np.std(X_train),"\n")
                              \#Voting\ ensemble\ mathod. Combining all tree based algorithms. models = []
                             models = []
models.append(("XGB",XGBClassifier()))
models.append(("RF",RandomForestClassifier()))
models.append(("DT",DecisionTreeClassifier()))
models.append(("ADB",AdaBoostClassifier()))
models.append(("GB",GradientBoostingClassifier()))
                             ensemble = VotingClassifier(estimators=models)
ensemble.fit(X_train,y_train)
y_pred = ensemble.predict(X_test)
print(classification_report(y_pred,y_test))
print("Voting_Ensemble:>",accuracy_score(y_pred,y_test))
                             SVM = SVC(kernel="linear",class_weight="balanced",probability=True)
SVM.fit(X_train,y_train)
y_pred = SVM.predict(X_test)
print(classification_report(y_pred,y_test))
print("SVM:>",accuracy_score(y_pred,y_test))
                             XGBC = XGBClassifier(learning_rate =0.1,n_estimators=10000,max_depth=4,m
in_child_weight=6,gamma=0,subsample=0.6,colsample_bytree=0.8,
    reg_alpha=0.005, objective= 'binary:logistic', nthread=2, scale_pos_weight=1, seed=27)
    XGBC.fit(X_train,y_train)
    y_pred = XGBC.predict(X_test)
    print(classification_report(y_pred,y_test))
    print("XGBoost:>",accuracy_score(y_pred,y_test))
                             Model1 = RandomForestClassifier(n_estimators=1000,random_state=0,n_jobs=
1000,max_depth=70,bootstrap=True)
Model1.fit(X_train_y_train)
y_pred = Model1.predict(X_test)
print(classification_report(y_pred_y_test))
print("RandomForestClassifier:>",accuracy_score(y_pred_y_test))
                             Model2 = GradientBoostingClassifier()
Model2.fit(X_train,y_train)
y_pred = Model2.predict(X_test)
print(classification_report(y_pred,y_test))
print("GradientBoostingClassifier:>",accuracy_score(y_pred,y_test))
                            Model3 = DecisionTreeClassifier(class_weight=None, criterion='gi_depth=100,
    mox_features=1.0, max_leaf_nodes=10,
    min_impurity_split=le=07, min_samples_leaf=1,
    min_samples_split=2, min_weight_fraction_leaf=0.10,
    presort=False, random_state=27, splitter='best')
    Model3.fit(X_train_y_train_)
    y_pred = Model3.predict(X_test)
    print(classification_report(y_pred,y_test))
    print(classification_report(y_pred,y_test))
    print("DecisionTreeClassifier:>",accuracy_score(y_pred,y_test))
                              Model3 = DecisionTreeClassifier(class_weight=None, criterion='gini', max
                              Model4 = AdaBoostClassifier()
                              Model4 - Naudosctlassifier()
Model4.fit(X_train,y_train)
y_pred = Model4.predict(X_test)
print(classification_report(y_pred,y_test))
print("AdaBoostClassifier:>",accuracy_score(y_pred,y_test))
                             Model5 = LinearDiscriminantAnalysis()
Wodel5.fit(X_train,y_train)
y_pred = Model5.predict(X_test)
print(classification_report(y_pred,y_test))
print("LinearDiscriminantAnalysis:>",accuracy_score(y_pred,y_test))
                              KNN = KNeighborsClassifier(leaf_size=1,p=2,n_neighbors=20)
                              NNN.fit(X_train,y_train)
y_pred = KNN.predict(X_test)
print(classification_report(y_pred,y_test))
print("KNeighborsClassifier:>",accuracy_score(y_pred,y_test))
                             Model7 = GaussianNB()
Model7.fit(X_train,y_train)
y_pred = Model7.predict(X_test)
print(classification_report(y_pred,y_test))
print("GaussianNB:>",accuracy_score(y_pred,y_test))
                              1.
                                                         penalty='12', random_state=None, solver='liblinear', tol=0.000
                              1.
