Assignment 02

S14490

D.S.P.A.U.M. PEIRIS

1. <u>Screenshots with an explanation of the tools you used for the</u> above training process

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import imblearn
#importing ML model from sklearn-library
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import DecisionTreeClassifier
#Importing metrix functions from SK-Learn
from sklearn.metrics import roc_auc_score, r2_score, mean_absolute_error, mean_squared_error
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification report, confusion matrix
from sklearn.preprocessing import LabelEncoder
```

<u>Pandas</u> – Import excel file and create a data frame

Numpy – Transform vector and perform dot product between vectors

sklearn

sklearn.neighbors - provides functionality for unsupervised and supervised neighbors-based learning methods

sklearn.linear_model - class of the sklearn module if contain different functions for performing machine learning with linear models

<u>sklearn.svm</u> - Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection

<u>sklearn.ensemble</u> - includes two averaging algorithms based on randomized decision trees

<u>sklearn.metrics</u> - implements several loss, score, and utility functions to measure classification performance

<u>sklearn.model_selection</u> - method for setting a blueprint to analyze data and then using it to measure new data

2. Brief explanation of the pre-processing steps you followed.

- Import necessary libraries
- Import data set
- Checking the missing values in the train data set no missing values
- Checking the missing values in the test data set one missing value
- Remove null value from both data sets
- Visualize respond variable
- Fitting the model
- Dropping the converted group data points
- Dropping the unwanted columns
- Checking data types of the data frame
- Convert to numerical once
- Again check the null values and remove them
- Train the data set by dividing in to 2 parts
- Appling cross validation reduce overfitting and bais
- Appling random forest, logistic regression, gradient boosting test best performing model
- Get confusion matrix and test Accuracy, precision, sensitivity, specificity and error rate

Using data we can take the conclusion that the best performing classifier is Random Forest classifier

3. Generated Confusion matrix for the Test dataset.

Confusion matrix for Random Forest

4. List of below measures calculated for the Test dataset.

Out of this classifiers best performing model is Random Forest classifier

Accuracy: 0.9863481228668942

Precision: 1.0

Sensitivity: 0.9808612440191388

Specificity: 1.0

Error Rate: 0.013651877133105802

Looking in indexes: https://us-python.pkg.dev/colab-wheels/p
Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.7/dist-pack

!pip install imbalanced-learn

```
Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/dist-package
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages
     Requirement already satisfied: scipy>=0.19.1 in /usr/local/lib/python3.7/dist-package
     Requirement already satisfied: scikit-learn>=0.24 in /usr/local/lib/python3.7/dist-particles.
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import imblearn
#importing ML model from sklearn-library
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import DecisionTreeClassifier
#Importing metrix functions from SK-Learn
from sklearn.metrics import roc_auc_score, r2_score, mean_absolute_error, mean_squared_err
from sklearn.model selection import cross val score
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelEncoder
!pip install openpyxl
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/</a>
     Requirement already satisfied: openpyxl in /usr/local/lib/python3.7/dist-packages (3
     Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.7/dist-packages (
from google.colab import drive
drive.mount('/gdrive')
%cd /gdrive
     Drive already mounted at /gdrive; to attempt to forcibly remount, call drive.mount(",
     /gdrive
data_train = pd.read_excel("/gdrive/My Drive/Colab Notebooks/4th Year/Data Analytics/Assig
```

data_test = pd.read_excel("/gdrive/My Drive/Colab Notebooks/4th Year/Data Analytics/Assign

data_train.head() #first 5 data

	ID	Age	Gender	ТВ	DB	ALK	SGPT	SGOT	TP	ALB	AG_Ratio	Class	1
0	1	65	Female	0.7	0.1	187	16	18	6.8	3.3	0.9	Yes	
1	2	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	Yes	
2	3	62	Male	7.3	4.1	490	60	68	7	3.3	0.89	Yes	
3	4	58	Male	1	0.4	182	14	20	6.8	3.4	1	Yes	
4	5	72	Male	3.9	2	195	27	59	7.3	2.4	0.4	Yes	

```
data_train.Class.unique()
```

```
array(['Yes', 'No'], dtype=object)
```

len(data_test)
len(data_train)

583

#Check Missing values in train dataset

data_train.isnull().sum()

ID 0
Age 0
Gender 0
TB 0
DB 0
ALK 0
SGPT 0
SGOT 0
TP 0
ALB 0
AG_Ratio 0
Class 0
dtype: int64

No any missing value

#Check Missing values in test dataset

data_test.isnull().sum()

 ID
 0

 Age
 0

 Gender
 0

 TB
 0

 DB
 0

 ALK
 0

 SGPT
 0

 SGOT
 0

