Math 547: Mathematical Foundations of Statistical Learning Theory Fall 2017

Instructor: Stas Minsker Scribe: Mose Wintner

9.1 SVM and Reproducing Kernel Hilbert Spaces (RKHS)

Assume that we have as before $(X,Y) \in \mathbb{S} \times \{\pm 1\}$. Assume now that \mathbb{S} is not a Hilbert space, or it is a low-dimensional Hilbert space.

Kernel trick: Let \mathbb{H} be a separable Hilbert space. Let $\phi: \mathbb{S} \to \mathbb{H}$ be injective. ϕ induces

$$(X_1,\ldots,X_n)\mapsto (\phi(X_1),\ldots,\phi(X_n)).$$

We can define

$$f_{w,b}(\phi(x)) = \langle w, \phi(x) \rangle + b,$$

which is a linear functional on \mathbb{H} . According to the representer theorem, the solution of the SVM optimization problem can be represented by $w^* = \sum_{j=1}^n \alpha_j \phi(X_j)$. Then for any $x \in \mathbb{S}$,

$$g^*(x) = \text{sign}(f_{w^*,b^*}(\phi(x))) = \text{sign}(\langle w^*, \phi(x^*) \rangle + b^*).$$

Now

$$\langle w^*, \phi(x) \rangle = \sum_{j=1}^n \alpha_j^* \langle \phi(X_j), \phi(X) \rangle.$$

Observation: g^* depends on ϕ only through inner products in $\mathbb H$ of the form $\langle \phi(x), \phi(y) \rangle$. Let

$$K(x,y) = \langle \phi(x), \phi(y) \rangle,$$

the "reproducing kernel"; then we only need K(x,y), not ϕ . The kernel K must satisfy the following:

- 1. $K(x_1, x_2) = K(x_2, x_1)$
- 2. K(x,y) is positive semidefinite: for all $k \geq 1, x_1, \ldots, x_k \in \mathbb{S}, \alpha_1, \ldots, \alpha_k \in \mathbb{R}$,

$$\sum_{i,j=1}^{k} \alpha_i \alpha_j K(x_i, x_j) \ge 0.$$

Soft-margin SVM minimizes

$$\frac{1}{n} \sum_{j=1}^{n} (1 - Y_j f_{w,b}(X_j))_+ + \lambda ||w||^2$$

over $w, b \in \mathbb{H} \times \mathbb{R}$. Writing $\tilde{x_j} = \phi(x_j)$, then $w^* = \sum_{j=1}^n \alpha_j^* \phi(x_j)$, $||w^*||^2 = \sum_{i,j=1}^n \alpha_i^* \alpha_j^* K(x_i, x_j)$.

9.1.1 Reproducing Kernel Hilbert Spaces

Let $K: \mathbb{S} \times \mathbb{S} \to \mathbb{R}$ be a kernel that satisfies the above properties 1 and 2. Define

$$\mathbb{H}_0 = \left\{ \sum_{j=1}^k \alpha_j K(x_j, \cdot) : k \ge 1, \, \alpha_1, \dots \alpha_k \in \mathbb{R}, \, x_1, \dots, x_k \in \mathbb{S} \right\}.$$

Define the inner product on \mathbb{H}_0

$$\left\langle \sum_{i} \alpha_{i} K(x_{i}, \cdot), \sum_{j} \beta_{j} K(x_{k}, \cdot) \right\rangle := \sum_{i,j} \alpha_{i} \beta_{j} K(x_{i}, x_{j})$$

and let \mathbb{H} be the completion of \mathbb{H}_0 . Then \mathbb{H} is called the RKHS with kernel K. The term "reproducing" comes from the following: for any $f \in \mathbb{H}$, $\langle f, K(x, \cdot) \rangle = f(x)$. Indeed, if $f \in \mathbb{H}_0$, so $f = \sum_j \alpha_j K(x_j, \cdot)$, then

$$\langle f, K(x, \cdot) \rangle = \sum_{j} \alpha_{j} \langle K(x_{j}, \cdot) K(x_{j}, \cdot) \rangle = \sum_{j} \alpha_{j} K(x_{j}, x) = f(x).$$

From this point of view, the soft-margin SVM is a penalized hinge risk minimization in an RKHS \mathbb{H} .