

Fig. 3.

Fig. 4.

Fig.6.

The state of the same of the state of the st

Fig.8.

Lys		Ala			Thr			Ser		*	:	
Thr		Arg Cys	*.		Asp		— (3-6-	Gly				
Ser		Arg	-	T	Lys	, <u>+</u>	<u>+</u>	Olu	- 79 -			
Val		Ile			Leu		1	Cys			57 _{Gln}	II
PROTEIN SEQUENCE OF ELASTASE INHIBITOR		ren			Cys			Cys		C2-6-	Pro	
OF ELAS Gly	T10	Ile			Arg			Lys	Ţ	<u></u>	Val	C2-3—
avence Lys		Ile			Asn	Ī	ິເ	Lys L		(-67-)	Phe	
TEIN SE	DIRECT SEQUENCE -	Pro			Pro			Ile			Cys	*
PRO	DIRECT	Cys Pro	*		Pro	1.4		Gly	- 14 -		Ala	T9-C2-6
פות		Ser			Asn	1	-	Pro			Met	
Gln		Gly			Leu			Cys			Gly	- 6-EJ-
1 Ala		Pro			Met		-	Asp			Cys	*

X=UNIDENTIFIED T=TRYPTIC FRAGMENTS C=CHYMOTRYPTIC FRAGMENTS

Fig.9.

123

Fig. 13.

AlaGlnGluProValLysGlyProValSerThr

ELI1

AATTCGAGCTCGGTACCATACCTGCATATGCTCAAGAACCAGTTAAAGGTCCTGTGTCTACT

GCTCGAGCCATGGTATGGACGTATACGAGTTCTTGGTCAATTTCCAGGACACAGATGA

LysProGlySerCysProIleIleLeuIleArgCysAlaMetLeuAsnProProAsnArg

ELI3

AAGCCAGGTTCTTGTCCTATTATCTTGATTCGTTGCGCTATGTTAAACCCACCTAACCGT

TTCGGTCCAAGAACAGGATAATAGAACTAAGCAACGCGATACAATTTGGGTGGATTGGCA

CysLeuLysAspThrAspCysProGlyIleLysLysCysCysGluGlySerCysGlyMet

ELI5

TGTTTGAAGGACACTGATTGTCCAGGTATCAAAAAGTGCTGTGAAGGTTCCTGCGGTATG

ACAAACTTCCTGTGACTAACAGGTCCATAGTTTTTCACGACACTTCCAAGGACGCCATAC

AlaCysPheValProGlnEndEnd
183 GCTTGTTTCGTTCCACAATAATAG

ELI4 ◀

CGAACAAAGCAAGGTGTTATTATCCTAG 210
ELI6 ←---

Fig. 14.

Ala Gln Glu Pro Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys GCG CAA GAG CCA GTC AAA GGT CCA GTC TCC ACT AAG CCT GGC TCC TGC 5' DNA

Sequence

Pro Ile Ile Leu Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys CCC ATT ATC TTG ATC CGG TGC GCC ATG TTG AAT CCC CCT AAC CGC TGC

Leu Lys Asp Thr Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser

TTG AAA GAT ACT GAC TGC CCA GGA ATZ AAG AAP TGC TGT GAA GGC TCT

Cys Gly Met Ala Cys Phe Val Pro Gln TGC GGG ATG GCC TGT TTC GTT CCC CAG

Z = T, C or AP = A or G

Fig. 15.

Ala Gln Glu Pro Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys GCG CAA GAG CCA GTC AAA GGT CCA GTC TCC ACT AAG CCT GGC TCC TGC 5' DNA

Sequence

Pro Ile Ile Leu Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys CCC ATT ATC TTG ATC CGG TGC GCC ATG TTG AAT CCC CCT AAC CGC TGC

Leu Lys Asp Thr Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser

TTG AAA GAT ACT GAC TGC CCA GGA ATZ AAG AAP TGC TGT GAA GGC TCT

Cys Gly Met Ala Cys Phe Val Pro Gln TGC GGG ATG GCC TGT TTC GTT CCC CAG TAG GAGGGAGCCGGTCCTTGCTGCACCTGT

GCCGTCCCCAGAGCTACAGGCCCCATCTGGTCCTAAGTCCCTGCTGCCCTTCCCCACACTGTCCA
TTCTTCCTCCCATCAGGATGCCCACGGCTGGAGCTGCCTCTCTCATCCACTTTCCAATAAAGAGTTCCG
GAATTC Poly A 3'
signal

Z = T, C or AP = A or G

Fig.16.

		10							30									50	
			•				•			•			•				•		
GG	AAT'	<u>TC</u> C	GGT	TCC	TCA	TCG	CTG	GGA	CGC	TGG	TTC	TAG	<u>A</u> GG	CAG	CTG	TCA	CGG	GAG	TTCC
Ec	eoRI XbaI									aI									
F	L	I	A	G	T	L	V	L	E	A	A	V	T	G	V	P			
IN-FRAME UPSTREAM PROTEIN SEQUENCE																			
70							90						11	0.					
							•			•			•				•		
TGTTAAAGGTCAAGACACTGTCAAAGGCCGTGTTCCATTCAATGGACAAGATCCCGTTAA																			
٧	K	G	Q	D	T	V	K	G	R	V	P	F	N	G	Q	D	P	V	K
13	0						150						1	.70					
•			•	1			•			•			•				•		
AGGACAAGTTTCAGTTAAAGGTCAAGATAAAGTCAAAGCGCAAGAGCCAGTCAAAGGTCC																			
G	Q	V	S	V	K	G	Q	D	K	V	K								
AlaGlnGluProValLysGlyPr																			
1-	-EL	ASI	ASE	I E	HI	BITC)R												

Fig.16 (cont.)

190	210	230
		GATCCGGTGCGCCATGTTGAATCC IlleArgCysAlaMetLeuAsnPr
250	270	290
•	•	•
CCCTAACCGCTGCTTGA	AAGATACTGACTGCCCAGGAA	TCAAGAAGTGCTGTGAAGGCTC
oProAsnArgCysLeuL	ysAspThrAspCysProGly1	CleLysLysCysCysGluGlySe
310	330	350
•	•	
TTGCGGGATGGCCTGTT	TCGTTCCCCAGTGAGAGGGAG	CCGGTCCTTGCTGCACCTGTGC
rCysGlyMetAlaCysP	heValProGlnEnd	
370	390	410
•		
CGTCCCCAGAGCTACAG	GCCCCATCTGGTCCTAAGTCC	CTGCTGCCCTTCCCCTTCCCAC
430	450	470
ACTGTCCATTCTTCCTC	CCATTCAGGATGCCCACGGCT	GGAGCTGCCTCTCTCATCCACT
490		
,,,,		
TTCCAATAAAGAGTTCC	· CCAATTC	
Poly A		
signal	ECONI	
signai		

Fig. 17.

Fig.18.

