PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-199722

(43)Date of publication of application: 27.07.1999

(51)Int.CI.

CO8L 23/10 CO8K 3/32

COSK 5/3477 COSK 5/521

CO8K 5/527 CO8K 5/5399

(21)Application number: 10-002635

(71)Applicant: GRAND POLYMER:KK

(22)Date of filing:

08.01.1998

(72)Inventor: TAN JUNJI

(54) FLAME RETARDANT PROPYLENE-BASED RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a resin composition which generates less toxic gas and corrosive gas and has improved flame retardancy, appearance and mechanical properties by making the composition contain a polypropylenebased resin, an ammonium polyphophate and a specific phosphorous-nitrogen-based flame retardant. SOLUTION: 100 pts.wt. of a propylene-based resin is mixed with 10-100 pts.wt. of a phosphorous-nitrogen-based flame retardant comprising a mixture of an ammonium polyphosphate and not less than 2 phosphorous-containing compounds selected from compounds represented by formulas I-III and at least one nitrogen-containing organic cyclic compound selected from compounds represented by formulas IV-V or compounds obtained by chemically bonding of the same of different kinds of plural compounds selected from the compounds represented by formulas IV-V (wherein A-D are each O, S or imino; E, F, Y and Z are each O or S; m and n are each 0 or 1; R1 and R2 are each an aliphatic hydrocarbon group, etc.; R3-R5 are each an aliphatic hydrocarbon group, a 6-12C aromatic hydrocarbon

11

group, etc.; R6-R8 are each a hydroxyl group, an amino group or the like; R9-R11 are each hydrogen, an 1-12C aliphatic hydrocarbon group, an 1-12C aromatic hydrocarbon group or the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] (A) The mixture of at least two kinds of Lynn content compounds chosen from the group which consists of the propylene system resin 100 weight section, (B) ammonium polyphosphate (b1-1) and the following formula (b1-2) thru/or (b1-4) a compound shown (b1), the following formula (b2-1) thru/or (b2-2) the compound shown -- and (b2-1) -- or (b2-2) the compound which two or more compounds of the congener chosen from the compound group shown or different species combined chemically -- since -- fire-resistant propylene system resin constituent; characterized by coming to contain Lynn and the nitrogen flame retardant 10 which consists of at least one kind of nitrogen content ring compound (b2) chosen from the becoming group - the 100 weight sections

[Formula 1]
$$R' \longrightarrow E \longrightarrow P$$

$$B \longrightarrow D$$

$$Z$$

$$R' \longrightarrow E \longrightarrow P$$

$$Z$$

A, B, C, and D are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. E and F They are an oxygen atom or a sulfur atom independently, respectively. m and n respectively -- independent -- 0 or 1 -- it is -- Y and Z -- respectively -- independent -- an oxygen atom or a sulfur atom -- it is -- R1 And R2 Independently, it is an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical, and these radicals may have the substituent, respectively. [Formula 2]

••• (b1-2)

$$R^{1} \longrightarrow E \longrightarrow P$$
 R^{3}
 R^{4}

••• (b
$$1-3$$
)

A and B are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. E It is an oxygen atom or a sulfur atom, and m is 0 or 1. Y It is an oxygen atom or a sulfur atom, and is R1. They are an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical. these radicals -- a substituent -- having -- **** -- R3 And R4 Independently, respectively The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.] [Formula 3]

$$R^{3}$$
 B
 $P=Y$

· · · (b1-4)

A, B, and C are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. Y It is an oxygen atom or a sulfur atom, and is R5. The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, The aromatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.]

$$\mathbb{R}^{\frac{5}{5}}$$
 \mathbb{N}
 \mathbb{N}

Independently R6, R7, and R8 among [type, respectively A hydroxyl group, The amino group, a monopermutation alkylamino radical, a JI permutation alkylamino radical, a piperidino radical, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.] [Formula 5]

Independently R9, and R10 and R11 among [type, respectively A hydrogen atom, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.] .

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] This invention relates to the fire-resistant propylene system resin constituent of the non-halogen system which can offer the Plastic solid which has the outstanding appearance water resisting property and the outstanding machine physical properties while there is little generating of a toxic gas and corrosive gas and it has advanced fire retardancy in more detail about a fire-resistant propylene system resin constituent.

[0002]

[Background of the Invention] Since propylene system resin has the outstanding mechanical property, an electrical property, workability, chemical resistance, etc., it is processed into an injection-molded product, a blow molding article, a film, a sheet, fiber, etc., and is used for various applications. However, propylene system resin has the fault of being very easy to burn.

[0003] For this reason, the attempt which make it hard to burn propylene system resin from the former has been made. Most generally the approach of adding to propylene system resin is used, using a halogen system compound and antimony oxide as a flame retarder. However, the propylene system resin constituent obtained by such flameproofing approach has the fault of generating a toxic gas and corrosive gas, such as hydrogen halide, at the time of combustion of the Plastic solid, and shaping.

[0004] On the other hand, there is also an approach using metal hydrates, such as a magnesium hydroxide, as the flameproofing approach of not using a halogen system compound. However, since the fire-resistant effectiveness of the approach of adding to propylene system resin by making such a metal hydrate into a flame retarder is low and it needs to make [many / remarkably] the addition of a metal hydrate, specific gravity becomes large and the Plastic solid of the propylene system resin constituent obtained by this flameproofing approach has the fault that machine physical properties are spoiled remarkably.

[0005] Moreover, as other flameproofing approaches of not using a halogen system compound, while adding

ammonium polyphosphate as a flame retarder to propylene system resin, multiplication-ized agents, such as a melamine and pentaerythritol, and the flameproofing approach added collectively are learned. However, this approach is not enough as fire retardancy, either, a flame retarder must be added so much by it, and, moreover, it has the fault that only a bad waterproof Plastic solid is acquired, from the propylene system resin constituent obtained by this approach.

[0006] Furthermore, the flameproofing approach which uses together the nitride which contains ammonium polyphosphate and a polyamide to polyolefine on U.S. Pat. No. 4,312,805 specifications is indicated. However, if this approach is used, although fire-resistant improvement will be found, the Plastic solid which has a good appearance is not acquired that it is hard to say that advanced fire retardancy is discovered. [0007] Moreover, the approach of adding an AMAIDO compound in ammonium polyphosphate, a melamine, and the fire-resistant system of pentaerythritol is indicated by JP,6-184374,A. However, the water resisting property of the Plastic solid of the propylene system resin constituent which is not obtained but is moreover obtained by this approach of fire retardancy sufficient by this approach is not enough, either.

[0008] Then, by invention-in-this-application persons' inquiring wholeheartedly about flameproofing of propylene system resin under such a situation, and adding the specific compound group which contained the Lynn atom and the nitrogen atom at a specific rate While there was very little generating of toxic gas and corrosive gas and it had advanced fire retardancy, it came to complete a header and this invention for the fire-resistant propylene system resin constituent which can offer the Plastic solid which has an appearance, the outstanding water resisting property, and the outstanding machine physical properties being obtained.

[0009]

[Objects of the Invention] This invention tends to solve the problem accompanying the above conventional techniques, and it aims at offering the fire-resistant propylene system resin constituent of the non-halogen system which can fabricate the Plastic solid which has an appearance, the outstanding water resisting property, and the outstanding machine physical properties while there is very little generating of toxic gas and corrosive gas and it has advanced fire retardancy.

[0010]

[Summary of the Invention] The fire-resistant propylene system resin constituent concerning this invention (A) Mixture of at least two kinds of Lynn content compounds chosen from the group which consists of the propylene system resin 100 weight section, (B) ammonium polyphosphate (b1-1) and the following formula (b1-2) thru/or (b1-4) a compound shown (b1), the following formula (b2-1) thru/or (b2-2) the compound shown -- and (b2-1) -- or (b2-2) the compound which two or more compounds of the congener chosen from the compound group shown or different species combined chemically -- since -- it is characterized by coming to contain Lynn and the nitrogen flame retardant 10 which consists of at least one kind of nitrogen content ring compound (b2) chosen from the becoming group - the 100 weight sections.

[0012] A, B, C, and D are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. E and F They are an oxygen atom or a sulfur atom independently, respectively. m and n respectively -- independent -- 0 or 1 -- it is -- Y and Z -- respectively -- independent -- an oxygen atom or a sulfur atom -- it is -- R1 And R2 Independently, it is an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical, and these radicals may have the substituent, respectively.]

[0014] A and B are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. E It is an oxygen atom or a sulfur atom, and m is 0 or 1. Y It is an oxygen atom or a sulfur atom, and is R1. They are an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical. these radicals -- a substituent -- having -- **** -- R3 And R4 Independently, respectively The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.]

[Formula 8]
$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$\begin{array}{c}
P = Y \\
\dots (b 1 - 4)
\end{array}$$

[0016] A, B, and C are an oxygen atom, a sulfur atom, or an imino group independently among [type, respectively. Y It is an oxygen atom or a sulfur atom, and is R5. The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, The aromatic hydrocarbon radical of the carbon atomic numbers 6-12, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.]

[0018] Independently R6, R7, and R8 among [type, respectively A hydroxyl group, The amino group, a mono-permutation alkylamino radical, a JI permutation alkylamino radical, a piperidino radical, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.]

[0020] Independently R9, and R10 and R11 among [type, respectively A hydrogen atom, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, they are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.]

[0021] [Detailed Description of the Invention] The fire-resistant propylene system resin constituent applied to this invention below is explained concretely. The fire-resistant propylene system resin constituent concerning this invention comes to contain propylene system resin (A), and Lynn and a nitrogen flame retardant (B). [0022] As propylene system resin (A) used by propylene system resin (A) this invention, they are the homopolymer of a propylene, a propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and the 3-methyl -1. - A butene, 4-methyl -1 - alpha, such as a pentene - A random copolymer or a block copolymer with an olefin is mentioned. These copolymers may be isotactic copolymers and may be syndiotactic copolymers.

[0023] These propylene system resin (A) is independent, or can be combined two or more sorts and can be used.

With Lynn and the nitrogen flame retardant (B) used by Lynn and nitrogen flame retardant (B) this

invention The mixture of at least two kinds of Lynn content compounds chosen from the group which consists of ammonium polyphosphate (b1-1) and a formula (b1-2) mentioned later thru/or (b1-4) a compound shown (b1), The compound which two or more compounds of the congener chosen from the formula (b2-1) mentioned later thru/or (b2-2) the compound shown and a formula (b2-1) thru/or (b2-2) the compound group shown or different species combined chemically, since -- the flame retarder which consists of at least one kind of nitrogen content ring compound (b2) chosen from the becoming group is pointed out. [0024] The ammonium polyphosphate usually marketed can be used as the [mixture [of the Lynn content compound] (b1)] above-mentioned ammonium polyphosphate (b1-1).
 [0025] These ammonium polyphosphate may be denaturation ammonium polyphosphate which covered the front face with a melamine, melamine resin, and a fluorine system polymer, and after covering it with a melamine further, it may be melamine bridge formation ammonium polyphosphate which carried out bridge formation-ized processing. If the denaturation ammonium polyphosphate which covered such a front face with the melamine etc. is used, the water resisting property of propylene system resin will improve. [0026]

[Formula 11]
$$R' - (E) = P - R^{2}$$

$$Z$$

$$(b.1-2)$$

[0027] A, B, C, and D are an oxygen atom, a sulfur atom, or an imino group independently among a formula, respectively. E and F They are an oxygen atom or a sulfur atom independently, respectively. m and n Independently, it is 0 or 1, Y and Z are an oxygen atom or a sulfur atom independently, respectively, and it is R1, respectively. And R2 Independently, it is an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical, and these radicals may have the substituent, respectively.

