IBM Team 7

Team Leader: B. Prem (311519104047) **Team Members:** S. Akash(311519104007)

A. K. Chandan Kumar(311519104010)

D. Naveen(311519104039)

Domain Name: Education

Use case Name: University Admit Eligibility Predictor

Paper 1

Authors: Abdul Hamid M Ragab; Abdul Fatah S. Mashat; Ahmed M Khedra

Year : 2012

<u>Title:</u> HRSPCA: Hybrid Recommender System for Predicting College Admission

<u>Methodology:</u> This paper proposes a new college admission prediction technique based on using two cascaded knowledge rules for achieving student's college admission with high performance fairly and accurately. The system analyzes student academic merits, background, student records, and the college admission criteria. Then, it predicts the likelihood of university college that a student may enter.

<u>Advantage:</u> The system provides recommendations about which university colleges a student should be admitted to, taking into consideration not only student's scores but also other university qualified criteria into account. The HRSPCA system was validated using real students data. System experiments showed that the HRSPCA system performs substantially high performance due to allocating admission tasks between two cascading recommenders

<u>Disadvantage:</u> Out of 66 thousand applicants, Only 16 thousand were able to match the standard university or college standards.

Paper 2

Authors: Shen Zihao, Wang Hui

Year : 2010

Title: Research on College Party's Admission Management System Based on Workflow

<u>Methodology:</u> This paper describes the workflow management system and its functional characteristics, gives the formal definition of workflow model. Combined with the present situation of college Party's admission, it discusses the business process of Party's admission, and builds a Petri net-based workflow model. Based on Web applications as background; it presents solutions for college Party's admission management system, which satisfies the need of college Party's admission. The schema with good usability and versatility has a certain application value.

<u>Advantage:</u> The change of business process of Party's admission can easily be realized by the control of workflow nodes, which solved the problem of a large task quantity, managing complex and changing flexibility in college Party's admission, and realized the efficiency promotion for management.

<u>Disadvantage:</u> It can not handle the complex process logic, and lacks flexibility. It is web oriented and hence not accessible without the Internet. College Parties are now-a-days becoming extinct

Paper 3

<u>Authors:</u> Jayashree Katti, Jony Agarwal, Swapnil Bharata, Swati Shinde, Saral Mane, Vinod Biradar

Year : 2022

<u>Title:</u> University Admission Prediction using Google Vertex AI

<u>Methodology:</u> For a pursuing graduate student, shortlisting the colleges could be an intense issue. College undergraduates frequently have an inclination to ponder over the chance that their profile suits the college requirements. Computer programs are exceptionally well trained and faster than humans in making decisions. Moreover, the cost of admission in a college is a lot, making it very crucial for a student that their profile gets shortlisted for a university admission.

<u>Advantage:</u> A University prediction machine learning algorithm is very advantageous for college undergraduates to choose their dream university which also matches their resume. The proposed method considers diverse variables related to the student and his score in various tests.

<u>Disadvantage:</u> The dataset includes LOR, GRE score, CGPA, TOFEL score, University Rating, SOP, etc. Based on all these criterias, the admission to a particular university of an undergraduate will be predicted. The Students may not be able to pay the Exam Fees of all the Above Exams.

Paper 4

Authors: Zhenru Wang, Yijie Shi

Year <u>:</u> 2016

Title: Prediction of the admission lines of college entrance examination based on machine learning

<u>Methodology:</u> Accurate prediction of college entrance examination(CEE) results is very important for the candidates to fill in the application and the relevant analysis of the CEE. At present, the prediction of CEE score is based on data statistics, probability model and some weighted combination models. In this paper, machine learning methods are used to carry out the admission lines of research and prediction. Specifically, in this paper the Adaboost algorithm is

used to study and forecast, which belongs to ensemble learning. Finally, the result of this model is given, which is better than the current prediction.

<u>Advantage:</u> In this paper, machine learning methods are used to carry out the admission lines of research and prediction. Specifically, in this paper the Adaboost algorithm is used to study and forecast, which belongs to ensemble learning. Finally, the result of this model is given, which is better than the current prediction.

<u>Disadvantage</u>: Of course, the establishment of the model is not very perfect because of the in-exhaustive data. And there are still a lot of things to be improved. And in the aspect of feature selection, we only forecast the college entrance examination of Sichuan province. If we get more data in the future, we can also do university admission line forecasts. It is also a very significant work.

