Доклад

Настройка VPN

Беличева Дарья Михайловна

Содержание

1	Введение	4
	1.1 Цель работы	4
	1.2 Задачи	4
2	Понятие VPN	5
3	Структура VPN	7
4	Виды VPN-соединений	9
5	Протоколы VPN	10
	5.1 Реализация топологии "звезда"	15
6	Выводы	19

Список иллюстраций

5.1	Схема сети	16
5.2	Настройка VPN	16
5.3	Настройка VPN	17
5.4	Проверка соединения	17
5.5	Проверка туннеля	17
5.6	Пингование ПК	18
5.7	Проверка туннеля	18

1 Введение

1.1 Цель работы

Исследовать понятие и основные характеристики VPN, а также изучить ее настройку.

1.2 Задачи

- Изучить понятие VPN;
- Рассмотреть протоколы VPN;
- Реализовать практический пример настройки VPN в Cisco Packet Tracer.

2 Понятие VPN

Виртуальная частная сеть (Virtual Private Network, VPN) — технология, обеспечивающая одно или несколько сетевых соединений поверх другой сети (например, Интернет).

VPN создает локальную сеть между несколькими компьютерами в сегментах сети. Машины могут находиться как в одной локальной сети, так и могут быть удалены на большом расстоянии друг от друга через Интернет или они могут даже быть подключены через специальные мультимедиа (беспроводные каналы связи, спутниковая связь, коммутируемая сеть). VPN поставляется с дополнительной защитой, чтобы сделать виртуальную сеть частной. Сетевой трафик проходящий через VPN часто называют внутренним туннелем по сравнению с другими трафиками который находится за пределами туннеля.

VPN (Virtual Private Network) имеет множество преимуществ, связанных с безопасностью, конфиденциальностью и доступом в интернете. VPN шифрует интернет-трафик, защищая данные от хакеров и интернет-провайдеров, что особенно важно в общедоступных Wi-Fi сетях. Он скрывает реальный IP-адрес, предотвращая отслеживание местоположения и онлайн-активности. VPN помогает обходить цензуру и географические ограничения, предоставляя доступ к заблокированным сайтам и региональному контенту. Он также незаменим для безопасной работы в корпоративных сетях, позволяя сотрудникам удаленно подключаться к корпоративным ресурсам и защищая корпоративные данные от несанкционированного доступа. VPN защищает от атак типа «человек посередине» и блокирует вредоносные веб-сайты и фишинговые атаки. Он

также позволяет экономить на покупках, предоставляя доступ к региональным ценам на товары и услуги в интернете. Примеры использования VPN включают защиту личной информации в общедоступных Wi-Fi сетях, обход географических ограничений, безопасную удаленную работу и анонимный серфинг. В современном цифровом мире, где угрозы кибербезопасности и ограничения доступа становятся все более распространенными, VPN является мощным инструментом для обеспечения безопасности и конфиденциальности

3 Структура VPN

Структура VPN включает несколько ключевых компонентов:

- **VPN-клиент**: Программное обеспечение на устройстве пользователя, которое инициирует соединение с VPN-сервером;
- **VPN-сервер**: Сервер, который обрабатывает запросы от VPN-клиента и обеспечивает доступ к защищенной сети;
- **Аутентификация**: Процесс проверки подлинности пользователя и устройства;
- **Туннелирование**: Процесс инкапсуляции одного сетевого протокола внутри другого для обеспечения защиты данных;
- Шифрование: Технология, которая обеспечивает конфиденциальность данных, передаваемых через VPN. В момент передачи данных VPN шифрует их, тем самым защищает туннель передачи. С помощью специальных алгоритмов информация преобразуется в нечитаемый вид для третьих лиц.

Исходя из этой структуры, можно описать шаги работы VPN:

1. Инициация соединения

Сначала пользователь запускает VPN-клиента и вводит свои учетные данные (логин и пароль), после чего VPN-клиент устанавливает соединение с VPN-сервером через интернет.

2. Аутентификация

Далее VPN-сервер проверяет учетные данные пользователя. После успешной аутентификации создается защищенный туннель между клиентом и сервером.

