알고리즘 마케팅 10강

2023. 4. 27. (목) 서울과학기술대학교 데이터사이언스학과 김 종 대

오늘의 강의

- 9주차 Review
- 자연어 처리: 워드 임베딩
- 추천 시스템 개관
- 콘텐츠 기반 필터링
- 협업 필터링
- 마케팅 모형 기반의 추천 시스템

검색

■ 검색

- 목적: 검색 창이나 선택된 필터로 표현되는 고객의 검색 의도에 따른 결과물을 제시
- 개인화된 솔루션을 제공한다는 점에서 추천 서비스와도 유사한 점이 많음.

■ 검색의 비즈니스 목표

- 일반적 목표: 사용자의 의도를 이해하고 그 의도에 적합한 결과를 전달하는 것
- 1. 적합성: 고객의 의도와 일치하는 검색 결과를 얼마나 정확하게 제시하는가?
- 2. 상품 통제: 마진에 따른 순위 조정 또는 고객 프로파일에 따른 필터링
- 3. 검색 성능 지표: 컨버전 비율, 검색어 수정 비율, 페이지 비율, 검색 대기 시간 등

- Why Bayesian statistics?
 - To express our information and beliefs about unknown quantities
 - Bayes' rule provides a rational method for updating beliefs in light of new information.
 - Bayesian methods provide:
 - Parameter estimates with good statistical properties (e.g. distribution information of parameter set)
 - Parsimonious descriptions of observed data
 - Predictions for missing data and forecasts of future data
 - A computational framework for model estimation, selection and validation

Bayes' rule

$$Pr(\theta|y) = \frac{Pr(y|\theta) Pr(\theta)}{Pr(y)}$$

- $Pr(y|\theta)$: 특정 parameter set이 주어졌을 때 데이터 y가 생성될 확률을 반영한 모형 (sampling model)
- $Pr(\theta)$: 특정 parameter set에 대한 기존에 누적된 주관적 믿음, 즉 parameter에 대한 사전 확률(prior distribution)
- Pr(θ|y): 기존에 누적된 주관적 믿음에 새로운 데이터 y를 업데이트한 결과, 즉 베이지안 통계학에서 최종적으로 추정하고자 하는 사후 확률(posterior distribution)
- $\Pr(y) = \int \Pr(y|\tilde{\theta}) \Pr(\tilde{\theta}) d\tilde{\theta}$: 일종의 상수로서 일반적으로 numerical method를 통해 계산하여야 함.

- Summary: Numerical methods for Bayesian Statistics
 - Conjugate prior \Rightarrow We can easily get the analytic solution (Known form of probability distribution).
 - Semiconjugate prior \Rightarrow **Gibbs sampler** (using the closed form of full conditional distribution)
 - Nonconjugate prior ⇒ **Metropolis-Hastings algorithm**
 - In order to estimate latent Dirichlet allocation model, we usually use **Gibbs sampler** methods.

- Hierarchical model using a Bayesian approach
 - We can model additional layers by probability distributions for parameters.
 - Example: normal distribution with (μ, σ^2)
 - Assume that we need to propose a model to figure out differences between groups (j).
 - For given σ^2 , we can model μ as $\Pr(\mu_j | \varphi) = Normal(\theta, \tau^2)$ where $\varphi = \{\theta, \tau^2\}$.
 - We can add another layers for $\varphi = \{\theta, \tau^2\}$.

Gibbs sampler

- Gibbs sampling uses distribution information of full conditional distribution which is a conditional distribution of a parameter given everything else.
- For normal distribution $x \sim N(\theta, \sigma^2)$, full conditional distributions are:
 - $Pr(\theta | \sigma^2, y_1, ..., y_n)$ for mean parameter
 - $Pr(\sigma^2 | \theta, y_1, ..., y_n)$ for variance parameter
- By using these full conditional distributions, we can make the iterative sampling idea.

