KV-13EXR90

SERVICE MANUAL

US Model

Chassis No. 5CC-D37A-A

Canadian Model

Chassis No. SCC-D36H-A

P3B CHASSIS

Note: The service manual for RM - 780 / RM - 781 has been issued separately.

MODELS OF TH	E SAME SERIES
KV-19TR10	KV-19TS20
KV-19TR20	
KV-19TS10	

SPECIFICATIONS

Television system American TV standards

Channd coverage VHP: 2-13

UHF: 14-69 Cable TV: 1-125

Picture tube Mirror black Trinitron tube

13-inch picture measured diagonally 14-inch picture tube measured diagonally

75-ohm external antenna terminal for VHF/UHF Antenna

VIDEO INPUT (phono jacks) Input (Only for Video: IVp-p, 75-ohms KV-19TR20) unbalanced, sync negative

Audio: SOOmVrms (100% modulation)

impedance: 10k ohms

Power requirement! 120V AC, 60Hz Power coroumption 120W (Max.)

5W (in standby condition)

Remote Commander RM-781 Accessories supplied Remote Commander RM-780

with 2 size AA (R6) batteries VHF/UHF telescopic dipde antenna (1)

(Only for USA models) Antenna connector(1)

Optional accessories U/V mixer 6AC-66

Connecting cable VMC-606/607M VMC-810/820S

Speaker Impedance Speaker Wattage/channel Approx. 2W

Dimension* Approx. 500X455X463mm(w/h/d)

sn

Weight Approx. 16.3kg

Designs and specifications are subject to change

without notice.

SERVICE MANUAL

KV-19TR10

KV-19TR20

US Model

Chassis No. SCC-D37E-A

KV-19TR20

Chassis No. SCC-D37F-A

Canadian Model KV-19TR10

Chassis No. SCC-D36C-A

KV-19TR20

Chassis No. SCC-D36B-A

P-3B CHASSIS

Note: The service manual for RM-780 / RM-781 has been issued separately.

MODELS OF TH	E SAME SERIES
KV-19TR10	KV-19TS20
KV-19TR20	
KV-19TS10	

SPECIFICATIONS

Television system

American TV standards

Channel coverage

VHF: 2-13

UHF: 14-69

Cable TV: 1-125

Picture tube

Mirror black Trinitron tube

19-inch picture measured diagonally

20-inch picture tube measured diagonally 75-ohm external antenna terminal for VHF/UHF

Antenna Input

VIDEO INPUT (phono jacks)

(Only for

Video: 1Vp-p, 75-ohms

KV-19TR20)

unbalanced, sync negative

Audio: 500mVrms (100% modulation)

impedance: 10k ohms

Power requirements

120V AC, 60Hz

Power consumption

120W (Max.)

5W (in standby condition)

Accessories supplied

Remote Commander RM-781 (1) (KV-19TR20)

Remote Commander RM-780 (1) (KV-19TR10)

with 2 size AA (R6) batteries

VHF/UHF telescopic dipole antenna (1)

(Only for USA models)

Optional accessories

Antenna connector (1) U/V mixer EAC-66

Connecting cable

VMC-606/607M

VMC-810/820S **RK-74A**

MICROFILM

Speaker Impedance

Speaker Wattage/channel

Approx. 2W

Dimensions Weight

Approx. $500 \times 455 \times 463$ mm(w/h/d)

Approx. 19.3kg

Designs and specifications are subject to change

without notice.

TRINITRON® COLOR TV SONY

TABLE OF CONTENTS

Secti	ion <u>Title</u>	Page	Section	<u>on</u>	<u>Title</u>	Page
1. (GENERAL		4. SA	FETY RELATED	ADJUSTMEN	τ15
1-1.	Location of Controls	4				
1-2.	Location of Contents	5	5. CIF	RCUIT ADJUST	MENTS	
1-3.	Presetting TV Channels	5	5-1.	A Board Adjus	tments	17
1-4.	Watching TV Programs	6				
1-5.	Adjusting the Picture	7	6. DI	AGRAMS		
1-6.	Enjoying the Convenient Features	7	6-1.	Circuit Boards L	ocation ·····	19
1-7.	Timer/Block	8	6-2. S	chematie Diagr	ams and	
			F	Printed Wiring l	Boards ·····	19
2. [DISASSEMBLY		6-3. S	emiconductors	•••••	29
2-1.	Service Position ·····	10				
2-2.	Picture Tube Removal	11	7. EX	PLODED VIEW		
			7-1. F	icture Tube ···		30
3. 9	SET-UP ADJUSTMENTS		8. ELI	ECTRICAL PAR	TS LIST	31
3-1.	Beam Landing	·· 12				
3-2.	Convergence	·· 13				
3-3.	FOCUS(G4)	·· 14				
3-4.	SUB BRT (RV707)	·· 14				
3-5.	White Balance	14				

WARNING !!

AN ISOLATION TRANSFORMER SHOULD BE USED DURING ANY SERVICE TO AVOID POSSIBLE SHOCK HAZARD, BECAUSE OF LIVE CHASSIS.

THE CHASSIS OF THIS RECEIVER IS DIRECTLY CONNECTED TO THE AC POWER LINE.

SAFETY-RELATED COMPONENT WARNING!

COMPONENTS IDENTIFIED BY SHADING AND MARK

NON THE SCHEMATIC DIAGRAMS, EXPLODED
VIEWS AND IN THE PARTS LIST ARE CRITICAL TO
SAFE OPERATION. REPLACE THESE COMPONENTS
WITH SONY PARTS WHOSE PART NUMBERS APPEAR
AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS
PUBLISHED BY SONY. CIRCUIT ADJUSTMENTS
THAT ARE CRITICAL TO SAFE OPERATION ARE
IDENTIFIED IN THIS MANUAL. FOLLOW THESE PROCEDURES WHENEVER CRITICAL COMPONENTS ARE
REPLACED OR IMPROPER OPERATION IS SUSPECTED.

ATTENTION!!

AFIN D'EVITER TOUT RISQUE D'ELECTROCUTION PROVENANT D'UN CHÁSSIS SOUS TENSION, UN TRANSFORMATEUR D'ISOLEMENT DOIT ETRE UTILISÉ LORS DE TOUT DÉPANNAGE. LE CHÁSSIS DE CE RÉCEPTEUR EST DIRECTEMENT RACCORDÉ À L'ALIMENTATION SECTEUR.

ATTENTION AUX COMPOSANTS RELATIFS À LA SÉCURITÉ!!

LES COMPOSANTS IDENTIFIÈS PAR UNE TRAME ET PAR UNE MARQUE À SUR LES SCHÉMAS DE PRINCIPE, LES VUES EXPLOSÉES ET LES LISTES DE PIECES SONT D'UNE IMPORTANCE CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT. NE LES REMPLACER QUE PAR DES COMPOSANTS SONY DONT LE NUMÉRO DE PIÉCE EST INDIQUÉ DANS LE PRÉSENT MANUEL OU DANS DES SUPPLÉMENTS PUBLIÉS PAR SONY. LES RÉGLAGES DE CIRCUIT DONT L'IMPORTANCE EST CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT SONT IDENTIFIES DANS LE PRÉSENT MANUEL. SUIVRE CES PROCÉDURES LORS DE CHAQUE REMPLACEMENT DE COMPOSANTS CRITIQUES, OU LORSQU'UN MAUVAIS FONCTIONNEMENT EST SUSPECTÉ.

SAFETY CHECK-OUT

(US Model only)

After correcting the original service problem, perform the following safety checks before releasing the set to the customer:

- Check the area of your repair for unsoldered or poorly-soldered connections. Check the entire board surface for solder splashes and bridges.
- Check the interboard wiring to ensure that no wires are "pinched" or contact high-wattage resistors.
- Check that all control knobs, shields, covers, ground straps, and mounting hardware have been replaced. Be absolutely certain that you have replaced all the insulators.
- Look for unauthorized replacement parts, particularly transistors, that were installed during a previous repair. Point them out to the customer and recommend their replacement.
- Look for parts which, though functioning, show obvious signs of deterioration. Point them out to the customer and recommend their replacement.
- 6. Check the line cord for cracks and abrasion.

 Recommend the replacement of any such line cord to the customer.
- Check the condition of the monopole antenna (if any).
 - Make sure the end is not broken off, and has the plastic cap on it. Point out the danger of impalement on a broken antenna to the customer, and recommend the antenna's replacement.
- 8. Check the B+ and HV to see they are at the values specified. Make sure your instruments are accurate; be suspicious of your HV meter if sets always have low HV.
- Check the antenna terminals, metal trim, "metallized" knobs, screws, and all other exposed metal parts for AC leakage. Check leakage as described below.

LEAKAGE TEST

The AC leakage from any exposed metal part to earth ground and from all exposed metal parts to any exposed metal part having a return to chassis, must not exceed 0.5 mA (500 microampers). Leakage current can be measured by any one of three methods.

- A commercial leakage tester, such as the Simpson 229 or RCA WT-540A. Follow the manufacturers' instructions to use these instruments
- A battery-operated AC milliammeter. The Data Precision 245 digital multimeter is suitable for this job.
- 3. Measuring the voltage drop across a resistor by means of a VOM or battery-operated AC voltmeter. The "limit" indication is 0.75 V, so analog meters must have an accurate low-voltage scale. The Simpson 250 and Sanwa SH-63Trd are examples of a passive VOM that is suitable. Nearly all battery operated digital multimeters that have a 2 V AC range are suitable. (See Fig. A)

HOW TO FIND A GOOD EARTH GROUND

A cold-water pipe is guaranteed earth ground; the cover-plate retaining screw on most AC outlet boxes is also at earth ground. If the retaining screw is to be used as your earth-ground, verify that it is at ground by measuring the resistance between it and a coldwater pipe with an ohmmeter. The reading should be zero ohms. If a cold-water pipe is not accessible, connect a 60-100 watts trouble light (not a neon lamp) between the hot side of the receptacle and the retaining screw. Try both slots, if necessary, to locate the hot side of the line, the lamp should light at normal brilliance if the screw is at ground potential. (See Fig. B)

SECTION 1 **GENERAL**

KV-19TS10 KV-19TR10 KV-2037RS KV-2027R

Rear

On-screen displays

[2] SPEAKER ON OFF <u></u> <u>်</u> (၂) -(Ξ -@ 0 MONO vibéo KV-19TS20 - @

[11] AUDIO OUTPUT (VARIABLE) jacks

(VIDEO INPUT jacks (VIDEO/AUDIO L, R)

.6

. ©

6 STEREO lamp (Only for KV-19TS20, KV-19TS10, KV-2037HS)

[7] Remote control detector

12 SPEAKER ON/OFF switch

 MTS mode indication
 MUTING", "SLEEP" or "VIDEO" indication
 MUTIO PROGRAM", "TIMER" or "TIMER BLOCK" indication
 Bar display for volume or picture adjustment
 Current time for Timer/Block 1) TV/VIDEO button (Conjy for KV-19TS20) MTS button (Only for KV-19TS10, KV-2037RS) 3 CHANNEL +/- buttons 2 VOLUME +/- buttons a) · Channel numbers 4 POWER switch 5 TIMER lamp

1234567 -----

Front

1-2. LOCATION OF CONTENTS

Remote Commander RM-780/781/782/783

1-3. PRESETTING TV CHANNELS

To Preset All Receivable Channels Automatically

 The functions of these buttons are also available on the TV.

