Procesy stochastyczne Zestaw zadań nr 2

5 listopada 2018

Definicja 1. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną. Procesem stochastycznym z czasem dyskretnym nazywamy ciąg zmiennych losowych

$$X(n): \Omega \to \mathbb{R}, \ n > 0.$$

Przyjmujemy, że X(0) jest stałe.

Definicja 2. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną. Filtracją (z czasem dyskretnym) nazywamy ciąg pod- σ -ciał $\{\mathcal{F}_n\}$ takich, że dla dowolnego n > 0 zachodzi

$$\mathcal{F}_{n-1} \subset \mathcal{F}_n$$
.

Definicja 3. Filtracją generowaną przez proces (X(n)) (naturalną) nazywamy filtrację zadana następująco

$$\mathcal{F}_n^X = \sigma\left(\left\{X^{-1}(k)(B), \ B \in \mathcal{B}, k = 0, 1, 2, \dots, n\right\}\right).$$

Definicja 4. Proces (X(n)) nazywamy adaptowanym do filtracji (\mathcal{F}_n) , jeżeli dla dowolnego n X(n) jest \mathcal{F}_n mierzalna.

Zadanie 1. Niech $\Omega = [0, 1]$. Znajdź postać filtracji generowanej przez proces $X(n, \omega) = 2\omega\chi_{[0, 1-1/n]}(\omega)$.

Zadanie 2. Pokaż, że filtracja naturalna jest najmniejszą filtracją taką, że dany proces jest do niej adaptowany.

Zadanie 3. Niech $\{\xi_n\}$ będzie martyngałem względem pewnej filtracji $\{\mathcal{F}_n\}$. Udowodnij, że $\{\xi_n\}$ jest również martyngałem względem swojej filtracji naturalnej.

Definicja 5. Proces (X(n)) nazywamy martyngałem względem filtracji (\mathcal{F}_n) , gdy

$$\mathbb{E}\left(X(m)|\mathcal{F}_{m-1}\right) = X(m-1), \ m > 0.$$

Zadanie 4. Określmy proces Z(n) w następujący sposób

$$Z(n) = Z(n-1) + L(n), Z(0) = 0, \ \mathbb{P}(L(n) = 1) = \mathbb{P}(L(n) = -1),$$

gdzie zmienne L(n) są niezależne między sobą. Udowodnij, że następujące procesy są martyngałami względem filtracji $\mathcal{F} = \sigma(Z(0), Z(1), \ldots, Z(n))$:

- Z(n), n = 0, 1, ...
- $Z(n)^2 n$, $n = 0, 1, \dots$
- $(-1)^2 \cos(\pi Z(n)), n = 0, 1, \dots$

Zadanie 5. Udowodnij, że wartość oczekiwana martyngału względem zadanej filtracji jest stała w czasie.

Zadanie 6. Niech dana będzie filtracja (\mathcal{F}_n) i całkowalna zmienna losowa X. Udowodnij, że martyngałem względem tej filtracji jest proces określony następująco

$$\mathbb{E}\left(X|\mathcal{F}_m\right) = X(m), \ m > 0.$$

Zadanie 7. Niech ξ_1, ξ_2, \ldots będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie, całkowalnych z kwadratem i o średniej zero. Niech $S_n = \xi_1 + \xi_2 + \cdots + \xi_n$. Pokaż, że martyngałem względem filtracji generowanej przez zmienne ξ_i jest proces

$$Y(n) = S_n^2 - n\mathbb{E}\xi_1^2.$$

Zadanie 8. Niech ξ_1, ξ_2, \ldots będą niezależnymi, całkowalnymi i scentrowanymi zmiennymi losowymi. Niech $S_n = \xi_1 + \xi_2 + \cdots + \xi_n$. Udowodnij, S_n jest martyngałem względem swojej filtracji naturalnej.

Zadanie 9. Niech ξ_1, ξ_2, \ldots będą niezależnymi, całkowalnymi i o wartości oczekiwanej równej 1. Niech $S_n = \xi_1 \cdot \xi_2 \cdot \cdots \cdot \xi_n$. Udowodnij, S_n jest martyngalem względem filtracji generowanej przez zmienne ξ_i .

Zadanie 10. Niech $\{\xi_t\}$ będzie supermartynagałem względem pewnej filtracji, którego wartość oczekiwana jest stała w czasie. Udowodnij, że jest on martyngałem. Czy to samo zachodzi dla submartyngałów?

Zadanie 11. Udowodnij, że przyrosty martyngału są parami nieskorelowane.

Zadanie 12. Niech proces X będzie martyngałem względem pewnej filtracji. Zbadać (w razie potrzeby zakładając odpowiednią całkowalność) czy proces $|X|^p$, $p \ge 1$ jest sub- czy supermartyngałem.

Zadanie 13. Wykazać, że przy odpowiednich założeniach co do całkowalności funkcja wypukła martyngały względem pewnej filtracji jest submartyngałem względem tej filtracji oraz że funkcja wypukła i niemalejąca przekształca submartyngał w submartyngał.