# Два подхода к заполнению пропусков и прогнозированию временных рядов, основанные на SSA

Жукова Марина Михайловна, гр. 522

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра Статистического моделирования

Научный руководитель — к.ф.-м.н., доцент **Н.Э. Голяндина** Рецензент — к.ф.-м.н., доцент **В.В. Некруткин** 



Санкт-Петербург 2011г.

#### Постановка задачи

Временной ряд с пропусками:  $(f_1, \dots, *, *, *, \dots, f_N)$ .

Модель:  $f_n = s_n + e_n$ , где  $e_n$  — шум,  $s_n$  — сигнал, который управляется линейной рекуррентной формулой порядка r

$$s_n = \sum_{k=1}^r a_n s_{n-k}.$$
 (1)

Если *г* минимальное, то его называют рангом сигнала.

Задача: заполнить пропуски значениями сигнала.  $(f_1,\ldots,*,*,*,\ldots,f_N)\longrightarrow (f_1,\ldots,s_{m m-1},s_{m m},s_{m m+1},\ldots,f_N).$ 

Замечание: прогноз является частным случаем заполнения пропусков, если пропуски расположены подряд в конце ряда

Методы: два метода, основанные на Singular Spectrum Analysis.

#### Постановка задачи

Временной ряд с пропусками:  $(f_1, \dots, *, *, *, \dots, f_N)$ .

Модель:  $f_n = s_n + e_n$ , где  $e_n$  — шум,  $s_n$  — сигнал, который управляется линейной рекуррентной формулой порядка r

$$s_n = \sum_{k=1}^r a_n s_{n-k}.$$
 (1)

Если r минимальное, то его называют рангом сигнала.

Задача: заполнить пропуски значениями сигнала. 
$$(f_1,\ldots,*,*,*,\ldots,f_N) \longrightarrow (f_1,\ldots,s_{m-1},s_m,s_{m+1},\ldots,f_N).$$

Замечание: прогноз является частным случаем заполнения пропусков, если пропуски расположены подряд в конце ряда.

Методы: два метода, основанные на Singular Spectrum Analysis.

## Выделение сигнала с помощью SSA

$$\mathcal{F}_N = \mathcal{S}_N + \mathcal{E}_N, \quad \mathcal{F}_N = (f_1, \dots, f_N)$$

#### Схема:

$$\mathcal{F}_{N} \xrightarrow{\mathcal{T}} \mathbf{X} = \begin{pmatrix} f_{1} & f_{2} & \dots & f_{K} \\ f_{2} & f_{3} & \dots & f_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ f_{L} & f_{L+1} & \dots & f_{N} \end{pmatrix} \xrightarrow{\text{SVD:}(\mu_{i}, U_{i}, V_{i})} \mathbf{r}$$

$$\begin{cases}
\widehat{\mathcal{L}_r} = \operatorname{span}(U_1, \dots, U_r) \\
\widehat{\mathbf{S}} = \sum_{i=1}^r U_i(\mathbf{X}^{\mathrm{T}} U_i)^{\mathrm{T}}
\end{cases} \xrightarrow{\mathcal{H}} \widetilde{\mathbf{S}} = \begin{pmatrix}
\widetilde{s}_1 & \widetilde{s}_2 & \dots & \widetilde{s}_K \\
\widetilde{s}_2 & \widetilde{s}_3 & \dots & \widetilde{s}_{K+1} \\
\vdots & \vdots & \ddots & \vdots \\
\widetilde{s}_L & \widetilde{s}_{L+1} & \dots & \widetilde{s}_N
\end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \widetilde{S}_N$$

#### Параметры SSA:

- L длина окна.
- r ранг сигнала.

## Методы заполнения

#### • "Caterpillar-Fill":

Предложен: Н.Голяндина и Е.Осипов, 2005

**Основная идея:** на основе полных векторов вложения строим аппроксимацию траекторного пространства сигнала  $\mathcal{L}_r$ , на его основе заполняем пропуски.

