# CHM 673 Lecture 21: Electronic excited states, part 3

#### Suggested reading:

Chapter 4.14, 6.9, 11.3, 11.6, 11.10 from Jensen

### MCSCF for electronic excited states



Solution: both orbitals and CI coefficients are optimized variationally at the same time to give the lowest energy for the wave function

$$\Psi = \sum_{i} c_i \Phi_i$$

#### How to describe electronic excited states with MCSCF?

#### 1. Solve MCSCF equations for the ground state

(i.e., optimize molecular orbitals and expansion coefficients to minimize the energy of the ground state). Excited states are found as higher CI roots.

#### Cons:

-orbitals are optimized for the ground state  $\rightarrow$  the ground state is described much better than excited states  $\rightarrow$  errors in transition energies

### How to describe electronic excited states with MCSCF?

#### 2. Optimize orbitals and coefficients for a particular electronic state:

$$\Psi^* = \sum_{L^*} C_{L^*} \Phi_{L^*}$$

#### Cons:

- Variational collapse to lower state
- Different set of orbitals for different states → no way to calculate transition properties such as transition dipole moments, non-adiabatic and spin-orbit couplings
- Arbitrariness in configuration selection: excited states often involve mixing with non-valence (Rydberg) states. Balanced description impossible

### How to describe electronic excited states with MCSCF?

#### 3. State-averaged procedure

Use same set of orbitals for all considered states (e.g., the ground and one excited state)

$$\Psi = \sum_{L} C_{L} \Phi_{L}$$

$$\Psi^* = \sum_{L^*} C_{L^*} \Phi_{L^*}$$

Minimize average energy of both states:

$$E = n_0 E_0 + n^* E^* = n_0 \langle \Psi | \hat{H} | \Psi \rangle + n^* \langle \Psi^* | \hat{H} | \Psi^* \rangle$$

Pros: No problems with non-orthogonal orbitals

#### Cons:

- both states are described equally poorly
- weights are arbitrary and affect the results
- different results for different number of included states

## Beyond MCSCF

Similar to the ground state, for accurate results, dynamical correlation should be included:

- Perturbation theory MRPT, CASPT2 etc
- Configuration interaction MRCI, CASCI, etc

MRPT/cc-pVTZ → accuracy of ~1 kcal/mol for excited states

### Time-dependent SE

Start from time-dependent SE (TI SE) with time-dependent external electric potential:

$$i\frac{\partial}{\partial t}\tilde{\Psi}(r,t) = \hat{H}\tilde{\Psi}(r,t)$$
$$\hat{H}(r,t) = \hat{H}_0(r) + \hat{V}_{ext}(r,t)$$

Time-independent SE: energy is conserved (variational principle)

Time-dependent SE: action S is conserved

$$S[\Psi] = \int_{t_0}^{t} \langle \Psi | \left( i \frac{\partial}{\partial t'} - \hat{H} \right) | \Psi \rangle dt'$$

For example, time-dependent Hartree-Fock equations are:

$$i\frac{\partial}{\partial t}\phi_i(r,t) = \left(\hat{T}(r,t) + \hat{V}_{eN}(r,t) + \hat{J}(r,t) + \hat{K}(r,t) + \hat{V}_{ext}(r,t)\right)\phi_i(r,t)$$

## Time-dependent DFT

Runge-Gross theorem (1984) is an analogue of the Hohenberg-Kohn theorem for the time-dependent density and external potential

Then, time-dependent DFT equations are:

$$i\frac{\partial}{\partial t}\phi_i(r,t) = \left(\hat{T}(r,t) + \hat{V}_{eN}(r,t) + \hat{J}(r,t) + \hat{V}_{xc}(r,t,\Psi_0) + \hat{V}_{ext}(r,t)\right)\phi_i(r,t)$$
 
$$\hat{J}(r,t) = \int \frac{\rho(r',t)}{|r-r'|}dr'$$
 Time-dependent Coulomb operator

$$\hat{V}_{xc}(r,t,
ho_0)=rac{\delta S_{xc}[
ho(r,t)]}{\delta
ho(r,t)}$$
 time-dependent exchange-correlation potential

 $V_{xc}$  depends on density starting from initial time  $t_0!$ 

→ Solution to TDKS equations should have memory and solved self-consistently also in time domain

## Time-dependent DFT

$$\hat{V}_{xc}(r,t,\rho_0) = \frac{\delta S_{xc}[\rho(r,t)]}{\delta \rho(r,t)} \quad \text{time-dependent exchange-correlation potential}$$

 $V_{xc}$  depends on density starting from initial time  $t_0!$ 

Practically, in TDDFT time-memory is ignored

This is adiabatic approximation, i.e. we assume that the density is slowly varying in time

### Derivative techniques in a weak perturbation limit

How to obtain working TDDFT equations?

