Privacy and Correctability

Jack Wile

Definition 1. Let \mathscr{A} and \mathscr{B} be Op^* -algebras over pre-Hilbert spaces \mathcal{S}_1 and \mathcal{S}_2 and let $\mathcal{E}: \mathscr{A} \mapsto \mathscr{B}$ be a quantum channel. If p is a projection on \mathcal{S}_2 , an Op^* -algebra $\mathscr{N} \subseteq \mathscr{L}^{\dagger}(p(\mathcal{S}_2))$ is said to be private for \mathcal{E} with respect to p if

$$C_p(\mathcal{E}(\mathscr{A})) \subseteq \mathscr{N}'_c$$
.

If p = I, then we say that \mathcal{N} is private for \mathcal{E} .

Definition 2. Let \mathscr{A}_1 and \mathscr{A}_2 be Op^* -algebras over S_1 , S_2 , respectively and $\mathcal{E}: \mathscr{A}_1 \mapsto \mathscr{A}_2$ a quantum channel. Given a projection p over S_2 , an Op^* -algebra $\mathscr{N} \subseteq \mathscr{L}^{\dagger}(p(S_2))$ is said to be correctable for \mathcal{E} with respect to p if there exists a quantum channel $\mathcal{R}: \mathscr{N} \mapsto \mathscr{A}_1$ such that

$$C_p(\mathcal{E}(\mathcal{R})) = I_{\mathscr{N}}.$$

Definition 3. Let \mathscr{A} and \mathscr{B} be Op^* -algebras over \mathcal{S}_1 and \mathcal{S}_2 , and $\mathcal{E}: \mathscr{A} \mapsto \mathscr{B}$ a quantum channel between them. Given a Stinespring triple (π, v, \mathcal{D}) for \mathcal{E} , we define the complementary channel $\mathcal{E}^c: \pi(\mathscr{A})'_c \mapsto \mathscr{L}^{\dagger}(\mathcal{S}_2)$ by

$$\mathcal{E}^c(x) = v^* x v, \quad \forall x \in (\mathscr{A})'_c.$$

Remark 1. Let $(\pi_1, v_1, \mathcal{D}_1)$ and $(\pi_2, v_2, \mathcal{D}_2)$ be two Stinespring triples for \mathcal{E} in the above definition and \mathcal{F}_1 , \mathcal{F}_2 their respective complementary channels. By the uniqueness of the Stinespring representation we have a partial isometry, $u: \mathcal{D}_1 \mapsto \mathcal{D}_2$, satisfying

$$uv_1 = v_2$$
, $u^*v_2 = v_1$ and $u\pi_1(a) = \pi_2(a)u$,

for any $a \in \mathcal{A}$. Given $a \in \mathcal{A}$, $x \in \pi_1(\mathcal{A})'_c$ and $\psi, \xi \in \mathcal{D}_1$

$$\langle \pi_2(a)\psi, \mathcal{C}_u(x)\xi \rangle = \langle \pi_2(a)\psi, uxu^*\xi \rangle$$

$$= \langle u^*\pi_2(a)\psi, xu^*\xi \rangle$$

$$= \langle \pi_1(a)u^*\psi, xu^*\xi \rangle$$

$$= \langle x^\dagger u^*\psi, \pi_1(a^\dagger)u^*\xi \rangle$$

$$= \langle x^\dagger u^*\psi, u^*\pi_2(a^\dagger)\xi \rangle$$

$$= \langle \mathcal{C}_u(x^\dagger)\psi, \pi_2(a^\dagger)\xi \rangle$$

$$= \langle \mathcal{C}_u(x)^\dagger\psi, \pi_2(a)^\dagger\xi \rangle.$$

Hence, $C_u(\pi_1(\mathscr{A})'_c) \subseteq \pi_2(\mathscr{A})'_c$ and by the same argument, $C_{u^*}(\pi_2(\mathscr{A})'_c) \subseteq \pi_1(\mathscr{A})'_c$. Thus $\mathcal{F}_1(C_{u^*})$ and $\mathcal{F}_2(C_u)$ are well-defined and, by the relations u satisfies with respect to v_1 and v_2 , $\mathcal{F}_1(C_{u^*}) = \mathcal{F}_2$ and $\mathcal{F}_2(C_u) = \mathcal{F}_1$.

Theorem 1 (Arveson's Commutant Lifting Theorem). Let $\mathcal{E}: \mathcal{A}_1 \mapsto \mathcal{A}_2$ be a quantum channel between Op^* -algebras. There exists a Stinespring triple (π, v, \mathcal{D}) and a normal *-homomorphism $\rho: \mathcal{E}(\mathcal{A}_1)'_c \mapsto \pi(\mathcal{A}_1)'_c$ satisfying $\rho(x)v = vx$ for all $x \in \mathcal{E}(\mathcal{A}_1)'_c$.

