PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-254037

(43) Date of publication of application: 03.10.1995

(51)Int.Cl.

G06K 1/12 G06K 19/00

(21)Application number: 06-042587

(71)Applicant:

NIPPONDENSO CO LTD

TOYOTA CENTRAL RES & DEV LAB INC

(22)Date of filing:

14.03.1994

(72)Inventor:

HARA MASAHIRO

WATABE MOTOAKI **NOJIRI TADAO NAGAYA TAKAYUKI UCHIYAMA YUJI**

(54) TWO-DIMENSIONAL CODE

(57)Abstract:

PURPOSE: To provide a two-dimensional code capable of reading at high speed in all the directions, high in reading accuracy and high in data ratio.

CONSTITUTION: A two-dimensional code 1 is composed of three positioning symbols 2, a data area 3, a timing cell 4 and a vertex detecting cell 5. In the whole of these components, the number of cells are arranged in a square shape of the same number in longitudinal and lateral directions. In the scanning line crossing the center of the symbol 2 for positioning, the frequency component ratio is defined as

darkness:brightness:darkness:brightness:darkness=1:1:3:1:1 in any direction. Therefore, even if the two-dimensional code rotates in any direction, the specified frequency component ratio that the positioning symbol 2 has can be detected only by the scanning processing in a fixed direction. Therefore, since the center position of the positioning symbol 2 is easily and early discriminated, the position of the two-dimensional code 1 can be quickly specified and also the subsequent processing can early be started.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平7-254037

(43)公開日 平成7年(1995)10月3日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

G 0 6 K 1/12 19/00 Ε

G06K 19/00

 \mathbf{X}

審査請求 未請求 請求項の数7 OL (全 13 頁)

(21)出願番号

特願平6-42587

(22)出願日

平成6年(1994)3月14日

(71)出願人 000004260

日本電装株式会社

愛知県刈谷市昭和町1丁目1番地

(71)出願人 000003609

株式会社豊田中央研究所

愛知県愛知郡長久手町大字長湫字横道41番

地の1

(72)発明者 原 昌宏

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(74)代理人 弁理士 足立 勉

最終頁に続く

(54) 【発明の名称】 二次元コード

(57)【要約】

【目的】 全方向で高速読み取りができ、さらに読み取り精度が高くデータ比率の高い二次元コードを提供することを目的している。

【構成】 二次元コード1は、3個の位置決め用シンボル2、データ領域3、タイミングセル4、頂点検出用セル5から構成されている。これら全体はセル数が縦横同数の正方形状に配置されている。位置決め用シンボル2の中心を横切る走査線は如何なる方向においても、その周波数成分比は暗:明:暗:1:3:1:1となっている。このため二次元コードがいかなる方向に回転していても一定方向の走査処理のみで位置決め用シンボル2の持つ特定周波数成分比を検出することができる。したがって、位置決め用シンボル2の中心位置が容易に早期に判明するので、二次元コード1の位置が迅速に特定でき、その後の処理も早期に開始できる。

【特許請求の範囲】

【請求項1】 二進コードで表されるデータをセル化し て、二次元のマトリックス上にパターンとして配置した 二次元コードにおいて、

マトリックス内の、少なくとも2個所の所定位置に、各 々中心をあらゆる角度で横切る走査線において同じ周波 数成分比が得られるパターンの位置決め用シンボルを配 置したことを特徴とする二次元コード。

【請求項2】 上記所定位置がマトリックスの頂点であ る請求項1記載の二次元コード。

【請求項3】 上記位置決め用シンボルが、同心状に相 似形の図形が重なり合う形であることを特徴とする請求 項1または2記載の二次元コード。

【請求項4】 二進コードで表されるデータをセル化し て、二次元のマトリックス上にパターンとして配置した 二次元コードにおいて、

マトリックスの内に1/1の傾斜で、交互に明暗のセル が配置されたことを特徴とする二次元コード。

【請求項5】 二進コードで表されるデータをセル化し て、二次元のマトリックス上にパターンとして配置した 20 二次元コードにおいて、

各キャラクタを表現するセル群を二次元状にまとめて配 置したことを特徴とする二次元コード。

【請求項6】 二進コードで表されるデータをセル化し て、二次元のマトリックス上にパターンとして配置した 二次元コードにおいて、

上記パターンを所定の変換処理をすることにより、デー タ以外に設定された部分のパターンとは異なる特徴のパ ターンとされたことを特徴とする二次元コード。

【請求項7】 上記位置決め用シンボルが配置されてい 30 ないマトリックスの頂点に、頂点検出用セルを配置した ことを特徴とする請求項1または2記載の二次元コー

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、コンピュータ等に情報 を入力するための光学的に読み取り可能なコード、特に 二進コードで表されるデータをセル化して、二次元のマ トリックス上にパターンとして配置した二次元コードに 関する。

[0002]

【従来の技術】一般的に二次元コードの読み取りは、T Vカメラ等の画像入力装置から画像を取り込み、対象の 二次元コード位置を検出してコードのみを切り出す。次 に切り出された二次元コードからコードの大きさを求 め、データセルの座標を求め、データセルの「0」, 「1」(白、黒)判別をしキャラクター情報に変換す る。

【0003】このような二次元コードは、バーコードと は異なり狭小な面積で比較的多くの情報を持つことがで 50 きる。

[0004]

【発明が解決しようとする課題】これまでの二次元コー ドは、誤り検出・訂正符号などの符号化理論を使用して 高精度の読み取り等ができるように考慮されている。し かし二次元コードの読み取り処理は、下に述べるごとく 高性能なCPUによるソフトウェア処理に頼っているの が現状であり、高速読み取りという点で問題がある。

【0005】これは、二次元コード自体が高速読み取り

に適したコード構成になっておらず、また二次元コード の回転に対する処理に適したコード構成でもないからで ある。例えば、特開平2-12579号には、マトリッ クスの2辺は暗(黒)部のみの辺とし、他の2辺は明 (白)部と暗部とが交互に繰り返す点線状の辺とし、こ の4辺をその特徴から検出して、マトリックスの方向を 決定しているものである。しかし、このマトリックス は、得られた画像をあらゆる方向から、上記4辺のパタ ーンの特徴が現れるまでスキャンして、その位置と回転 角度を決定しなくてはならない。

【0006】またマトリックスの画像の大きさが一定と は限らないので、そのセルの位置も予め設定した間隔で 予想するとずれが生じる。また明部や暗部が連続する場 合も、読み取り方式によっては検出にずれを生じる。特 開平2-12579号では、2辺に点線状に明暗のセル が配置されているので、方向さえ決定されればその2辺 の明暗の位置から、全体のセルの位置を正確に予測で き、読み取りも正確なものとなる。しかし、このように 大量のセルを各セルの位置を決定させるためのみに使用 することは、マトリックス全体の情報量を低下させるこ とになり好ましくない。

