الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوى

الشعب: رياضيات ، تقنى رياضى

اختبار في مادة: العلوم الفيزيائية

دورة جوان: 2010

المدة : 04 ساعات ونصف

الديوان الوطنى للامتحانات والمسابقات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03,5 نقطة)

نمزج في اللحظة t=0 حجما $V_1=200m$ من محلول مائي لبير وكسودي كبريتات البوتاسيوم مع حجم $V_2 = 200mL$ من محلول $V_2 = 200mL$ مع حجم $C_1 = 4.00 \times 10^{-2} \, mol. L^{-1}$ من محلول ($2K^+(aq) + S_2 O_8^{2-}(aq)$) $C_2 = 4.0 \times 10^{-1} mol.L^{-1}$ مائی لیود البوتاسیوم $(K^+(aq) + I^-(aq))$ ترکیزه المولی

1- إذا علمت أن الثنائيتين (Ox/Red) الداخلتين في التحول الكيميائي الحاصل هما:

 $\cdot (I_2 (aq)/I^- (aq)) = (S_2O_8^{2-} (aq)/SO_4^{2-} (aq))$

أ/ اكتب المعادلة المعبرة عن التفاعل أكسدة - إرجاع المنمذج للتحول الكيميائي الحاصل. ب/ أنجز جدولا لتقدم التفاعل الحادث. استنتج المتفاعل المحد.

2- توجد عدة تقنيات المتابعة تطور تشكل ثنائي اليود 1 بدلالة الزمن. استخدمت واحدة منها في تقدير كمية

تتائى اليود ورسم البيان:

 $[I_2] = f(t)$ الموضيح في (الشكل-1). أ/كم يستغرق التفاعل من الوقت لإنتاج نصف كمية ثنائي اليود النهائية ؟

ب/ لحسب قيمة السرعة الحجمية لتشكل $t = t_{1/2}$ ثنائي اليود في اللحظة

3- إن الطريقة التي أدت نتائجها إلى رسم البيان (الشكل-1)، تعتمد في تحديد تركيز ثنائي اليود المتشكل عن طريق المعايرة، حيث تؤخذ عينات متساوية، حجم كل منها V = 10mL من الوسط التفاعلي في أزمنة مختلفة (توضع العينة مباشرة لحظة أخذها في الماء والجليد) ثم تعاير بمحلول $.C'=1,0\times 10^{-2}mo\,\ell\,L^{-1}$ مائي لثيو كبريتات الصوديوم ($2Na^+(aq)+S_2O_3^{2-}(aq)$) تركيزه المولى $I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$ هي: $I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$ أ انكر الخواص الأساسية للتفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين ثيوكبريتات الصوديوم وثنائي اليود.

ب/ اوجد عبارة I_2 بدلالة كل من: V_E ; V_E ، حيث: V_E هو حجم محلول ثيوكبريتات الصوديوم اللازم لبلوغ نقطة التكافؤ E .

t=1,2min في اللحظة V_E في المضاف V_E

التمرين الثاني: (03 نقاط)

 $t_{1/2} = 30,2ans$ بنبع إشعاعي يحتوي على السيزيوم 137 المشع الذي يتميز بزمن نصف العمر $A_{1/2} = 30,2ans$ يبلغ النشاط الإشعاعي الأبتدائي لهذا المنبع $A_0 = 3,0 \times 10^5 Bq$

-1 السيزيوم -1 مصدر جسيمات -1 مصدر المسيمات -1

أ/ اكتب معادلة التفاعل النووي المنمذج لتفكك السيزيوم 137.

ب/ احسب قيمة ٦ ثابت التفكك لنواة السيزيوم.

ج/ احسب mo كتلة السيزيوم 137 الموجودة في المنبع لحظة استلامه.

المنبع. A(t) اكتب عبارة قانون النشاط الاشعاعي A(t) للمنبع.

