

RED-Radio Test Report

For

MAXIIOT LTD

LoRaWAN

Model No.: GL5712-EX, GL5712-EA

Prepared For : MAXIIOT LTD

Address : No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180830005-04W

Date of Receipt : Aug. 30, 2018

Date of Test : Aug. 30~Nov. 13, 2018

Date of Report : Nov. 13, 2018

Contents

1. General Information		Ans		'upor b	5
1.1. Client Information	, botek	Anbore	Arr. Stok	, nhotek	A. ⁵
1.2. Description of Device (EUT)	P.U.	. Anbotok	Aupr	W. WO18K	5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Description of Test Modes	Anbo	2/0,	k Aupore	Aur Wol	6
1.4. Description of Test Modes	otek Anbo	br	oto Hay	Anbo	7
1.5. List of Channels		aboten Ant		otek bupo	7
1.6. Test Conditions	Ant		Yupor Yu.	Yay	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.7. Test Equipment List	Anbor	by. "Grek	proboter p	'up-	8
1.8. Measurement Uncertainty	- Apole	Vur. Kejt		Mpor	9
1.9. Description of Test Facility	M	Anbo	K	Hapo _{fer} .	9
1.6. Test Conditions		iek pobote	Anv	otek	10
3. Operating Frequency	OLC AIR		otek Anbo	- No. 100	11
3.1. Test Standard and Limit	Tipoter Vi	100 h.	otek pob	No. And	11
3.2. Test Setup.	aotek	Aupolo P		nbotek Ar	11
3.3. Test Procedure	Pri Sek	""poter	Ambo	-botek	11
3.1. Test Standard and Limit	Anbe	notek	Aupore II	Vu. Stok	11
3. Unwanted Emissions In The Spurious Domain	1		S. Moter	Anbe	14
3.1. Test Standard and Limit	otek kato	Anu	tek Josef	- Aupora	14
3.2. Test Setup		potek Aub		odyy	14
3.3. Test Procedure	upo ki	Yayon	botes And		14
3.4. Test Data	Robote	Var.	botels	100 × V	14
4. Effective Radiated Power	otek	Anbo	Hotek.	Arbote.	17
4.1. Test Standard and Limit	, Joseph	Kopote	Anv	- npotek	17
4.2. Test Setup	N. M.	Number of the state of the stat	Anbo		17
4.3. Test Procedure	ter Vup	10K 10C	rek Rupote	An-	17
4.4. Test Data	abotek pol	or VIII		ien Vupo.	17
5. Duty Cycle	,	Anboten A	Jp. Felt	botek Hal	19
5.1. Test Standard and Limit	Anu	, Spotek	Pupor V		19
5.2. Test Setup	*Upos	Pa, Polek	Athaoter.	And	19
5.3. Test Procedure	Anbote.	Anu	botek	- Nopor	19
5.4. Test Data	21000 Story	K Vupos	-k MOTOR	Amoter	19
5.2. Test Setup	- ok	,0dh.7 , yalo	ie. Vur	ek nbote	20
6.1. Test Standard and Limit	,botto Ani	ately.	Hotek bulo.	- Pr	20
6.2. Test Setup	······································	VUpp.		vore. Vu	20
6.3. Test Procedure			Vu.	* upotek	20
6.4. Test Data	V.u.	- Notek	Anbo.	P. Potek	20
7. Out Of Band Emissions	Anbo	k parek	Withole,	Anv	37
7.1. Test Standard and Limit	ek koporo	Press	ekotek	dn4	37
7.2. Test Setup	Oley	oter Anbe		k Anbore	38
7.3. Test Procedure	In tok	abotek ku	DOS AUG	otek sot	38
7.4. Test Data	Mapor b	"Ofek	Antoter An	iok k,	38
7. Out Of Band Emissions	Anhoten	Anb	abotek.	Aupore P	54
8.1. Test Standard and Limit	, botek	hopor	VI.	Natioter.	54

