Problèmes de Satisfaction de Contraintes Valués

Cyril Terrioux cyril.terrioux@univ-amu.fr

CSP Valués 1 / 56

Plan

- Contexte
- Quelques extensions des CSP
- Le formalisme VCSP
- 4 Résolution
- **5** Un exemple de modélisation

Plan

- Contexte
- Quelques extensions des CSP
- Le formalisme VCSP
- 4 Résolution
- 5 Un exemple de modélisation

Solution d'un CSP = instanciation qui satisfait toutes les contraintes

Solution d'un CSP = instanciation qui satisfait toutes les contraintes

Solution d'un COP = instanciation qui satisfait **toutes** les contraintes et optimise la fonction objectif

Solution d'un CSP = instanciation qui satisfait toutes les contraintes

Solution d'un COP = instanciation qui satisfait **toutes** les contraintes et optimise la fonction objectif

Que faire si l'instance est incohérente?

Solution d'un CSP = instanciation qui satisfait toutes les contraintes

Solution d'un COP = instanciation qui satisfait **toutes** les contraintes et optimise la fonction objectif

Que faire si l'instance est incohérente?

Rechercher une affectation satisfaisant le plus possible les contraintes

Le pouvoir d'expression des contraintes

Diversité de la nature des contraintes :

- contraintes impliquant un nombre quelconque de variables,
- énumérations des affectations compatibles ou interdites,
- équations, inéquations,
- prédicats,
- contraintes globales,
- •

Le pouvoir d'expression des contraintes

Un formalisme permettant de représenter toute sorte de problèmes :

- Enchères combinatoires
- Bio-informatique
- Logistique
- Jeux
- Routage
- Transport
- Cryptographie
- Planification
- Télécommunication : Problème d'allocation de fréquences
- Théorie des graphes
- Agriculture
- Chimie
- Vérification de circuits,
- ...

Le pouvoir d'expression des contraintes

Mais certaines notions posent problèmes :

- possibilité,
- probabilité,
- préférence,
- •

Cas des instances du monde réel

Deux types de contraintes :

- contraintes « dures » :
 - contraintes matérielles,
 - contraintes physiques,
 - contraintes électroniques,
 - •

Cas des instances du monde réel

Deux types de contraintes :

- contraintes « dures » :
 - contraintes matérielles,
 - contraintes physiques,
 - contraintes électroniques,
 - •
- contraintes « molles » :
 - préférence,
 - possibilité,
 - •

Exemple 1: Conception d'un emploi du temps

- contraintes physiques :
 - un enseignant ne peut faire qu'un seul cours à la fois,
 - exactement un enseignement par salle,
 - capacité des salles,
 - •
- contraintes de préférence :
 - tel enseignement en premier,
 - minimiser les « trous »,
 - voeux des enseignants,
 - •

Exemple 2 : Couverture d'une zone par des antennes 4G

- contraintes physiques :
 - portée limitée d'une antenne,
 - positionnement de l'antenne,
 - •
- contraintes de préférence :
 - limiter les recouvrements multiples
 - minimiser les zones blanches
 - minimiser le nombre d'antennes
 - •

Exemple 3 : Planification de prises de vue par satellite

- contraintes physiques :
 - nombre d'appareils limités,
 - temps de repositionnement,
 - couverture nuageuse,
 - •
- contraintes de préférence :
 - prises de vue prioritaires,
 - •

Solutions possibles

- ignorer ces contraintes
 - approximation du problème réel
 - grand nombre de solutions possibles
 - solutions inacceptables en pratique

Solutions possibles

- ignorer ces contraintes
 - approximation du problème réel
 - grand nombre de solutions possibles
 - solutions inacceptables en pratique
- coder sous forme de contraintes traditionnelles
 - problème souvent incohérent

Solutions possibles

- ignorer ces contraintes
 - approximation du problème réel
 - grand nombre de solutions possibles
 - solutions inacceptables en pratique
- coder sous forme de contraintes traditionnelles
 - problème souvent incohérent
- étendre le formalisme CSP

