assn09

June 18, 2025

1 1

使用二分法求方程 $x^2 - x - 1 = 0$ 的正根,要求误差小于 0.05

1.1 Solution

- 计算 $f(1) = 1^2 1 1 = -1$ 计算 $f(2) = 2^2 2 1 = 1$

由于 f(1) < 0 且 f(2) > 0,根据介值定理,方程在区间 [1,2] 内至少有一个根,且容易发现函数在 [1,2] 区间内是单调的。因此我们选择初始区间为 $[a_0,b_0]=[1,2]$ 。

进行 5 次迭代,每次计算中点 $c_k = \frac{a_k + b_k}{2}$ 。

选代次 数 <i>k</i>	区间 $[a_k, b_k]$	$f(a_k)$	$f(b_k)$	中点 c_k	$f(c_k)$	新区间 $[a_{k+1}, b_{k+1}]$	区间长度 $b_k - a_k$
0	[1, 2]	-	+	-	-	-	1.0
1	[1, 2]	-1	1	1.5	-0.25	[1.5, 2]	0.5
2	[1.5, 2]	-	+	1.75	0.3125	[1.5, 1.75]	0.25
3	[1.5,	-	+	1.625	0.0156	[1.5, 1.625]	0.125
	1.75]						
4	[1.5,	-	+	1.5625	-	[1.5625, 1.625]	0.0625
	1.625]				0.1211		
5	[1.5625,	-	+	1.59375	-	[1.59375,	0.03125
	1.625]				0.0537	1.625]	

经过 5 次迭代后, 我们得到包含根的区间为 [1.59375, 1.625]。该区间的长度为 1.625 - 1.59375 = 0.03125, 这个值小于我们要求的误差 0.05。

我们可以取该区间的中点作为根的近似值:

$$x \approx \frac{1.59375 + 1.625}{2} = 1.609375$$

因此, 方程 $x^2 - x - 1 = 0$ 的一个近似正根是 **1.609375**, 其误差小于 0.05。

2 3

比较求 $e^x + 10x - 2 = 0$ 的根到三位小数 (误差小于 0.0005) 所需的计算量:

- (1) 在区间 [0,1] 内使用二分法。
- (2) 用迭代法 $x_{k+1} = (2 e^{x_k})/10$, 取初值 $x_0 = 0$

2.1 Solution

2.1.1 (1) 在区间 [0,1] 内使用二分法

二分法的误差由区间长度决定。经过 n 次迭代后,误差 E_n 小于 $\frac{b-a}{2n}$ 。我们要求误差小于 0.0005。

$$\frac{1-0}{2^n} < 0.0005$$

$$\frac{1}{2^n} < \frac{1}{2000}$$

$$2^n > 2000$$

我们需要找到满足此条件的最小整数 n。* $2^{10} = 1024$ (不够) * $2^{11} = 2048$ (满足条件) 因此,使用二分法需要进行11次迭代才能保证误差小于0.0005。

2.1.2 (2) 用迭代法 $x_{k+1} = (2 - e^{x_k})/10$

1. 验证收敛性:

迭代函数为 $g(x) = \frac{2-e^x}{10}$ 。为了保证收敛,我们需要在根附近的区间内满足 |g'(x)| < 1。

$$g'(x) = -\frac{e^x}{10}$$

在区间 [0,1] 内:

- $|g'(0)| = |-\frac{e^0}{10}| = 0.1$ $|g'(1)| = |-\frac{e^1}{10}| \approx 0.2718$

由于在整个区间 [0,1] 内 $|g'(x)| \le 0.2718 < 1$, 该迭代格式是收敛的。

2. **进行迭代计算**: 取初值 $x_0 = 0$,我们进行迭代直到 $|x_{k+1} - x_k| < 0.0005$ 。

迭代次数 k	x_k (当前值)	$x_{k+1} = (2 - e^{x_k})/10$	误差 $abs(x_{k+1}-x_k)$
0	0.00000	0.10000	0.10000
1	0.10000	0.08948	0.01052
2	0.08948	0.09064	0.00116
3	0.09064	0.09051	0.00013

在第 4 次计算(即计算 x_4)之后,我们得到的误差 $|x_4 - x_3| \approx 0.00013$,这个值已经小于我们要求 的误差 0.0005。

因此, 使用该迭代法需要进行 4 次迭代。

3 4

给定函数 f(x),设对一切 x,f'(x) 存在且 $0 < m \le f'(x) \le M$,证明对于范围 $0 < \lambda < 2/M$ 内的任意定数 λ ,迭代过程 $x_{k+1} = x_k - \lambda f(x_k)$ 均收敛于 f(x) = 0 的根 x^* 。

3.1 Proof

首先,我们将迭代过程改写为不动点迭代的形式 $x_{k+1} = g(x_k)$ 。令迭代函数为:

$$g(x) = x - \lambda f(x)$$

根据不动点迭代定理,如果存在一个包含根 x^* 的区间 I,使得对所有 $x \in I$,都有 $|g'(x)| \le L < 1$ (其中 L 为一个常数),那么对于任意初值 $x_0 \in I$,迭代序列 $x_{k+1} = g(x_k)$ 必将收敛到该区间内唯一的根 x^* 。

我们计算 g(x) 的导数:

$$g'(x) = \frac{d}{dx} \left(x - \lambda f(x) \right) = 1 - \lambda f'(x)$$

题目给出了两个条件:

