$3a\partial a ua$ 1. Пусть X_t удовлетворяет СДУ:

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

Найти $\mathbb{E}X_t$, $Var(X_t)$.

Задача 2. Пусть

$$\begin{cases} dX_t = X_t(\mu_x dt + \sigma_x dB_t), \\ dY_t = Y_t(\mu_y dt + \sigma_y dZ_t), \end{cases}$$

где $dB_t \cdot dZ_t = \rho dt$ – броуновские движения с корреляций ρ .

Выписать уравнения для процессов $X_t^{\alpha}, X_t \cdot Y_t, \frac{X_t}{Y_{\star}}$

Задача 3. Пусть

$$\begin{cases} dX_t = \alpha X_t dt - Y_t dB_t, \\ dY_t = \alpha Y_t dt + X_t dB_t, \end{cases}$$

 $X_0 = x_0, Y_0 = y_0$, где x_0, y_0 – константы.

Найти $R_t = X_t^2 + Y_t^2$. Вычислить $\mathbb{E}X_t$.

 $3a\partial a$ ча 4 (Variance swap). Пусть $dX_t = X_t \sigma_t dB_t$ – процесс Ито, σ_t – согласованный процесс.

Покажите, что:

$$\int_{0}^{T} \sigma_{t}^{2} dt = -2 \ln \frac{X_{T}}{X_{0}} + \int_{0}^{T} \frac{2}{X_{t}} dX_{t}$$

 $3 a \partial a u a 5$. Пусть процесс X_t удовлетворяет следующуему СДУ:

$$dX_t = \alpha X_t dt + \sigma_t dB_t$$

для некоторого процесса σ_t и $\alpha \in \mathbb{R}$.

Найти $\mu(t) = \mathbb{E}X_t$.

3 a d a a 6 (Броуновский мост). Пусть X_t удовлетворяет СДУ:

$$dX_t = a(t)X_t + dB_t$$

где a(t) – детерменированная функция, B_t – броуновское движение. Найдите a(t) такое, что процесс X_t , определённый по формуле выше, является броуновским мостом. Броуновский мост это гауссовский процесс X_t : $\mathbb{E}X_t = 0$, $\operatorname{cov}(X_t, X_s) = s \cdot (1 - t)$, $s \leq t$ $3a\partial a ua$ 7 (Уравнение Ориштейна-Уленбека). Решить стохастическое дифференциальное

уравнение на X_t :

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

При каком распределении X_0 процесс X_t стационарен?

Задача 8 (Формула Башелье). Решить УРЧП:

$$f_t + \mu f_x + \frac{\sigma^2}{2} f_{xx} = 0, 0 \le t < T, x \in \mathbb{R}$$

 $f(T, x) = \max(x - K, 0)$

где $\sigma > 0, \mu \in \mathbb{R}, K \in \mathbb{R}$ – константы.

Задача 9 (Формула Блэка-Шоулза). Решить УРЧП:

$$f_t + \mu \cdot x \cdot f_x + \frac{\sigma^2 x^2}{2} f_{xx} = 0, 0 \le t < T, x \ge 0$$
$$f(T, x) = \max(x - K, 0)$$

где $\sigma > 0, K > 0, \mu \in \mathbb{R}$ – константы.

 $3 a \partial a u a 10$. Пусть u(x,y) удовлетворяет уравнению Лапласа в области $x^2 + y^2 \le 1$:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

и граничным условиям u(x,y) = f(x,y) при $x^2 + y^2 = 1$.

Найти u(x,y).

Доказать, что:

$$u(x, y) = \mathbb{E}[f(X_{\tau}, Y_{\tau})|(X_0 = x, Y_0 = y)]$$

где (X_t, Y_t) – двумерное броуновское движение, стартующее из точки (x, y), момент остановки τ определяется как:

$$\tau = \inf_{t} \{ X_t^2 + Y_t^2 \ge 1 \}$$