ب/ كم تصبح قيمة نشاط المنبع بعد سنة ؟

ج/ ما قيمة التغير النسبي للنشاط الإشعاعي خلال سنة واحدة ؟

-3 يصبح المنبع غير صالح للاستعمال عندما يصبح لنشاطه الاشعاعي قيمة حدية تساوي عشر قيمته الابتدائية أي $\frac{A_0}{10}$. كم يدوم استغلال المنبع؟

₅₃ I	54Xe	55 Cs	₅₆ Ba	₅₇ La

المعطيات:

 $M_{(137C_{*})} = 136,9g/mol, N_{A} = 6,02 \times 10^{23} mol^{-1}$

التمرين الثالث: (03,5 نقطة)

بغرض شحن مكثفة فارغة، سعتها ٢، نصلها على

التسلسل مع العناصر الكهربائية التالية:

E = 5V أبت مهملة. (2) مولد نو توتر كهربائي ثابت E = 5V

- ناقل أومى مقاومته $R=120\Omega$.

- بادلة X (الشكل-2).

1 لمتابعة تطور التوتر الكهربائي u_c بين طرفي المكثفة بدلالة الزمن، نوصل مقياس فولطمتر رقمي بين طرفي المكثفة وفي اللحظة c ، نضع البادلة في الوضع (1). وبالتصوير المتعاقب تم تصوير شاشة جهاز الفولطمتر الرقمي لمدة معينة وبمشاهدة شريط الفيديو ببطء سجلنا النتائج التالية:

t(ms)	0	4	8	16	20	24	32	40	48	60	68	80
$u_c(V)$	0	1,0	2,0	3,3	3,8	4,1	4,5	4,8	4,9	5,0	5,0	5,0

 $u_c = f(t)$ ارسم البيان أ

C عين بيانيا قيمة ثابت الزمن τ لثنائي القطب RC واستنتج قيمة السعة

2- كيف تتغير قيمة ثابت الزمن ت في الحالتين ؟

- $R=120\Omega$ و C' > C حيث C' من أجل مكثقة سعتها C' من أجل مكثقة سعتها
- $R'\langle 120\Omega \rangle$ و C''=C حيث C'' و مكثفة سعتها الحالة (ب): من أجل مكثفة سعتها

ارسم، كيفيا، في نفس المعلم المنحنيين (1) و(2) المعبرين عن $u_c(t)$ في الحالتين(أ) و (ب) السابقتين.

 $\frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$ بيّن أن المعادلة التفاضلية المعبرة عن q(t) تعطى بالعبارة: q(t)

ب/ يعطى حل المعادلة التفاضلية بالعبارة $q(t)=Ae^{\alpha}+eta$ حيث A و α و ابت يطلب $q(t)=Ae^{\alpha}+eta$ تعيينها، علما أنه في اللحظة t=0 تكون q(0)=0 .

4 - المكثفة مشحونة نضع البادلة في الوضع (2) في لحظة نعتبر ها كمبدإ للأزمنة .

أراحسب في اللحظة t=0 الطاقة الكهربائية المخزنة E_0 في المكثفة.

 $E = \frac{E_0}{2}$ أجله تصبح الطاقة المخزنة في المكثفة $E = \frac{E_0}{2}$

التمرين الرابع: (03 نقاط)

نحضر محلولا (S) لحمض الإيثانويك (CH_3COOH) لهذا الغرض نحل كتلة m في حجم قدره 100mL من الماء المقطر. نقيس pH المحلول (S)بو اسطة مقياس السpH متر عند الدرجة $25^{\circ}C$ فكانت قيمته pH.

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
 - 2- أ/ أنشئ جدو لا لتقدم التفاعل الكيميائي.
 - ب/ اوجد قيمة التقدم النهائي x.

 $C = 10^{-2} mol/L$ بين أن قيمة التركيز المولى $\tau_r = 0.039$ بين أن قيمة التركيز المولى m ثم استنج m قيمة الكتلة المنحلة في المحلول m.

 Q_{r_f} عند التوازن Q_{r_f} . ما هي جهة تطور الجملة الكيميائية؟

4- بهدف التأكد من قيمة التركيز المولي C للمحلول (S)، نعاير حجما $V_a=10mL$ منه بواسطة محلول أساسي لهيدروكسيد الصوديوم $(Na^+(aq)+HO^-(aq))$ تركيزه المولي

نيدث التكافؤ عند إضافة حجم $V_{bE}=25mL$ من المحلول الأساسي. $C_{b}=4,0.10^{-3}mol\ L^{-1}$ أ اذكر البروتوكول التجريبي لهذه المعايرة.