- (i) $0 < m \le f'(x) \le M$
- (ii) $0 < \lambda < \frac{2}{M}$

我们利用这两个条件来确定 g'(x) 的取值范围。

由条件(i), 我们有:

因此可以得到:

$$1 - \lambda M \le g'(x) \le 1 - \lambda m$$

现在,我们需要证明 g'(x) 的范围严格地在 (-1,1) 之内。

- 证明上界 g'(x) < 1: 我们知道 $g'(x) \le 1 \lambda m$ 。因为 $\lambda > 0$ 且 m > 0,所以 $\lambda m > 0$ 。因此, $1 \lambda m < 1$ 。所以,我们得出 g'(x) < 1。
- 证明下界 g'(x) > -1:

我们知道 $g'(x) \ge 1 - \lambda M$ 。

我们利用条件 (ii) $0 < \lambda < \frac{2}{M}$ 。

从 $\lambda < \frac{2}{M}$, 得到:

$$1 - \lambda M > -1$$

所以,我们得出 g'(x) > -1。

综合以上两点, 我们证明了:

$$-1 < 1 - \lambda M \le g'(x) \le 1 - \lambda m < 1$$

这意味着对所有 x,导数 g'(x) 的绝对值 |g'(x)| 被一个小于 1 的常数 $L=\max(|1-\lambda M|,|1-\lambda m|)$ 所界定,即 $|g'(x)| \le L < 1$ 。

因此,该迭代函数 g(x) 是一个全局的压缩映射。根据不动点迭代定理,对于任意初始值 x_0 ,迭代过程 $x_{k+1}=g(x_k)$ 都会收敛。

最后,我们验证收敛点是否为 f(x) = 0 的根。设迭代收敛于 x^* ,则 x^* 满足:

$$x^*=g(x^*)$$

$$x^* = x^* - \lambda f(x^*)$$

$$0 = -\lambda f(x^*)$$

因为 $\lambda \neq 0$,所以必然有 $f(x^*) = 0$ 。

证毕。

4 7

用下列方法求 $f(x) = x^3 - 3x - 1 = 0$ 在 $x_0 = 2$ 附近的根,根的准确值 $x^* = 1.87938524\cdots$,要求计算结果准确到四位有效数字。

- (1) 用牛顿法;
- (2) 用弦截法, 取 $x_0 = 2, x_1 = 1.9$;
- (3) 用抛物线法, 取 $x_0 = 1, x_1 = 3, x_2 = 2$.

4.1 Solution

4.1.1 (1) 用牛顿法

牛顿法的迭代公式为:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

首先, 我们计算函数及其导数:

- $f(x) = x^3 3x 1$
- $f'(x) = 3x^2 3$

从初始值 $x_0 = 2$ 开始迭代:

迭代次数 k	x_k (当前值)	$f(x_k)$	$f'(x_k)$	x _{k+1} (新值)
0	2.000000	1.000000	9.000000	1.888889
1	1.888889	0.071001	7.703704	1.879671
2	1.879671	0.001856	7.599565	1.879385
3	1.879385	0.000000	7.596342	1.879385

经过3次迭代,计算结果在小数点后六位已经稳定。结果1.879已经精确。因此,牛顿法求得的根为1.879。

4.1.2 (2) 用弦截法

弦截法的迭代公式为:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

我们从初始值 $x_0 = 2$ 和 $x_1 = 1.9$ 开始迭代:

迭代次数 k	x_{k-1}	$f(x_{k-1})$	x_k	$f(x_k)$	x_{k+1} (新值)	
1	2.000000	1.000000	1.900000	0.159000	1.881094	
2	1.900000	0.159000	1.881094	0.011863	1.879411	
3	1.881094	0.011863	1.879411	0.000195	1.879385	
4	1.879411	0.000195	1.879385	0.000000	1.879385	

经过 4 次迭代, 计算结果稳定。结果 1.879 已经精确。

因此, 弦截法求得的根为 1.879。

4.1.3 (3) 用抛物线法

抛物线法使用三个点 $(x_0,f_0),(x_1,f_1),(x_2,f_2)$ 构造一个二次多项式(抛物线),并取抛物线与 x 轴的交点作为下一个近似根。

给定 $x_0 = 1, x_1 = 3, x_2 = 2$ 。

第 1 次迭代:

- 1. 计算函数值:
 - $f(x_0) = f(1) = -3$
 - $f(x_1) = f(3) = 17$
 - $f(x_2) = f(2) = 1$
- 2. 构造经过这三点的抛物线 $P(x) = a(x x_2)^2 + b(x x_2) + c$ 。通过求解可以得到:
 - *a* = 6
 - b = 10

• c = 1

3. 求解 P(x) = 0 得到下一个近似根 x_3 :

$$x_3 = x_2 - \frac{2c}{b + \mathrm{sgn}(b)\sqrt{b^2 - 4ac}} = 2 - \frac{2(1)}{10 + \sqrt{10^2 - 4(6)(1)}} = 2 - \frac{2}{10 + \sqrt{76}} \approx 1.893164$$

第 2 次迭代:

