Covariate Model Building

Hands-On Session – SCM and linearized SCM

A. In this exercise we will build covariate models using regular and linearized SCM for phenobarbital dataset.

Files provided:

Data set:

Pheno.dta

Model files:

run100.mod = one compartment IV bolus model parameterized in terms of CL and V.

This is the base model i.e. no covariates.

SCM configuration file:

run100.scm and run101.scm

Tasks:

- 1. The continuous covariates included in the dataset are weight and APGR score. You need to test them on CL and V.
- (i). Using the provided SCM configuration file (run100.scm and run101.scm) run both non-linear and linearized SCM.

scm run100.scm -dir=run100_nl scm run101.scm -dir=run101_lin

(ii). Note ΔOFV 's (covariate-base) of the univariate models from non-linear and linear method (obtained after the first step of the scm). Do you see any major differences in ΔOFV 's between non-linear and linear?

Univariate results	ΔOFV (covariate-base)	
	Non-linear	Linear
Wt on CL		
APGR on CL		
Wt on V		
APGR on V		

(iii) Compare the final models obtained from non-linear and linearized SCM. Comment if there are any differences in the final model. (Note: the final models are in final_models directory)

B. 3	In this exercise	we wil	l build	covariate	models	using r	egular	and l	inearized	SCM	for
mo	xonidine datase	et.									

Data set:

mx19.csv

Model files:

run1.mod = one compartment model parameterized in CL, V and Ka with inter-individual variability (IIV) and inter-occasion variability (IOV). The model includes CRCL on CL and WT on V.

run2.mod = This is same as above but without CRCL on CL and WT on V.

SCM configuration file:

run1.scm and run1 lin.scm

Tasks:

- 1. The provided dataset contains 5 continuous and 5 dichotomous covariates. The dichotomous covariates are concomitant medications (digoxin, diuretic and ace inhibitors) NYHA, and sex. Continuous covariates are AGE, WT, CRCL, SCR, and NEUY. Originally, NYHA score had 4 different categories but for the purpose of this exercise NYHA has been dichotomized. In this exercise we will test concomitant medications, NYHA, sex and age on CL and V.
- (i). Using the provided SCM configuration file (run1.scm and run1_lin.scm) run both non-linear and linearized SCM.

scm run1.scm -dir=run1_nl scm run1_lin.scm -dir=run1_lin

(ii). Note ΔOFV 's (covariate-base) of the univariate models from non-linear and linear method from the first, univariate, step of the scm. Do you see any major differences in ΔOFV 's between two methods?

Covariate on parameter	ΔOFV (covariate-base)		
	Non-linear	Linear	

(iii) Compare the final model models obtained from non-linear and linearized SCM. Comment if there are any differences between the final models. (Note: Final models are in final_models directory)

Extra Credit

These tasks allow you to practise different parameterizations for inclusion in the scm.

Task 1

- (i) Start with run2.mod. Modify the provided SCM configuration file so that age is included as hockey-stick model on CL and V, Weight on V linearly, CRCL on CL linearly, and dichotomous covariates on both CL and V.
- (a) Run both linear and regular SCM.
- (b) Compare the final models obtained from linear and regular SCM. Comment
- (c) Is the final models obtained here different from (iii). Comment

Task 2

- (i) Start with run2.mod. Modify the provided SCM configuration file so that age is included as exponential model on CL and V, Weight on V as linear, CRCL on CL as linear, and dichotomous covariates on both CL and V.
- (a) Run both linear and regular SCM.
- (b) Compare the final models obtained from linear and regular SCM. Comment
- (c) Is the final models obtained here different from (iii). Comment

Task 3

- (i) Start with run2.mod. Modify the provided SCM configuration file so that CRCL is included as hockey-stick model on CL, Weight on V as linear, age on CL and V as linear, and dichotomous covariates on both CL and V.
- (a) Run both linear and regular SCM.
- (b) Compare the final models obtained from linear and regular SCM. Comment
- (c) Is the final models obtained here different from (iii). Comment

Task 4

- (i) Start with run2.mod. Modify the provided SCM configuration file so that CRCL is included as hockey-stick model on CL, Weight on V as power, age on CL and V as linear, and dichotomous covariates on both CL and V.
- (a) Run both linear and regular SCM.
- (b) Compare the final models obtained from linear and regular SCM. Comment
- (c) Is the final models obtained here different from (iii). Comment