Professor: Jomi F. Hübner

Exercícios de Aprendizado por Reforço

Para cada um dos problemas enunciados abaixo, avalie a aplicação da técnica de aprendizado por reforço (AR) procurando definir:

- O MDP (quais os estados, ações, recompensas e transições)
- Uma possível política que será aprendida
- Parâmetros como γ
- A complexidade do processo de aprendizado
- 1. O problema clássico do Wumpus World:

2. Considerando o cenário da figura abaixo, onde há 25 lugares para um agente estar:

P ₀	R			P ₁
		М		
				М
М	М		М	
P ₂				P ₃

Um prêmio pode aparecer em algum dos cantos. Quando o agente está no mesmo lugar do prêmio, ele recebe uma recompensa de 10 e o prêmio desaparece. Nos casos onde não há prêmio no cenário, há uma probabilidade do prêmio aparecer em algum dos cantos. Monstros podem aparecer e desaparecer em qualquer momento nos lugares marcados com

- M. O agente sofre dano se estiver no mesmo lugar que um monstro. Sempre que estiver com dano, o agente recebe uma punição de 10. Um agente com dano é consertado se visitar a estação de reparação marcada com R. O agente deve aprender a coletar prêmios percebendo o ambiente e se movimentando em quatro direções.
- 3. Um robô que tem a tarefa de percorrer o ambiente procurando por latas de refrigerante. Quanto encontrar, deve coleta-las e levar para um depósito. Considere que o robô tem sensores para detectar as latas e braços para pegá-las. O robô funciona com uma bateria recarregável.

As decisões que deve tomar é uma entre as seguintes:

- pegar lata
- soltar lata
- ficar parado
- procurar latas
- ir para o depósito
- ir para a estação de recarga da bateria
- 4. Um controlador de elevadores. São basicamente duas decisões:
 - Se tem chamados, qual atender
 - Se não há chamada, onde esperar

Considere um prédio de 10 andares e 4 elevadores.

- 5. O problema enunciado abaixo, retirado de "*Treinando seu Cérebro*. Reader's Digest, 2002. pg. 117.", era para ser resolvido pelo leitor.
 - O romancista inglês Charles Dickens nunca foi, até onde se sabe, um fã de passatempos, mas ele bem poderia ter sido um. Sua mente era capaz de produzir frases como "..e o infortunado Millier passou a sentir-se tão fora do seu elemento como um golfinho na guarda de uma sentinela", mostrando criatividade para idéias contraditórias, que é uma das chaves para se decifrar um enigma. E o último livro de Dickens, O mistério de Edwin Drood, era uma espécie de quebra-cabeca literário, um romance de mistério tornado ainda mais enigmático pelo fato de o grande escritor ter morrido antes de concluí-lo. Mas neste passatempo, não existe mistério nenhum; basta um pouco de pensamento lógico ao examinar os quadrados abaixo. Em cada

fila horizontal, coluna vertical e linha diagonal, todas formadas por sete quadradinhos, aparecem as sete letras D, I, C, K, E, N e S, em uma certa ordem. Preenchemos alguns dos quadrados para servirem de ponto de partida, e as pistas abaixo irão ajudar você a preencher os restantes.

- (a) Os quadrados 3 e 42 contêm a mesma letra;
- (b) Os quadrados 4 e 26 contêm a mesma letra, que é diferente daquela do quadrado 43;
- (c) Os quadrados 5 e 49 contêm a mesma letra;
- (d) Os quadrados 9 e 36 contêm a mesma letra; e
- (e) Os quadrados 22 e 48 contêm a mesma letra.

¹ D	2	3	4	5	6 	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	²³ C	24	25	26	27	²⁸ K
29	30	31	32	33	34	35
36	37	38	39 E	40	41 N	42
43	44	45	46	47 S	48	49

6. O Q-Learning generaliza? O que acontece se o agente precisa decidir uma ação para um estado onde nunca esteve? Seria possível utilizar técnicas de aprendizado indutivo para auxiliar o agente nestes casos?