

Introduction to the Standardization of NGS

Workflows

30.05.2023 16:00 (CEST)

Outline

- Traditional bioinformatic workflows
 - Challenges
 - Reproducibility crisis
- GHGA goals and objectives
- How to standardize workflows
 - Components
- Workflow management systems
- Summary

Bioinformatics Workflows

- 'Software tool-chains'
- Purpose: Automation
- Traditional forms are problematic:
 - Adaptability
 - Various infrastructure needs
 - Fragile ecosystems

Common Challenges

- Reproducing results
 - Software dependencies
 - Software updates
 - Sharing workflows
- Scalable analysis

Reproducibility Crisis

 Science depends on researchers being able to replicate the work of others

Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016). https://doi.org/10.1038/533452a

Reproducibility Crisis

 Science depends on researchers being able to replicate the work of others

FAIR https://doi.org/10.1038/sdata.2016.18

GHGA Goals & Objectives

- Establish a national infrastructure for human omics data
- An ethico-legal and data use framework for
 - Data Sharing
 - Protection
 - Analysis
- Provide standards for:
 - Metadata and Workflows
- Make human omics data FAIR
 - being GA4GH compliant

Learning Goals

- Components and principles of standardized bioinformatic workflows
- Metrics to measure the FAIRness of a workflow
- Processes to automate workflows
- Workflow management systems
- Recommendations for workflow developers

Portability

- Automation of installation
- Configuration

Portability

- Packaging and distribution
- Platform-independent
- Modular

Portability

Containers are separate, but bins/libs and OS are shared.

Registries

Versioning

- Versioning and registering containers
- Repurposing images and sharing own repositories

Findability

- Rich metadata
- Unique and persistent identifier (DOI)
- Searchable sources

Stability

- Storage
- Collaborating
- Authorized control

Stability

Scalability

Scheduling: The art of controlling task execution

- Efficient resource management
 - a. Parallelization of different steps
 - b. Job and queue scheduling

Runtime: 2hr 10s

Scalability

Ability to handle any size and quantity of input data

AWS BATCH

Runtime: 2hr 10s

Re-entrancy

- Caching intermediate results
- Avoiding waste of
 - cost
 - recalculations
 - data processing
 - time

Workflow Management Systems

Provenance

The history of a computational experiment

Prospective

- Specifications of workflow
- Workflow steps
- Execution order
- Expected inputs/outputs
- Versions of softwares
- Versions of data

Retrospective

- Information about execution
- Produced inputs/outputs
- Used data
- Artifacts
- Consumed memory/cpu
- Process time

Provenance

The history of a computational experiment

Prospective

- Specifications of workflow
- Workflow steps
- Execution order
- Expected inputs/outputs
- Versions of softwares
- Versions of data

Retrospective

- Information about execution
- Produced inputs/outputs
- Used data
- Artifacts
- Consumed memory/cpu
- Process time

Computing Environment

- Sharing tools and workflows
- Executing workflows
- Executing individual tasks
- Accessing data

https://ga4gh-cloud.github.io/

Accessing Data

- Data Repositories
 - iGenomes (Illumina)
 - Refgenie
 - Galaxy
- Database, Compute and Storage
 - AWS S3
 - Google Bucket
 - Azura Bucket

Quality Control & Management

- Implementation of QC inside the workflow
- Cleaning / Normalisation
- Checking statistics
- **Parameters**
- Speed & Accuracy
- Benchmarking
- Speed & Accuracy
- History of runs

Increasing Productivity

- Find your favorite
 - Code editor
 - Text editor
- Run and debug
- Documentation
- Task management

Community Driven Bioinformatic Workflows

Modules

Browse the **931** modules that are currently available as part of nf-core.

Available Modules

Modules are the building stones of all DSL2 nf-core blocks. You can find more info, if you would like to write your own module.

SHGA SHGA

What does nf-core f provides for GHGA?

Documentation

Packaged software

CI Testing

Portable and reproducible

Stable Releases

Cloud-ready

Summary

- Accurate
- Scalable
- Reproducible
- **Portable**

Workflow Management

- Modular processes
- Schedulers
- Cloud support
- Provenance

Containerization

- Package managers
- Host images
- Share in registries

Versioning

Review

zenodo

- Tool/Workflow Registries(TRS)
- WES/TES
- Data managers (DRS)
- Config settings

https://github.com/ghga-de

Introduction to
Benchmarking of NGS

Workflows

20.06.2023

16:00 (CEST)

Thank you!

And thanks to the team and the PIs!

Florian Heyl

Paul Menges

Kübra Narci

Luiz Gadelha

Evangelos Theodorakis

Christian Mertes

Resources

- Nextflow sources: https://www.nextflow.io/
- Nf-core: https://nf-co.re/
- GH4GA: https://www.ga4qh.org/
- Writing and sharing portable tools and workflows
 - https://dockstore.org
 - https://biocontainers.pro
- Papers:
 - Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible Computational Research. PLoS Comput Biol 9(10): e1003285. https://doi.org/10.1371/journal.pcbi.1003285
 - Spjuth O, Capuccini M, Carone M et al. Approaches for containerized scientific workflows in cloud environments with applications in life science [version 1; peer review: 2 not approved]. F1000Research 2021, 10:513
 (https://doi.org/10.12688/f1000research.53698.1)
 - Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil, Michael R. Crusoe, Kristian Peters, Daniel Schober; FAIR Computational Workflows. Data Intelligence 2020; 2 (1-2): 108–121. doi: https://doi.org/10.1162/dint a 00033