Matematikai Analízis II

Erdélyi Áron 2018.05.31.

Tartalomjegyzék

1	Tétel					
	1.1	Hatványsorok	5			
	1.2	Konvergencia tartomány	5			
		1.2.1 A konvergencia tartomány alaptulajdonságai	5			
		1.2.2 A konvergencia sugár meghatározása	5			
	1.3	Tulajdonságai: deriválhatóság, integrálhatóság	6			
	1.4	Taylor sor	6			
		1.4.1 Nevezetes függvények Taylor sora	6			
	1.5	Függvénysorozatok	6			
		1.5.1 Függvénysorozatok határértéke	6			
	1.6	Pontonkénti és egyenletes konvergencia	7			
		1.6.1 Pontonkénti konvergencia	7			
		1.6.2 Egyenletes konvergencia	7			
	1.7	Elégséges feltétel egyenletes konvergenciához	7			
2	$\mathbf{T\acute{e}t}$	el	8			
	2.1	Függvénysor	8			
	2.2	Pontonkénti és egyenletes konvergencia	8			
		2.2.1 Pontonkénti konvergencia	8			
		2.2.2 Egyenletes konvergencia	8			
	2.3	Cauchy kritérium	8			
	2.4	Elégséges feltétel egyenletes konvergenciához	8			
	2.5	Összfüggvény folytonossága	9			
	2.6	Összfüggvény deriváltja, integrálja	9			
		2.6.1 Összegfüggvény deriváltja	9			
		2.6.2 Összegfüggvény integrálja	9			
3	Tét		10			
	3.1	Trigonometrikus polinom	10			
	3.2	Trigonometrikus sor	10			
	3.3	Trigonometrikus függvényrendszer, ortogonalitása	10			
	3.4	Fourier sor	11			
		3.4.1 Fourier együtthatók	11			
	3.5	Derivált függvény fourier sora	11			
	3.6	Fourier sor konvergenciája	11			
	3.7	Bessel egyenlőtlenség	11			
	3.8	Parseval egyenlőtlenség fourier sorokra	12			
	m 4	1	10			
4	Tét		13			
	4.1	Kétváltozós függvények értelmezése, ábrázolása	13			
	4.2	Folytonosság	13			
	4.3	Sorozatfolytonosság	13			
	4.4	Függvény határértéke	13			
	4.5	Bolzano tétel két dimenzióban	13			
	4.6	Weierstras tételek	13			
		4.6.1 Weierstras I	13			
		4.6.2 Weierstras II	13			
	4.7	Egyenletes folytonosság	13			
E	ጥረተ	al	1 /			
5	Tét		14			
	5.1	Parciális deriváltak	14			
		5.1.1 Geometrisi jelentése	14			
	5.2	Parciális deriváltak és folytonosság	14			
	5.3	Magasabb rendű parciális deriváltak	14			
		5.3.1 Másod rendű parciális deriváltak	14			
		5.3.2 n-ed rendű parciális deriváltak	15			
	5.4	Deriválások sorrendje	15			

	5.5 5.6 5.7	Teljes differenciálhatóság	15 15 15
c	TD 44.	.1	10
6	Téte 6.1	Hesse mátrix	16 16
	6.2	Érintősík	16
	6.3	Normálvektor	16
	6.4	Iránymenti derivált, kiszámítása	16
	0.4	6.4.1 Tétel	16
	6.5	Kiterjesztés n-változós függvényekre	17
	6.6	Láncszabály, speciális esetek	17
7	Téte	el	18
	7.1	Lagrange féle középérték tétel kétváltozós függvényre	18
	7.2	Kiterjesztés n-változós függvénykekre	18
	7.3	Másodrendű Taylor-formula kétváltozós függvényekre	18
	7.4	Polárkoordináták	19
		7.4.1 Jacobi mátrixa	19
8	Téte		2 0
	8.1	Implicit függvény tétel	20
	8.2	Lokális szélsőérték	20
	8.3	Szükséges feltétel szélsőérték létezésére	20
	8.4	Stacionárius pont	20
	8.5	Nyeregpont	20
9	Téte		21
J	9.1	Elégséges feltétel lokális szélsőértékre	21
	9.2	Lokális szélsőérték jellemzése n-változós függvényekre	21
	3.2	9.2.1 Szükséges feltétel	21
	9.3	Feltételes szélsőérték feladat megfogalmazása	$\frac{21}{21}$
	5.5	9.3.1 Szemléletes jelentés	21
	9.4	Lagrange féle multiplikátor szabály	21
		.0 . 0	
10	Téte		2 2
		Függvény rendszerek, koordináta-transzformáció $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	
		Jacobi mátrix, Jacobi determináns	22
		Invertálhatóság	22
		Inverz rendszer Jacobi mátrixa	22
		Lineáris transzformáció	22
		Hengerkoordináták	23
	10.7	Gömbi polár koordináták, Jacobi determinánsa	23
11	Téte	.1	24
11		Riemann integrál \mathbb{R}^2 -ben	24
		Integrálás téglalap tartományon	$\frac{24}{24}$
			$\frac{24}{25}$
		Normáltartomány	$\frac{25}{25}$
		Áttérés polárkoordinátákra	$\frac{25}{25}$
		Általános helyettesítés integrálban	$\frac{25}{25}$
	11.0	Attalanos nelyettesites integranan	20
12	Téte	el	26
_		Riemann integrál \mathbb{R}^3 -ban	26
		Hármas integrál kiszámítása intervallumon és normáltartományon	26
	-	12.2.1 Kiszámítás intervallumon	26
		12.2.2 Kiszámítás normáltartományon	26
	12.3	Általános helyettesítés	26
		Improprius integrál nem korlátos függvényekre	27
		Hatványfüggvény integrálja az egységkörben	27

	12.6	Integrálhatóság feltétele nem korlátos függvényekre	27
13	Téte	el	28
			28
			28
			28
	13.4	Integrálhatóság elégséges feltétele	28
	Téte		29
			29
			29
	14.3		29
	1 1 1	· ·	30
	14.4		30
			30
			30
		14.4.3 Potenciál létezésének szükséges és elégséges feltétele	30
15	Téte	el	31
	15.1		31
			31
			31
			31
			32
	15.6		32
	Téte		34
			34
			34
			34
		•	34
	10.5	Dirac delta függvény	35
17	Téte	el	36
			36
			36
			36
		00 V 00 0	36
			36
	17.5	Állandó együtthatós homogén LDE megoldásai, kapcsolat a karakterisztikus polinommal .	37
		17.5.1 Első eset	37
		17.5.2 Második eset	37
		17.5.3 Harmadik eset	37
		17.5.4 Negyedik eset	37
	Tét		38
		· · · · · · · · · · · · · · · · · · ·	38
			38
		00 V	38
			39
			39
	18.6	e ^A értelmezése, speciális esetek	39

10	Téte		10
10			
	19.1	Komplex függvény, ábrázolás	
		19.1.1 Geometriai leírás	10
	19.2	Kanonikus alak	40
	19.3	Határértékek	40
	19.4	Folytonosság	40
	19.5	Differenciálhatóság	40
	19.6	Cauchy-Riemann egyenletek	40
	19.7	Harmonikus függvények	40
	19.8	Kapcsolat az analitikus függvénnyel	10
			41
20	Téte	el 4	12
	20.1	Komplex függvények: e^x , alaptulajdonságok	42
		Ln(z) alaptulajdonságok	
		Hatványfüggvény	
		$\sin(z), \cos(z)$	
	20.5	Komplex vonalintegrál, kiszámítása	13
			43
			43

Matematikai Analízis II 1 TÉTEL

1. Tétel

1.1 Hatványsorok

Hatványsoron olyan függvénysort értünk, amelynek tagfüggvényei

$$f_n(x) = c_n(x - x_0)^n, \quad n = 0, 1, 2, \dots$$

és x_0 rögzített valós szám. A hatványsor, tehát így teljes alakú:

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \quad c_n \in \mathbb{R}.$$

1.2 Konvergencia tartomány

Adott egy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

hatvénysor. Ennek a konvergenciahalmazát (konvergencia tartományát) a következő képpen definiáljuk:

$$\mathbb{H} = \{ x \in \mathbb{R} : \sum_{n=0}^{\infty} c_n x^n < \infty \}.$$

1.2.1 A konvergencia tartomány alaptulajdonságai

- 1. $0 \in \mathbb{H}$
- 2. Ha $\xi \in \mathbb{H}$, akkor $\forall x$, melyre $|x| < |\xi|$, $x \in \mathbb{H}$.
- 3. Ha $\eta \notin \mathbb{H}$, akkor $\forall x$, melyre $|x| > |\eta|, x \notin \mathbb{H}$.

Ha van $\xi \neq 0$, melyre $\xi \in \mathbb{H}$ és van $\eta \notin \mathbb{H}$, akkor

$$\rho = \sup\{|x| : x \in \mathbb{H}\},\$$

jól definiált pozitív szám. Ezt a ρ számot a hatványsor konvergenciasugarának nevezzük.

Következmény A konvergencia halmaz intervallum. A következő 3 eset lehetséges:

- 1. $\mathbb{H} = \{0\}.$
- 2. $\mathbb{H} = \mathbb{R}$
- 3. $\mathbb{H} = [(-\rho, \rho)]$

1.2.2 A konvergencia sugár meghatározása

Tegyük fel, hogy létezik az alábbi határérték ($+\infty$ megengedett):

$$\gamma = \lim_{n \to \infty} \sqrt[n]{|c_n|}.$$

Ekkor:

- 1. Ha $\gamma = 0$, akkor $\rho = \infty$, azaz a hatványsor mindenhol konvergens.
- 2. Ha $\gamma=\infty,$ akkor $\rho=0,$ azaz a hatványsor csak 0-ban konvergens.
- 3. Ha $0<\gamma<\infty,$ akkor $\rho=\frac{1}{\gamma}$ a hatványsor konvergenciasugara.

Hasonló összefüggés mondható el az alábbi határértékkel:

$$\gamma = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}.$$

Matematikai Analízis II 1 TÉTEL

1.3 Tulajdonságai: deriválhatóság, integrálhatóság

- 1. Ha $0 < r < \rho$, akkor a hatványsor egyenletesen konvergens [-r, r]-ben.
- 2. A hatványsor összegfüggvénye:

$$f(x) = \sum_{n=0}^{\infty} c_n x^n.$$

folytonos a konvergencia tartományban.

3. A tagonkénti deriválással kapott

$$f'(x)\sum_{n=0}^{\infty}nc_nx^{n-1}$$

függvénysor konvergencia sugara megegyezik az eredeti hatványsor konvergencia sugarával.

4. A hatványsor a konvergencia halmazának minden belső pontjában tagonként deriválható, akárhányszor, és k-dik deriváltja:

$$f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1)...(n-k+1)c_n x^{n-k}.$$

5. Ha $[\alpha, \beta] \subset (-\rho, \rho)$, akkor $f \in \mathfrak{R}[\alpha, \beta]$, és

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{n=0}^{\infty} c_n \frac{x^{n+1}}{n+1} \Big|_{\alpha}^{\beta}.$$

1.4 Taylor sor

Az f függvény x_0 pont körüli Taylor sora az alábbi függvény:

$$T(x_0, x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^n.$$

1.4.1 Nevezetes függvények Taylor sora

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}$$
.

2.
$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ..., \quad x \in \mathbb{R}$$

3.
$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - ..., \quad x \in \mathbb{R}$$

Bizonyítás $f(x) = e^x$. Legyen $x_0 = 0$. Ekkor - mivel $(e^x)' = e^x$ - a taylor sor:

$$T(x_0, x) = \sum_{n=0}^{\infty} \frac{e^{x_0}}{n!} (x - x_0)^n = \sum_{n=1}^{\infty} \frac{1}{n!} x^n$$

1.5 Függvénysorozatok

Adottak az $f_1, f_2, ..., f_n : [a, b] \to \mathbb{R}$ függvények közös értelmezési tartománnyal. Ezek so függvénysorozatnak nevezzük és $(f_n(x))$ -el jelöljük.

1.5.1 Függvénysorozatok határértéke

Azt mondjuk, hogy az (f_n) függvénysorozat határértéke az f függvény, ha

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in [a, b].$$

Matematikai Analízis II 1 TÉTEL

1.6 Pontonkénti és egyenletes konvergencia

1.6.1 Pontonkénti konvergencia

A fenti definícióban azt követeljük meg, hogy minden pontban konvergáljon az $(f_n(x))$ számsorozat, ezért ezt a konvergenciát pontonkénti konvergenciának hívjuk.

