10

Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die aus bekannten cyclischen Ketoenole einerseits und weiteren bekannten insektiziden Wirkstoffen andererseits bestehen und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind.

Es ist bereits bekannt, dass bestimmte cyclische Ketoenole fungizide, insektizide und akarizide Eigenschaften besitzen (EP-A-528 156, EP-A-0 647 637, WO 95/26 345, WO 96/20 196, WO 96/25 395, WO 96/35 664, WO 97/01 535, WO97/02 243, WO 97/36 868, WO 98/05 638, WO 98/25 928, WO 99/16 748, WO 99/43 649, WO 99/48 869, WO 99/55 673, WO 01/23 354 und WO 01/74 770). Die Wirksamkeit dieser Stoffe ist gut, lässt bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es ist auch bekannt, dass Mischungen aus Phthalsäurediamiden und weiteren bioaktiven Verbindungen eine insektizide und/oder akarizide Wirkung aufweisen (WO 02/087 334). Die Wirkung dieser Mischungen ist aber nicht immer optimal.

Weiterhin ist schon bekannt, dass zahlreiche Heterocyclen, Organozinn-Verbindungen, Benzoylharnstoffe und Pyrethroide insektizide und akarizide Eigenschaften besitzen (vgl. WO 93-22 297, WO 93-10 083, DE-A 2 641 343, EP-A-347 488, EP-A-210 487, US-A 3 264 177 und EP-A-234 045). Allerdings ist die Wirkung dieser Stoffe nicht immer befriedigend.

Es wurde nun gefunden, dass Verbindungen der Formel (I)

20

in welcher

- X für C₁-C₆-Alkyl, Brom, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- 25 n für eine Zahl von 0-3 steht,

oder worin

5

A für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkoxy, Nitro substituiertes Phenyl oder Phenyl-C₁-C₆-alkyl steht,

B für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy- C₁-C₄-alkyl steht

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Phenyl substituierten oder gegebenenfalls benzokondensierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

$$-CO-R^{1}$$
 (b) $O-R^{2}$ (c) $-SO_{2}-R^{3}$ (d) $-P-R^{4}$ (e) oder $N-R^{6}$ (f)

in welchen

15

20

R¹ für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl steht;

für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,

30

für jeweils gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl steht,

für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für jeweils gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

- für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, für jeweils gegebenenfalls durch C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,
 - R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinylthio, C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
- R⁶ und R⁷ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₆-Alkyl substituiert sein kann,
- und mindestens ein Phthalsäurediamid der Formel (II) synergistisch wirksam sind und sich zur Bekämpfung tierischer Schädlinge eignen.

Bei den Phthalsäurediamiden der Formel (II) handelt es sich ebenfalls um bekannte Verbindungen, die aus folgenden Publikationen bekannt sind oder von diesen umfasst werden (vgl. EP-A-0 919 542, EP-A-1 006 107, WO 01/00 575, WO 01/00 599, WO 01/46 124, JP 2001-33 555 9, WO 01/02354, WO 01/21 576, WO 02/08 8074, WO 02/08 8075, WO 02/09 4765, WO 02/09 4766, WO 02/06 2807).

Auf die in diesen Publikationen beschriebenen generischen Formeln und Definitionen sowie auf die darin beschriebenen einzelnen Verbindungen wird hiermit ausdrücklich Bezug genommen.

Die Phthalsäurediamide lassen sich unter der Formel (II) zusammenfassen:

$$\begin{array}{c|c}
 & Re^3 \\
 & Re^2 \\
 & Re^1 \\
 & L^3
\end{array}$$
(II)

5 in welcher

K für Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy steht,

Re¹, Re², Re³ jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₈-Cycloalkyl oder für eine Gruppe der Formel

$$M^1-Q_k$$

10 stehen, in welcher

M¹ für gegebenenfalls substituiertes Alkylen, Alkenylen oder Alkinylen steht,

Q für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl, jeweils gegebenenfalls substituiertes C₃-C₈-Cycloalkyl, Alkylcarbonyl oder Alkoxycarbonyl, jeweils gegebenenfalls substituiertes Phenyl, Hetaryl oder für eine Gruppe

in welcher

20

T für –O-, -S(O)_m- oder —N— steht,

$$Re^{5}$$

Re⁴ für Wasserstoff, jeweils gegebenenfalls subsitutiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenylalkyl, Phenylalkoxy, Hetaryl, Hetarylalkyl steht,

Re⁵ für Wasserstoff, für jeweils gegebenenfalls substituiertes Alkylcarbonyl, Alkoxycarbonyl, Phenylcarbonyl oder Phenylalkoxycarbonyl steht,

- k für die Zahlen 1 bis 4 steht,
- m für die Zahlen 0 bis 2 steht,
- Re¹ und Re² gemeinsam einen gegebenenfalls substituierten vier- bis siebengliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann.
- 5 L¹ und L³ unabhängig voneinander für Wasserstoff, Halogen, Cyano oder jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alk-S(O)_m-, Phenyl, Phenoxy oder Hetaryloxy stehen,
 - L² für Wasserstoff, Halogen, Cyano, jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Cycloalkyl, Phenyl, Hetaryl oder für die Gruppe

 M^2 -Re⁶ steht,

in welcher

M² für -O- oder -S(O)_m- steht,

und

Re⁶ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl oder 15 Hetaryl steht,

L1 und L3 oder

L¹ und L² gemeinsam einen gegebenenfalls substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann, stehen.

Bevorzugt handelt es sich um Verbindungen der Formel (II).

