## Use of AI for Log Analysis in CI/CD Pipelines

Bachelor Thesis - Defence

Maid Ališić

July 23, 2025

FH Oberösterreich · Campus Hagenberg

Supervisor: FH-Prof. Dipl.-Ing. Dr. Stefan Wagner

# Road map

**Impact** 

Research questions

Problem context

Results

Data & evaluation

Method Architecture



1/12

Research questions

#### Research questions



# Problem context

• CI/CD emits  $\approx$  10–20 GB of build, test & deploy logs *per day*.

- CI/CD emits  $\approx$  10–20 GB of build, test & deploy logs *per day*.
- Manual grep slows the merge queue; critical faults slip through.

- CI/CD emits  $\approx$  10–20 GB of build, test & deploy logs per day.
- Manual grep slows the merge queue; critical faults slip through.
- Business Service-Level Objective: feedback within ≤ 200 ms per pipeline.

- CI/CD emits  $\approx$  10–20 GB of build, test & deploy logs per day.
- Manual grep slows the merge queue; critical faults slip through.
- Business Service-Level Objective: feedback within ≤ 200 ms per pipeline.
- Logs may expose customer IDs, therefore they must remain on-premises (no cloud export).

1. **Context-sensitivity** – identical tokens can be harmless or fatal.

- 1. Context-sensitivity identical tokens can be harmless or fatal.
- 2. Concept drift each merge may rename tests or switches.

- 1. Context-sensitivity identical tokens can be harmless or fatal.
- 2. Concept drift each merge may rename tests or switches.
- 3. Latency pressure analysis must finish before the job completes.

- 1. **Context-sensitivity** identical tokens can be harmless or fatal.
- 2. **Concept drift** each merge may rename tests or switches.
- 3. Latency pressure analysis must finish before the job completes.
- 4. Alert fatigue regex rule sets grow without bound.

# Method

1. Normalise – strip timestamps, colours, IDs.



- 1. Normalise strip timestamps, colours, IDs.
- 2. Tokenise into uni- and bi-grams.



- 1. Normalise strip timestamps, colours, IDs.
- 2. Tokenise into uni- and bi-grams.
- 3. Weight with TF-IDF.



- 1. Normalise strip timestamps, colours, IDs.
- 2. Tokenise into uni- and bi-grams.
- 3. Weight with TF-IDF.
- 4. Produce sparse vector.



#### Isolation Forest 2 - intuition

 Random binary partitioning isolates unusual lines in fewer splits.



normal potential outlier outlier

#### Isolation Forest 2 - intuition

- Random binary partitioning isolates unusual lines in fewer splits.
- Score  $s(x) = 2^{-h(x)/c(n)} \in [0, 1]$ ; high  $\Rightarrow$  outlier.



normal potential outlier outlier

#### Isolation Forest 2 - intuition

- Random binary partitioning isolates unusual lines in fewer splits.
- Score  $s(x) = 2^{-h(x)/c(n)} \in [0, 1]$ ; high  $\Rightarrow$  outlier.
- CPU-only:  $\approx$  30  $\mu s$  per line.



normal potential outlier outlier

#### Random Forest 3 – error labelling

• Maps each flagged line to a domain-specific error category.



#### Random Forest 3 - error labelling

- Maps each flagged line to a domain-specific error category.
- Majority vote ⇒ deterministic, auditable output.



#### Random Forest 3 - error labelling

- Maps each flagged line to a domain-specific error category.
- Majority vote ⇒ deterministic, auditable output.
- Nightly retrain < 90 s; warm-start handles drift.



# Architecture \_\_\_\_\_

#### End-to-end pipeline (< 40 ms inline)



Data & evaluation

• 117 k macOS logs + 655 k OpenSSH logs



- 117 k macOS logs + 655 k OpenSSH logs
- 504 labelled anomalies (class imbalance  $\approx 1$  : 200)



- 117 k macOS logs + 655 k OpenSSH logs
- 504 labelled anomalies (class imbalance  $\approx 1$  : 200)
- Split 70 / 15 / 15 % (training / validation / testing)



- 117 k macOS logs + 655 k OpenSSH logs
- 504 labelled anomalies (class imbalance  $\approx 1$  : 200)
- Split 70 / 15 / 15 % (training / validation / testing)
- Metrics: Precision, Recall and  $F_1$



#### Results

#### Headline numbers

|                                | Precision | Recall | $F_1$ |
|--------------------------------|-----------|--------|-------|
| Detection (Isolation Forest)   | 0.91      | 0.88   | 0.89  |
| Classification (Random Forest) | 0.99      | 0.99   | 0.99  |
| Regex baseline                 | 0.286     | 0.286  | 0.286 |

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

# Impact

## Operational impact

 $\bullet \ \ \, \textbf{Latency} : \ \, \textbf{minutes} \, \to \, \textbf{milliseconds} \, \, (\text{inline verdict}).$ 

#### Operational impact

- Latency: minutes  $\rightarrow$  milliseconds (inline verdict).
- Cost-free: 2.3 k lines of code, CPU-only, no token fees.

#### Operational impact

- Latency: minutes  $\rightarrow$  milliseconds (inline verdict).
- Cost-free: 2.3 k lines of code, CPU-only, no token fees.
- GDPR compliant: logs never leave the VPN.

Wrap-up

#### Take-away

# Light-weight on-prem ML matches AlOps SaaS

without latency, cost or privacy pain.

 ${\sf Questions} \ {\sf welcome-thank} \ {\sf you!}$