8.2. Test Setup	Nu.	No.V	nbotek	Anbo. K	A. Motek	Anbote	54
8.3. Test Procedure	oter A	,p=	hotek	Anbote	An	hodou	54
8.4. Test Data	botek	Anbor	VII.	anboten	Anbu	,V	. 54
9. TX Behaviour Under Low Voltag	ge Condition	S	Anb	.00,	iek Aupor	ν	. 56
9.1. Test Standard and Limit	Ann	bote	N Anbo	. bo.	ngte ^k and	pote,	56
9.2. Test Setup	Anbo		24 ⁴ 970,	pore. Ar		"Posek	56
9.3. Test Procedure	k Anbo	ν. Αυ.		Kipotek	Anbo	b. Hatek	56
9.4. Test Data	, yay,	boten	7.4p.	n. aotek	Anbore.	Vu _n	. 56
10. Receiver Blocking		, botek	Anbore	VII.	, hotek	Anbo	57
10.1. Test Standard and Limit.	upor	br.	anboten	Anbe	,w	k Pul	57
10.2. Test Setup	kopo _{fer}	Anu	امور	ek Vupo,	ν	.vel	57
10.3. Test Procedure	Mootek.	Anbor	·····	-04e/4	ooten Ant		57
10.4. Test Data		do _{st} No	ote, An		otek	Yuporg	. 57
APPENDIX I TEST SETUP PHO	TOGRAPH	[_. .,	Joo ^{tek}	Anbor	br.	aboten	59

TEST REPORT

Applicant : MAXIIOT LTD

Manufacturer : MAXIIOT LTD

Product Name : LoRaWAN

Model No. : GL5712-EX, GL5712-EA

Trade Mark : MAXIIOT

Rating(s) : Input: 3.3V == 2A

Test Standard(s) : ETSI EN 300 220-1 V3.1.1 (2017-02)

ETSI EN 300 220-2 V3.1.1 (2017-02)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 300 220-1 & EN 300220-2 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test	VBOTE .	Ann	Anbotek A	ug. 30~Nov.	. 13, 2018		
	Ambadaly	Anbotek Anbotek	Anbotek	olivay	ury		
Prepared By		Ano	ek anb-		O P	hotek	Anbote
rek Auport	WIICH	Inpoten Aug	(E	ngineer / Ol	iay Yang)	Anbotek	Anb
	Yes			-tek	"upote.		
				Snavy	Meng		
Reviewer		K All		U	7.04		Anbore.
		nbotek Anbote		pervisor / Sn	lowy Meng)	Anbotek	Anboter
				Sally	Zhong		
Approved & Autho	tek 1 Ci - sobotek			Swin	200		
Approved & Autho	rized Signer	Alhote	And	, bote	K Kapo	re by.	olek.
			(M	Ianager / Sal	lly Zhang)		

1. General Information

1.1. Client Information

Applicant	:	MAXIIOT LTD
Address	••	No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680
Manufacturer	••	MAXIIOT LTD
Address		No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680
Factory	:	MAXIIOT LTD
Address	:	No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680

1.2. Description of Device (EUT)

,0	Product Name	:	LoRaWAN	K Anbotek Anbotek Anbotek Ant
A.	Model No.	:	GL5712-EX, GL5712-EA (Note: All samples are the same e "GL5712-EX" for test only.)	xcept the different connectors, so we prepare
V.	Trade Mark	:	MAXIIOT	Anbotek Anbotek Anbotek Anbotek
	Test Power Supply	:	TX & RX: DC 5V via USB Port	Anbotek Anbotek Anbotek Anbo
×	Test Sample No.	:	S1(Normal Sample), S2(Engineer	ring Sample)
			Operation Frequency:	868.1-868.5MHz
,			Number of Channel:	5 Channels
2			Modulation Type:	OOK AND
0.	Product Description	:	Software Version:	V1.0 Andotek Andotek
	1		Hardware Version:	V1.0 Anbotek Anbotek Anbotek
			Antenna Type:	Cylindrical Antenna
1			Antenna Gain(Peak):	5 dBi
	11		To the	VO. D.,

