Introducción a la Cardinalidad

Mariam Cobalea

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 15/16

Cardinalidad

Teorema

Sean A. B v C conjuntos cualesquiera. Se verifica:

- \bullet $A \approx A$
- **2** Si $A \approx B$, entonces $B \approx A$
- **3** Si $A \approx B$ v $B \approx C$, entonces $A \approx C$.

Demostración: Trivial a partir de las propiedades de las funciones bivectivas:

- La identidad es una biyección.
- 2 La inversa de un función biyectiva es también un función biyectiva.
- La composición de bivecciones tambien es bivección.

Cardinalidad

Definición (Conjuntos equipotentes)

Se dice que el conjunto A es equipotente al conjunto B si existe una función biyectiva $f: A \rightarrow B$. Se escribe $A \approx B$.

Ejemplo

El conjunto $A = \{000, 001, 010, 100, 011, 101, 110, 111\}$ es equipotente al conjunto $B = \{0, 1, \dots, 7\}$

Ejercicio

Sea X un conjunto con 10 elementos. Consideramos los conjuntos

$$A = \{Y \subseteq X \mid Y \text{ tiene 7 elementos}\}\$$

 $B = \{Z \subseteq X \mid Z \text{ tiene 3 elementos}\}\$

Demuestra que $A \approx B$.

Cardinalidad

- \triangleright Este teorema nos dice que dada una colección \mathcal{S} de conjuntos, la relación \approx es una relación de equivalencia en S.
- > En cada clase de equivalencia estarán los conjuntos equipotentes.
- > A cada clase de equivalencia se le asigna un objeto: el cardinal de cada elemento en la clase.
- \rightarrow De esta forma, a los conjuntos $\{1\}, \{a\}, \dots$ que tienen un elemento se les asigna el cardinal 1;
 - a los conjuntos $\{1,2\},\{a,b\},\cdots$ que tienen dos elementos se les asigna el cardinal 2; ...
 - a los conjuntos $\{1, 2, ..., n\}, \{a_1, a_2, ..., a_n\}, \cdots$ que tienen n elementos se les asigna el cardinal n; ...

Cardinalidad

Para algunos conjuntos, como los del primer ejemplo.

```
A = \{000, 001, 010, 100, 011, 101, 110, 111\} \forall B = \{0, 1, 2, 3, 4, 5, 6, 7\}
ser equipotentes, significa tener el mismo número de elementos.
```

- En estos conjuntos el cardinal coincide con la idea intuitiva de 'tamaño' del conjunto. Sin embargo, no siempre ocurre esto.
- Existen conjuntos equipotentes que no tienen el mismo 'tamaño'.

Ejemplo

Sea $E = \{x \in \mathbb{Z} \mid x \text{ es par } \}$. La función

$$f: \mathbb{Z} \rightarrow E$$
 $x \mapsto 2x$

nos permite afirmar que \mathbb{Z} tiene el **mismo** cardinal que E.

(iii A pesar de que E tiene la mitad de los elementos de \mathbb{Z} !!)

Conjuntos Finitos

Definición (Conjunto finito (I))

Se dice que un conjunto A es finito si existe un número natural n, tal que se puede establecer una biyección entre el conjunto $\mathbb{N}_n = \{1, 2, \dots, n\}$ y el conjunto A. Este entero n se llama cardinal de A. Se denota |A| = n. (Para $A = \emptyset$, |A| = 0)

- \bullet Establecer una biyección entre $\{1, 2, ..., n\}$ y un conjunto A equivale a *contar* el número de elementos de A.
- Las propiedades de los conjuntos finitos ya se han estudiado en Matemática Discreta.

Conjuntos Infinitos

Definición (Conjunto infinito (I))

Se dice que un conjunto A es infinito si no es finito (es decir, si no existe un número natural $n \in \mathbb{N}$ tal que se puede establecer una biyección entre el conjunto $\{1, 2, ..., n\}$ y el conjunto A).

- Para probar que un conjunto A es infinito usando la definición (I) se debe establecer que no existe ninguna biyección de $\{1, 2, ..., n\}$ en A para ningún *n*.
- Esta prueba puede ser muy dificil debido a que hay que descartar infinitas posibilidades.

Conjuntos Infinitos

Teorema

 \mathbb{N} es un conjunto infinito.

