Assignment 2

Members:

- Mussini Simone Mat. 152595 (284900@studenti.unimore.it)
- Stomeo Paride Mat. 165338 (299510@studenti.unimore.it)

Very Busy Expression

Un'espressione è very busy in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.

Un'espressione a+b è very busy in un punto p se a+b è valutata in tutti i percorsi da p a exit e non c'è una definizione di a o b lungo tali percorsi.

Ci interessa l'insieme di espressioni disponibili (available) all'inizio del blocco B.

L'insieme dipende dai percorsi che cominciano al punto p prima di B.

Dataflow analysis framework

	Dominator analysis		
Domain	Insieme di espressioni		
	Backward		
Direction	$in[B] = f_B(out[B])$		
	$out[B] = \wedge in[succ(B)]$		
Transfer function	$f_B(x) = Gen(B) \cup (x - Kill(B))$		

Assignment 2

	Dominator analysis		
Meet operator (\land)	Π		
Boundary condition	$in[exit] = \emptyset$		
Initial interior points	$in[B]=\mathbb{U}$		

Siccome il meet operator è l'intersezione devo utilizzare un initial interior points $=\mathbb{U}.$

Iterazioni CFG

	Iterazione 1		Iterazione2	
	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]
BB1	$Gen(BB1) \cup \ (out[BB1] - kill) = \ \emptyset \cup \{b - a, a - b\} - \ \emptyset = \{a - b, b - a\}$	$in[BB2] = \{b-a,a-b\}$	$Gen(BB1) \cup (out[BB1] - kill) = \emptyset \cup \{b - a, a - b\} - \emptyset = \{a - b, b - a\}$	$in[BB2] = \{b-a,a-b\}$
BB2	$Gen(BB2) \cup \ (out[BB2]-kill) = \ \emptyset \cup \{b-a,a-b\} - \ \emptyset = \{b-a,a-b\}$	$in[BB3] \cap in[BB5] = \{a - b, b - a\} \cap \{b - a, a - b\} = \{a - b, b - a\}$	$Gen(BB2) \cup \ (out[BB2]-kill) = \ \emptyset \cup \{b-a,a-b\} - \ \emptyset = \{b-a,a-b\}$	$in[BB3] \cap in[BB5] = \{a - b, b - a\} \cap \{b - a, a - b\} = \{a - b, b - a\}$
BB3	$Gen(BB3) \cup \ (out[BB3] - kill) = \ \{b-a\} \cup (\{a-b\} - \emptyset) = \{a-b,b-a\}$	$in[BB4] = \{a-b\}$	$Gen(BB3) \cup \ (out[BB3] - kill) = \ \{b-a\} \cup (\{a-b\} - \emptyset) = \{a-b,b-a\}$	$in[BB4] = \{a-b\}$
BB4	$Gen(BB4) \cup \ (out[BB4] - kill) = \ \{a-b\} \cup (\emptyset - \emptyset) = \ \{a-b\}$	$in[BB8] = \emptyset$	$Gen(BB4) \cup \ (out[BB4] - kill) = \ \{a - b\} \cup (\emptyset - \emptyset) = \ \{a - b\}$	$in[BB8] = \emptyset$
BB5	$Gen(BB5) \cup \ (out[BB5] - kill) = \ \{b-a\} \cup (\{a-b\} - \emptyset) = \{b-a,a-b\}$	$in[BB6] = \{a-b\}$	$Gen(BB5) \cup (out[BB5] - kill) = \{b - a\} \cup (\{a - b\} - \emptyset) = \{b - a, a - b\}$	$in[BB6] = \{a-b\}$
BB6	$Gen(BB6) \cup \ (out[bb6] - kill) = \emptyset \cup \ \{a-b\} - \{b-a\} = \ \{a-b\}$	$in[BB7] = \{a-b\}$	$Gen(BB6) \cup \ (out[bb6] - kill) = \emptyset \cup \ \{a - b\} - \{b - a\} = \ \{a - b\}$	$in[BB7] = \{a-b\}$
BB7	$Gen(BB7) \cup \ (OUT[BB7] - kill) = \ \{a - b\} \cup (\emptyset - \emptyset) = \ \{a - b\}$	$in[BB8]=\emptyset$	$Gen(BB7) \cup (OUT[BB7] - kill) = \{a - b\} \cup (\emptyset - \emptyset) = \{a - b\}$	$in[BB8] = \emptyset$
BB8	Ø		Ø	

Non essendoci cambiamenti tra gli out[] della prima e la seconda iterazione possiamo fermarci perché è stata raggiunta la convergenza.

