CP315: Introduction to Scientific Computing

BY SCOTT KING

Dr. Ilias Kotsireas

1 Introduction

CP315 is a set of methods for solving mathematical problems with computers; fair enough - we will be using Maple and MatLab. Fundamental operations that are used: addition and multiplication. These are needed to evaluate a polynomial at a specific value. As we know, polynomials are basic objects in scientific computing \rightsquigarrow efficient evaluation.

1.1 Polynomial Evaluation

Consider a general, fourth-degree polynomial:

$$P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$

- i. Find $P(\frac{1}{2})$ naively requires substituting $\frac{1}{2}$ into $P(x) \rightsquigarrow 10$ multiplications and 4 additions comes to a total of 14 operations.
- ii. Store powers of $\frac{1}{2}$ progressively \rightarrow 3 multiplications (from the powers) + 4 multiplications (from the coefficients) and 4 additions. The new total is 11 operations.
- iii. Horner's Method: Rewrite P(x) "backwards":

$$P(x) = c_0 + x(c_1 + x(c_2 + x(c_3 + x(c_4))))$$

This brings it down to 8 total operations.

Fact: A degree d polynomial can be a evaluated in d multiplications and d additions.

Portfolio Part 1: Implement Horner's Method in Maple and/or MatLab.

1.1.1 Variation on the Theme

Evaluate:

$$P(x) = x^5 + x^8 + x^{11} + x^{14}$$

$$= x^5(1 + x^3 + x^6 + x^9)$$

$$= x^5(1 + x^3(1 + x^3 + x^6))$$

$$= x^5(1 + x^3(1 + x^3(1 + x^3)))$$

We get a total of 6 multiplications by 3 additions, thus 9 operations.

Overview of Calculus

Theorem 1. Intermediate Value Theorem

If f(x) is continuous in [a, b] then $\forall y$, such that, $f(a) \leq y \leq f(b) \exists c$, such that $a \leq c \leq b$ and f(c) = y.

Corollary 2. If f(a), f(b) < 0, then $\exists c$, such that f(c) = 0. Where c is a root of f(x) = 0.

Theorem 3. Mean Value Theorem

If f(x) is differentiable in [a,b] then $\exists c$, such that $f'(c) = \frac{f(a) - f(b)}{b-a}$. Thus, there is a point where we will be able to calculate the slope at c.

Corollary 4. Rolle's Theorem

If f(x) is differentialable at [a,b] then $\exists c$, such that $a \le c \le b$ and f'(c) = 0.

Theorem 5. Taylor's Theorem

If f(x) is (k+1)-differentiable in $[x_0, x]$, $\exists c$, such that:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{k+1}(x_0)}{(k+1)!}(x - x_0)^{k+1} + R$$

where $R = \frac{f^{(k+1)}(c)}{(k+1)!}(x-x_0)^{k+1}$, is the remainder. If we know $f(x_0)$, then we can find nearby values f(x) as a polynomial of degree k.

Example 6. $f(x) = \sin(x)$. Find a degree-4 Taylor polynomial (approximation) about $x_0 = 0$.

$$P_4(x) = x - \frac{x^3}{6}$$

with a remainder is $R = \frac{x^5}{120}\cos(c)$. Now, we need to estimate the size of the remainder term:

$$|R| \le \frac{|x|^5}{120}$$

If $|x| \le 10^{-4}$ then $|R| \le \frac{10^{-20}}{120}$. This tells us that for all numbers $\le 10^{-4}$, R is close to zero and thus the Taylor approximation is accurate.

Theorem 7. Mean Value Theorem for Integrals

If f is continuous in [a,b] and g is integrable in [a,b] and does not change sign in [a,b] then, $\exists c$ such that $a \le c \le b$ and

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

Note: This helps because this result gives us a way to evaluate $\int f(x)g(x)$ - as there is no defined way to do this.

2 Floating Point Representation of Real Numbers (R)

IEEE 754 is a standard to model floating point arithmetic on a computer. The problem is that we have finite-precision memory locations to represent infinite-precision numbers, YIKES.

