電腦視覺與應用 Computer Vision and Applications

Lecture-03 Projective 2D geometry

Tzung-Han Lin

National Taiwan University of Science and Technology Graduate Institute of Color and Illumination Technology

e-mail: thl@mail.ntust.edu.tw

Projective 2D geometry

Lecture Reference at:

- Multiple View Geometry in Computer Vision, Chapter 2. (major)
- Computer Vision A Modern Approach, Chapter 10.

Projective 2D geometry

Topics

- Points, lines & conics
- Transformations & invariants (between images)
- 1D projective geometry and the Cross-ratio

Homogeneous coordinates

Homogeneous representation of lines

$$ax + by + c = 0$$
 $(a,b,c)^{T}$
 $(ka)x + (kb)y + kc = 0, \forall k \neq 0$ $(a,b,c)^{T} \sim k(a,b,c)^{T}$
equivalence class of vectors, any vector is representative
Set of all equivalence classes in \mathbb{R}^{3} – $(0,0,0)^{T}$ forms \mathbb{P}^{2}

define one line as a vector format:

$$\mathbf{l} = (a, b, c)^{\mathsf{T}}$$

Homogeneous coordinates

Homogeneous coordinates of points

$$\mathbf{x} = (x, y, 1)^{\mathsf{T}} \text{ on } \mathbf{l} = (a, b, c)^{\mathsf{T}} \text{ if and only if } ax + by + c = 0$$
$$(x, y, 1)(a, b, c)^{\mathsf{T}} = (x, y, 1)\mathbf{l} = 0$$
$$(x, y, 1)^{\mathsf{T}} \sim k(x, y, 1)^{\mathsf{T}}, \forall k \neq 0$$

■ The point x lies on the line l if and only if $\mathbf{x}^T \mathbf{l} = \mathbf{l}^T \mathbf{x} = 0$

Homogeneous coordinates
$$(x_1, x_2, x_3)^T$$
 but only 2DOF
Inhomogeneous coordinates $(x, y)^T$

2D Points from lines and vice-versa

- Intersections of lines
 - The intersection of two lines l and l' is $x = l \times l'$
- Line joining two points
 - The line through two points \mathbf{x} and \mathbf{x}' is $\mathbf{l} = \mathbf{x} \times \mathbf{x}'$

Example: intersections of lines

2D Points from lines and vice-versa

■ Example: Line joining two points

$$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

or
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\mathbf{X} \times \mathbf{X}' = \mathbf{I}$$

Points from lines and vice-versa

■ Normal vector and tangent vector of one line:

Ideal points and the line at infinity

Intersections of parallel lines

$$\mathbf{l} = (a, b, c)^{\mathsf{T}}$$
 and $\mathbf{l}' = (a, b, c')^{\mathsf{T}}$ $\mathbf{x} = \mathbf{l} \times \mathbf{l}' = (b, -a, 0)^{\mathsf{T}} \Rightarrow \text{point at infinity}$

Example

(b,-a) tangent vector (a,b) normal direction

Ideal points
$$\rightarrow (x_1, x_2, 0)^T$$

Line at infinity $\rightarrow \mathbf{l}_{\infty} = (0,0,1)^T$

$$\mathbf{P}^2 = \mathbf{R}^2 \cup \mathbf{1}_{\infty}$$
 Note that in \mathbf{P}^2 there is no distinction between ideal points and others

Ideal points and the line at infinity

Schematic of homogenous coordinates:

A model for the projective plane

exactly one line through two points exactly one point at intersection of two lines

A model for the projective plane—cont.

