Στατιστική και πιθανότητες

Μέρος ΙΙ

Στατιστικοί εκτιμητές

- □ Όταν κάνουμε στατιστική ανάλυση, ένας στόχος είναι η αληθής εκτίμηση της τιμής μίας ή περισσότερων παραμέτρων από πειραματικά δεδομένα και η κατανόηση της αβεβαιότητας της μέτρησης αυτής
- Σημαντικά χαρακτηριστικά ενός καλού εκτιμητή είναι:
 - Συνέπεια: Αν ο όγκος των δεδομένων είναι μεγάλος, η εκτίμηση συγκλίνει στην πραγματική τιμή:
 - Bias: Αν υπάρχει διαφορά μεταξύ της αναμενόμενης τιμής της εκτίμησης της παραμέτρου και της πραγματικής τιμής της παραμέτρου
 - Ανθεκτικότητα (robustness): Η εκτίμηση δεν αλλάζει ιδαίτερα αν η πραγματική pdf (probability density function) διαφέρει από την υποτιθέμενη pdf. Για παράδειγμα στις ουρές μίας κατανομής.
- Χρειαζόμαστε ακόμα να ξέρουμε την αβεβαιότητα της εκτίμησής μας, δηλαδή πόσο μακριά είναι η εκτιμούμενη από την πραγματική τιμή εξαιτίας στατιστικών διακυμάνσεων στο σύνολο των μετρήσεων

Η μέθοδος των ελαχίστων τετραγώνων

- Υποθέτουμε ότι οι μετρήσεις μας προέρχονται από μεγάλη στατιστική και επομένως μπορούμε να υποθέσουμε ότι βρισκόμαστε στη Gaussian περιοχή
- Θέλουμε να έχουμε τις καλύτερες εκτιμήσεις των παραμέτρων της συνάρτησης που περιγράφει τα δεδομένα
- □ Το επιτυγχάνουμε ελαττώνοντας τη διασπορά των δεδομένων από τη συνάρτηση προσαρμογής λαμβάνοντας υπόψην την αβεβαιότητα των δεδομένων:
- Η διασπορά προσδιορίζεται συναρτήσει μίας ποσότητας: $\chi^2 = \sum_{i=1}^N \frac{(x_i \mu)^2}{\sigma^2}$
- \square Μπορούμε να γράψουμε το χ^2 συναρτήσει των παρατηρούμενων μεγεθών:

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(y_{i} - F\left(x_{i}, \theta\right)\right)^{2}}{\sigma_{i}^{2}}$$

- \square Ελαχιστοποιούμε το χ^2 ως προς την/τις παραμέτρους θ_i
- □ Ιδιαίτερα χρήσιμη στις περιπτώσεις δειγμάτων μεγάλης στατιστικής όπου η σύγκλιση της πολλών της αρνητικής likelihood (-ln£) είναι αργή

Συνάρτηση μέγιστης πιθανότητας – Likelihood

- lacktriangle Η likelihood, $\mathcal{L}(x; \theta)$ εκφράζει την πιθανότητα ότι μία μέτρηση του x, θα δώσει συγκεκριμένη τιμή για κάποια δεδομένη θεωρία.
 - Για να προσδιορίσουμε την likelihood, θα πρέπει να γνωρίζουμε τόσο τη θεωρία όσο και τις τιμές των παραμέτρων από τις οποίες εξαρτάται η θεωρία
- □ Αν έχουμε ένα σύνολο μετρήσεων, η ολική likelihood βρίσκεται από το γινόμενο των likelihoods των μετρήσεων:

$$\mathcal{L}(x;\theta) = \prod_{i=1}^{N} \mathcal{L}_{i}(x;\theta)$$

όπου θ μπορεί να αναπαραστά μία ή περισσότερες παραμέτρους

Φυσικός λογάριθμος πιθανότητας – Log Likelihood

- □ Για να εκτιμήσουμε την/τις παραμέτρους *θ*, θα πρέπει να μεγιστοποιήσουμε την πιθανότητα
- Συνηθισμένη τεχνική για να βρούμε το μέγιστο είναι να θέσουμε την παράγωγο της ποσότητας που μεγιστοποιούμε στο 0
- lacktriangle Είναι ευκολότερο να μεγιστοποιήσουμε το λογάριθμο της πιθανότητας $\ln \mathcal{L}$

$$\frac{\partial \ln \mathcal{L}}{\partial \theta} = \frac{\partial}{\partial \theta} \ln \prod_{i=1}^{N} \mathcal{L}_{i} = \frac{\partial}{\partial \theta} \sum_{i=1}^{N} \ln \mathcal{L}_{i} = 0$$

