자기식 엔코더

https://blog.naver.com/schmacher/221605268026

DC GEARED ENCODER MOTOR IG42GM W/EC 01TYPE

감 속 비: 1/4 ~ 1/3600 (감속비율 총 21종)

정 격 토 크 : 2,2kg,cm ~ 30kg,cm 정격회전수 : 1400 rpm ~ 1,9 rpm

장착된모터: DC 12V / 7000 rpm / 41,3 W motor

엔코더사양: 38Pulses (19Pulses x 2CH)

모터 최고 속도는 부하나 마찰에 따라 달라짐. Max velocity는 모터의 부하를 고려해야 함. 만일 폐루프 위치 제어나

제품도면 DIMENSION

감속모터사양 GEARED MOTOR SPECIFICATION

감숙기 ?	(I/O) (mm) Gear Head L	32,5		39,2				45,9					52	6					59,3		
	중앙(g)	499		551				591					6	41					686		
감속	El Reduction ratio	1/4	1/14	1/17	1/24	1/49	1/61	1/84	1/104	1/144	1/212	1/294	1/504	1/624	1/720	1/864	1/1062	1/1470	1/2500	1/3000	1/3600
01	정격및크(kgf-cm) Rated torque	2,2	6,5	8	8	18	18	18	20	20	25	25	30	30	30	30	30	30	30	30	30
Туре	정격 회전수(RPM) Rated speed	1400	405	325	246	120	98	76	63	45	31	22	13,5	10,9	9,5	8,0	6,5	4,6	2,7	2,3	1,9
12v	무부하 회전수(RPM) No Load speed	1750	500	411	291	142	114	83	67	48	33	24	13,8	11,2	9,7	8,1	6,5	4,7	2,8	2,3	1,9

장착된 모터사양 INSTALL MOTOR SPECIFICATION

01Type Motor (DC 12v)						
정격 토크 Rated torque	700	(gf-cm)				
정격 회전수 Rated speed	5,700	(RPM)				
정격 전류 Rated current	5,500	(mA)				
무부하 회전수 No load speed	7,000	(RPM)				
무부하 전류 No load current	900	(mA)				
정격 출력 Rated output	41,3	(W)				

Two channel Hall Effect Encoder

엔코더 컨넥터 핀별 내용:

Two Channel Encoder Connections :

1. Black : -MOTOR 2. Red : +MOTOR

3. Brown : HALL SENSOR Vcc
4. Green : HALL SENSOR GND
5. Blue : HALL SENSOR B Vout
6. Purple : HALL SENSOR A Vout

★ WITHOUT CAP

Motor ØA	CAP L	COUNTS POL PER TURN current		Wire Type Length	Connector Type	model
ø12 ø15.4	☆ 6.5	2, 6 (1, 3)	6 (3)	UI.1061 AWG26 100mm	JST ZHR-6 P=1.5-6P	IG12, IG16, RA12W, RA20
ø20.3 ø30.0 ø32 ø36	★ 8.5 12.6 14.3 13.5	2, 6 (1, 3) 26 (13) 26 (13)	6 (3) 26 (13) 26 (13) 26 (13)	UI.1007 AWG24 100mm	JST PHR-6 P=2.0-6P	IG22, IG22C, IG28, IG30, IG32, IG32P, IG32R, IG36P, IG43, RA35, RB30, RB35, RB40
Ø42.5 Ø52 Ø54	15.5 18.0		38 (19) 38 (19)	UI1007 AWG24	JST PHR-4 P=2.0-4P 4 2 1 Molex 09-50-3021 P=3.96-2P	IG42, IG52

JST PHR-6 P=2.0-6P AMP 175788 Molex 51065 JST PH

- UL1061 AWG26 UL1007 AWG26
- JST ZHR-6 P=1.5-6P JST ZH
 - **★ WITHOUT CAP**

øΑ	모델명 Motor	L	엔코더 펄스 수 COUNTS POLES OF PER TURN (PPR)
₩ Ø12	PGM12	★ 6.5	6 (3)
# Ø16	PGM16	★ 6.5	6 (3)
ø20	PGM22, GM20	* 8.5	6 (3)
ø27.3	PGM30, PGM32 GM30 12V, 24V	12.6	26 (13)
ø32.3	GM35 12V, 24V	14.3	26 (13)
ø35.3	PGM35, PGM32 GM35B, GM36B	13.5	26 (13)
ø42.5	PGM42	15.5	38 (19)