20 in welcher

25

- K bevorzugt für Fluor, Chlor, Brom, Jod, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy steht,
- Re¹, Re² und Re³ bevorzugt jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₆-Cycloalkyl oder für eine Gruppe der Formel

stehen, in welcher

M¹ bevorzugt für C₁-C₈-Alkylen, C₃-C₆-Alkenylen oder C₃-C₆-Alkinylen steht,

Devorzugt für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls ein oder zwei nicht direkt benachbarte Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkylcarbonyl oder C₁-C₆-Alkoxycarbonyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Hetaryl mit 5 bis 6 Ringatomen (beispielsweise Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Pyrimidyl, Thiazolyl oder Thienyl) oder für eine Gruppe

T-Re4 steht.

in welcher

25

Re⁴ bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkyl, C₁-C₂-alkyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, für jeweils gegebenenfalls einfach bis vierfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, C₁-C₄-Phenylalkyloxy, Hetaryl oder Hetarylalkyl, wobei Hetaryl mit 5 bis 6 Ringatomen (beispielsweise Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Pyrimidyl, Thiazolyl oder Thienyl) steht,

- Re⁵ bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, für jeweils gegebenenfalls einfach bis vierfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl-carbonyl oder Phenyl-C₁-C₄-alkyloxycarbonyl steht,
 - k bevorzugt für die Zahlen 1 bis 3 steht,
 - m bevorzugt für die Zahlen 0 bis 2 steht,

Re¹ und Re² bevorzugt einen fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochen sein kann,

L¹ und L³ bevorzugt unabhängig voneinander für Wasserstoff, Cyano, Fluor, Chlor, Brom, Jod, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkyl-S(O)_m-, C₁-C₄-Haloalkyl-S(O)_m-, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Phenoxy, Pyridinyloxy, Thiazolyloxy oder Pyrimidyloxy stehen,

bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₆-Alkinyl, für jeweils gegebenenfalls durch Fluor, Chlor substituiertes C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Pyridyl, Thienyl, Pyrimidyl oder Thiazolyl,

oder für eine Gruppe

M^{2} -Re6

steht, in welcher

M² bevorzugt für -O- oder -S(O)_m- steht und

20 Re⁶ bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Pyridyl, Pyrimidyl oder Thiazolyl steht,

 $L^1 \text{ und } L^3$

oder

L² und L³ bevorzugt gemeinsam jeweils einen gegebenenfalls durch Fluor und/oder C₁-C₂-Alkyl substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch ein oder zwei Sauerstoffatome unterbrochen sein kann.

Besonders bevorzugt handelt es sich um Verbindungen der Formel II, in welcher

K besonders bevorzugt für Chlor, Brom und Jod steht,

Re¹, Re² und Re³ besonders bevorzugt jeweils unabhängig voneinander für Wasserstoff oder für eine Gruppe der Formel

 M^{1} - Q_{k}

stehen, in welcher

- M¹ besonders bevorzugt für C₁-C₈-Alkylen, C₃-C₆-Alkenylen oder C₃-C₆-Alkinylen steht,
- Q besonders bevorzugt für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, C₃-C₆-Cyclo-alkyl oder für eine Gruppe

T-Re⁴ steht,

in welcher

15

25

- T besonders bevorzugt für -O- oder -S(O)_m- steht,
- Re⁴ besonders bevorzugt für Wasserstoff, jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht,
- k besonders bevorzugt für die Zahlen 1 bis 3 steht,
- m besonders bevorzugt für die Zahlen 0 bis 2 steht,
- L¹ und L³ unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Phenoxy stehen,
 - L² besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

steht, in welcher

M² besonders bevorzugt für -O- oder -S(O)_m- steht,

und

besonders bevorzugt für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Pyridyl steht.

Ganz besonders bevorzugt handelt es sich um Verbindungen der Formel (II), in welcher

10 K ganz besonders bevorzugt für Jod steht,

Re¹ und Re² ganz besonders bevorzugt für Wasserstoff stehen,

Re³ ganz besonders bevorzugt für eine Gruppe der Formel

 M^1-Q

steht, in welcher

- 15 M^1 ganz besonders bevorzugt für -CHCH₃-CH₂-, -C(CH₃)₂-CH₂-, -CHC₂H₅-CH₂-, -C(C₂H₅)₂-CH₂- steht, H_3C C_2H_5
 - Q ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

- 20 in welcher
 - T ganz besonders bevorzugt für -S-, -SO- oder -SO₂- steht,
 - Re⁴ ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl oder tert.-Butyl, Allyl, Butenyl oder Isoprenyl steht,

L¹ und L³ unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Difluormethoxy oder Trifluormethoxy stehen,

ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl oder für eine Gruppe

$$M^2$$
-Re6

steht,

10 M² ganz besonders bevorzugt für Sauerstoff oder Schwefel steht,

und

15

20

Re⁶ ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl steht.

Insbesonders bevorzugt handelt es sich um die Verbindung der Formel II-1

Überraschenderweise ist die insektizide und/oder akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.

Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben mindestens einem Wirkstoff der Formel (I) mindestens einen Wirkstoff der Formel (II).

Bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I).

in welcher-

X für C₁-C₄-Alkyl, Brom, C₁-C₄-Alkoxy oder C₁-C₃-Halogenalkyl steht,

Y für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl steht,

- Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
- n für eine Zahl von 0-2 steht,
- A für Wasserstoff oder jeweils gegebenenfalls einfach bis dreifach durch Fluor substituiertes geradkettiges oder verzweigtes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, Cycloalkyl mit 3-8 Ringatomen, das gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro substituiertes Phenyl oder Benzyl steht,
 - B für Wasserstoff, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy-C₁-C₂-alkyl steht

15 oder worin

20

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls einfach bis zweifach durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder C₁-C₂-Alkylthio substituierten 3- bis 7-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

$$-CO-R^1$$
 (b) $O-R^2$ (c) $-SO_2-R^3$ (d) $-P$ R^6 (e) oder R^7 (f) steht,

in welchen

15

30

- R¹ für jeweils gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl oder Cycloalkyl mit 3-6 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,
- für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl-, C_1 - C_4 -Halogenalkoxy-substituiertes Benzyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

R² für jeweils gegebenenfalls einfach bis fünffach Fluor oder Chlor durch substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

- R³ für gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, für jeweils gegebenenfalls einfach bis zweifach durch C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,
- 20 R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-Alkylamino, C₁-C₄-Alkylthio, C₂-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkylthio, C₁-C₂-Alkylthio, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 - unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder

Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₂-Alkyl substituiert sein kann,

und mindestens einen Wirkstoff der Formel (II).

Für die in den bevorzugten Bereichen mit Halogen benannten Resten steht Halogen bevorzugt für 5 Chlor und Fluor.

Besonders bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I),

in welcher

- X für C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl steht,
- Y für Wasserstoff, C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
- 10 Z für C_1 - C_4 -Alkyl, Chlor, Brom, C_1 - C_4 -Alkoxy steht,
 - n für 0 oder 1 steht,
 - A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituierten 5- bis 6- gliedrigen Ring bilden,
- 15 G für Wasserstoff (a) oder für die Gruppen

$$--$$
CO-R¹ (b) O-R² (c) steht,

in welchen

20

- für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht,
 - für gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;
 - R² für C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, steht,

für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht, und mindestens einen Wirkstoff der Formel (II).

Ganz besonders bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I),

- 5 in welcher
 - X für Methyl, Ethyl, Methoxy, Ethoxy oder Trifluormethyl steht,
 - Y für Wasserstoff, Methyl, Ethyl, Chlor, Brom, Methoxy oder Trifluormethyl steht,
 - Z für Methyl, Ethyl, Chlor, Brom oder Methoxy steht,
 - n für 0 oder 1 steht,
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Propoxy, Butoxy oder Isobutoxy substituierten 5- bis 6-gliedrigen Ring bilden,
 - G für Wasserstoff (a) oder für die Gruppen

$$-\text{CO-R}^1$$
 (b) $O-R^2$ (c)

15 in welchen

20

- R¹ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₃-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht,
 - für gegebenenfalls einfach durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;
- R² für C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₄-Alkoxy-C₂-C₃-alkyl, steht,

für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, Methyl, Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht,

und mindestens einen Wirkstoff der Formel (II).

Insbesondere bevorzugt sind Wirkstoffkombinationen enthaltend die Verbindung der Formel (I-b-1)

- 15 -

und mindestens einen Wirkstoff der Formel (II).

10

15

Hervorgehoben sind Wirkstoffkombinationen enthaltend die Verbindung der Formel (I-b-1) und den Wirkstoff der Formel (II-1).

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vorund Zwischenprodukte entsprechend.

Erfindungsgemäß bevorzugt werden die Verbindungen der Formeln (I) und (II), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß besonders bevorzugt werden die Verbindungen der Formeln (I) und (II), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formeln (I) und (II), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können, sofern nichts anderes angegeben ist, einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

- 16 -

Die Wirkstoffkombinationen können darüber hinaus auch weitere fungizid, akarizid oder insektizid wirksame Zumischpartner enthalten.

Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im allgemeinen enthalten die erfindungsgemäßen Kombinationen Wirkstoffe der Formel (I) und den Mischpartner der Formel (II) in den angegeben bevorzugten und besonders bevorzugten Mischungsverhältnissen:

Das bevorzugte Mischungsverhältnis beträgt 500:1 bis 1:50.

5

15

Das besonders bevorzugte Mischungsverhältnis beträgt 25:1 bis 1:10.

Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Wirkstoff der Formel (I): Mischpartner der Formel (II).

Die erfindungsgemäßen Wirkstoffkombinationen eignen bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, der Tiergesundheit, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

20 Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp..

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

25 Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.

Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.

- 17 -

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

15

20

Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., 5 Linognathus spp., Trichodectes spp., Damalinia spp..

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp. 10

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius 25 obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., 30 Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono-

derus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.

- 18 -

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila 5 melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp. 10

15

Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp..

Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp..

Die erfindungsgemäßen Wirkstoffkombinationen aus Verbindungen der Formel (I) und mindestens 20 einer Verbindung der Formel (II) eignen sich besonders gut zur Bekämpfung von "beißenden" Schädlingen. Hierzu gehören besonders die folgenden Schädlinge:

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma 25 neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae. 30

WO 2005/004604 PCT/EP2004/006913 - 19 -

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.

5

15

Die erfindungsgemäßen Wirkstoffkombinationen aus Verbindungen der Formel (I) und mindestens einer Verbindung der Formel (II) eignen sich darüber hinaus besonders gut zur Bekämpfung von "saugenden" Schädlingen. Hierzu gehören besonders die folgenden Schädlinge:

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Die erfindungsgemäßen Wirkstoffkombinationen zeichnen sich insbesondere durch eine hervorragende Wirkung gegen Raupen, Käferlarven, Spinnmilben, Blattläuse und Miniersliegen aus.

Die erfindungsgemäßen Wirkstoffkombinationen können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, alipha-

tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

5 Als feste Trägerstoffe kommen in Frage:

10

15

30

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffkombinationen können in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

- 21 -

Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.

