Lecture 3 Workshop

Name: Goh Aik Tio/Daniel Yuan

Student ID: A0191238A/A0186487J

Part 1

First, we estimate the equation $sgd = c_1 + c_2*usd$. The output given by Eviews is shown in the following figures.

Dependent Variable: SGD Method: Least Squares Date: 01/30/19 Time: 19:50 Sample: 2000M10 2018M12 Included observations: 219

Variable	Coefficient	Std. Error t-Statistic		Prob.
C USD	0.896335 0.729649	0.093412 9.595450 0.075465 9.668711		0.0000
R-squared	0.301091	Mean depend	1.791516	
Adjusted R-squared	0.297870	S.D. depende	0.219051	
S.E. of regression	0.183550	Akaike info criterion		-0.543571
Sum squared resid	7.310848	Schwarz criterion		-0.512620
Log likelihood	61.52098	Hannan-Quinn criter.		-0.531071
F-statistic	93.48398	Durbin-Watso	0.014297	
Prob(F-statistic)	0.000000			

Date: 01/30/19 Time: 19:58 Sample: 2000M10 2018M12 Included observations: 219

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	1	1	0.942	0.942	197.05	0.000
	ı j ı	2	0.892	0.040	374.51	0.000
]	3	0.849	0.040	535.98	0.000
	1 1	4	0.806	-0.013	682.21	0.000
		5	0.783	0.157	820.79	0.000
	ı j ı	6	0.762	0.034	952.79	0.000
	<u> </u>	7	0.725	-0.136	1072.8	0.000
	1 [] 1	8	0.686	-0.048	1180.8	0.000
		9	0.635	-0.124	1273.8	0.000
	1[[1	10	0.583	-0.054	1352.4	0.000
	111	11	0.538	-0.021	1419.7	0.000
1	1 <u>[</u>] 1	12	0.490	-0.074	1475.8	0.000
1	ı <u>d</u> ı	13	0.439	-0.087	1521.0	0.000
1	1) 1	14	0.396	0.023	1558.0	0.000
1	1 1	15	0.351	-0.000	1587.3	0.000
1	-	16	0.296	-0.131	1608.1	0.000
1		17	0.249	0.025	1623.0	0.000
		18	0.210	0.062	1633.7	0.000
	[19	0.168	-0.038	1640.5	0.000
	1 1	20	0.133	0.014	1644.8	0.000
ı þ i	' []	21	0.090	-0.085	1646.8	0.000
<u> </u>	<u> </u>	22	0.037	-0.098	1647.1	0.000
1 1	1 <u>0</u> 1	23	-0.014	-0.068	1647.2	0.000
([] (24	-0.074	-0.134	1648.5	0.000

From the Durbin-Watson stat, we observe that there is positive autocorrelation. The model needs to be changed to address this. In the second model, we considered the difference between observation at time t and t-1.

Dependent Variable: D(SGD) Method: Least Squares Date: 01/30/19 Time: 20:00

Sample (adjusted): 2000M11 2018M12 Included observations: 218 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
C D(USD)	-0.000835 0.865191	0.001453 -0.574769 0.040209 21.51710		0.5660 0.0000
R-squared	0.681878	Mean depen	0.000369	
Adjusted R-squared S.E. of regression	0.680406 0.021432	S.D. depend Akaike info o	0.037910 -4.838757	
Sum squared resid Log likelihood	0.099213 529.4245	Schwarz crite Hannan-Qui	-4.807707 -4.826215	
F-statistic Prob(F-statistic)	462.9856 0.000000	Durbin-Wats	2.124222	

