

circuits vector space "Jonathan Westphal"

Search

Advanced Scholar Search Scholar Preferences Scholar Help

Scholar

Results 1 - 1 of 1 for circuits vector space "Jonathan Westphal". (0.07 seconds)

Tip: Try removing quotes from your search to get more results.

Novel colours - group of 2 »

All articles Recent articles

EA Thompson - Philosophical Studies, 1992 - Springer ... As **Jonathan Westphal** observes ... For colours and the similarity colour **space** are inseparable ... The positions of the colours on the hue **circuit**, for example, are deter ... <u>Cited by 8 - Web Search</u>

circuits vector space "Jonathan Wes

Search

Google Home - About Google - About Google Scholar

©2006 Google

logic design circuits simple points "vector spac

Search

Advanced Scholar Search Scholar Preferences Scholar Help

Scholar Results 1 - 10 of about 334 for logic design circuits simple points "vector space" -2006 -2005 -20

Cellular neural networks: applications - group of 4 »

All articles Recent articles

LO Chua, L Yang - Circuits and Systems, IEEE Transactions on, 1988 - ieeexplore.ieee.org

... V, we will discuss the computer-aided **design** problem, that ... One of them, called a cellular **logic** image processor ... IEEE TRANSACTIONS ON **CIRCUITS** AND SYSTEMS, VOL. ... <u>Cited by 417</u> - <u>Web Search</u> - <u>Library Search</u>

Optimization-based transistor sizing - group of 2 »

JM Shyu, A Sangiovanni-Vincentelli, JP Fishburn, ... - Solid-State Circuits, IEEE Journal of, 1988 - ieeexplore.ieee.org

... level sizers associate with each **logic** gate a ... continuously differentiable functions of the **design** param- eters ... as fast as the equivalent **circuits** imple- mented ... <u>Cited by 61 - Web Search</u>

[воок] Linear Controller Design: Limits of Performance - group of 2 »

SP Boyd, CH Barratt - 1991 - stanford.edu

... Wehavegiven proofs and derivations only when they are **simple** and instructive. ... **logic** controllers ... the eects of this sampling must be considered in the **design** of the ... <u>Cited by 416 - View as HTML - Web Search - Library Search</u>

Macromodeling and Optimization of Digital MOS VLSI Circuits - group of 6 » MD Matson, LA Glasser - ... -Aided Design of Integrated Circuits and Systems, IEEE ..., 1986 -

ieeexplore.ieee.org

... gate behavior in a set of **simple** yet accurate ... transitions) in the section on general **logic** gates ... practicing engineer typi- cally must **design circuits** such that ... <u>Cited by 39 - Web Search - Library Search</u>

A diagnosability metric for parametric path delay faults - group of 4 » M Sivaraman, AJ Strojwas - Proc. 14th VLSI Test Symp., April, 1996 - doi.ieeecs.org ... A simple example (Figure 9) illustrates the point. ... 7] CJ Lin, SM Reddy, "On delay fault testing in logic circuits," IEEE Trans. Computer-Aided design, vol. ... Cited by 6 - Web Search

A Case Study of the Test Development for the 2nd Generation ColdFire Microprocessors - group of 6 »

D Amason, AL Crouch, R Eisele, G Giles, M Mateja - Test Conference, 1997. Proceedings., International, 1997 - doi.ieeecomputersociety.org

... The tree distribution **circuit** insertion tool, which is otherwise ... The BUS_SE **design** was validated for all scan ports by zero- delay **logic** simulation within ... Cited by 10 - Web Search - BL Direct

Solutions to the minimization problem of fault-tolerant logic circuits - group of 6 »

AE Barbour - Computers, IEEE Transactions on, 1992 - ieeexplore.ieee.org ... voting circuit increases to a point that the ... 2nR assignments become unmanageable even for a simple logic circuit. ... the concepts and properties of block design. ... Cited by 6 - Web Search

Quantum Computers Can Search Rapidly by Using Almost Any Transformation - group of 7 » LK Grover - Physical Review Letters, 1998 - APS

... 1. Quantum operations.—In a quantum computer, the **logic** circuitry and ... proved in [6], it is possible to **design** a quantum mechanical **circuit** to evaluate ... Cited by 122 - Web Search - BL Direct

A study of faulty signature for diagnostics

JC Chan, BF Womack - Circuits and Systems, 1990., IEEE International Symposium on, 1990 - ieeexplore.ieee.org

... the fact that there is no **simple** relationship between ... at fault model of a digital **circuit** with response ... Mueller implementation of combinational **logic** of the ... <u>Cited by 8 - Web Search - Library Search</u>

Exclusive-OR Representations of Boolean Functions - group of 2 »

H Fleisher, M Tavel, J Yeager - IBM Journal of Research and Development, 1983 - research.ibm.com ... every MNF as an ENF with a **simple** change in ... and L. W. Bearnson, Error Detecting **Logic** For Digital ... of Boolean Algebra To Switching **Circuit Design** and Error ... Cited by 5 - View as HTML - Web Search

G0000000000gle>

Result Page: 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>Next</u>

logic design circuits simple points "v Search

Google Home - About Google - About Google Scholar

©2006 Google

Home | Login | Logout | Access Information | Alerts

Welcome United States Patent and Trademark Office

BROWSE

SEARCH

IEEE XPLORE GUIDE

OPTION 1

Quick Find an Author:

Enter a name to locate articles written by that author.

westphal

Example: Enter Lockett S to obtain a list of authors with the last name Lockett and the first initial S.

OPTION 2

Browse alphabetically

Select a letter from the list.

