

Tema 2

· Distribucións condicionadas

$$3i = \frac{ni}{ni} = \frac{gi}{gi}$$

$$3ij = 3i \cdot 3i$$

$$\frac{9}{xi} = \frac{nij}{ni} = \frac{3ij}{3i}$$

$$3ij = \frac{3i}{3} \cdot 3i$$

· Relación entre variables

· El objetivo de analizar conjuntamente des variables diferentes es establecer a el tipo de relación existente entre ellos.

Hay 3 casos:

- Independientes: No troy relación alguna entre las variables.

- Dependencia Juncional: El valor de una variable queda determinado corociendo el valor de la otra variable para esa misma observación a través de una Junción.

Dependencia estadística: Una variable proporciona información sobre la otra pero la modalidad de una no queda determinada por la modalidad de la otra.

Jaime Rodrigo Roldán Corcelles 77228554H PS

- Independencia entre variables

X es independiente de Y si:

Ejempb:

$$XX$$
 C1 C2 C3 C4

A 4 6 10 2 22

B 2 3 5 1 11

X/X=4		Y/X=B	ذ کا	Y	f g. j
CA	2/11	C1	2/11	Cal	2/11
Cz	3111	C1	3111	C2	3111
C 3 C4	5111	C3 C4	5141	C1 C2 C5 C4	5111
Cu	1/11	C4	1111	C4	1/11

Six es independente de Y

Si=Sin Vi V; Si= ni; Si= ni

N

- Dependencia Juncional
$$X/y=c_3$$
 solla toma el Mater de Az $X/Y=c_3$ solla toma el Mater de Az $X/Y=c_4$ $Y/Y=c_4$ $Y/Y=c_4$

- Dependencia estadística

Ejemplo: - Estatura y poso

- Abcoralidad y renta
- Familia par nº de hyos y nº de móviles

+ Pasos a seguir :

- · 1) Nube de puntos
- +21 Buscar la linea o curva de regresión que mejor se ajuste a la nube de puntos. —10 Regresión
- 13) Medir el grado de dependencia entre las variables. D carrelación Si todos las valores satisfacen la ecuación calculada, se dice que las variables testán perfectamente correladas. La ecuación nos permite predecir valores descanacions.

- · Regresión Lineal para tipo cuantitativas
- Metodo de minimos cuadrados
 Sean los datas 3 (xi, yi) y para dos v.e. Cuantitativas X, Y.
 1. La Regresión de V/x

Jaime Rodrigo Roldón Corcelles 77228554M P

Min F -> Min Zei² -> Minimizar el SSE

Yi° = yi est = (1xi) es el valor de y estimado por la regresión
para xi.
ei = yi - yi est es el error cometido par el ajuste para el
Lésimo dato.

El tipo de ajuste de mínimo cuadrados viene determinado por de tipo de función y = le (x) elegido.

+ Caso Lineal Generalizado

((x) = a. ((x) + a. ((1x) + a. ((2(x) +

Los más usados son:

- Ajuste lineal:
$$y = Y(x) = a + bx$$
 $a_1 = a_1$
 $a_0 = a_0$
 $y = Y(x) = a + a_1x$ $a_0 = a_0$
 $y = x$

- Ajuste parabolio:

$$y = \psi(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

$$\psi_1(x) = x$$

$$\psi_2(x) = x^2$$

- Other agustes:

$$y = V(x) = a_0 \cdot cos(x) + a_1 \cdot sen(x)$$
 $V_1(x) = cos x$
 $V_1(x) = sen x$

o Ajuste Lineal. Propiedades

min F = min \(\xi\) \(\text{yi} - \text{yi} \) = min \(\xi\) \(\xi\)

Jaime Radrigo Roldan Carcelles 77228554M

$$\frac{\partial F}{\partial a} = \sum_{i} 2|y_i - a - bx_i| \cdot (-1) = 0$$

$$-\xi yi + \alpha \xi + b \xi xi = 0$$

$$-\xi yixi + \alpha \xi xi + b \xi xi^{2} = 0$$

$$\alpha \cdot \lambda + b \xi xi = \xi yi$$

$$-\xi yixi + \alpha \xi xi + b \xi xi^{2} = 0$$

$$\alpha \cdot \xi xi + b \xi xi^{2} = \xi xi \cdot yi$$

$$\begin{pmatrix} N & \sum_{xi} z \\ \sum_{xi} \sum_{xi} z \end{pmatrix} \begin{pmatrix} \alpha \\ b \end{pmatrix} = \begin{pmatrix} \sum_{yi} yi \\ \sum_{xi} yi \end{pmatrix}$$

