Operators on Hilbert Spaces

The Hilbert space of square integrable functs $L^{2}(\Omega) = \{ 5: \Omega \rightarrow |R| \} \{ |F(\alpha)|^{2} | l_{\infty}(\infty) \}$

is an infinite-dimensional analogue of 12.

Differentiation (week) and integration define linear transformations of $L^2(\Omega)$.

A linear transformation 7: H, -> Hz
is bounded if

11711 = Sup 11751/42. 5eH, 115114

If H,=H, we call I an operator on H,.

=> Integration is a b'dd operator on L2(12). => Differentiation is unbounded on L2(12)

$$\frac{11\frac{d}{ds_0}(s_{ln}k_x)|_{L^2}}{||s_{ln}k_x||_{L^2}} = \frac{\sqrt{nk^2}}{\sqrt{n}} = k \quad (=1,2,3,\dots)$$

Mænnhike, its inverse is bild on l²([0,27]).

$$[Ts](n) = \int_{0}^{\infty} f(y) dy$$

$$[Ts](n) = \int_{0}^{\infty} f(y) dy$$

$$[Ts](n) = \int_{0}^{\infty} f(y) dy$$

$$= \int_{0}^{\infty} [f(y) dy] dx = 2n \int_{0}^{\infty} [f(y) dy] dy$$

$$= 2n \int_{0}^{\infty} [f(y) dy]$$

$$= (2n)^{2} |f(y) dy|$$

$$= (2n)^{2} |f(y) dy|$$

$$= (7 b'dd)$$

Bounded Inverse

The inverse of differential operators can often be expressed as hometal integral operators. This is good news b/c bounded operators are continuous.

A linear transformation T: H, -> Hz between Wilbert spaces H, Hz is continuous if

In x = 2x elt, => Im Tx = Tx e Hz

Equivalently, by linewity only need to check sequences -> DEH,.

The A brear transformation 7:16, 3 Hz is continuous if and only if it is bild.

=> ||T(x-x_)|| = ||7|| ||x-x_1||

= Find proof in attached rading

Suppose we have T:D->H unbounded with bild inverse T':H->H.

Then, the solution to Tu=felt is well-posed in the sense that

[Small posturbation

Tu=freeIt => 11u-u11-> 0 as 11e11->0

=> We have that u-u=7'e und strice 117'11'(10), it is condimons

Nu- $\tilde{\alpha}$ || $\leq ||T^{-1}||_{H \to H}$ || $||eh||_{H \to H}$ || ||eh|

This is called "Stability of bild invertibility" and follows from Neumann serves for (THE)"

(7+E)"= (I+T"E)"7"= 7"(E(T"E)")

converges if 117 Ell<1 (e.g., if 11Ell< 117 111).

Integral Robornulation

Even when the inverse operator is not known (or known besist) we can often reformlete differential equations (inshing unbild ops) into integral equations (morning bild ops).

Example:

$$\frac{du}{dx} + v(x)u(x) = f(x) \quad u(-1) = 0$$
 $= > u(x) + \int_{-1}^{x} v(y)u(y)dy = f(x) \quad (x)$
 $= [Tu](x) = u(x) + \int_{-1}^{x} v(y)u(y)dy \quad b'dd \quad \text{otherwise}$

specific

If we solve (B), we solve DE.

B'dd Ops

B'dd ops on It are much like metrizes. We here that

 $N(7) = R(7)^{\perp}$ and $N(7^2) = R(7)^{\perp}$

In general, $R(7) \neq N(7^2)^{\perp}$ b/c $R(7) \subset H$ may not be a closed subspace.

There may be 'small gaps' so that $x \in N(7^2)^{\perp}$ is not in R(7). However, R(7) = H for a bild sperador if $\exists s > 0 s + 1$.

117* ull 5,5 Hull for all wet.

(A conseguence of the closed range theorem, a foundational result in functional analysis)

This generalizes the condition for square non matrices A:R"->IR":

R(A)=IR" <=> ATx=0 iff x=0

We can compare conditions for invertibility:

(invertible?)

A: IR"->IR"

A*= b \in H

Ti H -> It b'dd

To = f \in H

>0 indep. if u

P

Uniqueness: A*=0 (=> x=0

Uniqueness: A*=0 (=> x=0

Tu=0 (=> u=0

Tu=0 (=> u=0

Of course, for IR", fundamental them of human algebra assures us that Ax=2 hus nontrivial solutions IFF ATx=2 does.

We'll soon see why (ATx20 @> x20) is naturally replaced by (NTull > 5/hull + u6H) when we study the singular value decomp.