Musterlösung Analysis 3 - Maßtherorie

10. März 2011

Aufgabe 1: Zum Aufwärmen

5 Punkte

(i) Zeige, dass die Mengensysteme $\{\emptyset, X\}$ und $\mathcal{P}(X)$ σ -Algebren sind.

Beweis: Es sind jeweils nur die Charakteristika nachzuweisen.

(1) Zunächst $\{\emptyset, X\}$

$$\begin{array}{ccc} X \in \{\emptyset, X\} \\ X^c = \emptyset & \Rightarrow & (A \in \{\emptyset, X\} \Rightarrow A^c \in \{\emptyset, X\}) \\ X \cup \emptyset = X \in \{\emptyset, X\} \end{array}$$

(2) und nun $\mathcal{P}(X)$

$$\begin{array}{ccc} & X \in \{\emptyset, X\} \\ A \in \mathcal{P}(X) & \Rightarrow & A^c \subset X \Rightarrow A^c \in \mathcal{P}(X) \\ A_n \in \mathcal{P}(X), \forall n \in \mathbb{N} & \Rightarrow & \bigcup_{n \in \mathbb{N}} A_n \subset X \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{P}(X) \end{array}$$

(ii) Konstruiere die kleinste σ -Algebra über der Menge X, die $\{A\}$ mit $A \subset X$ enthält.

Antwort: Wir behaupten $\mathcal{A} := \{\emptyset, A, A^c, X\}$ ist die gesuchte σ -Algebra.

Zunächst zeigen wir, dass \mathcal{A} eine σ -Algebra ist.

$$\begin{array}{ll} X^c = \emptyset \text{ und } A, A^c \in \mathcal{A} & \Rightarrow & (B \in \mathcal{A} \Rightarrow B^c \in \mathcal{A}) \\ X \cup \emptyset = X, A \cup A^c = X, A \cup \emptyset = A, \text{ usw. } \in \mathcal{A} \end{array}$$

Kurz kann man dies auch folgendermaßen ausdrücken: \mathcal{A} ist nach Konstruktion eine σ -Algebra.

Nun noch der Beweis, dass dies die kleinste σ -Algebra ist. X,\emptyset müssen in jeder σ -Algebra enthalten sein, können also nicht entfernt werden, außerdem kann keine Menge, welche A enthält entfernt werden, da \mathcal{A} dieses Element enthalten soll. Des weiteren kann dann aber nicht mehr A^c entfernt werden, da sonst Punkt 2 unserer Charakterisierung nicht mehr erfüllt wäre. Daher kann durch kein Entfernen von Elementen aus \mathcal{A} eine kleinere σ -Algebra konstruiert werden.

(iii) Mache Dir klar, dass jedes Maß auch ein Inhalt ist.

Beweis: Da eine σ -Algebra auch ein Ring ist, sowie die σ -Additivität die endliche Additivität impliziert, ist dies der Fall.

(iv) Beweise die Monotonie-Eigenschaft von Inhalten aus der Vorlesung.

Beweis: Sei $A \subset B$, dann gilt

$$\mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

(v) Was ist der Unterschied zwischen einer Borel-messbaren und Lebesgue-messbaren Mengen?

Antwort: Eine Lebesgue-messbare Menge besteht aus der Vereinigung einer Borel-messbaren Menge B und einer Nullmenge N des Lebesgue-Borel Maßes.

(vi) Wie ist das Bildmaß eines Maßes $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ unter einer Abbildung $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ definiert und welche Bedingung muss an die Abbildung gestellt werden, damit das Bildmaß sauber definiert ist.

Antwort: $(X, \mathcal{A}), (Y, \mathcal{B})$ müssen Messräume sein und f selbst muss \mathcal{A} - \mathcal{B} -messbar sein. Dann definiert man das Bildmaß für $B \in \mathcal{B}$ durch $f(\mu)(B) := \mu(f^{-1}(B))$.

