Question 1

Required: Show that if $\vdash_I \alpha$, then $\models_{G(n)} \alpha$ for every $n \ge 1$.

Proof. Proof by Induction on the length of proof of α . Assume $\vdash_I \alpha$. where our proof is a sequence of formulas $\alpha_1...\alpha_m$ where $\alpha_m = \alpha$.

Base Case: A proof of length 1 is just an axiom of G(n).

We will show that all 10 axiom schemes of G(n) are valid. Let \mathcal{I} be an arbitrary valuation.

1. Show: $\models_{G(n)} (\alpha \to (\beta \to \alpha)).$

Case 1: Suppose $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\alpha)$. Then, $V_{\mathcal{I}}(\beta \rightarrow \alpha) = 0$. Hence, $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\beta \rightarrow \alpha)$. Hence, $V_{\mathcal{I}}(\alpha \rightarrow (\beta \rightarrow \alpha)) = 0$.

Case 2: Suppose $V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\alpha)$. Then, $V_{\mathcal{I}}(\beta \to \alpha) = V_{\mathcal{I}}(\alpha)$. Hence, $V_{\mathcal{I}}(\alpha) \ge V_{\mathcal{I}}(\beta \to \alpha)$. Hence, $V_{\mathcal{I}}(\alpha \to (\beta \to \alpha)) = 0$.

Hence, in both our cases we have $V_{\mathcal{I}}(\alpha \to (\beta \to \alpha)) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} (\alpha \to (\beta \to \chi))$.

2. Show: $\models_{G(n)} (\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi)).$

Case 1: Suppose $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\chi)$. Hence, $V_{\mathcal{I}}(\alpha \to \chi) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \geq V_{\mathcal{I}}(\alpha \to \chi)$. Hence, $V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi)) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to (\beta \to \chi)) \geq V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi))$. Hence, $V_{\mathcal{I}}((\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi))) = 0$.

Case 2: Suppose $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\chi)$. Hence, $V_{\mathcal{I}}(\alpha \to \chi) = V_{\mathcal{I}}(\chi)$. We will consider two further subcases.

Sub-Case i) Suppose $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\chi)$. Then $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\chi) \leq V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) = V_{\mathcal{I}}(\beta)$. And we have $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\chi) = V_{\mathcal{I}}(\alpha \to \chi)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \geq V_{\mathcal{I}}(\alpha \to \chi)$. Hence, we have $V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi)) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to (\beta \to \chi)) \geq V_{\mathcal{I}}(\alpha \to \beta) \to (\alpha \to \chi)$. Hence, $V_{\mathcal{I}}((\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi))) = 0$.

Sub-Case ii) Suppose $V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\chi)$. Then, we know either $V_{\mathcal{I}}(\alpha \to \beta) = 0$ or $V_{\mathcal{I}}(\alpha \to \beta) = V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \leq V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \leq V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\chi)$. And we know that $V_{\mathcal{I}}(\alpha \to \chi) = V_{\mathcal{I}}(\chi)$. Hence, we have $V_{\mathcal{I}}(\alpha \to \beta) < V_{\mathcal{I}}(\alpha \to \chi)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \to (\alpha \to \chi) = V_{\mathcal{I}}(\alpha \to \chi) = V_{\mathcal{I}}(\chi)$.

Furthermore, since $V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\chi)$, we have that $V_{\mathcal{I}}(\beta \to \chi) = V_{\mathcal{I}}(\chi)$. Since $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\chi)$, we have $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\chi) = V_{\mathcal{I}}(\beta \to \chi)$. Since $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\beta \to \chi)$, we have $V_{\mathcal{I}}(\alpha \to (\beta \to \chi))$

$$(\chi) = V_{\mathcal{I}}(\beta \to \chi) = V_{\mathcal{I}}(\chi).$$

Since we have $V_{\mathcal{I}}(\alpha \to (\beta \to \chi)) = V_{\mathcal{I}}(\chi)$ and $V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi)) = V_{\mathcal{I}}(\chi)$, we have that $V_{\mathcal{I}}(\alpha \to (\beta \to \chi)) = V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi))$. Hence, $V_{\mathcal{I}}(\alpha \to (\beta \to \chi)) \geq V_{\mathcal{I}}((\alpha \to \beta) \to (\alpha \to \chi))$. Hence, $V_{\mathcal{I}}((\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi))) = 0$.

In both cases we have $V_{\mathcal{I}}((\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi))) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} (\alpha \to (\beta \to \chi)) \to ((\alpha \to \beta) \to (\alpha \to \chi))$.

