Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Division by 2

Binary System

• Consider division of integers by 2

- Consider division of integers by 2
- There are two possible remainders: 0 and 1

- Consider division of integers by 2
- There are two possible remainders: 0 and 1
- If the remainder of a is 0, then a is divisible by 2

- Consider division of integers by 2
- There are two possible remainders: 0 and 1
- If the remainder of a is 0, then a is divisible by 2
- These are even numbers

- Consider division of integers by 2
- There are two possible remainders: 0 and 1
- If the remainder of a is 0, then a is divisible by 2
- These are even numbers
- If the remainder of a is 1, a is not divisible by 2

- Consider division of integers by 2
- There are two possible remainders: $\boldsymbol{0}$ and $\boldsymbol{1}$
- If the remainder of a is 0, then a is divisible by 2
- These are even numbers
- If the remainder of a is 1, a is not divisible by 2
- These are odd numbers

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

 If a is even and b is odd we can split in pairs all students in the first class and all students except one in the second class

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

- If a is even and b is odd we can split in pairs all students in the first class and all students except one in the second class
- So there is one student left and the answer is no

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

 If both both a and b are even, we can just split students in pairs in both classes separately

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

- If both both a and b are even, we can just split students in pairs in both classes separately
- So the answer is yes

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

 If both a and b are odd, we can split into pairs all students except one in the first class and all student except one in the second class

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

- If both a and b are odd, we can split into pairs all students except one in the first class and all student except one in the second class
- Then we can pair two remaining students

Splitting in pairs

Suppose there are two classes with a and b students respectively. We unite the classes and would like to split all students into pairs to work on a project. Is it possible if a is even and b is odd? What if both a and b are even? What if both a and b are odd?

- If both a and b are odd, we can split into pairs all students except one in the first class and all student except one in the second class
- Then we can pair two remaining students
- So the answer is yes

Remainder of a sum

Remainder of a sum

Suppose we know the remainders of a and b when divided by 2. Can we deduce the remainder of a+b?

· It turns out that we can!

Remainder of a sum

- · It turns out that we can!
- If both a and b are even they have the form $2\times q_1$ and $2\times q_2$

Remainder of a sum

- · It turns out that we can!
- If both a and b are even they have the form $2\times q_1$ and $2\times q_2$
- So the sum is $2 \times (q_1 + q_2)$ and is even

Remainder of a sum

Suppose we know the remainders of a and b when divided by 2. Can we deduce the remainder of a+b?

- If one number is even and the other is odd, they have the forms $2\times q_1$ and $2\times q_2+1$ respectively

Remainder of a sum

- If one number is even and the other is odd, they have the forms $2\times q_1$ and $2\times q_2+1$ respectively
- So the sum is $2 \times (q_1 + q_2) + 1$ and is odd

Remainder of a sum

- If one number is even and the other is odd, they have the forms $2\times q_1$ and $2\times q_2+1$ respectively
- So the sum is $2 \times (q_1 + q_2) + 1$ and is odd
- Finally if both a and b are odd they have the form $2\times q_1+1$ and $2\times q_2+1$

Remainder of a sum

- If one number is even and the other is odd, they have the forms $2\times q_1$ and $2\times q_2+1$ respectively
- So the sum is $2 \times (q_1 + q_2) + 1$ and is odd
- Finally if both a and b are odd they have the form $2\times q_1+1$ and $2\times q_2+1$
- So the sum is $2 \times (q_1 + q_2 + 1)$ and is even

- So we have the following table for the remainders of a+b when dividing by 2

- So we have the following table for the remainders of a+b when dividing by 2
- Rows are remainders of \boldsymbol{a} and columns are remainders of \boldsymbol{b}

+	0	1
0	0	1
1	1	0

- So we have the following table for the remainders of a+b when dividing by 2
- Rows are remainders of \boldsymbol{a} and columns are remainders of \boldsymbol{b}
- In the cells we have remainders of a+b

+	0	1
0	0	1
1	1	0

Remainder of an Opposite

Remainder of an opposite

Remainder of an Opposite

Remainder of an opposite

Suppose we know the remainder of a when divided by 2. Can we deduce the remainder of -a?

· It is the same

Remainder of an Opposite

Remainder of an opposite

- · It is the same
- Indeed, a is divisible by 2 iff -a is divisible by 2

Remainder of a Subtraction

Remainder of a subtraction

The remainder of a-b is the same as the remainder of a+b when divided by 2

Remainder of a Subtraction

Remainder of a subtraction

The remainder of a-b is the same as the remainder of a+b when divided by 2

So, for subtraction we have the same table

_	0	1
0	0	1
1	1	0

Remainder of a product

Remainder of a product

Suppose we know the remainders of a and b when divided by 2. Can we deduce the remainder of $a \times b$?

