ITC5/EIT5 1/3

2018-09-05/MS

Signal Processing, lecture 1

Topics:

Introduction:

- Course overview
- Analog filters: Applications
- · Ideal and real filters.

Filter design procedure and approximations:

- · Normalization and de-normalization
- The Butterworth approximation

Literature:

The analog filter part of the course will be based on: Kendall Su: "Analog Filters", Kluwer Academic Publishers, 2nd ed. 2002, ISBN 1-4020-7033-0 (Springer: ISBN 978-1-4020-7033-4)

The book is available in electronic form at http://www.en.aub.aau.dk where you can read the book and print a few pages.

Topic	Pages ({*} ⇔ supplementary lit.)
Introduction, ideal filters, normalization and de-normalization	{1-2, 7-16} 3-7
Butterworth characteristics	25-30
Transfer functions	49-57

Supplementary: Lecture presentation "slides"

Exercises:

1.1

A Butterworth low-pass filter is wanted, with the two (standard) requirements:

- $20 \cdot \log |H(j \cdot 1 \text{ rad/s})| = -3 \text{ dB}$
- $20 \cdot \log |H(j0)| = 0 dB$
- a. Calculate and plot the pole locations for filters of order n = 4 and n = 5.
- b. Find an expression for the transfer function from the pole locations for n = 4.
- c. Check the results from a and b using Matlab

1.2

A 2nd order Butterworth low-pass filter is to be used in a class-D audio amplifier to pass the audio signal and attenuate the signal at the switching frequency.

- The attenuation at 20 kHz shall be 0.5 dB
- The attenuation at the switching frequency shall be 30 dB
- a. For a normalized ($\omega_{3dB} = 1 \text{ rad/s}$) 2^{nd} order Butterworth filter, find the radian frequency, where the attenuation is 0.5 dB.
- b. For the normalized filter, find the radian frequency, where the attenuation is 30 dB, and find the transition band ratio, $\omega_{30dB}/\omega_{0.5dB}$.

ITC5/EIT5 2/3

• A 2nd order Butterworth filter with $\omega_{3dB}=1$ rad/s, can be made using the circuit shown with $L_1=1.4142$ H and $C_2=0.7071$ F and $R_L=1$ $\Omega.$

- d. Find the frequency, where the scaled filter has an attenuation of 30 dB.
- e. Plot the magnitude of the transfer function (dB) in Matlab
- f. Make an impedance scaling to $R_L = 4 \Omega$ and find the new values, $L_{1,scaled}$ and $C_{2,scaled}$.

1.3

The following requirements are set for a Butterworth low-pass filter:

- The attenuation at ≥ 30 kHz shall be ≥ 20 dB
- The attenuation at ≤ 10 kHz shall be ≤ 1 dB
- a. Find the necessary filter order.
- b. Find the 3-dB bandwidth, when the attenuation at 10 kHz is chosen to be 1 dB.

ITC5/EIT5 3/3

Results:

1.1

1.2

•

- a. 0.591 rad/s
- b. 5.62 rad/s, 9.51
- c. 6.65 μH, 3.33 μF, 212.6e3
- d. 190 kHz

6

f. 26.6 μH, 831 nF

1.3

- a. *3*
- b. 12.53 kHz