Venti

Presented By 陈子旸

Overview

Abstract Background Venti

Organization

Organizatio

Exampl

Phy Ba

Implemen

Performanc

Conclusio

End

Venti: a new approach to archival storage¹

Presented By: 陈子旸

Fudan University

13307130148@fudan.edu.cn

January 4, 2015

¹powered by X∃LATEX

Outline

Venti

Presented By 陈子旸

Overview

Abstract Backgrour Venti

Organizatio

Olganizatio

Applicati

Vac Phy Ba

Plan 9

Implemen

Performano

Conclusio

OLA

- Overview
 - Abstract
 - Background
 - Venti
- 2 Data Organization
- 3 Application Example
- 4 Implementation
- 5 Performance
- 6 Conclusion

Abstract

Venti

Presented By 陈子旸

Overviev
Abstract
Background
Venti

Organizatior

Vac Phy Bak

Implemer

Performance

Conclusio

Q...

- Venti: A network storage system intended for archival data
- A building block for a variety of storage applications
 - logical backup
 - physical backup
 - snapshot file systems
- A block is identified by a unique hash of it's contents
- Enforce a write-once policy
- Duplicate copies of a block can be coalesced

Archival Storage

Venti

Presented By 陈子旸

Overview

Abstract

Background

Venti

Organizatio

--8-----

Vac Phy Bak

Implemen

Performand

Conclusio

Purpose

- Store data for long periods of time (forever)
- Data may not be needed frequently, but when it is needed it is often crucial

Prevalent Form

Venti

Presented By 陈子旸

Overview
Abstract
Background
Venti

Organizatio

Organizatio

Vac Phy Ba

Implemen^a

Performance

Conclusio

- .

Tape backup

- Backup data to magnetic tape
- (tar, ufsdump...)
- Full backup vs Incremental backup
- To provide backup as a central service for a number of client machines

Prevalent Form

Venti

Presented By 陈子旸

Overview
Abstract
Background
Venti

Organization

Vac Phy Bak

Implemen

Performance

Conclusio

End

Snapshot

- A snapshot is a consistent read-only view of the file system at some point in the past.
- Each snapshot is a complete file system tree, much like a full backup.
- A snapshot only requires additional storage for the blocks that have changed, like a incremental backup.
- Always available and easy to access
- Plan 9, WAFL, AFS...

Venti Archival Storage

Venti

Presented By 陈子旸

Overview Abstract Background Venti

Organizatior

Organization

Vac Phy Bak

Implemen

Performance

Conclusio

Q&A

- Goal: To provide a write-once archival reponsitory than can be shared by mutiple client machines and applications.
- Block level network storage system
 - Actually a backend storage for client apps
- Blocks addressed by hash of their contents
 - Use SHA-1 algorithm
 - Use hash value as its unique 'fingerprint'
- Write-Once policy
 - Block once written, never modified
 - Modified blocks will have new address

Why SHA-1?

Venti

Presented By 陈子旸

Overview Abstract Background Venti

Organizatio

Vac Phy Bak

Implemen

Performance

Concius

- SHA-1 hash function is developed by NIST
- Output 160 bit hash values(20 bytes)
- Probability that there will be one or more collisions:

$$p \le \frac{n(n-1)}{2} \times \frac{1}{2^b}$$

- Consider a large storage system contains 10^{18} byte of data stored as 8 Kbyte blocks($\sim 10^{14}$ blocks), the probability is less then 10^{-20} .
- Variants of SHA-1 can produce 256, 384 and 512 bit results for future use.

Venti Archival Storage

Venti

Presented By 陈子旸

Overview
Abstract
Background
Venti

Organizatior

Vac Phy Bak

Implemen

Performance

Conclusio

Q&A

- Multiple clients can Share a Venti server
 - Hash function gives an unversal namespace
 - Duplication increases the utility rate of space
- Inherent integrity checking for data
- Caching is simplified
- Uses magnetic disk as storage technology
 - Access time comparable to non-archival data

Outline

Venti

Organization

- 2 Data Organization
- Application Example

Venti

Presented By 陈子旸

Overviev

Abstract

Background

Venti

Organization

Application

Vac Phy Bak Plan 9

Implemer

Performanc

Conclusio

End

• Data is divided into blocks and written to the server

- Pack the fingerprints into additional blocks, called pointer blocks, that are also written to the server
- Until a single fingerprint is obtained
- Applications can use such a structure to store a single file or to mimic the behavior of a physical device such as a tape or a disk drive

Venti

Presented By 陈子旸

Overview
Abstract
Background

Organization

Organization

Vac

Phy Ba

Implemen

Performanc

Conclusion

08.4

Figure 1. A tree structure for storing a linear sequence of blocks

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

Organization

Application

Vac Phy Bak Plan 9

Implemen

Performance

Conclusio

End

Venti does not allow such a tree to be modified

- But new versions of the tree can be generated efficiently by storing the new or modified data blocks and reusing the unchanged sections
- By mixing data and fingerprints in a block, more complex data structures can be constructed.
- For example, a structure for storing a file system may include three types of blocks:
 - Directory
 - Pointer
 - Data.

