

■ 표집분포(sampling distribution)

- 통계량의 확률분포
 - 통계량 : 측정 가능한 확률표본의 함수
 - 관심 통계량
 - \cdot 표본평균 : \overline{X} (표본비율 포함)
 - · 표본분산: S^2 (표본표준편차)
 - \cdot 극한값: $X_{(n)}-X_{(1)}$ >범위($X_{(1)},X_{(n)}$)
 - 순위(rank): X_i 의 크기 순서
 - 이들 통계량의 통계적 성질?

● 확률분포가 다음과 같을 때

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 2/5 & 2/5 & 1/5 \\ \end{array}$$

$$\mu = E(X) = \frac{4}{5}$$

$$\sigma^2 = Var(X) = \frac{14}{25}$$

 \circ 두 개의 확률표본을 추출한 경우, 두 표본의 평균 \overline{x} 의 분포는?

$$P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2)$$

			X_2	
		0	1	2
	0	4/25	4/25	2/25
X_1	1	4/25	4/25	2/25
	2	2/25	2/25	1/25

\circ 표본평균 \overline{X} 의 분포는?

$$E(\overline{X}) = \frac{4}{5}$$
, $Var(\overline{X}) = \frac{14}{50} = \frac{1}{2} \times \frac{14}{25}$

• 평균 μ , 분산 σ^2 인 분포에서 n개의 확률표본을 추출했을 경우, 표본평균 \overline{X} 의 분포는?

o
$$E(\overline{X}) = ? \mu$$

o
$$Var(\overline{X}) = ? \sigma^2/n$$

o
$$SD(\overline{X}) = ? \sigma / \sqrt{n}$$

- · 표준오차(standard error, SE): 통계량의 표준편차
- 분포의 형태는?

• 정규분포인 경우

- $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$ 이고, X_1 과 X_2 가 독립이면 $\Rightarrow X_1 \pm X_2 \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2)$
- $X_1, ..., X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$
 - $X_1 + \cdots + X_n \sim N(n\mu, n\sigma^2)$
 - $\overline{X} = rac{X_1 + \cdots + X_n}{n} \sim N(\mu, \sigma^2/n)$ \Rightarrow \overline{X} 의 표준오차는 $rac{\sigma}{\sqrt{n}}$
 - . 표준화 : $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$

- 지수족(exponential family): 정규분포포함
 - \circ 이항분포: $X_1 + X_2 \sim B(2n, p)$
 - 포아송분포: X₁ + X₂ ~ Poi(2λ)
 - \circ 음이항분포: $X_1 + X_2 \sim G(2\alpha, \beta)$
 - \circ 감마분포: $X_1 + X_2 \sim G(2\alpha, \beta)$
 - · 지수분포, 카이제곱분포 포함
- 다른 분포는?
 - ㅇ 직접유도
 - ㅇ 근사분포 유도
 - Monte Carlo 모의실험을 통해 표집분포 추정

$$\bullet$$
 $X_i \sim Poi(1)$,

$$X = X_1 + \cdots + X_{15} \Rightarrow X \sim Poi(15)$$

o
$$P(X \leq x)$$

· Monte Carlo 모의실험: 10만 번 반복

x	3	5	10	15	20
정확확률	0.0002	0.0028	0.1185	0.5681	0.9170
모의실험결과	0.0002	0.0028	0.1172	0.5696	0.9170
허용오차	0.0001	0.0003	0.0020	0.0031	0.0017

· 확률이 0 근거나 1 근거의 경우 모의실험결과가 상당히 정확

- 정리
 - 표집분포: 통계량의 (모집단) 분포
 - ㅇ 정규확률표본의 표본평균의 분포는 정규분포
 - ㅇ 독립인 지수족 표본들 합의 분포는 해당 지수족의 분포