

РАДИОТЕХНИКА и ЭЛЕКТРОНИКА

Tom XXVI

(ОТДЕЛЬНЫЙ ОТТИСК)

8

MOCKBA - 1981

1981

УДК 621.391

ЭФФЕКТИВНОСТЬ ПРИЕМА СЛУЧАЙНОГО ИМПУЛЬСНОГО СИГНАЛА НА ФОНЕ БЕЛОГО ШУМА

Трифонов А. П., Галун С. А.

Найдены вероятности ошибок при обнаружении гауссовского случайного импульса с неизвестным временным положением. Получены асимптотические выражения для смещения и рассеяния оценки максимального правдоподобия временного положения. Точность этих формул возрастает с увеличением длительности импульса и априорного интервала определения неизвестного временного положения.

ВВЕДЕНИЕ

Под случайным импульсным сигналом $s(t, \tau_0)$ понимается отрезок реализации шума достаточно большой длительности ү

(1)
$$s(t, \tau_0) = I[(t-\tau_0)/\gamma] \xi(t),$$

где $\xi(t)$ — реализация центрированного стационарного гауссовского случайного процесса с корреляционной функцией $K(\lambda) = \langle \xi(t) \xi(t+\lambda) \rangle$, а $I(\cdot)$ — индикатор единичной длительности. Рассмотрим прием сигнала (1) на фоне белого шума n(t) с односторонней спектральной плотностью $\hat{N_0}$. Полагаем, что неизвестное временное положение au принимает значения из априорного интервала [$-T_0/2$; $T_0/2$]. Для обнаружения сигна ла $s(t, \tau_0)$ и оценки его временного положения τ_0 используем метод максимального правдоподобия. Устройство, реализующее этот метод, будем называть приемником максимального правдоподобия [1-4]. Структура подобного приемника описана, например, в [5]. Ниже найдены асимптотически точные (с увеличением длительности сигнала ү и априорного интервала T_{\circ}) выражения для характеристик обнаружения случайного сигнала и оценки его временного положения в приемнике максимального правдоподобия.

1. ВЫХОДНОЙ СИГНАЛ ПРИЕМНИКА МАКСИМАЛЬНОГО **ПРАВДОПОДОБИЯ**

Пусть на вход приемника в течение интервала времени [-T/2; T/2]поступает реализация гауссовского случайного процесса x(t) = n(t) или $x(t)=s(t, \tau_0)+n(t)$, причем $s(t, \tau_0)$ и n(t) статистически независимы. Приемник максимального правдоподобия для всех $\tau^{\in}[-T_{\circ}/2;\ T_{\circ}/2],$ $T_{ullet}+\gamma < T$ должен вырабатывать логарифм функционала отношения правдоподобия, который с точностью до постоянных слагаемых равен [2, 3, 5]

(2)
$$M(\tau) = \int_{\tau/2}^{\tau/2} x(t_1) x(t_2) \Theta(t_1, t_2, \tau) dt_1 dt_2/2.$$

Здесь функция $\Theta(t_1, t_2, \tau)$ находится из интегрального уравнения [3]

(3)
$$\frac{N_0}{2}\Theta(t_1,t_2,\tau)+\int_{-\tau/2}^{\tau/2}\Theta(t_1,t,\tau)K_s(t,t_2,\tau)dt=\frac{2}{N_0}K_s(t_1,t_2,\tau),$$

где $K_*(t_1, t_2, \tau) = I[(t_1-\tau)/\gamma]I[(t_2-\tau)/\gamma]K(t_1-t_2)$. Будем считать, что длительность случайного импульса (1) значительно больше времени корреляции процесса $\xi(t)$, т. е.

(4)
$$\mu \gg 1, \ \mu = \gamma \Delta f_E/2, \ \Delta f_E = \int_{-\infty}^{\infty} K^2(\omega) d\omega / [2\pi \operatorname{Marc} K^2(\omega)],$$

 $K(\omega)$ — спектр мощности процесса $\xi(t)$. Тогда решение уравнения (3) можно представить в виде [3, 5]

(5)
$$\Theta(t_1, t_2, \tau) = I[(t_1-\tau)/\gamma]I[(t_2-\tau)/\gamma]\Theta_0(t_1-t_2),$$

где

(6)
$$\Theta_{c}(t_{1}-t_{2}) = \frac{q}{\pi N_{0}} \int_{-\infty}^{\infty} \frac{\rho(\omega) \exp[j\omega(t_{1}-t_{2})]d\omega}{1+q\rho(\omega)}.$$

Здесь q=макс $2K(\omega)/N_0$ — величина, характеризующая отношение средней мощности сигнала (1) к средней мощности белого шума в полосе частот сигнала, а $\rho(\omega)=2K(\omega)/qN_0$.

