Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Grand Prize: 0.8563

Latent Factor Models (e.g., SVD)

Latent Factor Models

SVD: $A = U \Sigma V^T$

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	$= q_i$	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
	= row <i>i</i> o = columi	f Q ∩ x of P [⊤]

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3
	_	-	

factors

S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
ctc	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>6</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

users

PT

Ratings as Products of Factors

How to estimate the missing rating of

user x for item i?

$\hat{r}_{xi} =$	q_i	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
	row <i>i</i> o = colum	of Q n x of P [⊤]

.3

-.4

2.9

2.4

-.6

-.9

1.3

1.4

1.2

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3
•	fa	ctors	3

S	1.1	2	.3	.5	-2	5
	8	.7	.5	1.4	.3	-1
fa	2.1	4	.6	1.7	2.4	.9
•						

PT

-.3

users

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x
$=\sum_{i=1}^{n}$	q_{if}	$\cdot p_{xf}$
_ -	row <i>i</i> c colum	of Q n x of P ^T

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

•

f factors

ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
acte	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
f f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

USERS

PT

Latent Factor Models

Latent Factor Models

Recap: SVD

Remember SVD:

A: Input data matrix

U: Left singular vecs

V: Right singular vecs

Σ: Singular values

So in our case:

"SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{r}_{xi} = q_i \cdot p_x$$

SVD: More good stuff

 We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{i j \in A} \left(A_{ij} - \left[U \Sigma V^{\mathrm{T}} \right]_{ij} \right)^{2}$$

- Note two things:
 - SSE and RMSE are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
 - Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our R has missing entries!

Latent Factor Models

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q

$$\min_{P,O} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x)^2$$

$$\hat{r}_{xi} = q_i \cdot p_x$$

Note:

- We don't require cols of P, Q to be orthogonal/unit length
- P, Q map users/movies to a latent space
- The most popular model among Netflix contestants

Finding the Latent Factors

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

 To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Stochastic Gradient Descent

Want to find matrices P and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

- Gradient decent:
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:

$$\blacksquare$$
 P ← *P* - η · ∇ P

•
$$Q \leftarrow Q - \eta \cdot \nabla Q$$

How to compute gradient of a matrix?

Compute gradient of every element independently!

• where ∇Q is gradient/derivative of matrix Q:

$$\nabla Q = [\nabla q_{if}]$$
 and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$

- lacktriangle Here $oldsymbol{q_{if}}$ is entry $oldsymbol{f}$ of row $oldsymbol{q_i}$ of matrix $oldsymbol{Q}$
- Observation: Computing gradients is slow!

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD
 - Observation: $\nabla Q = [\nabla q_{if}]$ where

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$$

- Here q_{if} is entry f of row q_i of matrix Q
- Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
- GD: $\mathbf{Q} \leftarrow \mathbf{Q} \eta \left[\sum_{r_{xi}} \nabla \mathbf{Q}(r_{xi}) \right]$
- SGD: $\mathbf{Q} \leftarrow \mathbf{Q} \mu \nabla \mathbf{Q}(\mathbf{r}_{xi})$
 - Faster convergence!
 - Need more steps but each step is computed much faster

GD vs SGD on linear regression

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

GD

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Repeat{

$$\theta_j := \theta_j - \eta \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
(for every $j = 0, ..., n$)

SGD

New cost function

$$cost\left(\theta, (x^{(i)}, y^{(i)})\right) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost\left(\theta, \left(x^{(i)}, y^{(i)}\right)\right)$$

- 1. Randomly shuffle dataset;
- 2. Repeat{ $\text{for } i = 1, ..., m \}$ $\theta_j := \theta_j \eta \ (h_\theta \big(x^{(i)} \big) y^{(i)} \big) x_j^{(i)}$ (for every j = 0, ..., n) $\}$

SGD vs. GD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Stochastic Gradient Descent

- Stochastic gradient decent:
- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:

For each r_{xi} :

- $\begin{aligned}
 & \varepsilon_{xi} = 2(r_{xi} q_i \cdot p_x) \\
 & q_i \leftarrow q_i \mu_1 \left(\varepsilon_{xi} p_x \lambda_2 q_i \right) \\
 & n_{xi} \leftarrow p_{xi} \mu_2 \left(\varepsilon_{xi} q_i \lambda_1 p_i \right)
 \end{aligned}$
- $p_x \leftarrow p_x \mu_2 \left(\varepsilon_{xi} \, q_i \lambda_1 \, p_x \right)$
- 2 for loops:
- For until conven
- Compute gradient, do a "step

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:

For each r_{xi} :

- $\varepsilon_{xi} = 2(r_{xi} q_i \cdot p_x)$
- $q_i \leftarrow q_i \mu_1 \left(\varepsilon_{xi} p_x \lambda_2 q_i \right)$
- $p_x \leftarrow p_x \mu_2 \left(\varepsilon_{xi} \ q_i \lambda_1 \ p_x \right)$

2 for loops:

- For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

(derivative of the "error")

(update equation)

(update equation) μ ... learning rate

Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

user bias

movie bias

user-movie interaction

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
 - $\mu = \mu$ = overall mean rating
 - $\mathbf{b}_{\mathbf{x}} = \text{bias of user } \mathbf{x}$
 - \mathbf{b}_{i} = bias of movie \mathbf{i}

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user x movie i interaction interaction

Example:

- Mean rating: $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit

$$+ \left(\frac{\lambda_{1}}{1} \sum_{i} \|q_{i}\|^{2} + \lambda_{2} \sum_{x} \|p_{x}\|^{2} + \lambda_{3} \sum_{x} \|b_{x}\|^{2} + \lambda_{4} \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 λ is selected via grid-search on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

The Netflix Challenge: 2006-09

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Users prefer new movies without any reasons
 - Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i, \text{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Adding Temporal Effects

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize! (2)
Getting desperate.
Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture

Solution of BellKor's Pragmatic Chaos

Standing on June 26th 2009

June 26th submission triggers 30-day "last call"

Netflix Prize

Home

Rules

Leaderboard

Update

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	$\frac{\%}{}$ Improvement	Best Submit Time
Grand	<u>d Prize</u> - RMSE = 0.8567 - Winning Te	sam K ri	tic " o:	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	ress Prize 2008 - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	<u>acmehill</u>	0.8668	9.00	2009-03-21 16:20:50

Million \$ Awarded Sept 21st 2009

Acknowledgments

 Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth

Further reading:

- Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
- http://www2.research.att.com/~volinsky/netflix/bpc.html
- http://www.the-ensemble.com/