3. Show: $\models_{G(n)} (\alpha \wedge \beta) \rightarrow \alpha$

We know $V_{\mathcal{I}}(\alpha \wedge \beta) = \max(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) \geq V_{\mathcal{I}}(\alpha)$.

Since $V_{\mathcal{I}}(\alpha \wedge \beta) \geq V_{\mathcal{I}}(\alpha)$, we have that $V_{\mathcal{I}}((\alpha \wedge \beta) \rightarrow \alpha) = 0$.

Since \mathcal{I} is was arbitrary valuation, we have $\models_{G(n)} (\alpha \wedge \beta) \to \alpha$.

4. Show: $\models_{G(n)} (\alpha \wedge \beta) \rightarrow \beta$

We know $V_{\mathcal{I}}(\alpha \wedge \beta) = \max(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) \geq V_{\mathcal{I}}(\beta)$.

Since $V_{\mathcal{I}}(\alpha \wedge \beta) \geq V_{\mathcal{I}}(\beta)$, we have that $V_{\mathcal{I}}((\alpha \wedge \beta) \rightarrow \beta) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} (\alpha \wedge \beta) \to \beta$.

5. Show: $\models_{G(n)} \alpha \to (\beta \to (\alpha \land \beta))$

Case 1: Suppose $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\alpha)$. Hence, $V_{\mathcal{I}}(\alpha \wedge \beta) = \max(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) = V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\alpha \wedge \beta)$. Hence, $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\alpha \wedge \beta)$. Hence, $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\beta)$.

Case 2: Suppose $V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\alpha)$. Hence, $V_{\mathcal{I}}(\alpha \wedge \beta) = \max(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) = V_{\mathcal{I}}(\alpha)$. Hence, $V_{\mathcal{I}}(\beta) < V_{\mathcal{I}}(\alpha) = V_{\mathcal{I}}(\alpha \wedge \beta)$. Hence, $V_{\mathcal{I}}(\beta \to (\alpha \wedge \beta)) = V_{\mathcal{I}}(\alpha \wedge \beta) = V_{\mathcal{I}}(\alpha)$. Since $V_{\mathcal{I}}(\alpha) = V_{\mathcal{I}}(\beta \to (\alpha \wedge \beta))$, we have $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\beta \to (\alpha \wedge \beta))$. Hence, $V_{\mathcal{I}}(\alpha \to (\beta \to (\alpha \wedge \beta))) = 0$.

In both our cases we have $V_{\mathcal{I}}(\alpha \to (\beta \to (\alpha \land \beta))) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} \alpha \to (\beta \to (\alpha \land \beta))$.

6. Show: $\models_{G(n)} \alpha \rightarrow (\alpha \vee \beta)$

We know $V_{\mathcal{I}}(\alpha) \geq \min(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) = V_{\mathcal{I}}(\alpha \vee \beta)$. Since $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\alpha \vee \beta)$, we have $V_{\mathcal{I}}(\alpha \to (\alpha \vee \beta)) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} \alpha \to (\alpha \vee \beta)$.

7. Show: $\models_{G(n)} \beta \to (\alpha \vee \beta)$

We know $V_{\mathcal{I}}(\beta) \geq \min(V_{\mathcal{I}}(\alpha), V_{\mathcal{I}}(\beta)) = V_{\mathcal{I}}(\alpha \vee \beta)$. Since $V_{\mathcal{I}}(\beta) \geq V_{\mathcal{I}}(\alpha \vee \beta)$, we have $V_{\mathcal{I}}(\beta \to (\alpha \vee \beta)) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} \beta \to (\alpha \vee \beta)$.

8. Show: $\models_{G(n)} (\alpha \to \chi) \to ((\beta \to \chi) \to ((\alpha \lor \beta) \to \chi))$

We know either $V_{\mathcal{I}}(\alpha \vee \beta) = V_{\mathcal{I}}(\beta)$ or $V_{\mathcal{I}}(\alpha \vee \beta) = V_{\mathcal{I}}(\alpha)$.

Case 1: Suppose $V_{\mathcal{I}}(\alpha \vee \beta) = V_{\mathcal{I}}(\beta)$. Hence, we have $V_{\mathcal{I}}(\beta \to \chi) = V_{\mathcal{I}}((\alpha \vee \beta) \to \chi)$. Hence, $V_{\mathcal{I}}(\beta \to \chi) \geq V_{\mathcal{I}}((\alpha \vee \beta) \to \chi)$. Hence, $V_{\mathcal{I}}((\beta \to \chi) \to ((\alpha \vee \beta) \to \chi)) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to \chi) \geq V_{\mathcal{I}}((\beta \to \chi) \to ((\alpha \vee \beta) \to \chi))$. Hence, $V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to \chi) \to ((\alpha \vee \beta) \to \chi))) = 0$.

