Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Функциональный анализ IV

Конспект основан на лекциях Владимира Всеволодовича Пеллера

1 сентября 2020 г.

Конспект основан на лекциях по функциональному анализу, прочитанных Владимиром Всеволодовичем Пеллером студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в весеннем семестре 2019–2020 учебного года.

В конспекте содержится материал 4-ого семестре курса функционального анализа.

Авторы:

Михаил Опанасенко Михаил Германсков

© 2020 г.

Данный конспект лицензирован под лицензией Creative Commons Attribution 4.0 International License, см. https://creativecommons.org/licenses/by/4.0/.

Последняя версия конспекта и исходный код:

https://www.overleaf.com/read/nvchvynhkmty

Оглавление

I	Бан	аховы пространства	1
	1	Основные определения и свойства	1
	2	Нормированные подпространства	3
	3	Линейные операторы	5
	4	Теорема Хана-Банаха	7
	5	Банаховы пределы	10
	6	Нормированные фактор-пространства	12
	7	Теорема об открытом отображении	15
	8	Дополняющие подпространства	18
	9	Принцип равномерной ограниченности	18
2	Гильбертовы пространства		
	1	Определение и простейшие свойства	20
	2	Ортогональность	21
	3	Ортонормированные множества	24
	4	Изоморфизмы гильбертовых пространств	28
3	Локально выпуклые пространства		
	1	Топологические векторные пространства	30
	2	Теоремы отделимости	37
	3	Слабые топологии	41
	4	Теорема Крейна – Мильмана	49
	5	Теорема Стоуна – Вейерштрасса	52
	6	Теорема Радона – Никодима	54
4	Операторы в банаховых пространствах		58
	1	Сопряжённые операторы	58
	2	Компактные операторы	60
	3	Банаховы алгебры (с единицей)	62
	4	Функциональное исчисление Рисса	66
A	Teo	рема Бэра	70
R	Сет	и	72

Глава 1

Банаховы пространства

1 Основные определения и свойства

Определение. Векторное пространство X над полем \mathbb{R} или \mathbb{C} называется *нормированным пространством*, если на X определена функция $x \mapsto \|x\|$, удовлетворяющая условиям:

- (1) $||x|| \ge 0$; и если ||x|| = 0, то x = 0;
- (2) $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- (3) $||x + y|| \le ||x|| + ||y||$.

Функция $x \mapsto ||x||$ называется нормой на пространстве X.

По норме на X можно естественным образом определить метрику $d(x,y) = \|x - y\|$ и, соответственно, топологию.

Упражнение. Отображения $(x, y) \mapsto x + y$ и $(\alpha, x) \mapsto \alpha x$ непрерывны.

Определение. Полное нормированное пространство называется *банаховым пространством*.

Определение. Банахово пространство X_{\sharp} называется *пополнением* пространства X, если X — подпространство X_{\sharp} , X плотно в X_{\sharp} , и вложение X в X_{\sharp} изометрично.

Любые два пополнения изоморфны. Пополнение можно построить следующим образом: рассмотрим множество \widetilde{X} фундаментальных последовательностей $\{x_n\}_{n\geqslant 1}$ в X. Будем писать $\{x_n\} \sim \{y_n\}$, если $\|x_n-y_n\| \xrightarrow[n\to\infty]{} 0$. Тогда множество \widetilde{X}/\sim с нормой

$$\|\{x_n\}_{n\geqslant 1}\|=\lim_{n\to\infty}\|x_n\|$$

— искомое пополнение.

Пример 1.1. Рассмотрим пространство непрерывных вещественных (или комплексных) функций C[a,b] с нормой

$$||f||_1 = \int_a^b |f(t)| \, \mathrm{d}t.$$

Покажем, что это пространство неполно. Пусть c: a < c < b. Рассмотрим набор функций f_n , равных нулю на [a,c], единице на $[c+\frac{1}{n},b]$, и линейных на $[c,c+\frac{1}{n}]$. Нетрудно проверить, что эта последовательность фундаментальна, и что предел $\{f_n\}$ разрывен в точке c.

Тем не менее, пространство C[a,b] с нормой

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

является банаховым.

Определение. Нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на векторном пространстве X называются эквивалентными, если они задают на X одну и ту же топологию.

Утверждение 1.1. Нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на X эквивалентны тогда и только тогда, когда для некоторых констант $c_1, c_2 > 0$ выполнены неравенства

$$c_1||x||_1 \le ||x||_2 \le c_2||x||_1.$$

Доказательство. Доказывалось в курсе общей топологии для метрик.

Из примера 1.1 следует, что нормы $||f||_1$ и $||f||_\infty$ на C[a,b] неэквивалентны.

Упражнение. Если сходимость в одной норме эквивалентна сходимости в другой норме, то они эквивалентны.

Пример 1.2. В курсе анализа доказывалось, что пространство $L^p(X, \mu)$, где μ — мера на X, банахово. В дальнейшем нам часто будет встречаться пространство $\ell^p(X)$, состоящее из таких функций $f: \mathbb{N} \to K$, где $K = \mathbb{R}$ или $K = \mathbb{C}$, что

$$\sum_{n\geqslant 1}|f(n)|^p<\infty.$$

Это пространство — банахово, так как является частным случаем $L^p(X,\mu)$, где μ — считающая мера на дискретной σ -алгебре $2^{\mathbb{N}}$. В частности, пространства абсолютно сходящихся последовательностей ℓ^1 и ограниченных последовательностей ℓ^∞ банаховы.

Теорема 1.2. В конечномерном пространстве все нормы эквивалентны.

 $^{^{1}}$ Отметим, что здесь существенно, что топологии *одинаковые*. Как известно, полнота не является топологическим свойством, то есть не наследуется при гомеоморфизме.

Доказательство. Пусть E — векторное пространство над \mathbb{R} или над \mathbb{C} размерности $n; e_1, \ldots, e_n$ — базис E. Тогда любой элемент $x \in E$ представляется в виде

$$x = \sum_{i=1}^{n} \alpha_i e_i.$$

Определим норму в E по правилу

$$|x| = \sqrt{\sum_{i=1}^{n} |\alpha_i|^2}.$$

Пусть $\|\cdot\|$ — произвольная норма на X. Тогда

$$||x|| \leq \sum_{i=1}^{n} ||\alpha_{i}e_{i}|| = \sum_{i=1}^{n} ||\alpha_{i}|||e_{i}|| \leq \sqrt{\sum_{i=1}^{n} ||\alpha_{i}||^{2}} \cdot \sqrt{\sum_{i=1}^{n} ||e_{i}||^{2}}$$

$$\leq M\sqrt{n} \sqrt{\sum_{i=1}^{n} ||\alpha_{i}||^{2}} = M\sqrt{n} ||x||,$$

где $M = \max \|e_i\|$. Таким образом, мы получили оценку в одну сторону.

Отображение $x\mapsto \varphi(x)=\|x\|$ непрерывно в норме $|\cdot|$, поскольку из условия $|x_k-x|\xrightarrow[k\to\infty]{}0$ следует, что

$$\left| \|x_k\| - \|x\| \right| \leqslant \|x_k - x\| \leqslant M\sqrt{n} |x_k - x| \xrightarrow[k \to \infty]{} 0.$$

Рассмотрим компактное в норме $|\cdot|$ множество $S = \{x \in E : |x| = 1\}$. Поскольку отображение $\varphi(x)$ непрерывно в этой норме, можно найти число

$$\varepsilon = \min_{x \in S} \varphi(x) > 0.$$

Тогда $||x||/|x| \ge \varepsilon$, а значит, $||x|| \ge \varepsilon |x|$.

Таким образом, все конечномерные нормированные пространства являются банаховыми. Отсюда следует, что любое конечномерное векторное подпространство является замкнутым в исходном пространстве (так как полное подпространство замкнуто).

2 Нормированные подпространства

Определение. Пусть X — нормированное пространство. Линейное подпространство $E \subset X$ называется *нормированным подпространством*, если оно замкнуто в топологии X.

Утверждение 2.1 (лемма о почти перпендикуляре). Пусть E — нормированное пространство, $F \subsetneq E$ — его собственное подпространство. Тогда для любого $\varepsilon > 0$

найдётся такой $x \in E$, что ||x|| = 1 и $\operatorname{dist}(x, F) > 1 - \varepsilon$.

Доказательство. Пусть $y \in E, y \notin F$. Поскольку F замкнуто, d = dist(y, F) > 0. Зафиксируем число $\delta > 0$. Выберем $a \in F$ так, чтобы были выполнены неравенства

$$d \le ||y - a|| < d + \delta. \tag{2.1}$$

Положим

$$x = \frac{1}{d+\delta} (y-a).$$

Из (2.1) следует, что $||x|| \le 1$, и что

$$\operatorname{dist}(x, F) \ge ||x|| \ge \frac{d}{d + \delta}.$$

Заметим, что поскольку F — линейное пространство,

$$dist(kx, F) = \min_{f \in F} ||kx - f|| = \min_{f \in F} ||kx - kf|| = k \operatorname{dist}(x, F).$$

Значит, можно умножить x на такое число $k \geqslant 1$, что ||kx|| = 1, и при этом получится неравенство

$$\operatorname{dist}(kx, F) \geqslant \frac{kd}{d+\delta}.$$

Осталось устремить δ к нулю.

Теорема 2.2. Пусть X — нормированное пространство. Следующие утверждения эквивалентны:

- (1) $\dim X < \infty$;
- (2) всякое ограниченное подмножество в X относительно компактно, то есть его замыкание компактно.

Доказательство.

- $(1) \Longrightarrow (2)$. Это так, поскольку утверждение выполнено в евклидовом пространстве: компакты это замкнутые ограниченные множества.
- $(2)\Longrightarrow (1).$ Пусть пространство X бесконечномерно. По лемме о почти перпендикуляре построим последовательность векторов $\{x_n\}$, удовлетворяющую условиям

$$||x_{n+1}|| = 1$$
 u dist $(x_{n+1}, span\{x_1, ..., x_n\}) > \frac{1}{2}$

для всех n. Тогда $||x_n - x_m|| > \frac{1}{2}$ для разных n и m, то есть замыкание множества $\{x_n\}_{n\geqslant 1}$ не может быть компактным, хотя оно ограничено (лежит в единичном шаре)². Противоречие.

 $^{^2}$ Здесь мы пользуемся тем, что в метрических пространствах секвенциальная компактность равносильна обычной компактности.

3 Линейные операторы

Теорема 3.1. Пусть X, Y — нормированные пространства, $T: X \to Y$ — линейный оператор. Тогда следующие условия эквивалентны:

- (1) T непрерывный оператор;
- (2) T непрерывен в нуле;
- (3) $T(B_X)$ ограниченное множество в Y, где $B_X = \{x \in X : ||x|| \le 1\}$.

Доказательство.

- (1) ⇒ (2). Очевидно.
- (2) \Longrightarrow (3). Рассмотрим открытый единичный шар $U = \{y \in Y : \|y\| < 1\}$ в Y. Непрерывность в нуле означает, что для некоторого $\delta > 0$ из $\|x\| < \delta$ следует, что $Tx \in U$. Пусть $\|z\| \le 1$. Тогда $\|T(\delta z)\| \le 1$, что эквивалентно условию $\|Tz\| \le 1/\delta$. Значит, образ единичного шара ограничен.
- $(3) \Longrightarrow (1)$. Пусть из $\|x\| \le 1$ следует, что $\|Tx\| \le k$. Тогда по линейности для любого $x \in X$ выполнено $\|Tx\| \le k\|x\|$. Если $\|x_n x\| \xrightarrow[n \to \infty]{} 0$, то

$$||Tx_n - Tx|| = ||T(x_n - x)|| \le k||x_n - x|| \xrightarrow[n \to \infty]{} 0,$$

то есть оператор T непрерывен.

Определение. Пусть $T: X \to Y$ — непрерывный оператор. Его норма определяется следующим образом³:

$$||T|| := \sup_{\|x\| \le 1} ||Tx|| = \sup_{\|x\| = 1} ||Tx|| = \sup_{x \ne 0} \frac{||Tx||}{\|x\|} = \min\{k : ||Tx|| \le k ||x||\}.$$

Таким образом, пространство линейных непрерывных операторов само является нормированным пространством. Оно обозначается через B(X,Y) или L(X,Y).

Утверждение 3.2. Если Y — банахово пространство, то и B(X,Y) — банахово пространство.

Доказательство. Пусть $\{T_n\}$ — последовательность Коши, $x \in X$. Тогда $\{T_n(x)\}$ — последовательность Коши в Y, так как

$$||T_n x - T_m x|| = ||(T_n - T_m)x|| \le ||T_n - T_m|| \cdot ||x|| \xrightarrow[n,m \to \infty]{} 0.$$

Следовательно, по условию для каждого $x \in X$ существует предел

$$T(x) := \lim_{n \to \infty} T_n(x).$$

³Проверка равенств, указанных ниже, оставляется в качестве упражнения.

Покажем, что T — искомый оператор, то есть предел $\{T_n\}$. Очевидно, что он линеен;

$$||Tx|| \leqslant \lim_{n \to \infty} ||T_n x|| \leqslant k||x||,$$

то есть этот оператор ограничен и непрерывен. Наконец,

$$||T_nx - Tx|| = \lim_{m \to \infty} ||T_nx - T_mx|| \le \lim_{m \to \infty} ||T_n - T_m|| \cdot ||x|| \xrightarrow[n \to \infty]{} 0,$$

то есть T является пределом $\{T_n\}$, что и требовалось.

В частности, из этого утверждения следует, что пространства $L(X,\mathbb{C})$ и $L(X,\mathbb{R})$ банаховы. Они обозначаются через X^* и называются двойственными к X.

Определение. Пусть $\{T_n\} \subset B(X,Y)$. Будем говорить, что T_n сходится к T поточечно (сильно, или в сильной операторной топологии⁴), если $T_n(x) \xrightarrow[n \to \infty]{} T(x)$ в Y для всех $x \in X$.

Если T_n сходится к T по норме, то T_n сходится к T и поточечно, так как

$$||T_n(x) - T(x)|| = ||(T_n - T)x|| \le ||T - T_n|| \cdot ||x||.$$

Следующий пример демонстрирует, что обратное в общем случае неверно.

Пример 3.1. Рассмотрим пространство ℓ^2 квадратично-суммируемых последовательностей и оператор сдвига

$$S^*(x_0, x_1, x_2, \dots) = (x_1, x_2, \dots).$$

Ясно, что $(S^*)^n(x_0,x_1,x_2,\dots)=(x_n,x_{n+1},\dots)$; и последовательность $\{(S^*)^n\}$ сходится поточечно к нулю, так как норма $(S^*)^n(x)$ — это хвост сходящегося ряда. Тем не менее, $\|(S^*)^n\|=1$ для всех $n\in\mathbb{N}$, так как $(S^*)^n(e_n)=1$, где e_n — последовательность с единицей на n-ом месте и нулями на всех остальных.

Теорема 3.3. Пусть Y — банахово пространство, $\{T_n\}_{n\geqslant 1}\subset B(X,Y)$, E плотно в X. Предположим, что последовательность $\{T_n(e)\}$ сходится для всех $e\in E$,

$$\sup_{n\geqslant 1}\|T_n\|=M<\infty.$$

Тогда существует такой оператор $T \in B(X,Y)$, что $||T|| \leq M$ и T_n поточечно сходится к T.

Доказательство. Если $e \in E$, то определим

$$T(e) = \lim_{n \to \infty} T_n(e).$$

⁴Когда-нибудь позже мы узнаем, что это.

В общем случае, аппроксимируем $x \in X$ элементами $e_j \in E$; тогда $\{Te_j\}$ — последовательность Коши, то есть можно определить

$$T(x) = \lim_{j \to \infty} T(e_j).$$

Легко проверить, что этот предел не зависит от последовательности $\{e_j\}$ и что T — линейный оператор. Ясно, что $\|Te\| \le M\|e\|$ для всех $e \in E$, а потому $\|Tx\| \le M\|x\|$ на всем X.

4 Теорема Хана-Банаха

Определение. Пусть X — векторное пространство над полем K, где $K = \mathbb{R}$ или $K = \mathbb{C}$. Будем называть функцию $p: X \to [0, \infty)$ *полунормой*, если:

- (1) $p(x + y) \le p(x) + p(y)$ для всех $x, y \in X$;
- (2) $p(\alpha x) = |\alpha| p(x)$ для всех $x \in X$, где $\alpha \in K$.

Полунорма отличается от нормы тем, что полунорма может принимать нулевые значения. Например, на C[a,b] отображение $f\mapsto |f(a)|$ является полунормой.

Определение. Пусть X — вещественное линейное пространство. Отображение $q: X \to \mathbb{R}$ называется *сублинейным функционалом*, если:

- (1) $q(x + y) \le q(x) + q(y)$ для всех $x, y \in X$;
- (2) q(tx) = tq(x) для всех $x \in X$, где $t \ge 0$.

Отметим, что сублинейный функционал может принимать отрицательные значения. Очевидно, что полунорма является сублинейным функционалом.

Теорема 4.1 (теорема Хана–Банаха). Пусть X — вещественное векторное пространство, p — сублинейный функционал на X, Y — линейное подпространство $X, f \colon Y \to \mathbb{R}$ — линейный функционал, причем $f(x) \leqslant p(x)$ для всех $x \in Y$. Тогда существует линейный функционал $F \colon X \to \mathbb{R}$, являющийся продолжением f на X, который удовлетворяет условию $F(x) \leqslant p(x)$ на всем пространстве X.

Доказательство.

Шаг 1. Докажем теорему Хана–Банаха в коразмерности один. Пусть L — векторное подпространство L_{\flat} , где $L_{\flat}=\mathrm{span}(L,x_0),\,x_0\notin L$. Построим функцию f_{\flat} , продолжающую f на L_{\flat} . Пусть $f_{\flat}(x_0)=c_0$, где c_0 — некоторое число, которое мы определим позже. Если $y=x+\alpha x_0$, где $x\in L$ и $\alpha\in\mathbb{R}$, то положим

$$f_b(y) = f(x) + \alpha c_0$$
.

Хотим подобрать такое c_0 , что бы для всех $y \in L_b$ выполнялось неравенство

$$f_b(y) = f(x) + \alpha c_0 \le p(x + \alpha x_0) = p(y).$$

Если $\alpha > 0$, то поделим на α и воспользуемся сублинейностью:

$$f\left(\frac{1}{\alpha}x\right) + c_0 \leqslant p\left(\frac{1}{\alpha}x + x_0\right).$$

Заменив $\frac{1}{\alpha}x$ на v, получаем неравенство на c_0 :

$$p(v + x_0) - f(v) \ge c_0 \qquad (\forall v \in L).$$

Если $\alpha < 0$, то делим на $-\alpha$ и получаем аналогичное неравенство:

$$f(u) - p(u - x_0) \le c_0 \qquad (\forall u \in L).$$

Таким образом, нужно найти такое число c_0 , что

$$f(v) - p(v - x_0) \le c_0 \le p(u + x_0) - f(u)$$
 $(\forall u, v \in L).$

Оно существует тогда и только тогда, когда правая часть не меньше левой при всех $u, v \in L$. Это условие эквивалентно неравенству

$$p(u + x_0) + p(v - x_0) \ge f(u) + f(v) = f(u + v)$$
 $(\forall u, v \in L),$

которое всегда выполнено по неравенству треугольника:

$$f(u+v) \le p(u+v) = p((u+x_0) + (v-x_0)) \le p(u+x_0) + p(v-x_0).$$

Шаг 2. Перейдём к общему случаю. Обозначим через \mathfrak{P} множество пар (M,g), где $M\supset Y$ — векторное подпространство $X,g\colon M\to \mathbb{R}$ — линейный функционал, продолжающий f и не превосходящий p на всем M. Заведём на \mathfrak{P} частичный порядок: $(M_1,g_1)<(M_2,g_2)$, если $M_1\subset M_2$ и $g_2|_{M_1}=g_1$.

Заметим, что у любого линейно упорядоченного подмножества $\mathfrak{Q} \subset \mathfrak{P}$ есть точная верхняя грань — объединение. Поэтому по лемме Цорна в \mathfrak{P} существует некоторый максимальный элемент (M,g). Осталось лишь доказать, что M=X. Предположим, что это не так. Тогда существует элемент $x_0 \in X \setminus M$, и по первому пункту можно «хорошо» продолжить g на пространство $\mathrm{span}(M,x_0)$, что противоречит тому, пара (M,g) максимальна.

Теорема 4.2 (теорема Хана–Банаха в комплексном случае). Пусть X — комплексное векторное пространство, Y — линейное подпространство X, p — полунорма на X, $f\colon Y\to\mathbb{C}$ — линейный функционал, $|f(y)|\leqslant p(y)$ для всех $y\in Y$. Тогда существует продолжение $F\colon X\to\mathbb{C}$ функционала f, удовлетворяющее условию $|F(x)|\leqslant p(x)$ для всех $x\in X$.

Доказательство. Рассмотрим функцию $u\colon z\mapsto \mathrm{Re}\, f(z)$. Очевидно, что $|u(z)|\leqslant p(z)$. Продолжим u по теореме Хана–Банаха до $\mathbb R$ -линейного функционала U. Положим

$$F(z) = U(z) - iU(iz).$$

Очевидно, что F — тоже \mathbb{R} -линейный функционал, притом из определения следует, что F(iz)=iF(z), то есть F — \mathbb{C} -линейный функционал. Пусть $z\in Y$. Тогда

$$F(z) = \operatorname{Re} f(z) - i \operatorname{Re} f(iz),$$

но так как f(iz) = if(z) и $\operatorname{Re} iz = -\operatorname{Im} z$, то $F(z) = \operatorname{Re} f(z) + i\operatorname{Im} f(z) = f(z)$, то есть F является продолжением f.

Осталось проверить, что $|F(z)| \le p(z)$. Для каждого z существует такое $\tau \in \mathbb{C}$, что $|\tau| = 1$ и $F(\tau z) \in \mathbb{R}$. Значит,

$$|F(z)| = |F(\tau z)| = |U(\tau z)| \le p(\tau z) = p(z),$$

что завершает доказательство.

Следствие 4.3. Пусть X — нормированное пространство, Y — линейное подпространство X, $f \colon Y \to \mathbb{R}$ — ограниченный линейный функционал. Тогда существует ограниченный линейный функционал $F \colon X \to \mathbb{R}$, удовлетворяющий условию $\|F\| \leqslant \|f\|$.

Доказательство. Рассмотрим отображение

$$p(x) = ||f|| \cdot ||x||.$$

Нетрудно видеть, что p — сублинейный функционал. По определению p очевидно, что $f(x) \le p(x)$ при $x \in Y$. Значит, по теореме Хана-Банаха существует продолжение $F: X \to \mathbb{R}$, не превосходящее p. Тогда $-F(x) = F(-x) \le p(x)$, то есть $|F(x)| \le p(x)$, а отсюда легко вывести искомое неравенство:

$$|F(x)| \le ||f|| \cdot ||x|| \implies |F(x/||x||)| \le ||f|| \qquad (\forall x \in X),$$

то есть $||F|| \le ||f||$.

Теорема 4.4. Пусть Y — нормированное подпространство X. Тогда для любой точки $x_0 \notin Y$ существует такой функционал $F \in X^*$, что

$$F|_{Y} = 0$$
, $||F|| \le 1$ и $F(x_0) = \text{dist}(x_0, Y)$.

Доказательство. Пусть $p(x)=\mathrm{dist}(x,Y)$. Нетрудно проверить, что p — полунорма. Пусть $d=p(x_0)>0$, $L=\mathrm{span}(Y,x_0)$.

Определим отображение $f: L \to \mathbb{R}$ следующим образом: если $u = y + \alpha x_0$, где $y \in Y$ и $\alpha \in \mathbb{R}$, то $f(u) = \alpha \cdot \mathrm{dist}(x_0, Y)$. Заметим, что $f(u) \leqslant p(u)$:

$$p(u) = \operatorname{dist}(y + \alpha x_0, Y) = \operatorname{dist}(\alpha x_0, Y) = |\alpha| \operatorname{dist}(x_0, Y) \ge f(u).$$

Значит, по теореме Хана-Банаха существует функция $F: X \to \mathbb{R}$, продолжающая f, то есть удовлетворяющая условиям $F|_Y = 0$, $F(x_0) = \operatorname{dist}(x_0, Y)$ и $|F(x)| \leqslant p(x)$. Тогда

$$|F(x)| \le p(x) \le ||x||, \quad \forall x \in X,$$

то есть $||F|| \leq 1$.

Следствие 4.5. Для любого ненулевого элемента $x_0 \in X$ существует функционал $F \in X^*$, удовлетворяющий условиям $|F(x_0)| = ||x_0||$ и ||F|| = 1.

Доказательство. Применим теорему 4.4 в случае $Y = \{0\}$. Тогда будут выполнены условия $|F(x_0)| = ||x_0||$ и $||F|| \le 1$. Равенство в последнем неравенстве достигается, так как $|F(x_0)|/||x_0|| = 1$, то есть $||F|| \ge 1$.

Теорема 4.6. Пусть X — нормированное пространство, $M \subset X$ — линейное множество. Тогда

$$\overline{M} = \bigcap \{\operatorname{Ker} \lambda \mid \lambda \in X^* : M \subset \operatorname{Ker} \lambda \}.$$

Доказательство. Обозначим пересечение буквой N. Очевидно, что $\overline{M} \subset N$, потому что $M \subset N$ и N замкнуто как пересечение замкнутых множеств⁵. Докажем обратное включение. Пусть $x_0 \notin \overline{M}$. Тогда по теореме 4.4 существует такой линейный функционал $\lambda \in X^*$, что $\lambda(\overline{M}) = 0$ и $\lambda(x_0) = \mathrm{dist}(x_0, \overline{M}) > 0$. Значит, $x_0 \notin N$ и $N \subset \overline{M}$. ■

Следствие 4.7. Пусть X — нормированное пространство, $M \subset X$ — линейное множество. M плотно в X тогда и только тогда, когда для любого $\lambda \in X^*$ из $\lambda|_M = 0$ следует $\lambda = 0$.

