

Generated by elijahsheridan on 23 September 2020, 11:08:18

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents

1	\mathbf{Set}	up	2
	1.1	Command history	2
	1.2	Configuration	5
2	Dat	tasets	6
	2.1	signal	6
	2.2	bg_vbf_0_100	6
	2.3	bg_vbf_100_200	6
	2.4	bg_vbf_200_400	7
	2.5	bg_vbf_400_600	7
	2.6	bg_vbf_600_800	8
	2.7	bg_vbf_800_1200	8
	2.8	bg_vbf_1200_1600	g
	2.9	bg_vbf_1600_inf	Ö
	2.10	~= ·= =	Ö
	2.11	bg_dip_100_200	10
		bg_dip_200_400	10
	2.13	9 	11
	2.14	<u> </u>	11
		bg_dip_800_1200	11
		bg_dip_1200_1600	12
	2.17	bg_dip_1600_inf	12
3	His	stos and cuts	13
	3.1	Cut 1	13
	3.2	Cut 2	14
	3.3	Cut 3	15
	3.4	Histogram 1	16
	3.5	Histogram 2	17
	3.6	Histogram 3	18
	3.7	Histogram 4	19
	3.8	Histogram 5	20
	3.9	Histogram 6	21
		Histogram 7	22
	3.11	Histogram 8	23
	3.12	Histogram 9	24
	3.13	o contract of the contract of	25
	3.14	Histogram 11	26
	3.15	Histogram 12	27
	3.16	Histogram 13	28
	3.17	Histogram 14	29
	3.18	Histogram 15	30
	3.19	Histogram 16	31
	3.20	Histogram 17	32

4	Sur	nmary	33
	4.1	Cut-flow charts	33

1 Setup

1.1 Command history

```
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization/-
ma_scripts
ma5># set directory where running "./bin/ma5"
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data
# need to change this directory path -> exit and type "pwd" to get the path
ma5>set main.lumi = 40
ma5>set main.fom.formula = 5
ma5>set main.fom.x = 0.0
ma5># import samples -> change the path to the LHE file
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
axion_signal_gurrola_cuts_1MeV.lhe.gz as signal
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_0_100_merged.lhe.gz as bg_vbf_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_100_200_merged.lhe.gz as bg_vbf_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_200_400_merged.lhe.gz as bg_vbf_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_400_600_merged.lhe.gz as bg_vbf_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_600_800_merged.lhe.gz as bg_vbf_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_800_1200_merged.lhe.gz as bg_vbf_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_1200_1600_merged.lhe.gz as bg_vbf_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_1600_inf_merged.lhe.gz as bg_vbf_1600_inf
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_0_100_merged.lhe.gz as bg_dip_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_100_200_merged.lhe.gz as bg_dip_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_200_400_merged.lhe.gz as bg_dip_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_400_600_merged.lhe.gz as bg_dip_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_600_800_merged.lhe.gz as bg_dip_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_800_1200_merged.lhe.gz as bg_dip_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1200_1600_merged.lhe.gz as bg_dip_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1600_inf_merged.lhe.gz as bg_dip_1600_inf
ma5># define bg and signal samples
ma5>set signal.type = signal
ma5>set bg_vbf_0_100.type = background
```

```
ma5>set bg_vbf_100_200.type = background
ma5>set bg_vbf_200_400.type = background
ma5>set bg_vbf_400_600.type = background
ma5>set bg_vbf_600_800.type = background
ma5>set bg_vbf_800_1200.type = background
ma5>set bg_vbf_1200_1600.type = background
ma5>set bg_vbf_1600_inf.type = background
ma5>set bg_dip_0_100.type = background
ma5>set bg_dip_100_200.type = background
ma5>set bg_dip_200_400.type = background
ma5>set bg_dip_400_600.type = background
ma5>set bg_dip_600_800.type = background
ma5>set bg_dip_800_1200.type = background
ma5>set bg_dip_1200_1600.type = background
ma5>set bg_dip_1600_inf.type = background
ma5># a jet can be from a light quark or b quark
ma5>define jets = j
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>define ta = ta+ ta-
ma5>define lept = e mu ta
ma5>define ax = 9000005
ma5># cuts
ma5># select M(a[1] a[2]) > 500
ma5># select PT(a[1]) > 300
ma5># select M(jets[1] jets[2]) > 750
ma5># select sdETA(jets[1] jets[2]) > 3.6 or sdETA(jets[1] jets[2]) < -3.6
ma5>select PT(jets[1]) > 30 and PT(jets[2]) > 30
ma5>select sdETA(jets[1] jets[2]) > 3.6 or sdETA(jets[1] jets[2]) < -3.6
ma5>select M(jets[1] jets[2]) > 750
ma5># define which plots to make
ma5>plot PT(jets[1])
ma5>plot ETA(jets[1])
ma5>plot PHI(jets[1])
ma5>plot PT(jets[2])
ma5>plot ETA(jets[2])
ma5>plot PHI(jets[2])
ma5>plot DELTAR(jets[1], jets[2])
ma5>plot M(jets[1] jets[2])
ma5>plot sdETA(jets[1] jets[2])
ma5>plot M(a[1] a[2])
ma5>plot PT(a[1])
ma5>plot PT(a[2])
ma5>plot THT
ma5>plot MET
ma5>plot TET
ma5>plot DELTAR(a[1], a[2])
ma5>plot sdETA(a[1] a[2])
ma5>#set the plot/graph parameters
```

```
ma5>set selection[5].xmin = 0
ma5>set selection[5].xmax = 2000
ma5>set selection[5].nbins = 200
ma5>set selection[5].rank = PTordering
ma5>set selection[5].titleX = "p_{T}[j_{1}] (GeV)"
ma5>set selection[6].xmin = -8
ma5>set selection[6].xmax = 8
ma5>set selection[6].nbins = 160
ma5>set selection[6].rank = PTordering
ma5>set selection[6].titleX = "#eta[j_{1}]"
ma5>set selection[7].xmin = -3.2
ma5>set selection[7].xmax = 3.2
ma5>set selection[7].nbins = 64
ma5>set selection[7].rank = PTordering
ma5>set selection[7].titleX = "#phi[j_{1}]"
ma5>set selection[8].xmin = 0
ma5>set selection[8].xmax = 1000
ma5>set selection[8].nbins = 100
ma5>set selection[8].rank = PTordering
ma5>set selection[8].titleX = "p_{T}[j_{2}] (GeV)"
ma5>set selection[9].xmin = -8
ma5>set selection[9].xmax = 8
ma5>set selection[9].nbins = 160
ma5>set selection[9].rank = PTordering
ma5>set selection[9].titleX = "#eta[j_{2}]"
ma5>set selection[10].xmin = -3.2
ma5>set selection[10].xmax = 3.2
ma5>set selection[10].nbins = 64
ma5>set selection[10].rank = PTordering
ma5>set selection[10].titleX = "#phi[j_{2}]"
ma5>set selection[11].xmin = 0
ma5>set selection[11].xmax = 15
ma5>set selection[11].nbins = 75
ma5>set selection[11].rank = PTordering
ma5>set selection[11].titleX = "#DeltaR[j_{1},j_{2}]"
ma5>set selection[12].xmin = 120
ma5>set selection[12].xmax = 2000
ma5>set selection[12].nbins = 160
ma5>set selection[12].rank = PTordering
ma5>set selection[12].titleX = "M[j_{1}, j_{2}] (GeV)"
ma5>set selection[13].xmin = 2.4
ma5>set selection[13].xmax = 8
ma5>set selection[13].titleX = "#Delta#eta(j_{1},j_{2})"
ma5>set selection[14].xmin = 0
ma5>set selection[14].xmax = 1000
ma5>set selection[14].nbins = 400
ma5>set selection[14].rank = PTordering
ma5>set selection[14].titleX = "M[a_{1},a_{2}] (GeV)"
ma5>set selection[15].xmin = 0
```

```
ma5>set selection[15].xmax = 1000
ma5>set selection[15].nbins = 80
ma5>set selection[15].rank = PTordering
ma5>set selection[15].titleX = "p_{T}[a_{1}]"
ma5>set selection[16].xmin = 0
ma5>set selection[16].xmax = 2000
ma5>set selection[16].nbins = 400
ma5>set selection[16].rank = PTordering
ma5>set selection[16].titleX = "p_{T}[a_{2}] (GeV)"
ma5>set selection[17].xmin = 0
ma5>set selection[17].xmax = 4000
ma5>set selection[17].nbins = 80
ma5>set selection[17].rank = PTordering
ma5>set selection[17].titleX = "THT"
ma5>set selection[18].xmin = 0
ma5>set selection[18].xmax = 1000
ma5>set selection[18].nbins = 200
ma5>set selection[18].rank = PTordering
ma5>set selection[18].titleX = "MET"
ma5>set selection[19].xmin = 0
ma5>set selection[19].xmax = 8000
ma5>set selection[19].nbins = 80
ma5>set selection[19].rank = PTordering
ma5>set selection[19].titleX = "TET"
ma5>submit vbf_eff_flow_chart
```

