系外行星 宜居度分析系统 的设计与实现

BJTU 2023软件工程学期实训Ⅱ 蓝色空间 Blue Space

2023.7.17

目录

- . 项目简介
- Ⅱ. 项目分工
- Ⅲ. 项目实现
- IV. 项目演示
- V. 项目总结

1. 项目简介

项目 简介 - 主题

项目简介 - 需求分析

功能性需求

- 用户信息: 账户/密码/历史预测数据
- 数据可视化(2D图表)
- 数据可视化 (3D)
- 宜居度预测

非功能性需求

- 安全性:保证用户密码不被窃取
 - 用户密码加密(md5+salt)
- 响应性: 基于2-5-10原则
 - 除了星图与统计, 其他网页均为即时相应
- 界面友好性

项目 简介 - 系统设计

项目 简介 - 系统实现

● 前端: React

▲ 工具等: Vite + mobx + axios

▲ 组件库: antd + material ui

▲ 动画库: framer motion

▲ 星图: WebGPU

● 后端: Django

▲ 数据库: pymysql + mysqlclient

▲ 跨域: corsheader

▲ 算法: sklearn + pytorch + joblib

• 数据库: MySQL

Ⅲ. 项目分工

项目 分工

人员	职务	分工	总工作量
俞贤皓	项目经理	星图开发(100%)、项目管理(100%)	-
谷雅丰	服务端工程师	文档攥写与图表绘制(50%)、后端开发(5%)	14
王艺霖	服务端工程师	文档攥写与图表绘制(50%)、后端开发(5%)	14
邓人嘉	客户端工程师	前端开发(100%)、界面设计(100%)	24
周书扬	客户端工程师	数据获取与处理(50%)、前端可视化开发(100%)、 后端开发(45%)、数据库&云服务器部署(100%)	24
付家齐	数据处理工程师	数据获取与处理(50%)、训练二分类模型(100%)、后端 开发(45%)	24

^{*}因为俞贤皓去玩星图并且付家齐有事,所以周书扬同学成为了全栈,前端/后端/数据库/算法/服务器全负责了。

项目 分工 - 管理

项目 分工 - 管理

Network graph

Timeline of the most recent commits to this repository and its network ordered by most recently pushed to.

项目 分工 - 管理

Network graph

Timeline of the most recent commits to this repository and its network ordered by most recently pushed to.

feat: 忘了我改什么了反正改了很多

zoransy committed yesterday

feat: 添加了向数据库写入表格的小脚本

zoransy committed yesterday

Merge branch 'main' of github.com:lovekdl/2023-BJTU-Sumn

zoransy committed yesterday

fix(model): 添加测试样例

Fooligi committed 2 days ago

feat(backend): 上线了DNN预测接口; feat(model): predictor支

FooLiqi committed 2 days ago

Merge branch 'main' of github.com:lovekdl/2023-BJTU-Sumn

lovekdl committed 2 days ago

fix: two or more starmap running

lovekdl committed 2 days ago

feat(renderer): <mark>给每个恒星都加了中间黑黑的效果</mark>

YXHXianYu committed 2 days ago

fix(renderer): 关闭了runningtime的输出

YXHXianYu committed 2 days ago

Merge branch 'main' of github.com:lovekdl/2023-BJTU-Sumn

XXHXianYu committed 2 days ago

feat(renderer): 抛出了stop的接口

N YXHXianYu committed 2 days ago

fix: modify distance between inputs

lovekdl committed 2 days ago

项目分工 - 管理

Ⅲ. 项目实现

- 登录与注册
 - ▲登录、注册、注销

- 登录与注册
 - ▲登录、注册、注销

- 登录与注册
 - ▲ 登录、注册、注销
- 邮箱验证码 拓展功能
 - ▲ 基于Django-core-email

- 登录与注册
 - ▲ 登录、注册、注销
- 邮箱验证码 拓展功能
 - ▲ 基于Django-core-email
- 个人信息管理 拓展功能
 - ▲ 用户名、密码、头像
 - ▲ 储存与修改

- 登录与注册
 - ▲ 登录、注册、注销
- 邮箱验证码 拓展功能
 - ▲ 基于Django-core-email
- 个人信息管理 拓展功能
 - ▲ 用户名、密码、头像
 - ▲ 储存与修改

- 登录与注册
 - ▲ 登录、注册、注销
- 邮箱验证码 拓展功能
 - ▲ 基于Django-core-email
- 个人信息管理 拓展功能
 - ▲ 用户名、密码、头像
 - ▲ 储存与修改

功能与技术-2统计与分析

- 所有行星的表格
- 分析图表
 - ▲ 宜居度分析
 - ▲ 地球相似度分布
 - A etc.

