FERTILIZERS RECOMMENDATION SYSTEM FOR DISEASE PREDICTION TEAM ID PNT2022TMID33888

NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READLINESS FOR INNOVATION EMPLOYNMENT AND ENTERPRENEURSHIP

A PROJECT REPORT SUBMITTED BY

JANANI M 950819106020 RESHMI FIONA T 950819106060 VANITHA S 950819106102 VIJAY S 950819106105

BACHELOR OF ENGINERING IN ELECTRONICS AND COMMUNICATION
ENGINEERING
GOVERNMENT COLLEGE OF ENGINEERING -TIRUNELVELI-627007

INDEX

- 1.INTRODUCTION
- 1.1 Project overview
- 1.2 Purpose

2.LITERATURE SURVEY

- 2.1 Exiting problem
- 2.2 Reference
- 2.3 Problem Statement Definition

3.IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstormi
- 3.3 Prposed Solution
- 3.4 Problem Solution fit

4.REQULRMENT ANALYSIS

- 4.1 Functional Requirmements
- 4.2 NON -Functional requirements
- 5 .PROJECT DESIGN
- 5.1 Data Flow Diagram
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6 .PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports From JIRA
- 7 .CODING & SOLUTIONING (Explain the features added in the project along with code)
- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schem(if Applicable)
- 8.TESTING
- 8.1 Test Cases
- 8.2 User Acceptance Testing
- 9 .RESULTS
- 9.1 Performance Metrics

10 .ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12.FUTURE SCOPE

13.APPENDIX
Source code
GitHub & Project Demo Link

INTRODUCTION

1.1 PROJECT OVERVIEW

 Fertilizer Recommentation system for disease Prediction is a simple ML and DL based website which recommends the best crop to grow, fertilizers to use and the diseases caught by your crops.

1.2 PURPOSE

The purpose of this model is to predict the plant diseases and recommend the appropriate solution for it.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

Abstract: Agriculture is the main aspect of country development. Plant disease on leaves is one of the major factors of reductions in both quality and quantity of the food crops. Finding the leaf disease is an important role of agriculture preservation. After preprocessing using a median filter, segmentation is done by Guided Active Contour method and finally, the leaf disease is identified by using Support Vector Machine. The disease-based similarity measure is used for fertilizer recommendation. INTRODUCTION: Detection and recognition of plant diseases using machine learning are very efficient in providing symptoms of identifying diseases at its earliest. Plant pathologists can analyze the digital images using digital image processing for diagnosis of plant diseases. Different symptoms and diseases of leaves are predicted by different methods in image processing. These different methods include different fundamental processes • segmentation • feature extraction • classification Mostly, the prediction and diagnosis of leaf diseases are dependent on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves. MATERIAL AND METHODS: A digital camera or similar devices are used to take images of different types, and then those are used to identify the affected area in leaves. Image Classification Steps: ● Image acquisition: To get the image of a leaf to evaluate in the direction of a class. • Preprocessing: The purpose of image

preprocessing is improving image statistics. The preprocessing receives an image as input and generates an output image as a grayscale, an invert and a smoothed one. • Segmentation: Implements Guided active contour method. Unconstrained active contours applied to the difficult natural images. Dealing with unsatisfying contours, which would try and make their way through every possible grab cut in the border of the leaf. • Disease Prediction: Leaves are affected by bacteria, fungi, virus, and other insects. Support Vector Machine (SVM) algorithm classifies the leaf image as normal or affected based on leaf features such as color, shape, textures. Then a hyperplane was constructed to categorize the pre-processed leaves and also implement a multiclass classifier, to predict diseases in leaf image with improved accuracy. • Fertilizer Recommendation: Recommend the fertilizer for affected leaves based on severity level. Fertilizers may be organic or inorganic. Admin can store the fertilizers based on disease categorization with severity levels. The measurements of fertilizers suggested based on disease severity.

