```
In [14]: import pandas as pd
In [2]: from pycaret.classification import setup, compare_models, evaluate_model, save_model, load_model, predict_model
In [3]: churn_data = pd.read_csv('/content/updated_churn_data (1).csv')
```

In [4]: clf = setup(data=churn_data, target='Churn')

Description	Value
Session id	2877
Target	Churn
Target type	Binary
Original data shape	(7043, 8)
Transformed data shape	(7043, 13)
Transformed train set shape	(4930, 13)
Transformed test set shape	(2113, 13)
Numeric features	4
Categorical features	3
Preprocess	True
Imputation type	simple
Numeric imputation	mean
Categorical imputation	mode
Maximum one-hot encoding	25
Encoding method	None
Fold Generator	StratifiedKFold
Fold Number	10
CPU Jobs	-1
Use GPU	False
Log Experiment	False
Experiment Name	clf-default-name
USI	c9e7
	Session id Target Target type Original data shape Transformed data shape Transformed train set shape Transformed test set shape Numeric features Categorical features Preprocess Imputation type Numeric imputation Categorical imputation Categorical imputation Maximum one-hot encoding Encoding method Fold Generator Fold Number CPU Jobs Use GPU Log Experiment Experiment Name

In [5]: best_model = compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
knn	K Neighbors Classifier	0.7556	0.7110	0.3822	0.5589	0.4526	0.3027	0.3124	0.1560
dt	Decision Tree Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1230
ridge	Ridge Classifier	0.7347	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1800
rf	Random Forest Classifier	0.7347	0.6284	0.0000	0.0000	0.0000	0.0000	0.0000	0.4420
qda	Quadratic Discriminant Analysis	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1740
ada	Ada Boost Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1260
gbc	Gradient Boosting Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4540
lda	Linear Discriminant Analysis	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1250
et	Extra Trees Classifier	0.7347	0.5099	0.0000	0.0000	0.0000	0.0000	0.0000	0.3200
xgboost	Extreme Gradient Boosting	0.7347	0.6838	0.0000	0.0000	0.0000	0.0000	0.0000	0.1620
lightgbm	Light Gradient Boosting Machine	0.7347	0.4830	0.0000	0.0000	0.0000	0.0000	0.0000	0.4600
dummy	Dummy Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1350
lr	Logistic Regression	0.7341	0.8107	0.0000	0.0000	0.0000	-0.0012	-0.0047	1.0500
nb	Naive Bayes	0.6629	0.8057	0.8693	0.4333	0.5780	0.3465	0.4054	0.1250
svm	SVM - Linear Kernel	0.5057	0.0000	0.6557	0.2124	0.3203	0.0648	0.1199	0.1860

Processing: 0% | 0/65 [00:00<?, ?it/s]

Categorical distributions


```
In [6]: evaluate model(best model)
        interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Pipeline Plot', 'pipelin...
In [7]: | save model(best model, 'best churn model')
        Transformation Pipeline and Model Successfully Saved
Out[7]: (Pipeline(memory=Memory(location=None),
                  steps=[('numerical imputer',
                          TransformerWrapper(exclude=None,
                                              include=['tenure', 'PhoneService',
                                                        'MonthlyCharges', 'TotalCharges'],
                                              transformer=SimpleImputer(add_indicator=False,
                                                                         copy=True,
                                                                         fill value=None,
                                                                         keep_empty_features=False,
                                                                         missing values=nan,
                                                                         strategy='mean',
                                                                         verbose='deprecated'))),
                          ('categorical_imputer',
                          Transf...
                                              transformer=TargetEncoder(cols=['customerID'],
                                                                         drop invariant=False,
                                                                         handle missing='return nan',
                                                                         handle unknown='value',
                                                                         hierarchy=None,
                                                                         min_samples_leaf=20,
                                                                         return df=True,
                                                                         smoothing=10,
                                                                         verbose=0))),
                          ('trained model',
                          KNeighborsClassifier(algorithm='auto', leaf size=30,
                                                metric='minkowski', metric params=None,
                                                n jobs=-1, n neighbors=5, p=2,
                                                weights='uniform'))],
                  verbose=False),
         'best churn model.pkl')
```

```
In [11]: def predict_churn_probability_whole_dataset(data):
    model = load_model('best_churn_model')
    predictions = predict_model(model, data=churn_data)
    return predictions
```

Transformation Pipeline and Model Successfully Loaded

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	K Neighbors Classifier	0.8194	0.8536	0.5243	0.7190	0.6064	0.4929	0.5033

In [13]: print(predictions)

	customerID	tenure F	PhoneService	Cor	ntract \		
0	7590-VHVEG	1	0	Month-to-	-month		
1	5575-GNVDE	34	1	One	e year		
2	3668-QPYBK	2	1	Month-to-	-month		
3	7795-CFOCW	45	0	One	e year		
4	9237-HQITU	2	1	Month-to-	-month		
	• • •	• • •	• • •		• • •		
7038	6840-RESVB	24	1		e year		
7039	2234-XADUH	72	1		e year		
7040	4801-JZAZL	11	0	Month-to-	-month		
7041	8361-LTMKD	4	1	Month-to-	-month		
7042	3186-AJIEK	66	1	Two	year		
				-1			
_		PaymentMe		yCharges	TotalCharges	Churn	\
0	ETe	ectronic d		9.650002	49.650002	0	
1		Mailed o		5.573528	1889.500000	0	
2		Mailed o		4.075001	108.150002	1	
3	Bank transfe	•	•	0.905556	1840.750000	0	
4	Ele	ectronic d	check 7	5.824997	151.649994	1	
						• • •	
7038		Mailed o		2.937500	1990.500000	0	
7039	Credit ca	•	•	6.878471	6975.250000	0	
7040	E16		1.495455	346.450012	0		
7041			6.650002	306.600006	1		
7042	Bank transfe	atic) 10	3.704544	6844.500000	0		
	prediction_	lahel nre	ediction_scor	·e			
0	prediction_	0	0.				
1		0	1.				
2		0	0.				
3		0	1.				
4		1	0.				
• • •			••				
7038		0	0.				
7039		•	٠.				
7040		0	1. 0.	0			
7040 7041			1.	0 8			

[7043 rows x 10 columns]

GITHUB LINK

https://github.com/nishadas1/Data-Science- (https://github.com/nishadas1/Data-Science-)

Summary

In this week's task, we utilized the PyCaret library to develop a predictive model for customer churn based on a dataset containing various customer attributes such as tenure, phone service, contract details, and payment method. After preprocessing the data and setting up the PyCaret environment, we compared several machine learning algorithms to identify the best-performing model. Upon selecting the optimal model, we evaluated its performance metrics, saved it for future use, and created a function to predict churn probabilities for new data. This streamlined approach facilitated efficient model development and evaluation, enabling businesses to make data-driven decisions to mitigate customer churn and improve customer retention strategies.