

1 9 9 5
YEARBOOK

Connecting Mathematics across the Curriculum

Peggy A. House

*1995 Yearbook Editor
Northern Michigan University*

Arthur F. Coxford

*General Yearbook Editor
University of Michigan*

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS

Copyright © 1995 by
THE NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS, INC.
1906 Association Drive, Reston, Virginia 22091-1593
All rights reserved

Library of Congress Cataloging-in-Publication Data:

Connecting mathematics across the curriculum / [edited by] Peggy A. House, Arthur F. Coxford.

p. cm. — (Yearbook ; 1995)

Includes bibliographical references.

ISBN 0-87353-394-1

I. Mathematics—Study and teaching. I. House, Peggy.

II. Coxford, Arthur F. III. Series: Yearbook (National Council of Teachers of Mathematics) ; 1995.

QA1.N3 1995

[QA11]

510'.71'2 s—dc20

[510'.71'2]

94-48261

CIP

The publications of the National Council of Teachers of Mathematics present a variety of viewpoints. The views expressed or implied in this publication, unless otherwise noted, should not be interpreted as official positions of the Council.

Printed in the United States of America

Contents

Preface	vii
PART 1: GENERAL ISSUES	
1. The Case for Connections	3
Arthur F. Coxford <i>University of Michigan Ann Arbor, Michigan</i>	
2. Connections as Problem-Solving Tools	13
Theodore R. Hodgson <i>Montana State University Bozeman, Montana</i>	
3. Connecting School Science and Mathematics	22
Donna F. Berlin <i>National Center for Science Teaching and Learning Columbus, Ohio</i>	
Arthur L. White <i>Ohio State University Columbus, Ohio</i>	
4. Using Ethnomathematics to Find Multicultural Mathematical Connections	34
Lawrence Shirley <i>Towson State University Baltimore, Maryland</i>	
PART 2: CONNECTIONS WITHIN MATHEMATICS	
5. Connecting Number and Geometry	45
Lowell Leake <i>University of Cincinnati Cincinnati, Ohio</i>	
6. Using Functions to Make Mathematical Connections	54
Roger P. Day <i>Illinois State University Normal, Illinois</i>	
7. Making Connections with Transformations in Grades K–8	65
Rheta N. Rubenstein <i>University of Windsor Windsor, Ontario</i>	
Denisse R. Thompson <i>University of South Florida Tampa, Florida</i>	

8. Transformations: Making Connections in High School Mathematics	79
Mary L. Crowley <i>Dalhousie University Halifax, Nova Scotia</i>	
9. Using Transformations to Foster Connections	92
Daniel B. Hirschhorn <i>Illinois State University Normal, Illinois</i>	
Steven S. Viktora <i>New Trier High School Winnetka, Illinois</i>	
10. Connecting Mathematics with Its History: A Powerful, Practical Linkage	104
Luetta Reimer <i>Fresno Pacific College Fresno, California</i>	
Wilbert Reimer <i>Fresno Pacific College Fresno, California</i>	
PART 3: CONNECTIONS ACROSS THE ELEMENTARY SCHOOL CURRICULUM	
11. Learning Mathematics in Meaningful Contexts: An Action-Based Approach in the Primary Grades	116
Sydney L. Schwartz <i>Queens College City University of New York Flushing, New York</i>	
Frances R. Curcio <i>Queens College City University of New York Flushing, New York</i>	
12. Measurement in a Primary-Grade Integrated Curriculum	124
Lynn Rhone <i>Arrowhead Elementary School Aurora, Colorado</i>	
13. Connecting Literature and Mathematics	134
David J. Whitin <i>University of South Carolina Columbia, South Carolina</i>	

**14. Connecting Reasoning and Writing
in Student "How to" Manuals** 142

Neal F. Grandgenett
*University of Nebraska at Omaha
Omaha, Nebraska*

John W. Hill
*University of Nebraska at Omaha
Omaha, Nebraska*

Carol V. Lloyd
*University of Nebraska at Omaha
Omaha, Nebraska*

**15. Connecting Mathematics and Physical
Education through Spatial Awareness** 147

Diana V. Lambdin
*Indiana University
Bloomington, Indiana*

Dolly Lambdin
*University of Texas at Austin
Austin, Texas*

**PART 4: CONNECTIONS ACROSS THE
MIDDLE SCHOOL CURRICULUM****16. Seeing and Thinking Mathematically
in the Middle School** 153

