UM-SJTU JOINT INSTITUTE ELECTRONIC CIRCUITS SUMMER (ECE3110J)

Lab1 Report

Voltage Regulator and Half-wave Rectifier

INSTRUCTED BY

Dr. Xuyang Lu

June 17, 2023

Name ID

Cao Yanzhuo 520370910021

1 Voltage Regulator

1.1 Exercise 1.1.1

The experimental value of V_L is 3.202V. According to the datasheet which shows V_z =3.3V for 1N4728, the obtained V_L is acceptable.

Figure 1: Simulation Results of 1.1.1

However, the value that I got from the experiment is much smaller than 3.3V. This can be caused by the precision of the instrument or by human error.

Figure 2: Actual Results of 1.1.1

1.2 Exercise 1.1.2

The experimental value of V_L in half a period is 640mV. The experimental value of V_S in half a period is 1070mV. Using 0.598, we calculate RZ is 14883 Ω .

Figure 3: Actual Results of 1.1.2

However, the value that I got from the experiment is much smaller than 14883 Ω . Based on the simulation of $V_s = 5 + 0.5\sin{(2\pi60 \cdot time)}$, it can be known that V_L =8.5mV and V_S =0.5V. Then it can be calculated that the line regulation equals to 0.017 and R_z =173 Ω .

Figure 4: Simulation1 Results of 1.1.2

If $V_s = 2 + 3\sin(2\pi 60 \cdot \text{time})$, the result will be like this

Figure 5: Simulation2 Results of 1.1.2

1.3 Exercise 1.1.3

If we take the voltage down for 20% as the symbol that regulators stop working, then $R_L=9600\Omega$.

Figure 6: Simulation Results of 1.1.3

If we want $R_{L,min}$ to be 2 times smaller, we need to make R 2 times smaller.

2 Half-Wave Rectifier

According to the equation to calculate V_R :

$$V_R = (V_S - V_{on}) \times T/RC < 0.1 \tag{1}$$

We can get that capacitance C should be larger than $6.6\times10^{-4} F$. The actual and simulation waveform will be like this:

Figure 7: Actual Results of 2.1

Figure 8: Simulation Results of 2.1

According to the simulation results, we can get that V_{dc} =4.2V, I_{dc} =4.2mA, θ_C = 0.2rad, ΔT =0.53ms, I_{peak} =0.264A, I_{surge} =1.32A, PIV=9.2V. Based on the equation:

$$V_R = (V_S - V_{on}) \times T/RC \tag{2}$$

If ω doubles, T will be half and V_R will also be half