- 1. 现在我们使用点 $x_1=3, x_2=2, x_3=1.893164$ 。为了获得更快的收敛,通常选择离新根最近的三个点。我们选择 $x_0=1, x_2=2, x_3=1.893164$ 。
 - f(1) = -3
 - f(2) = 1
 - $f(1.893164) \approx 0.10048$
- 2. 用这三点重复上述过程,得到:

$$x_4 \approx 1.879535$$

第 3 次迭代:

- 1. 使用点 $x_2 = 2, x_3 = 1.893164, x_4 = 1.879535$ 。
- 2. 计算得到下一个近似根:

$$x_5 \approx 1.879385$$

经过3次迭代,计算结果稳定。结果1.879已经精确。因此,抛物线法求得的根为1.879。

5 14

应用牛顿法于方程 $f(x)=x^n-a=0$ 和 $f(x)=1-\frac{a}{x^n}=0$,分别导出求 $\sqrt[n]{a}$ 的迭代公式,并求

$$\lim_{k\to\infty} (\sqrt[n]{a} - x_{k+1})/(\sqrt[n]{a} - x_k)^2$$

5.1 Solution

5.1.1 使用 $f(x) = x^n - a$

牛顿法的迭代公式为:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

对于 $f(x) = x^n - a$, 其导数为 $f'(x) = nx^{n-1}$ 。

将它们代入牛顿法公式:

$$x_{k+1} = x_k - \frac{x_k^n - a}{n x_k^{n-1}}$$

$$x_{k+1}=\frac{1}{n}\left((n-1)x_k+\frac{a}{x_k^{n-1}}\right)$$

令 $x^* = \sqrt[n]{a}$ 为方程的根。牛顿法的误差关系通常由迭代函数 $g(x) = x - \frac{f(x)}{f'(x)}$ 在根 x^* 处的泰勒展开得到。对于二次收敛,我们有:

$$x_{k+1} - x^* \approx \frac{g''(x^*)}{2} (x_k - x^*)^2$$

因此,

$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^*)^2} = \frac{g''(x^*)}{2}$$

我们要求的极限 L_1 是:

$$L_1 = \lim_{k \to \infty} \frac{-(x_{k+1} - x^*)}{(-(x_k - x^*))^2} = \lim_{k \to \infty} \frac{-(x_{k+1} - x^*)}{(x_k - x^*)^2} = -\frac{g''(x^*)}{2}$$

我们知道 $g''(x^*) = \frac{f''(x^*)}{f'(x^*)}$ 。所以,

$$L_1 = -\frac{f''(x^*)}{2f'(x^*)}$$

现在, 我们计算 f(x) 的二阶导数:

- $f'(x) = nx^{n-1}$
- $f''(x) = n(n-1)x^{n-2}$

在根 $x^* = \sqrt[n]{a} = a^{1/n}$ 处求值:

- $f'(x^*) = n(a^{1/n})^{n-1} = na^{(n-1)/n}$
- $f''(x^*) = n(n-1)(a^{1/n})^{n-2} = n(n-1)a^{(n-2)/n}$

代入极限公式:

$$L_1 = -\frac{n(n-1)a^{(n-2)/n}}{2 \cdot na^{(n-1)/n}} = -\frac{n-1}{2}a^{\frac{n-2}{n} - \frac{n-1}{n}} = -\frac{n-1}{2}a^{-1/n}$$

所以,

$$\lim_{k\to\infty}\frac{\sqrt[n]{a}-x_{k+1}}{(\sqrt[n]{a}-x_k)^2}=-\frac{n-1}{2\sqrt[n]{a}}$$

5.1.2 使用 $f(x) = 1 - \frac{a}{x^n} = 1 - ax^{-n}$

对于 $f(x)=1-ax^{-n}$,其导数为 $f'(x)=-a(-n)x^{-n-1}=anx^{-n-1}$ 。 代入牛顿法公式:

$$x_{k+1} = x_k - \frac{1 - ax_k^{-n}}{anx_k^{-n-1}}$$

整理后得到迭代公式:

$$x_{k+1} = x_k \left(1 + \frac{1}{n}\right) - \frac{x_k^{n+1}}{an}$$

我们仍然使用公式 $L_2 = -\frac{f''(x^*)}{2f'(x^*)}$ 。

首先计算 f(x) 的二阶导数:

- $f'(x) = anx^{-n-1}$
- $f''(x) = an(-n-1)x^{-n-2} = -an(n+1)x^{-n-2}$

在根 $x^* = \sqrt[n]{a} = a^{1/n}$ 处求值:

- $f'(x^*) = an(a^{1/n})^{-n-1} = ana^{-(n+1)/n} = na^{1-(n+1)/n} = na^{-1/n}$
- $f''(x^*) = -an(n+1)(a^{1/n})^{-n-2} = -an(n+1)a^{-(n+2)/n} = -n(n+1)a^{1-(n+2)/n} = -n($

代入极限公式:

$$L_2 = -\frac{-an(n+1)a^{-(n+2)/n}}{2 \cdot ana^{-(n+1)/n}} = \frac{n(n+1)a^{1-(n+2)/n}}{2na^{1-(n+1)/n}} = \frac{n+1}{2}a^{\frac{-2}{n}-(\frac{-1}{n})} = \frac{n+1}{2}a^{-1/n}$$

所以,

$$\lim_{k\to\infty}\frac{\sqrt[n]{a}-x_{k+1}}{(\sqrt[n]{a}-x_k)^2}=\frac{n+1}{2\sqrt[n]{a}}$$

6 1

用欧拉法解初值问题

$$y' = x^2 + 100y^2$$
, $y(0) = 0$

取步长 h = 0.1, 计算到 x = 0.3 (保留到小数点后四位).

