DS7833/DS8833/DS7835/DS8835 **Quad TRI-STATE® Bus Transceivers**

General Description

This family of TRI-STATE bus transceivers offers extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated DC or AC, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{CC} = 0V$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DS7833/ DS8833 and DS7835/DS8835 employ TRI-STATE outputs on the receiver also.

The DS7833/DS8833 are non-inverting quad transceivers with a common inverter driver disable control and common inverter receiver disable control.

The DS7835/DS8835 are inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

Dual-In-Line Package

Features

400 mV typ ■ Receiver hysteresis Receiver noise immunity 1.4V typ ■ Bus terminal current for $80 \mu A max$ normal V_{CC} or $V_{CC} = 0V$

■ Receivers

16 mA at 0.4V max Sink 2.0 mA (Mil) at 2.4V min Source 5.2 mA (Com) at 2.4V min

■ Drivers

Sink 50 mA at 0.5V max 32 mA at 0.4V max Source

10.4 mA (Com) at 2.4V min 5.2 mA (Mil) at 2.4V min

- Drivers have TRI-STATE outputs
- DS7833/DS8833, DS7835/DS8835 receivers have TRI-STATE outputs
- Capable of driving 100Ω DC—terminated buses
- Compatible with Series 54/74

Connection Diagram

DRIVER

Top View

INg

OUTB RECEIVER

DISABLE

TL/F/5808-1

BUSB

Order Number DS7833J or DS8833N See NS Package Number J16A or N16A

Dual-In-Line Package

Top View

Order Number DS7835J or DS8835N See NS Package Number J16A or N16A

TL/F/5808-2

OUTA

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 5.5V Output Voltage 5.5V Storage Temperature -65°C to +150°C

Maximum Power Dissipation* at 25°C

Cavity Package 1509 mW Molded Package 1476 mW Lead Temperature (Soldering, 4 sec.) 260°C

*Derate cavity package 10.1 mW/°C above 25°C; derate molded package 11.8 mW/°C above 25°C.

Symbol	Parameter	Conditions			Min	Тур	Max	Units
DISABLI	Z/DRIVER INPUT				•			•
V _{IH}	High Level Input Voltages	V _{CC} = Min			2.0			٧
V _{IL}	Low Level Input Voltage	V _{CC} = Min	DS7833, DS8833, DS8835				0.8	v
			DS7835				0.7	•
lін	High Level Input Current	V _{CC} = Max	$V_{IN} = 2.4V$				40	μΑ
			$V_{IN} = 5.5V$				1.0	mA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_{IN} = 0.4V$				-1.0	-1.6	mA
V_{CL}	Input Clamp Diode	$V_{CC} = 5.0V, I_{IN} = -12 \text{ mA}, T_A = 25^{\circ}\text{C}$				-0.8	-1.5	V
I _{IT}	Driver Low Level Disabled Input Current	Driver Disable Input = 2.0V, V _{IN} = 0.4V					-40	μΑ
RECEIV	ER INPUT/BUS OUTPUT							
V _{TH}	High Level Threshold Voltage			DS7833, DS7835	1.4	1.75	2.1	V
				DS8833, DS8835	1.5	1.75	2.0	V
V _{TL}	Low Level Threshold Voltage			DS7833, DS7835	0.8	1.35	1.6	V
				DS8833, DS8835	0.8	1.35	1.5	V
I _S	Bus Current, Output Disabled or High	V _{BUS} = 4.0V	V _{CC} = Max			25	80	μΑ
			$V_{CC} = 0V$			5.0	80	μΑ
		$V_{CC} = Max, V_{BUS} = 0.4V$				-2.0	-40	μΑ
V _{OH}	Logic "1" Output Voltage	V _{CC} = Min	$I_{OUT} = -5.2 \text{ mA}$	DS7833, DS7835	2.4	2.75		V
			$I_{OUT} = -10.4 \text{ mA}$	DS8833, DS8835	2.4	2.75		V
V_{OL}	Logic "0" Output Voltage	V _{CC} = Min	I _{OUT} = 50 mA			0.28	0.5	V
			I _{OUT} = 32 mA				0.4	V
los	Output Short Circuit Current	V _{CC} = Max, (Note 4)			-40	-62	-120	mA
RECEIV	R OUTPUT							
V _{OH}	Logic "1" Output Voltage	V _{CC} = Min	$I_{OUT} = -2.0 \text{ mA}$	DS7833, DS7835	2.4	3.0		V
			$I_{OUT} = -5.2 \text{mA}$	DS8833, DS8835	2.4	2.9		V
V _{OL}	Logic "0" Output Voltage		C = Min, I _{OUT} = 16 mA			0.22	0.4	V
I_{OT}	Output Disabled Current	V _{CC} = Max, Disable	$V_{OUT} = 2.4V$				40	μΑ