IEEE 754 is a set of binary representations of real numbers.

A floating point, or real, number has three parts:

- 1. Sign (\pm) s
- 2. Mantissa (AKA significant digits) m
- 3. Exponent e

These three parts are stored in a word. There are three common precision types:

- 1. Single: 32 bits, (s: 1, m: 8, e: 23)
- 2. Double: 64 bits (s: 1, m: 11, e: 52)
- 3. Long-double: 80 bits, (s: 1, m: 15, e: 64)

Definition 8. A normalized IEEE 754 floating point number is the following:

$$\pm 1.b_1b_2...b_N \times 2^p$$

where p is an M-bit binary number; where

$$b_i \in \{0, 1\}, i = 1, ..., N$$

Example 9. 9 decimal and we want to convert to an IEEE FLP number.

$$9 \rightarrow 1001 \text{ (binary)}$$

+1 . 001×2^3
 $N = 3$
 $P = 3$

Multiplication by power of $2 \equiv a$ shift.

Typical double precision parameters in C/MatLab: M = 11, N = 52.

Example 10. We want to represent 1.

$$1 \rightsquigarrow 0001$$

+1 . $0...0_{52} \times 2^{0} (52 \text{ zeroes})$

What is the "next" number we can represent? The answer is: $+1.0...0_{51}1 \times 2^0 \rightsquigarrow 1 + 2^{-52}$, this is 51 zeroes.

Definition 11. Machine epsilon, $E_{\rm mach}$, is the distance between 1 and the smallest FLP number greater than 1.

Remark 12. For IEEE 754, double precision, we have $E_{\rm mach} = 2^{52}$.

2.1 IEEE Nearest Rounding Rule

Example 13. 9.4 in decimal $\rightarrow 1001.\overline{0110}$

The binary representation of
$$0.4 \approx \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^7} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{2^{4k+2}} + \frac{1}{2^{4k+3}} \right)$$

We need to fit this precision number in 52 bits.

$$1.001011001100110...0110\,0\times2^3$$

We have the three bits in the beginning following by 12 sets of 0110:

$$3 \, \mathrm{bits} + 12 \times 4 \, \mathrm{bits} = 51 \, \mathrm{bits}$$

RMR: Look at the 53rd bit to the right of the radix point: $\left\{ \begin{smallmatrix} 1 \to \operatorname{add} 1 \operatorname{to} \operatorname{bit} 52 \\ 0 \to \operatorname{do} \operatorname{nothing} \end{smallmatrix} \right.$

So in our example: 53rd bit is 1, so we add 1 to 52.

Thus, 9.4 is represented as:

$$+1.0010110\,\mathbf{1}\times2^3$$

which is actually $9.4 + 0.2 \times 2^{-49}$ in decimal.

Remark 14. The IEEE double precision number associated with 9.4 using RNR is:

$$fl(9.4) = 9.4 + 0.2 \times 2^{-49}$$

where 0.2×2^{-49} is the error.

Definition 15.

$$x_c = \text{computed value of } x$$
absolute error $= |x_c - x|$
relative error $= \frac{|x_c - x|}{|x|}$

Remark 16. Relative error in IEEE 754 is bounded by:

$$\frac{|fl(x) - x|}{|x|} \le \frac{1}{2} E_{\text{mach}}$$

2.2 Loss of Significant Digits

Example 17. $E_1 = \frac{1 - \cos(x)}{\sin^2(x)}$ and $E_2 = \frac{1}{1 + \cos(x)}$. $\therefore E_1 = E_2$ in exact arithmetic. Evaluate E_1 and E_2 numerically for x = 1.000..., x = 0.100..., x = 0.010...

Remark 18. For values of $x < 10^{-5}$, E_1 losses significant digits. For $x < 10^{-8}$, E_1 has no correct significant digits. Well, we are subtracting numbers that are nearly equal.