Demostración:

- > Veamos que no existe un número natural n tal que se pueda establecer una biyección del conjunto $\{1, 2, ..., n\}$ al conjunto \mathbb{N} .
- \triangleright Sea *n* cualquier elemento de \mathbb{N} y sea *f* cualquier función de $\{1, 2, \dots, n\}$ en \mathbb{N} .
- ightharpoonup Se considera $k = 1 + \max\{f(1), \dots, f(n)\}$
- ightharpoonup Entonces $k \in \mathbb{N}$, pero para cada $x \in \{1, 2, ..., n\}$, $f(x) \neq k$.
- \rightarrow De ahí, f no puede ser sobreyectiva y, por tanto, no es biyectiva.
- \succ Ya que n y f se eligen arbitrariamente, concluimos que \mathbb{N} es infinito.

Conjuntos Finitos e Infinitos

Definición (I)

Se dice que un conjunto A es finito si existe un número natural n, tal que se puede establecer una biyección $f \colon \mathbb{N}_n = \{1,2,\ldots,n\} \to A$. Se dice que un conjunto A es infinito si no es finito

Definición (II)

Se dice que un conjunto A es infinito si existe una función inyectiva $f: A \to A$ tal que $f(A) \subset A$.

Un conjunto A es finito si no es infinito.

- ullet La definición (I) establece explícitamente cómo reconocer un conjunto finito.
- ullet La definición (\hbox{II}) establece explícitamente cómo reconocer un conjunto infinito.
- \bullet Se puede demostrar que las definiciones (I) y (II) son equivalentes.
- Usaremos la definición que sea más conveniente.

Mariam Cobalea (UMA

EAC, Curso 15/16

Tema 1 - Int. a la Cardinalidad

9 / 54

Conjuntos infinitos

 Usaremos la definición (I) para demostrar que un conjunto es finito y la definición (II) para mostrar que un conjunto es infinito.

Definición (I)

Se dice que un conjunto A es finito si existe un número natural n, tal que se puede establecer una biyección $f \colon \mathbb{N}_n = \{1,2,\ldots,n\} \to A$. Se dice que un conjunto A es infinito si no es finito.

Definición (II)

Se dice que un conjunto A es **infinito** si existe una función inyectiva $f: A \rightarrow A$ tal que $f(A) \subset A$.

Un conjunto A es finito si no es infinito.

Conjuntos infinitos

Usando la definición (II) podemos dar una demostración más corta del teorema anterior.

Teorema

 \mathbb{N} es un conjunto infinito.

Demostración:

ightharpoonup La función $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = 2n$$

es inyectiva y se cumple que

$$f(\mathbb{N}) \subset \mathbb{N}$$

 \triangleright Por lo tanto, \mathbb{N} es un conjunto infinito.

Mariam Cobalea (UMA)

EAC. Curso 15/1

ema 1 - Int. a la Cardinalidad

11 / 54

Conjuntos infinitos

Ejemplo

Sea el alfabeto $\Sigma = \{a,b\}$. Entonces Σ^* es infinito.

Solución:

- ightharpoonup En efecto, sea $f: \Sigma^* o \Sigma^*$ definida por f(w) = aw.
- ightharpoonup Esta función es inyectiva y su imagen es un subconjunto propio de Σ^* , $f(\Sigma^*)$ es el subconjunto de las cadenas que empiezan con la letra a.
- \succ Luego, Σ^* es infinito.

Mariam Cobalea (UMA) EAC, Curso 15/16 Tema 1 - Int. a la Cardinalidad 10 / 54 Mariam Cobalea (UMA) EAC, Curso 15/16 Tema 1 - Int. a la Cardinalidad 12 / 5

Conjuntos infinitos

Teorema

Sea A un subconjunto de B. Si A es infinito, entonces B es infinito.

Demostración:

- \succ Si A es infinito, entonces existe una función inyectiva $f:A\to A$ tal que $f(A)=A'\subset A$.
- \triangleright Para mostrar que B es infinito, definimos $g: B \rightarrow B$ como sigue:

$$g(x) = \begin{cases} f(x) & \text{si } x \in A \\ x & \text{si } x \in B - A \end{cases}$$

- \Rightarrow Entonces g es inyectiva y la imagen de g no incluye el conjunto no vacío A-A'.
- \succ Esto establece que B es infinito.

Corolario

- Si A es infinito, entonces $A \cup B$ es infinito.
- Sea A un subconjunto de B. Si B es finito, entonces A es finito. (Esto es, cada subconjunto de un conjunto finito es finito.)

Mariam Cobalea (UMA

EAC, Curso 15/16

Tema 1 - Int. a la Cardinalidad

13 / 54

Conjuntos infinitos

Teorema

Sea $f: A \to B$ una función inyectiva. Si A es un conjunto infinito, entonces B es infinito.

