Grupos Topológicos

Cristo Daniel Alvarado

13 de febrero de 2024

Índice general

1.	Elementos de la teoría de grupos topológicos	2
	1.1. Preliminares	2

Capítulo 1

Elementos de la teoría de grupos topológicos

1.1. Preliminares

Definición 1.1.1

Sea G un conjunto no vacío dotado de una operación binaria (denotada por \cdot) y una familia τ de subconjuntos de G. G es llamado **grupo topológico** si

- 1). (G,\cdot) es un grupo.
- 2). (G, τ) es un espacio topológico.
- 3). Las funciones $g_1: (G,\tau) \times (G,\tau) \to (G,\tau)$ y $g_2: (G,\tau) \to (G,\tau)$ dadas por $(x,y) \mapsto x \cdot y$ y $x \mapsto x^{-1}$, respectivamente, son continuas, siendo x^{-1} el inverso de x en G.

Se denotará a la operación · por yuxtaposición, es decir $x \cdot y = xy$.

Observación 1.1.1

Una equivalencia de la condición (3) de la proposición anterior es la siguiente:

Sea G un grupo topológico. Denotamos por $\mathcal{N}(x)$ a la familia de todas las vecindades de $x \in G$. 3) es equivalente a

4). Si $x, y \in G$, entonces para cada $U \in \mathcal{N}(xy)$ existen vecindades $V \in \mathcal{N}(x)$ y $W \in \mathcal{N}(y)$ tales que $V \cdot W \subseteq U$, donde

$$V \cdot W = \{vw | v \in V \& w \in W\}$$

y, para cada $U \in \mathcal{N}(x^{-1})$ existe $V \in \mathcal{N}(x)$ tal que $V^{-1} \subseteq U$, siendo

$$V^{-1} = \left\{ v^{-1} \middle| v \in V \right\}$$

esta equivalencia es inmediada de la definición de continuidad de una función en un espacio topológico.

Observación 1.1.2

El símbolo e_G denotará siempre a la identidad de un grupo G.

Con frecuencia se referirá al grupo topológico G, con operación binaria \cdot y topología τ como la terna (G, \cdot, τ) . Si no hay ambiguedad, se denotará simplemente por G.

Lema 1.1.1

Sean (G, \cdot) un grupo, y τ una topología en G. Entonces, (G, \cdot, τ) es un grupo topológico si y sólo si la función

$$g_3: (G,\tau) \times (G,\tau) \to (G,\tau)$$

 $(x,y) \mapsto xy^{-1}$

es continua.

Demostración:

 \Rightarrow): Suponga que G es un grupo topológico, entonces las funciones g_1 y g_2 son continuas (por la condición 3) de la definición anterior). Notemos que

$$g_3 = g_1(x, g_2(y)), \quad \forall x, y \in G$$

por ende, g_3 es continua.

 \Leftarrow): Suponga que la función g_3 es continua. Notemos que

$$g_2(x) = g_3(x, e_G), \quad \forall x \in G$$

por ser g_3 continua, se sigue que g_2 también lo es. Además

$$g_1(x,y) = g_3(x,g_2(y)), \quad \forall x,y \in G$$

por lo cual, g_1 también es continua. Por tanto, G es grupo topológico.

Una de las primeras ventajas que surgen en el estudio de los grupos topológicos es que, ciertas propiedades locales se vuelven globales desde el punto de vista de la topología.

Teorema 1.1.1

Sea G un grupo topológico. Si $g \in G$ es un elemento fijo arbitrario, entonces las funciones $\varphi_g(x) = xg$ y $\sigma_g(x) = gx$, para todo $x \in G$, de G en G, son homeomorfismos. La inversión $f: G \to G$, definida por $f(y) = y^{-1}$, también es un homeomorfismos. Las funciones φ_g y σ_g son llamadas **traslaciones por la derecha e izquierda**, respectivamente.

Demostración:

Por la definición de grupo topológico, las funciones φ_g , σ_g y f son continuas. Veamos que son homeomorfismos de G en G.

- 1). Veamos que φ_g es inyectiva. Si $a, b \in G$ son tales que $\varphi_g(a) = \varphi_g(b)$, entonces $ag = bg \Rightarrow a = b$, con lo que se tiene el resultado.
 - Además es suprayectiva, pues para cada $b \in G$ existe $g^{-1}b \in G$ tal que $\varphi_q(bg^{-1}) = b$.

Luego, φ es homeomorfismo de G, con inversa $\varphi_{g^{-1}}$. Además es homomorfismo.

- 2). Para σ_g el caso es similar a φ_g .
- 3). Para f el resultado es inmediato, pues es biyectiva, homomorfismo y su inversa es ella misma.

Los resultados siguientes nos perimitirán estudiar las propiedades topológicas locales de un grupo topológico G en un solo punto, que por simplificar siempre tomaremos como la identidad e_G del grupo.

Corolario 1.1.1

Todo grupo topológico G es un espacio homogéneo.

Demostración:

Debemos probar que dados dos elementos arbitrarios del grupo topológico G, digamos $g, h \in G$, existe un homeomorfismo de G sobre sí mismo tal que manda un elemento en el otro. Por el teorema anterior, tomando como homeomorfismo a $\varphi_{g^{-1}h}$ se tiene el resultado, pues $\varphi_{g^{-1}h}(g) = h$.

Como en grupos y espacios topológicos, nos interesan las funciones que preservan las propiedades entre éstos. Por lo cual se estudiarán los siguientes tipos de funciones:

Definición 1.1.2

Decimos que una función biyectiva $f: G \to G'$ entre dos grupos topológicos G y G' es un **isomorfismo topológico** si f y f^{-1} son homomorfismos continuos.

Si G = G', el isomorfismo f se llama **automorfismo topológico**. dos grupos topológicos son **topológicamente isomorfos** si existe un isomorfismo topológico de uno al otro. Utilizaremos el símbolo $G \cong H$ para indicar que los grupos G y H son topológicamente isomorfos.

El objetivo del siguiente teorema es ver que un grupo topológico no abeliano admite muchos automorfismos.

Teorema 1.1.2

Si G es un grupo topológico y $a \in G$ está fijo, entonces la función $g(x) = axa^{-1}$ es un automorfismo topológico.

Demostración:

Observemos que $g(x) = \sigma_a(\varphi_a^{-1}(x))$, donde las dos funciones de la composición definidas como en el teorema anterior son homeomofismos, y por ende q lo es. Además q es homomorfismo ya que

$$g(xy) = axya^{-1} = (axa^{-1})(aya^{-1}) = g(x)g(y)$$
(1.1)

el cual es invertible, con inversa $f(x) = a^{-1}xa$.

Observación 1.1.3

En el caso de que el grupo G sea abeliano, el automorfismo topológico G definido en el teorema anterior, es trivial ya que coincide con la identidad.