Example 19. $x^2 + 9^{12}x - 3 = 0$, with a = 1, $b = 9^{12}$, c = -3.

$$\Delta = \sqrt{b^2 - 4ac}$$

$$x = \frac{-b \pm \Delta}{2a}$$

$$\oplus \rightarrow x = \frac{-b + b}{2a} = 0$$

But how?! We need to restructure the formula, using the conjugate quantity:

$$\frac{-b + \sqrt{\Delta}}{2a} \times \left(\frac{-b + \sqrt{\Delta}}{-b + \sqrt{\Delta}}\right)$$

$$= \frac{\Delta - b^2}{2a(b + \sqrt{\Delta})^2}$$

$$= \frac{-4ac}{2a(b + \sqrt{\Delta})}$$

$$= \frac{-2c}{b + \sqrt{\Delta}}$$

Note: This formula only applies for degree-2 polynomials.

3 Equation Solving

- We will explore iterative methods to locate solutions of f(x) = 0
- Convergence, complexity

We are also going to look at three different methods of solving equations:

- 1. Bisection
- 2. Fixed-point
- 3. Newtons's method

3.1 Bisection Method

- We are looking to solve f(x) = 0
- Means find r, st f(r) = 0
- Existence of r: IVT

Steps:

- 1. Find [a, b] st $f(a) \times f(b) < 0$
- 2. Then, $\exists r : a < r < b \text{ st } f(r) = 0$

Example 20. $f(x) = x^3 + x - 1$, we know f(0) = -1, f(1) = 1 and thus:

$$\leadsto \exists r \in [0, 1] \text{ st } f(r) = 0$$

Also:

$$f\!\left(\frac{1}{2}\right)\!<0 \leadsto f\!\left(\frac{1}{2}\right)\!\times f(1) < 0 \leadsto r \in \left\lceil \frac{1}{2}, 1\right\rceil$$

Next step in the interation:

$$f\!\left(\frac{1}{2}\right) > 0 \leadsto f(0) \times f\!\left(\frac{1}{2}\right) < 0 \leadsto r \in \left[0, \frac{1}{2}\right]$$

And thus we know:

$$f\!\left(\frac{1}{2}\right) < 0$$

We now know that $\frac{1}{2} < f(\frac{1}{2}) < 1$. We know can check the midpoint of $\left[\frac{1}{2}, 1\right]$ which is $\frac{3}{4}$. Next interation:

$$f\!\left(\frac{3}{4}\right) \! > \! 0 \leadsto r \in \! \left\lceil \frac{1}{2}, \frac{3}{4} \right\rceil$$

Portfolio Part 2: Implement Bisection Method in Maple and/or MatLab.

Algorithm 1

```
Bisection Method Input: f, a, b st. f(a) \times f(b) < 0; tolerance (\epsilon) - e Output: approximate root r, in [a,b], f(r)=0 while (b-a)/2 > e do r=(a+b)/2 if f(r)=0 then return r if f(a)*f(r) < 0 b=r else a=r return (a+b)/2
```

Example 16 cont.

ϵ	$\#\mathtt{while}\ \mathrm{step}$	approx r
10^{-4}	13	0.6823
10^{-5}	16	0.6823
10^{-6}	19	0.68232
10^{-7}	23	0.68232780

Definition 21. An approximate solution is correct to p decimal places if the error

$$|x_c - r| < \frac{1}{2} 10^{-p}$$

3.1.1 Error Analysis

- Start [a, b]
- After n bisection steps $[a_n, b_n]$

$$x_c = \frac{a_n + b_n}{2} \leadsto |x_c - r| < \frac{b - a}{2^{n+1}}$$

Question 22. How many bisection steps are needed to compute a solution correct to 6 decimal places?

Answer. Error after n bisection steps: $\frac{1}{2^{n+1}}$ and thus

$$\frac{1}{2^{n+1}} < \frac{1}{2}10^{-6}$$

$$10^{6} < 2^{n}$$

$$\log(10^{6}) < \log(2^{n})$$

$$6 \times \log(10) < n \times \log(2)$$

$$6 < n \times \log(2)$$

$$19.9 < n$$

And thus we need 20 steps to compute 0.739085.

