

Trial Examination 2011

VCE Chemistry Unit 4

Written Examination

Data Booklet

Directions to students

This data booklet is provided for your reference.

Any writing, jottings, notes or drawings you make on this data booklet will not be considered in the marking.

You may keep this data booklet.

1. Periodic Table of the elements

									-1								- 1				\neg								
2 He 4.0	S 2	20.2 neon	18	Ar	argon	36	궃	83.8	krypton	54	Xe	131.3	xenon	98	퉅	(222)	radon	,	<u>•</u> :	900									
	6 ш	19.0 fluorine	17	35.55	chlorine	35	Ŗ	79.9	bromine	23	_	126.9	iodine	82	¥	(210)	astatine					71	3	175.0	lutetium	103	<u> </u>	(260)	lawrencium
	& O	16.0 oxygen	16	S 2.	sulfur	34	Se	79.0	selenium	25	<u>e</u>	127.6	tellurium	84	P 0	(508)	polonium	7	e !			70	Λþ	173.0	ytterbium			(259)	_
	^Z	14.0	15	- 2.	phosphorus	33	As	74.9	arsenic	21	Sp	121.8	antimony	83	<u></u>	209.0	bismuth					69	عر	168.9	thulium	101	2	(258)	mendelevium
	<u>ဖ</u> ၁	12.0 carbon	14	% <u>S</u>	silicon	32	Ge	72.6	germanium	20	Sn	118.7	tin	85	P _o	207.2	lead	7	± :			89	ф	167.3	erbium			(257)	
	പ്പ വ	10.8 boron	13	A	aluminium	31	Сa	69.7	gallium	49	드	114.8	indium	%	=	204.4	thallium					29	유	164.9	holmium	00	3 4	(252)	einsteinium
						30	Zu	65.4	zinc	48	3	112.4	cadmium	8	£	200.6	mercury		711			99	2	162.5	dysprosium	80	3 2	(251)	californium
						29	3	63.5	copper	47	Ag	107.9	silver	6/	Αn	197.0	plog	111	Rg	(272)	roentgenium	65	2	158.9	terbium	47	à	(247)	berkelium
	symbol of element	element				28	Z	58.7	nickel	46	Pd	106.4	palladium	78	ᆂ	195.1	platinum	110	ြိ	(271)	darmstadtium	64	<u>G</u> d	157.2	gadolinium	96	3 5	(251)	curium
	symbol o	name of element				27	ပ္	58.9	cobalt	45	뚪	102.9	rhodium	11	<u>-</u>	192.2	iridium	109	Ĕ		meitnerium	63	П	152.0	europium	9	δm	(243)	americium
	79 Au	197.0 gold				56	æ	55.8	iron	44	æ	101.1	ruthenium	9/	0s	190.2	osmium	108	¥	(265)	nassium	62	Sm	150.3	samarium	76	5 <u>a</u>	(244)	plutonium
	number	nic mass	1			25	Ē	54.9	manganese	43	ည	98.1	technetium	75	Re	186.2	rhenium	107	듑	(264)	Donrium	61	Pm	(145)	promethium	93	8 2	237.1	neptunium
	atomic	relative atom				24	ప	52.0	chromium	42	ŝ	95.9	molybdenum	74	>	183.8	tungsten	106	Sg	(263)	seaborgium	09	Ž	144.2	neodymium	03	3 =	238.0	uranium
		rela				23	>	50.9	vanadium	41	g	92.9	niobium	73	Ē	180.9	tantalum	105	6	(262)	mniugnp				praseodymium	10	- <u>a</u>	231.0	protactinium
						77	F	47.9	titanium	49	Z	91.2	zirconium	72	Ξ	178.5	hafnium	104	*	(261)	ruthertordium			140.1				232.0	
						21	Sc	44.9	scandium	33	>	88.9	yttrium	22	E	138.9	lanthanum	83	Ac										
	4 Be	9.0 beryllium	12	Mg 24.3	magnesium	20	Ca	40.1	calcium	38	ઢં	97.6	strontium	26	Ва	137.3	barium	88	Ba	(226)	radium								
1 .0 hydrogen							¥	39.1	potassium	37	&	85.5	rubidium	22	ဌ	132.9	casesium	87	<u>ئ</u>	(223)	francium								

