Clustering Metrics

Week 07 - Day 04

K-Means

- 1. Based on distances
- 2. Uses centroids
- 3. Iterations
- 4. K is an input

Problems

- 1. K is an input
- 2. Outliers
- 3. Irregular shapes

No ground truth

Visual inspection is crucial!

Clustering Metrics

Inertia, Silhouette

"Many indices (more than 30) has been published in the literature for finding the right number of clusters in a dataset."

Inertia

Average squared distance between

each point and its centroid

Similar to MSE

(mean squared error)

Perfect inertia

One cluster for each point

Inertia + elbow

Elbow

Often good-enough

Silhouette Score/Coefficient

Silhouette = Cohesion + Separation

Can be calculated for every point!

Cohesion

"Intra-cluster distance"

Cohesion

_

Distance from point to centroid

Separation

"Inter-cluster distance"

Separation

Distance from point to closer cluster

separation - cohesion

max(separation,cohesion)

Silhouette Coefficient

Average Silhouette

(of each point)

Silhouette Coefficient

is good but not perfect!

Vetrics when you have the labels

Unusual...why?

Labels = Classification!

Too easy:)

Completeness

Homogeneity

V-Measure Score

Mutual Information Score

Completeness

"Indicates that all members of a given class are assigned to the same cluster."

[0,1]

Homogeneity

"Indicates each cluster contains only members of a single class."

[0,1]

V-Measure

$$V = \frac{2 \cdot \text{homogeneity} \cdot \text{completeness}}{\text{homogeneity} + \text{completeness}}$$

[0,1]

Similar to what?

F1 score!

Mutual Information Score

$$MI(i,j) = \sum_{a,b} P(a_i,b_j) \cdot log\left(\frac{P(a_i,b_j)}{P(a_i) \cdot P(b_j)}\right)$$