【0007】また、特開平2-12579号のマトリッ クス中では、二進コードを直線状に配置したセルにて一 つのキャラクタを表しているが、このようなセル配置で は汚れにより多くのデータが読み取り不可能になる恐れ がある。更に、周囲に配置された特徴的なパターンの4 辺と同じパターンがデータ領域にも生じることがあり、 また読み取り方向によっても周囲の4辺と同じパターン が生じることもある。したがって読み取りに複雑な処理 が必要であり、読み取りにも時間がかかる恐れがあっ 40 た。

【0008】元来、二次元コードは、バーコードなどに 比べて処理するデータ量が多いために、デコード時間が 非常にかかる。このことに加えて、上述した問題点か ら、取り込んだ画像データから二次元コードだけを切り 出す処理に時間がかかった。更に、それ以前に、二次元 コードが一定しないあらゆる角度の回転状態で読み取り 装置に入力されるので回転角度検出、座標変換処理が必 要になり、デコード前処理にも時間がかかった。更に、 二次元コードは二次的に情報を持つため小さい面積に多 くの情報が集積されているので、コード自体汚れに対し

40

て弱い。

【0009】よって本発明は、全方向で高速読み取りができ、さらに読み取り精度が高くデータ比率 (コード内に占めるデータ領域の比率)の高い二次元コードを提供することを目的としている。

[0010]

【課題を解決するための手段】請求項1記載の発明は、 二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、マトリックス内の、少なくとも2個所の所定位 10 置に、各々中心をあらゆる角度で横切る走査線において同じ周波数成分比が得られるパターンの位置決め用シンボルを配置したことを特徴とする二次元コードにある。

【0011】請求項2記載の発明は、上記所定位置がマトリックスの頂点である請求項1記載の二次元コードにある。請求項3記載の発明は、上記位置決め用シンボルが、同心状に相似形の図形が重なり合う形であることを特徴とする請求項1または2記載の二次元コードにある

【0012】請求項4記載の発明は、二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、マトリックスの内に1/1の傾斜で、交互に明暗のセルが配置されたことを特徴とする二次元コードにある。

【0013】請求項5記載の発明は、二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、各キャラクタを表現するセル群を二次元状にまとめて配置したことを特徴とする二次元コードにある。

【0014】請求項6記載の発明は、二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、上記パターンを所定の変換処理をすることにより、データ以外に設定された部分のパターンとは異なる特徴のパターンとされたことを特徴とする二次元コードにある。

【0015】請求項7記載の発明は、上記位置決め用シンボルが配置されていないマトリックスの頂点に、頂点 検出用セルを配置したことを特徴とする請求項1または 2記載の二次元コードにある。

[0016]

【作用】請求項1記載の発明は、マトリックス内の、少なくとも2個所の所定位置に、各々中心をあらゆる角度で横切る走査線において同じ周波数成分比が得られるパターンの位置決め用シンボルが配置されている。したがってこの位置決め用シンボルについてはいかなる方向から読み取っても、同じ特徴的な周波数成分比が得られるため、角度を変えてスキャンし直すことがなく、早期にかつ容易にマトリックス内の少なくとも所定位置2個所が判明する。マトリックスの所定個所2個所が判明すれば、その間の距離や角度からマトリックス全体の位置や50

回転角度の算出は容易である。

【0017】上記マトリックス内の所定位置は、マトリックスの頂点であってもよい。マトリックスの頂点であれば、スキャンによる探索も早期に発見が可能であり、 二次元コードの外形等も得易い。また探索において他のコードパターンに邪魔されにくい。

【0018】上記位置決め用シンボルは、マトリックスの頂点の内、少なくとも2個所に同心状に相似形の図形が重なり合う形であってもよい。ここで同じ周波数成分比が得られるパターンとは、いずれの方向からそのほぼ中心部を通ってスキャンしても、相似の明暗パターンを示すものである。例えば同心状に相似形の図形が重なり合う形である。具体的には、暗部からなる正方形内の中心に明部からなる縮小した正方形が形成され、その内の中心に暗部からなる更に縮小した正方形が形成されているパターンである。図形も正方形が形成されているパターンである。図形も正方形がかりでなく、円形、六角形、その他各種の図形、特に正多角形や円形、楕円形が挙げられる。しかし、マトリックスの形は正方形が普通であり、位置決め用シンボルもその形に適合している正方形がスペースの無駄が最小となるので好ましい。特に正方形が一層無駄が少ないので好ましい。

【0019】請求項4記載の発明は、マトリックスの内に1/1の傾斜で、交互に明暗のセルが配置されたことを特徴とする二次元コードにある。交互に明暗のセルを配置すると、明(白)または暗(黒)のセルが連続している場合に比較して、セル単位の位置が判別し易い。しかし、この交互に明暗とされたセル(以下、交互明暗セルともいう)の配列が、従来例のごとく、辺に平行である場合には、少なくとも縦方向と横方向との2方向に設けないとマトリックス内の全セルの位置に対応することができない。本発明の一例として、正方形のマトリックスの場合、頂点から1/1の傾斜で交互明暗セルを配置すると、マトリックスの1辺分のセルを利用するのみでよいので、スペースが他の有用な情報に有効に利用できる。

【0020】勿論、頂点から対角線状に配置すると、交互明暗セルの位置が検索し易くなるので好ましいが、辺の途中からでもよい。その場合には、マトリックス内には複数本の1/1傾斜の交互明暗セルの配置がなされることになる。また正方形でないマトリックスの場合は、頂点から1/1の傾斜で交互明暗セルを配置しただけでは、対角の頂点と頂点とを結ぶことはできないが、他の頂点から配置された1/1傾斜の交互明暗セルで対応することができる。更にそれでも対応できない場合は、辺の途中から配置された1/1の傾斜の交互明暗セルを設けることにより対応することができる。このようにしても、縦横に交互明暗セルを配置するよりは、スペースの有効利用となる。

【0021】データ領域の各キャラクタを表現するセル

群を二次元状にまとめて配置してもよい。このようにすると、同じ汚れの面積でも、その汚れに一部でも覆われるキャラクタが少なくて済み、読み取れなくなるキャラクタが少なくて済む。二次元にまとめる形式は、例えば正方形や長方形にまとめたり、キャラクタ単位のセルの数からして正方形や長方形にならない場合は、2つのキャラクタを組み合わせることにより正方形や長方形を実現しても良い。

【0022】上記二次元コードはそのままマトリックスに配置するのではなく、所定の変換処理をすることにより、パターンを所望のパターンに変換してもよい。例えば、二次元コードの内、データ領域を、データ領域以外に設定された部分のパターンとは異なる特徴のパターンとして配置しても良い。データ領域以外に設定された部分のパターンとは、例えば、上記位置決め用シンボル、あるいは1/1の傾斜で交互に配置される明暗セル等であり、それらの特徴的なパターンは、初期に検出されなくてはならないパターンであるので、データ領域内には、それらの特徴的なパターンがなるべく少なくなるように変換処理をする。

