Introdução a Engenharia Elétrica - 323100

Aula S9

Módulo 1 – Motores e acionamentos

Escola Politécnica da Universidade de São Paulo

Departamentos da Engenharia Elétrica

PCS Computação e Sistemas Digitais

PEA Energia e Automação Elétricas

PSI Sistemas Eletrônicos

PTC Telecomunicações e Controle

V1.1

Outubro de 2015

Sumário

- 1. Motores elétricos
- 2. Motores de corrente contínua
- 3. Acionamento direto de um motor brushless
- 4. Acionamento com velocidade variável

Motores elétricos: fundamentos

- São máquinas elétricas capazes de converter energia elétrica em energia cinética.
- Em geral, funcionam pela interação entre campos eletromagnéticos entre suas partes fixas e móveis.
- Princípio geral de funcionamento pode ser visto em uma bússola.
 - Agulha: parte móvel, magnetizada, procura alinhar seu campo magnético a um campo magnético externo, fixo, do próprio planeta Terra.

Campos magnéticos

• Para produzir campos magnéticos: imãs permanentes ou eletroímãs.

Interação de campos magnéticos - Torque

- Bússola: a agulha possui um movimento oscilatório, com tendência a alinhar a direção do seu campo magnético na direção do campo magnético terrestre.
- A força magnética resultante da interação dos campo produz um torque na agulha.

• Em condições normais, a bússola adquire uma posição fixa, estável, após certo tempo.

Motores elétricos – geometria e definições

- Tipicamente motores rotativos, mas existem lineares.
- <u>Estator</u>: parte fixa, pode alojar uma das fontes de campo magnético.
- Rotor: parte móvel, à qual existe um eixo acoplado.

Retornando à pergunta da agulha...

P: Mas como manter o movimento de rotação da agulha? R: Pelo menos um dos campos magnéticos precisa mudar ao longo do tempo!

- A partir de 1820~1830: inúmeras experiências para se dominar a tecnologia.
- Personalidades: Arago, Faraday, Maxwell, Clarke, Davenport, Siemens, Gramme, Edison, Krapp, Brown, Tesla, Ferraris, Boveri, Steinmetz, Westinghouse, Stanley, ...
- Várias geometrias, materiais, tecnologias e eletricidades (contínua ou alternada).
- <u>Primeiras soluções:</u> comutador mecânico das correntes do rotor para mudar automaticamente seu campo magnético ao longo da rotação do eixo.

- Soluções posteriores: adoção de correntes naturalmente alternadas (polifásicas) que permitem a mudança do campo magnético ao longo do tempo (campo girante de Tesla e Ferraris).
- <u>Soluções contemporâneas:</u> sistemas de comutação eletrônica das correntes (drivers).

Primeiras máquinas elétricas rotativas

Motor DC

Sir William Siemens

Gerador DC

Motor DC

Motor AC

Galileo Ferraris

Nicola Tesla

Alguns motores contemporâneos

Outros motores

Sumário

- 1. Motores elétricos
- 2. Motores de corrente contínua
- 3. Acionamento direto de um motor brushless
- 4. Acionamento com velocidade variável

Motores elétricos de corrente contínua (CC)

- Muito comuns, acionamento e controle essencialmente simples.
- Diversos tamanhos, potências e tensões de alimentação.
- Acionados por uma tensão contínua.
- Em geral:
 - O controle da magnitude da tensão controla a velocidade de rotação.
 - O controle da corrente de alimentação controla o torque no motor.
- Desvantagens: possuem escovas que se desgastam ao longo do tempo.
- Tipos mais modernos: motores brushless (sem escovas) → alto desempenho, altíssimas velocidades, alta durabilidade.
- <u>Atenção</u>: Vários motores são considerados de corrente contínua, mas seu acionamento pode requerer uma eletrônica especialmente desenvolvida. Os motores brushless são um exemplo. Se você compra o motor, deve comprar ou desenvolver a eletrônica de acionamento.

