Derivada de funções elementares

Assuma $\alpha \in \mathbb{R}$.

$$\frac{\mathrm{d}}{\mathrm{d}x}\alpha = 0 \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\ln|x| = \frac{1}{x} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}x^\alpha = \alpha x^{\alpha - 1} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\log_\alpha|x| = \frac{1}{x\ln\alpha} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\alpha^x = \alpha^x\ln\alpha$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\tan x = \sec^2 x \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\sec x = \sec x\tan x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\cot x = -\csc^2 x \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\csc x = -\csc x\cot x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\arctan x = \frac{1}{1 + x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\arccos x = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\arccos x = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\arccos x = -\frac{1}{1 + x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\arccos x = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

Nota: $\alpha \in \mathbb{R}_{>0} \setminus \{1\}$ quando α for base de funções logarítmicas ou exponenciais.

Exercícios

Calcular as derivadas das seguintes funções (assuma que as funções têm domínios pertinentes).

001)
$$f(x) = \frac{1+x}{1-x}$$
 002) $f(x) = e^x \sin x$ 003) $f(x) = \frac{\ln(2x)}{\ln x}$ 004) $f(x) = \frac{\sin x}{1+\cos x}$ 005) $f(x) = \frac{1}{1+\frac{1}{1+\frac{1}{x}}}$ 006) $f(x) = \sec x \tan x$ 007) $f(x) = \frac{1}{e^x+1}$ 008) $f(x) = \frac{\ln x}{1+\ln x}$

- 009) Determinar o(s) ponto(s) onde a inclinação da curva dada por $\{(x,y)\in\mathbb{R}^2:y=x^3\}$ é 3.
- 010) Determinar o(s) ponto(s) onde a inclinação da curva dada por $\{(x,y)\in\mathbb{R}^2:y=x^{-2}\}$ é 2.
- 011) Em um círculo $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1^2\}$, encontrar o(s) ponto(s) onde a inclinação da reta tangente é 1.
- 012) Em uma elipse $\{(x,y) \in \mathbb{R}^2 : x^2 + \frac{y^2}{4} = 1\}$, encontrar o(s) ponto(s) onde a inclinação da reta tangente é -1.

Calcular as derivadas das seguintes funções (assuma que as funções têm domínios pertinentes).

013)
$$f(x) = \sqrt{\sin(\sin x)}$$
 014) $f(x) = \sqrt{x - \sqrt{x}}$ 015) $f(x) = \ln(\ln x)$ 016) $f(x) = \arcsin(\cos x)$ 017) $f(x) = \ln[x\cos(x^2)]$ 018) $f(x) = e^{(e^x)}$ 019) $f(x) = x^x$ 020) $f(x) = x^{(x^x)}$

Problemas

- p1) Mostrar que uma função $f: X \to \mathbb{R}$ é derivável em $a \in X \cap X'$ se, e somente se, existe $c \in \mathbb{R}$ tal que $a+h \in X$ implica f(a+h) = f(a) + ch + r(h), onde $\lim_{h\to 0} \frac{r(h)}{h} = 0$ (em existindo tal c, tem-se c = f'(a)).
- p2) Mostrar que se uma função $f:X\to\mathbb{R}$ for derivável em a, então f é contínua em a.
- p3) Dadas duas funções f e g deriváveis em a, então $(f \pm g)'(a) = f'(a) \pm g'(a)$.
- p4) Dadas duas funções f e g deriváveis em a, então $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$ (regra do produto).
- p5) Dadas duas funções f e g deriváveis em a, então $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}$ (regra do quociente).
- p6) (**Teorema do confronto**) Considere três funções, $f, g, h: X \to \mathbb{R}$, tais que $g(x) \le f(x) \le h(x)$ para $x \in I \subset X$. Dado um $a \in I$, se $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, mostrar que $\lim_{x \to a} f(x) = L$.
- p7) Mostrar, usando o teorema do confronto, que $\lim_{x\to 0} \frac{\sin x}{x}$.
- p8) (**Regra da cadeia**) Dadas duas funções, $f: X \to \mathbb{R}$ e $g: Y \to \mathbb{R}$, f derivável em $a \in X \cap X'$ e g derivável em $b = f(a) \in Y \cap Y'$, com $f(X) \subset Y$, mostrar que a derivada de $(g \circ f)$ em a é dada por $(g \circ f)'(a) = g'(f(a))f'(a)$.
- p9) (**Teorema de Rolle**) Considere uma função f contínua em [a,b], derivável em (a,b) e com f(a)=f(b). Mostrar que existe $\xi \in (a,b)$ tal que $f'(\xi)=0$.
- p
10) (**Teorema de Cauchy**) Considere duas funções, f e g, contínuas em [a,b], deriváveis em (a,b) e com $g' \neq 0$ em (a,b). Mostrar que existe $\xi \in (a,b)$ tal que $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$.
- p11) (**Regra de l'Hôpital 1**) Considere duas funções, f e g, contínuas em [a,b], deriváveis em (a,b) e com $g' \neq 0$ em (a,b). Mostrar que se f(a) = g(a) = 0 e existir $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, então existe $\lim_{x \to a} \frac{f(x)}{g(x)}$ com $\lim_{x \to a} \frac{f(x)}{g'(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.
- p12) (**Regra de l'Hôpital 2**) Considere duas funções, f e g, contínuas em [a,b], deriváveis em (a,b) e com $g' \neq 0$ em (a,b). Mostrar que se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ e existir $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, então existe $\lim_{x \to a} \frac{f(x)}{g(x)}$ com $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.