[0028] R1 And R2 As an aliphatic hydrocarbon radical which can be set Specifically A methyl group, an ethyl group, n-propyl group, an isopropyl group, n-butyl, an isobutyl radical, t-butyl, n-pentyl radical, an isopentyl radical, A neopentyl radical, n-hexyl group, an iso hexyl group, n-heptyl radical, n-octyl radical, sec-butyl, a sec-amyl group, a sec-pentyl radical, Alkyl groups, such as n-nonyl radical, n-decyl group, n-undecyl radical, n-dodecyl, 1-hydroxyethyl radical, 2-hydroxyethyl radical, 1-aminoethyl radical, and 2-aminoethyl radical, etc. are mentioned.

[0029] Moreover, specifically as an alicycle group hydrocarbon group, a cyclohexyl radical, 1-cyclohexenyl group, a methylcyclohexyl radical, a dimethyl cyclohexyl radical, a deca hydronalium naphthyl group, a tricyclo deca nil radical, a hydroxy cyclohexyl radical, an amino cyclohexyl radical, etc. are mentioned. [0030] Moreover, specifically as an aromatic hydrocarbon radical, aryl groups, such as a phenyl group, a tolyl group, a naphthyl group, a xylyl group, a mesityl radical, an ethyl phenyl group, a propyl phenyl group, a buthylphenyl radical, a diethyl phenyl group, a hydroxyphenyl radical, an aminophenyl radical, a dipropyl phenyl group, and a dibutyl phenyl group, etc. are mentioned.

[0031] It is desirable that A, B, C, and D are an oxygen atom or an imino group (-NH-), it is desirable that E and F do not have E and F an oxygen atom, or m and n0, it is desirable that both Y and Z are oxygen atoms, and the compound expressed with the above-mentioned formula (b1-2) is R1 and R2. It is desirable that they are a phenyl group, a methyl group, or an ethyl group.

[0032] The compound which the compound shown by following type (b1-2a) - (b1-2f) is mentioned as a concrete compound, and is shown by the formula (b1-2a) also in these is more desirable. In addition, Ph, Me, and Et in these formulas show a phenyl group, a methyl group, and an ethyl group, respectively. [0033]

[0034] [Formula 13]

••• (b 1-3)

[0036] A and B are an oxygen atom, a sulfur atom, or an imino group independently among a formula, respectively. E It is an oxygen atom or a sulfur atom, and m is 0 or 1. Y It is an oxygen atom or a sulfur atom, and is R1. They are an aliphatic hydrocarbon radical, an alicycle group hydrocarbon group, or an aromatic hydrocarbon radical. these radicals -- a substituent -- having -- **** -- R3 And R4 Independently, respectively The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.

[0037] R1 R1 in the formula (c1-2) mentioned above It is the same. R3 And R4 As an aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 which can be set Specifically A methyl group, an ethyl group, n-propyl group, an isopropyl group, n-butyl, an isobutyl radical, t-butyl, n-pentyl radical, an isopentyl radical,

A neopentyl radical, n-hexyl group, an iso hexyl group, n-heptyl radical, n-octyl radical, sec-butyl, a sec-amyl group, a sec-pentyl radical, n-nonyl radical, n-decyl group, n-undecyl radical, n-dodecyl, etc. are mentioned. [0038] Moreover, R3 And R4 Specifically as an aromatic hydrocarbon radical of the carbon atomic numbers 6-12 which can be set, a phenyl group, a tolyl group, a naphthyl group, a xylyl group, a mesityl radical, an ethyl phenyl group, a propyl phenyl group, a buthylphenyl radical, a diethyl phenyl group, a dipropyl phenyl group, a dibutyl phenyl group, etc. are mentioned.

[0039] R3 And R4 As an aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at

[0039] R3 And R4 As an aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group which can be set Specifically A methyl group, an ethyl group, n-propyl group, an isopropyl group, n-butyl, an isobutyl radical, t-butyl, n-pentyl radical, an isopentyl radical, A neopentyl radical, n-hexyl group, an iso hexyl group, n-heptyl radical, The radical by which hydrogen atoms, such as n-octyl radical, sec-butyl, a sec-amyl group, a sec-pentyl radical, n-nonyl radical, n-decyl group, n-undecyl radical, and n-dodecyl, are permuted with 1 or two or more hydroxyl groups is mentioned.

[0040] R3 And R4 Specifically as an aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group which can be set, the radical by which hydrogen atoms, such as a phenyl group, a tolyl group, a naphthyl group, a xylyl group, a mesityl radical, an ethyl phenyl group, a propyl phenyl group, a buthylphenyl radical, a diethyl phenyl group, a dipropyl phenyl group, and a dibutyl phenyl group, are permuted with 1 or two or more hydroxyl groups is mentioned.

[0041] R3 And R4 As an aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group which can be set Specifically A methyl group, an ethyl group, n-propyl group, an isopropyl group, n-butyl, an isobutyl radical, t-butyl, n-pentyl radical, an isopentyl radical, A neopentyl radical, n-hexyl group, an iso hexyl group, n-heptyl radical, The radical by which hydrogen atoms, such as n-octyl radical, sec-butyl, a sec-amyl group, a sec-pentyl radical, n-nonyl radical, n-decyl group, n-undecyl radical, and n-dodecyl, are permuted by 1 or two or more amino groups is mentioned.

[0042] R3 And R4 Specifically as an aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group which can be set, the radical by which hydrogen atoms, such as a phenyl group, a tolyl group, a naphthyl group, a xylyl group, a mesityl radical, an ethyl phenyl group, a propyl phenyl group, a buthylphenyl radical, a diethyl phenyl group, a dipropyl phenyl group, and a dibutyl phenyl group, are permuted by 1 or two or more amino groups is mentioned.

[0043] Moreover, it is desirable that A and B are an oxygen atom or an imino group (-NH-), it is desirable that E does not have [an oxygen atom or m] E 0, it is desirable that Y is an oxygen atom, and the compound expressed with the above-mentioned formula (b1-3) is R1. It is desirable that they are a phenyl group, a methyl group, or an ethyl group, and it is R3. And R4 It is desirable that they are a methyl group, an ethyl group, or a hydroxymethyl group.

[0044] The compound which the compound shown by following type (b1-3a) - (b1-3l.) is mentioned as a concrete compound, and is shown by the formula (b1-3a) also in these is more desirable. In addition, Ph, Me, and Et in these formulas show a phenyl group, a methyl group, and an ethyl group, respectively. [0045]

[Formula 15]

[0049] A, B, and C are an oxygen atom, a sulfur atom, or an imino group independently among a formula, respectively. Y It is an oxygen atom or a sulfur atom, and is R5. The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, The aromatic hydrocarbon radical of the carbon atomic numbers 6-12, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, They are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, or the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.

[0050] R5 R3 in the formula (b1-3) mentioned above Or R4 It is the same. It is desirable that A, B, and C are an oxygen atom or an imino group (-NH-), it is desirable that Y is an oxygen atom, and the compound expressed with the above-mentioned formula (b1-4) is R5. It is desirable that they are a methyl group, an ethyl group, a hydroxymethyl group, a hydroxyethyl radical or an aminomethyl radical, and an aminoethyl radical.

[0051] The compound which the compound shown by following type (b1-4a) - (b1-4f) is mentioned as a concrete compound, and is shown by the formula (b1-4a) also in these is more desirable. [0052]

[0053] [Formula 20]

$$H_2N$$
 $P=0$ $(b 1-4 e)$

$$H_2N$$
 \cdots $(b\ 1-4\ f)$

[0054] In this invention, the mixture which combined two or more kinds of Lynn content compounds chosen from the compound group from which the above differs at least as mixture (b1) of the Lynn content compound is used. The fire retardancy of propylene system resin can be raised by using the mixture (b1) of the Lynn content compound which consists of such a combination.

[0055] The following combination is desirable, although especially limitation will not be carried out if the combination of the Lynn content compound as mixture (b1) of the Lynn content compound is the compound hung up above.

- (1) Put together as the compound chosen from the compound group indicated to be ammonium polyphosphate (b1-1) by the formula (b1-2).
- (2) Put together as the compound chosen from the compound group indicated to be ammonium polyphosphate (b1-1) by the formula (b1-3).
- (3) Put together as the compound chosen from the compound group indicated to be ammonium polyphosphate (b1-1) by the formula (b1-4).
- (4) Put together as the compound chosen from the compound group shown by the formula (b1-2), and the compound chosen from the compound group shown by the formula (b1-4).
- (5) Put together as the compound chosen from the compound group shown by the formula (b1-3), and the compound chosen from the compound group shown by the formula (b1-4).
- (6) Put together as ammonium polyphosphate (b1-1), the compound chosen from the compound group shown by the formula (b1-2), and the compound chosen from the compound group shown by the formula (b1-3).
- (7) Put together as ammonium polyphosphate (b1-1), the compound chosen from the compound group shown by the formula (b1-2), and the compound chosen from the compound group shown by the formula (b1-4).
- (8) Put together as ammonium polyphosphate (b1-1), the compound chosen from the compound group

shown by the formula (b1-3), and the compound chosen from the compound group shown by the formula (b1-4).

(9) Put together as the compound chosen from the compound group shown by the formula (b1-2), the compound chosen from the compound group shown by the formula (b1-3), and the compound chosen from the compound group shown by the formula (b1-4).

(10) Put together as ammonium polyphosphate (b1-1), the compound chosen from the compound group shown by the formula (b1-2), the compound chosen from the compound group shown by the formula (b1-3), and the compound chosen from the compound group shown by the formula (b1-4).

[0056] It is thought that the fire-resistant improvement effectiveness is discovered in multiplication, and fire retardancy of mixture (b1) of the Lynn content compound which consists of such a combination improves notably since the temperature and the device which it acts as a flame retarder of each combined compound differ from each other.

[0057] moreover, when the whole mixture (b1) of the Lynn content compound is made into 100 % of the weight, in combining two components as this ratio to combine It is desirable that one component combines in 10 - 90% of the weight of the range, and it is desirable that one component combines in 10 - 80% of the weight of the range in combining three components, and when combining four components, it is desirable [one component] to combine in 10 - 70% of the weight of the range.

