Europäisches Patentamt

European Patent Office

Office européen des brevets

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
17.09.2003 Bulletin 2003/38

(51) Int CI.7: G06K 9/66

- (21) Application number: 01125304.4
- (22) Date of filing: 18.06.1993
- (54) Training method and apparatus for adjusting a neuron Trainingsverfahren und Gerät zur Einstellung eines Neurons Méthode et appareil d'entraînement pour ajuster un neurone
- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SF
- (30) Priority: 19.06.1992 US 901429
- (43) Date of publication of application: 17.04.2002 Bulletin 2002/16
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 93109762.0 / 0 574 936
- (73) Proprietor: UNITED PARCEL SERVICE OF AMERICA, INC. Atlanta, GA 30346 (US)
- (72) Inventors:

 Moed, Michael C.
 Norwalk, Connecticut 06851 (US)

 Lee, Chih-Ping
 c/o United Parcel Serv.America Inc..
 Atlanta, Georgia 30328 (US)
- (74) Representative: Beetz & Partner Patentanwälte Steinsdorfstrasse 10 80538 München (DE)

(56) References cited:

- YOSHIKAZU MIYANAGA ET AL: "PARALLEL AND DADPITIVE CLUSTERING METHOD SUITABLE FOR A VLSI SYSTEM" SIGNAL IMAGE AND VIDEO PROCESSING, SINGAPORE, JUNE 11-14, 1991, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, NEW YORK, IEEE, US, vol. 1 SYMP, 24, 11 June 1991 (1991-06-11), pages 386-389, YEO00384788 ISBN: 0-7803-0805-5
- KAVURI S N ET AL: "Solving the hidden node problem in networks with ellipsoidal units and related issues" PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, (JUCNN). BALTIMORE, JUNE 7 11, 1992, NEW YORK, IEEE, US, vol. 3, 7 June 1992 (1992-06-07), pages 775-780, XP101060146 ISBN: 0-7803-0559-0
- KELLY P M ET AL: "An adaptive algorithm for modifying hyperellipsoldial desilon surfaces" PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS. (JUNN). BALTIMORE, JUNE 7 11, 1992, NEW YORK, IEEE, US, vol. 3, 7 June 1992 (1992-06-07), pages 196-201, XP01060109 ISBN: 0-7803-085-0

197 913 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filled in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

1. Field of the Invention

[0001] The present invention relates to classification methods and systems, and, in particular, to methods and systems for classifying optically acquired character images and to methods and systems for training such.

2. Statement of Related Art

Q002] In the field of package shipping, packages are routed from origins to destinations throughout the world according to destination addresses typed on shipping labels applied to these packages, in order to route packages, it is destination afterses typed on shipping labels applied to these packages, in order to route packages, it is destination and the packages in the packages, in order to route packages, it is destination as the package in the packages. In order to route packages are using spherical neurons, such as those disclosed in U.S. Patent No. 4,328,259 (Cooper et al.), may be unable to execute the processing requirements presented by contain applications without a substantial investment in harders (2003) in the document KELLY P MET AL. an adaptive algorithm for modifying hyperellipsoidal decision surfaces? PROCEEDINSO FOR THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS. (IJCNN). BALTIMORE, JUNE 7 - 11, 1992, NEW YORK, IEEE, IV. ol. 3, 7 June 1992 (1992-08-07), pague 199-201, XPO10091 ISBN: 0-7803-0559-0 a learning algorithm for a distance classified has been developed which manipulates hyperellipsoidal destread to these boundaries. Are legions of the injurt feature space are first enclosed by ellipsoidal boundaries, and then these boundaries. Repliens of the injurt leature space are first enclosed by ellipsoidal boundaries, and the these boundaries. Are legions of the injurt leature space are first enclosed by ellipsoidal boundaries, and classification and shape will be modified. The algorithm that is used is referred as the LVQ-MM algorithm (LVQ with the Mahalanobis distance Metric).

SUMMARY OF THE INVENTION

[0004] The present invention covers a training method and appearatus for adjusting a neuron. The invention generates a feature vector representative of a training input, where the training input corresponds to one of a plurality of possible outputs. If the neuron encompasses the feature vector and if the neuron does not correspond to the training input, then the invention spatially adjusts the neuron, where the adjusted neuron comprises a boundary defined by two or more adjusted neuron axes of different length.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005]

Figs. 1(a), 1(b), 1(c), and 1(d) are bitmap representations of a nominal letter "O", a degraded letter "O", a nominal number "7", and a degraded letter "7", respectively;

Fig. 2 is a graphical depiction of a 2-dimensional feature space populated with 8 elliptical neurons that may be employed by the classification system of the present invention to classify images of the letters A, B, and C;

Fig. 3 is a process flow diagram for classifying inputs according to a preferred embodiment of the present invention;

Fig. 4 is a schematic diagram of part of the classification system of Fig. 3;

Fig. 5 is a process flow diagram for generating neurons used by the classification system of Fig. 3; and

Fig. 6 is a schematic diagram of a classification system that uses cluster classifiers for classifying inputs according to a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0006] The present invention includes a system for optical character recognition, but, more generally, the invention covers a classification system for classifying an input as one of a defined set of possible outputs. For example, where the input is an optically acquired image representing one of the 26 capital letters of the English aphabet, the classification system of the present invention may be used to select as an output that capital letter that is associated with the

input image. The classification system of the present invention is discussed below in connection with Figs. 1(a), 2, 3, and 4

[0007] The present invention also includes a system for "training" the classification system of the present invention. This training system is preferably operated off line prior to deployment of the classification system. In the character ecognition example, the training system accepts input images representative of known characters to "team" about the set of possible outputs into which unknown images will eventually be classified. The training system of the present invention is discussed below in connection with Fig. 5.

[0008] The present invention also includes a system for training the classification system of the present invention based on ordering the training injusts according to the relative quality of the training injusts. This system for training is discussed below in connection with Fibs. 1(a), 1(b), 1(c), and 1(d).

[0009] The present invention also includes a system for adjusting the locations and shapes of neurons generated during the training systems of the present invention.

[0010] The present invention also includes a classification system employing a hierarchical network of top-level and lower level cluster classifiers. The top-level classifier classifies inputs into one of a plurality of output clusters, where each output cluster is associated with a subset, of the set of possible outputs. A cluster classifier, associated with the output cluster identified by the top-level classifier, then classifies the input as corresponding to one of the possible outputs. This classification systems is discussed below in connection with Fig. 1(a), 1(b), 1(c), and 1(c) and

10011] The present invention also includes a neural system of classifying inputs that combines two subsystems. One subsystems counts the number of neurons that encompass a feature vector representing a particular input for each of the possible outputs. If one of the possible output is a more neurons encompassing the feature vector than any other possible output, then the system selects that possible output as corresponding to that input. Otherwise, he second subsystem finds the neuron that has the smallest value for a particular distance measure for that feature vector. If that value is least than a specified threshold then the system selects the output associated with that neuron as corresponding to the input. This peural system is discussed below in connection with Figs. 1(a), 2, 3, and 4.

CLASSIFICATION SYSTEM

[0012] Referring now to Fig. 1(a), there is shown a bitmap representation of a nominal letter "O". When the classification system of the present invention classifies optically acquired character images, each character image to be classified may be represented by an input bitmap, an (m x n) image array of binary values as shown in Fig. 1(a). In a preferred embodiment, the classification system of the present invention generates a vector in a k-dimensional feature space from information contained in each input bitmap. Each feature vector: Fixe feature learners f, where 0 5 /5 k* 1. The dimension of the feature space, k, may be any integer greater than one. Each feature element f, is a real value corresponding to one of k features derived from the input bitmap.

(0013) The k features may be derived from the input bitmap using conventional feature extraction functions, such as, for example, the Grid or Hadamard feature extraction function. The feature extraction function is described by the Grid or Hadamard feature extract. The feature sements is are the components of feature vector Falong the feature-space axes of the k-dimensional feature space. For purposes of this specification, the term "feature vector" refers to a point in feature space.

60 [0014] In a preferred embodiment, a discriminant analysis transform may be applied to Grid-based or Hadamard-based feature vectors to define the feature space, in this embodiment, the separation between possible outputs may be increased and the dimensionality of the feature vector may be reduced by performing this discriminant analysis in which only the most significant Eigenvectors from the discriminant transformation are retained.

