Network Layer

OSI network layer

- OSI model layer 3
- TCP/IP model Internet layer

Application Presentation Session	Data stream	HTTP, FTP, TFTP, SMTP etc	Application
Transport	Segment	TCP, UDP	Transport
Network	Packet	IP	Internet
Data link	Frame	Ethernet,	Network Access
Physical	Bits	WAN technologies	140000000000000000000000000000000000000

Network Layer

Provides services to exchange the individual pieces of data over the network between identified end devices.

Basic Processes Of Network Layer

- Addressing
- Encapsulation
- Routing
- Decapsulation

Network layer encapsulation

Segment from transport layer.

Packet header added to make IP packet.

Sent to data link layer for further encapsulation into a frame.

Network Layer Protocols

- Internet Protocol Version 4 (IPV4) is the most widely used version of IP.
- Only Layer 3 protocol used on the Internet.
- Focus of this course.

The IP v4 and IP v6 Protocol

- IP version 6 (IPv6) is developed and being implemented in some areas.
- IPv6 will operate alongside IPv4 and may replace it in the future.
- IP provides
 - Services
 - Packet header structure
 - Contents
- Which is specified by either IPv4 protocol or IPv6 protocol.

The IP v4 Protocol

TCP/IP

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.

The IPv4 Protocol-Connectionless

Connectionless Communication

A letter is sent.

The sender doesn't know:

- · if the receiver is present
- · if the letter arrived
- if the receiver can read the letter

The receiver doesn't know:

when it is coming

The IPv4 Protocol-Connectionless

Connectionless Communication

The IPv4 Protocol-Best Effort

- IP does not have the capability to manage, and recover from, undelivered or corrupt packets.
- Protocols at other layers can manage reliability.
- IP then can function very efficiently at the Network layer.

The IPv4 Protocol-Best Effort

Best Effort

As an unreliable Network layer protocol, IP does not guarantee that all sent packets will be received.

Other protocols manage the process of tracking packets and ensuring their delivery.

The IPv4 Protocol-Media Independent

The transport of IP packets is not limited to any particular medium. Except....

The IPv4 Protocol-Media Independent

- One major characteristic of the media : Maximum Transmission Unit (MTU).
- The Data Link layer passes the MTU upward to the Network layer.
- In some cases, an intermediary device will need to split up a packet when forwarding with a smaller MTU.
- This process is called fragmenting the packet or fragmentation.

Media Independent

- Copper Ethernet: MTU = 1,518 bytes.
- Copper Serial: Frame Relay MTU = 512 bytes.
- Optical Fiber: ATM MTU = 17,966 bytes.
- Wireless: 802.11 MTU = 2272 bytes.

Packaging the Transport Layer PDU

In TCP/IP based networks, the Network Layer PDU is the IP Packet.

Typical IPv4 Packet

IPv4 Packet

OSI Network Layer

Networks: Dividing Hosts into Groups

Why Separate Hosts into Networks?

- Performance
- Security
- Address Management

Performance

- Large numbers of hosts on a single network:
 - Actual Data
 - Overhead
- A big part of the overhead is broadcasts.

- In this context, each network is called a broadcast domain.
- Switches forward broadcasts to each device connected to a switch port.
- If we can reduce broadcast overhead, it would improve performance on the network.

Performance,

- Routers block broadcasts unless specifically configured to forward them.
- Replacing the switch in the diagram with a router, creates two separate IP sub-net

separate IP sub-networks and two broadcast domains.

Broadcasts are now contained within each network.

Security

Grouping Devices into Networks and Hierarchical Addressing

At each step of delivery, the post office need only examine the next hierarchical level.

Dividing Networks from Networks NETWORK HOST 32 Rits

IP Version 4 addresses are 32 bits in length.

Divided into four separate groups of 8 bits each – 4 Octets.

Convert from binary to decimal Dotted Decimal Notation.

Dividing Networks from Networks

- An IP Version 4 address has two parts:
 - Network number
 - Host number

- The network portion of the address is the same for all hosts on the network.
- Each device is identified by a unique host portion.
- This hierarchy means that routers only need to know the network portion – not the address of each individual host.

