Cmput 466/551

Linear Classifiers

Covering chapters (HTF): Ch 4

R Greiner
Department of Computing Science
University of Alberta

Outline

- Framework
- Exact
 - Minimize Mistakes (Perceptron Training)
- LMS
 - Minimize L₂ error
- Logistic Regression
 - Max Likelihood Estimation (MLE) of P(y | x)
 - Gradient descent (MSE; MLE)
 - Newton-Raphson
- Linear Discriminant Analysis
 - Max Likelihood Estimation (MLE) of P(y, x)
 - Direct Computation
 - Fisher's Linear Discriminant
- Support Vector Machine

Classification vs. Regression

- Same: "Learn a function from labeled examples"
- Different: Domain of label: small set $\{Y, N, ...\}$ vs \mathcal{R}
- Regression
 - "Fit the data"

- Classification
 - "Separate the data"

- Why make the distinction?
 - Historically, they have been studied separately
 - The type of label can determine whether an algorithm will work or not ... sometimes

Diagnosing Butterfly-itis

Classifier: Decision Boundaries

Classifier: partitions input space X into

"decision regions"

- Linear threshold unit has a linear decision boundary
- Defn: Set of points that can be separated by linear decision boundary is "linearly separable"

Linear Separators

Draw "separating line"

- If #antennae ≤ 2, then butterfly-itis
- So ? is Not butterfly-itis.

Can be "angled"...

■ If 2.3 × #wings – 7.5 × #antennae + 1.2 > 0 then butterfly-itis

Discriminant Functions

For Regression: θ For classification: \mathbf{w}

- $y(x) = y_w(x) = x^T w + w_0$
- Assign \mathbf{x} to \mathbf{C}_1 if $\mathbf{y}(\mathbf{x}) > 0$
 - ... otherwise to class C₂ otherwise
- Decision boundary: y(x) = 0
- If x_A and x_B lie on decision surface:

$$y(x_A) = y(x_B) = 0$$

$$\Rightarrow \mathbf{w}^{\mathsf{T}}(\mathbf{x}_{\mathsf{A}} - \mathbf{x}_{\mathsf{B}}) = 0$$

 \Rightarrow w is orthogonal to the decision surface

 \Rightarrow w₀ determines the location of the decision surface

Geometric View

Consider 3 training examples:

```
([1.0, 1.0]; 1)
([0.5, 3.0]; 1)
([2.0, 2.0]; 0)
```

Want classifier that looks like...

Linear Separators, in General

Given data (many features)

F ₁	F ₂	 F _n	Class
35	95	 3	No
22	80	 -2	Yes
:	÷	÷	:
10	50	 1.9	No

find "weights" { w₁, w₂, ..., w_n, w₀ } such that

$$|V_1 \times F_1 + \dots + |V_n \times F_n| + |V_0| > 0$$

means

Linear Separator

Linear Separator

- Performance
 - Given {w_i}, and values for instance, compute response
- Learning
 - Given labeled data, find "correct" {w_i}
- Linear Threshold Unit ... "Perceptron"

Linear Threshold Unit: "Perceptron"

$$o_{\mathbf{w}}(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

= sign($(w_0, w_1, \dots, w_n) \cdot (1, x_1, \dots, x_n)$)

Squashing function:

sign:
$$\Re \rightarrow \{-1, +1\}$$

sign(r) =
$$\begin{cases} 1 & \text{if } r > 0 \\ 0 & \text{otherwise} \end{cases}$$
("Heaviside")

Actually w^T x > b but...
 Create extra input x₀ fixed at 1
 Corresponding w₀ corresponds to -b

Task

Input: labeled data

Transformed to

■ Output: $\mathbf{w} \in \mathfrak{R}^{r+1}$

Goal: Want w s.t.

$$\forall i \text{ sign}(\mathbf{w}^T[1, \mathbf{x}^{(i)}]) = y^{(i)}$$

... minimize mistakes wrt data ... or ...

General Features

Just like Linear Regression

observed responses

Learning Perceptrons

Can represent Linearly-Separated surface
 ... any hyper-plane between two half-spaces...

Remarkable learning algorithm: [Rosenblatt 1960]

If function f can be represented by perceptron, then \exists learning alg guaranteed to quickly converge to f!

- ⇒ enormous popularity, early / mid 60's
- But some simple functions cannot be represented ... killed the field temporarily!

Error Function

<u>Jump</u>

Given data $\{[x^{(i)}, y^{(i)}]\}_{i=1..m}$, optimize...

1. Classification error
 Perceptron Training

- $err_{Class}(w) = \frac{1}{m} \sum_{i=1}^{m} I[y^{(i)} \neq sign(w^{T} x^{(i)})]$
- 2. Mean-squared error (LMS)
 Matrix Inversion; LMS Gradient Descent

$$err_{MSE}(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [y^{(i)} - w^T x^{(i)}]^2$$

3. (Log) Conditional Probability (LR)
 MSE Gradient Descent; LCL Gradient Descent

$$LCL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_{w}(y^{(i)} | x^{(i)})$$

4. (Log) Joint Probability (LDA; FDA)
 Direct Computation

$$LL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)}, x^{(i)})$$

5. Hinge Loss (SVM)

$$HL(w) = \frac{1}{m} \sum_{i} \lambda_{i} (y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)} - 1)_{+} + \dots$$

#1: Optimal Classification Error

For each labeled instance [x, y]

$$Err = y - sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

y = f(x) is target value

sign(w^T x) is perceptron output

- **Idea**: Move weights in appropriate direction, to push $\text{Err} \rightarrow 0$
- If Err > 0 (error on POSITIVE example)
 - need to increase sign(w^T x)
 - \Rightarrow need to increase $\mathbf{w}^{\mathsf{T}} \mathbf{x}$
 - Input j, x_i, contributes w_i · x_i to w^T x
 - if $x_i > 0$, increasing w_i will increase $\mathbf{w}^T \mathbf{x}$
 - if $x_i < 0$, decreasing w_i will increase $\mathbf{w}^T \mathbf{x}$

$$\Rightarrow W_j \leftarrow W_j + X_j$$

If Err < 0 (error on NEGATIVE example)</p>

$$\Rightarrow W_i \leftarrow W_i - X_i$$

$$\Rightarrow$$
 W_i \leftarrow W_i $-$ X_i If Err \neq 0 \Rightarrow W \leftarrow W + y X

#1a: Mistake Bound Perceptron Alg

Initialize $\mathbf{w} = 0$

Do until no-mistakes:

Predict $\begin{cases} + & \text{if } \mathbf{w} \cdot \mathbf{x} > 0 \\ - & \text{otherwise} \end{cases}$

Mistake on y = +1: $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}$

Mistake on y = -1: $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}$

Orig Data $\langle \langle x_1 \ x_2 \rangle \ c(x) \rangle$ 0 0 + 1 0 - 1 1 +

Data + " $x_0 = 1$ " $\langle \langle x_0 | x_1 | x_2 \rangle | c(x) \rangle$ i_1 : 1 0 0 + i_2 : 1 1 0 - i_3 : 1 1 1 +

