Assignment 1 (Written Portion)

Student name: Justin Ho and Abby Seibel

Course: *CSCE310 Data Structures and Algorithms* – Professor: *Dr. Christopher Bourke*Due date: 20th of July 2020

Question 1

Answer.

(a) Given that $a_k > 0$, then using limits

$$\lim_{n \to +\infty} \frac{k, p(n)}{n^k} = \lim_{n \to +\infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{n^k}$$

$$= \lim_{n \to +\infty} \frac{a_k n^k}{n^k} + \lim_{n \to +\infty} \frac{a_{k-1} n^{k-1}}{n^k} + \dots + \lim_{n \to +\infty} \frac{a_0}{n^k}$$

$$= a_k + 0$$

$$= a_k$$

$$\therefore k, p(n) \in \Theta(n^k)$$

(b) Given $\alpha > \beta > 0$ $\alpha = \beta \times \gamma$, whereby $\gamma > 1$ Using limits:

$$\lim_{n\to+\infty}\frac{\beta^n}{\beta^n}=1$$
$$\therefore \beta^n\in\Theta(\beta^n)$$

$$\lim_{n \to +\infty} \frac{\alpha^n}{\beta^n} = \lim_{n \to +\infty} \frac{(\beta \gamma)^n}{\beta^n}$$

$$= \lim_{n \to +\infty} \gamma^n$$

$$= \infty$$

$$\therefore \alpha^n \notin \Theta(\beta^n)$$

Proving that for $\alpha > \beta > 0$, α^n would have different orders of growth

Furthermore, by using the limit test, little-o classification tells us that if the limit converges to 0 then by definition the bases are different orders of growth.

$$\lim_{n\to\infty}\frac{\beta^n}{\alpha^n}=\lim_{n\to\infty}(\frac{\beta}{\alpha})^n$$

since
$$\alpha > \beta$$
, $\frac{\beta}{\alpha} < 1$

$$\lim_{n\to\infty} (\frac{\beta}{\alpha})^n = 0$$

Showing that the functions are strictly a different order.

Question 2

Answer.

(a) Performing LIFO Operation using a queue

These algorithms are assumed to be in a class, where it has access to an instance of a queue called Q

Algorithm 1: PUSH Performing LIFO Operation using a queue

```
Input: A queue Q = \{q_1, q_2, \dots, q_n\} and an input x
  Output: A queue Q = \{q_1, q_2, ..., q_n x\}
1 if Q is empty then
  Q.enqueue(x)
3 else
     while Q is not empty do
         temp \leftarrow Q.dequeue
      Q.enqueue(x)
6
     for each item in temp do
7
         Q.enque(item)
```

Algorithm 2: POP Performing LIFO Operation using a queue

```
Input: A queue Q = \{q_1, q_2, ..., q_n\}
  Output: The Last item that has been added to the queue x
1 x \leftarrow Q.dequeue
2 return x
```

(b) Performing FIFO Operation using two stacks

Algorithm 3: ENQUEUE Performing Enqueue with two stacks

Input: Two stacks s1 which is used for pushing and s2 which is used for popping and an item x that is to be added to the queue

Output: x is added to the queue

```
1 if s1 and s2 are empty then
  | s1.push(x)|
3 else
     while s2 is not empty do
         item \leftarrow s2.pop()
5
         s1.push(item)
6
     s1.push(x)
```

Algorithm 4: DEQUEUE Performing Dequeue with two stacks

```
Input: Two stacks s1 and s2 that represents a queue
```

Output: the first item that was placed into the "queue" that is represented by *s*1 and *s*2

Question 3

Answer. Sorting a set with Binary Search Tree

Algorithm 5: INORDERTRAVERSAL exploits the structure of a binary tree and processes left- root-right to produce a sorted result

```
Input: Tree node position, List result
```

```
Output: void
1 if node = \phi then
```

2 return

- ${\tt 3}$ INORDERTRAVERSAL (position.leftChild, result)
- *4* result.append(position)
- 5 INORDERTRAVERSAL(position.rightChild, result)

Algorithm 6: BST SORT Sort a set of values using a Binary Search Trees

Input: BST *T*, with a root *r*

Output: *A* the collection of elements in the tree sorted by the standards of the BST

```
1 List result ← \phi
```

- 2 position $\leftarrow r$
- 3 INORDERTRAVERSAL(postion, result)
- 4 return result

Algorithm Complexity Analysis

1. Identify the Input

The input of this algorithm is a BST with root *r* that holds a collection of items

2. Identify the input size

The input size is the number of elements in the tree *T*, which is *n*

3. Identify the elementary Operation

The elementary operation is the processing of the node recursively in the In-OrderTraversal call

4. Analysis how How many Times Elementary Operation is Executed

The elementary operation is performed for every node in the tree, thus if the size of the tree is n the operation will be performed n times

5. Asymptotic Analysis

Because the operation is performed n times, this algorithm is classified in the class of $\Theta(n)$.

Question 4

Answer. Traversing the graph given a start and end point u, v respectively and find all distinct paths using backtracking.

Algorithm 7: DISTINCT PATHS Traverse a tree and returns the number of distinct paths from starting point u and end point v

```
Input: An undirected graph G = (V, E), a start point u and end point v
Output: Number of distinct paths, n

1 distinctPaths \leftarrow []

2 DFS(G, u, v, path \leftarrow [], distinctPaths)

3 n \leftarrow length(distinctPaths)
```

4 return n

Algorithm 8: DFS A recursive algorithm using the Depth-First Search on a tree and keeps track of the number of distinct paths from starting point u and end point v

Input: An undirected graph G = (V, E), a start point u and end point v, Current Path of the traversal path, Set of Distinct Paths generated distinctPaths

Output: Set of Distinct Paths generated *distinctPaths*

```
if u not in path then
path.append(u)
if u = v then
distinctPaths.append(path)
return
for each node in u.neighbours do
if node not in path then
DFS(G, node, v, path, distinctPaths)
```

1. Identify the Input

9 return

The input of this algorithm is the number of possible paths between the starting point u and ending point v.

2. Identify the input size

The input size is the number of vertices n in the graph excluding vertices u and v, hence, it is n-2

3. Identify the Elementary Operation

The elementary operation is the processing of the node recursively in the In-OrderTraversal call

4. Analysis how How many Times Elementary Operation is Executed

Assuming the worst case scenario, the graph is a complete graph. Therefore, the number of execution of the elementary operation of this algorithm is a permutation of n-2:

$$P(n, n-2) = \frac{n!}{(n - (n-2))!}$$

$$= \frac{n!}{2!}$$

$$= \frac{n!}{2}$$

5. Asymptotic Analysis

Using Limits:

$$\lim_{x \to +\infty} \frac{n!/2}{n!} = \lim_{x \to +\infty} \frac{1}{2}$$

$$= \frac{1}{2}$$

$$\therefore \frac{n!}{2} \in \Theta(n!)$$