

PC2232 Physics for Electrical Engineers Lecture 5: Loss, Gain, Dispersion, Birefringence

Mankei Tsang

Department of Electrical and Computer Engineering
Department of Physics
National University of Singapore

mankei@nus.edu.sg
http://mankei.tsang.googlepages.com/

January 25, 2015

Permittivity

- We discussed a simple model of EM waves in media, where the permittivity is replaced by a scalar constant ϵ .
- \blacksquare A more realistic treatment is to define a displacement field D:

$$\nabla \cdot \mathbf{D} = 0, \qquad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}, \qquad (1)$$

and write D as a function of E.

■ Suppose E oscillates in time as $\exp(-j\omega t)$:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{\mathcal{E}}(\boldsymbol{r}) \exp(-j\omega t). \tag{2}$$

In a more realistic model of linear optical medium, $oldsymbol{D}$ can be written as

$$D(r,t) = \epsilon(\omega)\mathcal{E}(r)\exp(-j\omega t), \tag{3}$$

where $\epsilon(\omega)$ may be complex, frequency-dependent, and a 3×3 matrix.

Complex Refractive Index

- First suppose that $\epsilon(\omega)$ is a complex scalar.
- Consider a plane wave:

$$\boldsymbol{E} = \tilde{\boldsymbol{E}} \exp(j\boldsymbol{k} \cdot \boldsymbol{r} - j\omega t), \qquad \boldsymbol{H} = \tilde{\boldsymbol{H}} \exp(j\boldsymbol{k} \cdot \boldsymbol{r} - j\omega t). \tag{4}$$

The Gauss laws lead to

$$\mathbf{k} \cdot \tilde{\mathbf{E}} = 0, \qquad \mathbf{k} \cdot \tilde{\mathbf{H}} = 0, \tag{5}$$

we still have transverse waves.

The wave equation becomes

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} \to j\boldsymbol{k} \times \tilde{\boldsymbol{H}} = -j\omega\epsilon(\omega)\tilde{\boldsymbol{E}}, \quad \nabla \times \boldsymbol{E} = -\mu_0 \frac{\partial \boldsymbol{H}}{\partial t} \to j\boldsymbol{k} \times \tilde{\boldsymbol{E}} = j\omega\mu_0\tilde{\boldsymbol{H}}. \quad (6)$$

These lead to

$$\mathbf{k} \times (\mathbf{k} \times \tilde{\mathbf{E}}) = -(\mathbf{k} \cdot \mathbf{k})\tilde{\mathbf{E}} = -\omega^2 \mu_0 \epsilon(\omega)\tilde{\mathbf{E}}.$$
 (7)

If $\epsilon(\omega)$ is complex, $\mathbf{k} \cdot \mathbf{k} = k^2$ is also complex,

$$k^2 = \omega^2 \mu_0 \epsilon(\omega), \qquad k = \omega \sqrt{\mu_0 \epsilon(\omega)} = \frac{\omega n(\omega)}{c}, \qquad n(\omega) \equiv \sqrt{\frac{\epsilon(\omega)}{\epsilon_0}}.$$
 (8)

 $n(\omega)$ and therefore k are complex and frequency-dependent.

Optical Loss

Let's write $n(\omega)$ and k in terms of their real and imaginary parts:

$$n(\omega) = n'(\omega) + jn''(\omega), \qquad k = k' + jk'' = \frac{\omega}{c} \left[n'(\omega) + jn''(\omega) \right]. \tag{9}$$

■ Let's say $k = k\hat{z}$. Note that

$$\exp(jkz) = \exp(jk'z - k''z),\tag{10}$$

which decays exponentially if $n''(\omega)$ and therefore k'' are positive.

