

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS - CAMPINA GRANDE CURSO DE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE BANCO DE DADOS

PROJETO - RESTAURANTE

Equipe: Luiz Fernando Bezerra Felinto, Eduardo Henrique Lima de Morais, Victor Hugo de Oliveira Gangorra, Arley Andrey Alves Pereira e Samuel Clementino da Costa

SUMÁRIO

1.	Introdução	3
	Modelagem Conceitual	
	Modelo de Entidade e Relacionamento (MER)	
	Modelo Relacional (MR)	
4.	Dicionários de Dados	6
5.	Modelagem Física	7
5.1	Definição das Tabelas	8
5.2	Inserção dos Dados	10
5.3	Realização das Consultas	11
6.	Considerações Finais	13

1. INTRODUÇÃO

Este projeto foi concebido no âmbito da disciplina de Banco de Dados, ministrada pela professora Iana Daya Cavalcante Facundo Passos e pelo professor Anderson Fabiano Batista Ferreira da Costa, no curso de Engenharia da Computação durante o período de 2023.2. O objetivo central deste trabalho é a concepção e estruturação de um banco de dados que simula as operações vitais de um restaurante. Neste contexto, são contempladas as informações relativas aos funcionários, abrangendo seus dados cadastrais, bem como a descrição dos pratos oferecidos, os horários de disponibilidade desses pratos específicos, seus valores e, ainda, os dados dos clientes.

A metodologia empregada compreende a utilização do Modelo de Entidade e Relacionamento (MER) como ponto de partida, que posteriormente evolui para o Modelo Relacional (MR), culminando na etapa de codificação em SQL. Este processo proporciona não apenas uma representação visual e estruturada das relações entre os diferentes componentes do banco de dados, mas também facilita a implementação efetiva dos mesmos. Através desta abordagem integrada, busca-se não somente atender às necessidades específicas de um ambiente de pedidos e entregas de um restaurante, mas também explorar as potencialidades do banco de dados como uma ferramenta estratégica para otimizar processos, aumentar a eficiência operacional e proporcionar uma gestão mais inteligente e eficaz. No decorrer deste trabalho, serão discutidas as escolhas e as etapas do processo, bem como as implicações práticas e os benefícios esperados da implementação desse sistema de banco de dados no contexto restaurante.

Este projeto representou um esforço colaborativo e dedicado por parte da equipe composta por Luiz Fernando Bezerra Felinto, Eduardo Henrique Lima de Morais, Victor Hugo de Oliveira Gangorra, Arley Andrey Alves Pereira e Samuel Clementino da Costa. Cada membro desempenhou um papel crucial na concepção, desenvolvimento e implementação do banco de dados voltado para o contexto restaurante. A diversidade de habilidades e perspectivas trouxe uma riqueza de ideias e soluções inovadoras, contribuindo significativamente para o sucesso e a abrangência do trabalho.

2. Modelagem Conceitual

Através de técnicas como o Modelo de Entidade e Relacionamento (MER), a modelagem conceitual visa capturar as relações e interações entre os elementos mais significativos de um sistema, sem se ater aos detalhes de implementação. Ao fornecer uma representação visual clara e intuitiva, a modelagem conceitual facilita a comunicação, permitindo que tanto desenvolvedores quanto usuários finais compreendam de maneira eficaz a estrutura e a lógica subjacente ao sistema em questão.

2.1 Modelo de Entidade-Relacionamento (MER)

Para a elaboração da modelagem conceitual, utilizando o Modelo de Entidade e Relacionamento (MER), a equipe optou pela utilização da ferramenta *brModelo*. Essa escolha baseou-se na versatilidade e na eficiência dessa ferramenta específica para o desenvolvimento de diagramas conceituais, proporcionando uma representação visual clara e precisa das entidades e de seus relacionamentos. Podemos ver abaixo uma representação do MER que foi desenvolvido para esse nosso projeto:

3. Modelo Relacional (MR)

O Modelo Relacional proposto reflete uma estrutura organizada e coerente para representar as informações essenciais de um sistema associado a um restaurante. A tabela "Funcionário" armazena detalhes cruciais sobre os membros da equipe, como CPF, nome, data de nascimento, turno de trabalho, salário, endereço e cidade. As tabelas "Telefone_Func" e "Email_Func" estabelecem relações com a tabela "Funcionário", registrando informações de contato associadas a cada funcionário.

