TMB Design and Operation and Operation

2019 --- 2013 --- 2005

TAMU & UCLA High Energy Physics

Version 5

20 Jan 2021

TMB DESIGN AND OPERATION

TAMU & UCLA High Energy Physics

Version 5

20 Jan 2021

TABLE OF CONTENTS

TMB OVERVIEW CHANGE FOR 2019: ADD RX LINKS FOR GEM	7
LATER FOR 2019: ODMB CHANGES TO BACKPLANE SIGNALS	7
CLCT PROCESSING ALGORITHM CHANGE PATTERNS FOR 2019	8
SIGNAL SYNCHRONIZATION	11
CFEB MUONIC RECEIVER SYNCHRONIZATION STAGES	11
ALCT MUONIC RECEIVER SYNCHRONIZATION STAGES	12
ALCT MUONIC TRANSMITTER SYNCHRONIZATION STAGES	13
TTC SEQUENCES	17
Trigger State	17
BUNCH CROSSING COUNTER	17
RESYNC	17
ALCT+CLCT MATCHING ALGORITHM FOR 2019: STILL ACCURATE?	18
MATCHING LOGIC	18
VME REGISTERS	22
Addressing Modes	22
Base Address	22
BOOT REGISTER	22
List of Register Addresses	23
DEFINITIONS OF REGISTER ADDRESSES	31
Counter Select Addresses	86
For 2019: ADD New Registers and Counters	129
TTC COMMANDS	130
TMB BOARD STATUS OPERATIONS FOR 2019,2013: STILL ACCURATE?	132
ID REGISTERS	132
Digital Serial Numbers	132
POWER SUPPLY ADC	132
CLOCK DELAYS	132
JTAG Chains	133
RAT MODULE STATUS REGISTER USER1	133

RAT MODULE CONTROL REGISTER USER2	134
USER PROM PROGRAMMING	135
Introduction	135
Register Initialization	135
VME PROM-0	135
JTAG PROM-1	136
DMB READOUT FOR 2019,2013: THIS MUST CHANGE, ADD GEM BLOCK!	141
Full-Readout and Local-Readout Format (Long Header)	141
Long Header-only Format	142
SHORT HEADER-ONLY FORMAT	142
MINISCOPE	142
BLOCKED CFEB DISTRIPS LIST FORMAT	145
Header Word Descriptions	146
SAMPLE TMB RAW HITS DUMP FOR 2019 (OR ALL TMBS?): RPC → GEM	164
CONFIGURATION FOR 2019,2013,2005: STILL ACCURATE?	167
Shunt Settings	167
SWITCH SETTINGS FOR 2019,2013,2005: STILL ACCURATE?	169
Fuses	170
SIGNAL SUMMARY	172
CCB	172
ALCT	174
DMB For 2019: This will change later	176
CFEB	177
MPC For 2019: New LCT Format!	178
RPC For 2019,2013: Delete or deprecate! Replace with RAT??	179
VME	179
JTAG	179
LEDs & Testpoints	180
TMB TOTAL I/O COUNT FOR 2019, ETC: FIX CONNECTORS, MTPS, AND RPC -> RAT	181
CONNECTORS	183
TMB CONNECTOR SUMMARY	183
J0-J4 CFEB0-CFEB4 Connectors	184
J5 ALCT Cable1 Connector (Receiver)	185
J6 ALCT Cable2 Connector (Transmitter)	187
J1-J6 SCSI-II 50-PIN CONNECTOR PIN CONVENTION	189
17 XII INX LVDS XII INX X-BI ASTER CONNECTOR	190

P1 BACKPLANE VME64X J1/P1 CONNECTOR	191
P2A BACKPLANE CCB+DMB CONNECTOR	193
P2A BACKPLANE CCB+DMB CONNECTOR CONTINUED	195
P2B BACKPLANE DMB CONNECTOR	197
P3A BACKPLANE MPC+RPC CONNECTOR	200
P3B BACKPLANE RPC+ALCT CONNECTOR	202
BACKPLANE PIN DIAGRAM	204
Front Panel Connector Locations	205
CCB Front Panel	207
DOCUMENTATION REVISION HISTORY	210
FIRMWARE CHANGE LOG	214
LIST OF FIGURES	
Figure 1: TMB Overview	6
Figure 2: CFEB Muonic Receiver	13
Figure 3: ALCT Muonic Receiver	14
Figure 4: ALCT Muonic Transmitter	
Figure 5: 50-Pin PCB Connector (Female)	131
Figure 6: 50 Pin Cable Connector (Male)	131
Figure 7: 50 Pin PCB Connector Pin Convention	131
LIST OF TABLES	
Table 1: List of VME Register Addresses	21
Table 2: Fast Control Bus ccb_cmd[50] Decoding Scheme	89
Table 3: Shunts	116
Table 4: Switch Settings	117
Table 5: Fuses for TMB2005	118
Table 6A: Fuses for TMB2013	118
Table 7: CCB Signal Summary	119
Table 8: ALCT Signal Summary	120
Table 9: DMB Signal Summary	121
Table 10: CFEB Signal Summary	122
Table 11: MPC Signal Summary	123
Table 12: RPC Signal Summary	124
Table 13: VME Signal Summary	124
Table 14: JTAG Signal Summary	124

Table 15: TMB Front Panel LEDs	125
Table 16: TMB Total I/O Count	126
Table 17: TMB2005 Connector Summary	127
Table 18: J0-J4 CFEB0/4-to-TMB Connectors	128
Table 19: J5 ALCT Cable1 Connector [J10 on ALCT board]	129
Table 20: J6 ALCT Cable2 Connector [J11 on ALCT board]	130
Table 21: J8 Xilinx LVDS X-Blaster Connector	132
Table 22: P1 VME64x Connector	133
Table 23: P2A Backplane CCB+DMB Connector	134
Table 24: P2B Backplane DMB Connector	136
Table 25: P3A Backplane MPC Connector	137
Table 26: P3B Backplane RPC+ALCT Connector	
Table 27: Connector CCB Input connector P10	141
Table 28: CCB Output connector P11	141
Table 29: CCB Output connector P12	142

TMB OVERVIEW CHANGE FOR 2019: ADD RX LINKS FOR GEM

LATER FOR 2019: ODMB CHANGES TO BACKPLANE SIGNALS.

Figure 1: TMB Overview.

CLCT Processing Algorithm CHANGE Patterns For 2019

bx -½: Latch 1st-in-time CFEB transmission

bx 0: Latch 2nd in-time CFEB transmission

- Demultiplex 1st-in-time and 2nd-in-time CFEB Triads
- Map cable-signal ordering into 5 CFEBs x 8 DiStrip Triads x 6 Layers (240 signals)
- Store CFEB Triads in Raw-hits RAM
- Multiplex CFEB Triads with internal pattern-injector RAM AND Triads with Hot Channel Mask to disable errant DiStrips
- Decode Triad start bits (240 processed in parallel)
- Triad decoder state machines run continuously to preclude missing any start bits
- Each ½-strip one-shot can fire again on the same clock cycle that the previous ½-strip pulse ends
- If a 2nd triad arrives for the same DiStrip while busy, the triad is decoded but the one-shot does not fire
- In that case, the triad-skipped counter is incremented

bx 1: Decode Triad strip bits

bx 2: Decode Triad ½-strip bits

bx 3: Fire ½-strip one-shots for 6bx (triad_persist is programmable, 6bx is the default) OR 160 ½-strips on each layer for layer-trigger mode

• Stagger correction (if stagger hs csc =1) shifts alternate layers by -1hs

```
ly0
        -0hs
                          i.e.
                                 hs5→ hs5
ly1
                          i.e. hs6→ hs5
        -1hs
ly2
                         i.e. hs5 \rightarrow hs5
        -0hs
                                                    key layer ly2
ly3
                         i.e.
                                 hs6 → hs5
ly4
                         i.e. hs5 \rightarrow hs5
        -Ohs
                         i.e. hs6 \rightarrow hs5
ly5
        -1hs
```

• Pattern Finding: for each of 160 key ½-strips consider the 42 neighboring ½-strips (i.e. on key 5 use the following ½-strips)

```
0123456789A
ly0[10:0]
               xxxxxkxxxxx
                               5+1+5 =11
ly1[ 7:3]
                  xxkxx
                               2+1+2 = 5
ly2[ 5:5]
                               0+1+0 = 1
ly3[ 7:3]
                  xxkxx
                               2+1+2 = 5
ly4[ 9:1]
                xxxxkxxxx
                               4+1+4 = 9
ly5[10:0]
                               5+1+5 =11
               xxxxxkxxxxx
```

• For each of 160 key ½-strips, count layers with hits matching the 9 pattern templates.Pattern ID=1 is a layer-OR trigger, Pattern ID=0 is no-pattern-found

Hit	pattern	LUTs for 1	l layer: - = 0	don't care, x	x= one hit o	r the other	or both			
Patt	ern	id=2	id=3	id=4	id=5	id=6	id=7	id=8	id=9	idA
Bend	dir	bd=0	bd=1	bd=0	bd=1	bd=0	bd=1	bd=0	bd=1	bd=0
1		1	1	I	1	1	1	I	1	
ly0		xxx >	«xx	xxxx	xx	xxx	-xxx	xxx	-xxx	xxx
ly1		xx	xx	xx	-xx	xx	xx	xx	xx	x
ly2	key	x	x	x	x	x	x	x	x	x
1y3		-xxx	xxx	xx	xx	xx	xx	xx	xx	x
ly4	-x	xx	xxx:	xxx	xxx	-xx	xx	xxx	xxx	xxx
ly5	xx	x	xxx -:	xxx	xxx	xxx	xxx	xxx	xxx	xxx
I		1		1	1	1	1	I	1	
// E	xtent	0123456789	9A 0123456789	A 0123456789A	0123456789A	01234567892	A 0123456789	A 0123456789A	0123456789A	0123456789A
// A	vg.bend	- 8.0 hs	+ 8.0 hs	-6.0 hs	+6.0 hs	-4.0 hs	+4.0 hs	-2.0 hs	+2.0 hs	0.0 hs
// M	in.bend	-10.0 hs	+ 6.0 hs	-8.0 hs	+4.0 hs	-6.0 hs	+2.0 hs	-4.0 hs	0.0 hs	-1.0 hs
// M	lax.bend	- 6.0 hs	+10.0 hs	-4.0 hs	+8.0 hs	-2.0 hs	+6.0 hs	0.0 hs	+4.0 hs	+1.0 hs

bx 4: Result for each of 160 keys is a list of 9 pattern-ID numbers (pid) [2 to A] and corresponding number of layers [0 to 6] with matching hits (nhits)

- Find the best 1-of-9 pattern ID numbers for each key by comparing nhits
- Ignore bend direction: left and right bends have equal priority (bit 0 of pid implies bend direction)
- If two pattern IDs have the same nhits, take the higher pattern ID
- A key with no matching hits, would always return pid=A and nhits=0

bx 5: Pre-trigger if any 1-of-160 keys have nhits \geq hit thresh pretrig and pid \geq pid thresh pretrig

- Construct 5-bit active-cfeb list for DMB:
- cfebs with a key that has nhits \geq hit thresh pretrig and pid \geq pid thresh pretrig
- cfebs with a key that has nhits \geq dmb thresh pretrig
- cfebs adjacent to a cfeb that has nhits \geq hit thresh pretrig and pid \geq pid thresh pretrig within adjfeb dist

bx 6: Finding 1st CLCT:

- Construct 7-bit pattern quality for sorting: pat[7:0]
- pat[7:5]=nhits[2:0]
- pat[4:0]=pid[3:0]
- Ignore the bend direction bit (pid[0]), left and right bends have equal priority
- Store pat[7:0] for 160 keys for use later to find 2nd CLCT
- Start finding best 1-of-160 keys by sorting on the 6-bit number pat[7:1]
- If two keys have the same pat[7:1] take the lower key

bx 7: Find 1st CLCT:

- Finish finding best 1-of-160 keys by sorting on the 6-bit number pat[7:1]
- Store 1st CLCT info: key, pattern ID, and number of hits
- For empty events, key=0, pid=A and nhits=0. If clct blanking=1, then key=pid=hits=0

bx 8: Finding 2nd CLCT:

- Construct list of busy keys
- Mark keys near 1st CLCT as busy from 1st key-nspan to 1st key+pspan
- If clct_sep_src=1, pspan and nspan are set equal to clct_sep_vme, typically 10hs
- If clct sep src=0, pspan and nspan are read from RAM and depend on the pattern ID number
- This allows two non-bending tracks | | to be closer than bending tracks / \
- Start finding best 1-of-160 keys by sorting on the 6-bit number pat[7:1]
- Skip busy keys
- If two keys have the same pat[7:1] take the lower key

bx 9: Find 2nd CLCT:

- Finish finding best 1-of-160 keys by sorting on the 6-bit number pat[7:1]
- Store 2nd CLCT info: key, pattern ID, and number of hits
- For empty events, key=11, pid=A and nhits=0. If clct_blanking=1, then key=pid=hits=0
- **bx 10:** Drift Delay 1bx (waits for CSC drifting)
- **bx 11:** Drift Delay 1bx
 - If clct0 nhits < hit_thresh_postdrift OR pid < pid_thresh_post_drift, discard event
- bx 12: Match to ALCT window 0
 - If alct matches, jump to bx15 logic, latency is shortened 2bx
- bx 13: Match to ALCT window 1
 - If alct matches, jump to bx15 logic, latency is shortened 1bx
- bx 14: Match to ALCT window 2
 - If ALCT does not arrive, and clct only mode is enabled, accept CLCT at window 2
 - If ALCT does not arrive, and not in clct only mode, discard event
- bx 15: Construct two LCTs from CLCT and ALCT data
 - If event has 2 CLCTs and 1 ALCT, copy 1st ALCT into 2nd ALCT position
 - If event has 1 CLCT and 2 ALCTs, copy 1st CLCT into 2nd CLCT position
 - Calculate LCT quality
 - Multiplex mpc injector ram data
- **bx 16:** Transmit 1st-in-time LCT frame to MPC
- bx 16½: Transmit 2nd-in-time LCT frame to MPC

SIGNAL SYNCHRONIZATION

CFEB Muonic Receiver Synchronization Stages

CFEB Double Data Rate (DDR) receiver logic is designed to synchronize incoming comparator data to TMB's main clock, while minimizing CLCT trigger-path latency. It has a programmable 0-16bx delay stage to compensate for differing CFEB cable lengths.

The logic is shown schematically (Figure 2) but the actual TMB logic is written in behavioral Verilog.

U1A: Latches incoming CFEB data din on the falling edge of clock iob.

• The user has already tuned the associated cfeb[n]_rxd digital phase shifter so that clock_iob always latches stable data.

U1B: Latches incoming din on the rising edge of clock iob.

• U1A and U1B comprise a single DDR I/O-Block flip-flop, and are only shown here separately for clarity.

U2: Latches data transferred from U1A on the rising edge of clock iob.

- U2 now holds din 1st-in-time data, aligned with the rising edge of clock iob, while
- U1B holds din 2nd-in-time data, also aligned with the rising edge of clock iob.
- In non-muonic firmware, this would be the end stage, because clock_iob would be the same as TMB's main clock.
- In muonic firmware versions, din_1st and din_2nd still need to be synchronized to TMB's main clock. This is done by latching data on both the *rising* (positive) edge and *failing* (negative) edge of the main clock, then selecting one latch or the other with the posneg bit.
- If the positive edge flip-flops U11, U12 are out-of-time (creating a dead-spot in the din receive window) then the negedge flip-flops U3, U4 must be in-time. One set of latches, either U11, U12 or U3, U4 will always be in-time for a given phase of clock iob.

U3, U4: Latch din 1st and din 2nd on the falling edge TMB's main clock 1x.

U5, U6: Select either positive edge data from U2, U1B or negative edge data from U3, U4.

U7,U8: Delay data by 1-to-16 bx, according to delay[3:0] from a VME register.

• Setting address=0 for U7, U8 gives a 1bx delay, so delay-1 is used to form the address.

U14: Subtracts 1 from delay [3:0] to form the shift register address for U7, U8.

U9, U10: Bypass delays U7, U8 if the delay is 0, thus giving a 0-to-16bx delay span.

U11, U12: Latch data on the *rising* edge of TMBs main clock 1x, and are the final synchronization stage.

ALCT Muonic Receiver Synchronization Stages

ALCT Double Data Rate (DDR) receiver logic is designed to synchronize incoming data to TMB's main clock. It uses a small number of flip-flops, and is able to fit in a single FPGA column. It uses a different technique than the CFEB sync section, and does not have a delay stage.

The logic is shown schematically (Figure 3), but the actual TMB logic is written in behavioral Verilog.

U1A: Latches incoming ALCT data din on the falling (negative) edge of clock iob.

• The user has already tuned the associated alct_rxd digital phase shifter so that clock_iob always latches stable data.

U1B: Latches incoming din on the *rising* (positive) edge of clock iob.

• U1A and U1B comprise a single DDR I/O-Block flip-flop, and are only shown here separately for clarity.

U2: Latches ALCT data transferred from U1A on the rising (positive) edge of clock iob.

- U2 now holds din 1st-in-time data, aligned with the rising (positive) edge of clock iob, while
- U1B holds din 2nd-in-time data, also aligned with the rising (positive) edge of clock iob.
- In non-muonic firmware, this would be the end stage, because clock_iob would be the same as TMB's main clock.

U3, U4: Latch din_1st and din_2nd on either the *rising* (positive) or *falling* (negative) edge of TMB's main clock_1x.

- They are clocked at 2x the main clock frequency, but are enabled for only one edge direction, according to the value of the posneg bit.
- The edges of clock 2x are closely aligned to the edges of clock 1x.

U7:

- If posneg=1, U7 inverts a logic accessible copy of clock 1x, called clock lac.
- If posneg=0, U7 passes clock lac un-inverted.
- Because clock_lac is delayed by about 2ns after clock_lx, posneg=1 enables U3, U4 to latch data on the edge of clock_lx that corresponds to the *rising* edge of clock_lx, and posneg=0 enables latching on the *falling* edge.

U5, U6: Latch data on the *rising* edge of TMB's main clock 1x, and are the final synchronization stage.

ALCT Muonic Transmitter Synchronization Stages

ALCT Double Data Rate (DDR) transmitter logic is designed to synchronize TMB's outgoing data to the ALCT board's clock. It has a programmable 0-16bx delay stage, and a data-path multiplexer for sending test patterns to ALCT.

The logic is shown schematically (Figure 4), but the actual TMB logic is written in behavioral Verilog.

U1, U2: Select the transmitter data source, either ALCT data or the test pattern generator, according to the value of sync mode.

U3,U4: Delay data by 1-to-16 bx, according to the VME-set delay-1 (the subtractor is not shown).

U3, U4: Delay data by 1-to-16 bx, according to delay [3:0] from a VME register.

• Setting address=0 for U3, U4 gives a 1bx delay, so delay-1 is used to form the address.

U15: Subtracts 1 from delay [3:0] to form the shift register address for U3, U4.

U5, U6: Bypass delays U3, U4 if the delay is 0, thus giving a 0-to-16 bx delay span.

U7, U8: Latch data on the rising edge of TMB's main clock 1x, and are the final main-clock stage.

• In non-muonic firmware, this would be the end stage, because clock_iob would be the same as TMB's main clock.

U9, U10: Latch data on either the rising or falling edge of TMBs main clock 1x.

- They are clocked at 2x the main clock frequency, but are enabled for only one edge direction, according to the value of the posneg bit.
- The edges of clock 2x are closely aligned to the edges of clock 1x.

U14:

- If posneg=1, U14 inverts a logic accessible copy of clock 1x, called clock lac.
- If posneg=0, U14 passes clock lac un-inverted.
- Because clock_lac is delayed by about 2ns after clock_lx, posneg=1 enables U9, U10 to latch data on the edge of clock_lx that corresponds to the *rising* edge of clock_lx, and posneg=0 enables latching on the *falling* edge.

U12: Latches 1st-in-time data on the *rising* edge of clock_iob. It is a DDR I/O Block flip-flop that transmits 1st-in-time data on the *rising* edge of clock_iob, and 2nd-in-time on the *falling* edge.

U11: Holds 2nd-in-time data for ½ cycle while waiting for U12 to transmit 1st-in-time data.

Figure 2: CFEB Muonic Receiver

Figure 3: ALCT Muonic Receiver

TMB-to-ALCT: Transmitter Sync Stages

Figure 4: ALCT Muonic Transmitter

TTC SEQUENCES

Trigger State

Start/Stop Triggering Sequence:

On hard_reset go to the StopTrigger state: TMBs CLCT processing machine goes to "idle".

On ttc start trigger, wait for the next BX0 (if ttc starts are allowed)

On the next ttc bx0, resume triggering.

On ttc_stop_trigger (if ttc stops are allowed) or ttc_resync go the StopTrigger state.

Bunch Crossing Counter

Bunch Counter Reset:

On ttc resync or ttc bxreset, preset the BXN, and hold the count.

On the next BX0 resume counting bunch crossings.

On subsequent BX0s, check that BXN is again at the preset value, if not, set sync error.

TMB further checks that when BXN is at the preset value, that a BX0 arrived, if not, set sync error.

Resync

L1A Counter Reset:

On ttc_resync or ccb_evcntreset, clear L1A event counters.

Buffer Reset:

ttc_resync clears TMBs buffer-pointers, aborts any readout in progress, and returns various state machines to their idle states (a similar condition to after power-up or hard-reset).

ALCT+CLCT MATCHING ALGORITHM FOR 2019: STILL ACCURATE?

Matching Logic

LCT Duplication:

```
// Fill in missing ALCT if CLCT has 2 muons, missing CLCT if ALCT has 2 muons
wire
     no_alct = !alct0_vpf;
wire no clct = !clct0_vpf;
     one alct = alct0 vpf && !alct1 vpf;
wire
wire
     one clct = clct0 vpf && !clct1 vpf;
wire
     two alct = alct0 vpf && alct1 vpf;
wire
     two clct = clct0 vpf && clct1 vpf;
wire
     dupe alct = one alct && two clct;
wire
     dupe clct = one clct && two alct;
wire
     [MXALCT-1:0] alct_dummy = clct0_real[18:17] << 11; // Inserts clct bxn into
      [MXCLCT-1:0] clct dummy = 0;
wire
                                                            // frame for clct only events
wire [MXALCT-1:0] alct0 = (no alct ) ? alct dummy : alct0 real; // Substitute dummy alct
wire [MXALCT-1:0] alct1 = (dupe alct) ? alct0 real : alct1 real;
wire [MXCLCT-1:0] clct1 = (dupe clct) ? clct0 real : clct1 real;
                   = alct0_vpf || clct0_vpf;
                                                             // First muon exists
wire first_vpf
                                                             // Second muon exists
wire second vpf
                   = alct1 vpf || clct1 vpf;
```

LCT Quality:

```
// Quality-by-quality definition
 reg [3:0] Q;
 always @* begin
         ( !ACC && A4 && C4 && P==10 ) Q=15; // HQ muon, straight
 else if ( !ACC && A4 && C4 && (P==9 || P==8) ) Q=14; // HQ muon, slight bend
 else if ( !ACC && A4 && C4 && (P==7 \mid \mid P==6) ) Q=13; // HQ muon, more
 else if ( !ACC && A4 && C4 && (P==5 \mid \mid P==4) ) Q=12; // HQ muon, more
 else if ( !ACC && A4 && C4 && (P==3 \mid \mid P==2) ) Q=11; // HQ muon, more
 //
                                               Q=10; // reserved for HQ muons with future patterns
 //
                                               Q=9; // reserved for HQ muons with future patterns
 else if ( ACC
                    && A4
                                 && C4 && CPAT ) Q=8; // HQ muon, but accel ALCT
 else if (
                  A && !A4
                                 && C4 && CPAT ) Q=7; // HQ cathode, but marginal anode
 else if (
                    && A4 && C && !C4 && CPAT ) Q=6; // HQ anode, but marginal cathode
 else if (
                  A && !A4 && C && !C4 && CPAT ) Q=5; // marginal anode and cathode
 //
                                                   Q=4; // reserved for LQ muons with 2D information in
the future
                                         && P==1 ) Q=3; // any match but layer CLCT
 else if (
                  A
                           && C
 else if (
                  ! A
                            && C
                                                ) Q=2; // some CLCT, no ALCT (unmatched)
               A
 else if (
                           && !C
                                                ) Q=1; // some ALCT, no CLCT (unmatched)
                                                  Q=0; // should never be assigned
 else
 end
```

MPC Format: Updated For 2019: NEW LCT-MPC FORMAT!!

```
assign mpc0 frame0[6:0]
                                    alct0 key[6:0];
assign mpc0 frame0[10:7]
                            =
                                    clct0 pattern[3:0]; //was clct0 bend[3:0]
assign mpc0_frame0[13:11]
                                   lct0 quality[2:0] * lct0 vpf; //Check VPF requirement!!
assign mpc0_frame0[14]
                                   clct0 QuarterStrip;
assign mpc0 frame0[15]
                                   lct0 vpf; // EighthStrip was proposed
assign mpc0_frame1[7:0]
                                    clct0 key[7:0];
                                    clct0 LR; // was Bend? RENAMED TO LR!!
assign mpc0 frame1[8]
assign mpc0 frame1[9]
                                    clct0 EighthStrip; // HighMultiplicityTrig[0] was proposed;
assign mpc0 frame1[10]
                                    alct0 bxn[0];
assign mpc0 frame1[11]
                                    clct0 bx0 * lct0 vpf; //Check VPF requirement!!
                            =
assign mpc0 frame1[15:12]
                            =
                                    clct0 bend[3:0]; //was csc id[3:0]*lct0 vpf w/VPF requirement
assign mpc1 frame0[6:0]
                                    alct1 key[6:0];
                                    clct0 pattern[4]; //was clct1 bend[0]
assign mpc1 frame0[7]
                            =
assign mpc1 frame0[10:8]
                                    HighMultiplicityTrig[3:1]; //was clct1 bend[3:1]
assign mpc1_frame0[13:11]
                                    lct1_quality[2:0] * lct1_vpf; //Check VPF requirement!!
assign mpc1 frame0[14]
                            =
                                    clct1 QuarterStrip;
                                    lct1_vpf; // EighthStrip was proposed
assign mpc1_frame0[15]
assign mpc1_frame1[7:0]
                                    clct1 key[7:0];
assign mpc1 frame1[8]
                                    clct1 LR; // was Bend? RENAMED TO LR!!
assign mpc1 frame1[9]
                                    clct1 EighthStrip; // HighMultiplicityTrig[1] was proposed;
                            =
assign mpc1 frame1[10]
                                    HighMultiplicityTrig[0]; //was alct1 bxn[0];
                                    clct1 bx0 * lct1 vpf; //Check VPF requirement!!
assign mpc1 frame1[11]
                                    clct1 bend[3:0]; //was csc id[3:0]*lct1 vpf w/VPF requirement
assign mpc1 frame1[15:12]
Transmission to MPC is 1^{st} Frame[31:0] = {mpc1 frame0[15:0],mpc0 frame0[15:0]}
                            2^{nd} Frame[31:0] = {mpc1 frame1[15:0],mpc0 frame1[15:0]}
```

Signal	1st in Time	2 nd in Time	P3Apin	Test Point
mpc_tx[00]	alct_first_key[0]	clct_first_key[0]	A1	TP331-1
mpc_tx[01]	alct_first_key[1]	clct_first_key[1]	B1	TP331-2
mpc_tx[02]	alct_first_key[2]	clct_first_key[2]	D1	TP331-3
mpc_tx[03]	alct_first_key[3]	clct_first_key[3]	E1	TP331-4
mpc_tx[04]	alct_first_key[4]	clct_first_key[4]	A2	TP331-5
mpc_tx[05]	alct_first_key[5]	clct_first_key[5]	B2	TP331-6
mpc_tx[06]	alct_first_key[6]	clct_first_key[6]	D2	TP331-7
mpc_tx[07]	clct_first_pattern[0]	clct_first_key[7]	E2	TP331-8
mpc_tx[08]	clct_first_pattern[1]	clct_first_LR	A3	TP332-1
mpc_tx[09]	clct_first_pattern[2]	clct_first_es	В3	TP332-2
mpc_tx[10]	clct_first_pattern[3]	alct_first_bxn[0]	D3	TP332-3

Signal	1st in Time	2 nd in Time	P3Apin	Test Point
mpc_tx[11]	lct_first_quality[0]	clct_first_bx0_local	E3	TP332-4
mpc_tx[12]	lct_first_quality[1]	clct_first_bend[0]	A4	TP332-5
mpc_tx[13]	lct_first_quality[2]	clct_first_bend[1]	B4	TP332-6
mpc_tx[14]	lct_first_qs	clct_first_bend[2]	D4	TP332-7
mpc_tx[15]	lct_first_vpf	clct_first_bend[3]	E4	TP332-8
mpc_tx[16]	alct_second_key[0]	clct_second_key[0]	A5	TP341-1
mpc_tx[17]	alct_second_key[1]	clct_second_key[1]	B5	TP341-2
mpc_tx[18]	alct_second_key[2]	clct_second_key[2]	D5	TP341-3
mpc_tx[19]	alct_second_key[3]	clct_second_key[3]	E5	TP341-4
mpc_tx[20]	alct_second_key[4]	clct_second_key[4]	A6	TP341-5
mpc_tx[21]	alct_second_key[5]	clct_second_key[5]	B6	TP341-6
mpc_tx[22]	alct_second_key[6]	clct_second_key[6]	D6	TP341-7
mpc_tx[23]	clct_first_pattern[4]	clct_second_key[7]	E6	TP341-8
mpc_tx[24]	high_mult_trig[1]	lct_second_LR	A7	TP342-1
mpc_tx[25]	high_mult_trig[2]	clct_second_es	B7	TP342-2
mpc_tx[26]	high_mult_trig[3]	high_mult_trig[0]	D7	TP342-3
mpc_tx[27]	lct_second_quality[0]	clct_second_bx0_loca	E7	TP342-4
mpc_tx[28]	lct_second_quality[1]	clct_second_bend[0]	A8	TP342-5
mpc_tx[29]	lct_second_quality[2]	clct_second_bend[1]	B8	TP342-6
mpc_tx[30]	lct_second_qs	clct_second_bend[2]	D8	TP342-7
mpc_tx[31]	lct_second_vpf	clct_second_bend[3]	E8	TP342-8

VME REGISTERS

Addressing Modes

TMB2005 responds to A24D16 VME addressing modes:

- Address Modifier 39₁₆, A24 non-privileged mode
- Address Modifier 3D₁₆, A24 supervisor mode

It does not respond to byte-addressing modes, so all valid addresses must be even numbers.

Base Address

TMB2005s "base address" bits A[23:19] select which TMB is being addressed by the VME crate controller. The base address is determined either by the 5 VME-backplane-slot Geographic Address bits or by the Local Address set by two on-board hexadecimal rotary switches. Shunt SH62 selects between Geographic [1-2] and Local [2-3] modes.

- A[23:19] = VME Crate Slot Geographic Address, (Slot= 2 to 21)₁₀ SH62 [1-2]
- A[23:19] = Hexadecimal Switch Address SW2x16+SW1 SH62 [2-3]

Multiple TMBs can be addressed simultaneously using a Global Address:

- $A[23:19] = 26_{10}$ Addresses all TMBs in parallel
- $A[23:19] = 27_{10}$ Address all peripheral crate modules

Boot Register

When geographic addressing is used, the S2/S1 hexadecimal switches should be set to 1Ah, which allows the hardware Boot Register to respond to the slot 26₁₀ global address.

The Boot Register responds to all even VME addresses + base between 70000h and 7FFFEh to allow block-mode VME writes.

List of Register Addresses

The addresses are hexadecimal and should be added to base.

Table 1: List of VME Register Addresses

Address	Register Name	Page	Description
70000	ADR_BOOT	27	Hardware Bootstrap Register
00	ADR_IDREG0		ID Register 0
02	ADR_IDREG1		ID Register 1
04	ADR_IDREG2		ID Register 2
06	ADR_IDREG3		ID Register 3
08	ADR_VME_STATUS		VME Status Register
0A	ADR_VME_ADR0		VME Address read-back
0C	ADR_VME_ADR1		VME Address read-back
0E	ADR LOOPBK		Loop-back Register
10	ADR USR JTAG		User JTAG
12	ADR PROM		PROM
12	MDK_I KOM		I KOM
14	ADR_DDDSM		3D3444 State Machine Register + Clock DCMs
16	ADR_DDD0		3D3444 Delay Chip 0
18	ADR_DDD1		3D3444 Delay Chip 1
1A	ADR_DDD2		3D3444 Delay Chip 2
1C	ADR_DDDOE		3D3444 Delay Chip Output Enables
1E	ADR_RATCTRL		RAT Module Control
20	ADR_STEP		Step Register
22	ADR_LED		Front Panel +On-Board LEDs
24	ADR_ADC		ADCs
26	ADR_DSN		Digital Serials
28	ADR_MOD_CFG		TMB Configuration
2C			
2A 2C 2E	ADR_CCB_CFG ADR_CCB_TRIG ADR_CCB_STAT0		CCB Configuration CCB Trigger Control CCB Status

Address	Register Name I	Page	Description
30	ADR_ALCT_CFG		ALCT Configuration
32	ADR_ALCT_INJ		ALCT Injector Control
34	ADR_ALCT0_INJ		ALCT Injected ALCT0
36	ADR_ALCT1_INJ		ALCT Injected ALCT1
38	ADR_ALCT_STAT		ALCT Sequencer Control/Status
3A	ADR_ALCT0_RCD		ALCT LCT0 Received by TMB
3C	ADR_ALCT1_RCD		ALCT LCT1 Received by TMB
3E	ADR_ALCT_FIFO		ALCT FIFO RAM Status
40	ADR_DMB_MON		DMB Monitored signals
42	ADR_CFEB_INJ		CFEB Injector Control
44	ADR_CFEB_INJ_ADR		CFEB Injector RAM address
46	ADR_CFEB_INJ_WDATA		CFEB Injector Write Data
48	ADR_CFEB_INJ_RDATA		CFEB Injector Read Data
4A	ADR_HCM001		CFEB0 Ly0,Ly1 Hot Channel Mask
4C	ADR_HCM023		CFEB0 Ly2,Ly3 Hot Channel Mask
4E	ADR_HCM045		CFEB0 Ly4,Ly5 Hot Channel Mask
50	ADR_HCM101		CFEB1 Ly0,Ly1 Hot Channel Mask
52	ADR_HCM123		CFEB1 Ly2,Ly3 Hot Channel Mask
54	ADR_HCM145		CFEB1 Ly4,Ly5 Hot Channel Mask
56	ADR_HCM201		CFEB2 Ly0,Ly1 Hot Channel Mask
58	ADR_HCM223		CFEB2 Ly2,Ly3 Hot Channel Mask
5A	ADR_HCM245		CFEB2 Ly4,Ly5 Hot Channel Mask
5C	ADR_HCM301		CFEB3 Ly0,Ly1 Hot Channel Mask
5E	ADR_HCM323		CFEB3 Ly2,Ly3 Hot Channel Mask
60	ADR_HCM345		CFEB3 Ly4,Ly5 Hot Channel Mask
62	ADR_HCM401		CFEB4 Ly0,Ly1 Hot Channel Mask
64	ADR_HCM423		CFEB4 Ly2,Ly3 Hot Channel Mask
66	ADR_HCM445		CFEB4 Ly4,Ly5 Hot Channel Mask
68	ADR_SEQ_TRIG_EN		Sequencer Trigger Source Enables
	_		

Address	Register Name	Page	Description
6A	ADR_SEQ_TRIG_DLY0		Sequencer Trigger Source Delays
6C	ADR_SEQ_TRIG_DLY1		Sequencer Trigger Source Delays
6E	ADR_SEQ_ID		Sequencer Board + CSC ID
70	ADD GEO GLOT		G CLCTC C C
70	ADR_SEQ_CLCT		Sequencer CLCT Configuration
72	ADR_SEQ_FIFO		Sequencer FIFO Configuration
74	ADR_SEQ_L1A		Sequencer L1A Configuration
76	ADR_SEQ_OFFSET0		Sequencer Counter Offsets
78	ADR_SEQ_CLCT0		Sequencer Latched CLCT0
7A	ADR_SEQ_CLCT1		Sequencer Latched CLCT1
7C	ADR_SEQ_TRIG_SRC		Sequencer Trigger Source Read-back
7E	ADR_DMB_RAM_ADR		Sequencer RAM Address
80	ADR_DMB_RAM_WDATA		Sequencer RAM Write Data
82	ADR_DMB_RAM_WDCNT		Sequencer RAM Word Count
84	ADR_DMB_RAM_RDATA		Sequencer RAM Read Data
86	ADR_TMB_TRIG		TMB Trigger Configuration / MPC Accept
88	ADR_MPC0_FRAME0		MPC0 Frame 0 Data sent to MPC
8A	ADR_MPC0_FRAME1		MPC0 Frame 1 Data sent to MPC
8C	ADR_MPC1_FRAME0		MPC1 Frame 0 Data sent to MPC
8E	ADR_MPC1_FRAME1		MPC1 Frame 1 Data sent to MPC
90	ADR MPC INJ		MPC Injector Control
92	ADR_MPC_RAM_ADR		MPC Injector RAM address
94	ADR_MPC_RAM_WDATA		MPC Injector RAM Write Data
96	ADR_MPC_RAM_RDATA		MPC Injector RAM Read Data
98	ADR SCP CTRL		Scope control
9A	ADR SCP RDATA		Scope read data
711	TER_GOT_REFILIT		Scope roud data
9C	ADR_CCB_CMD		CCB TTC Command Generator
9E	ADR BUF STAT0		Buffer Status

Address	Register Name	Page	Description
A0	ADR_BUF_STAT1		Buffer Status
A2	ADR_BUF_STAT2		Buffer Status
A4	ADR_BUF_STAT3		Buffer Status
A6	ADR_BUF_STAT4		Buffer Status
A8	ADR ALCT FIFO1		ALCT Raw hits RAM Control
AA	ADR_ALCT_FIFO2		ALCT Raw hits RAM data
AC	ADR_SEQMOD	<u>55</u>	Sequencer Trigger Modifiers
AE	ADR SEQSM		Sequencer Machine State
B0	ADR SEQCLCTM		Sequencer CLCT msbs
B2	ADR_TMBTIM		TMB Timing for ALCT*CLCT coincidence
B4	ADR_LHC_CYCLE		LHC Cycle period, Maximum BXN+1
B6	ADR RPC CFG		RPC Configuration
B8	ADR RPC RDATA		RPC Sync Mode Read Data
BA	ADR_RPC_RAW_DELAY		RPC Raw Hits Delay + RPC BXN Differences
BC	ADR_RPC_INJ		RPC Injector Control
BE	ADR_RPC_INJ_ADR		RPC Injector RAM Addresses
C0	ADR_RPC_INJ_WDATA		RPC Injector Write Data
C2	ADR_RPC_INJ_RDATA		RPC Injector Read Data
C4	ADR_RPC_TBINS		RPC FIFO Time Bins
C6	ADR_RPC0_HCM		RPC0 Hot Channel Mask
C8	ADR_RPC1_HCM		RPC1 Hot Channel Mask
CA	ADR_BX0_DELAY		BX0 to MPC Delays
CC	ADR_NON_TRIG_RO		Non-triggering Event Enables
СЕ	ADR_SCP_TRIG		Scope Trigger Source Channel
D0	ADR_CNT_CTRL	<u>61</u>	Status Counter Control
D2	ADR_CNT_RDATA	<u>63</u>	Status Counter Data
D4	ADR JTAGSM0		JTAG State Machine Control (reads JTAG PROM)

Address	Register Name	Page	Description
D6	ADR_JTAGSM1		JTAG State Machine Word Count
D8	ADR_JTAGSM2		JTAG State Machine Checksum
DA	ADR VMESM0		VME State Machine Control (reads VME PROM)
DC	ADR VMESM1		VME State Machine Word Count
DE	ADR VMESM2		VME State Machine Checksum
E0	ADR VMESM3		Number of VME Addresses Written by VMESM
E2	ADR_VMESM4		VME State Machine Write-Data Check
E4	ADR_DDDRSM		RAT 3D3444 State Machine Control
E6	ADR_DDDR0		RAT 3D3444 RPC Delays
E8	ADR_UPTIME		Uptime Counter
EA	ADR_BDSTATUS		Board Status Summary
EC	ADR_BXN_CLCT		CLCT BXN At CLCT-Pretrigger
EE	ADR_BXN_ALCT		ALCT BXN At ALCT-Valid-Pattern-Flag
F0	ADR_LAYER_TRIG		Layer-Trigger Mode
F2	ADR_ISE_VERSION		ISE Version + Service Pack
F4	ADR_TEMP0		Pattern Finder Pre-Trigger
F6	ADR_TEMP1		CLCT Separation
F8	ADR_TEMP2		CLCT Separation RAM Data
FA	ADR_PARITY		
FC	ADR_CCB_STAT1		
FE	ADR BXN L1A		CLCT BXN at last L1A arrival
100	ADR_L1A_LOOKBACK		L1A Lookback distance
102	ADR_SEQ_DEBUG		Sequencer debug signals
104	ADR ALCT SYNC CTRL		ALCT sync mode control

Address	Register Name	Page	Description
106	ADR_ALCT_SYNC_TXDATA_1ST		ALCT sync mode transmit data 1st
108	ADR_ALCT_SYNC_TXDATA_2ND		ALCT sync mode transmit data 2 nd
10A	ADR SEQ OFFSET1		Sequencer Counter Offsets Continued
10A 10C	ADR_SEQ_OFFSETT ADR_MINISCOPE		
100	ADR_WIINISCOPE		Internal 16 Channel Digital Miniscope
10E	ADR_PHASER0		ALCT rxd delay digital phase shifter
110	ADR_PHASER1		ALCT txd delay digital phase shifter
112	ADR_PHASER2		CFEB0 rxd delay digital phase shifter
114	ADR_PHASER3		CFEB1 rxd delay digital phase shifter
116	ADR_PHASER4		CFEB2 rxd delay digital phase shifter
118	ADR_PHASER5		CFEB3 rxd delay digital phase shifter
11A	ADR_PHASER6		CFEB4 rxd delay digital phase shifter
11C	ADR DELAY0 INT		CFEB0-3 DDR RxD Interstage delays
11E	ADR DELAY1 INT		CFEB4 DDR RxD Interstage delays Continued
IIL	ADK_DLLATI_INT		CI LD4 DDK KAD Interstage delays Continued
120	ADR_SYNC_ERR_CTRL		Synchronization Error Control
122	ADR_CFEB_BADBITS_CTRL		CFEB Bad Bit Control/Status
124	ADR_CFEB_BADBITS_TIMER		CFEB Bad Bit Check Interval
126	ADR CFEB0 BADBITS LY01		CFEB0 Bad Bits Array
128	ADR CFEB0 BADBITS LY23		CFEB0 Bad Bits Array
12A	ADR_CFEB0_BADBITS_LY45		CFEB0 Bad Bits Array
12C	ADR_CFEB1_BADBITS_LY01		CFEB1 Bad Bits Array
12E	ADR_CFEB1_BADBITS_LY23		CFEB1 Bad Bits Array
130	ADR_CFEB1_BADBITS_LY45		CFEB1 Bad Bits Array
132	ADR_CFEB2_BADBITS_LY01		CFEB2 Bad Bits Array
134	ADR_CFEB2_BADBITS_LY23		CFEB2 Bad Bits Array
136	ADR_CFEB2_BADBITS_LY45		CFEB2 Bad Bits Array

Address	Register Name	Page	Description
138	ADR_CFEB3_BADBITS_LY01		CFEB3 Bad Bits Array
13A	ADR_CFEB3_BADBITS_LY23		CFEB3 Bad Bits Array
13C	ADR_CFEB3_BADBITS_LY45		CFEB3 Bad Bits Array
13E	ADR_CFEB4_BADBITS_LY01		CFEB4 Bad Bits Array
140	ADR_CFEB4_BADBITS_LY23		CFEB4 Bad Bits Array
142	ADR_CFEB4_BADBITS_LY45		CFEB4 Bad Bits Array
144	ADR_ALCT_STARTUP_DELAY		ALCT startup delay milliseconds for Spartan-6
146	ADR_ALCT_STARTUP_STATUS		ALCT startup delay machine status
Virtex-6	VME Registers:		
148	ADR_V6_SNAP12_QPLL		Virtex-6 SNAP12 Serial interface + QPLL status
14A	ADR_V6_GTX_RX_ALL		Virtex-6 GTX common control and status
14C	ADR_V6_GTX_RX0		Virtex-6 GTX0 control and status
14E	ADR_V6_GTX_RX1		Virtex-6 GTX1 control and status
150	ADR_V6_GTX_RX2		Virtex-6 GTX2 control and status
152	ADR_V6_GTX_RX3		Virtex-6 GTX3 control and status
154	ADR_V6_GTX_RX4		Virtex-6 GTX4 control and status
156	ADR_V6_GTX_RX5		Virtex-6 GTX5 control and status
158	ADR_V6_GTX_RX6		Virtex-6 GTX6 control and status
15.4	ADD W. GWGMON		W + CC ADC
15A	ADR_V6_SYSMON		Virtex-6 Sysmon ADC
15C	ADR_V6_CFEB_BADBITS_CTRL		CFEB Bad Bit Control/Status extends Adr 122
15E	ADR_V6_CFEB5_BADBITS_LY01		CFEB5 Bad Bit Array
160	ADR_V6_CFEB5_BADBITS_LY23		CFEB5 Bad Bit Array
162	ADR_V6_CFEB5_BADBITS_LY45		CFEB5 Bad Bit Array
164	ADR_V6_CFEB6_BADBITS_LY01		CFEB6 Bad Bit Array
166	ADR_V6_CFEB6_BADBITS_LY23		CFEB6 Bad Bit Array
168	ADR_V6_CFEB6_BADBITS_LY45		CFEB6 Bad Bit Array

Address	Register Name	Page	Description
16A	ADR_V6_PHASER7		Phaser 7 cfeb5_rxd phase
16C	ADR_V6_PHASER8		Phaser 8 cfeb6_rxd phase
16E	ADR_V6_HCM501		CFEB5 Ly0,Ly1 Hot Channel Mask
170	ADR_V6_HCM523		CFEB5 Ly2,Ly3 Hot Channel Mask
172	ADR_V6_HCM545		CFEB5 Ly4,Ly5 Hot Channel Mask
174	ADR_V6_HCM601		CFEB6 Ly0,Ly1 Hot Channel Mask
176	ADR_V6_HCM623		CFEB6 Ly2,Ly3 Hot Channel Mask
178	ADR_V6_HCM645		CFEB6 Ly4,Ly5 Hot Channel Mask
17A	ADR_V6_EXTEND		DCFEB 7-bit extensions to 5 bit fields in 0x42,68
VME Reg	gisters to access and control FIFOs with	last tr	igger decisions sent to MPCs
17C	ADR_MPC0_FRAME0_FIFO		MPC0 Frame0 Data Sent to MPC stored in FIFO
17E	ADR_MPC0_FRAME1_FIFO		MPC0 Frame1 Data Sent to MPC stored in FIFO
180	ADR_MPC1_FRAME0_FIFO		MPC1 Frame0 Data Sent to MPC stored in FIFO
182	ADR_MPC1_FRAME1_FIFO		MPC1 Frame1 Data Sent to MPC stored in FIFO
184	ADR_MPC_FRAMES_FIFO_CTRL		Control of FIFO Storage for Data Sent to MPC
VME Reg	gisters to access startup timers		
186	ADR_TMB_MMCM_LOCK_TIME		TMB Clock Startup Timer
188	ADR_TMB_POWER_UP_TIME		TMB Power-up Timer
18A	ADR_TMB_LOAD_CFG_TIME		TMB Load Config Timer
18C	ADR_ALCT_PHASER_LOCK_TIME		ALCT Phaser MMCM Lock Timer
18E	ADR_ALCT_LOAD_CFG_TIME		ALCT Load Config Timer
190	ADR_GTX_RST_DONE_TIME		GTX Reset Done Timer
192	ADR_GTX_SYNC_DONE_TIME		GTX Sync Done Timer

Definitions of Register Addresses

Adr 7	O R=ready hard set PCPRAT /mez ock ock					Hardy	vare Bo	otstrap	Registe	r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2
1 P-tdo		hard											
reset RPC/RAT	•	nard											
clock enable vme en	/fpga /en fpga												
reset_alct reset TMB	hard												
reset ALCT													
vme/fpga	sel3	sel2	sel1	sel0	tck	tms	Tdi						
Bit	Dir	Signal	Defau	lt Descri	ption								
[0]	RW				vme to	di							
[1]	RW	jtag_vm	ne2 (tn	ns)	0	vme t	ms						
[2]	RW	jtag_vm	ne3 (tc	k) 0	vme to	ck							
[3]	RW	sel_vme	e0	0	00XX	ALCT	JTAG C	hain					
[4]	RW	sel_vme	e1	0							Ms Chaii	n	
[5]	RW	sel_vme	e2	0					AG chair	1			
[6]	RW	sel_vme		0			PGA Us						
[7]	RW	vme/usr	_	0	1=JTA		-		_	er, 0= fr	om FPG	A	
[8]	RW	hard_re	_	_	0		rd reset						
[9]	RW	hard_re	_	_	0		rd reset						
[10]	RW	/en_fpg	_	_	0				to hard				
[11]	RW	/fpga_v	_						VME c		ds		
[12]	RW	/mez_cl	_		-				nine clo	ck			
[13]	RW	hard_re	_ ^	c 0			to RPC						
[14]	R	vme_rea	-	X			logic in	dicates	ready				
[15]	R	jtag_vm		0 (0	vme to								
[14]	W	unassig		-	No co	nnection	n on PC	В					
[15]	W	unassig	ned	-	No co	nnection	n on PC	В					

Adr 00	ADR IDREGO	ID Register 0
--------	------------	---------------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	ga4	ga3	ga2	ga1	ga0	fvers3	fvers2	fvers1	fvers0	ftype3	ftype2	ftype1	ftype0

