SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

SPRING AMQP & SPRING SECURITY SEMINÁRNA PRÁCA

Obsah

1	AMQP			1		
	1.1	Čo je A	AMQP a ako funguje	1		
	1.2	Históri	ia AMQP	1		
	1.3	AMQF	P terminológia	2		
	1.4	Kompo	onenty AMQP	3		
	1.5	Vývoj	${\rm API}\;{\rm s}\;{\rm AMQP} \dots \dots$	3		
	1.6	AMQF	P vs. HTTP	4		
2	Spring AMQP					
	2.1	Spring	g AMQP objekty	5		
		2.1.1	Základné objekty	5		
		2.1.2	Objekty pre komunikáciu	6		
		2.1.3	Ďalšie významné možnosti	6		
3	Spring Security					
Zo	oznar	n použ	žitej literatúry	9		

Zoznam skratiek

AMQP Advanced Message Queuing Protocol

HTTP Hyper Text Transfer Protocol

MVC Model View ControllerPOJO Plain Old Java Object

1 AMQP

Bezplatné a rýchle operácie open-source nástroja z nich urobili preferovanú voľbu pred ich rovesníkmi s uzavretým zdrojom. Bez toho, aby boli používateľom kladené nejaké tvrdé a rýchle obmedzenia, aplikácie open-source sa v súčasnosti stali normou. AMQP Standard je bežne používaný protokol na odosielanie správ používaný v procese vývoja aplikácií s otvoreným zdrojovým kódom. V tejto kapitole osvetlíme jeho význam, užitočnosť a kľúčovú terminológiu.

1.1 Čo je AMQP a ako funguje

AMQP označuje Advanced Message Queuing Protocol. Globálne uznávaný štandard, ktorý v podstate funguje na aplikačnej vrstve, používa sa hlavne na rozvoj bezkonkurenčnej komunikačnej prevádzkyschopnosti medzi klientom a maklérskymi stranami. Vydavateľ nesie zodpovednosť za generovanie správ, kým ich klienti zhromažďujú a spravujú. Úlohou brokerov, ako je RabbitMQ, v tomto celom procese je zabezpečiť, aby správa, ktorá je súčasťou výmeny, prechádzala priamo od vydavateľa ku klientovi. Keď už hovoríme o jeho kľúčových funkciách, smerovanie, orientácia správ a radenie do frontu sú tie najdôležitejšie. Použitie AMQP robí interoperabilitu dosiahnutým cieľom s rôznymi konfiguráciami a infraštruktúrou. Umožňuje vývojárom uviesť do činnosti všetky klientske knižnice a sprostredkovateľa, ktoré sú v súlade s protokolom.

1.2 História AMQP

AMQP, ktorý prvýkrát vytvoril John O' Hara v roku 2003, sa od svojho vzniku veľmi vyvinul a má bohatú históriu. Kým John založil AMQP, pracoval s JPMorgan Chase a spoločnosť si ponechala všetky práva AMQP a použila ich na uzavretie zmluvy s iMatrix Corporation. Obe tieto dve firmy použili AMQP na návrh dokumentácie protokolov, ako aj C brokera. Toto používanie AMPQ pokračovalo až do polovice roku 2006. Spoločnosť JPMorgan Chase sa však rozhodla urobiť AMQP slávnym a pripraveným na použitie aj pre iné firmy. To je dôvod, prečo sa v polovici roku 2005 spoločnosť snažila vytvoriť skupinu používateľov pre AMQP, ktorá zahŕňala špičkových IT gigantov ako Cisco, Red Hat, IONA Technologies a TWIST. Skupina sa pomaly rozširovala a predstavovala 23 spoločností. Niektorí z nových členov boli Barclays. IIT Software, Bank of America, Credit Suisse, Progress Software a Informatica. AMQP 1.0 bol spustený v októbri 2011 a krátko nato, teda 1. novembra, bol svetu predstavený technický výbor OASIS. Jeho hlavnou zodpovednosťou bolo dohliadať na pokrok AMQP 1.0. Prvý a druhý návrh boli podľa

spätnej väzby pracovného výboru spustené vo februári 2012 a v júni 2012. O niekoľko mesiacov neskôr, koncom októbra 2012, sa AMQP stal autorizovaným štandardom OASIS. V roku 2014 bol štandard OASIS AMQP akceptovaný aj medzinárodnými štandardmi ako IEC a ISO.

1.3 AMQP terminológia

Keď človek plánuje uviesť AMQP do praxe, je nevyhnutné poznať niektoré z jeho kľúčových terminológií. V tejto časti kapolity si uvedieme tie najpoužívanejšie.

- Broker (alebo server) hrá kľúčovú úlohu pri aktivácii protokolu AMQP. Je zodpovedný za budovanie spojení, ktoré zaisťujú lepšie smerovanie údajov a radenie do frontu na strane klienta.
- O generovanie frontov a prijímanie správ sa stará consumer.
- O presmerovanie údajov prevzatých z búrz a ich zaraďovanie do frontov sa stará publisher.