3. Шифрование данных

Теперь VPN-клиент шифрует данные перед их отправкой через туннель. Благодаря шифрованию данные не могут быть прочитаны третьими лицами в случае перехвата.

4. Передача данных:

Зашифрованные данные передаются через интернет к VPN-серверу. VPN-сервер в свою очередь дешифрует данные и направляет их к целевому ресурсу (например, веб-сайту или корпоративной сети).

5. Ответные данные:

Наконец, данные, полученные от целевого ресурса, также шифруются VPN-сервером, затем они передаются обратно через туннель к VPN-клиенту, который их дешифрует и передает пользователю.

4 Виды VPN-соединений

Client-to-Site VPN и Remote Access VPN

Данный тип VPN позволяет отдельным пользователям и устройствам безопасно подключаться в рамках общедоступной сети к частной сети компании. Удаленный доступ осуществляется с помощью установки соединения между пользователем и VPN-сервером, расположенным внутри сети организации. Для этого используются специальные протоколы, среди которых — IPSec, OpenVPN, SSL/TLS и другие.

Узел-узел, или Site-to-Site VPN

Это тип VPN-соединения, который используют для организации связности двух сетей. В данном случае используется шифрованный туннель между локальными сетями, в которых находятся хосты A и Б соответственно. Site-to-Site VPN позволяет работать так, будто они подключены к одному коммутатору.

Установить данный тип соединения несложно. Достаточно на границе сайта установить VPN-шлюз — например, файрвол. Он будет отвечать за обмен ключами, шифрование и дешифрование данных, а также за согласование параметров VPN-туннеля.

Точка-многоточка, или Point-to-Multipoint VPN (P2MP)

Данный тип соединения позволяет связать один VPN-шлюз с несколькими удаленными. При этом все последние могут обмениваться данными между собой, а не только с начальным устройством. Данная технология может быть полезна при создании виртуальной сети между различными филиалами организации.

5 Протоколы VPN

Протоколы VPN — это специальные правила, определяющие порядок работы виртуальной частной сети. Они отвечают за процессы аутентификации устройств, способы передачи данных, безопасность используемых алгоритмов и приватность соединения.

PPTP

PPTP (Point-to-Point Tunneling Protocol) — один из первых VPN-протоколов. Компания Microsoft разработала его для коммутируемых сетей в Windows 95 и Windows NT. Примитивное шифрование делает его сверхбыстрым, но из-за этого страдает безопасность в интернете. К сожалению, он не дожил до наших дней и в настоящее время считается устаревшим.

PPTP использует протокол MPPE (Microsoft Point-to-Point Encryption) с ключа-ми длиной до 128 бит. Для аутентификации он может использовать либо MS-CHAPv1, либо MS-CHAPv2. Совокупность этих факторов делает его открытым к разным атакам: от перебора до подмены битов.

Низкоуровневое шифрование делает РРТР одним из самых быстрых VPNпротоколов. Шифрование обычно замедляет скорость соединения, но у РРТР он слишком мал, чтобы вызвать значительную разницу.

РРТР использует два соединения — одно для управления, другое для инкапсуляции данных. Первое работает с использованием ТСР, в котором порт сервера 1723. Второе работает с помощью протокола GRE, который является транспортным протоколом (то есть заменой TCP/UDP). Этот факт мешает клиентам, находящимся за NAT, установить подключение с сервером, так как для них установ-

ление подключения точка-точка не представляется возможным по умолчанию. Однако, поскольку в протоколе GRE, что использует PPTP (а именно enhanced GRE), есть заголовок Call ID, маршрутизаторы, выполняющие натирование, могут идентифицировать и сопоставить GRE трафик, идущий от клиента локальной сети к внешнему серверу и наоборот. Это дает возможность клиентам за NAT установить подключение point-to-point и пользоваться протоколом GRE. Данная технология называется VPN PassTrough. Она поддерживается большим количеством современного клиентского сетевого оборудования.

PPTP поддерживается нативно на всех версиях Windows и большинстве других операционных систем. Несмотря на относительно высокую скорость, PPTP не слишком надежен: после обрыва соединения он не восстанавливается так же быстро, как, например, OpenVPN.

