## Soln

- 1.: If w; x; y; z are switches 1,2,3,4 respectively, you will get the function as f = x yz + wyz.
- 2. Let A = Fair Weather

B = Instrument Capability

C = Air Controllers Strike

D = Take Off

Rest states are don't care: D=A C+B C=C(A+B)



3. Implement using 3X8 decoder and 3 input OR gate

 $X = \overline{AC} + \overline{BC} = A \overline{BC} + \overline{BC} + \overline{AD} = A \overline{BC} + \overline{AD} = \overline{CC} + \overline{CC} = \overline{CC} = \overline{CC} + \overline{CC} = \overline{CC$ 

 $Y = \overline{B}C + A \overline{C} = \overline{B}C(A + \overline{A}) + A \overline{C}(B + \overline{B}) = A \overline{B}C + \overline{A} \overline{B}C + AB \overline{C} + A \overline{B} \overline{C}$ 

 $Z=AB \overline{C} + \overline{A}B = AB \overline{C} + \overline{A}B(C+\overline{C}) = A \overline{B}C + \overline{A}BC + \overline{A}B \overline{C}$ 

Use 3-input OR for X and Z and Two 3-input OR gates for Y.

**4.** The 2's complement of a binary number can be formed by leaving all least significant 0's and the first 1 unchanged and complementing all other higher significant bits. The circuit needs a shift register to store the binary number and an RS flip-flop to be set when the first least significant 1 occurs. An exclusive-OR gate can be used to transfer the unchanged bits or complement the bits.



5. (a) Use an XOR of S&R and AND it with Ck (i.e. same status as the 0,0 inputs) to send to the Ck input to the SR-latch.

5 (b) From the truth table shown of JK Flip-Flop,  $Q_{n+1}=1$  for rows 3 ( $J_n=1$ ,  $K_n=0$ ) and row 4(for  $Q_n=0$ ) Or  $Q_{n+1}=(row3\&4)$   $Q_{n+1}=\bar{Q}_n$   $J_n(\bar{K}_n+K_n)$ . Again

 $Q_{n+1} {=} Q_n \ \overline{K}_n (J_n {+} \ \overline{J}_n)$  from Row 1(for  $Q_n {=} 1)$  and 3.

Hence  $Q_{n+1} = \overline{Q}_n J_n + Q_n \overline{K}_n$ .

| $\mathbf{J_n}$ | K <sub>n</sub> | $Q_{n+1}$        |
|----------------|----------------|------------------|
| 0              | 0              | $Q_{\mathbf{n}}$ |
| 0              | 1              | 0                |
| 1              | 0              | 1                |
| 1              | 1              | $\bar{Q}_n$      |

| Charocteristic | to ble | of | 7-k | flip flob |
|----------------|--------|----|-----|-----------|
|                | 17     | T  | K   | 8(++1)    |
|                |        | 5  | 0   | Ø (t)     |
|                | 1      | 0  | 1.  | 0         |
|                |        | 1  | 0   | -         |
|                | 1      | 1  | 1   | Q(t)      |







Count of 4

| bre | sent | state | Ner | t et | ate |    |    |    |
|-----|------|-------|-----|------|-----|----|----|----|
| A   | E    | C     | A   | 8    | C   | TA | TB | Te |
| 0   | C    | 0     | 0   | 0    | 1   | 0  | 0  | 1  |
| 0   | 0    | 1     | 0   | 1    | 1   | 0  | 1  | 0  |
| 0   | 1    | 1     | 1   | 1    | 1   | 1  | 0  | 0  |
| ١   | 1    | 1     | 1   | 1    | 0   | 0  | 0  | I  |
| 1   | 1    | 0     | 1   | 0    | 0   | 0  | 1  | 0  |
| 1   | 0    | 0     | 0   | 0    | 0   | 1  | 0  | 0  |

| n / | 00 | 01     | 11  | 10       |                                                     |
|-----|----|--------|-----|----------|-----------------------------------------------------|
| 0   | 0  | 0      | 11  | 10<br>X: | $T_A = \overline{A} \cdot B + A \cdot \overline{B}$ |
| 1   | 1  | X      | 0   | 0        |                                                     |
| 0   | 0  | 11:    | 0 0 | [x]      | TB = B.C+BC                                         |
| 1   | ð  | 1: (1) |     |          |                                                     |

| 1 | - | ٠ |
|---|---|---|
|   |   |   |

| $Q_n$ | $Q_{n+1}$ | J | K  |
|-------|-----------|---|----|
| 0     | 0         | 0 | x  |
| 0     | 1         | 1 | x  |
| 1     | 0         | x | 1  |
| 1     | 1         | х | -0 |

