STAT 215A Fall 2023 Week 4

Chengzhong Ye

Announcements

- Lab 1 due next week: 11:59pm Friday Sept. 22
- I will send out instructions on how to do peer reviews next Friday
 - Completed peer reviews due in one week from the lab deadline at 11:59pm Friday
 Sept. 29
- Lab 2 + Homework 2 will also be released next Friday

Clarifications

Lab1 folder

• HW1 Q2

Link broken. Picture uploaded to gsi repo

Plan for Today:

- PCS documentation
- Kernel density plot
- Review of PCA
- Exercise

Veridical Data Science (Karl Kumbier and Bin Yu, 2019)

1. Domain question / problem*

- Domain question / problem*
- 2. Data collection & storage*

- Domain question / problem*
- 2. Data collection & storage*
- Data cleaning & preprocessing*

- Domain question / problem*
- 2. Data collection & storage*
- Data cleaning & preprocessing*
- 4. EDA*

- Domain question / problem*
- Data collection & storage*
- Data cleaning & preprocessing*
- 4. EDA*
- 5. Modeling & post-hoc analysis + PCS inference

- Domain question / problem*
- 2. Data collection & storage*
- Data cleaning & preprocessing*
- 4. EDA*
- 5. Modeling & post-hoc analysis + PCS inference
- 6. Interpretation

Veridical Data Science (Karl Kumbier and Bin Yu, 2019)

- Domain question / problem*
- 2. Data collection & storage*
- Data cleaning & preprocessing*
- 4. EDA*
- 5. Modeling & post-hoc analysis + PCS inference
- 6. Interpretation

You just did this!

Veridical Data Science (Karl Kumbier and Bin Yu, 2019)

- Domain question / problem*
- 2. Data collection & storage*
- 3. Data cleaning & preprocessing*
- 4. EDA*
- 5. Modeling & post-hoc analysis + PCS inference
- 6. Interpretation

You just did this!

Coming soon...

PCS Documentation Examples

- Ex.: Cancer Cell Line Encyclopedia (Xiao Li, Tiffany Tang and Bin Yu, 2020)
- https://github.com/Yu-Group/stadisc
- This is all about **transparent** and **reproducible** research!

Kernel density estimation plot

Estimate the density, f, by adding together individual kernel functions

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big).$$

Estimate the density, f, by adding together individual kernel functions

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big).$$

Each kernel function is centered at a data point

The width of the kernel function is defined by the bandwidth $m{h}$

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big)$$

Essentially using densities to visualize data points, estimation is not necessarily involved

There are many possible kernel functions that you could use:

- Gaussian
- Uniform
- Triangular
- ..

There are many possible kernel functions that you could use:

- Gaussian
- Uniform
- Triangular
- ...

Properties:

$$K(u) \ge 0$$

Gaussian kernel

Support: $u \in \mathbb{R}$

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

Square kernel

Support: $|u| \leq 1$

$$K(u) = \frac{1}{2}$$

Triangular kernel

Support: $|u| \leq 1$

$$K(u) = 1 - |u|$$

Review of PCA

(Slides in part thanks to Tiffany Tang)

SVD

(assuming n > p)

Economic SVD

In R: svd()

PCA

PC directions: dominant feature patterns

$$\mathbf{v}_1 = \operatorname{argmax}_{\mathbf{v} \in \mathbb{R}} \mathbf{v}^\top \mathbf{X}^\top \mathbf{X} \mathbf{v}$$
 subject to $\|\mathbf{v}\|_2^2 = 1$, $\mathbf{v}^\top \mathbf{v}_i = 0 \ \forall i \neq j$

PC scores: dominant observation patterns

$$d_j \, \mathbf{u}_j = \mathbf{X} \, \mathbf{v}_j$$
 (projection of data onto directions of maximizing variance)

Proportion of Variance Explained:

$$\frac{\mathbf{v}_j^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{v}_j}{\operatorname{tr}(\mathbf{X}^{\top} \mathbf{X})} = \frac{d_j^2}{\sum_{i=1}^p d_i^2}$$

Practical Considerations for PCA

- PCA is optimal with Gaussian data, but can also work with non-Gaussian data in practice (but not always)
- What to do with categorical data?
 - One-hot encoding

Only need to run PCA once to get all orthogonal, nested components

Other Alternatives

- Modifications of PCA:
 - Sparse PCA: sparse, interpretable PCs
 - Kernel PCA: want non-linear PCs
 - Functional PCA: for functional/time series data
 - Robust PCA: for grossly corrupted observations
 - Downside: requires additional tuning parameters, which are difficult to tune
- Other methods for dimensionality reduction and pattern recognition
 - NMF: https://blog.acolyer.org/2019/02/18/the-why-and-how-of-nonnegative-matrix-factorization/
 - t-SNE: https://distill.pub/2016/misread-tsne/
 - UMAP: https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
 - CCA: https://en.wikipedia.org/wiki/Canonical_correlation