Teorema

Sean A y B conjuntos, tales que A es infinito y $B \neq \emptyset$. Entonces

- $\mathcal{P}(A)$ es infinito,
- \bullet A \times B es infinito,

Demostración:

• Consideramos la función $f: A \to \mathcal{P}(A)$ definida por $f(x) = \{x\}$ Claramente, f es inyectiva y, del teorema anterior, deducimos que $\mathcal{P}(A)$ es infinito.

Conjuntos infinitos

Teorema

Sean A y B conjuntos, tales que A es infinito y $B \neq \emptyset$. Entonces

- \circ $\mathcal{P}(A)$ es infinito,
- \mathbf{Q} $A \times B$ es infinito,

Demostración:

- Definimos la función $f: A \to \mathcal{P}(A), \quad f(x) = \{x\}$ Claramente, f es inyectiva y, del teorema anterior, deducimos que $\mathcal{P}(A)$ es infinito.
- ② Por ser $B \neq \emptyset$, podemos elegir un elemento $b \in B$, y definimos la función

$$f: A \to A \times B, \qquad f(x) = (x, b)$$

Ya que A es infinito y f es inyectiva, se sigue del teorema anterior que $A \times B$ es infinito.

Mariam Cobalea (UMA)

EAC. Curso 15/1

Toma 1 - Int. a la Cardinalidad

Conjuntos numerables

- La técnica usada para establecer el cardinal de un conjunto infinito es esencialmente la misma que se usó para conjuntos finitos.
- Para los conjuntos finitos, cada conjunto de la forma $\{1,2,...,n\}$ se usa como un 'conjunto estándar' con el que otros conjuntos son comparados mediante una biyección.
- Así pues, un conjunto finito tiene cardinal n si, y sólo si, hay una biyección de $\{1, 2, ..., n\}$ en A.
- Cada vez que introducimos un nuevo número cardinal infinito α elegimos un conjunto estándar S apropiado y afirmamos:

El conjunto A tiene cardinal α si hay una biyección del conjunto S en el conjunto A.

Mariam Cobalea (UMA) EAC, Curso 15/16 Tema 1 - Int. a la Cardinalidad 14 / 54 Mariam Cobalea (UMA) EAC, Curso 15/16 Tema 1 - Int. a la Cardinalidad 16 / 5

- \succ Hemos demostrado que el conjunto $\mathbb N$ es infinito.
- ➤ Ya que ningún número natural puede ser el cardinal de N, debemos introducir un conjunto estándar para $|\mathbb{N}|$.
- \succ Se elige el propio \mathbb{N} como conjunto estándar y denotamos por \aleph_0 el cardinal de ℕ

Definición

Se dice que un conjunto A tiene cardinal \aleph_0 , si existe una función biyectiva de \mathbb{N} en A. Se escribe $|A| = \aleph_0$.

Conjuntos numerables

- Si A es infinito y $A \approx \mathbb{N}$, tambien tenemos que $\mathbb{N} \approx A$.
- Luego podemos demostrar que un conjunto A es infinito numerable encontrando
 - **1** una biyección $f: \mathbb{N} \to A$ o bien
 - ② una biyección $f: A \to \mathbb{N}$
- Algunos autores consideran $\mathbb{N} = \{0, 1, 2, 3, ..., n, ...\}$ y al conjunto $\{1, 2, 3, ..., n, ...\}$ lo denotan \mathbb{Z}^+ .
- Los conjuntos $\{0, 1, 2, 3, ..., n, ...\}$ y $\{1, 2, 3, ..., n, ...\}$ son equipotentes, ya que la función $f: \{0, 1, 2, 3, ..., n, ...\} \rightarrow \{1, 2, 3, ..., n, ...\}$ dada por f(n) = n + 1 es biyecctiva.
- Ambos conjuntos tienen el mismo cardinal: \aleph_0 .

Conjuntos numerables

La existencia de biyección de \mathbb{N} o algún conjunto $\{1, 2, ..., n\}$ en Asugiere la idea de contar los elementos de A, incluso aunque el proceso de recuento pudiera ser interminable.

Definición

Se dice que un conjunto A es infinito numerable si existe una biyección de N en A.

El conjunto A se llama numerable si es finito o infinito numerable.

En otro caso, se dice que el conjunto A es no numerable.

• Si A es un conjunto infinito numerable, $|A| = \aleph_0$.

