

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160302804

FCC REPORT

(WIFI)

Applicant: Plus One Marketing Ltd.

Address of Applicant: Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi,

Minatoku, Tokyo, Japan

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: ÖWN Fun+, FTU161G

Trade mark: ÖWN, Freetel

FCC ID: 2AG5L-FTU161G

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 Mar., 2016

Date of Test: 15 Mar., to 23 Mar., 2016

Date of report issued: 23 Mar., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	23 Mar., 2016	Original

Cavey (hen
Test Engineer Tested by: Date: 23 Mar., 2016

Reviewed by: Date: 23 Mar., 2016

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	G. 014000 Emicolo14	
	6.7. 6.7.		
	• • • • • • • • • • • • • • • • • • • •		
7	TES	ST SETUP PHOTO	67
8	EUT	CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Plus One Marketing Ltd.
Address of Applicant:	Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi, Minatoku, Tokyo, Japan
Manufacturer:	Nollec Wireless Co.,Ltd.
Address of Manufacturer:	Tower A North, TCL Building, High-tech Industrial Park, Nanshan Dist, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	ÖWN Fun+, FTU161G
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.1dBi
AC adapter:	Model: ÖWN Fun+ Input:100-300V AC,50/60Hz 0.2A Output:5V DC MAX 1A
Power supply:	Rechargeable Li-ion Battery DC3.7V-2800mAh
Remark:	The No.: ÖWN Fun+, FTU161G were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	MHz 9 2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The Highest channel	2462MHz	

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE160302804

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguency range (MILIT)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	* Decreases with the logarithm	60	50			
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograp) Both sides of A.C. line an interference. In order to fi positions of equipment ar changed according to AN measurement. 	s are connected to the ation network (L.I.S.N.) pedance for the measure also connected to thicked a 50ohm/50uH co (Please refer to the blowns). e checked for maximum emisted all of the interface co ISI C63.4: 2009 on cor), which provides a uring equipment. The main power pupling impedance back diagram of the m conducted asion, the relative cables must be			
Test setup:	LISN 40cm		ter — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.6 for details	3				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Passed					
	·	·	·			

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Smart Phone : OWN Fun+ : WIFI mode EUT Model Test Mode : WIFI mode
Power Rating : AC120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey Remark :

vemark	•							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu√	<u>dB</u>	
1	0.166	40.89	0.17	10.77	51.83	65.16	-13.33	QP
1 2 3 4 5 6 7 8 9	0.166	23.24	0.17	10.77	34.18	55.16	-20.98	Average
3	0.202	37.52	0.16	10.76	48.44	63.54	-15.10	QP
4	0.393	31.04	0.16	10.72	41.92	57.99	-16.07	QP
5	0.398	19.99	0.16	10.72	30.87	47.90	-17.03	Average
6	0.471	29.30	0.16	10.75	40.21	56.49	-16.28	QP
7	0.471	26.05	0.16	10.75	36.96	46.49	-9.53	Average
8	0.494	24.65	0.16	10.76	35.57	46.10	-10.53	Average
9	0.497	28.21	0.16	10.76	39.13	56.05	-16.92	QP
10	0.570	26.02	0.17	10.77	36.96	56.00	-19.04	QP
11	0.601	17.01	0.17	10.77	27.95	46.00	-18.05	Average
12	1.032	16.18	0.17	10.87	27.22	46.00	-18.78	Average

Trace: 7

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : Smart Phone
Model : OWN Fun+
Test Mode : WIFI mode
Power Rating : AC120/60Hz

