Singularities, Schwarzschild Radii, and Spaghettification: The Extreme Physics of Black Holes **Roman Berens** June 16, 2024 Vanderhilt University

• "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."

- "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."
- Formed by the collapse of very massive stars at the end of their life.

- "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."
- Formed by the collapse of very massive stars at the end of their life.
- Come in a variety of sizes.

- "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."
- Formed by the collapse of very massive stars at the end of their life.
- Come in a variety of sizes.
- They don't suck things in, at least no more than any other object.

- "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."
- Formed by the collapse of very massive stars at the end of their life.
- Come in a huge variety of sizes.
- They don't suck things in, at least no more than any other object.
- Responsible for many extreme astrophysical phenomena.

- "A region of spacetime where gravity is so strong that nothing—no particles or even light—can escape from it."
- Formed by the collapse of very massive stars at the end of their life.
- Come in a variety of sizes.
- They don't suck things in, at least no more than any other object.
- Responsible for many extreme astrophysical phenomena.
- Fully understanding them requires new theories of physics (quantum gravity).

Early Ideas: The Schwarzschild Radius

$$\frac{1}{2}mv_{\rm esc}^2 = \frac{GMm}{R} \Longrightarrow v_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

Early Ideas: The Schwarzschild Radius

$$\frac{1}{2}mv_{\rm esc}^2 = \frac{GMm}{R} \Longrightarrow v_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

$$v_{\rm esc} = c \Longrightarrow R = \frac{2GM}{c^2}$$

Early Ideas: The Schwarzschild Radius

$$\frac{1}{2}mv_{\rm esc}^2 = \frac{GMm}{R} \Longrightarrow v_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

$$v_{\rm esc} = c \Longrightarrow R = \frac{2GM}{c^2}$$

This calculation was done by English natural philosopher John Michell in 1784. He theorized that a sufficiently massive object would gravitationally pull the light back towards it. He called such objects "dark stars."

General Relativity

- Special Relativity (1905)
 - Speed of light is constant for all observers.
 - Space and time are interwoven into a single continuum known as "spacetime".
 - Energy and mass are equivalent $(E = mc^2)$.

Einstein in 1921

General Relativity

- Special Relativity (1905)
 - Speed of light is constant for all observers.
 - Space and time are interwoven into a single continuum known as "spacetime".
 - Energy and mass are equivalent $(E = mc^2)$.
- Einstein realized in 1907 that acceleration and gravity are in some sense equivalent (the equivalence principle).

Einstein in 1921

General Relativity

- Special Relativity (1905)
 - Speed of light is constant for all observers.
 - Space and time are interwoven into a single continuum known as "spacetime".
 - Energy and mass are equivalent $(E = mc^2)$.
- Einstein realized in 1907 that acceleration and gravity are in some sense equivalent (the equivalence principle).
- This led him to formulate gravity in terms of curved spacetime in 1915.

Einstein in 1921

• There is no way to distinguish the effect of gravity from the acceleration due to any other force.

• There is no way to distinguish the effect of gravity from the acceleration due to any other force.

- There is no way to distinguish the effect of gravity from the acceleration due to any other force.
- This is related to the fact that inertial mass (an object's resistance to changes in its motion) and gravitational mass are the same.

- There is no way to distinguish the effect of gravity from the acceleration due to any other force.
- This is related to the fact that inertial mass (an object's resistance to changes in its motion) and gravitational mass are the same.
- Einstein called this insight "the happiest thought of his life."

Mass and energy curve spacetime.

- Mass and energy curve spacetime.
- Gravity is no longer a force at all.

- Mass and energy curve spacetime.
- Gravity is no longer a force at all.
- Objects move on "straight lines" through curved spacetime known as geodesics.

- Mass and energy curve spacetime.
- Gravity is no longer a force at all.
- Objects move on "straight lines" through curved spacetime known as geodesics.
- This new theory has a variety of predictions, including gravitational time dilation and the bending of light in a gravitational field.

Light in Curved Spacetime

• Even though light doesn't have a mass, it is still affected by curved spacetime.

Light in Curved Spacetime

- Even though light doesn't have a mass, it is still affected by curved spacetime.
- This was confirmed by Arthur Eddington in 1919 during a solar eclipse.

Light in Curved Spacetime

- Even though light doesn't have a mass, it is still affected by curved spacetime.
- This was confirmed by Arthur Eddington in 1919 during a solar eclipse.
- This effect is the basis of gravitational lensing, a useful observational tool (more later).

The Einstein Field Equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

The Einstein Field Equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

"Spacetime tells matter how to move, and matter tells spacetime how to curve."

• Despite the complexity of the Einstein equations, within a month of their publication a solution was found by Karl Schwarzschild.

- Despite the complexity of the Einstein equations, within a month of their publication a solution was found by Karl Schwarzschild.
- Two main features:
 - The event horizon (at the Schwarzschild radius):
 Not a physical boundary, an "information
 membrane." Marks the difference between places
 we can see and those that are hidden.

- Despite the complexity of the Einstein equations, within a month of their publication a solution was found by Karl Schwarzschild.
- Two main features:
 - The event horizon (at the Schwarzschild radius):
 Not a physical boundary, an "information
 membrane." Marks the difference between places
 we can see and those that are hidden.
 - The singularity (at the center): A spot where the normal laws of physics break down.
 Mathematically an infinity, in reality, who knows?

- Despite the complexity of the Einstein equations, within a month of their publication a solution was found by Karl Schwarzschild.
- Two main features:
 - The event horizon (at the Schwarzschild radius):
 Not a physical boundary, an "information
 membrane." Marks the difference between places
 we can see and those that are hidden.
 - The singularity (at the center): A spot where the normal laws of physics break down.
 Mathematically an infinity, in reality, who knows?
- Black holes can also have charge and angular momentum.