Suppose $\tilde{\pmb{E}} = \tilde{E}\hat{\pmb{x}}$, $\tilde{\pmb{H}} = \tilde{H}\hat{\pmb{y}}$. The magnetic-field amplitude is $\tilde{H} = \frac{\tilde{E}}{Z} = n(\omega)\frac{\tilde{E}}{Z_0}$, and the intensity is

$$\overline{S} = \frac{1}{2} \operatorname{Re} \left(\boldsymbol{E} \times \boldsymbol{H}^* \right) = \hat{\boldsymbol{z}} \frac{|\tilde{E}|^2}{2Z_0} \operatorname{Re} \left[n^*(\omega) e^{jkz - j\omega t} e^{-jk^*z + j\omega t} \right] = \hat{\boldsymbol{z}} \frac{|\tilde{E}|^2}{2Z_0} n'(\omega) e^{-2k''z}, \quad (11)$$

which decays exponentially with a decay constant of $2k'' = 2\omega n''(\omega)/c$.

Power loss is often measured in dB. Decay coefficient α is usually measured in terms of power loss in dB per unit length.

$$-\alpha z \text{ [dB]} = 10 \log_{10} \frac{\bar{S}(z)}{\bar{S}(0)} = 10 \log_{10} \exp(-2k''z) = -20k''z \log_{10} e.$$
 (12)

For example, power loss in an typical optical fiber is around $\alpha=0.2$ dB/km at $\lambda_0=1550$ nm (free-space wavelength, convert to frequency by $\omega=2\pi\nu=2\pi c/\lambda_0$).

Silica Optical Loss

- In reality, there are a lot of reasons behind optical loss of a material (absorption by material, absorption by impurities, scattering by small defects, etc.)
- The extremely low loss of high-purity silica enables modern optical fiber communications:

Figure 3.21 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss spectra for various intrinsic material effects and waveguide imperfections are also shown. (From Reference [24].)

Lowest loss happens around $\lambda_0 = 1530-1570$ nm. Many optical devices and components are developed for optical communications around the 1550 nm wavelength.

Optical Gain

■ Under special conditions (more on this later), a medium can also provide gain to the EM wave. Then $n''(\omega)$ is negative, and the power grows exponentially along z:

$$\bar{S} = \hat{z} \frac{|\tilde{E}|^2}{2Z_0} n'(\omega) e^{-2k''z} = \hat{z} \frac{|\tilde{E}|^2}{2Z_0} n'(\omega) e^{2|k''|z} \quad (k'' < 0)$$
(13)

- The increase in optical energy must be supplied by a **pump**.
- An **optical amplifier** uses gain to increase the power of optical signals. For example, erbium-doped fiber amplifiers (EDFA) provide optical amplification near 1550 nm.
- A laser consists of an optical amplifier inside a Fabry-Perot cavity.

- LASER = Light Amplification by Stimulated Emission of Radiation.
- We will learn about the quantum phenomenon of stimulated emission later.

Simple Laser System

Consider a partial mirror on the left, a perfect mirror on the right (reflection coefficient = 1 for simplicity), and an optical gain medium in-between.

$$z = 0$$
 $z = L$

■ Sum over partial waves to obtain final reflection coefficient:

$$\tilde{E}_{\text{out1}} = \left[s_{11} + s_{12} s_{21} e^{2jkL} \left(1 + G + G^2 + \dots \right) \right] \tilde{E}_1, \tag{14}$$

where

$$G = s_{22}e^{2jkL} = s_{22}e^{2jk'L}e^{-2k''L}$$
(15)

is the factor corresponding to one round trip.

Threshold Condition

When $k'' \propto n''(\omega) < 0$ (gain), and the gain overcomes the loss at the partial mirror ($|s_{22}| < 1$), the round-trip factor can have a magnitude $|G| \ge 1$. The infinite series

$$\sum_{m=0}^{\infty} G^m \tag{16}$$

does not converge!

- There is something wrong with our assumptions: we assumed solutions $\exp(-j\omega t)$ at all times, but that does not work if the system is **unstable**.
- When |G| > 1, the system is **unstable**, and the solution should grow **exponentially in time** starting from an initial condition.
- |G| > 1 is known as **the threshold condition for a laser**. It leads to huge increase in energy transfer from the pump to the optical beam.
- The exponential increase cannot last forever. Eventually the gain will saturate $(n''(\omega))$ becomes less negative in response to high optical energy inside cavity), and the laser settles into a steady state.

