Week 1: Introduction, Basic Concepts

CMPUT204: Introduction to Algorithms

Agenda:

- ► Course Information
- ► Algorithms concepts
- ► Recursion and Induction
- ► Pseudo-code, RAM model
- ► Getting Started: InsertionSort

Course Information

- ► Lectures (A1): MWF, 10:00-10:50 (CSC B2)
- ► Seminars (starting from the second week of the term)
 - ► Mondays 17:00 17:50 (CSC B2)
 - ► Tuesdays 12:30 12:20 (CSC B2)
 - Wednesdays 11:00-11:50 (V 103)
- Lectures follow textbook: Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein (3rd Edition)
- Prerequisites: CMPUT 115 or 175; CMPUT 272; MATH 113, 114, or 117 or SCI 100.

Teaching Staff

- ▶ Prof Jia You (B2) (CCid: jyou), office hours: ATH 3-54, Mondays and Fridays after class, 11:00-12:00pm and by appointment. Email headline begin with: [CMPUT204]
- ▶ Details on TAs' offices and consulting hours will be posted in eClass.

Course Work and Evaluation

- ▶ 6 quizzes 4.5% each in Seminars (6 X 4.5 = 27%)
 - Exercises posted on a Friday or before
 - ▶ Problems randomly selected for a quiz after the following Friday
 - ► A quiz takes 30 minutes
 - ▶ Dates of seminars having a quiz are posted in eClass
- \blacktriangleright 2 term tests 16% and 17% in class, Oct 16 and Nov 18
- ► Final 40% (3 hrs.); Current date: Dec 17, 2019
- ► All quizzes, tests and exam are closed book
- ▶ Grades: Based on a combination of absolute achievement and relative performance in the class. Generally, you need at least 50% to pass and at least 90% for A+,

Week 1: Introduction

Theory Courses @ UofA

- ▶ 204 Algorithm I
 - ► Introduction to algorithms
 - ► Basic algorithm design and analysis principles
- ▶ 304 **Algorithms II**
 - ► More advanced algorithms, and their design and analysis, complexity, notion of reduction, NP and NP-completeness
- ▶ 474 Formal Languages, Automata and Computability
 - ▶ More formal approach to models, complexity, and computability

The Study of Algorithms

- ► This course separates "programmers" from "algorithm designer":
- ► A programmer knows how to write code
- ► An algorithm designer knows how to reason about code
 - ► Argue about correctness and resources *mathematically*
 - ► Has wide-range of "tools" in her belt for a wide-variety of problems
- Leaving this course you should have learned:
 - Algorithms: sorting, graphs, math-operations, problem solving,

...

- Design Paradigms: greedy, divide-and-conquer, dynamic programming
- ► Analysis: model assumptions, correctness, worst/average/best case, asymptotic

What's an Algorithm?

- ightharpoonup Problem: Given an input X satisfying... output Y satisfying...
- ► Instance: A specific input for a problem is an *instance*
- ightharpoonup Algorithm: A well-defined step-by-step procedure for $X \to Y$
- Examples (that you already know!):
 - ightharpoonup Given a natural number X, output Y is X!
 - ▶ Given a sequence of numbers (a1, ..., an), output a sorted list.
- ▶ What do we need to argue about an algorithm?
 - Correctness
 - ► Amount of resources: time and space
 - Can we do any better?
- ► For any instance? For a good instance? For an average instance?

Correctness for Recursive Codes

- ▶ The factorial function: $n! = \prod_{i=1}^{n} i$ (with 0! = 1)
- Recursive implementation:

```
\begin{array}{ll} \underline{\text{procedure factorial}(n)} \\ \underline{\text{if } (n=0) \text{ then}} \\ \underline{\text{return } 1} \\ \\ \text{else} \\ \underline{\text{return } n \ \times \ \text{factorial}(n-1)} \\ \end{array} \\ ** \text{Recursive call} \\ \end{array}
```

- ► How do we prove the correctness of recursive code?
- ▶ It is simple to argue that Factorial(0) returns the correct answer.
- ▶ Based on that, we can argue that Factorial(1) returns the right answer.
- ▶ Based on that, we can argue that Factorial(2) returns the right answer.
- ▶ We need a proof that starts at a simple (base) case, and progresses from there until it covers all integers...
- ▶ I.e., we prove correctness of recursions using induction!

