A STAIN SUBODH PA. TO MANUOUS STRAIN IN MARRIER

A filiated to University of Rajasthan, Japa

Cla B.C.A. 1 Semester Test September, 2017

Electrical Circuit and Semiconductor Physics

Max. Marks: 30

Duration: 1 Hour

Instructions to the Candidates

Note:- Section A: Consists of three short answer type questions, each carrying 7.5

marks. The candidates are required to attempt any two (7.5x2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

Section A

Explain Coulomb's Law with mathematical formula.

Q.2 Two charges $+5\mu c$ and $-2\mu c$ are separated by a distance 3 cm.

Find the Magnitude of force between them.

Explain quantization and conservation of electric charge.

Section B

O.4 Explain type of bonding in solid with examples.

OR

 \Rightarrow

How many types of crystal structures are there in solid? Explain FCC (Face Centred Cubic) crystal structure.

Additional Compension of Rojasthan, James

I CLA B.C.A. I Secretter Total September 2017

Fundamentals of Computer Science

Max. Marks: 30 Duration: 1 Hour

Instructions to the Candidates

Note:- Section A: Consists of three short answer type questions, each carrying 7.5

marks. The candidates are required to attempt any two (7.5x2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

Section A

- Q.1 Explain characteristics of a computer.
- Q.2 Describe the applications of computer.
- Q.3 Explain any three:
 - (i) Bar Cod: Render (ii) OMR (iii) Joystick (iv) OCR

Section B

Q.4 What is generation in computer terminology? List various computer generations with key characteristics of computer of men generation.

OK

With perspective to size & functionality, explain the classification of computers with suitable example.

S. S. JAIN SUBODH P.G.(AUTONOMOUS) COLLEGE, JAIPUR

Affiliated to University of Rajasthan, Jaipur

II CIA B.C.A. I Semester Test, Nov. - 2017

Programming in C

Max. Marks: 30

Duration: 1 Hour

Instructions to the Candidates

Note:- Section A: Consists of three short answer type questions, each carrying 7.5 marks. The candidates are required to attempt any two (7.5x2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

Section A

- Q.1 What is the purpose of switch statement? Explain with suitable example.
 - Q.2 Write a program to print the series-1 4 9 16 25 n^2
 - Q.3 Explain the if-else statement in detail.

Section B

Q.4 Explain the difference between while and do-while statement with the help of suitable example.

OR

Write short note on (any two):

- a) Break Statement
- b) Goto Statement
- c) Continue Statement

S. S. JAIN SUBODH P.G.(AUTONOMOUS) COLLEGE, JAIPUR

Affiliated to University of Rajasthan, Jaipur

II CIA B.C.A. I Semester Test, Nov. - 2017

Fundamentals of Computer Science

Max. Marks: 30 Duration: 1 Hour

Instructions to the Candidates

Note:- Section A: Consists of three short answer type questions, each carrying 7.5 marks. The candidates are required to attempt any two (7.5x2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

Section A

- Q.1 Describe features of good programming language.
- Q.2 What is instruction format and instruction set?
- Q.3 Explain the different parts of CPU.

Section B

Q.4 What is Memory? Explain the memory hierarchy.

OR

Convert the following numbers:	
a) $(1101011)_2 = ()_{10} \rightarrow (0)$	and the second s
b) $(428)_{10} = ()_{16}$	3
c) $(1011110)_2 = ()_8$,
d) $(11010011)_2 = ()_{16}$	(2/11/2)
e) $(2AB)_{16} = ()_2$	11011101
101	
12 14.	4

S. S. JAIN SUBODH P.G. (AUTONOMOUS) COLLEGE, JAIPUR

Affiliated to University of Rajasthan II CIA BCA Semester I Test, Nov. - 2017 Discrete Mathematics

Max. Marks: 30

Duration: 1 Hour

Instructions:

Section A: Consists of three short answer type questions, each carrying 7.5 marks. The candidates are required to attempt any two (7.5X2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

(15X1=15 marks)

Section A

1. Define:-

- (a) Isolated Vertex
- (b) Odd Vertex
- (c) Regular Graph
- (d) Complete Graph
- (e) Multi Graph
- (f) Even Vertex
- 2. Convert (B2F.5)₁₆ into decimal form.
- 3. What is the complementary Graph of the following:

Section B

- 4. (a) Convert (1632.23)₈ into decimal system.
 - (b) Multiply the hexadecimal number (A21)₁₆ by (3B)₁₆.

S. S. JAIN SUBODH P.G.(AUTONOMOUS) COLLEGE, JAIPUR

Affiliated to University of Rajasthan, Jaipur

I CIA B.C.A. I Semester Test, September- 2017 Programming in 'C'

Max. Marks: 30

Duration: 1 Hour

Instructions to the Candidates

Note:- Section A: Consists of three short answer type questions, each carrying 7.5 marks. The candidates are required to attempt any two (7.5x2=15 marks)

Section B: Consists of one descriptive question of 15 marks with an internal choice.

Section A

- Q.1 What is Flow Chart? Explain with the help of an example.
- Q.2 Explain different Data Types available in C language.
- Q.3 Write a program to swap two numbers without using third variable.

Section B

Q.4 Describe algorithm with a suitable example. Explain its various features.

OR

Explain different types of operators available in C.

LRBHA

ODH V

101

AIPUR

Affilia NA BC . of Rujus. ...

: 44, Septemb

matics

Hour Hour

10

17.1

Section / Amount of three signs answer type questions, each corrying the marks. The candidates are to period to accompliany too. (7.5)x2=15 marks)

Section 8: Consists of one descriptive question of 15 marks with an internal choice.

(15x1=15 marks)

Hechen A

- 1. Define Partial Ordered Relation and Equivalence Relation with examples.
- 2. Let R be a relation on the set of all lines in a plane defined by $(l_1, l_2) \in R$ such that line l_1 is parallel to l_2 . Show that R is an equivalence relation.
- 3. In a group of 500 peoples, 300 can speak Hindi only and 120 can speak. English only. How many can speak both Hindi and English?

Section B

- 4. (a) Explain Pigeon Hole Principle
 - (b) Prove that ${}^{n}P_{n-1} = {}^{n}P_{n}$.
 - (c) Find the number of distinct permutations of the word MATHEMATICS.
 - (d) In how many ways can 4 mathematics books, 5 computer science books and 3 economics books be arranged in a shelf so that all books of the same subject remain together.
 - (e) In how many ways can 5 boys and 4 girls sit around a table so that no two girls sit together.

OR

- (a) Show by Mathematical Induction that for all $n \in \mathbb{N}$, $1+2+3+\ldots+n=n$ (n+1)/2.
- (b) State the Barbar's Paradox.