Методы оптимизации Лекция 5: Условия оптимальности. Введение в теорию двойственности

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

17 октября 2022 г.

На прошлой лекции

- ▶ Постановки задач выпуклой оптимизации
- ► LP, SOCP, SDP
- ▶ Примеры приложений

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

$$f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$$

$$\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* - \mathbf{y}\|_2} = 0 \ (*)$$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- lacktriangle Если $f'(\mathbf{x}^*)
 eq 0$, рассмотрим $\mathbf{y}(au) = \mathbf{x}^* au f'(\mathbf{x}^*)$, au > 0

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- lacktriangle Если $f'(\mathbf{x}^*)
 eq 0$, рассмотрим $\mathbf{y}(au) = \mathbf{x}^* au f'(\mathbf{x}^*)$, au > 0
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau ||f'(\mathbf{x}^*)||_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- lackbox В силу (*) найдётся $ar{ au}$ такое что для всех $au \in (0, ar{ au})$ выполнено $rac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \leq rac{1}{2} \|f'(\mathbf{x}^*)\|_2$ или $r(\mathbf{x}^*, \mathbf{y}) \leq rac{ au}{2} \|f'(\mathbf{x}^*)\|_2^2$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ► Если $f'(\mathbf{x}^*) \neq 0$, рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*), \, \tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau ||f'(\mathbf{x}^*)||_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- lacktriangle В силу (*) найдётся $ar{ au}$ такое что для всех $au \in (0, ar{ au})$ выполнено $rac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \leq rac{1}{2} \|f'(\mathbf{x}^*)\|_2$ или $r(\mathbf{x}^*, \mathbf{y}) \leq rac{ au}{2} \|f'(\mathbf{x}^*)\|_2^2$
- lacktriangle Откуда получим $f(\mathbf{y}(au)) f(\mathbf{x}^*) \le -\frac{ au}{2} \|f'(\mathbf{x}^*)\|_2^2 < 0$ Значит \mathbf{x}^* не минимум, противоречие.

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*) = 0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Доказательство

ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ightharpoonup Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ightharpoonup Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- ▶ Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Доказательство

- lacktriangle Если \mathbf{x}^* глобальный минимум, то \mathbf{x}^* локальный минимум
- ightharpoonup Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Значит x* – глобальный минимум.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

Доказательство

Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- Густь $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- Густь $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть \mathbf{x}^* решение задачи (2), но найдётся $\tilde{\mathbf{y}}$ такой что $\langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^*
 angle < 0$
- lacktriangle Рассмотрим точку $\mathbf{z}(t) = t ilde{\mathbf{y}} + (1-t) \mathbf{x}^*$, $t \in [0,1]$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- Густь $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть \mathbf{x}^* решение задачи (2), но найдётся $\tilde{\mathbf{y}}$ такой что $\langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*$, $t \in [0,1]$
- lacktriangle Тогда в силу $\frac{d}{dt}f(\mathbf{z}(t))\big|_{t=0} = \langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^*
 angle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- Густь $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть \mathbf{x}^* решение задачи (2), но найдётся $\tilde{\mathbf{y}}$ такой что $\langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*, t \in [0,1]$
- ightharpoonup Тогда в силу $\frac{d}{dt}f(\mathbf{z}(t))\big|_{t=0} = \langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^* \rangle < 0$
- ightharpoonup Значит для малого t выполнено $f(\mathbf{z}(t)) < f(\mathbf{x}^*)$. Противоречие.

Задача оптимизации с функциональными ограничениями

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, p \end{aligned}$$

 $\mathsf{dom}\ f_0 = \mathcal{D} \subseteq \mathbb{R}^n$, $f_0(\mathbf{x}^*) = p^*$

Q: как сформулировать условия оптимальности для задачи в таком виде?

Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) \le 0, \ j = 1, \dots, p$$

dom $f_0 = \mathcal{D} \subseteq \mathbb{R}^n$, $f_0(\mathbf{x}^*) = p^*$

Q: как сформулировать условия оптимальности для задачи в таком виде?

Лагранжиан
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x})$$
 $\blacktriangleright \lambda_i$ – множители Лагранжа для ограничений

- $q_i(\mathbf{x}) = 0, \ i = 1, \dots, m$
- $ightharpoonup \mu_i$ множители Лагранжа для ограничений $h_i(\mathbf{x}) \leq 0, \ j = 1, \dots, p$

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

Свойства

- Всегда вогнута
- lacktriangle Может равняться $-\infty$ для некоторых $(oldsymbol{\lambda},oldsymbol{\mu})$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Утверждение Если $\mu \ge 0$, тогда $p^* \ge g(\lambda, \mu)$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ iny}$ Если $\hat{f x}\in \mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu}\geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ iny}$ Если $\hat{\mathbf{x}} \in \mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu} \geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

lacktriangle Минимизируя обе части по всем допустимым $\hat{\mathbf{x}}$, получим

$$p^* \geq g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

Утверждение

Если ${m \mu} \geq 0$, тогда $p^* \geq g({m \lambda},{m \mu})$

Доказательство

 $oldsymbol{ iny}$ Если $\hat{\mathbf{x}} \in \mathcal{D}$ и лежит в допустимом множестве, а также $oldsymbol{\mu} \geq 0$, тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

lacktriangle Минимизируя обе части по всем допустимым $\hat{\mathbf{x}}$, получим

$$p^* \geq g(\lambda, \mu)$$

Q: что теперь надо сделать с двойственной функцией, чтобы получить наилучшее приближение к p^* ?