При наличии полезного сигнала (1) на входе приемника $M(\tau)$ (2) можно представить как сумму сигнальной и шумовой функций [2]. Вводя безразмерный параметр $l=\tau/\gamma$ и опуская всюду далее несущественное постоянное слагаемое

$$c = \frac{q\gamma}{4\pi} \int_{-\pi}^{\infty} \frac{\rho(\omega)}{1 + q\rho(\omega)} d\omega,$$

получаем

(7)
$$M(l) = S_1(l) + N_1(l), l \in [-m/2; m/2],$$

где $m=T_0/\gamma$, $S_1(l)=\langle M(l)\rangle$, $N_1(l)=M(l)-\langle M(l)\rangle$. Сигнальную функцию $S_1(l)$ запишем следующим образом:

$$S_i(l) = A_s S(l_0, l),$$

(8)
$$A_{\bullet} = \text{Marc } S_{i}(l) = \gamma q^{2} \int_{0}^{\infty} \rho^{2}(\omega) [1 + q\rho(\omega)]^{-1} d\omega / 4\pi.$$

Причем, когда $|l-l_0| \ge 1$, $S(l_0, l) = 0$, а при $|l-l_0| \to 0$

(9)
$$S(l_0, l) = 1 - |l - l_0| + o(|l - l_0|).$$

В соответствии с (7) $\langle N_i(l) \rangle = 0$ и, если $\delta l = \text{макс}\{|l_i - l_2|, \; |l_i - l_0|, \; |l_2 - l_0|\} < 1$, то

(10)
$$\langle N_1(l_1)N_1(l_2)\rangle = \sigma_{NS}^2 R_{NS}(l_1, l_2), \ \sigma_{NS}^2 = \gamma q^2 \int_{0}^{\infty} \rho^2(\omega) d\omega/4\pi.$$

Здесь $R_{NS}(l_1, l_2)$ при $\delta l \rightarrow 0$ допускает представление

(11)
$$R_{NS}(l_{1}, l_{2}) =$$

$$= \begin{cases} 1 - |l_{1} - l_{2}| - g \text{ Mith } (|l_{1} - l_{0}|, |l_{2} - l_{0}|) + o(\delta l), (l_{1} - l_{0}) (l_{2} - l_{0}) \ge 0, \\ 1 - |l_{1} - l_{2}| + o(\delta l), (l_{1} - l_{0}) (l_{2} - l_{0}) \le 0; \end{cases}$$

$$g = q \int_{-\infty}^{\infty} \rho^{3}(\omega) [3 + 2q\rho(\omega)] [1 + q\rho(\omega)]^{-2} d\omega / \int_{-\infty}^{\infty} \rho^{2}(\omega) d\omega.$$

Когда $|l_1-l_2| < 1$ и макс $\{|l_1-l_0|, |l_2-l_0|\} \ge 1$,

(12)
$$\langle N_1(l_1)N_1(l_2)\rangle = \sigma_{N0}^2 \mathbf{R}_{N0}(l_1-l_2),$$

$$\sigma_{N0}^2 = \gamma q^2 \int_{-\infty}^{\infty} \rho^2(\omega) [1+q\rho(\omega)]^{-2} d\omega/4\pi,$$

а $R_{N0}(l_1-l_2)$ при $|l_1-l_2|\to 0$ имеет вид

(13)
$$R_{N0}(l_1-l_2)=1-|l_1-l_2|+o(|l_1-l_2|).$$

Наконец, если $|l_1-l_2| \geqslant 1$, макс $\{|l_1-l_0|, |l_2-l_0|\} \geqslant 1$, то $\langle N_1(l_1)N_1(l_2) \rangle = 0$.

