Számítógépes alkalmazások Mikroszámítógépek

Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

E-mail: soossandor@inf.nyme.hu

Sopron, 2015.

SZALK - Mikroszámítógépek

Tartalomjegyzék

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- Perifériák
 - Kommunikációs formák
 - Perifériák

Miről lesz szó a mai órán? l

- A mikroszámítógép felépítése
- A mikroprocesszorok technológiája, Moore törvénye
- A mikroprocesszorok csoportosítása (Risc, Cisc)
- Mikroprocesszor/regiszterek
- Mikroprocesszor/ALU
- Mikroprocesszor/CU és mikroprogram tár
- A mikroprocesszor működése
- Órajel, gépi ciklus, belső sín
- Memória: funkció, osztályozás
- A sín (busz) rendszer funkciója, részei, jellemzői
- Szabványos interfészek
- Adatátviteli megoldások

Miről lesz szó a mai órán? II

- Perifériák és tulajdonságaik
- Háttértárak és jellemzőik

"Puska:"

- Pluhár Gábor: Informatikai Értelmező Szótár http://mek.niif.hu/00000/00083/00083.htm
- PC World IT Lexikon: http://pcworld.hu/szotar

Outline

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- Perifériák
 - Kommunikációs formák
 - Perifériák

A mikroszámítógép felépítése

- Bemeneti egység (input) amely az adatok és a programok bevitelét biztosítja
- Operatív memória (RAM) amely a műveletek elvégzéséhez szükséges adatokat és programokat, valamint az eredményt tárolja későbbi felhasználás céljából
- Mikroprocesszor (CPU) amely a memóriából kapott adatokon a programnak megfelelő logikai és számítási műveleteket elvégzi
- Kimeneti egység (output) amelyen keresztül az eredmény eljut a felhasználóhoz

SZALK - Mikroszámítógépek

A mikroszámítógép felépítése

Outline

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- 2 Perifériák
 - Kommunikációs formák
 - Perifériák

A mikroprocesszor

- a számítógép központi egysége
- CPU: Central Processing Unit
- ez irányítja a számítógépet, futtatja a programokat
- "Mikro"
 - kis fizikai méret
 - alacsony fogyasztás
 - alacsony ár
- univerzális működés
- széleskörű felhasználás
- nagy sorozatú gyártás
- csökkenő ár

Outline

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- - Kommunikációs formák
 - Perifériák

A mikroprocesszorok technológiája

- szilicium alapú CMOS technológia
- Cél: minél több alkatrész kerüljön egy chipre
- Előny: olcsóbb, gyorsabb, kis helyen elfér
- Hátrány: melegedés, meg kell oldani a hűtést

Típus	Évjárat	Tranzisztorszám	Sűrűség
Intel 8086	1978	29 000	3 μ m
Intel Pentium	1993	3 000 000	$0,8~\mu m$
Intel 8-core Xeon Nehalem-EX	2010	2 300 000 000	45 <i>nm</i>
12-core POWER8	2013	4 200 000 000	22 nm
IBM z13 Storage Controller	2015	7 100 000 000	22 nm

Forrás: http://en.wikipedia.org/wiki/Transistor_count

Moore törvénye (1965) másfél évente megduplázódik a chipenkénti

Mikroprocesszorok csoportosítási lehetőségei

Buszméret:

```
Szóhosszúság: 4 bit ... 64 bit
Utasításformátum: RISC (Reduced) , CISC (Complex)
Utasításkészlet: 100 ... 1000
Órajel: 4,77 MHz ... 4 GHz
Címezhető memória: 64 kB ... 4 GB
```

8 bit

64 bit

Mikroprocesszorok összehasonlítása

CISC	RISC	
Complex Instruction Set Com-	Reduced Instruction Set Com-	
puter	puter	
sok utasítás, többségüket mik-	kevés utasítás, hardveres meg-	
roprogram definiálja	valósítás	
bonyolult címzési módok	egyszerű címzési módok	
változó utasításhossz	fix kódhosszúság	
különböző órajel hosszúságú	minden utasítás 1 órajel hosszú	
utasítások		
egyszerűbb assembly progra-	hosszabb assembly progra-	
mozás	mokra van szükség	
Pl. Intel 286/386/486, Pen-	Pl. PowerPC	
tium		

Mikroprocesszorok funkcionális egységei

- Regiszterek
- Aritmetikai-logikai egység (ALU)
- Vezérlő egység (CU)
- Mikroprogram-tár
- Belső buszrendszer

