

Project Goal

Classify whether news is true or fake using machine learning models

The datasets comes from Kaggle, it is provided in .csv format.

True.csv

	title	text	subject	date
0	looms, Republicans	"WASHINGTON (Reuters) -The head of a conservative Republican faction in"	politicsNews	December 31,2017

• Fake.csv

	title	text	subject	date
0	"DonaldTrump Sends OutEmbarrassing New Year's"	"Donald Trump just couldn t wish all Americans a Happy New Year and leave it at that"	News	December 31,2017

DATA SOURCES

Exploratory Data Analysis

IMPORTING LIBRARIES

Pandas, Matplotlib, and seaborn..etc

READ DATASETS

read True.csv and Fake.csv file, and take a look using head(), info(), and describe for each file.

COMBINE DATASETS

first, I create new column for each Datasets called "Label", then I will combine them using concat() method.

CLEANING DATAFRAME

Remove duplicated recordes, remove columns, and process text.

Visualization the

COUNT SUBJECT

THE DISTRIBUTION OF REAL AND FAKE NEWS

[59]: <AxesSubplot:xlabel='label', ylabel='count'>

LOGISTIC REGRESSION

RANDOM FOREST

MODELING

NAIVE-BAYAS

K-NEAREST NIEGHBORS (KNN)

	precision	recall	f1-score	support
Fake news Real news	0.99 0.98	0.98 0.99	0.99 0.98	11755 10694
accuracy macro avg weighted avg	0.99 0.99	0.99	0.99 0.99 0.99	22449 22449 22449

Logistic Regression

	precision	recall	f1-score	support	
Fake news Real news	0.99 0.99	0.99 0.98	0.99 0.98	11755 10694	
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	22449 22449 22449	

	precision	recall	f1-score	support	
Fake news Real news	0.53 0.98	1.00 0.01	0.69 0.03	11755 10694	
accuracy macro avg weighted avg	0.75 0.74	0.51 0.53	0.53 0.36 0.37	22449 22449 22449	

	precision	recall	f1-score	support
Fake news Real news	0.94 0.95	0.95 0.93	0.94 0.94	11755 10694
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	22449 22449 22449

Naivebayas

COMPARING

comparing between models based on accuracy score

Any Questions?

Thanks!