1. Система №10

$$(1+a*p)x = (1+b*p^2)*y$$

2. Передаточная функция

$$W(s) = \frac{1 + a * s}{1 + b * s^2}$$

3. Проверка критериев Гурвица и Рауса для незамкнутой и замкнутой систем.

Гурвиц незамкнутая система Характеристическое уравнение

$$bs^{2} + 1 = 0$$

$$a_{0} = b, a_{1} = 0, a_{2} = 1$$

$$\begin{pmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ b & 1 \end{pmatrix}$$

$$\Delta_{1} = a_{1} = 0$$

$$\Delta_{2} = \begin{vmatrix} 0 & 0 \\ b & 1 \end{vmatrix} = 0$$

 Γ лавные миноры матрицы неположительные \longrightarrow система неустойчивая

Раус незамкнутая система

$$\begin{pmatrix} b & 1 \\ 0 & 0 \\ c_{31} \end{pmatrix}$$

$$c_{31} = c_{12} - c_{22} \frac{c_{11}}{c_{21}} = 1 - 0 \frac{b}{0} = !!!!$$

Коэффициент $c_{12}=0,\,c_{31}$ не определен—— система неустойчивая

Замкнутая система. Получим передаточную функцию.

Добавим отрицательную обратную связь.

$$y(t) = W(s)[x(t) - R(s)y(t)]$$

$$y(t)[1+W(s)R(s)]=W(s)x(t)$$

$$y(t) = \frac{W(s)}{1 + W(s)R(s)}x(t)$$

R(s)- функция обратной связи. Допустим, что R(s)=1. Тогда

$$W(s) = \frac{\frac{as+1}{bs^2+1}}{1 + \frac{as+1}{bs^2+1}} = \frac{as+1}{bs^2 + as + 2}$$

Гурвиц замкнутая система с обратной связью Характеристическое уравнение

$$bs^{2} + as + 2 = 0$$

$$a_{0} = b, a_{1} = a, a_{2} = 2$$

$$\begin{pmatrix} a & 0 \\ b & 2 \end{pmatrix}$$

$$\Delta_{1} = a$$

$$\Delta_{2} = \begin{vmatrix} a & 0 \\ b & 2 \end{vmatrix} = 2a$$

Если a>0, то система устойчива. Раус замкнутая система с обратной связью

$$\begin{pmatrix} b & 2 \\ a & 0 \\ c_{31} \end{pmatrix}$$

$$c_{31} = 2 - \frac{b}{a}0 = 2$$

Если $a>0,\,b>0,$ то система устойчива.

4. Оценим, как меняются полюсы при изменении b

b<0: система заведомо неустойчива, так как коэффициенты характеристического уравнения имеют разные знаки. Корнями будут вещественные числа разных знаков, по модулю равные

$$\frac{1}{\sqrt{b}}$$

Нахождение корней справа от мнимой оси еще раз доказывает, что система неустойчива.

b>0: система не будет устойчивой, так как коэффициенты характеристического уравнения имеют положительные знаки, либо равны 0 (при s). Корнями будут чисто мнимые числа разных знаков. Все корни находятся на мнимой оси, значит система находится на границе устойчивости. Свободный член уравнения не равен 0, значит система колебательная.

5. Реакция системы, если подать конечный сигнал

При b>0 незамкнутая система находится на колебательной границе устойчивости. Реакция на ступеньку также имеет вид колебаний.

При b < 0 незамкнутая система не устойчива. Реакция на ступеньку стремится к бесконечности.

При b>0 замкнутая система становится устойчивой. Реакция на ступеньку становится апериодической и стремится к константе на бесконечности.

При ${\bf b}<0$ замкнутая система остается неустойчивой. Реакция на ступеньку стремится к бесконечности.

6. АЧХ и ФЧХ

АЧХ и ФЧХ системы имеют смысл, если мы еще ничего не знаем об устойчивости.

7. АЧХ и ФЧХ замкнутых систем

АЧХ и ФЧХ замкнутой системы изменились, стали гладкими.

АЧХ замкнутой и незамкнутой неустойчивых систем имеют одинаковую форму, но сдвинуты относительно вертикальной оси. ФЧХ замкнутой и незамкнутой системы похожи формой, однако в замкнутой системе появились "искривления".