파이썬 수치해석

Chapter 2. 비선형 방정식의 근 찾기

박형묵

명신여자고등학교

강의 자료 다운로드

파이썬 수치해석 강의 자료

https://github.com/PigeonDove/PythonNumericalAnalysis

개박환경

myCompiler □ Python

파이썬 코딩 웹 사이트

https://www.mycompiler.io/ko/new/python

이분법

기본 개념 학습

방정식 f(x) = 0의 근을 찾는 수치적인 방법

f(mid) = 0 PPP,f(low) < f(mid) < f(high) PPP,

f(low) < 0, f(high) > 0 \P .

딱라서 f(low)f(mid) < 0

⇒ 두 지점의 값에서 음수에서 양수로 바뀌거나, 양수에서 음수로 바뀐다는 건, 중간에 0이 있다는 뜻

이분법

 $\sqrt{2}$ 값 계산해보기

구하고자 하는건 $\sqrt{2}$ 의 값이므로

$$x^2 = 2 \rightarrow f(x) = x^2 - 2$$

$$x^2 - 2 = 0$$
의 해는

$$f(1) = -1, f(2) = 2$$
 사이에 있으므로 시작구간을 [1,2]로 설정

Step	low	high	mid	f(mid)
1	1.0	2.0	1.5	0.25
2	1.0	1.5	1.25	-0.4375
3	1.25	1.5	1.375	-0.109375
4	1.375	1.5	1.4375	0.066406
5	1.375	1.4375	1.40625	-0.022461
6	1,40625	1.4375	1.421875	0.021729
7	1.40625	1.421875	1.414062	-0.000427

2_1Table.txt

소스코드 2-1.py

이분법

문제점

1. 함수 부호가 바뀌는 구간만 가능

ex) $f(x) = x^2 + 1$ 의 경우 실수해가 없기 때문에 이분법이 불가능함.

- 2. 항상 절반씩 줄이면서 근에 접근하기 때문에, 아주 정확한 값을 얻으려면 많은 반복 이 필요하기 때문에 느리다 .
 - → 뉴턴 랩슨법 사용

뉴턴 랩슨법

기본 개념 학습

함수의 기울기를 이용하여 근을 찾는 방법

기웆기의 공식에서 춪박하여

$$f'(x_n) = \frac{f(x_n) - f(x_{n+1})}{x_n - x_{n+1}} = \frac{f(x_n)}{x_n - x_{n+1}}$$

$$\Rightarrow x_n - x_{n+1} = \frac{f(x_n)}{f'(x_n)}$$

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$g'(x) = f(x)$$

뉴턴 랩슨법 공식

기본 개념 적용

구하고자 하는건 √2의 값이므로

$$x^2 = 2 \rightarrow x^2 - 2 = 0 \quad f'(x) = 2x$$

$$x_1 = 2$$
로 출발해보자

Step	x_n	$f(x_n)$	$f'(x_n)$
1	2	2	4
2	1.5	0.25	3.0
3	1.416667	0.006944	2,833
4	1.414216	0.000006	2.828427

뉴턴 랩슨법

문제점

1. 도함수를 직접 구해야한다.

함수가 복잡하거나 도함수가 없으면 사용하기 어렵다.

→ Secant Method (항선법) 사용

2. 초기값을 작못 잡으면 박산하거나 진동학 수 있다

ex) 함수의 극값 근처에서 시작하면 → 기웆기(도함수)가 0에 가까워져서 계산이 튐

핮선법

기본 개념 학습

 x_{n+1}

f(x) 기울기의 공식에서 출발하여

$$f'(x_n) = \frac{f(x_n) - f(x_{n+1})}{x_n - x_{n+1}} = \frac{f(x_n)}{x_n - x_{n+1}} \qquad \because g'(x) = f(x)$$

$$\Rightarrow x_n - x_{n+1} = \frac{f(x_n)}{f'(x_n)}$$

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow$$
도함수를 모른다면? x_{n-1} 을 결정하다

 x_{n-1} 읒 결정하여 기웆기릊 근사치로 계산한다.

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}}$$

$$\Rightarrow x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$
 알선법공식

기본 개념 적용

구하고자 하는건 √2의 값이므로

$$x^2 = 2 \rightarrow x^2 - 2 = 0$$

Step	x_n	x_{n-1}	$f(x_n)$	$f(x_{n-1})$
1	2	2.1	2	2.41
2	1.512195	2	0.286734	2
3	1,430556	1.512195	0.046489	0.286734
4	1.414758	1.430556	0.001539	0.046489
5	1.414217	1.414758	0.000009	0.001539

소스코드 2-3.py

문제점

- 1. 초기값 민감
 - 초기 두 점이 적절하지 않으면 박산하거나 매우 느리게 수렴할 수 있음
- 2. 초기값을 잘못 잡으면 발산하거나 진동할 수 있다 함수의 극값 근처에서 시작하면 → 기울기가 0에 가까워져서 계산이 튐

감사합니다

박형목

물 명신여자고등학교