Motores CC de potência fracionária

- Pequenos, compactos, potências até poucas dezenas de Watts.
- Em geral: dois terminais, com tensão, corrente, potência e velocidade máximas especificada pelo fabricante.
- Tensões típicas: 3 V, 6 V, 12 V, 24 V. Velocidades típicas de 1.000 a 8.000 RPM.
- Normalmente utilizados com algum conjunto de engrenagens (redutor) para diminuir sua rotação mas aumentar o torque.
- Característica importante: inverter a tensão de alimentação inverte o sentido de rotação do motor.

Motores CC brushless (BLDC)

- Motores modernos, de alta confiabilidade e de menor manutenção.
- O motor pode possuir vários terminais (2, 3 ou mais).
- Precisam de uma eletrônica para controle a acionamento (driver). O driver possui dois terminais, com polaridade definida, que não podem ser invertidos !!!!
- Altas velocidades e potências em pequeno volume. Correntes MUITO elevadas.

Podem ter a eletrônica de acionamento integrada ao motor ou não. Rotor Estator Solder Tabs Driver de um motor **Ball Bearings** sensor Stator Permanent Driver integrado ao estator **High Temperature** Estator bobinado. **Neodymium Magnets** Rotor com imãs permanentes.

Motores BLDC – detalhes

- Comutação eletrônica das correntes do estator.
- Uma eletrônica dedicada sensoriza a posição dos pólos magnéticos dos imãs do rotor, para que possam ser escolhidas as magnitudes e direções das correntes que devem ser colocadas no estator para produzir o torque desejado.
- Exemplo: Brushless personal computer fans ventoinhas de computador
 - Hélice da ventoinha é o rotor. No seu interior existe um imã permanente de vários pares de pólo.

Ventoinha Brushless - Funcionamento

produz campo no outro sentido, mas mantém o torque.

6) Volta ao passo 3.

🕏 Ventoinha Brushless – animação

GIF Animado obtido em:

https://dlnmh9ip6v2uc.cloudfront.net/assets/f/5/b/e/b/525ee354757b7fc92d8b456c.gif

- O motor mostrado anteriormente poderia errar a direção de rotação.
- Para garantir o funcionamento, podem ser colocados outros sensores hall, ou então a utilização de outras geometrias de estator (como na esquerda), ou outras formas de se energizar as bobinas (como abaixo).

GIF Animado obtido em:

http://pcbheaven.com/wikipages/images/how brushlessmotorswork 1269519619.png

Sumário

- 1. Motores elétricos
- 2. Motores de corrente contínua
- 3. Acionamento direto de um motor brushless
- 4. Acionamento com velocidade variável

Características do motor brushless (BLDC)

- Tensão de alimentação nominal de 12,0 [V]. Sentido de rotação é fixo!!!!
- Potência de cerca de poucos watts. Tipicamente de 1 a 5,0 [W].
- Modelos de dois terminais: positivo = vermelho, negativo = preto.

Modelos de 3 ou mais terminais, demais fios podem servir para regular ou medir a

velocidade de rotação.

Perigo: Partes móveis!

Atenção: Cuidado ao alimentar a ventoinha. A inversão da polaridade pode queimar sua eletrônica embutida de acionamento.

Relé eletromecânico

- Um relé é constituído internamente de uma bobina que funciona como um eletroímã, atraindo ou não contatos elétricos móveis em seu interior.
- Ao energizar sua bobina, o relé atraca, mudando um contato interno de aberto para fechado, permitindo a passagem de corrente elétrica.
- Alguns relés também possuem um contato normalmente fechado que, antes da energização da bobina, permite a passagem de corrente elétrica. Entretanto, quando sua bobina recebe energia, o contato passa a ficar aberto.
- Possuem várias configurações de contatos e tensões de alimentação para bobinas.
- Permitem o acionamento de cargas de potência bastante elevada com relação ao sinal enviado para a bobina. Um relé com bobina de 5V pode acionar um circuito independente de tensão até 250V e vários amperes de corrente.
- Para acionamento de sua bobina, é necessária uma energia um pouco maior que a capacidade das saídas dos microcontroladores.
 Nesse caso devem ser usados transistores para seu acionamento.
- Um veículo automotor possui dezenas desses relés, para as mais diversas funções.