Case 2: Suppose $V_{\mathcal{I}}(\alpha \vee \beta) = V_{\mathcal{I}}(\alpha)$. Hence, we have $V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to \chi) \to ((\alpha \vee \beta) \to \chi))) = V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to \chi) \to (\alpha \to \chi)))$. And we know that $(\alpha \to \chi) \to ((\beta \to \chi) \to (\alpha \to \chi))$ is an instance of Axiom 1 which we showed earlier was valid. Hence, $V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to \chi) \to (\alpha \to \chi))) = 0$. Since $V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to$

In either case we have $V_{\mathcal{I}}((\alpha \to \chi) \to ((\beta \to \chi) \to ((\alpha \lor \beta) \to \chi))) = 0.$

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} (\alpha \to \chi) \to ((\beta \to \chi) \to ((\alpha \lor \beta) \to \chi))$.

9. Show: $\models_{G(n)} (\alpha \to \beta) \to ((\alpha \to \sim \beta) \to \sim \alpha)$

We know that either $V_{\mathcal{I}}(\sim \alpha) = 0$ or $V_{\mathcal{I}}(\sim \alpha) = n$.

Case 1: Suppose $V_{\mathcal{I}}(\sim \alpha) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to \sim \beta) \geq V_{\mathcal{I}}(\sim \alpha)$. Hence, $V_{\mathcal{I}}((\alpha \to \sim \beta) \to \sim \alpha) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \geq V_{\mathcal{I}}((\alpha \to \sim \beta) \to \sim \alpha)$. Hence, $V_{\mathcal{I}}((\alpha \to \beta) \to ((\alpha \to \sim \beta) \to \sim \alpha)) = 0$.

Case 2: Suppose $V_{\mathcal{I}}(\sim \alpha) = n$. Hence, we must have $V_{\mathcal{I}}(\alpha) < n$. Now we will consider two further subcases. We know either $V_{\mathcal{I}}(\sim \beta) = 0$ or $V_{\mathcal{I}}(\sim \beta) = n$.

Sub-Case i) Suppose $V_{\mathcal{I}}(\sim \beta) = 0$. Hence, $V_{\mathcal{I}}(\alpha) \geq V_{\mathcal{I}}(\sim \beta)$. Hence, $V_{\mathcal{I}}(\alpha \rightarrow \sim \beta) = 0$ Hence, $V_{\mathcal{I}}(\alpha \rightarrow \sim \beta) < V_{\mathcal{I}}(\sim \alpha) = n$. Hence, $V_{\mathcal{I}}(\alpha \rightarrow \sim \beta) \rightarrow (\sim \alpha) = V_{\mathcal{I}}(\sim \alpha) = n$. And we know that since $V_{\mathcal{I}}(\sim \beta) = 0$, we must have that $V_{\mathcal{I}}(\beta) = n$. Hence, $V_{\mathcal{I}}(\alpha) < V_{\mathcal{I}}(\beta) = n$. Hence, $V_{\mathcal{I}}(\alpha \rightarrow \beta) = V_{\mathcal{I}}(\beta) = n$.

So we have $V_{\mathcal{I}}(\alpha \to \beta) = n$ and $V_{\mathcal{I}}((\alpha \to \sim \beta) \to (\sim \alpha)) = n$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) = n$

 $V_{\mathcal{I}}((\alpha \to \sim \beta) \to (\sim \alpha))$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) \geq V_{\mathcal{I}}((\alpha \to \sim \beta) \to (\sim \alpha))$. Hence, $V_{\mathcal{I}}((\alpha \to \beta) \to ((\alpha \to \sim \beta) \to \sim \alpha)) = 0$.

Sub-Case ii) Suppose $V_{\mathcal{I}}(\sim \beta) = n$. Since we also know $V_{\mathcal{I}}(\alpha) < n$, we have that $V_{\mathcal{I}}(\alpha \to \sim \beta) = V_{\mathcal{I}}(\sim \beta) = n$. Since $V_{\mathcal{I}}(\sim \alpha) = n$, we have that $V_{\mathcal{I}}(\alpha \to \sim \beta) = V_{\mathcal{I}}(\sim \alpha) = n$. Hence, $V_{\mathcal{I}}(\alpha \to \sim \beta) \ge V_{\mathcal{I}}(\sim \alpha)$. Hence, $V_{\mathcal{I}}(\alpha \to \sim \beta) \to \sim \alpha$. Hence, $V_{\mathcal{I}}(\alpha \to \sim \beta) \to \sim \alpha$. Hence, $V_{\mathcal{I}}(\alpha \to \sim \beta) \to \sim \alpha$.