功能与技术-2统计与分析

- 所有行星的表格
- 分析图表
 - ▲ 宜居度分析
 - ▲ 地球相似度分布
 - A etc.

- 输入八维信息
 - ▲ 行星名称(自定义)
 - ▲ 质量
 - ▲ 半径
 - A etc.
- ●輸出两维信息
 - ▲ 地球相似度
 - ▲ 宜居情况

- 输入八维信息
 - ▲ 行星名称(自定义)
 - ▲ 质量
 - ▲ 半径
 - A etc.
- ●輸出两维信息
 - ▲ 地球相似度
 - ▲ 宜居情况

- 输入八维信息
 - ▲ 行星名称(自定义)
 - ▲ 质量
 - ▲ 半径
 - A etc.
- ●輸出两维信息
 - ▲ 地球相似度
 - ▲ 宜居情况
- 每维信息都有注解 拓展功能

- 输入八维信息
 - ▲ 行星名称(自定义)
 - ▲ 质量
 - ▲ 半径
 - A etc.
- ●輸出两维信息
 - ▲ 地球相似度
 - ▲ 宜居情况
- 保存预测结果 **我的星球** 功能 拓展功能

- 输入八维信息
 - ▲ 行星名称(自定义)
 - ▲ 质量
 - ▲ 半径
 - A etc.
- ●輸出两维信息
 - ▲ 地球相似度
 - ▲ 宜居情况
- 保存预测结果 **我的星球** 功能 拓展功能
- 将预测结果导入星图 **驾驶飞船前往星球** 功能 拓展功能

功能与技术-4世

- 支持多语言 拓展功能
 - ▲ i18next
 - ▲ 中文、英语、日语

予測

功能与技术-45

- 支持多语言 拓展功能
 - ▲ i18next
 - ▲ 中文、英语、日语
- 星图加载动画 拓展功能
 - ▲ 使用lottie绘制

功能与技术-40

- 支持多语言 拓展功能
 - ▲ i18next
 - ▲ 中文、英语、日语
- 星图加载动画 拓展功能
 - ▲ 使用lottie绘制
- 新用户指引 拓展功能

功能与技术-5云服务器

- 云服务器与域名 *拓展功能*
 - ▲ 用户可以直接访问 120.53.94.209 或 scarletmana.com 来使用我们的系统
 - ▲ 需要浏览器支持WebGPU才可以使用星图功能
- SSL加密传输协议 拓展功能
 - ▲ 服务器数据传输使用https, 采用SSL加密传输协议

● 星图 拓展功能

● 星图 拓展功能

系外行星のThree-D可视化

● 星图 拓展功能

• 银河系视图

● 星图 拓展功能

• 银河系视图

● 行星视图

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

- 银河系视图
 - ▲ 基本渲染管线: WebGPU
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

Graphics Pipeline

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

Graphics Pipeline

后处理版本 (泛光+色调映射)

原版

泛光使用了高斯模糊算法

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

问题: NASA数据集没有行星的位置数据

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

问题: NASA数据集没有行星的位置数据

解决方案: 随机生成

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

问题: NASA数据集没有行星的位置数据

解决方案: 随机生成

问题2: 如何随机?

空间中均匀分布?

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

问题: NASA数据集没有行星的位置数据

解决方案: 随机生成

问题2: 如何随机?

解决方案2: 基于等角螺线和正态分布的银河系恒星生成算法

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

银河系图像

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

银河系图像

4条阿基米德螺线

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

4条等角螺线

4条阿基米德螺线

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

基于等角螺线和正态分布的银河系恒星生成算法

4条等角螺线

+ 正态分布

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲多种不同的恒星

4条等角螺线

我们渲染出来的银河系

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

```
static readonly STAR_SHADER_TYPE_MIN:
                                            number = 0
static readonly STAR_SHADER_TYPE_MAX:
                                            number = 8
static readonly STAR_SHADER_TYPE_BLACKHOLE: number = 0
static readonly STAR_SHADER_TYPE_0:
                                            number = 1
static readonly STAR SHADER TYPE B:
                                            number = 2
static readonly STAR SHADER TYPE A:
                                            number = 3
static readonly STAR_SHADER_TYPE_F:
                                            number = 4
static readonly STAR SHADER TYPE G:
                                            number = 5
static readonly STAR_SHADER_TYPE_K:
                                            number = 6
static readonly STAR SHADER TYPE M:
                                            number = 7
static readonly STAR SHADER TYPE PLANET:
                                            number = 8
```


多恒星

- 银河系视图
 - ▲ 基本渲染管线
 - ▲ 后处理渲染管线
 - ▲ 银河系恒星生成器
 - ▲ 多种不同的恒星

- 行星视图
 - ▲ 识别用户点击的星球
 - ▲ 不同纹理的行星
 - ▲ 光照系统

- 行星视图
 - ▲ 识别用户点击的星球
 - ▲ 不同纹理的行星
 - ▲ 光照系统

问题:如何识别用户点击了哪个恒星系?

