

Estimaciones del coeficiente de inbreeding genómico humano mediante la librería detectRUNs de R y otros programas bioinformáticos

L. J. Sánchez-Martínez¹, C.L. Hernández¹, A. Sánchez¹, R. Calderón¹

¹ Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias Biológicas Universidad Complutense de Madrid, UCM

Índice

Introducción

Objetivos

Material y métodos

Resultados

Conclusiones

El fenómeno de la consanguinidad humana

La estructura marital entre parientes biológicos (matrimonios consanguíneos) ha sido uno de los comportamientos más usuales en la historia de la humanidad.

El fenómeno de la consanguinidad humana

 La estructura marital entre parientes biológicos (matrimonios consanguíneos) ha sido uno de los comportamientos más usuales en la historia de la humanidad.

 La consanguinidad, constituye aun hoy un fenómeno ampliamente extendido entre diversas sociedades humanas.

Consanguinidad en la	Porcentaje de	Tamaño de la
población (%)	población total	población (millones)
< 1	15,5	1068
1-9	43,9	3026
10-19	0,5	35
20-29	6,5	448
30-39	2,1	145
40-49	3,2	221
50+	3,3	227
Desconocido	25,0	1730

Fuente: Global Consanguinity Website, www.consang.net

El fenómeno de la consanguinidad humana

 La estructura marital entre parientes biológicos (matrimonios consanguíneos) ha sido uno de los comportamientos más usuales en la historia de la humanidad.

 La consanguinidad, constituye aun hoy un fenómeno ampliamente extendido entre diversas sociedades humanas.

La consanguinidad y sus efectos biológicos

• A nivel de la población, la ocurrencia de emparejamientos (matrimonios) consanguíneos durante generaciones, puede alterar las frecuencias genotípicas respecto a las esperadas bajo equilibrio Hardy-Weinberg.

El modelo Hardy-Weinberg describe la relación entre frecuencias alélicas y genotípicas en una población natural a lo largo del tiempo (en ausencia de procesos evolutivos)

Antropología Física (Genética), Genética Humana, Biomedicina, Genética de Poblaciones...

- 1. Aumento de la ocurrencia de enfermedades recesivas (mendelianas) en los descendientes de padres emparentados biológicamente,
- 2. Aumento de la morbilidad y, una alta ocurrencia de enfermedades de etiología compleja,
- 3. Aumento de la mortalidad pre-reproductiva.

Metodologías tradicionales de estima.

El coeficiente de inbreeding basado en pedigrees, F_{ped}

El coeficiente *F*, hace referencia a la probabilidad de que un descendiente de padres emparentados biológicamente, reciba en un *locus* dado dos genes idénticos por descendencia (*IBD*)

- ☐ En la práctica es una información costosa de obtener,
- □ Habitualmente solo se recogen relaciones de parentesco tres o cuatro generaciones atrás,
- □ F_{ped} es una expectativa del porcentaje real de genoma que es homocigoto.

El análisis de pedigrees

Introducción

Metodologías genómicas para la estima del coeficiente de inbreeding, F

Tecnologías de secuenciación de nueva generación (NGS, Next Generation Sequencing)

Genotipado masivo (Genome-Wide analysis, GW)

Metodologías genómicas para la estima del coeficiente de inbreeding, F

Un cambio de paradigma a la hora de estudiar la consanguinidad humana

- ✓ Proporción real del genoma en homocigosis,
- ✓ Capacidad de medir el efecto de relaciones de parentesco muy distantes temporalmente,
- ✓ El análisis de cualquier individuo, incluso en aquellos sin información de pedigrees,
- ✓ Conocer la posición exacta a nivel genómico y cromosómico de la homocigosis,
- ✓ Abaratamiento de los costes.

Metodologías genómicas para la estima del coeficiente de inbreeding, F

Un cambio de paradigma a la hora de estudiar la consanguinidad humana

- ✓ Proporción real del genoma en homocigosis,
- ✓ Capacidad de medir el efecto de relaciones de parentesco muy distantes temporalmente,
- ✓ El análisis de cualquier individuo, incluso en aquellos sin información de pedigrees,
- ✓ Conocer la posición exacta a nivel genómico y cromosómico de la homocigosis,
- ✓ Abaratamiento de los costes.

Términos de búsqueda: ROHs & Human Populations

Metodologías genómicas para la estima del coeficiente de inbreeding, F

- >Single-point methods
- >Multi-point methods

PLINK v.1.9

F_h estima el valor de **F** basándose en el exceso de homozigosis a nivel de SNPs.

$$F_{h_j} = \frac{O(H_j) - E(H)}{m - E(H)}$$

 $O(H_j)$ es la homocigosidad observada en todos los SNPs para la persona j, E(H) es la homocigosidad esperada: $\sum_i 1 - 2pi(1-pi)$

F Suite

Método de máxima verosimilitud (LHM). Usa *Hidden Markov Model* (HMM) para modelizar el proceso de los fragmentos **IBD** en un individuo.

$$P(X_k = 1 | X_{k-1} = 1) = (1 - e^{-at_k})f + e^{-at_k} ,$$

$$P(X_k = 0 | X_{k-1} = 1) = (1 - e^{-at_k})(1 - f) ,$$

$$P(X_k = 1 | X_{k-1} = 0) = (1 - e^{-at_k})f , \text{ and}$$

$$P(X_k = 0 | X_{k-1} = 0) = (1 - e^{-at_k})(1 - f) + e^{-at_k} ,$$

Librería detectRUNs de R

F_{ROH} se refiere a la proporción del genoma que está ocupado por *Runs of Homozygosity* (*ROHs*).

