EDAA45 Programmering, grundkurs Läsvecka 4: Datastrukturer

Björn Regnell

Datavetenskap, LTH

Lp1-2, HT 2016

- 4 Datastrukturer
 - Vad är en datastruktur?
 - Tupler
 - Klasser
 - Case-klasser
 - Samlingar
 - Integrerad utvecklingsmiljö (IDE)

Denna vecka: Datastrukturer och IDE

- Datastrukturer med tupler, klasser och f\u00e4rdiga samlingar
 - Mer om klasser senare:
 - w06 Klasser
 - w07 Arv
 - w09 Typparametrar
 - Mer om samlingar senare:
 - w05 Sekvensalgoritmer
 - w09 Matriser
 - w10 Sökning, Sortering
- Övning data: prova tupler, klasser och samlingsmetoder
- Laboration pirates: prata som pirater och prova IDE
- Börja använda en integrerad utvecklingsmiljö (IDE), labbförberedelse bl.a.: läs appendix D och få igång en IDE

└Vad är en datastruktur?

Vad är en datastruktur?

└─ Vad är en datastruktur?

Vad är en datastruktur?

- En datastruktur är en struktur för organisering av data som...
 - kan innehålla många element,
 - kan refereras till som en helhet, och
 - ger möjlighet att komma åt enskilda element.
- En **samling** (eng. *collection*) är en datastruktur som kan innehålla många element av **samma typ**.
- Exempel på färdiga samlingar i Scalas standardbibliotek där elementen är organiserade på olika vis så att samlingen får olika egenskaper som passar olika användningsområden:
 - scala.collection.immutable.Vector, snabb access överallt.
 - scala.collection.immutable.List, snabb access i början.
 - scala.collection.immutable.Set, scala.collection.mutable.Set, unika element, snabb innehållstest.
 - scala.collection.immutable.Map scala.collection.mutable.Map, nyckel-värde-par, snabb access via nyckel.
 - scala.collection.mutable.ArrayBuffer, kan ändra storlek.
 - scala. Array, motsvarar primitiva, föränderliga Java-arrayer, fix storlek.

└Vad är en datastruktur?

Olika sätt att skapa datastrukturer

■ Tupler

- samla *n* st datavärden i element **_1**, **_2**, ... _*n*
- elementen kan vara av olika typ

Klasser

- samlar data i attribut med (väl valda!) namn
- attributen kan vara av olika typ
- definierar även metoder som använder attributen (kallas även operationer på data)

■ Färdiga samlingar

- speciella klasser som samlar data i element av samma typ
- exempel: scala.collection.immutable.Vector
- har ofta många färdiga bra-att-ha-metoder, se snabbreferensen http://cs.lth.se/pgk/quickref

■ Egenimplementerade samlingar

 $lue{}$ o fördjupningskurs

└_ Tupler

Tupler

L Tupler

Vad är en tupel?

- En tupel samlar *n* st objekt i en enkel struktur, med koncis syntax.
- Elementen kan vara av olika typ.
- ("hej", 42, math.Pi) är en 3-tupel av typen: (String, Int, Double)
- Du kan komma åt det enskilda elementen med _1, _2, ... _n

```
scala> val t = ("hej", 42, math.Pi)
t: (String, Int, Double) = (hej,42,3.141592653589793)

scala> t._1
res0: String = hej

scala> t._2
res1: Int = 42
```

- Tupler är praktiska när man inte vill ta det lite större arbetet att skapa en egen klass. (Men med klasser kan man göra mycket mer än med tupler.)
- I Scala kan du skapa tupler upp till en storlek av 22 element.
 (Behöver du fler element, använd i stället en samling, t.ex. Vector.)

Tupler som parametrar och returvärde.

 Tupler är smidiga när man på ett enkelt och typsäkert sätt vill låta en funktion returnera mer än ett värde.

```
scala> def längd(p: (Double, Double)) = math.hypot(p._1, p._2)

scala> def vinkel(p: (Double, Double)) = math.atan2(p._1, p._2)

scala> def polär(p: (Double, Double)) = (längd(p), vinkel(p))

scala> polär((3,4))
res2: (Double, Double) = (5.0,0.6435011087932844)
```

Om typerna passar kan man skippa dubbla parenteser vid ensamt tupel-argument:

```
scala> polär(3,4)
res3: (Double, Double) = (5.0,0.6435011087932844)
```

https://sv.wikipedia.org/wiki/Polära_koordinater

Ett smidigt sätt att skapa 2-tupler med metoden ->

Det finns en metod vid namn -> som kan användas på objekt av **godtycklig** typ för att **skapa par**:

Klasser

Vad är en klass?