Plan

- Contexte
- Quelques extensions des CSP
- Le formalisme VCSP
- 4 Résolution
- 5 Un exemple de modélisation

CSP possibilistes

Minimiser le maximum des priorités des contraintes violées

Priorité = réel compris entre 0 et 1

- Priorité 1 = contrainte à satisfaire absolument
- Priorité 0 = contrainte "sans importance"

CSP probabilistes

Minimiser la probabilité qu'une instanciation ne soit pas une solution

Probabilité de l'existence d'une contrainte = réel compris entre 0 et 1

- Probabilité 1 = la contrainte existe
- Probabilité 0 = la contrainte n'existe pas

Partial-CSP

On s'autorise la violation de certaines contraintes.

Minimiser les violations

Deux « sous-classes » :

- Max-CSP
- CSP pondérés

Max-CSP

Maximiser le nombre de contraintes satisfaites

c'est-à-dire minimiser le nombre de contraintes violées

Coût d'une contrainte violée = 1

CSP pondérés

Minimiser la somme pondérée des contraintes violées.

Coût d'une contrainte violée = un entier naturel

Remarques

- Plusieurs formalismes, plusieurs algorithmes similaires
 - ⇒ redondance des travaux
- Un même objectif : optimiser une fonction portant sur la satisfaction des contraintes

Plan

- Contexte
- Quelques extensions des CSP
- Le formalisme VCSP
- 4 Résolution
- 5 Un exemple de modélisation

Instance $\mathcal{P} = (X, D, C, SV, \phi)$:

• un CSP classique (X, D, C),

Instance $\mathcal{P} = (X, D, C, SV, \phi)$:

- un CSP classique (X, D, C),
- une structure de valuation $SV = (E, \preceq, \oplus, \bot, \top)$,
 - E : ensemble de valuation

 - ullet \oplus : loi de composition interne
 - ⊥ : élément minimum
 - ▼ : élément maximum

Instance $\mathcal{P} = (X, D, C, SV, \phi)$:

- un CSP classique (X, D, C),
- une structure de valuation $SV = (E, \preceq, \oplus, \bot, \top)$,
 - E : ensemble de valuation

 - ullet : loi de composition interne
 - ⊥ : élément minimum
- une application ϕ de C dans E.

Instance $\mathcal{P} = (X, D, C, SV, \phi)$:

- un CSP classique (X, D, C),
- une structure de valuation $SV = (E, \preceq, \oplus, \bot, \top)$,
 - E : ensemble de valuation

 - ullet : loi de composition interne
 - ⊥ : élément minimum
- une application ϕ de C dans E.

Valuation = graduation de la violation

- \bullet \perp = absence de violation
- \bullet \top = violation inacceptable

Propriétés minimales de \oplus :

- o commutativité et associativité
- monotonie : $\forall a, b, c \in E \text{ tq } a \leq b \text{ on a } a \oplus c \leq b \oplus c$
- \bot élément neutre : $\forall a \in E, a \oplus \bot = a$
- \top élément absorbant : $\forall a \in E, a \oplus \top = \top$

Propriétés minimales de \oplus :

- o commutativité et associativité
- monotonie : $\forall a, b, c \in E \text{ tq } a \leq b \text{ on a } a \oplus c \leq b \oplus c$
- \bot élément neutre : $\forall a \in E, a \oplus \bot = a$
- \top élément absorbant : $\forall a \in E, a \oplus \top = \top$

Propriétés supplémentaires éventuelles :

• idempotence : $\forall a \in E, a \oplus a = a$

Propriétés minimales de \oplus :

- o commutativité et associativité
- monotonie : $\forall a, b, c \in E \text{ tq } a \leq b \text{ on a } a \oplus c \leq b \oplus c$
- \bot élément neutre : $\forall a \in E, a \oplus \bot = a$
- \top élément absorbant : $\forall a \in E, a \oplus \top = \top$