$$F_{ROH} = \frac{\sum Length (ROHs)}{L_{auto}}$$

 \nearrow A pesar del desarrollo de diferentes metodologías conducentes a estimar el valor de F a nivel genómico, los estudios que emplean procesos de simulación genómica han llegado a la conclusión de que, el estimador más poderoso para detectar los efectos de la consanguinidad es el denominado F_{ROH}

(Keller et al., 2011; Gazal et al., 2014)

Metodología genómica para la estima del coeficiente de inbreeding, F_{ROH}

LAS APLICACIONES BIOMEDICAS Y POBLACIONALES DEL INBREEDING GENOMICO

La posibilidad de posicionar a nivel genómico la localización cromosómica de cada fragmento *ROH*, ello hace que uno de los enfoques más atractivos hoy es el de relacionar la distribución y estructura de los *ROHs* a lo largo del genoma humano con enfermedades de etiología compleja (*Esquizofrenia*, *Alzheimer*,

Parkinson, diversos tipos de cáncer etc...).

OPEN @ ACCESS Freely available online

PLOS GENETICS

Runs of Homozygosity Implicate Autozygosity as a Schizophrenia Risk Factor

Matthew C. Keller^{1,2}*, Matthew A. Simonson^{1,2}, Stephan Ripke^{3,4,5}, Ben M. Neale^{3,4,5}, Pablo V. Gejman^{6,7}, Daniel P. Howrigan^{1,2}, Sang Hong Lee⁸, Todd Lencz^{9,10,11}, Douglas F. Levinson¹², Patrick F. Sullivan^{13,14,15,16}, The Schizophrenia Psychiatric Genome-Wide Association Study Consortium¹

Available online at www. jbr-pub.org

Open Access at PubMed Central

The Journal of Biomedical Research, 2013, 27(3):208-214

Research Paper

Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese

Cheng Wang^{x,Δ}, Zhengfeng Xu^{b,Δ}, Guangfu Jin^{a,c,d}, Zhibin Hu^{a,c,d}, Juncheng Dai^a, Hongxia Ma^a,
Yue Jiang^a, Lingmin Hu^a, Minjie Chu^a, Songyu Cao^a, Hongbing Shen^{a,c,d,□}

*Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology,
School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

Javier Simón-Sánchez^{1,9}, Laura L. Kilarski^{2,6,9}, Michael A. Nalls³, Maria Martinez^{4,5}, Claudia Schulte⁷, Peter Holmans^{2,6}, International Parkinson's Disease Genomics Consortium^{4,a}, Wellcome Trust Case Control Consortium^{2,6}, Thomas Gasser⁷, John Hardy⁸, Andrew B. Singleton³, Nicholas W. Wood⁸, Alexis Brice^{9,10,11}, Peter Heutink¹, Nigel Williams^{2,6,*}, Huw R. Morris^{2,6,*}

1 Section of Medical Genomics, Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands, 2 MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom, 3 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America, 4 Inserm, UMR 1043, Toulouse, France, 5 Paul Sabatier University, Toulouse, France, 6 Department of Psychological Medicine & Neurology, Cardiff University School of Medicine, Cardiff, United Kingdom, 7 Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany, 8 Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, 9 Université Pierre et Marie Curie-Paris6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-5975, Paris, France, 10 Inserm, U975, Paris, France, 11 Cnrs, UMR 7225, Paris, France

OPEN

Inbreeding and homozygosity in breast cancer survival

Received: 15 June 2015 Accepted: 14 October 2015 Published: 12 November 2015 Hauke Thomsen¹, Miguel Inacio da Silva Filho¹, Andrea Woltmann¹, Robert Johansson², Jorunn E. Eyfjörd³, Ute Hamann⁴, Jonas Manjer^{5,6}, Kerstin Enquist-Olsson⁷, Roger Henriksson^{2,8}, Stefan Herms^{9,10}, Per Hoffmann^{9,10}, Bowang Chen¹, Stefanie Huhn¹, Kari Hemminki^{3,11}, Per Lenner² & Asta Försti^{1,11}

LAS APLICACIONES BIOMEDICAS Y POBLACIONALES DEL INBREEDING GENOMICO

 \succ Vinculación entre el aumento de los niveles de F_{ROH} con el incremento de la incidencia de algunas enfermedades humanas.

Keller et al., (2012)

Por cada incremento de 0.01 en el valor de F_{roh} las probabilidades de presentar esquizofrenia aumentaban un 17%.

La población de enfermos frente a la población control, destaca por albergar en su genoma fragmentos *ROHs* de tamaño (longitud) más grande (Simón-Sánchez et al., 2012; Ghani et al., 2015)

continua...

EOPD: Early **O**nset **P**arkinson **D**isease

Simón-Sánchez et al., 2012

Los objetivos del presente estudio......

Inferir la valoración de los Coeficientes de *Inbreeding* genómicos mediante distintas metodologías basadas en aproximaciones Single-point y Multi-point en poblaciones asentadas en el extremo occidental del Mediterráneo.

Los objetivos del presente estudio......

Inferir la valoración de los Coeficientes de *Inbreeding* genómicos mediante distintas metodologías basadas en aproximaciones Single-point y Multi-point en poblaciones asentadas en el extremo occidental del Mediterráneo.

➤ Valorar el grado de acuerdo entre los valores hallados para las distintas medidas de Inbreeding y contrastar la rentabilidad de las diferentes metodologías bioinformáticas disponibles hoy día en un caso real de análisis poblacional.

