Algoritmos para Juegos con Información Incompleta y No Determinismo

Rubmary Rojas

Universidad Simón Bolívar, Caracas, Venezuela

Enero 2020

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Ciencias sociales Economía Matemática

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Ciencias sociales Economía Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Ciencias sociales Economía Matemática

Computación

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

Interrogantes

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

Interrogantes

¿Qué significa que un juego sea resuelto?

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

Interrogantes

- ¿Qué significa que un juego sea resuelto?
- ¿Cuándo un jugador juega de forma óptima?

Objetivo General

Comprender los conceptos en el área de juegos de dos personas que involucran información incompleta y no determinismo, así como implementar los algoritmos para resolverlos, realizando experimentos sobre distintos juegos que son capturados por el modelo.

Piedra, papel o tijera

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\mathcal S}$ (tijera)	[-1, 1]	1,-1	0,0

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0,0	-1, 1	1, -1
${\cal P}$ (papel)	1, -1	0,0	-1, 1
$\setminus \mathcal{S}$ (tijera) $/$	-1, 1	1,-1	0,0

jugador 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	\mathcal{S} (tijera)	> jugador 2
${\cal R}$ (piedra)	0,0	-1, 1	1, -1	
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1	
${\cal S}$ (tijera)	-1, 1	1,-1	0,0	

Piedra, papel o tijera

	Λ (piec
\mathcal{R} (piedra)	0,0
${\cal P}$ (papel)	1, -1
${\cal S}$ (tijera)	-1, 1

\mathcal{R} (piedra)	\mathcal{P} (papel)	S (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	(1,-1)	0,0

primer jugador **gana** 1

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0,0
		1	

segundo jugador **pierde** 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0,0

Elementos

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

\mathcal{R} (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

1 Jugadores.

Piedra, papel o tijera

${\cal R}$	(piedra)
\mathcal{P}	(papel)
${\cal S}$	(tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores
- 2 Acciones o estrategias puras:

 \mathcal{R} , \mathcal{P} , \mathcal{S} .

Piedra, papel o tijera

\mathcal{R}	(piedra)
	(papel)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- 3 Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0
`		•

Juego de dos jugadores de suma cero

Elementos

- Jugadores
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- § Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Juego de dos jugadores de suma cero

Elementos

Estrategias

- Jugadores
- 2 Acciones o estrategias puras: $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- § Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{D}	(nanal)

	, ((, (626.)	(0.50.4)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\cal P}$ (papel)	[1, -1]	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0,0

 \mathcal{R} (piedra) \mathcal{P} (panel) \mathcal{S} (tijera)

Juego de dos jugadores de suma cero

Elementos

Estrategias

1 Estrategias puras: siempre se elige la misma acción.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

κ (pieura)	P (paper)	o (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

 \mathcal{D} (mindre) \mathcal{D} (mand) \mathcal{C} (tilians)

Juego de dos jugadores de suma cero

Elementos

- Jugadores.
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- 3 Función de pago o utilidades

Estrategias

- Estrategias puras: siempre se elige la misma acción.
- 2 Estrategias mixtas: cada acción se elige con cierta probabilidad.

Piedra, papel o tijera

\mathcal{R}	(piedra)
${\mathcal P}$	(papel)
$\mathcal S$	(tijera)

ic (piedia)	/ (papei)	O (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

 \mathcal{P} (niedra) \mathcal{P} (nanel) \mathcal{S} (tijera)

Juego de dos jugadores de suma cero

Elementos

- Jugadores.
- **2** Acciones o estrategias puras: \mathcal{R} . \mathcal{P} . \mathcal{S} .
- 3 Función de pago o utilidades.

Estrategias

- 1 Estrategias puras: siempre se elige la misma acción.
- 2 Estrategias mixtas: cada acción se elige con cierta probabilidad.

Batalla de los sexos

		José	
		ballet	béisbol
María	ballet	2, 1	0,0
	béisbol		

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol	0,0	1,2	

1....

Batalla de los sexos

	Jose		
ool			
0)			
2			
(ool 2		

• Ninguno obtiene ganancia.