Conjuntos numerables

Ejemplo

Sea $k \in \mathbb{Z}$, $k \neq 0$. Demuestra que el conjunto $k\mathbb{Z}^+$ es numerable.

Solución:

Sea $k \in \mathbb{Z}$, $k \neq 0$. La función $f : \mathbb{Z}^+ \to k\mathbb{Z}^+$ definida

$$f(x) = kx$$

es una biyección.

Luego, $k\mathbb{Z}^+$ es numerable y $|k\mathbb{Z}^+| = |\mathbb{Z}^+|$.

• En particular, el conjunto \mathbb{Z}^- de los enteros negativos, es decir, $(-1)\mathbb{Z}^+$, es un conjunto numerable.

Ejemplo

Determina el cardinal del conjunto $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots\} = \{\frac{1}{n} \mid n \in \mathbb{Z}^+\}.$

Solución: La función $f:\mathbb{Z}^+ \to A$ definida $f(n)=rac{1}{n},$ establece una biyección entre \mathbb{Z}^+ y A.

Por lo tanto, $|A| = |\mathbb{Z}^+| = \aleph_0$, A es numerable.

Ejercicio

Halla el cardinal de los conjuntos siguientes:

$$A = \{10, 20, 30, 40, ...\}, \qquad B = \{6, 7, 8, 9, ...\}, \qquad C = \left\{c_n = \frac{2n}{n+6} \mid n \in \mathbb{N}\right\}$$

Conjuntos numerables

Para avanzar un poco más en nuestro estudio de los conjuntos numerables, introducimos algunos conceptos que nos servirán para simplificar las demostraciones.

- Decimos que un conjunto se puede *enumerar* si sus elementos se pueden listar.
- Esta lista puede ser finita o infinita; y pueden ocurrir repeticiones (es decir, no todas las entradas de la lista deben ser distintas).
- Si una lista enumera el conjunto A. entonces cada entrada de la lista es un elemento de A y cada elemento de A aparece como una entrada de la lista.

Se formalizan estos conceptos como sigue.

Conjuntos numerables

Ejercicio

En el conjunto \mathbb{R} de los números reales se consideran los subconjuntos:

$$A = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$$
 $B = \left\{b_n = \frac{2n}{n+6} \mid n \in \mathbb{N}\right\}$

Determina los cardinales de los conjuntos siguientes:

(i) B

(ii) $A \cap B$ (iii) B - A

Justifica las respuestas.

Conjuntos numerables

Definición

Un segmento inicial de $\mathbb N$ es el conjunto $\mathbb N$ o un conjunto de los nprimeros números naturales, $\mathbb{N}_n = \{1, 2, ..., n\}$.

Definición

Sea A un conjunto. Una enumeración de A es una función sobreyectiva f de un segmento inicial de \mathbb{N} en A.

- Si f es invectiva tambien (y por tanto, bivectiva), entonces f es una enumeración sin repeticiones.
- Si f no es inyectiva, entonces f es una enumeración con repeticiones.

- \bullet Cuando presentamos una enumeración f, la función se especifica normalmente dando la secuencia $\langle f(1), f(2), \ldots \rangle$.
- Nos referiremos a f como una función enumeración.

Ejemplo

Si $A = \{a, b, c\}$, entonces $\langle b, c, b, a \rangle$ y $\langle c, b, a \rangle$ son enumeraciones de A; la primera con repeticiones y la segunda sin repeticiones.

Conjuntos numerables

Ejemplo

El conjunto de los números racionales positivos \mathbb{O}^+ es infinito numerable.

Solución:

- ✓ Claramente Q⁺ no es finito, ya que podemos establecer una función invectiva de los naturales \mathbb{N} en \mathbb{Q}^+ .
- ✓ Demostramos que \mathbb{Q}^+ es numerable mostrando una enumeración con repeticiones.
- ✓ El orden de la enumeración se especifica en un grafo dirigido.

Conjuntos numerables

Teorema

Un conjunto A es numerable si, y sólo si, existe una enumeración de A.

Ejemplo

Dado cualquier alfabeto finito Σ , el conjunto Σ^* es infinito numerable.

Solución: Esto se puede demostrar exponiendo los elementos de Σ^* en un orden estándar.

En particular, si $\Sigma = \{0,1\}$ y 0 precede a 1 en el orden 'alfabético' de Σ , entonces la enumeración de Σ^* en el orden estándar es

$$\langle \lambda, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \rangle$$

Conjuntos numerables

- ✓ Todo número racional positivo es el cociente p/q de dos enteros positivos.
- ✓ Se escriben los números racionales positivos enumerando los de denominador 1 en la primera fila, los de denominador 2 en la segunda fila, y así sucesivamente.