- Το μέγιστο της likelihood συνάρτησης ατιστοιχεί σε τιμές της/των παραμέτρων θ , που ελαχιστοποιούν την ποσότητα: $-\sum_{i=1}^N \ln \mathcal{L}_i$
- Αν υπάρχουν πολλές παράμετροι θ, μπορούμε να ελαχιστοποιήσουμε ως προς κάθε μία από αυτές
 - Θα εξετάσουμε πιθανές συσχετίσεις μεταξύ τους

Παράδειγμα Poisson κατανομής για likelihood

- □ Έστω Ν ανεξάρτητες προσπάθειες, η κάθε μία με αποτέλεσμα *n_i*
- Η likelihood συνάρτηση να παρατηρήσουμε n; όταν η παραγματική τιμή είναι μ

$$\mathcal{L}_{i}(n_{i};\mu) = \frac{e^{-\mu}(\mu)^{n_{i}}}{n_{i}!}$$

□ Εφόσον έχουμε Ν μετρήσεις, το γινόμενο των likelihoods για τις Ν μετρήσεις είναι:

$$\mathcal{L}(data;\mu) = \prod_{i=1}^{N} \frac{e^{-\mu} (\mu)^{n_i}}{n_i!} \Rightarrow \ln \mathcal{L} = \sum_{i=1}^{N} \ln \left(\frac{e^{-\mu} (\mu)^{n_i}}{n_i!} \right)$$

$$\Rightarrow \ln \mathcal{L} = \sum_{i=1}^{N} \left(-\mu + n_i \ln(\mu) - \ln(n_i!) \right) \Rightarrow \ln \mathcal{L} = -N\mu + \ln(\mu) \sum_{i=1}^{N} (n_i) + const$$

□ Παραγωγίζουμε την τελευταία ως προς τις παραμέτρους της θεωρίας, *θ* = *μ*

$$\frac{d \ln \mathcal{L}}{d \mu} \bigg|_{\hat{\mu}} = -N + \frac{\sum_{i=1}^{N} n_i}{\mu} = 0 \implies \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} n_i$$

Όπως αναμένονταν, η καλύτερη εκτίμηση για την πραγματική τιμή είναι η μέση τιμή

Likelihood Gaussian κατανομής

- \Box Έστω η Gaussian κατανομή: $G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- □ Παίρνουμε την παράγωγο της log likelihood συνάρτησης:

$$\left. \frac{\partial}{\partial \mu} \left(\ln \mathcal{L} \right) \right|_{\hat{\mu} = \mu} = \frac{\partial}{\partial \mu} \left(-\sum_{i=1}^{N} \frac{\left(x_{i} - \mu \right)^{2}}{2\sigma^{2}} + const \right) \Rightarrow \frac{\partial}{\partial \mu} \left(\ln \mathcal{L} \right) \right|_{\hat{\mu} = \mu} = -\sum_{i=1}^{N} \frac{\left(x_{i} - \mu \right)}{\sigma^{2}} \right|_{\hat{\mu} = \mu} = 0$$

$$\Rightarrow \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 \Box Η εκτίμηση για την αβεβαιότητα σ, είναι: $\sigma = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$

Binned ή unbinned log likelihood

- O φορμαλισμός likelihood δουλεύει για οποιαδήποτε καλά συμπεριφερόμενη pdf
- □ Το γινόμενο της likelihood είναι ένα γινόμενο ως προς τις μετρήσεις
- □ Μπορούμε να προσδιορίσουμε την έννοια της μέτρησης
- Παράδειγμα: Η μέτρηση του χρόνου ζωής ενός σωματιδίου από ένα σύνολο τέτοιων σωματιδίων που παράγονται τη χρονική στιγμή t=0 και διασπώνται σε χρόνο t: $f(t) = \frac{1}{\tau} e^{-t/\tau}$

Δύο τρόποι για να κατασκευάσουμε τη συνάρτηση likelihood:

- 1) Για κάθε διάσπαση i μετρούμε το χρόνο t_i . Κατασκευή της likelihood από το γινόμενο όλων των μετρούμενων χρόνων (unbinned likelihood)
- 2) Κατασκευή ενός histogram του αριθμού των διασπάσεων σε bins του χρόνου. Στην περίπτωση αυτή, η μέτρηση είναι ο αριθμός των διασπάσεων σε κάθε bin *i* (binned likelihood)

Σύνδεση log likelihood και χ²

Είδαμε προηγουμένως ότι για την περίπτωση της Gaussian κατανομής:

$$\ln \mathcal{L} = -\sum_{i=1}^{N} \frac{\left(x_i - \mu\right)^2}{2\sigma^2} + const$$

- Η σχέση αυτή συγκρίνεται με την αντίστοιχη του χ^2 : $\chi^2 \equiv \sum_{i=1}^N \frac{(x_i \mu)^2}{\sigma^2}$
- \Box Αντιστοιχία μεταξύ των δύο σχέσεων προκύπτει ότι: $\chi^2 \equiv -2 \ln \mathcal{L}$
- Ο φορμαλισμός της likelihood δουλεύει για όλες τις pdf και επομένως είναι περισσότερος γενικός και θα πρέπει να χρησιμοποιείται γενικά

Log likelihood

Ο λογάριθμος της likelihood συνάρτησης μπορεί να αναπτυχθεί κατά Taylor ως προς το ελάχιστό της:

$$\frac{\partial \ln \mathcal{L}}{\partial \theta} \bigg|_{\theta = \theta_{\min}} = 0 \implies \ln \mathcal{L} = \ln \mathcal{L}_{\min} + \frac{1}{2} \frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2} \bigg|_{\theta = \theta_{\min}} \left(\theta - \theta_{\min}\right)^2$$

$$\implies 2 \left(\ln \mathcal{L} - \ln \mathcal{L}_{\min}\right) = \frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2} \bigg|_{\theta = \theta_{\min}} \left(\theta - \theta_{\min}\right)^2$$

- lacktriangle Στο όριο του μεγάλου αριθμοπθυ μετρήσεων N, η κατανομή της \mathcal{L} χάρη στο κεντρικό θεώρημα (θεώρημα μεγάλων αριθμών) γίνεται Gaussian.
- □ Για Gaussian κατανομές αλλαγή στην $2 \ln \mathcal{L}$ κατά μία μονάδα, ισοδυναμεί σε αλλαγή κατά 1σ στην παράμετρο θ . Επομένως η αβεβαιότητα στη θ είναι:

$$\sigma_{\theta}^{2} \equiv \left\langle \left(\theta - \theta_{\min}\right)^{2} \right\rangle = -\frac{1}{\frac{\partial^{2} \ln \mathcal{L}}{\partial \theta^{2}}}$$

Η αβεβαιότητα στις εκτιμούμενες τιμές των παραμέτρων θ μπορούν να βρεθούν υπολογίζοντας την τιμή του $\Delta\theta$ για την οποία το $-2\ln\mathcal{L}$ αλλάζει κατά μία μονάδα . Αν η $\ln\mathcal{L}$ δεν είναι παραβολική, η αβεβαιότητα είναι ασυμμετρική

Παράδειγμα

□ Έστω ότι κάναμε μία σειρά από μετρήσεις *x_i*. Έστω ακόμα ότι ο αριθμός των γεγονότων συναρτήσει του *x* ακολουθεί την κατανομή:

$$N(x) = A + Bx \qquad \text{yi} \quad 0 < x < 10$$

Θα χρησιμοποιήσουμε τη μέθοδο της likelihood για να εκτιμήσουμε το λόγο k = A/B

- Πώς θα πρέπει να χτίσουμε το πρόβλημα:
 - ♦ Ο συνολικός αριθμός των γεγονότων Ν_{tot} μπορεί να υπολογισθεί από

$$N_{tot} = \int_{0}^{10} (A + Bx) dx \implies N_{tot} = \left(Ax + \frac{1}{2} Bx^{2} \right)_{0}^{10} \implies N_{tot} = 10A + 50B$$