5

10

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnen sich die Wirkstoffkombinationen durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

- Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:
- 20 Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..
 - Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..
- Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp.,
 Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..

- 22 -

Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..

Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..

Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..

10

15

20

Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..

Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pouron und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.

- 23 -

Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

Außerdem wurde gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:

Käfer wie

10

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie

15 Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.

Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

20 Borstenschwänze wie Lepisma saccharina.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um 25 Holz und Holzverarbeitungsprodukte.

Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:

- 24 -

Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

Die Wirkstoffkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

10

15

20

25

30

Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.

Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

WO 2005/004604 PCT/EP2004/006913

- 25 -

Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindelöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.

5

10

15

20

25

30

Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glykolether, Ester oder dgl. zur Anwendung.

Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

10

25

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Zugleich können die erfindungsgemäßen Wirkstoffkombinationen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.

Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Balanus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.

Neben dem Bewuchs durch Algen, beispielsweise Ectocarpus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflusskrebse) zusammengefasst werden, besondere Bedeutung zu.

10

Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hervorragende Antifouling (Antibewuchs)-Wirkung aufweisen.

Durch Einsatz der erfindungsgemäßen Wirkstoffkombinationen kann auf den Einsatz von Schwermetallen wie z.B. in Bis(trialkylzinn)-sulfiden, Tri-n-butylzinnlaurat, Tri-n-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-n-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitanat, Phenyl-(bispyridin)-wismutchlorid, Tri-n-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoyl-zinkethylenbisthiocarbamat, Zinkoxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfernaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.

Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling-Wirkstoffe enthalten.

15 Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:

Algizide wie

2-tert.-Butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn;

20 Fungizide wie

Benzo[b]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluorfolpet, 3-Iod-2-propinyl-butylcarbamat, Tolylfluanid und Azole wie

Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propiconazole und Tebuconazole;

25 Molluskizide wie

Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb;

oder herkömmliche Antifouling-Wirkstoffe wie

4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Dimethylthiocarbamo-ylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-1-oxid,

15

20

Pyridin-triphenylboran, Tetrabutyldistannoxan, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetramethylthiuramdisulfid und 2,4,6-Trichlorphenylmaleinimid.

Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoffkombinationen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.

Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen Bestandteile wie z.B. in Ungerer, *Chem. Ind.* 1985, 37, 730-732 und Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973 beschrieben.

Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.

Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wäßrigen System, Vinylchlorid/Vinylacetat-Copolymersysteme in Form wässriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/-Styrol/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.

Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-Systemen können die erfindungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden.

Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.ä. vorkommen. Sie können zur Bekämpfung dieser Schädlinge in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:

Aus der Ordnung der Scorpionidea z.B. Buthus occitanus.

25

Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.

5 Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.

Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp..

10 Aus der Ordnung der Chilopoda z.B. Geophilus spp..

Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.

Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.

Aus der Ordnung der Saltatoria z.B. Acheta domesticus.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.

Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.

Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.

Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.

Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.

WO 2005/004604 PCT/EP2004/006913 - 30 -

Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.

Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.

Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Phthirus pubis.

Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.

Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättehen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckehen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.

10

15

20

25

30

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft, Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

WO 2005/004604 PCT/EP2004/006913

-31-

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

5

10

15

20

25

30

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort umd Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei

10

15

20

25

30

- 32 -

Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharn-stoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Mischungen.

Die gute insektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.

Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.

Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann wie folgt nach der so genannten "Colby-Fomel" berechnet werden (vgl. S.R. Colby, "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds <u>1967</u>, <u>15</u>, 20-22):

Wenn

5

10

20

- X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet,
- Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von <u>n</u> g/ha oder in einer Konzentration von <u>n</u> ppm bedeutet und
- E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der

 Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von
 m und n ppm bedeutet,

dann ist
$$E = X + Y - \frac{X \cdot Y}{100}$$

Ist der tatsächliche insektizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).

- 34 -

Beispiele

Beispiel A

Phaedon-Larven-Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

5 Emulgator:

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der ge10 wünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 33).

Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle A
Pflanzenschädigende Insekten
Phaedon-Larven-Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 6 ^d	
Verbindung II-1	4	65	
Verbindung (I-b-1)	100	30	
Verbindung II-1 + Verbindung I-b-1	4+100	gef.* 85	ber. ** 75,5

^{*} gef. = gefundene Wirkung

^{**} ber. = nach der Colby-Formel berechnete Wirkung

WO 2005/004604 PCT/EP2004/006913

- 36 -

Beispiel B

Spodoptera frugiperda-Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

. 10

2 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 33).

Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle B
Pflanzenschädigende Insekten
Spodoptera frugiperda-Test

Wirkstoffe		Abtötungsgrad in % nach 6 ^d		
Verbindung II-1	0,16	83	5	
Verbindung (I-b-1)	100	5		
Verbindung II-1 + Verbindung I-b-1	0,16 + 100	gef.* 95	ber. **	

^{*} gef. = gefundene Wirkung

^{**} ber. = nach der Colby-Formel berechnete Wirkung

Patentansprüche

1. Mittel, enthaltend Verbindungen der Formel (I)

in welcher

5

X für C₁-C₆-Alkyl, Brom, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- n für eine Zahl von 0-3 steht,

A für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₁₀Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel
unterbrochen sein kann oder jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl,

C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkoxy, Nitro substituiertes
Phenyl oder Phenyl-C₁-C₆-alkyl steht,