Bits	Dir	Typical	Description
[03:00]	R	С	Firmware type, C=Normal CLCT/TMB, D=Debug loopback
[07:04]	R	D	Firmware version code
[12:08]	R	15	Geographic address for this board
[15:13]	R	0	Unassigned

Adr 02 ADR_IDREG1 ID Register 1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
month	day														
msd3	msd2	msd1	msd0	lsd3	lsd2	lsd1	lsd0	msd3	msd2	msd1	msd0	lsd3	lsd2	lsd1	lsd0

Bits	Dir	Typical	Description	
[07:00]	R	09	DD Firmware Version Day	(BCD)
[15:08]	R	04	MM Firmware Version Month	(BCD)

Adr 04 ADR_IDREG2 ID Register 2

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
year digit3	year digit3	year digit3	year digit3	year digit2 3	year digit2 2	year digit2	year digit2 0	year digit1 3	year digit1 2	year digit1	year digit1	year digit0 3	year digit0 2	year digit0	year digit0 0

Bits	Dir	Typical	Description
[15:00]	R	2007	YYYY Firmware Version Year (BCD)

Adr 06 ADR_IDREG3 ID Register 3

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
rev															
code															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Typical	Description
[15:00]	R		Firmware Revcode (as stored in raw hits header)

Adr 08 ADR_VME_STATUS VME Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMB ready	local/ geo	iack	acfail	sysreset	sysfail	sysclk	ds1	as	lword	gap	ga4	ga3	ga2	ga1	ga0

Bits	Dir	Typical	Description
[04:00]	R		Crate slot Geographic Address
[05]	R		Crate slot Geographic Address Parity
[06]	R		VME signal lword
[07]	R		VME signal as
[80]	R		VME signal ds1
[09]	R		VME signal sysclk
[10]	R		VME signal sysfail
[11]	R		VME signal sysreset
[12]	R		VME signal acfail
[13]	R		VME signal iack
[14]	R		1=Address mode set to local, 0=Geographic
[15]	R		1=TMB reports ready to boot register

Adr 0A ADR_VME_ADR0 VME Address Read-Back

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
a15	a14	a13	a12	a11	a10	a9	a8	a7	a6	a5	a4	a3	a2	a1	lword

Bits	Dir	Typical	Description
[15:00]	R	a[15:0]	VME Address captured at last write cycle {a[15:1},lword}

Adr 0C ADR_VME_ADR1 VME Address Read-Back

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMB ready	local/ geo	iack	acfail	sysreset	sysfail	sysclk	ds1	as	lword	gap	ga4	ga3	ga2	ga1	ga0

Bits	Dir	Typical	Description
[07:00]	R	a[23:16]	VME Address captured at last write cycle
[13:08]	R	am[5:0]	VME Address modifier
[15:14]	R	0	Unassigned

Adr 0E ADR_LOOPBK Loop-Back Control Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	dmb tx res 2	dmb tx res 1	dmb tx res 0	gtl_ oe	gtl_ loop	dmb_ oe	dmb_ loop	rpc loop bdtest		rpc_ loop_ rat	alct_ txoe	alct_ rxoe	alct_ loop	cfeb_o e

Bits	Dir	Signal	Default	Description
[00]	R	cfeb_oe	1	1=CFEB output enable
[01]	R	alct_loop	0	0=No ALCT loop-back
[02]	RW	alct_rxoe	1	1=Enable RAT ALCT LVDS receiver, 0=power down
[03]	RW	alct_txoe	1	1=Enable RAT ALCT LVDS transmitter, 0=power down
[04]	R	rpc_loop_rat	0	1=RAT FPGA enters loop-back mode
[05]	R	rpc_loop_bdtest	0	1=En RPC Loop-back (no RAT), used only in bdtest firmware
[06]	R	rpc_loop_tmb	0	1=TMBs RAT backplane ICs loop-back mode
[07]	R	dmb_loop	0	0=No DMB loop-back
[80]	R	dmb_oe	0	0=DMB driver enable
[09]	R	gtl_loop	0	0=No GTL loop-back
[10]	R	gtl_oe	0	0=Enable GTL outputs
[13:11]	RW	dmb_tx_reserved[2:0]	0	dmb_tx[48:46] unused, set to 0
[15:14]	RW			Unassigned

Adr 10 ADR_USR_JTAG User JTAG Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
tdo usr	0	0	0	0	0	0	0		sel3 usr	sel2 usr	sel1 usr	sel0 usr	tck usr	tms usr	tdi usr

Bits	Dir	Signal	Description
[00]	RW	tdi_usr	User JTAG Chain TDI (output from FPGA)
[01]	RW	tms_usr	User JTAG Chain TMS
[02]	RW	tck_usr	User JTAG Chain TCK
[06:03]	RW	sel_usr[3:0]	User JTAG Chain Select, 0=ALCT,1=Mez,2=UserPROMs,3=UserChain
[13:07]	RW		Unassigned
[14]	RW	wr_usr_jtag_dis	1=disable write access to ADR_USR_JTAG, set in Adr D4[11]
[15]	R	tdo_usr	User JTAG Chain TDO (input to FPGA)

Adr 12 ADR_PROM User PROMs Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	prom_	prom1	prom1	prom1	prom0	prom0	prom0	prom_							
	src	ce	oe	clk	ce	oe	clk	led7	led6	led5	led4	led3	led2	led1	led0

Bits	Dir	Signal	Default	Description		
[07:00]	RW	prom_led[7:0]	CD	PROM data bus shared with On-Board LEDs		
[80]	RW	prom0_clk	0	PROM 0 clock		
[09]	RW	prom0_oe	0	PROM 0 output enable		
[10]	RW	prom0_ce	1	PROM 0 /chip_enable		
[11]	RW	prom1_clk	0	PROM 1 clock		
[12]	RW	prom1_oe	0	PROM 1 output enable		
[13]	RW	prom1_ce	1	PROM 1 /chip_enable		
[14]	RW	prom_src	0	Data bus 0=on-board LEDs, 1=enabled PROM		
[15]	RW		0	Unassigned		
		-				

Adr 14 ADR_DDDSM 3D3444 State Machine Control + DCM Lock Status

ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rpc lock	dec lock	mpc lock	alctd lock	alct rxclk lock	tmb clock1 lock	tmb0d lock	tmb clock0 lock	ddd verify	dddsm busy	auto start	serial from	serial to ddd	adr latch	ddd clock	ddd start

Bits	Dir	Signal	Default	Description					
[00]	RW	ddd_start_vme	0	Start DDD State Machine					
[01]	RW	ddd_clock	0	DDD manual-mode clock					
[02]	RW	ddd_adr_latch	1	DDD manual-mode address latch, active low					
[03]	RW	ddd_serial_in	0	Serial data to DDD chain					
[04]	RW	ddd_serial_out	0	Serial data from DDD chain					
[05]	RW	ddd_auto_start	1	DDD State Machine autostart state					
[06]	R	ddd_busy	0	DDD State Machine busy					
[07]	R	ddd_verify_ok	1	DDD data read back verified OK					
[08]	R	lock_tmb_clock0	1	TMB clock 0 DCM locked					
[09]	R	lock_tmb_clock0d	1	TMB clock 0d DCM locked					
[10]	R	lock_tmb_clock1	1	TMB clock 1 DCM locked					
[11]	R	lock_alct_rxclock	1	ALCT rxclock DCM locked					
[12]	R	lock_alct_clockd	1	ALCT rxclockd DCM locked					
[13]	R	lock_mpc_clock	1	CFEB rxd clock DCM locked (was mpc)					
[14]	R	lock_dcc_clock	1	DCC clock DCM locked					
[15]	R	lock_rpc_clock	1	RPC clock DCM locked					

Adr 16	ADR DDD0	3D3444 Chip 0 Delays, 1 step = $2ns$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
delay_	delay	delay_c	delay_												
ch3	ch3	ch3	ch3	ch2	ch2	ch2	ch2	ch1	ch1	ch1	ch1	ch0	_ch0	h0	ch0

Bits	Dir	Signal	Default	Description
[03:00]	RW	delay_ch0[3:0]	0	alct_tof_delay, shift entire ALCT in clockspace
[07:04]	RW	delay_ch1[3:0]	1	alct_rxclock delay, not used in muonic firmware
[11:08]	RW	delay_ch2[3:0]	6	DMB tx clock
[15:12]	RW	delay_ch3[3:0]	9	RPC tx clock

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
delay_	delay	delay_c	delay_												
ch7	ch7	ch7	ch7	ch6	ch6	ch6	ch6	ch5	ch5	ch5	ch5	ch4	_ch4	h4	ch4

Bits	Dir	Signal	Default	Description
[03:00]	RW	delay_ch4[3:0]	0	tmb_clock1, not used
[07:04]	RW	delay_ch5[3:0]	0	mpc_clock not used
[11:08]	RW	delay_ch6[3:0]	0	cfeb_tof_delay, shift all cfebs in clockspace
[15:12]	RW	delay_ch7[3:0]	7	CFEB 0 clock

Adr 1A ADR_DDD2 3D3444 Chip 2 Delays, 1 step = 2ns

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
delay_	delay	delay_c	delay_												
ch11	ch11	ch11	ch11	ch10	ch10	ch10	ch10	ch9	ch9	ch9	ch9	ch8	_ch8	h8	ch8

Bits	Dir	Signal	Default	Description
[03:00]	RW	delay_ch8[3:0]	7	CFEB 1 clock
[07:04]	RW	delay_ch9[3:0]	7	CFEB 2 clock
[11:08]	RW	delay_ch10[3:0]	7	CFEB 3 clock
[15:12]	RW	delay_ch11[3:0]	7	CFEB 4 clock

Adr 1C ADR_DDDOE 3D3444 Chip Output Enables

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	cfeb 4	cfeb	cfeb 2	cfeb	cfeb 0	dec	mpc	tmb1	rpc tx	dmb tx	alct rx	alct tx

Bits Dir Signal Default	Description
-------------------------	-------------

[11	L:00]	RW	ddd_oe[11:0]	FFF	Bit(n)=1=Enable DDD output channel n
[15	5:12]	RW	Unassigned	0	Unassigned

Adr 1E ADR_RATCTRL RAT Module Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	rpc dsn en	rpc free	rpc lptm	rpc posneg	rpc sync

Bits	Dir	Signal	Default	Description
[0]	RW	rpc_sync	0	1=RPC 80MHz sync pattern mode
[1]	RW	rpc_posneg	0	1=shift RPC data ½ cycle in RAT FPGA + dsn
[2]	RW	rpc_lptmb	0	Not used (for matching rpc_tx array)
[3]	RW	rpc_free_tx[0]	0	Unassigned
[4]	RW	rat_dsn_en	0	1=Enable RAT dsn readout
[15:5]	RW		0	Unassigned

Adr 20 ADR_STEP Clock Single-Step + Hard Resets

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	/tmb hard	/alct hard	alct clken	cfeb4 clken	cfeb3 clken	cfeb2 clken	cfeb1 clken	cfeb0 clken	step run	step cfeb	step rpc	step dmb	step alct

Bits	Dir	Signal	Default	Description
[00]	RW	step_alct	0	Step ALCT clock
[01]	RW	step_dmb	0	Step DMB clock
[02]	RW	step_rpc	0	Step RPC clock
[03]	RW	step_cfeb	0	Step CFEB clock
[04]	RW	step_run	0	0=run mode, 1=step clocks
[05]	RW	cfeb_clock_en0	1	1=enable CFEB0 clock
[06]	RW	cfeb_clock_en1	1	1=enable CFEB1 clock
[07]	RW	cfeb_clock_en2	1	1=enable CFEB2 clock
[80]	RW	cfeb_clock_en3	1	1=enable CFEB3 clock
[09]	RW	cfeb_clock_en4	1	1=enable CFEB4 clock
[10]	RW	alct_clock_en	1	1=enable ALCT clock
[11]	RW	/alct_hard_reset_en	1	1=disable ALCT hard reset
[12]	RW	/tmb_hard_reset_en	1	1=disable TMB hard reset
[15:13]	RW		0	Unassigned

Adr 22 ADR_LED Front Panel + On-Board LED Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
led bd7	led bd6	led bd5	led bd4	led bd3	led bd2	led bd1	led bd0	VME	NL1A	NMAT	INVP	L1A	CLCT	ALCT	LCT

Bits	Dir	Signal	Color	Description
[00]	RW	led_fp_lct	Blue	LCT TMB matched ALCT+CLCT
[01]	RW	led_fp_lct	Green	ALCT found a muon
[02]	RW	led_fp_clct	Green	CLCT found a muon
[03]	RW	led_fp_l1a	Green	L1A level 1 accept
[04]	RW	led_fp_invp	Amber	INVP invalid pattern after CSC drift
[05]	RW	led_fp_nmat	Amber	NMAT no match after ALCT or CLCT triggered
[06]	RW	led_fp_nl1a	Red	NL1A no L1A after trigger
[07]	RW	led_fp_vme	Green	VME power-up = on, off=vme access flash
[80]	RW	led_bd0	Blue	Buffer busy[0]
[09]	RW	led_bd1	Green	Buffer busy[1]
[10]	RW	led_bd2	Green	Buffer busy[2]
[11]	RW	led_bd3	Green	Buffer busy[3]
[12]	RW	led_bd4	Green	Buffer busy[4]
[13]	RW	led_bd5	Green	Buffer busy[5]
[14]	RW	led_bd6	Green	Buffer busy[6]
[15]	RW	led_bd7	Red	Buffer busy[7]

Adr 24 ADR_ADC ADC + Power Comparator Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	smb data	smb clk	ADC /cs	ADC din	ADC sclock	ADC dout	/tcrit	V1.5	V1.8	V3.3	V5.0

Bits	Dir	Signal	Typical	Description
[00]	R	vstat_5p0v	1	1 = 5.0V power supply OK
[01]	R	vstat_3p3v	1	1 = 3.3 V power supply OK
[02]	R	vstat_1p8v	1	1 = 1.8V power supply OK
[03]	R	vstat_1p5v	1	1 = 1.5V power supply OK
[04]	R	/t_crit	1	1 = FPGA and Board Temperature OK
[05]	R	adc_dout	0	Voltage monitor ADC serial data receive
[06]	RW	adc_sclock	0	Voltage monitor ADC serial clock

[07]	RW	adc_din	0	Voltage monitor ADC serial data transmit
[08]	RW	/adc_cs	1	Voltage monitor ADC chip select
[09]	RW	smb_clk	0	Temperature monitor ADC serial clock
[10]	RW	smb_data	1	Temperature monitor ADC serial data, open drain
[15:11]	RW		0	Unassigned

Adr 26 ADR_DSN Digital Serial Numbers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	RAT	RAT	RAT	RAT	RAT	Mez	Mez	Mez	Mez	Mez	TMB	TMB	TMB	TMB	TMB
	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN	DSN
	Data	Busy	Init	Write	Start	Data	Busy	Init	Write	Start	Data	Busy	Init	Write	Start

Bits	Dir	Signal	Default	Description
[00]	RW	tmb_sn_start	0	TMB Digital serial SM start
[01]	RW	tmb_sn_write	0	TMB Digital serial write pulse
[02]	RW	tmb_sn_init	0	TMB Digital serial Init pulse
[03]	R	tmb_sn_busy	-	TMB State DSN State Machine busy
[04]	R	tmb_sn_data	-	TMB State DSN read data
[05]	RW	mez_sn_start	0	Mez Digital Serial State Machine start
[06]	RW	mez_sn_write	0	Mez Digital Serial Write pulse
[07]	RW	mez_sn_init	0	Mez Digital Serial Init pulse
[80]	R	mez_sn_busy	-	Mez State DSN State Machine busy
[09]	R	mez_sn_data	-	Mez State DSN read data
[10]	RW	rat_sn_start	0	RAT Digital Serial State Machine start
[11]	RW	rat_sn_write	0	RAT Digital Serial Write pulse
[12]	RW	rat_sn_init	0	RAT Digital Serial Init pulse
[13]	R	rat_sn_busy	-	RAT State DSN State Machine busy
[14]	R	rat_sn_data	-	RAT State DSN read data
[15]	RW	-	0	Unassigned

Adr 28 ADR_MOD_CFG TMB Module Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mez done	ddd auto	power up	global reset enable	cfeb6 exists	cfeb5 exists	cfeb4 exists	cfeb3 exists	cfeb2 exists	cfeb1 exists	cfeb0 exists	bdled cylon	bdled vme	fpled flash	fpled cylon	fpled vme

Bits	Dir	Signal	Default	Description
[00]	RW	led_fp_src_vme	0	1=Front Panel LEDs sourced from VME register
[01]	RW	led_fp_cylon	0	1=FP LED Cylon mode, cool
[02]	RW	led_flash_on_stop	1	1=Flash Front Panel LEDs on TTT stop_trigger
[03]	RW	led_bd_src_vme	0	1=On-Board LEDs sourced from VME register
[04]	RW	led_bd_cylon	0	1=BD LED Cylon mode, cool
[11:5]	R	cfeb_exists[6:0]	7F	CFEB(n) instantiated in this firmware version

[12]	RW	global_reset_en	1	1=fire global reset if main DLL loses lock
[13]	R	power_up		Power-up FF
[14]	R	ddd_autostart		1=3D3444 auto-start enabled, copy of Adr14[05]
[15]	R	mez_done		1=Mezzanine FPGA loaded from PROM

Adr 2A ADR_CCB_CFG CCB Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
adb pulse async	adb pulse sync	alct hard reset	tmb hard reset	tmb resout 2	tmb resout	tmb resout 0	tmb res1	tmb res0	lla vme	clct status en	alct status en	ccb status oe	int 11aen	disabl tx	ignore rx

Bits	Dir	Signal	Default	Description
[00]	RW	ccb_ignore_rx	0	1=Ignore Received CCB backplane inputs
[01]	RW	ccb_disable_tx	0	1=Disble transmitted CCB backplane outputs
[02]	RW	ccb_int_l1a_en	0	1=Enable internal L1A emulator
[03]	RW	ccb_status_oe_vme	0	1=Enable ALCT+CLCT status to CCB front panel
[04]	RW	alct_status_en	0	1=Enable ALCT status GTL outputs (req [03]=1)
[05]	RW	clct_status_en	0	1=Enable CLCT status GTL outputs (req [03]=1)
[06]	RW	l1accept_vme	0	1=fire ccb_l1accept oneshot
[08:07]	R	tmb_reserved[1:0]		Future use
[11:09]	R	tmb_reserved_out[2:0]		Future use
[12]	R	tmb_hard_reset		Reload TMB FPGA
[13]	R	alct_hard_reset		Reload ALCT FPGA
[14]	R	alct_adb_pulse_sync		ALCT synchronous test pulse from CCB
[15]	R	alct_adb_pulse_async		ALCT asynchronous test pulse from CCB
[12]	W	vme_evcntres	0	Event counter reset ccb_evcntres
[13]	W	vme_bcntres	0	Bunch crossing reset ccb_bcntres
[14]	W	vme_bx0	0	Bx0 signal ccb_bx0
[15]	W	vme_bx0_emu_en	0	Bx0 Emulator enable

Adr 2C ADR_CCB_TRIG CCB Trigger Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
lla	l1a	l1a	l1a	l1a	lla	lla	lla	Ignore	ccb	ext	clct	alct	seq	clct	alct
delay	start/	exttrig	trig	ext trg	ext trg	trig	ext trg	ext trg							
vme7	vme6	vme5	vme4	vme3	vme2	vme1	vme0	stop	bypas	both	vme	vme	11aen	llaen	llaen

Bits	Dir	Signal	Default	Description
[00]	RW	alct_ext_trig_l1aen	0	1=Request ccb l1a on alct ext_trig
[01]	RW	clct_ext_trig_l1aen	0	1=Request ccb l1a on clct ext_trig
[02]	RW	seq_trig_l1aen	1	1=Request ccb l1a on sequencer trigger
[03]	RW	alct_ext_trig_vme	0	1=Fire alct_ext_trig oneshot

[04]	RW	clct_ext_trig_vme	0	1=Fire clct_ext_trig oneshot
[05]	RW	ext_trig_both	0	1=clct_ext_trig fires alct + alct fires clct_trig, DC
[06]	RW	ccb_allow_extbypass	0	1=Allow clct_exttrig_ccb when ccb_ignore_rx=1
[07]	RW	ccb_ignore_startstop	0	1=Ignore ttc_trig_start, ttc_trig_stop
[15:08]	RW	11a_delay_vme	7216	Internal L1A delay (not same as sequencer L1A)

Adr 2E ADR_CCB_STAT0 CCB Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ccb bx0	ccb bentrs	ccb res4	ccb res3	ccb res2	ccb qpll locked	ccb ttcrx ready	ccb clock en	ccb cmd7	ccb cmd6	ccb cmd5	ccb cmd4	ccb cmd3	ccb cmd2	ccb cmd1	ccb cmd0

Bits	Dir	Signal	Default	Description
[07:00]	R	ccb_cmd[7:0]		CCB Command word from TTC
[80]	R	ccb_clock40_enable	1	1=TMB 40MHz clock from CCB enabled
[09]	R	ccb_reserved[0]	1	ccb_ttcrx_ready TTC ready signal from CCB
[10]	R	ccb_reserved[1]	1	ccb_qpll_locked PLL locked signal from CCB
[13:09]	R	ccb_reserved[4:2]		Future use
[14]	R	ccb_bcntres		Bunch counter reset from CCB (backplane)
[15]	R	ccb_bx0		Bunch crossing 0 from CCB (backplane)

Adr 30 ADR_ALCT_CFG ALCT Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	cfeb muon ic	alct muon ic	alct clk vme	alct clk ccb	alct seq cmd3	alct seq cmd2	alct seq cmd1	alct seq cmd0	assert alct ext inj	assert alct ext trg	alct ext inj en	alct ext trg en

Bits	Dir	Signal	Default	Description
[00]	RW	cfg_alct_ext_trig_en	1	1=Enable alct_ext_trig from CCB
[01]	RW	cfg_alct_ext_inject_en	0	1=Enable alct_ext_inject from CCB
[02]	RW	cfg_alct_ext_trig	0	1=Assert alct_ext_trig
[03]	RW	cfg_alct_ext_inject	0	1=Assert alct_ext_inject
[07:04]	RW	alct_seq_cmd[3:0]	0	ALCT Sequencer command
[08]	RW	alct_clock_en_use_ccb		1=alct_clock_en_vme = ccb_clock40_enable
[09]	RW	alct_clock_en_use_vme		sets alct_clock_en cable signal if [8]=0
[10]	R	alct_muonic	1	ALCT board has independent time-of-flight delay
[11]	R	cfeb_muonic	0	CFEBs have independent time-of-flight delay
[15:12]	RW		0	Unassigned

Adr 32 ADR_ALCT_INJ ALCT Injector Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	inject delay 4	inject delay 3	inject delay 2	inject delay 1	inject delay 0	lla inj ram	alct inj ram	link inject w clct	start inject	clear alct

Bits	Dir	Signal	Default	Description
[00]	RW	alct_clear	0	1=Blank ALCT received data
[01]	RW	alct_inject_mux	0	1=Start ALCT injector State Machine
[02]	RW	alct_sync_clct	0	1=Link ALCT injector with CLCT inject command
[03]	RW	alct_inj_ram_en	0	1=Link ALCT injector to CFEB injector RAM
[04]	RW	11a_inj_ram_en	0	1=Link L1A injector to CFEB injector RAM
[09:05]	RW	alct_inj_delay[4:0]	13	Injector delay
[15:10]	RW		0	Unassigned

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1 st bxn 1	1 st bxn 0	1st key 6	1st key 5	1 st key 4	1st key 3	1st key 2	1 st key 1	1st key 0	1 st amu	1 st qualty 1	1 st qualty 0	1 st vpf

ALCT0 1st Muon To Inject

Bits	Dir	Signal	Default	Description
[00]	RW	alct_first_valid	1	Valid pattern flag
[02:01]	RW	alct_first_quality[1:0]	3	Pattern quality
[03]	RW	alct_first_amu	0	Accelerator muon flag
[10:04]	RW	alct_first_key[6:0]	7	Injected ALCT0 key wire-group
[12:11]	RW	alct_first_bxn[1:0]	1	Injected ALCT0 bunch crossing number
[15:13]	RW		0	Unassigned

Adr 36

ADR_ALCT1_INJ ALCT1 2nd Muon To Inject

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	2 nd bxn 1	2 nd bxn 0	2 nd key 6	2 nd key 5	2 nd key 4	2 nd key 3	2 nd key 2	2 nd key 1	2 nd key 0	2 nd amu	2 nd qualty 1	2 nd qualty 0	2 nd vpf

Bits	Dir	Signal	Default	Description
[00]	RW	alct_second_valid	1	Valid pattern flag
[02:01]	RW	alct_second_quality[1:0]	2	Pattern quality
[03]	RW	alct_second_amu	0	Accelerator muon flag
[10:04]	RW	alct_second_key[6:0]	6110	Injected ALCT1 key wire-group
[12:11]	RW	alct_second_bxn[1:0]	1	Injected ALCT1 bunch crossing number
[15:13]	RW		0	Unassigned

Adr 38

ADR_ALCT_STAT ALCT Sequencer Control/Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
alct txdint delay 3	alct txdint delay 2	alct txdint delay	alct txdint delay 0	0	0	0	0	0	0	0	alct sync eccerr	alct sync eccerr 0	alct ecc blank	alct ecc en	alct cfg done

Bits	Dir	Signal	Default	Description
[00]	R	alct_cfg_done	1	ALCT FPGA loaded from PROM
[01]	RW	alct_ecc_en	1	ALCT ECC trigger data correction enable
[02]	RW	alct_ecc_err_blank	1	Blank alcts with uncorrected ecc errors

[04:03]	R	alct_sync_ecc_err[1:0]	0	ALCT sync-mode ECC error code
[11:05]	RW		0	Unassigned
[15:12]	RW	alct_txd_int_delay[3:0]	0	Delay data transmitted to ALCT by integer bx

Adr 3A ADR_ALCT0_RCD ALCT 1st Muon Received by TMB

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1 st bxn 1	1 st bxn 0	1st key 6	1st key 5	1st key 4	1st key 3	1st key 2	1 st key 1	1st key 0	1 st amu	1 st qualty 1	1 st qualty 0	1 st vpf

Bits	Dir	Signal	Typical	Description
[00]	R	alct_first_valid	1	Valid pattern flag
[02:01]	R	alct_first_quality[1:0]	0-3	Pattern quality
[03]	R	alct_first_amu	0	Accelerator muon flag
[10:04]	R	alct_first_key[6:0]	0-111	ALCT0 key wire-group
[12:11]	R	alct_first_bxn[1:0]	0-3	ALCT0 bunch crossing number
[15:13]	R		0	Unassigned

Adr 3C ADR_ALCT1_RCD ALCT 2nd Muon Received by TMB

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	2 nd bxn 1	2 nd bxn 0	2 nd key 6	2 nd key 5	2 nd key 4	2 nd key 3	2 nd key 2	2 nd key 1	2 nd key 0	2 nd amu	2 nd qualty 1	2 nd qualty 0	2 nd vpf

Bits	Dir	Signal	Typical	Description
[00]	R	alct_second_valid	1	Valid pattern flag
[02:01]	R	alct_second_quality[1:0]	0-3	Pattern quality
[03]	R	alct_second_amu	0	Accelerator muon flag
[10:04]	R	alct_second_key[6:0]	0-111	ALCT1 key wire-group
[12:11]	R	alct_second_bxn[1:0]	0-3	ALCT1 bunch crossing number
[15:13]	R		0	Unassigned

Adr 3E ADR_ALCT_FIFO ALCT FIFO RAM Status

(Split with Adr A2 ADR_ALCT_FIFO1 and A4 ADR_ALCT_FIFO2)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	alct data17	alct data16	alct wdcnt 10	alct wdcnt 9	alct wdcnt 8	alct wdent 7	alct wdcnt 6	alct wdcnt 5	alct wdcnt 4	alct wdent 3	alct wdent 2	alct wdcnt 1	alct wdent 0	alct RAM done	alct RAM busy

Bits	Dir	Signal		Description
[00]	R	alct_raw_busy		ALCT raw hits FIFO busy writing ALCT data
[01]	R	alct_raw_done		ALCT raw hits ready for VME readout
[12:02]	R	alct_raw_wdcnt[10:0]		ALCT raw hits word count stored in RAM
[14:13]	R	alct_raw_rdata[17:16]		ALCT raw hits data MSBs
[15]	R		0	Unassigned

Adr 40	ADR DMB MON	DMB Monitored Signals

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	2 nd bxn 1	2 nd bxn 0	2 nd key 6	2 nd key 5	2 nd key 4	2 nd key 3	2 nd key 2	2 nd key 1	2 nd key 0	2 nd amu	2 nd qualty 1	2 nd qualty 0	2 nd vpf

Bits	Dir	Signal	Typical	Description
[02:00]	R	dmb_cfeb_calibrate[2:0]	0	DMB calibration
[03]	R	dmb_l1a_release	0	DMB test
[08:04]	R	dmb_reserved_out[4:0]	0	DMB future use
[11:09]	R	dmb_reserved_in[2:0]	0	DMB future use
[15:12]	R	dmb_rx_ff[3:0]	0	DMB received

Adr 42 ADR_CFEB_INJ CFEB Injector Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj start	inj mask 4	inj mask 3	inj mask 2	inj mask 1	inj mask 0	inj febsel 4	inj febsel 3	inj febsel 2	inj febsel 1	inj febsel 0	mask all cfeb4	mask all cfeb3	mask all cfeb2	mask all cfeb1	mask all cfeb0

Bits	Dir	Signal	Default	Description
[04:00]	RW	mask_all[4:0]	111112	1=Enable, 0=Turn off CFEBn inputs See Adr68 p43
[09:05]	RW	inj_febsel[4:0]	0	1=Select CFEBn for RAM read/write
[14:10]	RW	injector_mask[4:0]	111112	Enable CFEBn for injector trigger
[15]	RW	inj_trig_vme	0	Start pattern injector

Adr 44 ADR_CFEB_INJ_ADR CFEB Injector RAM Address

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj															
adr	ren	ren	ren	wen	wen	wen									
9	8	7	6	5	4	3	2	1	0	2	1	0	2	1	0

Bits	Dir	Signal	Default	Description
[02:00]	RW	inj_wen[2:0]	0	1=Write enable injector RAMn (Ly01,23,45)
[05:03]	RW	inj_ren[2:0]	0	1=Read enable Injector RAMn
[15:06]	RW	inj_rwadr[9:0]	0	Injector RAM read/write address

Adr 46 ADR_CFEB_INJ_WDATA CFEB Injector Write Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1 15 14 13 12 1 11 10 9 8 1 7 6 5 4 1 3 2 1 0	inj															
	wdata															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[07:00]	RW	inj_wdata[7:0]	0	Triad bit for addressed Tbin Ly0 (or 2,4)
[15:08]	RW	inj_wdata[15:8]	0	Triad bit for addressed Tbin Ly1 (or 3,5)

Adr 48 ADR_CFEB_INJ_RDATA CFEB Injector Read Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj															
rdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[07:00]	R	inj_rdata[7:0]	0	Triad bit for addressed Tbin Ly0 (or 2,4)
[15:08]	R	inj_rdata[15:8]	0	Triad bit for addressed Tbin Ly1 (or 3,5)

Adr 4A ADR_HCM001 CFEB0 Ly0,Ly1 Hot Channel Mask

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ly1	ly0														
distrip															
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[07:00]	RW	cfeb0_ly0_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb0_ly1_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 1

Adr 4C ADR_HCM023 CFEB0 Ly2,Ly3 Hot Channel Mask

[07:00]	RW	cfeb0_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb0_ly3_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 3

Adr 4E ADR_HCM045 CFEB0 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb0_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb0_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 50 ADR_HCM101 CFEB1 Ly0,Ly1 Hot Channel Mask

[07:00]	RW	cfeb1_ly0_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb1_ly1_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 1

Adr 52 ADR_HCM123 CFEB1 Ly2,Ly3 Hot Channel Mask

[07:00]	RW	cfeb1_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb1_ly3_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 3

Adr 54 ADR_HCM145 CFEB1 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb1_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb1_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 56 ADR_HCM201 CFEB2 Ly0,Ly1 Hot Channel Mask

[07:00]	RW	cfeb2_ly0_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb2_ly1_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 1

Adr 58 ADR	HCM223	CFEB2 Ly2,Ly3	Hot Channel Mask
------------	--------	---------------	-------------------------

[07:00]	RW	cfeb2_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb2_ly3_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 3

Adr 5A ADR_HCM245 CFEB2 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb2_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb2_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 5C ADR_HCM301 CFEB3 Ly0,Ly1 Hot Channel Mask

[07:00]	RW	cfeb3_ly0_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb3_ly1_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 1

Adr 5E ADR_HCM323 CFEB3 Ly2,Ly3 Hot Channel Mask

[07:00]	RW	cfeb3_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb3_ly3_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 3

Adr 60 ADR_HCM345 CFEB3 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb3_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb3_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 62 ADR_HCM401 CFEB4 Ly0,Ly1 Hot Channel Mask

[07:00]	RW	cfeb4_ly0_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb4_ly1_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 1

Adr 64 ADR_HCM423 CFEB4 Ly2,Ly3 Hot Channel Mask

[07:00]	RW	cfeb4_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb4_ly3_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 3

Adr 66 ADR_HCM445 CFEB4 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb4_ly4_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb4_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 68 ADR_SEQ_TRIG_EN Sequencer Trigger Source Enables **

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeben source	cfeben 4	cfeben 3	cfeben 2	cfeben 1	cfeben 0	all cfebs active	ext trig inject	vme trig	alct ext trig en	clct ext trig en	adb ext trig en	adb ext trig en	alet*elet match trig en	alct pat trig en	clct pat trig en

Bits	Dir	Signal	Default	Description
[00]	RW	clct_pat_trig_en	1	1=Allow CLCT pattern triggers (CLCT Active FEB)
[01]	RW	alct_pat_trig_en	0	1=Allow ALCT pattern triggers (ALCT Active FEB)
[02]	RW	alct_match_trig_en	0	1=ALCT*CLCT pattern triggers
[03]	RW	adb_ext_trig_en	0	1=Allow ADB external triggers from CCB
[04]	RW	dmb_ext_trig_en	0	1=Allow DMB external triggers
[05]	RW	clct_ext_trig_en	0	1=Allow CLCT external triggers (scintillator) from CCB
[06]	RW	alct_ext_trig_en	0	1=Allow ALCT external triggers from CCB
[07]	RW	vme_ext_trig	0	1=Initiate Sequencer trigger (write 0 to recover)
[80]	RW	ext_trig_inject	0	1=Change clct_ext_trig to fire pattern injector
[09]	RW	all_cfebs_active	0	1=Make all CFEBs active when triggered
[14:10]	RW*	cfeb_en	111112	1=Enable CFEB[n] to trigger and send active_feb_flag
[15]	RW	cfeb_en_source	1	1=cfeb_en set by mask_all[4:0] in Adr 42, 0=set by 68

^{*} normally, cfeb_en is copied from mask_all in Adr42 so that masked-off cfebs do not trigger TMB or send active feb to DMB. That prevents the CFEB pattern injector from triggering, so setting_cfeb_en_source=0, allows cfeb_en to be written independently via Adr68[14:10].

Adr 6A ADR_SEQ_TRIG_DLY0 Sequencer Trigger Source Delays

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	adb_ext_trig_dly[3:0]				alct_pat_trig_dly[3:0]			alct_preClct_dly[3:0]				alct_preClct_width[3:0]			
3	2	1	0	3	2	1	0	3	2	1	0	3	2	2	0

Bits	Dir	Signal	Default	Description
[03:00]	RW	alct_preClct_width[3:0]	4	Window width for ALCT*preCLCT overlap (opens with alct_active_feb flag from ALCT)
[07:04]	RW	alct_preClct_dly[3:0]	2 (0)	Delay for ALCT*preCLCT overlap (applied to alct_active_feb flag from ALCT)
[11:08]	RW	alct_pat_trig_dly[3:0]	0	Delay alct0_valid flag from ALCT
[15:12]	RW	adb_ext_trig_dly[3:0]	1	Delay adb_ext_trig from CCB

Adr 6C ADR_SEQ_TRIG_DLY1 Sequencer Trigger Source Delays

^{**} See adr F0 p68 for layer-trigger mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	alct ext delay 3	alct ext delay 2	alct ext delay	alct ext delay 0	clct ext delay 3	clct ext delay 2	clct ext delay	clct ext delay 0	dmb ext delay 3	dmb ext delay 2	dmb ext delay	dmb ext delay 0

Bits	Dir	Signal	Default	Description
[03:00]	RW	dmb_ext_trig_dly[3:0]	1	Delay dmb_ext_trig from DMB
[07:04]	RW	clct_ext_trig_dly[3:0]	7	Delay clct_ext_trig (scintillator) from CCB
[11:08]	RW	alct_ext_trig_dly[3:0]	7	Delay alct_ext_trig from CCB
[15:12]	RW	-	0	Unused

Adr 6E ADR_SEQ_ID Sequencer Board + CSC Ids

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	run id 3	run id 2	run id 1	run id 0	csd id 3	csd id 2	csd id 1	csd id 0	board id 4	board id 3	board id 2	board id 1	board id 0

Bits	Dir	Signal	Default	Description
[04:00]	RW	board_id[4:0]	21	Board ID = VME Slot Geographic Adr
[08:05]	RW	csc_id[3:0]	5	CSC Chamber ID number
[12:09]	RW	run_id[3:0]	0	Run ID number
[15:13]	RW		0	Unassigned

Adr 70 ADR_SEQ_CLCT Sequencer CLCT Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
pretrig halt	drft delay 0	drft delay 0	hit thresh post 2	hit thresh post 1	hit thresh post 0	dmb thresh 2	dmb thresh	dmb thresh 0	hs thresh 2	hs thresh	hs thresh 0	triad persist 3	triad persist 2	triad persist	triad persist 0

Bits	Dir	Signal	Default	Description
[03:00]	RW	triad_persist	6	Triad One-Shot Persistence (6=150ns)
[06:04]	RW	hit_thresh_pretrig[2:0]	4	Pattern hits pre-trigger threshold
[09:07]	RW	dmb_thresh_pretrig[2:0]	4	Minimum pattern hits 0-6 for DMB active-febs
[12:10]	RW	hit_thresh_postdrift[2:0]	4	Minimum pattern hits allowed after drift
[14:13]	RW	drift_delay[1:0]	2	CSC Drift delay, number 25ns clock periods
[15]	RW	pretrig_halt	0	Pretrigger and halt until unhalt arrives

Adr 72 ADR_SEQ_FIFO Sequencer FIFO Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

bcb read enable	0	fifo no raw hits	fifo pretrig 4	fifo pretrig 3	fifo pretrig 2	fifo pretrig 1	fifo pretrig 0	fifo tbins 4	fifo tbins 3	fifo tbins 2	fifo tbins 1	fifo tbins 0	fifo mode 2	fifo mode 1	fifo mode 0
-----------------------	---	---------------------------	----------------------	----------------------	----------------------	----------------------	----------------------	--------------------	--------------------	--------------------	--------------------	--------------------	-------------------	-------------------	-------------------

Bits	Dir	Signal	Default	Description
[02:00]	RW	fifo_mode[2:0]	1	FIFO Mode: 0=no CFEB raw hits full header 1=all CFEB raw hits full header 2=local CFEB raw hits full header 3=no CFEB raw hits short header 4=no CFEB raw hits no header
[07:03]	RW	fifo_tbins[4:0]	7	Number FIFO time bins to read out
[12:08]	RW	fifo_pretrig[4:0]	2	Number FIFO time bins before pretrigger
[13]	RW	fifo_no_raw_hits	0	1=do not wait to store raw hits [a no_daq mode]
[14]	RW		0	Unassigned
[15]	RW	bcb_read_enable	0	1=enable cfeb blocked distrip bits in dmb readout

Adr 74 ADR_SEQ_L1A Sequencer L1A Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
11a intern dly 2	l1a intern dly 1	lla intern dly 0	lla intern	11a windo 3	lla windo 2	11a windo 1	11a windo 0	11a delay 7	l1a delay 6	11a delay 5	lla delay 4	lla delay 3	lla delay 2	lla delay l	11a delay 0

Bits	Dir	Signal	Default	Description
[07:00]	RW	11a_delay[7:0]	12810	Level1 Accept delay from pretrig status output
[11:08]	RW	11a_window[3:0]	3	Level1 Accept window width after delay
[12]	RW	11a_internal	0	Generate internal Level 1, overrides external
[15:13]	RW	11a_internal_dly[2:0]	0	Window position for internal L1A

Adr 76 ADR_SEQ_OFFSET0 Sequencer Counter Offsets

(see Adr10A p72 for L1A bxn offset)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bxn	11a	11a	lla	11a											
offset															
11	10	9	8	7	6	5	4	3	2	1	0	3	2	1	0

Bits	Dir	Signal	Defaul t	Description
[03:00]	RW	11a_offset[3:0]	0	L1A counter preset value
[15:04]	RW	bxn_offset_pretrig[11:0]	0	BXN offset at reset for pretrigger bxn

Adr 78 ADR_SEQ_CLCT0 Sequencer Latched CLCT0 (LSBs)

(Split with Adr B0 ADR_SEQCLCTM)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
hs key 7	hs key 6	hs key 5	hs key 4	hst key 3	hs key 2	hs key 1	hs key 0	hs pid	hs pid	hs pid	hs pid	hs hits 2	hs hits	hs hits	vpf

Bits	Dir	Signal		Typical		Description	
[00]	R	clct0[0]	clct_1st_valid		1		Valid pattern flag
[03:01]	R	clct0[3:1]	hs_hit_1st[2:0]	4-	-6	Hits on pattern: 0 to 6
[07:04]	R	clct0[7:4]	hs_pid_1st[3:0)]	0-	-10	Pattern shape 0 to 10
[15:08]	R	clct0[15:8]	hs_key_1st[7:	0]	0-	-159 ₁₀	Key ½-strip

Adr 7A ADR_SEQ_CLCT1 Sequencer Latched CLCT1 (LSBs)

(Split with Adr B0 ADR_SEQCLCTM)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

hs key 7	hs hs key 6 5	I. I.	hst key ke 3			hs pid	hs pid	hs pid	hs pid	hs hits	hs hits	hs hits	vpf
----------------	---------------	-------	--------------	--	--	--------	--------	--------	--------	---------	---------	---------	-----

Bits	Dir	Signal		Typical	Description
[00]	R	clct1[0] clct	t_2 nd _valid	1	Valid pattern flag
[03:01]	R	clct1[3:1] hs_	hit_2 nd [2:0]	4-6	Hits on pattern: 0 to 6
[07:04]	R	clct1[7:4] hs_	_pid_2 nd [3:0]	0-10	Pattern shape 0 to 10
[15:08]	R	clct1[15:8] hs_	_key_2 nd [7:0]	0-159 ₁₀	Key ½-strip

Adr 7C ADR_SEQ_TRIG_SRC Sequencer Trigger Source Read-back

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	me1b pretrig	mela pre trig	layer trig	vme trig	alct ext trig en	clct ext trig en	adb ext trig en	adb ext trig en	alct*clct pat trig en	alct pat trig en	clct pat trig en

Bits	Dir	Signal	Typical	Description
[00]	R	clct_pat_trig_en	1	CLCT pattern triggered sequencer
[01]	R	alct_pat_trig_en	0	ALCT pattern triggered sequencer
[02]	R	alct_match_trig_en	0	ALCT*CLCT pattern triggered sequencer
[03]	R	adb_ext_trig_en	0	ADB external triggered sequencer
[04]	R	dmb_ext_trig_en	0	DMB external triggered sequencer
[05]	R	clct_ext_trig_en	0	CLCT (CCB scintillator) external triggered sequencer
[06]	R	alct_ext_trig_en	0	ALCT (CCB) external triggered sequencer
[07]	R	vme_ext_trig	0	VME triggered sequencer
[80]	R	layer_trig	0	Layer trigger
[09]	R	me1a_only_pretrig	0	CLCT pattern trigger was on ME1A only
[10]	R	me1b_only_pretrig	0	CLCT pattern trigger was on ME1B only
[13:11]	R		0	Unassigned

Adr 7E ADR_DMB_RAM_ADR Sequencer RAM Address

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dmb wdata 17	dmb wdata 16	dmb reset	dmb wr	dmb adr 11	dmb adr 10	dmb adr 9	dmb adr 8	dmb adr 7	dmb adr 6	dmb adr 5	dmb adr 4	dmb adr 3	dmb adr 2	dmb adr 1	dmb adr 0

Bits	Dir	Signal	Default	Description
[11:00]	RW	dmb_adr[11:0]	0	Raw hits RAM VME read/write address
[12]	RW	dmb_wr	0	Raw hits RAM VME write enable
[13]	RW	dmb_reset	0	Raw hits RAM VME address reset
[15:14]	RW	dmb_wdata[17:16]	0	Raw hits RAM VME write data MSBs

Adr 80 ADR_DMB_RAM_WDATA Sequencer RAM Write Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dmb															
wdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	16

Bits	Dir	Signal	Default	Description
[15:00]	RW	dmb_wdata[15:0]	0	Raw hits RAM VME write data (msb in adr 76)

Adr 82 ADR_DMB_RAM_WDCNT Sequencer RAM Word Count

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	dmb busy	dmb rdata 17	dmb wdata 16	dmb wdcnt 11	dmb wdent 10	dmb wdent 9	dmb wdent 8	dmb wdent 7	dmb wdent 6	dmb wdcnt 5	dmb wdent 4	dmb wdent 3	dmb wdent 2	dmb wdent 1	dmb wdcnt 0

Bits	Dir	Signal	Default	Description
[11:00]	R	dmb_wdcnt[11: 0]	0	Raw hits RAM VME word count
[13:12]	R	dmb_rdata[17:16];	0	Raw hits RAM VME read data MSBs
[14]	R	dmb_busy	0	Raw hits RAM VME
[15]	R		0	Unassigned

Adr 84 ADR_DMB_RAM_RDATA Sequencer RAM Read Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dmb															
rdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	16

Bits	Dir	Signal	Default	Description
[15:00]	R	dmb_rdata[15:0]	0	Raw hits RAM VME read data (msb in adr 7A)

Adr 86 ADR_TMB_TRIG TMB Trigger Configuration / MPC Accept

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mpc oe	mpc idle blank	mpc sel_ttc bx0	mpc reserved	mpc reserved 0	mpc accept 1	mpc accept 0	mpc delay 3	mpc delay 2	mpc delay	mpc delay 0	allow clet+alet match	allow clct only	allow alct only	sync err en 1	sync err en 0

Bits	Dir	Signal	Default	Description
[01:00]	RW	tmb_sync_err_en[1:0]	112	Allow sync_err to MPC for either muon
[02]	RW	tmb_allow_alct	0	Allow ALCT-only L1A (not used in current version)
[03]	RW	tmb_allow_clct	1	Allow CLCT0-only L1A
[04]	RW	tmb_allow_match	1	Allow ALCT+CLCT match pre-trigger
[08:05]	RW	mpc_rx_delay[3:0]	7	MPC accept response delay
[10:09]	R	mpc_accept[1:0]	-	MPC accept latched after delay
[12:11]	R	mpc_reserved[1:0]	-	MPC reserved latched after delay
[13]	RW	mpc_sel_ttc_bx0	1	1=MPC gets ttc_bx0, 0=bx0_local
[14]	RW	mpc_idle_blank	0	1=blank mpc data & bx0 except when triggered
[15]	RW	mpc_oe	1	1=enable outputs to MPC, 0=aset FFs to 1s

Adr 88 ADR_MPC0_FRAME0 MPC0 Frame0 Data Sent to MPC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1st vpf	lct 1st q 3	lct 1st q 2	lct 1st q 1	lct 1 st q 0	clct 1st pat 3	clct 1st pat 2	clct 1st pat 1	clct 1st pat 0	alct 1st wg 6	alct 1st wg 5	alct 1st wg 4	alct 1st wg 3	alct 1st wg 2	alct 1st wg 1	alct 1st wg 0

Bits	Dir	Signal	Typical	Description
[06:00]	R	alct_first_key[6:0]	0-111 ₁₀	ALCT first key wire-group
[10:07]	R	clct_first_pat[3:0]	0-10	CLCT first pattern number
[14:11]	R	lct_first_quality[3:0]	8	LCT first muon quality
[15]	R	first_vpf	1	First valid pattern flag

Adr 8A ADR_MPC0_FRAME1 MPC0 Frame1 Data Sent to MPC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
csc id 3	csc id 2	csc id 1	csc id 0	tmb bx0 local	alct 1st bxn 0	sync err	clct 1st bend	clct 1 st key 7	clct 1st key 6	clct 1st key 5	clct 1st key 4	clct 1st key 3	clct 1st key 2	clct 1st key 1	clct 1st key 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	clct_first_key[7:0]	0-15910	CLCT first muon key ½-strip
[80]	R	clct_first_bend	0	CLCT first muon bend direction
[09]	R	sync_err	0	BXN does not match at BX0
[10]	R	alct_first_bxn[0]	0-1	ALCT first muon bunch crossing number
[11]	R	clct_first_bx0_local	0-1	1=TMBs bxn[11:0]==0
[15:12]	R	csc_id[3:0]	1-9	CSC chamber ID

Adr 8C ADR_MPC1_FRAME0 MPC1 Frame0 Data Sent to MPC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2 nd vpf	lct	lct	lct	lct	clct	clct	clct	clct	alct						
	2 nd q	2 nd q	2 nd q	2 nd q	2 nd pat	2 nd pat	2 nd pat	2 nd pat	2 nd wg						
	3	2	1	0	3	2	1	0	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[06:00]	R	alct_second_key[6:0]	0-111110	ALCT second key wire-group
[10:07]	R	clct_second_pat[3:0]	0-10	CLCT second pattern number
[14:11]	R	lct_second_quality[3:0]	8	LCT second muon quality
[15]	R	second_vpf	1	Second valid pattern flag

