5. Indukcyjnie wykazać, że liczba $3^{3n} - 26n - 1$ jest podzielna przez 169 dla każdej liczby naturalnej n.

6. Wykazać, że funkcja $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ jest bijekcją, gdy $h(m,n) = 2^m (2n+1) - 1$ dla $(m,n) \in \mathbb{N} \times \mathbb{N}$.	
7. Dana jest funkcja $f: X \to Y$ oraz podzbiory A i B zbioru Y . Wykazać, że $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$.	
3. Wykazać, że $\bigcup_{n\in\mathbb{N}}A_n=(0;2)$ i $\bigcap_{n\in\mathbb{N}}A_n=\{1\}$ (lub wykazać, że jest inaczej), gdy $A_n=\langle \frac{1}{n+1};1+\frac{1}{n+1}\rangle$ dla $n\in\mathbb{N}$.	
9. Wykazać, że odcinek (0;1) nie jest przeliczalny.	
10. Niech \sim będzie relacją w zbiorze $\mathbb Z$ taką, że $a \sim b$ wtedy i tylko wtedy, gdy liczba $a^2 - b^2$ jest podzielna przez . (a) Wykazać, że \sim jest relacją równoważności w zbiorze $\mathbb Z$. (b) Wyznaczyć klasy abstrakcji liczb 0, 1 i 2 względem elacji \sim .	