Proof. Given $x \in \mathcal{E}(\mathscr{A}_1)'_c$, define $\rho(x)$ on $\mathscr{A}_1 \otimes S_2$ by $\rho(x)(a \otimes \psi) = a \otimes x\psi$ and extending linearly. Let π be the usual Stinespring representation on $\mathscr{A}_1 \otimes S_2$ and note that as defined ρ and π commute. We claim that ρ induces a well-defined map on the quotient, \mathcal{D} of $\mathscr{A}_1 \otimes S_2$ by the kernel N of the usual Stinespring inner product;

$$\langle a \otimes \psi, b \otimes \xi \rangle := \langle \mathcal{E}(a^{\dagger}b)\psi, \xi \rangle.$$

Suppose that $\xi = \sum_{k=1}^{n} a_k \otimes \xi_k$ is in N and observe

$$0 = \sum_{i,j=1}^{n} \langle \mathcal{E}(a_i^{\dagger} a_j) \xi_i, \xi_j \rangle$$
$$= \langle [\mathcal{E}(a_i^{\dagger} a_j)]_{i,j}^n [\xi]_i^n, [\xi]_i^n \rangle,$$

where $[\mathcal{E}(a_i^{\dagger}a_j)]_{i,j}^n$ is the matrix in $M_n(\mathscr{A}_2)$ and $[\xi]_i^n$ a vector in $S_2 \otimes \mathbb{C}^n$. $[\mathcal{E}(a_i^{\dagger}a_j)]_{i,j}^n$ is symmetric, and by complete positivity, $[\mathcal{E}(a_i^{\dagger}a_j)]_{i,j}^n \geq 0$. Let A be its Friedrichs extension. By the previous lemma, $S_2 \otimes \mathbb{C}^n \subseteq \mathcal{D}(A) \subseteq \mathcal{D}(\sqrt{A})$ and hence

$$0 = \langle [\xi_i]_i^n, A[\xi_i]_i^n \rangle = \langle \sqrt{A}[\xi_i]_i^n, \sqrt{A}[\xi_i]_i^n \rangle = \left\| \sqrt{A}[\xi_i]_i^n \right\|^2,$$

implying $\sqrt{A}[\xi_i]_i^n = [\mathcal{E}(a_i^{\dagger}a_j)]_{i,j}^n [\xi_i]_i^n = 0$. Since $1 \otimes \mathcal{E}(\mathscr{A}_1)_c' \subseteq M_n(\mathcal{E}(\mathscr{A}_1))_c'$, for any $x \in \mathcal{E}(\mathscr{A}_1)_c'$;

$$\langle \rho(x)\xi, \rho(x)\xi \rangle = \sum_{i,j}^{n} \langle \mathcal{E}(a_{i}^{\dagger}a_{j})x\xi_{i}, \xi_{j} \rangle$$

$$= \langle [\mathcal{E}(a_{i}^{\dagger}a_{j})]_{i,j}^{n} (1 \otimes x)[\xi_{i}]_{i}^{n}, (1 \otimes x)[\xi_{i}]_{i}^{n} \rangle$$

$$= \langle (1 \otimes x^{\dagger})(1 \otimes x)[\xi_{i}]_{i}^{n}, ([\mathcal{E}(a_{i}^{\dagger}a_{j})]_{i,j}^{n})^{\dagger}[\xi_{i}]_{i}^{n} \rangle$$

$$= \langle (1 \otimes x^{\dagger})(1 \otimes x)[\xi_{i}]_{i}^{n}, [\mathcal{E}(a_{i}^{\dagger}a_{j})]_{i,j}^{n}[\xi_{i}]_{i}^{n} \rangle$$

$$= 0,$$

where the second to last line is by the symmetry of $[\mathcal{E}(a_i^{\dagger}a_j)]_{i,j}^n$. Hence ρ is well-defined on the quotient. Next we show that ρ is a *-representation. For $x \in \mathcal{E}(\mathscr{A}_1)_c'$ we have

$$\langle \rho(x^{\dagger})\xi, \psi \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \mathcal{E}(a_{i}^{\dagger}b_{j})x^{\dagger}\xi_{i}, \psi_{j} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \langle x^{\dagger}\xi_{i}, \mathcal{E}(b_{j}^{\dagger}a_{i})\psi_{j} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \mathcal{E}(a_{i}^{\dagger}b_{j})\xi_{i}, x\psi_{j} \rangle$$

