小结: 能带理论的基本概念

- 近自由电子近似
- 解波函数的性质
- 能带: 能量-波矢关系
 - 紧束缚模型的观点: 相邻波函数重叠导致能级展宽成为能带
- 能带边的抛物线("抛物体")近似,有效质量
- 群速度、运动方程
- 等能面
- 态密度

小结: 有效质量矩阵

• 普遍来说,有效质量是一个矩阵

$$m_{n}^{*} = \frac{1}{\hbar^{2}} \left(\frac{\partial^{2} E}{\partial \mathbf{k}^{2}} \Big|_{\mathbf{k_{0}}} \right)^{-1} = \frac{1}{\hbar^{2}} \begin{pmatrix} \frac{\partial^{2} E}{\partial k_{x}^{2}} & \frac{\partial^{2} E}{\partial k_{x} \partial k_{y}} & \frac{\partial^{2} E}{\partial k_{z} \partial k_{x}} \\ \frac{\partial^{2} E}{\partial k_{x} \partial k_{y}} & \frac{\partial^{2} E}{\partial k_{y}^{2}} & \frac{\partial^{2} E}{\partial k_{y} \partial k_{z}} \Big|_{\mathbf{k_{0}}} \\ \frac{\partial^{2} E}{\partial k_{z} \partial k_{x}} & \frac{\partial^{2} E}{\partial k_{y} \partial k_{z}} & \frac{\partial^{2} E}{\partial k_{y}^{2}} \end{pmatrix}^{-1}$$

• 可适当选取x、y、z轴,使得有效质量对角化

$$m_n^* = \begin{pmatrix} m_{nx}^* & 0 & 0 \\ 0 & m_{ny}^* & 0 \\ 0 & 0 & m_{nz}^* \end{pmatrix}$$
 各向同性时 $m_n^* = \begin{pmatrix} m_n^* & 0 & 0 \\ 0 & m_n^* & 0 \\ 0 & 0 & m_n^* \end{pmatrix} = m_n^* I$ 简化为一个数

小结: 运动方程

• 准经典近似下, 电子群速度满足

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}} = \hbar m_n^{*-1} \cdot (\boldsymbol{k} - \boldsymbol{k_0})$$

即
$$m_n^* \cdot \boldsymbol{v} = \hbar(\boldsymbol{k} - \boldsymbol{k_0})$$
 矩阵 列向量

• 准经典近似下, 电子有运动方程

$$F = \frac{\hbar d\mathbf{k}}{dt} = m_n^* \cdot \frac{d\mathbf{v}}{dt}$$
 矩阵 列向量

也即牛顿第二定律

小结: 态密度

- 态密度综合了能带向各个方向的性质
 - 态密度有效质量 $m_{dn}^* = (m_{nx}^* m_{ny}^* m_{nz}^*)^{\frac{1}{3}}$
- 态密度有效质量越大, 态密度越高
- 三维情况下, 态密度和能量相对于带边差值的平方根成正比

• DOS =
$$\frac{dZ}{dE} = \frac{L^3 m_{dn}^* \sqrt{2m_{dn}^* (E - E(\mathbf{k_0}))}}{\pi^2 \hbar^3}$$

第二部分: 能带结构

- 晶体能带的严谨处理方法
- 实际半导体的能带结构
 - 硅的能带结构
 - 金刚石晶体的能带结构
 - 闪锌矿晶体的能带结构
 - 纤锌矿晶体的能带结构
- 实际半导体能带结构的规律

半导体材料的能带结构

IV族单质: C(金刚石)、 III-V、II-VI族化合物: III-V、II-VI族化合物: Si、Ge

GaAs、InSb、ZnS等 GaN、ZnO、ZnS等

图 23 金刚石型晶体结构。图中显 示了四面体键合的排列方式。

图 24 立方硫化锌的晶体结构。

图 1-3 纤锌矿型结构

金刚石结构

立方闪锌矿结构

六方纤锌矿结构

已知晶体结构,如何得出能带结构?

