Electromagnetics II final exam

姓名	•
學號	

date: 2010/01/11

注意事項:1. 題目卷(本頁)與答案卷(第一頁),請皆確實填寫考生姓名與學號;

- 2. 考試完畢,請將題目卷、答案卷一併繳回,未繳回者,則不予計分;
- 3. 題目一共六題,每題 20 分,採計得分最高之五題。
- 1. (20%) Figure 1(a) shows an infinitesimal segment of transmission line with inductance $L\triangle z$ henry, capacitance $C\triangle z$ farad, and negative conductance $-G\triangle z$ siemens.
 - (1) (3%) Apply Kirchhoff's current law (KCL) and voltage law (KVL) to derive two differential equations between V(z) and I(z).
 - (2) (2%) Derive a differential equation for V(z) by substituting one of the two differential equations into the other.
 - (3) (2%) Find the propagation constant $\gamma = \alpha + j\beta$ of the traveling-wave solutions of V(z).
 - (4) (2%) Express the general solution of V(z) in terms of the two traveling-wave solutions.
 - (5) (2%) Express the general solution of I(z) in terms of the same traveling-wave solutions as in V(z).
 - (6) (2%) Derive the formula of characteristic impedance Z_0 .
 - (7) (2%) If $G \ll \omega C$, find the approximate formulas of α and β in terms of ω , L, C and G.
 - (8) (3%) If a load Z_L is connected to the transmission line as shown in Figure 1(b), find the voltage reflection coefficient Γ_L at z = 0 in terms of Z_L and Z_0 .
 - (9) (2%) Define the impedance as Z(z) = V(z)/I(z). Express Z(z) in terms of Γ_L , Z_0 and γ .

2. (20%) Consider a plane wave propagating along the z direction in a homogeneous medium, its propagation constant is $\gamma = \alpha + j\beta$. The polarization of the magnetic field is \hat{y} , and the amplitude of the magnetic field at z = 0 is H_0 .

The Ampere's law: $\nabla \times \overline{H} = j\omega\varepsilon\overline{E} + \overline{J}$ The Faraday's law: $\nabla \times \overline{E} = -j\omega\mu\overline{H}$

- (1) (2%) Write down the functional form of the magnetic field.
- (2) (3%) If the medium has permittivity ε_0 , permeability μ_0 and conductivity of σ , apply the Ampere's law to find the functional form of the electric field.
- (3) (3%) Apply the Faraday's law to the electric field in (2) to derive the magnetic field, then compare this magnetic field with that in (1) to find the functional form of α and β in terms of ω , μ_0 , ε_0 and σ , assuming $\sigma >> \omega \varepsilon_0$.
- (4) (2%) Based on α derived in (3) to find the propagation distance over which the field magnitude decays by 1/e.
- (5) (3%) If the medium has permittivity $-\varepsilon_0$ and permeability $-\mu_0$, apply the Ampere's law to the magnetic field in (1) to find the functional form of the electric field.
- (6) (2%) Apply the Faraday's law to the electric field in (5) to derive the magnetic field, then compare this magnetic field with that in (1) to find the functional form of α and β in terms of ω , μ_0 , ε_0 .
- (7) (2%) Calculate the Poynting vector $\overline{P} = \overline{E} \times \overline{H}^*$ of the plane wave using the magnetic field in (1) and the electric field in (5).
- (8) (3%) Is the propagation direction of the plane wave the same as that of the Poynting vector? Briefly explain why.
- 3. (20%) Figure 3 shows a parallel-plate waveguide (PPWG) made of perfect electric conductor (PEC). Assume the medium between the two plates has permittivity ε_0 and permeability μ_0 , and the fields are independent of y. Consider a TE wave guided along the z direction with phase constant β_z , and the amplitude of the electric field is E_0 .

Figure 3

- (1) (3%) Write down the expression of the electric field.
- (2) (3%) Impose the boundary condition that the tangential electric field should vanish on PEC surface to determine all possible modes, and label them as TE_n modes.

- (3) (3%) Derive the magnetic field of the TE_n mode using the Faraday's law.
- (4) (3%) Derive the formulas of cutoff wavenumber k_c , cutoff frequency ω_c , cutoff wavelength λ_c , phase constant β_z , and guided wavelength λ_g for the TE_n mode.
- (5) (4%) If the plates are made of good conductor with finite σ , calculate the ohmic power loss of the TE_n mode over a segment of length Δz in the z direction and one meter in the y direction. Assume the magnetic and the electric fields between the two plates are approximately the same as those with PEC plates.
- (6) (4%) Estimate the attenuation constant of the TE_n mode.
- 4. (20%) Design a symmetric dielectric slab waveguide, with $\varepsilon_{r1} = 2.25$ and $\varepsilon_{r2} = 2.13$, by finding the value of d/λ_0 such that the TE₁ mode operates at 20% above its cutoff frequency.
- 5. (20%) A dielectric slab of thickness 4 cm and permittivity $2.25\varepsilon_0$ exists in an air-dielectric rectangular waveguide of dimensions a=3 cm and b=1.5 cm, as shown in Figure 5. Find the lowest frequency for which the dielectric slab is transparent (i.e., allows complete transmission) for $TE_{1,0}$ mode propagation in the waveguide.