2. The electrochemical series

	E° in volt
$F_2(g) + 2e^- \Longrightarrow 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \Longrightarrow 2H_2O(1)$	+1.77
$Au^{+}(aq) + e^{-} \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \Longrightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Br_2(1) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \Longrightarrow H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \Longrightarrow 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \Longrightarrow H_{2}S(g)$	+0.14
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \Longrightarrow Ni(s)$	-0.23
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Co}(\operatorname{s})$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$\operatorname{Zn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Zn}(s)$	-0.76
$2H_2O(1) + 2e^- \Longrightarrow H_2(g) + 2OH^-$	-0.83
$\operatorname{Mn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Mn}(s)$	-1.03
$Al^{3+}(aq) + 3e^- \Longrightarrow Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^{-} \Longrightarrow Mg(s)$	-2.34
$Na^{+}(aq) + e^{-} \Longrightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \Longrightarrow \operatorname{Ca}(\operatorname{s})$	-2.87
$K^{+}(aq) + e^{-} \Longrightarrow K(s)$	-2.93
$\operatorname{Li}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightleftharpoons \operatorname{Li}(\operatorname{s})$	-3.02

3. Physical constants

Avogadro's constant $(N_A) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Charge on one electron = -1.60×10^{-19} C

Faraday constant $(F) = 96500 \text{ C mol}^{-1}$

Gas constant $(R) = 8.31 \text{ J K}^{-1} \text{mol}^{-1}$

Ionic product for water $(K_{\rm W}) = 1.00 \times 10^{-14} \, {\rm mol}^2 \, {\rm L}^{-2}$ at 298 K (self ionisation constant)

Molar volume (V_m) of an ideal gas at 273 K, 101.3 kPa (STP) = 22.4 L mol⁻¹

Molar volume (V_m) of an ideal gas at 298 K, 101.3 kPa $(SLC) = 24.5 L \text{ mol}^{-1}$

Specific heat capacity (c) of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Density (d) of water at 25° C = 1.00 g mL^{-1}

1 atm = 101.3 kPa = 760 mmHg

 0° C = 273 K

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	109
mega	M	10 ⁶
kilo	k	10 ³
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-1} 10^{-2} 10^{-3} 10^{-6}
nano	n	10^{-9} 10^{-12}
pico	p	10 ⁻¹²

5. ¹H NMR data

Typical proton shift values relative to TMS = 0.

These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.9
R-CH ₂ -R	1.3
RCH=CH-CH ₃	1.7
R ₃ -CH	2.0
CH ₃ -CO or CH ₃ -CNHR	2.0
R CH ₃	2.1
$R-CH_2-X$ (X = F, Cl. Br or I)	3–4
R-C H₂- OH	3.6
R—C NHCH ₂ R	3.2
R-O-CH ₃ or R-O-CH ₂ R	3.3
O—C—CH ₃	4.1
R—COCH ₂ R	4.1
R-O-H R-NH ₂	1–6 (varies considerably under different conditions) 1–5
RHC=CH ₂	
	4.6–6.0
ОН	7.0
Н	7.3
R—CNHCH ₂ R	8.1
R—C H	9–10

Type of proton	Chemical shift (ppm)
R—C_O—H	11.5

6. ¹³C NMR data

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20–45
R ₃ -CH	40–60
R ₄ –C	36–45
R-CH ₂ -X	15–80
RC-NH ₂	35–70
R-CH ₂ -OH	50–90
RC≡CR	75–95
RC=CR	110–150
RCOOH	160–185

7. Infrared absorption data

Characteristic range for infrared absorption.

Bond	Wave number (cm ⁻¹)
C-CI	700–800
C-C	750–1100
C-O	1000–1300
c=c	1610–1680
c=o	1670–1750
O-H (acids)	2500–3300
C-H	2850-3300
O-H (alcohols)	3200–3550
N–H (primary amines)	3350-3500

8. 2-amino acids (α -amino acids)

