실증적AI개발프로젝트

멘토 교수: 옥수열 교수님

실내 AR 내비게이션-중간

QR 기반 위치 인식과 경량화된 VIO 알고리즘을 이용한 실내 AR 내비게이션 개발

최적해

이예진(팀장) | 서도윤 | 이시우

목차

01 프로젝트 개요

05 예상성과

02 기존 문제 및 방향성

06 프로젝트 관리

03 결과물 시연

07 진척도

04 기술 설명

프로젝트 개요

프로젝트 한 장 설명

01 프로젝트 개요

QR+VIO+AR 기술을 활용한 인터랙티브 실내 내비게이션

이예진

QR인식 및 좌표 추정 & VIO 경량화

이시우

2D 노드 맵 모델링 & 경로 최적화

AR 시각화 & UX/UI 시스템 통합

기존문제및방향성

- (1) 기존 문제
- (2) 프로젝트 방향성

국외: 구글 '라이브뷰'

02. 기존 문제 및 방향성

IMU 센서 융합

(1) 기존 실내 AR 내비게이션 MU: 관성 측정 장치

배달 로봇

네이버랩스

VL + 시맨틱 분할

VL: 이미지 기반 위치 추정

시맨틱 분할: 픽셀 별 특정 영역 구분 영상 특징점 추출로 파악

메타버스

맥스트 '맥스버스'

VPS(비전 기반)

일부역과 실외

휴빌론 'AR도보내비'

딥러닝 + 비콘 기반

vision positioning system 비콘: 블루투스 기반 무선통신장치

02. 기존 문제 및 방향성

(1) 기존 기술의 문제점 및 개선

02. 기존 문제 및 방향성

(2) 프로젝트 방향성

최종 목표

모바일에서도 가볍고 빠르며

다양한 실내 공간에 손쉽게 적용 가능한

직관적인 AR 내비게이션

결과물시연

- (1) 전체 진행 흐름
- (2) QR 인식 후 파싱
- (3) VIO 알고리즘
- (4) AR 렌더링

(1) 전체 진행 흐름

QR인식

현재 위치 정보 획득 (절대 위치)

경량VIO

카메라 + IMU 데이터 (상대 위치) 경로탐색

사용자 선택 도착지 2D맵 노드 간 최단 경로 AR안내

AR 시각화를 통한 직관적인 경로 안내

(2) QR코드 인식 구현

좌표, 층 정보, 구역 정보, 고유ID 등 포함

(2) 2D 맵 노드 모델링

• 공대 5호관 6층 test

엘레베이터 앞 → 602호 강의실

(2) A* (A-star) 알고리즘

QR CODE 인식 & Data parsing 2D맵 매핑 후 시작노드 지정 & 목적지 선택

 A* Algorithm 실행

 (우선순위큐 생성,

 역순 경로 추적)

최적 경로 리스트 JSON 형식으로 export Unity 연동 (MapToWorld() 3D 공간 좌표 변환) function A_star(start, goal):
open_set ← PriorityQueue()
open_set.push(start, f(start))

came_from ← empty map

g_score[start] ← 0 f_score[start] ← h(start, goal)

while open_set is not empty: current ← open_set.pop()

if current == goal:
return reconstruct_path(came_from, current)

for each neighbor of current: tentative_g ← g_score[current] + dist(current, neighbor)

if tentative_g < g_score[neighbor]:
 came_from[neighbor] ← current
 g_score[neighbor] ← tentative_g
f_score[neighbor] ← g_score[neighbor] + h(neighbor, goal)</pre>

if neighbor not in open_set:
 open_set.push(neighbor, f_score[neighbor])

(2) QR 인식

QR 인식

→ Unity에서 A* 테스트

(3) VIO 테스트

VIO 결과 테스트

Opimal_solution / AR Indoor project / Assets / Scripts / UserTracker.cs


```
using UnityEngine;
using UnityEngine.XR.ARFoundation;
public class UserTracker: MonoBehaviour
   public Transform userMarker;
   private XROrigin origin;
   void Start()
       origin = FindObjectOfType<XROrigin>();
   void Update()
       if (origin != null && userMarker != null)
           userMarker.position = origin.Camera.transform.position;
           userMarker.rotation = origin.Camera.transform.rotation;
```

(4) AR 시각화

Unity 3D 시뮬레이션 AR 시각화 테스트

기술설명

- (1) VIO 경량화
- (2) 경로 최적화

Visual Intertial Odometry

04. 기술 설명

(1) VIO 알고리즘

04. 기술 설명

(1) VIO 경량화 지점

1 Loop Closure * 후보 필터링

루프 감지 연산량 대폭 감소

loop 가능성이 높은 keyframe 후보만 사전 필터링

*장시간 이동하면서 누적된 위치 오차를 줄이기 위해 이미 방문했던 장소를 다시 인식하여 경로를 수정하는 과정

2 Feature
Prediction

feature수 감소 → 최적화 속도 향상

04. 기술 설명

(2) A* (A-star) 알고리즘

A* 알고리즘: 최단 경로 탐색 알고리즘

다익스트라 (Dijkstra) 알고리즘

휴리스틱 (heuristic) 함수

더 빠르고 효율적인 경로 탐색

모든 경로의 비용 고려

04. 기술 설명

(2) A* 알고리즘의 문제

지난 발표 미드백 → 최적화 방안/새로운 알고리즘 고안

맵 크기에 따른 노드 수 증가

불필요한 노드 탐색

탐색 시간 지연

JPS

(Jump Point Search)

