Resistor

KEY SPECS

What It Does Restricts electrical current by providing

resistance. Used to protect components like LEDs from

overheating and for voltage division in

circuits.

Common Values 220Ω , 330Ω , $1k\Omega$, $10k\Omega$

Power Rating 1/4W (0.25W)Tolerance $\pm 5\% (Gold band)$

MaterialCarbon filmConnectionNon-polarized

QUICK WIRING

NOTES FOR QUICK WIRING

Non-polarized Can be connected in either direction: current flows both ways

Current limiting Protects components by reducing current flow for constant voltage

Ohm's Law $V = I \times R$ - For constant voltage, low current results from high resistance

Power dissipation $P = I^2R$ - resistor converts excess energy to heat

Common Projects

LED Current Limiting

Tutorial & Guide

Most fundamental resistor use - protects components from burning out by limiting current. Building block for all LED projects.

Components

 220Ω resistor, LED, Arduino, breadboard, jumper wires

Pull-up/Pull-down Resistors

Prevents floating inputs where voltage fluctuates to provide reliable readings from buttons and photocells.

Components

 $10k\Omega$ resistor, push button, Arduino, breadboard

Resistors Work Well With

+ LEDs

 220Ω resistor prevents LED burnout by limiting current flow to safe levels

+ Motors

Resistors limit current for transistor circuits to control high-power motors

+ Arduino Pins

Resistors prevent pin damage from overcurrent and provide proper signal levels

+ Push Buttons

 $10k\Omega$ pull-up resistors ensure reliable digital readings and prevent floating input states

+ Capacitors

Resistor Capacitor circuits for timing, filtering noise, and smoothing voltage fluctuations

+ Multiple Resistors

Each parallel LED needs its own resistor (separate paths). Series LEDs share one resistor (same current through all)

+ Sensors

Voltage dividers and signal conditioning - regulates voltage levels for Arduino analog inputs

+ Potentiometers

Adjustable resistors inside split voltage to control sensor sensitivity - turn the knob to set when sensors trigger

Resistor Chart Overview & Setup Common Projects Troubleshooting **Testing Station**

Troubleshooting

LED Too Dim

Problem: Your LED barely lights up or gives off very weak light.

Solution: Your resistor value is too high. Replace with a smaller value resistor. If using $1k\Omega$, try 470Ω or 330Ω . For standard LEDs with 5V Arduino, 220Ω - 330Ω works best.

How to Calculate: R = (Vsource - VLED) / ILED. For a red LED: (5V - 2V) / 0.02A = 150Ω minimum. Use next standard value up (220Ω) .

LED Burning Out

Problem: LED flashes bright then stops working permanently.

Solution: Too much current is flowing. You need a resistor or your resistor value is too small. Never connect LED directly to power without a resistor.

Prevention: Always use at least 220Ω for standard LEDs with 5V. For 3.3V systems, 150Ω minimum. Higher values are always safer than lower.

No Current Flow

Problem: Circuit appears dead, no LED light, no readings.

Step 1: Check power - Is Arduino powered on? Is the correct pin set to OUTPUT?

Step 2: Check connections - Are breadboard rows properly connected? Push components firmly into breadboard.

Step 3: Test resistor - Use multimeter to verify it's not broken (should read close to labeled value).

Step 4: Check LED polarity - Long leg (anode) goes toward positive.

Resistor Overheating

Problem: Resistor gets hot to touch or shows burn marks.

Cause: Power dissipation exceeds resistor's rating. Standard resistors are 1/4W (0.25W).

Solution: Calculate power: $P = I^2R$. If current is 0.1A through 220 Ω : $P = (0.1)^2 \times 220 = 2.2W$. This exceeds 1/4W rating! Use higher wattage resistor or reduce current.

Reading Wrong Value

Problem: Can't determine resistor value or colors are confusing.

Color Band Reading: Hold resistor with gold/silver band on right. Read left to right:

Band 1: First digit

Band 2: Second digit

Band 3: Multiplier (number of zeros)

Band 4: Tolerance

Example: Red-Red-Brown-Gold = $2-2-\times10-\pm5\% = 220\Omega$

Measuring with Multimeter

Need exact value? Use the testing station on page 4.

Quick Steps:

- 1. Turn dial to Ω (omega) symbol
- 2. For auto-range: Wait for display to stabilize
- 3. For manual: Start at 200Ω range, increase if needed
- 4. Touch probes to resistor ends
- 5. Read value should be within tolerance of marked value

Resistor Testing Station

How to use the resistor testing station:

- 1. Place resistor in suspended clamps with terminals accessible
- 2. Set multimeter to resistance (Ω) mode. Most multimeters turn on automatically when dial is turned from OFF position
- 3. Touch red probe to left terminal, black probe to right terminal
- 4. Resistance value on display should match color band calculation within tolerance
- 5. If reading shows "OL" or "1", check probe contact that the probe is touching the resistor
- 6. Put multimeter in right range

6a. For Manual Range Multimeters: No reading? Start at 200Ω , increase to $2k\Omega \to 20k\Omega \to 200k\Omega$ until value displays

6b. For Auto-Range Multimeters: Press "Range" button for 2+ seconds to power on, auto-selects range

Resistor Reference Chart

Color	Sample	1st Digit	2nd Digit	Multiplier	Tolerance
Black		0	0	×1	-
Brown		1	1	×10	±1%
Red		2	2	×100	±2%
Orange		3	3	×1K	-
Yellow		4	4	×10K	-
Green		5	5	×100K	±0.5%
Blue		6	6	×1M	±0.25%
Violet		7	7	×10M	±0.1%
Gray		8	8	-	±0.05%
White		9	9	-	-
Gold		-	-	×0.1	±5%
Silver		-	-	×0.01	±10%