Révisions: DS3

Exercice: Arithmétique

Montrer que $\forall (x,y) \in \mathbb{R}^2$, $\forall n \in \mathbb{N}^*$, on a :

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}.$$

En déduire que $\forall n \in N^*$, 485 | $2^{9n} - 3^{3n}$.

Exercice: Arithmétique

On rappelle que $\mathbb{U}_n=\{z\in\mathbb{C}\mid z^n=1\}$. Soient $a,b\in\mathbb{N}^*$.

Soit $\phi : \mathbb{U}_a \times \mathbb{U}_b \to \mathbb{U}_{ab}$ $(z_1, z_2) \mapsto z_1 z_2.$

- 1) Montrer que ϕ est bien définie, c'est-à-dire que si $z_1 \in \mathbb{U}_a$ et $z_2 \in \mathbb{U}_b$, alors $z_1z_2 \in \mathbb{U}_{ab}$.
- 2) Soient $a, b \in \mathbb{Z}$ premiers entre eux. Justifier qu'il existe $u, v \in \mathbb{Z}$, tels que :

$$\frac{1}{ab} = \frac{u}{a} + \frac{v}{b}.$$

3) En déduire que $e^{\frac{2i\pi}{ab}} \in Im(\phi)$, c'est-à-dire qu'il existe $(z_1,z_2) \in \mathbb{U}_a \times \mathbb{U}_b$, tel que $\phi(z_1,z_2) = e^{\frac{2i\pi}{ab}}$.

Exercice: Complexes

Soit $\omega = a + ib$, $(a, b) \in \mathbb{R} \times \mathbb{R}_+^*$. On pose $z = \frac{\omega - i}{\omega + i}$

1) Montrer que

$$Re(z) = \frac{|\omega|^2 - i}{|\omega|^2 + 1 + 2b}$$
 & $Im(z) = \frac{-2a}{|\omega|^2 + 1 + 2b}$.

- 2) Montrer que $(|\omega|^2 1)^2 + (2a)^2 < (|\omega|^2 + 1)^2$.
- 3) En déduire que |z| < 1.

Exercice: Complexes

On admet que:

$$\sum_{k=0}^{n} e^{ik} = e^{\frac{in}{2}} \frac{\sin\left(\frac{n+1}{2}\right)}{\sin\left(\frac{1}{2}\right)}$$

Calculer

$$\sum_{k=0}^{n} \sin(k) \quad \& \quad \sum_{k=0}^{n} \sum_{j=0}^{n} \sin(k+j)$$

(Bonus): Démontrer la formule donnée en indication

Exercice: Suites

- 1) Encadrer la partie entière d'un nombre x.
- 2) On pose $u_n = \frac{E(x) + E(2x) + \dots + E(nx)}{n^2}$. Encadrer u_n .
- 3) Montrer que $(u_n)_n$ converge, déterminer sa limite.
- 4) En déduire que \mathbb{Q} est dense dans \mathbb{R} . (Indication : on pourra utiliser le fait que si pour tout $a,b\in\mathbb{R}$, $\exists N\in\mathbb{N}, \forall n\geq N, u_n\in]a,b[\cap\mathbb{Q}, \text{ alors }\mathbb{Q} \text{ est dense dans }\mathbb{R}$.