Introduction to Algorithms and Data Structures Lecture 3: Asymptotics: o and ω

John Longley

School of Informatics University of Edinburgh

September 2021

Outline

Goal of Lectures 3,4,5:

► Introduce asymptotic analysis, the core mathematical theory used in this course. Centres around a certain 'Gang of Five':

 $o O \Theta \Omega \omega$

Apply this theory to InsertSort and MergeSort.

Purpose of the theory: Way of making precise, quantitative statements about efficiency properties of *algorithms themselves*. (E.g. What do *all* implementations of MergeSort have in common?)

Note: These ideas may take a while to master - don't worry!

This lecture: In what sense is MergeSort 'fundamentally faster' than InsertSort? o and ω .

Comparing runtimes for InsertSort and MergeSort

Take some specific implementations of **InsertSort** and **MergeSort**. Broadly, we want to consider . . .

 $T_I(n)$ = time taken by **InsertSort** on a list of length n (in ms)

 $T_M(n)$ = time taken by **MergeSort** on a list of length n

Which list of length n? Time may vary widely between lists! Will come back to this. For now, take $T_I(n)$, $T_M(n)$ to be the worst-case (i.e. maximum) times for a list of length n.

Could then plot a graph (schematic only):

Comparing T_I and T_M

How can we capture our intuition ' T_I grows much faster than T_M '?

Attempt 1: $\forall n. T_M(n) < T_I(n)$.

Not true! We've seen that for *small n*, **InsertSort** is faster. Really want to say that **MergeSort** is *eventually* faster.

Attempt 2: $\exists N. \forall n \geq N. T_M(n) < T_I(n).$

True. E.g. N = 100 would do here.

But doesn't capture the essential difference . . .

Comparing growth rates

Attempt 3: Idea is that we expect that *any* impl of **MergeSort** will eventually beat *any* impl of **InsertSort**.

E.g. suppose we gave **InsertSort** an **unfair** advantage by running it on a machine 100 times faster.

Even $T_I(n)/100$ would eventually overtake $T_M(n)$:

In symbols: $\exists N. \forall n \geq N. T_M(n) < 0.01T_I(n)$.

(E.g. N = 100000 would do here.)

Question: What if we replaced 0.01 by 0.0001? Or by 0.000001?

Growth rates and 'little o'

Intuition (will justify later): For any handicap factor c, however close to zero, $cT_I(n)$ will eventually break out and overtake T_M :

$$\forall c > 0. \ \exists N. \ \forall n \geq N. \ T_M(n) < cT_I(n)$$

We express this by saying T_M is $o(T_I)$. Can read this as: ' T_M is slower-growing than' or 'asymptotically smaller than T_I '.

In general, we say f is o(g) if

$$\forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)$$

(Here $f, g : \mathbb{N} \to \mathbb{R}_{>0}$, c ranges over \mathbb{R} , and N, n range over \mathbb{N} .)

Equivalent to saying $g(n)/f(n) \to \infty$ as $n \to \infty$ (if $f : \mathbb{N} \to \mathbb{R}_{>0}$).

o-notation: Simple examples

Will come back to InsertSort and MergeSort later.

Meanwhile, some simpler examples of o.

Example 1: Is it true that
$$n^2$$
 is $o(n^3)$? **YES!**

Informal justification: The ratio n^3/n^2 is n, which (trivially!) tends to ∞ as n tends to ∞ .

Rigorous justification: Want to show that the o formula is satisfied:

$$\forall c > 0. \ \exists N. \ \forall n > N. \ n^2 < cn^3$$

Suppose we're given some c > 0. Need to pick a suitable N.

Take any N > 1/c. Then for all $n \ge N$, we have

$$cn^3 = cn.n^2 > cN.n^2 > c(1/c)n^2 = n^2$$

(Idea: If n > 1/c, the extra factor n will compensate for the c.)

Examples of o-notation, continued

Example 2: Is it true that $100\sqrt{n}$ is o(n)? **YES!**

Informal justification: The ratio $n/(100\sqrt{n})$ is $\sqrt{n}/100$, which tends to ∞ as n tends to ∞ .

Rigorous justification: Want to show that the o formula is satisfied:

$$\forall c > 0$$
. $\exists N$. $\forall n \geq N$. $100\sqrt{n} < cn$

Suppose we're given some c > 0. Need to pick a suitable N.

Take any $N > 10000/c^2$. Then for all $n \ge N$, we have

$$cn = c\sqrt{n}\sqrt{n} \ge c\sqrt{N}\sqrt{n} > c(100/c)\sqrt{n} = 100\sqrt{n}$$

How did we pick that $10000/c^2$?