3.2 Fixed-Point Iteration

Definition 23. r is a fixed point (fp) of a function g(x), iff g(r) = r.

Example 24. $g(x) = x^3$. We have three fixed points: $0, \pm 1$.

Observation. Finding a fp of $g(x) \Leftrightarrow$ solving the equation: g(x) - x = 0 where we can define g(x) - x as f(x).

Algorithm 2

FPI

Input: f(x) = g(x) - x, initial guess, x_0

Output: approximate solution of f(x) = 0, (ie. a fp of g(x))

for
$$i = 0..k$$

 $x_{i+1}=g(x_i)$

If the sequence x_0, x_1, x_2, \dots converges to a value, r, then r is a fp of g(x). For some j: $|x_{j+1}-x_j| < E$.

Question 25. Can any fct, f(x) be written as g(x) - x?

Answer. Yes, and often in more ways than one.

Example 26. $x^2 + x - 1 = 0$

$$x = 1 - x^3 \tag{1}$$

$$x = (1 - x)^{\frac{1}{3}} \tag{2}$$

$$x = \frac{1 + 2x^3}{1 + 3x^2} \tag{3}$$

Use fp iterations with $x_0 = 0.5$.

- 1. The interates flip-flop from 0 to 1, **no convergence**
- 2. The iterates converge to 0.6823 in 25 iterations

Explanation: |g'(r) > 1, <1|

Example 27.

$$g_1(x) = -\frac{3}{2}x + \frac{5}{2}$$
 with $r = 1$ and $|g_1'(1)| = \frac{3}{2} > 1$
 $g_2(x) = -\frac{1}{2}x + \frac{3}{2}$ with $r = 1$ and $|g_2'(1)| = \frac{1}{2} < 1$

Thus, we have $x_{i+1} = g_1(x_i)$. Consider $g(x) \rightsquigarrow$

$$x_{i+1} - 1 = -\frac{3}{2}(x_i - 1)$$

denote by $e_i = |1 - x_i|$ then $e_{i+1} = \frac{3}{2} e_i \leadsto$ error increases, divergent.

Consider $g_2(x)$ with $x_{i+1} = g_2(x_i) \rightsquigarrow$

$$x_{i+1} - 1 = -\frac{1}{2}(x_i - 1)$$

then $e_{i+1} = \frac{1}{2} e_i$. 1

Definition 28. Denote by e_i , the error at step i, of an iterative method.

$$e_i = |r - x_i|$$

The method converges linearly with rate, S, if:

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i} = S$$

and S < 1.

Observation. f-p iteration for $g_2(x)$ converges linearly with rate $S = \frac{1}{2}$.

Theorem 29. Assume g is differentiable.

$$g(r) = r$$
 and r is an fp of g
 $|g'(r)| = S < 1$

Then, the fp iteration for g, conerges linearly with rate, S to r. For initial guesses, x_0 , sufficiently close to r.

Example 30. $f(x) = x^3 + x - 1$ in the form of g(x) = x.

- 1. $g_1(x) = 1 x^3$, now $|g_1'(x)| = 3x^2 \longrightarrow x = 0.6823 \longrightarrow >1$
- 2. $g_2(x) = (1-x)^{\frac{1}{3}}$, now $|g_2'(x)| = \frac{1}{3}(1-x)^{-\frac{2}{3}} + 1 \longrightarrow x = \dots \longrightarrow <1$: converges
- 3. $g_3(x) = \frac{1+2x^3}{1+3x^2}$, now $|g_3'(x)| = \frac{(6x^2)(1+3x^2)+(6x)(1+2x^3)}{(1+3x^2)^2} \longrightarrow x = \dots \longrightarrow 0 < 1$ We have a linear convergence with rate, S = 0

3.2.1 Stopping Criteria for FPI

Where do we need to stop the iteration?

1. Bounded absolute error:

$$|x_{i+1} - x_i| < \mathbf{E}$$

2. Bounded relative error:

$$\frac{|x_{i+1} - x_i|}{|x_{i+1}|} < \mathbf{E}$$

8