Gibbs sampler

- Given a current (or initial) state of parameters $\phi^{(s)} = \{\theta^{(s)}, (1/\sigma)^{2(s)}\}\$, we generate a new state as follows:
 - 1. Sample $\theta^{(s+1)} \sim \Pr(\theta | (1/\sigma)^{2(s)}, y_1, ..., y_n)$
 - 2. Sample $(1/\sigma)^{2(s+1)} \sim \Pr((1/\sigma)^2 | \theta^{(s+1)}, y_1, ..., y_n)$
 - 3. Let $\phi^{(s+1)} = \{\theta^{(s+1)}, (1/\sigma)^{2(s+1)}\}$
- Likewise, the Gibbs sampler generates a dependent sequence of parameters $\{\phi^{(1)}, \phi^{(2)}, ..., \phi^{(S)}\}$.
- S개의 parameter sample들의 평균 등으로 parameter의 추정치를 계산
 - $E[\theta|y_1,...,y_n] \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

Bayesian Marketing

- Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of econometrics, 89(1-2), 57-78.
 - The distribution of consumer preferences plays a central role in many marketing activities.
 - Marketing activities which target specific households (individuals) require household (individual) level parameter estimates.
 - Thus, the modeling of consumer heterogeneity is the central focus of many statistical marketing applications.

Bayesian Marketing

- Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of econometrics, 89(1-2), 57-78.
 - A Bayesian approach to estimate α_i (individual level parameter) and β (parameters for the distribution of α_i) by maximizing the following equation

$$\Pr(\alpha_i|data) \propto \Pr(data_i|\alpha_i)\pi(\alpha_i|\beta = \hat{\beta})$$

Incorporating heterogeneity in choice models

$$\beta_i \sim iid \ N(\bar{\beta}, V_{\beta})$$

$$\bar{\beta} \sim N(\bar{\beta}, aV_{\beta}), \qquad V_{\beta}^{-1} \sim W(v_0, V_0)$$

Key Models for Text Mining

- 텍스트 마이닝 모형에 대한 여러 분류 방식이 있겠으나, 여기에서는 단어 표현 방법에 따른 분류로 소개
- 단어의 표현 방법 (Word representation)
 - 국소 표현 (Local representation): 해당 단어 자체로 값을 할당
 - 주로 사전에 정의한 의미 사전(dictionary)을 기반으로 값을 할당
 - **분산 표현** (Distributed representation): 단어를 표현할 때 함께 사용된 주변의 단어까지 참고하는 방식
 - 단어의 맥락적 의미나 뉘앙스를 비교적 잘 반영할 수 있다는 장점

Skip-gram

Local Representation-Based Approach

Bag of Words

- 문서 내에 들어있는 단어를 하나의 가방(bag)에 전부 집어넣는 방식
- 단어의 출현 빈도(frequency)에 주목하는 방식으로, 단어의 순서나 맥락을 반영하지 못함.
- 한계: 단어의 맥락적 의미가 중요하거나, 한 문서 내에 여러 주제나 의견이 들어있을 경우 문서 내의 유의미한 의미를 제대로 포착하지 못할 수 있음.

Document-Term Matrix (DTM)

■ Bag of words는 단어의 빈도 수 기반이므로 각 문서(행)와 각 단어(열)로 이루어진 행렬로 표현

TF-IDF

- TF-IDF (Term frequency-inverse document frequency)
 - **단어의 빈도** + **역 문서 빈도**를 이용하여 문서 내 특정 단어의 중요도를 구하는 작업 등에 사용
 - 문서 집합 내 핵심어 추출이나 문서 간 유사도를 계산하는 데 응용 가능
 - 문서 내에 등장하는 모든 단어에 대해 빈도를 표시하는 것이 비효율적이라면, 중요한 단어에 대해 가중치를 줄 수 있음.
 - 역 문서 빈도(Inverse document frequency): 특정 단어 w가 등장한 문서의 수에 반비례하는 값
 - 원리: 불용어(the, it, as 등)는 거의 모든 문서에 자주 등장하게 됨. 즉, 일부 문서에만 등장하는 일종의 "희귀 단어"들이 의미 파악에 중요하고, 거의 모든 문서에 등장하는 단어들은 중요성이 떨어질 것이라고 가정하여 단어의 중요도 가중치를 조정하는 방법

Latent Dirichlet Allocation (LDA)

- 토픽 모형 (Topic Model)
 - 잠재 디리클레 할당 모형 (Latent Dirichlet Allocation; LDA)
 - 장점 1. 베이지안 확률 모형을 활용하기 때문에 확률 정보를 이용 가능
 - 장점 2. 문서의 집합을 구성하는 토픽의 수와 토픽별 의미를 추론할 수 있음.
 - 장점 3. 각 문서가 어떤 토픽으로 어떻게 구성되어 있는지 확률적으로 표현할 수 있음.
 - 단점 1. Bag of words 기반이기 때문에 단어의 맥락적 의미를 충분히 반영할 수 없음.
 - 단점 2. 토픽별 의미는 키워드를 바탕으로 연구자 등이 직접 해석해야 함.

