Université de Grenoble École doctorale EEATS

THÈSE CIFRE PRÉSENTÉE PAR

JORY LAFAYE

LABORATOIRE : INRIA GRENOBLE RHÔNE-ALPES ENTREPRISE : ALDEBARAN

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles

Directeur : Dr. Bernard Brogliato, Inria

Encadrants :
Dr. Pierre-Brice Wieber, Inria
Dr. Cyrille Collette, Aldebaran
Dr. Sebastien Dalibard, Aldebaran

Table des matières

Ré	ésumé			5
I	Intro	oduction	n	6
	I.1	tation de la plateforme expérimentale	7	
		I.1.1	Pepper, un robot humanoïde à roues omnidirectionnelles	7
		I.1.2	Capteurs et actionneurs	8
		I.1.3	Propriétés mécaniques	8
	I.2	État de	el'art	8
		I.2.1	Problématiques associées à Pepper	8
		I.2.2	Commande et équilibre des robots à roues	8
			I.2.2.1 Les robots à une et deux roues	8
			I.2.2.2 Les robots à trois roues et plus	8
		I.2.3	Commande et équilibre des robots bipèdes	8
		I.2.4	Synthèse et conclusion	9
	I.3	Organi	sation du document	9
II	Mod	élisatio	n et commande de Pepper	10
	II.1	Modéli	isation dynamique	11
		II.1.1	Choix du modèle et conséquences	11
		II.1.2	Équations de la dynamique	11
		II.1.3	Linéarisation et approximations	11
	II.2	ande prédictive	11	
		II.2.1	Modélisation de la dynamique future	11
		II.2.2	Formulation du problème d'optimisation	11
			II.2.2.1 Choix du type d'optimisation	
			II.2.2.2 Formulation des objectifs	
			II.2.2.3 Formulation des contraintes	12

	II.3	Méthod	de de résolution du problème	12
		II.3.1	Principe de la programmation quadratique	12
		II.3.2	Application à la commande prédictive	12
			II.3.2.1 Linéarisation des contraintes	12
			II.3.2.2 Formulation mathématique finale	12
		II.3.3	Schéma de contrôle	12
		II.3.4	Implémentation logicielle : "MPC-WalkGen"	12
	II.4	Résulta	ats et expérimentations	13
		II.4.1	Protocole expérimental	13
		II.4.2	Expérimentations	13
		II.4.3	Vers un choix automatique des pondérations	13
TTT	Duias		ante du hagaulament de Domnen	1.4
111			npte du basculement de Pepper sation dynamique	14 15
	111.1			
			Problématiques supplémentaires	
			Équations de la dynamique	
	шэ		ande prédictive	15
	111.2		Modélisation de la dynamique future	15
			Formulation des objectifs	15
			Formulation des contraintes	15
	III 2		des deux modèles dynamiques exclusifs	15
	111.3		Choix d'un superviseur et conséquences	15
			Fonctionnement du superviseur	16
			Fonctionnement de l'estimateur d'impact	16
	$\Pi\Pi A$		ats et expérimentations	16
	111.7		Protocole expérimental	16
			Expérimentations	16
			Limites physiques et algorithmiques	16
	III.5		ne modélisation unifiée des deux dynamiques	16
			Problème de complémentarité linéaire	16
			Méthodes de résolution	17
			III.5.2.1 Programmation quadratique avec contraintes non-linéaire	17
			III.5.2.2 Linéarisation par <i>a priori</i>	
			III 5 2 3 Conclusion	17

IV	Prise	en compte de l'inclinaison du sol	18
	IV.1	Modélisation dynamique	19
		IV.1.1 Problématique supplémentaire	19
		IV.1.2 Équations de la dynamique	19
		IV.1.3 Lorsque les trois roues sont au sol	19
		IV.1.4 Lorsque deux roues sont au sol	19
		IV.1.5 Prédiction du vecteur gravité	19
	IV.2	Observabilité	19
		IV.2.1 Problématique associée	19
		IV.2.2 Observation simultanée de l'angle de la pente et de basculement	19
		IV.2.3 Limitations	20
	IV.3	Résultats et expérimentations	20
		IV.3.1 Protocole expérimental	20
		1	20
		IV.3.3 Vers une meilleure observation des angles de pente et de basculement	20
V	Synt	hèse	21
	V.1	Contributions	22
	V.2	Perspectives	22
	V.3	conclusion	22
Bil	oliogr	aphie	23
An	nexes		23
A	Opti	misation du choix du modèle dynamique	24
В	Réso	lution d'un problème quadratique	25

Table des figures

T 1	Pepper .																						-	•
1.1	геррег.	 •	•	•			•	•	•	•	•	•												

[1]

Chapitre I

Introduction

I.1 Présentation de la plateforme expérimentale

I.1.1 Pepper, un robot humanoïde à roues omnidirectionnelles

FIGURE I.1 – Pepper

Présenter le robot, ces dimensions et caractéristiques physiques. Parler de sb et de l'utilisation prévue des robots.

