May 7, 2025 Due date: May 14, 2025

Algorithmic Game Theory

Summer Term 2025

Exercise Set 4

If you would like to present one of the solutions in class, please also send an email to rlehming@uni-bonn.de containing the **task** which you would like to present and in **which of the tutorials** you would like to do so. Deadline for the email is Tuesday, 10:00 pm. Please note that the tasks will be alloecated on a first-come-first-served basis, so sending this email earlier than Tuesday evening is highly recommended.

Exercise 1:

Consider the following symmetric network congestion game with two players:

- (a) What is the Price of Anarchy and the Price of Stability of pure Nash equilibria?
- (b) What is the Price of Anarchy and the Price of Stability of mixed Nash equilibria?

Hint: First of all, determine all mixed Nash equilibria. You might start with a sentence like "Let σ be a mixed Nash equilibrium with $\sigma_1 = (p_1, 1-p_1), \sigma_2 = (p_2, 1-p_2)$ " and subsequently derive properties of p_1 and p_2 .

Exercise 2:

Consider a (λ, μ) -smooth game with N players and let $s^{(1)}, \ldots, s^{(T)}$ be a sequence of states such that the external regret of every player is at most $R^{(T)}$. Moreover, let s^* denote a state that minimizes the social cost. We want to upper bound the average social cost of the sequence of states. To this end, show the following bound

$$\frac{1}{T} \sum_{t=1}^{T} SC(s^{(t)}) \le \frac{N \cdot R^{(T)}}{(1-\mu)T} + \frac{\lambda}{1-\mu} SC(s^*).$$

Hint: In this setting, the external regret for player i is the difference between the cost they have incurred and the cost they would have incurred with the best fixed strategy in hindsight.

Exercise 3:

A fair cost-sharing game is a congestion game such that for all resources $r \in R$ the delay function can be modeled as $d_r(x) = c_r/x$ for a constant c_r .

Show that fair cost sharing games with n players are (n, 0)-smooth.