## Programarea calculatoarelor și limbaje de programare I

## Tema 2

Termen de predare: săptămâna 11-15 ianuarie 2021

Punctaj: 10% din nota finală

**Regresia** este o metodă din domeniul statisticii care estimează relația dintre o variabilă dependentă (denumită și explicație, efect, rezultat) Y și una sau mai multe variabile independente (denumite și factori, predictori, atribute)  $X_1, X_2, ..., X_k$ . Dacă valorile observate pentru aceste variabile sunt  $(y_i, (x_{1i}, x_{2i}, ..., x_{ki})), i = 1, ..., n$ , atunci funcția de regresie este acea funcție  $Y = f(X_1, X_2, ..., X_n)$  care aproximează cel mai bine setul de date observate. Dacă funcția f este liniară, atunci obținem o **regresie liniară**. Dacă folosim o singură variabilă independentă f cu valorile observate f care se mai numește și dreaptă de regresie.

În exemplul de mai jos avem un set de date numerice care reprezintă salariul mediu exprimat în mii de USD raportat la numărul de ani de experiență. Variabila independentă este YearsExperience, iar variabila dependentă este Salary. Parametrii  $w_1 = 9.536$  și  $w_2 = 24.8$  ai dreptei de regresie  $\bar{y} = 9.536x + 24.8$  minimizează eroarea cumulată pătratică E dintre valoarea  $y_i$  a salariului și valoarea estimată  $\bar{y}_i$ :  $E = \frac{1}{2n} \sum_{i=1}^n (y_i - \bar{y}_i)^2$ .

| YearsExperience [x]    |      | Salary [y]      |         |
|------------------------|------|-----------------|---------|
| $x_1$                  | 1.1  | $y_1$           | 39.343  |
| $x_2$                  | 1.5  | $y_2$           | 37.731  |
| $x_3$                  | 2.2  | $y_3$           | 39.891  |
| $x_4$                  | 3    | $y_4$           | 60.15   |
| $x_5$                  | 3.2  | $y_5$           | 64.445  |
| $x_6$                  | 3.9  | $y_6$           | 63.218  |
| $x_7$                  | 4    | $y_7$           | 56.957  |
| $x_8$                  | 4.5  | $y_8$           | 61.111  |
| $x_9$                  | 5.1  | $y_9$           | 66.029  |
| <i>x</i> <sub>10</sub> | 5.9  | $y_{10}$        | 81.363  |
| <i>x</i> <sub>11</sub> | 6.8  | y <sub>11</sub> | 91.738  |
| <i>x</i> <sub>12</sub> | 7.9  | y <sub>12</sub> | 101.302 |
| <i>x</i> <sub>13</sub> | 8.7  | $y_{13}$        | 109.431 |
| <i>x</i> <sub>14</sub> | 9.5  | $y_{14}$        | 116.969 |
| <i>x</i> <sub>15</sub> | 10.3 | $y_{15}$        | 122.391 |



Scrieți o aplicație care calculează parametrii  $w_1$  și  $w_2$  ai dreptei de regresie astfel:

$$w_{2} = \frac{\sum_{i=1}^{n} (x_{i} - x_{med}) (y_{i} - y_{med})}{\sum_{i=1}^{n} (x_{i} - x_{med})^{2}}$$
$$w_{1} = y_{med} - w_{2}x_{med}$$

unde  $x_{med}$  și  $y_{med}$  sunt mediile valorilor de pe coloanele YearsExperience, respectiv Salary.

Datele vor fi citite din fișierul Salary\_Data.csv, iar rezultatele vor fi afișate pe ecran.