REDES: Nivel Físico

TCP/IP "mejorado"

Aplicación

Transporte (TCP/UDP)

Red (IP)

Enlace de datos

Física

Protocolos

- Ethernet
- 802
 - 802.3
 - 802.11
- ATM
- ...

- Define las características de cableado y señalización de nivel físico
- Define los formatos de tramas de datos del nivel de enlace de datos
- Divide el nivel de enlace de datos en 2 subcapas:
 - Subcapa Control de enlace lógico (LLC)
 - Subcapa Control de acceso al medio (Media Access Control, MAC)

- La subcapa LLC de Ethernet :
 - Toma los datos del protocolo de la red, que generalmente son un paquete IPv4, y agrega información de control para ayudar a entregar el paquete al nodo de destino
 - Se implementa en el software y su implementación depende del equipo físico. En una PC, el LLC puede considerarse como el controlador de la Tarjeta de interfaz de red (NIC).

- La subcapa MAC de Ethernet tiene dos responsabilidades principales:
 - Encapsulación de datos
 - Control de Acceso al medio

- La Encapsulación de datos proporciona tres funciones principales:
 - Delimitación de trama. Ofrece delimitadores que se utilizan para identificar un grupo de bits que componen una trama. Este proceso ofrece una sincronización entre transmisores y receptores.
 - Direccionamiento. Cada encabezado Ethernet agregado a la trama contiene la dirección física (dirección MAC)
 - Detección de errores

- Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3, siendo usualmente tomados como sinónimos.
 - Se diferencian en uno de los campos de la trama de datos
 - Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red

- Las tecnologías Ethernet que existen se diferencian en estos conceptos:
 - Velocidad de transmisión. Velocidad a la que transmite la tecnología.
 - Tipo de cable. Tecnología del nivel físico que usa la tecnología.
 - Longitud máxima. Distancia máxima que puede haber entre dos nodos adyacentes (sin estaciones repetidoras).
 - Topología Física. Determina la forma física de la red. Bus si se usan conectores T (hoy sólo usados con las tecnologías más antiguas) y estrella si se usan hubs (estrella de difusión) o switches (estrella conmutada).

Existen varias tecnologías Ethernet que han evolucionado desde la Ethernet original. Para nombrarlas se usan letras y números

VVmodXX

- Velocidad en Mbps (VV)
- ◆Tipo de modulación:
 - banda base, la señal transmitida por el medio no sufre ningún tipo de modulación.
- Tipo de medio (XX)

Velocidades de Transmisión Ethernet

- IOMbps Ethernet original
- ◆ I00Mbps FastEthernet
- ◆ I000Mbps GigabitEthernet
- ◆ 10000Mbps 10 GigabitEthernet

Tecnología	Velocidad de transmisión	Tipo de cable	Distancia máxima	Topología
10Base2	10 Mbit/s	Coaxial	185 m	Bus (Conector T)
10BaseT	10 Mbit/s	Par Trenzado	100 m	Estrella (Hub o Switch)
10BaseF	10 Mbit/s	Fibra óptica	2000 m	Estrella (Hub o Switch)
100BaseT4	100 Mbit/s	Par Trenzado (categoría 3UTP)	100 m	Estrella. Half Duplex (hub) y Full Duplex (switch)
100BaseTX	100 Mbit/s	Par Trenzado (categoría 5UTP)	100 m	Estrella. Half Duplex (hub) y Full Duplex (switch)
100BaseFX	100 Mbit/s	Fibra óptica	2000 m	No permite el uso de hubs
1000BaseT	1000 Mbit/s	4 pares trenzado (categoría 5e ó 6UTP)	100 m	Estrella. Full Duplex (switch)
1000BaseSX	1000 Mbit/s	Fibra óptica (multimodo)	550 m	Estrella. Full Duplex (switch)
1000BaseLX	1000 Mbit/s	Fibra óptica (monomodo)	5000 m	Estrella. Full Duplex (switch)

Tipos de Medios Guiados

Coaxial, está formado por un cable de cobre recubierto por un aislante, la pantalla y la funda

Par Trenzado: son cables que contienen 4 pares de cobre trenzados entre sí

Cat 1 – Voz

Cat 2 – Hasta 4 Mb

Cat 3 – Hasta 16 Mb

Cat 4 – Hasta 20 MB

Cat 5 – Hasta 100 MB (100 m)

- •No apantallado UTP
- •Apantallado FTP (reduce la tasa de error)

Par trenzado:

Par trenzado:

- Transmiten las señales como diferencia de voltajes, no como voltajes independientes.
- Son resistentes a las interferencias, pues al estar trenzados, estas afectan por igual a ambos cables que forman el par.
- Pares para transmisión, pares para recepción.
 - · Hasta 100 MB: Sólo se usan 2 pares
 - **IGb**: Se usan los 4 pares.

Par trenzado:

Par Trenzado: Terminadores

Par Trenzado

La más utilizada a nivel mundial

Es la más reciente según el borrador 9 de la EIA

Fibra Optica

- La fibra óptica permite la transmisión de señales luminosas y es insensible a interferencias electromagnéticas externas.
- Cuando la señal supera frecuencias de 10¹⁰ Hz hablamos de frecuencias ópticas. Los medios conductores metálicos son incapaces de soportar estas frecuencias tan elevadas y son necesarios medios de transmisión ópticos. La fibra esta formada por un polímero (plástico)

Fibra Optica:

- Para poder transmitir utilizando la fibra óptica son necesarias fuentes especializadas generadoras de señal:
 - **Fuentes láser**: Son las fuentes capaces de producir una señal de más calidad.
 - **Diodos láser**: Es una fuente semiconductora de emisión de láser de bajo precio.
 - **Diodos LED**: Son semiconductores que producen luz cuando son excitados eléctricamente.