28 *CH (channel) +/- buttons

27 JUMP button

1-4. WATCHING TV PROGRAMS

To Preset Only the Desired Channel or to Erase Unnecessary Channels

To select a channel directly

press the channel number

ဌ

3

To view cable TV

channels

To view VHF or UHF channels

button(s) and then ENTER. For example, to select channel 10, press 1, 0 and ENTER. Press VOL + or - to adjust the volume. 4

Cable TV channel chart*
Cable TV systems use letters or numbers to designate channels. To tune in a channel, refer to the chart below.

The cable TV channel with the same number is also erased and vice versa.

When a VHF or UHF channel is erased

Number on this TV 1 .5 6 14 Corresponding CATV channel A-8 A-7 A-6 A

The designation of the cable TV channels conforms to the EIA-NCTA recommendation.

Pay cable TV systems use scrambled or encoded signals and require special converters (decoders) in addition to the normal cable connection

Check with your local cable TV company for more complete information on the available channels.

Note
To furn off the TV
Press POWER on the TV or the Remote Commander again.

1-5. ADJUSTING THE PICTURE

CO. CO. ž COLOR - LEVEL + - LEVEL + HÜE 8 Skin tones become purplish To decrease color intensity -PICTURE +/--LEVEL +/--RESET -SELECT RM-783

Press SELECT repeatedly until the on-screen display of the item to be adjusted appears, then press LEVEL +/-.

Skin tones become greenish

Muting the sound

1-6. ENJOYING THE CONVINIENT FEATURES

Press MUTING.

The "MUTING" indication will appear on the screen. To restore the sound, press MUTING again or VOL +.

Using the SLEEP timer

Press SLEEP.

The green "SLEEP ON" indication will appear on the screen for a few seconds when SLEEP is pressed and the red "SLEEP" indication will appear one minute before the TV is turned off.

To cancel the SLEEP timer, press SLEEP again, or turn off the TV. The "SLEEP OFF" indication will appear when SLEEP is pressed again.

Receiving a Multichannel TV Sound program (Only for KV-19TS20, KV-19TS10, KV-2037RS)

To listen to stereo sound, select the MAIN mode so that the on-screen MAIN indication appears. The STEREO indicator Each time MTS is pressed, MAIN, SAP (Second Audio Program), or MONO are selected in sequence.

There may be cases of stereo broadcasts where excessive noise will be heard due to a weak incoming signal. You may be able to eliminate this noise by selecting the MONO

on the TV lights up whenever a stereo broadcast is

color intensity To increase

BRIGHT (brightness)

Switching quickly between two channels

Each time JUMP is pressed, the channel which appeared on the screen directly before is recalled. This button enables you to keep track of two programs alternately Press JUMP

Keeping the channel displayed

Brighter

SHARP (sharpness)

BRIGHTNESS

BRIGHTNESS

Darker

Press DISPLAY

To make the channel display disappear, press DISPLAY

-Press to decrease picture contrast with soft color.

Press to increase picture contrast with vivid color.

To adjust picture contrast

PICTURE

Sharper

SHARPNESS

Softer

1-7. TIMER/BLOCK

Available Functions

Internal clock	Once the internal clock is set, the current time will appear on the screen.
	It is necessary to set the clock correctly to activate the program start TIMER and channel BLOCK.
Program start TIMER	Program start TIMER Makes a program of your choice appear on the screen automatically at the desired time.
Channel BLOCK	Blocks a channel from appearing on the screen for 12 hours.
	Use channel BLOCK to prevent children from watching undesirable programs.

The buttons used for the above functions are located on the Remote Commander.

To set the internal clock, program start TIMER and channel BLOCK, you must summon the corresponding "pages": "clock page," "TIMER page" "AM"/"PM" indication disappears. To change the "pages", press TIMER/BLOCK. [/B] stands for the TIMER/BLOCK button. after 2 seconds "clock page" and "BLOCK page."

- All settings will be erased from the unit's memory if the unit is unplugged, or if a
 - power failure occurs.
- If the TIMER and BLOCK are set for overlapping times on the same channel, the blocked channel will appear on the screen at the time set on the TIMER.

How to Set the Internal Clock

Example: To set the clock to 8:05 PM

If you have made a mistake, press CLEAR and return to step 2. The "AM/PM" indication will disappear after 2 seconds.

To summon "TIMER page," press TIMER/BLOCK before the "AM"/"PM" indication disappears.

To return to "normal page," press TIMER/BLOCK after the "AM","PM" indication has disappeared.

To reset the clock, summon "clock page" and press CLEAR before the "AM"/"PM" indication disappears. Then follow the steps above from step 2. 12:00 AM stands for midnight.

How to Set the Channel BLOCK

Make sure that the clock has been set correctly before setting the channel BLOCK.

Example: To set the BLOCK for a program which begins at 9:30 AM on channel 8

If you have made a mistake, press CLEAR and return to step 2.

blocked from view and the sound will be muted.

A red "BLOCKED" indication will appear on the screen while the At the preset time, the picture of the selected channel will be channel is blocked.

Normal reception will be resumed after 12 hours.

To return to normal reception while the channel is blocked, recall "BLOCK page" and press CLEAR.

To clear BLOCK setting, summon "BLOCK page" and press The BLOCK setting blocks a specified channel for the same 12 hour period everyday.

CLEAR.

To reset, clear the setting and follow the steps above from

How to Set the Program Start TIMER

Make sure that the clock has been set correctly before setting the program start TIMER.

Example: To set the TIMER for a program which begins at 10:30 PM on channel 12

The TIMER lamp will light up to indicate that the TIMER has been set.

At the preset time, the selected channel will appear on the screen and the TIMER lamp will go out. The TIMER will operate whether you are watching a TV program or a VCR playback, or even if you have turned off the TV If you have made a mistake, press CLEAR and return to step 3.

If no button is pressed within 2 hours after the preset time, an "OFF" indication will appear on the screen for 1 minute. If a button is still not touched during the 1 minute, the TV will turn off automatically as a safety precaution.

The TIMER operates only once, but the time and the channel will remain in the unit's memory. If you want to preset the same channel at the same time for a future date, press OFF/REPEAT. The TIMER tamp will light up to indicate that the TIMER has been reactivated.

If you want to deactivate the TIMER, press OFF/REPEAT again so that the TIMER lamp goes out. It is not necessary to summon "TIMER page" to use the OFF/REPEAT button. Furthermore, this button is effective even if the TV has been turned off.

To clear the TIMER setting, summon "TIMER page" and press CLEAR.

To reset, clear the setting and follow the steps from step 3.

SECTION 2 DISASSEMBLY

2-1. SERVICE POSITION

· REMOVAL OF ANODE-CAP

1 Turn up one side of the rubber cap in the direction indicated by the arrow (a).

② Using a thumb pull up the rubber cap firmly in the direction indicated by the arrow 🕲.

When one side of the rubber cap is separated from the anode buttorn, the snode-cap can be removed by turning up the rubber cap and pulling up it in the direction of the arrow ©.

· HOW TO HANDLE AN ANODE-CAP

- 1 Don't hurt the surface of anode-caps with sharp shaped material!
- 2 Don't press the rubber hardly not to hurt inside of anode-caps! A material fitting called as shatter-hook terminal is built in the rubber.
- 3 Don't turn the foot of rubber over hardly! The shatter-hook terminal will stick out or hurt the rubber.

SECITON 3 SET-UP ADJUSTMENTS

- The following abjustments should be made when a complete realignment is required or a new picture tube is installed.
- These abjustments should be performed with rated power supply voltage unless otherwise noted.

Controls and switch should be set as follows unless otherwise noted:

PICTURE control	•••••	MAXIMUM
BRIGHTNESS conf	rol	MAXIMIIM

Perform the adjustments in order as follows:

- 1. Beam Landing
- 2. Convergence
- 3. Focus
- 4. Sub Brightness
- 5. White Balance

Note: Test Equipment Repuired.

- 1. Color-bar/Pattern Generator
- 2. Degausser

3-1. BEAM LANDING

Preparation.

- Feed in the white pattern.
- Before starting, degauss the entire screen.
- 1. Loosen deflection yoke screw.
- 2. Adjust purity control as shown in Fig.3-1.
- 3. Slide deflection yoke as far forward as it will go.
- 4. Turn the raster signal of the pattern generator to red.
- 5. Adjust purity control to center vertical red band as shown in Fig.3-2.
- 6. Slide deflection yoke back for a uniform red screen.
- 7. Check green and blue rasters for uniformity by performing the same way as steps 4, 5 and 6.
- 8. Tighten the deflection yoke screw.
- 9. Check if mislanding appears at corners a-d as shown in Fig. 3-3. If mislandig is observed, correct it as shown in Fig. 3-3.
- 10. Confirm that beam landing is correct when the receiver is faced in all directions.

Fig. 3-2.

Fig. 3-3.

3-2. CONVERGENCE

Preparation:

- Before starting, perform FOCUS, H. SIZE and V. SIZE adjustments.
- Set BRIGHTNESS control to fully counterclock wise.
- Feed in the dot pattern.

(1) Horizontal and Vertical Static Convergence

- 1. Adjust H. STAT VR to coincide red, green and blue dots on the center of screen.

 (Horizontal movement)
- Adjust V. STAT magnet to coincide red, green and blue dots on the center of screen. (Vertical movement)
- If the red, green and blue dots do not coincide on the center of screen with H. STAT VR, perform horizontal convergence adjustment using H. STAT VR and V. STAT magnet as shown below. (In this case, H. STAT VR and V. STAT magnet effect each other.)
- Tilt the V.STAT magnet and adjust static convergence to open or close the V. STAT magnet.

4. When the V.STAT magnet is moved in the direction of arrow (2) and (b), Red, Green and Blue dots move as shown below.

If blue dot dose not coincide with red and green dots, perform following steps.

Move BMC magnet (a) to correct insufficient H. static convergence.

Rotate BMC magnet (b) to correct insufficient V. static convergence.

In either case, repeat Beam Landing Adjustment.

(2) Dynamic Convergence Adjustment Preparation:

- Before starting, perform Horizontal and Vertical Static Convergence Adjustment.
- 1. Loosen deflection yoke screw.
- 2. Remove deflection yoke spacers.
- 3. Move the deflection yoke for best convergence as shown below.
- 4. Tighten the deflection yoke screw.
- 5. Install the deflection yoke spacers.

(3) Screen-corner Convergence

3-3. FOCUS (G4)

Adjust FOCUS control for a best picture.

3-4. SUB BRT (RV706)

- 1. Feed in a cross-hatch pattern.
- 2. Set PICTURE and BRIGHTNESS to minimum.
- Turn RV706 (SUB BRT) slowly to obtain a faintly visible cross-hatch.

3-5. WHITE BALANCE

Feed in the cross-hatch pattern.

- Set BRIGHTNESS and PICTURE controls to minimum.
- Turn RV702 (B.DRIVE) and RV704 (G. DRIVE) fully counterclockwise.
- Set RV705 (R.BKG), RV703 (G.BKG), RV 701 (B.BKG) and RV706 (SUB ERT) to mechanical center.
- 4. Turn RV708(SCREEN) slowly to obtain a faintly visible cross-hatch. Note the color that first becomes visible by turning RV708. Do not turn a BKG control for this color.
- 5. Adjust the other two BKG controls for best white balance (neutral gray) of the faint cross-hatch.
- 6. Set BRIGHTNESS and PICTURE controls to maximum. Observe the screen and adjust the DRIVE controls for best white balance.
- 7. Repeat Steps 1 through 6 several times.

Permalloy

SECTION 4 SAFETY RELATED ADJUSTMENTS

R324 CONFIRMATION METHOD (HOLD-DOWN CONFIRMATION) AND READJUSTMENTS

The following adjustments should always be performed when replacing the following components (marked with \square on the schematic diagram).