Latent Dirichlet Allocation (LDA)

Generative process

- For document w in a corpus D,
- 1. Choose N (the number of words) ~ Poisson(ξ) (or choose N from data)
- 2. Choose $\theta \sim \text{Dirichlet}(\alpha)$
- 3. For each of the N words w_n :
 - (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$
 - (b) Choose a word w_n from $Pr(w_n|z_n,\beta)$, a multinomial probability conditioned on the topic z_n .

Distributed Representation-Based Approach

- BERTopic Model (Grootendorst, 2022)
 - Sentence-level BERT 기반의 토픽 모형 (문서 클러스터링 모형)
 - Bidirectional Encoder Representations from Transformers (BERT)
 - 1. SBERT: 주어진 텍스트 데이터에 대해 문서 단위의 임베딩 진행
 - 2. HDBSCAN (Hierarchical density-based spatial clustering of applications with noise): 유사한 문서 간의 클러스터링 진행 (하나의 클러스터 = 하나의 잠재 토픽)
 - 3. UMAP (Uniform manifold approximation and projection): 데이터 차원 축소에 활용
 - 4. c-TF-IDF (A class-based version of TF-IDF): 토픽별 키워드 추출 및 제시

Text Preprocessing

- 1. 토큰화 (tokenization)
 - 언어학의 음운론, 형태론에 해당하는 단계로서 텍스트를 단어나 형태소 등의 단위로 쪼개는 작업
- 2. 정제 및 정규화 (cleaning and normalization)
 - 표기법 통일(예: USA, United States), 대소문자 통일
- 3. 불용어 처리 (stopword)
 - 관사, 전치사 등 텍스트 의미 분석에 큰 의미가 없는 단어를 제거
- 4. 어간 (stemming) 및 표제어 (lemmatization) 추출
 - 단어의 의미를 담고 있는 핵심 부분을 추출
- 참고: 정규표현식을 이용한 전처리 (regular expression)

Regular Expression

- 정규표현식을 이용한 전처리 (regular expression)
 - 문자의 공통된 패턴을 이용해 텍스트 데이터를 정제할 정규적인 규칙을 부여

규칙	설명
//	backslash (\)
\d	모든 숫자(digits)
\D	숫자를 제외한 모든 문자, [^0-9]와 동일한 의미
\s	모든 공백(space), [\t\n\r\f\v]와 동일한 의미
\\$	공백을 제외한 모든 문자, [^ \t\n\r\f\v]와 동일한 의미
\w	문자 또는 숫자, [a-zA-Z0-9]와 동일한 의미
\W	문자 또는 숫자가 아닌 문자, [^a-zA-Z0-9]와 동일한 의미

Local Representation-Based Approach

- Joint Sentiment Topic Model (JST)
 - 감성 분석과 토픽 모형 분석은 마케팅, 비즈니스 애널리틱스 분야에서 매우 유용하게 사용
 - 그러한 맥락에서 두 모형을 동시에 적용할 수 있는지에 대한 방법론적 확장이 관심사
 - Two-step method: 토픽 모형의 추정 결과로 나온 키워드들을 기반으로 추가적인 감성 분석을 시행
 - 특정 토픽이 긍정적인지 부정적인지 판별하는 것이 가능
 - One-step method: 토픽 모델링의 관점에서, 기존의 베이지안 모형 구조에 감성(sentiment)에 대한 층위를 추가하여 방법론적으로 확장한 것이 바로 JST 모형!