In both our cases we have $V_{\mathcal{I}}((\alpha \to \beta) \to ((\alpha \to \sim \beta) \to \sim \alpha)) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} (\alpha \to \beta) \to ((\alpha \to \sim \beta) \to \sim \alpha)$

10. Show: $\models_{G(n)} \sim \alpha \rightarrow (\alpha \rightarrow \beta)$.

We know either $V_{\mathcal{I}}(\alpha) = n$ or $V_{\mathcal{I}}(\alpha) \neq n$.

Case 1: Suppose $V_{\mathcal{I}}(\alpha) = n$. Hence, $n = V_{\mathcal{I}}(\alpha) \ge V_{\mathcal{I}}(\beta)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) = 0$. Hence, $V_{\mathcal{I}}(\alpha \to \beta)$. Hence, $V_{\mathcal{I}}(\alpha \to \beta) = 0$.

Case 2: Suppose $V_{\mathcal{I}}(\alpha) \neq n$. Hence, we have $V_{\mathcal{I}}(\sim \alpha) = n$. Hence, we have $n = V_{\mathcal{I}}(\sim \alpha) \geq V_{\mathcal{I}}(\alpha \to \beta)$. Hence, $V_{\mathcal{I}}(\sim \alpha \to (\alpha \to \beta)) = 0$.

In both cases we have $V_{\mathcal{I}}(\sim \alpha \to (\alpha \to \beta)) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have $\models_{G(n)} \sim \alpha \to (\alpha \to \beta)$.

Hence, we have shown that all 10 Axiom Schemes of G(n) are valid.

Inductive Step

Recall that $\vdash_I \alpha$ where our proof is a sequence of formulas $\alpha_1...\alpha_m$ where $\alpha_m = \alpha$.

Inductive Hypothesis: Assume all lines of the proof of α up to a certain point are valid. Say, the first (k-1) many lines of the proof are valid. i.e. Assume that for each $i \in \{1, ..., k-1\}$ such that $\vdash_I \alpha_i$, we have $\models_{G(n)} \alpha_i$.

Now consider $\vdash_{G(n)} \alpha_k$.

If α_k is an axiom, then by our base case we know $\models_{G(n)} \alpha_k$.

If α_k is not an axiom, then α_k is a result of modus ponens from two earlier lines.

Hence, in some earlier lines in the proof there are formulas α_i and $\alpha_j = \alpha_i \to \alpha_k$ where i, j < k such that $\vdash_I \alpha_i$ and $\vdash_I \alpha_i \to \alpha_k$.

By Inductive Hypothesis we have $\models_{G(n)} \alpha_i$ and $\models_{G(n)} \alpha_i \to \alpha_k$.

We want to show that $\models_{G(n)} \alpha_k$.

Let \mathcal{I} be an arbitrary valuation.

Since $\models_{G(n)} \alpha_i \to \alpha_k$, we have $V_{\mathcal{I}}(\alpha_i \to \alpha_k) = 0$. Hence, we have $V_{\mathcal{I}}(\alpha_i) \geq V_{\mathcal{I}}(\alpha_k)$.

Since $\models_{G(n)} \alpha_i$, we have $V_{\mathcal{I}}(\alpha_i) = 0$.

So we have $V_{\mathcal{I}}(\alpha_i) \geq V_{\mathcal{I}}(\alpha_k)$ and we have $V_{\mathcal{I}}(\alpha_i) = 0$.

Hence, $0 \ge V_{\mathcal{I}}(\alpha_k)$. And, by definition of our semantics we must have that $V_{\mathcal{I}}(\alpha_k) \ge 0$.

Since $0 \ge V_{\mathcal{I}}(\alpha_k)$ and $V_{\mathcal{I}}(\alpha_k) \ge 0$, we must have that $V_{\mathcal{I}}(\alpha_k) = 0$.

Since \mathcal{I} was an arbitrary valuation, we have that $\models_{G(n)} \alpha_k$.

Therefore, by induction on the complexity of proofs we have proven our desired claim.