1.2 Configuration

- MadAnalysis version 1.6.33 (2017/11/20).
- Histograms given for an integrated luminosity of 40.0fb⁻¹.

2 Datasets

2.1 signal

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: signal events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 4094+/- 2 events.

• Ratio (event weight): 0.0041 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_pheno/-	1000000	0.102 @ 0.028%	0.0
$madgraph_data/axion_signal/-$			
axion_signal_gurrola_cuts_1MeV.ll			

$2.2 \quad bg_vbf_0_100$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 12150+/- 24 events.

 \bullet Ratio (event weight): 0.012 $% \left(1\right) =0.012$.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_0_16	1000000	0.304 @ 0.19%	0.0

$2.3 \quad \text{bg vbf } 100 \quad 200$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 965662 events.

 \bullet Normalization to the luminosity: 9695+/- 17 $\,$ events.

• Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_100_	965662	0.242 @ 0.17%	0.0

$\mathbf{2.4} \quad \mathbf{bg_vbf_200_400}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 984165 events.

 \bullet Normalization to the luminosity: 5413+/- 11 events.

• Ratio (event weight): 0.0055.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	984165	0.135 @ 0.2%	0.0
vbf_diphoton_background_data/-	304100	0.150 @ 0.270	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_200_			

$\mathbf{2.5} \quad \mathbf{bg_vbf_400_600}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 986+/-2 events.

 \bullet Ratio (event weight): 0.00099 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_400_	1000000	0.0247 @ 0.14%	0.0

$2.6 \quad \mathrm{bg_vbf_600_800}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 252+/-1 events.

• Ratio (event weight): 0.00025 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht 600	1000000	0.0063 @ 0.13%	0.0

$2.7 ext{ bg_vbf_}800_1200$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 400839 events.

• Normalization to the luminosity: 114+/- 1 events.

 \bullet Ratio (event weight): 0.00028.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_pheno/madgraph_data/-	400839	0.00287 @ 0.16%	0.0
vbf_diphoton_background_data/-	400009	0.00287 @ 0.10%	0.0
$\mathrm{merged_lhe/-}$			
vbf_diphoton_background_ht_800_			

$2.8 \quad \ \, bg_vbf_1200_1600$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 953803 events.

• Normalization to the luminosity: 20+/- 1 events.

• Ratio (event weight): 2.1e-05.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	052002	0.000515 @ 0.16%	0.0
vbf_diphoton_background_data/-	953803	0.000313 @ 0.10%	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_1200			

2.9 bg vbf 1600 inf

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 270148 $\,$ events.

• Normalization to the luminosity: 7+/-1 events.

• Ratio (event weight): 2.6e-05 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht 1600	270148	0.000191 @ 0.11%	0.0

$2.10 \quad \text{bg dip } 0 \quad 100$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

 \bullet Normalization to the luminosity: 2710847+/- 4614 events.

• Ratio (event weight): 2.6 - warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	67.8 @ 0.17%	0.0
diphoton_double_isr_background_o	1040000	07.8 @ 0.1770	0.0
$merged_lhe/-$			
diphoton_double_isr_background_l			

2.11 bg dip 100 200

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 1095362+/- 1528 events.
- Ratio (event weight): 1.1 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_l	1040000	27.4 @ 0.14%	0.0

$2.12 \quad \ \, \text{bg_dip_200_400}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 239548+/- 414 events.
- Ratio (event weight): 0.23 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	5.99 @ 0.17%	0.0
diphoton_double_isr_background_d	1040000	0.99 @ 0.17/0	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

$2.13 \quad \ \, \text{bg_dip_400_600}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 28798+/- 53 events.