Aufgabe 2: Mengentheorie

5 Punkte

- (i) Zeige die folgenden Eigenschaften mengentheoretischer Operationen:
 - (a) $A \triangle B = B \triangle A$

Beweis:
$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) = B \triangle A$$

(b) $C^c \cap B \setminus A = B \setminus (A \cup C)$

Beweis:
$$C^c \cap B \setminus A = C^c \cap (B \cap A^c) = B \cap (C \cup A)^c = B \setminus (A \cup C)$$

(c) $\bigcup_{n=1}^{\infty} B \setminus A_n = B \setminus (\bigcap_{n=1}^{\infty} A_n)$

Beweis:
$$\bigcup_{n=1}^{\infty} B \setminus A_n = \bigcup_{n=1}^{\infty} (B \cap A_n^c) = B \cap (\bigcap_{n=1}^{\infty} A_n)^c = B \setminus (\bigcap_{n=1}^{\infty} A_n)$$

(d) $\bigcap_{n=1}^{\infty} B \setminus A_n = B \setminus (\bigcup_{n=1}^{\infty} A_n)$

Beweis:
$$\bigcap_{n=1}^{\infty} B \setminus A_n = \bigcap_{n=1}^{\infty} (B \cap A_n^c) = B \cap (\bigcup_{n=1}^{\infty} A_n)^c = B \setminus (\bigcup_{n=1}^{\infty} A_n)$$

(ii) Zeige folgende Aussagen

(1)

$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$$
, falls $(A_n)_{n\in\mathbb{N}}$ wachsend ist

Beweis:

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n \supset \limsup_{n \to \infty} A_n \supset \liminf_{n \to \infty} A_n$$

(2)

$$\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n, \text{ falls } (A_n)_{n\in\mathbb{N}} \text{ fallend ist}$$

Beweis:

$$\liminf_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\bigcap_{k=1}^\infty A_k=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k=\limsup_{n\to\infty}A_n$$

Das heißt, dass jede monotone Folge von Mengen konvergiert.

Hinweis: Verwende die Definition der Konvergenz von Mengenfolgen aus der Vorlesung, welche den lim sup und lim inf verwendet.

(iii) Zeige, dass $(\limsup_{n\to\infty} A_n)^c = \liminf_{n\to\infty} A_n^c$ für eine Folge von Teilmengen aus X gilt.

Beweis: Die folgt einfach aus dem Dualitätsprinzip

$$(\limsup_{n\to\infty}A_n)^c=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_n)^c=(\bigcup_{n=1}^\infty(\bigcup_{k=n}^\infty A_n)^c=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_n^c=\liminf_{n\to\infty}A_n^c$$

(iv) Es seien $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}$ konvergente Folgen von Teilmengen von X. Zeige, dass die Folgen $(A_n^c)_{n\in\mathbb{N}}$, $(A_n\cap B_n)_{n\in\mathbb{N}}$, $(A_n\cup B_n)_{n\in\mathbb{N}}$, $(A_n\setminus B_n)_{n\in\mathbb{N}}$, $(A_n\Delta B_N)_{n\in\mathbb{N}}$ ebenfalls konvergieren und bestimme deren Limites.

Beweis: Die Konvergenzbedingung lautet $\liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n$ und wegen $(\limsup_{n\to\infty} A_n)^c = \liminf_{n\to\infty} A_n^c$ folgt schon die erste Behauptung. Deren Limes lautet $\lim_{n\to\infty} A_n^c = \liminf_{n\to\infty} A_n^c = \liminf_{n\to\infty} A_n^c = (\limsup_{n\to\infty} A_n)^c = A^c \text{ mit } A := \lim_{n\to\infty} A_n.$

Genauso lässt sich $\lim_{n\to\infty} (A_n\cap B_n) = (\limsup_{n\to\infty} A_n) \cap (\limsup_{n\to\infty} B_n) = A\cap B$ und $\lim_{n\to\infty} (A_n\cup B_n) = (\limsup_{n\to\infty} A_n) \cup (\limsup_{n\to\infty} B_n) = A\cup B$ zeigen. Die letzten beiden lassen sich aus einer Kombination dieser Regeln und der jeweiligen Definition zeigen.

(v) Sei $(A_n)_{n\in\mathbb{N}}$ eine fallende Folge von Teilmengen von $X, B\subset X$ und es gelte $A_n\searrow A$, dann gilt $B\setminus A_n\nearrow B\setminus A$.

