Homework 1 - Introduction to Machine Learning for Engineers

kipngeno koech - bkoech January 19, 2025

1 Probability

- 1. Suppose W is a Gaussian random variable with distribution $N(\mu, \sigma^2)$ and U a uniform random variable over the interval [a, b]. Assuming that W and U are independent, what is the expected value $\mathbb{E}[Z]$ and variance Var[Z] of Z = 3W + 2U?
 - Expected value:

$$\mathbb{E}[Z] = \mathbb{E}[3W + 2U] = 3\mathbb{E}[W] + 2\mathbb{E}[U]$$

Since W is Gaussian with mean μ and U is uniform over [a,b] with mean $\frac{a+b}{2}$:

$$\mathbb{E}[Z] = 3\mu + 2\left(\frac{a+b}{2}\right) = 3\mu + (\mathbf{a} + \mathbf{b})$$

• Variance: if a random variable X, is scaled by a constant a, then the variance of the scaled random variable is a^2 times the variance of the original random variable. Therefore:

$$Var[Z] = Var[3W + 2U] = 3^{2}Var[W] + 2^{2}Var[U]$$

Since W is Gaussian with variance σ^2 and U is uniform over [a,b] with variance $\frac{(b-a)^2}{12}$:

$$Var[Z] = 9\sigma^2 + 4\left(\frac{(b-a)^2}{12}\right) = 9\sigma^2 + \frac{(b-a)^2}{3}$$