• Ratio (event weight): 0.028 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	0.72 @ 0.18%	0.0
diphoton_double_isr_background_d	1040000	0.72 @ 0.18%	0.0
$merged_lhe/-$			
$_diphoton_double_isr_background_l$			

$2.14 ext{ bg_dip_}600_800$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

 \bullet Generated events: 662009 events.

• Normalization to the luminosity: 6674+/- 28 events.

• Ratio (event weight): 0.01 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/-			
diphoton double isr background of	662009	0.167 @ 0.41%	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

2.15 bg dip 800 1200

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 2942+/- 6 events.

• Ratio (event weight): 0.0028 .

/Users/elijahsheridan/-	Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_l	/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_c merged_lhe/-			

2.16 bg dip 1200 1600

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 337115 events.

• Normalization to the luminosity: 513+/-3 events.

• Ratio (event weight): 0.0015.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	337115	0.0128 @ 0.51%	0.0
diphoton_double_isr_background_o	337113	0.0126 @ 0.5176	0.0
$\mathrm{merged_lhe/-}$			
diphoton_double_isr_background_l			

$2.17 \quad \ \, \mathrm{bg_dip_1600_inf}$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/post_optimization_studies/mad_analyses .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Normalization to the luminosity: 187+/- 1 events.

• Ratio (event weight): 0.00018 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5 aMC v2 6 5/-			
axion_pheno/madgraph_data/-	1040000	0.00469 @ 0.15%	0.0
diphoton_double_isr_background_d merged_lhe/-			
diphoton double isr background l			

3 Histos and cuts

3.1 Cut 1

* Cut: select 30.0 > PT > 30.0

Dataset	Events kept: K	Rejected events: R	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial	
signal	3815.6 + / - 16.1	278.5 + / - 16.1	0.93197 + / - 0.00394	0.93197 + / - 0.00394	
bg_vbf_0_10	5340.5 + /- 55.6	6809.8 + /- 56.2	0.4395 + / - 0.0045	0.4395 + / - 0.0045	
bg_vbf_100_	9018.6 +/- 29.5	676.8 +/- 25.1	0.93020 + / - 0.00259	0.93020 + / - 0.00259	
bg_vbf_200_	5370.9 +/- 12.6	42.34 +/- 6.48	0.9922 + / - 0.0012	0.9922 + / - 0.0012	
bg_vbf_400_	984.62 +/- 2.03	2.23 + / - 1.49	0.99774 + / - 0.00151	0.99774 + / - 0.00151	
bg_vbf_600_	251.73 +/- 0.67	0.35 + / - 0.59	0.99861 + / - 0.00235	0.99861 + / - 0.00235	
bg_vbf_800_	114.56 +/- 0.48	0.198 + / - 0.445	0.99828 + / - 0.00387	0.99828 +/- 0.00387	
bg_vbf_1200	20.54 +/- 0.23	0.052 + / - 0.228	0.9975 +/- 0.0111	0.9975 + / - 0.0111	
bg_vbf_1600	7.51 +/- 0.38	0.147 +/- 0.380	0.9808 + / - 0.0496	0.9808 + / - 0.0496	
hg din 0 10	849405 +/- 1634	1861441 +/- 3258	0.313336 +/-	0.313336 +/-	
58_dip_0_10	013100 / 1001	1001111 / 0200	0.000282	0.000282	
bg dip 100	987655 +/- 1411	107706 +/- 345	0.901670 +/-	0.901670 +/-	
bg_dip_100_	301000 1/- 1411	101100 1/- 040	0.000285	0.000285	
bg dip 200	233287 +/- 410	6261.7 +/- 78.8	0.973860 +/-	0.973860 +/-	
bg_dip_200_	255261 /- 410	0201.7 /- 10.0	0.000326	0.000326	
bg_dip_400_	28471.3 +/- 54.7	327.4 +/- 18.0	0.988631 +/-	0.988631 +/-	
bg_dip_400_	20471.0 /- 04.7	927.4 /- 10.0	0.000625	0.000625	
bg_dip_600_	6629.5 + / - 28.2	44.90 + / - 6.68	0.993 + / - 0.001	0.993 + / - 0.001	
bg_dip_800_	2931.24 + / - 6.04	11.10 +/- 3.33	0.99623 + / - 0.00113	0.99623 + / - 0.00113	
bg_dip_1200_	512.67 +/- 2.78	0.832 + / - 0.912	0.99838 + / - 0.00178	0.99838 + / - 0.00178	
bg_dip_1600_	187.672 + / - 0.435	0.112 + / - 0.335	0.99940 + / - 0.00178	0.99940 + / - 0.00178	