Initial Condition?

■ Riddle?

- Q: A student decides to start working hard. To ramp up his work load, he decides that each day he/she will spend twice as much time to study compared with the day before. On the Nth day, how long is he going to study?
- ◆ A: If he doesn't study at all to begin with, he will never study!
- **Exponential** increase in time $f(x) = f(0) \exp(\gamma t)$ is zero if f(0) is zero.
- For an unstable system like a laser above the threshold condition, it still needs a nonzero initial condition to start according to our (classical) analysis.
- The full laser operation will require a quantum theory of light-matter interaction to explain.

Dispersion

- Let us now focus on the real part of $n(\omega)$, assume that the imaginary part is negligible (i.e. $n(\omega)$ is real), and consider the effect of frequency-dependent refractive index.
- With

$$\boldsymbol{E} = \tilde{\boldsymbol{E}} \exp \left[j \frac{\omega n(\omega) z}{c} - j \omega t \right], \tag{17}$$

different frequencies propagate at different speeds (phase velocity):

$$v(\omega) = \frac{c}{n(\omega)}. (18)$$

■ The refracted angle will depend on frequency:

Rainbows

Light from sun

*Pulse Propagation

- \blacksquare Remarkably, in some materials the phase velocity can exceed c.
- One cannot send information using just $\exp(-j\omega t)$ with one frequency however. There must be some additional variations in time (e.g., switch the signal on and off, or $a(t)\exp(-j\omega t)$) to send information.
- At z=0, suppose that the input signal is E(0,t). I can write it as an inverse Fourier transform:

$$E(0,t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \tilde{E}(\omega) \exp(-j\omega t), \qquad \qquad \tilde{E}(\omega) = \int_{-\infty}^{\infty} dt E(0,t) \exp(j\omega t). \tag{19}$$

 $ilde{E}(\omega)$ is a frequency-domain amplitude.

 \blacksquare At another z,

$$E(z,t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \tilde{E}(\omega) \exp\left[jk(\omega)z - j\omega t\right], \qquad k(\omega) = \frac{\omega n(\omega)}{c}. \tag{20}$$

This is a continuous superposition of plane waves and matches the boundary condition.

■ Suppose that

$$E(0,t) = a(t)\exp(-j\omega_0 t), \qquad \tilde{E}(\omega) = \int_{-\infty}^{\infty} dt a(t)\exp[j(\omega - \omega_0)t] = \tilde{a}(\omega - \omega_0), \qquad (21)$$

where a(t) is a pulse envelope and $\tilde{a}(\omega)$ is its Fourier transform. Let's expand $k(\omega)$ in the first order near ω_0 :

$$k(\omega) \approx k(\omega_0) + k^{(1)}(\omega_0)(\omega - \omega_0), \qquad k^{(1)}(\omega) = \frac{dk(\omega)}{d\omega} \Big|_{\omega = \omega_0}. \tag{22}$$

*Group Velocity

$$=e^{jk(\omega_0)z-j\omega_0t}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\tilde{a}(\omega-\omega_0)e^{jk^{(1)}(\omega_0)(\omega-\omega_0)z-j(\omega-\omega_0)t}$$
(24)

$$= a(t - k^{(1)}(\omega_0)z)e^{jk(\omega_0)z - j\omega_0t}.$$
(25)

The envelope propagates with **group velocity** $1/k^{(1)}(\omega_0)$, while the phase propagates with **phase velocity** $\omega_0/k(\omega_0)$.

- \blacksquare Remarkably, the group velocity can also exceed c in some materials.
- In reality, $n(\omega)$ has higher orders and is complex. It can be shown that, information cannot travel faster than c when we remove the above approximations. See L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960).
- The higher-order terms in $n(\omega)$ are important in fiber-optic communications, as they can distort the signals.

