2

3

4

5

6

1

2

3

1

2.

3

4

5

6

WHAT IS CLAIMED IS:

 A method of measuring an injection lock frequency range for an integrated circuit having a first voltage-controlled oscillator and a second voltagecontrolled oscillator, the method comprising the steps of:

applying a control voltage to an input of the second voltage-controlled oscillator such that an output frequency of the second voltage-controlled oscillator locks to an output frequency of the first voltage-controlled oscillator; and

varying the output frequency of the first voltage-controlled oscillator until the output frequency of the second voltage-controlled oscillator falls out of lock with the output frequency of the first voltage-controlled oscillator.

2. A method as in claim 1,

wherein the step of applying the control voltage to the input of the second voltage-controlled oscillator involves the step of switching the input of the second voltage-controlled oscillator from an output of a low pass filter to a control signal to which the control voltage is applied.

3. A method as in claim 2, wherein the step of applying the control voltage to the input of the second voltage-controlled oscillator further involves the step of:

monotonically changing the control voltage until the output frequency of the second voltage-controlled oscillator locks to the output frequency of the first voltage-controlled oscillator.

A method as in claim 1,

wherein the first voltage-controlled oscillator is an element of a first phase-locked loop.

1	5. A method as in	claim 4, wherein the step of varying the output
2	frequency of the first voltage-contro	lled oscillator involves the step of:
3	changing a frequency	of an input stream to the first phase-locked loop.
1	A method as in	claim 5,
2	wherein the second vo	ltage-controlled oscillator is an element of a
3	second phase-locked loop.	
1	A method of co	mputing an injection signal power within a
2	voltage-controlled oscillator on an in	ntegrated circuit, the method comprising the steps
3	of:	
12 03 14 14 15 5	determining an injection	on lock frequency range of the voltage-controlled
_ 5	oscillator;	
6		n LC tank within a voltage-controlled oscillator;
⁻⁶ 7	_	frequency of the voltage-controlled oscillator;
148	determining a free-run	output power of the voltage-controlled oscillator
9	and	
10	calculating an injectio	n signal power value proportional to a product of
11	* .	by range, a square of the que, and the free-run
12	output power of the voltage-control!	led oscillator divided by a square of the free-run
13	output frequency of the voltage-controlled oscillator.	
1	8. A method as in	claim 7, wherein the step of determining an
2	injection lock frequency range comp	orises the step of measuring an injection lock
3	frequency range of the voltage-cont	

injection lock frequency range of the voltage-controlled oscillator comprises the steps

9.

1

2 inje3 of:

A method as in claim 8, wherein the step of measuring the

1

2

applying a control voltage to an input of the voltage-controlled oscillator such that the output frequency of the voltage-controlled oscillator locks to an output frequency of another voltage-controlled oscillator on the integrated circuit; and varying the output frequency of the voltage-controlled oscillator until the output frequency of the voltage-controlled oscillator falls out of lock with the

10. A method as in claim 9, further comprising the steps of: wherein the step of applying the control voltage to the input of the voltage-controlled oscillator involves the step of switching the input of the voltage-controlled oscillator from an output of a low pass filter to a control signal to which the control voltage is applied.

11. A method as in claim 10, wherein the step of applying the control voltage to the input of the second voltage-controlled oscillator further involves the step of:

monotonically changing the control voltage until the output frequency of the second voltage-controlled oscillator locks to the output frequency of the first voltage-controlled oscillator.

A method as in claim 7,

other voltage-controlled oscillator.

wherein the other voltage-controlled oscillator is an element of a first phase-locked loop.

- 1 13. A method as in claim 12, wherein the step of varying the output
 2 frequency of the other voltage-controlled oscillator comprises the step of:
 3 changing a frequency of an input stream to the first phase-locked loop.
- 1 14. A method as in claim 13,
 2 wherein the voltage-controlled oscillator is an element of a second
 3 phase-locked loop.

1 2 3

	15.	A method of reducing an injection lock frequency range of a
second voltage	e-cont	rolled oscillator in an integrated circuit having first and second
voltage-contro	olled c	scillators, the method comprising the steps of:

measuring an injection lock frequency range of the second voltagecontrolled oscillator; and

increasing a free-run output power of the second voltage-controlled oscillator.