Again, we can

Remainder of a product

- Again, we can
- If at least one of the number is even, then it is divisible by $2\,$

Remainder of a product

- Again, we can
- If at least one of the number is even, then it is divisible by $2\,$
- So the product $a \times b$ is divisible by 2 and so is even

Remainder of a product

Suppose we know the remainders of a and b when divided by 2. Can we deduce the remainder of $a \times b$?

- If both a and b are odd they have the form $2\times q_1+1$ and $2\times q_2+1$

Remainder of a product

Suppose we know the remainders of a and b when divided by 2. Can we deduce the remainder of $a \times b$?

- If both a and b are odd they have the form $2\times q_1+1$ and $2\times q_2+1$
- So the product is $(q_1\times 2+1)\times (q_2\times 2+1)$ $=(q_1\times q_2\times 2+q_1+q_2)\times 2+1$ and is odd

- So we have the following table for the remainders of $a \times b$ when dividing by 2

×	0	1
0	0	0
1	0	1

- So we have the following table for the remainders of $a \times b$ when dividing by 2
- Rows are remainders of \boldsymbol{a} and columns are remainders of \boldsymbol{b}

×	0	1
0	0	0
1	0	1

- So we have the following table for the remainders of $a \times b$ when dividing by 2
- Rows are remainders of \boldsymbol{a} and columns are remainders of \boldsymbol{b}
- In the cells we have remainders of $a \times b$

×	0	1
0	0	0
1	0	1

Problem

What is the remainder of $374\times(419+267\times38)-625$ when divided by 2?

Problem

What is the remainder of $374\times(419+267\times38)-625$ when divided by 2?

Now we can do it without calculations!

Problem

What is the remainder of $374\times(419+267\times38)-625$ when divided by 2?

- Now we can do it without calculations!
- We can apply operations directly to remainders

Problem

What is the remainder of $374 \times (419 + 267 \times 38) - 625$ when divided by 2?

- Now we can do it without calculations!
- We can apply operations directly to remainders
- Substitute all numbers by remainders:

$$0 \times (1 + 1 \times 0) - 1$$

Problem

What is the remainder of $374\times(419+267\times38)-625$ when divided by 2?

- Now we can do it without calculations!
- We can apply operations directly to remainders
- Substitute all numbers by remainders:

$$0 \times (1+1 \times 0) - 1$$

- Computing by our rules gives us the answer $\boldsymbol{1}$

Problem

What is the remainder of $374 \times (419 + 267 \times 38) - 625$ when divided by 2?

- Now we can do it without calculations!
- We can apply operations directly to remainders
- Substitute all numbers by remainders:

$$0 \times (1 + 1 \times 0) - 1$$

- Computing by our rules gives us the answer $\boldsymbol{1}$
- ullet So the expression in the problem has remainder 1

Outline

Division by 2

• What is the decimal system?

- What is the decimal system?
- We represent numbers by sequences of digits

- What is the decimal system?
- We represent numbers by sequences of digits
- Which number is represented by 3926?

- What is the decimal system?
- We represent numbers by sequences of digits
- Which number is represented by 3926?
- The number written here is $3926 = 3000 + 900 + 20 + 6 = \\ 3 \times 10^3 + 9 \times 10^2 + 2 \times 10^1 + 6 \times 10^0$

- What is the decimal system?
- We represent numbers by sequences of digits
- Which number is represented by 3926?
- The number written here is $3926 = 3000 + 900 + 20 + 6 = \\ 3\times 10^3 + 9\times 10^2 + 2\times 10^1 + 6\times 10^0$
- In general, digits are multiplied by powers of $10\,$

- What is the decimal system?
- We represent numbers by sequences of digits
- Which number is represented by 3926?
- The number written here is $3926 = 3000 + 900 + 20 + 6 = \\ 3 \times 10^3 + 9 \times 10^2 + 2 \times 10^1 + 6 \times 10^0$
- In general, digits are multiplied by powers of $10\,$
- Each non-negative integer number has a unique representation

- We can do the same with powers of $\boldsymbol{2}$

- We can do the same with powers of $\boldsymbol{2}$
- This is called binary system

- We can do the same with powers of $\boldsymbol{2}$
- This is called binary system
- There are only two bits 0 and 1 now instead of ten digits

- We can do the same with powers of $\boldsymbol{2}$
- This is called binary system
- There are only two bits $\mathbf{0}$ and $\mathbf{1}$ now instead of ten digits
- An example of a binary representation: 101101

- We can do the same with powers of 2
- This is called binary system
- There are only two bits 0 and 1 now instead of ten digits
- An example of a binary representation: 101101
- The number written here is $101101=1\times 2^5+0\times 2^4+1\times 2^3+1\times 2^2+0\times 2^1+1\times 2^0=2^5+2^3+2^2+2^0=32+8+4+1=45$

