Measurement of $\sin(2\beta)$ in the decay $B_d^0 \longrightarrow J/\Psi K_s^0$

Johannes Mayer, Patrick Fahner

LHCb, Physikalisches Institut Heidelberg University

27. Mai 2013

Decay $B_d^0 \longrightarrow J/\Psi K_s^0$

$B_d^0 - \bar{B}_d^0$ -Mixing

Time-dependent asymmetry

$$\mathcal{A}_{J/\Psi K_s^0}(t) = \frac{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) - \Gamma(B_d^0 \to J/\Psi K_s^0)}{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) + \Gamma(B_d^0 \to J/\Psi K_s^0)} \tag{1}$$

$$= S_{J/\Psi K_s^0} \sin(\Delta m_d t) - C_{J/\Psi K_s^0} \cos(\Delta m_d t)$$
 (2)

sine - term

- interference between direct decay and decay after mixing
- $S_{J/\Psi K_s^0} = \sin(2\beta)$

cosine - term

- interference between decay amplitudes or CPV in mixing
- here: $C_{J/\Psi K_s^0} \approx 0$

LHCb-detector

Tracks

- Long Tracks: VELO + T Stations (Johannes)
- Downstream Tracks: TT + T Stations (Patrick)

	Long Tracks	Downstream Tracks
candidates	10842	57153
S/B	18.0	4.0
cuts		
$\frac{\chi^2_{Track}}{nDof}(\mu)$	< 2.5	< 3
$p_T(K_s^0)$	> 1000 MeV	_
$\frac{\chi^2_{Track}}{nDof}(\pi)$	< 1.5	< 3
$\frac{\tau}{\sigma_{\tau}}(K_s^0)$	> 15	> 5
decay length sig. (K_s^0)	> 25	> 5
$ M(\pi^+\pi^-)-M(K_s^0) $	< 7 MeV	< 22 MeV

New in 2012: Ghost probability. We choose ghost prob < 0.5.

Fit strategy

- Unbinned Maximum Likelihood Fit
- sFit: Maximise modified likelihood function test (3)
- sWeigths calculated with sPlot-technique

$$\mathcal{P}_{meas} = \underbrace{\epsilon(t)}_{=1, \text{later more}} \mathcal{P}_{sig}(t') \otimes \mathcal{R}(t - t')$$
 (4)

Mean dacay time resolution

Resolution model

$$\mathcal{R}(t) = \sum_{i=0}^{3} \frac{f_i}{2\pi\sigma_i} e^{-\frac{t^2}{2\sigma^2}}$$
 (5)

Perform sFit with reonstructed J/Ψ mass as discriminating variable

Mean dacay time resolution

Long Tracks

Resolution

Param	eter	long tracks	downstream tracks
$\overline{\sigma_1}$	(ps)	0.117 ± 0.016	0.480±0.070
σ_2	(ps)	0.061 ± 0.037	0.04396 ± 0.00094
σ_3	(ps)	0.037 ± 0.003	0.0932 ± 0.0034
f_1		0.054 ± 0.032	0.00329 ± 0.00099
f_2		0.294±0.138	0.739±0.027

nominal fit

mass fit - parameterisation

Signal

$$\mathcal{P}_{m;S}(m;\vec{\lambda}_{m;S}) = f_{S,m}\mathcal{G}(m;m_{B_d^0},\sigma_{m,1}) + \mathcal{G}(m;m_{B_d^0},\sigma_{m,2})$$
 (6)

Background

$$\mathcal{P}_{m;B}(m;\vec{\lambda}_{m;B}) = \frac{1}{\mathcal{N}_{m:B}} e^{-\alpha_m m}$$
 (7)

Total mass p.d.f.

$$\mathcal{P}_{m}(m;\vec{\lambda}_{m}) = f_{sig}\mathcal{P}_{m;S}(m;\vec{\lambda}_{m;S}) + (1 - f_{sig})\mathcal{P}_{m;B}(m;\vec{\lambda}_{m;B}) \quad (8)$$

nominal fit

Long Tracks

nominal fit

Probability density function

$$\mathcal{P}_{\text{meas}}(t,d,\omega) \propto e^{-t/\tau} \left\{ 1 - d\mu(1-2\omega) - d\Delta p_0 - \left[d(1-2\omega) - \mu(1-d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right\}$$
(9)