16. A method as in claim 15, wherein the step of measuring the injection lock frequency range of the second voltage-controlled oscillator comprises the steps of:

applying a control voltage to an input of the second voltage-controlled oscillator such that an output frequency of the second voltage-controlled oscillator locks to an output frequency of the first voltage-controlled oscillator; and

varying the output frequency of the first voltage-controlled oscillator until the output frequency of the second voltage-controlled oscillator falls out of lock with the output frequency of the first voltage-controlled oscillator.

17. A method as in claim 16,

wherein the step of applying the control voltage to the input of the second voltage-controlled oscillator involves the step of switching the input of the second voltage-controlled oscillator from an output of a low pass filter to a control signal to which the control voltage is applied.

18. A method as in claim 17, wherein the step of applying the control voltage to the input of the second voltage-controlled oscillator further involves the step of:

monotonically changing the control voltage until the output frequency of the second voltage-controlled oscillator locks to the output frequency of the first voltage-controlled oscillator.

l	19. A method as in claim 16,
2	wherein the first voltage-controlled oscillator is an element of a first
3	phase-locked loop.

- 20. A method as in claim 19, wherein the step of varying the output frequency of the first voltage-controlled oscillator involves the step of: changing a frequency of an input stream to the first phase-locked loop.
- A method as in claim 20, wherein the second voltage-controlled oscillator is an element of a second phase-locked loop.
- 22. A method as in claim 15, wherein the step of increasing the freerun output power of the second voltage-controlled oscillator is accomplished by increasing a signal amplitude of the second voltage-controlled oscillator.
- 23. A method as in claim 15, wherein the step of increasing the freerun output power of the second voltage-controlled oscillator is accomplished by reducing a loading of an output signal of the second voltage-controlled oscillator.
- 1 24. A method as in claim 19, further comprising the step of: 2 increasing a loop bandwidth in the first phase-locked loop.
- 1 25. A method as in claim 24, wherein the step of increasing the loop 2 bandwidth in the first phase-locked loop is accomplished by increasing a pass band of 3 a loop filter within the first phase-locked loop.

1	26. A method of reducing intermodulation between a first voltage-		
2	controlled oscillator (VCO) in a first phase-locked loop (PLL) and a second VCO in a		
3	second PLL, comprising:		
4	measuring an injection lock frequency range of the second VCO with		
5	respect to the first VCO;		
6	measuring a signal power of the second VCO;		
7	determining a crosstalk power between the first and the second VCOs		
8	using the measured injection lock frequency range and the measured signal power of		
9	the second VCO; and		
10	adjusting a signal power ratio between the first VCO and the second		
	VCO to reduce intermodulation.		
است أرق			
¥ ¥1	27. The method of claim 26 further comprising adjusting a loop		
事の人類の人類の人名	bandwidth of the first PLL relative to that of the second PLL to reduce		
	intermodulation.		
_3 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14			
1	28. The method of claim 27 wherein the first PLL is part of a		
*±2	transmitter and the second PLL is part of a receiver, and wherein the step of adjusting		
3	a signal power ration comprises increasing a power of the first VCO relative to that of		
4	the second VCO.		
1	29. The method of claim 28 wherein the step of adjusting a loop		
2	bandwidth comprises increasing a loop bandwidth of the second PLL relative to that		
3	of the first PLL.		
1	30. A transceiver circuit comprising:		
2	a transmitter having a first phase-locked loop (PLL), the first PLL		
3	having a first voltage-controlled oscillator (VCO);		
	and DLI the second DLI having a second VCO		

5 and

- a parasitic loop that couples signals between the transmitter and the
 receiver causing intermodulation,
 wherein, the first VCO is configured to have a different power level
 relative to that of the second VCO to reduce the intermodulation.
- 1 31. The transceiver of claim 30 wherein the first VCO is configured to have a power level that is greater than that of the second VCO.
 - 32. The transceiver of claim 30 wherein the first PLL is configured to have a bandwidth that is different than a bandwidth of the second PLL.
 - 33. The transceiver of claim 32 wherein the second PLL is configured to have a bandwidth that is greater than the bandwidth of the first PLL.
 - 34. The transceiver of claim 31 wherein the second PLL is configured to have a bandwidth that is greater than a bandwidth of the first PLL.