	1	2	3	4	5	
1	1/1	2/1	3/1	4/1	5/1	
2	1/2	2/2	3/2	4/2		
3	1/3	2/3	3/3	4/3		
4	1/4	2/4	3/4			
5	1/5	2/5				
6 :	1/6					
:						

- ✓ Para enumerar \mathbb{Q}^+ en una sucesión se empieza por el racional positivo con p+q=2, seguido de aquellos con p+q=3, continuando con aquellos con p+q=4, como se muestra en la figura.
- ✓ El orden de la enumeración se especifica en el grafo dirigido

Conjuntos numerables

Teorema

Si A_1 y A_2 son conjuntos numerables, entonces $A_1 \cup A_2$ es un conjunto numerable.

Demostración: El orden de la enumeración se especifica en el grafo dirigido

A_1	a ₁₁		a ₁₂		a ₁₃		a ₁₄		a ₁₅	
A ₁	↓	7	\downarrow	7	\downarrow	7	\downarrow	7	\downarrow	7
A_2	<i>a</i> ₂₁		a_{22}		a_{23}		a_{24}			

Ejercicio

Demuestra que \mathbb{Q} es un conjunto numerable.

Conjuntos numerables

Teorema

La unión de una colección numerable de conjuntos numerables es numerable.

Demostración: El orden de la enumeración se especifica en el grafo dirigido

Conjuntos numerables

Teorema

Si A y B son conjuntos numerables, entonces $A \times B$ es numerable.

Demostración: El orden de la enumeración se especifica en el grafo dirigido

Ejemplo

Son numerables los siguientes conjuntos:

- ② El conjunto de todos los polinomios de grado *n* con coeficientes racionales.
- El conjunto de todos los polinomios con coeficientes racionales.
- El conjunto de todas las matrices $n \times m$ con componentes racionales.
- El conjunto de todas las matrices de dimensión finita arbitraria con componentes racionales.

Conjuntos numerables

Teorema

Cada conjunto infinito contiene un subconjunto infinito numerable.

Demostración:

> Se eligen sucesivamente los elementos

$$a_1 \in A$$
, $a_2 \in A - \{a_1\}$, $a_3 \in A - \{a_1, a_2\}$, ..., $a_{k+1} \in A - \{a_1, a_2, ..., a_k\}$, ...

> Siguiendo así, podemos construir una secuencia sin repeticiones

$$a_1, a_2, \ldots, a_n, \ldots$$

que será infinita, pues cada uno de los conjuntos $A - \{a_1, a_2, \dots, a_k\}$ es infinito.

> Si no lo fuesen, el conjunto A se podría obtener como unión de conjuntos finitos

$$A = (A - \{a_1, a_2 \dots, a_k\}) \cup \{a_1, a_2 \dots, a_k\}$$

Conjuntos numerables

Teorema

Si B es un conjunto numerable no vacío y $A \subseteq B$, entonces A es numerable.

Del teorema anterior se puede deducir que:

- ✓ Un conjunto dado no vacío S es numerable si, y sólo si, S tiene el mismo cardinal que un subconjunto de \mathbb{Z}^+ .
- ✓ Así, es suficiente que exista una función invectiva $f: S \to \mathbb{Z}^+$ (no necesariamente una biyección), para afirmar que 5 es numerable, ya que $S \approx f(S)$ (es decir, |S| = |f(S)| y f(S) es numerable.)

Conjuntos no numerables

Teorema (Cantor)

El subconjunto de números reales [0,1] no es numerable.

Demostración:

- > Para demostrar que [0,1] no es numerable, debemos mostrar que ninguna función $f: \mathbb{N} \to [0,1]$ es sobreyectiva.
- ightharpoonup Sea $f: \mathbb{N} \to [0, 1]$ una función cualquiera. Se colocan los elementos f(1), f(2), ..., en una lista usando la representación decimal para cada valor f(n):

 $f(1) = 0, x_{11}x_{12}x_{13}...$

 $f(2) = 0, x_{21}x_{22}x_{23}...$

 $f(3) = 0, x_{31}x_{32}x_{33}...$

donde x_{nj} es el j -ésimo dígito en la expansión decimal de f(n).

Demostración: (cont.)