B für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy- C₁-C₄-alkyl steht oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Phenyl substituierten oder gegebenenfalls benzokondensierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

$$-CO-R^{1}$$
 (b) $O-R^{2}$ (c) $-SO_{2}-R^{3}$ (d) $-P_{1}-P_{2}-P_{3}-P_{4}-P_{5}-P$

in welchen

für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,

für jeweils gegebenenfalls durch Halogen und/oder C_1 - C_6 -Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

für gegebenenfalls durch Halogen und/oder C_1 - C_6 -Alkyl-substituiertes Phenoxy- C_1 - C_6 -alkyl steht,

R² für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für jeweils gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³ für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, für jeweils gegebenenfalls durch C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino,

10

5

15

20

10

25

 C_1 - C_8 -Alkylthio, C_2 - C_5 -Alkenylthio, C_2 - C_5 -Alkinylthio, C_3 - C_7 -Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₆-Alkyl substituiert sein kann,

und mindestens ein Phthalsäurediamid der Formel (II)

$$\begin{array}{c|c}
 & Re^3 \\
 & Re^2 \\
 & Re^3 \\
 & Re^1 \\
 & L^3
\end{array}$$
(II)

15 in welcher

K für Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy steht,

Re¹, Re², Re³ jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₈-Cycloalkyl oder für eine Gruppe der Formel

 M^1 -Q_k

stehen, in welcher

- M¹ für gegebenenfalls substituiertes Alkylen, Alkenylen oder Alkinylen steht,
- Q für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl, jeweils gegebenenfalls substituiertes C₃-C₈-Cycloalkyl, Alkylcarbonyl oder Alkoxycarbonyl, jeweils gegebenenfalls substituiertes Phenyl, Hetaryl oder für eine Gruppe

15

T-Re4 steht,

in welcher

- Re⁴ für Wasserstoff, jeweils gegebenenfalls subsitutiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl-alkyl, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenylalkyl, Phenylalkoxy, Hetaryl, Hetarylalkyl steht,
- Re⁵ für Wasserstoff, für jeweils gegebenenfalls substituiertes Alkylcarbonyl, Alkoxycarbonyl, Phenylcarbonyl oder Phenylalkoxycarbonyl steht,
- k für die Zahlen 1 bis 4 steht,
- m für die Zahlen 0 bis 2 steht,
 - Re¹ und Re² gemeinsam einen gegebenenfalls substituierten vier- bis siebengliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann,
 - L¹ und L³ unabhängig voneinander für Wasserstoff, Halogen, Cyano oder jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alk-S(O)_m-, Phenyl, Phenoxy oder Hetaryloxy stehen,
 - L² für Wasserstoff, Halogen, Cyano, jeweils gegebenenfalls substituiertes Alkyl, Alkinyl, Halogenalkyl, Cycloalkyl, Phenyl, Hetaryl oder für die Gruppe

in welcher

20 M^2 für –O- oder –S(O)_m- steht,

und

Re⁶ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl oder Hetaryl steht,

· L1 und L3 oder

- L¹ und L² gemeinsam einen gegebenenfalls substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann, stehen.
- 2. Mittel gemäß Anspruch 1, enthaltend Verbindungen der Formel (II)
- 5 in welcher

15

20

- K für Fluor, Chlor, Brom, Jod, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy steht,
- Re¹, Re² und Re³ jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₆-Cycloalkyl oder für eine Gruppe der Formel

$$M^1$$
- Q_k

stehen, in welcher

- M¹ für C₁-C₈-Alkylen, C₃-C₆-Alkenylen oder C₃-C₆-Alkinylen steht,
- Q für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls ein oder zwei nicht direkt benachbarte Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkylcarbonyl oder C₁-C₆-Alkoxycarbonyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Hetaryl mit 5 bis 6 Ringatomen (beispielsweise Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Pyrimidyl, Thiazolyl oder Thienyl) oder für eine Gruppe

T-Re4 steht,

25 in welcher

Re⁴ für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₃-C₈-Cycloalkyl,

10

15

25

 $\hbox{${\rm C}_3$-${\rm C}_8$-${\rm Cycloålkyl-${\rm C}_1$-${\rm C}_2$-alkyl, ${\rm C}_1$-${\rm C}_6$-Alkylcarbonyl, ${\rm C}_1$-${\rm C}_6$-Alkoxycarbonyl, }$ für jeweils gegebenenfalls einfach bis vierfach durch Halogen, C1-C6-Alkyl, C1-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, C1-C4-Phenylalkyl, C1-C4-Phenylalkyloxy, Hetaryl oder Hetarylalkyl, wobei Hetaryl mit 5 bis 6 Ringatomen steht,

Re⁵ für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C1-C6-Alkylcarbonyl, C1-C6-Alkoxycarbonyl, für jeweils gegebenenfalls einfach bis vierfach durch Halogen, C1-C6-Alkyl, C1-C6-Alkoxy, C1-C4-Halogenalkyl, C1-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenylcarbonyl oder Phenyl-C1-C4-alkyloxycarbonyl steht,

k für die Zahlen 1 bis 3 steht,

m für die Zahlen 0 bis 2 steht,

Re¹ und Re² einen fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochen sein kann,

 L^1 und L^3 unabhängig voneinander für Wasserstoff, Cyano, Fluor, Chlor, Brom, Jod, C_1 - C_6 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkyl- $S(O)_m$ -, C_1 - C_4 -Haloalkyl- $S(O)_m$ -, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C1-C4-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, 20 Phenoxy, Pyridinyloxy, Thiazolyloxy oder Pyrimidyloxy stehen,

