Mini-Curso de Minizinc

Claudio Cesar de Sá claudio.sa@udesc.br

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

12 de agosto de 2016

Sumário

- 1 Contextutalização
 - Problemas e Otimização
 - Otimização
 - Programação por Restrições
- 2 Histórico
 - Propósitos
- Motivação
- Estrutura de um Modelo
- Parâmetros e Variáveis
- 6 Clássicos da PO
- 7 Construindo Funções e Predicados
 - Uso na Lógica Proposicional
- Vetores (1-D)
- 9 Vetores (2-D)
- Grafos
 - Exemplo 01
 - Exemplo 02
 - Exemplo 03

Notas

- Todos os códigos se encontram em: https://github.com/claudiosa/CCS/minizinc
- Agradecimentos

Problemas × Otimização

Trocar esta figura

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs \Uparrow
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs \Uparrow
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:
 - Uma equação de regressão linear: $y = ax^2 + b$
 - ... até ...
 - Programação genética (evolução de um modelo)
- Problemas apresentam características comuns como: variáveis, domínios, restrições, espaços de estados (finitos e infinitos, contínuos e discretos) ...

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Combinatória: Problemas definidos em um espaço de estados finitos (ou infinito mas enumerável)

Numérica: Definidos em subespaços infinitos e não enumeráveis, como os números reais e complexos

• Difícil: problemas que tenham uma ordem maior ou igual a $2^{O(n)}$ são exponenciais, consequentemente, difíceis!

Como atacar estes problemas?

Técnicas:

Combinatória: Busca Local

- Métodos Gulosos: busca tipo subida a encosta (hill-climbing), recozimento simulado (simulated annealing), busca tabu, etc.
- Programação Dinâmica
- Programação por Restrições (PR)
- Redes de Fluxo
-

Numérica:

- Descida do Gradiente
- Gauss-Newton
- Lavemberg-Marquardt
-

Programação por Restrições (PR)

Figura: O mar de estados e a filtragem da PR

Onde o objetivo é:

Figura: Operando com regiões específicas ou reduzidas

Redução em sub-problemas:

Figura: Redução de P em outros sub-problemas equivalentes

Construção de modelos e implementações:

Ferramentas: linguagens, tradutores e solvers:

Figura: Linguagens, bibliotecas e solvers de propósitos diversos

Minizinc, tradutores e os *solvers*:

Figura: Há muitas conversores do FlatZinc para vários solvers

MiniZinc: uma proposta unificada

→ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- ► Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!

- ➤ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- → O MINZINC é um sub-conjunto do ZINC

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- → O MINZINC é um sub-conjunto do ZINC
- ➤ Linguagem de modelagem (vários conceitos da lógica)

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- >> O MINZINC é um sub-conjunto do ZINC
- ➤ Linguagem de modelagem (vários conceitos da lógica)
- ➤ Minizinc é compilado para o FlatZinc cujo código é traduzido há vários outros *solvers*

Propósitos

- → Objetivo: resolver problemas de otimização combinatória e PSR (Problemas de Satisfação de Restrições)
- ➤ O objetivo é descrever o problema: **declarar** no lugar de especificar o que o programa deve fazer
- → Paradigma de programação imperativo: como deve ser calculado!
- → Paradigma de programação declarativo: o que deve ser calculado!

Motivação

O que é um problema combinatório?

Figura: Problema da sequência de visitas

A complexidade nas coisas simples!

Figura: Contando combinações das variáveis: X e Y

Um paradigma computacional:

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

 \Rightarrow A_i : são assertivas declaradas (declarações de restrições) sobre o problema

Um paradigma computacional:

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais

Um paradigma computacional:

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais
- ➤ Modelos ⇔ computáveis!

Um paradigma computacional:

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais
- **➤ Modelos** ⇔ computáveis!
- >> Visão lógica: insatisfatível (sem respostas) ou consistente

Resumindo alguns livros e solvers

Figura: Ciclo entre a efetiva busca e a poda, na propagação das restrições

• Modelagem: imediata à abordagem matemática existente

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc

- Modelagem: imediata à abordagem matemática existente
- Para isto, *MUITOS* recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada
- Dois tipos de dados: constantes e variáveis

Continuando as características:

• Constantes: são valores fixos – são conhecidos como parâmetros

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: int, bool, real, arrays, sets, etc

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: int, bool, real, arrays, sets, etc
- Diferentemente da tipagem dinâmica aqui não existe!

