Klasifikasi SVM pada MATLAB

Pendefinisian SVM pada matlab digunakan function templateSVM dengan syntax sebagai berikut:

t = templateSVM() t = templateSVM(Name, Value)

- o Name, Value, merupakan sepasang argumen dimana name adalah argumen dan value adalah nilai yang sesuai dengan name. Penentuan argumen ini dapat dilakukan lebih dari satu pasang dengan tanpa memperhatikan urutan seperti Name, Value, Namel, Valuel ... Namen, Valuen. Berikut beberapa contoh parameter:
 - a. 'KernelFunction' digunakan untuk memilih fungsi kernel pada klasifikasi SVM. Jenis fungsi kernel ditunjukkan pada Tabel

Linear	Kernel jenis ini digunakan secacar default pada data dua kelas
Polynomial	Untuk menentukan order pada polynomial dapat digunakan parameter 'PolynomialOrder'
RBF	Kernel jenis ini digunakan secacar default pada one-class learning

Contoh penulisan: 'KernelFunction','RBF'

b. 'Standardize' digunakan untuk membakukan kelas data. Tipe dala dalam kelas ini berbentuk logical yaitu true(1) dan false(0).

Contoh penulisan:'Standardize',1

Setelah didefinisikan, selanjutnya dilakuakan proses training menggunakan *function* fitcecoc dengan *syntax* sebagai berikut:

```
Mdl = fitcecoc(Tbl,ResponseVarName)
Mdl = fitcecoc(Tbl,formula)
Mdl = fitcecoc(Tbl,Y)
Mdl = fitcecoc(X,Y, Name,Value)
```

- o Tbl, merupakan sampel data untuk melatih model. Tbl ditentukan sebagai tabel. Setiap baris Tbl merupakan data dari satu pengamatan dan tiap kolom merupakan satu dari variabel prediktor. Tbl dapat diberi kolom tambahan yang berisi variabel respons. Pada Tbl tidak diperbolehkan variabel multikolom dan array sel selain array sel vektor karakter. Jika Tbl berisi variabel respons dan semua variabel yang tersisa pada Tbl sebagai variabel prediktor, maka penentuan variabel respons dapat menggunakan ResponseVarName. Jika Tbl berisi variabel respons dan sebagaian variabel yang tersisa pada Tbl sebagai variabel prediktor, maka penentuan variabel respons dapat menggunakan formula. Dan jika Tbl tidak memiliki variabel respons, maka dapat ditentukan dengan variabel Y. Panjang dari variabel respon harus sama dengan jumlah baris.
- o ResponseVarName, merupakan nama variabel respon pada Tbl. Variabel respon harus berupa kategori, vektor logis, array string, vektor logis, vektor numerik, vektor karakter atau skalar string.
- o formula, merupakan model penjelasan respon dan subset dari variabel prediktor, ditentukan sebagai vektor karakter atau skalar string dalam bentuk 'Y~X1+X2+X3'. Dalam bentuk ini Y mewakili variabel respon dan X1, X2, dan X3 mewakili variabel prediktor.
- X, merupakan variable prediktor yang berupa matriks numerik berukuran MxN. Setiap baris X merupakan data dari satu pengamatan dan tiap kolom merupakan satu dari variabel prediktor.

- Y, merupakan label kelas yang ditentukan sebagai vektor numerik, vektor categorical, vektor logic, array string atau arrray sel vektor karakter. Y berukuran Mx1, setiap baris dari Y mewakili label kelas yang dimiliki X.
- o Name, Value, merupakan sepasang argumen dimana name adalah argumen dan value adalah nilai yang sesuai dengan name. Pada klasifikasi SVM digunakan name 'Leaners' dengan value merupakan variabel yang menyimpan pendefinisian SVM

Setelah proses training, selanjutnya dilakuakan proses testing menggunakan *function* predict dengan *syntax* sebagai berikut:

```
SYNTAX

YPred = predict(t,X)
```

- o YPred, merupakan label kelas hasil prediksi
- o t, merupakan variabel pendefinisian SVM
- o X, merupakan data testing

