

Digital Logic

SP-

Minimization

Lecture No. 03

By- CHANDAN SIR

04 DUAL & SELF DUAL

05 DISCUSSION

TOPICS TO BE

COVERED

Modified Veitched Diagram

It is also known as (K-MAP)

Minimization by K-Map

- → Based on gray code.
- → Gray code

Pw

Gray Code

Stray code is a code in which successive numbers are differ by 1 bit.

Decimal	Binary	Gray Code
0	00	00
1	0.1	1:0
2	70	1× E
3	11	1×0

00

2) cyclic code

3> Reflecting code

Gray Code

Decimal	Binary	Gray Code	
0	000		
1	OOT	001	
2	0 1 0	0 1 1	
3	0 1 1	0 1 0	
4	100	1 1 0	
5	101	7 1 7	
6	110	7 0 1	
7	1 1 1	100	

f(A,B)

REC	7 <u>6</u> 00	БС 01	Bc 11	5 8 0 t
A 0	000	001	0113	010
A 1	100	10.1	111	110

f(A,B,C,D)

	5	CP	CD	CD	CD
6	3 ×	00	01	11	10
AB	00	0000	0001	0011	0010
BA	01	01004	0101	0111	0110
AB	11	1100	1101	1111	1110
AB	10	1000 g	1001	1011	1019

Group can be formed in order of 2h

$$16 \text{ group} = 2^{4}$$

4 Variables Reduce

$$8 \text{ group} = 2^{3}$$

3 Variables Reduce

$$4 \text{ group} = 2^{2}$$

2 Variables Reduce

$$2 \text{ group} = 2^{1}$$

1 Variable Reduce

$$1 \text{ group} = 2^{\circ}$$

'O' Varjable Reduce.

Rule of Minimization

Variable will minimize

For k-MAP try to write the function in standard canonical form

$$f(A,B) = \overline{A} \overline{B} + \overline{A}B + AB = \sum m(0, 1, 3)$$

= A+B

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + \overline{A}B + AB = \leq m(0, 1, 2, 3)$$

Q.3 $f(A,B,C) = \sum m(0,1,3,6,7)$

Q.4
$$f(A,B,C) = \sum_{i=1}^{N} m(0,1,3,5,6,7)$$

 $f(A,B,C,D) = \sum (0,2,4,6,10,11,13,15)$

Q.8 $f(A,B,C,D) = \sum_{i=1}^{N} m(0,1,2,4,6,9,10,11,12,13,15)$

Q.9

 $f(A,B,C,D) = \sum m (1,5,6,7,11,12,13,15)$