> L^2 für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₆-Alkinyl, für jeweils gegebenenfalls durch Fluor, Chlor substituiertes C3-C6-Cycloalkyl, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Pyridyl, Thienyl, Pyrimidyl oder Thiazolyl,

oder für eine Gruppe

M2-Re6

· 5

15

20

- M² für -O- oder -S(O)_m- steht und
- für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogen-alkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Pyridyl, Pyrimidyl oder Thiazolyl steht,

 L^1 und L^3

oder

- L² und L³ gemeinsam jeweils einen gegebenenfalls durch Fluor und/oder C₁-C₂
 Alkyl substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch ein oder zwei Sauerstoffatome unterbrochen sein kann.
 - 3. Mittel gemäß Anspruch 1, enthaltend Verbindungen der Formel (II), in welcher

K für Chlor, Brom und Jod steht,

Re¹, Re² und Re³ jeweils unabhängig voneinander für Wasserstoff oder für eine Gruppe der Formel

M^1-Q_k

stehen, in welcher

- M¹ für C₁-C₈-Alkylen, C₃-C₆-Alkenylen oder C₃-C₆-Alkinylen steht,
- Q für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

T-Re4 steht.

in welcher

- T für –O- oder – $S(O)_{m}$ steht,
- für Wasserstoff, jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder
 Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht,

10

- k für die Zahlen 1 bis 3 steht,
- m für die Zahlen 0 bis 2 steht,
- L¹ und L³ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Phenoxy stehen,
- L² für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

 M^2 -Re6

steht, in welcher

M² für -O- oder -S(O)_m- steht,

und

- für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Pyridyl steht.
- 20 4. Mittel gemäß Anspruch 1, enthaltend Verbindungen der Formel (II), in welcher

K für Jod steht,

Re¹ und Re² für Wasserstoff stehen,

Re³ für eine Gruppe der Formel

 $M^{I}-Q$

25 steht, in welcher

$$M^1$$
 für -CHCH3-CH2-, -C(CH3)2-CH2-, -CHC2H5-CH2-, -C-CH2-
 H_3 C C_2 H5 -C(C2H5)2-CH2- steht,

Q für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

5 T-Re⁴ steht,

in welcher

10

15

25

T für -S-, -SO- oder -SO₂- steht,

Re⁴ für jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl oder tert.-Butyl, Allyl, Butenyl oder Isoprenyl steht,

- L¹ und L³ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Difluormethoxy oder Trifluormethoxy stehen,
- L² für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl oder für eine Gruppe

 M^2 -Re6

steht,

20 M² für Sauerstoff oder Schwefel steht,

und

- Re⁶ für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl steht.
- 5. Mittel gemäß Anspruch 1, enthaltend die Verbindung der Formel (II-1)

- 6. Mittel gemäß Anspruch 1, enthaltend Verbindungen der Formel (I), in welcher
 - X für C₁-C₄-Alkyl, Brom, C₁-C₄-Alkoxy oder C₁-C₃-Halogenalkyl steht,
 - Y für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
 - n für eine Zahl von 0-2 steht,
- A für Wasserstoff oder jeweils gegebenenfalls einfach bis dreifach durch Fluor substituiertes geradkettiges oder verzweigtes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, Cycloalkyl mit 3-8 Ringatomen, das gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro substituiertes Phenyl oder Benzyl steht,
- B für Wasserstoff, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy-C₁-C₂-alkyl steht oder worin
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls einfach bis zweifach durch Fluor, Chlor, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder C₁-C₂-Alkylthio substituierten 3- bis 7-gliedrigen Ring bilden,
 - G für Wasserstoff (a) oder für die Gruppen

steht,

$$-CO-R^{1}$$
 (b) $O-R^{2}$ (c) $-SO_{2}-R^{3}$ (d) $-P-R^{4}$ (e) oder $N-R^{6}$ (f)

in welchen

für jeweils gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl oder Cycloalkyl mit 3-6 Ringatomen, das durch Sauerstoff-und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl-, C₁-C₄-Halogenalkoxy-substituiertes Benzyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

R² für jeweils gegebenenfalls einfach bis fünffach Fluor oder Chlor durch substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³ für gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, für jeweils gegebenenfalls einfach bis zweifach durch C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

5

·10

15

20

25

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-Alkylamino, C₁-C₄-Alkylthio, C₂-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkylthio, C₁-C₂-Halogenalkylthio, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₂-Alkyl substituiert sein kann.

7. Mittel gemäß Anspruch i enthaltend Verbindungen der Formel (I),

in welcher

- X für C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl steht,
- Y für Wasserstoff, C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
 - n für 0 oder 1 steht,

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituierten 5-bis 6-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

$$-CO-R^1$$
 (b) $O-R^2$ (c) steht,

in welchen

R¹ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht,

für gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alky

R² für C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, steht,

für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl,

C₁-C₄-Alkoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht.

10 8. Mittel gemäß Anspruch 1, enthaltend Verbindungen der Formel (I)

in welcher

- X für Methyl, Ethyl, Methoxy, Ethoxy oder Trifluormethyl steht,
- Y für Wasserstoff, Methyl, Ethyl, Chlor, Brom, Methoxy oder Trifluormethyl steht,
- Z für Methyl, Ethyl, Chlor, Brom oder Methoxy steht,
- n für 0 oder 1 steht,

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Propoxy, Butoxy oder Isobutoxy substituierten 5- bis 6-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

—CO-R¹ (b)
$$O_{-R^2}$$
 (c)

in welchen

20

25

für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₃-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht,

für gegebenenfalls einfach durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;

- für C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₄-Alkoxy-C₂-C₃-alkyl, steht,

 für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, Methyl,

 Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht.
- 9. Mittel gemäß Anspruch 1, enthaltend die Verbindung der Formel (I-b-1)