<u>ABCDEFGHIJKLMNOPQRSTUVWXYZ</u>

Westphal B.	Westphal B. T.	Westpha
Westphal D.	Westphal E.	<u>Westpha</u>
Westphal F. J.	Westphal G.	Westpha
Westphal G. P.	Westphal H.	Westpha
Westphal J. T.	Westphal L.	<u>Westpha</u>
Westphal M.	Westphal R.	Westpha
Westphal V.	Westphal W. B.	Westpha
Westphaling R.	Westphall C. B.	Westpha

Select a name to view articles written by that author

Help Contact Us Privacy &

© Copyright 2006 IEEE

indexed by #Inspec

Sign in

 Web
 Images
 Groups
 News
 Froogle
 Maps
 more »

 vector space circuits
 "Jonathan Westphal" -2C
 Search
 Advanced Search Preferences

Web Results 1 - 2 of 2 for vector space circuits "Jonathan Westphal" -2006 -2005 -2004 -2003 -2002 -2001

Tip: Try removing quotes from your search to get more results.

[PDF] NOVEL COLOURS Evan Thompson In: Philosophical Studies 68 (1992 ... File Format: PDF/Adobe Acrobat - View as HTML
The positions of the colours on the hue circuit, for example, are ... Jonathan Westphal has written that "Colour space is. Leibnizian. ... www.yorku.ca/evant/ETPhilStuds92.pdf - Similar pages

[PDF] Novel colours

File Format: PDF/Adobe Acrobat

Jonathan Westphal has written that "Colour space. is Leibnizian. ... cussed above in which each colour is represented by a vector or a ...

www.springerlink.com/index/V377V06152244243.pdf - Similar pages

New! Crack the Code: Play the Da Vinci Code Quest on Google.

vector space circuits "Jonathan We: Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2006 Google

	Туре	Ref #	Hits	Search Text	
1	IS&R	S1	o	("((circuitadjdesign)samepointssamevectors)").PN.	
2	IS&R	S2	0	("(circuitadjdesign)samepointssamevectors").PN.	
3	BRS	S3	10884	(logic adj circuit) same design	
4	BRS	S4	24	((logic adj circuit) same design) same points same vector\$2	
5	BRS	S5	7	(((logic adj circuit) same design) same points same vector\$2) and (simple\$3 same form\$3)	
6	BRS	S6	8	((logic adj circuit) same design) and (vector adj space)	
7	BRS	S7	3	((logic adj circuit) same design) and (vector adj space) and (simple same form)	
8	BRS	S8	20	((vector adj space) same vector same points) and (circuit adj design)	
9	BRS	S9	20	((vector adj space) same vector same point\$2) and (circuit adj design)	
10	BRS	S10	6	(colorimetric adj computer)	
11	BRS	S11	0	(colorimetric adj computer) and vector	
12	BRS	S12	1	(colorimetric adj computer) and circuit	
13	BRS	S13	6	(colorimetric adj computer)	
14	BRS	S14	67	(simpler adj form) and (circuit adj design)	
15	BRS	S15	3	(simpler adj form) same (circuit adj design)	
16	BRS	S16	4	(logic adj circuit adj design) and (vector adj space)	
17	BRS	S17	2	"5640328".pn.	

	Туре	Ref #	Hits	Search Text
18	BRS	S18	1	"5640328".pn. and vector and logic
19	BRS	S19	0	"5640328".pn. and vector and logic and space and (simpl\$3)
20	BRS	S20	0	"5640328".pn. and vector and logic and space
21	BRS	S21	2	"5920484".pn.
22	BRS	S22	2	"5920484".pn. and vector

	Туре	L#	Hits	Search Text	DBs	Time Stamp
1	BRS	L1	· 1	"5649165".pn.	USPAT	2006/05/02 17:50
2	BRS	L2	0	"5649165".pn. and colormetric and analog and vector	USPAT	2006/05/02 17:50
3	BRS	L3	0	"5649165".pn. and colormetric and analog	USPAT	2006/05/02 17:50
4	BRS	L4	0	"5649165".pn. and colorimetric and analog	USPAT	2006/05/02 17:50
5	BRS	L5	0	"5649165".pn. and colorimetric	USPAT	2006/05/02 17:51
6	BRS	L6	1	"5640328".pn.	USPAT	2006/05/02 17:51
7	BRS	L7	0	"5640328".pn. and colorimetric	USPAT	2006/05/02 17:51
8	BRS	L8	74	(nodal adj analysis) and (vector or basis or (spanning adj set))	USPAT	2006/05/02 17:52
9	BRS	L9	2	(nodal adj analysis) and ((vector adj space) or (spanning adj set))	USPAT	2006/05/02 17:52
10	BRS	L10	4	(nodal adj analysis) and ((vector adj space) or (spanning adj set))	US- PGPUB; USPAT; USOCR; EPO; JPO DERWEN T; IBM_TDB	,2006/05/02 17:53
11	BRS	L11	3	(nodal adj analysis) and ((vector adj space) or (spanning adj set)) and logic	US- PGPUB; USPAT; USOCR; EPO; JPO DERWEN T; IBM_TDB	,2006/05/02 18:10
12	BRS	L12	3	(nodal adj analysis) and (vector adj space) and logic	US- PGPUB; USPAT; USOCR; EPO; JPO DERWEN T; IBM_TDB	,2006/05/02 18:11
13	BRS	L13	2	(nodal adj analysis) and (vector adj space) and logic and reduction	US- PGPUB; USPAT; USOCR; EPO; JPO DERWEN T; IBM_TDB	,2006/05/02 18:11