[0058] Moreover, the Lynn content compound chosen from the group which consists of a compound shown by the formula (b1-2), the formula (b1-3), and the formula (b1-4) may be one kind of compound from the compound group shown by each formula, or may be the mixture of two or more kinds of compounds. [0059] With the [nitrogen content ring compound (b2)] above-mentioned nitrogen content ring compound (b2) The compound shown by the following formula (b2-1), the compound shown by (b2-2), Two or more compounds of the congener chosen from the compound group which reaches (b2-1), thru/or (b2-2) is shown, or different species are at least one kind of nitrogen content ring compounds chosen from the group which consists of a compound combined chemically.

[0061] The inside of a formula, R6, and R7 And R8 Independently, respectively A hydroxyl group, amino group, A mono-permutation alkylamino radical, a JI permutation alkylamino radical, a piperidino radical, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, They are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.

[0062] R6 and R7 And R8 Specifically as a mono-permutation alkylamino radical which can be set, a methylamino radical, an ethylamino radical, n-propylamino radical, an isopropylamino radical, n-butylamino radical, the isobutyl amino group, a sec-butylamino radical, t-butylamino radical, n-pentylamino radical, the isopentyl amino group, the neopentyl amino group, n-hexylamino radical, n-heptyl amino group, etc. are mentioned.

[0063] Moreover, R6 and R7 And R8 Specifically as a JI permutation alkylamino radical which can be set, they are a dimethylamino radical, a diethylamino radical, and G n. - A propylamino radical, a diisopropylamino radical, G n - A butylamino radical, the diisobutyl amino group, a G sec-butylamino radical, G t - A butylamino radical, a methylethylamino radical, etc. are mentioned.

[0064] R6 and R7 And R8 The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 which can be set, The aromatic hydrocarbon radical of the carbon atomic numbers 6-12, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, The aromatic

hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group and the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group are R3 in the formula (b1-3) mentioned above, and R4. And R5 in a formula (b1-4) It is the same. [0065] As a compound shown by the above-mentioned formula (b2-1) Specifically, they are a melamine, cyanuric acid, and 2-methyl. - It is 4 and 6. - Diamino - Triazine, 2, 4-dimethyl -6 - Amino - Triazine, 2-methyl - 4 Six - Dihydroxy - Triazine, 2, 4-dimethyl -6 - Hydroxy - Triazine, trimethyl triazine, tris (hydroxymethyl) triazine, tris (1-hydroxyethyl) triazine, tris (2-hydroxyethyl) triazine, etc. are mentioned. [0066]

[0067] Independently R9, and R10 and R11 among a formula, respectively A hydrogen atom, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12, the aromatic hydrocarbon radical of the carbon atomic numbers 6-12, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, They are the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, or the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group.

[0068] R9, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 in R10 and R11, The aromatic hydrocarbon radical of the carbon atomic numbers 6-12, the aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one hydroxyl group, The aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one hydroxyl group, The aliphatic hydrocarbon radical of the carbon atomic numbers 1-12 containing at least one amino group, and the aromatic hydrocarbon radical of the carbon atomic numbers 6-12 containing at least one amino group R3 in the formula (b1-3) mentioned above, R4, and R5 in a formula (b1-4) And R6 in a formula (b2-1), R7, and R8 It is the same. [0069] Specifically as a compound shown by the above-mentioned formula (b2-2), isocyanuric acid, tris (1-hydroxyethyl) isocyanurate, tris (2-hydroxyethyl) isocyanurate, tris (hydroxymethyl) isocyanurate, triallyl isocyanurate, etc. are mentioned.

[0070] With moreover, the compound which two or more compounds of the congener chosen from the above-mentioned formula (b2-1) thru/or (b2-2) the compound group shown or different species combined chemically The compound which joins together in ion like a melamine SHIANU rate, and forms the salt, And the following formula (b2-3) at which the hydroxyl group between the molecules of the compound to contain [two or more] combined and oligomerized a hydroxyl group like tris (hydroxyethyl) isocyanurate by dehydration, and (b2-4) (b2-5) a compound as shown are mentioned.

[0072] [The inside of a formula and n are the integers of 1-10.]

[0074] [The inside of a formula and n are the integers of 1-10.] [0075]

[0076] [The inside of a formula and n are the integers of 1-10.]

Thus, since the solubility to water falls and the water resisting property of the compound which oligomerized improves, it is desirable.

[0077] As Lynn and a nitrogen flame retardant (B) used by this invention, it is desirable that it is the mixture of the mixture (b1) of the Lynn content compound and a nitrogen content ring compound (b2). As this ratio to combine, although you may be what kind of compounding ratio When the whole Lynn and nitrogen flame retardant (B) are made into 100 % of the weight, the mixture (b1) of the Lynn content compound 30 - 98 % of the weight, It is preferably desirable that it is 50 - 90 % of the weight still more preferably 40 to 95% of the weight, and it is desirable for a nitrogen content ring compound (b2) to be 50 - 10 % of the weight still more preferably 60 to 5% of the weight preferably 70 to 2% of the weight. If the mixture (b1) and the nitrogen content ring compound (b2) of the Lynn content compound are combined by such ratio, the resin constituent excellent in fire retardancy can be obtained.

[0078] Lynn and a nitrogen flame retardant (B) -- the propylene system (resin A) 100 weight section -- receiving -- the 10 - 100 weight section -- desirable -- 10 - 60 weight section -- 15 - 50 weight section comes out comparatively still more preferably, and it is used.

[0079] It can offer the Plastic solid excellent in the balance of an appearance, a water resisting property, and machine physical properties while it is excellent in fire retardancy, since the fire-resistant propylene system resin constituent concerning fire-resistant propylene system resin constituent this invention is blended at a specific rate which propylene system resin (A), and Lynn and a nitrogen flame retardant (B) mentioned above.

[0080] Into the fire-resistant propylene system resin constituent concerning this invention, it can blend in the range which does not spoil the purpose of this invention for metal hydrates, such as other known non-halogen series flame retardants, for example, red phosphorus, a magnesium hydroxide, and an aluminum hydroxide, etc. other than the above-mentioned component (A) and (B) **.

[0081] Moreover, as for the fire-resistant propylene system resin constituent concerning this invention, it is desirable to contain finishing agents, such as a silane coupling agent and a titanate system coupling agent. Into the fire-resistant propylene system resin constituent concerning this invention, an additive or other polymers, such as reinforcing agents, such as a glass fiber, a bulking agent, an extending agent, a stabilizer, a plasticizer, lubricant, an antistatic agent, and a rusting agent, can be blended in the range which does not spoil the purpose of this invention.

[0082] The various approaches adopted in case a plasticizer, a stabilizer, a coloring agent, or a bulking agent

is generally blended are employable as preparation of the fire-resistant propylene system resin constituent concerning preparation this invention of a fire-resistant propylene system resin constituent. The blend of each component, such as propylene system resin (A), and Lynn, a nitrogen flame retardant (B), can be performed using common mixers, such as an extruder and a PURASUTO mill.

[0083]

[Effect of the Invention] While the fire-resistant propylene system resin constituent concerning this invention has very little generating of toxic gas and corrosive gas and having advanced fire retardancy, the Plastic solid which has an appearance, the outstanding water resisting property, and the outstanding machine physical properties can be offered.

[0084] The fire-resistant propylene system resin constituent concerning this invention can be used suitable for the large application from household articles to an industrial use article, for example, an electrical part, electronic parts, autoparts, a machine mechanism element, a pipe, an electric wire, etc. [0085]

[Example] Hereafter, although an example explains this invention, this invention is not limited to these examples.

[0086] In addition, the flame retarder used in the example and the example of a comparison is as follows. Mixture of flame-retarder NA ammonium polyphosphate (b1-1) and an isocyanurate compound (b2-2) (corresponding compound);

Trade name HOSUTAFURAMU (Hostaflam) AP 750, flame-retarder NB melamine denaturation ammonium polyphosphate by Hoechst A.G. (b1-1);

Trade name HOSUTAFURAMU (Hostaflam) AP 462, the flame-retarder NC melamine by Hoechst A.G. (b2-1) (corresponding compound); flame-retarder ND melamine SHIANU rate made from Wako Pure Chem Industry (b2) (corresponding compound);

Trade name The Lynn content compound expressed with the bottom type of the MC-flame retarder NE made from 440 and Nissan Chemistry (compound shown by the formula (b1-2a) mentioned above) [0087]

[0088] The Lynn content compound expressed with the bottom type of flame-retarder NF (compound shown by the formula (b1-3a) mentioned above)
[0089]

[0090] The Lynn content compound expressed with the bottom type of flame-retarder NG (compound shown by the formula (b1-4a) mentioned above)
[0091]

[0092] Flame-retarder NH triphenyl phosphate [(C6H5O) 3PO] (b1) Flame-retarder NI pentaerythritol made from; (phosphorus compounds other than Lynn content compound to constitute) Wako Pure Chem Industry; product made from Wako Pure Chem Industry [0093]

[Example 1] As opposed to the propylene homopolymer (230-degree-C, 10 MI=12g/, minutes at time of 2.16kg load) 100 weight section as a flame retarder -- the flame-retarder NA19 weight section, the flame-retarder NE6 weight section, and IRUGA NOx 1010 (trade name; -- the Ciba-Geigy make --) the phenolic antioxidant 0.1 weight section and IRUGAFOSU 168 (trade name; -- the Ciba-Geigy make --) The Lynn system stabilizer 0.1 weight section and the calcium stearate 0.1 weight section were mixed, and melting

kneading was carried out at the temperature of 230 degrees C using the lab PURASUTO mill [made in Oriental Energy Machine factory].

[0094] The various test pieces which carry out press forming of the obtained propylene system resin constituent at 230 degrees C and the cooling temperature of 20 degrees C whenever [stoving temperature], and use it by the following measurement were produced. The result of having performed various measurement using these test pieces is shown in the 1st table.

[0095] In addition, various kinds of physical-properties measurement was performed the following condition.

< -- physical properties -- a measuring method -- > -- (-- one --) -- flammability -- die length -- five -- an inch -- width of face -- one -- /-- two -- an inch -- thickness -- one -- /-- eight -- " -- a test piece -- using -- UL94V trial -- the following point -- having carried out. The test piece was first stood to the vertical, absorbent cotton was placed just under, indirect flame was carried out for 10 seconds with the flame of 3/4 inch of flame length from under the test piece, and flaming time amount was measured. It ****(ed) again for 10 seconds immediately after fire extinguishing, and owner flame and flameless combustion time amount were measured. The number of test pieces was made into five pieces.

[0096] Fire-resistant evaluation was judged in the light of the following demand levels.

V-0 A: The flaming time amount of each time is 10 or less seconds.

B: The sum total flaming time amount of five test pieces is 50 or less seconds.

C: up to a clamp -- owner flame -- or don't carry out flameless combustion.

D: Don't ignite lower cotton.

The E:2nd flameless combustion time amount is 30 or less seconds.

V-1 A: The flaming time amount of each time is 30 or less seconds.

B: The sum total flaming time amount of five test pieces is 250 or less seconds.

It is the same as C and D:V -0.

The E:2nd flameless combustion time amount is 60 or less seconds.

V-2 It is the same as A, B, C, and E:V -1.

D: Lower cotton ignition O.K.

Rejection Thing applicable to the upper neither.

