RECURSOS DE PROGRAMACIÓN - HOJA DE ACTIVIDADES 8

HACER UN THEREMIN

CON FL SENSOR DE DISTANCIA

#R1AS08

un

- 1 placa de programación "STM32 loT Node Board"
- Cable USB Micro-B
- 1 zumbador piezoeléctrico o un altavoz
- 1 placa de pruebas
- Cables de puente

OBJETIVOS DE APRENDIZAJE

- Utilizar distancia un sensor de comprender su funcionamiento
- Hacer música con un instrumento realmente extraño
- Utiliza la función map para transformar un número de un rango a otro

Cofinanciado por el programa Erasmus+ de la Unión Europea

HACER UN THEREMÍN CON EL SENSOR DE DISTANCIA

El theremín es un <u>instrumento musical electrónico</u> controlado sin contacto físico por el/la thereminista (intérprete del theremín). Lleva el nombre de su inventor, <u>Leon Theremin</u>, que patentó el dispositivo en 1928. La sección de control del instrumento suele consistir en dos <u>antenas</u> metálicas que detectan la posición relativa de las manos del thereminista y controlan <u>los osciladores</u> de <u>frecuencia</u> con una mano y de <u>amplitud (volumen)</u> con la otra. Las <u>señales eléctricas del theremín</u> se <u>amplifican</u> y se envían a un altavoz.

Nuestra versión será más sencilla, sólo controlaremos el tono del sonido, con el sensor de distancia, el volumen estará predeterminado. ¡Vamos a hacer música! Fuente: https://en.wikipedia.org/wiki/Theremin, https://youtu.be/x0NVb25p1oU

HAZLO

Cableado del zumbador/altavoz

En teoría, un zumbador o un altavoz no está polarizado (significa que no hay "+" ni "-"), pero a menudo tiene un par de cables negro/rojo o signos ("+" y/o "-") en el dispositivo. Si se encuentra en esta configuración, conecta el cable del lado "+" del zumbador a **D3** y el otro a **GND**.

Si no hay color o indicación, basta con conectar un cable en **D3** y el otro en **GND**.

Conecta la placa al ordenador

Con tu cable USB, conecta la placa a tu ordenador utilizando el conector **micro-USB ST-LINK** (en la esquina derecha de la placa). Si todo va bien deberías ver una nueva unidad en tu ordenador llamada **DIS_L4IOT**. Esta unidad se utiliza para programar la placa simplemente copiando un archivo binario.

Abre MakeCode

Ve al editor de **Let's STEAM MakeCode**. En la página de inicio, crea un nuevo proyecto haciendo clic en el botón "Nuevo proyecto". Dale un nombre a tu proyecto más expresivo que "Sin título" e inicia tu editor. *Fuente: makecode.lets-steam.eu*

Programa tu placa

Dentro del Editor de Javascript de MakeCode, copia/pega el código disponible en la sección "Prográmalo" de abajo. Si no lo has hecho ya, da un nombre a tu proyecto y haz clic en el botón "Descargar". Copia el archivo binario en la unidad DIS_L4IOT, espera a que la placa termine de parpadear y su programa estará listo.

Ejecuta, modifica, juega

Tu programa se ejecutará automáticamente cada vez que lo guardes o reinicies tu placa (pulsa el botón etiquetado como RESET). Intenta entender el ejemplo y empieza a modificarlo.

Cableado del zumbador/altavoz

HACER UN THEREMÍN CON EL SENSOR DE DISTANCIA

PROGRÁMALO

```
</br>
```

```
let distance = 0
forever(function () {
    // Obtener la distancia
    distance = input.distance(DistanceUnit.Millimeter)

if (distance > 500) {
    // Convertir la distancia en frecuencia
    let note = Math.map(distance, 0, 500, 440, 830)
    music.ringTone(note)
} else {
    music.stopAllSounds()
}
})
```

Variables

En este programa, hay 2 variables. La primera, la distancia - distance - se utiliza para mantener la misma distancia a través de la condición y para el tono de jugar. A continuación, se encuentra la nota - note - que no es técnicamente necesaria/obligatoria, pero ayuda a introducir una mayor comprensión de cada paso del programa. Contiene la transformación de la distancia en frecuencia del tono.

Mide distancia

Utilizar una variable para mantener la distancia es genial, pero saber cómo conseguir la distancia es mejor. Una vez más, no hay ninguna dificultad. Tenemos que llamar a la función input.distance(DistanceUnit.Millimeter). El parámetro DistanceUnit.Millimeter especifica a la función que queremos el resultado en milímetros (1 metro = 1.000 milímetros).

Condición

La condición, if (distance > 500) { , da la información de que sólo reproducimos un sonido si la distancia medida es inferior o igual a 500 milímetros.

Convertir la distancia en frecuencia

La parte más importante es la **conversión**. Para hacerla, utilizamos una función matemática llamada map. Esta función reasigna un valor de un rango a otro. En este caso, el valor se reasigna del rango de **distancia** al **rango de frecuencia**. Como puedes ver en el código anterior, esta función toma cinco parámetros, a saber: map(valor, in_min, in_max, out_min, out_max). Veamos con más detalle cada uno de ellos:

- valor: el valor a reasignar
- in_min: el valor mínimo del rango de entrada (distancia)
- in_max : el valor máximo del rango de entrada (distancia)
- out_min : el valor mínimo del rango de salida (frecuencia)
- out_max: el valor máximo del rango de salida (frecuencia)

Por lo tanto, podemos entender lo que hace esta línea, es decir, reasignar la distancia (con un rango de 0 mm a 500 mm) a la frecuencia (con un rango de 440 Hz a 830 Hz).

Las frecuencias elegidas no son aleatorias, el rango de frecuencia de 440Hz a 830Hz representa una octava. Esto significa que puedes encontrar todas las notas: LA, SI, DO, RE, MI, FA, SOL

Ahora tenemos una frecuencia. Es el momento de reproducirla, simplemente utilizando el music.ringTone(note).

HACER UN THEREMÍN CON EL SENSOR DE DISTANCIA

MEJÓRALO

Cambia el valor del mapa para añadir octavas y/o distancia para mejorar tu canción.

Intenta añadir un **potenciómetro** para controlar el volumen.

¿QUIERES IR MÁS ALLÁ?

<u>https://www.instructables.com/LED-Ring-Distance-Sensor/</u>

- Detector de nivel de agua Descubre los sensores ultrasónicos que convierten la energía eléctrica en ondas acústicas. https://www.instructables.com/Water-Level-Detector-2/
- Comedero para gatos Utiliza un sensor ultrasónico para construir un comedero automático para gatos. https://www.instructables.com/Cat-Feeder/

Fichas de actividades enlazadas

