

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Никифорова Ирина Андреевна		
Группа	РК6-6	16	
Тип задания	лабораторная работа		
Тема лабораторной работы	Многошаговые методы численного решения задачи Коши.		
Студент		подпись, дата	Никифорова И. А. <i>фамилия, и.о.</i>
Преподаватель		подпись, дата	Соколов А. П. фамилия, и.о.
Преподаватель		подпись, дата	Першин А. Ю. фамилия, и.о.
		поопись, ойта	фимилия, и.о.
Оценка			

Москва, 2019 г.

Оглавление

Задание на лабораторную работу	
Цель выполнения лабораторной работы	4
Задачи, выполненные в процессе реализации лабораторной работы	۷
Многошаговые методы численного решения задачи Коши	4
Заключение	
Список использованных источников	12

Задание на лабораторную работу

Дано нестационарное уравнение теплопроводности:

$$\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = f(x, y), \tag{1}$$

где T = T(x, y, t) - температура в точке (x, y), f(x, y) = 1 - функция тепловых источников, описывающая в данном случае равномерный нагрев. Рассматривается пространство $(x, y) \in [0; 1] \times [0; 1]$, а также однородные (т.е. нулевые) граничные условия: T(x, 0, t) = T(0, y, t) = T(x, 1, t) = T(1, y, t) = 0.

Требуется:

1. Используя результаты лабораторной работы №3 (вариант 2), провести дискретизацию пространства с N=18 узлами вдоль каждого направления и дискретизацию по времени с шагом Δt , используя метод Адамса—Башфорта 4-го порядка и метод Рунге—Кутты 4-го порядка. Например, для метода Адамса—Башфорта 4-го по-рядка результатом дискретизации должен быть итерационный метод вида:

$$T_{n+1} = T_n + \Delta t \sum_{k=1}^{3} (a_k (AT_{n-k+1} + f)),$$
 (2)

где A и f были выведены в лабораторной работе №3 (вариант 2).

- 2. Написать функцию *ab4()*, которая проводит одну итерацию метода Адамса–Башфорта 4-го порядка, используя решения системы ОДУ на трех предыдущих итерациях. Аргументы функции следует определить самостоятельно.
- 3. Написать функцию *rk4()*, которая проводит одну итерацию метода Рунге–Кутты, используя решение системы ОДУ на предыдущей итерации. Аргументы функции следует определить самостоятельно.

- 4. Написать функцию *ode_solve(f, t_final, delta_t)*, которая находит решение ОДУ с правой частью, выраженной функцией *f*, до момента времени *t_final* с шагом по времени *delta_t*, используя метод Рунге–Кутты 4-го порядка для инициализации первых четырех шагов и метод Адамса–Башфорта 4-го порядка для дальнейших итераций.
- 5. Проведя несколько вычислительных экспериментов с помощью функции $ode_solve()$, определить с точностью до порядка максимальное значение Δt , обозначаемое Δt_{max} , при котором решение заданного дифференциального уравнения является неустойчивым. Требуется продемонстрировать неустойчивость решения с помощью графика зависимости температуры, усредненной по области $[0; 1] \times [0; 1]$, от времени.
- 6. Используя Δt на порядок меньшее, чем Δt_{max} , построить:
 - $^{\circ}$ линии уровня функции T(x, y, t) для нескольких моментов времени, демонстрирующих сходимость решения;
 - \cdot график зависимости температуры, усредненной по области $[0; 1] \times [0; 1]$, от времени.
- 7. Сравнить решение, к которому сходится численное решение заданного дифференциального уравнения, с решением, полученным в лабораторной работе №3 (вариант 2). Сравнив их дополнительно с решением, полученным при шаге Δt_{max} , сделать вывод об устойчивости решения и устойчивости метода.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — реализовать алгоритмы многошагового и одношагового методов численного решения задачи Коши, провести дискретизацию ОДУ по времени, установить устойчивость метода и решения, сравнить результаты с результатами предыдущей работы.

Задачи, выполненные в процессе реализации лабораторной работы

1. Многошаговые методы численного решения задачи Коши.

Многошаговые методы численного решения задачи Коши

Для уравнения (1) с использованием полученной в лабораторной №3 формулы была записана дискретизация по пространству в матричной форме:

$$AT^{(mod)} = f(x, y), (3)$$

где A - матрица коэффициентов, $T^{(mod)}$ - модифицированный вектор температур в узлах, f(x,y)=1 - функция тепловых источников .