2.2 REFERENCE

- 1.Fertilizers Recommendation System For Disease Prediction In Tree Leave R. Neela, P. Nithya
- 2.Plant Disease Detection and Fertilizer Suggestion Authors: Apurva Save, Aksham Gupta, Sarthak Pruthi, Divyanjana Nikam, Prof. Dr. Shilpa Paygude
- 3.Soil Based Fertilizer Recommendation System for Crop Disease Prediction System Dr.P. Pandi Selvi, P. Poornima
- 4.A Recommended System for Crop Disease Detection and Yield Prediction Using Machine Learning Approach Pooja Akulwar
- 5. CNN based Leaf Disease Identification and Remedy Recommendation System V Suma, R Amog Shetty, Rishab F Tated, Sanku Rohan, Triveni S Pujar 6.KRISHI RAKSHAN A Machine Learning based New Recommendation System to the Farmer D. N. V. S. L. S. Indira; M. Sobhana; A. H. L. Swaroop; V Phani Kumar
- 7. Recommendation System for Agriculture Using Machine Learning and Deep Learning K. SuriyaKrishnaan, L. Charan Kumar & R. Vignesh
- 8.Plant Disease Detection and Crop Recommendation Using CNN and Machine Learning Raj Kumar, Neha Shukla

2.3 PROBLEM STATEMENT DEFINATION

• In India, The Agriculture industry is extremely vital and crucial for economic and social development and jobs. In India, the agricultural sector provides a living for almost 48% of the population. As per the 2019-2020 economic survey, an Indian farmer's median wage in 16 states is Rupees 2500. Most of the Indian population depends on agriculture for their livelihood. Agriculture gives an opportunity of employment to the village people to develop a country like India on large scale and

give a push in the economic sector. The majority of farmers face the problem of planting an inappropriate crop for their land based on a conventional or non-scientific approach. This is a challenging task for a country like India, where agriculture feeds approximately 42% of the population. And the outcomes for the farmer of choosing the wrong crop for land is moving towards metro city for livelihoods, suicide, quitting the agriculture and give land on lease to industrialist or use for the non-agriculture purpose. The outcome of wrong crop selection is less yield and less profit.

IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem statement (problem	To detect the diseases in the
	to be solved)	plants at the early stages
		caused due to several pests
		and micro organisms and
		recommand fertilizers to
		prevent the crops from
		destruction
2	Idea /solution description	Categorizing the dieases of
		plant based on the pest.
		Dataset and images of the
		plant disease are compared
		with a existing images using
		CNN algorthim.
3	novelty / uniqueness	Automatic detection of
		plant diseases using deep
		learning models.
4	Social Impact / Customer	useful for farmers of detect
	Satisfaction	the exact diseases of plants
		at the early stages and taking
		steps to treat the plants
		based on theri diseases.
5	Bussiness Model (Revenue	web application should be
	model)	accessed by almost all
		farmers all over the

		world.Web application should
		be at low cost.
6.	Scalability of the solution	ased on the previous dataset
		the model can guess new
		diseases.

3.4 PROBLEM SOLUTION

REQULREMENT ANALYSIS FUNCTIONAL REQUIREMENTS

FR NO.	FUNCTIONAL SUB REUIREMENT (STO		
	REQUIREMENT(EPIC)	SUB-TASK)	
FR-1	User Registration	Registration through Form	
FR-2	User Confirmation	Confirmation via Email	
FR-3	User Profile	Filling the profile after logging	
		in	
FR-4	Uploading	The uploding images of the	

		leaves are compared with the
		model that is pre-define and
		the solution is generated.
FR-5	Downloading the solution	The solution is downloaded in
		the pdf format which
		contains the recommended
		fertilizers and the possible
		diseases of the diseasedplant

4.2 NON-FUNCTIONAL REQUIREMENTS

FR NO	NON-FUNCTIONAL	DESCRIPTION
	REQUIREMENT	
NFR-1	Usability	The user could perform tasks
		very easily, efficiently and
		effectively .They could use
		this application in a user
		friendly manner
NFR-2	Security	All the data inside the system
		or the part will be protected
		against malware attaks or
		unauthorized accesas.
NFR-3	Reliability	The failure in the application
		cannot be recovered easily.
NFR-4	Performance	The processing time and the
		response is faster.
NFR-5	Availability	The system will be available
		all the time when the user
		needs to get the solution for
		their problem.
NFR-6	Scalability	The web application which is
		used in the detection of
		diseases is scalable.

PROJECT DESIGN 5.1 DATA FLOW DIAGRAM

Data Flow Diagram:

USER STORIES

OOLIVOTORIL	<u> </u>					
	FUNCTION	USER	USER	ACCEPTAN	PRIORITY	RELEASE
	AL	STORY	STORY	UE		
	REQUIREM	NI=UMBER	/TASK	CRITERIA		
USER TYPE	ENT(EPIC)					
Customer(Registrati	USN-1	As a user ,i	I can	high	sprint-1
mobile	on		can	access my		
user)			register for	account/de		
			the	shboard		
			application			
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password			

