STA 211 (MTH219)

Probability Distribution Theory. T

- 1. Random Variable
- 2. The mean & variance of a random variable.
- 3. Kinds of probability distribution in both discrete and continuous variable.
- 11. Moments and moment generating Function
- 1. A random variable is a numerical entrome of a random process. It's also a variable that takes on different numerical values according to

chance mechanism. It is usually denoted by capital letters such as x and y. Example. Suppose that a coin is lossed troice, so that the sample space S = f HH, flT, 7H, 77}. Let X represent the number of S that can come up. with each point, we can associate a number for X as shoron below. Thus for example in the case of HH let X = ?, while in the case of IT and IH, let X = 1. It follows that x is a random variable. Table 2 Sample # # 47 TH 7.7 2 A random variable that take on a finite countably infinite variable is called a discrete random variable. While one which takes on a non-bount -able infinite number of values is called a continuous random variable. I rected value (Mean) and Variance of A Random Variable: The expected value of a random variable mean or average value of arandom

9 27th May 2024 Monday
(3) $0 \neq g(x_0) \neq 0$
The variance of the discrete random variable
is denoted by
$Q^{2} = \sum_{i=1}^{n} \left(x_{i}^{2} - \mu_{i} \right)^{2} \rho(X = x) \cdots (nx)$
$\varepsilon = 1$
10hrle for continuous random variable is given
$\frac{\partial}{\partial x} = \int_{-\infty}^{\infty} (x - x_{1}) f(x)$
The yarrance of x is also denoted by ZOO V(x) or
Simply 52. The Handard deviation is the square
root of the variance or
frample: Find the mean, the variance and the
standard deviation of x, when x denotes the
number that show up when a fair de is rolled.
Slution.
x is a random variable that has the numerical
attorne as the fair die solled.
X = £1,2,3,4,8,63
The pobability hunchion of x and the necessary
Calculations are humanized in Eable 2 bolow.
Table.
$x = P(x) = x P(x) = 2C^2 P(x)$
1 1/6 1/6 1/6

10	224h May 2024
	2 4 26 26 3 16 36 26 4 16 26 18
·	3 1/6 3/6
	4 1/6 1/6
	5 1/6 8/ 25/
	6 16 % 35/
	$\mu = \frac{N}{\sum_{i=1}^{N} x_i p(G_i)} = \frac{21}{6} = 3.5$
	(=1
	$\delta^2 = \sum x^2 y w - u^2$
	$= \frac{91}{8} - \left(\frac{21}{6}\right)^2$
	= 2.92
	$Sd = \sqrt{6^2} = \sqrt{2.92} = 1.71$
	Hence Mean = 8.5 Lanting = 2.92 and Strangland
	deviation = 1-71
	liven $f(x) = 1.5x^2$ for $-1 < x < 1$.
	find the mean 8 variance of x.
	Solution
	$E(x) = \int_{1}^{1} x(1-5x^{2}) dx = \int_{1}^{1} 1-5x^{3} dx$
	- 1,5,4 1
	$= 1.5 \times 4 $
	$V(x) = \int_{-\infty}^{\infty} (x-x^2) dx$
	J

27th May 2024

$$= 1.5 \int_{-1}^{1} x^{4} dx = 1.5 x^{5}$$

Probability Diotribution

Aprobability distribution is a model which describes
a specific kind of random process.