ب/ اكتب معادلة التفاعل المنمذج لهذا التحول.

- المعطاة سابقا. - المحلول - المعطاة سابقا. + المعطاة سابقا.

د/ ما هي قيمة pH المزيج لحظة إضافة 12,5mL من محلول هيدروكسيد الصوديوم؟

يعطى: M(C)=12g mol-1 ، M(C)=12g mol-1 ، M(H)=1g.mol-1 ، M(H)=1g.mol-1 بعطى: pka(CH,COOH/CH,COO-)=4,8 ، M(O)=16g.mol-1

التمرين الخامس: (03 نقاط)

تتكون دارة كهربائية من العناصر التالية مربوطة على التسلسل: وشيعة ذاتيتها L ومقاومتها r، ناقل أومي مقاومته $E=17,5\Omega$ مولد ذي توتر كهربائي ثابت E=6,00V قاطعة كهربائية E=6,00V الشكلE=0 نغلق القاطعة في اللحظة E=0.

سمحت برمجية للإعلام الآلي بمتابعة تطور شدة التيار الكهربائي المار في الدارة مع مرور الــزمن ومشاهدة البيان: i = f(t).

1. بالاعتماد على البيان:

أ- استنتج قيم كل من شدة التيار الكهربائي في النظام الدائم، قيمة ثابت الزمن ، للدارة.

ب- احسب كل من المقاومة r و الذاتية L للوشيعة.

2. في النظام الانتقالي:

أ/ بتطبيق قانون التوترات أثبت أن:

حيث $I_{\scriptscriptstyle 0}$ شدة التيار في $rac{di}{dt} + rac{i}{ au} = rac{I_{\scriptscriptstyle 0}}{ au}$

النظام الدائم.

ب/ بين أن حل المعادلة هو من الشكل:

$$i = I_0 \left(1 - e^{-\frac{t}{r}} \right)$$

τ نغير الآن قيمة الذاتية t للوشيعة وبمعالجة المعطيات ببرمجية إعلام آلي نسجل قيم t ثابت الزمن للدارة لنحصل على جدول القياسات التالى:

$\tau(ms)$	·	0	12	20
	0.1	0	0.2	20
L(H)	0,1	0,2	0,3	0,5

 $L = h(\tau)$ ارسم البيان:

ب/ اكتب معادلة البيان.

ج/ استنتج قيمة مقاومة الوشيعة ٢، هل تتوافق هذه القيمة مع القيمة المحسوبة في السؤال 1-ب؟

التمرين التجريبي : (04 نقاط)

الآلى وتحصلنا على النتاج التالية:

ينزلق جسم صلب (S) كتلته m=100g على طول مستو مائل عن الأفق بزاوية $\alpha=20°$ وفق المحور \overline{xx} (الشكل-5). قمنا بالتصوير المتعاقب بكاميرا رقمية (Webcam)، وعولج شريط الفيديو ببرمجية "Aviméca" بجهاز الإعلام

t(s)	0,00	0,04	0,06	0,08	0,10	0,12
v (m.s ⁻¹)	v _o	0,16	0,20	0,24	0,28	0,32

v = f(t) الرسم البيان 1/1

2/ بالاعتماد على البيان:

أ/ بين طبيعة حركة (S) واستنتج القيمة التجريبية للتسارع a.

t=0 استنتج قيمة السرعة v_0 في اللحظة

 $t_1 = 0.08s$ و $t_1 = 0.04s$ و المقطوعة بين اللحظتين: $t_1 = 0.08s$

3/ بفرض أن الاحتكاكات مهملة:

أ/ بتطبيق القانون الثاني لنيوتن أوجد العبارة الحرفية للتسارع a_0 ثم احسب قيمته.

 \cdot ب قارن بين a_0 و a_0 . كيف تبرر الاختلاف ؟

4/ اوجد شدة القوة تر المنمذجة للاحتكاكات على طول المستوى المائل.

