ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
канд. техн. наук, доцент		А.В. Аграновский
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О	ЛАБОРАТОРНОЙ РАБО	OTE № 5
Сетевы	пе источники постоянного	тока
по курсу: ЭЛ	ЕКТРОНИКА И СХЕМО	ТЕХНИКА
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № 4329	подпись, дата	Д.С. Шаповалова инициалы, фамилия

Содержание

-	1. Цель работы:	.3
2	2. Схемы экспериментальной установки	.3
3	3. Таблицы с результатами исследований	.4
2	4. Графики зависимостей уровня пульсаций напряжения на выходе источника питания с	Γ(
параметр	оов схемы.	6
4	5 Rupon	c

1. Цель работы:

Изучение и практическое исследование принципа работы и характеристик сетевых источников постоянного тока.

2. Схемы экспериментальной установки

Рисунок 1.1 – Схема цепи для исследования источника питания с однополупериодным выпрямителем.

Рисунок 1.2 – Схема цепи для исследования источника питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой

Рисунок 1.3 – Схема цепи для исследования источника питания с двухполупериодным выпрямителем на основе диодного моста

3. Таблицы с результатами исследований

На таблице 1 представлены результаты исследования уровня пульсаций U_Π выходного напряжения источника питания в зависимости от величины сопротивления нагрузки R_H .

На таблице 2 представлены результаты исследования уровня пульсаций U_{Π} выходного напряжения источника питания от величины емкости конденсатора C.

Результаты сняты с цепи на рисунке 1.1 – исследование источника питания с однополупериодным выпрямителем.

Таблица 1 – Результаты исследования уровня пульсаций U_{Π} , C = 100 мк Φ .

R _H , Ом	100	300	500	700	1000	1500	2000	5000
U_{Π} , B	2,86	1,93	1,24	0,86	0,66	0,42	0,32	0,13

Таблица 2 — Результаты исследования уровня пульсаций U_{Π} , $R_{H} = 100$ Ом.

С, мкФ	10	50	100	500	750	1500	3000	5000
U_{Π}, B	3,84	3,64	2,88	1,26	0,82	0,42	0,49	0,12

На таблице 3 представлены результаты исследования уровня пульсаций U_Π выходного напряжения источника питания в зависимости от величины сопротивления нагрузки R_H .

На таблице 4 представлены результаты исследования уровня пульсаций U_Π выходного напряжения источника питания в зависимости от величины емкости конденсатора C.

Результаты сняты с цепи на рисунке 1.2 – исследование источника питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

Таблица 3 — Результаты исследования уровня пульсаций U_{Π} , C = 100 мк Φ .

R _H , Ом	100	300	500	700	1000	1500	2000	5000
U_{Π}, B	2,01	0,78	0,48	0,34	0,24	0,16	0,12	0,05

Таблица 4 — Результаты исследования уровня пульсаций U_{Π} , $R_{H} = 100$ Ом.

С, мкФ	10	50	100	500	750	1500	3000	5000
U_{Π} , B	3,70	2,42	2,03	0,47	0,32	0,16	0,07	0,05

На таблице 5 представлены результаты исследования уровня пульсаций U_Π выходного напряжения источника питания в зависимости от величины сопротивления нагрузки R_H .

На таблице 6 представлены результаты исследования уровня пульсаций U_Π выходного напряжения источника питания в зависимости от величины емкости конденсатора C.

Результаты сняты с цепи на рисунке 1.3 – исследование источника питания с двухполупериодным выпрямителем на основе диодного моста.

Таблица 5 – Результаты исследования уровня пульсаций U_{Π} , C = 100 мк Φ .

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U_{Π}, B	1,46	0,63	0,43	0,28	0,22	0,14	0,11	0,05

Таблица 6 – Результаты исследования уровня пульсаций U_{Π} , R_{H} = 100 Ом.

С, мкФ	10	50	100	500	750	1500	3000	5000
U_{Π} , B	3,11	2,20	1,46	0,42	0,26	0,15	0,06	0,04

4. Графики зависимостей уровня пульсаций напряжения на выходе источника питания от параметров схемы.

Рисунок 2.1 – График зависимости для первой схемы, по таблице 1.

Рисунок 2.2 – График зависимости для первой схемы, по таблице 2.

На представленных рисунках 2.1, 2.2 мы можем наглядно наблюдать зависимость уровня пульсаций U_{Π} выходного напряжения источника питания от величины сопротивления нагрузки $R_{\rm H}$ и от величины емкости конденсатора C, соответственно, для схемы цепи источника питания с однополупериодным выпрямителем.

