1 Modélisation d'une expérience aléatoire

→ Vocabulaire

L'univers Ω est l'ensemble des issues ω (une issue décrit complètement le résultat de l'expér.) Evénement $A \subset \Omega$ (condition qui peut être satisfaite ou pas), sa probabilité (ne pas confondre!) Équiprobabilité : formule $\mathbb{P}(A) = \frac{\text{nb d'issues favorables}}{\text{nb d'issues possibles}} = \frac{\text{Card}(A)}{\text{Card}(\Omega)}$.

- → Exemples de problèmes de dénombrement :
 - *) Produit cartésien : (ensemble rectangulaire) $\sharp(X \times Y) = \sharp X \times \sharp Y$.
 - *) Tirage sans remise : de k objets parmi nModèle des **combinaisons** sans ordre $C_n^k = \binom{n}{k} = \frac{n!}{k! (n-k)!}$ Modèle des **arrangements** avec ordre $A_n^k = \binom{n}{k} \times k! = n(n-1) \dots (n-k+1)$
 - *) Techniques : Passage à l'événement contraire
 Décomposition en réunion disjointe (formule des probabilités totales)
 Présentation en arbre (formule des probabilités composées)

2 Lois d'un couple aléatoire discret

- → Loi d'une variable aléatoire discrète X en ligne : $x \in X(\Omega)$ x_1 x_2 ... x_i ... x_n $\mathbb{P}(X = x)$ p_1 p_2 ... p_i ... p_n
 - *) Espérance et variance : $\mathbb{E}[X] = \sum_{i \in I} x_i p_i$
 - $\star)\ \textit{Probabilit\'e d'un \'ev\'enement}:\ E=\{X\in A\},\ \text{formule}\ \mathbb{P}(E)=\sum_{x\in A}\mathbb{P}(X=x).$
- ightharpoonup Couple de variables aléatoires Notation V=(X,Y) (c'est un vecteur aléatoire) X et Y sont les variables marginales (composantes)
- → Loi conjointe d'un couple, écriture en tableau à double entrée

$X\downarrow Y$	y_1	y_2	 y_j	 y_m	Loi de X
$\overline{x_1}$	p_{11}	p_{12}	 p_{1j}	 p_{1m}	$p_{1.}$
x_2	p_{21}	p_{22}	 p_{2j}	 p_{2m}	$p_{2.}$
:	:	÷	÷	÷	:
x_i	p_{i1}	p_{i2}	 p_{ij}	 p_{im}	$p_{i.}$
:	:	÷	÷	:	:
x_n	p_{n1}	p_{n2}	 p_{nj}	 p_{nm}	p_{n} .
Loi de Y	$p_{.1}$	$p_{.2}$	 $p_{.j}$	 $p_{.m}$	1

(Savoir lire le tableau et calculer des probabilités à partir de celui-ci)

- → Loi marginale obtention depuis la loi conjointe en sommant les lignes ou les colonnes
- → Loi conditionnelle on extrait une ligne (ou une colonne) du tableau, on divise par la probabilité marginale associée (On peut aussi obtenir la loi conjointe en partant des conditionnelles)
- → Notion de variables indépendantes :

X et Y sont **indépendantes** si : (La loi conjointe est alors le produit des lois marginales)

$$\forall (x,y) \in X(\Omega) \times Y(\Omega) : \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$