$$= \langle \xi, \rho(x)\psi \rangle,$$

where $\psi = \sum_{j=1}^m b_j \otimes \psi_j$. That ρ is multiplicative is seen easily by definition, and thus is inherited by the function defined on the quotient by N. Let $\{x_\alpha\}_{\alpha\in I}$ be a net in $\mathcal{E}(\mathscr{A}_1)'_c$ converging to zero ultraweakly. Given $\{\xi_k\}_{k\in\mathbb{N}}, \{\psi_k\}_{k\in\mathbb{N}} \in \mathcal{D}^{\infty}(\pi(\mathscr{A}_1)'_c)$, where $\xi_k = \sum_{i=1}^{n_k} a_{k,i} \otimes \xi_k(i)$ and $\psi_k = \sum_{j=1}^{m_k} b_{k,j} \otimes \psi_k(j)$, we have

$$\sum_{k} \langle p(x_{\alpha})\xi_{k}, \psi_{k} \rangle = \sum_{k} \sum_{i=1}^{n_{k}} \sum_{j=1}^{m_{k}} \langle \mathcal{E}(a_{i,k}^{\dagger}b_{j,k})x_{\alpha}\xi_{k}(i), \psi_{k}(j) \rangle$$
$$= \sum_{k} \sum_{i=1}^{n_{k}} \sum_{j=1}^{m_{k}} \langle \mathcal{E}(a_{i,k}^{\dagger}b_{j,k})\xi_{k}(i), x_{\alpha}\psi_{k}(j) \rangle.$$

The final line is equal to a seminorm in the ultraweak topology on $\mathcal{E}(\mathscr{A}_1)'_c$, and thus converges to zero, showing that ρ is normal. Recall that the isometry

in the usual Stinespring representation is given by $v(\phi) = 1 \otimes \phi$ from which the claimed identity easily follows.

Theorem 2. Let \mathscr{A}_1 and \mathscr{A}_2 be Op^* -algebras on pre-Hilbert spaces \mathscr{S}_1 and \mathscr{S}_2 , respectively, and $\mathscr{E}: \mathscr{A}_1 \mapsto \mathscr{A}_2$ a quantum channel. If an Op^* -algebra $\mathscr{N} \subseteq \mathscr{L}^{\dagger}(\mathscr{S}_2)$ is private (respectively, correctable) for \mathscr{E} then it is correctable (respectively, private) for any complement of \mathscr{E} .

Proof. Suppose that \mathscr{N} is private for \mathscr{E} and let \mathscr{E}^c be the complement of \mathscr{E} with respect to the Stinespring representation from the proof of the theorem, and $\rho: \mathscr{E}(\mathscr{A}_1)'_c \mapsto \pi(\mathscr{A}_1)'_c$ the *-homomorphism from Arveson's commutant lifting theorem satisfying $\rho(x)v = vx$. $\mathscr{R} := \rho|_{\mathscr{N}}$ corrects \mathscr{E}^c ;

$$\mathcal{E}^c(\mathcal{R}(x)) = v^{\dagger} \rho(x) v = v^{\dagger} v x = x.$$

The result follows for general complementary channels by Remark 1.

Now suppose that \mathscr{N} is correctable for \mathscr{E} and let $\mathscr{R}: \mathscr{N} \mapsto \mathscr{A}_1$ be the correcting channel so that $\mathscr{E}\mathscr{R} = I_{\mathscr{N}}$. By the amplification induction theorem, there exist isometries

Corollary 1. Let \mathscr{A}_1 and \mathscr{A}_2 be Op^* -algebras on pre-Hilbert spaces S_1 , S_2 , respectively, and p a projection on S_2 . If an Op^* -algebra $\mathscr{N} \subseteq \mathscr{L}^{\dagger}(p(S_2))$ is private (respectively, correctable) for \mathscr{E} with respect to p then it is correctable (respectively, private) for any complement of \mathscr{E} with respect to p.

Proof. First observe that, by definition, $\mathcal{N} \subseteq \mathcal{L}^{\dagger}(p(S_2))$ is private (respectively, correctable) for \mathcal{E} with respect to p if and only if it is private (respectively, correctable) for $\mathcal{C}_p(\mathcal{E})$. Given a complementary channel \mathcal{E}^c with respect to a Stinespring dilation $(\pi, v, \mathcal{D}), \mathcal{C}_p(\mathcal{E}^c)$ is a complementary channel for $\mathcal{C}_p(\mathcal{E})$ with respect to (π, vp, \mathcal{D}) . This follows immediately; on the one hand

$$C_p(\mathcal{E}(a)) = pv^{\dagger}\pi(a)vp,$$

showing that (π, vp, \mathcal{D}) is a Stinespring triple for $\mathcal{C}_p(\mathcal{E})$ and then if \mathcal{E}_p^c is the induced complementary channel, for any $x \in \pi(\mathscr{A}_1)_c'$ we have

$$\mathcal{E}_p^c(x) = pv^{\dagger}xvp = \mathcal{C}_p(\mathcal{E}^c(x)).$$

The corollary follows by applying the previous theorem to the channels $C_p(\mathcal{E})$ and $C_p(\mathcal{E}^c)$.