♦ Κανονικοποίηση της συνάρτησης πυκνότητας πιθανότητας:

$$f(x;A,B) = \frac{1}{N_{tot}} (A+Bx) = \frac{1}{10A+50B} (A+Bx) = \frac{A}{10A+50B} + \frac{Bx}{10A+50B}$$
$$f(x;A,B) = 0.1 \left(\frac{k}{k+5} + \frac{x}{k+5} \right)$$

 \Rightarrow Η likelihood συνάρτηση θα είναι: $\mathcal{L}(x;k) = \prod_{i=1}^{N} 0.1 \left(\frac{k}{k+5} + \frac{x}{k+5} \right)$

Παράδειγμα

♦ H log likelihood συνάρτηση θα είναι επομένως:

$$\ln\left(\mathcal{L}(x;k)\right) = \sum_{i=1}^{N} \ln\left[0.1\left(\frac{k}{k+5} + \frac{x}{k+5}\right)\right]$$

$$\Rightarrow \ln\left(\mathcal{L}(x;k)\right) = \sum_{i=1}^{N} \ln\left[\left(\frac{k}{k+5} + \frac{x}{k+5}\right)\right] + N\ln(0.1)$$

- ightharpoonup Αν οι τιμές των x_i είναι γνωστές τότε μπορούμε να ελαχιστοποιήσουμε την $-\ln \mathcal{L}$ ως προς τον λόγο k. Ο τελευταίος όρος είναι σταθερός και ανεξάρτητος του xαπλά προσθέτει ένα σταθερό όρο στη log likelihood και δεν παίζει ρόλο στην ελαχιστοποίηση.
- Η ελαχιστοποίηση μπορεί να γίνει με διάφορα λογισμικά (όπως το ROOT που περιέχει το λογισμικό ελαχιστοποίησης Minuit).
- ightharpoonup Ωστόσο το ελάχιστο μπορεί να βρεθεί παρατηρώντας πώς αλλάζει η $\ln \mathcal{L}(x;k)$ καθώς μεταβάλεται η παράμετρος k.
- Μπορείτε να κατεβάσετε το πρόγραμμα από το εργαστήριο 10 για το ROOT το οποίο δημιουργεί δεδομένα για A=1 και B=2 και τα χρησιμοποιεί για να βρεί το k.

Σχετιζόμενες μεταβλητές

- Σε πολλές περιπτώσεις, οι μεταβλητές που χρησιμοποιούνται σε προσαρμογή δεδομένων δεν είναι ανεξάρτητες μεταξύ τους
- Κατά τη διάρκεια της ελαχιστοποίησης θα πρέπει να λαμβάνονται υπόψην συσχετίσεις μεταξύ των παραμέτρων
- Σαν υπενθύμιση, η απόκλιση των μετρήσεων δίνεται από τη σχέση:

$$\sigma^2 \equiv Var(x) = \int_0^+ x^2 f(x) dx - \mu^2$$

□ Ορίζουμε την covariance σχέση, Cov[x,y], μεταξύ δύο μεταβλητών x και y:

$$\operatorname{cov}[x,y] = \int_{-\infty}^{+\infty} xy f(x,y) dx dy - \mu_x \mu_y$$

□ Αν οι δύο μεταβλητές x και y είναι ανεξάρτητες μεταξύ τους, τότε:

$$cov[x,y] = 0$$
 για $x \neq y$ (ανεξάρτητα)

Περισσότερες των δύο σχετιζόμενες μεταβλητές

- Κάθε μέτρηση είναι ένα σύνολο Ν ποσοτήτων, x_1, x_2, \dots, x_N
- □ Ο πίνακας συσχέτισης, covariance matrix, είναι ένας N x N πίνακας με στοιχεία:

$$V_{ij} = \text{cov}\left[x_{i,} x_{j}\right] \equiv \left\langle \left\langle x_{i} - \mu_{i} \right\rangle \left\langle x_{j} - \mu_{j} \right\rangle \right\rangle$$

- Για μή σχετιζόμενες (ανεξάρτητες) μεταβλητές, ο πίνακας αυτός είναι διαγώνιος
- Μία σχετική ποσότητα που χρησιμοποιούμε αρκετές φορές είναι ο παράγοντας συσχέτισης:

$$\rho_{ij} = \frac{V_{ij}}{\sqrt{V_{ii}V_{jj}}} \equiv \frac{V_{ij}}{\sigma_i\sigma_j}$$