 \rightarrow Ahora especificamos un número real $y \in [0, 1]$ como sigue:

 $y = 0, y_1y_2y_3 \dots$, donde

$$\mathbf{y}_j = \left\{ egin{array}{l} 1, \; \operatorname{si} \; \mathbf{x}_{jj}
eq 1 \ 2, \; \operatorname{si} \; \mathbf{x}_{jj} = 1 \end{array}
ight.$$

- > El número y está determinado por los dígitos en la diagonal.
- \rightarrow Claramente, $y \in [0, 1]$.
- > Sin embargo, y difiere de cada f(n) al menos en un dígito de la expansión (a saber, el *n* -ésimo dígito).
- \rightarrow Por lo tanto, $y \neq f(n)$ para cualquier n.
- ightharpoonup Y se concluye que la función $f: \mathbb{N} \to [0,1]$ no es sobreyectiva.
- > Por lo tanto, no es una enumeración de [0, 1].
- \rightarrow Puesto que la función f era arbiraria, esto establece que $|[0,1]| \neq \aleph_0$.

Conjuntos no numerables

- La técnica de demostración del teorema anterior se conoce como el método de diagonalización de Cantor.
- Esencialmente esta técnica empieza con una lista infinita en la que cada elemento de la lista tiene una descripción infinita.
- Después se construye un objeto distinto a cada elemento de la lista.

Esta técnica tiene muchas variaciones y se aplica frecuentemente en teoría de la computabilidad.

Conjuntos no numerables

Teorema

El conjunto $\mathcal{P}(\mathbb{N})$ es no numerable.

Demostración: (Método de diagonalización de Cantor)

 \succ Supongamos que $\mathcal{P}(\mathbb{N})$ es infinito numerable, es decir, existe una biyección $f:\mathbb{N}\to\mathcal{P}(\mathbb{N})$

 \succ Entonces $\mathcal{P}(\mathbb{N})$ se podría enumerar

$$\mathcal{P}(\mathbb{N}) = \{S_1, S_2, ..., S_n, ...\}$$

Conjuntos no numerables

Demostración: (cont.)

ightharpoonup Por ejemplo, podríamos tener la función $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$

$$f(1) = \{3,5,7\}$$

$$f(2) = \{2,4,6,8,...\}$$

$$f(3) = \emptyset$$

$$f(4) = \{1, 2, 3, 4, 5, 6, ...\}$$

$$f(5) = \{1,2\}$$

- ightharpoonup En algunos casos $j \in f(j)$. En nuestro ejemplo, $2 \in f(2)$ y $4 \in f(4)$.
- \gt Sin embargo, $1 \notin f(1)$, $3 \notin f(3)$ y $5 \notin f(5)$.

Demostración:(cont.)

- ightharpoonup Volviendo a nuestra supuesta función biyectiva $f \colon \mathbb{N} \to \mathcal{P}(\mathbb{N})$, consideramos el subconjunto $\mathbf{D} = \{n \in \mathbb{N} \mid n \not\in f(n)\}$
- ightharpoonup Por ser f sobreyectiva, **D** será la imagen de algún $k \in \mathbb{N}$.
- ightharpoonup Luego $\mathbf{D} = S_k$, para algún $k \in \mathbb{N}$.
- ightharpoonup Ahora nos preguntamos si este $k \in S_k$
 - Si $k \in S_k$, entonces $k \notin \mathbf{D}$, por la definición de \mathbf{D} . Pero $\mathbf{D} = S_k$. Luego, $k \notin S_k$. (Contradicción)
 - Si $k \notin S_k$, entonces $k \in \mathbf{D}$, por la definición de \mathbf{D} . Pero $\mathbf{D} = S_k$. Luego, $k \in S_k$. (Contradicción)
- ightharpoonup Llegamos a contradicción, esto nos dice que la suposición $\textbf{\textit{D}} = S_k$ es un error.
- $ightharpoonup oldsymbol{p} f(\mathbb{N})$ y la hipótesis de que f es biyectiva es incorrecta.
- ightharpoonup Por lo tanto, $\mathcal{P}(\mathbb{N})$ es no numerable.

Mariam Cobalea (UMA)

EAC, Curso 15/16

Tema 1 - Int. a la Cardinalida

41 / 54

Conjuntos no numerables

- Los conjuntos [0,1] y $\mathcal{P}(\mathbb{N})$ son ejemplos de conjuntos infinitos pero no numerables.
- Elegimos [0,1] como el "conjunto estándar" para esta cardinalidad y damos la siguiente definición:

Definición

Un conjunto $\ A$ tiene cardinal $\ \aleph_1$ si hay una biyección de $\ [0,1]$ en $\ A$.

Al cardinal de [0,1] también se le denota c ya que el conjunto [0,1] se llama un contínuo.