Paper 5

Authors: Abdul Majeed Inamdar, Tanmay Mhatre, Pravin Nadar, Supriya Joshi

Year : 2022

<u>Title:</u> Personalized College Recommender and Cutoff Predictor for Direct Second Year Engineering

<u>Methodology:</u> The engineering admission process is hectic and more than that is to find the college according to student preference i.e stream, location, university and seat type, etc. During the admission process the students always need to check the previous years cutoff of each college by visiting numerous websites & pdf lists which certainly consumes a lot of time. In our web application we will provide cutoff prediction of each college by the data-analysis of previous years cutoff, recommendation system for colleges listing according to student preferences, furthermore providing detailed comparison between institutions of their choice. The application is developed to bestow a personalized system so as to reduce time and ease the student's college selection process.

<u>Advantage:</u> It is very clear on the Goal of the Project and is very productive in a large set available for them.

<u>Disadvantage:</u> It doesn't work well for smaller sets while training. Such larger Sets are not available on the Web.

Paper 6

Authors: Haseeba Fathiya, Lipsa Sadath

Year: 2021

<u>Title:</u> University Admissions Predictor Using Logistic Regression

<u>Methodology:</u> Students applying for admissions to universities find it difficult to understand whether they have good chances of getting admission in a university or not. Keeping this in focus, we have used logistic regression techniques that have gained attention in the software engineering field for its ability to be used for predictions. This is a novel work on a university admissions predictor using which students can evaluate their competitiveness for getting admission at a university. This is developed by collecting real student data. The data is stored in a form of usable training data for the logistic regression classifier developed to make admissions predictions. We have collected the data from the Internet using a Selenium web scraper. The paper intensely discusses the methods, implementation and challenges faced in the process.

<u>Advantage:</u> The web scraper saves a lot of time and reduces labor costs, and the admissions predictor can be a useful tool to students trying to narrow down their university choices

<u>Disadvantage:</u> Many new features can be incorporated to improve the application. The model selected for each university can be tailored to produce the best results for the data available. Experimentation can also be done using other classification algorithms which could improve the accuracy. Other features can be included along with test scores and GPA to produce more accurate results.

(g.)	(Disadvantage)
consideration not only student's scores but also other university qualified criteria into account. The HRSPCA system was validated using real students data. System experiments showed that the	Out of 66 thousand applicants, Only 16 thousand were able to match the standard university or college standards.
	provides recommendation s about which university colleges a student should be admitted to, taking into consideration not only student's scores but also other university qualified criteria into account. The HRSPCA system was validated using real students data.System experiments

			and the college admission criteria. Then, it predicts the likelihood of university college that a student may enter.	performs substantially high performance due to allocating admission tasks between two cascading recommenders	
2.	Shen Zihao, Wang Hui (2010) (IEEE paper 2)	Research on College Party's Admission Management System Based on Workflow	This paper describes the workflow management system and its functional characteristics, and gives the formal definition of workflow model. Combined with the present situation of college Party's admission, it discusses the business process of Party's admission, and builds a Petri net-based workflow model. Based on Web applications as background; it presents solutions for college Party's admission management system, which satisfies the need of college	The change of business process of Party's admission can easily be realized by the control of workflow nodes, which solved the problem of a large task quantity, managing complex and changing flexibility in college Party's admission, and realized the efficiency promotion for management.	It can not handle the complex process logic, and lacks flexibility. It is web oriented and hence not accessible without the Internet. College Parties are now-a-days becoming extinct

			Party's admission. The		
			schema with		
			good usability and versatility		
			has a certain		
			application value.		
3.	Jayashree Katti, Jony Agarwal, Swapnil Bharata, Swati Shinde, Saral Mane, Vinod Biradar (2022) (IEEE paper 3)	University Admission Prediction using Google Vertex AI	For a pursuing graduate student, shortlisting the colleges could be an intense issue. College undergraduates frequently have an inclination to ponder over the chance that their profile suits the college requirements. Computer programs are exceptionally well trained and faster than humans in making decisions. Moreover, the cost of admission in a college is a lot, making it very crucial for a student that their profile gets shortlisted for a university admission.	A University prediction machine learning algorithm is very advantageous for college undergraduates to choose their dream university which also matches their resume. The proposed method considers diverse variables related to the student and his score in various tests.	The dataset includes LOR, GRE score, CGPA, TOFEL score, University Rating, SOP, etc. Based on all these criterias, the admission to a particular university of an undergraduate will be predicted. The Students may not be able to pay the Exam Fees of all the Above Exams.

