The Art of Robotics: Toward a Holistic Approach

Alexander Volkov Jr.

Master of Science in Robotics Thesis Defense July 31, 2018

Talk Agenda

- 1. Background The BFD; how I ended up here
- 2. The Big Picture Cover the central themes of this talk.
- 3. A Unifying Framework An old framework, revived.
- 4. Touching Robots Tactile sensing, contact modeling, whiskers, robot pain.
- 5. Conclusions Review key points and propose some future work.
- 6. Acknowledgments & Questions "Please clap..."

Background

Background

The BFD

▶ End Game: Develop a Unified Framework for Understanding Robotics

The BFD

- **▸ End Game:** Develop a Unified Framework for Understanding Robotics
 - **▶ Thesis Purpose:** Reflect on and organize *my* understanding of robotics

The BFD

- **▸ End Game:** Develop a Unified Framework for Understanding Robotics
 - **Thesis Purpose:** Reflect on and organize *my* understanding of robotics
 - ▶ **Talk Purpose:** Provide an overview of my thesis dissertation for the committee

Talk Title Etymology I

The Art of Electronics", by Horowitz & Hill

Talk Title Etymology I

- * "The Art of Electronics", by Horowitz & Hill
 - Literally the electrical engineering bible
 - Incredibly thorough
 - Perfect balance of practicality and rigor

Talk Title Etymology II

* "Mechanics of Robotic Manipulation", by Mason¹ [1]

¹Matt, I'll take my referral payments by mail.

Talk Title Etymology II

- * "Mechanics of Robotic Manipulation", by Mason¹ [1]
 - "Manipulation is an art..." (p.1)

¹Matt, I'll take my referral payments by mail.

Talk (Sub)Title Etymology III

"Toward a Holistic Approach"

Talk (Sub)Title Etymology III

"Toward a Holistic Approach"

When you concede falling short of a goal in academia. Example: Mason's Annual Review "Toward Robotic Manipulation" [17]

Talk (Sub)Title Etymology III

"Toward a Holistic Approach"

When you concede falling short of a goal in academia. Example: Mason's Annual Review "Toward Robotic Manipulation" [17]

From the mechatronics/systems engineering community. Chhabra and Emami provide an excellent summary in [2].

Hobby robotics ⇒ self-taught basic electronics, programming, CAD

- **Hobby robotics** ⇒ self-taught basic electronics, programming, CAD
 - "Keep it cheap"
 - "Keep it open-source"
 - "Keep it useful (or, at least, artistic)"

- **Hobby robotics** ⇒ self-taught basic electronics, programming, CAD
 - "Keep it cheap"
 - "Keep it open-source"
 - "Keep it useful (or, at least, artistic)"
- **► Cornell Undergrad** ⇒ ECE major, ME/CS minors

- **Hobby robotics** ⇒ self-taught basic electronics, programming, CAD
 - "Keep it cheap"
 - "Keep it open-source"
 - "Keep it useful (or, at least, artistic)"
- **Cornell Undergrad** ⇒ ECE major, ME/CS minors
 - ECE:
 - "Everything is an impedance (or an admittance)"
 - "What's the system bandwidth?"
 - ME:

- **Probby robotics** ⇒ self-taught basic electronics, programming, CAD
 - "Keep it cheap"
 - "Keep it open-source"
 - "Keep it useful (or, at least, artistic)"
- **Cornell Undergrad** ⇒ ECE major, ME/CS minors
 - ECE:
 - "Everything is an impedance (or an admittance)"
 - "What's the system bandwidth?"
 - ME:
 - "At the end of the day, everything is mechanical"
 - "Everything is a model, and every model is wrong"

- **Hobby robotics** ⇒ self-taught basic electronics, programming, CAD
 - "Keep it cheap"
 - "Keep it open-source"
 - "Keep it useful (or, at least, artistic)"
- **Cornell Undergrad** ⇒ ECE major, ME/CS minors
 - ECE:
 - "Everything is an impedance (or an admittance)"
 - "What's the system bandwidth?"
 - ME:
 - "At the end of the day, everything is mechanical"
 - "Everything is a model, and every model is wrong"
 - CS:
 - ▶ "90% of solving a problem is finding the right representation"
 - "Everything breaks at the interfaces"

Background

"Time to become a robotics master..."

"Legged locomotion is cool..."

"Great! Here's absolutely no funding."

"Legged locomotion is cool..."

"Great! Here's absolutely no funding."

"Umm..."

Background 10/38

"Wait! Go talk to Matt Mason!"

"Umm..."

Background 11/38

"Wait! Go talk to Matt Mason!"

"(skeptical) Okay..."

Background 12/38

"Manipulation is awesome! And I have money! And I don't micromanage!"

"(skeptical) Okay..."

Background 13/3

"Manipulation is awesome! And I have money! And I don't micromanage!"

"(excited) Works for me!"

Background 14/38

"Fantastic, go forth and prosper!"

"(excited) Works for me!"

Background 15/3

"I've been meaning to read Hogan's famous Impedance Control [3] paper, I guess I'll start there."

... Two Years Later ...