[0015] . The classification system of the present invention compares a feature vector. F. representing a particular input image, to a set of neutrons in feature space, where each neuron is a closed k-dimensional region or "hyper-volume" in the k-dimensional region or "hyper-volume" in the k-dimensional region or "hyper-volume" in when (k = 3), each neutron is an area in a 2-dimensional feature space, and when (k = 3), each neutron is an oblime in a 3-dimensional feature space. Fig. 2 shows a graphical depiction of an exemplary 2-dimensional neutron space.

[0016] In a preferred classification system according to the present invention, the boundary of at least one of the neurons populating a k-dimensional relature space is defined by at least two axos that have different lengths. Some of these neurons may be generally represented mathematically as:

$$\sum_{j=0}^{k-1} \frac{|c_j - g_j|^m}{(b_j)^m} \le A, \tag{1}$$

where c_i define the center point of the neuron, b_i are the lengths of the neuron axes, and m and A are positive real constants. In a preferred embodiment, at least two of the neuron axis are of different length. The values g_i that stayly Equation (1) define the points in feature space that lie within or or the boundary of the neuron. Those skilled in the art will understand that other neurons within the scope of this invention may be represented by other mathematical expressions. For example, a neuron may be defined by the expression:

10

15

20

$$\frac{k-1}{\max_{j=0}^{k-1} \frac{|c_j - g_j|}{|b_j|}}{|b_j|} \le 1,$$
(2)

where the function "MAX" computes the maximum value of the ratio as j runs from 0 to k-f. Neurons defined by Equation (2) are hyper-rectangles.

(0017) In a preferred embodiment of the present invention, the neurons are hyper-ellipses in the k-dimensional feature space. A hyper-ellipse is any hyper-volume defined by Equation (1), where (m=2) and (A=1). More particularly, a hyper-ellipse is defined by the function:

$$\sum_{j=0}^{k-1} \frac{(c_j - g_j)^2}{(b_j)^2} \le 1,$$
 (3)

where a define the hyper-ellipse center point, b, are the hyper-ellipse axis lengths, and the values g that satisfy Equation (3) define the points that ile within or on the hyper-ellipse boundary. When all of the axes are the same length, the hyper-ellipse is a hyper-sphere. In a preferred embodiment of the present invention, in at least one of the neurons, at least two of the axes are of different length. By way of exemple, there is shown in Fig. 2 elliptical neuron 1, having center point (cg)-cg), and axis bg¹, cg¹ of different length. In a preferred embodiment, the axes of the neurons are aligned with the coordinate axes of the feature space. Those skilled in the art will understand that other neurons having axes that do not all align with the feature-space axes are within the scope of the invention.

[016] According to the present invention, each neuron is associated with a particular possible output. For example, each neuron may correspond to one of the 26 capital reters. Each neuron is associated with only one of the possible outputs (e.g., letters), but each possible output may have one or more associated neurons. Furthermore, neurons may overlap one another in feature space. For example, as shown in Fig. 2, neurons 0, 1, and 7 correspond to the character "A", neurons 2, 3, 5, and 6 correspond to the character "B", and neuron 4 corresponds to the character "C". Neurons 1 and 7 overlap, as do neurons 2, 3, and 6 and neurons 3, 5, and 6. In an alternative embodiment (not shown), neurons corresponding to different possible outputs may overlap. The classification system of the present invention may employ the neurons of Fig. 2 to classify input mages errorsentative of the letters A, B, and

[0019] Referring now to Fig. 3, there is shown a process flow diagram of classification system 300 for classifying an input. (e.g., a bitmap of an optically acquired character image) as one of a set of possible outputs (e.g., characters) according to a preferred embodiment of the present invention. In the preferred embodiment shown in Fig. 3, the neurons in classification system 300 are processed in parallel. In an alternative embodiment (not shown), the neurons of classification system 300 may be processed in serials. Means 302 is provided for receiving an input image bitmap and generating a feature vector that represents information contained in that bitmap. Means 304 and 306 are provided for comparing the feature vector generated by means 302 is set of neurons, at least one of which has two or more axes of different length. Classification system 300 selects one of the possible outputs based upon that comparison.

[0020] In a preferred embodiment of the present invention, classification system 300 classifies optically acquired

character bitmaps using a network of hyper-elliptical neurons. Means 302 of classification system 300 receives as input the bitmap of an optically acquired character image to be classified and generates a corresponding feature vector F. Means 304 then determines an "elliptical distance" r_x as a function of the center and axes of each of the E_{num} hyper-elliptical neurons x in the network and feature vector F, where:

$$x_{x} = \sum_{j=0}^{k-1} \frac{(f_{j} - c_{j}^{x})^{2}}{(b_{j}^{x})^{2}}, \qquad (4)$$

In Equation (4), α^x and b_x^x define the center point and axis lengths, respectively, of neuron x, where x runs from 0 to $E_{num^{-1}}$, and f are the elements of feature vector F. Those skilled in the art would recognize that distance measures different from that of Equation (4) may also be used.

offerent from that or equation (\circ) may so be used. (10021) Means 306 determines which, if any, of the $E_{\rm num}$ neurons encompass feature vector F. A neuron encompasses a feature vector F and may be referred to as an "encompassing neuron"—if the feature vector lies inside the boundary that defines the neuron in feature space. For hyper-ellipses, neuron \times encompasses feature vector (F, if (x, < 1)), if (x, < 1), feature vector F lies on the boundary of neuron x, and if (x, < 1), feature vector F lies on the boundary of neuron x, and if (x, < 1), feature vector F lies on the boundary of neuron x, and if (x, < 1), feature vector F lies on the boundary of neuron x. Since neurons may overlap in feature space, a particular feature vector may be encompassed by more than one neuron. In Fig. 2, feature vector F_0 , or specified to a particular input image, is encompassed by neurons 2 and 6. Alternatively, a feature vector may lie inside no neurons, as in the case of feature vector F_0 of Fig. 2, which corresponds to a different

[0022] Means 308 finds the "closest" neuron for each possible output. As described earlier, each neuron is associated with one and only one possible output, but each possible output may have one or more neurons associated with it. Means 308 analyzes all of the neurons associated with each possible output and determines the neuron "closest" to feature vector Fior that output. The "closest" neuron will be the one having the smallest "distance" measure value f_c . In the example of feature vector F_0 of Fig. 2, means 308 will select neuron 1 as being the "closest" neuron to feature vector F_0 of the character "A". It will also select neuron 2 as the "closest" neuron for character "B" and neuron 4 for

character "C".
[023] Means 310 in Fig. 3 counts votes for each possible output. In a first preferred embodiment, each neuron that encompasses feature vector F is treated by means 310 as a single "vote" for the output associated with that neuron. In an atternative preferred embodiment discussed in greater details with respect to Equation (7) below, each neuron in an atternative presented embodiment discussed in greater details with respect to Equation (8) below, each neuron that encompasses feature vector F is treated by means 310 as representing a "welghted vote" for the output associated with that neuron, where the welght associated with any particular neuron is a function of the number of training input feature vectors encompassed by that neuron. In a preferred embodiment, means 310 implements proportional voting, where the welghted vote for a particular neuron is equal the number of feature vectors encompassed by that neuron. For each possible output, means 310 tallies all the votes for all the neurons that encompass feature vector F. There are three potential types of voting outcomes: either (1) one output character receives more votes than any other output character. Joy wo more output characters receive noves, indicating the situation where no neurons encompasse feature vector F. In Fig. 2, feature vector F. gm ray result in the first type of voting outcome: character "B" may receive 2 votes corresponding to encompassing neurons 2 and 6, while characters of the properties of

receiving no votes. [0024] Means 312 determines if the first type of voting outcome resulted from the application of means 310 to feature vector F. If only one of the possible output characters received the most votes, then means 312 directs the processing of classification system 300 to means 314, which selects that output pharacter as corresponding to the input character bilmap. Otherwise, processing continues to means 316. For feature vector F_g in Fig. 2, means 312 determines that character Test has more votes than any other character and directs means 314 to select "b" as the character corresponding to feature vector F_g. For feature vector F_g, in Fig. 2, means 312 determines that no single character received the meat votes and directs processing to means 316.