Azt mondhatjuk, hogy az $(f_n(x))$ függvénysorozat pontonként konvergens, ha minden $\epsilon > 0$ -ra és minden $x \in [a, b]$ -hez létezik $N(\epsilon, x)$ küszöbindex, hogy minden $n, m \geq N$ -re:

$$|f_n(x) - f_m(x)| < \epsilon.$$

1.6.2 Egyenletes konvergencia

Azt mondjuk, hogy $f_n(x):[a,b]\to\mathbb{R}$ függvénysorozat egyenletesen konvergál az $f(x):[a,b]\to\mathbb{R}$ -hez, ha minden $\epsilon>0$ -hoz $\exists N(\epsilon)$, hogy minden $n,m\geq N$ -re:

$$|f_n(x) - f_m(x)| < \epsilon.$$

1.7 Elégséges feltétel egyenletes konvergenciához

Adott $\epsilon > 0$ -hoz van $N(\epsilon)$ küszöbindex, melyre $|a_n| < \epsilon$ minden n > N mellett, hiszen nullsorozat. Ekkor a Tétel feltétele alapján minden x-re $|f_n(x) - f(x)| < a_n < \epsilon$ ha n > N. Ez épp az egyenletes konvergencia feltétele.

2018.05.31. 7. oldal Erdélyi Áron

Matematikai Analízis II 2 TÉTEL

2. Tétel

2.1 Függvénysor

Legyenek adottak az $f_n: D \to \mathbb{R}$ függvények, közös értelmezési tartománnyal. Azt mondjuk, hogy a $(\sum f_n)$ függvénysor összege $f: D \to \mathbb{R}$, ha

$$\sum_{n=0}^{\infty} f_n = f.$$

2.2 Pontonkénti és egyenletes konvergencia

2.2.1 Pontonkénti konvergencia

Átfogalmazhatjuk a fenti definíciót a következő képpen: ha $\forall x \in D$ esetén, $\forall \epsilon > 0$ -hoz $\exists N(\epsilon, x)$ melyre $\forall n \geq N$ -re teljesül, hogy

$$|\sum_{k=1}^{n} f_k(x) - f(x)| < \epsilon,$$

akkor a függvénysor pontonként konvergens, és az összegfüggvény f.

2.2.2 Egyenletes konvergencia

A függvénysor konvergenciája egyenletes, ha a részletösszegek sorozatából álló függvénysorozat egyenletesen konvergens, azaz

$$F_n := \sum_{k=1}^n f_k(x)$$

jelöléssel $F_n \to f$ egyenletesen.

2.3 Cauchy kritérium

Egy függvénysor pontosan akkor konvergens, ha $\forall x \in D$ esetén, $\forall \epsilon > 0$ -hoz $\exists N(\epsilon, x)$, melyre $\forall n > m > N$ esetén

$$|\sum_{k=m}^{n} f(x)| < \epsilon$$

2.4 Elégséges feltétel egyenletes konvergenciához

Adottak az $f_n: D \to \mathbb{R}$ függvények, közös értelmezési tartománnyal. Tegyük fel, hogy a

$$\sum_{n=1}^{\infty} f_n$$

függvénysorra teljesül, hogy tagjai korlátosak, éspedig f_n korlátja $|f_n(x)| < a_n, \quad x \in D$. Tegyük fel továbbá, hogy

$$\sum_{n=1}^{\infty} a_n < \infty,$$

azaz a felső korlátokból álló numerikus sor konvergens. Ekkor $\sum f_n$ egyenletesen konvergens.

Bizonyítás A számtani sor konvergenciája miatt $\forall \epsilon > 0$ -hoz $\exists N(\epsilon) \in \mathbb{N}$, melyre $\forall n > m > N$ esetén

$$\sum_{k=m}^{n} a_k < \epsilon.$$

Ekkor

$$\left|\sum_{k=m}^{n} f_k(x)\right| \le \sum_{k=m}^{n} |f_k(x)| \le \sum_{k=m}^{n} a_k < \epsilon, \quad \forall x \in D.$$

A küszöbindex x-től független.

Matematikai Analízis II 2 TÉTEL

Példa Legyen $f_n(x) = x^n, |x| < q < 1$. Tekintsük a $\sum_{n=0}^{\infty} x^n$ függvénysort. Mivel $|x^n| \le q^n$ minden $x \in (-q,q)$ -ra, és $\sum_{n=0}^{\infty} < \infty$, ezért $\sum_{n=0}^{\infty} x^n$ egyelnetesen konvergens (-q,q)-ban. Az összegfüggvény

$$f(x) = \frac{1}{1 - x}.$$

2.5 Összfüggvény folytonossága

Tegyük fel, hogy $\sum_{n=1}^{\infty} f_n(x) = f(x)$ egyenletesen konvergens D-ben. Tegyük fel, hogy az $f_n: D \to \mathbb{R}$ függvények folytonosak. Ekkor $f: D \to \mathbb{R}$ is folytonos.

Bizonyítás Bontsuk fel a végtelen összeget két részre.

$$f(x) = F_n(x) + R_n(x),$$

ahol

$$F_n(x) = \sum_{k=1}^n f_n(x),$$

az n-edik részletösszeg, $R_n(x)$ pedig a maradék. Legyen $\epsilon > 0$ tetszőleges. Ekkor az egyenletes konvergencia miatt $\exists N(\epsilon)$, melyre $\forall n > N$ esetén

$$|f(x) - \sum_{k=1}^{n}| = |R_n(x)| < \frac{\epsilon}{4}, \quad \forall x \in D.$$

Ezért

$$|R_n(x) - R_n(x_0)| < \frac{\epsilon}{2}, \quad \forall x, x_0 \in D.$$

Mivel F_n véges sok folytonos függvény összege, ezért folytonos maga is. Tehát a fenti $\epsilon > 0$ -hoz $\exists \delta > 0$, hogy ha $|x - x_0| < \delta$, akkor

$$|F_n(x) - F_n(x_0)| < \frac{\epsilon}{2}.$$

Ekkor ha $|x-x_0| < \delta$, akkor

$$|f(x) - f(x_0)| \le |F_n(x) - F_n(x_0)| + |R_n(x) - R_n(x_0)| < \epsilon$$

tehát f folytonos x_0 -ban.

2.6 Összfüggvény deriváltja, integrálja

2.6.1 Összegfüggvény deriváltja

Tegyük fel, hogy

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens D-ben. Tegyük fel, hogy az $f_n: D \to \mathbb{R}$ függvények differenciálhatóak és a deriváltjukból álló függvénysor is egyenletesen konvergens,

$$\sum_{n=1}^{\infty} f'_n(x) = g(x)$$

és g(x) folytonos. Ekkor g(x)=f'(x).

2.6.2 Összegfüggvény integrálja

Tegyük fel, hogy

$$\sum_{n=0}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens D-ben. Legyen $[\alpha,\beta]\subset D$, és tegyük fel, hogy $f_n\in\Re[\alpha,\beta]$. Ekkor az összegfüggvény integrálható $[\alpha,\beta]$ -n és

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x)dx.$$

Matematikai Analízis II 3 TÉTEL

3. Tétel

3.1 Trigonometrikus polinom

Az $f: \mathbb{R} \to \mathbb{R}$ függvény n-ed fokú trigonometrikus polinom, ha előáll

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)), \quad x \in \mathbb{R}$$

alakban, valamely a_k, b_k valós együtthatókkal.

3.2 Trigonometrikus sor

Az $f: \mathbb{R} \to \mathbb{R}$ függvényt trigonometrikus sornak nevezzük, ha előáll

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)), \quad x \in \mathbb{R}$$

alakban, valamely a_k, b_k valós együtthatókkal. A trigonometrikus sorok más elnevezése Fourier sorok.

3.3 Trigonometrikus függvényrendszer, ortogonalitása

Definiáljuk az alábbi függvényeket:

$$\Phi_0 = 1,$$

$$\Phi_1 = \sin(x) \quad \Phi_2 = \cos(x)$$

$$\vdots$$

$$\Phi_{2k-1} = \sin(kx) \quad \Phi_{2k} = \cos(kx)$$

$$\vdots$$

Ezeknek a függvényeknek a $[-\pi,\pi]$ -re való leszűkítését tekintjuk, de bármilyen 2π hosszú intervallum jó lenne

Tekintsük azon függvények halmazát, melyek a $[-\pi,\pi]$ intervallumon vannak értelmezve, illetve folytonosak. Legyen tehát:

$$C([-\pi, \pi]) := \{ f : [-\pi, \pi] \to \mathbb{R} | folytonos \},$$

Ekkor $C([-\pi, \pi])$ egy lineáris (más szóval vektor) tér lesz, az összeadásra és a skalárszorzatra nézve. A téren maguk a függvények a vektorok, és értelmezhetjük a skalárszorzatot a következő képpen:

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Ennek megfelelően a vektor normája:

$$||f|| := \left(\int_{-\pi}^{\pi} f^2(x) dx\right)^2.$$

Könnyen látható, hogy a skalárszorzat és a norma rendelkezik a megfelelő tulajdonságokkal.

Lemma Tetszőleges $n \neq m$ mellett

$$\int_{-\pi}^{\pi} \Phi_n(x) \Phi_m(x) dx = 0.$$

Ez a tulajdonság azt jelenti, hogy a (Φ_n) függvényrendszer a fennt definiált skalárszorzatra nézve ortogonális.

Matematikai Analízis II 3 TÉTEL

3.4 Fourier sor

Az $f: [-\pi, \pi] \to \mathbb{R}$ függvény Fourier sorát így értelmezzük:

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos(kx) + b_k sin(kx)),$$

ahol a_k és b_k Fourier együtthatók.

3.4.1 Fourier együtthatók

Az $f: [-\pi, \pi] \to \mathbb{R}$ függvény Fourier együtthatóit így definiáljuk:

$$a_k:=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cos(kx)dx,\quad k=0,1,2,\dots$$

$$b_k := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \quad k = 1, 2, \dots$$

3.5 Derivált függvény fourier sora

Legyen $f: \mathbb{R} \to \mathbb{R}$ valós 2π szerint periodikus függvény és tegyük fel, hogy a $[-\pi, \pi]$ intervallumon véges sok pont kivételével folytonos. Ezen kívül tegyük fel, hogy a szakadási pontok elsőfajú szakadások, és hogy véges sok pont kivételével f differenciálható.

Ekkor az f' függvény Fourier sora tagonkénti deriválással kiszámítható:

$$f' \sim \sum_{k=1}^{\infty} (-a_k k sin(kx) + b_k k cos(kx)).$$

Bizonyítás Az f' Fourier együtthatóit jelölje α_k, β_k . Ekkor f' Fourier sora:

$$f' \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (\alpha_k cos(kx) + \beta_k sin(kx)),$$

ahol a definíciót felhasználva, majd parciálisan integrálva:

$$\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) cos(x) dx = \frac{1}{\pi} \left[f(x) cos(kx) \right]_{-\pi}^{\pi} + \frac{k}{\pi} \int_{-\pi}^{\pi} f(x) sin(kx) dx = 0 + k b_k.$$

A fenti egyenlet jobb oldalának első tagja a 2π szerinti periodikusság miatt tűnik el.

3.6 Fourier sor konvergenciája

Legyen $f: \mathbb{R} \to \mathbb{R}$ 2 π szerint periodikus függvény. Feltesszük, hogy f szakaszonként folytonosan differenciálható a $[-\pi,\pi]$ intervallumon, legfeljebb véges sok szakadási hellyel, amelyek elsőfajúak. Ha x_0 szakadási pont, akkor itt a függvényérték legyen

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}.$$

Ekkor

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

3.7 Bessel egyenlőtlenség

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)).$$

Ekkor

$$\frac{a_0^2}{\pi} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx, \quad \forall n \in \mathbb{N} - re.$$

Matematikai Analízis II 3 TÉTEL

Bizonyítás Induljunk ki az alábbi egyenletből:

$$0 \leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left(f(x) - \frac{a_0}{2} - \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)) \right) =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx + \frac{a_0^2}{4} \int_{-\pi}^{\pi} 1 dx + \sum_{k=1}^{n} \left(a_k^2 \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(kx) + b_k^2 \int_{-\pi}^{\pi} \sin^2(kx) dx \right) - 2 \frac{a_0}{2} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx -$$

$$-2 \sum_{k=1}^{n} \left(a_k \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx + b_k \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \right) =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx + \frac{a_0^2}{4} \frac{1}{\pi} 2\pi + \sum_{k=1}^{n} (a_k^2 + b_k^2) - 2 \frac{a_0}{2} a_0 - 2 \sum_{k=1}^{n} (a_k^2 + b_k^2) =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{a_0^2}{2} - \sum_{k=1}^{n} (a_k^2 + b_k^2).$$

3.8 Parseval egyenlőtlenség fourier sorokra

A Fourier együtthatókra teljesül az alábbi egyenlőség:

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

Matematikai Analízis II 4 TÉTEL

4. Tétel

4.1 Kétváltozós függvények értelmezése, ábrázolása

Adott $S \subset \mathbb{R}^2$. Ekkor $f: S \to \mathbb{R}$ kétváltozós függvény, ahol S pontjaihoz $(x, y) \to u$. Itt x, y független változók, és u függő változó.

Két változós függvényeket 3 dimenziós koordináta rendszerben könnyen ábrázolhatunk. Legyen az x,y sík az értelmezési tartomány, és az (x,y,0) ponthoz rendeljük hozzá az (x,y,f(x,y)) pontot.

Ábrázolhatjuk 2 dimenzióban a szintvonalakat, akkor f(x,y)=k görbét ábrázoljuk.

