MNK game

Wadood Alam, Matthew Pacey, Joe Nguyen

Introduction the game

Generalization of tic tac toe game

- M x N board
- the winner is the player who first gets K stones of their own color in a row, horizontally, vertically, or diagonally

Example of a completed 11,10,5-game

Search Algorithm: Alpha Beta Pruning

- Minimax: Min player tries to minimize the utility of max player i.e player 2 prevents player 1 from winning
- Alpha-Beta: Optimized version of minimax
 - Prune when current value <= alpha if MIN
 - Prune when current value >= beta if MAX
- Heuristic Ordering: Select the empty cell with the most occupied neighbors

Search algorithm: Monte Carlo Tree Search

Node Selection: value = $X_i + C * \sqrt{(p_i/n_i)}$ where: **Exploitation**: $X_i = \text{Node wins / games}$

Exploration: C = constant (1.1); $p_i = log(parent node's games)$; $n_i = (node games)$;

Node Expansion Heuristic: Select the empty cell with the most occupied neighbors

Experiments

- 6 different boards: 3x3, 3x4, 4x4, 4x5, 5x5, 6x5
 - 3 square; 3 rectangular
- Minimax + Alpha-beta with heuristic ordering
 - Depth Limit = 5
- Varying K from 3 to M where M is the num of rows
- Number of iterations in MCTS = 500
- **a**-β vs MCTS
- MCTS vs *a*-β
- MCTS vs MCTS with varying MCTS Iterations per player

Results: MCTS Iteration Variance

- Player 1(first to move) has a slight advantage
- Increasing MCTS Iterations allows Player 2 to overcome advantage

P1 Wins	P2 Wins	P1 Iterations	P2 Iterations
60	40	500	500
45	55	5	500
85	15	500	5

MCTS(1) VS AB(2)

6x5

AB(1) VS MCTS(2)

Discussion

- Player 1 has an advantage
- High K values led to more ties
- Keeping a consistent depth limit of 5, our data makes sense because as the board size increases more nodes need to be expanded. By a lower depth limit it is expected to have more ties. The tradeoff is that it takes less compute time.
- Increasing the number of MCTS Iterations increases score. The optimal value seemed to be 500 iterations (number of playouts to simulate for each move decision), past that not many wins were gained at the expense of longer compute time.
- MCTS is better than Alpha-Beta when the problem is simple unless K = 4, where
 Alpha-Beta is unable to model a large tree search
- With heuristic and without heuristic there is a clear difference between the number of nodes expanded (hence more time taken). Thus we decided to keep a consistent, lower depth limit of 5

Questions & Concerns

Thank you!

MCTS VS AB

AB VS MCTS

Minimax + Alpha-beta with / without heuristic ordering

Max_depth = inf

Size of the game	Number of nodes expanded		Percentages
	Without heuristic ordering	With heuristic ordering	compared to without
3 x 3 k = 2	165	26	15.75%
3 x 3, k = 3	18297	536	2.93%
4 x 4, k = 2	813	47	5.78%
4 x 4, k = 3	1024394	4242	0.41%!!
4 x 4, k = 4	Too long to run	Too long to run	