C помощью  $\mathcal{L}_r$  можно заполнить пропуски в векторах вложения:

$$X = \begin{pmatrix} Y \\ z \end{pmatrix} \in \mathcal{L}_r, \ z \in \mathbb{R} \Longrightarrow z = \varphi(Y).$$

#### • "Iteration-Fill":

Предложен: J. Beckers and M. Rixen, 2003 и D. Kondrashov and M. Ghil, 2006

**Основная идея:** строить аппроксимацию траекторного пространства и заполнять пропуски итерациями алгоритма SSA.

#### Рассматриваемые вопросы

- Первая часть:
  - Сходимость метода "Iteration-Fill".
  - Сравнение методов:
    - точность заполнения пропусков;
    - точность прогноза.
- Вторая часть:
  - ullet Оценка ранга сигнала r с помощью тестового множества.
  - ullet Определение размера m тестового множества:
    - построение алгоритма TESTAR для нахождения m;
    - сравнение с известными методами оценки ранга сигнала.
- Применение к реальному ряду.

## Сходимость итерационного алгоритма

#### Теорема

Пусть есть ряд длины N с пропуском на месте m вида  $f_n=s_n+\delta e_n$ , где  $s_n$  — сигнал ранга r,  $\delta e_n$  — возмущение сигнала,  $w=s_m+\delta v$  — начальное значение итерационного алгоритма,  $\delta \in \mathbb{R}$ . В рамках линейной теории возмущения ошибка заполнения на k-ом шаге итерационного алгоритма имеет вид  $\delta \triangle_m^{(1)}(k)$ , где:

$$\triangle_{m}^{(1)}(k) = \begin{cases} \frac{1-\gamma^{k}}{1-\gamma} \sum_{i=1, i \neq m}^{N} c_{i}e_{i} + \gamma^{k}v, & \text{если } \gamma \neq 1; \\ N \\ k \sum_{i=1, i \neq m}^{N} c_{i}e_{i} + v, & \text{если } \gamma = 1, \end{cases}$$
 (2)

коэффициенты  $\gamma$  и  $c_i,\,i=1,\ldots,N,\,i\neq m$ , не зависят от возмущения сигнала и номера итерации.

Литература: В.Некруткин, 2010

## Сходимость итерационного алгоритма

Пример: Для  $s_n \equiv c$  получен явный вид формулы (2): При  $1 \leq m < L$  и  $N/3 < L \leq N/2$ ,  $L \leq K$ :

$$\Delta_m^{(1)}(k) = \frac{1 - \gamma^k}{1 - \gamma} \left( \frac{N + 1 - m}{LKm} \sum_{i=1}^{m-1} ie_i + \sum_{i=m+1}^{L} \frac{N + 1 - i}{LK} e_i - \sum_{i=K+m}^{N} \frac{N + 1 - i}{LK} e_i + g(m, L) \right) + \gamma^k v,$$

где 
$$\gamma = (N+1-m)/KL$$
, 
$$g(m,L) = \begin{cases} \sum\limits_{i=L+1}^{L+m-1} \frac{L+m-i}{Lm} e_i + \sum\limits_{i=K+1}^{K+m-1} \frac{(L-m)(K-i)}{LKm} e_i, \\ \text{при } 1 \leq m < N-2L+2; \\ \sum\limits_{i=L+1}^{K} \frac{L+m-i}{Lm} e_i + \sum\limits_{i=K+1}^{L+m-1} \frac{2LK-i(N+1-m)}{LKm} e_i + \sum\limits_{i=L+m}^{K+m-1} \frac{(L-m)(K-i)}{LKm} e_i, \text{ иначе.} \end{cases}$$

## Сходимость итерационного алгоритма

Модель:  $f_n=s_n+\delta e_n$ , где  $s_n\equiv 1$ ,  $e_n$  — белый шум с дисперсией  $\sigma^2$ .

#### Предложение

При  $N\longrightarrow\infty$  будем предполагать, что  $L\sim\alpha N$  и  $m\sim\lambda N$ , где  $\alpha\le 1/2$ , и  $\lambda\le 1/2$ .

Тогда для фиксированного k верно

$$\mathbf{D}\triangle_m^{(1)}(k)=\mathcal{O}(1/N)$$
 и  $\mathbf{E}\triangle_m^{(1)}(k)=v\gamma^k,$ 

где 
$$\gamma = \begin{cases} \frac{1-\lambda}{\alpha(1-\alpha)N}, & \text{если } 1 \leq \lambda < \alpha; \\ \frac{1}{\alpha N}, & \text{если } \lambda \geq \alpha, \end{cases}$$

Следствие: Для константного сигнала  $\gamma \sim 1/N$ .

