THE CLAIMS

What is claimed is:

5

10

15

1. A compound of a formula **I**:

$$W^1_{Z_m}$$
 G Z_m W^2

I

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, wherein each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
- (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, wherein x is 2, 3, or 4;
- (c) W^1 and W^2 are independently L, V, $C(R^1)(R^2)$ – $(CH_2)_{c-}C(R^3)(R^4)$ – $(CH_2)_{n-}Y$, or $C(R^1)(R^2)$ – $(CH_2)_{c-}V$, wherein c is 1 or 2 and n is an independent integer ranging from 0 to 4;
- (d) R^1 and R^2 are independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkynyl, phenyl, or benzyl or when W^1 or W^2 is $C(R^1)(R^2)$ – $(CH_2)_{c-}$ $C(R^3)(R^4)$ –Y, then R^1 and R^2 can both be H, or R^1 and R^2 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;
- 20 (e) R³ and R⁴ are independently H, OH, CO₂H, CO₂(C₁_C₆)alkyl, (C₁_C₆)alkyl, (C₂_C₆)alkynyl, (C₁_C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃, with the proviso that when R¹ and R² are both H, then one of R³ or R⁴ is not H or R³ and R⁴ and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- 25 (f) L is $C(R^1)(R^2)$ – $(CH_2)_{n-}Y$;
 - (g) V is

(h) Y is (C₁–C₆)alkyl, OH, COOH, CHO, COOR⁵, SO₃H,

where

(I) R⁵ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

			(ii)	each occurrence of R ⁶ is independently H, (C ₁₋ C ₆)alkyl, (C ₂₋
				C ₆)alkenyl, or (C ₂ -C ₆)alkynyl and is unsubstituted or substituted
				with one or two halo, OH, C1-C6 alkoxy, or phenyl groups; and
			(iii)	each occurrence of R ⁷ is independently H, (C ₁₋ C ₆)alkyl, (C ₂₋
5				C ₆)alkenyl, or (C ₂ –C ₆)alkynyl; and
	provid	led that:		
			(i)	if G is (CH ₂)x, x is 4, each occurrence of Z is CH ₂ , each
				occurrence of m is 4, and W ¹ is -CH(CH ₃)CO ₂ H, then W ² is
				not the same as W ¹ ;
10			(ii)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
				occurrence of m is 2, and W ¹ is -C(CH ₃) ₂ CH(CO ₂ CH ₂ CH ₃) ₂ ,
				then W^2 is not the same as W^1 ;
			(iii)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
				occurrence of m is 2, and W ¹ is -C(CH ₃) ₂ CH ₂ (CO ₂ CH ₂ CH ₃),
15				then W^2 is not the same as W^1 ;
			(iv)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
				occurrence of m is 1, and W ¹ is -COCH ₂ C(CH ₃) ₂ CH ₂ CO ₂ H,
				then W ² is not the same as W ¹ ;
			(v)	if G is $(CH_2)_x$, x is 4, each occurrence of Z is CH_2 , each
20				occurrence of m is 2, and W1 is -C(phenyl)2CH2CO2H, then
				W^2 is not the same as W^1 ;
			(vi)	if G is CH=CH, each occurrence of Z is CH ₂ , each occurrence
				of m is 1, and W ¹ is -C(CH ₃) ₂ CH ₂ (CO ₂ H), then W ² is not the
				same as W ¹ ; and
25			(vii)	if G is phenyl, each occurrence of Z is CH ₂ , each occurrence
				of m is 1, and W ¹ is -C(phenyl) ₂ CO ₂ H, then W ² is not the
				same as W ¹ .
	2.	The compound of claim 1, wherein:		
	(a)	W^1 and W^2 are independently L, V, or $C(R^1)(R^2)$ – $(CH_2)_{c-}V$ where c is 1 or 2; and		

30 (b) R^1 or R^2 are independently (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl.