Induction

- ▶ Claim: For every natural number n, factorial(n) = n!.
- ▶ Proof: By induction.
 - ▶ (Base case) We show the claim holds for some initial value.
 - For n=0 we have that 0!=1 and factorial(0)=1.
 - (Induction step) Fix some k. Assuming the claim holds for k, we show the claim also holds for k+1.
 - Assuming factorial(k) = k!, we have that

$$\begin{split} & \texttt{factorial}(k+1) = (k+1) \times \texttt{factorial}(k) & ** \operatorname{since} \ k+1 > 0 \\ & = (k+1) \times k! & ** \operatorname{by induction hypothesis} \\ & = (k+1) \times \prod_{i=1}^k i \\ & = \prod^{k+1} i = (k+1)! \end{split}$$

Induction

- ► Induction proof structure
 - ▶ Base case: We show the claim holds for some initial value. (Not necessarily 0)
 - ▶ **Induction step:** Fix some natural number k. Assuming the claim holds for k, we show that the claim also holds for k + 1.
- ► Alternative: (Full/Complete/Strong induction)
 - ▶ Induction step: Fix some natural number k. Assuming the claim holds for all natural numbers $0 \le i \le k$ we show it also holds for k+1.
- Induction is a powerful and a commonly used tool.
- ► Must-haves in induction proofs:
 - A clearly defined base case
 - ► A well-defined assumption for any instance of a fixed size
 - ightharpoonup A correct induction step that indeed works for any k.
- Without these (and they are sometimes subtle) inductions can go horribly wrong.

Motivation: Fibonacci (Efficiency Issues)

► Consider the sequence of Fibonacci numbers defined recursively:

$$F(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F(n-1) + F(n-2) & \text{if } n \ge 2 \end{cases}$$

n	0	1	2	3	4	5	6	7	8	9	10	
F(n)	0	1	1	2	3	5	8	13	21	34	55	

▶ Problem: Given n, output F(n).

Direct and easy recursive implementation:

```
\frac{\texttt{procedure fib1}(n)}{\texttt{if } n < 2 \texttt{ then}} \texttt{return } n \texttt{else} \texttt{return fib1}(n-1) + \texttt{fib1}(n-2)
```

Trace of recursive calls:

Some back-of-the-envelop calculations:

Let $T_1(n)$ denote the number of recursive calls in fib1(n).

- ightharpoonup fib1(n-1) invoked 1 time
- ▶ fib1(n-2) invoked 2 times
- ▶ fib1(n-3) invoked 3 times
- ▶ fib1(n-4) invoked 5 times
- ▶ fib1(n-5) invoked 8 times
- ▶ Claim: fib1(n-i) is invoked F(i+1) times for any $1 \le i \le n-1$. Proof: induction!
- It follows $T_1(n) \ge \sum_{i=2}^n F(i)$ which is exponential in n (it is known that $T_1(n)$ is about $\left(\frac{1+\sqrt{5}}{2}\right)^n$, see pages 59-60 of Text).

▶ Non-recursive implementation:

```
\begin{aligned} & \frac{\texttt{procedure fib2}(n)}{F[1] = 0} \\ & F[2] = 1 \\ & \texttt{for } j = 3 \texttt{ to } n+1 \texttt{ do} \\ & F[j] = F[j-1] + F[j-2] \\ & \texttt{return } F[n+1] \end{aligned}
```

▶ Yet another non-recursive implementation:

```
\begin{array}{c} {\rm procedure\ fib3}(n)\\ {\rm if\ } n=0\\ {\rm \ return\ } 0\\ x=0\\ y=1\\ {\rm for\ } j=2\ {\rm to\ } n\ {\rm do}\\ newy=x+y\\ x=y\\ y=newy\\ {\rm return\ } y \end{array}
```

More calculations:

Let $T_2(n)$ and $T_3(n)$ denote the number of times we invoke the loop in fib2 and fib3 respectively

$$T_2(n) = T_3(n) = n - 1$$
, for all $n \ge 1$

- ▶ Thus, $T_1(n)$ exponential, $T_2(n), T_3(n)$ linear
- ► What about space, measured by the number of "integers stored in memory"
 - ▶ fib2 linear; all Fibonacci numbers are stored in an array
 - ▶ fib3 small constant, x and y, newy, and a loop counter
- ► Conclusion: fib3 is the best.

Methodologies for Analyzing Algorithms

- ▶ How do we measure an algorithm's running time (RT)?
- ► RT depends on hardware, software, implementation language, ...
- ▶ How about measuring RT in terms of input size?
- ► We cannot run against all possible inputs
- Even inputs of the same size may have different RTs.
- ▶ We need an analytic way of measuring RT independent of environment factors (CPU speed, compiler, implementation, ...).
- ► Idea/Solution:
 - ► Abstract away select theoretical computer model
 - ➤ Try to identify "key operations": If each operation costs me \$1 dollar how much will I end up paying

Model of computation: RAM

- ► RAM: random access machine (You may watch this video)
- Components
 - Input device
 - Output device
 - CPU: computation unit (inc. program)
 - M: memory locations (each can store an integer) M[0], M[1], M[2], ...
 - Program: fixed user-defined instruction sequence
- Properties
 - CPU has access to any mem location directly (by index)move data between memory
 - compare data and branch
 - binary arithmetic operation
 - read from Input to memory
 - write from memory to Output
 - variables are local (unless stated otherwise)
 - parameters passed by value
- primitive operations:
 - assign a value to a variable
 - calling a method/function/procedure
 - an arithmetic operation
 - comparing two basic variablesreturning a value from a method

Model of computation: RAM (Cont'd)

- ▶ We will do our best to abstract away from all of those!
- ▶ Given an algorithm, we can measure:
 - ► Time number of primitive (basic) instructions executed
 - ► Space number of memory locations used

In this course we will often look at Time, seldom Space.

