Производные на скорую руку.

"о"малое. читайте тут.

В этом листке для двух функций f и g будут встречаться записи вида $f(\varepsilon) = o(g(\varepsilon))$. Они означают, что для любой бесконечно малой последовательности (ε_n) ненулевых чисел, последовательность $\frac{f(\varepsilon_n)}{|g(\varepsilon_n)|}$ — бесконечно малая. При этом предполагается, что $g(\varepsilon)\neq 0$ при $\varepsilon\neq 0$. Подробнее про такие обозначения можно почитать в третьей главе Кормена.

Определение 2. Число а называют производной функции f в точке x, если

$$f(x+\varepsilon) = f(x) + a\varepsilon + o(\varepsilon)$$

Иными словами $f(x+\varepsilon) = f(x) + a\varepsilon + g(\varepsilon)$, где $g(\varepsilon) = o(\varepsilon)$.

Производная функции f в точке x обозначается f'(x)

Задача 1. Осмыслите и проверьте следующие тождества:

- a) $\varepsilon^2 = o(\varepsilon)$,
- $\mathbf{6)} \ \varepsilon^3 = o(\varepsilon^2),$
- **B)** $o(\varepsilon^3) + o(\varepsilon^2) = o(\varepsilon^2),$
- Γ) $\varepsilon = o(1)$,
- д) $\varepsilon \cdot o(\varepsilon) = o(\varepsilon^2)$.

Задача 2. Докажите эквивалентность определений производной.

Задача 3. Пусть функции f и g дифференцируемы в точке x. Найдите производные в точке x у функций f + g и $f \cdot g$ (и докажите, что они существуют).

Задача 4. Пусть функция f дифференцируема в точке x, а q – в точке f(x). **a)** Найдите производную g(f(x)) в точке x. **a)** Пусть также f и g взаимно обратны, т. е. g(f(x)) = x. Докажите, что $g'(f(x)) = \frac{1}{f'(x)}$.

Задача 5. Докажите, что $\frac{1}{1+\varepsilon} = 1 - \varepsilon + o(\varepsilon)$.

Задача 6. Найдите производную функции $\frac{1}{x}$ при $x \neq 0$.

Задача 7. Пусть функции f и g дифференцируемы в точке x и $g(x) \neq 0$. Найдите производную $\frac{f(x)}{g(x)}$ в точке x. Задача 8. Найдите производные следующих функций:

- a) sin
- **б**) *cos*
- **B)** $x^n (n \in \mathbb{N})$
- Γ) x^{-n} $(n \in \mathbb{N})$

Экспонента – это функция $\exp(x)$, такая что $\exp'(x) = \exp(x)$ и $\exp(0) = 1$. $\exp(x)$ также записывают как e^x . Логарифм $(\log(x))$ – это обратная функция к экспоненте, определенная только на положительных числах. Т. е. $\forall x : \log(\exp(x)) = x$ и $\forall x > 0 : \exp(\log(x)) = x$. То, что экспонента и логарифм существуют и дифференцируемы на всей своей области определения давайте пока считать очевидным.

Задача 9. Найдите производную log(x) (при x > 0).

Задача 10* (ненужная). Помахайте руками и обоснуйте тождество:

$$\exp(a+b) = \exp(a) \cdot \exp(b)$$