Note: w = 2*i1 + -3*i2 + 2*i3

Weights	Instance	Action
[0 0 0]	i_1	+X
[1 0 0]	i_2^{\prime}	-X
[0 -1 0]	i_3	+X
[1 0 1]	i_1	OK
[1 0 1]	i_2	-X
[0 -1 1]	i_3	+X
[1 0 2]	i_1	OK
[1 0 2]	i_2	-X
[0 -1 2]	i_3	OK
[1 -1 2]	i_1	+X
[1 -1 2]	i_2	OK
[1 -1 2]	i_3	OK
[1 -1 2]	i_1^{\prime}	OK

Mistake Bound Theorem

Theorem: [Rosenblatt 1960]

If data is consistent w/some linear threshold \mathbf{w} , then number of mistakes is $\leq (1/\Delta)^2$,

where
$$\Delta = \min_{x} \frac{|w^T x|}{|w| \times |x|}$$

- △ measures "wiggle room" available:
 - If $|\mathbf{x}| = 1$, then Δ is max, over all consistent planes, of minimum distance of example to that plane
- w is \bot to separator, as $\mathbf{w}^{\mathsf{T}} \mathbf{x} = \mathbf{0}$ at boundary
- So | w^T x | is projection of x onto plane,
 PERPENDICULAR to boundary line
 - ... ie, is distance from **x** to that line (once normalized)

Proof of Convergence

For simplicity:

- 1. Use $x_0 = 1$, so target plane goes thru 0
- 2. Assume target plane does not hit any instances
- 3. Replace each negatively-labeled instance $[[x_0, x_1, ..., x_n], -1]$ with positively labeled instance: $[[-x_0, -x_1, ..., -x_n], +1]$
- 4. Normalize all examples to have length 1
- At each time, let w be current hypothesis plane
- Example \mathbf{x} is a "mistake" wrt \mathbf{w} iff $\mathbf{w}^{\mathsf{T}}\mathbf{x} < 0$
- On each mistake, add x to w
- Let w* be unit vector representing target plane

$$\Delta = \min_{\mathbf{x}} \{ \mathbf{w}^{* \top} \mathbf{x} \}$$

Consider:

$$\frac{\mathbf{w}^T \ \mathbf{w}^*}{|\mathbf{w}| \ |\mathbf{w}^*|}$$

$$=\frac{\mathbf{w}^{\mathrm{T}} \mathbf{w}^{*}}{|\mathbf{w}|}$$
 as \mathbf{w}^{*} is *unit* vector

Proof (con't)

$$1 \geq \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}^{*}}{|\mathbf{w}| |\mathbf{w}^{*}|} \geq \frac{m \Delta}{\sqrt{m}}$$

- If x is mistake ...
 - Numerator increases by $\mathbf{x}^{\mathrm{T}}\mathbf{w}^* \geq \Delta$
 - (denominator)² becomes
 (w+x)² = w² + x² + 2(w^T x) < w² + 1
 as w^T x < 0 , |x| = 1

 $\Delta = \min_{\mathbf{x}} \{ \mathbf{x}^{\mathsf{T}} \mathbf{w}^* \}$

- As initially w = (0, ..., 0) after m mistakes:
 - numerator $\geq m \times \Delta$
 - (denominator)² $\leq 0 + \underbrace{1 + \dots + 1}_{m} = m$...so denominator $\leq \sqrt{m}$
- As $\frac{\mathbf{w}^{\mathrm{T}}\mathbf{w}^{*}}{|\mathbf{w}| |\mathbf{w}^{*}|} = \cos(\text{ angle between } \mathbf{w} \text{ and } \mathbf{w}^{*})$

it must be $\leq 1 \dots$

- \Rightarrow numerator \leq denominator

Observations

Weight vector is linear sum of instances!

$$\mathbf{w} = \sum_{\{\mathbf{x} \mid y \ \mathbf{x^T} \ \mathbf{w^{(k)}} < \mathbf{0} \}} y \ \mathbf{x} = \sum_{i} \alpha_i \ \mathbf{x^{(i)}}$$

- (Not based on tweaking feature weights { w_i })
- "Margin" is relevant
 - Task is more difficult for small margins
 - Number of mistakes $\leq \frac{1}{\Delta^2}$

Linear Separators – Facts

- GOOD NEWS:
 - If data is linearly separated,
 - Then FAST ALGORITHM finds correct {w_i}!
- But...

Some "data sets" are NOT linearly separatable!

If "unrealizable"?

- Task: Given { [$\mathbf{x}^{(i)}$, $\mathbf{y}^{(i)}$] } $\mathbf{y}^{i} \in \{+1, -1\}$ Find \mathbf{w} s.t. $\mathbf{y}^{(i)} = \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}$... for all i
- What if NO w works?
 - ... overconstrained ...
- Could try to minimize residual

Suid try to minimize residual $\sum_{i} I[y^{(i)} \neq sign(\mathbf{w^T} \mathbf{x}^{(i)})]$ $||y - \mathbf{X} \mathbf{w}||_{1} = \sum_{i} |y^{(i)} - \mathbf{w^T} \mathbf{x}^{(i)}|$ $||y - \mathbf{X} \mathbf{w}||_{2}^{2} = \sum_{i} (y^{(i)} - \mathbf{w^T} \mathbf{x}^{(i)})^{2}$ Easy!

0/1-Loss vs L₂ error

- "0/1 Loss function"
 - not smooth, not differentiable
- L₂ error (==MSE error) is
 - Smooth
 - Differentiable
 - Overbound...

Outline

- Framework
- Exact
 - Minimize Mistakes (Perceptron Training)
- LMS
 - Minimize L₂ error
- Logistic Regression
 - Max Likelihood Estimation (MLE) of P(y | x)
 - Gradient descent (MSE; MLE)
 - Newton-Raphson
- Linear Discriminant Analysis
 - Max Likelihood Estimation (MLE) of P(y, x)
 - Direct Computation
 - Fisher's Linear Discriminant
- Support Vector Machine

4

Error Function

Given data $\{[x^{(i)}, y^{(i)}]\}_{i=1..m}$, optimize...

1. Classification error
 Perceptron Training

$$err_{Class}(w) = \frac{1}{m} \sum_{i=1}^{m} I[y^{(i)} \neq sign(w^{T} x^{(i)})]$$

2. Mean-squared error (LMS)
 Direct (Gradient Descent)

$$err_{MSE}(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [y^{(i)} - w^T x^{(i)}]^2$$

3. (Log) Conditional Probability (LR)
 MSE Gradient Descent; LCL Gradient Descent

$$LCL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)} | x^{(i)})$$

4. (Log) Joint Probability (LDA; FDA)
 Direct Computation

$$LL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)}, x^{(i)})$$

5. Hinge Loss (SVM)

$$HL(w) = \frac{1}{m} \sum_{i} \lambda_{i} (y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)} - 1)_{+} + \dots$$

#2: LMS Approach

- Given $\mathbf{X} \in \mathfrak{R}^{k \times m}$, $\mathbf{y} \in \{-1, +1\}^m$,
- Find w to minimize

$$||y - X w||_2^2 = \sum_i (y^{(i)} - w^T x^{(i)})^2$$

Solution: $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

... or gradient descent or ...