【0023】例えば、データ領域と同じ大きさのマトリックスに変換用の所定パターンを形成し、このパターンと排他的論理和(ExOR)を取ったものを変換後のパターンとすればよい。勿論、一つの所定パターンでは、変換後に所望のパターンが形成されるとは限らないので、複数の所定パターンを用意しておき、各々にて変換し、その結果、得られた複数パターンの内から所望のパターン、即ちデータ領域以外に設定された部分のパターンとは一番異なる特徴のパターンを選択すれば良い。

【0024】尚、上記各請求項において、位置決め用シ 30 ンボルが配置されていないマトリックスの頂点に、頂点 検出用セルを配置してもよい。このことによりその頂点 を検出容易とできる。

[0025]

【実施例】図1に一実施例としての二次元コード1の構成を示す。本二次元コード1は、3個の位置決め用シンボル2、データ領域3、タイミングセル4、頂点検出用セル5から構成されている。これら全体はセル数が縦横同数(21セル×21セル)の正方形状に配置されている。各セルは、光学的に異なった2種類のセルから選ば40れており、図および説明上では白(明)・黒(暗)で区別して表す。尚、タイミングセル4は、1/1傾斜の交互明暗セルに該当し、頂点検出用セル5はタイミングセル4も兼ねている。また、図1では便宜上データ領域3にはまだデータが記載されていない白紙の状態を示している。

【0026】位置決め用シンボル2は、二次元コード1の4つの頂点の内、3つに配置されている。そのセルの明暗配置は、黒部からなる正方形2a内の中心に白部か

らなる縮小した正方形 2 b が形成され、その内の中心に 黒部からなる更に縮小した正方形 2 c が形成されている パターンである。

【0027】この位置決め用シンボル2をスキャンした場合の明暗検出を図2に示す。図2(A)に示すように、位置決め用シンボル2の中心を代表的な角度で横切る走査線(a),(b),(c)での明暗検出パターンは、図2(B)に示すごとく、すべて同じ周波数成分比を持つ構造になっている。即ち、位置決め用シンボル2の中心を横切るそれぞれの走査線(a),(b),

(c) の周波数成分比は暗:明:暗:明:暗=1:1: 3:1:1となっている。勿論、走査線(a),

(b), (c)の中間の角度の走査線においても比率は 1:1:3:1:1である。

【0028】このことにより、二次元コードがいかなる 方向に回転していても、一定方向の走査処理のみで位置 決め用シンボル2の持つ特定周波数成分比を検出するこ とができる。このため走査方向を繰り返し何度も変更し て基準となる所定のパターンを検出する必要がない。し たがって、位置決め用シンボル2の中心位置が容易に早 期に判明するので、二次元コード1の位置が迅速に特定 でき、その後の処理も早期に開始できる。

【0029】またこのように少なくとも位置決めは一方向のスキャンのみで済むので、TVカメラ等の画像検出装置から取り込んだ画像に、二次元コード1以外の各種のノイズが検出されていても、ノイズが二次元コード1か否かをスキャンする方向を変えて何度も判定処理することがなく、直ちに二次元コード1の位置が判明する。更にそれ以後は検出された位置決め用シンボル2の周辺だけを検索すればよく、高速にデータ領域のコードが切り出される。また、特定周波数成分比を検出する手段は、ハードウェア処理に適しており、TVカメラ等からの画像取り込みと並列した処理ができることとなり、さらに高速にコードを切り出すことができる。

【0030】次に図3を参照して、位置決め用シンボル2をコードの頂点に2個以上配置することにより、二次元コードの外形を簡単に求めることができることを説明する。図3(a)は、位置決め用シンボル2を頂点に3個配置した二次元コード8の例を示す。3個の位置決め用シンボル2の中心位置が分かれば、その中心座標から二次元コード8の3頂点の座標は計算で求められる。この3頂点の座標(\mathbf{x}_0 , \mathbf{y}_0), (\mathbf{x}_1 , \mathbf{y}_1), (\mathbf{x}_2 , \mathbf{y}_2)から式1,2による計算から残りの頂点座標(\mathbf{x}_0 , \mathbf{y}_0)を求めることができ、二次元コード8の外形が分かる。さらに、二次元コード8の傾き θ_1 も式3

[0031]

の計算で求められる。

【数1】

$$7 \\
X_{8} = x_{8} + (x_{2} - x_{1}) & \cdots (1) \\
Y_{8} = y_{8} + (y_{2} - y_{1}) & \cdots (2) \\
\theta_{1} = t a n^{-1} \frac{y_{8} - y_{1}}{x_{8} - x_{1}} & \cdots (3)$$

(5)

【0032】勿論、残りの頂点座標(X₀, Y₀)につい ては、3個の位置決め用シンボル2の中心位置から直接 求めることもできる。また、図3(a)のごとく、位置 ル5を配置し、式1,2の計算で求めた頂点座標

(X₀, Y₀) の近傍を検索し、検出された頂点検出用セ ル5の座標を正確な頂点座標 (X₀, Y₀) とすることに より、歪んだ二次元コードでも精度良く二次元コードの 外形を求めることができる。勿論、歪む恐れがなければ 頂点検出用セル5を用いなくてもよい。

【0033】図3(b)に示すごとくの二次元コード9*

*としてもよい。本二次元コード9は、図3(a)の二次 元コード8が3つの頂点に、位置決め用シンボル2を配 置しているのに対し、二次元コード9の対角する2つの 決め用シンボル2を配置していない頂点に頂点検出用セ 10 頂点に位置決め用シンボル2を配置している。勿論、歪 む恐れがあれば頂点検出用セル5を用いる。この場合で も式4~8のように二次元コード9の外形及び傾きθ2 がもとめられる。この場合は、データ比率が大きくなる 利点があるが、二次元コード9の回転位置を決定するた めの方向決め用シンボル11が必要となる。

[0034]

$$Y_1 = \frac{y_0 + y_2 + x_0 - x_2}{2}$$
 ... (5)

$$X_{3} = \frac{x_{0} + x_{2} + y_{2} - y_{2}}{2} \qquad \cdots (6)$$

$$Y_3 = \frac{y_0 + y_2 + x_2 - x_0}{2}$$
 ... (7)

$$\theta_2 = t a n^{-1} \frac{y_0 + x_2 - y_2 - x_0}{x_0 + y_0 - x_2 - y_2}$$
 ... (8)

