ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

1. Oblicz granicę ciągu $x_n = (\frac{n^2 \cos(n!)}{n^3 + 2n}, (1 + \frac{1}{n})^{2n-3}, \sqrt{4n^2 + 3n - 2} - 2n).$

We need to calculate the limit of the sequence $x_n = \left(\frac{n^2 \cos(n!)}{n^3 + 2n}, \left(1 + \frac{1}{n}\right)^{2n-3}, \sqrt{4n^2 + 3n - 2} - 2n\right)$.

Part 1: $\frac{n^2 \cos(n!)}{n^3 + 2n}$

General formula:

 $\lim_{n \to \infty} \frac{n^2 \cos(n!)}{n^3 + 2n}$

Transformation:

Since $|\cos(n!)| \le 1$, we have:

$$\left|\frac{n^2\cos(n!)}{n^3+2n}\right| \le \frac{n^2}{n^3+2n}$$

$$=\frac{n^2}{n^3(1+\frac{2}{n^2})}=\frac{1}{n(1+\frac{2}{n^2})}$$

As $n \to \infty$, $\frac{1}{n} \to 0$.

Result:

$$\lim_{n \to \infty} \frac{n^2 \cos(n!)}{n^3 + 2n} = 0$$

Part 2: $(1+\frac{1}{n})^{2n-3}$

General formula:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n - 3}$$

Transformation:

Using the known limit $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, we get:

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{2n-3}=\lim_{n\to\infty}\left(\left(1+\frac{1}{n}\right)^n\right)^{2-\frac{3}{n}}=e^2$$

Result:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n-3} = e^2$$

Part 3: $\sqrt{4n^2 + 3n - 2} - 2n$

General formula:

$$\lim_{n \to \infty} \left(\sqrt{4n^2 + 3n - 2} - 2n \right)$$

Transformation:

Multiply and divide by the conjugate:

$$= \lim_{n \to \infty} \frac{(4n^2 + 3n - 2) - 4n^2}{\sqrt{4n^2 + 3n - 2} + 2n}$$
$$= \lim_{n \to \infty} \frac{3n - 2}{\sqrt{4n^2 + 3n - 2} + 2n}$$

Divide by n:

$$= \lim_{n \to \infty} \frac{3 - \frac{2}{n}}{\sqrt{4 + \frac{3}{n} - \frac{2}{n^2}} + 2}$$

As $n \to \infty$,

$$=\frac{3}{4}=0$$

Result:

$$\lim_{n\to\infty}\left(\sqrt{4n^2+3n-2}-2n\right)=\frac{3}{4}=0$$

Final Result:

The limit of the sequence is:

$$(0,e^2,0)$$