LAS POBLACIONES ANALIZADAS

1: Sur de Portugal, 2: Oeste de Andalucía (Huelva), 3: Este de Andalucía (Granada), 4: Asni (Bereberes), 5: Bouhria (Bereberes), 6: Figuig (Bereberes).

de Iberia

Marruecos

Andalucía

Oeste de Andalucía

n = 35

Este de Andalucía

n = 35

Sur de Portugal

Sur de Portugal

n = 35

Bereberes de Marruecos

Asni n = 15

Bouhria n = 12

Figuig n= 9

Proceso de genotipado y "workflow" para el tratamiento y filtrado de SNPs

Illumina Omni 2.5 array (~2.5 millones de SNPs)

PLINK v.1.9

Homoz 0.5 40 100

PLINK v.1.9

Homoz 0.5 40 100

Fragmentos ROHs

4	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N
1	FID	Population	ID	PHE	CHR	SNP1	SNP2	POS1	POS2	KB	NSNP	DENSITY	PHOM	PHET
2	35	Huelva	299532	1	1	rs12085929	rs79459747	31372734	31898547	525814	48	10.954	0.979	0.021
3	35	Huelva	299532	1	1	rs79121844	rs74084501	53917385	54441853	524469	90	5.827	0.978	0.022
4	35	Huelva	299532	1	1	rs11207950	rs17316198	62733939	63247772	513834	80	6.423	0.975	0.025
5	35	Huelva	299532	1	1	rs72682829	rs76999445	68071462	68584231	512770	100	5.128	0.980	0.020
6	35	Huelva	299532	1	1	rs78731300	rs77662524	86308365	86884365	576001	80	7.200	0.988	0.013
7	35	Huelva	299532	1	1	rs80354837	rs116682102	90017105	90558859	541755	104	5.209	0.981	0.019
8	35	Huelva	299532	1	1	rs114554902	rs28708456	98085141	98706205	621065	82	7.574	0.988	0.012
9	35	Huelva	299532	1	1	rs742682	rs9429548	114897076	115668368	771293	76	10.149	0.974	0.026
10	35	Huelva	299532	1	1	rs115190046	rs7526319	151007824	151524558	516735	64	8.074	0.969	0.031
11	35	Huelva	299532	1	1	rs75720912	rs17656483	158390676	158907239	516564	113	4.571	0.991	0.000
12	35	Huelva	299532	1	1	rs112620748	rs12029220	186804285	187338342	534058	92	5.805	0.978	0.022
13	35	Huelva	299532	1	1	rs60996022	rs521719	188755377	189530964	775588	68	11.406	0.971	0.029
14	35	Huelva	299532	1	1	rs10920983	rs72732973	191622901	192366043	743143	63	11.796	0.984	0.016
15	35	Huelva	299532	1	1	rs73062282	rs76764548	192768787	193440379	671593	52	12.915	0.981	0.019
16	35	Huelva	299532	1	1	rs10494698	rs2839897	194096582	194841920	745339	79	9.435	0.975	0.025
17	35	Huelva	299532	1	1	rs10449246	rs116303679	224936295	225584974	648680	65	9.980	0.969	0.031
18	35	Huelva	299532	1	2	rs79270739	rs76665514	39211234	39875554	664321	74	8.977	0.973	0.027
19	35	Huelva	299532	1	2	rs76081756	rs74635159	63166198	64399313	1233116	76	16.225	0.974	0.026
20	35	Huelva	299532	1	2	rs74262579	rs35073965	65934026	66550979	616954	113	5.460	0.973	0.027
21	35	Huelva	299532	1	2	rs12713914	rs115834754	77705469	78247944	542476	96	5.651	0.979	0.021
22	35	Huelva	299532	1	2	rs114761069	rs76504362	83898828	84405076	506249	48	10.547	0.979	0.021
23	35	Huelva	299532	1	2	rs62158021	rs7589893	99320597	99932255	611659	48	12.743	0.979	0.021
24	35	Huelva	299532	1	2	rs34617783	rs13416708	102262110	102899304	637195	77	8.275	0.974	0.026
25	35	Huelva	299532	1	2	rs78467089	rs11123454	117949973	118616023	666051	88	7.569	0.989	0.011

PLINK v.1.9

Homoz 0.5 40 100

Fragmentos $ROHs + F_{PLINK}$

• Nivel genómico
$$F_{ROH} = \frac{\sum L_{ROH}}{L_{guto}}$$

PLINK v.1.9

Homoz 0.5 40 100

Fragmentos $ROHs + F_{PLINK}$

Librería detectRUNs de R

Estimación del valor de F_{ROH} basado en los datos de ROHs

$$F_{ROH} = \frac{\sum L_{ROH}}{L_{auto}}$$

F Suite

 F_{mean} de F Suite

Las herramientas bioestadísticas

- Análisis Descriptivo F
 - -Media y su desviación estándar
 - -Density plots (violin plots)
 - -Scatter plots
- Bland-Altman plots y Coeficiente de correlación intraclase

Librería: psych

ICC (3,1) =
$$\frac{MS_R - MS_E}{MS_R + (k-1)MS_E}$$

Modelización del coeficiente de inbreeding genómico, F

Librerías: fitdistrplus, actuar

Modelo de regresión logística empleando el valor F.
 Aplicación en un caso real.

LOS RESULTADOS DEL PRESENTE ESTUDIO......