엔코더 컨넥터 핀벌 내용 :

Two Channel Encoder Connections :

1. Black : -MOTOR

Red : +MOTOR

Brown : HALL SENSOR Vcc
 Green : HALL SENSOR GND

5. Blue : HALL SENSOR B Vout

6. Purple : HALL SENSOR A Vout

그림 7-1 모터제어기의 구조와 입출력 인터페이스

10.9 듀얼 채널 명령

본 절의 듀얼 채널 명령들은 로봇의 좌우 바퀴에 동시에 구동 명령을 내리고 상태를 읽어 오는데 사용됩니다. 다음 명령은 시리얼(USB, RS-232) Text Packet 에서만 사용됩니다. 시리얼 Binary Packet 및 CAN 통신에서는 사용할 수 없습니다.

표 10-9 다중 명령 오브젝트

Long name, Short name	Index/ Sub-index	Туре	Description
m_position, mp	91/0	(ST)	모터 채널 1,2의 엔코더 값을 읽음 (단위: pulse, pulse)
m_position_command, mpc	92/0		모터 채널 1,2의 위치구동 명령을 내리고(단위: pulse, pulse) 엔코더 값을 읽음(단위: pulse, pulse)
m_velocity_command, mvc	93/0		모터 채널 1,2의 속도 구동 명령을 내리고(단위: RPM, RPM) 엔코더 값을 읽음(단위: pulse, pulse)
m_current_command, mcc	94/0	(CM) (ST)	모터 채널 1,2의 전류 구동 명령을 내리고(단위: A, A) 전 류 값을 읽음 (단위: A, A)
m_voltage_command, mvtc	95/0		모터 채널 1,2의 전압 구동 명령을 내리고(단위: V, V) 엔 코더 값을 읽음(단위: pulse, pulse)
m_lav_command, mla	96/0	(CM) (ST)	전진속도와 각속도로 이동로봇의 구동 명령을 내리고(단위: m/s, rad/s) 모터 1,2의 엔코더 값을 읽음(단위: pulse, pulse)

m_position_command, m_velocity_command, m_voltage_command, m_lav_command 명령의 리턴 값은 좌우 모터의 엔코더 값(단위: pulse, pulse)이며, m_current_command 명령의 리턴 값은

100

좌우 모터의 전류 값(단위: A, A)입니다.

10.9.1 m_position - Multi Position

m_position은 좌우 모터의 위치(주로 엔코더 카운트 값)를 2개의 32bit 정수로 읽어옵니다.

좌우 모터의 위치를 읽으려면 하이퍼터미널과 같은 유틸리티로 제어기의 USB 또는 RS-232 포트에 연결하여 다음과 같이 입력합니다.

mp+l

mp=41256,17448

여기서 나는 키보드의 Enter 키를 의미합니다. 터미널 설정에 따라 다르겠지만, 입력된 값은 일반적으로 터미널에 표시되지 않습니다.mp는 m psotion의 Short Name 입니다.

10.9.2 m_position_command - Multi Position Command

m_position_command는 좌우 모터에 위치 명령을 동시에 내립니다. 그리고 좌우 모터의 위치를 읽어 옵니다.

좌우 모터를 10000, 10000 위치로 이동하기 위해서는 다음과 같이 입력합니다:

mpc=10000,100004

mpc=11256,27448

그러면 제어기는 좌우 모터의 현재 위치를 즉시 리턴하고, 명령을 실행하기 시작합니다. mpc는 m psotion command의 Short Name 입니다.

10.9.3 m_velocity_command - Multi Velocity Command

m_velocity_command는 좌우 모터에 속도 명령을 동시에 내립니다. 그리고 좌우 모터의 위치를 읽어옵니다.

좌우 모터를 500RPM, 500RPM 속도로 회전하기 위해서는 다음과 같이 입력합니다:

mvc=500,5004

mvc=10000,10000

그러면 제어기는 좌우 모터의 현재 위치를 즉시 리턴하고, 명령을 실행하기 시작합니다. mvc는 m velocity command의 Short Name 입니다.