Obr. 1: AMQP Broker

1.4 Komponenty AMQP

Okrem vyššie uvedenej terminológie AMQP si vývojári musia byť vedomí určitých komponentov používaných na nasadenie modelu AMQP.

Exchange

Exchange nesie zodpovednosť za načítanie správ a ich starostlivé umiestňovanie do správneho frontu. Jeho 4 kategórie sú: Fanout, Headers, Topic a Direct.

Channel (Kanál)

Kanál označuje multiplexné virtuálne pripojenie medzi partnermi AMQP, ktoré je vybudované v rámci existujúceho pripojenia.

Message queue (Fronta správ)

Je to identifikovaná entita, ktorá pomáha prepojiť správy s ich zdrojmi alebo miestom pôvodu.

Binding (Väzba)

Väzby označujú množinu preddefinovaných inštrukcií týkajúcich sa frontov, ako aj výmen. Spravuje odosielanie správ a ich doručovanie.

Virutal host

Virtual host je platforma, ktorá ponúka segregačné zariadenie vo vnútri makléra. Na základe používateľov a ich prístupových práv môže byť naraz funkčných viacero vhostov.

1.5 Vývoj API s AMQP

Pomocou AMQP môžu rozhrania API:

- Priamo odosielať správy
- Ukladať správy do vyrovnávacej pamäte vo fronte na odosielanie na základe spúšťača;
- Môže smerovať informácie alebo spájať výmeny s určenými frontami;
- Vytvára spojenie s cieľom zabezpečiť efektívnu komunikáciu;
- Môže poslať automatické alebo manuálne potvrdenie.

Môžete zvážiť niekoľko scenárov, v ktorých možno AMQP použiť v rozhraniach API, napríklad:

- Pridávanie peňazí do svojich digitálnych peňaženiek
- Transakcia kreditnou alebo debetnou kartou v maloobchodných predajniach
- V messengeroch alebo komunikačných systémoch

Výmena správ využívaná AMQP je asynchrónna. Keďže transakcie sú rozhodujúce udalosti a nechcete v nich mať nekonzistentnosť, môžu existovať ďalšie servisné udalosti, ktoré budú sledovať výsledok každej správy, aby sa ďalšia udalosť mohla spustiť včas. Asynchrónna povaha AMQP spôsobí potrebu spätných volaní v porovnaní s HTTP. Je tiež zložitejšie navrhnúť koncové body "načítania" pomocou tohto protokolu [1].

1.6 AMQP vs. HTTP

Hyper Text Transfer Protocol (HTTP) je protokol, ktorý sa používa na komunikáciu medzi klientom a serverom. Tento protokol je zodpovedný za odpoveď zo strany servera na odpoveď klienta. Je to základný protokol pre komunikáciu webových služieb [2].

Obr. 2: AMQP vs. HTTP

Parameter	AMQP	HTTP
Communication Nature	Asynchronous	Synchronous
Usage	Easy to setup and manage	User centric and it can be used in every aspect
Message Delivery	Guaranteed message delivery	No guarantee for message delivery
Interface	Publish/subscribe interface	Provides point to point interface
Fault Tolerance	AMQP protocol can bear the server broke issue on its own	Not capable to react to the server breakdown issue
Protocol Characteristics	Specific protocol used for specific purposes	General purpose protocol used for multiple purposes
Advantages	It is fast, flexible and cost effective	Well known, efficient and multi- purpose protocol

2 Spring AMQP

Projekt Spring AMQP aplikuje základné koncepty Spring na vývoj riešení na odosielanie správ založených na AMQP. Poskytuje "šablónu" ako vysokoúrovňovú abstrakciu na odosielanie a prijímanie správ. Poskytuje tiež podporu pre POJO riadené správami s "kontajnerom poslucháča". Tieto knižnice uľahčujú správu zdrojov AMQP a zároveň podporujú používanie vkladania závislostí a deklaratívnej konfigurácie. Vo všetkých týchto prípadoch uvidíte podobnosti s podporou JMS v Spring Framework. Projekt pozostáva z dvoch častí; spring-amqp je základná abstrakcia a spring-rabbit je implementácia RabbitMQ [3].

Vlastnosti:

- Kontajner poslucháča na asynchrónne spracovanie prichádzajúcich správ
- RabbitTemplate na odosielanie a prijímanie správ
- RabbitAdmin pre automatické deklarovanie queues, exchanges a bindings

2.1 Spring AMQP objekty

V tejto kapitole sa venujeme popisu základnych objektov zahrnutých v implentácii Spring AMQP. Pre dodatočné informácie je možne si pozrieť oficiálnu dokumentáciu na nasledovnom **linku**.

