Lecture 6 Photosynthesis (光合作用)

98061@tongji.edu.cn

13816619408

• 办公室: 医学楼辅楼405

- Introduction
- Chloroplasts
- Photosynthesis
 - Photophosphorylation(光合磷酸化)
 - Carbon dioxide fixation (CO₂固定)
- Photorespiration (光呼吸)
- summary

1.Introduction to Photosynthesis

Turning sunlight into reduced carbon

FIGURE 19–39 Electromagnetic radiation. The spectrum of electromagnetic radiation, and the energy of photons in the visible range of the spectrum. One einstein is 6×10^{23} photons.

 $1 \, \text{mol ATP} \approx 30 \, \text{kJ}$

 An anabolic, endergonic, CO₂ requiring process that uses light energy and H₂O to produce organic macromolecules (glucose)

Start point

■ 1931 C.B. Van Niel: equation for photosynthesis

$$CO_2 + 2H_2 \longrightarrow (CH_2 O) + 2A + H_2 O$$

History of Photosynthesis

- Does the increase in mass of a plant come from the air? The soil? The Water?
- Early research focused on the overall process
- Later researchers investigated the detailed chemical pathways

Van Helmont's Experiment 1643

- Plant: 2.27kg→ 75 kg in 5 years
- Soil: $90 \text{kg} \rightarrow 90 \text{ kg}$
- Concluded mass came from water

Priestley's Experiment 1771

- Burned candle in bell jar until it went out.
- Placed sprig of mint in bell jar for a few days.
- Candle could be relit and burn.
- Concluded plants released substance (O₂)
 necessary for burning.

Ingenhousz's Experiment 1779

Light was necessary for plant to produce the "burning gas"

Julius Robert Mayer 1845

 Proposed that plant can convert light energy into chemical energy

Samuel Rubin & Martin Kamen 1941

 Used isotopes to determine that the oxygen comes from water in photosynthesis

Melvin Calvin 1948

- First to trace the path that $CO_2 \rightarrow glucose$
- Calvin Cycle or light independent reaction or dark reaction

Rudolph Marcus (1992 Nobel)

- First to describe the electron transport chain
- Marcus theory of electron transfer reactions in 1956

2. Where does photosynthesis take place?

Chloroplast (叶绿体)

Thylakoid (类囊体)

Chloroplast Pigments

- Chlorophyll a
- Chlorophyll b
- Carotenoids (类胡萝卜素)

• Xanthophyll (叶黄素)

FIGURE 22.6 • Absorption spectra of chlorophylls *a* and *b*.

3. Photosynthesis

•The light reactions ---- thylakoid (类囊体) membranes electrons from H_2O through a series of membrane-bound carriers, producing NADPH and ATP. (light dependent reaction)

The carbon-assimilation reactions ---- Chl stroma (基质)
 reduce CO₂ with NADPH and ATP. (dark reaction, light independent reaction)

3.1 Light reactions

Photosystem I

- >200 chlorophyll a, little chlorop
- Carotenoid (类胡萝卜素) with protein
- A pair of special chlorophyll a cal
- Primary electron acceptor called A₀

Photosystem II

- Chlorophyll a, small amount of chlorophyll b
- ß-carotene with protein
- * A pair of special chlorophyll a called P680
- Primary electron acceptor called pheophytin (褐藻素)

The Stucture of PS II

FIGURE 22.19 • The molecular architecture of PSII. The core of the PSII complex consists of the two polypeptides (D1 and D2) that bind P680, pheophytin (Pheo), and the quinones, Q_A and Q_B . Additional components of this complex include cytochrome b_{559} , two additional intrinsic proteins (47 and 43 kD) that serve an accessory light-harvesting function, and an extrinsic protein complex that is essential to O_2 evolution.

Oxygen-evolving complex (放氧复合体)

The Stucture of PS I

Plant "z-scheme" photosystems I and II

Photophosphorylation

light

- **★** ADP + Pi ---→ ATP
- ★ Non-cyclic & cyclic photophosphorylation
- ★ The mechanism is similar to that of oxidative phosphorylation

How the Light Reactions Generate ATP and NADPH?