Duality of 2D lines and points

Duality principle:

To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

$$\mathbf{x} \leftarrow \mathbf{l}$$
 $\mathbf{x}^{\mathsf{T}} \mathbf{l} = 0 \leftarrow \mathbf{l}^{\mathsf{T}} \mathbf{x} = 0$
 $\mathbf{x} = \mathbf{l} \times \mathbf{l}' \leftarrow \mathbf{l} = \mathbf{x} \times \mathbf{x}'$

Conics

■ Curve described by 2nd-degree equation in the plane

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

• or homogenized $x \mapsto \frac{x_1}{x_3}, y \mapsto \frac{x_2}{x_3}$

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

or in matrix form

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \longrightarrow \mathbf{x}^\mathsf{T} \mathbf{C} \mathbf{x} = \mathbf{0}$$

5DOF:
$$\{a:b:c:d:e:f\}$$
 with $\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$

Conics (example)

Example

$$\begin{bmatrix} x & y & 1 \\ 4 & 1 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 6 & -0.5 & 2 \\ -0.5 & 3 & 1 \\ 2 & 1 & -16 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

Conics

■ Five points define a conic

For each point the conic passes through

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

or in matrix form

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, f) \cdot \mathbf{c} = 0$$
 $\mathbf{c} = (a, b, c, d, e, f)^T$

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1 y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2 y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3 y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_2^2 & x_2 y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = 0$$

$$\begin{bmatrix} x_1^2 & x_1 y_1 & y_1^2 & x_1 & y_1 \\ x_2^2 & x_2 y_2 & y_2^2 & x_2 & y_2 \\ x_3^2 & x_3 y_3 & y_3^2 & x_3 & y_3 \\ x_4^2 & x_4 y_4 & y_4^2 & x_4 & y_4 \\ x_5^2 & x_5 y_5 & y_5^2 & x_5 & y_5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Conics

■ Five points define a conic, an example:

5 points determine a conic:

$$(-6,1.6733,1)$$

(-3,2.8636,1)

(0,3.1623,1)

(3,2.8636,1)

(6,1.6733,1)

Solve it, then get
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} -0.02 \\ 0 \\ -0.1 \\ -0.000 \\ -0.000 \end{bmatrix} \rightarrow 0.2x^2 + y^2 - 10 = 0$$

Tangent lines to conics

■ The line I tangent to C at point x on C is given by l=Cx

Since
$$\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0 = \mathbf{x}^{\mathsf{T}}\mathbf{l} = \mathbf{l}^{\mathsf{T}}\mathbf{x}$$

Dual conics

A line tangent to the conic C satisfies $\mathbf{l}^{\mathsf{T}}\mathbf{C}^{*}\mathbf{l} = 0$

- In general (**C** full rank): $\mathbf{C}^* = \mathbf{C}^{-1}$
- Dual conics = line conics = conic envelopes (包絡線)

Dual conics

■ A line tangent to the conic C satisfies

$$\mathbf{l}^{\mathsf{T}}\mathbf{C}^{*}\mathbf{l} = 0 \implies \mathbf{C}^{*} = \mathbf{C}^{-1}$$

■ Proof:

Since
$$\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0$$

And line on the conic: $\mathbf{l} = \mathbf{C}\mathbf{x} \rightarrow \mathbf{x} = \mathbf{C}^{-1}\mathbf{l}$ (says tangent points)

$$\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0$$

$$(\mathbf{C}^{-1}\mathbf{l})^{\mathsf{T}}\mathbf{C}(\mathbf{C}^{-1}\mathbf{l}) = 0$$

$$\mathbf{l}^{\mathsf{T}}\mathbf{C}^{-\mathsf{T}}\mathbf{C}\mathbf{C}^{-1}\mathbf{l} = 0$$

$$\mathbf{l}^{\mathsf{T}}\mathbf{C}^{-\mathsf{T}}\mathbf{l} = 0$$

$$\mathbf{l}^{\mathsf{T}}\mathbf{C}^{*}\mathbf{l} = 0$$

$$\therefore \mathbf{C}^* = \mathbf{C}^{-1}$$

(hint: since C is symmetric)

Dual conics (example)

Example

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 4 \\ 0 & 15 & 1 \\ 4 & 1 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\mathbf{l}^{\mathrm{T}} \begin{bmatrix} 0.1551 & -0.0037 & 0.0561 \\ -0.0037 & 0.0664 & 0.0047 \\ 0.0561 & 0.0047 & -0.0701 \end{bmatrix} \mathbf{l} = 0 \mathbf{l}$$

