제5장. 정형데이터 마이닝

1. 데이터마이닝 개요			
1. 데이터마이닝 정의 : 대용량 데 에 활용하는 방법	이터에서	을 파악하	거나 예측하여 의사결정
• 통계분석과 데이터마이닝: A. 통계분석: B. 데이터 마이닝:		에 따른 분석이나 검증 를 이용해	를 추출
• 데이터마이닝 활용 :		,	,
• 데이터마이닝 방법론 :		,	,
		,	
2. 데이터마이닝 학습법			
A	():	변수가 존재,
):	
3. 데이터마이닝 추진단계 A			
B	: 다양한	를 준비 및 정제(_	
C		정의, 모델링을 위한	
D	: 결과를	성보 수술 하고 업무에 적용, _	(
4. 데이터 분할			
A (B ():	%의 데이터를 훈련용. %의 데이터를 과대/과	으로 활용 ·소 추정의 판정 목적으로

5. 모델의 성능 평가 은행의 대출 문제로 연이율 20%로 가정, 100만원을 100명에게 대출한다고 가정

C. _ _ _ _ _ (_ _ _ _ _): _ _ _ _ _ %의 데이터를 테스트데이터나 과거 데이터를 활용하여 성능평가에 활용

(EX) 두 모형에서 정확도가 85%로 같다면 은행 입장에선 어떤 모형이 더 좋은 모형인가?

모형1	A	В
a	65	10
b	5	20

모형2	A	В	
a		75	0
ь		15	10

a, b: 테스트 데이터의 예측 분류. a: 우량고객, b: 불량고객 A, B: 테스트 데이터의 실제 분류. A: 우량고객, B: 불량고객

: 연이율 20%로 100만원을 대출

A. フ	다	수익	
------	---	----	--

a. 기대수익 = (명	만원) - (명	만원) =
만	원			

B. 기대손실비용

2. 의사결정분석 나무

1. 분류분석 vs 예측분석	1	분류분	쿠선 v◦	: 예측특	보선
-----------------	---	-----	-------	-------	----

A. 공통점 : 레코드의	을 미리 알아 맞히는 점
A. 중중심 : 데고드의	글 미디 할이 탓이는 십

B. 차이점

분류: _ _ _ _ _ 속성의 값을 예측 예측: _ _ _ _ _ 속성의 값을 예측

C.	. 분류의 예 : 학생들의 국어, 영어,	수학 점수를 예측, 키	카드회사에서 회원들의	가입정보를 통	해 1년 후	신
	용등급을 예측					

D. 분류기법

a.	_	_	_	_	_	_	_	_	(_	_	_	_	_	_	_)																
b.	_	_	_	_	_	_	_	_	(_	_	_	_	_	_	_	_ ;), _	 _	_	_	_	_	_ (_	_	 	 	 	 _	_	_	_	_)
	C!	5.0)																														

						,																						
)	_	_	 	 	_ (_	_	_	_	_	_	_	_),	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	 	 _	- '	· –	_	_	_	_	_	_	_	,,	_	_	_	_	_	_	_	_	_	_	_	_	-	•

d. _ _ _ _ (_ _ _ _)

e. _ _ _ _ (_ _ _ _ _)

f. _ _ _ _ (_ _ _ _ _)

g. 규칙기반 분류와 사례추론

1. 의사결정나무 특징

- 분류함수를 의사결정 규칙으로 이뤄진 나무 모양으로 그리는 방법
- 의사결정 문제를 시각화하여 _ _ _ _ _ 과 _ _ _ 과 _ _ _ 를 한 눈에 볼 수 있음
- _ _ _ _ _ _ 가 직접 나타나게 돼어 분석이 간편함
- ____가 좋음
- _ _ _ _ _ _ _ _ _ _ _ _ 에서도 빠르게 만들 수 있음
- _ _ _ _ _ _ _ _ _ _ _ _ _ 에 대해서도 민감함 없이 분류
- _ _ _ _ _ 이 높은 다른 불필요한 변수에 큰 영향을 받지 않음

