## Resistance of Threshold Implementations against Statistical Ineffective Fault Attacks

## Viet Sang Nguyen, Vincent Grosso, Pierre-Louis Cayrel

Université Jean Monnet, CNRS, Laboratoire Hubert Curien URM5516, F-42023, Saint-Étienne, France

## Background

## Cryptography



Key  $k \nearrow$  must be protected

# Fault Attacks recovers k

Countermeasure: duplicate the computation, then compare the two outputs to detect faults

## 

recovers k 🔑

Countermeasure: avoid leakages by computation on shares  $(x_1, x_2, x_3)$  and  $(k_1, k_2, k_3)$  where  $x_1 + x_2 + x_3 = x$  and  $k_1 + k_2 + k_3 = k$ 

### **State Of The Art**

## **Combined Countermeasure**





## **Our Proposal**

## Countermeasure



- Compute on non-complete set of shares
- Parallelize computations to harden precise fault injection













488 —