IC601, IC301, PM501, D501, D321, C565, C563, R565, R512, R325, R324, T504, DY

1. Preparation before confirmation

- 1) Turn the POWER switch ON, and receive entirely white signals and set the PICTURE and BRIGHT controls to maximum.
- 2) Confirm that voltage of the check terminal of pin (4) of A-14 (A BOARD) is more than 126.0V DC when the set is operating normally with 120.0± 2.0V AC supply.

2. Hold-down operation confirmation

- 1) Turn the POWER switch ON, and receive entirely white signals and adjust ABL current to 1300 $\pm 20 \,\mu\text{A}$ with PICTURE and BRIGHT etc controls.
- 2) Apply DC voltage to the check terminal of pin ④ of A-14 (A BOARD) via 1T40 from the DC stabilized power source.

Confirm that the minimum voltage is less than 144.0V DC whereby the raster disappears during operation of hold-down circuit.

NOTE: When the hold-down circuit starts operating, switch OFF the POWER of the set immediately.

- 3) Turn the POWER switch ON, and receive dot signals and adjust ABL current to $30\pm20\mu\text{A}$ with PICTURE and BRIGHT etc controls.
- 4) Apply DC voltage to the check terminal of pin 4 of A-14 (A BOARD) via 1T40 from the DC stabilized power source.

Confirm that the minimum voltage is less than 144.0V DC whereby the raster disappears during operation of hold-down circuit.

NOTE: When the hold-down circuit starts operating, switch OFF the POWER of the set immediately.

3. Hold-down readjustment

When step 2 is not satisfied, readjustment should be performed by altering the resistance value of R324 (a component marked with ■).

R322 CONFIRMATION METHOD (HOLD-DOWN CONFIRMATION) AND READJUSTMENTS

The following adjustments should always be performed when replacing the following components (marked with □ on the schematic diagram). IC301, PM501, D501, R565, R512, R322

1. Preparation before confirmation

- 1) Supply 120±2.0V AC to with variable autotransformer.
- 2. Hold-down operation confirmation
- Turn the POWER switch ON, and receive entirely white signals and adjust ABL current to 1300 ±20 μA with PICTURE and BRIGHT etc controls.
- 2) Apply DC voltage to the check terminal of pin ② of PM501 (A BOARD) via 1T40 from the DC stabilized power source. Confirm that the minimum voltage is less than 154.0V DC whereby the raster disappears during operation of hold-down circuit.

NOTE: When the hold-down circuit starts operating, switch OFF the POWER of the set immediately.

- 3) Turn the POWER switch ON, and receive dot signals and adjust ABL current to $30\pm20\mu\text{A}$ with PICTURE and BRIGHT etc controls.
- 4) Apply DC voltage to the check terminal of pin ② of PM501 (A BOARD) via 1T40 from the DC stabilized power source. Confirm that the minimum voltage is less than 158.0V DC whereby the raster disappears during operation of hold-down circuit.

NOTE: When the hold-down circuit starts operating, switch OFF the POWER of the set immediately.

3. Hold-down readjustment

When step 2 is not satisfied, readjustment should be performed by altering the resistance value of

*Use a digital multimeter whose input impedance is over $100M\Omega$ when confirming the voltage of the protector terminal.

+B VOLTAGE CONFIRMATION

The following adjustments should always be performed when replacing IC601.

- 1) Supply 130^{+2.0}₋₀V AC to with variable auto-transformer.
- 2) Receive entirely monoscope signal.
- 3) Set the PICTURE control and the BRIGHT controls in to initial reset.
- 4) Confirm the voltage of pin ① of A-14 (A BOARD) is less than 138.0V DC.
- 5) If step 4) is not satisfied, replace IC601 repeat above steps.

5-1. A

BAR POS

2. Set t 3. Adju

RF AGC

1. Reci

2. Adju snow from

MPX LEV

1. Rece

2. Cont 3. Adiu

3. Adj Vp-DOWN

be perponents

e auto-

entireto 1300 controls. f pin ② the DC e minieby the d-down

VER of ive dot $\pm 20 \mu A$

starts

f pin ② he DC e minieby the d-down

starts VER of

should ie of

edance tage of

+B VOLTAGE CONFIRMATION

The following adjustments should always be performed when replacing IC601.

- 1) Supply 130^{+2.0}₋₀V AC to with variable auto-transformer.
- 2) Receive entirely monoscope signal.
- 3) Set the PICTURE control and the BRIGHT controls in to initial reset.
- 4) Confirm the voltage of pin ① of A-14 (A BOARD) is less than 138.0V DC.
- 5) If step 4) is not satisfied, replace IC601 repeat above steps.

SECTION 5 CIRCUIT ADJUSTMENTS

5-1. A BOARD ADJUSTMENTS

BAR POSITION ADJUSTMENT (RV131)

- Receive a color-bar signal.
- Set the PICTURE button to maximum.
- Adjust RV131 to the point where the arrow indi-

RF AGC ADJUSTMENT (IF201)

- Recive an off-air signal.
- Adjust AGC VR (AGC VR of IF201) so that snow noise and cross-modulation just disappear from the picture.

MPX LEVEL ADJUSTMENT (RV201)

- Receive 400Hz (100% modulation) sound signal. Connect an oscilloscope to TP21(MPX OUT). Adjust RV201 so that the MPX level is 0.7 ± 0.03

AUDIO BALANCE ADJUSTMENT (RV299)

- Recieve monoral signal.
- Connect the dual-trace-oscilloscope at SP out Lch (K-2 connector and Rch (K-3 connector).

 Adjust RV299 so that Lch and Rch are same

SUB CONTRAST ADJUSTMENT (RV307)

1. Receive a color-bar signal.

PICTURE MAX BRT CENTER COLOR MIN

- 2. Connect circuit between Base of Q354 and 9.3V line with a jumper wire.
- Draw A-8 C-3 connector (C Board).
- Connect an oscilloscope to the pin 4 of A-8 connector (blue out).
- Adjust RV307 (SUB CONT) so that voltage is $2.1 \pm 0.05 \text{Vp-p}$.

SECTION 5 CIRCUIT ADJUSTMENTS

5-1. A BOARD ADJUSTMENTS

A BOARD

(COMPONENT SIDE)

BAR POSITION ADJUSTMENT (RV131)

- Receive a color-bar signal.
- Set the PICTURE button to maximum.
- Adjust RV131 to the point where the arrow indi-

RF AGC ADJUSTMENT (IF201)

- Recive an off-air signal.
- Adjust AGC VR (AGC VR of IF201) so that snow noise and cross-modulation just disappear from the picture.

MPX LEVEL ADJUSTMENT (RV201)

- Receive 400Hz (100% modulation) sound signal.
- Connect an oscilloscope to TP21(MPX OUT).
- Adjust RV201 so that the MPX level is 0.7 ± 0.03 Vp-p.

AUDIO BALANCE ADJUSTMENT (RV299)

- Recieve monoral signal.
- Connect the dual-trace-oscilloscope at SP out Lch (K-2 connector and Rch (K-3 connector).
- Adjust RV299 so that Lch and Rch are same

SUB CONTRAST ADJUSTMENT (RV307)

1. Receive a color-bar signal.

PICTUREMAX BRT CENTER COLOR MIN

- Connect circuit between Base of Q354 and 9.3V line with a jumper wire.
- Draw A-8 C-3 connector (C Board).
- Connect an oscilloscope to the pin 4 of A-8
- connector (blue out).
 Adjust RV307 (SUB CONT) so that voltage is $2.1 \pm 0.05 \text{Vp-p}$.

H.FREQ ADJUSTMENT (RV501)

- Receive an off-air signal.
- Connect circuit between pin (8) of IC301 (H IN) and pin 36 of IC301 (VCC2) with a jumper wire.
- Connect the frequency counter across Base of Q550 and ground.
- Adjust RV501 for 15,734kHz ±50Hz on the frequency counter.
- Disconnect a jumper wire from IC301.

V.FREQ ADJUSTMENT (RV502)

- Receive an off-air signal.
- Connect circuit between pin (1) of IC301 (V IN) and pin 36 of IC301 (VCC2) with a jumper wire.
- Connect the frequency counter across DY-1
- connector (V.DY Θ) and ground. Adjust RV502 for 55.0±0.3Hz on the frequency counter.
- Disconnect a jumper wire from IC301.

DY-1 connector

PIN AMP ADJUSTMENT (RV505)

Adjust pin amplification with RV505.

H.CENT ADJUSTMENT (A-13)

- Recive a cross-hatch signal.
- Set PICTURE and BRT to normal.
- Adjust H.CENT (H.CENT TAP=A-13) for best picture.

V.CENT ADJUSTMENT (\$501)

- Receive a cross-hatch signal.
- Set PICTURE and BRT to normal.
- 3. Adjust V.CENT (S501) for best picture.

WARNING!!

When you replace a memory IC, make sure of the functioning remote commander and proper sound with the power switch on.

If you find any troubles, take actions as shown below.

For remote commander:

Set the main power switch to OFF and press it again to turn the unit on.

For sound:

Switch the unit from MAIN to SAP to MONO mode by the MTS switch (or MTS button on the commander) to make sure of sound with MONO mode. Note that the sound is of proper volume and the speaker on/off switch is set to ON.

H.SIZE ADJUSTMENT(RV506)

- 1. Receive across-hatch signal. 2.Adjust RV506 for 15.0 divisions.

V.SIZE ADJUSTMENT(RV507) 1. Receive a cross-hatch signal.

2. Adjust RV507 for 11.25 divisions.

SECTION 6 DIAGRAMS

6-1. CIRCUIT BOARDS LOCATION

6-2. PRINTED WIRING BOARDS AND SCHEMATIC DIAGRAMS — Conductor Side —

Note: The components identified by shading and mark $\dot{\Omega}$ are critical for safty. Replace only with part number specified.

Note: Les composants identifiés par un tramé et une marque 🖒 sont critiques pour la sécurité. Ne les remplacer que par une piece portant le numéro spécifié.

Note:

- All capacitors are in $\mu {\rm F}$ unless otherwise noted, p: $\mu \, \mu {\rm F}$ 50 WV or less are not indicated except for electrolytic and tantalums.
- All resistors are in ohms. $k\Omega = 1000\Omega \text{ , } M\Omega = 1000K\Omega$
- Indication of resistance, which does not have one for rating electrical power is as follows.

Pitch: 5 mm Rating electrical power: 1/4W

- monflamable resistor.
- \triangle : internal component.
- _____: panel designation or adjustment for repair.
- All variable and adjustable resistors have charactristic curve B, unless otherwise noted.
- The components indentified by in this manual have been carefully factory-selected for each set in order to satisty regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.
- When replacing components indicated by

 mark the necessary adjustments indicated. If results do not meet the specified value, change the component identified by

 and repeat the adjustment until the specified value is achieved. (Refer to R322, 324 adjustment on page 15)

When replacing the part in below table, be sure to perform the related adjustment.