[0025] Means 316 acts as a tie-breaker for the second and third potential voting outcome in which no outright vote-leader exists, either because of a tie or because the feature vector lies inside on neutrons. To break the tie, means 316 selects that neuron a which is "closest" in elliptical distance to feature vector F and compares x, to a specified threshold value θ^m . If $(r_x \le \theta^m)$, then means 318 selects the output character associated with neuron x as corresponding to the input character bitmap. Otherwise, the tie is not broken and classification system 300 selects no character for the input ingrae, A^m no-character soluted" result is one of the possible outputs from classification system 300. For example, if

classification system 300 is designed to recognize capital letters and the input image corresponds to the number "7", a no-character-selected result is an appropriate output.

10026] Threshold value $6^{\rm m}$ may be any number greater than 1 and is preferably about 1.25. As described oarlier, when feature vector F is inside neuron x, then $(r_x < 1)$, and when feature vector F is outside neuron x, then $(r_x < 1)$, and then offered respectively result from means 310 is a tell of the most non-zero votes, then means 316 will select the output character associated with the encompassing neuron having a center which is "closest" in elliptical "distance" feature vector F. Alternatively, if there are no encompassing neurons, means 316 may still classify the input bitmap as corresponding to the output character associated with the "closest" neuron X, if $(r_x \le 0^m)$. Using a threshold value θ^m of about 1.25 establishes a region surrounding each neuron used by means 316 for tie-breaking. In Fig. 2, feature vector F, will be classified as character "C" if the "distance" measure I_x is less than the threshold value θ^m ; otherwise, no character is

selected.

[0027] Referring now to Fig. 4, there is shown a schematic diagram of classification system 400 of the present invention for classifying inputs as corresponding to a set of a possible outputs. Classification system 400 may perform part of the processing performed by classification system 300 of Fig. 3. Classification system 400 of accepts feature vector F, represented by feature elements (6, 1, ..., 6,1), and generates values of and of that act as pointers and/or flags to indicate the possible output to be selected. Classification system 400 includes four subsystem levels: input level 402, processing level 404, output level 402, processing level 404.

[0028] Input level 402 includes the set / of kinput processing units f_p where / runs from 0 to k-1. Each input processing unit f_p receives as input one and only one element f_p of the feature vector F and broadcasts this value to processing level 404. Input level 402 functions as a set of pass-through, broadcasting elements.

[0029] Processing level 404 includes the set E of $E_{\rm rum}$ elliptical processing units $e_{\rm c}$ where $c_{\rm rum}$ returns from 0 to $E_{\rm rum}$ -1. Each elliptical processing unit $e_{\rm c}$ is cornected to and receives input from the output of every input processing unit $e_{\rm c}$ in original few level (402. Elliptical processing unit $e_{\rm c}$ implements Equation (4) for neuron x of classification system 300 of Fig. 3. Like neuron x of classification system 300, each elliptical processing unit $e_{\rm c}$ is defined by two vectors of internal parameters: $E^{\rm rum}$ and $E^{\rm rum}$ returns (304) of the axes of neuron x, where:

$$B^{x} = (b_{0}^{x}, b_{1}^{x}, ..., b_{k-1}^{x})^{T},$$
 (5)

and the elements of vector Cx are the coordinates of the center point of neuron x, where:

20

$$C^{x} = (c_0^{x}, c_1^{x}, ..., c_{k-1}^{x})^{T}$$
 (6)

[0030] Each elliptical processing unit e_x of processing level 404 computes the distance measure r_x from feature vector Fto the center of neuron x. Processing level 404 is associated with means 304 of classification system 300. if (r_x < 1), then elliptical processing unit e_x is not add to be activated; otherwise, elliptical processing unit e_x is not activated. In other words, elliptical processing unit e_x is activated when neuron x encompasses feature vector F. Each elliptical processing unit e_x broadcasts the computed distance measure r_x to only two output processing units of output level and [0031]. Output level 406 includes two pairs: output-total part 410 and output-minimize part 412. Output-total part 410 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing units o_x¹, and output-minimize part 412 contains the set O* of soutput processing output o_x¹ of soutput processing output o_x¹ of soutput processing output o_x¹ of soutput o_x¹ of soutput o_x² of soutput o_x

is associated with only one possible output and vice verse.
[0032] Each elliptical processing unit e, of processing level 404 is connected to and provides output to only one
output processing unit c₀, of output-total part 410 and to only one output processing unit c₀, of output-minimize part
121. However, each output processing unit c₀, and each output processing unit c₀, or may be connected to and receive
input from one or more elliptical processing units c₀, of processing level 404. These relationships are represented by
connection matrices W and W^{*}, both of which are of dimension (s × E_{mun}). In a preferred embodiment, if there is a
connection between elliptical processing unit c₀, of processing level 400 and output processing unit c₀, of output-total
part 410 of output level 406, an entry w₀, if in connection matrix W will have a value that is ouglat to the number of
training input feature vectors encorpnessed by neuron x; otherwise, it has value 0. In a further preferred embodiment,
entry w₀, has a value if there is a connection between elliptical processing unit c₀, and output processing unit c₀, if
[0033] Connection matrix W^{**} represents the connections between processing level 404 and output-minimize part

412 of output level 406 and is related to connection matrix **W**. An entry \mathbf{w}_{nc}^m in connection matrix \mathbf{W}^m will have a value of 1 for every entry \mathbf{w}_{nc}^m will have a value of 2. Growth of 100341 Each output processing unit \mathbf{c}_n , in output-total part 410 computes an output value \mathbf{c}_n , where:

$$o_n^t = \sum_{\kappa=0}^{E_{num}-1} w_{n\kappa}^t T(r_{\kappa}) , \qquad (7)$$

where the function $T(r_s)$ returns the value 0 if $(r_s > 1)$; otherwise, it returns the value 1. In other words, the function $T(r_s)$ returns the value 1 if elliptical processing unit c_s of processing level 404 is activated. Output processing unit c_s counts the votes for the possible output with which it is associated and outputs the total. Output-total part 410 of output level 406 is associated with means 306 and means 310 of classification system 300.

[0035] Similarly, each output processing unit o_n^m in output-minimize part 412 computes an output value o_n^m , where:

$$E_{\text{pun}}-1 \\ O_n^{n} = \frac{\text{MIN}}{x=0} (w_{nx}^{n} r_{x}),$$
 (8)

where the function "MiN" returns the minimum value of $(w_m m_p)$ over all the elliptical processing units e_n . Therefore, each output processing unit e_n " examines each of the elliptical processing units e_n to which it is connected and outputs a real value equal to the minimum output value from these elliptical processing units. Output-minimize part 412 of output level 406 is associated with means 308 of classification system 300.

output even 406 is associated with meast 306 or classification system 300 or million (1903). Postprocessing unit p* is connected to and receives input from every output processing unit o, fo output-total part 410 of output even 406. Postprocessing unit p* finds the output processing unit o, find that she maximum output value and generates the value g*. If output processing unit o, fo output-total part 410 has an output value greater than those of all the other output processing unit of output-total part 410, then the value g* is set to n - the index for that output processing units of output-total part 410, then the value g* is set to n - the index for that output processing unit. For example, when classifying capital letter a may be 0 for 74* and 1 for 15*, etc. Otherwise, the value g* is set to -1 to indicate that output-total part 410 of output level 406 did not classify the input. Postprocessing unit p* of postprocessing level 408 is associated with means 312 of classification systems 300.

[037] Similarly, postprocessing unit p^m — the other postprocessing unit in postprocessing level 408— is connected to and receives input from every output processing unit a_i^m —of output-minimize part 412 of output level 406. Postprocessing unit a_i^m —finds the output processing unit a_i^m —of output-minimize part 412 has an output value and spenariate the value a_i^m . If output processing unit a_i^m of output-minimize part 412 has an output value less than a specified threshold a_i^m , then the value a_i^m is set to the corresponding index n. Otherwise, the value a_i^m is set to the corresponding index n. Otherwise, the value a_i^m is set to +1 to indicate that output-minimize part 412 of output level 406 did not classify the liput, because the feature vector i_i^m is output level 406 did not classify the liput, because the feature vector i_i^m is united the threshold a_i^m in the short of a_i^m is the short of a_i^m in the short of a_i^m is the short of a_i^m in the short of a_i^m in the short of a_i^m is the short of a_i^m in the

[0038] Classification of the input is completed by analyzing the values q' and q'''. If (q'*-1), then the input is classified as possible output q' of the set of a possible outputs. If (q'*-1) and (q''*-1), then the input is classified as possible output q' of the set of a possible outputs. Otherwise, if both values are -1, then the input is not classified as any of the spossible outputs.

