OSM Lab Boot Camp Math Problem Set 6

Harrison Beard

30 July 2018

Exercise 9.1.

Prove that an unconstrained linear objective function is either constant or has no minimum.

Solution. Proof by contradiction. If an objective function f is *not* constant, then we know there must be a $\tilde{\mathbf{x}}$ such that $f(\tilde{\mathbf{x}}) \neq f(\mathbf{x}^*)$ for the \mathbf{x}^* that minimizes f, so $f(\tilde{\mathbf{x}})$ cannot be less than $f(\mathbf{x}^*)$ without loss of generality. Then, this implies $f(\tilde{\mathbf{x}}) > f(\mathbf{x}^*)$, so it follows that $f(\mathbf{x}^* - \tilde{\mathbf{x}}) < 0$ by linearity, but then we have

$$f(2\mathbf{x}^* - \tilde{\mathbf{x}}) = f(\mathbf{x}^*) + f(\mathbf{x}^* - \tilde{\mathbf{x}})$$

$$< f(\mathbf{x}^*),$$

which is a contradiction because x^* is the minimizer by assumption.

Exercise 9.2.

Prove that if $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathrm{M}_{m \times n}\left(\mathbb{R}\right)$, then the problem of finding an $\mathbf{x}^* \in \mathbb{R}^n$ to minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ is equivalent to minimizing

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\mathsf{T}}\mathbf{A}\mathbf{x}.\tag{9.21}$$

In Voume 1, Chapter 3 we use projections to prove that this is equivalent to solving the normal equation

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

Use the first- and second-order conditions to give a different proof that minimizing (9.21) is equivalent to solving the normal equation.

Solution. We will use the fact that A^TA is symmetric and *positive definite* as we have shown previously. Note that if x is such that the FONC is satisfied, then x is a global minimizer of the function

$$\left(\mathbf{A}\mathbf{x} - \mathbf{b}\right)^\mathsf{T} \left(\mathbf{A}\mathbf{x} - \mathbf{b}\right) = \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A}\mathbf{x} - 2\mathbf{b}^\mathsf{T} \mathbf{A}\mathbf{x}.$$

Next, note that our FOC is $2\mathbf{A}^T\mathbf{A}\mathbf{x} - 2\mathbf{A}^T\mathbf{b} = 0$, so we have that $\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{A}^T\mathbf{b}$, and by the SOC and positive definiteness of $\mathbf{A}^T\mathbf{A}$, so $2\mathbf{A}^T\mathbf{A} > 0$, and so we are done.

Exercise 9.3.

For each of the multivariable optimization methods we have discussed in this section, list the following:

- (i). The basic idea of the method, including how it differs from the other methods in the list. Include any geometric description you can give of the method.
- (ii). What types of optimization problems it can solve and cannot solve.
- (iii) . Relative strengths of the method.
- (iv). Relative weaknesses of the method.

Solution.

- The method of **Gradient Descent** is to follow the function f's negative gradient $-\mathbf{D}f^\mathsf{T}(\mathbf{x}_i)$ and iterate over the \mathbf{x}_i 's, recalculating the gradient, until a minimum is reached. Geometrically, this looks like a zig-zag pattern across the level sets of f. **Newton's Method** is used when the dimensionality is small and if the Hessian $\mathbf{D}^2 f(\mathbf{x}_i)$ is positive definite; its appeal is that it converges quadratically and acts as both a local approximation and a descent method. **Conjugate Gradient** can optimize a quadratic in a single step, and is very quick for small-dimensional problems. It is usually contrasted with gradient descent geometrically, as it appears as a straight line perpendicular to each of the level sets of f by moving along Q-conjugate directions, as seen in figure (9.1) in the textbook. **Gauss-Newton** is an adaptation of Newton's method to efficiently optimize nonlinear least squares (NLS) problems. One of the quasi-Newton innovations, **Broyden-Fletcher-Goldfarb-Shanno (BFGS)**, was developed to improve computational cost involves only computing the Hessian initially, but has a lower convergence rate.
- (ii). Conjugate Gradient is used when f is differentiable. Newton's Method is used when $\mathbf{D}^2 f(\mathbf{x}_i) \in \mathrm{PD}_n\left(\mathbb{R}\right)$. Gauss-Newton and its derivatives are used for NLS problems.
- (iii). Newton has quadratic convergence and is best when the dimension of the problem is not large and when $\mathbf{x}_0 \approx \mathbf{x}^*$. Gauss-Newton is best for NLS problems. The niche appeal to both Gauss-Newton and BFGS is that they both are effective when $(\mathbf{D}^2 f(\mathbf{x}))^{-1} \mathbf{D} f(\mathbf{x})$ is expensive or error-prone. When \mathbf{x}_0 is far from \mathbf{x}^* , then Gradient Descent is the fastest algorithm and most desirable if the dimensionality is reasonable. Conjugate Gradient is best for solving large quadratic linear systems when $f = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} \mathbf{b}^{\mathsf{T}}\mathbf{x} + c$ and \mathbf{Q} is symmetric, positive definite, and sparse.
- (iv). Newton and its derivatives becomes prohibitively expensive when the dimension of the problem is large or when \mathbf{x}_0 starts very far away from \mathbf{x}^* . BFGS fails under similar criteria. Conjugate Gradient loses its appeal when the number of nonzero entries m of \mathbf{Q} becomes very large, since its temporal and spatial complexity $\mathcal{O}\left(m\right)$ is often contrasted with Newton's single-iteration complexity $\mathcal{O}\left(n^3\right)$.