Dominator Analysis

Dentro un CFG un BB x domina un altro BB y se il nodo x appare in ogni percorso del grafo che porta dal blocco entry al blocco y.

Assignment 2 2

Ogni BB ha un insieme ${\sf DOM}[B_i]$ dove $B_i\in {\sf DOM}[B_j]$ solo se B_i domina $B_j.$ Un nodo stesso domina se stesso: $B_i\in {\sf DOM}[B_i].$

Dataflow analysis framework

	Dominator analysis	
Domain	Insieme di basic blocks	
	Forward	
Direction	$out[B] = f_B(in[B])$	
	$in[B] = \wedge out[pred(B)]$	
Transfer function	$f_b(x) = Gen[B] \cup in[B]$	
Meet operator (\land)	Π	
Boundary condition	$out[entry] = \{entry\}$	
Initial interior points	$out[B]=\mathbb{U}$	

La scelta di una boundary condition $=out[entry]=\{entry\}$ è dovuta al fatto che è specificata la proprietà riflessiva della dominator analysis.

Nello svolgimento delle iterazioni si considera A l'entry block e G l'exit block.

Iterazioni CFG

	Iterazione 1		Iterazione2	
	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]
Α	Ø (000000)	{A} (1000000)	Ø (000000)	{A} (1000000)
В	{A} (1000000)	{A, B} (1100000)	{A} (1000000)	{A, B} (1100000)
С	{A} (1000000)	{A, C} (1010000)	{A} (1000000)	{A, C} (1010000)
D	{A, C} (1010000)	{A, C, D} (1011000)	{A, C} (1010000)	{A, C, D} (1011000)
E	{A, C} (1010000)	{A, C, E} (1010100)	{A, C} (1010000)	{A, C, E} (1010100)
F	{A, C} (1010000)	{A, C, F} (1010010)	{A, C} (1010000)	{A, C, F} (1010010)
G	{A} (1000000)	{A, G} (1000001)	{A} (1000000)	{A, G} (1000001)

Assignment 2 3

Non essendoci cambiamenti tra gli out[] della prima e la seconda iterazione possiamo fermarci perché è stata raggiunta la convergenza.

Constant propagation

L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante

L'informazione da calcolare per ogni nodo del CFG è un insieme di coppie del tipo <variabile, valore costante>.

Se abbiamo la coppia < x, c > al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

NOTA: L'analisi di CP riesce a determinare il valore costante di espressioni binarie in cui uno o entrambi gli operandi siano delle variabili il cui valore costante sia noto:

$$w = 5$$
 $x = 12$
 $y = x-2 \rightarrow y = 10$
 $z = w + x \rightarrow z = 17$

Tenere conto di questo aspetto nel determinare le equazioni.

Assignment 2

Dataflow analysis framework

	Dominator analysis
Domain	Insieme di definizioni
Direction	Forward $out[B] = f_B(in[B])$ $in[B] = \wedge out[pred(B)]$
Transfer function	$f_B(x) = Gen(B) \cup (x - Kill(B))$
Meet operator (\land)	Π
Boundary condition	$out[entry] = \emptyset$
Initial interior points	$out[B]=\mathbb{U}$

