

CUSTOMER APPROVAL SHEET

C	Company Name	
	MODEL	A104SN03 V1
	CUSTOMER	Title :
	APPROVED	Name :
		TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)
AUO PM : P/N :	<u> </u>	

Doc. version :	0.4
Total pages :	33
Date :	2009/02/04

Product Specification

10.4" COLOR TFT-LCD MODULE

Model Name: A104SN03 V1

Planned Lifetime:From 2008/Dec To 2010/DecPhase-out Control:From 2010/Jul To 2010/DecEOL Schedule:2010/Dec

- < ◆ >Preliminary Specification
- < >Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/33

Record of Revision

Page: 2/33

Contents

Α.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module	4
C.	Electrical Specifications	6
	1. TFT LCD Panel Pin Assignment	6
	2. Backlight Pin Assignment	g
	3. Absolute Maximum Ratings	g
	3. Electrical DC Characteristics	10
	4. Electrical AC Characteristics	13
	5. Serial Interface Characteristics	16
	6. Power On/Off Characteristics	21
D.	Optical Specification	24
E.	Reliability Test Items	27
F.	Packing and Marking	30
	1. Packing Form	30
	2. Module/Panel Label Information	31
	3. Carton Label Information	31
G.	Application Note	32
	Application Circuit	32
Н.	Precautions	33

Page: 3/33

A. General Information

This product is for portable DVD and digital photo frame application.

NO.	Item	Unit	Specification	Remark
1	Screen Size	inch	10.4(Diagonal)	
2	Display Resolution	dot	800RGB(W)x600(H)	
3	Overall Dimension	mm	228.4(W)x175.4(H)x6.2(D)	Note 1
4	Active Area	mm	211.2(W)x158.4(H)	
5	Pixel Pitch	mm	0.264(W)x0.264(H)	
6	Color Configuration		R. G. B. Stripe	Note 2
7	Color Depth		16.7M Colors	Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	400±20	
12	Panel Power Consumption	W	0.43	Note 4
13	Backlight Power Consumption	W	2.97	
14	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include blacklight cable and FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 4~27).

Note 4: Please refer to Electrical Characteristics chapter.

Page: 4/33

B. Outline Dimension

1. TFT-LCD Module

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/33

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 6/33

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: HRS FH28-60S-0.5SH

Pin no	Symbol	I/O	Description	Remark
1	AGND	Р	Ground for analog circuit	
2	AVDD	Р	Analog power supply voltage	
3	VDDIO	Р	Digital interface supply voltage	
4	R0	I	Red data input (LSB)	
5	R1	ı	Red data input	
6	R2	ı	Red data input	
7	R3	ı	Red data input	
8	R4	ı	Red data input	
9	R5	ı	Red data input	
10	R6	ı	Red data input	
11	R7	ı	Red data input (MSB)	
12	G0	ı	Green data input (LSB)	
13	G1	ı	Green data input	
14	G2	I	Green data input	
15	G3	I	Green data input	
16	G4	I	Green data input	
17	G5	I	Green data input	
18	G6	I	Green data input	
19	G7	I	Green data input (MSB)	
20	В0	I	Blue data input (LSB)	
21	B1	I	Blue data input	
22	B2	I	Blue data input	
23	В3	I	Blue data input	
24	B4	I	Blue data input	
25	B5	I	Blue data input	
26	В6	I	Blue data input	
27	В7	I	Blue data input (MSB)	
28	DCLK	I	Data clock input	
29	DE	I	Data enable signal	
30	HSYNC	I	Horizontal sync input. (Negative polarity)	
31	VSYNC	I	Vertical sync input. (Negative polarity)	
32	SCL	I	Serial communication clock input	
33	SDA	I	Serial communication data input	
34	CSB	I	Serial communication chip select	