Conjuntos no numerables

Conjuntos de cardinal ℵ₁

Ejemplo

• Sean $a, b \in \mathbb{R}$ con a < b. El intervalo cerrado [a, b] tiene el mismo cardinal que [0, 1], ya que la función $h: [0, 1] \to [a, b]$ definida

$$h(x) = (b-a) \cdot x + a$$

es biyectiva (inyectiva y sobreyectiva).

② El intervalo abierto (0,1) tiene el mismo cardinal que [0,1], puesto que es biyectiva la función $f:[0,1] \to (0,1)$ definida

$$\begin{cases} f(0) &= \frac{1}{2} \\ f(\frac{1}{n}) &= \frac{1}{n+2} & n \in \mathbb{Z}^+ \\ f(x) &= x & x \in [0,1] - \{0,1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots\} \end{cases}$$

Mariam Cobalea (UMA)

AC. Curso 15/16

4 1 4 1 6 15 15 1 4

Conjuntos no numerables

Conjuntos de cardinal ℵ₁

Ejemplo

 $\mbox{ @ El conjunto } \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ de los números reales tiene cardinal } \mbox{ } \mbo$

la función $g:(0,1)\to\mathbb{R}$ definida $g(x)=\frac{(\frac{1}{2}-x)}{x(1-x)}$ es biyectiva.

Comparación de números cardinales

A continuación.

- se definen las relaciones \prec y \prec sobre los números cardinales y
- se demuestra que tienen propiedades similares a las de las relaciones de orden usuales sobre los números reales.

Definición

Sean A y B conjuntos cualesquiera. Se dice que:

- $|A| \prec |B|$ si existe una función inyectiva de A en B.
- $|A| \prec |B|$ si existe una función inyectiva $f: A \rightarrow B$, pero no existe ninguna función biyectiva de A en B.

Es decir, $|A| \prec |B|$ si, y sólo si, $|A| \prec |B|$ y $|A| \neq |B|$

Ejemplo

• Demostramos que |[0,1]| = |(0,1)| dando una función invectiva de uno en otro, como sigue:

(i)
$$f: (0,1) \to [0,1]$$
 definida $f(x) = x$

Comparación de números cardinales

(ii)
$$g: [0,1] \to (0,1)$$
 definida $g(x) = \frac{x}{2} + \frac{1}{4}$

Análogamente, podemos demostrar que

$$|\mathcal{P}(\mathbb{N})| = |[0,1]| = \aleph_1$$

•
$$|\mathcal{F}(\mathbb{N}, \mathbb{N})| = |[0, 1]| = \aleph_1$$

Comparación de números cardinales

Teorema (Zermelo)

Sean los conjuntos A y B. Se verifica una de las tres:

$$(1) \quad |A| \prec |B|$$

(2)
$$|A| = |B|$$

$$(3) \quad |B| \prec |A|$$

Teorema (Cantor-Schröder-Bernstein)

Sean A y B dos conjuntos cualesquiera. Si se verifica que $|A| \leq |B|$ y $|B| \leq |A|$, entonces |A| = |B|.

- Este teorema proporciona un potente mecanismo para demostrar que dos conjuntos tienen el mismo cardinal.
- Primero construimos una función inyectiva $f: A \rightarrow B$ y luego otra función inyectiva $g: B \rightarrow A$.

Comparación de números cardinales

Teorema

Sea A un conjunto finito. Entonces $|A| \prec \aleph_0 \prec \aleph_1$

Demostración:

- > Sea |A| = n. Se define la función $f: \{1, 2, ..., n\} \rightarrow \mathbb{N}, f(n) = n$
- \triangleright Por ser f invectiva, $|A| \prec |\mathbb{N}|$.
- > $|A| \neq |\mathbb{N}|$, ya que A es finito.
- ightharpoonup Por lo tanto, $|A| \prec |\mathbb{N}| = \aleph_0$.
- \rightarrow A continuación, consideramos la función $g: \mathbb{N} \rightarrow [0,1]$ definida

$$g(n) = \frac{1}{n+1}$$

y demostramos que es inyectiva.

- ightharpoonup Luego, $|\mathbb{N}| \leq |[0,1]|$.
- ightharpoonup Por ser $|\mathbb{N}| \neq |[0,1]|$, deducimos que $|\mathbb{N}| \prec |[0,1]| = \aleph_1$.