                             1, verbose=0, warm_start=False)
Wodel8.fit(X_train,y_train)
y_pred = Wodel8.predict(X_test)
print(classification_report(y_pred,y_test))
print("Logistic Regression:>",accuracy_score(y_pred,y_test))
```

614 614 After Standardization

tion 1.0	dard Deviat	e-16 Stan	dization 519263752433	After Standar Mean -3.2669
support		recall	precision	
28 126	0.56	0.71		0
154 154	0.80	0.77	0.70	accuracy macro avg
154	0.81	0.80	0.84 ole:> 0.79870	weighted avg Voting Ensemb
support	f1-score	recall	precision	
133	0.59	0.90		0
154 154	0.83 0.74 0.85	0.86	0.71	macro avg weighted avg
support	f1-score	recall	88311688312 precision	SVM:> 0.83116
30 124	0.27	0.33	0.23 0.82	0
154 154 154	0.66 0.52 0.68	0.53	0.53	accuracy macro avg weighted avg
support	f1-score	559 recall	558441558441 precision	XGBoost:> 0.6
29 125	0.56	0.69	0.000000	0 1
154	0.79			accuracy
154 154	0.71	0.75 0.79	0.69	macro avg weighted avg
support	922077922 f1-score		lassifier:> precision	RandomForestC
26 128	0.55	0.73	0.44	0
154 154 154	0.80 0.71 0.82	0.77		accuracy macro avg weighted avg
987	70129870129	r:> 0.798	ingClassifie	GradientBoost
support 21	f1-score 0.59	0.90	precision 0.44	0
133	0.89	0.82	0.98	1
154 154 154	0.83 0.74 0.85	0.86	0.71	macro avg weighted avg
support	311688312 f1-score		lassifier:>	DecisionTreeC
24 130	0.60	0.83	0.47	0
154 154	0.82	0.83	0.71	accuracy
154	0.84	0.82	0.89	macro avg weighted avg AdaBoostClass
support	f1-score		precision	Adaboos (CIass
133	0.59	0.90	0.44 0.98	0
154 154 154	0.83 0.74 0.85	0.86	0.71 0.91	accuracy macro avg weighted avg
				LinearDiscrim
21 133	0.59	0.90	0.44	0
154 154 154	0.83 0.74 0.85	0.86		accuracy macro avg weighted avg
	1688312	831168831		KNeighborsCla
21	0.59	0.90	0.44	0
133	0.89	0.82		1 accuracy
154 154	0.74	0.86		macro avg weighted avg
support	f1-score	688312 recall	0.8311688311 precision	GaussianNB:>
21 133	0.59	0.90		0
154 154	0.83	0.86	0.71	accuracy macro avg
154	0.85	0.83	0.91	weighted avg

```
In [25]: #Hyperparameters tuning for KNN
         #X = new_data.drop(["Loan_ID", "Gender", "Married", "Education", "Self_Emplo
         yed", "Loan_Amount_Term", "Loan_Status", "Property_Area"], axis=1)
         X = new_data.drop(["Loan_Status","Loan_ID"],axis=1)
         y = new data.Loan Status
         print(len(X),len(y))
         X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.2
         5, random_state=0)
         leaf size = list(range(1,50))
         n neighbors = list(range(1,30))
         p=[1,2]
         #Convert to dictionary
         hyperparameters = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=
         p)
         #Create new KNN object
         knn_2 = KNeighborsClassifier()
         #Use GridSearch
         clf = GridSearchCV(knn_2, hyperparameters, cv=10)
         #Fit the model
         best_model = clf.fit(X_train,y_train)
         #Print The value of best Hyperparameters
         print('Best leaf_size:', best_model.best_estimator_.get_params()['leaf_s
         ize'])
         print('Best p:', best_model.best_estimator_.get_params()['p'])
         print('Best n neighbors:', best model.best estimator_.get_params()['n ne
         ighbors'])
         LS = best_model.best_estimator_.get_params()['leaf_size']
         P = best_model.best_estimator_.get_params()['p']
         Num = best model.best estimator .get params()['n neighbors']
         KNN = KNeighborsClassifier(leaf_size=LS,p=P,n_neighbors=Num)
         KNN.fit(X train,y train)
         y_pred = KNN.predict(X_test)
         print(classification_report(y_pred,y_test))
         print("KNeighborsClassifier:>",accuracy_score(y_pred,y_test))
         614 614
         Best leaf size: 1
         Best p: 1
         Best n_neighbors: 10
                                    recall f1-score support
                       precision
                    0
                            0.49
                                      0.84
                                                 0.62
                                                             25
                                                 0.89
                                                            129
                    1
                            0.96
                                      0.83
                                                 0.83
                                                           154
             accuracy
                                                 0.75
            macro avg
                            0.73
                                      0.83
                                                           154
                            0.89
                                      0.83
                                                 0.85
                                                           154
         weighted avg
```

KNeighborsClassifier:> 0.8311688311688312

Conclusion

Resut Summary is as below:----> Algorithm : Accuracy

Experiment 1 : Scaled data only

Support Vector Machine	83.116
Decision Tree	83.1168
Linear Discriminant Analysis	83.166
KNearest Neighbors	83.766
Gaussian Naivey Bayes	83.116
Logistic Regression	83.116

Experiment 2: Sclaed + Down Sampled Data

AdaBoost 73.95 Decision Tree 72.91 Voting Ensemble 71.87

Experiment 3: Sclaed + Up Sampled Data

Random Forest only 83.88

Experiment 4: Sclaed + Selected features with respective importance

Support Vector Machine	83.11
Decision Tree	83.11
AdaBoost	82.46
Linear Discriminant Analysis	83.11
KNearest Neighbors	83.11
Gaussian Naivey Bayes	83.11
Logistic Regression	83.11