Propriétés supplémentaires éventuelles :

- idempotence : $\forall a \in E, a \oplus a = a$
 - \Rightarrow opérateur $\oplus = \max$

Propriétés minimales de \oplus :

- o commutativité et associativité
- monotonie : $\forall a, b, c \in E \text{ tq } a \leq b \text{ on a } a \oplus c \leq b \oplus c$
- \bot élément neutre : $\forall a \in E, a \oplus \bot = a$
- \top élément absorbant : $\forall a \in E, a \oplus \top = \top$

Propriétés supplémentaires éventuelles :

- idempotence : $\forall a \in E, a \oplus a = a$
 - \Rightarrow opérateur $\oplus = \max$
- monotonie stricte :

$$\forall a, b, c \in E \text{ tq } a \prec b \text{ et } c \neq \top \text{ on a } a \oplus c \prec b \oplus c$$

Illustrations

CSP	E	\oplus	1	Т	~
Classique	$\{t,f\}$	$\wedge = max$	t	f	$t \prec f$
Possibiliste	[0, 1]	max	0	1	<
Partial-CSP	$\mathbb{N} \cup \{+\infty\}$	+	0	$+\infty$	<
Probabiliste	[0, 1]	x + y - xy	0	1	<

Semiring CSP

Un autre formalisme général

Une structure de valuation différente

Possibilité d'utiliser un ordre partiel pour ≤

Semiring CSP

Un autre formalisme général

Une structure de valuation différente

Possibilité d'utiliser un ordre partiel pour \preceq

Equivalent au formalisme VCSP si \leq est un ordre total

Fonctions de coût

Instance $\mathcal{P} = (X, D, W, SV)$:

- $X = \{x_1, \dots, x_n\}$ un ensemble de n variables,
- $D = \{d_{x_1}, \dots, d_{x_n}\}$ un ensemble de domaines finis de taille au plus d,
- W un ensemble de fonctions de coût $w:\prod_{x\in S(w)}d_x\mapsto E$
- une structure de valuation $SV = (E, \preceq, \oplus, \bot, \top)$,
 - E : ensemble de valuation

 - \oplus : loi de composition interne
 - ⊥ : élément minimum
 - ▼ : élément maximum

Fonctions de coût

Instance $\mathcal{P} = (X, D, W, SV)$:

- $X = \{x_1, \dots, x_n\}$ un ensemble de n variables,
- $D = \{d_{x_1}, \dots, d_{x_n}\}$ un ensemble de domaines finis de taille au plus d,
- ullet W un ensemble de fonctions de coût $w:\prod_{x\in S(w)}d_x\mapsto E$
- une structure de valuation $SV = (E, \preceq, \oplus, \bot, \top)$,
 - E : ensemble de valuation

 - \oplus : loi de composition interne
 - ⊥ : élément minimum
 - ▼ : élément maximum

$$W = \{w_{\emptyset}\} \cup \{w_{x_1}, \dots w_{x_n}\} \cup \{\dots\}$$

Valuation d'affectations

Valuation:

Soit une instanciation A sur X.

$$\mathcal{V}(\mathcal{A}) = \bigoplus_{w \in \mathcal{W}} w(\mathcal{A}[S(w)])$$

Valuation d'affectations

Valuation:

Soit une instanciation A sur X.

$$\mathcal{V}(\mathcal{A}) = \bigoplus_{w \in \mathcal{W}} w(\mathcal{A}[S(w)])$$

Valuation locale:

Soit une instanciation \mathcal{B} sur $Y \subseteq X$.

$$v(\mathcal{B}) = \bigoplus_{w \in W \mid S(w) \subseteq Y} w(\mathcal{B}[S(w)])$$

Valuation d'affectations

Valuation:

Soit une instanciation A sur X.

$$\mathcal{V}(\mathcal{A}) = \bigoplus_{w \in \mathcal{W}} w(\mathcal{A}[S(w)])$$

Valuation locale:

Soit une instanciation \mathcal{B} sur $Y \subset X$.

$$v(\mathcal{B}) = \bigoplus_{w \in W \mid S(w) \subseteq Y} w(\mathcal{B}[S(w)])$$

Propriété:

Si $\mathcal{B} \subseteq \mathcal{A}$, on a $v(\mathcal{B}) \preceq v(\mathcal{A}) = \mathcal{V}(\mathcal{A})$.

