Rational Parking Functions

Matthieu Josuat-Vergès

Tessa Lelièvre-Osswald

August 27, 2020

Abstract

This is an abstract about Rational Parking Functions

Chapter 1

The integer case

1.1 Parking Functions

Definition 1 (Parking Function). A parking function is a sequence (a_1, a_2, \ldots, a_n) such that its non-decreasing reordering (b_1, b_2, \ldots, b_n) has $b_i < i$ for all i. We denote by \mathcal{PF}_n the set of parking functions of length n.

$$\mathcal{PF} = igcup_{n>0} \mathcal{PF}_n$$

.

Example.

$$f_1 = (7, 3, 1, 4, 2, 5, 2) \in \mathcal{PF}_7$$

 $f_2 = (7, 3, 1, 4, 2, 5, 4) \notin \mathcal{PF}_7$

Theorem 1. Let pf_n be the cardinal of \mathcal{PF}_n . We have $pf_n = (n+1)^{n-1}$.

Example (n = 1, 2, 3).

- $\bullet \ n = 1 \quad : \quad pf_1 = 1$
- n = 2 : $pf_2 = 3$ (1,1) (2,1)
- n = 3 : $pf_3 = 16$ (1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (1,3,1)(1,3,2) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,3,1) (3,1,1)

$$(3,1,2)$$
 $(3,2,1)$

Definition 2 (Primitive). A parking function $(a_1, a_2, ..., a_n)$ is said primitive if it is already in non-decreasing order.

We denote by $\mathcal{PF'}_n$ the set of primitive parking functions of length n.

$$\mathcal{PF}' = \bigcup_{n>0} \mathcal{PF'}_n$$

Example.

$$f_1 = (1, 2, 2, 3) \in \mathcal{PF'}_4$$

 $f_2 = (1, 2, 3, 2) \notin \mathcal{PF'}_4$, even though $f_2 \in \mathcal{PF}_4$

Theorem 2. Let pf'_n be the cardinal of $\mathcal{PF'}_n$. We have $pf'_n = \frac{1}{n+1} \binom{2n}{n}$, which is the n^{th} Catalan number.

Example (n = 1, 2, 3).

- n = 1 : $pf'_1 = 1$
- n = 2 : $pf'_2 = 2$ (1,1) (1,2)
- n = 3 : $pf'_3 = 5$ (1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 2) (1, 2, 3)

1.2 Non-crossing Partitions

Definition 3 (Non-crossing Partition). A non-crossing partition of a set E is a set partition $P = \{E_1, E_2, \dots, E_k\}$ such that if $a, c \in E_i$, $b, d \in E_j$, and $i \neq j$, then we do not have a < b < c < d, nor a > b > c > d.

We denote by \mathcal{NC}_n the set of non-crossing partitions of $\{1, 2, \ldots, n\}$.

$$\mathcal{NC} = \bigcup_{n>0} \mathcal{NC}_n$$

From this point, we assume that every partition $P = \{B_1, \ldots, B_l\}$ is sorted such that:

- For each block $B_i = \{b_1, \ldots, b_k\} \in P, b_1 < \ldots < b_k$
- $min(B_1) < \ldots < min(B_k)$

Notation. $[n] = \{1, 2, ..., n\}$

Example (E = [6]).

$$P_1 = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\} \in \mathcal{NC}_6$$

$$P_2 = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \notin \mathcal{NC}_6$$

Theorem 3. Let nc_n be the cardinal of \mathcal{NC}_n . We have $nc_n = \frac{1}{n+1} \binom{2n}{n}$, which is the nth Catalan number.

Example (n = 1, 2, 3).

- n = 1 : $nc_1 = 1$ {{1}}}
- n = 2 : $nc_2 = 2$
- $\{\{1,2,3\}\}$ $\{\{1\},\{2,3\}\}$ $\{\{1,3\},\{2\}\}$ $\{\{1,2\},\{3\}\}$ $\{\{1\},\{2\},\{3\}\}$

Proposition. This means we can create a bijection between $\mathcal{PF'}_n$ and \mathcal{NC}_n .

- $\mathcal{NC}_n \to \mathcal{PF'}_n$: For each block B in the non-crossing partition, take i = min(B), and $k_i = size(B)$. $k_i = 0$ if i is not the minimum of a block. The corresponding parking function is $(\underbrace{1,\ldots,1}_{k_1},\underbrace{2,\ldots,2}_{k_2},\ldots,\underbrace{n,\ldots,n}_{k_n})$.
- $\mathcal{PF'}_n \to \mathcal{NC}_n$: For each i in [n], if i appears n_i times in the parking function, B_i will be of size n_i with minimum element i. There is a unique set partition $P = \bigcup B_i$ of [n] respecting these conditions that is non-crossing.

