TRABALHO 2

April 2, 2020

Análise Numérica (M2018)

Francisco Gonçalves 201604505

Departamento de Ciência de Computadores Faculdade de Ciências de Universide do Porto

Contents

0.1	Prime	iro Exercício
	0.1.1	Alínea a)
	0.1.2	Alínea b)
		0.1.2.1 Método das bisseções sucessivas
		0.1.2.2 Método iterativo simples
		0.1.2.3 Método de Newton
		0.1.2.4 Programa
	0.1.3	Alínea c)
0.2	Segun	do Exercício
	0.2.1	Alínea a)
	0.2.2	Alínea b)
	0.2.3	Alínea c)

0.1 PRIMEIRO EXERCÍCIO

Pretende-se usar um método iterativo para determinar um valor aproximado de um zero de $F(x) = x^2 - x - sen(x + 0.15)$.

0.1.1 Alínea a)

Separem graficamente as raízes de F(x) = 0 e determinem um intervalo I de amplitude 10^{-1} que contenha a maior delas.

Figure 1: Representação gráfica da função F (exercício 2.a)

Usando o método gráfico para separar as raízes da função basta encontrar os pontos de interseção de F(x) com o eixo y=0. Assim sendo, os pontos de interseção encontrados são (-0.0723,0) e (1.61,0).

Consequentemente, de forma a obter o intervalo I, adiciona-se e subtrai-se 10^{-1} (0.1) ao maior valor de x dos pontos encontrados, para obter os extremos do intervalo pedido.

Assim, tem-se o intervalo I = [1.51, 1.71].

0.1.2 Alínea b)

i. Mostrem que as condições de aplicabilidade do método são satisfeitas no intervalo I.

0.1.2.1 Método das bisseções sucessivas

Para que este método possa ser corretamente aplicado para obter a raíz da função é necessário verificar que satisfaz um certo conjunto de condições.

Primeiramente, é necessário verificar que F é contínua no intervalo I previamente calculado, e é possível verificar que é, pois não ocorre nenhuma interrupção, visível através da representação gráfica anterior.

Seguidamente, a seguinte condição deve ser verdadeira: F(a)F(b) < 0, sendo a,b os limites do intervalo I. Uma vez que a raíz será um ponto com ordenada y = 0, tem lógica que um dos limites seja negativo e o outro positivo, logo:

- $F(a) = 1.51^2 1.51 sen(1.51 + 0.15) \approx -0.2259$
- $F(b) = 1.71^2 1.71 sen(1.71 + 0.15) \approx 0.2556$

Por último, obviamente é necessário que a < b, visto que se trata de um intervalo, o menor valor é sempre o da esquerda. Sendo que, neste exemplo, a = 1.51 e b = 1.71, a condição comprovase.

0.1.2.2 Método iterativo simples

Para que o método iterativo simples possa ser usado corretamente as seguintes condições devem ser verificadas. Primeiramente, a função F admite duas raízes, contudo, devido ao primeiro exercício, apenas foi considerada a maior ao determinar o intervalo I. Assim sendo, para determinar a função f é considerada apenas uma das equações, tendo-se:

• f(x) = sin(x+0.15)

Figure 2: Representações gráficas das funções f (esquerda) e f' (direita)

A função f deve ser contínua no intervalo I. Visto que f é uma função sinusoidal, conclui-se que a condição é satisfeita.

Seguidamente, a seguinte propriedade deve existir: $f(x) \in [a,b], \forall x \in [a,b]$ ou $f([a,b]) \subseteq [a,b]$. Deste modo, sabendo que f é uma função estritamente decrescente no intervalo I, então esta condição é satisfeita para [1.51,1.71].

Ultimamente, a propriedade $|f(x_1) - f(x_2)| \le L|x_1 - x_2|, \forall x_1, x_2 \in [a, b], 0 < L < 1$ tem de ser satisfeita. Ou seja, $|f'(x)| \le L < 1, \forall x \in]a, b[$. Assim sendo, f'(x) = cos(x + 0.15), logo tem-se $max|f'(x)| \le 0.2852$, concluindo a análise da propriedade e permitindo a sua aplicabilidade.