Adr 8E ADR_MPC1_FRAME1 MPC1 Frame1 Data Sent to MPC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
csc id 3	csc id 2	csc id 1	csc id 0	tmb bx0 local	alct 2 nd bxn 0	sync err	clct 2 nd bend	clct 2 nd key 7	clct 2 nd key 6	clct 2 nd key 5	clct 2 nd key 4	clct 2 nd key 3	clct 2 nd key 2	clct 2 nd key 1	clct 2 nd key 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	clct_second_key[7:0]	0-15910	CLCT second muon key ½-strip
[80]	R	clct_second_bend	0	CLCT second muon bend direction
[09]	R	sync_err	0	BXN does not match at BX0
[10]	R	alct_second_bxn[0]	0-1	ALCT second muon bunch crossing number
[11]	R	clct_second_bx0_local	0-1	1=TMBs bxn[11:0]==0
[15:12]	R	csc_id[3:0]	1-9	CSC chamber ID

Adr 90 ADR_MPC_INJ MPC Injector Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mpc inj clct bx0	mpc inj alct bx0	mpc reserv	mpc reserv 0	mpc accept 1	mpc accept 0	ttc inj enable	mpc inject	mpc nfram 7	mpc nfram 6	mpc nfram 5	mpc nfram 4	mpc nfram 3	mpc nfram 2	mpc nfram 1	mpc nfram 0

Bits	Dir	Signal	Default	Description
[07:00]	RW	mpc_nframes[7:0]	5	Number frames to inject
[08]	RW	mpc_inject	0	1=Start MPC test pattern injector
[09]	RW	ttc_mpc_inj_en	1	1=Enable injector start by TTC command
[11:10]	R	mpc_accept[1:0]	-	MPC accept stored at injector RAM address
[13:12]	R	mpc_reserved[1:0]	-	MPC reserved stored at injector RAM address
[14]	RW	mpc_inj_alct_bx0	0	1=Fire alct_bx0 one-shot
[15]	RW	mpc_inj_clct_bx0	0	1=Fire clct_bx0 one-shot

Adr 92 ADR_MPC_RAM_ADR MPC Injector RAM Address

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mpc															
adr	ren	ren	ren	ren	wen	wen	wen	wen							
7	6	5	4	3	2	1	0	3	2	1	0	3	2	1	0

Bits	Dir	Signal	Default	Description
[03:00]	RW	mpc_wen[3:0]	0	Select RAM to write
[07:04]	RW	mpc_ren[3:0]	0	Select RAM to read

1					
	[15:08]	RW	mpc_adr[7:0]	0	Injector RAM read/write address

Adr 94 ADR_MPC_RAM_WDATA MPC Injector RAM Write Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mpc															
wdata															
7	6	5	4	3	2	1	0	3	2	1	0	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	RW	mpc_wdata[15:0]	0	MPC Injector RAM write data

Adr 96 ADR_MPC_RAM_RDATA MPC Injector RAM Read Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mpc															
rdata															
7	6	5	4	3	2	1	0	3	2	1	0	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	R	mpc_rdata[15:0]	0	MPC Injector RAM read data

Adr 98 ADR_SCP_CTRL Scope Control

(see Adr9A p50 SCP_RDATA and adr CE p60 SCP_TRIG)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		trig done	waitin for trigger	ram sel 3	ram sel 2	ram sel 1	ram sel 0	tbins 2	tbins	tbins 0	no write	auto	force trig	run stop	trig en

Bits	Dir	Signal	Default	Description
[00]	RW	scp_ch_trig_en	1	1=Enable channel triggers, see AdrCE p60 for ch
[01]	RW	scp_runstop	0	1=Run, 0=Stop
[02]	RW	scp_force_trig	0	1=Force a trigger (to trig: set 0,1,0 in 3 writes)
[03]	RW	scp_auto	0	Sequencer readout mode 1=insert in DMB data
[04]	RW	scp_nowrite	0	1=Preserve initial RAM test pattern for debug
[07:05]	RW	scp_tbins[2:0]	4	Auto mode thins per channel code, actual thins/ch=(scp_thins+1)*64, spans 64-512
[11:08]	RW	scp_ram_sel[3:0]	0	RAM bank address 0-9 for VME readout
[12]	R	scp_waiting	-	Scope waiting for trigger
[13]	R	scp_trig_done	-	Scope triggered, ready for readout
[15:14]	RW	-		Unassigned

Adr 9A ADR_SCP_RDATA Scope Read data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
rdata	radr8	radr7	radr6	radr5	radr4	radr3	radr2	radr1	radr0						
15	14	13	12	11	10	9	rdata8	rdata7	rdata6	rdata5	rdata4	rdata3	rdata2	rdata1	rdata0

Bits	Dir	Signal	Description
[08:00]	W	scp_radr[8:0]	Scope data read address=tbin for selected RAM
[15:00]	R	scp_rdata[15:0]	See channel assignments below

Scope Channel Assignments

```
// Pre-trigger to DMB
assign scp_ch[0] = (clct_sm == pretrig); // Trigger alignment marker, scope triggers on this ch usually
assign scp_ch[1] = triad_tp[0]; // Triad test point at input to raw hits RAM
assign scp_ch[2] = any_cfeb_hit; // Any CFEB over threshold
assign scp_ch[3] = active_feb_flag; // Active feb flag to DMB
assign scp_ch[8:4] = active_feb_list[4:0]; // Active feb list to DMB
```

```
// Pre-trigger Processing
assign scp_ch[13:11] = clct_sm_vec[2:0];  // Pre-trigger state machine
assign scp_ch[14] = wr_buf_ready;  // Write buffer ready
assign scp_ch[15] = (clct_sm == pretrig); // Skip channels 15,31,47,63,79,95,111,127,143,159
assign scp_ch[27:16] = bxn_counter[11:0];  // BXN counter
assign scp_ch[28] = discard_nowrbuf;  // Event discard, no write buffer
```

```
// CLCT Pattern Finder Output

assign scp_ch[29] = 0;

assign scp_ch[30] = 0;

assign scp_ch[31] = (clct_sm == pretrig); // Skip channels 15,31,47,63,79,95,111,127,143,159

assign scp_ch[34:32] = hs_hit_1*[2:0]; // CLCTO number hits after drift

assign scp_ch[38:35] = hs_pid_1*[3:0]; // CLCTO Pattern number

assign scp_ch[46:39] = hs_key_1*[7:0]; // CLCTO %-strip ID number

assign scp_ch[47] = (clct_sm == pretrig); // Skip channels 15,31,47,63,79,95,111,127,143,159

assign scp_ch[50:48] = hs_hit_2*nd[2:0]; // CLCT1 number hits after drift

assign scp_ch[54:51] = hs_pid_2*nd[3:0]; // CLCT1 Pattern number
```

```
// CLCT Builder
assign scp_ch[64] = clct0_really_valid; // CLCT0 is over threshold, not forced by an external trigger
assign scp_ch[65] = clct0_vpf; // CLCT0 vpf
assign scp_ch[66] = clct1_vpf; // CLCT1 vpf
assign scp_ch[67] = clct_push_xtmb; // CLCT sent to TMB matching
assign scp_ch[68] = discard_invp; // CLCT discarded, below threshold after drift
```

```
// TMB Matching
                                         // ALCTO vpf direct from 80MHz receiver, before alct delay
assign scp ch[69] = alct0 valid;
assign scp ch[70] = alct1 valid;
                                        // ALCT1 vpf direct from 80MHz receiver, before alct delay
assign scp ch[71] = alct vpf tprt; // ALCT vpf in TMB after pipe delay, unbuffered real time
assign scp ch[72] = clct vpf tprt;
                                        // CLCT vpf in TMB
assign scp_ch[73] = clct_window_tprt;
                                         // CLCT matching window in TMB
assign scp ch[77:74] = tmb match win[3:0]; // Location of alct in clct window
assign scp ch[78] = tmb alct discard;
                                        // ALCT pair was not used for LCT
assign scp_ch[79] = (clct_sm == pretrig); // Skip channels 15,31,47,63,79,95,111,127,143,15
assign scp_ch[80]
                   = tmb clct discard;
                                          // CLCT pair was not used for LCT
```

```
// L1A
```

```
assign scp_ch[92] = 11a_pulse;  // L1A strobe from ccb or internal
assign scp_ch[93] = 11a_window_open;  // L1A window open duh
assign scp_ch[94] = 11a_match;  // L1A strobe match in window

assign scp_ch[95] = (clct_sm == pretrig);  // Skip channels

15,31,47,63,79,95,111,127,143,159
```

```
// CLCT+TMB Pipelines
       assign scp ch[132:129] = wr buf adr[3:0]; // Event address counter
      assign scp ch[133] = wr push xtmb;
                                                        // Buffer write strobe after drift time
      assign scp ch[137:134] = wr adr xtmb[3:0]; // Buffer write address after drift time
       assign scp ch[138] = wr push rtmb;
                                                         // Buffer write strobe at TMB matching time
       assign scp_ch[142:139] = wr_adr_rtmb[3:0]; // Buffer write address at TMB matching time
                            = (clct_sm == pretrig);
      assign scp_ch[143]
                                                        // Skip channels
15,31,47,63,79,95,111,127,143,159
       assign scp_ch[144] = wr_push_xmpc;
                                                  // Buffer write strobe at MPC xmit to sequencer
       assign scp ch[148:145] = wr adr xmpc[3:0]; // Buffer write address at MPC xmit to sequencer
       assign scp_ch[149] = wr_push_rmpc;
                                                         // Buffer write strobe at MPC received
       assign scp_ch[153:150] = wr_adr_rmpc[3:0]; // Buffer write address at MPC received
```

Adr 9C ADR_CCB_CMD CCB TTC Command Generator (Internal)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ccb cmd 7	ccb cmd 6	ccb cmd 5	ccb cmd 4	ccb cmd 3	ccb cmd 2	ccb cmd	ccb cmd 0	0	fmm state 2	fmm state 1	fmm state 0	subadr strobe	data strobe	brest strobe	dis con ccb

Bits	Dir	Signal	Default	Description				
[00]	RW	vme_ccb_cmd_enable	0	1=Disconnect CCB backplane ccb_cmd[7:0]				
[01]	RW	vme_ccb_cmd_strobe	me_ccb_cmd_strobe 0 1=Assert internal ccb_cmd brcst strobe					
[02]	RW	vme_ccb_data_strobe	0	1=Assert internal ccb_cmd data strobe				
[03]	RW	vme_ccb_subaddr_strobe	0	1=Assert internal ccb_cmd sub-adr strobe				
[06:04]	R	fmm_state[2:0]	-	FMM machine states: 0: fmm_startup 1: fmm_resync 2: fmm_stop 3: fmm_wait_bx0 4: fmm_run				
[07]	RW	-		Unassigned				
[15:08]	RW	vme_ccb_cmd[7:0]	0	TTC command to generate				

Adr 9E ADR_BUF_STAT0 Buffer Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
buffer disp 7	buffer disp 6	buffer disp 5	buffer disp 4	buffer disp 3	buffer disp 2	buffer disp 1	buffer disp 0	buf stalled once	buf q adrerr	buf q udferr	buf q ovferr	buf q empty	buf q full	buf stalled	wr buf ready

Bits	Dir	Signal	Typical	Description
[00]	R	wr_buf_ready	1	Write buffer is ready
[01]	R	buf_stalled	0	Buffer write pointer hit a fence and stalled
[02]	R	buf_q_full	0	All raw hits ram in use, ram writing must stop
[03]	R	buf_q_empty	0	No fences remain in buffer queue
[04]	R	buf_q_ovf_err	0	Tried to push new event when queue full
[05]	R	buf_q_udf_err	0	Tried to pop event when queue empty
[06]	R	buf_q_adr_err	0	Fence adr popped from queue doesn't match expected adr
[07]	R	buf_stalled_once	0	Buffer stalled at least once since last resync
[15:08]	R	buf_display[7:0]	0	Buffer fraction in use, for in-board LED display

Adr A0 ADR_BUF_STAT1 Buffer Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
---	---

0	0	0	0	0	buf adr 10	buf adr 9	buf adr 8	buf adr 7	buf adr 6	buf adr 5	buf adr 4	buf adr 3	buf adr 2	buf adr 1	buf adr 0
				l											

Bits	Dir	Signal	Typical	Description
[10:00]	R	wr_buf_adr[10:0]	-	Current address of event & header write buffer
[15:11]	R	-	0	Unassigned

Adr A2 ADR_BUF_STAT2 Buffer Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	buf fence dist 10	buf fence dist 9	buf fence dist 8	buf fence dist 7	buf fence dist 6	buf fence dist 5	buf fence dist 4	buf fence dist 3	buf fence dist 2	buf fence dist	buf fence dist 0

Bits	3	Dir	Signal	Typical	Description
[10	:00]	R	buf_fence_dist[10:0]	-	Distance to 1st fence address
[15	:11]	R	-	0	Unassigned

Adr A4 ADR_BUF_STAT3 Buffer Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	buf fence cntr 11	buf fence cnt 10	buf fence cnt 9	buf fence cnt 8	buf fence cnt 7	buf fence cnt 6	buf fence cnt 5	buf fence cnt 4	buf fence cnt 3	buf fence cnt 2	buf fence cnt	buf fence cnt 0

Bits	Dir	Signal	Typical	Description
[11:00]	R	buf_fence_cnt[11:0]	-	Number of fences in fence RAM currently
[15:12]	R	-	0	Unassigned

Adr A6 ADR_BUF_STAT4 Buffer Status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	buf fence peak 11	buf fence peak 10	buf fence peak 9	buf fence peak 8	buf fence peak 7	buf fence peak 6	buf fence peak 5	buf fence peak 4	buf fence peak 3	buf fence peak 2	buf fence peak 1	buf fence peak 0

Bits	Dir	Signal	Typical	Description
[11:00]	R	buf_fence_cnt_peak [11:0]	-	Peak number of fences in fence RAM
[15:12]	R	-	0	Unassigned

Adr A8 ADR_ALCTFIFO1 ALCT Raw Hits RAM Control

(Split with Adr 3E ADR_ALCT_FIFO0 and Adr A4 ADR_ALCT_FIFO2)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	alct demux mode	0	alct radr 10	alct radr 9	alct radr 8	alct radr 7	alct radr 6	alct radr 5	alct radr 4	alct radr 3	alct radr 2	alct radr 1	alct radr 0	alct raw reset

Bits	Dir	Signal	Default	Description
[00]	RW	alct_raw_reset	0	Reset ALCT raw hits FIFO controller
[11:01]	RW	alct_raw_radr[10:0]	0	ALCT raw hits RAM read address or demux wd
[12]	RW		0	Unassigned
[13]	RW	alct_demux_mode	0	0=alctfifo2 has RAM data, 1=fifo2=demux data
[15:14]	RW		0	Unassigned

Adr AA ADR_ALCTFIFO2 ALCT Raw Hits RAM data (LSBs)

(Split with Adr 3E ADR_ALCT_FIFO0 and Adr A2 ADR_ALCT_FIFO1)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
alct															
fifo															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	R	alct_raw_rdata[15:0] OR alct_1st_vme[14:1] alct_1st_vme[28:15] alct_2nd_vme[14:1] alct_2nd_vme[28:15]		ALCT FIFO data (msbs in adr_alct_fifo) alct_raw_radr=0 and alct_demux_mode=1 alct_raw_radr=1 alct_raw_radr=2 alct_raw_radr=3

Adr AC ADR_SEQMOD

Sequencer Trigger Modifiers

15 1	14 0	13	12	11	10	9	8	7	6	5	4	3	2
event clear													
vme feb	active												
src veto state	Scint Clear												
scint veto	L1A												
alct only	L1A												
tmb nolla	L1A												
no tmb tmb	L1A												
trig clct	valid												
requir buf	wr												
requir wr	hdr												
cont auto	wrbuf												
clr timer	flush												
3 timer	flush												
2 timer	flush												
1 timer	flush												
0													
Bits	Dir	Signal	Defaul	t Descri	ption								
[03:0	0]	RW	clct_flu	ush_dela	y[3:0]	1	Trigge	r sequen	cer flusl	n state ti	mer		
[04]	RW	wr_but	f_autoclı	r_en	1	1=Ena	ble froze	en buffei	auto cle	ear			
[05]	RW	hdr_wi	_contin	uous	0	1=allow	continuous	header buf	fer writing t	for invalid t	triggers		
[06]	RW	wr_but	f_require	ed	1	Requir	e wr_bu	ffer avai	ilable to	pre-trigg	ger		
[07]	RW	valid_c	clct_requ	iired	1	Requir	e valid (CLCT af	ter drift	delay			
[80]	RW	l1a_all	ow_mat	ch	1	Reado	ut allows	s tmb tri	g pulse i	in L1A v	vindow		
[09]	RW	l1a_all	ow_notr	nb	0	Reado	ut allows	s notmb	trig puls	se in L1A	A windov	W	
[10}	RW	l1a_all	ow_nol1	la	0	Reado	ut allows	s tmb tri	g pulse o	outside I	L1A wind	d	
[11]	RW	l1a_all	ow_alct	only_	0		ALCT-o	-	nts to rea	dout at	L1A		
[12]	RW	_	eto_clr				or veto F						
[13]	R	_	eto_vm				o FF stat						
[14]	RW		feb_src		Active	_	source,	_	-				
[15]	RW	event_	clear_vn	ne	0	Event c	lear for a	ff,clct,m	pc VME	diagnosti	ic register	S	

Adr AE ADR_SEQSM Sequencer Machine State

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	buf_q adr err	buf_q ovf	buf_q empty	buf_q full	read sm 2	read sm 4	read sm 3	read sm 2	read sm	read sm 0	clct sm 2	clct sm 1	clct sm 0

Bits	Dir	Signal		Description
[02:00]	R	clct_sm[2:0]		CLCT Trigger machine state
[07:03]	R	read_sm[4:0]		Readout machine state
[08]	R	buf_q_full		All raw hits ram in use, ram writing must stop
[09]	R	buf_q_empty		No fences remain in buffer queue
[10]	R	buf_q_ovf_err		Tried to push new event when queue full
[11]	R	buf_q_adr_err		Tried to pop event when queue empty
[15:12]	R		0	Unassigned

Adr B0 ADR_SEQCLCTM Sequencer CLCT (MSBs)

(Split with Adr 78 ADR_SEQCLCT0 and Adr 7A ADR_SEQCLCT1)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
sync err	clock lock lost	0	0	0	0	active cfeb 6	active cfeb 5	active cfeb 4	active cfeb	active cfeb 2	active cfeb	active cfeb 0	sync err	clct bxn 1	clct bxn 0

Bits	Dir	Signal	Тур	Description
[01:00]	R	clctc[1:0] bxn_counter	-	Bunch crossing number at pretrigger, common to clct0/1
[02]	R	clctc[2] sync_err	0	BX0 disagrees with BXN counter, common to clct0/1
[9:3]	R	clctf[6:0]	-	Active feb list latched at TMB alct*clct matching time
[13:10]	R		0	Unassigned
[14]	R	clock_lock_lost FF	0	40MHz main clock lost lock, global_reset asserted
[15]	R	sync_err (direct)	0	Sync error: bxn counter==0 does not match bx0

Adr B2 ADR_TMBTIM TMB Timing for ALCT*CLCT Coincidence

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	mpctx delay 3	mpctx delay 2	mpctx delay 1	mpctx delay 0	clct wind 3	clct wind 2	clct wind 1	clct wind 0	alct delay 3	alct delay 2	alct delay 1	alct delay 0

Bits	Dir	Signal	Default	Description
[03:00]	RW	alct_delay[3:0]	1	Delay ALCT for CLCT match window
[07:04]	RW	clct_window[3:0]	3	CLCT match window width

[11:08]	RW	mpc_tx_delay[3:0]	0	MPC transmit delay
[15:12]	RW		0	Unassigned

Adr B4 AD	OR LHC CYCLE	LHC Cycle Period, Maximur	n BXN Count
-----------	--------------	---------------------------	-------------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	lhc cycle 11	lhc cycle 10	lhc cycle 9	lhc cycle 8	lhc cycle 7	lhc cycle 6	lhc cycle 5	lhc cycle 4	lhc cycle 3	lhc cycle 2	lhc cycle 1	lhc cycle 0

Bits	Dir	Signal	Default	Description
[11:00]	RW	lhc_cycle[11:0]	3564	Maximum bxn+1 3564(hDEC) for LHC 924(h39C) for beam test
[15:12]	RW		0	Unassigned

Adr B6 ADR_RPC_CFG RPC Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	rpc done	read bxn 2	read bxn 1	read bxn 0	read bank 1	read bank 0	bxn offset3	bxn offset2	bxn offset1	bxn offset0	read enable	0	0	rpc1 exists	rpc0 exists

Bits	Dir	Signal	Default	Description
[01:00]	RW	rpc_exists[1:0]	3	Bit $(n) = 1 = RPC(n)$ Exists
[03:02]	RW		0	Unused
[04]	RW	rpc_read_enable	1	1=Include Existing RPCs in DMB Readout
[08:05]	RW	rpc_bxn_offset[3:0]	0	RPC BXN offset
[10:09]	RW	rpc_bank[1:0]	0	RPC bank address, for reading rdata sync mode
[13:11]	R	rpc_rbxn[2:0]	-	RPC rdata[18:16] msbs for sync mode, adr 1E
[14]	R	rpc_done	1	RPC FPGA reports configuration done
[15]	RW		0	Unassigned

Adr B8 ADR_RPC_RDATA RPC Raw Hits Sync Mode Read Data

See Adr 1E p33

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
rdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description	
[15:00]	R	rpc_rdata[15:0]	-	RPC RAM read data for sync mode	

Adr BA ADR_RPC_RAW_DELAY RPC Raw Hits Data Delay + RPC BXN Differences

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15	11 10	4 13	8	7	6	5	4	3	2	1	0
---	----	-------	------	---	---	---	---	---	---	---	---	---

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	rpc1 bxn diff3	rpc1 bxn diff2	rpc1 bxn diff1	rpc1 bxn diff0	rpc0 bxn diff3	rpc0 bxn diff2	rpc0 bxn diff1	rpc0 bxn diff0	rpc1 delay 3	rpc1 delay 2	rpc1 delay	rpc1 delay 0	rpc0 delay 3	rpc0 delay 2	rpc0 delay	rpc0 delay 0
--	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	--------------------	--------------------	---------------	--------------------	--------------------	--------------------	---------------	--------------------

Bits	Dir	Signal	Default	Description
[03:00]	RW	rpc0_delay[3:0]	1	RPC0 Raw hits data delay
[07:04]	RW	rpc1_delay[3:0]	1	RPC1 Raw hits data delay
[11:08]	R	rpc0_bxn_diff[3:0];	-	RPC bxn – Offset (in adr B6)
[15:12]	R	rpc1_bxn_diff[3:0];	-	RPC bxn – Offset (in adr B6)

Adr BC ADR_RPC_INJ RPC Injector Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	rpc tbins test	inj rdata 18	inj rdata 17	inj rdata 16	inj wdata 18	inj wdata 17	inj wdata 16	inj sel	delay rat 3	delay rat 2	delay rat 1	delay rat 0	mask rpc	mask rat	mask all

Bits	Dir	Signal	Default	Description
[00]	RW	rpc_mask_all	1	1=Enable RPC Inputs from RAT, 0=disable all
[01]	RW	injector_mask_rat	0	1=Enable RAT for injector fire
[02]	RW	injector_mask_rpc	1	1=Enable RPC injector RAM for injector fire
[06:03]	RW	inj_delay_rat[3:0]	0	CFEB/RPC injectors wait for RAT
[07]	RW	rpc_inj_sel	0	1=Enable injector RAM write
[10:08]	RW	rpc_inj_wdata[18:16]	0	RPC injector write data MSBs, see adr C0 p58
[13:11]	R	rpc_inj_rdata[18:16]	-	RPC injector read data MSBs, see adr C0 p58
[14]	RW	rpc_tbins_test	0	Set write_data=address test mode
[15]	RW		0	Unassigned

Adr BE ADR_RPC_INJ_ADR RPC Injector RAM Addresses

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj adr 7	inj adr 6	inj adr 5	inj adr 4	inj adr 3	inj adr 2	inj adr 1	inj adr 0	0	0	inj ren 1	inj ren 0	0	0	inj wen 1	inj wen 0

Bits	Dir	Signal	Default	Description
[01:00]	RW	rpc_inj_wen[1:0]	0	1=Write enable injector RAMn
[03:02]	RW		0	Unused
[05:04]	RW	rpc_inj_ren[1:0]	0	1=Read enable Injector RAMn
[15:06]	RW	inj_rwadr[9:0]	0	Injector RAM read/write address

Adr C0 ADR_RPC_INJ_WDATA RPC Injector Write Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj															
wdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	RW	rpc_inj_wdata[15:0]	0	RPC RAM write data LSBs (see Adr BC msbs p58)

Adr C2 ADR_RPC_INJ_RDATA RPC Injector Read Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
inj															
rdata															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	R	rpc_inj_rdata[15:0]	-	RPC RAM read data LSBs (see Adr BC msbs p58)

Adr C4 ADR_RPC_TBINS RPC FIFO Time Bins

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	rpc de couple	rpc pre 4	rpc pre 3	rpc pre 2	rpc pre 1	rpc pre 0	rpc tbins 4	rpc tbins 3	rpc tbins 2	rpc tbins 1	rpc tbins 0

Bits	Dir	Signal	Default	Description
[04:00]	RW	fifo_tbins_rpc[4:0]	7	Number RPC FIFO time bins to read out
[09:05]	RW	fifo_pretrig_rpc[4:0]	2	Number RPC FIFO time bins before pretrigger
[10]	RW	rpc_decouple	0	1=Independent rpc tbins, 0=copy cfeb tbins
[15:11]	RW		0	Unused

Adr C6 ADR_RPC0_HCM RPC0 Hot Channel Mask

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
enable pad15	enable pad14	enable pad13	enable pad12	enable pad11	enable pad10	enable pad9	enable pad8	enable pad7	enable pad6	enable pad5	enable pad4	enable pad3	enable pad2	enable pad1	enable pad0

Bits	Dir	Signal	Default	Description
[15:00]	RW	rpc0_hcm[15:0]	FFFF	Bit(n)=1=Enable RPC Pad(n), FFFF=enable all

Adr C8 ADR_RPC1_HCM RPC1 Hot Channel Mask

Bits	Dir	Signal	Default	Description
[15:00]	RW	rpc1_hcm[15:0]	FFFF	Bit(n)=1=Enable RPC Pad(n), FFFF=enable all

Adr CA ADR_BX0_DELAY BX0 to MPC Delays

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	bx0 match	bx0 vpf test	alct bx0 enable	clct bx dly 3	clct bx dly 2	clct bx dly 1	clct bx dly 0	alct bx dly 3	alct bx dly 2	alct bx dly 1	alct bx dly 0

Bits	Dir	Signal	Default	Description
[03:00]	RW	alct_bx0_delay[3:0]	0	ALCT bx0 delay to mpc transmitter
[07:04]	RW	clct_bx0_delay[3:0]	0	CLCT bx0 delay to mpc transmitter
[08]	RW	alct_bx0_enable	1	1=Enable using alct bx0, else copy clct bx0
[09]	RW	bx0_vpf_test	0	Sets clct_bx0=lct0_vpf for bx0 alignment tests
[10]	R	bx0_match	1	1=alct_bx0==clct_bx0, latched at clct_bx0
[15:11]	RW		-	Unused

Adr CC ADR_NON_TRIG_RO Non-Triggering Event Enables + ME1A/B Reversal

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
csc type 3	csc type 2	csc type 1	csc type 0	0	0	reverse me1b	reverse mela	reverse csc	stagger csc	csc me1ab	cnt non me1ab	mpc me1a block	allow match ro	allow clct ro	allow alct ro

Bits	Dir	Signal	Default Type A	Description
[00]	RW	tmb_allow_alct_ro	0	1=Allow ALCT-only non-triggering readout
[01]	RW	tmb_allow_clct_ro	0	1=Allow CLCT-only non-triggering readout
[02]	RW	tmb_allow_match_ro	1	1=Allow ALCT*CLCT non-triggering readout
[03]	RW	mpc_me1a_block	1	Block ME1A LCTs from MPC, still queue for readout
[04]	RW	cnt_non_me1ab_en	1	Allow clct pretrig counters count non me1ab
[05]	R	csc_me1ab	0	1= CSC is ME1A or ME1B. 0=normal CSC
[06]	R	stagger_hs_csc	1	1=Staggered CSC, 0=non-staggered
[07]	R	reverse_hs_csc	0	1=Reversed staggered CSC, non-me1
[80]	R	reverse_hs_me1a	0	1=reversed me1a hstrips
[09]	R	reverse_hs_me1b	0	1=reversed me1b hstrips
[11:10]	RW		0	Free 2
[15:12]	R	csc_type[3:0]	A	Firmware compile type A=Normal CSC B=Reversed CSC C=Normal ME1B, Reversed ME1A D=Reversed ME1B, Normal ME1A

Firmware Compile Type Codes A,B,C,D:

CSC_type	stagger_hs_csc	reverse_hs_csc	reverse_hs_me1a	reverse_hs_me1b	csc_me1ab
A	1	0	0	0	0
В	0	1	0	0	0
С	0	0	1	0	1
D	0	0	0	1	1

Adr CE ADR_SCP_TRIG Scope Trigger Source Channel

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	ch6	ch5	ch4	ch3	ch2	ch1	ch0

Bits	Dir	Signal	Default	Description
[06:00]	RW	trigger_ch[6:0]	0	ch0=trigger on sequencer→ pretrig

[14:07]	RW		0	Unassigned
[15]	RW	scp_ch_overlay	0	0=normal ch assignments, 1=debug assigments

Adr D	0 ADF	R_CNT_CTRI	Statu	s Count	ter Con	trol (See	also AD	R_CNT	_RDAT	A=D2 o	n page <u>6</u>	<u>3</u>)
15 1 ent	14 0	13 12	11	10	9	8	7	6	5	4	3	2
select 6	ent											
select 5 select	ent											
4 select	cnt											
3 select	cnt											
2 select	cnt											
1 select	cnt											
0 adr	cnt											
lsb clr resync	hdr											
clr resync	en											
alct debug	seq											
ovf	alct											
ont ovf on	stop											
ovf shot	snap clear											
all												
Bits	Dir	Signal Defau	ılt Descrip	otion								
[00]	RW	cnt_all_clear	-			unters (al			cntres)			
[01]	RW	cnt_snapshot	-			of curren						
[02]	RW	cnt_stop_on_		0		ll counter						
[03]	R	cnt_any_ovf_	-	-		st 1 alct c				1		
[04]	R	cnt_any_ovf_		1		st 1 seque		unter ove	ernowed	1		
[05]	RW RW	cnt_alct_debu	•		_	lct_err co		on tto	ogyma			
[06]	RW RW	cnt_clear_on_ hdr_clear_on		0 1		ar VME ar header		_	-			
[07]	RW RW	cnt adr lsb	_resylle			elect, 0=		_	•			
[08] [15 : 0			- elect[6:0]	- Counte		er select		<i>i</i>], 1–016	o[∠7.10]			
L ± J • U	~ J	1611 0111_5			Count	or porcet (addi CSS					

Counter Select Addresses

(even cnt_adr_lsb=LSBs, odd cnt_adr_lsb=MSBs)

Address ₁₀	Counter Description	Bits	VME Clears
00	ALCT: alct0 vpf received	30	Y
01	ALCT: alct1 vpf received	30	Y
02	ALCT: alct data structure error	30	Y
03	ALCT: trigger path ECC 1-bit error corrected	30	Y
04	ALCT: trigger path ECC 2-bit error not corrected	30	Y
05	ALCT: trigger path ECC >2-bit error not corrected	30	Y
06	ALCT: trigger path ECC ≥2-bit error not corrected, ALCT data blanked	30	Y

Address ₁₀	Counter Description	Bits	VME Clears
07	ALCT: alct replied ECC 1-bit error corrected	30	Y
08	ALCT: alct replied ECC 2-bit error not corrected	30	Y
09	ALCT: alct replied ECC >2-bit error not corrected	30	Y
10	ALCT: raw hits readout	30	Y
11	ALCT: raw hits readout CRC error	30	Y
12	ALCT: bx0 sent to TMB	30	Y
13	CLCT: Pre-trigger was on any CFEB	30	Y
14	CLCT: Pre-trigger includes a CLCT on CFEB0	30	Y
15	CLCT: Pre-trigger includes a CLCT on CFEB1	30	Y
16	CLCT: Pre-trigger includes a CLCT on CFEB2	30	Y
17	CLCT: Pre-trigger includes a CLCT on CFEB3	30	Y
18	CLCT: Pre-trigger includes a CLCT on CFEB4	30	Y
19	CLCT: Pre-trigger includes a CLCT on CFEB5 (non-zero in OTMB2013 only)	30	Y
20	CLCT: Pre-trigger includes a CLCT on CFEB6 (non-zero in OTMB2013 only)	30	Y
21	CLCT: Pre-trigger was on ME1A CFEB4-6 only (non-zero in OTMB2013 only)	30	Y
22	CLCT: Pre-trigger was on ME1B CFEB0-3 only (non-zero in OTMB2013 only)	30	Y
23	CLCT: Pretrig discarded, no wrbuf available, buffer stalled	30	Y
24	CLCT: Pretrig discarded, no alct in window	30	
25	CLCT: CLCT discarded, clct0 had invalid pattern after drift	30	Y
26	CLCT: CLCT0 passed hit thresh but failed pid thresh after drift	30	Y
27	CLCT: CLCT1 passed hit thresh but failed pid thresh after drift	30	Y
28	CLCT: Bx pre-trigger machine waited for triads to dissipate before rearm	30	Y
29	CLCT: clct0 sent to TMB matching section	30	Y
30	CLCT: clct1 sent to TMB matching section	30	Y
31	TMB: TMB matching accepted a match, alct-only, or elet-only event	30	Y
32	TMB: CLCT*ALCT matched trigger	30	Y
33	TMB: ALCT-only trigger	30	Y
34	TMB: CLCT-only trigger	30	Y

Address ₁₀	Counter Description	Bits	VME Clears
35	TMB: TMB matching rejected event	30	Y
36	TMB: TMB matching rejected event, but queued for non-trigger readout	30	Y
37	TMB: TMB matching discarded an ALCT pair	30	Y
38	TMB: TMB matching discarded a CLCT pair	30	Y
39	TMB: TMB matching discarded CLCT0 from ME1A	30	Y
40	TMB: TMB matching discarded CLCT1 from ME1A	30	Y
41	TMB: Matching found no ALCT	30	Y
42	TMB: Matching found no CLCT	30	Y
43	TMB: Matching found One ALCT	30	Y
44	TMB: Matching found One CLCT	30	Y
45	TMB: Matching found Two ALCTs	30	Y
46	TMB: Matching found Two CLCTs	30	Y
47	TMB: ALCT0 copied into ALCT1 to make 2 nd LCT	30	Y
48	TMB: CLCT0 copied into CLCT1 to make 2nd LCT	30	Y
49	TMB: LCT1 has higher quality than LCT0, error	30	Y
50	TMB: Transmitted LCT0 to MPC	30	Y
51	TMB: Transmitted LCT1 to MPC	30	Y
52	TMB: MPC accepted LCT0	30	Y
53	TMB: MPC accepted LCT1	30	Y
54	TMB: MPC rejected both LCT0 & LCT1	30	Y
55	L1A: L1A received	30	Y
56	L1A: L1A received, TMB in L1A window	30	Y
57	L1A: L1A received, no TMB in window	30	Y
58	L1A: TMB triggered, no L1A in window	30	Y
59	L1A: TMB readouts completed	30	Y
60	L1A: TMB readouts lost by 1-event-per-L1A limit	30	Y
61	STAT: CLCT Triads skipped	30	Y
62	STAT: Raw hits buffer had to be reset due to ovf, error	30	Y

Address ₁₀	Counter Description	Bits	VME Clears
63	STAT: TTC Resyncs received	30	Y
64	STAT: Sync error, bxn!=offset at bx0 arrival or no bx0 at bxn==offset	30	Y
65	STAT: Parity error in CFEB or RPC raw hits RAM, possible SEU	30	Y
Event counte	ers that follow are in the TMB header:		
They are clean D0.	ared via TTC commands, such as event counter reset, and are not via direct VME com	mand	to Adr
66	HDR: Pre-trigger counter	30	N
67	HDR: CLCT counter	30	N
68	HDR: TMB trigger counter	30	N
69	HDR: ALCTs received counter	30	N
70	HDR: L1As received from ccb counter, 12 bits	12	N
71	HDR: Readout counter, 12 bits	12	N
72	HDR: Orbit counter	30	N
73	ALCT: Structure error, Expected alct0[10:1]=0 when alct0_vpf=0	8	Y
74	ALCT: Structure error, Expected alct1[10:1]=0 when alct1_vpf=0	8	Y
75	ALCT: Structure error, Expected alct0_vpf=1 when alct1_vpf=1	8	Y
76	ALCT: Structure error, Expected alct0[10:1]>0 when alct0_vpf=1	8	Y
77	ALCT: Structure error, Expected alct1[10:1]>0 when alct1_vpf=1	8	Y
78	ALCT: Structure error, Expected alct1!=alct0 when alct0_vpf=1	8	Y
79	CCB: TTCrx lock lost	8	Y
80	CCB: qPLL lock lost	8	Y
81	TMB: CLCT pre-trigger and L1A coincidence counter	30	Y
82	TMB: CLCT pre-trigger and ALCT coincidence counter	30	Y
83	CLCT: CFEB0 active flag sent to DMB for readout	30	Y
84	CLCT: CFEB1 active flag sent to DMB for readout	30	Y
85	CLCT: CFEB2 active flag sent to DMB for readout	30	Y
86	CLCT: CFEB3 active flag sent to DMB for readout	30	Y
87	CLCT: CFEB4 active flag sent to DMB for readout	30	Y
88	CLCT: CFEB5 active flag sent to DMB for readout (non-zero in OTMB2013 only)	30	Y
89	CLCT: CFEB6 active flag sent to DMB for readout (non-zero in OTMB2013 only)	30	Y

Address ₁₀	Counter Description	Bits	VME Clears
90	CLCT: CFEB active flag sent to DMB was on ME1A CFEB4-6 only (non-zero in OTMB2013 only)	30	Y
91	CLCT: CFEB active flag sent to DMB was on ME1B CFEB0-3 only (non-zero in OTMB2013 only)	30	Y
92	CLCT: CFEB active flag sent to DMB was on any CFEB	30	Y

Adr I	D2 A	DR_CN'	T_RDA	ATA		Status	s Counte	er Data	(See AD	R_CNT	_CTRL=	=D0 on p	age <u>61</u>)
15	14	13	12	11	10	9	8	7	6	5	4	3	2
1 rdata	0												
15	rdata												
14	rdata												
13	rdata												
12	rdata												
11 10	rdata rdata												
9	rdata												
8	rdata												
7	rdata												
6	rdata												
5 4	rdata rdata												
3	rdata												
2	rdata												
1	rdata												
0													
Bits	Dir	Signal	Defai	ılt Descri	iption								
[15:		R		data[15:0		Data	for selec	eted com	nter (See	ADR (TNT CT	TRL=D0	on nage
	00]	11	VIII_I	uutul 13.0	1	Duta	101 50100	ioa cou	1101 (50)		· · · · _ · ·	ILL DU	on page
<u>61</u>)													

Adr D4 ADR_JTAGSM0 JTAG State Machine Control (reads JTAG PROM)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
throt 3	throt 2	throt	throt 0	dis	jsm jtag oe	jsm ok	vme ready	jsm tck ok	jsm wdent ok	jsm cksum ok	jsm abort	jsm busy	jsmsel/ vsm jtag auto	jsm reset	jsm start

Bits	Dir	Signal	Typical	Description
[00]	RW	jsm_start	0	Manual cycle start command
[01]	RW	jsm_sreset	0	Status signal reset
[02]	RW	jsm_sel	0	1=select new JTAG format, 0=select old format
[03]	R	jsm_busy	0	State machine busy writing
[04]	R	jsm_aborted	0	State machine aborted reading PROM
[05]	R	jsm_cksum_ok	1	Check-sum matches PROM contents
[06]	R	jsm_wdcnt_ok	1	Word count matches PROM contents
[07]	R	jsm_tck_fpga_ok	1	FPGA jtag tck detected
[80]	R	vme_ready	1	TMB VME registers done loading from PROM
[09]	R	jsm_ok	1	JTAG state machine completed without errors
[10]	R	jsm_jtag_oe	0	Enable jtag drivers else tri-state
[11]	RW	wr_usr_jtag_dis	0	1=disable write access to ADR_USR_JTAG adr10
[15:12]	RW	jsm_throttle[3:0]	0	JTAGspeed, 0=fastest,20MHz read,10MHz TCK

Adr D6 ADR_JTAGSM1 JTAG State Machine Word Count

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
wdent 2	wdent	wdent													
15	14	13	12	11	10	9	98	7	6	5	4	3		1	0

Bits	Dir	Signal	Typical	Description
[15:00]	R	jsm_wdcnt[15:0];	-	JTAG PROM word-count bits [15:0]

Adr D8 ADR_JTAGSM2 JTAG State Machine Checksum

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
chain ok	header ok	end ok	tck cnt OK	tck ent 3	tck cnt 2	tck cnt 1	tck cnt 0	cksum 7	cksum 6	cksum 5	cksum 4	cksum 3	cksum 2	cksum 1	cksum 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	jsm_cksum[7:0];	-	jtag state machine checksum
[11:08]	R	tck_fpga_cnt[3:0]	-	fpga jtag chain tck counter

[12]	R	jsm_tckcnt_ok	1	Total TCKs sent maches PROM trailer tck_cnt
[13]	R	jsm_end_ok	1	jtag PROM end marker detected
[14]	R	jsm_header_ok	1	jtag PROM header marker detected
[15]	R	jsm_chain_ok	1	jtag PROM chain marker detected

Adr DA ADR_VMESM0

VME State Machine Control (reads VME PROM)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
throt 3	throt 2	throt	throt 0	vsm phaser auto	vsm path ok	vsm ok	vme ready	vsm jtag auto	vsm wdcnt ok	vsm cksum ok	vsm abort	vsm busy	vsm auto start	vsm sreset	vsm start

Bits	Dir	Signal	Typical	Description
[00]	RW	vsm_start	0	Manual cycle start command
[01]	RW	vsm_sreset	0	Status signal reset
[02]	R	vsm_autostart	1	Auto-start after hard-reset
[03]	R	vsm_busy	0	State machine busy writing
[04]	R	vsm_aborted	0	State machine aborted reading PROM
[05]	R	vsm_cksum_ok	1	Check-sum matches PROM contents
[06]	R	vsm_wdcnt_ok	1	Word count matches PROM contents
[07]	RW*	vsm_jtag_auto	1	JTAG SM autostart after vmesm completes
[80]	R	vme_ready	1	TMB VME registers done loading from PROM
[09]	R	vsm_ok	1	State machine completed without errors
[10]	R	vsm_path_ok	1	State machine wrote 55AAh to ADR_VMESM4
[11]	RW	vsm_phaser_auto	1	Digital phase shifter autostart after vmesm done
[15:12]	RW	vsm_throttle[3:0]	0	VME PROM-read speed control, 0=fastest

^{*} vsm_jtag_auto should be set to 0 to enable U76 testing, otherwise jtagsm will run, and erase U76 data.

Adr DC ADR_VMESM1 VME State Machine Word Count

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
wdent 2	wdent	wdent													
15	14	13	12	11	10	9	98	7	6	5	4	3		1	0

Bits	Dir	Signal	Typical	Description
[15:00]	R	vsm_wdcnt[15:0];	-	VME PROM word-count bits [15:0]

Adr DE ADR_VMESM2 VME State Machine Checksum

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	jtag vec 1	jtag vec 0	fmt err	fmt err	fmt err 2	fmt err	fmt err 0	cksum 7	cksum 6	cksum 5	cksum 4	cksum 3	cksum 2	cksum 1	cksum 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	vsm_cksum[7:0];	-	VME state machine checksum

[08]	R	vsm_fmt_err[0]	0	Missing BC header-begin marker
[09]	R	vsm_fmt_err[1]	0	Missing EC header-end marker
[10]	R	vsm_fmt_err[2]	0	Missing FC data-end marker
[11]	R	vsm_fmt_err[3]	0	Missing FF prom-end marker
[12]	R	vsm_fmt_err[4]	0	Word counter overflow
[14:13]	R	jtag_sm_vec[1:0]	0	JSM JTAG signal State Machine vector
[15]	R		-	unassigned

Adr E0 ADR_VMESM3 Number of VME Addresses Written by VMESM

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	format sm 2	format sm 1	format sm 0	prom sm 3	prom sm 2	prom sm 1	prom sm 0	nvme writes 7	nvme writes 6	nvme writes 5	nvme writes 4	nvme writes 3	nvme writes 2	nvme writes	nvme writes 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	vsm_nvme_writes[7:0]	-	Number of vme addresses written
[11:8]	R	jsm_prom_sm_vec[3:0]	-	JSM PROM State Machine state vector
[14:12]	R	jsm_format_sm_vec[2:0]	-	JSM Data Format Machine state vector
[15]	R		0	unassigned

Adr E2 ADR_VMESM4 VME State Machine Write-Data Check

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
data															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[15:00]	R	vmesm4_rd[15:0]	55AAh	vsm_path_ok=1 if vsm writes 55aa to this adr

Adr E4 ADR_DDDSM RAT 3D3444 State Machine Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
verify	verify dly0	rx	link	oe	oe	oe	oe	verify	sm	auto	serial	serial	adr	dddr	dddr
dly1		phase	tmb	3	2	1	o	ok	busy	start	from	to	latch	clock	start

Bits	Dir	Signal	Default	Description
[00]	RW	dddr_start_vme	0	Start DDDR State Machine
[01]	RW	dddr_clock	0	DDDR manual-mode clock
[02]	RW	dddr_adr_latch	1	DDDR manual-mode address latch, active low
[03]	RW	dddr_serial_in	0	Serial data to DDDR chip
[04]	R	dddr_serial_out	0	Serial data from DDDR chip
[05]	RW	dddr_auto_start	1	DDDR State Machine autostart state
[06]	R	dddr_busy	0	DDDR State Machine busy
[07]	R	dddr_verify_ok	1	DDDR data read back verified OK
[11:08]	RW	dddr_oe[3:0]	00112	3D3444 output enables, 1=enable
[12]	RW	dddr_linktmb	1	1=start RAT machine when starting TMB machine
[13]	RW	dddr_rxphase	1	1=use negative clock edge to latch verify data, 0=posedge

[15:14] RW dddr_verify_dly[1:0] 3 Delay before latching verify data

Adr E6 ADR_DDDR0 RAT 3D3444 RPC Delays, 1 step = 2ns

Bits	Dir	Signal	Default	Description
[03:00]	RW	delay_ch0[3:0]	3	RPC0 rx clock
[07:04]	RW	delay_ch1[3:0]	3	RPC1 rx clock
[11:08]	RW	delay_ch2[3:0]	0	RAT2 rx clock, not used
[15:12]	RW	delay_ch3[3:0]	0	RAT2 rx clock, not used

Adr E8	ADR UPTIME	Uptime Counter
Adr E8	ADR_UPTIME	Uptime Cour

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	up														
	time														
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[04:00]	R	uptime[14:0]	-	Seconds since last hard-reset
[15]	R		0	unassigned

Adr EA ADR_BDSTATUS Board Status Summary (copy of raw-hits header)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
status															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[00]	R	bdstatus_ok	1	Voltages OK, temperature OK, prom-load OK
[01]	R	vstat_5p0V	1	Voltage Comparator +5.0V, 1=OK
[02]	R	vstat_3p3v	1	Voltage Comparator +3.3V, 1=OK
[03]	R	vstat_1p8v	1	Voltage Comparator +1.8V, 1=OK
[04]	R	vstat_1p5v	1	Voltage Comparator +1.5V, 1=OK
[05]	R	/t_crit	1	Temperature ADC Tcritical, 1=OK
[06]	R	vsm_ok	1	VME Machine ran without errors
[07]	R	vsm_aborted	0	VME State machine aborted reading PROM
[80]	R	vsm_cksum_ok	1	VME Check-sum matches PROM contents
[09]	R	vsm_wdcnt_ok	1	VME Word count matches PROM contents
[10]	R	jsm_ok	1	JTAG State machine completed without errors
[11]	R	jsm_aborted	0	JTAG State machine aborted reading PROM
[12]	R	jsm_cksum_ok	1	JTAG Check-sum matches PROM contents
[13]	R	jsm_wdcnt_ok	1	JTAG Word count matches PROM contents
[14]	R	jsm_tck_fpga_ok	1	JTAG tck loopback detected on chain adr C
[15]	R	jsm_tckcnt_ok	1	JTAG state machine TCK count matches PROM

Adr EC ADR_BXN_CLCT CLCT BXN At CLCT-Pretrigger

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	clct bxn 11	clct bxn 10	clct bxn 9	clct bxn 8	clct bxn 7	clct bxn 6	clct bxn 5	clct bxn 4	clct bxn 3	clct bxn 2	clct bxn 1	clct bxn 0

Bits	Dir	Signal	Typical	Description
[11:00]	R	bxn_clct_vme[11:0]	-	CLCT BXN latched at last CLCT pretrigger
[15:12]	R		0	unassigned

Adr EE ADR_BXN_ALCT ALCT BXN At ALCT-Valid-Pattern-Flag

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	alct bxn 4	alct bxn 3	alct bxn 2	alct bxn 1	alct bxn 0

Bits	Dir	Signal	Typical	Description
[4:00]	R	bxn_alct_vme[4:0]	-	ALCT BXN latched at last ALCT vpf
[15:5]	R		0	unassigned

Adr F0 ADR_LAYER_TRIG Layer-Trigger Mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
clct throt 7	clct throt 6	clct throt 5	clct throt 4	clct throt 3	clct throt 2	clct throt 1	clct throt 0	0	nlayrs hit 2	nlayrs hit 1	nlayrs hit 0	layer thresh 2	layer thresh	layer thresh 0	layer trig en

Bits	Dir	Signal	Typical	Description
[00]	RW	layer_trigger_en	0	1=Enable layer trigger mode(see adr 68 p43)
[03:01]	RW	lyr_thresh_pretrig[2:0]	4	layer-trigger threshold
[06:04]	R	nlayers_hit_vme[2:0]		number layers hit on last layer-trigger
[07]	RW			Unassigned
[15:08]	RW	clct_throttle[7:0]	0	CLCT Pre-trigger rate throttle

Adr F2 ADR_ISE_VERSION ISE Version

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ver 7	ver 6	ver 5	ver 4	ver 3	ver 2	ver 1	ver 0	minor 3	minor 2	minor 1	minor 0	spack 3	spack 2	spack 1	spack 0

Bits	Dir	Signal	Typical	Description
[03:00]	R	ise_version[3:0]	03h	ISE Service Pack
[07:04]	R	ise_version[7:4]	01h	ISE Minor Version
[15:08]	R	ise_version[15:8]	10h	ISE Major Version

Adr F4 ADR_TEMP0 Pattern Finder Pre-Trigger

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
adj cfeb dist 5	adj cfeb dist 4	adj cfeb dist 3	adj cfeb dist 2	adj cfeb dist 1	adj cfeb dist 0	pid thresh post 3	pid thresh post 2	pid thresh post 1	pid thresh post 0	pid thresh pretrig 3	pid thresh pretrig 2	pid thresh pretrig 1	pid thresh pretrig 0	0	clct blank

Bits	Dir	Signal	Typical	Description
[00]	RW	clct_blanking	1	1=blank non-vpf clct output [requires alct-only or 11a-notmb mode enabled to change this to 0]
[01]	RW		0	Unassigned
[05:02]	RW	pid_thresh_pretrig[3:0]	0	Minimum pattern ID 0x0-0xA for pre-trigger
[09:06]	RW	pid_thresh_postdrift[3:0]	0	Minimum pattern ID 0x0-0xA after drift delay
[15:10]	RW	adjcfeb_dist[5:0]	5	Distance from key on CFEBn to CFEBn+1 to set active feb flag on CFEBn+1 for DMB Setting to 5 enables hs0,1,2,3,4 and hs31,30,29,29,28,27.

