Leandro Lopez CSC 6013 WEEK 5 WORKSHEET

BACK SUBSTITUTION

1)
$$T(n) = 2T(n-1) + 1$$
, $T(0) = 1$
 $T(1) = 2T(0) + 1 = 2(1) + 1 = 3$
 $T(2) = 2T(1) + 1 = 2(3) + 1 = 7$
 $T(3) = 2T(2) + 1 = 2(7) + 1 = 15$
 $T(4) = 2T(3) + 1 = 2(15) + 1 = 31$

$$T(n) = (2(n+1)) - 1$$
 $T(1) = 2(1+1) - 1 = 3$

DOMINANT TERM

 $T(n) = 2(n+1) - 1 = 1$
 $T(n) = 2(n+1) - 1 = 1$

PATTERN

$$T(1) = 2T(0) + 1) = 3$$

$$T(2) = 2T(1) + 1 = 2(2T(0) + 1) + 1 = 2^{2T(0)} + 2' + 1 = 2^{2} + 2 + 1 = 7$$

 $T(3) = 2T(2) + 1 = 2(2^{2T(0)} + 2' + 1) + 1 = 2^{3T(0)} + 2^{2} + 2' + 1 = 2^{3} + 2^{2} + 2 + 1 = 3$

2)
$$T(n)=T(n-2)+n^2$$
, $T(0)=1$
 $T(2)=T(0)+2^2=1+4=5$
 $T(4)=T(2)+4^2=5+16=21$
 $T(6)=T(4)+6^2=21+36=57$

$$T(2k) = 1 + 2^{2} + 4^{2} + 6^{2} ... + (2k-2)^{2}$$

$$T(2k) = 1 + (2k-2(k-1)^{2} + (2k-2(k-2)^{2} + ...(2k-2)^{2} + (2k)^{2}$$

$$T(2k) \le 1 + (2k)^{2}$$

$$T(n) \le 1 + n^{2} = O(n^{2})$$

3)
$$T(n) = T(n-1) + \frac{1}{n}$$
, $T(1) = 1$
 $T(2) = T(2-1) + \frac{1}{2} = T(1) + \frac{1}{3} = 1.5$
 $T(n) = T(n-1) + \frac{1}{n}$
 $T(n) = (T(n-2) + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$
 $T(n) = (T(n-3) + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$

$$H(n) = 1 + 1/2 + 1/3 + ... /n$$
 $H(n) \approx \ln(n) + \chi$
 $T(n) = T(1) + H(n-1) \approx 1 + \ln(n-1) + \chi$
 $T(n) \approx \ln(n) + \ell$ (c is a constant, like χ)

 $T(n) \approx O(\ln(n))$

4)
$$T(n) = 2\tau(\frac{n}{4}) + 1$$
, $T(0) = 1$
 $n = 2$ $n = 4$, $f(n) = 1 = n^{2}$ of $d = 0$
 $n = 3$ $b(n) = n = 1$ $agg(2) = n^{2}$

5)
$$T(n) = ZT(\frac{a}{4}) + \sqrt{n}$$
, $T(0) = 1$
 $T(n) = 2T(\frac{a}{4}) + \sqrt{n}$
 $a = 2$, $b = 4$, $f(n) = \sqrt{n}$
 $f(n) = n^{0.5}$

6)
$$T(n) = ZT(\frac{n}{4}) + n^2$$
, $T(0) = 1$
 $a = 2$, $b = 4$, $f(n) = n^2$
 $f(n) = n^2 = n \cdot 84(2) = 4$
 $n \cdot 84(2) \approx n \cdot 8$

7)
$$T(n) = 10T(\frac{1}{3}) + n^{2}$$
, $T(0) = 1$
 $a = 10$, $b = 3$, $f(n) = n^{2}$
 $f(n) = n^{2} = n^{\log 3(10)}$
 $f(n) = \frac{10}{3} \cdot \frac{3}{10} \cdot \frac{10}{2} \cdot \frac{10}{10} \cdot \frac{10}{10}$

$$T(n) = \Theta(n^{1} \circ 3^{\circ} (n) \cdot \log n = \Theta(n^{2} \cdot 1^{\circ} \cdot \log n)$$

 $T(n) = 10T(n/3) + n^{2}$ is $T(n) = \Theta(n^{2} \cdot 1^{\circ} \cdot \log n)$
 $T(n) = \Theta(n^{2} \cdot 1^{\circ} \log (n))$

$$T(n) = aT(n/b) + f(n)$$

if $a < b^d$ then $T(n) = O(n^d)$
if $a = b^d$ then $T(n) = O(n^d \cdot lg(n))$
if $a > b$ then $T(n) = O(n^d \cdot lg(n))$

$$T(n) = \Theta(f(n)) = \Theta(J(n))$$

 $\left[T(n) = 2T(n/4) + J(n) + J(n) = \Theta(J(n))\right]$

$$T(n) = \Theta(f(n)) = \Theta(n^2)$$

(8) $T(n) = 2T(\frac{2n}{3} + 1, T(0) = 1$
 $T(n) = 2T(\frac{2n}{3/2}) + 1, T(0) = 1$

$$a=2$$
, $b=3/2$, $f(a)=100=1$
 $\log b(a)=\log(\frac{3}{2})2=1.71$
 $\log b(a)=0.71$