Example (E = [6]).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\} \qquad f = (1, 1, 1, 3, 3, 6)$$

Corollary. A non-crossing partition can be represented by the minimums and sizes of its blocks.

Example. $\{\{1,2,5\},\{3,4\},\{6\}\}\$ can be represented by the following dictionnary:

- 1 : 3
- 3 : 2
- 6 : 1

A non-crossing partition of [n] can be represented graphically on a regular n-vertices polygon, with vertices labeled from 1 to n clockwise. We then represent each block $B = \{b_1, \ldots, b_k\}$ by the convex hull of $\{b_1, \ldots, b_k\}$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

Thus non-crossing meaning the hulls are disjoint.

1.2.1 The non-crossing partitions poset

Definition 4 (\succ). We say that P covers Q, written $P \succ Q$, if $\exists B_i, B_j \in P$ such that $Q = P - \{B_i, B_j\} \cup \{B_i \cup B_j\}$

Example. $\{\{1,6\},\{2,3\},\{4,5\}\} \succ \{\{1,2,3,6\},\{4,5\}\}$

- $B_i = \{1, 6\}$
- $B_j = \{2, 3\}$

Proposition. This covering relation defines the poset of non-crossing partitions of [n]. We denote by \mathcal{NCC}_n the set of maximal chains in the poset of \mathcal{NC}_n .

$$\mathcal{NCC} = \bigcup_{n>0} \mathcal{NCC}_n$$

Theorem 4. Let ncc_n be the cardinal of NC_n . We have $ncc_n = n^{n-2}$.

Example (Shape of the poset of \mathcal{NC}_4).

This figure was generated with Sagemath. There are $4^2 = 16$ different maximal chains, and $\frac{1}{5}\binom{8}{4} = \frac{70}{5} = 14$ elements in this poset.

1.2.2 Kreweras complement

Definition 5 (Associated permutation). The permutation σ associated to a non-crossing partition has a cycle (b_1, \ldots, b_k) for each block $B = \{b_1, \ldots, b_k\}$ of the partition.

Example. The permutation associated to $\{\{1, 2, 5\}, \{3, 4\}, \{6\}\}\$ is $(1\ 2\ 5)\ (3\ 4)\ (6) = 254316$.

Definition 6 (Kreweras complement). The Kreweras complement K(P) of a non-crossing partition P is defined as follows:

- Let σ be the permutation associated to P
- Let π be the permutation $(n \ n-1 \ n-2 \ \dots \ 3 \ 2 \ 1) = n123 \dots n-1$
- K(P) is the non-crossing partition associated to $\pi\sigma$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $\sigma = (1\ 2\ 5)\ (3\ 4)\ (6) = 254316$
- $\bullet \pi = (6\ 5\ 4\ 3\ 2\ 1) = 612345$
- $\pi \sigma = 143265 = (1) (2 4) (3) (5 6)$
- $K(P) = \{\{1\}, \{2,4\}, \{3\}, \{5,6\}\}$

Proposition (Kreweras minimums). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then

$$\bigcup_{1 \le i \le l} \min(B_i') = B_1 \cup \bigcup_{1 < j \le k} B_i - \max(B_i)$$

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $K(P) = \{\{1\}, \{2,4\}, \{3\}, \{5,6\}\}$
- $\bullet \ \bigcup \min(B_i') = \{1,2,3,5\}$
- $B_1 \cup \bigcup B_i max(B_i) = \{1, 2, 5\} \cup \{3, 4\} \{4\} \cup \{6\} \{6\} = \{1, 2, 5\} \cup \{3\} \cup \emptyset = \{1, 2, 3, 5\}$

Notation. $B_{[i]} = block \ containing \ i.$

Proposition (Kreweras block sizes). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then the size of the block B'_i is defined as follows:

- Let m_i be the the i^{th} minimum of K(P)
- Define a transition $\phi(e)$ as $Let \ j = e + 1 \ (or \ 1 \ if \ e = n)$ $\phi(e) = max(B_{[j]})$
- The size of B'_i is k_{min} such that $k_{min} = min\{k > 0 \mid \phi^k(m_i) \in B_{[m_i]}\}.$

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $mins = \{1, 2, 3, 5\}$
- $m_1 = 1$ $B_{[1]} = B_1$ $max(B_{[2]} = max(B_1) = 5$ The size for m_1 is 1.
- m_2 $B_{[2]} = B_1$ $max(B_{[3]}) = max(B_2) = 4$ $max(B_{[5]}) = max(B_1) = 5$ The size for m_2 is 2.
- $m_3 = 3$ $B_{[3]} = B_2$ $max(B_{[4]}) = max(B_2) = 4$ The size for m_3 is 1.

