Lecture 12 BJT's Differential Pair

topics

- Ideal characteristics of differential amplifier
 - Input differential resistance
 - Input common-mode resistance
 - Differential voltage gain
 - CMRR
- Non-ideal characteristics of differential amplifier
 - Input offset voltage
 - Input biasing and offset current
- Differential Amplifier with active load

Differential pair

Figure 7.12 The basic BJT differential-pair configuration.

Common mode operation

Figure 7.13 Different modes of operation of the BJT differential pair: (a) The differential pair with a common-mode input signal v_{CM} .

Figure 7.13 Different modes of operation of the BJT differential pair:. (b) The differential pair with a "large" differential input signal.

(b)

Figure 7.13 (Continued) (c) The differential pair with a large differential input signal of polarity opposite to that in .

Figure 7.13 (Continued) (d) The differential pair with a small differential input signal v_i . Note that we have assumed the bias current source I to be ideal (i.e., it has an infinite output resistance) and thus I remains constant with the change in v_{CM} .

Exercise 7.7

Large signal operation

$$i_{E1} = \frac{I_S}{\alpha} e^{(v_{B1} - v_E)/V_T}$$

$$i_{E2} = \frac{I_S}{\alpha} e^{(v_{B2} - v_E)/V_T}$$

$$\frac{i_{E1}}{i_{E2}} = e^{(v_{B1} - v_{B2})/V_T}$$

$$\frac{i_{E1}}{i_{E1} + i_{E2}} = \frac{1}{1 + e^{(v_{B2} - v_{B1})/V_T}}$$

$$\frac{i_{E2}}{i_{E1} + i_{E2}} = I$$

$$i_{E1} + i_{E2} = I$$

$$i_{E1} = \frac{I}{1 + e^{-v_{id}/V_T}}$$

$$i_{E2} = \frac{I}{1 + e^{v_{id}/V_T}}$$

Figure 7.14 Transfer characteristics of the BJT differential pair of Fig. 7.12 assuming α . 1.

Figure 7.15 The transfer characteristics of the BJT differential pair (a) can be linearized (b) (i.e., the linear range of operation can be extended) by including resistances in the emitters.

large signal analysis (AC+DC)

Figure 7.16 The currents and voltages in the differential amplifier when a small differential input signal v_{id} is applied.

$$i_{C1} = \frac{\alpha I}{1 + e^{-v_{id}/V_{T}}} \cdots (1)$$

$$i_{C2} = \frac{\alpha I}{1 + e^{v_{id}/V_{T}}}$$

$$(1) \times \frac{e^{v_{id}/2V_{T}}}{e^{v_{id}/2V_{T}}} \Rightarrow i_{C1} = \frac{\alpha I e^{v_{id}/2V_{T}}}{e^{v_{id}/2V_{T}} + e^{-v_{id}/2V_{T}}}$$

$$let \qquad v_{id} << 2V_{T}$$

$$\Rightarrow i_{C1} \approx \frac{\alpha I (1 + \frac{v_{id}}{2V_{T}})}{1 + \frac{v_{id}}{2V_{T}} + 1 - \frac{v_{id}}{2V_{T}}} \qquad \text{Taylor series}$$

$$\Rightarrow i_{C1} = \frac{\alpha I}{2} + \frac{\alpha I}{2V_{T}} \frac{v_{id}}{2} = I_{C} + \frac{I_{C}}{V_{T}} \frac{v_{id}}{2}$$

$$\Rightarrow i_{C2} = \frac{\alpha I}{2} - \frac{\alpha I}{2V_{T}} \frac{v_{id}}{2} = I_{C} - \frac{I_{C}}{V_{T}} \frac{v_{id}}{2}$$

$$i_{C} = \frac{\alpha I}{2V_{T}} \frac{v_{id}}{2} = \frac{g_{m}}{2} V_{id} \qquad \text{AC}$$

$$v_{BE} \begin{vmatrix} \varrho_{1} = V_{BE} + \frac{v_{id}}{2} \\ \varrho_{2} = V_{BE} - \frac{v_{id}}{2} \end{vmatrix}$$

