RADIOATIVIDADE

- 1) Reação de transmutação
- 2) Faixa de estabilidade

PROFESSOR: THÉ

LIÇÃO: 147

REAÇÃO DE TRANSMUTAÇÃO

É qualquer reação na qual um nuclídeo de um elemento químico transforma-se em outro.

Assim, toda desintegração radioativa natural é um exemplo de transmutação.

$$^{238}_{92}$$
U $ightarrow \, ^4_2 lpha \, + \, ^{234}_{92}$ Th

O urânio-238 transmuta-se em tório-234 espontaneamente.

NITROGÊNIO TRANSFORMA-SE EM O₂

Em 1919, Rutherford notou que o nitrogênio se transformava em oxigênio, quando deixado na presença de um elemento α_{emissor} , como o polônio por exemplo.

A partícula α atingindo o núcleo de nitrogênio produz sua transmutação em oxigênio.

Além do oxigênio produzido, há também a liberação de um próton, que acaba se tornando um átomo de hidrogênio. Simplificadamente, pode ser representada pela equação:

Em qualquer transmutação observa-se:

A SOMA DOS NÚMEROS DE MASSAS DOS REAGENTES É IGUAL À DOS PRODUTOS

$$14+4=17+1$$

A SOMA DOS CARGAS ELÉTRICAS DOS REAGENTES É IGUAL À DOS PRODUTOS

$$7 + 2 = 8 + 1$$

TRANSMUTAÇÃO ARTIFICIAL OU PROVOCADA

É a alteração de um nuclídeo provocada pelo seu bombardeamento por espécies subatômicas como partículas α , nêutrons, etc.

A) Bombardeamento de partícula $\, lpha \,$

$${}^{9}_{4}\text{Be} + {}^{4}_{2}\alpha \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$$

B) Bombardeamento de prótons $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$^{44}_{20}$$
Ca + $^{1}_{1}$ p $\rightarrow ^{44}_{21}$ Sc + $^{1}_{0}$ n

C) Bombardeamento do dêuteron

$$\binom{2}{1}$$
d) ou $\binom{2}{1}$ H) ou (D)

O dêuteron é o núcleo do deutério, isótopo do hidrogeno.

$$\binom{2}{1}H$$

$$^{27}_{13}\text{Al} + \,^2_{1}\text{d} \, \rightarrow \,^{25}_{12}\text{Mg} \, + \,^4_{2}\,\alpha$$

D) Bombardeamento de nêutrons $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$^{39}_{19}K + ^{1}_{0}n \rightarrow ^{38}_{19}K + 2^{1}_{0}n$$

E) Bombardeamento de núcleos maiores $\binom{17}{6}$ C , $\binom{10}{5}$ B)

$$\underbrace{ ^{246}_{96} \text{Cm}}_{\text{cúrio}} \ + \underbrace{ ^{12}_{6} \text{C}}_{\text{núcleo de}} \ \rightarrow \ \underbrace{ ^{254}_{102} \text{No}}_{\text{nobélio}} \ + 4 \, {}^{1}_{0} \text{n}$$

$$\underbrace{^{252}_{98}\mathbf{Cf}}_{\text{califórnio}} + \underbrace{^{10}_{5}\mathbf{B}}_{\text{núcleo de}} \rightarrow \underbrace{^{257}_{103}\mathbf{Lr}}_{\text{laurêncio}} + 5\,^{1}_{0}\mathbf{n}$$

Desenvolveram-se técnicas e equipamentos nos quais um núcleo é alvejado por partículas subatômicas aceleradas artificialmente cujas descrições e funcionamento são objetos de curso muito mais avançados que este.

Representação das espécies subatômicas mais comumente envolvidas.

