1

Assignment 6

Sujal - AI20BTECH11020

Download all latex codes from

https://github.com/https://github.com/sujal100/ Probability_and_Random_variable/blob/main /exercise_6/exercise_6_main_tex.tex

1 Problem [CSIR NET(JUNE-2017) MATHS-STATISTICS (Q-50)]

 X_1, X_2, \cdots are independent identically distributed random variables having common density f. Assume f(x) = f(-x) for all $x \in \mathbb{R}$. Which of the following statements is correct?

a)
$$\frac{1}{n}(X_1 + \dots + X_n) \to 0$$
 in probability
b) $\frac{1}{n}(X_1 + \dots + X_n) \to 0$ almost surely

c)
$$P\left(\frac{1}{\sqrt{n}}(X_1 + \dots + X_n) < 0\right) \rightarrow \frac{1}{2}$$

d) $\sum_{i=1}^{n} X_i$ has the same distribution as $\sum_{i=1}^{n} (-1)^i X_i$

2 Solution

In this question $f(x) = f(-x) \implies$ Symmetry about Zero, $x \in \mathbb{R}$.

We know that in almost surely

$$\frac{1}{n}(X_1 + \dots + X_n) \to E(X_i) < \infty, \tag{2.0.1}$$

as $n \to \infty$, according to strong law of large numbers (SLLN). So, also in probability also hold this equation.

Hence, (A) and (B) are incorrect option X_1, X_2, \dots, X_n are independent identically distribute $\sim N[0, 2]$

Consider,

$$Y = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}$$
 (2.0.2)

So,

$$E(Y) = E\left(\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}\right) = 0 \quad (2.0.3)$$

$$V(Y) = V\left(\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}\right) = \frac{1}{n}2n = 2 \quad (2.0.4)$$

$$Y \sim N[0, 2]$$
 (2.0.5)

we know that f(x) is symmetric about zero. So,

$$P(Y < 0) = \frac{1}{2} \tag{2.0.6}$$

$$P\left(\frac{1}{\sqrt{n}}(X_1 + \dots + X_n) < 0\right) = \frac{1}{2}$$
 (2.0.7)

Hence, (C) is incorrect option.

Now, for option (D) consider $\phi_x(t)$ is characteristic function of X_i , i = 1, ..., n.

$$f(x) = f(-x) \implies \phi_x(t) = \phi_{-x}(t)$$
 (2.0.8)

Therefore,

$$\phi_{\sum_{i=1}^{n} X_i}(t) = \phi_{X_1 + \dots + X_n}(t) = \phi_{X_1}(t) \cdot \phi_{X_2}(t) \cdots \phi_{X_n}(t)$$
(2.0.9)

$$= [\phi_x(t)]^n$$
 (2.0.10)

similarly,

$$\phi_{\sum_{i=1}^{n}(-1)^{i}X_{i}}(t) = \phi_{-X_{1}} + \phi_{X_{2}} + \phi_{-X_{3}} + \dots + \phi_{(-1)^{n}X_{n}}(t)$$

$$= \phi_{-X_{1}}(t) \cdot \phi_{X_{2}}(t) \cdots \phi_{(-1)^{n}X_{n}}(t)$$

$$(2.0.12)$$

$$= [\phi_x(t)]^n \tag{2.0.13}$$

$$\phi_{\sum_{i=1}^{n} X_i}(t) = \phi_{\sum_{i=1}^{n} (-1)^i X_i}(t)$$
 (2.0.14)

Therefore, $\sum_{i=1}^{n} X_i$ has same distribution as $\sum_{i=1}^{n} (-1)^i X_i$.

Hence, (D) is correct option.