0.1.2.3 Método de Newton

Para mostrar a aplicabilidade do Método de Newton no intervalo I, é necessário determinar a derivada da função F, assim como a sua segunda derivada, logo:

- $F(x) = x^2 x sen(x + 0.15)$
- F'(x) = 2x 1 cos(x + 0.15)
- F''(x) = 2 + sen(x + 0.15)

De seguida, é necessário verificar que F,F' e F'' são contínuas no intervalo I previamente calculado, e é possível verificar que o são, pois não ocorre nenhuma interrupção. É também necessário que F(a)F(b) < 0, sendo a,b os limites do intervalo I, ou seja, com $\mathbf{a} = \mathbf{1.51}$ e $\mathbf{b} = \mathbf{1.71}$:

- $F(a) = 1.51^2 1.51 sen(1.51 + 0.15) \approx -0.2259$
- $F(b) = 1.71^2 1.71 sen(1.71 + 0.15) \approx 0.2556$
- $F(a)F(b) \approx -0.0577$ (logo verifica-se a condição)

Deve ainda ser respeitada a seguinte condição: $F'(x) \neq 0, \forall x \in [a,b]$. Por conseguinte, se assumirmos uma contrariedade e resolvermos F'(x) = 0, cuja única solução é x = 0.793 e, neste caso, $x \notin [a,b]$, logo esta condição também se verifica.

Seguidamente, deve ser tido em conta que $F''(x) \ge 0$ ou $F''(x) \le 0$, $\forall x \in [a, b]$. A função F''(x) é um sinusoide, tendo sofrido deslocações na vertical e na horizontal. Contudo, todos os seus pontos apresentam y positivo, confirmando que respeita a primeira opção.

Por último, deve-se mostrar que $F(x_0)F''(x_0) > 0$, $x_0 \in [a,b]$. Sabendo que, $F(x_0)$ toma sempre um valor positivo então, para que a condição se verifique $F(x_0) > 0$, o que só é possível para $x_0 > 1.61$ e $x_0 \le 1.71$.

Como todas estas propriedades se verificam, o método de Newton pode ser aplicado na função F de forma a convergir para a sua raíz no intervalo I.

0.1.2.4 Programa

ii. Escrevam um programa que, usando este método, calcule um valor aproximado da raiz de F(x) = 0 que pertence a I, com erro absoluto (estimado) inferior a um valor ϵ dado e escreva o número de iterações foi necessário efetuar. Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto estimado inferior a $5*10^{-8}$.

A seguinte implementação engloba todos os métodos necessários para a resolução do exercício:

Listing 1: p1b.py (PYTHON)

```
import math
def main():
   f = lambda x: x**2 - x - math.sin(x + 0.15)
   df = lambda x: 2*x - 1 - math.cos(x + 0.15)
   f2 = lambda x: math.sqrt(x + math.sin(x + 0.15))
   eps = epsilon()
   errorAbs = 5*10**(-8)
   intervalA = 1.51
   intervalB = 1.71
   print("METODO DAS BISSECOES SUCCESSIVAS:")
   FirstZeroSuccBi = SuccessiveBisectionMethod(f,intervalA,intervalB,eps)
   getApproximation(FirstZeroSuccBi,errorAbs)
   print("METODO ITERATIVO SIMPLES:")
   FirstZeroSimpIt = SimpleIterativeMethod(f2,intervalA,eps,100)
   getApproximation(FirstZeroSimpIt,errorAbs)
   print("METODO DE NEWTON:")
   FirstZeroNewton = NewtonMethod(f,df,intervalA,intervalB,eps)
   getApproximation(FirstZeroNewton,errorAbs)
def epsilon():
   eps = 1
   while (eps + 1 > 1):
       eps = eps / 2
   eps = 2 * eps
   return eps
def getApproximation(zero,error):
   print("Valor aproximado -> %0.8f" % zero, "+/-", error)
main()
```

SuccessiveBisectionMethod() in p1b.py (PYTHON)

```
def SuccessiveBisectionMethod(f,a,b,eps):
   i = 0
   x = a
   vfa = f(a)
   error = abs(b - a)
   while True:
       if (f(x) == 0):
           error = 0
       if (error <= eps):</pre>
           break
       x = (a + b) / 2
       i += 1
       if((f(x) * vfa) < 0):
           b = x
       else:
           a = x
       error = error / 2
       print(i, "Iteracao | x ->", x)
       print("[ %0.20f" % a, ", %0.20f" % b, "]")
   print("Valor de x -> %0.20f" % x, "| Valor de a ->", a, "| Valor de b ->", b)
   print("Erro: %0.20f" % error, "| N de iteracoes:", i)
   return x
```