Adr F6 ADR_TEMP1 CLCT Separation

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
clct sep 7	clct sep 6	clct sep 5	clct sep 4	clct sep 3	clct sep 2	clct sep 1	clct sep 0	0	clct sep ram sel_ab	clct sep ram adr 3	clct sep ram adr 2	clct sep ram adr 1	clct sep ram adr 0	clct sep ram we	clct sep src

Bits	Dir	Signal	Typical	Description
[00]	RW	clct_sep_src	1	CLCT separation source 1=vme, 0=ram
[01]	RW	clct_sep_ram_we	0	1=enable CLCT separation ram for writing
[05:02]	RW	clct_sep_ram_adr[3:0]	0	CLCT separation RAM rw address 0-F
[06]	RW	clct_sep_ram_sel_ab	0	1=read me1a RAM, 0=me1b RAM or std RAM
[07]	RW			Unassigned
[15:08]	RW	clct_sep_vme[7:0]	10	Minimum CLCT separation in key ½-strips

Adr F8 ADR_TEMP2 CLCT Separation RAM Data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
pspan	nspan														
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[07:00]	RW/R	clct_sep_ram_wr[7:0]	10	nspan CLCT separation RAM data, blanks keys from 1st key to keys>=key-nspan
[15:08]	RW/R	clct_sep_ram_wr[15:8]	10	pspan CLCT separation RAM data, blanks keys from 1st key to keys<=key+pspan

Adr FAADR_PARITY SEU Parity Errors

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
perr mux 5	perr mux 4	perr mux 3	perr mux 2	perr mux 1	perr mux 0	0	0	perr reset	perr ff	perr	perr en	perr adr 3	perr adr 2	perr adr 1	perr adr 0

Bits	Dir	Signal	Typical	Description
[03:00]	RW	perr_adr[3:0]	0	Parity data bank select address
[4]	R	perr_en	1	Parity error latch enabled
[5]	R	perr	0	Parity error summary
[6]	R	perr_ff	0	Parity error summary, latched
[7]	RW	perr_reset	0	Parity error reset
[9:8]	RW		0	Unassigned
[15;10]	R	parity_rd_mux[5:0]	0	Parity data multiplexer, selected by perr_adr[]

```
adr 0: parity rd mux <= perr ram ff[ 5: 0];
                                                             // R cfeb0 rams
adr 1: parity rd mux <= perr ram ff[11: 6];
                                                             // R cfeb1 rams
adr 2: parity_rd_mux <= perr_ram_ff[17:12];</pre>
                                                             // R cfeb2 rams
adr 3: parity rd mux <= perr ram ff[23:18];
                                                            // R cfeb3 rams
adr 4: parity rd mux <= perr ram ff[29:24];
                                                            // R cfeb4 rams
adr 5: parity_rd_mux <= perr_ram_ff[35:30];</pre>
                                                             // R cfeb5 rams
adr 6: parity_rd_mux <= perr_ram_ff[41:36];</pre>
                                                             // R cfeb6 rams
adr 7: parity rd mux <= {1'b0,perr ram ff[46:42]};
                                                            // R rpc rams
adr 8: parity_rd_mux <= {4'h0,perr_ram_ff[48:47]};</pre>
                                                            // R mini rams
adr 9: parity_rd_mux <= {1'b0,perr_cfeb[6:0]};</pre>
                                                            // R cfeb parity errors
adr 10: parity rd mux <= {1'b0,perr cfeb ff[6:0]};</pre>
                                                             // R cfeb parity errors, latched
adr 11: parity_rd_mux <= {4'h0,perr_rpc_ff,perr_rpc};</pre>
                                                             // R
                                                                  rpc parity errors, latched
adr12: parity rd mux <= {4'h0,perr mini ff, perr mini};</pre>
                                                             // R
                                                                    mini parity errors, latched
```

Adr FC ADR_CCB_STAT1 CCB Status Register Continued from Adr 2E

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[00]	R	ccb_ttcrx_lock_never	0	TTCrx lock never achieved
[01]	R	ccb_ttcrx_lost_ever	0	TTCrx lock was lost at least once
[02]	R	ccb_qpll_lock_never	0	QPLL lock never achieved
[03]	R	ccb_qpll_lost_ever	0	QPLL lock was lost at least once

[15:04] R 0 Unassigned	
------------------------	--

Adr FE ADR_BXN_L1A CLCT BXN at L1A Arrival

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	lla bxn 11	lla bxn 10	lla bxn 9	lla bxn 8	lla bxn 7	lla bxn 6	lla bxn 5	lla bxn 4	lla bxn 3	lla bxn 2	lla bxn l	lla bxn 0

Bits	Dir	Signal	Typical	Description
[11:00]	R	bxn_l1a_vme[11:0]	-	CLCT BXN latched at last L1A arrival
[15:12]	R		0	unassigned

Adr 100 ADR_L1A_LOOKBACK L1A Lookback Distance

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
lla win pri en	inj rdata 17	inj rdata 16	inj wdata 17	inj wdata 16	lla look back 10	lla look back 9	lla look back 8	11a look back 7	lla look back 6	lla look back 5	lla look back 4	lla look back 3	lla look back 2	lla look back l	11a look back 0

Bits	Dir	Signal	Typical	Description
[10:00]	RW	lla_lookback[10:0]	128	bx to look back from L1As wr_buf_adr for L1A-only readouts
[12:11]	RW	inj_wdata[17:16]	0	Injector RAM write data MSBs
[14:13]	R	inj_rdata[17:16]	0	Injector RAM read data MSBs
[15]	RW	11a_win_pri_en	1	1=Limit TMB to 1 event readout per L1A

Adr 102 ADR_SEQ_DEBUG Sequencer Debug Signals

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	lla bxn 11	lla bxn 10	lla bxn 9	lla bxn 8	lla bxn 7	lla bxn 6	lla bxn 5	lla bxn 4	lla bxn 3	lla bxn 2	lla bxn l	lla bxn 0

Bits	Dir	Signal	Typical	Description
[03:00]	RW	seqdeb_adr[3:0]	-	Sequencer signal address 0-15
[15:04]	R	seqdeb_rd_mux[11:0]	-	Multiplexed sequencer data for debugging

```
adr 0: deb_wr_buf_adr[10:0]
                                     Buffer write address at last pretrig
adr 1: deb buf push adr[10:0]
                                     Queue push address at last push
adr 2: deb_buf_pop_adr[10:0]
                                     Queue pop address at last pop
adr 3: deb buf push data[11:0]
                                     Queue push data at last push
adr 4: deb_buf_push_data[23:12]
                                       +Queue push data at last push
adr 5: deb_buf_push_data[31:24]
                                       +Queue push data at last push
adr 6: deb_buf_pop_data[11:0]
                                     Queue pop data at last pop
adr 7: deb_buf_pop_data[23:12]
                                       +Queue pop data at last pop
adr 8: deb_buf_pop_data[31:24]
                                       +Queue pop data at last pop
```

Adr 104 ADR_ALCT_SYNC_CTRL

ALCT Sync Mode Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
sync pre 3	sync pre 2	sync pre 1	sync pre 0	0	0	sync 2 nd err ff	sync 1st err ff	sync 2 nd err	sync 1st err	sync clr	sync rand	sync dly 3	sync dly 2	sync dly 1	sync dly 0

Bits	Dir	Signal	Default	Description
------	-----	--------	---------	-------------

[03:00]	RW	alct_sync_rxdata_dly [3:0]	0	Sync mode delay pointer to valid data
[04]	RW	alct_sync_tx_random	0	Sync mode tmb transmits random data to alct
[05]	RW	alct_sync_clr_err	0	ALCT sync mode clear rng error FFs
[06]	R	alct_sync_1st_err	0	1st-in-time match ok, alct-to-tmb
[07]	R	alct_sync_2nd_err	0	2 nd -in-time match ok, alct-to-tmb
[80]	R	alct_sync_1st_err_ff	0	1st-in-time match ok, alct-to-tmb, latched
[09]	R	alct_sync_2nd_err_ff	0	2 nd -in-time match ok, alct-to-tmb, latched
[11:10]	RW		0	Unassigned
[15:12]	RW	alct_sync_rxdata_pre[3:0]	9	Sync mode pre-delay pointer to valid data

Adr 106 ADR_ALCT_SYNC_TXDATA_1ST ALCT Sync Mode Transmit Data 1st

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	sync 1st 9	sync 1st 8	sync 1st 7	sync 1st 6	sync 1st 5	sync 1st 4	sync 1st 3	sync 1st 2	sync 1st 1	sync 1st 0

Bits	Dir	Signal	Typical	Description
[09:00]	RW	alct_sync_txdata_1st[9:0]	-	Sync mode data to send for loopback 1st in time
[15:10]	RW		0	Unassigned

Adr 108 ADR_ALCT_SYNC_TXDATA_2ND ALCT Sync Mode Transmit Data 2nd

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	sync 2 nd 9	sync 2 nd 8	sync 2 nd 7	sync 2 nd 6	sync 2 nd 5	sync 2 nd 4	sync 2 nd 3	sync 2 nd 2	sync 2 nd 1	sync 2 nd 0

Bits	Dir	Signal	Typical	Description
[09:00]	RW	alct_sync_txdata_1st[9:0]	-	Sync mode data to send for loopback 1st in time
[15:10]	RW		0	Unassigned

Adr 10A ADR_SEQ_OFFSET1 Sequencer Counter Offsets Continued [from Adr076]

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C)	0	0	0	bxn offset 11	bxn offset 10	bxn offset 9	bxn offset 8	bxn offset 7	bxn offset 6	bxn offset 5	bxn offset 4	bxn offset 3	bxn offset 2	bxn offset 1	bxn offset 0

Bits	Dir	Signal	Typical	Description
[11:00]	RW	bxn_offset_l1a[11:0]	-	L1A bxn offset preset value
[15:12]	RW		0	Unassigned

Adr 10C ADR_MINISCOPE Internal 16 Channel Digital Miniscope

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	tbins pretrig 4	tbins pretrig 3	tbins pretrig 2	tbins pretrig	tbins pretrig 0	tbins 4	tbins 3	tbins 2	tbins	tbins 0	tbins word nsert	tbins test mode	read enable

Bits	Dir	Signal	Default	Description
[00]	RW	mini_read_enable	1	Enable Miniscope readout to DMB
[01]	RW	mini_tbins_test	0	Miniscope data=write_address, for testing
[02]	RW	mini_tbins_word	1	Insert thins and pretrig thins in 1st word

[07:03]	RW	fifo_tbins_mini[4:0]	22	Number Mini FIFO time bins to read out, must multiple of 2 but not of 4
[12:08]	RW	fifo_pretrig_mini[4:0]	4	Number Mini FIFO time bins before pre-trigger
[15:13]	RW		0	Unassigned

Adr 10E ADR_PHASER0 ALCT rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
alct rxd delay 7	alct rxd delay 6	alct rxd delay 5	alct rxd delay 4	alct rxd delay 3	alct rxd delay 2	alct rxd delay 1	alct rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_alct_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_alct_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_alct_rxd	0	Phase shifter busy
[03]	R	lock_alct_rxd	1	DCM lock status
[06:04]	R	phaser_sm_alct_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	alct_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	alct_rxd_delay[7:0]	32	Phase delay to latch data received from ALCT approximately 0.1ns steps (clock period/256)

Adr 110 ADR_PHASER1 ALCT txd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
alct txd delay 7	alct txd delay 6	alct txd delay 5	alct txd delay 4	alct txd delay 3	alct txd delay 2	alct txd delay	alct txd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_alct_txd	0	Set new phase, software sets then unsets
[01]	RW	reset_alct_txd	0	Reset current phase to 32
[02]	R	phaser_busy_alct_txd	0	Phase shifter busy
[03]	R	lock_alct_txd	1	DCM lock status
[06:04]	R	phaser_sm_alct_txd[2:0]	0	Phase shifter machine state vector
[07]	RW	alct_txd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	alct_txd_delay[7:0]	32	Phase delay for data transmitted to ALCT approximately 0.1ns steps (clock period/256)

Adr 112 ADR_PHASER2 CFEB0 rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay 1	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeb0_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeb0_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeb0_rxd	0	Phase shifter busy
[03]	R	lock_cfeb0_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeb0_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfeb0_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeb0_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 114 ADR_PHASER3 CFEB1 rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay 1	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeb1_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeb1_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeb1_rxd	0	Phase shifter busy
[03]	R	lock_cfeb1_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeb1_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfeb1_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeb1_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 116 ADR_PHASER4 CFEB2 rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeb2_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeb2_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeb2_rxd	0	Phase shifter busy
[03]	R	lock_cfeb2_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeb2_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfeb2_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeb2_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 118 ADR_PHASER5 CFEB3 rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay 1	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeb3_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeb3_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeb3_rxd	0	Phase shifter busy
[03]	R	lock_cfeb3_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeb3_rxd[2:0]	0	Phase shifter machine state
[07]	RW	cfeb3_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeb3_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 11A ADR_PHASER6 CFEB4 rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeb4_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeb4_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeb4_rxd	0	Phase shifter busy
[03]	R	lock_cfeb4_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeb4_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfeb4_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeb4_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 11C ADR_DELAY0_INT CFEB DDR RxD Interstage Delays

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb3	cfeb3	cfeb3	cfeb3	cfeb2	cfeb2	cfeb2	cfeb2	cfeb1	cfeb1	cfeb1	cfeb1	cfeb0	cfeb0	cfeb0	cfeb0
delay															
3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0

Bits	Dir	Signal	Default	Description
[03:00]	RW	cfeb0_rxd_int_delay[3:0]	0	Delay data received from CFEB0 by integer bx
[07:04]	RW	cfeb1_rxd_int_delay [3:0]	0	Delay data received from CFEB1 by integer bx
[11:08]	RW	cfeb2_rxd_int_delay [3:0]	0	Delay data received from CFEB2 by integer bx
[15:12]	RW	cfeb3_rxd_int_delay [3:0]	0	Delay data received from CFEB3 by integer bx

Adr 11E ADR_DELAY1_INT CFEB DDR RxD Interstage Delays Continued

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	cfeb6 delay 3	cfeb6 delay 2	cfeb6 delay 1	cfeb6 delay 0	cfeb5 delay 3	cfeb5 delay 2	cfeb5 delay 1	cfeb5 delay 0	cfeb4 delay 3	cfeb4 delay 2	cfeb4 delay 1	cfeb4 delay 0

Bits	Dir	Signal	Default	Description
[03:00]	RW	cfeb4_rxd_int_delay[3:0]	0	Delay data received from CFEB4 by integer bx
[07:04]	RW	cfeba_rxd_int_delay[3:0]	0	Delay data received from A-side CFEBs by int bx
[11:08]	RW	cfebb_rxd_int_delay[3:0]	0	Delay data received from B-side CFEBs by int bx

[15:12] RW	 0	Unassigned

ADR_SYNC_ERR_CTRL **Adr 120** Synchronization Error Control

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
sync err forced	clock lock err	bx0 match err	alct ecc tx err	alct ecc rx err	clct bx0 err	sync err	err stops L1As	err stops pretrig	err blanks LCTs	clock lock lost en	bx0 match en	alct tx ecc en	alct rx ecc en	clct bx0 en	sync err reset

Bits	Dir	Signal	Default	Description
[00]	RW	sync_err_reset	0	VME sync error reset
Sync err	or source e	enables:	•	
[01]	RW	clct_bx0_sync_err_en	1	TMB clock pulse count err: bxn!=0+offset at ttc_bx0 arrival
[02]	RW	alct_ecc_rx_err_en	0	ALCT uncorrected ECC error in data ALCT received from TMB
[03]	RW	alct_ecc_tx_err_en	0	ALCT uncorrected ECC error in data ALCT transmitted to TMB
[04]	RW	bx0_match_err_en	0	ALCT alct_bx0 != clct_bx0 in LCT to MPC
[05]	RW	clock_lock_lost_err_en	0	40MHz main clock lost lock
Sync err	or action e	nables:	•	
[06]	RW	sync_err_blanks_mpc_en	0	Sync error blanks LCTs to MPC
[07]	RW	sync_err_stops_pretrig_en	0	Sync error stops CLCT pre-triggers
[80]	RW	sync_err_stops_readout_en	0	Sync error stops L1A readouts
Sync err	or types lat	tched for VME readout:		
[09]	R	sync_err	0	Sync error OR of enabled types of error
[10]	R	clct_bx0_sync_err_ff	0	TMB clock pulse count err: bxn!=0+offset at ttc_bx0 arrival
[11]	R	alct_ecc_rx_err_ff	0	ALCT uncorrected ECC error in data ALCT received from TMB
[12]	R	alct_ecc_tx_err_ff	0	ALCT uncorrected ECC error in data ALCT transmitted to TMB
[13]	R	bx0_match_err_ff	0	ALCT alct_bx0 != clct_bx0 in LCT to MPC
[14]		clock_lock_lost_err_ff	0	40MHz main clock lost lock
[15]	RW	sync_err_forced	0	Force sync_err=1

See p47 Adr86[1:0] for tmb_sync_err_en[1:0] Allow sync_err to MPC for either muon Blank alct muons having uncorrected ecc errors

Adr 122 ADR_CFEB_BADBITS_CTRL CFEB Bad Bits Control/Status

(see 0x15C for V6)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb	found	found	found	found	found	block	block	block	block	block	reset	reset	reset	reset	reset
blocked	cfeb4	cfeb3	cfeb2	cfeb1	cfeb0	cfeb4	cfeb3	cfeb2	cfeb1	cfeb0	cfeb4	cfeb3	cfeb2	cfeb1	cfeb0

Bits	Dir	Signal	Default	Description
[04:00]	RW	cfeb_badbits_reset[4:0]	0	0x1F=Reset bad cfeb bits FFs for cfeb[n]
[09:05]	RW	cfeb_badbits_block[4:0]	0	0x1F=Block bad cfeb bits in cfeb[n]
[14:10]	R	cfeb_badbits_found[4:0]	0	CFEB[n] has at least 1 bad bit
[15]	R	cfeb_badbits_blocked	0	At least one CFEB has a bad bit that was blocked

Adr 124 ADR_CFEB_BADBITS_TIMER CFEB Bad Bits Check Interval

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
nbx															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[15:00]	RW	cfeb_badbits_nbx [15:0]	3564	Check Interval for CFEB bad bits, bx units

Adr 126 ADR_CFEB0_BADBITS_LY01 CFEB0 Ly0,Ly1 Bad Bits List

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ly1	ly0														
distrip															
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Bits	Dir	Signal	Default	Description
[07:00]	R	cfeb0_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb0_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 128 ADR_CFEB0_BADBITS_LY23 CFEB0 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb0_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb0_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 12A ADR_CFEB0_BADBITS_LY45 CFEB0 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb0_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb0_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 12C ADR_CFEB1_BADBITS_LY01 CFEB1 Ly0,Ly1 Bad Bits List

[07:00]	R	cfeb1_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb1_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 12E ADR_CFEB1_BADBITS_LY23 CFEB1 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb1_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb1_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 130 ADR_CFEB1_BADBITS_LY45 CFEB1 Ly4,Ly5 Bad Bits List

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ly1 distrip 7	ly1 distrip 6	ly1 distrip 5	ly1 distrip 4	ly1 distrip 3	ly1 distrip 2	ly1 distrip 1	ly1 distrip 0	ly0 distrip 7	ly0 distrip 6	ly0 distrip 5	ly0 distrip 4	ly0 distrip 3	ly0 distrip 2	ly0 distrip	ly0 distrip 0

Bits	Dir	Signal	Default	Description
[07:00]	R	cfeb1_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb1_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 132 ADR_CFEB2_BADBITS_LY01 CFEB2 Ly0,Ly1 Bad Bits List

[07:00]	R	cfeb2_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb2_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 134 ADR_CFEB2_BADBITS_LY23 CFEB2 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb2_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb2_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 136 ADR_CFEB2_BADBITS_LY45 CFEB2 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb2_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	
[15:08]	R	cfeb2_ly5_badbits [7:0]	00000000_2	1=CFEB rx bit[n] went bad	

Adr 138 ADR_CFEB3_BADBITS_LY01 CFEB3 Ly0,Ly1 Bad Bits List

[07:00]	R	cfeb3_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb3_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 13A ADR_CFEB3_BADBITS_LY23 CFEB3 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb3_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	
[15:08]	R	cfeb3_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	

Adr 13C ADR_CFEB3_BADBITS_LY45 CFEB3 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb3_ly4_badbits [7:0]	00000000_2	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb3_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 13E ADR_CFEB4_BADBITS_LY01 CFEB4 Ly0,Ly1 Bad Bits List

[07:00]	R	cfeb4_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	
[15:08]	R	cfeb4_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	

Adr 140 ADR_CFEB4_BADBITS_LY23 CFEB4 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb4_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb4_ly3_badbits [7:0]	00000000_2	1=1=CFEB rx bit[n] went bad

Adr 142 ADR_CFEB4_BADBITS_LY45 CFEB4 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb4_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	
[15:08]	R	cfeb4_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad	

Adr 144 ADR_ALCT_STARTUP_DELAY ALCT startup delay milliseconds for Spartan-6

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
d[15]	d[14]	d[13]	d[12]	d[11]	d[10]	d[9]	d[8]	d[7]	d[6]	d[5]	d[4]	d[3]	d[2]	d[1]	d[0]

Bits	Dir	Signal	Default	Description
[15:00]	RW	alct_startup_delay [15:0]	116	Msec to wait after TMB powers up before Initializing DDD delays and ALCT JTAG. This setting is only used after TMB first powers up or has a hard reset, so changes need to be stored in VME PROM. ALCT Spartan-6 takes 212msec to configure. TMB Virtex-2 takes 100msec. This register holds the number of msec to wait after TMB configures, so a value of 116 corresponds to 100ms + 116ms =216ms after a TMB hard reset.

Adr 146 ADR_ALCT_STARTUP_STATUS

ALCT startup delay machine status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		n	nmcm_los	tlock_cou	nt			alct start done	alct wait cfg	alct wait vme	alct wait dll	alct start msec	vsm ready	power up	global reset

Bits	Dir	Signal	Typical	Description
[00]	R	global_reset	0	Global reset
[01]	R	power_up	1	DLL clock locked, we wait for it
[02]	R	vsm_ready	1	Injector RAM read data MSBs
[03]	R	alct_startup_msec	0	Startup machine millisecond pulse, width=25ns
[04]	R	alct_wait_dll	0	Startup machine waiting for TMB DLL lock
[05]	R	alct_wait_vme	0	Startup machine waiting for TMB VME user PROM
[06]	R	alct_wait_cfg	0	Startup machine waiting for ALCT FPGA to config
[07]	R	alct_startup_done	1	Startup machine done ALCT FPGA assumed configured
[15:08]	R	mmcm_lostlock_count	0	FPGA MMCM lost-lock count (full scale is hex FC)

Adr 148 ADR_V6_SNAP12_QPLL Virtex-6 SNAP12 Serial interface + QPLL status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			qpll_lostle	ock_count				tmbm mcm_l ocklos t	r12 fok	r12 sdat	r12 sclk	0	qpll err	qpll lock	qpll nrst

Bits	Dir	Signal	Typical	Description
[00]	RW	qpll_nrst	1	nReset QPLL, 0=reset
[01]	R	qpll_lock	0	QPLL locked status
[02]	R	qpll_err	0	QPLL error status
[03]	R	qpll_locklost	0	QPLL lost its lock at least once since the last reset
[04]	R	r12_sclk	1	SNAP12 Serial interface clock, drive high
[05]	R	r12_sdat	0	SNAP12 Serial interface data
[06]	R	r12_fok	0	SNAP12 Serial interface status
[07]	R	tmbmmcm_locklost	0	FPGA MMCM lost its lock since the last reset
[15:08]	R	qpll_lostlock_count	0	QPLL lost-lock count (full scale is hex FC)

Adr 14A ADR_V6_GTX_RX_ALL Virtex-6 master GTX control and status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
gtx err sum bit 7	gtx err sum bit 6	gtx err sum bit 5	gtx err sum bit 4	gtx err sum bit 3	gtx err sum bit 2	gtx err sum bit 1	gtx err sum bit 0	gtx pol swap	gtx link bad	gtx linkha d err	gtx link good	gtx sync done	gtx en prbs	gtx reset	gtx en

Bits	Dir	Signal	Typical	Description
[00]	RW	gtx_rx_enable_all	1	Enable all GTX optical inputs (0 puts GTX in reset state)
[01]	RW	gtx_rx_reset_all	0	Reset the sync stage of all GTX
[02]	RW	gtx_rx_en_prbs_test_all	0	Select all GTX for PRBS test input mode
[03]	R	>x_rx_sync_done[6:0]	1	All GTX are ready
[04]	R	>x_link_good[6:0]	1	All GTX links are locked (over 15 BX with clean structure)
[05]	R	gtx_link_had_err[6:0]	0	At least one GTX link had an error since last reset
[06]	R	gtx_link_bad[6:0]	0	At least one GTX link had over 100 errors
[07]	R	gtx_rx_pol_swap[6:0]	0	GTX 5,6 [ie dcfeb 4,5] have swapped rx board routes
[15:8]	R	gtx_rx_err_count_sum_all	0	Sum of GTX link error counts (full scale count is hex FE)

Adr 14C-158 ADR_V6_GTX_RX0-6 Virtex-6 individual GTX (idcfeb[6:0]) control and status

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
gtx err countb it 7	gtx err countb it 6	gtx err countb it 5	gtx err countb it 4	gtx err countb it 3	gtx err countb it 2	gtx err countb it 1	gtx err countb it 0	gtx pol swap	gtx link bad	gtx linkha d err	gtx link good	gtx sync done	gtx en prbs	gtx reset	gtx en

Bits	Dir	Signal	Typical	Description
[00]	RW	gtx_rx_enable[idcfeb]	1	Enable this GTX optical input (0 puts GTX in reset state)
[01]	RW	gtx_rx_reset[idcfeb]	0	Reset the sync stage of this GTX
[02]	RW	gtx_rx_en_prbs_test[idcfeb]	0	Select this GTX for PRBS test input mode
[03]	R	gtx_rx_sync_done[idcfeb]	1	GTX ready
[04]	R	gtx_link_good	1	GTX link is locked (over 15 BX with clean data frames)
[05]	R	gtx_link_had_err	0	GTX link had an error (bad data frame) since last reset
[06]	R	gtx_link_bad	0	GTX link had over 100 errors since last reset
[07]	R	gtx_rx_pol_swap[idcfeb]	0	GTX 5,6 [ie dcfeb 4,5] have swapped rx board routes
[15:8]	R	gtx_rx_err_count[idcfeb]	0	GTX link error count (full scale count is hex E0)

Adr 15A ADR_V6_SYSMON Virtex-6 Sysmon ADC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
adc_da ta bit 9	adc_da ta bit 8	adc_da ta bit 7	adc_da ta bit 6	adc_da ta bit 5	adc_da ta bit 4	adc_da ta bit 3	adc_da ta bit 2	adc_da ta bit 1	adc_da ta bit 0	adc_va lid or adc_re set	adc_ad r bit 4	adc_ad r bit 3	adc_ad r bit 2	adc_ad r bit 1	adc_ad r bit 0

Bits	Dir	Signal	Typical	Description
[04:00]	RW	adc_adr[4:0]	0	ADC channel
[05]	R	adc_valid	0	ADC RAM has valid data for this adc_adr, readonly
[05]	W	adc_reset	0	Reset Sysmon module, writeonly
[15:6]	R	adc_data[15:6]	0	ADC counts for this adc_adr

Virtex-6 Sysmon ADC Channel Assignments:

adr	Source	Units	Conversion	Factor
0	Temperature		Degrees C = (ADC	C code × 503.975)/1024 - 273.15
1	VccINT	Volts	= (ADC Code /	1024) x 3V
2	VccAUX	Volts	= (ADC Code /	1024) x 3V
4	Vref 1.25V		Volts = (ADO	C Code / 1024) x 3V
5	Vzero 0.00V		Volts = (ADO	C Code / 1024) x 3V

Adr 15C ADR_V6_CFEB_BADBITS_CTRL CFEB Bad Bits Control/Status (See Adr 0x122)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	found cfeb6	found cfeb5	block cfeb6	block cfeb5	reset cfeb6	reset cfeb5

Bits	Dir	Signal	Default	Description
[01:00]	RW	cfeb_badbits_reset[6:5]	0	0x1F=Reset bad cfeb bits FFs for cfeb[n]
[03:02]	RW	cfeb_badbits_block[6:5]	0	0x1F=Block bad cfeb bits in cfeb[n]
[05:04]	R	cfeb_badbits_found[6:5]	0	CFEB[n] has at least 1 bad bit
[15:06]	RW		0	Unassigned

Adr 15E ADR_ V6_CFEB5_BADBITS_LY01 CFEB5 Ly0,Ly1 Bad Bits List

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ly1 distri 7	ly1 distrip	ly1 distrip 5	ly1 distrip 4	ly1 distrip 3	ly1 distrip 2	ly1 distrip 1	ly1 distrip 0	ly0 distrip 7	ly0 distrip 6	ly0 distrip 5	ly0 distrip 4	ly0 distrip 3	ly0 distrip 2	ly0 distrip 1	ly0 distrip 0

Bits	Dir	Signal	Default	Description
[07:00]	R	cfeb5_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb5_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 160 ADR_ V6_CFEB5_BADBITS_LY23 CFEB5 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb5_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb5_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 162 ADR_ V6_CFEB5_BADBITS_LY45 CFEB5 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb5_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb5_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 164 ADR_ V6_CFEB6_BADBITS_LY01 CFEB6 Ly0,Ly1 Bad Bits List

[07:00]	R	cfeb6_ly0_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb6_ly1_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 166 ADR_ V6_CFEB6_BADBITS_LY23 CFEB6 Ly2,Ly3 Bad Bits List

[07:00]	R	cfeb6_ly2_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb6_ly3_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 168 ADR_V6_CFEB6_BADBITS_LY45 CFEB6 Ly4,Ly5 Bad Bits List

[07:00]	R	cfeb6_ly4_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad
[15:08]	R	cfeb6_ly5_badbits [7:0]	000000002	1=CFEB rx bit[n] went bad

Adr 16A ADR_V6_PHASER7 ME1/1 A-Side CFEBs rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfeba_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfeba_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfeba_rxd	0	Phase shifter busy
[03]	R	lock_cfeba_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfeba_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfeba_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfeba_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 16C ADR_V6_PHASER8 ME1/1 B-Side CFEBs rxd Digital Phase Shifter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cfeb rxd delay 7	cfeb rxd delay 6	cfeb rxd delay 5	cfeb rxd delay 4	cfeb rxd delay 3	cfeb rxd delay 2	cfeb rxd delay 1	cfeb rxd delay 0	pos neg	sm 2	sm 1	sm 0	lock	busy	reset	fire

Bits	Dir	Signal	Default	Description
[00]	RW	fire_cfebb_rxd	0	Set new phase, software sets then unsets
[01]	RW	reset_cfebb_rxd	0	Reset current phase to 32
[02]	R	phaser_busy_cfebb_rxd	0	Phase shifter busy
[03]	R	lock_cfebb_rxd	1	DCM lock status
[06:04]	R	phaser_sm_cfebb_rxd[2:0]	0	Phase shifter machine state vector
[07]	RW	cfebb_rxd_posneg	0	0=latch inter-stage on falling main clock edge 1=latch inter-stage on rising main clock edge
[15:08]	RW	cfebb_rxd_delay[7:0]	32	Phase delay to latch data received from CFEB approximately 0.1ns steps (clock period/256)

Adr 16E ADR_V6_HCM501 CFEB5 Ly0,Ly1 Hot Channel Mask

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ly1 distrip 7	ly1 distrip 6	ly1 distrip 5	ly1 distrip 4	ly1 distrip 3	ly1 distrip 2	ly1 distrip 1	ly1 distrip 0	ly0 distrip 7	ly0 distrip 6	ly0 distrip 5	ly0 distrip 4	ly0 distrip 3	ly0 distrip 2	ly0 distrip	ly0 distrip 0

Bits	Dir	Signal	Default	Description				
[07:00]	RW	cfeb5_ly0_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 0				
[15:08]	RW	cfeb5_ly1_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 1				

Adr 170 ADR_V6_HCM523 CFEB5 Ly2,Ly3 Hot Channel Mask

[07:00]	RW	cfeb5_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[15:08]	RW	cfeb5_ly3_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 3

Adr 172 ADR_V6_HCM545 CFEB5 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb5_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb5_ly5_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 5

Adr 174 ADR_V6_HCM601 CFEB6 Ly0,Ly1 Hot Channel Mask

[07:00]	RW	cfeb6_ly0_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 0
[15:08]	RW	cfeb6_ly1_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 1

Adr 176 ADR_V6_HCM623 CFEB6 Ly2,Ly3 Hot Channel Mask

[(07:00]	RW	cfeb6_ly2_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 2
[:	15:08]	RW	cfeb6_ly3_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 3

Adr 178 ADR_V6_HCM645 CFEB6 Ly4,Ly5 Hot Channel Mask

[07:00]	RW	cfeb6_ly4_hcm[7:0]	1111111112	1=Enable DiStrip[7:0] Layer 4
[15:08]	RW	cfeb6_ly5_hcm[7:0]	111111112	1=Enable DiStrip[7:0] Layer 5

Adr 17A ADR_V6_EXTEND DCFEB 7-bit extensions to 5 bit fields in 0x42, 0x68

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	cfeben 6 read	cfeben 5 read	cfeben 6 vme	cfeben 5 vme	inj mask 6	inj mask 5	inj febsel 6	inj febsel 5	mask all cfeb6	mask all cfeb5

Bits	Dir	Signal	Default	Description
[01:00]	RW	mask_all[6:5]	112	Extend 0x42[4:0] = mask_all[4:0]
[03:02]	RW	inj_febsel[6:5]	0	Extend $0x42[9:5] = inj_febsel[4:0]$
[05:04]	RW	injector_mask[6:5]	112	Extend 0x42[14:10] = injector_mask_cfeb[4:0]
[07:06]	RW	cfeb_en_vme[6:5]	112	Extend $0x68[14:10] = cfeb_en_vme[4:0]$
[09:08]	R	cfeb_en[6:5]	112	Extend 0x68[14:10] = cfeb_en[4:0] readback
[15:10]	RW		0	Unassigned

Update For 2019: NEW LCT-MPC FORMAT!!

ADR_MPC0_FRAME0_FIFO Adr 17C

MPC0 Frame0 Data Sent to MPC stored in FIFO

(see also Adr 88)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st vpf	lct 1 st q 3	lct 1 st q 2	lct 1 st q 1	lct 1 st q 0	clct 1st pat 3	clct 1st pat 2	clct 1st pat 1	clct 1st pat 0	alct 1st wg 6	alct 1st wg 5	alct 1st wg 4	alct 1st wg 3	alct 1st wg 2	alct 1 st wg 1	alct 1 st wg 0

Bits	Dir	Signal	Typical	Description
[06:00]	R	alct_first_key[6:0]	0-111 ₁₀	ALCT first key wire-group
[10:07]	R	clct_first_pat[3:0]	0-10	CLCT first pattern number
[14:11]	R	lct_first_quality[3:0]	8	LCT first muon quality
[15]	R	first_vpf	1	First valid pattern flag

Adr 17E

ADR_MPC0_FRAME1_FIFO MPC0 Frame1 Data Sent to MPC stored in FIFO

(see also Adr 8A)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
csc id 3	csc id 2	csc id 1	csc id 0	tmb bx0 local	alct 1st bxn 0	sync err	clct 1 st bend	clct 1 st key 7	clct 1st key 6	clct 1st key 5	clct 1st key 4	clct 1st key 3	clct 1st key 2	clct 1st key 1	clct 1st key 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	clct_first_key[7:0]	0-15910	CLCT first muon key ½-strip
[80]	R	clct_first_bend	0	CLCT first muon bend direction
[09]	R	sync_err	0	BXN does not match at BX0
[10]	R	alct_first_bxn[0]	0-1	ALCT first muon bunch crossing number
[11]	R	clct_first_bx0_local	0-1	1=TMBs bxn[11:0]==0
[15:12]	R	csc_id[3:0]	1-9	CSC chamber ID

Adr 180 ADR_MPC1_FRAME0_FIFO

MPC1 Frame0 Data Sent to MPC stored in FIFO

(see also Adr 8C)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2 nd vpf	lct	lct	lct	lct	clct	clct	clct	clct	alct						
	2 nd q	2 nd q	2 nd q	2 nd q	2 nd pat	2 nd pat	2 nd pat	2 nd pat	2 nd wg						
	3	2	1	0	3	2	1	0	6	5	4	3	2	1	0

Bits	Dir	Signal	Typical	Description
[06:00]	R	alct_second_key[6:0]	0-111 ₁₀	ALCT second key wire-group
[10:07]	R	clct_second_pat[3:0]	0-10	CLCT second pattern number
[14:11]	R	lct_second_quality[3:0]	8	LCT second muon quality

- 1					
- 1	r1 F1	D	1 0	1	0 1 1:1 44 0
- 1	1151	∣ K	second vnt		Second valid pattern flag
- 1	[_ 0]	1.	Second vpi	1	become varia pattern mag

Update For 2019: NEW LCT-MPC FORMAT!!

Adr 182 ADR_MPC1_FRAME1_FIFO

MPC1 Frame1 Data Sent to MPC stored in FIFO

(see also Adr 8E)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
csc id 3	csc id 2	csc id 1	csc id 0	tmb bx0 local	alct 2 nd bxn 0	sync err	clct 2 nd bend	clct 2 nd key 7	clct 2 nd key 6	clct 2 nd key 5	clct 2 nd key 4	clct 2 nd key 3	clct 2 nd key 2	clct 2 nd key 1	clct 2 nd key 0

Bits	Dir	Signal	Typical	Description
[07:00]	R	clct_second_key[7:0]	0-15910	CLCT second muon key ½-strip
[80]	R	clct_second_bend	0	CLCT second muon bend direction
[09]	R	sync_err	0	BXN does not match at BX0
[10]	R	alct_second_bxn[0]	0-1	ALCT second muon bunch crossing number
[11]	R	clct_second_bx0_local	0-1	1=TMBs bxn[11:0]==0
[15:12]	R	csc_id[3:0]	1-9	CSC chamber ID

Adr 184 ADR_MPC_FRAMES_FIFO_CTRL

Control of FIFO Storage for Data Sent to MPC

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
not used	dbiterr	sbiterr	prog full	empty	overfl ow	write ack	full	read enable	write enable						

Bits	Dir	Signal	Typical	Description
[00]	RW	mpc_frames_fifo_ctrl_wr[0]	0	FIFO write enable
[01]	RW	mpc_frames_fifo_ctrl_wr[1]	0	FIFO read enable
[02]	R	mpc_frames_fifo_ctrl_full	0	FIFO full flag
[03]	R	mpc_frames_fifo_ctrl_wr_ack	0	FIFO write acknowledge
[04]	R	mpc_frames_fifo_ctrl_overflow	0	FIFO overflow
[05]	R	mpc_frames_fifo_ctrl_empty	0	FIFO empty flag
[06]	R	mpc_frames_fifo_ctrl_prog_full	0	FIFO programmable full
[07]	R	mpc_frames_fifo_ctrl_sbiterr	0	FIFO Single Bit Error
[80]	R	mpc_frames_fifo_ctrl_dbiterr	0	FIFO Double Bit Error

Adr 186	ADR TMB	MMCM LOCK	TIME	TMB Clock Startup T	imer
---------	---------	------------------	------	---------------------	------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	mmcm_lock_time														

Bits	Dir	Signal	Default	Description
[15:00]	R	mmcm_lock_time[15:0]	0	Time to lock MMCM, with special test counter

Adr 188 ADR_TMB_POWER_UP_TIME TMB Power-up Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	power_up_time[15:0]	0	Time to lock MMCM after Hard Reset, in 100 ns units

Adr 18A ADR_TMB_LOAD_CFG_TIME TMB Load Config Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	tmb_load_cfg_time[15:0]	0	Time to read config from flash after Hard Reset, in 100 ns units

Adr 18C ADR_ALCT_PHASER_LOCK_TIME ALCT Phaser MMCM Lock Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	phaser_lock_time[15:0]	0	Time to lock Phaser after Hard Reset, in 100 ns units

Adr 18E ADR_ALCT_LOAD_CFG_TIME ALCT Load Config Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	alct_load_cfg_time[15:0]	0	Time to complete ALCT config after alct wait period, in 100 ns units

Adr 190 ADR_GTX_RST_DONE_TIME GTX Reset Done Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	gtx_rst_done_time[15:0]	0	Time to finish GTX reset after Hard Reset, in 100 ns units

Adr 192 ADR_GTX_SYNC_DONE_TIME GTX Sync Done Timer

Bits	Dir	Signal	Default	Description
[15:00]	R	gtx_sync_done_time[15:0]	0	Time to finish GTX sync after Hard Reset, in 100 ns units

Page 129 of 249	20 Jan 2021	TMB Design and Operation. Version 5
For 2019: ADD N	ew Registers	and Counters

TTC Commands

Table 2: Fast Control Bus ccb_cmd[5..0] Decoding Scheme

Signal	Code (hex)	Decoded by TMB	Description	
BX0 (*)	01	Y	Bunch Crossing Zero	
L1 Reset (*)	03	Y	Reset L1 readout buffers and resynchronize optical links	
Hard_reset (*)			Reload all FPGAs from EPROMs	
Hard_reset (*) Start Trigger		Y	Go to trigger run, wait for bx0, may be disabled by Adr 2C[7]	
Stop Trigger	07	Y	Go to stop state, wait for bx0, may be disabled by Adr 2C[7]	
Test Enable	08			
Private Gap	09			
Private Orbit	0A			
Tmb_hard_reset (*)	10		Reload TMB FPGAs from EPROM	
Alct_hard_reset (*)	11		Reload ALCT FPGAs from EPROM	
Dmb_hard_reset (*)	12		Reload DMB FPGAs from EPROM	
Mpc_hard_reset (*)	13		Reload MPC FPGAs from EPROM	
Dmb_cfeb_calibrate0 (*)	14		CFEB Calibrate Pre-Amp Gain	
Dmb_cfeb_calibrate1 (*)	15		CFEB Trigger Pattern Calibration	
Dmb_cfeb_calibrate2 (*)	16		CFEB Pedestal Calibration	
Dmb_cfeb_initiate (*)	eb_initiate (*)		Initiate CFEB calibration (Hold next L1ACC and Pretriggers)	
Alct_adb_pulse_sync (*)	pulse_sync (*) 18		Pulse Anode Discriminator, synchronous	
Alct_adb_pulse_async (*) 19			Pulse Anode Discriminator, asynchronous	
Clct_external_trigger (*)	1A		External Trigger All CLCTs	
Alct_external_trigger (*)	1B		External Trigger All ALCTs	
Soft_reset (*)	1C		Initializes the FPGA on DMB, TMB and MPC boards	
DMB_soft_reset (*)	1D		Initializes the FPGA on a DMB	
TMB_soft_reset (*)	1E		Initializes the FPGA on a TMB	
MPC_soft_reset (*)	1F		Initializes the FPGA on a MPC	
Send_bcnt[70] (*) 20			Send Bunch_Counter[70] to ccb_data[70] bus	
Send_evcnt[70] (*)	end_evcnt[70] (*) 21		Send Event_Counter[70] to ccb_data[70] bus	
Send_evcnt[158] (*) 22			Send Event_Counter[158] to ccb_data[70] bus	
Send_evcnt[2316] (*)	23		Send Event_Counter[2316] to ccb_data[70] bus	
Inject patterns from TMBs	24	Y	Injects patterns from TMB's internal RAM to MPC	
Alct_adb_pulse (*)	25		Generate sync and async anode discriminator pulses	
Inject patterns from MPCs	30		Injects patterns from MPC's input FIFO to SP	

Inject patterns from MS	31		Injects patterns from MS input FIFO to Global Muon Trigger
tmb_bxreset	32	Y	Reset TMB/ALCT BXN, do not reset L1A counters

(*) – decoded by CCB

TMB BOARD STATUS OPERATIONS FOR 2019,2013: STILL ACCURATE?

ID Registers

```
id_slot=15 VME Slot

id_rev =D Firmware version

id_type=C Firmware Type

id_date=06/08/2004 Firmware Compile Date

id_rev =38CA=06/10/04 xc2v3000 Firmware Revcode
```

Digital Serial Numbers

```
Digital Serial for TMB CRC=DC DSN=00000A237E7F MFG=01 OK

Digital Serial for Mez CRC=BF DSN=000007E06194 MFG=01 OK

Digital Serial for RAT CRC=52 DSN=00000AB39AAD MFG=01 OK
```

Power Supply ADC

```
TMB2005E Comparators

5.0V status=OK

3.3V status=OK

1.8V status=OK

1.5V status=OK

Tcrit status=OK
```

```
TMB2005E Temperature IC

T tmb pcb 73.4 F 23. C Tcrit=261./127.

T tmb fpga 95.0 F 35. C Tcrit=261./127.
```

```
RAT2005E Temperature IC

T rat pcb 68.0 F 20. C Tcrit=261./127.

T rat xstr 69.8 F 21. C Tcrit=261./127.
```

Clock Delays

```
Current 3D3444 Delay Settings 02/27/2006
   Ch0 8steps 16ns ALCT tx clock alct_tof_delay in muonic firmware versions
   Ch1 1steps 2ns ALCT rx clock not used in muonic firmware versions
   Ch2 2steps 4ns DMB tx clock
   Ch3 9steps 20ns RPC tx clock
                                     not used in muonic firmware versions
   Ch4 Osteps Ons TMB1 rx clock
    Ch5 Osteps Ons MPC rx clock
       Osteps Ons DCC tx clock
                                    cfeb tof delay in muonic firmware versions
       7steps 14ns CFEB0 tx clock
   Ch7
    Ch8
        7steps 14ns CFEB1 tx clock
   Ch9
        7steps 14ns CFEB2 tx clock
       7steps 14ns CFEB3 tx clock
    ChA
    ChB
       7steps 14ns CFEB4 tx clock
```

JTAG Chains

```
Chain Select Address (X=don't care)

3210 Base Function

00SS 0 ALCT: SS=00(Slow user) SS=01(Slow prom) SS=10(Mez user) SS=11(Mez prom)

01XX 4 TMB Mezzanine FPGA+PROMS

10XX 8 TMB User PROMS

1100 C FPGA Monitor (for TMB self-test)

1101 D RAT Module FPGA+PROM
```

RAT Module Status Register USER1

```
RAT FPGA device 0 Idcode= 20A10093
RAT PROM device 1 Idcode= 05024093
RAT FPGA device 0 USERcode=02232006
RAT PROM device 1 USERcode=02232006
RAT USER1=E00000007FFFFFFFE02300336205650565E400CCC989C20060223EB
rs begin
rs version
rs monthday
                0223
rs year
                 2006
rs syncmode
rs posneg
rs_loop
                 1
rs rpc en
rs_clk_active
rs locked tmb
                 1
rs locked rpc0
rs locked rpc1
                 0
rs locklost tmb
rs locklost rpc0 1
```

```
rs locklost rpc1 1
rs_txok 0
rs rxok
             0
rs ntcrit
rs_rpc_free
rs dsn
rs_dddoe_wr
             3
rs_ddd_wr 0033
rs ddd auto
             1
rs_ddd_start
rs ddd busy 0
rs ddd verify ok 1
rs_rpc0_parity_ok 1
rs_rpc1_parity_ok 1
rs_rpc0_cnt_perr 0565
rs_rpc1_cnt_perr 0565
rs_last_opcode 02
rw_rpc_en
             3
rw_ddd_start
             0
rw_ddd_wr 0033
             3
rw dddoe wr
rw_perr_reset
rw_parity_odd
              1
rw perr ignore
rw_rpc_future 00
rs_rpc0_pdata 7FFFF
rs_rpc1_pdata
             7FFFF
rs_unused
               0000000
rs end
```

RAT Module Control Register USER2

```
RAT USER2=0118019B

ws_rpc_en 3

ws_ddd_start 0

ws_ddd_wr 0033

ws_dddoe_wr 3

ws_perr_reset 0

ws_parity_odd 1

ws_perr_ignore 0

ws_rpc_future 00
```

USER PROM PROGRAMMING

Introduction

TMB has two on-board erasable PROMs that contain non-volatile data for modifying VME registers and for initializing JTAG chains. The PROMs are read automatically by firmware state machines after power-up or hard-reset.