При отсутствии полезного сигнала (1) на входе приемника для (2) выполняются соотношения

$$\langle M(l) \rangle = 0,$$

$$\langle M(l_1) M(l_2) \rangle = \sigma_{N0}^2 R_{N0} (l_1 - l_2), \quad |l_1 - l_2| < 1,$$

$$\langle M(l_1) M(l_2) \rangle = 0, \quad |l_1 - l_2| \ge 1.$$

Здесь $\sigma_{N_0}^2$, $R_{N_0}(l_1-l_2)$ определяются из (12), (13) соответственно. При этом, хотя в силу (9), (11), (13) реализации M(l) (2) недифференцируемы, они тем не менее непрерывны с вероятностью 1. Последнее утверждение нетрудно доказать, воспользовавшись, например, результатами [6].

Отметим также, что из [3, 7] следует асимптотически гауссовский ха-

рактер случайных функций $M(\tau)$, M(l) и $N_1(l)$ при $\mu \to \infty$.

2. ОБНАРУЖЕНИЕ СЛУЧАЙНОГО ИМПУЛЬСНОГО СИГНАЛА

Приемник максимального правдоподобия выносит решение о наличии или отсутствии сигнала $s(t, \tau_0)$ на основе сравнения абсолютного максимума $M(\tau)$ (2) при $\tau^{\in}[-T_0/2; T_0/2]$ с порогом h. Соответственно вероятности ошибок I рода (ложной тревоги) α и ошибок II рода (пропуска сигнала) β можно записать как $\alpha = P[H_N > h]$ и $\beta = P[H_{SN} < h]$. Здесь H_N и H_{SN} — величины абсолютных максимумов M(l), $l \in [-m/2; m/2]$ в отсутствие и при наличии сигнала (1) в принятой реализации x(t). Обозначая l_m — положение абсолютного максимума M(l), для вероятности ложной тревоги имеем

(15)
$$\alpha = P[M(l_m)/\sigma_{N_0} > u] = 1 - F_N(u),$$

где $F_N(\cdot)$ — функция распределения величины абсолютного максимума $M(l)/\sigma_{N_0}$ в отсутствие сигнала (1); $u=h/\sigma_{N_0}$ — нормированный порог. Точное выражение для $F_N(H)$ неизвестно. Однако при $\mu \to \infty$ функция $M(l)/\sigma_{N_0}$ является реализацией асимптотически гауссовского стационар-

ного случайного процесса, коэффициент корреляции которого $R_{N0}(l_1-l_2)$ (14) при $|l_1-l_2|\to 0$ удовлетворяет условию (13). Поэтому можем использовать найденную в [4] аппроксимацию распределения $F_N(H)$

(16)
$$F_N(H) \simeq \begin{cases} \exp[-(mH/\sqrt{2\pi})\exp(-H^2/2)], & H \ge 1, \\ 0, & H < 1, \end{cases}$$

точность которой возрастает с увеличением μ , m и H. Согласно (15), (16), приближенное выражение для вероятности ложной тревоги принимает вид

(17)
$$\alpha \simeq \begin{cases} 1 - \exp[-(mu/\sqrt{2\pi})\exp(-u^2/2)], & u \ge 1, \\ 1, & u < 1. \end{cases}$$

Точность этой формулы возрастает с увеличением μ , m и u.

Предполагая, что полезный сигнал (1) присутствует на входе приемника, определим вероятность пропуска сигнала β . Обозначим: H_s — величина абсолютного максимума M(l) (7) при $|l-l_0|<1$, а H_N* — величина абсолютного максимума M(l) (7) при $-m/2 \le l \le l_0 - 1$, $l_0 + 1 \le l \le m/2$. В соответствии с (12), (13) интервал корреляции случайного процесса $N_1(l)$ (7) равен единице, и, кроме того, при $\mu \to \infty$ процесс $N_1(l)$ является асимптотически гауссовским. Следовательно, аналогично [4] можно показать, что случайные величины H_N* и H_s приближенно статистически независимы, если $m \gg 1$ и $\mu \gg 1$. Так что вероятность пропуска сигнала может быть записана как

(18)
$$\beta \simeq P[H_N^* < h] P[H_s < h] = F_N^*(u) F_s(u/\varkappa).$$

Здесь $F_N^*(\cdot)$ и $F_s(\cdot)$ — функции распределения величин абсолютных максимумов процессов $M(l)/\sigma_{N0}$ при $-m/2 \leqslant l \leqslant l_0 - 1$, $l_0 + 1 \leqslant l \leqslant m/2$ и $M(l)/\sigma_{NS}$ при $|l - l_0| < 1$ соответственно, а $\varkappa \equiv \sigma_{NS}/\sigma_{N0}$. Когда $m \gg 1$,

$$(19) F_N^*(u) \simeq F_N(u).$$

где $F_N(\cdot)$ определяется формулой (16).