Part replaced (☑)	Adjustment (☑)		
IC301, PM501, D501, R565, R512, R322	R322		
iC601, IC301, PM501, D501, D321, C565, C563, R565, R512, R325, R324, T504, DY	R324		

Reference information

RESISTOR	RN	: METAL FILM
	RC	: SOLID
	FPRD	: NONFLAMMBLE CARBON
	FUSE	: NONFLAMMBLE FUSIBLE
	RS	: NONFLAMMBLE METAL OXIDE
	RB	: NONFLAMMBLE CEMENT
	RW	: NONFLAMMBLE WIREWOUND
	*	: ADJUSTMENT RESISTOR
COIL	LF-8L	: MICRO INDUCTOR
CAPACITOR	TA	: TANTALUM
	PS	: STYROL
	PP	: POLYPROPYLENE
	PT	: MYLAR
	MPS	: METALIZED POLYESTER
	MPP	: METALIZED POLYPROPYLENE
	ALB	: BIPOLAR
	ALT	: HIGH TEMPERATURE
	ALR	: HIGH RIPPLE

- Readings are taken with a color-bar signal input.
- Readings are taken with a 10 MΩ digital maltimeter.
- Voltage are dc with respect to ground unless otherwise noted.
- Voltage variations may be neted due to normal production tolerances.
- B+ bus.
 signal path.

KV-19TR10/19TR20

KV-19TR10/19TR20 RM-780/RM-781

REF	KV-19TR10	KV-19TR20	REF	KV-	19TR10	KV-	19TR20
R130	3.3K	3.3K	A-1	٦.		1	1P
R205	1.0K	1.0K	A-3	-		4	ĮP.
R222	1.0K	1.0K	S106			S	106
R224	1.0K	1.0K	T599	٦.		1	599
R354		100	D151	155	119	-	
R355		22.0K	D598	T -		ERE	43-04
R356		100	0599	·		R	D10ESB2
R357	JW.	100	Q201	KSC	2785	KSC	2785
R398		4.8	0599	٦.		250	789-4
R599		1.5K	REF		KV-19TR	10	KV-19TR20
C142	0.002	0.002			NV-1918	10	
C205	10	10	[IC3	NZ			CX20061-GG
C214	10/16	JW]				
C351		47/16					
C352	JW	47/16					
C596		0.0033 630V					
C597		220 /35					
C598		33/16					
C599		220 /16					

IC203 MB3110A

IC302 CX20061

IC501 UPC1378H-P

(TUNER VIF, SIF, CHROMA, AF OUT, Y AMP, CUSTOMER CONTROL, REMOTE CONTROL, TUNING CONTROL, H.DEF, V.DEF, POWER SUPPLY)

— A Board —

AMP, CUSTOMER CONTROL, DEF, V.DEF, POWER SUPPLY) (R·G·B OUT) - C Board -A BOARĐ **BIODE** 0-9 C-1 E-1 Ð103 IC102 IC103 IC104 IC105 IC201 IC301 IC401 IC402 RV301 G-5 F-3 F-7 E-8 H-3 G-5 H-7 0113 RV302 0114 0115 0126 0127 0128 F-4 0-7 B-10 RV303 0-5 B-1 B-1 RV401 RV402 RV501 - A-8 RV502 0241 0245 0251 0301 0317 C-8 F-8 F-6 J-7 E-12 RV503 6-6 9-8 J-6 J-6 IC403 RV504 IC501 8401 8402 8403 G-7 I-2 F-8 G-8 Đ405 TRANSISTOR Ð408 0501 0502 G109 Ð-5 H-8 A-7 O Ð504 F-11 F-11 F-3 Q113 E-10 Q114 Ð-3 0511 0512 0513 0115 F-2. E-3 J-11 H-10 Q118 J-12 G-12 Q120 Q121 B-6 9601 9602 9603 9604 9605 9606 9607 Q122 C-2 C-12 C-13 Q250 0251 0252 A-6 C-5 A-10 0-8 F-2 F-7 Q301 Q401 A-1.1... - Q402 Q403 I-2 E-7 Q404 Q405 E-7 Q407 1-2 Q408 Q409 J-2 1-2 G-6 Q410 Q460 Q501 Q502 1-3 1-10 Q561 F-13 0562 ---- H-8--B-10

TWU

NOTE:

The circuit indicated as left contains high voltage of over 600 Vp-p. Care must be paid to prevent an electric shock in inspection or repairing.

POWER & SUPPLY REG

KV-19TR10/19TR20

KV-19TR10/19TR20 RM-780/RM-781

(AUDIO OUT)

SECTION 7 EXPLODED VIEW

NOTE:

- Items with no part number and no description are not stocked because they are seldom required for routine service.
- are seldom required for routine service.
 The construction parts of an assembled part are indicated with a collation number in the remark column.

Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.

The components identified by shading and mark. A are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque. À sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

1	X-4380-070-1	CABINET ASSY (WITH BEZEL ASS	
		CABINET ASSY (WITH BEZEL ASS	19TR20 ONLY) Y) 19TR10 ONLY)
3 4 5		SPEAKER PICTURE TUBE (A49JLV50X) SCREW (5), TAPPING	
8	1-452-277-00 3-703-961-01	MAGNET, BMC SPACER, DY	
ΪΪ	*4-374-717-01	DEFLECTION YOKE (Y20NDA) SPRING, TENSION COVER (MAIN), CV VOL	
13	*4-374-704-01	C BOARD, COMPLETE COVER (REAR LID), CV VOL COIL; DEMAGNETIZATION	
15 16	*4-341-778-01 4-397-422-01	BAND, DEGAUSSING COIL COVER, REAR SHEET, BLOTTING	
18 19	*4-381-686-01 *4-389-517-01	BRACKÉT (B), LIGHT GUIDE GUIDE (R), LIGHT	: : :
20	*A-1296-725-A *A-1296-727-A	A BOARD, COMPLETE (KV-19TR20 A BOARD, COMPLETE (KV-19TR10 A BOARD, COMPLETE (KV-19TR20	(USA) ONLY) (CND) ONLY)
	*A~I296+730+A	A BOARD, COMPLETE (KV 19TRIO	(CND) ONLY);

21	₾ 1-465-371-11	TUNER, ET (BTP-RA401)
		(KV-19TRIO (USA), KV-19TR2O (⊫A) ONLY)
	₾ 1-465-371-21	TUNER, ET (BTP-RA401)
		(KV-19TRIO (CND), KV-19TR2O (№1) ONLY)
22	₾ 1-439-483-11	TRANSFORMER ASSY, FLYBACK (NX-710)
23	Д. 4-388-328-01	GROMMET, AC CORD
24	A. 1-559-396-11	CORD. POWER
	*4-397-417-01	HOLDER, PC BOARD
	*4-397-418-01	RIVET, T TYPE
	*1-632-915-11	
28	А. 1-536-678-31	ANTENNA BLOCK
	22,1 320 010 31	(KV-19TRIO (USA), KV-19TR2O (➡A) ONLY)
	A. 1-537-077-21	
	77 1 25 OLI 121	(KV-19TR10 (CND), KV-19TR20 (№D) ONLY)
29	4-397-423-11	TERMINAL BUARD, ANTENNA (KV-19320 UNLY)
4)	4-397-423-21	TERMINAL BOARD, ANTENNA (KV-193210 ONLY)
30	*A-1373-214-A	
31	4-308-870-00	U BOARD, COMPLETE (KY-TOTR20 ULY)
		CLIP, LEAD WIRE
	1-452-032-00	MAGNET, DISK; 10MM Ø
	1-452-094-00	MAGNET, RUTATABLE DISK; 15MM 4
34	X-4308-815-0	PERMALLOY ASSY, CONVERGENCE

6-3. SEMICONDUCTORS

SECTION 8 ELECTRICAL PARTS LIST

NOTE:

The components identified by shading and mark \hat{A} are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque . \(\frac{1}{2}\) sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

- Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.
- All variable and adjustable resistors have characteristic curve B, unless otherwise noted.

RESISTORS

- · All resistors are in ohms
- F : nonflammable

When indicating parts by reference number, please include the board name.

- CAPACITORS COILS • MF : μF, PF : μμF • MMH : ιπΗ, UΗ : μΗ
- The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.

REF.NO. PART NO.	DESCRIPTION	!	REMARK	REF.NO.	PART NO.	DESCRIPTION	ļ		REMARK
*A-1296-672-∆	A BOARD, COMPLETE (KV-19	TR20 (USA)	ONLY)	C139	1-124-477-11	ELECT	47MF	20%	167
*A-1296-725-A	A BOARD, COMPLETE (KV-19	TR10 (USA)	ONLY)	C140	1-102-121-00	CERAMIC	0.0022MF	10%	50 V
*A-1296-727-A	A BOARD, COMPLETE (KV-19	TR20 (CND)	ONLY)	C142 C143 C144	1-101-005-00 1-106-379-12 1-106-375-12	MYLAR MYLAR	0.022MF 0.033MF 0.022MF	10% 10%	50V 100V 100V
*A-1296-730-A	A BUARD, COMPLETE (KV-19	TRIO (CND)) UNLY)	C201	1-126-101-11	ELECT	100MF	20%	167
*1-506-348-99 *1-508-765-00 *1-508-766-00	PIN, CONNECTOR 3P PIN, CONNECTOR (5MM PITC PIN, CONNECTOR (5MM PITC	31) 3P		C205 C206 C214	1-123-875-11 1-102-125-00 1-126-320-11	ELECT CERAMIC ELECT	10MF 0.0047MF 10MF	20% 10% 20%	50V 50V 16V TR 10 ONLY)
*1-508-767-00 *1-508-768-00	PIN, CONNECTOR (5MM PITC PIN, CONNECTOR (5MM PITC	H) 5P		C301	1-124-902-00	ELECT	0.47MF	20%	507
*1-508-786-00 1-533-223-11 *1-559-991-21 *1-564-509-11	PIN, CONNECTOR (5MM PITC CLIP, FUSE CONNECTOR ASSY IP PLUG, CONNECTOR 6P	CH) 2P		C302 C303 C305 C309 C312	1-102-961-00 1-126-101-11 1-124-902-00 1-124-791-11 1-102-951-00	CERAMIC BLECT BLECT BLECT CERAMIC	27PF 100MF 0.47MF 1MF 15PF	5% 20% 20% 20% 5%	50V 16V 50V 50V 50V
*1-565-495-11 *1-565-502-11 *1-568-536-11 *4-341-751-01		(KV-19TR20 D 11P		C316 C317	1-102-973-00 1-126-320-11 1-126-529-11 1-124-282-00 1-102-074-00	CERAMIC BLECT BLECT BLECT CERAMIC	100PF 10MF 0.47MF 22MF 0.001MF	5% 20% 20% 20% 10%	50V 16V 50V 16V 50V
	EYELET (EY1,EY2,EY3,EY4, CASE (MAIN), SHIELD	EY5,EY6,E'	Y7,EY8)	C321 C322 C330 C331 C340		CERAMIC ELECT ELECT ELECT ELECT	0.01MF 10MF 220MF 100MF 4.7MF	10% 20% 20% 20% 20%	50V 50V 16V 16V 160V
< CAP	PACITUR>			C351	1-124-477-11	ELECT	47MF		I 6V
C047 1-126-320-11 C101 1-102-110-00	CERAMIC 220PF	10% 50) V	C352	1-121-477-11	ELECT	47MF	20%	R20 UNLY) 16V
C102 I-126-233-11 C103 1-124-556-11 C104 I-126-101-11	ELECT 22MF ELECT 2200MF ELECT 100MF	20% 10	5V 5V 5V	C353	1-123-875-11	ELECT	10MF	20%	TR20 ONLY) 50V
C106 1-119-160-00	ELECT 470MF	11)V	C354 C355	1-124-791-11 1-124-791-11	ELECT	IMF IMF	20% 20%	50V 50V
C107 1-101-361-00 C108 1-101-361-00 C109 1-124-927-11 C110 1-124-927-11	CERAMIC 150PF CERAMIC 150PF ELECT 4.7MF ELECT 4.7MF	5% 50 20% 50)V)V)V	C356 C357 C358	1-126-233-11 1-124-791-11 1-124-791-11	BLECT BLECT BLECT	22MF IMF IMF	20% 20% 20%	50V 50V 50V
C114 I-123-875-11 C116 I-136-165-00 C118 I-106-367-00 C120 I-106-383-00 C121 I-124-477-11	ELECT IOMF FILM 0.IMF MYLAR 0.01MF MYLAR 0.047MF ELECT 47MF	20% 50 5% 50 10% 10) V) V) O V 5 V	C364 C366 C367 C398 C501	1-124-477-11	ELECT ELECT ELECT CERAMIC ELECT	470MF 10MF 47MF 220PF 100MF	20% 20% 20% 10% 20%	25V 50V 16V 50V 16V
C122 1-124-963-11 C126 1-124-902-00 C127 1-102-963-00	ELECT 33MF ELECT 0.47MF CERAMIC 33PF	20% 10 20% 50	0 V 0 V	C502 C503 C505 C507	1-106-363-00 1-124-791-11 1-106-363-00 1-102-110-00		0.0068MF IMF 0.0068MF 220PF	10% 20% 10% 10%	1 00V 5 0V 1 00V 5 0V
C128 1-102-965-00 C132 1-102-965-00	CERAMIC 39PF CERAMIC 39PF) V	C508	1-101-006-00	CERAMIC	0.047MF		5 OV
C133 I-102-973-00 C135 I-102-121-00 C136 I-124-499-11 C137 I-124-499-11	CERAMIC 100PF CERAMIC 0.0022MF ELECT 1MF ELECT 1MF	10% 50 20% 50	0 V 0 V 0 V	C509 C510 C511 C512 C513	1-101-006-00 1-106-363-00 1-106-379-12 1-124-925-11 1-124-791-11	CERAMIC MYLAR MYLAR ELECT ELECT	0.047MF 0.0068MF 0.033MF 2.2MF LMF	10% 10% 20% 20%	5 0V 1 00V 1 00V 5 0V 5 0V