5 Банаховы пределы

Рассмотрим теперь подпространство сходящихся ограниченных последовательностей в $\ell^\infty(\mathbb{R})$ и функционал

$$f(\{x_n\}) = \lim_{n \to \infty} x_n$$

в этом подпространстве. Очевидно, что $\|f\|=1$; если $x_n\geqslant 0$ для всех n и $\alpha>0$, то $f(\{\alpha x_n\})\geqslant 0$. Заметим также, что

$$f({x_1, x_2, x_3, \dots}) = f({x_0, x_1, x_2 \dots}).$$

На основе этих свойств дадим следующее определение.

Определение. *Банаховым пределом* называется непрерывный линейный функционал $L \colon \ell^{\infty}(\mathbb{R}) \to \mathbb{R}$, обладающий следующими свойствами:

- (1) $L(\{\xi_n\}) = \lim_{n \to \infty} (\{\xi_n\})$, если $\{\xi_n\}$ сходящаяся последовательность;
- (2) если $\xi_n\geqslant 0$ для всех $n\in\mathbb{N},$ то $L(\{\xi_n\})\geqslant 0;$
- (3) $L(S^*(\xi)) = L(\xi)$ для всех $\xi \in \ell^{\infty}(\mathbb{R})$, где S^* оператор сдвига последовательности.

Утверждение 5.1. Банахов предел существует.

 $^{^{5}}$ Ядро замкнуто, так как это прообраз нуля, который сам является замкнутым множеством.

Доказательство. Пусть $\xi = \{\xi_n\}_{n \ge 1} \in \ell^{\infty}(\mathbb{R})$. Определим

$$p(\xi) = \limsup_{n \to \infty} \left(\frac{1}{n} \sum_{j=1}^{n} \xi_j \right).$$

Нетрудно видеть, что это сублинейный функционал на $\ell^{\infty}(\mathbb{R})$. Заметим, что для сходящихся последовательностей $\zeta \in \ell^{\infty}(\mathbb{R})$ имеет место равенство $p(\zeta) = f(\zeta)$. По теореме Хана–Банаха существует продолжение $L \colon \ell^{\infty}(\mathbb{R}) \to \mathbb{R}$ функционала p. Для него выполнены следующие свойства:

- (1) Ограничение L на множество сходящихся последовательностей совпадает с функционалом f.
- (2) Если $\xi_j \le 0$, то $L(\{\xi_j\}) \le 0.7$
- (3) Обозначим

$$(S^*(\xi) - \xi)_j = \xi_{j+1} - \xi_j = \eta_j.$$

Тогда

$$p(\eta) = \limsup_{n \to \infty} \left(\frac{1}{n} \sum_{j=1}^{\infty} (\xi_{j+1} - \xi_j) \right) = \lim_{n \to \infty} \frac{1}{n} (\xi_{n+1} - \xi_1) = 0,$$

так как последовательность ξ ограничена. Таким образом, $L(\eta) \leq 0$. Аналогичным образом показывается, что $L(\widetilde{\eta}) \leq 0$, где $\widetilde{\eta}_i = -\eta_i$, то есть $L(\eta) = 0$.

Таким образом, L — искомый банахов предел.

Упражнение. Что можно сказать о банаховом пределе последовательности

$$\theta = (0, 1, 0, 1, 0, 1, \dots)$$
?

Определение. Последовательность $\{x_n\}_{n\geq 1}$ называется почти сходящейся, если

$$\frac{1}{n} \sum_{i=m+1}^{m+n} x_i \xrightarrow[n \to \infty]{} \alpha$$
 равномерно по m ,

где $\alpha \in \mathbb{R}$.

Можно доказать, что банахов предел почти сходящейся последовательности единственен и равен α .

Определим теперь банахов предел для комплексных ограниченных последовательностей.

Определение. *Банаховым пределом* называется непрерывный линейный функционал $L \colon \ell^\infty(\mathbb{C}) \to \mathbb{C}$, обладающий следующими свойствами:

 $^{^6}$ Во втором семестре в курсе анализа мы доказывали, что если существует обычный предел, то существует и предел по Чезаро.

 $^{^{7}}$ Из этого по линейности L следует свойство (2) определения банахова предела.

- (1) $L(\{\xi_n\}) = \lim_{n \to \infty} (\{\xi_n\})$, если $\{\xi_n\}$ сходящаяся последовательность;
- (2) если $\{\xi_n\}$ последовательность неотрицательных вещественных чисел, то $L(\{\xi_n\})$ тоже вещественное неотрицательное число;
- (3) $L(S^*(\xi)) = L(\xi)$ для всех $\xi \in \ell^{\infty}(\mathbb{R})$.

В дальнейшем для удобства вещественный банахов предел обозначается через $L_{\mathbb{R}}$, а комплексный — через $L_{\mathbb{C}}$.

Утверждение 5.2. Существует комплексный банахов предел $L_{\mathbb{C}}$, удовлетворяющий условию $||L_{\mathbb{C}}|| = 1$.

Доказательство. Мы уже знаем, что существует банахов предел $L_{\mathbb{R}}\colon \ell^\infty(\mathbb{R}) \to \mathbb{R}$. Определим

$$L_{\mathbb{C}} \colon \xi \mapsto L_{\mathbb{R}}(\operatorname{Re} \xi) + iL_{\mathbb{R}}(\operatorname{Im} \xi).$$

Очевидно, что для него выполняются все три свойства банахова предела.

Проверим, что $\|L_{\mathbb{C}}\|=1$. Заметим, что функция $L(\xi)/\|\xi\|$ непрерывна на ненулевых последовательностях. Так как простые функции плотны в $\ell^{\infty}(\mathbb{C})$, можно выбрать последовательность $\{f_n\}$ простых функций, таких, что $f_n \xrightarrow[n \to \infty]{} \xi$. Значит, если мы докажем для простых функций, что $L_{\mathbb{C}}(\{f_n\})/\|\{f_n\}\| \leqslant 1$, то докажем и требуемое утверждение. Пусть $f=\sum_{k=1}^n \alpha_k \chi_{E_k}$ для некоторого дизъюнктного набора $\{E_k\}$ подмножеств \mathbb{Z}_+ . Тогда

$$L(f)/\|f\| = L\left(\sum_{k=1}^n \alpha_k \chi_{E_k}\right)/\|f\| \leqslant \max_{1 \leqslant k \leqslant n} |\alpha_k| \cdot L\left(\sum_{k=1}^n \chi_{E_k}\right)/\|f\| \leqslant L\left(\chi_{\cup E_k}\right) \leqslant 1.$$

Поскольку $L_{\mathbb{C}}(1,1,1,\dots)=1, \|L_{\mathbb{C}}\|=1$, и утверждение доказано.

6 Нормированные фактор-пространства

Определение. Пусть X — нормированное пространство, M — нормированное подпространство. Тогда *нормированным фактор-пространством* X по M называется векторное пространство X/M (класс эквивалентности элемента $x \in X$ будем обозначать через x+M) с нормой

$$||x + M||_{X/M} = \inf\{||x + y|| : y \in M\} = \operatorname{dist}(x, M).^{8}$$

В дальнейшем под Q понимается отображение $Q: X \to X/M$, $x \mapsto x + M$. Ясно, что Q — непрерывный линейный оператор, так как $\|Q(x)\| \le \|x\|$; причём $\|Q\| = 1$, если $M \ne X$.

Теорема 6.1.

(1) Если X — банахово пространство, то и X/M — банахово пространство.

⁸Корректность определения оставляется в качестве упражнения.

- (2) Множество $W \subset X/M$ открыто тогда и только тогда, когда $Q^{-1}(W)$ открыто.
- (3) Q открытое отображение.

Доказательство.

(1) Пусть $\{x_n + M\}_{n \geqslant 1}$ — последовательность Коши в X/M. Тогда существует такая подпоследовательность $\{x_{n_k} + M\}_{k \geqslant 1}$, что $\|x_{n_k} - x_{n_{k+1}} + M\| < 2^{-k}$. Покажем, что существует последовательность $\{y_k\} \subset M$, для которой выполнено условие

$$||x_{n_k} - y_k - (x_{n_{k+1}} - y_{k+1})||_X < 2 \cdot 2^{-k}.$$

Положим $y_1 = 0$. Выберем y_2 так, что

$$||x_{n_1} - x_{n_2} + y_2|| \le ||x_{n_1} - x_{n_2} + M|| + 2^{-1} < 2 \cdot 2^{-1}.$$

Это можно сделать, так как норма в X/M — инфимум. Аналогично, можно выбрать y_3 таким образом, что

$$||(x_{n_2} + y_2) - (x_{n_3} + y_3)|| \le ||x_{n_2} - x_{n_3} + M|| + 2^{-2} < 2 \cdot 2^{-2}.$$

По индукции получаем искомую последовательность $\{y_k\}$. Тогда $\{x_{n_k}-y_k\}_{k\geqslant 1}$ — последовательность Коши в X. У неё есть некоторый предел x_0 . Значит,

$$x_{n_k}+M=Q(x_{n_k}-y_k)\xrightarrow[k\to\infty]{}Q(x_0)=x_0+M.$$

В частности, у исходной последовательности $\{x_n + M\}$ есть предел. Значит, пространство X/M банахово.

(2) Если W открыто, то $Q^{-1}(W)$ открыто, так как Q непрерывно. Пусть теперь $Q^{-1}(W)$ открыто в X. Рассмотрим открытый шар $B_r = \{x : \|x\| < r\}$. Покажем, что

$$Q(B_r) = \{x + M : ||x + M|| < r\}.$$

Действительно, если ||x|| < r, то $||x + M|| \le ||x|| < r$. С другой стороны, если ||x + M|| < r, то ||x + y|| < r для некоторого $y \in M$, и тогда

$$x + M = Q(x + y) \in Q(B_r).$$

Пусть теперь $x_0+M\in W$, то есть $x_0\in Q^{-1}(W)$. Так как $Q^{-1}(W)$ открыто, мы можем найти такое r>0, что $x_0+B_r\subset Q^{-1}(W)$. Тогда

$$W = QQ^{-1}(W) \supset Q(x_0 + B_r) = \{x + M : \|x - x_0 + M\| < r\}.$$

Таким образом, вокруг каждой точки $x_0 + M \in W$ есть шар, полностью лежащий в W. Значит, множество W открыто.

(3) Пусть U открыто в X. Хотим доказать, что открыто и множество Q(U). Для этого

достаточно проверить (по предыдущему пункту), что множество

$$Q^{-1}(Q(U)) = \{u+y: u \in U, y \in M\} = \bigcup_{y \in M} \{U+y\}$$

открыто. Это так, поскольку все сдвиги открытых множеств открыты, и объединение открытых — открыто. ■

Определение. *Аннулятором* подпространства $M \subset X$ будем называть множество

$$M^{\perp} = \{\lambda \in X^* : \lambda|_M = 0\} \subset X^*.$$

Теорема 6.2. Пусть M — подпространство нормированного пространства X. Тогда существует изометрический изоморфизм между M^* и X^*/M^{\perp} , заданный следующим образом:

$$\rho: X^*/M^{\perp} \to M^*, \qquad g + M^{\perp} \mapsto g|_{M}.$$

Доказательство. Пусть $\lambda \in M^*$. По следствию 4.3 теоремы Хана–Банаха, существует такой функционал $\Lambda \in X^*$, что $\|\Lambda\| \leq \|\lambda\|$ и $\Lambda|_M = \lambda$. Зададим отображение

$$\widetilde{\rho} \colon M^* \to X^*/M^{\perp}, \qquad \lambda \mapsto \Lambda + M^{\perp}.$$

Оно корректно определено, так как если есть два продолжения Λ_1 и Λ_2 функционала λ , то $\Lambda_1|_M=\Lambda_2|_M=\lambda$ и $(\Lambda_1-\Lambda_2)|_M=0$, а значит $\Lambda_1=\Lambda_2$ в M^\perp . Очевидно, что отображение $\widetilde{\rho}$ инъективно. Также оно сюръективно, так как если $\Lambda+M^\perp\in X^*/M^\perp$, то $\Lambda|_M$ — прообраз $\Lambda+M^\perp$. Наконец, $\widetilde{\rho}$ изометрично, так как

$$\|\lambda\|_{M^*} = \|\Lambda\|_M\|_{M^*} \le \inf_{g \in M^{\perp}} \|\Lambda - g\|_{X^*} = \|\Lambda + M^{\perp}\|_{X^*/M^{\perp}},$$

а с другой стороны,

$$\|\Lambda + M^{\perp}\| = \inf_{g \in M^{\perp}} \|\Lambda - g\|_{X^*} \le \|\Lambda\|_{X^*} \le \|\lambda\|_{M^*}.$$

Таким образом, $\widetilde{\rho}$ — изометрический изоморфизм. Нетрудно видеть, что $\widetilde{\rho} = \rho^{-1}$, где ρ — отображение из условия теоремы.

Теорема 6.3. Пусть $M \subset X$, $Q: X \to X/M$. Тогда

$$\rho: (X/M)^* \to M^{\perp}, \qquad f \mapsto f \circ Q,$$

— изометрический изоморфизм.

Доказательство. Поскольку f(Q(x)) = f(x+M) = f(0+M) = 0 для всех $x \in M$, ρ действует в M^{\perp} . Нетрудно проверить, что ρ инъективно. Покажем, что оно сюръективно. Пусть $\lambda \in M^{\perp}$. Построим функционал $\Lambda \in (X/M)^*$ по правилу $\Lambda(x+M) = \lambda(x)$. Этот функционал корректно определён, так как если $x_1, x_2 \in x+M$, то

$$\lambda(x_1) - \lambda(x_2) = \lambda(x_1 - x_2) = 0,$$

потому что $x_1-x_2\in M$ и $\lambda\in M^\perp$. Поскольку $\lambda=\Lambda\circ Q=\rho(\Lambda)$, сюръективность доказана.

Теперь покажем, что ρ изометрично. Ясно, что

$$\|\lambda\| = \|\Lambda \circ Q\| \leqslant \|\Lambda\| \cdot \|Q\| = \|\Lambda\|.$$

Пусть $y \in M$, $x \in X$. Тогда

$$||\Lambda(x+M)|| = ||\lambda(x+y)|| \le ||\lambda|| \cdot ||x+y||.$$

Беря инфимум по $y \in M$, получаем, что $\|\Lambda(x+M)\|/\|x+M\|_{X/M} \leqslant \|\lambda\|$.

Упражнение. Покажите, что существует естественное изометрическое вложение

$$X \hookrightarrow X^{**} : x \mapsto (g \mapsto g(x)).$$

Определение. Пространство X называется *рефлексивным*, если $X = X^{**}$.

Пример 6.1. Пространства $L^p(\mu)$, где $\mu - \sigma$ -конечная мера, являются рефлексивными, если 1 . В случае <math>p = 1 это неверно:

$$(L^1(\mu))^{**} \cong (L^{\infty}(\mu))^* \supsetneq L^1(\mu).$$

Все эти утверждения мы докажем позже.

Теорема 6.4. Пусть X — нормированное пространство, X^* — сепарабельное пространство. Тогда X сепарабельно.

Доказательство. Существует последовательность $\{f_j\}\subset X^*, \|f_j\|=1$, плотная в пространстве $\{\lambda\in X^*:\|\lambda\|=1\}$. Выберем последовательность $\{x_j\}\subset X$ таким образом, чтобы были выполнены условия

$$|f_i(x_i)| > 1 - \varepsilon$$
, $||x_i|| = 1$.

Рассмотрим $M = \overline{\text{span}\{x_j\}}$. Покажем, что M = X (из этого следует сепарабельность — можно рассмотреть линейные комбинации с рациональными коэффициентами). Предположим, что $y \notin M$. Тогда по теореме 4.4 существует такой функционал $f \in X^*$, что $f|_M = 0$, $f(y) \neq 0$, ||f|| = 1. Пусть $f_{i_k} \to f$, $|f_{i_k}(x_{i_k})| \geqslant \frac{1}{2}$. Тогда:

$$|f(x_{j_k})| = |f(x_{j_k}) - f_{j_k}(x_{j_k}) + f_{j_k}(x_{j_k})| \ge |f_{i_k}(x_{i_k})| \ge \frac{1}{2} - |f(x_{j_k}) - f_{j_k}(x_{j_k})|,$$

что и требовалось.

7 Теорема об открытом отображении

Теорема 7.1 (об открытом отображении). Пусть X, Y — банаховы пространства, $A: X \to Y$ — непрерывный линейный сюръективный оператор. Тогда A — открытое отображение.

Доказательство.

Шаг 1. Покажем, что $0 \in \text{Int}(\operatorname{Cl} A(B_1))$, где $B_n = \{x \in X : \|x\| \le n\}$. Поскольку оператор A сюръективен, имеют место равенства

$$Y = \bigcup_{n \geqslant 1} A(B_n) = \bigcup_{n \geqslant 1} \operatorname{Cl} A(B_n).$$

По теореме Бэра⁹ одно из замыканий образов имеет непустую внутренность. Тогда все замыкания имеют непустую внутренность, потому что шары получаются друг из друга гомотетией. Найдем такие $y_0 \in \operatorname{Cl} A(B_1)$, s > 0, что

$$\{y \in Y : ||y - y_0|| < s\} \subset Int(Cl A(B_1)) \subset Cl A(B_1).$$

Пусть ||y|| < s, где $y \in Y$. Так как точки $y_0 + y$ и y_0 лежат в $\operatorname{Cl} A(B_1)$, можно найти такие последовательности $\{x_n\}$ и $\{z_n\}$, что

$$||x_n|| \le 1,$$
 $Ax_n \xrightarrow[n \to \infty]{} y_0,$
 $||z_n|| \le 1,$ $Az_n \xrightarrow[n \to \infty]{} y_0 + y.$

Из этого следует, что

$$A(z_n-x_n)\xrightarrow[n\to\infty]{} y,$$

а значит,

$$\{y : ||y|| < s\} \subset \operatorname{Cl} A(B_2).$$

Следовательно, $0 \in Int(Cl A(B_2))$ и $0 \in Int(Cl A(B_1))$, что и требовалось.

Шаг 2. Покажем, что $\operatorname{Cl} A(B_1) \subset A(B_2)$. Пусть $y_1 \in \operatorname{Cl} A(B_1)$. По предыдущему пункту мы знаем, что $0 \in \operatorname{Int}(\operatorname{Cl} A(B_{1/2}))$. Поэтому нетрудно понять, что

$$(y_1 - \operatorname{Cl} A(B_{1/2})) \cap A(B_1) \neq \emptyset.$$

Найдём такое $x_1 \in B_1$, что

$$Ax_1 \in y_1 \setminus \operatorname{Cl} A(B_{1/2}),$$

то есть $Ax_1 = y_1 - y_2$, где $y_2 \in \operatorname{Cl} A(B_{1/2})$. Аналогично, можно найти $x_2 \in B_{1/2}$, удовлетворяющее условию $Ax_2 = y_2 - y_3$, где $y \in \operatorname{Cl} A(B_{1/4})$.

Таким образом по индукции строятся последовательности $\{x_n\}$ и $\{y_n\}$, где $x_n \in B_{1/2^{n-1}}$ и $y_n \in \operatorname{Cl} A(B_{1/2^{n-1}})$. Заметим, что

$$\sum_{n\geqslant 1} \|x_n\| \leqslant \sum_{n\geqslant 1} \frac{1}{2^{n-1}} = 2.$$

Значит, существует предел

$$x = \sum_{n \geqslant 1} x_n \in B_2.$$

⁹Её можно применять, так как банахово пространство — это полное метрическое пространство.

Заметим, что

$$\sum_{n=1}^{N} Ax_n = \sum_{n=1}^{N} (y_n - y_{n+1}) = y_1 - y_{N+1} \xrightarrow[N \to \infty]{} y_1,$$

то есть

$$Ax = \sum_{n=1}^{\infty} Ax_n = y_1 \in \operatorname{Cl} A(B_1),$$

и $\operatorname{Cl} A(B_1) \subset A(B_2)$, так как y_1 был произвольным элементом в $\operatorname{Cl} A(B_1)$.

Шаг 3. Из первых двух пунктов следует, что $0 \in A(B_2)$. Значит, $0 \in A(B_x)$ для всех x > 0, а из этого следует, что A открыто.

Пример 7.1. Пусть X = Y = C[a, b],

$$||f||_X = \max_{t \in [a,b]} |f(t)|, \qquad ||f||_Y = \int_a^b |f(t)| dt.$$

Рассмотрим оператор $A: X \to Y, f \mapsto f$. Тогда можно показать, что $A \in B(X,Y)$, но оператор A^{-1} не непрерывен.

Тем не менее, когда пространства X и Y банаховы, обратное отображение тоже должно быть непрерывно.

Теорема 7.2 (теорема об обратном отображении). Пусть X, Y — банаховы пространства, $A \in B(X, Y)$ — биекция. Тогда $A^{-1}: Y \to X$ — непрерывный оператор.

Доказательство. Очевидным образом следует из теоремы об открытом отображении. ■

Определение. Пусть X, Y — нормированные пространство. Их *произведением* называется векторное пространство $X \times Y$ с нормой

$$\|(x,y)\|_p = \left(\|x\|_X^{1/p} + \|y\|_Y^{1/p}\right)^p,$$
 где $p \geqslant 1.$

В дальнейшем по умолчанию под $\|(x,y)\|$ будет пониматься $\|(x,y)\|_1$, то есть сумма норм.

Утверждение 7.3. Если X, Y — банаховы пространства, то $X \times Y$ — тоже банахово пространство.

Доказательство. Очевидно.

Определение. Графиком отображения $A: X \to Y$ называется множество

$$G(A) = \{(x, Ax) : x \in X\} \subset X \times Y.$$

Теорема 7.4 (теорема о замкнутом графике). Пусть X, Y — банаховы пространства, $A: X \to Y$ — линейный оператор. Тогда если множество $\mathcal{G}(A)$ замкнуто в $X \times Y$, то оператор A непрерывен.

Доказательство. Рассмотрим отображение

$$P: \mathcal{G}(A) \to X, \quad (x, Ax) \mapsto x.$$

Очевидно, что $\|P\| \leqslant 1$. По теореме об обратном отображении оператор $P^{-1}: X \to \mathcal{G}(A)$ непрерывен (и ограничен). Определим также

$$Q: \mathcal{G}(A) \to Y, \quad (x, Ax) \mapsto Ax.$$

Этот оператор ограничен, так как $||Ax|| \le ||(x,Ax)||$. Осталось заметить, что $A = P^{-1} \circ Q$. Поскольку операторы P^{-1} и Q ограничены, A — ограничен как композиция ограниченных, то есть непрерывен.

Пример 7.2. Пусть $X = L^p(\mu)$, $Y = L^q(\mu)$. Оба этих пространства банаховы. Пусть φ — измеримая функция. Определим оператор $M_{\varphi}: f \mapsto \varphi f$, и предположим, что $M_{\varphi}(L^p) \subset L^q$. Тогда M_{φ} — ограниченный оператор.

8 Дополняющие подпространства

Определение. Пусть X — нормированное пространство, M, N — подпространства X. Если M + N = X и $M \cap N = \{0\}$, то M и N называются дополняющими подпространствами X (в алгебраическом смысле). Если также выполнено неравенство $||x + y|| \ge c(||x|| + ||y||)$, то говорят, что M и N топологически дополняют X.

Теорема 8.1. Если X — банахово пространство и M, N дополняют X, то M и N топологически дополняют X.

Доказательство. Рассмотрим отображение

$$f: M \times N \to X, \qquad (x, y) \mapsto x + y.$$

Оно ограничено по неравенству треугольника и биективно. Значит, обратное отображение также ограничено, то есть

$$||x|| + ||y|| \le c||x + y||.$$

9 Принцип равномерной ограниченности

Теорема 9.1 (принцип равномерной ограниченности). Пусть X — банахово пространство, Y — нормированное пространство, $\mathcal{A} \subset B(X,Y)$ — семейство непрерывных линейных операторов из X в Y, таких, что для любого фиксированного $x \in X$ супремум $\sup\{\|Ax\| : A \in \mathcal{A}\}$ конечен. Тогда и $\sup\{\|A\| : A \in \mathcal{A}\}$ конечен.

Доказательство. Обозначим

$$Q_n = \{x \in X : ||Ax|| \le n$$
 для всех $A \in \mathcal{A}\}.$

Сделаем несколько замечаний по поводу Q_n . Это замкнутое множество как пересечение прообразов замкнутых (по всем $A \in \mathcal{A}$). Кроме того, Q_n гомотетично Q_1 , так как если $x \in Q_1$, то, очевидно, $nx \in Q_n$, а обратное включение доказывается гомотетией с коэффициентом 1/n.

Поскольку $\bigcup Q_n = X$, можно применить теорему Бэра и получить, что $\mathrm{Int}(Q_1) \neq \emptyset$. То есть существуют $x_0 \in X$ и r > 0 такие, что $\|A(x_0 + x)\| \leqslant 1$ при $\|x\| < r$ по всем $A \in \mathcal{A}$. Тогда

$$||Ax|| \le ||Ax + Ax_0|| + ||-Ax_0|| \le 2$$

при ||x|| < r. Значит, если ||x|| < 1, то $||Ax|| \le 2/r$; и нормы всех операторов ограничены числом 2/r.

