Results

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a numeric variable for Variable 2 / Independent Variables. Hence, the <u>Pearson correlation coefficient</u>, which is a measure for the strength of the linear relationship between two variables, seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Correlation Matrix

- Drop your two variables in the white box at the right
- Under Correlation Coefficients, select Pearson (selected by default)
- Under Hypothesis, select your alternative hypothesis

Alternatively, you could perform a <u>linear regression analysis</u>. The test outcomes of both methods will be equivalent. Click on the links to learn more about these methods!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Correlation Matrix

Correlation Matrix

		Sales	Airplay
Sales	Pearson's r p-value	_ _	
Airplay	Pearson's r p-value	0.599 <.001	_

Linear Regression

Model Fit Measures

				Overall Model Test			
Model	R	\mathbb{R}^2	Adjusted R ²	F	df1	df2	р
1	0.578	0.335	0.331	99.6	1	198	<.001

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	433688	1	433688	99.6	<.001
Residuals	862264	198	4355		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

			95% Confidence Interval					95% Cor Inte	
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate	Lower	Upper
Intercept Adverts	134.1399 0.0961	7.53657 0.00963	119.2777 0.0771	149.002 0.115	17.80 9.98	<.001 <.001	0.578	0.464	0.693

Assumption Checks

Normality Test (Shapiro-Wilk)

Statistic	р		
0.990	0.176		

Q-Q Plot

Residuals Plots

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.