4.2 Folytonosság

Legyen (x_0, y_0) az f függvény értelmezési tartományának egy pontja. Az f függvény folytonos (x_0, y_0) -banm ha $f(x_0, y_0)$ valamely U környezetéhez létezik (x_0, y_0) -nak olyan V környezete, hogy minden $(x, y) \in V$, $(x, y) \in D$ esetén $f(x, y) \in U$.

4.3 Sorozatfolytonosság

Azt mondjuk, hogy az f függvény sorozatfolytonos az értelmezési tartomány P_0 pontjában, ha minden $(P_n) \subset D_f$ sorozatra, melyre

$$\lim_{n\to\infty} P_n = P_0,$$

teljesül, hogy

$$\lim_{n \to \infty} f(P_n) = f(P_0).$$

4.4 Függvény határértéke

Adott $f: S \to \mathbb{R}^2$ és legyen (x_0, y_0) egy torlódási pont D_f -ben. Azt mondjuk, hogy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L,$$

ha $\forall \epsilon > 0$ -hoz $\exists \delta > 0$, hogy $0 < ||(x,y) - (x_0,y_0)|| < \delta$ esetén $|f(x,y) - L| < \epsilon$.

4.5 Bolzano tétel két dimenzióban

Adott $f: S \to \mathbb{R}^2$ folytonos függvény, ahol S összefüggő. Legyen $(x_1, y_1), (x_2, y_2) \in S$, és legyen $f(x_1, y_1) = a$ és $f(x_2, y_2) = b$. Ekkor $\forall c \in (a, b)$ számhoz $\exists x_0, y_0 \in S$, amire $f(x_0, y_0) = c$.

Bizonyítás Mivel S összefüggő és f folytonos, ezért felírható (x_1,y_1) és (x_2,y_2) -t összekötő folytonos görbét. Azaz $\exists \gamma: [\alpha,\beta] \to \mathbb{R}^2, \ \gamma(t) = (x(t),y(t))$ függvény, melyre $\gamma(\alpha) = (x_1,y_1)$ és $\gamma(\beta) = (x_2,y_2)$. Ekkor az F(t) = f(x(t),y(t)) függvényre az egy dimenziós Bolzano tétel miatt $\exists \xi \in (\alpha,\beta)$, amire $F(\xi) = c$. Ekkor valóban $\gamma(\xi) = (x_0,y_0), \ f(x_0,y_0) = c$.

4.6 Weierstras tételek

4.6.1 Weierstras I

Legyen $f: S \to \mathbb{R}$ folytonos, $S \subset \mathbb{R}$ korlátos és zárt. Ekkor az R_f korlátos.

4.6.2 Weierstras II

Korlátos és zárt tartományon folytonos függvény felveszi a minimumát és maximumát.

4.7 Egyenletes folytonosság

Legyen $f: S \to \mathbb{R}$ adott függvény, $S \subset \mathbb{R}^2$ tartomány. Azt mondjuk, hogy f egyenletesen folytonos, ha $\forall \epsilon > 0$ -hoz $\exists \delta(\epsilon) > 0$, hogy $||P - P_0|| < 0$ esetén $|f(P) - f(P_0)| < \epsilon$.

A $\delta(\epsilon)$ számot az ϵ -hoz tartozó folytonossági modulusnak nevezzük.

Matematikai Analízis II $T\acute{E}TEL$

5. Tétel

5.1Parciális deriváltak

Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény. Legyen (x_0, y_0) az S halmaz belső pontja. Ha létezik a

$$\lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

határérték, akkor ezt a mennyiséget a függvény x szerinti parciális deriváltjának nevezzük az (x_0, y_0) pontban. Jelölése: $f'_x(x_0, y_0), \frac{\partial}{\partial x} f(x_0, y_0)$.

Hasonlóképpen, ha létezik az

$$\lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$

határérték, akkor ezt a mennyiséget a függvény y szerinti parciális deriváltjának nevezzük az (x_0, y_0) pontban. Jelölése: $f'_y(x_0, y_0), \frac{\partial}{\partial y} f(x_0, y_0)$.

Geometrisi jelentése 5.1.1

Rögzített y_0 mellett definiáljuk az $f_1(x) = f(x, y_0)$ függvényt. Ekkor $f'_1 = f'_x(x, y_0)$, tehát a definiált metszetfüggvény meredekségét kapjuk meg. Ez azt jelenti, hogy a parciális deriváltak a felületet érintő sík x és y irányú meredekségét adják meg.

5.2Parciális deriváltak és folytonosság

Legyen $f:S\Rightarrow\mathbb{R}$ kétváltozós valós függvény, $(x_0,y_0)\in int(S)$. Tegyük fel, hogy az f'_x és f'_y parciális deriváltak léteznek (x_0, y_0) valamely $U \subset \mathbb{R}^2$ környezetében. Tegyük fel továbbá, hogy a parciális deriváltak itt korlátosak, azaz

$$|f'_x(x,y)| \le M, \quad |f'_y(x,y)| \le M,$$

tetszőleges $(x,y) \in U$ -ra. Ekkor az f függvény folytonos az (x_0,y_0) pontban.

Bizonyítás Legyen $(x,y)=(x_0+h,y_0+l)$. Nézzük meg a függvény változását. A háromszög-egyenlőtlenséget alkalmazva kapjuk, hogy

$$|f(x_0+h,y_0+l)-f(x_0,y_0)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0)| + |f(x_0+h,y_0)-f(x_0,y_0)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+l)| \le |f(x_0+h,y_0+h,y_0+l)-f(x_0+h,y_0+l)-f(x_0+h,y_0+h,y_0+l)| \le |f(x_0+h,y_0+h,y_0+l)-f(x_0+h,y_0+h,y_0+l)-f(x_0+h,y_0$$

A Lagrange féle középérték tétel miatt

$$f(x_0 + y, y_0 + l) - f(x_0 + h, y_0) = f_2(y_0 + l) - f_2(y_0) = f_2'(\xi_y)l = f_y'(x_0 + h, \xi_y)l,$$

ahol f_2 a második metszetfüggvénye f-nek.

A második tag hasonlóan írható:

$$f(x_0 + h, y_0) - f(x_0, y_0) = f_1(x_0 + h) - f_1(x_0) = f'_1(\xi_x)h = f'_2(\xi_x, y_0)h,$$

ahol f_1 az első metszetfüggvénye f-nek. Itt $\xi_x \in (x_0, x_0 + h), \xi_y \in (y_0, y_0 + l)$. Így az egyenlőtlenséget folytatva:

$$\leq |f'_x(\xi_x, y_0)| \cdot |h| + |f'_y(x_0, \xi_y)| \cdot |l| \leq M(|h| + |l|),$$

ahol M a korlát. Tehát

$$|f(x_0 + h, y_0 + l) - f(x_0, y_0)| \le M(|h| + |l|).$$

Ezért $\lim_{h,l\to 0} |f(x_0+h,y_0+l)-f(x_0,y_0)|=0$, tehát a függvény folytonos (x_0,y_0) pontban.

Magasabb rendű parciális deriváltak 5.3

Másod rendű parciális deriváltak 5.3.1

Tekintsük az $f: S \to \mathbb{R}$ kétváltozós valós függvényt, és legyen $(x_0, y_0) \in int(S)$. Azt monjuk, hogy f kétszer differenciálható ebben a pontban, ha a függvény differenciálható a pont egy környezetében, és az $f_x'(x,y)$ és az $f_y'(x,y)$ parciális derivált függvények is differenciálhatóak az (x_0,y_0) pontban.

Erdélyi Áron 2018.05.31. 14. oldal

Matematikai Analízis II 5 TÉTEL

5.3.2 n-ed rendű parciális deriváltak

Tegyük fel, hogy az f
 függvény n-szer differenciálható az (x,y) belső pontjában. Az n-ed rendű deriváltak ekkor

 $\frac{\partial^n f}{\partial x^k \partial y^m} \quad \frac{\partial^n f}{\partial y^k \partial x^m}$

, alakúak, ahol n=k+m.

5.4 Deriválások sorrendje

Tegyük fel, hogy f
 kétszer differenciálható, az értelmezési tartomány belsejében lévő
 (x,y) pontban. Ekkor itt

$$f''_{xy}(x,y) = f''_{yx}(x,y).$$

5.5 Teljes differenciálhatóság

Adott $f: S \Rightarrow \mathbb{R}$, és legyen $(x_0, y_0) \in int(D_f)$. zt mondjuk, hogy az f differenciálható az (x_0, y_0) pontban, ha $\exists A, B, C \in \mathbb{R}$, hogy

$$f(x + \Delta x, y + \Delta y) = A\Delta x + B\Delta y + C + o(\sqrt[2]{\Delta x^2 + \Delta y^2})$$

teljesül, megfelelően kicsi $\Delta x, \Delta y$ és az ezektől független A,B,C mellett.

5.6 Gradiens

Ha az f kétváltozós függvény differenciálható az (x_0, y_0) pontban, akkor ennek deriváltja egy kétdimenziós vektor lesz, a gradiens

$$\nabla f(x_0, y_0) = (f'_x(x_0, y_0), f'_y(x_0, y_0)).$$

Ha egy függvény egy S tartomány minden pontjában differenciálható, akkor a derivált függvény

$$\nabla f: S \to \mathbb{R}^2$$

alakú lesz.

5.7 Folytonosság és differenciálhatóság

Ha f differenciálható az (x_0, y_0) pontban, akkor itt folytonos is.

Bizonyítás Ha f differenciálható (x_0, y_0) pontban, akkor

$$f(x_0 + \Delta x, y_0 + \Delta y) = f_x'(x_0, y_0) \Delta x_0 + f_y'(x_0, y_0) \Delta y_0 + f(x_0, y_0) + o(||(\Delta x, \Delta y)||)$$

ellből azonnal kapjuk, hogy

$$\lim_{\Delta x \to 0} \lim_{\Delta y \to 0} f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0).$$

Matematikai Analízis II 6 TÉTEL

6. Tétel

6.1 Hesse mátrix

Ha az f függvény kétszer differenciálható, akkor értelmezhetőek az $f''_{xx}(x_0, y_0), f''_{xy}(x_0, y_0), f''_{yx}(x_0, y_0), f''_{yy}(x_0, y_0)$ másodrendű parciális deriváltak. Ebből áll a

$$H(x_0, y_0) = \begin{bmatrix} f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\ f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0) \end{bmatrix}$$

mátrix, mely a függvény második deriváltja. A fenti mátrixot az adott ponthoz tartozó Hesse mátrixnak nevezzük.

6.2 Érintősík

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor a ponthoz tartozó érintősík egyenlete:

$$S: f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)).$$

Bizonyítás Vizsgáljuk meg az f függvény deriválásából következő egyenletet:

$$f(x + \Delta x, y + \Delta y) = f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + o(\sqrt[2]{\Delta x^2 + \Delta y^2})$$

egyenletet. A pont függvényértékét közelíthetjük:

$$f(x,y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y,$$

ahol $\Delta x = x - x_0$ és $\Delta y = y - y_0$. Ebből nyílván következik a bizonyítandó.

6.3 Normálvektor

Normálvektora:

$$\mathbf{n} = (f_x'(x_0, y_0), f_y'(x_0, y_0), -1)$$

6.4 Iránymenti derivált, kiszámítása

Legyeb $\alpha \in [0,2\pi).$ Az α irányú iránymenti deriváltat így értelmezzük:

$$D_{\alpha}f(x,y) = \frac{\partial}{\partial \alpha}f(x,y) = \lim_{\varrho \to 0} \frac{f(x + \varrho \cos \alpha, y + \varrho \sin \alpha) - f(x,y)}{\varrho},$$

ha ez az érték létezik.

6.4.1 Tétel

Tegyük fel, hogy az f függvény differenciálható (x,y)-ban. Ekkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0, 2\pi)$ esetén, és

$$D_{\alpha}f(x,y) = f'_{x}(x,y)\cos\alpha + f'_{y}(x,y)\sin\alpha.$$

Bizonyítás A differenciálhatóság miatt

$$f(x + \varrho cos\alpha, y + \varrho sin\alpha) = f(x,y) + f'_x(x,y)\varrho cos\alpha + f'_y(x,y)\varrho sin\alpha + o(|\varrho|),$$

ha $|\varrho|$ megfelelően kicsi. Ebből az következik, hogy

$$\frac{f(x + \varrho cos\alpha, y + \varrho sin\alpha) - f(x, y)}{\rho} = f'_x(x, y)cos\alpha + f'_y(x, y)sin\alpha + \frac{o(|\varrho|)}{\rho},$$

melynek határértékeként az állítást kapjuk.

Matematikai Analízis II 6 TÉTEL

6.5 Kiterjesztés n-változós függvényekre

 $S \subset \mathbb{R}^n$ n változós függvény parciális deriváltja

$$f'_{x_i} = \lim_{\xi \to x_i} \frac{f(x_1, x_2, ..., x_{i-1}, \xi, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{\xi - x_i},$$

ha a határérték létezik, és véges.

