The Simplex Algorithm: Phase I Optimization Methods in Management Science Master in Management HEC Lausanne

Dr. Rodrigue Oeuvray

Introduction

Let's consider the following tableau:

				<i>X</i> 4			
	-1	-1	1	0	0	0	-3
$T_0 =$	0	-1	0	1	0	0	-3 -2 1
	1	-1	0	0 1 0	1	0	1
	-2	1	0	0		1	0

- To apply phase II of the simplex algorithm, we need a feasible tableau
- But this is not the case

Phase I of the Simplex Algorithm

Question

What can we do when a primal tableau is not feasible?

- Several approaches are possible. We focus in this presentation on the creation of an auxiliary LP whose solution provides a feasible solution to the initial problem
- Once a feasible solution is found, we can apply the phase II of the simplex algorithm

Construction of the Auxiliary Problem (1)

If the inital tableau associated with a standard LP is not feasible, then the system of constraints is of type:

$$egin{array}{lcl} {m A}_1 {m x}_{m D} & + & {m I} {m x}_{m E}^1 & = & {m b}_1 & ({m b}_1 \geq 0) \ {m A}_2 {m x}_{m D} & + & {m I} {m x}_{m E}^2 & = & {m b}_2 & ({m b}_2 < 0) \end{array}$$

By adding $x_0 \ge 0$ to the last column for constraints having $b_i < 0$, we get:

$$A_1 x_D + I x_E^1 = b_1$$

 $A_2 x_D + I x_E^2 = b_2 + 1 x_0$

If x_0 takes a value δ which is sufficiently large ($\geq \max\{|b_i| \mid b_i < 0\}$), the solution $x_D = 0$, $x_E^1 = b_1$, $x_E^2 = b_2 + 1\delta$ is feasible

Construction of the Auxiliary Problem (2)

Let's consider a standard LP (P)

The auxiliary problem (P^{aux}) associated to (P) is:

Max
$$(z', \text{ s.t. } x_D, x_E \ge 0, x_0 \ge 0)$$
 (P^{aux}) with $A_1x_D + Ix_E^1 = b_1$ $-1x_0 + A_2x_D + Ix_E^2 = b_2$ $-c_Dx_D - 0x_E^1 - 0x_E^2 + z = 0$ $x_0 + z' = 0$

The objective function of (P^{aux}) is Max $z'=-x_0 \iff -\operatorname{Min} z'=x_0$

Characteristics the Auxiliary Problem

Characteristics of The Auxiliary Problem

- It always has a feasible solution
- It always has an optimal solution
- We can use the Phase II of the simplex algorithm to solve the auxiliary problem
- The initial problem has at least one feasible solution if and only if the optimal value of the auxiliary problem is zero
- If the optimal value of the auxiliary problem is zero, then it
 is easy to get a feasible tableau for the initial problem
- If we have determined a feasible solution to the initial problem after solving the auxiliary problem, then we can apply the Phase II of the simplex algorithm to solve the initial problem

Primal Simplex Algorithm: Phase I

Input: a non-feasible tableau

Output: a feasible tableau or a certificate that no feasible solution exists

- (1) Construction of the auxiliary problem and of an initial feasible tableau:
 - ▶ Introduce x_0 in all the constraints with $b_i < 0$
 - Add the auxiliary objective function: Max $z' = -x_0$
 - Enter x_0 into the basis by pivoting around α_{j1} where

$$j = \min\{i \mid b_i = \min\{b_k \mid b_k < 0\}\}$$

- (2) Solve the auxiliary LP with phase II of the simplex algorithm with Bland's rule
 - If z' = 0 at the optimum, remove the columns of x_0 and z' and the row of z'. The remaining tableau is feasible for the initial problem
 - If z' < 0 at the optimum, the initial problem has no feasible solution

Example

Standard LP:

Max
$$z = 2x_1 - x_2$$

s.t. $-x_1 - x_2 + x_3 = -3$
 $-x_2 + x_4 = -2$
 $x_1 - x_2 + x_5 = 1$
 $x_i \ge 0 \quad i = 1, \dots, 5$

Initial tableau:

$$T_0 = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ -1 & -1 & 1 & 0 & 0 & 0 & -3 \\ 0 & -1 & 0 & 1 & 0 & 0 & -2 \\ 1 & -1 & 0 & 0 & 1 & 0 & 1 \\ -2 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

The tableau is not feasible

We define the auxiliary problem:

Max
$$z' = -x_0$$

s.t. $-x_0 - x_1 - x_2 + x_3 = -3$
 $-x_0 - x_2 + x_4 = -2$
 $x_1 - x_2 + x_5 = 1$
 $-2x_1 + x_2 + z = 0$
 $x_i \ge 0 \quad i = 0, \dots, 5$

Initial tableau of the auxiliary problem:

$$T_0^{aux} = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & z & z' \\ -1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & -3 \\ -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & -2 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & -2 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

The variable x_0 enters the basis and we pivot arount $lpha_{11}$

Then we apply the simplex algorithm:

	x_0	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	Z	z'	
$T_1^{aux} =$	1	1	1	-1	0	0	0	0	3
	0	1	0	-1	1	0	0	0	1
	0	1	-1	0	0	1	0	0	1
	0	-2	1	0	0	0	1	0	0
	0	-1	-1	1	0	0	0	1	-3

	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Z	z'	
$T_2^{aux} =$	1	0	1	0	-1	0	0	0	2
	0	1	0	-1	1	0	0	0	1
	0	0	-1	1	-1	1	0	0	0
	0	0	1	-2	2	0	1	0	2
	0	0	-1	0	1	0	0	1	-2

	x_0	x_1	x_2	<i>X</i> ₃	x_4	<i>X</i> 5	Z	z'	
$T_3^{aux} =$	1	0	1	0	-1	0	0	0	2
	0	1	0	-1	1	0	0	0	1
	1	0	0	1	0	1	0	0	2
	-1	0	0	-2	3	0	1	0	0
	1	0	0	0	0	0	0	1	0

- As soon as x_0 exits the basis, then z'=0
- As z' = 0, this tableau is **optimal** for the objective funtion z'
- We get an initial feasible tableau for the initial problem by removing the columns x_0 and z' and the last row

• We get the following feasible tableau for the initial problem:

	x_1	x_2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Z	
	0	1	0	-1	0	0	2
$T_0 =$	1	0	-1	1	0	0	1
	0	0	1	0	1	0	2
	0	0	-2	3	0	1	0

- Its basic solution is given by $x_1 = 1, x_2 = 2, x_5 = 2, x_3 = x_4 = 0$
- To determine the optimal solution, then we have to apply phase II of the simplex algorithm