재설정 가능한 모션 캡쳐를 위한 편집 가능한 부분 동작 저작

(An Editable Partial Movement Authoring for a Reconfigurable Motion Capture)

요 약 1 인간의 동작 인식과 그 정보의 가공과 관련된 연구는 기술의 발전과 함께 다양한 분야에서 광범위하게 진행되고 있으며 그 수요가 날로 증가하고 있는 추세이다. 하지만 동작 인식의 정확도는 센서의 출력 값이나 의미 없이단순 연결된 특징 점의 위치상으로는 유사할 수 있으나, 의미 있는 동작의 추출과 재현의 관점에서는 아직까지 단순한동작의 인식 및 재현의 범위를 벋어나지 못하고 있다. 이는 무엇보다도 인식이 필요한 동작의 범위가 너무나 다양하고 아직 체계적인 방법으로 정의되어 있지 않기 때문이다.

본 논문에서는 헬스 트레이닝 동작 중 하나인 덤벨로우 동작을 사용자가 의도한 대로 키프레임 애니메이션과 모션캡쳐로 얼마나 정확하게 재현할 수 있는가를 측정한다. 특히, 미세한 동작의 변형이 필요할 때 어떻게 수정할 수 있는지를 고찰한다. 모델의 리깅에서 정의된 부위의 변환을 용의하게 구현할 수 있어야만 사용자가 요구하는 미묘하고 완전한 덤벨로우 동작을 실현할 수 있는 것을 알 수 있다.

키워드: 1 모션 캡쳐, 인간 동작, 편집, 저작

Abstract Research on human motion perception and processing of information is progressing widely in various fields along with the development of technology, and the demand is increasing day by day. However, the accuracy of the motion recognition may be similar to that of the sensor output value or the location of the simple connected feature point without meaning, but in terms of extraction and reproduction of meaningful motion, the range of recognition and reproduction of simple motion has not yet been achieved. This is because the range of motion that needs to be recognized is, above all, too diverse and not yet defined in a systematic way.

In this paper, we measure how accurately dumbbell row motion, which is one of the health training operations, can be reproduced with key frame animation and motion capture as intended by the user. In particular, consider how you can modify minor variations in motion when needed. It can be seen that the subtle and complete dumbbell low motion required by the user can be realized only if the model's rigging can be implemented to be able to convert the defined region.

Keywords: Motion Capture, Human Motion, Editable, Authoring

1. 서 론

인간의 동작 인식과 관련된 연구는 기술의 발전과 함께 널리 진행되고 있다. 특히 컴퓨터의 발전으로 인해 동작인식을 기반 으로 하는 입력장치에 대한 사용자 요구가 증가되고 있다. 또 한 입력된 정보를 저장하고 다시 재구현하는 과정 또한 중요한 연구 주제로 다루어지고 있다.

인간의 동작을 전달하는 방법은 여러 가지 이다. 첫 번째는 직접 사람 대 사람으로 동작을 구현하고 보는 것이다. 주관적 이기는 하지만, 대부분의 사람들은 본능적으로 동작에 대한 기 본적인 이해와 판단능력이 있다. 두 번째는 키프레임 애니메이 션 방식을 이용한 방식이 있다. 주요 동작을 키프레임으로 잡 고 그 중간 과정을 컴퓨터의 자동계산으로 쉽게 해결하는 방법이다. 이는 3D애니메이션에서 많이 사용되는 방법으로 비교적자연스럽게 동작을 구현해 내는 역할을 한다. 세 번째는 모션캡쳐 장비를 사용한 동작의 전달이다. 모션캡쳐 장비에서 측정한 3차원 데이터를 컴퓨터상의 모델에게 적용시켜 동작을 재현시키는 방법이다. 마지막으로 본 연구에서 가능성을 탐구하고자 실험을 진행한 로테이션 매트릭스 방법이 있다. 각 부위의구체적인 회전절차를 입력할 수 있는 방법으로 동작을 구현해내는 방식이다.

본 논문에서는 동작인식과 관련된 기존의 연구들을 살펴보고 각각의 연구들이 목표로 하는 바를 알아보려고 한다. 그 후 운 동의 기본동작 중 하나인 덤벨로우(Dumbbell Row) 동작을 기 존에 많이 사용되고 있는 구현 방식을 이용해 구현해 보고 각 각의 특징을 살펴본다.

2. 관련연구

사람 대 사람으로 동작을 구현하고 전달하는 방법은 직접 지도자와 학습자가 만나 구현과 재현을 해 보는 것이 대표적이다. 또한 동영상 같은 매체를 이용한 직접 촬영 및 시청 후 따라하는 방식도 있다. 이러한 방법은 공통적으로 주관적 판단의 개입으로 인해 최종 재현 형태가 처음의 형태와는 상이할 수있다. 그리고 지도자와 학습자의 체격, 체력 등의 차이로 인해다른 결과를 보여주기도 한다.

Portia E. Taylor의 연구는 텍스트와 그림으로 이루어진 지시사항을 전달받은 관절염 환자들이 운동을 진행하여 학습된 동작이 지시 사항과 얼마나 일치하는지 알아보는 것을 목표호 하고 있다.[1] 최종결과는 전문가의 눈으로 판별을 하였다. 즉, 특정 동작을 재현할 때 정확성을 판단하기 위해서는 결국 사람의개입이 필수로 필요하며, 그중에서도 전문가의 판별 능력이 정확도를 높여준다는 사실을 알 수 있다.

