Dirk Pattinson Jinbo Huang

Theory of Computation

Questions marked (S) are self-test questions with solutions provided at

http://infolab.stanford.edu/~ullman/ialcsols/sols.html

Questions marked (A) are assignment questions.

Exercise 1 **(S) Use of Pumping Lemma**

(Exercise 4.1.2a) Prove that the following is not a regular language: $\{0^n \mid n \text{ is a perfect square}\}$.

Exercise 2 **Use of Pumping Lemma** (A)

(Exercise 4.1.2e-h) Prove that the following are not regular languages.

- 1. The set of strings of 0's and 1's that are of the form ww, that is, some string repeated.
- 2. The set of strings of 0's and 1's that are of the form ww^R , that is, some string followed by its reverse.
- 3. The set of strings of 0's and 1's of the form $w\overline{w}$, where \overline{w} is formed from w by replacing all 0's by 1's, and vice versa; e.g., $\overline{011} = 100$, and 011100 is an example of a string in the language.
- 4. The set of strings of the form $w1^n$, where w is a string of 0's and 1's of length n.

Exercise 3 **Closure Properties (S)**

(Exercise 4.2.2) If L is a language, and a is a symbol, then L/a, the quotient of L and a, is the set of strings w such that wa is in L. For example, if $L = \{a, aab, baa\}$, then $L/a = \{\epsilon, ba\}$. Prove that if L is regular, so is L/a. Hint: Start with a DFA for L and consider the set of accepting states.

Exercise 4 **Closure Properties (S)**

(Exercise 4.2.8) Let L be a language. Define half(L) to be the set of first halves of strings in L, that is, $\{w \mid \text{ for some } x \}$ such that |x| = |w|, we have wx in L. For example, if $L = \{\epsilon, 0010, 011, 010110\}$ then $half(L) = \{\epsilon, 00, 010\}$. Notice that odd-length strings do not contribute to half(L). Prove that if L is a regular language, so is half(L).

Exercise 5 **Closure Properties** (A)

(Exercise 4.2.6) Show that the regular languages are closed under the following operations. Hint: Start with a DFA for Land perform a construction to get the desired language.

- 1. $min(L) = \{w \mid w \in L, \text{ but no proper prefix of } w \in L\}$
- 2. $max(L) = \{w \mid w \in L, wx \notin L \text{ for any nonempty } x\}$
- 3. $init(L) = \{w \mid wx \in L \text{ for some } x\}$

Exercise 6 **Decision Properties (S)**

(Exercise 4.3.1) Give an algorithm to tell whether a regular language L is infinite. Hint: Use the pumping lemma to show that if the language contains any string whose length is above a certain lower limit, then the language must be infinite.

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	E	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	$\mid E \mid$

(Exercise 4.4.2) The above is the transition table of a DFA (with "*" marking accepting states).

- 1. Draw the table of distinguishabilities for this automaton.
- 2. Construct the minimum-state equivalent DFA.