- 行星视图
 - ▲ 识别用户点击的星球
 - ▲ 不同纹理的行星
 - ▲ 光照系统

问题:如何识别用户点击了哪个恒星系?

● 行星视图

▲ 识别用户点击的星球

▲ 不同纹理的行星

▲ 光照系统

问题:如何识别用户点击了哪个恒星系?

解决: 三维空间中, 求点和射线的距离

if 点到射线的距离 <= 恒星半径:

命中该恒星

● 行星视图

▲ 识别用户点击的星球

▲ 不同纹理的行星

▲ 光照系统

问题:如何识别用户点击了哪个恒星系?

解决: 三维空间中, 求点和射线的距离

if 点到射线的距离 <= 恒星半径:

命中该恒星

● 行星视图

▲ 识别用

问题

击了哪个恒星系?

点和射线的距离

离 <= 恒星半径:

屏幕坐标系

摄像机坐标系

摄像机 视图变换 近平面 的逆变换

世界坐标系 (绝对坐标系)

计算得到结果

空间几何 基础公式

- 行星视图
 - ▲ 识别用户点击的星球
 - ▲ 不同纹理的行星
 - ▲光照系统

```
static readonly PLANET TEXTURE MIN: number = 0
static readonly PLANET_TEXTURE_MAX: number = 11
static readonly PLANET TEXTURE EARTH:
                                        number = 0
static readonly PLANET_TEXTURE_CERES:
                                        number = 1
static readonly PLANET TEXTURE HAUMEA:
                                        number = 2
static readonly PLANET_TEXTURE_MAKEMAKE: number = 3
static readonly PLANET_TEXTURE_ERIS:
                                        number = 4
static readonly PLANET TEXTURE MERCURY: number = 5
static readonly PLANET TEXTURE VENUS:
                                        number = 6
static readonly PLANET TEXTURE MARS:
                                        number = 7
static readonly PLANET_TEXTURE_JUPITER: number = 8
static readonly PLANET TEXTURE SATURN:
                                        number = 9
static readonly PLANET_TEXTURE_URANUS:
                                        number = 10
static readonly PLANET_TEXTURE_NEPTUNE: number = 11
```


多行星

- 行星视图
 - ▲ 识别用户点击的星球
 - ▲ 不同纹理的行星
 - ▲ 光照系统: 经典的Phong光照模型

有光照

```
// diffuse
var lightDir = normalize(lightPosition - position);
var diffuse = vec3(texColor) * max(dot(normal, lightDir) + 0.1, 0.0) * kd;
```

漫反射计算公式

无光照

- 摄像机控制
 - ▲ 用户可以在空间中自动切换移动、放大、旋转视角

- 摄像机控制
 - ▲ 用户可以在空间中自动切换移动、放大、旋转视角
 - 1 基于球坐标系的摄像机位置
 - 2 视图切换时的摄像机缓入缓出

摄像机速度 二次函数实现缓入缓出

- 摄像机控制
 - ▲ 用户可以在空间中自动切换移动、放大、旋转视角
 - 1 基于球坐标系的摄像机位置
 - 2 视图切换时的摄像机缓入缓出

摄像机位置

球坐标系 (r, θ, φ)

摄像机速度 二次函数实现缓入缓出

● 目的: 通过行星的相关数据来预测出行星的宜居性

● 目的: 通过行星的相关数据来预测出行星的宜居性

● 两大类: 二分类模型、回归模型

- 目的: 通过行星的相关数据来预测出行星的宜居性
- 两大类: 二分类模型、回归模型
- 二分类又分为: model-junior和model-senior

- 数据预处理
 - ▲ One-Hot
 - ▲ Standard Scalar
- ●数据处理
 - ▲ SMOTE: 合成少数过采样技术, Synthetic Minority Over-sampling Technique
- ●训练策略
 - ▲ 随机种子: 5个不同随机种子
 - ▲ Grid Search: 超参数调整策略

- ●Model-senior训练结果
 - ▲ Cat Boost
 - ★ Mean Accuracy: 0.9448863636363637
 - ▲ 感知机
 - ★ Mean Accuracy: 0.8454545454545455
 - ▲ KNN
 - ★ Mean Accuracy: 0.7488636363636364
 - ▲ 随机森林
 - ★ Mean Accuracy: 0.8897727272727274
 - ▲ SVC
 - ★ Mean Accuracy: 0.8357954545454545
 - ▲ XGBoost
 - ★ Mean Accuracy: 1.0