Batalla de los sexos

1			-
1		c	Δ
J	u		C

María bállet béisbol

ballet	béisbol
(2,1)	0,0
0,0	1, 2

 María obtiene una ganancia mayor que José.

Batalla de los sexos

			/
	\sim	c	Δ
J	u		c

María bállet béisbol

ballet	béisbol
2, 1	0,0
0, 0	(1,2)

 José obtiene una ganancia mayor que María.

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
IVIAIIA	béisbol	0,0	1,2	

Conceptos

1.../

Batalla de los sexos

		Jose	
		ballet	béisbol
María	ballet	2,1	0,0
	béisbol	0,0	1,2

Conceptos

Ganancia Esperada

Valor promedio que un determinado jugador obtendría si jugara infinitas veces cuando cada jugador utiliza una estrategia dada.

1....

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2,1	0,0	
ivialia	béisbol	0,0	1, 2	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

	José		
	ballet	béisbol	
María ballet	2,1	0, 0	Si María siempre
béisbol	0,0	1, 2	elige ballet.

Conceptos

- 2 Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Lagá

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	(2,1)	0,0	
iviaiia	béisbol	0,0	1,2	

 Lo mejor para José es siempre elegir ballet.

Conceptos

- Ganancia Esperada
- Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

		Jose	
		ballet	béisbol
María	ballet	(2,1)	0, 0
iviaiia	béisbol	0,0	(1,2)

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

	José	
hallet		ŀ

María

	ballet	béisbol
llet	(2,1)	0,0
sbol	0 ,0	1, 2

 María no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

José

María

 José no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

		Jose	
		ballet	béisbol
María	ballet	(2,1)	0, 0
iviaiia	béisbol	0,0	(1,2)

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

Batalla de los sexos

María ballet 2, 2

ballet	béisbol
2, 1	0,0
0,0	1,2
	_

José

Lanzar una moneda

 $\mathbf{0}$ cara \Longrightarrow ballet

2 sello \implies béisbol

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

Batalla de los sexos

hallet

María ballet béisbol

ballet	béisbol
2,1	0,0
0,0	1,2
0,0	1, 2

José

Lanzar una moneda

- $\mathbf{0}$ cara \Longrightarrow ballet
- 2 sello \implies béisbol

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)

\mathcal{R}	(piedra)
\mathcal{D}	(nanal)

Ρ	(papel
\mathcal{S}	(tijera)

/ C (picara)	, (paper)	c (cije.u)
0, 0	-1 , 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R}	(piedra)
\mathcal{P}	(papel)
S	(tilera)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

${\mathcal R}$ (piedra)	
${\cal P}$ (papel)	
\mathcal{S} (tijera)	

${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R}	(piedra)	
\mathcal{P}	(papel)	

-	(L L	
\mathcal{S}	(tijera)

R (piedra)	\mathcal{P} (papel)	S (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R}	(piedra)
${\cal P}$	(papel)
${\cal S}$	(tijera)

\mathcal{R} (piedra)	\mathcal{P} (papel)	\mathcal{S} (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	(-1, 1)
-1, 1	1,-1	0, 0

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Teorema de Nash

Todo juego finito tiene al menos un equilibrio de Nash (en estrategias mixtas).

Observaciones previas

Observaciones previas

 En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

Equilibrio de Nash en Juegos de Dos Jugadores de Suma Cero

Solución satisfactoria.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- 2 Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan **cualquier** equilibrio de Nash.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan cualquier equilibrio de Nash.
- $oldsymbol{3}$ El primer jugador puede garantizar una ganancia esperada de **al menos** u independientemente de la estrategia de su oponente.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan cualquier equilibrio de Nash.
- $oldsymbol{3}$ El primer jugador puede garantizar una ganancia esperada de al menos u independientemente de la estrategia de su oponente.
- 4 El segundo jugador puede garantizar una ganancia esperada de al menos -u independientemente de la estrategia de su oponente.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- 2 Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan **cualquier** equilibrio de Nash.
- **3** El primer jugador puede garantizar una ganancia esperada de **al menos** u independientemente de la estrategia de su oponente.
- 4 El segundo jugador puede garantizar una ganancia esperada de al menos -u independientemente de la estrategia de su oponente.

