Exact, user-oriented and reproducible variance estimation with the gustave package

Martin CHEVALIER

EU-SILC Best Practices Workshop Prague, 14-15 september 2017 Exact, user-oriented and reproducible variance estimation with the gustave package

Variance estimation is becoming a **more and more important part** of the survey production process:

- tool to assess the quality of the data collected that may affect its dissemination;
- key indicator in quality reports but also in the IESS regulation currently under discussion.

It is also a **complex issue** from a **technical** and **organizational** point of view.

This talk:

- presents the way variance estimation is implemented in France for household surveys (including EU-SILC)
- introduces the R gustave package

Exact, user-oriented and reproducible variance estimation with the gustave package

Outline

Purpose: make variance estimation easier

Live demonstration

How-to: gustave package starter's guide

Discussion and perspectives

Purpose: make variance estimation easier

Purpose: make variance estimation easier Sources of complexity: sampling design

Sampling design is the first source of complexity for exact analytical variance estimation:

- complex sampling algorithms: sampling with unequal probabilities, balanced sampling
- multi-stages sampling: two-stages sampling, master sample

Remarks

- ▶ the "ultimate cluster" methodology is applicable only if the sampling rate of the first stage is negligible
- bootstrap methodology might not be applicable under such complex sampling designs

Purpose: make variance estimation easier Sources of complexity: estimation methodology

In order to be exact, variance estimation should also take into account the estimation methodology implemented:

- ► non-response correction: the unit non-response process can be described as an additional Poisson sampling phase
- calibration on margins: calibration on margins yields significant variance reduction provided the auxiliary variables are well correlated with the variables of interest

Remark Depending on the imputation methodology, item non-response can also be taken into account in the variance estimation process.

Purpose: make variance estimation easier Sources of complexity: indicators

A final source of complexity comes from the indicators whose variance is to be estimated:

- ► non-linear indicators: mean, ratio, quantiles, Gini coefficient, At-risk of poverty rate, etc. → linearization techniques
- ▶ domain estimations: regional estimates

Remark Variance estimation with small area estimation methodology is beyond the scope of this talk.

Purpose: make variance estimation easier Organizational consequence: division of labour

- Methodologist: methodological expertise, production of variance estimation programs
- Survey specialist: topic-related expertise, use of the variance estimation programs for studies and quality reporting

New challenges: in order to be used in practice, variance estimation programs should be

- as easy-to-use as possible
- comprehensive (e.g. linearization, domain estimation)
- self-contained (reproducibility)
- not too difficult to maintain (for future upgrades)

Purpose: make variance estimation easier Introducing the gustave package

Gustave: a User-oriented Statistical Toolkit for Analytical Variance Estimation

R package currently available on GitHub: https://github.com/martinchevalier/gustave

Goal Make variance estimation as easy as possible in providing the methodologist with dedicated tools.

Live demonstration

Live demonstration Variance estimation in the French EU-SILC.

The French EU-SILC:

- ▶ 9 years rotating panel: two master samples involved, each with balanced sampling at the first stage
- general weight share methodology
- non-negligible unit non-response (attrition) and complex non-response scheme
- calibration on margins
- highly non-linear indicators: At-risk of poverty rate, Gini coefficient, etc.

Once processed by the gustave package: **one single standalone data file per year**.

Live demonstration First run

```
# Load the standalone .RData file
load("silc_bpw/precisionSilc14.RData")
# Note : the 4 data files of the survey are loaded
# together with the precisionSilc() function

# Mean equivalised disposable income per household
precisionSilc(h, HX090)
```

```
## call est variance std cv
## 1 mean(y = HX090) 24856.48 62032.16 249.0626 1.002002
## lower upper
## 1 24368.33 25344.64
```

The variance estimation takes about 1 second.

Live demonstration Standard use

##

```
# Share of households below a given (absolute) threshold
# (see below for relative threshold e.g. arpr)
precisionSilc(h, HX090 < 20000)

# Work intensity
precisionSilc(r, as.factor(RX050))</pre>
```

call mod

est variance

Live demonstration

Domain estimation

```
# Domain estimation with where (FR10 : Paris area)
precisionSilc(h, HX090, where = DB040 == "FR10")
```

```
## call est
## 1 mean(y = HX090, where = DB040 == "FR10") 29940.32
## variance std cv lower upper
## 1 416716.1 645.5355 2.156074 28675.09 31205.54
```

```
# Domain estimation with by
precisionSilc(h, HX090, by = DB040)
```

```
## call by est variance
## 1 mean(y = HX090, by = DB040) FR10 29945.66 417135.9
## 2 mean(y = HX090, by = DB040) FR21 21562.55 811957.0
## 3 mean(y = HX090, by = DB040) FR22 22348.96 435425.5
## 4 mean(y = HX090, by = DB040) FR23 23205.41 602302.2
## 5 mean(y = HX090, by = DB040) FR24 23859.54 743971.3
```

Live demonstration

Complex linearizations using the vardpoor package

```
# Installation of the vardpoor package
install.packages("vardpoor")
# Gini coefficient
precisionSilc(r, gini(HX090))
 ##
                 call est variance
                                               std
 ## 1 gini(y = HX090) 29.18782 0.2856686 0.5344798
 ##
                  lower
            CV
                           upper
 ## 1 1.831174 28.14026 30.23538
# At-risk of poverty rate
precisionSilc(r, arpr(HX090))
 ##
                 call est variance
                                               std
                                                        CV
 ## 1 arpr(y = HX090) 13.35197 0.1812268 0.4257075 3.18835
 ##
        lower
                 upper
    1 12.5176 14.18634
```

How-to: gustave package starter's guide

How-to: gustave package starter's guide "Wrap" a complex function in an easier one

The aim of the gustave package is to hide the complexity of the variance estimation process from the end user.