原子能级的展宽构成能带

紧束缚模型:

原子波函数线性组合→晶体波函数(布洛赫波) 原子能级→晶体能带(在原子能级上下展宽)

半导体能带的形成

与一维氢原子晶体类似,当多电子原子形成晶体时,原来分属于N个原子的相同的原子能级将分裂、展开形成准连续的能带

两个原子波函数交叠形成成键、反键轨道

N个原子波函数交叠形成N个轨道(能带) 电子填入其中

Formation of Energy Band Schematic of Energy Band

注意, 能带有两个功能: 1.导电; 2.成键, 稳定晶体结构

半导体能带的特点

- 外层电子(价电子)波函数交叠大,共有化运动强,能级分裂明显,能带宽;内层电子波函数交叠小,共有化运动弱,能级分裂小,能带窄
- 能带宽+填满下半部分=强共价键,稳定晶体结构
 - 能带窄+填满=基本没有贡献: "紧束缚近似"

一维紧束缚近似中 $E = \hbar\omega = E_0 - 2T \cos ka$ 波函数交叠T直接影响能带宽度

半导体能带的特点

- 展开的能带称为允带,允带间的能量范围称为 禁带
 - 禁带的能量范围不能存在电子
 - 禁带可能有多个,但是我们通常只讨论能级填充上限附近的一个

Schematic of Energy Band

硅

- 1s²
- 2s²
- 2p⁶
- 3s²
- 3p²
- 最外层原子 轨道参与成 键,形成能 带

硅能带的形成:紧束缚模型

• 是否直接3s、3p轨道线性组合就得到了硅的电子 波函数?

$$\psi(\mathbf{x}) = \frac{1}{\sqrt{N^3}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \psi_{3p}(\mathbf{x} - \mathbf{R}) \qquad (\vec{\pi}\hat{\mathbf{n}})$$

• 然后计算平均能量就得到了能带?

$$\int \psi(\mathbf{x},t)^* \hat{E} \psi(\mathbf{x},t) dV \sim \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \int \psi_{3p}(\mathbf{x})^* \hat{H} \psi_{3p}(\mathbf{x}-\mathbf{R}) dV \qquad (\vec{\pi} \vec{\Xi})$$

$$= E_{3p} - T e^{i\mathbf{k}\cdot\mathbf{a}} - T e^{-i\mathbf{k}\cdot\mathbf{a}}$$

硅能带的形成: 轨道杂化

- 与氢原子晶体不同,当多电子原子形成晶体时,原子的相近能级可能会先杂化,再交叠形成能带
- 为什么不直接成键,而是需要先杂化?

(例子为碳; 硅类似, 把2s2p改为3s3p即可)

轨道杂化的定量表述

- 轨道杂化也是线性组合的一种
- $\psi_{sp3-1} = (\psi_s + \psi_{p_x} + \psi_{p_y} + \psi_{p_z})/2$
- $\psi_{sp3-2} = (\psi_s + \psi_{p_x} \psi_{p_y} \psi_{p_z})/2$
- $\bullet \ \psi_{sp_{3-3}} = (\psi_s \psi_{p_x} \psi_{p_y} + \psi_{p_z})/2$
- $\psi_{sp_{3-3}} = (\psi_s \psi_{p_x} + \psi_{p_y} \psi_{p_z})/2$

sp³杂化与正四面体配位

中心原子位于正四面体中心,配位原子位于正 四面体四个顶点

(a) 正四面体结构

正四面体配位的另一种 表示方法

 $\psi_{sp3-1} = (\psi_s + \psi_{p_x} + \psi_{p_y} + \psi_{p_z})/2$ 指向性很强。 指向哪里?

sp³杂化:和相邻原子波函数 重叠更多,键能T更大,晶体 更加稳定

硅能带:紧束缚近似

- 硅的原胞包含两个硅原子(记作α、β)
- 每个硅原子有四个sp³原子轨道,可组合出8N (N为原胞数) 个波函数/状态(暂时不考虑自旋)
- 硅的原胞的正格矢为a'₁、
 a'₂、a'₃

硅能带: 紧束缚近似

• 利用原子轨道线性组合,得到波函数,近似满足 薛定谔方程 ^{原胞里的所有波函数}

ψ_k(x) =
$$\frac{1}{\sqrt{8N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} (\sum_{j=1}^{4} \alpha_{j\mathbf{k}} \psi_{sp3-\alpha} \ (\mathbf{x} - \mathbf{R}) + \sum_{j=1}^{4} \beta_{j\mathbf{k}} \psi_{sp3-\beta} \ (\mathbf{x} - \mathbf{R}))$$

归一化系数
硅原子α、β的4个sp³轨道,可定义为φ_k(x - R)

"波形"式线性组合

• 求其平均能量

波函数和自己及相邻波函数的交叠

$$\int \psi_{k}(\mathbf{x},t)^{*} \widehat{E} \psi_{k}(\mathbf{x},t) dV \sim \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \int \phi_{k}(\mathbf{x}-\mathbf{R})^{*} \widehat{H} \phi_{k}(\mathbf{x}-\mathbf{R}) dV$$