Regret Matching

Algoritmos para calcular un Equilibrio de Nash

• Juegos de dos jugadores de suma cero.

Regret Matching

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- $oldsymbol{0}$ Se juega de forma repetida a través del tiempo t=1,2,3,...

Regret Matching

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- ① Se juega de forma repetida a través del tiempo t = 1, 2, 3, ...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- ① Se juega de forma repetida a través del tiempo t = 1, 2, 3, ...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- ① Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- **1** Se juega de forma repetida a través del tiempo t = 1, 2, 3, ...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Regret

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- **1** Se juega de forma repetida a través del tiempo t = 1, 2, 3, ...
- ② A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Regret

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Regret

Regret

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

Regret condicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

1 Regret condicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$egin{array}{c|cccc} \mathcal{S},\mathcal{S} & \mathcal{S},\mathcal{P} & \mathcal{S},\mathcal{S} & ar{u} \\ \hline 0 & 1 & 0 & rac{1}{3} \\ \hline \end{array}$$

$$R_1(\mathcal{R},\mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

Regret condicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$egin{array}{c|cccc} \mathcal{P},\mathcal{S} & \mathcal{P},\mathcal{P} & \mathcal{S},\mathcal{S} & ar{u} \\ -1 & 0 & 0 & -rac{1}{3} \end{array}$$

$$R_1(\mathcal{R}, \mathcal{P}) = -\frac{1}{3} - 0 = -\frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

\mathcal{S},\mathcal{S}	\mathcal{S},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
0	1	0	$\frac{1}{3}$

$$R_1(\mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$R_1(\mathcal{P}) = -\frac{2}{3} - 0 = -\frac{2}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- 1 Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$\begin{array}{c|cccc} \mathcal{P},\mathcal{S} & \mathcal{P},\mathcal{P} & \mathcal{P},\mathcal{S} & \bar{u} \\ \hline -1 & 0 & -1 & -\frac{2}{3} \\ \end{array}$$

$$R_1(\mathcal{P}) = -\frac{2}{3} - 0 = -\frac{2}{3}$$

Observaciones

1 Las probabilidades son elegidas proporcional a los regrets positivos.

- Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2}>0.$

- Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2}>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε .

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2}>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε.
 - $ightharpoonup \varepsilon$ -equilibrio de Nash.

Observaciones

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2}>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε.
 - \triangleright ε -equilibrio de Nash.

Estrategia Empírica

Observaciones

- Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- **3** Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2} > 0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε.
 - \triangleright ε -equilibrio de Nash.

Estrategia Empírica

La probabilidad de que un determinado jugador elija una acción a es igual a:

$$p(a) = \frac{\text{n\'umero de veces que el jugador eligi\'o}\ a}{\text{n\'umero total de juegos}}$$

Observaciones

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\frac{\varepsilon}{2}>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε .
 - $ightharpoonup \varepsilon$ -equilibrio de Nash.

Estrategia Empírica

La probabilidad de que un determinado jugador elija una acción \boldsymbol{a} es igual a:

$$p(a) = \frac{\text{n\'umero de veces que el jugador eligi\'o}\ a}{\text{n\'umero total de juegos}}$$

Evaluación y Correctitud

 Gráficas del regret incondicional con respecto al número de iteraciones.

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

- Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$
- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

 Primer jugador garantiza una ganancia esperada de al menos u.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- § Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

- Primer jugador garantiza una ganancia esperada de al menos u.
- 2 Segundo jugador garantiza una ganancia esperada de al menos -u.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

- Primer jugador garantiza una ganancia esperada de al menos u.
- 2 Segundo jugador garantiza una ganancia esperada de a lo sumo u para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 8 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

 $\textbf{1} \ \, \text{Primer jugador garantiza una} \\ \, \text{ganancia esperada de al menos} \\ \, u - \varepsilon_1.$

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

- 1) Primer jugador garantiza una ganancia esperada de al menos $u \varepsilon_1$.
- 2 Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

- 1) Primer jugador garantiza una ganancia esperada de al menos $u-\varepsilon_1$.
- 2 Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- **3** Explotabilidad: $\varepsilon = \varepsilon_1 + \varepsilon_2$.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

- 1) Primer jugador garantiza una ganancia esperada de al menos $u-\varepsilon_1$.
- 2 Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- **3** Explotabilidad: $\varepsilon = \varepsilon_1 + \varepsilon_2$.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

- 1 Primer jugador garantiza una ganancia esperada de al menos $u \varepsilon_1$.
- 2 Segundo jugador garantiza una ganancia esperada de a lo sumo $u+arepsilon_2$ para el primer jugador.