Degenerate conics

A conic is degenerate if matrix C is not of full rank

e.g. two lines (rank 2)

$$C = lm^T + ml^T$$

e.g. repeated line (rank 1)

$$\mathbf{C} = \mathbf{1} \mathbf{1}^{\mathsf{T}}$$

Example:
$$\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0$$

$$\mathbf{x}^{\mathsf{T}}(\mathbf{lm}^{\mathsf{T}} + \mathbf{ml}^{\mathsf{T}})\mathbf{x} = (\mathbf{x}^{\mathsf{T}} \mathbf{l})(\mathbf{m}^{\mathsf{T}} \mathbf{x}) + (\mathbf{x}^{\mathsf{T}} \mathbf{m})(\mathbf{l}^{\mathsf{T}} \mathbf{x}) = 0$$

So, either $\mathbf{x}^{\mathsf{T}}\mathbf{l} = 0$, or $\mathbf{x}^{\mathsf{T}}\mathbf{m} = 0 \rightarrow$ two lines

Example:

Example:
$$1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Degenerate line conics: 2 points (rank 2), double point (rank1)

Note that for degenerate conics

$$\left(\mathbf{C}^{*}\right)^{*} \neq \mathbf{C}$$

Degenerate conics (example)

Example

$$\mathbf{C} = \mathbf{lm}^{\mathsf{T}} + \mathbf{ml}^{\mathsf{T}}$$

$$\mathbf{l} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \mathbf{m} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 6 & 7 & 17 \\ 7 & 4 & 9 \\ 17 & 9 & 20 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{ll}^\mathsf{T}$$

$$1 = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 4 & 7 \\ 4 & 16 & 28 \\ 7 & 28 & 49 \end{bmatrix}$$

Graduate Institute of Color and Illumination Technology

Projective transformations

Definition

A projectivity is an invertible mapping h from P^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1),h(x_2),h(x_3)$ do. \rightarrow 在同一線上的3個點經過轉換仍然共線

Theorem:

A mapping $h: P^2 \rightarrow P^2$ is a projectivity if and only if there exists a non-singular 3x3 matrix **H** such that for any point in P^2 represented by a vector \mathbf{x} it is true that $\mathbf{h}(\mathbf{x}) = \mathbf{H}\mathbf{x}$

Definition: Projective transformation

$$\begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 or $\mathbf{x}' = \mathbf{H}\mathbf{x}$ 8DOF

Projectivity = Collineation = Projective Transformation = Homography

Application: mapping between planes

Homography

central projection may be expressed by **x**'=**Hx**

select four points in a plane with know coordinates

$$x' = \frac{x'_1}{x'_3} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \qquad y' = \frac{x'_2}{x'_3} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x' = \frac{x'_{1}}{x'_{3}} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \qquad y' = \frac{x'_{2}}{x'_{3}} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x' (h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13}$$

$$y' (h_{31}x + h_{32}y + h_{33}) = h_{21}x + h_{22}y + h_{23} \qquad \text{(linear in } h_{ij})$$

(2 constraints/point, 8DOF \Rightarrow 4 points needed)

Note! NO calibration at all necessary, better ways to compute

Rewrite equation

$$xh_{11} + yh_{12} + h_{13} - x'xh_{31} - x'yh_{32} - x'h_{33} = 0$$

$$xh_{21} + yh_{22} + h_{23} - y'xh_{31} - y'yh_{32} - y'h_{33} = 0$$

Normalize hij with h33, (replace h_{ij}/h_{33} with h_{ii} temporarily)

$$xh_{11} + yh_{12} + h_{13} - x'xh_{31} - x'yh_{32} = x'$$

 $xh_{21} + yh_{22} + h_{23} - y'xh_{31} - y'yh_{32} = y'$

In matrix form:

■ For example: Take a picture, then remove the distortion. Someday...

Define your problem, first!!!

■ For example, —cont.