6.6 Láncszabály, speciális esetek

1. Kétváltozós belső függvény, egyváltozós külső függvény. Legyen $f: \mathbb{R} \to \mathbb{R}$, és $\phi: \mathbb{R}^2 \to \mathbb{R}$, és $F(x,y) = f(\phi(x,y))$. Tegyük fel, hogy ϕ differenciálható (x,y)-ban, és f differenciálható $\phi(x,y)$ -ban. Ekkor F is differenciálható, és

$$\nabla F(x,y) = (f'(\phi(x,y))\phi'_{x}(x,y), f'(x,y)\phi'_{y}(x,y)) = f'(\phi(x,y))\nabla\phi(x,y).$$

2. Legyen két egyváltozós belső, és egy kétváltozós külső függvény. Legyen $f:\mathbb{R}^2\to\mathbb{R}$, és $\phi,\psi:\mathbb{R}\to\mathbb{R}$. Ekkor $F:\mathbb{R}\to\mathbb{R}$, és

$$F(t) = f(\phi(t), \psi(t)).$$

Tegyük fel, hogy ϕ, ψ differenciálhatóak t-ben, és f differenciálható $(\phi(t), \psi(t))$ -ben. Ekkor

$$F'(t) = f'_x(\phi(t), \psi(t))\phi'(t) + f'_y(\phi(t), \psi(t))\psi'(t)$$

3. Legyen két kétváltozós belső függvény, és egy kétváltozós külső függvény. Legyenek $f, \phi, \psi : \mathbb{R}^2 \to \mathbb{R}$. Ekkor $F : \mathbb{R}^2 \to \mathbb{R}$, és

$$F(x,y) = f(\phi(x,y), \psi(x,y)).$$

Tegyük fel, hogy ϕ, ψ az (x,y) tartományon, f
 a $(u,v) = (\phi(x,y), \psi(x,y))$ tartományon differenciálhatóak. Ekkor

$$F'_{x} = f'_{y}(\phi(x,y), \psi(x,y))\phi'_{x}(x,y) + f'_{y}(\phi(x,y), \psi(x,y))\psi'_{x}(x,y)$$

$$F'_{y} = f'_{y}(\phi(x,y), \psi(x,y))\phi'_{y}(x,y) + f'_{y}(\phi(x,y), \psi(x,y))\psi'_{y}(x,y)$$

Matematikai Analízis II 7 TÉTEL

7. Tétel

7.1 Lagrange féle középérték tétel kétváltozós függvényre

Legyen $f: S \to \mathbb{R}$ olyan kétváltozós függvény, mely differenciálható az $(x_0, y_0) \in int(S)$ egy δ sugarú környezetében, melyet U jelöljön. Legyen $(x_0, y_1) \in U$. Ekkor létezik $\theta \in (0, 1)$, melyre:

$$f(x_1, y_1) - f(x_0, y_0) = f'_x(x_\theta, y_\theta) \Delta x + f'_y(x_\theta, y_\theta) \Delta y = \nabla f(x_\theta, y_\theta) (\Delta x, \Delta y)^T,$$

ahol

$$\Delta x = x_1 - x_0$$
, $\Delta y = y_1 - y_0$, $(x_\theta, y_\theta) = (x_0 + \theta \Delta x, y_0 + \theta \Delta y)$.

Bizonyítás Legyen

$$F(t) = f(x_0 + \Delta xt, y_0 + \Delta yt)$$

ahol $F:[0,1]\to\mathbb{R}$ differenciálható. Ekkor $F(0)=f(x_0,y_0)$, és F(1)=f(x,y). A Lagrange féle középérték tétel miatt $\exists \theta\in(0,1)$, melyre

$$F'(\theta) = F(1) - F(0).$$

Továbbá a láncszabály miatt

$$F'(t) = \nabla f(x_0 + t\Delta x, y_0 + t\Delta y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}.$$

Azt kapjuk tehát, hogy θ -ra

$$F'(\theta) = F(1) - F(0) = f(x, y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}.$$

7.2 Kiterjesztés n-változós függvénykekre

Legyen $f: S \to \mathbb{R}$ olyan n
 változós függvény, mely differenciálható valamely $x \in S$ egy U környezetében.
 Legyen $h \in \mathbb{R}^{\times}$ olyan megváltozás, melyre $(x + h) \in U$. Ekkor létezik $\theta \in (0, 1)$:

$$f(x+h) - f(x) = \nabla f(x+\theta h)h = \sum_{i=0}^{n} f'_n(\xi_x)h_i,$$

ahol $\xi_x = x + \theta h$ és $0 < \theta < 1$.

7.3 Másodrendű Taylor-formula kétváltozós függvényekre

Tegyük fel, hogy $f: D \to D$ kétszer differenciálható, és $(x_0, y_0) \in int(D)$. Ekkor

$$f(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2,$$

Ahol L_2 a Lagrange féle maradéktag.

Bizonyítás Legyen $F:[0,1] \to \mathbb{R}$ függvény, és

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y).$$

Ekkor

$$F'(t) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y,$$

$$F''(t) = \frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2.$$

Felírva F-re a másodrendű taylor formulát

$$F(1) - F(0) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2,$$

azonban $F(1) - F(0) = f(x, y) - f(x_0, y_0)$. Ezzel kapjuk a bizonyítandót.

Matematikai Analízis II 7 TÉTEL

7.4 Polárkoordináták

Adott P(x,y) pont a síkon. Ennek a pontnak a polárkoordinátái (r,θ) , ahol r az otigótól vett távolsága, θ pedig az x-tengellyel bezárt szög. Ekkor

$$r = \sqrt[2]{x^2 + y^2}, \quad \theta = \arctan(\frac{y}{x}),$$

illetve

$$x = rcos(\theta), \quad y = rsin(\theta).$$

7.4.1 Jacobi mátrixa

Az áttérés során (x,y) koordinátákról térünk át az (r, θ) koordinátákra, ahol r az origótól mért távolság, θ az x-tengellyel bezárt szög. Ekkor

$$x = rcos(\theta), \quad y = rsin(\theta).$$

így a Jacobi mátrixa

$$\mathfrak{J}(r,\theta) = \begin{bmatrix} cos\theta & -rsin\theta \\ sin\theta & rcos\theta \end{bmatrix}$$

Ebből a Jacobi determinánsa: $D(r, \theta) = r\cos^{\theta} + r\sin^{2}\theta = r$.

Matematikai Analízis II 8 TÉTEL

8. Tétel

8.1 Implicit függvény tétel

Tegyük fel, hogy az F kétváltozós düggvény differenciálható az (x_0, y_0) pont egy környezetében, és ebben a pontban

$$F(x_0, y_0) = 0.$$

Ezen kívül feltesszük, hogy $F_y'(x_0, y_0) \neq 0$, tehát az érintősík ferde. Ekkor létezik egy kétdimenziós intervallum,

$$I = I_1 \times I_2 = (x_0 - \alpha, x_0 + \alpha) \times (y_0 - \beta, y_0 + \beta),$$

hogy minden $x_1 \in I_1$ esetén az F(x,y)=0 egyenletnek pontosan egy y=f(x) megoldása van, és $y \in I_2$. Tehát létezik egy

$$f:I_1\to I_2$$

valós függvény, mely a következő tulajdonságokkal rendelkezik:

- $f(x_0) = y_0$.
- $f(x) \in I_2, \forall x \in I_1$.
- $F(x, f(x)) = 0, \forall x \in I_1.$
- $F'_n(x, f(x)) \neq 0, \forall x \in I_1$.

Továbbá f differenciálható I_1 -ben és deriváltja

$$f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}.$$

Bizonyítás Deriváljuk az F(x,f(x))=0 egyenletet x szerint:

$$F'_{x}(x, f(x)) \cdot 1 + F'_{y}(x, f(x))f'(x) = 0,$$

ahonnan a tétel állítása következik.

8.2 Lokális szélsőérték

 $(x_0,y_0)\in S$ lokális maximum (minimum), ha létezik a pontnak egy olyan U környezete, hogy minden $(x,y)\in U\subset D_f$ -re

$$f(x,y) \le f(x_0, y_0) \quad (f(x,y) \ge f(x_0, y_0))$$

8.3 Szükséges feltétel szélsőérték létezésére

Tegyük fel, hogy az f függvénykek (x_0, y_0) -ban lokális szélsőértéke van, és tegyük fel, hogy a függvény itt differenciálható. Ekkor

$$\nabla f(x_0, y_0) = (0, 0),$$

azaz

$$f'_x(x_0, y_0) = 0, \quad f'_y(x_0, y_0) = 0.$$

Bizonyítás Jelölje $f_1(x) = f(x, y_0)$ a kétváltozős függvéy egyik metszetfüggvényét. Ekkor x_0 lokális szélsőértéke f_1 -nek, ezért $f'_1(x_0) = 0$, másrészt $f'_1(x) = f'_x(x, y_0)$

8.4 Stacionárius pont

Ha $\nabla f(x_0, y_0) = (0, 0)$, akkor (x_0, y_0) stacionárius pont.

8.5 Nyeregpont

Azt mondjuk, hogy (x_0, y_0) nyeregpont, ha stacionárius pont, de nem szélsőérték.

Matematikai Analízis II 9 TÉTEL

9. Tétel

9.1 Elégséges feltétel lokális szélsőértékre

Tegyük fel, hogy (x_0, y_0) egy stacionárius pontja f-nek. Ekkor ha $H(x_0, y_0)$ Hesse mátrix

- pozitív definit, akkor itt a függvénynek lokális minimuma van.
- negatív definit, akkor itt a függvénynek lokális maximuma van.
- indefinit, akkor nincs szélsőértéke.
- szemidefinit, akkor lehet, hogy lokális szélsőértéke van, és lehet, hogy nincs.

9.2 Lokális szélsőérték jellemzése n-változós függvényekre

Adott $f: S \to \setminus$, ahol $S \subset \mathbb{R}^n$. Ekkor x_0 lokális maximum (minimum), ha \exists U környezet, ahol $\forall x \in U$ esetén

$$f(x_0) \ge f(x) \quad (f(x_0) \le f(x)).$$

Ha $U = D_f$, akkor x_0 globális szélsőérték.

9.2.1 Szükséges feltétel

Szükséges feltétele a szélsőérték létezésének, hogy $\nabla f(x_0) = 0$ legyen.

Bizonyítás Legyen $f_1(x) = f(x_1, x_2, ..., x_n)$ n-változós függvény egyik metszetfüggvénye. Ekkor ha y_0 szélsőérték, akkor $f'_1(y_0) = 0$ kell, azonban $f'_1(y_0) = f'_{x_1}(y_0)$. Hasonlóan belátható, hogy $\forall f'_{x_k}(y_0) = 0$ szükséges.

9.3 Feltételes szélsőérték feladat megfogalmazása

A feltételes optimalizálás feladatát a kövertkező képpen értelmezzük. Legyen adott az $f_S \to \mathbb{R}$ kétváltoozós differenciálható függvény. Ennek tekintjük egy megszortását egy olyan halmazon, melyet egy implicit függvény ad meg, ahol $\phi(x,y)=0$ összefüggés teljesül. Tömören a feladat tehát:

$$\min_{(x,y):\phi(x,y)=0} f(x,y).$$

9.3.1 Szemléletes jelentés

Képzeljünk el egy olyan ábrát, hogy egyszerre látható $\phi(x,y)=0$ feltétel és az f(x,y)=c szintvonalak, külömböző c értékek mellett. Amely c-re van közös pont, ott van megoldása a

$$\phi(x,y) = 0, \quad f(x,y) = c$$

egyenletrendszernek. Mivel f folytonos (mivel differenciálható), ezért a szintvonalak is monoton módon változnak. Így azt a szintvonalat keressők, ami "utoljára" metszi a $\phi(x,y) = 0$ görbét. Ebben az (x,y) pontban görbék érintik egymást, az érintők megyegyeznek. Ekkor van egy olyan λ valós szám:

$$\lambda = \frac{f'_x(x,y)}{\phi'_x(x,y)} = \frac{f'_y(x,y)}{\phi'_y(x,y)}.$$

9.4 Lagrange féle multiplikátor szabály

Legyen f kétváltozós differenciálható függvény, melynek tekintsük a megszorítását $\{(x,y)|\phi(x,y)=0\}$ halmazon. Legyen $F:\mathbb{R}^3\to\mathbb{R}$ függvény, melyre

$$F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y).$$

Ekkor ha (x_0, y_0) pontban feltételes szélsőértéke van f-nek a $\phi(x, y) = 0$ feltétel mellett, akkor $\exists \lambda_0 \in \mathbb{R}$, melyre

$$\nabla F(x_0, y_0, \lambda_0) = 0.$$

Matematikai Analízis II 10 TÉTEL

10. Tétel

10.1 Függvény rendszerek, koordináta-transzformáció

Adottak $\Phi, \Psi : D \to \mathbb{R}$, ahol $D \subset \mathbb{R}$. Legyen továbbá $\Phi(x, y) = \xi$, és $\Psi(x, y) = \eta$. Ekkor $F : D \to \mathbb{R}^2$ egy függvényrendszer, vagy vektormező, melyre

$$F(x, y) = (\Phi(x, y), \Psi(x, y)) = (\xi, \eta).$$

Az ilyen függvényrendszereket koordinátatranszformációként is felfoghatjuk $(x, y) \to (\xi, \eta)$ hozzárendeléskéne.