Coloration de graphes

Problème:

- Instance:
 - un graphe G = (V, A),
 - un entier k
- Objectif : trouver une affectation se rapprochant le plus possible d'une k-coloration de G

Coloration de graphes

Problème :

- Instance:
 - un graphe G = (V, A),
 - un entier k
- Objectif : trouver une affectation se rapprochant le plus possible d'une k-coloration de G

Modélisation VCSP:

- $X = \{x_1, \dots, x_n\},\$
- $D = \{d_{x_1}, \dots, d_{x_n}\}$ avec $d_{x_i} = \{1, \dots, k\}$

Coloration de graphes

Problème:

- Instance:
 - un graphe G = (V, A),
 - un entier k
- Objectif: trouver une affectation se rapprochant le plus possible d'une k-coloration de G

Modélisation VCSP:

- $X = \{x_1, \ldots, x_n\},\$
- $D = \{d_{x_1}, \dots, d_{x_n}\}$ avec $d_{x_i} = \{1, \dots, k\}$
- $W = \{w_{ij} | \{i, j\} \in A\}$ avec :
 - $S(w_{ij}) = \{x_i, x_j\}$
 - $w_{ij}(v_i, v_j) = 1$ si $v_i = v_j$, 0 sinon
- $SV = (\mathbb{N} \cup \{+\infty\}, \leq, +, 0, +\infty)$

Exemple (k = 2)

Exemple (k = 2)

Exemple (k = 2)

$$\Rightarrow \mathcal{V}(\mathcal{A}) = \mathcal{V}(\mathcal{A}) = 3$$

CSP Valués

- Instance : $\mathcal{P} = (X, D, W, SV)$
- Question: Trouver une affectation sur X de valuation minimum.

- Instance : $\mathcal{P} = (X, D, W, SV)$
- Question: Trouver une affectation sur X de valuation minimum.

- Instance : $\mathcal{P} = (X, D, W, SV)$
- Question : Trouver une affectation sur X de valuation minimum.

- Instance : $\mathcal{P} = (X, D, W, SV)$
- Question: Trouver une affectation sur X de valuation minimum.

Plan

- Contexte
- Quelques extensions des CSP
- 3 Le formalisme VCSP
- 4 Résolution
- 5 Un exemple de modélisation

Résolution

Taille de l'espace de recherche : $O(d^n)$

Résolution

Taille de l'espace de recherche : $O(d^n)$

- Méthodes complètes :
 - Approches énumératives (Branch and Bound)
 - Approches par programmation dynamique
 - Approches des poupées russes
- Méthodes incomplètes

Utilisation de deux bornes :

- lb : minorant du coût de l'affectation courante
- *ub* : majorant de la valeur optimale de *f* (coût de la meilleure solution connue)

Utilisation de deux bornes :

- lb : minorant du coût de l'affectation courante
- *ub* : majorant de la valeur optimale de *f* (coût de la meilleure solution connue)

Principe:

on étend progressivement l'affectation courante

Utilisation de deux bornes :

- lb : minorant du coût de l'affectation courante
- ub : majorant de la valeur optimale de f (coût de la meilleure solution connue)

Principe:

- on étend progressivement l'affectation courante
- en cas d'échec (c.-à-d. si $lb \succeq ub$), on change la valeur de la variable courante

Utilisation de deux bornes :

- lb : minorant du coût de l'affectation courante
- ub : majorant de la valeur optimale de f (coût de la meilleure solution connue)

Principe:

