Data Transformation with dplyr:: CHEAT SHEET

dplyr functions work with pipes and expect **tidy data**. In tidy data:

x % > % f(v)becomes f(x, y)

Summarise Cases

These apply **summary functions** to columns to create a new table of summary statistics. Summary functions take vectors as input and return one value (see back).

summary function

summarise(.data, ...) Compute table of summaries. summarise(mtcars, avg = mean(mpg))

count(x, ..., wt = NULL, sort = FALSE) Count number of rows in each group defined by the variables in ... Also **tally**(). count(iris, Species)

VARIATIONS

summarise_all() - Apply funs to every column. **summarise_at()** - Apply funs to specific columns. **summarise_if()** - Apply funs to all cols of one type.

Group Cases

Use **group_by()** to create a "grouped" copy of a table. dplyr functions will manipulate each "group" separately and then combine the results.

mtcars %>% group_by(cyl) %>% summarise(avg = mean(mpg))

group_by(.data, ..., add = FALSE) Returns copy of table grouped by ... g iris <- group by(iris, Species) ungroup(x,...)Returns ungrouped copy of table. ungroup(g_iris)

Manipulate Cases

EXTRACT CASES

Row functions return a subset of rows as a new table.

filter(.data, ...) Extract rows that meet logical criteria. filter(iris, Sepal.Length > 7)

sample_frac(tbl, size = 1, replace = FALSE, weight = NULL, .env = parent.frame()) Randomly select fraction of rows. sample_frac(iris, 0.5, replace = TRUE)

sample_n(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame()) Randomly select size rows. $sample_n(iris, 10, replace = TRUE)$

top_n(x, n, wt) Select and order top n entries (by group if grouped data). top n(iris, 5, Sepal.Width)

Logical and boolean operators to use with filter()

See ?base::Logic and ?Comparison for help.

ARRANGE CASES

arrange(.data, ...) Order rows by values of a column or columns (low to high), use with **desc()** to order from high to low. arrange(mtcars, mpg) arrange(mtcars, desc(mpg))

ADD CASES

add_row(.data, ..., .before = NULL, .after = NULL) Add one or more rows to a table. add_row(faithful, eruptions = 1, waiting = 1)

Manipulate Variables

EXTRACT VARIABLES

Column functions return a set of columns as a new vector or table.

pull(.data, var = -1) Extract column values as a vector. Choose by name or index. pull(iris, Sepal.Length)

select(.data, ...) Extract columns as a table. Also **select if()**. select(iris, Sepal, Lenath, Species)

Use these helpers with select (), e.g. select(iris, starts_with("Sepal"))

contains(match) ends with(match) one of(...) matches(match)

num_range(prefix, range) :, e.g. mpg:cyl -, e.g, -Species starts_with(match)

MAKE NEW VARIABLES

These apply **vectorized functions** to columns. Vectorized funs take vectors as input and return vectors of the same length as output (see back).

vectorized function

mutate(.data, ...**)** Compute new column(s). mutate(mtcars, apm = 1/mpg)

transmute(.data, ...) Compute new column(s), drop others. transmute(mtcars, qpm = 1/mpq)

mutate_all(.tbl, .funs, ...**)** Apply funs to every column. Use with funs(). Also mutate_if(). mutate_all(faithful, funs(log(.), log2(.))) mutate_if(iris, is.numeric, funs(log(.)))

mutate_at(.tbl, .cols, .funs, ...) Apply funs to specific columns. Use with funs(), vars() and the helper functions for select(). mutate at(iris, vars(-Species), funs(log(.)))

add_column(.data, ..., .before = NULL, .after = NULL) Add new column(s). Also add count(), add tally(). add column(mtcars, new = 1:32)

rename(.data, ...) Rename columns. rename(iris, Length = Sepal.Length)

Vector Functions

TO USE WITH MUTATE ()

mutate() and transmute() apply vectorized functions to columns to create new columns. Vectorized functions take vectors as input and return vectors of the same length as output.

vectorized function

OFFSETS

dplyr::lag() - Offset elements by 1 dplyr::lead() - Offset elements by -1

CUMULATIVE AGGREGATES

dplvr::**cumall()** - Cumulative all() dplyr::**cumany()** - Cumulative any() cummax() - Cumulative max() dplyr::**cummean()** - Cumulative mean() **cummin()** - Cumulative min() cumprod() - Cumulative prod() cumsum() - Cumulative sum()