Следствие 9.2. Если X — нормированное пространство, то $A \subset X$ ограничено тогда и только тогда, когда $\sup\{|f(a)|: a \in A\}$ конечен для любого функционала на X.

Следствие 9.3. Если X — банахово пространство, то $A \subset X^*$ — ограниченное подмножество в том и только том случае, когда $\sup\{|f(x)|:f\in A\}$ конечен для каждого фиксированного $x\in X$.

Следствие 9.4. Если X — банахово пространство, а Y — нормированное пространство, $\mathcal{A} \subset B(X,Y)$, то \mathcal{A} ограничено тогда и только тогда, когда для каждого $x \in X$ и для каждого $g \in X^*$ супремум $\sup\{|g(Ax)|\}: A \in \mathcal{A}\}$ конечен.

Теорема 9.5 (Банах, Штейнхаус). Если Y — банахово пространство, $\{T_n\}_{n\geqslant 1}$ — последовательность ограниченных операторов из X в Y, и $T_n(x)$ сходится к T(x) поточечно для всех $x \in X$, то $T \in B(X,Y)$ и $\sup \|T_n\| \le \text{const.}$

Доказательство. Заметим, что для каждого фиксированного $x \in X$ супремум $||T_nx||$ конечен, потому что для всякого x это сходящаяся последовательность. Тогда по принципу равномерной ограниченности нормы T_n ограничены некоторым числом C > 0. Более того, нетрудно проверить, что T — линейный оператор, и его норма не превосходит C. Действительно,

$$||T(x)||/||x|| \le \limsup_{n \to \infty} ||T_n||/||x|| \le C.$$

Глава 2

Гильбертовы пространства

1 Определение и простейшие свойства

Определение. *Скалярным произведением* на \mathbb{C} -векторном пространстве \mathcal{H} называется функция $\langle \ \rangle \colon \mathcal{H} \times \mathcal{H} \to \mathbb{C}$, удовлетворяющая следующим условиям:

(1)
$$\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$$
 для всех $\alpha_1, \alpha_2 \in \mathbb{C}, x_1, x_2 \in \mathcal{H}$ и $y \in \mathcal{H}$;

(2)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 для всех $x, y \in \mathcal{H}$;

(3) $\langle x, x \rangle \geqslant 0$ для всех $x \in \mathcal{H}$, причём $\langle x, x \rangle = 0$ тогда и только тогда, когда x = 0.

Утверждение 1.1 (неравенство Коши–Буняковского–Шварца, КБШ). Пусть \mathcal{H} — векторное пространство со скалярным произведением. Тогда для произвольных элементов $x, y \in \mathcal{H}$ выполнено неравенство

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
,

где ||x|| — сокращение для $\sqrt{\langle x, x \rangle}$ (вскоре мы покажем, что это норма).

Доказательство. Заметим, что

$$0 \le \langle x + \alpha y, x + \alpha y \rangle$$

= $\langle x, x \rangle + 2 \operatorname{Re} \alpha \langle y, x \rangle + |\alpha|^2 \langle y, y \rangle$
= $||x||^2 + 2 \operatorname{Re} \alpha \langle y, x \rangle + |\alpha|^2 ||y||^2$.

Выберем τ таким образом, что $\alpha = \tau t$, причём $|\tau| = 1$, $\alpha(y, x) \ge 0$. Тогда

$$||x||^2 + 2t|\langle x, y \rangle| + t^2||y||^2 \ge 0, \qquad \forall t \in \mathbb{R}.$$

Это выполнено тогда и только тогда, когда дискриминант не превосходит нуля, то есть когда

$$4|\langle x, y \rangle|^2 - 4||x||^2||y||^2 \le 0.$$

После извлечения корня получаем требуемое неравенство.

Пусть $x \in \mathcal{H}$. Определим норму на \mathcal{H} следующим образом:

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Первые два свойства нормы очевидны; третье выводится с помощью неравенства КБШ:

$$||x + y||^{2} \le (||x|| + ||y||)^{2} \iff$$

$$\langle x + y, x + y \rangle \le \langle x, x \rangle + 2||x|| \cdot ||y|| + \langle y, y \rangle \iff$$

$$\langle x, x \rangle + 2\operatorname{Re}\langle y, x \rangle + \langle y, y \rangle \le \langle x, x \rangle + 2||x|| \cdot ||y|| + \langle y, y \rangle \iff$$

$$\operatorname{Re}\langle y, x \rangle \le ||x|| \cdot ||y||.$$

Определение. *Гильбертовым пространством* называется пространство со скалярным произведением, являющееся также банаховым в определенной выше норме.

Пример 1.1. \mathbb{R}^n и \mathbb{C}^n — гильбертовы пространства:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \langle x, y \rangle = \sum_{i=1}^n x_i \overline{y}_i.$$

Пример 1.2. Рассмотрим пространство непрерывных функций C[a,b] со скалярным произведением и нормой

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} \, \mathrm{d}t, \qquad ||f|| = \left(\int_{a}^{b} |f|^{2} \, \mathrm{d}t \right)^{1/2}. \tag{1.1}$$

Хоть C[a,b] и имеет скалярное произведение и согласованную с ним норму, это пространство не полно, а потому не является гильбертовым.

Пусть $\{x_n\}, \{y_n\}$ — последовательности Коши. Положим

$$\langle \{x_n\}, \{y_n\} \rangle := \lim_{n \to \infty} \langle x_n, y_n \rangle.$$

Пример 1.3. Пространство $L^2[a,b]$ с нормой (1.1) — гильбертово пространство.

2 Ортогональность

Векторы x, y называются *ортогональными*, если $\langle x, y \rangle = 0$.

Утверждение 2.1 (теорема Пифагора). Если векторы x, y ортогональны, то

$$||x||^2 + ||y||^2 = ||x + y||^2$$
.

Доказательство. Очевидно:

$$\langle x + y, x + y \rangle = \langle x, x \rangle + 2 \operatorname{Re} \langle y, x \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2.$$

Утверждение 2.2 (тождество параллелограмма). Пусть $x, y \in \mathcal{H}$. Тогда

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
.

Доказательство. По определению:

$$\langle x + y, x + y \rangle + \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$
$$+ \langle x, x \rangle - \langle y, x \rangle - \langle x, y \rangle + \langle y, y \rangle$$
$$= 2\|x\|^2 + 2\|y\|^2,$$

что и требовалось.

Пример 2.1. Рассмотрим пространство ℓ^1 последовательностей $\{x_n\}_{n\geqslant 0}$ с условием

$$\|\{x_n\}\|_{\ell^1} = \sum_{n=0}^{\infty} |x_n| < \infty.$$

В нём не выполняется тождество параллелограмма, а потому в этом пространстве нельзя задать согласованное скалярное произведение.

Утверждение 2.3 (поляризационное тождество).

• В вещественном случае:

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}.$$

• В комплексном случае:

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4} + i \frac{\|ix - y\|^2 - \|ix + y\|^2}{4}.$$

Доказательство. Простые вычисления.

Теорема 2.4. Пусть \mathcal{H} — гильбертово пространство, C — замкнутое непустое выпуклое подмножество \mathcal{H} ; $a \in \mathcal{H}$. Тогда существует единственный вектор $x_0 \in C$ такой, что $||a - x_0|| = \operatorname{dist}(a, C)$.

Доказательство. Можно считать, что a = 0. Пусть d = dist(0, C). Существует такая последовательность $\{x_n\} \subset C$, что $\|x_n\| \to d$. Покажем, что $\{x_n\}$ — последовательность Коши¹. По тождеству параллелограмма:

$$\left\| \frac{x_n - x_m}{2} \right\|^2 + \left\| \frac{x_n + x_m}{2} \right\|^2 = \frac{\|x_n\|^2}{2} + \frac{\|x_m\|^2}{2}.$$
 (2.1)

¹В произвольном банаховом пространстве это неверно.

При этом

$$\frac{\|x_n\|^2}{2} \xrightarrow[n \to \infty]{} \frac{d^2}{2} \qquad \text{II} \qquad \frac{\|x_m\|^2}{2} \xrightarrow[m \to \infty]{} \frac{d^2}{2}.$$

Однако $(x_n + x_m)/2$ лежит в C, то есть квадрат нормы этой точки не меньше d^2 . Значит, левое слагаемое в (2.1) стремится к нулю. Поскольку C замкнуто, отсюда следует существование.

Пусть два вектора $x, y \in C$ дают наилучшее приближение. Тогда

$$\left\|\frac{x-y}{2}\right\|^2 + \left\|\frac{x+y}{2}\right\|^2 = \frac{\|x\|^2}{2} + \frac{\|y\|^2}{2} = \frac{d^2}{2} + \frac{d^2}{2} = d^2.$$

Поскольку точка (x + y)/2 лежит в C, её норма не может быть меньше d. Значит, ||x - y|| = 0, то есть x = y.

Лемма 2.5. Пусть \mathcal{H} — гильбертово пространство, \mathcal{K} — его подпространство; $x \in \mathcal{H}$, $y_0 \in \mathcal{K}$. Тогда следующие утверждения эквивалентны:

- (1) $||x y_0|| = \text{dist}(x, \mathcal{K});$
- (2) $x y_0 \perp \mathcal{K}$.

Доказательство.

(2) ⇒ (1). Действительно,

$$\inf_{y \in \mathcal{K}} \|x - y\|^2 = \inf_{y \in \mathcal{K}} \|(x - y_0) - (y - y_0)\|^2 = [\text{теорема Пифагора}]$$
$$= \|x - y_0\|^2 + \inf_{y \in \mathcal{K}} \|y - y_0\|^2 = \|x - y_0\|^2.$$

 $(1) \Longrightarrow (2)$. Пусть $y \in \mathcal{K}, t \in \mathbb{R}$. Тогда

$$||x - y_0 + ty||^2 = ||x - y_0||^2 + |t|^2 ||y||^2 + 2\operatorname{Re}\langle x - y_0, ty \rangle.$$
 (2.2)

В предположении противного, выберем такое y, что $2 \operatorname{Re}\langle x-y_0,y\rangle<0$. Пусть $2\operatorname{Re}\langle x-y_0,y\rangle=c\|y\|$. Тогда многочлен

$$p(t) = t^2 ||y||^2 + tc||y||$$

принимает отрицательные значения при положительных t, так как c < 0. Подставив такое значение t в (2.2), мы уменьшим расстояние от x до \mathcal{K} . Противоречие.

Определение. Пусть $\mathcal{E} \subset \mathcal{H}$. Его *ортогональным дополнением* называется множество

$$\mathcal{E}^{\perp} = \{ y \in \mathcal{H} : y \perp \mathcal{E} \}.$$

Нетрудно проверить, что это подпространство \mathcal{H} .

Определение. Пусть X — векторное пространство. Подпространство M в X называется *гиперплоскостью*, если $\dim(X/M) = 1$.

Утверждение 2.6. Множество $M \subset X$ является гиперплоскостью тогда и только тогда, когда существует такой ненулевой линейный функционал λ на X, что $M = \operatorname{Ker} \lambda$. Два линейных функционала имеют одинаковое ядро тогда и только тогда, когда они отличаются умножением на скаляр.

Доказательство. Пусть $\lambda\colon X\to K$ — ненулевой линейный функционал, где $K=\mathbb{C}$ или $K=\mathbb{R}$. Тогда $\ker\lambda$ — гиперплоскость, так $\ker\lambda/K$ $\ker\lambda\cong \mathrm{Im}\,\lambda=K$. С другой стороны, пусть M — гиперплоскость. По определению, X/M — одномерное пространство, то есть существует изоморфизм $T\colon X/M\to K$ векторных пространств. Пусть $Q\colon X\to X/M$ — стандартная проекция. Тогда $\lambda=T\circ Q$ — линейный функционал, и нетрудно видеть, что $M\cong \ker\lambda$.

Пусть λ_1, λ_2 — ненулевые линейные функционалы, $\ker \lambda_1 = \ker \lambda_2$. Существует такой $x_0 \in X$, что $\lambda_1(x_0) = 1$. Тогда $\lambda_2(x_0) \neq 0$. Пусть $\alpha = \lambda_1(x)$. Очевидно, что $x - \alpha x_0 \in \ker \lambda_1 = \ker \lambda_2$. Значит, $\lambda_2(x) - \alpha \lambda_2(x_0) = 0$, то есть $\lambda_2(x) = \lambda_1(x)\lambda_2(x_0)$, что и требовалось.

Утверждение 2.7. Пусть X — нормированное пространство, λ — линейный функционал. Множество M = $\operatorname{Ker} \lambda$ замкнуто тогда и только тогда, когда λ непрерывно.

Доказательство. Если λ непрерывно, то M замкнуто как прообраз нуля. Предположим, что M замкнуто. Тогда можно рассмотреть композицию f проекции $Q: X \to X/M$, которая непрерывна, и изоморфизма $T: X/M \to K$, который тоже непрерывен. Из утверждения 2.6 получаем, что $\lambda = kf$ для некоторого числа $k \in K$, откуда следует, что функционал λ непрерывен.

Теорема 2.8 (Рисс). Пусть \mathcal{H} — гильбертово пространство, Λ — непрерывный линейный функционал. Тогда существует единственный вектор $y \in \mathcal{H}$ такой, что $\Lambda x = \langle x, y \rangle$, причём $\|\Lambda\| = \|y\|$.

Доказательство. Зафиксируем $y \in \mathcal{H}$ и рассмотрим функционал $L(x) = \langle x, y \rangle$. Очевидно, что он линеен. Кроме того,

$$|Lx| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$$
,

то есть этот функционал ограничен, и, следовательно, непрерывен. Отсюда же следует, что $||L|| \le ||y||$. Поскольку $|Ly| = |\langle y, y \rangle| = ||y||^2$, это значит, что ||L|| = ||y||.

Вернёмся к доказательству теоремы. Обозначим $N={\rm Ker}\,\Lambda$. Если $N=\mathcal{H}$, то утверждение очевидно. В противном случае возьмём произвольный вектор $v\in N^\perp$. Если $\Phi_v(x)=\langle x,v\rangle$, то ${\rm Ker}\,\Phi_v={\rm Ker}\,\Lambda$, то есть $\Phi_v=c\Lambda$. Таким образом, $\Lambda x=\langle x,v/c\rangle$, что и требовалось.

3 Ортонормированные множества

Определение. Пусть \mathcal{H} — гильбертово пространство, $E \subset \mathcal{H}$. Будем называть множество E ортонормированным, если каждый элемент E нормирован, и любые различ-

²Его существование нетрудно показать через проекции.

ные элементы $x, y \in E$ перпендикулярны. *Ортонормированным базисом* называется максимальное по включению ортонормированное множество.

Теорема 3.1. В гильбертовом пространстве \mathcal{H} существует ортонормированный базис.

Доказательство. Пусть M — множество всех ортонормированных подмножеств \mathcal{H} . Заведем на M частичный порядок по включению. Тогда нетрудно проверить, что выполнены условия леммы Цорна, а значит, есть максимальный элемент, который и будет искомым базисом.

Лемма 3.2. Пусть $\{e_i\}_{1\leqslant 1\leqslant n}$ — ортонормированное множество в гильбертовом пространстве \mathcal{H} . Тогда для оператора

$$P: \mathcal{H} \to \operatorname{span}(e_1, \dots, e_n), \quad x \mapsto \sum_{i=1}^n \langle x, e_i \rangle e_i,$$

для каждого i выполнено $x - P(x) \perp e_i$.

Доказательство. Прямое вычисление:

$$\left\langle x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i, e_i \right\rangle = \left\langle x - \langle x, e_i \rangle e_i, e_i \right\rangle = \left\langle x, e_i \right\rangle - \left\langle x, e_i \right\rangle ||e_i|| = 0.$$

Замечание. Отображение P из предыдущей леммы называется *ортогональным проектором* на пространство $\text{span}(e_1, \ldots, e_n)$. Также стоит заметить, что $||P(x)|| \leq ||x||$ по теореме Пифагора.

Теорема 3.3 (процесс ортогонализации Грама–Шмидта). Пусть $\{v_i\}_{i=1}^n$ — линейно независимые векторы в гильбертовом пространстве \mathcal{H} . Тогда существует такой ортонормированный набор $\{e_i\}_{i=1}^n$, что для $e_j \in \text{span}\{v_1, \dots, v_n\}$ для любого j.

Доказательство. Аналогично доказательству из евклидовой геометрии.

Теорема 3.4 (неравенство Бесселя). Пусть \mathcal{E} — не более чем счётное ортонормированное множество в гильбертовом пространстве \mathcal{H} . Тогда если $x \in \mathcal{H}$, то

$$\sum_{e \in \mathcal{E}} |\langle x, e \rangle|^2 \le ||x||^2.$$

Доказательство. Пусть $\mathcal{E} = \{e_i\}_{i \geqslant 1}$. Достаточно доказать неравенство для всех частичных сумм. По лемме 3.2

$$||x||^{2} \ge ||P(x)||^{2} = \left\| \sum_{i=1}^{n} \langle x, e_{i} \rangle e_{i} \right\|^{2} = \sum_{i=1}^{n} ||\langle x, e_{i} \rangle e_{i}||^{2} = \sum_{i=1}^{n} |\langle x, e_{i} \rangle|^{2}.$$

Следствие 3.5. Если \mathcal{E} — ортонормированное множество, $h \in \mathcal{H}$, то $\langle h, e \rangle \neq 0$ для не более чем счётного количества количества векторов $e \in \mathcal{E}$.

Доказательство. Для каждого $n \ge 1$ положим $\mathcal{E}_n = \{e \in \mathcal{E} : \langle h, e \rangle \ge 1/n\}$. По неравенству Бесселя каждое множество \mathcal{E}_n конечно. Значит, множество

$$\bigcup_{n=1}^{\infty} \mathcal{E}_n = \{ e \in \mathcal{E} : \langle h, e \rangle \neq 0 \}$$

не более чем счётно.

Определение. Пусть I — бесконечное (возможно, несчётное) множество, $\{h_i\}_{i\in I}$ — векторы в гильбертовом пространстве \mathcal{H} . Пусть (\mathcal{F}, \leq) — множество всех конечных подмножеств I, упорядоченных по включению. Для данного $F \in \mathcal{F}$ обозначим

$$h_F = \sum_{i \in F} h_i.$$

Поскольку эта сумма конечна, она является корректно определённым элементом \mathcal{H} . Будем говорить, что ряд $h = \sum_{i \in I} h_i$ сходится к $h \in \mathcal{H}$, если сеть $\{h_F : F \in \mathcal{F}\}$ сходится к h. Другими словами, для любого $\varepsilon > 0$ существует такое $F \in \mathcal{F}$, что для каждого $F_1 \geqslant F$

$$||h_{F_1}-h||<\varepsilon.$$

Стоит отметить, что если $\{h_n\}$ — последовательность в \mathcal{H} , то сходимость ряда $\sum_{n\in\mathbb{N}}h_n$ в новом смысле **не** эквивалентна сходимости этого ряда в обычном смысле даже в случае $\mathcal{H}=\mathbb{R}$. Тем не менее, можно показать, что сходимость ряда в новом смысле влечёт сходимость в обычном смысле.

Лемма 3.6. Если \mathcal{E} — произвольное ортонормированное множество, $h \in \mathcal{H}$, то ряд

$$\sum_{e \in \mathcal{E}} \langle h, e \rangle e$$

 cxo дится в \mathcal{H} .

Доказательство. По следствию 3.5 множество $\{e \in \mathcal{E} : \langle h, e \rangle \neq 0\}$ не более чем счётно. Занумеруем его некоторым образом, обозначим через $\{e_i\}_{i \geq 1}$. По неравенству Бесселя

$$\sum_{n=1}^{\infty} |\langle h, e_n \rangle|^2 \leq ||h||^2 < \infty.$$

Поэтому для данного $\varepsilon>0$ можно найти такое $N\in\mathbb{N}$, что $\sum_{n=N}^{\infty}|\langle h,e_n\rangle|^2<\varepsilon^2$. Пусть $F_0=\{e_1,\ldots,e_{N-1}\},\mathcal{F}$ — множество всех конечных подмножеств в \mathcal{E} . Для $F\in\mathcal{F}$ определим

$$h_F = \sum_{e \in F} \langle h, e \rangle.$$

Если $F \in \mathcal{F}$ и $G \in \mathcal{F}$ содержат F_0 , то

$$||h_F - h_G||^2 = \sum \{|\langle h, e \rangle|^2 : e \in (F \setminus G) \cup (G \setminus F)\}$$

$$\leq \sum_{n=N}^{\infty} |\langle h, e_n \rangle|^2 < \varepsilon^2.$$

Значит, $\{h_F: F \in \mathcal{F}\}$ — сеть Коши в \mathcal{H} . Поскольку \mathcal{H} полно, эта сеть сходится.

Теорема 3.7. Пусть \mathcal{E} — ортонормированная система в \mathcal{H} . Тогда следующие утверждения равносильны:

- (a) \mathcal{E} базис;
- (b) если $h \in \mathcal{H}$ и $h \perp \mathcal{E}$, то h = 0;
- (c) $Cl(span(\mathcal{E})) = \mathcal{H}$;
- (d) если $h \in \mathcal{H}$, то $h = \sum_{e \in \mathcal{E}} \langle h, e \rangle e$;
- (e) если $g,h\in\mathcal{H},$ то $\langle g,h\rangle=\sum_{e\in\mathcal{E}}\langle g,e\rangle\langle e,h\rangle;$
- (f) если $h \in \mathcal{H}$, то $||h||^2 = \sum |\langle h, e \rangle|^2$ (равенство Парсеваля).

Доказательство. Упражнение.

Лемма 3.8. Если \mathcal{E} и \mathcal{F} — два ортонормированных базиса гильбертова пространства \mathcal{H} , то card $\mathcal{E} = \operatorname{card} \mathcal{F}$.

Доказательство. Если обе эти мощности конечны, то утверждение очевидно.

Обозначим для $e \in \mathcal{E}$ за \mathcal{F}_e множество таких векторов $f \in \mathcal{F}$, что $\langle f, e \rangle \neq 0$. Как мы уже показали, \mathcal{F}_e не более чем счётно. Так как $\mathcal{F} = \bigcup_{e \in \mathcal{E}} \mathcal{F}_e$, то

$$\operatorname{card} \mathcal{F} \leq \operatorname{card} \mathcal{E} \cdot \aleph_0 = \operatorname{card} \mathcal{E}$$
.

Аналогично доказывается неравенство в другую сторону.

Размерность гильбертового пространства обозначается через $\dim \mathcal{H}$.

Теорема 3.9. Пусть \mathcal{H} — бесконечномерное гильбертово пространство. Оно сепарабельно тогда и только тогда, когда имеет счётный базис.

Доказательство. Пусть $\{e_n\}_{n\geqslant 1}$ — ортонормированный базис. Рассмотрим множество M сумм $\sum_{j\geqslant 1}c_je_j$, таких, что $c_j\in\mathbb{Q}$ для любого j, и $\sum_{j\geqslant 1}|c_j|^2<\infty$. Тогда нетрудно убедиться в том, что M счётно и плотно.

В другую сторону, пусть \mathcal{E} — несчётный ортонормированный базис. Тогда множества B(e,1/2), то есть шары с центром в точках нашего базиса радиусом 1/2, не пересекаются, и их несчётное число, что противоречит сепарабельности.

4 Изоморфизмы гильбертовых пространств

Определение. Пусть \mathcal{H}_1 , \mathcal{H}_2 — гильбертовы пространства. Будем называть линейный оператор $U: \mathcal{H}_1 \to \mathcal{H}_2$ изоморфизмом гильбертовых пространств или унитарным оператором, если ||Ux|| = ||x|| для всех $x \in \mathcal{H}_1$, или, что то же самое, если

$$\langle Ux, Uy \rangle = \langle x, y \rangle \qquad (\forall x, y \in \mathcal{H}_1).$$

Из поляризационного тождества вытекает, что эти условия эквивалентны. Если $U: \mathcal{H}_1 \to \mathcal{H}_2$ — унитарный оператор, то гильбертовы пространства \mathcal{H}_1 и \mathcal{H}_2 называются изоморфными.

Теорема 4.1. Все бесконечномерные сепарабельные гильбертовы пространства изоморфны.

Доказательство. Мы знаем, что все сепарабельные гильбертовы пространства имеют счётный ортонормированный базис. Пусть $\{e_j\}_{j\geqslant 1}$ — базис \mathcal{H}_1 , а $\{f_j\}_{j\geqslant 1}$ — базис \mathcal{H}_2 . Тогда рассмотрим отображение $U\colon e_j\mapsto f_j$ и продолжим его по линейности. Получим, что

$$U: h = \sum_{j\geqslant 1} \langle h, e_j \rangle e_j \mapsto \sum_{j\geqslant 1} \langle h, e_j \rangle f_j.$$

Нетрудно видеть, что это линейный оператор, являющийся изоморфизмом, который сохраняет норму по равенству Парсеваля и теореме Пифагора. ■

Замечание. В частности, любое сепарабельное бесконечномерное гильбертово пространство изоморфно ℓ^2 .

