Metrics Class notes

Class 2

September 13, 2020

Last class we had

$$y_i = e(x_i, \epsilon_i; \beta) \tag{1}$$

where $\epsilon_i \sim f(\cdot|x_i;\gamma)$ and $\theta \equiv (\beta,\gamma)$. The conditional mean of y_i given x_i is

$$E[y_i|x_i;\theta] = \int e(x_i,\epsilon_i;\beta)f(\epsilon_i|x_i;\gamma)d\epsilon_i \equiv m(x_i;\theta)$$
 (2)

Provided θ_0 is identified from $E[y_i|x_i;\theta]$ then NLLS

$$E[y - m(x; \theta)]^{2} = E\{E[y - m(x; \theta)]^{2} | x\} = E\{[m(x, \theta_{0} - m(x; \theta))]^{2}\} \ge 0$$
 (3)

Equality holds if and only if $\theta = \theta_0$. So,

$$\hat{\theta}_{NLLS} = argmax \frac{1}{N} \sum_{i=1}^{N} [y_i - m(x_i; \theta)]^2$$
(4)

But this is **impractical**. First, e() might be hard to compute itself (i.e. no closed for solution). Second, Integrating (2) can be hard if ϵ is multidimensional. It is **computational impossible** to approximate an integral with more than four dimensions.

Note: If I want to integrate an univariate $\int_K f(x)dx$ over a compact set K, there is:

- Mathematical approximation: Solve it.
- Simmulation methods: $\int_K \frac{f(x)}{g(x)} g(x) dx \equiv E[f(x)/g(x)]$ if $x \sim g(\cdot)$. This can be approximated by $\frac{1}{S} \sum_{s=1}^S f(x_s)/g(x_s)$ where $x_s \sim g(\cdot)$ iid. Note that the choice of $g(\cdot)$ is important because it affects the noise of the simulated object.

Let's go back to our problem. We want a practical way to estimate $\epsilon_i \sim f(\cdot|x_i\gamma)$. Now is when simulation based methods become relevant. There were two cases where NLLS were impractical:

• $e(\cdot)$ tractable (closed form): SNLLS $m(x_i; \theta) \approx 1/S \sum_{s=0}^{S} e(\cdot, \epsilon_s) \frac{f(\epsilon_{is}|x_i, \theta)}{g(\epsilon_{is}|x_i)} \equiv m^s(x_i, \theta)$ and $m_s(x_i, \theta) = e(\cdot, \epsilon_s) \frac{f(\epsilon_{is}|x_i, \theta)}{g(\epsilon_{is}|x_i)}$.

$$m(x_i;\theta) = \int e(x_i, \epsilon_i, \theta) d\epsilon_i = \int e(x_i, \epsilon_i, \theta) \frac{f(\epsilon_i | x_i, \theta)}{g(\epsilon_i | x_i)} g(\epsilon_i | x_i) d\epsilon_i$$
 (5)

where $\epsilon_i \sim g(\cdot|x_i)$ iid. Our first instinct is to do

$$min_{\theta} \frac{1}{N} [y_i - m^s(x_i, \theta)]^2 \tag{6}$$

dont do this. We should do,

$$min_{\theta} \frac{1}{N} \sum_{i=1}^{N} ([y_i - m(x_i; \theta)]^2 - \frac{1}{S(S-1)} \sum_{s=1}^{S} [m_s(x_i; \theta - m^S(x_i; \theta))]^2)$$
 (7)

• $e(\cdot)$ intractable: We need an unbiased simulator of the mean. That is, $m(x,\theta) = E[u|x,\theta] = \int u f(u|x_i,\theta) du$ where $u \sim f(u|x_i,\theta)$ known (In the First Price Auction Paper this was the second highest valuation).

$$m(x_i, \theta) \simeq \frac{1}{S} \sum_{s=1}^{S} u_{is} \frac{f(u_{is}|x_i; \theta)}{g(u_{is}|x_{is})} = m^s(x_i; \theta)$$
(8)

Notes: draws must be independent of θ .

Givoanni's question: What about MLE? To do MLE we need the density of $e(\cdot)$. How can we compute $f(y_i|x_i;\theta)$? We need a lot, in a simple example

$$y_i = exp(\epsilon_i) \epsilon_i \sim f(\cdot)$$

$$F_y(y) = Pr(y \le y) = Pr[exp(\epsilon_i) \le y] = Pr[\epsilon_i \le log(y)] = F_{\epsilon}(log(y))$$

$$\Rightarrow f_y(y) = \frac{1}{y} f_{\epsilon}(log(y))$$

We need a jacobian... not funny.

0.1 Pakes and Pollard

We had our problem $y = e(x, \epsilon, \theta)$ where $\epsilon \sim f(\cdot | c; \gamma)$, $\theta = (\beta, \gamma)$. We look at the first moment

$$E[y|x,\theta] = \int e(x,\epsilon,\beta) f(\epsilon|x,\gamma) d\epsilon \equiv m(x,\theta)$$
(9)

So,

$$E\{y - m(x, \theta_0)\}|x\} = 0 \Rightarrow E\{\psi(x)[y - m(x, \theta_0)]\} = 0$$
(10)

which is that the conditional moment equal zero imply unconditional moments are equal to zero too. $\psi(x)$ are called instruments sometimes. We can write the RHS as

$$\int \psi(x)[y - m(x; \theta_0)]dP(y, x) = 0$$
(11)

Pakes and Pollard use the notation $G(\theta) = 0$, with $h(x, \theta) = \psi(x)[y - m(x; \theta_0)]$. But h(y) = 0 is intractable. So we do

$$\hat{G}_N(\theta) \equiv \frac{1}{N} \sum_{i=1}^N h(x_i, \theta) \tag{12}$$

and do GMM,

$$\hat{\theta}_{GMM} = argmin_{\theta} || \frac{1}{N} \sum_{i=1}^{N} h(x_i; \theta) ||$$
(13)

but h is intractable! Lets simmulate stuff. In page 1028, the paper states

$$h(x,\theta) = \int H(x,\xi,\theta)P(d\xi|x) \tag{14}$$