+ Regresión de X/y

$$X = Q'(y)$$

Min $\sum_{i} (x_{i} - Q'(y_{i}))^{2} =$
 $= Min \sum_{i} (x_{i} - x_{i})^{2} =$
 $= Mn \sum_{i} (x_{i} - x_{i})^{2} =$

+ Aguste lineal

4'(y) = a'+b'y

$$\begin{pmatrix} N & \xi yi \\ \xi_{yi} & \xi_{yi}^{2} \end{pmatrix} \begin{pmatrix} \alpha' \\ \delta' \end{pmatrix} = \begin{pmatrix} \xi_{xi} \\ \xi_{xi} yi \end{pmatrix}$$

Sist de Ec. normales

Jaime Radigo Roldán Carcelles 77228554M

Ajuste lineal: Propiedades

5- Ecuaciones Normales

$$Na + b \sum x_i = \sum y_i$$

$$\alpha + b \sum x_i^2 = \sum x_i y_i$$

$$\alpha = \sum x_i + b \sum x_i^2 = \sum x_i y_i$$

$$\alpha = \sum x_i + b \sum x_i^2 = \sum x_i y_i$$

 $a+b\bar{x}=\bar{y}$ $a\bar{x}+bm_{zz}=m_{44}$ de y/x

$$\alpha = \overline{y} - b\overline{x} \qquad D \left(\overline{q} - b\overline{x} \right) \overline{x} - b m_{20} = m_{44}$$

$$\overline{y} \overline{x} - b\overline{x}^{2} + b m_{20} = m_{44}$$

$$b \left(m_{20} - \overline{x}^{2} \right) = m_{44} - \overline{y}\overline{x}$$

$$b = \frac{m_{44} - \overline{y}\overline{x}}{m_{20} - \overline{x}^{2}} = \frac{Gv(x, y)}{\overline{v}^{2}} = b$$

$$Na' + b' \overline{\xi} y_{i} = \overline{\xi} x_{i} \quad a' + b' \overline{y} = \overline{x}$$

$$a' \overline{\xi} y_{i} + b' \overline{\xi} y_{i}^{2} = \overline{\xi} x_{i} y_{i} \quad b' = \frac{Gv(\overline{x}, y)}{\overline{v}^{2}}$$

- 2 (x, y) pasa par la recta de regresión de x/y (x, y) es el punto de conte de las dos rectas de regresión
- (3) Sgno b = Signo b' = Signo col(X, 4)

$$\xi ei = 0$$
 $ei = yi - yi^{\circ}$
 $yi = a + b \times i$
 $\xi ei = \xi (yi - yi^{\circ}) = \xi (yi - (a + b \times i)) = \xi yi + a \cdot V - b \xi \times i = 0$

$$\int_{a}^{a} Ec. del sistem de ec. normales$$
 $\xi ei \times i = 0$
 $\xi (yi - yi) \times i = \xi (yi - a - b \times i) \times i = \xi yi \times i = 0$

Σ(yi-yi) xi = Σ(yi-a-bxi) xi = ξyixi-aξxi -b ξxiz=0 Zª Ec. del SEN

Jaime Radrigo Roldan Caraelles 77228554 H P

Descomposición de la varianza

$$\begin{aligned}
& \mathcal{T}^{2} y = \frac{1}{N} \underbrace{\xi \left(y_{i} - y_{i}^{2} + y_{i}^{2} - y_{i}^{2} + y_{i}^{2} - y_{i}^{2} \right)^{2}} = \\
& = \frac{1}{N} \underbrace{\xi \left(\left(y_{i} - y_{i}^{*} \right) + \left(y_{i}^{*} - y_{i}^{*} \right) \right)^{2}}_{1} = \frac{1}{N} \underbrace{\xi \left(\left(y_{i} - y_{i}^{*} \right)^{2} + \left(y_{i}^{*} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \left(y_{i}^{*} - y_{i}^{*} \right) = \underbrace{1}_{N} \underbrace{\xi}_{i} \underbrace{ei}_{i} \left(y_{i}^{*} - y_{i}^{*} \right) = \underbrace{1}_{N} \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i}^{*} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i}^{*} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i}^{*} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{ei}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{\xi}_{i} \underbrace{\left(y_{i} - y_{i}^{*} \right)^{2} + \underbrace{1}_{N} 2 \underbrace{$$

· Varianza residual o varianza de los errores

¿ Quien es V2yx?

