Reasoning

- Sistem Cerdas -

Departemen Ilmu Komputer Informatika

Outline

- Knowledge-based agents
- Wumpus world
- Reasoning with Propositional Logic
- Reasoning with First Order Logic

- Searching → problem solving agent.
- Searching → teknik penyelesaian masalah dengan cara merepresentasikan masalah ke dalam state dan ruang masalah serta menggunakan strategi pencarian untuk menemukan solusi.
- Kesulitan:
 - Apakah aturan produksi (operator) sudah lengkap?
 - Membutuhkan representasi state yang sangat banyak saat masalah yang dihadapi cukup kompleks.

Problem Solving vs Konwledge-based Agent

Problem Solving Agent	Konwledge-based Agent	
Memilih solusi di antara kemungkinan yang ada. (Initial state, successor function, goal test)	Menemukan solusi dengan melakukan reasoning (penalaran).	
Apa yang diketahui tentang dunia tidak berkembang	 Pengetahuannya dapat berkembang. Mampu melakukan reasoning tentang: Informasi yang belum diketahui sebelumnya (imperfect/ partial information) Tindakan yang baik untuk diambil 	

- Komponen utama knowledge-based agent:
- Knowledge base
 - Himpunan representasi fakta yang diketahui si agent tentang lingkungannya.
 - Setiap fakta disebut dengan sentence.
 - Sentence diekspreksikan ke dalam bahasa formal (knowledge representation language) agar dapat diolah.
- Inference engine
 - Menurunkan fakta baru dari fakta yang telah tersimpan di dalam knowledge base.

Dua operasi utama dalam knowledge-based agent:

- Operasi TELL
 - Agent harus mempunyai cara untuk menambahkan pengetahuan baru (new sentences) ke dalam knowledge base.
- Operasi ASK
 - Agent juga harus dapat melakukan query terhadap knowledge base untuk memutuskan action apa yang harus dilakukan.


```
function KB-AGENT( percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time  \begin{aligned} & \text{Tell}(KB, \text{Make-Percept-Sentence}(percept, t)) \\ & action \leftarrow \text{Ask}(KB, \text{Make-Action-Query}(t)) \\ & \text{Tell}(KB, \text{Make-Action-Sentence}(action, t)) \\ & t \leftarrow t + 1 \\ & \text{return } action \end{aligned}
```

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept to its knowledge base, asks the knowledge base for the best action, and tells the knowledge base that it has in fact taken that action.

Pendekatan Prosedural vs. Reasoning

Pendekatan prosedural

- Programmer secara spesifik memberi instruksi kepada agent mengenai apa yang harus dilakukan.
- Jika terdapat error → kesalahan pada instruksi yang diberikan.

Pendekatan reasoning

- Programmer memberi tahu agent informasi tentang lingkungan (TELL).
- Selanjutya, agent dapat melengkapi informasi sendiri.
- Jika terdapat error \rightarrow kesalahan pada knowledge representation.
 - Apakah expressive (mampu merepresentasikan fakta)?
 - Apakah tractable (dapat diolah oleh inference engine)?

Environment:

- A 4 ×4 grid of rooms.
- The agent always starts in the square labeled [1,1], facing to the right.
- The locations of the gold and the wumpus are chosen randomly, with a uniform distribution, from the squares other than the start square.
- Each square other than the start can be a pit, with probability 0.2.

Performance measure:

- +1000 for climbing out of the cave with the gold.
- -1000 for falling into a pit or being eaten by the wumpus.
- –1 for each action taken.
- -10 for using up the arrow.
- The game ends either when the agent dies or when the agent climbs out of the cave.

Actuators:

- The agent can move For ward, TurnLeft by 90 or TurnRight by 90
- The agent dies a miserable death if it enters a square containing a pit or a live wumpus.
- The action *Grab can be* used to pick up the gold if it is in the same square as the agent.
- The action Shoot can be used to fire an arrow in a straight line in the direction the agent is facing (the agent has only one arrow).
- The action Climb can be used to climb out of the cave, but only from square [1,1].

