Simple Random Sampling: Not So Simple

Kellie Ottoboni with Philip B. Stark and Ron Rivest

Department of Statistics, UC Berkeley Berkeley Institute for Data Science

> BSTARS March 23, 2017

Simple random sampling lies at the heart of many statistical methods.

In practice, it is difficult to draw truly random samples.

Instead, people tend to draw samples using

- A pseudorandom number generator (PRNG) that produces sequences of bits, plus
- A sampling algorithm that maps a sequence of pseudorandom numbers into a subset of the population

Pseudorandom number generator: a deterministic algorithm that produces sequences that are (ideally) computationally indistinguishable from the uniform distribution

Corollary (Fewer pigeons than pigeonholes)

If the number of possible samples is greater than the size of a PRNG's state space, then the PRNG cannot possibly generate all samples.

Does it matter in practice?

PRNG	# Internal states	# Possibilities	Proportion of attainable possibilities
32-bit linear		Samples of 10	
congruential	4 billion	out of 50 items	0.4
generators		pprox 10 billion	
Mersenne	2010	Permutations	
Twister	$\approx 2 \times 10^{6010}$	of 2084 items	0.0001
		$\approx 3 \times 10^{6013}$	

Even if a PRNG can generate all possible samples, it may not be sufficiently random.

$$x_{n+1} = (65539x_n) \mod 2^{31}$$

Triples of RANDU lie on 15 planes in 3D space.

One solution: Find a class of PRNGs with infinite state space **and** good pseudorandom behavior

Cryptographic hash functions:

- computationally infeasible to invert
- difficult to find two inputs that map to the same output
- small input changes produce large, unpredictable changes to output
- resulting bits are uniformly distributed

- Preliminary results: SHA-256 hash function PRNG produces samples with equal probabilities while other common PRNGs don't
- Replace the default PRNGs in Python https://www.github.com/statlab/cryptorandom
- Results apply more broadly to computer simulations: permutation tests, bootstrapping, MCMC, etc.

Thanks!

https://github.com/kellieotto/prng-slides