Both PROMs are Xilinx XC18V256 devices, which have a capacity of 256K bits stored 1-byte wide in 32K addresses. Some late-production TMBs may have one or two XC18V512 devices, because the 256K product was discontinued by the manufacturer.

PROM contents are programmed and verified either via the front-panel JTAG connector or from the VME backplane using TMBs boot register. The data may be read out 8-wide though TMBs PROM-port register ADR PROM (12h) or it may be read 1-bit serial via JTAG.

Register Initialization

Initialization after power-up or hard reset proceeds as follows:

- 1) FPGA loads its firmware from mezzanine PROMs (100msec)
- 2) Delay Locked Loops (DLLs) acquire lock on the 40MHz TTC clock (lock time not yet tested)
- 3) VME registers load their default values (100ns)
- 4) The VMEsm state machine reads PROM 0 and writes any new data to the specified VME registers.
- 5) JTAGsm state machine reads PROM 1 and write JTAG data to the specified chains.

VME PROM-0

After TMB loads default values into its VME registers, the VMEsm state machine reads PROM 0 and updates the specified VME registers with PROM data. The PROM contains a 16-word header, followed by an arbitrary number of 24-bit VME-addresses and their associated 16-bit data word, then followed by a 3-byte trailer sequence that contains the checksum and end-of-PROM marker.

The VMEsm state machine expects PROM-0 data to be organized in a specific format and it may either terminate the read-process or indicate an error condition if the format is incorrect. If the BCh header-begin marker is missing, the state machine terminates reading immediately.

The 16-byte header consists of the BC "begin CLCT data" marker, a 2-byte word count, and the EC end marker. There are no restrictions on the values of the other 12 header bytes. VMEsm assembles the two word-count bytes into a 16-bit number that it uses to recognize when to stop reading the PROM.

The word-count includes every PROM address between the BC and FF markers, inclusive. If there are n VME addresses to be written, the word count would be 16 header + 5n vme data + 3 trailer =19₁₀ +5n. A counter in ADR_VMESM3 records the number of VME addresses what were actually written. A value of 55Aah should be written to VME address ADR_VMESM4 to test the PROM-to-FPGA data path.

VME PROM-0 data format:

Adr	7654 3210	Hex	Description		
0	1011 1100	BC	Begin CLCT Header Marker, if missing state machine stops		
1	tttt oooo	LL	Word count [7:0] kkkk hhhh tttt oooo from BC to FF		
2	kkkk hhhh	НН	Word count [15:8]		
3	tttt oooo	12	Month (month/day in "hex-ascii" December 31, 2006)		
4	tttt oooo	31	Day		
5	tttt oooo	06	Year 2006 = kkkk hhhh tttt oooo		
6	kkkk hhhh	20	Year		
7	vvvv vvvv	XX	Version number = vvvv vvvv		
8	xxxx xxxx	AA	Option (suggest AA to test even bits)		
9	xxxx xxxx	55	Option (suggest 55 to test odd bits)		
A	xxxx xxxx	XX	Option		
В	xxxx xxxx	XX	Option		
С	xxxx xxxx	XX	Option		
D	xxxx xxxx	XX	Option		
E	xxxx xxxx	XX	Option		
F	1110 1100	EC	End Header Marker		
10	aaaa aaaa	LL	VME adr[7:0] This 5-byte structure is repeated		
11	aaaa aaaa	MM	VME adr[15:8] for every VME address that is		
12	aaaa aaaa	НН	VME adr[23:16] to be modified		
13	dddd dddd	LL	VME data[7:0]		
14	dddd dddd	НН	VME data[15:8]		
L-2	1111 1100	FC	End of CLCT VME data Marker		
L-1	cccc cccc	cc	Check sum [7:0] includes addresses 0 to L-2		
L	1111 1111	FF	End of PROM data Marker		

If VMEsm detects an error condition, status information can be read from VME address

ADR_VMESM2 (0xDE):

```
fmt_err[0] = Missing BC header-begin marker
fmt_err[1] = Missing EC header-end marker
fmt_err[2] = Missing FC data-end marker
fmt_err[3] = Missing FF prom-end marker
fmt_err[4] = Word counter overflow
```

JTAG PROM-1

After the VMEsm state machine completes successful, the JTAGsm machine is started. It reads PROM-1 and writes to the JTAG chains specified by the PROM data. The PROM contains a 16-word header, followed by an arbitrary number of 3-byte Chain Blocks, then followed by a 8-byte trailer sequence that contains the tck-count, word-count, checksum and end-of-PROM marker.

Header

The JTAGsm state machine expects PROM-1 data to be organized in a specific format and it may either terminate the read-process or indicate an error condition if the format is incorrect. If the Bah header-begin marker is missing, the state machine terminates reading immediately.

The 16-byte header consists of the BA "begin ALCT data" marker and the EA end marker. The state machine skips over the next 15 bytes, so are no restrictions on the header contents.

Adr	7654 3210	Hex	Description
0	10111010	ВА	Begin ALCT Marker, if "BA" missing state machine stops
1	0000aaaa	03	ALCT MSD 3 Type (288,384,672)
2	0000aaaa	08	ALCT 8
3	0000aaaa	04	ALCT LSD 4
4	0 0 0 0 mmmm	00	Month MSD 0 in "hex-ascii" June 9, 2008
5	0 0 0 0 mmmm	06	Month LSD 6
6	0000dddd	00	Day MSD 0
7	0000dddd	09	Day LSD 9
8	0000уууу	02	Year MSD 2
9	0000уууу	00	Year 0
A	0000уууу	00	Year 0
В	0000уууу	08	Year LSD 8
С	0000vvvv	01	Version number [3:0]
D	0000xxxx	00	Future use
E	0000xxxx	00	Future use
F	00101010	EA	End ALCT Header Marker

Chain Block

A Chain Block marker "Cs" signals the start of a new sequence to generate TCK,TMS, and TDI for a JTAG chain. The "s" in the "Cs" marker is the chain address SEL[3:0]. Normally, TCK will be held high after the last TMS/TDI pair is sent, unless the "C" marker is replaced by a "D" maker. After Cs, there are two more bytes specifying the number of TCK clock pulses to send to the chain.

Following the TCK count are JTAG data bytes that contain packed TMS and TDI bits for up to 4 TCKs. The number of data bytes is tck count/4+1.

Chain Block Format [7:0]:

```
76543210

1100ssss Cs Chain Block begin marker chain address ssss =SEL[3:0]. Cs=hold tck high, Ds= do not ttttttt ww TCK count [15:8]

ttttttt ww TCK count [7:0]

1sisisisi si JTAG data [7:0], I=TDI bit, s=TMS bit, defined below
```

4 TCKs packed per byte format, data[7:0]:

```
Bit
     Signal
[0]
     TDI[0]
[1]
     TMS[0]
[2]
     TDI[1]
[3]
     TMS[1]
[4]
     TDI[2]
[5]
    TMS[2]
[6]
     TDI[3]
[7]
     TMS[3]
```

SEL[3:0] Selects the active JTAG chain:

```
SEL[3:0]
Нех
       3210
               Function
0
       0000
               ALCT Slow Control FPGA user registers
       0001
               ALCT Slow Control FPGA PROM)
2
       0010
               ALCT Mezzanine FPGA user registers
3
       0011
               ALCT Mezzanine FPGA PROMs
       01XX
4
               TMB Mezzanine FPGA+PROMs
8
       10XX
               TMB User PROMs
       1100
               TMB FPGA Monitor (for TMB self-test)
C
       1101
D
               RAT Module FPGA+PROM
```

Chain Block, Continued

The state machine copies the signals TMS, and TDI to the JTAG chain selected by SEL[3:0]. It automatically generates the JTAG clock TCK and also arranges for asserting the next TMS and TDI values while TCK is low.

TMB hardware pulls TCK, TMS, and TDI high for chains that are not currently selected. When changing to a new chain ID, it is recommend that the last PROM word for that chain sets the signals to a logic high.

The number of Chain Blocks is limited only by the memory capacity of the PROM. Each block begins with a Cs marker, and the last block is indicated by an "FA" marker.

Trailer

An 8-byte trailer sequence contains the total-tck-count, PROM word count, data checksum and end-of-PROM marker. The tck-count is the number of TCKs the state machine sent to all chains. The word-count includes every PROM address between the BA and FA markers, inclusive, as well as the 3 TCK-count bytes. Checksum includes every PROM address from the BA marker to the last word-count byte.

Adr	7654 3210	Hex	Description	
T-1	11111010	FC	End of JTAG data Marker	Also set chain address to C
T+0	ttttttt	tt	TCK Count Total [17:16]	Includes tcks sent for all chain blocks
T+1	ttttttt	tt	TCK Count Total [15:8]	
T+2	ttttttt	tt	TCK Count Total [7:0]	
T+3	wwwwwww	WW	Word Count [15:8]	Includes Adr 0 and end JTAG marker at T+2
T+4	wwwwwww	WW	Word Count [7:0]	

T+5	ccccccc	СС	Check sum [7:0]	Includes addresses 0 and T+5
T+6	11111111	FF	End of PROM data Marker	

If the tck-count, word-count or checksum are incorrect, or if the last-word marker is missing, the state machine indicates the an error by setting jsm tck fpga ok=0.

TCK Throttle

The JTAGsm state machine reads header and trailer bytes from the PROM at 20MHz, then slows to 2.5MHz for processing JTAG data bytes. This results in TCK being pulsed at 10MHz (because there are 4 TCKs per byte, each 50ns high + 50ns low).

If this rate is too high for ALCT JTAG chains, the state machine can be throttled to a lower speed by setting jsm_throttle[3:0] in ADR_VMESM0 (D4h). A jsm_throttle value of 0 corresponds firing TCK at 10MHz full speed. Increasing jsm_throttle by 'n' increases the TCK period by 25ns*n, and maintains a 50% duty cycle.

State Machine Status

Automatic operation of the state machine can be verified by including TCK writes to chain address C. That chain effectively loops-back TCK, TMS and TDI to the FPGA. If at least 1 TCK transition is seen on chain C, then signal jsm_tck_fpga_ok will be a logic 1 in VME register ADR_JTAGSM0, and tck_fpga_cnt[3:0] in ADR_JTAGSM2 counts the number of TCKs. Demo software exists that converts old PROM data files to this new format and automatically inserts a C-chain Block if there is not one already.

JTAG PROM-1 data format Example:

Adr	7654 3210	Нех	Description
		-	
0	10111010	BA	Begin ALCT Marker, if "BA" missing state machine stops
1	0000aaaa	03	ALCT MSD 3 Type (288,384,672)
2	0000aaaa	08	ALCT 8
3	0000aaaa	04	ALCT LSD 4
4	0 0 0 0 mmmm	00	Month MSD 0 in "hex-ascii" June 9, 2008
5	0 0 0 0 mmmm	06	Month LSD 6
6	0000dddd	00	Day MSD 0
7	0000dddd	09	Day LSD 9
8	0000уууу	02	Year MSD 2
9	0000уууу	00	Year 0
A	0000уууу	00	Year 0
В	0000уууу	08	Year LSD 8
С	0000vvvv	01	Version number [3:0]
D	0000xxxx	00	Future use
E	0000xxxx	00	Future use
F	00101010	EA	End ALCT Header Marker
10	1100ssss	C3	Chain Block Markder for chain adr 3 (or Ds to set TCK low)
11	ttttttt	WW	TCK count [15:8]
12	ttttttt	WW	TCK count [7:0]
13	sisisisi	si	JTAG data
14	sisisisi	si	JTAG data

```
T-1 11111010 FC End of JTAG data Marker
T+0 tttttttt tt TCK Count Total [17:16] Includes tcks sent for all chain blocks
T+1 ttttttt tt TCK Count Total [15:8]
T+2 ttttttt tt TCK Count Total [7:0]
T+3 wwwwwww ww Word Count [15:8] Includes Adr 0 and end JTAG marker at T+2
T+4 wwwwwww ww Word Count [7:0]
T+5 ccccccc cc Check sum [7:0] Includes addresses 0 and T+5
T+6 11111111 FF End of PROM data Marker
```

DMB READOUT FOR 2019,2013: THIS MUST CHANGE, ADD GEM BLOCK!

Full-Readout and Local-Readout Format (Long Header)

	1	DBOC header	Beginning Of Cathode Data				
	7	event header	Non-buffered event data				
	е	clct header	Cathode LCTs				
	е	tmb header	TMB match result				
	е	mpc header	MPC frames				
	е	rpc header	RPC status //EDIT for GEM!!				
	е	buf header	Buffer status				
	е	6E0B header	End of header block				
	n	hits	CFEB0 raw hits				
	n	hits	CFEB1 raw hits				
	n	hits	CFEB2 raw hits				
	n	hits	CFEB3 raw hits				
	n	hits	CFEB4 raw hits				
	1	6B04	Start of RPC raw hits marker	(optional) //EDIT for GEM!!			
	m	hits	RPC0 raw hits	(optional)			
	m	hits	RPC1 raw hits	(optional)			
	1	6E04	End of RPC raw hits marker	(optional)			
	1	6B05	Beginning scope data	(optional)			
	S	scope data	Scope data	(optional)			
	1	6E05	End of scope data	(optional)			
	1	6B07	Beginning miniscope data	(optional)			
	22	miniscope data	Miniscope data 22 words	(optional)			
	1	6E07	End of miniscope data	(optional)			
	1	6BCB	Beginning blocked CFEB list	(optional)			
	20	blocked cfebs list	Blocked CFEBs list 20	words (optional)			
	1	6ECB	End blocked CFEB list	(optional)			
	6EOC	End of	raw hits				
	1	2AAA	Make word count x4	(inserted only if needed)			
	1	5555	Make word count x4	(inserted only if needed)			
	1	DEOF	End of Frame				
	1	Dcrc0	CRC22[10:0]				
	1		CRC22[21:11]				
		ount Total v	words in transmission (inclus	ive)			
	Word Co	nunt = 42/nhood	1				
		ount = 42(nheaders	,				
	+ 1(E0B)						
	+ ncfebs*(6*ntbins) +1(B04) (if RPC readout enabled) //EDIT for GEM!!						
+ nrpcs*(2*ntbins) (if RPC readout enabled) //EDIT for GEM!!							

```
+1 (E04)
                       (if RPC readout enabled) //EDIT for GEM!!
+1 (B05)
                       (if Scope readout enabled)
+nch(128)/16*256
                      (if Scope readout enabled)
                       (if Scope readout enabled)
+1 (E05)
+1 (B07)
                       (if miniscope readout enabled)
                       (if miniscope readout enabled)
+1(E07)
                       (if miniscope readout enabled)
+1 (BCB)
              (if blocked cfebs list readout enabled)
                       (if blocked cfebs list readout enabled)
+ncfebs*4
+1 (ECB)
               (if blocked cfebs list readout enabled)
+1 (EOC)
+2(2AAA 5555)
                      (if needed to make word count multiple of 4)
+1 (EOF)
+2(crc)
+1 (wordcount)
```

Long Header-only Format

```
DB0C
              header
                             Beginning of Cathode Data
7
        event header
                             Non-buffered event data
                             Cathode LCTs
        clct header
                             TMB match result
        tmb
              header
                             MPC frames
              header
        mpc
        buf
              header
                             Buffer status
              header
                             GEM status // --was RPC, EDIT for GEM!!
        gem
1
       6E0B
                             End of header block
       6E0C
                             End of raw hits
       DEOF
                             End of Frame
1
      Dcrc0
                             CRC22
       Dcrc1
                             CRC22
                             Total words in transmission (inclusive)
       Dwordcount
40 words = nheaders(34)+E0B+E0C+2crc+E0F+wdcnt
```

Short Header-only Format

```
1 DBOC header Beginning of Cathode Data
7 event header Non-buffered event data
1 DEEF End of Frame
1 Dcrc0 CRC22
1 Dcrc1 CRC22
1 Dframe wordcount Total words in transmission (inclusive)
------
12 words = 8headers+2crc+EEF+wdcnt
```

Miniscope

TMB contains a smaller version of the main digital scope that is intended to be included in the DMB readout stream by default. The minscope displays a time history of ALCTs, CLCTs, and L1As that helps reproduce TMB behavior offline.

Miniscope data is written continuously to Block RAM, in the same fashion as CFEB raw hits are stored.

When there is a CLCT pre-trigger, miniscope data starts at fifo_pretrig_mini time bins before the pre-trigger occurred. If there is no CLCT pre-trigger, miniscope data can still be read out in an L1A-only event, using the L1A look-back mode.

The miniscope is enabled by setting:

```
0x10C [00] mini_read_enable = 1 Turn miniscope on
0x10C [01] mini_tbins_test = 1 Turn debug mode off
0x10C [02] mini_tbins_word = 1 Insert tbins and pre-trig tbins settings in 1st word
0x10C [07:03] fifo_tbins_mini = 22 Number of time bins to read out, must be a multiple of 2, but not of 4
0x10C [12:08] fifo_pretrig_mini = 4 Number of time bins before pre-trigger
```

Once enabled, miniscope data is included in every event readout that contains a full header.

Events the contain miniscope data will have

- 1) header19[14] mini_read_enable = 1 to indicate the event includes miniscope data.
- 2) 06B07 begin minscope marker in the data stream, located after GEM and main-scope data
- 3) Typically 22 miniscope time-bin data words
- 4) 06E07 end miniscope marker

The number of minscope time-bin data words depends on the VME register 0x10C[7:3].

Because the total number of words in the DMB readout is required to be a multiple of 4, and 2 words are used for 06E07|06E07 markers, the number of miniscope time-bin words must be a multiple of 2, but not a multiple of 4.

The first word after the 06B07 marker contains the number of minscope time-bins, which along with the mini_read_enable bit in header19[14] allows event-unpacking software to locate the miniscope data markers and predict the total event word count.

Miniscope data is inserted between GEM and Blocked-bits list

```
Adr= 296 Data= 00102

Adr= 297 Data= 00002

Adr= 298 Data= 00002

Adr= 299 Data= 00002

Adr= 300 Data= 00002

Adr= 301 Data= 00002

Adr= 302 Data= 00002

Adr= 303 Data= 00002

Adr= 304 Data= 00002

Adr= 305 Data= 00002

Adr= 306 Data= 06E07 ← end miniscope marker

Adr= 307 Data= 06BCB ← blocked bits marker, if blocked bits are in the readout
```

Miniscope Channel Assignments:

```
ch[00] any cfeb hit At least 1 CFEB meets pre-trigger layer-hit threshold
ch[03:01]
            clct sm vec[2:0]
                                 CLCT pre-trigger state machine vector
ch[04] clct0 vpf
                            Valid pattern flag for 1st best CLCT
ch[05] clct1 vpf
                             Valid pattern flag for 2nd best CLCT
ch[06] alct0 vpf tprt Valid pattern flag for 1st best ALCT, after pipe delay
{
m ch}[07] alct1 vpf tprt Valid pattern flag for 2^{
m nd} best ALCT, after pipe delay
ch[08] clct_window
                             CLCT match window
ch[09] wr push rtmb ALCT*CLCT match signal
ch[10] tmb_push_dly L1A signals are l1a_delay+2bx later
ch[11] lla pulse
                             L1A from CCB
ch[12] lla_window_open
                            L1A window
ch[13] lla push me
                            L1A queued for readout signal
ch[14] tmb special
                            Always 0 in DMB readout, required by unpacker
                             Always 0 in DMB readout, required by DDU
ch[15] ddu special
```

CLCT Pre-trigger State Machine Vector:

```
0 s: Startup wait after hard-reset

1 I: Idle, waiting for pre-trigger

2 p: Pre-triggered

3 f: Flushing triad one-shots [checks any_cfeb_hit, waits n-bx, returns to idle, n may be 0, n=1 here]

4 t: Trigger-rate throttle [optional fixed delay before returning to idle]

5 h: Halted
```

Decoded Readout Example:

	000000000000111111	← Time bins
	123456789ABCDEF012345	
ch 00	any_cfeb_hit	\leftarrow CLCT signals are in pre-trigger time domain
ch 03	clct_state_machine 111124444411111111111	
ch 03	clct_state_machine iiiipfffffiiiiiiiiii	← CLCT Pre-trigger machine state

ch 04	clct0_vpf	-	
ch 05	clct1_vpf		
ch 06	alct0_vpf		\leftarrow ALCT arrival is needed to check TMB offline
ch 07	alct1_vpf		
ch 08	clct_window		
ch 09	wr_push_rtmb		← ALCT*CLCT match signal
ch 10	tmb_push_dly		← L1A signals are l1a_delay+2bx later
ch 11	lla_pulse		← L1A from CCB merged with other L1A
ch 12	lla_window_open		
ch 13	lla_push_me		← L1A queued for readout signal
ch 14	tmb_special		\leftarrow Unpacker prevents TMB from using 15^{th} bit
ch 15	ddu_special		\leftarrow DDU prevents TMB from using $16^{ ext{th}}$ bit

Blocked CFEB DiStrips List Format

1	6BCB marker	Beginning of blocked cfeb distrip list
1	CFEB0 word 0	[14:12]=cfebid[2:0]=0 [11:0]=cfeb0 distrips[11:0]
1	CFEB0 word 1	[14:12]=cfebid[2:0]=0 [11:0]=cfeb0 distrips[23:12]
1	CFEB0 word 2	[14:12]=cfebid[2:0]=0 [11:0]=cfeb0 distrips[35:24]
1	CFEB0 word 3	[14:12]=cfebid[2:0]=0 [11:0]=cfeb0 distrips[47:36]
1	CFEB1 word 0	[14:12]=cfebid[2:0]=1 [11:0]=cfeb1 distrips[11:0]
1	CFEB1 word 1	[14:12]=cfebid[2:0]=1 [11:0]=cfeb1 distrips[23:12]
1	CFEB1 word 2	[14:12]=cfebid[2:0]=1 [11:0]=cfeb1 distrips[35:24]
1	CFEB1 word 3	[14:12]=cfebid[2:0]=1 [11:0]=cfeb1 distrips[47:36]
1	CFEB2 word 0	[14:12]=cfebid[2:0]=2 [11:0]=cfeb2 distrips[11:0]
1	CFEB2 word 1	[14:12]=cfebid[2:0]=2 [11:0]=cfeb2 distrips[23:12]
1	CFEB2 word 2	[14:12]=cfebid[2:0]=2 [11:0]=cfeb2 distrips[35:24]
1	CFEB2 word 3	[14:12]=cfebid[2:0]=2 [11:0]=cfeb2 distrips[47:36]
1	CFEB3 word 0	[14:12]=cfebid[2:0]=3 [11:0]=cfeb3 distrips[11:0]
1	CFEB3 word 1	[14:12]=cfebid[2:0]=3 [11:0]=cfeb3 distrips[23:12]
1	CFEB3 word 2	[14:12]=cfebid[2:0]=3 [11:0]=cfeb3 distrips[35:24]
1	CFEB3 word 3	[14:12]=cfebid[2:0]=3 [11:0]=cfeb3 distrips[47:36]
1	CFEB4 word 0	[14:12]=cfebid[2:0]=4 [11:0]=cfeb4 distrips[11:0]
1	CFEB4 word 1	[14:12]=cfebid[2:0]=4 [11:0]=cfeb4 distrips[23:12]
1	CFEB4 word 2	[14:12]=cfebid[2:0]=4 [11:0]=cfeb4 distrips[35:24]
1	CFEB4 word 3	[14:12]=cfebid[2:0]=4 [11:0]=cfeb4 distrips[47:36]
1	6ECB marker	End of blocked cfeb distrip list
22 wo:	rds	

Blocked DiStrips list includes:

- DiStrips turned off via VME Hot Channel Mask
- DiStrips turned off via mask all applied to the entire CFEB
- DisStrips marked as bad by automatic bad-bits detection

CFEB DiStrip Bit Packing

Each CFEB has 6 layers of 8 DiStrips = 48 bits

```
block_distrip_list[ 7: 0] = Layer0 Ds[7:0]

block_distrip_list[15: 8] = Layer1 Ds[7:0]

block_distrip_list[23:16] = Layer2 Ds[7:0]

block_distrip_list[31:24] = Layer3 Ds[7:0]

block_distrip_list[39:32] = Layer4 Ds[7:0]

block_distrip_list[47:40] = Layer5 Ds[7:0]
```

Which are packed into 4 readout words, 12 bits per word = 48 bits

```
CFEBn word 0 = block_distrip_list[11: 0]

CFEBn word 1 = block_distrip_list[23:12]

CFEBn word 2 = block_distrip_list[35:24]

CFEBn word 3 = block_distrip_list[47:36]
```

Header Word Descriptions

First 4 header words must conform to DDU format specification:

header00_[11:0]	12'hB0C	Beginning of Cathode record marker
header00_[14:12]	3'b101	DDU code for TMB/ALCT
header00_[15]	1	DDU special-word flag

```
header01_[11:0] pop_bxn_counter[11:0] BXN pushed into L1A queue at L1A arrival
header01_[14:12] 3'b101 DDU code for TMB/ALCT
header01_[15] 1 DDU special-word flag
```

header01 notes:

- bxn counter contains the value of the 12-bit BXN counter at the time
- L1A arrives, and is typically 128bx later than the pre-trigger BXN (see header08).
- Readouts will always have bxn counter, but may or may not have pre-trigger data.

header02_[11:0]	pop_lla_rx_counter[11:0]	L1As received by TMB
header02_[14:12]	3'b101	DDU code for TMB/ALCT
header02_[15]	1	DDU special-word flag

header03 [11:0]	readout counter[11:0]	Counts L1A readouts	
_	-		

header03_[14:12]	3'b101	DDU code for TMB/ALCT
header03_[15]	1	DDU special-word flag

Next 4 words for short-header mode or full-header:

```
header04_[4:0] board_id[4:0] TMB module ID number = VME slot number 1-20

header04_[8:5] csc_id[3:0] Chamber ID number, set by VME register

header04_[12:9] run_id[3:0] Run info, set by VME register

header04_[13] = buf_q_ovf_err Tried to push new event when queue full

header04_[14] = r_sync_err BXN sync error
```

header04 notes:

- board id defaults to the VME crate slot number, unless overridden via VME
- csc id is a user-set value to identify the CSC connected to this TMB
- run id is a user-set value to identify the current data run
- buf q ovf indicates that more L1As arrived than TMB was able to push into its
- readout processing queue. In this case the average trigger rate is probably higher than the
- readout data path can tolerate
- sync_err indicates that bx0 did not arrive when the BXN counter turned over to the bxn-preset value. Either bx0 is not functioning, or the 40 MHz clock gained or lost counts. A sync_err is latched-on until ttc_resync or ttc bxreset.

```
header05 [5:0] r nheaders[5:0]
                                           Number of header words
header05 [8:6] fifo mode[2:0]
                                          Raw hits fifo readout mode set via VME
                                          Record type: dump, nodump, full header, short
header05 [10:9]
                     r type[1:0]
header
header05 [12:11]
                     l1a type[1:0]
                                          L1A Pop type code: buffers, no buffers, clct/
alct only
header05 [13]
                     r has buf
                                           Event has clct and gem buffer data // --EDIT, was RPC
header05 [14]
                     r buf stalled
                                          Buffer write pointer hit a fence and stalled
```

header05 notes:

- 1) nheaders indicates the length of the current header block, including the BOC marker to 1 frame before the EOB marker. In current firmware it will be 8 for short headers and 42 for full.
- 2) FIFO Modes:

m	node	raw hits	header	
0)	no	full	(if buffer was available at pre-trigger)
1	L	all 5 CFEBs	full	(if buffer was available at pre-trigger)
2	2	local	full	(if buffer was available at pre-trigger), local=sparsified cfebs
3	3	no	short	
4	1	no	no	

3) Record Type Codes:

r-type raw hits	header		

```
0 no full
1 full
2 local full
3 no short (no buffer was available at pre-trigger)
```

4) L1A Type Codes:

```
11a-type

0 Normal CLCT trigger with buffer data and L1A window match

1 ALCT-only trigger, no data buffers (not usually read out)

2 L1A-only, no matching TMB trigger, no buffer data (not usually read out)

3 TMB triggered, no L1A-window match, event has buffer data (not usually read out)
```

header06_[14:0] bd_status[14:0] Board status summary

header06 notes:

```
bd_status[ 0] bd_status_ok
                                     Board all-OK: voltages OK, temperature OK, prom-load OK
bd status[ 1] vstat 5p0v
                                    Voltage Comparator +5.0V, 1=OK
bd status[ 2] vstat 3p3v
                                    Voltage Comparator +3.3V, 1=OK
bd status[ 3] vstat 1p8v
                                    Voltage Comparator +1.8V, 1=OK
bd status[ 4] vstat 1p5v
                                    Voltage Comparator +1.5V, 1=OK
bd status[5] *t crit
                                    Temperature ADC Tcritical 1=OK
bd status[ 6] vsm ok
                                    VME Machine ran without errors
bd status[ 7] vsm aborted
                                    VME
                                            State machine aborted reading PROM
bd status[ 8] vsm cksum ok
                                    VME
                                            Check-sum matches PROM contents
bd status[ 9] vsm wdcnt ok
                                    VME
                                            Word count matches PROM contents
bd status[10] jsm ok
                                    JTAG state machine completed without errors
bd status[11] jsm aborted
                                   JTAG
                                            State machine aborted reading PROM
bd_status[12] jsm_cksum_ok
                                    JTAG
                                            Check-sum matches PROM contents
bd_status[13] jsm_wdcnt_ok
                                     JTAG
                                            Word count matches PROM contents
bd_status[14] jsm_tck_fpga_ok
                                     FPGA
                                             jtag tck detected correctly
```

header07_[14:0] revcode[14:0] Firmware version date code

header07 notes:

```
revcode[05:00] Minor version (minor features, internal fixes, bug fixes, etc)

revcode[10:06] Major Version (major feature changes which break compatibility)

revcode[14:11] DAQ data format version

-assumption for Data Format Version: 0=TMB standard, 1=OTMB Standard, 2=OTMB+GEM w/ILT MPC Frame format
```

Full Header-mode words 8-EOB: Event Counters

header08 [11:0] r bxn counter ff[11:0] CLCT Bunch Crossing number at pre-trigger, 0-3563

header08_[12]	r_tmb_clct0_discard;	TMB discarded clct0 from ME1A
header08_[13]	r_tmb_clct1_discard;	TMB discarded clct1 from ME1A
header08_[14]	clock_lock_lost	Main DLL clock lost lock

header09_[14:0]	r_pretrig_counter[14:0]	Counts CLCT pre-triggers [stops on ovf]
header10_[14:0]	r_pretrig_counter[29:15]	
header11_[14:0]	r_clct_counter[14:0]	Counts CLCTs post-drift [stops on ovf]
header12_[14:0]	r_clct_counter[29:15]	
header13_[14:0]	r_trig_counter[14:0]	Counts TMB triggers to MPC, L1A request to CCB,
header14 [14:0]	r trig counter[29:15]	[stops on ovf]
header15 [14:0]	r alct counter[14:0]	Counts ALCTs received from ALCT board [stops on ovf]
header16 [14:0]	r alct counter[29:15]	0041100 112010 12001104 11201 11201 20414 [000p0 01 011]
neaderro_[14.0]	r_arec_counter[27:10]	
header17_[14:0]	r_orbit_counter[14:0]	BXOs since last hard reset [stops on ovf]
header18_[14:0]	r_orbit_counter[29:15]	

CLCT Raw Hits Size:

header19_[2:0] r_ncfebs[2:0]		Number of CFEBs read out
header19_[7:3] r_fifo	_tbins[4:0]	Number of time bins per CFEB in dump
header19_[12:8]	fifo_pretrig[4:0]	Number of time bins before pre-trigger
header19_[13]	scope_data_exists	Readout includes logic analyzer scope data
header19_[14]	mini_read_enable	Readout includes miniscope data, 22wds+2markers

CLCT Configuration:

```
header20_[2:0] hit_thresh_pretrig[2:0]
                                          Hits on pattern template pre-trigger threshold
header20_[6:3] pid_thresh_pretrig[3:0]
                                         Pattern shape ID pre-trigger threshold
header20 [9:7] hit thresh postdrift[2:0] Hits on pattern post-drift threshold
header20 [13:10]
                  pid thresh postdrift[3:0]
                                                Pattern shape ID post-drift threshold
header20 [14]
                     stagger hs csc
                                           CSC Staggering ON
header21_[3:0] triad_persist[3:0]
                                          CLCT Triad persistence
header21 [6:4] dmb thresh pretrig[2:0]
                                         DMB pre-trigger threshold for active-cfeb list
header21 [10:7]
                   alct delay[3:0]
                                                  Delay ALCT for CLCT match window
header21_[14:11] clct_window[3:0]
                                                  CLCT match window width
```

CLCT Trigger Status:

```
header22_[8:0] r_trig_source_vec[8:0] Pre-trigger source vector
header22_[14:9] r_layers_hit_vec[5:0] CSC layers hit on layer trigger
```

header22 notes:

```
trig source [ 0]
                      CLCT pattern triggered sequencer
trig_source [ 1]
                      ALCT pattern triggered sequencer
trig source [ 2]
                      ALCT*CLCT pattern triggered sequencer
trig_source [ 3]
                      ADB external triggered sequencer
trig_source [ 4]
                      DMB external triggered sequencer
trig_source [ 5]
                      CLCT (CCB scintillator) external triggered sequencer
trig_source [ 6]
                      ALCT (CCB) external triggered sequencer
trig source [ 7]
                      VME triggered sequencer
trig source [ 8]
                      Layer-mode trigger
```

CLCT+ALCT Match Status:

header24_[0] L1A queue	r_tmb_match	ALCT and CLCT matched in time, pushed into
header24_[1]	r_tmb_alct_only	Only ALCT triggered, pushed into L1A queue
header24_[2]	r_tmb_clct_only	Only CLCT triggered, pushed into L1A queue
header24_[6:3] r_tmb_	match_win[3:0] Location of al	ct in clct window, pushed into L1A queue
header24_[7]	r_no_alct_tmb; No ALC	Т
header24_[8]	r_one_alct_tmb;	One ALCT
header24_[9]	r_one_clct_tmb;	One CLCT
header24_[10]	r_two_alct_tmb;	Two ALCTs
header24_[11]	r_two_clct_tmb;	Two CLCTs
header24_[12]	r_dupe_alct_tmb;	ALCTO copied into ALCT1 to make 2 nd LCT
header24_[13]	r_dupe_clct_tmb;	CLCTO copied into CLCT1 to make 2 nd LCT
header24_[14]	r_rank_err_tmb;	LCT1 has higher quality than LCT0, error

CLCT Trigger Data:

header25_[14:0]	r_clct0_tmb[14:0]	CLCTO after drift lsbs
header26_[14:0]	r_clct1_tmb[14:0]	CLCT1 after drift lsbs
header27_[0]	r_clct0_tmb[15]	CLCTO after drift msbs
header27_[1]	r_clct1_tmb[15]	CLCT1 after drift msbs
header27_[4:2] r_clcto	c_tmb[2:0]	CLCT0/1 common after drift msbs
header27_[5]	r_clct0_invp	CLCTO had invalid pattern after drift delay
header27_[6]	r_clct1_invp	CLCT1 had invalid pattern after drift delay
header27_[7]	r_clct1_busy	2 nd CLCT busy, logic error indicator

header27_[12:8] detection	perr_cfeb_ff[4:0]	CFEB raw hits RAM parity error, latched, SEU
header27_[13] 0 detection	FREE_perr_ff perr_mini_ff	FREE -was raw hits RAM parity error, latched, SEU
header27_[14] 0	perr_ff	Raw hits RAM parity error summary, latched, SEU

header25-27 notes:

```
clct0, clct1, clctc packing format:
clct0[0]
                  clct 1st valid
                                          Valid pattern flag
clct0[3:1] hs hit 1^{st}[2:0]
                              Hits on pattern 0-6
clct0[7:4] hs pid 1^{st}[3:0]
                                   Pattern shape 0-A
clct0[15:8] hs key 1<sup>st</sup>[7:0]
                                   ½-strip ID number
                  clct 2<sup>nd</sup> valid
clct1[0]
                                          Valid pattern flag
clct1[3:1] hs hit 2^{nd}[2:0]
                                   Hits on pattern 0-6
clct1[7:4] hs pid 2^{nd}[3:0]
                                   Pattern shape 0-A
clct1[15:8] hs key 2<sup>nd</sup>[7:0]
                                   ½-strip ID number
clctc[1:0] bxn counter ff[1:0] Bunch crossing number at pretrigger, common to
clct0/1
clctc[2]
                                           BXO disagrees with BXN count, common to
                  sync err
clct0/1
```

ALCT Trigger Data:

```
header28 [0]
                     alct 1st valid
                                                 ALCTO valid pattern flag
header28_[2:1] alct_1st_quality[1:0]
                                         ALCTO quality
header28 [3]
                    alct 1st amu
                                                ALCTO accelerator muon flag
header28 [10:4]
                    alct 1st key[6:0]
                                                ALCTO key wire group
header28 [14:11]
                  alct pretrig win[3:0]
                                                ALCT active feb flag position in pretrig window
header29 [0]
                    alct 2<sup>nd</sup> valid
                                                 ALCT1 valid pattern flag
header29 [2:1] alct 2nd quality[1:0]
                                         ALCT1 quality
header29 [3]
                     alct 2<sup>nd</sup> amu
                                                 ALCT1 accelerator muon flag
                    alct 2nd key[6:0]
header29 [10:4]
                                                ALCT1 key wire group
header29 [12:11]
                    drift_delay[1:0]
                                                 CLCT drift delay
header29 [13]
                                                 CFEB blocked DiStrip bits list included in readout
                    bcb_read_enable
header29 [14]
                    hs layer trig
                                                 Layer-mode trigger
header30 [4:0] alct bxn[4:0]
                                         ALCT0/1 bxn
header30 [6:5] alct ecc err[1:0]
                                         ALCT trigger path ECC error code
header30 [11:7]
                    cfeb badbits found[4:0]
                                              Bad distrip bits detected in cfeb[n]
header30 [12]
                    cfeb badbits blocked
                                                At least one CFEB has a bad bit that was blocked
header30 [13]
                     alct cfg done
                                                 ALCT FPGA configuration done
```

MPC Frames: For 2019: Edit GEM block!

```
header31 [14:0]
                      r mpc0 frame0 ff[14:0] MPC muon 0 frame 0 LSBs
header32 [14:0]
                      r mpc0 frame1 ff[14:0] MPC muon 0 frame 1 LSBs
header33 [14:0]
                      r mpcl frame0 ff[14:0] MPC muon 1 frame 0 LSBs
header34 [14:0]
                      r mpcl framel ff[14:0] MPC muon 1 frame 1 LSBs
header35 [0]
                      r mpc0 frame0 ff[15] MPC muon 0 frame 0 MSB
header35 [1]
                     r mpc0 frame1 ff[15] MPC muon 0 frame 1 MSB
                     r mpc1 frame0 ff[15] MPC muon 1 frame 0 MSB
header35 [2] =
header35 [3] =
                      r mpc1 frame1 ff[15] MPC muon 1 frame 1 MSB
header35_[7:4] mpc_tx_delay[3:0]
                                            MPC transmit delay
header35_[9:8] r_mpc_accept[1:0]
                                            MPC muon accept response
header35 [14:10]
                      cfeb en[4:0]
                                            CFEBs enabled for triggering (didn't fit elsewhere)
```

header31-35 notes:

```
MPCframe packing format:
       mpc0 frame0[6:0]
                                     alct0 key[6:0];
       mpc0 frame0[10:7]
                                     clct0_pattern[3:0]; //was clct0_bend[3:0]
       mpc0 frame0[13:11]
                                     lct0 quality[2:0] * lct0 vpf; //Check VPF requirement!!
       mpc0 frame0[14]
                                     clct0 QuarterStrip;
       mpc0 frame0[15]
                                     lct0_vpf; // EighthStrip was proposed
       mpc0 frame1[7:0]
                                     clct0 key[7:0];
                                     clct0 LR; // was Bend? RENAMED TO LR!!
       mpc0 frame1[8]
                                     clct0 EighthStrip; // HighMultiplicityTrig[0] was proposed;
       mpc0 frame1[9]
       mpc0 frame1[10]
                                     alct0 bxn[0];
                                     clct0 bx0 * lct0 vpf; //Check VPF requirement!!
       mpc0 frame1[11]
                      // old Note: bx0 gets replaced after mpc_tx_delay, keep here to mollify xst?
       mpc0 frame1[15:12]
                                     clct0 bend[3:0]; //was csc id[3:0]*lct0 vpf w/VPF requirement
       mpc1 frame0[6:0]
                                     alct1 key[6:0];
                                     clct0_pattern[4]; //was clct1_bend[0]
       mpc1 frame0[7]
       mpc1 frame0[10:8]
                                     HighMultiplicityTrig[3:1]; //was clct1 bend[3:1]
                                     lct1_quality[2:0] * lct1_vpf; //Check VPF requirement!!
       mpc1_frame0[13:11]
       mpc1 frame0[14]
                                     clct1 QuarterStrip;
       mpc1 frame0[15]
                                     lct1_vpf; // EighthStrip was proposed
```

```
mpc1 frame1[7:0]
                           clct1 key[7:0];
mpc1 frame1[8]
                            clct1 LR; // was Bend? RENAMED TO LR!!
mpc1 frame1[9]
                           clct1 EighthStrip; // HighMultiplicityTrig[1] was proposed;
mpc1 frame1[10]
                           HighMultiplicityTrig[0]; //was alct1 bxn[0];
                           clct1_bx0 * lct1_vpf; //Check VPF requirement!!
mpc1_frame1[11]
                           clct1 bend[3:0]; //was csc id[3:0]*lct1 vpf w/VPF requirement
mpc1 frame1[15:12]
              // old Note: bx0 gets replaced after mpc_tx_delay, keep here to mollify xst?
```

Edit GEM block! **GEM Configuration:**

```
header36_gem_[3:0] = gem_enable[3:0]; // GEM Fiber Enabled
header36 gem [4:4] = gem zero suppress; // GEM zero-suppression enabled
header36 gem [9:5] = fifo tbins gem[4:0]; // Number GEM FIFO time bins to read out
header36 gem [14:10] = fifo pretrig gem[4:0]; // Number GEM FIFO time bins before pretrigger
//planned for GE2/1, later...
header36 gem [16:15] = gem enable2[1:0]; // extra two GE2/1 fibers
header36 gem [18:17] = 0; // not used yet
```

Buffer Status:

```
header37 [10:0]
                     r wr buf adr[10:0]
                                                 Buffer RAM write address at pretrigger
                    r wr_buf_ready
header37 [11]
                                        Write buffer was ready at pretrig
header37_[12]
                    wr_buf_ready
                                                Write buffer ready now
                    buf q full
header37 [13]
                                                All raw hits ram in use, ram writing must stop
header37 [14]
                                                 No fences remain on buffer stack
                    buf_q_empty
header38 [10:0]
                    r buf fence dist[10:0] Distance to 1st fence address at pretrigger
header38 [11]
                    buf q ovf err
                                                Tried to push when stack full
header38 [12]
                    buf q udf err
                                                Tried to pop when stack empty
header38 [13]
                    buf q adr err
                                                Fence adr popped from stack doesn't match rls adr
header38 [14]
                    buf stalled once
                                                Buffer stalled at least once since last resync
header39 [11:0]
                    buf fence cnt[11:0]
                                                Number of fences in fence RAM currently
header39 [12]
                    reverse hs csc 1=Reverse staggered CSC, non-mel
header39 [13]
                                                1=ME1A hstrip order reversed
                     reverse_hs_me1a
header39 [14]
                     reverse_hs_me1b
                                                1=ME1B hstrip order reversed
header40 [1:0] active feb mux[6:5];
                                        Extend Hdr23[4:0] Active CFEB list sent to DMB
header40_[3:2] r_cfebs_read[6:5];
                                        Extend Hdr23[9:5] CFEBs read out for this event
header40 [5:4]
                    perr cfeb ff[6:5];
                                                Extend Hdr27[12:8] CFEB RAM parity error, latched
header40 [7:6]
                    cfeb badbits found[6:5]; Extend Hdr30[11:7] CFEB[n] has at least 1 bad bit
header40 [9:8] cfeb en[6:5];
                                          Extend Hdr35[14:10] CFEBs enabled for triggering
header40 [10]
                     buf_fence_cnt_is_peak; Current fence is peak number of fences in RAM
header40_[11]
                    (MXCFEB==7);
                                        TMB has 7 DCFEBs so hdr40_[10:0] are active
header40 [13:12]
                     r trig source vec[10:9]
                                                 Pre-trigger source vector for ME1A/B
```

header40_[14]	r_tmb_trig_pulse	TMB trig_pulse signal matched rtmb_push	

Spare Frame:

header41 [0]	tmb allow alct Allow A	ALCT-only tmb-matching
_		
header41_[1]	tmb_allow_clct Allow (CLCT-only tmb-matching
header41_[2]	tmb_allow_match	Allow Match-only tmb-matching
header41_[3] readout	tmb_allow_alct_ro	Allow ALCT-only tmb-matching, non-trigger
header41_[4] readout	tmb_allow_clct_ro	Allow CLCT-only tmb-matching, non-trigger
header41_[5] readout	tmb_allow_match_ro	Allow Match-only tmb-matching, non-trigger
header41_[6] triggering	r_tmb_alct_only_ro	Only ALCT trig, pushed into L1A queue, non-
header41_[7] triggering	r_tmb_clct_only_ro	Only CLCT trig, pushed into L1A queue, non-
header41_[8] triggering	r_tmb_match_ro ALCT*Cl	LCT match, pushed into L1A queue, non-
header41_[9]	r_tmb_trig_keep	This is a triggering readout event
header41_[10]	r_tmb_non_trig_keep	This is a non-triggering readout event
header41_[13:11]	<pre>lyr_thresh_pretrig[2:0]</pre>	Layer pre-trigger threshold
header41_[14]	layer_trig_en	Layer-trigger mode enabled

TMB Data Format: Short Header Mode For 2019,2013: Does this still exist??

FIFC) Cont	rol		DDU	ТМВ	Data	[14:0]												
Fra me #	/ writ e fifo	DAV Data Availab le	last wor d	d1 5 DDU speci	d1 4	d1 3	d1 2	d1 1	d1 0	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0
No Write	1	1	0	0															
0	0	0	0	1	DDU	Code	1012		,		,	,	B0C ₁₆	,	,		,		
1	0	0	0	1	DDU	Code	1012			BXN	Count	er at L	1A arı	rival [1	1:0]				
2	0	0	0	1	DDU	DDU Code 101 ₂ L1A Rx Counter [11:0]													
3	0	0	0	1	DDU Code 101 ₂ Readout Counter[11:0]														
4	0	0	0	0	sync buf q run_id[3:0] csc_id[3:0] board_id[4:0]														
5	0	0	0	0	buf stalled	has buf	11a_t; 0]	ype[1:	rec_ty	ype[1:	fifo_	mode[2:0]	nhea	der_w	ords[5	:0]		
6	0	0	0	0		boar	d_stat	us[14:	0]										
7	0	0	0	0			firmy	ware_r	evcod	e[14:0]								
8	0	0	0	1	DDU	Code 1	1012	short	header)	E	EF ₁₆ [1	1:0] (=	E0F fo	r full h	eader e	events,	EEF fo	r
9	0	0	0	1	DDU	Code	1012	1 TMB				CRC2	2[10:0]					
10	0	0	0	1	DDU	Code	1012	1 TMB				CRC2	2[21:1	1]					
11	0	0	1	1	DDU	Code	1012	1 TMB				Word	Count	[10:0]					
No Write	1	0	0	0															
Fra me #	writ e fifo	DAV Data Availab le	last wor d	d1 5	d1 4	d1 3	d1 2	d1 1	d1 0	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0

ALCT Header/Trailer Format:

FIFC) Conti	rol		DDU	ALC'	T Data	ı [14:0]											
Fra me #	/ writ e fifo	DAV Data Availab le	last wor d	d15 DDU speci al	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0
No Write	1	1	0	0															
0	0	0	0	1	DDU	Code	1012						B0A ₁₆						
1	0	0	0	1	DDU	Code	1012			BXN	Count	er at L	1A arı	ival [1	1:0]				
2	0	0	0	1	DDU Code 101 ₂ L1A Rx Counter [11:0]														
3	0	0	0	1	DDU	Code 1	1012	Read	out Co	unter[[11:0]								

n-3	0	0	0	1	DDU	Code	1012					E0D ₁₆	[11:0]						
n-2	0	0	0	1	DDU	Code	1012	0 ALCT				CRC2	2[10:0]					
n-1	0	0	0	1	DDU	Code	1012	0 ALCT			(CRC2	2[21:1	1]					
n	0	0	1	1	DDU	Code	1012	01_2 $0_{\text{CRC} \atop \text{OK=1}}$ Word Count [10:0]											
No Write	1	0	0	0															
Fra me #	/ writ e fifo	DAV Data Availab le	last wor d	d15	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0

Notes:

[1] CRC OK=1 is inserted by TMB after it calculates the CRC for data received from ALCT, and compares it to the CRC words sent by ALCT

TMB Data Format: Long Header-Only Mode For 2019: This has changes.

