Please check the examination detail	s below	before ente	ring your can	didate information
Candidate surname			Other name	es
Pearson Edexcel International Advanced Level	Centre	Number		Candidate Number
Wednesday 8	Ma	ay 2	019	
Afternoon (Time: 1 hour 20 minute	es)	Paper Re	eference V	VPH13/01
Physics Advanced Subsidiary Unit 3: Practical Skills in	n Phy	/sics l		
You must have: Ruler				Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets

Advice

• Read each question carefully before you start to answer it.

- use this as a guide as to how much time to spend on each question.

- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

4

P61474RRA

P 6 1 4 7 4 R R A 0 1 1 6

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions.

During an experiment a student used the measuring instrument shown in the photograph to measure the diameter of a small metal sphere.

(a) (i) State the resolution of the measuring instrument shown in the photograph.

1	1	1	
ľ	Т	,	

- (ii) Explain why this device is suitable to measure the diameter of the metal sphere.
- (b) The student measured the diameter. The reading obtained was $20.5 \pm 0.05 \, \text{mm}$. Calculate the percentage uncertainty in the measurement of the diameter.

(1)

Percentage uncertainty in the diameter =

DO NOT WRITE IN THIS AREA

Describe how the student should use this measurin measurements as accurate as possible.	
	(2)
(d) The student measured the diameter of a second me	tal sphere and recorded the
following readings. 19.0 mm 19.1 mm 18.9 mm	19.2 mm 10.1 mm
(i) Calculate the mean diameter of the second met	
(*)	(2)
Mean diameter of the	second metal sphere =
(ii) Calculate the percentage uncertainty in the mea	an diameter of the second metal sphere. (2)
Percentage uncertainty	in the mean diameter =

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

e) The student measured the mass of the first metal sphere using a top pan balance.	JC.
The mass reading obtained was 35.6 g.	
Calculate the density of the first metal sphere.	(4)
Density of the first metal sphere =	
f) The student calculated the density of the second metal sphere to be 7.75×10^3 with an uncertainty of 2%.	$kg m^{-3}$
Determine whether the two spheres could be made from the same metal.	
	(2)
	16 1)
(Total for Question 1 =	16 marks)

DO NOT WRITE IN THIS AREA

WRITE IN THIS AREA

2 A student investigated the extension of a spring to determine its stiffness.

The student suspended the spring from a fixed support and added masses to the lower end of the spring as shown.

The student used a metre rule to make measurements of the spring as the mass was increased.

The student plotted a graph of applied force F against the extension of the spring x.

(a) Describe what the student should do to obtain the data to plot the force-extension graph.

DO NOT WRITE IN THIS AREA

(b) Explain how you would use the graph to determine the	e stiffness of the spring. (2)
	(Total for Question 2 = 6 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3 A student used an electron beam tube to accelerate electrons towards a thin slice of graphite as shown. The electrons passing through the graphite produced a diffraction pattern on the screen. This is similar to the effect seen when light passes through a diffraction grating.

The diffraction pattern seen on the curved screen is shown below.

(a)	Describe how the student can accurately determine the radius of the first bright ring	
	of the diffraction pattern.	

|
 | |
|------|------|------|------|------|------|------|------|------|------|------|--|
|
 | |

(4)

DO NOT WRITE IN THIS AREA

n energies. The stu e angle of diffractio		g of the diffraction pa the de Broglie wavel shown in the table.	
n energies. The stu e angle of diffractio	dent then calculated	the de Broglie wavel	
n energies. The stu e angle of diffractio	dent then calculated	the de Broglie wavel	
n energies. The stu e angle of diffractio	dent then calculated	the de Broglie wavel	
$\lambda/10^{-11}\mathrm{m}$	θ/°	$\sin \theta$	
3.47	19.2		
3.2	17.7		
2.93	16.1		
2.44	13.7		
1.9	10.9		
ese results.			
			(2)
			(0)
	3.2 2.93 2.44 1.9 ese results.	3.2 17.7 2.93 16.1 2.44 13.7 1.9 10.9 See results.	3.2 17.7 2.93 16.1 2.44 13.7 1.9 10.9

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iii)	Determine the gradient of the graph.	(3)
	Gradient =	
(iv)	The diffraction occurs as the electrons pass through the thin slice of graphite. The atoms in the graphite are arranged in layers.	
	The position of the rings in the diffraction pattern can be approximated by the eq	uation
	$n\lambda = \mathrm{d} \sin \theta$	
	where d is the spacing between the layers.	
	Explain why the spacing between the layers is given by the gradient of the graph	(2)
	(Total for Question 2 = 10 mg	wlza)
	(Total for Question 3 = 19 ma	rks)

4 A student carried out an experiment to determine the mass per unit length μ of a string, using a standing wave. The standing wave produced is shown in the diagram.

The student recorded the following data.

Length of string l	1.25 m
Frequency f	105 Hz
Mass m	0.25 kg

(a) Calculate μ given the equation below.

$$\sqrt{\frac{mg}{\mu}} = f\lambda$$

(3)

|
 |
|--------|
| |
|
 |
 	 ••																				

DO NOT WRITE IN THIS AREA

(b) (i) Identify two significant sources of uncertainty in the student's measurements.	(2)
(ii) For each of these sources of uncertainty, describe an experimental technique the student could have used to obtain an accurate measurement.	(4)
(Total for Question 4 = 9 ma	arks)
TOTAL FOR PAPER = 50 MA	RKS