Điểm	ĐỀ THI CUỐI KỲ - Ngày thi: 26/12/2019	Chữ ký giám thị
	MÔN: KỸ THUẬT SỐ	
	Thời gian làm bài: 100 phút – KHÔNG sử dụng tài liệu Làm bài ngay trên đề thi – Đề thi bao gồm 8 câu Sinh viên trình bày cách làm đầy đủ	
Họ và tên:	MSSV:	Nhóm:

	(1) Beginning	(2) Developing	(3) Accomplished	(4) Exemplary
<u>Câu 1 (1.5đ)</u>				
<u>Câu 2 (1.0đ)</u>				
<u>Câu 3 (1.0đ)</u>				
<u>Câu 4 (1.0đ)</u>				
<u>Câu 5 (1.0đ)</u>				
<u>Câu 6 (2.5đ)</u>				
<u>Câu 7 (1.0đ)</u>				
<u>Câu 8 (1.0đ)</u>				
Tổng cộng (10đ)				

<u>Câu 1:</u> (1.5đ) Hệ chuyển mã có chức năng chuyển từ mã nhị phân 4 bit $\mathbf{B} = \mathbf{B_3B_2B_1B_0}$ (B₃: MSB) biểu diễn cho số BCD 8421 sang mã nhị phân 4 bit $\mathbf{F} = \mathbf{F_3F_2F_1F_0}$ (F₃: MSB). Biết rằng F là biểu diễn nhị phân cho số bù 9 của giá trị B. Ví dụ: $\mathbf{B} = 0011$ thì ngõ ra $\mathbf{F} = 9 - \mathbf{giá}$ trị (B) = 9 - 3 = 6 = 0110.

a. Lập bảng chân trị của hệ. (0.5đ)

Ngõ vào B			Ngõ ra F				
B ₃	\mathbf{B}_2	\mathbf{B}_1	$\mathbf{B_0}$	F ₃	\mathbf{F}_2	$\mathbf{F_1}$	$\mathbf{F_0}$
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

b. Sử dụng bìa K rút gọn hàm ngõ ra $\mathbf{F_2}$ dưới dạng SOP. (0.5đ)

$\begin{array}{c} F_2 \\ B_1 B_0 \end{array}$	B_2			
B_1B_0	00	01	11	10
00				
01				
11				
10				

c. Thực hiện (thiết kế) hệ chuyển mã trên chỉ sử dụng 01 **IC cộng 4 bit 74283** và cổng logic cần thiết. (0.5đ)

$\underline{\text{Câu 2:}}\ (1.0\ \text{\r{d}})\ \text{Cho}\ \text{hàm}\ F(A,B,C,D) = A\overline{B}C + [A \oplus (B+D)]C$

a. Cài đặt hàm \mathbf{F} chỉ sử dụng $\mathbf{01}$ Decoder $\mathbf{3} \rightarrow \mathbf{8}$ (IC 74138) và $\mathbf{01}$ cổng AND. (0.5đ)

b. Cài đặt hàm F sử dụng MUX 4 → 1 và các cổng logic nếu cần. (0.5đ)

<u>Câu 3:</u> (1.0 đ) Cho hệ tổ hợp có ngõ vào là một số nhị phân 8 bit $\mathbf{X} = \mathbf{X_7X_6X_5X_4X_3X_2X_1X_0}$ (X₇: MSB), ngõ ra \mathbf{Y} của hệ biểu diễn tổng số bit 1 có trong ngõ vào. Ví dụ: $\mathbf{X} = 00110101 \rightarrow \mathbf{Y} = 0100$. Thiết kế hệ chỉ sử dụng các bộ cộng toàn phần Full Adder (FA), không sử dụng thêm cổng logic nào khác.

<u>Câu 4:</u> (1.0đ) Cho sơ đồ thiết kế bộ đếm 3 bit $\mathbf{Q_2Q_1Q_0}$ ($\mathbf{Q_2}$: MSB) sử dụng JK flip-flop như hình bên dưới. Trình bày cách xác định chu kỳ đếm (hay dãy đếm) và modulo của bộ đếm.

<u>Câu 5:</u> (1.0đ) Một mạch tuần tự đồng bộ kiểu Moore kích cạnh lên. Tín hiệu ngõ ra \mathbf{Z} sẽ trở thành 1 mỗi khi giá trị của tín hiệu ngõ vào \mathbf{W} không thay đổi trong hai xung clock liên tiếp (0,0 hay 1,1). Các trường hợp còn lại \mathbf{Z} bằng 0. Với trạng thái reset $\mathbf{S0}$ là trạng thái chưa có bit nào vào và ngõ ra $\mathbf{Z} = 0$.

Ví dụ

Thành lập bảng chuyển trạng thái tối thiểu của hệ trên.

<u>Câu 6:</u> (2.5đ) Cho hệ tuần tự có giản đồ trạng thái (graph trạng thái) như hình vẽ. Hệ có 1 ngõ vào là **X**, 2 ngõ ra **Z1** (**kiểu MOORE**) và **Z2** (**kiểu MEALY**). Khi có xung clock cạnh xuống thì hệ chuyển trạng thái.

b. Với gán trạng thái $\mathbf{Q_1Q_2}$ (Q₁: MSB): $\mathbf{A} = \mathbf{11}$, $\mathbf{B} = \mathbf{10}$, và $\mathbf{C} = \mathbf{01}$. Thiết kế hệ trên bằng **PLA** và **T-FF**. (1.5đ)

 $\underline{\text{Câu 7:}}$ (1.0đ) Hệ tuần tự có 1 ngõ vào \mathbf{X} và 1 ngõ ra \mathbf{Z} , được thiết kế bằng PLA và FF như hình vẽ . Hãy vẽ giản đồ trạng thái (graph trạng thái) của hệ.

Câu 8: (1.0đ) Cho mạch tổ hợp được mô tả bằng mã VHDL như sau:

```
library IEEE;
use IEEE.std_logic_1164.all;
entity cau_8 is
port(x: in STD LOGIC vector(2 downto 0);
   z : out STD_LOGIC);
end cau 8;
architecture structure of cau 8 is
signal nx:std_logic_vector(2 downto 0);
signal f :std_logic_vector(0 to 3);
component nand4 gate
port (a,b,c,d: in STD LOGIC;
       s: out STD LOGIC);
end component;
begin
nx <= not x;</pre>
user0: nand4_gate port map (nx(2), nx(1), x(0), x(0), f(0));
user1: nand4 gate port map (nx(2), x(1), x(1), nx(0), f(1));
user2: nand4_gate port map (x(2),nx(1),nx(0),'1',f(2));
user3: nand4_gate port map (x(2),x(1),x(0),'1',f(3));
user4: nand4_gate port map(f(0),f(1),f(2),f(3),z);
end structure;
```

a. Vẽ sơ đồ logic của hệ tổ hợp được mô tả ở trên. **Lưu ý:** sinh viên ghi chú đầy đủ tên các tín hiệu trung gian (signal) lên hình vẽ. Giả sử cho trước component **nand4_gate** thực hiện chức năng ngõ ra bằng NAND logic 4 tín hiệu ngõ vào: $s = \overline{a.b.c.d}$ (0.5đ).

b. Chứng minh ngõ ra **z** được mô tả tương đương với 1 cổng logic (0.5đ).