Mathematics

Jonah Benedicto

September 2025

Contents

Ι	\mathbf{Pr}	ecalculus	7
	0.1	Logical Notation	9
	0.2	Real Number Systems	9
	0.3	Properties of Real Numbers	9
		0.3.1 Commutative Property	9
		0.3.2 Associative Property	9
		0.3.3 Distributive Property	9
	0.4	Properties of Negatives	10
	0.5	Properties of Fractions	10
	0.6	The Real Line	10
	0.7	Equality/Inequality Notation	10
	0.8	Set Notation	11
	0.9	Set Operations	11
	0.10		11
	0.11	Absolute Value and Distance	12
	-	0.11.1 Properties of Absolute Value	12
	0.12	Questions	12
		Exponential Notation	12
	0.20	0.13.1 Zero and Negative Exponents	12
		0.13.2 Laws of Exponents	12
	0.14	Scientific Notation	13
		Radicals	13
	0.10	0.15.1 Properties of nth Roots	13
	0.16	•	13
		Questions	13

4 CONTENTS

Preface

- \bullet Precalculus Mathematics for Calculus by James Stewart
- Calculus by James Stewart

6 CONTENTS

Part I Precalculus

0.1 Logical Notation

```
for all \forall there exists \exists there does not exist \nexists implies \Longrightarrow if and only if \Longleftrightarrow equivalent to \equiv not equivalent to \not\equiv
```

0.2 Real Number Systems

```
Natural Numbers \mathbb{N}=\{1,2,3,\dots\}
Whole Numbers \mathbb{W}=\{0,1,2,3,\dots\}
Integers \mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\dots\}
Rational Numbers \mathbb{Q}=\left\{\frac{a}{b}:a,b\in\mathbb{Z},\,b\neq 0\right\}
Irrational Numbers \mathbb{I}=\mathbb{R}\setminus\mathbb{Q}
Real Numbers \mathbb{R}=\mathbb{Q}\cup\mathbb{I}
\mathbb{N}\subset\mathbb{W}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}
```

0.3 Properties of Real Numbers

0.3.1 Commutative Property

```
 \label{eq:addition} \begin{subarray}{ll} addition & a+b=b+a \\ \\ \begin{subarray}{ll} multiplication & ab=ba \\ \end{subarray}
```

0.3.2 Associative Property

```
 \begin{aligned} & \textbf{addition} \  \, (a+b)+c=a+(b+c) \\ & \textbf{multiplication} \  \, (ab)c=a(bc) \end{aligned}
```

0.3.3 Distributive Property

distributive
$$a(b+c) = ab + ac$$

distributive $(b+c)a = ba + ca$

0.4 Properties of Negatives

- 1. (-1)a = -a
- 2. -(-a) = a
- 3. (-a)b = a(-b) = -(ab)
- 4. (-a)(-b) = ab
- 5. -(a+b) = -a + -b
- 6. -(a-b) = -a+b

0.5 Properties of Fractions

- 1. $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$
- $2. \ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$
- $3. \ \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
- $4. \ \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$
- 5. $\frac{ac}{bc} = \frac{a}{b}$
- 6. If $\frac{a}{b} = \frac{c}{d}$, then ad = bc

0.6 The Real Line

The real number line is ordered. For any two real numbers a and b, one and only one of the following is true:

- \bullet a < b
- \bullet a=b
- *a* > *b*

0.7 Equality/Inequality Notation

less than <

greater than >

less than or equal to \leq

greater than or equal to \geq

equal to =

not equal to \neq

0.8 Set Notation

```
set of elements \{\}

such that | or :

is an element of \in

is not an element of \notin

is a subset of \subseteq

is a proper subset of \subset

is a superset of \supseteq

is a proper superset of \supset

empty set \emptyset

universal set U

cardinality |A|
```

0.9 Set Operations

```
union \cup
intersection \cap
difference \setminus
complement A'
```

0.10 Interval Notation

```
open interval (a,b)=\{x\in\mathbb{R}:a< x< b\} closed interval [a,b]=\{x\in\mathbb{R}:a\leq x\leq b\} half-open interval [a,b)=\{x\in\mathbb{R}:a\leq x< b\} half-open interval (a,b]=\{x\in\mathbb{R}:a\leq x\leq b\} infinite interval (a,\infty)=\{x\in\mathbb{R}:x>a\} infinite interval [a,\infty)=\{x\in\mathbb{R}:x\geq a\} infinite interval (-\infty,b)=\{x\in\mathbb{R}:x\leq b\} infinite interval (-\infty,b)=\{x\in\mathbb{R}:x\leq b\} infinite interval (-\infty,b)=\{x\in\mathbb{R}:x\leq b\} infinite interval (-\infty,b)=\{x\in\mathbb{R}:x\leq b\} infinite interval (-\infty,b)=\{x\in\mathbb{R}:x\leq b\}
```

0.11 Absolute Value and Distance

absolute value
$$|a| = \begin{cases} a, & \text{if } a \ge 0 \\ -a, & \text{if } a < 0 \end{cases}$$

distance between two points d(a,b) = |a-b|

0.11.1 Properties of Absolute Value

- 1. |ab| = |a||b|
- 2. positive square root $|a|^2 = a^2 \implies |a| = \sqrt{a^2}$
- 3. $|a^n| = |a|^n$, where $n \in \mathbb{Z}$ and $a \neq 0$ for n < 0
- 4. triangle inequality $|a+b| \leq |a| + |b|$

0.12 Questions

Precalculus - Mathematics for Calculus by James Stewart, Section 1.1.

0.13 Exponential Notation

 $a^n = a \cdot a \cdot \ldots \cdot a$ (a multiplied n times)

0.13.1 Zero and Negative Exponents

$$a^0 = 1$$
, where $a \neq 0$

$$a^{-n} = \frac{1}{a^n},$$

0.13.2 Laws of Exponents

$$1. \ a^m \cdot a^n = a^{m+n}$$

$$2. \ \frac{a^m}{a^n} = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

$$4. (ab)^n = a^n b^n$$

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

6.
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

7.
$$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$$

0.14 Scientific Notation

scientific notation $x = a \times 10^n$, where $1 \le |a| < 10$ and $n \in \mathbb{Z}$

0.15 Radicals

radical
$$\sqrt{a} = b \iff b^2 = a \text{ and } b \ge 0$$

nth root $\sqrt[n]{a} = b \iff b^n = a$ and if n is even, then $a, b \ge 0$

0.15.1 Properties of nth Roots

$$1. \quad \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$2. \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

3.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

4.
$$\sqrt[n]{a^n} = a$$
 if n is odd

5.
$$\sqrt[n]{a^n} = |a|$$
 if n is even

0.16 Rational Exponents

rational exponent $a^{\frac{1}{n}} = \sqrt[n]{a}$ and $a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$

0.17 Questions

Precalculus - Mathematics for Calculus by James Stewart, Section 1.2.