Use Linear Regression for Classification?

Regression minimizes sum of squared errors on target function

$$\sum_{i} (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2$$

- which gives strong influence to distant points ...
 - even if "correct" $y^{(i)} = +1$, $w^T x^{(i)} = 21$... error of 20!

for next year

- have time, with w^T x values and y values...
- and note that when y=1, error for w^T x of 1.3 is fine, as is 0.6... and even for -2, or arguably, even for -20.
- But when it is +21, note still bit error error of 20!!
 - even though it was correct.

Outline

- Framework
- Exact
 - Minimize Mistakes (Perceptron Training)
- LMS
 - Minimize L₂ error
- Logistic Regression
 - Max Likelihood Estimation (MLE) of P(y | x)
 - Gradient descent (MSE; MLE)
 - Newton-Raphson
- Linear Discriminant Analysis
 - Max Likelihood Estimation (MLE) of P(y, x)
 - Direct Computation
 - Fisher's Linear Discriminant
- Support Vector Machine

#3: Logistic Regression

- Want to predict $y \in \{0,1\}$, based on linear combination of x
 - But w^Tx has range [-∞, ∞] ... so even if "correct", still BIG error
- Approach: transform $\mathbf{w}^\mathsf{T}\mathbf{x}$ to be in range $\in [0,1]$
- Need "squashing" function $[-\infty, \infty] \rightarrow [0, 1]$

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

- Return 1 if $\sigma(\mathbf{w}^T\mathbf{x}) \geq \frac{1}{2}$
- Also probabilistic interpretation: $\sigma(\mathbf{w}^T\mathbf{x}) = P_{\mathbf{w}}(y=1|\mathbf{x})$

4

Error Function

Given data $\{[x^{(i)}, y^{(i)}]\}_{i=1..m}$, optimize...

- 1. Classification error
 Perceptron Training
- 2. Mean-squared error (LMS)
 Direct (Gradient Descent)

$$err_{Class}(w) = \frac{1}{m} \sum_{i=1}^{m} I[y^{(i)} \neq sign(w^{T} x^{(i)})]$$

$$err_{MSE}(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [y^{(i)} - w^T x^{(i)}]^2$$

3. (Log) Conditional Probability (LR)
 MSE Gradient Descent; LCL Gradient Descent

$$LCL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)} | x^{(i)})$$

4. (Log) Joint Probability (LDA; FDA)
 Direct Computation

$$LL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)}, x^{(i)})$$

5. Hinge Loss (SVM)

$$HL(w) = \frac{1}{m} \sum_{i} \lambda_{i} (y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)} - 1)_{+} + \dots$$

Probabilistic Interpretation...

Use "+y" for y=1 "-y" for y=0

$$P(+y | x) = \frac{P(+y, x)}{P(+y, x) + P(-y, x)}$$
$$= \frac{1}{1 + \exp(-a)}$$

$$a = \ln \frac{P(+y, x)}{P(-y, x)} = \ln \frac{P(+y | x)}{P(-y | x)}$$

Logistic Function

$$\sigma(a) = \frac{1}{1+e^{-a}}$$

- aka Sigmoid
- Useful properties
 - $\sigma: \mathfrak{R} \to [0,1]$
 - For very large positive $a: \sigma(a) \approx 1$
 - For very large negative $a: \sigma(a) \approx 0$
 - If $a \approx 0$, $\sigma(a) \approx a + \frac{1}{2}$
 - $\frac{\partial \sigma(a)}{\partial a} = \sigma(a) \left[1 \sigma(a) \right]$

Derivative of Sigmoid

$$\frac{d}{da}\sigma(a) = \frac{d}{da}\frac{1}{(1+e^{-a})}$$

$$= \frac{-1}{(1+e^{-a})^2}\frac{d}{da}(1+e^{-a}) = \frac{-1}{(1+e^{-a})^2}(-e^{-a})$$

$$= \frac{e^{-a}}{(1+e^{-a})^2} = \frac{1}{(1+e^{-a})}\frac{e^{-a}}{(1+e^{-a})} = \sigma(a)\left[1-\sigma(a)\right]$$

Logistic Regression (con't)

Assume 2 classes:

$$P_{w}(+y \mid x) = \sigma(w \cdot x) = \frac{1}{1 + e^{-(w \cdot x)}}$$

$$P_{w}(-y \mid x) = 1 - \frac{1}{1 + e^{-(w \cdot x)}} = \frac{e^{-(w \cdot x)}}{1 + e^{-(w \cdot x)}}$$

Log Odds:

$$\log \frac{P_{\mathbf{w}}(+\mathbf{y} | \mathbf{x})}{P_{\mathbf{w}}(-\mathbf{y} | \mathbf{x})} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$
Linear

How to learn parameters w?

- ... depends on goal?
 - A: Minimize mean square error (MSE)? $\sum_{i} (y^{(i)} \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}))^{2}$
 - B: Maximize (log) conditional likelihood (LCL)? $\sum_{i} log P_{\mathbf{w}}(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)})$

MSError Gradient for Sigmoid Unit

• Error:
$$E = \sum_{i} \frac{1}{2} (o^{(i)} - y^{(i)})^2 = \sum_{i} E^{(i)}$$

For single training instance

• Input:
$$\mathbf{x}^{(i)} = [1, \mathbf{x}^{(i)}_{1}, ..., \mathbf{x}^{(i)}_{k}]$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- **Computed Output:** $o^{(i)} = \sigma(z^{(i)})$
 - where $z^{(i)} = \sum_j x_j^{(i)} w_j$ using current $[w_0, w_1, ..., w_k]$
- Correct output: y⁽ⁱ⁾
- Error Gradient (Ignore (i) superscript)

Updating LR Weights (MSE)

Using:

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) [1 - \sigma(z)] = 0(1 - 0)$$

$$\frac{\partial z}{\partial w_j} = \frac{\partial -\sum_k w_k x_k}{\partial w_j} = \boxed{-x_j}$$

$$\bullet \frac{\partial E^{(i)}}{\partial w_i} = \underbrace{\left(o^{(i)} - y^{(i)}\right)} \underbrace{\left(o^{(i)} \left(1 - o^{(i)}\right)\right)} \underbrace{\left(-x_j^{(i)}\right)}$$

- As already computed $o^{(i)} = \sigma(z^{(i)})$ to get answer, trivial to compute $\sigma'(z^{(i)}) = \sigma(z^{(i)})$ ($1 \sigma(z^{(i)})$)
- Update $w_i += \Delta w_i$ where

$$\Delta w_j = -\eta \frac{\partial E^{(i)}}{\partial w_j}$$

#3a: MSE for LR

0. New **w**

$$\Delta \mathbf{w} := 0$$

1. For each row i, compute

a.
$$E^{(i)} = (o^{(i)} - y^{(i)}) o^{(i)} (1 - o^{(i)})$$

b.
$$\Delta \mathbf{w} += \mathsf{E}^{(i)} \mathbf{x}^{(i)}$$

[... $\Delta \mathsf{w}_{i} += \mathsf{E}^{(i)} \mathsf{x}^{(i)}_{i}$...]