Beweis: Zunächst zeigen wir das $(B \setminus A_n)_{n \in \mathbb{N}}$ eine wachsende Folge ist, dass also $(B \setminus A_n) \subset (B \setminus A_{n+1})$ gilt. Das folgt aber aus der Voraussetzung, dass $(A_n)_{n \in \mathbb{N}}$ fallend ist, denn dies bedeutet $A_n \supset A_{n+1} \Leftrightarrow A_n^c \subset A_{n+1}^c$. Und damit folgt

$$(B \setminus A_n) = (B \cap A_n^c) \subset (B \cap A_{n+1}) = (B \setminus A_{n+1})$$

Da jede monotone Folge von Mengen konvergiert, folgt die Behauptung.

Aufgabe 3: Ringe und Algebren

5 Punkte

(i) Es seien \mathcal{R} ein Ring über X und $\mathcal{A} := \mathcal{R} \cup \{A^c : A \in \mathcal{R}\}$. Dann ist \mathcal{A} die kleinste Algebra über X, die \mathcal{R} umfasst. Ist \mathcal{R} ein σ -Ring, so ist \mathcal{A} die kleinste σ -Algebra, welche \mathcal{R} umfasst.

Beweis: Sei \mathcal{R} zunächst ein Ring. Dann gilt

$$\emptyset \in \mathcal{R} \quad \Rightarrow \quad X \in \mathcal{A}$$

$$A \in \mathcal{A} \quad \Rightarrow \quad A^c \in \mathcal{A}$$

Die zweite Aussage folgt aus der Definition von \mathcal{A} . Für den Beweis der letzten Eigenschaft unterscheiden wir drei verschiedene Fälle. Seien $A, B \in \mathcal{A}$, dann unterscheidet man:

- (1) $A, B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{A}$
- (2) $A, B^c \in \mathcal{R} \Rightarrow A \setminus B^c = A \cap B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{A}$
- (3) $A^c, B^c \in \mathcal{R} \Rightarrow A^c \cup B^c \in \mathcal{R} \Rightarrow (A^c \cup B^c)^c = A \cap B \in \mathcal{A}$

Sei \mathcal{R} nun ein σ -Ring, dann bleibt nur noch die σ -Additivität zu zeigen. Seien $A_n \in \mathcal{A}, \forall n \in \mathbb{N}$, dann unterscheiden eir wieder drei Fälle:

- (1) $A_n \in \mathcal{R}, \forall n \in \mathbb{N} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{R} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- (2) $A_{\tilde{n}}^c, A_n \in \mathcal{R}, \forall n \neq \tilde{n} \Rightarrow \bigcap_{n \neq \tilde{n}} A_n \setminus A_{\tilde{n}}^c \in \mathcal{R} \Rightarrow \bigcap_{n \neq \tilde{n}} A_n \cap A_{\tilde{n}} \in \mathcal{R} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- (3) $A_n^c \in \mathcal{R}, \forall n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n^c \in \mathcal{R} \Rightarrow (\bigcup_{n \in \mathbb{N}} A_n^c)^c = \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}$

Hierbei werden die Fälle, dass mehrere aber nicht alle A_n^c in \mathcal{R} liegen auf den Fall (2) zurückgeführt.

(ii) Es seien $f: X \to Y$ eine Abbildung und $\mathcal{A} \subset \mathcal{P}(X)$. Ist \mathcal{A} eine σ -Algebra, so gilt dies auch für $\mathcal{B} := \{B \subset Y : f^{-1}(B) \in \mathcal{A}\}.$

Beweis: Aus der Eigenschaft von Abbildungen $\forall x \in X \exists y \in Y : f(x) = y$ folgt, dass $f^{-1}(\emptyset) = \emptyset$. Es wird in jedem Schritt implizit von der Tatsache gebrauch gemacht, dass \mathcal{A} eine σ -Algebra ist. Mache Dir klar, wann dies der Fall ist.

- (1) $X \ni \mathcal{A} = \emptyset^c = (f^{-1}(\emptyset))^c = f^{-1}(\emptyset^c) = f^{-1}(Y) \Rightarrow Y \in \mathcal{B}$
- (2) Sei $B \in \mathcal{B}$, dann gilt $\exists A \in \mathcal{A} : f^{-1}(B) = A$, und daraus folgt $\mathcal{A} \ni A^c = f^{-1}(B^c) \Rightarrow B^c \in \mathcal{B}$

(3) Sei $B_n \in \mathcal{B}, \forall n \in \mathbb{N}, \text{ dann gilt } \forall n \in \mathbb{N} \exists A_n \in \mathcal{A} : f^{-1}(B_n) = A_n \text{ und es folgt}$

$$\mathcal{A} \ni \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} f^{-1}(B_n) = f^{-1}(\bigcup_{n \in \mathbb{N}} B_n) \Rightarrow \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$$

(iii) Sei \mathcal{B} eine σ -Algebra über Y und $f: X \to Y$ eine Abbildung. Zeige, dass $\mathcal{A} := f^{-1}(\mathcal{B})$ eine σ -Algebra über X ist.