NewtonMethod() in *p1b.py* (PYTHON)

```
def NewtonMethod(f,df,a,b,eps):
    i = 0
    x = a
    while True:
        xn = x - (f(x) / df(x))
        i += 1
        print(i, "Iteracao | x ->", x)
        error = abs(xn - x)
        if (error <= eps):
            break
        x = xn
    print("Valor de x -> %0.20f" % x, "| Valor de a ->", a, "| Valor de b ->", b)
    print("Erro: %0.20f" % error, "| N de iteracoes:", i)
    return x
```

SimpleIterativeMethod() in p1b.py (PYTHON)

```
def SimpleIterativeMethod(f,x0,eps,nMax):
   x1 = f(x0)
   error = abs(x1 - x0)
   i = 0
   while (error > eps and i <= nMax):</pre>
       x0 = x1
       x1 = f(x0)
       error = abs(x1 - x0)
       i += 1
       print(i, "Iteracao | x ->", x1)
   if i > nMax:
       print("Nao foi possivel ao fim de %d iteracoes enocntrar a solucao com o erro
           pretendido." % nMax)
       return -500
   else:
       print("Valor de x \rightarrow %0.20f" % x1)
       print("Erro: %0.20f" % error, "| N de iteracoes:", i)
       return x1
```

0.1.3 Alínea c)

Comparem o comportamento dos três métodos neste problema.

	Método das	Método de	Método iterativo
Número de iterações	bisseções sucessivas	Newton	simples
	Valor de <i>x</i>	Valor de x	Valor de x
1	1.609999999999999	1.6171194120931818	1.6030937438790354
2	1.66	1.6100534601769825	1.6082672461392857
3	1.634999999999998	1.6100225565073827	1.6095794418279536
4	1.6224999999999998	1.6100225559160435	1.6099107954661334
5	1.61625	1.6100225559160437	1.6099943745251886
6	1.613125	-	1.610015450133565
7	1.6115624999999998	_	1.6100207642579267
8	1.6107812499999998	-	1.6100221041674623
9	1.610390625	-	1.6100224420122848
10	1.6101953125	-	1.6100225271963888
11	1.6100976562499998	-	1.61002254867468
12	1.6100488281249998	-	1.6100225540902087
13	1.6100244140625	-	1.6100225554556782
14	1.61001220703125	-	1.6100225557999672
15	1.610018310546875	_	1.6100225558867762
16	1.6100213623046875	_	1.610022555908664
17	1.6100228881835936	_	1.610022555914183
18	1.6100221252441407	-	1.6100225559155743
19	1.6100225067138672	-	1.6100225559159251
20	1.6100226974487304	-	1.6100225559160137
21	1.6100226020812989	-	1.610022555916036
22	1.610022554397583	-	1.6100225559160417
23	1.610022578239441	-	1.610022555916043
24	1.610022566318512	-	1.6100225559160435
25	1.6100225603580474	-	1.6100225559160435
[]	[]	[]	[]
47	1.6100225559160428	-	-
48	1.6100225559160435	_	-
49	1.6100225559160437	-	-
50	1.6100225559160437	-	-

Número de iterações	Método das bisseções sucessivas		
	Intervalo [a,b]		
1	[1.61000000 , 1.71000000]		
2	[1.61000000 , 1.66000000]		
3	[1.61000000 , 1.63500000]		
4	[1.61000000 , 1.62250000]		
5	[1.61000000 , 1.61625000]		
6	[1.61000000 , 1.61312500]		
7	[1.61000000 , 1.61156250]		
8	[1.61000000 , 1.61078125]		
9	[1.61000000 , 1.61039062]		
10	[1.61000000 , 1.61019531]		
11	[1.61000000 , 1.61009766]		
12	[1.61000000 , 1.61004883]		
13	[1.61000000 , 1.61002441]		
14	[1.61001221 , 1.61002441]		
15	[1.61001831 , 1.61002441]		
16	[1.61002136 , 1.61002441]		
17	[1.61002136 , 1.61002289]		
18	[1.61002213 , 1.61002289]		
19	[1.61002251 , 1.61002289]		
20	[1.61002251 , 1.61002270]		
21	[1.61002251 , 1.61002260]		
22	[1.61002255 , 1.61002260]		
23	[1.61002255 , 1.61002258]		
24	[1.61002255 , 1.61002257]		
25	[1.61002255 , 1.61002256]		
[]	[]		
46	[1.61002256 , 1.61002256]		
47	[1.61002256 , 1.61002256]		
48	[1.61002256 , 1.61002256]		
49	[1.61002256 , 1.61002256]		
50	[1.61002256 , 1.61002256]		

Ao longo da execução deste método, o intervalo em que a raíz se encontra mais sendo encolhido, reduzindo o número de possibilidades. O programa termina quando o zero for encontrado ou quando o erro for demasiado reduzido para continuar.