FIFO	Cont	rol		DD U	ТМВ	Data [14:0]												
Fra me #	/ wri te fifo	DAV Data Availa ble	last wor d	d1 5 DD U spec	d14	d1 3	d1 2	d11	d1 0	d9	d8	d7	d6	d 5	d4	d 3	d 2	d1	d0
No Write	1	1	0	0															
0	0	0	0	1	DDU (Code 10	12		!	•	1	E	30C ₁₆		•	•		•	
1	0	0	0	1	DDU (Code 10	12		I	BXN C	ounte	r at L1	A arri	val [1	1:0]				
2	0	0	0	1	DDU (Code 10	12	L1A	Rx Co	unter [11:0]								
3	0	0	0	1	DDU (Code 10	12	Read	out Co	ounter[11:0]								
4	0	0	0	0	sync err	buf_q ovf	run_i	d[3:0]			csc_	id[3:0]		board	l_id[4	1:0]		
5	0	0	0	0	buf stalled	J OJ –													
6	0	0	0	0		board_status[14:0]													
7	0	0	0	0		firmware_revcode[14:0]													
8	0	0	0	0	lock lost	clct1 discard	clct0 discard	bxn_	counte	r_ff[11	[0:1								
9	0	0	0	0	pretr	ig_cou	nter[14	1:0]											
10	0	0	0	0		CLCT0 1:0]	_key[CLC	T0_C	ompara	atorCo	ode[11:	0]			
11	0	0	0	0	clct_	counte	r[14:0]												
12	0	0	0	0	gems_s ync	gemB_s ync	gemA_ sync	gemB_ov erflow	gemA_o verflow	gemB_v pf	gemA _vpf	coj	oad_m	atch[7	[0:]				
13	0	0	0	0	trig_	counte	[14:0]												
14	0	0	0	0	HMT nhits[1]	CLCT y[1:0]					CLC	T1_C	ompara	atorCo	ode[11:	0]			
15	0	0	0	0	alct_	counte	r[14:0]												
16	0	0	0	0	alct_g	em_wi	n[2:0]	gen	_clct_	win[3:	0]	ge	m_del	ay[7:0)]				
17	0	0	0	0	uptin	uptime_counter[14:0]													
18	0	0	0	0	uptin	ne_cou	nter[29	9:15]											
19	0	0	0	0	miniscop e read ena	scope esixts	fifo_	pretrig[4:0]			fifo	_tbins	[4:0]			nc	febs[2	:0]
20	0	0	0	0	stagger csc	pid_tl	nresh_	postdrif	t[3:0]	hit_thi [2:0]	esh_po	stdrift	pid_t	hresh_	_pretri ₂	 g[3:0	hit [2:	_thresh	_pretrig
21	0	0	0	0	clct_	windov	v[3:0]		alct	_delay	[3:0]		dmb_t 2:0]	hresh_j	pretrig[tr	ad_p	ersist[[3:0]

22	0	0	0	0	layer	s_hit_v	ec[5:0)]			trig	_sour	ce_vec	[8:0]					
23	0	0	0	0	aff source	11a_:	match	_win[3:	0]	cfebs	_read	[4:0]			activ	e_cf	eb[4:	0]	
24	0	0	0	0	lct rank err	dupe clct	dupe alct	two clct	two alct	one clct	one alct	no alct	mat	ch_wi	in[3:0]		clct	alct	tmb match
25	0	0	0	0	clct0	[14:0]		1	!	1	!	!	-					'	
26	0	0	0	0	clct1	[14:0]													
27	0	0	0	0	perr summary	FREE_ perr_bit	pari SEU	ity error	cfeb r	am[4:0)]	clct1 busy	clct1 invp	clct0 invp	clctc[2:0]		clct1[5]	1 clct0[1 5]
28	0	0	0	0	alct_	pretrig_	_win[3	3:0]	a	lct0_ke	ey[6:0]]			alct0	amu	alct qua	0 lity[1:0]	alct0 valid
29	0	0	0	0	layer triggerd	bcb readout	drift_d	lelay[1:0]	a	lct1_ke	ey[6:0]]			alct1	amu	alct qua	1 lity[1:0]	alct1 valid
30	0	0	0	0	bx0 match	alct cfg done	cfeb bits blocke d	cfeb_	badbit	ts_four	nd[4:0]	alct_ec 1:0]	c_err[НМП	Γ_nhi	ts[6:2]
31	0	0	0	0	mpc0	_frame	e0[14:	0]											
32	0	0	0	0	mpc0	_frame	e1[14:	-											
33	0	0	0	0	mpc1	_frame	e0[14:												
34	0	0	0	0	mpc1	_frame	e1[14:	0]											
35	0	0	0	0	cfeb_	en[4:0]		mpc_accept[1: mpc_tx 0]						ay[3:0	mpc 1fr1 [15]	mpc1 fr0 [15]	mpc0fr 1 [15]	mpc0fr0 [15]
36	0	0	0	0	f	ifo_pre	trig_g	gem[4:0]]	f	ifo_tb	ins_g	em[4:0]	GEM_ze ro_ suppress	GE	M_e	nable[3:0]
37	0	0	0	0	buf_q empty	buf_q full	wr_buf ready	r_wr_buf ready	r_	wr_bu	f_adr[10:0]							
38	0	0	0	0	buf stalled ff	buf_q adr err	buf_q udf err	buf_q ovf err	r_b	uf_fen	ce_dis	st[10:0)]						
39	0	0	0	0	reverse me1b	reverse me1a	reverse				bu	ıf_fen	ce_cnt	[11:0]					
40	0	0	0	0	tmb trig pulse	trig_src 0:9]	_vec[1	gem_csc_ bend_ena ble	peak fence	cfeb_c 5]	en[6:	perr_ :5]	cfeb[6	cfeb_ba d[6:5]	dbits_foun	cfebs [6:5	s_read]	acti [6:5	ve_cfeb
41	0	0	0	0	layer trig enabled	lyr_thr	esh_pre	etrig[2:0	non-trig readout	triggere d readout	non- trig match ro	non- trig clct ro	non-trig alct o	allow match ro	allow clet ro	allow alct ro	allov mate h		allow alct
42	0	0	0	0	6					1		EOB 1	End Head	er Blocl	c c				
43	0	0	0	0	6						-	E0C E	nd Catho	de Bloc	k				
44	0	0	0	1	DDU C	Code 10	12					E0F ₁₆	[11:0]						
45	0	0	0	1	DDU C	Code 10	12	1 TMB				CRC2	22[10:0)]					
46	0	0	0	1	DDU C	Code 10	12	1 TMB				CRC2	22[21:1	1]					
47	0	0	1	1	DDU C	Code 10	12	1 TMB			-	Word	Count	[10:0]				
No Write	1	0	0	0															
Fra me#	/ wri te fifo	DAV Data Availa ble	last wor d	d1 5	d14	d1 3	d1 2	d11	d1 0	d9	d8	d7	d6	d 5	d4	d 3	d 2	d1	d0

TMB Data Format: Full-Readout Mode For 2019: This has changes

FIFO	Contr	ol		DD U	TMB	Data [1	4:0]												
Fra me#	/ writ e fifo	DAV Data Availa ble	last wo rd	d15 DD U spec	d14	d13	d1 2	d11	d1 0	d9	d8	d7	d6	d5	d 4	d 3	d2	d1	d0
No Write	1	1	0	0															
0	0	0	0	1	DDU C	ode 101	2			•		В	0C ₁₆						
1	0	0	0	1	DDU C	ode 101	2]	BXN C	ounter	at L1	A arri	val [1	1:0]				
2	0	0	0	1	DDU C	ode 101	2	L1A I	Rx Cou	ınter [1	1:0]								
3	0	0	0	1	DDU C	ode 101	2	Reado	out Cou	unter[1	1:0]								
4	0	0	0	0	sync err	buf_q ovf	run_i	d[3:0]			csc_ic	1[3:0]			boa	ırd_ic	d[4:0]		
5	0	0	0	0	buf stalled	has buf lla_type[1:0 rec_type[1:0 fifo_mode[2:0] nheader_words[5:0] board status[14:0]													
6	0	0	0	0			boa	rd_stat	us[14:	0]									
7	0	0	0	0		firmware_revcode[14:0]													
8	0	0	0	0	lock lost	clct1 discard discard bxn_counter_ff[11:0]													
9	0	0	0	0	pretrig	_counte	er[14:0]]											
10	0	0	0	0	HMT nhits[0]	CLCT(1:0]	0_key[ı	CLCT0	_Cor	nparat	torCoc	de[11	:0]			
11	0	0	0	0	clct_co	unter[1	4:0]												
12	0	0	0	0	gems_s ync	gemB_sy nc	gemA_s ync	gemB_o verflow	gemA_o verflow	gemB_v pf	gemA_v pf	coj	pad_n	natch[7:0]				
13	0	0	0	0	trig_co	unter[1	4:0]												
14	0	0	0	0	HMT nhits[1]	CLCT 1:0]	1_key[CLCT1	_Cor	nparat	torCoo	de[11	[0:			
15	0	0	0	0	alct_co	unter[1	4:0]												
16	0	0	0	0	alct_ge	m_win	[2:0]	gem	_clct_v	win[3:0]	gen	n_dela	ay[7:0]				
17	0	0	0	0	uptime	_count	er[14:0]											
18	0	0	0	0	uptim	uptime_counter[29:15]													
19	0	0	0	0	miniscoper ead ena	scope esixts	fifo_p	retrig[4:0]			fifo_	_tbins[4:0]			ncfe	bs[2:0)]
20	0	0	0	0	stagger csc	pid_th	resh_p	ostdrif	t[3:0]	hit_thre [2:0]	sh_postdr	ift p	 id_thr]	esh_p	retrig	g[3:	hit_th 2:0]	resh_p	retrig[
21	0	0	0	0	clct_w	indow[3:0]		alct_c	delay[3	:0]	dı 2:	mb_thre	esh_pre	trig[tria	d_pers	ist[3:0	0]
22	0	0	0	0	layers_	vers_hit_vec[5:0] trig_source_vec[8:0]													
23	0	0	0	0	aff source	11a_m	atch_w	/in[3:0]		febs_1	read[4:0	0]			acti	ive_f	eb[4:0]	

24	0	0	0	0	lct rank err	dupe clct	dupe alct	two clct	two alct	one clct	one alct	no alct	mato	h_wii	n[3:0)]	clct	alct only	tmb match
25	0	0	0	0	clct0[1	4:0]													
26	0	0	0	0	clct1[1	4:0]													
27	0	0	0	0	perr summary	FREE_ perr_bit	par SEI		r cfeb	ram[4:0)]	clct1 busy	clct1 invp	clct0 invp	clc1	tc[2:0)]	clct1[15]	clct0[1 5]
28	0	0	0	0	alct_pr	etrig_w	vin[3:0]	alct0_	_key[6:	0]	Į.	Į.	!	alct		alct0 quality	y[1:0]	alct0 valid
29	0	0	0	0	layer triggerd	bcb readout	drift_de	elay[1:0]	alct1_	_key[6:	0]				alct		alct1 quality	y[1:0]	alct1 valid
30	0	0	0	0	bx0 match	alct cfg done	cfeb bits blocked	cfeb_	badbits	s_found	l[4:0]		alct_e 1:0]	cc_err[HM	T_nhi	ts[6:2	[:]
31	0	0	0	0	mpc0_	frame0	[14:0]	-											
32	0	0	0	0	mpc0_	frame1	[14:0]												
33	0	0	0	0	mpc1_	frame0	[14:0]												
34	0	0	0	0	mpc1_	frame1	[14:0]												
35	0	0	0	0	cfeb_e	efeb_en[4:0] mpc_accep							_tx_de	elay[3	:0]	mpc1 fr1 [15]	mpc1fr 0 [15]	mpc0f r1 [15]	mpc0fr 0 [15]
36	0	0	0	0	fifo_pr	ifo_pretrig_gem[4:0] fifo_t							0]		M_zer press	Gl	EM_er	nable[[3:0]
37	0	0	0	0	buf_q empty	buf_q full	wr_buf ready	r_wr_bu f ready	wr_buf	_adr[1	0:0]								
38	0	0	0	0	buf stalled ff	buf_q adr err	buf_q udf err	buf_q ovf err	r_b	uf_fenc	e_dist	[10:0]							
39	0	0	0	0	reverse me1b	reverse me1a	reverse csc				bu	ıf_feno	ce_cn	[11:0]]				
40	0	0	0	0	tmb trig pulse	trig_src_v	vec[10:9]	gem_csc _bend_e nable	peak fence	cfeb_e	n[6:5]	perr_ 6:5]	cfeb[cfeb_bac ound[6:5	dbits_f	cfebs :5]	_read[6	active 6:5]	e_cfeb[
41	0	0	0	0	layer trig enabled	lyr_thre	esh_pret	rig[2:0]	non-trig readout	triggered readout	non-trig match ro	non- trig clct ro	non- trig alct o	allow match ro	allo w clct ro	allow alct ro	allow match	allow clct	allow alct
42	0	0	0	0	6				-		E	ЕОВ Е	nd Head	er Block	ζ.				
43					CFEB	0		Tbin	0]	Ly0[7:	:0] T	riad l	oits		
44					CFEB	0		Tbin	0			Ly1[7:0]						
45					CFEB	0		Tbin	0			Ly2[7:0]						
46					CFEB	0		Tbin	0			Ly3[7:0]						
47					CFEB	0		Tbin	0			Ly4[7:0]						
48					CFEB	0		Tbin	0			Ly5[7:0]						
49					CFEB	0		Tbin	1			Ly0[7:0]						
50					CFEB	0		Tbin	1			Ly1[7:0]						
51					CFEB	0		Tbin	1			Ly2[7:0]						
52					CFEB	0		Tbin	1			Ly3[7:0]						
53					CFEB	0		Tbin	1			Ly4[7:0]						
54					CFEB	0		Tbin	1			Ly5[7:0]						

55-246								
247					CFEB 4	Tbin (6	Ly0[7:0]
248					CFEB 4	Tbin (6	Ly1[7:0]
249					CFEB 4	Tbin (6	Ly2[7:0]
250					CFEB 4	Tbin (<u> </u>	Ly3[7:0]
251					CFEB 4	Tbin (5	Ly4[7:0]
252					CFEB 4	Tbin (Ly5[7:0]
253					6	C04 ₁₆	Begin GEM Raw Hits (if G	
254					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster0 [13:0]
255					GEM Tbin0	layer	ID, 0 or 1	GEM cluster1 [13:0]
256					GEM Tbin0	layer	ID, 0 or 1	GEM cluster2 [13:0]
257					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster3 [13:0]
258					GEM Tbin0	layer	ID, 0 or 1	GEM cluster4 [13:0]
259					GEM Tbin0	layer	ID, 0 or 1	GEM cluster5 [13:0]
260					GEM Tbin0	layer	ID, 0 or 1	GEM cluster6 [13:0]
261					GEM Tbin0	layer	ID, 0 or 1	GEM cluster7 [13:0]
262					GEM Tbin0	layer	ID, 0 or 1	GEM cluster0 [13:0]
263					GEM Tbin0	layer	ID, 0 or 1	GEM cluster1 [13:0]
264					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster2 [13:0]
265					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster3 [13:0]
266					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster4 [13:0]
267					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster5 [13:0]
268					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster6 [13:0]
269					GEM Tbin 0	layer	ID, 0 or 1	GEM cluster7 [13:0]
270-279								
280					GEM Tbin 6	layer	ID, 0 or 1	GEM cluster6 [13:0]
281					GEM Tbin 6	layer	ID, 0 or 1	GEM cluster7 [13:0]
282					6	D04 ₁₆	End GEM Raw Hits	
283					6	E0C ₁₆	End Cathode Data	
opt					2AAA ₁₆ [14:0] (Optiona	ıl to make	word count multiple of 4)	
opt					5555 ₁₆ [14:0] (Optional	to make v	vord count multiple of 4)	
284	0	0	0	1	DDU Code 101 ₂		Е	0F ₁₆ [11:0]
285	0	0	0	1	DDU Code 101 ₂	1 TMB	C	RC22[10:0]
286	0	0	0	1	DDU Code 101 ₂	1 TMB	C	RC22[21:11]
<u></u>		1	1			1		

287	0	0	1	1	DDU C	ode 101	2	1 TMB		W	ord C	ount [[10:0]			
No Write	1	0	0	0												

Sample TMB Raw Hits Dump For 2019 (or All TMBs?): RPC → GEM

TMB internal pattern injector + RPC internal pattern injector

7-Time bins, full 5 CLCTs+ 2 RPCs raw hits readout (Blocked CFEB DiStrips list turned off)

Adr=	0 Data=2DB0C	Adr= 42 Data=06E0B	Adr= 84 Data=00600	Adr= 126 Data=01600
Adr=	1 Data=ODCC8	Adr= 43 Data=00000	Adr= 85 Data=01000	Adr= 127 Data=02000
Adr=	2 Data=0D001	Adr= 44 Data=00000	Adr= 86 Data=01000	Adr= 128 Data=02000
Adr=	3 Data=0D001	Adr= 45 Data=00000	Adr= 87 Data=01000	Adr= 129 Data=02000
Adr=	4 Data=04045	Adr= 46 Data=00000	Adr= 88 Data=01000	Adr= 130 Data=02000
	5 Data=0226A			Adr= 131 Data=02000
Adr=		Adr= 47 Data=00000	Adr= 89 Data=01000	
Adr=	6 Data=0777F	Adr= 48 Data=00000	Adr= 90 Data=01000	Adr= 132 Data=02000
Adr=	7 Data=0512C	Adr= 49 Data=00100	Adr= 91 Data=01100	Adr= 133 Data=02100
Adr=	8 Data=00C47	Adr= 50 Data=00100	Adr= 92 Data=01100	Adr= 134 Data=02100
Adr=	9 Data=00001	Adr= 51 Data=00100	Adr= 93 Data=01100	Adr= 135 Data=02100
Adr=	10 Data=00000	Adr= 52 Data=00100	Adr= 94 Data=01100	Adr= 136 Data=02100
Adr=	11 Data=00001	Adr= 53 Data=00100	Adr= 95 Data=01100	Adr= 137 Data=02100
Adr=	12 Data=00000	Adr= 54 Data=00100	Adr= 96 Data=01100	Adr= 138 Data=02100
Adr=	13 Data=00001	Adr= 55 Data=00202	Adr= 97 Data=01200	Adr= 139 Data=02200
Adr=	14 Data=00000	Adr= 56 Data=00202	Adr= 98 Data=01200	Adr= 140 Data=02200
Adr=	15 Data=00001	Adr= 57 Data=00202	Adr= 99 Data=01200	Adr= 141 Data=02200
Adr=	16 Data=00000	Adr= 58 Data=00202	Adr= 100 Data=01200	Adr= 142 Data=02200
Adr=	17 Data=002DD	Adr= 59 Data=00202	Adr= 101 Data=01200	Adr= 143 Data=02200
Adr=	18 Data=00000	Adr= 60 Data=00202	Adr= 102 Data=01200	Adr= 144 Data=02200
Adr=	19 Data=0023D	Adr= 61 Data=00300	Adr= 103 Data=01300	Adr= 145 Data=02300
Adr=	20 Data=04204	Adr= 62 Data=00302	Adr= 104 Data=01300	Adr= 146 Data=02300
Adr=	21 Data=01A46	Adr= 63 Data=00300	Adr= 105 Data=01300	Adr= 147 Data=02300
Adr=	22 Data=07E01	Adr= 64 Data=00302	Adr= 106 Data=01300	Adr= 148 Data=02300
Adr=	23 Data=003E1	Adr= 65 Data=00300	Adr= 107 Data=01300	Adr= 149 Data=02300
Adr=	24 Data=00301	Adr= 66 Data=00302	Adr= 108 Data=01300	Adr= 150 Data=02300
Adr=	25 Data=005AD	Adr= 67 Data=00402	Adr= 109 Data=01400	Adr= 151 Data=02400
Adr=	26 Data=00000	Adr= 68 Data=00400	Adr= 110 Data=01400	Adr= 152 Data=02400
Adr=	27 Data=0531C	Adr= 69 Data=00402	Adr= 111 Data=01400	Adr= 153 Data=02400
Adr=	28 Data=010A7	Adr= 70 Data=00400	Adr= 112 Data=01400	Adr= 154 Data=02400
Adr=	29 Data=01000	Adr= 71 Data=00402	Adr= 113 Data=01400	Adr= 155 Data=02400
Adr=	30 Data=00001	Adr= 72 Data=00400	Adr= 114 Data=01400	Adr= 156 Data=02400
Adr=	31 Data=07D0A	Adr= 73 Data=00500	Adr= 115 Data=01500	Adr= 157 Data=02500
Adr=	32 Data=02605	Adr= 74 Data=00500	Adr= 116 Data=01500	Adr= 158 Data=02500
Adr=	33 Data=00000	Adr= 75 Data=00500	Adr= 117 Data=01500	Adr= 159 Data=02500
Adr=	34 Data=00000	Adr= 76 Data=00500	Adr= 118 Data=01500	Adr= 160 Data=02500
Adr=	35 Data=07C01	Adr= 77 Data=00500	Adr= 119 Data=01500	Adr= 161 Data=02500
Adr=	36 Data=008FB	Adr= 78 Data=00500	Adr= 120 Data=01500	Adr= 162 Data=02500
Adr=	37 Data=01E25	Adr= 79 Data=00600	Adr= 121 Data=01600	Adr= 163 Data=02600
Adr=	38 Data=007FF	Adr= 80 Data=00600	Adr= 122 Data=01600	Adr= 164 Data=02600
Adr=	39 Data=00001	Adr= 81 Data=00600	Adr= 123 Data=01600	Adr= 165 Data=02600
Adr=	40 Data=06001	Adr= 82 Data=00600	Adr= 124 Data=01600	Adr= 166 Data=02600
Adr=	41 Data=02326	Adr= 83 Data=00600	Adr= 125 Data=01600	Adr= 167 Data=02600

Adr=	168	Data=02600
Adr=	169	Data=03000
Adr=	170	Data=03000
Adr=	171	Data=03000
Adr=	172	Data=03000
Adr=	173	Data=03000
Adr=	174	Data=03000
Adr=	175	Data=03100
Adr=	176	Data=03100
Adr=	177	Data=03100
Adr=	178	Data=03100
Adr=	179	Data=03100
Adr=	180	Data=03100
Adr=	181	Data=03200
Adr=	182	Data=03200
Adr=	183	Data=03200
Adr=	184	Data=03200
Adr=	185	Data=03200
Adr=	186	Data=03200
Adr=	187	Data=03300
Adr=	188	Data=03300
Adr=	189	Data=03300
Adr=	190	Data=03300
Adr=	191	Data=03300
Adr=	192	Data=03300
Adr=	193	Data=03400
Adr=	194	Data=03400
Adr=	195	Data=03400
Adr=	196	Data=03400
Adr=	197	Data=03400
Adr=	198	Data=03400

Adr=	199	Data=03500
Adr=	200	Data=03500
Adr=	201	Data=03500
Adr=	202	Data=03500
Adr=	203	Data=03500
Adr=	204	Data=03500
Adr=	205	Data=03600
Adr=	206	Data=03600
Adr=	207	Data=03600
Adr=	208	Data=03600
Adr=	209	Data=03600
Adr=	210	Data=03600
Adr=	211	Data=04000
Adr=	212	Data=04000
Adr=	213	Data=04000
Adr=	214	Data=04000
Adr=	215	Data=04000
Adr=	216	Data=04000
Adr=	217	Data=04100
Adr=	218	Data=04100
Adr=	219	Data=04100
Adr=	220	Data=04100
Adr=	221	Data=04100
Adr=	222	Data=04100
Adr=	223	Data=04200
Adr=	224	Data=04200
Adr=	225	Data=04200
Adr=	226	Data=04200
Adr=	227	Data=04200
Adr=	228	Data=04200
Adr=	229	Data=04300

Adr= 230 Data=04300 Adr= 231 Data=04300 Adr= 232 Data=04300 Adr= 233 Data=04300 Adr= 234 Data=04400 Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04500 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=04600 Adr= 255 Data=04600 Adr= 255 Data=04600 Adr= 256 Data=00000 Adr= 257 Data=00000 Adr= 258 Data=00000 Adr= 258 Data=00000 Adr= 259 Data=007AB Adr= 250 Data=007AB			
Adr= 232 Data=04300 Adr= 233 Data=04300 Adr= 234 Data=04300 Adr= 235 Data=04400 Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=04600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=00200	Adr=	230	Data=04300
Adr= 233 Data=04300 Adr= 234 Data=04400 Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=04600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	231	Data=04300
Adr= 234 Data=04400 Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=04600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200	Adr=	232	Data=04300
Adr= 235 Data=04400 Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04500 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=04600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=00200	Adr=	233	Data=04300
Adr= 236 Data=04400 Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06804 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200	Adr=	234	Data=04300
Adr= 237 Data=04400 Adr= 238 Data=04400 Adr= 239 Data=04400 Adr= 240 Data=04500 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=0600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=00200	Adr=	235	Data=04400
Adr= 238 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06804 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=00200	Adr=	236	Data=04400
Adr= 239 Data=04400 Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=0600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	237	Data=04400
Adr= 240 Data=04400 Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=0600 Adr= 254 Data=0600 Adr= 255 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	238	Data=04400
Adr= 241 Data=04500 Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06804 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 258 Data=007AB	Adr=	239	Data=04400
Adr= 242 Data=04500 Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	240	Data=04400
Adr= 243 Data=04500 Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	241	Data=04500
Adr= 244 Data=04500 Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06804 Adr= 254 Data=00000 Adr= 255 Data=00100 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	242	Data=04500
Adr= 245 Data=04500 Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	243	Data=04500
Adr= 246 Data=04500 Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06804 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	244	Data=04500
Adr= 247 Data=04600 Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=04600 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	245	Data=04500
Adr= 248 Data=04600 Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	246	Data=04500
Adr= 249 Data=04600 Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00100 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	247	Data=04600
Adr= 250 Data=04600 Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	248	Data=04600
Adr= 251 Data=04600 Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	249	Data=04600
Adr= 252 Data=04600 Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	250	Data=04600
Adr= 253 Data=06B04 Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	251	Data=04600
Adr= 254 Data=00000 Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	252	Data=04600
Adr= 255 Data=00000 Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	253	Data=06B04
Adr= 256 Data=00100 Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	254	Data=00000
Adr= 257 Data=00000 Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	255	Data=00000
Adr= 258 Data=00200 Adr= 259 Data=007AB	Adr=	256	Data=00100
Adr= 259 Data=007AB	Adr=	257	Data=00000
	Adr=	258	Data=00200
Adr= 260 Data=00301	Adr=	259	Data=007AB
	Adr=	260	Data=00301

Adr= 261 Data=006AB Adr= 262 Data=00402 Adr= 263 Data=005AB Adr= 264 Data=00503 Adr= 265 Data=004AB Adr= 266 Data=00604 Adr= 267 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01100 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=015CD Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 280 Data=016CD Adr= 280 Data=016CD Adr= 281 Data=016CD Adr= 282 Data=016CD Adr= 283 Data=016CD Adr= 284 Data=016CD Adr= 284 Data=016CD Adr= 285 Data=016CD Adr= 284 Data=016CD Adr= 285 Data=016CD Adr= 286 Data=0DDF2 Adr= 287 Data=0DDF2 Adr= 287 Data=1D920			
Adr= 263 Data=005AB Adr= 264 Data=00503 Adr= 265 Data=004AB Adr= 266 Data=00604 Adr= 266 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01200 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=016CD Adr= 275 Data=016CD Adr= 276 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=015CD Adr= 280 Data=016CD Adr= 280 Data=016CD Adr= 281 Data=013CD Adr= 282 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	261	Data=006AB
Adr= 264 Data=00503 Adr= 265 Data=004AB Adr= 266 Data=00604 Adr= 267 Data=013AB Adr= 268 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01000 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=015CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	262	Data=00402
Adr= 265 Data=004AB Adr= 266 Data=00604 Adr= 267 Data=003AB Adr= 268 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01200 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=013C1 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 280 Data=016CD Adr= 281 Data=013CD Adr= 282 Data=016C0 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0DDF2	Adr=	263	Data=005AB
Adr= 266 Data=00604 Adr= 267 Data=003AB Adr= 268 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01000 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 278 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=015CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	264	Data=00503
Adr= 267 Data=003AB Adr= 268 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01200 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=015CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0DDF2	Adr=	265	Data=004AB
Adr= 268 Data=01000 Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01200 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0DDF2	Adr=	266	Data=00604
Adr= 269 Data=01000 Adr= 270 Data=01100 Adr= 271 Data=01000 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	267	Data=003AB
Adr= 270 Data=01100 Adr= 271 Data=01000 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0DDF2	Adr=	268	Data=01000
Adr= 271 Data=01000 Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0DDF2	Adr=	269	Data=01000
Adr= 272 Data=01200 Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	270	Data=01100
Adr= 273 Data=017CD Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	271	Data=01000
Adr= 274 Data=01301 Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=015CD Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	272	Data=01200
Adr= 275 Data=016CD Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=01503 Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	273	Data=017CD
Adr= 276 Data=01402 Adr= 277 Data=015CD Adr= 278 Data=01503 Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	274	Data=01301
Adr= 277 Data=015CD Adr= 278 Data=01503 Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	275	Data=016CD
Adr= 278 Data=01503 Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	276	Data=01402
Adr= 279 Data=014CD Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	277	Data=015CD
Adr= 280 Data=01604 Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	278	Data=01503
Adr= 281 Data=013CD Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	279	Data=014CD
Adr= 282 Data=06E04 Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	280	Data=01604
Adr= 283 Data=06E0C Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	281	Data=013CD
Adr= 284 Data=0DE0F Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	282	Data=06E04
Adr= 285 Data=0D94F Adr= 286 Data=0DDF2	Adr=	283	Data=06E0C
Adr= 286 Data=0DDF2	Adr=	284	Data=ODEOF
	Adr=	285	Data=0D94F
Adr= 287 Data=1D920	Adr=	286	Data=0DDF2
	Adr=	287	Data=1D920

CONFIGURATION FOR 2019,2013,2005: STILL ACCURATE?

Shunt Settings

Table 3: Shunts

#	Shunt	Default		Function
1	SH501 [CLK SRC]	1-2 [CCB]	1-2 [CCB] 2-3 [XTAL]	CCB sources TMB s 40MHz Main clock Onboard crystal sources TMBs 40MHz Main clock
2	SH502 [CFEB CLK]	2-3 [DCC]	1-2 [NRM] 2-3 [DCC]	CFEB clocks sourced by 3D3444 64/36 duty-cycle CFEB clocks duty-cycle corrected
3	SH55 [GBL]	1-2 [ENA]	1-2 [ENA] 2-3 [DIS]	Boot Register responds to TMB VME Global Address Boot Register ignores TMB VME Global Address
4	SH56 [GEO]	1-2 [ENA]	1-2 [ENA] 2-3 [DIS]	Boot Register responds to VME Geographic Address Boot Register ignores VME Geographic Address
5	SH57 [ADM]	1-2 [REQ]	1-2 [REQ] 2-3 [PAS]	Boot Register requires VME Address Mode 39h or 3Dh Boot Register accepts any VME Address Mode
6	SH97 [FPGA]	1-2 [ENA]	1-2 [ENA] 2-3 [DIS]	Cleared Boot Register enables FPGA VME access Cleared Boot Register disables FPGA VME access
7	SH69-1 [REG IN]	2-3 [REG]	1-2 [BPL] 2-3 [REG]	Disconnect +3.3V from U69 1.5V regulator input Connect +3.3V to U69 1.5V regulator input
8	SH69-2 [REG OUT]	2-3 [REG]	1-2 [BPL] 2-3 [REG]	Backplane sources +1.5Vtt Onboard regulator U69 sources +1.5Vtt
9	SH95 [BOOT]	1-2 [EN]	1-2 [EN] 2-3 [DIS]	CCB hard-reset clears Boot Register CCB hard-reset does not clear Boot Register
10	SH104 [VME]	1-2 [EN]	1-2 [EN] ALCT	VME write to Boot Register can hard-reset TMB or
			2-3 [DIS]	Boot Register can not hard-reset TMB or ALCT
11	SH105 [CCB]	1-2 [EN]	1-2 [EN] 2-3 [DIS]	CCB can hard-reset TMB or ALCT CCB can not hard-reset TMB or ALCT
12	SH106 [ALCT]	1-2 [EN]	1-2 [EN] Boot	TMB FPGA can hard-reset ALCT board if enabled by
			2-3 [DIS]	TMB FPGA firmware can not hard-reset ALCT board
13	SH107 [SELF]	2-3 [DIS]	1-2 [EN] 2-3 [DIS]	TMB FPGA firmware can hard-reset TMB TMB FPGA firmware can not hard-reset TMB
14	SH1081 [ALCT]	1-2 [EN]	1-2 [EN] 2-3 [DIS]	TMB can send hard-reset to ALCT board TMB can not send hard-reset to ALCT board
15	SH1082 [TMB]	1-2 [EN]	1-2 [EN] 2-3 [DIS]	TMB can send hard-reset to TMB TMB can not send hard-reset to TMB
16	SH1083 [RPC]	1-2 [EN]	1-2 [EN] 2-3 [DIS]	TMB can send hard-reset to RAT/RPC board TMB can not send hard-reset to RAT/RPC board

17	SH1084 [PUP] 1-2 [EN]		1-2 [EN] 2-3 [DIS]	Issue hard-reset to TMB on power-up Do not issue hard-reset to TMB on power-up
18	SH62 [VMEADR]	1-2 [GEO]	1-2 [GEO] 2-3 [LCL]	Slot Address derived from VME backplane GEO pins Slot Address derived from SW2/SW1 hex switches
19	SH74 [JTAG SRC]	2-3 [SW3]	1-2 [XBL] 2-3 [SW3]	X-blaster board sources JTAG chain address Onboard SW3 hex switch sources JTAG chain address
20	SH921 [RAT ADC]	1-2 [ACORE]	1-2 [ACORE] 2-3 [+3.3VR]	ADC Ch9 measures RAT core current ADC Ch9 measures RAT main +3.3V supply

Switch Settings For 2019,2013,2005: Still accurate?

Table 4: Switch Settings

Switch	Module	Default	Function					
SW1	VME	A	SW2/SW1 Form the VME slot address for Local Mode addressing and for					
SW2	VME	1	Normally, SH62 [VMEADR] will be set to 1-2 [GEO] and the VME Slot-Address is determined by the Slot-ID signals from the VME P1 backplane connector. SW2/SW1 should be set to 1A [26 decimal] to specify the Boot Register Global Address. SW2 is the most-significant hex digit. If SH62 [VMEADR] is set 2-3 [LCL], hex rotary switches SW2/SW1 determine the VME slot address for the module, and the P1 Geographic Address signals are ignored.					
SW3	JTAG	4	Selects the JTAG Chain Address for the Xblaster when SH74 [JTAG ADR SRC] is set to 2-3 [SW3]. If SH74 is set 1-2 [XBL], the JTAG Chain Address is determined by the Xblaster.					
			0001 1 ALCT SLOW PROM 0010 2 ALCT FPGA USER 0011 3 ALCT FPGA PROMS 01XX 4 TMB FPGA PROMS 10XX 8 TMB USER PROMS 1100 C TMB FPGA Loop (for TMB self-test)					

Fuses

Table 5: Fuses for TMB2005

Fuse	Circuit	Amps	LED	Function	Littelfuse Part #
F1	+5.0V	5A	D_F1 Red	VME-bus I/O	154005.DR
F2	+3.3V	10A	D_F2 Red	Main board logic, FPGA IOBs	154010.DR
F3	+1.5V	5A	None	GTLP termination	154005.DR
F4	+3.3VXB	1A	D_F4 Grn	Xblaster power	154001.DR

Table 6A: Fuses for TMB2013

Fuse	Circuit	Amps	LED	Function	Littelfuse Part #
F1	+5.0V	10A	D_F1 Red	VME-bus I/O	0451010.MRL
F2	+3.3V	15A	D_F2 Red	Main board logic, FPGA IOBs	0451015.MRL
F3	+1.5V	10A	None	GTLP termination	0451010.MRL
F4	+3.3VXB	1A	D_F4 Grn	Xblaster power	154001.DR

Table 7B: Fuses for TMB2019

Fuse	Circuit	Amps	LED	Function	Littelfuse Part #
F1	+5.0V	5A	D_F1 Red	VME-bus I/O	0451010.MRL
F2	+3.3V	10A	D_F2 Red	Main board logic, FPGA IOBs	0451015.MRL
F3	+1.5V	5A	None	GTLP termination	0451010.MRL
F4	+3.3VXB	1A	D_F4 Grn	Xblaster power	154001.DR

SIGNAL SUMMARY

CCB

• 1 Input LVDS 40MHz clock

• 46 Inputs GTLP at 40MHz

• 46 Outputs GTLP at 40MHz

Table 8: CCB Signal Summary

Signal	Bits	Dir	Logic	Function
Clock Bus				
ccb_clock40	1	In	LVDS	
Total	1			
Fast Control Bus	'			-
ccb_clock40_enable	1	In	GTLP	
ccb_cmd[50]	6	In	GTLP	
ccb_evcntres	1	In	GTLP	
ccb_bcntres	1	In	GTLP	
ccb_cmd_strobe	1	In	GTLP	
ccb_bx0	1	In	GTLP	
ccb_l1accept	1	In	GTLP	
ccb_data[70]	8	In	GTLP	
ccb_data_strobe	1	In	GTLP	
ccb_reserved[40]	5	In	GTLP	
Total	26			
TMB Reload Bus: ALCT+CLCT+	TMB FPGA Reload		·	·
tmb_hard_reset	1	In	GTLP	
tmb_cfg_done[80]	9	Out	GTLP	
alct_hard_reset	1	In	GTLP	
alct_cfg_done[80]	9	Out	GTLP	
tmb_reserved[10]	2	In	GTLP	
Total	22			
DAQ Special Purpose Bus [Used by	y DMB and TMB]	*		·
dmb_cfeb_calibrate[20]	3	In	GTLP	
dmb_l1a_release	1	(In)	GTLP	
dmb_reserved_out[40]	5	In	GTLP	
dmb_reserved_in[20]	3	(In)	GTLP	
Total	12			

Signal	Bits	Dir	Logic	Function			
Trigger Special Purpose Bus [Used by TMB only]							
alct_adb_pulse_sync	1	In	GTLP				
alct_adb_pulse_async	1	In	GTLP				
clct_external_trigger	1	In	GTLP				
alct_external_trigger	1	In	GTLP				
clct_status[80]	9	Out	GTLP				
alct_status[80]	9	Out	GTLP				
tmb_l1a_request	1	Out	GTLP				
tmb_l1a_release	1	Out	GTLP				
tmb_reserved_in[40]	5	Out	GTLP				
tmb_reserved_out[20]	3	In	GTLP				
Total	32						

ALCT

• 29 Inputs LVDS Multiplexed at 80 MHz

• 20 Outputs LVDS Multiplexed at 80 MHz

• 1 Output LVDS 40MHz clock

Table 9: ALCT Signal Summary

Signal	Bits	Pins	Mux	Dir	Logic	Function
Inputs			_			
first_valid	1	0.5	Yes	In	LVDS	Valid Pattern Flag, best muon
first_quality[10]	2	1	Yes	In	LVDS	Pattern Quality, best muon
first_amu	1	0.5	Yes	In	LVDS	Accelerator Muon Flag, best muon
first_key[60]	7	3.5	Yes	In	LVDS	Key Wire Group, best muon
second_valid	1	0.5	Yes	In	LVDS	Valid Pattern Flag, 2nd best muon
second_quality[10]	2	1	Yes	In	LVDS	Pattern Quality, 2 nd best muon
second_amu	1	0.5	Yes	In	LVDS	Accelerator Muon Flag, 2nd best muon
second_key[60]	7	3.5	Yes	In	LVDS	Key Wire Group, 2nd best muon
bxn[40]	5	2.5	Yes	In	LVDS	Bunch Crossing Number
daq_data[130]	14	7	Yes	In	LVDS	DAQ data
/wr_fifo	1	0.5	Yes	In	LVDS	/Write_enable DAQ FIFO
lct_special	1	0.5	Yes	In	LVDS	LCT Special Word Flag
ddu_special	1	0.5	Yes	In	LVDS	DAQ Special Word Flag
first_frame	1	0.5	Yes	In	LVDS	First DAQ Frame
last_frame	1	0.5	Yes	In	LVDS	Last DAQ Frame
seq_status[10]	2	1	Yes	In	LVDS	Sequencer Status
seu_status[10]	2	1	Yes	In	LVDS	Radiation SEU Status
active_feb_flag	1	0.5	Yes	In	LVDS	Active FEB Flag (ALCT pre-triggered)
cfg_done	1	0.5	Yes	In	LVDS	FPGA configuration done
reserved_out[30]	4	2	Yes	In	LVDS	Future use
tdo	1	1	No	In	LVDS	JTAG tdo from ALCT
Total Inputs	57	29				
Outputs	·	-				
ccb_brcst[70]	8	4	Yes	Out	LVDS	CCB broadcast command
brcst_str	1	0.5	Yes	Out	LVDS	ccb_brcst strobe
dout_str	1	0.5	Yes	Out	LVDS	ccb_dout strobe
subadr_str	1	0.5	Yes	Out	LVDS	ccb_subaddr strobe
bx0	1	0.5	Yes	Out	LVDS	Bunch Crossing Zero
ext_inject	1	0.5	Yes	Out	LVDS	External Test Pattern Inject Command

Signal	Bits	Pins	Mux	Dir	Logic	Function
ext_trig	1	0.5	Yes	Out	LVDS	External Trigger Command
level1_accept	1	0.5	Yes	Out	LVDS	Level 1 Accept
sync_adb_pulse	1	0.5	Yes	Out	LVDS	Synchronous ADB Test Pulse
seq_cmd[20]	3	1.5	Yes	Out	LVDS	Sequencer Command
reserved_in[40]	5	2.5	Yes	Out	LVDS	Future use
clock	1	1	No	Out	LVDS	40MHz clock
clock_en	1	1	No	Out	LVDS	Clock enable
hard_reset	1	1	No	Out	LVDS	FPGA Reload Command
async_adb_pulse	1	1	No	Out	LVDS	Asynchronous ADB Test Pulse
jtag_select[10]	2	2	No	Out	LVDS	JTAG Chain Select
tck	1	1	No	Out	LVDS	JTAG tck to ALCT
tms	1	1	No	Out	LVDS	JTAG tms to ALCT
tdi	1	1	No	Out	LVDS	JTAG tdi to ALCT
Total Outputs	33	21				

DMB For 2019: This will change later.

• 3 Inputs LVTTL at 40 MHz

• 45 Outputs¹ LVTTL at 40 MHz (see note¹ below)

• 47 Outputs² LVTTL at 40 MHz (see note² below)

Table 10: DMB Signal Summary

Signal	Bits	Dir	Logic	Function
Outputs				
tmb_data[14:0]	15	Out	LVTTL	TMB data[14:0] to DMB FIFO
alct_data[14:0]	15	Out	LVTTL	ALCT data [14:0] to DMB FIFO
tmb_ddu_special	1	Out	LVTTL	TMB DDU Special Word Flag
tmb_last_frame	1	Out	LVTTL	TMB Last FIFO frame
tmb_data_available	1	Out	LVTTL	TMB Data Available
/tmb_write_enable_fifo	1	Out	LVTTL	TMB FIFO /write_enable
tmb_active_feb_flag	1	Out	LVTTL	TMB Active Front-End-Board Flag
tmb_active_feb[40] 1	5	Out	LVTTL	TMB Active FEB indicators[40] ¹
tmb_active_feb[60] ²	7	Out	LVTTL	TMB Active FEB indicators[60] ²
fifo_clock	1	Out	LVTTL	40MHz FIFO storage clock [= tmb_clock]
alct_ddu_special	1	Out	LVTTL	ALCT DDU Special Word Flag
alct_last_frame	1	Out	LVTTL	ALCT Last FIFO frame
alct_first_frame(dav)	1	Out	LVTTL	ALCT First FIFO frame, data available
/alct_write_enable_fifo	1	Out	LVTTL	ALCT FIFO /write_enable
reserved_to_dmb	5	Out	LVTTL	Unassigned
Total Outputs	57			
Inputs				
dmb_request_lct	1	In	LVTTL	DMB requests active_feb_flag from TMB
dmb_ext_trig	1	In	LVTTL	DMB external trigger to TMB
dmb_fpga_pgm_done	1	In	LVTTL	DMB FPGA Program Done
reserved_from_dmb	3	In	LVTTL	Unassigned
Total Inputs	6			

¹ For TMB 2005 operation with up to 5 CFEBs.

² For TMB 2013 operation with 7 DCFEBs.

CFEB

120 Inputs LVDS data multiplexed at 80 MHz

5 Outputs LVDS 40MHz clock

Table 11: CFEB Signal Summary

Signal	Bits	Pins	Dir	Logic	Function
cfeb0_ly[50]_tr[70]	48	24	In	LVDS	CFEB0 6 layers x 8 triads, 80MHz
cfeb1_ly[50]_tr[70]	48	24	In	LVDS	CFEB1 6 layers x 8 triads, 80MHz
cfeb2_ly[50]_tr[70]	48	24	In	LVDS	CFEB2 6 layers x 8 triads, 80MHz
cfeb3_ly[50]_tr[70]	48	24	In	LVDS	CFEB3 6 layers x 8 triads, 80MHz
cfeb4_ly[50]_tr[70]	48	24	In	LVDS	CFEB4 6 layers x 8 triads, 80MHz
Total Inputs	240	120			

Signal	Bits	Pins	Dir	Logic	Function
cfeb0_lct_clock	1	1	Out	LVDS	CFEB 1 40MHz clock
cfeb1_lct_clock	1	1	Out	LVDS	CFEB 2 40MHz clock
cfeb2_lct_clock	1	1	Out	LVDS	CFEB 3 40MHz clock
cfeb3_lct_clock	1	1	Out	LVDS	CFEB 4 40MHz clock
cfeb4_lct_clock	1	1	Out	LVDS	CFEB 5 40MHz clock
Total Outputs	5	5			

MPC For 2019: New LCT Format!

1 Input GTLP at 80MHz
32 Outputs GTLP at 80MHz

Table 12: MPC Signal Summary

	Signal	Bits	Pins	Dir	Logic	Function
	alct_first_key[6:0]	7	3.5	Out	GTLP	LCT 0 ALCT key wire-group
	clct_first_pat[3:0]	4	2	Out	GTLP	LCT 0 CLCT pattern number, low bits
	lct_first_quality[2:0]	3	1.5	Out	GTLP	LCT 0 Muon quality
	lct_first_qs	1	0.5	Out	GTLP	LCT 0 CLCT Quarter strip
First	first_vpf	1	0.5	Out	GTLP	LCT 0 Valid pattern flag
In Time	alct_second_key[6:0]	7	3.5	Out	GTLP	LCT 1 ALCT key wire-group
	clct_first_pat[4]	1	0.5	Out	GTLP	LCT 0 CLCT pattern number, high bit
	high_mult_trig[3:1]	3	1.5	Out	GTLP	High Multiplicity Trigger, high bits
	lct_second_quality[2:0]	3	1.5	Out	GTLP	LCT 1 Muon quality
	lct_second_qs	1	0.5	Out	GTLP	LCT 1 CLCT Quarter strip
	second_vpf	1	0.5	Out	GTLP	LCT 1 Valid pattern flag
	clct_first_key[7:0]	8	4	Out	GTLP	LCT 0 CLCT key ½-strip
	clct_first_LR	1	0.5	Out	GTLP	LCT 0 CLCT Left/Right direction
	clct_first_es	1	0.5	Out	GTLP	LCT 0 CLCT Eigth strip
	alct_first_bxn[0]	1	0.5	Out	GTLP	LCT 0 ALCT bunch crossing number
	clct_first_bx0_local	1	0.5	Out	GTLP	LCT 0 local BXN from CLCT
Secon	clct_first_bend[3:0]	4	2	Out	GTLP	LCT 0 CLCT Bend
d In Time	clct_second_key[7:0]	8	4	Out	GTLP	LCT 1 CLCT key ½-strip
	clct_second_LR	1	0.5	Out	GTLP	LCT 1 CLCT Left/Right direction
	clct_second_es	1	0.5	Out	GTLP	LCT 1 CLCT Eigth strip
	high_mult_trig[0]	1	0.5	Out	GTLP	High Multiplicity Trigger, low bit
	clct_second_bx0_local	1	0.5	Out	GTLP	LCT 1 local BXN from CLCT
	clct_second_bend[3:0]	4	2	Out	GTLP	LCT 1 CLCT Bend
	Total Output Signals	37	18.5			2:1 Multiplexing at 80 MHz
1st	lct0_accept	1	0.5	In	GTLP	LCT 0 Accepted by MPC best 3 of 18 sort
2 nd	lct1_accept	1	0.5	In	GTLP	LCT 1 Accepted by MPC best 3 of 18 sort
	Total Input Signals	76	38			2:1 Multiplexing at 80 MHz

RPC For 2019,2013: Delete or deprecate! Replace with RAT??