I.1.2 Capteurs et actionneurs

Présenter les différents capteurs et actionneurs, et leurs conséquences sur le contrôle du robot.

I.1.3 Propriétés mécaniques

Parle de la base omnidirectionelle.

Présenter les roues.

Parler du jeu mécanique dans les articulations.

Présenter le problème de basculement.

I.2 État de l'art

I.2.1 Problématiques associées à Pepper

Présenter les différentes problématiques.

Montrer qu'elles sont similaires aux robots à roues et bipèdes.

Montrer les différences entre Pepper et ces robots.

I.2.2 Commande et équilibre des robots à roues

I.2.2.1 Les robots à une et deux roues

Présenter quelques articles.

Expliquer pourquoi les solutions proposées ne sont pas applicables, même pour le push recovery.

I.2.2.2 Les robots à trois roues et plus

Présenter quelques articles.

Montrer le fait que ces robots sont souvent considérés dynamiquement stable.

Pour ceux dont on considère le basculement, montrer que le système mécanique de ces robots implique que toute les roues sont en contact avec le sol.

Conclure en disant que le sujet de changement de nombre de roue a été peu traité.

I.2.3 Commande et équilibre des robots bipèdes

Présenter quelques articles (marche et push).

Montrer les similitudes (cop) et les différences (pied/base).

I.2.4 Synthèse et conclusion

Synthétiser les différentes sections. Conclure de l'importance de la prédiction dans le contrôle de l'équilibre. Nécessité de contrôler différents mode dynamiques (2 roues/3 roues au sol). Besoin de contrôler à la fois le haut du corps et la base mobile.

I.3 Organisation du document

Document en deux parties : contrôle de l'équilibre sur 3 roues / Solution pour le problème du push recovery

Chapitre II

Modélisation et commande de Pepper

II.1 Modélisation dynamique

II.1.1 Choix du modèle et conséquences

Parler des modèles n-corps. (Annexe A) Comparaisons entre ces modèles et le modèle corps complet. Choix entre complexité (nombre de variables) et fidélité avec le robot réel. Pertinence du modèle deux corps pour Pepper.

II.1.2 Équations de la dynamique

Détailler les équations de la dynamique. CoP pour synthétiser les forces de contact. Contraintes sur le CoP. Différences entre un modèle deux masses et un modèle une masse (moment pris en compte)

II.1.3 Linéarisation et approximations

Considérer mouvement horizontal. Négliger les moments de chaque corps (masse point). Considérer la gravité comme constante

II.2 Commande prédictive

II.2.1 Modélisation de la dynamique future

Choix d'une dynamique polynomiale et de l'ordre de la dynamique. Détailler les équations. Ecrire l'équations du CoP

II.2.2 Formulation du problème d'optimisation

II.2.2.1 Choix du type d'optimisation

Choix des variables minimiser une norme 2 sous contraintes Choix de résolution du multi objectif par pondération.

II.2.2.2 Formulation des objectifs

Détailler les différents objectifs

II.2.2.3 Formulation des contraintes

Détailler les différentes contraintes (sous la forme non linéaire)

II.3 Méthode de résolution du problème

II.3.1 Principe de la programmation quadratique

Présenter la résolution de problème d'optimisation quadratique sous contrainte linéaire. Avantages et inconvénients. (Annexe B)

II.3.2 Application à la commande prédictive

II.3.2.1 Linéarisation des contraintes

Linéariser les contraintes

II.3.2.2 Formulation mathématique finale

Ecrire l'équations.

Parler des pondérations.

conclure.

II.3.3 Schéma de contrôle

Présentation du schéma de contrôle : feedback en position / commande en vitesse cartésienne et positions articulaires et vitesse des roues.

Parler des différents retards.

Présentation de la méthode de compensation des retards (extrapolation).

Parler de la compensation des jeux mécaniques (dead-zone).

Réglage de la stabilité (% de command-sensor).

Vitesse des boucles de contrôle.

asservissement bas niveau.

II.3.4 Implémentation logicielle : "MPC-WalkGen"

Présenter mpc-walkgen

II.4 Résultats et expérimentations

II.4.1 Protocole expérimental

Expériences de trajectoire non réalisable.

