

Title of course	Computational Intelligence
Responsible instructor	Prof. Dr. Martin Golz
Learning objectives	The students will get the opportunity to - Analyse typical problems of sub-symbolic data and knowledge processing,
	 Conceive the process chain of adaptive data analytics, Comprehend and apply methods of the process chain,
	 Comprehend and apply methods of validation, Know basic assumptions and models of empirical inference, Know some of the mathematical background issues.
Course contents	1. Introduction 1.1. Five types of statistical inference 1.2. Typical applications 1.3. Process chain
	2. Statistical learning theory 2.1. Empirical risk minimisation 2.2. PAC learning
	2.3. General learning model
	2.4. Learning with uniform convergence
	2.5. Bias complexity trade-off 2.6. Vapnik Chervonenkis dimension
	3. Multivariate, linear regression analysis 3.1. Introduction
	3.2. Model 3.3. Principle of maximal a-posteriori probability
	4. Linear discriminant analysis (LDA) 4.1. Introduction
	4.2. Multi-class LDA
	4.3. Least squares LDA 4.4. Fisher LDA
	5. Kernel function discriminant analysis 5.1. Introduction
	5.2. Theorem of Cover
	5.3. Dual representation 5.4. Generation of kernel functions
	5.5. Radial basis function networks
	5.6. Recursive least squares minimisation
	5.7. Gaussian processes 5.8. Applications
	6. Adaptive Filter
	6.1. Linear adaptive filtering 6.1.1. Least squares algorithm (LS) 6.1.2. Recursive LS algorithm (RLS)
	6.1.3. Extended RLS algorithm (Ex-RLS) 6.2. Non-linear adaptive filtering 6.2.1. Reproducing kernel Hilbert space (RKHS) 6.2.2. Kernel function LS filtering 6.3. Applications
	7. Deep learning 7.1. Characterisation 7.2. Representation learning

	7.3. Deep auto-encoder
	7.3. Deep auto-encoder 7.4. Restricted Boltzmann machines
	7.5. Applications
	1.0. Applications
Teaching methods	- Frontal lectures with
	• Digital presentation slides,
	• Demonstration programs
	- Exercises held in the computer pool
	• Programming with MATLAB
	• Clarification of open issues
Prerequisites	No formal suppositions
	Basic knowledge in linear algebra, analysis, statistics
Suggested reading	The following books are recommended:
	- Nielsen (2015) Neural networks and deep learning. Determination press
	- Mohri, Rostamizadeh (2012) Foundations of machine learning. MIT
	press - Bishop (2006) Pattern recognition & machine learning. Springer
	- Duda, Hart, Stork (2001) Pattern classification. Wiley
Applicability	This module is an obligatory subject.
	An appropriation to similar majors is possible under stipulation of their examination regulations
Workload	180 hours, including 60 hours in presence and 120 hours self-instruction
ECTS credit points and weighting factor	5 CP (Emphasis of the Grade for the final Grade 5/120)
Basis of student evaluation	Oral examination (30 minutes)
Time	1st Semester
Frequency	Once a year
Duration	One semester
Course type	Obligatory subject
Remarks	Teaching language is English.
-	