Vi har tidigare deklarerat **singelobjekt** som bara finns i **en instans**:

```
scala> object Björn { var ålder = 49; val längd = 178 }
```

Med en klass kan man skapa godtyckligt många instanser av klassen med hjälp av nyckelordet new följt av klassens namn:

```
scala> class Person { var ålder = 0; var längd = 0 }
scala> val björn = new Person
björn: Person = Person@7ae75ba6
scala> björn.ålder = 49
scala> björn.längd = 178
```

- En klass kan ha medlemmar (i likhet med singelobjekt).
- Funktioner som är medlemmar kallas **metoder**.
- Variabler som är medlemmar kallas attribut.

Vid new allokeras plats i minnet för objektet

```
scala> class Person { var ålder = 0; var längd = 0 }
scala> val björn = new Person
björn: Person = Person@7ae75ba6
```


Med punktnotation kan förändringsbara variabler tilldelas nya värden och objektets tillstånd uppdateras.

En klass kan ha parametrar som initialiserar attribut

- Med en parameterlista efter klassnamnet får man en så kallad primärkonstruktor för initialisering av attribut.
- Argumenten för initialiseringen ges vid new.

```
scala> class Person(var ålder: Int, var längd: Int)
scala> val björn = new Person(49, 178)
björn: Person = Person@354baab2
scala> println(s"Björn är ${björn.ålder} år gammal.")
Björn är 49 år gammal.
scala> björn.ålder = 18
scala> println(s"Björn är ${björn.ålder} år gammal.")
Björn är 18 år gammal.
```

En klass kan ha privata medlemmar

Med private blir en medlem privat: access utifrån medges ej.

```
scala> class Person(private var minÅlder: Int, private var minLängd: Int){
             def ålder = minÅlder
2
3
4
    scala> val björn = new Person(42, 178)
    björn: Person = Person@4b682e71
7
    scala> println(s"Björn är ${björn.ålder} år gammal.")
    Björn är 42 år gammal.
10
    scala> björn.minÅlder = 18
11
    error: variable minÅlder in class Person cannot be accessed in Person
12
13
14
    scala> björn.längd
    error: value längd is not a member of Person
15
```

Med **private** kan man förhindra tokiga förändringar.

Privata förändringsbara attribut och publika metoder

```
class Människa(val födelseLängd: Double. val födelseVikt: Double){
  private var minLängd = födelseLängd
  private var minVikt = födelseVikt
  private var ålder = 0
  def längd = minLängd // en sådan här metod kallas "getter"
  def vikt = minVikt // vi förhindrar attributändring "utanför" klassen
  val slutaVäxaÅlder = 18
  val tillväxtfaktorLängd = 0.00001
  val tillväxtfaktorVikt = 0.0002
  def ät(mat: Double): Unit = {
   if (ålder < slutaVäxaÅlder) minLängd += tillväxtfaktorLängd * mat</pre>
   minVikt += tillväxtfaktorVikt * mat
  def fyllÅr: Unit = ålder += 1
  def tillstånd: String = s"Tillstånd: $minVikt kg, $minLängd cm, $ålder år"
```

Tillstånd kan förändras indirekt genom metodanrop

```
scala> val björn = new Människa(födelseVikt=3.5, födelseLängd=52.1)
    björn: Människa = Människa3e52
3
    scala> björn.tillstånd
    res0: String = Tillstånd: 3.5 kg, 52.1 cm, 0 år
6
    scala> for (i <- 1 to 42) björn.fyllÅr
7
8
    scala> björn.tillstånd
    res2: String = Tillstånd: 3.5 kg, 52<u>.1 cm, 42 år</u>
10
11
    scala> björn.ät(mat=5000)
12
13
    scala> biörn.tillstånd
14
    res3: String = Tillstånd: 4.5 kg, 52.1 cm, 42 år
15
```

Metoden isInstanceOf och rot-typen Any

```
scala> class X(val i: Int)
1
    scala > val a = new X(42)
    a: X = X@117b2cc6
5
    scala> a.isInstance0f[X]
7
    res0: Boolean = true
8
    scala > val b = new X(42)
10
    b: X = X@61ab6521
11
12
    scala> b.isInstanceOf[X]
    res1: Boolean = true
13
14
    scala> a == b
15
    res2: Boolean = false
16
17
    scala> a.i == b.i
18
    res3: Boolean = true
19
```

- Ett objekt skapat med new X är en instans av typen X.
- Detta kan testas med metoden isInstanceOf[X]: Boolean

Metoden isInstanceOf och rot-typen Any

```
scala> class X(val i: Int)
    scala > val a = new X(42)
    a: X = X@117b2cc6
5
    scala> a.isInstanceOf[X]
7
    res0: Boolean = true
8
    scala > val b = new X(42)
10
    b: X = X@61ab6521
11
12
    scala> b.isInstanceOf[X]
    res1: Boolean = true
13
14
    scala> a == b
15
    res2: Boolean = false
16
17
    scala> a.i == b.i
18
    res3: Boolean = true
19
```