计算较复杂, 不再演示

硅能带:紧束缚近似

仅考虑硅原子和最近邻的波函数交叠

总共8条能带(8N个波函数,每条能带N个波函数)

下面4N条能带和上面4N 条能带之间有明显的禁 带(带隙)

带隙宽度接近3.5 eV,和实验值不符(实验约1.12 eV)

Figure 2.4: Silicon bands including 1st neighbors only in the sum (2.1)

http://materia.fisica.unimi.it/manini/theses/cinquanta.pdf

硅能带: 紧束缚近似

仅考虑硅原子、最近邻和次近邻的波函数交叠

总共8条能带(8N个波函数,每条能带N个波函数)

下面4N条能带和上面4N 条能带之间有明显的禁 带(带隙)

带隙宽度约1 eV, 和实验值相符(实验约1.12 eV)

Figure 2.5: silicon bands cutting of on 2nd neighbors

http://materia.fisica.unimi.it/manini/theses/cinquanta.pdf

严格计算得到的硅能带

总共8条能带(8N个波函数,每条能带N个波函数)

下面4N条能带和上面4N 条能带之间有明显的禁 带(带隙)

硅的电子填到哪里? (N 个原胞,每个原胞2个硅 原子,硅原子4个sp³轨 道中各一个电子)

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

能带图中特殊符号的意义

3.12 First Brillouin zone for materials crystallizing in the diamond and (After Blakemore. [1] Reprinted with permission.)

 Γ : $\mathbf{k} = \mathbf{0}$

「X: <100>方向

ΓK: <110>方向

「L: <111>方向

 Γ ... identifies the zone center (k = 0)

X... denotes the zone end along a (100) direction, and

L... denotes the zone end along a (111) direction.

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

半导体中由于很多原因 (后述),导带底和价 带顶会填一些电子/空穴

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

半导体中由于很多原因 (后述),导带底和价 带顶会填一些电子/空穴

> <u>导带三种能谷</u> <u>ΓX、L、Γ</u>

导带 (未填电子)

禁带

价带 (填满电子)

价带三条能带

导带的极小值和价带的 极大值也叫做"能谷"

号带底(最小值)和<u>价</u>带顶(最大值)分别在哪里?

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

硅的导带底

- 导带底 \mathbf{k}_0 : 「X方向([100]方向某处)
- 能带具有明显各向异性

$$E(\mathbf{k}) \sim E(\mathbf{k_0}) + (\mathbf{k} - \mathbf{k_0}) \cdot \frac{\hbar^2}{2} m_n^*^{-1} \cdot (\mathbf{k} - \mathbf{k_0})$$
 行向量 列向量

$$m_n^* = \begin{pmatrix} m_{nx}^* & 0 & 0 \\ 0 & m_{ny}^* & 0 \\ 0 & 0 & m_{nz}^* \end{pmatrix} \qquad m_n^{*-1} = \begin{pmatrix} m_{nx}^{*-1} & 0 & 0 \\ 0 & m_{ny}^{*-1} & 0 \\ 0 & 0 & m_{nz}^{*-1} \end{pmatrix}$$

- $m_{nx}^*(\sim 0.92m) > m_{ny}^* = m_{nz}^* (\sim 0.19m)$
 - 对角化的三个轴就是x、y、z

硅的导带底等能面

- 导带底 \mathbf{k}_0 : 「X方向([100]方向某处)
- 能带具有明显各向异性: x方向(称为纵向 longitudinal)显著重于y、z方向(称为横向 transverse)
- $m_{nx}^*(\sim 0.92m) > m_{ny}^* = m_{nz}^* (\sim 0.19m)$

$$\frac{(k_x - k_{x0})^2}{m_{nx}^*} + \frac{\left(k_y - k_{y0}\right)^2}{m_{ny}^*} + \frac{(k_z - k_{z0})^2}{m_{nz}^*} = \frac{2(E - E(\mathbf{k_0}))}{\hbar^2}$$
为球心在 $\mathbf{k_0}$ 的椭球面 X方向比Y、Z方向长一些($\sqrt{0.92}$: $\sqrt{0.19}$)