Sensors:

Agent memiliki 5 sensor yang mampu menerima percept berikut:

- **Stench**: diterima agent pada kotak yang bertetangga (bukan diagonal) dengan lokasi wumpus.
- Breeze: diterima agent pada kotak yang bertetangga (bukan diagonal) dengan lokasi Pit.
- **Glitter**: diterima agent pada kotak yang berisi emas (gold).
- **Bump**: diterima agent jika berjalan menabrak dinding gua.
- **Scream**: diterima agent di kotak manapun jika wumpus telah terbunuh.
- Contoh percept yang diterima agent : [Stench, Breeze, None, None, None]

3

2

Wumpus World (cont.)

Sifat wumpus world:

- Discrete
- Static (lokasi wumpus dan pit tidak berubah)
- Single-agent
- Sequential → reward (gold) baru didapat setelah sederetan aksi dilakukan .
- Partially observable → lokasi wumpus dan pit tidak diketahui secara pasti, namun dapat diindikasi dari adanya percept Stench dan Breeze.

- Agent berada di posisi awal, yaitu [1,1] dan menghadap ke kanan
- Agent menerima percept: [None, None, None, None, None] → posisi aman (OK)
- Kemungkinan posisi berikutnya: [2,1] atau [1,2]

PIT

-Breeze

Breeze

3

A = Agent

 $\mathbf{B} = Breeze$

G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

V = Visited

W = Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
OK			
1,1	2,1 A	3,1 P?	4,1
V	В		
ок	OK		

(b)

- Agent melangkah ke posisi [2,1] dan menerima percept: [None, Breeze, None, None, None]
- Kemungkinan ada Pit di neighboring square [1,1], [2,2] atau [3,1].
- Pit tidak ada di [1,1] by the rules of the game → Pit di [2,2] atau [3,1]
- Kemungkinan posisi berikutnya adalah [2,2] atau [3,1] atau [1,1] (kembali ke posisi awal)

- Agent kembali ke posisi [1,1] dan melangkah ke
 [1,2]
- Agent menerima percept: [Stench, None, None, None, None]
- Kemungkinan ada Wumpus di [1,1] atau [2,2] atau [1,3]
 - [1,1] tidak mungkin by the rules of the game
 - [2,2] tidak mungkin, karena jika Wumpus di
 [2,2] harusnya ada Stench di [2,1]
 - Wumpus pasti [1,3]
- Pengetahuan sebelumnya: Pit diantara [2,2] atau
 [3,1]
 - [2,2] tidak mungkin karena jika Pit di [2,2]
 harusnya ada Breeze di [1,2]
 - Pit pasti di [3,1]
- Kemungkinan agent melangkah dari posisi [1,2]
 adalah: [1,3] atau [2,2] atau [1,1] (kembali)

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2A S OK	2,2	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

	A	= Agent
	В	= Breeze
	G	= Glitter, Gold
4	OK	= Safe square
	P	= Pit
	S	= Stench
	V	= Visited
4	W	= Wumpus
	l .	

(a)

- Misal dari posisi [2,2] agent menerima percept [None, None, None, None]
- Selanjutnya agent memutuskan untuk melangkah ke posisi [2,3] dan menerima percept [Stench, Breeze, Glitter, None, None]
 - Glitter → Agent dapat langsung melakukan aksi
 Grab untuk mengambil Emas
 - Stench → karena ada Wumpus di [1,3] (sudah diketahui sebelumnya)
 - Breeze → kemungkinan ada Pit di [1,3] atau [2,4] atau [3,3]
 - [1,3] tidak mungkin karena sudah ada Wumpus di lokasi tersebut

1,4	2,4 P?	3,4	4,4
1,3 W!	3 W! 2,3 A S G B		4,3
^{1,2} s	2,2	3,2	4,2
v	v		
OK	OK		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	OK		

(b)

- Agent menurunkan informasi baru (menarik kesimpulan) dari informasi yang telah diketahui sebelumnya.
- Kesimpulan pasti benar jika informasi yang tersedia adalah benar.
 - This is a fundamental property of logical reasoning.

Knowledge Representation Language

- Knowledge base (KB) berupa sekumpulan sentences dan setiap sentence diekspresikan ke dalam knowledge representation language (KRL).
- KRL memiliki syntax dan semantic.
- Syntax: aturan yang mendefinisikan sentence yang sah dalam Bahasa.
- Semantics: aturan yang mendefinisikan arti dari sebuah sentence.
 - Semantik mendefinisikan kebenaran sentence di dalam dunia nyata (possible world).