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

PC	: Manufacturer: DELL
	M/N: Optiplex 3020 MT
	S/N. CN-0/9V31-/0103-4AD-089K-A00
	CE, FCC DOC, CCC
MONITOR	: Manufacturer: DELL
	M/N: E1914Hf S/N: CN-034H2R-72872-419-AFJB
	5/10. C10-05-11210-72072-417-1113D
	Input:100V-240V, 1.5A, 50/60Hz
	TUV-GS, FCC, CE, KCC, VCCI
	k abotek Anbote An otek unboten Anbo ak notek
KEYBOARD	: Manufacturer: DELL
	M/N: SK-8120 S/N: CN-0DJ365-71616-49J-0MVR-A00
	S/N: CN-0DJ365-71616-49J-0MVR-A00 Input Rating: DC 5V, 0.05A
	Input Rating: DC 5V, 0.05A
	CE, FCC, VCCI, KCC, TUV-GS Cable: 1.8m, unshielded
	Cable: 1.8m, unshielded
MOUSE	: Manufacturer: DELL
	: Manufacturer: DELL M/N: MS111-T S/N: CN 0VW2VII 71616 488 1CDI
	C/NL CNI OV WOVII 71(1(400 1CD I
	Input Rating: DC 5V, 0.1A
	Cable: 1 8m unshielded
	Cable: 1.8m, unshielded CE, FCC, VCCI, KCC, TUV-GS
	CE, FCC, VCCI, KCC, TUV-GS

1.4. Description of Test Modes

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

	Mode		Ι	Description		
Kupor	Mode 1	Anbo	anbotek	CH01	And	Anbotek
Anbote	Mode 2	stek Anbo stek	Anbotek	CH03	ak hotek	Anbotek
Aupor	Mode 3	upote, K Aupotek	Anbote	CH05	Pur Potek	Anbote

1.5. List of Channels

P	Channel	Freq.
l		(MHz)
	Anbotek Anbotek Anbotek	Anno 868.1 Anno Anno Botek
Y	Anbotek Anbotek Anbotek Anbotek	868.2
,0	ek Anbotek Anbotek Anbotek	868.3
	Botek Anbotek Anbotek Ar	868.4
	Anbotek Anbote 05 hotek Anbotek	Anbour 868.5 house

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C ~ 35°C	-10°C ~ 45°C Note: (1)
Relative Humidity	20% ~ 75%	N/A otek Anbotes And
Supply Voltage	TX & RX: DC 5V via USB Port	TX & RX: DC 4.50V~ DC 5.50V

1.7. Test Equipment List

175	-V	And	-00°	Pr	46,	Cal.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Interva
otek I.	L.I.S.N. Artificial Mains	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
2.00	Network EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
Ville	notek	Vupo. V.	ek abote	AUD.	· Otok	VUPOL
3.	RF Switching Unit	Compliance Direction	stell and	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
11. _{nb}	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A Model	Nov. 01, 2018	1 Year

1.8. Measurement Uncertainty

For the test methods, according to ETSI EN 300 220-1&-2 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1 [4] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

Parameter	Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1,5 dB
All emissions, conducted	±6 dB
All emissions, radiated	±6 dB
Temperature	±1 °C
Humidity	±5 %
DC and low frequency voltages	±3 %
Time Andrew Andrew	±5 %
Duty Cycle	±5 %

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

	m	Q1	
No.	Test Items	Clause No.	Results
o'tlk	Operating frequency	4.2.1	PASS
2000	Unwanted emissions in the spurious domain	4.2.2	PASS
3	Effective radiated power	4.3.1	PASS
4	Maximum e.r.p. spectral density	4.3.2	N/A
5	Duty cycle	4.3.3	PASS
6	Occupied bandwidth	4.3.4	PASS
7, tel	TX out of band emissions	4.3.5	PASS
8	Transient Power	4.3.6	PASS
9	Adjacent channel power	4.3.7	N/A
10	TX behaviour under low voltage conditions	4.3.8	PASS
11	Adaptive power control	4.3.9	N/A
12	FHSS	4.3.10	N/A
13	Short term behaviour	4.3.11	N/A
14	RX sensitivity	4.4.1	N/A
15	Receiver Blocking	4.4.2	PASS
16	Clear channel assessment threshold	4.5.2	N/A
17	Polite spectrum access timing parameters	4.5.3	N/A
18	Adaptive Frequency Agility	4.5.4	N/A

Note: 1. "N/A" is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

^{2.} EUT Receiver categorie is Category 3.

3. Operating Frequency

3.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.2.1
Test Limit	The manufacturer may declare either one or more operating frequencies and operating channels. Operating channel(s) shall be be entirely within operational frequency bands allowed by annexes B, C or any NRI. 868MHz to 868.6MHz

3.2. Test Setup

3.3. Test Procedure

The conducted measurement procedure in clause 5.1.2. of ETSI EN 300 220-1 V3.1.1

The measurements shall be performed during continuously transmitting.