3D 모션 캡쳐는 정확한 측정을 요구하는 캡쳐 시스템의 경우 고가이다. 그리고 피부 장착 마커를 사용하는 등의 방식은 측정 데이터 외에 다른 데이터가 같이 들어가는 등 정상적인움직임 측정이 방해된다. 그리고 전문 인력의 데이터 생성 및해석 그리고 많은 시간의 소요가 필요하다. 따라서 이러한 시스템의 경우 측정을 연구실 내에서 해야 하는 등의 한계점이나타나고 있다.

3D모션 캡쳐의 대안으로 depth카메라를 사용한 (대표: 키넥트, 립모션 등등) 캡쳐 방식이 있다. 저비용 및 용이한 사용법으로 연구 및 상업목적을 위해 자주 사용되는 시스템이다. B. F. Mentiplay는 Microsoft Kinect2를 가지고 스쿼트(Squats) 동작과 점프 운동(drop jump) 동작의 골반 및 무릎 관절의 각도등을 계산하였다.[2] 연구결과는 하체부위 관절의 움직임에 따라 하체 측정 결과가 바뀌는 등 정확도가 낮은 것을 확인할 수있었다.

이러한 다양한 측정 방식의 문제점을 극복하고자 최근에는 IMU(Inertial Measurement Units)와 같은 센서를 사용한 모션 측정방식을 다양한 방식으로 발전시키고 연구를 진행하고 있다. IMU는 가속도계, 자이로스코프 등 비교적 저렴한 가격의 센서를 사용하여 관성 운동 및 3방향(3D)의 데이터를 수집하고 측정하는 것이다. 그러므로 현재 많은 연구자들이 IMU를 사용한 모션 측정 연구를 진행하고 있다.

B. Bruegge의 연구와 T. M Nakra의 연구에서는 휴대형 IMU센서 기기를 이용하여 다양한 지휘 동작을 검출해 내는 연구를 진행하기도 하였다.[3, 4] 지휘 동작을 측정하는 연구는 그 동작을 재현하는 방법이 음악이다. 동작이 지휘자마다 다르기 때문에 그것을 한꺼번에 다 축적하고 재현하는 것은 불필요한 일이다.

C. Chan의 연구에서는 측정된 전문가의 춤 동작을 학습된

영상에 적용하여 재현하는 인공지능 모델을 구현하였다.[5] 전문 댄서의 동작을 감지하여 인공지능으로 학습된 영상들을 매칭 시켜 그 결과를 보여주는 것이다. 결과물은 현재 나와 있는 것들 중 가장 훌륭하고 앞선 동작 재현을 보여주고는 있지만, 이는 컴퓨터의 인공지능을 사용하는 만큼 아직까지는 영상에 무작위로 미세한 떨림과 같은 오류들이 발생하며, 이것들은 고치기 위해 노력중이라고 결론을 짓고 있다. 즉, 본 연구에서 목표로 하고 있는 정확한 동작의 재현에 못 미치는 결과를 보여주고 있다고 스스로 인정하고 있다.

3. 동작 재현 방식에 따른 분류

3.1 키프레임 애니메이션(Keyframe Animation)을 이용한 동작 재현

사람의 동작을 녹화한 동영상은 인터넷 등을 통해 다수의 사람들에게 전달이 가능하다는 장점이 있다. 또 다른 동영상을 통한 동작의 재현 방법은 3D 툴을 활용하여 프레임 애니메이 션으로 제작하는 것이다. 프레임 애니메이션은 시작하는 동작 과 목표 동작 각각의 프레임을 설정해주고 사이의 프레임은 보 간법을 통해 자동으로 동작을 생성하는 방법으로 제작된다. 프 레임 애니메이션은 반복된 동작을 완벽하게 똑같이 한다는 것 이 특징이다.

실제 동작 동영상과 프레임 애니메이션을 통한 동작의 차이점을 <표-01>를 통해 분석하였다. 동일한 프레임으로 영상을 변환하였으며 덤벨의 위치와 신체의 회전 값을 분석하였다. 초당 30프레임을 기본속도로 지정하여, 0프레임은 동작의 시작, 30프레임은 목표자세, 60프레임은 되돌아온 자세가 되도록 수정하였다. 덤벨을 아래에서 위로 올리는 것을 각각 시작자세와목표자세로 분할하여 이동한 프레임 값을 퍼센트로 비교분석하였다.

표 1 의 0, 15, 30 , 45, 60 프레임 애니메이션은 순서대로 균일한 속도로 움직이는 것을 볼 수 있다. 이는 프레임애니메 이션은 시작동작과 목표동작을 원하는 프레임에 설정하면 그 사이 프레임과 동작을 보간하여 자동으로 생성해주기 때문이 다. 그러나 실제 동작 동영상의 0, 15, 30, 45, 60 프레임을 순 서대로 보면 프레임 애니메이션과 동영상 프레임별 측정 기준 선과 일치하지 않는 덤벨의 위치를 볼 수 있다. 덤벨을 올리는 동작에서는 키프레임 애니메이션과 동일하게 0, 15, 30 프레임 의 순서대로 동작의 이동 범위, 속도는 균일했다. 그러나 35, 45, 51, 60 프레임의 덤벨을 내리는 동작에서 프레임 애니메이 션은 일정한 속도로 내려가는 반면에 동영상 속 실제 사람의 속도는 빨라지는 것을 확인할 수 있었다. 표의 프레임 애니메 이션 30~60프레임과 실제 동작 동영상의 30~60프레임을 보면 각 시작과 종료의 시간은 같으나 내려오는 동작의 속도가 다르 다. 30~35 프레임까지는 빠른 속도로 덤벨을 50%까지 내리는 것으로 볼 수 있다. 프레임 애니메이션에서는 덤벨의 위치가 동작의 50%에 해당하는 것은 45프레임에 위치한다. 이를 통해 프레임 애니메이션과 달리 빠른 진행 이후 천천히 속도를 조정