Page: 7/33

35	NC	-	For test, do not connect (Please leave it open)
36	VDDIO	Р	Digital interface supply voltage
37	NC	-	For test, do not connect (Please leave it open)
38	GND	Р	Ground for digital circuit
39	AGND	Р	Ground for analog circuit
40	AVDD	Р	Analog power supply voltage
41	VCOMin	I	For external VCOM DC input
			Dithering setting DITH = "L" 6bit resolution(LSB last 2 bits of input data
42	DITH	l	turncated)
			DITH = "H" 8bit resolution(Default setting)
43	NC	-	For test, do not connect (Please leave it open)
44	VCOM	0	connect a capacitor
45	V10	I	Gamma correction voltage reference
46	V9	I	Gamma correction voltage reference
47	V8	ı	Gamma correction voltage reference
48	V7	I	Gamma correction voltage reference
49	V6	I	Gamma correction voltage reference
50	V5	I	Gamma correction voltage reference
51	V4	I	Gamma correction voltage reference
52	V3	I	Gamma correction voltage reference
53	V2	I	Gamma correction voltage reference
54	V1	I	Gamma correction voltage reference
55	NC	-	For test, do not connect (Please leave it open)
56	VGH	Р	Positive power for TFT
57	VDDIO	Р	Digital interface supply voltage
58	VGL	Р	Negative power supply for Gate driver.
59	GND	Р	Ground for digital circuit
60	NC	-	For test, do not connect (Please leave it open)

I: Input; P: Power

Page: 8/33

Page: 9/33

2. Backlight Pin Assignment

Recommended connector: JOIN TEK JT1025-1021

Pin no	Symbol	I/O	Description	Remark
1	VLED+	Р	Backlight LED anode	
2	VLED-	Р	Backlight LED cathode	

3. Absolute Maximum Ratings

Item	Symbol	Conditio	Min.	Max.	Unit	Remark
	VDDIO	GND=0	-0.5	5	V	Digital Power Supply
	AVDD	AGND=0	-0.5	15	٧	Analog power supply
	VGH	GND=0	-0.3	42	٧	Gate driver supply voltage
Power voltage	VGL	GND-0	-20	0.3	٧	Gate driver supply voltage
	VGH-VGL		-	40	٧	Gate driver supply voltage
	Vı		-0.3	VDDIO+0.3	٧	Note 1
Input signal voltage	VCOMin		0	5	٧	VCOM DC Voltage
Operating	Тора		-10	60	$^{\circ}\!\mathbb{C}$	
Storage	Tstg		-20	70	$^{\circ}\!\mathbb{C}$	

Note 1: Functional operation should be restricted under ambient temperature (25°C).

Note 2: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Page: 10/33

3. Electrical DC Characteristics

a. Typical Operation Condition (AGND =GND = 0V)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
		VDDIO	3.0	3.3	3.6	٧	Digital Power Supply
		AVDD	10.5	11	11.5	٧	Analog Power Supply
Power Vol	Power Voltage		14	15	16	٧	Positive power supply for gate driver
		VGL	-7.5	-7	-6.5	٧	Negative power supply for gate driver
Input	H Level	VIH	0.7xVDDIO		VDDIO	V	
Signal Voltage	L Level	VIL	GND		0.3xVDDIO	V	
Gamma reference		V1 ~ V5	AVDD/2	-	AVDD – 1	V	Note 1
voltage		V6 ~ V10	1	-	AVDD/2	V	
VCOM	in	V _{CDC}	3.75	3.95	4.15	V	Note 2

Note 1: Gamma suggested circuit is as follows

Page: 11/33

Pin	Voltage(V)
AVDD	11
V1	10
V2	8.5
V3	8
V4	7.57
V5	6.7
V6	4.3
V7	3.43
V8	3
V9	2.5
V10	1

Note2: Based on recommended Gamma 2.2 voltage.

