ISC 502 Applications of Microcontroller

Embedded Systems – is a combination of computer hardware and software designed for a specific function.

The system can be programmable or have a fixed functionality.

Address bus

- For a device (memory or I/O) to be recognized by the CPU, it must be assigned an address
 - The address assigned to a given device must be unique
 - The CPU puts the address on the address bus, and the decoding circuitry finds the device

Data bus

The CPU either gets data from the device or sends data to it

Control bus

Provides read or write signals to the device to indicate if the CPU is asking for information or sending it information

Registers

- The CPU uses registers to store information temporarily
 - Values to be processed
 - Address of value to be fetched from memory
- In general, the more and bigger the registers, the better the CPU
 - Registers can be 8-, 16-, 32-, or 64-bit
 - The disadvantage of more and bigger registers is the increased cost of such a CPU

Ex. A CPU has registers A, B, C, and D and it has an 8-bit data bus and a 16-bit address bus. The CPU can access memory from addresses 0000 to FFFFH

Assume that the code for the CPU to move a value to register A is B0H and the code for adding a value to register A is 04H

The action to be performed by the CPU is to put 21H into register A, and then add to register A values 42H and 12H

...

	Ex. (cont')				
	Action		Code	Data	
	Move value 21H into reg. A Add value 42H to reg. A Add value 12H to reg. A		вон	21H	
			04H	42H	
			04H	12H	
	Mem. addr. 1400 1401	(B0) code for moving a value to register A (21) value to be moved			

1400 (Bb) code for infolding a value to register A
1401 (21) value to be moved
1402 (04) code for adding a value to register A
1403 (42) value to be added
1404 (04) code for adding a value to register A
1405 (12) value to be added
1406 (F4) code for halt

. . .

- ➤ Intel's microprocessor family x86 8086, 80286, 80386, 80486 and the Pentium
- Motorola's 680x0 family68000, 68010, 68020, 68030, 68040 etc.

These microprocessors contain no RAM, no ROM, and no I/O ports on the chip itself.

General-purpose microprocessors

Microprocessors are tasked with executing specific and repeatable actions whereas a CPU is tasked with executing a wide and diverse range of tasks

- General-purpose microprocessors contains
 - ➤ No RAM
 - > No ROM
 - ➤ No I/O ports
- Microcontroller has
 - CPU (microprocessor)
 - > RAM
 - > ROM
 - > I/O ports
 - > Timer
 - > ADC and other peripherals

General-purpose microprocessors

- Must add RAM, ROM, I/O ports, and timers externally to make them functional
- Make the system bulkier and much more expensive
- Have the advantage of versatility on the amount of RAM, ROM, and I/O ports

Microcontroller

- The fixed amount of on-chip ROM, RAM, and number of I/O ports makes them ideal for many applications in which cost and space are critical
- In many applications, the space it takes, the power it consumes, and the price per unit are much more critical considerations than the computing power

- 8-bit microcontrollers
 - Motorola's 6811
 - > Intel's 8051
 - Zilog's Z8
 - Microchip's PIC
- There are also 16-bit and 32-bit microcontrollers made by various chip makers

- Meeting the computing needs of the task at hand efficiently and cost effectively
 - Speed
 - Packaging
 - Power consumption
 - The amount of RAM and ROM on chip
 - The number of I/O pins and the timer on chip
 - How easy to upgrade to higherperformance or lower power-consumption versions
 - Cost per unit