Lecture 5 Array Memory Storage

Memory Storage – One Dimensional Array

int student[4];

float marks[3];

Memory Storage – Two Dimensional Array

int marks[3][5];

Can be visualized in the form of a matrix as

	Col 0	Col 1	Col 2	Col 3	Col 4
Row 0	marks[0][0]	marks[0][1]	marks[0][2]	marks[0][3]	marks[0][4]
Row 1	marks[1][0]	marks[1][1]	marks[1][2]	marks[1][3]	marks[1][4]
Row 2	marks[2][0]	marks[2][1]	marks[2][2]	marks[2][3]	marks[2][4]

Contd...

Row-major order

Column-major order

Array Address Computation

1D array – address calculation

- Let A be a one dimensional array.
- Formula to compute the address of the Ith element of an array (A[I]) is:

where,

- **B** = Base address/address of first element, i.e. A[LB]. [2]
- **W** = Number of bytes used to store a single array element.
- I = Subscript of element whose address is to be found.
- **LB** = Lower limit / Lower Bound of subscript, if not specified assume 0 (zero).

1D array – address calculation

- Let A be a one dimensional array.
- Formula to compute the address of the Ith element of an array (A[I]) is:

Address of
$$A[I] = B + W * (I - LB)$$

Given:

$$B = 100, W = 4, and LB = 0$$

$$A[0] = 100 + 4 * (0 - 0) = 100$$

1D array – address calculation

- Let A be a one dimensional array.
- Formula to compute the address of the Ith element of an array (A[I]) is:

Address of
$$A[I] = B + W * (I - LB)$$

Given:

B = 100, W = 4, and LB = 0
$$A[1] = 100 + 4 * (1 - 0) = 104$$

$$A[2] = 100 + 4 * (2 - 0) = 108$$

$$A[3] = 100 + 4 * (3 - 0) = 112$$

$$A[4] = 100 + 4 * (4 - 0) = 116$$

$$A[5] = 100 + 4 * (5 - 0) = 120$$

Example – 1

- Similarly, for a character array where a single character uses 1 byte of storage.
- If the base address is 1200 then,

Address of
$$A[I] = B + W * (I - LB)$$

Address of
$$A[0] = 1200 + 1 * (0 - 0) = 1200$$

Address of
$$A[1] = 1200 + 1 * (1 - 0) = 1201$$

• • •

Address of
$$A[10] = 1200 + 1 * (10 - 0) = 1210$$

Example – 2

- If LB = 5, Loc(A[LB]) = 1200, and W = 4.
- Find Loc(A[8]).

Address of
$$A[I] = B + W * (I - LB)$$

Loc(A[8]) = Loc(A[5]) + 4 * (8 - 5)
=
$$1200 + 4 * 3$$

= $1200 + 12$
= 1212

2D Array – Address Calculation

- If A be a two dimensional array with M rows and N columns. We can compute the address of an element at Ith row and Jth column of an array (A[I][J]).
 - **B** = Base address/address of first element, i.e. A[LBR][LBC]
 - I = Row subscript of element whose address is to be found
 - J = Column subscript of element whose address is to be found
 - **W** = Number of bytes used to store a single array element
 - **LBR** = Lower limit of row/start row index of matrix, if not given assume 0
 - **LBC** = Lower limit of column/start column index of matrix, if not given assume 0
 - **N** = Number of column of the given matrix
 - **M** = Number of row of the given matrix

Row-major

$$M = 3$$

 $N = 4$

Address of A[2][1] =
$$B + W * (4 * (2 - 0) + (1 - 0))$$

Address of A[I][J] = B + W * (N * (I – LBR) + (J – LBC))

$$M = 3$$

 $N = 4$

Column-major

Address of A [2][1] =
$$B + W * ((2 - 0) + 3 * (1 - 0))$$

Contd...

- Row Major
 Address of A[I][J] = B + W * (N * (I LBR) + (J LBC))
- Column Major
 Address of A [I][J] = B + W * ((I LBR) + M * (J LBC))

Note: A[LBR...UBR, LBC...UBC]
 M = (UBR - LBR) + 1
 N = (UBC - LBC) + 1

Example – 3

 Suppose elements of array A[5][5] occupies 4 bytes, and the address of the first element is 49. Find the address of the element A[4][3] when the storage is row major.

Address of
$$A[I][J] = B + W * (N * (I - LBR) + (J - LBC))$$

• Given: **B** = 49, **W** = 4, **M** = 5, **N** = 5, **I** = 4, **J** = 3, **LBR** = 0, **LBC** = 0.

Address of A[4][3] =
$$49 + 4 * (5 * (4 - 0) + (3 - 0))$$

= $49 + 4 * (23)$
= $49 + 92$
= 141

Thank You