Пример 4.1. Рассмотрим единичную окружность $\mathbb T$ и нормированную меру Лебега m на ней, функции $t\mapsto e^{2\pi it}$ из [0,1] в $\mathbb T$. Если $E\subset\mathbb T$, то m(E) — его нормированная мера Лебега. В частности, если I — дуга в $\mathbb T$, то её мера — это длина дуги, поделённая на 2π . Рассмотрим пространство $L^2(\mathbb T,m)=L^2(\mathbb T)$. Тогда множество функций $\{z^j\}_{j\in\mathbb Z}$ — ортонормированная система, так как

$$\langle z^j, z^k \rangle = \int_{\mathbb{T}} z^j \overline{z}^k \, \mathrm{d} m(z) = \int_{\mathbb{T}} z^{j-k} \, \mathrm{d} m(z) = \begin{cases} 0, & j \neq k, \\ 1, & j = k. \end{cases}$$

Более того, эта система — ортонормированный базис, так как линейная оболочка этих функций плотна в $L^2(\mathbb{T})$ по теореме Стоуна–Вейерштрасса и потому, что непрерывные функции плотны в L^2 . Функции $\sum c_j z^j$ называются *тригонометрическими полиномами* в $C(\mathbb{T})$.

Если $f\in L^2(\mathbb{T})$, то рядом Фурье для f называется ряд $\sum_{j\in\mathbb{Z}}\widehat{f}(j)z^j$, где $\widehat{f}(j)$ — коэффициент Фурье,

$$\widehat{f}(j) = \langle f, z^j \rangle = \int_{\mathbb{T}} f \overline{z}^j dm.$$

Определение. Пусть $\{\mathcal{H}_j\}_{j\in J}$ — семейство гильбертовых пространств. Тогда их *ортогональной суммой* $\bigoplus_{j\in J}\mathcal{H}_j$ будем называть множество

$$\left\{ \{x_j\}_{j\in J} : x_j \in \mathcal{H}_j, \ \sum_{j\in J} \|x_j\|^2 < \infty \right\}.$$

В этом пространстве можно определить скалярное произведение:

$$\langle x, y \rangle = \sum_{j \in J} \langle x_j, y_j \rangle_{\mathcal{H}_j}.$$

Упражнение. Докажите, что множество $\bigoplus_{j \in J} \mathcal{H}_j$ с таким скалярным произведением является гильбертовым пространством.

Глава 3

Локально выпуклые пространства

1 Топологические векторные пространства

Определение. Топологическим векторным пространством называется линейное пространство X с некоторой топологией на нем, удовлетворяющей условиям:

(1) Отображение

$$f: K \times X \to X$$
, $(\alpha, x) \mapsto \alpha x$,

непрерывно, где $K = \mathbb{R}$ или $K = \mathbb{C}$.

(2) Отображение

$$f: X \times X \to X$$
, $(x, y) \mapsto x + y$,

непрерывно.

Замечание. Нормированное пространство, как легко заметить, является топологическим векторным пространством. Но существуют и другие топологические векторные пространства, важным примером которых являются так называемые *локально выпуклые пространства*.

Определение. Пусть X — векторное пространство, \mathcal{P} — некоторое множество полунорм на X, таких, что для каждого ненулевого вектора $x \in X$ существует полунорма $p \in \mathcal{P}$ такая, что $p(x) \neq 0$. Тогда \mathcal{P} задаёт на X топологию следующим образом: будем говорить, что множество $U \subset X$ открыто, если для любой точки $x_0 \in U$ существуют такие наборы $p_1, \ldots, p_n \in \mathcal{P}$ и $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{R}_+$, что

$$\bigcap_{i=1}^n \{x \in X : p_i(x-x_0) < \varepsilon_i\} \subset U.$$

Локально выпуклым пространством называется векторное пространство X с множеством описанных выше полунорм $\mathcal P$ и соответствующей им топологией.

Иными словами, X — локально выпуклое пространство в том и только том случае, когда множества

$$\bigcap_{i=1}^n \{x \in X : p_i(x-x_0) < \varepsilon_i\}$$

по всем $x_0 \in X$, $p_i \in \mathcal{P}$ и $\varepsilon_i > 0$ являются базой топологии в X. Иначе говоря, топология локально выпуклого пространства задаётся предбазой, состоящей из множеств $\{x \in X : p(x-x_0) < \varepsilon\}$ по всем $x_0 \in X$, $p \in \mathcal{P}$ и $\varepsilon > 0$. Напомним, что Δ является предбазой некоторой топологической структуры на пространстве X тогда и только тогда, когда $X = \bigcup_{W \in \Delta} W$; поэтому множества $\{x \in X : p(x-x_0) < \varepsilon\}$ действительно являются предбазой.

Замечание. Условие о том, что не существует ненулевой точки, которую аннулирует любая полунорма из \mathcal{P} , нужно для хаусдорфовости. Действительно, пусть мы хотим отделить точку x_0 от точки y_0 . Тогда возьмём полунорму p такую, что $p(x_0 - y_0) \neq 0$, и рассмотрим окрестность

$$U = \{x \in X : p(x_0 - x) < p(x_0 - y_0)\}.$$

Очевидно, что $x_0 \in U$ и $y_0 \notin U$. Также из определения топологии на X следует, что U открыто.

Пример 1.1. Рассмотрим пространство $C(\mathbb{R})$ непрерывных функций на вещественной оси и набор функций

$$p_n(f) = \sup_{[-n,n]} |f(x)|.$$

Можно доказать, что p_n — полунормы. Тогда $C(\mathbb{R})$ с семейством полунорм $\mathcal{P} = \{p_n : n \in \mathbb{N}\}$ — локально выпуклое пространство с топологией равномерной сходимости на компактах.

Пример 1.2. Пространство бесконечно дифференцируемых функций на вещественной оси $C^{\infty}(\mathbb{R})$ с семейством полунорм

$$p_{n,k}(f) = \sup_{[-n,n]} |f^{(k)}(x)|$$

также является локально выпуклым пространством; его топология — топология равномерной сходимости всех производных на компактах в \mathbb{R} .

Пример 1.3. Пусть $0 , рассмотрим пространство <math>L^p[a,b]$. Это пространство не является нормированным; тем не менее, мы можем задать метрику на нём следующим образом:

$$\rho(f,g) = \int_{a}^{b} |f - g| \, \mathrm{d}\lambda_{1}.$$

Значит, такое пространство является топологическим векторным. Тем не менее, оно не является локально выпуклым, что мы покажем позже.

Лемма 1.1. Пусть X — топологическое векторное пространство, p — полунорма. Тогда следующие утверждения эквивалентны:

- (а) полунорма р непрерывна;
- (b) множество $\{x : p(x) < 1\}$ открыто;

- (c) $0 \in Int\{x : p(x) < 1\};$
- (d) $0 \in Int\{x : p(x) \le 1\};$
- (е) полунорма р непрерывна в нуле;
- (f) существует непрерывная полунорма q, такая, что $p \le q$.

Доказательство. Упражнение.

Замечание. Отсюда следует, что полунормы из \mathcal{P} в определении локально выпуклого пространства являются непрерывными в топологии, которую они определяют.

Определение. Пусть X — векторное пространство. Множество $A \subset X$ называется выпуклым, если из того, что $a,b \in A$, следует, что

$${at + b(1 - t) \in A \mid t \in [0, 1]} \subset A.$$

Определение. Пусть X — векторное пространство, A — некоторое подмножество X. Выпуклой оболочкой A в X называется минимальное выпуклое множество, содержащее A; оно обозначается через conv A. Если X — топологическое векторное пространство, то замкнутой выпуклой оболочкой будем называть минимальное замкнутое выпуклое подмножество, содержащее A обозначать его как $\overline{\text{conv}} A$.

Лемма 1.2. Пусть X — топологическое векторное пространство. Если A — подмножество X, а B — открыто в X, то множество

$$A + \beta B = \{a + \beta b : a \in A, b \in B\}$$

открыто в X для всех $\beta > 0$.

Доказательство. Заметим, что множество $\{a + \beta B : a \in A\}$ открыто, так как отображения $x \mapsto x + a$ и $x \mapsto \beta x$ — гомеоморфизмы (очевидно, что они непрерывны и что обратные к ним непрерывны). Осталось заметить, что

$$A + \beta B = \bigcup_{a \in A} a + \beta B,$$

что и требовалось, так как объединение открытых множеств открыто.

Лемма 1.3. Пусть X — топологическое векторное пространство, $A \subset X$ — выпуклое подмножество. Тогда верны следующие утверждения:

- (1) ClA выпуклое множество.
- (2) Если $a \in \operatorname{Int} A$ и $b \in \operatorname{Cl} A$, то

$$[a,b) = \{at + b(1-t) : t \in [0,1)\} \subset Int A.$$

¹Вскоре мы докажем, что это то же самое, что и замыкание выпуклой оболочки.

Доказательство.

- (1) Хотим доказать, что если $a,b\in \operatorname{Cl} A$, то пересечение любой окрестности U точки p=at+b(1-t) с A непусто, где число $t\in (0,1)$ фиксировано. Заметим, что a+(U-a)/(1-t) окрестность b, которая содержит точку $\widetilde{b}\in A$. Теперь рассмотрим окрестность $\widetilde{b}+(U-\widetilde{b})/t$ точки a, она содержит точку $\widetilde{a}\in A$. Тогда легко видеть, что точка $\widetilde{a}t+\widetilde{b}(1-t)$ лежит в U, то есть p действительно лежит в замыкании.
- (2) Пусть $t \in (0,1)$, а c = bt + a(1-t). Докажем, что $c \in \text{Int } A$. Поскольку $a \in \text{Int } A$, существует окрестность $V \ni 0$, такая, что $a + V \subset A$. Можно считать, что V = -V, взяв за окрестность точки a множество $V' = V \cap -V$. Рассмотрим окрестность $U = b + \frac{1-t}{t}V'$ и выберем некоторую точку $d \in A \cap U$. Тогда

$$A \supset td + (1-t)(a+V') = t(d-b) + tb + (1-t)(a+V') = t(d-b) + (1-t)V' + c.$$

Нетрудно видеть, что $0 \in t(d-b) + (1-t)V'$, так как

$$t(d-b) \in (1-t)V' = (t-1)V'$$
.

Значит, c лежит в A с окрестностью c + t(d - b) + (1 - t)V.

Следствие 1.4. Пусть X — топологическое векторное пространство, $A \subset X$. Тогда

$$\overline{\operatorname{conv}} A = \operatorname{Cl}(\operatorname{conv} A).$$

Определение. Пусть X — топологическое векторное пространство, $A \subset X$. Множество A называется:

- сбалансированным, если из $a \in A$ следует, что $\alpha a \in A$ для любого $|\alpha| < 1$;
- поглощающим, если для любого $x \in X$ существует такое $\varepsilon > 0$, что

$$tx \in A$$
 при $0 \le t \le \varepsilon$;

• *поглощающим в точке* $a \in A$, если A - a — поглощающее множество.

Пример 1.4. Пусть X — векторное пространство, p — полунорма на нём. Тогда множество

$$V = \{ x \in X : p(x) < 1 \}$$

является непустым, выпуклым, сбалансированным и поглощающим в каждой своей точке.

Отметим, что если X — топологическое векторное пространство, и $A \subset X$ открыто, то A является поглощающим в каждой своей точке.

Теорема 1.5. Пусть V — непустое, выпуклое, сбалансированное и поглощающее в каждой своей точке подмножество векторного пространства X. Тогда существует единственная полунорма p на X, такая что $V = \{x \in X : p(x) < 1\}$.

Доказательство. Определим полунорму р следующим равенством:

$$p(x) = \inf\{t \ge 0 : x \in tV\}.$$

Множество V — поглощающее, и отсюда легко видеть, что $X = \bigcup_{n \ge 1} nV$. Проверим, что p действительно является полунормой.

- (1) Ясно, что p(0) = 0.
- (2) Проверим, что $p(\alpha x) = |\alpha| p(x)$:

$$p(\alpha x) = \inf \{ t \ge 0 : \alpha x \in tV \} = \inf \{ t \ge 0 : x \in \frac{t}{\alpha}V \}$$
$$= \inf \{ t \ge 0 : x \in \frac{t}{|\alpha|}V \} = |\alpha|p(x),$$

где предпоследнее равенство выполнено из сбалансированности V.

(3) Неравенство треугольника. Пусть $\alpha, \beta \geqslant 0$, и хотя бы одно из этих чисел положительно; $a,b \in V$. Тогда

$$\alpha a + \beta b = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} a + \frac{\beta}{\alpha + \beta} b \right) \in (\alpha + \beta) V.$$
 (1.1)

Пусть $x, y \in X$, $p(x) = \alpha$, $p(y) = \beta$. Докажем, что $p(x + y) \leqslant \alpha + \beta$. Для любого $\delta > 0$ такого, что $x \in (\alpha + \delta)V$, $y \in (\beta + \delta)V$, по (1.1) верно, что

$$x + y \in (\alpha + \beta + 2\delta)V$$
,

из чего немедленно следует, что $p(x + y) \le \alpha + \beta$.

Теперь покажем, что $V=\{x\in X: p(x)<1\}$. Если $p(x)=\alpha<1,$ $\beta\in(\alpha,1),$ то $x\in\beta B\subset V,$ откуда следует, что $\{x\in X: p(x)<1\}\subset V.$ Осталось показать, что если $x\in V,$ то p(x)<1. Знаем, что $p(x)\leqslant 1,$ так как V — поглощающее в точке x, то найдётся $\varepsilon>0,$ такое, что $y=x+tx\in V$ для всех $t\in(0,\varepsilon),$ но тогда

$$x = (1+t)^{-1}y \implies p(x) = (1+t)^{-1}p(y) < 1,$$

потому что $(1+t)^{-1} < 1$ и $p(y) \le 1$.

Единственность следует из того, что

$$p \leq q \iff \{x: q(x) < 1\} \subset \{x: p(x) < 1\}.$$

Теорема 1.6. Пусть X — хаусдорфово топологическое векторное пространство, \mathcal{U} — набор всех непустых, открытых, выпуклых, сбалансированных подмножеств X. Тогда X — локально выпуклое пространство в том и только в том случае, когда \mathcal{U} — база окрестностей в точке 0.

Доказательство. Слева направо: пусть $p \in \mathcal{P}$; заметим, что $\{x : p(x) < \varepsilon\}$ — множество, удовлетворяющее всем свойствам элементов \mathcal{U} . Также нетрудно понять, что \mathcal{U} замкнуто относительно конечных пересечений, а потому каждый элемент базы в точке 0, порожденной \mathcal{P} , лежит в \mathcal{U} .

Справа налево: как мы знаем, с каждым элементом $\mathcal U$ связана некоторая полунорма, а значит, взяв все полунормы, соответствующие $\mathcal U$ в качестве $\mathcal P$, мы получим топологию локально выпуклого пространства. Отсутствие точки, которую обнуляет всё $\mathcal P$, следует из хаусдорфовости X.

Определение. Пусть X — топологическое векторное пространство. Будем говорить, что X *метризуемо*, если существует метрика на X, задающая ту же топологию, что уже есть на пространстве X.

Пример 1.5. Рассмотрим пространство $C(\mathbb{R})$ с локально выпуклой топологией, которая задаётся полунормами

$$P_n = \sup_{[-n,n]} |f(x)|.$$

Зададим на нём метрику как

$$\rho(f,g) = \sum_{n>1} 2^{-n} \frac{P_n(f-g)}{1 + P_n(f-g)}.$$

Оказывается, что $C(\mathbb{R})$ метризуемо при помощи этой метрики.

Теорема 1.7. Пусть X — локально выпуклое пространство, топология на котором задаётся счётным семейством полунорм $\{P_n\}_{n\geq 1}$. Тогда

$$d(x,y) = \sum_{n>1} 2^{-n} \frac{P_n(x-y)}{1 + P_n(x-y)}$$

задаёт на X метрику, определяющую ту же топологию, что и семейство полунорм.

Обратно, предположим, что X — метризуемое пространство, тогда существует счётный набор полунорм, который определяет топологию на X.

$$\forall n P_n(x_\alpha) \to 0 \iff d(x_\alpha, 0) \to 0.$$

Слева направо это ясно из теоремы Лебега о мажорирующей сходимости для считающей меры на \mathbb{N} . Справа налево — очевидно.

Теперь докажем в обратную сторону. Пусть X — метризуемое локально выпуклое пространство, тогда определим

$$U_n = \left\{ x \in X : d(x,0) < \frac{1}{n} \right\}.$$

Для такого множества существуют $q_1, \ldots, q_k, \varepsilon_1, \ldots, \varepsilon_k$, что

$$\bigcap_{1}^{k} \{x \in X : q_i(x) < \varepsilon_i\} \subset U_n.$$

Определим теперь

$$p_n = \varepsilon_1^{-1} q_1 + \ldots + \varepsilon_k^{-1} q_k.$$

Тогда из p(x) < 1 следует, что $x \in U_n$. Тогда понятно, что из того, что $d(x_j, 0) \to 0$ следует, что $p_n(x_j) \to 0$ для любого n. Также если $p_n(x_j) \to 0$ для всякого n, то существует j_n , что $p_n(x_j) < 1$ для всех $j > j_n$, то есть $d(x_j, 0) < 1/n$ для всех $j > j_n$.

Замечание. Метрика d, которую мы определили в предыдущей теореме на самом деле является инвариантной относительно параллельного переноса метрикой. Таким образом, если локально выпуклое пространство метризуемо, то на нём есть инвариантная метрика.

Определение. Полное метризуемое топологическое векторное пространство называется *пространством* Φ *реше*.

Определение. Пусть X — топологическое векторное пространство, $B \subset X$. Будем говорить, что B ограничено, если для любого открытого U, содержащего ноль, существует такое число $\varepsilon > 0$, что $\varepsilon B \subset U$.

Теорема 1.8. Пусть X — локально выпуклое пространство. Тогда X нормируемо в том и только том случае, когда в нём существует непустое открытое ограниченное подмножество.

Доказательство. В одну сторону это очевидно. Пусть U — открытое ограниченное непустое множество. Можно считать, что $0 \in U$. Тогда существует непрерывная полунорма p, такая, что $V = \{x : p(x) < 1\} \subset U$. Покажем, что p — норма. Пусть $x \neq 0$. Тогда можно найти непересекающиеся окрестности $W_0 \ni 0$ и $W_x \ni x$ (так как топология хаусдорфова). Тогда существует такое $\varepsilon > 0$, что

$$W_0 \supset \varepsilon U \supset \varepsilon V = \{y : p(y) < \varepsilon\}.$$

Так как $x \in W_x$, то $p(x) \ge \varepsilon$, то есть p — норма.

Осталось доказать, что эта норма определяет ту же топологию. Пусть q — непрерывная полунорма. Покажем, что $q(x) \le \alpha p(x)$. Так как q непрерывна, то множество $\{x: q(x) < 1\}$ открыто, и существует такое $\varepsilon > 0$, что

$${x: q(x) < 1} \supset \varepsilon U \supset \varepsilon V.$$

Значит, из $p(x) < \varepsilon$ следует q(x) < 1, $q \le \varepsilon^{-1} p$. Аналогично, сходимость по норме p влечёт сходимость по норме q. Теорема доказана.

2 Теоремы отделимости

Лемма 2.1. Пусть X — топологическое векторное пространство, Λ — линейный функционал на X. Следующие утверждения равносильны:

- (a) Λ непрерывный функционал;
- (b) Λ непрерывно в нуле;
- (c) Λ непрерывно в какой-то точке;
- (d) Ker Λ замкнуто;
- (e) $x\mapsto |\Lambda(x)|$ непрерывная полунорма.

Если X также является локально выпуклым пространством с набором полунорм Φ , то эти условия равносильны следующему:

(f) существуют полунормы $p_1, \dots, p_n \in \Phi$ и числа c_1, \dots, c_n такие, что $|\Lambda| \leqslant \sum c_k p_k$. Доказательство. Упражнение.

Теорема 2.2. Пусть X — локально выпуклое пространство, Y — линейное подпространство X, λ — непрерывный функционал на Y. Тогда существует линейный непрерывный функционал Λ на X, такой, что $\Lambda|_{Y} = \lambda$.

Доказательство. В силу предыдущей леммы существует такая непрерывная полунорма p, что $|\lambda(x)| \le p(x)$, где $x \in Y$. Тогда по теореме Хана–Банаха существует линейный непрерывный функционал Λ на X, такой, что $\Lambda|_Y = \lambda$. ■

Рассмотрим пространство $L^p[0,1]$, где 0 . Оно является метрическим пространством с метрикой

$$\rho(f,g) = \int |f - g|^p \, \mathrm{d}m.$$

Теорема 2.3. Если Λ — непрерывный линейный функционал на $L^p[0,1]$, то $\Lambda = 0$.

Доказательство. Пусть G — непустое открытое выпуклое подмножество L^p . Покажем, что $G = L^p$. Можно считать, что $0 \in G$. Пусть $f \in L^p[0,1]$, $\int |f|^p \, \mathrm{d} m = r < R$. Рассмотрим функцию $t \mapsto \int_0^t |f|^p \, \mathrm{d} m$. Очевидно, что она непрерывна. Существует такое число τ , что $\int_0^\tau |f|^p \, \mathrm{d} m = r/2$. Положим $g = f\chi_{[0,\tau]}$, $h = f\chi_{[\tau,1]}$. Тогда $f = \frac{1}{2}(2g+2h)$.

$$\int_{0}^{1} |2g|^{p} dm = \int |2h|^{p} dm = 2^{p} \frac{r}{2} = \frac{r}{2^{1-p}}.$$

Значит, f лежит в conv $B_{R\cdot 2^{p-1}}$, откуда немедленно следует, что $B_R\subset \text{conv }B_{R\cdot 2^{p-1}}$. Это эквивалентно условию $B_{2^{1-p}R}\subset \text{conv }B_R$. Применяя то же рассуждение, получаем, что $B_{4^{1-p}R}\subset \text{conv }B_{2^{1-p}R}\subset \text{conv }B_R$. Значит, $B_{2^{n(1-p)}R}\subset \text{conv }B_R$, то есть (беря объединение по всем n), имеем включение $L^p\subset \text{conv }B_R$.

Пусть G — непустое открытое выпуклое множество, содержащее ноль. $B_R \subset G$, а потому $G = L^p$. Таким образом, единственное непустое открытое выпуклое множество — это само L^p . Пусть теперь Λ — непрерывный линейный функционал. $\{f: |\Lambda f| < 1\}$ — открытое непустое выпуклое множество, а потому оно совпадает с $L^p[0,1]$. Значит, $\Lambda = 0$.

Пример 2.1. Рассмотрим пространство ℓ^p , где $0 . Оно не является локально выпуклым; но не любой непрерывный линейный функционал нулевой. Например, если <math>\{c_n\} \subset \ell^p$, то $\Lambda \colon \{x_n\} \mapsto \sum x_n c_n$ — ненулевой функционал.

Лемма 2.4. Пусть X — топологическое векторное пространство, G — открытое выпуклое множество, содержащее ноль. Определим

$$q(x) = \inf\{t \ge 0 : x \in tG\}.$$

Тогда q — неотрицательный непрерывный сублинейный функционал, и $G = \{x : q(x) < 1\}$.

Доказательство. Доказательство аналогично доказательству теоремы 1.5.

Теорема 2.5. Пусть X — топологическое векторное пространство, G — открытое выпуклое непустое подмножество X, $0 \notin G$. Тогда существует замкнутая гиперплоскость M, не пересекающая множество G.

Доказательство.

1. Пусть X — вещественное пространство, $x_0 \in G$. Определим $H = x_0 - G$. Это открытое выпуклое множество, содержащее точку ноль. По предыдущей лемме существует непрерывный неотрицательный сублинейный функционал q, такой, что $H = \{x : q(x) < 1\}$. Заметим, что $x_0 \notin H$. Значит, $q(x_0) \geqslant 1$. Рассмотрим одномерное пространство $Y = \{\alpha x_0 : \alpha \in \mathbb{R}\}$ и определим на нём линейный функционал $f_0 \colon Y \to \mathbb{R}$, $f_0(\alpha x) = \alpha q(x)$. Пусть $\alpha > 0$. Тогда $f_0(\alpha x) = \alpha q(x_0) = q(\alpha x_0)$. Если же $\alpha < 0$, то

$$f_0(\alpha x_0) = \alpha q(x_0) \le \alpha < 0 \le q(\alpha x).$$

Значит, $f_0 \le q$ на Y. По теореме Хана – Банаха этот функционал можно продолжить до функционала $f: X \to \mathbb{R}; f \le q$ на X. Рассмотрим $M = \operatorname{Ker} f$. Поскольку f непрерывно, M — замкнутая гиперплоскость. Если $x \in G$, то $x_0 - x \in H$, и

$$f(x_0) - f(x) = f(x_0 - x) \le q(x_0 - x) < 1.$$

Значит,

$$f(x) > f(x_0) - 1 = q(x_0) - 1 \ge 0.$$

Тогда $M \cap G = \emptyset$, так как на M значение функционала f равно нулю.

2. Пусть X — комплексное пространство. Из того, что мы доказали, следует, что существует вещественный линейный функционал $f: X \to \mathbb{R}$, такой, что $G \cap \ker f = \emptyset$. Осталось его комплексифицировать: F(x) = f(x) - i f(ix). Тогда F —

комплексный линейный функционал (доказывалось ранее). При этом $F(x)=0\iff f(x)=f(ix)=0.$ Поэтому $M=\operatorname{Ker} F=\operatorname{Ker} f\cap\operatorname{Ker} f(i,\,\cdot\,).$ Значит, $M\cap G=\varnothing.$

Определение. Аффинная гиперплоскость — это сдвинутая гиперплоскость, то есть множество вида M+x, где M — гиперплоскость, $x\in X$. Аналогично, аффинное линейное многообразие — это множество вида L+x, где $x\in X^2$. Аффинное подпространство — это L+x, где L — подпространство, $x\in X$.

