MATH 6220 HOMEWORK 6

COLTON GRAINGER APRIL 16, 2019

- 1. (a) Chapter V, Section 7, 284: 5. If $H_*(X)$ is finitely generated, then $\chi(X) = \sum (-1)^i \dim H_i(X;\Lambda) \quad \textit{for any field } \Lambda.$
 - (b) Chapter VI, Section 1, 321: 3. For spaces X, Y of bounded finite type, $\chi(X\times Y)=\chi(X)\chi(Y).$

COLTON GRAINGER MATH 6220 HW6

Note (See Chapter VI, Section 4 and Example 4.12.). By a graded commutative ring, we will mean a graded abelian group R^* together with a homomorphism of graded abelian groups $\mu \colon R^* \otimes R^* \to R^*$ such that,

- There exists $1 \in \mathbb{R}^0$ which is a two sided unit for μ , and
- $\mu(a \otimes b) = (-1)^{\deg(a) \deg(b)} \mu(b \otimes a).$

The cup product gives a graded commutative ring structure on the cohomology of a space.

2. Chapter VI, Section 1, 321: 2. Let X_p be the space resulting from attaching an n-cell to S^{n-1} by a map of degree p. Use the Künneth Theorem to compute the homology of $X_p \times X_q$ for any p,q.

COLTON GRAINGER MATH 6220 HW6

- **3.** (a) Write down the ring structure of $H^*(S^n)$ and of $H^*(S^n \times S^m)$.
 - (b) We will see later that $H^*(\mathbb{R}P^n; \mathbb{Z}/2) \cong (\mathbb{Z}/2)[x]/\langle x^{n+1} \rangle$ for $x \in H^1(\mathbb{R}P^n; \mathbb{Z}/2)$. Use this to prove that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.
 - (c) Chapter VI, 334: 3. Show that any map $S^4 \to S^2 \times S^2$ must induce the zero homomorphism on $H_4(-)$.

COLTON GRAINGER MATH 6220 HW6

Definition (Alexander-Whitney diagonal approximation). Let $\sigma: \Delta_n \to X$ be a singular *n*-simplex in X. The Alexander-Whitney diagonal approximation explicitly computes the image of σ under the chain map $\Delta: \Delta_*(X) \to \Delta_*(X) \otimes \Delta_*(X)$ from the front and back faces of σ .

$$\Delta \sigma = \sum_{p+q=n} \|\sigma\|_{\text{front}}^p \otimes \|\sigma\|_{\text{back}}^q.$$

Proposition (Computing the cup product). Say f and g are in the cochains with degrees p and q respectively, such that p + q = n. Then

$$\begin{split} (f \smile g)(\sigma) &= (f \otimes g)(\Delta \sigma) \\ &= (f \otimes g) \left(\sum_{i+j=n} \|\sigma\|_{\text{front}}^i \otimes \|\sigma\|_{\text{back}}^j \right) \\ &= (f \otimes g) (\|\sigma\|_{\text{front}}^p \otimes \|\sigma\|_{\text{back}}^q) \\ &= (-1)^{\deg g \deg f} f(\|\sigma\|_{\text{front}}^p) g(\|\sigma\|_{\text{back}}^q) \quad \text{(an element of Λ)}. \end{split}$$

4. Chapter VI, 334: 5. Any two chain maps $\Phi, \Psi \colon \Delta_*(X) \to \Delta_*(X \otimes X)$ that agree with the diagonal approximation

$$\Delta(x) = x \otimes x$$
 in the 0th degree

are chain homotopic: $\Phi \simeq \Psi$.