С помощью моделирования показано, что  $\gamma \sim 1/N$  и для гармонического сигнала вида:

$$s_n = 2\cos(2\pi n/3) + \cos(2\pi n/7) + \cos(2\pi n/10).$$

#### Сравнение методов

Ряд длины 400 вида  $f_n=s_n+e_n$ , где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ .

Индексы пропусков: [175,224] и [351,400].



#### Сравнение методов

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ .  $L=150,\ r=6,\ \varepsilon=10^{-5}$ 

#### Ошибка заполнения 50 проп. в середине ряда



#### Ошибка заполнения 50 проп. в конце ряда



Трудоемкость: "Caterpillar-Fill" -1 SVD, "Iteration-Fill" -10 SVD.

#### Сравнение методов

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ .  $L=150,\,r=6,\,\varepsilon=10^{-5}$ 

#### Ошибка заполнения 50 проп. в середине ряда



#### Ошибка заполнения 50 проп. в конце ряда



Трудоемкость: "Caterpillar-Fill" — 1 SVD, "Iteration-Fill" — 10 SVD.

#### Постановка задачи

Модель:  $f_n = s_n + e_n$ , где  $e_n$  — шум,  $s_n$  — сигнал, который управляется линейной рекуррентной формулой порядка r

$$s_n = \sum_{k=1}^r a_n s_{n-k},$$
 где  $r$  — ранг сигнала.

Задача: оценить ранг сигнала r.

Известные методы: AIC, MDL.

Условия применимости:

- параметрическая модель шума;
- "хорошее" расположение пропусков.

Рассмотрим: алгоритм оценки ранга с помощью тестового множества.

- нет условий на модель шума;
- нет условий на расположение пропусков.

#### Постановка задачи

Модель:  $f_n = s_n + e_n$ , где  $e_n$  — шум,  $s_n$  — сигнал, который управляется линейной рекуррентной формулой порядка r

$$s_n = \sum_{k=1}^r a_n s_{n-k},$$
 где  $r$  — ранг сигнала.

Задача: оценить ранг сигнала r.

Известные методы: AIC, MDL.

Условия применимости:

- параметрическая модель шума;
- "хорошее" расположение пропусков.

**Рассмотрим:** алгоритм оценки ранга с помощью тестового множества.

- нет условий на модель шума;
- нет условий на расположение пропусков.

## Алгоритм оценки ранга сигнала с помощью тестового множества

Идея: оценивать ранг по качеству заполнения искусственных пропусков методом "Iteration-Fill".

**Обозначения:**  $\mathcal{P}^{(m)}$  — множество индексов искусственных пропусков объёма m;  $T_{\rho}^{(m)}$  — значения на  $\mathcal{P}^{(m)}$ , заполненные "Iteration-Fill";  $\mathcal{R} = \{1, \dots, \rho_{\max}\}.$ 

Параметры: объём тестового множества и его расположение.

#### OneTest

$$\widehat{r} = \arg\min_{\rho \in \mathcal{R}} \|T_{\rho}^{(m)} - F_N|_{\mathcal{P}^{(m)}}\|^2.$$

Литература: J. Beckers and M. Rixen, 2003 и D. Kondrashov and M. Ghil, 2006

## Алгоритм оценки ранга сигнала с помощью тестового множества

**И**дея: оценивать ранг по нескольким случайным тестовым множествам и в качестве оценки брать среднее.

Параметры: b — количество повторных реализаций тестового множества, m — объём тестового множества.

