University of Passau Lehrstuhl für Informatik mit Schwerpunkt Sensorik

Switchable Constraints For Robust Pose Graph

Master seminar talk

Abdelaziz Ben Othman

August 21, 2018

Fakultät für Informatik und Mathematik

Plan

Motivation

Problematic

SLAM as a Non-Linear Squares Optimization Problem

Evaluation

Results and discussion

Summary

Motivation State Of The Art Of SLAM

Figure: State of the Art Of SLAM

Problematic

- ▶ Why SLAM is hard to solve?
 - Failed place recognition due to strong similarities
 - Problem of data association
 - ► Errors in sensor measurements occur

Figure: Different places with high similarities

Source: [SL04]

Problematic

- Data Association and their effects on the map
 - ► Introduction of false loop closure
 - ► Back-end performance degrades intensively
 - ► Slam fails

Figure: Failure when loop closures occur

Source: [Sün12]

- ► We propose a robust back-end capable of detecting and eliminating the false loop-closure.
- The robust back-end will optimize the graph topology while solving it.
- The proposed robust back-end can cope with large number of false loop-closure in a variety of scenarios.

Relation between successive robot poses

$$X_{i+1} = f(X_i, u_i) + w_i$$
 (1)

where:

f = a non-linear motion model

 u_i = the odometry measurement between the poses

 w_i = the noise of the odometry sensor system, $w_i \sim \mathcal{N}(0, \sum_i)$

$$x_{i+1} \sim \mathcal{N}(f(x_i, u_i), \sum_i)$$
 (2)

To perform loop closing, robot has to recognize places it has visited before

$$x_i = f(x_i, u_{ii}) + \lambda_{ii} \tag{3}$$

where:

f = Sensor model function

 $u_{ii} =$ odometry measurement between poses x_i and x_i

 $\lambda_{ij} =$ the noise of the odometry sensor system, $\lambda_{ij} \sim \mathcal{N}(0, \Lambda_{ij})$

$$x_{j} \sim \mathcal{N}(f(x_{i}, u_{ij}), \Lambda_{ij})$$
(4)

Our main goal is to find the trajectory X of the robot given the odometry and the loop closure constraints $u_i, u_{ij} \in U$.

$$X^* = \underset{X}{\operatorname{argmax}} P(X|U) \tag{5}$$

We can factor the joint probability P(X|U).

$$P(X|U) \propto \prod_{i} P(x_{i+1}|x_i, u_i) \cdot \prod_{j} P(x_j|x_i, u_{ij})$$
Odometry Constraints
Loop Closure Constraints

(6)

Under the assumptions of equation(2) we can write

$$P(x_{i+1}|x_i,u_i) = \frac{1}{\sqrt{2\pi|\sum_i|}} exp(-\frac{1}{2}(f(x_i,u_i)-x_{i+1})^T \sum_i^{-1} (f(x_i,u_i)-x_{i+1}))$$
(7)

Applying now the squared Mahalanobis distance definition

$$P(x_{i+1}|x_i, u_i) = \eta exp(-\frac{1}{2} ||f(x_i, u_i) - x_{i+1}||_{\sum_i}^2)$$
(8)

The same way, we can write the loop constraints closure gain

$$P(x_{j}|x_{i}, u_{ij}) = \eta exp(-\frac{1}{2} \|f(x_{i}, u_{ij}) - x_{j}\|_{\lambda_{ij}}^{2})$$
(9)

Having now equation (6),(8) and (9) we write

$$P(X|U) \propto \prod_{i} exp(-\frac{1}{2} \|f(x_{i}, u_{i}) - x_{i+1}\|_{\sum_{i}}^{2}) \cdot \prod_{ij} exp(-\frac{1}{2} \|f(x_{i}, u_{ij}) - x_{j}\|_{\lambda_{ij}}^{2})$$

$$(10)$$

We transform the products into sum by taking the negative logarithm:

$$-\log P(X|U) \propto \sum_{i} \|f(x_{i}, u_{i}) - x_{i+1}\|_{\sum_{i}}^{2} + \sum_{ii} \|f(x_{i}, u_{ij}) - x_{j}\|_{\lambda_{ij}}^{2} \quad (11)$$

As consequence,

$$X^* = \underset{X}{\operatorname{argmin}} - \log P(X|U) = \underset{X}{\operatorname{argmin}} \sum_{i} \|f(x_i, u_i) - x_{i+1}\|_{\sum_{i}}^{2} + \sum_{i} \|f(x_i, u_{ij}) - x_{j}\|_{\lambda_{ij}}^{2} \quad (12)$$

How to deal with suspicious loop closure?

- ▶ Idea: Remove edges corresponding to false loop closure
- Mathematically: introduce a binary weight w_{ij} that allows us to do so.

$$X^* = \underset{X}{\operatorname{argmin}} \underbrace{\sum_{i} \|f(x_i, u_i) - x_{i+1}\|_{\sum_{i}}^2}_{\text{odometry Constraints}} + \underbrace{\sum_{ij} \|w_{ij}.f(x_i, u_{ij}) - x_{j}\|_{\lambda_{ij}}^2}_{\text{Loop Closure Constraints}}$$
(13)

Binary weights w_{ij} themselves will be subject to optimization. In this step we introduce, the switch variables s_{ij} and the switch function such that:

$$w_{i,j} = \Psi(s_{ij}) : \mathbb{R} \to \{0,1\}$$
 (14)

Figure: Introduction of the switch variables

Source: [Sün12]

Notice how the switch variables s_{2i} is governing the loop closure.

