MATH20410 (W25): ANALYSIS IN RN II (ACCELERATED)

LECTURER: JOE JACKSON NOTES BY: ADEN CHEN

Last updated: Wednesday 8th January, 2025.

Contents

1. Single-Variable Differential Calculus

2

1. Single-Variable Differential Calculus

In this chapter, we consider mainly functions of the form $f: I \to \mathbb{R}$, where I is an interval, e.g., (a,b), [a,b], (a,b], (a,∞) , \mathbb{R} . This is the function we have in mind unless otherwise stated.

Definition 1.1 (Differentiability). We say f is **differentiable at** $x \in I$ if the limit

$$f'(x) := \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. In this case, we call f'(x) the derivative of f at x. Moreover:

- We say that f is **differentiable** if f'(x) exists for each $x \in I$.
- We say f is continuously differentiable $(f \in C^1)$ if $f' : I \to \mathbb{R}$ is continuous.

Example 1.2.

- $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Continuous but not differentiable at 0. $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Differentiable everywhere (in particular at 0), but $f \notin C^1$

Proposition 1.3 (Rules for computing derivatives).

- (i) Linearity. (af + bg)' = af' + bg' (if f' and g' exist, such requirements are hereafter omitted).
- (ii) Product rule. (fg)' = f'g + fg'.
- (iii) Quotient rule. $(f/g)' = (f'g fg')/g^2$.
- (iv) Chain rule. $(f \circ g)' = (f' \circ g) \cdot g'$.

¹Low dhigh minus high dlow. Not Haidilao...

Proof. We prove the quotient rule; the remaining are left as exercises. Starting from the definition

$$\left(\frac{f}{g}\right)'(x) = \lim_{t \to x} \frac{\frac{f}{g}(t) - \frac{f}{g}(x)}{t - x}$$

$$= \lim_{t \to x} \frac{\frac{f(t)}{f(t)} + \frac{f(x)}{g(t)} - \frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x}.$$

Note that

$$\frac{\frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x} = \frac{f(x)}{g(x)g(t)} \frac{g(x) - g(t)}{t - x}$$

and we have

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g^2(x)}$$

Theorem 1.4. If f is differentiable at x then f is continuous at x.

Proof. Note that

$$\lim_{t \to x} f(t) - f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} (t - x) = f'(x) \cdot 0 = 0.$$

1.1. The Mean Value Theorem.

Lemma 1.5. Suppose $f:[a,b] \to \mathbb{R}$ has a local maximum or minimum at $x \in (a, b)$. If f'(x) exists, then f'(x) = 0.

Proof. From the definition of the derivative, consider the limits from the left and right; one is non-positive and the other is non-negative.

Theorem 1.6 (Rolle's Theorem). Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], differentiable on (a,b), and such that f(a)=f(b). Then there exists $x \in (a, b)$ such that f'(x) = 0.

Proof. Consider the global maximum or minimum (exist since f is continuous defined on a compact set) and apply the previous lemma. (If both the maximum and minimum is at a or b, f is constant.)

Theorem 1.7 (Mean Value Theorem). Let $f:[a,b] \to \mathbb{R}$ be such that f is continuous on [a,b] and differentiable on (a,b). Then there exists $x \in (a, b)$ such that f(b) - f(a) = f'(x)(b - a).

Proof. Apply Rolle's to
$$\tilde{f} = f - [f(b) - f(a)] \cdot \frac{x-a}{b-a}$$
.

1.2. Applications of the MVT.

Theorem 1.8. Let $f:(a,b)\to\mathbb{R}$ be differentiable.

- (a)) if f' = 0, then f is constant.
- (b)) if $f' \ge 0$, then f is increasing.
- (c)) if $f' \leq 0$, then f is decreasing.

Proof. Apply the mean value theorem.

Theorem 1.9 (The Intermediate Value Property of Derivatives). Let f: $[a,b] \to \mathbb{R}$ be differentiable² and suppose $f'(a) < \lambda < f'(b)$ Then there exists $x \in (a, b)$ such that $f'(x) = \lambda$.

 2f need not be