При наличии сигнала (1) на входе приемника $H_s = M(l_m)$, причем здесь $|l_m - l_0| < 1$. В соответствии с (9), (10) функция $S_1(l)$ достигает максимума при $l = l_0$, а реализации шумовой функции $N_1(l)$ непрерывны с вероятностью 1. Следовательно, при больших μ и q > 0 достаточно исследовать поведение абсолютного максимума H_s в малой окрестности точки l_0 . С этой целью введем в рассмотрение функцию

(20)
$$\Delta(l) = [M(l) - M(\lambda)] / \sigma_{NS}, \ l, \lambda \in [l_0 - 1; \ l_0 + 1].$$

Учитывая, что при $\mu\to\infty$ процесс $\Delta(l)$ является асимптотически гауссовским, найдем его функцию корреляции $K_{\Delta}(l_i,\ l_2)$. Обозначая $\delta=$ —макс $\{|l_i-l_o|,\ |l_i-\lambda|,\ i=1,2\}$ и используя формулы (10), (11), получаем, что при $\delta\to0$

(21)
$$K_{\Delta}(l_1, l_2) = (2-g)_{\text{MHH}}(|\lambda - l_1|, |\lambda - l_2|) + o(\delta),$$

когда $(\lambda-l_1)$ $(\lambda-l_2) \geqslant 0$, и $K_{\Delta}(l_1,\ l_2) = o(\delta)$, когда $(\lambda-l_1)$ $(\lambda-l_2) \leqslant 0$. Таким образом, если $\mu \gg 1$, то отрезки реализаций процесса (20) на интервалах $[\lambda-\delta;\ \lambda)$ и $[\lambda;\ \lambda+\delta]$ приближенно независимы. Возвращаясь к распределению $F_s(\cdot)$, можем теперь записать

$$(22) F_{\bullet}(h) \simeq P[\underline{M}(l) < h] = P[\underline{\Lambda}_{0}(l) < v - m_{0}].$$

Здесь $\Delta_0(l) = \Delta(l)$ при $\lambda = l_0$, $m_0 = M(l_0)/\sigma_{NS}$, $v = h/\sigma_{NS}$, а δ фиксировано и выбрано настолько малым, чтобы в (9), (21) можно было учитывать лишь главные члены асимптотики.

Используя свойства функции $\Delta(l)$ (20), преобразуем (22) следующим

образом:

$$(23) F_{\bullet}(h) = P[\Delta_{0}(l) < v - m_{0}] P[\Delta_{0}(l) < v - m_{0}] =$$

$$= \int_{l_{0} - \delta \leq l \leq l_{0}}^{v} F_{1}(v - x) F_{2}(v - x) W_{0}(x) dx,$$

гле обозначено

(24)
$$F_{1}(x) = P[\Delta_{0}(l) < x],$$

$$f_{2}(x) = P[\Delta_{0}(l) < x],$$

$$f_{2}(x) = P[\Delta_{0}(l) < x],$$

а $W_{0}(x)$ — плотность вероятности случайной величины m_{0} . При этом, когда µ≫1 [3],

(25)
$$W_0(x) = \exp[-(x-z)^2/2]/\sqrt{2\pi}$$

(26)
$$z=A_{\bullet}/\sigma_{NS}=q\sqrt{\gamma/4\pi}\int_{-\infty}^{\infty}\rho^{2}(\omega)\left[1+q\rho(\omega)\right]^{-1}d\omega\left/\left(\int_{-\infty}^{\infty}\rho^{2}(\omega)d\omega\right)^{1/2}\right.$$

- отношение сигнал/шум [2]. Для отношения сигнал/шум (26) нетрудно установить простые верхнюю и нижнюю границы

(27)
$$\sqrt{\mu}q/(1+q) \leq z \leq \sqrt{\mu}q$$
.

Следовательно, $z \to \infty$, когда $\mu \to \infty$ и q > 0.

