SIZ_18_6_24

- stejnosměrný stroj
 - pracují na stejnosměrný i střídavý proud
 - umí libovolné otáčky (omezeny mechanickou konstrukcí)
 - řízení změnou napětí na rotoru
 - rotor je zde kotvou
 - potřebují komutátor
 - usměrňovač nebo střídač
 - konstrukčně velmi složitý
 - velké množství kluzkých kontaktů (vysoké namáhání)
 - bývá nahrazen výkonovou elektronikou
 - 4 hl. komponenty
 - společný mag. obvod statoru a rotoru
 - buzení statorového toku
 - komutátor s kartáči
 - rotor
 - napájení rotoru prostřednictvím kartáčů doléhajících na komutátor
 - na statoru budicí vinutí vytvářející stacionární magnetický tok
 - změnou velikosti budicího proudu nebo napětí kotvy je možno řídit rychlost motoru
 - změnou směru budicího proudu nebo změnou polarity napětí kotvy reverzace
 - rotor je vždy elektromagnet
 - stator elektromagnet nebo perm. magnet
 - aby motor fungoval, musíme být schopni přepínat směr proudu v kotvě
 - komutátor je napájen stejnosměrným napětím
 - magnetický tok statoru a rotoru na sebe silově působí; nejvyšší sílu dosahují při vzájemném úhlu 90 elektrických stupňů
 - pokud by při pootočení rotoru nedošlo k přepojení vinutí kotvy, rotor by se zastavil
 - jiskření kartáčů komutátor střídavě přerušuje obvod protékaný stejnosměrným proudem
 - mag. obvod kotvy z tr. plechů
 - počet lamel komutátoru přímo odpovídá počtu cívek kotvy
- BLDC motory
 - odvozené z DC motoru řídí se jako on
 - · elektrické buzení statoru nahrazen permanentními magnety
 - prohozená role statoru a rotoru
 - použit nejmenší možný počet cívek, se kterým je stroj ještě schopen pracovat (3f)
 - problém se zvlněním
 - řešením je správně trefit okamžik jejich spínání
 - musíme znát polohu rotoru Hallovy sondy
 - střídač s stará o napájení vinutí
 - střídač
 - sestava polovodičových spínačů
 - v každém okamžiku jsou sepnuty 2 spínače
 - po přechodu do další spínací kombinace se statorové pole pootočí o 60°
 - vinutí statoru je napájeno obdélníkovým průběhem napětí, které vytváří magnetické pole; vektory statoru a rotoru vzájemně posunuté o 60 elektrických stupňů
 - průběh komutace
 - při rozběhu motoru statorové pole nejprve nastaví do pozice, kdy je vůči rotorovému poli pootočeno o 120°
 - statorové pole zde čeká do okamžiku, kdy se rotorové pole přiblíží na úhel 60°, pak elektronika přepíná na další vektor statorového pole

- celý proces se neustále opakuje a vzájemná pozice statorového a rotorového pole cyklicky kolísá mezi 120° do 60°
- otáčky ovládány pulzně šířkovou modulací