Experimentos

 $\mathbf{0}$ 4 juegos para dos jugadores de suma cero.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- \odot Criterio de parada: regret incondicional menor que 0.005.

- 4 juegos para dos jugadores de suma cero.
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005
- 4 Tabla de resultados

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005.
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.
 - Explotabilidad de la última estrategia obtenida.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005.
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.
 - Explotabilidad de la última estrategia obtenida.
 - Tiempo promedio.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005.
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.
 - Explotabilidad de la última estrategia obtenida.
 - Tiempo promedio.
 - Número de iteraciones promedio.

- ① 4 juegos para dos jugadores de suma cero
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0.005
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.
 - Explotabilidad de la última estrategia obtenida.
 - Tiempo promedio.
 - Número de iteraciones promedio.
 - Promedio del tiempo por iteración.

- 1 4 juegos para dos jugadores de suma cero.
- 2 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- **3** Criterio de parada: regret incondicional menor que 0.005.
- 4 Tabla de resultados
 - Ganancia esperada del primer jugador de la última estrategia obtenida.
 - Explotabilidad de la última estrategia obtenida.
 - Tiempo promedio.
 - Número de iteraciones promedio.
 - Promedio del tiempo por iteración.

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad $arepsilon_{\sigma}$	0,006	0,006	0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64{ imes}10^{-6}$	$3,03 \times 10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad ε_σ			0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64 \times 10^{-6}$	$3,03 \times 10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$			
Explotabilidad $arepsilon_{\sigma}$	0,006	0,006	0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64 \times 10^{-6}$	$3,03\times10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$			
Explotabilidad $arepsilon_{\sigma}$			0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64 \times 10^{-6}$	$3,03\times10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad ε_{σ}			0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64 \times 10^{-6}$	$3,03 \times 10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad $arepsilon_{\sigma}$			0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64 \times 10^{-6}$	$3,03 \times 10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad $arepsilon_{\sigma}$	0,006	0,006	0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64{ imes}10^{-6}$	$3,03{ imes}10^{-5}$	$2,58 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$	0,006	0,010	0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70{ imes}10^{-6}$	$5,23{ imes}10^{-5}$	$2,54{ imes}10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$			0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70 \times 10^{-6}$	$5,23 \times 10^{-5}$	$2,54 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$	0,006	0,010	0,009
Tiempo T	12, 198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70 \times 10^{-6}$	$5,23 \times 10^{-5}$	$2,54 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$			0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70 \times 10^{-6}$	$5,23 \times 10^{-5}$	$2,54 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad ε_{σ}			0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70 \times 10^{-6}$	$5,23 \times 10^{-5}$	$2,54 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$			0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70 \times 10^{-6}$	$5,23 \times 10^{-5}$	$2,54 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$	0,006	0,010	0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70{ imes}10^{-6}$	$5,23{\times}10^{-5}$	$2,54 \times 10^{-6}$

Jugador 2 Jugador 2

	J		

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Resultado

Jugador 1

Jugador 2

Resultado

1 La ficha y el dominó no se superponen: gana el jugador 1.

Jugador 1

Jugador 2

Resultado

- La ficha y el dominó no se superponen: gana el jugador 1.
- 2 La ficha y el dominó sí se superponen: gana el jugador 2.

Jugador 1

Jugador 2

Resultado

- La ficha y el dominó no se superponen: gana el jugador 1.
- 2 La ficha y el dominó sí se superponen: gana el jugador 2.