101

10.9.6 m_lav_command - Linear/Angular Velocity Command

전진속도와 각속도 명령을 이동로

m_lav_command 명령으로 전달받 회전 속도 (v_i, v_r) 로 변환하는 식은

$$v_{l} = \frac{g}{r} \left(v - \omega \frac{b}{2} \right),$$

$$v_{r} = \frac{g}{r} \left(v + \omega \frac{b}{2} \right).$$

$$v_r = \frac{g}{r} \left(v + \omega \frac{b}{2} \right).$$

여기서 b은 좌우 바퀴간 거리(ax속 비율(gear_ratio)입니다.

이동로봇에 전진속도 1[m/s], 각속

표 11-2 모터 명령 오브젝트	ŦŦ	11-2	모터	명령	오브젝	Е
-------------------	----	------	----	----	-----	---

Long name, Short name	Index/ Sub-index	Туре	Description
command,	101/	I16	
со	0~2	(CM)	모터제어기에 내려지는 명령 코드
position_command,	111/	I32	
pc	0~2	(CM)	모터의 폐루프 위치 제어 명령 (단위: pulse)
velocity_command,	112/	F32	마다이 페르프 스트 웨이 대령 /FLOL PDM/
vc	0~2	(CM)	모터의 폐루프 속도 제어 명령 (단위: RPM)
current_command,	113/	F32	다다이 페르프 저르 케이 대령 /다이· A)
сс	0~2	(CM)	모터의 폐루프 전류 제어 명령 (단위: A)
voltage_command,	114/	F32	마디에 이기다는 뭐야 추러 /다니.\^
vtc	0~2	(CM)	모터에 인가되는 전압 출력 (단위: V)

11.2.1 command - Command

mla=1,0.14 mla=1961,2749

합니다:

그러면 제어기는 좌우 모터의 현기 m lav command | Short Name & command에 명령 코드를 쓰는 것으로 모터제어기의 해당 기능을 실행할 수 있습니다. 다음은 명 령 코드 목록입니다:

- Motor Power OFF • 0
- Motor Power ON • 1
- 2 - Clear Fault Flags
- 6 - Deceleration Stop
- 7 - Quick Stop

표 11-2 모터 명령 오브젝트

Long name, Short name	Index/ Sub-index	Туре	Description
command,	101/	I16	
со	0~2	(CM)	모터제어기에 내려지는 명령 코드
position_command,	111/	I32	마다이 페르프 이번 펜이 면결 (FbOb pulse)
рс	0~2	(CM)	모터의 폐루프 위치 제어 명령 (단위: pulse)
velocity_command,	112/	F32	마다이 페르프 스트 웨이 대령 /Ftol. PDM/
vc	0~2	(CM)	모터의 폐루프 속도 제어 명령 (단위: RPM)
current_command,	113/	F32	마다이 페르프 뭐라 돼서 며려 /다이. 사
сс	0~2	(CM)	모터의 폐루프 전류 제어 명령 (단위: A)
voltage_command,	114/	F32	마디에 이기다는 뭐야 초럼 /다이.^^
vtc	0~2	(CM)	모터에 인가되는 전압 출력 (단위: V)

11.2.1 command – Command

command에 명령 코드를 쓰는 것으로 모터제어기의 해당 기능을 실행할 수 있습니다. 다음은 명령 코드 목록입니다:

- O Motor Power OFF
- 1 Motor Power ON
- 2 Clear Fault Flags
- 6 Deceleration Stop
- 7 Quick Stop

5.1.2 가속도와 감속도

모터 제어에 속도 프로파일을 사용하는 것은 모터의 급격한 속도 변화를 방지하고 모터의 서지 전류 및 기계적 피로를 최소화하는데 필요합니다.

그림 5-2와 같이 제어기는 모터를 일정한 토크로 구동하기 위해 사다리꼴 모양의 속도 프로파일을 사용합니다. 여기서 사용되는 'Max Velocity', 'Acceleration', 'Deceleration'은 속도 프로파일을 만드는 주요 요소입니다.