El Análisis Descriptivo F

Coeficiente de inbreeding, F	F _{ROH}			F Suite			F _{PLINK}		
Poblaciones	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2
O. Andal. (Huelva)	0.053	0.008	(0.037; 0.068)	0.017	0.016	(-0.015; 0.048)	0.133	0.007	(0.118; 0.147)
E. Andal. (Granada)	0.049	0.005	(0.039; 0.059)	0.006	0.007	(-0.008; 0.020)	0.130	0.005	(0.121; 0.140)
Sur Portugal	0.047	0.005	(0.037; 0.057)	0.008	0.010	(-0.012; 0.028)	0.123	0.006	(0.111; 0.134)
Marruecos (Bereberes)	0.064	0.027	(0.011; 0.118)	0.034	0.032	(-0.029; 0.097)	0.105	0.031	(0.043; 0.167)

¹ Desviación estándar; ² Intervalo de confianza al 95%

El Análisis Descriptivo F

Coeficiente de inbreeding, F	F _{ROH}			F _{Suite}			F _{PLINK}		
Poblaciones	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2
O. Andal. (Huelva)	0.053	0.008	(0.037; 0.068)	0.017	0.016	(-0.015; 0.048)	0.133	0.007	(0.118; 0.147)
E. Andal. (Granada)	0.049	0.005	(0.039; 0.059)	0.006	0.007	(-0.008; 0.020)	0.130	0.005	(0.121; 0.140)
Sur Portugal	0.047	0.005	(0.037; 0.057)	0.008	0.010	(-0.012; 0.028)	0.123	0.006	(0.111; 0.134)
Marruecos (Bereberes)	0.064	0.027	(0.011; 0.118)	0.034	0.032	(-0.029; 0.097)	0.105	0.031	(0.043; 0.167)

¹ Desviación estándar; ² Intervalo de confianza al 95%

El Análisis Descriptivo F

Coeficiente de inbreeding, F	F _{ROH}			F _{Suite}			F _{PLINK}		
Poblaciones	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2	media	s.d. ¹	IC _{95%} 2
O. Andal. (Huelva)	0.053	0.008	(0.037; 0.068)	0.017	0.016	(-0.015; 0.048)	0.133	0.007	(0.118; 0.147)
E. Andal. (Granada)	0.049	0.005	(0.039; 0.059)	0.006	0.007	(-0.008; 0.020)	0.130	0.005	(0.121; 0.140)
Sur Portugal	0.047	0.005	(0.037; 0.057)	0.008	0.010	(-0.012; 0.028)	0.123	0.006	(0.111; 0.134)
Marruecos (Bereberes)	0.064	0.027	(0.011; 0.118)	0.034	0.032	(-0.029; 0.097)	0.105	0.031	(0.043; 0.167)

¹ Desviación estándar; ² Intervalo de confianza al 95%

El Análisis Descriptivo de F (Violin Plots)

library(ggplot2)

datos_new=data.frame(F=c(rep("FROH",139), rep("Fmean",139),rep("FPLINK",139)),valor=c (datos\$Froh,datos\$Fmean,datos\$FPLINK))

p <- ggplot(datos_new, aes(x=F, y=valor,fill=F)) + geom_violin()

p + theme_bw() + stat_summary
(fun.data=mean_sdl, mult=1,
geom="pointrange", color="black") +
coord_cartesian(ylim = c(0,0.20))

El Análisis Descriptivo de F

(Violin Plots)

El Análisis Descriptivo de F

(Violin Plots)

Marruecos (Bereberes)