Small signal analysis (AC)

Figure 7.17 A simple technique for determining the signal currents in a differential amplifier excited by a differential voltage signal v_{id} ; dc quantities are not shown.

$$R_{id} = \frac{v_{id}}{i_d} = \frac{2r_e i_e}{i_e/1 + \beta} = 2(1 + \beta)r_e$$
 Input differential resistance

$$v_{C1} = -g_m R_C \frac{v_{id}}{2}$$
 $g_m = \frac{I_C}{V_T} = \frac{\alpha I_E}{V_T} = \frac{\alpha}{r_e}$
 $v_{C2} = +g_m R_C \frac{v_{id}}{2}$

$$A_d = \frac{v_{c1} - v_{c2}}{v_{id}} = -g_m R_C$$
 Differential voltage gain Microelectronic Circuits by

Meiling CHEN

Common mode

$$v_{c1} = -\alpha i_{e_1} R_C$$

$$v_{c2} = -\alpha i_{e_2} R_C$$

$$v_o = v_{c1} - v_{c2} = -\alpha R_c (i_{e_1} - i_{e_2})$$

$$\therefore i_{e_1} = i_{e_2} = 0 \Rightarrow v_o = -\alpha R_c (i_{e_1} - i_{e_2}) = o$$

if $R_{C1} \neq R_{C2} \Rightarrow v_o \neq 0$

External emitter resistance $R_{\scriptscriptstyle F}$

$$i_e = \frac{v_{id}}{2r_e + 2R_E}$$

$$i_b = \frac{i_e}{\beta + 1} = \frac{v_{id}/(2r_e + 2R_E)}{\beta + 1}$$

$$\begin{cases} R_{C2} \\ g_m v_\pi \end{cases} = \begin{cases} R_{id} = \frac{v_{id}}{i_b} = (\beta + 1)(2r_e + 2R_E) \end{cases}$$

Input differential resistance

$$v_{C1} = -g_m R_C \frac{v_{id}}{2}$$

$$v_{C2} = +g_m R_C \frac{v_{id}}{2}$$

$$g_m = \frac{I_c}{V_T} = \frac{\alpha}{r_e + R_E}$$

$$A_d = \frac{v_{c1} - v_{c2}}{v_{id}} = -g_m R_C$$

$$R_{E} \uparrow \Rightarrow R_{id} \uparrow$$

$$R_{E} \uparrow \Rightarrow A_{d} \downarrow$$

Bartlett Bisection theorem

1.
$$v_1 = v_2 \rightarrow I = 0$$

2.
$$v_1 = -v_2 \rightarrow V = 0$$

Common Mode

Differential Mode

$$v_1$$
 $\frac{1}{2}N$ \vdots

I=0 open circuit Common-mode V=0 short circuit Differential-mode

Equivalence of the differential amplifier to a CE amplifier

Figure 7.19 Equivalence of the BJT differential amplifier in (a) to the two common-emitter amplifiers in (b). This equivalence applies only for differential input signals. Either of the two common-emitter amplifiers in (b) can be used to find the differential gain, differential input resistance, frequency response, and so on, of the differential amplifier.

Figure 7.21 (a) The differential half-circuit and (b) its equivalent circuit model.

Input differential resistance

Common mode gain et CMRR (I=0→ open circuit)

Figure 7.22 (a) The differential amplifier fed by a common-mode voltage signal v_{icm} . (b) Equivalent "half-circuits" for common-mode calculations.