Iterazioni CFG

	Iterazione 1		Iterazione2		Iterazione 3	
	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]
BB1	Ø	$\{< k, 2>\}$	Ø	$\{< k,2>\}$	Ø	$\{< k,2>\}$
BB2	$\{< k,2>\}$	$\{< k,2>\}$	$\{< k,2>\}$	$\{< k,2>\}$	$\{< k,2>\}$	$\{< k,2>\}$
BB3	$\{< k,2>\}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{< k,2>\}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{< k,2>\}$	$\{< a, 4> < \ k, 2> \}$
BB4	$\{ < a, 4 > < \ k, 2 > \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 5 > \}$	$\{< a, 4> < \ k, 2> \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 5 > \}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 5 > \}$
BB5	$\{< k, 2>\}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{< k, 2>\}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{< k, 2>\}$	$\{ < a, 4 > < \ k, 2 > \}$
BB6	$\{ < a, 4 > < \ k, 2 > \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 8 > \}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 8 > \}$	$\{ < a, 4 > < \ k, 2 > \}$	$\{ < a, 4 > < \ k, 2 > < \ x, 8 > \}$
BB7	$k, 2 > < z, 5 >$ $\} \cap \{<$ $a, 4 > <$ $k, 2 > <$	$, < k, 2 > \ \} - < k, 2 >)$	$egin{aligned} out[BB4] \cap \ out[BB6] = \ & \{ < a, 4 > < \ k, 2 > < z, 5 > \ & \} \cap & \{ < \ a, 4 > < \ k, 2 > < \ x, 8 > \} = & \{ < \ a, 4 > < \ k, 2 > \} \end{aligned}$	$, < k, 2 > \ \} - < k, 2 >)$		$, < k, 2 > \ \} - < k, 2 >) \ = \{ < k, 4 > \}$
BB8	, ,	$\{< k, 4>, < \ a, 4> \}$	$egin{aligned} out[BB12] \cap \ out[BB7] = \ & \{< k, 5>, < \ a, 4>, < \ b, 2>, < \ x, 8>, < \ y, 8>\} \cap & \{< k, 4>< \end{aligned}$	$\{< a, 4>\}$	$egin{aligned} out[BB12] \cap \ out[BB7] = \ & \{< a, 4 >\} \cap \ & \{< a, 4 >, < \ k, 2 >\} = \{< a, 4 >\} \end{aligned}$	$\{< a, 4>\}$

Assignment 2

	Iterazione 1		Iterazione2		Iterazione 3	
			$\{a,4>\} = \{< \ a,4>\}$			
BB9	$\{< k, 4>, < \ a, 4> \}$	$\{ < k, 4 >, < \ a, 4 >, < \ b, 2 > \}$	$\{< a, 4>\}$	$\{ < a, 4 >, < \ b, 2 > \}$	$\{< a, 4>\}$	$\{ < a, 4 >, < b, 2 > \}$
BB10	$\{ < k, 4 >, < \ a, 4 >, < \ b, 2 > \}$	$\{ < k, 4 >, < \ a, 4 >, < \ b, 2 >, < \ x, 8 > \}$	-	$\{ < a, 4 >, < \ b, 2 > \}$	$\{ < a, 4 >, < \ b, 2 > \}$	$\{ < a, 4 >, < \ b, 2 > \}$
BB11	$\{ < k, 4 >, < \ a, 4 >, < \ b, 2 >, < \ x, 8 > \}$	$\{ < k, 4 >, < \\ a, 4 >, < \\ b, 2 >, < \\ x, 8 >, < \\ y, 8 > \}$	$\{ < a, 4 >, < b, 2 > \}$	$\{ < a, 4 >, < b, 2 >, < b, 2 >, < y, 8 > \}$	$\{ < a, 4 >, < \ b, 2 > \}$	$\{ < a, 4 >, < b, 2 >, < b, 2 >, < y, 8 > \}$
BB12	$\{ < k, 4 >, < \\ a, 4 >, < \\ b, 2 >, < \\ x, 8 >, < \\ y, 8 > \}$		$\{ < a, 4 >, < b, 2 >, < b, 2 >, < y, 8 > \}$		b,2>,<	$\{ < a, 4 >, < b, 2 >, < b, 2 >, < y, 8 > \}$
BB13	$\{ < k, 4 >, < \ a, 4 > \}$	$\{ < k, 4 >, < \ a, 4 > \}$	$\{< a, 4>\}$	$\{< a, 4>\}$	$\{< a,4>\}$	$\{< a, 4>\}$

Non essendoci cambiamenti tra gli out[] della seconda e la terza iterazione possiamo fermarci perché è stata raggiunta la convergenza.

Assignment 2 6