Figure 5

6. (20%) Compute the (peak) Power Gain of an antenna which has a power efficiency of 95% and the following radiation $\underline{\textbf{E-field}}$ pattern (independent of Φ):

$$E(\theta) = \begin{cases} 1, & 0^{\circ} \le \theta \le 30^{\circ} \\ 0.5, & 60^{\circ} \le \theta \le 120^{\circ} \\ 0.707, & 150^{\circ} \le \theta \le 180^{\circ} \\ 0, & 30^{\circ} < \theta < 60^{\circ} \text{ and } 120^{\circ} < \theta < 150^{\circ} \end{cases}$$

Useful formulas: One could refer to the useful formulas as shown in the followings.

$$v_{pz} = \frac{\omega}{\beta_z}; \frac{1}{v_g} = \frac{d\beta_z}{d\omega}; v_g = \frac{\omega_B - \omega_A}{\beta_{zB} - \beta_{zA}}$$

$$\tan\left(\frac{\pi d\sqrt{\varepsilon_{r1}}}{\lambda_{0}}\cos\theta_{i} - \frac{m\pi}{2}\right) = \frac{\sqrt{\sin^{2}\theta_{i} - (\varepsilon_{2}/\varepsilon_{1})}}{\cos\theta_{i}}, m = 0, 1, 2, \dots$$

$$\begin{cases} \beta_{x1}^{2} + \beta_{z}^{2} = \omega^{2}\mu_{0}\varepsilon_{1} \\ -\alpha_{x2}^{2} + \beta_{z}^{2} = \omega^{2}\mu_{0}\varepsilon_{2} \end{cases}, \quad \Rightarrow \frac{\alpha_{x2}}{\beta_{x1}} = \sqrt{\frac{\omega^{2}\mu_{0}(\varepsilon_{1} - \varepsilon_{2})}{\beta_{x1}^{2}} - 1}$$

$$\tan\left(\beta_{x1}\frac{d}{2}\right) = \sqrt{\frac{\omega^{2}\mu_{0}(\varepsilon_{1} - \varepsilon_{2})}{\beta_{x1}^{2}} - 1}, \quad \tan\left(\beta_{x1}\frac{d}{2}\cos\theta_{i}\right) = \sqrt{\frac{\omega^{2}\mu_{0}(\varepsilon_{1} - \varepsilon_{2})}{\omega^{2}\mu_{0}\varepsilon_{1}\cos^{2}\theta_{i}} - 1}$$

$$\tan\left(\frac{\pi d\sqrt{\varepsilon_{r1}}}{\lambda_{0}}\cos\theta_{i}\right) = \frac{\sqrt{\sin^{2}\theta_{i} - (\varepsilon_{2}/\varepsilon_{1})}}{\cos\theta_{i}}, \quad \tan\left[f(\theta_{i})\right] = \begin{cases} g(\theta_{i}), & m = 0, 2, 4, \dots \\ \frac{-1}{g(\theta_{i})}, & m = 1, 3, 5, \dots \end{cases}$$

$$f_{c} = \frac{mc}{2d\sqrt{\varepsilon_{r1} - \varepsilon_{r2}}}, m = 0, 1, 2, \dots; \quad f_{c} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$

$$\lambda_{g} = \frac{\lambda}{\sqrt{1 - (f_{c}/f)^{2}}}, \quad \nu_{pz} = \frac{1}{\sqrt{\mu\varepsilon} \cdot \sqrt{1 - (f_{c}/f)^{2}}}$$

Table 1: Field expresssions and associated parameters for TE and TM modes in a rectangular waveguide

Transverse magnetic (TM) waves Transverse electric (TE) waves Field expressions: Field expressions: (m, n = 1, 2, 3,...) $(m, n = 0, 1, 2, \dots, but not both zero)$ $\overline{E}_z = 0$ $\overline{E}_z = \overline{A} \sin \frac{m\pi x}{2} \sin \frac{n\pi y}{2} e^{\mp j\beta_z z}$ $\overline{H}_{Z} = \overline{A}\cos\frac{m\pi x}{\alpha}\cos\frac{n\pi y}{L}e^{\mp j\beta_{z}z}$ $\overline{E}_{x} = j \frac{\lambda_{c}^{2}}{4\pi^{2}} \omega \mu \frac{n\pi}{h} \overline{A} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{h} e^{\mp j\beta_{z}z} \qquad \overline{E}_{x} = \mp j \frac{\lambda_{c}^{2}}{2\pi \lambda} \frac{m\pi}{a} \overline{A} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{h} e^{\mp j\beta_{z}z}$ $\overline{E}_{y} = -j \frac{\lambda_{c}^{2}}{4\pi^{2}} \omega \mu \frac{m\pi}{a} \overline{A} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{\mp j\beta_{z}z} \qquad \overline{E}_{y} = \mp j \frac{\lambda_{c}^{2}}{2\pi \lambda} \frac{n\pi}{b} \overline{A} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{\mp j\beta_{z}z}$ $\overline{H}_x = \mp \frac{E_y}{n}, \quad \overline{H}_y = \pm \frac{E_x}{n}$ $\overline{H}_x = \mp \frac{E_y}{n}, \quad \overline{H}_y = \pm \frac{\overline{E}_x}{n}$ $\eta_g = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - (\chi/f)^2}} = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - (\chi/\lambda_c)^2}}$ $\eta_g = \sqrt{\frac{\mu}{c}} \sqrt{1 - \left(\frac{f_c}{f}\right)^2} = \sqrt{\frac{\mu}{c}} \sqrt{1 - \left(\frac{\lambda}{\lambda}\right)^2}$ $f_c = \frac{1}{2\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}, \quad \lambda_c = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}, \quad \lambda_g = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$ $v_{pz} = \frac{1}{\sqrt{\mu \epsilon_{x}} \sqrt{1 - (f/f)^{2}}} = \frac{1}{\sqrt{\mu \epsilon_{x}} \sqrt{1 - (\lambda/\lambda_{c})^{2}}},$