(EDS Maths)

Devoir Surveillé 5

Examen blanc 1

Conditions d'évaluation

Calculatrice: autorisée. Durée: 100min

Compétences évaluées :

- □ Déterminer la nature d'une suite
- ☐ Calculer la somme des premiers termes d'une suite
- □ Déterminer le sens de variations d'une suite
- ☐ Dériver le produit de deux fonctions
- □ Dériver une fonction composée affine
- ☐ Étudier une fonction du second degré (signe, factorisation, variations)

Exercice 1 Étude arithmétique

(5 points)

Soit (u_n) une suite arithmétique telle que $u_2 = 4$ et $u_{10} = -42$.

- 1. Déterminer la valeur de la raison r de la suite.
- 2. Déterminer la valeur de u_0 .
- 3. En déduire, pour tout entier naturel n, l'expression explicite de la suite (u_n) .

Exercice 2 Dérivée composée

(6 points)

Soit f la fonction définie par $f(x) = \sqrt{3x-2} \times (x^2-1)$. Le but de l'exercice est de déterminer sa fonction dérivée f'.

- 1. On pose $v(x)=(x^2-1)$. Déterminer l'expression de v'(x).
- 2. On pose $u(x) = \sqrt{3x 2}$.
 - \bigcirc Déterminer le domaine de définition de la fonction u.
 - (b) Donner l'expression algébrique de sa fonction dérivée u'.
- 3. En vous aidant des questions précédentes, justifier que :

$$f'(x) = \frac{15x^2 - 8x - 3}{2\sqrt{3x - 2}}$$

Exercice 3 Applications géométriques

(7 points)

Soit w_n la suite géométrique de premier terne $w_0 = 6$ et de raison 1,2.

- 1. Donner la forme récurrence de la suite (w_n) .
- 2. Donner la forme explicite de (w_n) .
- 3. En justifiant votre démarche, déterminer le sens de variation de la suite (w_n) .
- 4. Prouver que $S' = w_0 + w_1 + ... + w_{15} = -30(1 1, 2^{16})$.

Exercice 4 Somme astucieuse

(3 points)

En détaillant votre démarche, calculer S = 4 + 6 + 8 + 10 + ... + 48.

(Exercice 5) Second degré

(9 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 + 2x - 12$.

- 1. Déterminer la forme canonique de f.
- 2. En déduire le tableau de variation de la fonction f.
- 3. Déterminer, si elles existent, la ou les racines de la fonction.
- 4. Donner la forme factorisée de f.
- 5. Dresser le tableau de signe de la fonction f.

Exercice 6 Salaire

(10 points)

Béatrice et Elsa ont été embauchés au même moment dans une entreprise et ont négocié leur contrat à des conditions différentes :

- Béatrice a commencé en 2020 avec un salaire annuel de 19700€ alors que le salaire de Elsa était, cette même année, de 17700€.
- Le salaire de Béatrice augmente de 700 € par an alors que celui de Elsa augmente de $5\,\%$ par an.
- 1. Quels étaient les salaires annuels de Béatrice et de Elsa en 2022?
- 2. On modélise les salaires de Béatrice et de Elsa à l'aide de suites.
 - (a) On note u_n le salaire de Béatrice en l'année 2020 + n. On a donc $u_0 = 19700$. Quelle est la nature de la suite (u_n) ? Justifier.
 - (b) Déterminer en quelle année le salaire de Béatrice dépassera 23 210.
 - © On note v_n le salaire de Elsa en l'année 2020 + n. Exprimer v_{n+1} en fonction de v_n , puis v_n en fonction de n.
 - (d) Calculer le salaire de Elsa en 2029. On arrondira le résultat à l'euro.
- 3. On veut déterminer à partir de quelle année le salaire de Elsa dépassera celui de Béatrice. Pour cela, on dispose du programme incomplet ci-dessous écrit en langage Python.

Compléter les quatre parties en pointillé du programme ci-dessous (il ne vous est pas demandé de trouver la solution, uniquement de compléter le programme) :