HUMBER ENGINEERING

MENG 3020 SYSTEMS MODELING & SIMULATION

LECTURE 1

LECTURE 1 Introduction to Systems & System Modeling

- Basic Definitions and Terminologies
- Introduction to Systems Modeling
- System Decomposition & Model Complexity
- Mathematical Modeling of Dynamic Systems
- System Modeling Procedure
- Simulation of Dynamic Systems

- A system is a combination of <u>components</u> or <u>subsystems</u> acting together to perform a specific <u>objective</u>.
- The **component** is a single function unit of a system.
 - Home Heating System
 - Industrial Robot
 - Laptop / Cell Phone
 - Manufacturing Process
 - Aircraft / Spacecraft
 - Automobile / Bicycle
 - Washing Machine
 - Road Traffic System
 - Solar System
 - Stock Market
 - •
- There is a cause-and-effect (input-output) relationship between the system components and the systems and the world external.

- Inputs: Any causes or excitations acting on the system from the world external to drive the system.
 - Force or torque applied to a mass
 - Voltage or current source applied to an electrical circuit
 - Pressure source applied to liquid in a pipe

- Outputs: Variables of interest to be <u>observed</u> or <u>measured</u> by sensors to assess the dynamic condition of the system.
 - Speed of a car
 - Voltage across a resistor
 - Rate at which a liquid flows through a pipe
- State Variables: Variables to represent the <u>internal status</u> or <u>memory</u> of the system, that are used to mathematically model the dynamic behavior of the system.

State Variables: Handlebars angle, Angular acceleration

☐ Static System / Dynamic System

- Static System: The relationship between the input and output is fixed and does not change over time.
- Static systems have no memory (no energy storage element)
- These systems are modeled by algebraic equations.
 - For example, a purely resistive circuit is a static system

Assume that the supplied voltage v_s is the input and voltage across resistor R_2 is the output.

The input-output relationship is:

$$v(t) = \frac{R_2}{R_1 + R_2} v_s(t)$$

Assume
$$R_1 = 100k\Omega$$
, $R_2 = 50k\Omega$ \rightarrow $v(t) = \frac{1}{3}v_s(t)$

• In general, for such a system where the output is directly proportional to the input, we can write

with *G* being a <u>constant</u> called the **Gain**.

■ Static System / Dynamic System

- Dynamic System: The relationship between the input and output is not fixed and changes over time.
- Dynamic systems have memory (energy storage element)
- These systems are modeled by differential equations not just a simple gain.
 - RLC circuits, an aircraft, an automobile, a robot, home heating system, mass-spring balanced system, ...

□ Continuous-Time Systems / Discrete-Time Systems

- Continuous-Time Systems: The inputs, outputs, and state variables are defined over some continuous range of time.
 CT systems are described by differential equations.
 - Magnitudes like temperature, position, speed, pressure, etc. all of them are CT variables.

• **Discrete-Time Systems:** The system inputs, outputs, and state variables only have a value for <u>discrete times</u>. DT systems are described by *difference equations*.

 Discrete-time variables can be obtained by taking the values (samples) of CT variables at instants separated by a sample time.

□ Continuous-Time Systems / Discrete-Time Systems

- Usually, the DT systems are implemented in a digital computer to process CT signals.
- This can be achieved by converting a CT Analog signal into DT Digital signal through an Analog-To-Digital Converter cat the front end and through a Digital-To-Analog Converter at the output stage.

- Many modern control systems contain a computer as a subsystem.
- The variables that are associated with the computer are discrete in time, but the variables in the physical system are continuous in time.

☐ Linear Systems / Non-linear Systems

The system is called a Linear System if the system satisfies the Homogeneity and Superposition properties:

$$x_1(t) \longrightarrow S \longrightarrow y_1(t)$$

$$ax_1(t) \longrightarrow S \longrightarrow ay_1(t)$$

Homogeneity

$$x_2(t) \longrightarrow S \longrightarrow y_2(t)$$

$$\Rightarrow y_2(t) \qquad x_1(t) + x_2(t) \longrightarrow S \longrightarrow y_1(t) + y_1(t)$$

Superposition

• For example, in electric systems resistor is a <u>linear</u> component, but <u>diode</u> is a <u>non-linear</u> component.

☐ Time-Varying Systems / Time-Invariant Systems

• **Time-Invariant Systems:** The system parameters remain constant in time, which means the system response of a certain input is independent of the time.

- Time-Varying Systems: The system parameters vary with time.
 - For example, during the course of a given flight, the mass of the aircraft will change. As the aircraft burns fuel, its mass decreases, and that changes the dynamics of the aircraft.
 - If the mass change is small, the change in the dynamics is small enough that we might call the system time invariant. For example, car can be considered as a time-invariant system.