Common mode gain at CMRR (Asymmetric case)

$$v_{c1} = -\alpha i_e R_C$$

$$v_{c2} = -\alpha i_e (R_C + \Delta R_C)$$

$$v_o = v_{c1} - v_{c2} = -\alpha i_e \Delta R_C$$

$$v_{icm} = i_e (2R_{EE} + r_e)$$

$$A_{cm} = \frac{-\alpha \Delta R_C}{2R_{EE} + r_e} \approx \frac{\Delta R_C}{2R_{EE}} = -\frac{\alpha R_C}{2R_{EE}} \frac{\Delta R_C}{R_C}$$

$$v_{c1} = -v_{icm} \frac{\alpha R_C}{2R_{EE}}$$

$$v_{c2} \approx -v_{icm} \frac{\alpha R_C}{2R_{EE}}$$

$$v_{c2} \approx -v_{icm} \frac{\alpha R_C}{2R_{EE}}$$

$$v_{icm} \equiv \frac{v_1 + v_2}{2}$$

$$v_{id} \equiv v_1 - v_2$$

$$A_d = \frac{1}{2} g_m R_C$$

$$v_o = A_d (v_1 - v_2) + A_{cm} (\frac{v_1 + v_2}{2})$$

$$CMRR = \left| \frac{A_d}{A} \right| \approx$$

Last page

$$v_{c1} = -v_{icm} \frac{\alpha R_C}{2R_{EE} + r_e} \approx -v_{icm} \frac{\alpha R_C}{2R_{EE}}$$

$$v_{c2} \approx -v_{icm} \frac{\alpha R_C}{2R_{EE}}$$

$$A_{cm} = -\frac{\alpha R_C}{2R_{EE}}$$

$$A_d = \frac{1}{2} g_m R_C$$

$$CMRR = \left| \frac{A_d}{A_{cm}} \right| \approx g_m R_{EE}$$

Common-mode input resistance

Figure 7.23 (a) Definition of the input common-mode resistance R_{icm} . (b) The equivalent common-mode half-circuit.

$$V = i_{e} (r_{e} + 2R_{EE})$$

$$I = i_{b} = \frac{i_{e}}{1 + \beta}$$

$$2R_{icm} \approx (\beta + 1)(2R_{EE} // r_{o})$$

$$R_{icm} \approx (\beta + 1)(R_{EE} // \frac{r_{o}}{2})$$

$$I = i_{b} = \frac{i_{e}}{1 + \beta}$$

$$R_{icm} \approx (\beta + 1)(2R_{EE} // \frac{r_{o}}{2})$$

$$R_{icm} \approx r_{e}$$

$$r_{e}$$

$$r_{e}$$

$$r_{e}$$

$$r_{e}$$

$$r_{e}$$

23

Example 7.1

1. Input differential resistance

$$r_{e1} = r_{e2} = \frac{V_T}{I_E} = \frac{25mV}{0.5mA} = 50$$

$$R_{id} = 2(\beta + 1)(r_e + R_E) = 40k$$

2. Differential voltage gain

$$A_d = \frac{v_o}{v_{id}} \frac{v_{id}}{v_s} = \frac{2R_C}{2(r_e + R_E)} \frac{R_{id}}{R_s + R_{id}} = 40$$

$R_{EE} = 200 \text{ k}\Omega$ = 1 mA 3. Common-mode gain in worst case

4. Input common-mode resistance

$$r_o = \frac{V_A}{I/2} = 200k$$

$$R_{icm} \approx (\beta + 1)(R_{EE} / / \frac{r_o}{2}) = 6.7M$$

Microelectronic Circuits by Meiling CHEN

$$A_{cm} = \frac{R_C}{2R_{EE} + (r_e + R_E)} \frac{\Delta R_C}{R_C}$$

$$\Delta R_C = 0.02 R_C$$

$$A_{cm} = 5 \times 10^{-4}$$

$$CMRR = 20\log\left|\frac{A_d}{A_{cm}}\right| = 98dB_{24}$$

Differential mode

$$R_{id\frac{1}{2}} = (1+\beta)(50+150)$$

$$R_{id} = 2(1+\beta)(50+150) = 40k$$

$$A_d = \frac{v_{c1}}{v_s/2} = \frac{-\alpha i_e R_c}{R_s i_b + 0.2 i_e} = \frac{-\alpha (1+\beta) i_b 10 k}{5k i_b + 0.2k (1+\beta) i_b}$$

$$\frac{v_{c1}}{v_s} = \frac{1}{2} \frac{-\alpha (1+\beta)10k}{5k + 0.2k(1+\beta)}$$

$$\frac{v_{c1} - v_{c2}}{v_s} = 2\frac{v_{c1}}{v_s} = \frac{-\alpha(1+\beta)10k}{5k + 0.2k(1+\beta)} = 40$$