Найдем далее распределения $F_1(x)$ и $F_2(x)$ (24). Воспользовавшись теоремой Дуба [8], получаем, что при μ→∞ процесс (20) является асимптотически марковским в малой окрестности точки $l_{
m o}$ с коэффициентами сноса и диффузии

(28)
$$a(l) = z \begin{cases} 1, & l < l_0, \\ -1, & l > l_0; \end{cases} b = 2 - g.$$

Поэтому распределения (24) можно найти из решения уравнения Фоккера — Планка — Колмогорова [9] с коэффициентами (28) при соответствующих начальных и граничных условиях [10, 11]. Получаем

(29)
$$F_1(x) = F_2(x) = \Phi\left(\frac{z\delta + x}{\sqrt{b\delta}}\right) - \exp\left(-\frac{2zx}{b}\right) \Phi\left(\frac{z\delta - x}{\sqrt{b\delta}}\right)$$

где $\Phi(\cdot)$ — интеграл вероятности [7]. Подставляя (25), (29) в (23) и учитывая, что при $\mu \to \infty$ и q > 0, в соответствии с (27), $z \to \infty$, находим

(30)
$$F_{\bullet}(h) \simeq \Phi\left(\frac{u}{\varkappa} - z\right) - 2\exp\left[\frac{\psi^{2}z^{2}}{2} + \psi z\left(z - \frac{u}{\varkappa}\right)\right] \Phi\left[\frac{u}{\varkappa} - (\psi + 1)z\right] + \exp\left[2\psi^{2}z^{2} + 2\psi z\left(z - \frac{u}{\varkappa}\right)\right] \Phi\left[\frac{u}{\varkappa} - (2\psi + 1)z\right],$$

$$\psi = 2 \int_{-\infty}^{\infty} \rho^{2}(\omega) d\omega \left\{ \int_{-\infty}^{\infty} \frac{\rho^{2}(\omega) \left[2 + q\rho(\omega) \right]}{\left[1 + q\rho(\omega) \right]^{2}} d\omega \right\}^{-1} = \frac{2\varkappa^{2}q\sqrt{\mu}}{z\varkappa^{2} + q\sqrt{\mu}}$$

$$\varkappa = \sigma_{NS}/\sigma_{N0} = \left\{ \int_{-\infty}^{\infty} \rho^{2}(\omega) d\omega / \int_{-\infty}^{\infty} \rho^{2}(\omega) \left[1 + q\rho(\omega) \right]^{-2} d\omega \right\}^{1/2},$$

причем $1 \leq \varkappa \leq 1 + a$.

Таким образом, согласно (18), (19), (30), приближенное выражение для вероятности пропуска сигнала имеет вид

$$\beta \simeq \exp\left[-\frac{mu}{\sqrt{2\pi}}\exp\left(-\frac{u^2}{2}\right)\right] \left\{\Phi\left(\frac{u}{\varkappa}-z\right) - 2\exp\left[\frac{\psi^2z^2}{2} + \frac{1}{2}\right] + \left[2\psi^2z^2 + 2\psi z\left(z - \frac{u}{\varkappa}\right)\right] \Phi\left[\frac{u}{\varkappa} - (\psi + 1)z\right] + \left[2\psi^2z^2 + 2\psi z\left(z - \frac{u}{\varkappa}\right)\right] \Phi\left[\frac{u}{\varkappa} - (2\psi + 1)z\right]\right\},$$

когда $u \ge 1$, и $\beta \simeq 0$, когда u < 1. Точность этого приближенного выражения

возрастает с увеличением и, т и и.

При анализе обнаружения сигнала (1) в приемнике максимального правдоподобия приближенные значения вероятностей ошибок можно найти, предполагая, что неизвестное временное положение принимает одно из т дискретных значений [3]. Этот подход, основанный на несколько искусственном сведении аналоговой системы к дискретной, дает следующие приближенные выражения для вероятностей ошибок:

(32)
$$\alpha_m \simeq 1 - (1 - \alpha_0)^m$$
, $\beta_m \simeq (1 - \alpha_0)^{m-1} \beta_0$.
Здесь [3]

$$\alpha_0=1-\Phi(u), \quad \beta_0=\Phi\left(\frac{u}{\varkappa}-z\right)$$

- вероятности ошибок при обнаружении сигнала (1) с априори известным временным положением τ_0 и $\mu \gg 1$. Сравнивая (32) и (17) при $u \gg 1$, получаем $\alpha/\alpha_m \simeq u^2$. Следовательно, для больших u (малых α) расчет вероятности ложной тревоги по приближенной формуле (32) приводит к существенно заниженным значениям с. Сравнение результатов численных расчетов вероятности пропуска сигнала (1) по формулам (32) и (31) показывает, что расчет в по формуле (32) приводит к значению вероятности пропуска, завышенному приблизительно в 2 раза по сравнению с (31). При этом точность формул (17), (31) растет с увеличением и, т и и, в то время как поведение погрешности приближенных формул (32) неизвестно.

3. ОЦЕНКА ВРЕМЕННОГО ПОЛОЖЕНИЯ СЛУЧАЙНОГО импульсного сигнала

Рассмотрим характеристики приемника максимального правдоподобия, когда производится оценка неизвестного временного положения то импульсного случайного сигнала (1). При этом предполагается, что сигнал $s(t, \tau_0)$ присутствует на входе приемника с вероятностью 1. В качестве оценки безразмерного временного положения $l_0 = \tau_0/\gamma$ принимают положение l_m абсолютного максимума M(l) (7) при $l^{\rm G}[-m/2;\ m/2]$. Согласно [2], при $m\gg 1$ условное смещение оценки будет равно $d(l_m|l_0)=\langle l_m-l_0\rangle\simeq 2P_0d_0-(1-P_0)l_0$, а условное рассеяние (средний квадрат ошибки) запишется так: $V(l_m|l_0)=\langle (l_m-l_0)^2\rangle\simeq P_0\sigma_0^2+(1-P_0)\ (m^2/12+l_0^2)$. Здесь усреднение выполняется по реализациям помехи n(t) и сигнала $s(t,\tau_0)$ при фиксированном значении $l_0=\tau_0/\gamma$; P_0 — вероятность надежной оценки, а d_0 и σ_0^2 обозначают соответственно условные смещение и рассеяние надежной оценки. Под надежной оценкой [2] понимается оценка, найденная в предположении $|l_m-l_0|<1$.

В соответствии с определением [2], вероятность надежной оценки $P_0 = P[H_s > H_N^*]$. Так как при $m \gg 1$ и $\mu \gg 1$ случайные величины H_s и H_N^*

приближенно независимы, имеем

(33)
$$P_0 \simeq \int_{\mathbb{R}} F_N^*(H) dF_*(H/\kappa),$$

где $F_N^*(\cdot)$ и $F_s(\cdot)$ — распределения случайных величин H_N^*/σ_{N0} и

 H_s/σ_{NS} соответственно.

Аналогично [2] при больших значениях μ (или z) для приближенного вычисления P_0 будем использовать аппроксимации подынтегральных функций, асимптотически точные, когда $\mu \to \infty$ и $H \to \infty$. Такие аппроксимации найдены ранее в форме (19), (30). Подставляя их в (33), получаем

$$P_{0} \simeq \frac{2\psi z}{\varkappa} \exp\left(\frac{\psi^{2}z^{2}}{2} + \psi z^{2}\right) \int_{1}^{\infty} \exp\left[-\frac{mx}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)\right] \times \left\{ \exp\left(-\frac{\psi zx}{\varkappa}\right) \Phi\left[\frac{x}{\varkappa} - (\psi+1)z\right] - \exp\left[\frac{3\psi^{2}z^{2}}{2} + \psi z\left(z - \frac{2x}{\varkappa}\right)\right] \Phi\left[\frac{x}{\varkappa} - (2\psi+1)z\right] \right\} dx,$$
(34)

причем точность этой формулы возрастает с увеличением т и р.