10.2 Jacobi mátrix, Jacobi determináns

Ha Φ, Ψ függvények differenciálhatóak, akkor F is differenciálható, és a derivált a Jacobi mátrix

$$\mathfrak{J}(x,y) = \begin{bmatrix} \Phi_x'(x,y) & \Phi_y'(x,y) \\ \Psi_x'(x,y) & \Psi_y'(x,y) \end{bmatrix} = \begin{bmatrix} \nabla \Phi(x,y) \\ \nabla \Psi(x,y) \end{bmatrix}$$

Ekkor $D(x,y)=\det(\mathfrak{J}(x,y))=\frac{d(\xi,\eta)}{d(x,y)}$ a Jacobi determináns.

10.3 Invertálhatóság

Tegyük fel, hogy Φ, Ψ injektívek. Ekkor az F leképezés invertálható, és az inverz rendszer alakja

$$x = g(\xi, \eta), \quad y = h(\xi, \eta).$$

10.4 Inverz rendszer Jacobi mátrixa

Tegyük fel, hogy az inverz rendszer függvényei differenciálhatóak. Ekkor a Jacobi mátrix

$$\mathfrak{K}(\xi,\eta) = \begin{bmatrix} g_{\xi}'(\xi,\eta) & g_{\eta}'(\xi,\eta) \\ h_{\xi}'(\xi,\eta) & h_{\eta}'(\xi,\eta) \end{bmatrix} = \begin{bmatrix} \nabla g(\xi,\eta) \\ \nabla h(\xi,\eta) \end{bmatrix}$$

10.5 Lineáris transzformáció

A(R')=det(B)A(R).

Bizonyítás Tekintsünk egy lineáris transzformációt:

$$\begin{bmatrix} x \\ y \end{bmatrix} = B \begin{bmatrix} u \\ v \end{bmatrix},$$

ahol

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Részletesen kifejtve a leképezést:

$$x = au + bv, \quad y = cu + dv.$$

Feltesszük, hogy $det B \neq 0$, ekkor az affin leképezés egy-egyértelmű (izomorf).

Elsőként vizsgáljuk, hogy az affin leképezés hatására egy tartomány területe hogyan változik.

Legyen R az a háromszög alakú tartomány, melynek csúcspontjai az origó és a $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ pontok. Ennek előjeles területe (mely abszolút értéke a valódi terület)

$$A(R) = \frac{1}{2} det \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \frac{1}{2} (x_1 y_2 - x_2 y_1).$$

A lineáris transzformáció a fenti pontokat a $P'_1 = (x'_1, y'_1), P_2 = (x'_2, y'_2)$ pontokba viszi, az R tartomány képe R' lesz.

$$\begin{bmatrix} x_1' \\ y_1' \end{bmatrix} = B \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \quad \begin{bmatrix} x_2' \\ y_1' \end{bmatrix} = B \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}.$$

Behelyettesítéssel az áj előjeles terület

 $2A(R') = (ax_1 + by_1)(cx_2 + dy_2) - (ax_2 + by_2)(cx_1 + dy_1) = x_1y_2(ad - bc) + x_2xy_1(bc - ad) = (ab - bc)(x_1y_2 - x_2y_1),$ azaz

$$A(R') = (ad - bc)A(R) = det(B)A(R).$$

Matematikai Analízis II 10 TÉTEL

10.6 Hengerkoordináták

Egy (x,y,z) pont hengerkoordinátái (r,θ,z) , ahol (r,θ) a pont vetületének polárkoordinátái.

$$x=rcos\theta,\quad y=rsin\theta,\quad z=z$$

$$r=\sqrt[2]{x^2+y^2},\quad \theta=arctg(\frac{y}{x}),\quad z=z.$$

10.7 Gömbi polár koordináták, Jacobi determinánsa

Egy (x,y,z) pont gömbi polárkoordinátái (r, φ, θ) , ahol r a pontba mutató vektor hossza, φ a pontba mutató vektor, és a z tengely pozitív tengelyével bezárt szög, és θ a pontba mutató vektor (x,y) síkra vett vetületének az x tengely pozitív részével bezárt szöge:

$$\begin{split} r &= \sqrt[2]{x^2 + y^2 + z^2}, \quad \phi = arctg(\frac{\sqrt[2]{x^2 + y^2}}{z}), \quad \theta = arctg(\frac{y}{x}). \\ & x = rsin\varphi cos\theta, \quad y = rsin\varphi sin\theta, \quad z = rcos\varphi. \end{split}$$

Jacobi mátrix

$$\mathfrak{r},\theta,\varphi=\begin{bmatrix} sin\varphi cos\theta & rcos\varphi cos\theta & -rsin\varphi sin\theta\\ sin\varphi sin\theta & rcos\varphi sin\theta & -rsin\varphi cos\theta\\ cos\varphi & -rsin\varphi & 0 \end{bmatrix}$$

A jacobi determinánsa az utolsó sor szerint kifejtve

$$\begin{split} D(r,\varphi,\theta) &= cos\varphi(r^2sin\varphi cos\varphi cos^2\theta + r^2sin\varphi cos\varphi sin^2\theta) + rsin\varphi(rsin^2\varphi cos^2\theta + rsin^2\varphi sin^2\theta) = \\ &= r^2sin\varphi cos^2\varphi + r^2sin^3\varphi = r^2sin\varphi. \end{split}$$

2018.05.31. 23. oldal Erdélyi Áron

Matematikai Analízis II 11 TÉTEL

11. Tétel

11.1 Riemann integrál \mathbb{R}^2 -ben

Legyen $R \subset \mathbb{R}^2$ korlátos és zárt mérhető halmaz, és rajta egy $f: R \to \mathbb{R}^+$ folytonos függvény. Legyen

$$R = \bigcup_{k=1}^{n} R_k$$

felosztás, ahol $\forall R_k$ mérhető és $\forall R_k \cap R_j = \emptyset$. Legyen továbbá

$$m_k = \inf\{f(x,y)|x,y \in R_k\}, \quad M_k = \sup\{f(x,y)|x,y \in R_k\}$$

és

$$s_n = \sum_{k=1}^n A(R_k) m_k \le V(S) \le \sum_{k=1}^n A(R_k) M_k = S_n$$

alol

$$S = \{(x, y, z) | (x, y) \in R, z \in [0, f(x, y)] \}.$$

Ekkor f folytonossága miatt a Heine tétel által f egyenletesen folytonos. Emiatt $\forall \epsilon > 0$ esetén $\exists \delta_0 > 0$, amelyre $\delta < \delta_0$ esetén $M_k - m_k < \epsilon$. Ekkor

$$S_n - s_n = \sum_{k=1}^n A(R_n)(M_k - m_k) < \sum_{k=1}^n A(R_k)\epsilon = \epsilon A(R).$$

Tehát

$$\lim_{\delta \to 0} (\inf(S_n) = \lim_{\delta \to 0} (\sup(s_n))),$$

azaz az integrál értelmezhető. Ekkor a keresett térfogat

$$V(S) = \int \int_{R} f(x, y) dR = \int \int_{R} f(x, y) d(x, y).$$

11.2 Integrálás téglalap tartományon

Legyen $R = [a, b] \times [c, d]$. Ekkor

$$\iint_R f(x,y)d(x,y) = \int_c^d \int_a^b f(x,y)dydx = \int_a^b \int_c^d f(x,y)dxdy.$$

Bizonyítás Osszuk fel az [a,b] tartományt n, a [c,d] tartományt m egyenlő részre. Legyen továbbá az így létrehozott R_{ij} téglalapokra $(\xi_i, \eta_j) \in R_{ij}$. Ekkor az integrál összege

$$V_{nm} = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta x \Delta y = \sum_{j=1}^{m} \sum_{j=1}^{n} f(\xi_i, \eta_j) \Delta x \Delta y.$$

Ekkor

$$\lim_{n \to \infty} \lim_{m \to \infty} V_{nm} = \sum_{i=1}^{n} \int_{c}^{d} f(\xi_{i}, y) dy \Delta x = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx.$$

Hasonlóan

$$\lim_{m \to \infty} \lim_{n \to \infty} V_{nm} = \sum_{j=1}^{m} \int_{a}^{b} f(x, \eta_j) dx \Delta y = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$$

Ekkor nyílván

$$\lim_{n \to \infty, m \to \infty} V_{nm} = \iint_R f(x, y) d(x, y) = \int_a^b \int_c^d f(x, y) dy dx = \int_c^d \int_a^b f(x, y) dy dx.$$

Matematikai Analízis II 11 TÉTEL

11.3 Normáltartomány

Adott $R \subset \mathbb{R}^2$ x szerinti normáltartomány, ha $\exists [a,b]$, továbbá $\exists \Phi_1 \leq \Phi_2 : [a,b] \to \mathbb{R}$ szakaszonként folytonos fügyények, melyekre

$$R = \{(x, y) \in \mathbb{R}^2 | x \in [a, b], y \in [\Phi_1(x), \Phi_2(x)] \}.$$

Hasonlóan $R \subset \mathbb{R}^2$ y szerinti normáltartomány, ha $\exists [c,d]$, továbbá $\exists \Psi_1 \leq \Psi_2 : [c,d] \to \mathbb{R}$ szakaszonként folytonos fügyények, melyekre

$$R = \{(x, y) \in \mathbb{R}^2 | y \in [a, b], x \in [\Psi_1(y), \Psi_2(y)] \}.$$

11.4 Integrálás síkbeli normáltartományon

Legyen R egy x szerinti normáltartomány. Ekkor

$$\iint_R f(x,y)d(x,y) = \int_a^b \int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y)dydx.$$

Hasonlóan ha R egy y szerinti normáltartomány, akkor

$$\iint_R f(x,y)d(x,y) = \int_c^d \int_{\Psi_1(y)}^{\Psi_2(y)} f(x,y)dxdy.$$

11.5 Áttérés polárkoordinátákra

Az áttérés során (x,y) koordinátákról térünk át az (r, θ) koordinátákra, ahol r az origótól vett távolság, θ pedig az x-tengellyel bezárt szög. Ekkor

$$x = rcos\theta$$
, $y = rsin\theta$,

$$r = \sqrt[2]{x^2 + y^2}, \quad \theta = arctg\frac{y}{x}.$$

Így a Jacobi mátrix

$$\mathfrak{J}(r,\theta) = \begin{bmatrix} cos\theta & -rsin\theta \\ sin\theta & rcos\theta \end{bmatrix}$$

Amiből a Jacobi determináns $D(r, \theta) = r\cos^2\theta + r\sin^2\theta = r$.

Legyen adott $f: D \to \mathbb{R}$ függvény és a T integrálás tartománya. Legyen továbbá a koordinátatranszformáció után az integrálási tartomány T'. Az integrál

$$\iint_T f(x,y)d(x,y) = \iint_{T'} f(rcos\theta,rsin\theta)rd(r,\theta).$$

11.6 Általános helyettesítés integrálban

Legyen $f:R\to\mathbb{R}$ integrálható függvény. Legyen

$$x = \Phi(u, v), \quad y = \Psi(u, v)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \{(u, v) \in \mathbb{R}^2 | (\Phi(u, v), \Psi(u, v)) \in R\}.$$

Ekkor

$$\iint_{R} f(x,y)d(x,y) = \iint_{R'} f(\Phi(u,v), \Psi(u,v))D(u,v)d(u,v),$$

ahol D(u, v) a Jacobi determináns.

Matematikai Analízis II 12 TÉTEL

12. Tétel

12.1 Riemann integrál \mathbb{R}^3 -ban

Adott $f: S \to \mathbb{R}$ háromváltozós függvény. At

$$\iiint_T f(x, y, z) d(x, y, z)$$

integrált a kétváltozós esettel analóg mógon közrlítésekkel értelmezzük, először egy mértéket definiálunk, kockás közelítéssel (kétdimenziós négyzetes). Ezután a közelítőösszeget definiáljuk az eddigiekkel analóg módon. Tegyük fel, hogy az adott T tartomány, melyen az f háromváltozós függvény nemnegatív értékeket vesz fel. Ekkor legyen az f függvény sűrűségfüggvény, tehát f(x,y,z) az (x,y,z) pont sűrűségét jelenti. Így az

$$\iiint_T f(x, y, z) d(x, y, z)$$

integrál a T tartomány tömegét jelenti.

12.2 Hármas integrál kiszámítása intervallumon és normáltartományon

12.2.1 Kiszámítás intervallumon

Adott f háromváltozós függvény és $T=[a,b]\times [c,d]\times [e,g]\subset \mathbb{R}^3$ intervallum. Az integrál értéke

$$\iiint_T f(x,y,z)d(x,y,z) = \int_a^b \int_c^d \int_e^g f(x,y,z)dzdydx,$$

illetve a kettős integrálhoz hasonlóan, az integrálok tetszőleges permutációja megfelelő.