- d: tagging decision
- lacksquare $\mu=A_P=rac{R_{ar{B}_d^0}-R_{B_d^0}}{R_{ar{B}_d^0}+R_{B_d^0}}$ production asymmetry
- lacksquare ω : calibrated mistag probability

$$(\eta^{OS}) = p_1(\eta^{OS} - \langle \eta^{OS} \rangle) + p_0$$
 (10)

 p_0, p_1 : calibration parameters η^{OS} : predicted mistag probability

- Δp_0 : tagging calibration asymmetry
- lacksquare Δm_d : mixing frequency

Fit results

- floating parameters: $S_{J/\Psi K_{\varepsilon}^0}$, τ , Δm_d
- constrained parameters: $\mu = -0.015 \pm 0.013$, $p_0 = 0.382 \pm 0.003$, $p_1 = 0.981 \pm 0.024$, $\Delta p_0 = 0.0045 \pm 0.0053$
- fixed parameters: $\langle \eta^{OS} \rangle =$ 0.382, resolution parameters
- signal events: ??? (long) // 8585 (downstream) [2011: 8600 total]

Fit results

Long Tracks

fit results

Parameter	long	downstream
$S_{J/\Psi K_s^0}$	\pm	0.565 ± 0.069
au	\pm	1.516 ± 0.039
Δm_d	\pm	$0.521 {\pm} 0.039$

- Fit Bias due to fit method
- Tagging calibration
- Time acceptance
- Correlation mass ↔ decay time
- Time resolution

Systematic Errors Fit Bias

Generate Toy MC with ??? (long) / 13000 events an parameters derived from nominal fit (except $S_{J/\Psi K_0^0} = 0.75$)

Long Tracks

Downstream Tracks

Tagging calibration

Vary Tagging calibration parameters $p_0, p_1 \pm$ their systematic uncertainties

- 1 in the nominal fit
- 2 in the generation of Toy MC, but fit with original values

Note: Systematic studies on used tagging calibration hasn't finished yet \longrightarrow no official value. We use largest differences in channels so far:

$$\delta p_0^{stat.} = 0.019, \qquad \delta p_1^{stat.} = 0.07$$

Tagging calibration

Choose highest difference from nominal fit / toy as estimate for the systematic uncertainty

- Long tracks:
- Downstream tracks:

Note: Estimates very large due to large $\delta p_0^{stat.}$, $\delta p_1^{stat.}$ compared to other calibrations (systematic studies of calibration need to be finished)

Time acceptance

Note: just a cross-check, no in-depth analysis

Determination of an acceptance function

- lacksquare no separation between B_d^0 and $\overline{B_d^0}$
 - ⇒ simple exponential decay
- neglect lifetime cut (t > 0.3ps)
- contributions to acceptance:
 - turn-on-effect
 - decreasing acceptance for higher lifetimes due to VELO geometry

Time acceptance

Fit p.d.f

$$\mathcal{P}_{acc}(t) \propto \underbrace{e^{-t/ au}}_{ ext{exp. decay}} \cdot \underbrace{rac{2}{\pi} \arctan[t \cdot \exp(at+b)]}_{ ext{turn-on-effect}} \cdot \underbrace{rac{(1+eta t)}{\text{higher lifetimes}}}_{ ext{higher lifetimes}}$$

Note: au will be constrained to the PDG value $au=1,519\pm0,007\mathrm{ps}.$

Time acceptance

Long Tracks

Time acceptance

Downstream Tracks

Time acceptance

Table : Fit results for exponential decay fit with acceptance function. au was constrained to the PDG value $au=1,519\pm0,007\mathrm{ps}$

long	long
long	long
\pm	1.519 ± 0.007
\pm	44.1 ± 5.7
\pm	-7.4 ± 1.1
\pm	-0.0056 ± 0.0085
	± ±

Time acceptance

Toy MC Study

- generate with acceptance function
- use parameters mentioned above
- fit without acceptance function

No significant difference to fit bias! $\mu_{\it fit} = 0.059 \pm 0.007 \quad {\rm vs.} \quad \mu_{\it acc} = 0.063 \pm 0.007$

Resolution

Summary

effect	long	downstream
fit method		
tagging calibration		
time acceptance		
$mass \leftrightarrow decay \; time$		
resolution		
total		

Conclusion