INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

LICENCIATURA EM ENGENHARIA INFORMÁTICA

LICENCIATURA EM ENGENHARIA INFORMÁTICA – PÓS-LABORAL

ELETRÓNICA

Duração: 2 Horas

Primeira Frequência 16 Novembro 2022

Notas:

- 1) O enunciado deve ser entregue no final da frequência.
- 2) Os alunos necessitam de uma folha de prova.
- 3) As perguntas do exame devem ser respondidas da seguinte forma:
 - a) As perguntas da componente teórica devem ser respondidas numa folha de prova.
 - b) As perguntas da componente prática devem ser respondidas no enunciado.

I - Componente teórica (4 valores)

- 1. Represente a curva característica de uma fonte de corrente ideal.
- 2. Explique o fenómeno designado por efeito de Joule e identifique algumas aplicações práticas.
- 3. Considere o circuito da figura 1.

Figura 1

- a) Identifique que resistências se encontram em série e em paralelo.
- b) Escreva a equação matemática que lhe permite calcular a corrente na resistência R₃.
- 4. Descreva o princípio da conservação da carga, assim como a lei de Kirchhoff que este traduz.
- 5. Descreva em que consiste uma ligação iónica.
- **6.** Descreva em que consiste um semicondutor intrínseco.

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

LICENCIATURA EM ENGENHARIA INFORMÁTICA

LICENCIATURA EM ENGENHARIA INFORMÁTICA – PÓS-LABORAL

ELETRÓNICA

Duração: 2 Horas

Primeira Frequência 16 Novembro 2022

II - Componente Prática (16 valores)

1. Considere o circuito da figura 2 ($R_1 = 2 \text{ k}\Omega$; $R_2 = 2 \text{ k}\Omega$; $R_3 = 4 \text{ k}\Omega$; $R_4 = 2 \text{ k}\Omega$; $I_1 = 20 \text{ mA}$; $V_1 = 10 \text{ V}$). (10 valores)

Figura 2

a)	Calcule o valor das correntes IA, IB, IC e determine a potência na fonte de tensão (utilize o método
	das malhas). Apresente as equações que lhe permitem chegar ao resultado final, nomeadamente ao
	sistema de equações da alínea b, assim como a fórmula que lhe permite calcular a potência.

b) Preencha a matriz A e b com os valores numéricos corretos (A \cdot x = b).

c) Complete o código Python, referente à resolução do sistema de equações apresentado na alínea b:

2. Considere o circuito da figura seguinte.

(4 valores)

Calcule o contributo da fonte de tensão V_1 para a queda de tensão aos terminais da resistência R_2 (V_{AB}). Apresente as equações que lhe permitem chegar ao resultado final. O resultado final pode ser apresentado na forma de uma fração.

3. Considere o circuito da figura seguinte (o modelo do díodo, em condução, possui os seguintes parâmetros: R_d = 100 Ω e V_a = 0.7 V). (2 valores)

Determine para que valores da tensão de entrada (v_{in}) o díodo <u>não</u> conduz.