Distributed Representation-Based Approach

- **분산 표현(distribution representation) 기반의 모형**: 대다수가 머신 러닝 또는 딥러닝 기반의 모형
- 워드 임베딩 (Word embedding)
 - 각 단어를 하나의 벡터(예: [300 X 1] 벡터)로 할당
 - 텍스트 데이터를 이용해 각 단어의 맥락적 의미를 반영하는 의미 벡터 공간을 추정하고, 각 단어의 의미를 의미 벡터 공간에서의 기하학적 위치로 표현
 - 예: LSA, Word2vec, FastText, Glove 등

Distributed Representation-Based Approach

■ Word2vec 모형

- 워드 임베딩을 구현하는 대표적인 방법론으로서, 언어학의 분포 가설에 기반을 둠.
- 분포 가설(distributional hypothesis): 비슷한 맥락에 등장하는 단어는 비슷한 의미를 가진다.
 - ⇒ 텍스트 데이터 내에서 더 많은 맥락(문장에서의 위치 등)을 공유하는 단어일수록 의미가 더비슷할 것이라고 간주
- 분포 가설을 바탕으로 의미가 비슷하다고 판단되는 단어들을 다차원 벡터공간 상에 가깝게 위치하도록할당
- Sentence2vec: 단어가 아닌 각 문장을 벡터공간에 할당하는 모형
- Doc2vec: 단어가 아닌 각 문서를 벡터공간에 할당하는 모형

Word Embedding

Word Representation

- Sparse Representation
 - One-Hot Encoding: 단어 전체 집합의 크기(N)를 차원으로 하는 벡터로 단어를 표현하되, 해당 단어의 인덱스만 1을 부여하고 나머지는 0을 부여하는 표현 방식
 - 예: {점심: [0, 1, 0, 0, 0, ..., 0, 0, 0], 저녁: [0, 0, 0, 1, 0, ..., 0, 0,], ...}
 - 예: Document-Term Matrix
 - 한계 1. 저장 공간 관리 면에서 매우 비효율적 (N이 매우 크다면?)
 - 한계 2. 단어의 유사도를 표현하는 것이 불가능

Word Embedding

Word Representation

- Dense Representation
 - Sparse representation과 달리, 단어 전체 집합의 크기(N)가 아닌 연구자가 사전에 부여한 값으로 차원의 크기를 설정
 - 데이터 학습을 통해 0, 1 외의 실수 값을 부여하여 좀 더 밀집된 형태로 단어를 벡터화
 - 예: {점심: [0.3, 2.0, -1.7, ..., 5.7, 2.8], ...}
 - Word embedding: 단어를 dense representation으로 나타내는 방법론
 - LSA, Word2Vec, FastText 등이 word embedding에 해당한다고 볼 수 있음.

Word2Vec

- Word2Vec
 - Distributed Representation
 - 분포 가설 (distributional hypothesis): 비슷한 문맥에서 등장하는 단어들은 비슷한 의미를 가진다.
 - 텍스트 데이터를 이용해 각 단어의 맥락적 의미를 반영하는 의미 벡터 공간을 추정하고, 각 단어의 의미를 의미 벡터 공간에서의 기하학적 위치로 표현
 - 즉, 텍스트 데이터에서 더 많은 맥락을 공유하는 단어일 수록 더 비슷한 의미를 가질 것으로 간주하고 의미 벡터 공간에 가까운 위치에 할당
 - Algorithms for Word2Vec
 - Continuous Bag of Words (CBOW)
 - Skip-Gram

Word2Vec

Word2Vec

- Continuous Bag of Words (CBOW)
 - 주변 단어(context word)를 이용해 중심 단어(center word)를 학습, 예측
 - 주변 단어를 몇 개 고려할 것인가, 즉 학습시킬 맥락의 사이즈를 얼마로 할 것인지 윈도우(window) 값을 부여
 - Sliding window: 윈도우를 이동하면서, 즉 중심 단어와 주변 단어 조합을 바꿔가면서 데이터 학습을 진행

Word2Vec

Word2Vec

- Skip-Gram
 - 중심 단어(center word)를 이용해 주변 단어(context word)를 학습, 예측
 - 주변 단어를 몇 개 고려할 것인가, 즉 학습시킬 맥락의 사이즈를 얼마로 할 것인지 윈도우(window) 값을 부여
 - Sliding window: 윈도우를 이동하면서, 즉 중심 단어와 주변 단어 조합을 바꿔가면서 데이터 학습을 진행
 - 일반적으로 CBOW보다 우수한 성과를 보고한다고 알려져 있음.