 $\sin 20^{\circ} = 0.34$; $g = 10 \text{ m.s}^{-2}$:

الموضدوع الثانى

التمرين الأول: (03,5 نقطة)

نحضر محلو لا (S) بمزج حجم $V_1 = 100mL$ من الماء الأكسجيني H_2O_2 تركيزه المولي $V_1 = 100mL$ مع حجم $V_2 = 100mL$ مع حجم $C_1 = 4,5.10^{-2}mol.L^{-1}$ تركيزه المولي $(K^+(aq)+I^-(aq))$ مع حجم $V_2 = 100mL$ من محلول يود البوتاسيوم $(H_2O_2(aq)/H_2O(l))$ ، $(I_2(aq)/I^-(aq))$ تركيزه المولي $C_2 = 2,0.10^{-1}mol.L^{-1}$

- 1 أ/ اكتب معادلة التفاعل أكسدة إرجاع معتمدا على المعادلتين النصفيتين. برا أنشئ جدو لا لتقدم التفاعل واستنتج المتفاعل المحد.
- V=20mL حجم V=20mL وفي $I_2(aq)$ على عدة أنابيب متماثلة كل منها يحتوي على حجم $I_2(aq)$ اللحظة $I_2(aq)$ نضيف إلى الأنبوب الأول ماء وقطع من الجليد ثم نعاير ثنائي اليود $C=1,0mol.L^{-1}$ تركيزه المولي $(2Na^+(aq)+S_2O_3^{2-}(aq))$ تركيزه المولي ألمضاف عند نكرر التجربة السابقة كل ثلاث دقائق مع بقية الأنابيب، علما أن حجم الثيوكبريتات المضاف عند التكافؤ هو V_E .

لماذا نضيف الماء وقطع الجليد لكل أنبوب قبل المعايرة ؟

3 - ننمذج التحول الكيميائي الحادث أثناء المعايرة بالمعادلة:

 $I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$. $[I_2] = \frac{CV_L}{2V}$: يعطى بالعلاقة اليود المتشكل في أي لحظة t يعطى بالعلاقة:

- 4 إن دراسة تغيرات التركيز المولي لثنائي
 البود المتشكل بدلالة الزمن أعطى
 البيان (الشكل-1).
 - أ- استنتج قيمة I_2 في نهاية التفاعل. احسب قيمة السرعة الحجمية

 $t = 8 \min$ لتشكل I_2 في اللحظة

ج- استنتج سرعة اختفاء الماء الأكسجيني
 في نفس اللحظة 8min.

التمرين الثاني: (03 نقاط)

لا يوجد البلوتونيوم $^{241}_{94}Pu$ في الطبيعة، وللحصول على عينة من أنويته يتم قذف نواة $^{241}_{94}Pu$ في مفاعل نووي بعدد x من النيترونات. حيث يمكن نمذجة هذا التحول النووي بتفاعل معادلته: $^{238}_{04}U + x_0^{1}n \rightarrow ^{241}_{04}Pu + y_0^{1}e$.

-1 أ- بتطبيق قانونى الانحفاظ عين قيمتى x و y

 -2^{A} ب- تصدر نواة البلوتونيوم Pu أثناء تفككها جسيمات β^{-} ونواة الأمريكيوم

Z و Z التفكك النووي للبلوتونيوم وحدّد قيمتى العددين Z

 $_{2}^{A}Am$ و $_{94}^{241}Pu$ لنواتي $_{94}^{241}Pu$ لنواتي $_{94}^{241}Pu$ النواتي $_{94}^{241}Pu$ و مقدرة بـ $_{1}^{241}Pu$ النواتي $_{1}^{241}Pu$ و مقدرة بـ $_{1}^{241}Pu$ النواتي و مقدرة بـ $_{1}^{241}Pu$ و مقدرة بـ $_{1}^{241}P$