Glenn M. Kleiman
*Educational Development Center
Newton, Massachusetts*

**17. Projects in the Middle School
Mathematics Curriculum** 159

Stephen Krulik
*Temple University
Philadelphia, Pennsylvania*

Jesse Rudnick
*Temple University
Philadelphia, Pennsylvania*

**18. Carpet Laying: An Illustration of
Everyday Mathematics** 163

Joanna O. Masingila
*Syracuse University
Syracuse, New York*

19. Mathematics and Quilting 170

Kathryn T. Ernie
*University of Wisconsin at River Falls
River Falls, Wisconsin*

20. Randomness: A Connection to Reality	177
Donald J. Dessart <i>University of Tennessee Knoxville, Tennessee</i>	
PART 5: CONNECTIONS ACROSS THE HIGH SCHOOL CURRICULUM	
21. Connecting Geometry with the Rest of Mathematics	183
Albert A. Cuoco <i>Education Development Center Newton, Massachusetts</i>	
E. Paul Goldenberg <i>Education Development Center Newton, Massachusetts</i>	
June Mark <i>Education Development Center Newton, Massachusetts</i>	
22. Forging Links with Projects in Mathematics	198
John W. McConnell <i>Glenbrook South High School Glenview, Illinois</i>	
23. Baseball Cards, Collecting, and Mathematics	210
Vincent P. Schielack, Jr. <i>Texas A&M University College Station, Texas</i>	
24. Experiencing Functional Relationships with a Viewing Tube	219
Melvin R. (Skip) Wilson <i>University of Michigan Ann Arbor, Michigan</i>	
Barry E. Shealy <i>SUNY Buffalo Buffalo, New York</i>	
25. Breathing Life into Mathematics	225
Kristine Malia Johnson <i>LaSalle Institute Albany, New York</i>	
Carolyn Leigh Litynski <i>LaSalle Institute Albany, New York</i>	
26. Students' Reasoning and Mathematical Connections in the Japanese Classroom	233
Keiko Ito-Hino <i>Tokyo, Japan</i>	

Preface

One of the four cornerstones of the NCTM *Curriculum and Evaluation Standards for School Mathematics* asserts that connecting mathematics to other mathematics, to other subjects of the curriculum, and to the everyday world is an important goal of school mathematics. Among recent reports calling for reform in mathematics education, there is widespread consensus that mathematics must be made accessible to all students, that it must be presented as a connected discipline rather than a set of discrete topics, and that it must be learned in meaningful contexts that connect mathematics to other subjects and to the interests and experience of students.

This yearbook illustrates the connections and uses of mathematics within mathematics itself, between mathematics and other disciplines, and in the life, culture, and occupational experiences of adult communities. It is designed to help classroom teachers, teacher educators, supervisors, and curriculum developers broaden their views of mathematics and to suggest practical strategies for engaging students in exploring the connectedness of mathematics.

The yearbook is organized in five parts. Part One, chapters 1 through 4, addresses general issues and various perspectives as they relate to the development and uses of mathematical connections. The papers in this section explore the meaning and scope of mathematical connections and the role of connections in teaching and learning mathematics.

An important outcome of mathematics education is to present mathematics as a unified discipline, a woven fabric rather than a patchwork of discrete topics. Papers in Part Two, chapters 5 through 10, focus on connections within mathematics itself. They illustrate how concepts emerge in the early grades and grow in sophistication and applicability throughout the mathematics curriculum. Papers in this section illustrate how numerical concepts and the basic operations of arithmetic are connected to geometric concepts and how the all-important concept of *function* develops across the curriculum. One important conceptual strand, that of *transformations*, is developed in detail through three related papers as an illustration of the richness of mathematical topics.

But mathematics is not an isolated body of knowledge. To be useful, mathematics should be taught in contexts that are meaningful and relevant to learners. Papers in Parts Three, Four, and Five illustrate opportunities to connect mathematics across the curriculum of the elementary, middle, and secondary school years, respectively. The examples include connections to other school subjects and to mathematics as it is used in adult life.

The production of this yearbook represents the efforts of many dedicated professionals over a three-year period. More than sixty manuscripts were received in response to our call for papers; fewer than half of those submitted could be accepted. To all who gave of their time and talents to answer the call for papers, and especially to the thirty-nine authors of the twenty-six papers in this publication, the Editorial Panel and I express our deep appreciation.

The tasks of developing the guidelines for this yearbook, of reviewing all the submitted papers, of selecting the papers to be included, and of guiding the development of the final product fell to the Editorial Panel, a talented and generous group of colleagues for whom I have great admiration and sincere gratitude:

Jerry Becker	Southern Illinois University
Gary Froelich	COMAP (Consortium for Mathematics and Its Applications)
Linda Sheffield	Northern Kentucky University
Irvin Vance	Michigan State University
Arthur Coxford	University of Michigan

A special word of thanks is owed to Art Coxford, series editor for the 1993 through 1995 Yearbooks, who was a full and active participant in the workings of the Editorial Panel and whose support and wise counsel were never lacking. Our thanks, as well, go to the talented editorial and production staff at the NCTM Headquarters Office, whose efforts transformed a collection of papers into a finished publication.

The writers of these papers have endeavored to make mathematics come alive for the readers of this yearbook. In so doing, they present us all with a challenge to do likewise for the students we teach. It is our hope that the ideas brought forth in this publication will become catalysts for teachers to develop and implement many more rich contexts for connecting students to the fascinating world of mathematics.

PEGGY A. HOUSE
1995 Yearbook Editor