Instalar e usar:

Tem evoluído muito nestes últimos anos:

- Tudo tem sido simplificado
- ② Download e detalhes: http://www.minizinc.org/
- 3 Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, *path*, e usar como:

Instalar e usar:

Tem evoluído muito nestes últimos anos:

- Tudo tem sido simplificado
- ② Download e detalhes: http://www.minizinc.org/
- 3 Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, *path*, e usar como:
 - Modo console (ou linha de comando) ou
 - Interface IDE

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
 - Edite o programa em um editor ASCII
 - Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
 - Exemplo como todas soluções: mzn-g12fd -all_solutions nome-do-programa.mzn
 - Oetalhes e opções: mzn-g12fd -help

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
 - Edite o programa em um editor ASCII
 - Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
 - Exemplo como todas soluções: mzn-g12fd -all_solutions nome-do-programa.mzn
 - O Detalhes e opções: mzn-g12fd -help
- ➤ Modo IDE: minizinc_IDE ou minizincIDE
- >> Na IDE dá para editar e alterar configurações

Estrutura de um Modelo

Includes, imports Seção de Constantes Seção de Variáveis Funções e Predicados Declara Restrições Heurística de Busca Formata as Saídas

Exemplo: um Espaço de Estado (EE)

Figura: Obter os pontos do interior do retângulo

Exemplo

```
1 %% Declara constantes
2 int: UM = 1; int: DOIS = 2; int: CINCO = 5;
3 %% Declara variaveis
4 var UM .. 11 : X; %% segue o dominio 1..11
5 var UM .. 7 : Y;
7 %% As restricoes
8 constraint
 Y > DOIS /\ Y < CINCO:
1 constraint
              /\ X < 9;
12 X > 3
14 %%% A busca : MUITAS OPCOES ....
solve::int_search([X,Y],input_order,indomain_min,complete) satisfy;
16 %% SAIDAS
output [" X: ", show(X), " Y: ", show(Y), "\n"];
```

Saída

```
$ mzn-g12fd -a xerek-ygor.mzn
  X: 4 Y: 3
X: 4 Y: 4
 X: 5 Y: 3
 X: 5 Y: 4
 X: 6 Y: 3
 X: 6 Y: 4
 X: 7 Y: 3
 X: 7 Y: 4
 X: 8 Y: 3
  X: 8 Y: 4
```

Existem basicamente dois tipos de variáveis em Minizinc:

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Variáveis de Restrição: estas são descobertas dentro de um domínio de valores sob um conjunto de restrições que é o modelo a ser computado!

Exemplos de Variáveis

```
Exemplo de Parâmetro (variável fixa) em MINIZINC
```

```
1 int: parametro = 5;
```

Exemplo de Variável em MINIZINC

var 1..15: variavel;

Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Exemplos de Restrições

```
constraint x > 2;
constraint 3*y - x <= 17;
constraint x != y;
constraint x = 2*z;</pre>
```

Alguns Operadores Lógicos

Operadores Lógicos

Os operadores lógicos (and, or, not), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.

Alguns Operadores Lógicos

Operadores Lógicos

Os operadores lógicos (*and*, *or*, *not*), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.

Exemplo de Utilização (and)

```
var bool : p;
var bool : q;
constraint
(p /\ q) == true;
solve satisfy;
output [show(p), " ",show(q)];
```

```
Exemplo de Utilização (or)
```

constraint (p \/ q) = false;

```
Exemplo de Utilização (not)
```

1 constraint (not)p = true;

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Bolo de Banana	Bolo de Chocolate		
- 250g de farinha	- 200g de farinha		
- 2 bananas	- 75g de cacau		
- 75g de açúcar	- 150g de açúcar		
- 100g de manteiga	- 150g de manteiga		

Tabela: Insumos de cada bolo

Continuando o enunciado ...

O preço de venda de um Bolo de Chocolate é de R\$4,50 e de um Bolo de Banana é de R\$4,00. Temos 4kg de farinha, 6 bananas, 2kg de açúcar, 500g de manteiga e 500g de cacau. Qual a quantidade de cada bolo que deve ser feita para maximizar o lucro das vendas para a escola?

• Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1
- Solution Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo:
 N₁.qtmanteigarhocolate + N₂.qtmanteigahanana ≤ Manteigadisponivel

- Basicamente temos que encontrar: N₁ (número de bolos de Chocolate) e N₂ (número de bolos de Banana);
- 2 Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- **3** Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1
- Solution Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo:
 N₁.qtmanteigachocolate + N₂.qtmanteigabanana ≤ Manteigadisponivel
- 6 E estes valores são tomados da tabela 1.

Uma tabela conhecida tipo:

	farinha	cacau	bananas	açucar	manteiga	
N ₁ (Choco)	200	75	_	150	150	
N ₂ (Banana)	250	_	2	75	100	
Disponível	4000	500	6	2000	500	

Código desta solução:

```
var 0..100: bc; %Bolo de chocolate: N1
var 0..100: bb; %Bolo de banana: N2

constraint 250*bb + 200*bc <= 4000;
constraint 2*bb <= 6;
constraint 75*bb + 150*bc <= 2000;
constraint 100*bb + 150*bc <= 500;
constraint 75*bc <= 500;

solve maximize (4500*bc + 4000*bb);

output[" Choc = ", show(bc), "\t Ban = ",show(bb)];</pre>
```

Saída

Compiling bolos.mzn

Running bolos.mzn

Choc = 0 Ban = 0

Choc = 1 Ban = 0

Choc = 2 Ban = 0

Choc = 3 Ban = 0

Choc = 2 Ban = 2

========

Finished in 36msec

Teoria dos Conjuntos

```
1 set of int: B = \{1,2,3\};
2 % OU set of int: B = 1 .. 3;
3 set of int: A = \{4,5\};
5 var set of 1 .. 5 : var_uniao;
6 var set of 1 .. 5 : var_inters ;
8 constraint
  var_uniao = B union A;
9
LO
1 constraint
var_inters = B intersect A;
14 solve satisfy;
6 output
       ["VAR_Uniao = " , show(var_uniao),"\n",
١7
        "VAR_Inters = " , show(var_inters),"\n"];
18
```

Construindo Funções

```
1 int: n = 3;
var int: z1;
3 var int: z2;
5 function var int: pot_3_F(var int: n) = n*n*n ;
7 predicate pot_3_P(int: n, var int: res) =
8
           res = n*n*n :
o constraint
      z1 = pot_3F(n);
11
3 constraint
       pot_3_P(n,z2);
L4
16 solve satisfy;
output ["n: ", show(n),"\n", "z1: ", show(z1), "\n",
۱9
         "z2: ", show(z2), "\n"];
```

Saída

Finished in 400msec

Compiling funcao_01.mzn

Running funcao_01.mzn

n: 3

z1: 27

z2: 27

Finished in 54msec

Funções

```
1 int : X = 5 ; %% constantes
2 int : Y = 6;
3 var bool : var_bool_01;
4 var bool : var_bool_02;
6 %%% Temos if-then-else-endif
7 function var bool : testa_paridade(int : N) =
       if((N mod 2) == 0)
8
          then
LO
            true
11
          else
            false
12
13
       endif:
14
5 constraint
     var_bool_01 == testa_paridade(X);
16
17
8 constraint
     var_bool_02 == testa_paridade(Y);
L9
20
21 /* OR var_bool_01 == ((x mod 2) == 0);
         var_bool_02 == ((y mod 2) == 0); */
22
23
24 solve satisfy;
```

```
Continuando ...
solve satisfy;
output
      CTE_X = ", show(X), " CTE_Y = ", show(Y), "\n",
      VAR_B01 = ", show(var_bool_01),
      VAR_B02 = ", show(var_bool_02);
Saída:
$ mzn-g12fd -a minizinc/bool_function.mzn
 CTE X = 5 CTE Y = 6
 VAR_B01 = false VAR_B02 = true
=======
```

