Série d'exercices

Exercice 1

- Répondre par vrai ou faux
 - ☐ Les lignes du champ s'orientent du pôle sud au pôle nord de l'aimant.
 - ☐ Le nord magnétique terrestre est confondu avec le nord géographique terrestre.
 - ☐ En absence de toute source magnétique, l'aiguille aimanté s'oriente selon le nord magnétique terrestre.
 - ☐ Les pôles d'un aimant peuvent être séparés en le divisant en deux parties égales.

Exercice 2

On mesure l'intensité du champ magnétique en un point A situé à proximité d'un aimant droit en trouve

la valeur : B = 50mT

- 1 Déterminer les caractéristiques du vecteur champ magnétique au point A.
- 2 Représenter le vecteur du champ magnétique au point A.

Exercice 3

On dispose de deux barreaux aimantés (1) et (2).

L'intensité du champ magnétique créé en un point M par l'aimant (1) est $B_1 = 20$ mT et celle

créé par l'aimant (2) est $B_2 = 25$ mT

1 En utilisant l'échelle $1cm \to 10mT$, représenter les vecteurs du champ magnétique $\overrightarrow{B}_1(M)$, $\overrightarrow{B}_2(M)$ et le vecteur du champ magnétique résultant $\overrightarrow{B}(M)$

- ${\bf 2}$ Déduire l'intensité du champ magnétique en ${\bf M}$.
- $oldsymbol{3}$ Dessiner une aiguille aimantée au point M.
- **1** En se basant sur une méthode analytique retrouver l'intensité du champ magnétique au point *M*.

Exercice 4

On place une aiguille aimantée en un point M de la surface de la Terre caractérisé par un angle d'inclinaison magnétique $D = 13^{\circ}$

- $oldsymbol{0}$ Calculer l'intensité du champ magnétique terrestre au point $oldsymbol{M}$.
- $oldsymbol{2}$ Calculer la valeur de la composante verticale du champ magnétique terrestre au point M.

On donne: $B_H = 5 \times 10^{-5} T$

Série d'exercices

Exercice 5

On place une aiguille aimantée en un point O situé entre les pôles (A) et (B) d'un aimant en U (voir la figure ci-contre)

1 Identifier en justifiant la réponse les deux pôles (A) et (B) de cet aimant.

3 Quelle propriété possède le vecteur champ magnétique dans l'espace entre les pôles de l'aimant ? Comment appelle-t-on un tel champ magnétique ?

Exercice 6

On dispose de deux barreaux aimantés (1) et (2) identiques et situés à la même distance d'un point M. L'intensité commune des deux aimant au point M est $B_1(M) = B_2(M) = 0$, 2T Répondre aux questions suivantes pour chacun des cas suivants.

- **1** Représenter le vecteur du champ magnétique $\overrightarrow{B}(M)$ au point M.
- \odot Déduire l'intensité du champ magnétique en M.
- 🔞 Dessiner une aiguille aimantée au point *M* .

