mod3_questions.md 2025-03-21

mod3_precheck

1.	Which of the following correctly illustrates conditional probability?
	 ☑ The probability of event A occurring given that event B has occurred
	 □ The probability of both events A and B occurring
	$\circ \;\; \Box$ The probability of either event A or event B occurring
	$\circ \;\; \square$ The probability of event A occurring in the absence of event B
2.	If events A and B are independent, then \$P(A\cap B)\$ is:
	□ \$P(A)+P(B)\$
	□ \$P(B)/P(A)\$
	 □ \$P(A)\times P(B)\$
	□ \$P(A)-P(B)\$
3.	The percentage of left-handed individuals in a population is 10%. What is the probability that a
	randomly selected individual is right-handed in this population?
	∘ ☑ 90%
	∘ □ 10%
	∘ □ 20%
	∘ □ 80%
4.	For a diagnostic test of a rare disease, the probability that a person has the disease is 0.01. If the
	person has the disease, the probability that they test positive is 0.95. However, the test also has a false
	positive rate of 0.05. Using Bayes' theorem, if a person tests positive, what is the approximate
	probability they actually have the disease?
	∘ □ 0.01
	∘ ☑ 0.16
	∘ □ 0.05
	∘ □ 0.95
5.	Which of the following best defines a random variable?
	 □ A variable that varies randomly
	\circ $oxdot$ A function that assigns real numbers to outcomes of a random experiment
	$\circ \;\; \square$ A variable that can only take integer values
	$\circ \;\; \square$ A constant that is associated with a probability distribution
6.	What does the probability mass function (PMF) of a discrete random variable provide?
	$\circ \;\; \square$ The density of the random variable at a particular value
	\circ $\ oxdot$ The probability that the random variable takes on a particular value
	$\circ \;\; \square$ The cumulative probability up to a particular value
	$\circ \;\; \square$ The mean of the random variable
7.	The Cumulative Distribution Function (CDF) of a random variable X at a point x is:
	$\circ \Box$ The mean of all values up to x
	\circ $\ \square$ The probability that X takes on a value less than or equal to x
	$\circ \;\; \Box$ The probability that X is exactly x
	$\circ \Box$ The density of X at the point x
8.	Which statement best describes the relationship between standard deviation (σ) and variance
	\$(\sigma^{2})?\$
	$\circ \;\; \square$ There's no relationship between standard deviation and variance
	$\circ \;\; \square$ Variance is the square root of the standard deviation

mod3_questions.md 2025-03-21

 Standard deviation is the square of the variance Which property of expectation is represented by the equation \$E(aX+bY)=\$ \$aE(X)+bE(Y)\$ who and Y are random variables, and a and b are constants? Associative property Commutative property Linearity property Distributive property 	еге Х
mod3_review	
1. If	
$P(A)=0.4$ $P(B)=0.5$, and $P(A \subset B)=0.2$, what is $P(A B)$?	
 □ 0.5 □ 0.8 □ 0.2 ☑ 0.4 	
2. In a contingency table for smallpox data, if there are 100 individuals who were inoculated and smallpox out of a total of 400 who were inoculated, what's the probability that a randomly self individual got smallpox given they were inoculated?	_
 □ 0.33 □ 0.5 □ 0.1 ☑ 0.25 	
3. If a random variable can only take a finite number of distinct values, it is called:	
 ☑ Discrete Random Variable □ Linear Random Variable □ Uncountable Random Variable □ Continuous Random Variable 	
4. Consider a random experiment of flipping a coin three times. What's the value of the random of X if X counts the number of heads and the sequence is (H, T, H)?	/ariable
 □ 3 □ 0 □ 1 ☑ 2 	
5. Which of the following is true about Probability Density Function (PDF) of a continuous randor variable?	n
 PDF gives the probability that the random variable is exactly a certain value All values of PDF are negative It can take values greater than 1 If the area under the PDF curve is always equal to 1 	

mod3_questions.md 2025-03-21

6. The expected value or expectation of a random variable is best described as:
 □ The mode of the random variable's distribution □ The variability or dispersion of the random variable's values □ The point where the random variable's distribution is centered □ The weighted average of all possible values the random variable can take on
7. If X and Y are two random variables, and a and b are constants, the expectation $E(aX+bY)$ is:
 □ \$E(X)+E(Y)\$ □ \$aE(X)-bE(Y)\$ □ \$aE(X)+bE(Y)\$ □ \$E(XY)\$
8. For a random variable X, if the expectation \$E(X^{2})=25\$ and \$E(X)=5\$, what is the variance \$Var(X)
 □ 5 □ 0 □ 25 □ 50
9. If two random variables X and Y are independent, which of the following is TRUE regarding their variances?
 □ \$Var(X+Y)=Var(X)Var(Y)\$ □ \$Var(X+Y)=Var(X)-Var(Y)\$ □ \$Var(X+Y)=Var(X)+Var(Y)\$ □ \$Var(X+Y)=Var(X)/Var(Y)\$