키프레임 애니메이 션	7	T	7	
프레임	0 frame	15 frame	20 frame	30 frame
키프레임 애니메이 션		7	7	4
프레임	35 frame	45 frame	51 frame	60 frame
실제 동작				
프레임	0 frame	15frame	20 frame	30 frame
실제 동작				
프레임	35frame	45 frame	51 frame	60 frame

표 1 키프레임 애니메이션 기법을 이용한 동작인식 단계와 실제 동작을 같은 시간으로 나누어 분류 (Table 1 Classification of motion recognition phase and actual motion using key frame animation)

한다.. 그리고 45프레임부터 60프레임까지 천천히 덤벨을 정지속도로 낮추는 과정이 된다. 이와 같은 이유는 운동의 효과를 극대화하기 위함과 중력, 근육의 활용 등을 통해 나타나는 미세한 차이 때문이다. 또한 구분동작에서 나타나는 속도의 변화는 빈번하게 나타나는데, 덤벨의 무게가 무거울수록 변화의 주기가 짧아진다. 또한 세부적으로 실제 동작 동영상을 확인한결과 덤벨을 올리기 직전과 올리고 유지를 하다가 덤벨을 내리는 순간 나타나는 속도의 변화가 있다.

키프레임 애니메이션을 이용한 덤벨로우 동작의 재현은 실제 동작과 유사해 보이지만, 프레임 단위로 나눈 본 연구의 분류 방법을 통해 비교해본 결과는 많이 다르다는 것을 보여준다. 그 이유는 일정한 동작과 속도를 자동 생성해 주는 키프레임 애니메이션과 다르게 인간은 반복되는 동작을 매번 정확하게 똑같이 수행하지 못한다. 즉, 프레임과 프레임 사이에 발생하는 움직임까지 제작자의 의도대로 제작하기가 어려우므로 결국 실 제 동작과는 차이가 생길 수 있다. 이를 보완하기 위해 애니메 이션 프레임을 늘려 모션의 세밀도를 조절하는 방법을 추가 할 수는 있으나 이 또한 프레임과 프레임 사이의 동작을 완벽하게 구현하기 보다는 자동 생성되는 임의의 값으로 동작하기 때문 에 결국 기준이 되는 사람의 동작을 똑같이 구현할 수는 없다.

3.2. 모션 캡쳐 장비(Motion Capturing System)를 이용한 동작 재현

모션 캡쳐 장비를 사용한 동작인식 구현은 현재 가장 많이 쓰이고 있는 방식이다. 특히 비용이 기존의 마커 기반 모션 캡쳐 기기보다 저렴한 IMU 장비의 등장으로 많은 사람들이 동작을 저장하고 구현하는 용도로 사용 중이다. 특히 본 연구에서는 IMU의 종류중 하나인 퍼셉션 뉴런(Perception Neuron)을 이용하여 덤벨로우 동작을 측정하였다. 퍼셉션 뉴런은 각 관절의 위치에 자이로스코프(Gyroscope)와 가속센서(Accelerometer)가 혼합된 모듈형 센서를 이용해 동작을 측정하고 데이터를 저장하는 역할을 한다. 데이터의 저장과 동시에 기본으로 제공하는 사람형태의 3차원 더미 영상은 실시간으로 사람의 동작을 보여준다.

그림 1 퍼셉션 뉴런을 사용한 덤벨로우 캡쳐 및 재현 (Fig. 1 Dumbbell low capture and reproduction using Perceptive Neuron)

퍼셉션 뉴런을 사용한 덤벨로우 동작은 키프레임 애니메이션과 다르게 프레임간의 간격이 짧아서 사람의 동작을 거의 시각적으로 비슷하게 구현하는 것으로 이미 알려져 있다. 그러나그림 1을 통해 구현된 동작을 비교해 보면 실제 동작과 모션캡쳐와의 결과가 완벽하게 일치하지 않음을 알 수 있다. 이는본 연구에서 기준 영상으로 설정한 덤벨로우 동작을 그대로 재현하는 것을 목표로 하고 있기 때문이다. 즉, 센서를 착용하고동작을 구현하려는 사람이 기준이 되는 영상속의 덤벨로우자를취하는 사람이 아니라 다른 사람이 던벨로우 제세를 취하여 측정한 결과인 것이다.

센서의 값으로 구현한 동작과 실제 기준이 되는 동작은 동작을 하는 사람의 신체조건이 다르고, 운동의 숙련도에서도 차이가 있어 똑같은 동작을 재현하는 데에는 제약이 있다는 결과가 도출 된다. 즉, 특정인의 특정 동작을 구현할 경우 한 사람만이 동작을 할 수 있다는 제한이 생긴다. 혹여 아주 유사하게 동작을 구현할 수 있다고 하더라도 정확한 재현을 하기 위해서센서를 착용한 사람이 여러 번의 동작을 시도하여야 유사성이 높아진다.

본 연구의 실험결과인 <표-02>도 센서를 착용한 사람이 수십 번의 시도 끝에 가장 유사하다고 보이는 것의 데이터를 추출하여 실제영상과 비교한 것이다. 그러나 앞서 밝힌바와 같이일부 구간에서 실제 동작과는 일치하지 않는 부분이 있다는 사실을 알 수 있다. 이는 본 연구에서 특정인의 덤벨로우 동작을 그대로 재현해 내려는 목표를 달성하기 위해서 영상 사이사이에 보이는 유사도가 떨어지는 구간에 대한 수정이 가능한 방식이 요구된다.

