

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (нашиональный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Информационная безопасность (ИУ8)

ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Лабораторная работа №4 на тему:

«Исследование нейронных сетей с радиальными базисными функциями (RBF) на примере моделирования булевых выражений»

Вариант 8

Выполнил: Песоцкий А. А., студент группы ИУ8-61

Проверила: Коннова Н.С., доцент каф. ИУ8

Цель работы

Исследовать функционирование HC с радиальными базисными функциями (RBF) и обучить её по правилу Видроу-Хоффа.

Постановка задачи

Получить модель булевой функции (БФ) на основе RBF–HC с двоичными входами $x_1, x_2, x_3, x_4 \in \{0,1\}$, единичным входом смещения φ_0 , = 1, синаптическими весами v_0, v_1, v_2, v_3, v_4 , двоичным выходом $y \in \{0,1\}$ с пороговой ФА φ : $R \to (0,1]$ и координатами центров $c_{j1}, c_{j2}, c_{j3}, c_{j4}$ ($j = \overline{1,J}$) (рисунок 1).

Рисунок 1. RBF

Для заданной БФ количество RBF-нейронов необходимо выбирать из соотношения $J=\min\{J_0,J_1\}$, где J_0,J_1 – количество векторов $\mathbf{x}=(x_1,x_2,x_3,x_4)$, соответствующих значениям БФ «0» и «1». Центры RBF $\mathbf{c}^{(j)}=(c_{j1},c_{j2},c_{j3},c_{j4})$ должны совпадать \mathbf{c} концами этих векторов.

Требуется найти минимальный набор векторов \mathbf{x} , используемых для обуччения.

Ход работы

Получим таблицу истинности для моделируемой БФ:

$$F(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_4) x_3$$

x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
F	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1	1

Находим количество RBF-нейронов: J = 7. Центры RBF-нейронов располагаем в точках

$$C^{(1)} = (0,0,1,1), C^{(2)} = (0,1,1,0), C^{(3)} = (0,1,1,1),$$

$$C^{(4)} = (1,0,1,0), C^{(5)} = (1,0,1,1), C^{(6)} = (1,1,1,0), C^{(7)} = (1,1,1,1)$$

На начальном шаге l=0 (эпоха k=0) весовые коэффициенты берутся в виде:

$$v_0^{(0)} = v_1^{(0)} = v_2^{(0)} = \dots = w_n^{(0)} = 0$$

Норму обучения для всех случаев выберем $\eta = 0.3$

- 1. Обучение HC с использованием всех комбинаций переменных x_1, x_2, x_3, x_4 .
 - 1.1. Используем пороговую ФА:

$$f(net) = \begin{cases} 1, net \ge 0 \\ 0, net < 0 \end{cases}$$

Минимальный набор из трёх векторов:

$$x^{(1)} = [0, 0, 0, 0] x^{(2)} = [0, 0, 1, 1] x^{(3)} = [1, 1, 1, 0]$$

Даёт следующие синаптические веса:

 $\mathbf{V} = (-0.3, \quad 0.4525337806, \quad 0.0291626624, \quad 0.2015837676,$

0.0291626624, 0.2015837676, 0.270127759, 0.1695862356)

Для полного обучения потребовалось 5 эпох:

+	Epo	och	Weights	 	Υ		+ Error	-+ -
		 0 1 2	[0.0, 0.259399415, 0.0, 0.0954277118, 0.0, 0.0954277118, 0.0, 0.0351058933]	[1,	1,	1]	1 1 1	-+
		4	[-0.3, 0.4525337806, 0.0291626624, 0.2015837676, 0.0291626624, 0.2015837676, 0.270127759, 0.1695862356]		-			i

Рисунок 2. Параметры НС на последовательных эпохах (пороговая ФА) при наборе из 3 векторов

Рисунок 3. График суммарной ошибки НС по эпохам обучения (логистическая ФА) при наборе из 3 векторов

1.2. Используем сигмоидальную (логистическую) ФА и её производную:

$$f(net) = \frac{1}{1 + \exp(-net)}, \frac{df(net)}{dnet} = f(net)[1 - f(net)]$$

Используя сигмоидальную (логистическую) ФА.