Рисунок 3.1 – График зависимости для второй схемы, по таблице 3.

Рисунок 3.2 – График зависимости для второй схемы, по таблице 4.

На рисунках 3.1, 3.2 представлены зависимости уровня пульсаций U_{Π} выходного напряжения источника питания от величины сопротивления нагрузки $R_{\rm H}$ и от величины емкости конденсатора C, соответственно, для схемы цепи источника питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

Рисунок $4.1 - \Gamma$ рафик зависимости для третьей схемы, по таблице 5.

Рисунок 4.2 – График зависимости для третьей схемы, по таблице 6.

На представленных рисунках 4.1, 4.2 наглядно показана зависимость уровня пульсаций U_{Π} выходного напряжения источника питания от величины сопротивления нагрузки $R_{\rm H}$ и от величины емкости конденсатора C, соответственно, для схемы цепи источника питания с двухполупериодным выпрямителем на основе диодного моста.

5. Вывод

В данной работе мы изучили принцип работы и характеристики сетевых источников постоянного тока.

В результате выполнения лабораторной работы мы, с помощью программы Місго-Сар, собрали и проанализировали три схемы источников питания: с однополупериодным выпрямителем, с двухполупериодным выпрямителем на базе трансформатора со средней точкой и с двухполупериодным выпрямителем на основе диодного моста.

Однополупериодный выпрямитель

В данной схеме выпрямительный диод пропускает только положительную полуволну синусоидального сигнала, обрезая отрицательную. Это означает, что в течение половины периода на нагрузку не поступает энергия, и конденсатор в этот момент разряжается. Как следствие, наблюдается высокий уровень пульсаций.

Экспериментально установлено, что:

- 1. При сопротивлении нагрузки $R_H = 100$ Ом и фиксированной ёмкости уровень пульсаций составлял 2,86 B;
- 2. При увеличении сопротивления до 5000 Ом пульсации снизились до 0,13 В:
- 3. При постоянной нагрузке и увеличении ёмкости от 10 до 5000 мкФ пульсации упали с 3,84 B до 0,12 B.

Эти результаты объясняются тем, что увеличение сопротивления нагрузки уменьшает ток, за счёт чего конденсатор разряжается медленнее. Увеличение ёмкости приводит к тому, что конденсатор дольше удерживает заряд. В совокупности это даёт более стабильное выходное напряжение.

Двухполупериодный выпрямитель со средней точкой

Эта схема использует оба полупериода входного сигнала, благодаря чему частота пульсаций увеличивается вдвое по сравнению с однополупериодной схемой (до 100 Гц). Это уменьшает время разряда между циклами подзарядки конденсатора и способствует снижению уровня пульсаций.

При тех же параметрах, что и в первом случае ($R_H = 100$ Ом, C = 100 мк Φ), уровень пульсаций составил 2,01 В. Это значение значительно ниже, чем в первой схеме, что подтверждает более эффективное сглаживание благодаря удвоенной частоте подзарядки.

Двухполупериодный выпрямитель на диодном мосту

Данная схема наиболее эффективна из всех рассмотренных. Она обеспечивает полное использование всей вторичной обмотки трансформатора, а четыре диода

поочерёдно проводят ток в оба полупериода, поддерживая постоянное направление тока через нагрузку.

В результате уровень пульсаций при $R_H = 100$ Ом и C = 100 мк Φ составил 1,46 В – наименьшее значение среди всех схем. Это говорит о наибольшей стабильности выходного напряжения. Более равномерная и частая подзарядка конденсатора способствует минимизации потерь напряжения между циклами.

Также были выявлены общие закономерности:

- Увеличение сопротивления нагрузки R_H снижает ток, что уменьшает скорость разряда конденсатора и, соответственно, снижает уровень пульсаций.
- Увеличение ёмкости С фильтрующего конденсатора увеличивает время удержания заряда, также способствуя уменьшению пульсаций.
- В области малых значений ёмкости и сопротивления даже небольшое увеличение этих параметров даёт существенное снижение пульсаций, что объясняется экспоненциальным характером разряда конденсатора.
- При больших значениях параметров влияние изменений становится менее выраженным, что говорит о насыщении эффекта.

Таким образом, в ходе лабораторной работы мы изучили не только изучить работу выпрямительных схем, но и наглядно увидели важность выбора параметров фильтрующих компонентов для достижения стабильного и сглаженного выходного напряжения. Результаты моделирования подтвердили теоретические ожидания и позволили установить количественные зависимости между параметрами схем и уровнем пульсаций.