Input Projection Output

Skip-gram

■ 추천 시스템

- 많은 대중이 선호하는 인기 제품 외에 니치 제품에 대한 수요도 분명히 존재
- *롱테일(long tail)*: "니치 제품에 대한 수요의 합은 인기 제품의 전체 수요만큼이나 커질 수 있다."
- 온라인 채널의 등장으로 이러한 니치 제품에 대한 적극적인 마케팅도 가능한 시대 도래
 - 수많은 니치 제품이 제안될 수 있으나, 실제 고객이 찾아보는 제품은 전체 제품 중 극히 일부
 - 제품의 발견, 즉 추천 서비스의 필요성 대두

The Long Tail

■ 추천 시스템

- 추천 서비스의 기본적인 세팅은 검색 서비스와 유사
 - 고객에게 아이템의 정렬된 리스트를 제공하는 것이 목표
- 고객 평점(rating)이 추천에 있어 가장 핵심적인 데이터
 - 이때 평점은 고객이 직접 입력할 수도 있고, 다른 고객 데이터를 이용해 추정할 수도 있음.
 - 간접적인 평가 결과로서 아이템의 유사성이나 고객의 유사성이 함께 활용될 수 있음.
 - 추천 요구와 고객 평점은 시간, 장소, 마케팅 채널 등과 같은 맥락 정보와도 결합 가능함.

- 추천 시스템의 비즈니스 목표
 - 추천 서비스의 비즈니스 목표는 기본적으로 검색 서비스의 목표와 유사
 - 중요한 차이는 추천 시스템에서 고객의 검색 의도는 명백히 표현되지 않고 아예 존재하지 않을 수도 있다는 것
 - 즉, 검색은 '적합한' 결과를 제공해야 한다는 목표가 있으나 추천은 '적합성'의 기준이 애초에 명시적으로 존재하지 않을 수 있음.
 - 비즈니스 목표: *참신함*, *우연성*, *다양성*

- 추천 시스템의 비즈니스 목표
 - 1. 참신함
 - 사용자에게 알려지지 않았던 옵션을 제공
 - 사용자가 이미 알고 있을 가능성이 높은 인기 있는 아이템의 추천은 무의미할 수 있음.
 - 2. 우연성
 - 고객이 기대하지 않았던 놀라운 제품을 발견하게끔 도와줄 수 있음.
 - 과학적 모형을 통한 예측을 통해 추천을 하면(예: 아예 다른 카테고리의 추천), 고객 입장에선 이것이 '놀라운 우연'으로 인식될 수 있을 것
 - 추천 서비스와 고객 간의 장기적인 관계를 구축하는 데 기여

- 추천 시스템의 비즈니스 목표
 - 3. 다양성
 - 추천 리스트는 구매 기회를 증가시킬 수 있게 다양해야 함.
 - 지나치게 유사성이 높은 아이템들로만 이뤄진 추천 리스트는 적합도가 높고 우연성이 높게 지각된다고 하더라도 플랫폼 입장에서는 최적이 아닐 가능성이 있음.

■ 추천 품질 평가

- 추천 서비스의 품질을 평가할 수 있는 정량적 지표에는 무엇이 있는가?
- 검색 서비스의 경우, 전문가에 의한 판단이 가능하지만, 추천 서비스는 고객 프로파일마다 다른 결과가 도출되므로 전문가에 의한 일률적인 평가가 어려움.
- 추천 문제를 고객 평점(rating)에 대한 예측 문제로 간주하고 이를 정량적으로 평가 가능
- 1. 예측 정확도
 - 일반적인 예측 모형 평가 지표: MSE, RMSE, NRMSE

- 추천 품질 평가
 - 2. 랭킹 정확도
 - 추천 리스트 상위에 정렬된 K개의 아이템에 대한 평가
 - 정밀도 (precision): K개 중 적합한 아이템의 비율
 - 재현율 (recall): K개 중 실제 사용한(혹은 클릭한) 아이템의 비율
 - 추천 리스트가 짧으면 적합한 아이템을 놓쳐 정밀도가 낮아질 위험 존재
 - 반대로 추천 리스트가 너무 길면 부적합한 아이템을 많이 포함시킬 위험 존재