- on étend progressivement l'affectation courante
- en cas d'échec (c.-à-d. si lb ≥ ub), on change la valeur de la variable courante
- s'il n'y a plus de valeur, on revient sur la variable précédente

Utilisation de deux bornes :

- lb : minorant du coût de l'affectation courante
- ub : majorant de la valeur optimale de f (coût de la meilleure solution connue)

Principe:

- on étend progressivement l'affectation courante
- en cas d'échec (c.-à-d. si $lb \succeq ub$), on change la valeur de la variable courante
- s'il n'y a plus de valeur, on revient sur la variable précédente
- on réitère le procédé tant qu'on n'a pas essayé toutes les possibilités et $lb \prec ub$

Trois types d'améliorations possibles

- choisir un bon ordre sur les variables
 - diminution de la taille de l'arbre
 - augmentation rapide du minorant

Trois types d'améliorations possibles

- choisir un bon ordre sur les variables
 - diminution de la taille de l'arbre
 - augmentation rapide du minorant
- choisir un bon ordre sur les valeurs
 - trouver de bonnes solutions
 - diminution rapide du majorant

Trois types d'améliorations possibles

- choisir un bon ordre sur les variables
 - diminution de la taille de l'arbre
 - augmentation rapide du minorant
- choisir un bon ordre sur les valeurs
 - trouver de bonnes solutions
 - diminution rapide du majorant
- calculer un minorant de bonne qualité
 - diminution de la taille de l'arbre par élagage

Solveur

Solveur

Heuristiques

Heuristiques sur les variables : les mêmes que pour CSP et COP

Heuristiques sur les valeurs :

• Objectif : choisir une valeur menant à la solution la plus prometteuse possible

Heuristiques

Heuristiques sur les variables : les mêmes que pour CSP et COP

Heuristiques sur les valeurs :

- Objectif : choisir une valeur menant à la solution la plus prometteuse possible
- Exemple : choisir la valeur de d_x qui apporte la valuation la plus faible Information disponible grâce à w_x

Objectif : éviter de développer certaines branches inutiles

Objectif : éviter de développer certaines branches inutiles

Deux moyens:

- calcul d'un minorant de qualité
- suppression des valeurs inutiles

Objectif : éviter de développer certaines branches inutiles

Deux moyens:

- calcul d'un minorant de qualité
- suppression des valeurs inutiles

valeur inutile = valeur ne participant pas à une solution optimale

Suppression de la valeur v de x si $w_0 \oplus w_x(v) \succeq ub$

Objectif : éviter de développer certaines branches inutiles

Deux moyens:

- calcul d'un minorant de qualité
- suppression des valeurs inutiles

valeur inutile = valeur ne participant pas à une solution optimale

Suppression de la valeur v de x si $w_0 \oplus w_x(v) \succeq ub$

Un processus plus complexe quand \oplus n'est pas idempotent

Cohérence d'arc

Hypothèse de travail : $\forall u,v \in E, u \leq v,v \ominus u$ existe

Différence δ de v et de u : $u \oplus \delta = v$

 $v \ominus u =$ la plus grande différence δ

Hypothèse de travail : $\forall u,v \in E, u \leq v,v \ominus u$ existe

Différence δ de v et de u : $u \oplus \delta = v$

 $v\ominus u=$ la plus grande différence δ

Principe

Déplacer les coûts tout en préservant l'équivalence

Hypothèse de travail : $\forall u,v \in E, u \leq v,v \ominus u$ existe

Différence δ de v et de u : $u \oplus \delta = v$

 $v\ominus u=$ la plus grande différence δ

Principe

Déplacer les coûts tout en préservant l'équivalence

Deux VCSP sont équivalents s'ils ont la même valuation optimale.

Hypothèse de travail : $\forall u, v \in E, u \leq v, v \ominus u$ existe

Différence δ de v et de u : $u \oplus \delta = v$

 $v \ominus u =$ la plus grande différence δ

Principe

Déplacer les coûts tout en préservant l'équivalence

Deux VCSP sont équivalents s'ils ont la même valuation optimale.