- Logika merupakan bahasa formal yang dapat digunakan untuk merepresentasikan fakta sedemikian sehingga kesimpulan (fakta baru) dapat ditarik.
- Terdapat sejumlah metode inferensi dalam logika yang dapat digunakan untuk menyimpulkan fakta baru.

Entailment

Menyimpulkan fakta baru dari fakta lain yang sudah ada atau sudah diketahui.

- $KB \models \alpha$: KB entails sentence α jhj α true dalam semua "dunia" di mana KB true.
- Contoh:
 - KB mengandung sentence "Anto ganteng" dan "Ani cantik".
 - $KB \models \alpha_1$: "Anto ganteng"
 - $KB \nvDash \alpha_2$: "Anto pintar"
 - $x + y = 4 \models 4 = x + y$

Model dan Entailment

- Model adalah sebuah dunia dimana kebenaran dari suatu sentence dapat diuji.
- m adalah model dari sentence α jika α True di dalam model m.
- $M(\alpha)$ adalah himpunan semua model dari sentence α .

$$KB \models \alpha \text{ jhj } M(KB) \subseteq M(\alpha)$$

• KB meng-entails sentence α jika hanya jika himpunan model KB merupakan himpunan bagian dari model α .

Contoh kasus entailment dan model dalam dunia wumpus

Himpunan model: Pit dapat berada di posisi [1,2] atau
 [2,2] atau [3,1] → ada 2³ = 8 kemungkinan.

Knowledge: Agent tidak menerima percept apapun di posisi [1,1] dan menerima percept Breeze di posisi [2,1].

- KB adalah True dalam model yang tidak kontradiksi dengan pengetahuan agent.
- KB adalah True dalam setiap model yang mana terdapat Pit di posisi [2,2] atau [3,1].
- Hanya ada 3 model dimana KB bernilai True.

KB = pengamatan (percept) + aturan main Wumpus World

- Misal kita tarik sebuah fakta baru, yaitu sentence α₁
- α_1 = "tidak ada Pit di posisi [1,2]"
- Dalam setiap model dimana KB bernilai True, α₁ juga bernilai True
- Dapat dikatakan bahwa :

KB entails α_1

- Misal kita tarik sentence berikutnya, yaitu α_2 .
- α_2 = "tidak ada Pit di posisi [2,2]"
- Dalam setiap model dimana KB bernilai True, α_2 tidak selalu bernilai true
- Dengan demikian, dapat dikatakan: KB not entails α_2

Inference/ Reasoning

- Pembentukan fakta (sentence) baru yang meng-entail fakta-fakta lama disebut dengan inference atau reasoning.
- Reasoning dilakukan pada representasi fakta dalam bentuk syntax
 KRL, bukan dalam makna semantic-nya.

Reasoning with Propositional Logic

Syntax of Propositional Logic


```
Sentence 
ightarrow AtomicSentence \mid ComplexSentence
AtomicSentence 
ightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence 
ightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \land Sentence
\mid Sentence \lor Sentence
\mid Sentence \Leftrightarrow Sentence
```

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along with operator precedences, from highest to lowest.

- Semantik mendefiniskan aturan untuk menentukan kebenaran dari sebuah sentence di dalam model tertentu.
 - *True* is true in every model and *False* is false in every model.
 - The truth value of every other proposition symbol must be specified directly in the model. For example, in the model m_1 given earlier, $P_{1,2}$ is false.

\overline{P}	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false false true true	false true false true	$true \ true \ false \ false$	false false false true	false true true true	$true \ true \ false \ true$	true false false true

Inferensi pada PL

- Inferensi/ pembuktian dengan tabel kebenaran → model checking.
 - Mengenumerasi semua kemungkinan model dengan tabel kebenaran

Inferensi pada PL

2. Inference dengan pengaplikasian inference rule

- Sebuah inference rule adalah pola syntax yang dapat menurunkan sebuah kalimat baru yang sah (sound).
- Rule yang paling terkenal adalah modus ponens:

$$\alpha \Rightarrow \beta$$
, α

Contoh rule lain: and elimination:

$$\frac{\alpha \wedge \beta}{\alpha}$$
 dan $\frac{\alpha \wedge \beta}{\beta}$

- Semua logical equivalence juga bisa dipakai sebagai inference rule.
- Untuk membuktikan $KB \models \alpha$, kita bisa mencari serangkaian inference rule yang hasil akhirnya adalah α .