- 추천 품질 평가
 - 3. 참신성
 - "참신하다"의 기준: 추천이 제공될 시점에 고객이 추천된 아이템을 알지 못했을 경우
 - 이는 관측되는 데이터가 아니므로 설문조사를 하거나 모형을 통해 예측해야 하는 문제
 - 모형 가정의 예: 훈련 데이터의 시간 경계(t) 직후에 랭크/구매된 아이템을 예측하는 것은 보다 먼 미래에 랭크/구매된 아이템을 예측하는 것보다 낮은 참신함을 제공 → 짧은 시간 내에 바로 구매하는 아이템은 고객에게 이미 알려져 있던 아이템일 가능성이 높다는 것

- 추천 품질 평가
 - 4. 우연성
 - "우연하다"의 기준: 다분히 주관적이어서 "참신하다"보다 정량화가 어려운 문제
 - 특정한 가정에 기반을 둔 휴리스틱을 활용 가능
 - 예: 우연성을 모형화한 평가용 알고리즘에 의해 개발된 추천과 우연성이 없는 아이템으로 이루어진 기본적인 알고리즘의 추천을 비교

- 추천 품질 평가
 - 5. 다양성
 - 다양성이 높으면 적어도 리스트 내 일부 아이템이 고객에게 적합할 가능성이 높아진다.
 - 유사성 지표 등을 활용 가능
 - 6. 적용 범위
 - 전체 아이템 대비 추천 서비스가 추천할 수 있는 아이템의 비율을 측정
 - 카탈로그 적용 범위: 추천 결과가 고객마다 거의 유사할 가능성을 최소화하는 것이 목표
 - 적어도 한 가지 추천 리스트에 등장하는 아이템의 비율 등으로 측정

■ 논의

- 추천 시스템의 정확도가 높을수록 무조건 좋은 것인가?
- 사례: Love, Death and Robots (2019~)
 - "The ORDER OF THE EPISODES for Netflix's new series Love Death & Robots changes based on whether Netflix thinks you're gay or straight."

■ 추천 기법의 개관

- 콘텐츠 기반 필터링: 아이템의 콘텐츠 데이터에 의존
- 협업 필터링: 고객 평점 행렬 내의 패턴에 의존
- 하이브리드: 핵심 알고리즘들의 결합
- 맥락 기반 추천: 시간, 장소, 마케팅 채널 등과 같은 맥락적 정보까지 반영

- 콘텐츠 기반 필터링
 - 사용자가 과거에 긍정적으로 평가했던 아이템을 선택하고 그 아이템과 비슷한 다른 아이템을 추천
 - 콘텐츠와 카탈로그 아이템 내용 사이의 유사성을 측정
 - 고객 간의 구매/평가 지표의 유사성이나 고객의 행동 데이터 등을 포함하지 않음.
 - 추천이 제안되는 고객의 프로파일만 사용
 - 주요 방법론
 - k-NN 알고리즘, 나이브 베이즈 분류 모형 등
 - Vector space 기반 모형 또는 잠재 토픽 모형(예: LSA, LDA 등)

- 콘텐츠 기반 필터링의 장점
 - 1. 사용자 데이터로부터의 독립성
 - 전체 사용자 수가 적거나 수집된 전체 평점 수가 적을 경우에 매우 유용
 - 독특한 취향을 가진 고객에게도 좋은 추천 서비스를 제공 가능
 - 2. 새롭고 희귀한 아이템
 - 고객 평점이 거의 없는 새로운 또는 희귀한 제품의 추천이 가능
 - 롱테일(long tail)의 맥락에서 볼 때 매우 중요한 장점

- 콘텐츠 기반 필터링의 장점
 - 3. 다른 카테고리의 추천
 - 고객 구매 패턴의 유사성만 가지고 추천한다면 다른 카테고리를 추천하는 결과가 잘 안 나올 가능성 있음. → 특히 여러 카테고리에 걸쳐 구매를 한 고객이 적을 경우
 - 4. 해석 가능성
 - 추천 결과를 고객에게 설명하기에 유용
 - 예: 영화 추천의 경우, "A라는 일본 액션 영화를 좋아하셨기 때문에 B라는 일본 액션 영화를 추천합니다."

