Supplementary Data

riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions

Nicholas R. Waters, ^{1,2*} Florence Abram, ¹ Ashleigh Holmes, ³ Fiona Brennan, ^{1,4} and Leighton Pritchard ^{2*}

¹Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland ²Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland ³Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland ⁴Soil and Environmental Microbiology, Environmental Research Centre, Johnstown Castle, Wexford, Ireland

*To whom correspondence should be addressed: nickp60@gmail.com, leighton.pritchard@hutton.ac.uk

Compiled: 2017/07/18 16:51:00

Extended Methods

Making the artificial test genome

The artificial genome used for testing was constructed using the makeToyGenome.sh script included in the GitHub repository under the scripts directory. Briefly, the 7 rDNA regions from the *E. coli Sakai* genome were extracted with 5kb flanking sequence upstream and downstream; these sequences were then concatenated end to end to form a single, ~100kb sequence containing the 7 rDNAs as well as their flanking context.

Effect of reference sequence identity on riboSeed performance

The following range of substitutions were introduced into a artificial genome using the runDegenerate.sh script (included in the GitHub repository under the scripts directory), which facilitates the following procedure: 0.0, 0.0025, 0.0050, 0.0075, 0.0100, 0.0150, 0.0200, 0.0250, 0.0500, 0.0750, 0.1000, 0.1250, 0.1500, 0.1750, 0.2000, 0.2250, 0.2500, 0.2750, 0.3000. An artificial test genome is constructed (see above), and reads simulated using pIRS (100bp, 300bp inserts, stdev 10, 30-fold coverage, built-in error profile). Then, for each of a range of substitution frequencies, substitutions are introduced into the simulated genome, either just in the flanking regions or throughout. riboSeed is run on the reads using the mutated genome as the reference, and the results are evaluated with riboScore. This script was run 100 times, using a different random seed each time. As pseudo random number generation may differ between operating systems, comparable but not identical results can be expected.

Performance on Archaeal Data

We assessed the effectiveness of riboSeed with assembling archaeal genomes. Most (~55%) archaeal genomes have only a single rDNA, and none has been observed to have more than four. As riboSeed requires a sequencing dataset and a reference genome, applicability was limited; of the 104 entries in rrnDB with multiple rDNAs, only 7 had multiple

entries at the species level. Among those, only 2 had publicly available short read data. We used riboSeed to reassemble Methanosarcina barkeri Fusaro DSMZ804 (Ion Torrent PGM, 89bp single-end reads) and Methanobacterium formicicum st. BRM9 (Illumina HiSeq 2000, 100bp paired-end reads). Methanobacterium formicicum st. JCM10132 (DRR017790) and Methanosarcina barkeri Fusaro DSMZ804 (SRR2064286) were the only ones that were suitable for riboSeed, meaning that there was publicly available short read data and that there is a related genome at the species level which is complete.

M. formicicum st. JCM10132 was sequenced on an Ion Torrent PGM, generating 106.5Mbp of single-end data. M formicicum BRM9 (CP006933.1) was used as a reference. The resulting de fere novo assembly resulted in assembly of 1 of 2 rDNA gaps. This represents the first application of riboSeed to Ion Torrent data.

Methanosarcina barkeri Fusaro DSMZ804 was sequenced using an Illumina HiSeq2000 with 101bp paired-end reads, with an average fragment length of 400bp. We downsampled to use 5% of the 19.4Gbp dataset. Methanosarcina barkeri str. Wiesmoor was used as a reference. The resulting riboSeed assembly showed correct assembly of 3 of 3 rDNAs, while de novo assemble failed to resolve any.

Taken together, we show that given appropriate datasets, archaeal datasets can be processed in the same manner used for bacteria.