Background 17/3

Me, circa July 2018

"So it's all about causality... and feedback!"

Background 18/38

The Big Picture

The Big Picture 19/38

▶ Want a concise theory of robotics...

- Want a concise theory of robotics...
- Interested in the *physics* common to robotics problems

- Want a concise theory of robotics...
- Interested in the *physics* common to robotics problems
- Not worried about SLAM, POMDPs, etc... there are bigger fish to fry (we're skimming over the basics!)

- Want a concise theory of robotics...
- Interested in the *physics* common to robotics problems
- Not worried about SLAM, POMDPs, etc... there are bigger fish to fry (we're skimming over the basics!)

i.e. Moravec's paradox [4]

Back to Basics

- Want a concise theory of robotics...
- Interested in the physics common to robotics problems
- Not worried about SLAM, POMDPs, etc... there are bigger fish to fry (we're skimming over the basics!)
 - i.e. Moravec's paradox [4]
- Inherently a *breadth-first* approach, since we're looking for a unifying framework

I know it's a cliché to bring this up...

I know it's a cliché to bring this up...but I must!

- I know it's a cliché to bring this up...but I must!
 - Does the ambiguity really matter?

- I know it's a cliché to bring this up...but I must!
 - Does the ambiguity really matter?
 - Maybe not, but some unifying theme would be useful!

Locomotion and manipulation are studied separately in robotics

- Locomotion and manipulation are studied separately in robotics
 - ... and biomechanics, for that matter
 - Seems quite natural at first, we all talk about the two as separate specializations in robotics

- Locomotion and manipulation are studied separately in robotics
 - ... and biomechanics, for that matter
 - Seems quite natural at first, we all talk about the two as separate specializations in robotics
- Eventually, the notion of "duality" comes up...

- Locomotion and manipulation are studied separately in robotics
 - ... and biomechanics, for that matter
 - Seems quite natural at first, we all talk about the two as separate specializations in robotics
- Eventually, the notion of "duality" comes up...
 - Locomotion and manipulation sometimes overlap
 - Pai et al.'s *Platonic Beasts* [5]
 - ► Mason et al.'s *Mobipulator* [6] [7]
 - Also, literally everywhere in biology
 - Perhaps it just comes down to a change of reference?
 - What pushes off of what?
 - Locomotion is "self-manipulation", e.g. Aaron Johnson's PhD thesis [8] and related works [9][20]

The Big Picture 23/3:

Problem 2: Locomotion and Manipulation, United

Taking the "self-manipulation" perspective

Embodiment

• Embodiment

- Embodiment
 - 2
 - Presently resides in the cognitive science community (as in "embodied cognition")

- Embodiment
 - 2
 - Presently resides in the cognitive science community (as in "embodied cognition")

ř

A Unifying Framework

A Unifying Framework 26/38

The Port-Hamiltonian Framework

- Port-based Analysis
- Hamiltonian Dynamics

2

ı

A Unifying Framework 27/38

Bond Graphs

A Unifying Framework 28/38

Hamiltonian Dynamics

A Unifying Framework 29/38

Dissipative Elements

A Unifying Framework 30/38

Putting it All Together

A Unifying Framework 31/38

Touching Robots

Touching Robots 32/38

A Note on Stiffness and Collisions

STOP COLLIDING STIFF OBJECTS AND EXPECTING RELIABLE RESULTS

Touching Robots 33/3

The Most Important Sensory Modality

Touching Robots 34/38

Contact Models

Touching Robots 35/38

Terminator 2 Got It Right

Touching Robots 36/38

Closing Thoughts

Closing Thoughts 37/38

Closing Thoughts

▶ Woo, Beamer!

Closing Thoughts 38/38

Cheers

Committee

Lab

The other profs

Jean

Cameron

Cats

Parents for debt free education

- M. T. Mason, *Mechanics of robotic manipulation*. MIT press, 2001.
- R. Chhabra and M. R. Emami, "Holistic system modeling in mechatronics," *Mechatronics*, vol. 21, no. 1, pp. 166–175, Feb. 2011. DOI: 10.1016/j.mechatronics.2010.10.003.
- N. Hogan, "Impedance control-an approach to manipulation. i-theory. ii-implementation. iii-applications," *ASME Transactions Journal of Dynamic Systems and Measurement Control B*, vol. 107, pp. 1–24, 1985.
- H. Moravec, *Mind children: The future of robot and human intelligence*. Harvard University Press, 1988.
- D. K. Pai, R. A. Barman, and S. K. Ralph, "Platonic beasts: A new family of multilimbed robots," in *Robotics and Automation*, 1994. Proceedings., 1994 IEEE International Conference on, IEEE, 1994, pp. 1019–1025.

