Pham and Park's Proof of the Kahn-Kalai Conjecture

Hafsah Aamer

Math 490, Fall 2022 December 11, 2022

Outline

- 1. Preliminaries: Random Graphs
- 2. Expectation Threshold
- 3. Kahn-Kalai Conjecture Statement
- 4. Outline of the Proof

• $[n] = \{1, 2, 3, \dots, n\}$ vertex set. K_n the complete graph has $\binom{n}{2}$ edges.

Preliminaries: Random Graphs

- $[n] = \{1, 2, 3, \dots, n\}$ vertex set. K_n the complete graph has $\binom{n}{2}$ edges.
- $G_{n,m}$:= the uniform random graph obtained by choosing exactly m edges out of $\binom{n}{2}$ total edges.

$$\mathbb{P}(G_{n,m}) = \binom{\binom{n}{2}}{m}^{-1}$$

- $[n] = \{1, 2, 3, \dots, n\}$ vertex set. K_n the complete graph has $\binom{n}{2}$ edges.
- $G_{n,m}$:= the uniform random graph obtained by choosing exactly m edges out of $\binom{n}{2}$ total edges.

$$\mathbb{P}(G_{n,m}) = \binom{\binom{n}{2}}{m}^{-1}$$

• $G_{n,p}$:= the graph obtained by performing $\binom{n}{2}$ independent Bernoulli experiments between any two vertices in [n], inserting an edge with the probability p.

$$\mathbb{P}(G_{n,p})=p^m(1-p)^{\binom{n}{2}-m}$$

Preliminaries: Random Graphs 3/14

- $[n] = \{1, 2, 3, \dots, n\}$ vertex set. K_n the complete graph has $\binom{n}{2}$ edges.
- $G_{n,m}$:= the uniform random graph obtained by choosing exactly m edges out of $\binom{n}{2}$ total edges.

$$\mathbb{P}(G_{n,m}) = \binom{\binom{n}{2}}{m}^{-1}$$

• $G_{n,p}$:= the graph obtained by performing $\binom{n}{2}$ independent Bernoulli experiments between any two vertices in [n], inserting an edge with the probability p.

$$\mathbb{P}(G_{n,p})=p^m(1-p)^{\binom{n}{2}-m}$$

• For large n, $G_{n,p} \sim G_{n,m}$ when $m = \binom{n}{2} p$, i.e. when m is close to the expected number of edges of $G_{n,p}$

Preliminaries: Random Graphs 3/14

In an abstract setting

- X a finite set. 2^X the power set of X.
- $X_p \sim \mu_p$ where $\mu_p(A) = p^{|A|} (1-p)^{|X\setminus A|}$ $A \subseteq X$
- X_m is the uniformly random subset of X of size m
- $\mathcal{F} \subseteq 2^X$ is an increasing property if $B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$
- $\mu_p(\mathcal{F})$ (:= $\sum_{A \in \mathcal{F}} \mu_p(A)$) is a strictly increasing in p, so that we have:

The threshold $p_c(\mathcal{F})$ is the unique p for which $\mu_p(\mathcal{F}) = 1/2$

Preliminaries: Random Graphs 4/1

Locating the Threshold

Our main aim is to provide bounds for the threshold $p_c(\mathcal{F})$.

- $\langle A \rangle := \{B : B \supseteq A\},\$
- \mathcal{G} covers \mathcal{F} if $\mathcal{F} \subseteq \langle \mathcal{G} \rangle := \bigcup_{S \in \mathcal{G}} \{U : U \supseteq S\}$

Expectation Threshold 5/14

Expectation Threshold

Observation

$$p_c(\mathcal{F}) \geqslant p$$
 if $\exists \mathcal{U} \subseteq 2^X$ such that

- \mathcal{U} covers $\mathcal{F}: \mathcal{F} \subseteq \langle \mathcal{U} \rangle := \bigcup_{u \in \mathcal{U}} \langle u \rangle$
- \mathcal{U} is p-cheap: $\sum_{u \in \mathcal{U}} p^{|u|} \leqslant \frac{1}{2}$

$$\implies q(\mathcal{F}) := \max\{p : \exists \mathcal{U}\}$$

Expectation Threshold is the maximum value of probability that allows a cheap cover of \mathcal{F}

Expectation Threshold 6/1

Kahn-Kalai and the Reformulation

Write $I(\mathcal{F})$ for the size of the largest minimal element of \mathcal{F} .

Kahn-Kalai Conjecture:

There exists K > 0 a universal constant such that for any finite set X and increasing property \mathcal{F}

$$q(\mathcal{F}) < p_c \mathcal{F} < K.q(\mathcal{F}).\log I(\mathcal{F})$$

Kahn-Kalai and the Reformulation

Write $I(\mathcal{F})$ for the size of the largest minimal element of \mathcal{F} .

Kahn-Kalai Conjecture:

There exists K>0 a universal constant such that for any finite set X and increasing property $\mathcal F$

$$q(\mathcal{F}) < p_c \mathcal{F} < K.q(\mathcal{F}).\log I(\mathcal{F})$$

- Think $\mathcal{H} \subseteq 2^X = \{$ minimal elements of $\mathcal{F} = \{$
- ullet \mathcal{H} is "I-bounded" and $\langle \mathcal{H} \rangle = \mathcal{F}$

Kahn-Kalai and the Reformulation

Write $I(\mathcal{F})$ for the size of the largest minimal element of \mathcal{F} .

