Geometria Analítica e Vetores

Vetores no plano e no espaço:

Ângulos de dois vetores

Docente: $\operatorname{Prof^a}$. $\operatorname{Dr^a}$. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Definição

O ângulo de dois vetores não nulos \vec{u} e \vec{v} , representados por \overrightarrow{OA} e \overrightarrow{OB} , é o ângulo θ formado pelas semirretas OA e OB tal que $0 \le \theta \le \pi$ (radiano), ou seja $0^\circ \le \theta \le 180^\circ$.

Notação: $ang(\vec{u}, \vec{v})$.

Quando ${\rm ang}(\vec{u},\vec{v})=\frac{\pi}{2}~({\rm ang}(\vec{u},\vec{v})=90^\circ)$, dizemos que \vec{u} e \vec{v} são ortogonais. Notação: $\vec{u}\perp\vec{v}$.

Quando ${\rm ang}(\vec{u},\vec{v})=\frac{\pi}{2}$ (${\rm ang}(\vec{u},\vec{v})=90^{\circ}$), dizemos que \vec{u} e \vec{v} são ortogonais.

Notação: $\vec{u} \perp \vec{v}$.

O vetor nulo é considerado ortogonal a qualquer vetor.

Observação

- Se ${\rm ang}(\vec{u},\vec{v})=\pi$ (${\rm ang}(\vec{u},\vec{v})=180^0$), então \vec{u} e \vec{v} têm a mesma direção mas com sentidos contrátrios.
- ② Se $ang(\vec{u}, \vec{v}) = 0$, então \vec{u} e \vec{v} têm a mesma direção e têm o mesmo sentido.
- Se \vec{u} é ortogonal a \vec{v} então \vec{u} é ortogonal a $m\vec{v}$, qualquer que seja $m ∈ \mathbb{R}$.
- ① O ângulo formado pelos vetores $-\vec{u}$ e \vec{v} é o suplemento do ângulo de \vec{u} e \vec{v} , isto é

Exercício 1: Dados três vetores coplanares \vec{u} , \vec{v} e \vec{w} tais que $ang(\vec{u}, \vec{v}) = 45^{\circ}$, $ang(\vec{u}, \vec{w}) = 60^{\circ}$, $ang(\vec{v}, \vec{w}) = 105^{\circ}$. Calcule

- ② $ang(-2\vec{u}, -\vec{w})$.

Exercício 2: Sejam \vec{u} e \vec{v} dois vetores ortogonais. Prove:

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Quando \vec{u} e \vec{v} não são ortogonais, a igualdade acima é verdadeira?

Exercício 3:

Sabendo que $\|\vec{u}\| = \frac{2}{3}$ e $\|\vec{v}\| = \sqrt{3}$ e âng $(\vec{u}, \vec{w}) = 60^o$.

Calcule a área do paralelogramo formado pelos dois vetores \vec{u} e \vec{v} .

Bom estudo!!