## Example 1: identifying source of hardware variation affecting process

### **Problem statement:**

- We are targeting 1 nm / min deposition rate of a plasma enhanced SiO<sub>2</sub> deposition
- One chamber consistently has a lower growth rate
- We want to understand the source of this variation

| Chamber parameter                  | Setpoint  |
|------------------------------------|-----------|
| Chamber pressure                   | 100 Torr  |
| Gas 1 flowrate (SiH <sub>4</sub> ) | 200 sccm  |
| Gas 2 flowrate (O <sub>2</sub> )   | 100 sccm  |
| Showerhead temperature             | 400 °C    |
| Pedestal temperature               | 390 °C    |
| Chamber wall temperature           | 380 °C    |
| Carrier gas flowrate (Ar)          | 1000 sccm |
| Plasma power                       | 1000 W    |







# Example 1: identifying source of hardware deviation affecting process



#### Sensor data

Chamber pressure

Gas 1 flowrate (SiH<sub>4</sub>)

Gas 2 flowrate (O<sub>2</sub>)

Showerhead temperature

Pedestal temperature

Chamber wall temperature

Carrier gas flowrate (Ar)

Plasma power

#### Wafers from outlier chamber



Classification analysis using random forest tree model



Top contributing

sources of variation

Link to notebook with the simulated chamber and PCA model:

https://www.kaggle.com/code/adrianacosta0/data-science-for-semiconductor-process-reliability