- M. T. Mason, D. K. Pai, D. Rus, L. R. Taylor, and M. A. Erdmann, "A mobile manipulator," in *International Conference on Robotics and Automation*, IEEE, 1999, pp. 2322–2327.
- M. T. Mason, D. K. Pai, D. Rus, J. Howell, L. R. Taylor, and M. A. Erdmann, "Experiments with desktop mobile manipulators," in *Experimental Robotics VI: The Sixth International Symposium*, P. Corke and J. Trevelyan, Eds., Springer, 2000, pp. 37–46.
- A. M. Johnson, "Self-manipulation and dynamic transitions for a legged robot,", 2014.
- A. M. Johnson, G. C. Haynes, and D. E. Koditschek, "Standing self-manipulation for a legged robot," in *Intelligent Robots and Systems (IROS)*, 2012 IEEE/RSJ International Conference on, IEEE, 2012, pp. 272–279.

R. M. Murray, S. Shastry, and Z. Li, *A Mathematical Introduction to Robotic Manipulation*. Taylor & Francis Inc, Mar. 22, 1994, 480 pp., ISBN: 0849379814. [Online]. Available: http://www.ebook.de/de/product/3803129/richard_m_murray_shankar_shastry_zexiang_li_a_mathematical_introduction_to_robotic_manipulation.html.

S. Stramigioli, *Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach*. Springer London, Mar. 23, 2001, 296 pp., ISBN: 1852333952. [Online]. Available:

http://www.ebook.de/de/product/5993436/stefano_
stramigioli_modeling_and_ipc_control_of_interactive_
mechanical_systems_a_coordinate_free_approach.html.

- D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, *System Dynamics: A Unified Approach, 2nd Edition*. Wiley-Interscience, 1990, ISBN: 0-471-62171-4. [Online]. Available: https://www.amazon.com/System-Dynamics-Unified-Approach-2nd/dp/0471621714?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASTN=0471621714
- S. H. Crandall, D. C. Karnopp, J. Edward F. Kurtz, and D. C. Pridmore-Brown, *Dynamics of Mechanical and Electromechanical Systems*, S. H. Crandall, Ed. Krieger Pub Co, 1982, ISBN: 0-89874-529-2. [Online]. Available: https://www.amazon.com/Dynamics-Mechanical-Electromechanical-Systems-Crandall/dp/0898745292?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0898745292.

A. Recski, *Matroid Theory and Its Applications in Electric Network and in Statics (Algorithms & Combinatorics)*. Springer Verlag, 1990, ISBN: 0-387-15285-7. [Online]. Available:

https://www.amazon.com/Matroid-Applications-Electric-Algorithms-Combinatorics/dp/0387152857?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0387152857.

J. van Dijk, "On the role of bond graph causality in modelling mechatronic systems," PhD thesis, University of Twente, Feb. 1994. [Online]. Available: https://research.utwente.nl/en/publications/on-the-role-of-bond-graph-causality-in-modelling-mechatronic-syst.

P. C. Breedveld, "Port-based modeling of mechatronic systems," *Mathematics and Computers in Simulation*, vol. 66, no. 2-3, pp. 99–128, Jun. 2004. DOI: 10.1016/j.matcom.2003.11.002.

- M. T. Mason, "Toward robotic manipulation," Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 1–28, 2018. DOI: 10.1146/annurev-control-060117-104848. eprint: https://doi.org/10.1146/annurev-control-060117-104848.
- E. Schrödinger, *What is life?: With mind and matter and autobiographical sketches.*Cambridge University Press, 1992.
- M. Azad and R. Featherstone, "A new nonlinear model of contact normal force," *IEEE Transactions on Robotics*, vol. 30, no. 3, pp. 736–739, 2014.
- A. M. Johnson, S. A. Burden, and D. E. Koditschek, "A hybrid systems model for simple manipulation and self-manipulation systems," *The International Journal of Robotics Research*, vol. 35, no. 11, pp. 1354–1392, 2016.

Teaching with CMU's Gelfand Outreach Center

- Introduction to Robotics with the Finch Platform
 - Each session is 5 days, 3 hrs/day
 - 4th and 5th graders
 - 1 session Summer 2017 + 2 sessions Summer 2018

Carnegie Mellon University

Teaching with CMU's Gelfand Outreach Center

- Saturday Series LEGO WeDo Robotics
 - 3 hour course
 - 2nd and 3rd graders
 - 1 session Spring 2018

 ${\bf Carnegie\,Mellon\,University}$

Robotics Institute Meme Facebook Page

Robotics Institute Meme Facebook Page

- Some statistics:
 - The RI's first and only meme page
 - Formed in March 2018
 - 170 members
 - 30 memes, 23 original contributions!

IT LOOKS LIKE YOU'RE TRYING TOWRITE YOUR THESIS

WOULD YOU LIKE TO BE STRICKEN WITH CRIPPLING SELF DOUBT AND WRITERS BLOCK?

1. Some basics

A 3D rigid body transform, $\mathbf{G} \in SE(3)$

 $G = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$

 $G = \begin{bmatrix} 0 & 1 \end{bmatrix}$ 2. Spanish of the Recall Hamiltonian where $R \in SO(3)$. During optimization.

where $K \in SO(3)$. During optimization a minimal representation is given by $\xi \in se(3)$ of the associated lie algebra. oh btw, log map is bla. exp map is blabla.

2. Draw the r

2. Optimize on the fucking manifold!