Так как обе части уравнения (3) не зависят от времени t уравнение (3) было подставлено в уравнение (1) на нужное место без изменений:

$$\frac{\partial T}{\partial t} + AT^{(mod)} = f(x, y). \tag{4}$$

Для уравнения (4) была произведена дискретизация по времени путем замены частной производной ее формулой численного дифференцирования. [2] Части, совпадающие с формулой (3) были записаны для нужного момента времени:

$$\frac{T(x_{i}, y_{j}, t_{n+1}) - T(x_{i}, y_{j}, t_{n})}{\Delta t} = -N^{2}(-T(x_{i-1}, y_{j}, t_{n}) - T(x_{i+1}, y_{j}, t_{n}) - T(x_{i+1}, y_{j}, t_{n}) - T(x_{i}, y_{j-1}, t_{n}) - T(x_{i}, y_{j+1}, t_{n}) + 4T(x_{i}, y_{j}, t_{n})) + 1.$$
(5)

Метод Адамса-Башфорта четвертого порядка, имеет вид (2), использует коэффициенты a_k , рассчитываемые следующим образом: [1]

$$a_m = \int_{0}^{1} \prod_{k \neq m, k=1}^{4} \frac{s+k-1}{k-m} ds, \tag{6}$$

где m - номер коэффициента, $m=1,\ldots,4$ (т.к. метод четвертого порядка), s - специальная переменная, связанная с t соотношением $t=t_i+s\Delta t$, где Δt -шаг сетки по времени. Переменная s была получена в ходе вывода метода Адамса-Башфорта при замене переменной в интеграле после интерполяции с помощью полиномов Лагранжа.

Каждый из коэффициентов был рассчитан посредством аналитического интегрирования выражения (6) с подстановкой различных $m=1,\ldots,4$. Например, для m=1 ход вычисления был следующим:

$$a_{1} = \int_{0}^{1} \prod_{k=2}^{4} \frac{s+k-1}{k-1} ds = \int_{0}^{1} \frac{1+s}{1} \cdot \frac{2+s}{2} \cdot \frac{3+s}{3} ds = \frac{1}{6} \int_{0}^{1} (s^{3} + 6s^{2} + 11s + 6) ds =$$

$$= \frac{1}{6} \left(\frac{s^{4}}{4} + \frac{6s^{3}}{3} + \frac{11s^{2}}{2} + \frac{6s}{1} \right) \Big|_{0}^{1} = \frac{1}{6} \left(\frac{1}{4} + \frac{11}{2} + 8 \right) = \frac{55}{24}.$$

$$(7)$$

Аналогично (7) были получены остальные коэффициенты:

$$a_2 = -\frac{59}{24}, \ a_3 = \frac{37}{24}, \ a_4 = -\frac{9}{24}.$$
 (8)

Метод Рунге-Кутты основывается на обобщении разложения функции y(t) в точке t_i в ряд Тейлора, а также на методе неопределенных коэффициентов. Для метода четвертой степени, вычисление производится по формулам: [1]

$$w_0 = \alpha, (9)$$

$$k_1 = h f_{odu}(t_i, w_i), \tag{10}$$

$$k_2 = h f_{odu}(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_1), \tag{11}$$

$$k_3 = h f_{odu}(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_2), \tag{12}$$

$$k_4 = h f_{odu}(t_i + h, w_i + k_3), (13)$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \tag{14}$$

где k_j , j=1,...,4 - дополнительные коэффициенты для удобства счета, w_i - решение, равное y_i , h - шаг по сетке для переменной t, α - значение $y_0=y(a)$, где a - начальная точках сетки по переменной t.