【0035】図3(c)に位置決め用シンボル2を二次 元コード13の全ての頂点に配置した場合を示す。この 場合、歪んだ二次元コード13でも直接に二次元コード 13の外形を求めることができる。傾きθsはtan⁻¹ $(y_1 - y_0 / x_1 - x_0)$ にて求められる。ただし、デー タ比率は低くなる。またこの場合も位置決め用シンボル 40 2を全ての頂点に配置した場合コードの方向が分からな くなる。そのために、方向を決める方向決め用シンボル 11を配置することによりコードの方向が特定できる。 【0036】図1に示すごとく交互明暗セルであるタイ ミングセル4は、二次元コード1の頂点1aから対角線 上に白のセル4a、黒のセル4bを交互に配置した構造 になっている。即ち、1/1の傾斜で二次元コード1の データ領域3内に設けられている。このタイミングセル 4は、各データセルの座標を正確に検出するために使用 される。

【0037】タイミングセル4の代表的な配置を図4 (a), (b) に示す。図4 (a) のタイミングセル4 は、対角線状に一方の頂点P1から他方の頂点P3に向 かって、右下方向へ移動して行く状態で交互に明暗のセ ル4a、4bを配置して行くことにより形成される。

【0038】このタイミングセル4を用いてデータ領域 3の各データセルの座標を求めるには、まず各タイミン グセル4の中心座標を求め、二次元コードの2辺L1, L2に平行に、この各セルの中心座標を通る仮想線i, jを引き、これらの仮想線 i , j の交点を各データセル の座標とする。このように、タイミングセル4を使用し てデータセルの座標を求めると、二次元コード全体の大 きさから縦横のセル数で割って求めるより、誤差及びコ ードの歪みの影響を無くすことができ、読み取りが一層 正確なものとなる。

【0039】従来は、図18に示すように、タイミング 50

40

セル4が二次元コードの隣合う2辺に配置されていたので、例えば、タイミングセル4の数は9×9のマトリックス(図18)では17セル必要であった。しかし、図4(a)の9×9のマトリックスでは9セルで済み、データ以外のセルの使用を少なくでき二次元コードのデータ比率を高くすることができる。

9

【0040】コードが正方形で無い場合は、タイミングセル4を辺の途中から斜めに配置させれば良い。例えば図4(b)のように、頂点P13から1/1の傾斜で配置されるタイミングセル4は、領域 R_1 ついては上記仮想線の交点が形成できるが、領域 R_2 については一方の仮想線(この場合は縦方向のみ)しか得られないので交点が存在しない。勿論、一方の仮想線のみでもデータセル座標決定に有用であるが、領域 R_2 に示したように、横方向の仮想線を生成するタイミングセル4yを用意すればデータ領域の全てのセルの座標を正確に特定できる。

【0041】尚、図1の場合は、データ領域3の内、突出している領域3a,3bについては、タイミングセル4からは縦横の一方の仮想線しか描くことはできない。しかし、狭小な範囲であるので、上述したように一本の仮想線でも比較的正確となり、実質的には問題ない。また領域3a,3bは位置決め用シンボル2にて挟まれている領域であるので、その位置決め用シンボル2の明暗から仮想線を引き出せば、交点は得られ、一層正確に座標位置を決定できる。

【0042】次に、データ領域3内に表示されているデータは、一般的にコードの汚れや破損等に対しても復元出来る誤り訂正符号と誤り検出をするCRC符号を付加してコード化されている。特に、コードの汚れや破損に30対してはバースト誤り訂正符号が適しており、誤り訂正効率の良いリードソロモン符号が良く知られている。

【0043】本実施例では、このバースト誤り訂正符号でコード化された各キャラクタデータ(複数ビットで表される)をデータセル領域に割り当てる。割り当てた状態を図5に示す。個々のキャラクタは、各ビットに該当するセル6aをバラバラに配置するのではなく、なるべく正方形に近くなるようにセル6aをまとめて配置することが好ましい。図5の例では、キャラクタのデータが8ビットとパリティが1ビットの9セル(b0~b8)で構成されている場合を示している。このようにキャラクタの各セル群6を正方形に近くなるように配置することにより、汚れや破損に対してのキャラクタ単位での損傷が少なくすみ、誤り訂正範囲内に入り易く読み取り性能が高くなる。

【0044】図6(a),(b)は、キャラクタの各セル群6を正方形(二次元状)にまとめて配置した二次元コード21の場合の方が、単に一次元状(線状)に配列した二次元コード23の場合よりも汚れに対しての読み取りが有利であることを説明するものである。図6

(a)は、キャラクタのセル群6を正方形に配置した二次元コード21に汚れ16が付いた場合を示している。この場合は、キャラクタが4個分まで潰れてしまう汚れの最大の大きさを示したものである。第6図(b)は、キャラクタのセル群6を線状に配列した二次元コード23に汚れ16が付いた場合を示している。キャラクタ4個分まで潰れてしまう汚れの最大の大きさを示したものである。

【0045】汚れや破損は、どのような形で、またどのような角度で付くか分からないので、図6(c)のような形の汚れ16aは、直径Dの円状の汚れ16としてキャラクタのセル群6に影響を与えると考えられる。よって、キャラクタのセル群6を正方形(3セル×3セル)に配置した場合は、図6(a)のように、キャラクタ4個分が潰れる最大の汚れは直径6セル分である。また、キャラクタのセル群6を細長い長方形(1セル×9セル)に配置した場合は、図6(b)のように、キャラクタ4個分が潰れる最大の汚れは直径4セル分である。このように汚れや破損に関しては、キャラクタのセル群6をより正方形に近い形で配置した方が潰れるキャラクタの数が少なく、誤り訂正範囲内におさまり読み取りに有利である。

【0046】以上のようにしてデータをキャラクタ毎に データ領域3のセルに割付け、あらかじめ決められたキャラクタ・フォーマットに従いキャラクタのセル群6内 の各セル6aに白、黒を配置する。このようにして、二 次元コード1の構造は完成する。

【0047】次にデータによっては以下のような構成としても良い。即ち、単にコード化したデータを配置した場合に、白セルや黒セルが連続したり、白セルあるいは黒セルばかりのバランスの良くないコードとなった場合の対策である。このような場合は、次に述べるごとく2値化が精度良くできなくなるので、複雑な処理と時間をかけなければならない。一般的に2値化回路は、高速処理が可能で、背景の明るさ変動に対応できる図7(a)のような、コンパレータ30を用いた追従型が使用される。この場合、白あるいは黒セルが連続すると図7

(b) のように、追従波形32が入力波形31の白または黒レベルに近づき、次に変化するセルの2値化が忠実にできなくなり、2値化信号33は実際のセル幅よりも細くなったり太くなったりする。

【0048】また、位置決め用シンボル2と同じ周波数成分比を持つパターンがデータ領域3内に存在する可能性があり、当然、位置決め用シンボル2と同じ周波数成分比がデータ領域3から発生してしまうので、位置決め用シンボル2との区別が付かなくなる。この場合は、位置決め用シンボル2と同じ周波数成分比を検出した位置を含めて、二次元コードの頂点に配置されている位置決め用シンボル2を検出しなければならないため、二次元コードの外形を求める処理時間がかかる。これは、デー