- Ett objekt skapat med new X är en instans av typen X.
- Detta kan testas med metoden isInstanceOf[X]: Boolean
- Typen Any är sypertyp till alla typer och kallas för rot-typ i Scalas typhierarki.

```
scala> a.isInstanceOf[Any]
res4: Boolean = true

scala> b.isInstanceOf[Any]
res5: Boolean = true

scala> 42.isInstanceOf[Any]
res6: Boolean = true
```

- Se quickref sid 4. (Mer i w07.)
- I klassen Any finns bl.a. toString

```
Föreläsningsanteckningar EDAA45, 2016

Vecka 4: Datastrukturer
```

Överskugga toString

Alla objekt får automatiskt en metod toString som ger en sträng med objektets unika identifierare, här Gurka@3830f1c0:

```
scala> class Gurka(val vikt: Int)

scala> val g = new Gurka(42)
g: Gurka = Gurka@3830f1c0

scala> g.toString
res0: String = Gurka@3830f1c0
```

Man kan överskugga den automatiska toString med en egen implementation. Observera nyckerordet override.

```
scala> class Tomat(val vikt: Int){override def toString = s"Tomat($vikt g)"}

scala> val t = new Tomat(142)

t: Tomat = Tomat(142 g)

scala> t.toString
res1: String = Tomat(142 g)
```

Objektfabrik i kompanjonsobjekt

- Om det finns ett objekt i samma kodfil med samma namn som klassen blir det objektet ett s.k. kompanjonsobjekt (eng. companion object).
- Ett kompanjonsobjekt får accessa privata medelmmar i den klass till vilken objektet är kompanjon.
- Kompanjonsobjekt är en bra plats för s.k. fabriksmetoder som skapar instanser. Då slipper vi skriva new.

```
scala> :paste  // måste skrivas tillsammans annars ingen kompanjon

class Broccoli(var vikt: Int)

object Broccoli {
    def apply(vikt: Int) = new Broccoli(vikt)
  }

scala> val b = Broccoli(420)
  b: Broccoli = Broccoli@32e8d5a4
```

Kompanjonsobjekt kan accessa privata medlemmar

```
class Gurka(startVikt: Double) {
  private var vikt = startVikt
  def \ddot{a}t(tugga: Int): Unit = if (vikt > tugga) vikt -= tugga else vikt = 0
  override def toString = s"Gurka($vikt)"
object Gurka {
  private var totalVikt = 0.0
  def apply(): Gurka = {
    val q = new Gurka(math.random * 0.42 + 0.1)
    totalVikt += q.vikt // hade blivit kompileringsfel om ej vore kompanjon
    g
  def rapport: String = s"Du har skapat ${totalVikt.toInt} kg qurka."
```

└Vecka 4: Datastrukturer

Klasser

Kompanjonsobjekt kan accessa privata medlemmar

```
class Gurka(startVikt: Double) {
   private var vikt = startVikt
   def ät(tugga: Int): Unit = if (vikt > tugga) vikt -= tugga else vikt = 0
   override def toString = s"Gurka($vikt)"
}
object Gurka {
   private var totalVikt = 0.0
   def apply(): Gurka = {
     val g = new Gurka(math.random * 0.42 + 0.1)
     totalVikt += g.vikt // hade blivit kompileringsfel om ej vore kompanjon
     g
}
def rapport: String = s"Du har skapat ${totalVikt.toInt} kg gurka."
}
```

```
scala> val gs = Vector.fill(1000)(Gurka())
gs: scala.collection.immutable.Vector[Gurka] =
   Vector(Gurka(0.49018400799506734), Gurka(0.2462822679714138), Gurka(0.17391344)
scala> println(Gurka.rapport)
Du har skapat 305 kg gurka.
```

Förändringsbara och oföränderliga objekt

Ett **oföränderligt objekt** där nya instanser skapas i stället för tillståndsändring "på plats".

```
class Point(val x: Int, val y: Int) {
  def moved(dx: Int, dy: Int): Point = new Point(x + dx, y + dy)

  override def toString: String = s"Point($x, $y)"
}
```

Ett förändringsbart objekt där tillståndet uppdateras.

```
class MutablePoint(private var x: Int, private var y: Int) {
  def move(dx: Int, dy: Int): Unit = {x += dx; y += dy} // Mutation!!!

  override def toString: String = s"MutablePoint($x, $y)"
}
```

