

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Birth, Death, & Thermodynamics Tim Riffe

On the one hand

Birth and death are events experienced by individuals. Both are conditioned by randomness, circumstance, and agency.

On the other hand

Birth and death have very strong and steady age patterns. It's easy to think there might be *laws*.

On the one hand

Birth and death are events experienced by individuals. Both are conditioned by randomness, circumstance, and agency.

On the other hand

Birth and death have very strong and steady age patterns. It's easy to think there might be *laws*.

On the one hand

You can *only* enter a population via birth or in-migration. You can *only* leave a population via death or out-migration. (conservation)

On the other hand

The forces of demographic change (mostly fertility and mortality) are bounded and very empirically regular, ergo law-abiding.

Laws? two kinds:

On the one hand

You can *only* enter a population via birth or in-migration. You can *only* leave a population via death or out-migration. (conservation)

On the other hand

The forces of demographic change (mostly fertility and mortality) are bounded and very empirically regular, ergo law-abiding.

laws for mortality

laws for mortality

laws for mortality

laws for fertility

laws for fertility

laws for fertility

laws for fertility: Sex ratio at birth

continuous and discrete time

On the one hand

Populations are composed of a finite number of individuals. Events (birth, death) are usually observed in discrete intervals. Problem for differentiable equations for things?

On the other hand

We can think of underlying risk as a continuous and smooth function. And we can think of population processes in the limit as continuous functions. Plus continuous math is easier on the eyes.

continuous and discrete time

On the one hand

Populations are composed of a finite number of individuals. Events (birth, death) are usually observed in discrete intervals. Problem for differentiable equations for things?

On the other hand

We can think of underlying risk as a continuous and smooth function. And we can think of population processes in the limit as continuous functions. Plus continuous math is easier on the eyes.

Models of understanding

Models of understanding

Models of understanding: and yes, there's math

$$P_B(y,t) = \frac{1}{1 + h \exp(-k(t)(1 - \lambda_B)\phi_s(y))}$$
(8.16)

$$\frac{\partial P_B(y,t)}{\partial t} = -\frac{\partial \ln(k(t))}{\partial t} \left[h \, k(t) \phi_s(y) (\lambda_B - 1) P_B(y,t) (1 - P_B(y,t)) \right]$$

$$\frac{\partial \ln(P_B(y,t))}{\partial t} = \frac{\partial \ln(k(t))}{\partial t} \left[k(t) \phi_s(y) (1 - \lambda_B) (1 - P_B(y,t)) \right]$$
(8.17)

where $\phi_s(y) = \int_{Y_1}^y \mu_s(x) dx$ and h = (1 - g)/g.

The mean value of frailty at age y and time t is:

$$E_{yt}(\lambda_B) = P_B(y, t)(\lambda_B - 1).$$

Taking logs in (8.15) and then derivatives with respect to time we get

$$\frac{\partial \ln(\bar{\mu}(y,t))}{\partial t} = \frac{\partial \ln(k(t))}{\partial t} - \left\{ \frac{(\lambda_B - 1)(\partial P_B(y,t)/\partial t)}{P_B(\lambda_B - 1) + 1} \right\}. \tag{8.18}$$

screenshot from Palloni & Beltran-Sanchez (2016)

Population renewal

Population (millions)

Population renewal

Population (millions)

Population renewal

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- indirect methods of estimation: requires models
- data quality control: requires models
- models of interactions, contagion, mixing: populations are heterogeneous
- models of health and disease transitions
- parametric models of mortality and fertility
- Math is at the core of demography

- the Census Bureau, CDC, NIH, State govs
- academia: Berkeley, Princeton, Penn, IHME
- private and international research: Rand corp, World Bank, UN
- insurance companies (major crossover with actuarial science)

- the Census Bureau, CDC, NIH, State govs
- academia: Berkeley, Princeton, Penn, IHME
- private and international research: Rand corp, World Bank, UN
- insurance companies (major crossover with actuarial science)

- the Census Bureau, CDC, NIH, State govs
- academia: Berkeley, Princeton, Penn, IHME
- private and international research: Rand corp, World Bank, UN
- insurance companies (major crossover with actuarial science)

- the Census Bureau, CDC, NIH, State govs
- academia: Berkeley, Princeton, Penn, IHME
- private and international research: Rand corp, World Bank, UN
- insurance companies (major crossover with actuarial science)