| Time $n + 1$ |       |       |       |                  | Required inputs |                  |                  |             |                  |                  |                |
|--------------|-------|-------|-------|------------------|-----------------|------------------|------------------|-------------|------------------|------------------|----------------|
| $Q_A$        | $Q_B$ | $Q_C$ | $Q_A$ | $Q_{\mathbf{B}}$ | $Q_C$           | $J_{\mathbf{A}}$ | $K_{\mathbf{A}}$ | $J_{\rm B}$ | $K_{\mathbf{B}}$ | $J_{\mathbf{C}}$ | K <sub>C</sub> |
| 0            | 0     | 0     | 0     | 1                | 0               | 0                | x                | 1           | x                | 0                | X              |
| 0            | 1     | 0     | 1     | 0                | 0               | 1                | X                | x           | 1                | 0                | x              |
| 1            | 0     | 0     | 1     | 1                | 0               | x                | 0                | 1           | X                | 0                | x              |
| 1            | 1     | 0     | 1     | 1                | 1               | x                | 0                | x           | 0                | 1                | $\mathbf{x}$   |
| 1            | 1     | 1     | 1     | 0                | 1               | x                | 0                | x           | 1                | x                | 0              |
| 1            | 0     | 1     | 0     | 1                | 1               | x                | 1                | 1           | x                | x                | 0              |
| 0            | 1     | 1     | 0     | 0                | 1               | 0                | X                | x           | 1                | x                | 0              |
| 0            | 0     | 1     | 0     | 0                | 0               | 0                | x                | -0          | X                | x                | 1              |
| 0            | 0     | 0     |       |                  |                 |                  |                  |             |                  |                  |                |



The Reset button is an active high reset so it resets all flip flops to 0 when Reset = 1. The 6 stable states of the above counter are:

Note that the Master-slave J-K flip-flops will change state on the negative edge of the clock pulse. So when a preceding Q changes state from 0 to 1 no toggle of the flip-flop results but when the preceding Q changes state from 1 to 0 the flip-flop toggles its output state.

Hi state

| $Q_{2n}$ | $Q_{1n}$ | $Q_{0n}$ | $Q_{2n+1}$ | $Q_{1n+1}$ | $Q_{0n+1}$ |
|----------|----------|----------|------------|------------|------------|
| 0        | 0        | 0        | 0          | 0          | 1          |
| 0        | 0        | 1        | 0          | 1          | 0          |
| 0        | 1        | 0        | 0          | 1          | 1          |
| 0        | 1        | 1        | 1          | 0          | 0          |
| 1        | 0        | 0        | 1          | 0          | 1          |
| 1        | 0        | 1        | 0          | 0          | 0          |



Anob. We need a divide by 10 counter. So, 4 ffs are required. A possible state transition of the countin:

| A  | В |   | C | D |
|----|---|---|---|---|
| 0  | 0 | ( | ) | 0 |
| 0  | 0 | C | ) | 1 |
| 0  | 0 | 1 | ( | 2 |
| 1  | 0 | i |   |   |
| 1  | 1 | 0 | 0 |   |
| 11 |   | 0 | 1 |   |
| 1  | 1 | 1 | 0 |   |
| 11 |   | 1 | 1 |   |
| 1  | 0 | 0 | D |   |
| 1  | 0 | 0 | 1 | 1 |

| buint state | Next state |             |
|-------------|------------|-------------|
| ABCD        | A B CD     | TA TO TO TO |
| 0000        | 0 0 0 1    | 0001        |
| 0001        | 0010       | 0011        |
| 0 0 1 0     | 1011       | 1001        |
|             |            | 0 1 1 1     |
| 1 0 0 0     | 1101       | 0 0 0 1     |
| 1 0 1       | 1110       | 0011        |
| 1110        | 11 11      | 00 01       |
| 11 11       | 1000       | 0111        |
| 000         | 1001       | 0001        |
| 001         | 0000       | 1001        |

FFA output will have the required wareform.

| \a   | 5  |    | TA | ,  | a  |    | TB |     | A  | 8/00 |    | 1   | c   |    |
|------|----|----|----|----|----|----|----|-----|----|------|----|-----|-----|----|
| HB 5 | 00 | 01 | 11 | 10 | AB | 00 | 01 | 11  | 10 |      | 00 | 01  | 11  | 10 |
| 00   | 0  | 0  | ix | T, | 00 | 0  | 0  | :x: | 0  | 00   | 0  | : 7 | · × | 0  |
| 01   | ×  | X  | X  | X! | 01 | М  | X  | X.  | ×  | 01   | Х  | X   | X   | ×  |
| 11   | 0  | 0  | 0  | 0  | 11 | 0  | 0  | 1   | 0  | 11   | 0  | U.  |     | 0  |
| 10   | 0  | 1  | 0  | Х  | 10 | 0  | 0  |     | X  | 10   | 0  | 0   | 1   | K  |

TB = CD Tc = CD+BD+AD TA = AC+ABOD



The combinational circuit can be synthesized using the durined expressions.