 N_0 نواة. t=0 على N_0 نواة. المشع في اللحظة t=0 على البلوتونيوم

بدر اسة نشاط هذه العينة في أزمنة مختلفة تم الحصول على النسبة $\frac{A(t)}{A_0}$ حيث A(t) نشاط العينة في اللحظة t=0 فحصلنا على النتائج التالية:

t(ans)	0	3	6	9	12
$\frac{A(t)}{A_0}$	1,00	0,85	0,73	0,62	0,53

 $-\ln \frac{A(t)}{A_0} = f(t)$ البيان: البيان: ورقة مليمترية، البيان: ال $\frac{A(t)}{A_0} = f(t)$ المقدار $\ln \frac{A(t)}{A}$ بدلالة λ و λ

 $a_{241}Pu$ جين بيانيا قيمة ثابت التفكك λ واستنتج $t_{\frac{1}{2}}$ قيمة زمن نصف عمر البلوتونيوم $m\binom{A}{z}Am$ = 241,00457u ، m(p) = 1,00728u ، $m\binom{241}{z}Pu$ = 241,00514u : m(n) = 1,00866u ، $u = \frac{931,5}{c^2}MeV$

التمرين الثالث: (03,5 نقطة)

نربط على التسلسل العناصر الكهربائية التالية:

- افل أومى مقاومته Ω500 = R.
- مكثفة سعتها C غير مشحونة.
- مولد ذي توتر كهربائي ثابت E.
 - قاطعة k (الشكل-2).

مكنت متابعة تطور التوتر الكهربائي $u_{\epsilon}(t)$ بين لبوسي المكثفة برسم البيان (الشكل-3).

1/ عمليا يكتمل شحن المكثقة عندما يبلغ التوتر الكهربائي بين طرفيها %99 من قيمة التوتر الكهربائي بين طرفي المولد.

اعتمادا على البيان:

أ/ عين قيمة ثابت الزمن r وقيمة التوتر الكهربائي بين طرفي المولد ثم أحسب سعة المكثفة C.

ب/ حدد المدة الزمنية 't الكتمال عملية شحن المكثفة.

 τ ما هي العلاقة بين t' و τ ?

2/ بتطبيق قانون جمع التوترات أوجد المعادلة التفاضلية بدلالة التوتر

 $u_c(t) = E\left(1 - e^{-\frac{t}{t_c}}\right)$: الكهربائي بين طرفي المكثفة: $u_{AB} = u_c(t)$ ثم بين أنها تقبل حلاً من الشكل: $u_{c}(t) = E\left(1 - e^{-\frac{t}{t_c}}\right)$ اوجد قيمة الطاقة الكهربائية المخزنة E_c في المكثفة عند اللحظات: $E_c = f(t)$ شكل المنحنى $E_c = f(t)$.

التمرين الرابع: (03 نقاط)

بغرض تحضير محلول (S_1) لغاز النشادر $NH_3(g)$ ، نحل $NH_3(g)$ من الماء المقطر.

 $V_M = 24L.mol^{-1}$ المحلول (S_1) ، علما أن الحجم المولي في شروط التجربة C_1 المحلول -1 المحلول -1 المنافق ا

11,1 المحلول (S_1) في PH المحلول (S_1) في PH المحلول (S_1)

أ– أنشئ جدولا لتقدم التفاعل.

ب- احسب نسبة التقدم النهائي τ_{ij} . ماذا تستنتج ؟

 S_2 حجمه الأستاذ في حصة الأعمال المخبرية فوج من التلاميذ لتحضير محلو S_2 حجمه V=50mL وتركيزه المولي V=50mL

أ- ما هي الخطوات العملية المتبعة لتحضير المحلول (S_2) ؟

ب- إن قيمة pH المحلول (S_2) المحضر تساوي (S_2) المحضر تساوي (S_2) المحضر النهائي والمحضر المحضر الم

ج- ما تأثير الحالة الابتدائية للجملة على نسبة التقدم النهائي للتفاعل ؟

 $\cdot (NH_4^+(aq)/NH_3(aq))$ الثنائية K_a المعرضة ثابت الحموضة -4

التمرين الخامس: (03 نقاط)

أ/ يكون مسار حركة مركز عطالة كوكب حول الشمس اهليليجياً كما يوضحه (الشكل-4). ينتقل الكوكب أثناء حركته على مداره من النقطة C إلى النقطة C ثم من النقطة D إلى النقطة C ثم من النقطة D المدة الزمنية Δt .