Page: 12/33

b. Current Consumption (AGND=GND=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input current for VDDIO	IVDDIO	VDDIO = 3.3V		10	20	mA	Note 1, 2
Input current for AVDD	IAVDD	AVDD = 11V		24	30	mA	Note 1, 2
Input current for VGH	IVGH	VGH = 15V	-	0.4	0.6	mA	Note 1, 2
Input current for VGL	IVGL	VGL = -7V	-0.6	-0.4		mA	Note 1, 2

Note 1:Test Condition is under typical Eletrical DC and AC characteristics.

Note 2: Test pattern is the following picture.

c. Backlight Driving Conditions

The backlight (LED module, Note 1) is suggested to drive by constant current with typical value.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED light bar Current	Ι _L		300		mA	
Power Consumption	Р		3	3.21	W	Note 1
LED Life Time	L _L	10,000			Hr	Note 2, 3

Note 1: The LED driving condition is defined for LED module (36 LED). The Voltage range will be 8.8V to 10.7V based on suggested driving current set as 300mA.

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25℃ and LED lightbar current = 300mA.

Note 3: If it uses larger LED lightbar current more than 300mA, it maybe decreases the LED lifetime.

Page: 13/33

4. Electrical AC Characteristics

a. Signal AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
DCLK duty cycle		40	50	60	%	t _{cw} / t _{DCLK} x100%
VSYNC setup time	t _{vst}	0			ns	
VSYNC hold time	t_{vhd}	2			ns	
HSYNC setup time	t _{hst}	5			ns	
HSYNC hold time	t _{hhd}	10			ns	
Data setup time	t _{dst}	5			ns	
Data hold time	t _{dhd}	10			ns	
Data enable set-up time	t _{est}	4			ns	
Data enable hold time	t _{ehd}	2			ns	

 $t_{\mbox{\scriptsize H}}$: HSYNC period

 t_{DCLK} : DCLK period

tcw: the width of DCLK high

Page: 14/33

b. Input Timing

Horizontal input timing. (HV mode)

Horizontal input timing. (DE mode)

Horizontal Timing

TOTIZOTICAL TITTING						
Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK frequency	F _{DCLK}	25	40	45	MHz	
DCLK period	T _{DCLK}	22	25	40	ns	
Hsync period (= T _{HD} + T _{HBL})	Тн	1026	1056	1183	DCLK	
Active Area	T _{HD}	-	800	-	DCLK	
Horizontal blanking (= T _{HF} + T _{HE})	T _{HBL}	226	256	383	DCLK	
Hsync front porch	T _{HF}	10	40	167	DCLK	
Delay from Hsync to 1^{st} data input $ (= T_{HW} + T_{HB}) $	T _{HE}		216		DCLK	

Page: 15/33

Hsync pulse width	T _{HW}	1	128	136	DCLK	
Hsync back porch	Тнв	80	88	215	DCLK	

Horizontal input timing (HV mode)

Horizontal input timing (DE mode)

Vertical Timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Vsync period (= T _{VD} + T _{VBL})	T _V	-	628	635	Th	
Active lines	T _{VD}	-	600	-	Th	
Vertical blanking (= T _{VF} + T _{VE})	T _{VBL}	-	28	35	Th	
Vsync front porch	T _{VF}	-	1	8	Th	
GD start pulse delay	T _{VE}	-	27	-	Th	
Vsync pulse width	T _{VW}	1	3	16	Th	
Hsync/Vsync phase shift	T _{VPD}	2	320	-	DCLK	

Page: 16/33

Vertical timing (HV mode)

Vertical timing (DE mode)

5. Serial Interface Characteristics

a. Serial Control Interface AC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Serial data setup time	T _{IST}	120	-	-	ns	
Serial data hold time	T_IHD	120	-	-	ns	
CSB setup time	T _{CST}	120	-	-	ns	
CSB hold time	T _{CHD}	120	-	-	ns	
Serial clock high/low	T _{ssw}	120	-	-	ns	
Serial clock	T _{SCK}	320	-	-	ns	
Delay from CSB to VSYNC	T _{CV}	1	-	-	us	
Chip select distinguish	T _{CD}	1	-	-	us	
Serial data output delay	T _{ID}	-	-	60	ns	CL=20pF

Page: 17/33

b Serial Interface Timing

There is a total of 6 registers each containing several parameters. For a detailed description of the parameters refer to register table. The serial register has read/write function. D[15:12] are the register address, D[11] defines the read or write mode and D[10:0] are the data.

