Base-two primitive permutation groups and their Saxl graphs

Hong Yi Huang

University of Bristol

LMS Graduate Student Meeting

8 November 2021

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}\mathsf{G}_{\alpha}=1.$$

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

•
$$G = S_n$$
, $\Omega = \{1, \dots, n\}$ and $\Delta = \{1, \dots, n-1\}$.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

- $G = S_n$, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.
- G = GL(V), $\Omega = V$ and Δ contains a basis of V.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now, we assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now, we assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now, we assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V$: b(G) = dim(V).

Notes: If *G* is transitive, then

• $b(G) = 1 \iff G$ is regular;

Notes: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Notes: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem

Classify the finite transitive groups G with b(G) = 2.

Notes: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem

Classify the finite transitive groups G with b(G) = 2.

G is called primitive if G_{α} is a maximal subgroup of G.

Notes: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem

Classify the finite transitive groups G with b(G) = 2.

G is called primitive if G_{α} is a maximal subgroup of G.

Problem

Classify the finite primitive groups G with b(G) = 2.

Notes: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem

Classify the finite transitive groups G with b(G) = 2.

G is called primitive if G_{α} is a maximal subgroup of *G*.

Problem

Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

• $\{1,2\}$ is a base, so b(G) = 2;

Notes: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Problem

Classify the finite transitive groups G with b(G) = 2.

G is called primitive if G_{α} is a maximal subgroup of G.

Problem

Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

- $\{1,2\}$ is a base, so b(G) = 2;
- G is primitive iff n is a prime.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results.

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle$$
, $\Omega = \{1, 2, 3, 4\}$:

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \mathbf{C}_4 =$$

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \mathbf{C}_4 =$$

From now, we assume b(G) = 2 and G is transitive.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω ;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \mathbf{C}_4 =$$

From now, we assume b(G) = 2 and G is transitive. We have

• $\Sigma(G)$ is vertex-transitive;

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω ;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \mathbf{C}_4 =$$

From now, we assume b(G) = 2 and G is transitive. We have

- $\Sigma(G)$ is vertex-transitive;
- $\Sigma(G)$ is connected if G is primitive;

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω ;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Example

$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \mathbf{C}_4 =$$

From now, we assume b(G) = 2 and G is transitive. We have

- $\Sigma(G)$ is vertex-transitive;
- $\Sigma(G)$ is connected if G is primitive;
- $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular G_{α} -orbits.

A further example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

A further example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

A further example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

For example, when q=4 we have the complement of the Petersen graph.

Diameter

Recall: $\Sigma(G)$ is connected if G is primitive.

Diameter

Recall: $\Sigma(G)$ is connected if G is primitive.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Diameter

Recall: $\Sigma(G)$ is connected if G is primitive.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

 ${\mathcal G}$ primitive \implies any two vertices in $\Sigma({\mathcal G})$ have a common neighbour.

Diameter

Recall: $\Sigma(G)$ is connected if G is primitive.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Diameter

Recall: $\Sigma(G)$ is connected if G is primitive.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Theorem (Chen & Du, 2021+; Burness & H, 2021+)

 $soc(G) = L_2(q) \implies \Sigma(G)$ has the common neighbour property.

Soluble stabiliser

Li & Zhang 2011: Almost simple primitive groups with G_{α} soluble \checkmark

Soluble stabiliser

Li & Zhang 2011: Almost simple primitive groups with G_{α} soluble \checkmark

Burness 2021: The set \mathcal{G} of those base-two groups \checkmark

Soluble stabiliser

Li & Zhang 2011: Almost simple primitive groups with G_{α} soluble \checkmark

Burness 2021: The set \mathcal{G} of those base-two groups \checkmark

Theorem (Burness & H, 2021+)

 $G \in \mathcal{G} \implies \Sigma(G)$ has the common neighbour property.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $Q(G)\to 1$ as $q\to\infty$. But $\Sigma(G)=J(q+1,2)$ still has the common neighbour property.

Valency: Determine the number r(G) of regular G_{α} -orbits.

Valency: Determine the number r(G) of regular G_{α} -orbits.

• Chen & H, 2021+: some general methods

Valency: Determine the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021+: some general methods
- Burness & H, 2021+: $G \in \mathcal{G}$ and r(G) = 1

Valency: Determine the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021+: some general methods
- Burness & H, 2021+: $G \in \mathcal{G}$ and r(G) = 1 \checkmark

Product type primitive groups: $G \leq L \wr P$.

Valency: Determine the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021+: some general methods
- Burness & H, 2021+: $G \in \mathcal{G}$ and r(G) = 1

Product type primitive groups: $G \leq L \wr P$.

Theorem (Bailey & Cameron 2013)

 $b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$

Valency: Determine the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021+: some general methods
- Burness & H, 2021+: $G \in \mathcal{G}$ and r(G) = 1

Product type primitive groups: $G \leq L \wr P$.

Theorem (Bailey & Cameron 2013)

 $b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$

Questions:

• The Saxl graph $\Sigma(G)$ when $G = L \wr P$?

Valency: Determine the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021+: some general methods
- Burness & H, 2021+: $G \in \mathcal{G}$ and r(G) = 1

Product type primitive groups: $G \leq L \wr P$.

Theorem (Bailey & Cameron 2013)

 $b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$

Questions:

- The Saxl graph $\Sigma(G)$ when $G = L \wr P$?
- If $G < L \wr P$, then when do we have b(G) = 2?

Thank you!