Базис и размерность

ЛЕКЦИЯ 3

Базис

Базис линейного пространства — такой набор векторов, что любой вектор пространства однозначно представляется в виде линейной комбинации векторов этого набора.

Векторы (1; 0) и (0; 1) образуют базис двумерного векторного пространства.

$$(x; y) = x \cdot (1; 0) + y \cdot (0; 1)$$

Векторы (1;1) и (-1;1) тоже образуют базис двумерного векторного пространства

$$(x;y) = \frac{x+y}{2} \cdot (1;1) + \frac{x-y}{2} \cdot (1;-1)$$

Векторы (1;0;0) и (0;1;0) не образуют базис трёхмерного векторного пространства: $a\cdot(1;0;0)+b\cdot(0;1;0)=(a;b;0)$. Ни при каких a и b не получится вектор (0;0;1)

Набор векторов (1;0), (1;1) и (0;1) не является базисом двумерного векторного пространства, т.к.

$$(2;1) = 2 \cdot (1;0) + (0;1) = (1;0) + (1;1)$$

Представление неоднозначно.

Конечномерные пространства

Мы будем говорить, что пространство конечномерно, если оно состоит из нулевого вектора (нульмерно) или если у него есть базис из конечного количества векторов.

Остальные пространства мы будем называть бесконечномерными.

Двумерное и трёхмерное векторные пространства конечномерны, а пространство всех функций на множестве действительных чисел — бесконечномерно.

Замечание

Будем говорить, что базис нульмерного пространства — пустое множество. Так удобнее.

Теорема

Любой базис одного конечномерного пространства содержит одинаковое количество векторов.

Замечание. Это удивительно.

Схема доказательства

Докажем, что если есть два базиса l_1, \cdots, l_n и m_1, \cdots, m_k линейного пространства L и n>k, то l_1, \cdots, l_n - не базис. Противоречие докажет теорему.

Полезное утверждение

Если для набора векторов $l_1, \cdots, l_n \in L$ найдётся набор чисел a_1, \cdots, a_n , такой, что $a_1l_1+\cdots+a_n\ l_n=0$ и хотя бы одно из чисел a_1, \cdots, a_n не равно нулю, то набор векторов l_1, \cdots, l_n не является базисом пространства L.

Доказательство утверждения

$$0 = a_1 l_1 + \dots + a_n l_n$$
$$0 = 0 \cdot l_1 + \dots + 0 \cdot l_n$$

Т.е. представление нуля не единственно. Значит, набор векторов l_1, \cdots, l_n не базис.

Доказательство теоремы

Выразим нулевой вектор через векторы «большего» базиса.

$$0 = a_1 l_1 + \dots + a_n l_n$$

Раскладывая каждый из векторов по базису m_1, \cdots, m_k мы получим систему из k уравнений на n неизвестных. Такая система обязательно имеет ненулевое решение!

Доказательство теоремы

Мы получили линейную комбинацию векторов l_1, \cdots, l_n с ненулевыми коэффициентами, дающую нулевой вектор. Значит, l_1, \cdots, l_n - не базис.

Наборы векторов $\{(1;0),(0;1)\}$ и $\{(1;1),(-1;1)\}$ образуют базисы двумерного векторного пространства, и в каждом из них два вектора.

Размерность

Размерностью конечномерного пространства называется количество векторов в базисе этого пространства.

Определение корректно, т.к. количества векторов в разных базисах одного пространства совпадают.

Обозначение

Размерность n конечномерного пространства L обозначается

 $n = \dim L$

Как представить пространство большой размерности?

Хорошая новость — этого можно не делать. Мы привыкли думать о евклидовом пространстве с длиной, углами и т.п. Линейная алгебра позволяет работать с более абстрактными вещами.

И всё-таки

Попробуем представить себя в четрырёхмерном пространстве, проследив, что происходит в более знакомых нам размерностях.

В маленьких размерностях

А что происходит с жителями одномерного пространства, прямой, когда они выходят в двумерное?

Что происходит с жителями плоскости, когда они выходят в трёхмерное пространство?