Noncyclic Photophosphorylation (非环式光合磷酸化)

- Photoexcitation of PS I and PS II leads Q → QH₂
- H₂O splitting by PS II
- oxidation of QH₂ by the cytb6f leads to H+ across the membrane

Cyclic Photophosphorylation(环式光合磷酸化)

ADP + Pi

(Adapted from Deisenhofer, J., and Michel, H., 1989. The photosynthetic reaction center from the purple bac-

terium Rhodopseudomonas viridis. Science 245:1463.)

3.2 Carbon dioxide fixation

■ In C3 plants, all processes occur in the mesophyll cells.

 $NADPH + H^{+}$

(6)

(6)

(6)

■ Ribulose-1,5-Bisphosphate

(RuBP) is the CO₂ acceptor

(1) carboxylation phase (羧化阶段)

Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco)

1,5-二磷酸-核酮糖

2- 羧基 -3- 酮基阿拉糖醇 -1,5- 二磷酸

(是一种暂时的与酶结合不稳定的中间产物)

3,磷酸甘油酸

Ribulose-1,5-Bisphosphate Carboxylase (8L+8S subunits)

(2) reduction phase (还原阶段)

$PGA+ATP+NADPH+H^+\rightarrow GAP+ADP+NADP^++Pi$

3-磷酸甘油酸

甘油醛-3-磷酸

(3) regeneration phase (再生阶段)

GAP (甘油醛-3-磷酸) → RuBP (核酮糖-1,-5-二磷酸)

The Calvin Cycle Series of Reactions

Reactions 1 through 15 constitute the cycle that leads to the formation of one equivalent of glucose. The enzyme catalyzing each step, a concise reaction, and the overall carbon balance is given. Numbers in parentheses show the numbers of carbon atoms in the substrate and product molecules. Prefix numbers indicate in a stoichiometric fashion how many times each step is carried out in order to provide a balanced net reaction.

- Provide to Provide the Control of		
1. Ribulose bisphosphate carboxylase: $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + 6 \text{ RuBP} \longrightarrow 12 \text{ 3-PG}$	$6(1) + 6(5) \longrightarrow 12(3)$	
2. 3-Phosphoglycerate kinase: 12 3-PG + 12 ATP → 12 1,3-BPG + 12 ADP	$12(3) \longrightarrow 12(3)$	
3. NADP ⁺ -glyceraldehyde-3-P dehydrogenase:		
12 1,3-BPG + 12 NADPH \longrightarrow 12 NADP ⁺ + 12 G3P + 12 P _i	$12(3) \longrightarrow 12(3)$	
4. Triose-P isomerase: 5 G3P → 5 DHAP	$5(3) \longrightarrow 5(3)$	
5. Aldolase: $3 \text{ G3P} + 3 \text{ DHAP} \longrightarrow 3 \text{ FBP}$	$3(3) + 3(3) \longrightarrow 3(6)$	
6. Fructose bisphosphatase: 3 FBP + 3 $H_2O \longrightarrow 3$ F6P + 3 P_1	$3(6) \longrightarrow 3(6)$	
7. Phosphoglucoisomerase: 1 F6P \longrightarrow 1 G6P	$1(6) \longrightarrow 1(6)$	
8. Glucose phosphatase: 1 G6P + 1 $H_2O \longrightarrow 1$ GLUCOSE + 1 P_i	$1(6) \longrightarrow 1(6)$	
The remainder of the pathway involves regenerating six RuBP acceptors (= 30 C)		
from the leftover two F6P (12 C), four G3P (12 C), and two DHAP (6 C).		
9. Transketolase: $2 \text{ F6P} + 2 \text{ G3P} \longrightarrow 2 \text{ Xu5P} + 2 \text{ E4P}$	$2(6) + 2(3) \longrightarrow 2(5) + 2(4)$)
10. Aldolase: 2 E4P + 2 DHAP \longrightarrow 2 sedoheptulose-1,7-bisphosphate (SBP)	$2(4) + 2(3) \longrightarrow 2(7)$	
11. Sedoheptulose bisphosphatase: 2 SBP + 2 $H_2O \longrightarrow$ 2 S7P + 2 P_i	$2(7) \longrightarrow 2(7)$	
12. Transketolase: $2 \text{ S7P} + 2 \text{ G3P} \longrightarrow 2 \text{ Xu5P} + 2 \text{ R5P}$	$2(7) + 2(3) \longrightarrow 4(5)$	
13. Phosphopentose epimerase: 4 Xu5P → 4 Ru5P	$4(5) \longrightarrow 4(5)$	
14. Phosphopentose isomerase: 2 R5P → 2 Ru5P	$2(5) \longrightarrow 2(5)$	
15. Phosphoribulose kinase: 6 Ru5P + 6 ATP → 6 RuBP + 6 ADP	$6(5) \longrightarrow 6(5)$	