タ領域3内の位置決め用シンボル2と同じ周波数成分比が多いほど処理時間がかかることになる。

11

【0049】この問題を解決するために、データ領域3 及びキャラクタのセル群6の中にダミーセルを持たせ、 条件に応じて白、黒を割り付ける方法と、データ領域3 に白セル、黒セルを配置した後に、ある規則でセルの特 徴を変化させる方法とがあり、いずれを用いても良い。 しかし前者は、データ以外の余分なセルを必要としデー タ比率が低くなる傾向にある。

【0050】後者は、セルの特徴を変化させる規則を見 10 つけるのが一般的に難しいと言われているが、あらかじめ決まった何種類かの規則を用意し、すべての規則でデータ領域3のセル特徴を変化させてみて、その中で一番良い規則を選択すれば簡単に行える。この例を図8に示す。

【0051】図8の最上列左側はデータを仮配置した二 次元コード41であり、中央と右側は乱数及び規則性を 持ったセル特徴の変化用マトリックスパターン42a, 42 b である。この仮配置した二次元コード41とセル 特徴の変化用マトリックスパターン42a,42bの個 々のセルに対応させて、セル特徴の変化用マトリックス パターン42a、42bの黒セル部分43aに相当する 仮配置した二次元コード41上のセルの特徴を反転さ せ、白セル部分43bに相当する二次元コード41上の セルは変化させない。つまり、データを仮配置した二次 元コード41とセル特徴の変化用マトリックスパターン 42a, 42bとのExclusive-ORをとれば 良い。これを、用意されている全てのマトリックスパタ ーン42で実施する。その結果、適用したマトリックス パターン42の数だけ得られているパターン45から、 白セル及び黒セルの連続が少なく、またデータ領域3で 位置決め用シンボル2と同じ周波数成分比を持つ部分が 少ないか、または無いものを、一番良いデータ(最適配 置パターン)として最終の二次元コード46とする。図 8の例では、パターン45の内、左側のパターン45a が選ばれる。尚、この処理はデータ領域3のセルだけに ついて行う。

【0052】この二次元コード46をデコードする場合は、単一のマトリックスパターン42のみで処理している場合は直ちにデコードできるが、複数のマトリックス 40パターン42から選択されて変換処理されている場合は、どのセル特徴の変化用マトリックスパターン42を使用したかを判別する必要がある。よって、二次元コード46の変換処理に使用したセル特徴の変化用マトリックスパターン42の種別情報47をデータとして二次元コード46内に入れて置くと良い。これにより、デコード処理は二次元コード46内から変換処理に使用したマトリックスパターン情報47を読み取り、これに対応したセル特徴の変化用マトリックスパターン42とExclusive-ORをとるだけで簡単に元のデータセル 50

に変換できる。

【0053】次に、上述した各二次元コードをさらに性能良く、使い易いものにする手段について説明する。尚、図9に示すごとく、二次元コード1の周囲にダミーの線を配置しても良い。図9(a)は、位置決め用シンボル2及び二次元コード51の周辺部のセルが精度良く2値化できるように、二次元コード51の周囲をダミーの黒線51aで囲った例である。一般的に二次元コードの周囲は余白であるために、切り出し用シンボル2と二次元コード51の周辺の黒セルは図7で説明したように精度良く2値化ができなくなる恐れがある。よって二次元コード51の周囲をダミーの黒線51aで囲うことにより、位置決め用シンボル2及び二次元コード51の周辺の黒セルの2値化精度を良くすることができる。

【0054】位置決め用シンボル2は全体の位置決めに特に重要であり、その周波数成分を精度良く検出するために、図9(b)に示すごとく、二次元コード52の内、切り出しシンボル2の回りだけにダミーの黒線52aを配置してもよい。これにより位置決め用シンボル2だけを精度良く2値化させることができる。

【0055】また、運用上、二次元コードを無効にしたい場合がある。一般的なバーコードが図19に示すごとく、バーコード130上に線131を引くだけで、簡単に読み取り不能とできるのに対して、二次元コードの場合は、そもそも二次元に配置されているため無効のための線も十分な長さが必要であることと、場合により上述したごとくの誤り訂正符号が入っているので、簡単に線を引くだけで読めなくすることはできない場合がある。

【0056】したがって、図10のように、二次元コード55内にコード読み取り禁止用セル58を設け、そのセル58を黒く塗りつぶすことによりリーダに読み取らせないようにすればよい。即ち、読み取り側の処理で読み取り禁止用セル58をデコードの前にチェックして、そこが黒であれば、デコード処理に入らないようにすればよい。

【0057】また、図10内に示したように、二次元コード55内に重要なデータ59がある場合、あるいは使用したセル特徴の変化用マトリックスパターンの情報7がある場合は、少なくとも離れた位置に1つ以上同じ情報59a,7aを配置してもよい。このことにより、汚れ、破損、背景の明るさ変動などがあって、一方が読み取れない場合でも、他方でその重要なデータ59,59a及び使用したセル特徴の変化用マトリックスパターンの情報7,7aが読み取れ、読み取り性能が向上する。【0058】上記実施例では、位置決め用シンボル2を二重の正方形で、中心を横切る周波数成分比が黒:白:黒:白:黒=1:1:3:1:1の図形で示したが、図11(a)のように円形でもよく、図11(b)のように六角形でもよく、また他の正多角形でも良い。即ち、同心状に相似形の図形が重なり合う形に形成したもので

20

分割する。

あればよい。さらに、中心を横切る周波数成分比があらゆる角度で同じならば、図11(c)に示すごとく、上記図形を何重にしても良い。

13

【0059】また、キャラクタのセル群6の配置においては、1つのキャラクタで正方形になるようにしたが、図12(a)のように、2つのキャラクタのセル群66,67を合わせて正方形になるようにしても良い。また図12(b)のように正方形に配置出来ない場合は、2つのキャラクタのセル群69,70を合わせて縦横の比が1に近くなるように配置しても良い。

【0060】さらに、本実施例では、二次元コード1の外形を正方形で示したが、長方形でも良い。特に、ハンディタイプのスキャナで読み取る場合等で、読み取り操作により二次元コードの回転位置にあわせてスキャナの位置を回転させて読み取りが可能なときには、図13のように二次元コード71の外形を水平・垂直の解像度に比例したものにすることが望ましい。このような二次元コード71の外形にすることにより、読み取りエリア72の範囲内で最も効率よくデータセルを配置でき、データ量を極力多くすることができる。

