ASTR4000B HW3

Laura Johanna Mack

February 2025

Galaxy Name	Halo Mass	Disk Mass	Bulge Mass	Total	Mass fraction
	$(M_{\odot} \text{x } 10^{12})$	$(M_{\odot} \times 10^{12})$	$(M_{\odot} \text{x} 10^{12})$	$(M_{\odot} \text{x} 10^{12})$	"
Milky Way	1.975	0.075	0.01	2.06	0.041
M31	1.921	0.12	0.019	2.06	0.067
M33	0.187	0.009	0	0.196	0.046
Total	408.241	20.43	2.906	431.57	0.05

- 1. The Milky Way and M31 have the same total mass. In both cases, the Halo mass dominates.
- 2. MW has a stellar mass of 0.085 10^{12} x M_{\odot} and M31 has a stellar mass of 0.139 10^{12} x M_{\odot} . M31 has a larger stellar mass than the Milky Way, so I would expect M31 to be more luminous.
- 3. The baryon mass fraction of the Milky Way and M31 is 0.041 and 0.067, respectively. Of the galaxies investigated, M31 has the highest mass fraction. The fact that it is 2% larger than the other galaxies is somewhat surprising. Especially given the fact that the Milky Way and M33 have mass fractions that are so similar.
- 4. The universal baryon fraction of 16% is much larger than the total 5% present in the simulation. For the Milky Way, with its mass fraction of 4.1% and M33 with 4.6% this disparity is greater than for M31 with its larger mass fraction of 6.7%. To avoid this disparity, there must be some amount of baryons present in the universe outside of galaxies. This is the intergalactic medium.