2. Increment w += $\eta \Delta \mathbf{w}$

y ⁽ⁱ⁾	0	(i)	E ⁽ⁱ⁾

 $\Delta W \rightarrow \boxed{\Delta W_j}$

#3b: ML Estimation wrt Learn Conditional Probability

P(S | w) ≡ likelihood function
 L(w) = log P(S | w)

• w* = argmax_w L(w) is "maximum likelihood estimator" for Log Conditional Likelihood (LCL)

sometimes called "MLE" ...

Computing the Likelihood

- As training examples S = { [x(i), y(i)] } are iid
 - drawn independently from same (unknown) prob $P_w(x, y)$
- - $= \sum_{i} \log P_{\mathbf{w}}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$
 - $= \sum_{i} \log P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)}) + \sum_{i} \log P_{\mathbf{w}}(\mathbf{x}^{(i)})$
 - As $P_{\mathbf{w}}(\mathbf{x}^{(i)})$ does not depend on \mathbf{w} , ...

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \sum_{i} \log P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)})$$

Optimize LCL (LR) by Gradient Ascent

- Want w* = argmax_w L(w)
 - $L(\mathbf{w}) = \sum_{i} r(y^{(i)}, \mathbf{x}^{(i)}, \mathbf{w}) \text{ over instances } [y^{(i)}, \mathbf{x}^{(i)}]$
 - As $y \in \{0, 1\}$

$$r(y, \mathbf{x}, \mathbf{w}) = \log P_{\mathbf{w}}(y \mid \mathbf{x}) =$$

 $y \log(P_{\mathbf{w}}(y=1 \mid \mathbf{x})) + (1 - y) \log(1 - P_{\mathbf{w}}(y=1 \mid \mathbf{x}))$

So climb along...

$$\frac{\partial L(\mathbf{w})}{\partial w_j} = \sum_{i} \frac{\partial r(y^{(i)}, \mathbf{x}^{(i)}, \mathbf{w})}{\partial w_j}$$

Gradient Descent ... $\begin{vmatrix} p_1 = P_{\mathbf{w}}(y=1 \mid \mathbf{x}) = \sigma(w^T x^{(i)}) \\ = \frac{1}{1 + \exp(-w^T x^{(i)})} \end{vmatrix}$

$$p_1 = P_{\mathbf{w}}(y=1 \mid \mathbf{x}) = \sigma(w^T x^{(i)})$$
$$= \frac{1}{1 + \exp(-w^T x^{(i)})}$$

$$\begin{split} &\frac{\partial r(y, \mathbf{X}, \mathbf{W})}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} [y \log(p_{1}) + (1 - y) \log(1 - p_{1})] \\ &= \frac{y}{p_{1}} \frac{\partial p_{1}}{\partial w_{j}} + (-1) \times \frac{1 - y}{1 - p_{1}} \frac{\partial p_{1}}{\partial w_{j}} = \frac{y - p_{1}}{p_{1}(1 - p_{1})} \frac{\partial p_{1}}{\partial w_{j}} \end{split}$$

$$\frac{\partial p_1}{\partial w_j} = \frac{\partial P_w(y = 1 \mid x)}{\partial w_j} = \frac{\partial}{\partial w_j} (\sigma(x \cdot w))$$

$$= \sigma(x \cdot w)[1 - \sigma(x \cdot w)] \frac{\partial}{\partial w_j} (-x \cdot w) = p_1(1 - p_1) \cdot (-x_j^{(i)})$$

$$\frac{\partial L(w)}{\partial w_{j}} = \sum_{i} \frac{\partial r(y^{(i)}, x^{(i)}, w)}{\partial w_{j}} = \sum_{i} \frac{y^{(i)} - p_{1}}{p_{1}(1 - p_{1})} p_{1}(1 - p_{1}) \cdot (-x_{j}^{(i)})$$

$$= \sum_{i} (\sigma(w^{T} x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

Gradient Ascent for Logistic Regression (LCL)

```
Given: training examples [\mathbf{x}^{(i)}, \mathbf{y}^{(i)}], i = 1..N
Initialize weight vector \mathbf{w} = [0, 0, ..., 0]
Repeat until convergence
     Let gradient vector \Delta \mathbf{w} = [0, 0, ..., 0]
     For i = 1 to N do
          o^{(i)} = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)}) % p( y^{(i)} = 1 | \mathbf{x}^{(i)} )
          err_i = o^{(i)} - y^{(i)}
          For j = 1 to n do
              \Delta \mathbf{w}_i += \mathbf{err}_i \times \mathbf{x}_i^{(i)}
     \mathbf{w} += \eta_t \Delta \mathbf{w}; step in direction of increasing gradient
```

#3b: LCL for LR

feature j

0. New w

$$\Delta \mathbf{w} := \mathbf{0}$$

1. For each row i, compute

a.
$$E^{(i)} = (o^{(i)} - y^{(i)})$$

b.
$$\Delta w += E^{(i)} x^{(i)}$$

$$[\dots \Delta w_j += E^{(i)} x^{(i)}_{j \dots}]$$

2. Increment w += $\eta \Delta \mathbf{w}$

Learning LR Weights

• Task: Given data
$$\{ [x^{(i)}, y^{(i)}] \}$$
,

$$o^{(i)} = \sigma(\mathbf{w}^T \mathbf{x}^{(i)})$$
$$= \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}^{(i)})}$$

- find w in $P_{w}(y|x) = \begin{cases} \frac{1}{1 + \exp(-w^{T}x)} & \text{if } y = 1\\ \frac{\exp(-w^{T}x)}{1 + \exp(-w^{T}x)} & \text{if } y = 0 \end{cases}$ s.t. $P_{w}(y^{(i)}|x^{(i)}) > \frac{1}{2} & \text{iff } y^{(i)} = 1$
- Approach 1: MSE ≈ Neural Nets
 - Minimize $\sum_{i} (o^{(i)} y^{(i)})^2$
 - Gradient: $\Delta w_i^{(i)} = (o^{(i)} y^{(i)}) o^{(i)} (1 o^{(i)}) x_i^{(i)}$
- Approach 2: LCL ≈ Probabilistic Logistic Regression
 - Maximize $\sum_{i} P_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$
 - Gradient: $\Delta w_i^{(i)} = (o^{(i)} y^{(i)}) x_i^{(i)}$

