操作系统设计及实践

《操作系统原理》配套实验

信安系操作系统课程组 2022年11月

操作系统设计实验系列(十二)

自我OS的安全性分析与可信防御

实验目标

- 1. 结合所学的软件安全知识以及OS知识, 分析掌握OS设计中潜在的安全问题
- 2. 学习与理解可信动态度量的基本思想与基本实现手段。

1. 自我OS安全分析

- ① 分析提示:可执行文件的篡改、内存破坏漏洞、权限绕过等
- ② POC实现:
 - ① 编写一个C程序,该程序查找OS中的可执行文件,对可执行文件添加额外的代码。
 - ② 编写一个程序,可对存在内存破坏漏洞的代码进行缓冲区溢出,控制返回地址到指定的位置

2. 可信防护

- ① 静态度量:
 - 对你的OS进行扩充,编写一个程序模块,该程序模块能够在,当OS加载可执行文件时,对该可执行文件进行完整性校验,并进行比对。
 - 完整性校验的算法,可采用简单的奇偶校验算法。
 - 思考:
 - 这样的度量,是否能够抵御对可执行文件的篡改?
 - 完整性校验算法,使用奇偶校验算法,是否存在什么问题?
 - 完整性校验值应该存在哪里?

2. 可信防护

- ② 动态度量:
 - 对你的OS进行扩充,编写一个自动化的触发程序
 - 触发时,读取当前运行的进程的内存布局进行,并解析 堆栈结构,检查堆栈返回地址是否合法
 - 思考:
 - 如何理解"合法"的概念?
 - 你的实现能否抵御POC实现中,第二个攻击?
 - 这种度量方法的效率如何,存在什么额外的安全问题?

2. 可信防护

- ③ 感知与体系化防护(选做):
 - 对你的OS进行扩充,探索体系化防护思路。明确攻击平面有哪些?并考虑相应防护。例如:
 - 内存破坏:借鉴软件安全中的方法,试试比如地址空间布局随机 化、Canary、页面的权限管理?
 - 系统调用的滥用:是否可以扩展一套系统调用的hook机制,并加以分析
 - 数据窃取:提供基于文件系统、或者内存的加密机制?
 -
 - 可以发挥你的想象力,在这个demo系统上探索。

