BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI First Semester 2019–2020 Course Handout (Part II)

Date: 01.08.2019

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F312

Course Title : Statistical Mechanics
Instructor-in-Charge : K. V. S. Shiv Chaitanya

I. Scope and Objective of course:

Statistical mechanics is a unique pillar of physics. While classical mechanics deals with macroscopic objects and quantum mechanics deals with microscopic objects, statistical Mechanics concerns the physical description of a large collection of objects and their relationship with measurable macroscopic thermodynamic properties. Statistical mechanics helps understand arguably the largest variety of both man-made and naturally occurring phenomena. A few examples are semiconductor diodes, why a protein molecule folds, precision detectors, the origin of White dwarfs and other astrophysical objects, phase-equilibrium of mixtures. In this course, the rudiments of this subject will be taught and their application will be shown through illustrative examples.

II. Text Books:

1. Statistical Mechanics, Second Edition, R. K. Pathria, Butterworth-Heinemann (1996).

Reference Books:

- 1. Statistical Mechanics, Donald McQuarrie, Harper and Row Publishers, 1976.
- 2. Fundamentals of Statistical and Thermal Physics, F.Reif, McGraw Hill International Editions, 1985.
- 3. Statistical Mechanics: Entropy, order and complexity, J.P. Sethna, Clarendon Press, 2016

III. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-6	Introduction, Historical Perspective , Laws of Thermodynamics and Maxwell Potentials.	Introduction and Review of thermodynamics	Chapter 1
7-10	Thermodynamic connection to Statistics, definition of state in classical and quantum mechanics. Isolated system.	Classical Statistical mechanics- Introduction to ensemble theory- Microcanonical ensemble	Chapter 2
11-17	Legendre Transformation, Equilibrium, Physical significance of various statistical quantities in the canonical ensemble.	Canonical ensemble and applications	Chapter 3

Lecture No.	Learning Objectives	Topics to be covered	Reference
18-25	Physical significance of various statistical quantities in the Grand canonical ensemble. Phase equilibrium and Clausius-Claperon equation	Grand Canonical ensemble and applications	Chapter 4
25-29	Density matrix formalism, Examples of quantum statistics	Formulation of Quantum statistical mechanics	Chapter 5
30-33	Ideal gas in quantum mechanical microcanonical ensemble, and other ensembles. Chemical equilibrium.	ensemble, and	
34-37	Distinguishable and in distinguishable particles, Bosons and Fermions, Bose Einstein statistics, BEC	Ideal Bose systems	Chapter 7
38-40	Fermi Dirac Statistics, ideal fermi gas and electrons in metal	Ideal Fermi systems	Chapter 8
40-42	A dynamic model of Phase transition Ising model.	Phase Transitions	Chapter 12

IV. Evaluation Scheme:

Component	Duration	Weight	Date & time	Nature of Component
		age		
		(%)		
Mid-semester test	90	35	28/9, 11.00 12.30 PM	Closed Book
	minutes			
Assignments	Take	20		Open Book

	Home			
Comprehensive exam	3 hours	45	2/12 AN	Closed Book

Chamber Consultation Hour: To be announced in the respective tutorials and lecture classes. **Notices:** Notices and solutions of tests & Final Comprehensive Examination will be displayed only on the **Physics** notice board.

Make-up Policy: It is applicable to the following two cases and it is permissible on production of evidential documents.

- (i) Debilitating illness.
- (ii) Out of station with prior permission from the Institute.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

IC PHY F312