TRAINING SYSTEM

[0039] A neural network must be trained before it may be used to classify inputs. The training system of the present invention performs this required training by generating at least one non-spherical neuron in the Adimensional feature space. The training system is proferably implemented off line prior to the deployment of a classification system.

[0040] The training system of the present invention generates neurons based upon a set of training inputs, where each training input is known to correspond to one of the possible outputs in the classification set. Continuing with the example of capital letters used to describe classification system 300, each training input may be a bitmap corresponding to one of the characters from "A" to "Z". Each character must be represented by at least one training input, although training 100 to 750 training inputs are used of or each character.

100411 Referring now to Fig. 5, there is shown a process flow diagram of training system 500 for generating neurons

in k-dimensional feature space that may be used in classification system 300 of Fig. 3 or in classification system 400 of Fig. 4. For example, when training for output classification, training bries the 100 sequentially processes a set of training bitmen pinuts corresponding to known outputs. At a particular point in the training, there will be a set of existing feature vectors that correspond to the training inputs previously processed and a set of existing neurons that have been generated from those existing feature vectors. For each training input, training system 500 generates a feature vector in a feature space that trevensels information contained in that training input.

[0042] Training system 500 applies two rules in processing sech training input. The first training rule is that if the feature vector, corresponding to the training input currently being processed, is encompassed by any existing neurons atta are associated with a different known output, then the boundaries of those existing neurons are spatially adjusted to exclude that feature vector - that is, to ensure that that feature vector is not inside the boundary of those existing neurons. Otherwise, neurons are not spatially adjusted. For example, lift the current training input corresponds to the character "R" and the feature vector corresponding to that training input is encompassed by two existing "P" neurons and one existing "B" neuron, then the boundaries of these three existing neurons are spatially adjusted to ensure they do not encompass the ourtnet feature vector.

a [0043] The second training rule is that if the current feature vector is not encompassed by at least one existing neuron that is a sescriated with the same known output, then a new neuron is created. Otherwise, no new neuron is created for the current feature vector. For example, if the current training input corresponds to the character 'W' and the feature vector corresponding to that training input is not encompassed by any existing neuron that is associated with the character 'W', then a new "Y' neuron is created to encompasse that current feature vector. In a preferred embodiment, a new neuron is created by generating a temporary hyper-spherical neuron and then spatially adjusting that temporary neuron to create the new neuron. In an attendantly preferred embodiment, the temporary neuron may be a non-spherical

[0044] In a preferred embodiment of the present invention, training system 500 generates hyper-elliptical neurons from a set of training bitmap inputs corresponding to known characters. Training system 500 starts with no existing feature vectors and no existing neurons. Processing of training system 500 begins with means 502 which selects as the current training input affest training input from a set of training inputs. Means 504 generates the feature vector F that corresponds to the current training input.

[0045] When the first training input is the current training input, there are no existing neurons and therefore no existing neurons that encompass feature vector F. In that case, processing of training system 500 flows to means 514 which creates a new neuron entered on feature vector F. The new neuron is preferably defined by Equation (3), where all the new neuron axes are set to the same length, that is, (b_=\) for all, Since the new neuron axes are all the same length, the new neuron is preferred embodiment, the value of constant \(\lambda\), may be twice as large as the largest feature element \(\eti_i\) of all the feature vectors F for the entire set of training inputs. Since there are no existing feature vectors when processing the first training input, training system 500 next flows to means 528 from which point the processing of training system 500 next flows to

[0046] Means 528 determines whether the current training input is the last training input in the set of training inputs. If not, then means 528 directs processing of training system 500 to means 530 which selects the next training input as the current training input. Means 504 Means 504 then generates the feature vector F-corresponding to the current training input. [0047] Means 506 and 508 determine which, if any, existing neurons are to be spatially adjusted to avoid encompassing teature vector. F in a preferred embodiment, means 510 diagitates an existing neuron if that neuron is not associated with the same known character as the current training input (as determined by means 506) and if it encompasses feature vector F for a determined by means 508). Means 506 determined in a existing neuron encompasses feature vector F by adeluting and testing the "distance" measure x₀ of Equation (4) and testing whether (x₀ < 1) as

[0048] In a preferred embodiment, means 510 spatially adjusts an existing neuron by optimally shinking it along only one axis. In another preferred embodiment, means 510 shinks an existing neuron proportionally along one or more axes. These shinking methods are explained in greater detail later in this specification. After processing by means 510, the current feature vector is not encompassed by any existing neurons that are associated with a character which is different from the character associated with the training input. Hence, the current feature vector lies either outside or on the boundaries of such existing neurons.

described earlier.

(0049) Training system 500 also determines if a new neuron is to be created and, if so, creates that new neuron. A new neuron is created by means 514) if the feature vector F is not encompassed by any existing neuron associated with the same character as the training input (as determined by means 512). As described above, means 514 creates a new neuron that is, preferably, a hyper-sphere of radius \(\lambda \).

1050] Training system 500 then tests and, if necessary, spatially adjusts each new neuron created by means 514 to ensure that it does not encompass any existing feature vectors that are associated with a character which is different from the character associated with the training input. Means 516, 524, and 526 control the sequence of testing a new neuron against each of the existing feature vectors by selecting one of the existing feature vectors at a time. If a new

neuron is associated with a character different from that of the currently selected existing feature vector (as determined by means 518) and if the new neuron encompasses that selected existing feature vector (as determined by means 520 using Equation (4)), then means 524 spatially adjusts the new neuron by one of the same shrinking algorithms employed by means 510. Training system 500 continues to test and adjust a new neuron until all existing feature vectors have been processed. Since the hyper-spherical neuron created by means 514 is adjusted by means 522, that hyper-spherical neuron is a temporary neuron with temporary neuron axes of equal length. Processing of training system 500 them continues to means 528 to control the selection of the next fraining input.

[0051] In a preferred embodiment, the steps of (1) shrinking existing neurons for a given input, and (2) creating and shrinking a new neuron created for that same input may be performed in parallel. Those skilled in the art will understand that these two stops may also be performed sequentially in either order.

Olos2] in a proternod ambodiment, after all of the training inputs in the set of training inputs have been processed sequentially, means \$28 directs processing of training system \$30 to means \$32. After processing a set of training inputs with their corresponding feature vectors, seture space is populated with both feature vectors and neurons. After processing the set of training inputs one time, some feature vectors may not be encompassed by any neurons. This occurs when feature vectors provided in the set of training inputs one time, some feature vectors may not be encompassed by any neurons. This occurs when feature vectors provided in the set of training inputs one time, some feature vectors set of training inputs one time of the set of training inputs. When repeating this processing to return to means \$52 to repeat processing to return to return the processing the process and the processing the return the processing the processing the processing the pro

[0053] After training system 500 completes its processing, the feature space is populated with neurons that may then be used by characterization system 300 or characterization system 400 to classify an unknown input into one of a plurality of possible outputs.

OPTIMAL ONE-AXIS SHRINKING

[0054] As mentioned earlier, in a preferred embodiment, training system 500 spatially adjusts the boundary of a hyper-elliptical neuron to exclude a particular feature vector by optimally shrinking along one axis. Means 510 and 522 of training system 500 may perform this one-axis shrinking by (1) identifying the axis to shrink, and (2) calculating the new length for that axis.

[0055] Training system 500 identifies the axis n to shrink by the formula:

$$n = \underset{0 \le i \le k-1}{\operatorname{argmax}} \left[\frac{\left(\prod_{j=0}^{k-1} b_j | f_i - c_i | \atop j \ne i} b_j | f_j - c_j | \atop 1 - \sum_{j=0}^{k-1} \frac{(f_j - c_j)^2}{b_j^2} \right], \quad (9)$$

where the function "argmax" returns the value of l that maximizes the expression in the square brackets for any l from 0 to k-1; q and b, define the center point and axis lengths, respectively, of the neuron to be adjusted; and f_l define the feature vector to be excluded by that neuron.