Logical Equivalnces in PL

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge
```

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

Inferensi pada PL

- 2. Inference dengan pengaplikasian inference rule
 - Inferensi pada kalimat yang diterjemahkan ke dalam sebuah normal form.
 - Modus Ponens pada Horn Form
 - Resolusi pada Conjunctive Normal Form (CNF)

Unit Resolution:

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

Resolution:

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Kalimat Representasi Wumpus World

Lokasi wumpus pada kotak disimbolkan dengan [x,y]

 $P_{x,y}$ is true if there is a pit in [x, y]. $W_{x,y}$ is true if there is a wumpus in [x, y], dead or alive. $B_{x,y}$ is true if the agent perceives a breeze in [x, y]. $S_{x,y}$ is true if the agent perceives a stench in [x, y].

 Aturan main: Ada Breeze pada kotak yang bersebelahan dengan kotak yang berisi Pit.

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$

Contoh Kownledge Base (KB) pada Wum World

KB disusun dari informasi yang didapat agent dan aturan permainan:

Tidak ada Pit di posisi [1,1]

$$R_1: \neg P_{1,1}$$
.

Ada Breeze hanya kotak yang bersisian dengan lokasi Pit

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$
.

Tidak ada Breeze di posisi [1]; Ada Breeze di posisi [2,1]

$$R_4: \neg B_{1,1}$$
.

$$R_5: B_{2,1}$$
.

Contoh Inferensi/ Pembuktian pada Wurk World

- Contoh: Buktikan KB entails α_1
 - KB: R₁ sampai dengan R₅
 - $-\alpha_1$ = "tidak ada Pit di posisi [1,2]"

2

Contoh Inferensi/ Pembuktian pada V World dengan Tabel Kebenaran

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false false	false false : true	false false false	false false : false	false false : false	false false : false	false true : false	<i>true true</i> : <i>true</i>	$true$ $true$ \vdots $true$	true false : false	$true$ $true$ \vdots $true$	false false : true	false false false false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\frac{true}{true}$ $\frac{true}{true}$
false : true	<i>true</i> : <i>true</i>	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if R_1 through R_5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the right-hand column). In all 3 rows, $P_{1,2}$ is false, so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

Menentukan entailment dengan model cheking \rightarrow mengenumerasi semua model dan menunjukkan sentence yang bersesuaian dengan semua model tersebut.

(Russell and Norvig, 2010)

Contoh Inferensi/ Pembuktian pada Wu World dengan Inference Rule

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

And-Elimination pada R6

$$R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

Logical equivalence for contrapositives pada R7

$$R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})).$$

• Modus Ponens R8 dengan $R_4: \neg B_{1,1}$.

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$
.

Aturan De Morgan pada R9

$$R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$$
.

Pengetahuan baru yang didapat oleh agent dari serangkaian inferensi

Contoh Inferensi/ Pembuktian pada V World dengan Inference Rule

Latihan

- Jika selanjutnya agent melangkah ke posisi [2,1], kemudian merasakan Breeze $(B_{2,1})$, namun tidak mencium Stench $(\neg S_{2,1})$, pengetahuan baru apa yang di dapat oleh agent?
- Agent kemudian, kembali ke posisi [1,1] dan melangkah ke posisi [1,2], kemudian agent mencium Stench $(S_{1,2})$, tetapi tidak merasakan Breeze $(\neg B_{1,2})$.
 - Sampai langkah ini, buktikan dengan serangkaian inferensi bahwa agent dapat menarik pengetahuan baru bahwa ada wumpus di lokasi [1,3].

Kelemahan PL

- Untuk kasus yang lebih kompleks seperti permainan catur, propositional logic akan sulit digunakan.
- Terdapat sangat banyak aturan pada permainan catur sedangkan propositional logic merepresentasikan fakta hanya dalam simbol-simbol sederhana.
- Solusi: First-Order Logic

Reasoning with Fisrt Order Logic (FOL)

Instantiation

- Ground term: sebuah term tanpa variabel, contoh: Ani, Ayah(Ani), 1998.
- Instantiation: mengganti variabel dalam sebuah kalimat dengan ground term dengan cara mengaplikasikan substitution.
- Contoh:

$$\alpha = \forall x \; makan(Ani, x) \Rightarrow enak(x)$$

$$\beta = \exists x \; makan(Ali, x) \land enak(x)$$

$$\sigma = \{x/Bakso\}$$

 $SUBT(\sigma, \alpha)$ menghasilkan instantiation

$$makan(Ani, Bakso) \implies enak(Bakso)$$

 $SUBT(\sigma, \alpha)$ menghasilkan instantiation

$$makan(Ali, Bakso) \Rightarrow enak(Bakso)$$

Sebuah kalimat dengan universal quantifier (∀) meng-entail semua instantiation-nya:

$$\frac{\forall \ \textit{v} \ \alpha}{\textit{SUBST}(\{\textit{v}/\textit{g}\},\alpha)}$$

untuk sembarang variable v dan ground term g

Contoh

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \; meng-entail:
King(John) \land Greedy(John) \Rightarrow Evil(John)
King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))
\vdots
```