```
TP 0
ALB 0
AG_Ratio 0
Class 0
dtype: int64
```

There is 1 null value AG_Ratio, So we can remove it because it is small proportion of data set.

416 observations belong to 'yes' and 167 obervations belong to 'No'. There for this is unbalance

Fitting model

```
# Dropping the converted Group data points
# Dropping the unwanted columns
le=LabelEncoder()
```

```
data_train[['Gender','Class']]=data_train[['Gender','Class']].apply(le.fit_transform)
data_test[['Gender','Class']]=data_test[['Gender','Class']].apply(le.fit_transform)
```

data_train.head()

	ID	Age	Gender	ТВ	DB	ALK	SGPT	SGOT	TP	ALB	AG_Ratio	Class	1
0	1	65	0	0.7	0.1	187.0	16.0	18.0	6.8	3.3	0.90	1	
1	2	62	1	10.9	5.5	699.0	64.0	100.0	7.5	3.2	0.74	1	
2	3	62	1	7.3	4.1	490.0	60.0	68.0	7.0	3.3	0.89	1	
3	4	58	1	1.0	0.4	182.0	14.0	20.0	6.8	3.4	1.00	1	
4	5	72	1	3.9	2.0	195.0	27.0	59.0	7.3	2.4	0.40	1	

data_test.head()

	ID	Age	Gender	ТВ	DB	ALK	SGPT	SGOT	TP	ALB	AG_Ratio	Class	1
0	1	65	0	0.7	0.1	187.0	16.0	18.0	6.8	3.3	0.90	1	
1	2	62	1	10.9	5.5	699.0	64.0	100.0	7.5	3.2	0.74	1	
2	3	62	1	7.3	4.1	490.0	60.0	68.0	7.0	3.3	0.89	1	
3	4	58	1	1.0	0.4	182.0	14.0	20.0	6.8	3.4	1.00	1	
4	5	72	1	3.9	2.0	195.0	27.0	59.0	7.3	2.4	0.40	1	

data_train.dtypes

ID	int64
Age	int64
Gender	int64
TB	float64
DB	float64
ALK	float64
SGPT	float64
SG0T	float64
TP	float64
ALB	float64
AG_Ratio	float64
Class	int64
dtype: objec	ct

data_train["TB"] = pd.to_numeric(data_train["TB"],errors='coerce')
data_train["DB"] = pd.to_numeric(data_train["DB"],errors='coerce')
data_train["ALK"] = pd.to_numeric(data_train["ALK"],errors='coerce')
data_train["SGPT"] = pd.to_numeric(data_train["SGPT"],errors='coerce')
data_train["SGOT"] = pd.to_numeric(data_train["SGOT"],errors='coerce')
data_train["ALB"] = pd.to_numeric(data_train["ALB"],errors='coerce')

```
data_train["AG_Ratio"] = pd.to_numeric(data_train["AG_Ratio"],errors='coerce')
data train["TP"] = pd.to numeric(data train["TP"],errors='coerce')
data_test["TB"] = pd.to_numeric(data_test["TB"],errors='coerce')
data_test["DB"] = pd.to_numeric(data_test["DB"],errors='coerce')
data_test["ALK"] = pd.to_numeric(data_test["ALK"],errors='coerce')
data_test["SGPT"] = pd.to_numeric(data_test["SGPT"],errors='coerce')
data_test["SGOT"] = pd.to_numeric(data_test["SGOT"],errors='coerce')
data_test["ALB"] = pd.to_numeric(data_test["ALB"],errors='coerce')
data test["AG_Ratio"] = pd.to_numeric(data_test["AG_Ratio"],errors='coerce')
data test["TP"] = pd.to numeric(data test["TP"],errors='coerce')
data train.isnull().sum()
     ID
                 0
     Age
                 0
                 0
    Gender
     TB
                 0
    DB
                 0
    ALK
     SGPT
     SGOT
                 0
    TΡ
                 0
     ALB
     AG Ratio
                 0
    Class
     dtype: int64
Null values available in 'TB' ,'DB' ,'ALk', 'SGPT', 'SGOT', 'TP', 'ALB', 'AG_Ratio'
```

```
data_train.dropna(inplace = True)
data_train.isnull().sum()
len(data_train)

    568

data_test.dropna(inplace = True)
data_test.isnull().sum()
len(data_test)

    293

data_train.head()
```

#Remove null values

		ID	Age	Gender	ТВ	DB	ALK	SGPT	SGOT	TP	ALB	AG_Ratio	Class	1
	0	1	65	0	0.7	0.1	187.0	16.0	18.0	6.8	3.3	0.90	1	
	1	2	62	1	10.9	5.5	699.0	64.0	100.0	7.5	3.2	0.74	1	
-	<pre>y = data_train.Class y_test = data_test.Class</pre>													
	<pre>x = data_train.drop(['Class','ID'], axis=1, inplace = False) x_test = data_test.drop(['Class','ID'], axis=1, inplace = False)</pre>													

Applying cross validation techiques