Operating Conditions

4.5

4.75

-55

Supply Voltage, V_{CC} DS7833/DS7835

DS8833/DS8835

DS8833/DS8835

Temperature (T_A) DS7833/DS7835

Max

5.5

5.25

+125

+70

Units

V

°C

°C

-40

μΑ

 $V_{\mbox{OUT}} = 0.4 V$

Inputs = 2.0V

Electrical Characteristics (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
RECEIVER OUTPUT (Continued)									
los	Output Short Circuit Current	V _{CC} = Max, (Note 4)	DS7833, DS7835	28	-40	-70	mA		
			DS8833, DS8835	-30		-70	mA		
Icc	Supply Current	V _{CC} = Max	DS7833, DS8833		84	116	mA		
			DS7835, DS8835		75	95	mA		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7833, DS7835 and across the 0° C to $+70^{\circ}$ C range for the DS8833, DS8835. All typicals are given for $V_{CC}=5.0$ V and $T_{A}=25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Switching Characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions		Min	Тур	Max	Units
t _{pd0}	Propagation Delay to a Logic "0" from Input to Bus	(Figure 1)	DS7833/DS8833		14	30	ns
			DS7835/DS8835		10	20	ns
t _{pd1}	Propagation Delay to a Logic "1" from Input to Bus	(Figure 1)	DS7833/DS8833		14	30	ns
			DS7835/DS8835		11	30	ns
t _{pd0}	Propagation Delay to a Logic "0" from Bus to Input	(Figure 2)	DS7833/DS8833		24	45	ns
			DS7835/DS8835		16	35	ns
t _{pd1}	Propagation Delay to a Logic "1" from Bus to Input	(Figure 2)	DS7833/DS8833		12	30	ns
			DS7835/DS8835		18	30	ns
t _{PHZ}	Delay from Disable Input to High Impedance State (from Logic "1" Level)	$C_L = 5.0 \text{ pF},$ (Figures 1 and 2)	Driver		8.0	20	ns
			Receiver		6.0	15	ns
t _{PLZ}	Delay from Disable Input to High Impedance State (from Logic "0" Level)	$C_L = 5.0 \text{ pF},$ (Figures 1 and 2)	Driver		20	35	ns
			Receiver		13	25	ns
t _{PZH}	Delay from Disable Input to Logic "1" Level (from High Impedance State)	$C_L = 5.0 \text{ pF},$ (Figures 1 and 2)	Driver		24	40	ns
			Receiver		16	35	ns
t _{PZL}	Delay from Disable Input to Logic "0" Level (from High Impedance State)	C _L = 5.0 pF, (<i>Figures 1</i> and <i>2</i>)	Driver		19	35	ns
			Receiver DS7833/DS8833		15	30	ns
			Receiver DS7835/DS8835		33	50	ns

AC Test Circuits

FIGURE 1. Driver Output Load

FIGURE 2. Receiver Output Load

Switching Time Waveforms $t_{pd1} \& t_{pd0}$ t_{PLZ} 3.0V 3.0V INPUT 1.5V INPUT - 1.5V OUTPUT ACTUAL LOGICAL "0" VOLTAGE OUTPUT (NONINVERTED) TL/F/5808-6 TL/F/5808-5 $f = 1 \; MHz$ $t_{\Gamma} = \, t_{f} \leq$ 10 ns (10% to 90%) DUTY CYCLE = 50% t_{PZL} t_{PHZ} 3V 3٧ INPUT INPUT 1.5V ACTUAL LOGICAL "1" VOLTAGE 0.5V OUTPUT OUTPUT ACTUAL LOGICAL "O" VOLTAGE TL/F/5808-8 TL/F/5808-7 t_{PZH} 1.5V INPUT ACTUAL LOGICAL "1" VOLTAGE DUTPUT 0.5V ≈ 1.5V **=** TL/F/5808-9

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number DS8833N or DS8835N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N16A (REV E)

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Fax: +49 (0) 180-530 so so Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 95 58 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408