Untuk sembarang variable v, kalimat α dan constant k yang tidak muncul di knowledge-base:

$$\frac{\exists \ v \ \alpha}{SUBST(\{v/k\},\alpha)}$$

Contoh

 $\exists x \; Crown(x) \land OnHead(x, John) \; meng-entail: Crown(C_1) \land OnHead(C_1, John)$

dengan syarat C_1 adalah constant symbol yang baru, disebut Skolem constant

Unification

$$\mathsf{UNIFY}(\alpha, \beta) = \theta \; \mathsf{jika} \; \mathsf{SUBST}(\alpha, \theta) = \mathsf{SUBST}(\beta, \theta)$$

р	q	θ
Sayang(Anto, x)	Sayang(Anto, Ani)	$\{x/Ani\}$
Sayang(Anto, x)	Sayang(y, Ani)	$\{x/Ani, y/Anto\}$
Sayang(Anto, x)	Sayang(y, Ibu(y))	$\{y/Anto, x/Ibu(Anto)\}$
Sayang(Anto, x)	Sayang(x, Ani)	fail

- Dapat diterapkan pada KB yang berisi definit clause (seperti Horn clause pada PL)
- Semua variabel diasumsikan universally quantified.

Inference rule GMP

$$\frac{p_1', p_2', \ldots, p_n', (p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q)}{q\theta}$$

di mana $p_i'\theta = p_i\theta$ untuk semua *i*

$$p_1' = King(John)$$
 $p_1 = King(x)$
 $p_2' = Greedy(y)$ $p_2 = Greedy(x)$
 $\theta = \{x/John, y/John\}$ $q = Evil(x)$
 $q\theta = Evil(John)$

- KB dalam bahasa Inggris:
 - The law says that it is crime for an American to sell weapons to hostile nations.
 - The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Soal:
 - Buktikan bahwa Col. West adalah criminal

Penerjemahan KB dalam FOL

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles: ∃x Owns(Nono, x) ∧ Missile(x) Owns(Nono, M₁) and Missile(M₁) (Skolemization)
- ... all of its missiles were sold to it by Colonel West $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- Missiles are weapons:
 Missile(x) ⇒ Weapon(x)
- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American . . . American(West)
- The country Nono, an enemy of America ...
 Enemy (Nono, America)

Perhatikan:

Semua kalimat KB ini berbentuk definite clause.

Inferensi pada FOL dengan GMP

Forward Chainning

- Dimulai dari fakta yang diketahui (klausa tanpa premise).
 - Contoh: *Owns*(*Nono*, *M*1), *Missile*(*M*1)
- Aktifkan rule yang premisnya diketahui.
 - Contoh: $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- Cocokkan premise-premise setiap rule dengan fakta yang diketahui → mengaplikasikan unification.
 - Contoh: *Sells(West, M1, Nono)*

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles:
- $\exists x \ Owns(Nono, x) \land Missile(x)$

 $Owns(Nono, M_1)$ and $Missile(M_1)$ (Skolemization)