В настоящее время PPTP по существу устарел и Microsoft советует пользоваться другими VPN решениями.

SSTP

SSTP (Secure Socket Tunneling Protocol) — еще один протокол от Microsoft, который впервые появился в Windows Vista. Его изначально рассматривали как преемника PPTP и L2TP, поэтому SSTP можно найти в более поздних версиях Windows. По уровню безопасности он практически не уступает OpenVPN и способен обходить межсетевые экраны.

SSTP отправляет трафик по SSL через TCP-порт 443. Это делает его полезным для использования в ограниченных сетевых ситуациях, например, если вам нужен VPN для Китая. Несмотря на то, что SSTP также доступен и на Linux, RouterOS и SEIL, по большей части он все равно используется Windows-системами.

Относительно скорости SSTP работает быстрее других протоколов. Однако он требует большей пропускной способности и мощного процессора. Немногие VPN провайдеры поддерживают SSTP.

SSTP может выручить, если блокируются другие VPN протоколы, но опять-

таки OpenVPN будет лучшим выбором (если он доступен).

IPsec

IPsec VPN — это набор протоколов, который защищает соединение между устройствами на уровне IP. Существует два режима работы IPsec: туннельный и транспортный.

Туннельный режим. IPsec VPN шифрует исходный IP-пакет и инкапсулирует его в новый заголовок. Туннель прокладывается между парой шлюзов — например, двумя маршрутизаторами или маршрутизатором и межсетевым экраном. Аутентификация выполняется на обоих концах соединения, путем добавления к пакету заголовка. В транспортном режиме шифруется только полезная нагрузка IP-пакета без начального заголовка.

Туннельный режим обычно безопаснее транспортного, поскольку шифрует не только полезную нагрузку, но и весь IP-пакет.

Транспортный режим. Он отличается от туннельного методом инкапсуляции: шифрует только данные, а заголовок IP оставляет без изменений. Поэтому транспортный режим менее безопасный.

Ядро IPSec базируется на трех протоколах:

Authentication Header (AH) обеспечивает аутентификацию и поддерживает целостность данных, ESP или Encapsulating Security Payload отвечает за шифрование трафика, ISAKMP или Internet Security Association and Key Management Protocol отвечает за обмен ключами и аутентификацию конечных хостов.

L2TP/IPsec

Layer 2 Tunneling Protocol (L2TP) был впервые предложен в 1999 году в качестве обновления протоколов L2F (Cisco) и PPTP (Microsoft). Поскольку L2TP сам по себе не обеспечивает шифрование или аутентификацию, часто с ним используется IPsec. L2TP в паре с IPsec поддерживается многими операционными системами, стандартизирован в RFC 3193.

L2TP/IPsec считается безопасным и не имеет серьезных выявленных проблем (гораздо безопаснее, чем PPTP). L2TP/IPsec может использовать шифрование

3DES или AES, хотя, учитывая, что 3DES в настоящее время считается слабым шифром, он используется редко.

У протокола L2TP иногда возникают проблемы из-за использования по умолчанию UDP-порта 500, который, как известно, блокируется некоторыми брандмауэрами.

Протокол L2TP/IPsec позволяет обеспечить высокую безопасность передаваемых данных, прост в настройке и поддерживается всеми современными операционными системами. Однако L2TP/IPsec инкапсулирует передаваемые данные дважды, что делает его менее эффективным и более медленным, чем другие VPN-протоколы.

IKEv2/IPsec

Internet Key Exchange version 2 (IKEv2) является протоколом IPsec, используемым для выполнения взаимной аутентификации, создания и обслуживания Security Associations (SA), стандартизован в RFC 7296. Так же защищен IPsec, как и L2TP, что может говорить об их одинаковом уровне безопасности. Хотя IKEv2 был разработан Microsoft совместно с Cisco, существуют реализации протокола с открытым исходным кодом (например, OpenIKEv2, Openswan и strongSwan).

Благодаря поддержке Mobility and Multi-homing Protocol (MOBIKE) IKEv2 очень устойчив к смене сетей. Это делает IKEv2 отличным выбором для пользователей смартфонов, которые регулярно переключаются между домашним Wi-Fi и мобильным соединением или перемещаются между точками доступа.