Comparación de números cardinales

Teorema

Sea A un conjunto infinito. Entonces $\aleph_0 \prec |A|$

Demostración:

- > Por un teorema anterior, sabemos que si A es infinito, entonces contiene un subconjunto infinito A' que es numerable.
- ightharpoonup Claramente, la función $f: A' \to A$

$$f(x) = x, x \in A'$$

es invectiva.

- \rightarrow Luego, $|A'| \prec |A|$.
- ightharpoonup Y ya que $|A'| = \aleph_0$, podemos concluir que $\aleph_0 \prec |A|$.

Comparación de números cardinales

Teorema (Cantor)

Sea A un conjunto cualquiera. Entonces $|A| \prec |\mathcal{P}(A)|$.

Demostración:

ightharpoonup Claramente, $|A| \leq |\mathcal{P}(A)|$, pues la función f definida

$$f: A \to \mathcal{P}(A)$$
 $f(x) = \{x\}$

es invectiva.

- \rightarrow Ahora queda demostrar que $|A| \neq |\mathcal{P}(A)|$. Para ello mostraremos que no existe ninguna función sobreyectiva de A en $\mathcal{P}(A)$.
- \rightarrow Supongamos que **q** es cualquier función de A en $\mathcal{P}(A)$

Comparación de números cardinales

Demostración: (cont.)

- \rightarrow Supongamos que **q** es cualquier función de A en $\mathcal{P}(A)$ y consideramos el conjunto $\mathbf{Y} = \{x \in A \mid x \notin \mathbf{Q}(x)\} \in \mathcal{P}(A)$.
- > Si la función g es sobreyectiva, entonces debe existir un elemento $\mathbf{y} \in A$, tal que $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
- > Sin embargo, la existencia de este **v** nos lleva a contradicciones.
- \succ En efecto, para este \mathbf{v} se cumplirá que: $\mathbf{v} \in \mathbf{Y}$, ó bien $\mathbf{v} \notin \mathbf{Y}$.
 - Si $y \in Y$, entonces de la definición del subconjunto Y se deduce que $\mathbf{y} \notin \mathbf{g}(\mathbf{y})$, lo que contradice la afirmación de que $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
 - Análogamente, si $\mathbf{v} \notin \mathbf{Y}$, entonces la definición de \mathbf{Y} implicaría que $y \in g(y)$, lo cual también contradice la suposición g(y) = Y.
- ightharpoonup Concluimos que no existe un $\mathbf{y} \in A$ tal que $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
- \rightarrow Luego, **g** no puede ser sobrevectiva y, por tanto, $|A| \prec |\mathcal{P}(A)|$.

Comparación de números cardinales

- A partir de este teorema podemos afirmar que los conjuntos infinitos pueden tener cardinales distintos.
- Basta con seleccionar un conjunto infinito A y comparar su cardinal con el de su conjunto potencia.
- Así, el proceso de formación de conjuntos potencia nos lleva a una jerarquía de números cardinales infinitos. Podemos construir un conjunto infinito numerable de números cardinales, siendo cada uno de ellos inferior al siguiente:

$$|A| \prec |\mathcal{P}(A)| \prec |\mathcal{P}(\mathcal{P}(A))| \prec \dots$$

- Una consecuencia de esta jerarquía es que no existe ningún cardinal infinito máximo.
- No obstante, existe un cardinal infinito mínimo: el cardinal de N.

Comparación de números cardinales

Ejercicio

Determina si los siguientes enunciados son \underline{V} erdaderos o \underline{F} alsos (demostrando los que sean V y poniendo un contraejemplo de los F).

- Si A y B son conjuntos no numerables, entonces $A \cap B$ es no numerable.
- ② Si A y B son conjuntos no numerables, entonces A B es no numerable.
- ② Si A es no numerable y B es numerable, entonces $A \cap B$ es no numerable.
- ② Si A es no numerable y B es numerable, entonces A-B es numerable.
- **5** Si A es numerable, entonces $\mathcal{P}(A)$ es numerable.

Ejercicio

Encuentra, si es posible, un conjunto S tal que $|\mathcal{P}(S)| = \aleph_0$.

Mariam Cobalea (UMA

EAC, Curso 15/16

Tema 1 - Int. a la Cardinalidad

53 / 54

Cardinalidad

Bibliografía

Matemática Discreta N.L.Biggs (Ed. Vicens Vives)

Matemáticas Discreta y combinatoria R.P. Grimaldi (Ed. Addison Wesley)

Matemática Discreta y sus aplicaciones K. Rosen (Ed. McGraw Hill)

Matemática Discreta K.A. Ross y C.R.B. Wright (Ed. Prentice Hall)