Resultados Finais

```
# METODO DAS BISSECOES SUCCESSIVAS:
Valor final de x \rightarrow 1.61002255591604370721
Valor de a -> 1.6100225559160435
Valor de b -> 1.6100225559160437
Erro: 0.00000000000000017764 | N de iteracoes: 51
Valor aproximado -> 1.61002256 +/- 5e-08
# METODO ITERATIVO SIMPLES:
Valor final de x \rightarrow 1.61002255591604348517
Erro: 0.0000000000000000000000000 | N de iteracoes: 25
Valor aproximado -> 1.61002256 +/- 5e-08
# METODO DE NEWTON:
Valor final de x \rightarrow 1.61002255591604348517
Valor de a -> 1.51
Valor de b -> 1.71
Erro: 0.000000000000000022204 \mid N de iteracoes: 5
Valor aproximado -> 1.61002256 +/- 5e-08
```

Ao analisar os resultados obtidos, é possível confirmar que todos os métodos atingiram relativamente o mesmo valor, dependendo do erro a considerar. Para o erro absoluto em causa, o valor aproximado obtido pelos três métodos foi exatamente igual, embora o seu valor final, antes do cálculo da aproximação ser feito, mostre algumas irregularidades.

Também se pode afirmar que, dado que cada método usa um procedimento diferente, o Método de Newton, por exemplo, necessitou de menos iterações para convergir no valor da sua raíz, enquanto que o Método das Bisseções Sucessivas foi o mais demorado.

Comparando os três erros obtidos, é possível verificar que, para este exercício, embora a diferença seja incrivelmente mínima, o Método Iterativo Simples apresenta o menor valor, nem podendo ser representado com precisão usando 20 casas decimais. Assim, embora este método não tenha sido tão rápido como o Método de Newton em termos de iterações, conseguiu obter um valor mais preciso. Por contrariedade, o Método de Newton, embora o mais rápido, apresenta o maior erro dos três.

0.2 SEGUNDO EXERCÍCIO

0.2.1 Alínea a)

Mostre que a função $F(x) = 2 + 6x - 4x^2 + 0.5x^3$ tem um zero no intervalo [3.5, 6.5].

Figure 3: Representação gráfica da função F (exercício 2.a)

Tomando F(x)=0, ou seja, $2+6x-4x^2+0.5x^3=0$ e resolvendo para x, obtêm-se todas as soluções possíveis cujos pontos tenham ordenada y=0:

- $x \approx 0.475$
- $x \approx 1.369$
- $x \approx 6.156$

Após restringir a função ao intervalo [3.5,6.5], verifica-se que existe apenas um ponto que respeite esse limite, sendo ele (6.156,0), logo comprova-se a existência de um zero da função F nesse intervalo.

0.2.2 Alínea b)

Usem o vosso programa para aplicar o método de Newton (sem verificar se são satisfeitas as condições do método) para obter um valor aproximado daquele zero com erro absoluto estimado inferior a 10^{-6} , considerando os seguintes valores para x_0 :

- $x_0 = 3.5$.
- $x_0 = 6.5$.
- $x_0 = 4.4$.

A seguinte implementação permite resolver para todos os valores de x_0 em simultâneo:

Listing 2: p2b.py (PYTHON)

```
import math
def main():
   f = lambda x: -2 + 6*x - 4*x**2 + 0.5*x**3
   df = lambda x: 6 - 8*x + 1.5*x**2
   eps = epsilon()
   errorAbs = 10**(-6)
   intervalA = 3.5
   intervalB = 6.5
   x1 = 3.5
   x2 = 6.5
   x3 = 4.4
   print("X0 ->", x1, ":")
   FirstZeroNewtonX1 = NewtonMethod(f,df,x1,intervalB,eps)
   getApproximation(FirstZeroNewtonX1,errorAbs)
   print("X0 ->", x2, ":")
   FirstZeroNewtonX2 = NewtonMethod(f,df,x2,intervalB,eps)
   getApproximation(FirstZeroNewtonX2,errorAbs)
   print("X0 ->", x3, ":")
   FirstZeroNewtonX3 = NewtonMethod(f,df,x3,intervalB,eps)
   getApproximation(FirstZeroNewtonX3,errorAbs)
def epsilon():
   eps = 1
   while (eps + 1 > 1):
       eps = eps / 2
   eps = 2 * eps
   return eps
```