Introduction to Systems Modeling

System Modeling is finding a mathematical representation to show how the <u>output</u> of the system is related to its <u>input</u>.

Why do we need the system model?

- Physical dynamic systems are a collection of components and subsystems connected together to perform a useful function
- Each element in the system converts energy from one form to another.
 - For example, a temperature sensor as converting degrees to volts or a motor as converting volts to rpm.
- In order to design, analysis and control of dynamic systems, we need to first understand the input-output relationship of the system elements and find a **model** for them. This helps us:
 - To <u>simulate</u> and <u>predict</u> the dynamic response and behavior of the components and subsystems
 - To <u>analyze</u> how components affect each other and the overall system, that helps fault detection and maintenance
 - To <u>design</u> a control system to improve and enhance the dynamic response as desired

Introduction to Systems Modeling

- System Modeling is finding a mathematical representation to show how the <u>output</u> of the system is related to its <u>input</u>.
 - ☐ How to find the system model?
 - Here are a series of questions to consider when modeling a system:
 - Where do you get started?
 - What aspects of the system must you consider?
 - What tools or information will you need?
 - What metrics do you use to measure the system's performance?
 - ➤ How do you design or optimize the system to ensure reasonable performance?
 - How do you automate or control a system?
 - In this course, you will evolve an understanding of tools and skills employed in examining dynamic system to obtain the dynamic system model.

Introduction to Systems Modeling

■ Lump-Parametric Modeling

- Find the input-output relationships for systems by considering them to be composed of just a few simple basic elements and applying the physical laws from first-principles.
- Mainly used to model <u>electrical</u>, <u>mechanical</u>, and <u>electromechanical</u> systems.
- The model is obtained as a differential equation, then shown in any <u>standard form</u> of, <u>Transfer Function model</u>, <u>State-Space model or Block diagram model</u>.
 - **Electrical systems** can be considered as compose of <u>basic elements</u>, which can be represented by <u>resistors</u>, capacitors, inductors and op-amps.
 - These are characterized by voltage –current relationships for components and the laws of interconnection Kirchhoff's Voltage Law (KVL) and Current Law (KCL)
 - Mechanical systems can be considered as compose of <u>basic elements</u>, which can be represented by springs, dampers and masses, and are characterized by <u>Newton's Laws of motion</u>.

■ Empirical Modeling

- An experimental approach, which mainly used to model thermal and fluid (hydraulic and pneumatic) processes.
- Some experiments are performed on the system to collect input-output data, a model is then fitted to the collected
 data by assigning suitable numerical values to its parameters.

Faculty of Applied Sciences & Technology

• One of the essential skills in dynamic systems modeling is the ability to effectively dissect a system into subsystem and more basic components to better facilitate mathematical representations of the physics entailed.

Truck Pulling a Cart

Input: Applied engine force
Outputs: Displacement of truck and cart

A Parachute Jumper

Inputs: Gravity forces

Outputs: Displacement of jumper and parachute

• One of the essential skills in dynamic systems modeling is the ability to effectively dissect a system into subsystem and more basic components to better facilitate mathematical representations of the physics entailed.

Vehicle Suspension System

Input: Vertical displacement due to road bumps

Output: Vertical displacement of car

A Shaft under a Torsional Load System

Input: Applied torque

Output: Angular speed of the shaft

 One of the essential skills in dynamic systems modeling is the ability to effectively dissect a system into subsystem and more basic components to better facilitate mathematical representations of the physics entailed.

Armature Controlled DC Motor

Input: Applied armature voltage

Output: Angular speed of rotor shaft

Wind Turbine Drivetrain

Input: Applied torque
Output: Speed of generator

- The complexity of the model depends on its intended use.
- For example, consider the vehicle suspension system.
- The quarter car suspension system can be modeled as depicted in either model A or B.
- Model A is a <u>simple</u> model that includes the <u>spring</u> and <u>damping</u> due to the shock absorber, and <u>mass</u> of the front quarter of the vehicle.
 - This model is adequate for predicting the vertical motion of the front quarter for relatively slow (low frequency) inputs.
 - An example might be a series of regularly spaced speed bumps the vehicle travels over at <u>slow</u> to <u>moderate</u> speeds as it might do in a <u>parking</u> lot or residential area.
 - At such speeds, the <u>suspension</u> absorbs most of the energy and accounts for most of the dynamics.