Regiszterek

- Gyors működésű átmeneti tárolók:
 - 8...512 db
 - méretük a processzor típusától függően változik: 4 bit ... 64 bit, ezt nevezzük a processzor szóhosszúságának
 - az operatív memóriánál akár 100-szor gyorsabb lehet
 - közvetlenül ezekkel dolgozik a processzor, a memóriából betölti az adatokat a regiszterekbe, feldolgozza, visszatölti a memóriába
- Osztályozásuk:

Rendszer regiszterek a felhasználó (programok) közvetlenül nem fér hozzá, pl. flag regiszter (állapotjelző), címbusz regiszter, adatbusz regiszter Általános célú regiszterek a programok használják, pl. akkumulátor, utasítás regiszter, utasításszámláló, címregiszter, adatregiszter

Flag regiszter l

- minden bitje egy-egy rendszerjellemzőt tárol, pl. az utoljára végrehajtott utasításban volt-e túlcsordulás, 0 volt-e az eredménye, mi volt az előjele, stb.
- bizonyos utasítások a flag regiszter bitjeinek állapotától függően csinálnak valamit
- Például: JZ »cím«
 - "Jump if zero" (ugrás, ha nulla)
 - a gépi kódú utasítások végrehajtásakor a processzor mindig beállítja a flag regiszter egyes bitjeit
 - pl. ha az utoljára végrehajtott gépi kódú utasítás eredménye nulla volt, akkor egyre állítja zéró bitet

Flag regiszter II

- ha a következő utasítás a JZ »cím«, akkor ha a zéró bit értéke 1, akkor elugrik a »cím« memóriacímre és onnan folytatja a végrehajtást, egyébként folytatja a következő utasításnál
- ez felel meg a magasszintű programozási nyelvek IF utasításának
- több hasonló utasítás létezik:

JZ (JE)	ugrás, ha egyenlő (nulla) (equal-zero)
JNZ (JNE)	ugrás, ha nem egyenlő (nem nulla) (nonequal-nonzero)
JG	ugrás, ha nagyobb (greater)
JNG	ugrás, ha nem nagyobb (non-greater)
JA	ugrás, ha előjel nélkül nagyobb
JC	ugrás, ha előjel nélkül kisebb

Wwo 1133

Aritmetikai-logikai egység (ALU)

Funkciói:

- bináris összeadás
- logikai műveletek (Boole-algebra): AND, OR, XOR, NOT
- bitenkénti léptetés jobbra-balra (osztás, illetve szorzás 2-vel)
 Miért?
- komplemens képzés
- állapotjelzők (flag regiszter bitjei) beállítása, az utasítás eredménye nulla, pozitív, negatív, előfordult-e túlcsordulás, hiba, stb.

Vezérlő egység (CU-Conrol unit)

Funkciói:

- kiolvassa a memóriából a szükséges adatokat, utasításokat
- értelmezi és végrehajtja az utasításokat az ALU és a mikroprogram-tár segítségével
- vezérli a belső busz adatforgalmát
- összehangolja a CPU többi egységének működését

Mikroprogram-tár

- a processzor végre tud hajtani bizonyos egyszerűbb utasításokat hardveresen
- ezekből az elemi utasításokból a processzor gyártója elkészít (programoz) összetettebb utasításokat
- ezeket a programokat nevezzük mikroprogramnak
- ezeket tartalmazza a mikroprogram-tár
- a CISC processzorokban több utasítás van megvalósítva hardveresen, kevesebb a mikroprogram
- a RISC processzorokban kevesebb a hardveresen megvalósított utasítás, több a mikroprogram

A mikroprocesszor működése

- kiolvassa a memóriából a számítógépet vezérlő program utasításait
- dekódolja (értelmezi) az utasításokat
- vezérli és időzíti a műveletek elvégzéséhez szükséges adatforgalmat és a perifériák tevékenységét
- beolvassa a memóriából az utasítás végrehajtásához szükséges adatokat
- a beolvasott adatokon sorban elvégzi a szükséges műveleteket: ezek elsősorban logikai műveletek lehetnek, de erre visszavezethetők az egyéb, pl. aritmetikai műveletek is
- az utasítás eredményét visszaírja a memóriába

Órajel és gépi ciklus

- a számítógép alkatrészeinek összehangolt működését az órajelgenerátor biztosítja
- minden műveletet ez az órajel ütemez
- minden gépi utasítás a gépi ciklus egészszámú többszöröse alatt megy végbe

Tárolók, memória

- az adatokat és az utasításokat a számítógép a memóriában tárolia
- a memória egysége a szó, a byte (bájt) egészszámú többszöröse
- minél nagyobb a szó mérete, annál nagyobb adatokkal képes a processzor egy lépésben műveleteket végezni
- minden rekesznek egyedi címe, sorszáma van (fizikai cím)
- ennek alapján bármelyik rekesz közvetlenül elérhető
- a tárkapacitást a rendelkezésre álló rekeszek (bájtok) számával mérjük

```
1 KByte
                1024 bájt
1 \text{ MByte} =
               1024 KByte
1 GByte
               1024 MByte
1 TByte
               1024 GByte
```