- 3. The compound of claim 1, wherein W^1 is L.
- 4. The compound of claim 1, wherein W^1 is V.
- 5. The compound of claim 1, wherein W^1 is $C(R^1)(R^2)-(CH_2)_{c-}C(R^3)(R^4)-(CH_2)_{n-}Y$.
- 6. The compound of claim 1, wherein W^1 is $C(R^1)(R^2)$ – $(CH_2)_{c-}V$.
- 5 7. The compound of claim 1, wherein W^1 and W^2 are independent L groups.
 - 8. The compound of claim 7, wherein each occurrence of Y is independently (CH₂)_nOH, (CH₂)_nCOOR⁵, or (CH₂)_nCOOH.
 - 9. A compound of the formula **Ia**:

$$W^1_{Z_m}$$
 G Z_m W^2

10 **Ia**

- (a) each occurrence of Z is independently CH₂ or CH=CH, wherein each occurrence of m is independently an integer ranging from 1 to 9;
- (b) G is $(CH_2)_x$, $CH_2CH=CHCH_2$, or CH=CH, where x is 2, 3, or 4;
- 15 (c) W^1 and W^2 are independently L, V, or $C(R^1)(R^2)$ – $(CH_2)_c$ –V, where c is 1 or 2;
 - (d) each occurrence of R^1 and R^2 is independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, $(C_2_C_6)$ alkynyl, phenyl, benzyl, or R^1 and R^2 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;
- 20 (e) L is $C(R^1)(R^2)$ – $(CH_2)_{n-}Y$, where n is an independent integer ranging from 0 to 4;
 - (f) V is

(g) each occurrence of Y is independently (C₁_C₆)alkyl, OH, COOH, CHO, (CH₂)_nCOOR³, SO₃H,

where

10

(I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1 - C_6 alkoxy, or phenyl groups; and
- (iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl; and

provided that:

5

10

20

- (i) if x is 4, each occurrence of Z is CH₂, each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹;
- (ii) if x is 4, each occurrence of Z is CH₂, each occurrence of m is 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
 - 10. The compound of claim 9, wherein W^1 is L.
 - 11. The compound of claim 9, wherein W^1 is V.
- 15 12. The compound of claim 9, wherein W^1 is $C(R^1)(R^2)$ – $(CH_2)_{c-}V$.
 - 13. The compound of claim 9, wherein W^1 and W^2 are independent L groups.
 - 14. The compound of claim 13, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 15. A compound of the formula **Ib**

$$R^{1}R^{2}$$
 O R^{11} R^{12} Y $(CH_{2})_{n}$ $(CH_{2})_{x}$ $(CH_{2})_{m}$ $(CH_{2})_{n}$

It

- (a) each occurrence of m is independently an integer ranging from 1 to 9;
- (b) x is 2, 3, or 4;
- 25 (c) n is an independent integer ranging from 0 to 4;

- (d) each occurrence of R^1 and R^2 is independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, $(C_2_C_6)$ alkynyl, phenyl, benzyl, or R^1 and R^2 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;
- 6 (e) each occurrence of R^{11} and R^{12} is independently H, CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkynyl, phenyl, benzyl, or R^{11} and R^{12} and the carbon to which they are both attached are taken together to form a $(C_3_C_7)$ cycloakyl group;
- (f) each occurrence of Y is independently (C₁-C₆)alkyl, OH, COOH, CHO, COOR³,
 SO₃H,

- (I) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- 20 (ii) each occurrence of R^4 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl and is unsubstituted or

substituted with one or two halo, OH, C₁–C₆ alkoxy, or phenyl groups; and

- (iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl;
- 5 provided that:
- (i) if x is 4 each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹;
- (ii) if x is 4 occurrence of m is 2, and W¹ is
 -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 16. The compound of claim 15, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 17. The compound of claim 16, wherein each R^1 or R^2 is the same or different (C_{1-} C_6)alkyl group.
 - 18. A compound of the formula **Ic**

15

Ic

- (a) each occurrence of m is an independent integer ranging from 1 to 9;
- (b) x is 2, 3, or 4;
- 20 (c) V is

provided that:

5

15

- (i) if x is 4 each occurrence of m is 4, and W^1 is -CH(CH₃)CO₂H, then W^2 is not the same as W^1 ; and
- (ii) if x is 4 each occurrence of m is 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 19. A compound according to claim 1, having the formula 5-[2-(5-hydroxy-4,4-dimethyl-pentyloxy)-ethoxy]-2,2-dimethyl-pentan-1-ol or 4-[3-(3,3-Dimethyl-4-oxo-butoxy)-propoxy]-2,2-dimethyl-butyric acid.
- 10 20. A compound of the formula II:

$$W_{(CH_2)_m}^{1}$$
 $(CH_2)_{\overline{n}}^{0}$ $(CH_2)_{\overline{n}}^{0}$ $(CH_2)_{\overline{n}}^{0}$ $(CH_2)_{\overline{n}}^{0}$ $(CH_2)_{\overline{n}}^{0}$

II

- (a) R^1 and R^2 are independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, $(C_2_C_6)$ alkynyl, phenyl, or benzyl; or R^1 , R^2 , and the carbon to which they are both attached are taken together to form a $(C_3_C_7)$ cycloalkyl group;
 - (b) R¹¹ and R¹² are independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkynyl, phenyl, or benzyl; or R¹¹, R¹², and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;
- 20 (c) n is an integer ranging from 1 to 6;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) W¹ and W² are independently (C₁_C₆)alkyl, CH₂OH, C(O)OH, CHO, OC(O)R³, C(O)OR³, SO₃H,

where

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl and is unsubstituted or

15

substituted with one or two halo, OH, $C_{1-}C_{6}$ alkoxy, or phenyl groups;

(iii) each occurrence of R^5 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl.

5 21. A compound of formula **IIa**:

Ha

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

(a) R¹ and R² are OH, COOH, CHO, COOR⁷, SO₃H,

- (I) R^7 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R⁸ is independently H, (C₁–C₆)alkyl, (C₂–C₆)alkenyl, or (C₂–C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁–C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R⁹ is independently H, (C₁–C₆)alkyl, (C₂–C₆)alkenyl, or (C₂–C₆)alkynyl;
- (b) R^3 and R^4 are CO_2H , $CO_2(C_{1-}C_6)$ alkyl, $(C_{1-}C_6)$ alkyl, $(C_{2-}C_6)$ alkenyl, $(C_{2-}C_6)$ alkynyl, phenyl, or benzyl;
- 15 (c) R^5 and R^6 are hydrogen, halogen, $(C_1_C_4)$ alkyl, $(C_1_C_4)$ alkoxy, (C6)aryloxy, CN, or NO_2 , $N(R^5)_2$ where R^5 is H, $(C_1_C_4)$ alkyl, phenyl, or benzyl;
 - (d) each occurrence of m is independently an integer ranging from 1 to 5;
 - (e) each occurrence of n is independently an integer ranging from 0 to 4; and
- (f) *1 and *2 represent independent chiral-carbon centers, wherein each center may independently be R or S.
 - 22. A compound as in claim 21 wherein *1 is a chiral-carbon center of the stereochemical configuration R or substantially R.
 - 23. A compound as in claim 21 wherein *1 is a chiral-center of the stereochemical configuration S or substantially S.

25

5

- 24. A compound as in claim 21 wherein *2 is a chiral-carbon center of the stereochemical configuration R or substantially R.
- 25. A compound as in claim 21 wherein *² is a chiral-center of the stereochemical configuration S or substantially S.
- 5 26. A compound of the formula III:

$$W^1 \underbrace{Z_m}^{p(H_2C)} \underbrace{G} \underbrace{(CH_2)_p}_{Q} W^2$$

III

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, where each
 10 occurrence of m is independently an integer ranging from 1 to 5, but when Z is phenyl then its associated m is 1;
 - (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, where x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ – $(CH_2)_{n-}Y$ where n is an integer ranging from 0 to 4;
 - (d) R¹ and R² are independently CO₂H, CO₂(C₁–C₆)alkyl, (C₁–C₆)alkyl, (C₂–C₆)alkenyl, (C₂–C₆)alkynyl, phenyl, or benzyl or R¹ and R² are both H, or R¹, R¹, and the carbon to which they are both attached are taken together to form a (C₃–C₇)cycloalkyl group;
- 20 (e) Y is $(C_{1}-C_{6})$ alkyl, $(CH_{2})_{n}OH$, $(CH_{2})_{n}COOH$, $(CH_{2})_{n}CHO$, $(CH_{2})_{n}COOR^{3}$, $SO_{3}H$,