Common mode

if
$$R_{C1} = R_c + 1\% \neq R_{C2} = R_c - 1\%$$

 $v_{c1} = -\beta i_b (R_C)$
 $v_{c2} = -\beta i_b (R_C + \Delta R_C)$

$$\Delta R_C = R_C \times 0.02$$

$$v_{icm} = 5ki_b + (1+\beta)i_b (400.2k)$$

$$A_{cm} = \frac{v_{c1} - v_{c2}}{v_{icm}} = \frac{\beta(\Delta R_C)}{5k + (1 + \beta)(400.2k)}$$

$$2R_{icm} \approx (1+\beta)(400k // 200k)$$

$$R_{icm} \approx \frac{1}{2} (1 + \beta) (400k // 200k) = 6.7M$$

7-4.2 Input offset voltage

$$V_{os} \equiv \frac{V_{o}|_{v_i=0}}{A_d}$$

Solution : Add a -V_{os}

$$-V_{os} - A_d - V_{os} = V_{os}A_d + (-V_{os})A_d = 0$$

7-4.2 Input offset voltage

Case 1 : different R_C

Case 2 : different Q

let
$$R_{C1} \neq R_{C2}, Q_1 = Q_2$$

$$R_{C1} = R_C + \frac{\Delta R_C}{2}$$

$$R_{C2} = R_C - \frac{\Delta R_C}{2}$$

$$V_{C1} = V_{CC} - \left(\frac{\alpha I}{2}\right) \left(R_C + \frac{\Delta R_C}{2}\right)$$

$$V_{C2} = V_{CC} - (\frac{\alpha I}{2})(R_C - \frac{\Delta R_C}{2})$$

$$V_o = V_{C1} - V_{C2} = \frac{\alpha I}{2} \Delta R_C$$

$$V_{os} \equiv \frac{V_o}{A_d} = \frac{\frac{\alpha I}{2} \Delta R_C}{g_m R_C} = \frac{\frac{\alpha I}{2} \Delta R_C}{\frac{I_E}{V_T} R_C}$$

$$V_{os} = V_T \frac{\Delta R_C}{R_C}$$

consider $Q_1 \neq Q_2 \Rightarrow I_{S1} \neq I_{S2}$

$$I_C = I_S e^{V_{BE}/V_T}$$
 internal
$$I_{S1} = I_S + \frac{\Delta I_S}{2}$$

$$I_{S2} = I_S - \frac{\Delta I_S}{2}$$

$$V_{BE 1} = V_{BE 2}$$

$$\therefore I_{E1} = \frac{I}{2} (1 + \frac{\Delta I_S}{2I_S})$$

$$I_{E2} = \frac{I}{2} \left(1 - \frac{\Delta I_S}{2I_S} \right)$$

$$\Rightarrow V_O = \alpha \, \frac{I}{2} \frac{\Delta I_S}{I_S} R_C$$

$$\left|V_{os}\right| = V_T \left(\frac{\Delta I_S}{I_S}\right)$$

Consider Q and R_C

$$V_{os} = \sqrt{(V_T \frac{\Delta R_C}{R_C})^2 + (V_T \frac{\Delta I_S}{I_S})^2}$$