#### SampleTest

- Генерируем b реализаций тестового множества объёма m:  $\{\widetilde{\mathcal{P}}_{k}^{(m)}, k=1,\ldots,b\}.$
- $m{2}$  Вычисляем  $\widehat{r}_k^{(m)} = \mathbf{OneTest}(\widetilde{\mathcal{P}}_k^{(m)})$  .
- $oldsymbol{\circ}$  Определяем  ${f R}^{(m)} = \{ \widehat{r}_1^{(m)}, \ldots, \widehat{r}_b^{(m)} \}.$

$$\hat{r}^{(m)} = \text{round}\left(\frac{1}{b}\sum_{k=1}^{b} \hat{r}_{k}^{(m)}\right).$$

Литература: J. Beckers and M. Rixen, 2003 и D. Kondrashov and M. Ghil, 2006

## Пример: результаты оценки ранга при различных m

#### Меры точности оценки ранга:

$$ullet$$
  $\overline{ ext{MSE}} = \sum\limits_{k=1}^{M} ext{MSE}_k/M$ , где  $ext{MSE}_k = \sum\limits_{i=1}^{b} (r_i^{(m)} - r)^2/b$ ;

- ullet % $r_{
  m eq}$  доля  $\widehat{r}_i^{(m)},\,i=1,\ldots,b$  равных r;
- ullet % $r_{less}$  доля  $\widehat{r}_i^{(m)},\,i=1,\ldots,b$  меньше r;
- ullet % $r_{more}$  доля  $\widehat{r}_i^{(m)},\,i=1,\ldots,b$  больше r.

Далее в примере: M = 150, b = 30.

## Пример: результаты оценки ранга при различных m

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ ,  $L=150,\ r=6,\ M=150,\ b=30,\ \varepsilon=10^{-5}$ .





## Метод TESTAR

Задача: выбирать m и оценивать ранг сигнала r.

 $\mathsf{N}_{\mathsf{Дея}}$ : выбирать m так, чтобы разброс оценок ранга по разным тестовым множествам был минимальным.

#### Алгоритм (TESTAR)

**1** Строим  $\mathbf{R}^{(m)} = \mathsf{SampleTest}(m)$  и вычисляем

$$\mathbf{s}_m^2 = rac{1}{b-1} \sum_{k=1}^b \left( \widehat{r}_k^{(m)} - \widehat{r}^{(m)} 
ight)^2, \;$$
где  $\widehat{r}^{(m)} = rac{1}{b} \sum_{k=1}^b \widehat{r}_k^{(m)}$ 

при  $m=m_{\min},\ldots,m_{\max}$ .

 $m{f \Theta}$  Тогда  $m_{ ext{testar}} = rg \min_m \mathbf{s}_m^2$  и  $\widehat{r}_{ ext{testar}} = ext{round} \, \left( \widehat{r}^{(m_{ ext{testar}})} 
ight)$  .

## Пример: результаты метода TESTAR

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ ,  $L=150,\ r=6,\ M=150,\ b=30,\ \varepsilon=10^{-5}$ .

#### Доля правильных оценок



#### MSE



## Сравнение с известными методами

Задача: сравнить точность оценки ранга методом TESTAR и методами AIC/MDL.

#### Целевая функция:

$$g(\rho) = -(L - \rho)N \log \left(\frac{\prod_{i=\rho+1}^{L} \lambda_i^{1/(L-\rho)}}{\frac{1}{L-\rho} \sum_{i=\rho+1}^{L} \lambda_i}\right) + \varphi(\rho),$$

где  $\varphi_{\rm AIC}(\rho)=k,\ \varphi_{\rm MDL}(\rho)=0.5k\log N,\ k=\rho(2L-\rho),$   $\lambda_i$  — собственные числа матрицы  $\widetilde{\mathbf{X}}\widetilde{\mathbf{X}}^{\rm T}$ , где  $\widetilde{\mathbf{X}}$  состоит из полных векторов вложения траекторно

где  $\widetilde{\mathbf{X}}$  состоит из полных векторов вложения траекторной матрицы ряда.

#### Пример: сравнение точности оценки ранга

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ ,  $L=150,\,r=6,\,M=150,\,b=30,\,\varepsilon=10^{-5}$ .





#### Пример: оценка ранга ряда с пропусками

Ряд длины 400 вида 
$$f_n=s_n+e_n$$
, где  $e_n$  — гауссовский белый шум с дисперсией  $\sigma^2$ ,  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ ,  $L=150,\ r=6,\ M=150,\ b=30,\ \varepsilon=10^{-5},77$  пропусков.