RANKINGS

dplyr::cume_dist() - Proportion of all values <= dplyr::dense_rank() - rank w ties = min, no gaps dplyr::min_rank() - rank with ties = min dplyr::ntile() - bins into n bins dplyr::percent_rank() - min_rank scaled to [0,1] dplyr::row_number() - rank with ties = "first"

MATH

+, -, *, /, ^, %/%, %% - arithmetic ops log(), log2(), log10() - logs <, <=, >, >=, !=, == - logical comparisons dplyr::**between()** - x >= left & x <= right dplyr::**near()** - safe == for floating point numbers

MISC

dplyr::case_when() - multi-case if_else() iris %>% mutate(Species = case_when(Species == "versicolor" ~ "versi", Species == "virginica" ~ "virgi", TRUE ~ Species))

dplyr::coalesce() - first non-NA values by element across a set of vectors dplyr::if else() - element-wise if() + else() dplyr::na_if() - replace specific values with NA **pmax()** - element-wise max() pmin() - element-wise min() dplyr::recode() - Vectorized switch() dplyr::recode_factor() - Vectorized switch() for factors

Summary Functions

TO USE WITH SUMMARISE ()

summarise() applies summary functions to columns to create a new table. Summary functions take vectors as input and return single values as output.

summary function

COUNTS

dplyr::**n()** - number of values/rows dplyr::**n_distinct()** - # of uniques sum(!is.na()) - # of non-NA's

LOCATION

mean() - mean, also mean(!is.na()) median() - median

LOGICALS

mean() - Proportion of TRUE's sum() - # of TRUE's

POSITION/ORDER

dplyr::first() - first value dplyr::last() - last value dplyr::nth() - value in nth location of vector

RANK

quantile() - nth quantile min() - minimum value max() - maximum value

SPREAD

IQR() - Inter-Quartile Range mad() - median absolute deviation **sd()** - standard deviation var() - variance

Row Names

Tidy data does not use rownames, which store a variable outside of the columns. To work with the rownames, first move them into a column.

rownames_to_column()

1 a t 1 a t Move row names into col. a <- rownames_to_column(iris, var

AB column to rownames()

1 a t 1 a t 2 b u Move col in row names. column_to_rownames(a, var = "C")

Also has_rownames(), remove_rownames()

Combine Tables

COMBINE VARIABLES

Use **bind_cols()** to paste tables beside each other as they are.

bind_cols(...) Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables.

left_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),...) Join matching values from y to x.

right_join(x, y, by = NULL, copy = FALSE, suffix=c(".x",".y"),...) Join matching values from x to y.

inner_join(x, y, by = NULL, copy = FALSE, suffix=c(".x",".y"),...) Join data. Retain only rows with matches.

ABCD full join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),...) Join data. Retain all values, all rows.

Use by = c("col1", "col2", ...) to specify one or more common columns to match on. $left_{join}(x, y, by = "A")$

Use a named vector, by = c("col1" = "col2"), to match on columns that have different names in each table. $left_{join}(x, y, by = c("C" = "D"))$

Use **suffix** to specify the suffix to give to unmatched columns that have the same name in both tables. left join(x, y, by = c("C" = "D"), suffix =c("1", "2"))

COMBINE CASES

АВС a t 1 b u 2 c v 3

Use **bind rows()** to paste tables below each other as they are.

DFABC bind_rows(..., .id = NULL) Returns tables one on top of the other x c v 3 as a single table. Set .id to a column name to add a column of the original table names (as pictured)

Rows that appear in both x and y.

a t 1 Rows that appear in x but not y.

ABC setdiff(x, y, ...)

ABC union(x, y, ...)a t 1 Rows that appear in x or y. b u 2 (Duplicates removed). union all() dw 4 retains duplicates.

EXTRACT ROWS

Use a "Filtering Join" to filter one table against the rows of another.

semi_join(x, y, by = NULL, ...) a t 1 Return rows of x that have a match in y. b u 2 USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, ...) c v 3 Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED.

