Конкурсное задание:

# Решение нестационарного уравнения диффузии

Команда: Баторова В., Майданец А., Карпинский Н., Терентьева Ю.

Тьюторы: И.Н.Коньшин и А.А.Лёгкий

## Задача:

Рассматривается решение нестационарного уравнения диффузии с неизвестной U=U(x,y,z,t):

$$\partial U/\partial t - \nabla (D \cdot \operatorname{grad} U) = f(x, y, z, t),$$

где точка (x,y,z) принадлежит  $\Omega=[0;1]^3$ , а время t рассматривается на отрезке [0;T]. Граничные условия: U(x,y,z,t)=g(x,y,z) на границе области  $\partial\Omega$ , а начальные условия: U(x,y,z,0)=0 в начальный момент времени  $t_0=0$ . Пусть конечный момент времени T=1.

Будем использовать диагональный тензор D:

$$D = \begin{bmatrix} d_x & 0 & 0 \\ 0 & d_y & 0 \\ 0 & 0 & d_z \end{bmatrix},$$

где  $d_x=0.25,\ d_y=0.15,\ d_z=0.1.$  Зададим также начально-краевые условия:

$$g(x, y, z) = 0,$$
  
 $f(x, y, z) = (d_x + d_y + d_z) \cdot \pi^2 \cdot \sin(\pi x) \sin(\pi y) \sin(\pi z).$ 

Решаемое уравнения имеет аналитическое решение:

$$U^* = \sin(\pi x)\sin(\pi y)\sin(\pi z) \cdot (1 - \exp(-(d_x + d_y + d_z) \cdot \pi^2 t)).$$

Требуется найти решение дискретного уравнения на время t = T.



Команда:

### валя:

Заставляет работать команду и код.

#### никита:

Спонсирует команду мармеладками.

Отвечает за информационную безопасность на кластере.

Команда:

#### САША:

Ответственный за отладку кода и визуализацию.

Эксперт по методу конечных разностей.

#### ЮЛЯ:

Ответственная за чилл в группе.

Не эксперт по методу конечных разностей.

С++ и метод конечных разностей:

```
ouble *cube = new double[N];//текущий куб
ouble *next cube = new double[N]; //следующий куб
/инициализация нулями
emset(cube, '0', sizeof(double)*N);
emset(next cube, '0', sizeof(double)*N);
or (unsigned t = 1; t < NT; ++t){
  // Вложенные циклы по пространственным координатам
  double z = HZ;
   for (unsigned k = NY NX; k < N - NY NX; k += NY NX){
       double y = HY;
       for (unsigned j = NX; j < NY NX - NX; j += NX){
         double x = HX;
          for (unsigned i = 1; i < NX - 1; i += 1){
              // Вычисление нового значения в узле сетки
               unsigned n = i + j + k;
               next cube[n] = cube[n] + HT * (F(x, y, z) + DX * LX(cube[n - 1],
               X += HX;
          V += HY;
      Z += HZ;
  // Обмен указателями между текущим и следующим состояниями
  auto p = cube;
  cube = next cube;
  next cube = p;
```

## Результаты:



| Ср.квадратичное<br>отклонение решения: | Время работы<br>программы (166.408<br>узлов) : |
|----------------------------------------|------------------------------------------------|
| 0.0442                                 | 55 сек                                         |





## MPI (Message Passing Interface)

(подсчитано на кластере ИВМ РАН)





| CPU   | 1    | 2   | 3     | 4    | 6   | 8   | 10  | 12  | 16  | 20  |
|-------|------|-----|-------|------|-----|-----|-----|-----|-----|-----|
| t (s) | 10,1 | 9,8 | 10,04 | 2,98 | 3,1 | 3,3 | 1,7 | 1,3 | 1,4 | 1,3 |

## **OpenMP**

t = 0.082 sec

сюрприз!

```
runtime = 82204 mks
runtime = 82 ms
```

```
for (unsigned t = 1; t < NT; ++t){
    // Вложенные циклы по пространственным координатам
   double z = HZ;
    #pragma omp parallel for collapse(3)
    tor (unsigned k = NY NX; k < N - NY NX; k += NY NX){
       double y = HY;
        for (unsigned j = NX; j < NY NX - NX; j += NX){</pre>
           double x = HX;
           for (unsigned i = 1; i < NX - 1; i += 1){
                // Вычисление нового значения в узле сетки
                unsigned n = i + j + k;
                next cube[n] = cube[n] + HT * (F(x, y, z) + DX *
                X += HX;
            v += HY;
        Z += HZ;
    // Обмен указателями между текущим и следующим состояниями
   auto p = cube;
   cube = next cube;
   next cube = p;
```

## Directed by ROBERT B. WEIDE



Спасибо за внимание!

## С наступающим Новым Годом!



... и всем удачи на защите НИРов 25 дек.