E.g. by working backwards from the requirement $n/(100\sqrt{n}) > 1/c$.

Examples of o-notation, continued

Example 3: Is it true that n + 1000000 is o(6n)? **NO!**

Informal justification: Even though the ratio 6n/(n+1000000) continues to increase as n tends to ∞ , it never exceeds 6, so doesn't tend to ∞ .

Rigorous justification: Want to show the *negation* of the *o* formula:

$$\neg \ (\forall c > 0. \ \exists N. \ \forall n \geq N. \ n + 1000000 < c.6n)$$

which is equivalent to

$$\exists c > 0. \ \forall N. \ \exists n \geq N. \ n + 1000000 \geq c.6n$$

 $\stackrel{ ext{def}}{=}$ We can take c=1/7. It's then true for any $n\geq 0$ that

$$n + 1000000 > n \ge 6n/7 = c.6n$$

So it's clear that $\forall N.\exists n \geq N. \ n+1000000 \geq c.6n$ (given N, can just take n=N).

What is o(g) officially?

Officially, o(g) is a set: namely, the set of all f that 'are o(g)'.

$$o(g) = \{f : \mathbb{N} \to \mathbb{R}_{\geq 0} \mid \forall c > 0. \exists N. \forall n \geq N. f(n) < cg(n)\}$$

So, 'f is o(g)' technically means $f \in o(g)$.

Common convention: Write 'o(g)' to mean 'some (unspecified) function in the set o(g)'. E.g.

$$f = o(g),$$
 $f(n) = 3n^2 + o(n)$

Needs care: e.g. $n = o(n^2)$ and $2n = o(n^2)$ don't imply n = 2n! But many useful laws are valid, e.g.

$$o(g) + o(g) = o(g)$$

which strictly means 'if $f \in o(g)$ and $f' \in o(g)$, then $f+f' \in o(g)$ '. (Exercise if you like maths: Prove this from the definition of o.)

IADS Lecture 3 Slide 10

Reducing clutter using o

Asymptotic notation is useful when we're only interested in the broad headlines of how some function behaves.

E.g. Can read $3n^2 + o(n)$ as ' $3n^2$ plus small change.'

Reduces clutter and simplifies calculations!

Example: How does the following behave for large n?

$$(3n + 5\sqrt{n} + 17 \lg n) (4n + (\sqrt{n} / \lg n) + 12)$$

(In this course, Ig means logarithm to base 2.)

Rather than expanding this in full, can reason as follows:

$$(3n + o(n) + o(n))(4n + o(n) + o(n)) = (3n + o(n))(4n + o(n))$$

$$= 12n^2 + o(3n^2) + o(4n^2) + o(n^2)$$

$$= 12n^2 + o(n^2)$$

(where every step can be rigorously justified).

Some key points

- Saying f = o(g) gives just the main headlines of how f and g are related: 'In the limit, f is vanishingly small relative to g'. Often, this is all we care about.
- ► f = o(g) makes a robust statement about f, g. E.g. unaffected by scaling: $f = o(g) \Leftrightarrow 3f = o(0.2g)$.
- So can expect that e.g. ' $T_M = o(T_I)$ ' will remain true for any implementations of **MergeSort/InsertSort**.
- ▶ Use of *o* can reduce clutter and simplify calculations.
- ▶ But without sacrificing mathematical rigour: 'f = o(g)' has a precisely defined meaning.

General advice: Sketch graphs to understand what's going on!

And finally: ω

 ω is dual to o. Recall that f = o(g) means:

$$\forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)$$

('f is asymptotically smaller than / grows slower than g').

By contrast, read $f = \omega(g)$ as saying:

'f is asympotically larger than f grows faster than f g').

Formal definition: f is $\omega(g)$ if

$$\forall C > 0. \ \exists N. \ \forall n \geq N. \ f(n) > Cg(n)$$

('However much we scale g up by, f will eventually overtake it.')

For purpose of comparing f and g, scaling g 'up' by C has same effect as scaling f 'down' by c=1/C. So easy to show:

$$f = \omega(g)$$
 if and only if $g = o(f)$

(Compare: x > y if and only if y < x.)

We'll tend to use o more than ω .

Next time: O, Ω , Θ .

(Most presentations start with these!)

Reading for Lectures 3 and 4:

CLRS Chapter 3, GGT Sections 3.3, 3.4

Today's music:

J.S. Bach, Toccata in D minor.