5

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, $(C_{1-}C_6)$ alkyl, $(C_{2-}C_6)$ alkenyl, or $(C_{2-}C_6)$ alkynyl and is unsubstituted or substituted with one or two halo, OH, $C_{1-}C_6$ alkoxy, or phenyl groups,

- (iii) each occurrence of R^5 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl; and
- (f) each occurrence of p is independently 2 or 3 where the broken line represents an optional presence of one or more additional carbon-carbon bonds that when present complete one or more carbon-carbon double bonds.
 - 27. The compound of claim 26, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ – $(CH_2)_n$ –Y groups, where n is an independent integer ranging from 0 to 4, and each occurrence of Y is independently OH, COOR⁴, or COOH.
 - 28. The compound of claim 26, wherein p is 0.
- 10 29. The compound of claim 26, wherein p is 1.
 - 30. A compound of the formula **IIIa**:

$$W^1$$
 Z_m
 C
 $C(CH_2)_p$
 C
 Z_m
 C

IIIa

- 15 (a) each occurrence of m is independently an integer ranging from 1 to 5;
 - (b) x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ – $(CH_2)_n$ –Y;

- (d) each occurrence of R^1 or R^2 is independently (C_1 – C_6)alkyl, (C_2 – C_6)alkenyl, (C_2 – C_6)alkynyl, phenyl, benzyl, or R^1 , R^1 , and the carbon to which they are both attached are taken together to form a (C_3 – C_7)cycloalkyl group;
- (e) Y is (C₁–C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

- (I) R³ is (C₁–C₆)alkyl, (C₂–C₆)alkenyl, (C₂–C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁–C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl and is unsubstituted or substituted with one or two halo, OH, $C_1_C_6$ alkoxy, or phenyl groups,
- (iii) each occurrence of R^5 is independently H, $(C_1 C_6)$ alkyl, $(C_2 C_6)$ alkenyl, or $(C_2 C_6)$ alkynyl; and

15

- (f) each occurrence of p is independently 0 or 1.
- 31. The compound of claim 30, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ – $(CH2)_{n-}$ Y groups, where n is an integer from 0 to 4, and each occurrence of Y is independently OH, $COOR^3$, or COOH.
- 5 32. The compound of claim 30, wherein p is 0.
 - 33. The compound of claim 30, wherein p is 1.
 - 34. A pharmaceutical composition comprising a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30 and a pharmaceutically acceptable vehicle, excipient, or diluent.
 - 35. A pharmaceutical composition comprising the following compound:
- 10 6-(5,5-Dimethyl-6-hydroxy-hexane-1-sulfinyl)-2,2-dimethyl-hexan-1-ol or pharmaceutically acceptable salts, hydrates, solvates, clathrates, enantiomers, diasteriomers, racemates, or mixures of steroisomers thereof and a pharmaceutically acceptable vehicle, excipient, or diluent.
- 36. A method for treating or preventing a cardiovascular disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 37. A method for treating or preventing a dyslipidemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 38. A method for treating or preventing a dyslipoproteinemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 39. A method for treating or preventing a disorder of glucose metabolism in a patient, comprising administering to a patient in need of such treatment or prevention a
- 25 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 40. A method for treating or preventing Alzheimer's Disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 41. A method for treating or preventing Syndrome X or Metabolic Syndrome in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 42. A method for treating or preventing septicemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 43. A method for treating or preventing a thrombotic disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 44. A method for treating or preventing a peroxisome proliferator activated receptor associated disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 45. A method for treating or preventing obesity in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 46. A method for treating or preventing pancreatitis in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 47. A method for treating or preventing hypertension in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 48. A method for treating or preventing renal disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 49. A method for treating or preventing cancer in a patient, comprising administering to a patient in claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 50. A method for treating or preventing inflammation in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 51. A method for treating or preventing impotence in a patient, comprising

 10 administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 52. A method for treating or preventing a neurodegenerative disease or disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 53. A method of inhibiting hepatic fatty acid synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 54. A method of inhibiting sterol synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 55. A method of treating or preventing metabolic syndrome disorders in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

56. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by increasing HDL levels, which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

5

57. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by lowering LDL levels, which comprises administering to such patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.