- $q=3; x^3+1=(x+1)(x^2+x+1)$, то есть существует 3 различных (невырожденных в пустой) циклических кода:
 - 1. p(x) = 1, тривиальный (3,3)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (3, 2)-код, скорость $\frac{2}{3}$, минимальное расстояние 2
 - 3. $p(x) = x^2 + x + 1$, тривиальный (3,1)-код, скорость $\frac{1}{3}$, минимальное расстояние 3
- $q=4; x^4+1=(x+1)^4, 4$ различных (невырожденных в пустой) циклических кола:
 - 1. p(x) = 1, тривиальный (4,4)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (4, 3)-код, скорость $\frac{3}{4}$, минимальное расстояние 2
 - 3. $p(x)=(x+1)^2=x^2+1,$ (4, 2)-код, скорость $\frac{1}{2}$, минимальное расстояние 2
 - 4. $p(x)=(x+1)^3=x^3+x^2+x+1$, тривиальный (4,1)-код, скорость $\frac{1}{4}$, минимальное расстояние 4
- $q=5; x^5+1=(x+1)(x^4+x^3+x^2+x+1), 3$ различных невырожденных циклических кода
 - 1. p(x) = 1, тривиальный (5,5)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (5,4)-код, скорость $\frac{4}{5}$, минимальное расстояние 2
 - 3. $p(x)=x^4+x^3+x^2+x+1$, (5, 1)-код, скорость $\frac{1}{5}$, минимальное расстояние 5
- q=6; $x^6+1=(x+1)^2*(x^2+x+1)^2$, 8 различных невырожденных циклических кодов
 - 1. p(x) = 1, тривиальный (6,6)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (6, 5)-код, скорость $\frac{5}{6}$, минимальное расстояние 2
 - 3. $p(x)=(x+1)^2=x^2+1,$ (6,4)-код, скорость $\frac{2}{3}$, минимальное расстояние 2
 - 4. $p(x) = x^2 + x + 1$, (6,4)-код, скорость $\frac{2}{3}$, минимальное расстояние 2
 - 5. $p(x)=(x^2+x+1)^2=x^4+x^2+1,$ (6, 2)-код, скорость $\frac{1}{3}$, минимальное расстояние 3
 - 6. $p(x)=(x+1)(x^2+x+1)=x^3+1,$ (6,3)-код, скорость $\frac{1}{2}$, минимальное расстояние 2
 - 7. $p(x)=(x+1)^2(x^2+x+1)=x^4+x^3+x+1,$ (6, 2)-код, скорость $\frac{1}{3}$, минимальное расстояние 2
 - 8. $p(x)=(x+1)(x^2+x+1)^2=x^5+x^4+x^3+x^2+x+1$, тривиальный (6, 1)-код, скорость $\frac{1}{6}$, минимальное расстояние 6
- $q=7; x^7+1=(x+1)(x^3+x+1)(x^3+x^2+1)$, 7 различных невырожденных циклических кодов