ESPÉCIE	NATUREZA DA ESPÉCIE	NOTAÇÃO
ALFA	NÚCLEO DE HÉLIO	$\frac{4}{2}\alpha$; $\frac{4}{2}$ He
BETA	ELÉTRON	$\begin{bmatrix} \begin{smallmatrix} 0 \\ -1 \end{smallmatrix} \beta \; ; \begin{smallmatrix} 0 \\ -1 \end{smallmatrix} \mathbf{e} ; \; \beta^- \\ \end{bmatrix}$
GAMA	ONDA ELETROMAGNÉTICA	ο γ
NÊUTRON	PARTÍCULA NEUTRA DE MASSA QUASE IGUAL À DO PRÓTON	1 n

PRÓTON	NÚCLEO DO HIDROGÊNIO	¹ ₁ p, ¹ ₁ H
DÊUTERON	NÚCLEO DO DEUTÉRIO	$^{2}_{1}$ d , $^{2}_{1}$ H , $^{2}_{1}$ D
PÓSITRON	PARTÍCULA POSITIVA DE MASSA IGUAL À DO ELÉTRON	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

EXEMPLO - 1

(PUC-SP) O isótopo $\frac{131}{53}$ I, utilizado no diagnóstico de moléstias da tireoide, pode ser obtido pelo bombardeio de $^{130}_{52}$ **Te**, representado a seguir:

$$^{130}_{52}$$
Te + $^{1}_{0}$ n $ightarrow$ $^{131}_{53}$ I + X

Na equação radioquímica dada, X corresponde a: a) próton

c) pósitron

e) partícula alfa

b) nêutron

d) partícula beta

RESOLUÇÃO

Conferindo o balanço de massa e de caga da equação

$$^{130}_{52}$$
Te + $^{1}_{0}$ n $ightarrow$ $^{131}_{53}$ I + $^{\mathbf{q}}_{\mathbf{p}}$ X

RESPOSTA D): Partícula de carga (-1) e de massa (0) é a partícula beta.

Notação reduzida

Algumas vezes utilizam-se a seguinte notação para as reações de transmutação.

Reação de transmutação

$$^{130}_{52}\text{Te} \ + \ ^{1}_{0}\text{n} \ \rightarrow \ ^{131}_{53}\text{I} \ + \ ^{0}_{-1}\beta$$

(os números atômicos são encontrados em tabela)

ESTABILIDADE NUCLEAR

O núcleo existe com prótons e nêutrons. Há então forças intensas superiores àquela de repulsão dos prótons. Parece que o número par de prótons ou de nêutrons está associado à estabilidade.

Número de nuclídeos estáveis com número de prótons e nêutrons pares ou ímpares.

Apenas cinco isótopos $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ H, $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$ Li, $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$ B, $\begin{pmatrix} 14 \\ 73 \end{pmatrix}$ N e $\begin{pmatrix} 180 \\ 73 \end{pmatrix}$ Ta têm número ímpar de prótons e nêutrons.

Faixa de estabilidade

Até o número atômico 83 há pelo menos um isótopo estável, (não radioativo). A partir do número atômico 84, todos os nuclídeos são instáveis (naturalmente radioativos).

No gráfico a seguir:

Examine a relação n° de nêutrons; n° de prótons $\left(\frac{\text{nêutrons}}{\text{prótons}}\right)$

Até
$$\mathbf{Z} = 20 \rightarrow \left(\frac{N}{P}\right) \cong 1$$
.

Nos elementos leves, até o Ca (Z=20), os isótopos estáveis têm, em geral, números iguais de prótons e de nêutrons, ou talvez um nêutron a mais.

Exemplos, ${}_{3}^{7}$ Li, ${}_{6}^{12}$ C, ${}_{16}^{32}$ S.

Até **Z** = 20 **a Z** = 50
$$\left(\frac{N}{P}\right) \cong 1,25$$
.

De **Z**=50 **a Z**=83
$$\rightarrow \left(\frac{N}{P}\right) \cong 1,5$$

A partir do cálcio, a razão entre nêutrons e prótons fica cada vez maior do que 1.

A faixa dos isótopos estáveis desvia-se da reta (N=Z). É evidente que mais nêutrons são necessários para a estabilidade dos elementos mais pesados.

Por exemplo, enquanto um isótopo estável do Fe em 26 prótons e 30 nêutrons, um dos isótopos estáveis da platina tem 78 prótons e 117 nêutrons.

z > 83

Além do bismuto (83 prótons e 126 nêutrons), todos os isótopos são instáveis e radioativos. Depois deste ponto não há, aparentemente, "supercola" nuclear suficientemente forte para manter estáveis os núcleos pesados.