6.1 Solution

欧拉法的迭代公式为:

$$y_{i+1} = y_i + h \cdot f(x_i, y_i)$$

对于本题,公式具体为:

$$y_{i+1} = y_i + 0.1 \cdot (x_i^2 + 100y_i^2)$$

计算 y(0.1)

•
$$i = 0, x_0 = 0, y_0 = 0$$

- $y_1 = y_0 + 0.1 \cdot (x_0^2 + 100y_0^2)$
- 所以, $y(0.1) \approx y_1 = 0.0000$

计算 y(0.2)

- $i = 1, x_1 = 0.1, y_1 = 0$
- $y_2 = y_1 + 0.1 \cdot (x_1^2 + 100y_1^2)$
- 所以, $y(0.2) \approx y_2 = 0.0010$

计算 y(0.3)

- $i = 2, x_2 = 0.2, y_2 = 0.001$
- $y_3 = y_2 + 0.1 \cdot (x_2^2 + 100y_2^2)$
- 所以, $y(0.3) \approx y_3 = 0.0050$ (保留四位小数)

用欧拉法计算到 x = 0.3 的结果如下:

- $y(0.1) \approx 0.0000$
- $y(0.2) \approx 0.0010$
- $y(0.3) \approx 0.0050$

7 2

用改进欧拉法和梯形法求解初值问题

$$y' = x^2 + x - y$$
, $y(0) = 0$

取步长 h = 0.1, 计算到 x = 0.5, 并与准确解 $y = -e^{-x} + x^2 - x + 1$ 相比较。

7.1Solution

- 1. **预测**: $\bar{y}_{i+1} = y_i + h \cdot f(x_i, y_i)$
- 2. 校正: $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f(x_{i+1}, \bar{y}_{i+1})]$

Step 1: 计算 y(0.1)

- $x_0 = 0, y_0 = 0$
- $f(x_0, y_0) = 0^2 + 0 0 = 0$
- $\overline{\mathfrak{H}}$ $\bar{y}_1 = 0 + 0.1 \cdot 0 = 0$
- $x_1=0.1$. $f(x_1,\bar{y}_1)=0.1^2+0.1-0=0.11$ 校正: $y_1=0+\frac{0.1}{2}[0+0.11]=0.05\cdot0.11=\mathbf{0.005500}$

Step 2: 计算 y(0.2)

- $x_1 = 0.1, y_1 = 0.005500$
- $f(x_1, y_1) = 0.1^2 + 0.1 0.005500 = 0.104500$
- 预测: $\bar{y}_2 = 0.005500 + 0.1 \cdot 0.104500 = 0.015950$
- $x_2 = 0.2$. $f(x_2, \bar{y}_2) = 0.2^2 + 0.2 0.015950 = 0.224050$
- 校正: $y_2 = 0.005500 + \frac{0.1}{2}[0.104500 + 0.224050] = 0.005500 + 0.016428 = \mathbf{0.021928}$

Step 3: 计算 y(0.3)

• $x_2 = 0.2, y_2 = 0.021928$

- $f(x_2, y_2) = 0.2^2 + 0.2 0.021928 = 0.218072$
- 預測: $\bar{y}_3 = 0.021928 + 0.1 \cdot 0.218072 = 0.043735$
- $\bullet \ \ x_3 = 0.3. \ \ f(x_3, \bar{y}_3) = 0.3^2 + 0.3 0.043735 = 0.346265$
- 校正: $y_3 = 0.021928 + \frac{0.1}{2}[0.218072 + 0.346265] = 0.021928 + 0.028217 = \mathbf{0.050145}$

Step 4: 计算 y(0.4)

- $x_3 = 0.3, y_3 = 0.050145$
- $\bullet \ \ f(x_3,y_3) = 0.3^2 + 0.3 0.050145 = 0.339855$
- 预测: $\bar{y}_4 = 0.050145 + 0.1 \cdot 0.339855 = 0.084131$
- $\bullet \ \ x_4=0.4. \ \ f(x_4,\bar{y}_4)=0.4^2+0.4-0.084131=0.475869$
- 校正: $y_4 = 0.050145 + \frac{0.1}{2}[0.339855 + 0.475869] = 0.050145 + 0.040786 = \mathbf{0.090931}$

Step 5: 计算 y(0.5)

- $x_4 = 0.4, y_4 = 0.090931$
- $f(x_4, y_4) = 0.4^2 + 0.4 0.090931 = 0.469069$
- 預測: $\bar{y}_5 = 0.090931 + 0.1 \cdot 0.469069 = 0.137838$
- $x_5=0.5$. $f(x_5,\bar{y}_5)=0.5^2+0.5-0.137838=0.612162$ 校正: $y_5=0.090931+\frac{0.1}{2}[0.469069+0.612162]=0.090931+0.054062=\mathbf{0.144993}$