Power Rating : AC120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

iomarii.	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.166	40.06	0.26	10.77	51.09	65.16	-14.07	QP
2	0.170	21.70	0.26	10.77	32.73	54.94	-22.21	Average
3	0.198	35.41	0.26	10.76	46.43	63.71	-17.28	QP
2 3 4 5 6 7 8 9	0.198	16.50	0.26	10.76	27.52	53.71	-26.19	Average
5	0.302	12.85	0.26	10.74	23.85	50.19	-26.34	Average
6	0.466	27.61	0.27	10.75	38.63	56.58	-17.95	QP
7	0.466	15.68	0.27	10.75	26.70	46.58	-19.88	Average
8	0.759	24.35	0.28	10.80	35.43	56.00	-20.57	QP
9	0.759	10.42	0.28	10.80	21.50	46.00	-24.50	Average
10	1.037	22.96	0.29	10.87	34.12	56.00	-21.88	QP
11	1.037	9.07	0.29	10.87	20.23	46.00	-25.77	Average
12	21.373	24.59	1.12	10.91	36.62	60.00	-23.38	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
802.11b		802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	rtosuit
Lowest	16.03	14.57	14.38	13.73		
Middle	15.53	14.00	13.99	13.63	30.00	Pass
Highest	14.85	13.28	13.30	13.21		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1031011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	resuit
Lowest	10.24	16.00	16.72	35.48		
Middle	10.24	15.60	16.40	35.52	>500	Pass
Highest	10.24	15.48	17.20	35.68		

Test CH		99% Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	result
Lowest	12.56	16.48	17.60	35.84		
Middle	12.40	16.48	17.60	35.84	N/A	N/A
Highest	12.48	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 13.MAR.2016 11:43:06

Lowest channel

Date: 13.MAR.2016 11:42:29

Middle channel

Date: 13.MAR.2016 11:41:53

Highest channel

Page 19 of 68

Date: 13.MAR.2016 11:54:57

Lowest channel

Date: 13.MAR.2016 11:55:43

Middle channel

Date: 13.MAR.2016 11:56:19

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 11:53:52

Lowest channel

Date: 13.MAR.2016 11:53:09

Middle channel

Date: 13.MAR.2016 11:51:51

Highest channel

Date: 13.MAR.2016 11:49:53

Lowest channel

Date: 13.MAR.2016 11:49:23

Middle channel

Date: 13.MAR.2016 11:48:02

Highest channel

99% OBW

Test mode: 802.11b

Date: 13.MAR.2016 11:40:39

Lowest channel

Date: 13.MAR.2016 11:41:00

Middle channel

Date: 13.MAR.2016 11:41:15

Highest channel

Date: 13.MAR.2016 11:45:41

Lowest channel

Date: 13.MAR.2016 11:45:22

Middle channel

Date: 13.MAR.2016 11:45:08

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 11:46:04

Lowest channel

Date: 13.MAR.2016 11:46:18

Middle channel

Date: 13.MAR.2016 11:46:32

Highest channel

Test mode: 802.11n(H40)

Date: 13.MAR.2016 11:46:59

Lowest channel

Date: 13.MAR.2016 11:47:20

Middle channel

Date: 13.MAR.2016 11:47:36

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	result
Lowest	6.95	3.48	3.03	-1.62		
Middle	5.85	2.66	2.87	-2.60	8.00	Pass
Highest	5.88	1.96	2.46	-2.15		

Test plot as follows:

Test mode: 802.11b

Date: 13.MAR.2016 11:43:20

Lowest channel

Date: 13.MAR.2016 11:43:36

Middle channel

Date: 13.MAR.2016 11:43:53

Highest channel

Date: 13.MAR.2016 11:44:26

Lowest channel

Date: 13.MAR.2016 11:44:43

Middle channel

Date: 13.MAR.2016 11:44:59

Highest channel

Test mode: 802.11n(H20)

Date: 13.MAR.2016 11:50:42

Lowest channel

Date: 13.MAR.2016 11:51:05

Middle channel

Date: 13.MAR.2016 11:51:19

Highest channel

Test mode: 802.11n(H40)

Date: 13.MAR.2016 11:50:10

Lowest channel

Date: 13.MAR.2016 11:48:50

Middle channel

Date: 13.MAR.2016 11:48:28

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 13.MAR.2016 11:37:16

Lowest channel

Highest channel

802.11g

Date: 13.MAR.2016 11:38:17

Date: 13.MAR.2016 11:38:57

Date: 13.MAR.2016 11:36:47

Lowest channel

Highest channel

802.11n(H20)