80 Inputs 40MHz LVTTL [from receivers on transition module]

0 Outputs

Table 13: RPC Signal Summary

Signal	Bits	Dir	Logic	Function
rpc0_seg[150]	16	In	LVTTL	RPC Segment[150]
rpc0_bxn[20]	3	In	LVTTL	Bunch Crossing Number [20]
rpc0_clock	1	In	LVTTL	Clock from RPC Link Board
rpc1_seg[150]	16	In	LVTTL	RPC Segment[150]
rpc1_bxn[20]	3	In	LVTTL	Bunch Crossing Number [20]
rpc1_clock	1	In	LVTTL	Clock from RPC Link Board
Total data bits	40			

VME

24 Inputs TTL Address

16 BiDir TTL Data

Table 14: VME Signal Summary

Signal	Bits	Dir	Logic	Function
address	24	In	TTL	VME Address[230]
data	16	BiDir	TTL	VME Data[150]
control in		In	TTL	VME Control Inputs
control out		Out	TTL	VME Control Outputs

JTAG

5 InputsLVDS

1 Outputs LVDS

Table 15: JTAG Signal Summary

Signal	Bits	Dir	Logic	Function
tck	1	In	LVDS	JTAG TCK
tms	1	In	LVDS	JTAG TMS
tdi	1	In	LVDS	JTAG TDI
chain_select	2	In	LVDS	Chain Select Address
tdo	1	Out	LVDS	JTAG TDO

LEDs & Testpoints

Table 16: TMB Front Panel LEDs

LED Label	Color	Function
LCT	Blue	ALCT vpf and CLCT vpf match within the 75ns ALCT window (see note below)
ALCT	Green	ALCT active FEB flag (may not always be the same as ALCT valid pattern flag)
CLCT	Green	CLCT active FEB flag Or any external trigger except ALCT
L1A	Green	Level 1 Accept arrived in L1A window
INVP	Yellow	Invalid CLCT pattern after drift delay Pattern dropped below threshold, probably triggered on noise
NMAT	Yellow	ALCT vpf or CLCT vpf arrived but did not match in ALCT window
NL1A	Red	No Level 1 Accept arrived in L1A window after TMB triggered Constant flash rate = buffers full
VME	Green	ON = TMB FPGA loaded successfully from PROM Flashes OFF when module addressed by VME

Table 12A: Mez-2013 SMT LEDs

LED Label	Color	Function
D1	Blue	When lit, indicates at least one fiber link had an error since last reset
D2	Green	When lit, indicates TMB clock0 MMCM has locked since the last reset
D3	Yellow	When lit, indicates TMB clock0 MMCM is not currently locked
D4	Red	When lit, indicates TMB clock0 MMCM lost lock at least once since the last reset
D5	Green	When lit, indicates the QPLL has locked since the last reset
D6	Yellow	When lit, indicates the QPLL is not currently locked
D7	Red	When lit, indicates the QPLL lost lock at least once since the last reset
D8	Green	When lit, indicates at least one fiber link has a stable input
D0	Yellow	When lit, indicated the FPGA is Not Programmed (i.e. DONE is False)

Table 12B: Mez-2013 Testpoints

Testpoint Label	Function
9	TRUE indicates at least one fiber link had over 100 errors since the last reset
8	TRUE indicates all fiber links have a stable input
7:1	TRUE signas indicate that links 7:1 have a stable input, respectively

TMB Total I/O Count For 2019, etc: Fix connectors, MTPs, and RPC -> RAT

Table 17: TMB Total I/O Count

Bits	Pins	Dir	Logic	Connect To	Function
1	2	In	LVDS	ССВ	Clock Bus
26	26	In	GTLP	ССВ	Fast Control Bus
4	4	In	GTLP	ССВ	TMB Reload Bus
12	12	In	GTLP	CCB + 9 DMB + 9 TMB	DAQ Special Purpose Bus
7	7	In	GTLP	CCB + 9 TMB	Trigger Special Purpose Bus
240	120	In	LVDS	5 CFEBs	CFEB Comparators
57	29	In	LVDS	ALCT	ALCT Module
6	6	In	LVTTL	1 DMB	DMB commands
2	1	In	GTLP	MPC	MPC winner
80	40	In	LVTTL	RPC	RPC Inputs
24	24	In	TTL	VME	VME Address
16	16	BiDir	TTL	VME	VME Data
5	5	In	LVTTL	JTAG	JTAG
480	292				Totals

Bits	Pins	Dir	Logic	Connect To	Function
0	0	Out	LVDS	ССВ	Clock Bus
0	0	Out	GTLP	ССВ	Fast Control Bus
18	18	Out	GTLP	ССВ	TMB Reload Bus
0	0	Out	GTLP	CCB + 9 DMB + 9 TMB	DAQ Special Purpose Bus
25	25	Out	GTLP	CCB + 9 TMB	Trigger Special Purpose Bus
5	5	Out	LVDS	5 CFEBs	CFEB Comparators
33	21	Out	LVDS	ALCT	ALCT Module
50	50	Out	LVTTL	1 DMB	DMB data
64	32	Out	GTLP	MPC	MPC winner
0	0	Out	LVTTL	RPC	RPC Inputs
0	0	Out	TTL	VME	VME data is BiDir
1	1	Out	LVTTL	JTAG	JTAG
196	152				Totals

FPGA I/O Estimate: 392 in - 7 clock + 152 out = 537

CONNECTORS

TMB Connector Summary

Table 18: TMB2005 Connector Summary

ID	Pins	Type	Function
Ј0	50	SCSI-II	CFEB0 Inputs + Clock Out
J1	50	SCSI-II	CFEB1 Inputs + Clock Out
J2	50	SCSI-II	CFEB2 Inputs + Clock Out
J3	50	SCSI-II	CFEB3 Inputs + Clock Out
J4	50	SCSI-II	CFEB4 Inputs + Clock Out
J5	50	SCSI-II	ALCT Cable 1 Inputs
J6	50	SCSI-II	ALCT Cable 2 I/O
J7	10	Header	Xilinx LVDS X-Blaster I/O
P1	160	VME64x	VME J1/P1 Bus I/O
P2A	125	Z-Pack 25x5	CCB + DMB I/O
P2B	55	Z-Pack 11x5	DMB I/O
P3A	55	Z-Pack 11x5	MPC I/O
P3B	125	Z-Pack 25x5	RPC Inputs + ALCT alternate I/O
MTP Rx	-	aqua MTP with reduced flange & SC footprint	10 Gbps panel-mount adapter to receive up to 12 fiber links carrying DCFEB comparator data to Mez-2013 boards

J0-J4 CFEB0-CFEB4 Connectors

Function: Receives 80MHz data from CFEBs. Transmits 40MHz clock.

Connector Type: PCB: AMP 787190-5

Cable: AMP 749111-4

Shell: AMP 749889-3 [with latches]

Table 19: J0-J4 CFEB0/4-to-TMB Connectors

(This table uses Layer numbers Ly0-to-Ly5, Triad numbers Tr0-to-Tr7)

Pair	Pin		Dir	Logic	Multiplexed Sign	nals
1	1+	2-	In	LVDS	Ly0Tr0	Ly3Tr0
2	3+	4-	In	LVDS	Ly0Tr2	Ly3Tr2
3	5+	6-	In	LVDS	Ly5Tr0	Ly4Tr0
4	7+	8-	In	LVDS	Ly5Tr2	Ly4Tr2
5	9+	10-	In	LVDS	Ly1Tr0	Ly2Tr0
6	11+	12-	In	LVDS	Ly1Tr2	Ly2Tr2
7	13+	14-	In	LVDS	Ly0Tr4	Ly3Tr4
8	15+	16-	In	LVDS	Ly0Tr6	Ly3Tr6
9	17+	18-	In	LVDS	Ly5Tr4	Ly4Tr4
10	19+	20-	In	LVDS	Ly5Tr6	Ly4Tr6
11	21+	22-	In	LVDS	Ly1Tr4	Ly2Tr4
12	23+	24-	In	LVDS	Ly1Tr6	Ly2Tr6
13	25+	26-	Out	LVDS	LCT_Clock	•
14	27+	28-	In	LVDS	Ly1Tr7	Ly2Tr7
15	29+	30-	In	LVDS	Ly1Tr5	Ly2Tr5
16	31+	32-	In	LVDS	Ly5Tr7	Ly4Tr7
17	33+	34-	In	LVDS	Ly5Tr5	Ly4Tr5
18	35+	36-	In	LVDS	Ly0Tr7	Ly3Tr7
19	37+	38-	In	LVDS	Ly0Tr5	Ly3Tr5
20	39+	40-	In	LVDS	Ly1Tr3	Ly2Tr3
21	41+	42-	In	LVDS	Ly1Tr1	Ly2Tr1
22	43+	44-	In	LVDS	Ly5Tr3	Ly4Tr3
23	45+	46-	In	LVDS	Ly5Tr1	Ly4Tr1
24	47+	48-	In	LVDS	Ly0Tr3	Ly3Tr3
25	49+	50-	In	LVDS	Ly0Tr1	Ly3Tr1

J5 ALCT Cable1 Connector (Receiver)

Function: Receives 80MHz data from ALCT.

Connector Type: PCB: AMP 787190-5

Cable: AMP 749111-4

Shell: AMP 749889-3 [with latches]

Table 20: J5 ALCT Cable1 Connector [J10 on ALCT board]

Modified 4/12/01 to match ALCT2001 PCB. Stinking bad signal inversion = ⊗

Pair	Inverte d	Pin		Dir	Logic	Multiplexed Signals	
		+	-			First in Time Second in Time	
1	8	1+	2-	In	LVDS	first_valid	second_valid
2		49+	50-	In	LVDS	first_amu	second_amu
3	8	3+	4-	In	LVDS	first_quality0	second_quality0
4		47+	48-	In	LVDS	first_quality1	second_quality1
5	8	5+	6-	In	LVDS	first_key0	second_key0
6		45+	46-	In	LVDS	first_key1	second_key1
7	8	7+	8-	In	LVDS	first_key2	second_key2
8		43+	44-	In	LVDS	first_key3	second_key3
9	8	9+	10-	In	LVDS	first_key4	second_key4
10		41+	42-	In	LVDS	first_key5	second_key5
11	8	11+	12-	In	LVDS	first_key6	second_key6
12		39+	40-	In	LVDS	bxn0	bxn3
13	8	13+	14-	In	LVDS	bxn1	bxn4
14		37+	38-	In	LVDS	bxn2	/wr_fifo
15	8	15+	16-	In	LVDS	daq_data0	daq_data7
16		35+	36-	In	LVDS	daq_data1	daq_data8
17	8	17+	18-	In	LVDS	daq_data2	daq_data9
18		33+	34-	In	LVDS	daq_data3	daq_data10
19	8	19+	20-	In	LVDS	daq_data4	daq_data11
20		31+	32-	In	LVDS	daq_data5	daq_data12
21	8	21+	22-	In	LVDS	daq_data6	daq_data13
22		29+	30-	In	LVDS	lct_special	first_frame
23	8	23+	24-	In	LVDS	parity_out0 seq_status0	parity_out2 seu_status0
24		27+	28-	In	LVDS	parity_out1 seq_status1	parity_out3 seu_status1

J6 ALCT Cable2 Connector (Transmitter)

Function: Sends/Receives 80MHz data to/from ALCT.

Connector Type: PCB: AMP 787190-5

Cable: AMP 749111-4

Shell: AMP 749889-3 [with latches]

Table 21: J6 ALCT Cable2 Connector [J11 on ALCT board]

Modified 4/12/01 to match ALCT2001 PCB. Stinking bad signal inversion ☺

Pair	Inverte d	Pin		Dir	Logic	Multiplexed Signals		
		+	-			First in Time Second in Time		
1		1+	2-	Out	LVDS	tdi		
2	8	49+	50-	Out	LVDS	tms		
3		3+	4-	Out	LVDS	tck		
4	8	47+	48-	Out	LVDS	jtag_selec	et0	
5		5+	6-	Out	LVDS	jtag_selec	et1	
6	8	45+	46-	Out	LVDS	ccb_brcst0	ccb_brcst4	
7		7+	8-	Out	LVDS	ccb_brcst1 ccb_brcst5		
8	8	43+	44-	Out	LVDS	ccb_brcst2 ccb_brcst6		
9		9+	10-	Out	LVDS	ccb_brcst3 ccb_brcst7		
10	8	41+	42-	Out	LVDS	brcst_str1 subaddr_str		
11		11+	12-	Out	LVDS	dout_str bx0		
12	8	39+	40-	Out	LVDS	ext_inject ext_trig		
13		13+	14-	Out	LVDS	level1_accept sync_adb_pulse		
14	8	37+	38-	Out	LVDS	seq_cmd0 seq_cmd2		
15		15+	16-	Out	LVDS	seq_cmd1 seq_cmd3 reserved_		
16	8	35+	36-	Out	LVDS	parity_in0 reserved_in0	parity_in2 reserved_in2	
17		17+	18-	Out	LVDS	parity_in1 reserved_in1	parity_in3 reserved_in3	
18	8	33+	34-	Out	LVDS	async_adb_pulse		
19		19+	20-	Out	LVDS	/hard_reset		
20	8	31+	32-	Out	LVDS	clock_en		
21		21+	22-	Out	LVDS	clock		
22		29+	30-	In	LVDS	tdo		
23	8	23+	24-	In	LVDS	parity_out4 reserved_out0	parity_out6 reserved_out2	
24		27+	28-	In	LVDS	parity_out5 reserved_out1	alct_bx0 reserved_out3	

OS O DO D									
125 18 125 + 126 19 110 11 12 120 12	25	a	25.	26	T.,	LVDC	4: C1 G	6 1	

J1-J6 SCSI-II 50-Pin Connector Pin Convention

Figure 5: 50-Pin PCB Connector (Female)³

(Looking into P	CB Connector)
\ 25	1/
\ 26	50/

Figure 6: 50 Pin Cable Connector (Male)

(Looking into Cable	Connector)
\ 1	25/
∖ 50	26/

Figure 7: 50 Pin PCB Connector Pin Convention

(Looking At Top of PCB)

1	•			50	•		
		2	•			49	•
3	•			48	•		
		4	•			47	•
5	•			46	•		
		6	•			45	•
7	•			44	•		
		8	•			43	•
9	•			42	•		
1.		10	•	40		41	•
11	·	12		40	•	39	•
13	•	12		38	•	39	
13		14	•	50		37	•
15	•	11		36	•	5,	
		16	•			35	•
17	•			34	•		
		18	•			33	•
19	•			32	•		
		20	•			31	•

 $^{^3 \} Copied \ from \ CFEB \ design: \ http://www.physics.ohio-state.edu/~gujh/works/cmpdata.html$

21	•			30	•		
		22	•			29	•
23	•			28	•		
		24	•			27	•
25	•			26	•		

J7 Xilinx LVDS Xilinx X-Blaster Connector

Function: Connects TMB2005 to LVDS x-Blaster for programming FPGAs and PROMs.

The LVDS signals and voltage sources on this connector are not directly compatible with the standard Xilinx programming cable.

JTAG chain select signals SEL[3:0] are TTL [®].

Connector Type: PCB: 3M 3316-5002 16-pin right angle center key

Cable: 3M 3452-6600 16-pin center bump

Table 22: J8 Xilinx LVDS X-Blaster Connector

+TCK	In	1	2	In	-TCK
+TDO	Out	3	4	Out	-TDO
+TMS	In	5	6	In	-TMS
+3.3V	Out	7	8	-	GND
+TDI	In	9	10	In	-TDI
+3.3V	In	11	12	In	JTAG_EN(TTL)
SELO (TTL)	Out	13	14	In	SEL1 (TTL)
SEL2 (TTL)	In	15	16	In	SEL3 (TTL)

P1 Backplane VME64x J1/P1 Connector

Function: VME interface.

Connector Type: Harting 02-02-160-2101 Male Right-Angle Harting 02-01-160-2201 Female PCB:

Backplane:

24 Address bits: Data bits: 16 Geographic Address bits: 5

Table 23: P1 VME64x Connector

Pi n	Row z	Row a	Row b	Row c	Row d
1	MPR	D00	BBSY*	D08	VPC
2	GND	D01	BCLR*	D09	GND
3	MCLK	D02	ACFAIL*	D10	+V1
4	GND	D03	BG0IN*	D11	+V2
5	MSD	D04	BG0OUT*	D12	RsvU
6	GND	D05	BG1IN*	D13	-V1
7	MMD	D06	BG1OUT*	D14	-V2
8	GND	D07	BG2IN*	D15	RsvU
9	MCTL	GND	BG2OUT*	GND	GAP*
10	GND	SYSCLK	BG3IN*	SYSFAIL*	GA0*
11	RESP*	GND	BG3OUT*	BERR*	GA1*
12	GND	DS1*	BR0*	SYSRESET*	+3.3V
13	RsvBus1	DS0*	BR1*	LWORD*	GA2*
14	GND	WRITE*	BR2*	AM5	+3.3V
15	RsvBus2	GND	BR3*	A23	GA3*
16	GND	DTACK*	AM0	A22	+3.3V
17	RsvBus3	GND	AM1	A21	GA4*
18	GND	AS*	AM2	A20	+3.3V
19	RsvBus4	GND	AM3	A19	RsvBus11
20	GND	IACK*	GND	A18	+3.3V
21	RsvBus5	IACKIN*	SERCLK	A17	RsvBus12
22	GND	IACKOUT*	SERDAT	A16	+3.3V
23	RsvBus6	AM4	GND	A15	RsvBus13
24	GND	A07	IRQ7*	A14	+3.3V
25	RsvBus7	A06	IRQ6*	A13	RsvBus14

26	GND	A05	IRQ5*	A12	+3.3V
27	RsvBus8	A04	IRQ4*	A11	LI/I*
28	GND	A03	IRQ3*	A10	+3.3V
29	RsvBus9	A02	IRQ2*	A09	LI/O*
30	GND	A01	IRQ1*	A08	+3.3V
31	RsvBus10	-12V	+5VSTDBY	+12V	GND
32	GND	+5V	+5V	+5V	VPC

P2A Backplane CCB+DMB Connector

Function: Sends and receives data to/from CCB, and carries some DMB signals.

Connector Type: PCB: AMP Z-Pack 125 (25 rows of 5 pins) female AMP 100145-1

Backplane: AMP Z-Pack 125 (25 rows of 5 pins) male AMP?

Table 24: P2A Backplane CCB+DMB Connector

Pin	Dir	Logic	Signal
A1	In	LVDS	ccb_clock40+
A2	In	GTLP	ccb_clock40_enable
A3	In	GTLP	ccb_cmd0
A4	In	GTLP	ccb_cmb4
A5	In	GTLP	ccb_cmd_strobe
A6	In	GTLP	ccb_data0
A7	In	GTLP	ccb_data4
A8	In	GTLP	ccb_reserved0
A9	In	GTLP	tmb_hard_reset
A10	In	GTLP	alct_adb_pulse_syn
A11	Out	GTLP	clct_status0
A12	Out	GTLP	clct_status4
A13	Out	GTLP	clct_status6
A14	Out	GTLP	alct_status3
A15	Out	GTLP	alct_status7
A16	Out	GTLP	tmb_reserved_in0
A17	Out	GTLP	tmb_reserved_in4
A18			
A19	In	GTLP	dmb_cfeb_calibrate
A20	In	GTLP	dmb_reserved_out0
A21	In	GTLP	dmb_reserved_out4
A22			
A23	Out	LVTTL	tmb_data0

A24	Out		tmb data4
		LVTTL	_
A25	Out		tmb data8
		LVTTL	_

Pin	Dir	Logic	Signal
B1	In	LVDS	ccb_clock40-
B2	In	GTLP	ccb_reserved4
В3	In	GTLP	ccb_cmd1
B4	In	GTLP	ccb_cmb5
B5	In	GTLP	ccb_bx0
В6	In	GTLP	ccb_data1
В7	In	GTLP	ccb_data5
В8	In	GTLP	ccb_reserved1
В9	In	GTLP	alct_hard_reset
B10	In	GTLP	alct_adb_pulse_asy nc
B11	Out	GTLP	clct_status1
B12	Out	GTLP	clct_status5
B13	Out	GTLP	alct_status0
B14	Out	GTLP	alct_status4
B15	Out	GTLP	alct_status8
B16	Out	GTLP	tmb_reserved_in1
B17	In	GTLP	tmb_reserved_out0
B18			
B19	In	GTLP	dmb_cfeb_calibrate
B20	In	GTLP	dmb_reserved_out1
B21	(In) ¹	GTLP	dmb_reserved_in0
B22			

B23	Out	LVTTL	tmb_data1
B24	Out	LVTTL	tmb_data5
B25	Out	LVTTL	tmb_data9

Pins C1 through C25 are connected to Backplane Ground

Notes:

1) TMB can monitor signals to/from DMB, but can not assert them.

P2A Backplane CCB+DMB Connector Continued

Table 20: P2A Backplane CCB Connector Continued

Pin	Dir	Logic	Signal
D1	Out	GTLP	tmb_config_done
D2			
D3	In	GTLP	ccb_cmd2
D4	In	GTLP	ccb_evcntres
D5	In	GTLP	ccb_l1accept
D6	In	GTLP	ccb_data2
D7	In	GTLP	ccb_data6
D8	In	GTLP	ccb_reserved2
D9	In	GTLP	tmb_reserved0
D10	In	GTLP	alat aytarnal trigga
			clct_external_trigge r
D11	Out	GTLP	clct_status2
D12	Out	GTLP	clct_status6
D13	Out	GTLP	clct_status1
D14	Out	GTLP	alct_status5
D15	Out	GTLP	tmb_l1a_request
D16	Out	GTLP	tmb_reserved_in2
D17	In	GTLP	tmb_reserved_out1
D18			
D19	In	GTLP	dmb_cfeb_calibrate
D20	In	GTLP	dmb_reserved_out2
D21	(In) ¹	GTLP	dmb_reserved_in1
D22			
D23	Out	LVTTL	tmb_data2
D24	Out	LVTTL	tmb_data7
D25	Out	LVTTL	tmb_data11

E1	Out	GTLP	alct_config_done
E2			
E3	In	GTLP	ccb_cmd3
E4	In	GTLP	ccb_bcntres
E5	In	GTLP	ccb_data_strobe
E6	In	GTLP	ccb_data3
E7	In	GTLP	ccb_data7
E8	In	GTLP	ccb_reserved3
E9	In	GTLP	tmb_reserved1
E10	In	GTLP	alct_external_trigge
E11	Out	GTLP	clct_status3
E12	Out	GTLP	clct_status7
E13	Out	GTLP	alct_status2
E14	Out	GTLP	alct_status6
E15	Out	GTLP	tmb_l1a_release
E16	Out	GTLP	tmb_reserved_in3
E17	In	GTLP	tmb_reserved_out2
E18			
E19	(In) ¹	GTLP	dmb_l1a_release
E20	In	GTLP	dmb_reserved_out3
E21	(In) ¹	GTLP	dmb_reserved_in2
E22			
E23	Out	LVTTL	tmb_data3
E24	Out	LVTTL	tmb_data7
E25	Out	LVTTL	tmb_data11

1) TMB can monitor signals to/from DMB, but can not assert them.	Notes						
	1) TN	IB can monitor sig	gnals to/from DM	B, but can not as	sert them.		

P2B Backplane DMB Connector

Function: Sends and receives data to/from DMB.

Connector Type: PCB: AMP Z-Pack 55 (11 rows of 5 pins) female AMP 100161-1

Backplane: AMP Z-Pack 55 (11 rows of 5 pins) male AMP?

Table 25: P2B Backplane DMB Connector

Pin	Dir	Logic	Signal
A1	Out	LVTTL	tmb_data12
A2	Out	LVTTL	alct_data1
A3	Out	LVTTL	alct_data5
A4	Out	LVTTL	alct_data9
A5	Out	LVTTL	alct_data13
A6	Out	LVTTL	tmb_data_available
A7	Out	LVTTL	tmb_active_feb1
A8	Out	LVTTL	fifo_clock
A9	Out	LVTTL	alct_last_frame
A10	In	LVTTL	res_from_dmb2
A11	Out	LVTTL	tmb_active_feb6 (v6)

Pin	Dir	Logic	Signal
B1	Out	LVTT L	tmb_data13
B2	Out	LVTT L	alct_data2
В3	Out	LVTT L	alct_data6
B4	Out	LVTT L	alct_data10

B5	Out	LVTT	alct_data14
		L	
В6	Out	LVTT	tmb write enable fif
		LVII	tmb_write_enable_fif o
В7	Out		tmb_active_feb2
		LVTT L	
В8	In	LVTT	dmb_request_lct
		LVII	
В9	In		dmb_ext_trig
		LVTT L	
B10	In		res_from_dmb3
		LVTT L	
B11	Out		res_to_dmb3
		LVTT L	

Pin	Dir	Logic	Signal
C1	In	Pwr	Gnd
C2	In	Pwr	V _{TT} (+1.5V)
C3	In	Pwr	Gnd
C4	In	Pwr	V _{TT}

C5	In	Pwr	Gnd
C6	In	Pwr	V _{TT}
C7	In	Pwr	Gnd
C8	In	Pwr	V _{TT}
C9	In	Pwr	Gnd
C10	In	Pwr	V _{TT}
C11	In	Pwr	Gnd

Pin	Dir	Logic	Signal
D1	Out	LVTT L	tmb_data14
D2	Out	LVTT L	alct_data3
D3	Out	LVTT L	alct_data7
D4	Out	LVTT L	alct_data11
D5	Out	LVTT L	tmb_ddu_special
D6	Out	LVTT L	tmb_active_feb_flag
D7	Out	LVTT L	tmb_active_feb3
D8	Out	LVTT L	alct_write_enable_fif o
D9	In	LVTT L	res_from_dmb1
D10	Out	LVTT L	res_to_dmb5
D11	Out	LVTT L	res_to_dmb4

Pin	Dir	Logic	Signal
	2.11	Logic	~ .g

E1	Out	LVTT L	alct_data0
E2	Out	LVTT L	alct_data4
ЕЗ	Out	LVTT L	alct_data8
E4	Out	LVTT L	alct_data12
E5	Out	LVTT L	tmb_last_frame
E6	Out	LVTT L	tmb_active_feb0
E7	Out	LVTT L	tmb_active_feb4
E8	Out	LVTT L	alct_ddu_special
Е9	Out	LVTT L	alct_data_available
E10	Out	LVTT L	tmb_active_feb5 (v6)
E11	In	LVTT L	dmb_fpga_pgm_done

P3A Backplane MPC+RPC Connector

Function: Sends and receives data to/from MPC.

Sends and receives data to/from RPC.

Connector Type: PCB: AMP Z-Pack 110 (25 rows of 5 pins) Female AMP 5352068-1

Backplane: AMP Z-Pack 110 (25 rows of 5 pins) Male

Column C is connected to Ground

Table 26: P3A Backplane MPC Connector

See ADR_MPCx_FRAMEx on p48 for signal assignments

Pi n	Signal	Pi n	Signal	Pi n	Signal	Pi n	Signal
A1	/mpc_out0	B1	/mpc_out1	D1	/mpc_out2	E1	/mpc_out3
A2	/mpc_out4	B2	/mpc_out5	D2	/mpc_out6	E2	/mpc_out7
A3	/mpc_out8	В3	/mpc_out9	D3	/mpc_out10	E3	/mpc_out11
A4	/ mpc_out12	B4	/mpc_out13	D4	/mpc_out14	E4	/mpc_out15
A5	/ mpc_out16	B5	/mpc_out17	D5	/mpc_out18	E5	/mpc_out19
A6	/ mpc_out20	В6	/mpc_out21	D6	/mpc_out22	E6	/mpc_out23
A7	/ mpc_out24	В7	/mpc_out25	D7	/mpc_out26	E7	/mpc_out27
A8	/ mpc_out28	B8	/mpc_out29	D8	/mpc_out30	E8	/mpc_out31
A9	/mpc_in0	В9	/mpc_in1	D9	NC	E9	NC
A1 0	NC	B1 0	NC	D1 0	NC	E1 0	NC
A1 1	NC	B1	NC	D1 1	NC	E1	NC
A1 2	NC	B1 2	NC	D1 2	NC	E1 2	NC
A1 3	NC	B1 3	GND	D1 3	NC	E1 3	GND
A1 4	NC	B1 4	NC	D1 4	NC	E1 4	NC

			-	_		-	_		
A1 5	rpc_txa0	B1 5	+VcoreRAT		D1 5	+AcoreRAT		E1 5	+V3.3RAT
A1 6	+3.3V	B1 6	rpc_txa3		D1 6	rpc_txa2		E1 6	rpc_txa1
A1 7	rpc_txa7	B1 7	rpc_txa6		D1 7	rpc_txa5		E1 7	rpc_txa4
A1 8	+3.3V	B1 8	rpc_rxa31		D1 8	rpc_rxa38		E1 8	rpc_rxa30
A1 9	rpc_rxa27	B1 9	rpc_rxa28		D1 9	rpc_rxa29		E1 9	rpc_rxa39
A2 0	+3.3V	B2 0	rpc_rxa24		D2 0	rpc_rxa25		E2 0	rpc_rxa26
A2 1	rpc_rxa20	B2 1	rpc_rxa21		D2 1	rpc_rxa22		E2 1	rpc_rxa23
A2 2	+3.3V	B2 2	rpc_rxa17		D2 2	rpc_rxa18		E2 2	rpc_rxa19
A2 3	rpc_rxa13	B2 3	rpc_rxa14		D2 3	rpc_rxa15		E2 3	rpc_rxa16
A2 4	+3.3V	B2 4	rpc_rxa10		D2 4	rpc_rxa11		E2 4	rpc_rxa12
A2 5	rpc_rxa6	B2 5	rpc_rxa7		D2 5	rpc_rxa8		E2 5	rpc_rxa9

P3B Backplane RPC+ALCT Connector

Function: Sends and receives data to/from ALCT.

Sends and receives data to/from RPC.

Connector Type: PCB: AMP Z-Pack 110 (25 rows of 5 pins) Female AMP 5352068-1

Backplane: AMP Z-Pack 110 (25 rows of 5 pins) Male

Table 27: P3B Backplane RPC+ALCT Connector

Pi n	Signal	Pi n	Signal	Pi n	Signal	Pi n	Signal	Pi n	Signal
A1	+3.3V	B1	rpc_rxa3	C1	GND	D1	rpc_rxa4	E1	rpc_rxa5
A2	rpc_rxa35	B2	rpc_rxa0	C2	GND	D2	rpc_rxa1	E2	rpc_rxa2
A3	+3.3V	В3	rpc_rxa32	C3	GND	D3	rpc_rxa33	E3	rpc_rx34
A4	alct_txa1	B4	alct_txa0	C4	GND	D4	rpc_rxa36	E4	rpc_rxa37
A5	+3.3V	B5	alct_txa4	C5	GND	D5	alct_txa3	E5	rpc_txa2
A6	alct_txa8	В6	alct_txa7	C6	GND	D6	alct_txa6	E6	rpc_txa5
A7	+3.3V	В7	alct_txa11	C7	GND	D7	alct_txa10	E7	rpc_txa9
A8	alct_txa15	B8	alct_txa14	C8	GND	D8	alct_txa13	E8	rpc_txa12
A9	+3.3V	В9	alct_txa18	C9	GND	D9	alct_txa17	E9	rpc_txa16
A1 0	alct_txa25	B1 0	alct_txa27	C1 0	GND	D1 0	alct_txa26	E1 0	rpc_txa19
A1 1	+3.3V	B1 1	alct_txa22	C1 1	GND	D1	alct_txa21	E1	rpc_txa20
A1 2	NC	B1 2	NC	C1 2	NC	D1 2	NC	E1 2	NC
A1 3	+3.3V	B1 3	NC	C1 3	NC	D1 3	NC	E1 3	NC
A1 4	NC	B1 4	NC	C1 4	NC	D1 4	NC	E1 4	NC

A1 5	+3.3V	B1 5	alct_rear_rxoe _out	C1 5	GND	D1 5	alct_txa24	E1 5	rpc_txa23
A1 6	alct_rxa0	B1 6	rpc_smbtx_out	C1 6	GND	D1 6	hard_reset_rpc_ out	E1 6	rpc_free0_o ut
A1 7	+3.3V	B1 7	alct_rxa3	C1 7	GND	D1 7	alct_rxa2	E1 7	rpc_rxa1
A1 8	alct_rxa7	B1 8	alct_rxa6	C1 8	GND	D1 8	alct_rxa5	E1 8	rpc_rxa4
A1 9	+3.3V	B1 9	alct_rxa10	C1 9	GND	D1 9	alct_rxa9	E1 9	rpc_rxa8
A2 0	alct_rxa14	B2 0	alct_rxa13	C2 0	GND	D2 0	alct_rxa12	E2 0	rpc_rxa11
A2 1	+3.3V	B2 1	alct_rxa17	C2	GND	D2 1	alct_rxa16	E2 1	rpc_rxa15
A2 2	alct_rxa21	B2 2	alct_rxa20	C2 2	GND	D2 2	alct_rxa19	E2 2	rpc_rxa18
A2 3	+3.3V	B2 3	alct_rxa24	C2 3	GND	D2 3	alct_rxa23	E2 3	rpc_rxa22
A2 4	alct_rxa28	B2 4	alct_rxa27	C2 4	GND	D2 4	alct_rxa26	E2 4	rpc_rxa25
A2 5	+3.3V	B2 5	alct_rxa31	C2 5	GND	D2 5	alct_rxa30	E2 5	rpc_rxa29

Backplane Pin Diagram

Front Panel Connector Locations

```
Front Panel > |
              | Multipurpose connector goes here
              ||. . | CFEB0
              11 . . .
              11. . 1
              11 . . .
              ||...|
         ---- || . .| <- Pin 1 here (10.510)
  Pin
          | | ----
          1 11..1
       2.130" || . .|
         | | | | . . |
         | | | | . . |
         \/ ||..|
  one
         ---- || . .| <- Pin 1 here (8.380)
         ^ | ----
  Pin
         1 1
  one
          | | ----
          | | | | . . |
       2.130" || . .|
         1 11..1
        | || . .|
  Pin
         \/ ||..|
  one
         ---- || . .| <- Pin 1 here (6.250)
         ^ | ----
  Pin
          1 1
          | | ----
          | | | | . . |
       2.130" || . .|
         1 11..1
         | | | | . . |
  Pin
         \/ ||..|
  one
         ---- || . .| <- Pin 1 here (4.120)
         ^ | ----
  Pin
         one
          | | ----
          1 11...
```

CCB Front Panel

Table 28: Connector CCB Input connector P10

Pin	Pin	Signal
(+)	(-)	~. g
1	2	external_clock40
3	4	external_clock40_enable
5	6	external_l1accept
7	8	dmb_cfeb_calibrate[0]
9	10	dmb_cfeb_calibrate[1]
11	12	dmb_cfeb_calibrate[2]
13	14	alct_adb_pulse_sync
15	16	alct_adb_pulse_async
17	18	clct_external_trigger
19	20	alct_external_trigger
21	22	tmb_l1a_request
23	24	ccb_fp_reserved_in[0]
25	26	ccb_fp_reserved_in[1]
27	28	
29	30	
31	32	
33	34	

Table 29: CCB Output connector P11

Pin	Pin	Signal	Test	TMB	Description
(+)	(-)	Signai	Point	Assignment	Description
1	2	clct_status[0]	391-1	pretrig	Sequencer pre-triggered
3	4	clct_status[1]	391-2	seq_busy	Sequencer busy
5	6	clct_status[2]	391-3	invpat	Invalid pattern after drift delay
7	8	clct_status[3]	391-4	daqmb	Dump to DMB in progress
9	10	clct_status[4]	391-5	11a_window	L1A window
11	12	clct_status[5]	391-6	11a	L1A (should be in L1A window)
13	14	clct_status[6]	391-7	tmb	CLCT sent for TMB match
15	16	clct_status[7]	391-8	tmb_flush	TMB found no match or rejected trigger
17	18	clct_status[8]	391-9	nol1a_flush	No L1A, Sequencer flushing event
19	20	ccb_clock40			

21	22	ccb_bx0		
23	24	ccb_l1accept		
25	26	ccb_cmdstr		
27	28	ccb_fp_reserved_out[0]		
29	30			
31	32			
33	34			

Table 30: CCB Output connector P12

Pin	Pin	G:1	Test TMB		Description	
(+)	(-)	Signal	Point	Assignment	Description	
1	2	alct_status[0]	392-1	alct_active_feb	ALCT fast active AFEB	
3	4	alct_status[1]	392-2	first_valid	First muon valid pattern flag	
5	6	alct_status[2]	392-3	second_valid	Second muon valid pattern flag	
7	8	alct_status[3]	392-4	first_amu	First accelerator muon flag	
9	10	alct_status[4]	392-5	second_amu	Second accelerator muon flag	
11	12	alct_status[5]	392-6	/wr_fifo(alct)	ALCT /write enable raw-hit FIFO	
13	14	alct_status[6]	392-7	alct_vpf	ALCT 1st Valid Pattern (TMB pipe)	
15	16	alct_status[7]	392-8	clct_vpf	CLCT 1st Valid Pattern (TMB pipe)	
17	18	alct_status[8]	392-9	scint_veto	Scintillator Veto (clears via VME)	
19	20					
21	22					
23	24					
25	26					
27	28					
29	30					
31	32					
33	34					

DOCUMENTATION REVISION HISTORY

Version	Date	Action	
1.00	07/12/2003	Initial, copied from TMB2001	
1.01	10/29/2003	Replaced PHOS4 registers with DDD, update shunts table, rat signals updated	
1.02	03/15/2004	Update 3D3444 registers, add RAT/RPC registers	
1.03	03/16/2004	Move RAT register addy to match bdtest.v	
1.04	04/15/2004	Copy from TMB2003	
2.01	05/19/2004	Add RPC Readout	
2.01	06/09/2004	New registers B6-CC, 4 new header words, new raw hits format, started logic docs	
2.02	06/10/2004	Add mpc_tx_delay, modify header 21,22	
2.03	06/18/2004	Add register CE for new scope trigger source, add mpc data format	
2.04	07/23/2004	Add nph_pattern to header word 21	
2.05	08/03/2004	Add counter registers	
2.06	10/01/2004	Add scp bit to header	
2.07	10/04/2004	Add mpc_bx0 to reg ADR_TMB_TRIG	
2.08	10/07/2004	Typos fixed	
2.09	12/15/2004	Typos fixed	
3.00	06/02/2005	Ported from TMB2004 v2.09 dated 12/15/04	
3.00	06/09/2005	Add rpc_hard_reset to boot reg, update ADR_LOOPBK for RAT signals	
3.01	06/28/2005	alct_rxoe, alct_txoe in 0E are now readonly to foil errant software	
3.02	08/01/2005	1/2005 Change default alct_status_en, tmb_status_en=0 for multi-crate use	
3.03	08/08/2005	Change c_status_oe to ccb_status_oe	
3.04	02/27/2006	Add configuration section	
3.05	05/24/2006	Add jtag state machine registers, add alct scope channels	
3.06	07/28/2006	Add vme state machine registers, update raw hits header, add prom info	
3.07	08/08/2006	Add layer-or trigger mode	
3.08	09/05/2006	Add rat delay registers	
3.09	09/15/2006	Add CLCT processing steps	
3.10	10/16/2006	Add ISE Version register, triad persistence default now 6 for 6 clocks	
3.11	04/09/2007	Reduce RPCs from 4 to 2, add mpc_oe, affects 86,B6,BA,BE,C4,CA,CC,header22	
3.12	04/11/2007	Remove duplicate header22 description, update header tables	
3.13	04/27/2007	Add ignore ttc_start/stop to Adr 2C, expand fmm_state in Adr 9C	
3.14	05/16/2007	New pattern finder registers	
4.01	05/24/0207	New clct pattern finder algorithm	

Version	Date	Action
4.02	06/21/2007	New pattern ID numbers, new layer triggermods to Adrs 10,D4, and A0,A6,A8,AA,CA,CC,header16
4.03	07/05/2007	Key layer shifted from ly3 to ly2, adjcfeb_dist expanded to 6 bits, activefeb bugfix
4.04	07/10/2007	Firmware update, no change to doc
4.05	07/24/2007	Update Adr 78,88,8C descriptions to match current CLCT0/1 4-bit pattern IDs
4.06	07/26/2007	Fix text for adr 68, 6C, A6
4.07	08/06/2007	Increase injector read-write adr to 10 bins in Adr 44, Adr BE
4.08	08/30/2007	New header/trailer format
4.09	09/04/2007	Mods to header format, expand VME counters to 30 bits
4.10	09/10/2007	New fields in header 24, new VME counters
4.11	09/14/2007	Header bug fixes, new no-alct counter
4.12	09//21/2007	Push hsds bit into pat[3] in documentation
4.13	12/17/2007	Switch to big-buffer logic
4.14	01/28/2008	Replace entire L1A logic, replace lct_ quality
4.15	02/05/2008	Add raw hits RAM parity errors to header27
4.16	04/29/2008	Major update for new flow-through triggering
4.17	05/01/2008	All scope channels reassigned, header frame bug fixes
4.18	05/12/2008	Add clct + alct bx0 heartbeat to mpc_tx[11], mpc_tx[27]
4.19	05/23/2008	Adr B0[15:14] Add clock_lost and sync_er
4.20	06/03/2008	Add counter clears on ttc_resync, add aclt debug to scope, new active_feb_flag
4.21	07/09/2008	Replace jtag state machine, rename thresh signals, add pid_thresh_postdrift
4.22	07/15/2008	non-trigger readout mods
4.23	08/12/2008	Add bx0_match, add me1a/b separation ram mux, add alct data tx delay
4.24	08/28/2008	Programmable stagger removed, csc firmware types created, new counters
4.25	09/12/2008	Add tmb logic signals to header40,41
4.26	09/16/2008	Update tables for header words 36(rpc),40,41. Updated sample raw hits dump
4.27	10/01/2008	Mod header08,36,40,41, replaced scope module and vme register, jtag sel
4.28	11/18/2008	Add reg FE, L1A and parity logic mods, add sync err and parity err counters
4.29	11/19/2008	Remove stagger_csc from Adr F4[1], staggering info is in Adr CC
4.30	12/10/2008	Add l1a_lookback mode, l1a_lookback reg + sequencer debug reg; add parity ram
4.31	02/05/2009	Add alct-loopback logic in alct.v module
4.32	03/16/2009	Add ecc to alct data, add ecc counters, add cfeb counters
4.33	04/15/2009	Updates for alct 80MHz output stages
4.34	05/15/2009	Miniscope added, RPC readout mods, bx0 test mode

Version	Date	Action
4.35	05/29/2009	Add alct muonic timing
4.36	06/22/2009	More alct muonic mods
4.37	06/29/2009	Replace alct_txd, alct_rxd DDD delays with digital phase shifters
4.38	07/13/2009	Add cfeb muonic timing, 5 digital phase shifters, 2 vme delay registers
4.39	08/14/2009	CFEB muonic version, removed cfeb and alct_rx posnegs, still has alct_tx posneg
4.40	08/25/2009	ALCT+CFEB muonic with posneg sync stages, ISE 8.2sp3
4.41	09/02/2009	Correct adr 16
4.42	09/08/2009	Add digital phase shifter autostart
4.43	09/21/2009	Add sync register 0x120, limit bxn offsets to be < lhc_cycle
4.44	10/15/2009	Add alct0==alct1 error counter, change D0[5] default to 1, enables alct err counter
4.45	11/23/2009	Text corrections
4.46	12/09/2009	Add alct and cfeb muonic figures
4.47	12/16/2009	Add cfeb bad bit detection and registers
4.48	01/14/2010	Add cfeb bad bit list to header30, mod bad bit ctrl reg
4.49	02/10/2010	Add event clear for aff, clct, mpc VME diagnostic registers
4.50	03/12/2010	Add blocked bits readout, clct-only mode bug fix
4.51	04/09/1200	Fix header30 typo, add firmware log for 3/19/2010 version
4.52	05/14/2010	Mod Adr 0x2A and Adr 0x120, add firmware log for 5/14/10 version
4.53	07/02/2010	Mod Adr 0x32, 0x42, 0x9E, 0x100, and hdr38[14]
4.54	07/08/2010	Move injector ram msbs to lookback reg, revert injector wen,ren
4.55	07/15/2010	Add miniscope section to header chapter
4.56	09/03/2010	Convert to MS Word 2010
4.57	08/17/2012	Add startup delay for ALCT Spartan-6 mezzanine
4.58	09/16/2012	Add Virtex-6 GTX optical receivers
4.59	09/23/2012	Add Virtex-6 Sysmon
4.60	10/15/2012	Change pid_thresh descriptions in adr 0xF4
4.61	03/07/2013	Convert doc to docx, mod header + add registers for 7 DCFEB Virtex-6
4.62	2013/10/24	Change order of keys in LCT quality module, documentation updated accordingly
5.01	2013/12/19	Created assignments for Mez-2013 TPs & SMT LEDs: qpll & mmcm lock monitoring. Also minor corrections for VME GTX register table (Adr 14C-158)
5.02	2014/01/06	Changes to Reset for CFEB badbits, fiber link monitor logic & GTX VME registers 14A-158
5.03	2014/01/08	Add optical links to Fig. 1 and made some minor format changes for some tables

Version	Date	Action
5.04	2014/04/24	Format cleaning. The following styles applied consistently throughout the text: section title – "My Heading 1" subsection title – "My Heading 2" normal text – "Normal" code excerpt – "Code in fixed font" paragraph title – "Paragraph heading" tables – "No spacing" text on figures – "Text box in plot" The styles are stored within document and accessible in Home -> Styles tab in Word
5.05	2014/04/28	Andrew Peck updated tables with the correct TMB2005 backplane pin assignments and connector (now 24,25). Some other minor formatting changes in that general section
5.06	2014/05/15	Add description of 5 new VME registers 17C – 188 to access data sent to MPC stored in FIFO (up to 512 last trigger events)
5.07	2014/06/26	Edited signal synchronization section. Start to edit list of VME addresses
5.08	2014/07/31 2014/08/04	Fix table with bits for Adr 15A ADR_V6_SYSMON Virtex-6 Sysmon ADC Fix table for Adr 16A and 16C changing cfeb0 to cfeb5 and cfeb6
5.09	2015/02/12	Edit VME register details for Adr 146 - 158, also 16A, 16C and 11E Added startup timers in VME Adr 186 - 192
5.10	2015/09/28	Edit counters 81 and 82 controlled by register D0 and read from register D2. GTX errors in these counters are obsolete. Counters of CLCT pre-triggers and L1A (counter 81) and ALCT (counter 82) are added.
5.11	2016/02/04 2016/02/26	Edit names of variables and description in VME register 6A for ALCT window width and delay to overlap with CLCT pre-trigger. Add counters 83-92 controlled by register D0 and read from register D2. These counters are for CFEBs active flags sent to DMB.
5.12	2016/04/14	Edit Figure 1 Edit names of counters 83-92, they are synchronized for OTMB2013 and TMB2005

FIRMWARE CHANGE LOG

Version 1/20/2015

Has redefined **enable** and **reset** control for Virtex-6 SNAP12 GTX fiber optic receivers (Adr 14A-158), and these now control GTX reset and GTX respectively

Added registers to monitor startup timing for several modules after a Hard Reset, with 100 ns units (Adr 186-192)

No longer uses the GTX internal RX Delay Align module for DCFEB fibers (which never worked well), but now uses just 2 phasers with one to control A-side DCFEB links (Adr 16A, used to be cfeb5_rxd) and the other for B-side links (Adr 16C, used to be cfeb6_rxd), and Adr 11E is also changed (rxd_int_delay control)

Version 12/26/2014

Improved enable and reset control for Virtex-6 SNAP12 GTX fiber optic receivers (Adr 14A-158)

Added registers to count "lock lost" conditions for MMCM and QPLL (Adr 146 and 148)

Now using the GTX internal RX Delay Align module for DCFEB fibers instead of the phaser clocks

Version 01/06/2014

Improved control & monitoring for Virtex-6 SNAP12 GTX fiber optic receivers

First applied in firmware version 12302013

```
TTC Resync now included in reset logic for CFEB badbits
```

```
cfeb_badbits_reset[4:0] = (cfeb_badbits_ctrl_wr[4:0] | {5{ttc_resync}});
cfeb_badbits_reset[6:5] = (cfeb_v6_badbits_ctrl_wr[1:0] | {2{ttc_resync}});
```

GTX VME registers 14A-158 changed significantly to reflect improved fiber link monitor & control logic

Removed functions that were not useful (previously accessed in bits 10, 7:4, 2)

Reassigned some other functions to different bits (previous bit $9 \rightarrow$ bit 7, bit $3 \rightarrow$ bit 2)

Added new functions to bits 6:3 (gtx link bad, gtx link had err, gtx link good, gtx rx sync done)

Changed the readout response for bits 2:0 in registers 14C – 158 when master GTX control is asserted

When the master GTX control bits are set in register 14A (bits 2:0) they are now accurately reflected in the respective readout bits for the individual GTX links (bitwise OR in each GTX)

The error count now counts link sync failures when the PRBS function is not enabled

An occassional loss of sync for a link is expected due to SEUs, but large numbers of them or repeated occurrences may indicate a problem in the system

Increased the error count size to 8 bits and assigned this to bits 15:8

For registers 14C – 158 the maximum error count is hex E0 (n.b. a count larger than 1 is severe)

Register 14A is the sum of the other 7 counters, with maximum allowed value of hex FE

Version 12/19/2013

Adds diagnostic features for Mez-2013

Applied in firmware versions 12162013 – 12172013

Assign Mez-2013 SMT LEDs to indicate qpll & mmcm lock conditions and status changes See Table 12A

Assign additional diagnostic signals to the Mez-2013 test points and SMT LEDs See Tables 12A and 12B

Minor corrections to the table for VME GTX registers (Adr 14C-158) Removed references to "all"

Version 03/08/2013

Adds support for 7 DCFEBs with Virtex-6

- 1) Modified ADR_SEQCLCTM=0xB0 Sequencer CLCT msbs Register, Readonly

 Added seq_clctmsb_rd[9:8] = clctf_vme[6:5], bits were formerly unused

 Now seq_clctmsb_rd[9:3] = clctf_vme[6:0] Active cfeb list at TMB match
- 2) ADR_PARITY=0xFA Parity errors

 Changed sub-address assignments to accommodate DCFEB[6:5]
- 3) Modified ADR_CNT_CTRL=0xD0 Status Counter Control

Inserted 2 new counters after cnt[18], shifts subsequent counter addresses by 2

cnt_en[19] <= cfeb_hit_at_pretrig[5] CLCT pretrigger is on CFEB5

cnt_en[20] <= cfeb_hit_at_pretrig[6] CLCT pretrigger is on CFEB6

4) Modified ADR_DELAY1_INT=0x11E DDR Interstage delays for DCFEB[6:5]

Added:

- 5) Added ADR_V6_CFEB_BADBITS_CTRL=0x15C CFEB_Bad Bits Control/Status

 For DCFEB[6:5] badbits, extends 5 bit fields from ADR_CFEB_BADBITS_CTRL
- 6) Added 6 new bad bit VME registers

```
ADR_V6_CFEB5_BADBITS_LY01 = 0x15E CFEB5 Bad Bit Array

ADR_V6_CFEB5_BADBITS_LY23 = 0x160 CFEB5 Bad Bit Array

ADR_V6_CFEB5_BADBITS_LY45 = 0x162 CFEB5 Bad Bit Array

ADR_V6_CFEB6_BADBITS_LY01 = 0x164 CFEB6 Bad Bit Array

ADR_V6_CFEB6_BADBITS_LY23 = 0x166 CFEB6 Bad Bit Array
```

= 0x168 CFEB6 Bad Bit Array

7) Added 2 new Digital Phase Shifter VME registers

ADR V6 CFEB6 BADBITS LY45

ADR_V6_PHASER7=0x16A DCM Phase Shifter Register: CFEB5 rxd ADR V6 PHASER8=0x16C DCM Phase Shifter Register: CFEB6 rxd

8) Added 6 New hot channel mask registers

```
ADR_V6_HCM501 = 0x16E CFEB5 Ly0,Ly1 Hot Channel Mask

ADR_V6_HCM523 = 0x170 CFEB5 Ly2,Ly3 Hot Channel Mask

ADR_V6_HCM545 = 0x172 CFEB5 Ly4,Ly5 Hot Channel Mask

ADR_V6_HCM601 = 0x174 CFEB6 Ly0,Ly1 Hot Channel Mask

ADR_V6_HCM623 = 0x176 CFEB6 Ly2,Ly3 Hot Channel Mask

ADR_V6_HCM645 = 0x178 CFEB6 Ly4,Ly5 Hot Channel Mask
```

- 9) Modified ADR_MOD_CFG 0x28 TMB Module Configuration Register

 Replaced led_flash_rate from mod_cfg_wr[11:10] with cfeb_exists[6:5]

 Now: mod_cfg_rd[11:5] = cfeb_exists[6:0] = CFEBs instantiated in this firmware
- 10) Added new VME register ADR_V6_EXTEND = 0x17A: DCFEB 7-bit extensions Extends 5-bit cfeb fields in Adr 0x42 and 0x68 to 7 bits

```
mask_all[6:5] =[1:0] Extend 0x42[4:0] = mask_all[4:0]1=Enable, 0=Turn off all CFEB inputs
inj_febsel[6:5] =[3:2] Extend 0x42[9:5] = inj_febsel[4:0]1=Select CFEBn for RAM read/write
injector mask cfeb[6:5]=[5:4] Extend 0x42[14:10] = injector mask cfeb[4:0] 1=Enable CFEB(n) for injector
```

- 11) Modified ADR_LOOPBK 0x0E Loop-Back Control Register 2 remove 2 spare DMB signals

 Reassigned dmb_tx_reserved to remove the 2 new active feb bits from the unused list

 Updated bits [10:5] to match current firmware
- 12) TMB-to-DMB Active CFEB List backplane signals extended 5 bits to 7

Assigned 2 new bits to the next available spare DMB signals.

