

Parallel FFTW on RISC-V

A Comparative Study including OpenMP, MPI, and HPX

June 13, 2025

Alexander Strack, Christopher Taylor, and Dirk Pflüger

About Me

- Background in Computational Engineering
- Third-year PhD student in the Scientific Computing department at the University of Stuttgart
- Focused on asynchronous task-based parallelization of numerical algorithms across diverse hardware architectures

Motivation

- The MILK-V Pioneer Box: first practical RISC-V desktop system
- Portability is necessary but performance is critical

Motivation

Architecture	x86-64	RISC-V
CPU	AMD EPYC 7742	SOPHON SG2042
Cores	64	64
Base clock	2.25GHz	2.00GHz
Process	7nm/14nm	12nm
L3 Cache	256MB	64MB
RAM	2TB DDR4	128GB DDR4
SIMD	AVX2	RVV 0.7.1
NUMA domains	4	4
TDP	225W	120W
Release	2019	2023

The Fastest Fourier Transform in the West (FFTW)

- De-facto standard for over 20 year
- Backend for current state-of-the-art libraries
- Performance secret: black magic

The Fastest Fourier Transform in the West (FFTW)

- De-facto standard for over 20 year
- Backend for current state-of-the-art libraries
- Performance secret: black magic
 - Small FFT codelets generated at compile time
 - Combination of codelets for large transforms
 - Planning to find best combination for given system

HPX-FFT

- Leveraging FFTW as backend for 1D FFTs
- Parallelization using the asynchronous many-task runtime HPX
- Origin: tool to evaluate different parallelization approaches with HPX

HPX-FFT

- Leveraging FFTW as backend for 1D FFTs
- Parallelization using the asynchronous many-task runtime HPX
- Origin: tool to evaluate different parallelization approaches with HPX
- Here: performance optimization on x86 and RISC-V, baseline for evaluation of FFTWs parallel plans

Two-dimensional FFT

Strided access

Two-dimensional FFT

Strided access

Data transpose

Parallel FFTW

Threading backends:

- OpenMP and pthreads
- Choose the block size and number of threads in order to minimize the critical path

MPI backend:

- All-to-all collectives
- Slab decomposition
- Compatible with threading backends to run MPI+X

HPX-FFT naive

HPX-FFT opt

HPX-FFT sync

HPX-FFT for_loop

Benchmark

Strong scaling from one to 64 cores:

- Two-dimensional real-to-complex FFT
- No vectorization
- Problem size: 2¹⁴ × 2¹⁴
- Data points: median out of 10 runs
- Errorbars: min/max out of 10 runs

HPX-FFT optimization

HPX-FFT partial (for_loop)

FFTW estimated planning

FFTW measured planning

Conclusion

- Removing synchronization barriers does not guarantee better performance
- Across different backends performance delta between factor four to eight
- Memory bottleneck on SG2042 chip

Outlook

- Distributed FFTW and HPX-FFT
- FFTW with RVV1.0
- Comparison against ARM architecture

Thank You!

Alexander Strack, Christopher Taylor, and Dirk PflügerIPVS

Mail alexander.strack@ipvs.uni-stuttgart.de

Phone +49 711 685 88308

Internet https://www.ipvs.uni-stuttgart.de