3.4. Test Data

Pass

Temperature:	25° C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	TX: DC 5V via USB Port

Test Mode: CH01

Test Mode: CH03

Test Mode: CH05

3. Unwanted Emissions In The Spurious Domain

3.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.	1 Clause 4.2.2	hotek Anbotek	Aupo
	Frequency	47 MHz to 74 MHz 87,5 MHz to 118 MHz	Other frequencies	Frequencies
Test Limit	State	174 MHz to 230 MHz 470 MHz to 790 MHz	below 1 000 MHz	above 1 000 MHz
	TX mode	-54 dBm	-36 dBm	-30 dBm
	RX and all other modes	-57 dBm	-57 dBm	-47 dBm

3.2. Test Setup

(A) Radiated Emission Test Set-Up Frequency Bellow 1 GHz.

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

3.3. Test Procedure

The conducted measurement procedure in clause 5.9.3.3.1 of ETSI EN 300 220-1 V3.1.1.

The radiated measurement procedure in clause 5.9.3.3.2 of ETSI EN 300 220-1 V3.1.1, with the antenna port terminated in a dummy load.

The measurements shall be performed during continuously transmitting.

3.4. Test Data

PASS

Test Results (25~1000MHz)

Temperature:	25° C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	TX: DC 5V via USB Port

Test Mode: TX Mode					
Frequency (MHz)	Level(dBm)	Limit (dBm)	Margin(dB)	Polarization	Test Result
70.38	-68.03	-54.00	-14.03	tek Habotek	Anbo
148.69	-53.27	-36.00	-17.27	H abote	K Anbote
182.72	-74.02	-54.00	-20.02	M H	otek Anbote
868.10	-46.02	-36.00	-10.02	Anbote H	sotek Anb
954.00	-68.43	-54.00	-14.43	Anb H	in otek
966.00	-66.12	-54.00	-12.12	Hotel.	DACC
47.56	-70.87	-54.00	-16.87	tek Vanbotek	PASS
158.65	-58.56	-36.00	-22.56	tek V anbote	Anboile
205.78	-66.06	-54.00	-12.06	V	stek Anbote
868.10	-38.26	-36.00	-2.26	Anbo V	notek Anbo
907.41	-65.63	-54.00	-11.63	AnboV P	n wotek
966.00	-66.76	-54.00	-12.76	A.V	Anbore A

Test Result: above 1000MHz

Test Mode: TX Mode					
Frequency (MHz)	Level(dBm)	Limit (dBm)	Margin(dB)	Polarization	Test Result
2604.30	-47.39	-30.00	-17.39	Hrek	Anbor
2786.60	-48.07	-30.00	-18.07	ek Habotek	Anbore. K
3472.40	-44.73	-30.00	-14.73	H botek	DA CC
2786.60	-46.75	-30.00	-16.75	V	PASS
2604.30	-44.60	-30.00	-14.60	Anbou V	otek no
3472.40	-46.87	-30.00	-16.87	Nupoter A	lor k.

Test Results (25~1000MHz)

Temperature:	25° C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	RX: DC 5V via USB Port

Test Mode: RX Mode					
Frequency (MHz)	Level(dBm)	Limit (dBm)	Margin(dB)	Polarization	Test Result
64.06	-66.73	-57.00	-9.73	tek Habotek	Anbot
95.04	-68.50	-57.00	-11.50	tek H abote	K Anbore
171.41	-63.62	-57.00	-6.62	M H	otek Anbote
227.29	-68.18	-57.00	-11.18	Anbote H	sotek Anb
443.75	-67.40	-57.00	-10.40	Anb H	inb otek
738.86	-68.50	-57.00	-11.50	Hotel.	DACC
50.67	-67.01	-57.00	-10.01	tek Vabotek	PASS
97.99	-66.99	-57.00	-9.99	tek V mbote	Anbore
127.83	-69.18	-57.00	-12.18	V	stek Anbote
204.15	-73.90	-57.00	-16.90	Ambo V	hotek Anb
454.35	-66.64	-57.00	-9.64	V	no otek
539.02	-70.73	-57.00	-13.73	V	Andrestek