Contoh penggunaan *function* templateSVM pada MATLAB dapat dilakukan menggunakan data peminat SBMPTN program studi sains (matematika, fisika, kimia, biologi) pada tahun 2017 dengan data diperoleh dari web resmi SBMPTN. Data tersebut akan diklasifikasikan menjadi tiga kelas yaitu tinggi, sedang dan rendah. Dimana kelas 1 berarti tinggi, 2 berarti sedang, dan tiga yang berarti rendah. Data tersebut akan ditampilkan pada Tabel

No.	NAMA PTN	MAT	FIS	KIM	BIO	Kelas
1.	Universitas Indonesia	1.083	761	843	1.080	1
2.	Universitas Islam Negeri Jakarta	464	342	404	666	2
3.	Universitas Negeri Jakarta	685	260	452	930	1
4.	Institut Pertanian Bogor	592	388	560	750	1
5.	Universitas Islam Negeri Gunung Djati	423	160	429	613	2
6.	Universitas Padjajaran	1.014	655	1.110	1.338	1
7.	Universitas Pendidikan Indonesia	612	260	695	853	1
8.	Universitas Diponegoro	645	420	656	797	1
9.	Universitas Islam Negeri Walisongo	120	59	102	211	3
10.	Universitas Jenderal Soedirman	743	342	515	1.126	1

11.	Universitas Negeri Semarang	460	249	516	698	2
12.	Universitas Sebelas Maret	594	463	422	843	1
13.	Universitas Gadjah Mada	663	362	716	965	1
14.	Universitas Islam Negeri Kalijaga	228	100	169	289	3
15.	Universitas Negeri Yogyakarta	871	335	913	1.212	1
16.	Institut Teknologi Sepuluh November	612	477	556	524	1
17.	Universitas Airlangga	557	284	400	586	2
18.	Universitas Brawijaya	689	469	571	867	1
19.	Universitas Islam Negeri Malang	336	158	307	646	2
20.	Universitas Islam Negeri Sunan Ampel Surabaya	249	0	0	406	3
21.	Universitas Jember	390	212	397	566	2
22.	Universitas Negeri Surabaya	553	240	472	713	2
23.	Universitas Negeri Malang	759	391	519	804	1

Data akan disimpan dalam microsoft excell dan akan diolah pada MATLAB, pohon keputusan yang dihasilkan dari klasifikasi data peminat SBMPTN program studi sains tahun 2017 diilustrasikan pada Gambar 3. . Berikut *source code* contoh pohon klasifikasi menggunakan algoritma SVM:

```
clc;clear
data = xlsread('datasbmbaru.xlsx')
datatraining = data(1:floor(0.7*length(data)),1:4);
kelastraining = data(1:floor(0.7*length(data)),5);
datatesting = data(floor(0.7*length(data))+1:end,1:4);
kelastesting = data(floor(0.7*length(data))+1:end,5);

a =
templateSVM('Standardize',1,'KernelFunction','polynomial');
traini =
fitcecoc(datatraining,kelastraining,'Learners',a);
hasil = predict(traini,datatesting);
cek = [hasil kelastesting]
```

Jika program diatas dijalankan akan menghasilkan tampilan $command\ window$ seperti pada Gambar .

_						
4	▲ Command	Windo	ow .			
	data =					
	1	.083	761	843	1080	1
		464	342	404	666	2
		685	260	452	930	1
		592	388	560	750	1
		423	160	429	613	2
	1	014	655	1110	1338	1
		612	260	695	853	1
		645	420	656	797	1
		120	59	102	211	3
		743	342	515	1126	1
		460	249	516	698	2
		594	463	422	843	1
		663	362	716	965	1
		228	100	169	289	3
		871	335	913	1212	1
		612	477	556	524	1
		557	284	400	586	2
		689	469	571	867	1
		336	158	307	646	2
		249	0	0	406	3
		390	212	397	566	2
		553	240	472	713	2
		759	391	519	804	1
	cek =					
	2	2				
	1	1				
	2	2				
	3	3				
	2	2				
	2	2				
fx	1	1				

Variabel cek merupakan hasil perbandingan kelas hasil prediksi dengan kelas sebenarnya, kolom pertama merupakan kelas hasil prediksi dan kolom kedua merupakan kelas sebenarnya.