- We can do the same with powers of 2
- This is called binary system
- There are only two bits 0 and 1 now instead of ten digits
- An example of a binary representation: 101101
- The number written here is $101101=1\times 2^5+0\times 2^4+1\times 2^3+1\times 2^2+0\times 2^1+1\times 2^0=2^5+2^3+2^2+2^0=32+8+4+1=45$
- Binary system is important since computers use it

Lemma

Lemma

Suppose we divide a by 2 with a remainder. Then the remainder is the last bit of binary representation of a and the quotient is the number formed by all bits of the binary representation of a except the last one

The proof is the same as for the decimal system

Lemma

- The proof is the same as for the decimal system
- For simplicity consider some specific number, say, 11101 in binary

Lemma

- The proof is the same as for the decimal system
- For simplicity consider some specific number, say, 11101 in binary
- This number is equal to $1\times 2^4+1\times 2^3+1\times 2^2+0\times 2^1+1\times 2^0=(2^3+2^2+2^1)\times 2+1$

Lemma

- The proof is the same as for the decimal system
- For simplicity consider some specific number, say, 11101 in binary
- This number is equal to $1\times 2^4+1\times 2^3+1\times 2^2+0\times 2^1+1\times 2^0=(2^3+2^2+2^1)\times 2+1$
- So the remainder is 1 and the quotient is $1110\ \mathrm{in}$ binary

 Note that we are are not proving the correctness of binary system here

- Note that we are are not proving the correctness of binary system here
- Why this system works? Why every integer is representable? Why the representation is unique?

- Note that we are are not proving the correctness of binary system here
- Why this system works? Why every integer is representable? Why the representation is unique?
- We will omit the proof

- Note that we are are not proving the correctness of binary system here
- Why this system works? Why every integer is representable? Why the representation is unique?
- We will omit the proof
- However, the proof is not hard; one can just combine our previous Lemma and induction

- Note that we are are not proving the correctness of binary system here
- Why this system works? Why every integer is representable? Why the representation is unique?
- We will omit the proof
- However, the proof is not hard; one can just combine our previous Lemma and induction
- This is also a way to construct binary representation for a given number: apply previous lemma recursively

 How many bits are needed to represent a given number a?

- How many bits are needed to represent a given number a?
- Observe that to represent 2^n we need n+1 bits: 2^4 is 10000

- How many bits are needed to represent a given number a?
- Observe that to represent 2^n we need n+1 bits: 2^4 is 10000
- And 2^n is the smallest number that requires n+1 bits: $2^4-1=2^3+2^2+2^1+1 \ {\rm is} \ 1111$

- How many bits are needed to represent a given number a?
- Observe that to represent 2^n we need n+1 bits: 2^4 is 10000
- And 2^n is the smallest number that requires n+1 bits: $2^4-1=2^3+2^2+2^1+1 \ {\rm is} \ 1111$
- The number of bits that is needed to represent a is determined by the largest n such that $2^n \le a$: it is equal to n+1

- Recall that for real number x>0 by $\log_2 x$ is denoted the number y such that $2^y=x$

- Recall that for real number x>0 by $\log_2 x$ is denoted the number y such that $2^y=x$
- Logarithm is the inverse function to exponentiation: $\log_2 2^y = y$

- Recall that for real number x>0 by $\log_2 x$ is denoted the number y such that $2^y=x$
- Logarithm is the inverse function to exponentiation: $\log_2 2^y = y$
- In particular, $\log_2 2^n = n$

- Recall that for real number x>0 by $\log_2 x$ is denoted the number y such that $2^y=x$
- Logarithm is the inverse function to exponentiation: $\log_2 2^y = y$
- In particular, $\log_2 2^n = n$
- Binary logarithm has a clear meaning in terms of binary representation

Lemma

The number of bits needed to represent an integer a in binary representation is equal to $\lfloor \log_2 a \rfloor + 1$

• By $\lfloor x \rfloor$ we denote the largest integer that is less or equal to (possibly non-integer) x

Lemma

The number of bits needed to represent an integer a in binary representation is equal to $\lfloor \log_2 a \rfloor + 1$

- By $\lfloor x \rfloor$ we denote the largest integer that is less or equal to (possibly non-integer) x
- Why the lemma is true?

Lemma

The number of bits needed to represent an integer a in binary representation is equal to $\lfloor \log_2 a \rfloor + 1$

- By $\lfloor x \rfloor$ we denote the largest integer that is less or equal to (possibly non-integer) x
- Why the lemma is true?
- Recall that the number of bits in binary representation of a is n+1 where n is the largest number such that $2^n \le a$

Lemma

The number of bits needed to represent an integer a in binary representation is equal to $\lfloor \log_2 a \rfloor + 1$

- By $\lfloor x \rfloor$ we denote the largest integer that is less or equal to (possibly non-integer) x
- Why the lemma is true?
- Recall that the number of bits in binary representation of a is n+1 where n is the largest number such that $2^n \leq a$
- Applying logarithm to both sides of inequality we obtain that n is the largest number such that $n \leq \log_2 a$