Use Logistic Regression for Classification

Return y = 1 iff

$$\frac{P(y=1|x)}{P(y=1|x)} > P(y=0|x)$$

$$\frac{P(y=1|x)}{P(y=0|x)} > 1$$

$$\ln \frac{P(y=1|x)}{P(y=0|x)} > 0$$

$$\ln \frac{1}{\exp(-w \cdot x)/(1+\exp(-w \cdot x))} > 0$$

$$\ln \frac{1}{\exp(-w \cdot x)} = w \cdot x > 0$$

$$\log \frac{1}{\exp(-w \cdot x)} = w \cdot x > 0$$

$$\log \frac{1}{\exp(-w \cdot x)} = w \cdot x > 0$$

$$\log \frac{1}{\exp(-w \cdot x)} = w \cdot x > 0$$

$$\log \frac{1}{\exp(-w \cdot x)} = w \cdot x > 0$$

Comments on LCL Algorithm

- This is BATCH;
 - ∃ obvious online alg (stochastic gradient ascent)
- Can use second-order (Newton-Raphson) alg for faster convergence
 - weighted least squares computation; aka
 "Iteratively-Reweighted Least Squares" (IRLS)

Logistic Regression Computation...

$$L(\mathbf{w}) = \sum_{i} \log P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)})$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}} = \sum_{i=1}^{N} \left(y^{(i)} - \frac{1}{1 + \exp(-\mathbf{w}^{T}\mathbf{x}^{(i)})} \right) x_{j}^{(i)} = 0$$

- (p+1) non-linear equations
- Solve by Newton-Raphson method:

$$\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \left[\text{Jacobian } \left(\frac{\partial L(\mathbf{w}^{old})}{\partial \mathbf{w}} \right) \right]^{-1} \frac{\partial L(\mathbf{w}^{old})}{\partial \mathbf{w}}$$

Newton-Raphson Method

- A gen'l technique for solving f(x) = 0
 - ... even if non-linear
- Taylor series:
 - $f(x_{n+1}) \approx f(x_n) + (x_{n+1} x_n) f'(x_n)$
 - $X_{n+1} \approx X_n + [f(X_{n+1}) f(X_n)] / f'(X_n)$
- When x_{n+1} near root, $f(x_{n+1}) \approx 0$

$$\Rightarrow x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$$

Update each iteration...

Newton-Raphson in Multi-dimensions

To solve the equations:

$$f_1(x_1, x_2, ..., x_N) = 0$$

$$f_2(x_1, x_2, ..., x_N) = 0$$

$$\vdots$$

$$f_N(x_1, x_2, ..., x_N) = 0$$

■ Taylor series: $\forall j = 1..N$

$$f_j(x + \Delta x) \approx f_j(x) + \sum_{k=1}^N \frac{\partial f_j}{\partial x_k} \Delta x_k$$

N-R:

$$\begin{bmatrix} x_1^{n+1} \\ x_2^{n+1} \\ \vdots \\ x_N^{n+1} \end{bmatrix} = \begin{bmatrix} x_1^n \\ x_2^n \\ \vdots \\ x_N^n \end{bmatrix} - \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \dots & \frac{\partial f_N}{\partial x_N} \end{bmatrix} \begin{bmatrix} f_1(x_1^n, x_2^n, \dots, x_N^n) \\ f_2(x_1^n, x_2^n, \dots, x_N^n) \\ \vdots \\ f_N(x_1^n, x_2^n, \dots, x_N^n) \end{bmatrix}$$

Jacobian matrix

Newton-Raphson: Example

To solve

$$f_1(x_1, x_2) = x_1^2 - \cos(x_2) = 0$$

$$f_2(x_1, x_2) = \sin(x_1) + x_1^2 + x_2^3 = 0$$

Iterate using

$$\begin{bmatrix} x_1^{n+1} \\ x_2^{n+1} \end{bmatrix} = \begin{bmatrix} x_1^n \\ x_2^n \end{bmatrix} - \begin{bmatrix} 2x_1^n & \sin(x_2^n) \\ \cos(x_1^n) + 2x_1^n & 3(x_2^n)^2 \end{bmatrix}^{-1} \begin{bmatrix} (x_1^n)^2 - \cos(x_2^n) \\ \sin(x_1^n) + (x_1^n)^2 + (x_2^n)^3 \end{bmatrix}$$

Logistic Regression Algs for LTUs

Learns Conditional Probability Distribution P(y | x)

Local Search:

```
Begin with initial weight vector; iteratively modify to maximize objective function log likelihood of the data (ie, find w s.t. probability distribution P<sub>w</sub>( y | x ) is most likely, given training data)
```

Online or batch

4

Outline

- Framework
- Exact
 - Minimize Mistakes (Perceptron Training)
- LMS
 - Minimize L₂ error
- Logistic Regression
 - Max Likelihood Estimation (MLE) of P(y | x)
 - Gradient descent (MSE; LCL)
 - Newton-Raphson
- Linear Discriminant Analysis
 - Max Likelihood Estimation (MLE) of P(y, x)
 - Direct Computation
 - Fisher's Linear Discriminant
- Support Vector Machine

4

#4: Linear Discriminant Analysis

- LDA learns joint distribution $P_w(y, x)$
 - As $P_w(y, x) \neq P_w(y|x)$; $argmax_w P_w(y, x) \neq argmax_w P_w(y|x)$
- "generative model"
 - P(y, x) model of how data is generated
 - Eg, factor

$$P(y, \mathbf{x}) = P(y) P(\mathbf{x} | y)$$

- P(y) generates value for y; then
- P(x | y) generates value for x given this y
- Belief net:

Linear Discriminant Analysis, con't

- P(y, x) = P(y) P(x | y)
- P(y) is a simple discrete distribution
 - Eg: P(y = 0) = 0.31; P(y = 1) = 0.69 (31% negative examples; 69% positive examples)
- Assume P($\mathbf{x} \mid \mathbf{y} = \mathbf{k}$) is multivariate normal, with mean μ_k and (common) covariance Σ

$$P(\mathbf{x} \mid \mathbf{y} = \mathbf{k}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{k}})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{k}})\right)$$

Estimating LDA Model

Linear discriminant analysis assumes form

$$P(\mathbf{x}, y = k) = P(y = k) \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

- μ_k is *mean* of examples belonging to class C_k (ie, y=k); covariance matrix Σ is shared by all classes
- Can estimate LDA directly: $m_k = \#training examples in class y = k$
 - □ Estimate of P(y = k): $\hat{p}_k = \frac{m_k}{m}$

$$\hat{\mu}_k = \frac{1}{m_k} \sum_{\{i: y_i = k\}} x_i$$

$$\hat{\mu}_{k} = \frac{1}{m_{k}} \sum_{\{i: y_{i} = k\}} x_{i}$$

$$\hat{\Sigma} = \underbrace{\sum_{i} (x_{i} - \hat{\mu}_{y_{i}})(x_{i} - \hat{\mu}_{y_{i}})^{T}}_{m - k}$$

(Subtract each x_i from corresponding $\hat{\mu}_{y_i}$ before taking outer product)

Example of Estimation

x_1	x_2	x_3	У
13.1	20.2	0.4	+
6.0	17.7	-4.2	+
8.2	18.2	-2.5	+
0.4	10.1	19.2	_
-4.2	12.8	5.1	_
-4.3	15.0	21.7	_
0.9	10.1	19.2	–

- m=7 examples; $m_{+} = 3$ positive; $m_{-} = 4$ negative $\Rightarrow p_{+} = 3/7 \quad p_{-} = 4/7$
- ullet Compute $\hat{\mu}_i$ over each class

$$\hat{\mu}_{+} = \frac{1}{3} \sum_{i: \langle y^{(i)} = + \rangle} x^{(i)}$$

$$= \frac{1}{3} \begin{pmatrix} [13.1, 20.2, 0.4]^{T} + \\ [6.0, 17.7, -4.2]^{T} + \\ [8.2, 18.2, -2.5]^{T} \end{pmatrix}$$

$$= [9.1, 18.7, -2.1]^{T}$$

$$\hat{\mu}_{-} = \frac{1}{4} \sum_{i: \langle y^{(i)} = - \rangle} x^{(i)} = [-1.8, 12.0, 16.3]^{T}$$

Note: do NOT pre-pend X₀=1!

