For each of the following truth tables, write the disjunctive normal of the equation.

Table 1

×	y	f(x,y)
1	1	1
1	0	1
0	1	0
0	0	1

xy v x y v x y

f(x,y)=

Table 2-3

×	У	Z	f(x,y,z)
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

f(x, y, z) =

Table 4-5

X	У	Z	f(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

xy & V Xy & V Xy &
xy & V Xy & V Xy &

f(x,y,z)=

Name	
------	--

		6	

W	x	у	Z	f(w,x,y,z)
1	1	1	1	0
1	1	1	0	1
1	1	0	1	1
1	1	0	0	1
1	0	1	1	0
1	0	1	0	0
1	0	0	1	1
1	0	0	0	1
0	1	1	1	0
0	1	1	0	0
0	1	0	1	0
0	1	0	0	1
0	0	1	1	1
0	0	1	0	1
0	0	0	1	0
0	0	0	0	0

EŽÝKU V SŽXW V SŽÝXW V SÝXŪ V EŽXŪ V SÝXŪ V

$$(w,x,y,z)=$$

For each of the following Boolean functions, write the expression in disjunctive normal form.

$$(x,y) = (\overline{y})(\overline{x} \vee y)$$

$$J(x,y) = x\overline{y} \vee x\overline{y} \vee x\overline{y} = X\overline{Y} \vee X\overline{Y}$$

$$A(x,y,z) = (\overline{x} \vee \overline{y})(\overline{x} \vee z) = \overline{X} Y \ge V \overline{X}$$

V XYZ

$$(w,x,y,z) = \overline{wy} \vee \overline{xy} \vee \overline{xyz} = \overline{w}xy\overline{z} + \overline{w}xy\overline{z}$$

$$(x,y,z) = \overline{x(y \vee xz)}(y \vee \overline{xz}) = \omega xyz + \omega xyz + \overline{\omega} xyz + \overline$$

-32 16 84 21

-16 R 4 L 1

m. '	-32 16 8 4 2 1			8 4 2 1
Write each decimal number in a 6-bit 2s complement representation.		Write each representa	decimal number tion. <i>What do</i>	er in a 5-bit 2s complement you bubble on scantron?
29 =	011101	-15 =	ABCDE	A
13 =	001101	-13 =	ABCDE -15 8 4 21	ADE
6 =	000110	-6 =	ABCDE	A B A
0 =	000000	-1 =	ABCDE	ABCDE 11111
-4 =	111100	0 =	ABCDE	suble nothing!
-19 =	1.01.101	4 =	ABCDE	00100
-27 =	100101	11 =	ABCDE	0 1011
-32 =	100000	14 -	ABCDE	01110

Perform the following 2s complement addition problems using 4-bit arithmetic. What would you bubble if the answer is zero? Would you ever bubble A only?

1101	
+1011	
APCDE 1000	
ß	

1010	
+1101	
ABCCC	

CDE

BLOE

Half Adders

Half adder

У	С	\$
1	1	0
0	0	
1	0	1
0	0	0
	y 1 0 1	1 1

Write the Boolean function for c in a half adder: c = _

Write the Boolean function for s in a half adder: s = _

Full Adder

Write the Boolean function for c in a full adder: c = XYVXZV

Write the Boolean function for s in a full adder: s = X D Y D Z

Full adder

X	y	2	c	\$
1	1	1	1	1
1	1	0		0
1	0	1	1	6
1	0	0	7	
0	1	1	1	D
Q	1	0	0	
0	0	1	0	
0	0	0	0	7

NAND Implementations:

Draw the NAND implementation for each of the following

NOT ¬x

 $AND(x \land y)$

OR $(x \lor y)$

 $(xy)\vee (yz)$ /* Do not forget to simplify */

