Data Science and Artificial Intelligence

Machine Learning

Bayesian learning

Lecture No. 3

Topics to be Covered

THAT DOES NOT LET YOU SLEER

> excitement to achieve goal

Bayes optimum Classifier

(Highe, Ha---) Hypothesis, Mhypothesis

forcing newpoint we find (M) P(hi/D). P(Cj/hi)

The class which has this value & max is choosen as the Result

For G class

Bayes optimum Classifier

> This also give best results.

> But this algo has a pnoblem }

Bayes optimum Classifier

>> So to find P(hld) we have Npoints to check the hypothesis

on whole tooining data

=> Which need it number of Computation

Then total Computation will be of onder of O(Nm)

	Class
XT	C
X ₂	C
1	
1	
1	
XN	C

Bayes optimum Classifier

Testing wont take much time

we have P(h/D) we only need to find (P(Cj/h?)

a subset of data}

Bayes optimum Classifier

⇒ (So testing 15 much easier)

Pw

Bayesian Decision Theory

Computational complexity of Bayes optimum Classifier

The Complexity is O(Nm)V No of hypothesis

Number of points

> (Brute force Bayes classifier)

Bayes Classifier

How we make the decision in finding the exact class of the point.

→ Simple Single map Rule Classifier The MAP rule for decision (we have seen this earlier)

· We are using whole data to gether

Sample data

Bayes Classifier

detus have 2 classes

(P(X): Ci)

any point

in + paining

data

Show this with help of an example...lets take 3 dimensions then explain it

Similarly for class 2 (16 parameters)

· Bayes optimum Cl. and Bayes Classifier are Similar Ensemble learning Single hypothesis So here we need

$$P(x_i^2/c_j)Pc_j$$

$$P(x_i^1, x_i^2, x_i^3, \dots, x_i^D/c_j)Pc_j^o$$

$$(10^D)xm$$

- > D number of dimension
- > Cachdimension is categorical with 10 values
- > we have M number of classes

We need Poj = M No of Parameter

> we need (aDxm+m) No of Porcameters

$$\begin{array}{c} \chi^{1} \Rightarrow (0,1) \\ \chi^{2} \Rightarrow (0,1) \\ C_{1} \Rightarrow Closs \\ C_{2} \Rightarrow \end{array}$$

$X_1 X_2$	Class
0 0	C_I
10	Cı
0	C_2
	CZ
Oi	Cı
10	C ₂
	C,
01	C2

P(DO/Ci) P(DO/Cz)
P(DI/Ci) P(DICz)
P(DI/Ci) P(DICz)
P(DI/Ci) P(DI/Cz)
P(DI/Ci) P(DI/Cz)

Bayes Classifier

· So in Bayes optimum classifier also Each hypothesis need these many Pavameters

Complexity in this classifer...

· So the Bayes optimum CI. and Brukforce
Bayes CI. need a large+naining data and
also the large No of Parameters.

 $P(A,B/C) \Rightarrow P(Alc) P(Blc)$ Independent

D. Amension

M:classes

Cach dimentake a valves

$$P(x_1^1, x_1^2 - x_1^p)C_j$$

$$(a^p x m) = Ratameter$$

for a single class
$$P(x_i^{1}/c_i)P(x_i^{2}/c_j) - P(x_i^{3}/c_j)$$
for a single class
$$P(x_i^{1}/c_j) \Rightarrow P(x_i^{1}=V_1/c_j) \Rightarrow$$

$$P(x_i^{1}=V_2/c_j) \Rightarrow$$

$$P(x_i^{1}=V_2/c_j) \Rightarrow$$

$$P(x_i^{1}=V_3/c_j) \Rightarrow$$

$$P(x_i^{1}$$

Naïve Bayes Algorithm

In naive Bayes

Max [Pcj P(xi²/cj)P(xi²/cj)]

Classification

Naïve Bayes Algorithm

The fundamental Naive Bayes assumption is that each feature makes an:

- ☐ Feature independence: The features of the data are conditionally independent of each other, given the class label.
- Features are equally important: All features are assumed to contribute equally to the prediction of the class label.