Funcionário(CPF, nome, data_nasc, turno_trab, salário, rua, número, cidade)

Telefone_Func(CPF_Func, telefone)

Email-Func(CPF_Func, email)

A tabela "Prato" apresenta os atributos necessários para descrever os itens disponíveis no cardápio, incluindo código, nome, valor e horário de servimento. A tabela "Funcionário_Prato" estabelece uma relação entre funcionários e pratos, indicando a participação de cada funcionário na preparação de pratos específicos.

Prato(Código, nome, valor, hora servido,

Funcionário_Prato(CPF_Func, cod_prato)

A relação entre pratos e pedidos é capturada pelas tabelas "Itens_Pedido" e "Prato-Itens_pedido", destacando os itens solicitados em cada pedido e os pratos associados a esses itens. O envolvimento dos entregadores nos pedidos é registrado pela tabela "Entregador", enquanto a tabela "Pedido" registra os detalhes essenciais dos pedidos, incluindo número, cliente associado, data, hora, turno e o entregador responsável.

Itens_Pedido(num_item, num_pedido, código_prato,

Prato-Itens_pedido(cod_prato, num_itens_pedido)

Entregador(ID, nome, entregas_realizadas,

Pedido(num_pedido, CPF_cliente, data_pedido, hora_pedido, turno_pedido, ID entrgadorFK)

Por fim, a tabela "Cliente" detém informações sobre os clientes, como CPF, nome, estado, cidade, rua e número da casa. As tabelas "Telefone_cliente" e "Email_cliente" complementam esses registros ao armazenar detalhes de contato associados a cada cliente. Este Modelo Relacional fornece uma estrutura abrangente que possibilita a

representação eficiente e precisa das relações e interações essenciais em um ambiente de restaurante, demonstrando a complexidade e a interconexão das informações necessárias para o funcionamento harmonioso desse contexto.

Cliente(CPF, nome estado, cidade, rua, número_casa, Telefone_cliente(CPF_cliente, numTel_cliente)

Email_cliente(CPF_cliente, email)

4. Dicionários de Dados

TABELA	RELACIONAMENTO	NOME DO	DESCRIÇÃO
		RELACIONAMENTO	
FUNCIONÁRIO	Pedido	Cria pedido	Tabela para o
			cadastro dos
			dados dos
			funcionários do
			restaurante.
PRATO	Funcionário	Cria Pedido	Tabela para
	 ItensPedido 	 Está em 	cadastrar todos
			os pratos
			servidos no
			restaurante e
			seus
			respectivos
			horários.
ITENSPEDIDO	Prato	Está em	Tabela de
			identificação
			dos pedidos.
ENTREGADOR	Pedido	Entrega	Tabela
			contendo os
			dados do
			entregador que

			irá efetuar a
			entrega.
CLIENTE	 Pedido 	Realiza	Tabela
		Pedido	contendo os
			dados do cliente
			que realizou o
			pedido.
PEDIDO	 Entregador 	 Entrega 	Tabela
	 Cliente 	Realiza	contendo todos
		Pedido	os dados do
			pedido
			realizado pelo
			cliente.

5. Modelagem Física

A "Modelagem Física" em banco de dados refere-se à fase do projeto de banco de dados em que o modelo conceitual, que representa a estrutura e as relações entre os dados de forma abstrata, é traduzido em uma estrutura física concreta que pode ser implementada em um Sistema Gerenciador de Banco de Dados (SGBD). Para o nosso trabalho, utilizamos como SGBD o modelo relacional e como linguagem o MySQL. Em outras palavras, é a etapa em que os conceitos abstratos do modelo de dados são convertidos em tabelas, índices, partições e outras estruturas específicas.

Nos tópicos a seguir, apresentaremos os códigos em SQL que refletem a implementação prática das etapas delineadas no projeto de banco de dados para o restaurante. Esses códigos proporcionarão uma visão detalhada da transformação dos modelos conceituais em estruturas físicas tangíveis, abrangendo desde a criação de tabelas e definição de relacionamentos até a configuração de índices, restrições e demais elementos necessários para a eficiente operação do sistema. Através dessa exposição, buscamos compartilhar não apenas o resultado final do projeto, mas também oferecer uma compreensão aprofundada das decisões tomadas durante a implementação em

SQL, contribuindo para uma visão mais abrangente do processo de desenvolvimento de banco de dados no contexto específico do restaurante.