[0098] (2) The hue difference (deltaE) at the time of leaving a waterproof press-forming article under the condition of 80 degrees C and 90%RH for 48 hours was measured using colorimeter CM-1000 by Minolta Camera Co., Ltd. It excels in the water resisting property, so that the value of deltaE is small.

[0099] (3) 85-degree gross of an appearance press-forming article was measured using pocket glossmeter HG-268 by Suga Test Instruments Co., Ltd. The appearance is excellent, so that a gross value is large. [0100]

[Example 2] In the example 1, instead of the flame retarder NE, the test piece was produced for the flame retarder NF like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0101] The result is shown in the 1st table.

[0102]

[Example 3] In the example 1, instead of the flame retarder NE, the test piece was produced for the flame retarder NG like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0103] The result is shown in the 1st table.

[0104]

[Example 4] Except having changed both the loadings of a flame retarder NA and a flame retarder NE into the 12.5 weight sections as a flame retarder in the example 1, like the example 1, the test piece was produced and the various above-mentioned measurement was performed.

[0105] The result is shown in the 1st table.

[0106]

[Example 5] In the example 1, instead of the flame-retarder NA19 weight section, the test piece was produced [the flame retarder NB] for 15 weight sections and a flame retarder NC like the example 1 except **** for 4 weight sections, and the various above-mentioned measurement was performed.

[0107] The result is shown in the 1st table.

[0108]

[Example 6] In the example 1, instead of the flame retarder NA and the flame retarder NE, 15 weight

sections were carried out for the flame retarder NB, the test piece was produced [the flame retarder NC] for 4 weight sections and a flame retarder NF like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0109] The result is shown in the 1st table.

[0110]

[Example 7] In the example 1, instead of the flame retarder NA and the flame retarder NE, 15 weight sections were carried out for the flame retarder NB, the test piece was produced [the flame retarder ND] for 4 weight sections and a flame retarder NF like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0111] The result is shown in the 1st table.

[0112]

[Example 8] In the example 1, the loadings of a flame retarder NA and a flame retarder NE were changed into 15 weight sections and 5 weight sections, respectively, the test piece was further produced for the flame retarder NG like the example 1 except **** for 5 weight sections, and the various above-mentioned measurement was performed.

[0113] The result is shown in the 1st table.

[0114]

[The example 1 of a comparison] In the example 1, like the example 1, the test piece was produced and the various above-mentioned measurement was performed except having changed the loadings of a flame retarder NA and a flame retarder NE into 25 weight sections and 0 weight section, respectively.

[0115] The result is shown in the 1st table. When the number of the Lynn content compounds was one, high fire retardancy was not acquired.

[0116]

[The example 2 of a comparison] In the example 1, instead of the flame retarder NA and the flame retarder NE, the test piece was produced [the flame retarder NB] for 19 weight sections and a flame retarder NC like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0117] The result is shown in the 1st table. When the number of the Lynn content compounds was one, high fire retardancy was not acquired.

[0118]

[The example 3 of a comparison] In the example 1, the loadings of a flame retarder NA and a flame retarder NE were changed into 0 weight section and 19 weight sections, respectively, the test piece was further produced for the flame retarder NC like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0119] The result is shown in the 1st table. When the number of the Lynn content compounds was one, high fire retardancy was not acquired.

[0120]

[The example 4 of a comparison] In the example 1, instead of the flame retarder NE, the test piece was produced for the flame retarder NH like the example 1 except **** for 6 weight sections, and the various above-mentioned measurement was performed.

[0121] The result is shown in the 1st table. Even if it combined phosphorus compounds other than the Lynn content compound which constitutes (b1) (triphenyl phosphate), high fire retardancy was not acquired. [0122]

[The example 5 of a comparison] In the example 1, instead of the flame retarder NA and the flame retarder NE, 15 weight sections were carried out for the flame retarder NB, the test piece was produced [the flame retarder NC] for 5 weight sections and a flame retarder NI like the example 1 except **** for 5 weight sections, and the various above-mentioned measurement was performed.

[0123] The result is shown in the 1st table. Even if it used the flame retarder NI (pentaerythritol), the fire retardancy like an example was not acquired and was low. [of the water resisting property]

[0124]

[Table 1]

(名 成) [重量部]						鯸	第1散				,			
点〉 [重量形] 1 2 3 4 5 6 7 8 1 2 3 4 成之 [重量形] 100 1					ľ						±₹	ŽŽ	巫	
成 重量部 100	/	ĺ				١		-	~	-	2	m	4	2
成> [重量部] 100		_	2	~	4	n	•	1	Ì					
(P+N) 19 <th< th=""><th>· - </th><th></th><th></th><th>6</th><th>501</th><th>2</th><th>160</th><th>100</th><th>8</th><th>100</th><th>100</th><th>189</th><th>2</th><th>5</th></th<>	· - 			6	501	2	160	100	8	100	100	189	2	5
(P+N) 19 19 19 19 19 19 19 10	РР	3	3	3	3			,	2	35	1		<u></u>	I
(P) </th <th></th> <td>5</td> <td>61</td> <td><u>6</u></td> <td></td> <td>ı .</td> <td>۲ ۲</td> <td>ŭ</td> <td>2 1</td> <td> </td> <td>5</td> <td>,</td> <td>i</td> <td>15</td>		5	61	<u>6</u>		ı .	۲ ۲	ŭ	2 1		5	,	i	15
(N)	m Z		;		ı	<u>.</u>	2 *	?			ص	ဖ		S.
(P) 6 12.5 6 6 6 19 19 (P) (P) 6 - 6 6 6 19 19 (P) (P) - 6 6 6 19 19 (P) (P) - 19 19 (P) - 19 19 (P) (P) - 19 19 (P) (P) - 19 19 19 19 19 19 19 19 19 19 19 19 19	_ ပ	;				4	f		ı	1				
(P) 6 12.5 b 6 6 6 (P)	0	ı	1		1	, '		+	u	1	ı	<u></u>		
(P) — 6 — — 0 0 0 —	ш	တ	1	ı	12.5	٥	, ,		ן כ	1	,	: 1	1	i
(P) — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 —		i	ဖာ		I	ı	0		4	ı	ı	ı	;	:
(P) -		t	1	9	'	'	<u> </u>				,	1	ي	1
-94V 7 6		 -	-	1	ı	ı	١	1			•	ı	1	'n
-94V v-1 v-2 v-1 v-2 v-3	一乙一及製器	1			'									
94V v-1 v-2 v-1 v-2 v-3 v-3<	成形体の物性													
ランク V-1 V-2 V-1 V-0 V-2 C 15 0 0 機様 2 燃焼 2 機機 2 機機 2 機機 2 機機 2 機機 M M M M M M M	職 株性 nr-94V			:	3	•	V _ 7	V-2	0-A	ス合格			不合格	₩ 松 松
機機時間(秒) 6 0 4 0 0 7 2 1.9 0.9 0.6 1.7 1.5 1.2 6 本 Δ E 1.7 1.6 1.1 1.5 1.7 2 1.9 0.9 0.6 1.7 1.5 1.2 6 8.5° グロス 70 63 80 65 72 61 59 71 59 70 58 38		-	Z- <u>A</u>	- - -	٠ -	7.	1 -	1 16		-				0
5° 7° 1 70 63 80 65 72 61 59 71 59 70 58 38		9	-	*	اد	<u>.</u>	>				-		1.2	6.7
5° 707 70 63 80 65 72 61 59 71 59 70 58 38	耐水性 △ E	1 1	1 9	-	-		1	-						
2 7 7 7 7 6	ľ	70	63	28	92	72	61	53	71	23	70	28	38	65
	្ព	<u>.</u>	,											

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-199722

(43)公開日 平成11年(1999)7月27日

(51) Int.Cl. ⁶		識別記号		FΙ					
C08L	23/10			C 0	8 L	23/10			
C08K	3/32			C 0	8 K	3/32			
	5/3477					5/3477			
	5/521					5/521			
	5/527					5/527			
			審查請求	未請求	諸求	項の数 1	OL	(全 16 頁)	最終頁に続く
(21)出願番号		特願平10-2635		(71)	出願人	59605	9945		
						株式会	き社グラ	ンドポリマー	
(22)出顧日		平成10年(1998) 1月8日				東京都	8中央区	京橋一丁目18	番1号
				(72)	発明者	15 丹 14	* =		
						山口外	以珂郡	和木町和木六	丁目1番2号
						三井作	と学株式	会社内	
				(74)	代理人	↓ 弁理∃	t: 鈴木	後一郎	

(54) 【発明の名称】 難燃性プロピレン系樹脂組成物

(57)【要約】

【解決手段】本発明の難燃性プロピレン系樹脂組成物は、(A)プロピレン系樹脂100重量部、および(B)ボリリン酸アンモニウム(b1-1)および特定のリン含有環状化合物からなる群より選ばれる少なくとも2種類のリン含有化合物の混合物(b1)と、特定の1,3,5-トリアジン骨格を有する化合物、特定のイソシアヌレート骨格を有する化合物、およびこれらの化合物群から選ばれる同種もしくは異種の複数の化合物同士が化学的に結合した化合物、からなる群より選ばれる少なくとも1種類の窒素含有環状化合物(b2)とからなるリン・窒素系難燃剤10~100重量部を含有してなることを特徴としている。

【効果】上記組成物は、有毒性ガスおよび腐食性ガスの発生が極めて少なく、高度な難燃性を有するとともに、 優れた外観、耐水性および機械物性を有する成形体を提供することができる。 (2)

【特許請求の範囲】

【請求項1】(A)プロピレン系樹脂100重量部、および(B)ポリリン酸アンモニウム(b1-1)および下記式(b1-2)ないし(b1-4)で示される化合物からなる群より選ばれる少なくとも2種類のリン含有化合物の混合物(b1)と、

1

下記式 (b2-1) ないし (b2-2) で示される化合物、および (b2-1) ないし (b2-2) で示される*

* 化合物群から選ばれる同種もしくは異種の複数の化合物 同士が化学的に結合した化合物、からなる群より選ばれ る少なくとも1種類の窒素含有環状化合物(b2)とか らなるリン・窒素系難燃剤10~100重量部を含有し てなることを特徴とする難燃性プロビレン系樹脂組成 物:

7

【化1】

※子であり、

【化2】

$$R' \longrightarrow E \longrightarrow P$$
 $B \longrightarrow D$
 $C \longrightarrow P \longrightarrow R^2$

••• (b1-2)

これらの基は置換基を有していてもよい。〕、

R¹ およびR¹ は、それぞれ独立に、脂肪族炭化水素

基、脂環族炭化水素基または芳香族炭化水素基であり、

[式中、A、B、CおよびDは、それぞれ独立に、酸素 原子、硫黄原子またはイミノ基であり、

EおよびFは、それぞれ独立に、酸素原子または硫黄原子であり、

mおよびnは、それぞれ独立に、0または1であり、

YおよびZは、それぞれ独立に、酸素原子または硫黄原※20

$$R' \longrightarrow E \rightarrow \frac{A}{Y} \nearrow A$$

••• (b1-3)