2. 의사결정나무 활용

 () : 비슷한 특성을 갖는 그룹으로 분할 () : 범주를 몇 개의 등급으로 나눔 () : 규칙을 찾고, 미래의 사건을 예상
• () 및 () : 목표변수에 큰 영향을 • () 및 () : 목표변수에 큰 영향을 미치는 변수를 고름
이시는 인구를 고듬 ● ((
즉표 전구 파격 ●): 범주형 변수를 소수 의 몇 개로 병합, 또는 연속형 변수를 몇 개의 등급으로 이산화
3. 의사결정나무 분석
• 분석 단계 :>>>>>>>>
>>
• 분순도에 따른 분할 측도 : , , , , ,
4. 의사결정나무 분석의 종류
A (
B 와
C (
3. 앙상블 기법
1. 앙상블 기법
• 주어진 자료들로부터 여러 개의 들을 만든후 조합하여 하나의 을 만드는 기업

 • 종류:
A ((

구한 것과 같음 ■ 을 줄이고, 을 향상 시킬 수 있음 B (모형들을 결합하여 을	만드는
/	만드는
방법 ■ 를 빨리 쉽게 줄일 수 있고,	의
C (() ■ 의사결정나무의 특징인 분산이 크다는 점을 고려, 과 보다 ! 을 주어 약한 학습기를 생성후 선형결합하여	-
를 만드는 방법 ■ 를 만드는 방법 매우 높은 장점	0
■ 가 많은 경우 더 좋은 예측력을 보임 D (-

2. 오분류표

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

[] : (TP+TN)/Total, 올바르게 검출 (실제 악성/정상을 예측)
[] : (FP+FN)/Total, 잘못되게 검출 (잘못된 악성/정상 예측)
[] : TP/Predicted YES, 참으로 분류한 것중 올바른 참의 비율 (악성으로
예측한 것 중 실제 악성 샘플의 비율)
[] : TP/Actual YES, 실제 참을 참으로 분류 (실제 악성 중에서 악
성으로 예측)
[] : FP/Actual NO, 실제 거짓을 거짓으로 분류 (실제 정상 중에서
악성으로 예측)
[]: TP/Actual YES, 예측과 실제 모두 참 (실
제 악성 중에서 악성으로 예측)
[]: TN/Actual NO, 예측과 실제 모두 거짓 (실
제 정상 중에서 정상으로 예측)
[]: FP/Actual NO, 실제 거짓인데 참으로 분
류 (실제 정상을 악성으로 예측)
[]: FN/Acutual YES, 실제 참인데 거짓으로
검출 (실제 악성을 정상으로 예측)

• 와			
•	(AR+1)/2 _ = (AR+1)/2 it, 80% 이상 good, 70%		
4. 인공신경망 분석			
1. 인공신경망 연구			
의 뇌를 수많은 신경세3 경세포의 신호처리 과정 • 햅(Hebb) : 신경세포(뉴 개발 • 로젠블럿(Rosenblatt) : ()문제 • 홈필드(Hopfild), 러멜하	E가 연결된 하나의]을 모형화 하여 단순 ^피 런) 사이의 ⁽ 트(Rumelhart), 맥클린	-	(): 인긴 모형으로 간주, 신)를 조정하여 학습규칙을 개발, 비선형의 한계점 발생 떠셉트론으로 새로운
■ 입력신호의	로 연? _ 를 받아 하나의 의 합을 계산	결됨	_
 신경망모형 구축시 고려사항 A. 입력변수 	+		
	가 일정수준 ⁰ 적용(성별[남여], 남성[[·]	기상이고 빈도가 일정할 때 1,0], 여성[0,1])	
■ 평균을 중심으	범위가 변수들간에 큰 7 로 가 대칭이 를 통해 활용	아니면 비효율적	
B. 가중치 초기값			
가중치가 0이면 _ _ 모형이 됨.초기값은 0 근처의	함수에서 랜덤값으로 선정	초기값에 따라 결과가 크게 [는 이 되고	신경망 모형은
C 신경망 모형의	한수는 비복록하무이	고 여러 개이 궁소	(

