Rapport de projet - IA_Bomber

1. Fonctionnement général de l'IA

1.1 Architecture globale

L'IA est conçue comme un agent autonome capable de prendre des décisions en temps réel dans un environnement de type Bomberman. Elle utilise une approche hybride combinant :

- Pathfinding intelligent
- Système d'évitement des menaces
- Comportement offensif et défensif adaptatif
- Gestion de la sécurité

1.2 Systèmes principaux

Navigation et pathfinding

- Utilisation d'un algorithme de recherche de chemin optimisé
- Calcul des distances de Manhattan pour l'heuristique
- Système de détection des voisins accessibles
- Filtrage des chemins dangereux

Gestion des menaces

- Détection avancée des fantômes
- Prédiction des mouvements ennemis
- Calcul des zones de danger
- Système de fuite intelligent

Stratégie offensive

- Pose intelligente de bombes
- Ciblage prioritaire des minerais
- Attaque opportuniste des fantômes
- Vérification de la sécurité avant action offensive

Comportement défensif

- Système d'échappée vers des zones sûres
- Gestion du timer des bombes
- Évitement proactif des dangers
- Création de barrières défensives

1.3 Prise de décision

L'IA suit une hiérarchie de priorités :

- 1. Survie immédiate (évitement des dangers)
- 2. Opportunités d'attaque contre les fantômes
- 3. Collecte des minerais
- 4. Positionnement stratégique

1.4 Systèmes de sécurité

Détection des dangers

- Analyse continue des positions des fantômes
- Vérification des bombes actives
- Évaluation des autres joueurs
- Calcul des zones d'explosion

Recherche de sécurité

- Identification des zones sûres
- Calcul des chemins d'évacuation
- Vérification de la viabilité des échappatoires
- Gestion des timers de sécurité

1.5 Optimisations

- Cache des chemins calculés
- Limitation des recherches de chemin
- Priorisation des menaces proches
- Réutilisation des calculs précédents

1.6 Points forts

- 1. Réactivité face aux dangers
- 2. Capacité d'adaptation
- 3. Équilibre entre offensive et défensive
- 4. Gestion intelligente des ressources

[Note : Cette première partie du rapport se concentre sur le fonctionnement. Envoyez-moi les problèmes rencontrés pour compléter la seconde partie.]

2. Problèmes rencontrés et solutions

2.1 Auto-destruction par bombes

Problème

L'IA avait tendance à mourir à cause de ses propres bombes, ne prenant pas en compte correctement la zone de danger créée après avoir posé une bombe.

Solution

• Implémentation d'un système de recherche de points sûrs (find_safe_spot)

- Vérification systématique de l'existence d'une route d'évacuation avant de poser une bombe
- Ajout d'un timer de sécurité pour s'assurer que l'IA s'éloigne suffisamment après avoir posé une bombe
- Augmentation des marges de sécurité (de 3 à 5 cases)

2.2 Difficulté avec l'élimination des fantômes

Problème

L'IA n'arrive pas à éliminer efficacement les fantômes, problème persistant dans la logique de combat.

Causes identifiées

- Distance de détection des fantômes mal calibrée
- Logique de placement des bombes défensive plutôt qu'offensive
- Problème dans la fonction can_hit_ghost

Pistes de solution

- Révision de la logique de combat contre les fantômes
- Ajustement des paramètres de distance
- Amélioration de la prédiction des mouvements des fantômes

2.3 Problèmes de déplacement vertical

Problème

L'IA rencontrait des difficultés pour se déplacer correctement vers le bas de la carte.

Solution

- Réécriture complète de l'algorithme de déplacement
- Implémentation d'un nouveau système de pathfinding plus robuste
- Vérification systématique de la validité des mouvements avant exécution

2.4 Améliorations futures possibles

1. Optimisation du combat

- Améliorer la logique d'attaque des fantômes
- o Développer une meilleure stratégie de placement des bombes
- o Implémenter une prédiction plus précise des mouvements des fantômes

2. Sécurité

- Affiner les marges de sécurité
- Améliorer la détection des situations dangereuses
- o Optimiser les chemins d'évacuation

3. Navigation

o Optimiser le pathfinding pour plus d'efficacité

- o Améliorer la gestion des obstacles
- o Développer une meilleure priorisation des objectifs

Crédits

Ce projet a été devellopé par Loic Péchiné et Adam Planque.