Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark

By Yang et al.

EGOR DMITRIEV, Utrecht University, The Netherlands

1 GOALS

- we aim to provide a unified framework to **deeply summarize and evaluate existing research** on heterogeneous network embedding (HNE)
 - we first formulate a unified yet flexible mathematical paradigm of HNE algorithms
 - we propose a generic objective function of *network smoothness*, and reformulate all
 existing models into this uniform paradigm while highlighting their individual novel
 contributions
- we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms
- we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and etc. from different sources, towards handy and fair evaluations of HNE algorithms
- we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms

2 PRELIMINARIES

- HNE: Heterogenous network embedding
- Hadamard product: element-wise product

3 CHALLENGES

real-world objects and interactions are often multi-modal and multi-typed

4 PREVIOUS WORK / CITATIONS

•

• This Work: ...

5 DEFINITIONS

- Heterogeneous network: $H = \{V, E, X, R, \phi, \psi\}$
 - $-v_i$ ∈ V: vertices, e_{ij} ∈ E: edges
 - $\phi(v_i)$: Node type, $\psi(e_{ij})$: Link type
 - X_i^o : Node attribute, U_{ij}^o : Link attribute
- **Meta-Path**: Path $o_1 \rightarrow l_1 \ o_2 \rightarrow l_2 \ ... o_m \rightarrow l_{m+1} \ o_{m+1}$
 - Where o and l are node/link types
 - Carries semantics (composed relation)
 - Allows computing multi-modal proximity
- Network embedding: $\Phi: V \to \mathbb{R}^{|V| \times d}$
- Heterogenous network embedding: $\{\Phi_k : V \to \mathbb{R}^{|V_k| \times d}\}_{k=1}^K$
 - where *K* is number of node types
- Smoothness Objective: $\mathcal{J} = \sum_{u,v \in V} w_{uv} d(e_u, e_v) + \mathcal{J}_R$
 - Where e_u, e_v are node embeddings

- w_{vw} : proximity weight
- $d(\cdot, \cdot)$: distance function

6 OUTLINE / STRUCTURE

6.1 Taxonomy

- 6.1.1 Proximity-Preserving Methods.
 - Goal of network embedding is to capture network topological information
 - Preserving different types of proximity among nodes
 - Approaches:
 - Random Walk Approaches (DeepWalk [29])
 - * metapath2vec: randomwalk -> skipgram (context based) (negative sampling)
 - * hin2vec: max likelihood based on path count/probability approximation (but employs a negative sampling like approach)
 - First/Second-order Proximity (LINE [30])
 - * PTE: Split into multiple bipartite networks. Per network maximize the co-occurrence objective (skipgram)
 - · Instead of co-occurrence counts, edge weight is used (based on different type edge counts)
 - * HEER:
 - · each edge type has embedding μ_l
 - · each edge has embedding \mathbf{g}_{uw}
 - · assume:

$$\boldsymbol{\mu}_{l}^{T}\boldsymbol{g}_{uv} = \boldsymbol{e}_{u}^{T}\boldsymbol{A}_{l}\boldsymbol{e}_{v}$$

- · Again max likelihood across bi networks
- considered as shallow network embedding, due to their essential single-layer decomposition
- 6.1.2 Message Passing Methods.
 - aim to learn node embeddings e_u based on x_u by aggregating the information from u's neighbors.
 - Considered as deep network embedding due to multiple layers of learnable projection functions
 - In unsupervised setting: objective is link prediction
 - Meta path based neighborhood: $\mathcal{N}_{\mathcal{M}}(u) = \{v | v \text{ connexts with } u \text{ via meta-path } \mathcal{M}\}$
 - $a_{uv}^{\mathcal{M}}$: Learned weight of of neighbors
 - β_M : Meta path weight
- 6.1.3 Relation-Learning Methods.
 - Knowledge Graphs are a special case of heterogeneous networks
 - Explicitly model the relation types of edges via parametric algebraic operators
 - Focus on the designs of triplet based scoring functions
 - learn a scoring function $s_l(u, v)$ which evaluates an arbitrary triplet (where l is relation type)
 - Usually margin based ranking loss is used + regularizer
 - Which has very similar form to negative sampling loss (!)
 - Works:
 - **TransE**: assume e_u + e_l ≈ e_v when relation l holds (translation of embedding)
 - * Optimizes by maximizing margin between related and unrelated pairs

- Distmult: exploits similarity based scoring (usually $e_u^T A_l e_v$) (aka the alignment score with some diagonal matrix inbetween)
- ComplEx: utilizes complex valued representations which allows capturing asymmetric relations

7 EVALUATIONS

- Tested: Classification and Link prediction
- Proximity-preserving algorithms: **often perform well** on both tasks under the unsupervised unattributed HNE setting
- Message-passing methods: perform poorly except for HGT, especially on node classification. But are known to excel due to their integration of node attributes, link structures, and training labels (which are not available).
- Relation learning methods: perform well on link predictions (when there are a lot of link types)

8 CODE

• https://github.com/yangji9181/HNE)

9 RESOURCES

•

10 NOTE (TO SELF)

• Read more about transformers and check out [85]