INT201 Decision, Computation and Language

Lecture 6 – Context-Free Languages (1)

Dr Yushi Li

Context-Free Languages

- Context-Free Grammar (CFG)
- Chomsky Normal Form (CNF)
- Pushdown Automata (PDA)
- Equivalence of PDA and context-free languages
- The pumping lemma for context-free languages

Context-Free Grammar

Example

• Start variable S with rules:

 $S \rightarrow AB$

 $A \rightarrow a$

 $A \rightarrow aA$

 $B \rightarrow b$

 $B \rightarrow bB$

variables: S, A, B terminals: a, b

Following these rules, we can yield?

Context-Free Grammar

Definition

A context-free grammar is a 4-tuple $G = (V, \Sigma, R, S)$, where

- 1. V is a finite set, whose elements are called variables,
- 2. Σ is a finite set, whose elements are called **terminals**,
- 3. $V \cap \Sigma = \emptyset$,
- 4. S is an element of V; it is called the **start variable**,
- 5. R is a finite set, whose elements are called **rules**. Each rule has the form $A \to w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$.

Context-Free Grammar

Example

Language L = $\{0^k0^k : k \ge 0\}$ has CFG G = (V, Σ, R, S) ,

Deriving strings and languages using CFG

Definition 1

 \Rightarrow : yeild

Let $G = (V, \Sigma, R, S)$ be a context free grammar with

- $A \in V$
- $u, v, w \in (V \cup \Sigma)^*$,
- $A \rightarrow w$ is a rule of the grammar

The string uwv can be derived in one step from the string uAv, written as

$$uAv \Rightarrow uwv$$

Example: $aaAbb \Rightarrow aaaAbb$

Deriving strings and languages using CFG

Definition 2

* ⇒ : derive

Let $G = (V, \Sigma, R, S)$ be a context free grammar with

• $u, v \in (V \cup \Sigma)^*$

The string v can be derived from the string u, written as $u \stackrel{\hat{}}{\Rightarrow} v$, if one of the following conditions holds:

- 1. u = v
- 2. there exist an integer $k \geq 2$ and a sequence u_1, u_2, \ldots, u_k of strings in $(V \cup \Sigma)^*$, such that
- (a) $u = u_1$,
- (b) $v = u_k$, and $u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k$.

Example: With the rules $A \rightarrow B1 \mid D0C$

$$0AA \stackrel{*}{\Rightarrow} 0D0CB1$$

Language of CFG

Definition

The language of CFG $G = (V, \Sigma, R, S)$ is

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Such a language is called **context-free**, and satisfies $L(G) \subseteq \Sigma^*$.

Example

CFG $G = (V, \Sigma, R, S)$ with

- 1. $V = \{S\}$
- 2. $\Sigma = \{0, 1\}$
- 3. Rules R: $S \rightarrow 0S \mid \epsilon$

$$L(G) = ?$$

Example (Palindrome)

CFG $G = (V, \Sigma, R, S)$ with

- 1. $V = \{S\}$
- 2. $\Sigma = \{a, b\}$
- 3. Rules R: $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$

Language of this CFG?

Example (Even-Even)

Language EVEN-EVEN is the set of strings over $\Sigma = \{a, b\}$ with even number of a's and even number of b's. The regular expression of this language is

$$(aa \cup bb \cup (ab \cup ba)(aa \cup bb)^*(ab \cup ba))^*$$

Its CFG?

Example (Simple Arithmetic Expressions)

CFG
$$G = (V, \Sigma, R, S)$$
 with

1.
$$V = \{S\}$$

2.
$$\Sigma = \{+, -, \times, /, (,), 0, 1, 2, \dots, 9\}$$

3. Rules R:

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdot \cdot \cdot \mid 9$$

L(G): valid arithmetic expressions over single-digit integers

S derives string
$$3 \times (5 + 6)$$

$$S \Rightarrow S \times S \Rightarrow S \times (S) \Rightarrow S \times (S+S) \Rightarrow 3 \times (S+S) \Rightarrow 3 \times (5+S) \Rightarrow 2 \times (5+6)$$

Regular Languages are context-free

Theorem

Let Σ be an alphabet and let $L \subseteq \Sigma^*$ be a regular language. Then L is a context-free language (Every regular language is context-free).

Proof

Since L is a regular language, there exists a deterministic finite automaton $M=(Q,\Sigma,\delta,q,F)$ that accepts L. To prove that L is context-free, we have to define a context-free grammar $G=(V,\Sigma,R,S)$, such that L=L(M)=L(G). Thus, G must have the following property:

For every string $w \in \Sigma^*$,

 $w \in L(M)$ if and only if $w \in L(G)$,

which can be reformulated as

M accepts w if and only if $S \stackrel{^{\star}}{\Rightarrow} w$.