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$	0,010	0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50{ imes}10^{-4}$	$2,81 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$		0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$	0,010	0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$		0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$		0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$		0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95 \times 10^{-6}$	$1,50 \times 10^{-4}$	$2,81{ imes}10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$	0,010	0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95{ imes}10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

ullet S soldados por jugador.

- \bullet S soldados por jugador.
- ullet N campos de batalla.

- \bullet S soldados por jugador.
- ullet N campos de batalla.

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

 \bullet S soldados por jugador.

• $u_1 = 1 - 2 = -1$

ullet N campos de batalla.

Jugador 1

- \bullet S soldados por jugador.
- ullet N campos de batalla.

- $u_1 = 1 2 = -1$
- $u_2 = 2 1 = 1$.

Jugador 1

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad $arepsilon_{\sigma}$	0,010	0,010	0,009
Tiempo T	875,533	70,453	0,166
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20{ imes}10^{-3}$	$3,41{ imes}10^{-6}$

	Α	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad ε_{σ}			0,009
Tiempo T	875,533	70,453	
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20 \times 10^{-3}$	$3,41 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219		0,000024
Explotabilidad ε_{σ}	0,010	0,010	0,009
Tiempo T	875,533	70,453	
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20 \times 10^{-3}$	$3,41 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad ε_{σ}			0,009
Tiempo T	875,533	70,453	0,166
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20 \times 10^{-3}$	$3,41 \times 10^{-6}$

	Α	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad ε_{σ}			0,009
Tiempo T	875,533	70,453	
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20 \times 10^{-3}$	$3,41 \times 10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad ε_{σ}			0,009
Tiempo T	875,533	70,453	
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20{\times}10^{-3}$	$3,41{\times}10^{-6}$

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad ε_{σ}	0,010	0,010	0,009
Tiempo T	875,533	70,453	0,166
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60{ imes}10^{-6}$	$1,20{ imes}10^{-3}$	$3,41{ imes}10^{-6}$

Forma Extensiva

Juegos secuenciales

Juegos secuenciales

Elementos

 $\textbf{1} \ \, \text{Historias o nodos}. \\ \, \text{Ej: } \emptyset, \ LA, LBr, R. \\$

Juegos secuenciales

- Historias o nodos. Ej: \emptyset , LA, LBr, R.
- 2 Función que asigna a cada historia (nodo) un jugador.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBr, R
- Punción que asigna a cada historia (nodo) un jugador.
 - ► Nodos de Azar

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBr, R
- Punción que asigna a cada historia (nodo) un jugador
 - ▶ Nodos de Azar
- 3 Conjuntos de información.

Juegos secuenciales

- I Historias o nodos. Ej: \emptyset , LA, LBr, R
- Punción que asigna a cada historia (nodo) un jugador.
 - ▶ Nodos de Azar
- 3 Conjuntos de información.

Juegos secuenciales

- **1** Historias o nodos. Ej: \emptyset , LA, LBr, R
- ② Función que asigna a cada historia (nodo) un jugador.
 - ▶ Nodos de Azar
- 3 Conjuntos de información.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBr, R.
- ② Función que asigna a cada historia (nodo) un jugador.
 - ▶ Nodos de Azar
- Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.

Juegos secuenciales

- Historias o nodos. Ej: \emptyset , LA, LBr, R.
- Punción que asigna a cada historia (nodo) un jugador.
 - ▶ Nodos de Azar
- 3 Conjuntos de información
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBr, R
- ② Función que asigna a cada historia (nodo) un jugador.
 - Nodos de Azar
- Conjuntos de información.
- Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.
- 5 Distribución de probabilidad sobre el conjunto de acciones en cada nodo de azar.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBr, R.
- Punción que asigna a cada historia (nodo) un jugador.
 - Nodos de Azar
- 3 Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.
- 5 Distribución de probabilidad sobre el conjunto de acciones en cada nodo de azar.

	Α	В	C
(L, l)	0,0	2,4	2,2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Estrategias

1 Estrategias Puras.

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1, 1	1, 1

Estrategias

Estrategias Puras.

