

OVS connection tracking for Mobile use cases

Anita Tragler, Product Manager - Networking/NFV Platform Franck Baudin, Principal Product Manager - OpenStack NFV

November, 2017 - OVS Conference

Mobile networks deployment today/yesterday

vEPC Mobile traffic profile

- Majority 75% are short duration flows < 100Kbps
- Large number of simultaneous calls 1 Million flows
- High incoming call rate of 100K 200K connections per second (cps)
- Need for distributed firewall at the vSwitch
- Statistics for each call for Billing call duration, bandwidth, source & destination ip

10 Gbps "real Mobile traffic" profile injection

Traffic profile - Key Parameters

Packet size

Typically only the packet header is accessed (one cache line)...

- Except for virtualization vhost-user/vhost-net (hypervisor on host) since guest requires payload memcpy
- except for IPSec: segmentation/reassembly or packet ordering; not priority for vswitch
- except when we terminate a connection (SSL, TCP, UDP); not as relevant to NFV

Flows or Connections: creation/destruction of flow per second

Flow Creation: not in flow table and cache, upcall to add flow => bucket allocation

Flow Destruction: TCP FIN + timer, UDP timer, LRU recycling (flow hash table entry recycling)...

Performance depends on

- Number of flows in the flow table and
- Rate of incoming flows

What metrics to measure?

In particular NEPs (VNFs vendors)

- 1. Performance with the number of cores, minimum OF rules, varying packet sizes
 - a. Mpps (cycles/packets)
 - b. Latency
 - c. Jitter
- 2. Performance evolution regarding the number of countrack, IP routes, ...
 - a. For various cores numbers
 - b. Mpps, Latency, Jitter

Datapath performances: measurement units

Telco VMs (VNFs) typically use cycles/packet internally and Gbps/Mpps externally (marketing)

RFC 2544 permit to find the maximum packet throughput before dropping, i.e. when the target is loaded at 100%:

- X Mpps

 100% system load

 0% idle for N cores running at F GHz
 - cycles/packet = (F x 10^3 / X) / N
 - 200 cycles/packet for 10 Mpps per core at 2GHz
 - This measure is an average (bulk)
- Gbps = ("inter-frame gap and preamble equivalent bits" + "frame size") x Mpps
 - \circ For 64 Bytes frames (CRC included): Gbps = ((20 + 64) x 8) x Mpps

Measurement methodology overview

All tests developed within OPNFV VSperf project

All Measures (next slides) done with:

- OVS 2.7
- IPv4 traffic
- straight NUMA
- RFC2544, 0% acceptable loss rate, 2 mins iterations
- UDP flows, 5 Tuple change, referred as "flows" in the next slides
- DPDK testpmd in the VM, so the VM is never the bottleneck (verified)
- We use a Telco grade traffic generator (TRex, could an appliance as well), not iperf!!

VM

Conntrack test results

Thanks to our QE team

- Christian Trautman
- Qi Jun Ding

Dev team

- Flavio Leitner
- Aaron Conole

TCP Stateful conntrack - test profile

Use TRex packet replay
Use 600B IPv4 data packets
Short calls with timeout =5s
Scale number of connections

Conntrack test configuration

```
Openvswitch 2.7 and DPDK 16.11
Conntrack rule 4-Tuple - Match source IP, destination IP, src port and dst port
ovs-ofctl add-flow ovsbr0
"table=0,priority=100,ip,nw_src=10.0.0.1/12,nw_dst=20.0.0.1/12,udp,tp_src=1234,tp_dst=1234,ct_st
ate=-trk,action=ct(table=1)"
ovs-ofctl add-flow ovsbr0 "table=1,in port=10,ip,ct state=+trk,action=ct(commit),20"
ovs-ofctl add-flow ovsbr0 "table=1,in port=10,ip,ct state=+trk,action=output:20"
ovs-ofctl add-flow ovsbr0 "table=1,in port=20,ip,ct state=+trk,action=output:10"
ovs-ofctl add-flow ovsbr0 "table=1,in port=11,ip,ct state=+trk,action=ct(commit),21"
ovs-ofctl add-flow ovsbr0 "table=1,in port=11,ip,ct state=+trk,action=output:21"
ovs-ofctl add-flow ovsbr0 "table=1,in port=21,ip,ct state=+trk,action=output:11"
ovs-ofctl add-flow ovsbr0 "table=0,priority=1,action=drop"
```