KV-19TR10/19TR20 RM-780/RM-781

Les composants identifies par une trame et une marque Å sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The components identified by shading and mark $\hat{\Delta}$ are critical for safety. Replace only with part number specified.

		- PAR'	T NO.	DESCRIPT	10N		REMARK	REF.NO	D. PART NO.		IPTION		REMAR
	C514 C515 C516 C517 C518	!-!; !-!; <u>1-1;</u>	23-875-1 24-464-1 24-477-1 06-369-9 02-125-00	ELECT ELECT MYLAR	10MF 0.22MF 47MF 0.012MF 0.0047MF	20% 20% 20% 5% 10%	50V 50V 16V 200V 50V	C617		-00 ELECT	LOMF	20%	V091
	C520 C521 C522	1-12 1-10)6-385-00 24-791-11)2-824-00	ELECT CERAMIC	0.056MF IMF 470PF	10% 20% 5%	100V 50V 50V	CF301			C TRAP 3.58MHZ N CIRCUIT BLUC		
	C523 C530 C534 C535	1-12 1-12	24-927-11 24-277-11 24-122-11 22-030-00	ELECT ELECT	4.7MF 4.7MF	20% 20% 20%	50V 25V 35V	CP009 CP102	1-233-147- 1-233-145- 1-233-145-	-11 COMPOS -11 COMPOS -11 COMPOS	ITION CIRCUIT ITION CIRCUIT ITION CIRCUIT	BLOCK BLOCK	
	C537 C538 C539	1-10 1-10	05-363-00 06-363-00 06-375-12 04-927-11	MYLAR MYLAR	330PF 0.0068MF 0.022MF 4.7MF	10% 10% 10% 20%	500V 100V 100V 50V	CP104 CP106	1-236-357- 1-233-146-	11 COMPOS 11 NETWOR	FTION CIRCUIT K, RES FTION CIRCUIT	BLOCK	
	C540 C541 C542 C543	1-12 1-12	4-925-11 4-910-11 3-587-00 3-875-11	ELECT ELECT	2.2MF 47MF 560MF 10MF	20% 20% 10% 20%	50V 50V 25V 50V	CP108 CP109 CP112 CP117	1-233-117- 1-236-490-	II COMPOSI II COMPOSI II NETWORK	ITION CIRCUIT I ITION CIRCUIT I K, RES, THICK I K, RES, THICK I	BLOCK Block Film	
	C546 C548 & C549	1-10 1-10 1-12	6-343-00 2-2 12-91 4-479-11	MYLAR CERAMIC ELECT	0.001MF 820PF 330MF	10% 10% 20%	100V 500V 25V	CP118 CP351	1-236-357- 1-236-491-	II NETWORK II NETWORK	(, RES (, RES, THICK F	FILM	
	C550 C551 C 552 A	1-10:	4-902-00 2-114-00 2-135-91	CERAMIC	0.47MF 470PF 560PF	20% 10% 10%	50V 50V 2KV	Doot		DIODE>			
	C553 C554 A C555 A C556	1-10: 1-16: 1-10: 1-12:	2-030-00 2-116-91 8-3 75 -91 6-101-11	CERAMIC CERAMIC MYLAR ELECT	330PF 6 80 PF	10% 10% 10% 10%	500V 2KV 100V	D001 D081 D082 D101 D104	8-719-911- 8-719-911- 8-719-109-8 8-719-110-1 1-808-919-	19 DIODE 1 36 DIODE R 78 DIODE R	SS119 SS119 D5.1ES:B3 D33ES-B2 T (LEDU-9)		
	C557 C558 C559 C560 <u>A</u>	I-12/ i-100 I-130	3-024-21 4-046-00 5-391-12 5-109-11 4-634-11	BLECT BLECT MYLAR FILM BLECT	33MF 10MF 0.1MF 0.68MF	20% 10% 5%	160V 160V 200V 200V	D113 D114 D115 D117 D118	8-719-911-1 8-719-911-1 8-719-109-7 8-719-109-8 8-719-911-1	.9 DIODE 1 74 DIODE R 19 DIODE R	SS119 D4.3ES-B1 D5.6ES-B2		
	C562 ⚠ C563 ⚠ C564 ὧ	. 1-102 . 1-136 . 1-136	2-228-91 5-966-11 5-111-11 5-312-51	CERAMIC	470PF 0800000000QI IMF	20% 10% 5% 5%	250V 500V 2KV 200V	D119 D120 D121 D122	8-719-911-1 8-719-911-1 8-719-911-1 8-719-911-1	9 DIODE 1: 9 DIODE 1: 9 DIODE 1:	SS119 SS119 SS119		
	C566	1-124	-045-00 -318-91	ELECT CERAMIC	0.043MF 4.7MF 0.001MF	20% 10%	400V 50V 500V	D123	8-719-911-1 8-719-911-1	er adolid e	25110		
	C568 C569 C570 C571	1-106 1-162 1-106	-383-00 -375-12 -114-00 -361-00	MYLAR MYLAR CERAMIC MYLAR	0.047MF 0.022MF 0.0047MF 0.0056MF	10%	100V 200V 2KV 200V	D151 D321 D350 D351	8-719-911-1 8-719-911-1	9 DIODE 15 9 DIODE 15	55119 (KV-19TR) 11Z 55119 55119	10 ONLY)	
	C572 C580 <u>A</u> C594 C595 C596	. 1-162 1-124 1-102	-875-11 -116-91 -557-11 -212-00 -557-11	CERAMIC ELECT CERAMIC FILM	10MF 680PF 1000MF 820PF 0.0033MF	20% 10% 20% 10% 10%	50V 2KV 25V 500V 630V	D501 D508 D511 <u>A</u> D512 <u>A</u> D513	8-719-109-8 8-719-911-5 8-719-901-9 8-719-911-1 8-719-945-8	5 DIODE UC 3 DIODE VI 9 DIODE IS	19E S119		
	C 5 9 7	1-124	-484-11	ELECT	220MF	20%	'R20 UNLY) 35V	D514 D515 D516	8-719-928-08 8-719-911-59 8-719-911-59	5 DIODE UO 5 DIODE UO	56		
i	C598	1-124	-963-11	ELECT	33MF	20%	'R2O ONLY) TGV 'R2O ONLY)	D517 A	. 8-719-303-2 . 8-719-300-6	L DIODE RH 5 DIODE ES			
1	C599	1-124	-120 -11	ELECT	220MF	20%	16V	D519 D597	8-719-976-6/ 8-719-901-58	i Diode Rg B Diode Rg			
(5602 ∆. 5603	1-125 1-161	-745-52 -594-11 -830-00 -830-00	MYLAR ELECT CERAMIC CERAMIC	0.22MF 560MF 0.0047MF	(KV-19T 20% 20%	R20 ONLY) 125V 200V 500V	D598 D599 D601 ∆ .	8-719-300-70 8-719-110-17 8-719-305-07	DIODE RH DIODE RD DIODE RB	-ÎC (KV-19TR20 10ES-B2 (KV-19 V-406H	ONLY) TR20 ONLY))
(1605 1606 1615	1-123- 1-126- 1-124-	-948 -00 -176-11 -046 -00	ELECT ELECT ELECT ELECT	0.0047MF 22MF 22OMF 10MF 10MF	20% 20% 20% 20%	250V 10V 160V 160V	0603 0604 0605	8-719-200-02 8-719-304-63 8-719-304-63 8-719-109-93 8-719-911-55	DIODE DIODE DIODE RDO	5.2ES-B3		

KV-19TR10/19TR20 RM-780/RM-781

 The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used. Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The components identified by shading and mark A are critical for safety.

Replace only with part number specified.

