Homework 9: Contractibility

The following proof illustrates in a geometric way the relation between lagrangian subspaces, complex structures and inner products; from [11, p.45].

Let (V,Ω) be a symplectic vector space, and let $\mathcal{J}(V,\Omega)$ be the set of all complex structures on (V,Ω) which are Ω -compatible; i.e., given a complex structure J on V we have

$$J \in \mathcal{J}(V,\Omega) \iff G_J(\cdot,\cdot) := \Omega(\cdot,J\cdot)$$
 is a positive inner product on V .

Fix a lagrangian subspace L_0 of (V,Ω) . Let $\mathcal{L}(V,\Omega,L_0)$ be the space of all lagrangian subspaces of (V,Ω) which intersect L_0 transversally. Let $\mathcal{G}(L_0)$ be the space of all positive inner products on L_0 .

Consider the map

$$\Psi: \quad \mathcal{J}(V,\Omega) \quad \to \quad \mathcal{L}(V,\Omega,L_0) \times \mathcal{G}(L_0)$$

$$J \quad \mapsto \quad (JL_0,G_J|_{L_0})$$

Show that:

- 1. Ψ is well-defined.
- 2. Ψ is a bijection.

Hint: Given $(L,G)\in \mathcal{L}(V,\Omega,L_0)\times \mathcal{G}(L_0)$, define J in the following manner: For $v\in L_0$, $v^\perp=\{u\in L_0\mid G(u,v)=0\}$ is a (n-1)-dimensional space of L_0 ; its symplectic orthogonal $(v^\perp)^\Omega$ is (n+1)-dimensional. Check that $(v^\perp)^\Omega\cap L$ is 1-dimensional. Let Jv be the unique vector in this line such that $\Omega(v,Jv)=1$. Check that, if we take v's in some G-orthonormal basis of L_0 , this defines the required element of $\mathcal{J}(V,\Omega)$.

3. $\mathcal{L}(V, \Omega, L_0)$ is contractible.

Hint: Prove that $\mathcal{L}(V,\Omega,L_0)$ can be identified with the vector space of all symmetric $n\times n$ matrices. Notice that any n-dimensional subspace L of V which is transversal to L_0 is the graph of a linear map $S:JL_0\to L_0$, i.e.,

$$\begin{array}{rcl} L &=& \text{span of } \{Je_1+SJe_1,\ldots,Je_n+SJe_n\} \\ \text{when} & L_0 &=& \text{span of } \{e_1,\ldots,e_n\} \ . \end{array}$$

4. $\mathcal{G}(L_0)$ is contractible.

Hint: $\mathcal{G}(L_0)$ is even convex.

Conclude that $\mathcal{J}(V,\Omega)$ is contractible.