杂题选讲

lk

2024年6月24日

按照惯例来个自我介绍

- CTSC2017 Fe
- WC2019 Cu
- HNOI2019 挂的分比拿的分多 45 & 计数题爆栈哥
- ISIJ2019 Ag (40+ac+ac)
- NOI2020 Ag (day1 50+72+56)
- WC2021 64+100+80
- THUSC2021 50+100+100+100
- NOI2021 day2 24+100+36
- CTT2021 前 3 天 T1 得分分别为 50.36,45,30
- ICPC 获得了亚军、亚军、亚军、亚军和银牌,并在 World Finals 中写三题挂 13 发。
- 1: community2.in
 20 lk 00nePass? NoNoNoYes

Min 或 Max 2

- 有两个 $1 \dots n$ 的排列 $a_1 \dots a_n, b_1 \dots b_n$ 。
- 有一个二元组 (x, y) 一开始 $(x, y) = (a_1, b_1)$, 按顺序对于所有 $i = 2 \dots n$, 可以选择 $(x, y) = (\max(x, a_i), \max(y, b_i))$ 或者 $(x, y) = (\min(x, a_i), \min(y, b_i))$ 。
- 对于所有 k, 有多少个 pair(x, y), 使得存在至少一种方案最后得到 (x, y), 且 |x y| = k。
- $n < 2 \cdot 10^5$.

- 考虑对于一个 $(x, y) = (a_u, b_v)$, 判断是否能得到它。
- 假设 u < v, 则为了固定 x, 只要 i > u 则方案是确定的,那么只要知道 i = u 时的 y, 最后的值就确定了 (形如 $\min(\max(x, c), d)$)。
- 我们希望 u < v, 那么 y 就只能是 c 或 d, 那么我们只要求出 y 的最小值和最大值就知道是否能得到 c, d 了,这可以用一个值域线段树维护当前如果 x = i 的时候 y 的 min 和 max。
- u > v 的情况类似的先固定 y 即可。 u = v 只要能得到 (a_u, b_u) 这个状态且 $c \le b_u \le d$ 就行。

报数 III

- 给定一个 01 串 s, 满足 s 以 1 开头。
- 求有多少以 1 开头的 01 串 s' 满足 $(s')_2 < (s)_2$, 且 $\forall k \geq 2, 7 \nmid (s')_k$ 。
- $|s| \le 10000$

- 首先容易注意到只用判 k = 1, 2, 3, 4, 5, 6, 7, 而 k = 7 就只用判最后一位不是 0。同时容易发现对于 $k \le 6$ 的情况, $k^a \equiv k^{a \bmod 6}$ (mod 7)。
- 然后我们首先就能设一个状态数 $n \cdot 7^6$ 的数位 dp,状态记每个 k 的 $(s')_k \mod 7$,但是跑不过。
- 注意到 4,5,6 进制等价于 -3,-2,-1 进制,那么我们考虑知道了 奇数位和偶数位分别的一二三进制的值,要求就是 $p+q \neq 0$ 且 $p-q \neq 0$ 。
- 我们直接枚举上界卡到第几位,然后就能对奇数位和偶数位算出 1,2,3 进制的值的状态数 (分别 7^3),上面这条要求可以直接容斥,总复杂度 $O(n\cdot 21^3)$ 。

Equal Sums

- 给定 $l_1 \dots l_n, r_1 \dots r_n, L_1 \dots L_m, R_1 \dots R_m$, 对于所有的 $N \le n, M \le m$, 求有多少个序列 $x_1 \dots x_N, y_1 \dots y_M$ 使得 $l_i \le x_i \le r_i, L_i \le y_i \le R_i$, 且 $\sum x_i = \sum y_i$ 。
- $n, m, r, R \leq 500.$

- $O(n^2r^2)$ 的 DP 是容易的。多 log 还是多 sqrt 是有小概率过的。
- 正常点的做法是,设 $dp_{a,b,s}$ 表示只确定了 $x_1 \dots x_a, y_1 \dots y_b$, $\sum_i x_i \sum_i y_i = s$ 的方案数。然后我们由于只需要 0,当 $s \ge 0$ 时我们加 y,否则加 x。这样每个方案只会被唯一顺序加出来,且任何时候 $|s| \le \max(r,R)$.