【0061】次に、二次元コードの符号化から印刷までの処理を図14で説明する。この処理は図示しない二次元コード印刷機のデータ処理装置にて実行されるものである。まず、データを作業メモリにセットして(ステップ101)、二次元コードに符号化する対象データを「0」、「1」の2値に符号化する(ステップ102)。そして、誤り検出符号(CRC)と誤り訂正符号をデータに付加する(ステップ103,104)。これを決められた規則で二次元配置し(ステップ105)、用意されているセル特徴の変化用マトリックスパターンとExclusiveーORを取り(ステップ106)、その結果から最適配置パターンを求め(ステップ107)、二次元コードに配置して(ステップ108)、印刷をする(ステップ109)。

【0062】次に、図15,16のフローチャートにより読み取り処理について説明する。この処理は図17に示すデコーダ500により二次元コード81をCCD500aにて読み取ることにより開始される。まず、CCD500a側から読み込まれた画像信号の2値化がなされる(ステップ300)。この2値化された画像がハー40ド処理にて順次メモリに格納される(ステップ310)。これと並列のハード処理にてこの2値画像から、位置決め用シンボル2の位置座標が検出される(ステップ320)。

【0063】次に位置決め用シンボル2が3個以上見つけられたか否かが判定される(ステップ330)。この場合は図1と同じ位置決め用シンボル2が3個の二次元コード81の検出であることから、3個存在しなければ次の処理に移れない。したがってステップ300の処理に戻り、再度画像の読み直しをすることになる。尚、検50

出される位置決め用シンボル2は3個でなく4個以上の場合もある。これは二次元コード81内の他の領域、あるいは二次元コード81外の領域に位置決め用シンボル2と同じ周波数成分比のパターンが存在することを示している。

【0064】次に見つかった位置決め用シンボル2(実際は候補)の内から、3個選択し(ステップ340)、位置決め用シンボル2の存在しないもう一つの頂点を計算で求める(ステップ350)。次にその該当する個所に頂点検出用セル5が存在するか否かを判定する(ステップ360)。検出されなければ選択・組合せが良くないことになり、位置決め用シンボル2の他の組合せが有るか否かが判定されて(ステップ370)、組合せが有る内はステップ340に戻り再度選択し直す。選択・組合せを変えて頂点検出用セル5の検出処理を繰り返しても、頂点検出用セル5が検出されなければステップ370では「NO」とされて再度ステップ300の画像の2値化処理からやり直す。

【0065】ステップ360にて頂点検出用セル5が検 出されれば、次にその頂点検出用セル5から対角線に沿 って交互明暗セルからなるタイミングセル4を一つ一つ 辿って、各タイミングセル4の画像からその各中心座標 を決定する(ステップ380)。そしてこのタイミング セル4の各中心座標から前述のごとく仮想線を考えて全 データセルの中心座標を決定する(ステップ390)。 【0066】こうして全データセルの中心座標が決定し たので、その白黒の判別を画像データに基づいて行う (ステップ400)。次いで、セル特徴の変化用マトリ ックスパターン情報7の読み取りが行われる(ステップ 410)。このセル特徴の変化用マトリックスパターン 情報7に示されているセル特徴の変化用マトリックスパ ターンをROM, RAMあるいは図示しない外部記憶装 置から読み出して、そのパターンとのExclusiv e-ORを取り、データセルの内容を元の状態に戻す (ステップ420)。

【0067】以上のステップ410,420の処理は、セル特徴を変化させていない二次元コードの場合には実行する必要はない。次にデータセルを個別のキャラクタセルに分割する(ステップ430)。勿論、図6(a),(b)あるいは図12(a),(b)に示したキャラクタセルの配置に応じて、データセルをセル群に

【0068】この各セル群から個別のデータ、ここではキャラクタ(文字)に変換する(ステップ440)。次に誤り訂正符号による誤り検出を行い、誤りがないか否かが判定される(ステップ450)。誤りがある場合には、データの誤り訂正が行われる(ステップ460)。ステップ450において誤りがない場合、あるいはデータの誤り訂正の後に、誤り検出符号(CRC符号)による誤り検出が行われ(ステップ470)、誤りなしなら

ば処理は終了する。誤り有りならば、再度ステップ30 0の処理から再度開始される。

15

【0069】このようにして、二次元コードからデータが得られると、図示しないホストコンピュータ側にデータ送信され、ホストコンピュータ側ではこのデータに基づいて、所定の制御を実施する。

[0070]

【発明の効果】請求項1記載の発明は、位置決め用シンボルについてはいかなる方向から読み取っても、同じ特徴的な周波数成分比が得られるため、角度を変えてスキ 10 ャンし直すことがなく、早期にかつ容易にマトリックス内の少なくとも所定位置2個所が判明する。マトリックスの所定個所2個所が判明すれば、その間の距離や角度からマトリックス全体の位置や回転角度の算出は容易である。

【0071】上記マトリックス内の所定位置がマトリックスの頂点であれば、スキャンによる探索も早期に発見が可能であり、探索が他のコードパターンに邪魔されにくい。マトリックスは通常、正方形や長方形であり、その形に適合している正方形や長方形を位置決め用シンボ 20ルとすると、スペースの無駄が最小となるので好ましい。特に正方形が一層無駄が少ないので好ましい。

【0072】マトリックスの内に1/1の傾斜で交互に明暗のセルを配置すると、マトリックス内で交互明暗セルを比較的少ない数で利用するのみでよいので、スペースが他の有用な情報に有効に利用できる。また各キャラクタを表現するセル群を二次元状にまとめて配置すると、同じ汚れの面積でも、その汚れに一部でも被われるキャラクタが少なくて済み、読み取れなくなるキャラクタが少なくて済む。

【0073】上記位置決め用シンボル、あるいは1/1の傾斜で交互に配置される明暗セル等の特徴的なパターンとは異なるようにデータを変換処理をすると、位置決め用シンボルや明暗セル等との区別が容易となり、処理も簡単化し迅速となる。また上記位置決め用シンボルが配置されていないマトリックスの頂点に頂点検出用セルを配置すると、その頂点の検出が容易となる。

【図面の簡単な説明】

【図1】 二次元コードの一実施例の説明図である。

【図2】 位置決め用シンボルの周波数特性説明図であ 40 る。 *

*【図3】 位置決め用シンボルの配置と処理の説明図である。

【図4】 タイミングセルの配置状態説明図である。

【図5】 キャラクタ割付け状態説明図である。

【図6】 汚れによる影響の説明図である。

【図7】 2値化回路の特性説明図である。

【図8】 データ以外に設定された部分のパターンとは 異なる特徴のパターンを生成する説明図である。

【図9】 二次元コードの周囲にダミーの線を配置する 説明図である。

【図10】 二次元コードの他の実施例の説明図である。

【図11】 位置決め用シンボルの他の例の説明図である。

【図12】 キャラクタの他の割付け状態を示すセル群の形状説明図である。

【図13】 長方形状の二次元コードの実施例の説明図である。

【図14】 二次元コードの符号化から印刷までの処理 を表すフローチャートである。

【図15】 二次元コード読み取り処理のフローチャートである。

【図16】 二次元コード読み取り処理のフローチャートである。

【図17】 読み取り装置の構成説明図である。

【図18】 タイミングセルの配置例の説明図である。

【図19】 従来のバーコード無効処理説明図である。 【符号の説明】

1, 8, 9, 13, 21, 23, 41, 46, 51, 5 30 2, 55, 71, 81…二次元コード

2…位置決め用シンボル 2 a, 2 b, 2 c…正方 形

3…データ領域

4, 4 y … タイミングセ

ル

5…頂点検出用セル

6, 66, 67, 69,

70…セル群

7, 7a, 47…変化用マトリックスパターン情報

11…方向決め用シンボル

42, 42a, 42b…変化用マトリックスパターン

58…コード読み取り禁止用セル

500…デコーダ

500a…CCDカメラ

【図11】

(a)