REF.NO	. PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R029 R030 R031 R034 R035	1-249-414-11 1-249-414-11 1-249-414-11 1-249-426-11 1-249-417-11	CARBON	560 560 560 5.6K 1K	5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W		R206 R207 R208 R209 R217	I-249-417-11 I-249-435-11 I-249-425-11 I-249-417-11	CARBON CARBON CARBON	1K 33K 4.7k	5% 5% 5% 5%	1/4W 1/4W 1/4W	
R036 R037 R038 R040 R044	1-249-416-11 1-249-416-11 1-249-414-11 1-249-431-11 1-249-414-11	CARBON CARBON CARBON CARBON CARBON	820 820 560 15K 560	5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R222 R224 R240	1-249-417-11 1-249-417-11 1-249-417-11 1-249-437-11	CARBON CARBON CARBON CARBON	1 K 1 K 1 K 47 K	5% 5% 5%	1/4W 1/4W 1/4W	
R046 R047 R089 R090	1-249-433-11 1-249-439-11 1-249-405-11 1-249-405-11	CARBON CARBON CARBON CARBON CARBON	22K 68K 100	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R241 R301 R302 R304	1-249-441-11 1-215-472-00 1-249-438-11 1-247-889-00		100K 130K 56K 270K	1% 5% 5%	1/4W 1/6W 1/4W 1/4W	
R102 R103 R108 R113	1-249-417-11 1-249-417-11 1-215-923-00 1-249-425-11 1-249-417-11	CARBON METAL UXIDE CARBON CARBON	100 LK 10K 4.7K IK	5% 5% 5% 5%	1/4W 1/4W 3W 1/4W 1/4W	l <u>:</u>	R305 R306 R307 R308 R309	1-249-440-11 1-249-437-11 1-249-429-11 1-249-411-11 1-249-411-11	CARBON CARBON CARBON CARBON CARBON	82K 47K 10K 330 330	5% 5% 5% 5%	1/1W 1/1W 1/4W 1/4W 1/4W	
R115 R116 R117 R118	1-249-417-11 1-249-421-11 1-249-421-11 1-249-433-11	CARBON CARBON CARBON	1K 2.2K 2.2K	5% 5% 5%	1/4W 1/4W 1/4W		R310 R312 R313 R314	1-249-411-11 1-249-405-11 1-249-427-11 1-249-407-11	CARBON CARBON CARBON CARBON	330 100 6.8K 150	5%	1/4W 1/4W 1/4W 1/4W	
R120 R121 R123	1-249-437-11 1-249-434-11 1-249-417-11	CARBUN CARBON CARBUN CARBON	22K 47K 27K 1K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R315 R316 R317 R318	1-249-417-11 1-249-411-11 1-249-419-11 1-249-417-11	CARBON CARBON CARBON CARBON	1 K 330 1.5 K 1 K	5% 5% 5%	1/4W 1/4W 1/4W 1/4W	
R124 R125 R126 R127 R129	1-249-417-11 1-249-417-11 1-249-429-11 1-249-413-11 1-249-413-11	CARBON CARBON CARBON CARBON CARBON	1 K 1 K 10 K 470 470	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W		R319 R320 R321 ■R322 <u>A</u>	1-249-417-11 1-249-417-11 1-249-433-11	CARBON CARBON CARBON CARBON	1 K 1 K 22 K	5% 5% 5%	1/4V 1/4V 1/4V	
R130 R132 R136 R138	1-249-423-11 1-249-429-11 1-249-405-11 1-249-411-11	CARBON CARBON CARBON CARBON	3.3K 10K 100 330	5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R323 ■R324 A. R325	1-249-389-11	CARBON CARBON CARBON CARBON	6.8K 4.7 1.5K	5% 5% 5%	1/4V 1/4V 1/4V F	
R139 R142 R143 R146	1-249-433-11 1-249-429-11 1-249-429-11 1-249-417-11	CARBON CARBON CARBON CARBON	22K 10K 10K 1K	5% 5% 5%	1/4W 1/4W 1/4W 1/4W	-	R329 R330 R331 R333	1-249-441-11 1-249-426-11 1-249-417-11 1-249-429-11	CARBON CARBON CARBON CARBON	100K 5.6K 1K 10K	5% 5% 5% 5%	1/4V 1/4V 1/4V 1/4V	
R147 R148 R149 R150	1-249-428-11 1-249-432-11 1-249-423-11 1-249-437-11	CARBON CARBON CARBON CARBON	8.2K 18K 3.3K 47K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R334 R335 R336 R337 R338	1-249-413-11 1-249-425-11 1-247-895-00 1-249-417-11 1-247-903-00	CARBON CARBON CARBON CARBON CARBON	470 4.7K 470K IK IM	5% 5% 5% 5%	1/4V 1/4V 1/4V 1/4U 1/4U	
R151 R152 R153	1-249-440-11 1-247-903-00 1-247-895-00	CARBON CARBON CARBON CARBON	10K 82K 1M 470K	5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R341 R342 R350 R352	1-249-417-11 1-249-421-11 1-249-437-11 1-247-901-11	CARBON CARBON CARBON CARBON	1K 2.2K 47K 820K	5% 5% 5%	1/4V 1/4V 1/4U 1/4U	
R 155 R 156 R 157 R 158	1-249-439-11 1-249-424-11 1-249-409-11 1-247-895-00	CARBON CARBON CARBON CARBON	68K 3.9K 220 470K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W			1-249-429-11 1-249-405-11 1-249-433-11	CARBON CARBON CARBON	10K 100 22K	5% 5% 5%	1/40 1/40 (KV-19FR2 1/40	O ONLY)
R 159 R 160 R 161 R 170 R 172	1-249-409-11 1-249-439-11 1-249-424-11 1-249-415-11 1-249-429-11	CARBON CARBON CARBON CARBON CARBON	220 68K 3.9K 680 10K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W			1-249-405-11	CARBON CARBON	100	5% 5%	(KV-191₹2 1/4W (KV-191₹2 1/4W	,
R 174 R 175 R 176 R 180	1-249-437-11 1-249-441-11 1-249-441-11 1-249-420-11	CARBON CARBON CARBON CARBON	47K 100K 100K 5.6K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W		R358 R360	1-249-405-11 1-249-426-11 1-249-429-11	CARBON CARBON CARBON	100 5.6K 10K	5% 5%	(KV-11122 1/44 1/4W	O ONLY)
R 182 R 185 R 203 R 204	1-249-415-11 1-249-429-11 1-247-885-00 1-249-434-11	CARBON CARBON CARBON CARBON	680 10K 180K 27K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W	j 3 1 1 1 1 1	R362 R363 R364	1-215-907-11 1-249-422-11 1-249-420-11 1-249-430-11	METAL OXIDE CARBON CARBON CARBON	22 2.7K 1.8K 12K	5% 5% 5%	3W F 1/4W 1/4W 1/4W	
R205		CARBON	ĪK	5%	1/4W			1-249-436-11 1-249-429-11	CARBON CARBON	39K 10K	5% 5%	1/4W 1/4W	

The components identified by shading and mark . A are critical for safety.
Replace only with part number specified.

Les composants identifies par une trame et une marque Å sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REF.NO. PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
<fus F601 点, 1-532-748-11 F602 点 1-532-741-11</fus 	E> FUSE, GLASS TUBE 6.3A/125V FUSE, GLASS TUBE 1.25A/125V		Q107 Q109 Q110 Q112 Q113	8-729-922-69 8-729-922-68 8-729-922-69 8-729-320-62 8-729-922-68	TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	5A1175 5C2785 5D789-34	
1C101 8-759-634-46 1C102 8-759-748-69	IC M34302M8-511 IC CAT59C11HP		Q114 Q115 Q116 Q119 Q120	8-729-922-69 8-729-922-69 8-729-922-69 8-729-922-69 8-729-922-69	TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	6C2785 6C2785 6C2785	
1 C103 8-749-920-65 1 C301 8-752 031-72 1 C302★8-752-006-12 1 C303 8-759-104 05 1 C304 8-759-982-10	IC CXA1013AS IC CX20061 (KV-19TR20 ONLY) IC UPD6325C IC RC7809FA		Q121 Q122 Q123 Q201 Q205	8-729-922-68 8-729-922-69	TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	6C2785 6A1175 6C2785	
1 C305 8-759-013-09 1 C501 8-759-105-82 1 C502 8-759-945-58 1 C601 \$\Delta 8-749-930-35	IC MC78[2CT IC UPC1378H P IC RC4558P IC STR3035 HOLDER, IC; IC601			8-729-119-78 8-729-119-78 8-729-922-69 8-729-922-69	TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	C2785-HFE C2785-HFE C2785 C2785 C2785	
4-369-267:01 <[F	SPACER, MICA; ICGOI BLOCK>		4306 0354 0371 4398	8-729-922-69 8-729-922-68 8-729-922-69 8-729-922-69	TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	5C2785 5A1175 5C2785 5C2785	
1F201 1-464 756-21	L> INDUCTOR 1000H		U501 U502 U503 U504 U505	8 -729-922-68 8 -729-922-69	TRANSISTOR 2S TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS TRANSISTOR KS	5A1175 5C2785 5A1175 5C2785	
L 103	INDUCTOR		Q506 Q507 Q550 Q551 Q552	8-729-119-80 8-729-821-87 8-729-922-69	TRANSISTOR KS TRANSISTOR KS TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR KS	5C2785 5C2688-LK 5D1878-CA 5C2785	
L 109	INDUCTOR 15UH INDUCTOR 8.2UH INDUCTOR 15UH INDUCTOR 18UH		Q553 Q599 Q601	8-729-320-62	TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S	D789-34 (KV	-19TR2O ONLY)
L501 <u>A</u> 1-410-666-41 L502 <u>A</u> 1-408-938-11 L503 <u>A</u> 1-410-669-41 L505 1-459-104-00	INDUCTOR 18UH INDUCTOR 22UH INDUCTOR 33UH COIL, WITH CORE		R001	<pre><res -249-421-11<="" 1="" pre=""></res></pre>	ISTOR>	2 2¥ 5%	I/4W
L506 [-407-365-00] L507 [-408-349-00] L508 [-408-239-00] L509 [\Delta] 1-459-390-11	COIL, CHOKE		R002 R003 R004 R005	1-249-414-11	CARBON CARBON CARBON	2.2K 5% 560 5% 560 5% 560 5% 560 5%	1/4W 1/4W 1/4W 1/4W
L510 <u>A</u> 1-459-316-12 L511 1-459 075-00 L513 1-410-665 31 L516 <u>A</u> 1-459-407-11	COIL, FERRITE (HLC) COIL, DYNAMIC CONVERSION CHOKE INDUCTOR ISUH COIL, FERRITE CHOKE		R007 R008 R009 R010 R011	1-249-414-11 1-249-414-11 1-249-414-11 1-249-417-11 1-249-417-11	CARBON CARBON CARBON CARBON CARBON	560 5% 560 5% 560 5% 1K 5% 1K 5%	1/4W 1/4W 1/4W 1/4W 1/4W
L601 A I-408-225-II L602 A I-408-225-II L609 I-410-459-II	INDUCTOR 3.3UH ENDUCTOR 3.3UH INDUCTOR 1.2UH		R013 R014 R015 R016 R017	I-249-414-11 I-249-421-11 I-249-421-11 I-249-421-11 I-249-421-11	CARBON CARBON CARBON CARBON CARBON	560 5% 2.2K 5% 2.2K 5% 2.2K 5% 2.2K 5%	1/4W 1/4W 1/4W 1/4W !/4W
NU.501 1-519-108-99	LAMP, NEON		R018 R019 R020 R021 R022	1-249-416-11 1-249-429-11 1-249-429-11 1-249-434-11 1-249-414-11	CARBON CARBON CARBON CARBON CARBON	820 5% 10K 5% 10K 5% 27K 5% 560 5%	1/4W 1/4W 1/4W 1/4W 1/4W
	MODULE PROTECTOR (PM-17)		R023 R026 R027 R028	1~249 ·414 · 11 1~249 ·421 · 11 1~249 ·421 · 11 1~249 ·423 · 11	CARBON CARBON CARBON CARBON	560 5% 2.2K 5% 2.2K 5% 3.3K 5%	1/4W 1/4W 1/4W 1/4W