[式中、AおよびBは、それぞれ独立に、酸素原子、硫 黄原子またはイミノ基であり、

Eは、酸素原子または硫黄原子であり、

mは、0または1であり、

Yは、酸素原子または硫黄原子であり、

R¹ は、脂肪族炭化水素基、脂環族炭化水素基または芳香族炭化水素基であり、これらの基は置換基を有していてもよく、

R³ およびR⁴ は、それぞれ独立に、炭素原子数1~12の脂肪族炭化水素基、炭素原子数6~12の芳香族炭化水素基、少なくとも1つの水酸基を含む炭素原子数1~12の脂肪族炭化水素基、少なくとも1つの水酸基を含む炭素原子数6~12の芳香族炭化水素基、少なくとも1つのアミノ基を含む炭素原子数1~12の脂肪族炭40化水素基、または少なくとも1つのアミノ基を含む炭素原子数6~12の芳香族炭化水素基である。]、

【化3】

$$R \stackrel{5}{=} \stackrel{A}{=} P = Y$$
... (b 1-4)

[式中、A、BおよびCは、それぞれ独立に、酸素原

子、硫黄原子またはイミノ基であり、

Yは、酸素原子または硫黄原子であり、

R⁵ は、炭素原子数1~12の脂肪族炭化水素基、炭素 原子数6~12の芳香族炭化水素基、少なくとも1つの 水酸基を含む炭素原子数1~12の脂肪族炭化水素基、 少なくとも1つの水酸基を含む炭素原子数6~12の芳 香族炭化水素基、少なくとも1つのアミノ基を含む炭素 原子数1~12の脂肪族炭化水素基、または少なくとも 1つのアミノ基を含む炭素原子数6~12の芳香族炭化 水素基である。]、

 \mathbb{R}^{5} \mathbb{N} $\mathbb{N$

[式中、R°、R′ およびR°は、それぞれ独立に、水酸基、アミノ基、モノ置換アルキルアミノ基、ジ置換アルキルアミノ基、ジ置換アルキルアミノ基、ピペリジノ基、炭素原子数1~12の脂肪族炭化水素基、炭素原子数6~12の芳香族炭化水50素基、少なくとも1つの水酸基を含む炭素原子数1~1

【化5】

2の脂肪族炭化水素基、少なくとも1つの水酸基を含む 炭素原子数6~12の芳香族炭化水素基、少なくとも1 つのアミノ基を含む炭素原子数1~12の脂肪族炭化水米

••• (b 2-2)

[式中、R°、R¹°、およびR¹¹は、それぞれ独立に、 水素原子、炭素原子数1~12の脂肪族炭化水素基、炭 素原子数6~12の芳香族炭化水素基、少なくとも1つ の水酸基を含む炭素原子数1~12の脂肪族炭化水素 基、少なくとも1つの水酸基を含む炭素原子数6~12 の芳香族炭化水素基、少なくとも1つのアミノ基を含む 炭素原子数 1~12の脂肪族炭化水素基、または少なく とも1つのアミノ基を含む炭素原子数6~12の芳香族 炭化水素基である。〕。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、難燃性プロビレン系樹脂 組成物に関し、さらに詳しくは、有毒ガスおよび腐蝕性 ガスの発生が少なく、高度な難燃性を有するとともに、 優れた外観耐水性および機械物性を有する成形体を提供 することができる非ハロゲン系の難燃性プロピレン系樹 脂組成物に関する。

[0002]

【発明の技術的背景】プロピレン系樹脂は、優れた機械 的性質、電気的性質、加工性、耐薬品性などを有してい るため、射出成形品、中空成形品、フィルム、シート、 繊維などに加工され、各種用途に用いられている。しか しながら、プロピレン系樹脂は、極めて燃えやすいとい う欠点を有している。

【0003】このため、従来からプロビレン系樹脂を燃 え難くする試みがなされてきた。難燃剤として、ハロゲ ン系化合物および酸化アンチモンを用い、ブロピレン系 40 樹脂に添加する方法が、最も一般的に用いられている。 しかしながら、このような難燃化方法により得られるプ ロビレン系樹脂組成物は、その成形体の燃焼時や成形時 にハロゲン化水素などの有毒ガスおよび腐食性ガスを発 生するという欠点を有している。

【0004】一方、ハロゲン系化合物を用いない難燃化 方法として、水酸化マグネシウムなどの金属水和物を用 いる方法もある。しかしながら、このような金属水和物 を難燃剤としてプロピレン系樹脂に添加する方法は、難 燃効果が低く、金属水和物の添加量を著しく多くする必 50

要があるため、この難燃化方法により得られるプロピレ ン系樹脂組成物の成形体は、比重が大きくなり、機械物 性が著しく損なわれるという欠点がある。

【0005】また、ハロゲン系化合物を用いない他の難 燃化方法として、プロピレン系樹脂に、難燃剤としてポ リリン酸アンモニウムを添加するとともに、メラミン、 20 ペンタエリスリトール等の相乗化剤も併せて添加する難 燃化方法も知られている。しかしながら、この方法で も、難燃性は十分でなく、難燃剤を多量に添加しなけれ ばならず、しかも、この方法により得られるプロビレン 系樹脂組成物からは、耐水性の悪い成形体しか得られな いという欠点を有する。

【0006】さらに、米国特許第4,312,805号 明細書には、ポリオレフィンに対して、ポリリン酸アン モニウムとポリアミドを含む窒素化合物とを併用する難 燃化方法が開示されている。しかしながら、この方法を 30 用いると、難燃性の向上は見られるものの、高度な難燃 性が発現するとは言い難く、また良好な外観を有する成 形体は得られない。

【0007】また、特開平6-184374号公報に は、ポリリン酸アンモニウム、メラミンおよびペンタエ リスリトールの難燃系にアマイド化合物を添加する方法 が開示されている。しかしながら、この方法でも、十分 な難燃性は得られず、しかも、この方法により得られる プロピレン系樹脂組成物の成形体の耐水性も十分ではな 64.

【0008】そこで、本願発明者らは、このような状況 下に、プロビレン系樹脂の難燃化について鋭意研究し、 リン原子および窒素原子を特定割合で含有した特定の化 合物群を添加することにより、有毒性ガスおよび腐食性 ガスの発生が極めて少なく、高度な難燃性を有するとと もに、優れた外観、耐水性および機械物性を有する成形 体を提供することができる難燃性プロピレン系樹脂組成 物が得られることを見出し、本発明を完成するに至っ た。

[0009]

【発明の目的】本発明は、上記のような従来技術に伴う

*素基、または少なくとも1つのアミノ基を含む炭素原子

数6~12の芳香族炭化水素基である。]、

5

6

問題を解決しようとするものであって、有毒性ガスおよ び腐食性ガスの発生が極めて少なく、高度な難燃性を有 するとともに、優れた外観、耐水性および機械物性を有 する成形体を成形することができる非ハロゲン系の難燃 性プロビレン系樹脂組成物を提供することを目的として いる。

[0010]

【発明の概要】本発明に係る難燃性プロビレン系樹脂組成物は、(A)プロビレン系樹脂100重量部、および(B)ポリリン酸アンモニウム(b1-1)および下記 10式(b1-2)ないし(b1-4)で示される化合物か*

* ちなる群より選ばれる少なくとも2種類のリン含有化合物の混合物(b1)と、下記式(b2-1)ないし(b2-2)で示される化合物、および(b2-1)ないし(b2-2)で示される化合物群から選ばれる同種もしくは異種の複数の化合物同士が化学的に結合した化合物、からなる群より選ばれる少なくとも1種類の窒素含有環状化合物(b2)とからなるリン・窒素系難燃剂10~100重量部を含有してなることを特徴としている。

[0011]

【化6】

$$R' \longrightarrow E \longrightarrow P$$
 $R' \longrightarrow P$
 Z
 $R' \longrightarrow R'$

30

(4)

••• (b1-2)

【0012】 [式中、A、B、CおよびDは、それぞれ独立に、酸素原子、硫黄原子またはイミノ基であり、EおよびFは、それぞれ独立に、酸素原子または硫黄原子であり、mおよびnは、それぞれ独立に、0または1であり、YおよびZは、それぞれ独立に、酸素原子または硫黄原子であり、 R^1 および R^2 は、それぞれ独立に、※

※ 脂肪族炭化水素基、脂環族炭化水素基または芳香族炭化 水素基であり、これらの基は置換基を有していてもよ

20 (a) [0 0 1 3]

[化7]

$$R' \longrightarrow E \longrightarrow P$$
 R'

••• (b1-3)

【0014】 [式中、AおよびBは、それぞれ独立に、酸素原子、硫黄原子またはイミノ基であり、Eは、酸素原子または硫黄原子であり、mは、0または1であり、Yは、酸素原子または硫黄原子であり、R¹は、脂肪族炭化水素基、脂環族炭化水素基または芳香族炭化水素基であり、これらの基は置換基を有していてもよく、R³およびR¹は、それぞれ独立に、炭素原子数1~12の脂肪族炭化水素基、炭素原子数6~12の芳香族炭化水素基、少なくとも1つの水酸基を含む炭素原子数1~12の脂肪族炭化水素基、少なくとも1つの水酸基を含む炭素原子数6~12の芳香族炭化水素基、少なくとも1つのアミノ基を含む炭素原子数1~12の脂肪族炭化水素基、または少なくとも1つのアミノ基を含む炭素原子数6~12の芳香族炭化水素基である。]

P=Y
... (b1-4)

【0016】 [式中、A、BおよびCは、それぞれ独立に、酸素原子、硫黄原子またはイミノ基であり、Yは、酸素原子または硫黄原子であり、R'は、炭素原子数1~12の脂肪族炭化水素基、炭素原子数6~12の芳香6次化水素基、少なくとも1つの水酸基を含む炭素原子数1~12の脂肪族炭化水素基、少なくとも1つの水酸基を含む炭素原子数6~12の芳香族炭化水素基、少なくとも1つのアミノ基を含む炭素原子数1~12の脂肪族炭化水素基、または少なくとも1つのアミノ基を含む炭素原子数6~12の芳香族炭化水素基である。]

[0017]

【化9】

R *数1~12の脂肪族炭化水素基、炭素原子数6~12の 芳香族炭化水素基、少なくとも1つの水酸基を含む炭素 原子数1~12の脂肪族炭化水素基、少なくとも1つの 水酸基を含む炭素原子数6~12の芳香族炭化水素基、 少なくとも1つのアミノ基を含む炭素原子数1~12の

脂肪族炭化水素基、または少なくとも1つのアミノ基を

含む炭素原子数6~12の芳香族炭化水素基である。]

$$\mathbb{R}^{\frac{5}{5}}$$
 \mathbb{N} \mathbb{N}

【0018】 [式中、R⁶、R⁷ およびR⁸ は、それぞ れ独立に、水酸基、アミノ基、モノ置換アルキルアミノ 基、ジ置換アルキルアミノ基、ピペリジノ基、炭素原子*

•• (b 2 - 2)

[0019]

