* Mwhiple Linear Regression > Problem 3:

23.6	Y	×,	× 2	
51.01	-3.7	3	8	
	3.5	4	5	
2.7.1	2.5	5	7.	
200	11.5	86	3	
4	5.7	. 2	1	
3-5	8.2.2	3	2	
6	-	1	861	

X1, X2 = Independent variables.

Y = b, X, + b2 X2+ a

$$b_{1} = \frac{\left(\leq \chi_{2}^{2} \right) \left(\leq \chi_{3} \right) - \left(\leq \chi_{1} \chi_{2} \right) \left(\leq \chi_{2} \chi_{3} \right)}{\left(\leq \chi_{1}^{2} \right) \left(\leq \chi_{2}^{2} \right) - \left(\leq \chi_{1} \chi_{2} \right)^{2}}$$

$$\left(\leq \chi_{1}^{2} \right) \left(\leq \chi_{2}^{2} \right) - \left(\leq \chi_{1} \chi_{2} \right)^{2}$$

$$b_{1} = \frac{\left(\sum_{n_{1}^{2}} (\sum_{n_{2}^{2}} (\sum_{n_{1}^{2}} (\sum_{n_{1$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{2}^{2} = \Sigma_{2}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{2})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{2}^{2} = \Sigma_{2}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{2}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{2}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{1}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

$$\Sigma_{2}^{2} = \Sigma_{1}^{2} \times 1 - \frac{(\Sigma_{1})(\Sigma_{1})}{N}$$

	Multiple Linear Pagrossian &							Mulling.	
	Y	X,	X 2	X_1X_1	X 2 X 2	X, X2	X,Y	X1X	
The second	-3.7	3	8	× g	.64	24	-11:1	- 29.6	
2	3.5	4	5	16	25	20	14	17.5	
3	2.5	5	7.	25	49	35	12.5	17.5	
4	11.5	6	3	36	9	18	69	34.5	
5	5.2	2)	4	. (_ /	2	11.4	5.7	
<u>E</u>	19.5	20	24	90	148	99	95.8	45.6	
		N, A			(6×3	Dein			
(=) (=)									

$$\Sigma x_1^2 = \Sigma x_1 x_1 - \frac{(\Sigma x_1)(\Sigma x_1)}{4N}$$

= 90 - $\frac{20 \times 20}{8}$
= 90 - 80

$$\sum n_2^2 = \sum x_2 x_2 - \frac{(\sum x_2)(\sum x_2)}{N}$$

$$= 148 - \frac{(29)(29)}{5}$$

$$\sum n_2^2 = 32.8$$

Similary, by putting respective values.

$$\leq n_1 y = \leq x_1 \gamma - \frac{(\leq x_1)(\leq \gamma)}{N} = 17.8$$

$$\sum x_2 y = \sum x_2 y - \frac{(\sum x_2)(\sum y)}{N} = -48$$

$$\sum x_1 x_2 = \sum x_1 x_2 - \frac{(\sum x_1)(\sum x_1)}{N} = 3$$

$$b_{1} = \frac{\left(\Sigma n_{2}^{2}\right)\left(\Sigma n_{1}y\right) - \left(\Sigma n_{1}n_{2}\right)\left(\Sigma n_{2}y\right)}{\left(\Sigma n_{1}^{2}\right)\left(\Sigma n_{2}^{2}\right) - \left(\Sigma n_{1}n_{2}\right)^{2}}$$

$$= \frac{32.8 * 17.8 - 3 * (-48)}{10 * 32.8 - 3 * 3} = \frac{2.28}{}$$

$$b_{1} = \frac{(\Sigma n_{1}^{2})(\Sigma n_{2}y) - (\Sigma n_{1}n_{2})(\Sigma n_{1}y)}{(\Sigma n_{1}^{2})(\Sigma n_{2}^{2}) - (\Sigma n_{1}n_{2})^{2}}$$

$$= \frac{10 * (-48) - 3 * 17.8}{10 * 32.8 - 3 * 3} = -\frac{1.67}{10}$$

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 = \frac{19.5}{5} - \frac{2.28 * 20}{5} - \frac{-1.67 * 24}{5} = 2.796$$

Final regression equation or model is.

$$\gamma = 2.28(3) - 1.67(1) + 2.796 = 6.296$$