

Ministério da Educação UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Exatas Dep. Ciências da Computação

Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A

2008/2

Prof. Marcus Vinicius Lamar

d0 d1 / d2 d3 d4 d5 d6

GABARINO Nome:

Matrícula:

Prova 2

1) (6.0) Na implementação do processador MIPS em pipeline simplificada de 5 estágios desenvolvida durante o curso várias instruções bastante úteis estão ausentes. Mantendo a compatibilidade do código em linguagem de máquina à ISA MIPS:

1.1)(2.5) Modifique adequadamente o caminho de dados do verso desta folha para implementar as seguintes instruções:

a)(0.5) jalr \$rd.\$rs

PC=R[\$rs]; R[\$rd]=PC+4; Tipo-R; rt=00_{hexa}; Opcode/Funct=00/09_{hexa}

99 100

102

103

104

105

106 107

108

109

110 OUT:

101 LOOP:

b)(0.5) jr \$rs

PC=R[\$rs]

c)(0.5) bnezal \$rs,LABEL

If (R[\$rs] != 0) then {PC=LABEL; R[\$ra]=PC+4;} else {PC=PC+4;};

considere: Tipo-I; Opcode=01hexa; rt=1Fhexa: Previsto como não-tomado # R[\$rt]=R[\$rs]-{16{IMM[15]},IMM}; considere: Tipo-I; Opcode=10_{bera}

d)(0.5) subi \$rt,\$rs,IMM e)(0.5) ori \$rt,\$rs,IMM

 $\# R[\$rt]=R[\$rs] \text{ or } \{16b'0,IMM\}$

1.2)(2.5) Especifique adequadamente os valores de todos os sinais de saída da unidade de controle para a CPU completa (ISA com as instruções antigas e as novas acima), desconsiderando apenas o tratamento de exceções.

1.3)(1.0) Especifique o tamanho necessário em bits de cada um dos registradores de pipeline, considerando o controle, a detecção de hazards e forwards. Porém sem o tratamento de exceções;

2) (5.0) Hoje em dia, com a implementação de memórias caches (e seus controladores) cada vez mais eficientes, o tempo de acesso à memória tornou-se bastante reduzido, impactando cada vez menos no projeto do processador, no entanto a inclusão de operações de maior complexidade ainda é um problema a ser resolvido.

Considerando apenas os seguintes tempos de atraso do bloco operativo de uma CPU MIPS:

Operação com a ULA de Inteiros: 100ps

Operação com a ULA de Ponto Flutuante: 240ps (que é dividido em 4 ciclos de clock)

Leitura dos Bancos de Registradores: 80ps Escrita nos Bancos de Registradores: 90ps

Leitura da memória: 110ps Escrita na memória: 120ps

Com relação ao trecho de programa em assembly MIPS ao lado, onde o registrador \$a0 = d4d5d6. Responda as questões abaixo especificando como as instruções não implementadas em aula foram consideradas em cada caso:

a)(0.5)Para a implementação uniciclo, qual será a maior frequência de clock utilizável? Qual o tempo de execução deste trecho de código neste caso?

b)(0.5)Para a implementação multiciclo vista em aula, qual será a maior frequência de clock utilizável? Qual o tempo de execução deste trecho de

código neste caso? Justifique os requerimentos das instruções não implementadas em aula.

c)(0.5)Para uma implementação com pipeline ideal, qual será a maior frequência de clock utilizável? Qual o tempo de execução deste trecho de código neste caso? Justifique os requerimentos das instruções não implementadas em aula,

d)(1.0)Qual o tempo de execução da implementação com pipeline, se todos os hazards forem tratados apenas com inserção de bolhas? Considere que os registradores podem ser escritos e lidos no mesmo ciclo, que o branch não previsto é avaliado no 3º ciclo, e que o jump necessita sempre 2 ciclos.

e)(1.0)Qual o tempo de execução da implementação com pipeline, se os hazards forem tratados eficientemente pelo processador com forwarding e/ou bolhas e/ou execução fora de ordem? Desenhe o pipeline esquemático indicando as instruções, bolhas e forward sugeridos. Considere que os registradores podem ser escritos e lidos no mesmo ciclo, que o branch é avaliado no 2º ciclo e previsto pelo processador de acordo com a última decisão tomada (decisão inicial como não-tomado).

f)(0.5) Ao final da execução do trecho de programa, qual o valor armazenado no endereço (\$gp+1000) da memória?

g)(1.0) Para maximizar o desempenho da implementação em pipeline deste processador, de 1 a 10, em quantos ciclos de clock você dividiria a operação com a ULA PF? Por quê?