Relé eletromecânico – funcionamento

Relé eletromecânico – funcionamento

GIF Animado obtido em:

http://neilorme.com/pics/RelayAnimated2.gif

<u>Importante:</u> A fonte de alimentação que energiza a bobina do relé em L1 e L2 é independente da alimentação colocada entre seus terminais comum, NC (*normally closed*) e NO (*normally opened*). Podem ser acionadas cargas de potência bem mais elevada.

Exercício 1: Acionamento direto do motor BLDC

 A tensão do motor será controlada por um relé eletromecânico, comandado por um sinal proveniente da placa FREEDOM.

 A placa Baseboard possui dois desses relés, cada um com um contato NA e NF. O terminal central de cada relé é o comum.

Programa para desenvolver no MBED

```
#include "mbed.h"
                                            BLDCRelay.cpp
DigitalOut fan(PTA13);
DigitalOut led_green(LED_GREEN);
Ticker Relogio;
void alterna() { //rotina da interrupcao periodica
    fan = !fan;
int main() {
    fan=0; led green=1;
    Relogio.attach(&alterna, 5.0); //funcao alterna prog. para repeticao com 5s
    while(1) {
                                          //loop infinito cheio de coisas importantes
         led_green = !led_green;
         wait(0.25);
```


Opcional: Acionamento do motor por botão

- Explorando a Baseboard, note que existem dois botões soldados na própria placa (com resistores de pull-down) prontos para uso.
 - O sinal do botão DSENS_2 está disponível no pino 3 do conector DSENS da Baseboard. Quando pressionado, esse sinal assume tensão de 3,3 [V].
 - O sinal do botão DSENS_3 está disponível no pino 4 do conector DSENS da Baseboard. Quando pressionado, esse sinal assume tensão de 3,3 [V].

Desafio:

Faça com que seu programa acione o ventilador por 10 segundos, toda a vez que o botão DSENS_2 for pressionado.

Mas antes do acionamento do ventilador, seu programa deve piscar a luz vermelha do LED RGB por 3,0 [s], com período de 0,2 [s], como alerta para as pessoas se afastarem!

• Sugestão de hardware, ligue um fio do pino 3 do conector DSENS da Baseboard até, por exemplo, o pino PTEO do kit FRDM. Use um objeto 'DigitalIn botao(PTEO)' para receber a informação do botão...

Sumário

- 1. Motores elétricos
- 2. Motores de corrente contínua
- 3. Acionamento direto de um motor brushless
- 4. Acionamento com velocidade variável

Como variar a velocidade do motor BLDC

- Em alguns tipos de motores elétricos, pode-se variar sua velocidade através do ajuste de sua tensão de alimentação.
 - Com tensões menores, o torque do motor é menor e sua velocidade final é mais baixa.
 - Com tensões maiores, o torque do motor é maior e sua velocidade final é mais elevada.
- Deve-se atentar para as máximas tensões de alimentação permitidas e que, para tensões muito baixas, às vezes o torque não é suficiente, sequer, para fazer o motor se mover.
- Para produzir uma tensão variável, por exemplo, entre 0,0 e 12,0 [V], pode-se usar uma técnica semelhante àquela utilizada para variar o brilho de um LED na aula S7: sintetizar em uma saída digital uma onda retangular, com largura de pulsos positivos ajustável (*duty cycle*).
- Essa técnica é denominada de *Pulse Width Modulation*, ou modulação por largura de pulsos (PWM).
- Só que não precisamos controlar o liga/desliga do sinal!!! O microcontrolador KL25Z tem periféricos dedicados para isso!!!

O sinal de PWM

- É um sinal de frequência constante e largura de pulso (ciclo ativo ou *duty cycle*) variável.
- A tensão média equivalente de um sinal PWM é:

$$V_M = \frac{1}{T} \int_0^T V(t) dt$$
 \rightarrow onde T é o período do sinal.

• Se um sinal PWM ao longo do tempo é:

$$V(t) = \begin{cases} V_{pulso}, & 0 \le t \le t_p \\ 0, & t_p \le t \le T \end{cases} \Rightarrow \text{onde } t_p \in V_{pulso} \text{ são a duração}$$
e a tensão do pulso em nível alto.

PWM - Cálculo da tensão média

Assim:

$$V_{M} = \frac{1}{T} \left[\int_{0}^{t_{p}} V(t)dt + \int_{t_{p}}^{T} 0dt \right] = \frac{t_{p}}{T} V_{pulso} \implies t_{p}/T \text{ \'e o duty cycle}$$

- Os pulsos da onda PWM apresentam tensão fixa, entre 0 e o valor máximo, porém o valor médio da tensão varia em função do duty cycle.
- A tensão média (V_M) é diretamente proporcional ao *duty* cycle e, como este varia entre 0 e 1, a tensão média pode variar entre 0 e V_{pulso} .

Pinos de saída PWM no MBED

Exemplo de PWM

- O microcontrolador consegue fazer um pino produzir essa onda automaticamente. Você só deve informar o período e o *duty-cycle*, entre 0,0 e 1,0. Inicialmente, use períodos de 0,001 [s].
- Pergunta: O microcontrolador pode enviar esse sinal direto a um motor de 12V???? NÃO!!!!! → Precisamos usar um amplificador!!!!

Produzindo sinais de maior potência

Ponte H

- Um dispositivo eletrônico capaz de chavear uma tensão de alimentação para uma carga, entre 0,0 V e um valor máximo, com alta frequência, conforme as ordens de um sinal digital PWM vindo de um microcontrolador.
- Possui também um mecanismo que permite a inversão do sinal aplicado, permitindo a alimentação também com tensão negativa.

- DR1 e DR2 determinam a ligação da alimentação às saídas P e N.
- Se os níveis lógicos forem DR1=0 e DR2=1, P é ligado ao terminal positivo e N ao terra.
- Se DR1=1 e DR2=0, P é ligado ao terminal terra e N ao positivo.
- A energia só flui da alimentação para os terminais de saída se o nível lógico em Habilita for 1.

🕏 Funcionamento de uma Ponte H

• Internamente, uma ponte H é composta de transistores ou chaves comandadas, em uma configuração de dois circuitos *push-pull* ou *toten pole*, como visto na aula S4.

 Níveis lógicos em DR1, DR2 e Habilita (ou Enable) determinam a aplicação ou não, e a polaridade, da tensão de alimentação aplicada à carga conectada nos terminais de saída P e N.

🕏 Funcionamento de uma Ponte H – Direção 1

Com DR1=0 e DR2=1, aplica-se um sinal PWM na entrada Habilita.

- Nessa condição, a carga tem tensão positiva no terminal P e negativa (ou terra) no terminal N.
- O fluxo de energia é pulsante, mas se feito rápido o suficiente (período do PWM pequeno), a carga ligada nos terminais de saída "percebe" uma tensão média, comentada anteriormente.

Funcionamento de uma Ponte H – Direção 2

Com DR1=1 e DR2=0, aplica-se um sinal PWM na entrada Habilita.

- Nessa condição agora, a carga tem tensão negativa (ou terra) no terminal N e positiva no terminal N.
- O fluxo de energia novamente é pulsante mas a carga ligada nos terminais de saída "percebe" a tensão média do PWM.

- A Baseboard é equipada com um circuito eletrônico L298 que possui duas pontes H completas em seu interior.
- Ambas as pontes são alimentadas pela tensão de entrada de 12,0 [V] do transformador externo.
- Primeira ponte H (PWM_A)
 - Saídas disponíveis nos terminais do conector X10
 - Entrada Enable (Habilita) no pino 4 do conector DIG_OUTPUTS
 - Entrada DR1 no pino 5 do conector DIG_OUTPUTS
 - Entrada DR2 no pino 6 do conector DIG_OUTPUTS
- Segunda ponte H (PWM_B)
 - Saídas disponíveis nos terminais do conector X11
 - Entrada Enable (Habilita) no pino 8 do conector DIG_OUTPUTS
 - Entrada DR1 no pino 9 do conector DIG_OUTPUTS
 - Entrada DR2 no pino 10 do conector DIG_OUTPUTS

Circuito integrado L298

- Obs.1: O chip do L298 pode acionar no máximo até 1,0 A por ponte.
- Obs.2: Frequências de PWM muito elevadas podem causar superaquecimento do chip. Use cerca de 1,0 [kHz] a 2,0 [kHz].
- <u>Atenção</u>: Como para inverter a tensão aplicada basta alterar DR1 e DR2, é muito fácil aplicar tensões com polaridade reversa a sua carga. Fique atento se sua carga suporta tensões inversas!!!!

Ponte H na Baseboard – Atenção!!!

- Atenção: Para que seja possível utilizar as pontes H na Baseboard, devem ser colocados os jumpers JP1, JP2, JP3 para a ponte PWM A, e JP4, JP5 e JP6 para a ponte PWM B.
- Sugere-se começar a montagem com os jumpers removidos. Os LEDs da placa mostram a operação dos DRx e dos Enables. Verifique se está tudo conforme o esperado visualmente.
- Após certificar-se, insira os jumpers para permitir que aponte opere corretamente.

Exercicio 2: Velocidade variável do BLDC

- Pode-se variar a tensão aplicada no motor BLDC através da técnica da modulação de largura de pulso (PWM).
- Mas deve-se usar um circuito L298 de interface para essa finalidade.

Programa para desenvolver no MBED

```
#include "mbed.h"
DigitalOut dir 1(PTA13);
                                           BLDCPWM.cpp
DigitalOut dir 2(PTD5);
DigitalOut led green(LED GREEN);
PwmOut
           fan(PTD4);
Ticker
          Relogio;
float taxa=0.0;
void rampa() { //rotina da interrupcao periodica
    taxa += 0.1;
    if(taxa>1.0) taxa=0.0;
    fan = taxa;
int main() { led_green=1; fan.period(0.0001); dir_1=0; dir_2=1;
    Relogio.attach(&rampa, 5.0); //funcao alterna prog. para repeticao com 5s
                       //loop infinito cheio de coisas importantes
    while(1) {
        led green = !led green;
        wait(0.25);
```


Particularidades

- Para pequenos valores de duty-cyle para o PWM, o motor não possui tensão suficiente para se mover.
- Se o período do PWM for feito muito elevado, as perdas nas chaves da ponte H pode ser elevada e o componente L298 da placa pode aquecer substancialmente.
- A corrente máxima admissível em cada saída PWM é de 1,0 [A]. As duas saídas PWM da placa Baseboard não podem consumir juntar, mais de 1,5 [A].

Exercícios para casa

- Faça um programa que aumente e diminua a velocidade da ventoinha pelo pressionamento dos botões DSENS_2 e DSENS_3.
- Faça um programa que quanto maior a temperatura lida por um sensor LM35, mais rápido seja a velocidade de acionamento do motor da ventoinha.

Curiosidades

- Motores elétricos também podem ser geradores elétricos, modificando-se a forma de acionamento elétrico e mecânico.
- Motores modernos sem escovas (brushless) podem ser muito compactos e com alta potência.
- Você consegue "ouvir" o barulho característico de um motor operando com alimentação via PWM.
 - O zunido que pode ser percebido, depende da frequência de chaveamento do PWM. Esse zunido é produzido, entre outros fatores, por um fenômeno denominado magnetostricção, que são vibrações nos materiais magnéticos dentro do motor, excitadas pelo chaveamento.
 - Frequências de PWM muito elevadas (>10KHz) tornam esse ruído imperceptível, mas podem aumentar as perdas na ponte H e tornar o chip mais quente.
 - Frequências de PWM baixas (<2KHz) tornam esse ruído incômodo.
 - Frequências de PWM muito baixas (<10Hz) podem fazer com que o motor não responda da forma esperada à tensão média.