Deux opérations :

- projection
- extension

- on déplace les poids d'une contrainte binaire w_{x_i,x_j} vers une contrainte unaire w_{x_i} :
 - $\forall b \in d_{x_i}, w_{x_i,x_j}(a,b) \leftarrow w_{x_i,x_j}(a,b) \ominus v$
 - $w_{x_i}(a) \leftarrow w_{x_i}(a) \oplus v$

- on déplace les poids d'une contrainte binaire w_{x_i,x_j} vers une contrainte unaire w_{x_i} :
 - $\forall b \in d_{x_i}, w_{x_i,x_i}(a,b) \leftarrow w_{x_i,x_i}(a,b) \ominus v$
 - $w_{x_i}(a) \leftarrow w_{x_i}(a) \oplus v$
- on déplace les poids d'une contrainte unaire w_{x_i} vers w_{\emptyset} :
 - $\forall a \in d_{x_i}, w_{x_i}(a) \leftarrow w_{x_i}(a) \ominus v$
 - $w_\emptyset \leftarrow w_\emptyset \oplus v$

Extension

- on déplace les poids d'une contrainte unaire w_{x_i} vers une contrainte binaire w_{x_i,x_i} :
 - $w_{x_i}(a) \leftarrow w_{x_i}(a) \ominus v$
 - $\bullet \ \forall b \in d_{x_{\boldsymbol{i}}}, w_{x_{\boldsymbol{i}},x_{\boldsymbol{j}}}(a,b) \leftarrow w_{x_{\boldsymbol{i}},x_{\boldsymbol{j}}}(a,b) \oplus v$

Extension

- on déplace les poids d'une contrainte unaire w_{x_i} vers une contrainte binaire w_{x_i,x_i} :
 - $w_{x_i}(a) \leftarrow w_{x_i}(a) \ominus v$
 - $\forall b \in d_{x_i}, w_{x_i,x_i}(a,b) \leftarrow w_{x_i,x_i}(a,b) \oplus v$
- on déplace les poids de w_{\emptyset} vers une contrainte unaire w_{x_i} :
 - $w_\emptyset \leftarrow w_\emptyset \ominus v$
 - $\forall a \in d_{x_i}, w_{x_i}(a) \leftarrow w_{x_i}(a) \oplus v$

$$\top = 5$$

$$w_{\emptyset}=0$$

$$T = 5$$

$$w_{\emptyset}=0$$

$$T = 5$$

$$w_{\emptyset}=0$$

$$T = 5$$

$$w_{\emptyset}=2$$

$$\top = 5$$

Extension

$$w_{\emptyset}=0$$

$$\top = 5$$

Extension

$$w_{\emptyset}=0$$

$$T = 5$$

$$w_{\emptyset}=0$$

$$T = 5$$

Suppression d'une valeur

$$w_{\emptyset}=0$$

Problèmes posés :

Terminaison

Problème

Retour à la case départ

Problèmes posés :

- Terminaison
 - Limiter les propagations
 - Orienter les contraintes

Problèmes posés :

- Terminaison
 - Limiter les propagations
 - Orienter les contraintes
- Fermeture

 $w_{\emptyset}=0$

Problèmes posés :

- Terminaison
 - Limiter les propagations
 - Orienter les contraintes
- Fermeture
 - Pas d'unicité.
 - Trouver la meilleure fermeture est un problème NP-difficile!