Scatter plots

Scatter plots

Scatter plots

Bland-Altman plots


```
> FROHVsFmeanSresults
                                                  F df1 df2
                                                                       p lower bound upper bound
                         type
                                      ICC
Single_raters_absolute
                                           0.885244 138 139 7.628415e-01 -0.22424861
                         ICC1 -0.06087064
                                                                                        0.1059365
Single_random_raters
                               0.28794025 11.573190 138 138 6.325186e-39 -0.03666546
                                                                                        0.6571287
Single_fixed_raters
                               0.84093138 11.573190 138 138 6.325186e-39 0.78444034
                                                                                        0.8835838
Average_raters_absolute ICC1k -0.12963206  0.885244  138  139  7.628415e-01 -0.57814555
                                                                                        0.1915779
Average_random_raters
                        ICC2k 0.44713294 11.573190 138 138 6.325186e-39 -0.07612196
                                                                                        0.7930931
Average_fixed_raters
                        ICC3k 0.91359340 11.573190 138 138 6.325186e-39 0.87920041
                                                                                        0.9381943
> FROHVSEPLINK$results
                                                  F df1 df2
                                                                     p lower bound upper bound
                         type
                                      ICC
Single_raters_absolute
                         TCC1 -0.69085951 0.1828304 138 139 1.0000e+00 -0.76855072
                                                                                    -0.5930235
Single_random_raters
                              0.05740032 2.9953105 138 138 1.6807e-10 -0.02667689
                                                                                      0.2205237
Single_fixed_raters
                               0.49941312 2.9953105 138 138 1.6807e-10 0.36356650
                                                                                      0.6144618
Average_raters_absolute ICC1k -4.46955044 0.1828304 138 139 1.0000e+00 -6.64120197
                                                                                     -2.9142881
Average_random_raters
                              0.10856876 2.9953105 138 138 1.6807e-10 -0.05481611
                                                                                      0.3613591
Average_fixed_raters
                        ICC3k 0.66614479 2.9953105 138 138 1.6807e-10 0.53325818
                                                                                      0.7611971
> FmeanvsFPLINK$results
                                                   F df1 df2
                                                                           lower bound upper bound
                         type
                                      ICC
Single_raters_absolute
                         ICC1 -0.82001004 0.09889504 138 139 1.000000e+00
                                                                            -0.86778198
                                                                                        -0.7571775
Single_random_raters
                               0.02659129 2.23442966 138 138 1.638532e-06
                                                                            -0.01750914
                                                                                          0.1123122
Single_fixed_raters
                                                                            0.23025485
                               0.38165296 2.23442966 138 138 1.638532e-06
                                                                                         0.5150121
Average_raters_absolute ICC1k -9.11173070 0.09889504 138 139 1.000000e+00 -13.12653150
                                                                                        -6.2364681
Average_random_raters
                        ICC2k 0.05180502 2.23442966 138 138 1.638532e-06
                                                                           -0.03564235
                                                                                         0.2019437
Average_fixed_raters
                        ICC3k 0.55245850 2.23442966 138 138 1.638532e-06
                                                                            0.37432058
                                                                                          0.6798786
```

```
> FROHVSFmean$results
                                                                        p lower bound upper bound
                                                   F df1 df2
                          type
                                       ICC
Single_raters_absolute
                          ICC1 -0.06 7064
                                            0.885244 138 139 7.628415e-01 -0.22424861
                                                                                        0.1059365
Single random raters
                               0.28 94025 11.573190 138 138 6.325186e-39 -0.03666546
                                                                                        0.6571287
Single_fixed_raters
                               0.84093138 11.573190 138 138 6.325186e-39 0.78444034
                                                                                        0.8835838
Average_raters_absolute ICC1k -0.12963206 0.885244 138 139 7.628415e-01 -0.57814555
Average_random_raters
                               0.44713294 11.573190 138 138 6.325186e-39 -0.07612196
                                                                                        0.7930931
Average_fixed_raters
                               0.91359340 11.573190 138 138 6.325186e-39
                                                                                        0.9381943
> FROHVSEPLINK$results
                                                   F df1 df2
                                                                      p lower bound upper bound
                          type
                                       ICC
Single_raters_absolute
                          TCC1 -0.69085951 0.1828304 138 139 1.0000e+00 -0.76855072
                                                                                     -0.5930235
Single_random_raters
                               0.05740032 2.9953105 138 138 1.6807e-10 -0.02667689
                                                                                      0.2205237
Single_fixed_raters
                                                                                      0.6144618
                               0.49941312 2.9953105 138 138 1.6807e-10
                                                                                     -2.9142881
Average_raters_absolute ICC1k -4.46955044 0.1828304 138 139 1.0000e+00 -6.64120197
Average_random_raters
                               0.10856876 2.9953105 138 138 1.6807e-10 -0.05481611
                                                                                      0.3613591
Average_fixed_raters
                         ICC3k 0.66614479 2.9953105 138 138 1.6807e-10
                                                                                      0.7611971
> FmeanvsFPLINK$results
                                                                            lower bound upper bound
                          type
                                       ICC
Single_raters_absolute
                          ICC1 -0.82001004 0.09889504 138 139 1.000000e+00
                                                                            -0.86778198
                                                                                         -0.7571775
Single_random_raters
                                0.02659129 2.23442966 138 138 1.638532e-06
                                                                            -0.01750914
                                                                                          0.1123122
Single_fixed_raters
                                                                             0.23025485
                                                                                          0.5150121
                               0.38165296 2.23442966 138 138 1.638532e-06
Average_raters_absolute ICC1k -9.11173070 0.09889504 138 139 1.000000e+00 -13.12653150
                                                                                         -6.2364681
Average_random_raters
                         ICC2k 0.05180502 2.23442966 138 138 1.638532e-06
                                                                            -0.03564235
                                                                                          0.2019437
Average_fixed_raters
                         ICC3k 0.55245850 2.23442966 138 138 1.638532e-06
                                                                             0.37432058
                                                                                          0.6798786
```

```
> FROHVsFmeanSresults
                                                                        p lower bound upper bound
                                                   F df1 df2
                         type
                                       ICC
Single_raters_absolute
                         ICC1 -0.06087064
                                            0.885244 138 139 7.628415e-01 -0.22424861
                                                                                        0.1059365
Single_random_raters
                                0.28794025 11.573190 138 138 6.325186e-39 -0.03666546
                                                                                        0.6571287
Single_fixed_raters
                                0.84093138 11.573190 138 138 6.325186e-39 0.78444034
                                                                                        0.8835838
Average_raters_absolute ICC1k -0.12963206
                                           0.885244 138 139 7.628415e-01 -0.57814555
                                                                                        0.1915779
Average_random_raters
                        ICC2k 0.44713294 11.573190 138 138 6.325186e-39 -0.07612196
                                                                                        0.7930931
Average_fixed_raters
                        ICC3k 0.91359340 11.573190 138 138 6.325186e-39 0.87920041
                                                                                        0.9381943
> FROHVSEPLINK$results
                                                                      p lower bound upper bound
                                                   F df1 df2
                         type
                                       ICC
Single_raters_absolute
                         ICC1 -0.69 5951 0.1828304 138 139 1.0000e+00 -0.76855072 -0.5930235
<u>Sinole random raters</u>
                         ICC2 0.05 40032 2.9953105 138 138 1.6807e-10 -0.02667689
                                                                                      0.2205237
Single_fixed_raters
                               0.49941312 2.9953105 138 138 1.6807e-10 0.36356650
                                                                                      0.6144618
                                                                                     -2.9142881
Average_raters_absolute ICClk -4.46955044 0.1828304 138 139 1.0000e+00 -6.64120197
Average_random_raters
                               0.10856876 2.9953105 138 138 1.6807e-10 -0.05481611
                                                                                      0.3613591
Average_fixed_raters
                        ICC3k 0.66614479 2.9953105 138 138 1.6807e-10
                                                                                      0.7611971
> FmeanvsFPLINK$results
                                                                            lower bound upper bound
                         type
                                       ICC
Single_raters_absolute
                         ICC1 -0.82001004 0.09889504 138 139 1.000000e+00
                                                                            -0.86778198
                                                                                         -0.7571775
Single_random_raters
                               0.02659129 2.23442966 138 138 1.638532e-06
                                                                            -0.01750914
                                                                                          0.1123122
Single_fixed_raters
                                                                             0.23025485
                                                                                          0.5150121
                               0.38165296 2.23442966 138 138 1.638532e-06
Average_raters_absolute ICC1k -9.11173070 0.09889504 138 139 1.000000e+00 -13.12653150
                                                                                         -6.2364681
Average_random_raters
                        ICC2k 0.05180502 2.23442966 138 138 1.638532e-06
                                                                            -0.03564235
                                                                                          0.2019437
Average_fixed_raters
                        ICC3k 0.55245850 2.23442966 138 138 1.638532e-06
                                                                             0.37432058
                                                                                          0.6798786
```

```
> FROHVsFmeanSresults
                                                   F df1 df2
                                                                         p lower bound upper bound
                          type
                                       ICC
Single_raters_absolute
                          ICC1 -0.06087064
                                            0.885244 138 139 7.628415e-01 -0.22424861
                                                                                         0.1059365
Single_random_raters
                                0.28794025 11.573190 138 138 6.325186e-39 -0.03666546
                                                                                         0.6571287
 Single_fixed_raters
                                0.84093138 11.573190 138 138 6.325186e-39 0.78444034
                                                                                         0.8835838
Average_raters_absolute ICC1k -0.12963206
                                            0.885244 138 139 7.628415e-01 -0.57814555
                                                                                         0.1915779
Average_random_raters
                               0.44713294 11.573190 138 138 6.325186e-39 -0.07612196
                                                                                         0.7930931
Average_fixed_raters
                                0.91359340 11.573190 138 138 6.325186e-39
                                                                                         0.9381943
> FROHVSEPLINK$results
                                                   F df1 df2
                                                                       p lower bound upper bound
                          type
                                       ICC
 Single_raters_absolute
                          TCC1 -0.69085951 0.1828304 138 139 1.0000e+00 -0.76855072
                                                                                      -0.5930235
 Single_random_raters
                                0.05740032 2.9953105 138 138 1.6807e-10 -0.02667689
                                                                                       0.2205237
 Single_fixed_raters
                                0.49941312 2.9953105 138 138 1.6807e-10
                                                                                       0.6144618
                                                                                      -2.9142881
Average_raters_absolute ICC1k -4.46955044 0.1828304 138 139 1.0000e+00 -6.64120197
Average_random_raters
                                0.10856876 2.9953105 138 138 1.6807e-10 -0.05481611
                                                                                       0.3613591
Average_fixed_raters
                         ICC3k 0.66614479 2.9953105 138 138 1.6807e-10
                                                                                       0.7611971
> FmeanvsFPLINK$results
                                                                             lower bound upper bound
                          type
                                       ICC
 Single_raters_absolute
                          ICC1 -0.820 004 0.09889504 138 139 1.000000e+00
                                                                             -0.86778198
                                                                                          -0.7571775
<u> Sinole random raters</u>
                          TCC2_0_026_4129_2_23442966_138_138_1_638532e=06_
                                                                            _0_01750914
                                                                                           0.1123122
Single_fixed_raters
                                0.38165296 2.23442966 138 138 1.638532e-06
                                                                              0.23025485
                                                                                           0.5150121
Average_raters_absolute ICClk -9.11173070 0.09889504 138 139 1.000000e+00 -13.12653150 -6.2364681
Average_random_raters
                         ICC2k 0.05180502 2.23442966 138 138 1.638532e-06
                                                                             -0.03564235
                                                                                           0.2019437
Average_fixed_raters
                         ICC3k 0.55245850 2.23442966 138 138 1.638532e-06
                                                                              0.37432058
                                                                                           0.6798786
```