Choix du sol.

Choix des roues.

II.4.2 Expérimentations

Analyser les difféentes expériences

II.4.3 Vers un choix automatique des pondérations

Présenter l'inconvénient des pondérations fixes.

Nécessité de méta-paramètres pour régler automatiquement les pondérations.

Chapitre III

Prise en compte du basculement de Pepper

III.1 Modélisation dynamique

III.1.1 Problématiques supplémentaires

Parler du sous-actionnement Parler du changement de dynamique (ajout d'une variable) Parler des impacts

III.1.2 Équations de la dynamique

Présentation des nouvelles équations de la dynamique

III.1.3 Linéarisation et approximations

Considérer un approximation aux petits angles Considérer une hauteur constante du robot dans le repère robot Ne pas prendre en compte les moments des corps

III.2 Commande prédictive

III.2.1 Modélisation de la dynamique future

Définir les variables Calculer la dynamique de l'angle.

III.2.2 Formulation des objectifs

Présenter les objectifs

III.2.3 Formulation des contraintes

Présenter les contraintes linéaires

III.3 Gestion des deux modèles dynamiques exclusifs

III.3.1 Choix d'un superviseur et conséquences

Problématique de l'impact et de la phase d'atterrissage. Présentation du superviseur et de l'estimateur.

III.3.2 Fonctionnement du superviseur

Présenter la fsm

III.3.3 Fonctionnement de l'estimateur d'impact

Détailler les équations de calcul de la vitesse et du temps d'impact. Discuter de la validité du modèle.

III.4 Résultats et expérimentations

III.4.1 Protocole expérimental

Différents push avec des balles. Importance du point d'impact (déplacement base / basculement). Parler de l'observation de l'angle de basculement.

III.4.2 Expérimentations

Analyser les expériences

III.4.3 Limites physiques et algorithmiques

Parler des limites en accélération/vitesse des roues. Parler du retard initial lié à l'observation et au superviseur. Parler des moments des bras

III.5 Vers une modélisation unifiée des deux dynamiques

III.5.1 Problème de complémentarité linéaire

Présenter le problème complet. Problématique de la complémentarité linéaire. Nécessité d'un algorithme non-linéaire ou d'apriori. contrainte du temps de calcul.

III.5.2 Méthodes de résolution

III.5.2.1 Programmation quadratique avec contraintes non-linéaire

Présentation des sqp

III.5.2.2 Linéarisation par a priori

Choix qui parrait le plus pertinent (non rebond, variation non linéaire du temps d'impact)

III.5.2.3 Conclusion

Avantages et inconvénients d'une modélisation unifiée. Sensibilité du contrôleur à l'observation de l'angle.

Chapitre IV

Prise en compte de l'inclinaison du sol

IV.1 Modélisation dynamique

IV.1.1 Problématique supplémentaire

Parler des changement de pente lors du déplacement, et de la pente initiale. Variation du vecteur gravité

IV.1.2 Équations de la dynamique

IV.1.3 Lorsque les trois roues sont au sol

Détailler les équations.

IV.1.4 Lorsque deux roues sont au sol

Détailler les équations

IV.1.5 Prédiction du vecteur gravité

Considérer deux optiques : valeur constante et extrapolation Avantages et inconvénients des deux.

IV.2 Observabilité

IV.2.1 Problématique associée

Insuffisance des capteurs pour déterminer chaque angle Besoin d'un observateur avec a priori (non observable directement)

IV.2.2 Observation simultanée de l'angle de la pente et de basculement

Présentation des a priori.

Algorithme d'observation des deux angles

IV.2.3 Limitations

Slow push Observation pendant un déplacement (accélération parasite) Modification de pente pendant un push Bruit généré par la forme des roues

IV.3 Résultats et expérimentations

IV.3.1 Protocole expérimental

Montée de pente sous différents angles. Push et pente

IV.3.2 Expérimentations

Analyser les résultats

IV.3.3 Vers une meilleure observation des angles de pente et de basculement

Utilisation possible d'autres capteurs.

Avantages et inconvénients.

Ajout de nouveaux capteurs

Chapitre V Synthèse

- **V.1** Contributions
- V.2 Perspectives
- V.3 conclusion

Bibliographie

[1] S Miasa, M Al-Mjali, A Al-Haj Ibrahim, and T A Tutunji. Fuzzy control of a two-wheel balancing robot using dspic. In 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pages 1–6, 2010.

Annexe A

Optimisation du choix du modèle dynamique

Annexe B

Résolution d'un problème quadratique