Oföränderliga objekt

```
1  scala> var p1 = new Point(3, 4)
2  p1: Point = Point(3, 4)
3
4  scala> val p2 = p1.moved(2, 3)
5  p2: Point = Point(5, 7)
6
7  scala> println(p1)
8  Point(3, 4)
9
10  scala> p1 = new Point(0, 0)
11  p1: Point = Point(0, 0)
```

Oföränderliga objekt

```
1  scala> var p1 = new Point(3, 4)
2  p1: Point = Point(3, 4)
3
4  scala> val p2 = p1.moved(2, 3)
5  p2: Point = Point(5, 7)
6
7  scala> println(p1)
8  Point(3, 4)
9
10  scala> p1 = new Point(0, 0)
11  p1: Point = Point(0, 0)
```

Minnessituationen efter rad 7:

Oföränderliga objekt

```
scala> var p1 = new Point(3, 4)
p1: Point = Point(3, 4)

scala> val p2 = p1.moved(2, 3)
p2: Point = Point(5, 7)

scala> println(p1)
Point(3, 4)

scala> p1 = new Point(0, 0)
p1: Point = Point(0, 0)
```

Minnessituationen efter rad 10:

Oföränderliga objekt

```
1  scala> var p1 = new Point(3, 4)
2  p1: Point = Point(3, 4)
3
4  scala> val p2 = p1.moved(2, 3)
5  p2: Point = Point(5, 7)
6
7  scala> println(p1)
8  Point(3, 4)
9
10  scala> p1 = new Point(0, 0)
11  p1: Point = Point(0, 0)
```

Minnessituationen efter rad 10:

Vi kan **lugnt dela referenser** till vårt oföränderliga objekt eftersom det **aldrig** kommer att ändras.

Förändringsbara objekt

```
scala> val mp1 = new MutablePoint(3, 4)
mp1: MutablePoint = MutablePoint(3, 4)

scala> val mp2 = mp1
mp2: MutablePoint = MutablePoint(3, 4)

scala> mp1.move(2,3)

scala> println(mp2)
MutablePoint(5, 7)
```

Minnessituationen efter rad 4:

Förändringsbara objekt

```
scala> val mp1 = new MutablePoint(3, 4)
mp1: MutablePoint = MutablePoint(3, 4)

scala> val mp2 = mp1
mp2: MutablePoint = MutablePoint(3, 4)

scala> mp1.move(2,3)

scala> println(mp2)
MutablePoint(5, 7)
```

Minnessituationen efter rad 4:

Varning! Vem som helst som har tillgång till en referens till ditt förändringsbara objekt kan **manipulera** det, vilket ibland ger överaskande och **problematiska** konsekvenser!

Förändringsbara objekt

```
1 scala> val mp1 = new MutablePoint(3, 4)
2 mp1: MutablePoint = MutablePoint(3, 4)
3
4 scala> val mp2 = mp1
5 mp2: MutablePoint = MutablePoint(3, 4)
6
7 scala> mp1.move(2,3)
8
9 scala> println(mp2)
10 MutablePoint(5, 7)
```

Minnessituationen efter rad 7:

Varning! Vem som helst som har tillgång till en referens till ditt förändringsbara objekt kan **manipulera** det, vilket ibland ger överaskande och **problematiska** konsekvenser!

LCase-klasser

Case-klasser

└Vecka 4: Datastrukturer

Case-klasser

Vad är en case-klass?

- En case-klass är ett smidigt sätt att skapa oföränderliga objekt.
- Kompilatorn ger dig en massa "godis" på köpet (ca 50-100 rader kod), inkl.:
 - klassparametrar blir automatiskt val-attribut, alltså publika och oföränderliga,
 - en automatisk toString som visar klassparametrarnas värde,
 - ett automatiskt kompanjonsobjekt med fabriksmetod så du slipper skriva new,
 - automatiska metoden copy för att skapa kopior med andra attributvärden, m.m... (Mer om detta i w06 & w11, men är du nyfiken kolla på uppgift 2d) på sid 261.)

Vecka 4: Datastrukturer

Vad är en case-klass?

- En case-klass är ett smidigt sätt att skapa oföränderliga objekt.
- Kompilatorn ger dig en massa "godis" på köpet (ca 50-100 rader kod), inkl.:
 - klassparametrar blir automatiskt val-attribut, alltså publika och oföränderliga,
 - en automatisk **toString** som visar klassparametrarnas värde,
 - ett automatiskt kompanjonsobjekt med fabriksmetod så du slipper skriva new,
 - automatiska metoden copy för att skapa kopior med andra attributvärden, m.m... (Mer om detta i w06 & w11, men är du nyfiken kolla på uppgift 2d) på sid 261.)
- Det enda du behöver göra är att lägga till nyckelordet case före class...

```
scala> case class Point(x: Int, y: Int)
scala> val p = Point(3, 5)
p: Point = Point(3,5)
scala> p. // tryck TAB och se lite av allt case-klass-godis scala> Point. // tryck TAB och se ännu mer godis
scala> val p2 = p.copy(y= 30)
p2: Point = Point(3,30)
```