梯形法的迭代公式是隐式的:

$$y_{i+1} = y_i + \frac{h}{2}[f(x_i,y_i) + f(x_{i+1},y_{i+1})]$$

由于本题的 $f(x,y)=x^2+x-y$ 是关于 y 的线性函数,我们可以解出 y_{i+1} 得到一个显式公式:

$$\begin{split} y_{i+1} &= y_i + \frac{h}{2}[(x_i^2 + x_i - y_i) + (x_{i+1}^2 + x_{i+1} - y_{i+1})] \\ y_{i+1}(1 + \frac{h}{2}) &= y_i(1 - \frac{h}{2}) + \frac{h}{2}(x_i^2 + x_i + x_{i+1}^2 + x_{i+1}) \\ y_{i+1} &= \frac{y_i(1 - h/2) + (h/2)(x_i^2 + x_i + x_{i+1}^2 + x_{i+1})}{1 + h/2} \end{split}$$

代入 h = 0.1:

$$y_{i+1} = \frac{0.95y_i + 0.05(x_i^2 + x_i + x_{i+1}^2 + x_{i+1})}{1.05}$$

Step 1: 计算 y(0.1)

•
$$y_1 = \frac{0.95(0) + 0.05(0^2 + 0 + 0.1^2 + 0.1)}{1.05} = \frac{0.0055}{1.05} = \mathbf{0.005238}$$

Step 2: 计算 y(0.2)

•
$$y_2 = \frac{0.95(0.005238) + 0.05(0.1^2 + 0.1 + 0.2^2 + 0.2)}{1.05} = \frac{0.004976 + 0.0175}{1.05} = \mathbf{0.021406}$$

Step 3: 计算 y(0.3)

•
$$y_3 = \frac{0.95(0.021406) + 0.05(0.2^2 + 0.2 + 0.3^2 + 0.3)}{1.05} = \frac{0.020336 + 0.0315}{1.05} = \mathbf{0.049402}$$

Step 4: 计算 y(0.4)

•
$$y_4 = \frac{0.95(0.049402) + 0.05(0.3^2 + 0.3 + 0.4^2 + 0.4)}{1.05} = \frac{0.046932 + 0.0475}{1.05} = \mathbf{0.089937}$$

Step 5: 计算 y(0.5)

•
$$y_5 = \frac{0.95(0.089937) + 0.05(0.4^2 + 0.4 + 0.5^2 + 0.5)}{1.05} = \frac{0.085440 + 0.0655}{1.05} = \mathbf{0.143752}$$

X	改进欧拉法 y_i	梯形法 y_i	准确解 $y(x_i)$	改进欧拉法误差	梯形法误差
0.0	0.000000	0.000000	0.000000	0.000000	0.000000
0.1	0.005500	0.005238	0.005171	0.000329	0.000067
0.2	0.021928	0.021406	0.021401	0.000527	0.000005
0.3	0.050145	0.049402	0.049342	0.000803	0.000060
0.4	0.090931	0.089937	0.089815	0.001116	0.000122
0.5	0.144993	0.143752	0.143571	0.001422	0.000181

8 5

取 h = 0.2,用四阶经典的龙格-库塔方法求解下列初值问题:

(1)

$$\begin{cases} y' = x + y, & 0 < x < 1 \\ y(0) = 1 \end{cases}$$

(2)

$$\begin{cases} y' = 3y/(1+x), & 0 < x < 1 \\ y(0) = 1 \end{cases}$$

8.1 Solution

对于初值问题 $y' = f(x, y), y(x_i) = y_i$, 计算下一个点的公式为:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

其中, 步长为 h, 各个系数计算如下:

- $\begin{array}{ll} \bullet & k_1 = h \cdot f(x_i,y_i) \\ \bullet & k_2 = h \cdot f(x_i + \frac{h}{2},y_i + \frac{k_1}{2}) \end{array}$
- $\begin{array}{l} \bullet \ \ \, k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}) \\ \bullet \ \ \, k_4 = h \cdot f(x_i + h, y_i + k_3) \end{array}$

8.1.1 (1) 求解 y' = x + y

- **函数**: f(x,y) = x + y
- 初始条件: $x_0 = 0, y_0 = 1$
- 歩长: h = 0.2

Step 1: 计算 y(0.2)

- $x_0 = 0, y_0 = 1$
- $k_1 = 0.2 \cdot f(0,1) = 0.2 \cdot (0+1) = 0.20000$
- $k_2 = 0.2 \cdot f(0.1, 1 + 0.1) = 0.2 \cdot (0.1 + 1.1) = 0.24000$
- $k_3 = 0.2 \cdot f(0.1, 1 + 0.12) = 0.2 \cdot (0.1 + 1.12) = 0.24400$
- $k_4 = 0.2 \cdot f(0.2, 1 + 0.244) = 0.2 \cdot (0.2 + 1.244) = 0.28880$
- $y_1 = 1 + \frac{1}{6}(0.2 + 2 \cdot 0.24 + 2 \cdot 0.244 + 0.2888) = 1.24280$

Step 2: 计算 y(0.4)

- $x_1 = 0.2, y_1 = 1.24280$
- $k_1 = 0.2 \cdot f(0.2, 1.24280) = 0.2 \cdot (0.2 + 1.24280) = 0.28856$
- $k_2 = 0.2 \cdot f(0.3, 1.24280 + 0.14428) = 0.2 \cdot (0.3 + 1.38708) = 0.33742$
- $k_3 = 0.2 \cdot f(0.3, 1.24280 + 0.16871) = 0.2 \cdot (0.3 + 1.41151) = 0.34230$
- $k_4 = 0.2 \cdot f(0.4, 1.24280 + 0.34230) = 0.2 \cdot (0.4 + 1.58510) = 0.39702$
- $y_2 = 1.24280 + \frac{1}{6}(0.28856 + 2 \cdot 0.33742 + 2 \cdot 0.34230 + 0.39702) = 1.58365$