(b)

(c)

フロントページの続き

(72) 発明者 渡部 元秋

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 野尻 忠雄

愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 長屋 隆之

愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

(72) 発明者 内山 祐司

愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第3区分

【発行日】平成11年(1999)7月2日

【公開番号】特開平7-254037

【公開日】平成7年(1995)10月3日

【年通号数】公開特許公報7-2541

【出願番号】特願平6-42587

【国際特許分類第6版】

G06K 1/12

19/00

[FI]

G06K 1/12

Е

19/00

Х

【手続補正書】

【提出日】平成10年4月27日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、

<u>前記マトリックス内の、少なくとも2個所の所定位置</u>に、各々中心をあらゆる角度で横切る走査線において同じ周波数成分比が得られるパターンの位置決め用シンボルを配置したことを特徴とする二次元コード。

【請求項2】 <u>前記</u>所定位置がマトリックスの頂点である請求項1記載の二次元コード。

【請求項3】 <u>前記</u>位置決め用シンボルが、同心状に相似形の図形が重なり合う形であることを特徴とする請求項1または2記載の二次元コード。

【請求項4】 <u>前記マトリックスの内部に、セル化された前記データの位置を特定するための、前記位置決め用シンボルと予め定められた位置関係にある交互に明暗のセルが、直線状に配置されていることを特徴とする請求項1または2記載の</u>二次元コード。

【請求項5】 <u>前記マトリックス内にデータ領域として</u>設定されたパターンとデータ領域以外に設定された部分のパターンとを有し、前記位置決め用シンボルの前記パターンは前記データ領域以外に設定された部分のパターン内に属しており、前記データ領域として設定されたパターンに対して所定の変換処理をすることにより、前記データ領域として設定されたパターンを前記データ領域以外に設定された部分のパターンとは異なる特徴のパターンとしたことを特徴とする請求項1または2記載の二次元コード。

【請求項6】 <u>前記位置決め用シンボルが3箇所のみに</u> <u>設けられていることを特徴とする請求項1または2記載</u> <u>の</u>二次元コード。

【請求項7】 <u>前記</u>位置決め用シンボルが配置されていない<u>前記マトリックスの頂点に、頂点検出用セルを配置したことを特徴とする請求項1 および2 および6 のうちいずれか1 項に記載の二次元コード。</u>

【請求項8】 前記位置決め用シンボルが前記マトリックスの四隅にそれぞれ設けられていることを特徴とする 請求項1または2記載の二次元コード。

【請求項9】 前記マトリックスの形が正方形であり、前記位置決め用シンボルの形が、暗部からなる正方形内の中心に明部からなる縮小した正方形が形成され、該明部からなる縮小した正方形内の中心に暗部からなる更に縮小した正方形が形成されている形であることを特徴とする請求項3記載の二次元コード。

【請求項10】 前記所定の変換処理は、前記データ領域に対応するマトリックスに変換用の所定パターンを形成し、該変換用の所定パターンと前記データ領域として設定されたパターンとの排他的論理和を取る処理から成ることを特徴とする請求項5記載の二次元コード。

【請求項11】 前記周波数成分比が暗:明:暗:明: 暗=1:1:3:1:1であることを特徴とする請求項 3または9記載の二次元コード。

【請求項12】 前記3個の位置決め用シンボルの中心 座標と前記マトリックスの頂点の座標と前記二次元コー ドの外形と前記二次元コードの傾きとの間に所定の計算 上の関係が存在することを特徴とする請求項6記載の二 次元コード。

【請求項13】 前記データ領域として設定されたパターンがセル群に分割されており、この分割された各々のセル群は単一のセルが一方向のみに連続した細長い長方形でなく、縦横それぞれに複数のセルを積んだものから成ることを特徴とする請求項5記載の二次元コード。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

[0010]

【課題を解決するための手段】請求項1記載の発明は、 二進コードで表されるデータをセル化して、二次元のマトリックス上にパターンとして配置した二次元コードにおいて、<u>前記</u>マトリックス内の、少なくとも2個所の所定位置に、各々中心をあらゆる角度で横切る走査線において同じ周波数成分比が得られるパターンの位置決め用シンボルを配置したことを特徴とする二次元コードにある。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0012

【補正方法】変更

【補正内容】

【0012】請求項4記載の発明は、<u>前記マトリックスの内部に、セル化された前記データの位置を特定するための、前記位置決め用シンボルと予め定められた位置関係にある交互に明暗のセルが、直線状に配置されていることを特徴とする請求項1または2記載の</u>二次元コードにある。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

【0013】請求項5記載の発明は、前記マトリックス内にデータ領域として設定されたパターンとデータ領域以外に設定された部分のパターンとを有し、前記位置決め用シンボルの前記パターンは前記データ領域以外に設定された部分のパターン内に属しており、前記データ領域として設定されたパターンに対して所定の変換処理をすることにより、前記データ領域として設定されたパターンを前記データ領域以外に設定された部分のパターンとは異なる特徴のパターンとしたことを特徴とする請求項1または2記載の二次元コードにある。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0014

【補正方法】変更

【補正内容】

【0014】請求項6記載の発明は、<u>前記位置決め用シンボルが3箇所のみに設けられていることを特徴とする</u> <u>請求項1または2記載の</u>二次元コードにある。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 5