Name	Symbol	Structure
alanine	Ala	СН ₃ 3 Н ₂ N—СН—СООН
arginine	Arg	$\begin{array}{c} & \text{NH} \\ \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{NH} - \text{C} - \text{NH}_2 \\ \\ \text{H}_2 \text{N} - \text{CH} - \text{COOH} \end{array}$
asparagine	Asn	O CH ₂ -C-NH ₂ H ₂ N-CH-COOH
aspartic acid	Asp	CH ₂ —COOH H ₂ N—CH—COOH
cysteine	Cys	CH ₂ —SH H ₂ N—CH—COOH
glutamine	Gln	CH ₂ -CH ₂ -C-NH ₂ H ₂ N-CH-COOH CH ₂ -CH ₂ -COOH
glutamic acid	Glu	CH ₂ -CH ₂ -COOH H ₂ N-CH-COOH
glycine	Gly	H ₂ N—CH ₂ —COOH
histidine	His	CH ₂ N—CH—COOH
isoleucine	Ile	CH ₃ —CH—CH ₂ —CH ₃ H ₂ N—CH—COOH
leucine	Leu	CH ₃ —CH—CH ₃ CH ₂ H ₂ N—CH—COOH
lysine	Lys	CH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂ H ₂ N-CH-COOH
methionine	Met	CH ₂ -CH ₂ -S-CH ₃ H ₂ N-CH-COOH

Name	Symbol	Structure
phenylalanine	Phe	CH ₂ —CH—COOH
proline Pro		Н
serine	Ser	CH ₂ —OH
threonine	Thr	CH ₃ —CH—OH H ₂ N—CH—COOH
tryptophan	Trp	H ₂ N—CH—COOH
tyrosine	Tyr	CH ₂ —OH H ₂ N—CH—COOH
valine	Val	CH ₃ —CH—CH ₃ H ₂ N—CH—COOH

-OH

9. Formulas of some fatty acids

Name	Formula
lauric	C ₁₁ H ₂₃ COOH
myristic	$C_{13}H_{27}COOH$
palmitic	$C_{15}H_{31}COOH$
palmitoleic	$C_{15}H_{29}COOH$
stearic	C ₁₇ H ₃₅ COOH
oleic	$C_{17}H_{33}COOH$
linoleic	C ₁₇ H ₃₁ COOH
linolenic	$C_{17}H_{29}COOH$
arachidic	C ₁₉ H ₃₉ COOH
arachidonic	$C_{19}H_{31}COOH$

10. Structural formulas of some important biomolecules

11. Acid-base indicators

Name	pH range	Colour change		K _a
		Acid	Base	
thymol blue	1.2–2.8	red	yellow	2×10^{-2}
methyl orange	3.1–4.4	red	yellow	2×10^{-4}
bromophenol blue	3.0-4.6	yellow	blue	6×10^{-5} 8×10^{-6}
methyl red	4.2–6.3	red	yellow	8×10^{-6}
bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
phenol red	6.8-8.4	yellow	red	1×10^{-8}
phenolphthalein	8.3–10.0	colourless	red	5×10^{-10}

12. Acidity constants, $K_{\rm a}$, of some weak acids

Name	Formula	K _a
ammonium ion	NH ₄ ⁺	5.6×10^{-10}
benzoic	C ₆ H ₅ COOH	6.4×10^{-5}
boric	H_3BO_3	5.8×10^{-10}
ethanoic	CH ₃ COOH	1.7×10^{-5}
hydrocyanic	HCN	6.3×10^{-10}
hydrofluoric	HF	7.6×10^{-4}
hypobromous	HOBr	2.4×10^{-9}
hypochlorous	HOCI	2.9×10^{-8}
lactic	HC ₃ H ₅ O ₃	1.4×10^{-4}
methanoic	НСООН	1.8×10^{-4}
nitrous	HNO ₂	7.2×10^{-4}
propanoic	C ₂ H ₅ COOH	1.3×10^{-5}

13. Values of molar enthalpy of combustions of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta H_c \text{ (kJ mol}^{-1})$
hydrogen	H ₂	g	-286
carbon (graphite)	С	S	-394
methane	CH ₄	g	-889
ethane	C_2H_6	g	-1557
propane	C ₃ H ₈	g	-2217
butane	C_4H_{10}	g	-2874
pentane	C ₅ H ₁₂	1	-3509
hexane	C ₆ H ₁₄	1	-4158
octane	C ₈ H ₁₈	1	-5464
ethene	C_2H_4	g	-1409
methanol	CH ₃ OH	1	-725
ethanol	C ₂ H ₅ OH	1	-1364
1-propanol	CH ₃ CH ₂ CH ₂ OH	1	-2016
2-propanol	CH ₃ CHOHCH ₃	1	-2003
glucose	$C_6H_{12}O_6$	S	-2816

END OF DATA BOOKLET