Tárolók osztályozása l

- Az adatok elérése szerint:
 - soros, pl. mágnesszalag
 - közvetlen, direkt, pl. RAM (Random Access Memory)
 - asszociatív, tartalom szerint
- 2 Az adatok módosíthatósága szerint:
 - csak olvasható, pl. ROM (Read Only Memory)
 - írható/olvasható, pl. RAM
 - újraprogramozható, pl. EPROM (Erasable Programmable Read Only Memory)
- Működési elv szerint:
 - mágneses
 - kondenzátoros
 - optikai

Tárolók osztályozása II

- Az adatok tárolási módja szerint:
 - dinamikus: az áramellátás megszűnésekor törlődik, pl. memória modulok
 - statikus: áramellátás nélkül is megőrzi tartalmát, pl. merevlemez
- Funkció szerint:
 - operatív tár: gyors, de drága
 - háttértár: olcsó, de lassú

Kapcsolat a számítógép alkatrészei között

Hogyan kapcsolhatjuk össze egy rendszer különböző komponenseit?

- mindenkit-mindenkivel
 - nagyon sok egyedi kapcsolat
 - egyszerű adminisztráció
 - nehezen bővíthető
- mindenki kapcsolódjon egy közös kommunikációs felületre
 - könnyen bővíthető
 - kevesebb "kábel"
 - bonyolult adminisztráció
 - A mikroszámítógépek tervezői a 2. megoldást használják
 - Ezt nevezzük bus, vagy sín topológiának

Bus (sín) topológia

SZALK - Mikroszámítógépek

Különböző bus (sín) rendszerek

- ISA (Industry Standard Architecture)
 - először 8, majd 16 bit
 - 8 MHz, 6 MB/s
- MCA (Micro Channel)
 - 32 bit
 - 10 MHz
- EISA (Extended ISA)
 - 32 bit
 - 8 MHz, 32 MB/s
- VESA (Video Electronics Standards Association)
 - 32-64 bit
 - 40-50 MHz, 132+ MB/s
- PCI (Peripherial Component Interconnect)
 - 64 bit
 - 33 MHz, 120 MB/s

Outline

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- 2 Perifériák
 - Kommunikációs formák
 - Perifériák

Szabványos interfészek

- soros port (aszinkron, Serial, RS-232C, COM)
- párhuzamos port (Parallel, Printer, Centronics, LPT)
- game port
- SCSI (Small Computer System Interface) gyors, de drága
- Firewire port, IEEE 1394, soros, 63 eszköz, 400 Mbit/s
- USB (Universal Serial Bus) jellemzői:
 - egyszerű csatlakoztathatóság
 - legfeljebb 127 eszközt támogat egyidejűleg
 - valós idejű perifériák kiszolgálása (pl. hang, telefon)
 - plug and play technika (bedugás után önállóan települ)
 - elektromos energiaellátás és adatátvitel egy kábelen
 - két bemeneti eszköz között nincs adatforgalom

Adatátviteli megoldások

Programozott adatátvitel a perifériával történő kommunikáció a mikroprocesszor feladata (közben nem csinálhat mást)

Megszakításos adatátvitel a mikroprocesszor közli a feladatot a perifériával, folytatja saját munkáját, a periféria megszakítással jelentkezik be ismét, ha elkészült a feladatával, vagy hiba történt

Közvetlen memória hozzáférés ha az adatátvitel forrása és célja sem a processzor, akkor az a DMA (Direct Memory Access) egység segítségével is lebonyolítható; a processzor csak definiálja a DMA feladatát, adatot nem küld és nem fogad

Outline

- A mikroszámítógép
 - A mikroszámítógép felépítése
 - Mikroprocesszor
 - A mikroprocesszorok technológiája
- 2 Perifériák
 - Kommunikációs formák
 - Perifériák

Perifériák

beviteli perifériák (input)	kimeneti perifériák (output)	input/output perifériák
billentyűzet	monitor	floppy disk
egér	nyomtató	winchester
fényceruza	plotter, rajzgép	streamer
touchpad	hangeszközök	CD meghajtó
digitalizáló tábla	projektor	DVD meghajtó
szkenner		pendrive
joystick		SSD disk

Merevlemez felépítése és működése

A CD meghajtó felépítése

Egy mikroszámítógép alaplapja

Befejezés

Köszönöm a figyelmet!

