Data wrangling/manipulation

Overview

Data wrangling/manipulation with dplyr

Brief history of data visualization

Announcements

A practice midterm exam and slides with the answers will be posted by next class

• Exam format: multiple choice, short essays, short coding

Get started on homework 5 early!!!

• I strongly recommend you do the dplyr exercises prior to next class

Any other questions about class logistics?

Plan for the semester

Very quick review

Just need to follow 5 steps!

Very quick review

To select the appropriate parametric test, focus on the parameters being tested in the null hypothesis

• E.g.,
$$H_0$$
: $\pi = 0.5$ H_0 : $\mu = 0.5$

$$H_0$$
: $\mu = 0.5$

$$H_0$$
: $\mu_T = \mu_C$

$$H_0$$
: $\mu_T = \mu_C$ H_0 : $\mu_1 = \mu_2 = ... = \mu_k$

Parametric tests are derived from particular mathematical assumptions

- E.g., data from the two samples comes from normal populations with the same variance
- Some hypothesis tests are "robust" to violations of these assumptions
 - The robustness can be evaluated this through computer simulations

Very quick review: theories of hypothesis testing

Fisher (1890-1962)

Neyman (1894-1981)

Use p-value to make a decision

Pearson (1895-1980)

Atlopagolity
Observed
size of effect

Questions?

The tidyverse and dplyr

The 'tidyverse'

The tidyverse is set of R packages that operate 'tidy data'

• i.e., that operate on data frames (or tibbles)

Tidy data is data where:

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Messy data...

What would be an example of data that is not tidy?

	formation												
Name	Formula	Slope at Intercept		ED-20	ED-50	ED-80	Correlation	Forced through ori		go			
Standard	Calc 1: C	standard	standard	3792394	27752	0.2	0.5	0.8	1	No			
Plate info	ormation												
Plate	Repeat	Barcode	Measure	Chamber	Chamber	Humidity	Humidity	Ambient	Ambient	Formula	Measurer	nent date	
1	1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	Calc 1: C	standard	standard	10.12.2013 10:23:3
Backgrou	und inform	nation											
Plate	Label	Result	Signal	Flashes/	Meastime	MeasInfo							
1	PicoGree	0	110307	10	0	De=1st E	x=Top En	n=Top Wo	dw=N/A				
Calculate	standard	standards on each plate) where Label: PicoGreenFilterTop(1) channel 1							nnel 1				
	1	2	3	4	5	6	7	8	9	10	11	12	
A	-0.0011	-0.0011	-0.001	-0.001	-0.0011	-0.0012	-0.0011	-0.0011	-0.0012	-0.0012	0.9973	1.0026	
В	0.0012	0.0014	0.0013	0.0012	0.0013	0.0012	0.0014	0.0003	-0.0011	-0.0011	0.0981	0.103	
С	0.0016	0.0013	0.0013	0.0011	0.0012	0.0015	0.0016	-0.0004	-0.0011	-0.0011	0.0104	0.0095	
D	0.0019	0.0024	0.0018	0.0015	-0.001	-0.001	-0.001	-0.001	-0.0011	-0.0011	0.0008	0.0009	
E	-0.001	-0.0011	-0.0011	-0.0011	-0.001	-0.0012	-0.0011	-0.001	-0.0009	-0.0011	-0.0001	-0.0002	
F	-0.001	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.0011	-0.0009	-0.001	-0.001	-0.0003	-0.0002	
G	-0.0011	-0.0011	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.001	-0.001	-0.0011	-0.0002	0.0012	
	-0.0011	-0.0012	-0.0011	-0.001	-0.0011	-0.0011	-0.0012	-0.0011	-0.0011	-0.001	-0.0003	-0.0003	

Messy data...

"Happy families are all alike; every unhappy family is unhappy in its own way."

— Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way." – Hadley Wickham

Messy data...

Messy data can be difficult to deal with

The 'tidyverse'

The packages share a common design philosophy

Most written by Hadley Wickham

dplyr: A grammar for data wrangling

Grammar: a set of components that can be combined to achieve a goal

dplyr is a package that has a set of verbs that are useful for transformations data:

- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. summarize()
- 6. group_by()

All these function take a data frame and other arguments and return a data frame

> library(dplyr) # load the dplyr package

Quick overview of the dplyr functions

1. filter()

The filter() function allows you to select a subset of rows in data frame

2. select()

The select() function allows you to select a subset of columns

3. mutate()

The mutate() function allows you to create new columns that are functions of existing columns

4. arrange()

The arrange() function arranges the rows based values in a column

• arrange(desc()) arranges from largest to smallest

5. summarize()

The summarize() function reduces values in many rows into single values

6. The group_by() function

The group_by() function groups variables for future operations

The pipe operator

The pipe operator %>% allows us to chain commands together

Let's try it out!

Statistical Science
2008, Vol. 23, No. 4, 502–535
DOI: 10.1214/08-STS268
© Institute of Mathematical Statistics. 2008

The Golden Age of Statistical Graphics

Michael Friendly

Data visualization

What are some reasons we visualize data rather than just reporting statistics?

Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses without fatiguing the mind, possess the advantage of fixing the attention on a great number of important facts.

—Alexander von Humboldt, 1811

The age of modern statistical graphs began around the beginning of the 19th century

William Playfair (1759-1823) credited with inventing the line graph, bar chart and pie chart

According to Friendly, statistical graphics researched its golden age between 1850-1900

Joseph Minard (1781-1870)

John Snow (1813-1858)

Clusters of cholera cases in London epidemic of 1854

Florence Nightingale (1820-1910)

Diagram of the causes of mortality in the army in the east

Francis Galton (1822-1911)

WEATHER CHART, MARCH 31, 1875.

The dotted lines indicate the gradations of barometric pressure. The variations of the temperature are marked by figures, the state of the sea and sky by descriptive words, and the direction of the wind by arrows—barbed and feathered according to its force.

Odenotes

First weather map published in a newspaper (1875)

"Graphical dark ages" around 1950

Computer Age Statistical Inference, Efron and Hastie

Currently undergoing a "Graphical re-birth"

Box plot

Currently undergoing a "Graphical re-birth"

Currently undergoing a "Graphical re-birth"

Hans Rosling's gapminder

- Simple version
- TV special effects
- Ted Talk

Gapminder tools:

https://www.gapminder.org/tools

> library('gapminder')

Currently undergoing a "Graphical re-birth"

Next class: a grammar of graphics and ggplot

Start on homework 5 early!

Question: Find an interesting data visualization

- https://www.reddit.com/r/dataisbeautiful/
- https://flowingdata.com/