OVS Conntrack - VSPerf Throughput (pps)

OVS conntrack (pps)	baseline	Src ip	Src & dst ip	4-Tuple	5-Tuple
1k Flows (with EMC)	431,064	237,490	238,244	228,452	256,320
1k Flows (EMC disabled)	321,580	256,320	230,712	232,218	269,878
100k Flows (with EMC)	216,402	151,626	152,380	174,222	180,248
100K Flows (EMC disabled)	303,359	172,176	151,626	230,424	199,830

OVS-DPDK Conntrack - VSperf Throughput

IPv4 (pps)	baseline	src ip	Src & dst ip	4-Tuple	5-Tuple
1k Flows	7,064,494	4,657,578	4,574,882	3,366,854	3,417,136
10k Flows	6,815,158			3,151,180	
100K Flows	3,913,314	1,928,606	1,820,606	1,630,236	1,597,822

OVS-DPDK Conntrack - VSperf Throughput

Conntrack pps	baseline	Match src ip	Match 4 Tuple
100K Flows (with EMC)	3,913,314	1,763,214	1,597,822
100K Flows (EMC disabled)	4,053,314	1,928,606	1,630,236

OVS Kernel: Conntrack Connection Setup Rate

Connection duration 5s, test duration 300s

TCP Connection rate (cps)	Steady connections after 5s
5K CPS	25K
10K CPS	50K
20K CPS	100K
50K CPS	250K

Track open connections (number of table entries) conntrack -C (entries) & conntrack -S (stats)

timeout setting for conntrack in kernel:

nf_conntrack_tcp_timeout_close_wait=5

nf_conntrack_tcp_timeout_established=5

nf_conntrack_tcp_timeout_fin_wait=5

nf_conntrack_tcp_timeout_last_ack=5

nf_conntrack_tcp_timeout_max_retrans=5

nf_conntrack_tcp_timeout_syn_recv=5

nf_conntrack_tcp_timeout_syn_sent=5

nf_conntrack_tcp_timeout_time_wait=5

nf_conntrack_tcp_timeout_unacknowledged=5

nf_conntrack_udp_timeout_stream=5

OVS-DPDK: Conntrack Connection Setup Rate

- Cannot set **connection timeout**; default timeout = 30s. Connections are timing out @ ~32s
- Cannot query conntrack table entries (# of entries) and stats (similar to conntrack -S -C)
- Only support for dumping conntrack table >ovs-appctl dpctl/dump-conntrack
- Max conntrack table size restricted to 3M entries, cannot change table size.

50K connections per second (cps) 1.5M connections 30s 330s

Connection duration 5s, test duration 300s

TCP Connection rate (cps)	Steady connections after 30s
50K CPS	1.5M connections
100K CPS	3M connections (Max table size)
200K CPS (goal)	6M connections

Measure Connection Rate (CPS)

Conntrack (cps)	TCP w/o data	HTTP 600B data	HTTP 800B data	UDP 800B data
OVS (kernel)	45K CPS	16K CPS	15K CPS	106K CPS
OVS-DPDK (userspace)	No configurable timeout*	55K CPS	55K CPS	84K* CPS

In Conclusion

Performance Benchmarking Plan (OPNFV VSPerf)

64B and 9KB Jumbo PVP performance

Metric - throughput, latency

Single numa node, basic multi-queue

vlan, flat, VXLAN networks, bonding

SR-IOV, Base OVS and OVS-DPDK, TestPMD as a switch performance

We are here!

Real traffic profile with T-Rex

Mobile traffic flows

Conntrack - scale flows

Multi-queue w/ RX queue mgmt.

Live Migration, Cross NUMA perf

More overlays (NSH, MPLS...?)

Firewall testing (dynamic rules)

Conntrack - connection rate

SNAT & DNAT rule scale

OVS Hardware Offload

BFD, ECMP, L3 VPN and eVPN

OVS-DPDK NFV performance ready scale with cores, multi-queue

Real world Mobile traffic flows

vRouter and vFirewall features

