LECTURE 5

KARNAUGH MAP (K – MAP)

EXAMPLE 5:
DESIGN A COMBINATIONAL CIRCUIT WITH 4- INPUT LINES THAT REPRESENTS A DECIMAL DIGIT IN BCD AND 4- OUTPUT LINES THAT GENERATES 2'S COMPLEMENT OF INPUT DIGIT.

			0100 => 15 comp=1011+
Decimal	8421	25 Complem	ent (4)
digit _	ABCD	73424,70	
0	0000	0000	Sign bit = 0 = + VR 1100 ← 2's comp)
1	0001	1111	2 = -V2 / (-L) of (0100)
2	0010	1710	
3	0011	1100	25 Completion
4	0100	1100	(100)
5	0101	ווסו	4-bit c/P=27-16 input combinations
6	0110	1010	0000 - 1001
7	0111	1001	= 10 combinations
8	1000	0001 1000	-> 4-bits = signed no 7 5-bits
9	1001	0111	$(-8)_{10} \leftarrow 0 \rightarrow (0111)_{2}$ $(+7)_{10} \leftarrow 0 \rightarrow (+7)_{10}$

5-61-5 Unsignat => 00000 - 11111 => (6) to (31) Signed => $\frac{10000}{00000}$ $\frac{100000}{(+15)_{10}}$ unsigned short intA; 1 byte = 8bits =) 28 = 256 A = -3? A = 257; -7

EXAMPLE 6:

Design a combinational circuit to check for even parity of 4 bits. A logic 'I' output is required when the 4 bits constitute an even parity.

EXAMPLE 7:

Design a combinational circuit that multiplies by '5' an input decimal digit represented in BCD. The output is also in BCD.

Input: $(0)_{10}$ to $(9)_{10}$ (0000) to (1001) in BCD

output: $(0)_{10}$ to $(45)_{10}$ (000000) to (0100 0101) in BCD