Modelización del coeficiente de inbreeding F_{ROH}

Cullen & Frey graph

summary statistics

min: 0.03048681 max: 0.1355066

median: 0.05056894 mean: 0.0535173

estimated sd: 0.01579288 estimated skewness: 2.898423 estimated kurtosis: 13.41897

Empirical and theoretical CDFs

gofstat(list(fendo.In, fendo.II, fendo.P, fendo.B),fitnames = c("Inorm",
"Ilogis", "Pareto", "Burr"))

Empirical and theoretical CDFs


```
library(actuar)
FROH <- Datos_F$Froh
fendo.ln <- fitdist(FROH, "Inorm")
fendo.ll <- fitdist(FROH, "Ilogis", start = list(shape = 1, scale = 500))
fendo.P <- fitdist(FROH, "pareto", start = list(shape = 1, scale = 500))
fendo.B <- fitdist(FROH, "burr", start = list(shape1 = 0.3, shape2 = 1, rate = 1))</pre>
```

cdfcomp(list(fendo.ln, fendo.ll, fendo.P, fendo.B), xlogscale = TRUE, ylogscale = TRUE, legendtext = c("lognormal", "loglogistic", "Pareto","Burr"))

gofstat(list(fendo.ln, fendo.ll, fendo.P, fendo.B),fitnames = c("Inorm",
"Ilogis", "Pareto", "Burr"))

Goodness-of-fit criteria

Inorm llogis Pareto Burr Akaike's Information Criterion -829.8173 11.99614 -531.9146 -883.6232 Bayesian Information Criterion -823.9483 17.86509 -526.0456 -874.8198

❖ Mediante *Bootstrap* se estiman las medias y los intervalos de confianza:

bendo.B <- bootdist(fendo.B, niter = 1001)
summary(bendo.B)</pre>

quantile(bendo.B, probs = c(0.05, 0.95))