KV-19TR10/19TR20 RM-780/RM-781

Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

	. PART NO.	DESCRIPTION	 		REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK
SG501	<spar 1-519-422-11</spar 					R702 R703 R704 R705	1-249-422-11 1-249-415-11 1-249-418-11 1-249-411-11	CARBON CARBON	2.7K 5% 680 5% 1.2K 5% 330 5%	1/4W 1/4W 1/4W 1/4W	
T504 / T599 /	<trai \$\lambda 1-437-090-21 \$\lambda 1-439-483-11 \$\lambda 1-421-857-11 \$\lambda 1-424-335-11</trai 	TRANSFORMER TRANSFORMER.	ASSY, FLYBAC FERRITE (KV LINE FILTER	IK (NX-1 7-19TR20	710) ONLY)	R709 R710	1-249-422-11 1-249-413-11 1-249-411-11 1-249-418-11 1-249-411-11	CARBON CARBON CARBON	2.7K 5% 470 5% 330 5% 1.2K 5% 330 5%	1/4W 1/4W 1/4W 1/4W 1/4W	
THP60	3HT> E1 -180-808-1 ∆ A	RMISTOR> THERMISTOR,	POSITIVE		Section	R711 R712 R713 R714 R715	1-249-422-11 1-249-410-11 1-249-422-11 1-249-409-11 1-202-824-00	CARBON CARBON CARBON	2.7K 5% 270 5% 2.7K 5% 220 5% 3.3K 10%	1/4W 1/4W 1/4W 1/4W 1/2W	
T U101.	<tun 1-465-371-11</tun 	ER> TUNER, ET (E (KV-19TR10	TP-RA401) (USA), KV-19	steviji		R716 R717 R718 R719 R720	1-215-899-11 1-202-824 00 1-215-899-11 1-202-824-00 1-215-899-11	SOLID METAL OXIDE SOLID	15K 5% 3.3K 10% 15K 5% 3.3K 10% 15K 5%	2W 1/2W 2W 1/2W 2W	F F
	∆ 1-465-371-21 <cry< td=""><td>TUNER, ET (B (KV-19TRIO STAL></td><td>TP-RA40I) (CND), KV-IS</td><td>OTR20 (C</td><td>ND) ONLY)</td><td>R721 R722 R723 R724 R725</td><td>1-249-421-11 1-202-837-00 1-202-846-00 1-202-848-00 1-202-838-00</td><td>SOLID SOLID SOLID</td><td>2.2K 5% 82K 10% 470K 10% 680K 10% 100K 10%</td><td>1/4W 1/2W 1/2W 1/2W 1/2W</td><td></td></cry<>	TUNER, ET (B (KV-19TRIO STAL>	TP-RA40I) (CND), KV-IS	OTR20 (C	ND) ONLY)	R721 R722 R723 R724 R725	1-249-421-11 1-202-837-00 1-202-846-00 1-202-848-00 1-202-838-00	SOLID SOLID SOLID	2.2K 5% 82K 10% 470K 10% 680K 10% 100K 10%	1/4W 1/2W 1/2W 1/2W 1/2W	
X301	1-567-192-11 1-567-505-11	OSCILLATOR,	CRYSTAL	******	******	R726 R727 R728	1-202-719-00 1-202-814-11 1-216-372-11	SOLID SOLID METAL OXIDE	1M 10% 33K 10% 1.8 5%	1/2W 1/2W 2W	F
	*A-1331-048·A	C BOARD, COM				R730	1-202-842-11 1-202-549-00	SOLID	220K 10% 100 10%	1/2W 1/2W	
	*!-506-371-00 *!-508-768-00 1-526-814-11 *!-564-509-11 *4-374-704-01	PIN, CONNECT SUCKET, PICT PLUG, CONNEC COVER (REAR	COR (5MM PITO CURE TUBE CTOR 6P LID), CV VOL	CII) 6P ,		RV701 RV702 RV703 RV704 RV705	<par 1-228-993-00 1-228-991-00 1-228-993-00 1-228-991-00 1-228-993-00</par 	RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI RES, ADJ, CAI	R> RBON 4.7K RBON 2.2K RBON 4.7K RBON 2.2K RBON 4.7K		
	<cap< td=""><td>ACITOR></td><td></td><td></td><td></td><td>RV706 RV707</td><td>1-228-995-00 1-230-641-11</td><td>RES, ADJ, CAI RES, ADJ, ME</td><td>RBON 22K FAL GLAZE 2</td><td>. 2M</td><td></td></cap<>	ACITOR>				RV706 RV707	1-228-995-00 1-230-641-11	RES, ADJ, CAI RES, ADJ, ME	RBON 22K FAL GLAZE 2	. 2M	
C701 C702 C703 C704	1-102-112-00 1-102-112-00 1-102-112-00 1-123-875-11	CERAMIC CERAMIC ELECT	330PF 10MF	10% 10% 10% 20%	50V 50V 50V 50V	RV709&	1-230-641-11 1-230-619-11	RES, ADJ, ME	TAL GLAZE I	10 M ******	
C705 C706 C707 C708 C711	1-101-006-00 1-123-875-11 1-129-718-00 1-162-116-00 1-102-116-00	ELECT FILM CERAMIC CERAMIC	0.047MF 10MF 0.022MF 680PF 680PF	20% 20% 10%	50V 50V 630V 2KV 50V	\$ 	*A-1373-214-A *1-565-480-11 *1-565-487-11	CONNECTOR, B	***** OARD TO BOA	RD 4P	(, Y)
C712 C713	1-102-116-00 1-102-116-00	CERAMIC CERAMIC	680PF 680PF	10% 10%	50V 50V	1 1 1 6 1	<cap< td=""><td>ACITOR></td><td></td><td></td><td></td></cap<>	ACITOR>			
	< c 01	L>				C401 C402 C403	1-124-119-00 1-124-119-00 1-126-320-11	ELECT ELECT	330MF 330MF 10MF	20% 20% 20%	16V 16V 16V
L701	1-408-424-00	INDUCTOR	180011			C408 C414	1-123-875-11 1-123-875-11	ELECT ELECT	10MF 10MF	20% 20%	50V 50V
		NSISTOR>	vigar i -			C415 C451 C452	1-124-477-11 1-124-119-00 1-124-791-11	ELECT ELECT ELECT	47MF 330MF 1MF	20% 20% 20%	16V 16V 50V
Q701 Q702 Q703		TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2	2SC2611			C461	1-161-742-00 <dio< td=""><td></td><td>O. 0022MF</td><td>20%</td><td>⊿00∀</td></dio<>		O. 0022MF	20%	⊿ 00∀
	<res< td=""><td>ISTOR></td><td></td><td></td><td></td><td>D451</td><td>8-719-911-19</td><td>DIODE ISSII9</td><td></td><td></td><td></td></res<>	ISTOR>				D451	8-719-911-19	DIODE ISSII9			
R701	1-249-413-11	CARBON	470 5%	1/4W		; D452	8-719-911-19	DIODE ISSI19			

The components identified by shading and mark $\hat{\Delta}$ are critical for safety. Replace only with part number

specified.

Les composants identifies par une trame et une marque & sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

	PART NO.	DESCRIPTION				REMARK	i	PART NO.	DESCRIPTION				REMARK
R397 R398	1-249-434-11 1-249-423-11	CARBON CARBON	27K 3.3K	5% 5%	1/4W 1/4W	_	R566	1-247-895-00	CARBON	470K		1/4W	
R501 R502 R503	1-216-458-11 1-216-458-11 1-216-458-11	METAL OXIDE METAL OXIDE METAL OXIDE	1.8K 1.8K 1.8K	5% 5% 5%	2W	P P	R569	1-216-399-00 1-216-390-51 1-214-913-00	METAL OXIDE METAL OXIDE METAL	6.8 1.2 100K	5% 5% 1%	3W 3W 1/2W	F -
R504 R505 R506	1-216-458-11 1-214-780-00 1-249-407-11	METAL OXIDE METAL CARBON	1.8K 130K 150	5% 1%	2W 1/4W	F	R570 R571	1-215-869-11 1-216-356-00	METAL OXIDE	1K 3.9	5% 5%	IW IW	F F
R507 R508	1-249-426-11 1-249-437-11	CARBON CARBON	5.6K 47K	5% 5% 5%	1/4W 1/4W 1/4W		R573	1-249-423-11 1-247-764-11 1-216-349-00 1-216-451-91	CARBON CARBON METAL OXIDE METAL OXIDE	3.3K 10K 1 120	5% 5% 5% 5% 5%	1/4W 1/2W 1W 2W	F F
R509 R510 R512	I-249-434-11 1-249-422-11 I-249-411-11	CARBON CARBON CARBON	27K 2.7K 330	5% 5% 5%	1/4W 1/4W 1/4W	F	11579 ₺	1-249-415-91	CARBON METAL OXIDE	680		Ī/4W IW	F.
R513 R514	1-215-472-00 1-215-457-00	METAL METAL	130K 33K	1%	1/6W		R581 R582 R583	1-249-413-11 1-215-863-11 1-215-863-11	CARBON METAL OXIDE METAL OXIDE	470 100 100	5% 5% 5% 5%	1/4W 1W 1W	F F
R515 R516 R517	1-249-427-11 1-249-428-11 1-249-417-11 1-216-379-91	CARBON CARBON CARBON METAL OXIDE	6.8K 8.2K IK	5% 5% 5% 5%	1/4W 1/4W 1/4W 2W	F .	R587 A	1-247-746-11 1-215-899-91	CARBON METAL OXIDE	390 15K	5 %	1/2W	F
R519	1-249-424-11	CARBON	6.8 3.9K		1/4W	Ρ .	!	1-249-441-11 1-249-389-11	CARBON CARBON	100K 4.7	5% 5%	1/4W 1/4W (KV-19T	F R20 UNLY)
R520 R521 R522	1-249-421-11 1-249-417-11 1-249-431-11	CARBON CARBON CARBON	2.2K 1K 15K	5% 5% 5%	1/4W 1/4W 1/4W		R599	1-249-419-11	CARBON	1.5K	5 %	1/4W (KV-19T	R20 ONLY)
R523 R524	1-249-417-11 1-249-429-11	CARBON CARBON	1K 1OK	5% 5%	1/4W 1/4W		¦ R602 ⚠.	1-202-719-91 1-205-792-11 1-205-691-11	SOLID WIREWOUND WIREWOUND	1 M 1.8 150	10% 5% 5%	1/2W 10W 20W	F
R525 R526 R527	1-249-417-11 1-249-423-11 1-259-871-15	CARBON CARBUN CARBON	1K 3.3K 6.8M	5% 5% 5% 5%	1/4W 1/4W 1/4W		R610 ∆.	1-217-224-11 1-215-872-11	WIREWOUND METAL OXIDE	100 3.3K	10%	2W 1W	F .
R528 R529	1-249-419-11 1-249-417-11	CARBON CARBON	1.5K 1K	5% 5%	1/4W 1/4W		R612 R613	1-205-744-11 1-249-437-11 1-249-425-11	WIREWOUND CARBON CARBON	4.7K 47K 4.7K	5% 5% 5%	20W 1/4W 1/4W	•
R530 R531 R532	1-249-433-11 1-249-410-11 1-249-438-11	CARBON CARBON CARBON	22K 270 56K	5% 5% 5% 5%	1/4W 1/4W 1/4W		R615 ∆ .	1-216-463-91 1-247-719-91	METAL OXIDE	12K	5%	2W	F F
R533 R534	1-247-887-00 1-249-417-11	CARBON CARBON	220K 1K	5% 5%	1/4W 1/4W		R617	1-249-401-11	CARBON CARBON	47 470K	5%	1/4W 1/4W	F
R535 R536 R537	1-249-431-11 1-249-426-11 1-249-430-11	CARBON CARBON CARBON	15K 5.6K 12K	5% 5% 5%	1/4W 1/4W 1/4W			<var< td=""><td>TABLE RESISTOR</td><td>></td><td></td><td></td><td></td></var<>	TABLE RESISTOR	>			
R538 R539	1-249-405-11 1-215-373-31	CARBON METAL	100 10	5% 1%	1/4W 1/6W		RV201	1-238-012-11 1-238-016-11 1-238-012-11	RES, ADJ, CAR RES, ADJ, CAR RES, ADJ, CAR	BON TOK	(
R 540 R 541 R 542	1-249-408-11 1-249-427-11 1-249-423-11	CARBON CARBON CARBON	180 6.8K 3.3K	5% 5% 5%	1/4W 1/4W 1/4W	1	RV307	1-238-011-11 1-228-728-00	RES, ADJ, CAR RES, ADJ, CER	BON 470		100K	
R543 R544	1-249-430-11 1-249-426-11	CARBON CARBON	12K 5.6K	5% 5%	1/4W 1/4W		RV502	1-228-728-00 1-238-020-11 1-238-017-11	RES. ADJ. CER RES. ADJ. CAR RES. ADJ. CAR	BON 100)K	100K	
R545 R547 R548	1-249-417-11 1-249-429-11 1-249-496-11	CARBON CARBON CARBON	1K 10K 100K	5% 5% 5% 5%	1/4W 1/4W 1/2W		RV506	1-238-019-11 1-238-010-11	RES, ADJ, CAR RES, ADJ, CAR	BUN 478	(
R 548 R 549 R 550	1-249-415-11 1-249-429-11	CARBUN CARBON	680 10K	5% 5%	1/4W 1/4W	F		<rel< td=""><td>AY></td><td></td><td></td><td></td><td></td></rel<>	AY>				
R 551 R 552 R 554 R 555	1-249-428-11 1-249-414-11 1-249-427-11	CARBON CARBON CARBON	8.2K 560 6.8K	5% 5% 5%	1/4W 1/4W 1/4W		RY6011	1-515-573-13	RELAY, POWER				
R 555 R 556	1-249-413-11 1-216-352-11	CARBON METAL OXIDE	470 1.8	5% 5%	1/4W	F	SIOI A	<swi< td=""><td>TCH> SWITCH, TACTI</td><td>ı (bour</td><td>: D \</td><td></td><td></td></swi<>	TCH> SWITCH, TACTI	ı (bour	: D \		
R 557 R 558 R 559	1-249-411-11 1-249-410-11	CARBON CARBON CARBON	330 270	5% 5%	1/4W 1/4W		\$102 \$103	1-571-532-22 1-571-532-21 1-571-532-21	SWITCH, TACTI SWITCH, TACTI	l. L	a)		
R560 R561	1-249-409-11 1-249-423-11 1-249-496-11	CARBON CARBON CARBON	220 3.3K 100K	5% 5% 5%	1/4W 1/4W 1/2W		;	1-571-532-21 1-571-532-21	SWITCH, TACTII	Ĺ	ひかか ひ	a ana ay	
R 562 R 563	1-249-429-11	CARBON CARBON	10K 39K	5% 5%	1/4W 1/4W		\$106 \$501	1-571-532-21 1-554-186-00	SWITCH, TACTII SWITCH, LEVER	∟ (KVI	911(2)	U UNLY)	
R 564 R 565	1-215-417:00 1-249-419-11	METAL CARBON	680 1.5K	1% 5%	1/6W 1/4W		1						

