Digital Design and Computer Organization Laboratory UE19CS206

3rd Semester, Academic Year 2020-21

Date:

Name : Achyut Jagini	SRN: PES2UG19CS013	Section : A

Experiment Number: 5 Week # : 5

Title of the Program:

Integration of alu and reg_file to form reg_alu.

Aim of the Program:

To connect the two read outputs and the write input of the of the register file implemented in the previous lab assignment (WEEK 4) to the two inputs and one output of the ALU implemented in the previous assignment(WEEK3)

Code (reg_alu.v)

```
// Write code for modules you need here
module dfrl_16 (input wire clk, reset, load, input wire [0:15] in, output wire [0:15] out);

dfrl dfrl_0(clk, reset, load, in[0], out[0]);

dfrl dfrl_1(clk,reset,load,in[1],out[1]);

dfrl dfrl_2(clk,reset,load,in[2],out[2]);

dfrl dfrl_3(clk,reset,load,in[3],out[3]);

dfrl dfrl_4(clk,reset,load,in[4],out[4]);

dfrl dfrl_5(clk,reset,load,in[5],out[5]);

dfrl dfrl_6(clk,reset,load,in[6],out[6]);

dfrl dfrl_8(clk,reset,load,in[8],out[8]);

dfrl dfrl_9(clk,reset,load,in[9],out[9]);

dfrl dfrl_10(clk,reset,load,in[10],out[10]);

dfrl dfrl_11(clk,reset,load,in[11],out[11]);
```

```
dfrl dfrl_12(clk,reset,load,in[12],out[12]);
dfrl dfrl_13(clk,reset,load,in[13],out[13]);
dfrl dfrl_14(clk,reset,load,in[14],out[14]);
dfrl dfrl_15(clk,reset,load,in[15],out[15]);
endmodule
module mux8_16 (input wire [0:15] i0, i1, i2, i3, i4, i5, i6, i7, input wire [0:2] j,
output wire [0:15] o);
\max = \max_{0 \in [0], i1[0], i2[0], i3[0], i4[0], i5[0], i6[0], i7[0], j[0], j[1], j[2], o[0]);
mux8 mux8_1({i0[1], i1[1], i2[1], i3[1], i4[1], i5[1], i6[1], i7[1]}, j[0], j[1], j[2], o[1]);
mux8 mux8_2({i0[2], i1[2], i2[2], i3[2], i4[2], i5[2], i6[2], i7[2]}, j[0], j[1], j[2], o[2]);
mux8 mux8_3({i0[3], i1[3], i2[3], i3[3], i4[3], i5[3], i6[3], i7[3]}, j[0], j[1], j[2], o[3]);
\max = \max_{4}(\{i0[4], i1[4], i2[4], i3[4], i4[4], i5[4], i6[4], i7[4]\}, j[0], j[1], j[2], o[4]);
mux8 mux8_5({i0[5], i1[5], i2[5], i3[5], i4[5], i5[5], i6[5], i7[5]}, j[0], j[1], j[2], o[5]);
mux8 mux8_7({i0[7], i1[7], i2[7], i3[7], i4[7], i5[7], i6[7], i7[7]}, j[0], j[1], j[2], o[7]);
mux8 mux8_8({i0[8], i1[8], i2[8], i3[8], i4[8], i5[8], i6[8], i7[8]}, j[0], j[1], j[2], o[8]);
```

```
mux8 mux8_g({i0[8], i1[8], i2[8], i3[8], i4[8], i5[8], i6[8], i7[8]}, j[0], j[1], j[2], o[8]);

mux8 mux8_g({i0[9], i1[9], i2[9], i3[9], i4[9], i5[9], i6[9], i7[9]}, j[0], j[1], j[2], o[9]);

mux8 mux8_g({i0[10], i1[9], i2[9], i3[9], i4[10], i5[10], i6[10], i7[10], j[0], j[1], j[2], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[1], j[2], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[11], i4[11], i5[11], i6[11], i7[11]}, j[0], j[1], j[2], o[11]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10]), j[0], j[1], j[2], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i5[10], i6[10], i7[10], j[0], j[0], j[0], j[0], j[1], j[0], o[10]);

mux8 mux8_g({i0[10], i1[10], i2[10], i3[10], i4[10], i4[10], i5[10], i6[10], i6
```

```
dfrl_16 dfrl_16_2(clk, reset, load[2], d_in, dout_2);
        dfrl_16 dfrl_16_3(clk, reset, load[3], d_in, dout_3);
        dfrl_16 dfrl_16_4(clk, reset, load[4], d_in, dout_4);
        dfrl_16 dfrl_16_5(clk, reset, load[5], d_in, dout_5);
        dfrl_16 dfrl_16_6(clk, reset, load[6], d_in, dout_6);
        dfrl_16 dfrl_16_7(clk, reset, load[7], d_in, dout_7);
        demux8 demux8_0(wr, wr_addr[2], wr_addr[1], wr_addr[0], load);
       mux8_16 mux8_16_9(dout_0, dout_1, dout_2, dout_3, dout_4, dout_5, dout_6, dout_7, rd_addr_a, d_out_a);
105
      mux8_16 mux8_16_10(dout_0, dout_1, dout_2, dout_3, dout_4, dout_5, dout_6, dout_7, rd_addr_b, d_out_b);
      endmodule
      module mux2_16 (input wire [15:0] i0, i1, input wire j, output wire [15:0] o);
                 mux2_0 (i0[0], i1[0], j,o[0]);
114
                  mux2_1 (i0[1], i1[1], j, o[1]);
115
116
                 mux2_2 (i0[2], i1[2], j, o[2]);
117
                 mux2_3 (i0[3], i1[3], j, o[3]);
                 mux2_4 (i0[4], i1[4], j, o[4]);
119
                 mux2_5 (i0[5], i1[5], j, o[5]);
                 mux2_6 (i0[6], i1[6], j, o[6]);
                 mux2_7 (i0[7], i1[7], j, o[7]);
         mux2
```

```
mux2_7 (i0[7], i1[7], j, o[7]);
           mux2_8 (i0[8], i1[8], j, o[8]);
           mux2_9 (i0[9], i1[9], j, o[9]);
           mux2_10 (i0[10], i1[10], j, o[10]);
          mux2_11 (i0[11], i1[11], j, o[11]);
          mux2_12 (i0[12], i1[12], j, o[12]);
          mux2_13 (i0[13], i1[13], j, o[13]);
          mux2_14 (i0[14], i1[14], j, o[14]);
          mux2_15 (i0[15], i1[15], j, o[15]);
module reg_alu (input wire clk, reset, sel, wr, input wire [1:0] op, input wire [2:0] rd_addr_a, rd_addr_b, wr_addr, input
wire [15:0] d_in_alu, d_in_reg;
wire cout_0;
alu alu_0 (op,d_out_a,d_out_b,d_in_alu,cout_0);
reg_file reg_file_0 (clk,reset,wr,rd_addr_a,rd_addr_b,wr_addr,d_in_reg,d_out_a,d_out_b);
mux2_16 mux2_16_0 (d_in,d_in_alu,sel,d_in_reg);
dfr dfr_0 (clk,reset,cout_0,cout);
```