Ужасная правда

Они видят внутренности друг друга!

Четырёхмерный куб

Линейная зависимость

Мы говорим, что набор векторов линейно независим, если никакая линейная комбинация этих векторов не равна нулю, если хоть один коэффициент в ней не нулевой.

Линейная зависимость

Набор векторов линейно зависим, если существует линейная комбинация этих векторов, в которой не все коэффициенты равны нулю, а линейная комбинация равна нулю.

Базис любого линейного пространства – набор линейно независимых векторов. Это следует из доказанной нами единственности представления нуля.

Векторы (1; 0) и (0; 1) - линейно независимы.

Векторы (1;0;1) и (0;1;0) линейно независимы. Действительно, если $a\cdot(1;0;1)+b\cdot(0;1;0)=(0;0;0)$, то $(a\cdot 1+b\cdot 0;a\cdot 0+b\cdot 1;a\cdot 1+b\cdot 0)=(a;b;a)=(0;0;0)$ Т.е. a=0 и b=0

Свойства зависимых векторов

Если векторы линейно зависимы, то один из них является линейной комбинацией остальных. Действительно, пусть

$$a_1 l_1 + \cdots + a_n l_n = 0$$
 и какое-то $a_i \neq 0$. Тогда $l_i = -\left(rac{a_1}{a_i} l_1 + \cdots + rac{a_n}{a_i} l_n
ight)$ (в правой части нет слагаемого с l_i)

Свойства зависимых векторов

Если набор векторов содержит нулевой вектор, то этот набор линейно зависим.

Действительно,

$$1 \cdot 0 + 0 \cdot l_1 + \dots + 0 \cdot l_n = 0$$

Свойства зависимых векторов

Если набор векторов e_1, \dots, e_n линейно независим, а набор e_1, \dots, e_n, e_{n+1} линейно зависим, то вектор e_{n+1} линейная комбинация векторов e_1, \dots, e_n .

Действительно, если $a_1e_1+\cdots a_ne_n+a_{n+1}e_{n+1}=0$, то $a_{n+1}\neq 0$, иначе e_1,\ldots,e_n были бы линейно зависимы. Значит, $e_{n+1}=-\left(\frac{a_1}{a_{n+1}}e_1+\cdots+\frac{a_n}{a_{n+1}}e_n\right)$

Линейная оболочка

Множество линейных комбинаций множества векторов называется линейной оболочкой этих векторов.

Конечномерное пространство — линейная оболочка своего базиса

Теорема о продолжении базиса

Если набор линейно независимых векторов $l_1, ..., l_n$ входит в больший набор векторов, $l_1, ..., l_n, l_{n+1}, ..., l_k$ то набор l_1,\ldots,l_n можно дополнить некоторыми векторами из l_{n+1}, \dots, l_k так, что новый набор векторов будет линейно независим, а линейные оболочки дополненного набора и набора $l_1, \dots, l_n, l_{n+1}, \dots, l_k$ будут совпадать.

Монотонность размерности

Пусть $L \subset M$ линейное подпространство конечномерного пространства M и

 $L \neq M$. Тогда $\dim L < \dim M$.

Пусть $n = \dim L$, $k = \dim M$. Пусть $e_1, ..., e_n$ - базис пространства L; $h_1, ..., h_k$ - базис пространства M. Рассмотрим набор векторов $e_1, ..., e_n, h_1, ..., h_k$.

Монотонность размерности

Линейная оболочка этого набора совпадает с пространством M. По предыдущему утверждению из векторов h_1, \ldots, h_k можно выбрать несколько, скажем, h_1, \dots, h_r , r < k так, что векторы $e_1, \dots, e_n, h_1, \dots, h_r$ - линейно независимы, а линейная оболочка набора $e_1, \dots, e_n, h_1, \dots, h_r$ совпадает с линейной оболочкой $e_1, \dots, e_n, h_1, \dots, h_k$.

Монотонность размерности

Значит, e_1 , ..., e_n , h_1 , ..., h_r - базис пространства M. Значит, $\dim L < \dim M$