5.1 Definição das Tabelas

Criando a tabela FUNCIONARIO

```
CREATE TABLE Funcionario (
  CPF VARCHAR(11) PRIMARY KEY,
  Nome VARCHAR(255),
  Endereco VARCHAR(255),
  Email VARCHAR(255),
  Telefones VARCHAR(255),
  DataNascimento DATE,
  Salario DECIMAL(10, 2),
  TurnoTrabalho VARCHAR(10)
);
Criando a tabela CLIENTE
CREATE TABLE Cliente (
  CPF VARCHAR(11) PRIMARY KEY,
  Telefone VARCHAR(20),
  Nome VARCHAR(255),
  Endereco VARCHAR(255),
  Email VARCHAR(255)
);
```

Criando a tabela PRATO

```
CREATE TABLE Prato (
```

```
Codigo INT PRIMARY KEY,
  Nome VARCHAR(255),
  HoraServido VARCHAR(10),
  Valor DECIMAL(10, 2)
);
Criando a tabela PEDIDO
CREATE TABLE Pedido (
  NumeroPedido INT PRIMARY KEY,
  CPFFuncionario VARCHAR(11),
  CPFCliente VARCHAR(11),
  DataPedido DATE,
  HoraPedido TIME,
  TurnoPedido VARCHAR(10),
  FOREIGN KEY (CPFFuncionario) REFERENCES Funcionario(CPF),
  FOREIGN KEY (CPFCliente) REFERENCES Cliente(CPF)
);
Criando a tabela ITENSPEDIDO
CREATE TABLE ItensPedido (
  Numeroltem INT PRIMARY KEY,
  NumeroPedido INT,
  CodigoPrato INT,
  FOREIGN KEY (NumeroPedido) REFERENCES Pedido(NumeroPedido),
  FOREIGN KEY (CodigoPrato) REFERENCES Prato(Codigo)
);
```

Criando a tabela ENTREGADOR

```
CREATE TABLE Entregador (
IDEntregador INT PRIMARY KEY,
Nome VARCHAR(255),
NumeroEntregasDia INT
);
```

5.2 Inserção dos Dados

Inserindo dados na tabela Funcionario

INSERT INTO Funcionario (CPF, Nome, Endereco, Email, Telefones, DataNascimento, Salario, TurnoTrabalho)

VALUES ('12345678901', 'Joao Silva', 'Rua A, 123', 'joao@email.com', '123456789', '1990-01-01', 5000.00, 'Manha'),

('98765432101', 'Maria Oliveira', 'Rua B, 456', 'maria@email.com', '987654321', '1985-05-15', 6000.00, 'Tarde');

Inserindo dados na tabela Cliente

INSERT INTO Cliente (CPF, Telefone, Nome, Endereco, Email)

VALUES ('11122233344', '555-1234', 'Carlos Santos', 'Av X, 789', 'carlos@email.com'),

('55566677788', '555-5678', 'Ana Lima', 'Av Y, 456', 'ana@email.com');

Inserindo dados na tabela Prato

INSERT INTO Prato (Codigo, Nome, HoraServido, Valor) VALUES (1, 'Feijoada', 'Almoco', 30.00), (2, 'Pizza Margherita', 'Jantar', 25.00);

(2, '98765432101', '55566677788', '2023-01-15', '19:00:00', 'Jantar');

Inserindo dados na tabela Pedido

INSERT INTO Pedido (NumeroPedido, CPFFuncionario, CPFCliente, DataPedido, HoraPedido, TurnoPedido)

VALUES (1, '12345678901', '11122233344', '2023-01-15', '12:30:00', 'Almoco'),

Inserindo dados na tabela ItensPedido

INSERT INTO ItensPedido (NumeroItem, NumeroPedido, CodigoPrato) VALUES (1, 1, 1), (2, 1, 2), (3, 2, 2);

Inserindo dados na tabela Entregador

INSERT INTO Entregador (IDEntregador, Nome, NumeroEntregasDia) VALUES (1, 'Pedro Rocha', 3), (2, 'Julia Santos', 4);

5.3 Realização das Consultas

 Relação dos pratos servidos e seus respectivos valores, considerando no resultado inicialmente os produtos mais baratos:

SELECT Codigo, Nome, HoraServido, Valor FROM Prato ORDER BY Valor ASC;

• O prato mais pedido e o menos pedido (vendido):

* Prato mais pedido

SELECT P.Codigo, P.Nome, COUNT(*) AS QuantidadePedidos FROM Prato P JOIN ItensPedido IP ON P.Codigo = IP.CodigoPrato GROUP BY P.Codigo, P.Nome ORDER BY QuantidadePedidos DESC LIMIT 1;

* Prato menos pedido

SELECT P.Codigo, P.Nome, COUNT(*) AS QuantidadePedidos FROM Prato P JOIN ItensPedido IP ON P.Codigo = IP.CodigoPrato GROUP BY P.Codigo, P.Nome ORDER BY QuantidadePedidos ASC LIMIT 1;

• O melhor cliente da empresa (quem compra mais):

SELECT C.CPF, C.Nome, COUNT(*) AS QuantidadePedidos FROM Cliente C JOIN Pedido P ON C.CPF = P.CPFCliente GROUP BY C.CPF, C.Nome ORDER BY QuantidadePedidos DESC LIMIT 1:

- Considerando o CPF de um cliente, identifique os pratos mais comprados e recomende outro que ele ainda não tenha pedido:
- * Consulta para obter os pratos mais comprados por um cliente específico
 WITH PratosMaisComprados AS (SELECT IP.CodigoPrato, COUNT(*) AS Quantidade
 FROM ItensPedido IP JOIN Pedido P ON IP.NumeroPedido = P.NumeroPedido WHERE
 P.CPFCliente = 'CPF_DO_CLIENTE' GROUP BY IP.CodigoPrato ORDER BY Quantidade
 DESC LIMIT 1);
- * Consulta principal para recomendar um prato que o cliente ainda não pediu

 SELECT P.Codigo, P.Nome, P.HoraServido, P.Valor FROM Prato P LEFT JOIN

 PratosMaisComprados PMC ON P.Codigo = PMC.CodigoPrato WHERE

 PMC.CodigoPrato IS NULL;
- Clientes que compraram apenas o jantar (use a definição de turnos):

 SELECT C.CPF, C.Nome FROM Cliente C JOIN Pedido P ON C.CPF = P.CPFCliente

 WHERE P.TurnoPedido = 'noite' GROUP BY C.CPF, C.Nome HAVING

 COUNT(DISTINCT P.TurnoPedido) = 1;
 - Folha de pagamento da empresa (considerando que os funcionários trabalham por turno):

SELECT F.CPF, F.Nome, F.TurnoTrabalho, SUM(P.Salario) AS TotalSalario FROM Funcionario F JOIN Pedido P ON F.CPF = P.CPFFuncionario GROUP BY F.CPF, F.Nome, F.TurnoTrabalho;

• Data (dia) com o maior n\'famero de entregas (delivery):

SELECT F.CPF, F.Nome, F.TurnoTrabalho, F.Salario, SUM(F.Salario) AS TotalSalario FROM Funcionario F LEFT JOIN Pedido P ON F.CPF = P.CPFFuncionario GROUP BY F.CPF, F.Nome, F.TurnoTrabalho, F.Salario;

6. Considerações Finais

Ao concluir o projeto de banco de dados destinado ao restaurante, é possível observar que além do sucesso na implementação efetiva, a nossa equipe obteve um valioso aprendizado ao longo desse processo colaborativo. A aplicação prática dos conhecimentos adquiridos na disciplina de Banco de Dados, ministrada pelos professores lana Daya Cavalcante Facundo Passos e Anderson Fabiano Batista Ferreira da Costa, proporcionou uma compreensão mais profunda dos conceitos fundamentais relacionados à modelagem conceitual e física.

A escolha e utilização da ferramenta *brModelo* para a modelagem conceitual, bem como a posterior implementação em SQL, ofereceram conhecimentos valiosos sobre a importância de selecionar as ferramentas certas para otimizar e agilizar o desenvolvimento de sistemas de banco de dados. A equipe enfrentou desafios práticos, como a transição do Modelo de Entidade e Relacionamento (MER) para o Modelo Relacional (MR) e posteriormente para a Modelagem Física acabou nos proporcionando uma experiência enriquecedora no manuseio de conceitos teóricos em um contexto real de desenvolvimento.