	771 1177	D 1: /: C		т	0.0 (1
4.	Zhenru Wang , Yijie Shi (2016) (IEEE Paper 4)	Prediction of the admission lines of college entrance examination based on machine learning	Accurate prediction of college entrance examination(CE E) results is very important for the candidates to fill in the application and the relevant analysis of the CEE. At present, the prediction of CEE score is based on data statistics, probability model and some weighted combination models. In this paper, machine learning methods are used to carry out the admission lines of research and prediction. Specifically, in this paper the Adaboost algorithm is used to study and forecast, which belongs to ensemble learning. Finally the	In this paper, machine learning methods are used to carry out the admission lines of research and prediction. Specifically, in this paper the Adaboost algorithm is used to study and forecast, which belongs to ensemble learning. Finally, the result of this model is given, which is better than the current prediction.	Of course, the establishment of the model is not very perfect because of the in-exhaustive data. And there are still a lot of things to be improved. And in the aspect of feature selection, we only forecast the college entrance examination of Sichuan province. If we get more data in the future, we can also do university admission line forecasts. It is also a very significant work.
			and forecast, which belongs to ensemble		

			l		
5.	Abdul Majeed	Personalized	The engineering	It is very clear on	It doesn't work
	Inamdar,	College	admission	the Goal of the	well for smaller
	Tanmay Mhatre,	Recommender	process is hectic	Project and is	sets while
	Pravin Nadar,	and Cutoff	and more than	very productive	training. Such
	Supriya Joshi	Predictor for	that is to find	in a large set	larger Sets are
	(2022) (1777)	Direct Second	the college	available for	not available on
	(2022) (IEEE	Year	according to	them.	the Web.
	Paper 5)	Engineering	student		
			preference i.e		
			stream,		
			location,		
			university and		
			seat type, etc.		
			During the		
			admission		
			process the		
			students always		
			need to check		
			the previous		
			years cutoff of		
			each college by		
			visiting		
			numerous		
			websites & pdf		
			lists which		
			certainly		
			consumes a lot		
			of time. In our		
			web application		
			we will provide		
			cutoff		
			prediction of		
			each college by		
			the		
			data-analysis of		
			previous years		
			cutoff,		
			recommendatio		
			n system for		
			colleges listing		
			according to		
			student		
			preferences,		
			furthermore		
			providing		
			detailed		
	l .	I	1 30101100	l .	

			comparison between institutions of their choice. The application is developed to bestow a personalized system so as to reduce time and ease the student's college selection process.		
6.	Haseeba Fathiya, Lipsa Sadath (2021) (IEEE Paper 6)	University Admissions Predictor Using Logistic Regression	Students applying for admissions to universities find it difficult to understand whether they have good chances of getting admission in a university or not. Keeping this in focus, we have used logistic regression techniques that have gained attention in the software engineering field for its ability to be used for predictions. This is a novel work on a university admissions	The web scraper saves a lot of time and reduces labor costs, and the admissions predictor can be a useful tool to students trying to narrow down their university choices	Many new features can be incorporated to improve the application. The model selected for each university can be tailored to produce the best results for the data available. Experimentation can also be done using other classification algorithms which could improve the accuracy. Other features can be included along with test scores and GPA to produce more accurate results.

г т	<u> </u>	1	
		predictor using	
		which students	
		can evaluate	
		their	
		competitiveness	
		for getting	
		admission at a	
		university. This	
		is developed by	
		collecting real	
		student data.	
		The data is	
		stored in a form	
		of usable	
		training data for	
		the logistic	
		regression	
		classifier	
		developed to	
		make	
		admissions	
		predictions. We	
		have collected	
		the data from	
		the Internet	
		using a	
		Selenium web	
		scraper. The	
		paper intensely	
		discusses the	
		methods,	
		implementation	
		and challenges	
		faced in the	
		process.	
		1	
		1 L	