#### **Definition**

A function  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a *linear transformation* if it satisfies the following conditions:

- 1)  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$  for all  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- 2)  $T(c\mathbf{v}) = cT(\mathbf{v})$  for any  $\mathbf{v} \in \mathbb{R}^n$  and any scalar c.

# **Proposition**

Every matrix transformation is a linear transformation.

# Theorem

Every linear transformation  $T \colon \mathbb{R}^n \to \mathbb{R}^m$  is a matrix transformation:

$$T = T_A$$

for some matrix A.

## Corollary

If  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a linear transformation then  $T = T_A$  where A is the matrix given by

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$$

This matrix is called the *standard matrix* of T.

**Example.** Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be the function given by

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} x_1 + x_2 \\ 0 \\ 2x_1 \end{array}\right]$$

Check if T is a linear transformation. If it is, find its standard matrix.

**Example.** Let  $S: \mathbb{R}^2 \to \mathbb{R}^3$  be the function given by

$$S\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 1 + x_2 \\ x_2 \\ 3x_1 \end{array}\right]$$

Check if S is a linear transformation. If it is, find its standard matrix.

# Back to rotations:



 $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ 



### Recall:

1) If A is an  $m \times n$  matrix then the function

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^m$$

defined by  $T_A(\mathbf{v}) = A\mathbf{v}$  is called the matrix transformation associated to A.

- 2) A function  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a linear transformation if
  - (ii)  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
  - (ii) T(cv) = cT(v)
- 3) Every matrix transformation is a linear transformation.
- **4)** Every linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a matrix transformation:

$$T(\mathbf{v}) = A\mathbf{v}$$

where

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$$

The matrix A is called the standard matrix of T.