

領域に基づく濃淡変換

• 入力画像の注目画素とその周囲画素(面)から、対応する出力画像の注目画素(点)を計算

空間フィルタにより実現

→空間フィルタリング

空間フィルタの原理

- 線型フィルタ
 - 入力画像:f(i,j) 出力画像:g(i,j)
 - フィルタ: h(m,n) フィルタサイズ(2w+1)x(2w+1)

$$g(i,j) = \sum_{n=-w}^{w} \sum_{m=-w}^{w} f(i+m,j+n)h(m,n)$$

- 非線型フィルタ
 - 線形演算を行わない (後述)

線形フィルタの計算例

平滑化

- 滑らかな濃淡変化を施す処理
 - ノイズ軽減に有効
- 線形フィルタの例
 - 平均化フィルタ
 - 重みつき平均化フィルタ
 - ガウシアンフィルタ

平均化フィルタ

• 覆われる領域内の平均画素値の算出

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3x3画素

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

5x5画素

ガウシアンフィルタ

- 重みつき平均化フィルタのひとつ
 - ガウス分布(正規分布)で設計

0	1/6	0
1/6	2/6	1/6
0	1/6	0

4近傍

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

8近傍

平均化プルタ(一様重み)

ガウラアンフィルタ (中央重点の重み)

中央が最大周辺になるほど小

2次元カウス分布(=2次元正坝分布)

σがフィルタの広がりを表す(標準偏差)

プログラム実装例

```
//フィルタの宣言と設計 (入力と正規化)
// フィルタ h を配列 filter a として定義
double filter_a[] = { 3., 3., 1.,
                    -1., 2., 1.,
                    0., 1., 1.};
// 配列をフィルタ行列 kernel に変換
cv::Mat kernel = cv::Mat(3, 3, CV_32F, filter_a);
// 正規化 (正規化しないと画素値が255を超えるため)
cv::normalize(kernel, kernel, 1.0, 0.0, cv::NORM_L1);
// 空間フィルタリング
cv::filter2D(src_img, dst_img, -1, kernel);
```