#### Меры точности: доля



#### Применение к реальному ряду

Реальные данные: Ежемесячный пассажиропоток на международных авиалиниях с января 1949г.



| Метод оценки      | оценка |  |
|-------------------|--------|--|
|                   | ранга  |  |
| AIC $L=36$        | 5      |  |
| MDL $L = 36$      | 3      |  |
| TESTAR $L = 72$   | 16     |  |
| Визуальный $L=36$ | 13     |  |

Замечание: в отсутствие пропусков при L=36  $\widehat{r}_{\rm AIC}=15,\,\widehat{r}_{\rm MDL}=6.$ 

#### Применение к реальному ряду

Реальные данные: Ежемесячный пассажиропоток на международных авиалиниях с января 1949г.

Таблица: Ошибки заполнения при разных оценках ранга

| r/Mетод заполнения      | 3     | 5     | 13   | 16   |
|-------------------------|-------|-------|------|------|
| Рекуррентное заполне-   | 20.9  | 13    | 7.95 | 6.8  |
| ние средним $L=36$      |       |       |      |      |
| Векторное заполнение    | 21.14 | 13    | 11.7 | 10   |
| средним $L=36$          |       |       |      |      |
| "Iteration-Fill" $L=72$ | 20.13 | 12.24 | 5.7  | 9.98 |

## Результаты работы:

- В рамках линейной теории возмущения была доказана теорема о виде ошибки заполнения сигнала методом "Iteration-Fill" в рядах с одним пропуском вида  $f_n = s_n + \delta e_n$ , где  $s_n$  сигнал конечного ранга,  $\delta e_n$  возмущение сигнала.
- Для константного сигнала получен явный вид ошибки заполнения и показано, что дисперсия ошибки заполнения не зависит от количества итераций и уменьшается с ростом длины ряда как 1/N.
- Получены результаты сравнения методов для  $s_n = 2\cos(2\pi n/3) + \cos(2\pi n/7) + \cos(2\pi n/10)$ :
  - метод "Caterpillar-Fill" точнее, если  $\sigma < 1.8$ , и требует 1 SVD разложение;
  - метод "Iteration-Fill" точнее, если  $1.8 \le \sigma < 2.6$ , но требует в среднем 10 SVD разложений.

## Результаты работы:

- Разработан алгоритм оценки ранга сигнала, названный TESTAR.
- На примере вида  $f_n=s_n+e_n$ , где  $s_n=2\cos(2\pi n/3)+\cos(2\pi n/7)+\cos(2\pi n/10)$ ,  $e_n$  гауссовский белый шум с дисперсией 0.64 показано, что:
  - TESTAR оценивает ранг также точно как MDL и AIC;
  - трудоёмкость методов AIC и MDL существенно (в сотни раз) ниже;
  - в отличие от TESTAR, методы AIC и MDL имеют довольно жёсткие ограничения на расположение пропусков.
- На примере реального ряда показано:
  - наличие пропусков существенно ухудшает качество оценок ранга методами AIC и MDL;
  - оценка ранга, полученная автоматической процедурой TESTAR выше, а оценка ранга, полученная методом MDL (даже для ряда без пропусков) значительно ниже, чем оценка ранга, построенная с помощью визуального анализа собственных векторов.

Спасибо за внимание!

## Метод: Caterpillar-Fill

$$(f_1, f_2, f_3, ?, ?, f_6, f_7, f_8, f_9) \xrightarrow{L=3} \begin{pmatrix} f_1 & f_2 & f_3 & ? & ? & f_6 & f_7 \\ f_2 & f_3 & ? & ? & f_6 & f_7 & f_8 \\ f_3 & ? & ? & f_6 & f_7 & f_8 & f_9 \end{pmatrix}$$

