V Coloquio de Psicología Fisiológica y Experimental

Simposio

Inferencia Probabilística y Modelos Psicológicos

Laboratorio 25

Facultad de Psicología, UNAM

Proyecto PAPIIT: IN307214

Octubre 1°, 2014

Tutorial en Inferencia Probabilística

José Luis Baroja

Laboratorio 25
Facultad de Psicología, UNAM

Proyecto PAPIIT IN307214

¿Qué deberíamos creer sobre el mundo después de recolectar ciertas observaciones?

¿Qué deberíamos creer sobre nuestras explicaciones/modelos sobre el mundo dadas ciertas observaciones?

¿Qué tan probable es que nuestras explicaciones/modelos sobre el mundo sean correctos dadas ciertas observaciones?

 $Pr(\mathcal{M} \mid datos) = ?$

$$Pr(\mathcal{M} \mid datos) = \frac{Pr(datos \mid \mathcal{M}) Pr(\mathcal{M})}{Pr(datos)}$$

Teorema de Bayes

$$Pr(\mathcal{M} \mid datos) = \frac{Pr(datos \mid \mathcal{M}) Pr(\mathcal{M})}{Pr(datos)}$$

$$Pr(\mathcal{M} \mid datos) = \frac{Pr(datos \mid \mathcal{M}) Pr(\mathcal{M})}{(Pr(datos))}$$

Verosimilitud Marginal

Distribución Prior

 $Pr(\mathcal{M} \mid datos) = \frac{Pr(datos \mid \mathcal{M})Pr(\mathcal{M})}{Pr(datos)}$

1 (aac)

Verosimilitud Marginal

Distribución

Prior

$$Pr(\mathcal{M} \mid datos) =$$

1

Distribución Posterior $\frac{Pr(datos \mid \mathcal{M})Pr(\mathcal{M})}{Pr(datos)}$

Ejemplo:

¿Quién está en la fiesta?

M₁: Juan está en la fiesta.

M₁: Juan está en la fiesta.

M₂: **El hermano** de Juan está en la fiesta.

M₁: Juan está en la fiesta.

M₂: El hermano de Juan está en la fiesta.

M₃: **El amigo** del hermano de Juan está en la fiesta.

- M₁: Juan está en la fiesta.
- M₂: El hermano de Juan está en la fiesta.
- M₃: El amigo del hermano de Juan está en la fiesta.
- M₄: **Ninguno** de ellos está en la fiesta.

Distribución Prior: Pr (M_i)

Evidencia:

El auto de Juan está afuera de la fiesta.

Función de Verosimilitud: **Pr (d | M_i)**

¿Cómo actualizamos nuestras creencias después de observar la evidencia?

¿Cómo actualizamos nuestras creencias después de observar la evidencia?

$$Pr(\mathcal{M}_i \mid d) = \frac{Pr(d \mid \mathcal{M}_i) Pr(\mathcal{M}_i)}{Pr(d)}$$

Distribución Posterior: Pr (M_i | d)

(Otro) ejemplo: ¿Quién está en la fiesta del amigo?

(Otra) Distribución Prior: Pr (M_i)

Función de Verosimilitud: **Pr (d | M_i)**

(Otra) Distribución Posterior: Pr (M_i | d)

La regla de Bayes especifica cómo combinar conocimiento previo con evidencia nueva.

Una moneda produce **soles** con cierta probabilidad desconocida θ .

Si observamos la secuencia:

00

¿Qué deberíamos creer sobre θ ?

Una moneda produce **soles** con cierta probabilidad desconocida θ .

Si observamos la secuencia:

00

¿Qué deberíamos creer sobre θ ?

¿Y si observamos?

0010100111010100101010101111

Una moneda produce **soles** con cierta probabilidad desconocida θ .

Si observamos la secuencia:

00

¿Qué deberíamos creer sobre θ ?

¿Y si observamos?

0010100111010100101010101111

¿O si observamos?

0000000001001000000000000

X < - [0 0]

$$X < - [0 0]$$

$$X_i \sim \mathrm{Bernoulli}(\theta)$$

$$X < - [0 0]$$

$$\theta \sim \text{Beta}(\alpha = 5, \beta = 5)$$

$$X_i \sim \text{Bernoulli}(\theta)$$

$$X < - [0 0]$$

$$X < - [0 0]$$

$$X < - [0 0]$$

 $X \leftarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ \dots]$

$$X \leftarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ \dots]$$

$$X \leftarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ \dots]$$

$$X \leftarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \dots]$$

$$X \leftarrow [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ ...]$$

 $X \leftarrow [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ \dots]$

Podemos resolver los problemas de selección de modelos y de estimación paramétrica utilizando los principios de inferencia Bayesiana.

Ejemplo Modelo de Decaimiento Exponencial

• Shiffrin, RM et al. (2008). Cognitive Science, 32, 1248-1284.

La probabilidad de recordar un item después de cierto tiempo:

$$\theta_t = exp(-\alpha t) + \beta$$

 α : Tasa de decaimiento

 β : Linea base de recuerdo

Participant	Time Interval In Seconds									
	1	2	4	7	12	21	35	59	99	200
1	18	18	16	13	9	6	4	4	4	
2	17	13	9	6	4	4	4	4	4	
3	14	10	6	4	4	4	4	4	4	
4										

 $\alpha \sim \text{Uniform}(0,1)$

 $\beta \sim \text{Uniform}(0,1)$

 $\theta_j = \exp(-\alpha t_j) + \beta \quad 0 < \theta_j < 1$

 $k_{ij} \sim \text{Binomial}(\theta_j, n_{ij})$

$$\alpha_i \sim \text{Uniform}(0,1)$$

$$\beta_i \sim \text{Uniform}(0,1)$$

$$\theta_{ij} = \exp(-\alpha_i t_j) + \beta_i \quad 0 < \theta_j < 1$$

$$k_{ij} \sim \text{Binomial}(\theta_{ij}, n_{ij})$$

$$\mu_{\alpha} \sim \text{Uniform}(0,1)$$

$$\lambda_{\alpha} \sim \text{Gamma}(.001, .001)$$

$$\mu_{\beta} \sim \text{Uniform}(0,1)$$

$$\lambda_{\beta} \sim \text{Gamma}(.001, .001)$$

$$\alpha_i \sim \text{Gaussian}(\mu_\alpha, \lambda_\alpha) \qquad 0 < \alpha_i < 1$$

$$\beta_i \sim \text{Gaussian}(\mu_\beta, \lambda_\beta) \qquad 0 < \beta_i < 1$$

$$\theta_{ij} = \exp(-\alpha_i t_j) + \beta_i \qquad 0 < \theta_{ij} < 1$$

$$k_{ij} \sim \text{Binomial}(\theta_{ij}, n_{ij})$$