3.2 Cut 2 $*~{\rm Cut:~select~sdETA~(~jets[1]~jets[2]~)} > 3.6~{\rm or~sdETA~(~jets[1]~jets[2]~)} < -3.6$

Dataset	Events kept: K	Rejected events: R	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial
signal	1214.2 +/- 29.2	2601.3 + / - 30.8	0.31823 + / - 0.00754	0.29658 + / - 0.00714
bg_vbf_0_10	1300.3 +/- 34.2	4040.2 +/- 52.5	0.24348 + / - 0.00587	0.1070 +/- 0.0028
bg_vbf_100_	4181.8 + / - 49.3	4836.8 + / - 49.9	0.46369 + / - 0.00525	0.43132 + / - 0.00503
bg_vbf_200_	2173.4 + / - 36.3	3197.5 + / - 36.7	0.4047 + / - 0.0067	0.40150 + / - 0.00666
bg_vbf_400_	279.4 + / - 14.2	705.2 + / - 14.2	0.2838 + / - 0.0144	0.2831 + / - 0.0143
bg_vbf_600_	47.90 + / - 6.23	203.82 + / - 6.25	0.1903 + / - 0.0247	0.1900 + / - 0.0247
bg_vbf_800_	12.05 + / - 3.28	102.51 + / - 3.31	0.1052 + / - 0.0287	0.1050 + / - 0.0286
bg_vbf_1200	0.676 + / - 0.808	19.868 + / - 0.839	0.0329 + / - 0.0393	0.0328 + / - 0.0393
bg_vbf_1600	0.0479 + / - 0.2182	7.464 + / - 0.436	0.00638 + / - 0.02905	0.00626 + / - 0.02850
bg_dip_0_10	60724 +/- 264	788680 +/- 1536	0.07149 +/- 0.00028	$oxed{2.24\text{e-}02} +/\text{-} 8.99\text{e-} \ 05$
bg_dip_100_	55757 +/- 242	931898 +/- 1351	0.056454 +/- 0.000232	0.05090 +/- 0.00021
bg_dip_200_	8768.7 +/- 93.2	224518 +/- 405	0.037588 +/-	0.036605 +/-
bg_dip_200_	0100.1 / - 33.2	224010 /- 400	0.000394	0.000384
bg dip 400	639.8 +/- 25.0	27831.5 +/- 59.0	0.022471 +/-	0.022215 +/-
pg_dip_400_	000.0 1/- 20.0	21091.0 1/- 00.0	0.000878	0.000868
bg_dip_600_	89.92 +/- 9.43	6539.5 + / - 29.4	0.01356 + / - 0.00142	0.01347 +/- 0.00141
bg_dip_800_	21.86 + / - 4.66	2909.38 + / - 7.59	0.00746 + / - 0.00159	0.00743 + / - 0.00158
bg_dip_1200	1.31 +/- 1.14	511.4 +/- 3.0	0.00256 + / - 0.00223	0.00256 + / - 0.00223
bg din 1600	0.0877 +/- 0.2961	187.584 +/- 0.526	0.000468 +/-	0.000467 +/-
58_dip_1000	0.0011 1/- 0.2001	101.004 / - 0.020	0.001578	0.001577

3.3 Cut 3 $* \mbox{ Cut: select M (jets[1] jets[2])} > 750.0 \label{eq:cut-select}$

Dataset	Events kept: K	Rejected events: R	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial
signal	1071.9 + / - 28.1	142.4 + / - 11.7	0.88275 + / - 0.00923	0.26181 + / - 0.00687
bg_vbf_0_10	364.2 + / - 18.8	936.1 + / - 29.4	0.2801 + / - 0.0125	0.02997 + / - 0.00155
bg_vbf_100_	$2253.7 + \!/ \text{-} 41.8$	1928.0 + / - 39.4	0.53894 + / - 0.00771	0.23246 + / - 0.00429
bg_vbf_200_	$2038.9 + \!/ 35.9$	134.5 + / - 11.5	0.93812 + / - 0.00517	0.37665 + / - 0.00659
bg_vbf_400_	279.4 +/- 14.2	0.0316 + / - 0.1777	0.999887 +/- 0.000636	0.2831 +/- 0.0143
bg_vbf_600_	47.90 +/- 6.23	0.0 +/- 0.0	1.0	0.1900 + / - 0.0247
bg_vbf_800_	12.05 +/- 3.28	0.0 +/- 0.0	1.0	0.1050 + / - 0.0286
bg_vbf_1200	0.676 + / - 0.808	0.0 +/- 0.0	1.0	0.0328 + / - 0.0393
bg_vbf_1600	0.0479 + / - 0.2182	0.0 +/- 0.0	1.0	0.00626 + / - 0.02850
bg_dip_0_10	1767.2 +/- 42.1	58957 +/- 260	0.029101 + /- 0.000682	6.52e-04 +/- 1.55e- 05
bg_dip_100_	8038.3 +/- 90.0	47719 +/- 223	0.14417 +/- 0.00149	7.34e-03 +/- 8.16e- 05
bg_dip_200_	6955.8 +/- 83.1	1812.9 +/- 42.5	0.79325 +/- 0.00432	0.029037 + /- 0.000343
bg_dip_400_	638.2 +/- 25.0	1.55 +/- 1.25	0.99758 +/- 0.00194	0.022161 +/- 0.000867
bg_dip_600_	89.92 +/- 9.43	0.0 +/- 0.0	1.0	0.01347 +/ -0.00141
bg_dip_800_	21.86 +/- 4.66	0.0 +/- 0.0	1.0	0.00743 + / - 0.00158
bg_dip_1200	1.31 +/- 1.14	0.0 +/- 0.0	1.0	0.00256 + / - 0.00223
bg_dip_1600_	0.0877 +/- 0.2961	0.0 +/- 0.0	1.0	$0.000467 + /- \\ 0.001577$

3.4 Histogram 1

* Plot: PT (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	343.892	252.2	0.0	2.657
bg_vbf_0_100	364	1.0	49.04	7.733	0.0	0.0
bg_vbf_100_20	2253	1.0	88.3084	19.96	0.0	0.0
bg_vbf_200_40	2038	1.0	158.943	37.96	0.0	0.0
bg_vbf_400_60	279	1.0	276.785	53.95	0.0	0.0
bg_vbf_600_80	47.9	1.0	394.444	74.39	0.0	0.0
bg_vbf_800_12	12.1	1.0	532.453	113.3	0.0	0.4533
bg_vbf_1200_1	0.677	1.0	767.08	170.4	0.0	11.26
bg_vbf_1600_i	0.0489	1.0	1036.46	289.2	0.0	31.8
bg_dip_0_100	1767	1.0	49.1374	8.061	0.0	0.0
bg_dip_100_20	8038	1.0	88.4729	20.61	0.0	0.0
bg_dip_200_40	6955	1.0	157.016	38.84	0.0	0.0
bg_dip_400_60	638	1.0	279.765	62.77	0.0	0.0
bg_dip_600_80	89.9	1.0	397.289	87.24	0.0	0.0
bg_dip_800_12	21.9	1.0	538.658	134.9	0.0	1.113
bg_dip_1200_1	1.31	1.0	760.039	186.6	0.0	11.25
bg_dip_1600_i	0.0878	1.0	1014.3	297.1	0.0	23.46

Figure 1.

