Lecture-26

Sushrut Tadwalkar; 55554711

November 9, 2023

Failure modes

A set K is compact iff every open cover has a finite subcover. Thus, a set S fails to be compact iff some *open* cover has *no* finite subcover.

Lemma

In $(\mathbb{R}, |\cdot|)$, the set \mathbb{Z} is not compact.

Proof. Let $\mathscr{G} = \{(n-1,n+1) : n \in \mathbb{Z}\}$. Clearly, each element \mathscr{G} is an open set, and $\mathbb{Z} \subseteq \bigcup \mathscr{G}$. However, any finite subset $\mathcal{G}_1, \ldots, \mathcal{G}_N$ of \mathscr{G} will cover only finite subsets of \mathbb{Z} , so $\mathbb{Z} \subseteq \mathcal{G}_1 \cup \mathcal{G}_2 \cup \cdots \cup \mathcal{G}_N$.

Another open cover could be $\mathcal{G} = \{(-n, n) : n \in \mathbb{N}\}.$

Definition: Bounded

In a metric space (\mathcal{X}, d) , we say that a set $\mathcal{A} \subseteq \mathcal{X}$ is **bounded** exactly when there exists $x \in \mathcal{X}$ and R > 0 such that $A \subseteq \mathbb{B}[x; R)$.

Proposition

In any metric space (\mathcal{X}, d) , every compact set is bounded.

Proof. Let $\mathcal{K} \subseteq \mathcal{X}$ be compact. Pick any $x \in \mathcal{X}$ and let $\mathscr{G} = \{\mathbb{B}[x;n) : n \in \mathbb{N}\}$. Then, $\bigcup \mathscr{G} \supseteq \mathcal{X} \supseteq \mathcal{K}$, so \mathscr{G} is an open cover for \mathcal{K} . Hence, it must have a finite subcover $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_N$ with each $\mathcal{G}_k = \mathbb{B}[x;n_k)$. Let $R = \max\{n_1, n_2, \ldots, n_N\}$ to get $\mathbb{B}[x;R) = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \cdots \cup \mathcal{G}_N \supseteq \mathcal{K}$.

Lemma

In
$$\mathbb{R}$$
, let $\mathcal{S} = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

- (a) Set S is *not* compact.
- (b) Set $\overline{S} = S \cup \{0\}$ is compact.
- (a) *Proof.* For each n, note that $\frac{1}{n} \frac{1}{n+1} = \frac{1}{n(n+1)} > \frac{1}{(n+1)^2}$.

Let $\mathcal{G}_n = \mathbb{B}\left[\frac{1}{n}, \frac{1}{(n+1)^2}\right]$ to get an open interval with $\mathcal{G}_n \cap \mathcal{S} = \left\{\frac{1}{n}\right\}$. Use $\mathscr{G} = \{\mathcal{G}_n : n \in \mathbb{N}\}$ as an open cover for \mathcal{S} . No finite subcover can include all points of \mathcal{S} since each \mathcal{G}_k only holds one point of \mathcal{S} .

1

(b) *Proof.* Let \mathscr{G} be any open cover for \overline{S} . Thus, there must be some open $\mathcal{G}_0 \in \mathscr{G}$ with $0 \in \mathcal{G}_0$. Being open, \mathcal{G}_0 must contain $\mathbb{B}[0;\varepsilon)$ for some $\varepsilon>0$. Pick any integer $N>\frac{1}{\varepsilon}$. Then, $\frac{1}{n}<\varepsilon$ for all n>N, so all these points lie in \mathcal{G}_0 . For indices $1,2,\ldots,N$, pick $\mathcal{G}_k\in\mathscr{G}$ such that $\frac{1}{k}\in\mathcal{G}_k$. Hence, we conclude that

$$\overline{S} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{N}\right\} \cup \left\{\frac{1}{N+1}, \frac{1}{N+2}, \dots\right\}$$
$$\subseteq (\mathcal{G}_1 \cup \mathcal{G}_2 \cup \dots \cup \mathcal{G}_N) \cup \mathcal{G}_0,$$

which is a finite subcover.

Proposition

In any HTS $(\mathcal{X}, \mathcal{T})$, every compact set is closed.

Proof. Let $\mathcal{K} \subseteq \mathcal{X}$ be compact. We will show that \mathcal{K}^c is open. Pick any $z \in \mathcal{K}^c$. Now, for each $x \in \mathcal{K}$, HTS 4 implies that there exists $\mathcal{U}(x)$, $\mathcal{V}(x)$ and $\mathcal{U}(x)$ with $x \in \mathcal{U}(x)$, $x \in \mathcal{V}(x)$ such that $\mathcal{U}(x)$ and $x \in \mathcal{U}(x)$ such that $\mathcal{U}(x)$ and $\mathcal{U}(x)$ such that $\mathcal{U}(x)$ and $\mathcal{U}(x)$ such that $\mathcal{U}(x)$ and $\mathcal{U}(x)$ such that $\mathcal{U}(x)$ such t

Now, let $\mathscr{G} = \{\mathcal{U}_x : x \in \mathcal{K}\}$ is clearly an open cover for \mathcal{K} , so by compactness, it must have a finite subcover:

$$\mathcal{K} \subseteq \mathcal{U}_{x_1} \cup \mathcal{U}_{x_2} \cup \cdots \cup \mathcal{U}_{x_N}$$

for some points $x_1, \ldots, x_N \in \mathcal{K}$. Thus,

$$\mathcal{K}^c \supseteq \mathcal{U}_{x_1}^c \cap \mathcal{U}_{x_2}^c \cap \dots \cap \mathcal{U}_{x_N}^c$$
$$\supseteq \mathcal{V}_{x_1} \cap \mathcal{V}_{x_2} \cap \dots \cap \mathcal{V}_{x_N} \supseteq \{z\}.$$

Therefore, since $\mathcal{V}_{x_1} \cap \mathcal{V}_{x_2} \cap \cdots \cap \mathcal{V}_{x_N}$ is open (HTS 3), we conclude that $z \in (\mathcal{K}^c)^{\circ}$.

0.1 Ultimate end-goal:

In a metric space (\mathcal{X}, d)

 $[\mathcal{K} \text{ is compact}] \iff [\mathcal{K} \text{ is closed}] \text{ and } [\mathcal{K} \text{ is bounded}] \text{ and } [??] \text{ (where this depends on what } (\mathcal{X}, d) \text{ we study.)}$

Note. In ℓ^2 , $S = \{\hat{e}_p = \underbrace{(0,0,\ldots,1,0,\ldots,0)}_{1 \text{ at } p} : p \in \mathbb{N}\}$ is closed and bounded and **not compact**; we need more conditions for compactness.

Proposition

In a HTS $(\mathcal{X}, \mathcal{T})$, if \mathcal{K} is compact, every closed subset of \mathcal{K} is compact.