The components identified by 🖁 shading and mark 🐧 are criti- 🥻 cal for safety. Replace only with part number specified.

Les composants identifies par une trame et une marque 🛕 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REF.	NO.	PART	NO.

DESCRIPTION

REMARK TREE, NO. PART NO.

DESCRIPTION

REMARK

<10>

1-235-783-21 INSULATED MODULE, VIDEO(1VM-1) 1-235-784-12 INSULATED MODULE, AUDIO(1AM-1) 8-759-000-49 IC MC14066BCP [C401 [C402

<JACK>

J451 1-569-354-11 JACK BLOCK, PIN 2P

<00115

L401 1-410-515-11 INDUCTUR 33UH

<TRANSISTOR>

Q401 8-729-900-89 TRANSISTOR DTC144ES

<RESISTOR>

R401 R403 R405 R406 R409	1-249-409-11 1-249-438-11 1-249-438-11 1-249-405-11 1-249-441-11	CARBON CARBON CARBON CARBON CARBON	220 56K 56K 100 100K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W
R414 R415 R418 R420 R421	1-249-438-11 1-249-438-11 1-249-405-11 1-247-885-00 1-249-429-11	CARBON CARBON CARBON CARBON CARBON	56K 56K 100 180K 10K	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W
R451 R452 R453 R461	1-249-404-00 1-247-885-00 1-249-437-11 1-202-726-00	CARBON CARBON CARBON SULID	82 180K 47K 3.9M	5% 5% 5% 10%	1/4W 1/4W 1/4W 1/2W

*1-632-915-11 K BOARD

*1-560-123-00 PLUG, CONNECTOR (2.5MM) 3P *1-564-505-11 PLUG, CONNECTOR 2P

*I-565-487-11 CONNECTOR, BOARD TO BOARD 11P

<CAPACITOR>

C450 1-100-575-14 MILAN 0.024MF 104 100V	C251 C252 C253 C255 C256	1-124-925-11 1-124-799-11 1-124-667-11 1-124-910-11 1-106-375-12	ELECT ELECT ELECT ELECT MYLAR	2.2MF 2.2MF 10MF 47MF 0.022MF	20% 20% 20% 20% 10%	V001 160V V001 V00V
--	--------------------------------------	--	---	---	---------------------------------	------------------------------

<10>

IC251 8-749-900-15 IC SI-4102

<RESISTOR>

R251 R252	1-249-434-11 1-249-401-11	CARBON CARBON	27K 47	5% 5%	1/4W 1/4W	F
R253	1-249-410-11	CARBON	270	5%	1/4W	F
R254	1-249-430-11	CARBUN	12K	5%	1/4W	

<TRANSFORMER>

T251 A 1-427-479-11 TRANSFORMER (SUT) *********************************

MISCELLANEOUS *********

COIL, DEMAGNETIZATION
DEFLECTION YOKE (Y20NDA)
MAGNET, DISK; IOMM Ø
MAGNET, RUTATABLE DISK; 15MM Ø
MAGNET, BMC ⚠. 1-426-358-11 ፟፟፟፟፟፟፟፟፟፟፟፟. 1-451-260-22 1-452-032-00 1-452-094-00 1-452-277-00

▲.1-536-678-31 ANTENNA BLOCK (KV-19TR10 (USA), KV-19TR20 (USA) ONLY) ▲.1-537-077-21 ANTENNA BLOCK

(KV-19TRIO (CND), KV-19TR20 (CND) ONLY)

∆.1-559-396-11 CORD, POWER

SP902 1-544-283-11 SPEAKER

V901 A.8-737-353-05 PICTURE TUBE (A49JLV50X)

ACCESSORIES AND PACKING MATERIALS

PART NO.	DESCRIPTION	REMARK
1-465-385-11 1-465-386-11 1-501-372-21 1-513-379-00	REMOTE COMMANDER (RM-781) (K REMOTE COMMANDER (RM-780) (K ANTENNA, TELESCOPIC (KV-19TRID (USA), KV-19TR20 CONVERTER (EAC-25)	V-19TR10 ONLY)
1-562-443-11 3-751-226-21 3-751-226-31	(KV-19TR10 (USA), KV-19TR20	, ,
*4-380-340-01 *4-397-482-01 *4-397-483-01 *4-397-484-01	(KV-19TR10 (CND), KV-19TR20 BAG, PROTECTION CUSHION (UPPER) (ASSY) CUSHION (LOWER) (ASSY) INDIVIDUAL CARTON	(CND: ONLY)

KV-19TR10/19TR20 RM-780/RM-781

SONY. SERVICE MANUAL

US Model

KV-19TR10

Chassis No. SCC-D37E-A

KV-19TR20

Chassis No. SCC-D37F-A

Canadian Model

KV-19TR10

Chassis No. SCC-D36C-A

KV-19TR20

Chassis No. SCC-D36B-A

CORRECTION-1

Correct the service manual as shown below. File this correction with the service manual.

: Indicates corrected portion

SECTION 4

SAFETY RELATED ADJUSTMENTS

SECTION 6 DIAGRAMS

6-2 PRINTED WIRING BOARDS AND SCHEMATIC DIAGRAMS TO CIRCUIT NOTE

Page	Incorrect	Correct
19	 Readings are taken with a color-bar signal input. Readings are taken with a 10 MΩ digital maltimeter. Voltage are dc with respect to ground unless otherwise noted. Voltage variations may be neted due to normal production tolerances. B+ bus. signal path. 	 Readings are taken with a color-bar signal input. Readings are taken with a 10 MΩ digital maltimeter. Voltage are dc with respect to ground unless otherwise noted. Voltage variations may be neted due to normal production tolerances. B+ bus. : signal path. *: Model difference

A board waveform

Page	Inc	correct				Correct	
	A BOARÐ				A BOARÐ		
	0	2	3		0	2	3
	-1	-1-1-1-1	-1		المالية		-1
	2.4Vp-p (H)	2.4Vp-p(H)	2.4Vp-p(H)		2.4Vp-p (H)	2.4Vp-p (H)	2.4Vp-p (H)
	4	(5)	6			(5)	6
	-10	Start Start	2		- 11	1 September 1	2
	2 Vp-p (H)	1.8Vp-p(H)	1.6Vp-p(H)	4	2 Vp-p (H)	1.8Vp-p (H)	1.6Vp-p (H)
	7	(B)	ا به میل که میله آی میل که میل که میله آی			(8) (4) (4) 	منه بنها بهان ا
	- <u>J-1</u>		ا ا ا	-			l L L
	1.1Vp-p (H)	4.4Vp-p (H)	4.2Vp-p(H)	1	(D)	4.4Vp-p (H)	4.2Vp-p (H)
	क्रिय क्रिय	1			क्याप क्याप	1 / / 1	
	4.2Vp-p(H)	1.9Vp-p(V)	2.0Vp-p(V)		4.2Vp-p(H)	1.9Vp-p(V)	2.0Vp-p (V)
22	(3)		(5)		10	12	(6)
	1.6Vp-p (H)	5.0Vp-p(H)	5.2Vp-p(H)		1.6Vp-p(H)	5.0Vp-p(H)	5.2Vp-p (H)
	1000000		13		100,0000		(a)
	VVVVVV	Į V V	+++		VVVVV	V V	+++
	0.07Vp-p(3.58MHz		1.1Vp-p (V)	4	0.07Vp-p(3.58MHz	 	1. Vp-p (V)
		20				9	
		~~~				~~~	<b>~~~</b>
	4.8Vp-p (V)	6 Vp-p (V )	230 Vp-p (H)	+	48Vp-p (V)	6 Vp-p (V )	230 Vp -> (H)
	$\wedge$				1 1		
	940 Vp-p (H)	8 Vp-p (V )	4.8Vp-p (H)		940Vp-p(H)	8 Vp-p (V)	4.8Vp-1 (H)
					23	26	27)
		1				1	
A characteristic and a contract of	220 Vp-p (H)	10 Vp-p (H)	5 Vp-p(H)		220Vp-p (H)	10 Vp-p (H)	5 Vp-, (H)
	©	3000			- 192 <u></u>	29	
		MM				<b>M</b>	
	5.2Vp-p (V )	3.4Vp-p (4MHz)			5.2Vp-p(V)	3.4Vp-p (4MHz)	

Circuit Board A Difference List(P19-P22)



Location	Ref,No	KV-19TR10	KV-19TR20
N-20	A-3		CONECTOR, BOARD TO BOARD 4P
C-5	C214	10MF 16V	_
M-14	C563	0.008 2KV	-
E-7	C351	<del>-</del>	47MF 16V
E-7	C352	_	47MF 16V
N-15	C596		0.0033MF 630V
N-16	C597	<del>-</del>	220MF 35V
N-16	C598	<del>-</del>	33MF 16V
N-16	C599		220MF 16V
J-2	D151	ISS119	_
N-16	D599	_	RD10ES-B2
N-15	D598		RH-1C
E-8	IC302	<del>-</del>	CX20061
N-16	Q599	_	2SD789-4
E-7	R354	<del>-</del>	100
E-7	R355	_	22K
D-7	R356	_	100
E-8	R357		100
N-14	R598		4.7
N-16	R599	_	1.5K
N-15	T599		TRANSFORMER, FERRITE

### 6-2 SCHEMATIC DIAGRAMS(Page27-28) (K board)



### **SECTION 8**

### **ELECTRICAL PARTSLIST**