4. 재설정 가능한 모션 캡쳐를 위한 부분 동작 분류

3차원 공간상에서 오일러 각(Euler Angles)과 로테이션 매트릭스(Rotation Matrix)를 사용하면 물체의 회전을 구현할 수 있다. 오일러 각이란 각 X, Y, Z 축의 회전량을 지정된 순서대로곱하였을 때 물체의 모든 방향을 표현하는 방법이다.[8] 오일러각과 로테이션 매트릭스는 서로 밀접한 관계가 있으며 본 논문에서는 각 자세의 단계에 따라 로테이션 매트릭스를 도출한 후오일러 각으로 변환하여 회전 값을 적용한다. 이를 우리는 재설정 가능한 모션캡쳐라 명명하고 편집 가능한 지점을 위해 부

분 동작을 구분한다. 그 후에 게임 엔진인 유니티(Unity)에서 해당 부위의 오일러 각을 적용한 영상을 제작하였고, 회전 순서는 Z. X. Y 이다.

로테이션 매트릭스를 적용한 영상을 제작하기 위하여 몸 전 체에서 각 부위별로 회전축을 찾아 총 16개로 분류하였다.

그림 2 신체 각 부위의 회전축 (Fig. 2 The rotation axis of each body part)

그림 2 는 신체 각 부위마다 적용될 회전축을 표현한 것이다. 각 부위의 회전축은 왼손좌표계가 기반인 로컬 좌표계(Local Coordinate System)를 사용 하였다. 기본 축은 y 축이 머리, 팔, 다리로 향하게 설정하였다. 이 규칙은 동작의 단계가 진행될 때도 동일하게 적용 된다.

	202 "- 02 1 "		·
회전	부위	회전축	부위
축			
c_0	World	c_8	Left Lower Arm
c_1	Hips	c_9	Left Hand
c_2	Spine	c_{10}	Right Upper Leg
c_3	Head	c_{11}	Right Lower Leg
c_4	Right Upper Arm	c_{12}	Right Foot
c_5	Right Lower Arm	c_{13}	Left Upper Leg
c_6	Right Hand	c_{14}	Left Upper Leg
c_7	Left Upper Arm	c_{16}	Left Foot

표 2 회전축과 신체부위 분류

(Table 2 Rotational axis and body part classification)

표 2 는 16개의 회전축이 어떤 부위에 해당하는지를 보여준다. 회전축 c_0 은 전체의 기준이 되는 월드 좌표계(World Coordinate System)를 나타낸다.

본 연구에서 사용 될 덤벨로우 자세를 준비 자세와 실행 자세로 구분한다. 이때 로테이션 매트릭스에서 얻어진 오일러 각은 E로 표현하였다.

4.1 덤벨로우 시작 자세

표 3 은 모든 부위의 월드좌표계 회전 값이 < 0,0,0 >인 상

태에서 준비 자세까지의 로테이션 매트릭스로 총 6단계로 구성 되었다.

순서	회전 축	부위	오일러 각
0	c_0	World	-
1	c_1	Hips	$E_{HI} = \langle \frac{\pi}{2}, -\pi, -\pi \rangle$
2	c_7	Left Upper Arm	$E_{LUA} = \langle -\frac{\pi}{6}, -\frac{2\pi}{3}, 0 \rangle$
3	c_4	Right Upper Arm	$E_{RUA} = \langle -\frac{\pi}{6}, \frac{2\pi}{3}, 0 \rangle$
4	c_{13}	Left Upper Leg	E_{LUL} = < $-\frac{\pi}{6}$, 0, 0 >
5	c_{10}	Right Upper Leg	E_{RUL} = < $-\frac{\pi}{6}$, 0, 0 >
6	c_{11}	Right Lower Leg	E_{RLL} = < $-\frac{\pi}{6}$, 0, 0 >

표 3 로테이션 매트릭스를 이용한 덤벨로우 준비자세 (Table 3 Dumbbell Row Readiness with Rotation Matrix)

1단계에서 $\operatorname{Hips}(c_0)$ 을 회전축으로 $<\frac{\pi}{2}, -\pi, -\pi >$ 회전시킨 후 2단계에서 Left Upper $\operatorname{Arm}(c_7)$ 을 회전축으로 $<-\frac{\pi}{6}, -\frac{2\pi}{3},$ 0 > 회전하였다. 이 단계에서 roll회전과 pitch회전이 순서대로 진행되어 두 로테이션 매트릭스를 곱해주었다. 3단계에서 반대쪽인 Right Upper $\operatorname{Arm}(c_4)$ 을 회전축으로 $<-\frac{\pi}{6}, \frac{2\pi}{3},$ 0 > 회전시켰으며 전 단계와 마찬가지로 두 로테이션 매트릭스를 곱해주었지만 pitch회전은 -값으로 적용하였다. 4,5단계에서 양쪽 다리가 바닥에 닿아 있도록 Left Upper Leg (c_{13}) 와 Right Upper Leg (c_{10}) 을 회전축으로 $<-\frac{\pi}{6}, 0,$ 0 > 회전 하였다. 6단계에서 앞드린 자세에서 하는 동작인 덤벨로우의 특성상 한쪽 다리를 굽히기 위해 Right Lower Leg (c_{11}) 을 회전축으로 $<-\frac{\pi}{6},$ 0, 0 > 회전하였다.