Set $V=\{R_i \mid q_i \in Q\}$ (that is, G has a variable for every state of M). Now, for every transition $\delta(q_i \ , \ a)=q_j$ add a rule $R_i \to aR_j$. For every accepting state $q_i \in F$ add a rule $R_i \to \epsilon$. Finally, make the start variable $S=R_0$.

Regular Languages are context-free

Example

Let L be the language defined as

$$L = \{w \in \{0, 1\}^*: 101 \text{ is a substring of } w\}.$$

The DFA M that accepts L

How can we convert M to a context-free grammar G whose language is L?

Regular Languages are context-free

Example

Chomsky Normal Form (CNF)

Definition

A context-free grammar $G = (V, \Sigma, R, S)$ is said to be in **Chomsky normal form**, if every rule in R has one of the following three forms:

- A \rightarrow BC, where A, B, and C are elements of V, B \neq S, and C \neq S.
- $A \rightarrow a$, where A is an element of V and a is an element of Σ .
- $S \rightarrow \varepsilon$, where S is the start variable.

Why CNF?

Grammars in Chomsky normal form are far easier to analyze.

Example

Rules of CFG in Chomsky normal form with $V = \{S, A, B\}$, $\Sigma = \{a, b\}$:

$$G_1: S \to AB, S \to c, A \to a, B \to b$$
 (CNF)

$$G_1: S \to aA, A \to a, B \to c \text{ (not CNF)}$$

Chomsky Normal Form (CNF)

Theorem

Let Σ be an alphabet and let $L \subseteq \Sigma^*$ be a context-free language. There exists a context-free grammar in Chomsky normal form, whose language is L (Every CFL can be described by a CFG in CNF).

Proof

Given CFG $G = (V, \Sigma, R, S)$. Replace, one-by-one, every rule that is not "Chomsky".

- Start variable (not allowed on RHS of rules)
- ϵ -rules (A $\rightarrow \epsilon$ not allowed when A isn't start variable)
- all other violating rules $(A \rightarrow B, A \rightarrow aBc, A \rightarrow BCDE)$

Transformation steps

Step 1. Eliminate the start variable from the right-hand side of the rules.

- New start variable S₀
- New rule $S_0 \rightarrow S$

Step 2. Remove ϵ -rules $A \to \epsilon$, where $A \in V - \{S\}$.

- Before: $B \to xAy$ and $A \to \epsilon \mid \cdot \cdot \cdot$
- After: $B \rightarrow xAy \mid xy \text{ and } A \rightarrow \cdot \cdot \cdot$

When removing $A \rightarrow \varepsilon$ rules, insert all new replacements:

- Before: $B \rightarrow AbA$ and $A \rightarrow \epsilon \mid \cdot \cdot \cdot$
- After: $B \rightarrow AbA \mid bA \mid Ab \mid b$ and $A \rightarrow \cdot \cdot \cdot$

Transformation steps

Step 3. Remove **unit rules** $A \rightarrow B$, where $A \in V$.

- Before: $A \rightarrow B$ and $B \rightarrow xCy$
- After: $A \rightarrow xCy$ and $B \rightarrow xCy$

Step 4. Eliminate all rules having more than two symbols on the right-hand side.

- Before: $A \rightarrow B_1B_2B_3$
- After: $A \rightarrow B_1A_1$, $A_1 \rightarrow B_2B_3$

Step 5. Eliminate all rules of the form $A \rightarrow ab$, where a and b are not both variables.

- Before: $A \rightarrow ab$
- After: $A \rightarrow B_1B_2$, $B_1 \rightarrow a$, $B_2 \rightarrow b$.

Example

Given a CFG $G = (V, \Sigma, R, S)$, where $V = \{A, B\}$, $\Sigma = \{0, 1\}$, A is the start variable, and R consists of the rules:

$$A \rightarrow BAB \mid B \mid \epsilon$$
$$B \rightarrow 00 \mid \epsilon$$

Convert this G to CNF:

Step 1. Eliminate the start variable from the right-hand side of the rules.

Example

Step 2. Remove ε -rules.

(1) Remove $A \rightarrow \epsilon$: $S \rightarrow A, A \rightarrow BAB$

(2) Remove $B \to \varepsilon: A \to BAB, A \to B, A \to BB$

Example

Step 3. Remove unit-rules.

(1) Remove $A \rightarrow A$:

(2) Remove $S \rightarrow A$:

Example

Step 3. Remove unit-rules.

(3) Remove $S \rightarrow B$:

(4) Remove $A \rightarrow B$:

Example

Step 4. Eliminate all rules having more than two symbols on the right-hand side.

(1) Remove $S \rightarrow BAB$:

(2) Remove $A \rightarrow BAB$:

Example

Step 5. Eliminate all rules, whose right-hand side contains exactly two symbols, which are not both variables.

(1) Remove $S \rightarrow 00$:

(1) Remove A \rightarrow 00:

Example

Step 5. Eliminate all rules, whose right-hand side contains exactly two symbols, which are not both variables.

(3) Remove $S \rightarrow 00$:

