

# Санкт-Петербургский государственный университет Кафедра информатики

# Распознавание дорожной разметки парковочных мест по fisheye камерам

Грудинин Михаил Артемович, группа 23.Б16-мм

**Научный руководитель:** к.т.н. Литвинов Ю. В., старший преподаватель кафедры системного программирования

Консультант: Осечкина М. С., инженер-программист АО «Кама»

Санкт-Петербург 2024

#### Введение

- Распознавание разметки парковок: ключевая технология автоматизации
- Проблема парковки: рост числа автомобилей, нехватка мест
- Стандартные камеры (pinhole): привычное решение, ограниченный угол обзора
- Fisheye-камеры: широкий обзор, экономия на количестве устройств
- Проблема fisheye: отсутствие готовых решений в открытом доступе, искажения, сложность адаптации решений

#### Постановка задачи

**Цель:** разработка системы для распознавания дорожной разметки парковочных мест на изображениях, полученных с fisheye камер автомобиля.

#### Задачи:

- Провести обзор существующих решений распознавания дорожной разметки парковочного места
- Реализовать модуль распознавания на основе лучшего метода
- Оценить эффективность разработанной системы на тестовых данных и провести анализ результатов

### Существующие решения

- Классические методы
  - Быстрые
  - Ограничены в точности
- Нейросетевые методы
  - Точные
  - Требуют больших вычислительных ресурсов и качественных данных

#### Алгоритм Кэнни для распознавания разметки







Рис.: Результат обработки при одинаковых параметрах алгоритма

# Сравнение нейросетевых архитектур

| Архитектура  | Задача      | Скорость      | Точность      |
|--------------|-------------|---------------|---------------|
| U-Net        | Сегментация | Высокая       | Низкая        |
| DeepLabV3+   | Сегментация | Средняя       | Высокая       |
| Faster R-CNN | Сегментация | Низкая        | Высокая       |
| SSD          | Детекция    | Очень высокая | Низкая        |
| YOLOv8       | Детекция    | Высокая       | Средняя       |
| Mask R-CNN   | Детекция    | Низкая        | Очень высокая |

Таблица: Сравнение архитектур по применимости и характеристикам

#### Обзор используемых датасетов

#### **Parking Finder**

- Задача: детекция парковочных мест
- Формат: pinhole изображения
- Особенности: обширный набор данных среднего качества с размеченными парковочными местами

#### Woodscape

- Задача: сегментация дорожной разметки
- Формат: fisheye изображения
- Особенности: единственный доступный fisheye набор с масками дорожной разметки, качество набора высокое

# Метрики и вычислительные платформы

- Метрики
  - mAP (mean Average Precision)
  - ▶ IoU (Intersection over Union)
- Платформы
  - Colab
  - Kaggle

#### Архитектура решения

- Обработка pinhole датасета парковочных мест
- Детекция парковочных мест на fisheye изображениях
- Семантическая сегментация дорожной разметки на fisheye изображениях
- Объединение результатов моделей, решающих задачу сегментации и детекции

# Процесс обучения нейронных сетей

DeepLabV3+ (сегментация дорожной разметки)

- Экстрактор признаков (backbone): ResNet-50
- Размер батча: 4
- Оптимизатор: Adam
- Функция потерь: CrossEntropyLoss
- Количество эпох: 20

# Процесс обучения нейронных сетей

#### YOLOv8 (детекция парковочных мест)

- Размер батча: 32
- Оптимизатор: Auto
- **Функции потерь:** YOLOv8 использует комбинированную функцию потерь:
  - ▶ Для регрессии координат (IoU/CloU)
  - ▶ Для оценки вероятности наличия объекта (BCE Loss)
  - ▶ Для классификации объектов по классам (BCE Loss)
- Количество эпох: 250

### Пример работы YOLOv8 и DeepLabV3+



Рис.: Пример работы YOLOv8



Рис.: Пример работы DeepLabV3+

# Итоговый результат



Рис.: Результат сочетания нейросетей



Рис.: Исходное изображение с результатом сочетания нейросетей

# Экспериментальное исследование

#### YOLOv8:

- mAP
- Parking Finder

#### DeepLabV3+

- loU
- WoodScape

#### Результаты экспериментального исследования

В результате экспериментального исследования YOLOv8 показала следующие результаты:

mAP50 составляет 75%



Рис.: Графики функций потерь и метрик

#### Результаты экспериментального исследования

В результате экспериментального исследования DeepLabV3+ показала следующие результаты:

IoU составляет 79%



Рис.: График функций потерь

#### Результаты

- Были изучены существующие решения, благодаря которым удалось понять, что нейросетевой подход будет самым оптимальным
- Был реализован модуль распознавания дорожной разметки парковочных мест при помощи сверточных нейросетей
- Сравнение с другими подходами пока не выполнено, так как текущие наборы данных и модели, доступные в открытом доступе, не обладают аналогичными характеристиками или аннотациями, подходящими для данного проекта. В дальнейшем планируется провести сравнение, как только будет найден сопоставимый набор данных или опубликованы результаты по схожим задачам.

#### Ссылка на репозиторий:

https://github.com/touge13/recognitionOfRoadMarkingsOfParkingSpaces