3.5 Histogram 2

* Plot: ETA (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	-0.0081341	2.035	50.2	0.0
bg_vbf_0_100	364	1.0	0.000166543	3.364	50.01	0.0
bg_vbf_100_20	2253	1.0	0.00866776	2.868	49.87	0.0
bg_vbf_200_40	2038	1.0	0.000566865	2.413	49.98	0.0
bg_vbf_400_60	279	1.0	-0.00094651	2.161	50.04	0.0
bg_vbf_600_80	47.9	1.0	-0.00189725	2.037	50.12	0.0
bg_vbf_800_12	12.1	1.0	0.00161135	1.945	49.99	0.0
bg_vbf_1200_1	0.677	1.0	-0.0110501	1.841	50.44	0.0
bg_vbf_1600_i	0.0489	1.0	0.0430261	1.762	48.57	0.0
bg_dip_0_100	1767	1.0	0.00678619	3.325	50.15	0.0
bg_dip_100_20	8038	1.0	0.0191145	2.85	49.76	0.0
bg_dip_200_40	6955	1.0	-0.0295387	2.346	50.49	0.0
bg_dip_400_60	638	1.0	-0.02202	2.092	50.52	0.0
bg_dip_600_80	89.9	1.0	0.02674	2.002	49.51	0.0
bg_dip_800_12	21.9	1.0	-0.0213812	1.918	50.54	0.0
bg_dip_1200_1	1.31	1.0	0.00841074	1.835	49.89	0.0
bg_dip_1600_i	0.0878	1.0	-0.105628	1.768	53.09	0.0

Figure 2.

3.6 Histogram 3

* Plot: PHI (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	-0.00110744	1.813	0.0	0.0
bg_vbf_0_100	364	1.0	0.00232715	1.806	0.0	0.0
bg_vbf_100_20	2253	1.0	-0.00635393	1.815	0.0	0.0
bg_vbf_200_40	2038	1.0	0.00218214	1.814	0.0	0.0
bg_vbf_400_60	279	1.0	-0.00497205	1.814	0.0	0.0
bg_vbf_600_80	47.9	1.0	0.00410717	1.811	0.0	0.0
bg_vbf_800_12	12.1	1.0	-0.00518227	1.811	0.0	0.0
bg_vbf_1200_1	0.677	1.0	0.0259206	1.81	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	-0.0500737	1.792	0.0	0.0
bg_dip_0_100	1767	1.0	-0.00684135	1.756	0.0	0.0
bg_dip_100_20	8038	1.0	0.0476437	1.818	0.0	0.0
bg_dip_200_40	6955	1.0	-0.00756792	1.821	0.0	0.0
bg_dip_400_60	638	1.0	-0.00608962	1.811	0.0	0.0
bg_dip_600_80	89.9	1.0	-0.0182462	1.808	0.0	0.0
bg_dip_800_12	21.9	1.0	0.0102453	1.821	0.0	0.0
bg_dip_1200_1	1.31	1.0	-0.105508	1.774	0.0	0.0
bg_dip_1600_i	0.0878	1.0	0.042703	1.806	0.0	0.0

Figure 3.

3.7 Histogram 4

* Plot: PT (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	110.412	75.65	0.0	100.0
bg_vbf_0_100	364	1.0	37.1965	4.803	0.0	100.0
bg_vbf_100_20	2253	1.0	60.5597	15.75	0.0	100.0
bg_vbf_200_40	2038	1.0	110.453	30.92	0.0	100.0
bg_vbf_400_60	279	1.0	193.368	49.39	0.0	100.0
bg_vbf_600_80	47.9	1.0	279.205	71.27	0.0	100.0
bg_vbf_800_12	12.1	1.0	380.947	107.0	0.0	100.0
bg_vbf_1200_1	0.677	1.0	550.064	164.8	0.0	100.0
bg_vbf_1600_i	0.0489	1.0	709.68	253.2	0.0	100.0
bg_dip_0_100	1767	1.0	36.8168	4.657	0.0	100.0
bg_dip_100_20	8038	1.0	59.3023	15.73	0.0	100.0
bg_dip_200_40	6955	1.0	106.437	31.05	0.0	100.0
bg_dip_400_60	638	1.0	187.342	58.65	0.0	100.0
bg_dip_600_80	89.9	1.0	274.322	85.19	0.0	100.0
bg_dip_800_12	21.9	1.0	373.582	130.0	0.0	100.0
bg_dip_1200_1	1.31	1.0	557.191	176.2	0.0	100.0
bg_dip_1600_i	0.0878	1.0	735.455	261.9	0.0	100.0

Figure 4.

3.8 Histogram 5

* Plot: ETA (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	0.0114933	2.943	49.8	0.0
bg_vbf_0_100	364	1.0	-0.00319227	3.461	49.99	0.0
bg_vbf_100_20	2253	1.0	-0.00774539	3.085	50.13	0.0
bg_vbf_200_40	2038	1.0	-0.00172193	2.656	50.03	0.0
bg_vbf_400_60	279	1.0	0.00254018	2.449	49.95	0.0
bg_vbf_600_80	47.9	1.0	0.00692713	2.34	49.88	0.0
bg_vbf_800_12	12.1	1.0	0.000298794	2.256	50.01	0.0
bg_vbf_1200_1	0.677	1.0	0.0228384	2.194	49.56	0.0
bg_vbf_1600_i	0.0489	1.0	-0.0594671	2.201	51.32	0.0
bg_dip_0_100	1767	1.0	0.0164847	3.245	49.85	0.0
bg_dip_100_20	8038	1.0	-0.0159359	2.793	50.28	0.0
bg_dip_200_40	6955	1.0	0.00699555	2.319	49.61	0.0
bg_dip_400_60	638	1.0	0.0183088	2.263	49.54	0.0
bg_dip_600_80	89.9	1.0	-0.0172787	2.223	50.52	0.0
bg_dip_800_12	21.9	1.0	0.011548	2.225	49.57	0.0
bg_dip_1200_1	1.31	1.0	0.0134887	2.165	49.88	0.0
bg_dip_1600_i	0.0878	1.0	0.114217	2.195	47.12	0.0

Figure 5.