Serial Interface Write sequence

- 1. At power-on, the default values specified for each parameter are taken.
- 2. If less than 16-bit data are read during the CS low time period, the data is cancelled.
 - The write operation is cancelled.
- 3. All items are set at the falling edge of the vertical sync, except R0[1:0].
- 4. When GRB is activated through the serial interface, all registers are cleared, except the GRB value.
- 5. The register setting values are valid when VCC already goes to high and after VSYNC starts.
- 6. It is suggested that VSYNC, HSYNC, DCLK always exists in the same time. But if HSYNC, DCLK stops, only VSYNC operating, the register setting is still valid.
- 7. If the chip goes to standby mode, the register value will still keep. MCU can wake up the chip only by changing standby mode value from low to high.
- 8. The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

Page: 18/33

c. Register Table (Default Value)

Reg	/	ADD	RESS	3	R/W		DATA									
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0		(01)	(0	(01)		U/D	SHL	(1)	(0)	GRB	STB
NO	U	U	U	U	U		(01)	(0	1)	(1)	(0)	(1)	(1)	(0)	(1)	(1)
R2	0	0	1	0	0	×	×	×	HDL							
NZ	U	U	ı	U	U	^	(80h)									
R3	0	0	1	1	0	×	×	(0)	(0)	(0)	(0)	(0)		VI	DL	
N3	U	U	ı	I	U	^	^	(0)	(0)	(0)	(0)	(0)		(10	00)	
R4	0	1	0	0	0	×	×	(1)	(0)	(0)	(0)	(1)	(1111)			
R6	0	1	1	0	0			EnGB12	EnGB11	EnGB10		(0)	EnGB5	EnGB4	EnGB3	(0)
KO	0		l	U	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	(0)) (0)	(1)	(1)	(1)	(0)				

X: Reserved. Please set to "0".

<Note> : Sending serial commands periodically is recommended to improve ESD protection ability.

d. Register Description

a. R0 setting

Address	Bit	Description		Default
0000	[100]	Bits 10-9	AUO Internal Use	01
		Bits7-8	AUO Internal Use	01
		Bit6 (DITH)	Dithering function.	1
		Bit5 (U/D)	Vertical shift direction selection.	0
		Bit4 (SHL)	Horizontal shift direction selection.	1
		Bit3	AUO Internal Use.	1
		Bit2	AUO Internal Use	0
		Bit1 (GRB)	Global reset.	1
		Bit0 (STB)	Standby mode setting.	1

Bit6	DITH function
0	DITH off.
1	DITH on. (default)

Bit5	U/D function
0	Scan down; First line= Gn -> Gn-1 ->> G2 -> Last line=G0. (default)
1	Scan up; First line= G0 -> G2 ->> Gn-1 -> Last line=Gn

Bit4	SHL function
0	Shift left; First data= Y600 -> Y599 ->> Y2 -> Last data=Y1.
1	Shift right; First data= Y1 -> Y2 ->> Y599 -> Last data=Y600. (default)

Page: 19/33

Bit1	GRB function
0	The controller is reset. Reset all registers to default value.
1	Normal operation. (default)

Bit0	STB function
0	T-CON, source driver and DC-DCs converters are off. All outputs are set to GND.
1	Normal operation. (default)

b. R2 setting

Address	Bit	Description		Default
0010	[70]	Bit7-0(HDL)	Horizontal start pulse adjustment function	80H