그림 3 로테이션 매트릭스를 적용한 덤벨로우 준비자세 이미지 (Figure. 3 Dumbbell low readiness image with rotation matrix)

그림 3은 모든 단계의 회전 값을 3D 모델링에 적용한 덤벨로우 시작 자세 이미지이다. 덤벨로우 동작을 실행할 준비자세는 완성되었다.

4.2 덤벨로우 실행 동작

로테이션 매트릭스에서는 오일러 각을 이용하여 동작의 단계를 다양하게 설정할 수 있고 수정이 가능하다. 또한 동작의 단계를 추가하여 더 정확한 동작을 제작할 수 있다. 본 연구에서는 세 가지 방식을 사용하여 덤벨로우 실행 동작을 제작하였다. 덤벨로우 실행 동작은 덤벨을 들고 왼쪽 팔만 움직이는 동작이다. 실행 동작을 만드는 모든 방식은 순서를 나누어 진행하였고 각각의 해당 부위에 임의로 지정한 오일러 각을 적용하였다. 첫 번째는 회전하는 부위를 기준으로 각 단계를 설정하여 동작을 제작하였고 두 번째는 시간에 따른 자세 변화를 기준으로 각 단계를 설정하여 동작을 제작하였고 두 번째는 시간에 따른 자세 변화를 기준으로 각 단계를 설정하여 동작을 제작하였고 두 번째는 시간에 따른 자세 변화를 기준으로 각 단계를 설정하였다. 세 번째는 두 번째 방식에서 더세부적인 단계를 추가하여 인간의 실제동작과 더 유사한 동작을 구현해보고자 하였다. 실행 자세는 전체적인 덤벨로우 동작의 한 부분이다. 시작 자세와 여러 번 반복되는 실행 자세로하나의 덤벨로우 동작이 완성된다. 방식을 변경하고 추가하며로테이션 매트릭스를 사용한 부분 동작을 제작하였다.

표 4 는 회전 부위를 이용한 덤벨로우 실행 자세를 총 4단계로 나누어 나타낸 것이다. 1,2 단계는 덤벨을 들어 올렸을 때자세이고 3,4단계는 덤벨을 바닥을 향해 내렸을 때 자세이다. Left Upper $Arm(c_7)$ 의 회전 이후에 Left Lower $Arm(c_8)$ 의 회전의 순서로 진행하였다.

순서	회전 축	부위	오일러 각	
0	c_0	World	-	
1	c_7	Left Upper Arm	$E_{LUA} \; = \; < \; - \; rac{46\pi}{45} , \; \; rac{\pi}{2} , \; \; rac{2\pi}{3} > \; \;$	
2	c_8	Left Lower Arm	$E_{LLA} = \langle \frac{\pi}{6}, -\frac{5\pi}{12}, -\frac{\pi}{3} \rangle$	
3	c_7	Left Upper Arm	$E_{LUA} = < -\frac{97\pi}{180}, \frac{19\pi}{60}, \frac{133\pi}{180}$	
4	c_8	Left Lower Arm	$E_{LLA} = \langle -\frac{10\pi}{9}, -\frac{29\pi}{45}, 0 \rangle$	

표 4 회전 부위를 이용한 덤벨로우 실행 자세 (Table 4 Dumbbell low execution position)

순	회전	부위	오일러 각을 적용한 이미지
서	축	〒刊	오늘다 작을 작용한 어미지
0	c_0	World	-
1	c ₇	Left Upper Arm	1
2	c_8	Left Lower Arm	
3	c_7	Left Upper Arm	
4	c_8	Left Lower Arm	T

표 5 회전 부위를 이용한 덤벨로우 실행 자세 이미지 (Table 5 Image of dumbbell low running posture using rotating part)

표 5 은 로테이션 매트릭스로 구한 오일러 각을 3D모델링에 적용한 이미지를 단계별로 나타낸 것이다. 먼저 Left Upper $Arm(c_7)$ 을 회전시킨 후 Left Lower $Arm(c_8)$ 의 회전하는 순서로 진행하였다. 덤벨을 들어 올렸을 때의 자세는 2단계의 이미지 와 같다. 1단계의 이미지에서는 덤벨로우 동작에서 볼 수 없는 자세로 하늘을 향해 왼쪽 팔을 뻗고 있는 것을 확인 할 수 있 다. 3단계에서 Left Upper Arm(c₂)을 회전축으로 회전하여 시작 자세의 Left Upper $Arm(c_i)$ 와 비슷한 각도인 것을 볼 수 있다. 하지만 1단계와 마찬가지로 덤벨로우 동작이 아닌 자세를 볼 수 있다. 4단계에서 Left Lower $Arm(c_s)$ 을 회전축으로 회전하고 난 후에야 덤벨을 바닥을 향해 내리며 시작 자세와 비슷해지는 것을 볼 수 있다. 보통 덤벨로우는 Left Upper $Arm(c_7)$ 과 Left Lower $Arm(c_s)$ 을 동시에 회전하며 동작을 실행된다. 하지만 회 전축을 기준으로 단계를 설정하여 Left Upper $Arm(c_7)$ 의 회전 이후에 Left Lower $Arm(c_s)$ 의 회전이 진행되는 방식은 1, 3단계 에서 부자연스러운 자세가 발생되는 것을 확인할 수 있었다.

표 6 은 자세의 변화를 이용한 덤벨로우 실행 자세를 총 2단계로 나누어 나타낸 것이다. 1단계는 덤벨을 들어 올렸을 때자세이고 2단계는 시작자세와 비슷한 덤벨을 바닥 쪽으로 내렸을 때 자세이다. 각 단계에서 Left Upper $Arm(c_8)$ 의 회전을 동시에 적용 하여 앞서 적용한 방식보다 덤벨로우 동작과 비슷하게 만들 수 있었다.

