命题符号化

例,将下列命题符号化。

- 1. 兔子都比乌龟跑得快。
- 2. 有的兔子比所有的乌龟跑得快。
- 3. 并不是所有兔子都比乌龟跑得快。 ((水)))
- 4. 不存在跑得同样快的两(牙魚乐)

F(x,y): x比y跑得快。

E(x,y): x与y跑得同样快。

R(x): x是兔子。T(x): x是乌龟。

I(x,y))

命题符号化

则上述命题分别符号化为: (不唯一)

1. $\forall x \forall y ((R(x) \land T(y)) \rightarrow F(x,y))$

3.
$$\neg \forall x \forall y ((R(x) \land T(y)) \rightarrow F(x,y))$$

 $4. \neg \exists x \exists y (R(x) \land R(y) \land E(x,y))$

4. 2 一阶逻辑公式及解释

一阶语言。釆

命题逻辑自然推理系统(p47):

语言+推理规则

在系统中进行等值演算和推理。

一阶语言:用于一阶逻辑的形式语言。

一阶语言系

定义 字母表:

- 1) 个体常量: a,b,c,...,a_i, b_i, c_i,...,i≥1;
- 2)个体变量: $x, y, z, ..., x_i, y_i, z_i, ..., i \ge 1$;
- **3**)函数符号: f, g, h,...,f_i, g_i, h_i,..., i≥1;
- 4) 谓词符号: F, G, H,...,F_i, G_i, H_i,..., i≥1;
- 5)量词符号: ∀,∃;
- 6)联结词符号: ¬,∧,∨,→,↔;
- 7)括号与逗号: "(",")",","

例, 符号化已知命题:

"对于任意实数x, $x^2-1=(x+1)(x-1)$ "

令谓词R(x): x是实数

不用函数:

令谓词F(x): $x^2-1=(x+1)(x-1)$;

命题符号化: $\forall x(R(x) \rightarrow F(x))$

利用函数:

令函数: $f(x)=x^2-1$, g(x)=(x+1)(x-1)

谓词E(x, y): x = y

命题符号化: $\forall x(R(x) \rightarrow E(f(x),g(x)))$

一阶语言。釆

定义 项的递归定义:

- 1. 个体常量和个体变量是项;
- 若f(x₁,x₂,...,x_n)是任意n元函数,
 t₁,t₂,...,t_n是任意项,则f(t₁,t₂,...,t_n)
 是项;
- 3. 只有有限次地使用1,2生成的符号串才是项。

原子公式

定义: 设 $R(x_1,x_2,...,x_n)$ 是任意n元谓词, $t_1,t_2,...,t_n$ 是任意n个项,则称 $R(t_1,t_2,...,t_n)$ 是原子公式。

如, F(x), H(x,f(y,z)), G(x,a)等都是原子公式。

合式公式

定义: 合式公式 (谓词公式/公式)

- 1. 原子公式是合式公式;
- 2. 若A是合式公式,则(¬A)也是合式公式;
- 若A,B是合式公式,则(A∧B),(A∨B),
 (A→B), (A↔B)也是合式公式;
- 4. 若A是合式公式, x是个体变量则($\forall x$ A), ($\exists x$ A)也是合式公式;
- 5. 只有有限次地应用1~4构成的符号串才 是合式公式。

合式公式

说明:定义中的A,B代表任意公式。

例:

- 1. ¬P
- 2. $\neg P(x,y) \lor Q(y)$
- 3. $\forall x (P(x) \rightarrow R(x,y)) \land Q(x,y)$
- **4.** $\forall x(x+1=0) \exists y(x+y+1<0)$

等等都是公式。

辖域、约束出现和自由出现

定义: 公式 $\forall xA$, $\exists xA$ 中的x称为量词的指导变量;

A为相应量词的辖域;

在辖域中, x的所有出现都称为 约束出现;

A中不是约束出现的其它变量 均称为自由出现。

辖域、约束出现和自由出现

- 例,指出下列各公式中的指导变量,量词辖域及变量的自由出现和约束出现。
- 1) $\forall x (P(x,y) \rightarrow \exists y Q(x,y,z)) \land S(x,z)$
- 2) $\forall x(x+y+1=0 \to \exists y(x+y+1<0))$

变量的换名和代替

公式中, 有的变量既有自由出现, 又 有约束出现。

避免混淆:

1) 约束出现换名

$$\Delta x A(x, x_1, x_2, \dots, x_n) \Leftrightarrow \Delta y A(y, x_1, x_2, \dots, x_n)$$
$$y \notin \{x_1, x_2, \dots, x_n\}$$

2) 自由出现代替

$$A(x,y,z) \Leftrightarrow A(u,y,z)$$

最好替换成公式中没有出现的变量。

变量的换名和代替

- 例:将公式∀x(P(x)→Q(x,y))∧R(x,y)中的约束出现换名,判断哪一个 换名是正确的。
- 1) $\forall y (P(y) \rightarrow Q(y,y)) \land R(x,y)$
- $\forall z(P(z) \rightarrow Q(x,y)) \land R(x,y)$
- 3) $\forall z(P(z) \rightarrow Q(z,y)) \land R(x,y)$
 - 3) 正确

闭式

定义:设A是任意公式,若A中不含自由出现的个体变量,则称A为封闭的合式公式, 简称闭式。

例,
$$\forall x \forall y ((R(x) \land T(y)) \rightarrow F(x,y))$$

$$\neg \exists x \exists y (R(x) \land R(y) \land E(x,y))) 等是闭式_{\circ}$$

$$\forall x (P(x,y) \rightarrow \exists y Q(x,y,z)) \land S(x,z)$$

作业

习题四(P65)

> 5, 6

■ 习题四:

9

11(2),(5),(6)