	Login	USN-2	As a user ,lcan log into the application by entering email & password	I can login using my email ID accountors or user credential	High	Sprint-1
	Dashboard	USN-3	As a user, I can view application where I can upload my images and the fertilizer should be recommen ded	I can access my account /deshboard	High	Sprint-2
Customer(web user)	Registrati on	USN-4	As a web user I can login to my web deshboard.	I can register my username and password	High	Sprin-3
	Login	USN-5	As a web user I can login into the website using login credentials	I can login using login credentials	High	Sprin-4
		USN-6	As a user I can view the web application where the images can be uploaded and the fertilizer should be	I can access my deshboard	High	Sprin-4

			of higher			
			accuracy			
	Dashboard	110117	As a user	I can	High	Sprin-4
		USN-7	the	access my		
			fertilizer	deshboard		
			recommen			
			ded to me			
			should be			
			of higher			
			accuracy			
Administrat	Login	USN-8	As a admin	I can login	High	Sprin-5
or			I can login	to the		
			to the	website		
			website	using my		
			using my	login		
			login	credentials		
			credentials			
	Dashboard	USN-9	As a admin	I can	High	Sprin-5
			I can view	access my		
			the	deshboard		
			deshboard			
			of the			
			application			

PRODUCT BACKLOG, SPRINT SCHEDULE, AND ESTU

SPRINT	FUNCTION	USER	USER	STORY	PRIORITY	TEAM MEMBERS
	AL	STORY	STORY /	POINT		
	RQUIREME	NUMBER	TASK	(TOTAL)		
	MT(EPIC)					
Sprint-1	model		creating a	8	High	Reshmi FionA
	creation		model			T,Vijay s,vanitha s,
	and		which can			Janani m.
	training(frui		classify			
	ts)		the			
			diseased			
			fruit plants			
			from the			
			given			

			image e ee			
			image ,a so			
	Model		Creating	2	طمالا	Doohmi FiguraT
	Model		Creating a	2	High	Reshmi FionaT,
	Creation		model			Vijay S, Vanitha S,
	and		which can			Janani M.
	Training		classify the			
	(vegetable		dieased			
	s)		vegetables			
			plants			
			from the			
			given			
			images .			
			also need			
			to test the			
			model an d			
			deploy it			
			On IBM			
			Cloud			
Sprint-2	Model		Creating a	6	High	Reshmi FionaT,
	creation		model			Vijay S, Vanitha S,
	and		which can			Janani M.
	Traning		classify			
	(vegetable		diseased			
	s)		vegetable			
			plants from			
			the given			
			images and			
			train on			
			IBM Cloud.			
	Registrati	USN-1	As a user, I	3	Medium	Reshmi FionaT,
	on		can			Vijay S, Vanitha S,
			register by			Janani M.
			entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password			
			Paccifora			

	Upload	USN-2	As a user, I	4	High	Reshmi FionaT,
	page		will be			Vijay S, Vanitha S,
			redirected			Janani M.
			to a page			
			where I can			
			upload my			
			pictures of			
			crops.			
	Suggestion	USN-3	As a user, I	4	High	Reshmi FionaT,
	results		can view			Vijay S, Vanitha S,
			the results			Janani M.
			and then			
			obtain the			
			suggestio			
			ns provided			
			by the ML			
			Model			
			A base	2	High	Reshmi FionaT,
			Flask web			Vijay S, Vanitha S,
	Base Flask		app must			Janani M.
	App		be created			
			as an			
			interface			
			for the ML			
			model			
Sprint-3	Login	USN-4	As a	2	High	Reshmi FionaT,
			user/admin			Vijay S, Vanitha S,
			/shopkeep			Janani M.
			er, I can log			
			into the			
			application			
			by entering			
			email &			
			password			
	User	USN-5	As a user, I	3	Medium	Reshmi FionaT,
	Dashboard		can view			Vijay S, Vanitha S,
			the			Janani M.
			previous			
			results and			
			history			

	Integration		Integrate Flask, CNN model with Cloudant DB	5	Medium	Reshmi Fiona T, Vijay S, Vanitha S, Janani M
	Containeriz ation		Containeri ze Flask app using Docker	2	Low	Reshmi Fiona T, Vijay S, Vanitha S, Janani M
Sprint-4	Dashboard (Admin)	USN-6	As an admin, I can view other user details and uploads for other purposes		Medium	Reshmi Fiona T, Vijay S, Vanitha S, Janani M
	Dashboard (Shopkeep er)	USN-7	As a shopkeepe r, I can enter fertilizer products and then update the details if any	2	Low	Reshmi Fiona T, Vijay S, Vanitha S, Janani M
	Containeriz ation		Create and deploy Helm charts using Docker Image made before	2	Low	Reshmi Fiona T, Vijay S, Vanitha S, Janani M