Минимальный набор из четырёх векторов:

$$x^{(1)} = [0, 0, 0, 1] x^{(2)} = [0, 0, 1, 1] x^{(3)} = [1, 1, 1, 0]$$

Даёт следующие синаптические веса:

 $\mathbf{V} = (-0.0752466396, 0.0431194053, 0.0329029641, 0.0246333107, 0.0329029641, 0.0246333107, 0.0769105428, 0.0329029641)$

Для полного обучения потребовалось 5 эпох.

Epoch	Epoch Weights							
+		+			+	-+		
0	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	[1	, 1,	1]	1	1		
1	[-0.0002332202, 0.0471758217, 0.0063845532, 0.0173550149, 0.0063845532, 0.0173550149, 0.0023487459, 0.0063845532]	[1	, 1,	1]	1			
2	[-0.0002688441, 0.0945430704, 0.0127950132, 0.0347804519, 0.0127950132, 0.0347804519, 0.0047070223, 0.0127950132]	[1	, 1,	1]	1			
3	[-0.0002797805, 0.0706981716, 0.0366353443, 0.0347789718, 0.0366353443, 0.0347789718, 0.0782836087, 0.0366353443]	[1	, 1,	1]	1			
4	[-0.0752466396, 0.0431194053, 0.0329029641, 0.0246333107, 0.0329029641, 0.0246333107, 0.0769105428, 0.0329029641]	[0	, 1,	1]	0			

Рисунок 4. Параметры НС на последовательных эпохах (логистическая ФА) при наборе из 3 векторов

Рисунок 4. График суммарной ошибки НС по эпохам обучения (логистическая ФА) при наборе из 3 векторов

Выводы

В ходе выполнения лабораторной работы было изучено функционирование HC с радиальными базисными функциями (RBF) и было выполнено ее обучение по правилу Видроу-Хоффа.

Были найдены минимально возможные наборы векторов, на которых можно обучить НС.

Приложение А.

Файл 'rbf.py'.

```
from computation import *
import itertools
import copy
from prettytable import PrettyTable
Функция обучения
:param func_type: тип функции (пороговая или логист.)
:param return: таблица обучения и минимальный набор
def learn_rbf(func_type):
  vlist, t1, f1 = get_Y_target(truth_table)
  #выбор центров
  if len(t1) <= 8:
     c_list = t1
  else:
     c_list = f1
  #пробегаем всевозможные комбинации
  for L in range(1, 17):
     for subset in itertools.combinations(truth_table, L):
        #заполняем веса
        vector_v = list()
       for i in range(0, len(c_list) + 1):
          vector_v.append(0)
        #целевой выход
       t_list, t2, f2 = get_Y_target(subset)
        error_list = list()
        epoch = 0
        epoch_list = list()
        pt = PrettyTable(['Epoch', 'Weights', 'Y', 'Error'])
       y_list = get_Y_real(vector_v, subset, func_type, c_list)
        epoch_list.append(epoch)
        error_sum = hamming_distance(t_list, y_list)
        error_list.append(error_sum)
        pt.add_row([epoch, copy.copy([float('\{:.7f\}'.format(x)) for x in vector_v]), y_list, error_sum])
```

```
y_list = list()
#пока ошибка не равна О
while error_sum != 0 and epoch < 50:
  epoch += 1
  for (vec, t) in zip(subset, t_list):
     #расчёт фи
     phi_list = list()
     for c in c_list:
       phi_list.append(get_phi(vec, c))
     net = get_net(phi_list, vector_v) #считаем net
     if func_type == 't':
       y = get_function_out(net, 't')
       y_list.append(y)
     if func_type == "":
       out = I_function(net)
       y = get_function_out(out, ")
       y_list.append(y)
     #обновляем веса
     delta = get_delta(t, y)
     update_w(vector_v, delta, phi_list, net, func_type)
  epoch_list.append(epoch)
  y_list = get_Y_real(vector_v, subset, func_type, c_list)
  error_sum = hamming_distance(t_list, y_list)
  error_list.append(error_sum)
  pt.add_row([epoch, copy.copy([float('{:..10f}'.format(x)) for x in vector_v]), y_list, error_sum])
  y_list = list()
#проверка весов на всех наборах
y_list = get_Y_real(vector_v, truth_table, func_type, c_list)
t_list, t3, f3 = get_Y_target(truth_table)
error_sum = hamming_distance(t_list, y_list)
if error_sum == 0:
  graph_plot(epoch_list, error_list)
  return pt, subset
```

