Implementation of LISA - Variation of Income across different LGAs in Australia

May 9, 2018

Why Spatial Econometrics

Everything is related to everything else, but near things are more related than distant things

Tobler's (1979) first law of geagraphy

- Spatial Dependence: Existence of functional relationship between what happens at one point in space and what happens elsewhere
- Spatial Heterogeneity: lack of uniformity of effect of space Example: Urban places have unequal population and income levels

Why Spatial Econometrics

Neighbors in Space

Expressing a way the structure of spatial dependence is to be incorporated in a model

- Lagged variable in time series analysis is unambiguous
- Spatial Lag?
 - ▶ Neighborhood and nearest neighbor $\{j \mid P([x_i]) \neq P[x_i|x_j] \text{ and d_ij} < \epsilon\}$

Why Spatial Econometrics

Spatial Contiguity Matrices

- Binary Contiguity Matrix
- Rook Contiguity
- Bishop Contiguity
- Queen Contiguity
- Distance Based Weights
- K-nearest neighbor weights

From where did we get the Data

Income Data Source

- Australian Bureau Of Statistics (http://stat.data.abs.gov.au)
- Economy -> Finance -> Household Income -> Census 2016, Total Household Income (Weekly) by Household Composition (LGA)
- Customise layout():
 Page Census Year, Household Composition
 Row State, Region, Geography Level
 Column Total Household Income Weekly

From where did we get the Data

Shapefile Data Source

- Australian Bureau Of Statistics (http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/ 1270.0.55.003July%202016?OpenDocument)
- Name of the file (Zip) to download: Local Government Areas ASGS Ed 2016 Digital Boundaries in ESRI Shapefile Format

How does the Data look

```
# A tibble: 121,880 x 6
##
      Weekly_Household_Income
                               Annual_Household~
                                                 State
                                                         LGA
##
      <chr>>
                               <chr>
                                                 <chr>
    1 $1,000-$1,249
                               $52,000-$64,999
##
                                                 New S~
##
    2 $1,000-$1,249
                               $52,000-$64,999
                                                 New S~
    3 $1,000-$1,249
                               $52,000-$64,999
##
                                                 New S~
##
    4 $1.000-$1.249
                               $52,000-$64,999
                                                 New S~
##
    5 $1,000-$1,249
                               $52,000-$64,999
                                                 New S~
##
    6 $1,000-$1,249
                               $52,000-$64,999
                                                 New S~
##
    7 $1,000-$1,249
                               $52,000-$64,999
                                                 New S~
    8 $1,000-$1,249
                               $52,000-$64,999
##
                                                 New S~
##
    9 $1,000-$1,249
                               $52,000-$64,999
                                                 New S~
                               $52,000-$64,999
   10 $1,000-$1,249
                                                 New S~
## # ... with 121,870 more rows
```

Analysis

- Number of people for 21 income categories provided for each regions (Histogram for different LGAs with bins as the income categories)
- A density plot created using the historgram
- ► Compute p= 0.01, 0.02,, 0.99 for each LGA

Analysis Table2

```
## # A tibble: 1,662 x 3
##
  # Groups: LGA_2016 [?]
##
      LGA_2016 Weekly_Household_Income Number_People
##
         <int> <chr>
                                                <int>
## 1
         10050 High
                                                13715
##
    2
         10050 Low
                                                 6075
    3
                                                15489
##
         10050 Medium
##
         10130 High
                                                 7178
##
         10130 Low
                                                3138
         10130 Medium
                                                8104
##
         10250 High
                                                11057
##
         10250 Low
##
    8
                                                 4869
##
         10250 Medium
                                                13679
##
  10
         10300 High
                                                 518
##
  # ... with 1.652 more rows
```

Analysis

Obtain one representative income for each LGA

Weekly household median incomes assumed for each class:

- Low: 250A\$

- Medium: 1000A\$

- High: 5000A\$

Reading LGA Data

- ► Reading OGR vector maps into Spatial objects
- ► The Geospatial Data Abstraction Library (GDAL) is a computer software library for reading and writing raster and vector geospatial data formats
- ► The rgdal package has been around for more than a decade and provides bindings to the incredible Geospatial Data Abstraction Library (GDAL) for reading, writing and converting between spatial formats

```
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/sgup0008/Documents/ABS_Income/ABS_Income
## with 563 features
```

It has 5 fields

Warning in rgdal::readOGR("../LGA_shapefiles", layer =
Dropping null geometries: 131, 132, 213, 214, 293, 294,
536, 537, 556, 557, 559, 560, 562, 563

Pagiong defined for each Polygons

HeatMap - Maps with Structural Breaks

Joining, by = "id"

[1] 1090

Plotting nearest neighbors neighbours K=2

Moran Scatterplot

OneIncome_LGA\$Median_Income_LGA

Local Moran

```
##
        Ιi
                         E.Ii
                                          Var.Ii
##
   Min. :-4.079221
                     Min. :-0.001838
                                       Min. :0.3305
##
   1st Qu.:-0.000144
                     1st Qu.:-0.001838
                                       1st Qu.:0.4966
##
   Median: 0.258115
                     Median :-0.001838
                                       Median: 0.9951
##
   Mean : 0.534091
                     Mean :-0.001838
                                       Mean :0.7399
##
   3rd Qu.: 0.739304
                     3rd Qu.:-0.001838
                                       3rd Qu.:0.9951
##
   Max. : 7.714157
                     Max. :-0.001838
                                       Max. :0.9951
##
       7. Ti
                    Pr(z > 0)
   Min. :-6.642709
                     Min. :0.0000
##
##
   1st Qu.: 0.001698
                     1st Qu.:0.1726
##
   Median : 0.299093
                     Median : 0.3824
##
   Mean : 0.646667
                     Mean :0.3524
##
   3rd Qu.: 0.944061
                     3rd Qu.:0.4993
##
   Max. :10.794443
                     Max. :1.0000
```

Local Significance Plot using Moran's Statistic

Local Significance Plot using Moran's Statistic

```
## Joining, by = c("LGA_2016", "Median_Income_LGA", "Median
## Joining, by = "id"
```


Local Significance Plot using Gi star Statistic

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.49074 -0.78212 -0.16746 0.04306 0.79739 4.51540
```

```
## # A tibble: 3 x 2
## local_G_new n
## <fct> <int>
## 1 high-high 35
## 2 low-low 4
## 3 not_signif. 506
```

Local Significance Plot using Gi star Statistic

```
## Joining, by = c("LGA_2016", "Median_Income_LGA", "Median
## Joining, by = "id"
```


Boroondara (C) Camden (A) Canada Bay (A) Cockburn (C) East Fremantle (T) East Pilbara (S) Georges River (A) Hornsby (A) Inner West (A) Joondalup (C) Manningham (C)

> Melville (C) Nillumbik (S) Subiaco (C)

Regions spatially significant in local Moran and not in local Gi star

X Anangu Pitjantjatjara (AC) Armadale (C) Aurukun (S) Mapoon (S) Tiwi Islands (R)