Question 2

1) Prove
$$\Rightarrow (\alpha \rightarrow \beta) \rightarrow (\sim \beta \rightarrow \sim \alpha)$$

1.
$$\alpha \to \beta \Rightarrow \alpha \to \beta$$
 RA
2. $\alpha \Rightarrow \alpha$ RA
3. $\sim \beta \Rightarrow \sim \beta$ RA
4. $\alpha \to \beta, \alpha \Rightarrow \beta$ 1,2, \to E
5. $\alpha \to \beta, \alpha, \sim \beta \Rightarrow \beta \land \sim \beta$ 3,4, \land I
6. $\alpha \to \beta, \sim \beta \Rightarrow \sim \alpha$ 5, RAA
7. $\alpha \to \beta \Rightarrow \sim \beta \to \sim \alpha$ 6, \to I
8. $\Rightarrow (\alpha \to \beta) \to (\sim \beta \to \sim \alpha)$ 7, \to I

2) Prove
$$\Rightarrow \alpha \rightarrow (\sim \alpha \rightarrow \beta)$$

1.	$\alpha \Rightarrow \alpha$	RA
2.	$\sim \alpha \Rightarrow \sim \alpha$	RA
3.	$\alpha, \sim \alpha \Rightarrow \alpha \land \sim \alpha$	$1,2, \wedge I$
4.	$\alpha, \sim \alpha \Rightarrow \beta$	3, EF
5.	$\alpha \Rightarrow \sim \alpha \to \beta$	$4, \rightarrow I$
6.	$\Rightarrow \alpha \to (\sim \alpha \to \beta)$	$5, \rightarrow I$

3) Prove $\Rightarrow \sim \sim (\sim \sim \alpha \to \alpha)$. We will use instances of Part 1) and Part 2) from above with suitable substituions for α and β .

1.	$\sim (\sim \sim \alpha \to \alpha) \Rightarrow \sim (\sim \sim \alpha \to \alpha)$	RA
2.	$\Rightarrow \sim \alpha \to (\sim \sim \alpha \to \alpha)$	Part 2)
3.	$\Rightarrow (\sim \alpha \to (\sim \sim \alpha \to \alpha)) \to (\sim (\sim \sim \alpha \to \alpha) \to \sim \sim \alpha)$	Part 1)
4.	$\Rightarrow \sim (\sim \sim \alpha \to \alpha) \to \sim \sim \alpha$	$2,3, \rightarrow E$
5.	$\sim (\sim \sim \alpha \to \alpha) \Rightarrow \sim \sim \alpha$	$1,4, \rightarrow E$
6.	$\alpha \Rightarrow \alpha$	RA
7.	$\sim \sim \alpha \Rightarrow \sim \sim \alpha$	RA
8.	$\alpha, \sim \sim \alpha \Rightarrow \alpha \land \sim \sim \alpha$	$6,7, \land I$
9.	$\alpha, \sim \sim \alpha \Rightarrow \alpha$	8, ∧E
10.	$\alpha \Rightarrow \sim \sim \alpha \to \alpha$	$9, \rightarrow I$
11.	$\sim (\sim \sim \alpha \to \alpha), \alpha \Rightarrow (\sim \sim \alpha \to \alpha) \land \sim (\sim \sim \alpha \to \alpha)$	$1,10 \land I$
12.	$\sim (\sim \sim \alpha \to \alpha) \Rightarrow \sim \alpha$	11, RAA
13.	$\sim (\sim \sim \alpha \to \alpha) \Rightarrow \sim \alpha \land \sim \sim \alpha$	$5,12, \wedge I$
14.	$\Rightarrow \sim \sim (\sim \sim \alpha \to \alpha)$	13, RAA

4) Prove $\sim\sim (\alpha \to \beta), \sim\sim \alpha \Rightarrow \sim\sim \beta$

1.	$\sim \sim (\alpha \to \beta) \Rightarrow \sim \sim (\alpha \to \beta)$	RA
2.	$\alpha \to \beta \Rightarrow \alpha \to \beta$	RA
3.	$\alpha \Rightarrow \alpha$	RA
4.	$\alpha \to \beta, \alpha \Rightarrow \beta$	$2,3 \rightarrow E$
5.	$\sim \beta \Rightarrow \sim \beta$	RA
6.	$\alpha \to \beta, \alpha, \sim \beta \Rightarrow \beta \land \sim \beta$	$4,5, \land I$
7.	$\alpha \to \beta, \sim \beta \Rightarrow \sim \alpha$	6, RAA
8.	$\sim \sim \alpha \Rightarrow \sim \sim \alpha$	RA
9.	$\alpha \to \beta, \sim \beta, \sim \sim \alpha \Rightarrow \sim \alpha \land \sim \sim \alpha$	7,8 ∧I
10.	$\sim \beta, \sim \alpha \Rightarrow \sim (\alpha \to \beta)$	9, RAA
11.	$\sim \sim (\alpha \to \beta), \sim \beta, \sim \sim \alpha \Rightarrow \sim (\alpha \to \beta) \land \sim \sim (\alpha \to \beta)$	$1{,}10\ \land I$
12.	$\sim \sim (\alpha \to \beta), \sim \sim \alpha \Rightarrow \sim \sim \beta$	11, RAA