그림 5-2 속도 프로파일과 위치 변화

보통 모터의 최고 속도는 부하나 마찰에 따라 달라집니다. 'Max Velocity'는 모터의 부하를 고려하여 설정해야 합니다. 만일 폐루프 위치제어나 속도제어에서 모터가 설정된 최고 속도에 도달하지 못하게 되면 PID 제어기의 적분기에 속도오차가 누적됩니다. 이 속도오차에 의해 제어기는 폴트 상황이 되고 모터가 Power OFF 될 수 있습니다. 이러한 모터의 구동 오류를 감지하는 것에 대해서는 "11.7.2 vel_error_detection - Velocity Error Detection"을 참고하기 바랍니다.

속도 명령을 내리면, 컨트롤러는 사용자가 설정한 'Acceleration'과 'Deceleration'으로 현재 속도 에서 원하는 속도로 이동합니다. 위치 명령도 속도 명령과 마찬가지로 속도 프로파일을 생성하여

7.3.3 폐루프 전류 제어기

전기 모터에서 토크는 직접적으로 전류에 관련됩니다. 따라서 전류를 제어하는 것은 토크를 제어하는 것과 같습니다.

전류 제어기는 위치제어 모드, 속도제어 모드, 전류제어 모드에서 동작합니다.

그림 7-4에서 전류 제어기의 블록선도를 보여줍니다. 모터의 속도(Velocity Feedback), 모터에 흐르는 전류(Current Feedback), 속도 제어기 또는 사용자가 내린 전류 명령(Current Command)이 입력으로 인가되며, 동작 주파수는 10KHz입니다. 또한, PI 제어기로 구현되어 있으며 제어기의 출력 (Voltage output)은 모터에 공급되는 전압이 됩니다.

그림 7-4 제어기 내부에 설계된 전류 제어기

3. Layout/Pin Map

2. Specifications

Specifications	
Items	Specifications
Microcontroller	STM32F746ZGT6 / 32-bit ARM Cortex®-M7 with FPU (216MHz, 462DMIPS) Reference Manual, Datasheet
Sensors	(Discontinued) Gyroscope 3Axis, Accelerometer 3Axis, Magnetometer 3Axis (MPU9250) (New) 3-axis Gyroscope, 3-Axis Accelerometer, A Digital Motion Processor™ (ICM-20648)
Programmer	ARM Cortex 10pin JTAG/SWD connector USB Device Firmware Upgrade (DFU) Serial
Digital I/O	32 pins (L 14, R 18) *Arduino connectivity 5Pin OLLO x 4 GPIO x 18 pins PWM x 6 I2C x 1 SPI x 1
Analog INPUT	ADC Channels (Max 12bit) x 6
Communication Ports	USB x 1 (Micro-B USB connector/USB 2.0/Host/Peripheral/OTG) TTL x 3 (B3B-EH-A / DYNAMIXEL) RS485 x 3 (B4B-EH-A / DYNAMIXEL) UART x 2 (20010WS-04) CAN x 1 (20010WS-04)
LEDs and buttons	LD2 (red/green): USB communication User LED x 4: LD3 (red), LD4 (green), LD5 (blue) User button x 2 Power LED: LD1 (red, 3.3 V power on) Reset button x 1 (for power reset of board) Power on/off switch x 1
Input Power Sources	5 V (USB VBUS), 5-24 V (Battery or SMPS) Default battery: LI-PO 11.1V 1,800mAh 19.98Wh Default SMPS: 12V 4.5A External battery Port for RTC (Real Time Clock) (Molex 53047-0210)
Input Power Fuse	125V 10A LittleFuse 0453010
Output Power Sources	*12V max 4.5A(SMW250-02) *5V max 4A(5267-02A), 3.3V@800mA(20010WS-02)
Dimensions	105(W) X 75(D) mm
Weight	60g

* 5V power source is supplied from regulated 12V output. Total power consumption on 12V and 5V ports should not exceed 55W.

NOTE: MPU9250 sensor has been replaced with ICM-20648, since 2020, as MPU9250 is discontinued to produce.

NOTE: Hot swap power switch between "shore power" (12V, 4.5A SMPS) and "mobile power" (battery) from OpenCR1.0 board enables UPS (Uninterrupted Power Supply) feature.