return pt

```
if __name__ == "__main__":
  table, comb = learn_rbf('I')
  print(table)
  print(comb)
  Файл 'computation.py'.
from math import exp
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.style as style
truth_table = [[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1],
         [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1],
         [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1],
         [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]]
nu = 0.3 #норма обучения
Функция подсчитывает net
:param vector_x: булеый набор
:param vector_w: набор весов
:param return: значение net
def get_net(vector_x, vector_w):
  net = 0
  for i in range(1, len(vector_w)):
     net += vector_x[i-1] * vector_w[i]
  net += vector_w[0]
  return net
Функция пересчитывает значения весов
:param vector_w: набор весов
:param delta: дельта
:param vec: булевый набор
:param net: net
```

:param func_type: тип функции (пороговая или логист.)

```
:param return: новый набор весов
def update_w(vector_w, delta, vec, net, func_type):
  for i in range(1, len(vector_w)):
    vector_w[i] += get_dw(delta, nu, vec[i - 1], net, func_type)
  vector_w[0] += get_dw(delta, nu, 1, net, func_type)
  return vector_w
Функция подсчитывает f(net)
:param net: net
:param return: значение f(net)
def I_function(net):
  return 1 / (1 + exp(-net))
Функция подсчитывает y(net) / y(out)
:param net_out: значение net / out
:param func_type: тип функции (пороговая или логист.)
:param return: значение f(net) / y(out)
def get_function_out(net_out, func_type):
  if func_type == 't':
    return 1 if net_out >= 0 else 0
  else:
    return 1 if net_out >= 0.5 else 0
Функция подсчитывает набор реальных выходов
:param vector_w: набор весов
:param table: все булевы наборы
:param func_type: тип функции (пороговая или логист.)
:param return: набор реальных выходов
def get_Y_real(vector_v, table, func_type, c_list):
  y_list = list()
  for vec in table:
```

```
phi_list = list()
     for c in c_list:
        phi_list.append(get_phi(vec, c))
     net = get_net(phi_list, vector_v)
     if func_type == 't':
       y = get_function_out(net, 't')
       y_list.append(y)
     if func_type == "":
       out = I_function(net)
       y = get_function_out(out, ")
       y_list.append(y)
  return y_list
Функция подсчитывает набор целевых выходов
:param table: все булевы наборы
:param return: набор целевых выходов
def get_Y_target(table):
  t_list = list()
  truth_list = list()
  false_list = list()
  for vec in table:
    t_list.append(int(bool_function(vec)))
     if int(bool_function(vec)) == 1:
       truth_list.append(vec)
     else:
       false_list.append(vec)
  return t_list, truth_list, false_list
Функция подсчитывает дельта
:param t: целевой выход
:param у: реальный выход
:param return: значение delta
def get_delta(t, y):
  return t - y
```

```
def get_phi(vector_x, vector_c):
  sm = 0
  for i in range(0, 4):
    sm += (vector_x[i] - vector_c[i])**2
  return exp(-sm)
Функция подсчитывает коррекцию веса
:param delta: дельта
:param n: норма обучения
:param х: компонента обучающего вектора
:param net: net
:param func_type: тип функции (пороговая или логист.)
:param return: значение коррекции веса
def get_dw(delta, n, x, net, func_type):
  if func_type == "I":
    return n * delta * I_function(net) * (1 - I_function(net)) * x
  else:
     return n * delta * x
Функция подсчитывает квадратичную ошибку
:param vec1: целевой набор выходов
:param vec2: реальный набор выходов
:param return: значение квадратичной ошибки
def hamming_distance(vec1, vec2):
  return sum(ch1 != ch2 for ch1, ch2 in zip(vec1, vec2))
Функция подсчитывает значение булевой функции
:param vector: булевый набор
:param return: значение булевой функции
def bool_function(vector):
  return (vector[0] or vector[1] or vector[3]) and vector[2]
  # return not ((vector[0]) and (vector[1])) and vector[2] and vector[3]
```

```
Функция строит график E(k)

:param epoch_list: список эпох

:param error_list: список ошибок

"

def graph_plot(epoch_list, error_list):
    style.use('seaborn')
    style.use('ggplot')
    plt.grid(True)
    plt.plot(epoch_list, error_list)
    plt.xlabel('Era k')
    plt.ylabel('Error E')
    plt.scatter(epoch_list, error_list)
    mpl.style.use('bmh')
    plt.show()
```