НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря СІКОРСЬКОГО» НАВЧАЛЬНО-НАКУОВИЙ ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Звіт за темою:

«Баєсівський підхід в криптоаналізі: побудова і дослідження детерміністичної та стохастичної вирішуючих функцій»

Виконали студенти групи ФІ-32мн Кріпака Ілля, Шашенок Микита

1 Мета практикуму

Практично ознайомитися із принципами баєсівського підходу в криптоаналізі,та безпосерденьо побудувати детерміністичну та стохастичну матриці для заданих розподілів.

1.1 Постановка задачі та варіант

Треба виконати	Зроблено			
Описати побудову алгоритму	✓			
Порахувати таблицю ймовірностей $P(M C)$	✓			
Показати детермінитичну та стохастичну	✓			
функції				
Порахувати середні витрати для	✓			
вирішуючих функцій				

2 Хід роботи/Опис труднощів

Для виконанння лабораторної роботи була обрана мова програмування Python та бібліотека для роботи з таблицями Pandas, написані функції для отримання розподілу шифротекстів та сумісного розподілу відкритих текстів та шифротекстів.

З цього було отримано відповідні таблиці ймовірностей, яких вже були побудовані детерміністичну та стохастичні функції, а також обраховані середні втрати.

Під час виконання роботи виникли труднощі з певною невідповідністю формату даних при їх завантаженні у код, тому на початку було застосовано деякий препроцесінг з вхідними даними та отримано зручні для роботи таблиці.

3 Результати дослідження

У ході роботи було визначено, що детерміністична та стохастична вийшли однаковими, але було серденє значення похибки у обох функцій вийшли різними. У результаті отримали, що детерміністична функція є кращою для нашого варіанту.

3.1 Опис алгоритму

Для побудови детерміністичної функції та стохастичних функцій наведемо наступний алгоритм.

Заува ження. Одразу зазанчимо, що алгоритми подібні та відрізняються лише у останньому кроці. Для послідовності опису наведемо повні кроки.

Алгоритм .1. 1. Алгоритм із побудови детерміністичної вирішуючої функції.

- Обчислюємо P(C) за формулою: $\forall C: P(C) = \sum_{(M,k): E_k(M) = C} P(M,k).$
- Обчислюємо P(M,C) за формулою: $\forall (M,C): P(M,C) = \sum_{k:E_k(M)=C} P(M,k).$
- Обчислюємо P(C|M) за формулою $\dfrac{P(M,C)}{P(C)}.$
- Із обчислених значень умовних ймовірностей вибираємо максимальні значення. Та присвоюємо 1 до тих комірок у матриці де зустріли його.

- 2. Алгоритм із побудови стохастичної вирішуючої функції.
 - Обчислюємо P(C) за формулою: $\forall C: P(C) = \sum_{(M,k): E_k(M) = C} P(M,k).$
 - Обчислюємо P(M,C) за формулою: $\forall (M,C): P(M,C) = \sum_{k:E_k(M)=C} P(M,k).$
 - Обчислюємо P(C|M) за формулою $\dfrac{P(M,C)}{P(C)}$
 - Із обчислених значень умовних ймовірностей вибираємо макимальні значення. Та у тих рядках, де максимальне значення повторюється s разів присвоюємо коміркам значення $\frac{1}{s}$.

3.2 Таблиця ймовірностей

Таблиця ймовірностей набула наступної форми.

Рис. 1: Таблиця умовних ймовірностей для обчислення вирішуючих функцій.

3.3 Детерміністична та стохастична матриці

У ході обчислень було отримано наступні функції.

	÷	Θ \$	1 ÷	2 ‡	3 ‡	4 ‡	5 ‡	6 ‡	7 ÷	8 ‡	9 ‡	10 ‡	11 ‡	12 ‡	13 ‡	14 ‡	15 ‡	16 ‡	17 ÷	18 ‡	19 ‡
Ciphert	texts	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Message	es	17	2	1	1	1	13	2	3	3	6	2	0	Θ	2	19	3	Θ	2	13	3

Рис. 2: Детерміністична вирішуюча функція зображена у формі відображень. (ШТ -> ВТ)

Також сердене значення втрат вийшло таким:

- Для детерміністичної вирішуючої функції значення втрат становить: 0.8376049.
- Для стохастичної вирішуючої функції значення втрат становить: 0.936809.

#	MO	M1	M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19
C0	0	0	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	1	0	0
C1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C5	0	0	0	0	0	0	0	0	Θ	0	0	0	0	1	0	0	0	0	0	0
C6	0	0	1	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0
C7	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C8	0	0	0	1	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0
C9	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
C10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C11	1	0	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0
C12	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C13	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
C15	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C17	0	0	1	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
C19	0	0	Θ	1	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0	0	0

Рис. 3: Стохастична вирішуюча функція.

4 Висновки

За допомогою реалізації практикуму "Баєсівський підхід в криптоаналізі: побудова і дослідження детерміністичної та стохастичної вирішуючих функцій" дізналися на практиці як повинен відбуватися баєсівський підхід у криптоаналізі. Також були долучені до створення такого собі «маленького» прикладу із побудови вирішуючих функцій для заданого розподілу повідомлень.