Estimation...

x_1	x_2	x_3	У
13.1	20.2	0.4	+
6.0	17.7	-4.2	+
8.2	18.2	-2.5	+
0.4	10.1	19.2	_
-4.2	12.8	5.1	_
-4.3	15.0	21.7	_
0.9	10.1	19.2	–

- ullet Compute common $\hat{\Sigma}$
 - "Normalize" each z := $\mathbf{x} \mu_{y(\mathbf{x})}$ T $\mathbf{z}^{(1)} := \begin{bmatrix} 13.1, 20.2, 0.4 \end{bmatrix} \begin{bmatrix} 9.1, 18.7, -2.1 \end{bmatrix}$ $= \begin{bmatrix} 4.0, 1.5, -1.7 \end{bmatrix}^\mathsf{T}$

$$\mathbf{z}^{(4)} := [0.4, 10.1, 19.2] - [-1.8, 12.0, 16.3]^{\mathsf{T}}$$

= $[2.2, -1.9, 2.9]^{\mathsf{T}}$

- Compute covariance matrix, for each i: For $\mathbf{x}^{(1)}$, via $\mathbf{z}^{(1)}$:

$$\mathbf{z}^{(1)} \times \mathbf{z}^{(1)^{\top}} = \begin{bmatrix} 4.0 \\ 0.5 \\ -1.7 \end{bmatrix} \cdot [4.0, 0.5, -1.7]$$

$$= \begin{bmatrix} 4.0 \cdot 4.0 & 4.0 \cdot 0.5 & 4.0 \cdot -1.7 \\ 0.5 \cdot 4.0 & 0.5 \cdot 0.5 & 0.5 \cdot -1.7 \\ -1.7 \cdot 4.0 & -1.7 \cdot 0.5 & -1.7 \cdot -1.7 \end{bmatrix}$$

$$= \begin{bmatrix} 16.0 & 2.0 & -6.8 \\ 2.0 & 0.25 & -0.85 \\ -6.8 & -0.85 & -2.89 \end{bmatrix}$$

- Set
$$\hat{\Sigma} = \frac{1}{7-2} \sum_{i=1...7} z^{(i)} z^{(i)T}$$

Classifying, Using LDA

How to classify new instance, given estimates

Eg,
$$\hat{p}_{+} = 3/7$$
 $\hat{p}_{-} = 4/7$

$$\star \hat{\mu}_{+} = \begin{bmatrix} 9.1, \ 18.7, \ -2.1 \end{bmatrix}^{\mathsf{T}}$$

$$\hat{\mu}_{-} = \begin{bmatrix} -1.8, \ 12.0, \ 16.3 \end{bmatrix}^{\mathsf{T}}$$

$$\star \hat{\Sigma} = \begin{bmatrix} 7.22 & -1.31 & 6.35 \\ -1.31 & 2.91 & 0.32 \\ 6.35 & 0.32 & 26.03 \end{bmatrix}$$

$$\{\,\widehat{p}_i\,\}\,\left\{\,\widehat{\mu}_j\,
ight\}\,\widehat{\Sigma}$$

■ Class for instance $\mathbf{x} = [5, 14, 6]^T$?

$$P(y = +, \mathbf{x} = [5, 14, 6]^{\mathsf{T}}) = P(y = +) P([5, 14, 6]^{\mathsf{T}} | y = +)$$

$$= \frac{3}{7} \times P(\mathbf{x} = [5, 14, 6]^{\mathsf{T}} | \mathbf{x} \sim \mathcal{N}(\hat{\mu}_{+}, \hat{\Sigma}))$$

$$= \frac{3}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \hat{\mu}_{+})^{\mathsf{T}} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{+})\right]$$

$$= [16.63E-11]$$

$$P(y = -, \mathbf{x} = [5, 14, 6]^{\mathsf{T}}) = P(y = -) P([5, 14, 6]^{\mathsf{T}} | y = -)$$

$$= \frac{4}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \hat{\mu}_{-})^{\mathsf{T}} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{-})\right]$$

$$= [43.33E-11]$$

$$\bullet P(y = + | [5, 14, 6]^{\mathsf{T}}) = 0.2774$$

$$\Rightarrow P(y = - | [5, 14, 6]^{\mathsf{T}}) = 0.7226$$

LDA learns a LinearThresholdUnit

- Consider 2-class case with a 0/1 loss function
- Classify $\hat{y} = 1$ if

$$\ln \frac{P(y=1|x)}{P(y=0|x)} > 0 \text{ iff } \ln \frac{P(y=1,x)}{P(y=0,x)} > 0$$

$$\frac{P(x, y = 1)}{P(x, y = 0)} = \frac{P(y = 1) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_1)^{\top} \Sigma^{-1}(x - \mu_1)\right]}{P(y = 0) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_0)^{\top} \Sigma^{-1}(x - \mu_0)\right]}$$
$$= \frac{P(y = 1) \exp\left[-\frac{1}{2}(x - \mu_1)^{\top} \Sigma^{-1}(x - \mu_1)\right]}{P(y = 0) \exp\left[-\frac{1}{2}(x - \mu_0)^{\top} \Sigma^{-1}(x - \mu_0)\right]}$$

$$\ln \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \ln \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} \left[(\mathbf{x} - \mu_1)^\top \Sigma^{-1} (\mathbf{x} - \mu_1) - (\mathbf{x} - \mu_0)^\top \Sigma^{-1} (\mathbf{x} - \mu_0) \right]$$

LDA Learns an LTU (2)

$$\begin{aligned} & (x - \mu_1)^T \sum^{-1} (x - \mu_1) - (x - \mu_0)^T \sum^{-1} (x - \mu_0) \\ & = x^T \sum^{-1} (\mu_0 - \mu_1) + (\mu_0 - \mu_1)^T \sum^{-1} x + \\ & \mu_1^T \sum^{-1} \mu_1 - \mu_0^T \sum^{-1} \mu_0 \end{aligned}$$