	Α	В	C
/(L, l)	0,0	2, 4	2, 2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1,1
(R, r)	1,1	1,1	1,1

Estrategias

Estrategias Puras.

	A	В	С
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1, 1

Estrategias

Estrategias Puras.

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

	Α	В	C
(L, l)	0,0	2, 4	2, 2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

(L, l)	(L, r)	(R, l)	(R, r)
0.45	0.30	0.00	0.25

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2, 4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

,	•	(R, l) 0.00	` ,
A	В	C	
0.25	0.25	0.50	

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Forma Normal

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1, 1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

3 Estrategias de Comportamiento.

Forma Normal

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- Estrategias Mixtas.

(L, r) 0.30	
 P	

A B C 0.25 0.25 0.50

3 Estrategias de Comportamiento.

L	R	l	r
0.65	0.35	0.40	0.60

Forma Normal

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0,0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1,1	1, 1

Estrategias

- Estrategias Puras.
- Estrategias Mixtas.

		(R, l) 0.00	
A	В	С	

Sestrategias de Comportamiento

L	R	l	
0.65	0.35	0.40	0.60

Equilibrio de Nash

Cada jugador utiliza una mejor respuesta frente a su oponente.

Forma Normal

	Α	В	C
(L, l)	0,0	2,4	2, 2
(L, r)	2,4	0, 0	2, 2
(R, l)	1,1	1,1	1, 1
(R, r)	1,1	1, 1	1,1

Estrategias

- 1 Estrategias Puras.
- 2 Estrategias Mixtas.

` ,	(L, r)	(R, l)	(R, r)
	0.30	0.00	0.25
A	B	C	
0.25	0.25	0.50	

3 Estrategias de Comportamiento.

L	R	l	r
0.65	0.35	0.40	0.60

Equilibrio de Nash

Cada jugador utiliza una mejor respuesta frente a su oponente.

Perfect Recall

Perfect Recall

1 El jugador recuerda lo que sabía.

Perfect Recall

- El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

Nodo de azar

Perfect Recall

- El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

- El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

- 1 El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

- 1 El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

- 1 El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

- 1 El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

Perfect Recall

- 1 El jugador recuerda lo que sabía.
- 2 El jugador recuerda lo que eligió.

En un juego con perfect recall las estrategias mixtas y de comportamiento tienen el mismo poder expresivo.

Interrogantes

Interrogantes

es una estrategia?

Interrogantes

- es una estrategia?
- ¿Por qué es mejor utilizar una estrategia no determinista?

Interrogantes

- ¿Qué es una estrategia?
- ¿Por qué es mejor utilizar una estrategia no determinista?
- ¿Es posible "engañar" al oponente?

1 El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- La estrategia promedio converge a un equilibrio de Nash.

¿Cómo se mejora la estrategia en cada iteración?

 Sumar el regret (arrepentimiento) que se tiene en cada conjunto de información por cada acción.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash.

- Sumar el regret (arrepentimiento) que se tiene en cada conjunto de información por cada acción.
- Regret: cuánto mejor lo habría hecho en todos los juegos hasta ahora si siempre hubiera jugado esta acción en este conjunto de información.

- El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- La estrategia promedio converge a un equilibrio de Nash.

- Sumar el regret (arrepentimiento) que se tiene en cada conjunto de información por cada acción.
- Regret: cuánto mejor lo habría hecho en todos los juegos hasta ahora si siempre hubiera jugado esta acción en este conjunto de información.
- Regret Matching: en la nueva estrategia las acciones son elegidas con probabilidades proporcionales a los regrets positivos.

- 1 El árbol del juego se recorre repetidamente. La máquina juega contra sí misma de forma repetida.
- 2 Se inicia con distribución uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash.

- Sumar el regret (arrepentimiento) que se tiene en cada conjunto de información por cada acción.
- Regret: cuánto mejor lo habría hecho en todos los juegos hasta ahora si siempre hubiera jugado esta acción en este conjunto de información.
- Regret Matching: en la nueva estrategia las acciones son elegidas con probabilidades proporcionales a los regrets positivos.