3.9 Histogram 6

* Plot: PHI (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	-0.00115095	1.816	0.0	0.0
bg_vbf_0_100	364	1.0	-0.00253582	1.816	0.0	0.0
bg_vbf_100_20	2253	1.0	0.00482266	1.815	0.0	0.0
bg_vbf_200_40	2038	1.0	-0.00338121	1.814	0.0	0.0
bg_vbf_400_60	279	1.0	- 0.000828397	1.814	0.0	0.0
bg_vbf_600_80	47.9	1.0	- 0.000130577	1.816	0.0	0.0
bg_vbf_800_12	12.1	1.0	-0.00939579	1.818	0.0	0.0
bg_vbf_1200_1	0.677	1.0	-0.0114353	1.817	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	0.0734785	1.819	0.0	0.0
bg_dip_0_100	1767	1.0	-0.0502398	1.84	0.0	0.0
bg_dip_100_20	8038	1.0	0.00371512	1.806	0.0	0.0
bg_dip_200_40	6955	1.0	-0.00657528	1.807	0.0	0.0
bg_dip_400_60	638	1.0	-0.013669	1.819	0.0	0.0
bg_dip_600_80	89.9	1.0	-0.0017161	1.819	0.0	0.0
bg_dip_800_12	21.9	1.0	0.0163775	1.808	0.0	0.0
bg_dip_1200_1	1.31	1.0	-0.0172436	1.841	0.0	0.0
bg_dip_1600_i	0.0878	1.0	-0.161061	1.828	0.0	0.0

Figure 6.

3.10 Histogram 7

* Plot: DELTAR (jets[1] , jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	5.02517	0.9314	0.0	100.0
bg_vbf_0_100	364	1.0	7.05548	0.6811	0.0	100.0
bg_vbf_100_20	2253	1.0	6.27976	0.7375	0.0	100.0
bg_vbf_200_40	2038	1.0	5.53031	0.7056	0.0	100.0
bg_vbf_400_60	279	1.0	5.226	0.5472	0.0	100.0
bg_vbf_600_80	47.9	1.0	5.08807	0.4506	0.0	100.0
bg_vbf_800_12	12.1	1.0	4.98333	0.3753	0.0	100.0
bg_vbf_1200_1	0.677	1.0	4.88035	0.3011	0.0	100.0
bg_vbf_1600_i	0.0489	1.0	4.81922	0.2711	0.0	100.0
bg_dip_0_100	1767	1.0	6.70448	0.4505	0.0	100.0
bg_dip_100_20	8038	1.0	5.87967	0.5235	0.0	100.0
bg_dip_200_40	6955	1.0	5.11228	0.4519	0.0	100.0
bg_dip_400_60	638	1.0	4.96626	0.3974	0.0	100.0
bg_dip_600_80	89.9	1.0	4.92962	0.349	0.0	100.0
bg_dip_800_12	21.9	1.0	4.89533	0.3164	0.0	100.0
bg_dip_1200_1	1.31	1.0	4.83455	0.2742	0.0	100.0
bg_dip_1600_i	0.0878	1.0	4.81616	0.2395	0.0	100.0

Figure 7.

3.11 Histogram 8

* Plot: M (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	1782.84	805.6	0.0	100.0
bg_vbf_0_100	364	1.0	1218.46	518.8	0.0	100.0
bg_vbf_100_20	2253	1.0	1300.68	563.7	0.0	100.0
bg_vbf_200_40	2038	1.0	1525.14	681.4	0.0	100.0
bg_vbf_400_60	279	1.0	2158.83	747.9	0.0	100.0
bg_vbf_600_80	47.9	1.0	2776.13	765.8	0.0	100.0
bg_vbf_800_12	12.1	1.0	3449.71	798.9	0.0	100.0
bg_vbf_1200_1	0.677	1.0	4539.84	866.7	0.0	100.0
bg_vbf_1600_i	0.0489	1.0	5592.0	1139	0.0	100.0
bg_dip_0_100	1767	1.0	941.446	217.6	0.0	100.0
bg_dip_100_20	8038	1.0	977.574	247.5	0.0	100.0
bg_dip_200_40	6955	1.0	1100.31	326.2	0.0	100.0
bg_dip_400_60	638	1.0	1740.23	454.6	0.0	100.0
bg_dip_600_80	89.9	1.0	2400.64	565.0	0.0	100.0
bg_dip_800_12	21.9	1.0	3115.39	733.4	0.0	100.0
bg_dip_1200_1	1.31	1.0	4291.95	869.7	0.0	100.0
bg_dip_1600_i	0.0878	1.0	5430.07	1224	0.0	100.0

Figure 8.

3.12 Histogram 9

* Plot: sdETA (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	-0.0196274	4.775	0.3136	0.0
bg_vbf_0_100	364	1.0	0.00335882	6.627	2.362	0.0
bg_vbf_100_20	2253	1.0	0.0164131	5.726	0.3636	0.0
bg_vbf_200_40	2038	1.0	0.0022888	4.839	0.01241	0.0
bg_vbf_400_60	279	1.0	-0.00348669	4.443	0.0	0.0
bg_vbf_600_80	47.9	1.0	-0.00882439	4.247	0.0	0.0
bg_vbf_800_12	12.1	1.0	0.00131256	4.094	0.0	0.0
bg_vbf_1200_1	0.677	1.0	-0.0338885	3.938	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	0.102493	3.852	0.0	0.0
bg_dip_0_100	1767	1.0	-0.0096985	6.187	0.0	0.0
bg_dip_100_20	8038	1.0	0.0350504	5.238	0.0	0.0
bg_dip_200_40	6955	1.0	-0.0365342	4.29	0.0	0.0
bg_dip_400_60	638	1.0	-0.0403288	4.085	0.0	0.0
bg_dip_600_80	89.9	1.0	0.0440187	4.012	0.0	0.0
bg_dip_800_12	21.9	1.0	-0.0329292	3.953	0.0	0.0
bg_dip_1200_1	1.31	1.0	-0.00507792	3.851	0.0	0.0
bg_dip_1600_i	0.0878	1.0	-0.219844	3.802	0.0	0.0

Figure 9.

