

Using deep learning for unifying genomic data and traits in species delimitation

MF Perez; I Sanmartín; BC Faircloth; LAC Bertollo; MB Cioffi

Introduction

The presence of distinct species concepts leads to different strategies to identify species boundaries (de Queiroz 2007). It is important to adopt a multidisciplinary approach, by integrating different sources of evidence (Carstens et al. 2013).

Most approaches consist in analyzing genetic and phenotypical/geographical information separately, followed by visual/qualitative comparison. Methods that actually integrate different data are limited to up to a few hundreds of loci and simple models of evolution (Solís-Lemus et al. 2015).

We present a method based on **simulated data and machine learning**, that **combines** both **genomic and trait** information in a unified framework.

Methods

Results

Probabilities are low only when using traits.

Increased no of SNPs also led to a higher probability of recovering the right model.

little improvement with > 50 SNPs.

Using both genomic and trait data recovered slightly better results than using only SNPs.

Conclusions

The accuracy of our approach was very high (confusion matrix with the test set). Lowest accuracy between model 4 (migration) with model 1 (one species).

Incorporating traits resulted in similar accuracy to using only SNPs.

Traits incorporate information complementary to genomic data.

The method is **flexible**, allowing **complex scenarios** and the use of both types of data.

