

iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed MARL

Xiyang Wu¹, Rohan Chandra², Tianrui Guan¹, Amrit Singh Bedi¹, Dinesh Manocha¹

¹ University of Maryland, College Park ² The University of Texas at Austin

Main Contribution

- A fully decentralized MARL algorithm embedded with a classical trajectory forecasting architecture for intent-aware planning in dense and heterogeneous environments.
- An explicit representation of agents' private incentives, including
- Behavioral Incentive: High-level decision-making strategy that sets planning sub-goals.
- Instant Incentive: Low-level motion planning that executes sub-goals.
- An incentive inference mechanism that allows agents to infer incentives from their opponents solely with their local observations.

Problem Statement

Each vehicle (yellow vehicle) performs decision -making in heterogeneous traffic with its mind over another vehicle (red vehicle) in three aspects:

- Current Observation: What is the current position and velocity of the red vehicle?
- Behavioral Incentive: What's the most likely action of this driver to take next?
- Instant Incentive: How should I execute this sub-goal/high-level action/plan using my controller so that I'm safe and still on track towards my goal?

The behavior incentive biases the motion forecasting by setting planning sub-goals with intention awareness, whereas the instant incentive executes the sub-goals to perform motion planning.

Methodology

- Behavior Incentive Inference: Use historical observation sequences to predict observation sequences in the next few time steps.
- Instant Incentive Inference: Use current observation and behavior incentive inference to generate instant incentives for trajectory prediction.
- Controller: Combine two incentive inferences with current observations for decision making.

Navigation Metrics

	-				
		Approach	Avg. Speed (m/s)	Avg. Survival Time (# Time Steps) ↑	Success Rate (%) ↑
	Mild	QMIX [24] MAPPO [36] IPPO [11] iplan-GAT iplan-BM	21.24 ± 0.09 27.85 ± 0.40 22.63 ± 0.17 22.05 ± 0.11 22.61 ± 0.16	75.98 ± 3.67 48.94 ± 3.11 66.13 ± 4.13 75.54 ± 3.61 64.11 ± 4.28	67.50 ± 6.34 32.81 ± 5.22 49.06 ± 7.35 68.44 ± 6.64 45.63 ± 6.33
		iplan	22.91 ± 0.15	70.56 ± 3.81	68.44 ± 5.86
	Chaotic	QMIX [24] MAPPO [36] IPPO [11] iplan-GAT iplan-BM	27.06 ± 0.47 29.46 ± 0.05 22.28 ± 0.13 20.91 ± 0.13 21.65 ± 0.28	39.38 ± 2.64 42.31 ± 2.43 67.01 ± 3.64 71.24 ± 3.83 63.20 ± 3.51	19.69 ± 3.72 16.25 ± 3.76 42.50 ± 7.12 61.88 ± 6.41 35.31 ± 5.66
		iPLAN	21.61 ± 0.16	76.20 ± 3.33	67.81 ± 5.91

iPLAN has a higher success rate and longer survival time than all other approaches, while it tends to be conservative in its average speed.

Empirical Results

Non-Cooperative Navigation: iPLAN (Orange, DTDE) has higher episodic reward than QMIX (Blue, CTDE), MAPPO (Brown, CTDE), and IPPO (Green, DTDE), in both easy and hard scenarios.

Heterogeneous Highway: iPLAN (Orange, DTDE) has higher episodic reward than QMIX (Blue, CTDE), MAPPO (Brown, CTDE), and IPPO (Green, DTDE), in mild and chaotic traffic.

For More Details