Create and deploy Helm charts using Docker Image made before

Sprint	Total Story Points	Duration	Sprint Start	Sprint End	Story	Sprint
			Date	Date	Points	Release
				(Planned)	Completed	Date
					(as on	(Actual)
					Planned	
					End Date)	
Sprint-1	10	6 Days	24 October	29 October	10	30 Oct
			2022	2022		2022
Sprint-2	15		31 October	05	15	06 Nov
			2022	November		2022
				2022		
Sprint-3	15		07	12Novemb	15	13
			November	er 2022		Nov2022
			2022			
Sprint-4	12		14	05	10	20 Nov
			November	November		2022
			2022	2022		

CODING AND SOLUTIONING

App.py

import requests

```
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
import numpy as np
import pandas as pd
import tensorflow as tf
from flask import Flask, redirect,render_template, request,url_for
import os
from werkzeug.utils import secure_filename
from tensorflow.python.keras.backend import set_session
app= Flask(__name__)
model1 = load_model('fruit.h5')
model = load_model('vegetable.h5')
@app.route('/')
def home():
return render_template('homepage.html')
@app.route('/prediction')
def prediction():
return render_template('predict.html')
@app.route('/predict',methods=['GET',POST'])
def upload():
  if request.method =='POST':
    f= request.files['image']
    basepath = os.path.dirname(__file__)
    file_path=os.path.join(basepath, 'uploads',secure_filename(f.filename))
    f.save(file_path)
    print("file save")
    img = image.load_img(filepath, target_size=(128,128))
    x=image.img_to_array(img)
    print("image to gray")
    x=np.expand_dims(x, axis=0)
    plant=request.form['plant']
  if (plant=="fruit"):
   model1.predict_classess(x)
   print(preds)
   df=pd.read_excel('precautions - fruits.xlsx')
   print (df.iloc[preds[0]]['cautions'])
```

```
else:
   preds=model.predict_classes(x)
   df=pd.read_excel("precautions-veg.xlsx")
   print(df.iloc[preds[0]]['caution'])
  return df.iloc[preds[0]]['caution']
if __name__=="__main__":
app.run(debug=True)
HTML PAGES
HOMEPAGE
DOCTYPE html>
<html >
<head>
 <meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title> Plant Disease Prediction</title>
k href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' type='text/css'>
k ref='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'
type='text/css'>
k rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
k ref='https://fonts.googleapis.com/css?family=Merriweather' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Josefin Sans' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<style>
.header {
   top:0;
   margin:0px;
   left: 0px;
   right: 0px;
   position: fixed;
   background-color: #28272c;
   color: white;
```

```
box-shadow: 0px 8px 4px grey;
   overflow: hidden;
   padding-left:20px;
   font-family: 'Josefin Sans';
   font-size: 2vw;
   width: 100%;
   height:8%;
   text-align: center;
  }
  .topnav {
 overflow: hidden;
 background-color: #333;
}
.topnav-right a {
 float: left;
color: #f2f2f2;
 text-align: center;
 padding: 14px 16px;
text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
color: black;
}
.topnav-right a.active {
background-color: #565961;
 color: white;
}
.topnav-right {
float: right;
 padding-right:100px;
}
body {
background-color:#ffffff;
 background-repeat: no-repeat;
```

```
background-size:cover;
 background-position: 0px 0px;
}
 .button {
 background-color: #28272c;
 border: none;
 color: white;
 padding: 15px 32px;
 text-align: center;
 text-decoration: none;
 display: inline-block;
 font-size: 16px;
 border-radius: 12px;
.button:hover {
 box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19);
}
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
 width: 100%;
 padding: 12px 20px;
 display: inline-block;
 margin-bottom:18px;
 border: 1px solid #ccc;
 box-sizing: border-box;
}
button {
 background-color: #28272c;
 color: white;
 padding: 14px 20px;
 margin-bottom:8px;
 border: none;
 cursor: pointer;
 width: 15%;
 border-radius:4px;
}
```

```
button:hover {
opacity: 0.8;
}
.cancelbtn {
width: auto;
padding: 10px 18px;
background-color: #f44336;
}
.imgcontainer {
text-align: center;
 margin: 24px 0 12px 0;
}
img.avatar {
width: 30%;
border-radius: 50%;
}
.container {
 padding: 16px;
}
span.psw {
float: right;
padding-top: 16px;
}
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
 span.psw {
  display: block;
  float: none;
}
 .cancelbtn {
  width: 100%;
}
}
.home{
 margin:80px;
```

```
width: 84%;
 height: 500px;
 padding-top:10px;
 padding-left: 30px;
}
.login{
 margin:80px;
 box-sizing: content-box;
width: 84%;
 height: 420px;
 padding: 30px;
 border: 10px solid blue;
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
}
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
 max-width: 1000px;
 position: relative;
 margin: auto;
/* Caption text */
.text {
color: #f2f2f2;
font-size: 15px;
 padding: 8px 12px;
 position: absolute;
 bottom: 8px;
 width: 100%;
```

```
text-align: center;
}
/* The dots/bullets/indicators */
.dot {
 height: 15px;
width: 15px;
 margin: 0 2px;
 background-color: #bbb;
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
}
.active {
 background-color: #717171;
/* Fading animation *
.fade {
-webkit-animation-name: fade;
-webkit-animation-duration: 1.5s;
 animation-name: fade;
 animation-duration: 1.5s;
}
@-webkit-keyframes fade {
from {opacity: .4}
to {opacity: 1}
}
@keyframes fade {
from {opacity: .4}
to {opacity: 1}
}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
 .text {font-size: 11px}
}
</style>
</head>
```

```
<body style="font-family:'Times New Roman', Times, serif;background-color:#C2C5A8;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white; padding-top:1%">Plant
Disease Prediction</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
  <a href="/Predict" class="button">Predict</button></a>
 </div>
</div>
<div style="background-color:#ffffff;">
<div style="width:60%;float:left;">
<div style="font-size:50px;font-family:Montserrat;padding-left:20px;text-align:center;padding-</p>
top:10%;">
<b>Detect if your plant<br> is infected!!</b></div><br>
<div style="font-size:20px;font-family:Montserrat;padding-left:70px;padding-right:30px;text-</p>
align:justify;">Agriculture was the essential development in the rise of human
civilization, whereby farming of acclimatize species produced food oversupply that enabled people
to reside in cities.
 Plants were independently sophisticated in at least 11 regions of the world. Industrial agriculture
based on large-scale monocropping in the twentieth century came to influence agricultural output,
though
about 2 billion people still depended on maintaining agriculture. The plant diseases effect the
production. Identification of diseases and taking necessary precautions is all done through naked
eye, which requires labour and laboratries. This application helps farmers in detecting the diseases
</div>
</div>
<div style="width:40%;float:right;"><br><br>
<imq src="https://images.pexels.com/photos/35196/water-plant-green-fine-layers.jpg" style="max-</pre>
height:100%;max-width:100%;">
</div>
</div>
<div class="home"
```