Anistropic Medium

$$\mathcal{D} = \begin{pmatrix} \mathcal{D}_x \\ \mathcal{D}_y \\ \mathcal{D}_z \end{pmatrix} = \begin{pmatrix} \epsilon_x & 0 & 0 \\ 0 & \epsilon_y & 0 \\ 0 & 0 & \epsilon_z \end{pmatrix} \begin{pmatrix} \mathcal{E}_x \\ \mathcal{E}_y \\ \mathcal{E}_z \end{pmatrix}. \tag{26}$$

Consider $\epsilon_{x,y,z}$ to be real for simplicity. The different values for $\epsilon_{x,y,z}$ mean that the wave speed is different depending on the polarization.

lacktriangle Suppose that a plane wave propagates in the z direction. An x-polarized wave will propagate with a speed of

$$v_x = \frac{1}{\sqrt{\mu_0 \epsilon_x}} = \frac{c}{n_x}, \qquad n_x \equiv \sqrt{\frac{\epsilon_x}{\epsilon_0}},$$
 (27)

and a y-polarized wave will propagate with a speed of

$$v_y = \frac{1}{\sqrt{\mu_0 \epsilon_y}} = \frac{c}{n_y}, \qquad n_y \equiv \sqrt{\frac{\epsilon_y}{\epsilon_0}}.$$
 (28)

Typical Values

"Isotropic" refers to $\epsilon_x = \epsilon_y = \epsilon_z$, i.e. the matrix is equivalent to a scalar. "Uniaxial" refers to two of the three components being equal (e.g., $\epsilon_x = \epsilon_y \neq \epsilon_z$).

TABLE 1.3 Refractive Indices^a of Some Typical Solid Crystals

Isotropic	Fluorite		1.392	
	Sodium chloride, NaCl		1.544	
	Diamond, C		2.417	
	CdTe		2.69	
	GaAs		3.40	
	Ge		3.40	
	InP		3.61	
	GaP		3.73	
Uniaxial		n_o		n_e
Positive	MgF_2	1.378		1.390
	Quartz, SiO ₂	1.544		1.553
	Beryllium oxide, BeO	1.717		1.732
	La ₃ Ga ₅ SiO ₁₄	1.90		1.91
	ZnO	1.94		1.96
	SnO ₂	2.01		2.10
	YVO ₄	1.96		2.16
	LiTaO ₃	2.183		2.188
	ZnS	2.354		2.358
	Rutile, TiO ₂	2.616		2.903
Negative	KDP, KH ₂ PO ₄	1.507		1.467
	ADP, (NH_4) H_2PO_4	1.522		1.478
	Beryl, Be ₃ Al ₂ (SiO ₃) ₆	1.598		1.590
	Sodium nitrate, NaNO3	1.587		1.366
	Calcite, CaCO ₃	1.658		1.486
	β-BaB ₂ O ₄ (BBO)	1.67		1.55
	Sapphire, Al ₂ O ₃	1.768		1.760
	Lithium niobate, LiNbO3	2.300		2.208
	PbMoO ₃	2.40		2.27
	Proustite, Ag ₃ AsS ₃	3.019		2.739
Biaxial		n_x	n_y	n _z
	Gypsum	1.520	1.523	1.530
	Feldspar	1.522	1.526	1.530
	Mica	1.552	1.582	1.588
	Topaz	1.619	1.620	1.627
	Sodium nitrite, NaNO ₂	1.344	1.411	1.651
	YAIO ₃	1.923	1.938	1.947
	SbSI	2.7	1.7	3.8

^a The refractive indices of most materials depend on the wavelength (dispersion). The listed numbers are typical values.

Wave Plate

■ Suppose that, at z = 0, the input is

$$\boldsymbol{E}(0,t) = \left(\hat{\boldsymbol{x}}\tilde{E}_x + \hat{\boldsymbol{y}}\tilde{E}_y\right)e^{-j\omega t}.$$
 (29)

What is the output at z = L?

$$\boldsymbol{E}(z,t) = \hat{\boldsymbol{x}}\tilde{E}_x \exp\left(j\frac{\omega n_x}{c}z - j\omega t\right) + \hat{\boldsymbol{y}}\tilde{E}_y \exp\left(j\frac{\omega n_y}{c}z - j\omega t\right),\tag{30}$$

$$\boldsymbol{E}(L,t) = \left(\hat{\boldsymbol{x}}\tilde{E}_x + \hat{\boldsymbol{y}}\tilde{E}_y e^{j\theta}\right) e^{j\omega n_x L/c - j\omega t}, \quad \theta = \frac{\omega L}{c}(n_y - n_x).$$
(31)