Bit7-0	HDL function
00h	$T_{HE} = T_{HEtyp} - 128$ CLK period.
80h	T _{HE} = T _{HEtyp} . (default)
FFh	$T_{HE} = T_{HEtyp} + 127$ CLK period.

c. R3 setting

Address	Bit	Description		Default
0011	[80]	Bit8	AUO Internal Use	0
		Bit7	AUO Internal Use	0
		Bit6	AUO Internal Use	0
		Bit5	AUO Internal Use	0
		Bit4	AUO Internal Use	0
		Bit3-0(VDL)	Vertical start pulse adjustment function	1000

Bit3-0	VDL function
0000	$T_{VE} = T_{VEtyp} - 8$ Hs period.
0001	$T_{VE} = T_{VEtyp} - 7$ Hs period.
0010	T _{VE} = T _{VEtyp} – 6 Hs period.
0011	$T_{VE} = T_{VEtyp} - 5$ Hs period.
0100	T _{VE} = T _{VEtyp} – 4 Hs period.
0101	$T_{VE} = T_{VEtyp} - 3$ Hs period.
0110	$T_{VE} = T_{VEtyp} - 2$ Hs period.
0111	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1000	$T_{VE} = T_{VEtyp.}$ (default)
1001	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1010	$T_{VE} = T_{VEtyp} - 2$ Hs period.
1011	$T_{VE} = T_{VEtyp} - 3$ Hs period.
1100	$T_{VE} = T_{VEtyp} - 4$ Hs period.

Page: 20/33

1101	$T_{VE} = T_{VEtyp} - 5$ Hs period.
1110	$T_{VE} = T_{VEtyp} - 6$ Hs period.
1111	$T_{VE} = T_{VEtyp} - 7$ Hs period.

d. R6 setting

Address	Bit	Description		Default
0110	[90]	Bits9	AUO Internal Use	0
		Bits8(EnGB12)	Gamma buffer Enable for V9	1
		Bits7(EnGB11)	Gamma buffer Enable for V8	1
		Bits6(EnGB10)	Gamma buffer Enable for V7	1
		Bits5	AUO Internal Use	0
		Bits4	AUO Internal Use	0
		Bits3(EnGB5)	Gamma buffer Enable for V4	1
		Bits2(EnGB4)	Gamma buffer Enable for V3	1
		Bits1(EnGB3)	Gamma buffer Enable for V2	1
		Bits0	AUO Internal Use	0

Bitx	EnGBx function
0	Gamma buffer for VX is disabled (High Z).
1	Gamma buffer is enabled. VX must be connected externally.

Page: 21/33

6. Power On/Off Characteristics

a. Recommended Power On Register Setting

Reg	,	ADDF	RESS		R/W		DATA									
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	1	0	0	1 1 0 1 0 0 1 1				1			
R1	0	0	0	1	0	0	01		01 2Fh							
R2	0	0	1	0	0	0	0	0				80)h			
R3	0	0	1	1	0	0	0	0	0	0	0	0		10	00	
R4	0	1	0	0	0	0	0	1	1 00 1 1111							
R6	0	1	1	0	0	0	0	1	1	1	0	0	1	1	1	0

Note: Start to provide SPI commend at least after 2 frame.

- 1. Send R15: 000h(Normal register bank) at first.
- 2. Wait at least after more than one frame, send R0: 4D1h(Global Reset)
- 3. After send Global Reset, start to send R0 to R6 recommend register value.

