

Day 2 - Content

- 08:15 09:00: Introduction to NLP tasks
- 09:00 10:15: Different methods in NLP
- 10:15 10:45: Break
- 10:45 12:30: Word embeddings
- 12:30 17:00: Break
- 17:00 18:30: Open-source NLP in Python

Materials on Github

• https://github.com/dsl-unibe-ch/Winter_School_NLP

Natural Language?

- "...network of constructions.."
- - "C is a construction iff C is a form- meaning pair < F, S > such that some aspects of F or some aspects of S is not strictly predictable from C's component parts or from other previously established constructions."

Goldberg, A. E. (1995). *Constructions: A construction grammar approach to argument structure*. University of Chicago Press.

Adele Goldberg on Linguistics and Grammar (Youtube)

- How much linguistic knowledge needed for NLP?
- Will a POS tagged corpus perform better as training data for machine learning algorithm?

Old machine translation system relied on linguistic knowledge

Old machine translation system relied on linguistic knowledge

New machine translation system predict the next word or sequence

• "Anytime a linguist leaves the group, the recognition rate goes up"

(1988), Fred Jelinek, pioneer in Statistical methods for Speech Recognition

NLP tasks

• Source: Innerdoc link

Periodic Table of Natural Language Processing Tasks

Bits to Character										<u>-</u>				App Interactive App Creation
Typ Manual Typewriting	Man Manual Annotation				Price Parser				wwv	v.innerdoo	c.com	Nex Next Token Prediction	Rel Relation Extraction	Ann Annotated Text Visualization
Str Loading a Structured Datafile	Annotation with Active Learning	Tok Tokenization	Ste Stemming	Ngr N-grams	Geo Geocoding			Trn Training Models	Span Detection	Key Keyword Extraction	Syn Wordnet Synsets	Report Writing	Qan Question Answering	Wcl Wordcloud
Generating a	Pro Training Data Provider	Vocabulary Building	Lem Lemmatization	Phr Rulebased Phrasematcher	Tmp Temporal Parser	Sen Sentencizer	Ded Deduplication	Tst Evaluating Models	Sed Sentiment and Emotion Detection	Esu Extractive Summarization	Dst Distance Measures	Tra Machine Translation	Cha Chatbot Dialogue	Emb Word Embedding Visualization
Api Loading from API	Cro Crowdsourcing Marketplace	Mor Morphological Tagger	Nrm Normalization	Chu Dependency Nounchunks	Nel Named Entity Linking	Par Paragraph Segmentation	Raw Tekst Cleaning	Exp Explaining Models	Int Intent Classification	Top Topic Modeling	Sim Document Similarity	Asu Abstractive Summarization	Sem Semantic Search Indexing	Tim Events on Timeline
Scr Text and File Scraping	Aug Textual Data Augmentation	Part-of-Speech	Spl Spell Checker	Ner Named Entity Recognition	Crf Coreference Resolution	Grammar Checker	Met Meta-Info Extractor	Dpl Deploying Models	CIS Text Classification	Tre Trend Detection	Dis Distributed Word Representations	Prp Paraphrasing	Kno Knowledge Base Population	Map Locations on Geomap
7 Ext Text Extraction and OCR	Rul Rulebased Training Data	Dep Dependency Parser	Neg Negation Recognizer	Abreviation Finder	Anm Text Anonymizer	Readability Scoring	Lng Language Identification	Mon Monitoring Models	MIC Multi-Label Multi-Class Classification	Out Outlier Detection	Con Contextualized Word Representations	Lon Long Text Generation	E-Discovery and Media Monitoring	Gra Knowledge Graph Visualization
Source Data Loading	Training Data Generation	Word Parsing	Word Processing	Phrases and Entities	Entity Enriching	Sentences and Paragraphs	Documents	Model Development	Supervised Classification	Unsupervised Signaling	Similarity	Natural Language Generation	Systems	Information Visualization

Common NLP tasks and applications

- Text classification (Sentiment analysis, spam detection, topic labeling)
- Named Entity Recognition (NER) (Information extraction, content recommendation)
- Machine Translation (Content Localization, realtime translation)
- Text Summarization (News Aggregation, Research)
- Question Answering (Customer Support)
- Speech Recognition (Voice Assistants)
- Text Generation (Content Creation, chatbots)

Common NLP tasks

Source: Vajjala et al. 2020

NLP process

Generic NLP Pipeline

Source: Vajjala et al. 2020

NLP progress?

The model with the best performance wins. Is that the only metric?

Check https://nlpprogress.com/

Commercial NLP APIs

- Explore one the demos of commercial tools for NLP (text mining):
 - 1. Watson NLU
 - 2. Google Cloud Natural Language
 - 3. Klangoo magnet
 - 4. Pikes
 - 5. TextRazor
 - 6. text2data
 - 7. Dandelion
 - 8. Gate Cloud
- Give a feedback of what you like and dislike (5-10min)
- Use the link to add screenshot, comments of your findings <u>link</u>

NLPapproaches

RULE AND LOGICAL BASED

STATISTICAL (CLASSICAL ML) MODELS

NEURAL NETWORKS (DEEP LEARNING)

NLP approaches

• Source: Schmidt, Thomas, et al. "Sentiment analysis on twitter for the major German parties during the 2021 German federal election." *Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022)*. 2022.