Определение

Двойственной задачей называется следующая задача

$$\max g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

$$\text{s.t. } \pmb{\mu} \geq 0$$

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

Всегда выпуклая задача

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- ▶ Всегда выпуклая задача
- lacktriangle Обозначим $d^*=g(oldsymbol{\lambda}^*,oldsymbol{\mu}^*)$

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- Всегда выпуклая задача
- lacktriangle Обозначим $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция

Двойственная задача

Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t. $\pmb{\mu} \geq 0$

- Всегда выпуклая задача
- lacktriangle Обозначим $d^*=g(oldsymbol{\lambda}^*,oldsymbol{\mu}^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция
- lacktriangle Вектора $(m{\lambda}, m{\mu})$ называются допустимыми для двойственной задачи, если $m{\mu} \geq 0$ и $(m{\lambda}, m{\mu}) \in {\sf dom}\ g$

Слабая двойственность: $d^* \leq p^*$

Слабая двойственность: $d^* \le p^*$

▶ Всегда выполняется по построению двойственной задачи

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

В общем случае НЕ выполняется

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- ▶ В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- ▶ Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- ▶ В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

lacktriangle Оценка точности решения: $f_0(\mathbf{x}) - p^* \leq f_0(\mathbf{x}) - g(\pmb{\lambda}, \pmb{\mu})$

Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- ▶ В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений, подробнее через несколько слайдов
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- lacktriangle Оценка точности решения: $f_0(\mathbf{x}) p^* \leq f_0(\mathbf{x}) g(oldsymbol{\lambda}, oldsymbol{\mu})$
- Доказательство корректности и сходимости алгоритма

Геометрическая интерпретация

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) & g(\lambda) &= \inf_{(t,u) \in \mathcal{G}} (t + \lambda u) \\ \text{s.t. } f_1(\mathbf{x}) &\leq 0 & \mathcal{G} &= \{ (f_0(\mathbf{x}), f_1(\mathbf{x})) \mid \mathbf{x} \in \mathcal{D} \} \end{aligned}$$

Условие Слейтера и сильная двойственность

Условие Слейтера

Говорят, что выполнено условие Слейтера, если

$$\exists \bar{\mathbf{x}} \in \text{int } \mathcal{D}: \ f_i(\bar{\mathbf{x}}) < 0, \ \mathbf{A}\bar{\mathbf{x}} = \mathbf{b}$$

Теорема

Сильная двойственность выполняется для выпуклой задачи

$$\min f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{p \times n}$

если выполнено условие Слейтера.

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

ightharpoonup \mathbf{x}^* минимизирует $L(\mathbf{x}, oldsymbol{\lambda}^*, oldsymbol{\mu}^*)$

Пусть выполнена сильная двойственность, \mathbf{x}^* – решение прямой задачи, $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ – решение двойственной задачи, тогда

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

- ightharpoonup х* минимизирует $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$
- Условие дополняющей нежёсткости $\mu_i^* h_i(\mathbf{x}^*) = 0, \ j = 1, \dots, p$

$$\mu_i^* > 0 \Rightarrow h_i(\mathbf{x}^*) = 0, \quad h_i(\mathbf{x}^*) < 0 \Rightarrow \mu_i^* = 0$$

1.
$$h_j(\mathbf{x}^*) \le 0$$

- 1. $h_j(\mathbf{x}^*) \le 0$
- $2. g_i(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

- 1. $h_i(\mathbf{x}^*) \le 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \ge 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Последнее равенство выполнено в силу

$$\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

и необходимого условия минимума.

Пусть $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(\mathbf{x}^*) \leq 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq 0$
- 4. $\mu_i^* h_j(\mathbf{x}^*) = 0$

5.
$$f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$$

Последнее равенство выполнено в силу

$$\min_{\mathbf{x}} L(\mathbf{x}, \pmb{\lambda}^*, \pmb{\mu}^*) = L(\mathbf{x}^*, \pmb{\lambda}^*, \pmb{\mu}^*)$$

и необходимого условия минимума.

Замечание

Сначала эти условия были известны как условия Куна-Таккера (работа 1951 г.). Потом обнаружили, что Вильям Каруш вывел их в своей дипломной работе 1939 г.