Para saber mais

- Mbed, http://mbed.org, ultimo acesso Ago/2014.
- Freescale Freedom Board FRDM-KL25Z,
 http://www.freescale.com/webapp/sps/site/prod_summa
 ry.jsp?code=FRDM-KL25Z, ultimo acesso Ago/2014.
- Silberschatz, A., Galvin, P. and Gagne, G., "Operating System Concepts", Wiley, 8th Edition, 2008.
- Monk, S., "Hacking Electronics. An illustrated DIY guide for makers and hobbyists", Mc Graw Hill Education, 2013.

Apêndices

• Materiais para consulta de pinagens do kit.

Lista de ports e funções do kit

 No encarte da caixa do kit existe um guia de referência rápida dos pinos e ports.

Detalhes dos pinos com suas funções especiais

Lista de ports e terminais do KL25Z

Microcontrolador KL25Z Encapsulamento de 80 pinos		Kit FREEDOM BOARD		
Terminal do chip	Nome e número do port	Disponível no conector e pino do kit	Nome padrão Arduino™ R3	Periférico do kit já conectado ao port
1	PTE0	J2 20	D14	_
2	PTE1	J2 18	D15	_
3	PTE2	J9 09	_	_
4	PTE3	J9 11	_	_
5	PTE4	J9 13	_	_
6	PTE5	J9 15	_	_
13	PTE20	J10 01	_	_
14	PTE21	J10 03	_	_
15	PTE22	J10 05	_	_
16	PTE23	J10 07	_	_
21	PTE29	J10 09	_	_
22	PTE30	J10 11	_	_
23	PTE31	J2 13	_	_
24	PTE24	_	_	Acelerometro
25	PTE25	_	_	Acelerometro
27	PTA1	J1 02	D0	_
28	PTA2	J1 04	D1	_
30	PTA4	J1 10	D4	_
31	PTA5	J1 12	D5	_
32	PTA12	J1 08	D3	_
33	PTA13	J2 02	D8	_
34	PTA14	_	_	Acelerometro
35	PTA15	_	_	Acelerometro
36	PTA16	J2 09	_	_
37	PTA17	J2 11	_	_
42	PTA20	J9 06	_	Botão Reset
43	PTB0	J10 02	Α0	_
44	PTB1	J10 04	A1	_
45	PTB2	J10 06	A2	_
46	PTB3	J10 08	А3	_
47	PTB8	J9 01	_	

Microcontrolador KL25Z Encapsulamento de 80 pinos		Kit FREEDOM BOARD		
Terminal do chip2	Nome e número do port3	Disponível no conector e pino do kit4	Nome padrão Arduino™ R3	Periférico do kit já conectado ao port5
48	PTB9	J9 03	_	_
49	PTB10	J9 05	_	_
50	PTB11	J9 07	_	_
51	PTB16	_	_	Touch Slider
52	PTB17	_	_	Touch Slider
53	PTB18	_	_	Led Vermelho
54	PTB19	_	_	LED Verde
55	PTC0	J1 03	_	_
56	PTC1	J10 12	A5	_
57	PTC2	J10 10	Α4	_
58	PTC3	J1 05	_	_
61	PTC4	J1 07	_	_
62	PTC5	J1 09	_	_
63	PTC6	J1 11	_	_
64	PTC7	J1 01	_	_
65	PTC8	J1 14	D6	_
66	PTC9	J1 16	D7	_
67	PTC10	J1 13	_	_
68	PTC11	J1 15	_	_
69	PTC12	J2 01	_	_
70	PTC13	J2 03	_	_
71	PTC16	J2 05	_	_
72	PTC17	J2 07	_	_
73	PTD0	J2 06	D10	_
74	PTD1	J2 12	D13	Led Azul
75	PTD2	J2 08	D11	_
76	PTD3	J2 10	D12	_
77	PTD4	J1 06	D2	_
78	PTD5	J2 04	D9	_
79	PTD6	J2 17	_	_
80	PTD7	J2 19	_	_

