BIOMATERIAIS

Folha de Problemas nº3 – Propriedades mecânicas.

- 1. Numa barra cilíndrica de cobre são marcados dois traços que distam entre si 50 mm. A barra é tracionada de forma a que a distância entre os traços passa a ser de 56,7 mm. Calcule a extensão, em percentagem.
- 2. Qual é a extensão de um fio de 1,5 m de comprimento que alonga 2 mm quando é aplicada uma carga?
- 3. Um osso, de 50 cm de comprimento e 1 cm de raio, suporta uma massa de 100 kg. Determine:
 - a) a tensão:
 - b) a deformação no osso se ele é comprimido 0,15 mm;
 - c) a constante de proporcionalidade para o osso.
- 4. Um fio feito de um determinado material é carregado com uma carga de 500 N. O diâmetro do fio é de 1,0 mm, o comprimento de 2,5 m e apresenta um alongamento de 8 mm quando sujeito à referida carga. Determine o módulo de Young do material.
- 5. Uma peça de cobre com um comprimento inicial de 305 mm é esticada por uma tensão de 276 MPa. Se a deformação for totalmente elástica e o módulo de Young for de 110 GPa, qual será o alongamento resultante.
- 6. A curva tensão-deformação de um dado material submetido a um ensaio de tração uniaxial está representada na figura.

Determine:

- a) o módulo de elasticidade (ou módulo de Young);
- b) a tensão de cedência para uma deformação de 0,002 (0,2 %);

- c) a carga máxima que pode ser sustentada por um provete cilíndrico com um diâmetro inicial de 12,8 mm;
- d) a alteração no comprimento de uma amostra de 250 mm, quando submetida a uma tensão de 345 MPa.
- 7. Foram realizados ensaios mecânicos de tração em 5 provetes com as dimensões apresentadas na figura. O comprimento útil (comprimento submetido à tração) é de 10 cm e a secção transversal do provete possui altura de 4 cm e largura de 6 cm.

Os provetes foram obtidos a partir da região cortical de fémures bovinos no sentido longitudinal. Os valores para a carga aplicada e deslocamento sofrido, no limite de proporcionalidade (limite da região elástica), encontram-se na seguinte tabela.

provete	carga (N)	deslocamento (mm)	
1	10,1	0,225	
2	13,7	0,164	
3	15,2	0,112	
4	12,3	0,188	
5	17,5	0,103	

Determine os valores médios das seguintes propriedades mecânicas:

- a) carga e deslocamento;
- b) tensão e extensão;
- c) rigidez do osso bovino.
- 8. Uma liga de cobre possui um módulo de Young de 11000 kgf mm⁻², um limite de proporcionalidade de 33,6 kgf mm⁻² e uma resistência à tração de 35,7 kgf mm⁻². Determine:
 - a) a tensão necessária para aumentar de 0,15 cm o comprimento de uma barra de 3 m desta liga;
 - b) o diâmetro mínimo de uma barra desta liga para que a mesma suporte uma carga de 2300 kgf, sem deformação permanente.
- 9. Uma liga de alumínio possui um módulo de elasticidade de 7000 kgf mm⁻² e um limite de proporcionalidade de 28 kgf mm⁻². Determine:
 - a) a carga máxima que pode ser suportada por um fio de 0,275 cm de diâmetro, sem deformação permanente;
 - b) o aumento no comprimento, admitindo que um fio desse diâmetro e de 30 m de comprimento é submetido a uma carga de 44 kgf.

10. Um provete cilíndrico de 380 mm de comprimento e 10 mm de diâmetro foi sujeito a um ensaio de tração. Se o provete não sofrer nem deformação plástica nem um alongamento superior a 0,9 mm quando aplicada uma carga de 24,5 kN, qual (ou quais) dos quatro materiais listados na tabela abaixo são possíveis candidatos. Justifique a sua escolha(s).

material	tensão de cedência (MPa)	módulo de Young (GPa)	resistência à tração (MPa)
liga de alumínio	255	70	420
latão	345	100	420
cobre	250	110	290
aço	450	207	550