Let's use derivative techniques:

- Write energy of a system in a presence of perturbation
- Compute n-order analytic derivatives to compute n-order property
- Let perturbation be 0

$$E(\lambda) = \langle \Psi(\lambda) | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi(\lambda) \rangle$$

$$\frac{\partial E(\lambda)}{\partial \lambda} = \langle \frac{\partial \Psi(\lambda)}{\partial \lambda} | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi \rangle +$$

$$\langle \Psi | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \frac{\partial \Psi(\lambda)}{\partial \lambda} \rangle + \langle \Psi | P_1 + 2\lambda P_2 | \Psi \rangle$$

$$\left. \frac{\partial E(\lambda)}{\partial \lambda} \right|_{\lambda=0} = 2 \left\langle \frac{\partial \Psi(\lambda)}{\partial \lambda} | \hat{H}_0 | \Psi \right\rangle + \left\langle \Psi | P_1 | \Psi \right\rangle$$

## Derivative techniques in a weak perturbation limit

$$\frac{\partial E(\lambda)}{\partial \lambda} \bigg|_{\lambda=0} = 2 \left\langle \frac{\partial \Psi(\lambda)}{\partial \lambda} | \hat{H}_0 | \Psi \right\rangle + \left\langle \Psi | P_1 | \Psi \right\rangle$$

$$\frac{\partial \Psi}{\partial \lambda} = \frac{\partial \Psi}{\partial C} \frac{\partial C}{\partial \lambda} + \frac{\partial \Psi}{\partial \chi} \frac{\partial \chi}{\partial \lambda}$$
Basis functions
$$\frac{\partial \Psi}{\partial \lambda} = \frac{\partial \Psi}{\partial C} \frac{\partial C}{\partial \lambda} + \frac{\partial \Psi}{\partial \chi} \frac{\partial \chi}{\partial \lambda}$$
Let's assume this term is 0 orbital coefficients

$$\frac{\partial E(\lambda)}{\partial \lambda} \bigg|_{\lambda=0} = 2 \frac{\partial C}{\partial \lambda} \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 | \Psi \right\rangle + \langle \Psi | P_1 | \Psi \rangle$$

O for variationally optimized wave functions

### Derivative techniques in a weak perturbation limit

Let's consider the following derivative:

$$\frac{\partial E}{\partial C} = \frac{\partial}{\partial C} \langle \Psi | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi \rangle = 2 \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi \right\rangle$$

$$\left.\frac{\partial E}{\partial C}\right|_{\lambda=0}=2\left\langle\frac{\partial\Psi}{\partial C}|\hat{H}_0|\Psi\right\rangle=0 \qquad \text{True for variationally optimized wave functions}$$

$$\frac{\partial}{\partial \lambda} \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi \right\rangle \Big|_{\lambda=0}$$

$$= \frac{\partial C}{\partial \lambda} \left\langle \frac{\partial^2 \Psi}{\partial C^2} | \hat{H}_0 | \Psi \right\rangle + \left\langle \frac{\partial \Psi}{\partial C} | \hat{P}_1 | \Psi \right\rangle + \frac{\partial C}{\partial \lambda} \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 | \frac{\partial \Psi}{\partial C} \right\rangle = 0$$

### Wave function response

$$\frac{\partial}{\partial \lambda} \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 + \lambda P_1 + \lambda^2 P_2 | \Psi \right\rangle \Big|_{\lambda=0}$$

$$= \frac{\partial C}{\partial \lambda} \left\langle \frac{\partial^2 \Psi}{\partial C^2} | \hat{H}_0 | \Psi \right\rangle + \left\langle \frac{\partial \Psi}{\partial C} | \hat{P}_1 | \Psi \right\rangle + \frac{\partial C}{\partial \lambda} \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 | \frac{\partial \Psi}{\partial C} \right\rangle = 0$$

$$= \left[ \left\langle \frac{\partial^2 \Psi}{\partial C^2} | \hat{H}_0 | \Psi \right\rangle + \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 | \frac{\partial \Psi}{\partial C} \right\rangle \right] \left( \frac{\partial C}{\partial \lambda} \right) = - \left\langle \frac{\partial \Psi}{\partial C} | \hat{P}_1 | \Psi \right\rangle$$

Second derivatives of the energy with respect tot the wave function parameters

Change (response) of wave function to perturbation

Property gradient

### Wave function response

$$\left[ \left\langle \frac{\partial^2 \Psi}{\partial C^2} | \hat{H}_0 | \Psi \right\rangle + \left\langle \frac{\partial \Psi}{\partial C} | \hat{H}_0 | \frac{\partial \Psi}{\partial C} \right\rangle \right] \left( \frac{\partial C}{\partial \lambda} \right) = - \left\langle \frac{\partial \Psi}{\partial C} | \hat{P}_1 | \Psi \right\rangle$$

#### For a single Slater determinant wave function:

$$\left\langle \frac{\partial^2 \Phi}{\partial \chi_i^a \partial \chi_j^b} | \hat{H}_0 | \Psi \right\rangle \propto \left\langle \Phi_{ij}^{ab} | \hat{H}_0 | \Psi \right\rangle - \delta_{ij} \delta_{ab} E_0 \qquad \left\langle \frac{\partial \Phi}{\partial \chi_i^a} | \hat{P}_1 | \Phi \right\rangle \propto \left\langle \Phi_i^a | \hat{P}_1 | \Phi \right\rangle$$

$$\left\langle \frac{\partial \Phi}{\partial \chi_i^a} | \hat{H}_0 | \frac{\partial \Phi}{\partial \chi_j^b} \right\rangle \propto \left\langle \Phi_i^a | \hat{H}_0 | \Phi_j^b \right\rangle$$

- Both excitations and deexcitations are included
- Both real and imaginary variations are allowed