Linear and Quadratic Approximation Assignment

Author Aaron Tresham

Date 2017-05-29T20:41:28

Project a8975d68-235e-4f21-8635-2051d699f504

Location <u>06 - Linear and Quadratic Approximation Assignment/Linear and Quadratic</u>

Approximation Assignment.sagews

Original

Linear and Quadratic Approximation Assignment.sagews

file

Linear and Quadratic Approximation Assignment

Question 0

Watch the lecture video here.

Did you watch the video? [Type yes or no.]

Question 1

Use linear approximation to estimate the following and give the percent error:

Part a

 $67^{4/3}$

[Note: $64^{4/3}=\left(\sqrt[3]{64}\right)^4=4^4=256$, so use x=64 for your point of tangency.]

1

Part b

 $66^{4/3}$ [Use the same tangent line as part a.]

Is the percent error bigger or smaller than Part a? Why?

Part c

$$\cos\left(\frac{\pi}{7}\right)$$

[Note: $\frac{\pi}{6}$ is close to $\frac{\pi}{7}$, and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$, so use $x = \frac{\pi}{6}$ for your point of tangency.]

Question 2

Consider a function f such that f(5) = 10 and f'(5) = -3. Estimate f(6) using a tangent line.

[Hint: Since I have not given you a formula for f(x), you can't copy and paste the linear approximation code from the notes. Instead, use the tangent line formula and plug in the given numbers.]

Question 3

Use quadratic approximation to estimate $67^{4/3}$ and find the percent error (use the same point of tangency as Question 1). Compare with your result for Question 1, Part a.

Question 4

Use quadratic approximation to estimate $\cos\left(\frac{\pi}{7}\right)$ and find the percent error (use the same point of tangency as Question 1). Compare with your result for Question 1, Part c.