-19600

 $-68800 \parallel h_{22}$

 $-17200 \parallel h_{23}$

 $-36400 \parallel h_{31}$

100

400

100

400

0

Graduate Institute of Color and Illumin

Homography: to remove projective effect

■ For example, —cont.


```
0.7210
                      -0.0008
                                                                  -0.0191
                      0.0000
                                                                                                       -0.0191
                                                                                                                   -38.0771
0.4537 -0.2620 -0.4511 0.0425 0.8424 -0.2355 -0.8450
                                                                 -38.0771
                                                                  -0.1029
                                                                                                       0.6150
                                            0.0011
                                                                  0.6150
                                                       100
                      0.1364
                                                                                          -0.0016
                                                                 -22.1199
                                            0.0000
              0.0000
                      0.0000
                                                                  -0.0016
0.0000
       0.0000 -0.0000 -0.0000
                             0.0000
                                            -0.0000
                                                                  0.0001
```


■ For example, —cont.

	p1 =	p2 =	p3 =	p4 =
original points:	54 45 1	58 196 1	332 172 1	329 91 1
	>> H*p1	>> H*p2	>> H*p3	>> H*p4
x'=Hx	ans =	ans =	ans =	ans =
	0 0.0000 0.9192	-0.0000 92.4536 0.9245	198.0257 49.5064 0.4951	197.4097 0.0000 0.4935
normalized	0 0.0000 1.0000	-0.0000 100.0000 1.0000	400.0000 100.0000 1.0000	400.0000 0.0000 1.0000

 $(400, 0, 1)^{\mathsf{T}}$ $(0,0,1)^{\mathsf{T}}$ $(0,100,1)^{\mathsf{T}}$ $(400,100,1)^{\mathsf{T}}$ Desired points:

■ For example, —cont. (inverse mapping)

	pp1 =	pp 2 =	pp3 =	pp4 =
desired points:	0	0	400	400
	0	100	100	0
	1	1	1	1
	>> inv(H)*pp1	>> inv(H)*pp2	>> inv(H)*pp3	>> inv(H)*pp4
x=H ⁻¹ x'	ans =	ans =	ans =	ans =
	58.7480	62.7342	670.6200	666.6338
	48.9567	211.9982	347.4296	184.3881
	1.0879	1.0816	2.0199	2.0262
	5			
	54.0000	58.0000	332.0000	329.0000
normalized	45.0000	196.0000	172.0000	91.0000
	1.0000	1.0000	1.0000	1.0000
	'			

■ For example, —cont. (inverse mapping)

Filling correct COLOR:

You are knowing to filling color in a "400x100" image. For each pixel, you need to calculate its color by applying H⁻¹ to its coordinate.

Homography: What is it?

If you have at least 4 corresponding points, a homography can dominate the transformation between two images. So, you do NOT need to determine

K[R|t] for 2 views

(Note: ONLY planar structure in 3D)

Homography in OpenCV

 openCV provides various kinds of mapping operations in computer vision.

> Correspondence: $(54,45) \rightarrow (0,0)$ $(58,196) \rightarrow (0,100)$ $(332,172) \rightarrow (400,100)$ $(329,91) \rightarrow (400,0)$ Then, find **H**

Sample Code:

Mat H = findHomography(xSet, xpSet, CV_RANSAC);

Source Points:

54.000000 45.000000 58.000000 196.000000 332.000000 172.000000 329.000000 91.000000

Destination Points: 0.000000 0.000000 0.000000 100.000000 400.000000 100.000000 400.000000 0.000000

Homography Matrix: 0.721049 -0.019101 -38.077095 -0.102873 0.615001 -22.119894 -0.001561 0.000077 1.000000