Experimentos

• Tres clases de juegos, cada uno con diferentes parámetros.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones
- Tabla de resultados:

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.
 - Número de conjuntos de información.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.
 - Número de conjuntos de información.
 - Número de iteraciones.

Experimentos

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.
 - Número de conjuntos de información.
 - Número de iteraciones.

 Ganancia esperada del primer jugador de la estrategia calculada.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar
- 10 horas de entrenamiento.
- Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.
 - Número de conjuntos de información.
 - Número de iteraciones.

- Ganancia esperada del primer jugador de la estrategia calculada.
- Explotabilidad.

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- Un juego se considera resuelto si la explotabilidad es menor que e 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
 - Instancia estudiada.
 - Número de nodos del árbol.
 - Número de conjuntos de información.
 - Número de iteraciones.

- Ganancia esperada del primer jugador de la estrategia calculada.
- Explotabilidad.
- Se resolvió o no la instancia.

Resultados Experimentales

Experimentos

- Tres clases de juegos, cada uno con diferentes parámetros.
- CFR con muestreo en los nodos de azar.
- 10 horas de entrenamiento.
- ullet Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.
- Gráfica del regret con respecto al número de iteraciones.
- Tabla de resultados:
- Instancia estudiada.
- Número de nodos del árbol.
- Número de conjuntos de información.
- Número de iteraciones.

- Ganancia esperada del primer jugador de la estrategia calculada.
- Explotabilidad.
- Se resolvió o no la instancia.

Generalización del Juego Kuhn Poker.

- Generalización del Juego Kuhn Poker.
- N: número de cartas.

- Generalización del Juego Kuhn Poker.
- N: número de cartas.
- ullet OCP(N).

- Generalización del Juego Kuhn Poker.
- N: número de cartas.
- ullet OCP(N).

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
OCP(3)	55	12	1.181.763.638	-0,056	0,0098	✓
OCP(12)	1.189	48	1.147.919.240	-0,062	0,0032	✓
OCP(50)	22.051	200	1.145.291.974	-0,058	0,0099	✓
OCP(200)	358.201	800	1.128.993.847	-0,056	0,0078	✓
OCP(1000)	8.991.001	4.000	1.087.573.694	-0,056	0,0098	✓
OCP(5000)	224.955.001	20.000	1.038.367.354	-0,056	0,0241	✓

Juego de dados y apuestas.

- Juego de dados y apuestas.
- K: número de caras de los dados.

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- Dudo (K, D_1, D_2) .

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- ullet Dudo (K, D_1, D_2) .

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Dudo(4,1,1)	8.177	512	18.697.532	-0,125	0,0259	✓
Dudo(4,1,2)	327.641	14.366	1.215.600	-0,508	0,0971	✓
Dudo(4,2,1)	327.641	14.366	1.213.799	0,552	0,3701	✓
Dudo(4,2,2)	13.107.101	327.680	63.109	0,0069	2,1132	X
Dudo(5,1,1)	51.176	2.560	4.521.208	-0,120	0,1186	✓
Dudo(5,1,2)	4.915.126	163.840	151.235	-0,565	0,6197	✓
Dudo(5,2,1)	4.915.126	163.840	143.698	0,581	0,0122	✓
Dudo(5,2,2)	471.858.976	7.864.320	3.826	0,836	15,1963	X
Dudo(6,1,1)	294.877	12.288	1.067.782	-0,111	0,0975	✓
Dudo(6,1,2)	66.060.163	1.769.472	17.702	-0,593	4,5781	X
Dudo(6,2,1)	66.060.163	1.769.472	17.221	0,592	3,9594	×

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- ullet Dudo (K, D_1, D_2) .

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
	8.177		18.697.532	-0,125	0,0259	/
	327.641	14.366	1.215.600		0,0971	√
	327.641	14.366	1.213.799		0,3701	√
Dudo(4,2,2)	13.107.101	327.680	63.109	0,0069	2,1132	X
	51.176	2.560	4.521.208	-0,120	0,1186	√
	4.915.126	163.840	151.235			√
	4.915.126	163.840	143.698	0,581		√
Dudo(5,2,2)	471.858.976	7.864.320	3.826	0,836	15,1963	X
	294.877	12.288	1.067.782	-0,111		/
Dudo(6,1,2)	66.060.163	1.769.472	17.702	-0,593	4,5781	X
Dudo(6,2,1)	66.060.163	1.769.472	17.221	0,592	3,9594	X

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- ullet Dudo (K, D_1, D_2) .

