Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic. Cartella delle soluzioni

11 Giugno 2024

Es 1.

Indichiamo con P(A) l'insieme dei sottoinsiemi di un insieme A con $X, Y \in P(A)$. Allora:

- **A.** se $\emptyset \in A$ allora $\emptyset \in P(A)$; **Vero** per ogni insieme A vale che $\emptyset \in P(A)$
- **B.** se $\emptyset \in P(A)$ allora $\emptyset \in A$; **Falso** per lo stesso motivo di sopra
- C. $(X \cup Y) \cap X = X$; Vero
- **D.** $(X \cap Y) \cup X = X$; **Vero**
- **E.** se $A \subseteq P(A)$ allora $A = \emptyset$; **Vero**

Es 2.

Sia $R \subseteq A \times A$ una relazione simmetrica e antisimmetrica. Allora

- \mathbf{A} . non può esistere una tale R; \mathbf{Falso}
- **B.** $R = A \times A$; Falso
- C. R è necessariamente anche antiriflessiva; Falso
- **D.** se per ogni $x \in A$ esiste y tale che $(x,y) \in R$ allora R è un'equivalenza; **Vero**

Per simmetria: se per ogni x esiste y tale che $(x,y) \in R$ allora $(y,x) \in R$.

Per antisimmetria: $(x,y) \in R \land (y,x) \in R \rightarrow x = y$ quindi la relazione è anche riflessiva.

Ne deriva una relazione del tipo $\{(x,x) \mid \forall x \in A\}$, quindi una relazione di equivalenza.

Es 3.

Vero o falso?

- **A.** esiste una funzione $A \to B$ iniettiva se e solo se ne esiste una $B \to A$ suriettiva; **Vero**
- **B.** se $A \in B$ hanno la stessa cardinalità, allora ogni funzione suriettiva $A \to B$ è anche iniettiva; **Vero**
- C. $f \circ g$ è invertibile se e solo se $g \circ f$ è invertibile; Falso
- **D.** $f \circ g$ è invertibile se $g \circ f$ è invertibile; **Falso**
- **E.** $f \circ g$ è invertibile soltanto se $g \circ f$ è invertibile; **Falso**

Es 4.

L'unione numerabile di insiemi numerabili è numerabile?

Sì. Per unione numerabile si intende l'unione di una quantità numerabile di insiemi. Questa unione si può dimostrare numerabile con il metodo della diagonale di Cantor.

Es 5.

Dimostrare per induzione che il prodotto di tre numeri interi positivi consecutivi è sempre un multiplo di 6.

Caso base:

$$1 + 2 + 3 = 6$$

Passo induttivo: Assumiamo che n(n+1)(n+2) è multiplo di 6 fino ad un generico n e poi dimostriamolo per n+1. Consideriamo che:

$$n(n+1)(n+2) = n^3 + 2n^2 + n^2 + 2n$$
$$= n^3 + 3n^2 + 2n$$

Allora:

$$(n+1)(n+2)(n+3) = \underline{n^3} + \underline{3n^2} + 2n^2 + 6n + n^2 + 3n + \underline{2n} + 6$$

$$= n(n+1)(n+2) + 3n^2 + 6n + 3n + 6$$

$$= n(n+1)(n+2) + 3(n^2 + 2n + n + 2)$$

$$= n(n+1)(n+2) + 3(n+1)(n+2)$$

Dal momento che uno tra (n+1) e (n+2) è pari, il prodotto 3(n+1)(n+2) deve essere un numero pari multiplo di 3, quindi multiplo di 6. Visto che n(n+1)(n+2) è multiplo di 6 per ipotesi induttiva e 3(n+1)(n+2) è multiplo di 6, la loro somma è un multiplo di 6.

Es 6.

Se so che $A \to B$ ha valore VERO, che cosa posso concludere del valore di verità delle proposizioni seguenti?

- **A.** $((A \lor C) \to (B \lor C));$
- **B.** $((A \wedge C) \rightarrow (B \wedge C));$
- **C.** $((\neg A \land B) \leftrightarrow (A \lor B));$

A	В	C	$(\neg A \land \neg C) \lor B \lor C$	$\neg A \vee \neg C \vee (B \wedge C)$	$(\neg A \land B) \leftrightarrow (A \lor B)$
F	F	F	V	V	V
F	F	V	V	V	V
F	V	F	V	V	V
F	V	V	V	V	V
V	F	F	F	V	F
V	F	V	V	F	F
V	V	F	V	V	F
V	V	V	V	V	F

Es 7.

La formula seguente è una tautologia?

A. $((\exists x P(x)) \to (\exists x Q(x))) \to (\exists x (P(x) \to Q(x)));$ **Vero**

Dividiamo la formula nelle due parti principali:

$$\exists x P(x) \to \exists x Q(x)$$
 (1)

$$\exists x (P(x) \to Q(x))$$
 (2)

Per falsificare la formula dobbiamo trovare un caso in cui (1) è vera mentre (2) è falsa. A questo scopo possiamo esplorare singolarmente i tre possibili casi di soddisfacibilità di P.

Tautologia Se P è una tautologia allora $\exists x P(x)$ è vera e per soddisfare (1) dobbiamo avere anche $\exists x Q(x)$ vera. In questo caso è facile vedere che anche (2) è vera: basta prendere come x lo stesso x che rende vera $\exists x Q(x)$.

Insoddisfacibile Se P è insoddisfacibile possiamo direttamente notare che in (2) P(x) sarà sempre falsa, quindi (2) è vera.

Soddisfacibile e falsificabile Se P è falsificabile possiamo fare lo stesso ragionamento fatto al paragrafo precedente per rendere (2) vera, scegliendo come x in (2) una qualunque x che rende P falsa.

Abbiamo visto che in ogni caso di soddisfacibilità di P ci risulta che (2) è vera, quindi la formula è una tautologia.

I tableau si trovano in fondo al documento.

Es 8.

Formalizzare la frase $Tutti\ i\ nipoti\ amano\ i\ propri\ nonni$, considerando come universo del discorso l'insieme di tutte le persone ed utilizzando il linguaggio formato da due simboli di relazione binari G e A interpretati come segue: G(x,y) se e solo se x è genitore di y, A(x,y) se e solo se x ama y.

 $\forall x \forall y \forall z ((G(z,y) \land G(y,x)) \to A(x,z))$

Per ogni tripla di persone x, y, z, se z è genitore di y e y è genitore di x (quindi z è nonno di x) allora x ama z.

Tableau