Exercise 9.4.

Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x}$, where $\mathbf{Q} \in M_{m \times n}(\mathbb{R})$ satisfies $\mathbf{Q} > 0$ and $\mathbf{b} \in \mathbb{R}^n$. Show that the Method of Steepest Descent (that is, gradient descent with optimal line search), converges in one step (that is, $\mathbf{x}_1 = \mathbf{Q}^{-1}\mathbf{b}$), if and only if \mathbf{x}_0 is chosen such that $\mathbf{D}f(\mathbf{x}_0)^\mathsf{T} = \mathbf{Q}\mathbf{x}_0 - \mathbf{b}$ is an eigenvector of \mathbf{Q} (and α_0 satisfies (9.2)).

Solution. For $\mathbf{D} f(\mathbf{x}_0)^\mathsf{T} = \mathbf{Q} \mathbf{x}_0 - \mathbf{b}$ with corresponding eigenvalue $\lambda_{\mathbf{Q}}$, we have

$$\mathbf{x}_{1} = \mathbf{x}_{0} - \frac{\mathbf{D}f(\mathbf{x})^{\mathsf{T}}\mathbf{D}f(\mathbf{x})}{\mathbf{D}f(\mathbf{x})^{\mathsf{T}}\mathbf{Q}\mathbf{D}f(\mathbf{x})}\mathbf{D}f(\mathbf{x})$$

$$= \mathbf{x}_{0} - \frac{\mathbf{D}f(\mathbf{x})^{\mathsf{T}}\mathbf{D}f(\mathbf{x})}{\mathbf{D}f(\mathbf{x})^{\mathsf{T}}\lambda_{\mathbf{Q}}\mathbf{D}f(\mathbf{x})}\mathbf{D}f(\mathbf{x})$$

$$= \mathbf{x}_{0} - \frac{1}{\lambda}\mathbf{D}f(\mathbf{x})$$

$$= \mathbf{x}_{0} - \mathbf{Q}^{-1}\mathbf{D}f(\mathbf{x})$$

$$= \mathbf{x}_{0} - \mathbf{Q}^{-1}(\mathbf{Q}\mathbf{x}_{0} - \mathbf{b})$$

$$= \mathbf{Q}^{-1}\mathbf{b}.$$

Exercise 9.5.

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^1 . Let $\{\mathbf{x}_k\}_{k=0}^{\infty}$ be defined by the Method of Steepest Descent. Show that if $\mathbf{x}_{k+1} - \mathbf{x}_k$ is orthogonal to $\mathbf{x}_{k+2} - \mathbf{x}_{k+1}$ for each k.

Solution. We have

$$\frac{\mathrm{d}f\left(\mathbf{x}_{k+1}\right)}{\mathrm{d}\alpha_{k}} = \mathbf{D}f\left(\mathbf{x}_{k+1}\right)^{\mathsf{T}}\mathbf{D}f\left(\mathbf{x}_{k}\right)$$
$$= 0.$$

and since $f\left(\mathbf{x}_{k+1}\right)\coloneqq f\left(\mathbf{x}_{k}+\alpha_{k}\mathbf{D}f\left(\mathbf{x}_{k}\right)^{\mathsf{T}}\right)$, we have that

$$\mathbf{x}_{k+1} - \mathbf{x}_k = -\alpha_k \mathbf{D} f\left(\mathbf{x}_k\right)^\mathsf{T}$$
,

where $\mathbf{x}_{k+1} - \mathbf{x}_k$ and $\mathbf{x}_{k+2} - \mathbf{x}_{k+1}$ are orthogonal by assumption.

Exercise 9.6.

Write a Python/NumPy routine for implementing the steepest descent method for quadratic functions (see Example 9.2.3).