Plusieurs variantes :

- Arc-Consistency (AC*)
- Full Directional Arc-Consistency (FDAC*)
- Existential Directional Arc-Consistency (EDAC*)
- •

Hiérarchie

Hiérarchie

Profondeur d'abord vs le meilleur d'abord

- une borne supérieure anytime
- filtrage incrémental simple

Profondeur d'abord vs le meilleur d'abord

- une borne supérieure anytime
- filtrage incrémental simple

- une borne inférieure anytime
- filtrage incrémental complexe

Hybridation (HBFS)

- une borne inférieure anytime
- une borne supérieure anytime
- filtrage incrémental

Backtracking on Tree-Decomposition

Toulbar2

Ensemble d'outils :

- Filtrage : AC*, DAC*, EDAC*, . . .
- Algorithmes de résolution : DFS, BTD, HBFS/DFS, HBFS/BTD, . . .
- •

Solveurs efficaces (HBFS/DFS et HBFS/BTD)

Utilisé pour résoudre différents types de problèmes :

- allocation de fréquence,
- satellite,
- génétique,
- •

Plan

- Contexte
- Quelques extensions des CSP
- Le formalisme VCSP
- 4 Résolution
- 6 Un exemple de modélisation

Problème:

- Instance :
 - un ensemble $E = \{e_1, \dots, e_n\}$ d'entrepôts avec :
 - n_i : nombre maximum de magasins livrables par l'entrepôt i
 - cm; : coût de maintenance
 - un ensemble $M = \{m_1, \ldots, m_k\}$ de magasins :
 - caii : coût d'approvisionnement du magasin i par l'entrepôt j
- Objectif: trouver un sous-ensemble $E' \subseteq E$ t.q. chaque magasin soit approvisionné par exactement un entrepôt tout en minimisant les coûts

Modélisation COP :

- $X = \{m_1, \ldots, m_k\} \cup \{o_1, \ldots, o_n\} \cup \{c_1, \ldots, c_k\},$
- ullet $D = \{d_{m_1}, \ldots, d_{m_k}\} \cup \{d_{o_1}, \ldots, d_{o_n}\} \cup \{d_{c_1}, \ldots, d_{c_k}\}$ avec :
 - $\forall i, d_{m_i} = \{1, \ldots, n\}$
 - $\forall i, d_{o_i} = \{0, 1\}$
 - $\bullet \ \forall i, d_{c_i} = \{ca_{i1}, \ldots, ca_{in}\}\$
- $C = \{...\}$ avec :
 - $\forall i \in \{1, ..., n\}, Count(\{m_1, ..., m_k\}, i, \leq, n_i)$
 - $\forall i \in \{1, ..., k\}$, $Element(\{o_1, ..., o_n\}, m_i, 1)$
 - $\forall i \in \{1, \ldots, k\}$, $Element(\{ca_{i1}, \ldots, ca_{in}\}, m_i, c_i)$
- Fonction objectif: $\min \sum_{i=1}^{k} c_i + \sum_{i=1}^{n} cm_i.o_i$

Modélisation VCSP :

- $X = \{m_1, \ldots, m_k\} \cup \{o_1, \ldots, o_n\},\$
- $D = \{d_{m_1}, \dots, d_{m_k}\} \cup \{d_{o_1}, \dots, d_{o_n}\}$ avec :
 - $\bullet \ \forall i, d_{m_i} = \{1, \ldots, n\}$
 - $\forall i, d_{o_i} = \{0, 1\}$

Modélisation VCSP :

- $X = \{m_1, \ldots, m_k\} \cup \{o_1, \ldots, o_n\},$
- $D = \{d_{m_1}, \dots, d_{m_k}\} \cup \{d_{o_1}, \dots, d_{o_n}\}$ avec :
 - $\forall i, d_{m_i} = \{1, \ldots, n\}$
 - $\forall i, d_{o_i} = \{0, 1\}$
- $C = \{...\}$ avec :
 - $\forall i \in \{1,\ldots,n\}, \ Count(\{m_1,\ldots,m_k\},i,\leq,n_i) \to 0,+\infty$
 - $\forall i \in \{1,\ldots,k\}$, $Element(\{o_1,\ldots,o_n\},m_i,1) \to 0,+\infty$

• $SV = (\mathbb{N} \cup \{+\infty\}, \leq, +, 0, +\infty)$