Intuïtieve mens-machineinterface met live actieherkenning

Master of Science in de industriële wetenschappen: informatica Bert De Saffel

prof. dr. ir. Peter Veelaert & prof. dr. ir. Wilfried Philips ing. Sanne Roegiers & ing. Dimitri van Cauwelaert

04 april 2019

- Context
- Probleemstellingen
- Methodologie

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Context

Actieherkenning met de Kinect sensor

4/29

Actieherkenning met de Kinect sensor

Context

- Hoe besturen?
 - Remote control
 - Autonoom
 - Actieherkenning

5/29

Context

• De verplaatsing van een "robot" uitvoeren met enkel actieherkenning

Context

- De verplaatsing van een "robot" uitvoeren met enkel actieherkenning
- Met de kinect sensor
 - Kan skeletbeelden genereren vanuit RGB-D data

Kinect Sensor

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Probleemstellingen

Verschillen in lichaamsbouw mogelijk (klein vs groot)

Actieherkenning met de Kinect sensor

- Verschillen in camerahoek
- Verschillen in locatie

Probleemstellingen

- Verschillen in lichaamsbouw mogelijk (klein vs groot)
- Verschillen in camerahoek
- Verschillen in locatie
- Real-time actieherkenning
 - De actie herkennen op het moment dat deze uitgevoerd wordt
 - ≈ binnen 5 frames

Onderzoek

- De features moeten rotatie-, lichaams- en plaatsinvariant zijn
- Actie moet vroeg genoeg herkend worden om live te kunnen classificeren

Actieherkenning met de Kinect sensor

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Machine Learning - Classificatieprobleem

- Een verzameling van klassen (labels, uitvoerwaarden, ...)
- Gegeven een observatie, tot welke klasse behoort ze?
- Bij actieherkenning:
 - Klassen = acties
 - Observaties = frames

Machine Learning - Features

- Een observatie wordt getransformeerd naar features
 - Pixel: RGB-waarden
 - Persoon: leeftijd, geslacht, haarkleur, lengte, ...
- Features op basis van skeletbeelden
 - Elk skelet *joint* wordt gekenmerkt door zijn (x, y, z) coördinaten en (a, b, c, d) quaternionen.
 - Quaternion:

$$\mathbf{q} = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

- Het skelet bestaat uit 25 joints
- → 175-dimensionale *feature vector*

$$\mathbf{f} = \begin{pmatrix} x_1 & y_1 & \dots & y_{25} & z_{25} & a_1 & b_1 & \dots & c_{25} & d_{25} \end{pmatrix}$$

Machine Learning - Classificatie

- De feature vector kan als input dienen voor eender welke classifier
- Welke classifier is de beste? → Evalueren a.d.h.v. een confusion matrix:

- Precision = $\frac{TP}{TP+FP}$
- Recall = $\frac{TP}{TP+FN}$
- F1 score = $2 * \frac{precision*recall}{precision+recall}$

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Dataset

- 9 acties, 4 personen
- Opgenomen met de Kinect
- Leave-One-Out Cross Validation
 - Trainingset: n-1 personen
 - Testset: 1 persoon
 - Evalueer classifier met deze twee sets
 - Herhaal n keer zodat elke persoon één keer in de testset zit
 - De score van de classifier is het gemiddelde van de scores

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Preprocessing

Preprocessing

- 1. Plaats-invariantie \rightarrow Translatie
 - Spine base joint als oorsprong:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

met x_0, y_0, z_0 de drie-dimensionale coördinaten van de *Spine base joint*

Preprocessing

- 1. Plaats-invariantie \rightarrow Translatie
 - Spine base joint als oorsprong:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

met x_0, y_0, z_0 de drie-dimensionale coördinaten van de *Spine base joint*

- 2. Schaal-invariantie → Vectornormalisatie
 - Elk component van elke positievector delen door lengte van de neck joint positievector:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \frac{x}{||n||} \\ \frac{y}{||n||} \\ \frac{z}{||n||} \end{pmatrix}$$

met

$$||n|| = \sqrt{(neck_x)^2 + (neck_y)^2 + (neck_z)^2}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

- 3. Rotatie-invariantie \rightarrow Lokaal skeletcoördinatensysteem (X',Y',Z')
 - X'-as = de as door de Right Hip joint (RH) en Left Hip joint (LH)
 - Y'-as = de as door de Spine Base joint (SB) en Spine Mid joint (SM)
 - Z'-as = orthogonaal met X' en Y'

- Methodologie
 - Machine Learning

 - Preprocessing
 - Classificatie
 - Evaluatie

Classificatie

- Enerzijds vergelijken verschillende classifiers
 - K-Nearest Neighbors
 - Vergelijk de k dichtste feature vectoren, de gelabelde klasse is diegene die het meest voorkomt
 - Support Vector Machine
 - Zoek een hypervlak dat de positieve observaties van de negatieve onderscheidt.

Classificatie

- Anderzijds verschillende classificatiestrategieën toepassen
 - Frame per frame classificeren zonder temporaal aspect
 - Buffer bijhouden van 30 opeenvolgende frames, met majority voting de actie bepalen
 - Buffer bijhouden van 30 opeenvolgende frames, met een gewogen vote de actie bepalen
 - Gewichten op actie plaatsen
 - Stopactie heeft voorrang

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Classificatie
 - Evaluatie

Evaluatie

Evaluatie

Evaluatie

Vragen, opmerkingen, ...?