【化10】

【0020】 [式中、R°、R¹°、およびR¹¹は、それ 20%で、または2種以上組み合わせて用いることができる。 ぞれ独立に、水素原子、炭素原子数1~12の脂肪族炭 化水素基、炭素原子数6~12の芳香族炭化水素基、少 なくとも1つの水酸基を含む炭素原子数1~12の脂肪 族炭化水素基、少なくとも1つの水酸基を含む炭素原子 数6~12の芳香族炭化水素基、少なくとも1つのアミ ノ基を含む炭素原子数1~12の脂肪族炭化水素基、ま たは少なくとも1つのアミノ基を含む炭素原子数6~1 2の芳香族炭化水素基である。]

[0021]

【発明の具体的説明】以下本発明に係る難燃性プロピレ ン系樹脂組成物について具体的に説明する。本発明に係 る難燃性プロピレン系樹脂組成物は、プロピレン系樹脂 (A) およびリン・窒素系難燃剤 (B) を含有してな る。

【0022】プロピレン系樹脂(A)

本発明で用いられるプロピレン系樹脂(A)としては、 プロピレンの単独重合体、プロピレンとエチレン、1-ブ テン、1-ペンテン、1-ヘキセン、1-オクテン、3-メチル -1- ブテン、4-メチル-1- ペンテン等のα- オレフィン とのランダム共重合体またはブロック共重合体が挙げら 40 れる。これらの共重合体は、アイソタクチック共重合体 であってもよいし、またシンジオタクチック共重合体で あってもよい。

【0023】これらのプロピレン系樹脂(A)は、単独※

本発明で用いられるリン・窒素系難燃剤(B)とは、ポ リリン酸アンモニウム(b1-1)および後述する式 (b1-2) ないし(b1-4) で示される化合物から なる群より選ばれる少なくとも2種類のリン含有化合物 の混合物(b1)と、後述する式(b2-1)ないし (b2-2)で示される化合物、および式(b2-1) ないし(b2-2)で示される化合物群から選ばれる同 種もしくは異種の複数の化合物同士が化学的に結合した 30 化合物、からなる群より選ばれる少なくとも1種類の窒 素含有環状化合物(b2)とからなる難燃剤を指す。

【0024】「リン含有化合物の混合物(b1)]上記 ポリリン酸アンモニウム(b1-1)としては、通常市 販されているポリリン酸アンモニウムを用いることがで きる。

【0025】とれらのポリリン酸アンモニウムは、表面 をメラミンやメラミン樹脂、フッ素系ポリマーで被覆し た変性ポリリン酸アンモニウムであってもよいし、さら にメラミンで被覆したのち架橋化処理をしたメラミン架 橋ポリリン酸アンモニウムであってもよい。このような 表面をメラミン等で被覆した変性ポリリン酸アンモニウ ムを用いると、プロピレン系樹脂の耐水性が向上する。 [0026]

【化11】

$$R' \longrightarrow E \longrightarrow P$$
 $B \longrightarrow C$
 $C \longrightarrow P \longrightarrow R^2$

••• (b 1-2)

【0027】式中、A、B、CおよびDは、それぞれ独 立に、酸素原子、硫黄原子またはイミノ基であり、Eお よびFは、それぞれ独立に、酸素原子または硫黄原子で あり、mおよびnは、それぞれ独立に、0または1であ り、YおよびZは、それぞれ独立に、酸素原子または硫 黄原子であり、R1 およびR2 は、それぞれ独立に、脂 肪族炭化水素基、脂環族炭化水素基または芳香族炭化水 素基であり、これらの基は置換基を有していてもよい。 【0028】R1 およびR1 における脂肪族炭化水素基 ル基、イソプロビル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチ ル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、 n-オクチル基、sec-ブチル基、sec-アミル基、sec-ペン チル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、1-ヒドロキシエチル基、2-ヒドロキシエチ ル基、1-アミノエチル基、2-アミノエチル基等のアルキ

【0029】また、脂環族炭化水素基としては、具体的 には、シクロヘキシル基、1-シクロヘキセニル基、メチ 20 Me、Etは、それぞれフェニル基、メチル基、エチル ルシクロヘキシル基、ジメチルシクロヘキシル基、デカ ヒドロナフチル基、トリシクロデカニル基、ヒドロキシ シクロヘキシル基、アミノシクロヘキシル基などが挙げ*

ル基などが挙げられる。

* られる。

【0030】また、芳香族炭化水素基としては、具体的 には、フェニル基、トリル基、ナフチル基、キシリル 基、メシチル基、エチルフェニル基、プロピルフェニル 基、ブチルフェニル基、ジエチルフェニル基、ヒドロキ シフェニル基、アミノフェニル基、ジプロピルフェニル 基、ジブチルフェニル基等のアリール基などが挙げられ る。

10

【0031】上記式(b1-2)で表わされる化合物 としては、具体的には、メチル基、エチル基、n-プロピ 10 は、A、B、CおよびDが酸素原子あるいはイミノ基 (-NH-)であることが好ましく、E、Fが酸素原子 あるいはm、nがOでE、Fがないことが好ましく、 Y、Zがともに酸素原子であることが好ましく、R¹、 R²がフェニル基、メチル基またはエチル基であること が好ましい。

> 【0032】具体的な化合物としては、下記式(bl-2 a) ~ (b 1 − 2 f) で示される化合物などが挙げら れ、これらの中でも、式(b1-2a)で示される化合 物がより好ましい。なお、これらの式中におけるPh、 基を示す。

[0033]

【化12】

【化13】 [0034]

12

••• (b1-3)

【0036】式中、AおよびBは、それぞれ独立に、酸 素原子、硫黄原子またはイミノ基であり、Eは、酸素原 40 6~12の芳香族炭化水素基である。 子または硫黄原子であり、mは、Oまたは1であり、Y は、酸素原子または硫黄原子であり、R1 は、脂肪族炭 化水素基、脂環族炭化水素基または芳香族炭化水素基で あり、これらの基は置換基を有していてもよく、R³お よびR'は、それぞれ独立に、炭素原子数1~12の脂 肪族炭化水素基、炭素原子数6~12の芳香族炭化水素 基、少なくとも1つの水酸基を含む炭素原子数1~12 の脂肪族炭化水素基、少なくとも1つの水酸基を含む炭 素原子数6~12の芳香族炭化水素基、少なくとも1つ のアミノ基を含む炭素原子数1~12の脂肪族炭化水素 50 る。

基、または少なくとも1つのアミノ基を含む炭素原子数

【0037】R1は、上述した式(c1-2)における R¹ と同じである。R³ およびR¹ における炭素原子数 1~12の脂肪族炭化水素基としては、具体的には、メ チル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、 イソペンチル基、ネオペンチル基、n-ヘキシル基、イソ ヘキシル基、n-ヘプチル基、n-オクチル基、sec-ブチル 基、sec-アミル基、sec-ペンチル基、n-ノニル基、n-デ シル基、n-ウンデシル基、n-ドデシル基などが挙げられ

14

【0038】また、R³ およびR⁴ における炭素原子数6~12の芳香族炭化水素基としては、具体的には、フェニル基、トリル基、ナフチル基、キシリル基、メシチル基、エチルフェニル基、プロビルフェニル基、ブチルフェニル基、ジエチルフェニル基、ジプロビルフェニル基、ジブチルフェニル基などが挙げられる。

【0039】R³ およびR⁴ における少なくとも1つの水酸基を含む炭素原子数1~12の脂肪族炭化水素基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロビル基、n-ブチル基、イソブチル基、t-ブ 10チル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、sec-ブチル基、sec-アミル基、sec-ペンチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の水素原子が1または2以上の水酸基で置換されている基が挙げられる。

【0040】R³ およびR⁴ における少なくとも1つの水酸基を含む炭素原子数6~12の芳香族炭化水素基としては、具体的には、フェニル基、トリル基、ナフチル基、キシリル基、メシチル基、エチルフェニル基、プロ 20ビルフェニル基、ブチルフェニル基、ジエチルフェニル基、ジプロビルフェニル基、ジブチルフェニル基等の水素原子が1または2以上の水酸基で置換されている基が挙げられる。

【0041】R³ およびR* における少なくとも1つのアミノ基を含む炭素原子数1~12の脂肪族炭化水素基としては、具体的には、メチル基、エチル基、n-プロビル基、イソプロビル基、n-プチル基、イソプチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、sec-ブチル基、sec-アミル基、sec-ペンチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の水素原子が1または2以上のアミノ基で置換されている基が挙げられる。

【0042】R³ およびR⁴ における少なくとも1つのアミノ基を含む炭素原子数6~12の芳香族炭化水素基としては、具体的には、フェニル基、トリル基、ナフチル基、キシリル基、メシチル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基等の40水素原子が1または2以上のアミノ基で置換されている基が挙げられる。

[0043]また、上記式(b1-3)で表わされる化合物は、A およびB が酸素原子あるいはイミノ基(-N H-)であることが好ましく、E が酸素原子あるいはmが0 でE がないことが好ましく、Y が酸素原子であることが好ましく、 R^1 がフェニル基、メチル基またはエチル基であることが好ましく、 R^1 および R^4 がメチル基、エチル基またはヒドロキシメチル基であることが好ましい。

【0044】具体的な化合物としては、下記式(b1-3a)~(b1-31)で示される化合物などが挙げられ、これらの中でも、式(b1-3a)で示される化合物がより好ましい。なお、これらの式中におけるPh、Me、Et は、それぞれフェニル基、メチル基、エチル基を示す。

[0045]

【化15】

(8)

【0046】 【化16】

[0048]

16

R 5 P=Y

 $\cdots (b1-4)$

【0049】式中、A、BおよびCは、それぞれ独立 に、酸素原子、硫黄原子またはイミノ基であり、Yは、 酸素原子または硫黄原子であり、R⁵は、炭素原子数1 ~12の脂肪族炭化水素基、炭素原子数6~12の芳香 族炭化水素基、少なくとも1つの水酸基を含む炭素原子 数1~12の脂肪族炭化水素基、少なくとも1つの水酸 基を含む炭素原子数6~12の芳香族炭化水素基、少な くとも1つのアミノ基を含む炭素原子数1~12の脂肪 族炭化水素基、または少なくとも1つのアミノ基を含む 炭素原子数6~12の芳香族炭化水素基である。

【0050】R⁵ は、上述した式(b1-3)における R³ ないしR⁴ と同じである。上記式(b1-4)で表 わされる化合物は、A、B およびCが酸素原子あるいは イミノ基(-NH-)であることが好ましく、Yが酸素原子であることが好ましく、R⁵ がメチル基、エチル 基、ヒドロキシメチル基、ヒドロキシメチル基またはアミノメチル基、アミノエチル基であることが好ましい。【0051】具体的な化合物としては、下記式(b1-4a)~(b1-4f)で示される化合物などが挙げられ、これらの中でも、式(b1-4a)で示される化合物がより好ましい。

30 [0052]

(化19)

[0053] [化20]