Beweis: Aus der Eigenschaft der Abbildung $\forall x \in X \exists y \in Y : f(x) = y$ folgt, dass $f^{-1}(Y) = X$. Mit $f^{-1}(\mathcal{B}) = \{f^{-1}(B) : B \in \mathcal{B}\}$ folgt

- (1) $Y \in \mathcal{B} \Rightarrow A \ni f^{-1}(Y) = X$
- (2) $A \in \mathcal{A} \Rightarrow \exists B \in \mathcal{B} : f^{-1}(B) = A \Rightarrow A^c = f^{-1}(B^c)$ und mit $B^c \in \mathcal{B}$ folgt $A^c \in \mathcal{A}$.
- (3) $A_n \in \mathcal{A}, \forall n \in \mathbb{N} \Rightarrow \forall n \in \mathbb{N} \exists B_n \in \mathcal{B} : f^{-1}(B_n) = A_n \Rightarrow \bigcup_{n \in \mathbb{N}} A_n = f^{-1}(\bigcup_{n \in \mathbb{N}} B_n)$ und da $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$ gilt, folgt $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.
- (iv) Zeige, ob $\mathcal{A} := \{A \in \mathcal{P}(X) : A \text{ ist endlich oder } A^c \text{ ist endlich } \}$ eine σ -Algebra ist.

Hinweis: Unterscheide nach der Mächtigkeit |X|.

Beweis:

 $(1) |X| < \infty$

$$\begin{array}{ll} |X| < \infty & \Rightarrow X \in \mathcal{A} \\ A \in \mathcal{A} \Rightarrow A \subset X & \Rightarrow |A| < \infty \Rightarrow X \setminus A = A^c \in \mathcal{A} \\ A_n \in \mathcal{A} & \Rightarrow A_n \subset X \Rightarrow \bigcup_n A_n \subset X \Rightarrow |\bigcup_n A_n| < \infty \Rightarrow \bigcup_n A_n \in \mathcal{A} \end{array}$$

oder die Kurzfassung $\mathcal{A} = \mathcal{P}(X)$.

(2) $|X| = \infty$ Ist keine σ -Algebra, denn:

Es existiert eine Folge paarweiser verschiedener Elemente $(x_k)_{k\in\mathbb{N}}$ aus X und setzte $A_k := x_{2k}$, dann gilt $A_k \in \mathcal{A}$, aber sowohl $\bigcup_{k\in\mathbb{N}} A_k = \{x_2, x_4, \dots\}$, als auch $X \setminus \bigcup_{k\in\mathbb{N}} A_k \supset \{x_1, x_3, \dots\}$ sind nicht endlich. Daher gilt $\bigcup_{k\in\mathbb{N}} A_k \notin \mathcal{A}$ und \mathcal{A} ist somit keine σ -Algebra.

(v) Zeige, dass $\mathcal{A} := \{A \in \mathcal{P}(X) : A \text{ ist abz\"{a}hlbar oder } A^c \text{ ist abz\"{a}hlbar } \}$ eine σ -Algebra ist.

Beweis: \mathcal{A} ist eine σ -Algebra, denn:

- (1) $X \setminus X = \emptyset$ ist endlich, und damit abzählbar.
- (2) Sei $A \in \mathcal{A}$, dann ist entweder $A = X \setminus (X \setminus A) = X \setminus A^c$, oder $X \setminus A = A^c$ abzählbar und damit $A^c \in \mathcal{A}$
- (3) Seien $A_k \in \mathcal{A}, \forall k \in \mathbb{N}$.

Erster Fall, alle A_k sind abzählbar, dann folgt auch, dass $\bigcup_{k\in\mathbb{N}} A_k$ abzählbar ist.

