Predicting Seizures

Conor Murphy

000

Lifecycle of Epilepsy

Interictal - Baseline/between seizures

Preictal - pre-seizure

Ictal - the seizure itself

Post-ictal - period after a seizure

Lifecycle of Epilepsy

Interictal - Baseline/between seizures

Preictal - pre-seizure

Most difficult to classify

Ictal - the seizure itself

Post-ictal - period after a seizure

The Data

≈ 8k 10-minute recordings

Each recording 240k x 16

40 gb total data

EC2 m4.10xlarge

Feature Building

High frequency activity

300

250

Pearson Correlations

0

2

Method of Moments, etc.

- Mean
- Variance
- Skew
- Kurtosis
- Entropy
- Min/Max
- Median

Final Scores

Patient	Log. Reg	R. Forest	XGBoost	SVM
Combined	0.81 / 0.88	0.88 / 0.91	0.91	0.84 / 0.87

Next Steps

- Understanding feature interaction
- Bayesian live model
- Side data
 - Metric of severity of patient's epilepsy
 - Calibration of the system to attain better baseline
 - Activity data to address what's influencing a given brain state
- Additional wavelets: Morlet and 'spike-and-wave'
- Convolutional Neural Nets

Thank you!

conorbmurphy@gmail.com

github.com/conorbmurphy/Predicting-Seizures

@conorbmurphy