Introducción al Deep Learning MADRID MADRICE M

Detectando el cáncer de piel

Alejandro P. Hall

www.geographica.gs

GRAPES

OBA

JAEN

G R A
P H I
C A

Acostumbrado a esto...

	account	campaign	date	successes	trials	rate
455	1	Campaign #76	2012-08-14 11:56:20 -0400	2	2	1.000000
449	1	Campaign #78	2012-08-14 12:06:20 -0400	2	2	1.000000
438	1	Campaign #87	2012-08-14 18:06:30 -0400	27	118	0.228814
431	1	Campaign #95	2012-08-15 00:07:42 -0400	22	118	0.186441
422	1	Campaign #99	2012-08-15 01:27:48 -0400	25	120	0.208333

...y a esto

Un proyecto nuevo...

Dada una imagen... ¿Cómo detectarías a un perro o un gato?

G		E	0	
	G	R		Α
	P	Н	I	
	C			
		A		

Utilizo OpenCV...

Para quien no sepa qué es OpenCV...

G	Ε	0
G	R	Α
Р	н	I
C	Α	•

Para quien no sepa qué es OpenCV...

Para quien no sepa qué es OpenCV...

Utilizo OpenCV...

Extraigo ciertas características...

G	Ε	0
G	R	Α
P	Н	I
C	Α	

Tenemos de nuevo una tabla de datos

	account	campaign	date	successes	trials	rate
455	1	Campaign #76	2012-08-14 11:56:20 -0400	2	2	1.000000
449	1	Campaign #78	2012-08-14 12:06:20 -0400	2	2	1.000000
438	1	Campaign #87	2012-08-14 18:06:30 -0400	27	118	0.228814
431	1	Campaign #95	2012-08-15 00:07:42 -0400	22	118	0.186441
422	1	Campaign #99	2012-08-15 01:27:48 -0400	25	120	0.208333

Y aplicamos los algoritmos


```
Extracción de
características
algoritmo de
aprendizaje
```

Computer Vision

Tenemos un problema...

Hay imágenes que...

G	E	0
G	R	Α
Р	Н	I
C	A	•

Hay imágenes que...

Hay imágenes que...

G	Ε	0	
G	R	Α	•
P	н	I	•
C	Α		•
		•	

Resumiendo...

El deep learning es capaz de extraer las características automáticamente.

El deep learning usa como estructura básica las redes neuronales

<u>Demo aquí</u>

El deep learning usa como estructura básica las redes neuronales

Tipos de redes neuronales para Deep Learning

Redes neuronales recurrentes

Redes neuronales Deep&Wide

Redes neuronales convolucionales

El deep learning es capaz de extraer las características automáticamente.

¿Qué es una convolución?

G	E	0
G	R	Α
P	н	I
C	Α	•

Todo comenzó con ImageNet...

Aplicaron Deep Learning...

Herramientas

G		Ε	0	
	G	R		Α
	Р	Н	Ι	
	C			
		A		

Tensorflow

G	Ε	0
G	R	Α
P	Н	I
C	Α	•

PYTÖRCH

Keras

Redes pre-entrenadas

Caso de uso: Detectando el cáncer de piel

1/ Obtención de los datos

https://isic-archive.com/#images

https://github.com/GalAvineri/ISIC-Archive-Downloader

G		E	C)		
				2	A	
	P	Н			_	
	C	A			I	

2/ Preprocesado

Resampling!!

G		E	0		
		G	R	A	
	P	H			
	C	A		I	

3/ Demo

G			
	Ε		
	. —		
	0	G	
	. 👅	. 👅	
		R	Α
		. "`	. ^{(**} .
	Р	Н	Ι
	. "	. ""	. Ť.,
	C		
		A	
		. A	

Alejandro P. Hall Data Scientist

alejandro@geographica.gs

¡Gracias!
www.geographica.gs

G	Ε	0	
G	R	Α	
P .	Н	I	
C	Α		