2.1.1 Základné objekty

Spring AMQP pre svoju prácu využíva 4 základné objekty, ktoré reprezentujú samotné komponenty v protokole AMQP. Keďže samotná implementácia sa zaobíde iba so String hodnotami, tak tieto objekty nám slúžia na konfiguráciu objektov v Broker-ovi.

Queue

Queue objekt reprezentuje frontu do ktorej publisher ukladá správy a consumer číta jednotlivé správy. Queue objekt disponuje niekoľkými konfiguračnými nastaveniami, ktoré si môžeme upraviť na základe našich potrieb.

Exchange

Tento objekt reprezentuje komunikačný uzol, cez ktorý prúdia naše dáta a smeruje ich do cieľových queues.

Binding

Binding objekt reprezentuje previazanie exchange-u na queue. Jeden exchange môže mať na seba naviazaných niekoľko queues.

Message

Message je samotná správa, ktorá obsahuje properties, teda atribúty ako typ obsahu a dodatočné hlavičky. Samotné telo správy je v Bytoch, čo znamená, že našu správu musíme vždy prekonvertovať buď manuálne alebo za pomoci konverterov.

2.1.2 Objekty pre komunikáciu

Connection factory

Connection factory objekt slúži na pripojenie ku broker-ovi. Samotné pripojenie funguje na jednom pripojení(connection) a viacerých kanálov, kde kanál predstavuje samotnú jednotku komunikácie. Na výber máme 3 typy pripojení:

- Pool slúži ako základný typ pripojenia. Má jedno pripojenie a 2 pool-y kanálov.
 Jeden pre transakcie a jeden pre základné kanály. Na implementáciu používa Apache Pool.
- Thread obsahuje 1 pripojenie a dve vlákna. 1 pre transakcie a 2. pre štandarnú komunikáciu. Každé vlákno má jeden kanál. Slúži pre striktné dodržanie sledu správ.
- Cahced podobný prvému typu s rozdielom, že ak je potrebné môže vytvoriť ďalšie kanály. Taktiež si udržuje v pamäti kanály ktoré sa používaju pre transakcie.

Converter

Obejkt, ktorý nám šetrí veľa času a námahy. Konvertuje nám naše komplexné objekty na Message objekty. Máme niekoľko typov, najpopulárnejší je Jackson pre JSON formát.

AMQP Template

Objekt s ktorým pristupujeme ku komunikácii. Cez jeho referenciu posielame a príjmame jednotlivé správy. Ponúka veľké množstvo nastavení pre našu komunikáciu.

Listener

Asynchróny objekt, ktorý po svojom vytvorení automaticky počúva na nové správy v požadovaných kanáloch.

2.1.3 Ďalšie významné možnosti

Transakcie

Spring AMQP podporuje transakcie pri práci s našimi správami. Na túto funkcionalitu nám je poskytnutý Spring Transaction Management. Avšak je potrebné dodať vlastného Transaction managera, napríklad zo Spring Data. Táto funcionalita je vhodná najmä pri práci s databázou.

Batching

Možnosť si správy najprv pripraviť do jednotlivých skupín a odoslať ich všetky naraz. Je

však potrebné mať dobrý error handling, pretože ak nám niekde vyskočí nekontrolovaná výnimka, stratíme náš batch.

Error handling

Spring AMQP ponúka možnosť implementovať vlastné callback funkcie pre error handling, vďaka ktorým, sme schopný lepšie ovládať udalosti v našej aplikácii.

3 Spring Security

Spring Security je výkonný a vysoko prispôsobiteľný rámec autentifikácie a kontroly prístupu. Je to de-facto štandard pre zabezpečenie aplikácií na báze Springu. Spring Security je framework, ktorý sa zameriava na poskytovanie autentifikácie a autorizácie pre Java aplikácie. Rovnako ako všetky projekty Springu, skutočná sila zabezpečenia Springu spočíva v tom, ako ľahko sa dá rozšíriť, aby vyhovovala vlastným požiadavkám [4].

Vlastnosti:

- Komplexná a rozšíriteľná podpora pre autentifikáciu aj autorizáciu
- Ochrana proti útokom, ako je fixácia relácií, clickjacking, falšovanie požiadaviek medzi stránkami atď
- Integrácia Servlet API
- Voliteľná integrácia s Spring Web MVC

Zoznam použitej literatúry

- 1. What is AMQP Protocol All you need to know [online]. www.wallarm.com, [b.r.]. [cit. 2022-11-24]. Dostupné z: https://www.wallarm.com/what/what-is-amqp.
- 2. Difference between AMQP and HTTP protocols [online]. GeeksforGeeks, 2020. [cit. 2022-11-26]. Dostupné z: https://www.geeksforgeeks.org/difference-between-amqp-and-http-protocols/.
- 3. Spring AMQP. spring.io, [b.r.]. Dostupné tiež z: https://spring.io/projects/spring-amqp.
- 4. Spring Projects. Spring.io, 2019. Dostupné tiež z: https://spring.io/projects/spring-security.