ADDING 2 bits

Understanding the Problem:

Consider the two bits 0,1 and add then together In all Possible Combinations

a 0 0 1 1

$$c_{out} = \frac{b}{Sum} = 0 = 0 = 0 = 0 = 0 = 0 = 0$$

Every addition Produces a half-sum (s) and a Carry out (Cont)

Let us now reorder our Information in the form of two truth Tables:

O	Ь	٤	
0	0	Ó	
0	1	1	= XOR
1	0	1	
1	1	0	

a	Ь	Cout	
0	0	0	
0	ι	0	E AND
1	0	0	
ı	1	1	

Thus adding a to b (a+b) (an be done with Logic gates!

Sum = a & b

Expressed using

Cout = a . b

Logic

the Logic Circuit to add 2 bits Is thus:

this Circuit Is called a half-adder

Looking More Closely at the 'Carry' process

We See that if we wish to Perform multidigit addition, we need to add 3 things in each step: a Carry-in, a Sumend, and an augend.

Each step results In a Sum and a Carry-out (which becomes the Carry-in to the next, higher-order addition)

we call this Component 9
Full-ADDER (F.A.)

We can Combine full-adders to make multidigit ADDERS

An n-bit multidigit Binary Ripple-Carry Adder

The Carry ripples through the Circuit, giving the device its name.

Building a Logic Circuit to Implement a Full-ADDER

Construct a Truth Table for a Full-ADDER by tabulating all Possible Combinations of Inputs against their associated outputs

Inputs		outputs				
C;	^	α	Ъ	Sum	Conf	C1=0
	0	0	0	0	0	Sum = a@b
	0	0	1	1	0	Cout = a.b
	0	1	0	1	0	
	0	1	1	0	1	
	1	0	0	1	0	Cin = 1
	1	0	1	0	1	Sun = a Ob
	1	1	0	0	1	Cont = atb
	1	1	1	1	1	Carr 2 or (D

Cater, we will bearn a mechanistic way of Creating Equation and Circuits from Truth Tables.

For now, we are going to create a Circuit by Intuition and Pattern matching (i.e., comparing what we see with what we already know)

Me can Consider this Truth Table as Consisting of Z

Parts: Part 1, Where Cin = 0 and Part z, Where Cin = 1.