硅的导带底和导带底等能面

- 导带底 \mathbf{k}_0 : 「X方向([100]方向某处)
- <100>对应的六个方向均有导带底(能谷) ^{布里渊区</sub>等能面}

例子: 运动方程

• 硅的[100]导带底有一个电子。向x、y、z方向分别施加相同的电场力F,求加速度之比。

$$m_n^* = \begin{pmatrix} m_{nx}^* & 0 & 0 \\ 0 & m_{ny}^* & 0 \\ 0 & 0 & m_{nz}^* \end{pmatrix}$$

$$m{F} = egin{pmatrix} m_{nx}^* & 0 & 0 \ 0 & m_{ny}^* & 0 \ 0 & 0 & m_{nz}^* \end{pmatrix} m{a}$$

$$\begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix} = \begin{pmatrix} 1/m_{nx}^{*} & 0 & 0 \\ 0 & 1/m_{ny}^{*} & 0 \\ 0 & 0 & 1/m_{nz}^{*} \end{pmatrix} \begin{pmatrix} F_{x} \\ F_{y} \\ F_{z} \end{pmatrix}$$

半导体中由于很多原因 (后述),导带底和价 带顶会填一些电子/空穴

> <u>导带三种能谷</u> <u>「X、L、「</u>

导带 (未填电子)

禁带

价带 (填满电子)

价带三条能带

导带的极小值和价带的 极大值也叫做"能谷"

号带底(最小值)和<u>价</u>带顶(最大值)分别在哪里?

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

硅的价带顶

- 价带顶 \mathbf{k}_0 : 「点 ($\mathbf{k}_0 = \mathbf{0}$)
- 能带不具有明显各向异性
- 能带分为3支,有效质量不同,在Γ点处能量大致相等
- 分别叫做重空穴带 m_{ph}^* (heavy)、轻空穴带 m_{pl}^* (light)、自旋-轨道耦合(spin-orbit)产生的"第三个"带 m_{p3}^*
 - 其中, 重空穴带、轻空穴带在「点处能量完全相等
 - 自旋-轨道耦合带在Γ点处能量略低(-0.04 eV)
- $m_{ph}^* \sim 0.53m$, $m_{pl}^* \sim 0.16m$, $m_{p3}^* \sim 0.25m$

硅的价带顶

• 到底哪一支是重空穴带,哪一支是轻空穴带,哪一支是自旋-轨道耦合带?

轻重空穴带 $E(\mathbf{k}) = -Ak^2 \mp \sqrt{B^2k^4 + C^2(k_x^2k_y^2 + k_y^2k_z^2 + k_z^2k_x^2)}$. SO分裂能 energy [eV] energy [eV] Egap -0.2 -0.3 Χ \leftarrow L $X \rightarrow$

https://www.iue.tuwien.ac.at/phd/ungersboeck/node28.html

硅的价带顶等能面

- 价带顶 \mathbf{k}_0 : 「点 ($\mathbf{k}_0 = \mathbf{0}$)
- 能带不具有明显各向异性

$$E(\mathbf{k}) \sim E(\mathbf{k_0}) + (\mathbf{k} - \mathbf{k_0}) \cdot \frac{\hbar^2}{2} m_p^*^{-1} \cdot (\mathbf{k} - \mathbf{k_0})$$
 行向量 列向量

$$m_p^* = \begin{pmatrix} m_p^* & 0 & 0 \\ 0 & m_p^* & 0 \\ 0 & 0 & m_p^* \end{pmatrix} = m_p^* I$$
 为一个数

$$\frac{k_x^2 + k_y^2 + k_z^2}{m_p^*} = \frac{2(E - E(\mathbf{0}))}{\hbar^2}$$
 为球心在「点的球面

严格来讲更加复杂一些

硅的价带顶等能面

k较大时,还应计入4次项
$$E(\mathbf{k}) = E(\mathbf{0}) + \frac{\hbar^2 \mathbf{k}^2}{2m_p^*} + O(\mathbf{k}^4)$$

(a) 重空穴能值较高的情况

(b) 重空穴能值较低的情况

(c) (110) 平面等能面截面图

(d) 轻空穴等能面

图 1-25 重空穴和轻空穴 k 空间等能面示意图

例子: 空穴态密度

波矢之间的间距: $\Delta k = \frac{2\pi}{L}$

k空间中单位体积含有的波函数(电子态)的数目: $\frac{dZ}{dk^3} = \left(\frac{1}{\Delta k}\right)^3 = \left(\frac{L}{2\pi}\right)^3$ 考虑自旋再乘以2

态密度:单位能量中电子态的数目 E到E+dE之间可取的波矢有多少个? E到E+dE之间的体积是等能面包围的体积相减,即 $4\pi/3$ [(k+dk) 3 -k 3]= $4\pi k^2 dk$