Solution: Add a -V_{os}

Input offset current

$$\begin{split} I_{B1} &= I_{B2} = \frac{I/2}{\beta + 1} \cdots symmetric \quad case \\ let \quad \beta_1 \neq \beta_2 \Rightarrow I_{B1} \neq I_{B2} \\ I_{os} &= \left| I_{B1} - I_{B2} \right| \\ let \quad \beta_1 = \beta + \frac{\Delta \beta}{2}, \beta_2 = \beta - \frac{\Delta \beta}{2} \\ \Rightarrow I_{B1} &= \frac{I_{E1}}{(1 + \beta_1)} = \frac{I}{2} \frac{1}{\beta + 1 + \Delta \beta / 2} \approx \frac{I}{2} \frac{1}{\beta + 1} (1 - \frac{\Delta \beta}{2\beta}) \\ \Rightarrow I_{B2} &= \frac{I_{E2}}{(1 + \beta_2)} = \frac{I}{2} \frac{1}{\beta + 1 - \Delta \beta / 2} \approx \frac{I}{2} \frac{1}{\beta + 1} (1 + \frac{\Delta \beta}{2\beta}) \\ I_{os} &= \frac{I}{2(\beta + 1)} (\frac{\Delta \beta}{\beta}) \\ \because I_B &= \frac{I_{B1} + I_{B2}}{2} = \frac{I}{2(\beta + 1)} \\ \Rightarrow I_{os} &= I_B (\frac{\Delta \beta}{\beta}) \end{split}$$

7-5.5 Differential amplifier with active load

Passive load R_c

Active load Q₃ Q₄

$$A_d = -g_m R_C$$

$$A_{cm\frac{1}{2}} \approx -\frac{\alpha R_C}{2R_{EE}}$$

$$CMRR \approx g_m R_{EE}$$

$$R_{id} = (1+\beta)(2r_e + 2R_E) = 2r_{\pi} + 2(1+\beta)R_E$$

$$R_{icm} \approx (1+\beta)(R_{EE}//\frac{r_0}{2})$$

$$R_o = R_C // r_0$$

$$A_d = -g_m(r_{o4} // r_{o2})$$

$$A_{cm\frac{1}{2}} \approx \frac{r_{o4}}{\beta_2 R_{EE}}$$

$$CMRR \approx g_m (r_o // r_{o4}) \frac{\beta_3 R_{EE}}{r_{o4}}$$

$$R_{id} = 2r_{\pi}$$

$$R_{icm} \approx$$

$$R_o = r_{o4} // r_{o2}$$

1. Differential gain

Improving: 2. Common-mode gain and CMRR

3. Input offset voltage

Differential amplifier with active load equivalent-circuit Differential-mode

$$R_{id} = \frac{v_{id}}{I}$$

$$\frac{v_{id}}{2} = Ir_{\pi} \Longrightarrow R_{id} = 2r_{\pi}$$

$$v_{b3} = -g_{m1}(\frac{v_{id}}{2})(r_{e3} // r_{o3} // r_{o1} // r_{\pi 4}) \approx -g_{m1}r_{e3}(\frac{v_{id}}{2})$$

$$v_{b4} = v_{b3} \Rightarrow g_{m4}v_{b4} = -g_{m4}g_{m1}r_{e3}(\frac{v_{id}}{2})$$

$$i_o = g_{m2}(\frac{v_{id}}{2}) - g_{m4}v_{b4}$$

$$\therefore i_o = g_{m2}(\frac{v_{id}}{2}) + g_{m4}g_{m1}r_{e3}\frac{v_{id}}{2}$$

$$g_{m1} = g_{m2} = g_{m4} = g_m$$

$$g_m \approx \frac{I/2}{V_T}$$

$$r_{e3} = \alpha_3 / g_{m3} \approx 1 / g_m$$

$$\Rightarrow G_M = \frac{i_o}{v_{id}} = g_m$$

$$v_o = (-g_m v_{\pi 4} - g_m v_{\pi 2})(r_{04} // r_{o2})$$

$$v_o = [-g_m v_{\pi 4} - g_m (-\frac{v_{id}}{2})](r_{04} // r_{o2})$$

$$v_{\pi 4} = -g_m v_{\pi 1} (r_{01} // r_{e3} // r_{o3} // r_{\pi 4}) \approx -g_m \frac{v_{id}}{2} r_{e3}$$

$$v_o = g_m(\frac{v_{id}}{2})(r_{04} // r_{o2})[g_m(r_{01} // r_{e3} // r_{o3} // r_{\pi 4}) + 1]$$

