Logique TD 2

RAPPELS

Définition 1 Un modèle d'un ensemble de formules Γ du Calcul Propositionnel est une valuation ν telle que $\nu(\varphi) = 1$ pour tout $\varphi \in \Gamma$. On note $mod(\Gamma)$ l'ensemble des modèles de Γ .

Définition 2

Un ensemble de formules Γ est consistant (ou satisfaisable) s'il admet au moins un modèle (i.e., $si \ mod(\Gamma) \neq \emptyset$).

Un ensemble de formules Γ est contradictoire s'il n'est pas satisfaisable, i.e., $mod(\Gamma) = \emptyset$.

Exemple 1 $\{p \lor q, \neg p \lor r\}$ est satisfaisable et $\{p, \neg p\}$ est contradictoire.

Définition 3 Une formule φ est conséquence logique d'un ensemble de formules Γ , noté $\Gamma \models \varphi$, si, et seulement si, toute valuation modèle de Γ est aussi modèle de φ , i.e., si $mod(\Gamma) \subseteq mod(\varphi)$.

Exemple 2 $\{(p \to s) \lor q, \neg q\} \models p \to s$.

SÉMANTIQUE

Exercice 1 (vu en cours)

Montrer que $\Gamma \models \varphi$ ssi $\Gamma \cup \{\neg \varphi\}$ est contradictoire.

Exercice 2 (vu en cours)

Montrer que pour tous ensembles de formules Σ et Γ ,

$$mod(\Sigma \cup \Gamma) = mod(\Sigma) \cap mod(\Gamma)$$

En particulier, si $\Sigma \subseteq \Gamma$ alors $mod(\Gamma) \subseteq mod(\Sigma)$.

Logique TD 2

Exercice 3

On dispose de 4 variables propositionnelles, qui sont supposées obéir aux contraintes suivantes :

$$\varphi_1: p_B \land \neg p_C \quad \varphi_2: p_A \to (p_C \lor p_D) \quad \varphi_3: \neg p_C \land (p_B \lor p_A)$$

Soit $\Gamma_1 = \{\varphi_1, \varphi_2, \varphi_3\}$, cet ensemble forme l'ensemble des prémisses à partir desquelles nous allons essayer de déduire les valeurs que peuvent prendre les variables propositionnelles.

- **3.1** Peut-on simplifier l'ensemble Γ_1 de façon à ne pas changer l'ensemble de ses modèles, et donc de ses conséquences ? Si oui, notez Γ_2 le sous ensemble de Γ_1 obtenu.
 - **3.2** Quel est l'ensemble des modèles de Γ_2 ?
 - **3.3** Γ_2 est-il consistant ? contradictoire ?
 - **3.4** Quelles conséquences logiques pouvons nous tirer de l'ensemble Γ_2 ?
 - **3.5** Étudiez l'ensemble de formules $\Gamma_3 = \{\neg p_B \land \neg p_D\} \cup \Gamma_2$.

EXERCICES DE MODÉLISATION ET UTILISATION D'UN SOLVEUR

Exercice 4

Une publicité pour un magazine de tennis annonce : "Si je ne joue pas au tennis, je regarde du tennis à la télé. Et si je ne regarde pas de tennis à la télé, je lis des articles sur le tennis." On peut supposer que l'orateur ne peut avoit qu'une activié à la fois. Que fait-il ?

Exercice 5

Il y a trois suspects pour un meurtre : Adams, Brown, et Clark. Adams dit : "Ce n'est pas moi. La victime était une vieille connaissance de Brown. Mais Clark la détestait." Brown déclare : "Ce n'est pas moi. Je ne connaissait même pas cette personne. D'ailleurs je n'étais pas en ville cette semaine." Clark dit : "Ce n'est pas moi. J'ai vu Adams et Brown en ville avec la victime ce jour-là ; l'un deux doit être le coupable." Supposez que les deux innocents disent la vérité, mais pas nécessairement le coupable. Qui est a commis le meurtre ?

Exercice 6

Quatre cartes sont placées en croix. Elles ont quatre valeurs différentes : as, roi, dame, valet et quatre couleurs différentes : trèfle, carreau, coeur, pique, mais pas nécessairement dans cet ordre. Il s'agit d'associer à chaque valeur une couleur et un emplacement, en respectant les contraintes suivantes :

Logique TD 2

- L'as est en haut.
- Le pique est en bas.
- La dame est à droite.
- Le roi est un roi de trèfle.
- L'as n'est pas un as de carreau.
- **6.1** Définir les symboles propositionnels permettant de modéliser le problème.
- **6.2** Modéliser le problème comme un ensemble de clauses (ne pas oublier les contraintes implicites sur l'unicité de chaque carte).
 - **6.3** Déterminer s'il existe un modèle de cet ensemble de clauses.