MLS	Dataset	PCR(AIC)	PCR(AICc)	PCR(BIC)	PCR(HQIC)	PCR(GMDL)
	abalone	48,80(2)	47.98(1)	48.80(3)	48.80(3)	49.84(5
	airfoil_self_noise				3.29e+4(3)	3.29e+4(3
	auto_mpg	941.64(3)	941.64(3)	941.64(3)		941.64(3
	automobile	403.71(3)	403.71(3)	403.71(3)	403.71(3)	403.71(3
	concrete_data	39.49(4)	39.49(2)	38.86(1)		39.70(5
	crime	4.63e+19(1)				4.63e+19(5
	fertility	106.54(1)	106.54(1)	107.30(4)	107.30(4)	107.30(4
Ridge	flow	631.29(3)	631.29(3)	631.29(3)		631.29(3
	forest.	102.32(3)	102.32(3)	102.32(3)	102.32(3)	102.32(3
	qsar	43.33(4)	43.33(4)	43.33(1)	43.33(1)	43.33(4
	servo	61.46(3)	61.46(3)	61.46(3)	61.46(3)	61.46(3
	slump	97.68(2)	97.68(2)	107.84(4)	97.68(2)	107.84(4
	traffic	43.95(2)	43.95(2)	43.95(2)	43.95(2)	49.30(5
	wine_red	72.53(4)	67.28(2)	72.53(3)	67.28(1)	76.39(5
	wine white	77.86(3)	77.25(1)	79.13(4)	77.86(2)	81.20(5
Avg. Rar	ık	(2.80)	(2.47)	(2.93)	(2.77)	(4.03
	abalone	55.22(4)	47.44(1)	52.78(3)	48.17(2)	59.38(5
	airfoil_self_noise				3.29e+4(3)	3.29e+4(3
SVR	auto_mpg				1.05e+3(3)	1.05e+3(3
	automobile	409.02(3)	409.02(3)	409.02(3)	409.02(3)	409.02(3
	concrete_data	536.41(4)	498.83(1)	558.28(5)	536.41(2)	536.41(2
	crime	39.60(5)	39.60(4)	39.60(2)	39.60(2)	39.60(2
	fertility	121.57(2)	110.01(1)	122.63(4)	121.57(2)	130.45(5
	flow	882.41(1)	882.41(1)	915.39(4)	915.39(4)	915.39(4
	forest	108.15(3)	108.15(3)	108.15(3)	108.15(3)	108.15(3
	gsar	53.42(4)	50.79(1)	52.80(3)	50.79(2)	66.76(5
	servo	16.75(3)	16.75(3)	16.75(3)		16.75(3
	slump	561.55(3)	561.55(3)	561.55(3)	561.55(3)	561.55(3
	traffic	213.32(1)	224.28(2)	524.26(4)	224.28(2)	524.26(4
	wine_red	105.93(4)	67.17(1)	101.53(3)	73.75(2)	138.66(5
	wine_white	90.50(4)	74.03(1)	88.94(3)	83.04(2)	98.27(5
Avg. Rar	ık	(3.20)	(2.13)	(3.30)	(2.63)	(3.73
	abalone	72.12(4)	59.88(1)	68.41(3)	63.18(2)	76.18(5
	airfoil_self_noise			3.29e+4(3)	3.29e + 4(3)	3.29e+4(3
RFR	auto_mpg	902.84(3)	902.84(3)	902.84(3)	902.84(3)	902.84(3
	automobile	405.20(3)	405.20(3)	405.20(3)	405.20(3)	405.20(3
	concrete_data	466.80(3)	466.80(3)	466.80(3)		466.80(3
	crime	37.87(2)	36.32(1)	38.86(5)		38.86(4
	fertility	114.32(4)	114.32(4)	112.15(1)		112.15(1
	flow	882.64(3)	882.64(3)	882.64(3)	882.64(3)	882.64(3
	forest	105.41(3)	105.41(3)	105.41(3)	105.41(3)	105.41(3
	qsar	49.24(3)	46.92(1)	51.44(4)	48.23(2)	53.81(5
	servo	21.87(2)	21.87(2)	36.08(4)	21.87(2)	36.08(4
	slump	532.42(3)	532.42(3)	532.42(3)	532.42(3)	532.42(3
	traffic	97.36(2)	94.58(1)	392.41(5)	114.50(3)	271.37(4
	wine_red	79.65(3)	69.55(1)	81.24(4)	71.93(2)	96.83(5
	wine_white	74.94(3)	69.07(1)	74.94(4)	70.20(2)	86.30(5
Avg. Rar		(2.93)	(2.20)	(3.47)	(2.73)	(3.67
Mean Rank		(2.98)	(2.27)	(3.23)	(2.71)	(3.81

Table 2: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PCR, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the GS sampling strategy.