BUS5001 – Cloud Platforms and Analytics

" MAYBE WE SHOULD TRY A DIFFERENT SECURITY APPROACH THIS YEAR," Centre for Data Analytics and Cognition
La Trobe University, Australia

Data Governance

- Data governance is a principled approach to managing data during its life cycle, from acquisition to use to disposal
- Data governance is everything you do to ensure data is secure, private, accurate, available, and usable. It includes the actions people must take, the processes they must follow, and the technology that supports them throughout the data life cycle.

What happens when Governance Fails?

- Yahoo data breach (2013)
 - 3 billion real names, email addresses, dates of birth, telephone numbers, and security questions
 - \$350 million estimated loss in value of company
- First American Financial Corporation data breach (2019)
 - 885 million bank account numbers, bank statements, mortgage and tax records, social security numbers, wire transaction receipts, and driver license images
 - Poor security
- Equifax data breach (2017)
 - 148 million Social Security numbers, birth dates, addresses, and in some cases driver license numbers and credit card information
 - \$700 million in payouts
- Marriott International data breach (2018)
 - 500 million combination of contact information, passport number, Starwood Preferred Guest numbers, travel information, credit card numbers and expiration dates, other personal information
 - \$24 million, class-action lawsuits filed
- Facebook data breach (2019)
 - 540 million phone numbers, user names, genders, and locations

Data Lineage

Principle of Least Privilege

Cloud Security – Terms and Concepts

Measuring Security – Confidentiality

Measuring Security – Integrity

Measuring Security – Authenticity

- Provided by authorised source
- Nonrepudiation The inability of party to deny or challenge the authenticity of an interaction

Measuring Security – Availability

- Being accessible and usable during a certain time period
- Responsibility generally shared between Cloud Provider and Carrier.
 - If using Cloud to offer services to 3rd Service Consumers then extends to Cloud Consumer

Lack of Security – Threat & Vulnerability

Threat

- A potential security violation that can breach privacy or cause harm
- Generally exploits a known weakness (vulnerability)

Vulnerability

- A weakness that can be exploited because of insufficient security controls or security controls that have been compromised
 - Configurations deficiencies
 - Security policy weakness
 - User errors
 - Hardware / Firmware flaws
 - Software bugs
 - Poor security architecture

Lack of Security – Risk

- Possibility of loss or harm from an activity
- Measured according to its threat level and the number of possible or known vulnerabilities.
 - The probability of a threat occurring to exploit vulnerabilities in the resource
 - The expectation of loss upon the compromised resource

Improving Security – Controls, Mechanisms, Policies

- Security Controls
 - Countermeasures used to prevent or respond to security threats and to reduce or avoid risk.
- Security Mechanisms
 - Countermeasures are typically described in terms of security mechanisms, which are components comprising a
 defensive framework
- Security Policies
 - Set of security rules and regulations
 - Definition of how these rules and regulations are implemented and enforced
 - Will direct controls and mechanisms

Threat Agents

Agents

- Anonymous Attacker
- Malicious Service Agent
- Trusted Attacker
- Malicious Insider

Cloud Security Threats – Traffic Eaves Dropping

Malicious Intermediary

Denial of Service

Insufficient Authorisation

Virtualisation Attack

Overlapping Trust Boundaries

Container Attacks

- Containerisation introduces a lack of isolation from the host operating system
 - Create containers within the OS so that if compromised only those containers have issues
 - One service per physical server model Reduces risk but increases resource usage thus cost and complexity

Other considerations

Poorly implemented cloud service deployment

Other considerations

- Incompatibilities in security policies
- Cloud contracts
 - Where does the liability lie?
 - What is the level of indemnity?
 - The greater the risk absorbed by the Provider the less to bear by the consumer
 - What are the lines responsibilities in a shared model? IaaS

Risk Management

- Probability of Occurrence
- Impact of Occurrence

Risk Assessment Matrix

		Risk Assessment Matrix			
		Severity			
		Catastrophic - 4	Critical - 3	Marginal - 2	Negligible - 1
Probability	Frequent - 4	High (16)	High (12)	Serious (8)	Medium (4)
	Probable - 3	High (12)	Serious (9)	Serious (6)	Medium (3)
	Remote - 2	Serious (8)	Serious (6)	Medium (4)	Low (2)
	mprobable - 1	Medium (4)	Medium (3)	Low (2)	Low (1)

Cloud Security – Security Mechanisms

Encryption

Hashing

Digital Signatures

Public Key Infrastructure (PKI)

Identity and Access Management (IAM)

Single Sign On

Cloud Based Security Groups

Hardening

Encryption

HTTPS

• Ensure message confidentiality through encryption

Hashing

Digital Signing

Public Key Infrastructure (PKI)

Identity Access Management (IAM)

- Authentication
- Authorisation
- User Management
 - User identities
 - Access groups
 - Managing identities
 - Password policies
 - Role / privilege management
- Credential Management
- Counter insufficient authorization, denial of service, overlapping trust boundaries, virtualization and containerization attack threats.

Single Sign On

Cloud Based Security Groups

Hardening

What is DevOps

Centre for Data Analytics

and Cognition

DevOps – A Philosophy

• DevOps is the union of people, process, and products to enable continuous delivery of value to our end users.

Decrease the Cycle Time Increase Frequency

- Shorten your cycle time;
 - Smaller batches
 - More automation
 - Hardening release pipeline
 - Improving telemetry
 - Deploy more frequentl

Benefits

Speed

Delivery

Reliability

Scale

Collaboration

Security

Best Practices

Continuous Integration

Continuous Delivery

Centre for Data Analytics

and Cognition

Best Practices

Version Control

Agile Planning

Best Practices

Monitoring and Logging

• Infrastructure as Code

Best Pratices

Microservices

Communication and Collaboration

DevOps Lifecycle

Why Version Control Systems?

Version Control Systems

Benefits of VCS / SCM

 Audit trail Every change by every individual History Ability to rollback Branching Collaboration Merging Grouped changes and commit logs Traceability Tag to Project Management

Git

- Used in a large cohort of software development in the world
 - As per Stack Overflow nearly 94% of developers mentioned it as their favourite (2022)
- Developed by Linus Torvalds (main developer of Linux kernel)
 - Because BitKeeper which was hosting the Linux project till then withdrew free use of the product
- DVCS (Distributed Version Control System)

Git vs. Github

Centre for Data Analytics

and Cognition

Github

REMOTE

LOCAL

Someone else's computer talks to the GitHub server.

Git Flow

Github Actions

Github Actions Runners

Exercise – Setup a Github Account

- https://github.com/
- Use an email of your choice (La Trobe student email)
- Create an account

Thank you

Centre for Data Analytics and Cognition

