EXERCISE 4B: STATISTICAL DERIVATION OF THE IDEAL GAS LAW

Objectives:

- Derive the ideal gas law from first principles (quantum and statistical mechanics)
- Calculate the **energy** and **entropy** of an ideal gas

Reading: Kittel & Kroemer, Ch. 3

Useful past results:

- $dF = -pdV \sigma d\tau$
- $F = -\tau \ln Z$
- 1. Partition function of an ideal gas. Consider a gas of N non-interacting particles in a cubic box of volume $V = L^3$. Recall that the energy eigenstates of a single particle in a three-dimensional box are given by

$$\varepsilon(n_x, n_y, n_z) = \frac{\pi^2 \hbar^2}{2mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right). \tag{1}$$

- a. Let z_1 denote the partition function of a single particle in a one-dimensional box of length L (which we will calculate below). Find an expression for the partition function of N particles in a box of dimensions $L \times L \times L$ in terms of z_1 ...
 - i. . . . assuming that the particles are distinguishable.

ii. ... assuming that the particles are indistinguishable.

b. Write out the partition function z_1 for a single particle in a 1D box and simplify it by approximating the sum as an integral.

c. The partition function z_1 can be expressed as $z_1 = L/\lambda_{\tau}$, where λ_{τ} is a temperature-dependent length-scale. What is the value of λ_{τ} ? Can you give a physical interpretation for λ_{τ} ?

d. Based on parts a.-c., write down the full partition function for the gas of N indistinguishable, non-interacting particles in terms of L, λ_{τ} , and N.

- 2. Quantum mechanical derivation of the ideal gas law.
 - a. Calculate the Helmholtz free energy F of the ideal gas of $N\gg 1$ particles in a three-dimensional box of volume V.

b. Calculate the pressure p(N, T, V).

c. While we are at it, let's also calculate the energy E of the ideal gas from the partition function Z.

- 3. Entropy of the ideal gas.
 - a. Express the entropy of a generic system at known particle number N, temperature τ , and volume V as a derivative of the Helmholtz free energy $F(N, \tau, V)$.

b. Calculate the entropy of a gas of N non-interacting identical particles. (You already wrote down the Helmholtz free energy F in problem 2.)

Express your results in terms of N, V, and the **thermal de Broglie wavelength**

$$\lambda_{\tau} = \frac{h}{\sqrt{2\pi m\tau}}. (2)$$

c.	Your	result	from	3.b.	is	$_{ m the}$	Sac	cku	r-'.	Гetrode	equati	on	for	the	entr	opy	of a
	mona	tomic	ideal	gas.	Su	bject	it	to	a	sanity	check:	do	es it	t vio	late	any	laws
	of the	ermody	nic ideal gas. Subject it to a sanity check: does it violate any laws odynamics? Explain.														

d. In what parameter regime must the Sackur-Tetrode equation (3.b.) break down? Why does it break down?

e. In summary: what conditions must be satisfied for a gas to be considered ideal?

- f. Estimate the thermal de Broglie wavelength for...
 - i. ...nitrogen gas (28 amu) at room temperature. Compare your result with the typical intermolecular spacing at 1 atmosphere of pressure.

ii. ... atomic sodium (23 amu) at a temperature of 100 nK.

iii. ... an electron at room temperature. Compare your result with the lattice constant of a typical metal.