12.2.2 Kiszámítás normáltartományon

Adott f háromváltozós függvény és

$$T = \{(x, y, z) \in \mathbb{R}^3 | (x, y) \in S \subset \mathbb{R}^2, z \in [F_1(x, y), F_2(x, y)] \}$$

(x,y) szerinti mormáltartomány. Az integrál értéke

$$\iiint_T f(x, y, z) d(x, y, z) = \iint_S \int_{F_1(x, y)}^{F_2(x, y)} f(x, y, z) dz d(x, y).$$

Ha S intervallum, vagy normáltartomány, akkor tovább egyszerűsödik a képlet.

12.3 Általános helyettesítés

Legyen $f:R\to\mathbb{R}$ integrálható függvény. Legyen

$$x=\Phi(u,v,w),\quad y=\Psi(u,v,w),\quad z=\Xi(u,v,w)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \{(u, v, w) \in \mathbb{R}^3 | (\Phi(u, v, w), \Psi(u, v, w), \Xi(u, v, w)) \in R\}.$$

Ekkor

$$\iint_{R}f(x,y,z)d(x,y,z)=\iint_{R'}f(\Phi(u,v,w),\Psi(u,v,w),\Xi(u,v,w))D(u,v,w)d(u,v,w),$$

ahol D(u,v,w) a Jacobi determináns.

Matematikai Analízis II 12 TÉTEL

12.4 Improprius integrál nem korlátos függvényekre

Adott $f:R\to\mathbb{R}$ folytonos függvény, ahol R nem korlátos. Tegyük fel, hogy $\exists R_1\subset R_2\subset\ldots\subset R$ mérhető tartománysorozat, melyre

$$\bigcup_{n=1}^{\infty} R_n = R.$$

На

$$\exists \lim_{n \to \infty} \iint_{R_n} f(x, y) d(x, y) < \infty,$$

és független az (R_n) sorozat megváltozásától, akkor f
 improprius értelemben integrálható

$$\iint_{R} f(x,y)d(x,y) = \lim_{n \to \infty} \iint_{R_{n}} f(x,y)d(x,y).$$

12.5 Hatványfüggvény integrálja az egységkörben

Legyen

$$f(x,y) = \frac{1}{\left(\sqrt{x^2 + y^2}\right)^{\alpha}}$$

ahol $\alpha > 0$, és az integrálási tartomány

$$R = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \in [0, 1] \}.$$

Legyen

$$R'_n = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \in [\frac{1}{n}, 1] \},$$

illetve áttérve polárkoordinátákra

$$R' = \{(r, \theta) \in \mathbb{R}^2 | r \in [\frac{1}{n}, 1], \theta \in [0, 2\pi] \}.$$

Ekkor

$$\iint_{R_r} f(x,y) d(x,y) = \iint_{R'_-} \frac{1}{r^{\alpha}} r d(r,\theta) = \int_{\pm}^1 \int_0^{2\pi} \frac{1}{r^{\alpha-1}} d\theta dr = 2\pi \int_{\pm}^1 \frac{1}{r^{\alpha-1}} dr.$$

Tudjuk, hogy ez az integrál akkor és csak akkor véges, ha $\alpha - 1 < 1$, azaz ha $\alpha < 2$. Azt kapjuk tehát, hogy a hattvényfüggvény $0 < \alpha < 2$ esetében integrálható az egységkörben.

12.6 Integrálhatóság feltétele nem korlátos függvényekre

 $R \subset \mathbb{R}^2$ tartomány mérhető. Tegyük fel, hogy $f: R\mathbb{R}$ folytonos, kivéve véges pontot, ahol nincs véges határértéke. $R_1 \subset R_2 \subset ... \subset R$ olyan tartománysorozat, hogy

- f folytonos az R_n tartományon.
- $\lim_{n\to\infty} A(R_n) = A(R)$.

f improprius értelemben integrálható, ha

$$\exists \lim_{n \to \infty} \iint_{R_n} f(x, y) d(x, y),$$

és ez független (R_n) halmaz-sorozat megváltozásától.

Matematikai Analízis II 13 TÉTEL

13. Tétel

13.1 Improprius integrál kiszámítása nem korlátos tartományon

Adott $f: R\mathbb{R}$ nem korlátos függvény, azaz legyen f folytonos függvény véges sok pont kivételével, ahol nincs véges határértéke. Tegyük fel, hogy $\exists R_1 \subset R_2 \subset \subset R$ tartománysorozat, ahol f folytonos $\forall R_n$ tartományon és $\lim_{n\to\infty} A(R_n) = A(R)$. Ha

$$\exists \lim_{n \to \infty} \iint_{R} f(x, y) d(x, y) < \infty,$$

és független (R_n) sorozat megváltozásától, akkor f improprius értelemben integrálható.

13.2 Hatványfüggvény integrálhatósága egységkörön kívül

Tegyük fel, hogy az $f: R \Rightarrow \mathbb{R}$ folytonos függvény nem korlátos az R mérhető tartomány egy pontjának környezetében, legyen ez (az egységkör kedvéért) az origó. Tegyük fel, hogy $\exists 0 < \alpha < 2, M > 0$, melyekre

$$|f(x,y)| \le \frac{M}{\left(\sqrt[2]{x^2 + y^2}\right)^{\alpha}}, \quad \forall (x,y) \in R$$

teljesül. Ekkor f improprius értelemben integrálható.

Bizonyítás Következik abból a tényből, hogy a fenti tartományon $\alpha > 2$ esetén a hatvényfüggvény improprius értelemben integrálható.

13.3 Példa: harang-görbe integrálja a síkon

Adott $f(x,y) = e^{-x^2 - y^2}$. Legyen

$$R_n = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \in [0, n^2] \},$$

illetve polárkoordinátákra áttérve

$$R'_n = \{(r, \theta) \in \mathbb{R}^2 | r \in [0, n], \theta \in [0, 2\pi] \}.$$

Ekkor R_n nyílván mérhető, azaz az integrál

$$\iint_{R_n} e^{-x^2 - y^2} d(x, y) = \iint_{R'_n} r e^{-r^2} d(r, \theta) = \pi \int_0^n 2r e^{-r^2} dr = \pi e^{-r^2} \Big|_0^n = \pi - \pi e^{-n^2}.$$

Látható, hogy

$$\lim_{n \to \infty} \iint_{R_{-}} f(x, y) d(x, y) = \pi,$$

tehát a függvény improprius értelemben integrálható, és

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} d(x, y) = \pi.$$

13.4 Integrálhatóság elégséges feltétele

Tegyük fel, hogy van olyan $R_1 \subset R_2 \subset \subset R$ mérhető tartománysorozat, melyre $\bigcup_{n=1}^{\infty} R_n = R$, és $\exists M > 0$, hogy

$$\iint_{R_n} |f(x,y)| d(x,y) \le M, \quad \forall n.$$

Ekkor f improprius értelemben integrálható, és minden (S_n) tartománysorozat esetén, a fenti feltételekkel

$$\lim_{n\to\infty}\iint_{S_n}f(x,y)d(x,y)=\iint_Rf(x,y)d(x,y).$$

Matematikai Analízis II 14 TÉTEL

14. Tétel

14.1 Vonal definíciója \mathbb{R}^2 -ben

Adott $[a,b] \in \mathbb{R}$ véges intervallum és $\gamma:[a,b] \to \mathbb{R}^2$ függvény, ahol $\gamma(t)=(x(t),y(t))$. Ekkor legyen Γ görbe

$$\Gamma = \{ \gamma(t) \in \mathbb{R}^2 | t \in [a, b] \}.$$

14.2 Kétváltozós valós függvény integrálja vonal mentén

Adott $f: R \to \mathbb{R}$ kétváltozós függvény és

$$\Gamma = \{\gamma(t)|t \in [q,b]\} \in R$$

sima görbe, ahol $\gamma(t)=(x(t),y(t))$. Ekkor f Γ görbe menti vonalintegrálja

$$\int_{\Gamma} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))\sqrt{x'(t)^{2} + y'(t)^{2}}dt.$$

Bizonyítás Írjunk fel egy közelítő összeget! Legyen

$$\mathfrak{F} = \{ a = t_0 < t_1 < \dots < t_b = b \}$$

felosztás. Közelítsük a vonalintegrált téglalapokkal, melynek a magassága $f(\gamma(t_i))$ az alapja pedig

$$\sqrt{(x(t_{i+2})-x(t_i))^2+(y(t_{i+1})-y(t_i))^2}$$

Ekkor a közelítő összeg

$$I_n = \sum_{i=0}^{n-1} f(\gamma(t_i)) \sqrt{(x(t_{i+2}) - x(t_i))^2 + (y(t_{i+1}) - y(t_i))^2} =$$

$$=\sum_{i=0}^{n-1}f(\gamma(t_i))\sqrt{\frac{(x(t_{i+2})-x(t_i))^2}{t_{i+1}-t_i}+\frac{(y(t_{i+1})-y(t_i))^2}{t_{i+1}-t_i}}(t_{i+1}-t_i).$$

A Lagrange-féle középérték tétel miatt $\exists \xi_i, \eta_i \in [t_i, t_{i+1}]$, melyekre

$$\frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i} = x'(\xi_i), \quad \frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i} = y'(\eta_i).$$

Ekkor

$$I_n = f(\gamma(t_i))\sqrt{x'(\xi_i)^2 + y'(\eta_i)^2}\Delta t_i.$$

Vegyük észre, hogy ez egy Riemann összeg, azaz

$$\lim_{n \to \infty, \delta(\mathfrak{F}) \to 0} I_n = \int_a^b f(\gamma(t)) \sqrt{x'(t)^2 + y'(t)^2} dt = \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} dt.$$

14.3 Vektormező integrálja görbe mentén

Adott $F: R \to \mathbb{R}^2$

$$F(x,y) = \begin{bmatrix} f(x,y) \\ g(x,y) \end{bmatrix}$$

vektormező és

$$\Gamma = {\gamma(t)|t \in [a,b]} \in R$$

sima görbe. Ekkor a vektormező vonalintegrálja

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} f(\gamma(t)) \dot{x}(t) + g(\gamma(t)) \dot{y}(t) dt.$$

Matematikai Analízis II 14 TÉTEL

14.3.1 Szemléletes jelentés

Egy test mozgatva a Γ görbe mentln, ha minde (x,y) pontban F(x,y) erő hat a testre, akkor a vonalintegrál megadja a végzett munkát.

14.4 Potenciálkeresés

14.4.1 Potenciálos vektormező

Azt mondjuk, hogy F potenciálos, ha $\exists f$ differenciálható függvény, melyre $F = \nabla f$.

14.4.2 Potenciál keresés

Adott

$$F = \begin{bmatrix} g(x,y) \\ h(x,y) \end{bmatrix}$$

vektormező. Ahhoz, hogy F potenciálos legyen,

$$\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$$

kell. Ekkor g-t integrálva x szerint, illetve h-t integrálva y szerint kapjuk a G(x,y), H(x,y) függvényeket. Ezen függvények közös része lesz a keresett potenciál.

14.4.3 Potenciál létezésének szükséges és elégséges feltétele

Adott F vektormező és Γ zárt, sima görbe. Ekkor F potenciálos akkor és csak akkor, ha

$$\oint_{\Gamma} F(\mathbf{r}) d\mathbf{r} = 0.$$

Bizonyítás (Csak szükségesség)

Tegyük fel, hogy F potenciálos, potenciálja f. Ekkor

$$\oint_{\Gamma} F(\mathbf{r}) d\mathbf{r} = f(\gamma(b) - f(\gamma(a))) = 0.$$

Matematikai Analízis II 15 TÉTEL

15. Tétel

15.1 Fourier sor komplex alakja, együtthatók

Legyen $f:R\Rightarrow\mathbb{R}$ 2π szerint periodikus, szakaszonként folytonosan differenciálható függvény, melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx}$$

ahol

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

15.2 Parseval egyenlőség

A fourier együtthatókra teljesül az alábbi egyenlőség:

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

15.3 Fourier transzformációk

Legyen $f: \mathbb{R} \to \mathbb{R}$ szakaszonként folytonos differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty,$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor a függvény Fourier transzformáltja $\hat{f}:\mathbb{R}\to\mathbb{C}$

$$\mathfrak{F}(f,s)=\hat{f}(s)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-isx}dx.$$

15.4 Alaptulajdonságok

1. Ha f páros, akkor

$$\hat{f}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) cos(st) dt.$$

2. Ha f páratlan, akkor

$$\hat{f}(s) = -i\sqrt{\frac{2}{\pi}} \int_0^\infty f(t) sin(st) dt.$$

3. \hat{f} folytonos.

4. Linearitás

$$\mathfrak{F}(\alpha f + \beta g, s) = \alpha \mathfrak{F}(f, s) + \beta \mathfrak{F}(g, s).$$

5. Átskálázás

$$\mathfrak{F}(f(ax),s)=\frac{1}{|a|}\mathfrak{F}(f(x),\frac{s}{a}),\quad (a\neq 0).$$

6. Időeltolás

$$\mathfrak{F}(f(x-x_0),s) = e^{-isx_0}\mathfrak{F}(f(x),s).$$

7. Frekvenciaeltolás

$$\mathfrak{F}(e^{iks}f(x),s) = \mathfrak{F}(f(x),s-k).$$

Matematikai Analízis II 15 TÉTEL

Bizonyítás

1. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) sin(st) dt.$$

Ekkor ha f páros, akkor

$$\hat{f} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) cos(st) dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) cos(st) dt.$$

2. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) sin(st) dt.$$

Ekkor ha f páratlan, akkor

$$\hat{f} = \frac{-i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) sin(st) dt = -i \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) sin(st) dt.$$

- 3. Az egyenletes konvergenciából következik.
- 4. Az integrálás linearitásából következik.