Формула (34) довольно громоздка и расчет по ней возможен только численными методами. Однако из (34) можно получить упрощенное выражение для вероятности аномальной ошибки P_a =1 $-P_0$, справедливое при весьма больших отношениях сигнал/шум

$$P_{\rm a} \simeq \frac{zm \varkappa \psi^2 \exp \left[-z^2 \varkappa^2/2 \left(1+\varkappa^2\right)\right]}{\varkappa^4 \left(2 \psi^2 + 3 \psi + 1\right) + \varkappa^2 \psi \left(4 \psi + 3\right) + 2 \psi^2} \sqrt{\frac{2 \left(1+\varkappa^2\right)}{\pi}} \, .$$

Найдем далее характеристики надежной оценки l_m , $|l_m-l_0|<1$. Как известно [2, 4, 7], при больших отношениях сигнал/шум z характеристики оценки максимального правдоподобия определяются поведением логарифма функционала отношения правдоподобия в малой окрестности истинного значения оцениваемого параметра l_0 . Поэтому при $z\rightarrow\infty$, что всегда имеет место, когда q>0 и $\mu\rightarrow\infty$ (27), достаточно исследовать, при помощи функции (20), поведение M(l) (7) в малой окрестности l_0 . Положение абсолютного максимума функции (20) совпадает с надежной оценкой неизвестного безразмерного временного положения. Следовательно, распределение оценки запишется так

$$F_m(\lambda) = P[l_m < \lambda] = P[\max_{l < \lambda} \Delta(l) > \max_{\lambda \leq l} \Delta(l)].$$

Из этого выражения следует, что распределение оценки можно выразить через двумерное распределение абсолютных максимумов функции (20).

$$F(u, v, \lambda) = P[\max_{l < \lambda} \Delta(l) < u, \max_{\lambda \leqslant l} \Delta(l) < v].$$

Причем при больших µ

$$F(u, v, \lambda) \simeq P[\max_{\substack{\{\lambda - \delta; \lambda\}}} \Delta(l) < u] P[\max_{\substack{\{\lambda; \lambda + \delta\}}} \Delta(l) < v] = F_{i\lambda}(u) F_{2\lambda}(v),$$

а распределение надежной оценки принимает вид [10]

(35)
$$F_m(\lambda) \simeq \int_0^\infty F_{2\lambda}(u) dF_{1\lambda}(u).$$

Так как при $\mu \to \infty$ процесс (20) является асимптотически марковским в малой окрестности точки l_0 , то приближенные выражения для распределений $F_{1\lambda}(u)$ и $F_{2\lambda}(v)$ (35) можно найти из решения уравнения Фоккера — Планка — Колмогорова [9] с коэффициентами (28) при соответствующих начальных и граничных условиях, как это сделано в [10, 11]. Получив таким путем приближенное выражение для распределения оценки (35), аналогично [10, 11], находим асимптотические ($\mu \to \infty$, q > 0) значения смещения и дисперсии надежной оценки

(36)
$$d_0 \simeq 0, \ \sigma_0^2 \simeq 13(2-g)^2/8z^4$$

Подставляя (26) в (36), дисперсию надежной оценки запишем в виде

(37)
$$\sigma_0^2 \simeq \frac{26\pi^2}{q^4\gamma^2} \left\{ \int_{-\infty}^{\infty} \frac{\rho^2(\omega) [2+q\rho(\omega)]}{[1+q\rho(\omega)]^2} d\omega \right\}^2 \left\{ \int_{-\infty}^{\infty} \frac{\rho^2(\omega)}{1+q\rho(\omega)} d\omega \right\}^{-4}.$$

Отметим, что при $q \to \infty$ (т. е. в отсутствие белого шума) $\sigma_0^2 \to 0$. Таким образом, в отсутствие белого шума оценка максимального правдоподобия временного положения случайного импульса (1) является сингулярной. Действительно, полагая в (6) $q \to \infty$, получаем $\Theta_0(t_1-t_2)=(2/N_0)\,\delta(t_1-t_2)$. Подставляя эту функцию в (2), находим, что при $q \to \infty$ вне зависимости от конкретного вида реализации $\xi(t)$ оценка максимального правдоподобия совпадает с истинным значением τ_0 . Для этого достаточно, чтобы $\xi(t)$ обращалось в нуль только в счетном множестве точек из интервала $[\tau_0-\gamma/2;\ \tau_0+\gamma/2]$. Нетрудно убедиться [6], что для рассматриваемого случайного сигнала это требование выполняется. Заметим, что аналогичный результат получен в [12] для оценки разности хода случайных сигналов,

Формула (37) значительно упрощается в двух крайних случаях: $q \ll 1$ и $q \gg 1$. В случае, когда $q \ll 1$, но $q^2 \mu \gg 1$ (что обеспечивает высокую апостериорную точность оценки), дисперсия надежной оценки

(38)
$$\sigma_0^2 \simeq 13/(2q^4\mu^2)$$
.