Uso na Lógica Proposicional

```
var bool : x;
var bool : v;
3 var bool : Phi01;
4 var bool : Phi02;
                       %% MODUS PONENS
6 constraint
    ((x /\
9 <-> Phi01:
LO
                                 %% MODUS TOLLENS
1 constraint
((not y / )
(x \rightarrow y)) \rightarrow not x
14 <-> Phi02 :
16 solve satisfy;
8 output
["X:"++show(x)++"Y:"++show(y)++"MP:Phi01:"++show(Phi01)++
\mathbb{C}^{(2)} [" X: "++show(x)++" Y: "++ show(y) ++" MT:Phi02: "++ show(Phi02)++
```

```
Saída:
$ mzn-g12fd -a minizinc/interp_log_MP.mzn
X: false Y: false MP:PhiO1: true
X: false Y: false MT:Phi02: true
X: true Y: false MP:Phi01: true
X: true Y: false MT:Phi02: true
X: false Y: true MP:Phi01: true
X: false Y: true MT:Phi02: true
X: true Y: true MP:Phi01: true
X: true Y: true MT:Phi02: true
```

Interpretação na Lógica de Primeira-Ordem

Sejam as FPO abaixo:

- Exemplo 01: $\forall x \exists y \ (y < x)$
- Exemplo 02: $\exists x \ \forall y \ (x < y)$
- Exemplo 03: $\forall x \exists y \ (x^2 == y)$
- Exemplo 04: $\exists x \ \forall y \ (x^2! = y)$
- Avalie a validade para os domínios: $D_x = \{2, 3, 4\}$ e $D_y = \{3, 4, 5\}$

Interpretação na Lógica de Primeira-Ordem

```
1 %%Declarando dominio das variaveis
3 set of int: X = \{2, 3, 4\};
4 set of int: Y = \{3, 4, 5\};
6 function bool: exemplo_01(set of int: x, set of int: y) =
          (forall (i in x) (exists (j in y) (j < i)));</pre>
9 function bool: exemplo_02(set of int: x, set of int: y) =
          exists (i in x) (forall (j in y) (i < j));
ın
11
12 function bool: exemplo_03(set of int: x, set of int: y) =
          forall (i in x) (exists (j in y) (pow(i,2) == j));
13
14
function bool: exemplo_04(set of int: x, set of int: y) =
          exists (i in x) (forall (j in y) (pow(i,2) != j));
16
solve satisfy;
۱9
output["\n Exemplo 01: "++ show(exemplo_01(X,Y))++
21
         "\n Exemplo 02: "++ show(exemplo_02(X,Y))++
         "\n Exemplo 03: "++ show(exemplo_03(X,Y))++
23
         "\n Exemplo 04: "++ show(exemplo_04(X,Y))];
```

```
Saída:
```

```
$ mzn-g12fd -a minizinc/interp_fol_set.mzn
```

```
Exemplo 01: false
Exemplo 02: true
Exemplo 03: false
Exemplo 04: true
```

-

=======

Vetores (Arrays)

```
Vetores 1-D
```

```
• Seja int : n = 7;
```

- array[1..n] of int : vetor01; (constante)
- array[1..n] of {0,1,2,3} : vetor02; (constante)
- array[1..n] of var { 0,1 } : vetor03;

Vetor 1-D, variáveis locais e escopo

```
int: n = 7; %% total de elementos
2 int: m = 4; %% m itens a serem selecionados
4 array[1..n] of var {0,1} : x_decision;
6 %% OK e direto via sum( i in 1..n ) (vetor 1d[i]):
7 function var int: sum_array_1d(array[1..n] of var int: vetor_1d) =
  let{
8
        array[1..n] of var int : temp;
        constraint
                                        %%%% C_1
LO
        temp[1] == vetor_1d[1];
11
        constraint
                                        %%%% C_2
        forall(i in 2..n)
13
          ( temp[i] == temp[i-1] + vetor_1d[i] );
L4
15
        } in temp[n] %%% Valor acumulado aqui
16
18 \%\% constraint m == sum( i in 1..n ) (x_decision[i]);
constraint
m == sum_array_1d( x_decision );
23 solve satisfy;
24 output [" x_decision: " ++ show(x_decision) ];
         " Lower Bound: ". show(lb array(x decision)).
Claudio Cesar de Sá Claudio.sa@l
                              Mini-Curso de Minizinc
                                                     12 de agosto de 2016
```

```
Saída:
mzn-g12fd -a minizinc/function_sum_vetor_1D.mzn
x_decision: [0, 0, 0, 1, 1, 1, 1]
x_decision: [0, 0, 1, 0, 1, 1, 1]
x_decision: [1, 0, 0, 0, 1, 1, 1]
 x_decision: [1, 1, 0, 1, 1, 0, 0]
x_decision: [1, 1, 1, 0, 1, 0, 0]
x_decision: [1, 1, 1, 1, 0, 0, 0]
```