Net: $6 \text{ CO}_2 + 18 \text{ ATP} + 12 \text{ NADPH} + 12 \text{ H}^+ + 12 \text{ H}_2\text{O} \longrightarrow$ glucose + $18 \text{ ADP} + 18 \text{ P}_i + 12 \text{ NADP}^+$ $6(1) \longrightarrow 1(6)$

Stoichiometry of CO₂ assimilation in the Calvin cycle

fates of glyceraldehyde 3-phosphate (3-P-甘油醛)

- The most is recycled to ribulose 1,5-bisphosphate
- "extra" glyceraldehyde 3-phosphate

- As a source of energy
- Be converted to sucrose (蔗糖) for transport
- Be stored in the chloroplast as starch

4. Photorespiration (光呼吸)

- mitochondrial respiration, substrates \rightarrow CO₂ + H₂O.
- photorespiration (in plants)
 - consumes O₂ and produces CO₂
 - is driven by light.

-- Reason: Rubisco catalyzes the reaction between ribulose-1,5-bisphosphate with O₂ instead of CO₂

Photorespiration

- Occurs under
 - Intense Light
 - high O₂ concentrations
 - High heat
- Reduces photosynthetic efficiency by 25%
- protect against reactive O₂

ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco)

- ➤ Rubisco add O₂ to RuBP → loss of RuBP (CO₂ acceptor during CO₂ fixation)
- > salvaging the carbons from 2-phosphoglycolate (2-磷酸乙醇酸)

The oxygenase reation of rubisco-乙醇酸途径

C4 Photosynthesis

* Both convert CO₂ into a 4 carbon intermediate

- > Plants have developed ways to limit the photorespiration
 - C4 Pathway*
 - CAM Pathway*

Carbon assimilation(碳同化) in C4 plants

■ many plants in the tropics, such as maize_{玉米}, sugarcane_{世産},

and sorghum 高粱

■ C4 Plants, CO₂ Fixation and Rubisco Activity Are Spatially

Separated

PEP carboxylase(磷酸烯醇式丙酮酸羧化酶, PEPC)以及与C₄二羧酸生成有关的酶

mesophyll cell (叶肉细胞)

Rubisco等参与C3途径的酶、乙醇酸氧化酶 以及脱羧酶

BSC (维管束鞘细胞)

How does the C4 Pathway limit photorespiration?

- Bundle sheath cells are far from the surface less O₂
- PEP Carboxylase doesn't have an affinity for O_2 →allows plant to collect a lot of CO_2 and concentrate it in the bundle sheath cells (Rubisco)

Crassulaceanacid metabolism (CAM) Pathway

summary

- Photosynthesis in chloroplasts
 - Photophosphorylation(光合磷酸化)
 - Carbon dioxide fixation (CO₂固定)
- Photorespiration (光呼吸)
 - **C4**
 - CAM

思考题

- 什么是光合磷酸化?有哪两种形式?
- 什么是卡尔文循环?每固定1分子葡萄糖需要几分子的ATP和 NADPH?
- 热带植物和沙漠植物为了适应环境而特有的CO,固定方式是什么?
- 什么是光呼吸?
- Where does photosynthesis take place?
- Why would CAM plants close their stomates during the day?