

电工电子教学实验中心

学生实验报告

由工学R实验

理程 夕 称 ·

冰 小王/11/1/1			
实验名称:	三相鼠笼式异步电动机基本控制实验		
学生姓名:			
学 号:			
同组人:	实验日期:		
	成 绩:		
	投资参师·		

预习报告

实验原理

- 1、了解交流接触器、热继电器和按钮等几种常用控制电器的结构,并熟悉它们的接线方法和所起的作用。了解交流接触器、热继电器和按钮等几种常用控制电器的结构,并熟悉它们的接线方法和所起的作用。
- 2、学习三相异步电动机直接起动、连续运转控制线路的连接。
- 3、复习上述常用控制电器的结构,用途、工作原理,熟悉其符号意义。

符号	名称及用途	符号	名称及用途
<u>KM</u>			
4-4-7 KM		SB	
		<u></u>	
		SB	
FR →FR		/	

- 4、理解点动、自锁及联锁的概念,在实验步骤中设计对应的控制电路,并画在图 2,图 3中。
 - 5、复习短路保护、过载保护和零压保护的概念。

实验三 三相鼠笼式异步电动机基本控制实验

一、实验目的

- 1、了解交流接触器、热继电器和按钮等几种常用控制电器的结构,并熟悉它们的接线方法和所起的作用。
 - 2、学习异步电动机基本控制电路的连接。
 - 3、加深对电气控制系统各种保护、自锁、互锁等环节的理解。
 - 4、学会分析、排除继电--接触控制线路故障的方法。

二、实验仪器设备

名称	型号或规格	数量
三相交流电源	220V	1
三相鼠笼式异步电动机	JW-6314	1
交流接触器	额定电压 127V	1
按钮		1
热继电器		2
交流电压表	0∼500V	若干

三、实验内容

1.认识电器:

在实验桌上找到交流接触器、热继电器和按钮等控制电器,了解其结构及动作原理。

三相异步鼠笼电动机的铭牌数据

型号	JW-6314	功率	180W
电压	380V	接法	Y/△
电源	0.4A	转速	1400r/min
频率	50Hz	绝缘	B级

鼠笼电动机接成△接法,

请用铅笔在右图中按△接法连线。

2. 在切断电源的情况下,按图 1 接线. 先接好**主电路**,将接触器的主触点接入,不接控制电路。

图 1 主电路连线图

3. 连接起停点动控制电路并进行操作,要求课前设计实验电路,将电路补充在图 2 中。进行点动实验。

检验:接通电源,按下 SB_F 观察电动机是否转动,再松手看电动机是否停转,成功后进行下一步。

4. 断开电源,连接起停长动控制电路并进行操作,要求课前设计实验电路,将电路补充在图 3 中。

检验:接通电源,接上 KM_F 的自锁触点,按下 SB_F 后,电机起动运转并保持长动,按下 SB,停止运转,成功后进行下一步。

图 3 长动控制

5) 失压与欠压保护检验: 按起动按钮 $SB_F($ 或 $SB_R)$ 电动机起动后,按实验台停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按 SBF(或 SBR),观察电动机能否自行起动?

四、故障分析(写在原始数据页)

- 1、接通电源后,不按启动按钮电机自动运转是何原因?
- 2、 接通电源后, 能实现起动控制, 按停止按钮, 电机不停, 是何原因?

五、思考题(写在原始数据页)

- 1、在电动机直接起动连续运转控制线路中,怎样使电动机实现点动工作?
- 2、熔断器用于短路保护,它是否也能起过载保护作用?为什么?

六、实验报告要求

- 1、按上面要求画出相应控制电路(画在图 2,图 3 中)。
- 2、根据所给故障情况,分析故障原因。
- 3、回答思考题。

原始数据

本次实验请严格按照实验内容完成,可以提高实验成功率。

- 切忌带电连接线路。
- 实验用导线较多,务必检查后再通电。
- 实验中出现异常,应立即切断电源,报告指导教师处理。

根据功能要求,设计实验控制电路:画在图2,图3中。

故障现象分析

- 1、接通电源后,不按启动按钮电机自动运转是何原因?
- 2、 接通电源后, 能实现起动控制, 按停止按钮, 电机不停, 是何原因?

思考题

1、在电动机直接起动连续运转控制线路中,怎样使电动机实现点动工作?

2、熔断器用于短路保护,它是否也能起过载保护作用?为什么?