Given a small number ε , given Numpy arrays \mathbf{x}_0, \mathbf{b} of length n, and given an $n \times n$ matrix $\mathbf{Q} > 0$, your code should return a close approximation to a local minimizer \mathbf{x}^* of $f = \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x} - \mathbf{b}^\mathsf{T} \mathbf{x} + c$.

For the stopping criterion, use the condition $\|\mathbf{D}f(\mathbf{x}_k)\|$ for some small value of ε .

Solution.

```
import numpy as np
import matplotlib.pyplot as plt

def p9_6(Q,b,x_0,epsilon=1e-8,K=500):
    """
    Steepest Descent.
    """
```

```
norm,k=1,1
while (k<K) and (norm>epsilon): # stopping criteria

# calculate Df
Df = Q @ x_0 - b
norm = np.linalg.norm(Df)
alpha = Df Df.T @ Df / (Df.T @ Q @ Df)

# update x sequence
x_1 = x_0 - alpha * Df
x_0 = x_1

if k<K: print("Converged!")

print("\nx_0:\n",x_0)</pre>
```

Exercise 9.7.

Write a simple Python/NumPy method for computing $\mathbf{D}f$ using forward differences and a step size of $\sqrt{\mathrm{Rerr}_f}$. It should accept a callable function $f:\mathbb{R}^n\to\mathbb{R}$, a point $\mathbf{x}\in\mathbb{R}^n$, and an estimate $\mathrm{Rerr}_f>\varepsilon$ for the maximum relative error of f near \mathbf{x} . It should return an estimate for $\mathbf{D}f(\mathbf{x})$.

Solution.

```
def p9_7(f,x_0,rerr):
    """
    Computing Df with forward differences.
    """

# set dims
    m,n = f(x_0).shape[0],x_0.shape[0]
    if len(m)==0: m=1

    Df = np.zeros((m,n)) # initialize
    h = 2*np.sqrt(rerr)

for i in range(n):
    unit_vec = np.zeros(n)
    unit_vec[i] = 1
    Df[:,i] = (f(x_0+h*unit_vec)-f(x_0)) / h

    return Df
```

Page 4/9

Exercise 9.8.

Use your differentiation method from the previous problem to construct a simple Python/NumPy method for implementing the steepest descent method for arbitrary functions, using the secant method (Exercise 6.15) for the line search.

Your method should accept a callable function f, a starting value \mathbf{x}_0 , a small number ε , a NumPy array \mathbf{x}_0 of length n, and return a close approximation to a local minimizer \mathbf{x}^* of f.

For the stopping criterion, use the condition $\|\mathbf{D}f(\mathbf{x}_k)\|$.

Solution.

```
import matplotlib.pyplot as plt
import numpy as np from scipy
import linalg as la
# Globals
MAX_IT = 10_000
RERR = 1+1e-10
\# X = np.linspace(-10,10,1_000)
TOL = 1e-10
STARTING_VALS = [1,.5]
def Df(f,x,rerr):
  Df=np.zeros(len(x))
  for i in range(len(x)):
     Df[i] =
         ((-3*f(x)+4*f(x+2*np.sqrt(rerr)*np.eye(len(x))[:,i])-f(x+4*np.sqrt(rerr)*np.eye(len(x))[:,i]))/
        (4*np.sqrt(rerr)))
  return Df
def secant_method(x_0, x_1, ep, f): f_pr = p9_7(f,x_0,RERR)
  k = 0
  x_k = x_0
  x_kp1 = x_1
  while k < MAX_IT:</pre>
     x_km1 = x_k
     x_k = x_{p1}
     x_kp1 = x_k - f_pr(x_k) * (x_k - x_km1)/(f_pr(x_k) - f_pr(x_km1))
         plt.plot(X, f(X), "b--")
#
        plt.plot(x_k, f(x_k), "ko")
        plt.show()
  if la.norm(x_kp1 - x_k) < ep * la.norm(x_k):
     break
  return x_k
def steepest_descent(f,x_vec,ep):
  x_k, k = x_vec, 1
  norm = 1 + ep
  while (k<MAX_IT) and (norm>ep)
     Df_k=Df(f,x_k,ep)
     f_a = lambda x: Df(f,x_k-x_vec*Df_k.T,ep) @ -Df_k.T
     alph = secant_method(STARTING_VALS[0],STARTING_VALS[1],ep,f_a)
     x_kp1 = x_k - alph*Df_k
     norm = la.norm(Df_k)
     x_k = x_{p1}
     k+=1
```

return x_k

Exercise 9.9.