5.

$$\begin{split} \mathfrak{F}(f(ax,s)) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax) e^{-isx} \underset{\frac{1}{a} \mathbf{y} = \mathbf{x}, \frac{1}{a} \mathbf{d} \mathbf{y} = \mathbf{d} \mathbf{x}}{=} \frac{1}{\sqrt{2\pi}} \int_{-sgna\infty}^{sgna\infty} f(y)^{-i\frac{s}{a}y} \frac{1}{a} dy = \\ &= \frac{1}{|a|\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-i\frac{s}{a}y} dy = \frac{1}{|a|} \mathfrak{F}(f(x), \frac{s}{a}). \end{split}$$

6.

$$\mathfrak{F}(f(x-x_0),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-x_0)e^{-isx} dx = \sup_{y=x-x_0, dy=dx} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-is(y+x_0)} dy = e^{-isx_0} \mathfrak{F}(f(x),s)$$

7.

$$\mathfrak{F}(e^{ikx}f(x),s)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-i(s-k)x}dx=\mathfrak{F}(f(x),s-k).$$

15.5 Példa: $e^{-|x|}$

Legyen $f(x) = e^{-|x|}$. Ez páros függvény, tehát

$$\hat{f}(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-x} cos(sx) dx = \lim_{n \to \infty} e^{-x} \frac{-cos(sx) + s \cdot sin(sx)}{1 + s^2} \Big|_0^n = \sqrt{\frac{2}{\pi}} \frac{1}{1 + s^2}.$$

15.6 Fourier transzformáció fixpontja

A fourier transzformáció két fixpontja

1.
$$f(x) = 0$$
,

2.
$$f(x) = e^{-\frac{x^2}{2}}$$
.

Matematikai Analízis II 15 TÉTEL

Bizonyítás

- 1. Triviális.
- 2. Mivel f páros, ezért Fourier transzformációja valós értékű

$$\hat{f} = g(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(sx) dx = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-\frac{x^2}{2}} \cos(sx) dx.$$

Ez analitikus módszerekkel közvetlenül nem végezhető el. Mivel az összefüggés igaz minden s-re, ezért deriváljunk s szerint, ezután cseréljük fel a deriválás sorrendjét (egyenletes konvergencia miatt ezt megtehetjük):

$$g'(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x)(-x)sin(sx)dx = -sg(s).$$

Ennek a differenciál egyenletnek az általános megoldása

$$g(s) = ce^{-\frac{s^2}{2}}, \quad c \in \mathbb{R}.$$

c értékét a g(0) alapján tudjuk meghatározni:

$$c = g(0) = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-\frac{x^2}{2}} \cos(0x) dx = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-y^2} dy = 1.$$

Az utolsó lépésben az $y=\frac{x}{\sqrt{2}}$ helyettesítést hajtottuk végre. Tehát a fourier transzformált:

$$g(s) = e^{-\frac{s^2}{2}}.$$

Matematikai Analízis II 16 TÉTEL

16. Tétel

16.1 Inverz Fourier transzformáció

Legyen $f: \mathbb{R} \to \mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty,$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s)e^{isx}ds.$$

16.2 Parseval egyenlet a Fourier transzformációra

Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |f'(x)| dx < \infty, \quad \int_{-\infty}^{\infty} |f''(x)| < \infty.$$

Ekkor

$$\int_{-\infty}^{\infty}|f(x)|^2dx=\int_{-\infty}^{\infty}|\hat{f}(s)|^2ds.$$

Bizonyítás

$$\int_{-\infty}^{\infty} f^2(x)dx = \int_{-\infty}^{\infty} f(x)\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s)e^{isx}dsdx = \int_{-\infty}^{\infty} \hat{f}(s)\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx}dxds = \int_{-\infty}^{\infty} \hat{f}(s)\hat{f}(-s)ds = \int_{-\infty}^{\infty} |\hat{f}(s)|^2ds.$$

16.3 Konvolúció

Adottak $f, g: \mathbb{R} \to \mathbb{R}$ abszolút integrálható függvények. Ekkor a két függvény konvolúcsiója

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dy$$

16.4 Konvolúció és FT kapcsolata

1.

$$\mathfrak{F}(f*g,s) = \sqrt{2\pi}\mathfrak{F}(f,s)\mathfrak{F}(g,s).$$

2.

$$\mathfrak{F}(fg,s) = \frac{1}{\sqrt{2\pi}}\mathfrak{F}(f,s) * \mathfrak{F}(g,s).$$

Bizonyítás

1. $\mathfrak{F}(f*g,s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f*g)(x)e^{-isx}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y)g(x-y)dy \right)e^{-isx}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-isx}dy \int_{-\infty}^{\infty} g(x-y)e^{-is(x-y)}dx = \sqrt{2\pi}\mathfrak{F}(f,s)\mathfrak{F}(g,s).$

$$\mathfrak{F}(fg,s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x)e^{-isx}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)e^{irx}drg(x)e^{-isx}dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r) \Big(\frac{1}{2\pi} \int_{-\infty}^{\infty} g(x)e^{-i(s-r)x}dx\Big)dr = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)\hat{g}(s-r)dr = \frac{1}{\sqrt{2\pi}} \mathfrak{F}(f,s) * \mathfrak{F}(g,s).$$

Matematikai Analízis II 16 TÉTEL

16.5 Dirac delta függvény

Adott $\epsilon > 0$. Ekkor legyen

$$\delta_{\epsilon}(x) = \begin{cases} \frac{1}{2\epsilon}, & ha|x| < \epsilon \\ 0, & ha|x| \ge \epsilon \end{cases}.$$

A Dirac delta

$$\delta(x) = \lim_{\epsilon \to 0} \delta_{\epsilon}(x).$$

Matematikai Analízis II 17 TÉTEL

17. Tétel

17.1 Magasabb rendű LDE

Adott L lineáris operátor, melyre

$$L[y] = \sum_{k=0}^{n} a_{n-k} y^{(k)}.$$

Homogén differenciálegyenlet (HDE) esetén L[y]=0 megoldást keressük, inhomogén differenciálegyenlet (IDE) esetén L[y]=f(x) megoldásait keressük.

17.2 Homogén LDE: megoldások terének jellemzése

Az L[y]=0 egyenletnek létezik n darab lineárisan független megoldása, melyekre az összes többi megoldás ezek lineáris kombinációja.

Bizonyítás A tétel második részét látjuk be. Tudjuk, hogy $L[y] = L[y_k] = 0$, tehát

$$W[y, y_1, ..., y_n] = 0.$$

Mivel

$$W[y_0, y_1, ..., y_n] \neq 0,$$

így

$$y = \sum_{k=1}^{n} a_k y_k.$$

17.3 Függvények függetlensége

Adottak az $y_1, y_2, ..., y_n : D \to \mathbb{R}$ függvények. Azt mondjuk, hogy a függvények lineárisan függetlenek, ha

$$\sum_{k=1}^{n} c_k y_k(x) = 0,$$

akkor és csak akkor teljesül, ha $\forall c_k = 0.$

17.4 Wronski determináns, alkalmazása

Adottak az $y_1, y_2, ..., y_n$ (n-1) szer differenciálható függvények. Ekkor a Wronski determináns

$$W[y_1, y_2, ..., y_n] = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}.$$

17.4.1 Tétel

Az $y_1, y_2, ..., y_n$ függvények lineárisan összefüggők akkor és csak akkor, ha

$$W[y_1, y_2, ..., y_n] = 0.$$

Bizonyítás Tegyük fel, hogy a függvények összefüggők. Ekkor van közöttük egy y_k függvény, melyre

$$y_k = -\sum_{j \neq k} \frac{c_j}{c_k} y_j.$$

Hasonlóan

$$y_k' = -\sum_{j \neq k} \frac{c_j}{c_k} y_j'.$$

A gondolatmenetet követve láthatjuk, hogy a mátrix k-adik oszlopa előáll a többi lineáris kombinációjaként, ezért a determináns nulla.

Most tegyük fel, hogy a determináns nulla. Tudjuk, hogy ekkor az oszlopok összefüggő rendszert alkotnak, amiből az előző gondolatmenet mentén láthatjuk, hogy az y_k függvények összefüggő rendszert alkotnak.

Matematikai Analízis II 17 TÉTEL

17.5 Állandó együtthatós homogén LDE megoldásai, kapcsolat a karakterisztikus polinommal

Ebben az esetben

$$L[y] = y^{(n)} + a_1 y^{n-1} + \dots + a_n y = 0, \quad a_k \in \mathbb{R}.$$

Speciális megoldásokat keresünk, melyek

$$y(x) = e^{\lambda x}$$

alakúak. Ekkor $y'(x) = \lambda e^{\lambda x}, ..., y^{(n)}(x) = \lambda^n e^{\lambda n}$. Ezeket visszahelyettesítve azt kapjuk, hogy

$$L[y] = e^{\lambda x} (\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n) = 0.$$

A jobboldajon álló függvény csak úgy lehet 0, ha a zárójelben szereplő polinom 0. Definiáljuk a differenciálegyenlethez tartozó karakterisztikus polinomot a következőképpen:

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$$

Ez egy valós együtthatós polinom, melynek a komplex számsíkon n darab gyöke van, multiplicitásokkal együtt.

17.5.1 Első eset

Tegyük fel, hogy P n külömböző gyöke mind valós, legyenek a gyökök $\lambda_1, \lambda_2, ..., \lambda_n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}, y_2(x) = e^{\lambda_2 x}, ..., y_n(x) = e^{\lambda_n x},$$

illetve az általános megoldás

$$y(x) = \sum_{k=1}^{n} c_k e^{\lambda_k x}, \quad c_k \in \mathbb{R}.$$

17.5.2 Második eset

Tegyük fel, hogy P m darab gyöke k_m -szeres gyök, ahol nyílván $\sum_{j=1}^m k_j = n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}, \dots y_{k_1}(x) = x^{k_1 - 1} e^{\lambda_1 x},$$

$$y_{k_1 + 1}(x) = e^{\lambda_2 x}, \dots y_{k_1 + k_2}(x) = x^{k_2 - 1} e^{\lambda_2 x},$$

$$y_n = x^{k_m - 1} e^{\lambda_m x},$$

illetve az általános megoldás

$$y(x) = \sum_{j=1}^{m} \sum_{l=1}^{k_j - 1} cj l x^l e^{\lambda_j x}.$$

17.5.3 Harmadik eset

Tegyük fel, hogy az egyenletnek gyöke a $\lambda = \alpha + i\beta$ komplex szám. Ekkor tudjuk, hogy $\overline{\lambda} = \alpha - i\beta$ is gyök. A két alapmegoldás

$$u_1(x) = e^{\lambda x} = e^{\alpha x}(\cos(\beta x) + i\sin(\beta x)),$$

$$u_2(x) = e^{\overline{\lambda}x} = e^{\alpha x}(\cos(\beta x) - i\sin(\beta x)).$$

Tudjuk, hogy alapmegoldások lineáris kombinációja is megoldás, ezért a fenti megoldásokból definiált az új, valós alapmegoldások

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} cos(\beta),$$

$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta).$$

17.5.4 Negyedik eset

Töbszörös komplex gyököknél hasonlóan kell eljárni, mint a többszörös valós gyököknél

Matematikai Analízis II 18 TÉTEL

18. Tétel

18.1 Inhomogén LDE: megoldások struktúrája

Az adott L[y]=f(x) IDE. Ha y_1, y_2 megoldáso, akkor $y=y_1-y_2$ megoldása az L[y]=0 HDE-nek. Ha y_1 megoldása a HDE-nek és y_2 megoldása az IDE-nek, akkor $y=y_1+y_2$ megoldása az IDE-nek.