Test Result: above 1000MHz

test itesuiti usove ivo	OTTALE DAY	766	- 000	V	Oto Alla
Test Mode: RX Mode					
Frequency (MHz)	Level(dBm)	Limit (dBm)	Margin(dB)	Polarization	Test Result
2586.94	-44.51	-30.00	-14.51	Hotek	Aupor
2621.66	-46.75	-30.00	-16.75	ek Habotek	Ambore
3489.76	-47.21	-30.00	-17.21 M	H H bote	DAGG
2786.60	-47.11	-30.00	-17.11 N	V	PASS
2612.98	-44.28	-30.00	-14.28	Anbor V Am	otek Anb
3481.08	-42.78	-30.00	-12.78	Nabo V	upo kek

4. Effective Radiated Power

4.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.3.1	botek Anbotek Anbotek
	The effective radiated power shall not be greater than 300 220-2) for the chosen operational frequency band(· ·
	Frequency Band	Maximum effective radiated power
Test Limit	433.04MHz to 434.79MHz	10mW
	868MHz to 868.6MHz	25mW
	915.20MHz to 920.8MHz	25mW

4.2. Test Setup

4.3. Test Procedure

The conducted measurement procedure in clause 5.2.2.1 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during continuously transmitting.

4.4. Test Data

Temperature:	See below	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	See below

Test M	lode:	TX CH01					
rupor Vek	Test	Conditions	Anbotek	Anbotek	Total e.r.p (dBm)	Anbotek
T nom (°C)	25.00	V nom (V)	TX: DC 5V	Anbotek	12.84	Anbotek	Anbore
T min (°C)	-10.00	V nom (V)	TX: DC 4.50V	Anbote	12.35	Anbotek	Anbo
T max (°C)	45.00	V nom (V)	TX: DC 5.50V	oter Aup	12.76	ek Anbo	Tek W
nbotek Ar	Max	RF Power	Anbotek A	upote k	12.84	potek A	botek
Anbotek	AnbotekI	Limits	Anboten	Anbotek	13.98	Anbore	Annabotek
Anbote	And	Result	k Anbota	Anabotel	PASS	Anbountek	Anbo

Test N	Mode:	TX CH03	k Aupotek	Anbotek	Anbore	An	potek	Anbotek
K Anbotek	Test	Conditions	otek Anbotek	Anbote	Total e.r	.p (dBm) abotek	Anbox
T nom (°C)	25.00	V nom (V)	TX: DC 5V	len Aupo	botek 12	2.75	Anboro	ek Vu.
T min (°C)	-10.00	V nom (V)	TX: DC 4.50V	por Ar	Anbotek 12	2.32	K Anbo	hote ^k
T max (°C)	45.00	V nom (V)	TX: DC 5.50V	Anb	Anbotek 12	2.65	stek An	Anbotek
Anbote	Max	RF Power	Anbot Anbot	Anbotek	Anboten	2.75	botek	Anbote
Anbo so	ek Ant	Limits	tek And	ek Aupotr	Anbo	3.98	Anbotek	Ant
Co. Aug	botek I	Result	upor crek Am	potek Anh	P	ASS	Anbot	e _K

VU		W 70°	Dr.	766,	400		1/4	100
Test Mode:		TX CH05						
lek Anbote	Test (Conditions	hbotek Anbot	tek Aug	Total o	e.r.p (dBı	m) Anboo	ik bi
T nom (°C)	25.00	V nom (V)	TX: DC 5Vt	notek A	nbotek	11.67	iek And	otek
T min (°C)	-10.00	V nom (V)	TX: DC 4.50V	Anbotek	Anbotek	11.43	notek A.	Anbotek
T max (°C)	45.00	V nom (V)	TX: DC 5.50V	Anbotek	Anbore	11.49	nbotek	Anbote
ek Anu-	Max	RF Power	otek Anbote	k Anbotek	Anb'	11.67	Anbotek	Anb
-otek Anb	otek p	Limits	botek Ant	otek Anbo	atek p	13.98	Anbote	k k
abotek p	inbotek F	Result		Anboten Ar		PASS		

5. Duty Cycle

5.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.3.3	hotek Aupotek Aupote Au
	The Duty Cycle shall not exceed the following value the chosen operational frequency band(s).	es allowed in annexes B (EN 300 220-2) for
Test Limit	Frequency Band	Channel access and occupation rules (e.g. Duty cycle or LBT + AFA)
	868MHz to 868.6MHz	≤ 1 % duty cycle or polite spectrum access

5.2. Test Setup

5.3. Test Procedure

The conducted measurement procedure in clause 5.4.2 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during uncontinuously transmitting.