TMB schematic signals:

```
Signal res_to_dmb1 is now active_feb_list[5] on backplane pin E10
Signal res_to_dmb2 is now active_feb_list[6] on backplane pin A11
```

13) Modified header40_[11:0] for 7-bit extensions to various 5-bit header fields

Header40_[11:0] used to contain the peak RAM fence counter for raw hits storage debugging. The peak count has been removed, but can still be read out with VME, and its dynamic status is indicated by header40 [10].

The flag bit in header 40 [11] indicates when bits [10:0] are valid for 7-dcfeb firmware versions.

```
header40_[1:0] = active_feb_mux[6:5]; Extend Hdr23[4:0] Active CFEB list sent to DMB
header40_[3:2] = r_cfebs_read[6:5]; Extend Hdr23[9:5] CFEBs read out for this event
header40_[5:4] = perr_cfeb_ff[6:5]; Extend Hdr27[12:8] CFEB RAM parity error, latched
header40_[7:6] = cfeb_badbits_found[6:5]; Extend Hdr30[11:7] CFEB[n] has at least 1 bad bit
header40_[9:8] = cfeb_en[6:5]; Extend Hdr35[14:10] CFEBs enabled for triggering
header40_[10] = buf_fence_cnt_is_peak; Current fence is peak number of fences in RAM
header40_[11] = (MXCFEB==7); TMB has 7 DCFEBs so hdr40_[10:0] are active
```

14) Modified raw hits readout

Readout can now include raw hits from 0 to 7 CFEBs, as indicated by cfebs_read[6:0]. The 7-bit CFFEB list cfebs_read[6:0] is constructed from cfebs_read[4:0] in header23_[9:5] and cfebs_read[6:5] in header40_[3:2].

In 5-CFEB firmware versions, header40[11] is zero (unless the is a fault in the readout logic).

A zero in header40_[11] indicates a 5-CFEB TMB, and the bits in header40_[10:0] should not be used to extend 5-bit fields (cfebs read for instance).

15) Blocked bits readout

Readout can now include blocked hits from 0 to 7 CFEBs, as indicated by cfebs_read[6:0].

Version 09/23/2012

Add VME register 0x15A: ADR_VIRTEX6_SYSMON

Version 09/16/2012

Adds support for Virtex-6 SNAP12 GTX fiber optic receivers

Add VME register 0x148: ADR_VIRTEX6_SNAP12_QPLL

Virtex-6 mezzanine QPLL reset and status

Virtex-6 mezzanine SNAP12 receiver serial interface

Add VME register 0x14A: ADR_VIRTEX6_GTX_RX_ALL

GTX control and status common to all 7 receivers

- 3) Add 7 VME registers 0x14C-0x158: ADR_VIRTEX6_GTX_RX0 ADR_VIRTEX6_GTX_RX6
- GTX control and status for individual receivers
- 4) Add event counters 79-85:

GTX receiver counters for fibers 0-6

Clears on gtx_rx_reset_err_cnt

5) Add mezzanine test points for GTX receiver [0]

```
`ifdef VIRTEX6
    assign meztp20 = gtx_rx_start[0];
    assign meztp21 = gtx_rx_valid[0];
```

```
assign meztp22 = gtx_rx_match[0];
     assign meztp23 = gtx rx fc[0];
     assign meztp24 = alct wait cfg;
     assign meztp25 = lock tmb clock0;
     assign meztp26 = 0;
     assign meztp27 = sump;
`else
     assign meztp20 = alct startup msec;
     assign meztp21 = alct wait dll;
     assign meztp22 = alct_startup_done;
     assign meztp23 = alct wait vme;
     assign meztp24 = alct wait cfg;
     assign meztp25 = lock tmb clock0;
     assign meztp26 = 0;
     assign meztp27 = sump;
`endif
```

Version 08/17/2012

Delay JTAG PROM data stream to ALCT by 116msec to allow Spartan-6 mezzanine to finish configuration.

Spartan-6 takes 212msec to configure and TMB takes 100msec.

TMB sends JTAG data to ALCT 100+116=216msec, after a simultaneous hard reset.

The 4msec pad allows ALCTs DLL/PLL time to lock.

- 2) Add VME register Adr 0x144 ALCT Spartan-6 startup delay
- 3) Add VME register Adr 0x146 ALCT Spartan-6 startup state machine status
- 4) Change Adr 0xD4[2]=jsm sel, was Write-only, is now Read/Write

Version 07/07/2010

1) Injector RAM mods:

Move injector RAM data msbs [17:16] from 0x44 to 0x100 Revert 0x44 wen and ren to independent RAM enables

Version 07/04/2010

1) Changed default Adr 0x100[15] l1a_win_pri_en = 1

Enables window prioritizing mode to limit TMB to 1 readout per L1A

Version 07/01/2010

- 1) Bug fix in alct*clct matching for a rare case when 2 CLCTs are exactly clct_window bx apart in time.

 Caused 1st CLCT to be replaced by 2nd CLCT, sending 2 identical events to L1A pipeline.
- 2) New algorithm for L1A matching prevents multiple events from reading out for 1 L1A. Original algorithm allowed multiple events to read out if they were within the L1A window. A system downstream of TMB apparently fails to tolerate multiple readouts per L1A. Adr 0x100[15] 11a_win_pri_en = 0 enables original multiple event readouts per L1A mode 11a_win_pri_en = 1 enables a prioritizing mode that limits TMB to 1 readout per L1A Current default 11a_win_pri_en = 0 to allow checking alct*clct matching logic. Next firmware release will set the default to 1.
- 3) New counter 58 is inserted after counter 57, all subsequent counters shift up 1channel number.

 Counter 58 counts events lost from readout queue due to L1A window prioritizing that limits TMB to 1 event readout per L1A.
- 4) A buffer stalled-at-least-once bit has been added to Adr 0x9E[7] and Header38[14]. Indicates there was a least one buffer stall since the last resync.
- 5) Adr 0x44 rebuilt to expand CFEB pattern injectors to also assert L1A and ALCTs at an arbitrary time. The 3 individual injector RAM select bits ren and wen have been replaced by 2-bit RAM addresses. Injector RAM data width expanded from 16 to 18 bits to provide storage for 2 ALCTs and L1A.
- 6) Adr 0x32[3] alct_inj_ram_en = 1 enables ALCT pattern injector RAM Adr 0x32[4] 11a_inj_ram_en = 1 enables L1A pattern injector RAM

7) Miniscope is now turned on by default: Adr 0x10C[0] mini_read_enable = 1.

Miniscope word count automatically inserted in readout stream by default Adr 0x10C[2]=1

New channel assignments, see Adr 0x10C section.

Version 05/14/2010

- Add bx0 emulator enable to Adr 0x2A[15]. Power-up default is 0.
 Generates bx0 that is ORed with ttc bx0. For use in systems lacking a CCB.
- 2) Add clock_lock_lost_err_en to Adr 0x120[5] (shifts other bits left by 1). Add clock_lock_lost_err_ff to Adr 0x120[14]. Add force_sync_err to Adr 0x120[15].
- 3) Redesign vme.v to use initial blocks to specify power-up state for VME registers instead of load pulse Add explicit integer widths to VME address decoder case statement.
 Replace constants passed as signals from top level module with defparam mechanism.
- 4) Remove clock_lock_lost from OR with bx0_sync_err in sequencer.v

 Add clock_lock_lost term to sync_err_ff in sync_err_ctrl.v

 Remove bx0_sync_err from sync_err_ff, add it as an independent OR with sync_err signal.

 Fixes sync_err fails-to-clear bug:

Sync_err_ff clears on ttc_resync but bx0_sync_err takes n bx to clear.

TMB was synchronizing correctly on ttc resync, but incorrectly latched sync err=1.

- 5) Modify bx0 sync error counter[61] to count only when TMB is in trigger-run state.

 Was counting sync errors before ttc_resync arrived, now only counts errors that occur after a resync.

 A non-zero value in this counter indicates incorrect bxns in TMB readouts and LCTs.
- 6) Modify FMM state machine fmm_trig_stop signal to power up as a 1.
 Was powering up as 0, then set to 1 after the 1st clock cycle.
 Entered trigger-run state for 1bx but was ignored since pre-trigger logic is held off 5bx after power up
- 7) Fix tmb.v kill clct logic for type C|D for 1 clct + 2 alct case where clct is on ME1A

Version 03/19/2010

1) Mod cfeb.v module busy hs delimiters for me1a me1b cscs to separate cfeb4 from cfebs0-3.

Prevents pattern finder from discarding 2nd CLCT at the me1a|me1b boundary.

Version 03/07/2010

- 1) Added requested mod that blocks bad cfeb distrips from both trigger path and data path.
- 2) Add bcb_read_enable to Adr72[15] p44 to include blocked CFEB DiStrip list in the DMB readout stream:

Blocked bits include:

CFEB DiStrip bits turned off in the Hot Channel Mask,

CFEB DiStrip bits turned off by automatic bad-bits detection

Entire CFEBs turned off via mask all

Set Adr72[[15]=1 to enable blocked bits readout.

Power up default is 0, which is backwards compatible with older versions of the readout stream.

- 3) Add bcb read enable to Header29[13]
- 4) Document CFEB blocked DiStrip readout format, p98
- 5) Bug fix for CLCT-only trigger mode

The 2nd CLCT in previous firmware versions had bxn=0 in the LCT sent to MPC when using the clct-only mode, and there was also no ALCT coincidence.

Version 02/10/2010

- 1) Add event clear vme to AdrAC[15] to clear aff, clct, and mpc VME read-back registers
- 2) Add active feb list reversal for TypeB CSCs

Version 01/14/2010 CFEB bad di-strip bit detection

- 1) Header30[11:7] = cfeb_badbits_found[4:0] Bad distrip bits detected in cfebn[n] Header30[12] = 0
- 2) New VME regisers Adr 0x122 to 0x142

Adr 122 ADR_CFEB_BADBITS_CTRL, CFEB Bad Bits Control/Status [04:00] RW cfeb_badbits_reset[4:0] Reset bad cfeb bits FFs for cfeb[n] [09:05] RW cfeb_badbits_block[4:0] Block bad cfeb bits in cfeb[n] [14:10] R cfeb_badbits_found[4:0] CFEB[n] has at least 1 bad bit [15] R cfeb badbits blocked At least one CFEB has a bad bit that was blocked

Sets number of bx a bit must be continuously high before being marked as bad.

```
Adr 126
        ADR_CFEB0_BADBITS_LY01 CFEB0 Ly0,Ly1 Bad Bits List
        ADR CFEB0 BADBITS LY23 CFEB0 Ly2, Ly3 Bad Bits List
Adr 128
Adr 12A ADR_CFEB0_BADBITS_LY45 CFEB0 Ly4,Ly5 Bad Bits List
Adr 12C ADR_CFEB1_BADBITS_LY01 CFEB1 Ly0,Ly1 Bad Bits List
Adr 12E ADR CFEB1 BADBITS LY23 CFEB1 Ly2, Ly3 Bad Bits List
        ADR_CFEB1_BADBITS_LY45 CFEB1 Ly4,Ly5 Bad Bits List
        ADR_CFEB2_BADBITS_LY01 CFEB2 Ly0,Ly1 Bad Bits List
Adr 132
        ADR_CFEB2_BADBITS_LY23 CFEB2 Ly2,Ly3 Bad Bits List
Adr 134
Adr 136
        ADR CFEB2 BADBITS LY45 CFEB2 Ly4, Ly5 Bad Bits List
Adr 138
        ADR_CFEB3_BADBITS_LY01 CFEB3 Ly0,Ly1 Bad Bits List
Adr 13A ADR_CFEB3_BADBITS_LY23 CFEB3 Ly2,Ly3 Bad Bits List
Adr 13C ADR_CFEB3_BADBITS_LY45 CFEB3 Ly4,Ly5 Bad Bits List
Adr 13E ADR_CFEB4_BADBITS_LY01 CFEB4 Ly0,Ly1 Bad Bits List
        ADR_CFEB4_BADBITS_LY23 CFEB4 Ly2,Ly3 Bad Bits List
Adr 140
Adr 142 ADR_CFEB4_BADBITS_LY45 CFEB4 Ly4,Ly5 Bad Bits List
```

Usage Notes:

1) Dead channel detection:

Detects CFEB channels that never fire

Set Adr122[09:5]=0x00 to turn off badbit blocking

Set Adr124[15:0]=0x0001 to set high-time threshold to 1 bx

Read dead channel list from Adrs126-142

2) Noisy channel detection:

Detects CFEB channels that have after-pulsing or frequent firing,

for instance, 3 consecutive triad starts)

Set Adr122[09:5]=0x00 to turn off badbit blocking

Set Adr124[15:0]=0x0007 to set high-time threshold to 7 bx

Read noisy channel list from Adrs126-142

3) Bad bit detection or blocking

Detects CFEB channels that are always high or high for an unreasonable length of time

Set Adr122[09:5]=0x1F to turn on badbit blocking (or set 0x00 for just monitoring)

Set Adr124[15:0]=0x0DEC to set high-time threshold to 3564 bx or something similar

Read bad channel list from Adrs126-142

Version 10/15/09 ALCT duplicate alct detection + Header r-type

- 1) Header05[10:9] r_type always == 1 on previous versions. It should equal fifo mode unless the event buffer is full.
- 2) Added ALCT structure error counter cnt[75] to count events where alct0==alct1.
- 3) AdrD0[5] Changed default to cnt_alct_debug=1 to enable ALCT data structure error counters.

 N.B. The ALCT structure error counters are only 8 bits, and could reach full scale quickly.

 So, AdrD0[02] cnt_stop_on_ovf should be 0, when setting cnt_alct_debug=1, otherwise all event counters will stop counting if there are excessive ALCT errors.

Version 09/21/09 Synchronization Error Control Register + bxn offset limit

Add limits for bxn_offset_pretrig and bxn_offset_l1a bxn_offset > lhc_cycle is converted to lhc_cycle-1

Add sync_err_ctrl register Adr 0x120

Version 09/08/09 Digital Phase Shifter Autostart

Add vsm_phaser_auto to AdrDA[11].

Default = 1, starts digital phase shifters after VME user PROM is read

Version 08/25/09 PosNeg sync FFs for ALCT and CFEBs

Same as 8/14/09 version but has ALCT and CFEB posneg sync stages enabled.

Switched to ISE 8.2sp3 because ISE 10.1sp3 could not complete PAR.

Documentation updates to conform firmware to c++ demo code:

Phaser register signal names now absorb hcycle and qcycle bits into 1 8-bit phase delay:

Adr10E: alct_rxd_delay[7:0] Delays latching data received from ALCT in 0.1ns steps

Adr110: alct txd delay[7:0] Delays data transmitted to ALCT in 0.1ns steps

Adr112-11A: cfeb[n]_rxd_delay[7:0] Delays latching data received from CFEB[n] in 0.1ns steps

Modify interstage delay signals to make it clear they are integer bx delays:

Adr38: alct_txd_int_delay[3:0] Delay data transmitted to ALCT by integer bx

Adr11C-11E: cfeb[n]_rxd_int_delay[3:0] Delay data received from CFEB[n] by integer bx

Version 08/14/09 Digital Phase shifters for CFEBs

Has both ALCT and CFEB muonic timing.

Disabled cfeb posnegs and alct rxd posneg else compile fails. Alct txd posneg is OK.

Notes on ALCT and CFEB timing adjustments:

ALCT:

1) Select a Time of Flight delay:

Using DDD 2ns steps, ranging from 0 to 12, spanning 0 to 24ns

Based on distance from IP to "some point" on the CSC

Also compensate for tmb-to-alct cable propagation delay differences between CSCs

Write alct_tof_delay to DDD chip in Adr16[3:0]

2) Tune alct_rxd_delay to the good-data window center

Using Digital Phase Shifter 0.1ns steps, ranging from 0 to 255, spanning 0 to 25ns

Put ALCT into loopback mode to send a test pattern to TMB

Scan alct rxd delay 0-255 using Phaser0 Adr10E[15:8]

Scan alct_rxd_posneg 0-1 using Phaser0 Adr10E[15:8] (disabled in 8/14/09 firmware)

3) Tune alct txd delay to the good-data window center

Using Digital Phase Shifter 0.1ns steps, ranging from 0 to 255, spanning 0 to 25ns

Put ALCT into loopback mode to send a test pattern to TMB

Scan alct_txd_delay 0-255 using Phaser1 Adr110[15:8]

Scan alct rxd posneg 0-1 using Phaser1 Adr110[15:8] (not disabled in 8/14/09 firmware)

CFEBs:

1) Select a Time of Flight delay:

Using DDD 2ns steps, ranging from 0 to 12, spanning 0 to 24ns

Based on distance from IP to "some point" on the CSC

Also compensate for tmb-to-cfeb cable propagation delay differences between CSCs

Write cfeb_tof_delay to DDD chip in Adr18[11:8]

2) Tune cfeb[n] clock delays for simultaneous arrival at all 5 cfebs

Using DDD 2ns steps, ranging from 0 to 12, spanning 0 to 24ns

Delays might be set according to known cable propagation delays

Delays might be determined empirically by setting high comparator thresholds to make the analog signal time-over-threshold less than 25ns, then scanning DDD delay vs 6-hit efficiency.

Write cfeb[n] clock delays to DDD channels in Adr18[15:12] and Adr1A[15:0]

3) Tune cfeb_rxd_delay for cfeb[n] to the good-data window center

Using Digital Phase Shifter 0.1ns steps, ranging from 0 to 255, spanning 0 to 25ns

Generate CFEB test pulses or use muon tracks

Scan cfeb_rxd_delay 0-255 using Phaser2-6 Adr112-Adr11A bits[15:8] Scan cfeb_rxd_posneg 0-1 using Phaser2-6 Adr112-Adr11A

4) Tune cfeb inter-stage integer delay for cfeb[n]

Set a delay 0-15bx so that triad bits from all 5 CFEBs arrive at TMB on the same bxn

Might be done by pulsing all 5 CFEBs simultaneously, then checking the CFEB

raw hits readout to see that triad start bits all appear in the same bxn.

Set cfeb[n] inter-stage delays in Adr11C-Adr11E

Version 07/13/09 Digital Phase shifters for CFEBs

Added 5 digital phase shifters for cfeb rxd delays: Adr112-Adr11A

Add 2 VME registers: Adr11C-Adr11E for CFEB interstage delays

Version 06/29/09 Digital Phase shifters for ALCT

Two digital phase shifters replace DDD delays for alct txd delay and alct rxd delay

Add VME registers Adr10E and Adr110 for digital phase shifters

Adr14[13,11,10] reverted to old format, removed phase shifter DCM locks

Adr30[15:13] removed posnegs, they now reside in Adr10E and Adr110, cfeb posneg is gone for now

Version 06/22/09 Muonic Timing for ALCT

Added muonic timing to float ALCT board in clock-space independently of good-data rxd|txd windows.

Changes to DLL lock register:

Adr14[10] lock alct rxd

[these get undone in 6/29/09 version]

Adr14[11] lock alct txd

Adr 14[13] lock_cfeb_rxd

Changes to DDD delay and posneg registers:

Adr16[3:0] alct_tof_delay Shift entire ALCT in clock-space to compensate for muon time of flight

Adr16[7:4] alct_txd_delay Latches TMB-to-ALCT data in middle of transmit data window

Adr16[11:8] dmb tx delay Change default to 6

Adr18[3:0] alct rxd delay Latches ALCT-to-TMB data in middle of receive data window

Adr18[7:4] cfeb rxd delay Latches CFEB-to-TMB data in middle of receive data window

Adr18[11:8] cfeb tof delay Shift all CFEBs in clock-space to compensate for muon time of flight.

Adr30[8] alct clock en use ccb moved from [11]

Adr30[9] alct clock en use vme moved from [12]

Adr30[10] alct muonic 1=ALCT muonic version instantiated, readonly

Adr30[11] cfeb muonic 1=CFEB muonic version instantiated, readonly

Adr30[12] unassigned

[These changes get undone in 6/29/09 version:]

Adr30[13] cfeb rxd posneg Sets receive data posneg clock polarity (new signal)

Adr30[14] alct txd posneg Sets transmit data posneg clock polarity, (was alct posneg)

Adr30[15] alct rxd posneg Sets receive data posneg clock polarity (new signal)

Changed 8bx constant delay in alct random number pipeline to be VME programmable

Added 2bx to compensate for muonic sync stages.

Default delay is now 8+2-1=9bx

Good spots for reference TMB+ALCT384 occur at pipedepth 4 when alct sync rxdata pre=9

Adr104[15:12] = alct sync rxdata pre[3:0], default=9

Changed Adr 0E[15:11] to connect dmb tx reserved[4:0] to dmb tx[48:44]

Adr 0E[15:11] =dmb_tx_reserved[4:0], just set to 0 for now

Version 06/05/09

Re-structure dmb_tx[48:0] flip-flops to force IOB instantiation

No other changes

Version 05/15/09

Added miniscope to monitor clct pretrigger processing and alct*clct matching.

Added miniscope VME register Adr 0x10C.

Rebuilt parity register Adr 0xFA to accept miniscope RAM parity.

Restructured DMB image RAM from 5 BRAMs down to 4 BRAMs to free up 1 RAM

Reduced ALCT raw hits storage RAM from 2048bx down to 1024bx to free up 1 RAM

Replaced Virtex-E era RPC de-mux and pipeline stages to minimize latency.

Added clct pre-trigger signal to RPC readout to DMB in a former always-zero bit.

Added data=address test mode to RPC storage RAM

Added 8bx constant delay in alct random number pipeline. Good spots at depth 12 before are now at 4.

Removed legacy alct signals from Adr 0x38,0x30 and Hdr 30[12:7] that are now used for ECC parity.

Added alct ecc err blank to Adr 038[2] to blank alct data that has uncorrected ecc errors.

Added counter[6] to count alct data blanked due to uncorrected ecc errors

Adr 0x30: Removed Adr30[11:8] alct reserved out[3:0], as these bits now carry ecc parity.

Adr 0x38: Adr38 has been reorganized to make room for the new alct ecc err blank signal

Moved alct ecc en to Adr38[1] n.b. this affects loop-back test software

Added alct ecc err blank to Adr38[2] blanks alcts with uncorrected ecc errors.

Moved alct_sync_ecc_err to Adr38[4:3] n.b. this affects loop-back test software

Removed Adr38[2:1] seq_status[1:0]

Removed Adr38[4:3] seu status[1:0]

Removed Adr38[8:5] reserved_out[3:0]

Adr 0xFA: AdrFA has been reorganized to make room for the new miniscope RAM parity

perr adr[] expanded from 3 to 4 bits.

Adr 0x10C: New Miniscope control register.

Adr 0xBC[14] Added rpc tbins test for RPC RAM data=address test mode

Adr 0xCA[9] Moved bx0_match to [10] Added bx0_vpf_test to [9]

Hdr27[13] now ORs miniscope RAM parity errors with RPC RAM parity errors

Hdr19[14] vme_exists replaced by mini_read_enable

RPC readout format: unused tbin bit[11] was always 0, now has clct-pretrigger flag

Counter[06]: Inserted scnt[06]="ALCT: trigger path ECC>=2-bit error, ALCT discarded"

Shifts subsequent counters up by 1 address.

TMB readout format changed to include miniscope data and markers when mini_read_enable=1.

By default, inserts B07 marker, 22 scope words, then E07 marker after RPC data.

ALCT legacy cable signals that are now ecc parity updated in

Table 18: J5 ALCT Cable 1 Connector [J10 on ALCT board]

Table 19: J6 ALCT Cable2 Connector [J11 on ALCT board]

Versions 04/07/2009 - 04/14/09

Added TMB-to-ALCT sync-stage and inter-stage in alct.v module. Improves alct_rx_clock windows, and allows a ½-cycle shift in alct_rx_clock at inter-stage, but adds 2bx to output signals.

Add Adr 30[14] alct_posneg

Modified UCF to constrain ALCT inter-stage flip-flops to FPGA slice locations near ALCT IOBs

Compiled 1 version with ALCT 80 MHz IOBs set to Slew=Fast | Drive=12

Another version has ALCT 80 MHz IOBs set to LVDCI 33 (Digitally Controlled Impedance, 50Ω)

Added TMB-to-ALCT 80MHz diagram to this doc

Version 03/16/2009

New Features:

Error Correcting Code to ALCT-to-TMB trigger data path, using reserved rx signals

Error Correcting Code to TMB-to-ALCT TTC command path, using reserved tx signals

Separate bxn counter and offset for L1A

New event counters + re-numbered ALCT-counter-group 0-11 [see counter register adr 0x000]

(see AdrD0 p61 for details)

3 for ECC rx data

3 for ECC tx data

5 for individual CFEB pre-triggers

1 for alct bx0

Register Changes:

Adr 016 change delay ch0[3:0] alct tx clock default to 11 for use with reference ALCT

Adr 076 rename from adr seq offset to adr seq offset0

Adr 076 rename bxn offset[11:0] to bxn offset pretrig[11:0]

Adr 0D0 increase cnt select[6:0] by 1 bit to address more event counters

Adr 0D0 move perr_reset from AdrD0[15] to AdrFA[6]

Adr 10A new register adr_seq_offset1

Adr 10A add bxn offset pretrig[11:0], which is a separate bxn offset for the new L1A bxn counter

Adr038[10:9] new signal: alct sync ecc err[1:0] is ALCT sync-mode ECC error code, readonly

Adr038[11] new signal: alct ecc en is ALCT ECC trigger data correction enable with default=1

N.B. setting alct ecc en =0 stops ALCT trigger data correction, but does not affect ECC counters

Header Changes:

Header30[6:5] now contains alct_ecc_err[1:0]

ALCT Cable Signal Changes for ECC

Old	New	Comment
reserved_in[0]	parity_in[0]	ECC parity [5:0] for TMB-to-ALCT
reserved_in[1]	parity_in[1]	ددې
reserved_in[2]	parity_in[2]	ددې
reserved_in[3]	parity_in[3]	(47)
seq_cmd[0]	seq_cmd[0]	Activates ALCT sync mode
seq_cmd[1]	parity_in[4] seq_cmd[1]	Parity sent unless in sync mode
seq_cmd[2]	seq_cmd[2]	Activates ALCT sync mode
seq_cmd[3]	seq_cmd[3] parity_in[5]	Parity sent unless in sync mode
seq_status[0]	parity_out[0]	ECC parity [6:0] for ALCT-to-TMB
seq_status[1]	parity_out[1]	ددې
seu_status[0]	parity_out[2]	ددې
seu_status[1]	parity_out[3]	ددې
reserved_out[0]	parity_out[4]	ددې
reserved_out[1]	parity_out[5]	ددې
reserved_out[02]	parity_out[6]	دري دري

Version 02/05/2009

Added ALCT-TMB sync mode loop-back test logic to alct.v module.

Mod Adr F2: Change compiler ID field to accommodate extra digit for ISE 10.1I Add Adr104, Adr106, Adr108 for ALCT sync-mode data

Version 01/13/2009

Rename ALCT cable 2 pair 15 from reserved_in4 to seq_cmd3

Adr 30: alct_cfg: rename Adr30[7] to seq_cmd3, replaces reserved_in4

Version 12/10/2008

Add L1A-only readout mode with full header and raw hits

Add L1A lookback offset in new VME register Adr 0x100

Add sequencer debug signals to new VME register Adr 0x102

Replaced parity errors Adr 0x0FA with sub-adr multiplexing

Add 35-bit RAM parity error array to Adr 0x0FA

Version 11/18/2008

Replaced L1A data storage logic:

Moved L1A data from header RAM to fence queue RAM

Allows L1A-only TMB readout mode to have valid data in short-header (i.e. bxn at L1A arrival)

To enable L1A-only TMB readout

- [1] fifo mode=3
- sets short header
- [2] 11a allow notmb=1 allows readout when tmb didn't trigger for that L1A
- [3] turn off TMB pre-triggers (set mask all=0 or halt pre-trigger machine)
- [4] send L1A via TTC....all ~500 TMBs should send short header to DDU

Inverted raw hits RAM parity.

Now parity bit=1 if RAM data[7:0]=8'b00000000

Modified CFEB and RPC raw hits RAMB16s to be read-first instead of write-first.

Guarantees parity data on port B is valid before writing new data to port A.

AdrFE[2] BXN latched at last L1A

New Event Counters

Inserted 2 new counters after counter[47]

counter[48]= Sync error, bxn!=offset at bx0 arrival or bx0 did not arrive at bxn==offset counter[49]= Raw hits RAM parity error, possible radiation SEU

Note on enabling internal scope readout to DMB/DDU

$$Adr98 = 0x108B$$

Adr9A = 0x0000

AdrCE = 0x0000

Version 09/30/2008

AdrD4[2] add jsm sel to select old/new alct user prom format.

This is a write-only bit, it reads back the value of vsm jtag auto

New Internal Scope Logic:

Allows scope channel data to be inserted in DMB readout stream

All scope channel signal assignments have bee replaced

Adr98 Replaced with new internal scope signals

Adr9A Replaced with new internal scope signals

To enable scope data in DMB readout, set

scp runstop=1

scp force trig=0

scp auto=1 (also appears in Header19[13]

scp tbins=4 (may be 0 to 7, number of scope tbins = 64*(scp tbins+1), thus spanning 64 to 512)

scp_nowrite=0

Rename Event Counters to better describe their functions

counter[22]= TMB matching discarded an ALCT pair (all alcts in the pair were discarded)

counter[23]= TMB matching discarded a CLCT pair (all clcts in the pair were discarded)

New Event Counters

Inserted 2 new counters after counter[23]

counter[24]= TMB matching discarded CLCT0 from ME1A

counter[25]= TMB matching discarded CLCT1 from ME1A

Shifts all subsequent counter addresses up by 2

Header Updates:

header08 [12] r tmb clct0 discard; TMB discarded clct0 from ME1A

header08_[13] r_tmb_clct1_discard; TMB discarded clct1 from ME1A

Version 09/12/2008

Added tmb_trig_pulse to header40[14]

Added tmb trig keep to header41[9]

Added tmb_non_trig_keep to header41[10]

Version 09/05/2008

Add blocking of LCTs to MPC for ME1A

Version 08/28/2008

Logic modifications:

Firmware compile type codes introduced, replaces programmable stagger and reversal

Added hs reversal for ME1A and ME1B and full hs reversal for non-ME1A/B CSCs

Added blocking for ME1A to MPC, but is not yet functional in this release

Added 2 state machines to detect and count TTC lock loss signals from CCB

Adr 2E[9]: Add ccb ttcrx ready TTC ready signal from CCB

Adr 2E[10]: Add ccb_qpll_locked Lock signal from CCB

Adr 2E changed register symbolic name from ADR CCB STAT to ADR CCB STAT0

Adr FA[15:0] Add new register ADR PARITY contains parity SEU error status

Adr FC[15:0] Add new register ADR_CCB_STAT1 contains TTC lock status from lock state machines

Rename event counter [5] "Pre-trigger was on any cfeb"

Inserted 2 new event counters after counter[5], shifts all other counter addresses up 2

[6] Pre-trigger was on ME1A cfeb4 only

[7] Pre-trigger was on ME1B cfebs0-3 only

Add 2 new event counters after counter[57],

[58] CCB: TTCrx lock lost[59] CCB: qPLL lock lost

Add new register AdrFC for CCB lock detection

AdrFC[00] ccb_ttcrx_lock_never TTCrx lock never achieved

AdrFC [01] ccb ttcrx lost ever TTCrx lock was lost at least once

AdrFC [02] ccb qpll lock never QPLL lock never achieved

AdrFC [03] ccb_qpll_lost_ever QPLL lock was lost at least once

Extended trigger source vector in VME and Header:

Adr7C[9] me1a_only_pretrig

Adr7C[10] me1b_only_pretrig

Hdr40[12]=r trig source vec[9]

Hdr40[13]=r trig source vec[10]

Introduced Firmware Compile Type Codes

A=Normal CSC

B=Reversed CSC

C=Normal ME1B, Reversed ME1A

D=Reversed ME1B, Normal ME1A

Extended ½-strip reversal and ME1A/B signals to Adr CC

Adr CC[05] csc me1ab 1= CSC is ME1A or ME1B. 0=normal CSC

Adr CC[06] stagger hs csc 1=Staggered Adr CSC, 0=non-staggered

Adr CC[07] reverse_hs_csc 1=Reversed staggered CSC, non-me1

Adr CC[08] reverse hs me1a 1=reversed me1a hstrips

Adr CC[09] reverse hs me1b 1=reversed me1b hstrips

Adr CC[15:12] csc type[3:0] Firmware compile type A, B,C or D

Added ½-strip reversal signals to Header

Header does not contain csc_type explicitly, but csc_type can be inferred from reversal signals in Hdr39[14:12] and Hdr20[14]

Hdr20[14] stagger hs csc CSC Staggering ON

Hdr39[12]	reverse_hs_csc 1=Reve	erse staggered CSC, non-me1
Hdr39[13]	reverse_hs_me1a	1=ME1A hstrip order reversed
Hdr39[14]	reverse_hs_me1b	1=ME1B hstrip order reversed

Added ME1A LCT blocking to MPC [not yet functional in this release]

Adr CC[03] mpc_me1a_block Block ME1A LCTs from MPC, still queue for readout Adr CC[04] cnt_non_me1ab_en Allow clct pretrig counters count non me1ab events

End of 8/28/2008 mods

Version 08/12/2008

Adr38[15:12] add alct_txd_delay[3:0] to delay alct tx data, delay=0 by default has same timing as previous firmware versions.

Adr CA[9]: add bx0_match

Hdr30[14]: add bx0 match

Version 08/04/2008

Adr F6[6]: add clct_sep_ram_sel_ab to select A or B separation RAM data readback

Version 08/01/2008

Adr F4[1]: stagger csc is now read-only, set at firmware compile time

Header36: r nrpcs read in header now gated with rpc read enable.

now indicates 0 rpcs when rpc readout is disabled

Version 07/15/2008

Added ability to readout non-triggering events

Header41[0] = VME settings for tmb allow alct, for trigger and readout

Header41[1] = VME settings for tmb_allow_clct, for trigger and readout

Header41[2] = VME settings for tmb_allow_match, for trigger and readout

Header41[3] = VME settings for tmb allow alct ro, for non-triggering readout

Header41[4] = VME settings for tmb_allow_clct_ro, for non-triggering readout

Header41[5] = VME settings for tmb_allow_match_ro, for non-triggering readout

Header41[6] = alct-only non-triggering event

Header41[7] = clct-only non-triggering event

Header41[8] = alct*clct match non-triggering event

Header41[9] = This event is a non-triggering readout

New Event counter at subadr[19] counts non-triggering events queued for readout Shifts all subsequent counter addresses up 1

New VME register adrCC:

AdrCC[0] = tmb allow alct ro allow alct-only non-triggering event readout

AdrCC[1] = tmb allow clct ro allow clct-only non-triggering event readout

AdrCC[2] = tmb allow match ro allow alct*clct-match non-triggering event readout

Version 07/09/2008

Replaced entire ALCT UserPROM JTAG State Machine

New compressed data format: see JTAG PROM-1 section p93

Adr 70: Move dmb_thresh[2:0] from adr F4[8:6] to adr70[9:7]

Adr 70: Rename dmb thresh to dmb thresh pretrig

Adr 70: Rename hit thresh to hit thresh pretrig

Adr 70: Rename nph thresh to hit thresh postdrift

Adr F0: Rename lyr thresh[2:0] to lyr thresh pretrig[2:0]

Adr F4: Remove dmb_thresh from F4[8:6]

Adr F4: Add new signal pid thresh postdrift[3:0] to F4[9:6]

Adr F4: Move adjcfeb dist from F4[14:9] to F4[15:10]

Adr F4: Rename pid thresh to pid thresh pretrig

Add adr D8[12] jsm tckcnt ok JTAG PROM TCKs sent matches TCKs in trailer frame

Add adr D8[13] jsm_end_ok JTAG PROM FF end marker found where expected

Add adr D8[14] jsm header ok JTAG PROM BA begin marker found where expected

Add adr D8[15] jsm_chain_ok JTAG PROM Chain Block marker found where expected

Add adr DE[14:13] jtag sm vec[1:0] JSM JTAG signal state machine vector

Add adr E0[11:8] jsm_prom_sm_vec[3:0] JSM PROM state machine vector

Header20: remove header20_[12:10] lyr_thresh[2:0]

Header20 remove header20 [13] layer trig en

Header20 add header20 [13:10] pid thresh postdrift[3:0]

Header41: add header41_[13:11] lyr_thresh_pretrig[2:0]

Header41 add header41 [14] layer trig en

New Counters:

Inserted 2 counters after counter at SubAdr[8]

SubAdr[9]CLCT: CLCT0 passed hit thresh but failed pid thresh after drift

SubAdr[10]CLCT: CLCT0 passed hit thresh but failed pid thresh after drift

Shifts all other counter addresses up by 2, i.e. old counter at SubAdr[9] moved to [11]

Change CLCT Processing Algorithm at bx11 to also require pid ≥ pid thresh postdrift

Version 06/03/2008

Modifies global reset and ttc resync behavior

Adds ability to send active feb flag to DMB at tmb alct*clct matching, retains ability to send at pre-trig Overlays ALCT rx data with normal scope channels to aid alct debugging

- (1) Remove Adr A8[12] alct raw sync, wasn't being used
- (2) Add temporary alct structure error counters [48]-[52]
- (3) Add Adr D0[6] cnt clear on resync clears VME counters [0]-[40] on ttc resync, default=0
- (4) Add Adr D0[7] hdr clear on resync clears header counters [41]-[47] on ttc resync, default=1
- (5) Update MPC frame format doc (reflects changes to 5/12/08 firmware)
- (6) Added a startup state to the readout state machine to wait 1bx for buf_q_empty to update after a reset (prevents machine from resuming a readout that was in progress at the time of a ttc resync)
- (7) Add perr reset (one-shot) to Adr D0[15], removed ttc resync perr reset logic
- (8) Block ttc resync from clearing resync event counter, requires vme-clear

(9) Adr2A[3] change ccb_status_oe default from 1 to 0, turns off backplane drivers to ccb

Added write-only bits to parallel non-decoded ccb commands:

```
Adr2A [12] vme_evcntres  Event counter reset || ccb_evcntres
```

- (10) Adr28[12] now contains global reset en=1 to enable resets on DLL lock-lost
- (11) Header08[14] now contains clock lock lost
- (12) AdrAC[14]=active_feb_src, 0=pretrig, 1=at tmb matching
- (13) AdrB0[7:3]=clctf[4:0] active cfeb list at tmb matching
- (14) Header23[4:0] active feb list is stored either at pretrig time or tmb match, depending active_feb_src
- (15) Header23[14] now contains active feb src bit
- (16) Header29[14] now contains hs_layer_trig (moved from header23[14])
- (17) AdrCE[15]=scp ch overlay, 0=normal scope channels, 1=use debugging channel overlay

Current overlay assignments:

```
scp_ch[71:0] = normal
scp_ch[128:72] = scp_alct_rx[55:0]
```

```
assign scp alct rx[0]
                                   = alct active feb flag;
assign
        scp_alct_rx[1]
                                   = alct first valid;
assign
        scp_alct_rx[2]
                                   = alct_first_amu;
        scp alct rx[4:3]
                                   = alct first quality[1:0];
assign
assign
        scp_alct_rx[11:5]
                                   = alct_first_key[6:0];
assign
        sep alet rx[12]
                                   = alct second valid;
assign
        scp_alct_rx[13]
                                   = alct_second_amu;
        scp alct rx[15:14]
                                   = alct second quality[1:0];
assign
assign
        scp alct rx[22:16]
                                   = alct second key[6:0];
assign
        scp_alct_rx[27:23]
                                   = alct bxn[4:0];
        scp_alct_rx[28]
                                   = #alct wr fifo;
assign
                                   = alct_first_frame;
assign
        scp_alct_rx[29]
assign
        scp_alct_rx[43:30]
                                   = alct daq data[13:0];
assign
        scp_alct_rx[44]
                                   = alct lct special;
assign
        scp alct rx[45]
                                   = alct ddu special;
assign
        scp_alct_rx[46]
                                   = alct_last_frame;
assign
        scp_alct_rx[48:47]
                                   = alct seq status[1:0];
assign
        scp_alct_rx[50:49]
                                   = alct_seu_status[1:0];
```

assign

scp alct rx[54:51]

= alct reserved out[3:0];

assign scp_alct_rx[55] = alct_cfg_done;

Version 05/23/2008

(1) Adr B0[15:14] Add clock lock lost and sync er

Version 05/12/2008

- (1) mpc alct bx0 and clct bx0 signals now bypass mpc tx delay
- (2) Note: Adr86[13] default=0 uses ttc_bx0, set it to 1 to use local bxn counter instead

 Adr86[14] default=0 enables bx0 to mpc continuously, 1 blanks mpc frames unless triggering
- (3) Adr CA[8] default changed to 1 to enable using reserved[3] signal from alct as alct bx0
- (4) Adr90[15:14] now contains bx0 injector one-shots

Version 05/01/2008

- (1) All scope channels replaced, see Scope Channel Assignments p50
- (2) Header11 CLCT counter was behind by 1 event, fixed.
- (3) Header22 Trigger source for alct*clct matching is set even if match mode is off, fixed.
- (4) Header28/29/30 ALCT data was latched n-bx early, leaving empty frames, fixed.

Version 04/29/2008

- (1) ALCT signal reserved out[3] (alct-to-tmb) is now alct bx0
- (2) Adr 68[02] renamed match pat trig en to alct match trig en
- (3) Adr AC[5] hdr wr continuous should be set to 0 unless using 11a allow notmb=1 mode
- (4) Adr AC[14] removed allow_pretrig_noflush bit
- (5) Adr AE[11:0] sequencer state shortened from [14:0]
- (6) Adr B2[7:4] Renamed clct width to clct window
- (7) Adr BA[15:8] Now contains rpc bxn differences moved from Adr C4

(8) Adr C4 renamed to ADR_RPC_TBINS

Adr C4 added rpc tbins, tbins before pre-trigger, and rpc decouple [=0 to copy cfeb tbins]

- (9) Adr CA[] new name ADR_BX0_DELAY, all new signals for bx0_delay and bx0 source
- (10) Adr D0[8] now contains counter lower-half / upper-half mux bit cnt_adr_lsb

 Adr D0[14:9] now contains counter sub-address cnt_adr[5:0]

Adr D0 Event counters replaced with new names and new sub-address channel numbers

- (11) Adr F0[15:8] = clct throttle[7:0], default=0
- (12) Adr F4[0]=clct_blanking=1 (new default), prevented from setting to 0unless l1a_allow_notmb=1 or tmb_alct_only=1
- (13) Header21[14:11] Renamed clct width to clct window
- (14) Header36 replaced to display rpc_tbins and rpc_pretrig, affects event-size calculation software, rpc_exists[1:0] deleted.
- (15) Header41 now contains the enabled TMB matching modes

Version 02/5/2008

Added parity checking to cfeb and rpc raw hits RAMs for SEU detection

Added parity error bits to header27

Add drift delay to header29

Add alct pretrig window position to header28

Version 01/24/2008

Replaced entire L1A logic.

Replaced 8-buffer system with 2048 buffers.

Replaced readout stack with event queue.

Replaced lct quality.

Several VME addresses have changed:

(1) Adr AC[4] is now wr_buf_autoclr (formerly clct_turbo).

Adr AC[5] 1=allow continuous header buffer writing for invalid triggers

Previously an unused bit. Default remains 0 until new trigger logic is ready.

(2) New buffer status signals now occupy Adrs 9E,A0,A2,A4,A6.

ADR BUF STAT0=9E

ADR BUF STAT1=A0

ADR BUF STAT2=A2

ADR_BUF_STAT3=A4

ADR_BUF_STAT4=A6

Old Adr A2 (alctfifo1) moved to A8 (old A8 was empty)

Old Adr A4 (alctfifo2) moved to AA (old AA was empty)

Old Adr A6[5:0] adjcfeb dist[5:0] moved to F4[14:9]

- (3) Adr 72[13] is now fifo no raw hits [1=do not wait to store raw hits. A no dag mode.]
- (4) Adr 74[15:13] is now l1a_internal_dly[2:0] (mostly for use by the simulator)
- (5) Adr AE[14:11] signal names changed for buffer status
- (6) Adrs B0, 78, 7A contain new CLCT internal format
- (7) Header04[13] is now buf q ovf err, formerly stack ovf latch

Header05[14] is now buf stalled, formerly buf full

Header 37, 38, 39, 40 changed for buffer status [some assignments are probably temporary]

Header25,26,27 contain new CLCT internal format

(8) Scope channels replaced

(9) Counters 1A, 1C, 1E changed, now count debug signal presence instead of time-outs

Version 10/11/2007

- (1) CLCT raw hits CRC now stops at the frame before the DE0F marker due to DDUs failure to include the marker.
- (2) ALCT raw hits CRC check stops at the frame before the DE0D marker, same reason.

Version 9/14/2007

- (1) Header bug fixes in readout counter and lct-duplication flags
- (2) New no-alct VME counter, channel 32/33, shifts subsequent channel numbers up 2
- (3) ALCT DDR transmitter constraints minimize routing delays between alct rx clock and main clock.

Version 9/10/2007

- (1) New raw hits readout header+trailer format replaces all previous header field assignments.
- (2) New VME counters, channels 32 to 4C.

Version 7/10/2007

- (1) Increase tmb.v-sequencer.v handshake time-out from 8bx to 15bx to prevent late alct*clct matches from being counted as discarded events when using higher than normal clct width values.
- (2) Modify pre-trigger state machine to wait for alct*clct matching (or clct-only) before re-arming for the next pre-trigger event to prevent writing current event to wrong header buffer when using higher than normal clct_width values.
- (3) Modify pre-trigger state machine to wait for active_feb signal to return to 0 before the next pre-trigger event to avoid re-triggering on same event when using longer than normal triad persistence.

Version 7/05/2007

- (1) Pattern-finder key layer shifted from ly3 back to ly2.
- Ly3 pattern templates were flipped top-to-bottom to shift key layer to ly2, and flipped left-to-right to preserve bend direction.
- (2) Adr A6 adjcfeb_dist[5:0] is now 6-bits instead of 5 to allow dist=32 to span a full cfeb, default value remains 5hs.
- (3) Adr F4 dmb thresh[3:0] default is now 4 to reduce spurious active feb signals to DMB
- (4) CLCT Processing Algorithm description updated for current patterns

Version 6/21/2007

(1) Adr D4 bit 11 now contains wr usr jtag dis.

When wr usr jtag dis=1, write access to register adr usr jtag is blocked.

This allows parallel writes to jtag chains for selected alcts.

Adr 10 bit 14 indicates the state of wr usr jtag dis.

(2) Adrs A0, A8, AA, CA, CC are now obsolete.

Their FFs have been removed, and they read back 0000h.

(3) Adr A6 now contains adjcfeb[4:0] with a default value of 5 hstrips.

This replaces the function of mask registers A6, A8, and AA.

If there is n hstrip key on hs 0,1,2,3,4 on CFEBn, with hits \geq hit_thresh_pretrig, then CFEBn-1 will be marked in the active_feb list for DMB readout.

If there is a hstrip key on hs 31,30,29,28,27 on CFEBn, with hits \geq hit_thresh_pretrig, then CFEBn+1 will be marked in the active feb list for DMB readout.

- (4) Adr 6C, layer_trig_dly has been removed.
- (5) Header05[12] now contains trigger source vector bit [8] (layer trigger)

Header05[13] hsds bit removed.

- (6) Header16[14:11] now contains pid thresh[3:0] instead of ds thresh[2:0].
- (7) References to hs thresh[2:0] have been changed to hit thresh pretrig[2:0].

References to ds_thresh[2:0] have been removed.

- (8) Adr 70, ds_thresh[2:0] has been removed.
- (9) Pattern ID numbers have been shifted from 0-to-8 to 2-to-10.

Pattern ID=1 now indicates a layer-trigger event.

Pattern ID=0 now indicates no pattern matches found.

(10) Adr F4, clct blanking=1 is the new default value