Jame Rodrigo Rollain Corcelles 77228554H

Mi de el grado de relación lineal entre las variables. Se define como la media geométrica de los coeficientes de regresión de byó

$$b = \frac{COV(X,Y)}{\overline{U^2}_{X}}$$

$$b' = \frac{COV(X,Y)}{\overline{V^2}_{Y}}$$

$$\Gamma = \sqrt{\frac{M_1^2}{\overline{V^2}_{X}}} = \frac{M_1}{\overline{V_X}} \Rightarrow \Gamma = \frac{M_{12}}{\overline{V_X}}$$

$$\Gamma^2 \geqslant 0$$

- by b' en funcion de (:

$$b = \frac{r \nabla y}{\nabla x} \qquad b' = \frac{r \nabla x}{\nabla y}$$

- Propiedades de 12

Stablendo que:
$$\nabla^2_{les} = \overline{U}_y^2 - b^2 \overline{U}_x^2$$

como $b = \frac{r \overline{U}_y}{\overline{U}_x} \Rightarrow \overline{V}_{les}^2 = \overline{U}_y^2 - \frac{r^2 \overline{U}_y^2}{\overline{U}_x^2} \cdot \overline{U}_x^2$
 $\frac{\overline{V}_{les}^2}{\overline{V}_y^2} = 1 - r^2 \Rightarrow r^2 = 1 - \frac{\overline{V}_{les}^2}{\overline{V}_y^2}$

. 5:
$$r^2=1$$
 ($r=1$ ó $r=1$ $r=1-p$ directa carelación lineal es perfecta $r=-1-p$ inversa

· 51 r=0

Variables incorreladas

Cuando más próximo a 1 se encuentre el r², mejor será el ajuste lineal.

Jaime Radrigo Rolldin Carcelles 77228554H PE

- · Cluando es mejor una recta que otra?
 - 1 Depende de la que queramos predecir
 - 2 Diremos que Y/x es mejox que X/y si $\nabla^2 res \ Y/x \le \nabla^2 res \ X/y$ $V_y^2 | 1-r^2 | \le \nabla_x^2 (1-r^2)$ $\nabla^2 y \le T^2 x$
- · Relación entre by b'

$$Y = a + b \times \qquad x = a' + b'y \qquad y = \frac{x - a'}{b'}$$

$$M Y | X = b \qquad M X = \frac{1}{b'}$$

$$\Gamma^2 = |b \cdot b'| \le 1$$

$$|b| \le \frac{1}{b'}$$

 $|w^{\lambda/x}| \leq |w^{\chi/\lambda}|$

Jaime Rodrigo Roldan Corcelles 772285544 12

Modelo lineal generalizado

Ajustamos la nube de puntos a una funciós del tipo: P(x) = ao Po(x) + a, P, (x) + az Pz(x) + ···

El objetivo:

- minimizar Zei²

· Considero los vectores:

$$\begin{aligned}
y &= \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} &= \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_2 \end{pmatrix} \\
Y &= \begin{pmatrix} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi$$

min
$$\sum \{y^{1} - y^{1}\}^{2}$$

min $\{y - y^{1}\}^{2} \{y - y^{2}\}^{2}$

min $\{y - (y^{1})\}^{2} \{y - (y^{2})\}^{2}$

min $\{y - (y^{1})\}^{2} \{y - (y^{2})\}^{2}$

min $\{y - (y^{2})\}^{2} \{y - (y^{2})\}^{2}$

min $\{y^{2} - (y^{2})\}^{2} \{y^{2} - (y^{$

$$b(x) = a + b \times \qquad b_0(x) = A \qquad b_1(x) = X$$

$$H = \begin{pmatrix} 1 & x_1 \\ 1 & x_N \end{pmatrix} \qquad A = \begin{pmatrix} a \\ b \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ y_N \end{pmatrix}$$

$$M^{\dagger}MA = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} 1 & x_1 \\ 1 & x_N \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \\ x_1 & x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} a \\ 1 & x_N \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \\ x_1 & x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$

$$M^{\dagger}Y = \begin{pmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 & \dots & y_N \end{pmatrix} = \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_2 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_1 \\ x_1 & \dots & x_N \end{pmatrix}$$

t

11

1

Jaime Radrigo Roldin Gareles 772285544 PS

· Ajuste mediante un plano

$$\Xi = \mathcal{Q}(x, y) = a + b \times + cy$$

$$A = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

- Ecuaciones normales

· Otros ajustes no lineales