순	회전	부위	오일러 각	
서	축	ナガ		
0	c_0	World	-	
		Left Upper	$E_{LUA} = < -\frac{46\pi}{45}, \frac{\pi}{2}, \frac{2\pi}{3} >$	
1	c_7	Arm	$E_{LUA} \equiv \langle -\frac{1}{45}, \frac{1}{2}, \frac{1}{3} \rangle$	
1	c_8	Left Lower	π π 5π π	
		Arm	$E_{LLA} = \langle \frac{\pi}{6}, -\frac{5\pi}{12}, -\frac{\pi}{3} \rangle$	
	c_7	Left Upper	$E_{LUA} \; = \; < \; - \; rac{97\pi}{180} , \; rac{19\pi}{60} , \; rac{133\pi}{180} \; > \;$	
		Arm	$E_{LUA} = \langle -\frac{1}{180}, \frac{60}{60}, \frac{1}{180} \rangle$	
2	c_8	Left Lower	10π 29π	
		Arm	$E_{LLA} = \langle -\frac{10\pi}{9}, -\frac{29\pi}{45}, 0 \rangle$	
1	l			

표 6 자세의 변화를 이용한 덤벨로우 실행 자세 (Table 6 Dumbbell low execution position using change of posture)

순	회전	부위	오일러 각을 적용한 이미지	
서	축	TΠ	포필디 크릴 크증한 어디지 	
0	c_0	World	-	
1	c_7	Left Upper Arm	•	
I	c_8	Left Lower Arm	, ,	
	c_7	Left Upper Arm	9000	
2	c_8	Left Lower Arm	1	

표 7 자세의 변화를 이용한 덤벨로우 실행 자세 이미지 (Table 7 Dumbbell low execution posture image using change of posture)

이러한 방식의 제작은 각 단계별로 자세의 유사도를 높였지만 만드는 방식에서 어려움이 발생하였다. 각 단계의 자세는 덤벨로우 실행 자세와 비슷하지만 1단계에서 2단계로 진행되면서 적절하지 않은 회전이 발생하는 경우가 생긴다. 그림 4 는 1단계에서 2단계로 진행되는 과정에서 잘못된 회전이 발생되는 경우의 캡쳐 된 이미지이다.

그림 4 잘못된 회전이 발생하는 동작의 예시 (Fig. 4 Example of motion with incorrect rotation)

이러한 경우에는 각 회전축의 오일러 각을 변경하여 동작을 수정할 수 있다. 덤벨로우 동작의 경우에는 Left Upper $Arm(c_7)$ 과 Left Lower $Arm(c_8)$ 을 회전축으로 하는 회전각을 수정하면 정확한 구현이 가능하다. Left Upper $Arm(c_7)$ 이 회전축일 때는 yaw값에 변화를 주거나 Left Lower $Arm(c_8)$ 이 회전축일 때는 roll과 yaw 값을 적절하게 수정할 수 있다. 이와 같은 과정을 거치면 눈으로 보기에 실제 사람의 덤벨로우 동작과 비슷해 보인다.

4.3 자세의 세부적인 변화를 이용한 실행 자세

순	회전	Н О	오일러 각		
서	축	부위	 		
0	c_0	World	-		
	c_7	Left Upper	$E_{LUA} = < -\frac{97\pi}{90}, -\frac{107\pi}{180}, \frac{2\pi}{45} >$		
1	97	Arm	$E_{LUA} = 90 ' 180 ' 45 '$		
'	$c_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Left Lower	$E_{LLA} = \langle \frac{23\pi}{60}, -\frac{3\pi}{20}, \frac{37\pi}{180} \rangle$		
	-8	Arm	ELLA = 60 ' 20 ' 180		
	c_7	Left Upper	$E_{LUA} = < -\frac{21\pi}{20}, -\frac{11\pi}{20}, \frac{77\pi}{180} >$		
2	97	Arm	$E_{LUA} = \frac{1}{20} \cdot \frac{1}{100} \cdot \frac{1}{100} = \frac{1}{100} = \frac{1}{100} \cdot \frac{1}{100} = \frac{1}{10$		
-	c	Left Lower	$E_{LUA} = \langle \frac{17\pi}{60}, -\frac{49\pi}{180}, -\frac{7\pi}{180} \rangle$		
	c_8	Arm	$E_{LUA} = \frac{1}{60}, -\frac{1}{180}, -\frac{1}{180}$		
		Left Upper	$_{E}$ 46π π 2π		
	c_7	Arm	$E_{LUA} = < -\frac{46\pi}{45}, \frac{\pi}{2}, \frac{2\pi}{3} >$		
3	c_8	Left Lower	π 5π π		
		Arm	$E_{LLA} = \langle \frac{\pi}{6}, -\frac{5\pi}{12}, -\frac{\pi}{3} \rangle$		
	c_7	Left Upper	$E_{LUA} = \langle -\frac{21\pi}{20}, -\frac{11\pi}{20}, \frac{77\pi}{180} \rangle$		
		Arm	$E_{LUA} = < -\frac{1}{20}, -\frac{1}{20}, \frac{180}{180} >$		
4	c ₈	Left Lower	3π 7π 2π		
		Arm	$E_{LUA} = \langle \frac{3\pi}{10}, -\frac{7\pi}{45}, \frac{2\pi}{45} \rangle$		
	c_7	Left Upper	E_{LUA} = < $-\frac{97\pi}{90}$, $-\frac{107\pi}{180}$, $\frac{7\pi}{30}$ >		
5		Arm	$E_{LUA} = \langle -\frac{1}{90}, -\frac{1}{180}, \frac{30}{30} \rangle$		
5	_	Left Lower	73π 11π 13π		
	c_8	Arm	$E_{LLA} = \langle \frac{73\pi}{180}, \frac{11\pi}{180}, \frac{13\pi}{36} \rangle$		
		Left Upper	$97\pi - 19\pi - 133\pi$		
6	c_7	Arm	$E_{LUA} = < -\frac{97\pi}{180}, \frac{19\pi}{60}, \frac{133\pi}{180} >$		
"	c_8	Left Lower	$E_{LLA} = < -\frac{10\pi}{9}, -\frac{29\pi}{45}, 0>$		
		Arm	$E_{LLA} = < -\frac{1}{9}, -\frac{1}{45}, 0 >$		

