експорту та імпорту даних. Розроблене програмне забезпечення призначене для проведення кластеризації даних у наочному, покроковому форматі та може бути зручним засобом для вивчення аспектів інтелектуального аналізу даних.

Перелік джерел посилання.

- 1. Hastie T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction / T. Hastie, R. Tibshirani, J. Friedman. Springer-Verlag, 2009. 746 p.
 - 2. Чубукова І.А. Data Mining / І.А. Чубукова. НОУ "Інтуїт", 2016. 471 с.
- 3. Демідова Л.А. Методи кластеризації у завданнях оцінки технічного стану будівель та споруд в умовах невизначеності / Л.А. Демідова, Є.І. Коняєва. К.: Гаряча Лінія, 2018. 156 с.
 - 4. Дюран Б. Кластерний аналіз / Б. Дюран, П. Оделл. –Л.: Статистика, 2017. 328 с.
- 5. Большаков Н.М. Кластеризація у сучасній освіті: методологія та практика / Н.М. Большаків. X: Світ, 2016. 200 с.
- 6. Parsaye K.A. Characterization of Data Mining Technologies and Processes / K.A. Parsaye // The Journal of Data Warehousing. 2008. №1. PP.34-45.

УДК 004.94

Рудський О.В.,

студент 4 курсу спеціальності «Комп'ютерні науки» ОПП «Комп'ютерні науки та інтелектуальні системи»

Konn A.M..

Ph.D., доцент кафедри програмної інженерії та інтелектуальних технологій управління

ВИЗНАЧЕННЯ ВИМОГ ДО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ АНАЛІЗУ ВІДПОВІДНОСТІ МОДЕЛЕЙ БІЗНЕС-ПРОЦЕСІВ ЇХ ТЕКСТОВИМ ОПИСАМ

Національний технічний університет «Харківський політехнічний інститут», Україна

Вступ. Моделі бізнес-процесів зарекомендували себе як ефективний засіб візуалізації та вдосконалення складних організаційних операцій. Моделі бізнес-процесів використовуються для пошуку неефективних місць в описаних робочих процесах та усунення виявлених недоліків шляхом автоматизації за допомогою програмних рішень, що налаштовуються, або уніфікованих середовищ виконання робочих процесів [1]. Однак, створення моделей процесів є трудомісткою справою, яка потребує значних ресурсів, тому можуть виникати ситуації в яких модель бізнес-процесів не відповідає їх текстовому опису. Це може призвести до втрат у часі та значних грошових втрат.

Для аналізу існуючих рішень було розглянуто наступні програмні застосунки:

- Bonita BPM це програмне забезпечення для управління бізнес-процесами, за допомогою цього інструменту можна редагувати BPMN-схеми, створювати моделі даних, завантажувати довідники користувачів, малювати форми [2];
- Signavio Process Manager це веб-рішення для проектування, аналізу (моделювання) та документування бізнес-процесів. Це рішення дозволяє створювати моделі процесів у стилі блок-схем безпосередньо у браузері, зв'язувати будь-який документ із процесами, документувати рішення в рамках процесів у графічному вигляді, експортувати процеси у різних форматах [3];
- ProcessMaker це програмне забезпечення для управління бізнес-процесами (BPM). Воно дозволяє користувачам ефективно моделювати свої бізнес-процеси [4];
- Bizagi це програмне забезпечення для побудови карт та моделей бізнес-процесів у нотації BPMN. Воно дозволяє створювати, інтерпретувати та оптимізувати діаграми робочих

процесів з використанням нотації BPMN, публікувати документацію щодо бізнес-процесу у форматах Word, PDF, Excel [5].

Після проведеного аналізу існуючих програмних засобів можна зробити висновок, що всі застосунки значно спрощують процес побудови моделей бізнес-процесів, але ці застосунки не надають можливості аналізувати моделі на наявність помилок. Насамперед — у них відсутня можливість порівнювати моделі бізнес-процесів з їхніми текстовими описами, що може привести до втрат у часі та значних грошових втрат при реалізації неадекватних предметній області моделей.

Постановка задачі. Існуючі на сьогоднішній день програмні засоби передбачають побудову моделей бізнес-процесів, але не надають можливості аналізувати ці моделі з точки зору їх адекватності реальним бізнес-процесам, а саме — порівнювати моделі бізнес-процесів з їх текстовим описом. Тому актуальною ϵ розробка алгоритмічного та програмного забезпечення для аналізу відповідності моделей бізнес-процесів їх текстовим описам.

Мета дослідження. Ця робота спрямована на формування вимог до програмного забезпечення, яке аналізує відповідність моделей бізнес-процесів їх текстовим описам. Отже, для досягнення поставленої мети в даному дослідженні необхідно вирішити наступні завдання:

- сформувати функціональні та нефункціональні вимоги до програмного забезпечення;
- побудувати UML-діаграми варіантів використання та діаграму обмеження якості;
- визначити напрямки подальшої роботи.

