Colles semaine 3 : Convergence des suites numériques

1 Études de suites récurrentes

1.1 Généralités

- ▶ Sens de variations Critère $u_{n+1} u_n$ et $\frac{u_{n+1}}{u_n}$ (mais attention aux signes!)
- ▶ Notion de bornes, de limites Formes indéterminées
- ▶ Suites de références Arithmétiques, géométriques, arith-géométriques, leurs limites

1.2 Les 3 critères de convergence

- ▶ Théorème de la limite monotone une suite croissante majorée converge.
- ▶ Théorème d'encadrement (th. des gendarmes). Aussi la version $|u_n \ell| \leq \epsilon_n \to 0$.
- Théorème des suites adjacentes. Exemple d'application à $\sum_{k\geqslant 1}\frac{1}{k^2}$

1.3 Études de suites définies par récurrence

Rappels semaine dernière

- ► Transformation de relations $f(x) \longleftrightarrow x$ en relations $u_{n+1} \longleftrightarrow u_n$ (exemple: « $\forall x, f(x) \leqslant x$ » implique « $\forall n, u_{n+1} \leqslant u_n$ », soit (u_n) décroissante)
- Exploitation de telles relations par récurrence

(exemple: «
$$\forall x, \ 0 \leqslant f(x) \leqslant \frac{x}{2}$$
 » implique « $\forall n, \ 0 \leqslant u_n \leqslant \frac{u_0}{2^n}$ »)

- ▶ Théorème du point fixe Pour (u_n) définie par $u_{n+1} = f(u_n)$, avec f continue, \underline{si} (u_n) converge, c'est vers un point fixe de f: $f(\ell) = \ell$. Étude graphique.
 - Inégalité des accroissements finis

Si on a
$$k > 0$$
 tel que $\forall x \in I$, $|f'(x)| \le k$, alors $\left| \frac{f(b) - f(a)}{b - a} \right| \le k$ $(a, b \in I)$

soit
$$|f(b) - f(a)| \le k |b - a|$$
.

Application aux suites récurrentes

Pour $a = \ell$ (un point fixe : $f(\ell) = \ell$), et $b = u_n$, on a (k comme ci-dessus) $|u_{n+1} - \ell| \le k |u_n - \ell|$. On trouve alors par récurrence : $|u_n - \ell| \le k^n |u_0 - \ell|$.

(on parle de vitesse de convergence géométrique de raison k < 1)

2 Relations o (négligeable devant) et \sim (équivalent à)

(On part toujours des définitions!)

- ▶ Négligeabilité Notation $u_n = o(v_n)$ si $\frac{u_n}{v_n} \longrightarrow 0$.
- ▶ Pour les suites géométriques pour 0 < q < r, on a $q^n = o(r^n)$.
- ▶ Pour les suites puissances pour a < b, on a $n^a = o(n^b)$.
- Exemples d'applications des croissances comparées

$$\forall a > 0, \qquad \ln(n) = o(n^a).$$

$$\forall a \in \mathbb{R}, \quad \forall q > 1, \qquad n^a = o(q^n).$$

$$\forall q \in]0;1[\qquad q^n = o(n^a).$$

- Équivalence Notation $u_n \sim (v_n)$ si $\frac{u_n}{v_n} \longrightarrow 1$.
- ▶ Exemples de recherche de terme prépondérant dans des expressions usuelles et obtention d'équivalents.