2

 $\textbf{Table S1:} \ \ \text{Hits resulting from searching the SRA database for various sequencing technologies as of January, 2017}$

Search term	Hits	Percentage
illumina	2242225	94.27
pacbio	21131	0.89
ion	30560	1.28
roche	42445	1.78
oxford	12301	0.52
solid	29791	1.25
Total	2378453	100

Table S2: Accessions for 25 E. coli genomes

GCA_000021125.1_ASM2112v1
GCA_000023665.1_ASM2366v1
GCA_000026545.1_ASM2654v1
GCA_000262125.1_ASM26212v1
GCA_000273425.1_Esch_coli_MG12655_V1
$GCA_000299255.1_ASM29925v1$
$GCA_000714595.1_ASM71459v1$
GCA_000967155.1_HUSEC2011CHR1
GCA_000974405.1_ASM97440v1
GCA_000974465.1_ASM97446v1
GCA_000974575.1_ASM97457v1
$GCA_001020945.2_ASM102094v2$
$GCA_001566675.1_ASM156667v1$
$GCA_002012245.1_ASM201224v1$
GCA_001750845.1_ASM175084v1
GCA_001886755.1_ASM188675v1
GCA_001901145.1_ASM190114v1
GCA_002012145.1_ASM201214v1
GCA_900096815.1_Ecoli_AG100_Sample2_M9_Assembly
GCA_002116715.1_ASM211671v1
GCA_002118095.1_ASM211809v1
$GCA_002125925.1_ASM212592v1$
GCA_001612475.1_ASM161247v1
$GCA_001651965.1_ASM165196v1$
GCA_001721125.1_ASM172112v1

All available at ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/

Table S3: Strain names and accessions for reference genomes used in this study

Strain Name	Accession
E. coli MG1655	NC_000913.3
A. hydrophila ATCC 7966	NC_008570.1
B. cereus ATCC 10987	AE017194.1
B. cereus NC7401	NC_016771.1
B. fragilis 638R	FQ312004.1
R. sphaeroides ATCC 17029	NC_009049.1, NC_009050.1
S. aureus TCH1516	NC_010079.1
S. aureus MRSA252	BX571856.1
V. cholerae El Tor str. N16961	NC_002505.1, NC_002506.1
X. axonopodis pv. Citrumelo	CP002914.1
P. aeruginosa BAMCPA07-48	CP015377.1
P. aeruginosa ATCC 15692	NZ_CP017149.1

Table S4: Software Versions

Tool	Version
Mauve	2015-02-13 build 0
BLAST+	2.2.28+
Barrnap	0.7
BWA	0.7.12-r1039
samtools	1.3.1
MAFFT	v7.215
SPAdes	v3.9.0
QUAST	4.1
bedtools	2.17.0
EMBOSS	6.6.0
pIRS	2.0.2

```
riboSeed (reference, riboSelect_clusters, reads, iters, flanking_width)
   ref = reference;
   clusters = parse \ riboSelect\_clusters;
   region = clusters + flanking\_width;
   for i in iters do
       map reads to ref;
       \mathbf{for}\ \mathit{cluster}\ \mathit{in}\ \mathit{clusters}\ \mathbf{do}
           filter and extract reads region;
           subassemble;
           return pseudocontig;
       end
       assess subassembly;
       if success then
           make pseudogenome from pseudocontigs;
           ref = pseudogenome;
       end
   end
   run assembler with reads and pseudocontigs;
end
```

Figure S1: Pseudocode of riboSeed algorithm

BLAST Results for BA000007.2 rDNA

(Filtered to exclude matches less than 90% of query length and hits with E-value >10e-6)

Figure S2: BLASTn was used to perform *in silico* DNA-DNA hybridization of all rDNA regions from *E. coli Sakai* with variable flanking lengths. The number of hits is a proxy for occurrences in the genome; increasing the flanking length increases the specificity.

Figure S3: Assembly of artificial genome. De fere novo results in closure of 3-5 rDNAs with the correct reference; only 1-2 rDNAs are correctly assembled using K. pneumoniae. No rDNAs are assembled with de novo assembly. Scored with riboScore.py. N=8.

(c) P. aeruginosa strain ATCC 15692 (NZ_CP017149.1)

(e) B. cereus ATCC 10987 (AE017194.1)

(g) B. fragilis 638R (FQ312004.1)

(b) K. pneumoniae subsp. pneumoniae HS11286 (CP003200.1)

(d) A. hydrophila ATCC 7966 (NC_008570.1)

(f) B. cereus NC7401 (NC_016771.1)

(h) R. sphaeroides ATCC 17029 (NC_009049.1, NC_009050.1)

Figure S4: riboScan.py,riboSelect.py, and riboSnag.py were run on all the genomes used as references for *de fere novo* assemblies. Consensus alignment depth (grey bars) and Shannon entropy (black points, smoothed entropy as red line) for aligned rDNA regions.