UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAM April 24, 2017 2 Hours 30 Minutes

First Year - Engineering Science

ECE 159S - ELECTRIC CIRCUIT FUNDAMENTALS

Exam Type: A

Examiners: K. Phang and N.P. Kherani

Last	First
	장하는 가능하는 아래에서 있었다. 그 나와
STUDENT #:	

INSTRUCTIONS:

- · You may write in pencil.
- This is a Type A examination; no aids are allowed.
- · Only non-programmable calculators are allowed.
- The marks for each question are indicated within brackets [].
- When answering the questions, include all the steps of your work on these pages. Place your final answers in the boxes where given and include <u>units</u>.
- For additional space, you may use the back of the preceding page and the blank page provided at the end. Do not unstaple this exam booklet.

Q1	/20
Q2	/10
Q3	/5
Q4	/10
Q5	/5
Q6	/10
Q7	/10
Total	/70

QUESTION 1 [20 marks]

Answer the following short-answer questions.

a) [2 marks] Using superposition, find V_o in the circuit shown below.

$$V_o =$$

b) [2 marks] The current in a 5-mH inductor has the waveform shown below. Compute and plot the waveform for the inductor voltage. Label the axes clearly.

c) [1 mark] Write the differential equation for the following circuit for t > 0. Note, the switch is closed at t=0.

Name: Student No.:		
	Name:	Student No.:

Question 1 (cont.) d) [2 marks] Compute the impedance Z_T in the network shown below.

Z_T	 1				
LT					

e) [4 marks] The complex power delivered to a load Z is S = 100 + j57.7 VA. If the magnitude of the load, $|Z| = 10\Omega$, and the angular frequency, $\omega = 377$ rad/s, calculate the equivalent series resistance, R, and inductance, L (or capacitance, C) to model the load.

Question 1 (cont.)

f) [2 marks] The voltage $v(t) = 100 \cos (314t + 15^{\circ}) \text{ V}$ is applied to a $100 \mu\text{F}$ capacitor. Find i(t).

i(t) =			

g) [2 marks] For an amplifier with an output resistance of $1.6k\Omega$, what is the turns ratio, n, of the ideal transformer required to match the amplifier to an 8Ω speaker?

h) [2 marks] Write the equations for voltages $v_1(t)$ and $v_2(t)$ in terms of currents $i_1(t)$ and $i_2(t)$ as shown.

Student No.:	
	Student No.:

Question 1 (cont.)

- i) [1 mark] What is the peak magnitude of a sinusoidal current having an rms value of 15A?
- j) [2 marks] For the opamp circuit below, write an expression for the inductor current $i_s(t)$ and output voltage $v_o(t)$ in terms of the input signal, $v_s(t)$, for time t > 0? Assume zero initial conditions.

$i_s(t) =$			
$v_o(t) =$			

Name:	Student No.:
	Otddont No

QUESTION 2 [10 marks]

A 500W electric motor is connected to a sinusoidal source of 220V(rms), 50Hz and has a lagging power factor of 0.7.

a) [2 marks] Calculate the current, I_S , drawn from the source.

b) [2 marks] The power factor is now increased to 0.95 lagging by placing a capacitor in parallel with the motor as shown. Calculate the new current drawn from the source.

$I_S =$	

c) [6 marks] Determine the value of the capacitor required to make this power factor correction. Illustrate this power factor correction by drawing the corresponding power triangle.

-		
C =		

Name:	Student No.:	
	Otagent No	

QUESTION 3 [5 marks] Find the voltage V_{oc} in the circuit shown and the complex power, S_{S_c} supplied by current source I_{S_c} . Calculate the average power, $P_{4\Omega}$, dissipated by the 4Ω resistor.

Name:	Student No.:	

QUESTION 4 [10 marks]

The circuit shown below is at steady-state and has both an AC voltage source, $v_x(t)$, and a DC current source, I_Y . Find expressions for voltages $v_{R2}(t)$ and $v_{R4}(t)$ across R_2 and R_4 respectively.

$$v_{R2}(t) =$$

$$v_{R4}(t) =$$

Name:	Student No.:		

QUESTION 4 (blank page for calculations)

Name:	Student No.:	
	OLGGOIIL 14O	

QUESTION 5 [5 marks] Find V_o using nodal analysis.

Name:	Student No.:	

QUESTION 6 [10 marks]

In the circuit shown below, the switch has been in position A for a long time. At time t=0, the switch is moved to position B.

- a) [8 marks] Find the expression for $i_1(t)$, $i_2(t)$, and $i_3(t)$ for $t \ge 0$.
- b) [2 marks] What is the energy stored in the capacitor, $w_C(0)$, and inductor, $w_L(0)$, at time t=0?

$i_1(t) =$		
$i_2(t) =$		
$i_3(t) =$		

 $w_C(0) =$ $w_L(0) =$

Name:	Student No.:	

QUESTION 6 (blank page for calculations)

Name:	Student No.:	

QUESTION 7 [10 marks]
Consider the circuit shown below, assuming the op-amp is ideal.

- (a) [6 marks] With the switch S in the open position, find an expression for the output voltage v_o in terms of V_1 , V_2 , R_1 and R_2 .
- (b) [4 marks] Find the Thevenin equivalent circuit values, V_{OC} and R_{Th} , seen by the load resistor R_L when the switch S is closed.

Name:	Student No.:	
(Extra blank page)		