$$v_o \approx g_m (\frac{v_{id}}{2}) (r_{04} // r_{o2}) [g_m r_{e3} + 1]$$

$$A_d = \frac{v_o}{v_{id}} \approx g_m (\frac{1}{2}) (r_{04} // r_{o2}) [g_m r_{e3} + 1]$$

$$A_d = \frac{v_o}{v_{id}} = g_m(r_{04} // r_{o2})$$

Since four transistors have the same parameters

$$i = \frac{v_x}{R_{o2}} = \frac{v_x}{2r_{o2}}$$

$$i_x = 2i + \frac{v_x}{r_{o4}} = \frac{v_x}{r_{o2}} + \frac{v_x}{r_{o4}}$$

$$\Rightarrow R_o \equiv \frac{v_x}{i_x} = r_{o2} // r_{o4}$$

$$A_d \equiv \frac{v_o}{v_{id}} = G_M R_o = g_m (r_{o2} // r_{o4})$$

$$\therefore r_{o2} = r_{o4} = r_o$$

$$A_d \equiv g_m \frac{r_o}{2}$$

$$R_{id} = 2r_{\pi}$$

Common-mode gain at CMRR

Differential amplifier with active load equivalent-circuit Common-mode

$$i_{1} \approx i_{2} \approx \frac{v_{icm}}{2R_{EE}}$$

$$v_{b3} = -i_{1} \left(\frac{1}{g_{m3}} // r_{\pi 3} // r_{o3} // r_{\pi 4}\right)$$

$$i_{c4} = g_{m4} v_{b3}$$

$$v_{o} = (-g_{m4} v_{b3} - i_{2}) r_{o4}$$

$$v_o = (-g_{m4}v_{b3} - i_2)r_{o4}$$

$$A_{cm} \equiv \frac{v_o}{v_{icm}} = \frac{r_{o4}}{2R_{EE}} \left[g_{m4} \left(\frac{1}{g_{m3}} // r_{\pi 3} // r_{o3} // r_{\pi 4} \right) - 1 \right]$$

$$= -\frac{r_{o4}}{2R_{EE}} \frac{\frac{1}{r_{\pi 3}} + \frac{1}{r_{\pi 4}} + \frac{1}{r_{o3}}}{g_{m3} + \frac{1}{r_{\pi 3}} + \frac{1}{r_{\pi 4}} + \frac{1}{r_{o3}}}$$

let
$$g_{m3} = g_{m4}, r_{\pi 3} = r_{\pi 4}, r_{o3} >> r_{\pi 3}, r_{o3} >> r_{\pi 4}$$

$$A_{cm} \equiv \frac{v_o}{v_{icm}} = -\frac{r_{o4}}{2R_{EE}} \frac{r_{\pi 3}}{g_{m3} + \frac{1}{r_{\pi 3}}} \approx -\frac{r_{o4}}{2R_{EE}} \frac{2}{\beta_3} = --\frac{r_{o4}}{\beta_3 R_{EE}} + \frac{1}{v_{\pi}} < r_{o4} < r_{o4}$$

$$CMRR \equiv \frac{|A_d|}{|A_{cm}|} = g_m (r_{o2} // r_{o4}) (\frac{\beta_3 R_{EE}}{r_{o4}})$$

when
$$r_{o2} = r_{o4} = r_o$$

$$CMRR = \frac{1}{2} \beta_3 g_m R_{EE}$$

Input offset voltage

$$\frac{I_4}{I_3} = \frac{1}{1+2/\beta_P} \cdots \beta_P \equiv \beta_3 = \beta_4$$

$$I_4 = \frac{\alpha I/2}{1+2/\beta_P}$$

$$\Delta i = \frac{\alpha I}{2} - \frac{\alpha I/2}{1+2/\beta_P} = \frac{\alpha I}{2} \frac{2/\beta_P}{1+2/\beta_P} \approx \frac{\alpha I}{\beta_P}$$

$$V_{os} = -\frac{\Delta i}{G_W} = -\frac{\alpha I/\beta_P}{\alpha I/2V_T} = -\frac{2V_T}{\beta_P}$$

Exercise 7-13