3.13 Histogram 10

* Plot: M (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	1011.28	775.8	0.00191	99.98
bg_vbf_0_100	364	1.0	68.7677	58.89	0.0	99.51
bg_vbf_100_20	2253	1.0	82.8463	76.05	0.0	99.65
bg_vbf_200_40	2038	1.0	106.688	106.2	0.0	99.78
bg_vbf_400_60	279	1.0	142.045	146.8	0.0	99.84
bg_vbf_600_80	47.9	1.0	166.359	177.6	0.0	99.89
bg_vbf_800_12	12.1	1.0	185.02	201.3	0.0	99.83
bg_vbf_1200_1	0.677	1.0	212.298	241.3	0.0	99.91
bg_vbf_1600_i	0.0489	1.0	250.072	300.4	0.0	100.0
bg_dip_0_100	1767	1.0	55.0914	49.81	0.0	98.38
bg_dip_100_20	8038	1.0	72.9642	79.79	0.0	99.12
bg_dip_200_40	6955	1.0	94.8297	109.3	0.0	99.35
bg_dip_400_60	638	1.0	137.775	161.9	0.0	99.6
bg_dip_600_80	89.9	1.0	166.248	201.7	0.0	99.69
bg_dip_800_12	21.9	1.0	192.898	232.4	0.0	99.75
bg_dip_1200_1	1.31	1.0	219.777	285.3	0.0	99.77
bg_dip_1600_i	0.0878	1.0	250.056	289.6	0.0	100.0

Figure 10.

3.14 Histogram 11

* Plot: PT (a[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	560.533	359.9	0.0	11.28
bg_vbf_0_100	364	1.0	34.8674	20.89	0.0	0.0
bg_vbf_100_20	2253	1.0	48.7591	32.63	0.0	0.0
bg_vbf_200_40	2038	1.0	76.5836	62.39	0.0	0.0005396
bg_vbf_400_60	279	1.0	124.042	113.6	0.0	0.004942
bg_vbf_600_80	47.9	1.0	163.938	164.9	0.0	0.01894
bg_vbf_800_12	12.1	1.0	206.18	230.8	0.0	0.688
bg_vbf_1200_1	0.677	1.0	275.804	350.4	0.0	8.138
bg_vbf_1600_i	0.0489	1.0	390.518	544.5	0.0	15.49
bg_dip_0_100	1767	1.0	33.9862	21.96	0.0	0.0
bg_dip_100_20	8038	1.0	49.2095	37.35	0.0	0.0
bg_dip_200_40	6955	1.0	72.5124	67.5	0.0	0.0
bg_dip_400_60	638	1.0	120.275	129.7	0.0	0.0
bg_dip_600_80	89.9	1.0	154.217	184.2	0.0	0.02244
bg_dip_800_12	21.9	1.0	198.244	267.4	0.0	1.657
bg_dip_1200_1	1.31	1.0	236.703	375.1	0.0	9.51
bg_dip_1600_i	0.0878	1.0	309.098	544.6	0.0	12.35

Figure 11.

3.15 Histogram 12

* Plot: PT (a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	354.913	315.1	0.0	4.779
bg_vbf_0_100	364	1.0	19.1603	12.64	0.0	0.0
bg_vbf_100_20	2253	1.0	22.3418	17.03	0.0	0.0
bg_vbf_200_40	2038	1.0	27.3587	24.97	0.0	0.0002704
bg_vbf_400_60	279	1.0	34.3016	36.49	0.0	0.001413
bg_vbf_600_80	47.9	1.0	39.0417	45.36	0.0	0.0005266
bg_vbf_800_12	12.1	1.0	42.1925	52.56	0.0	0.0
bg_vbf_1200_1	0.677	1.0	47.5734	66.25	0.0	0.009554
bg_vbf_1600_i	0.0489	1.0	55.212	89.43	0.0	0.1161
bg_dip_0_100	1767	1.0	18.1489	11.13	0.0	0.0
bg_dip_100_20	8038	1.0	20.6227	15.77	0.0	0.0
bg_dip_200_40	6955	1.0	24.2161	21.55	0.0	0.0
bg_dip_400_60	638	1.0	29.8364	31.48	0.0	0.0
bg_dip_600_80	89.9	1.0	33.2012	39.41	0.0	0.0
bg_dip_800_12	21.9	1.0	35.3144	43.23	0.0	0.0
bg_dip_1200_1	1.31	1.0	39.8977	60.67	0.0	0.0
bg_dip_1600_i	0.0878	1.0	38.6853	50.43	0.0	0.0

Figure 12.

3.16 Histogram 13

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	454.304	276.1	0.0	0.06799
bg_vbf_0_100	364	1.0	86.2365	9.446	0.0	0.0
bg_vbf_100_20	2253	1.0	148.868	28.12	0.0	0.0
bg_vbf_200_40	2038	1.0	269.397	51.71	0.0	0.0
bg_vbf_400_60	279	1.0	470.153	53.21	0.0	0.0
bg_vbf_600_80	47.9	1.0	673.649	54.12	0.0	0.0
bg_vbf_800_12	12.1	1.0	913.399	95.85	0.0	0.0
bg_vbf_1200_1	0.677	1.0	1317.14	96.31	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	1746.14	153.9	0.0	6.375
bg_dip_0_100	1767	1.0	85.9542	9.466	0.0	0.0
bg_dip_100_20	8038	1.0	147.775	28.3	0.0	0.0
bg_dip_200_40	6955	1.0	263.454	48.38	0.0	0.0
bg_dip_400_60	638	1.0	467.106	52.56	0.0	0.0
bg_dip_600_80	89.9	1.0	671.611	53.46	0.0	0.0
bg_dip_800_12	21.9	1.0	912.241	94.72	0.0	0.0
bg_dip_1200_1	1.31	1.0	1317.23	95.31	0.0	0.0
bg_dip_1600_i	0.0878	1.0	1749.76	155.9	0.0	8.029

Figure 13.