TABLE

<u>sel</u>	<u>wr</u>	<u>op</u>		<u>rd</u>	<u>rd</u>					wr_addr			<u>d_in</u>	d in ALU output		
				addr a		Add	<u>lr</u>									
						<u>_b</u>										
<u>28</u>	<u>27</u>	<u>26</u>	<u>25</u>	<u>24</u>	<u>23</u>	<u>22</u>	<u>21</u> <u>20</u> <u>19</u>		<u>18</u>	<u>17</u>	<u>16</u>	<u>15-0</u>				
0	1	xx		XXX		ххх			011			CDEF	CDEF in[15:0] of REG3:			

0	1	XX	ххх	ххх	111	3210	in[15:0] of REG7= 3210
0	1	XX	011	111	101	4567	in[15:0] of REG5= 4567
0	1	xx	001	101	001	BA98	in[15:0] of REG1= BA98
0	0	XX	001	101	001	хххх	out[0:15] of REG 1 =d_out_a=BA98 out[0:15] of REG 5 =d_out_b=4567
1	1	00	001 (BA98)	101 (4567)	010	хххх	d_in_reg= BA98+4567=FFFF
1	1	01	010	111	100	хххх	<pre>=d_in_reg =d_out_a - d_out_b =FFFF-3210=CDEF</pre>
1	0	01	100	100	XXX	XXXX	=d_in_reg =d_out_a - d_out_b =CDEF-CDEF=0000

Output waveform

SCREENSHOT1

CASE1:WRITE OPERATION

28	27	26	25	24	23	22	21	20	19	18	17	16	15-0		
0	1	хх		ххх			ххх			011			CDEF	in[15:0]	of REG3=
													CDEF		

CASE 2: WRITE OPERATION

<u>sel</u>	<u>wr</u>	<u>op</u>		rd_addr_a			rd_Addr_b			wr_addr			d_in ALU output		:put
<u>28</u>	<u>27</u>	<u>26</u>	<u>25</u>	<u>24</u>	<u>24</u> <u>23</u> <u>22</u>		<u>21</u>	<u>20</u>	<u>19</u>	<u>18</u>	<u>17</u>	<u>16</u>	<u>15-0</u>		
0	1	xx		ххх			ххх			111			3210	in[15:0] 3210	of REG7=

CASE 3: WRITE OPERATION

sel	wr	ор		rd_addr_a			rd_Addr_b			wr_addr			d_in ALU output		:put
28	27	26	25	24	24 23 22		21	20	19	18	17	16	15-0		
0	1	XX		011			111	111			101			in[15:0] of REG5= 4567	

CASE 4: WRITE OPERATION

sel	wr	ор		rd_addr_a		_a	rd_Addr_b			wr_addr			d_in	ALU out	put
28	27	26	25	24 23 22		21	20	19	18 17 1		16	15-0			
0	1	xx		001			101			001			BA98	in[15:0] 6 BA98	of REG1=

CASE 5: READ OPERATION

sel	wr	ор		rd_addr_a			rd_Addr_b			wr_addr			d_in	ALU out	put
28	27	26	25	24 23 22		21	20	19	18 17 16		16	15-0			
0	0	хх		001			101			001			хххх	out[0:15] of REG 1	
														=d_out_a	a=BA98
														out[0:15]	of REG 5
													=d_out_b	o=4567	

CASE 6: READ OPERATION

sel	wr	ор	ор		rd_addr_a			rd_Addr_b			wr_addr			ALU output	
28	27	26	25	24 23 22		21	21 20 19		18 17 16		15-0				
1	0	01		100			100			xxx			хххх	=d_in_reg =d_out_a =CDEF-CDI	