Утверждение 1

- выполнена сильная двойственность
- $lackbrack (\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач

Утверждение 1

- выполнена сильная двойственность
- $lackbox{}(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач Доказательство

Утверждение 1

- выполнена сильная двойственность
- $ightharpoonup (\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$

Утверждение 1

- выполнена сильная двойственность
- $ightharpoonup (\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}})=0$ и $h_j(\hat{\mathbf{x}})\leq 0$
 - $\hat{m{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{m{\lambda}}, \hat{m{\mu}})$ выпуклый по \mathbf{x}

Утверждение 1

- выполнена сильная двойственность
- $\mathbf{\hat{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}}) = 0$ и $h_j(\hat{\mathbf{x}}) \le 0$
 - $\hat{m{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{m{\lambda}}, \hat{m{\mu}})$ выпуклый по \mathbf{x}
 - ▶ Последнее условие → $\hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$

Утверждение 1

- выполнена сильная двойственность
- $ightharpoonup (\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}}) = 0$ и $h_j(\hat{\mathbf{x}}) \le 0$
 - $\hat{m{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{m{\lambda}}, \hat{m{\mu}})$ выпуклый по \mathbf{x}
 - lackbox Последнее условие $ightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - lacktriangle Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}}) = f_0(\hat{\mathbf{x}})$

Утверждение 1

- выполнена сильная двойственность
- $ightharpoonup (\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}}) = 0$ и $h_j(\hat{\mathbf{x}}) \le 0$
 - $\hat{m{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{m{\lambda}}, \hat{m{\mu}})$ выпуклый по \mathbf{x}
 - lackbox Последнее условие $ightarrow \hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - lacktriangle Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}}) = f_0(\hat{\mathbf{x}})$
 - Выполнена сильная двойственность

Утверждение 1

- выполнена сильная двойственность
- $ightharpoonup (\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решения прямой и двойственной задач Доказательство
 - ▶ Первые два условия из ККТ $\to \hat{\mathbf{x}}$ лежит в допустимом множестве, то есть $g_i(\hat{\mathbf{x}}) = 0$ и $h_j(\hat{\mathbf{x}}) \le 0$
 - $\hat{m{\mu}} \geq 0
 ightarrow L(\mathbf{x}, \hat{m{\lambda}}, \hat{m{\mu}})$ выпуклый по \mathbf{x}
 - lackbox Последнее условие o $\hat{\mathbf{x}}$ минимизирует L: $g(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\boldsymbol{\lambda}}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\boldsymbol{\mu}}_j h_j(\hat{\mathbf{x}})$
 - ▶ Из условий дополняющей нежёсткости $\hat{\mu}_j h_j(\hat{\mathbf{x}}) = 0$ следует, что $g(\hat{\lambda}, \hat{\mu}) = f_0(\hat{\mathbf{x}})$
 - ▶ Выполнена сильная двойственность
 - $lackbrack (\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ решения прямой и двойственной задач

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

ightharpoonup Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({f \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

- ightharpoonup Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- ▶ Необходимость выполнения ККТ следует из утверждения для общего случая

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда ${\bf x}$ решение прямой задачи тогда и только тогда, когда существуют $({m \lambda},{m \mu})$ такие, что для них выполнены условия ККТ

Доказательство

- ightharpoonup Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- ▶ Необходимость выполнения ККТ следует из утверждения для общего случая
- Достаточность следует из утверждения 1

$$\min_{x_1,x_2} x_1$$
 s.t. $x_2 \geq x_1^2$
$$x_2 \leq -x_1^2$$

$$\min_{x_1,x_2} x_1$$
 s.t. $x_2 \ge x_1^2$
$$x_2 \le -x_1^2$$

▶ Задача является выпуклой

$$\min_{x_1,x_2} x_1$$
 s.t. $x_2 \geq x_1^2$
$$x_2 \leq -x_1^2$$

- Задача является выпуклой
- Решения системы ККТ нет

$$\min_{x_1,x_2} x_1$$
 s.t. $x_2 \ge x_1^2$
$$x_2 \le -x_1^2$$

- Задача является выпуклой
- Решения системы ККТ нет
- Допустимое множество состоит из единственной точки

$$\min_{x_1,x_2} x_1$$
 s.t. $x_2 \ge x_1^2$
$$x_2 \le -x_1^2$$

- Задача является выпуклой
- Решения системы ККТ нет
- Допустимое множество состоит из единственной точки
- Не выполняется условие Слейтера

 Условие оптимальности для задачи безусловной оптимизации

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- Двойственная функция и двойственная задача

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- Двойственная функция и двойственная задача
- Сильная двойственность и условие Слейтера

- Условие оптимальности для задачи безусловной оптимизации
- Дифференциальный условий оптимальности для задачи условной оптимизации
- Двойственная функция и двойственная задача
- Сильная двойственность и условие Слейтера
- ▶ Условия Каруша-Куна-Таккера