[0056] Training system 500 then calculates the new length b_n for axis n by the equation:

$$b_n' = \frac{|f_n - c_n|}{\sqrt{1 - \sum_{\substack{j=0 \ j = 0 \ j \neq 0}}^{k-1} (f_j - c_j)^2}}.$$
(10)

in one-axis shrinking, all other axes retain their original lengths by

[0057] One-axis shrinking of an original hyper-elliptical neuron according to Equations (9) and (10) results in an adjusted neuron with the greatest hyper-volume \boldsymbol{V} that satisfies the following four criteria:

- (1) The adjusted neuron is a hyper-ellipse;
- (2) The center point of the original neuron is the same as the center point of the adjusted neuron;
- (3) The feature vector to be excluded lies on the boundary of the adjusted neuron; and
- (4) All points within or on the boundary of the adjusted neuron lie within or on the boundary of the original neuron.

The hyper-volume V is defined by:

10

20

25

30

$$V = C_k \prod_{j=0}^{k-1} b_j,$$
 (11)

where C_k is a constant that depends on the value of k, where k is the dimension of the feature space, and b_i are the lengths of the axes defining the adjusted neuron. One-axis shinking, therefore, provides a first method for optimally adjusting herenos according to the present invention.

PROPORTIONAL SHRINKING ALGORITHM

[0058] In alternative preferred embodiment, training system 500 spatially adjusts the boundary of a hyper-elliptical neuron to exclude a particular feature vector by shirthking proportionally along one or more axes. Means 510 and 522 of training system 500 may perform proportional shirthking by calculating the vector ΔB of axis length changes Δb_{\parallel} where:

$$\Delta B = -\alpha \left[\frac{|F-C|^T}{|F-C|} \cdot (B^T B - [F-C]^T [F-C]) - \Gamma, \right]$$
 (12)

where:

$$\Delta B = (\Delta b_0, \Delta b_1, ..., \Delta b_{k-1}),$$
 (13)

$$\begin{array}{l}
|F-C|^T\\
|F-C|^T
\end{array}
Vector of Cosines,$$
(14)

$$|F-C|^T = (|f_0-c_0|, |f_1-c_1|, ..., |f_{k-1}-c_{k-1}|),$$
 (15)

$$F = (t_0, t_1, ..., t_{k-1})^T$$
, (16)

$$C = (c_0, c_1, ..., c_{k-1})^T,$$
 (17)

 $B = \begin{cases} b_0 & 0 & 0 & \dots & 0 \\ 0 & b_1 & 0 & \dots & 0 \\ 0 & 0 & b_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & b_{k-1} \end{cases},$ (18)

$$E = \begin{bmatrix} f_0 & 0 & 0 & \dots & 0 \\ 0 & f_1 & 0 & \dots & 0 \\ 0 & 0 & f_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & f_1 \end{bmatrix}, \quad (19)$$

$$C = \begin{cases} C_0 & 0 & 0 & \dots & 0 \\ 0 & C_1 & 0 & \dots & 0 \\ 0 & 0 & C_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & C_{k-1} \end{cases}$$
(20)

and

5

10

15

25

30

$$\Gamma = (\dot{\gamma}_0, \gamma_1, ..., \gamma_{k,1}),$$
 (21)

where $|f_0 - c_0|$ is the absolute value of, $(f_0 - c_0)$; ||F - C|| is the magnitude of the vector difference between F and C, c_j and 50 b, define the center point and axis lengths, respectively, of the neuron to be adjusted; I are the elements of the feature vector to be excluded from that neuron; and α and γ may be constants. The new axis lengths b_i^* for the adjusted neuron are calculated by:

$$b'_{I} = b_{I} + \Delta b_{I} \tag{22}$$

for i from 0 to k-1.

[0059] In proportional shrinking, training system 500 determines the projections of a vector onto the axes of the number on to be adjusted, where the vector points from the center of that neuron to the feature vector to be excluded. These projections are represented by the vector of cosines of Equation (14). Training system 500 from determines how much to shrink each neuron axis based on the relationship between the length of the axis and the length of the projection onto that axis.

[0060] In a preferred embodiment, the constant a in Equation (12) is selected to be less than 1. In this case, training system 500 may perform tereitive shrinking, where the neuron is allowly adjusted over multiple ask-shrinking stees until it is determined that the feature voctor to be excluded is outside the adjusted neuron. In a preferred embodiment, parameter η may be set to a positive value that is roughly 0.001 times the size of axis β to ensure that proportional shrinking eventually places the feature vector outside the neuron. In an alternative preferred embodiment, the parameters γ may be error functions based on the distance from the feature vector to the boundary of the slowly adjusted neuron. In such case, training system 500 may operate as a proportional integral controlled for adjusting neurons.

ORDERING OF TRAINING INPUTS

10051]. In a preferred embodiment of the present invention, the set of training inputs, used sequentially by the training system to generate neurons, may be organized according to input quality. The training inputs may be ordered to train with higher quality inputs before proceeding to those of lower quality. This quality ordering of training inputs ensures that neurons are centered about feature vectors that correspond to inputs of higher quality. Such ordered training inputs ensures that neurons are centered about feature vectors that correspond to inputs of higher quality, Such ordered training inputs ensures that neurons are centered about feature vectors that correspond to system by neurons of mischassifications and non-classifications made by the classification system. A misclassification is when a classification system selects one possible output when, in truth, the input corresponds to a different possible output. A non-classification is when a classification system fails to select one of the known outputs and instead outputs an no-supture-selected result;

[0062] Referring now to Figs. 1(a), 1(b), 1(c), and 1(d), there are shown bitmap representations of a nominal letter "O", a degraded letter "O", a degraded letter "T", respectively. A nominal input is an ideal input with no noise associated with it. A degraded input is one in which noise has created deviations from the nominal input. Degraded inputs may result from either controlled noise or real unpredictable noise.

[0083] In a preferred embodiment, the training system of the present invention may train with training inputs of three different quality levels. The first level of training inputs are nominal inputs like those presented in Figs. 1(a) and 1(c). The second level of training inputs are controlled noise inputs, a type of degraded input created by applying defined noise functions or signals with different characteristics, either independently or in combination, to nominal inputs. The third level of training inputs are real noise inputs, a second type of degraded inputs which, in the case of characteristics, may be optically acquired images of known characters. Such degraded inputs have real unpredictable noise. Figs. 1 (b) and 1(d) present representations of possible controlled noise inputs and real noise inputs. In a preferred emboration and inputs have the highest quality, with the controlled noise inputs and real noise inputs of decreasing lesser quality. Depending upon the controlled noise functions and signals applied, a particular controlled-noise input may be of creater or lessor quality than a particular real-noise input.

[0064] The quality of a particular degraded input — of ather controlled-noise or real-noise variety — may be determined by comparing the degraded input to a nominal input corresponding to the same known character. In a preferred embodiment, a quality measure may be based on the number of pixels that differ between the two inputs. In another preferred embodiment, the quality measure may be based on conventional feature measures such as Grid or Hadamard features.

[068] In a preferred embodiment, training systems of the present invention train first with the nominal inputs and then later with degraded controlled-noise and real-noise inputs. In this preferred embodiment, training with inputs corresponding to Figs. 1(a) and 1(d). In another preferred embodiment, the training system trains with all inputs of the same known character prior to proceeding to the next known character, and the training inputs of each known character are internally organized by qualify. In this preferred embodiment, training with Fig. 1(a) proceeds that with Fig. 1(b), and training with Fig. 1(c) proceeds that with Fig. 1(a). Those skilled in the art will understand that the exact overall sequence of training with all of the inputs is of lessor importance than ordering of inputs by qualify for each different known character.

REFINEMENT OF NEURONS

55

[0066] After the training system of the present invention has completed training, the feature space is populated with neurons that encompass feature vectors, with one feature vector corresponding to each distinct training input. Each neuron may encompass one or more feature vectors – the one at the center of the neuron that was used to create the

neuron and possibly other feature vectors corresponding to inputs associated with the same known character.

[0067] Depending upon the quality ordering of the training inputs used in the sequential training, a particular neuron may encompass those feature vectors in a more or less efficient manner. For example, if the feature vector used to create a particular neuron corresponds to a highly degraded input, then that feature vector will lie at the center of that neuron. That same neuron may also encompass other feature vectors corresponding to nominal inputs and inputs of lessor degradation. Such a neuron may not be the most efficient neuron for encompassing that set of feature vectors. A classification system using such a neuron may make more misclassifications and non-classifications than one using

a more efficient neuron.