❖ Mediante *Bootstrap* se estiman las medias y los intervalos de confianza:

bendo.B <- bootdist(fendo.B, niter = 1001)
summary(bendo.B)</pre>

quantile(bendo.B, probs = c(0.05, 0.95))

$$F(x) = [1 + (x/b)^g]^{-s}$$

```
Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%

shape1 0.3143209 0.1902101 0.5406003

shape2 17.3643821 12.1940783 25.1086202

rate 22.5818605 21.2957323 23.6129058
```

❖ Mediante *Bootstrap* se estiman las medias y los intervalos de confianza:

bendo.B <- bootdist(fendo.B, niter = 1001)
summary(bendo.B)</pre>

quantile(bendo.B, probs = c(0.05, 0.95))

$$F(x) = [1 + (x/b)^g]^{-s}$$

```
Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%

shape1 0.3143209 0.1902101 0.5406003

shape2 17.3643821 12.1940783 25.1086202

rate 22.5818605 21.2957323 23.6129058
```

Simulación de datos y representación de su densidad mediante ggplot2:


```
x<-rburr(n=500, shape1 = 0.3147055, shape2 = 17.2429319, rate = 22.5877735, scale = 0.0442717)
```

library(ggplot2)

df = data.frame(datos,Estimador.F=as.factor(grupo))

ggplot(df, aes(datos, fill = Estimador.F)) + geom_density
(alpha = 0.2)

Simulación de datos y representación de su densidad mediante ggplot2:

❖ Modelo de regresión logística empleando el valor *F*. Aplicación en un caso real.

F_{ROH}

```
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = ModlogisFROH)
Deviance Residuals:
    Min
             1Q Median
                                       Max
-2.7262 -1.0530 -0.3375 1.1551
                                    2.1615
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.89436
                       0.07101 -40.76
                                         <2e-16 ***
            52.80186
                       1.31821
                               40.06
                                         <2e-16 ***
datos
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 24832 on 19998 degrees of freedom
AIC: 24836
Number of Fisher Scoring iterations: 7
```

F_{PLINK}

```
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = Modlogis)
Deviance Residuals:
    Min
             10 Median
                               3Q
                                       Max
                                    5,4491
-1.6712 -0.9573 -0.1556 0.8503
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                        0.1109
(Intercept) 6.0799
                               54.83
                                       <2e-16 ***
                        0.9131 -56.26 <2e-16 ***
datos
            -51.3698
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 22853 on 19998 degrees of freedom
AIC: 22857
Number of Fisher Scoring iterations: 4
```

❖ Modelo de regresión logística empleando el valor *F*. Aplicación en un caso real.

```
0 = Iberia
 F<sub>ROH</sub>
                  1 = Marruecos
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = ModlogisFROH)
Deviance Residuals:
              1Q Median
    Min
                                         Max
-2.7262 -1.0530 -0.3375
                            1.1551
                                      2.1615
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.89436
                        0.07101 -40.76
                                           <2e-16 ***
            52.80186
                        1.31821
                                   40.06
                                           <2e-16 ***
datos
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 24832 on 19998 degrees of freedom
AIC: 24836
Number of Fisher Scoring iterations: 7
                  0.528 \rightarrow 0.01 unidad de F
                  IC_{05\%}: (e^{0.502}; e^{0.553}) = 1.65; 1.74
```

F_{PLINK}

```
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = Modlogis)
Deviance Residuals:
    Min
              10 Median
                               3Q
                                       Max
-1.6712 -0.9573 -0.1556 0.8503
                                    5.4491
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.0799
                        0.1109
                                54.83
                                       <2e-16 ***
                        0.9131 -56.26 <2e-16 ***
datos
            -51.3698
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 22853 on 19998 degrees of freedom
AIC: 22857
Number of Fisher Scoring iterations: 4
```

Modelo de regresión logística empleando el valor F. Aplicación en un caso real.

```
0 = Iberia
                  1 = Marruecos
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = ModlogisFROH)
Deviance Residuals:
    Min
              10 Median
                                        Max
-2.7262 -1.0530 -0.3375
                            1.1551
                                     2.1615
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.89436
                        0.07101 -40.76
                                          <2e-16 ***
            52.80186
                        1.31821
                                  40.06
                                          <2e-16 ***
datos
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 24832 on 19998 degrees of freedom
AIC: 24836
Number of Fisher Scoring iterations: 7
                  0.528 \rightarrow 0.01 unidad de F
                  IC_{05\%}: (e^{0.502}; e^{0.553}) = 1.65; 1.74
```

```
0 = Iberia
                 1 = Marruecos
call:
glm(formula = clase ~ datos, family = binomial(link = "logit").
    data = Modlogis)
Deviance Residuals:
    Min
              10 Median
                                        Max
-1.6712 -0.9573 -0.1556
                            0.8503
                                     5.4491
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
            6.0799
                         0.1109
(Intercept)
                                  54.83
                                         <2e-16 ***
                         0.9131 -56.26
datos
            -51.3698
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 22853 on 19998 degrees of freedom
AIC: 22857
Number of Fisher Scoring iterations: 4
                   -0.513 \rightarrow 0.01 unidad de F
                   IC_{95\%}: (e^{-0.531}; e^{-0.495}) = 0.58; 0.61
```

❖ Modelo de regresión logística empleando el valor *F*. Aplicación en un caso real.

```
0 = Iberia
                  1 = Marruecos
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = ModlogisFROH)
Deviance Residuals:
              1Q Median
    Min
                                        Max
-2.7262 -1.0530 -0.3375 1.1551
                                     2.1615
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.89436
                        0.07101 -40.76
                                          <2e-16 ***
            52.80186
                        1.31821
                                  40.06
datos
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 24832 on 19998 degrees of freedom
AIC: 24836
Number of Fisher Scoring iterations: 7
                  0.528 \rightarrow 0.01 unidad de F
                  IC_{0.5\%}: (e^{0.502}; e^{0.553}) = 1.65; 1.74
```