```
S_Models = [RandomForestClassifier(), LogisticRegression(solver='liblinear'), GradientBoos
S_Names = ["Random Forest", "Logistic Regression", "Gradient Boosting"]
for model, name in zip(S Models, S Names):
   print(name)
   for score in ["accuracy", "precision", "recall"]:
       print(score," : ",cross_val_score(model, x, y ,scoring=score, cv=5,error_score='ra
   print('\n')
    Random Forest
    accuracy : 0.695388914764788
    precision : 0.7644092970521541
    recall : 0.8467901234567901
    Logistic Regression
    accuracy : 0.7095482068001863
    precision : 0.7427812712857973
    recall : 0.908611111111111
    Gradient Boosting
    accuracy : 0.6936345287998759
    precision : 0.763958103014262
    recall: 0.8269753086419753
```

Accuracy of Logistic Regression model is the high

Accuracy of test data with LogisticRegression

```
logreg = LogisticRegression(solver='liblinear')
logreg.fit(x, y)
```

```
logreg_predict = logreg.predict(x_test)
```

Confusion Matrix

```
print(confusion_matrix(y_test, logreg_predict))
    [[ 21 63]
       [ 14 195]]
```

Classification Report

print(classification_report(y_test, logreg_predict))

₽		precision	recall	f1-score	support
	0	0.60	0.25	0.35	84
	1	0.76	0.93	0.84	209
	accuracy			0.74	293
	macro avg	0.68	0.59	0.59	293
	weighted avg	0.71	0.74	0.70	293

```
y_pred_rnd = logreg.predict(x_test)

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_rnd).ravel()
print("Accuracy: ", (tp+tn)/(tp+tn+fp+fn), "\n")

print("Precision: ", tp/(tp+fp), "\n")

print("Sensitivity: ", tp/(tp+fn), "\n")

print("Specificity: ", tn/(tn+fp), "\n")

Accuracy: 0.7372013651877133
    Precision: 0.7558139534883721
    Sensitivity: 0.9330143540669856
```

Specificity: 0.25

Error Rate: 0.2627986348122867

Accuracy of test data with Randomforest

Classification Report

print(classification_report(y_test, rf_predict))

support	f1-score	recall	precision	
84	0.98	1.00	0.97	0
209	0.99	0.99	1.00	1
293	0.99			accuracy
293	0.99	0.99	0.98	macro avg
293	0.99	0.99	0.99	weighted avg

```
y_pred_rnd = rf.predict(x_test)

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_rnd).ravel()

print("Accuracy: ", (tp+tn)/(tp+tn+fp+fn), "\n")

print("Precision: ", tp/(tp+fp), "\n")

print("Sensitivity: ", tp/(tp+fn), "\n")

print("Specificity: ", tn/(tn+fp), "\n")

print("Error Rate: ", (fp+fn)/(tp+tn+fp+fn), "\n")
```

Accuracy: 0.9897610921501706

Precision: 1.0

Sensitivity: 0.9856459330143541

Specificity: 1.0

Error Rate: 0.010238907849829351

Accuracy of test data with Gradient Boosting

```
gb = GradientBoostingClassifier()
gb.fit(x, y)
gb_predict = gb.predict(x_test)
```

Confussion Matrix

```
print(confusion_matrix(y_test, gb_predict))
    [[ 65    19]
       [ 6    203]]
```

Classification Report

print(classification_report(y_test, gb_predict))

	precision	recall	f1-score	support
0	0.92	0.77	0.84	84
1	0.91	0.97	0.94	209
accuracy			0.91	293
macro avg	0.91	0.87	0.89	293
weighted avg	0.91	0.91	0.91	293

```
y_pred_rnd = gb.predict(x_test)

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_rnd).ravel()

print("Accuracy: ", (tp+tn)/(tp+tn+fp+fn), "\n")

print("Precision: ", tp/(tp+fp), "\n")

print("Sensitivity: ", tp/(tp+fn), "\n")
```

print("Specificity: ", tn/(tn+fp), "\n")

print("Error Rate: ", (fp+fn)/(tp+tn+fp+fn), "\n")

Accuracy: 0.9146757679180887

Precision: 0.9144144144144

Sensitivity: 0.9712918660287081

Specificity: 0.7738095238095238

Error Rate: 0.08532423208191127

Colab paid products - Cancel contracts here

✓ 0s completed at 22:49