Page: 22/33

b. Recommended Power On Sequence

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 23/33

c. Power Off Sequence

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 24/33

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response T	ime							
Rise		Tr	θ=0°		30	7	ms	Note 3
Fall		Tf				33	ms	
Contrast ra	atio	CR	At optimized viewing angle	300	500			Note 4
	Тор			40	50			
Viowing Anglo	Bottom		CD > 10	50	60		dog	Note 5
Viewing Angle	Left		CR≧10	65	75		deg.	
	Right			65	75			
Brightnes	ss	Y _L	θ=0°	250	300		cd/m ²	Note 6
	\\/hito	Х	θ=0°	0.28	0.33	0.38		
	White	Υ	θ=0°	0.30	0.35	0.40		
		Х	θ=0°	0.550	0.600	0.650		
Chromoticity	Red	Υ	θ=0°	0.324	0.374	0.424		
Chromaticity	C***	Х	θ=0°	0.306	0.356	0.406		
	Green	Υ	θ=0°	0.531	0.581	0.631		
	Dive	Х	θ=0°	0.094	0.144	0.194		
	Blue	Υ	θ=0°	0.043	0.093	0.143		
Uniformit	ТУ	ΔY_L	%	75	80			Note 7

Note 1: Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L = 300mA. To be measured in the dark room.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Note 3: Definition of response time:

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 25/33

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = $\frac{\text{Photo detector output when LCD is at "White" status}}{\text{Photo detector output when LCD is at "Black" status}}$

Note 5. Definition of viewing angle, θ , Refer to figure as below.

- Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
- Note 7: Luminance Uniformity of these 9 points is defined as below:

Page: 26/33

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Page: 27/33

E. Reliability Test Items

No.	Test items	Condition	ns	Remark
1	High Temperature Storage	Ta= 70°C	240Hrs	
2	Low Temperature Storage	Ta= -20°ℂ	240Hrs	
3	High Ttemperature Operation	Tp= 60°C	240Hrs	
4	Low Temperature Operation	Ta=-10°C	240Hrs	
5	High Temperature & High Humidity	Tp= 50℃. 80% RH	240Hrs	Operation
6	Heat Shock	-10°C~60°C / 100 cycl	les 1Hrs/cycle	Non-operation
7	Electrostatic Discharge	Contact = ± 4 kV Air = ± 8 kV, c	•	Note 5
8	Image Sticking 25℃, 4hrs		Note 6	
Ø	Vibration	Stoke : 1.		Non-operation JIS C7021, A-10 condition A : 15 minutes
10	Mechanical Shock	100G . 6ms, ±λ 3 times for each		Non-operation JIS C7021, A-7 condition C
11	Vibration (With Carton)	Random vibr 0.015G ² /Hz from –6dB/Octave from	5~200Hz	IEC 68-34
12	Drop (With Carton)	Height: 60 1 corner, 3 edges,		
13	Pressure	5kg, 5se	С	Note 7

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note5: All test techniques follow IEC6100-4-2 standard.

Page: 28/33

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge : 330Ω, 150pF, 1sec, 8 point, 10times/point Air Discharge : 330Ω, 150pF, 1sec, 8 point, 10times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	

Note 6: Operate with chess board pattern as figure and lasting time and temperature as the conditions.

Then judge with 50% gray level, the mura is less than JND 2.5

Note 7: The panel is tested as figure. The jig isψ10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura · LC bubble)

Page: 29/33

0.4 Version:

30/33 Page:

F. Packing and Marking

1. Packing Form

MAX. CAPACITY: 20MODULES
MAX. WEIGHT: 11 kg
CARTON Dim.:483(L)mm*296(W)mm*355(H)mm

Page: 31/33

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

AUO Module or Panel factory code, represents the final production factory to complete the Product

Product version code, ranging from 0~9 or A~Z (for Version after 9)

-Week Code, the production week when the product is finished at its production process

Example:

501M06ZL06123456781Z05:

Product Manufacturing Week Code: WK50

Product Version: Version 1

Product Manufactuing Factory: M06

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton.

Date from 01 to 31

Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

− A.D. γear, ranging from 1~9 and 0. The single digit code reprents the last number of the γear

Refer to the drawing of packing format for the location and size of the carton label.

Version:

0.4

Page: 32/33

G. Application Note Application Circuit

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 33/33

H. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.
- 22. Please use SSCG(Spread Spectrum Clock Generator) at system for EMI reduction.