Mini Metro

- 有 n 个站台,从左到右编号为 $1 \dots n$,第 i 个站台初始有 a_i 个人。
- 每个时刻你都能进行任意次如下操作: 喊一辆火车, 把所有人里 从左到右前 *K* 个接走 (不够 *K* 个则全接走)。
- 在每个时刻末,第 i 个站台会新来 b_i 个人,如果第 i 个站台人数 超过 c_i 你就输了,你需要 t 个时刻都不输,求至少需要喊几辆火车。
- $n, t \le 200, K, a_i, b_i, c_i \le 10^9$

- 容易发现当我们开始拉 i 站的人时,前面 i-1 个站已经全都清空了。
- 考虑末尾加上一个 $a_{n+1}=c_{n+1}=+\infty$ 的站,让每辆车都一定会满载。
- 我们考虑记 $f_{i,j,k}$ 表示只考虑前 i 个站,存活到 j 时刻,初始状态为 $k(a_1 \ldots a_i$ 或者全 0) 最少需要的车数,要求所有车必须满载(即不会拉 i+1 站及之后的人),如果不行则为 $+\infty$ 。答案就是 $f_{n+1,t,1}$
- 为了方便转移,我们类似的用一个 $g_{i,j,k}$ 表示在第 j+0.5 时刻把 $1 \dots i-1$ 全清空了的最少车数。
- 然后我们考虑转移。 如果 $a_i + j \cdot b_i \leq c_i$ 就可以从 $f_{i-1,j,k}$ 转移到 $f_{i,j,k}$,且只要 $f_{i-1,j,k} \neq \infty$ 就有 $g_{i,j,k} \leftarrow \lceil \frac{k \sum a_i + j \sum b_i}{K} \rceil$ 。
- 对于 $a_i + j \cdot b_i > c_i$ 或者 $f_{i-1,j,k} = \infty$ 的情况,我们可以枚举上次开始拉第 i 站人的时刻 t,然后在这个时刻我们还需要拉几车人,来让 i 站存活到 j 时刻,然后剩下的时间只用考虑前 i-1 个站。g 的计算同样类似。

Number Discovery

- 构造一个序列: 一开始为空,每次找出最小 k 个不在序列里的正整数 a_1, \ldots, a_k ,把他们和 $\sum a_i$ 都加入序列末尾。
- 求 n 在序列里的位置。
- $k \le 10^6, n \le 10^{18}, T \le 10^5$

- 容易证明按照 k^2+1 分段之后每一段只有恰好一个数是作为 $\sum a_i$ 被加进去的。
- 这样我们只需要求 *x* 所在段被这样加进去的是谁,就可以往前递归。
- 时间复杂度 O(Tlog n)

Dreamoon Loves AA

- 有一个长度为 n+1 的 AB 串,首尾为 A,除此之外还有 m 个 A,现在希望修改恰好 k 个 B 为 A,使得所有相邻 A 之间距离的极差最小。
- $n \le 10^{15}, m \le 400000, k < n m$

- 题意等价于,有 m+1 个间隔 b_i ,你可以拆分间隔恰好 k 次,最小化极差。
- 首先有一个显然的事情:拆分一定是尽量均匀,即拆成 $\lfloor \frac{b_i}{x} \rfloor$, $\lceil \frac{b_i}{x} \rceil$ 。
- 然后假设 \min, \max 是 L, R, 有两个条件(设 K = m + k + 1 为总段数):
- 容易发现这两个条件是必要条件,加起来也是充分条件。
- 第一个条件可以二分出 L 的上界 L_0 和 R 的下界 R_0 。第二个条件 对于 L_0 , R_0 不满足的情况只需要修改 L, R 之一。
- 问题转化为集合里 L_0 , R_0 , 有一些 $pair(L,R)(L \le L_0 \le R_0 \le R)$ 从每个 pair 里选一个扔进集合最小化极差。
- 枚举最小值即可。

The End

Thanks!