1. **ROC**

를 가짐

 랜덤하게 선택된 여러개의 초기값에 대한 신경말을 적합한 후 얻은 해들을 비교하여 가장 가 적은 것을 선택 최종 예측값을 얻거나 (또는)을 구하여 최종 예측값으로 선정
• 훈련자료에 대해서 ()을 적용하여 최종 예측값을 선정
D. 학습률
• 처음에는 큰 값으로 정하고 반복이 진행될 수록 에 가까워 짐
 E (), 노드()의 수 • 많으면 가중치가 많아져 문제 발생 • 적으면 문제 발생 • 하나인 신경망은 범용근사자(Universal Approximator)이므로 가급적이면 하나로 선정 • 노드는 적절히 큰 값으로 설정하고 를 감소하면서 모수에 대한 를 적용
4. 로지스틱 회귀분석
 가 형인 경우에 적용하는 회귀분석모형 새로운 변수가 주어질 때 변수의 각 범주에 속할 확률이 얼마인지 추정, 추정 확률을 기준으로 분류하는 목적으로 활용 모형의 적합을 통해 추정될 확률을 ()이라고 함 함수를 활용하여 로짓분석 실행 (변수~ 변수1 + 변수2 + , family=binomial, data=데이터셋) 결과 추정값이 5.14이면, 독립변수의 단위가 증가함에 따라 종속변수가 0에서 1로 바뀔 ()가 exp(5.140) = 170배 증가한다는 의미.
5 . 군집분석 1. 군집분석
 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명적는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 에 대한 가정없이 를 기준으로 군집화 유도
1. 군집분석 특징
 (((
2. 군집분석 거리 측정
 데이터가 인 경우: 거리, 거리, 거리, 거리, 거리, 거리, 거리, 거리, 거리, 거리 등 활용 데이터가 인 경우: 거리 활용

3.	계층적 군집 분석
	 n개의 군집으로 시작해 군집의 개수를 방법 A
	 군집과 군집 또는 데이터와 거래를 계산시 를 거리로 계산하여 거리행렬 수정 D () 군집내 편차들의 을 고려한 방법 군집간 정보 손실을 하기 위해 군집화를 진행
4.	비계층적 군집 분석
	n개의 개체를 g개의 군집으로 나눌 수 있는 모든 방법을 점검해 최적화한 군집을 형성
	•(((()) A. 원하는 군집의 개수와 초기값()들을 정해 를 중심으로 군집을 형성 B. 각 데이터를 가 가장 가까운 가 있는 군집으로 분류 C. 각 군집의 값을 다시 계산 D 값이 변화가 없고 가 군집으로 할당될 때까지 반복
	의 특징 - 거리 계산을 통해 군집화되므로 변수에 활용 가능 - k개의 초기 중심값은 임의로 선택 가능, 가급적이면 것이 바람직하다 - 초기값을 일려로 선택하지 않는 것이 좋다 - 초기 중심으로부터을 최소화하는 방향으로 군집이 형성되는 () 알고리즘이므로 안정된 군집은 보장하나이라는 보장은 없다.
	의 장점 1. 알고리즘이하며, 빠르게 수행되어 분석 방법 적용이 용이 1. 계층적 군집분석에 비해양의 데이터를 다룰 수 있다.
	의 단점 1. 군집의,와와 정의가 어렵다 1. 사전에 주어진이 없으므로 결과 해석이 어렵다. 1이나에 영향을 많이 받는다. 1 형태가 아닌() 군집이 존재할 경우 성능이 떨어진다 <br< td=""></br<>
1.	혼합분포 군집
	모형기반()의 군집 방법이며, 데이터가 k개의 (흔히 정규분포 또는 다변량 정규분포를 가정함)의 가중합으로 표현되는 모집단 모형으로부터 나왔다는 가정하에서 와 함께 를 자료로 부터 추정하는 방법