 $lue{}$ Οι τιμές του παράγοντα συσχέτισης βρίσκονται στο διάστημα: $-1 \le
ho_{ii} \le 1$

O covariance πίνακας για την Gaussian περίπτωση

□ Έστω x και y ανεξάρτητες μεταβλητές

$$G(x, y; \mu_{x}, \sigma_{x}, \mu_{y}, \sigma_{y}) = \frac{1}{\sqrt{2\pi\sigma_{x}}} e^{-\frac{(x-\mu_{x})^{2}}{2\sigma_{x}^{2}}} \frac{1}{\sqrt{2\pi\sigma_{y}}} e^{-\frac{(y-\mu_{y})^{2}}{2\sigma_{y}^{2}}}$$

- ightharpoonup Η 2η παράγωγος ως προς μ δίνει: $\frac{\partial^2}{d\mu_r^2} \left(\ln \mathcal{L} \right) = -\sum_{i=1}^{\infty} \frac{1}{\sigma_r^2}$
- Υποθέτουμε τώρα ότι τα x και y δεν είναι ανεξάρτητες μεταξύ τους
- Αντιστρέφουμε τον covariance πίνακα για μια ομάδα εκτιμητών μέγιστης πιθανότητας που ορίζονται σύμφωνα με τη:

$$\left\langle \hat{V}^{-1} \right\rangle_{ij} = -\frac{\partial^2 \ln \mathcal{L}}{\partial \mu_i \partial \mu_j}$$

□ Για την περίπτωση της binned likelihood, και σε περιοχή με μεγάλο αριθμό Ν μετρήσεων, η likelihood μπορεί να προσεγγισθεί με χ²¨

$$\left\langle \hat{V}^{-1} \right\rangle_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \mu_i \partial \mu_j}$$

Αποτέλεσμα συσχετιζόμενων αβεβαιοτήτων

- Έλλειψη σφάλματος για δύο παραμέτρους οι οποίες έχουν αρνητική συσχέτιση
- Η κλίση σχετίζεται με τον παράγοντα συσχέτισης: $d\theta_i/d\theta_j$ όπου θ είναι εκτιμητές (στο προηγούμενο παράδειγμα ήταν οι μέσες τιμές)
- Ο correlation πίνακας συνήθως προσδιορίζεται από τα δεδομένα κατά τη διάρκεια της διαδικασίας προσαρμογής.

Διάδοση σφαλμάτων

- □ Κάποιος μπορεί να ανατρέξει στο internet:

 http://en.wikipedia.org/wiki/Propagation_of_uncertainty
- Η βασική σχέση που χρησιμοποιούμε είναι:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial a}\right)^2 + \left(\frac{\partial f}{\partial \beta}\right)^2 + 2\left(\frac{\partial f}{\partial a}\right)\left(\frac{\partial f}{\partial \beta}\right) \operatorname{cov}\left[a,\beta\right]$$

όπου στο συγκεκριμένο μοντέλο υπάρχουν δύο παράμετροι α και β

- Η σχέση μπορεί να επεκταθεί σε περισσότερες διαστάσεις και συνήθως εκφράζεται με τη βοήθεια ενός πίνακα
- Αν οι παράμετροι είναι μή σχετιζόμενες (ανεξάρτητες μεταξύ τους) τότε η σχέση περιορίζεται σε αυτή που έχετε δει στα εισαγωγικά εργαστήρια

Διαστήματα εμπιστοσύνης – confidence intervals

Σρησιμοποιώντας τη γλώσσα των frequists: το ποσοστό του αποτελέσματος το οποίο δεν περιέχεται μεταξύ x_L και x_U είναι:

$$1 - a = \int_{x_I}^{x_U} P(x; \theta) dx$$

□ Αν είχαμε Gaussian κατανομή τότε το παραπάνω δηλώνεται:

- > 90% διπλής περιοχής διάστημα εμπιστοσύνης, α = 0.1
- > 5% του ολοκληρώματος στις γραμμοσκιασμένες περιοχές σε κάθε πλευρά

Επίπεδα εμπιστοσύνης για δύο συνήθεις κατανομές

Για Gaussian κατανομή:

Περιοχή των άκρων α έξω από ±δ από τη μέση τιμή μιας Gaussian κατανομής:

α	δ	α	δ
0.3173	1σ	0.2	1.28σ
4.55×10^{-2}	2σ	0.1	1.64σ
2.7×10^{-3}	3σ	0.05	1.96σ
6.3×10^{-5}	4σ	0.01	2.58σ
5.7×10^{-7}	5σ	0.001	3.29σ
2.0×10^{-9}	6σ	10^{-4}	3.89σ

Για Poissonian κατανομή:

Χαμηλότερο και υψηλότερο (μονόπλευρη) όριο για την μέση τιμή μ μιας Poissonian μεταβλητής που δίνει η παρατηρούμενα γεγονότα απουσία υποβάθρου για διάστημα εμπιστοσύνης 90% και 95%:

Στην περίπτωση αυτή το α αντιστοιχεί στο ποσοστό έξω από την περιοχή ολοκλήρωσης

$1 - \alpha = 90\%$			$1-\alpha=\!95\%$	
n	μ_{lo}	$\mu_{ m up}$	μ_{lo}	μ_{up}
0	-	2.30		3.00
1	0.105	3.89	0.051	4.74
2	0.532	5.32	0.355	6.30
3	1.10	6.68	0.818	7.75
4	1.74	7.99	1.37	9.15
5	2.43	9.27	1.97	10.51
6	3.15	10.53	2.61	11.84
7	3.89	11.77	3.29	13.15
8	4.66	12.99	3.98	14.43
9	5.43	14.21	4.70	15.71
10	6.22	15.41	5.43	16.96

Έλεγχος υπόθεσης (hypothesis testing)

- Ότι αναφέραμε μέχρι τώρα αποσκοπούσαν στην εύρεση της καλύτερης τιμής των παραμέτρων και την αβεβαιότητά τους κάτω από την υπόθεση ότι γνωρίζουμε την pdf:
- □ Τίποτα στη διαδικασία που ακολουθήσαμε δεν μας λέει αν τα δεδομένα που έχουμε συνάδουν με την υπόθεση που κάναμε
- Χρειαζόμαστε ένα στατιστικό test για να εξακριβώσουμε αν η υπόθεση που κάναμε είναι σωστή
 - Τεστ σημαντικότητας: Πόσο πιθανόν είναι το σήμα να αποτελεί στατιστική διακύμανση
 - Τεστ καλής ποιότητας της προσαρμογής (Goodness of fit GoF): έλεγχος για το κατά πόσο τα δεδομένα συνάδουν με την προτεινόμενη υπόθεση
 - Τεστ εξαίρεσης (exclusion test): ποιο το μέγεθος του σήματος το οποίο μπορεί να κρύβεται στα δεδομένα.

Τεστ σημαντικότητας

- Ας υποθέσουμε ότι μετρούμε μια τιμή*t* για τα δεδομένα:
 - Πόσο πιθανό είναι να δούμε μία τιμή η οποία είναι πιο μεγάλη από πρόβλεψη από την μέτρηση που κάναμε;
- Ας υποθέσουμε ότι μετρούμε μια κατανομή από δεδομένα
 - Πόσο συνάδει η κατανομή αυτή με την υπόθεση;
- Μπορούμε να χρησιμοποιήσουμε κάτι σαν χ² χ²/n

$$P-value = \int_{x_{meas}^{2}}^{\infty} f(x; n_{d}) dx$$

Έλεγχος Υπόθεσης: Ο λόγος των πιθανοτήτων

- Στα περισσότερα πειράματα, όταν διερευνάται η ύπαρξη σήματος, αυτό βρίσκεται αναμεμειγμένο με αρκετό υπόβαθρο
- Πώς μπορούμε να ξέρουμε αν υπάρχει σημαντικό σήμα επιπλέον του υποβάθρου;
- \square Δεδομένων δύο υποθέσεων $H_{\rm B}$ (background) και $H_{\rm S+B}$ (σήμα και υπόβαθρο), ο λόγος των πιθανοτήτων αποτελεί ένα χρήσιμο στατιστικό τέστ

$$\lambda(\vec{N}) = \frac{\mathcal{L}(\vec{N}|H_{S+B})}{\mathcal{L}(\vec{N}|H_B)}$$