[0068] A refinement system of the present invention spatially adjusts neurons, created during training, to create more efficient neurons. This refinement system may characterize the spatial distribution of feature vectors encompassed by a particular neuron and then spatially adjust that neuron. Such spatial adjustment may involve translating the neuron from its current center point toward the mean of the spatial distribution of those feature vectors. After translating the neuron, the axis lengths may be adjusted to ensure that feature vectors of the same output character are encompassed by the neuron and to ensure that feature vectors of different output character are excluded.

[0069] In an alternative embodiment, the refinement system may spatially adjust two or more neurons of the same character to create one or more neurons that more efficiently encompass the same feature vectors, where a feature vector from one original neuron may be encompassed by a different more efficient neuron. For example, before refinement, a first neuron may encompass feature vectors F_1 , F_2 , and F_3 , and a second neuron may encompass feature vectors F_A , F_S , F_S , and F_T . After refinement, feature vectors F_1 , F_2 , F_3 , and F_4 may be encompassed by a third neuron, and feature vectors F5, F6, and F7 may be encompassed by a fourth neuron, where the centers and axis lengths of the third and fourth neurons are all different from those of the first and second neurons.

CLASSIFYING SYSTEMS WITH CLUSTER CLASSIFIERS

[0070] In a first preferred embodiment of the present invention, a classification system classifies inputs into one of a set of possible outputs by comparing the feature vector, for each input to be classified, with every neuron in the feature space. Such classification systems are presented in Figs. 3 and 4.

[0071] Referring now to Fig. 6, there is shown classification system 600 - a second preferred embodiment of the present invention -- in which inputs are classified into one of a set of possible outputs using neurons and cluster

classifiers. Classification system 600 includes top-level classifier 602 and two or more cluster classifiers 604, 606, ..., 608. Top-level classifler 602 classifles inputs into appropriate clusters of inputs. For example, where classification system 600 classifies characters, top-level classifier 602 may classify input bitmaps corresponding to optically acquired

characters into clusters of characters. [0072] The characters clustered together may be those represented by similar bitmaps, or, in other words, those characters associated with feature vectors close to one another in feature space. For example, a first character cluster may correspond to the characters "D", "P", "R" and "B". A second character cluster may correspond to the characters "O", "C", "D", "U", and "Q". A third cluster may correspond to only one character such as the character "Z". A particular

character may be in more than one character cluster. In this example, the character "D" is in both the first and the

second character clusters, because its bitmaps are similar to those of both clusters. [0073] In a preferred embodiment, before training, characters are clustered based on a confusion matrix. The confusion matrix represents the likelihood that one character will be confused with another character for every possible pair of characters. In general, the closer the feature vectors of one character are to those of another character, the higher the likelihood that those two characters may be confused. For example, the character "D" may have a higher confusion likelihood with respect to the "O" than to the "M", if the feature vectors for "D" are closer to the feature vectors for "O" than to those for "M".

[0074] In a preferred embodiment, the clustering of characters is based upon a conventional K-Means Clustering Algorithm, in which a set of templates is specified for each character, where each template is a point in feature space. The K-Means Clustering Algorithm determines where in feature space to locate the templates for a particular character by analyzing the locations of the feature vectors for all of the training inputs corresponding to that character. Templates

are preferably positioned near the arithmetic means of clusters of associated feature vectors.

[0075] In a preferred embodiment, four templates may be used for each character and the number of characters per cluster may be roughly even. For example, when classifying the 64 characters corresponding to the 26 capital and 26 lower-case letters, the 10 digits, and the symbols "&" and "#", 4x64 or 256 templates may be used to define 7 different

clusters of roughly equivalent numbers of characters.

[0076] By clustering characters, top-level classifier 602 may implement a classification algorithm that quickly and accurately determines the appropriate cluster for each input. In a preferred embodiment, top-level classifier 602 implements a neuron-based classification algorithm. In another preferred embodiment, other conventional non-neural classification algorithms may be performed by top-level classifier 602. Top-level classifier 602 selects the appropriate

cluster for a particular input and directs processing to continue to the appropriate cluster classifier 604, 606, ..., 608.

[077] In one preferred embodiment, each cluster classifier may implement a classification algorithm unique to that character cluster, or shared by only a subset of the total number of character clusters. Each cluster classifier may therefore employ neurons that exist in a feature space unique to that character cluster. Each cluster classifier may therefore employ neurons that exist in a feature space unique to that character cluster. For example, training for the "P", "R", "B" cluster may employ a particular set of Grid features, while training for the "O", "C", "D", "U", "O" cluster may employ a different set of Indeamand features. In that case, different training procedures are performed for each different cluster classifier, where only inputs corresponding to those characters of the associated cluster are used to each different training procedure.

[0078] In a third preferred embodiment of the present invention, a classification system according to Fig. 8 may classify inputs into one of a set of possible outputs using neurons and cluster classifiers. In this third embodiment, top-lovel classifier 602 identifies the template in feature space closest to the feature vector for the current input to be classified. The identified template is associated with a particular character that belongs to one or more character clusters. The top-lovel classifier 602 directs processing to only those cluster classifiers 604, 606, ..., 606 associated with the character clusters of the closest template. Since a particular character may be In more than one character cluster, more than one cluster classifier may be selected by top-loved classifier 602 to processing.

[0079] In a fourth preferred embodiment, each cluster classifier may have a docision tree that identifies those neurons that should be processed for a given input. Prior to classifying, feature vector space for a particular cluster classifier may be divided into regions according to the distribution of feature vectors and/or neurons in feature space. Each region contains one or more neurons, each neuron may belong to more than one region, and two or more regions may overlap. Top-level classifier 602 may determine in which feature-space region (or regions) the feature vector for the current input lies and may direct the selected cluster classifiers to process only those neurons associated with the region (or those regions).

[0080] Those skilled in the art will understand that some classification systems of the present invention may use decision trees without cluster classifiers, some may use cluster classifiers without decision trees, some may use both, and others may use neither. Those skilled in the art will further understand that decision trees and cluster classifiers may increase the efficiency of classification systems of the present invention by reducing processing time.

PREFERRED AND ALTERNATIVE PREFERRED EMBODIMENTS

[0081] Those skilled in the art will understand that classifying systems of the present invention may be arranged in series or parallel. For example, in a preferred embodiment, a first character classifier based on Grid features may be arranged in series with a second character classifier based on Hadamard features, in such case, the first classifier classifier a particular bitmap input as one of the known characters or it falls to classify that input. If it falls to classify,

then the second classifier attempts to classify that input.

(1082) In an alternative embodrment, two or more different classifiers may be arranged in parallel. In such case, a voting scheme may be employed to select the appropriate output by comparing the outputs of each different classifier.

[1083] In a preferred embodrment, classification systems and training systems of the present invention perform parallel processing, where each elliptical processing unit may run on a separate computer processor during classification, although those skilled in the art will understand that these systems may use to perform serial processing, in a processing, in a processing, in a processing in the modern demodration, the classification systems and training systems may reside in a reduced instruction set computer (RISC)

processor such as a SPARC 2 processor running on a SPARCstation 2 marketed by Sun Microsystems. [0084] Those skilled in the art will understand that inputs other than character images may be classified with the classification systems of the present invention. In general, any input may be classified as being one of a set of two or more possible outputs, where a no-selection result is one of the possible outputs. For example, the classification systems of the present invention may be used to identify persons based upon images of their faces, imperprints, or even earlobes. Other classification systems of the present invention may be used to identify people from recordings of their voices.

[0085] It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.

