Subspace State Space System Identification

SysIDEA IIT Gandhinagar

October 28, 2014

Introduction

- Subspace system identification methods combine numerical linear algebra, systems theory and geometry to obtain a (state space) representation for the input-output data gathered from experimentation.
- Subspace methods for system identification involve the following important operations:
 - Creation of block Hankel matrices
 - Projection of Hankel matrices
 - Singular Value Decomposition
 - Least Squares Solution

Problem Definition: Deterministic System

Available Information:

- Input data: $[u(0) \ u(1) \ u(2) \cdots]$
- Output data: $[y(0) \ y(1) \ y(2) \ \cdots]$

Dataset is infinitely large and ergodic

Assuming that the data could be fit into a state space model representation given by,

$$x_{k+1} = Ax_k + Hu_k + w_k$$
$$y_k = Cx_k + Gu_k + v_k$$

we must find:

- n order of the system
- A, H, C, G matrices
- State of the system *x*

The general idea of Subspace Identification

- Generate 'subspaces' from input-output data
- Get orthogonal projections of certain subspaces
- Projections result into extended observability matrix or state estimates
- **Order** of the system can be known by taking SVD of the extended observability matrix Γ_i
- **5** *A*, *C* matrices can be deduced from extended observability matrix Γ_i
- **10** *H*, *G* matrices can be calculated by least squares

Subspace structure of linear systems

Consider the matrix equation,

$$Y_f = \Gamma_i X_i + M_i^d U_f + M_i^s M_f + N_f$$

where,

$$\Gamma_{i} \triangleq \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{i-1} \end{bmatrix}; M_{i}^{d} \triangleq \begin{bmatrix} G & 0 & \cdots & 0 & 0 \\ CH & G & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ CA^{i-2}H & CA^{i-3}H & \cdots & G & 0 \\ CA^{i-1}H & CA^{i-2}H & \cdots & CH & G \end{bmatrix}$$

and

$$M_{i}^{s} \triangleq \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ CH & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ CA^{i-2}H & CA^{i-3}H & \cdots & 0 & 0 \\ CA^{i-1}H & CA^{i-2}H & \cdots & CH & 0 \end{bmatrix}$$

i is similar to *r* in the notation we generally use...

Subspace structure of linear systems

• The input and output block Hankel matrices are defined as:

$$U_{0|i-1} \triangleq \begin{bmatrix} u_0 & u_1 & \cdots & u_{j-1} \\ u_1 & u_2 & \cdots & u_j \\ \vdots & \vdots & \cdots & \vdots \\ u_{i-1} & u_i & \cdots & u_{i+j-2} \end{bmatrix}; Y_{0|i-1} \triangleq \begin{bmatrix} y_0 & y_1 & \cdots & y_{j-1} \\ y_1 & y_2 & \cdots & y_j \\ \vdots & \vdots & \cdots & \vdots \\ y_{i-1} & y_i & \cdots & y_{i+j-2} \end{bmatrix}$$

- $U_p \triangleq U_{0|i-1}$ and $U_f \triangleq U_{i|2i-1}$
- \bullet $Y_p \triangleq Y_{0|i-1}$ and $Y_f \triangleq Y_{i|2i-1}$
- The subscripts *f* and *p* denote *future* and the *past* respectively.
- $\bullet \ W_p \triangleq \begin{bmatrix} Y_p \\ U_p \end{bmatrix}$
- Stochastically, $j \to \infty$, but for practical purposes, $j = n_y 2i + 1$

Orthogonal Projection

Consider two matrices $\alpha \in \mathbb{R}^{p \times j}$ and $\beta \in \mathbb{R}^{q \times j}$. Then,

• The orthogonal projection of row space of α to the row space of β is given by,

$$\alpha/\beta = \alpha \beta^{\dagger} \beta = \alpha \beta^{T} (\beta \beta^{T})^{-1} \beta$$

[†] indicates the Moore-Penrose generalized pseudo-inverse.

- Also, $\alpha/\beta^{\perp} = \alpha \alpha/\beta$, is the orthogonal projection of row space of α onto the perpendicular (orthogonal complement) of row space β
- It must be noted that, $\beta/\beta^{\perp} = 0$
- From other viewpoint, α/β means the *contribution* of β in α .

(b) The oblique projection of rowspace of *A* along the rowspace of *B* on the row space of *C*

Figure 1: Projection of vectors

Finding Extended Observability matrix Γ_i and the states X_i

Consider the matrix equation,

$$Y_f = \Gamma_i X_i + M_i^d U_f$$

- Subspace methods focus on recovering the $\Gamma_i X_i$ term from the above equation as $\Gamma_i X_i$ is a rank deficient term, which has rank n.
- Performing SVD on $\Gamma_i X_i$ provides the order n of the system.
- Γ_iX_i can be extracted from the matrix equation by orthogonally projecting the row space of Y_f on to row space of U_f[⊥] such that:

$$Y_f/U_f^{\perp} = \Gamma_i X_i/U_f^{\perp} + M_i^d U_f/U_f^{\perp}$$

$$Y_f/U_f^{\perp} = \Gamma_i X_i/U_f^{\perp}$$

Finding Extended Observability matrix Γ_i and the states X_i

• Pre-multiplying and post-multiplying the previous equation by W_1 and W_2 weighting matrices respectively we have,

$$W_1 Y_f / U_f^{\perp} W_2 = W_1 \Gamma_i X_i / U_f^{\perp} W_2$$

with the following conditions:

- First and second conditions imply that $rank(\Gamma_i X_i) = n$ is preserved after the orthogonal projection.
- Third condition means that the noises w_k and v_k are uncorrelated with W_2

Finding Extended Observability matrix Γ_i and the states X_i

• Assuming W_1 and W_2 follow the three conditions stated previously, let

$$\mathcal{O}_i \;\triangleq\; W_1 Y_f / U_f^\perp W_2 \;=\; W_1 \Gamma_i X_i / U_f^\perp W_2$$

• Then O_i has the following SVD:

$$\mathcal{O}_i = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$

- Following properties then exist,
- Also,

$$\tilde{X}_i \triangleq X_i / U_f W_2 = S_1^{\frac{1}{2}} V_2^T$$

What do weights W_1 and W_2 mean?