18.2 Partikuláris megoldás: állandók variálása

Adott

$$L[y] = y^{(n)+a_1y^{(n-1)}} + \dots + a_ny = f(x).$$

Legyenek L[y]=0 homogén differenciálegyenlet alapmegoldásai az $y_1,y_2,...,y_n$ függvények. Ekkor a partikuláris megoldás

$$y_p(x) = \sum_{k=1}^n \gamma_k(x) y_k(x),$$

ahol

$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{bmatrix} = \int W^{-1}(0, 0, ..., f)^T d \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix},$$

ahol W a Wronski mátrix. Ekkor az általános megoldás

$$y(x) = y_p(x) + \sum_{k=1}^{n} c_k y_{h_k}(x).$$

Bizonyítás Legyen

$$y = \sum_{k=1}^{n} \gamma_k y_k.$$

Deriváltja

$$y' = \sum_{k=1}^{n} \gamma'_k y_k + \sum_{k=1}^{n} \gamma_k y'_k = \sum_{k=1}^{n} \gamma_k y'_k.$$

Hasonlóan j;n-re:

$$y^{(j)} = 0 + \sum_{k=1}^{n} \gamma_k y_k^{(j)}.$$
$$y^{(n)} = \sum_{k=1}^{n} \gamma_k y_k^{(n-1)} + \sum_{k=1}^{n} \gamma_k y_k^{(n-1)} = f + \sum_{k=1}^{n} \gamma_k y_k^{(n)}.$$

Behelyettesítve, $L[y] = \sum_{k=1}^{n} L[\gamma_k, y_k]$:

$$L[y] = f + \sum_{k=1}^{n} \gamma_k L[y_k] = f$$

18.3 Próbafüggvény

Állandó együtthatós IHLDE, melynek speciális a jobboldala, egy partikuláris megoldás megoldása speciális alakú.

$$L[y]y^{(n)}(x) + a_1y^{(n-1)}(x) + \dots + a_ny(x) = f(x), \quad a_i \in \mathbb{R}.$$

Néhány alapeset:

- Ha $f(x) = Ke^{\alpha x}, \alpha \in \mathbb{R}$, akkor $y(x) = Ae^{\alpha x}, A = ?$
- Ha $f(x) = a_x^m + ... + a_0$, akkor $y(x) = A_m x^m + ... + A_0$ alakú, $A_0, ..., A_m = ?$
- Ha $f(x) = K\sin(\alpha x)$, vagy $f(x) = K\cos(\alpha x)$, akkor $y(x) = A\sin(\alpha x) + B\cos(\alpha x)$ alakú, A, B = ?

Ha f(x) próbafüggvények összege, akkor a próbafüggvény is összeg.

Matematikai Analízis II 18 TÉTEL

18.4 DER 2 dimenzióban

Keressünk y(x) és z(x), melyek kielégítenek egy DER-t:

- y'(x)=f(x,y(x),z(x))
- z'(x)=g(x,y(x),z(x)),

ahol $f,g:\mathbb{R}^3\to\mathbb{R}$ típusuak.

18.5 Állandó együtthatók lineáris DER megoldása

Tegyük fel, hogy **A** sajátértékei külömbőzőek: $\lambda_1, \lambda_2, \lambda_3$. A megfelelő sajátvektorok s_1, s_2, s_3 . Ekkor a DER lineárisan független megoldás-rendszere

$$Y_k = e^{\lambda_k x} s_k, \quad k = 1, 2, 3$$

Továbbá $\forall Y(0) = Y_0 \in \mathbb{R}^3$ kezdetiértékhez $\exists ! Y$ megoldás, melyre

$$Y = c_1 Y_1 + C_2 Y_2 + c_3 Y_3, \quad c_k \in \mathbb{R}.$$

Bizonyítás

- 1. $(Y_k = e^{\lambda_k x} s_k)$ lineárisan függetlenek: $\lambda_i \neq \lambda_j$ és $s_i \perp s_j$.
- 2. $Y_k = e^{\lambda_k x} s_k$ megoldás, u.i.

$$Y'_k(x) = \lambda_k e^{\lambda_k x} s_k$$

$$AY_k(x) = A e^{\lambda_k x} s_k = e^{\lambda_k x} A s_k = e^{\lambda_k x} \lambda_k s_k.$$

$$\Rightarrow Y'_k(x) = AY_k(x).$$

(A tétel akkor is igaz, ha minden többszörös sajátértékhez lineárisan független sajátvektor-rendszer tartozik.)

18.6 e^A értelmezése, speciális esetek

A lineáris DER megoldása:

$$Y(x) = e^{\mathbf{A}x}Y_0.$$

Az $e^{\mathbf{A}}$ mátrix:

$$e^{\mathbf{A}}:=\sum_{k=0}^{\infty}\frac{1}{k!}A^k.$$

18.6.1 Ha szimetrikus A

 $A = UDU^T$, ahol

$$U^T U = U U^T = I, \quad D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Ekkor $A^k = UDU^T \cdot UDU^T ... UDU^T = UD^k T^T \Rightarrow e^A = Ue^D U^T,$ ahol

$$e^D = \begin{bmatrix} e^{\lambda_1} & 0 & 0\\ 0 & e^{\lambda_2} & 0\\ 0 & 0 & e^{\lambda_3} \end{bmatrix}.$$

Matematikai Analízis II 19 TÉTEL

19. Tétel

19.1 Komplex függvény, ábrázolás

Legyen $D \subset \mathbb{C}$ egy tartomány a komplex számsíkon. $f: D \to \mathbb{C}$ függvényt tekintünk. A független változót z = x + iy, a függő változót w = u + iv jelöli. Tehát a hozzárendelés w = f(z) = u + iv.

19.1.1 Geometriai leírás

A komplex függvények pontos ábrázolására négy dimenzióra lenne szükség, így megelégszünk azzal, hogy két komplex számsíkot rajzolunk: az egyiken az értelmezési tartományt, a másikon az értékkészletet ábrázoljuk. Ennek a segítségével azt tudjuk megadni, hogy egy-egy konkrét kompley számhoz mit rendel hozzá a leképezés, illetve bizonyos speciális alakzatokat - például kört vagy egyenest - hogyan transzformál.

19.2 Kanonikus alak

Adott $f\mathbb{C} \to \mathbb{C}$. Ekkor a függvény kanonikus alakja

$$f(z) = u(x, y) + iv(x, y),$$

ahol $u, v : \mathbb{R}^2 \to \mathbb{R}$.

19.3 Határértékek

Adott f függvény határértéke a z_0 pontban H, ha $\forall \epsilon > 0$ esetén $\exists \delta > 0$, melyre $0 < |z - z_0| < \delta$ esetén $|f(z) - H| < \epsilon$ teljesül.

19.4 Folytonosság

Adott $f: \mathbb{C} \to \mathbb{C}$ komplex függvény. Ekkor f folytonos $z_0 \in D_f$, ha $\forall \epsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall z \in D_f$, $|z - z_0| < \delta$ esetén $|f(x) - f(x_0)| < \epsilon$.

19.5 Differenciálhatóság

Adott $f: \mathbb{C} \to \mathbb{C}$ komplex függvény. Ekkor f differenciálható a $z_0 \in int(D_f)$ pontban, ha

$$\exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} < \infty.$$

Azt mondjuk, hogy az f függvény analitikus, ha differenciálható $\forall z \in D_f$ -ben.

19.6 Cauchy-Riemann egyenletek

Adott $f:\mathbb{C}\to\mathbb{C}$ komplex függvény. f differenciálható a $z_0\in int(D_f)$ pontban akkor és csak akkor, ha

$$u'_r(x_0, y_0) = v'_u(x_0, y_0)$$

$$u'_y(x_0, y_0) = -v'_x(x_0, y_0).$$

19.7 Harmonikus függvények

Adott $u: \mathbb{R}^2 \to \mathbb{R}$ folytonos kétszer differenciálható függvény. Azt mondjuk, hogy u harmonikus, ha

$$u''_{xx}(x,y) + u''_{yy}(x,y) = 0$$

teljesül D_u -n.

19.8 Kapcsolat az analitikus függvénnyel

Ha az f(z) = u(x, y) + iv(x, y) differenciálható, akkor u,v harmonikusak.

Matematikai Analízis II 19 TÉTEL

Bizonyítás A Cauchy-Riemann egyenletből

$$u_x' = v_y, \quad u_y' = -v_x'.$$

Az első egyenletet x szerint, a másodikat y szerint deriválva

$$u''_{xx} = v''_{xy}, \quad u''_{yy} = -v''_{yx}.$$

Ebből

$$u_{xx}'' + u_{yy}'' = v_{xy}'' - v_{yx}'' = 0.$$

Hasonlóan belátható, hogy v harmonikus.

19.9 Harmonikus társ

Adott $u:D\to\mathbb{R}$ harmonikus függvény, ahol D egyszeresen összefüggő tartomány. Ekkor $\exists v:D\to\mathbb{R}$ harmonikus függvény, amelyre f(z)=u(x,y)+iv(x,y) differenciálható. Akkor v az u harmonikus társa és fodítva

2018.05.31. 41. oldal Erdélyi Áron

Matematikai Analízis II 20 TÉTEL

20. Tétel

20.1 Komplex függvények: e^x , alaptulajdonságok

Az exponenciális függvény

$$e^z = e^x(\cos(y) + i\sin(y)).$$

Alaptulajdonságok

- 1. A függvény analitikus és $(e^z)' = e^z$.
- 2. $z_1, z_2 \in \mathbb{C}$ esetén $e^{z_1+z_2} = e^{z_1}e^{z_2}$.
- 3. A függvény 2π szerint periodikus

Bizonvítás

1. A függvény kanonikus alakja $e^z = e^x(\cos(y) + i\sin(y))$. Legyen $u(x,y) = e^x\cos(y)$ és $v(x,y) = e^x\sin(y)$, így $e^z = u(x,y) + iv(x,y)$.

$$u'_{x} = e^{x} \cos(y) = v'_{y}, \quad u'_{y} = -e^{x} \sin(y) = -v'_{x}.$$

Azt látjuk, hogy a függvény eleget tesz a Cauchy-Riemann egyenleteknek, tehát differenciálható.

$$(e^z)' = e^x \cos(y) + ie^x \sin(y) = e^z.$$

2.
$$e^{z_1+z_2} = e^{x_1+x_2+i(x_1+y_2)} = e^{x_1+x_2}(\cos(y_1+y_2)+i\sin(y_1+y_2)) = \\ = e^{x_1+x_2}(\cos(y_1)\cos(y_2)-\sin(y_1)\sin(y_2)+i(\sin(y_1)\cos(y_2)+\sin(y_2)\cos(y_1))) = \\ = e^{x_1}(\cos(y_1)+i\sin(y_1))e^x_2(\cos(y_2)+i\sin(y_2)) = e^{z_1}e^{z_2}.$$

3. $e^{z+2\pi} = e^{x}(\cos(y+2\pi) + i\sin(y+2\pi)) = e^{z}.$

20.2 Ln(z) alaptulajdonságok

A logaritmus függvény $z \neq 0$ esetén

$$lnz = lq|z| + i(arcz + 2k\pi), \quad k \in \mathbb{Z}.$$

Alaptulajdonságai:

1.

 $e^l nz = z$.

2. $z_1,z_2\in\mathbb{C}$ esetén $ln(z_1z_2)=lnz+lnz+2k\pi i,\quad k\in\mathbb{Z}.$

 $(\ln(z))' = \frac{1}{z}.$

Bizonyítás

1. $e^{\ln z} = e^{\ln|z| + i(arcz + 2k\pi)} = |z|e^{iarcz} = |z|(\cos(arcz) + i\sin(arcz)) = z.$

2. $ln(z_1z_2) = ln|z_1z_2| + i(arc(z_1z_2) + 2k\pi) = ln|z_1| + ln|z_2| + i(arc(z_1) + arc(z_2) + 2k\pi) = lnz_1 + lnz_2 + 2k\pi i.$

3. $(e^{lnz})' = e^{lnz} ln'z = 1 \Rightarrow ln'z = \frac{1}{z}$

Matematikai Analízis II 20 TÉTEL

20.3 Hatványfüggvény

A hatványfüggvény

$$z^{\lambda} = e^{\lambda ln(z)}.$$

A függvény főértékét kapjuk meg, ha a logaritmus főértékét használjuk.

$20.4 \sin(z), \cos(z)$

$$\sin z := \frac{e^{iz} - e^{-iz}}{2i},$$
$$\cos z := \frac{e^{iz} + e^{-iz}}{2}$$

Alaptulajdonságok:

1. Analitikusak, és

$$\sin'(z) = \cos(z), \quad \cos'(z) = -\sin(z).$$

2. A kanonikus akalok:

$$\sin(z) = \sin(x)ch(y) + i\cos(x)sh(y),$$
$$\cos(z) = \cos(x)ch(y) + i\sin(x)sh(y).$$

20.5 Komplex vonalintegrál, kiszámítása

Legyen az L görbe paraméteres megadása

$$z(t) = x(t) + iy(t) = r(t)e^{i\theta(t)}, \quad t \in [\alpha, \beta].$$

Ekkor

$$\int_{L} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt = \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t))dt =$$

$$= \int_{\alpha}^{\beta} f(r(t)e^{i\theta(t)})(r'(t)e^{i\theta(t)} + ir(t)e^{i\theta(t)}\theta'(t))dt.$$

20.6 Cauchy-féle alaptétel analitikus függvényekre

Tegyük fel, hogy $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $L \subset D$ egy sima, zárt görbe. Ekkor ha az $f: D \to \mathbb{C}$ függvény analitikus, akkor

$$\oint_L f(z)dz = 0$$

20.7 Cauchy-féle integrálformula

Legyeb $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány, és $f: D \to \mathbb{C}$ analitikus függvény. Adott $z_0 \in int(D)$ és $L \subset D$ olyan görbe, amely körbeveszi z_0 -t. Ekkor

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)}{z - z_0} dz.$$