Step 3: 计算 y(0.6)

- $x_2 = 0.4, y_2 = 1.58365$
- $k_1 = 0.2 \cdot (0.4 + 1.58365) = 0.39673$
- $k_2 = 0.2 \cdot (0.5 + 1.58365 + 0.19837) = 0.45640$
- $k_3 = 0.2 \cdot (0.5 + 1.58365 + 0.22820) = 0.46237$
- $\bullet \ \ k_4 = 0.2 \cdot (0.6 + 1.58365 + 0.46237) = 0.52920$
- $y_3 = 1.58365 + \frac{1}{6}(0.39673 + 2 \cdot 0.45640 + 2 \cdot 0.46237 + 0.52920) = \mathbf{2.04424}$

Step 4: 计算 y(0.8)

- $x_3 = 0.6, y_3 = 2.04424$
- $k_1 = 0.2 \cdot (0.6 + 2.04424) = 0.52885$
- $k_2 = 0.2 \cdot (0.7 + 2.04424 + 0.26443) = 0.60173$
- $k_3 = 0.2 \cdot (0.7 + 2.04424 + 0.30087) = 0.60902$
- $k_4 = 0.2 \cdot (0.8 + 2.04424 + 0.60902) = 0.71065$
- $y_4 = 2.04424 + \frac{1}{6}(0.52885 + 2 \cdot 0.60173 + 2 \cdot 0.60902 + 0.71065) = \mathbf{2.65108}$

Step 5: 计算 y(1.0)

- $x_4 = 0.8, y_4 = 2.65108$
- $k_1 = 0.2 \cdot (0.8 + 2.65108) = 0.69022$
- $k_2 = 0.2 \cdot (0.9 + 2.65108 + 0.34511) = 0.79924$
- $k_3 = 0.2 \cdot (0.9 + 2.65108 + 0.39962) = 0.81014$
- $k_4 = 0.2 \cdot (1.0 + 2.65108 + 0.81014) = 0.89224$
- $y_5 = 2.65108 + \frac{1}{6}(0.69022 + 2 \cdot 0.79924 + 2 \cdot 0.81014 + 0.89224) = 3.43656$

8.1.2 (2) 求解 y' = 3y/(1+x)

• 函数: $f(x,y) = \frac{3y}{1+x}$

- 初始条件: $x_0 = 0, y_0 = 1$
- 步长: h = 0.2

Step 1: 计算 y(0.2)

- $x_0 = 0, y_0 = 1$
- $k_1 = 0.2 \cdot f(0,1) = 0.2 \cdot \frac{3(1)}{1} = 0.60000$

- $\begin{aligned} & *k_2 = 0.2 \cdot f(0.1, 1+0.3) = 0.2 \cdot \frac{3(1.3)}{1.1} = 0.70909 \\ & *k_3 = 0.2 \cdot f(0.1, 1+0.35455) = 0.2 \cdot \frac{3(1.35455)}{1.1} = 0.73884 \\ & *k_4 = 0.2 \cdot f(0.2, 1+0.73884) = 0.2 \cdot \frac{3(1.73884)}{1.2} = 0.86942 \\ & *y_1 = 1 + \frac{1}{6}(0.6 + 2 \cdot 0.70909 + 2 \cdot 0.73884 + 0.86942) = \mathbf{1.72738} \end{aligned}$

Step 2: 计算 y(0.4)

- $x_1 = 0.2, y_1 = 1.72738$
- $\begin{array}{l} \bullet \quad k_1 = 0.2 \cdot f(0.2, 1.72738) = 0.2 \cdot \frac{3(1.72738)}{1.2} = 0.86369 \\ \bullet \quad k_2 = 0.2 \cdot f(0.3, 1.72738 + 0.43185) = 0.2 \cdot \frac{3(2.15923)}{1.3} = 0.99657 \\ \end{array}$

- $\begin{array}{l} \bullet \quad \kappa_2 = 0.2 \cdot f(0.3, 1.72738 + 0.43185) = 0.2 \cdot \frac{3(2.23567)}{1.3} = 0.99657 \\ \bullet \quad k_3 = 0.2 \cdot f(0.3, 1.72738 + 0.49829) = 0.2 \cdot \frac{3(2.22567)}{1.3} = 1.02723 \\ \bullet \quad k_4 = 0.2 \cdot f(0.4, 1.72738 + 1.02723) = 0.2 \cdot \frac{3(2.75461)}{1.4} = 1.18055 \\ \bullet \quad y_2 = 1.72738 + \frac{1}{6}(0.86369 + 2 \cdot 0.99657 + 2 \cdot 1.02723 + 1.18055) = \textbf{2.74398} \end{array}$

Step 3: 计算 y(0.6)

- $\bullet \ \ x_2=0.4, y_2=2.74398$
- $\begin{array}{l} \bullet \quad k_1 = 0.2 \cdot \frac{3(2.74398)}{1.4} = 1.17599 \\ \bullet \quad k_2 = 0.2 \cdot \frac{3(2.74398+0.58800)}{1.5} = 1.33300 \end{array}$

