

LINEAR ALGEBRA

SPRING 2024 - SECTIONS L2, L4, L6

QUIZ 7 (27th Feb, 2024)

Max Marks: 10

Time: 7 minutes

Q. Suppose that u and v are vectors in \mathbb{R}^n . Show that $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$.

Solution:

$$\begin{split} \|u+v\|^2 &= (u+v)\cdot (u+v) = \|u\|^2 + 2(u\cdot v) + \|v\|^2 \\ \|u-v\|^2 &= (u-v)\cdot (u-v) = \|u\|^2 - 2(u\cdot v) + \|v\|^2 \end{split}$$

Adding above two equations, we will have

$$\|u+v\|^2 + \|u-v\|^2 = (\|u\|^2 + 2(u.v) + \|v\|^2) + (\|u\|^2 - 2(u.v) + \|v\|^2) = 2(\|u\|^2 + \|v\|^2)$$

LINEAR ALGEBRA

SPRING 2024 - SECTIONS L1, L3, L5

QUIZ 7 (29th Feb, 2024)

Max Marks: 10

Time: 8 minutes

Q. Given that $u.v = v^T u$. Prove the following results hold.

(c)
$$A\mathbf{u}.\mathbf{v} = \mathbf{u}.A^T\mathbf{v}$$

(d)
$$\mathbf{u}.A\mathbf{v} = A^T\mathbf{u}.\mathbf{v}$$

(where, u and v are vectors in \mathbb{R}^n and A is a matrix of order $n \times n$).

Solution:

Au. V = VAu

 $= 4.(v^TA)^T$

 $\underline{u} \cdot A \underline{v} = (A \underline{v}) \underline{u}$ $= \underline{v}(A^{T} \underline{u})$

= ATU. Y