Homography: example: develop a program

Example

Homography: more examples

Homography for specific shape

■ For a point transformation

$$x' = H x$$

Transformation for lines

$$1' = \mathbf{H}^{-\mathsf{T}} 1$$

Transformation for conics

$$C' = H^{-T}CH^{-1}$$

Transformation for dual conics

$$\mathbf{C}'^* = \mathbf{H}\mathbf{C}^*\mathbf{H}^\mathsf{T}$$

■ Transformation for lines $\mathbf{l'} = \mathbf{H}^{-\mathsf{T}}\mathbf{l}$ (proof) If we have $\mathbf{x'} = \mathbf{H}\mathbf{x}$ And x' on line l', and x on l. So, we have $\mathbf{l'}^T \mathbf{x'} = 0 \quad \mathbf{l}^T \mathbf{x} = 0$ Rewrite $\mathbf{l'}^\mathsf{T} \mathbf{x'} = 0 = \mathbf{l}^\mathsf{T} \mathbf{H}^{-1} \mathbf{H} \mathbf{x}$ Then, $\mathbf{l'}^{\mathsf{T}} = \mathbf{l}^{\mathsf{T}} \mathbf{H}^{-1} \rightarrow \mathbf{l'} = (\mathbf{l'}^{\mathsf{T}})^{\mathsf{T}} = (\mathbf{l}^{\mathsf{T}} \mathbf{H}^{-1})^{\mathsf{T}} = \mathbf{H}^{-\mathsf{T}} \mathbf{l}$ Get: $\mathbf{l}' = \mathbf{H}^{-\mathsf{T}} \mathbf{l}$

■ Transformation for conics $C' = H^{-T}CH^{-1}$ (proof) If we have $\mathbf{x'} = \mathbf{H}\mathbf{x}$ And know a conic equation: $\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0$ So, we have $\mathbf{x} = \mathbf{H}^{-1}\mathbf{x}'$ Rewrite equation: $\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0 \rightarrow (\mathbf{H}^{-1}\mathbf{x}')^{\mathsf{T}}\mathbf{C}\mathbf{H}^{-1}\mathbf{x}' = 0$ Then, $\mathbf{x'}^{\mathsf{T}} (\mathbf{H}^{-\mathsf{T}} \mathbf{C} \mathbf{H}^{-1}) \mathbf{x'} = 0 = \mathbf{x'}^{\mathsf{T}} \mathbf{C'} \mathbf{x'}$ Get: $\mathbf{C}' = \mathbf{H}^{-\mathsf{T}} \mathbf{C} \mathbf{H}^{-\mathsf{1}}$

Example: (the same with previous, but mirror for convenience)

■ Example: lines transformation

$$l' = H^{-T}l$$

■ Example: conics transformation $C' = H^{-T}CH^{-1}$

A hierarchy of transformations

- Projective linear group
 - Affine group (last row (0,0,1))
 - Euclidean group (upper left 2x2 orthogonal)
 - Oriented Euclidean group (upper left 2x2 det 1)

Alternative, characterize transformation in terms of elements or quantities that are preserved or *invariant* e.g. Euclidean transformations leave distances unchanged

- Isometrics
- Similarities
- Affine mapping
- Projective mapping

Graduate Institute of Color and Illumination Technology

Four classic types of transformation—cont.

■ Class I: Isometries

(iso=same, metric=measure)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \varepsilon \cos \theta & -\sin \theta & t_x \\ \varepsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 $\varepsilon = \pm 1$

orientation preserving: $\varepsilon = 1$ orientation reversing: $\varepsilon = -1$

$$\mathbf{x'} = \mathbf{H}_E \mathbf{x} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

3DOF (1 rotation, 2 translation)

special cases: pure rotation, pure translation

Invariants: length, angle, area 此類型轉換夾角 面積 長度不會改變!!!

Class II: Similarities

$$(isometry + scale)$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_S \ \mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

4DOF (1 scale, 1 rotation, 2 translation)

also know as equi-form (shape preserving)

metric structure = structure up to similarity (in literature)

Class III: Affine transformations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_A \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x}$$

$$\mathbf{A} = \mathbf{R}(\theta)\mathbf{R}(-\phi)\mathbf{D}\mathbf{R}(\phi)$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

6DOF (2 scale, 2 rotation, 2 translation)

non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas

■ Class IV: Projective transformations

$$\mathbf{x'} = \mathbf{H}_P \ \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \mathbf{x} \qquad \qquad \mathbf{v} = (v_1, v_2)^\mathsf{T}$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) Action non-homogeneous over the plane