- 1. p(x) = 1, тривиальный (7,7)-код, скорость 1, минимальное расстояние 1
- 2. p(x) = x + 1, (7,6)-код, скорость $\frac{6}{7}$, минимальное расстояние 2
- 3. $p(x)=x^3+x+1$, (7,4)-код (код Хэмминга), скорость $\frac{4}{7}$, минимальное расстояние 3
- 4. $p(x) = x^3 + x : 2 + 1$, (7,4)-код (код Хэмминга), скорость $\frac{4}{7}$, минимальное расстояние 3
- 5. $p(x)=(x+1)(x^3+x+1)=x^4+x^3+x^2+1$, (7,3)-код (дуальный коду Хэмминга), скорость $\frac{3}{7}$, минимальное расстояние 4
- 6. $p(x)=(x+1)(x^3+x^2+1)=x^4+x^2+x+1,$ (7,3)-код (дуальный коду Хэмминга), скорость $\frac{3}{7}$, минимальное расстояние 4
- 7. $p(x)=(x^3+x+1)(x^3+x^2+1)=x^6+x^5+x^4+x^3+x^2+x+1$, тривиальный (7,1)-код, минимальное расстояние 7
- $q=8; x^8+1=(x+1)^8, 8$ различных (невырожденных в пустой) циклических кодов:
 - 1. p(x) = 1, тривиальный (8,8)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (8,7)-код, скорость $\frac{3}{4}$, минимальное расстояние 2
 - 3. $p(x) = (x+1)^2 = x^2 + 1$, (8,6)-код, скорость $\frac{2}{3}$, минимальное расстояние 2
 - 4. $p(x)=(x+1)^3=x^3+x^2+x+1,$ (8,5)-код, скорость $\frac{5}{8}$, минимальное расстояние 2
 - 5. $p(x)=(x+1)^4=x^4+1,$ (8,4)-код, скорость $\frac{1}{2}$, минимальное расстояние 2
 - 6. $p(x)=(x+1)^5=x^5+x^4+x+1,$ (8, 3)-код, скорость $\frac{3}{8}$, минимальное расстояние 4
 - 7. $p(x)=(x+1)^6=x^6+x^4+x^2+1,$ (8, 2)-код, скорость $\frac{2}{3}$, минимальное расстояние 4
 - 8. $p(x)=(x+1)^7=x^7+x^6+x^5+x^4+x^3+x^2+x+1$, тривиальный (8, 1)-код, скорость $\frac{1}{8}$, минимальное расстояние 8
- $q=9; x^9+1=(x+1)(x^2+x+1)(x^6+x^3+1)$, 7 различных (невырожденных в пустой) циклических кодов:
 - 1. p(x) = 1, тривиальный (9,9)-код, скорость 1, минимальное расстояние 1
 - 2. p(x) = x + 1, (9,8)-код, скорость $\frac{8}{9}$, минимальное расстояние 2
 - 3. $p(x) = x^2 + x + 1$, (9,7)-код, скорость $\frac{7}{9}$, минимальное расстояние 2
 - 4. $p(x) = x^6 + x^3 + 1$, (9,3)-код, скорость $\frac{1}{3}$, минимальное расстояние 3
 - 5. $p(x)=(x+1)(x^2+x+1)=x^3+1,$ (9,6)-код, скорость $\frac{2}{3}$, минимальное расстояние 2
 - 6. $p(x)=(x+1)(x^6+x^3+1)=x^7+x^6+x^4+x^3+x+1,$ (9, 2)-код, скорость $\frac{2}{9}$, минимальное расстояние 6
 - 7. $p(x)=(x^2+x+1)(x^6+x^3+1)=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1,$ тривиальный (9, 1)-код, скорость $\frac{1}{9}$, минимальное расстояние 9

Рассмотрим возможные многочлены третьего порядка над \mathbb{Z}_2 и выберем из них неприводимые:

- x^3 делится на x
- $x^3 + 1$ делится на x + 1
- $x^3 + x$ делится на x
- $x^3 + x + 1$ неприводимый
- $x^3 + x^2 -$ делится на x
- $x^3 + x^2 + 1$ неприводимый
- $x^3 + x^2 + x$ делится на x
- $x^3 + x^2 + x + 1$ делится на x + 1

Таким образом, имеем два поля F_8^1 , порожденное полиномом x^3+x+1 и F_8^2 , порожденное x^3+x^2+1 .

Заметим, что мультипликативные группы этих полей цикличны и порождаются степенями элемента x. Породим первое поле степенями x (по модулю $x^3 + x + 1$), а второе — степенями x^3 (по модулю $x^3 + x^2 + 1$):

$$x^{1} = x$$
 $x^{2} = x^{2}$ $x^{3} = x + 1$ $x^{4} = x^{2} + x$ $x^{5} = x^{2} + x + 1$ $x^{6} = x^{2} + 1$ $x^{7} = 1$ $x^{3} = x^{2} + 1$ $x^{6} = x^{2} + x$ $x^{9} = x^{2}$ $x^{12} = x + 1$ $x^{15} = x$ $x^{18} = x^{2} + x + 1$ $x^{21} = 1$

Обозначим за o(e) минимальную степень, в которую надо возвести генератор g мультипликативной группы, чтобы получить e. Тогда можно записать операцию умножения элементов поля F_8 как: $a \cdot b = g^{o(a)} \cdot g^{o(b)} = g^{o(a)+o(b) \bmod 7}$. Для каждого из полей F_8^1 и F_8^2 будет своя функция o_1 и o_2 соответственно, в качестве функции изоморфизма f возьмем функцию, сопоставляющая элементу $e_1 \in F_8^1$ такой элемент $e_2 \in F_8^2$, что $o_1(e_1) = o_2(e_2)$, то есть будет выполняться $o_1(e_1) = o_2(f(e_1))$.