5.4. Test Data

The duty cycle is < 1%

6. Occupied Bandwidth

6.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.3.4
Test Limit	The Operating Channel shall be declared and shall reside entirely within the Operational Frequency Band. The Maximum Occupied Bandwidth at 99 % shall reside entirely within the Operating Channel defined by F_{low} and F_{high} .

6.2. Test Setup

6.3. Test Procedure

The conducted measurement procedure in clause 5.6.3.4 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during continuously transmitting.

6.4. Test Data

Temperature:	See below	Anbotek Ar	Relative Humidity:	60 %	Anbotek Ar
Pressure:	1012 hPa	Anbotek	Test Voltage:	See below	Anborotek

ek Anbotek	Test Mode:	Anbotek A	Anbotek	Anbote	TX CH01	k Anbotek	ek Aupo
Test Channel	Test Temperature	Test Voltage (V dc)	F(Low) MHz	F(High) MHz	OBW (KHz)	Maximum OBW(KHz)	Results
Anbotek An	Ambotek Amb	TX: DC 4.50V	868.0188	868.1795	160.61	Anbotek	Anbotek
Anbotek	Anbote	TX: DC 5.50V	868.0185	868.1798	160.70	Anbotek	Anbor
CH01	25	TX: DC 5V	868.0185	868.1798	161.20	160.94	Pass
potek Anbo	otek 45 Anbote	TX: DC 4.50V	868.0195	868.1805	160.94	botek An	potek
Anbor An	Ambotek 43	TX: DC 5.50V	868.0193	868.1818	162.74	Anbotek	Anbotek

Anbotek	Test Mode:	hotek Ant	otek An	poten A	TX CH03	Anbotek	Anbore
Test Channel	Test Temperature	Test Voltage (V dc)	F(Low) MHz	F(High) MHz	OBW (KHz)	Maximum OBW(KHz)	Results
oter And	otek -10 Anbotek	TX: DC 4.50V	868.2195	868.3798	159.95	botek Ant	orek b
Anbotek A	nbotek -10 Anbo	TX: DC 5.50V	868.2193	868.3805	161.05	Anbotek	inbote.
СН01	25	TX: DC 5V	868.2178	868.3805	162.51	162.75	Pass
Anbore hotel	45	TX: DC 4.50V	868.2175	868.3808	162.71	ek Anbote	Anbr
otek Anb	tek Anbotek	TX: DC 5.50V	868.2175	868.3808	162.75	botek Anb	otek A

- V	10 Di	N	100	30	42	ale.	4.132
Anbote.	Test Mode:	Anbotek Anbe	botek	Anbotek	TX CH05	Anbotek	Anbote
Togt Channal	Test	Test Voltage	F(Low)	F(High)	OBW	Maximum	Results
Test Channel	Temperature	(V dc)	MHz	MHz	(KHz)	OBW(KHz)	Resuits
abotek Anbo	potek -10 Anbol	TX: DC 4.50V	868.4193	868.5800	160.34		hotek
	-10	TX: DC 5.50V	868.4193	868.5800	160.96		Anbotek
CH01	25	TX: DC 5V	868.4188	868.5803	161.06	161.30	Pass
cek Anbotek	Anbotek 45 nbotek	TX: DC 4.50V	868.4185	868.5803	161.30		tek Anb.
botek Aupo,	otek Ambot	TX: DC 5.50V	868.4188	868.5795	159.76	ote, Yup	botek