Exemplos de 1D TODO

Vetores 2-D

```
1 /* EXERCICIO
2 Dado um vetor bi-dimensional, crie uma funcao que calcule e retorne a soma de todos
3 elementos desta matriz. Ao fazer esta funcao, faca uma que imprima os valores da
4 matriz. Teste-a na secao do output do Minizinc;
5 */
7 int: Lin = 4:
8 int: Col = 10;
10 array[1 .. Lin, 1 .. Col] of int: G;
11
G = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]
13
       11.2.3.4.5.6.7.8.9.10.
۱4
        1,2,3,4,5,6,7,8,9,10,
15
       1,2,3,4,5,6,7,8,9,10
16
       11;
18 var int : final result;
١9
20 function var int: matrix sum(array[1.. Lin,1 .. Col] of int: matrix) =
      let{
        var int : temp;
        array[1.. Lin] of var int: partial line;
24
        constraint
        forall ( i in 1.. Lin )
26
          (partial line[i] = sum(j in 1 .. Col) (matrix[i,j])
28
29
        temp == sum(partial line);
30
      } in temp
                  %% AQUI O RETORNO DA FUNCAO
33 constraint
```

Mais exemplos: vetores e matrizes

Resolução

- Uni-dimensional
- Bi-dimensional (tem nomes especiais)
- n-ários ... volta há um padrão default de uso
- Falta um exemplo simples de uma dimensão: fazer em sala

Vetores e Matrizes

Quadrado Mágico

Um quadrado mágico é uma matriz NXN onde os somatórios das linhas, colunas e diagonais (principal e secundária) são todos iguais a um valor Σ . Além disso, os elementos da matriz devem ser diferentes entre si e com valores entre 1 e N. Em MINIZINC, faça um programa que, dado o valor da soma Σ , encontre um quadrado mágico de ordem 4.

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Do Wikipedia

The constant that is the sum of every row, column and diagonal is called the *magic constant* or magic sum, M. Every normal magic square has a unique constant determined solely by the value of n, which can be calculated using this formula:

$$M=\frac{n(n^2+1)}{2}$$

For example, if n=3, the formula says $M=3(3^2+1)/2$, which simplifies to 15. For normal magic squares of order $n=3,\,4,\,5,\,6,\,7$, and 8, the magic constants are, respectively: 15, 34, 65, 111, 175, and 260. Sim, outro detalle, válido para: n>2

Resolução

acertar o arquivo fonte

```
1 int: soma;
3 array[0..3,0..3] of var 1..16: mat;
5 constraint forall(i in 0..3)
          (mat[i,0] + mat[i,1] + mat[i,2] + mat[i,3] = soma);
7 constraint forall(j in 0..3)
          (mat[0,j] + mat[1,j] + mat[2,j] + mat[3,j] = soma);
9 constraint mat[0,0] + mat[1,1] + mat[2,2] + mat[3,3] = soma;
to constraint mat[0,3] + mat[1,2] + mat[2,1] + mat[3,0] = soma;
constraint forall(i in 0..3, j in 0..3, k in i..3, 1 in j..3)
          (if (i!= k \setminus j!= 1) then mat[i,j]!= mat[k,1] else true end
12
constraint forall(i in 0..3, j in 0..3)(mat[i,j] <= 16);</pre>
solve satisfy;
16
output[show_int(2,mat[i,j]) ++
18
      if j=3 then "\n" else " " endif |
         i in 0..3, j in 0..3];
L9
```

