AE 330 Rocket Propulsion Projectiles and Missiles

Kowsik Bodi Aerospace Engineering, IIT Bombay

Projectile Basics

Projectile launched at an angle

Projectile launched at an angle

$$\begin{split} \frac{dV_x}{dt} &= 0 \ \text{ and } \frac{dx}{dt} = V_x \equiv V_o \cos \theta \\ \frac{dV_y}{dt} &= -g_o \ \text{ and } \frac{dy}{dt} = V_y \equiv V_o \sin \theta \end{split}$$

Trajectory without drag $(h_b = 0)$

Trajectory without drag $(h_b > 0)$

What happens if we consider drag?

Two options:

- Stokes Drag: $\propto \nu V$
- Newtonian Drag: $\propto \alpha V^2$

Stokes Drag

Newtonian Drag $(\theta = 30^o)$

Newtonian Drag $(\theta = 35^o)$

Newtonian Drag $(\theta = 45^o)$

Newtonian Drag $(\theta = 55^o)$

Newtonian Drag $(\theta = 70^o)$

Generating V_b

$$\mathcal{T} = \underbrace{\dot{m}u_e}_{\text{rocket}} + \underbrace{\left(p_e - p_a\right)A_e}_{\text{projectile}}$$

image from Smith, "Internal Ballistics of Guns"

Generating V_b

Classification of Guns

image from wikipedia

Ballistic Missiles

Classification

	Range (km)		
SRBM	<1,000	Short Range Ballistic Missiles	
MRBM	1,000 - 3,000	Medium Range Ballistic Missiles	
IRBM	3,000 - 5,500	Intermediate Range Ballistic Missiles	
ICBM	>5,500	Intercontinental Ballistic Missiles	

Missile Range: $V_b = \sqrt{Rg_o}$ for $\theta = 45^o$

	Range (km)	$V_b \left(km/s \right)$
SRBM	<1,000	3.13
MRBM	1,000 - 3,000	3.13 - 5.4
IRBM	3,000 - 5,500	5.4 - 7.3
ICBM	>5,500	> 7.3

Missile Trajectories: Drag

Avoiding Drag

ICBM Trajectories

ICBM Trajectory

ICBM Trajectory

Atmospheric Re-entry

Empirical Correlations for stagnation region heat flux

$$q'' = C\sqrt{\frac{\rho_{\infty}}{R_c}}V_{\infty}^3 \left(1 - \frac{h_w}{h_o}\right)$$

Blunt bodies have lower heat flux (Allen's "Blunt Body Theory")

 $q^{\prime\prime}\sim 600~W/cm^2$ for manned mission reentry capsules.

Atmospheric Re-entry

Empirical Correlations for stagnation region heat flux

$$q'' = C\sqrt{\frac{\rho_{\infty}}{R_c}}V_{\infty}^3 \left(1 - \frac{h_w}{h_o}\right)$$

Entry	V_b	$h_o \sim V_b^2/2$
	(km/s)	(MJ/kg)
Apollo	11.4	66
Mars Return	14.0	98

Water boils at $\sim 2.3~MJ/kg$ Carbon vaporizes at $\sim 60.5~MJ/kg$

Re-entry Vehicle Shape Evolution

image from wikipedia

Blunt bodies have lower heat flux (Harvey Allen's "Blunt Body Theory")

 $q'' \sim 600~W/cm^2$ for manned mission reentry capsules.

Re-entry Thermal Protection System (TPS)

No Human Rated Ablative TPS Available Today! CEV/Orion is working to develop Avcoat, for a human rated system - Very Close to Achieving This Goal!

Re-entry Thermal Protection System (TPS)

Material Name	Manufacturer	Density (kg/m³)	Limit (W/cm²)
SLA-561V	Lockheed-Martin	256	~ 200
FM 5055 Carbon Phenolic	Fibercote (formerly US Polymeric), Hitco Inc.	1450	> 10,000
MX4926N Carbon Phenolic	Cytec (pre-preg), ATK, HITCO	1450	> 10,000
PhenCarb-20,24,32	Applied Research Associates (ARA)	320-512	~ 750
PICA (Phenolic Impregnated Carbon Ablator)	Fiber Materials, Inc. (FMI)	265	> 1500
Avcoat 5026 (Apollo)	Textron Systems	513	~1000
ACC	Lockheed-Martin	1890	~ 1500

Not viable for high shear

No source of heritage Rayon

SRM, never as a heat shield

Never flown

Must be tiled above 1m diameter

Recreated for CEV

Heavy, not readily extendible above 2m

Indian Ballistic Missiles

INDIA'S BALLISTIC & CRUISE MISSILES

India's missile forces largely support its nuclear deterrent posture against its main rivals China and Palkistan. To increase its nuclear forces' survivability, India has been diversifying its delivery platforms beyond land-based missiles and aircraft to include submarine-launched weapons. Although India primarily develops its ballistic missiles indigenously, New Delhi has collaborated with Russia on supersonic cruise missile development.

Hypersonic Missiles

Motivation

Course correction not possible for ballistic missiles in the terminal phase

Air-breathing propulsion at similar speeds $\left(M>6\right)$ would give the advantage of control

Low altitude flight \implies Less chance of detection

Hypersonic vs Ballistic Missiles

image from economist.com

Hypersonic "Boost-Glide" vs Ballistic Missiles

Trajectory at a lower altitude than even "Depressed-trajectory" ballistic missiles

Equally fast, and more difficult to detect

Image from Scientific American

Hypersonic "Boost-Glide" Missiles

"Boost" phase using a rocket (may reach $M\sim 20$)

Drag and heating are serious problems

High Temperature may reduce material strength!

Image from Scientific American

Hypersonic Vehicles

image from Urzay, Ann. Rev. FluMech.

Hypersonic Vehicles

image from Urzay, Ann. Rev. FluMech.

