Data Science Data Engineering I

What is data?

PURDUE UNIVERSITY

College of Science

Copyright McGraw Hill, Rosen, Discrete Mathematics and its Applications

First step: obtain data

What is data?

Entities

- Collection of entities and their attributes
- **Attribute**: property or characteristic of an entity (e.g., eye color, temperature)
- Entity: collection of attributes
 Aka: record, point, case, sample, object, or instance.

Attributes

Flat or Phillips head?	Number in stock	Available at factory outlet?	Price for 50 screws	Head shape	Nominal diameter (mm)	Minor diameter tolerance	Thread pitch (mm)	Name
Flat	275	Yes	\$10.08	Pan	4	49	0.7	M4
∃oth	183	Yes	\$13.89	Round	5	4g	0.8	Mb
Hat	1043	Yes	\$10.42	Button	6	5g	1	МБ
Phillips	295	No	\$11.98	Pan	8	5g	1.25	MB
Phillips	488	Yes	\$15.74	Round	10	6g	1.5	M10
Flat	995	No	\$19.26	Pan	12	7g	1.75	M12
Phillips	235	No	\$21.19	Round	14	7g	2	M14
Both	292	Yes	\$23.57	Button	16	8g	2	M15
Both	664	No	\$25.87	Button	18	8g	2.1	M15
∃oth	485	Yes	\$29.09	Pan	20	8g	2.4	M20
Phillips	982	Yes	\$83.01	Hound	24	9g	2.55	M24
Phillips	1067	No	\$35.86	Button	28	10g	2.7	M28
Both	434	No	\$41.32	Pan	36	12g	3.2	M35
Flat	740	No	\$44.72	Pan	50	15g	4.5	M50

Tabular data (Simple structured data)

Collection of records, each of which consists of a fixed set of attributes

position #	time [UTC]	time [LM1]	Longitude [deg]	Latitude [deg]	Altitude [m]	Status	Hain [V]	Beron [V]	Temperature [°C]
1	2014-01-01 00:00:44	2014-01-01 02:00:44	32,24420	-27.80007	119	val. GPS-OD	3,36	2.08	25
2	2014 01 01 01:00:44	2014-01-01-03:00:44	32.24422	27.88077	119	val. GPS 30	3.36	2	24
3	2014 01 01 02:00:44	2014-01-01-04:00:44	32.24427	27.88084	113	val. GPS 30	3.36	2	24
4	2014-01-01 03:00:21	2014-01-01 05:00:21	32,24487	-27.88001	166	val. GPS-3D	3.36	1.84	23
5	2014-01-01 04:01:27	2014-01-01 06:01:27	39,23733	-22.87950	121	GP9-3D	3.36	1.92	23
0	2014-01-01 05:00:54	2014-01-01 07:00:54	32,23727	-27.87759	121	GP5-2D	3,36	2,24	26
7	2014-01-01-06:01:35	2014-01-01-08:01:35	32.23747	27.87759	122	GPS 20	3.36	2.32	26
8	2014 01 01 07:01:20	2014-01-01-09:01:20	32.23740	27.87713	124	GPS 20	3.36	2.64	28
q	2014-01-01 08:01:17	2014-01-01 10:01:17	32,23752	-27.87692	92	GP5-3D	3.36	2.77	79
10	2014-01-01 09:01:14	2014-01-01 11:01:14	39,24147	-22.87377	800	val. GPSCD	3.36	9.72	29
11	2014-01-01 10:01:20	2014-01-01 12:01:28	32,24537	-27.87179	84	GP5-2D	3,36	2/1	27
12	2014-01-01-11:01:01	2014-01-01-13:01:01	32.24490	27.87202	83	GPS 20	3.36	2.24	26
13	2014-01-01-12:01:36	2014-01-01-14:01:36				No For	3.36	2.32	26
14	2014-01-01 13:02:34	2014-01-01 15:02:34	32,24191	-27.87205	80	val. GPS-3D	3.36	2.64	79
15	2014-01-01 14:01:00	2014-01-01 16:01:08	39,24068	-27.87272	81	val. GPSCD	3.36	2.24	26
16	2014-01-01 15:01:02	2014-01-01 17:01:02	32,23830	-27.87517	91	GP5-00	3,36	2.51	29
17	2014-01-01-16:01:13	2014-01-01-18:01:13	32.23815	27.87829	104	val. GPS 30	3.36	2.64	29
18	2014-01-01-17:00:16	2014-01-01-19:00:16	32.23720	27.87853	100	val. GPS 30	3.36	2.32	26
19	2014-01-01 18:01:38	2014-01-01 20:01:38	32,23572	-27.87838	115	val. GPS-3D	3.36	2.16	25
20	2014-01-01 19:01:02	2014-01-01 21:01:02	39,23459	-22.87658	106	val. Gesco	3.36	2	24
21	2014-01-01 20:01:50	2014-01-01 22:01:58	32,27413	-27.87617	100	val. GPS-10	3.36	1.92	23