OSI Network Layer

Routing: How Data Packets Are Handled

Address Types

- Two address types:
 - MAC address:
 - Physical address of the host
 - Burned in to the NIC
 - ☐ Layer 2 address
 - Network Address:
 - Logical address of the host
 - Assigned by network administrator
 - ☐ Layer 3 address

Each Host Has Two Addresses

Physical (MAC):

- The physical address uniquely identifies the host from all other hosts on all other networks at Layer 2.
- This is the address that is absolutely necessary to get the information into the host. The IP address by itself won't accomplish that.

Each Host Has Two Addresses

Logical (IP):

- The logical address uniquely identifies the host and the network to which it belongs at Layer 3.
- Routers base their decisions on the NETWORK PORTION of the IP address when determining the best path for the packet.

Default Gateway

Default Gateway-The way out of our network

Default gateway

- Each PC is configured with an IP address and a default gateway.
- The default gateway is the IP address of a router port on the same network as the PC.
- It is the router's job to handle messages to other networks.
- Each router port is on a different network and has a different IP address.

Confirming Gateway Settings

ipconfig or route commands

IP Packets-Carrying Data Er

The IP packet arrives at its destination. The IP header is removed and the TCP Segment is passed to Layer 4 on the device.

Route/Hops

- No packet can be forwarded without a route.
- Whether the packet is originating in a host or being forwarded by an intermediary device, the device must have a route to identify where to forward the packet.
- A packet may pass through many routers on its journey.
- The trip from one router to the next is called a hop and the next router is called the next hop router.

Routing Table

- Each router has a routing table.
- Stores information about Connected and Remote networks.
- Connected networks are directly attached to one of the router interfaces.
- Remote networks are networks that are not directly connected to the router.
 - Can be manually configured on the router by the network administrator or learned automatically using dynamic routing protocols.

Routing Table

Routing Table

- Routes in a routing table have four main features:
 - Destination network
 - Next-hop
 - Metric

192.168.2.0/24

R

Exit Interface

Host Routing Table

- Using netstat -r, route, or route PRINT commands.
- Other Commands
 - route ADD
 - route DELETE
 - route CHANGE


```
Interface List
0x2 ...00 Of fe 26 f7 7b ... Gigabit Ethernet - Packet Scheduler Miniport
Active Routes:
Network Destination
                           Netmask
                                            Gateway
                                                           Interface Metric
          0.0.0.0
                           0.0.0.0
                                      192.168.1.254
                                                         192.168.1.2
                                                                          20
      192.168.1.0
                     255.255.255.0
                                        192.168.1.2
                                                         192.168.1.2
                                                                          20
Default Gateway:
                     192.168.1.254
// output omitted //
```

Directly connected

The networks of the router's own interfaces go into the routing table.

C 192.168.2.0/24 is directly connected, FastEthernet 0/0 C 192.168.3.0/24 is directly connected, Serial 0/0

Routing table entries

Directly connected shown by C

```
Gateway of last resort is 192.168.3.2 to network 0.0.0.0 10.0.6.0/24 is subnetted, 2 subnets

R 10.1.1.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 R 10.1.2.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 92.168.2.0/24 is directly connected, FastEthernet 0/0 192.168.3.0/24 is directly connected, Serial 0/0 S 192.168.8.0/24 [1/0] via 192.168.2.2 S* 0.0.0.0/0 [1/0] via 192.168.3.2
```

Directly Connected Routes

Routing Table of Liver of Router:

```
Gateway of last resort is not set.

C 19211580320/24 disrectly connected, FastEthernet 0/1
```

Other networks

- Routes to other networks can be configured by an administrator (static routes)
- Or they can be learned from another router using a routing protocol (dynamic routes)
- A router can have a default route. Packets for unknown networks go on this route instead of being dropped.