868.1MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

868.3MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

868.5MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

7. Out Of Band Emissions

7.1. Test Standard and Limit

Domain	Frequency Range	RBW_{REF}	Max power limit
Anbotek Anb	C < C 400 1 II	1,76,7	Pilling
184	$f \le f_{low_OFB}$ - 400 kHz	10 kHz	-36 dBm
0001: 1	F_{low_OFB} - $400~kHz \le f \le f_{low_OFB}$ - $200~kHz$	1 kHz	-36 dBm
OOB limits applicable to	f_{low} - 200 kHz \leq f $<$ f_{low_OFB}	1 kHz	See Figure 6
Operational	$ m f = f_{low_OFB}$	1 kHz	-36 dBm
Frequency	$f = f_{high_OFB}$	1 kHz	-36 dBm
-018, VUD	$F_{high_OFB} < f \le f_{high_OFB} + 200 \text{ kHz}$	1 kHz	0 dBm
(See Figure 6)	$F_{high_OFB} + 200 \; kHz \leq f \leq f_{high_OFB} + 400 \; kHz$	1 kHz	-36 dBm
A. abotek	$F_{high_OFB} + 400 \; kHz \le f$	10 kHz	-36 dBm
ek hhotek	$f = f_c - 2.5 \times OCW$	1 kHz	-36 dBm
OOB limits	$f_c - 2.5 \text{ x OCW} \le f \le f_c - 0.5 \text{ x OCW}$	1 kHz	See Figure 5
applicable to	$f = f_c - 0.5 \text{ x OCW}$	1 kHz	0 dBm
No.	$f = f_c + 0.5 \text{ x OCW}$	1 kHz	0 dBm
(See Figure 5)	$f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$	1 kHz	See Figure 5
Aup Potek	$f = f_c + 2.5 \times OCW$	1 kHz	-36 dBm
f_c is the O _I F_{low_OFB} is	perating Frequency. the lower edge of the Operational Frequency Bar		Anbotek Anbotek Anbotek
	Operational Frequency Band (See Figure 6) OOB limits applicable to Operating Channel (See Figure 5) NOTE: f is the mea f _c is the Operation of the operation	Operational $f = f_{low_OFB}$ Frequency Band (See Figure 6) $F_{high_OFB} < f \le f_{high_OFB} + 200 \text{ kHz}$ $F_{high_OFB} + 200 \text{ kHz} \le f \le f_{high_OFB} + 400 \text{ kHz}$ $F_{high_OFB} + 400 \text{ kHz} \le f$ $F_{c} - 2.5 \text{ x OCW}$ $F_{c} + 0.5 \text{ x OCW}$ $F_{c} + 0.5 \text{ x OCW}$ $F_{c} + 2.5 \text{ x OCW}$ $F_{c} = f_{c} + 2.5 \text{ x OCW}$ NOTE: $f_{c} = f_{c} + 2.5 \text{ x OCW}$	$\begin{array}{c} \text{applicable to} \\ \text{Operational} \\ \text{Frequency} \\ \text{Band} \\ \text{(See Figure 6)} \\ \\ & & & & & & & & & & & & & & & & \\ F_{high_OFB} < f \leq f_{high_OFB} + 200 \text{ kHz} \\ \\ & & & & & & & & & & & & \\ F_{high_OFB} < f \leq f_{high_OFB} + 200 \text{ kHz} \\ \\ & & & & & & & & & & & \\ F_{high_OFB} + 200 \text{ kHz} \leq f \leq f_{high_OFB} + 400 \text{ kHz} \\ \\ & & & & & & & & & & & \\ F_{high_OFB} + 400 \text{ kHz} \leq f \\ \\ & & & & & & & & & & \\ OOB \text{ limits} \\ & & & & & & & & \\ applicable \text{ to} \\ & & & & & & & \\ Operating \\ & & & & & & \\ Channel \\ & & & & & & & \\ (See Figure 5) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$

Figure 5: Out Of Band Domain for Operating Channel with reference BW

Figure 6: Out Of Band Domain for Operational Frequency Band with reference BW

7.2. Test Setup

7.3. Test Procedure

The conducted measurement procedure in clause 5.8.3.3 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during continuously transmitting.

7.4. Test Data

Temperature:	See below	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	See below

PASS

868.1MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

868.3MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

868.5MHz:

LTLV

LTHV

NTNV

HTLV

HTHV

8. Transient Power

8.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.3.6			
	Absolute offset from centre frequency	RBW_{REF}	Peak power limit applicable at measurement	
Test Limit	≤ 400 kHz	1 kHz	0 dBm	
,	> 400 kHz	1 kHz	-27 dBm	

8.2. Test Setup

8.3. Test Procedure

The conducted measurement procedure in clause 5.10.3.2 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during continuously transmitting.

