

Integration von Climate Value at Risk und Geospatial Analyse zur Risikobewertung von Immobilienportfolios Uyen Truong

Masterarbeit

an der Hochschule für angewandte Wissenschaften München Fakultät für Informatik und Mathematik

Studienrichtung: Stochastic Engineering in Business and Finance

vorgelegt von Uyen Truong

München, den August 23, 2024

Erstgutachter: Prof. Dr. Silja Grawert

Abstract

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Contents

LI	st of Figures	4
Li	st of Tables	5
Qı	uellcodeverzeichnis	6
Αŀ	bkürzungsverzeichnis	7
Αŀ	bkürzungsverzeichnis	7
1	Einleitung	8
	1.1 Zitate	8
	1.2 Bilder	8
	1.3 Tabellen	8
	1.4 Quellcode	8
2	Daten und Portfolio-Vorbereitung	10
3	Theoretischer Hintergrund	11
	3.0.1 Stichprobenumfang	11
4	Schlussbetrachtung	13
Re	eferences	14

List of Figures

																		_
1	Mooresches Gesetz		•					•								•		8

List of Tables

1	Prozessoren	8
2	Verteilung des Beleihungsauslaufs im Wohnimmobilienportfolio der Münchener	
	Hypothekenbank zum 31.12.2023	11

Quellcodeverzeichnis

1	Hello World in Java	(
1		_

Abkürzungsverzeichnis

Einleitung 8

1 Einleitung

Im Folgenden wird beispielhaft gezeigt, wie Zitate, Bilder, Tabellen oder Quellcode in die Arbeit eingefügt werden können.

1.1 Zitate

Menschen, die mit ihrem IQ prahlen, sind Versager (Hawking, 1999, S. 99).

1.2 Bilder

Figure 1: Mooresches Gesetz

1.3 Tabellen

Bezeichnung	Kerne	TDP
Intel Core i5	6	111 W
AMD Ryzen 7	8	178 W

Table 1: Prozessoren

1.4 Quellcode

Einleitung 9

```
class HelloWorld {
    public static void main(String[] args) {
        // Display the string.y
        System.out.println("Hello World!");
    }
}
```

Quellcode 1: Hello World in Java

2 Daten und Portfolio-Vorbereitung

Im Rahmen dieses Kapitels wird die Methodik zur Generierung eines repräsentativen Musterportfolios erläutert, das als Grundlage für die Prognose klimabedingter Schäden dient. Trotz des umfangreichen Datenbestands der Finanzinstitute über ihre Kreditengagements hat die limitierte Zugänglichkeit zu detaillierten Datensätzen bisher umfassende empirische Analysen der Kreditrisiken eingeschränkt. Zur Überwindung dieser Limitation wird ein Musterportfolio konstruiert, das eine fundierte Approximation der erwarteten Verluste aus Wohnimmobilienkrediten ermöglicht. Die Quantifizierung essenzieller Risikoparameter basiert primär auf dem Geschäftsbericht der Münchener Hypothekenbank (Münchener Hypothekenbank eG, 2022), ergänzt durch ausdifferenzierte Datensätze zur Distribution von Energieeffizienzklassen und regionalen Verteilung von Wohneinheiten. Diese Datenaggregation bildet die Basis für eine detaillierte Analyse der Anfälligkeit verschiedener Immobilienarten und Standorte gegenüber umweltbedingten Wertänderungen, physischen Risiken sowie Transitionsrisiken.

Zum Stichtag 31.12.2023 belief sich der ausstehende Bestand an Wohnimmobilienfinanzierungen im Portfolio der Münchener Hypothekenbank in Bayern auf 8.921.489.311,00 €, wobei die durchschnittliche Größe der Darlehen für Wohnimmobilien circa 163.700,00 € betrug. Zur Ermittlung der Anzahl der Darlehen im Portfolio wird zunächst der Gesamtbestand durch die durchschnittliche Größe der Darlehen dividiert, was auf etwa 54.500 Darlehen schließen lässt. Unter Anwendung der Gleichung 1 zur Berechnung der erforderlichen Stichprobengröße für das theoretische Szenario einer unendlichen Anzahl von Immobilien im Portfolio ergibt sich bei einem Konfidenzintervall von 99% und einer Fehlermarge von 2% ein notwendiger Stichprobenumfang von 4.147 Datenpunkten. Die in Gleichung 2 präsentierte Formulierung für endliche Populationen führt jedoch zu einer Reduktion auf 3.853 Darlehen als erforderliche Stichprobengröße für Portfolios mit mehr als 54.500 Elementen.

Da die in den Geschäftsberichten ausgewiesenen Kreditbestände lediglich das Risikoexposure des Kreditinstituts reflektieren und nicht den realen Immobilienwert repräsentieren, ergibt sich die Notwendigkeit, den Property Value in Relation zum Gesamtrisikoexposure zu evaluieren. Die Münchener Hypothekenbank hat in ihrem Jahresbericht die Verteilung des Beleihungsauslaufs in tabellarischer Form offengelegt (siehe Tabelle 2). Darüber hinaus wurde ein durchschnittlicher Beleihungsauslauf von 54,1% für die Wohnimmobilienfinanzierung angegeben. Diese Informationen stellen die fundamentalen finanziellen Parameter dar, die für die Konstruktion eines repräsentativen Immobilienportfolios essenziell sind.