Naïve Bayes Algorithm

We can convert the MAP into...

· So in Naive Bayes we have to find all

Parameter

$$P(x^{1}/c_{i}) \Rightarrow P(x^{1}=V_{i}|c_{i})$$

$$P(x^{1}=V_{2}|c_{i})$$

$$P(x^{1}=V_{2}|c_{i})$$

Naïve Bayes Classifier

4dimension

Outlook 3	Temp.	Humidity	Wind	Play Tennis
(-)	(3)	(<u>2·</u>)	(2.)	
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes~
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	·Yes _
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

We have to calculate

Yes on No

P(Sunny | Yes) P(Sunny | No) P(overcast | Yes) P(overcast | No)

Naïve Bayes Classifier P(Rain Yes) P(Rain No

> Sunny Over Cast/Rain

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny S	Hot	High	Weak	No
Sunny S	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain V R	Mild	High	Weak	Yes
Rain R	Cool	Normal	Weak	Yes
Rain R	Cool	Normal	Strong	No
Overcast 🗸 🔾	Cool	Normal	Weak	Yes
Sunny S	Mild	High	Weak	No
Sunny V	Cool	Normal	Weak	Yes
Rain R	Mild	Normal	Strong	Yes
Sunny S	Mild	Normal	Strong	Yes
Overcast / O	Mild	High	Strong	Yes
Overcast 🗸 👌	Hot	Normal	Weak	Yes
Rain R	Mild	High	Strong	No

Outlook	P(O/Yes	P(O/No)
Sunny	P(3/Y)=2/9	P(S/No)=3/5
Overcas	P(Overcast/Y)=4/9	P(0/Nb)=0
Rain		P(R/No)=2/5

Naïve Bayes Classifier P(cold/Y) P(cold/No)

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot H	High	Weak	No
Sunny	Hot H	High	Strong	No
Overcast	Hot H	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	CoolcV	Normal	Weak	Yes
Rain	Cool C	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild M	High	Weak	No
Sunny	CoolCV	Normal	Weak	Yes
Rain	Mildn	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot H	Normal	Weak	Yes
Rain	Mild M	High	Strong	No

Temperat ure	P(T/Yes)	P(T/No)
Hot	P(H/Y)=2/9	P(H/N)=2/5
Mild	P(M/Y)=4/9	P(M/N)-2/5
Cold	P(C/Y)=3/9	P(CIN)= 1/5

P(High/Y) P(Normallyes) P(High/No) P(Normal/No)

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High H	Weak	No
Sunny	Hot	High H	Strong	No
Overcast	Hot	High VH	Weak	Yes
Rain	Mild	High VH	Weak	Yes
Rain	Cool	Normal V	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal V	Weak	Yes
Sunny	Mild	High H	Weak	No
Sunny	Cool	Normal 🗸	Weak	Yes
Rain	Mild	Normal /	Strong	Yes
Sunny	Mild	Normal /	Strong	Yes
Overcast	Mild	High VH	Strong	Yes
Overcast	Hot	Normal V	Weak	Yes
Rain	Mild	High H	Strong	No

Humidity	P(H/Yes)	P(H/No)
High	P(High Y)=3/9	P(High/No)=4/5
Normal	P(Normal 14)=	P(nonmal/N)=+

Naïve Bayes Classifier

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong <	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	(Weak)	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak V	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong /	Yes
Overcast	Hot	Normal	(Weak)	Yes
Rain	Mild	High	Strong <	No

Wind	P(W/Yes)	P(W/No)
Weak	P(weakly) = 49	
Strong	P(s+nongly)=3/9	P(s+nong/Nb)=3/5

Naïve Bayes Algorithm

Outlook	Temperatu re	Humidity	Wind
Sunny	Cool	High	Strong

NO

for each class
$$(PC_{j} \cdot P(x_{1}^{-1}/c_{j})P(x_{2}^{-1}/c_{j}) - 1)$$

Pyes $P(s/y)P(c/y)P(H/y)P(s/y) \Rightarrow \frac{g}{14} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \Rightarrow 5.29 \times 10^{-3}$
PNO $P(s/N_{b})P(c/N)P(s/N) \Rightarrow \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \Rightarrow \cdot 0205 \checkmark$

Naïve Bayes Algorithm

Complexity in naïve bayes classfier...