Além disso, a velocidade de desintegração fica cada vez maior à medida que o núcleo fica mais pesado. Por exemplo, a metade de uma amostra de $^{238}_{92}$ **U** se desintegra em 4,5 bilhões de anos, enquanto a metade de uma amostra de ²⁵⁷₁₀₃ **Lr** desaparece em apenas 8s.

Prevendo a partícula emitida

Conhecendo a relação $\left(\frac{N}{p}\right)$ do isótopo estável (quadrinho preto dá pra prever a emissão) examinando o gráfico sempre verticalmente.

 $^{141}_{59}$ **Pr** (praseodímio) = único isótopo estável (82 nêutrons).

$$A = Z + N$$

$$141 = 59 + N : \boxed{N = 82}$$

Isótopo estável:
$$\left(\frac{N}{P}\right) = \frac{82}{59} = 1,38$$

A) Com excesso de nêutrons $\left(\frac{N}{P}\right) > 1,38$

$$\left(\frac{N}{P}\right) = \frac{83}{59} = 1,40$$

Acontece a emissão de partícula β :

$$^{142}_{59} \text{Pr} \rightarrow ^{142}_{60} \text{Nd} + ^{0}_{-1} \beta$$

B) Com excesso de prótons $\left(\frac{N}{p}\right)$ < 1,38

$$^{140}_{59} {
m Pr} \,
ightarrow ^{140}_{58} \, {
m Ce} \, + \, ^{0}_{+1} eta$$

Acontece a emissão de pósitron

CONCLUSÃO

- Acima da faixa de estabilidade (rico em nêutrons) Emissão de: $\{\beta^-\}$
- Abaixo da faixa de estabilidade (rico em prótons) Emissão: Captura eletrônica
- $oldsymbol{3}$ Os elementos $oldsymbol{z} > 83$ perdem partículas alfa (α) pois apresentam um grande número de prótons e nêutrons. Pode ocorrer também emissão de (β) após a emissão
- (α) porque há um aumento de proporção $(\frac{N}{P})$ no núcleo

EXEMPLO - 2

Identifique o modo, ou os modos, mais provável de decaimento de cada isótopo instável seguinte. Escreva o símbolo do produto formando.

- 1) Oxigênio 15, 15 O 3) Flúor 20, 20 F

- 2) Urânio 234, ²³⁴₉₂U 4) Manganês 56, ⁵⁶₂₅ Mn

RESOLUÇÃO

- 1) ${}^{15}_{8}$ **O** \rightarrow possui 7 nêutrons, logo é rico em prótons Possibilidades:
 - A) ${}^{15}_{8}$ O $\rightarrow {}^{15}_{7}$ N + $\left[{}^{0}_{+1} \beta \right]$ (emissão de pósitron)
 - B) ${}^{15}_{8}$ O + ${}^{0}_{-1}$ e $\rightarrow {}^{15}_{7}$ N (captura eletrônica)
- 2) $_{92}^{234}$ **U** (**Z** > 83) \rightarrow rico em prótons e nêutrons

$$^{234}_{92}$$
U \rightarrow $\left[^{4}_{2}\alpha\right]$ + $^{230}_{90}$ Th

3) $^{20}_{9}\mathbf{F} \rightarrow$ (possui 11 nêutrons, logo é rico em nêutron)

$$^{20}_{9}\text{F}\,\rightarrow \boxed{^{0}_{-1}\beta}\,+\,^{20}_{10}\,\text{Ne}\left(\text{emissão}\;\beta\right)$$

4) $_{25}^{56}$ **Mn** ightarrow (número de nêutrons =31)

Relação
$$\left(\frac{N}{P}\right) = \frac{32}{25} = 1,24$$

O isótopo estável do manganês é $\underbrace{^{55}_{25}\,\text{Mn}}_{\text{N= 30 nêutrons}}$

Então o isótopo 56 do manganês tem excesso de nêutrons, logo a emissão será $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

$$^{56}_{25}$$
Mn \rightarrow $\begin{bmatrix} ^0_{-1}\beta \\ \end{bmatrix}$ + $^{56}_{26}$ Fe

NOTA: Sem isótopo estável é praticamente impossível fazer a previsão.

Pelo número de massa **(A)** expressos nas tabelas periódicas pode-se estimar o número de nêutrons do isótopo estável.