#### Заполнение: первый шаг

$$\overline{\mathbf{X}} = \begin{pmatrix} f_1 & f_6 & f_7 \\ f_2 & f_7 & f_8 \\ f_3 & f_8 & f_9 \end{pmatrix} \xrightarrow{SVD} \widetilde{\mathcal{L}_r} = \operatorname{span}(\overline{U}_1, \dots, \overline{U}_r) \to$$

$$\overline{\mathbf{S}} = \begin{pmatrix} \overline{s}_{1,1} & \overline{s}_{1,2} & \overline{s}_{1,3} \\ \overline{s}_{2,1} & \overline{s}_{2,2} & \overline{s}_{2,3} \\ \overline{s}_{3,1} & \overline{s}_{3,2} & \overline{s}_{3,3} \end{pmatrix} \longrightarrow \begin{pmatrix} \overline{s}_{1,1} & * & * & ? & ? & \overline{s}_{1,2} & \overline{s}_{1,3} \\ \overline{s}_{2,1} & * & ? & ? & * & \overline{s}_{2,2} & \overline{s}_{2,3} \\ \overline{s}_{3,1} & ? & ? & * & * & \overline{s}_{3,2} & \overline{s}_{3,3} \end{pmatrix} \xrightarrow{\mathcal{H}}$$

$$\widetilde{\mathbf{S}} = \begin{pmatrix} \widetilde{s}_1 & \widetilde{s}_2 & \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 \\ \widetilde{s}_2 & \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 & \widetilde{s}_8 \\ \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 & \widetilde{s}_8 & \widetilde{s}_9 \end{pmatrix}$$

## Метод: Caterpillar-Fill

$$\widetilde{\mathbf{S}} = \begin{pmatrix} \widetilde{s}_1 & \widetilde{s}_2 & \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 \\ \widetilde{s}_2 & \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 & \widetilde{s}_8 \\ \widetilde{s}_3 & ? & ? & \widetilde{s}_6 & \widetilde{s}_7 & \widetilde{s}_8 & \widetilde{s}_9 \end{pmatrix}$$

Заполнение: второй шаг

$$Y=egin{pmatrix} * \ ? \ * \ * \ ? \end{pmatrix} \in \mathbb{R}^{\mathbf{L}}$$
  $\qquad \mathcal{I}=\{1,\ldots L\}, \ \mathcal{P}-$  индексы пропущенных точек.

Для произвольного расположения пропусков: Если  $Y \in \mathcal{L}_r$  то

$$Y \mid_{\mathcal{P}} = \left( \mathbf{E} - \mathbf{U} \mid_{\mathcal{P}} (\mathbf{U} \mid_{\mathcal{P}})^{\mathrm{T}} \right)^{-1} \mathbf{U} \mid_{\mathcal{P}} \left( \mathbf{U} \mid_{\mathcal{I} \setminus \mathcal{P}} \right)^{\mathrm{T}} Y \mid_{\mathcal{I} \setminus \mathcal{P}},$$

где  ${f E}$  — единичная матрица размерности  $|{\cal P}| imes |{\cal P}|; \ {f U} = [\overline{U}_1, \ldots, \overline{U}_r].$ 

## Метод: Caterpillar-Fill

Частные случаи расположения пропусков:

- ullet подряд  $\Big(f_1,\dots,f_k,*,*,\dots,*,\dots,f_{N-1}\Big);$
- ullet подряд в конце ряда  $\Big(f_1,\dots,f_k,*,*,\dots,*\Big);$

#### Предложение

Обозначим  $\nu^2=\pi_1^2+\ldots+\pi_r^2$ , где  $\pi_i^2$  — L-ая компонента вектора  $U_i$ ,  $\{U_i^{\nabla}\}_{i=1}^r$  — вектора  $\{U_i\}_{i=1}^r$  без последней компоненты. Предположим, что  $e_L \not\in \widehat{\mathcal{L}}_r$  и  $X \in \widehat{\mathcal{L}}_r$ . Тогда  $\nu^2 < 1$  и

$$x_L = \sum_{k=1}^{L-1} a_k x_{L-k}, \;$$
 где  $(a_{L-1}, \dots, a_1) = rac{1}{1-
u^2} \sum_{i=1}^r \pi_i^2 U_i^
abla.$ 

Первоначальный ряд:  $\mathcal{S}_N = \cos(2\pi n/110)$  с гауссовским шумом  $\sigma^2 = 0.25$ 



В первоначальном ряде есть 30 пропусков.



Начальное приближение пропусков перед первой итерацией.



Результат применения SSA ( $L=100,\ r=2$ ) после первой итерации.



Ряд перед второй итерацией.



Результат применения SSA ( $L=100,\ r=2$ ) после второй итерации.



#### Результат заполнения.