3.17 Histogram 14

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	7.65721e-09	9.954e-09	0.0	0.0
bg_vbf_0_100	364	1.0	6.1357e-10	4.53e-10	0.0	0.0
bg_vbf_100_20	2253	1.0	9.9577e-10	1.139e-09	0.0	0.0
bg_vbf_200_40	2038	1.0	3.24261e-09	2.215e-09	0.0	0.0
bg_vbf_400_60	279	1.0	4.57408e-09	2.638e-09	0.0	0.0
bg_vbf_600_80	47.9	1.0	4.96938e-09	2.751e-09	0.0	0.0
bg_vbf_800_12	12.1	1.0	5.28099e-09	3.228e-09	0.0	0.0
bg_vbf_1200_1	0.677	1.0	7.45383e-09	9.4e-09	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	1.20778e-08	1.632e-08	0.0	0.0
bg_dip_0_100	1767	1.0	6.0389e-10	5.254 e-10	0.0	0.0
bg_dip_100_20	8038	1.0	1.04034e-09	1.192e-09	0.0	0.0
bg_dip_200_40	6955	1.0	3.18901e-09	2.202e-09	0.0	0.0
bg_dip_400_60	638	1.0	4.48357e-09	2.597e-09	0.0	0.0
bg_dip_600_80	89.9	1.0	4.82999e-09	2.653e-09	0.0	0.0
bg_dip_800_12	21.9	1.0	5.14727e-09	3.708e-09	0.0	0.0
bg_dip_1200_1	1.31	1.0	7.65407e-09	1.043e-08	0.0	0.0
bg_dip_1600_i	0.0878	1.0	9.90329e-09	1.373e-08	0.0	0.0

Figure 14.

3.18 Histogram 15

* Plot: TET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	1369.75	757.3	0.0	63.1
bg_vbf_0_100	364	1.0	140.264	32.73	0.0	0.003329
bg_vbf_100_20	2253	1.0	219.969	56.88	0.0	0.006239
bg_vbf_200_40	2038	1.0	373.339	101.3	0.0	0.06772
bg_vbf_400_60	279	1.0	628.497	147.8	0.0	2.599
bg_vbf_600_80	47.9	1.0	876.628	197.5	0.0	21.09
bg_vbf_800_12	12.1	1.0	1161.77	278.1	0.0	66.2
bg_vbf_1200_1	0.677	1.0	1640.52	394.6	0.0	100.0
bg_vbf_1600_i	0.0489	1.0	2191.87	630.1	0.0	100.0
bg_dip_0_100	1767	1.0	138.089	31.72	0.0	0.0
bg_dip_100_20	8038	1.0	217.607	59.35	0.0	0.0
bg_dip_200_40	6955	1.0	360.182	100.9	0.0	0.03972
bg_dip_400_60	638	1.0	617.218	158.6	0.0	3.545
bg_dip_600_80	89.9	1.0	859.029	211.9	0.0	17.75
bg_dip_800_12	21.9	1.0	1145.8	305.2	0.0	58.76
bg_dip_1200_1	1.31	1.0	1593.83	420.7	0.0	100.0
bg_dip_1600_i	0.0878	1.0	2097.54	619.6	0.0	100.0

Figure 15.

3.19 Histogram 16

* Plot: DELTAR (a[1] , a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	2.73806	0.8532	0.0	0.0
bg_vbf_0_100	364	1.0	2.63558	0.9837	0.0	0.0
bg_vbf_100_20	2253	1.0	2.482	0.9847	0.0	0.0
bg_vbf_200_40	2038	1.0	2.40629	0.9688	0.0	0.0
bg_vbf_400_60	279	1.0	2.36998	0.9628	0.0	0.0
bg_vbf_600_80	47.9	1.0	2.35535	0.9565	0.0	0.0
bg_vbf_800_12	12.1	1.0	2.34039	0.9474	0.0	0.0
bg_vbf_1200_1	0.677	1.0	2.33111	0.9391	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	2.32373	0.9134	0.0	0.0
bg_dip_0_100	1767	1.0	2.45807	0.911	0.0	0.0
bg_dip_100_20	8038	1.0	2.30771	1.056	0.0	0.0
bg_dip_200_40	6955	1.0	2.29185	1.123	0.0	0.0
bg_dip_400_60	638	1.0	2.38449	1.211	0.0	0.0
bg_dip_600_80	89.9	1.0	2.4517	1.258	0.0	0.0
bg_dip_800_12	21.9	1.0	2.51942	1.28	0.0	0.0
bg_dip_1200_1	1.31	1.0	2.59316	1.343	0.0	0.0
bg_dip_1600_i	0.0878	1.0	2.7138	1.335	0.0	0.0

Figure 16.

3.20 Histogram 17

* Plot: sdETA (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	1071	1.0	0.00306436	1.57	0.001528	0.001528
bg_vbf_0_100	364	1.0	0.011358	1.887	0.0	0.0
bg_vbf_100_20	2253	1.0	0.00157671	1.85	0.0	0.0
bg_vbf_200_40	2038	1.0	0.00581319	1.788	0.0	0.0
bg_vbf_400_60	279	1.0	0.00688874	1.766	0.0	0.0
bg_vbf_600_80	47.9	1.0	-0.0031434	1.757	0.0	0.0
bg_vbf_800_12	12.1	1.0	-0.0280331	1.742	0.0	0.0
bg_vbf_1200_1	0.677	1.0	0.0094622	1.738	0.0	0.0
bg_vbf_1600_i	0.0489	1.0	-0.0612251	1.68	0.0	0.0
bg_dip_0_100	1767	1.0	-0.0927995	1.373	0.0	0.0
bg_dip_100_20	8038	1.0	0.00715226	1.571	0.0	0.0
bg_dip_200_40	6955	1.0	0.0184645	1.698	0.0	0.0
bg_dip_400_60	638	1.0	-0.00432736	1.892	0.0	0.0
bg_dip_600_80	89.9	1.0	0.0214844	2.018	0.0	0.0
bg_dip_800_12	21.9	1.0	0.0326318	2.106	0.0	0.0
bg_dip_1200_1	1.31	1.0	0.0239735	2.232	0.0	0.0
bg_dip_1600_i	0.0878	1.0	-0.0233956	2.409	0.0	0.0

Figure 17.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B+(xB)**2) .
- \bullet Object definition selections are indicated in cyan.
- $\bullet\,$ Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	4094.08 + / - 1.13	4113516 + / - 4877	2.01760 + / - 0.00132
SEL: $30.0 > PT > 30.0$	3815.6 + / - 16.1	2130189 + / - 2200	2.6119 + / - 0.0111
SEL: sdETA (jets[1]			
$\mathrm{jets}[2]$) > 3.6 or sdETA	$1214.2 +/ ext{-} 29.2$	133999 + /- 378	3.3021 + / -0.0793
(je			
SEL: M ($jets[1]$ $jets[2]$	1071.9 +/- 28.1	22509 + / - 145	6.98 +/- 0.18
) > 750.0	10/1.9 +/- 20.1	22003 T/- 140	0.30 +/- 0.10