Case-klasser

Exempel på case-klasser

```
case class Person(namn: String, ålder: Int) {
  def fyllerJämt: Boolean = ålder % 10 == 0
  def hyllning = if (fyllerJämt) "Extra grattis!" else "Vi gratulerar!"
  def ärLikaGammalSom(annan: Person) = ålder == annan.ålder
}

case class Point(x: Int = 0, y: Int = 0) {
  def distanceTo(other: Point) = math.hypot(x - other.x, y - other.y)
  def dx(d: Int): Point = copy(x + d, y)
  def dy(d: Int): Point = copy(y= y + d) //namngivet arg. och defaultarg.
}
object Point {
  def origin = new Point()
}
```

```
scala> Point().dx(10).dy(10).dx(32)
res0: Point = Point(42,10)

scala> Point(3,4) distanceTo Point.origin
res1: Double = 5.0
```

Synlighet av klassparametrar i klasser & case-klasser

private[this] är ännu mer privat än private

```
class Hemlis(private val hemlis: Int) {
  def ärSammaSom(annan: Hemlis) = hemlis == annan.hemlis  // Funkar!
}
class Hemligare(private[this] val hemlis: Int) {
  def ärSammaSom(annan: Hemligare) = hemlis == annan.hemlis //KOMPILERINGSFEL
}
```

Vad händer om man inte skriver något? Olika för klass och case-klass:

```
class Hemligare(hemlis: Int) { // motsvarar private[this] val
  def ärSammaSom(annan: Hemligare) = hemlis == annan.hemlis //KOMPILERINGSFEL
}
case class InteHemlig(seMenInteRöra: Int) { // blir automatiskt val
  def ärSammaSom(annan: InteHemlig): Boolean =
    seMenInteRöra == annan.seMenInteRöra
}
```

Samlingar

Vad är en samling?

En **samling** (eng. *collection*) är en datastruktur som kan innehålla många element av **samma typ**.

Vad är en samling?

En **samling** (eng. *collection*) är en datastruktur som kan innehålla många element av **samma typ**.

Exempel:

Heltalsvektor: val xs = Vector(2, -1, 3, 42, 0)

L_{Samlingar}

Vad är en samling?

En **samling** (eng. *collection*) är en datastruktur som kan innehålla många element av **samma typ**.

Exempel:

Heltalsvektor: val xs = Vector(2, -1, 3, 42, 0)

Samlingar implementeras med hjälp av klasser.
I standardbiblioteken scala.collection och java.util finns många färdiga samlingar, så man behöver sällan implementera egna.

Vad är en samling?

En **samling** (eng. *collection*) är en datastruktur som kan innehålla många element av **samma typ**.

Exempel:

Heltalsvektor: val xs = Vector(2, -1, 3, 42, 0)

Samlingar implementeras med hjälp av klasser.

I standardbiblioteken scala.collection och java.util finns många färdiga samlingar, så man behöver sällan implementera egna.

Om man behöver en egen, speciell datastruktur är det ofta lämpligt att skapa en klass som *innehåller* en *färdig* samling och utgå från dess färdiga metoder.

└ Vecka 4: Datastrukturer └ Samlingar

Typparameter möjliggör generiska samlingar

Funktioner och klasser kan, förutom vanliga parametrar, även ha **typparametrar** som skrivs i en egen parameterlista med **hakparenteser**. En typparameter gör så att funktioner och datastrukturer blir **generiska** och kan hantera element av **godtycklig** typ på ett typsäkert sätt. (Mer om detta i w09.)

```
scala> def strängLängd[T](x: T): Int = x.toString.length
strängLängd: [T](x: T)Int
scala> strängLängd[Double](42.0) //Double är typargument
res0: Int = 4
scala> strängLängd(42.0) //Kompilatorn härleder T=Double
res1: Int = 4
scala> Vector.empty[Int] //Här kan den ej härleda typen...
res2: scala.collection.immutable.Vector[Int] = Vector()
scala> strängLängd[Vector[Int]](Vector.empty) //...men här
res3: Int = 8
```

Hierarki av samlingstyper i scala.collection

Traversable har metoder som är implementerade med hjälp av: def foreach[U](f: Elem => U): Unit

Iterable har metoder som är implementerade med hjälp av: **def** iterator: Iterator[A]

Seq: ordnade i sekvens Set: unika element

Map: par av (nyckel, värde)

Samlingen **Vector** är en Seq som är en Iterable som är en Traversable.

