Notation

Mengen

Jeder dieser Beispielmengen enthält alle Elemente der Mengen, die in der Tabelle darüber liegen.

Notation	Beschreibung
{}	Eine leere Menge
{1; 4; 7}	Eine Menge, welche die Zahlen $1,4\mathrm{und}\ 7$ enthält
N	Alle ganzen positiven Zahlen $(1;2;3\ldots)$
\mathbb{N}_0	Alle ganzen positiven Zahlen inklusive $0\ (0;1;2\ldots)$
\mathbb{Z}	Alle ganzen Zahlen $(-2;-1;0;1;2\ldots)$
Q	Alle Zahlen, die durch einen Bruch dargestellt werden können $(rac{1}{2}; -rac{5}{6}; rac{23}{14} \dots)$
\mathbb{R}^+	Alle positiven reellen Zahlen: $]0;\infty[$
\mathbb{R}_0^+	Alle positiven reelen Zahlen inklusive $0\colon [0;\infty[$
\mathbb{R}	Alle Zahlen auf der Zahlengeraden $(\sqrt{2};\pi\ldots)$

Intervalle

Intervalle sind ebenfalls Mengen. So enthält [0;1] alle reellen Zahlen von 0 bis 1.

Notation	Beschreibung
[0;1]	Intervall von inklusive 0 bis inklusive 1
[0;1[oder $[0;1)$	Intervall von inklusive 0 bis exklusive 1
]0;1[oder (0;1)	Intervall von exklusive 0 bis exklusive 1
$]-\infty;\infty[$ oder $(-\infty;\infty)$	Unendlichkeiten sind niemals Teil eines Intervalls

Mengennotation

Notation	Beschreibung
$a\in\mathbb{Z}$	a ist ein Element der ganzen Zahlen. Das heißt a ist eine ganze Zahl.
$b\in \mathbb{R}\setminus\{0\}$	b ist ein Element der reellen Zahlen ohne die Zahl $0.\ b$ kann also jeden reellen Wert außer 0 annehmen.
$[0;1]=\{x\in\mathbb{R}\mid 0\leq x\leq 1\}$	Das Intervall $[0;1]$ enthält alle Werte x der reellen Zahlen, für die $0\leq x\leq 1$ gilt.
$]{-\infty}; c[= \{x \in \mathbb{R} \mid x < c\}$	Das Intervall $]-\infty;c]$ enthält alle reellen Zahlen, welche kleiner gleich c sind.
$\{x\mid x=2k, k\in\mathbb{Z}\}$	Die Menge enthält alle geraden Zahlen.

Definitionsbereiche

Notation	Beschreibung
$y=rac{1}{x}, x eq 0$	Die Gleichung ist für alle reelen Zahlen außer 0 definiert.
$f(x)=\sqrt{x}, x\in [0;\infty[$	Die Funktion f ist für alle positiven reellen Zahlen inklusive 0 definiert.
$g(x) = \ln(x), x > 0$	Die Funktion g ist für alle positiven reellen Zahlen definiert.

Limes

Notation	Beschreibung
$\lim_{x o +\infty} rac{1}{x} = 0$	Je mehr sich x an ∞ annähert, desto mehr nähert geht $\frac{1}{x}$ gegen 0 .
$\lim_{x o 0} rac{1}{x^2} = +\infty$	$rac{1}{x^2} ightarrow +\infty$ für $x ightarrow 0$
$f(x) \xrightarrow{x o -\infty} o \infty$	$f(x) o +\infty$ für $x o -\infty$

Summenzeichen

Beispiele

$$\sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n$$

$$\sum_{i=1}^n i \cdot \ln(i) = 1 \cdot \ln(1) + 2 \cdot \ln(2) + \ldots + n \cdot \ln(n)$$

Vektoren

Schreibweise

$$ec{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} \qquad ec{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

Skalarprodukt

$$ec{a} \circ ec{b} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} \circ egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

Länge

$$|ec{a}| = \sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2}$$

Addition

$$ec{a}+ec{b}=egin{pmatrix} a_1\ a_2\ a_3 \end{pmatrix}+egin{pmatrix} b_1\ b_2\ b_3 \end{pmatrix}=egin{pmatrix} a_1+b_1\ a_2+b_2\ a_3+b_3 \end{pmatrix}$$

Kreuzprodukt

$$ec{a} imesec{b}=egin{pmatrix} a_1\ a_2\ a_3 \end{pmatrix} imesegin{pmatrix} b_1\ b_2\ b_3 \end{pmatrix}$$

Einheitsvektor

$$ec{a}_0 = rac{1}{|ec{a}|} \cdot egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}$$