Следствие 2.6. Пусть X — топологическое векторное пространство, G — открытое непустое выпуклое множество, Y — аффинное многообразие, $Y \cap G = \emptyset$. Тогда существует замкнутая аффинная гиперплоскость M, такая, что $Y \subset M$, $M \cap G = \emptyset$.

Доказательство. Возьмём вектор $x_0 \in Y$. Рассмотрим пространства G - x и $Y - y_0$. Поэтому можем считать, что Y — подпространство. Рассмотрим фактор-пространство X/Y и отображение $Q: X \to X/Y$. Легко проверить, что Q(G) выпукло в X/Y. Множество

$$Q^{-1}(Q(G)) = \bigcup_{y \in Y} (y + G)$$

открыто. Также Q(G) открыто в X/Y. Условие $Y\cap G=\emptyset$ означает, что $0\notin Q(G)$. Тогда по предыдущей теореме существует замкнутая гиперплоскость N в X/Y, такая, что $N\cap Q(G)=\emptyset$. Определим $M=Q^{-1}(N)$. Нетрудно проверить, что M — замкнутая гиперплоскость, не пересекающая G.

Определение. Предположим, что есть два подмножества A, B в X. Говорят, что они *строго отделены*, если они содержатся в дизъюнктных открытых полупространствах. Будем говорить, что они просто *отделены*, если они содержатся в замкнутых полупространствах, пересечение которых — замкнутая аффинная гиперплоскость.

Лемма 2.7. Пусть X — вещественное топологическое векторное пространство. Тогда:

- 1. Замыкание открытого полупространства замкнутое полупространство.
- 2. Пусть $A, B \subset X$. Тогда они строго отделены в том и только в том случае, когда существует непрерывный функционал f и вещественное число α такие, что $f|_A > \alpha$ и $f|_B < \alpha$.
- 3. Пусть $A, B \subset X$. Тогда A и B отделены тогда и только тогда, когда для некоторых f и $\alpha \in \mathbb{R}$ выполнены неравенства $f|_{A} \geqslant \alpha$ и $f|_{B} \leqslant \alpha$.

Доказательство. Упражнение.

Теорема 2.8. Пусть X — вещественное векторное топологическое пространство; A, B — дизъюнктны, непусты и выпуклы, A открыто. Тогда существует линейный функционал f и число $\alpha \in \mathbb{R}$ такие, что $A \subset \{x : f(x) < \alpha\}, B \subset \{x : f(x) \geqslant \alpha\}$. Если, кроме того, B открыто, то A и B строго отделены.

 $^{^2}$ Напомним, что линейным многообразием называется линейное подпространство, которое не обязано являться замкнутым.

Доказательство. Определим G = A - B. Очевидно, что G выпукло, открыто, и 0 ∉ G. Тогда существует замкнутая гиперплоскость M, такая, что $M \cap G = \emptyset$. Существует непрерывный функционал $f: X \to \mathbb{R}$ такой, что $M = \operatorname{Ker} f$. Рассмотрим образ $f(G) \subset \mathbb{R}$. Это множество выпукло, и 0 ∉ f(G). Значит, оно находится либо строго справа от нуля, либо строго слева от нуля. Предположим, что f(x) > 0 для всех $x \in G$. Пусть $a \in A$, $b \in B$. Тогда 0 < f(a - b) = f(a) - f(b), то есть f(a) > f(b), и множества A и B отделены. Поскольку f(A) открыто, найдётся такой $\alpha \in \mathbb{R}$, что

$$\sup_{b \in B} f(b) \le \alpha < \inf_{a \in A} f(a).$$

Пусть теперь B открыто. Тогда для некоторого $\alpha \in \mathbb{R}$

$$\sup_{b \in B} f(b) < \alpha < \inf_{a \in A} f(a),$$

что и требовалось.

Лемма 2.9. Пусть X — топологическое векторное пространство, K — компактное подмножество X. Пусть V открыто в X, $K \subset V$. Тогда существует открытая окрестность нуля U, такая, что $K + U \subset V$.

Доказательство. Рассмотрим класс \mathcal{U}_0 всех окрестностей нуля. Предположим, что утверждение неверно, то есть для любого $U \in \mathcal{U}_0$ существует такие точки $x_U \in K$ и $y_U \in U$, что $x_U + y_U \notin V$. Заведём порядок на \mathcal{U}_0 . Будем говорить, что $U_1 \geqslant U_2$, если $U_1 \subset U_2$.

Рассмотрим обобщённые последовательности $\{x_U\}$, $\{y_U\}$. Поскольку K компактно, последовательность $\{x_U\}$ имеет точку сгущения x в K, то есть для любого $U \in \mathcal{U}_0$ найдётся такая окрестность $W \in \mathcal{U}_0$, $W \geqslant U$, что x_W входит в нашу окрестность.

Рассмотрим обобщённую последовательность $x_U + y_U$. Отметим, что $y_U \to 0$ по определению порядка на \mathcal{U}_0 . Значит, последовательность $\{x_U + y_U\}$ сгущается к точке x + 0 = x. То есть x является точкой сгущения для замкнутого множества $X \setminus V$ Противоречие.

Теорема 2.10. Пусть X — вещественное локальное выпуклое пространство. Пусть A, B — непустые дизъюнктные замкнутые выпуклые множества, причём B компактно. Тогда множества A и B строго отделены.

Доказательство. Рассмотрим множество $V = X \setminus A$. Оно открыто, причём $B \subset X \setminus A = V$. По предыдущей лемме можно найти такую окрестность U нуля, что $B + U \subset X \setminus A$. Значит, существует непрерывная полунорма p, такая, что $\{x : p(x) < 1\} \subset U$. Определим $W = \{x : p(x) < \frac{1}{2}\}$. Тогда $(B + W) \cap (A + W) = \emptyset$. Поскольку W открыто, множества A + W и B + W тоже открыты. Таким образом, мы получили два выпуклых открытых дизъюнктных множества. Значит, они строго отделены. ■

Пример 2.2. Пусть A — нижняя полуплоскость в \mathbb{R}^2 , B — надграфик функции e^x . Тогда множества A и B непусты, замкнуты, дизъюнктны и выпуклы, но их нельзя строго отделить.

Следствие 2.11. Пусть X — вещественное локально выпуклое пространство, A — замкнутое выпуклое подмножество X, $x \notin A$. Тогда множества A и $\{x\}$ строго отделены.

Следствие 2.12. Пусть X — вещественное локальное выпуклое пространство, $A \subset X$. Тогда замкнутая выпуклая оболочка A совпадает с пересечением замкнутых полупространств, содержащих A.

Доказательство. Обозначим через \mathcal{H} класс всех замкнутых полупространств, содержащих A. Тогда $A \subset \bigcap \mathcal{H}$ и $\overline{\text{conv}} A \subset \bigcap \mathcal{H}$. Пусть $x_0 \notin \overline{\text{conv}} A$. Существует непрерывный линейный функционал f и число $\alpha \in \mathbb{R}$ такие, что $f(x_0) > \alpha$ и $f(x) < \alpha$ для всех $x \in \overline{\text{conv}} A$. Значит, $H = \{x : f(x) \leq \alpha\} \in \mathcal{H}$ и $x_0 \notin H$, что и требовалось. ■

Следствие 2.13. Пусть X — локальное выпуклое пространство, $A \subset X$. Тогда $\operatorname{Cl}(\operatorname{span} A)$ совпадает с пересечением замкнутых гиперплоскостей, содержащих A.

Доказательство. Упражнение.

Все предыдущие утверждения можно переформулировать для комплексных векторных пространств.

Теорема 2.14. Пусть X — комплексное локально выпуклое пространство, A, B — дизъюнктные непустые замкнутые множества, B компактно. Тогда существует непрерывный линейный функционал f, числа $\varepsilon > 0$ и $\alpha \in \mathbb{R}$ такие, что

$$\operatorname{Re} f(a) \le \alpha < \alpha + \varepsilon \le \operatorname{Re} f(b)$$

для всех $a \in A$ и $b \in B$.

Следствие 2.15. Пусть X — локально выпуклое пространство, $Y \subset X$. Следующие условия эквивалентны:

- 1. Y плотно в X;
- 2. если непрерывный линейный функционал f удовлетворяет условию $f|_{Y}=0$, то f=0.

Следствие 2.16. Пусть X — локально выпуклое пространство, Y замкнутое линейное подпространство в X. Пусть $x_0 \notin Y$. Тогда существует линейный непрерывный функционал f такой, что $f|_Y = 0$ и $f(x_0) = 1$.

3 Слабые топологии

Пусть X — локально выпуклое пространство(в частности, нормированное). Рассмотрим пространство непрерывных линейных функционалов X^* на X. Стоит заметить, что для X^* , где X — локально выпуклое пространство, нет никакой "естественной топологии" в отличие от нормированного случая. Этим, в частности, мотивировано определение слабой топологии.

Обозначение. Положим $\langle x, y \rangle = y(x)$, где $x \in X, y \in X^*$. Тогда отображение $X \times X^* \to K$, $(x, y) \mapsto \langle x, y \rangle = y(x)$ является билинейной формой.

Каждый функционал $y \in X^*$ задаёт полунорму $p_v(x) = |\langle x, y \rangle| = |y(x)|$.

Определение. Локально выпуклая топология, порождаемая полунормами p_y , где $y \in X^*$, называется *слабой топологией* на X. Она обозначается через $\sigma(X, X^*)$. Сходимость в слабой топологии часто обозначается следующим образом: $x_\alpha \stackrel{w}{\to} x$, что означает $\langle x_\alpha, y \rangle \to \langle x, y \rangle$ для всех непрерывных функционалов y, определённых на X.

Утверждение 3.1. Если $x_{\alpha} \to x$ в X, то $x_{\alpha} \xrightarrow{w} x$ (то есть слабая топология действительно слабее обычной).

Доказательство. Это несложно понять из определения слабой сходимости и непрерывности функционалов. ■

Пример 3.1. Рассмотрим пространство ℓ^p , где $1 . Пусть <math>(0, 0, \dots, 0, 1, 0, \dots)$, где единица стоит на n-ом месте. Тогда легко видеть, что $\|e_n\|_{\ell^p} = 1$ для всех n. Можно доказать, что $e_n \stackrel{w}{\longrightarrow} 0$.

Если p=1, то $e_n \stackrel{w}{\to} 0$. В пространстве ℓ^1 слабая сходимость последовательностей (не обобщённых, а обычных) эквивалентна сходимости по норме. При этом слабая топология в ℓ^1 не совпадает с топологией, порождённой нормой.

Пусть X — локально выпуклое пространство. Определим w^* -топологию на X^* (слабая со звездой топология $\sigma(X^*,X)$). Каждый вектор $x\in X$ определяет полунорму $y\mapsto |\langle x,y\rangle|$ на X^* . Нетрудно видеть, что этот набор полунорм определяет локально выпуклую топологию.

Пусть X,Y — векторные пространства. Предположим, что $\Phi\colon X\times Y\to K$, где $K=\mathbb{R}$ или $K=\mathbb{C}$, — билинейная форма. Пусть для всех $x\in X$ существует такое $y\in Y$, что $\Phi(x,y)\neq 0$, и для всех $y\in Y$ существует такой $x\in X$, что $\Phi(x,y)\neq 0$. Тогда можно определить локально выпуклую топологию $\sigma(X,Y)$ на X, порождённую полунормами $p_{V}\colon x\mapsto |\langle x,y\rangle|$ и аналогично определить $\sigma(Y,X)$ на Y.

Теорема 3.2. Пусть X — локально выпуклое пространство. Тогда $(X, w)^* = X^*$.

Доказательство. Если f — линейный функционал, непрерывный в слабой топологии, то он тем более непрерывен в обычной топологии, поскольку слабая топология слабее обычной. Теперь в другую сторону: проверим слабую непрерывность в нуле функционала f, то есть если $x_{\alpha} \to 0$, то $f(x_{\alpha}) \to 0$. Действительно, условие $x_{\alpha} \to 0$ означает, что $y(x_{\alpha}) \to 0$ для любого $y \in X^*$, в частности, для y = f.

Теорема 3.3. Пусть X — локально выпуклое пространство. Тогда $X = (X^*, w^*)^*$, для любого фиксированного $x \in X$ отображение $y \in X^* \mapsto \langle x, y \rangle$ является непрерывным линейным функционалом; и все непрерывные линейные функционалы представляются в таком виде.

Доказательство. Покажем, что функционал $y \mapsto \langle x, y \rangle$ непрерывен в w^* -топологии. Пусть $y_{\alpha} \xrightarrow{w^*} 0$. Тогда для всех $\widetilde{x} \in X$ выполнено $\langle \widetilde{x}, y_{\alpha} \rangle \to 0$, и для $x = \widetilde{x}$, в частности. Пусть $f \in (X^*, w^*)^*$. Тогда, по (2.1) существует набор векторов $x_1, \dots, x_n \in X$, такой, что

$$|f(y)| \le \sum_{k=1}^{n} |\langle x_k, y \rangle|, \quad \forall y \in X^*.$$

Значит, \bigcap Ker $x_k \subset$ Ker f. Для окончания доказательства теоремы достаточно доказать следующую лемму.

Лемма 3.4. Если X — векторное пространство, f, f_1, \ldots, f_n — линейные функционалы на X, и $\operatorname{Ker} f \supset \bigcap_{k=1}^n \operatorname{Ker} f_k$. Тогда f — линейная комбинация f_k по $1 \leqslant k \leqslant n$.

Доказательство. Обозначим

$$\bigcap_{j\neq k} \operatorname{Ker} f_j = K_j, \quad \bigcap_{j=1}^n \operatorname{Ker} f_j = K.$$

Не умаляя общности, можно считать, что $K_j \neq K$ для всех j. Выберем тогда $x_j \in K_j$ для каждого j такое, что $f_i(x_j) = 0$, для $i \neq j$, и $f_i(x_i) = 1$. Последнего можно добиться из-за линейности f_i . Обозначим теперь $f(x_k) = \alpha_k$. Пусть $x \in X$,

$$y = x - \sum_{1}^{n} f_k(x) x_k. \tag{b}$$

Применим f_i к \flat :

$$f_j(y) = f_j(x) - \sum_{1}^{n} f_k(x) f_j(x_k) = 0.$$

Значит, $y \in K \subset \text{Ker } f$. Применив $f \ltimes b$, получаем

$$0 = f(x) - \sum_{k=1}^{n} f_k(x)f(x_k) \implies f(x) = \sum_{k=1}^{n} \alpha_k f_k(x).$$

Теорема 3.5. Пусть X — локально выпуклое пространство, A — выпуклое подмножество X. Тогда $\operatorname{Cl} A$ = w- $\operatorname{Cl} A$.

Доказательство. Пусть \mathcal{T} — исходная топология на X, $\sigma(X,X^*) \subset \mathcal{T}$, $\operatorname{Cl} A \subset \operatorname{w-Cl} A$. Пусть $x \in X \setminus \operatorname{Cl} A$. Тогда существует непрерывный линейный функционал на X, число $\alpha \in \mathbb{R}$ и $\varepsilon > 0$, такие, что

$$\operatorname{Re}\langle a, v \rangle \leq \alpha < \alpha + \varepsilon < \operatorname{Re}\langle x, v \rangle$$

для всех $a \in \operatorname{Cl} A$. Тогда

$$Cl A \subset B = \{z \in X : Re\langle z, y \rangle \leq \alpha\}.$$

Множество B слабо замкнуто, а потому w-Cl $A \subset B$. Так как $x \notin B$, то $x \notin Cl A$. Противоречие. ■

Следствие 3.6. Пусть X — локально выпуклое пространство, A — выпуклое подмножество пространства X. Тогда A замкнуто тогда и только тогда, когда оно слабо замкнуто.

Упражнение. Покажите, что $(\ell^1)^* \cong \ell^\infty$, $x = \{x_n\} \in \ell^1 \mapsto \sum x_n c_n$ — линейный функционал. Доказать, что других линейных функционалов нет.

Пример 3.2. Пусть $X = \ell^1, X^* = \ell^\infty$, и $C_0 \subset \ell^\infty$ — замкнутое подпространство последовательностей, сходящихся к нулю. Однако \mathbf{w}^* -Cl $C_0 = \ell^\infty$ (простое упражнение).

Определение. Пусть $A \subset X, X$ — локально выпуклое пространство. Множество

$$A^{\circ} = \{ y \in X^* : |\langle a, y \rangle| \le 1, \ \forall a \in A \}$$

называется полярой.

Пример 3.3. Пусть X — нормированное пространство. $B_X = \{x \in X : ||x|| \le 1\}$, тогда $B_X^{\circ} = B_{X^*}$.

Определение. Пусть $B \subset X^*$. Предполярой называется множество

$${}^{\circ}B=\{x\in X: |\langle x,b\rangle|\leqslant 1\;\forall b\in B\}.$$

Определение. *Аннулятором* множества $A \subset X$ называется множество

$$A^{\perp} = \{ y \in X^* : \langle x, y \rangle = 0 \}$$

для всех $x \in A$. Преданнулятором множества $B \subset X^*$ называется множество

$$^{\perp}B = \{x \in X : \langle x, v \rangle = 0 , \forall v \in B\}.$$

Пример 3.4. Если A — линейное подпространство X, то $A^{\circ} = A^{\perp}$, а если B — линейное подпространство X^{*} , то ${}^{\circ}B = {}^{\perp}B$. Всё это легко следует их определений.

Определение. Пусть $A \subset X$. *Биполярой* A называется множество ${}^{\circ}A^{\circ} = {}^{\circ}(A^{\circ})$. Биполяра $B \subset X^*$ — это множество ${}^{\circ}B^{\circ} = ({}^{\circ}B)^{\circ}$.

Лемма 3.7. Поляры и биполяры обладают следующими свойствами:

- (1) A° выпуклое сбалансированное множество;
- (2) $A_1 \subset A \implies A^{\circ} \subset A_1^{\circ}$;
- (3) $\alpha \neq 0 \implies (\alpha A)^{\circ} = \frac{1}{\alpha} A^{\circ}$.
- (4) $A \subset {}^{\circ}(A^{\circ}), B \subset ({}^{\circ}B)^{\circ}.$
- (5) $A^{\circ} = ({}^{\circ}(A^{\circ}))^{\circ}$.

Доказательство. Первые четыре утверждения тривиальны. Докажем последнее. Мы уже знаем, что $A \subset {}^{\circ}(A^{\circ})$. Применим к этому включению поляру, воспользовавшись пунктом (2): $A^{\circ} \supset ({}^{\circ}(A^{\circ}))^{\circ}$. Применяя (4) к множеству A° , получаем обратное включение.

Замечание. Поляры и предполяры замкнуты в слабой со звёздочкой и слабой топологиях соответственно. Действительно, $\langle x, y \rangle$ — слабо непрерывный функционал на X и слабо со звёздочкой непрерывный на X^* , поэтому поляры и предполяры являются некоторым пересечением слабо (слабо со звёздочкой) замкнутых множеств. Из этого также следует, что предполяра замкнута в исходной топологии по 3.6.

Теорема 3.8 (о биполяре). Пусть X — локально выпуклое пространство, $A \subset X$. Тогда $^{\circ}(A^{\circ})$ — это замкнутая выпуклая сбалансированная оболочка множества A.

Доказательство. Определим A_1 как пересечение всех замкнутых выпуклых сбалансированных, содержащих A. Хотим доказать, что A_1 — это и есть биполяра. Очевидно, что $A \subset A_1$, тогда биполяра содержит A_1 , так как сама является замкнутым выпуклым сбалансированным множеством.

Пусть $x_0 \in X \setminus A_1$. Пользуясь строгой отделимостью мы можем найти такой функционал $y \in X^*$ и числа $\alpha \in \mathbb{R}$, $\varepsilon > 0$, что справедливы неравенства

$$\operatorname{Re}\langle a, y \rangle < \alpha < \alpha + \varepsilon < \operatorname{Re}\langle x_0, y \rangle$$

для всех $a \in A_1$. Поскольку $0 \in A_1$, $\alpha > 0$. Можно считать, что $\alpha = 1$. Значит,

$$\operatorname{Re}\langle a, y \rangle < 1 < 1 + \varepsilon < \operatorname{Re}\langle x_0, y \rangle, \quad \forall a \in A_1.$$

Тогда $y\in A_1^\circ\subset A^\circ$, а $x_0\notin{}^\circ(A^\circ)$, так как $|\langle x_0,y\rangle|>1.$ То есть

$$X \setminus A_1 \subset X \setminus {}^{\circ}(A^{\circ}),$$

откуда следует обратное включение.

Следствие 3.9. Пусть $B \subset X^*$. Тогда $({}^{\circ}B)^{\circ} - w^*$ -замкнутая выпуклая сбалансированная оболочка множества B.

Теорема 3.10 (Банах, Алаоглу). Пусть X — нормированное пространство. Тогда шар B_{X^*} компактен в w^* -топологии.

Замечание. Если пространство X рефлексивно, то шар B_X компактен в слабой топологии. Если же X не рефлексивно, то это неверно.

Замечание. В доказательстве используется теорема Тихонова, которая говорит о том, что произведение любого семейства компактных пространств компактно. Пусть K_{α} — топологическое пространство, $\alpha \in A$. Пусть $\{x_j\}$ — сеть. $x_j = (x_{j,\alpha})_{\alpha \in A}$. Будем говорить, что $x_j \to x = (x_{\alpha})$, если $x_{j,\alpha} \to x_{\alpha}$ для всякого $\alpha \in A$.

Доказательство. Пусть $x \in B_X$, $D_x = \{\alpha \in K : |a| < 1\}$, где $K \longrightarrow \mathbb{R}$ или \mathbb{C} . Рассмотрим произведение $Q = \prod_{x \in B_X} D_x$. По теореме Тихонова это пространство компактно. Положим

$$\tau: B_{X^*} \to Q, \qquad (\tau y)_x = \langle x, y \rangle \in D_x.$$

1. τ — инъекция.

Предположим, что $\tau(y_1) = \tau(y_2)$. Тогда $\langle x, y_1 \rangle = \langle x, y_2 \rangle$ для всех $x \in B_x$, откуда следует, что $y_1 = y_2$.

2. т непрерывно.

Пусть $y_{\alpha} \to y$ в топологии w^* . Тогда $\langle x, y_{\alpha} \rangle \to \langle x, y \rangle$ для всех $x \in X$, откуда следует непрерывность.

3. т имеет замкнутый образ.

Пусть $f \in Q$, $y_{\alpha} \in B_{X^*}$, $\tau(y_{\alpha}) \to f$ в Q. Тогда $\langle x, y_{\alpha} \rangle \to f_x$ для всех $x \in B_X$. Построим по f функционал \widetilde{f} . На B_X $\widetilde{f}(x) = f_x$. Продолжим \widetilde{f} на X. Если $\varepsilon > 0$ и $\|\varepsilon x\| < 1$, положим $\widetilde{f}(x) = \varepsilon^{-1}\widetilde{f}(\varepsilon x)$. Если $\delta > 0$, $\|\delta x\| < 1$, то

$$\delta^{-1} f(\delta x) = \delta^{-1} \lim \langle \delta x, y_{\alpha} \rangle = \varepsilon^{-1} \lim \langle \varepsilon x, y_{\alpha} \rangle = \varepsilon^{-1} f(\varepsilon x),$$

то есть определение \widetilde{f} не зависит от выбора числа ε . Если $\|x\|<1$, то $|\widetilde{f}(x)|<1$ по построению \widetilde{f} , следовательно, $\widetilde{f}\in B_{X^*}$.

4. т — гомеоморфизм на свой образ.

Пусть $y_{\alpha} \in B_{X^*}$, $\tau(y_{\alpha}) \to \tau(y)$. Тогда $\langle x, y_{\alpha} \rangle \to \langle x, y \rangle$ для любого $x \in B_X$, что равносильно $\langle x, y_{\alpha} \rangle \to \langle x, y \rangle$ для любого $x \in X$, что равносильно $y_{\alpha} \xrightarrow{w^*} y$.

Определение. Нормированное пространство X называется рефлексивным, если $X = X^{**}$.

Примеры 3.5. Пространства ℓ^p и $L^p(M)$ являются рефлексивными тогда и только тогда, когда 1 .

Лемма 3.11. Пусть X — нормированное пространство. Тогда шар B_X плотен в $B_{X^{**}}$ в топологии³ $\sigma(X^*, X^{**})$.

 \mathcal{A} оказательство. σ - $\mathrm{Cl}(B_X)\subset B_{X^{**}}$. Пусть $z\in B_{X^{**}}\setminus \sigma$ - $\mathrm{Cl}\, B_X$. Тогда существует такой функционал $y\in X^*$ и число $\alpha\in\mathbb{R}$, что

$$\operatorname{Re}\langle x, y \rangle < \alpha < \alpha + \varepsilon < \operatorname{Re}\langle y, z \rangle$$

для всех $x \in B_X$. Поскольку $0 \in B_X$, отсюда следует, что $\alpha > 0$. Можно считать, что $\alpha = 1$. Тогда неравенство переписывается в таком виде:

$$|\langle x, y \rangle| < 1 < 1 + \varepsilon < \text{Re}\langle y, z \rangle, \quad \forall x \in B_X.$$

 $^{^{3}}$ Будем приписывать σ - для удобства, когда работаем в этой топологии.

Поскольку $y \in B_X^\circ = B_{X^*}$, последнее неравенство невозможно. Значит, вектора z не существует, и лемма доказана.

Теорема 3.12. Пусть X — банахово пространство. Тогда следующие условия равносильны:

- (1) пространство X рефлексивно;
- (2) пространство X^* рефлексивно;
- (3) топологии $\sigma(X^*, X) = \sigma(X^*, X^{**})$ совпадают;
- (4) единичный шар B_X компактен в слабой топологии.