IKEv2/IPsec может использовать ряд различных криптографических алгоритмов, включая AES, Blowfish и Camellia, в том числе с 256-битными ключами.

IKEv2 работает через UDP-протокол, что обеспечивает низкую задержку и высокую скорость. Эффективный обмен сообщениями типа «запрос-ответ» также играет важную роль. Кроме того, IKEv2 менее требователен к процессору, чем OpenVPN.

Во многих случаях IKEv2 быстрее OpenVPN, так как он менее ресурсоемкий. С точки зрения производительности IKEv2 может быть лучшим вариантом для мобильных пользователей, потому как он хорошо переустанавливает соединения. IKEv2 нативно поддерживается на Windows 7+, Mac OS 10.11+, iOS, а также на некоторых Android-устройствах.

OpenVPN

OpenVPN — это универсальный протокол VPN с открытым исходным кодом, разработанный компанией OpenVPN Technologies. На сегодняшний день это, пожалуй, самый популярный протокол VPN. Будучи открытым стандартом, он прошел не одну независимую экспертизу безопасности.

В большинстве ситуаций, когда нужно подключение через VPN, скорее всего подойдет OpenVPN. Он стабилен и предлагает хорошую скорость передачи данных. OpenVPN использует стандартные протоколы TCP и UDP и это позволяет ему стать альтернативой IPsec тогда, когда провайдер блокирует некоторые протоколы VPN.

Для работы OpenVPN нужно специальное клиентское программное обеспечение, а не то, которое работает из коробки. Большинство VPN-сервисов создают свои приложения для работы с OpenVPN, которые можно использовать в разных операционных системах и устройствах. Протокол может работать на любом из портов TCP и UPD и может использоваться на всех основных платформах через сторонние клиенты: Windows, Mac OS, Linux, Apple iOS, Android.

В плане скорости протокол занимает промежуточное место. Он быстрее, чем L2TP/IPSec, но медленнее, чем PPTP и WireGuard. Однако скорость всегда зависит от устройства и параметров конфигурации. К примеру, его можно увеличить за счет функции раздельного туннелирования или уменьшить с помощью двойного шифрования.

WireGuard

Протокол появился в 2018 году и успел завоевать большую популярность. Он использует шифр ChaCha20, описанный в RFC 7539, и имеет около четырех тысяч строк кода, что значительно упрощает и ускоряет аудит безопасности. Основной минус: он не умеет динамически назначать IP-адреса пользователям,

подключенным к серверу. Поэтому статический IP должен храниться на том же сервере.

WireGuard — самый быстрый по сравнению с другими VPN-протоколами, поскольку не использует туннелирование по TCP в принципе. Linux-системы обеспечивают наилучшую работу протокола с помощью интеграции в модуль ядра.

Bce IP-пакеты, приходящие на WireGuard интерфейс, инкапсулируются в UDP и безопасно доставляются другим пирам.

5.1 Реализация топологии "звезда"

```
R2(config)# crypto isakmp policy 1
R2(config-isakmp)# encr 3des
R2(config-isakmp)# hash md5
R2(config-isakmp)# authentication pre-share
R2(config-isakmp)# group 2
R2(config-isakmp)# lifetime 86400
R2(config)# crypto isakmp key merionet address 1.1.1.1
R2(config)# ip access-list extended VPN-TRAFFIC
R2(config-ext-nacl)# permit ip 20.20.20.0 0.0.255 10.10.10.0 0.0.0.255
R2(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac
R2(config)# crypto map CMAP 10 ipsec-isakmp
R2(config-crypto-map)# set peer 1.1.1.1
R2(config-crypto-map)# set transform-set TS
R2(config-crypto-map)# match address VPN-TRAFFIC
R2(config)# interface FastEthernet0/1
R2(config- if)# crypto map CMAP
```