Date: 13.MAR.2016 11:36:09

Lowest channel

Date: 13.MAR.2016 11:39:52

Highest channel

802.11n(H40)

Highest channel

Date: 13.MAR.2016 11:35:24

Lowest channel

Date: 13.MAR.2016 11:33:46

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1								
Test Frequency Range:	2.3GHz to 2.5GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Wododioment Distance. Sill								
receiver setup.	Frequency	Detector	RBW VB		Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above Toriz	RMS	1MHz 3MHz		Average Value				
Limit:	F		Lineit /alDust/	/ @ O \	Damadi				
	Frequency		Limit (dBuV/m @3m) 54.00		Remark Average Value				
	Above 1	GHz	74.00		Peak Value				
Test Procedure:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
Test setup:									
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone : OWN Fun+ Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

IVIVI	. :								
	ReadAntenna		Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
2	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2390.000	29.85	23.68	6.63	0.00	60.16	74.00	-13.84	Peak
)	2390.000	17.45	23.68	6.63	0.00	47.76	54.00	-6.24	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model Test mode : B-L Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

m	n .									
			Ant enna					Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
,	MHz	dBu∇		d <u>B</u>	dB	dBuV/m	dBuV/m	<u>dB</u>		
i.	2390.000	28.88	23.68	6.63	0.00	59.19	74.00	-14.81	Peak	
)	2390,000	17.24	23, 68	6, 63	0.00	47.55	54.00	-6.45	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ EUT Model Test mode : B-H Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey
REMARK :

VΤ	vu :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜		<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	31.51	23.70	6.85	0.00	62.06	74.00	-11.94	Peak
	2483 500	17 84	23 70	6 85	0.00	48 39	54 00	-561	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model Test mode : B-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

MΝ										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	—dBu∇	<u>dB</u> /m	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		-
	2483.500	30.06	23.70	6.85	0.00	60.61	74.00	-13.39	Peak	
	2483.500	17.80	23.70	6.85	0.00	48.35	54.00	-5.65	Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Phone : OWN Fun+ : G-L Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

М	Y :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>qp</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	28.70	23.68	6.63	0.00	59.01	74.00	-14.99	Peak
	2390 000	17 38	23 68	6 63	0.00	47 69	54 00	-6.31	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model : G-L Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

111									
	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	_
	2390.000 2390.000				0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ EUT Model : G -H Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

IV.	w :	Read.	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500				0.00 0.00				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : Smart Phone
Model : OWN Fun+
Test mode : G -H Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25 5°C Huni: 55%

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

л	T.										
			Read	Antenna	Cable	Preamp		Limit	Over		
	3	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
		MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>ab</u>		_
	2483	. 500	29.16	23.70	6.85	0.00	59.71	74.00	-14.29	Peak	
	2483	500	17.80	23.70	6 85	0.00	48 35	54 00	-5.65	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ : N20-L Mode EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK

m,	un .									
	Free		Antenna Factor							
	rred	Peact	ractor	LUSS	ractor	PeacT.	Line	TIME	Kemark	
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		
,	2390.000 2390.000				0.00					
•	2000.000	11.22	20.00	0.00	0.00	21.10	04.00	0.20	morrage	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone
Model : OWN Fun+
Test mode : N20-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∇	<u>dB</u> /m	₫B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>		_
2390.000 2390.000	THE STORY COME VICTORY			0.00				The state of the s	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone : OWN Fun+ : N20-H Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Carey REMARK:

Huni:55%

TI										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹			<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>		
	2483.500				0.00					
	2483.500	17.81	23.70	6.85	0.00	48.36	54.00	-5.64	Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model Test mode : N20-H Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

 er	
nit Remark	
 <u>ab</u>	_
16 Peak	
	-5.57 Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ : N40-L Mode EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

IIIII									
	Freq		Antenna Factor						
-	MHz	dBu₹	$-\frac{1}{dB}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	2390.000	29.47	23.68	6.63	0.00	59.78	74.00	-14.22	Peak
2	2390.000	17.70	23.68	6.63	0.00	48.01	54.00	-5.99	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model : N40-L Mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey REMARK :