Basic idea "Wrapping" the complex variance estimation *function* within a variance estimation *wrapper*.

- variance estimation function: survey-specific function with a numerical matrix of data as input and the estimated variances as output
- ▶ variance estimation wrapper: generic function which handles systematic operations (linearizations, domain estimation, etc.), calls the variance function and displays the results

How-to: gustave package starter's guide Case study: stratified SRS with calibration

- simple random sampling of 2,000 households among 5,000,000
- ▶ 10 strata of size 200 each
- calibration on margins with one calibration variable

Remark No unit non-response for this example.

How-to: gustave package starter's guide Step 1: Define the variance function

```
# Install the gustave package from GitHub
install.packages("devtools")
devtools::install_github("martinchevalier/gustave")
library(gustave)
```

```
# Define the variance function
variance_function <- function(y){</pre>
  # Taking calibration into account
  e <- rescal(y, sample$auxiliary_var)</pre>
  # Variance estimation
  var <- varDT(</pre>
    y = e, pik = sample$pik, strata = sample$stratum
  return(var)
variance function(survey$var1)
  ## [1] 49383061901
```

How-to: gustave package starter's guide Step 2: Define the variance wrapper

```
# Define the variance wrapper
variance_wrapper <- define_variance_wrapper(</pre>
  variance function = variance function
  , reference id = sample$id
  , default = list(id = "id", weight = "w")
  , objects_to_include = "sample"
# Export the survey data and the variance wrapper
# for later use or dissemination
save(
  survey, variance wrapper
  , file = "precisionSurvey.RData"
```

How-to: gustave package starter's guide Step 3: Use the variance wrapper

```
# Load the .RData (for instance in an empty environment)
load("precisionSurvey.RData")
ls()
                    "variance_wrapper"
  ## [1] "survey"
# Use the variance wrapper
variance_wrapper(survey, var1)[, 1:3]
                 call est variance
  ##
  ## 1 total(y = var1) 49844011 49383061901
variance wrapper(survey, mean(var1), by = var2)
  ##
                           call by est variance
  ## 1 mean(y = var1, by = var2) a 9.906593 0.007367807
  ## 2 mean(y = var1, by = var2) b 10.044675 \ 0.006980245
  ## 3 mean(y = var1, by = var2) c 9.938034 0.007152497
  ##
             std cv lower upper
  ## 1 0.08583593 0.8664526 9.738357 10.07483
  ## 2 0.08354786 0.8317627 9.880924 10.20843
  ## 3 0.08457244 0.8509976 9.772276 10.10379
```

Discussion and perspectives

Discussion and perspectives Use of the gustave package at Insee

The gustave package is currently **used in production** at Insee for the variance estimation of: EU-SILC, LFS, the French victimation survey (and AES by the end of 2017).

The programs it produces are used by survey specialists with no expertise in variance estimation nor in the R software.

The Department of statistical methods sees the gustave package as an **investment**:

- ▶ the code of the most generic operations (e.g. linearizations, domain estimation) is documented and open for review
- ▶ it will be easier to maintain than a set of separated codes

Discussion and perspectives

Compatibility with the vardpoor package

The vardpoor package is developed and maintained by the Central Statistical Bureau of Latvia (presented in the 2015 EU-SILC Best Practices Workshop in London).

It is also dedicated to variance estimation, but with a different focus:

- it provides a wide variety of linearization functions (Laeken indicators)
- variance estimation is not exact as it relies on the "ultimate cluster" methodology

The linearization functions provided by the vardpoor package can be used within a variance wrapper produced by the gustave package through a linearization wrapper.

Discussion and perspectives Milestones and perspectives

- ▶ Under intensive development until the end of 2017: consolidation, documentation, code review
- ▶ A version will be available on CRAN at the latest in august 2018 (available on GitHub as of now)
- ► Key features before the first release:
 - new and enhanced linearization wrappers (e.g. quantiles)
 - "ready-to-estimate" variance wrapper for simple cases (one-stage stratified SRS with non-response and calibration)

Exact, user-oriented and reproducible variance estimation with the gustave package Conclusion

- Variance estimation in household surveys is a complex topic, which implies a strong collaboration between survey specialists and methodologists.
- ► The development of a unifying R package is a source of efficiency and improves the quality of the whole process.
- ▶ It is an investment that also relies on other **open-source initiatives**, e.g. the vardpoor package.
- ▶ It stimulates the use of softwares alternative to SAS at Insee.

Exact, user-oriented and reproducible variance estimation with the gustave package

Thank your for your attention!

Questions?

Martin Chevalier

martin.chevalier@insee.fr

https://github.com/martinchevalier/gustave