40

••• (b1-4b)

$$H_2N$$
 \longrightarrow O $P=O$ \longrightarrow $(b 1-4 f)$

【0054】本発明では、リン含有化合物の混合物(b 1)として、少なくとも上記の異なる化合物群から選ば れる2種類以上のリン含有化合物を組み合わせた混合物 が用いられる。このような組み合わせからなるリン含有 化合物の混合物(b1)を用いることにより、プロピレ ン系樹脂の難燃性を向上させることができる。

【0055】リン含有化合物の混合物(b1)としての リン含有化合物の組み合わせは、上記に掲げた化合物で あれば、特に限定はされないが、次のような組み合わせ が好ましい。

- (1) ポリリン酸アンモニウム(b1-1)と、式(b1 -2)で示される化合物群より選ばれる化合物との組み
- (2) ポリリン酸アンモニウム (b1-1) と、式 (b1 -3)で示される化合物群より選ばれる化合物との組み 合わせ。
- (3) ポリリン酸アンモニウム (b1-1) と、式 (b1 - 4) で示される化合物群より選ばれる化合物との組み 合わせ。
- (4) 式(b1-2)で示される化合物群より選ばれる化 合物と、式(b l − 4)で示される化合物群より選ばれ 50 (10)ポリリン酸アンモニウム(b l − 1)と、式(b l

る化合物との組み合わせ。

- (5) 式(b1-3)で示される化合物群より選ばれる化 合物と、式(b1-4)で示される化合物群より選ばれ る化合物との組み合わせ。
- (6) ポリリン酸アンモニウム (b1-1) と、式 (b1 -2)で示される化合物群より選ばれる化合物と、式 (b1-3)で示される化合物群より選ばれる化合物と の組み合わせ。
- (7) ポリリン酸アンモニウム (bl-1)と、式 (bl -2)で示される化合物群より選ばれる化合物と、式
- (b1-4)で示される化合物群より選ばれる化合物と 40 の組み合わせ。
 - (8) ポリリン酸アンモニウム (b1-1) と、式 (b1 -3)で示される化合物群より選ばれる化合物と、式
 - (b1-4)で示される化合物群より選ばれる化合物と の組み合わせ。
 - (9) 式 (b 1-2) で示される化合物群より選ばれる化 合物と、式(b1-3)で示される化合物群より選ばれ る化合物と、式(b1-4)で示される化合物群より選 ばれる化合物との組み合わせ。

-2)で示される化合物群より選ばれる化合物と、式 (b1-3)で示される化合物群より選ばれる化合物 と、式(b1-4)で示される化合物群より選ばれる化 合物との組み合わせ。

【0056】とのような組み合わせからなるリン含有化 合物の混合物(bl)は、組み合わせた各化合物の難燃 剤として作用する温度および機構が異なるため、難燃性 の向上効果が相乗的に発現し、難燃性が顕著に向上する ものと考えられる。

ン含有化合物の混合物(b1)全体を100重量%とし た場合、2成分を組み合わせる場合には、1成分が10 ~90重量%の範囲で組み合わせることが好ましく、3 成分を組み合わせる場合には、1成分が10~80重量 %の範囲で組み合わせることが好ましく、4成分を組み 合わせる場合には、1成分は10~70重量%の範囲で 組み合わせることが好ましい。

【0058】また、式(b1-2)、式(b1-3)お よび式(b1-4)で示される化合物からなる群より選 ばれるリン含有化合物は、それぞれの式で示される化合 20 チルアミノ基、メチルエチルアミノ基などが挙げられ 物群より1種類の化合物であっても、2種類以上の化合 物の混合物であってもよい。

【0059】[窒素含有環状化合物(b2)]上記窒素 含有環状化合物(b2)とは、下記式(b2-1)で示 される化合物、(b2-2)で示される化合物、および (b2-1)ないし(b2-2)で示される化合物群よ り選ばれる同種もしくは異種の複数の化合物同士が化学 的に結合した化合物からなる群より選ばれる少なくとも 1種類の窒素含有環状化合物である。

[0060]

【化21】

$$\mathbb{R}^{\frac{4}{5}}$$
 \mathbb{N} \mathbb{N}

【0061】式中、R°、R′ およびR°は、それぞれ 独立に、水酸基、アミノ基、モノ置換アルキルアミノ 基、ジ置換アルキルアミノ基、ピペリジノ基、炭素原子 数1~12の脂肪族炭化水素基、炭素原子数6~12の

芳香族炭化水素基、少なくとも1つの水酸基を含む炭素 原子数1~12の脂肪族炭化水素基、少なくとも1つの 水酸基を含む炭素原子数6~12の芳香族炭化水素基、 少なくとも1つのアミノ基を含む炭素原子数1~12の 脂肪族炭化水素基、または少なくとも1つのアミノ基を 含む炭素原子数6~12の芳香族炭化水素基である。 【0062】R°、R' およびR° におけるモノ置換ア ルキルアミノ基としては、具体的には、メチルアミノ 基、エチルアミノ基、n-プロピルアミノ基、イソプロピ 【0057】また、この組み合わせる比率としては、リ 10 ルアミノ基、n-ブチルアミノ基、イソブチルアミノ基、 sec-ブチルアミノ基、t-ブチルアミノ基、n-ペンチルア ミノ基、イソペンチルアミノ基、ネオペンチルアミノ 基、n-ヘキシルアミノ基、n-ヘプチルアミノ基などが挙 げられる。

> 【0063】また、R°、R' およびR° におけるジ置 換アルキルアミノ基としては、具体的には、ジメチルア ミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、 ジイソプロピルアミノ基、ジ-n- ブチルアミノ基、ジイ ソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-t- ブ

【0064】R°、R' およびR° における炭素原子数 1~12の脂肪族炭化水素基、炭素原子数6~12の芳 香族炭化水素基、少なくとも1つの水酸基を含む炭素原 子数1~12の脂肪族炭化水素基、少なくとも1つの水 酸基を含む炭素原子数6~12の芳香族炭化水素基、少 なくとも1つのアミノ基を含む炭素原子数1~12の脂 肪族炭化水素基、および少なくとも1つのアミノ基を含 む炭素原子数6~12の芳香族炭化水素基は、上述した 30 式(b1-3)におけるR³、R⁴ および式(b1-4) におけるR'と同じである。

【0065】上記式(b2-1)で示される化合物とし ては、具体的には、メラミン、シアヌル酸、2-メチル-4,6- ジアミノ- トリアジン、2,4-ジメチル-6- アミノ-トリアジン、2-メチル-4,6- ジヒドロキシ- トリアジ ン、2,4-ジメチル-6- ヒドロキシ- トリアジン、トリメ チルトリアジン、トリス (ヒドロキシメチル) トリアジ ン、トリス(1-ヒドロキシエチル)トリアジン、トリス (2-ヒドロキシエチル)トリアジンなどが挙げられる。

40 [0066]

【化22】

22

••• (b 2-2)

【0067】式中、R°、R¹º、およびR¹¹は、それぞ れ独立に、水素原子、炭素原子数1~12の脂肪族炭化 水素基、炭素原子数6~12の芳香族炭化水素基、少な くとも1つの水酸基を含む炭素原子数1~12の脂肪族 炭化水素基、少なくとも1つの水酸基を含む炭素原子数 6~12の芳香族炭化水素基、少なくとも1つのアミノ 基を含む炭素原子数1~12の脂肪族炭化水素基。また は少なくとも1つのアミノ基を含む炭素原子数6~12 の芳香族炭化水素基である。

【0068】R°、R¹°、およびR¹¹における炭素原子 20 数1~12の脂肪族炭化水素基、炭素原子数6~12の 芳香族炭化水素基、少なくとも1つの水酸基を含む炭素 原子数1~12の脂肪族炭化水素基、少なくとも1つの 水酸基を含む炭素原子数6~12の芳香族炭化水素基、 少なくとも1つのアミノ基を含む炭素原子数1~12の 脂肪族炭化水素基、および少なくとも1つのアミノ基を 含む炭素原子数6~12の芳香族炭化水素基は、上述し た式(b1-3)におけるR'、R'、式(b1-4) におけるR⁵ および式(b2-1)におけるR⁶、 R'、R'と同じである。

【0069】上記式(b2-2)で示される化合物とし ては、具体的には、イソシアヌル酸、トリス(1-ヒドロ キシエチル) イソシアヌレート、トリス (2-ヒドロキシ エチル) イソシアヌレート、トリス (ヒドロキシメチ ル) イソシアヌレート、トリアリルイソシアヌレートな どが挙げられる。

【0070】また、上記式(b2-1)ないし(b2-2) で示される化合物群より選ばれる同種もしくは異種 の複数の化合物同士が化学的に結合した化合物とは、メ ラミンシアヌレートのようにイオン的に結合し塩を形成*40

* している化合物、およびトリス(ヒドロキシエチル)イ ソシアヌレートのような水酸基を複数含有する化合物の 分子間の水酸基が脱水反応で結合しオリゴマー化した下 記式(b2-3)、(b2-4)および(b2-5)で 示されるような化合物が挙げられる。

[0071]

【化23】

【0072】[式中、nは1~10の整数である]

[0073]

【化24】

30

【0074】[式中、nは1~10の整数である] [0075]

【化25】

23

【0076】[式中、nは1~10の整数である] このようにオリゴマー化した化合物は、水への溶解性が 低下し、耐水性が向上するため、好ましい。

【0077】本発明で用いられるリン・窒素系難燃剤

(B) としては、リン含有化合物の混合物(b1)と窒素含有環状化合物(b2)との混合物であることが好ましい。この組み合わせる比率としては、どのような配合比であってもよいが、リン・窒素系難燃剤(B)全体を100重量%とした場合、リン含有化合物の混合物(b1)が30~98重量%、好ましくは40~95重量%、さらに好ましくは50~90重量%であることが望ましく、窒素含有環状化合物(b2)が70~2重量%、好ましくは60~5重量%、さらに好ましくは50~10重量%であることが望ましい。このような比率でリン含有化合物の混合物(b1)と窒素含有環状化合物(b2)とを組み合わせると、難燃性に優れた樹脂組成物を得ることができる。

【0078】リン・窒素系難燃剤(B)は、プロピレン 系樹脂(A)100重量部に対し、10~100重量 部、好ましくは10~60重量部、さらに好ましくは1 20 5~50重量部の割合で用いられる。

【0079】難燃性プロピレン系樹脂組成物

本発明に係る難燃性プロビレン系樹脂組成物は、プロビレン系樹脂(A)およびリン・窒素系難燃剤(B)が上述した特定の割合で配合されているので、難燃性に優れるとともに、外観、耐水性および機械物性のバランスに優れた成形体を提供することができる。

【0080】本発明に係る難燃性プロピレン系樹脂組成物中に、上記成分(A)および(B)、の他に、他の既知の非ハロゲン系難燃剤、たとえば赤リン、水酸化マグ 30ネシウム、水酸化アルミニウム等の金属水和物などを、本発明の目的を損なわない範囲で配合することができる。

【0081】また、本発明に係る難燃性プロピレン系樹脂組成物は、シランカップリング剤、チタネート系カップリング剤等の表面処理剤を含有していることが好ましい。本発明に係る難燃性プロピレン系樹脂組成物中に、たとえばガラス繊維等の補強剤、充填剤、増量剤、安定剤、可塑剤、潤滑剤、帯電防止剤、発錆剤などの添加剤または他のポリマーを、本発明の目的を損なわない範囲 40で配合することができる。