Apply your code from the previous problem to the Rosenbrock function

$$f(x,y) = 100 (y - x^2)^2 + (1 - x)^2$$

with an initial guess of $(x_0, y_0) = (-2, 2)$.

Solution.

```
def F(x_vec):
    """ rosenbrock function """
    return 100*(x_vec[1]-x_vec[0]**2)**2+(1-x_vec[0])**2
def p9_9():
    x_s = steepest_descent(F,np.array([-2,2]),TOL)
    print("optimum at",x_s,"with value of",F(x_s))
```

The optimum I found through the function I wrote above was at $\mathbf{x}^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ with value 0.

Exercise 9.10.

Consider the quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x}$, where $\mathbf{Q} \in \mathrm{M}_n\left(\mathbb{R}\right)$ is symmetric and positive definite and $\mathbf{b} \in \mathbb{R}^n$. Show that for any initial guess $\mathbf{x}_0 \in \mathbb{R}^n$, one iteration of Newton's method lands at the unique minimizer of f.

Solution. We know that the FOC is that $\mathbf{D}f = 0$, so since $\mathbf{D}f = \mathbf{Q}\mathbf{x} - \mathbf{b}$ and $\mathbf{D}^2 f = \mathbf{Q}$, then we know that for any \mathbf{x}_0 , we have

$$\begin{aligned} \mathbf{x}_1 &= & \mathbf{x}_0 - \mathbf{Q}^{-1} \mathbf{D} f\left(\mathbf{x}_0\right) \\ &= & \mathbf{x}_0 - \mathbf{Q}^{-1} \left(\mathbf{Q} \mathbf{x}_0 - \mathbf{b}\right) \\ &= & \mathbf{Q}^{-1} \mathbf{b}, \end{aligned}$$

so x_1 must optimize f.

Exercise 9.12.

Prove that if $\mathbf{A} \in \mathrm{M}_n\left(\mathbb{F}\right)$ has eigenvalues $\lambda_1, \ldots, \lambda_n$ and $\mathbf{B} = \mathbf{A} + \mu \mathbf{I}$, then the eigenvectors of \mathbf{A} and \mathbf{B} are the same, and the eigenvalues of \mathbf{B} are $\mu + \lambda_1, \mu + \lambda_2, \ldots, \mu + \lambda_n$.

Solution. Note that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x},$$

where $\mathbf{A} = \mathbf{B} - \mu \mathbf{I}$ so we have

$$\mathbf{B}\mathbf{x} = (\lambda + \mu)\mathbf{x}$$

through some algebra.

Exercise 9.15.

Prove the Sherman-Morrison-Woodbury formula (9.13).

(9.13). Let ${\bf A}$ be a nonsingular $n \times n$ matrix, ${\bf B}$ an $n \times \ell$ matrix, ${\bf C}$ a nonsingular $\ell \times \ell$ matrix, and ${\bf D}$ an $\ell \times n$ matrix. We have

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$
 (9.13)

Solution. Left-multiply the RHS by the LHS, and we get the identity:

$$\begin{split} & \left(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D}\right) \left(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{C}\right)^{-1}\mathbf{D}\mathbf{A}^{-1}\right) \\ = & \mathbf{I} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \left(\mathbf{B} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right) \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{I} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B}\mathbf{C} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right) \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{I} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{I}. \end{split}$$

Exercise 9.16.

Use (9.13) to derive (9.14).

$$\mathbf{A}_{k}^{-1} = \mathbf{A}_{k-1}^{-1} + \frac{\left(\mathbf{s}_{k-1} - \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}\right) \mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1}}{\mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}}.$$
(9.14)

Solution. We start with the Broyden's Method updating criteria

$$\mathbf{A}_{k+1} = \mathbf{A}_k + rac{\mathbf{y}_k - \mathbf{A}_k \mathbf{s}_k}{\left\|\mathbf{s}_k
ight\|^2} \mathbf{s}_k^\mathsf{T}$$

and recognize the following matrices:

$$\mathbf{A}_{k+1} = \underbrace{\mathbf{A}_{k}}_{n \times n} + \underbrace{\frac{\mathbf{y}_{k}}{\mathbf{y}_{k}} - \mathbf{A}_{k}}_{(*)} \mathbf{s}_{k}^{*}}_{(*)} \cdot \underbrace{\mathbf{1}}_{\mathbf{C}} \cdot \underbrace{\mathbf{s}_{k}^{\mathsf{T}}}_{\mathbf{D}}.$$

From here, we apply the Sherman-Morrison-Woodbury formula,

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

to equation (*) to yield

$$\mathbf{A}_{k}^{-1} = \mathbf{A}_{k-1}^{-1} + \frac{\left(\mathbf{s}_{k-1} - \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}\right) \mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1}}{\mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}}$$
,

which is of the form (9.14).

