COS 4807 Assignment 3

Adriaan Louw (53031377) July 27, 2019

1 Question 1i

Let \mathscr{I} be an arbitrary interpretation such that $v_{\mathscr{I}}(\forall xp(x) \vee \exists xq(x)) = F$. From the truth value of disjunction $v_{\mathscr{I}}(\forall xp(x) = F \text{ and } v_{\mathscr{I}}\exists xq(x)) = F$. From this using Theorem 7.22 we for all assignments $v_{\sigma\mathscr{I}}(p(x)) = F$ and for some assignments $v_{\sigma\mathscr{I}}(q(x)) = F$. Then by the truth value of disjunction $v_{\sigma\mathscr{I}}(p(x) \vee q(x)) = F$. Then by using Theorem 7.22 $v_I(\forall (p(x) \vee q(x))) = F$. Then if $v_I(\forall xp(x) \vee \exists xq(x)) = F$ then $v_{\mathscr{I}}(\forall x(p(x) \vee q(x)) \to (\forall xp(x) \vee \exists xq(x)) = T)$) by the truth value of implication. And since \mathscr{I} is an arbitrary interpretation, the formula is valid

2 Question 1ii

Let $\mathscr I$ be an arbitrary interpretation such that $v_{\mathscr I}(\forall x\neg p(x)\vee \forall x\neg q(x))=F$. Then from the definition of disjunction $v_{\mathscr I}(\forall x\neg p(x))=F$ and $v_{\mathscr I}(\forall x\neg q(x))=F$. Using the theorem from question 3ii we get for all assignments $v_{\sigma\mathscr I}(\neg p(x))=F$ and for all assignments $v_{\sigma\mathscr I}(\neg q(x))=F$. Then by the truth values of negation, $v_{\sigma\mathscr I}p(x)=T$ and $v_{\sigma\mathscr I}q(x)=T$. Then by theorem 7.22 and the definition of conjunction $v_{\mathscr I}(\exists xp(x)\wedge q(x))=T$. Now we have shown that $v_{\mathscr I}(\forall x\neg p(x)\vee \forall x\neg q(x))=F$ and $v_{\mathscr I}\exists (xp(x)\wedge q(x))=T$. Combining these into the original formula we get $v_{\mathscr I}(\exists x(p(x)\wedge q(x))\wedge (\forall x\neg p(x)\vee \forall x\neg q(x)))=F$ by the definition of conjunction. And since $\mathscr I$ is an arbitrary interpretation, the formula is unsatifiable.