Kahn-Kalai Conjecture:

There exists K>0 a universal constant such that for any finite set X and increasing property \mathcal{F}

$$q(\mathcal{F}) < p_c \mathcal{F} < K.q(\mathcal{F}).\log I(\mathcal{F})$$

- Think $\mathcal{H} \subseteq 2^X = \{$ minimal elements of $\mathcal{F} = \{$
- \mathcal{H} is "*I*-bounded" and $\langle H \rangle = \mathcal{F}$

Reformulation

There exists L>0 a universal constant such that for all I-bounded $\mathcal{H}\subseteq 2^X$ if $p>q(\langle\mathcal{H}\rangle)$ then with $m=(Lp\log I).|X|$

$$\mathbb{P}\left(X_m \in \langle H \rangle\right) = 1 - o_{l \to \infty}(1)$$

Idea of the Proof

With the reformulation, we have access to the elements of the cover, which we could try to manipulate. Recall $\mathcal{H} = \{$ minimal elements of $\mathcal{F} \}$

Outline of the Proof 8/14

Idea of the Proof

With the reformulation, we have access to the elements of the cover, which we could try to manipulate. Recall $\mathcal{H} = \{$ minimal elements of $\mathcal{F} \}$

We would like to capture some $S \in \mathcal{H}$ in a random m-subset X_m , which we will call W. If we capture it whp, then we would be done.

Outline of the Proof 8/14

Dreamy Situation - log / steps

Recall \mathcal{H} is I-bounded; each |S| is at most I. A dreamy situation: we sprinkle our random set W little by little in some steps $W_1 \cup W_2 \cup \ldots W_n$, where in the i-th step $|W_i| = Lp|X|$

Outline of the Proof

Dreamy Situation - log / steps

Recall \mathcal{H} is I-bounded; each |S| is at most I.

A dreamy situation: we sprinkle our random set W little by little in some steps $W_1 \cup W_2 \cup \ldots W_n$, where in the i-th step $|W_i| = Lp|X|$

Outline of the Proof 9/14

Dreamy Situation - log / steps

Recall \mathcal{H} is I-bounded; each |S| is at most I.

A dreamy situation: we sprinkle our random set W little by little in some steps $W_1 \cup W_2 \cup \ldots W_n$, where in the i-th step $|W_i| = Lp|X|$

- Each W_i is such that it covers, for example, 10% of the remaining area. Since the size of S is at most I, we cover S in at most $\log I$ steps.
- \Longrightarrow $|W| = (Lp \log I)|X|$. Would be done.

Outline of the Proof

• Since we don't really know where S is, we can't attack it by throwing a random W.

Outline of the Proof 10/14

- ullet Since we don't really know where S is, we can't attack it by throwing a random W.
- We try to iteratively find a cover of \mathcal{H} . At i-th step, we take \mathcal{H} and sprinkle a random set W_i :

Outline of the Proof 10/14

- ullet Since we don't really know where S is, we can't attack it by throwing a random W.
- We try to iteratively find a cover of \mathcal{H} . At i-th step, we take \mathcal{H} and sprinkle a random set W_i :

Outline of the Proof 10/14

• We look at the subsets S' of $W_i \cup S$ and take T = T(S, W) such that $|T(S, W)| = |S' \setminus W|$ is the minimum.

• If |T| > 0.9I, we put T in \mathcal{G} . These constitute the elements which will cover \mathcal{H} . For T's such that $|T| \leq 0.9I$, we put them in our next hypergraph \mathcal{H}'

Outline of the Proof 11/14

- ullet Important: A cover of the new \mathcal{H}' also covers the leftovers from the previous \mathcal{H}
- Since T is almost the size of S, it is cheap to specify it
- ullet In this way, we carefully we construct a cheap cover of ${\cal H}$
- The iteration terminates if:
 - \bullet either we capture some S in W
 - ullet or we fully cover ${\cal H}$
- For p that is above the expectation threshold $q(\mathcal{F})$, \mathcal{F} doesn't admit a cheap cover *implies* the latter case happens with a low probability.
- \Longrightarrow $S \subseteq W$ with high probability.
- terminates in ≤ log / steps.

Outline of the Proof 12/14

A few applications

- The conjecture trivially locates the threshold for increasing properties such as the presence of Hamiltonian cycles and Perfect matchings.
- Also resolves many other related conjectures, such as those that appeared in the original conjecture paper
- The authors are working on classifying the logarithmic gap, but as of now, no broad mechanism to do so.

Outline of the Proof 13/14

References

- Park, J., Pham, H. T. (2022). A proof of the kahn-kalai conjecture. arXiv preprint arXiv:2203.17207.
- Kahn, J., Kalai, G. (2007). Thresholds and expectation thresholds. Combinatorics, Probability and Computing, 16(3), 495-502.
- Frankston, K., Kahn, J., Narayanan, B., Park, J. (2021). Thresholds versus fractional expectation-thresholds. Annals of Mathematics, 194(2), 475-495.
- Alweiss, R., Lovett, S., Wu, K., Zhang, J. (2020, June). Improved bounds for the sunflower lemma. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (pp. 624-630).

Outline of the Proof 14/14