Venti

Presented By 陈子旸

Overview Abstract Background Venti

Organization

0.84...24..0

Vac

Phy Ba Plan 9

Implemer

Performan

Conclusio

- .

Figure 2. Build a new version of the tree.

Outline

Venti

Presented By 陈子旸

Overview

Abstract

Background

Organization

Application Example

Phy Ba Plan 9

Implemer

Performanc

Conclusio

00 4

End

Overview

2 Data Organization

- Application Example
 - Vac
 - Physical Backup
 - Plan 9 File System
- 4 Implementation
- 6 Performance
- 6 Conclusion

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

 $\mathsf{Organizatior}$

Application

Phy Bak Plan 9

impiemer

Performanc

Conclusio

- Vac is an application similar to tar and zip
 - With vac, Selected files will be stored as a tree of blocks on Venti server.
 - The output is always 45 bytes long, included a 20 byte root fingerprint.
 - 'unvac' enables user to estore files from a vac archive.
- Vac writes each file as a seperated collection of Venti blocks, which can coalesce duplicate copies of a file
- Incremental backups options can improve performance

Physical Backup

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

Organization

Organization

Vac Phy Bak

Plan 9

Performanc

Conclusio

- Vac archive data at the file or logical level
- Alternative approach: block-level or physical backup
- Copy the raw contents of disk drives to Venti
- Coalescing duplicate blocks is the main advantage
- Can even mount a backup file system image from Venti
- Full restore can be done in a lazy fashing

Plan 9 File System

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

Organization

Vac Phy Bal Plan 9

Implemen

Performanc

Conclusio

- When combined with a small amount of read/write storage, Venti can be used as the primary location for data
- Plan 9 file system store snapshot on optical jukebox
- magnetic disks act as a cache for the jukebox
- New version of the Plan 9 file system uses Venti instead of an optical jukebox as its storage device

Outline

Venti

Presented By 陈子旸

Overvie

Abstract Backgrour Venti

Organization

0.84...24..0.

Vac Phy Bal

Implement

Performand

Conc.u.

. . .

End

Overview

- 2 Data Organization
- Application Example
- 4 Implementation
- 6 Performance
- 6 Conclusion

Implementation

Venti

Presented By 陈子旸

Overview

Abstract Backgroun

Organization

Organization

Vac

Phy Bal Plan 9

Implement

Performanc

Conclusio

Q&A

Implementation

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

Organization

Vac Phy Bal

Implement

Performanc

Conclusio

End

For data block

- Use Append-only log
- ullet Blocks store on a RAID 5 array of IDE disk drives
- For Index
 - Using a disk-resident hash table
 - Index is diveided into fixed-size buckets
 - Index store on 8 SCSI drives
- Additional work
 - caching, striping, write buffering

Format of Data Log

Venti

Presented By 陈子旸

Overviev

Abstract

Background

Venti

Organizatio

Vac Phy Ba

Phy Bal Plan 9

Implement

Performance

Conclusion

E

Figure 4. The format of the data log.

Format of Index

Venti

Presented By 陈子旸

Overview

Abstract

Background

Venti

Organizatio

Examp

Phy Ba Plan 9

Implement

Performance

Conclusior

- .

Figure 5. Format of the index.

Outline

Venti

Performance

Application Example

Performance

Performance

Venti

Presented By 陈子旸

Overview Abstract Background Venti

Organization

Vac
Phy Bak

Implemen

Performance

Conclusio

End

The performance of read and write in Mbytes/s:

	sequential	random	virgin	duplicate
	reads	reads	writes	writes
uncached	0.9	0.4	3.7	5.6
index cache	4.2	0.7	-	6.2
block cache	6.8	-	-	6.5
raw raid	14.8	1.0	12.4	12.4

Performance

Venti

Performance

Performance

Venti

Presented By 陈子旸

Overview Abstract Background Venti

Organization

Vac

Phy Bak Plan 9

Implemer

Performance

Conclusio

End

The percentage reduction in the size of data stored on Venti :

	bootes	emelie
Elimination of duplicates	27.8%	31.3%
Elimination of fragments	10.2%	25.4%
Data Compression	33.8%	54.1%
Total Reduction	59.7%	76.5%

Outline

Venti

Conclusion

Application Example

6 Conclusion

Conclusion

Venti

Presented By 陈子旸

Overviev Abstract Background Venti

 $\mathsf{Organizatior}$

Vac Phy Bak Plan 9

Implemen

Performance

Conclusion

Q GC/

End

- Approach of identifying a block by SHA-1 hash is a well suited to archival storage
- Write-once policy of a block and ability to coalesce duplicate copies of a block makes Venti a useful building block for many interesting storage application
- By rapid groth in capacity of magnetic disks, it seems unlikely that archival data will be deleted to reclaim space

Venti provides an attractive approach to archive data

Venti

Presented By: 陈子旸

Overview

Backgroun

Organization

Examp

Phy Ra

Plan 0

....p.c....c..

Performand

Q&A

_ .

Any Questions?

End

Venti

Presented By 陈子旸

Overview

Backgroui

Organizatio

V/ac

Phy Ba

Implemen

Performan

Conclusio

 $\Omega \& \Delta$

End

Thanks For Attention!