-2 حسب قانون كبلر الثاني ما هي العلاقة بين المساحتين S_1 و S_2 ?

C' بيّن أن متوسط السرعة بين الموضعين C' و C' أقل من متوسط السرعة بين الموضعين D' و D'.

-/ من أجل التبسيط ننمذج المسار الحقيقي لكوكب في المرجع الهليومركزي بمدار دائري مركزه O (مركز الشمس) ونصف قطره r (الشكل -5). يخضع كوكب أثناء حركته حول الشمس إلى تأثيرها والذي ينمذج بقوة \vec{F} ، قيمتها تعطى حسب قانون الجذب العام لنيوتن بالعلاقة:

حيث M كتلة الشمس، m كتلة التجانب $F=G\frac{mM}{r^2}$

الكوني $SI^{-1}SI \times G = 6,67 \times 10^{-1}$ باستعمال برمجية "Satellite" في جهاز الإعلام الآلي تم رسم البيان $T^2 = f(r^3)$.

1/ اذكر نص قانون كبلر الثالث.

2/ بتطبیق القانون الثانی لنیوتن علی الکوکب وباهمال تأثیرات الکواکب الأخری، اوجد عبارة کل من v سرعة الکوکب، ودور حرکته T بدلالة M:G:r.

 r^3 و T^2 بين T^2 و T^3 و T^3

أ بتوظيف العلاقتين الأخيرتين استنتج قيمة كتلة الشمس M.

(الشكل-4)

الكوكب الشمس (الشكل-5)

 $T^{2}(\times 10^{17}s^{2})$ 1,6
1,4
1,2
1,0
0,8
0,6
0,4
0,2 $T^{2}(\times 10^{17}s^{2})$ $T^{2}(\times 10^{17}s^{2})$ $T^{2}(\times 10^{17}s^{2})$ $T^{2}(\times 10^{17}s^{2})$

(الشكل-6)

صفحة و من 10

التمرين التجريبي: (04 نقاط)

لدراسة حركة سقوط جسم صلب (S) كتلته m شاقوليا في الهواء، أستعملت كاميرا رقمية (Webcam)، عولج شريط الفيديو ببرمجية "Avistep" في جهاز الإعلام الآلي فتحصلنا على النتائج التالية:

t(ms)	0	100	200	300	400	500	600	700	800	900
$v\left(ms^{-1}\right)$	0	0,60	0,90	1,02	1,08	1,10	1,12	1,13	1,14	1,14

v = f(t) أ ارسم المنحنى البيائي الممثل لتغيرات السرعة v بدلالة الزمن: (1

.
$$1~cm \rightarrow 0.1s$$
 4 $1~cm \rightarrow 0.20m~s^{-1}$:

ب/ عين قيمة السرعة الحدية ν_{lim}

ج/ كيف يكون الجسم الصلب (S) متميز اللحصول على حركة مستقيمة شاقولية انسحابية في نظامين انتقالي ودائم؟

t=0 في اللحظة t=0 د/ احسب تسارع حركة

$$\frac{dv}{dt} + Av = C\left(1 - \frac{\rho V}{m}\right)$$
 : بالعبارة: (3) بالعبارة: (4) بالعبارة: (5) بالعبارة: (6) بالعبارة: (7) بالعبارة: (8) بالعبارة: (8) بالعبارة: (8) بالعبارة: (9) بالعبارة: (9) بالعبارة: (9) بالعبارة: (10) بالعب

حيث q الكتلة الحجمية للهواء، V حجم (S).

أ/ مثل القوى الخارجية المطبقة على مركز عطالة (S).

ب/ بتطبيق القانون الثاني لنيوتن، اوجد المعادلة التفاضلية لحركة مركز عطالة (S) بدلالة السرعة v وذلك في حالة السرعات الصغيرة.

وبيّن أن: $A = \frac{k}{m}$ و C = g و بيّن أن: $A = \frac{k}{m}$

k استنتج قيمة دافعة أرخميدس وقيمة الثابت

m = 19g , $g = 9.8N \, \text{Kg}^{-1}$: