* first request is a miss

10131113
Setting
- n îtens, cache size k.
- For i=1,,m, ith request of E[n] comes
* if it's in the cache, "hit" - pay 0
* if not, "miss"- evict an Item from the cache, bring sin
and pay 1.
-How to evict items to minimize (# misses)?
- If entire of was known, "evict the item used furthest
In the future is optimal!
* Of course, not implementable without knowing the fature.
- So, will design online algor with small competitive ration
- For complicity accome that
* the cache is full in the beginning Just consider the process from first priss.
Process from first Miss.

Lower Bounds for Det. Algos.

Lower Pourist for Dev Jean
Claim. Fury deterministic algorithm's competitive ratio is
at least k.
Pf. Let n=k+1. At each stage, 5; is the item not in the
cache. So ALG=m. / For a lower bound against det. algos
the adversary can choose of based on
what ALG did so for
For OPT, since it evices the item used furthese in the future
and there are n=let1 items, if OPT misses on Di, the next
Miss will happen no earlier than itk.
requests= lan 1 ··· k ···
· 日)

cache at time i = i at least one of them won't be requested until itk.

 S_0 , $OPT \leq \frac{m}{k}$

1-6it LRU (Least Recently Used)

-Algorithm —
- Works in phases. marked/unmarked
- Maintains a single bit for each Han i in the cache-
(all unmarked in the beginning of a phase)
-Given Oi,
Ohit: mark i. antimarily (deterministically)
@miss: (i) unmarked item i in the cache: evict i, bring i in
and mark i.
(ii) all items in the cache are marked: unmark all items
and begin a new phase.

Example	k=3, n=5	
•	4 5 1 4 1 2 5	
	144444	
cache	2 2 5 5 5 5 5	
cache (right belove request)	3 3 3 1 1 1 1	
	Phase 1. Phase 2.	

Facts about phase i. , call them TiEIn].
- there are exactly k distinct requests in the phase,
which is different from the neguese right after the phase.
-for each j E Ti, only first request in the phase "matters";
Second, third,, request for j in the phase are all hit.
Claim, ALG is k-competitive.
Pf. ALG misses at most k times in a phase
For OPT, consider phase i = (Ja Ji)
By definition, those are Let distinct Hons in (Ga 664).
Then OPT must miss at least one of Jan Obt.
=) OPT makes at least one miss in phase i shifted by I to right.
(And OPT misses oi) . ALG = k-OPT
Phase i

Randonized 1-6it LRU

-Algorithm —
- Works in phases. marked/unmarked
- Maintains a single bit for each item i in the cache.
(all unmarked in the beginning of a phase)
-Given Oi,
Thit: mark i. randomly choose among all unmarlad cache items.
@miss: (i) unmarked item j in the cache: evice j, bring i in
and mark i.
(ii) all items in the cade are marked: unmark all items
and begin a new phase.

Example	k=3, n=5	
•		
cache	2 2 5 5 5 5 5	
(right below request)	3 3 3 11 1 1	
1 - ()	Phase 1 Phase 2.	
	Thate I. Phose 2.	

Facts about phase i. (unchanged!), call them TiEIN.

- there are exactly k distinct requests in the phase,

which is different from the request right after the phase.

- for each j ET;, only first request in the phase "matters";

second, third, ..., request for j in the phase are all hit.

- Phases do not depend on random choices of ALG!.

Claim, ALG is O(log | k)-competitive Pf. Let $Si \subseteq [n]$ be the coche at the beginning of phase i. (So, Si = Ti-1 i>1) Let $\Delta i = |Si+1|Si| = |Si|Si+1$ Let $Si \subseteq [n]$ be the cache of OPT at the beginning of phase i. Let $|\varphi_i| = |S_i|S_i^*| = |S_i^*|S_i|$

Opper bounding ALG in Phase i.

(i) For request of $j \in S_{HI} \setminus S_{I}$, we miss once (only the first one)

(ii) For items in S_{I} requested in Phase i, call them

II...Ile in increasing order of first request time in phase i.

Pr[TI: hirts] > k-0;-(j-1) right before Tij, consider Sij:= Si\\Tu...Tij-1].

items not in Si.

Ti.... Tij-1

items in Sij

not evicted

cache right before Tij

cache right b

3 So Pr[Tij hirs]=Pr[Tij remains in the cache] > (k-0;-(;-1))/(k-f;-1)). 1+6+-+/E.

Pr[Tij misses] = Di and E[(+ misses of type (17))] = Oilfle . E[(# misses in Phase i)] < di(Hk+1).

Lower bounding OPT in Phase i.

Let OPT:= (# of prises of OPT in Phase i)
Then OPT: > (Site) Site is items requesced in phase i,
So OPT will prise items in Stars in the phase)

1 |Sin/ S*| = |Sin/ Sil-| 5*; |Sil = Di-\$;

(exercise: if A,B,C are sees of size k and d(A,B):= IA\Bl=(B\A), +hen $d(A,B)+d(B,C)\geq d(A,C)$

2 |Sin | Sit | Sin | 2 | Sin | = \$in

in Phase i, only Homs in Star are requested

S. Siti must be closer to Sail than Si.

50, OPT; ≥±(\$i+1+Di-\$i) and summing den; and using \$1=0 yields OPT > 1= \$\Di.

. . ALG/OPT < 2 (He+1) = O(log le)

n