数据预处理:对数据进行可视化和相关性分析,清洗无用信息,补全空缺项,通过SMOTE过采样方法来人工增加正样本的数量。

散点图

- Model-junior训练结果
 - ▲ Logistic Regression
 - ▲ SVM
 - ▲ 随机森林
 - ▲ 朴素贝叶斯

(mg)	00000000000000000000000000000000000000		AND THE RESERVE	100000000000000000000000000000000000000
***	precision	recall	f1-score	support
Θ	1.00	0.99	0.99	579
1	0.99	1.00	0.99	549
accuracy			0.99	1128
macro avg	0.99	0.99	0.99	1128
weighted avg	0.99	0.99	0.99	1128
	precision	recall	f1-score	support
Θ	1.00	1.00	1.00	1677
1	1.00	1.00	1.00	1707
accuracy			1.00	3384
macro avg	1.00	1.00	1.00	3384
weighted avg	1.00	1.00	1.00	3384

	precision	recall	f1-score	support
0	1.00	0.99	0.99	579
1	0.99	1.00	0.99	549
accuracy			0.99	1128
macro avg	0.99	0.99	0.99	1128
weighted avg	0.99	0.99	0.99	1128
	precision	recall	f1-score	support
0	1.00	1.00	1.00	1677
1	1.00	1.00	1.00	1707
accuracy			1.00	3384
macro avg	1.00	1.00	1.00	3384
weighted avg	1.00	1.00	1.00	3384

•••	precision	recall	f1-score	support
Θ	0.96	0.81	0.88	272
1	0.83	0.96	0.89	261
accuracy			0.89	533
macro avg	0.89	0.89	0.89	533
weighted avg	0.90	0.89	0.89	533
	precision	recall	f1-score	support
Θ	0.95	0.80	0.87	794
1	0.83	0.95	0.89	805
accuracy			0.88	1599
macro avg	0.89	0.88	0.88	1599
weighted avg	0.89	0.88	0.88	1599

	precision	recall	f1-score	support
0 1	0.99 0.95	0.94 0.99	0.97 0.97	272 261
accuracy macro avg	0.97	0.97	0.97 0.97	533 533
weighted avg	0.97	0.97	0.97	533
	precision	recall	f1-score	support
0	0.99	0.96	0.98	794
1	0.96	0.99	0.98	805
accuracy			0.98	1599
macro avg	0.98	0.98	0.98	1599
weighted avg	0.98	0.98	0.98	1599

- ●回归模型
 - ▲ DNN
 - ▲ Valid Loss: 0.0094
 - ▲ 已上线系统

功能与技术-拓展功能汇总

- 用户 邮箱验证码
- 用户 头像的储存与修改
- 统计与分析 储存用户历史预测数据
- 统计与分析 数据导入星图
- 服务器 域名
- 服务器 SSL与https

- UI 多语言
- UI 加载动画
- UI 新用户指引与其他提示
- 算法 多种二分类模型
- 算法 二分类与回归模型
- ●星图

IV. 项目演示

V. 项目总结

项目总结-代码量统计

- ●前端
 - ▲ 总代码量6634行(无空行与注释)

language	files	code	comment	blank	total		
CSV	1	3,816	0	1	3,817	- C : (\ 2\\ 2\\)	2.405/-
TypeScript JSX	47	3,425	177	398	4,000		3425行
TypeScript	16	1,935	420	267	2,622	-TypeScript(星图)	1935行
CSS	8	1,001	7	135	1,143	-CSS(前端)	1001行
WGSI	4	273	17	52	342	-WGSL着色器(星图)	273行
WGSL	4	273	17	52	342	-WG3L自巴路(星图)	2/3行

- ●后端
 - ▲ 总代码量687行(无空行与注释)

language	files	code	comment	blank	total
Python	15	687	77	223	987

- 算法
 - ▲ 总代码量279行(无空行与注释)

language	files	code	comment	blank	total
CSV	5	11,812	0	5	11,817
JSON	6	4,118	0	6	4,124
Python	4	279	32	54	365

项目总结

- ●心得
 - ▲ 大家写代码都写的很开心
 - ★ 星图(渲染器)
 - ★ 前端/CSS
 - ★ 可视化/后端/部署
 - ★ 算法
 - ★ 文档与图表
 - ▲ 理想的生活状态

- 不足
 - ▲ 项目管理有一点乱
 - ★ 计划的重要性
- 开源
 - ▲ Github仓库

感谢聆听

BJTU 2023软件工程学期实训 **蓝色空间 Blue Space 2023.7.17**