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

- 10. Mittel gemäß Anspruch 1 enthaltend die Verbindungen der Formeln (I-b-1) und (II-1).
- Verwendung von Mischungen, wie in Anspruch 1 definiert, zur Bekämpfung tierischer
 Schädlinge.
 - 12. Verfahren zur Bekämpfung tierischer Schädlinge, dadurch gekennzeichnet, dass man Mischungen, wie in Anspruch 1 definiert, auf tierische Schädlinge und/oder deren Lebensraum einwirken lässt..
- Verfahren zur Herstellung insektizider und akarizider Mittel, dadurch gekennzeichnet, dass
 man Mischungen, wie in Anspruch 1 definiert, mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A01N43/08 A01N47/06 A01N57/08 A01N43/12 A01N37/22 A01N41/10 A01N47/40 A01N47/08 //(A01N43/12,47:40,41:10,37:30),(A01N43/08,47:40,41:10,37:30)

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 A01N

Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BIOSIS

C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02/087334 A (MORIMOTO MASAYUKI; KODAMA HIROSHI (JP); SAKATA KAZUYUKI (JP); NIHON N) 7 November 2002 (2002-11-07) cited in the application	1-13
Y	& EP 1 380 209 A (NIHON NOHYAKU CO LTD) 14 January 2004 (2004-01-14) spirodiclofen, spiromesifen page 10, line 31 - line 46; table 1; compounds 129, 130, 131 cmp.129 or cmp.130 or cmp.131 +spirodiclofen page 27 -/	1-13

 'T' later document published after the international filing date or priorily date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of malling of the international search report
14/10/2004
Authorized officer Romano-Götsch, R

10	All-1 BOOK MEATS CONCINEDED TO BE DELEVIS	FET/EP2004/006913
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	10standard Indian
	Change of Goodment, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 528 156 A (BAYER AG) 24 February 1993 (1993-02-24) cited in the application page 3, line 1 - page 4, line 30 page 151, line 25 - line 30	1-13
A	WO 00/56156 A (ERDELEN CHRISTOPH; BAYER AG (DE); BRUECK ERNST (DE); FISCHER REINER () 28 September 2000 (2000-09-28) page 1, line 16 - page 4, line 22 page 9, line 15 - page 17, line 10	1-13
A	DE 199 39 395 A (BAYER AG) 27 April 2000 (2000-04-27) page 2, line 1 - page 6, line 24	1-13
P,A	WO 2004/034786 A (STUEBLER DIETRICH; KONZE JOERG (DE); ANDERSCH WOLFRAM (DE); BAYER CRO) 29 April 2004 (2004-04-29) page 1, line 4; claim 9 page 8, line 24 - page 9, line 10	1-13

information on patent family members

International Application No Per/EP2004/006913

Date	ent document		Publication		0-1-16-2		
	In search report		date		Patent family member(s)		Publication date
WO (02087334	Α	07-11-2002	EP	1380209	A1	14-01-2004
				WO	02087334	A1	07-11-2002
				JP	2003012415		15-01-2003
				US	2004077500		22-04-2004
EP	 1380209	Α	14-01-2004	 ЕР	1380209	 Λ1	
	2000203	^	14 01 2004	ÜS	2004077500		14-01-2004 22-04-2004
				WO	02087334		07-11-2002
				JP	2003012415		15-01-2003
	 0528156		24 02 1002				
LI '	0328130	Α	24-02-1993	DE AU	4216814		21-01-1993
				AU	645701		20-01-1994
				BR	1959992		21-01-1993
				DE	9202653		16-03-1993
				EP		D1	30-04-1997
				ES	0528156		24-02-1993
				GR -	2099770		01-06-1997
					3023258		30-07-1997
				JP JP	3113078		27-11-2000
					5294953		09-11-1993
				KR MX	227884		01-11-1999
					9204006		01-07-1993
				NL	350016		02-02-2004
				US	5262383		16-11-1993
				ZA 	9205260	A 	28-04-199:
WO	0056156	Α	28-09-2000	DE	19913174		28-09-2000
				AT	241904		15-06-2003
				AU	760003		08-05-2003
				AU	3166800		09-10-200
				BR	0009284		22-01-2002
				CN	1345182		17-04-200
				DE	50002452		10-07-200
				EG	23116		28-04-200
				WO	0056156		28-09-200
				EP	1164847	A1	02-01-200
				ES	2194707		01-12-200
				JP	2002539228		19-11-200
				NZ	514361		30-05-2003
				PT	1164847		31-10-200
				TR	200102705		22-04-200
				US	2004082650		29-04-200
				US	6716874		06-04-200
				ZA 	200106801	Α	19-08-200
DE	19939395	Α	27-04-2000	DE	19939395	A1	27-04-200
				AU	5268099		04-05-200
				BR	9905110		15-08-200
				CN	1252220		10-05-200
				FR	2784859		28-04-200
				IT	MI992188		19-04-200
				ĴΡ	2000128710		09-05-200
				KR	2000028735		25-05-200
				NL	1013258		14-11-200
				NL	1013258		26-04-200
				TR	9902611		21-02-200

Form PCT/ISA/210 (patent family annex) (January 2004)

International Application No

	Information on patent family members				EF/EP2004/006913	
Patent document cited in search report		Publication date		Patent family member(s)	,	Publication date
WO 2004034786	Α	29-04-2004	DE WO	1024825 200403478	7 A1 6 A1	29-04-2004 29-04-2004
		· · · · · · · · · · · · · · · · · · ·				