Naïve Bayes Algorithm

Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Kesult
·V	·NV	Ni	P/
/ /	N	(Y)	P
	YV	YV	P/
·NV	YV	(N)	P
·YV	YV	$\langle Y \rangle$	P

Studied	Sick
No	No
No	Yes
Yes	Yes
Yes	No
Yes	Yes
	No No Yes Yes

Result
Fail
Pass
Fail
Pass
Pass

Confident	Studied	Sick
P(Y/F)=1/2	(P(Y/F)=Y2	$P(Y F) \rightarrow Y_2$
P(N/F) = 1/2	P(N/F) = Y2	P(N/F) > Y2
P(YIP) = 2/3) P(YIP) = 2/	$P(Y P) \rightarrow \frac{2}{3}$
P(N/P)= Y3	P(NIP) = Y	3 P(N/P) > /3

A. Pass

B. Fail

Naïve Bayes Algorithm

Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No. tass

PpP(Y/p)P(Y/p)P(N/p)>
3/5 × 2/3 × 2/3 × 1/ 880· P_P(Y/F)P(Y/F)P(N/F)>
== Y-1 x - 1 x - 2 x - 2 x - 3

Confident	Studied	Sick	Kesult
·V	· NV	Ni	7/
	N	(Y)	P
	YV	YV	£1
·NV	YV	N	P
·YV	YV	Y	P

Confident Studied Sick

$$P(Y|F)=Y_2$$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_2$
 $P(Y|F)=Y_3$
 $P(Y|P)=Y_3$
 $P(Y|P)=Y_3$

Outlook	Temp.	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	P(O/Yes	P(O/No)	(I
Sunny			
Overcas			
Temperature	t P(T/Yes) P(T/N	0)
Hot			
Mild			
Humidity	P(H/Yes) P(H/N	0)
High			
Normal			
Wind	P(W/Yes	s) P(W/N	lo)
Weak			
Strong			

Naïve Bayes Algorithm

Additive smoothing technique

Solving the zeroprobability problem...

Naïve Bayes Algorithm

What if the dimension are continuous in nature

			ne numeric	weather	data with su	mmar	y statis	tics			
out	look .		temperatu	ire	humidity			windy		play	
	yes	no	yes	no	yes	no		yes	no	yes	no
sunny	2	3	83	85	86	85	false	6	2	9	5
overcast	4	0	70	80	96	90	true	3	3		
rainy	3	2	68	65	80	70					
			64	72	65	95					
			69	71	70	91					
			75		80						
		75		70							
		72		90							
			81		75						

The numeric weather data with summary statistics												
out	look		temperatu	ire	humidity		. 1	windy			play	
	yes	no	yes	no	yes	no		yes	no	yes	no	
sunny	2	3	83	85	86	85	false	6	2	9	5	
overcast	4	0	70	80	96	90	true	3	3			
rainy	3	2	68	65	80	70						
			64	72	65	95						
			69	71	70	91						
			75		80							
			75		70							
			72		90							
			81		75							

Q: Consider a classification problem with 10 classes $y \in \{1,2,...,10\}$, and two binary features $x1,x2 \in \{0,1\}$. Suppose:

Which class will naïve Bayes classifier produce on a test item with (x1=0,x2=1)?

- A. 1
- B. 3
- C. 5
- D. 8
- E. 10

Multinomial Naïve Bayes Algorithm

THANK - YOU