NewtonMethod() / getApproximation() in p2b.py (PYTHON)

```
def NewtonMethod(f,df,a,b,eps):
   i = 0
   x = a
   while True:
       if(df(x) == 0):
           print("Impossivel encontrar uma solucao")
       xn = x - (f(x) / df(x))
       error = abs(xn - x)
       x = xn
       i += 1
       print(i, "Iteracao | x ->", xx)
       if (error <= eps):</pre>
           break
   print("Valor de x -> %0.20f" % x, "| Valor de a ->", a, "| Valor de b ->", b)
   print("Erro: %0.20f" % error, "| N de iteracoes:", i)
   return x
def getApproximation(zero,error):
   print("Valor aproximado -> %0.6f" % zero, "+/-", error)
main()
```

Esta implementação do Método de Newton é semelhante à do programa anterior, tendo apenas sido feita reorganização e limpeza de dados, uma vez que estes mudaram com o exercício. Tudo o resto permaneceu inalterado. O número de casas decimais do erro absoluto ao efetuar a aproximação do valor de \boldsymbol{x} também foi recalibrado.

0.2.3 Alínea c)

Comentem e justifiquem os resultados obtidos.

Após executar o programa p2b.py, são imprimidos os resultados para cada valor de x_0 :

	$x_0 = 3.5$	$x_0 = 6.5$	$x_0 = 4.4$
Número de iterações	Valor de x	Valor de x	Valor de x
1	1.1379310344827585	6.194244604316546	-60.9000000000135
2	1.4693221745502059	6.156866719227977	-39.74294512512855
3	1.3764715896011954	6.156325287500599	-25.653555579807282
4	1.3691509152320513	6.156325174658666	-16.28286182080067
5	1.3691023883254085	6.156325174658662	-10.067466823324072
6	1.3691023861848552	6.156325174658661	-5.96801390233247
7	1.369102386184855	6.156325174658662	-3.294140026526098
8	-	6.156325174658661	-1.586491421795651
9	-	_	-0.5368207740912427
10	-	-	0.0645665686675827
11	-	-	0.361328727676477
12	-	-	0.46137513541757913
13	-	-	0.47435367021897357
14	-	-	0.47457237726118506
15	-	-	0.47457243915647807
16	-	-	0.4745724391564829
17	-	-	0.47457243915648295

Resultados Finais

```
# X0 -> 3.5 :

Valor final de x -> 1.36910238618485524675 | Valor de a -> 3.5 | Valor de b -> 6.5

Erro: 0.00000000000000022204 | N de iteracoes: 7

Valor aproximado -> 1.369102 +/- 1e-06

# X0 -> 6.5 :

Valor final de x -> 6.15632517465866069273 | Valor de a -> 6.5 | Valor de b -> 6.5

Erro: 0.0000000000000000088818 | N de iteracoes: 8

Valor aproximado -> 6.156325 +/- 1e-06

# X0 -> 4.4 :

Valor final de x -> 0.47457243915648289478 | Valor de a -> 4.4 | Valor de b -> 6.5

Erro: 0.0000000000000000005551 | N de iteracoes: 17

Valor aproximado -> 0.474572 +/- 1e-06
```

Analisando os resultados obtidos, embora o limite máximo (b) seja o mesmo para todas as iterações de diferentes x_0 (a), o método encontrou 3 raízes, sendo os zeros visíveis na representação gráfica anterior da função F. Deste modo, o zero previamente encontrado, apenas pôde ser aproximado com $x_0 = 6.5$. É de notar que, sem verificar as condições de aplicabilidade do Método de Newton para esta função, toda a implementação está propensa a erros ou falhas quanto a encontrar uma solução, confirmando que o valor inicial é de extrema importância para obter a raíz correta no intervalo definido, visto que, existindo mais do que uma raíz, um dado valor irá apenas convergir para uma delas, o que está fortemente dependente da derivada da função em causa.

Os programas aqui exibidos assim como os reusltados obtidos podem ser consultados em detalhe aqui: https://github.com/1Skkar1/Numerical-Analysis/tree/master/Trabalho2