Виявлення вимог. Функціональні вимоги – це вимоги до програмного забезпечення, які описують внутрішню роботу системи, її поведінку [6].

Для програмного забезпечення було визначено наступні функціональні вимоги:

- програмне забезпечення має обробляти завантажений файл BPMN;
- програмне забезпечення має порівнювати модель бізнес-процесу, отриману з файлу BPMN, із текстовим описом бізнес-процесу;
 - програмне забезпечення має відображати результати у вигляді відповідного звіту;
 - програмне забезпечення повинне мати можливість реєстрації для користувачів;
- програмне забезпечення повинне зберігати звіт з результатами у базі даних для зареєстрованих користувачів.

У відповідності до сформульованих функціональних вимог до програмного рішення було побудовано UML-діаграму варіантів використання, яку наведено на рисунку 1.

Нефункціональні вимоги – це вимоги до програмного забезпечення, які задають критерії для оцінки якості його роботи [6].

Для програмного рішення було наведено наступні нефункціональні вимоги:

- архітектура програмне забезпечення повинно бути веб-додатком і мати трирівневу архітектуру;
- не перевантажений інтерфейс на екрані повинно бути не більше п'яти елементів управління (кнопок, полів вводу тощо);
- тип системи управління базами даних (СУБД) програмне забезпечення повинно використовувати реляційну СУБД.
- надійність програмне забезпечення не повинно містити помилок, які можуть перешкоджати його роботі.

На рисунку 2 наведено діаграму нефункціональних вимог, яка визначає обмеження якості програмного рішення.

Рис. 1. UML-діаграма варіантів використання

Рис. 2. Діаграма нефункціональних вимог

Висновки та напрямки подальшої роботи. У цій роботі було запропоновано функціональні та нефункціональні вимоги для програмного забезпечення, яке аналізує відповідність моделей бізнес-процесів їх текстовим описам. А також було побудовано UML-діаграму варіантів використання та діаграму обмеження якості. У майбутньому має бути розроблено алгоритмічне та програмне забезпечення для розв'язання задачі аналізу моделей бізнес-процесів їх текстовим описам.

Перелік джерел посилання.

- 1. Overview of Verification Tools for Business Process Models // URL: https://www.researchgate.net/publication/320012697_Overview_of_Verification_Tools_for_Business Process Models/, 08.11.2022.
- 2. Be Efficient: Bonitasoft Introduces New Bonita BPM 6 Platform // URL: https://www.businesswire.com/news/home/20130605006087/en/Efficient-Bonitasoft-Introduces-Bonita-BPM-6-Platform#.VNM5HC5eT5E/, 08.11.2022.
 - 3. SAP Signavio // URL: https://www.signavio.com/, 08.11.2022.
- 4. ProcessMaker Review // URL: https://comparecamp.com/processmaker-review-pricing-pros-cons-features/, 08.11.2022.
- 5. Process Documentation Bizagi Models // URL: https://help.bizagi.com/process-modeler/en/index.html?where to share2.htm, 08.11.2022.
- 6. Функціональні та нефункціональні вимоги // URL: http://lvivqaclub.blogspot.com/2008/10/blog-post_17.html/, 08.11.2022.

УДК 389.14: 006.354

Сидорко І.І.,

провідний інженер Державного підприємства «Львівський науково-виробничий центр стандартизації, метрології та сертифікації» **Байцар Р.І.**,

доктор технічних наук Національного університету «Львівська політехніка», кафедра інформаційно-вимірювальних технологій

Журавська А.С.,

студентка-магістр Національного університету «Львівська політехніка»

РОЛЬ ІНФОРМАЦІЙНО-ВИМІРЮВАЛЬНІ ТЕХНОЛОГІЇ У ТРАНСПОРТНІЙ ГАЛУЗІ

Вимірювання є єдиним засобом отримання точної кількісної інформації про параметри, які характерні для тих чи інших фізичних явищ або процесів. З цієї причини розроблення нових механізованих засобів, приладів, а також пряма реалізація складних технічних виробничих процесів у розвитку промисловості пов'язані із потребами точного виміру чималої кількості фізичних значень. Водночас, на сучасному етапі розвитку вимірювальної техніки важливим є дотримання принципів єдності вимірів («traceability»), тобто слідування такому стану замірів, характерною ознакою, яких є вираження результатів в узаконених одиницях, значення котрих у заданих межах дорівнює розмірам одиниць, що відтворюються первинними еталонами, а похибки при визначенні результатів вимірювань відомі наперед і із певною ймовірністю не виходять за встановлені межі. Виконання подібного завдання новітнього обладнання, потребує залучення яке нових підходів конструктивного використання відповідних матеріалів. Проблема прикладного та