Claims

A training method for adjusting a neuron, comprising the steps of:

(a) generating a feature vector (504) representative of a training input, wherein said training input corresponds

FP 1 197 913 R1

to one of a plurality of possible outputs; and

(b) if said neuron encompasses said feature vector (508) and said neuron does not correspond to said training input (506) then spatially adjusting said neuron;

characterised in that

20

said adjusted neuron comprises a boundary defined by two or more adjusted neuron axes of different length, said neuron is in a feature space comprising an existing feature vector, and comprises a boundary defined by two or more neuron axes;

and in that step (b) further comprises the steps of:

10

- (i) selecting at least one of said neuron axes: (ii) calculating the distances along each of said selected neuron axes from the center of said neuron to said
- existing feature vector; and (iii) reducing (510) said selected neuron axes by amounts proportional to said distances and the lengths of
- said selected neuron axes to create said adjusted neuron.
 - 2. The method of claim 1, wherein said training input is representative of a character.
 - 3. The method of claim 1, wherein said information representative of said input comprises a feature vector.
 - 4. The method of claim 3, wherein said feature vector comprises a feature element, wherein said feature element is a Grid feature element or a Hadamard feature element.
- The method of claim 1, wherein said neuron is a hyper-ellipse or a hyper-rectangle in k-dimensional feature space, 25 where k is greater than or equal to two.
 - 6. The method of claim 1, wherein said feature space comprises two or more feature-space axes, and wherein at least one of said adjusted neuron axes is parallel to one of said feature-space axes.
- 7. The method of claim 1, wherein said feature space comprises two or more feature-space axes, and wherein at least one of said adjusted neuron axes is parallel to none of said feature-space axes.
 - 8. The method of claim 1, wherein step (b)(i) comprises the step of selecting all of said neuron axes,
- 9. The method of claim 1, wherein step (b)(i) comprises the step of selecting only one of said neuron axes.
 - 10. The method of claim 3, wherein step (a) comprises the step of determining whether said neuron encompasses said feature vector.
- 11. The method of claim 3, wherein step (a) comprises the step of determining a distance measure from said feature vector to said neuron.
 - 12. An apparatus for adjusting a neuron comprising:
- generating means (504) for generating a feature vector representative of a training input, wherein said training 45 input corresponds to one of a plurality of possible outputs; and
 - adjusting means (510) for spatially adjusting said neuron, If said neuron encompasses said feature vector and said neuron does not correspond to said training input;

50 characterised in that.

said adjusted neuron comprises a boundary defined by two or more adjusted neuron axes of different length; said neuron is in a feature space comprising an existing feature vector and comprises a boundary defined by two or more neuron axes; and in that said adjusting means

- (1) selects at least one of said neuron axes,
 - (2) calculates the distance along each of said selected neuron axes from the center of said neuron to said existing feature vector, and (3) reduces said selected neuron axes by amounts proportional to said distances

and the lengths of said selected neuron axes to create said adjusted neuron.

- 13. The apparatus of claim 12, wherein said training input is representative of a character.
- 5 14. The apparatus of claim 12, wherein said information representative of said input comprises a feature vector.
 - 15. The apparatus of claim 14, wherein said feature vector comprises a feature element, wherein said feature element is a Grid feature element or a Hadamard feature element.
- 16. The apparatus of claim 14, wherein said comparing means determines whether said neuron encompasses said feature vector.
 - The apparatus of claim 14, wherein said comparing means determines a distance measure from said feature vector to said neuron.
 - 18. The apparatus of claim 12, wherein said neuron is a hyper-ellipse or a hyper-rectangle in k-dimensional feature space, where k is greater than or equal to two.
 - 19. The apparatus of claim 12, wherein said feature space comprises two or more feature-space axes, and wherein at least one of said adjusted neuron axes is parallel to one of said feature-space axes.
 - 20. The apparatus of claim 12, wherein said feature space comprises two or more feature-space axes, and wherein at least one of said adjusted neuron axes is parallel to none of said feature-space axes.
- 21. The apparatus of claim 12, wherein said adjusting means selects only one of said neuron axes, said adjusting means calculates a distance in accordance with said selected neuron axis and said existing feature vector, and said adjusting means reduces said selected neuron axis by said distance to create said adjusted neuron.
 - 22. The apparatus of claim 12, wherein said adjusting means selects all of said neuron axes for said reduction.

Patentansprüche

20

35

50

- 1. Trainingsverfahren zum Einstellen eines Neurons, mit den Schritten:
 - (a) Erzeugen eines Merkmalsvektors (504), der eine Trainingseingabe darstellt, die einer von mehreren möglichen Ausgaben entspricht; und
 - (b) wenn das Neuron den Merkmalsvektor (508) einschließt und das Neuron der Trainingseingabe (506) nicht entspricht raumliches Einstellen des Neurons,
 - dadurch gekennzeichnet, dass das eingestellte Neuron eine Grenze aufwelst, die durch zwei oder mehr eingestellte Neuronachsen unterschiedlicher Länge definiert ist,
- wobei sich das Neuron in einem Merkmalsraum mit einem existierenden Merkmalsvektor befindet und eine durch zwei oder mehr Neuronachsen definierte Grenze aufweist,
- 45 und dadurch, dass Schritt (b) außerdem folgende Schritte aufweist:
 - (i) Auswählen zumIndest einer der Neuronachsen:
 - (ii) Berechnen des Abstands von der Neuronmitte zum existierenden Merkmalsvektor längs jeder der ausgewählten Neuronachsen: und
 - (iii) Verkleinern (510) der ausgewählten Neuronachsen um Beträge proportional zu den Abständen und den Längen der ausgewählten Neuronachsen zur Erzeugung des eingestellten Neurons.
 - 2. Verfahren nach Anspruch 1, bei dem die Trainingseingabe einen Buchstaben darstellt.
 - Verfahren nach Anspruch 1, bei dem die die Eingabe darstellende Information einen Merkmaisvektor aufweist.
 - Verfahren nach Anspruch 3, bei dem der Merkmalsvektor ein Merkmalselement aufweist, wobei das Merkmalselement ein Gittermerkmalselement oder ein Hadamard-Merkmalselement ist.

FP 1 197 913 R1

- 5. Verfahren nach Anspruch 1, bei dem das Neuron eine Hyperellipse oder ein Hyperrechteck in k-dimensionalen Merkmalsraum ist, wobei k ≥ 2 ist.
- 6. Verfahren nach Anspruch 1, bei dem der Merkmalsraum zwei oder mehr Merkmalsraumachsen aufweist, wobei zumindest eine der eingestellten Neuronachsen parallel zu einer der Merkmalsraumachsen ist.
 - 7. Verfahren nach Anspruch 1, bei dem der Merkmalsraum zwei oder mehr Merkmalsraumachsen aufweist, wobei zumindest eine der eingestellten Neuronachsen parallel zu keiner der Merkmalsraumachsen ist.
- 8. Verfahren nach Anspruch 1, bei dem Schritt (b) (i) den Schritt des Auswählens aller Neuronachsen aufweist.
 - 9. Verfahren nach Anspruch 1, bei dem der Schritt (b) (i) den Schritt des Auswählens lediglich einer der Neuronachsen aufweist.
- 10. Verfahren nach Anspruch 3, bei dem Schritt (a) den Schritt des Bestimmens, ob das Neuron den Merkmalsvektor einschließt, aufweist,
 - 11. Verfahren nach Anspruch 3. bei dem Schritt (a) den Schritt des Bestimmens eines Abstandsmaßes vom Merkmalsvektor zum Neuron aufweist.
 - 12. Vorrichtung zur Einstellung eines Neurons, mit:

einer Erzeugungseinrichtung (504) zum Erzeugen eines Merkmalsvektors, der eine Trainingseingabe darstellt, wobei die Trainingseingabe einer von mehreren möglichen Ausgaben entspricht; und einer Einrichtung (510) zum räumlichen Einstellen des Neurons, wenn das Neuron den Merkmalsvektor umfasst und das Neuron nicht der Trainingseingabe entspricht;

dadurch gekennzeichnet, dass

25

30

35

50

55

das eingestellte Neuron eine durch zwei oder mehr eingestellten Neuronachsen unterschiedlicher Länge definierte

das Neuron in einem Merkmalsraum mit einem existierenden Merkmalsvektor liegt und eine durch zwei oder mehr Neuronachsen definierte Grenze aufweist.

und dadurch, dass die Einstelleinrichtung

(1) zumindest eine der Neuronachsen auswählt,

(2) den Abstand längs jeder der ausgewählten Neuronachsen von der Neuronmitte zum existierenden Merkmalsvektor berechnet und

(3) die ausgewählten Neuronachsen um Beträge proportional zum Abstand und zur Länge der ausgewählten Neuronachsen verkürzt, um das eingestellte Neuron zu erzeugen.