There is a relative phase delay between the two polarizations.

http://en.wikipedia.org/wiki/File:Waveplate.png

Half-Wave Plate

$$\theta = 2\pi q + \pi, \qquad \frac{\omega L}{c}(n_y - n_x) = \frac{2\pi L}{\lambda}(n_y - n_x) = 2\pi q + \pi. \tag{32}$$

This is called a half-wave plate.

■ Suppose that the input is linearly polarized 45° with respect to \hat{x} and \hat{y} :

$$\mathbf{E}(0,t) = \tilde{E}\frac{\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{2}}e^{-j\omega t}.$$
(33)

At the output,

$$\boldsymbol{E}(L,t) = \tilde{E}\frac{\hat{\boldsymbol{x}} + e^{j\theta}\hat{\boldsymbol{y}}}{\sqrt{2}}e^{j\omega L n_x z/c - j\omega t} = \tilde{E}\frac{\hat{\boldsymbol{x}} - \hat{\boldsymbol{y}}}{\sqrt{2}}e^{j\omega L n_x z/c - j\omega t},$$
(34)

the sign of the y component is flipped with respect to the x component, and the polarization is rotated by 90° .

■ n_x and n_y of the liquid crystal in a LCD are controlled by the applied voltage. Depending on the voltage, the polarization of the light can be rotated by 90° , leading to voltage-dependent transmission of light through the cross-polarizers.

Quarter-Wave Plate

■ Now suppose that the relative phase becomes $2\pi q + \pi/2$:

$$\theta = 2\pi q + \frac{\pi}{2},$$
 $\frac{\omega L}{c}(n_y - n_x) = \frac{2\pi L}{\lambda}(n_y - n_x) = 2\pi q + \frac{\pi}{2}.$ (35)

This is called a quarter-wave plate.

■ Suppose that the input is linearly polarized 45° with respect to \hat{x} and \hat{y} :

$$\mathbf{E}(0,t) = \tilde{E}\frac{\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{2}}e^{-j\omega t}.$$
(36)

At the output,

$$\boldsymbol{E}(L,t) = \tilde{E}\frac{\hat{\boldsymbol{x}} + e^{j\theta}\hat{\boldsymbol{y}}}{\sqrt{2}}e^{j\omega L n_x z/c - j\omega t} = \tilde{E}\frac{\hat{\boldsymbol{x}} + j\hat{\boldsymbol{y}}}{\sqrt{2}}e^{j\omega L n_x z/c - j\omega t},$$
(37)

The output polarization becomes circularly polarized.

Polarizer

Very high loss for one polarization (say, $n_x'' \gg 0$), and low loss for the other polarization (say, $n_y'' \ll n_x''$).

Filter only partially absorbs vertically polarized component of light.

Suggested Problems

- Loss coefficients: if $\alpha=0.2$ dB/km, what is k'' and n'' at $\lambda_0=1550$ nm? What is the fraction of power that remains after 50 km?
- Gain: If an amplifier has 2k'' = -10 cm⁻¹, what is the length required to achieve 10dB power gain?
- Bandwidth: For $\lambda_0 = 1530-1570$ nm, what is the bandwidth in Hertz? Compare this to the 2.4–2.5 GHz band in Wi-Fi communication.
- Wave plates: Assume the refractive indices for quartz given on slide 15. What is the minimum thickness needed to make a half-wave plate if $\lambda_0 = 1550$ nm? How about quarter-wave plate?
- Wave plates: what happens if I put circularly-polarized light through a half-wave plate? quarter-wave plate?
- Consider a plane wave in a medium with anisotropic permittivity matrix and free-space permeability. Gauss's law is $\nabla \cdot D = 0$ (assume no charge). Is \tilde{E} perpendicular to k? Is the Poynting vector $\overline{E \times H}$ parallel to k?