【補正方法】変更

【補正内容】

【0015】請求項7記載の発明は、前記位置決め用シ ンボルが配置されていない前記マトリックスの頂点に、 頂点検出用セルを配置したことを特徴とする請求項1 起 よび2および6のうちいずれか1項に記載の二次元コー ドにある。請求項8記載の発明は、前記位置決め用シン ボルが前記マトリックスの四隅にそれぞれ設けられてい ることを特徴とする請求項1または2記載の二次元コー ドにある。請求項9記載の発明は、前記マトリックスの 形が正方形であり、前記位置決め用シンボルの形が、暗 部からなる正方形内の中心に明部からなる縮小した正方 形が形成され、該明部からなる縮小した正方形内の中心 に暗部からなる更に縮小した正方形が形成されている形 であることを特徴とする請求項3記載の二次元コードに ある。請求項10記載の発明は、前記所定の変換処理 は、前記データ領域に対応するマトリックスに変換用の 所定パターンを形成し、該変換用の所定パターンと前記 <u>データ領域として設定されたパターンとの排他的論理和</u> を取る処理から成ることを特徴とする請求項5記載の二 次元コードにある。請求項11記載の発明は、前記周波 数成分比が暗:明:暗:明:暗=1:1:3:1:1で あることを特徴とする請求項3または9記載の二次元コ ードにある。請求項12記載の発明は、 前記3個の位 置決め用シンボルの中心座標と前記マトリックスの頂点 の座標と前記二次元コードの外形と前記二次元コードの 傾きとの間に所定の計算上の関係が存在することを特徴 とする請求項6記載の二次元コードにある。請求項13 記載の発明は、前記データ領域として設定されたパター ンがセル群に分割されており、この分割された各々のセ ル群は単一のセルが一方向のみに連続した細長い長方形 でなく、縦横それぞれに複数のセルを積んだものから成 ることを特徴とする請求項5記載の二次元コードにあ

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0018

【補正方法】変更

【補正内容】

【0018】前記位置決め用シンボルは、マトリックスの頂点の内、少なくとも2個所に同心状に相似形の図形が重なり合う形であってもよい。ここで同じ周波数成分比が得られるパターンとは、いずれの方向からそのほぼ中心部を通ってスキャンしても、相似の明暗パターンを示すものである。例えば同心状に相似形の図形が重なり合う形である。具体的には、暗部からなる正方形内の中心に明部からなる縮小した正方形が形成され、その内の中心に暗部からなる更に縮小した正方形が形成されているパターンである。そして、その場合の周波数成分比と

しては、例えば暗:明:暗:明:暗=1:1:3:1: 1とすることが考えられる。また、図形も正方形ばかり でなく、円形、六角形、その他各種の図形、特に正多角 形や円形、楕円形が挙げられる。しかし、マトリックス の形は正方形が普通であり、位置決め用シンボルもその 形に適合している正方形がスペースの無駄が最小となる ので好ましい。特に正方形が一層無駄が少ないので好ま しい。なお、位置決めシンボルについては、3箇所のみ に設けてもよいし、マトリックスの四隅にそれぞれ設け てもよい。マトリックスの四隅それぞれに設ければ、そ の位置決めシンボルの位置から直接、2次元コードの外 形を把握することができ、また傾きも把握できる。一 方、3箇所のみに設けた場合には、例えば、その3個の 位置決め用シンボルの中心座標とマトリックスの頂点の 座標と二次元コードの外形と二次元コードの傾きとの間 に成立する所定の計算上の関係が分かれば、二次元コー ドの外形や傾きを把握することができる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】 0019

【補正方法】変更

【補正内容】

【0019】請求項4記載の発明は、前記マトリックス の内部に、セル化されたデータの位置を特定するため の、位置決め用シンボルと予め定められた位置関係にあ る交互に明暗のセルが、直線状に配置されていることを 特徴としている。交互に明暗のセルを配置すると、明 (白)または暗(黒)のセルが連続している場合に比較 して、セル単位の位置が判別し易い。また、位置決め用 シンボルと予め定められた位置関係で直線状に配置すれ ばよいので、例えば、この交互に明暗とされたセル(以 下、交互明暗セルともいう)の配列については、辺に平 行に配置してもよいし、頂点から所定の傾斜で配置して もよい。但し、辺に平行である場合には、少なくとも縦 方向と横方向との2方向に設けないとマトリックス内の 全セルの位置に対応することができない。 それに対し て、正方形のマトリックスの場合、頂点から1/1の傾 斜で交互明暗セルを配置すると、マトリックスの1辺分 のセルを利用するのみでよいので、スペースが他の有用 な情報に有効に利用できる。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 2

【補正方法】変更

【補正内容】

【0022】前記二次元コードはそのままマトリックスに配置するのではなく、所定の変換処理をすることにより、パターンを所望のパターンに変換してもよい。例えば、<u>前記マトリックス内にデータ領域として設定されたパターンとデータ領域以外に設定された部分のパターン</u>

とを有し、前記位置決め用シンボルの前記パターンは前記データ領域以外に設定された部分のパターン内に属しており、前記データ領域として設定されたパターンに対して所定の変換処理をすることにより、前記データ領域として設定されたパターンを前記データ領域以外に設定された部分のパターンとは異なる特徴のパターンとするのである。データ領域以外に設定された部分のパターンとは、例えば、前記位置決め用シンボル、あるいは前記交互明暗セル等であり、それらの特徴的なパターンは、初期に検出されなくてはならないパターンであるので、データ領域内には、それらの特徴的なパターンがなるべく少なくなるように所定の変換処理をする。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0023

【補正方法】変更

【補正内容】

【0023】例えば、この所定の変換処理としては、前 記データ領域に対応するマトリックスに変換用の所定パ <u>ターンを形成し、該変換用の所定パ</u>ターンと前記データ 領域として設定されたパターンとの排他的論理和(Ex OR) を取る処理とすることが考えられる。勿論、一つ の所定パターンでは、変換後に所望のパターンが形成さ れるとは限らないので、複数の所定パターンを用意して おき、各々にて変換し、その結果、得られた複数パター ンの内から所望のパターン、即ちデータ領域以外に設定 された部分のパターンとは一番異なる特徴のパターンを 選択すれば良い。また、データ領域に関して言えば、デ ータ領域として設定されたパターンがセル群に分割され ており、この分割された各々のセル群は単一のセルが一 方向のみに連続した細長い長方形でなく、縦横それぞれ に複数のセルを積んだものから成るようにすることもで きる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0072

【補正方法】変更

【補正内容】

【0072】マトリックス内部の交互明暗セルに基づけば、セル化されたデータの位置を特定することができる。特に交互に明暗のセルを配置しているため、明(白)または暗(黒)のセルが連続している場合に比較して、セル単位の位置が判別し易い。そして、1/1の傾斜で交互に明暗のセルを配置すると、マトリックス内で交互明暗セルを比較的少ない数で利用するのみでよいので、スペースが他の有用な情報に有効に利用できる。また各キャラクタを表現するセル群を二次元状にまとめて配置すると、同じ汚れの面積でも、その汚れに一部でも被われるキャラクタが少なくて済み、読み取れなくなるキャラクタが少なくて済む。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0073

【補正方法】変更

【補正内容】

【0073】前記位置決め用シンボル、あるいは交互明

暗セル等の特徴的なパターンとは異なるようにデータを変換処理をすると、位置決め用シンボルや<u>交互</u>明暗セル等との区別が容易となり、処理も簡単化し迅速となる。また前記位置決め用シンボルが配置されていないマトリックスの頂点に頂点検出用セルを配置すると、その頂点の検出が容易となる。