

Amendments to the Specification:

Please replace paragraph on page 10, lines 24-26, of the specification with the following amended paragraph:

--Each of the above sequences is also disclosed in Cole *et al.* *Nature* 393:537 (1998) and can be found at, e.g., <http://www.sanger.ac.uk> and <http://www.pasteur.fr/myedb/> websites such as those maintained by the Wellcome Trust Sanger Institute and Institut Pasteur.--

Please replace paragraph on page 11, lines 11-27, with the following amended paragraph:

--“Fusion polypeptide” or “fusion protein” refers to a protein having at least two heterologous *Mycobacterium* sp. polypeptides covalently linked, either directly or via an amino acid linker. The polypeptides forming the fusion protein are typically linked C-terminus to N-terminus, although they can also be linked C-terminus to C-terminus, N-terminus to N-terminus, or N-terminus to C-terminus. The polypeptides of the fusion protein can be in any order. This term also refers to conservatively modified variants, polymorphic variants, alleles, mutants, subsequences, interspecies homologs, and immunogenic fragments of the antigens that make up the fusion protein. *Mycobacterium tuberculosis* antigens are described in Cole *et al.*, *Nature* 393:537 (1998), which discloses the entire *Mycobacterium tuberculosis* genome. The complete sequence of *Mycobacterium tuberculosis* can also be found at <http://www.sanger.ac.uk> and at <http://www.pasteur.fr/myedb/> (*MyeDB*) websites such as those maintained by the Wellcome Trust Sanger Institute and Institut Pasteur. Antigens from other *Mycobacterium* species that correspond to *M. tuberculosis* antigens can be identified, e.g., using sequence comparison algorithms, as described herein, or other methods known to those of skill in the art, e.g., hybridization assays and antibody binding assays. Fusion proteins of the invention can also comprise additional copies of a component antigen or immunogenic fragment thereof.--

Please replace paragraph beginning on page 20, line 23, with the following amended paragraph:

-- Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1997) and Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990), respectively. Software for performing BLAST analyses is publicly available through the website maintained by the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA* 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.--