Table Templates

Sara Colando

1 Markdown Table

Table 1: Table of some of the relevant variables from the dataset as well as their descriptions and units, if applicable.

Name	Description
Serious Infection	Whether the patient developed a serious infection within 30 days of surgery, such as a surgical site infection deep in the fascia or surrounding the organs or an intra-abdominal abscess caused by infection.
Superficial Infection	Whether the patient developed a superficial infection within 30 days of surgery, such as a superficial site infection on skin around the incision or fascial dehiscence after the surgery.
TWA Core	The patient's time weighted average (TWA) core temperature
Temperature	during the surgery (in Celsius).
Surgery Duration	The length of the patient's colorectal surgery (in minutes).
Steriod Usage	Whether the patient was prescribed steriods before the surgery.
Weight Loss	Whether the patient lost weight prior to the surgery, amount and time prior is not specified.

Use Table 1 to reference the table

2 gt Table

Use Table 2 to reference the table

Table 2: ADD here

Characteristic	Estimate	2.5~%	97.5~%	t-stat	p-value
distance	-7.85	-24.10	8.39	-0.96	0.34
walkscore	0.22	-0.50	0.94	0.61	0.54
squarefeet	140.18	114.71	165.66	10.92	0.00
bedgroup3 beds	8.68	-9.25	26.61	0.96	0.34
bedgroup4+ beds	-23.58	-51.74	4.57	-1.66	0.10
zip1062	-24.47	-44.07	-4.87	-2.48	0.01

Table 3: ADD here

Characteristic	Beta	95% CI	p-value
distance	-7.9	-21, 5.7	0.3
walkscore	0.22	-0.29, 0.73	0.4
squarefeet	140	120, 160	< 0.001
bedgroup			
1-2 beds			
3 beds	8.7	-16, 34	0.5
4+ beds	-24	-54, 6.6	0.12
zip			
1060			
1062	-24	-43, -5.8	0.011

 $\overline{\text{Abbreviation: CI} = \text{Confidence Interval}}$

Table 4: ADD here

Average House Attribute	Closer to Rail Trail Access $(n = 40)$	Farther from Rail Trail Access $(n = 64)$	Attribute Difference (Closer - Farther)
Bedrooms	3.45	3.12	0.33
Full Bathrooms	1.55	1.39	0.16
Acres	0.22	0.28	-0.06
Square Footage	1.75	1.45	0.31
Total Rooms	7.15	6.28	0.87
Garage Spots	1.02	0.59	0.43
Percent in ZIP 01060	62.00	28.00	34.00

Flight delays from Pittsburgh

		Arrival dela	У		
Month	Mean	Median	75th pct.	% delayed	Flights
January	2.9	-9	7	18.4%	3,299
February	-4.3	-12	0	11.9%	3,049
March	4.3	-7	7	18.0%	3,579
April	3.5	-7	6	15.9%	3,450
May	-2.9	-9	0	10.3%	3,618
June	8.6	-6	9	20.5%	3,431
July	11.9	-6	15	24.4%	3,464
August	2.6	-10	4	15.1%	3,669
September	3.7	-8	3	14.9%	3,341
October	-3.5	-10	-1	10.6%	3,742
November	-4.6	-11	0	10.0%	3,496
December	-4.4	-12	0	10.9%	3,355

Table 5: Summary of the relationships between serious and superficial SSIs and the covariates from the dataset that are correlated with TWA core temperature. Patients who develop serious SSIs tend to have longer surgeries, as well as have higher likelihoods of pre-surgery weight loss and steroid usage than patients who do not develop a serious SSI (on average). There are similar trends when comparing patients who develop superficial SSIs to those who do not, except that patients who develop a superficial SSI tend to have a higher BMI than patients who do not (on average).

	Serious Infection		Superficial Infection	
Patient Variable	Yes	No	Yes	No
Total	661	7218	637	7242
Age (Years)	54 ± 17	56 ± 17	56 ± 16	56 ± 17
BMI	26.5 ± 6.3	26.6 ± 6.2	28.7 ± 6.9	26.4 ± 6.1
Surgery Duration (Min)	247 ± 114	211 ± 98	256 ± 112	210 ± 98
Weight Loss	312 (47%)	1766 (24%)	195 (31%)	1883~(26%)
Steriod Usage	244(37%)	2483 (34%)	202 (32%)	2525 (35%)

For continuous variables, the form is: (mean) \pm (standard deviation). For binary variables, the form is: (patients with condition) (% of total patients).

3 kable Table

4 Map Code

```
county_bbox <- getbb("Hampshire County, Massachusetts")</pre>
northampton_osm <- opq(bbox = county_bbox) |>
  add_osm_feature(key = "highway") |>
  osmdata_sf()
streets <- northampton_osm$osm_lines</pre>
northampton_cycleways <- opq(bbox = county_bbox) |>
  add_osm_feature(key = "highway", value = "cycleway") |>
  osmdata_sf()
cycleways <- northampton_cycleways$osm_lines</pre>
# next we have to filter out the cycleways that are not corresponding to the rail trail system
nrows_vector <- sapply(cycleways$geometry, nrow)</pre>
nrows_df <- data.frame(index = names(nrows_vector), nrows = nrows_vector) |>
  uncount(nrows)
rail_trail_indices <- st_coordinates(cycleways$geometry) |>
  cbind(nrows_df) |>
  group_by(index) |>
  slice_min(n = 1, order_by = X) |>
  filter(!str_detect(index, "^151|^189|^165|^351")) |> _$index |> unique()
rel_cycleways <- cycleways |> filter(osm_id %in% rail_trail_indices)
lat_limits \leftarrow c(42.3, 42.358)
long_limits <-c(-72.73, -72.6)
rail_trails |>
  rename(`Est. House\nPrice (2007)` = price2007,
         `Distance to\nRail Trail` = distance) |>
  ggplot()+
  geom_sf(data = streets, color = "grey80") +
  geom_sf(data = rel_cycleways, color = "black")+
```