Exercise 9.18.

Let $\mathbf{Q} \in \mathcal{M}_n\left(\mathbb{R}\right)$ satisfy $\mathbf{Q} > 0$, and let f be the quadratic function $f\left(\mathbf{x}\right) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x} + c$. Given a starting point \mathbf{x}_0 and \mathbf{Q} -conjugate directions $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}$ in \mathbb{R}^n , show that the optimal line search solution for $\mathbf{x}_{k-1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$ (that is, the α which minimizes $\phi_k(\alpha) = f\left(\mathbf{x}_k + \alpha_k \mathbf{d}_k\right)$) is given by $\alpha_k = \frac{\mathbf{r}_k^\mathsf{T}\mathbf{d}_k}{\mathbf{d}_k^\mathsf{T}\mathbf{Q}\mathbf{d}_k}$, where $\mathbf{r}_k = \mathbf{b} - \mathbf{Q}\mathbf{x}_k$.

Solution. For $\mathbf{Q} > 0$, we have that $\mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k > 0$ by definition, so we can find a minimizer α_k of ϕ_k (α_k) for ϕ_k (α_k) defined as follows.

$$\phi_k (\alpha_k) = f(\mathbf{x}_k + \alpha_k \mathbf{d}_k)$$

$$= \frac{1}{2} \mathbf{x}_k^\mathsf{T} \mathbf{Q} \mathbf{x}_k + \alpha_k \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{x}_k$$

$$+ \frac{1}{2} \alpha_k^2 \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k - \mathbf{x}_k^\mathsf{T} \mathbf{b} - \alpha_k \mathbf{d}_k^\mathsf{T} \mathbf{b}.$$

Taking FOCs,

$$0 = \frac{\partial \phi_k (\alpha_k)}{\partial \alpha_k}$$
$$= \alpha_k \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k - \mathbf{d}_k^\mathsf{T} \mathbf{b} + \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{x}_k$$

SO

$$\alpha_k \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k = \mathbf{d}_k^\mathsf{T} \mathbf{b} + \mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{x}_k$$
$$= \mathbf{d}_k^\mathsf{T} (\mathbf{b} - \mathbf{Q} \mathbf{x}_k)$$
$$= \mathbf{d}_k^\mathsf{T} \mathbf{r}_k,$$

SO

$$\alpha_k = \mathbf{d}_k^\mathsf{T} \mathbf{r}_k \left(\mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k \right)^{-1}.$$

Exercise 9.20.

Prove Lemma 9.5.5.

Lemma 9.5.5. In the Conjugate Gradient Algorithm, $\mathbf{r}_i^\mathsf{T} \mathbf{r}_k = 0$ for all i < k.

Solution. Let $\mathcal{B}_i = \{\mathbf{b} - \mathbf{Q}\mathbf{x}_k\}_{k=0}^{i-1}$ be our basis. Then, through Gram-Schmidt, we would have

$$\mathbf{r}_k = \mathbf{b} - \mathbf{Q}\mathbf{x}_k - \sum_{i=0}^{k-1} rac{\langle \mathbf{r}_i, \mathbf{b} - \mathbf{Q}\mathbf{x}_k
angle}{\left\| \mathbf{r}_i
ight\|^2} \mathbf{r}_i;$$

here we see that each \mathbf{r}_i is a linear combination of some elements in $\{\mathbf{b} - \mathbf{Q}\mathbf{x}_k\}_{k=0}^{i-1}$, so then it follows that $\mathcal{B}_i = \mathrm{span}\left(\{\mathbf{r}_k\}_{k=0}^{i-1}\right)$. So, our conjugate gradient problem becomes

$$\min_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{B}_i} f\left(\mathbf{x}
ight)$$
 ,

where $\mathbf{x}^* = \mathbf{x}_i$, so we have that h = 0 minimizes

$$\min_{h} f\left(\mathbf{x}_{i} + h\left(\mathbf{b} - \mathbf{Q}\mathbf{x}_{j}\right)\right)$$

for all i>j. So, our FOC is

$$0 = \mathbf{D} f(\mathbf{x}_i) (\mathbf{b} - \mathbf{Q} \mathbf{x}_j)$$
$$= (\mathbf{Q} \mathbf{x}_i - \mathbf{b})^{\mathsf{T}} (\mathbf{b} - \mathbf{Q} \mathbf{x}_j)$$
$$= -(\mathbf{b} - \mathbf{Q} \mathbf{x}_i)^{\mathsf{T}} (\mathbf{b} - \mathbf{Q} \mathbf{x}_j).$$