 $\begin{array}{l} \bullet \quad \text{As } \sum^{-1} \text{ is symmetric,} \\ \dots &= 2 \ \text{x}^{\mathsf{T}} \sum^{-1} \left(\mu_0 \ -\mu_1 \right) \ + \ \mu_1^{\mathsf{T}} \sum^{-1} \mu_1 \ - \ \mu_0^{\mathsf{T}} \sum^{-1} \mu_0 \\ \Rightarrow & \ln \frac{P(\, \mathbf{x}, y = 1 \,)}{P(\, \mathbf{x}, y = 0 \,)} \ = \\ \ln \frac{P(\, y = 1 \,)}{P(\, y = 0 \,)} - \frac{1}{2} \left[(\mathbf{x} - \mu_1)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu_1) - (\mathbf{x} - \mu_0)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu_0) \right] \\ &= \ln \frac{P(\, y = 1 \,)}{P(\, y = 0 \,)} \ + \ \mathbf{x}^{\mathsf{T}} \Sigma^{-1} (\mu_1 - \mu_0) \ + \ \frac{1}{2} \mu_0^{\mathsf{T}} \Sigma^{-1} \mu_0 \ - \ \frac{1}{2} \mu_1^{\mathsf{T}} \Sigma^{-1} \mu_1 \\ &= \left(\mathbf{x}^{\mathsf{T}} \Sigma^{-1} (\mu_1 - \mu_0) \ + \ \ln \frac{P(\, y = 1 \,)}{P(\, y = 0 \,)} + \frac{1}{2} \mu_0^{\mathsf{T}} \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^{\mathsf{T}} \Sigma^{-1} \mu_1 \end{array}$

LDA Learns an LTU (3)

$$\ln \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \mathbf{x}^{\top} \sum_{i=1}^{T} (\mu_1 - \mu_0) + \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2} \mu_0^{\top} \sum_{i=1}^{T} \mu_0 - \frac{1}{2} \mu_1^{\top} \sum_{i=1}^{T} \mu_1$$

So let...

$$\mathbf{w} = \Sigma^{-1}(\mu_1 - \mu_0)$$

$$\mathbf{w}_0 = \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2}\mu_0^{\top} \Sigma^{-1}\mu_0 - \frac{1}{2}\mu_1^{\top} \Sigma^{-1}\mu_1$$

■ Classify $\hat{y} = 1$ iff $\mathbf{W}^T \mathbf{X} + \mathbf{W}_0 > 0$ Linear Threshold Unit!!

4

View LDA wrt Mahalanobis Distance

Squared Mahalanobis distance between x and μ

$$D_{M}^{2}(\mathbf{x}, \mu) = (\mathbf{x} - \mu)^{T} \sum^{-1} (\mathbf{x} - \mu)$$

- $\Sigma^{-1} \approx \text{linear distortion}$
- ... converts standard Euclidean distance into Mahalanobis distance.
- LDA classifies x as Class1 if

$$D_{M}^{2}(\mathbf{x}, \mu_{1}) < D_{M}^{2}(\mathbf{x}, \mu_{2})$$

■ log P(
$$\mathbf{x} \mid y = k$$
) $\approx \log p_k - \frac{1}{2} D_M^2(\mathbf{x}, \mu_k)$

4

Generalizations of LDA

SuperSimple Classifier

- Same \sum for all classes
- This \sum is diagonal
 - \Rightarrow within each class, each pair of features x_i and x_i is independent

Naïve Gaussian Classifier

- Allow each class k to have its own \sum_{k} ⇒ Classifier \equiv **quadratic** threshold unit (not LTU)
- Each \sum_{k} is diagonal

Linear Discriminate Analysis

- Same \sum for all classes
- This \sum is arbitrary

General Gaussian Classifier (QDA)

- Allow each class k to have its own $\sum_{\mathbf{k}}$
- Each $\sum_{\mathbf{k}}$ is arbitrary

Versions of ?L?Q?N? DA

SuperSimple

Naïve

LDA

• Quadratic

Variants of LDA ■ Covariance matrix ∑ • n features; k classes

Name	Same for all classes?	Diagonal	#param's
SuperSimple	+	+	k
Naïve Gaussian Classifier		+	k n
LDA	+		n ²
General Gaussian Classifier			k n²

Quadratic Discriminant

- The decision boundary is linear when the covariance matrices $\Sigma = \Sigma_1 = ... = \Sigma_k$ are the same
- ... BUT quadratic when they are not

Class-conditional densities for three classes;

$$\Sigma_{red} \neq \Sigma_{blue}$$

The corresponding posterior probabilities for three classes.

Fisher's Linear Discriminant

LDA

- Finds K-1 n-dim hyperplanes(K = number of classes)
- Project \mathbf{x} and $\{\mu_k\}$ to that hyperplane
- Classify x as nearest μ_k within hyperplane
- Better: Find hyperplane that maximally separates projection of \mathbf{x} 's wrt $\mathbf{\Sigma}^{-1}$

- Recall any vector **w** projects $\mathfrak{R}^n \to \mathfrak{R}$
- Goal: Want w that "separates" classes
 - Each w^T x⁺ far from each w^T x⁻
- Perhaps project onto m₊ m₋?

- Recall any vector **w** projects $\mathfrak{R}^n \to \mathfrak{R}$
- Goal: Want w that "separates" classes
 - Each w^T x⁺ far from each w^T x⁻
- Perhaps project onto m₊ m₋?
- Still overlap... why?

- Problem with m₊ m₋:
 - Does not consider "scatter" within class
- Also want w that "separates" classes
 - Positive x+'s: { w^T x+ } close to each other
 - Negative x⁻'s: { w⁻ x⁻ } close to each other

- Also want w that "separates" classes
 Positive x+'s: { w^T x+ } close to each other
 Negative x-'s: { w^T x- } close to each other
- "scatter" of +instances; -instances

s₊² =
$$\sum_{i}$$
 $y^{(i)}$ $[\mathbf{w}^{T} \mathbf{x}^{(i)} - \mathbf{w}^{T} \mathbf{m}_{+}]^{2} = \sum_{i} y^{(i)} [\mathbf{w}^{T} \mathbf{x}^{(i)} - \mu_{+}]^{2}$

FLD, con't

- Separate means μ_{+} and μ_{-}
 - \Rightarrow maximize $(\mu_+ \mu_-)^2$
- 2. Minimize each spread s₁², s₂²
 - \Rightarrow minimize $(s_+^2 + s_-^2)$

• Objective function: maximize
$$J_S(\mathbf{w}) = (\mu_+ - \mu_-)^2$$

s.t. $s_+^2 + s_-^2$ is small

#1:
$$(\mu_{-} - \mu_{+})^{2} = (\mathbf{w}^{T} \mathbf{m}_{+} - \mathbf{w}^{T} \mathbf{m}_{-})^{2}$$

= $\mathbf{w}^{T} (\mathbf{m}_{+} - \mathbf{m}_{-}) (\mathbf{m}_{+} - \mathbf{m}_{-})^{T} \mathbf{w} = \mathbf{w}^{T} S_{B} \mathbf{w}$