5) Prove $\Rightarrow \sim \sim \sim \alpha \rightarrow \sim \alpha$

1.
$$\sim \sim \sim \alpha \Rightarrow \sim \sim \sim \alpha$$
 RA
2. $\alpha \Rightarrow \alpha$ RA
3. $\alpha \Rightarrow \sim \sim \alpha$ 2, DNI
4. $\sim \sim \sim \alpha, \alpha \Rightarrow \sim \sim \alpha \wedge \sim \sim \sim \alpha$ 1,3, \wedge I
5. $\sim \sim \sim \alpha \Rightarrow \sim \alpha$ 4, RAA
6. $\Rightarrow \sim \sim \sim \alpha \rightarrow \sim \alpha$ 5, \rightarrow I

The final proof is on the next page.

6) Prove $\sim \sim (\alpha \land \beta) \Rightarrow \sim \sim \alpha \land \sim \sim \beta$

15. $\sim \sim (\alpha \land \beta) \Rightarrow \sim \sim \alpha \land \sim \sim \beta$

1.	$\sim \sim (\alpha \land \beta) \Rightarrow \sim \sim (\alpha \land \beta)$	RA
2.	$\alpha \wedge \beta \Rightarrow \alpha \wedge \beta$	RA
3.	$\alpha \wedge \beta \Rightarrow \alpha$	$2, \wedge E$
4.	$\sim \alpha \Rightarrow \sim \alpha$	RA
5.	$\alpha \wedge \beta, \sim \alpha \Rightarrow \alpha \wedge \sim \alpha$	$3,4, \land I$
6.	$\sim \alpha \Rightarrow \sim (\alpha \wedge \beta)$	5, RAA
7.	$\sim \alpha, \sim (\alpha \land \beta) \Rightarrow \sim (\alpha \land \beta) \land \sim \sim (\alpha \land \beta)$	$1,6, \land I$
8.	$\sim \sim (\alpha \land \beta) \Rightarrow \sim \sim \alpha$	7, RAA
9.	$\alpha \wedge \beta \Rightarrow \beta$	$2, \wedge E$
10.	$\sim \beta \Rightarrow \sim \beta$	RA
11.	$\alpha \wedge \beta, \sim \beta \Rightarrow \beta \wedge \sim \beta$	$9,10, \land I$
12.	$\sim \beta \Rightarrow \sim (\alpha \wedge \beta)$	11, RAA
13.	$\sim \beta, \sim \sim (\alpha \land \beta) \Rightarrow \sim (\alpha \land \beta) \land \sim \sim (\alpha \land \beta)$	$1,12, \land I$
14.	$\sim \sim (\alpha \land \beta) \Rightarrow \sim \sim \beta$	13, RAA

 $8{,}14\ \land I$

Exercise 3.5 Sider Page 98

Required: We noted that it seems in-principle possible for a formula to be "never-false", given the Lukasiewicz tables, without being "always-true". Give an example of such a formula.

Show: The formula $P \vee \neg P$ is never-false.

Р	$\neg P$	$P \vee \neg P$
1	0	1
0	1	1
#	#	#

Since $P \vee \neg P$ only attains truth values 1 or #, we have that $P \vee \neg P$ is never-false, as required.

Exercise 3.6 Page 98

Required: Show that no wff ϕ whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim has the same Lukasiewicz truth table as $P \to Q$. i.e, that for no such ϕ is $LV_{\mathcal{I}}(\phi) = LV_{\mathcal{I}}(P \to Q)$ for each trivalent interpretation \mathcal{I} .

We will prove the following claim.

Claim: If \mathcal{I} is a trivalent interpretation such that $\mathcal{I}(P) = \mathcal{I}(Q) = \#$, then for every wff ϕ whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim is such that $LV_{\mathcal{I}}(\phi) = \#$.

