1

GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is $h(t) = \delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuous-time unit impulse signal if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is

Solution:

Variable	Description	value
$\delta\left(t\right)$	continuous-time unit impulse signal	1 if t=0;
		0 in other cases
$h\left(t\right)$	impulse response	$\delta\left(t\right) + 0.5\delta\left(t - 4\right)$
x(t)	input signal	$x(t) = cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	x(t)* h(t)
TABLE I		

A TABLE WITH INPUT PARAMETERS

from Table I

$$y(t) = h(t) * x(t)$$

$$= \int_{-\infty}^{\infty} h(\tau) x(t - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} [\delta(\tau) x(t - \tau) + 0.5\delta(\tau - 4) x(t - \tau)] d\tau$$

$$= x(t) + 0.5x(t - 4)$$

$$= cos\left(\frac{7\pi t}{4}\right) + 0.5cos\left(\frac{7\pi (t - 4)}{4}\right)$$

$$= cos\left(\frac{7\pi t}{4}\right) + 0.5cos\left(\frac{7\pi t}{4} - 7\pi\right)$$

$$= 0.5cos\left(\frac{7\pi t}{4}\right)$$
(6)
$$= 0.5cos\left(\frac{7\pi t}{4}\right)$$
(7)