Table 2: Verteilung des Beleihungsauslaufs im Wohnimmobilienportfolio der Münchener Hypothekenbank zum 31.12.2023

Beleihungsauslauf	bis 60%	>60-70%	>70-80%	>80-90%	>90-100%	>100%
Prozentanteil	39,2%	15,0%	16,4%	10,2%	8,2%	11,0%

Der nächste Schritt beinhaltet die Erzeugung präziser Koordinaten für die Datenpunkte. Eine zufällige Verteilung von Punkten in Bayern würde die tatsächliche Struktur eines Kreditportfolios nicht angemessen widerspiegeln, da Immobilien sowohl in Deutschland als auch in Bayern ungleichmäßig verteilt sind. Die Studie von Zurek (2022) untersucht den Zusammenhang zwischen Bevölkerungsdichte und Kreditvergabe im deutschen Kontext. Sie unterstützt die Annahme, dass Gebiete mit stärkerem Wirtschaftswachstum - oft gekennzeichnet durch höhere Bevölkerungsdichte - zu höheren Immobilienpreisen und folglich zu einer erhöhten Kreditnachfrage neigen. Daher wird die Bevölkerungsdichte als Basis für die Zuweisung spezifischer Koordinaten zu jedem Datenpunkt verwendet.

3 Theoretischer Hintergrund

3.0.1 Stichprobenumfang

Stichprobenverfahren zielen darauf ab, die Merkmalsverteilungen der Grundgesamtheit zu schätzen. Während Schlussfolgerungen aus einer Stichprobe mit Sicherheit nur für diese selbst gelten, basiert die Verallgemeinerung auf die Grundgesamtheit auf statistischer Inferenz. Aufgrund des Ziels, eine möglichst kleine Teilmenge zu untersuchen, unterliegt die Stichprobenziehung strengen statistischen Kriterien. Zur Gewährleistung der Repräsentativität ist sowohl die Berechnung des erforderlichen Stichprobenumfangs als auch die Auswahl der geeigneten Stichprobenmethode durch sorgfältige organisatorische Evaluation unerlässlich.

Der initiale Schritt bei der Portfolioerstellung besteht in der Ermittlung des erforderlichen Umfangs, um das Bankportfolio präzise abzubilden. Die Berechnung des notwendigen Stichprobenumfangs beginnt mit der Bestimmung der theoretischen Stichprobengröße für ein Portfolio mit unendlicher Grundgesamtheit. Diese Basisberechnung ist fundamental für die anschließende Ermittlung des Stichprobenumfangs bei einer endlichen Anzahl von Immobilien.

Für die Berechnung des erforderlichen Stichprobenumfangs bei einer theoretisch unendlichen Grundgesamtheit wird die Cochran-Formel (Cochran, 1953) herangezogen. Die Cochran-Formel lautet:

$$n = \frac{Z^2 \cdot P(1 - P)}{\varepsilon^2} \tag{1}$$

Hierbei repräsentiert n den initialen Stichprobenumfang. Ein entscheidender Faktor in dieser Formel ist die Festlegung der gewünschten Sicherheit, ausgedrückt durch den Z-Wert. Die Aussagewahrscheinlichkeit einer Stichprobe gibt an, in wie vielen Fällen das angewendete Verfahren zuverlässige Ergebnisse liefert. Das Organisationshandbuch empfiehlt eine Aussagewahrscheinlichkeit von 95%, was einem Z-Wert von etwa 1,96 entspricht. Diese Wahl beeinflusst direkt die Größe der erforderlichen Stichprobe und stellt einen Kompromiss zwischen Präzision und praktischer Durchführbarkeit dar.

Die Stärke der Cochran-Formel liegt in ihrer Flexibilität und Anwendbarkeit auf verschiedene Forschungsszenarien. Sie berücksichtigt sowohl das gewünschte Konfidenzniveau als auch die erwartete Variabilität in der Population.

Für Populationen mit bekannter, endlicher Größe wird die Cochran-Formel modifiziert. Diese angepasste Formel dient als Eingabeparameter für die nachfolgende Gleichung, die den notwendigen Portfolioumfang für eine statistische Repräsentation eines Portfolios der Größe *N* berechnet:

$$n' = \frac{n}{1 + \frac{n-1}{N}} \tag{2}$$

In diesen Formeln steht Z für den z-Wert des gewählten Konfidenzintervalls, N für den Umfang der Originalpopulation, ε für die Fehlermarge, die das Ausmaß des zufälligen Stichprobenfehlers quantifiziert und ein Maß für die akzeptable Abweichung vom wahren Wert darstellt. P bezeichnet den Populationsanteil, der den Anteil der Population in einer spezifischen Kategorie angibt. In diesem Kontext wird P mit 0,5 angesetzt, da der spezifische Wert unbekannt ist und 0,5 den erforderlichen Stichprobenumfang maximiert. Diese konservative Schätzung gewährleistet, dass die Stichprobe groß genug ist, um auch bei unbekannten Populationsparametern zuverlässige Ergebnisse zu liefern.

Schlussbetrachtung 13

4 Schlussbetrachtung

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

References 14

References

Hawking, Stephen W. (1999). Eine kurze Geschichte der Zeit. Rowohlt.

Münchener Hypothekenbank eG (2022). Münchener Hyp Geschäftsbericht 2022. Tech. rep.

Zurek, Maximilian (2022). "Real estate markets and lending: does local growth fuel risk?" In: *Journal of Financial Services Research* 62.1, pp. 27–59.

Cochran, William G (1953). *Sampling Techniques*. 1st. New York: John Wiley & Sons, pp. 50–51.

References 15

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst und keine anderen Hilfsmittel als die angegebenen verwendet habe.

München, den August 23, 2024