Proof by induction on the complexity of wffs whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim .

Let \mathcal{I} be a trivalent interpretation such that $\mathcal{I}(\alpha) = \#$ for any sentence letter α . In particular, $\mathcal{I}(P) = \mathcal{I}(Q) = \#$.

Base Case: Consider the case of atomic formulas.

If our formula is just P, then since $\mathcal{I}(P) = \#$, we have $LV_{\mathcal{I}}(P) = \mathcal{I}(P) = \#$.

If our formula is just Q, then since $\mathcal{I}(Q) = \#$, we have $LV_{\mathcal{I}}(Q) = \mathcal{I}(Q) = \#$.

Inductive Hypothesis: Assume ϕ and ψ are wffs whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim with $LV_{\mathcal{I}}(\phi) = \#$ and $LV_{\mathcal{I}}(\psi) = \#$.

Show: $LV_{\mathcal{I}}(\sim \phi) = \#.$

By Inductive Hypothesis, we know $LV_{\mathcal{I}}(\phi) = \#$. Then by definition of valuation we have that $LV_{\mathcal{I}}(\sim \phi) = \#$.

Show: $LV_{\mathcal{I}}(\phi \wedge \psi) = \#.$

By Inductive Hypothesis we know $LV_{\mathcal{I}}(\phi) = \#$ and $LV_{\mathcal{I}}(\psi) = \#$. Then by definition of valuation we have that $LV_{\mathcal{I}}(\phi \wedge \psi) = \#$.

Show: $LV_{\mathcal{I}}(\phi \vee \psi) = \#.$

By Inductive Hypothesis we know $LV_{\mathcal{I}}(\phi) = \#$ and $LV_{\mathcal{I}}(\psi) = \#$. Then by definition of valuation we have that $LV_{\mathcal{I}}(\phi \vee \psi) = \#$.

Therefore, by induction on the complexity of wffs whose sentence letters are just P and Q and which has no connectives other than \land , \lor , and \sim , we have proven the claim. Now we will apply our Claim to Exercise 3.6.

Consider the evaluation \mathcal{I} such that $\mathcal{I}(\alpha) = \#$ for any sentence letter α . In particular, $\mathcal{I}(P) = \mathcal{I}(Q) = \#$.

By our claim, we know that any wff ϕ whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim is such that $LV_{\mathcal{I}}(\phi) = \#$.

But since $\mathcal{I}(P) = \mathcal{I}(Q) = \#$, by definition of valuation we know that $LV_{\mathcal{I}}(P \to Q) = 1$.

Hence, there is at least one truth valuation, namely \mathcal{I} , where the valuation of $P \to Q$ differs from the valuation of any formula ϕ whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim .

Therefore, there is no wff ϕ whose sentence letters are just P and Q and which has no connectives other than \wedge , \vee , and \sim that has the same Lukasiewicz truth table as $P \to Q$, completing the proof, as required.

Exercise 3.8 Page 100

Say that one trivalent interpretation \mathcal{I} refines another, \mathcal{J} , iff for any sentence letter α , if $\mathcal{I}(\alpha) = 1$ then $\mathcal{J}(\alpha) = 1$ and if $\mathcal{I}(\alpha) = 0$ then $\mathcal{J}(\alpha) = 0$.

Required: Show that refining a trivalent interpretation preserves classical values for all wffs, given the Kleene tables. That is, if \mathcal{J} refines \mathcal{I} , then for every wff, ϕ , if $KV_{\mathcal{I}}(\phi) = 1$ then $KV_{\mathcal{J}}(\phi) = 1$, and if $KV_{\mathcal{I}}(\phi) = 0$ then $KV_{\mathcal{J}}(\phi) = 0$.

Proof. Proof by induction on the complexity of wffs. Assume \mathcal{J} refines \mathcal{I} .

Base Case: Consider the formula α , where α is some sentence letter.

If $KV_{\mathcal{I}}(\alpha) = 1$, then $KV_{\mathcal{I}}(\alpha) = \mathcal{I}(\alpha) = 1$. Since \mathcal{J} is a refinement of \mathcal{I} with $\mathcal{I}(\alpha) = 1$, we have $\mathcal{J}(\alpha) = 1$. Hence, $KV_{\mathcal{I}}(\alpha) = \mathcal{J}(\alpha) = 1$.