Fibra Optica:

- Un cable de fibra óptica consta de:
 - **Núcleo**. El núcleo, es el conductor de la señal luminosa y su atenuación es despreciable. La señal es conducida por el interior de éste núcleo fibroso, sin poder escapar de él debido a las reflexiones internas y totales que se producen, impidiendo tanto el escape de energía hacia el exterior como la adicción de nuevas señales externas.
 - Revestimiento.
 - Cubierta externa protectora.

Fibra Optica:

Elementos de una red: cableado

Fibra Optica: Tipos

- Actualmente se utilizan tres tipos de fibras ópticas para la transmisión de datos:
 - •Fibra multimodo de índice escalonado.
 - •Fibra multimodo de índice gradual.
 - •Fibra monomodo.

Cables submarinos: son cables compuestos, de gran capacidad tendidos sobre el fondo del océano

Medios No Guiados

Características

- Las señales se irradian a través del aire. Las señales no guiadas pueden viajar del origen al destino de formas diferentes:
 - en superficie. Las ondas de radio viajan a través de la porción más baja de la atmósfera, abrazando a la tierra.
 - por el cielo. Las ondas de radio con una frecuencia mayor se irradian hacia arriba en la ionosfera.
 - en línea de visión. Se transmiten señales de muy alta frecuencia directamente de antena.

Características

- La transmisión y recepción se realiza por medio de antenas:
 - En la transmisión, la antena irradia energía electromagnética en el medio.
 - En la recepción la antena capta las ondas electromagnéticas del medio que la rodea.
- Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres grandes tipos:
 - Microondas terrestre y microondas Satélite
 - Radiofrecuencia u ondas de radio
 - Luz infrarroja y láser

Características

Transmisión Direccional

- La señal se concentra para ser enviada en una única dirección
- No deben existir obstáculos entre emisor y receptor
- Gran capacidad de penetración (agua)
- Por ejemplo, microondas

Transmisión Onmidireccional (esférico)

- La información se envía en todas las direcciones por lo que puede ser recibido por varios receptores.
- Por ejemplo, wifi

MicroOndas Terrestres

- Las microondas están definidas como un tipo de onda electromagnética situada en el intervalo del milímetro al metro y cuya propagación puede efectuarse por el interior de tubos metálicos.
- Es en si una onda de corta longitud.
- Tiene como características que su ancho de banda varia entre 300 a 3.000 Mhz, aunque con algunos canales de banda superior, entre 3′5 Ghz y 26 Ghz.

MicroOndas Terrestres

MicroOndas Terrestres

- Es usado como enlace entre una empresa y un centro que funcione como centro de conmutación del operador, o como un enlace entre redes Lan.
- Para la comunicación de microondas terrestres se deben usar antenas parabólicas, las cuales deben estar alineadas o tener visión directa entre ellas, además entre mayor sea la altura mayor el alcance, sus problemas se dan perdidas de datos por atenuación e interferencias, y es muy sensible a las malas condiciones atmosféricas.

MicroOndas por Satélites

Los satélites son lanzados de la tierra y se ubican en la órbita terrestre siguiendo las leyes descubiertas por Kepler

Las microondas por satélite manejan un ancho de banda entre los 3 y los 30 Ghz.

El satélite en si no procesan información sino que actúa como un repetidor-amplificador y puede cubrir un amplio espacio de espectro terrestre

MicroOndas por Satélites

- Órbita geoestacionaria
 - http://science.nasa.gov/iSat/
- Gran capacidad de transmisión
- Cubren áreas extensas
- "Baratos", no hay que hacer obras
- Tienen el inconveniente del retardo

Tipos de redes según la cobertura:

Tecnologías para transmisión de datos:

HomeRF

 Estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central

Bluetooth

Protocolo que sigue la especificación IEEE 802.15.1

ZigBee

 Basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo

Tecnologías para transmisión de datos:

Wi-Fi. (Wireless Fidelity) :

- La tecnología WiFi hace uso de las señales de onda para realizar la conexión.
- El estándar internacional es el IEEE 802.11
- Los estándares tradicionales IEEE 802.11b, IEEE 802.11g e IEEE 802.11n, que <u>operan en la banda de 2.4 GHz</u> con una velocidad de hasta 11 Mbits/s, 54 Mbits/s y 300 Mbits/s, respectivamente.
- Los nuevos estándares IEEE 802.11ac, opera en la banda 5 GHz; IEEE 802.11ad (WiGig 1.0), en la banda de 60 GHz; IEEE 802.11ah (Súper WiFi), entre las bandas 54 y 790 MHz; y por último IEEE 802.11af (HaLow), en la banda de 900 MGz.

Tecnologías para transmisión de datos:

- WiMax (Worldwide Interoperability for Microwave Access)
 - La Interoperabilidad Mundial para Acceso con Microondas es un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMax es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service)