- 콘텐츠 기반 필터링의 단점
 - 1. 콘텐츠 특징(feature) 추출의 문제
 - 유사성 측정의 대상이 되는 콘텐츠 특징 추출 결과의 품질은?
 - "인간의 취향"을 제품의 기본적인 속성 등으로 쉽게 표현할 수 있는가?
 - 콘텐츠를 구성하는 텍스트, 이미지 등으로부터 특성을 적절하게 추출할 수 있는가?
 - 2. 신규 사용자 추천
 - 과거 데이터가 없는 신규 사용자에 대한 추천 서비스가 어려움.
 - 3. 사소한 추천
 - 참신하지 않은, 또는 우연적이지 않은 추천을 할 가능성이 상대적으로 높음.

■ 협업 필터링

- 다른 사용자들의 피드백에 기반을 둔 추천 시스템
 - "인간의 취향"을 고객의 평점 데이터를 이용해 측정
 - 관측하기 어려운 고객의 취향, 심리, 판단 등에 대한 많은 정보를 획득할 수 있는 시스템
- 원래 다른 사람의 피드백을 바탕으로 한 이메일 필터링 시스템으로 시작
 - 다른 사람의 피드백으로부터 정보를 획득한다는 아이디어가 주목받으면서 아마존, 넷플릭스 등 대규모 산업적 추천 시스템에 응용되기 시작
- 핵심은 고객 평점 데이터의 완성: 즉, 고객 평점의 예측 모형화가 중요!

- 협업 필터링
 - 이웃 기반 협업 필터링
 - 가정: 비슷한 사용자들은 비슷한 취향과 선호를 가진다
 - 비슷한 다른 고객들의 과거 평점을 이용해 특정 고객의 미래 평점을 예측
 - 예: 이웃 사용자들의 과거 평점들의 평균
 - 단계 1: 누구를 이웃(비슷한 사용자)으로 정의하여야 하는가?
 - 단계 2: 이웃의 평점 평균을 이용해 특정 고객의 평점을 어떻게 예측할 것인가?

■ 협업 필터링

- 아이템 기반 협업 필터링
 - 다른 고객들의 평점에 기반을 두고 아이템 간 유사성 지표를 계산하여 특정 고객에 의해 긍정적으로 평가된 아이템과 비슷한 아이템을 추천
 - "이웃" 개념을 활용한다는 점에서 콘텐츠 기반 추천 시스템과는 차이
- 모델 기반 협업 필터링
 - "이웃"에만 주목할 것이 아니라 고급 기법을 사용해 예측 모형을 구현
 - 회귀 분석 모형, 결측치 예측 모형 등 다양한 모형 활용 가능

- 협업 필터링의 장점
 - 1. 아이템 콘텐츠의 추가 정보 없이도 추천 시스템 구축 가능
 - 2. 고객의 암묵적/심리적 프로파일의 활용 가능
 - 고객 행동 패턴으로부터 고객의 기호와 판단을 유추 가능
 - 3. 사소하지 않은 추천의 가능
 - 관측되지 않은 고객의 프로파일을 활용하기 때문에 참신한 혹은 우연적인 추천이 가능

- 협업 필터링의 단점
 - 1. 과거 데이터가 부족할 경우
 - 상당한 양의 신뢰할 만한 고객 평점 데이터가 구축된 상황에서만 제공 가능
 - 2. 새로운 사용자와 아이템의 경우
 - 과거 평점 기록이 없는 새로운 사용자나 새롭게 제공되는 아이템의 경우 예측이 어려움.
 - 3. 인기도 편향 / 추천 제품의 표준화
 - 평점 데이터의 패턴에 기반을 두고 추천하기 때문에 인기 있는 아이템이나 '대중적인' 아이템이 추천될 가능성이 높아짐.