【0082】<u>難燃性プロビレン系樹脂組成物の調製</u> 本発明に係る難燃性プロビレン系樹脂組成物の調製に * *は、一般に可塑剤、安定剤、着色剤あるいは充填剤をブレンドする際に採用されている種々の方法を採用することができる。プロピレン系樹脂(A) およびリン・窒素系難燃剤(B)等の各成分のブレンドは、たとえば押出機、プラストミル等の一般の混合機を用いて行なうことができる。

24

[0083]

【発明の効果】本発明に係る難燃性プロピレン系樹脂組成物は、有毒性ガスおよび腐食性ガスの発生が極めて少なく、高度な難燃性を有するとともに、優れた外観、耐水性および機械物性を有する成形体を提供することができる。

【0084】本発明に係る難燃性プロピレン系樹脂組成物は、家庭用品から工業用品に至る広い用途、たとえば電気部品、電子部品、自動車部品、機械機構部品、バイブ、電線などに好適に使用することができる。

[0085]

【実施例】以下、本発明を実施例により説明するが、本 発明は、これら実施例に限定されるものではない。

20 【0086】なお、実施例、比較例で用いた難燃剤は次の通りである。

難燃剤NA

ポリリン酸アンモニウム (b1-1) とイソシアヌレート化合物 ((b2-2) に該当する化合物) との混合物:

商品名 ホスタフラム (Hostaflam) AP750、ヘキスト社製

難燃剤NB

メラミン変性ポリリン酸アンモニウム(b 1 − 1); 30 商品名 ホスタフラム(Hostaflam) AP462、ヘキ スト社製

難燃剤NC

メラミン((b 2 – 1)に該当する化合物); 和光純薬 工業(株) 製

難燃剤ND

メラミンシアヌレート ((b 2) に該当する化合物) ; 商品名 MC-440、日産化学 (株) 製

難燃剤NE

下式で表わされるリン含有化合物(上述した式(b 1 - 2 a)で示される化合物)

[0087]

【化26】

【0088】難燃剤NF

下式で表わされるリン含有化合物(上述した式 (bl-1a)で示される化合物)

[0089]

【化27】

50

【0090】難燃剤NG

下式で表わされるリン含有化合物(上述した式(bl-4 a) で示される化合物)

[0091]

【化28】

【0092】難燃剤NH

トリフェニルホスフェート [(C₆H₅O)₃PO]

((b1)を構成するリン含有化合物以外のリン化合

物);和光純葉工業(株)製

難燃剤NI

ペンタエリスリトール;和光純薬工業(株)製 [0093]

【実施例1】プロピレンホモポリマー(230℃、2. 16kg荷重時のMI=12g/10分)100重量部 に対して、難燃剤として難燃剤NA19重量部、難燃剤 NE6重量部、イルガノックス1010(商品名;チバ ガイギー社製、フェノール系酸化防止剤) 0.1重量 部、イルガフォス168(商品名;チバガイギー社製、 リン系安定剤) 0. 1重量部、およびステアリン酸カル シウム0. 1重量部を混合し、ラボプラストミル [(株)東洋精機製作所製]を用い、230℃の温度で 溶融混練した。

【0094】得られたプロピレン系樹脂組成物を加熱温 度230℃、冷却温度20℃でプレス成形し、下記の測 定で用いる各種試験片を作製した。これらの試験片を用 いて各種測定を行なった結果を第1表に示す。

【0095】なお、各種の物性測定は次の条件で行なっ た。

<物性の測定方法>

(1) 燃焼性

長さ5インチ、幅1/2インチ、厚さ1/8"の試験片 ず試験片を鉛直に立て、真下に脱脂綿を置き、試験片の 下から炎長3/4インチの炎で10秒間接炎し、有炎燃 焼時間を測定した。消火後すぐに10秒間再び接炎し、 有炎および無炎燃焼時間を測定した。試験片数は5個と した。

【0096】難燃性の評価は、以下の要求水準に照らし て判定した。

V-0 A:各回の有炎燃焼時間は10秒以下。

B:試験片5個の合計有炎燃焼時間は50秒以下。

C:クランプまで有炎あるいは無炎燃焼しないこと。

D:下の綿を発火させないこと。

E:2回目の無炎燃焼時間は30秒以下。

[0097]

V-1 A:各回の有炎燃焼時間は30秒以下。

B:試験片5個の合計有炎燃焼時間は250秒以下。

26

C、D:V-0と同じ。

E:2回目の無炎燃焼時間は60秒以下。

V-2 A, B, C, E:V-1と同じ。

D:下の綿発火OK。

10 不合格 上のいずれにも該当しなかったもの。

【0098】(2)耐水性

プレス成形品を80℃、90%RHの条件下に、48時 間放置した場合の色相差(AE)を、ミノルタカメラ

(株)製の測色計CM-1000を用いて測定した。△ Eの値が小さいほど、耐水性に優れている。

【0099】(3)外観

プレス成形品の85° グロスをスガ試験機(株)製の携 帯光沢計HG-268を用いて測定した。グロス値が大 きいほど外観が優れている。

20 [0100]

【実施例2】実施例1において、難燃剤NEの代わり に、難燃剤NFを6重量部用いた以外は、実施例1と同 様にして、試験片を作製し、上記の各種測定を行なっ た。

【0101】その結果を第1表に示す。

[0102]

【実施例3】実施例1において、難燃剤NEの代わり に、難燃剤NGを6重量部用いた以外は、実施例1と同 様にして、試験片を作製し、上記の各種測定を行なっ 30 た。

【0103】その結果を第1表に示す。

[0104]

【実施例4】実施例1において難燃剤として、難燃剤N Aおよび難燃剤NEの配合量をともに12.5重量部に 変更した以外は、実施例1と同様にして、試験片を作製 し、上記の各種測定を行なった。

【0105】その結果を第1表に示す。

[0106]

【実施例5】実施例1において、難燃剤NA19重量部 を用いて、UL94V試験を、次の要領で行なった。ま 40 のかわりに、難燃剤NBを15重量部、難燃剤NCを4 重量部用いた以外は、実施例1と同様にして、試験片を 作製し、上記の各種測定を行なった。

【0107】その結果を第1表に示す。

[0108]

【実施例6】実施例1において、難燃剤NAおよび難燃 剤NEの代わりに、難燃剤NBを15重量部、難燃剤N Cを4重量部、難燃剤NFを6重量部用いた以外は、実 施例1と同様にして、試験片を作製し、上記の各種測定 を行なった。

50 【0109】その結果を第1表に示す。

[0110]

【実施例7】実施例1において、難燃剤NAおよび難燃 剤NEの代わりに、難燃剤NBを15重量部、難燃剤N Dを4重量部、難燃剤NFを6重量部用いた以外は、実 施例1と同様にして、試験片を作製し、上記の各種測定 を行なった。

【0111】その結果を第1表に示す。

[0112]

【実施例8】実施例1において、難燃剤NAおよび難燃 剤NEの配合量をそれぞれ15重量部、5重量部に変更 10 【0124】 し、さらに難燃剤NGを5重量部用いた以外は、実施例 1と同様にして、試験片を作製し、上記の各種測定を行 なった。

【0113】その結果を第1表に示す。

[0114]

【比較例1】実施例1において、難燃剤NAおよび難燃 剤NEの配合量をそれぞれ25重量部、0重量部に変更 した以外は、実施例1と同様にして、試験片を作製し、 上記の各種測定を行なった。

【0115】その結果を第1表に示す。リン含有化合物 20 が1種類の場合は高い難燃性が得られなかった。

[0116]

【比較例2】実施例1において、難燃剤NAおよび難燃 剤NEの代わりに、難燃剤NBを19重量部、難燃剤N Cを6重量部用いた以外は、実施例1と同様にして、試 験片を作製し、上記の各種測定を行なった。

【0117】その結果を第1表に示す。リン含有化合物 が1種類の場合は高い難燃性が得られなかった。

[0118]

【比較例3】実施例1において、難燃剤NAおよび難燃 30 剤NEの配合量をそれぞれ0重量部、19重量部に変更 し、さらに難燃剤NCを6重量部用いた以外は、実施例 1と同様にして、試験片を作製し、上記の各種測定を行 なった。

【0119】その結果を第1表に示す。リン含有化合物 が1種類の場合は高い難燃性が得られなかった。

[0120]

【比較例4】実施例1において、難燃剤NEの代わり に、難燃剤NHを6重量部用いた以外は、実施例1と同 様にして、試験片を作製し、上記の各種測定を行なっ た。

【0121】その結果を第1表に示す。(b1)を構成 するリン含有化合物以外のリン化合物(トリフェニルホ スフェート) を組み合わせても高い難燃性は得られなか った。

[0122]

【比較例5】実施例1において、難燃剤NAおよび難燃 剤NEの代わりに、難燃剤NBを15重量部、難燃剤N Cを5重量部および難燃剤NIを5重量部用いた以外 は、実施例1と同様にして、試験片を作製し、上記の各 種測定を行なった。

28

【0123】その結果を第1表に示す。難燃剤NI(ベ ンタエリスリトール)を用いても、実施例ほどの難燃性 は得られず、また耐水性も低かった。

【表1】

/				機	100					32	松	4	
	_	2	33	4	3	9	7	8	1	2	6	4	ഹ
<組成>[重量部]				į		9	90,	841	6	5	5	100	901
9	90	199	100	3	3	≨	3	3	3	3	3	3	3
(N+d) W M M M M M M M M M M M M M M M M M M	81	19	61	12.5	1	1	ı	r.	52	ı	ı	<u></u>	1
(4) 8N最軽器		!	•	ı	5	15	5	1	,	5	, ,	i	<u>.</u>
	;				4	w)				ம	တ		က
機構型ND (N)	,	i		!	,		4	'	1				
無機利NE (P)	9	ı	1	12.5	ம	ı		67	ı	ŀ	33		
(H) JN浸製器	1	6		1	1	ၒ	9	1	ı	,	ı	ı	ı
機養強NG (b)	1	1	9	1	_	,		2	'n		-		
(d) HN版報機	·	1	1	1	ı	١	ł	ı	ı	ı	ı	•	'
一乙家製業	ı	ı		_	:	1	ŗ	,		,	-		n
成形体の物料			_								_		
離然性 UL-94 V									:				
1/8" 527	<u>-</u>	۸-2	- - -	0- <u>></u>	7-7	Z- <u>-</u>	4-2	- -	400	Υ	十七年	`	÷ 6
燃烧時間 [秒]	9	-	4	0	0	0	15			英	7	以	
耐水性 △ Ε	11	9	- 1	1.5		7	6	6	9.0	-	5	7	٦
外観 85° ゲロス	02	63	98	83	72	19	23	11	59	70	28	38	65

フロントページの続き

(51)Int.Cl.⁶ C 0 8 K 5/5399 識別記号 FΙ

C 0 8 K 5/5399