F_{Suite}

```
call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
   data = ModlogisFsuite)
Deviance Residuals:
   Min
             10 Median
                               3Q
                                       Max
-8.4904 -0.9132 -0.4091 1.0725 1.5872
coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.92599
                       0.02182 -42.44
           51.97062
                       1.05514
                                49.26
                                         <2e-16 ***
datos
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 27726 on 19999 degrees of freedom
Residual deviance: 23413 on 19998 degrees of freedom
AIC: 23417
Number of Fisher Scoring iterations: 6
```

❖ Modelo de regresión logística empleando el valor F. Aplicación en un caso real.

```
0 = Iberia
                                                                                            0 = Iberia
                  1 = Marruecos
                                                                                            1 = Marruecos
call:
                                                                           call:
glm(formula = clase ~ datos, family = binomial(link = "logit"),
                                                                           glm(formula = clase ~ datos, family = binomial(link = "logit"),
    data = ModlogisFROH)
                                                                               data = ModlogisFsuite)
Deviance Residuals:
                                                                           Deviance Residuals:
              1Q Median
    Min
                                        Max
                                                                               Min
                                                                                         10 Median
                                                                                                           3Q
                                                                                                                   Max
-2.7262 -1.0530 -0.3375 1.1551
                                     2.1615
                                                                           -8.4904 -0.9132 -0.4091 1.0725
                                                                                                               1.5872
Coefficients:
                                                                           Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                                                                       Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.89436
                        0.07101 -40.76
                                          <2e-16 ***
                                                                           (Intercept) -0.92599
                                                                                                   0.02182 -42.44
                                                                                                                     <2e-16 ***
                        1.31821
                                  40.06
                                                                                       51.97062
                                                                                                   1.05514
                                                                                                            49.26
                                                                                                                     <2e-16 ***
datos
            52.80186
                                          <2e-16 ***
                                                                           datos
                                                                           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
                                                                           (Dispersion parameter for binomial family taken to be 1)
                                                                               Null deviance: 27726 on 19999 degrees of freedom
    Null deviance: 27726 on 19999 degrees of freedom
                                                                           Residual deviance: 23413 on 19998 degrees of freedom
Residual deviance: 24832 on 19998 degrees of freedom
                                                                           ATC: 23417
AIC: 24836
                                                                           Number of Fisher Scoring iterations: 6
Number of Fisher Scoring iterations: 7
                  0.528 \rightarrow 0.01 unidad de F
                                                                                                 0.519 \rightarrow 0.01 unidad de F
                                                                                                 IC_{95\%}: (e^{0.499}; e^{0.540}) = 1.64; 1.71
                  IC_{0.5\%}: (e^{0.502}; e^{0.553}) = 1.65; 1.74
```

Conclusiones más relevantes

 \succ Los valores de los coeficientes de inbreeding genómico hallados en las poblaciones asentadas en el Mediterráneo occidental son, en promedio, más altos en las poblaciones Bereberes de Marruecos frente a las poblaciones Ibéricas, salvo en la metodología F_{PLINK} donde esta tendencia se revierte.

Conclusiones más relevantes

- \succ Los valores de los coeficientes de inbreeding genómico hallados en las poblaciones asentadas en el Mediterráneo occidental son, en promedio, más altos en las poblaciones Bereberes de Marruecos frente a las poblaciones Ibéricas, salvo en la metodología F_{PLINK} donde esta tendencia se revierte.
- \triangleright El valor de la medida del inbreeding genómico aportada por la metodología F_{suite} subestima el valor aportado por F_{ROH} y a su vez, la medida de F_{PLINK} sobreestima el valor de las dos anteriores.

Conclusiones más relevantes

- \succ Los valores de los coeficientes de inbreeding genómico hallados en las poblaciones asentadas en el Mediterráneo occidental son, en promedio, más altos en las poblaciones Bereberes de Marruecos frente a las poblaciones Ibéricas, salvo en la metodología F_{PLINK} donde esta tendencia se revierte.
- \triangleright El valor de la medida del inbreeding genómico aportada por la metodología F_{suite} subestima el valor aportado por F_{ROH} y a su vez, la medida de F_{PLINK} sobreestima el valor de las dos anteriores.
- Las metodologías F_{ROH} y F_{suite} presentaron una concordancia buena entre sus valores hallados de inbreeding genómico (ICC: 0.84), siendo prácticamente idénticos los resultados de ambas en el modelo de regresión logística. Mientras que, tanto F_{ROH} como F_{suite} , presentaron con la medida de F_{PLINK} una concordancia pobre (ICC < 0.5).

> Referencias Bibliográficas Citadas:

- Gazal S, Sahbatou M, Perdry H, Letort S, Génin E, Leutenegger AL. Inbreeding coefficient estimation with dense SNP data: comparison of strategies and application to HapMap III. Hum Hered. 2014; 77(1-4): 49-62.
- Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, et al. Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurol. 2015;72(11):1313-23.
- Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics. 2011; 189(1): 237-249.
- Keller MC, Simonson MA, Ripke S, Neale BM, Gejman PV, Howrigan DP et al. Runs of homozygosity implicate autozygosity as a schizophrenia risk factor. PLoS Genet. 2012; 8(4):e1002656.
- Simón-Sánchez J, Kilarski LL, Nalls MA, Martinez M, Schulte C, Holmans P, et al. Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease. PLoS One. 2012;7(3):e28787.

MUCHAS GRACIAS POR SU ATENCIÓN

AGRADECIMIENTOS

Proyecto de Investigación CGL-2014-53985-R