Black Hole Formation

• Anything can become a black hole if you could force it inside its Schwarzschild radius $(R = \frac{2GM}{c^2})$.

Black Hole Formation

- Anything can become a black hole if you could force it inside its Schwarzschild radius ($R = \frac{2GM}{c^2}$).
- When a sufficiently large star exhausts its fuel, the gravitational attraction will collapse it into a black hole.

Sizes of Black Hole

Class	Mass	Schwarzschild Radius
Stellar Mass	5 – 10 M _{Sun}	15 – 30 km
Intermediate Mass	$10^2 - 10^5 \mathrm{M_{Sun}}$	$10^2 - 10^5 \mathrm{km}$
Supermassive	$10^5 - 10^{10} \mathrm{M_{Sun}}$	$10^5 - 10^{10} \mathrm{km}$

- $R_{Earth} \approx 6400 \text{ km}$
- $R_{Sun} \approx 7 \cdot 10^5 \text{ km}$
- 1 AU $\approx 1.5 \cdot 10^8$ km

Accretion Disc and Jets

• The accretion disc is made of superheated gas and dust.

Accretion Disc and Jets

- The accretion disc is made of superheated gas and dust.
- For reasons not fully understood, this process produces jets of particles and radiation that blast out from the poles.

Falling into a Black Hole

• In a very strong non-uniform gravitational field, the difference in gravity between your head and feet can be enough to stretch you apart. This is called spaghettification.

Falling into a Black Hole

- In a very strong non-uniform gravitational field, the difference in gravity between your head and feet can be enough to stretch you apart. This is called spaghettification.
- Because spacetime is curved, observers outside the black hole never actually see you fall in.

Falling into a Black Hole

- In a very strong non-uniform gravitational field, the difference in gravity between your head and feet can be enough to stretch you apart. This is called spaghettification.
- Because spacetime is curved, observers outside the black hole never actually see you fall in.
- Once you pass the event horizon, there is no escape, and no way to send a signal to the outside world.

Gravitational Lensing

- Because light is affected by curved spacetime, light coming from distant galaxies can be bent by large objects, which affects the image like a lens.
- This gives one way to study black holes.

Gravitational Lensing

Gravitational Waves

• When black holes collide, they create ripples in spacetime that propagate outward at the speed of light.

Gravitational Waves

- When black holes collide, they create ripples in spacetime that propagate outward at the speed of light.
- They were predicted by Einstein in 1916, but he was skeptical they could ever be measured.

Detecting Gravitational Waves

 The Laser Interferometer Gravitational-Wave Observatory (LIGO) first detected gravitational waves in Sept. 2015.

Detecting Gravitational Waves

- The Laser Interferometer Gravitational-Wave Observatory (LIGO) first detected gravitational waves in Sept. 2015.
- The signal was caused by the collision of two black holes of roughly 30 solar masses one billion light-years away.

Detecting Gravitational Waves

- The Laser Interferometer Gravitational-Wave Observatory (LIGO) first detected gravitational waves in Sept. 2015.
- The signal was caused by the collision of two black holes of roughly 30 solar masses one billion light-years away.
- This won the 2017 Nobel Prize.

• In 2019, the first image of a black hole was published.

- In 2019, the first image of a black hole was published.
- It was taken by using a global network of radio telescopes that combined their signals in a process called interferometry. This effectively used a telescope the size of the Earth.

- In 2019, the first image of a black hole was published.
- It was taken by using a global network of radio telescopes that combined their signals in a process called interferometry. This effectively used a telescope the size of the Earth.
- This black hole is at the center of a galaxy called Messier 87, over 50 million light-years away.

• In 2022, they did it again, but this time for Sagittarius A*, the black hole at the center of our galaxy, 27,000 light-years away.

A Warped Look at Black Hole Optics

Side view

Top view

Apparent image and disk motion

Hawking Radiation

• Virtual particle-antiparticle pairs are constantly being created and destroyed.

Stephen Hawking

Hawking Radiation

- Virtual particle-antiparticle pairs are constantly being created and destroyed.
- Near the horizon, one member can fall in while the other escapes. This particle is observed as radiation.

Stephen Hawking

Hawking Radiation

- Virtual particle-antiparticle pairs are constantly being created and destroyed.
- Near the horizon, one member can fall in while the other escapes. This particle is observed as radiation.
- Thus black holes have a very small temperature.

Stephen Hawking

• Black holes all look the same, regardless of what went into them. They are simply determined by their mass (and charge and angular momentum).

- Black holes all look the same, regardless of what went into them. They are simply determined by their mass (and charge and angular momentum).
- The Hawking radiation thus doesn't contain any information about what went into the black hole.

- Black holes all look the same, regardless of what went into them.
 They are simply determined by their mass (and charge and angular momentum).
- The Hawking radiation thus doesn't contain any information about what went into the black hole.
- However, a fundamental principle of quantum mechanics is that information cannot be destroyed.

- Black holes all look the same, regardless of what went into them.
 They are simply determined by their mass (and charge and angular momentum).
- The Hawking radiation thus doesn't contain any information about what went into the black hole.
- However, a fundamental principle of quantum mechanics is that information cannot be destroyed.
- Either our understanding of black holes is wrong, or quantum mechanics itself is wrong (or both!).
- The solution may be related to the AdS/CFT correspondence.

Thank You!

- Contact Info:
 - <u>roman.berens@</u>vanderbilt.edu

