**Zadanie1** Zbadano poziom ekspresji genów u 11 osób przydzielonych do jednej z trzech kategorii (oznaczonych na rysunkach różnymi kolorami). Oś Y reprezentuje poziom ekspresji genów dla kolejnych próbek. Po lewej stronie znajdują się dane przed normalizacją, po prawej – po normalizacji. Wymień i krótko opisz prawdopodobne kroki jakie przeprowadzono.



Wyjaśnij czy sensownym biologicznie jest aby próbki po normalizacji miały zbliżone średnie?

NCBI (GEO DataSets) udostępnia dane z eksperymentów mikromacierzowych a także pozwala na ich analizę online. W tym kroku poddamy analizie wybrany taki eksperyment.

## **Zadanie2** Przypadek do analizy z NCBI GEO DataSets

- Wejdź w link poniżej: https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS810
- Czego dotyczyło badanie?
- Gdzie badano ekspresje genów? (jaki materiał/tkanka)
- Ile było wszystkich próbek i na ile grup były one podzielone (*Experiment design and value distribution oraz Sample Subsets*)
- Według jakich kryteriów podzielono próbki na grupy? Opisz wykorzystane parametry. (Experiment design and value distribution oraz Sample Subsets)
- Ile jest genów różnicujących? (Find genes, Find genes that are up/down for this condition(s))
- Jak wygląda przebieg ekspresji dla genów *SPARC*, *VSNL1* oraz *COL5A2* w kolejnych grupach? (*Expression Profiles* lub *Find genes*) Za co odpowiadają te geny? Czy obserwujesz jakieś tendencje zmiany poziomu ich ekspresji w kolejnych grupach? Poszukaj w źródłach zewnętrznych informacji na temat ich związku z chorobą Alzheimera.

Czym są housekeeping genes? Jaką pełnią rolę w eksperymencie mikromacierzowym?
 Wybierz trzy przykładowe geny tej kategorii i sprawdź ich ekspresje w kolejnych próbkach.

**Zadanie3** Wyznaczono poziom ekspresji genów dla 6 kolejnych chwil czasowych. Wyznacz współczynnik korelacji pomiędzy poziomem ekspresji genu 1 oraz genu 2. Zinterpretuj uzyskany wynik.

| Gen 1 | 0.7 | 0.74 | 0.86 | 0.90 | 1.2  | 1.31 |
|-------|-----|------|------|------|------|------|
| Gen 2 | 1.5 | 1.32 | 1.11 | 1.00 | 0.72 | 0.60 |

Możesz użyć poniższy kod Python (zawarte w pliku zadanie3.py).

```
import numpy as np
import matplotlib.pyplot as plt

x = np.array([]) #wpisz do [], po przecinku kolejne wartości
y = np.array([]) #wpisz do [], po przecinku kolejne wartości

print(np.corrcoef(x,y)[0][1])

plt.scatter(x,y)
plt.show()
```

## **STRING**

Baza danych STRING ma na celu zbieranie, ocenianie i integrowanie wszelkich publicznie dostępnych źródeł informacji na temat interakcji między białkami, a także uzupełnienie ich o prognozy komputerowe. Jej celem jest stworzenie kompleksowej i obiektywnej globalnej sieci, obejmującej zarówno bezpośrednie (fizyczne), jak i pośrednie (funkcjonalne) interakcje białkowe.

**Zadanie4** Wejdź na <u>STRING: functional protein association networks (string-db.org)</u> a następnie przeanalizuj zestaw potencjalnych genów markerowych dla prognozy raka piersi. Wybierz *Multiple proteins*, a jako organizm *Homo sapiens*.

EFNA1

**EGFR** 

ERBB2

GATA3

**GZMB** 

| MST1       |          |          |        |       |
|------------|----------|----------|--------|-------|
| MYB        |          |          |        |       |
| MYBL2      |          |          |        |       |
| MYC        |          |          |        |       |
| PLAT       |          |          |        |       |
| SOX4       |          |          |        |       |
| SOX9       |          |          |        |       |
| SRF        |          |          |        |       |
| XBP1       |          |          |        |       |
| <b>N</b> I | 1 : 0 .: | XX7 * 17 | 1 1 11 | 4 1 . |

Następnie Search i Continue. Wejdź w zakładkę Analysis.

- Jakie 3 *procesy biologiczne* mają najmniejszy *FDR* (*false discovery rate*) w rozważanej grupie genów?
- Która funkcja molekularna ma najmniejszy FDR (false discovery rate) w rozważanej grupie genów?
- Która ścieżka KEGG ma najmniejszy FDR (false discovery rate) w rozważanej grupie genów?

**Zadanie5** Poniżej zamieszczono dane odnośnie ekspresji genów w komórkach drożdży podczas procesu oddychania – fermentacji alkoholowej. Wyróżniamy dwa główne etapy tego procesu:

- rozkład glukozy do kwasu pirogronowego,
- przemianę kwasu pirogronowego do alkoholu.

Każdy z etapów kontrolowany jest przez 2 klasy genów odpowiedzialnych za te procesy. Dane pochodzą z 7 chwil czasowych (kolejne kolumny). Skomentuj i porównaj poniższe wyniki w kontekście powyższych informacji. W jaki sposób podzieliłbyś rozważane chwile czasowe?

- rozważana mikromacierz (geny zostały posortowane względem pierwszej chwili czasowej):



- po zastosowaniu algorytmu PCA, gdzie jako kolejne obserwacje wybrano wiersze (geny) z powyższej macierzy:



- mapy Kohonena dla kolejnych chwil czasowych. Kolor wskazuje na poziom ekspresji określonej grupy genów:



**Zadanie6** Wejdź na stronę <a href="https://singlecell.broadinstitute.org/single\_cell/">https://singlecell.broadinstitute.org/single\_cell/</a>. Znajdują się tam dane z eksperymentów scRNA-seq.

- Wyszukaj eksperyment: Single-cell transcriptomics of the spinal cord of a severe SMA mouse
- Czego dotyczył eksperyment? (Summary)
- Ile komórek i genów rozważano? (Summary)
- Ile typów komórek rozważano (Explore)
- Sprawdź ekspresję genów: hemoglobiny (HBB) oraz SPARC wśród rozważanych typów komórek. W której grupie występuje największa ich ekspresja? (**Explore, search genes**)