щ,	ui.	•	Read	Antenna	Cable	Preamo		Limit	Over		
	F	req		Factor							
		MHz	dBu∜	<u>dB</u> /π			$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
				23.68 23.68		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ : N40-H Mode EUT Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

EMARI	Κ :	Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu₹	—dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500					61.71 48.72			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Phone : OWN Fun+ Condition

EUT Model Test mode : N40-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK

Freq		Antenna Factor						Remark	
MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
2483.500 2483.500									

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	C IN C DI						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 13.MAR.2016 12:02:17

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 12:02:45

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 12:03:11

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 13.MAR.2016 12:01:36

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 12:01:05

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 12:00:45

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 13.MAR.2016 12:03:51

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 12:04:15

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 12:04:37

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 13.MAR.2016 12:05:01

30MHz~25GHz

Middle channel

Date: 13.MAR.2016 12:05:28

30MHz~25GHz

Highest channel

Date: 13.MAR.2016 12:05:53

30MHz~25GHz

Page 58 of 68

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2009 9kHz to 25GHz							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGI12	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark			
	30MHz-8	8MHz	40.0		Quasi-peak Value			
	88MHz-216MHz 43.5 Quasi-peak V							
	216MHz-960MHz 46.0 Quasi-peak Value							
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground degrees to antenna, we tower. 3. The antennathe ground Both horize make the result of find the specified I of the limit specified EUT have 10dE	d at a 3 meters of determine the was set 3 meters which was more and height is was made and verme as a surement on tal and verme as a surement of the rota tab maximum respected embers of the color of	r chamber. The position of the position of the position of the ters away from punted on the the faried from one of the maximum tical polarization. The EU na was turned ading. In was set to Find the EUT in peating could be re-tested.	e table was he highest of the interference of a varie meter to fund a value of the constant of the analysis of the emiter of the analysis of	radiation. rence-receiving rable-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees			

Below 1GHz

Horizontal:

AAAMB									
	Freq		Antenna Factor						
_	MHz	dBu∀	dB/m	dВ	d₿	dBuV/m	dBuV/m	dB	
1	40.417	30.51	16.98	1.22	29.90	18.81	40.00	-21.19	QP
2 3 4 5	134.559	34.64	12.02	2.34	29.30	19.70	43.50	-23.80	QP
3	187.753	39.86	9.57	2.78	28.92	23.29	43.50	-20.21	QP
4	276.124	36.53	12.16	2.88	28.49	23.08	46.00	-22.92	QP
5	324.456	35.49	13.42	3.02	28.51	23.42	46.00	-22.58	QP
6	460, 727	31.39	16.33	3, 29	28.89	22, 12	46.00	-23.88	OP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL

Condition EUT : Smart Phone : OWN Fun+ Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey REMARK :

		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	dB/m		<u>−−ā</u>		dBuV/m dBuV/m			
1	40.135	40.34	16.93	1.22	29.90	28.59	40.00	-11.41	QP	
2	133.151	41.07	12.09	2.32	29.31	26.17	43.50	-17.33	QP	
3	184.490	38.89	9.41	2.76	28.94	22.12	43.50	-21.38	QP	
1 2 3 4	278.067	37.82	12.19	2.88	28.49	24.40	46.00	-21.60	QP	
	283.979	37.07	12.24	2.90	28.48	23.73	46.00	-22.27	QP	
6	519.065	30.43	17.30	3.72	29.01	22.44	46.00	-23.56	QP	