Använda iterator

Med en iterator kan man iterera med while över alla element, men endast en gång; sedan är iteratorn "förbrukad". (Men man kan be om en ny.)

```
scala > val xs = Vector(1.2.3.4)
    xs: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4)
    scala> val it = xs.iterator
    it: scala.collection.immutable.VectorIterator[Int] = non-empty iterator
6
7
    scala> while (it.hasNext) print(it.next)
    1234
10
    scala> it.hasNext
    res1: Boolean = false
11
12
    scala> it.next
13
    java.util.NoSuchElementException: reached iterator end
14
      at scala.collection.immutable.VectorIterator.next(Vector.scala:674)
15
```

Normalt behöver man **inte** använda iterator: det finns oftast färdiga metoder som gör det man vill, till exempel foreach, map, sum, min etc.

Några användbara metoder på samlingar

Traversable

xs.size antal elementet xs.head första elementet xs.last sista elementet xs.take(n) ny samling med de första n elementet xs.drop(n) ny samling utan de första n elementet xs.foreach(f) gör f på alla element, returtyp Unit xs.map(f)gör f på alla element, ger ny samling ny samling med bara de element där p är sant xs.filter(p) xs.mkString(",") en kommaseparerad sträng med alla element

Iterable

xs.zip(ys) ny samling med par (x, y); "zippa ihop" xs och ys xs.zipWithIndex ny samling med par (x, index för x) ny samling av samlingar genom glidande "fönster"

Seq

xs.length samma som xs.size xs:+x ny samling med x sist efter xs x +: xs ny samling med x före xs └Vecka 4: Datastrukturer

Samlingar

Några användbara metoder på samlingar

```
Traversable
```

xs.size xs.head xs.last xs.take(n) xs.drop(n) xs.foreach(f) xs.map(f) xs.filter(p) xs.mkString(",")

xs.zip(ys)

xs.zipWithIndex
xs.sliding(n)

antal elementet

första elementet

ny samling med de första n elementet ny samling utan de första n elementet

gör f på alla element, returtyp Unit gör f på alla element, ger ny samling

ny samling med bara de element där p är sant

en kommaseparerad sträng med alla element

Iterable

5*)* ex

ny samling med par (x, y); "zippa ihop" xs och ys ny samling med par (x, index f "or x)

ny samling av samlingar genom glidande "fönster"

Seq

xs.length xs:+ x samma som xs.size

xs:+ x ny samling med x sist efter xs x +: xs ny samling med x före xs

Minnesregel för +: och :+ Colon on the collection side

└Vecka 4: Datastrukturer

Samlingar

Några användbara metoder på samlingar

```
Traversable
```

xs.size xs.head xs.last xs.take(n) xs.drop(n) xs.foreach(f) xs.map(f) xs.filter(p) xs.mkString(",")

Iterable

xs.zip(ys)
xs.zipWithIndex
xs.sliding(n)

xs.length

Seq

samma som xs.size

antal elementet

första elementet

sista elementet

ny samling med de första n elementet

ny samling utan de första n elementet

gör f på alla element, returtyp Unit

ny samling med par (x, index för x)

gör f på alla element, ger ny samling ny samling med bara de element där p är sant

en kommaseparerad sträng med alla element

ny samling med par (x, y); "zippa ihop" xs och ys

ny samling av samlingar genom glidande "fönster"

xs :+ x ny samling med x sist efter xs x +: xs ny samling med x före xs

Minnesregel för +: och :+ Colon on the collection side

Prova fler samlingsmetoder ur snabbreferensen: http://cs.lth.se/quickref

Mer specifik samlingstyper i scala.collection

Det finns mer specifika subtyper av Seq, Set och Map:

Vector är en **IndexedSeq** medan **List** är en **LinearSeq**.

└Vecka 4: Datastrukturer

Samlingar

Några oföränderliga och förändringsbara sekvenssamlingar

scala.collection.immutable.Seq.

IndexedSeq.

Vector Range

LinearSeq.

List Oueue

scala.collection.mutable.Seq.

IndexedSeq.

ArrayBuffer StringBuilder

LinearSeq.

ListBuffer Oueue

Studera samlingars egenskaper här: docs.scala-lang.org/overviews/collections/overview Vecka 4: Datastrukturer

Samlingar

scala.collection.immutable

implemented by

Class

default implementation

Vecka 4: Datastrukturer

Samlingar

scala.collection.mutable

L_{Samlingar}

Strängar är implicit en IndexedSeq[Char]

Det finns en så kallad **implicit konvertering** mellan String och IndexedSeq[Char] vilket gör att **alla samlingsmetoder på Seq funkar även på strängar** och även flera andra smidiga strängmetoder erbjuds **utöver** de som finns i java.lang.String genom klassen StringOps.

scala> "hej". //tryck på TAB och se alla strängmetoder

Detta är en stor fördel med Scala jämfört med många andra språk, som har strängar som inte kan allt som andra sekvenssamlingar kan.