"between-class scatter"
$$S_B = (m_+ - m_-) (m_+ - m_-)^T$$

FLD, III

maximize
$$J_S(\mathbf{w}) = (\mu_+ - \mu_-)^2$$

s.t. $s_+^2 + s_-^2$ is small

$$s_{+}^{2} = \sum_{i} y^{(i)} [w^{T} (x^{(i)} - m_{+})]^{2}$$

$$= \sum_{i} w^{T} y^{(i)} (x^{(i)} - m_{+}) (x^{(i)} - m_{+})^{T} w$$

$$= w^{T} S_{+} w$$

$$S_{+} = \sum_{i} y^{(i)} (x^{(i)} - m_{+}) (x^{(i)} - m_{+})^{T}$$

... "within-class scatter matrix" for +

$$S_{-} = \sum_{i} (1 - y^{(i)}) (x^{(i)} - m_{-}) (x^{(i)} - m_{-})^{T}$$

... "within-class scatter matrix" for -

$$S_R = S_+ + S_- \text{ so } S_+^2 + S_-^2 = W^T S_R W$$

$$J_{S}(\mathbf{w}) = \mathbf{w}^{T} S_{B}^{-1} S_{R} \mathbf{w}$$

- Minimizing J_S(w) ...
 - $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w}$ s.t. $\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{R}} \mathbf{w} = 1$
- Lagrange: $L(\mathbf{w}, \lambda) = \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w} + \lambda (1 \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{R}} \mathbf{w})$

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 2S_B \mathbf{w} - \lambda (2S_R \mathbf{w})$$

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad S_B^{-1} S_R \mathbf{w} = \frac{1}{\lambda} \mathbf{w}$$

■ ... w* is eigenvector of S_B⁻¹S_R

FLD, IV

$$J_{S}(\mathbf{w}) = \mathbf{w}^{T} S_{B}^{-1} S_{R} \mathbf{w}$$

- Want w^TS_Rw to be small ... say w^TS_Rw = 1
- Minimizing J_S(w)
 - $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w}$ s.t. $\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{R}} \mathbf{w} = 1$
- Lagrange: $L(\mathbf{w}, \lambda) = \mathbf{w}^T \mathbf{S}_B \mathbf{w} + \lambda (1 \mathbf{w}^T \mathbf{S}_R \mathbf{w})$

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 2S_B \mathbf{w} - \lambda (2S_R \mathbf{w})$$

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad S_B^{-1} S_R \mathbf{w} = \frac{1}{\lambda} \mathbf{w}$$

■ ... w* is eigenvector of S_B⁻¹S_R

$$J_{S}(\mathbf{w}) = \mathbf{w}^{T} S_{B}^{-1} S_{R} \mathbf{w}$$

- Optimal w* is eigenvector of S_B-1S_w
- When P(x | y_k) ~ N(μ_k ; Σ)
 - \exists LINEAR DISCRIMINANT: $\mathbf{w} = \sum^{-1}(\mu_{+} \mu_{-})$
 - ⇒ FLD is optimal classifier, if classes normally distributed
- Can use even if not Gaussian:
 After projecting d-dim to 1, just use any classification method
- Analogous derivation for K > 2 classes

Fisher's LD vs LDA

- Fisher's LD = LDA when...
 - Prior probabilities are same
 - Each class conditional density is multivariate Gaussian
 - ... with common covariance matrix
- But ... Fisher's LD...
 - does not assume Gaussian densities
 - can be used to reduce dimensions even when multiple classes scenario

Summary of Linear Discriminant Analysis

- Learns Joint Probability Distr'n P(y, x)
- Direct Computation.

MLEstimate of P(y, x) computed directly from data... without search

But need to invert matrix, which is $O(p^3)$

- Batch: Only a batch algorithm
 - An online LDA alg requires online alg for incrementally updating Σ^{-1}
 - [Easy if Σ^{-1} is diagonal; otherwise ...]

Other issues wrt Linear Classifiers

Yet other linear models

What if >2 classes

What is "evaluation" ... "best"?

Which model is best?
What are the issues?

Other Algorithms for learning LTUs

- Support Vector Machine (SVM)
 - Linear kernel... next topic!
- Naive Bayes [Discuss later]
 For K = 2 classes, produces LTU
- LASSO, LARS, ... Remove features
- Winnow [?Discuss later?]
 Can handle large numbers of "irrelevant" features
 - (features whose weights should be zero)

Multiple Classes

- How to extend linear discriminants to K>2 classes?
- ? perhaps use K-1One-versus-the-rest classifiers
 - each separates points in class C_k
 from points not in that class

NO: ∃ ambiguous regions in input space

Multiple Classes

- How to extend linear discriminants to K>2 classes?
- ? perhaps use K(K-1)/2 binary discriminators
 - each discriminates between 2 classes
 - take majority vote

NO: ∃ ambiguous regions in input space

Simple Solution

Find K linear functions of the form:

$$y_k(\mathbf{x}) = \mathbf{x}^T \mathbf{w}_k + w_{k0}$$
 for k=1..K

- Assign \mathbf{x} to class $C_k = \operatorname{argmax}_k y_i(\mathbf{x})$
- Decision regions are singly connected, convex
 - Consider any two points in R_k:

$$\forall j \neq k$$
: $y_k(\mathbf{x}_A) > y_j(\mathbf{x}_A)$, $y_k(\mathbf{x}_B) > y_j(\mathbf{x}_B)$

As discriminant functions are linear:

$$y_k(\alpha \mathbf{x}_A + (1 - \alpha)\mathbf{x}_B) =$$

$$\alpha y_k(\mathbf{x}_A) + (1 - \alpha)y_k(\mathbf{x}_B)$$

$$> \alpha y_j(\mathbf{x}_A) + (1 - \alpha)y_j(\mathbf{x}_B) = y_j(\alpha \mathbf{x}_A + (1 - \alpha)\mathbf{x}_B)$$

Challenge: learning these K functions...

What is Evaluation?

- So far, thinking about Discriminative Task
 - Comparable # of positives, negatives
 - Penalty for False **positive** ≈ Penalty for False **negative**
 - Misclassification costs: 0

0	1	
1	0	

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

- But what if...
 - Imbalanced data ... eg, 99% are +'s?
 - Get accuracy = 99% trivially!
 - But not what you want,
 if HUGE penalty for false –'s

Comparing LMS, Logistic Regression, LDA, FLD

- Which is best: LMS, LR, LDA, FLD?
- Ongoing debate within machine learning community about relative merits of

```
direct classifiers [ LMS ]
```

- conditional models P(y | x) [LR]
- generative models P(y, x) [LDA, FLD]

Issues in Debate

Statistical efficiency

If generative model P(y, x) is correct, then ... usually gives better accuracy, particularly if training sample is small

Computational efficiency

Generative models typically easiest to compute (LDA/FLD computed directly, without iteration)

Robustness to model assumptions

Generative model usually performs poorly when assumptions are violated

- Eg, LDA works poorly if P(x | y) is non-Gaussian
- Logistic Regression makes fewer assumptions... ⇒ more robust ... LMS is even more robust

Robustness to missing values and noise Some $x^{(i)}_{j}$ values may be missing or corrupted Generative models typically provide better ways of handling this

Robustness to changing loss functions

LMS must re-train the classifier when the *loss function* changes ... retraining not needed for generative and conditional models