Notes on

A CONCISE INTRODUCTION TO PURE MATHEMATICS

Joshua Cook

January 14, 2024

Contents

1	Sets	s and Proofs	3
	1.1	Sets	3
	1.2	Proofs	9

1 Sets and Proofs

1.1 Sets

A set is a collection of objects called elements or members. In simple cases, we can enumerate all members with this notation: $\{1,3,5\}$. Often we cannot list all of the elements. For example, "the set of all real numbers whose square is less than 2" can be expressed as

$$\{x|x \text{ a real nnumber}, x^2 < 2\}$$

where | is read as "such that."

The *empty set*, \emptyset , is a set with no objects.

If s is in set S, we say "s belongs to S" and denote it as $s \in S$. Conversely, if s is not in S, it is denoted as $s \notin S$.

Two sets are *equal* when they contain exactly the same elements. T is a subset of S if all elements of T also belong to S; this relationship is denoted as $T \subseteq S$, or $T \nsubseteq S$ if T is not a subset of S. The empty set is a subset of all sets.

1.2 Proofs

References