Method	W_1	W_2
NACID	т	(147 /111) † 147
N4SID	I_{li}	$(W_p/U_f^{\perp})^{\dagger}W_p$
CVA	$ \frac{[(V, /II^{\perp})(V, /II^{\perp})^{T}] - \frac{1}{2} }{}$	(IAI /II [⊥]) [†] (IAI /II [⊥])
CVA	$[(Y_f/U_f^{\perp})(Y_f/U_f^{\perp})^T]^{-\frac{1}{2}}$	$(W_p/U_f^{\perp})^{\dagger}(W_p/U_f^{\perp})$
MOESP	I_{li}	$(W_p/U_f^{\perp})^{\dagger}(W_p/U_f^{\perp})$
	**	(P) / (P) /
Basic 4SID	I_{li}	I_j
IV 4SID	T	Ф
1 1 4310	I_{li}	Ψ

- N4SID Numerical Subspace State Space Identification
- CVA Continuous Variate Analysis
- MOESP Multivariable Output Error State Space
- IV-4SID Instrumental Variable Subspace State Space Identification

Estimation of State Space Model Using X_i

• The state space matrices *A*, *H*, *C* and *G* can be found out by solving an overdetermined set of equations by least squares.

$$\begin{bmatrix} \tilde{X}_{i+1} \\ Y_{i|i} \end{bmatrix} = \begin{bmatrix} A & H \\ C & G \end{bmatrix} \begin{bmatrix} \tilde{X}_{i+1} \\ U_{i|i} \end{bmatrix}$$

Estimation of State Space Model Using Γ_i

- Determining *A* and *C*:
 - $A = \underline{\Gamma}_i^{\dagger} \overline{\Gamma}_i$
 - The shift structure of the matrix Γ_i is used to compute A. $\underline{\Gamma}_i$ is matrix Γ_i without last l rows and $\overline{\Gamma}_i$ is matrix Γ_i without first l rows.
 - $C = \Gamma_i(1:l,:)$, where l is the number of outputs.
- Determining *H* and *G*:

$$\Gamma_i^{\perp} Y_f U_f^{\dagger} = \Gamma_i^{\perp} M_i^d$$

• The above equation is linear in H and G with Γ_i^{\perp} , Y_f , U_f , A and C known.

• The equation $\Gamma_i^{\perp} Y_f U_i^{\dagger} = \Gamma_i^{\perp} M_i^d$ can be written as,

$$\begin{bmatrix} \mathcal{M}_1 & \mathcal{M}_2 & \cdots & \mathcal{M}_i \end{bmatrix} = \begin{bmatrix} \mathcal{L}_1 & \mathcal{L}_2 & \cdots & \mathcal{L}_i \end{bmatrix} \times \begin{bmatrix} G & 0 & \cdots & 0 & 0 \\ CH & G & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ CA^{i-2}H & CA^{i-3}H & \cdots & G & 0 \\ CA^{i-1}H & CA^{i-2}H & \cdots & CH & G \end{bmatrix}$$

Which is of the form,

$$\begin{bmatrix} \mathcal{M}_1 \\ \mathcal{M}_2 \\ \vdots \\ \mathcal{M}_i \end{bmatrix} = \begin{bmatrix} \mathcal{L}_1 & \mathcal{L}_2 & \cdots & \mathcal{L}_{i-1} & \mathcal{L}_i \\ \mathcal{L}_2 & \mathcal{L}_3 & \cdots & \mathcal{L}_i & 0 \\ \mathcal{L}_3 & \mathcal{L}_4 & \vdots & 0 & 0 \\ \vdots & \vdots & \cdots & 0 & 0 \\ \mathcal{L}_i & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I_l & 0 \\ 0 & \underline{\Gamma}_i \end{bmatrix} \begin{bmatrix} G \\ H \end{bmatrix}$$

Example 1

Given System:

$$A = \begin{bmatrix} 0.9 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}; H = \begin{bmatrix} 0.3 \\ 0.5 \\ 0.8 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}; G = \begin{bmatrix} 0 \end{bmatrix}$$

- Eigen values of the A matrix are: 0.9, 0.5 and 0.2
- Initial Conditions: $x_0 = [0.1 0.1 \ 0]^T$

Result: Example 1

Result: Example 1 (More Samples)

Result: Example 1

Identified System:

$$\hat{A} = \begin{bmatrix} 0.5971 & 0.3291 & -0.0271 \\ 0.2630 & 0.5822 & 0.1939 \\ -0.0416 & 0.1343 & 0.4207 \end{bmatrix}; \hat{H} = \begin{bmatrix} -0.3206 \\ 0.0963 \\ -0.0072 \end{bmatrix};$$

$$\hat{C} = \begin{bmatrix} -4.5567 & 1.3686 & -0.1022 \end{bmatrix}; \hat{G} = \begin{bmatrix} -0.0167 \end{bmatrix}$$

- Eigen values of \hat{A} matrix of the identified system are 0.9, 0.5 and 0.2
- Diagonalization of \hat{A} by similarity transformation gives the original A matrix