Докажем, что этот изоморфизм сохраняет операцию умножения:

$$f(a \cdot b) = f(x^{o_1(a)} \cdot x^{o_1(b)}) = f(x^{o_1(a) + o_1(b) \bmod 7})$$

При этом:

$$f(a) \cdot f(b) = (x^3)^{o_2(f(a))} \cdot (x^3)^{o_2(f(b))} = (x^3)^{o_2(f(a)) + o_2(f(b)) \bmod 7} = (x^3)^{o_1(a) + o_1(b) \bmod 7}$$

Заметим, что

$$o_2(f(x^{o_1(a)+o_1(b) \bmod 7})) = o_1(x^{o_1(a)+o_1(b) \bmod 7})$$

, что по нашему определению f означает, что

$$f(x^{o_1(a)+o_1(b) \bmod 7}) = (x^3)^{o_1(a)+o_1(b) \bmod 7}$$

, что и требовалось доказать.

Изоморфизм аддитивной группы:

- сопоставим нулевому элементу нулевой
- $f(a+b) = f(x^{o_1(a)} + x^{o_1(b)})$, не теряя общности, пусть $o_1(a) \le o_1(b)$, тогда $f(x^{o_1(a)} + x^{o_1(b)}) = f(x^{o_1(a)} \cdot (1 + x^{o_1(b) o_1(a)})) = f(x^{o_1(a)}) \cdot f(1 + x^{o_1(b) o_1(a)})$

Проверим непосредственно, что изоморфизм сохраняется относительно прибавления единицы, и получим:

$$f(x^{o_1(a)}) \cdot f(1 + x^{o_1(b) - o_1(a)}) = f(x^{o_1(a)}) \cdot (1 + f(x^{o_1(b) - o_1(a)})) = f(x^{o_1(a)}) + f(x^{o_1(a)}) \cdot f(x^{o_1(b) - o_1(a)})$$
$$= f(x^{o_1(a)}) + f(x^{o_1(b)}) = f(a) + f(b)$$

, что и требовалось доказать.

Задача 1 1-5

Задача 3

 G_* — мультипликативная группа, в скобках указывается порядок элемента.

- q = 2: $G_* = \{1(1)\}$
- q = 3: $G_* = \{1(1), 2(2)\}$
- $q=4=2^2$: полином $p(x)=x^2+x+1, G_*=\{1(1),x(3),x+1(3)\}$
- q = 5: $G_* = \{1(1), 2(4), 3(4), 4(2)\}$
- q = 7: $G_* = \{1(1), 2(3), 3(6), 4(3), 5(6), 6(2)\}$
- $q=8=2^3$: полином $p(x)=x^3+x+1,\ G_*=\{1(1),x(7),x+1(7),x^2(7),x^2+1(7),x^2+x(7),x^2+x+1(7)\}$
- $q=9=3^2$: полином $p(x)=x^2+x+2,\ G_*=\{1(1),2,x(8),x+1(8),x+2(4),2x(8),2x+1(4),2x+2(8)\}$

После того, как построили таблицу умножения (в приложении), обратный элемент для некого a можно найти как такое b, что на пересечении строки a и столбца b стоит единица.

x	x^{-1}
\overline{a}	$a^3 + 1$
a^2	$a^3 + a^2 + 1$
a^3	$a^3 + a^2 + a + 1$
a+1	$a^3 + a^2 + a$
$a^2 + a$	$a^2 + a + 1$
$a^3 + a^2$	$a^3 + a$
$a^3 + a + 1$	$a^2 + 1$
$a^2 + 1$	$a^3 + a + 1$
$a^3 + a$	$a^3 + a^2$
$a^2 + a + 1$	$a^2 + a$
$a^3 + a^2 + a$	a+1
$a^3 + a^2 + a + 1$	a^3
$a^3 + a^2 + 1$	a^2
$a^3 + 1$	a
1	1

Задача 5

После того, как построили таблицу умножения (в приложении), обратный элемент для некого a можно найти как такое b, что на пересечении строки a и столбца b стоит единица.

x	x^{-1}
a+1	$a^3 + a$
$a^2 + 1$	$a^2 + a$
$a^3 + a^2 + a + 1$	a
$a^3 + a^2 + a$	$a^3 + a + 1$
$a^3 + a^2 + 1$	$a^3 + a^2$
a^3	a^2
$a^2 + a + 1$	$a^3 + 1$
$a^3 + 1$	$a^2 + a + 1$
a^2	a^3
$a^3 + a^2$	$a^3 + a^2 + 1$
$a^3 + a + 1$	$a^3 + a^2 + a$
a	$a^3 + a^2 + a + 1$
$a^2 + a$	$a^2 + 1$
$a^3 + a$	$a^2 + 1$ $a + 1$
1	1

Породим код Хэмминга (7,4) полиномом $p(x) = x^3 + x + 1$, который является неразложимым делителем $x^7 + 1$.

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

, в систематической форме:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

, проверочная матрица:

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$