필수 점프 포인트만 탐색

Theta *

직선 통과 가능 경로 허용

Bidirectional A*

출발-목표 양쪽 동시 탐색

예상성과

- (1) 정량적 성과
- (2) 정성적 성과

05. 예상 성과

(1) 정량적 성과

Translation Error

VINS-MONO 기존 고정밀 VIO 대비 10% 이내 추가 오차 허용

> 최종 Drift 비율

Rotation Error

VINS-MONO 회전 오차(방위각 추정) 기존 대비 10% 이내 추가 오차 허용

연산 리소스 절감

AR Core

- CPU 사용률 (30%)
- 메모리 사용량 (400MB)
- 프레임당 처리 시간 (25ms)

최종 drift 비율 ≤ 전체 이동 거리의 2% 이내

05. 예상 성과

(2) 정성적 성과

이예진

VIO 알고리즘 연구 및 경량화 시도, 전체 시스템 통합 및 관리 능력 향상

이시우

경로 추적 알고리즘 이해도 상승, 알고리즘 최적화 방안 모색

서도윤

크로스플랫폼 개발에 대한 경험, 사용자 친화적 개발에 대한 고민

프로젝트 관리

- (1) 회의 일정 및 회의록 관리
- (2) 스터디 내용 공유

(1) 회의 일정

월	화	수목		一	
발표 후 회의				정기 회의	
업무보고서				정기 회의	

• 격주 월: 발표 후 III드백 반영 / 주간업무보고서 작성 (오프라인)

· 매주 금: 16:00-18:00 정기 회의 (온라인, 디스코드 음성 채널)

(1) 깃허브 관리

(1) 회의록 관리

(1) 회의록 관리

중간발표 준비 및 역할 논의

01. 회의 개요

- 일시: 2025.04.25. (금) 13:30-15:00 (01h30m)
- 장소: 하단 인근 카페 (오프라인)
- 참석: (3명) 이예진, 이시우, 서도윤
- 주제: 중간발표 준비 및 역할 논의

02. 회의 내용

1. 중간발표 준비

250425 중간발표 준비 및 역할 논의.md

2. 역할 논의

- 이예진
 - 깃허브 관리(스터디 폴더, 관리), 결과물(QR)
 - 개선 포인트/해결방법(VIO경량화, 2D맵 기반 구축), 결과물 (VIO), 기술 설명(VIO), 정량적/정성적 성과(VIO)
- 서도윤
 - 기존 문제/목적, 프로그램 진행 흐름도, 발표 준비
 - 결과물(AR 렌더링)
- 이시우
 - 결과물(A*), 기술 설명(A* 동향 및 개선 전략), 정성적 성과(A* 개선, 알고리즘 개발)

3. 금주 진행 상황 및 차주 계획

- 1. 금주 진행 상황 (~04/25)
- 이예진: VIO 경량화 방안 고찰
- 이시우: A* 알고리즘 테스트 및 개선 방향 고안
- 서도윤: Unity 3D AR Foundation 스터디 및 깃허브 회의록 관
- 2. 차주 계획 (~04/28)
- 전체 계획: 중간 발표 준비
- 이후 계획은 추후 논의 계획

노션을 통해

스터디 내용 공유 및 확인

06. 프로젝트 관리

(2) 스터디 내용 공유

참고 자료 (Reference)

paper

BLOG

• 📦 WonjunPa.. | 블로그 [SLAM] Visual Intertial Odometry

Youtube

- ARKit ARCore Indoor Navigation
- AR Indoor
 - 。 이 프로젝트는 QR 사용 대신 placenote SDK를 이용해서 실내 위치 인식과 AR기반 공간 맵핑을 구현함
- 네이버랩스 참고영상

Guide

https://mobidev.biz/blog/augmented-reality-indoor-navigation-app-development

프로젝트 진척도

프로젝트 진행 현황

07. 프로젝트 진척도

(1) 진척도

(~4/28) 기존 진척도 (5/12 기준) 예상 진척도

담당	작업 항목	3	4	5	6	7	8
이예진	QR코드 인식 및 구현	QR인식	QR-unity		QR 리셋		
	VIO 경량화 및 최적화		VIO 테스트	AR 연동	VIO 경량		
	QR-VIO 연동			QR-VIO		실내 이동	성능 최적화
이시우	2D맵 모델링 및 구조 설계	2D 맵	평면도				
	A* 알고리즘 최적화		A* 테스트	최적화	unity이식		
	QR 경로와 연동				QR 연동	QR 연동	성능 최적화
서도윤	AR 시각화 및 효과 추가	AR시각화	AR 테스트		이펙트		
	UI 설계		스케치	개발	개발발		
	UX 피드백 반영 및 통합			테스트	UX 반영	흐름 통합	성능 최적화
전체 진척도		스터디	테스트	연동	성능 향상	통합	최적화

THANK YOU

QR 기반 위치 인식과 경량화된 VIO 알고리즘을 이용한 실내 AR 내비게이션 개발

최적해

이예진(팀장) | 서도윤 | 이시우