■ 하이브리드 추천 기법

- 스위칭 (switching): 조건에 따라 알고리즘을 바꾸는 형태로 여러 알고리즘을 결합
- 블랜딩 (blending): 여러 개의 알고리즘으로 도출된 평점 예측치를 특정 규칙에 따라 결합

■ 맥락 기반 추천

- 고객의 위치, 시간, 의도, 마케팅 채널, 기타 여러 조건 정보를 참고하여 추천 서비스 제공
- 맥락 사전 필터링, 맥락 사후 필터링 등

- Recommendation system in Marketing
- A. Ansari, S. Essegaier, and R. Kohli (2000), Internet recommendation systems, *Journal of marketing research*, 37(3), 363-375.
 - We use a hierarchical Bayesian approach to design a recommendation system.
 - To allow unobserved heterogeneity in consumer preferences
 - To assess the effect of unobserved product heterogeneity on preferences to allow for the introduction of unobserved product attributes
 - We suggest that preference models can offer good alternatives and this approach allows statistical integration of five types of information useful for making recommendations: a person's expressed preferences, preferences of other consumers, expert evaluations, item characteristics, and individual characteristics.

- Recommendation system in Marketing
- A. Ansari, S. Essegaier, and R. Kohli (2000), Internet recommendation systems, *Journal of marketing research*, 37(3), 363-375.
 - Customer heterogeneity

The observations for each customer are used to specify a customer-level regression model:

(1)
$$r_{ij} = \mathbf{w}_{j} \mathbf{\beta}_{j} + e_{ij}, e_{ij} \sim N(0, \sigma^{2}),$$

where $j \in M_i$, w_j is a vector of movie attributes (genre and expert ratings) for movie j, and β_i is a vector of parameters that represent the preference structure for customer i.

$$\beta_{i} = z_{i}\mu + \lambda_{i},$$

for i = 1 to I. In Equation 2, \mathbf{z}_i contains the characteristics of customer i, and λ_i represents the unobserved customer effect for the ith customer.

- Recommendation system in Marketing
- A. Ansari, S. Essegaier, and R. Kohli (2000), Internet recommendation systems, *Journal of marketing research*, 37(3), 363-375.
 - Product heterogeneity

Let $C_j = \{i_1, i_2, ..., i_{nj}\}$ represent the index set of the n_j customers who rated movie j. Let r_{ji} represent the rating given by customer i for movie j, where $i \in C_j$. The number of customers that provide ratings for a movie varies, which yields an unbalanced data set. The observations for movie j can be used in specifying a movie-level regression model as follows:

(4)
$$r_{ii} = \mathbf{z}_{i}' \mathbf{\beta}_{i+} e_{ij}, e_{ij} \sim N(0, \sigma^{2}),$$

$$\beta_j = w_j' \mu + \gamma_j, \, \gamma_j \sim \mathrm{N}(0, \, \Gamma),$$

for j = 1 to J. The vector \mathbf{w}_j contains the observed movie characteristics, and γ_j represents the unobserved movie effects. The complete model can alternatively be written as

Table 2
MODEL COMPARISON STATISTICS

Models		Log-Marginal	DIC Statistics		
Heterogeneity	Movie Attributes	Likelihood	Fit D	Complexity pD	DIC
No heterogeneity	Genre only	-18,801	37,589	13	37,602
	Expert only	-18,398	36,788	8	36,796
	Genre and expert	-18,327	36,638	17	36,655
Customer heterogeneity	Genre only	-17,581	34,135	1020	35,155
	Expert only	-17,162	33,429	900	34,329
	Genre and expert	-16,909	32,215	1501	33,716
Movie heterogeneity					
2 ,	Genre only	-18,072	35,825	275	36,100
	Expert only	-18,067	35,834	259	36,093
	Genre and expert	-18,066	35,830	260	36,090
Movie and customer					
Heterogeneity	Genre only	-16,793	32,118	1390	33,508
	Expert only	-16,840	32,502	1146	33,648
	Genre and expert	-16,675	31,488	1717	33,205

Notes: All models include demographic variables.

- Recommendation system in Marketing
- Ansari, A., and Mela, C. F. (2003). E-customization. *Journal of marketing research*, 40(2), 131-145.
 - Few models exist to help firms implement one-to-one marketing on the Internet.
 - We develop a statistical and optimization approach for customization of information on the Internet.
 - Specifically, we develop an approach that enables websites to customize permission-based e-mail communications to increase website traffic (though the approach can be more broadly applied to the issue of website customization).