Filtre RIF: méthode des fenêtres

Notations : f est la fréquence réduite (c'est-à-dire la fréquence divisée par f_e) et N est l'ordre du filtre.

FIGURE 1 – Module de la réponse fréquentielle d'un filtre RIF obtenu par troncation (c'est-à-dire fenêtrage rectangulaire). Le filtre idéal est représenté en tirets.

FIGURE 2 – Module de la transformée de Fourier à temps discret d'une fenêtre rectangulaire (noyau de Dirichlet W(f)) pour N=7 (à gauche) et N=15 (à droite) : $x(t) = \frac{\sin \left(\pi f(N+1)\right)}{\sin \left(\pi f\right)}.$

Fenêtre	Largeur de transition (fréquence réduite)	Ondulation en bande passante (dB)	Atténuation minimale (dB)
Rectangulaire	$0,\!9/N$	0,742	21
Hamming	$3,\!3/N$	0,019	53
Blackman	5,5/N	0,002	74
Kaiser ($\beta = 4,538$)	2,93/N	0,0274	50
Kaiser ($\beta = 6,764$)	$4{,}32/N$	0,00275	70
Kaiser ($\beta = 8,960$)	$5{,}71/N$	0,000275	90

Table 1 – Propriétés des réponses fréquentielles obtenues par la méthode de fenêtres.

FIGURE 3 – Fenêtre rectangulaire d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.

$$w[n] = 1$$

FIGURE 4 – Fenêtre de Hamming d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.

$$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{(N-1)}\right)$$

FIGURE 5 – Fenêtre de Blackman d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.

$$w[n] = 0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$$

FIGURE 6 – Fenêtre de Kaiser ($\beta=4{,}538$) d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.

$$w[n] = \frac{I_0 \left(\beta \sqrt{1 - (\frac{2n}{N-1} - 1)^2}\right)}{I_0(\beta)}$$

où I_0 est la fonction de Bessel modifiée d'ordre 0 de première espèce.

FIGURE 7 – Fenêtre de Kaiser ($\beta=6{,}764$) d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.

FIGURE 8 – Fenêtre de Kaiser ($\beta=8,960$) d'ordre N=32 et réponse fréquentielle du filtre passe-bas de fréquence de coupure $f_c=f_e/10$ associé. f est la fréquence réduite.