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.64	36.12	10.60	40.22	52.14	74.00	-21.86	Vertical
4824.00	45.65	36.12	10.60	40.22	52.15	74.00	-21.85	Horizontal
Test mode: 80)2.11b		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.58	36.12	10.60	40.22	43.08	54.00	-10.92	Vertical
4824.00	36.47	36.12	10.60	40.22	42.97	54.00	-11.03	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.39	36.32	10.64	40.15	51.20	74.00	-22.80	Vertical
4874.00	44.73	36.32	10.64	40.15	51.54	74.00	-22.46	Horizontal
Test mode: 80	02.11b		Test char	Test channel: Middle			rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.47	36.32	10.64	40.15	42.28	54.00	-11.72	Vertical
4874.00	36.14	36.32	10.64	40.15	42.95	54.00	-11.05	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.81	36.58	10.70	40.08	52.01	74.00	-21.99	Vertical
4924.00	44.55	36.58	10.70	40.08	51.75	74.00	-22.25	Horizontal
Test mode: 80	02.11b		Test char	Test channel: Highest			rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.15	36.58	10.70	40.08	43.35	54.00	-10.65	Vertical
4924.00	35.22	36.58	10.70	40.08	42.42	54.00	-11.58	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.69	36.12	10.60	40.22	52.19	74.00	-21.81	Vertical
4824.00	45.81	36.12	10.60	40.22	52.31	74.00	-21.69	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.24	36.12	10.60	40.22	42.74	54.00	-11.26	Vertical
4824.00	36.68	36.12	10.60	40.22	43.18	54.00	-10.82	Horizontal

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.95	36.32	10.64	40.15	51.76	74.00	-22.24	Vertical
4874.00	44.39	36.32	10.64	40.15	51.20	74.00	-22.80	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.84	36.32	10.64	40.15	42.65	54.00	-11.35	Vertical
4874.00	36.54	36.32	10.64	40.15	43.35	54.00	-10.65	Horizontal

Test mode: 8	Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.66	36.58	10.70	40.08	51.86	74.00	-22.14	Vertical	
4924.00	44.24	36.58	10.70	40.08	51.44	74.00	-22.56	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.62	36.58	10.70	40.08	43.82	54.00	-10.18	Vertical	
4924.00	35.96	36.58	10.70	40.08	43.16	54.00	-10.84	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)		Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.63	36.12	10.60	40.22	52.13	74.00	-21.87	Vertical	
4824.00	45.54	36.12	10.60	40.22	52.04	74.00	-21.96	Horizontal	
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.23	36.12	10.60	40.22	42.73	54.00	-11.27	Vertical	
4824.00	36.24	36.12	10.60	40.22	42.74	54.00	-11.26	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.78	36.32	10.64	40.15	51.59	74.00	-22.41	Vertical	
4874.00	44.51	36.32	10.64	40.15	51.32	74.00	-22.68	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.28	36.32	10.64	40.15	42.09	54.00	-11.91	Vertical	
4874.00	36.59	36.32	10.64	40.15	43.40	54.00	-10.60	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.76	36.58	10.70	40.08	51.96	74.00	-22.04	Vertical	
4924.00	44.28	36.58	10.70	40.08	51.48	74.00	-22.52	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.36	36.58	10.70	40.08	43.56	54.00	-10.44	Vertical	
4924.00	35.83	36.58	10.70	40.08	43.03	54.00	-10.97	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	45.81	36.19	10.61	40.19	52.42	74.00	-21.58	Vertical	
4844.00	45.36	36.19	10.61	40.17	51.99	74.00	-22.01	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	36.71	36.19	10.61	40.19	43.32	54.00	-10.68	Vertical	
4844.00	36.85	36.19	10.61	40.17	43.48	54.00	-10.52	Horizontal	

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.92	36.25	10.63	40.17	51.63	74.00	-22.37	Vertical	
4874.00	44.63	36.25	10.64	40.17	51.35	74.00	-22.65	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.95	36.25	10.63	40.17	42.66	54.00	-11.34	Vertical	
4874.00	36.57	36.25	10.64	40.17	43.29	54.00	-10.71	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	44.91	36.51	10.67	40.10	51.99	74.00	-22.01	Vertical	
4904.00	44.84	36.51	10.69	40.10	51.94	74.00	-22.06	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.86	36.51	10.67	40.10	43.94	54.00	-10.06	Vertical	
4904.00	35.92	36.51	10.69	40.10	43.02	54.00	-10.98	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.