Invariants: cross-ratio of four points on a line (ratio of ratio)

■ Action of affinities and projectivities on line at infinity

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^{\mathsf{T}} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix}$$
 Line at infinity stays at infinity, but points move along line

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$$

 $\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$ Line at infinity becomes finite, allows to observe vanishing points, horizon,

Decomposition of projective transformations

$$\mathbf{H} = \mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} = \begin{bmatrix} s\mathbf{R} & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & 0 \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ v^{\mathsf{T}} & v \end{bmatrix} = \begin{bmatrix} \mathbf{A} & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

SimilarityAffine Projective

decomposition unique (if chosen s>0)

Example:

$$\mathbf{H} = \begin{bmatrix} 1.707 & 0.586 & 1.0 \\ 2.707 & 8.242 & 2.0 \\ \hline 1.0 & 2.0 & 1.0 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 2\cos 45^{\circ} & -2\sin 45^{\circ} & 1.0 \\ 2\sin 45^{\circ} & 2\cos 45^{\circ} & 2.0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = s\mathbf{R}\mathbf{K} + t\mathbf{v}^\mathsf{T}$$

K upper-triangular, $\det \mathbf{K} = 1$

Step: 1. Determine \mathbf{v}^{T}

Step: 2. Find K

Step: 3. then s and \mathbf{R}

- Decomposition of projective transformations
 - Example

Source Points	Destination Points
(100,100)	(600,250)
(400,100)	(900,10)
(400,400)	(1250,300)
(100,400)	(725,475)
H=	

-0.027759 -0.054527 516.226013

-0.687046 0.368143 243.555847

-0.000972 -0.000562 1.000000

Hp= 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 -0.000972 -0.000562 1.000000

Ha= 1.112456 -0.301632 0.000000 -0.000000 0.898912 0.000000 0.000000 0.000000 1.000000

Hs=0.425900 0.404881 516.226013 -0.404881 0.425900 243.555847 0.000000 0.000000 1.000000

- Decomposition of projective transformations
 - (Inverse) Example

- Decomposition of projective transformations
 - Example—cont.

1200

1400

Four classic types of transformation—cont.

- Decomposition of projective transformations
 - Example—cont.

Overview transformations

4dof

Euclidean 3dof $\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \end{bmatrix}$

 Sr_{21}

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids).

The line at infinity \mathbf{l}_{∞}

Ratios of lengths, angles. **The circular points I,J**

lengths, areas.

Number of invariants?

- The number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation
- e.g. configuration of 4 points in general position has 8 dof (2/pt) and so 4 similarity, 2 affinity and zero projective invariants

Short summary

Points and lines

and lines
$$\mathbf{l}^{\mathsf{T}}\mathbf{x} = 0 \qquad \mathbf{x} = \mathbf{l} \times \mathbf{l}' \qquad \mathbf{l} = \mathbf{x} \times \mathbf{x}' \qquad \mathbf{l}_{\infty} = (0,0,1)^{\mathsf{T}}$$
 as and dual conics

Conics and dual conics

$$\mathbf{x}^{\mathsf{T}}\mathbf{C}\mathbf{x} = 0 \quad \mathbf{l}^{\mathsf{T}}\mathbf{C}^{*}\mathbf{l} = 0 \quad \mathbf{C}^{*} = \mathbf{C}^{-1} \quad \mathbf{l} = \mathbf{C}\mathbf{x}$$

Projective transformations

$$\mathbf{x'} = \mathbf{H}\mathbf{x}$$
 $\mathbf{l'} = \mathbf{H}^{-\mathsf{T}}\mathbf{l}$
 $\mathbf{C'} = \mathbf{H}^{-\mathsf{T}}\mathbf{C}\mathbf{H}^{-\mathsf{1}}$ $\mathbf{C'}^* = \mathbf{H}\mathbf{C}^*\mathbf{H}^\mathsf{T}$

Affine rectification via the vanishing line

Affine rectification via the vanishing line

■ Example—cont.

61 This photo is licensed under **CC BY-ND**