8.4. Test Data

Temperature:	25° C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	TX: DC 5V via USB Port

Test Mode:	CF	101
Measurement points: offset from centre frequency	Peak power limit applicable at measurement points (dBm)	Test Result (dBm)
-OCW	Anbotek O Anbotek	-9.23
+OCW	otek Anboto Anbotek	-10.35 And
-0,5 x OCW - 400 kHz	-27° Amboret	-36.63
0,5 x OCW + 400 kHz	-27 Andrew	-35.36 Andrew
-0,5 x OCW -1 200 kHz	-27 Anbotek	-34.48
0,5 x OCW + 1 200 kHz	otek Anbotek	-34.04

Test Mode:	СН03		
Measurement points: offset from centre frequency	Peak power limit applicable at measurement points (dBm)	Test Result (dBm)	
-OCW	Anbotek O Anbotek Anbo	-9.23 Amotek	
+OCW	tek Anbotek O Anbotek Ar	-10.32	
-0,5 x OCW - 400 kHz	botek Anbotek Anbotek	-36.71	
0,5 x OCW + 400 kHz	Anbotek An-27 Anbotek	-35.31	
-0,5 x OCW -1 200 kHz	Anbotes -27 Anbotek Anbo	-34.45	
0,5 x OCW + 1 200 kHz	tek Anbotek -27 Anbotek An	-34.18 Anbotek	

Test Mode:	CH05		
Measurement points: offset from centre frequency	Peak power limit applicable at measurement points (dBm)	Test Result (dBm)	
-OCW	potek Anbotek O Anbotek	-9.29	
+OCW	Anbotek Anbotek Anbotek	-10.36	
-0,5 x OCW - 400 kHz	Anbore Anbore Anbore	-36.37	
0,5 x OCW + 400 kHz	ek Anbotek -27 Anbotek An	-35.81	
-0,5 x OCW -1 200 kHz	potek Anbotek-27 Anbotek	-34.43	
0,5 x OCW + 1 200 kHz	Anbotek Anbotek	-34.16	

9. TX Behaviour Under Low Voltage Conditions

9.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 Clause 4.3.8
	The equipment shall either: a) remain in the Operating Channel OC without exceeding any applicable limits (e.g. Duty Cycle); or
Test Limit	b) reduce its effective radiated power below the Spurious Emission limits without exceeding any applicable limits (e.g. Duty Cycle); orc) shut down, (ceasing function);as the voltage falls below the manufacturers declared operating voltage.

9.2. Test Setup

9.3. Test Procedure

The conducted measurement procedure in clause 5.12.3.2 of ETSI EN 300 220-1 V3.1.1. The measurements shall be performed during continuously transmitting.

9.4. Test Data

When the voltage slowly reduced lower than 70% of the manufacturer declared, the EUT will shut down, and during this period, the TX behaviour is always comply with limit.

10. Receiver Blocking

10.1. Test Standard and Limit

Test Standard	ETSI EN 300 220-2 V3.1.1 C	lause 4.4.2			
	Hen Anbo hotek Anbo	lek Anbore	ek aboLin	nits Ambotek	Anbo
	Requirement	Receiver category 3	Receiver category 2	Receiver category 1.5	Receiver category 1
Test Limit	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm	≥ -69 dBm	≥ -43 dBm	≥ -20 dBm
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -60 dBm	≥ -44 dBm	≥ -33 dBm	≥ -20 dBm
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm	≥ -44 dBm	≥ -33 dBm	≥ -20 dBm

10.2. Test Setup

10.3. Test Procedure

The conducted measurement procedure in clause 5.18.6.3 of ETSI EN 300 220-1 V3.1.1.

The measurements shall be performed during continuously receiving.

10.4. Test Data

 Temperature:	25° C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage:	RX: DC 5V via USB Port

tek abotek Anbote And Lotek An	bote. And Lak	shotek Anboten
EUT category: category 3	Operating Channel: CH01	Anbotek Anboter
Requirement	Limit Anbotek	Results
Blocking at -2 MHz from Operating Channel	≥ -80 dBm	PASS
Blocking at +2 MHz from Centre Frequency	≥ -80 dBm	PASS
Blocking at -10 MHz from Centre Frequency	≥ -60 dBm	PASS
Blocking at +10 MHz from Centre Frequency	≥ -60 dBm	PASS
Blocking at -5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm	PASS
Blocking at +5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm	PASS

APPENDIX I -- TEST SETUP PHOTOGRAPH

----- End of Report -----