特異値と特異ベクトル

スペクトル分解の拡張である特異値分解では、任意の行列がその<mark>特異値と特異ペクトル</mark>によって表せる

ref: 線形代数セミナー p28~29

一 特異値と特異ベクトル 零行列ではない任意の $m \times n$ 行列Aに対して、

$$A\mathbf{v} = \sigma \mathbf{u}, \quad A^{\mathsf{T}}\mathbf{u} = \sigma \mathbf{v}$$

となる正の数 σ を特異値と呼び、

• 左特異ベクトル:m 次元ベクトル $u \neq 0$

右特異ベクトル: n 次元ベクトル v (≠ 0)

を合わせて特異ベクトルと呼ぶ

特異ベクトルと固有ベクトルの関係

特異値と特異ベクトルの関係式

$$A\boldsymbol{v} = \sigma \boldsymbol{u}, \quad A^{\mathsf{T}} \boldsymbol{u} = \sigma \boldsymbol{v}$$

において、第 1 式の両辺に A^{T} を左からかけると、

$$A^{\top}A\boldsymbol{v} = \sigma A^{\top}\boldsymbol{u}$$

= $\sigma^2 \boldsymbol{v}$ 第 2 式を代入

また、第2式の両辺に Aを左からかけると、

$$AA^{\mathsf{T}}\boldsymbol{u} = \sigma A \boldsymbol{v}$$

= $\sigma^2 \boldsymbol{u}$ 第 1 式を代入

得られた結果をまとめると、

$$AA^{\mathsf{T}}\boldsymbol{u} = \sigma^2\boldsymbol{u}, \quad A^{\mathsf{T}}A\boldsymbol{v} = \sigma^2\boldsymbol{v}$$

ここで、A は任意の長方行列だが、 AA^{T} と $A^{\mathsf{T}}A$ は対称行列となるすなわち、

- 左特異ベクトル \boldsymbol{u} は \boldsymbol{m} 次対称行列 $\boldsymbol{A}\boldsymbol{A}^{\mathsf{T}}$ の固有ベクトル
- 右特異ベクトル \boldsymbol{v} は \boldsymbol{n} 次対称行列 $\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}$ の固有ベクトル

であり、特異値の $2 \oplus \sigma^2$ は AA^T , A^TA 共通の固有値である

特異ベクトルの正規直交化

A の特異値を $\sigma_1 \ge \cdots \ge \sigma_r > 0$ とするここで、重複があってもよい

対応する r 本の左特異ベクトル u_1, \ldots, u_r と r 本の右特異ベクトル v_1, \ldots, v_r は、どちらも対称行列の固有ベクトルであるから、それぞれ を正規直交系に選ぶことができる