Из формулы (38) следует, что при слабом $(q\ll 1)$ полезном сигнале (1) дисперсия надежной оценки временного положения не зависит от формы корреляционной функции $K(\tau)$ процесса $\xi(t)$, а определяется лишь его эквивалентной полосой частот Δf_E . С другой стороны, для сильного $(q\gg 1)$ полезного сигнала (1) справедливо выражение

(39)
$$\sigma_0^2 \simeq \frac{26\pi^2}{q^2\gamma^2} \left(\int_{-\infty}^{\infty} \rho(\omega) d\omega \right)^{-2}.$$

Конкретизируем полученные выражения для случая приема экспоненциально коррелированного узкополосного случайного импульса с функцией корреляции $K(\tau) = \sigma^2 \exp(-\alpha |\tau|) \cos \omega_0 \tau$. В этом случае $q = 2\sigma^2 \alpha/N_0$, $\Delta f_E = \alpha/2$ и $\rho(\omega) = \alpha^2 \{ [\alpha^2 + (\omega - \omega_0)^2]^{-1} + [\alpha^2 + (\omega + \omega_0)^2]^{-1} \}$. Так что $\alpha = 1$ $=(1+q)^{\eta_1}$, $z=2\sqrt{\mu}[1-1/\sqrt{1+q}]$, что, очевидно, согласуется с (27). Выражение (37) для дисперсии надежной оценки принимает вид

(40)
$$\sigma_0^2 \simeq \frac{13}{32\mu^2 q^2} \left[1 - (1+q/2)/(1+q)^{\frac{1}{4}}\right]^2 \left[1 - 1/(1+q)^{\frac{1}{4}}\right]^{-4}.$$

Здесь $\mu = \gamma \alpha/4$. В случае сильного сигнала ($q \gg 1$) из (39), (40) получаем $\sigma_0^2 \simeq 13/(32\mu^2 q^2)$.

Если в формулах (37)-(40) перейти к исходному ненормированному параметру т, то нетрудно заметить, что, как и при приеме детерминированного радиоимпульса с прямоугольной огибающей [10], дисперсия надежной оценки временного положения случайного импульса (1) не зависит от его длительности у.

ЛИТЕРАТУРА

1. Маршаков В. К., Трифонов А. П. Теоретическое и экспериментальное исследования приемника максимального правдоподобия. - Радиотехника и электроника, 1974, т. 19, № 11, с. 2266.

2. Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех.

М.: Советское радио, 1978.

- 3. Бакут П. А., Большаков И. А., Герасимов В. М. и др. Вопросы статистической теории радиолокации, т. І. Под ред. Г. П. Тартаковского. М.: Советское радио,
- 4. Трифонов А. П. Прием разрывного квазидетерминированного сигнала на фоне гауссовской помехи. - Изв. АН СССР. Техническая кибернетика, 1978, № 4, c. 146.

5. Векетов С. В., Потапов А. В. Измерение времени прихода случайных импульсных сигналов. - Радиотехника и электроника, 1969, т. 14, № 6, с. 1108.

ных сигналов. — Радиотехника и электроника, 1969, т. 14, № 6, с. 1108.

6. Крамер Г., Лидбеттер М. Стационарные случайные процессы, М.: Мир, 1969.

7. Тихонов В. И. Статистическая радиотехника. М.: Советское радио, 1966.

8. Kailath T. Some integral equations with nonrational kernels. — IEEE Trans. Inform. Theory, 1966, v. IT-12, N 4, р. 442—447.

9. Тихонов В. И., Миронов М. А. Марковские процессы. М.: Советское радио, 1977.

10. Терентьев А. С. Распределение вероятности временного положения абсолютного максимума на выходе согласованного фильтра. — Радиотехника и электроника, 1968, т. 13, № 4, с. 652.

11. Трифонов А. И. Прием сигнала с неизвестной длительностью на фоне белого шума. — Радиотехника и электроника, 1977, т. 22, № 1, с. 90.

12. Черняк В. С. Об использовании информационной матрицы Фишера для анали-

мешающих параметров. - Радиотехника и электроника, 1971, т. 16, № 6, с. 956.

> Поступила в редакцию 29.X.1979