Name: Tianyang Han

uid: 47549569

Question 1

a normalized

: Proof pco) is valid

(b)
$$\mathcal{D} p(\theta|x_{+2}=01) = \frac{p(x_{1:1}=01|\theta) \cdot p(\theta)}{p(x_{1:2}=01)}$$
 (Boyes Theorem)

$$P(0 | x_{1:4} > 0 | \cdot 1) = \frac{P(x_{1:4} > 0 | \cdot 1) \cdot P(0)}{P(x_{1:4} > 0 | \cdot 1)}$$

$$= \frac{(1 \cdot 0)^2 0^2 \cdot 300^2 (1 \cdot 0)^2}{\int_{0}^{1} (1 \cdot 0)^3 \cdot 0 \, d\theta} = 21 \times 30 \cdot 0^4 (1 - 0)^4$$

$$= 6500^4 (1 - 0)^4$$

$$\frac{\partial}{\partial t} = \int_{-\infty}^{\infty} |400^{3} (1.0)^{3} \cdot 0 \, d\theta \qquad (using CAS to assist with integration)$$

$$= \frac{1}{2} = 0.5$$

$$\begin{array}{lll}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

(Using cas to assist with difterentiation)

the plots is shown below:

the plots is shown below

Plots

Similarly as 10 he can get Omap = 0.5

the plots is shown below:

Plots

similarly as 1 1 2:

Posterior	PDF	M	5	GMAP
Pio)	300 (1-0)	1	14	12
P(8/2/101)	1400³(10)³	12		7
P(0/x1:4=0101)	63004 CI-O)4	7	14	シ

19) Then $X_{1:n} = 0 | 0 | 0 \dots$ P(0| $X_{1:n}$) will have more chance on 0.5. Which means more and more close to $P(X_{1:n}) = P(X_{1:n}) = \frac{1}{2}$

For large n. M still I. of getting smaller and smaller.

Omap still I.

Question 2

(a) if
$$\phi = 1$$
, then $P(\hat{X} = 1 \mid X = 1) = 1$

$$P(\hat{X} = 0 \mid X = 0) = 1$$
without errors

if \$=0.5. then each return's confictence is unreliable as it has some chance report right or wrong ansners.

if \$ =0 then it always report the opposite answer.

(b) Known
$$P(X=0|\theta)=|-\theta|$$
, $P(X=1|\theta)=\theta$
"X=0 and X=1 i.i.d
 $P(X=0|\theta)=P(X=0|\theta,X=0)+P(X=0|\theta,X=1)$
 $=(1+\theta)\cdot\phi+\theta\cdot(1-\phi)$
 $P(X=1|\theta)=P(X=1|\theta,X=0)+P(X=1|\theta,X=1)$
 $=(1+\theta)\cdot(1-\phi)+\theta\cdot\phi$

(c) Bayes' Theorem
$$P(\theta | \hat{x} = 0) = \frac{P(\hat{x} = 0) \cdot P(0)}{P(\hat{x} = 0)}$$

$$= \frac{\left[(1-0)\phi + \theta \cdot (1+\phi)\right] \cdot P(0)}{P(\hat{x}=0)}$$

where
$$P(\hat{x}>0) = \int_{0}^{1} P(\hat{x}>0|0) \cdot P(0) \cdot d\theta$$
 (0 \(\text{0 \in I} \))
$$= \int_{0}^{1} \left[(1-0) \phi + O(1-\phi) \right] \cdot P(0) \, d\theta$$

:
$$P(0|\hat{x}=0) = \frac{[(1-0)\phi + 0 \cdot (1-\phi)] \cdot P(0)}{[(1-0)\phi + 0 \cdot (1-\phi)] \cdot P(0)}$$

① when
$$\phi = 1$$

$$P(0|\hat{x} > 0) = \frac{(1-0) \cdot P(0)}{\int_{0}^{1} (1-0) \cdot P(0) d\theta}$$

When
$$\phi = 0.5$$

$$P(\theta | \hat{x} = 0) = \frac{\frac{1}{2} \cdot P(\theta)}{\int_{0}^{1} P(\theta) d\theta} = \frac{P(\theta)}{\int_{0}^{1} P(\theta) d\theta} = P(\theta)$$

$$(i) \int_{0}^{1} P(\theta) d\theta = 1$$

3 when \$=0
$$P(0|\hat{x}=) = \frac{0P(0)}{\int_{0}^{1} 0P(0)d0}$$

Observation:

From ϕ -1 to ϕ =0.5, ϕ =0. Consent \Rightarrow wrong report. ϕ =1 rely on appropriate corresponding $\theta \Rightarrow X$ =0. ϕ =0.5 totally rely on prior $\rho(\phi)$ ϕ =0 rely on wrong corresponding ϕ =0.

(d) As calculated in (e)
$$P(\theta | \hat{x} = 0) = \frac{\left[(1-\theta) + \theta (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}}{\left[(1-\theta) + \theta \cdot (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}} d\theta$$

$$= \frac{\left[(1-\theta) + \theta \cdot (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}}{\left[(1-\theta) + \theta \cdot (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}} d\theta$$

$$= \frac{\left[(1-\theta) + \theta \cdot (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}}{\left[(1-\theta) + (1-\phi) \right] \cdot 30\theta^{2} (1-\theta)^{2}} d\theta$$

Using CAS to assist with integration, denominator can be calculated as -1

The shape of diltribution will supply to the left, which means $P(\theta|\hat{x})$ is changing on $P(\hat{x}|x)$ distribution.

of more close to 1 means

the observation \hat{X} has more

probability to be real X. 50 $P(\theta|\hat{X})$ is more close to $P(\theta|X)$.

austron }

Y=X+L xe[o,1]

for $F(y) = P(x \le \sqrt{x-x}) = F(\sqrt{x-x}) = \frac{1}{3}(x-x)^{\frac{3}{2}} + \frac{1}{3}(x-x) + \frac{1}{3}(x-x)^{\frac{3}{2}}$