- $\begin{array}{l} \bullet \quad k_2 = 0.2 \cdot \frac{3(2.74398+0.66659)}{1.5} = 1.33300 \\ \bullet \quad k_3 = 0.2 \cdot \frac{3(2.74398+0.66650)}{1.5} = 1.36420 \\ \bullet \quad k_4 = 0.2 \cdot \frac{3(2.74398+1.36420)}{1.6} = 1.54057 \\ \bullet \quad y_3 = 2.74398 + \frac{1}{6}(1.17599 + 2 \cdot 1.33300 + 2 \cdot 1.36420 + 1.54057) = \textbf{4.19428} \end{array}$

Step 4: 计算 y(0.8)

- $x_3 = 0.6, y_3 = 4.19428$ $k_1 = 0.2 \cdot \frac{3(4.19428)}{1.6} = 1.57286$ $k_2 = 0.2 \cdot \frac{3(4.19428 + 0.78643)}{1.7} = 1.75790$
- $k_3 = 0.2 \cdot \frac{3(4.19428 + 0.87895)}{1.7} = 1.79055$
- $k_3 = 0.2 \cdot \frac{1.7}{1.7} = 1.79055$ $k_4 = 0.2 \cdot \frac{3(4.19428+1.79055)}{1.8} = 1.99494$ $y_4 = 4.19428 + \frac{1}{6}(1.57286 + 2 \cdot 1.75790 + 2 \cdot 1.79055 + 1.99494) = \mathbf{5.83196}$

Step 5: 计算 y(1.0)

- $\begin{array}{ll} \bullet & x_4 = 0.8, y_4 = 5.83196 \\ \bullet & k_1 = 0.2 \cdot \frac{3(5.83196)}{1.8} = 1.94399 \end{array}$
- $k_2 = 0.2 \cdot \frac{3(5.83196 + 0.97200)}{1.0} = 2.14862$
- $k_3 = 0.2 \cdot \frac{3(5.83196+1.07431)}{10} = 2.18094$
- $k_3 = 0.2 \cdot \frac{1.9}{1.9} = 2.18094$ $k_4 = 0.2 \cdot \frac{3(5.83196 + 2.18094)}{2.0} = 2.40387$ $y_5 = 5.83196 + \frac{1}{6}(1.94399 + 2 \cdot 2.14862 + 2 \cdot 2.18094 + 2.40387) = \mathbf{7.99993}$

X	问题 (1) y_i	问题 (2) y _i
0.0	1.00000	1.00000
0.2	1.24280	1.72738
0.4	1.58365	2.74398
0.6	2.04424	4.19428
0.8	2.65108	5.83196
1.0	3.43656	7.99993

问题 (1) 的准确解为 $y(x)=2e^x-x-1$,在 x=1 处 $y(1)\approx 3.43656$ 。问题 (2) 的准确解为 $y(x)=(1+x)^3$,在 x=1 处 y(1)=8。可以看出 RK4 方法具有很高的精度。

9 3

用梯形方法解初值问题

$$\begin{cases} y' + y = 0 \\ y(0) = 1 \end{cases}$$

证明其近似解为

$$y_n = \left(\frac{2-h}{2+h}\right)^n$$

并证明当 $h \to 0$ 时,它收敛于原初值问题的准确解 $y = e^{-x}$

9.1 Solution

首先,我们将初值问题写成标准形式 y' = f(x,y)。

$$y' + y = 0 \implies y' = -y$$

所以, f(x,y) = -y。

梯形法的迭代公式为:

$$y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

将 f(x,y) = -y 代入公式:

$$y_{n+1} = y_n + \frac{h}{2}[-y_n - y_{n+1}]$$

这是一个关于 y_{n+1} 的隐式方程,我们需要解出 y_{n+1} 来得到一个显式的递推关系。

$$y_{n+1} = y_n - \frac{h}{2}y_n - \frac{h}{2}y_{n+1}$$

解出 y_{n+1} :

$$y_{n+1} = y_n \left(\frac{2-h}{2+h}\right)$$

这是一个公比为 $r = \frac{2-h}{2+h}$ 的几何级数。其通项公式为 $y_n = y_0 \cdot r^n$ 。

根据初始条件 y(0) = 1, 我们有 $y_0 = 1$ 。

因此,近似解的通项公式为:

$$y_n = 1 \cdot \left(\frac{2-h}{2+h}\right)^n = \left(\frac{2-h}{2+h}\right)^n$$