이 높은지에 따라 군집화된다 • 와 의 추정은 일고 • 으 의 특징 A 군집과 유사하지만 B. 군집을 몇개의 로 표현할 수 있으	를 도입하여 군집을 수행 2며, 서로 다른 크기나 모양의 을 찾을 수 있다. 서 데이터가 커지면 에 시간이 걸릴 수 있다.
2. SOM ()	
되었으며 맵(즘은 ()에 의해 제시, 개빌)이라고도 알려져 있다. 리지도 형태로 형상화하기 때문에 으로 0
B 변수의 위치 관계를 그대로 _ 상에 표시된다	하기 때문에 실제 데이터가 유사하면 지도
	에서 귀여한 성능을 모인다 _) 알고리즘 등을 이용하는 인공신경망과 달리 단 하나)를 사용함으로써 속도가 매우
 E 학습처리를 할 수 있다	
6. 연관분석	
1. 연관성 분석	
	의 거래, 사건들간의 을 별 분석(_ 선이 같이 들어갈지에 대한 분석
 목요일에 기저귀를 사러 온 30대 직장인 3 이전에 동일한 제조사의 전자제품을 주로 구매한다. 	고객은 주말에 마실 맥주도 같이 산다 구매한 고객은 신제품 구매시에도 동일한 회사의 제품을
B 분석 : 구매이력을 분석해서 A	품목 구매후 추가로 B 품목을 구매하는지 분석
가죽 자켓을 구매한 여성은 한달 내에 가득휴대폰을 새로 구매한 고객은 한달 내에 취	
2. 연관성 규칙 개념	
과 형태 (다.) : 만일 A가 일어나면 B가 일어난
3. 연관성 분석의 측도	
산업의 특성에 따라 ,	_ , 값을 잘 보고 규칙을 선택해야 함.
	하는 거래의 비율.

B : 항목 A를 포함하는 거래 중에서 항목 A와 항목 B가 같이 포함될 확률 의 정도를 파악
• : P(A∩B)/P(A) = ()/()/()
C : A가 주어지지 않았을 때의 품목 B의 확률에 비해 A가 주어졌을 때의 품목 B가 비율. D : /P(B) = P(A∩B)/P(A)P(B) = ()/(X X
4. 연관분석 특징 A. 절차 a(((
B. 장점 a 기법 : 으로 표현되는 연관성 분석의 결과를 쉽게 이해 가능 b. 강력한 분석 기법 : 분석 이나 이 없을 경우 유용 c. 사용인 편리한 분석 데이터 : 거래 내용에 대한 데이터를 변환 없이 그 자체로 이용 d. 계산의 : 계산이 간단함
C. 단점 a. 상당한 수의 : 품목수가 늘어나면 계산은 기하급수적으로 늘어남 -> 유사한 품목을 범주로 한 b. 연관 규칙의 신뢰도 하한을 새롭게 정의, 의미가 적은 연관규칙을 제외 c 품목의 결정 : 너무 세분화한 품목으로 연관성을 찾으면 의미 없는 분석이 될 수도 있음 -> 적절히 구분되는 큰 범주로 구분 전체 분석후 연관성 작업 수행 d. 품목의 : 전체자료에서 동일한 빈도를 갖는 경우, 연관성 분석은 가장 좋은 결과를 얻음. 그러나 이 적은 품목은 당연히 포함된 거래수가 적을 것이고 규칙 발견 과정 중에서 제외되기 쉬움.
1. 평가기준 적용시 주의점 A. 두 항목의 가 높다고 해서 꼭 두 항목이 높은 가 있는 것은 아님.(를 함께 고려) B. 만일 두 항목의 가 높게 나왔어도 전체 항목 중 두 항목의
1. Apriori 가장 많이 사용하는 알고리즘