MATH 311

Chapter 9

SECTION 9.2: OPERATORS AND SIMILARITY

Contents

Operators B -matrix	2
Change of Basis	3
Diagonalisation and Change of Basis	7

Created by: Pierre-Olivier Parisé Spring 2024

OPERATORS

DEFINITION 1. A linear transformation $T: V \to W$ is called an **linear operator** if V = W. We will therefore write $T: V \to V$, where V is a vector space.

B-matrix

Recall that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator and $E = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ is the standard basis, then the matrix representing T on the basis E is

$$A = [T(\mathbf{e_1}) \ T(\mathbf{e_2}) \ \cdots \ T(\mathbf{e_n})].$$

DEFINITION 2. Let

- V be a vector space;
- $T: V \to V$ be a linear operator;
- $B = {\mathbf{b_1, b_2, \dots, b_n}}$ be a basis.

The **B-matrix** of T is the matrix representing T on the basis B:

$$M_B(T) := [C_B(T(\mathbf{b_1})) \ C_B(T(\mathbf{b_2})) \ \cdots \ C_B(T(\mathbf{b_n}))].$$

Properties:

- ① $C_B(T(\mathbf{v})) = M_B(T)C_B(\mathbf{v})$ for all $\mathbf{v} \in V$.
- ② T is an isomorphism if and only if $M_B(T)$ is invertible. More over, $M_B(T^{-1}) = (M_B(T))^{-1}$.

CHANGE OF BASIS

EXAMPLE 1. Consider the square with vertices (0,0), (1,1), (0,2), (-1,1). Find a basis D on which the coordinates of the vertices become (0,0), (1,0), (1,1), (0,1).

SOLUTION.

Goal: Given two basis

• $B = \{b_1, b_2, \dots, b_n\};$ • $D = \{d_1, d_2, \dots, d_n\};$

how do we get $C_D(\mathbf{v})$ from $C_B(\mathbf{v})$?

EXAMPLE 1. [Continued]

DEFINITION 3. We define the **change matrix** from B to D as

$$P_{D \leftarrow B} = \begin{bmatrix} C_D(\mathbf{b_1}) & C_D(\mathbf{b_2}) & \cdots & C_D(\mathbf{b_n}) \end{bmatrix}.$$

Properties:

- ① For any vector $\mathbf{v} \in V$, we have $C_D(\mathbf{v}) = P_{D \leftarrow B} C_B(\mathbf{v})$.
- $P_{B \leftarrow B} = I_n.$
- 3 $P_{D \leftarrow B}$ is invertible and $(P_{D \leftarrow B})^{-1} = P_{B \leftarrow D}$.

EXAMPLE 2. Let $V = \mathbb{R}^2$ and $B = \{(1,2),(0,1)\}, D = \{(1,1),(-1,1)\}.$

- a) Find $P_{D \leftarrow B}$.
- b) Verify that $C_D(\mathbf{x}) = P_{D \leftarrow B} C_B(\mathbf{x})$.
- c) Find $P_{B \leftarrow D}$, verify that $C_B(\mathbf{x}) = P_{B \leftarrow D}C_D(\mathbf{x})$.

SOLUTION.

Diagonalisation and Change of Basis

EXAMPLE 3. Let
$$A = \begin{bmatrix} 11 & -6 \\ 12 & -6 \end{bmatrix}$$
, $P = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$, and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

- a) Verify that $P^{-1}AP = D$.
- b) Find a basis B such that $M_B(T_A) = D$.

THEOREM 1.

- ① Let A be an $n \times n$ matrix and E be standard basis of \mathbb{R}^n .
- ② Let B be a basis of \mathbb{R}^n .
- \bigcirc Let P be the invertible matrix whose columns are the vectors in B in order.

Then

$$M_B(T_A) = P^{-1}AP.$$