3-Coloration de graphes

K. Chai, M. Lacote, D. Lesnoff, I. Martayan, C. Zeng

Ecole d'été de mathématique et d'informatique

30 août 2019

Mathinfoly

- Introduction
 - Présentation du problème
- Pormalisation
 - Formalisation en logique du premier ordre
- Modèle pour SAT-Solver
 - Variables et clauses
- 4 Fonctionnement du programme
 - Structure du projet
 - Type de données et algorithmes
 - Performances
- 6 Résultats
 - Résultats du programme
 - Conclusion et autres applications

Définitions

Définition

Un graphe est la donnée d'un couple (V, E) composé de :

- V d'un ensemble de sommets ou noeuds;
- $E \subseteq \{\{x,y\} | (x,y) \in V^2 \land x \neq y\}$, d'un ensemble d'arêtes, qui sont des paires de sommets.

Un graphe orienté possède des arêtes ayant une orientation.

Figure 1 – Un graphe avec |V| = 4 et |E| = 3

k-coloration

Problème de k-coloration

Etant donné un graphe non orienté G=(V,E), et un entier $k\geq 1$, existe-t-il une *coloration* $c:V\rightarrow \{1,2,\cdots,k\}$ telle que : $\forall \{u,v\}\in E, c(u)\neq c(v)$?

On se place dans le cas k = 3.

Figure 2 – Exemple de graphe à colorer

3-coloration : exemples

Figure 3 – 3-coloriage avec |V| = 4 et |E| = 4

Figure 4 – 3-coloriage impossible avec |V| = 4 et |E| = 6

Notations

Un graphe non orienté G = (V, E):

- n := |V| le nombre de noeuds;
- p := |E| le nombre d'arêtes;

Signature

Nous considérons la signature $\Sigma = \{e^{r2}, e^{r2}, n^{f0}, p^{f0}\}$ ayant la sémantique suivante :

- e(x, y) : x est voisin de y;
- c(x,j): x a la couleur j.

Contraintes

Tout sommet du graphe est coloré;

Expressions en logique du premier ordre

1
$$\forall x \in [1, n], \exists j \in [1, k], c(x, j);$$

Contraintes

- Tout sommet du graphe est coloré;
- Tout sommet possède au plus une couleur;

Expressions en logique du premier ordre

- **1** $\forall x \in [1, n], \exists j \in [1, k], c(x, j);$

Contraintes

- Tout sommet du graphe est coloré;
- 2 Tout sommet possède au plus une couleur;
- 3 Deux sommets voisins ont des couleurs différentes.

Expressions en logique du premier ordre

- **1** $\forall x \in [1, n], \exists j \in [1, k], c(x, j);$
- **3** $\forall x, y \in [n], \forall i \in [1, k], \neg(e(x, y) \land (c(x, i) \land c(y, i)).$

Format et variables

Fichier d'entrée

- n et p sur la première ligne
- p lignes décrivant les paires de sommets reliées par une arête

Variables

• 3n variables $x_{(i-1)n+(j-1)}$ où $i \in [1, n]$, $j \in [1, 3]$

Nombre de clauses

• 27n + 3p clauses

Fonctionnement du programme

Programme OCaml

- Lecture du fichier d'entrée
- Génération de la forme normale conjonctive

Fonctionnement du programme

Programme OCaml

- Lecture du fichier d'entrée
- Génération de la forme normale conjonctive

Programme Python

- Appel du programme OCaml
- Appel du SAT solveur
- Affichage du graphe à partir de la solution

Type de données et algorithmes

```
type formule =
|Var of int
|Non of formule
|Et of formule * formule
|Ou of formule * formule;;
```

- Traduction récursive en forme normale conjonctive
- Réécriture avec des fonctions récursives terminales
- Généralisation pour le problème de k-coloration

Amélioration du modèle

Figure 5 – Temps d'exécution en fonction de *n*

Amélioration du modèle

Figure 6 - Temps d'exécution en fonction de np

Limites du modèle

Figure 7 – Temps d'exécution en fonction de *n*

Limites du modèle

Figure 8 - Temps d'exécution en fonction de np

Résultats du programme

Figure 9 – Une solution pour n = 5 et p = 8

Conclusion et autre application

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Figure 10 – Une grille de sudoku

- 9 couleurs
- 81 sommets
- lignes, colonnes et blocs reliés

Bibliographie I

P. Lafourcade.

Cours de logique.

Ecole d'été de mathématique et d'informatique - Mathinfoly, 2019.

D. Babic.

Satisfiability Suggested Format.

Domagoj-Babic-Website, 1993.

Wikipedia

Boolean satisfiability problem.

Wikipedia page, 2019.