Доказательство. Очевидно, что из (1) следует (3).

- (4) \implies (1). Из хаусдорфовости шар B_X замкнут в $B_{X^{**}}$ в топологии $\sigma(X^{**}, X^*)$. По лемме, B_X плотен в $B_{X^{**}}$. Значит, $B_X = B_{X^{**}}$, то есть $X = X^{**}$.
 - (1) \implies (4). Это следует из теоремы Банаха Алаоглу.
- (3) \implies (2). Шар B_{X^*} компактен в $\sigma(X^*, X)$. Тогда он компактен и в $\sigma(X^*, X^{**})$, а значит пространство X^* рефлексивно.
- (2) \Longrightarrow (1). Поймём, что B_X замкнуто по норме в X^{**} (естественное вложение $X \hookrightarrow X^{**}$). Из 3.6 следует, что B_X замкнут в $\sigma(X^{**}, X^{***}) = \sigma(X^{**}, X^{*})$. Но мы доказали, что шар B_X плотен в $B_{X^{**}}$ в топологии $\sigma(X^{**}, X^{*})$. Значит, $B_X = B_{X^{**}}$.

Следствие 3.13. Пусть X — рефлексивное пространство, M — подпространство X. Тогда M и X/M рефлексивны.

Доказательство. Рассмотрим шар $B_M = M \cap B_X$. Он компактен в $\sigma(X, X^*)$. Поскольку $\sigma(X, X^*)|_{M} = \sigma(M, M^*)$, M рефлексивно.

Определение. Пусть X — нормированное пространство. Будем говорить, что X — слабо секвенциально полное пространство, если всякая слабая последовательность Коши слабо сходится.

Замечание. Слабая последовательность Коши $\{x_n\}$ — это такая последовательность, что $\langle x_n, y \rangle$ является последовательностью Коши для любого функционала $y \in X^*$.

Теорема 3.14. Пусть X — рефлексивное пространство. Тогда X слабо секвенциально полно.

Доказательство. Пусть $\{x_n\}$ — слабая последовательность Коши в X. Рассмотрим последовательность $\langle x_n,y\rangle$, где $y\in X^*$. Тогда $\|x_n\|\leqslant$ const по принципу равномерной ограниченности (здесь мы воспринимаем $\{x_n\}$ как элементы X^** по рефлексивности). Пусть $\|x_n\|\leqslant R$. Так как шар B(0,R) компактен в слабой топологии, последовательность $\{x_n\}$ сгущается к x в топологии $\sigma(X,X^*)$. Так как для каждого $y\in X^*$ последовательность $\langle x_n,y\rangle$ является последовательностью Коши, то для каждого $y\in X^*$ и $\varepsilon>0$ существует такое $M\in\mathbb{N}$, что $|\langle x_n-x,y\rangle|<\varepsilon$, если $n\geqslant M$. Предел $\lim \langle x_n,y\rangle$ существует для каждого $y,\langle x_n,y\rangle\to\langle x,y\rangle$, а это и означает, что последовательность $\{x_n\}$ слабо сходится к точке x.

Сформулируем одну очень важную теорему функционального анализа, которую мы докажем позже (в следующем семестре).

Теорема 3.15 (Рисс, Марков, Какутани). Пусть X — компакт. Тогда мы можем отождествить пространство конечных борелевских регулярных мер (под мерами в функциональном анализе подразумеваются заряды конечной вариации, а меры из курса анализа обычно называют положительными мерами) на X с пространством $C(X)^*$. То есть, отображение

$$\Lambda \colon \mu \mapsto \left(f \mapsto \int_X f \mathrm{d}\mu \right)$$

задаёт изометрию ($|\mu| = \|\Lambda\mu\|$), и снабжает пространство регулярных борелевских мер w^* -топологией.

Пример 3.6. Пространство C[0,1] не слабо секвенциально полно. Рассмотрим убывающие функции f_n такие, что $f_n(0) = 1$, supp $f_n = [0,1/n]$, тогда для всех μ

$$\langle f_n, \mu \rangle = \int f_n \, \mathrm{d}\mu \to \mu\{0\}.$$

Однако последовательность f_n не сходится слабо ни к какой непрерывной функции.

Определение. Множество $M \subset X$ называется *проксиминальным*, если для любого $x \in X$ существует такой $y \in M$, что ||x - y|| = dist(x, M).

Теорема 3.16. Если X — рефлексивное пространство, M — подпространство, то M проксиминально.

Доказательство. Пусть $x \in X$. Рассмотрим множество $\{y \in M : \|x - y\| \le 2 \operatorname{dist}(x, M)\}$. Это слабо компактный шар. Пусть $\{y_n\} \subset M, \|x - y_n\| \to \operatorname{dist}(x, M)$. Последовательность $\{y_n\}$ сгущается к y_0 в слабой топологии. Тогда $\|x - y_0\| = \operatorname{dist}(x, M)$.

Упражнение. Пусть $l \in X^*$. Ядро Ker l проксиминально тогда и только тогда, когда существует вектор $x \in X$, удовлетворяющий условиям ||x|| = 1 и $\langle x, l \rangle = ||l||$.

Пример 3.7. Рассмотрим такой линейный функционал $\Lambda \colon C[0,1] \to \mathbb{C}$:

$$\Lambda f = \int_0^{\frac{1}{2}} f(t) dt - \int_{\frac{1}{2}}^1 f(t) dt.$$

Нетрудно понять, что $\|\Lambda\|=1$. Очевидно, что норма не превосходит единицы. Теперь рассмотрим кусочно линейные убывающие функции f_n такие, что

$$\begin{cases} f_n(t) = 1, & t \in \left[0, \frac{1}{2} - \frac{1}{n}\right]; \\ f_n(t) = -1, & t \in \left[\frac{1}{2} + \frac{1}{n}\right]; \\ f_n(t) = -n(t - 1/2), & t \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right]. \end{cases}$$

Таким образом, $\Lambda f_n/\|f_n\| \xrightarrow{n\to\infty} 1$. Также понятно, что не существует такой непрерывной функции, на которой достигается супремум отношения $\Lambda f/\|f\|$. то есть Ker Λ не проксиминально.

Теорема 3.17. Пусть X — нормированное пространство. Шар B_{X^*} метризуем в топологии $\sigma(X^*, X)$ в том и только том случае, когда X сепарабельно.

Доказательство. Предположим, что X сепарабельно. Пусть $\{x_n\}$ — плотная в B_X последовательность. Пусть $D_n = \{z : |z| \le 1\}$, тогда рассмотрим тихоновский куб $Q = \prod_{i=1}^{\infty} D_i$.

Пусть $\{c_n\}$, $\{d_n\} \in Q$. Широко известно, что топология на тихоновском кубе совпадает с топологией, порождённой следующей метрикой:

$$\rho(\{c_n\},\{d_n\}) = \sum_{n>1} 2^{-n} \frac{|c_n - d_n|}{1 + |c_n - d_n|}.$$

Рассмотрим отображение

$$\tau: B_{X^*} \to Q, \quad \tau(y) = \{\langle x_n, y \rangle\} \in Q.$$

Пусть обобщённая последовательность $\{y_\alpha\}$ w^* -сходится к y в B_{X^*} . Это значит, что для каждого n есть сходимость $\langle x_n, y_\alpha \rangle \to \langle x_n, y \rangle$, и тогда $\tau(y_\alpha) \to \tau(y)$, так как, глядя на метрику ρ , можно понять, что для хорошего приближения точки в тихоновском кубе, нас интересует хорошее приближение лишь в первых нескольких координатах, чего можно добиться благодаря тому, что присутствует стремление по каждой координате. Значит, получили, что τ непрерывно. Также τ инъективное отображение в компакт, то есть является гомеоморфизмом на образ, значит, на B_{X^*} можно задать метрику, полученную из метрики на $\tau(B_{X^*})$, индуцированной с Q.

Предположим, что пара (B_{X^*}, w^*) является метризуемой. Значит, существуют открытые множества $\{U_n \colon n \geqslant 1\}$ в (B_{X^*}, w^*) такие, что $0 \in U_n$ и $\bigcap_{n=1}^{\infty} U_n = \{0\}$. По определению локально выпуклой w^* -топологии на B_{X^*} , для каждого n существует конечное множество F_n , содержащееся в X такое, что

$$\{x^* \in B_{X^*} \colon |\langle x, x^* \rangle| < 1$$
 для всех $x \in F_n\} \subseteq U_n$.

Возьмем $F = \bigcup_{n=1}^{\infty} F_n$; F — счетно. При этом $^{\perp}(F^{\perp})$ является замкнутой линейной оболочкой F и, как подпространство X, является сепарабельным. Но если $x^* \in F^{\perp}$, то для каждого $n \geqslant 1$ и для всех $x \in F_n$ будет выполнено $|\langle x, x^*/\|x^*\| \rangle| = 0 < 1$. Следовательно $x^*/\|x^*\| \in U_n$ для всех $n \geqslant 1$. Таким образом, $x^* = 0$. Так как $F^{\perp} = (0)$, то $^{\perp}(F^{\perp}) = X$, и X обязано быть сепарабельным.

4 Теорема Крейна - Мильмана

Определение. Пусть X — векторное пространство, K — выпуклое подмножество X. Тогда $a \in K$ называется *крайней* (или *экстремальной*), если из того, что существует равенство $a = tx_1 + (1 - t)x_2$, t > 0, следует $a = x_1 = x_2$.

Лемма 4.1. Пусть $a \in K \subset X$, где K выпукло. Следующие условия равносильны:

1. $a \in \operatorname{ext} K$;

- 2. $x_1, x_2 \in K$, $a = \frac{1}{2}(x_1 + x_2) \implies x_1 = x_2 = a$;
- 3. если $x_1, ..., x_n \in K$, $a \in \text{conv}\{x_1, ..., x_n\}$, то $a = x_i$ для некоторого j;
- 4. множество $K \setminus \{a\}$ выпукло.

Доказательство. Упражнение.

Теорема 4.2 (Крейн, Мильман). Пусть K — непустое компактное выпуклое подмножество X, X — локально выпуклое пространство. Тогда $K = \overline{\text{conv}} \operatorname{ext} K$.

Доказательство. Обозначим через $\mathcal U$ класс всех собственных открытых в индуцированной топологии на K выпуклых подмножеств множества K. Предположим, что K имеет более одной точки. $\mathcal U \neq \varnothing$. Проверим выполнение условия леммы Цорна. Пусть $\mathcal U_0$ — цепь. Тогда $U_0 = \bigcup_{U \in \mathcal U_0}$ открыто и выпукло. Нужно только проверить, что $U_0 \neq K$. Предположим, что это не так. Тогда множества из U_0 покрывают K, и должно существовать конечное подпокрытие. Однако это невозможно. Значит, $U_0 \in \mathcal U_0$, и условие леммы Цорна выполнено. Значит, в этом множестве существует максимальный элемент U. План наших дальнейших действий состоит в следующем: мы хотим доказать, что дополнение U в K состоит из одной точки. Из этого по предыдущей лемме будет следовать, что эта точка является экстремальной точкой.

Пусть $x \in K$, $0 \le \lambda < 1$. Определим $T_{x,\lambda} \colon K \to K$ — непрерывное отображение, которое будет действовать по следующему правилу:

$$T_{x,\lambda}(y) = \lambda y + (1 - \lambda)x.$$

Для этого отображения выполнено такое свойство: если $\sum_{i=1}^{n} a_i = 1$, то

$$T_{x,\lambda}\left(\sum_{j=1}^n \alpha_j y_j\right) = \sum_{j=1}^n \alpha_j T_{x,\lambda}.$$

То есть, $T_{x,\lambda}$ — аффинное отображение. Если $x \in U$, то $T_{x,\lambda}(U) \subseteq U$. Значит, $U \subseteq T_{x,\lambda}^{-1}(U)$ — открытое выпуклое подмножество K.

Пусть $y \in \operatorname{Cl} U \setminus U$. Тогда $T_{x,\lambda}(y) \in [x,y) \subset U$. То есть $\operatorname{Cl} U \subset T_{x,\lambda}^{-1}(U)$. Значит, $T_{x,\lambda}^{-1}(U) = K$ по максимальности U, а также

$$T_{x,\lambda}(K) \subset U, \quad \forall x \in U, \ 0 \le \lambda < 1.$$
 (**)

Теперь покажем, что если V — открытое и выпуклое подмножество K, то $V \cup U = U$ или $V \cup U = K$. Действительно, докажем, что $V \cup U$ — выпуклое множество. Пусть это не так, тогда есть две точки x,y из объединения, такие, что для некоторого λ выполнено

$$\lambda x + (1 - \lambda)v \notin V \cup U$$
.

Не умаляя общности, предположим, что $x \in U$, тогда $T_{x,\lambda}(y) \notin U$, противоречие с (\star). Теперь, если $|K \setminus U| > 1$, то пусть $a,b \in K \setminus U$, тогда рассмотрим две выпуклые непересекающиеся окрестности V_a и V_b этих точек. По доказанному выше, $V_a \cup U = K$, но $b \notin V_a \cup U$, противоречие. Значит, $|K \setminus U| = 1$.

Лемма. Если V — открытое выпуклое подмножество X и ехt $K \subset V$, то $K \subset V$.

Пусть это не так. Тогда V — открытое выпуклое подмножество X, $\operatorname{ext} K \subset V$ и $V \cap K \neq K$. Тогда $V \cap K \in \mathcal{U}$. Тогда существует максимальный элемент U, такой, что $V \cap K \subset U$. Пусть $K \setminus U = \{a\}, a \in \operatorname{ext} K, a \notin V$. Противоречие.

Положим теперь $E=\overline{\mathrm{conv}}$ ext K. Очевидно, что $E\subset K$. По теореме Хана–Банаха существуют $y\in X^*, \alpha\in\mathbb{R}$ такие, что

$$E \subset \{x \in X : \operatorname{Re}\langle x, y \rangle < \alpha\} := V^4$$

Значит, $K\subset V$ по следствию, но $K\setminus V\neq\varnothing$. Противоречие. Значит, K=E, и теорема доказана.

Пример 4.1. В пространствах c_0 , $L^1[0,1]$ единичный шар не имеет экстремальных точек. Они не являются двойственными ни к какому нормированному пространству. Если X — двойственное пространство к некоторому банахову, то B_X является компактом в w^* топологии, и тогда, по теореме Крейна – Мильмана, у B_X много крайних точек.

Теорема 4.3. Если X — локально выпуклое множество, K — компактное выпуклое подмножество X, при этом $F \subseteq K$ такое, что $K = \overline{\text{conv}}(F)$, тогда ext $K \subseteq \overline{F}$.

Доказательство. В действительности, можно считать, что F — замкнуто. Предположим что в K существует экстремальная точка x_0 такая, что $x_0 \notin F$. Пусть p — непрерывная полунорма на X такая, что $F \cap \{x \in X : p(x-x_0) < 1\} = \emptyset$. Пусть $U_0 = \{x \in X : p(x) < \frac{1}{3}\}$. Тогда $(x_0 + U_0) \cap (F + U_0) = \emptyset$. Следовательно, $x_0 \notin \overline{(F + U_0)}$.

Так как F компактно, существуют y_1,\ldots,y_n в F такие, что $F\subseteq\bigcup_{k=1}^n(y_k+U_0)$. Определим $K_j=\overline{\mathrm{conv}}(F\cap(y_j+U_0))$. Значит, $K_j\subseteq y_j+\overline{U}_0$, и $K_j\subseteq K$. Далее из компактности и выпуклости K_1,\ldots,K_n следует, что $\overline{\mathrm{conv}}(K_1\cup\ldots\cup K_n)=\mathrm{conv}(K_1\cup\ldots\cup K_n)$. Отсюда

$$K = \overline{\text{conv}}(F) = \text{conv}(K_1 \cup \ldots \cup K_n).$$

Так как $x_0 \in K$, имеет место равенство $x_0 = \sum_{j=1}^n \alpha_j x_j$, для некоторых $x_j \in K_j$ и $\alpha_j \geqslant 0$: $a_1 + \ldots + \alpha_n = 1$. Но x_0 является крайней точкой K. Значит, $x_0 = x_j \in K_j$ для некоторого j. Но тогда $x_0 \in K_j \subseteq y_j + \overline{U}_0 \subseteq \overline{(F + U_0)}$, противоречие.

Лемма 4.4. Пусть K_1, \ldots, K_n — компактные выпуклые множества. Тогда множество $\mathrm{conv}(K_1 \cup \ldots \cup K_n)$ компактно.

⁴Отделили какую-то точке в $K \setminus E$ (если это множество не пусто) от множества E.

⁵Это будет доказано чуть дальше.

Доказательство. Пусть

$$S = \left\{ (\alpha_1 \ldots, \alpha_n) : 0 \leqslant \alpha_j \leqslant 1, \sum_{i=1}^n \alpha_i = 1 \right\}.$$

Рассмотрим $F: K_1 \times \cdots \times K_n \times S \to X$ — непрерывное отображение, определенное по следующему правилу: $F(y_1, \ldots, y_n, \alpha_1, \ldots, \alpha_n) \mapsto \sum \alpha_j y_j$. Тогда

$$F(K_1 \times ... \times K_n \times S) = \operatorname{conv}\left(\bigcup_i K_i\right).$$

Значит, правая часть равенства компактна как непрерывный образ компакта.

5 Теорема Стоуна – Вейерштрасса

Теорема 5.1 (Стоун, Вейерштрасс). Пусть X — компактное топологическое пространство, A — замкнутая подалгебра алгебры всех непрерывных функций. Пусть также выполнены условия:

- 1. $1 \in A$;
- 2. $x \neq y \implies$ существует такая функция $f \in A$, что $f(x) \neq f(y)$;
- 3. $f \in A \implies \overline{f} \in A$.

Тогда A = C(X).

Обозначение. Для произвольной ограниченной борелевской функции h на X за $h\mu$ будем обозначать меру, чьё значение на борелевском множестве Δ это $\int_{\Delta} h \mathrm{d}\mu$. Заметим, что $\|h\mu\| = \int |h| \mathrm{d}|\mu|$.

Доказательство. Для доказательства теоремы необходимо показать, что $\mathcal{A}^{\perp}=\{0\}$. Предположим обратное. Тогда, по теореме Алаоглу, единичный шар A^{\perp} является w^* компактом. По теореме Крейна – Мильмана, найдется граничная точка μ шара A^{\perp} . Возьмем $K=\operatorname{supp}\mu$. Тогда

$$K = X \setminus \bigcup \{V \colon V \text{ открыто и } |\mu|(V) = 0\}.$$

Стоит отметить, что это следует из регулярности меры μ . Следовательно

$$|\mu|(X \setminus K) = 0, \quad \int_X f \, \mathrm{d}\mu = \int_K f \, \mathrm{d}\mu$$

для всех непрерывных функций f на X. Так как $\mathcal{A}^{\perp} \neq \{0\}$, $\|\mu\| = 1$ и $K \neq \emptyset$. Зафиксируем точку x_0 в K. Покажем, что $K = \{x_0\}$.

Рассмотрим точку $x \in X$, $x \neq x_0$. По свойству (2) найдется такая f_1 в A, что

$$f_1(x_0) \neq f_1(x) = \beta.$$

По свойству (1) функция $\beta \in A$. Следовательно

$$f_2 = f_1 - \beta \in A$$
, $f_2(x_0) \neq 0 = f_2(x)$.

По свойству (3)

$$f_3 = |f_2|^2 = f_2 \overline{f_2} \in A.$$

Также $f_3(x) = 0 < f_3(x_0)$ и $f_3 \ge 0$. Положим

$$f = (\|f_3\| + 1)^{-1}f_3.$$

Тогда

$$f \in A, f(x) = 0, f(x_0) > 0$$
 и $0 \le f < 1$ на X .

Более того, так как A является алгеброй, то gf и $g(1-f) \in A$ для всех g в A. Так как $\mu \in A^{\perp}$, $0 = \int gf \, \mathrm{d}\mu = \int g(1-f) \mathrm{d}\mu$ для всех $g \in A$. Поэтому $f\mu$ и $(1-f)\mu \in A^{\perp}$.

Положим $\alpha = ||f\mu|| = \int f \, \mathrm{d}|\mu|$. Так как $f(x_0) > 0$, то существует окрестность U точки x_0 и $\varepsilon > 0$, что $f(y) > \varepsilon$ для всех y в U. Значит,

$$\alpha = \int f d|\mu| \geqslant \int_{U} f d|\mu| \geqslant \varepsilon |\mu|(U) > 0,$$

так как $U\cap K\neq \varnothing$. Аналогично из того, что $f(x_0)<1$, получим $\alpha<1$. Значит, $0<\alpha<1$. Также

$$1 - \alpha = 1 - \int f \, \mathrm{d}|\mu| = \int (1 - f) \, \mathrm{d}|\mu| = \|(1 - f)\mu\|.$$

Так как

$$\mu = \alpha \left[\frac{f\mu}{\|f\mu\|} \right] + (1-\alpha) \left[\frac{(1-f)\mu}{\|(1-f)\mu\|} \right],$$

и μ является экстремальной точкой для единичного шара в A^{\perp} , то

$$\mu = f\mu ||f\mu||^{-1} = \alpha^{-1}f\mu.$$

Но единственный случай, когда меры μ и $\alpha^{-1}f\mu$ могут быть равны — это $\alpha^{-1}f=1$ почти всюду по μ . Так как f непрерывна, то $f\equiv\alpha$ на K. Так как $x_0\in K$, то $f(x_0)=\alpha$. Но $f(x_0)>f(x)=0$. Значит, $x\notin K$. Таким образом, мы показали, что K состоит из единственной точки x_0 , и при этом $\mu=\gamma\delta_{x_0}$, где $|\gamma|=1$. Но $\mu\in A^\perp$ и $1\in A$. Значит, $0=\int 1\,\mathrm{d}\mu=\gamma$ — противоречие. Следовательно $A^\perp=(0)$ и A=C(X).

Примеры 5.1.

- 1. Если X = C[a, b], то полиномы от одной переменной плотны в X.
- 2. Пусть $X=C(\mathbb{T})$, тогда тригонометрические полиномы $\sum_{k\in\mathbb{Z}} c_k z^k$ плотны.
- 3. Пусть K компактное подмножество \mathbb{R}^n . Тогда алгебра $\mathbb{R}[x_1,\ldots,x_n]$ плотна в C(K).

4. Пусть K компактно в $\mathbb C$. Тогда многочлены от z и $\overline z$, то есть суммы вида $\sum a_{jk}z^j\overline z^k$ плотны в C(K).

Следствие 5.2. Пусть выполнены условия (2) и (3). Тогда $C(X) = \mathcal{A}$, где $\mathcal{A} = \{f \in C(X) : f(x_0) = 0\}$ для какой-то точки x_0 .

Доказательство. Упражнение.

Следствие 5.3. Пусть X локально компактно, A — замкнутая подалгебра $C_0(X)$,

- 1. для любого $x \in X$ существует такое f(A), что $f(x) \neq 0$;
- 2. если $x_1 \neq x_2$, то найдётся такая функция $f \in A$, что $f(x_1) \neq f(x_2)$;
- 3. если $f \in A$, то $\overline{f} \in A$.

Тогда $A = C_0(X)$.

6 Теорема Радона – Никодима

Теорема 6.1 (Радон, Никодим). Пусть μ, ν — конечные меры⁶ на (X, Ω) . Тогда существуют $\Delta \in \Omega$, $\mu(\Delta) = 0$ и $f \geqslant 0$ из $L^1(\mu)$, что

$$\nu(A) = \nu(A \cap \Delta) + \int_A f \, \mathrm{d}\mu.$$

Доказательство. Определим $\lambda := \mu + \nu$. $L^2(X, \lambda)$ — гильбертово пространство. Рассмотрим следующий функционал на $L^2(X, \lambda)$:

$$g \mapsto \int g \, \mathrm{d}\nu.$$

Этот функционал ограничен, так как

$$\left| \int g \, \mathrm{d}\nu \right| \leqslant \int |g| \, \mathrm{d}\nu \leqslant \int |g| \, \mathrm{d}\lambda \leqslant \left(\int |g|^2 \, \mathrm{d}\nu \right)^{1/2} (\lambda(X))^{1/2} = \|g\|_{L^2}.$$

По теореме Рисса – Фишера(2.8) существует такое $h \in L^2(\lambda)$, что $\int g \, d\nu = \int g h \, d\lambda$, для всех $g \in L^2(\lambda)$. Подставим $g = \chi_{\{\omega: h(\omega) < 0\}}$.

$$\nu\{\omega: h(\omega)<0\}=\int\limits_X g\,\mathrm{d}\nu=\int\limits_X gh\,\mathrm{d}\lambda,$$

то есть мера некоторого множества — это интеграл неположительной функции, значит, $h\geqslant 0$ λ -почти всюду.

 $^{^{6}}$ Можно обобщить на σ -конечные меры, но важно доказать именно этот случай.