因此
$$dZ = 2\left(\frac{L}{2\pi}\right)^3 4\pi k^2 dk$$
 价带顶能量 E_v

$$E = E_v - \frac{\hbar^2 \mathbf{k}^2}{2m_p^*} \quad k = |\mathbf{k}| = \frac{\sqrt{2m_p^*(E_v - E)}}{\hbar} \quad \frac{dE}{dk} = -\frac{d}{dk} \frac{\hbar^2 k^2}{2m_p^*} = -\frac{\hbar^2}{m_p^*} k = -\frac{\hbar\sqrt{2m_p^*(E_v - E)}}{m_p^*}$$

态密度 DOS =
$$\left| \frac{dZ}{dE} \right| = 2 \left(\frac{L}{2\pi} \right)^3 4\pi \frac{2m_p^*(E_v - E)}{\hbar^2} \frac{m_p^*}{\hbar \sqrt{2m_p^*(E_v - E)}} = \frac{L^3 m_p^* \sqrt{2m_p^*(E_v - E)}}{\pi^2 \hbar^3}$$

注意:每个空穴带都有一个态密度

空穴的种类

态密度
$$DOS = \left| \frac{dZ}{dE} \right| = \frac{L^3 m_p^* \sqrt{2m_p^* (E_v - E)}}{\pi^2 \hbar^3}$$

注意: 每个空穴带都有一个态密度

例子: 电子态密度

波矢之间的间距: $\Delta k = \frac{2\pi}{L}$

k空间中单位体积含有的波函数(电子态)的数目: $\frac{dZ}{dk^3} = \left(\frac{1}{\Delta k}\right)^3 = \left(\frac{L}{2\pi}\right)^3$ 考虑自旋再乘以2

态密度:单位能量中电子态的数目 E到E+dE之间可取的波矢有多少个? 当等能面为椭球形时,E到E+dE之间的体积是?

椭球的体积是?

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

$$V = \frac{4}{3}\pi abc$$

椭球面方程

椭球体积

令
$$k = |\mathbf{k}| = \frac{\sqrt{2m(E - E(\mathbf{k_0}))}}{\hbar}$$
 三个半轴有 $k_x = \sqrt{\frac{m_{nx}^*}{m}}k$ $k_y = \sqrt{\frac{m_{ny}^*}{m}}k$ $k_z = \sqrt{\frac{m_{nz}^*}{m}}k$

例子: 电子态密度

波矢之间的间距: $\Delta k = \frac{2\pi}{L}$

k空间中单位体积含有的波函数(电子态)的数目: $\frac{dZ}{dk^3} = \left(\frac{1}{\Delta k}\right)^3 = \left(\frac{L}{2\pi}\right)^3$

考虑自旋再乘以2 考虑对称性相同的能谷数再乘以s (=6)

态密度:单位能量中电子态的数目 E到E+dE之间可取的波矢有多少个?

$$dZ = 2s \left(\frac{L}{2\pi}\right)^3 4\pi \sqrt{\frac{m_{nx}^* m_{ny}^* m_{ny}^*}{m^3}} k^2 dk$$
 导带底能量 E_c

算得态密度
$$DOS = \left| \frac{dZ}{dE} \right| = \frac{L^3 m_{dn}^* \sqrt{2 m_{dn}^* (E-E_c)}}{\pi^2 \hbar^3}$$
 注:在有的资料里会 密度有效质量里

其中 $m_{dn}^* = s^{\frac{2}{3}} (m_t m_l^2)^{\frac{1}{3}}$ 称为导带底电子<u>态密度有效质量</u>

是专门用于计算态密度所使用的各向异性有效质量的平均值

第二部分: 能带结构

- 晶体能带的严谨处理方法
- 实际半导体的能带结构
 - 硅的能带结构
 - 金刚石晶体的能带结构
 - 闪锌矿晶体的能带结构
 - 纤锌矿晶体的能带结构
- 实际半导体能带结构的规律

金刚石晶体: IV族

The Periodic Table of Elements

硅能带:紧束缚近似

- 硅的原胞包含两个硅原子(记作α、β)
- 每个硅原子有四个sp³原子轨道,可组合出8N (N为原胞数)个波函数/状态
- 硅的原胞的正格矢为a'₁、
 a'₂、a'₃

硅能带: 紧束缚近似

• 利用原子轨道线性组合,得到波函数,近似满足 薛定谔方程 ^{原胞里的所有波函数}

$$\psi_{k}(x) = \frac{1}{\sqrt{8N}} \sum_{R} e^{ik \cdot R} (\sum_{j=1}^{4} \alpha_{jk} \psi_{sp3-} \quad (x - R) + \sum_{j=1}^{4} \beta_{jk} \psi_{sp3-} \quad (x - R))$$