Данный метод решает задачу нахождения решения ОДУ, вида:

$$\frac{dy}{dt} = f_{odu}(t, y) \,. \tag{15}$$

Выражения (9) - (14) были адаптированы под текущую задачу. При этом использовались следующие подстановки:

$$w_i = T^{(mod)}(t_i), (16)$$

$$h = \Delta t, \tag{17}$$

$$f_{odu}(t_i, w_i) = -AT^{(mod)}(t_i) + f(x, y)$$
 (18)

После подстановки выражений (16) - (18) в формулы (10) - (14) метод Рунге-Кутты принял вид, необходимый для решения исходной задачи:

$$k_1 = \Delta t \left(-AT^{(mod)}(t_i) + f(x, y) \right), \tag{10}$$

$$k_2 = \Delta t \left(-A(T^{(mod)}(t_i + \frac{h}{2}) + \frac{1}{2}k_1) + f(x, y) \right), \tag{11}$$

$$k_3 = \Delta t \left(-A(T^{(mod)}(t_i + \frac{h}{2}) + \frac{1}{2}k_2) + f(x, y) \right), \tag{12}$$

$$k_4 = \Delta t \left(-A(T^{(mod)}(t_i + h) + k_3) + f(x, y) \right), \tag{13}$$

$$T_{i+1}^{(mod)} = T_i^{(mod)} + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4).$$
 (14)

Далее была написана функция ab4(), которая проводит одну итерацию метода Адамса—Башфорта 4-го порядка, используя решения системы ОДУ на трех предыдущих итерациях. Функция была построена на основании выражений (2), (6), (7) и (8).

Также была написана функция rk4(), реализующая одну итерацию метода Рунге-Кутты. Она была построена на основе выражений (10) - (14).

После этого была написана еще одна функция - *ode_solve(f, t_final, delta_t)*. Данная функция, получая на вход матрицу свободных членов, конечное время интегрирования и шаг по времени, решает ОДУ (1) с использованием написанных алгоритмов методов Адамса-Башфорта для первых четырех итераций и Рунге-Кутты - для остальных.

Для проверки сходимости решения при различных значениях шага по времени был проведен вычислительный эксперимент, где в функцию *ode_solve* при остальных равных параметрах подавались различные $delta_t \in \{0.00001...\ 0.1\}$. В результате было выяснено, что для $delta_t = 10^{-4}$, и менее, решение является устойчивым, а начиная с $delta_t_max = 10^{-3}$ решение перестает быть устойчивым. Это можно проследить по графикам на рисунках 1 и 2.

Рис. 2. Линии уровня последнего решения при $\Delta t = 0.001$ и *t_final* = 0.3

Также, для подтверждения неустойчивости решения для $delta_t_max = 10^{-3}$ был построен график зависимости средней температуры от времени (рис. 3).

Рис. 3. Средняя температура в зависимости от времени для $\Delta t = 0.001$ и $t_final = 0.3$

Тем не менее, решение сходится для $\Delta t < \Delta t_{max}$. Для подтверждения этого были построены графики линий уровня на нескольких этапах интегрирования (рис. 4 - 7) и график средней температуры в зависимости от времени (рис. 8) для $\Delta t = 0.0001$.

Рис. 4. Линии уровня в момент времени $t = 0.0002, \ \Delta t = 0.0001$

Рис. 5. Линии уровня в момент времени t = 0.0005, $\Delta t = 0.0001$

Рис. 6. Линии уровня в момент времени t = 0.001, $\Delta t = 0.0001$

Рис. 7. Линии уровня в момент времени t = 0.01, $\Delta t = 0.0001$

Рис. 8. Средняя температура в зависимости от времени для $\Delta t = 0.0001$

Если сравнить решение, полученное с помощью метода сопряженных градиентов (в лабораторной работе №3) и с помощью описанных в данной работе, при правильно подобранном шаге они дают близкие решения, поэтому описанное в предыдущем абзаце решение можно назвать сходящимся. Тем не менее, сами описанные в данной работе методы сходящимися не являются. Это подтверждается тем, что можно подобрать Δt_{max} такое, что метод не будет сходиться.

Заключение

Были выведены выражения для численного решения нестационарного уравнения теплопроводности. Среди них выражение для алгоритмов метода Рунге-Кутты и Адамса-Башфорта. Был проведен анализ данных методов и решений на сходимость, а также было проверено сходство с решением, полученным в лабораторной работе №3.

Список использованных источников

- 1. Першин А.Ю. *Лекции по вычислительной математике (черновик)* [Электронный ресурс] // Кафедра РК6 (Системы автоматизированного проектирования), МГТУ им. Н.Э. Баумана, 4 марта 2019 г.
- 2. Першин А.Ю. *Лекции по вычислительной математике*. *Презентации*. [Электронный ресурс]