Muita hora nessa calma! Boa Sorte!!!

add \$t0,\$zero,\$zero lwc1 \$f0,0(\$gp)

swc1 \$f0,1000(\$gp)

swc1 \$f0,2000(\$gp)

beg \$t1,\$zero,OUT

sw \$t0,1000(\$gp)

add.s \$f0,\$f0,\$f0

addi \$gp,\$gp,4

addi \$t0,\$t0,1

slt \$t1,\$t0,\$a0

ILOOP

1.1) re verso on Folha pe Prova

1.2) CONTROLL

	I	7				EX			M	EM) W	B	<u></u>
	Branch	Bultar	on	IF.FOJA	REDST	OPALU	Mico	dri	ren	JESC men	reg	THE THE	Flink
FORMOR	0	0	0	0	1	10	0	0	0	0	1	0	0
w	0	0	0	0	0	00	1	0	0	0	1	1	0
SW	0	0	0	0	X	00	1	0	0	1	0	X	00
Beg	1	0	0	0	X	XX	X	X	0	0	0	X	0)
SAR	0	0	1	1	1	XX	X	X	0	0	1	X	10
DR	0	0	1	1	X	XX	X	X	0	0	0	X	0
Brezal	0	1	0	0	0	XX	X	X	0	0	0	X	11
suBj	0	0	0	0	0	10	1	0	0	0	1	0	0
oni	0	0	0	0	0	11	X	1	0	0	1	0	9
				1		1		,					

1.3) 32 32 SFIED = (PC+4) + (Parg men) = 64 // 5 2 4 32 32 32 32 IDIEX = (EX) + (M) + (FE) + (FC+4) + (PATAL) + (PATALE) + 5) FEXT + 5 5 5 3 + I(E5-21) + I(E1-16) + I(E5-16) + I(I5-11) = 159 // 2 4 32 32 32 32 EXINEM = (M) + (MB) + (IC+4) + (MATAL) + (RM) = 107 // 4 31 31 31 51 5 MEN | MB = (MB) + (PC+4) + (PATAMEN) + (MI) + (RM) = 105 //

		23	010	VO									
				Garle	Sign	64							
11	21/ 25	0 03	1 6	alla	R	Ro	100						
M (lal)	18N 0	2 61	7 3	M/O	M		PIC						
1.2)	MINE	949											
	I	a				FX				MB	J 10	Elli Mari	1
	Month.		A 1	TE Fresh	ROPE	10PHU	SIAG	1016	- 9.3 7.80A	79/	1921		9
20mm	0	0	0	0 1	4	911	91	0	0	0	1	0	4
Lled	0	0	U	0 1	U	0.0		0	0		1	1	1
we	. 0	0	0	V	X	00		X	0		7	X	1
909		0	V N	0	7	XX X	X		0		N	V	1
Anch		0	1	N	N	XX		X	0		a	N.	7
Trebal	-6	A	0		0	XX	Tay					V	4
1905	6	0	0	10	0	0)	A	16	10	0	N	0	7
3.00	G		0	The second second		The second second second	X	1	0		1	0	0
(8.1	2.6		31										
TPIEG	478)=)+()	14/10/	= (, Au	1933			- 1					
	2	2	-	2.2	7.6		24		5.8				
FXAMI	1+(23)	1+14	1-19	(49.24)	1837)+(\a	S ATAD	P+ (LXZ	+			-
			1		73	9.11	- 3			N- Ven			
	+ ICE-					1+(9)		= (1	21	11/2			
and he s	2	10 11	E ATL		J 6	32		2		9.1			_
EXTERN	大学()二	(40)	3111	1 / 100	1 433		110	101	-1	11.7			