Vector eller List?

stackoverflow.com/questions/6928327/when-should-i-choose-vector-in-scala

- If we only need to transform sequences by operations like map, filter, fold etc: basically it does not matter, we should program our algorithm generically and might even benefit from accepting parallel sequences. For sequential operations List is probably a bit faster. But you should benchmark it if you have to optimize.
- If we need a lot of random access and different updates, so we should use vector, list will be prohibitively slow.
- 3 If we operate on lists in a classical functional way, building them by prepending and iterating by recursive decomposition: use list, vector will be slower by a factor 10-100 or more.
- If we have an performance critical algorithm that is basically imperative and does a lot of random access on a list, something like in place quick-sort: use an imperative data structure, e.g. ArrayBuffer, locally and copy your data from and to it.

stackoverflow.com/questions/20612729/how-does-scalas-vector-work

Mer om tids- och minneskomplexitet i fördjupningskursen och senare kurser.

Mängd: snabb innehållstest, garanterat dubblettfri

En **mängd** (eng. *set*) är en samling som **inte** kan innehålla **dubbletter** och som är snabb på att avgöra om ett element **finns eller inte** i mängden.

```
scala> var veg = Set.empty[String]
    veg: scala.collection.immutable.Set[String] = Set()
3
    scala> veg = veg + "Gurka"
    veg: scala.collection.immutable.Set[String] = Set(Gurka)
6
    scala> veg = veg ++ Set("Broccoli", "Tomat", "Gurka")
    veq: scala.collection.immutable.Set[String] = Set(Gurka, Broccoli, Tomat)
9
10
    scala> veg.contains("Gurka")
    res0: Boolean = true
11
12
13
    scala> veg.apply("Gurka") // samma som contains
    res1: Boolean = true
14
15
16
    scala> veg("Morot")
    res2: Boolean = false
17
```

Den fantastiska nyckel-värde-tabellen Map

- En nyckel-värde-tabell (eng. key-value table) är en slags generaliserad vektor där man kan "indexera" med godtycklig typ.
- Kallas öven hashtabell (eng. hash table), lexikon (eng. dictionary) eller kort och gott mapp (eng. map),
- En hashtabell är en mängd av par, där varje par består av en nyckel och ett värde.
- Om man vet nyckeln kan man få fram värdet snabbt, på liknande sätt som indexering sker i en vektor om man vet heltalsindex.
- Denna datastruktur är mycket användbar och liknar en enkel databas.

```
scala> val födelse = Map("C" -> 1972, "C++" -> 1983, "C#" -> 2000,
    "Scala" -> 2014, "Java" -> 1995, "Javascript" -> 1995, "Python" -> 1991)

födelse: scala.collection.immutable.Map[String,Int] = Map(Scala -> 2014, C# -> scala> födelse.apply("Scala")
res0: Int = 2014

scala> födelse("Java")
res1: Int = 1995
```

Speciella metoder på förändringsbara samlingar

Både Set och Map finns i **förändringsbara** varianter med extra metoder för uppdatering av innehållet "på plats" utan att nya samlingar skapas.

```
scala> import scala.collection.mutable
1
    scala> val ms = mutable.Set.emptv[Int]
    ms: scala.collection.mutable.Set[Int] = Set()
5
    scala> ms += 42
7
    res0: ms.tvpe = Set(42)
8
    scala> ms += (1, 2, 3, 1, 2, 3); ms -= 1
    res1: ms.tvpe = Set(2, 42, 3)
10
11
12
    scala> ms.mkString("Mängd: ", ", s" Antal: ${ms.size}")
    res2: String = Mängd: 1, 2, 42, 3 Antal: 4
13
14
    scala> val ordpar = mutable.Map.empty[String, String]
15
    scala> ordpar += ("hej" -> "svejs", "abra" -> "kadabra", "ada" -> "lovelace")
16
17
    scala> println(ordpar("abra"))
    kadabra
18
```

Fler användbara samlingsmetoder

Exempel: räkna bokstäver i ord. Undersök vad som händer i REPL:

```
val ord = "sex laxar i en laxask sju sjösjuka sjömän"
val uppdelad = ord.split(' ').toVector
val ordlängd = uppdelad.map(_.length)
val ordlängMap = uppdelad.map(s => (s, s.size)).toMap
val grupperaEfterFörstaBokstav = uppdelad.groupBy(s => s(0))
val bokstäver = ord.toVector.filter(_ != ' ')
val antalX = bokstäver.count(_ == 'x')
val grupperade = bokstäver.groupBy(ch => ch)
val antal = grupperade.map(kv => (kv._1, kv._2.size))
val sorterat = antal.toVector.sortBy(-...2)
val vanligast = antal.maxBy(...2)
```

```
Samlingar
```