Structured data (relational)

Collection of data items, each with varying properties, as well as relations among the items, e.g., relational databases, graph data (organization of information is specified by data schema/model)

Semi-structured data

Collection of data items with less formal structure than relational data, but with some tags or markers to delineate semantic elements of items (i.e., properties), e.g., HTML, XML, or JSON

```
v <user-agents>
 ▼<user-agent>
    <TD>id a f 3</ID>
    <String>!Susie (http://www.sync2it.com/susie)</String>
    <Description>Sync2It bookmark management & clustering engine/Description>
    <Type>C R</Type>
    <Comment/>
    <Link1>http://www.sync2it.com</Link1>
    <Link2/>
  </user-agent>
 ▼<user=agent>
    <ID>id a f 6</ID>
   v<String>
      <a href='http://www.unchaos.com/'> UnChaos </a> From Chaos To Order Hybrid '
    </String>
    <Description>UnCHAOS search robot</Description>
    <Type>R</Type>
    <Comment>Site is dead</Comment>
    <Link1>http://www.unchaos.com/</Link1>
    <Link2/>
  </user-agent>
```

```
"business id": "PK6aSizckHFWk8i0oxt5DA",
"full_address": "400 Waterfront Dr E\nHomestead\nHomestead, PA 15120",
"hours": {}.
"open": true,
"categories": [
  "Burgers".
  "Fast Food",
  "Restaurants"
"city": "Homestead".
"review count": 5.
"name": "McDonald's".
"neighborhoods": [
  "Honestead"
"longitude": -79.910032,
"state": "PA",
"stars" 2,
"latitude" 40.412086.
"attributes": (
  "Take-out": true.
  "Wi-Fi": "free",
  "Drive-Thru": true,
  "Good For": {
```


Unstructured data

Data that is not organized according to a predefined structure (e.g., free text, videos, photos, music, messages, etc.)

Lack of structure makes it more difficult to search for and analyze patterns

Common data formats

- CSV (comma separate values)
- JSON (Javascript object notation)
- HTML/XML (hypertext markup language / extensible markup language)
- SQL and NoSQL databases (SQL=structured query language)

Initial data tasks

Read data into internal memory data structure

- Read in data from file, parse, and store in internal data structure
- Data structures for tabular data:
 - Single example can be stored in:
 - Vector or list
 - Dictionary (key=attribute name, value=attribute value)
 - Set of examples can be stored in:
 - Matrix or list of lists/dictionaries
 - Dictionary (key=example id, value=example data)
 - Data frame (table-like data structure in Pandas)