Рис. 5.1: Схема сети

```
Router(config) #crypto isakmp policy 1
Router(config-isakmp) #encr 3des
Router(config-isakmp) #hash md5
Router(config-isakmp) #authentication pre-share
Router(config-isakmp)#group 2
Router(config-isakmp) #lifetime 86400
Router(config-isakmp) #crypto isakmp key cisco address 11.11.11.1
Router(config) #crypto ipsec transform-set TS esp-3des esp-md5-hmac
Router(config) #crypto map CMAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
Router(config-crypto-map) #set peer 11.11.11.1
Router(config-crypto-map) #set transform-set TS
Router(config-crypto-map)#exit
Router(config) #ip access-list extended VPN-TRAFFIC
Router(config-ext-nacl) #permit ip 172.16.1.0 0.0.0.255 192.168.10.0 0.0.0.255
Router(config-ext-nacl) #exit
Router(config) #crypto map CMAP 10 ipsec-isakmp
Router(config-crypto-map) #set peer 11.11.11.1
Router(config-crypto-map) #set transform-set TS
Router(config-crypto-map) #match address VPN-TRAFFIC
Router(config-crypto-map) #exit
Router(config) #int s0/0/0
Router(config-if) #crypto map CMAP
```

Рис. 5.2: Настройка VPN

```
Router(config) #crypto isakmp policy 1
Router(config-isakmp) #encr 3des
Router(config-isakmp) #authentication pre-share
Router(config-isakmp) #group 2
Router(config-isakmp) #lifetime 86400
Router(config-isakmp) #lifetime 86400
Router(config-isakmp) #lifetime 86400
Router(config-isakmp) #exit
Router(config) #crypto isakmp key cisco address 10.10.10.1
Router(config) #lifetime 86400
Router(config) #lifetime 86400
Router(config-isakmp) #exit
Router(config-ext-nacl) #permit ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255
Router(config-ext-nacl) #permit ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255
Router(config-ext-nacl) #permit ip 192.168.10.0 0.0.0.255 172.16.1.0 0.0.0.255
Router(config) #crypto ipsec transform-set TS esp-3des esp-md5-hmac
Router(config) #crypto map CMAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
Router(config-crypto-map) #set peer 10.10.10.1
Router(config-crypto-map) #set peer 10.10.10.1
Router(config-crypto-map) #set transform-set TS
Router(config-crypto-map) #set peer 10.10.10.1
Router(config-if) #crypto map CMAP
%Jan 3 07:16:26.785: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON
Router(config-if) #Crypto-map) #set peer 10.10.10.1
```

Рис. 5.3: Настройка VPN

```
Router#ping 192.168.10.0

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.10.0, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 17/24/29 ms
Router#show crypto session
```

Рис. 5.4: Проверка соединения

Рис. 5.5: Проверка туннеля

```
C:\>ping 192.168.10.10

Pinging 192.168.10.10 with 32 bytes of data:

Reply from 192.168.10.10: bytes=32 time=22ms TTL=126
Reply from 192.168.10.10: bytes=32 time=2ms TTL=126
Reply from 192.168.10.10: bytes=32 time=2ms TTL=126
Reply from 192.168.10.10: bytes=32 time=2ms TTL=126

Ping statistics for 192.168.10.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 22ms, Average = 7ms

C:\>
```

Рис. 5.6: Пингование ПК

```
Router#show crypto ipsec sa
interface: Serial0/0/0
    Crypto map tag: CMAP, local addr 10.10.10.1
   protected vrf: (none)
   local ident (addr/mask/prot/port): (172.16.1.0/255.255.255.0/0/0)
   remote ident (addr/mask/prot/port): (192.168.10.0/255.255.255.0/0/0)
   current_peer 11.11.11.1 port 500
    PERMIT, flags={origin_is_acl,}
   #pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
#pkts decaps: 7, #pkts decrypt: 7, #pkts verify: 0
   #pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
   #send errors 1, #recv errors 0
     local crypto endpt.: 10.10.10.1, remote crypto endpt.:11.11.11.1
     path mtu 1500, ip mtu 1500, ip mtu idb Serial0/0/0
     current outbound spi: 0x47EE217E(1206788478)
     inbound esp sas:
      spi: 0x46B990CE(1186566350)
 --More-
```

Рис. 5.7: Проверка туннеля

6 Выводы

В результате выполнения работы я исследовала понятие и основные характеристики VPN, а также изучила ее настройку.