표 8 자세의 세부적인 변화를 이용한 덤벨로우 실행 자세 (Table 8 Using detailed changes of posture Dumbbell low execution posture)

표 8 과 표 9 는 자세의 변화를 이용한 덤벨로우 실행 자세에 과정을 추가하여 나타낸 것이다. 덤벨을 들어 올렸을 때 자세를 1~3단계로 덤벨을 바닥 쪽으로 내렸을 때 자세를 4~6단계로 세분화하였다. 이미지에서도 확인할 수 있듯이 앞서 진행한 방식보다 명확한 동작을 제작할 수 있었다. 이는 부분 동작에서 세부적인 단계를 추가하면 보다 정확한 동작을 구현할 수 있다는 것을 의미한다.

순 서	회전 축	부위	오일러 각을 적용한 이미지
0	c_0	World	-
	c ₇	Left Upper Arm	677
1	c_8	Left Lower Arm	
	c_7	Left Upper Arm	and the same of th
2	c_8	Left Lower Arm	, 5
	c_7	Left Upper Arm	6
3	c_8	Left Lower Arm)
4	c_7	Left Upper Arm	6-60
	c_8	Left Lower Arm	
	c_7	Left Upper Arm	
5	c_8	Left Lower Arm	7
6	c_7	Left Upper Arm	
6	c_8	Left Lower Arm	17

표 9 자세의 세부적인 변화를 이용한 덤벨로우 실행 자세 이미지 (Table 9 Using detailed changes of posture Dumbbell low execution posture image)

최종적으로 제작 된 덤벨로우 영상을 실제 사람의 동작과 비교하여 유사도를 확인해 보았다. 그 동작의 결과는 <표-11>과 같다. <표-11> 상단 수정 전에서 보이는 바와 같이 기준선을 중심으로 로테이션 매트릭의 덤벨 위치는 예상과 다르게 차이가 많이 나고 있음을 알 수 있다. 게다가 계산을 통한 동작이일부 구간에서 실제 동작과는 전혀 다른 움직임을 보이는 것을 알 수 있었다. 예를 들어 <표-11>의 제작된 수정 전 영상은 실제 동작과는 덤벨의 높이는 유사하였으나, 팔꿈치를 펴고 구부

리는 동작의 각도가잘 못 계산 되는 등의 결과를 통해 전반적 유사도를 떨어뜨리는 형태를 보여준다. 우리는 재설정 가능한 모션 캡쳐를 위해 동작 단계를 추가하고 일부 구간에서 발생한 팔꿈치의 움직임의 각도 값을 수정하여 <표—11> 수정 후부분과 같은 실제 동작과 비교하여 유사도 높은 영상을 제작하게 되었다.

오일러 각과 로테이션 매트릭스의 원리만 아는 사람이라면 누구든지 편집 가능한 부분 동작을 통해 덤벨로우 동작을 재설 정하여 실제 사람과 유사하게 제작하고 만들 수 있다는 실험 결과를 얻었다.

수정 전 프레임	0 frame	15 frame	20 frame	30 frame
_ ""	o manne	is name	20	30
수정 전			The second second	
프레임	35 frame	45 frame	51 frame	60 frame
수정 후		7	7	7
프레임	0 frame	15 frame	20 frame	30 frame
수정 후	7	7	7	T
프레임	35 frame	45 frame	51 frame	60 frame
실제 동작				
프레임	0 frame	15frame	20 frame	30 frame
실제 동작				
프레임	35frame	45 frame	51 frame	60 frame

표 11 재설정 가능한 모셥 캡쳐를 위해 편집 가능하도록 구분한 부분 동작의 제작된 전과 후 그리고 실제 동작과의 비교 (Table 11 Comparisons of pre-production and post-production activities of editable segmented actions for reconfigurable model captures)

5. 결 론

기존의 동작인식 방법에서 쓰는 대부분의 방식은 프레임 애 니메이션과 같이 각 신체 부위의 위치와 시간을 비교 계산하여 움직임을 측정해 내는 것이다. 즉, 특정 정지동작과 정지동작을 연결하는 방식으로 진행이 된다고 볼 수 있다. 이 경우 동작과 동작 사이의 미세한 부분의 움직임은 컴퓨터가 대략적으로 계 산하여 처리하게 때문에 그 정확성은 매우 떨어지며, 실험을 통해 이를 증명하였다. 또한 운동 중 필요로 하는 호흡 조절, 힘의 조절과 같은 부분에 대한 정보는 프레임 애니메이션에서 는 장면과 장면의 움직임만으로 표현해야 한다. 이러한 문제는 IMU센서를 사용한 동작 구현 방식에서도 발생한다. 단순히 입 력되는 위치와 속도의 값으로 개개인이 가진 상이한 힘의 세기 와 정확도, 그리고 뇌와 관련되는 집중력 등을 측정하고 다시 재구성하는 것은 불가능 한 일이다. 또한 로테이션 매트릭스에 서도 마찬가지로 대략의 단순 회전 값과 동작의 절차만으로는 동작을 재현해 낼 수 없다. 특히, 미세한 동작의 변형이 필요할 때 그 수정 방법에 대한 개념과 정의에 대해 자세히 알아야만, 사용자가 요구하는 미묘한 차이의 덤벨로우 동작을 재현해 낼 수 있다는 사실을 알 수 있었다.