- 13. Vorrichtung nach Anspruch 12, bei der die Trainingseingabe einen Buchstaben darstellt.
 - 14. Vorrichtung nach Anspruch 12, bei der die die Eingabe darstellende Information einen Merkmalsvektor aufweist.
- 15. Vorrichtung nach Anspruch 14, bei der der Merkmalsvektor ein Merkmalselement aufweist, das ein Gittermerkmalselement oder ein Hadamard-Merkmalselement ist.
 - 16. Vorrichtung nach Anspruch 14, bei der die Vergleichseinrichtung bestimmt, ob das Neuron den Merkmalsvektor umfasst.
 - 17. Vorrichtung nach Anspruch 14, bei der die Vergleichseinrichtung ein Abstandsmaß vom Merkmalsvektor zum Neuron bestimmt
 - 18. Vorrichtung nach Anspruch 12, bei der das Neuron eine Hyperellipse oder ein Hyperrechteck im k-dimensionalen Merkmalsraum ist, wobei k ≥ 2 ist.
 - 19. Vorrichtung nach Anspruch 12, bei der der Merkmalsraum zwei oder mehr Merkmalsraumachsen aufweist und wobei zumindest eine der eingestellten Neuronachsen parallel zu einer der Merkmalsraumachsen ist.

- 20. Vorrichtung nach Anspruch 12, bei der der Merkmalsraum zwei oder mehr Merkmalsraumachsen aufweist und wobei zumindest eine der eingestellten Neuronachsen parallel zu keiner der Merkmalsraumachsen ist.
- 21. Vorrichtung nach Anspruch 12, bei der die Einstelleinrichtung lediglich einer der Neuronachsen auswählt, die Einstelleinrichtung einen Abstand nach Maßgabe der ausgewählten Neuronachse und des existierenden Merkmalsvektors ausrechnet und die Einstelleinrichtung die ausgewählte Neuronachse um diesen Abstand verkürzt, um das eingestellte Neuron zu erzeugen.
- 22. Vorrichtung nach Anspruch 12, bei der die Einstelleinrichtung alle Neuronachsen zur Verkürzung auswählt.

Revendications

15

20

25

25

- 1. Méthode d'apprentissage pour ajuster un neurone, comprenant les étapes suivantes :
 - (a) générer un vecteur à fonctions (504) représentatif d'une entrée d'apprentissage, où ladite entrée d'apprentissage correspond à une pluralité de sorties possibles; et
 - (b) si ledit neurone englobe ledit vecteur à fonctions (508) et ledit neurone ne correspond pas à ladite entrée d'apprentissage (506), alors ajuster spatialement ledit neurone;
 - caractérisée en ce que ledit neurone ajusté comprend une limite définie par deux axes de neurone ajustés ou plus de différentes longueurs :
 - ledit neurone est dans un espace des fonctions comprenant un vecteur à fonctions existant et comprend une limite définie par deux axes de neurone ou plus ;
 - et dans laquelle l'étape (b) comprend en outre les étapes consistant à :
 - (i) sélectionner au moins l'un desdits axes de neurone ;
 - (ii) calculer les distances le long de chacun desdits axes de neurone sélectionnés entre le centre dudit neurone et le vecteur à fonctions existant, et
 - (iii) réduire (510) les dits axes de neurone sélectionnés par des quantités proportionnelles aux dites distances et longueurs des dits axes de neurone afin de créer ledit neurone ajusté.
- 2. Méthode selon la revendication 1, où ladite entrée d'apprentissage est représentative d'un caractère.
- Méthode selon la revendication 1, où ladite information représentative de ladite entrée comprend un vecteur à fonctions.
- Méthode selon la revendication 3, où ledit vecteur à fonctions comprend un élément à fonctions, ce demier étant un élément de Grid ou un élément de Hadamard.
- Méthode selon la revendication 1, où ledit neurone est une hyper-ellipse ou un hyper-rectangle dans l'espace des fonctions k-dimensionnel, où k est supérieur ou égal à deux.
 - 6. Méthode selon la revendication 1, où ledit espace des fonctions comprend deux axes d'espace des fonctions ou plus et où au moins l'un desdits axes de neurone ajustés est parallèle à l'un desdits axes de l'espace des fonctions.
 - Méthode selon la revendication 1, où ledit espace des fonctions comprend deux axes de l'espace des fonctions ou plus et où au moins l'un desdits axes de neurone ajustés n'est parallèle à aucun desdits axes de l'espace des fonctions.
 - 8. Méthode selon la revendication 1, où l'étape (b) (i) comprend l'étape consistant à sélectionner tous lesdits axes de neurone.
 - Méthode selon la revendication 1, où l'étape (b) (i) comprend l'étape consistant à sélectionner seulement un desdits axes de neurone.

- Méthode seion la revendication 3, où l'étape (a) comprend l'étape consistant à déterminer si ledit neurone englobe ledit vecteur à fonctions.
- Méthode selon la revendication 3, où l'étape (a) comprend l'étape consistant à déterminer une mesure de distance entre ledit vecteur à fonctions et ledit neurone.
- 12. Appareil pour ajuster un neurone comprenant :

10

25

30

35

- un moyen de générer (504) pour générer un vecteur à fonctions représentatif d'une entrée d'apprentissage, où ladite entrée d'apprentissage correspond à l'une des pluralité de sorties possibles ; et
- un moyen d'ajuster (510) pour ajuster spatialement ledit neurone, si ledit neurone englobe ledit vecteur à fonctions et ledit neurone ne correspond pas à ladite entrée d'apprentissage;
- caractérisé en ce que ledit neurone ajusté comprend une limite définie par deux axes de neurone ajustés ou plus de différentes longueurs; ledit neurone est un espace des fonctions comprenant un vecteur à fonctions existant et comprend une limite
 - définie par deux axes de neurone ou plus ;
 - et caractérisé en ce que ledit moyen d'ajuster
 - (1) sélectionne au moins l'un desdits axes de neurone,
 - (2) calcule la distance le long de chacun desdits axes de neurone choisis entre le centre dudit neurone et ledit vecteur à fonctions existant, et
 - (3) réduit lesdits axes de neurone choisis par des quantités proportionnelles aux dites distances et aux lonqueurs desdits neurones choisis pour créer ledit neurone ajusté.
 - 13. Appareil selon la revendication 12, dans lequel ladite entrée d'apprentissage est représentative d'un caractère.
 - 14. Appareil selon la revendication 12, dans lequel ladite information représentative de ladite entrée comprend un vecteur à fonctions.
 - 15. Appareil seion la revendication 14, dans lequel ledit vecteur à fonctions comprend un élément à fonctions, dans lequel ledit élément à fonctions est un élément à fonctions de Grid ou un élément à fonctions de Hadamard.
 - 16. Appareil selon la revendication 14, où ledit moyen de comparaison détermine si ledit neurone englobe ledit vecteur à fonctions.
- 40 17. Appareil selon la revendication 14, dans lequel ledit moyen de comparaison détermine une mesure de distance entre ledit vecteur à fonctions et ledit neurone.
 - 18. Appareil selon la revendication 12, dans lequel ledit neurone est une hyper-ellipse ou un hyper-rectangle dans l'espace des fonctions k-dimensionnel, où k est supérieur ou égal à deux.
 - 19. Appareil selon la revendication 12, dans lequel ledit espace des fonctions comprend deux axes d'espace des fonctions ou plus et où au moins l'un desdits axes de neurone ajustés est paraillele à l'un desdits axes d'espace des fonctions.
 - 20. Appareil selon la revendication 12, dans lequel ledit espace des fonctions comprend deux axes de l'espace des fonctions ou plus et où au moins l'un desdits axes de neurone ajustés n'est parallèle à aucun desdits axes de l'espace des fonctions.
- 21. Appareil selon la revendication 12, dans lequel ledit moyen d'ajustement sélectionne seulement un desdits axes de neurone, ledit moyen d'ajustement calcule une distance selon ledit axe de neurone sélectionné et ledit vocteur à fonctions existant, et ledit moyen d'ajustement réduit ledit axe de neurone sélectionné par ladite distance pour créer ledit neurone ajusté.

	pour ladite réduction.		
5			
10			
15			
10			
20			
25			
30			
50			
35			
40			
45			
50			
55			