Zweiter Fall, es existiert ein $\tilde{k} \in \mathbb{N}$, so dass $A_{\tilde{k}}$ überabzählbar ist (hier nimmt man o.B.d.A. an, dass die restlichen A_k abzählbar sind). Da aber $A_{\tilde{k}} \in \mathcal{A}$ gilt, muss $A_{\tilde{k}}^c$ abzählbar sein. Damit und mit

$$X \setminus \bigcup_{k \in \mathbb{N}} A_k = (X \setminus A_{\tilde{k}}) \cap (X \setminus \bigcup_{k \in \mathbb{N}, k \neq \tilde{k}} A_k) \subset X \setminus A_{\tilde{k}}$$

folgt nun, dass $\bigcup_{k\in\mathbb{N}} A_k \in \mathcal{A}$.

(vi) Sei $X \neq \emptyset$ und $(\mathcal{G}_i)_{i \in I}$ (I eine beliebige Indexmenge) eine Familie von σ -Algebren über X. Zeige, ob die folgenden Aussagen richtig oder falsch sind:

4

(1) $\bigcap_i \mathcal{G}_i$ ist eine σ -Algebra.

Beweis: Die Aussage stimmt, denn:

$$\begin{array}{ll} X \in \mathcal{G}_{i} &, \forall i & \Rightarrow X \in \bigcap_{i} \mathcal{G}_{i} \\ A \in \mathcal{G}_{i} &, \forall i & \Rightarrow A^{c} \in \mathcal{G}_{i}, \forall i \Rightarrow \in A^{c} \bigcap_{I} \mathcal{G}_{i} \\ A_{n} \in \mathcal{G}_{i} &, \forall n, i & \Rightarrow \bigcup_{n} A_{n} \in \mathcal{G}_{i}, \forall i \Rightarrow \bigcup_{n} A_{n} \in \bigcap_{I} \mathcal{G}_{i} \end{array}$$

(2) $\bigcup_i \mathcal{G}_i$ ist eine σ -Algebra.

Beweis: Ist keine σ -Algebra, denn es existiert ein Gegenbeispiel:

Seien $\mathcal{G}_1 = \{\emptyset, A, A^c, X\}$ und $\mathcal{G}_2 = \{\emptyset, B, B^c, X\}$, dann sind \mathcal{G}_1 und \mathcal{G}_2 σ -Algebran. Dies gilt aber nicht für die Menge $\mathcal{G}_1 \cup \mathcal{G}_2$, da diese z.B. nicht das Element $A \cup B$ enthält.

(vii) Seien $f: X \to Y$ eine Abbildung, $X, Y \neq \emptyset$ und $\mathcal{E} \subset \mathcal{P}(Y)$ beliebig. Zeige, dass gilt

$$f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E}))$$

Hinweis: Verwende, dass $\mathcal{B} = \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E}))\}$ und $f^{-1}(\sigma(\mathcal{E}))$ σ -Algebra sind.

Beweis: " \subset ": Wie schon weiter oben gezeigt wurde ist $\mathcal{B} = \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E}))\}$ eine σ -Algebra mit $\mathcal{E} \subset \mathcal{B}$ und daraus folgt

$$\sigma(\mathcal{E}) \subset \mathcal{B} \to f^{-1}(\sigma(\mathcal{E})) \subset f^{-1}(\mathcal{B}) \subset \sigma(f^{-1}(\mathcal{E}))$$

"\rightharpoonum": Wir verwenden, dass $f^{-1}(\sigma(\mathcal{E}))$ eine σ -Algebra ist:

$$\begin{array}{ll} \mathcal{E} & \subset \sigma(\mathcal{E}) \\ f^{-1}(\mathcal{E}) & \subset f^{-1}(\sigma(\mathcal{E})) \\ \sigma(f^{-1}(\mathcal{E})) & \subset \sigma(f^{-1}(\sigma(\mathcal{E}))) = f^{-1}(\sigma(\mathcal{E})) \end{array}$$

(viii) Es sei $\mathcal{E} := \{\{x\} : x \in \mathbb{R}\}$. Bestimme $\sigma(\mathcal{E})$.