Phyton

```
import numpy as np
     import pandas as pd
from sklearn import datasets
    from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
     from sklearn.model_selection import train_test_split,cross val score
     from sklearn.svm import SVC
     iris = datasets.load iris()
     11
12
     df['species'] = pd.Categorical.from codes(iris.target, iris.target names)
14
    del df['target']
15
    print(df)
16
    x=df.iloc[:,:-1]
18
     y=df.iloc[:,4]
19
    x_train,x_test, y_train, y_test=train_test_split(x,y,test_size=0.30, random_state=100)
20
21
    model = SVC()
    model.fit(x_train, y_train)
    y_pred = model.predict(x_test)
    print("hasil prediksi svm")
    print(y_pred)
    #evaluasi confusion matrix dan evaluasi akurasi python
print("Hasil confusion matrix")
     print(confusion_matrix(y_test,y_pred))
     print("Hasil akurasi pemodelan SVM:",accuracy_score(y_test, y_pred))
```

Penjelasan:

1. *Import library*

```
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.sym import SVC
```

2. Load dataset iris and change dataset

```
#load data
| iris = datasets.load_iris()
| df= pd.DataFrame(data= np.c_[iris['data'], iris['target']],
| columns= iris['feature_names'] + ['target'])
| df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)
| del df['target']
| print(df)
```

Output:

```
sepal length (cm) sepal width (cm)
                                                   petal width (cm)
                                                                         species
                                              . . .
                    5.1
                                        3.5
                                                                 0.2
0
                                                                          setosa
1
                    4.9
                                        3.0
                                                                 0.2
                                                                          setosa
                                              . . .
2
                    4.7
                                        3.2
                                                                 0.2
                                                                          setosa
                                              . . .
3
                    4.6
                                        3.1
                                                                 0.2
                                                                          setosa
4
                    5.0
                                                                 0.2
                                        3.6
                                                                          setosa
                                              . . .
145
                    6.7
                                        3.0
                                                                 2.3 virginica
146
                    6.3
                                        2.5
                                                                 1.9 virginica
147
                    6.5
                                        3.0
                                                                 2.0 virginica
148
                    6.2
                                        3.4
                                                                 2.3 virginica
149
                    5.9
                                        3.0
                                                                 1.8 virginica
[150 rows x 5 columns]
```

3. Separate variables (X) and class instances (Y)

```
#memisahkan label dan parameter
x=df.iloc[:,:-1]
y=df.iloc[:,4]
print("data variabel".center(100,"="))
print(x)
print("data kelas".center(100,"="))
print(y)
```

Output:

```
----data variabel----
    sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                5.1
                               3.5
                                                1.4
                                                                0.2
                4.9
                                                1.4
                                3.0
                                                                0.2
                4.7
                                3.2
                                                1.3
                                                                0.2
                                3.1
                                                1.5
                                                                0.2
                4.6
4
                5.0
                                3.6
                                                1.4
                                                                0.2
145
                                                5.2
                6.7
                                3.0
                                                                2.3
146
                6.3
                                2.5
                                                5.0
                                                                1.9
147
                                                                2.0
                6.5
                                3.0
                                                5.2
148
                6.2
                                3.4
                                                5.4
                                                                2.3
149
                5.9
                                3.0
                                                5.1
                                                                1.8
[150 rows x 4 columns]
0
        setosa
        setosa
        setosa
        setosa
        setosa
145
      virginica
146
      virginica
147
      virginica
      virginica
148
149
      virginica
Name: species, Length: 150, dtype: category
Categories (3, object): ['setosa', 'versicolor', 'virginica']
```

4. Split data, 70 % training and 30 % testing.

```
#pemisahan training dan testing
x_train,x_test, y_train, y_test=train_test_split(x,y,test_size=0.30, random_state=100)
print("data variabel training".center(100,"="))
print(x_train)
print("data kelas training".center(100,"="))
print(x_test)
print("data variabel testing".center(100,"="))
print(y_train)
print("data kelas testing".center(100,"="))
print("data kelas testing".center(100,"="))
```