归一化系数

硅原子α、β的4个sp³轨道,可定义为 $\phi_{k}(x - R)$
"波形"式线性组合

• 求其平均能量

波函数和自己及相邻波函数的交叠

$$\int \psi_{k}(\mathbf{x},t)^{*} \widehat{E} \psi_{k}(\mathbf{x},t) dV \sim \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \int \phi_{k}(\mathbf{x}-\mathbf{R})^{*} \widehat{H} \phi_{k}(\mathbf{x}-\mathbf{R}) dV$$

其它金刚石型晶体和硅的主要区别就在于此

硅能带的详细结构

k: 三维, 较复杂; 布里渊区中注意「XKL这几个点

金刚石型晶体能带结构

随原子序数增加,原子轨道重叠增加,导带价带变宽,<u>带隙逐渐闭合</u> Periodic table 在能带相同的位置上,<u>有效质量变小</u>

environment of semiconductors

В	C _{2p} ²	N
AI	ပြာသူ	Р
Ga	Ge _{4p}	As
In	Sn 5p	Sb
TI	Pb 6p ²	Bi

锗能带的详细结构

三个能谷都是导带 底候选,注意相对 高度

硅、锗能带的特征

- 价带顶位于k=0处(Γ点)
- 价带顶附近有三个能带:
 - 重空穴带、轻空穴带(「点处二能带简并)、由于自旋-轨道耦合而形成的第三个带
- 导带底并非位于k=0处
 - 硅: <100>方向某处
 - 锗: <111>方向布里渊区边界
 - 无法简单预测导带底在哪里
- 带隙: 硅 (1.12 eV) 宽于锗 (0.67 eV)

金刚石型晶体有效质量

随原子序数增加,原子轨道 重叠增加,导 带价带变宽, 有效质量变小

锗的导带底

- 导带底 \mathbf{k}_0 : L点([111]方向布里渊区边界)
- 能带具有明显各向异性
 - 注意:此时取三个轴为[111]方向(称之为纵向 longitudinal)和与之垂直的任意两个方向(称之为横向transverse)

transverse)
$$E(\mathbf{k}) \sim E(\mathbf{k_0}) + (\mathbf{k} - \mathbf{k_0}) \cdot \frac{\hbar^2}{2} m_n^*^{-1} \cdot (\mathbf{k} - \mathbf{k_0})$$
 行向量 列向量

$$m_n^* = egin{pmatrix} m_{nl}^* & 0 & 0 \ 0 & m_{nt}^* & 0 \ 0 & 0 & m_{nt}^* \end{pmatrix} \qquad m_n^{*-1} = egin{pmatrix} m_{nl}^{*-1} & 0 & 0 \ 0 & m_{nt}^{*-1} & 0 \ 0 & 0 & m_{nt}^{*-1} \end{pmatrix}$$

• $m_{nl}^*(\sim 1.64m) > m_{nt}^*(\sim 0.08m)$

锗的导带底等能面

• 导带底 \mathbf{k}_0 : L点([111]方向布里渊区边界)

$$\frac{(k_l-k_{l0})^2}{m_{nl}^*} + \frac{(k_{t1}-k_{t10})^2}{m_{nt}^*} + \frac{(k_{t2}-k_{t20})^2}{m_{nt}^*} = \frac{2(E-E(\pmb{k_0}))}{\hbar^2}$$
为球心在 $\pmb{k_0}$ 的椭球面

硅、锗的有效质量

- 导带底(位置不同,无法直接比较)
 - 硅不同方向 m_{nx}^* (~0.92m), $m_{ny}^* = m_{nz}^*$ (~0.19m)
 - x方向也可以叫做纵向, y、z也可以叫做横向, 和锗对应
 - 锗纵、横有效质量 m_{nl}^* (~1.64m), m_{nt}^* (~0.08m)
- 价带顶
 - 不管是重空穴带、轻空穴带(「点处二能带简并)、 自旋-轨道耦合带、锗的有效质量均小于硅

表 1-2 空穴的有效质量

材 料	$\frac{(m_{\rm p})_{\rm h}}{m_0}$	$\frac{(m_p)_1}{m_0}$	$\frac{(m_{\rm p})_3}{m_0}$
硅	0.53	0.16	0.245
锗	0.28	0.044	0.077