CS412 office hour

Apr 3, 2019

Today's Office Hour

- Announcement
 - Exam 2 stats will be released next week
 - We'll go over exam 2 questions on next Wednesday

- Decision Tree
- QA

Decision Tree

Pros and Cons

Pros

- Easy to explain (even for non-expert)
- Easy to implement (many software)
- Efficient
- Can tolerant missing data
- White box
- No need to normalize data
- Non-parametric: No assumption on data distribution, no assumption on attribute independency
- Can work on various attribute types

Pros and Cons

- Cons
 - Unstable. Sensitive to noise
 - Accuracy may be not good enough (depending on your data)
 - The optimal splitting is NP. Greedy algorithms are used
 - Overfitting

Remark on Decision Tree

- Decision Trees are no longer widely used (stand alone) due to their limitation in performance
- However, they serve as fundamental building blocks of some of the most commonly used classification algorithms
 - Random Forest
 - XGBoost

Building a Decision Tree

Training data set: Play Golf?

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Building a Decision Tree

- Optimal: NP hard -> Use greedy approach
- For each node, select a dimension to split, based on some criteria
 - Categorical split
 - Binary split

Building a Decision Tree

- Greedily select the feature dimension which minimize uncertainty
 - Information gain
 - Gain ratio
 - Gini index (gini impurity)
 - 0 ...
- Procedure: Enumerate all dimensions, compute {gini, info-gain, ...}, select the best one

Entropy

- Uncertainty of a random variable
- The larger the entropy, the more uncertain

entropy=0.475

entropy=0.477

entropy=0.278

Decision Boundary of Decision Trees

Overfitting

Tree Pruning

- Pre-pruning: Halt tree construction early
- Post-pruning: Remove branches from a "fully grown" tree

Visualization (Scikit-Learn)

Visualization