After introducing the switch variables, the optimization problem now is augmented and can be written as:

$$S^*, X^* = \underset{X,S}{\operatorname{argmin}} \underbrace{\sum_{jj} \lVert \mathbf{f}(\mathbf{x_i}, \mathbf{u_i}) - \mathbf{x_{i+1}} \rVert_{\sum_{i}}^2}_{\text{Odometry Constraints}} + \underbrace{\sum_{jj} \lVert \psi(\mathbf{s_{ij}}) (\mathbf{f}(\mathbf{x_i}, \mathbf{u_{ij}}) - \mathbf{x_j}) \rVert_{\Lambda_{ij}}^2}_{\text{Switched Loop Closure Constraints}}$$

$$\underbrace{(15)}$$

Introducing the Switch Priors

- ► Idea: The switch variables must be initialized before starting the optimization.
- ▶ These initial values are the switch priors γ_{ii}
- ▶ Initially, accept all loop closure constraint, and let $\Psi(\gamma_{ii}) \approx 1$

$$s_{ij} pprox \mathcal{N}(\gamma_{ij}, \Xi_{ij})$$
 (16)

And Like we demonstrate previously, we can write

$$S^* = \underset{S}{\operatorname{argmin}} \sum_{ij} \|\gamma_{ij} - s_{ij}\|_{\equiv_i}^2$$
(17)

Putting all together now we have the final optimization equation for the SLAM pose graph

$$S^*, X^* = \underset{X,S}{\operatorname{argmin}} \sum_{ij} \|\mathbf{f}(\mathbf{x_i}, \mathbf{u_i}) - \mathbf{x_{i+1}}\|_{\sum_{i}}^{2} + \sum_{ij} \|\psi(\mathbf{s_{ij}})(\mathbf{f}(\mathbf{x_i}, \mathbf{u_{ij}}) - \mathbf{x_j})\|_{\Lambda_{ij}}^{2} + \sum_{i} \|\gamma_{ij} - \mathbf{s}_{ij}\|_{\Xi_{ij}}^{2} \quad (18)$$

Preparing the evaluation

The evaluation part will answer these questions

- How robust is the robust back-end?
- ▶ How much false loop closure can the robust back-end discard?
- ▶ What is the impact of the new implementation on the runtime?

- ➤ Quantitative Metrics
 - ► Root Mean Square (RMSE) and Relative Pose Error Metric (RPE): How much we deviate from the true trajectory.
- Qualitative Metrics
 - Precision-Recall: How well we discard false loop closure / keep True loop Closure.

Evaluation What we did

We used 6 Datasets and we added to them false loop closure using different methods:

- ► Random Constraints
- ▶ Local Constraints
- ► Randomly Grouped Constraints
- ► Locally Grouped Constraints

Influence of Ξ_{ij} on the results

- ► Goal: What is the influence of the initial value of the covariance ≡_{ij} on the results.
- ▶ Method: Set $\Xi_{ii} = \zeta$ and run the implementation.
- ▶ Result: RPE is minimal for $1.5 > \zeta > 0.3$

Robustness in presence of outliers

- Goal: How robust is the back-end against false loop closures
- Methodology: Inject 1000 outliers in our datasets
- ► Result: Our back-end is indeed robust

Dataset	max outl. ratio	min RPE _{pos}	max RPEpos	median RPEpos	incorrect solutions	success rate
Manhattan (g2o)	47.6%	0.0009	0.0009	0.0009	0	100%
Manhattan (orig.)	47.6%	0.0009	5.9659	0.0009	1	99.8%
City 10000	9.4%	0.0005	0.0005	0.0005	0	100%
Sphere2500	40.8%	0.0953	0.0953	0.0964	1	99.8%
Intel	111.9%	0.2122	0.2122	0.2132	0	100%

Table: overall RPEpos metric for the different datasets

Qualitative robustness of our back-end

- Goal: How well does our implementation discard false loop closure and keep the true one?
- ► Methodology: Use the precision-recall metrics
- ► Results: The proposed back-end reaches almost optimal results.

Figure: Precision-Recall for different datasets

Convergence and runtime behaviour

- ▶ Goal: Does the implementation decrease the convergence time?
- Methodology: Run different implementations on a Core2-duo processor (2.4 Ghz)
- ► Result: The runtime depends strongly on the dataset, the policy and the number of injected outliers.

Figure: Convergence time vs χ^2 error

- ► Fact: Two trials in the Sphere2500 and Manhattan(Olsons) failed.
- ► Reason of failure:
 - ► The Sphere2500 is composed by two misaligned sub-maps.
 - A false loop closure was not detected in the center in the Manhattan dataset.
- Lesson learned: Not deactivating a single loop closure leads to a global distortion of the graph.

Failed cases

Other failure we had using the Garage Dataset.

- ► Reason of failure:
 - Complex structure: Four parking decks (sparsely connected)
 - Few odometry Information
- Learned lesson: We need enough odometry information to generate a correct graph

Figure: Ground truth vs obtained results

Summary

- Explanation of the current state of the art of SLAM and its problems
- ► Proposition of our robust back-end solution
- Evaluation under many datasets and scenarios
- Explanation of the failed results

References I

- [SL04] Computer Science and System Engineering Laboratory, *Loop Closure Detection*, 2004.
- [SP12] Niko Sünderhauf and Peter Protzel, *Switchable constraints* for robust pose graph slam, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE, 2012, pp. 1879–1884.
- [Sün12] Niko Sünderhauf, Robust optimization for simultaneous localization and mapping, Ph.D. thesis, Technischen Universitat Chemnitz, 2012.