Grafos

Figura: Regiões da Itália

Modelando o Mapa

```
1 %% Pgm origem coloracao_vertices01.mzn
\mathbf{E} = [0, 1, 0, 0, 0, 0, 0, 0]
      11,0,1,1,1,0,0,0
       10,1,0,1,0,0,0,0
4
      10,1,1,0,1,1,0,0
5
      10,1,0,1,0,1,1,0
6
      10,0,0,1,1,0,1,1
7
      10,0,0,0,1,1,0,0
8
      [0,0,0,0,0,1,0,0];
10 %% CIDADES ....
👊 % 1 Friuli Venezia Giulia
12 % 2 Veneto
3 % 3 Trentino Alto Adige
4 % 4 Lombardy
15 % 5 Emilia-Romagna
16 % 6 Piedmont
17 % 7 Liguria
18 % 8 Aosta Valley
```

As Restrições

```
1 int: n=8;
2 int: c=4;
3 array [1..n,1..n] of int: E;  %% regioes
4 array [1..n] of var 1..c: Col; %% cores
5 constraint
7 forall (i in 1..n, j in i+1..n)
8 (if E[i,j] = 1 then Col[i] != Col[j] else true endif);
9 solve satisfy;
10 output [show(Col)];
```

Coloração de Mapas - by - HAKAN

```
1 %
      coloracao_vertices02.mzn
2 % between two countries
4 graph =
5 array2d(1..num_nodes, 1..2, [
6 3, 1,
7 3, 6,
8 3, 4,
9 6, 4,
6, 1,
1, 5,
1, 4,
4, 5,
4, 2
15]);
```

Modelando o Mapa

```
2 % {"Belgium", "Denmark", "France", "Germany", "Netherlands", "
3 set of 1..6: countries = 1..6; % the countries
7 int: num_nodes = 9;
                       % number of nodes
8 array[1..num_nodes,1..2] of int: graph;
10 % x: what color
in array[countries] of var 1..n: x;
13 % minimize the number of colors .... MINIMIZA AQUI ....
solve minimize numColors;
```

Finalmente a restrição do problema

Ilustrando a combinatória

Figura: Problema de rotas alternativas

Modelando este problema

```
int : src = 1; int : dst = 9; int : n = 9;
  array[1..n, 1..n] of 0..1 : G = []
3
    1, 1, 0, 1, 0, 0, 0, 0
    1, 1, 1, 0, 1, 0, 0, 0
    0, 1, 1, 0, 0, 1, 0, 0, 0
    1, 0, 0, 1, 1, 0, 1, 0, 0
    0, 1, 0, 1, 1, 1, 0, 1, 0
    0, 0, 1, 0, 1, 1, 0, 0, 1 |
    0, 0, 0, 1, 0, 0, 1, 1, 0
LO
    0, 0, 0, 0, 1, 0, 1, 1, 1
11
    0, 0, 0, 0, 0, 1, 0, 1, 1 |];
12
15 % Grafo de decisao que representa o resultado (r)
16 array[1..n, 1..n] of var 0..1 : r;
```

As restrições

```
1 % aceita somente arcos validos da matriz
2 constraint
3   forall(i,j in 1..n where i != dst)
4   (G[i,j]==0 -> r[i,j]==0) /\ r[dst,src]=1;
5
6
7 % O grafo deve ser conservativo : bidirecional
8 constraint
9   forall(i in 1..n)
10   (sum([r[j, i] | j in 1..n]) =
11    sum([r[i, j] | j in 1..n]));
12 %% todos que chegam ha um NO .... saem
```

As restrições

```
1 % um no pode ter no maximo uma aresta no sentido i -> j
2 constraint
forall(i in 1..n)
          (sum([r[i, j] | j in 1..n]) < 2);
4
6 % deve existir uma aresta de src para algum no
7 constraint
 exists(i in 1..n)
8
       (r[src,i] == 1 / i != src);
n solve satisfy;
13 % Output do Hakank
output [show(r[i,j]) ++ if j = n then "\n" else " "
              endif | i in 1..n, j in 1..n];
15
```

Caminho Mínimo

- Muitas estratégias de implementação!!!
- ② Discutido os códigos abaixo

```
Ver codigos:
3 min_path01.mzn min_path02.mzn min_path03.mzn
4 %% comentado no codigo
```

Conclusões

► Exemplos de códigos avançados: https://github.com/hakank/hakank/tree/master/minizinc