

Piezoelectric Paper: Characterization and Sensor Application

UBC Mechanical Engineering Department

Peter Lin

Outline

- Background Piezoelectric materials
- Research on fiber content and fines effect on material properties
 - Introduction
 - Materials Two type of piezoelectric papers
 - Method Dynamic mechanical analysis (DMA)
 - Results Fiber content effect on modulus
- Applications Accelerometer
- Future Research Plan Characterize electromechanical properties

Background Piezoelectric Materials

Piezoelectric Materials

Piezoelectric Effect Principle

- Positive and negative charges at different centers
- Dipole moments under loading
- Electro-mechanical Coupling
- Reverse piezoelectric effect

Piezoelectric Coefficient

- Strength of piezoelectric response
- Induced charge / Applied force

Applications

- Piezoelectric Effect force and acceleration sensors
- Reverse piezoelectric effect actuators and speakers

Piezoelectric effect

Reverse Piezoelectric effect

Research on Fiber Content and Fines Effect

Introduction

Piezoelectric papers

- Flexible and sustainable piezoelectric materials (Mahadeva et al., 2016)
- Research gaps on piezoelectric papers

Our Research

- Study fiber content and fines' effect on material properties

Materials

- Paper substrate with:
 - A. Pulp
 - B. Pulp and Fines, enhance strength

- 300nm BaTiO₃ particles loaded on the papers, 69wt%

Paper with Pulp in 100 µm scale

Paper with Pulp in 10 µm scale

Paper with Pulp and Fines in 100 µm Scale

Paper with Pulp and Fines in 10 µm Scale

Equipment and Method

- Dynamic Mechanical Analysis
 - What is that?
 - A technology to analyze materials' kinetic properties by applying stress or strain.
 - How it works in our experiment?
 - Applying sinusoidal force
 - Measure the sample displacement
 - Applications in measuring:
 - Modulus
 - Viscosity

DMA Machine, DMA 8000

Equipment and Method

- Test Method
 - 5mm by 5mm paper sample
 - Appling loading at:
 - A. 2 to 4 N (tensile)
 - B. 2 to 10 N (compressive)
 - Generate the stress-strain plot
 - Slope is calculated as Young's modulus
 - Piezoelectric Coefficient
 - Piezoelectric coefficient meter.

Compressive Stress-strain Plot for A4
Printing Paper

Results

Paper	А	В	С	D	E	F	G	Н
Component	300 ml Pulp	400 ml Pulp	500 ml Pulp	600 ml Pulp			400 ml Pulp + 50 ml Fines	400 ml Pulp + 75 ml Fines
Thickness [mm]	0.06	0.07	0.08	0.139	0.206	0.152	0.154	0.18

Results

Paper	А	В	С	D	E	F	G	Н	
Component	300 ml Pulp	400 ml Pulp	500 ml Pulp	600 ml Pulp	700 ml Pulp	400 ml Pulp + 25 ml Fines	400 ml Pulp + 50 ml Fines	400 ml Pulp + 75 ml Fines	
Thickness [mm]	0.06	0.07	0.08	0.139	0.206	0.152	0.154	0.18	

Application - Accelerometer

Paper Based Accelerometer

Validation

Application - Speaker

Paper Based Speaker

Paper Based Speaker

Original Sound is noisy

- Low pass filter to control noise from paper itself
- High pass filter to reduce environmental noise (Mostly fan and HVAC)

Low Pass Filter

High Pass Filter

Paper Based Speaker

Lighter color means higher amplitude

Future Research Plan

Future Research Plan

Our Plan

 Test electro-mechanical properties of different papers with different size of BTO particles

Acknowledgement

Acknowledgement

- Kanagasubbulakshmi Sankaralingam, Sajana Sumanasinghe, Ninweh Nina Jeorje, Anindya L. Roy, and Vishesh Jung Thapa for collecting the data and explaining how to use the devices.
- Prof. Boris Stoeber and Prof. Konrad Walus for reviewing and providing feedback on our results
- CREAT-U program and Canfor for funding our research.

Thank You & Questions