- all of its missiles were sold to it by Colonel West Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono)
- Missiles are weapons:

 $Missile(x) \Rightarrow Weapon(x)$

- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American ... American(West)
- The country Nono, an enemy of America . . .
 Enemy (Nono, America)
- Mulai dari fakta yang diketahui

American(West)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America)

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles: ∃ x Owns(Nono, x) ∧ Missile(x)
 - Owne(Nano, M.) and Missile(M.) (Skalamization)
- ... all of its missiles were sold to it by Colonel West $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- Missiles are weapons: Missile(x) ⇒ Weapon(x)
- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American ...
- The country Nono, an enemy of America . . .
- Aktifkan rule yang premisnya diketahui


```
... it is a crime for an American to sell weapons to hostile nations:
   American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)
Nono ... has some missiles:
   \exists x \ Owns(Nono, x) \land Missile(x)
   Owns(None, M.) and Missile(M.) (Skalemization)
... all of its missiles were sold to it by Colonel West
   Viissile(x) \land Owns(Nono, x) \rightarrow Selis(Vvest, x, Nono)
Missiles are weapons:
   missinc(x) - meapon(x)
An enemy of America counts as "hostile":
West, who is American . . .
The country Nono, an enemy of America . . .
```

Aktifkan rule berikutnya

• ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$

Contoh Inferensi dengan Backward Chair

- Dimulai dari konklusi
- Aktifkan rule yang memiliki konklusi tersebut
- Terapkan unification yang mungkin
- Lakukan hingga semua premise terpenuhi

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles:
- $\exists x \ Owns(Nono, x) \land Missile(x)$ $Owns(Nono, M_1) \ and \ Missile(M_1) \ (Skolemization)$
- ... all of its missiles were sold to it by Colonel West
- $\textit{Missile}(x) \land \textit{Owns}(\textit{Nono}, x) \Rightarrow \textit{Sells}(\textit{West}, x, \textit{Nono})$
- Missiles are weapons:
 - $Missile(x) \Rightarrow Weapon(x)$
- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American ... American(West)
- The country Nono, an enemy of America ... Enemy (Nono, America)
- Mulai dari kalimat yang ingin dibuktikan (konklusi)

Criminal(West)

 Aktifkan rule yang memiliki konklusi tersebut:

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles:
 ∃ x Owns(Nono, x) ∧ Missile(x)
 Owns(Nono, M₁) and Missile(M₁) (Skolemization)
- ... all of its missiles were sold to it by Colonel West Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono)
- Missiles are weapons: Missile(x) ⇒ Weapon(x)
- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American ... American(West)
- The country Nono, an enemy of America . . .
 Enemy (Nono, America)

Terapkan
 unification yang
 mungkin

- ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- Nono . . . has some missiles:
 ∃ x Owns(Nono, x) ∧ Missile(x)
 Owns(Nono, M₁) and Missile(M₁) (Skolemization)
- ... all of its missiles were sold to it by Colonel West
 Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono)
- Missiles are weapons: Missile(x) ⇒ Weapon(x)
- An enemy of America counts as "hostile": Enemy(x, America) ⇒ Hostile(x)
- West, who is American . . . American(West)
- The country Nono, an enemy of America ... Enemy (Nono, America)

$Missile(x) \Rightarrow Weapon(x)$

$Missile(M_1)$

$Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$ $Owns(Nono, M_1)$

$Enemy(x, America) \Rightarrow Hostile(x)$

Daftar Pustaka

- Suyanto. 2007. Artificial Intelligence: Searching, Reasoning, Planning and Learning. Informatika, Bandung Indonesia. ISBN: 979-1153-05-1.
- Russel, Stuart and Norvig, Peter. 2010. Artificial Intelligence: A Modern Approach Third Edition.
 Prentice Hall International, Inc.
- Manurung, Ruli and Krisnadhi, Alfa Adila. 2007. IKI 30230: Sistem Cerdas Kuliah 10: Logical Agents, Fakultas Ilmu Komputer, Universitas Indonesia.
- Manurung, Ruli and Krisnadhi, Alfa Adila. 2007. IKI 30230: Sistem Cerdas Kuliah 13: Inference in FOL, Fakultas Ilmu Komputer, Universitas Indonesia.