•
$$m_4 = 5$$

 $B_{[5]} = B_1$
 $max(B_{[6]}) = max(B_3) = 6$
 $max(B_{[1]}) = max(B_1) = 5$
The size for m_4 is 2.

1.3 Non-crossing 2-partitions

Definition 7 (Action of \mathfrak{S}_n). The action of \mathfrak{S}_n on a non-crossing partition $P = \{B_1, \ldots, B_l\} \in \mathcal{NC}_n$ is defined by:

- For each block $B_i = \{b_1, \dots, b_k\}$: $\sigma(Bi) = \{\sigma(b_1), \dots, \sigma(b_k)\}$
- We denote $\rho = \sigma(P) = \{\sigma(B_1), \dots, \sigma(B_l)\}$

Definition 8 (Non-crossing 2-partition). A non-crossing 2-partition of a set E is a pair (P, σ) where :

- P is a non-crossing partition of E
- ullet σ is a permutation of the elements of E
- For each sorted block $B_i = \{b_1, \ldots, b_k\} \in P$, we have $\sigma(b_i) < \ldots < \sigma(b_k)$

We denote by \mathcal{NC}_n^2 the set of non-crossing 2-partitions of [n].

$$\mathcal{NC}^2 = \bigcup_{n>0} \mathcal{NC}_n^2$$

.

Example
$$(\mathcal{NC}_6^2)$$
. $P = \{\{1,6\}, \{2,3,5\}, \{4\}\}$ $\sigma = 413265$ $\rho = \{\{1,3,6\}, \{2\}, \{4,5\}\}$

Theorem 5. Let nc_n^2 be the cardinal of \mathcal{NC}_n^2 . We have $nc_n^2 = (n+1)^{n-1}$.

$$\bullet \ n=1 \quad : \quad nc_1^2=1$$

$$\{\{1\}\} \qquad \qquad 1 \qquad \qquad \rho=P$$

Example (n = 1, 2, 3).

$$\bullet \ n = 3 : nc_3^2 = 16$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 2, 3\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 2, 3\}\} \}$$

$$\{\{1, 3\}, \{2\}\} \}$$

$$\{\{1, 2, 3\}\} \}$$

$$\{\{1, 2, 3\}\} \}$$

$$\{\{1, 2, 3\}\} \}$$

Proposition. This means we can create a bijection between \mathcal{PF}_n and \mathcal{NC}_n^2

• $\mathcal{PF}_n \to \mathcal{NC}_n^2$: Let $f = (a_1, \ldots, a_n) \in \mathcal{PF}_n$ be our parking function. For $i \in \{1, \ldots, n\}$, we define:

 l_i : the number of occurences of i in f.

$$im_i: \{j \mid a_j=i\}$$

The corresponding non-crossing partition will have the following constraints:

For each $i \in \{1, ..., n\}$, if $l_i > 0$, then there is a block $B_{[i]}$ of length l_i with minimum element i.

$$\sigma(B_{[i]}) = im_i$$

There is a unique set partition $P = \bigcup_{i} B_{[i]}$ of [n] and a unique permutation σ respecting these conditions such that $(P, \sigma) \in \mathcal{NC}_n^2$.

• $\mathcal{NC}_n^2 \to \mathcal{PF}_n$: Let (P, σ) with $P = \{B_1, \dots, B_l\}$ be our non-crossing 2-partition. For each block $B_i = \{b_1, \dots, b_k\} \in P$:

$$m_i = min(B_i) = b_1$$

 $pos_i = \sigma(B_i)$

For each $j \in pos_i$, we define $a_j = m_i$ The corresponding parking function is (a_1, \ldots, a_n) .

Example (n = 8).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6, 8\}, \{7\}\}$$

$$\sigma = 36187245$$

$$f = (3, 6, 1, 7, 6, 1, 1, 3)$$

Chapter 2

The rational case

Chapter 3

Trees