<hr>

```
</div>
<script>
var slideIndex = 0;
showSlides();
function showSlides() {
var i;
var slides = document.getElementsByClassName("mySlides");
 var dots = document.getElementsByClassName("dot");
 for (i = 0; i < slides.length; i++) {
  slides[i].style.display = "none";
}
 slideIndex++;
if (slideIndex > slides.length) {slideIndex = 1}
 for (i = 0; i < dots.length; i++) {
  dots[i].className = dots[i].className.replace(" active", "")
}
}
</script>
</body>
</html>
PREDICTION PAGE
!DOCTYPE html>
<html lang="en">
<head>
  <title>predict</title>
</head>
<style>
  .container{
    display: flex;
    padding: 60px 70px 60px 70px;
  }
  .card{
    padding: 70px 80px 70px 80px;
  }
```

```
.menu{
    padding: 10px 10px 10px 10px;
    background-color: black;
    color: white;
    font-size: 15pt;
 }
</style>
<body>
  <div class="menu">
    Plant disease Prediction</div>
  <div class="container">
    <img src="C:\Users\chana\OneDrive\Documents\c\Screenshot 2022-11-09 182944.jpg">
    <div class="card">
    <form>
      <h1>Drop in the image to get the Prediction </h1><br>
      <label><select name="Fruit" id="plant">
        <option value="fruit" id="fruit">Fruit</option>
        <option value="vagitable" id="vig">vegitable</option>
        </select>
      <input id="default-btn" type="file" name=""
onchange="document.getElementById('output').src=window.URL.createObjectURL(this.files[0])"><br>
<br><br><
      <img src="" id="output">
      <br><button id="button" onclick ="display()" >Predict!</button></br>
    </form>
</body>
</html>
```

CONCLUSION:

Thus this system provides solution for the prediction of plant diseases. It is useful for farmers all over the world.