ADLxMLDS HW1 報告

b03902083 陳力

Model Description

· Feature:

在兩個模型中,我所採用的 feature 皆為 39 維的 MFCC,且皆經過 z score 做過正則化 ($\overrightarrow{x_t} \leftarrow \sigma^{-1}(\overrightarrow{x_t} - \mu)$,其中 μ 與 σ 分別為向量 $\overrightarrow{x_t}$ 的平均值與標準差)。

- Activation Function:
 - 我所使用的 activation function 皆為 ReLU unit (f(x) = max(0, x))。
- Loss Function:
 - 我所使用的 Loss Function 皆為 frame-wise 的 Cross Entropy Loss ($L(y, c) = -\log y_c$)
- Validation set:
 - 隨機得從 training set 中選取 100 個 sequence 作為 validation set。
- · Optimizer:
 - 使用 pytorch 套件內建的 ADAM 演算法, learning rate 固定在 0.0001。

RNN

我所使用的 RNN 模型是多層雙向 LSTM (DBLSTM)。在 DBLSTM 裡,每個 frame 在兩個方向的輸 \rightarrow \leftarrow 出 h , h 會被線性組合成單一向量表示各種 label 的機率分佈 ($v=W_1$ h + W_2 h + b)。

CNN + RNN

在我的 CNN + RNN 模型裡,每個 frame 會先被 CNN 做過轉換,然後這些轉換過的 frame 所成的 sequence 再送進上述的 RNN model 裡做預測。

CNN 的部分則是每個 frame 會配上前後各一個 frame,成為一個 3×39 的二維 tensor,然後送進 convolution layer。 convolution layer 則是一個輸入 channel 對到一個輸出 channel,kernel的大小是 3×2 ,pool 的大小是 2,所以輸出會是一個 1×19 的 tensor;之後每個值再送進 ReLU 裡。

Performance Improvements

Best model

我表現最好的模型參數如下:

6層 DBLSTM,hidden cell 與 batch 大小皆為 100,訓練時 LSTM 裡的 dropout 機率為 0.5,訓練的回合數為 300。

在 public testing set 達到 8.02259 的分數。

Technique

在 trimming 的過程裡,主動捨棄連續出現不超過 2 次的 label。

Why?

- 1. 層數越多,model 的描述能力就越強,但也越容易 overfit,所以需要引進 dropout 的技巧來控制。
- 2. 在 training set 裡,因為 frame 所代表的聲音長度很短,全部的 label 在 sequence 都會連續出現好幾次。這個觀察讓我們在做預測時,可以主動捨棄零星出現的 label,增加準確率。

Experimental Results

RNN + Naive Trim:

層數	hidden cell 大小	dropout	epoch 數	Public score
5	100	0.3	56	15.69491
5	100	0.3	172	10.97175
5	100	0.3	231	10.53672
5	100	0.3	300	10.27683

RNN + 移除零星 label (連續出現 ≤ 2 次):

層數	hidden cell 大小	dropout	epoch 數	Public score
5	100	0.3	300	8.85875
6	100	0.5	300	8.02259
6	100	0.5	400	8.02824
7	100	0.5	500	8.02259
6	1024	0.5	5	8.55932
6	1024	0.5	9	7.81920
6	1024	0.5	20	7.71186

RNN + 移除零星 label (連續出現 ≤ 3 次):

層數	hidden cell 大小	dropout	epoch 數	Public score
6	100	0.5	300	9.55932
6	100	0.5	400	9.50282

RNN + 移除零星 label (連續出現 ≤ 2 次) + MFCC + FBANK:

層數	hidden cell 大小	dropout	epoch 數	Public score
6	1024	0.5	5	8.55932
6	1024	0.5	9	7.81920
6	1024	0.5	15	7.74576
6	1024	0.5	18	7.75141
6	1024	0.5	20	7.71186

CNN + RNN + 移除零星 label (連續出現 ≤ 2 次):

kernel 大小	pooling 大小	層數	hidden cell 大小	dropout	epoch 數	Public score
3 x 2	2	5	100	0.3	300	9.84745

從以上的結果可以猜測:

- 1. Train 越多回合對結果在大部分時候有好的影響,即使 model 在 validation set 的結果早已收 斂。
- 2. Trim 的方法對分數有顯著的影響。
- 3. 我的 CNN model 對結果有負面的影響,壓縮掉太多資訊。
- 4. MFCC + FBANK 兩種 feature 同時用會有好的效果。

Residual Network

Deep residual network 是現在很流行的模型,我將他接在 RNN 之後,做了一些實驗。

模型長相:

有四組 residual block,分別為

- 1. 1 channel to 16 channels, kernel size 3, 6 layers
- 2. 16 channels to 8 channels, kernel size 3, 2 layers
- 3. 8 channels to 4 channels, kernel size 3, 2 layers
- 4. 4 channels to 2 channels, kernel size 3, 2 layers

DBLSTM + Residual network:

層數	hidden cell 大小	dropout	epoch 數	Public score
2	128	0.2	100	10.00000

Deep residual network

Reference

http://cs231n.stanford.edu/reports/2017/pdfs/804.pdf

(http://cs231n.stanford.edu/reports/2017/pdfs/804.pdf)

https://arxiv.org/pdf/1611.07174.pdf (https://arxiv.org/pdf/1611.07174.pdf)

 $https://www.cs.toronto.edu/~graves/asru_2013.pdf \ (https://www.cs.toronto.edu/~graves/asru_2013.pdf) \ (https://www.cs.toronto.edu/~gra$

 $https://arxiv.org/pdf/1303.5778.pdf \ (https://arxiv.org/pdf/1303.5778.pdf)$