

Politechnika Poznańska

Mateusz Goździk (140408) Szymon Feliński (141031)

PROJEKTOWANIE SYSTEMÓW WBUDOWANYCH DLA INTERNETU PRZEDMIOTÓW

Wydział: Informatyki i Telekomunikacji Rok akademicki: 2022

Rok studiów: sem.1 Kierunek: Informatyka Specjalność: Internet Przedmiotów

Temat projektu:

4-o portowy konwerter RS232/USB z układem FT4232 (FTDI)

1. Przeznaczenie układu

Współczesny postęp technologiczny komputerów stacjonarnych jak i laptopów spowodował znacznie ograniczenie w nich dostępnych portów szeregowych. Zastąpiły je uniwersalne porty USB. Jednak na rynku wciąż dostępnych jest duża ilość urządzeń, z którymi komunikacja przebiega przez port RS232, takich jak:

- programatory,
- multimetry,
- sterowniki PLC,
- urządzenia pomiarowe.

Rozwiązaniem dla tego problemu komunikacyjnego jest konwerter USB-RS232. Jednak w warsztatach elektrycznych dosyć częstym kłopotem, może być ilość dostępnych portów RS232. Dlatego idealną odpowiedzią jest prezentowany przez naszą grupę projektową 4-portowy konwerter USB-RS232.

2. Wykaz elementów

Rezystory
$12 \text{ k}\Omega \text{ SMD} - 1 \text{ szt.}$
$1K k\Omega SMD - 1 szt.$
$10 \text{ k}\Omega \text{ SMD} - 3 \text{ szt.}$
$2.2 \text{ k}\Omega \text{ SMD} - 1 \text{ szt.}$
Kondensatory
$4.7 \mu F SMD - 2 szt.$
100 nF SMD − 32 szt.
27 pF SMD – 2szt.
Półprzewodniki

FT4232HL-Reel – 1szt.		
MAX3241EUI – 4szt.		
93C46 – 1szt.		
LD1117S-3.3 – 1szt.		
Rezonator kwarcowy 12 MHz – 1szt.		
Inne		
Koralik ferrytowy – 2szt.		
Złącze USB – 1szt.		
Złącze DB9M – 4szt.		

3. Specyfikacje elementów półprzewodnikowych

MAX3241EUI			
Robocze napięcie zasilania	3 V – 5,5 V		
Roboczy prąd zasilania	1 A		
Temperatura robocza	-40 C - + 85 C		
Szybkość przesyłania danych	235 kb/s		

FT4232HL-Reel			
Robocze napięcie zasilania	1,8 V – 3,3 V		
Roboczy prąd zasilania	70 mA		
Temperatura robocza	-40 C - + 85 C		
Szybkość przesyłania danych	480 kb/s		

LD1117S-3.3			
Prąd wyjściowy	950 mA		
Napięcie wyjściowe	3,3 V		
Temperatura robocza	0 C - + 125 C		
Napięcie wejściowe	3,3 V – 15 V		
Dropout Voltage	1 V		

93C46		
Robocze napięcie zasilania	1,8 V – 5,5 V	
Roboczy prąd zasilania	2 mA	
Temperatura robocza	-40 C - + 85 C	
Maksymalna częstotliwość zegara	2 MHz	
Czas dostępu	250 ns	
Rozmiar pamięci	1kbit	

4. Schemat układu

5. Schemat płytki PCB

6. Zgodność wykonanego projektu z wymogami producenta

Wymogi	Producent	Projekt
Liczba warstw	0/8	2
przewodzących:		
Grubość laminatu	0,2/3,2	1,12
bazowego [mm]:		
Grubość warstwy	0,1/2,8	0,32
dielektrycznej (obwody		
wielowarstwowe) [mm]		
Końcowa grubość	Warstwy zewnętrzne: 18/240	Warstwy zewnętrzne: 50
miedzi [μm]	Warstwy wewnętrzne: 18/210	Warstwy wewnętrzne: 40
Finalna średnica otworów	0,15/bez ograniczeń	0,5/0,92/1,09/3,26
metalizowanych [mm]:		
Finalna średnica otworów	0,25/bez ograniczeń	2,3
niemetalizowanych [mm]		
Szerokość ścieżki [mils]:	4	4
Szerokość pierścienia na	Minimalna – 4/ bez ograniczeń	
warstwach zewnętrznych		20/23,62/59
(annular ring) [mils]		
Szerokość pierścienia na	Minimalna – 4/ bez ograniczeń	
warstwach wewnętrznych		20/23,62/59
(annular ring) [mils]		

7. Ocena projektu

Projekt wykonany przez naszą grupę oceniamy subiektywnie na 5 ze względu na to że:

- Schemat elektryczny jak i sama płytka zostały zaprojektowane estetycznie, co znacznie ułatwia ich interpretacje.
- Wszystkie footprinty komponentów zostały przygotowane.
- National Prostych została ograniczona do minimum, przez co jest niska szansa na wystąpienie zakłóceń elektromagnetycznych.
- ♦ Ilość przelotek metalizowanych również została ograniczona do minimum.
- Zaprojektowana płytka spełnia wszystkie wymogi producenta.
- Rozmiary jak i poszczególne rozmieszczenie elementów na płytce zostały zaprojektowane z myślą wykorzystania konwertera w praktyce.
- ❖ Zostały wykorzystane 4 warstwy płytki jedna GND, jedna VCC (3.3V) i dwie sygnałowe, co pozwoliło na uproszczenie routingu ścieżek.