Syllabus

COURSE: Machine Learning for Cyber Security

Week	Course Details	Explanations
1	 Machine Learning Basics; - Machine learning algorithms, - Machine learning pipeline, Assignments:	Learning Outcomes; - To have a better understanding of Machine Learning approaches, - To have a better understanding of Features, Datasets and Preprocessing of data,
2	Traditional Machine Learning Algorithms; - Performance Metrics, - Iris dataset, - Decision Trees, - Support Vector Machines, - KNN, - Ensemble Learning	Learning Outcomes; - have a better understanding of Traditional ML approaches, - have a better understanding of features and performance metrics, - Why we need training, validation, and test data sets.
3	 ML pipeline and cybersecurity example; TASK: Let's imagine we want to detect the type of connected IoT devices Network packets; Using tshark command in Python and producing a dataset for classification. 	Learning Outcomes; - have a better understanding of ML pipeline, - have a better understanding of how to prepare Cyber Security data for ML pipeline, - Learn how to use Machine Learning to solve Cyber Security problems.
4	 IDS System with Traditional ML; Designing an Intrusion Detection System by using traditional ML algorithms. 	Learning Outcomes; - Learn how to use Machine Learning to solve Cyber Security problems Implementation of traditional ML algorithms on KDD Dataset,

	Linguing wised model IDS everage	- Have a better understanding of ML pipeline and implementation by using Jupyter Notebook/Google Colabs, Learning Outcomes;
5	- Unsupervised model, IDS example	- have a better understanding of ANNs, - have a better understanding of Deep Learning
6	 Convolutional Neural Networks; CNNs Basics A CNNs based DL example on ImageNet dataset, Overfitting, and solutions to mitigate the overfitting effect, How CNNs are being used in Cyber Security domain. 	Learning Outcomes; - have a better understanding of CNN, - have a better understanding of Deep Learning,
7	A Malware Detection Example by using CNNs and Malware converted images;	Learning Outcomes; - have a
		better understanding of CNNs, - have a better understanding of Deep Learning, - implementing CNNs in a malware detection scenario.

9	Transfer Learning example on malware detection scenario.	Learning Outcomes; - have a better understanding of usage of pre-trained models in cyber, - Malware detection by using a transfer learning model.
10	Word tokenization for DL models; - Tokenization rule and tools used in python/TensorFlow, - Sentiment analysis example by using TensorFlow and DL model.	Learning Outcomes; - have a better understanding of word tokenization, - have a better understanding of using word tokenization for assembly code analyze.
11	Static malware code analyses with tokenized inputs; - A M.S. Thesis on malware detection by using word embeddings will be presented.	Learning Outcomes; - have a better understanding for static malware analysis by using tokenized assembly codes as input to a DL model.
12	Phishing Detection with ML and DL models.	Learning Outcomes;
13	Credit card fraud detection via DL, Spam email detection via DL models; - Two examples will be presented for the scenarios.	- to use DL models on the credit card fraud dataset to use DL models for spam email detection.

14	Mid Term Exam,	One of the exams will be a
	Final Exam	Take Home Project. It is
		expected to construct a
		Malware Detection Tool
		on the <i>TRAPMINE</i>
		DATASET.
		The dataset belongs to a
		real-world antivirus
		system used in
		Gendarmerie General
		Command.
		The DL model can either
		be constructed based on
		assembly text
		classification or image-
		based classification
		formation.