If $KV_{\mathcal{I}}(\alpha) = 0$, then $KV_{\mathcal{I}}(\alpha) = \mathcal{I}(\alpha) = 0$. Since \mathcal{J} is a refinement of \mathcal{I} with $\mathcal{I}(\alpha) = 0$, we have $\mathcal{J}(\alpha) = 0$. Hence, $KV_{\mathcal{I}}(\alpha) = \mathcal{J}(\alpha) = 0$.

Inductive Hypothesis: Assume ϕ is a wff such that if $KV_{\mathcal{I}}(\phi) = 1$ then $KV_{\mathcal{I}}(\phi) = 1$, and if $KV_{\mathcal{I}}(\phi) = 0$ then $KV_{\mathcal{I}}(\phi) = 0$. Assume ψ is a wff such that if $KV_{\mathcal{I}}(\psi) = 1$ then $KV_{\mathcal{I}}(\psi) = 1$, and if $KV_{\mathcal{I}}(\psi) = 0$ then $KV_{\mathcal{I}}(\psi) = 0$.

Show: If $KV_{\mathcal{I}}(\sim \phi) = 1$ then $KV_{\mathcal{I}}(\sim \phi) = 1$ and if $KV_{\mathcal{I}}(\sim \phi) = 0$ then $KV_{\mathcal{I}}(\sim \phi) = 0$.

First, assume $KV_{\mathcal{I}}(\sim \phi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 0$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\sim \phi) = 1$.

Next, assume $KV_{\mathcal{I}}(\sim \phi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 1$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\sim \phi) = 0$.

Show: If $KV_{\mathcal{I}}(\phi \wedge \psi) = 1$ then $KV_{\mathcal{I}}(\phi \wedge \psi) = 1$, and if $KV_{\mathcal{I}}(\phi \wedge \psi) = 0$ then $KV_{\mathcal{I}}(\phi \wedge \psi) = 0$.

First, assume $KV_{\mathcal{I}}(\phi \wedge \psi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 1$ and $KV_{\mathcal{I}}(\psi) = 1$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 1$ and $KV_{\mathcal{I}}(\psi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi \wedge \psi) = 1$.

Next, assume $KV_{\mathcal{I}}(\phi \wedge \psi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 0$ or $KV_{\mathcal{I}}(\psi) = 0$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 0$ or $KV_{\mathcal{I}}(\psi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi \wedge \psi) = 0$.

Show: If $KV_{\mathcal{I}}(\phi \lor \psi) = 1$ then $KV_{\mathcal{I}}(\phi \lor \psi) = 1$, and if $KV_{\mathcal{I}}(\phi \lor \psi) = 0$ then $KV_{\mathcal{I}}(\phi \lor \psi) = 0$.

First, assume $KV_{\mathcal{I}}(\phi \lor \psi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 1$ or $KV_{\mathcal{I}}(\psi) = 1$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 1$ or $KV_{\mathcal{I}}(\psi) = 1$. Hence, by Kleene tables we

have $KV_{\mathcal{J}}(\phi \vee \psi) = 1$.

Next, assume $KV_{\mathcal{I}}(\phi \lor \psi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 0$ and $KV_{\mathcal{I}}(\psi) = 0$. By Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 0$ and $KV_{\mathcal{I}}(\psi) = 0$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi \lor \psi) = 0$.

Show: If $KV_{\mathcal{I}}(\phi \to \psi) = 1$ then $KV_{\mathcal{I}}(\phi \to \psi) = 1$, and if $KV_{\mathcal{I}}(\phi \to \psi) = 0$ then $KV_{\mathcal{I}}(\phi \to \psi) = 0$.

First, assume $KV_{\mathcal{I}}(\phi \to \psi) = 1$. Hence, by Kleene tables we have $KV_{\mathcal{I}}(\phi) = 0$ or $KV_{\mathcal{I}}(\psi) = 1$. Hence, by Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 0$ or $KV_{\mathcal{I}}(\psi) = 1$. Hence, by Kleene Tables we have $KV_{\mathcal{I}}(\phi \to \psi) = 1$.

Next, assume $KV_{\mathcal{I}}(\phi \to \psi) = 0$. Hence, by Kleene Tables we have $KV_{\mathcal{I}}(\phi) = 1$ and $KV_{\mathcal{I}}(\psi) = 0$. Hence, by Inductive Hypothesis, we have $KV_{\mathcal{I}}(\phi) = 1$ and $KV_{\mathcal{I}}(\psi) = 0$. Hence, by Kleene Tables we have $KV_{\mathcal{I}}(\phi \to \psi) = 0$.

Therefore, by induction on the complexity of wffs, we have proven our Claim.