Universidad de Costa Rica Escuela de Ingeniería Mecánica

Mecanica de Fluidos IM-0423 Tarea 4

Víctor Andrés Jiménez Esquivel Carnet: C04005

Fecha: 14 de noviembre del 2023

1. Caudal máximo en un canal de recolección de aguas pluviales

Figura 1: Sección transversal del canal

Cuadro 1: Valores del canal

Parametro	Magnitud	Unidades	Descripcion
\overline{a}	1,20	\overline{m}	Ancho
b	0,9	m	Profundidad
r	0,4	m	Radio
z_1	1280	m	Altura 1
z_2	1130	m	Altura 2
L	1800	m	Longitud
n	0,014	_	Cte. concreto rugoso

Para calcular el caudal máximo se tiene la siguiente fórmula: $Q_{max} = A \cdot V_{max}$. El área es la sección transversal del canal, y se calcula de la siguiente manera.

$$A = a \cdot (b - r) + 0.5 \cdot \pi \cdot r^2 = 0.8513 \, m^2$$

Por otro lado, para calacular la velocidad se tiene:

$$V = C \cdot \sqrt{S_0 \cdot R_h}$$

La R_h se calcula de la siguiente manera:

$$R_h = \frac{A}{P}$$

Donde el perimetro P es:

$$P = \pi \cdot r + (a - 2 \cdot r) + 2 \cdot (b - r) = 2,657 \, m$$

Por lo que:

$$R_h = 0.3204 \, mD_h = 4 \cdot R_h = 1.282 \, m$$

 S_0 , además, se calcula como:

$$S_0 = \frac{z_1 - z_2}{L} = 0.08333$$

Y el coeficiente de Chezy se define de la siguiente manera. Es importante denotar que se utilizó el factor Manning debido al estilo del canal.

$$C = \frac{a}{n} \cdot R_h^{\frac{1}{6}}$$

$$a = 1$$

$$C = 59,09 \frac{\sqrt{m}}{s}$$

Finalmente, para la velocidad V se obtiene:

$$V = C \cdot \sqrt{S_0 \cdot R_h} = 9,655 \, \frac{m}{s}$$

2. Perfil aerodinámico para el ala de un dron

Para calcular el perfil aerodinámico de un ala se tienen las siguientes ecuaciones:

$$Re = \frac{V_n \cdot c \cdot \rho}{\mu}$$

$$C_L \cdot \frac{\rho \cdot V^2 \cdot c^2 \cdot n}{2} = m \cdot g$$

Al iterar en un excel se obtienen los siguientes datos:

Iteración de valores			
V	20,8333		
m	25		
μ	1,85E-05		
ρ	1,2		
g	9,81		
l/c	10,2		
c	0,3		
Cl	1,026		
α	4		
Cd	0,015		
F de Arrastre	3,59		
FL	245,25		
W	245,25		
FL-W	0		
Re	4E+05		

Figura 2: Iteración en excel

Por otro lado, el perfil seleccionado para el ala y sus respectivos gráficos son los siguientes:

A18 (original) - Archer A18 F1C free flight airfoil(original)

Figura 3: Perfil del ala

Figura 4: Gráficos del ala