하지만 편집 가능한 부분 동작을 통해 재설정하는 방식은 특정 동작의 절차를 증감시키고 입력 값을 수정하는 등의 절차를 통해 실제 사람과 유사한 동작을 구현해 낼 수 있는 가능성을 보여 주었다. 이는 본 연구에서 기준으로 지정했던 덤벨로우동영상과는 완벽하게 그 동작의 유사도가 일치하지는 않으나다른 방식에 비해 높은 것을 실험을 통해 확인하였다. 그리고로테이션 값을 전달한다고 하더라도 관절의 위치, 속도 등만확인이 가능할 뿐 신체 크기의 변화에 따른 측정값의 오차는여전히 발생할 위험을 갖고 있어 매번 다양하고 세밀한 수정이요구된다. 또한 덤벨의 크기와 무게에 따라 발생하는 속도와움직임의 변화는 측정이 어렵다.

인간의 동작 인식과 관련된 연구들은 동시 다발적으로 많이 진행되고 있지만, 그 정확성의 향상은 한계에 부딪치고 있다. 특히 그 측정방식과 통일되지 않은 각 연구자 간의 검증 시스 템 등 많은 문제점이 생기고 있다. 수많은 동작 데이터들 중에 특정한 사람의 데이터를 어떻게 가공하여 사용하느냐 부터 시 작하여 어떻게 담아 정확하게 전달하느냐에 대한 논의는 끝없 이 계속되어 오고 있다.

이번 연구에서 우리가 실험한 키프레임 애니메이션 방식과 IMU센서를 통한 방식, 재설정 가능한 모션 캡쳐 방식의 동작구현은 그 결과가 다른 연구들에 비해 인간의 동작과 비교적유사하게 도출 되었다. 하지만, 특정인의 동작과의 유사도는 아직까지 그리 높지가 않은데, 그 이유는 사람이 특정 동작을 함에 있어서 생기는 변수에 대한 고려를 전혀 하지 않은 상태로진행이 되었다는 것이다. 미세한 시간 속에서 수시로 변화되는힘의 강도 정보는 저장하여 표현하거나 제공할 수 가 없다.

향후 부분동작을 분류하여 재설정 가능한 모션 캡쳐 방식과 같은 절차의 증감, 과정의 수정 등이 가능하면서도 그 방법이 조금 더 쉽고 표준화 되어 있는 방식의 개발이 중요하다고 생각된다. 현재 우리가 실험한 방식은 오일러 각과 로테이션 매트릭스만을 사용하였기 때문에 기준이 다른 형태와 규격의 경우 적용할 시에 생기는 변환 및 계산의 복잡성이 많으리라 예상할 수 있다. 이는 동작인식과 관련하여 표준화된 방식만 정해진다면 그 데이터를 관리하고 연결하는 것만으로도 다양한동작을 구현하고 만들어 낼 수 있는 툴이나 규격이 완성될 수있다는 편리성이 있다. 즉, 다양한 센서 및 데이터를 하나로합쳐 해석하고 구현하는 표준 규격 즉, 하나의 프로토콜의 필요성이 절실하다.

본 연구에서 최종적으로 비교 분석했던 재설정 가능한 모션 캡쳐 방식의 동작 구현을 향후 데이터의 양, 규격 등에 관계없 이 어디서나 측정과 해석이 가능한 표준화된 규격으로의 발전 시키기 위해 추가 연구와 개발을 할 예정이다.

References

- [1] Taylor PE, Almeida GJM, Kanade T, Hodgins JK. Classifying human motion quality for knee osteoarthritis using accelerometers. In: 2010 Annu Int Conf IEEE Eng Med Biol Soc. 2010. p. 339–43.
- [2] B. F. Mentiplay, K. Hasanki, L.G. Perraton, Y. H. Pua, P. C. Charlton & R. A. Clark. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. Journal of Sports Sciences. Vol 36, 2018 Issue 19. p. 2202-2209.
- [3] B. Brügge, C. Teschner, P. Lachenmaier, E. Fenzl, D. Schmidt, and S. Bierbaum. Pinocchio: Conducting a virtual symphony orchestra. In Proceedings of the International Conference on
- Advances in Computer Entertainment Technology (ACE '07) (Salzburg, Austria, June 15-17, 2007), 294-295.
- [4] T.M. Nakra, Y. Ivanov, P. Smaragdis, and C. Ault. The USB Virtual Maestro: An Interactive Conducting System. In Proceedings of the International Conference on New Interfaces
- for Musical Expression (NIME '09) (Pittsburgh, PA, June 4-6, 2009).
- [5] C. Chan, S. Ginosa, T. Zhou and, A. A. Efros. Everybody Dance Now. Graphics, Computer Vision and Pattern Recognition, arXiv.org. 22. Aug. 2018.
- [6] FITNESS FM, 등운동 선물세트(승모근+광배근+능형근) 원 암 덤벨로우!, https://youtu.be/PD3KocuR_es
- [7] https://unity3d.com/kr
- [8] https://ko.wikipedia.org/wiki/오일러_각