CSV Files

- Typically refers to any delimited text file (e.g., comma, tab, space)
- Values containing commas can be enclosed in quotes to delineate
- Python has built in methods to parse csv files. We will use Pandas
 —a Python library for data analysis

```
,"6311936","3215360"
                                                                        ,"55078912"
                                                                                                             "$623808","2977792"
                                                                        ,"96055296","17383424","20799488","
"98","57937920","6680576","7385088"
                                                                                                                                                                              , "28704"
                                                                                                                                                                                  ","8832" -A -L
                                                                            ,"73506816","$957952","5935104","2D132"
                                                                             "64344064", "13996032", "10178560", "27904", "h. -h. -h. -h. -h. -h. -h.
                                                                              "2206[4656", "35364960", "33832960", "34628", "C: (Program Files (x86)) pirectal
                          "108","84504576","10313728","5709824","10024","C:\windows\system32\Dwm.exe","Micros
                                                                               , 36134912", 4841472", 2621440", 5080" .... A. A. A.
                             "MSGIDSVOM","72"
                              "Msseces", 341", "156336128", "23716128", "10706944", "75232", "C:\Program Files\Microsoft Secures Files (Microsoft Secures Files) (Microsoft Files)
                            "NisSrv", "261", "80003072", "4771840", "9138176", "18000"
'Process","nusb3mon","89","75804672","5914624","2224128","10328","C:\Program Files (x86)\Renesas El-
```


XML/HTML Files

- The main format for the web
- XML files contain hierarchical content delineated by tags
- HTML is syntactically like XML, but sometimes tags are not closed and tags are primarily used to describe appearance of page
- There are a number of Python parsers for XML/HTML. We will use the BeautifulSoup library.

```
▼<user-agents>
 ▼<user-agent>
    <ID>id a f 3</ID>
    <String>!Susie (http://www.sync2it.com/susie)</String>
    <Description>Sync2It bookmark management & clustering engine</Description>
    <Type>C R</Type>
    <Comment/>
    <Link1>http://www.sync2it.com</Link1>
    <Link2/>
   </user-agent>
 ▼<user-agent>
    <ID>id a f 6</ID>
   ▼<String>
      <a href='http://www.unchaos.com/'> UnChaos </a> From Chaos To Order Hybrid
    </String>
    <Description>UnCHAOS search robot/Description>
    <Type>R</Type>
    <Comment>Site is dead</Comment>
    <Linkl>http://www.unchaos.com/</Linkl>
    <Link2/>
   </user-agent>
```


JSON Files

- JSON originated as a way of encapsulating Javascript objects
- JSON data looks much like a dictionary in Python, with keys and value stores
- Python has built in methods to parse JSON, but Pandas can also be used to read and parse JSON

```
"business_id": "PK6aSizckHFWk8i8oxt5DA",
"full_address": "400 Waterfront Dr E\nHonestead\nHomestead, PA 15120",
"hours": {},
"open": true,
"categories": [
  "Burgers",
 "Fast Food",
  "Restaurants"
"city": "Homestead",
"review_count": 5,
"name": "McDonald's",
"neighborhoods": [
 "Honestead"
"longitude": -79.910032,
"state": "PA",
"stars": 2
"latitude": 40.412086,
"attributes": (
  "Take-out": true,
  "Wi-Fi": "free",
  "Drive-Thru": true,
  "Good For": (
   "dessert": false.
   "latenight": false,
   "lunch": false,
   "dinner": false,
   "breakfast": false,
    "brunch": false
  "Caters": false,
 "Noise Level": "average",
  "Takes Reservations": false,
  WhalismesUs fales
```


JSON Files

- JSON originated as a way of encapsulating Javascript objects
- JSON data looks much like a dictionary in Python, with keys and value stores
- Python has built in methods to parse JSON, but Pandas can also be used to read and parse JSON

```
"business_id": "PK6aSizckHFWk8i8oxt5DA",
"full_address": "400 Waterfront Dr E\nHonestead\nHomestead, PA 15120",
"hours": {},
"open": true,
"categories": [
  "Burgers",
 "Fast Food",
  "Restaurants"
"city": "Homestead",
"review_count": 5,
"name": "McDonald's",
"neighborhoods": [
 "Honestead"
"longitude": -79.910032,
"state": "PA",
"stars": 2
"latitude": 40.412086,
"attributes": (
  "Take-out": true,
  "Wi-Fi": "free",
  "Drive-Thru": true,
  "Good For": (
   "dessert": false.
   "latenight": false,
   "lunch": false,
   "dinner": false,
   "breakfast": false,
    "brunch": false
  "Caters": false,
 "Noise Level": "average",
  "Takes Reservations": false,
  WhalismesUs fales
```