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Dudo(4,1,1)	8.177	512	18.697.532	-0,125	0,0259	✓
Dudo(4,1,2)	327.641	14.366	1.215.600	-0,508	0,0971	✓
Dudo(4,2,1)	327.641	14.366	1.213.799	0,552	0,3701	✓
Dudo(4,2,2)	13.107.101	327.680	63.109	0,0069	2,1132	X
Dudo(5,1,1)	51.176	2.560	4.521.208	-0,120	0,1186	✓
Dudo(5,1,2)	4.915.126	163.840	151.235	-0,565	0,6197	✓
Dudo(5,2,1)	4.915.126	163.840	143.698	0,581	0,0122	✓
Dudo(5,2,2)	471.858.976	7.864.320	3.826	0,836	15,1963	X
Dudo(6,1,1)	294.877	12.288	1.067.782	-0,111	0,0975	✓
Dudo(6,1,2)	66.060.163	1.769.472	17.702	-0,593	4,5781	X
Dudo(6,2,1)	66.060.163	1.769.472	17.221	0,592	3,9594	×

Versión para dos jugadores.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- lacktriangle N: número de piezas de la mano inicial para cada jugador.
- ullet Domino(M,N).

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.
- lacksquare Domino(M,N).

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Domino(2,2)	7.321	102	540.186.366	2,4000	0,0000	✓
Domino(3,2)	46.534.657	88.947	400.047.334	2,8767	0,0315	✓
Domino(3,3)	246.760.993	107.854	72.492.951	2,1539	0,3854	✓
Domino(3,4)	1.547.645.185	104.050	11.213.463	3,2034	1,4871	X

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.
- lacksquare Domino(M,N).

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Domino(2,2)	7.321	102	540.186.366	2,4000		/
	46.534.657	88.947	400.047.334	2,8767		/
	246.760.993	107.854	72.492.951	2,1539	0,3854	/
Domino(3,4)	1.547.645.185	104.050	11.213.463	3,2034	1,4871	X

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.
- lacksquare Domino(M,N).

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Domino(2,2)	7.321	102	540.186.366	2,4000	0,0000	✓
Domino(3,2)	46.534.657	88.947	400.047.334	2,8767	0,0315	✓
Domino(3,3)	246.760.993	107.854	72.492.951	2,1539	0,3854	✓
Domino(3,4)	1.547.645.185	104.050	11.213.463	3,2034	1,4871	X

Conclusiones

• Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 3 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash.

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 6 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash
- 4 Explotabilidad como métrica de error en las estrategias encontradas.

Conclusiones

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 3 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash

Recomendaciones

Conclusiones

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 3 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash
- Explotabilidad como métrica de error en las estrategias encontradas.

Recomendaciones

1 Resolver instancias mayores del juego de dominón para 2 personas considerando abstracciones.

Conclusiones

- Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 3 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash
- Explotabilidad como métrica de error en las estrategias encontradas.

Recomendaciones

- Resolver instancias mayores del juego de dominón para 2 personas considerando abstracciones.
- 2 Experimentos sobre el juego para 4 personas considerando cada pareja como un único jugador.

Conclusiones

- 1 Estudio de juegos no determinista con información incompleta: forma normal y forma extensiva.
- 2 Equilibrio de Nash como concepto de solución principal en los juegos de dos jugadores de suma cero.
- 3 Algoritmos de Regret Matching y Counterfactual Regret Minimization para encontrar aproximaciones de equilibrios de Nash.
- 4 Explotabilidad como métrica de error en las estrategias encontradas.

Recomendaciones

- 1 Resolver instancias mayores del juego de dominón para 2 personas considerando abstracciones.
- 2 Experimentos sobre el juego para 4 personas considerando cada pareja como un único jugador.

Demo

Gracias por

su atención