Internationales Aktenzeichen FET/EP2004/006913

A01N37/22

a. Klassifizierung des anmeldungsgegenstandes IPK 7 A01N43/08 A01N47/06 A01N57/08 A01N43/12 A01N41/10

A01N47/40 A01N47/08 //(A01N43/12,47:40,41:10,37:30),(A01N43/08,47:40,41:10,37:30)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 **A01N**

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evt), verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BIOSIS

C.	ALS WESENT	LICH ANGESEHENE UNTERLAGEN	ı

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	WO 02/087334 A (MORIMOTO MASAYUKI ; KODAMA HIROSHI (JP); SAKATA KAZUYUKI (JP); NIHON N) 7. November 2002 (2002-11-07) in der Anmeldung erwähnt	1-13
Y	& EP 1 380 209 A (NIHON NOHYAKU CO LTD) 14. Januar 2004 (2004-01-14) spirodiclofen, spiromesifen Seite 10, Zeile 31 - Zeile 46; Tabelle 1; compounds 129, 130, 131 cmp.129 or cmp.130 or cmp.131 +spirodiclofen Seite 27	1-13

LX	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
· Boco	andere Ketegorien von engesch-nes V-Eff-utt-t

Siehe Anhang Patentfamilie

- sondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älleres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-schelnen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- "O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolikliert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

5. Oktober 2004

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Absendedatum des internationalen Recherchenberichts

14/10/2004

Bevollmächtigter Bediensteter

Romano-Götsch. R

Internationales Aktenzeichen

		TEI/EP20	004/006913
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
Y	EP 0 528 156 A (BAYER AG) 24. Februar 1993 (1993-02-24) in der Anmeldung erwähnt Seite 3, Zeile 1 - Seite 4, Zeile 30 Seite 151, Zeile 25 - Zeile 30		1-13
Α	WO 00/56156 A (ERDELEN CHRISTOPH; BAYER AG (DE); BRUECK ERNST (DE); FISCHER REINER () 28. September 2000 (2000-09-28) Seite 1, Zeile 16 - Seite 4, Zeile 22 Seite 9, Zeile 15 - Seite 17, Zeile 10		1-13
A	DE 199 39 395 A (BAYER AG) 27. April 2000 (2000-04-27) Seite 2, Zeile 1 - Seite 6, Zeile 24		1-13
P,A	WO 2004/034786 A (STUEBLER DIETRICH; KONZE JOERG (DE); ANDERSCH WOLFRAM (DE); BAYER CRO) 29. April 2004 (2004-04-29) Seite 1, Zeile 4; Anspruch 9 Seite 8, Zeile 24 - Seite 9, Zeile 10		1-13

Angaben zu Veröffentligengen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
EP2004/006913

	echerchenbericht rtes Patentdokume	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO	02087334	A	07-11-2002	EP WO JP	1380209 A1 02087334 A1 2003012415 A	14-01-2004 07-11-2002 15-01-2003
~				US	2004077500 A1	22-04-2004
EP	1380209	Α	14-01-2004	EP	1380209 A1	14-01-2004
				US WO	2004077500 A1 02087334 A1	22-04-2004 07-11-2002
				JP	2003012415 A	15-01-2003
EP	0528156	Α	24-02-1993	DE	4216814 A1	21-01-1993
				AU	645701 B2	20-01-1994
				AU BR	1959992 A 9202653 A	21-01-1993 16-03-1993
				DE	59208263 D1	30-04-1997
				EP	0528156 A1	24-02-1993
				ES	2099770 T3	01-06-1997
				GR JP	3023258 T3 3113078 B2	30-07-1997 27 - 11-2000
				JP	5294953 A	09-11-1993
				KR	227884 B1	01-11-1999
				MX NL	9204006 A1	01-07-1993
				US	350016 I1 5262383 A	02-02-2004 16-11-1993
				ZA	9205260 A	28-04-1993
WO	0056156	Α	28-09-2000	DE	19913174 A1	28-09-2000
				AT AU	241904 T 760003 B2	15-06-2003
				AU	3166800 A	08-05-2003 09-10-2000
				BR	0009284 A	22-01-2002
				CN	1345182 T	17-04-2002
				DE EG	50002452 D1 23116 A	10-07-2003 28-04-2004
				WO	0056156 A1	28-09-2000
				EP	1164847 A1	02-01-2002
				ES JP	2194707 T3 2002539228 T	01-12-2003
				NZ	2002539228 T 514361 A	19-11-2002 30-05-2003
				PT	1164847 T	31-10-2003
				TR	200102705 T2	22-04-2002
				US US	2004082650 A1 6716874 B1	29-04-2004 06-04-2004
				ZA	200106801 A	19-08-2002
DE	19939395	Α	27-04-2000	DE	19939395 A1	27-04-2000
				AU BR	5268099 A 9905110 A	04-05-2000
				CN	1252220 A	15-08-2000 10-05-2000
				FR	2784859 A1	28-04-2000
	•			IT	MI992188 A1	19-04-2001
				JP KR	2000128710 A 2000028735 A	09-05-2000
				NL	1013258 C2	25-05-2000 14-11-2000
				NL	1013258 A1	26-04-2000
				TR	9902611 A2	21-02-2001
				ZA	9906662 A	23-10-2000

Angaben zu Veröffentlitzungen, die zur selben Patentramilie gehören

Internationales Aktenzeichen FCT/EP2004/006913

Im Recherchenbericht angeführtes Patentdokument				Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
WO 2004034786	A	29-04-2004	DE WO	10248257 A1 2004034786 A1	29-04-2004 29-04-2004	