我们要在任意一个固定的点 x 处考察当 $h \to 0$ 时近似解 y_n 的极限。

x 与步数 n 和步长 h 的关系是 x=nh。这意味着当 $h\to 0$ 时,为了到达同一点 x,步数 n 必须趋向于无穷大 (n=x/h)。

我们将 n = x/h 代入近似解的表达式中:

$$y_n(x) = \left(\frac{2-h}{2+h}\right)^{x/h}$$

现在, 我们计算当 $h \to 0$ 时的极限:

$$\lim_{h\to 0}y_n(x)=\lim_{h\to 0}\left(\frac{2-h}{2+h}\right)^{x/h}$$

这是一个 1^{∞} 型的未定式。我们可以使用标准极限 $\lim_{z\to 0}(1+z)^{1/z}=e$ 来求解。

令 $L = \lim_{h \to 0} \left(\frac{2-h}{2+h}\right)^{x/h}$ 。我们先取对数:

$$\ln L = \lim_{h \to 0} \ln \left[\left(\frac{2-h}{2+h} \right)^{x/h} \right] = \lim_{h \to 0} \frac{x}{h} \ln \left(\frac{2-h}{2+h} \right)$$

$$\ln L = x \cdot \lim_{h \to 0} \frac{\ln(2-h) - \ln(2+h)}{h}$$

这是一个 0/0 型的未定式, 我们可以使用洛必达法则。对分子和分母分别关于 h 求导:

$$\lim_{h \to 0} \frac{\frac{-1}{2-h} - \frac{1}{2+h}}{1} = \frac{\frac{-1}{2} - \frac{1}{2}}{1} = -1$$

将这个结果代回 $\ln L$ 的表达式:

$$ln L = x \cdot (-1) = -x$$

因此,

$$L = e^{-x}$$

这表明,当 $h \to 0$ 时,梯形法的近似解 y_n 收敛于准确解 $y(x) = e^{-x}$ 。第二部分证毕。

10 7

证明中点公式

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{1}{2}hf(x_n, y_n))$$

是二阶的。

10.1 Proof

将 $y(x_{n+1}) = y(x_n + h)$ 在 x_n 处进行泰勒展开, 至少展开到 h^3 项:

$$y(x_n+h) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4)$$

现在,我们用 f(x,y) 来表示 y 的各阶导数(为简洁,省略变量 $(x_n,y(x_n))$):

- y' = f
- $y'' = \frac{d}{dx}f(x,y(x)) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = f_x + f_y f$
- $y''' = \frac{d}{dx}(f_x + f_y f) = (f_{xx} + f_{xy} f) + (f_{yx} + f_{yy} f) f + f_y (f_x + f_y f) = f_{xx} + 2f_{xy} f + f_{yy} f^2 + f_y f_x + f_y^2 f$

代入 $y(x_n + h)$ 的展开式:

$$y(x_n+h) = y(x_n) + hf + \frac{h^2}{2}(f_x+f_yf) + \frac{h^3}{6}(f_{xx}+2f_{xy}f+\dots) + O(h^4) \quad (*)$$

中点公式为:

$$y_{n+1}=y_n+hf\left(x_n+\frac{h}{2},y_n+\frac{h}{2}f(x_n,y_n)\right)$$

对核心项 $f(\dots)$ 进行二元泰勒展开。令 $\Delta x=h/2$ 和 $\Delta y=\frac{h}{2}f(x_n,y_n)$,在点 (x_n,y_n) 附近展开 $f(x_n+\Delta x,y_n+\Delta y)$:

$$f(x_n+\Delta x,y_n+\Delta y)=f+\Delta x f_x+\Delta y f_y+\frac{1}{2!}(\Delta x^2 f_{xx}+2\Delta x \Delta y f_{xy}+\Delta y^2 f_{yy})+O(h^3)$$

将 Δx 和 Δy 代入:

$$f\left(x_n+\frac{h}{2},y_n+\frac{h}{2}f\right)=f+\left(\frac{h}{2}\right)f_x+\left(\frac{h}{2}f\right)f_y+\frac{1}{2}\left[\left(\frac{h}{2}\right)^2f_{xx}+2\left(\frac{h}{2}\right)\left(\frac{h}{2}f\right)f_{xy}+\left(\frac{h}{2}f\right)^2f_{yy}\right]+O(h^3)$$

整理上式:

$$f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f\right) = f + \frac{h}{2}(f_x + f_y f) + \frac{h^2}{8}(f_{xx} + 2f_{xy}f + f_{yy}f^2) + O(h^3)$$

现在,将这个展开式代回中点公式 y_{n+1} :

$$y_{n+1} = y_n + h \left[f + \frac{h}{2} (f_x + f_y f) + \frac{h^2}{8} (f_{xx} + \dots) + O(h^3) \right]$$

$$y_{n+1} = y_n + hf + \frac{h^2}{2}(f_x + f_y f) + \frac{h^3}{8}(f_{xx} + \dots) + O(h^4) \quad (**)$$

现在我们计算 $\tau_{n+1} = y(x_{n+1}) - y_{n+1}\,,\,$ 即用式 (*) 减去式 (**) (假设 $y_n = y(x_n))$:

$$\tau_{n+1} = \left[y(x_n) + hf + \frac{h^2}{2}(f_x + f_y f) + \frac{h^3}{6}y''' + \dots\right] - \left[y(x_n) + hf + \frac{h^2}{2}(f_x + f_y f) + \frac{h^3}{8}(\dots) + \dots\right]$$

可以看到误差中剩下的最低阶项是 h3 阶项。

$$\tau_{n+1} = \left(\frac{h^3}{6}y''' - \frac{h^3}{8}(f_{xx} + 2f_{xy}f + f_{yy}f^2)\right) + O(h^4)$$

$$\tau_{n+1} = C \cdot h^3 + O(h^4)$$

其中 C 是一个不依赖于 h 的常数。

由于局部截断误差 τ_{n+1} 的首项是 h^3 阶的,即 $\tau_{n+1}=O(h^3)$,因此根据定义,**中点公式是**二**阶方法**。