	SVM	NB	GerVADER	BERT-1	BERT-2	BERT-3
Accuracy	57.6	65.0	52.0	85.8	81.5	93.3
F1 Macro	54.5	65.3	52.0	82.1	73.8	93.4
F1 Weighted	55.9	65.1	54.0	85.9	81.5	93.3

Table 4: Results of the evaluation of the different sentiment analysis approaches. Best results per metric are marked in bold.

NLP approaches

Experiment	Accuracy in percentage						
result	Feature Extraction Techniques						
Algorithms	BOW	TF-IDF	Pre-trained	Embedd-			
Aigorums		11,-111,	Word2vec	ing Layer			
SVM	0.78	0.80	0.82	-			
NB	0.80	0.80	0.74	-			
RF	0.79	0.79	0.81	-			
XGBoost	0.80	0.77	0.81	-			
CNN	-	_	0.81	0.82			
BI-LSTM	-	-	0.84	0.81			

Table 5: Eight classes experiment result with classical, ensemble, Deep ML classifier

• Source: Ababu, Teshome
Mulugeta, and Michael Melese
Woldeyohannis. "Afaan Oromo
hate speech detection and
classification on social media."
Proceedings of the thirteenth
language resources and
evaluation conference, 2022.

- Example one: Tokenizer
- Rule 1: Replace every punctuation with "white space + punctuation", "I like apples." -> "I like apples."
- Rule 2: Replace every white spaces with newline
- Python implementation "tokenizer.py & tokenizer.ipynb"

- Example two: Language identifier
- Step 1: given corpora in different languages, extract most 100 frequent bigrams or trigrams [fleets -> ["fl", "le", "et", "ts"] or ["fle", "lee", "ets"]
- Step 2: convert the input text into bigrams or trigrams
- Step 3: calculate a score between the bigrams or trigrams of the input text with the most frequent bigrams and trigrams from each language
- Calculate a score of the number of matches and choose the language with the highest score
- Python implementation "lan_identifier.py & lan_identifier.ipynb

- Example three: Sentiment analysis
- VADER (Valence Aware Dictionary and sEntiment Reasoner)
- Nothing to do with Star Wars Vader
- Lexicon and rule-based sentiment analysis tool
- Built for sentiment analysis in social media
- Lexicon: (large vocabulary [pos, neg], valence score for each word)
- Rules: (punctuation, capitalization, adverbs usage, conjunction and negation, etc)
- Doesn't generalize well, fail with mixed sentiment
- Example code implementation on github
- NLTK code implementation on <u>NLTK</u>, NLTK <u>Tutorial</u> on Sentiment Analysis
- Code example of using NLTK vader for sentiment analysis

- Discuss in group of 2 3 the following (5-10min):
- 1- What are the pros and cons of using such approaches for example 1 & 2?
- 2- Find examples where the tokenizer or the language identifier would fail

- Relies heavily on probability theory
- Example: Hidden Markov Model (HMM) for POS tagging
- \circ Given a PoS-tagged training corpus, HMM model calculates the joint probability distribution P(X, Y): What is the probability of observing a sequence of words x with PoS-tag labels y?
- \circ From this joint probability P(X,Y), we can then infer the conditional probability P(Y | X) that given a certain sequence of words x the correct PoStag labels are y by applying Bayes rule.
- After having probability distribution, we chooses the best label sequence with argmax.

- Observed events $x_1, ...x_T$: words/tokens that we can see in the input
- Hidden events $y_1, ...y_T$: part-of-speech tags that we think of as causal factors for the observed events.
- Assumption 1: Each token only depends on the current part-of-speech
- Assumption 2: Each part-of-speech depends only on the immediately preceding part-of-speech

Transition probability $P(Y_i \mid Y_{i-1})$

Transition probability $P(Y_i \mid Y_{i-1})$

Example: Transition probability

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Figure 8.7 The *A* transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

Example: Output probability

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 8.8 Observation likelihoods *B* computed from the WSJ corpus without smoothing, simplified slightly.

Source: Jurafsky & Martin, Speech and Language Processing, 2019

Transition probability $P(Y_i | Y_{i-1})$

Joint probability that a certain sequence of words x_1, \dots, x_T with PoS-tags y_1, \dots, y_T occurs

$$P(Y_1, \dots, Y_T, X_1, \dots, X_T) = P(Y_1)P(X_1|Y_1) \prod_{t=2}^{T} P(Y_t|Y_{t-1})P(X_t|Y_t)$$

 $P(Y_1)$: Probabilities for the first PoS-tag of a sequence

 $P(Y_t|Y_{t-1})$: Transition probabilities: conditional probability of a PoS-tag given the immediately preceding PoS-tag

 $P(X_t|Y_t)$: Output probabilities conditional on the PoS-tag (including $P(X_1|Y_1)$)

- After training HMM for POS tagging, we can predict POS tags for a sequence of tokens
- We use argmax function

Example:

Given the token sequence The man tries find the most likely sequence of PoS-tags:

```
\underset{\boldsymbol{y} \in \{(DT,NN,VBZ),(NN,VBZ,DT),(DT,NS,NS),\dots\}}{\operatorname{argmax}} P(Y = \boldsymbol{y} \mid X = (\text{The, man, tries})) = (DT,NN,VBZ)
```

Neural Networks

• On Wednesday with details!