Routing Table Entries: Dynamic Routes

Learned from another router using RIP routing protocol, shown by R

```
Gateway of last resort is 192.168.3.2 to network 0.0.0.0 10.0.0.0/24 is subnetted, 2 subnets R 10.1.1.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 R 10.1.2.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 C 192.168.2.0/24 is directly connected, FastEthernet 0/0 C 192.168.3.0/24 is directly connected, Serial 0/0 S 192.168.8.0/24 [1/0] via 192.168.2.2 S* 0.0.0.0/0 [1/0] via 192.168.3.2
```

Dynamic Routes

Routing Tabble of Liver of Liver of Liver 1

```
Gateway of last resort is not set.

Gateway of last resort is not set.

C 192.168.3.0/24 is directly connected, FastEthernet 0/1

C 10.1.1.0/24 is directly connected, FastEthernet 0/0

C 192.168.2.0/24 is directly connected, FastEthernet 0/0

C 10.1.2.0/24 is directly connected, FastEthernet 0/1

C 192.168.2.0/24 is directly connected, FastEthernet 0/2
```

Dynamic Routes


```
Cateway of last resort is not set:

k<sup>0</sup>192<sup>0</sup>186<sup>2</sup>3.6<sup>1</sup>2<sup>1</sup>79<sup>1</sup> tod, 192<sup>1</sup>88<sup>2</sup>5<sup>1</sup>,00:00:20, FastEthernet 0/0

E 10:1:1:0/24<sup>0</sup>/1<sup>1</sup>dYiec19<sup>2</sup>·188<sup>1</sup>2c2e0<sup>2</sup>0:PQiCEthErnet 0/0

E 10:1:2:0/24<sup>0</sup>/1<sup>1</sup>dYiec19<sup>2</sup>·188<sup>1</sup>2c2e0<sup>2</sup>0:PQiCEthErnet 0/0

E 192:168:2:0/24 is directly connected, FastEthernet 0/0
```

Routing table entries: Static Routes

Static, configured by administrator, shown by S

Gateway of last resort is 192.168.3.2 to network 0.0.0.0 10.0.0.0/24 is subnetted, 2 subnets

R 10.1.1.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 R 10.1.2.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0 C 192.168.2.0/24 is directly connected, FastEthernet 0/0 C 192.168.3.0/24 is directly connected, Serial 0/0 S 192.168.8.0/24 [1/0] via 192.168.2.2 S* 0.0.0.0/0 [1/0] via 192.168.3.2

Static Routes

Gateway of last resort is not set.

R 19211580320[120d1fevtay100nh68t2d1,F0s00tD0rnEas0E0hernet 0/0

C 10.1.2.0/24 is directly connected, FastEthernet 0/0

C 19211280220/26 disrectertonnennedtedasEEshEthetnet10/2

3 192.168.2.0/240]svdare021468o2nected, FastEthernet 0/2

Default Routes

Routing Table of Remote Router:

```
Gateway of last resort is 192.168.2.1 to network 0.0.0.0

R 192.168.3.0[120/1] via 192.168.2.1,00:00:20, FastEthernet 0/0

C 10.1.1.0/24 is directly connected, FastEthernet 0/0

C 10.1.2.0/24 is directly connected, FastEthernet 0/1

C 192.168.2.0/24 is directly connected, FastEthernet 0/2

8 0.0.0.0/0 [1/0] via 192.168.2.1
```

Routing Table Entries: Default Routes

Default, configured by administrator, shown by **S***

```
Gateway of last resort is 192.168.3.2 to network 0.0.0.0
10.0.0.0/24 is subnetted, 2 subnets
R 10.1.1.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0
R 10.1.2.0 [120/1] via 192.168.3.2, 00:00:08, Serial 0/0
C 192.168.2.0/24 is directly connected, FastEthernet 0/0
C 192.168.3.0/24 is directly connected, Serial 0/0
S 192.168.8.0/24 [1/0] via 192.168.2.2
```

Routing protocols

- Routers learn routes from each other and put them in their routing tables.
- A routing protocol is the set of rules they use to swap information.
- These routes are dynamic routes

Static routes Dynamic routes

- Entered by administrator
- Time consuming, different for each router
- Must be updated if routes change
- Little processing
- No bandwidth used
- Gives nothing away

- Learned from other routers
- Start the protocol then it runs by itself
- Automatically updates when routes change
- More processing
- Uses bandwidth
- Gives away information

Packet Forwarding: Route Not Found