Beweis: Nach der Definition der σ -Algebra muss $\sigma(\mathcal{E})$ mindestens alle endlichen und abzählbaren Mengen $\subset \mathbb{R}$ und deren Komplemente enthalten. Daher gilt

$$\sigma(\mathcal{E}) \supset \mathcal{A} := \{A \subset \mathbb{R} : A \text{ ist abz\"{a}hlbar oder } A^c \text{ ist abz\"{a}hlbar oder} \}$$

Es wurde weiter oben gezeigt, dass \mathcal{A} eine σ -Algebra ist, dass also $\mathcal{A} = \sigma \mathcal{A}$ gilt. Da außerdem $\mathcal{E} \subset \mathcal{A}$ gilt, folgt $\sigma(\mathcal{E}) \subset \mathcal{A}$. Es gilt also

$$\sigma(\mathcal{E}) = \mathcal{A}$$

Aufgabe 4: Inhalte und Maße

5 Punkte

(i) Seien $\mu: \mathcal{R} \to \overline{\mathbb{R}}$ ein Inhalt auf dem Ring $\mathcal{R}, A_1, A_2, \dots \in \mathcal{R}$ μ -Nullmengen und $A \in \mathcal{R}$ beliebig.

Ist $A \subset \bigcup_{k=1}^n A_k$, so ist A eine μ -Nullmenge.

Beweis:

$$0 \le \mu(A) \le \mu(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} A_k = 0$$

$$\Rightarrow \quad \mu(A) = 0$$

(ii) Seien $X \neq \emptyset$ und $\mu : \mathcal{P}(X) \to \mathbb{R}$ ein Inhalt mit $\mu(X) = 1$ und $\mu(A) \in \{0, 1\}, \forall A \subset X$, sowie $\mathcal{A} := \{A \subset X : \mu(A) = 1\}$. Zeige, dass folgende Aussagen wahr sind:

(1) $\emptyset \notin \mathcal{A}$

Beweis:

$$\mu(X) = \mu(X \cup \emptyset) = \mu(X) + \mu(\emptyset) \Rightarrow \mu(\emptyset) = 0$$

(2) $A \in \mathcal{A}, A \subset B \subset X \Rightarrow B \in \mathcal{A}$

Beweis: $1 = \mu(A) \le \mu(B) \le \mu(X) \le 1 \Rightarrow \mu(B) = 1$

(3) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$

Beweis: Zunächst gilt $\mu(A \cup B) \le \mu(X) = 1$ und daher

$$1 = \mu(A) \ge \mu(A \cap B) \ge \mu(A) + \mu(B) - \mu(A \cup B) \ge 1 + 1 - 1 = 1 \Rightarrow \mu(A \cap B) = 1$$

(4) $A \subset X \Rightarrow A \in \mathcal{A} \text{ oder } A^c \in \mathcal{A}$

Beweis: Angenommen es gelte $A \notin \mathcal{A}$ und $A^c \notin \mathcal{A}$, dann gilt $\mu(A) = 0\mu(A^c)$ und somit

$$\mu(X) = \mu(A \cup A^c) = \mu(A) + \mu(A^c) = 0$$

was ein Widerspruch zur Definition von μ darstellt.

(iii) Sei wiederum $\mathcal{A}=\{A\subset X:A$ abzählbar oder A^c abzählbar $\}$ und X überabzählbar. Dann ist

$$\mu(B) = \begin{cases} 0 , \text{ falls } B \text{ abz\"{a}hlbar ist} \\ 1 , \text{ falls } B^c \text{ abz\"{a}hlbar ist} \end{cases}$$

ein Maß auf A.

Beweis: Weiter oben wurde schon gezeigt, dass A eine σ -Algebra ist. Zunächst gilt

$$\mu(\emptyset) = 0 \text{ und } \mu \ge 0$$

Sei $(A_n)_{n\in\mathbb{N}}$ nun eine Folge disjunkter Mengen aus \mathcal{A} . Zunächst nehmen wir an, dass alle A_n abzählbar sind, dann folgt, dass auch $\bigcup_{n\in\mathbb{N}}A_n$ abzählbar ist. Daher gilt

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=0=\sum_{n\in\mathbb{N}}\mu(A_n)$$

Nun gebe es ein $\tilde{n} \in \mathbb{N}$, so dass $A_{\tilde{n}}$ überabzählbar ist. Dann muss $A_{\tilde{n}}^c$ abzählbar sein, da $A_{\tilde{n}} \in \mathcal{A}$. Da alle A_n paarweise disjunkt sind, folgt $A_n \subset A_{\tilde{n}}^c, \forall n \neq \tilde{n}$ und somit sind alle $A_n, n \neq \tilde{n}$ abzählbar. Daher gilt nun (beachte $\mu(A_n) = 0, \forall n \neq \tilde{n}$ und $(A_{\tilde{n}} \cup \bigcup_{n \neq \tilde{n}} A_n)^c \subset A_{\tilde{n}}^c$ ist abzählbar)

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=1=\sum_{n\in\mathbb{N}}\mu(A_n)$$

womit μ ein Maß über \mathcal{A} ist.