Подставляя $g = \chi_{\{\omega: h(\omega) > 1\}}$ в то же равенство, получаем: $h \le 1$ λ -почти всюду. Значит, $0 \le h \le 1$. Обозначим $\Delta := \{\omega: h(\omega) = 1\}$, тогда $\mu(\Delta) = 0$, ибо

$$\nu(\Delta) = \int_{\Lambda} h \, \mathrm{d}\lambda = \lambda(\Delta).$$

Это Δ и будет искомым множеством Δ из формулировки, осталось только проверить все свойства, которые мы от него хотим. Нетрудно заметить следующее равенство:

$$\int_{X} (1 - h)g \, d\nu = \int gh \, d\mu, \quad \forall g \in L^{2}(X, \lambda). \tag{*}$$

Обозначим $\Delta_n = \{\omega : h(\omega) < 1 - \frac{1}{n}\}$, а затем рассмотрим функции

$$g_n = \chi_A \cdot \chi_{\Delta_n} \cdot \frac{1}{1 - h(\omega)}.$$

Теперь подставим такие функции g_n в равенство (\star) и устремим n к бесконечности:

$$\left[\int\limits_A \chi_{\Delta_n} \, \mathrm{d}\nu = \int\limits_A \frac{h}{1-h} \chi_{\Delta_n} \, \mathrm{d}\mu \right] \xrightarrow[n \to \infty]{} \left[\nu(A \setminus \Delta) = \int\limits_A \frac{h}{1-h} \chi_{(X \setminus \Delta)} \, \mathrm{d}\mu \right].$$

Беря в качестве f из формулировки функцию $\frac{h}{1-h}\chi_{(X\setminus\Delta)}$, мы завершаем доказательство теоремы.

Определение. Рассмотрим пространство $L^p(\mu)$, где $1 \le p < \infty$, тогда *двойственным показателем* будем называть такое число p', что

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Теорема 6.2. Пусть μ — σ -конечная мера, $1 \le p < \infty$. $\Lambda \in (L^p)^*$. Тогда существует единственная $g \in L^{p'}$ такая, что для любой f из $L^p(\mu)$ выполнено

$$\Lambda f = \int f g \, \mathrm{d}\mu,$$

причём $\|\Lambda\| = \|g\|_{L^{p'}(\mu)}$, то есть отображение

$$g \mapsto \left(f \mapsto \int fg \, \mathrm{d}\mu \right)$$

устанавливает изометрический изоморфизм пространств $L^{p'}(\mu)$ и $(L^p(\mu))^*$.

Доказательство. Пусть сначала $g \in L^{p'}$, определим линейный функционал Λ по такому правилу: $\Lambda f = \int f g \, \mathrm{d} \mu$. Тогда $\Lambda \in (L^p)^*$, $\|\Lambda\| \leqslant \|g\|_{L^{p'}}$, так как

$$|\Lambda f|\leqslant \int |fg|\,\mathrm{d}\mu\leqslant [\text{неравенство Гёльдера}]\leqslant \left(\int |f|^p\,\mathrm{d}\mu\right)^{1/p}\left(\int |g|^{p'}\,\mathrm{d}\mu\right)^{1/p'}.$$

Пусть μ — конечная мера. Определим ν — комплексную меру, как $\nu(\Delta) := \Lambda(\chi_{\Delta})$, тогда $\nu < \mu$. По теореме Радона – Никодима существует такое $g \in L^1(\mu)$, что $\Lambda f = \int f g \, \mathrm{d} \mu$ выполнено для всех простых функций (по теореме оно выполнено для характеристических функций, по аддитивности обеих частей выполнено для простых).

Далее, нам нужно перейти от простых функций к функциям из $L^p(\mu)$, доказать, что $g \in L^{p'}(\mu)$, и показать равенство норм. Сперва перейдём от простых функций к произвольным.

Предположим, что t>0 и обозначим $E_t=\{x\in X:|g(x)|< t\}$. Если $f\in L^p(\mu)$ такова, что f=0 вне E_t , то тогда найдётся последовательность простых функций $\{f_n\}$ таких, что для всех n верно: f=0 вне E_t , $|f_n|\leqslant |f|$ и $f_n\stackrel{\mu}{\to} f$. Тогда

$$|(f_n - f)g| < 2t|f|$$

И

$$\int |f| \,\mathrm{d}\mu = \int |f| \cdot 1 \,\mathrm{d}\mu \leqslant \|f\|_p \mu(X)^{1/p'} < \infty.$$

По теореме Лебега о мажорируемой сходимости $\Lambda(f_n) = \int f_n g \, \mathrm{d}\mu \to \int f g \, \mathrm{d}\mu$. Также $|f_n - f|^p \leqslant 2^p |f^p|$, поэтому по той же теореме Лебега $||f_n - f||_p \to 0$, и тогда, по непрерывности, $\Lambda(f_n) \to \Lambda(f)$. Таким образом мы перешли от простых функций f к тем, которые исчезают вне E_t , для любого t > 0.

Докажем неравенство $\|g\|_{p'} \le \|\Lambda\|$ для случая 1 , случай <math>p = 1 остаётся в качестве упражнения. Теперь пусть $f = \chi_{E_t} |g|^{p'}/g$ в тех точках, где $g \ne 0$, и доопределим её нулём там, где g обнуляется. Если $A = \{x : g(x) \ne 0\}$, то

$$\int |f|^p d\mu = \int_{E_t \cap A} \frac{|g|^{pp'}}{g^p} d\mu = \int_{E_t} |g|^{p'} d\mu < \infty,$$

тогда $f \in L^p(\mu)$. Следовательно,

$$\int_{E_t} |g|^{p'} d\mu = \int fg d\mu = \Lambda f \leq ||\Lambda|| ||f||_p = ||L|| \left[\int_{E_t} |g|^{p'} d\mu \right]^{1/p}.$$

Поэтому

$$\|\Lambda\| \geqslant \left[\int_{E_t} |g|^{p'} d\mu\right]^{1-1/p} \geqslant \left[\int_{E_t} |g|^{p'} d\mu\right]^{1/p'}.$$

Устремив t к бесконечности, получаем, что $||g||_{p'} \le ||\Lambda||$.

Теперь разберём случай σ -конечной меры. Нетрудно видеть, что для любой σ -конечной меры μ существует функция $\omega>0$, $\omega\in L^1(\mu)$. Тогда рассмотрим конечную меру $\nu=\omega\,\mathrm{d}\mu$. Теперь пусть $\Phi\colon L^p(\nu)\to L^p(\mu)$ — линейный оператор, заданный по правилу

$$\Phi f = \omega^{1/p} f.$$

Этот оператор, очевидно, является изометрией. Тогда $L^p(\mu) \cong L^p(\nu)$, следовательно

$$(L^p(\mu))^* \cong (L^p(\nu))^* \cong L^{p'}(\nu) \cong L^{p'}(\mu),$$

что завершает доказательство.

Замечание. В случае $p = \infty$: $L^1(\mu) \subset (L^\infty(\mu))^*$, но равенства нет, если μ не конечная атомическая мера.

Если μ не σ -конечна, то всё верно для 1 . Если же <math>p = 1 и μ — не σ -конечная мера, то утверждение неверно.

Пример 6.1. Пусть X — множество. \mathcal{B} — σ -алгебра всех подмножеств X. Рассмотрим меру μ такую, что $\mu(\Delta) = 0$, если $\Delta = \emptyset$; и $\mu(\Delta) = +\infty$, иначе. Тогда $L^1(\mu) = \{0\}$, а $L^\infty(\mu) \neq \{0\}$.

Пример 6.2. $\ell^p = \{\{c_n\} : \sum |c_n|^p < \infty\}, \mu$ — считающая мера на множестве натуральных чисел, тогда $\ell^p = L^p(\mathbb{N}, \mu)$. Мы можем применить то, что мы доказали, и получим, что $(\ell^p)^* \cong \ell^{p'}$ для $1 \leq p < \infty$.

Упражнение. c_0 — подпространство ℓ^{∞} последовательностей, сходящихся к нулю, тогда $(c_0)^* \cong \ell^1$.

Глава 4

Операторы в банаховых пространствах

1 Сопряжённые операторы

Пусть X,Y — нормированные пространства, а $T:X\to Y$ — непрерывный оператор. Тогда определим сопряжённый оператор T^* как

$$T^*f = f \circ T, \quad f \in Y^*.$$

Упражнение. $||T^*|| \le ||T||$.

Обозначение. Будем иногда писать $f(x) = \langle x, f \rangle$. В таких терминах определение сопряженного оператора переписывается как

$$\langle Tx, f \rangle = \langle x, T^*f \rangle.$$

В дальнейшем подразумевается, что пространства, с которыми мы работаем, Банаховы.

Замечание. T непрерывно в слабых топологиях. Пусть сеть x_{α} стремится к нулю. Тогда

$$|\langle Tx_{\alpha}, y \rangle| = |\langle x_{\alpha}, T^*y \rangle| \to 0,$$

то есть $Tx_{\alpha} \xrightarrow{w} 0$.

Замечание. Выполены следующие два свойства:

- 1. Пусть $T_1, T_2 \in B(X, Y)$. Тогда $(\alpha_1 T_1 + \alpha_2 T_2)^* = \alpha_1 T_1^* + \alpha_2 T_2^*$.
- 2. Пусть $R \in B(X, Y), T \in B(Y, Z),$ тогда $(T \circ R)^* = R^* \circ T^*.$

Упражнение. $T: X \to Y$ — непрерывный оператор. Тогда $T^*: Y^* \to X^*$ непрерывен в w^* -топологиях.

Теорема 1.1. Пусть $T \in B(X,Y)$. Рассмотрим $T^{**}: X^{**} \to Y^{**}$. Тогда:

- 1. $T^{**}|X = T \text{ Ha } X$;
- 2. $||T^*|| = ||T||$;
- 3. если T обратим, то T^* обратим, причём $(T^*)^{-1} = (T^{-1})^*$.

Доказательство. Первый пункт очевиден. Мы уже показали, что $||T^*|| \le ||T||$. По первому пункту и этому неравенству, применённому к T^* , получаем цепочку неравенств

$$||T|| \geqslant ||T^*|| \geqslant ||T^{**}|| \geqslant ||T||.$$

Последний пункт следует из того, что $(T \circ T^{-1})^* = (T^{-1})^* \circ T^*$.

Пример 1.1. Пусть $T:\mathbb{C}^n \to \mathbb{C}^m$ — линейное отображение, и A — его матрица, тогда матрица $T^* \to A^T$.

Пример 1.2. Рассмотрим интегральный оператор в $L^p(\mu)$, μ — конечная мера: пусть k(x,y) — ограниченная измеримая функция, тогда

$$J_k$$
: $f \mapsto \int k(x,y)f(y) d\mu(y)$.

Тогда оператор $J_k^*\colon L^{p'}\to L^{p'}$ устроен так:

$$J_k^* \colon g \mapsto \int k(x, y)g(y) \, \mathrm{d}\mu(y).$$

Пример 1.3. Пусть K, L — компактные топологические пространства, $\tau: L \to K$ — непрерывное отображение. Посмотрим на оператор $T: C(K) \to C(L)$, который действует так:

$$T: f \mapsto f \circ \tau$$
.

Ясно, что это ограниченный оператор. Тогда двойственный к нему (вспомним теорему Рисса – Маркова – Какутани) выглядит так:

$$T^*(\mu(\Delta)) = \mu(\tau^{-1}(\Delta)).$$

Лемма 1.2. Пусть $A \in B(X,Y)$, тогда $\operatorname{Ker} A^* = (\operatorname{Im} A)^\perp$ и $\operatorname{Ker} A = {}^\perp (\operatorname{Im} A^*)$

Доказательство. Пусть $y \in \operatorname{Ker} A^*, A^*y = 0$, тогда $\langle x, A^*y \rangle = 0$, $\forall x$, что по определению сопряженного оператора равносильно $\langle Ax, y \rangle = 0$, $\forall x$. То есть y аннулирует все точки из $\operatorname{Im} A$. Второе утверждение доказывается аналогично.

Теорема 1.3. Пусть $A \in B(X,Y)$. Утверждается, что A обратим тогда и только тогда, когда A^* обратим.

Доказательство. Слева направо доказано по теореме 1.1. Пусть A^* обратим, тогда A^* — открытое отображение, следовательно существует такое c>0, что

$$A^*(B_{Y^*}) \supset \{g \in X^* : ||g|| \leq c\}.$$

Тогда

$$||Ax|| = \sup\{|\langle Ax, f \rangle| : f \in B_{X^*}\} = \sup\{|\langle x, A^*f \rangle| : f \in B_{X^*}\}$$

$$\ge \sup\{|\langle x, g \rangle| : g \in X^*, ||g|| < c\} = \frac{1}{c}||x||.$$

Значит, $\operatorname{Ker} A = \{0\}$ и $\operatorname{Im} A$ замкнут. Также мы знаем, что $\{0\} = \operatorname{Ker} A^* = (\operatorname{Im} A)^\perp$, но тогда A обратим.

2 Компактные операторы

Пусть X, Y — банаховы пространства, $A: X \to Y$ — линейный оператор. A называется компактным, если $\mathrm{Cl}(A(B_X))$ компактно.

Пример 2.1. Оператор *A* называется *вполне непрерывным*, если из того, что $x_n \stackrel{w}{\to} x$, следует $||Ax_n - Ax|| \to 0$.

Теорема 2.1. Пусть X, Y — банаховы пространства, $A \in B(X, Y)$. Тогда:

- 1. Если A компактен, то A вполне непрерывен.
- 2. В случае, когда X рефлексивно, если A вполне непрерывен, то A компактен.

Доказательство.

- 1. Пусть $x_n \stackrel{w}{\longrightarrow} 0$, тогда $||x_n|| \le M$ для всех n по принципу равномерной ограниченности. Можно считать, что M=1. $\{Ax_n\}_{n\in N}\subset \operatorname{Cl}(A(B_X))$. Так как оператор компактен, то существует подпоследовательность $\{x_{n_k}\}$ и $y\in\operatorname{Cl}(A(B_X))$ такие, что $Ax_{n_k} \stackrel{||}{\longrightarrow} y$, но $x_{n_k} \stackrel{w}{\longrightarrow} 0$, поэтому $Ax_{n_k} \stackrel{w}{\longrightarrow} 0$, а тогда y=0, и ясно, что 0 является единственной точкой сгущения $\{Ax_n\}$ в топологии, порожденной нормой. Это значит, что оператор A вполне непрерывен.
- 2. Предположим, что X сепарабельно, тогда (B_X, w) метрический компакт. То есть в любой последовательности есть слабо сходящаяся подпоследовательность. Если $x_{n_k} \stackrel{w}{\longrightarrow} x$, то $Ax_{n_k} \stackrel{\parallel}{\longrightarrow} Ax$ по вполне непрерывности. А значит, $A(B_X)$ секвенциально компактно, а поскольку Y метрическое пространство, то $A(B_X)$ ещё и компактно.

В общем случае нам дана произвольная последовательность $\{x_n\} \subset B_X$, и мы хотим выбрать сходящуюся подпоследовательность в $\{Ax_n\}$. Для этого рассмотрим $X_1 = \text{Cl span}\{x_n\}$. Это пространство сепарабельно, поэтому применим доказанное выше к $A_1 = A|_{X_1}$. Тогда мы нашли сходящуюся подпоследовательность для $\{A_1x_n\}$, то есть и для $\{Ax_n\}$ тоже нашли, а это было равносильно компактности A.

Пример 2.2. Тождественный оператор id: $\ell^1 \to \ell^1$ является вполне непрерывным, но не является компактным.

Замечание. Если $\dim X = \infty$, то $\mathrm{id} \colon X \to X$ не является компактным. Это следует из леммы о почти перпендикуляре.

Упражнение. Пусть T — компактный оператор, а A, B — ограниченные операторы. Тогда $A \circ T \circ B$ является компактным оператором.

Следствие 2.2. Если $\dim X = \infty$, и $A: X \to Y$ — обратимый оператор, так как $AA^{-1} = \mathrm{id}_X$ не является компактным оператор.

Теорема 2.3 (Шаудер). Пусть $A \in B(X, Y)$, тогда A компактен если и только если A^* компактен.

Доказательство. Достаточно доказать только слева направо, так как тогда будет выполнена импликация:

$$A^*$$
 компактен $\implies A^{**}$ компактен,

но $A^{**}|_{X} = A$, то есть тогда и A будет компактным оператором.

Пусть $\{f_n\} \subset B_{Y^*}$. Рассмотрим $\{A^*f_n\} \subset X^*$. Тогда существует $f \in B_{Y^*}$, такая, что $\{f_n\}$ сгущается к f в топологии w^* по теореме Банаха–Алаоглу. Покажем, что A^*f_n сгущается к A^*f по норме. Пусть $\varepsilon > 0$, $N \ge 1$. Перед тем, как перейти к следующему шагу, "вспомним" одну известную теорему из топологии:

Теорема. Пусть X — метрическое пространство. Утверждается, что X компакно тогда и только тогда, когда оно полно и вполне ограничено, то есть для любого $\varepsilon > 0$ существует конечное покрытие X шарами с радиусом, не превосходящим ε .

Множество $\operatorname{Cl} A(B_X)$ компактно. Значит, существуют $y_1, \ldots, y_m \in Y$, такие, что $A(B_X) \subset \bigcup_{i=1}^n B(y_i, \varepsilon/3)$. Поскольку последовательность f_n w^* -сгущается к f, существует $n \ge N$ такое, что

$$|\langle y_k, f - f_n \rangle| < \frac{\varepsilon}{3}, \quad 1 \leq k \leq m.$$

Пусть теперь $x \in B_X$. Тогда существует k такое, что $||Ax - y_k|| \le \varepsilon/3$. Теперь рассмотрим следующую цепочку неравенств:

$$|\langle x, A^*f - A^*f_n \rangle| = |\langle Ax, f - f_n \rangle| \le |\langle Ax - y, f - f_n \rangle| + |\langle y_k, f - f_n \rangle| \le 2||Ax - y_k|| + \varepsilon/3$$

$$\le \varepsilon,$$

откуда следует, что A^* — компактный оператор.

Упражнение. Пусть A — конечномерный ограниченный оператор, тогда A компактен.

Теорема 2.4. Пусть X, Y — банаховы пространства, тогда множество всех компактных операторов из X в Y — замкнутое линейное подпространство в B(X, Y).

Доказательство. Пусть $\{A_n\}$ — последовательность компактных операторов, которая сходится по норме к A. Пусть $\varepsilon > 0$, тогда существуют $x_1, \ldots, x_m \in B_X$ такие, что

$$\min_{j} \|A_n x - A_n x_j\| < \varepsilon/3$$
. Если $\|A_n - A\| < \varepsilon/3$, то

$$\min_{j} ||Ax - Ax_{j}|| \leq ||Ax - A_{n}x|| + ||A_{n}x - A_{n}x_{j}|| + ||A_{n}x_{j} - Ax_{j}|| < \varepsilon.$$

То есть $ClA(B_x)$ полно как замкнутое подмножество полного пространства, а также оно вполне ограничено с ε -сетью $B(Ax_1, \varepsilon), \ldots, B(Ax_m, \varepsilon)$, значит, оно компактно.

Теперь докажем, что компактные операторы — линейное множество. Очевидно, что если A компактен, то αA тоже компактен. Осталось показать, что если A, B компактны, то и A+B компактен. Нетрудно видеть, что ε -сетью для суммы двух множеств является сумма $\varepsilon/2$ -сетей для каждого из множеств. То есть множество $\operatorname{Cl} A(B_X) + \operatorname{Cl} B(B_X)$ компактно, а $\operatorname{Cl}(A+B)(B_X)$ компактно как замкнутое подмножество компакта.

Упражнение. Пусть A — конечномерный ограниченный оператор, тогда A компактен.

Теорема 2.5. Пусть X, Y — банаховы пространства, тогда множество всех компактных операторов из X в Y — замкнутое линейное подпространство в B(X, Y).

Доказательство. Пусть $\{A_n\}$ — последовательность компактных операторов, которая сходится по норме к A. Пусть $\varepsilon > 0$, тогда существуют $x_1, \ldots, x_m \in B_X$ такие, что $\min_i \|A_n x - A_n x_i\| < \varepsilon/3$. Если $\|A_n - A\| < \varepsilon/3$, то

Теперь докажем, что компактные операторы — линейное множество. Очевидно, что если A компактен, то αA тоже компактен. Осталось показать, что если A, B компактны, то и A+B компактен. Нетрудно видеть, что ε -сетью для суммы двух множеств является сумма $\varepsilon/2$ -сетей для каждого из множеств. То есть множество $\operatorname{Cl} A(B_X) + \operatorname{Cl} B(B_X)$ компактно, а $\operatorname{Cl}(A+B)(B_X)$ компактно как замкнутое подмножество компакта.

Упражнение. Замыкание множества операторов конечного ранга состоит из компактных операторов.

Теорема 2.6. Если \mathcal{H} — гильбертово пространство, $A \colon \mathcal{H} \to Y$ — компактный оператор, то A приближается по норме операторами конечного ранга.

Доказательство. Пусть $\{e_j\}$ — ортономированный базис в \mathcal{H} , а P_n — ортогональный проектор на линейную оболочку первых n векторов. $P_n \circ A \colon \mathcal{H} \to Y$ — компактный оператор, так как его ранг конечен. Тогда имеет место такая сходимость по норме: $\|P_n \circ A - A\| \to 0$ (упражнение).

3 Банаховы алгебры (с единицей)

Определение. Пусть \mathcal{A} — банахово пространство с операцией умножения, удовлетворяющее следующим свойствам:

*A*1.
$$a(bc) = (ab)c$$
;

A2. a(b+c) = ab + ac;

A3.
$$(a + b)c = ac + bc$$
;

E1. Существует $e \in \mathcal{A}$ такой, что ea = ae = a для всех $a \in \mathcal{A}$;

*B*1.
$$||ab|| \le ||a|| \cdot ||b||$$
, $||e|| = 1$.

Тогда \mathcal{A} называется банаховой алгеброй c единицей.

Примеры 3.1.

- 1. Пространство $M(n,\mathbb{C})$ является банаховой алгеброй, где единица единичная матрица.
- 2. C(K) с sup-нормой , где K компактное пространство. Произведение элементов этого пространства обычное поточечное произведение.
- 3. Пусть X банахово пространство. Тогда рассмотрим пространство B(X,X). Оно является банаховой алгеброй с умножением композицией операторов.
- 4. A множество функций на \mathbb{T} , у которых $\sum_{n\in Z} |\widehat{f}(n)| < \infty$. Тогда A является банаховой алгеброй с поточечным умножением.

Лемма 3.1. Пусть \mathcal{A} — банахова алгебра. $x \in \mathcal{A}$ и ||x - e|| < 1, тогда x обратим.

Доказательство. Пусть y = e - x, ||y|| = r < 1. Так как $||y^n|| \le ||y||^n$, ряд $\sum_{i=0}^n y^i$ сходится к некоторому элементу y_0 в \mathcal{A} . Тогда нетрудно видеть, что $y_0(e-y) = 1$, то есть e-y=x — обратимый элемент, что и требовалось доказать.

Замечание. В этом утверждении мы воспользовались полнотой \mathcal{A} .

Определение. Пусть \mathcal{A} — банахова алгебра с единицей и $a \in \mathcal{A}$. Тогда *спектр* a, обозначаемый $\sigma(a)$ определяется как

$$\sigma(a) = \{ \alpha \in \mathbb{C} : a - \alpha e \text{ не обратим} \}.$$

Примеры 3.2.

- 1. Рассмотрим пространство C(K), где K компакт. Пусть $f \in C(K)$, тогда $\sigma(f)$ множество всех её значений.
- 2. Рассмотрим банахову алгебру $M(n,\mathbb{C})$ и её элемент A. Тогда $\sigma(A)$ множество всех собственных чисел A.

Определение. Пусть A — банахова алгебра, $a \in A$. Тогда резольвентным множеством a назовём множество $\rho(a) = \mathbb{C} \setminus \sigma(a)$.

Резольвентой называется функция $R_a : \rho(a) \to \mathcal{A}$:

$$\lambda \mapsto (\lambda e - a)^{-1}$$
.

¹Напоминание про ряд Фурье: 4.1.

Определение. Спектральным радиусом r(a) точки $a \in \mathcal{A}$ называется $\max\{|\lambda| : \lambda \in \sigma(a)\}$.

Определение. Функция $\varphi \colon \mathbb{C} \supset \Omega \to X$, где X — банахова алгебра, называется *аналитической*, если для любой точки $z_0 \in \Omega$ существует предел

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Замечание. Аналогично случаю $X = \mathbb{C}$, можно показать, что аналитическая функция раскладывается в ряд Тейлора в окрестности каждой точки.

Теорема 3.2. Пусть \mathcal{A} — банахова алгебра, $a \in \mathcal{A}$. Тогда $\sigma(a)$ — непустое компактное подмножество комплексной плоскости. Резольвента — аналитическая функция на $\rho(a)$.

Доказательство. Для начала докажем, что $\rho(a)$ — открытое множество. Пусть $\xi_0 \in \rho(a)$. Тогда

$$\begin{split} \xi e - a &= (\xi - \xi_0) e + \xi_0 e - a = (\xi_0 e - a) \left(e + (\xi - \xi_0) (\xi_0 e - a)^{-1} \right) \\ &= (\xi_0 e - a) \left(e - (\xi - \xi_0) (a - \xi_0 e)^{-1} \right). \end{split}$$

Предположим, что $|\xi_0 - \xi| < 1 / \left\| (a - \xi_0 e)^{-1} \right\|$, тогда по лемме 3.1

$$(\xi e - a)^{-1} = (\xi_0 e - a)^{-1} \sum_{n \ge 0} (\xi - \xi_0)^n (a - \xi_0 e)^{-n}.$$

Теперь покажем, что $\sigma(a)$ — ограниченное множество. Пусть $|\xi| > \|a\|$, тогда $\xi e - a = \xi(e-a/\xi)$ — обратимый элемент по той же лемме. Аналитичность проверяется тривиально.

Следствие 3.3. Спектральный радиус r(a) не превосходит ||a||.