Model B

Datum level

- The complexity of the model depends on its intended use.
- For example, consider the vehicle suspension system.
- The quarter car suspension system can be modeled as depicted in either model A or B.
- Model B is a more elaborate model that includes compliance of the tire due to the compressed air within, and the combined mass of the wheel, tire and brake assembly, as well.
 - This model can be used for predicting the vertical motion of the front quarter for high frequency inputs.
 - For example, at <u>highway speeds</u>, the suspension receives more frequent vertical displacements with small amplitudes from the highway markers.
 - At such frequencies, the vehicle suspension does not have sufficient time to respond and absorb the energy. Instead, the tires absorb much of the energy and play a more critical role in predicting the dynamic response and induced vibrations.

Mathematical Modeling of Dynamic Systems

The mathematical models are obtained as differential equations by applying the physical laws from first-principles.

Armature Controlled DC Motor

Input: Applied armature voltage Output: Angular speed of rotor shaft

- Divide the system into idealized components
- Apply physical laws to the elements
- Apply interconnection laws between elements
- Combine the equations to obtain a standard form models
 - **Transfer Function Model**
 - State-Space Model
 - **Block Diagram Model**

$$\begin{cases} v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_b(t) \\ \tau_m(t) = K_i i_a(t) \end{cases}$$

$$\tau_m(t) = J_m \frac{d\omega_m(t)}{dt} + B_m \omega_m(t) + \tau_L(t)$$

$$v_b(t) = K_b \omega_m(t)$$

Mathematical Modeling of Dynamic Systems

• The empirical models are obtained by collecting input-output data and fitting the model and estimating the parameters.

Armature Controlled DC Motor

Input: Applied armature voltage
Output: Angular speed of rotor shaft

- Apply the appropriate input data.
- Collect the output data
- Match the output data with a standard model
 - Transfer Function Model
- Estimate the model parameters from the input-output data

System Modeling Procedure

✓ Define the purpose or objective of the model

 Identify system boundaries, subsystems & components, interconnecting variables, inputs and outputs.

✓ Determine the model for each component or subsystem

Apply the known physical laws for obtaining <u>differential equations</u>, <u>transfer function</u> or <u>state-variable equations</u>, when possible, otherwise use <u>experimental data</u> to identify input-output relationships.

✓ Integrate the subsystem models into an overall system model

• Combine equations, eliminate common variables, check for sufficient equations to solve the system.

✓ Verify the model validity and accuracy

• Implement a <u>simulation</u> of the model equations and compared with experimental data for the same conditions.

✓ Make simplifications to create an approximate model suitable for design

- <u>Linearization</u> of model equations
- Reduce the order of the model by eliminating unimportant dynamics

Simulation of Dynamic Systems

- The simulation technique includes an extensive collection of methods and applications aimed at reproducing the actual behavior of nonlinear systems on a <u>digital computer</u> with appropriate <u>simulation software</u>.
- We will particularize the computer simulation task by employing simulation software such as MATLAB, Simulink or Simscape, using <u>codes</u>, <u>block diagrams</u> and <u>physical elements</u> interconnected to synthesize the model equations.

- A computer simulation must embody several components:
 - In first place, the structure of the dynamic model to be simulated must be known, as also the <u>set of model</u> parameters and initial conditions.
 - In second place, the set of input signals must also be embodied, and a set of output signals must be explicitly
 defined in order to follow the system evolution.
 - Finally, a simulation run time must be included in order to select the <u>numerical integration method</u> used and the value of its associated parameters, integration step, error tolerances, etc.

System Simulation Tools: MATLAB

 MATLAB is a high-level technical computing environment suitable for solving scientific and engineering problems.

$$\begin{bmatrix} v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_b(t) & \longrightarrow V_a(s) = (L_a s + R_a) I_a(s) + V_b(s) \\ \tau_m(t) = K_i i_a(t) & \longrightarrow T_m(s) = K_i I_a(s) \\ \tau_m(t) = J_m \frac{d\omega_m(t)}{dt} + B_m \omega_m(t) + \tau_L(t) & \longrightarrow T_m(s) = (J_m s + B_m) \Omega(s) + T_L(s) \\ v_b(t) = K_b \omega_m(t) & \longrightarrow V(s) = K_b \Omega(s) & \text{Differential Equations} \end{cases}$$

MATLAB Code

System Simulation Tools: Simulink

 Simulink is an extension to MATLAB that allows users to rapidly and accurately build computer models of dynamical systems using block diagrams.

Block Diagram Model

Simulink Model

System Simulation Tools: Simscape

- Simcpace is a MATLAB-based, <u>object-oriented physical modeling</u> language that enables the user to create models
 of <u>physical components</u> using an acausal modeling approach.
- This language is designed to use in MATLAB and Simulink environment, it can benefit MATLAB functions and Simulink blocks.

THANK YOU