(iv) Sei $\mu: \mathcal{R} \to \mathbb{R}$ ein Inhalt auf dem Ring \mathcal{R} . Zeige

 μ ist σ -additiv \Leftrightarrow Für jede Folge $(A_n)_{n\in\mathbb{N}}$ von Mengen aus \mathcal{R} mit $A_n\nearrow A\in\mathcal{R}$ gilt $\mu(A_n)\nearrow\mu(A)$

Dies bezeichnet man auch als die Stetigkeit von unten.

Hinweis: Betrachte die Zerlegung $\mathcal{R} \ni A = A_1 \cup \bigcup_{k=2}^{\infty} A_k \setminus A_{k-1}$.

Beweis: "⇒": Zunächst einmal gilt

$$(A_{k+1} \setminus A_k) \cap (A_k \setminus A_{k-1}) = A_{k+1} \cap A_k^c \cap A_k \cap A_{k-1}^c = \emptyset$$

die einzelnen "Summanden" sind also paarweise disjunkt und zusammen mit dem Hinweis gilt:

$$\mu(A) = \mu(A_1) + \sum_{k=2}^{\infty} \mu(A_k \setminus A_{k-1})$$

$$= \lim_{n \to \infty} \left(\mu(A_1) + \sum_{k=2}^{n} \mu(A_k \setminus A_{k-1}) \right)$$

$$= \lim_{n \to \infty} \mu\left(A_1 \cup \bigcup_{k=2}^{n} A_k \setminus A_{k-1} \right) = \lim_{n \to \infty} \mu(A_n)$$

" \Leftarrow ": Gezeigt werden soll die σ -Additivität von μ . Sei dazu $(B_n)_{n\in\mathbb{N}}$ eine Folge disjunkter Mengen in \mathcal{B} mit $B:=\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{R}$ und sei $A_n:=\bigcup_{k\in\mathbb{N}}^nB_k$, so gilt $A_n\nearrow B$. Dann folgt mit Hilfe der Vorraussetzung

$$\mu(B) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \sum_{k=1}^{\infty} \mu(B_k)$$

(v) Seien $a_1, a_2, \dots > 0$ und $E := \{x \in \mathbb{R}^n : \frac{x_1^2}{a_1^2} + \dots + \frac{x_n^2}{a_n^2} < 1\}$ der dazugehörige offene Ellipsoid. Zeige, dass E Borel-meßbar ist und $\lambda^n(E) = a_1 \cdots a_n \lambda^n(K_1(0))$ gilt.

Beweis: Als offene Menge des \mathbb{R}^n ist E Borel-messbar (E ist Element eines der möglichen Erzeuger der Borelschen Mengen, welche eben die Borel-messbaren Mengen sind). E ist offen, da es eine stetige Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ (siehe weiter unten) gibt, so dass E das Urbild der Einheitskugel unter f ist.

Sei $A := \operatorname{diag}(a_1, \ldots, a_n)$ und $f(x) = A^{-1}x$. Mit Hilfe der Gleichung $f(\lambda^n) = |\operatorname{det}(f)|^{-1} \lambda^n$ aus der Vorlesung mit dem Bildmaß $f(\lambda)(B) = \lambda(f^{-1}(B)), B \subset \mathbb{R}^n$ ergibt sich nun

$$\lambda^n(f^{-1}(K_1(0))) = a_1 \cdots a_n \lambda^n(K_1(0))$$

und es bleibt noch zu zeigen, dass $f^{-1}(K_1(0)) = E$ gilt. Dazu beachte man, dass die Definition des Urbildes $f^{-1}(A) = \{x \in \mathbb{R}^n : f(x) \in A\}$ lautet. Nun gilt $-a_i < x_i < a_i$ für alle $i = 1, \ldots, n$ und $x \in E$. Daraus folgt, dass $-1 < [f(x)]_i < 1$ für alle $i = 1, \ldots, n$ und damit $f^{-1}(K_1(0)) = E$.