Output:

Training Data (x train dan y train)

```
======data_variabel training=
     sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                    4.6
                                      3.4
                                                           1.4
                    5.0
                                       3.0
                                                           1.6
                                                                              0.2
21
                                       3.7
                                                           1.5
                                                                              0.4
                                                           4.0
                    5.8
                                       2.6
                                                                              1.2
                                       3.1
                                                           1.5
                                                                              0.1
87
                                       2.3
                    6.3
                                                           4.4
                                                                              1.3
103
                                      2.9
                                                           5.6
                    6.3
                                                                              1.8
67
                    5.8
                                       2.7
                                                           4.1
                                                                              1.0
24
                    4.8
                                                           1.9
                                                                              0.2
                    4.4
                                       2.9
                                                           1.4
                                                                              0.2
[105 rows x 4 columns]
                        -----data kelas training------
           setosa
           setosa
           setosa
92
       versicolor
           setosa
       ...
versicolor
87
        virginica
103
       versicolor
24
           setosa
           setosa
Name: species, Length: 105, dtype: category
Categories (3, object): ['setosa', 'versicolor', 'virginica']
```

Testing Data (x test dan y test)

		======da	ata variabel testing	/==========
			petal length (cm)	
128	6.4		5.6	2.1
11	4.8	3.4	1.6	0.2
118	7.7		6.9	2.3
15	5.7	4.4	1.5	0.4
123	6.3	2.7	4.9	1.8
135	7.7	3.0	6.1	2.3
32	5.2	4.1	1.5	0.1
1	4.9	3.0	1.4	0.2
116	6.5	3.0	5.5	1.8
45	4.8	3.0	1.4	0.3
40	5.0	3.5	1.3	0.3
115	6.4	3.2	5.3	2.3
26	5.0	3.4	1.6	0.4
28	5.2	3.4	1.4	0.2
145	6.7	3.0	5.2	2.3
97	6.2	2.9	4.3	1.3

```
virginica
11
        setosa
118
     virginica
        setosa
123
     virginica
135
     virginica
        setosa
        setosa
116
     virginica
45
        setosa
40
        setosa
115
     virginica
26
        setosa
28
        setosa
145
     virginica
     versicolor
```

5. SVM Modelling

```
#pemodelan svm
model = SVC()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print("hasil prediksi svm")
print(y pred)
```

Output:

```
hasil prediksi svm
['virginica' 'versicolor' 'setosa' 'versicolor' 'setosa' 'versicolor' 'setosa' 'versicolor' 'setosa' 'versicolor' 'setosa' 'versicolor' 'setosa' 'setosa' 'versicolor' 'versicolor' 'setosa' 'setosa' 'setosa' 'versicolor' 'virginica' 'versicolor' 'virginica' 'versicolor' 'virginica' 'versicolor' 'virginica' 'versicolor' 'virginica' 'versicolor' 'virginica' 'versicolor']
```

6. Calculate accuracy using confusion matrix

```
#evaluasi confusion matrix dan evaluasi akurasi python
print("Hasil confusion matrix")
print(confusion_matrix(y_test,y_pred))
print("Hasil akurasi pemodelan SVM:",accuracy_score(y_test, y_pred))
```

Output:

Confusion Matrix

```
Hasil confusion matrix
[[12 0 0]
[ 0 23 0]
[ 0 1 9]]
```

Accuracy

Hasil akurasi pemodelan SVM: 0.977777777777777

Latihan

Kerjakan semua source code diatas

Tugas:

- 1. Kerjakan tugas secara kelompok (Kelompok sama dengan kelompok UTS)
- 2. Perbaiki File program UTS
- 3. Tambahkan SVM dengan phyton
- 4. Buatlah laporan (Format sama seperti UTS)
- 5. File yang dikumpulkan data asli, program phyton, dan laporan
- 6. Penamaan Tugas "Tugas SVM_Kelompok XXX.Zip
- 7. Dikumpulkan paling lambat Sabtu / 15 April 2023 Pukul 23.59 Wib