Where's Waldo ?!

Multiclass object detection in large images

aldo 5146 (0 0 175)

Maximilian Fruehauf, David Drews, Choo Wen Xin {e0445541, e0454245, e0053347}@u.nus.edu

Problem statement

- Detect bounding boxes for the characters Waldo, Wenda and Wizard in Where's Waldo search book images
- Can use any "Non-Deep" method
- Training set of ~100 Images for all classes combined

Challenges aka Why it's hard

- Class instances have a multitude of appearances and can be partially covered by other items
- Ground truth bounding boxes have different aspect ratios
- Illustrated characters not detected well for pre-trained classifiers

Solutions

- Histogram correlation
 - RGB histogram correlation with training image
- Haar-cascade:
 - \circ ?? \rightarrow David
- HOG & SVM:
 - Sample preprocessing
 - window classification based on HOG feature vector with SVM

Sample Preprocessing

- Goals of preprocessing
 - crop bounding boxes to 128 x 128 px
 - Reduction gradient complexity
 - Grayscale mapping of color samples
- We use k-means to find k = 5 modes corresponding to main colors in positive samples

(red, blue, black, white, other)

- Uniform mapping of found colors to grayscale values in [0, 255]
- Random generation of negative samples

HOG / HOV & SVM

- HOG / HOV feature descriptor
 - HOG for gradient based information
 - HOV for color distribution information (based on pyramidal SIFT)
- SVM multiclass classifier:
 - One vs. one approach, as examples per class are highly unbalanced
 - Radial basis function to achieve linear separability
 - Used parameter search to determine optimal hyperparameters (C, γ)
- Non-Maximum Suppression

Class name	#samples	percentage
waldo	137	1.01%
wenda	43	0.32%
wizard	27	0.20%
negative	13315	98.47%

Table 1: Dataset statistics for the SVM training

Results

- Generally high F₁ scores
 - Classifier can confidently differentiate
 between waldo / wenda / negative
- waldo & negative scores opposite
 - Suggests the classifier can mainly differentiate between waldo / negative
 - Assumption backed up by empirical results
- Low F₁ scores for wizard
 - Possible due to few training examples and non-distinctive appearance

class	precision	recall	F_1 score	#samples
waldo	1.00	0.69	0.82	13
wenda	0.80	0.57	0.67	7
wizard	0.00	0.00	0.00	3
negative	0.69	1.00	0.82	20

Evaluation

 Empirical evaluation with three hand picked samples (wizard, wenda, wlado)

method	I_1 IoU	I_2 IoU	I_3 IoU	Mean IoU	Mean Time
HOG & SVM	0.0	0.0	0.37	0.13	$12.8 \mathrm{\ s}$
HOG/HOV & SVM	0.0	0.5	0.09	0.21	21.3 s

HOG & SVM

- Zero IoU for first two images, giving low mean IoU
- Faster object detection because of faster feature descriptor

HOG / HOV & SVM

- Higher mean IoU, suggesting better accuracy
- Slower object detection, caused by higher dimensional feature descriptor & unoptimized code

Discussion

- Large visual similarity between ground truth and false positive bounding boxes
- Detector strongly picks up on horizontal red / white stripes pattern
- Future work:
 - Larger dataset / sample augmentation
 - Aspect ratio independent feature descriptor for arbitrary bounding boxes
 - Improve wizard classifier

Conclusion

- Further work would aim to increase detection accuracy
- Current mAP (overlap: 0.1)

waldo: 0.12wenda: 0.16wizard: 0.08

- Considered different approaches and chose the most promising one
- Team communication worked well and everyone contributed to the final result

Thanks for your attention

Maximilian Fruehauf, David Drews, Choo Wen Xin {e0445541, e0454245, e0053347}@u.nus.edu