Model of describing an algorithm

- ▶ Describing algorithms: pseudocode
- Pseudocode example

```
input: integers a, b output: a \times b sum = 0 for j = 1 to b do sum = sum + a return sum
```

- Pseudocode conventions
 - indentation indicates block structure
 - while/for/repeat/if/then/else
 - Procedure/Function: name(pam1, pam2, ...)
 - ****** or ▷ comment
 - comparison: boolean "short circuit" evaluation e.g. j > 0 AND A[j] < key
 - ightharpoonup array indexing: A[i] for ith cell of array A.

284735 148735

An example: Insertion Sort

- lnput: n elements (a_1, a_2, \ldots, a_n) where each pair is comparable (e.g.: numbers, cards, chess players, GDPs)
- ightharpoonup Output: an ordered permutation $(a'_1, a'_2, \ldots, a'_n)$ such that
- $a_1' < a_2' < \ldots < a_n'$ Our first solution: Insertion sort

 - ldea: repeatedly insert A[j] into sorted sublist A[1..j-1]
 - How to insert? One by one, move elements in sorted sublist A[1..i-1] which are bigger than key (= A[i]) to the right
- Pseudocode

InsertionSort(A) **sort A[1..n]

for j=2 to n do

key = A[j] **insert A[j] into sorted sublist A[1..j-1]i = i - 1while (i > 0 and A[i] > key) do A[i+1] = A[i]i = i - 1A[i+1] = key

							Week 1: Intro
An exam	ple:	Inse	rtion	Sort	Trac	ce	
► Input	:: : (53, 21	1, 47,	62, 14	4,38)		
	53	<u>21</u>	47	62	14	38	$** j \leftarrow 2$, $key = 21$
+01-0 - >	53	53	47	62	14	38	
temas	21	53 53	47	62	14	38	** end of this iteration
	21	53	<u>47</u>	62	14	38	** $j \leftarrow 3$, $key = 47$
	21	53	53	62	14	38	
	21	47	53	62	14	38	
	21	47	53	<u>62</u>	14	38	** $j \leftarrow 4$, $key = 62$
	21	47	53	62	14	38	
	21	47	53	62	<u>14</u>	38	** $j \leftarrow 5$, $key = 14$
	21	47	53	62	62	38	
	21	47	53	53	62	38	
	21	47	47	53	62	38	
	21	21	47	53	62	38	
	14	21	47	53	62	38	
	14	21	47	53	62	<u>38</u>	** $j \leftarrow 6$, $key = 38$
	14	21	47	53	62	62	
	14	21	47	53	53	62	
	14	21	47	47	53	62	

21 38 47 53 62 ** output permutation

Week 1: Introduction

populs on input (eg. aloudy sort) doputs on input size what upper time - guruntee to the user

Analysis of running time

- Model of computation: RAM
- ▶ Problem: run time varies with input

Kinds of analysis

- Worst case
 - ightharpoonup T(n) maximum time over all inputs of size n
- Average case
 - Must specify input distribution over which average computed
 - ▶ Most common: assume uniform distribution (all inputs of size n equally likely)
- Best case
 - ► The least running time for any instance; useful only for lower bound.

Analysis of Insertion Sort

$$\begin{array}{lll} \operatorname{InsertionSort}(A) & & times \\ & \operatorname{for} \ j=2 \ \operatorname{to} \ n \ \operatorname{do} & n \\ & key = A[j] & n-1 \\ & i=j-1 & n-1 \\ & \operatorname{while} \ (i>0 \ \operatorname{and} \ A[i]>key) \ \operatorname{do} & \sum_{j=2}^n t_j \\ & A[i+1] = A[i] & \sum_{j=2}^n (t_j-1) \\ & i=i-1 & \sum_{j=2}^n (t_j-1) \\ & A[i+1] = key & n-1 \\ \end{array}$$

$$T(n) = n+2(n-1) + \left[3\sum_{j=2}^{n} t_j - 2(n-1)\right] + n-1 = 2n-1+3\sum_{j=2}^{n} t_j$$

n Selj) = f(n²)

Running time

▶ Best case: list is already sorted (for any $2 \le j \le n$ we have $t_j = 1$)

$$T(n) = 2n - 1 + 3(n - 1) = 5n - 4$$

▶ Worst case: list is reverse sorted (for any $2 \le j \le n$ we have $t_j = j$)

$$T(n) = 2n - 1 + 3\left[\frac{n(n+1)}{2} - 1\right] = 1.5n^2 + 3.5n - 4$$

Average case: Suppoe we randomly choose n numbers and apply insertionSort. On average, half of the elements in A[1..j] are less than A[j] and half are greater. So t_j is about j/2 and we end up with a quatratic function, as bad as the worst case.

Correctness of insertion sort

Theorem: InsertionSort(A) returns A in a sorted order.

To prove the theorem we will prove the following claim.

▶ Claim: For any $2 \le j \le n$, at the start of the j-iteration $(2 \le j \le n)$ of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], and in sorted order.

This Claim is an example of a Loop Invariant, which we will study next.