Sistemas Digitales

Código de paridad

Código de paridad

Descubre errores

<número binario>P donde P = 1 ← el número es non.

Código de hamming

D son los digitos del número original.

D₇D₆D₅P₄D₃P₂P₁ *P incrementa por potencias de 2

 $P_1 = D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11} \oplus \dots$ (D₃ sí, P₄ no, D₅ sí, D₆ no, D₇ sí ...)

 $P_2 = D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} \oplus \dots$ (de dos en dos, empezando por P_2 , el cual no cuenta: $P_1 \in P_2 \oplus P_3 \oplus P_4 \oplus P_5 \oplus P_6 \oplus P_6$

cuenta: D_3 sí, P_4 y D_5 no D_6 y D_7 sí, D_8 y D_9 no, D_{10} y D_{11} sí ...)

 $P_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_{12} \oplus \dots \text{ (de cuatro en cuatro, empezando por } P_4\text{, el cual no}$

cuenta: D₅, 6, 7 sí, 8, 9, 10, 11 no, 12, 13, 14, 15 sí ...)

 $\mathsf{C}_1 = \mathsf{P}_1 \oplus \mathsf{D}_3 \oplus \mathsf{D}_5 \oplus \mathsf{D}_7 \oplus \mathsf{D}_9 \oplus \mathsf{D}_{11} \oplus \dots$

 $C_2 = P_2 \oplus D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} \oplus \dots$

 $C_4 = P_4 \oplus D_5 \oplus D_6 \oplus D_7 \oplus D_{12} \oplus \dots$

No hay error $\iff \forall C, C = 0$