Пример 3.3. В предыдущем следствии бывает строгое неравенство. Пусть $\mathcal{A} = M(n, \mathbb{C})$.

$$\mathcal{A}\ni A=\begin{pmatrix}0&1\\0&0\end{pmatrix},$$

тогда ||A|| = 1, а r(A) = 0.

Теорема 3.4. Функция $\varphi \colon \mathbb{C} \to X$ аналитична тогда и только тогда, когда $\Lambda \circ \varphi$ аналитична для всех $\Lambda \in X^*$.

Теорема 3.5. Спектр a не пуст для любого $a \in \mathcal{A}$.

 \mathcal{A} оказательство. Докажем, что $\|(\xi e - a)^{-1}\| \xrightarrow{|\xi| \to \infty} 0$. Заметим, что

$$\left\|(\xi e-a)^{-1}\right\| \leqslant \frac{1}{|\xi|} \cdot \frac{1}{1-\frac{\|a\|}{|\xi|}} \xrightarrow{|\xi| \to \infty} 0.$$

Значит, будь спектр пуст, $\Lambda \circ R_a$ являлась бы ограниченной целой функцией для любого функционала $\Lambda \in \mathcal{A}^*$. То есть R_a была бы постоянной нулевой функцией по теореме Лиувилля, что невозможно.

Определение. Пусть X — банахово пространство, B(X) — пространство ограниченных операторов из X на себя. Пусть $T \in B(X)$, тогда назовём $\sigma(T)$ спектром оператора T.

Определение. Назовём λ собственным числом оператора T, если $\lambda I - T$ имеет нетривиальное ядро. Это равносильно тому, что существует $0 \neq x \in X$, такой, что $Tx = \lambda x$. Тогда x называется собственным вектором.

Определение. Назовём множество всех собственных значений *точечным спектром* и обозначим его как $\sigma_p(T)$.

Замечание. В случае конечномерного пространства $\sigma_p(T) = \sigma(T)$. Но в общем случае $\sigma_p(T) \subset \sigma(T)$.

Пример 3.4. Рассмотрим пространство ℓ^2 и оператор сдвига

$$S: (x_0, x_1, \ldots) = (x_1, x_2, \ldots).$$

Тогда оператор сдвига не имеет собственных чисел, но $\sigma(S) = \{\zeta : |\zeta| \le 1\}.$

Теорема 3.6. Пусть \mathcal{A} — банахова алгебра, $a \in A$. Тогда

$$r(a) = \lim_{n \to \infty} \left\| a^n \right\|^{1/n}.$$

Доказательство. Пусть $G = \{z \in \mathbb{C} : z = 0 \text{ или } z^{-1} \in \rho(a)\}$. Определим $f : G \to \mathcal{A}$ как f(0) = 0 и $f(z) = (z^{-1} - a)^{-1}$ для $z \neq 0$. Так как $(a - \alpha)^{-1} \xrightarrow{\alpha \to \infty} 0$, f аналитична на G и поэтому f раскладывается в ряд Тейлора. В действительности, по лемме 3.1 для $|z| \leqslant \|a\|$,

$$f(z) = \sum_{n \ge 0} a^n / (z^{-1})^{n+1} = z \sum_{n \ge 0} z^n a^n.$$

По теореме Коши – Гурса – Морера, этот ряд сходится в круге $z < R = \operatorname{dist}(0, \partial G) = \operatorname{dist}(0, \sigma(a)^{-1})$. Значит, $R = \inf\{|\alpha| : \alpha^{-1} \in \sigma(a)\} = r(a)^{-1}$. Также, по формуле Коши–Адамара, $R^{-1} = \limsup \|a^n\|^{1/n}$. Поэтому

$$r(a) = \limsup \|a^n\|^{1/n}.$$

Теперь если $\alpha \in \mathbb{C}$ и $n \ge 1$,

$$\alpha^{n} - a^{n} = (\alpha e - a)(\alpha^{n-1}e + \dots + a^{n-1}) = (\alpha^{n-1}e + \dots + a^{n-1})(\alpha e - a).$$

То есть, если $\alpha^n e - a^n$ обратим, то и $\alpha e - a$ обратим и

$$(\alpha e - a)^{-1} = (\alpha^n e - a^n)^{-1} (\alpha^{n-1} e + \dots + a^{n-1}).$$

Значит, если $\alpha \in \sigma(a)$, то $(\alpha^n e - a^n)$ не обратим ни для какого $n \geqslant 1$. Тогда по следствию 3.3 $|\alpha|^n \leqslant \|a^n\|$, следовательно, $|\alpha| \leqslant \|a^n\|^{1/n}$ для всех $n \geqslant 1$ и $\alpha \in \sigma(a)$. Тогда $|\alpha| \leqslant \liminf \|a^n\|^{1/n}$, то есть

$$r(a) \le \liminf ||a^n||^{1/n} \le \limsup ||a^n||^{1/n} = r(a).$$

Поэтому $r(a) = \lim \|a^n\|^{1/n}$.

Лемма 3.7. Пусть \mathcal{A} — банахова алгебра, $a \in \mathcal{A}$. Тогда

- 1. Если $\alpha \in \rho(a)$, то $\operatorname{dist}(\alpha, \sigma(a)) \geqslant \|(\alpha e a)^{-1}\|^{-1}$.
- 2. Если $\alpha, \beta \in \rho(a)$, то

$$(\alpha e - a)^{-1} - (\beta - a)^{-1} = (\beta - \alpha)(\beta - a)^{-1}(\alpha e - a)^{-1}.$$

Доказательство.

- 1. По лемме 3.1, если $\alpha \in \rho(a)$ и $\|x (\alpha e a)\| < \|(\alpha a)^{-1}\|^{-1}$, то x обратим. Поэтому если $\beta \in \mathbb{C}$ и $|\beta| < \|(\alpha e a)^{-1}\|^{-1}$, то $\beta e + \alpha e a$ обратим. То есть $\alpha + \beta \in \rho a$. Следовательно, $\operatorname{dist}(\alpha, \sigma(a)) \geqslant \|(\alpha e a)^{-1}\|^{-1}$.
- 2. Это следует из подстановки $x = \alpha e a$ и $y = \beta e a$ в равенство

$$x^{-1} - y^{-1} = x^{-1}(y - x)y^{-1}.$$

4 Функциональное исчисление Рисса

Обозначение. $\operatorname{Hol}(a)$ — множество всех аналитических функций в окрестности $\sigma(a)$

Замечание. В этом обозначении окрестность не обязана быть одинаковой для всех функций, важно лишь то, что область определения открыта и содержит $\sigma(a)$.

Теорема 4.1. Пусть \mathcal{A} — банахова алгебра, $a \in A$. Тогда отображение(оно и называется исчислением Рисса)

$$\operatorname{Hol}(a)\ni f\mapsto f(a)=\frac{1}{2\pi i}\int_{\Gamma}f(z)(ze-a)^{-1}\,\mathrm{d}z,$$

где $\sigma(a)$ лежит внутри области, ограниченной контуром Γ^2 , обладает следующими свойствами

- 1. линейность;
- 2. мультипликативность;

 $^{^{2}}$ Корректность проверять мы здесь не будем, она будет следовать из того, что интеграл по замкнутому контуру равен нулю в области аналитичности.

- 3. если f(1) = e, то f(a) = 1;
- 4. если f(z) = z, то f(a) = a;
- 5. если $f(z) = \sum_{n\geqslant 0} \alpha_n z^n$ сходится в круге |z| > d, где d > r(a), то $f \in \operatorname{Hol}(a)$ и $f(a) = \sum_{n\geqslant 0} \alpha_n a^n$;
- 6. если $f_n \to f$ равномерно на компактах их общей области определения, то $f_n(a) \to f(a)$. (без доказательства.)

Доказательство. Линейность очевидна, докажем мультипликативность. Возьмём два контура таких, что Γ находится внутри области, ограниченной Λ .

$$\begin{split} f(a)g(a) &= -\frac{1}{4\pi^2} \Biggl(\int\limits_{\Gamma} f(z) (ze-a)^{-1} \,\mathrm{d}z \Biggr) \Biggl(\int\limits_{\Lambda} g(\zeta) (\zeta e-a)^{-1} \,\mathrm{d}\zeta \Biggr) \\ &= -\frac{1}{4\pi^2} \int\limits_{\Gamma} \int\limits_{\Lambda} f(z) g(\zeta) (ze-a)^{-1} (\zeta e-a)^{-1} \,\mathrm{d}z \,\mathrm{d}\zeta \\ [\mathrm{Лемма 3.7}] &= -\frac{1}{4\pi^2} \int\limits_{\Gamma} \int\limits_{\Lambda} f(z) g(\zeta) \left[\frac{(z-a)^{-1} - (\zeta-a)^{-1}}{\zeta-z} \right] \,\mathrm{d}\zeta \,\mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int\limits_{\Gamma} f(z) \left[\int\limits_{\Lambda} \frac{g(\zeta)}{\zeta-z} \,\mathrm{d}\zeta \right] (z-a)^{-1} \,\mathrm{d}z \\ &+ \frac{1}{4\pi^2} \int\limits_{\Lambda} g(\zeta) \left[\int\limits_{\Gamma} \frac{f(z)}{\zeta-z} \,\mathrm{d}z \right] (\zeta-a)^{-1} \,\mathrm{d}\zeta. \end{split}$$

Но тогда $\int_{\Lambda} [g(\zeta)/(\zeta-z)] \,\mathrm{d}\zeta] = 2\pi i g(z),$ а $\int_{\Gamma} [f(z)/(\zeta-z)] \,\mathrm{d}z] = 0.$ Следовательно,

$$f(a)g(a) = \frac{1}{2\pi i} \int_{\Gamma} f(z)g(z)(z-a)^{-1} dz$$
$$= (fg)(a).$$

Теперь докажем, что если $f(z)=z^k,\ k\geqslant 0$, то $f(a)=a^k$. Пусть $\gamma=Re^{2\pi it}$, где $R>\|a\|$. Тогда s(a) лежит внутри внутренней области γ и, следовательно,

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} z^{k} (z - a)^{-1} dz$$
$$= \frac{1}{2\pi i} \int_{\gamma} z^{k-1} \left(1 - \frac{a}{z} \right)^{-1} dz$$
$$= \frac{1}{2\pi i} \int_{\gamma} z^{k-1} \sum_{n=0}^{\infty} a^{n} / z^{n} dz,$$

потому что ||a/z|| < 1 для |z| = R. Так как степенной ряд сходится равномерно на γ ,

$$f(a) = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z^{n-k+1}} dz \right] a^n.$$

Если $n \neq k$, то $z^{-(n-k+1)}$ имеет первообразную и поэтому $\int_{\gamma} z^{-(n-k+1)} dz = 0$. Для n = k этот интеграл становится $\int_{\gamma} z^{-1} dz = 2\pi i$. Поэтому $f(a) = a^k$.

Теорема 4.2. Пусть \mathcal{A} — банахова алгебра и пусть $a \in \mathcal{A}$. Предположим,

$$\tau: \operatorname{Hol}(a) \to \mathcal{A}$$

— гомоморфизм алгебр такой, что $\tau(1) = e$, $\tau(\mathrm{id}) = a$, если $\{f_n\}$ последовательность аналитических функций в открытом множестве G таких, что $\sigma(a) \subset G$ и $f_n(z) \to f(z)$ равномерно на компактных подмножествах G, то $\tau(f_n) \to \tau(f)$. Тогда $\tau(f)$ совпадает с функциональным исчислением Рисса для любой f в $\mathrm{Hol}(a)$.

Обозначение. Для удобства будем обозначать функциональное исчисление Рисса для точки a через $\widetilde{f}(a)$

Доказательство. Для начала покажем, что $\tau(f) = \widetilde{f}(a)$, если f — рациональная функция. Если $n \geqslant 1$, верно $\tau(z^n) = \tau(z)^n = a^n$, поэтому $\tau(p) = p(a)$ для каждого многочлена p.

Пусть q — многочлен такой, что q не обнуляется на $\sigma(a)$, тогда $1/q \in \operatorname{Hol}(a)$. Также,

$$1=\tau(1)=\tau(q\cdot q^{-1})=\tau(q)\tau(q^{-1})=\widetilde{q}(a)\tau(q^{-1}).$$

Поэтому $\widetilde{q}(a)$ — обратимо, и $\widetilde{q}(a)^{-1}=\tau(q^{-1})$. Но используя теорему 4.1, получаем, что $\widetilde{q}(a)^{-1}=\overline{(1/q)}(a)$. Значит, $\tau(q^{-1})=\overline{(1/q)}(a)$. Следовательно, если f=p/q, где p и q — многочлены, и q не обнуляется на $\sigma(a)$, то верно

$$\tau(f) = \tau(p \cdot q^{-1}) = \tau(p)\tau(q^{-1}) = \widetilde{p}(a)(1/q)(a) = \widetilde{f}(a).$$

Теперь пусть $f \in \operatorname{Hol}(a)$ и предположим, что f аналитична на открытом множестве G таком, что $\sigma(a) \subset G$. По теореме Рунге, существуют рациональные функции $\{f_n\}$ из $\operatorname{Hol}(a)$ такие, что $f_n \to f$ равномерно на компактах G. По предположению, $\tau(f_n) \to \tau(f)$. Но $\tau(f_n) = \widetilde{f_n}(a)$ и $\widetilde{f_n}(a) \to \widetilde{f}(a)$. Следовательно, $\tau(f) = \widetilde{f}(a)$.

Теорема 4.3 (о спектральном отображении). Если $a \in \mathcal{A}$ и $f \in \text{Hol}(a)$, то

$$\sigma(f(a)) = f(\sigma(a)).$$

Доказательство.

 \supseteq . Если $\alpha \in \sigma(a)$, пусть $g \in \operatorname{Hol}(a)$ такая, что $f(z) - f(\alpha) = (z - \alpha)g(z)$. В случае, если $f(\alpha) \notin \sigma(f(a))$, элемент $(a - \alpha)$ был бы обратим с обратным к нему элементом $g(a)[f(a) - f(\alpha)]^{-1}$. Следовательно, $f(\alpha) \in \sigma(f(a))$, то есть $f(\sigma(a)) \subseteq \sigma(f(a))$.

 \subseteq . Если $\beta \notin f(\sigma(a))$, то $g(z) = [f(z) - \beta]^{-1} \in \operatorname{Hol}(a)$ и поэтому $g(a)[f(a) - \beta] = 1$. Значит, $\beta \notin \sigma(f(a))$, то есть $\sigma(f(a)) \subseteq f(\sigma(a))$.

Приложение А

Теорема Бэра

"Вспомним" определение пространств Бэра и теорему Бэра.¹

Определение. Топологическое пространство X называется *пространством Бэра*, если для любого счётного семейства $\{A_n\}$ замкнутых множеств в X с пустой внутренностью, их объединение $\bigcup A_n$ тоже имеет пустую внутренность в X.

Teopeма 1 (Baire category theorem). Если X — компактное хаусдорфово пространство или полное метрическое пространство, то X — пространство Бэра.²

Доказательство. Пусть $\{A_n\}$ — семейство замкнутых в X множеств, имеющих пустую внутренность. Покажем, что у произвольного открытого непустого множества U_0 в X можно найти точку x, которая не лежит ни в одном из A_n . Отсюда очевидным образом будет следовать, что объединение $\bigcup A_n$ имеет пустую внутренность.

Рассмотрим множество A_1 . По предположению, A_1 не содержит U_0 , то есть мы можем выбрать точку $y \in U_0$, не лежащую в A_1 . Поскольку X регулярно³, а A_1 замкнуто, можно выбрать окрестность U_1 точки y, удовлетворяющую следующим условиям:

$$\overline{U}_1 \cap A_1 = \emptyset,$$

$$\overline{U}_1 \subset U_0.$$

Если X — метрическое пространство, то выберем U_1 таким образом, чтобы его диаметр не превосходил единицы.

Далее по индукции будем строить последовательность непустых открытых множеств $\{U_n\}$: если дано U_{n-1} , то выбираем точку в U_{n-1} , не лежащую в A_n ; и выбираем окрестность U_n этой точки, удовлетворяющую следующим условиям:

$$\overline{U}_n \cap A_n = \emptyset,$$

$$\overline{U}_n \subset U_{n-1},$$

¹Конечно, мы должны были проходить это в первом семестре на топологии, но...

²Не стоит обращать внимание на "category" в названии теоремы — никто сейчас не говорит о категориях Бэра, наверное, с появлением современного понимания этого слова. В русском вроде говорят просто о "теореме Бэра".

³ Регулярность пространства означает, что любое замкнутое множество отделимо от точки. Можно показать, что компактные хаусдорфовы и полные метрические пространства регулярны.

$\dim U_n < 1/n$ в метрическом случае.

Утверждается, что пересечение $\bigcap \overline{U}_n$ непусто. Действительно, если X — компактное хаусдорфово пространство, то семейство $\{\overline{U}_n\}$ обладает *свойством конечного пересечения*⁴, а потому пересечение всех \overline{U}_n непусто. Если же X — полное метрическое пространство, то достаточно выбрать в каждом \overline{U}_n произвольную точку x_n ; тогда, поскольку диаметры U_n стремятся к нулю $\{x_n\}$ — фундаментальная последовательность. Её предел x лежит в каждом \overline{U}_n , так как хвосты $\{x_n\}$ тоже стремятся к x и лежат в \overline{U}_n . Значит, $\bigcap \overline{U}_n \ni x$, и, в частности, это пересечение непусто.

Выберем $x \in \bigcap \overline{U}_n$. Поскольку $\overline{U}_1 \subset U_0$, x лежит в U_0 . Однако для каждого n точка x не лежит в A_n , поскольку $\overline{U}_n \cap A_n = \emptyset$.

⁴То есть, пересечение любого его конечного подсемейства непусто.

Приложение В

Сети

Определение. *Направленным множеством* называется частично упорядоченное множество (I, \leq) , обладающее следующим свойством: для любых $i_1, i_2 \in I$ существует такой $i_3 \in I$, что $i_3 \geqslant i_1$ и $i_3 \geqslant i_2$.

Один из главных интересующих нас примеров направленного множества — семейство открытых множеств \mathcal{U} , содержащих некоторую точку x_0 топологического пространства X, упорядоченное по обратному включению. А именно, для множеств $U, V \in \mathcal{U}$ положим $U \geqslant V$, если $U \subseteq V$.

Определение. Сетью (направленностью, обобщённой последовательностью) в топологическом пространстве X называется пара из направленного множества (I, \leq) и функции $x \colon I \to X$. Обычно вместо x(i) мы будем писать x_i ; и говорить "пусть $\{x_i\}_{i \in I}$ — сеть в X".

Отметим, что натуральные числа являются направленным множеством, а потому любая последовательность — это сеть. Также можно задать сеть на семействе открытых множеств \mathcal{U} , определённом выше. А именно, выберем произвольный элемент $x_U \in \mathcal{U}$ для каждого $U \in \mathcal{U}$. Тогда $\{x_U : U \in \mathcal{U}\}$ — сеть в X.

Определение. Говорят, что сеть $\{x_i\}$ в X сходится к $x_0 \in X$ (будем писать $x_i \to x_0$ или $x_0 = \lim x_i$), если для каждого открытого множества U в X, содержащего x_0 , существует такое $i_0 \in I$, что $x_i \in U$ для всех $i \geqslant i_0$.

Точка $x_0 \in X$ называется *предельной точкой* сети $\{x_i\}$, если для любого $i_0 \in I$ в любой окрестности U точки x_0 найдётся элемент $x_i \in U$, где $i \geqslant i_0$. В этом случае будем писать $x_i \stackrel{\text{cl}}{\longrightarrow} x_0$.

Отметим, что сеть $\{x_U: U \in \mathcal{U}\}$ сходится к точке x_0 , окрестности которой которой лежат \mathcal{U} .

Утверждение 1. Если X — топологическое пространство и $A \subseteq X$, то $x \in \operatorname{Cl} A$ тогда и только тогда, когда существует сеть $\{a_i\}$ в A, сходящаяся к точке x.

¹От английского слова "clusters", что можно перевести как "сгущается".

Доказательство. Пусть \mathcal{U} — семейство открытых множеств, содержащих x. Если $x \in \operatorname{Cl} A$, то в любой окрестности $U \in \mathcal{U}$ найдётся точка $a_U \in A \cap U$. Если $U_0 \in \mathcal{U}$, то $a_U \in U_0$ для каждого $U \geqslant U_0$, а потому $x = \lim a_U$. Наоборот, пусть $\{a_i\}$ — сеть в A, сходящаяся к x. Тогда каждое $U \in \mathcal{U}$ содержит точку $a_i \in A \cap U$. Значит, $x \in \operatorname{Cl} A$. ■

Можно показать, что предельная точка сети всегда лежит в замыкании. Отметим также, что если пространство X хаусдорфово, то сеть сходится не более чем к одной точке — доказательство аналогично соответствующему доказательству для обычных последовательностей (здесь нужно воспользоваться направленностью множества индексов).

Утверждение 2. Пусть X, Y — топологические пространства, $f: X \to Y$. Тогда f непрерывна если и только если $f(x_i) \to f(x_0)$ для любой сети $\{x_i\}$, сходящейся к x_0 .

Доказательство. Предположим, что f непрерывна в x_0 , $\{x_i\}$ — сеть в X, такая, что $x_i \to x_0$ в X. Если V открыто в Y и $f(x_0) \in V$, то для некоторого $U \in \mathcal{U}$ выполнено $f(U) \subseteq V$. Пусть i_0 — такой индекс, что $x_i \in U$ для всех $i \geqslant i_0$. Тогда $f(x_i) \in V$ при $i \geqslant i_0$. Значит, $f(x_i) \to f(x_0)$.

Наоборот, пусть f не непрерывна в x_0 . Тогда есть открытое множество V в Y, такое, что $f(x_0) \in V$ и $f(U) \setminus V \neq \emptyset$ для всех $U \in \mathcal{U}$. Таким образом, для каждого $U \in \mathcal{U}$ можно выбрать точку $x_U \in U$, удовлетворяющую условию $f(x_U) \notin V$. Тогда $\{x_U\}$ — сеть в X, сходящаяся к x_0 , хотя ясно, что $\{f(x_U)\}$ не может сходиться к $f(x_0)$.

Можно показать, что если x_0 — предельная точка сети $\{x_i\}$, то $f(x_0)$ — предельная точка сети $\{f(x_i)\}$.

Утверждение 3. Множество K компактно в X тогда и только тогда, когда любая сеть в K имеет предельную точку в K.

Доказательство. Пусть K — компакт в X, $\{x_i\}_{i\in I}$ — сеть в K. Для каждого i положим

$$F_i = \operatorname{Cl}\{x_j : j \geqslant i\},$$

то есть F_i — замкнутое подмножество K. Покажем, что семейство $\{F_i\}_{i\in I}$ обладает свойством конечного пересечения 2 . Поскольку I направлено, если $i_1,\ldots,i_n\in I$, то существует $i\geqslant i_1,\ldots,i_n$; и тогда $F_i\subseteq \bigcap_{k=1}^n F_{i_k}$. Поскольку K компактно, найдётся точка $x_0\in \bigcap_{i\in I} F_i$. Если теперь U — окрестность $x_0,i_0\in I$, то условие

$$x_0 \in \operatorname{Cl}\{x_i : i \geqslant i_0\}$$

означает ровно то, что для некоторого $i\geqslant i_0$ x_i лежит в U. Значит, $x_i\stackrel{\mathrm{cl}}{\longrightarrow} x_0$.

Предположим теперь, что каждая сеть в K имеет предельную точку в K. Пусть $\{K_{\alpha}\}_{\alpha\in A}$ — семейство замкнутых подмножеств K, обладающее свойством конечного пересечения. Упорядочим по включению множество $\mathcal F$ всех конечных подмножеств

 $^{^{2}}$ По-русски, видимо, говорят, что множество "центрировано". Это свойство означает, что любое конечное пересечение элементов непусто.

A. По предположению, если $F \in \mathcal{F}$, то существует точка $x_F \in \bigcap_{\alpha \in F} K_\alpha$. Таким образом, $\{x_F\}_{F \in \mathcal{F}}$ — сеть в K. По условию у этой сети существует предельная точка $x_0 \in K$. Пусть $\alpha \in A$, то есть $\{\alpha\} \in \mathcal{F}$. Тогда если U — произвольное открытое множество, содержащее x_0 , то существует такое $F \in \mathcal{F}$, что $\alpha \in F$ и $x_F \in U$. Таким образом, $x_F \in U \cap K_\alpha \neq \emptyset$. Поскольку K_α замкнуто в K, $K_\alpha \in K_\alpha$ для каждого $K_\alpha \in K_\alpha$ замкнуто в $K_\alpha \in K_\alpha$ для каждого $K_\alpha \in K_\alpha$. Значит, $K_\alpha \in K_\alpha$ для каждого $K_\alpha \in K_\alpha$

Утверждение 4. Если X компактно, $\{x_i\}$ — есть в X, и x_0 — единственная предельная точка $\{x_i\}$, то сеть $\{x_i\}$ сходится к x_0 .

Доказательство. Пусть U — окрестность x_0 ;

$$J=\{j\in I:x_j\notin U\}.$$

Если $\{x_i\}$ не сходится к x_0 , то для каждого $i \in I$ существует такое $j \in J$, что $j \geqslant i$. В частности, легко проверить, что J — направленное множество. Тогда $\{x_j\}_{j\in J}$ — сеть в компакте $X\setminus U$. У неё должна существовать предельная точка y_0 . Но тогда (по указанному свойству J) y_0 также является предельной точкой сети $\{x_i\}_{i\in I}$. Противоречие. Значит, $x_i\to x_0$.