Jobba med föränderlig samling lokalt; returnera oföränderlig samling när du är klar

Om du vill implementera en imperativ algoritm med en föränderlig samling: Gör gärna detta **lokalt** i en **förändringsbar** samling och returnera sedan en **oföränderlig** samling, genom att köra t.ex. toSet på en mängd, eller toMap på en hashtabell, eller toVector på en ArrayBuffer eller Array.

```
scala> :paste
def kastaTärningTillsAllaUtfallUtomEtt(sidor: Int = 6) = {
  val s = scala.collection.mutable.Set.empty[Int]
  var n = 0
  while (s.size < sidor - 1) {
    s += (math.random * sidor + 1).toInt
    n += 1
  }
  (n, s.toSet)
}
f(n, s.toSet)
scala> kastaTärningTillsAllaUtfallUtomEtt()
res0: (Int, scala.collection.immutable.Set[Int]) = (13,Set(5, 1, 6, 2, 3))
```

└ Vecka 4: Datastrukturer

Integrerad utvecklingsmiljö (IDE)

Integrerad utvecklingsmiljö (IDE)

Föreläsningsanteckningar EDAA45, 2016

Vecka 4: Datastrukturer

Integrerad utvecklingsmiljö (IDE)

Välja IDE

- En integrerad utvecklingsmiljö (eng. Integrated Development Environment, IDE) innehåller editor + kompilator + debugger + en massa annat och gör utvecklingen enklare när man lärt sig alla finesser.
- Läs om vad en IDE kan göra i appendix D (ingår i labbförberedelserna för lab pirates).

Föreläsningsanteckningar EDAA45, 2016

Vecka 4: Datastrukturer

└ Integrerad utvecklingsmiljö (IDE)

Välja IDE

- En integrerad utvecklingsmiljö (eng. Integrated Development Environment, IDE) innehåller editor + kompilator + debugger + en massa annat och gör utvecklingen enklare när man lärt sig alla finesser.
- Läs om vad en IDE kan göra i appendix D (ingår i labbförberedelserna för lab pirates).
- På LTH:s datorer finns två populära IDE installerade:
 - Eclipse med plugin ScalaIDE förinstallerad

\$ scalaide

2 IntelliJ IDEA (välj installera Scala-plugin när du kör första gången)

\$ idea

Läs mer om dessa i appendix D innan du väljer vilken du vill lära dig. Där står även hur du installerar dem på din egen dator. Flest handledare har störst vana vid Eclipse. └Vecka 4: Datastrukturer

Integrerad utvecklingsmiljö (IDE)

Eclipse med ScalaIDE

IntelliJ IDEA med Scala-plugin

└Vecka 4: Datastrukturer

☐ Integrerad utvecklingsmiljö (IDE)

Denna veckas övning: data

- Kunna skapa och använda tupler, som variabelvärden, parametrar och returvärden.
- Förstå skillnaden mellan ett objekt och en klass och kunna förklara betydelsen av begreppet instans.
- Kunna skapa och använda attribut som medlemmar i objekt och klasser och som som klassparametrar.
- Beskriva innebörden av och syftet med att ett attribut är privat.
- Kunna byta ut implementationen av metoden toString.
- Kunna skapa och använda en objektfabrik med metoden apply.
- Kunna skapa och använda en enkel case-klass.
- Kunna använda operatornotation och förklara relationen till punktnotation.
- Förstå konsekvensen av uppdatering av föränderlig data i samband med multipla referenser.
- Känna till och kunna använda några grundläggande metoder på samlingar.
- Känna till den principiella skillnaden mellan List och Vector.
- Kunna skapa och använda en oföränderlig mängd med klassen Set.
- Förstå skillnaden mellan en mängd och en sekvens.
- Kunna skapa och använda en nyckel-värde-tabell, Map.
- Förstå likheter och skillnader mellan en Map och en Vektor.

Denna veckas laboration: pirates

- Kunna använda en integrerad utvecklingsmiljö (IDE).
- Kunna använda färdiga funktioner för att läsa till, och skriva från, textfil.
- Kunna använda enkla case-klasser.
- Kunna skapa och använda enkla klasser med föränderlig data.
- Kunna använda samlingstyperna Vector och Map.
- Kunna skapa en ny samling från en befintlig samling.
- Förstå skillnaden mellan kompileringsfel och exekveringsfel.
- Kunna felsöka i små program med hjälp av utskrifter.
- Kunna felsöka i små program med hjälp av en debugger i en IDE.