Date: 01/30/19 Time: 20:01 Sample: 2000M10 2018M12 Included observations: 218

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı <u> </u> ı		1	0.074	0.074	1.2240	0.269
ı j i		2	0.066	0.060	2.1780	0.337
ı j ı	1 1	3	0.018	0.009	2.2511	0.522
ı 🛅		4	0.119	0.114	5.4073	0.248
1 1	1 1	5	-0.012	-0.030	5.4383	0.365
1 1	1 1	6	0.011	0.000	5.4651	0.486
ı j i ı		7	0.037	0.037	5.7709	0.567
1 1	1 1	8	0.016	-0.003	5.8282	0.666
ı j ı		9	0.043	0.044	6.2587	0.714
ı 🔃		10	0.085	0.079	7.9427	0.634
1[1	10 1	11	-0.049	-0.076	8.4938	0.669
ı j ı		12	0.030	0.031	8.7071	0.728
1[1	101	13	-0.054	-0.064	9.3819	0.744
ı <u>d</u> ı	II	14	-0.070	-0.086	10.524	0.723
1 [1	1 1	15	-0.042	-0.006	10.951	0.756
1 1	1 1	16	0.013	0.012	10.992	0.810
ı 🛅	I	17	0.085	0.100	12.736	0.754
1 1	1 1	18	-0.010	-0.005	12.761	0.806
1 [] 1	III	19	-0.077	-0.099	14.194	0.772
1 1		20	0.014	0.026	14.240	0.818
1[1	101	21	-0.037	-0.043	14.579	0.843
1 🛮 1	1 1	22	-0.038	-0.032	14.940	0.865
1[1	1 1	23	-0.082	-0.031	16.579	0.829
1 1		24	-0.001	0.002	16.580	0.866

From the above figures, the Durbin-Watson stat is within 1.5 to 2.5, which indicates no autocorrelation. The residuals now look reasonable. The differenced series using the differencing operator D() addresses the autocorrelation problem.

We ran several models to explore the autocorrelation effects by examining the Durbin-Watson stat and adjusted R square. The best model is shown below.

Dependent Variable: SALES Method: Least Squares Date: 01/30/19 Time: 20:50

Sample (adjusted): 2000Q2 2005Q4

Included observations: 23 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	757.3169	274.9485 2.754396		0.0135
ADV	2.295812	0.746485	3.075494	0.0069
ADV(-1)	2.622828	0.776794	3.376480	0.0036
PROM	5.915436	0.874023	6.768056	0.0000
PROM(-1)	-3.191781	0.855724	-3.729919	0.0017
INDEX	-4.500392	2.665450	-1.688418	0.1096
R-squared	0.845826	Mean dependent var		453.3652
Adjusted R-squared	0.800480	S.D. depend	134.3372	
S.E. of regression	60.00525	Akaike info c	11.24620	
Sum squared resid	61210.72	Schwarz crite	11.54242	
Log likelihood	-123.3313	Hannan-Qui	11.32070	
F-statistic	18.65296	Durbin-Wats	1.340945	
Prob(F-statistic)	0.000002			

Q1: Ms. Franklin should choose advertising instead of promotions. Considering amount spent in the current and last quarter, advertising yields consistent increase in sales. On the other hand, effect of promotions is short term as it leads to negative effect on sales for the next quarter. The net effect of advertising on sales is greater than the effect of promotions on sales.

Q2: Even though the coefficient is negative, which indicates negative correlation on sales, but we also observe that the effect on sales is insignificant based on 95% confidence interval.

Q3: The data indicates that the policy was not followed throughout all quarters as we observe spending in both advertising and promotions in the same quarter.

Q4: We observe that there are no seasonal effects when we ran a model to consider discrete seasonal variables as an additional feature.

```
call:
lm(formula = sales ~ ., data = qkitch)
```

Residuals:

Min 1Q Median 3Q Max -141.131 -48.787 -7.432 45.939 189.301

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	725.608	699.594	1.037	0.31507	
prom	5.408	1.224	4.419	0.00043	***
adv	3.439	1.300	2.645	0.01764	ŵ
index	-3.628	7.286	-0.498	0.62532	
trend	-1.504	5.153	-0.292	0.77408	
season2	-83.665	56.849	-1.472	0.16050	
season3	-46.574	54.850	-0.849	0.40834	
season4	-54.643	54.207	-1.008	0.32844	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 92.3 on 16 degrees of freedom Multiple R-squared: 0.6588, Adjusted R-squared: 0.5096 F-statistic: 4.414 on 7 and 16 DF, p-value: 0.006636