Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського"

Факультет прикладної математики

Кафедра системного програмування і спеціалізованих комп'ютерних систем

ЛАБОРАТОРНА РОБОТА №1

З ДИСЦИПЛІНИ "Бази даних і засоби управління"

TEMA: "Проектування бази даних та ознайомлення з базовими операціями СУБД PostgreSQL"

Виконав: Зорєв М.А Група: КВ-11

Опінка:

Постановка задачі

- 1. Розробити модель «сутність-зв'язок» предметної галузі, обраної студентом самостійно, відповідно до пункту «Вимоги до ЕR-моделі».
- 2. Перетворити розроблену модель у схему бази даних (таблиці) PostgreSQL.
- 3. Виконати нормалізацію схеми бази даних до третьої нормальної форми (3HФ).
- 4. Ознайомитись із інструментарієм PostgreSQL та pgAdmin 4 та внести декілька рядків даних у кожну з таблиць засобами pgAdmin 4.

Вимоги до ER-моделі

- 1. Сутності моделі предметної галузі мають містити зв'язки типу 1:N або N:M.
- 2. Кількість сутностей у моделі 3-4. Кількість атрибутів у кожній сутності: від двох до п'яти
- 3. Передбачити наявність зв'язку з атрибутом.
- 4. Для побудови ER-діаграм використовувати одну із нотацій: Чена, "Пташиної лапки (Crow's foot)", UML.

Предметна галузь лабораторної роботи

Система управління замовленнями їжі.

Посилання на репозиторій Github із файлами лабораторної роботи

https://github.com/carcharodon256/DB LABS.git

Контакт у месенджері Telegram для швидкого зв'язку

@whiteShark816

Вимоги до звіту лабораторної роботи

У звіті щодо пункту №1 завдання має бути:

- перелік сутностей з описом їх призначення;
- графічний файл розробленої моделі «сутність-зв'язок»;
- назва нотації.

У звіті щодо пункту №2 завдання має бути:

- опис процесу перетворення (наприклад, "сутність А було перетворено у таблицю A, а зв'язок R (M:N) зумовив появу додаткової таблиці R1 тощо);
- схему бази даних у графічному вигляді з назвами таблиць (!) та зв'язками між ними, а також необхідно намалювати перетворену ER-діаграму у ТАБЛИЦІ БД! Це означає, що тут не може бути зв'язку N:M, мають бути позначені первинні та зовнішні ключі, обмеження NOT NULL та UNIQUE і внести типи даних атрибутів.

У звіті щодо пункту №3 завдання має бути:

- пояснення (обгрунтування!) щодо відповідності схеми бази даних нормальним формам НФ1, НФ2 та НФ3. Пояснення *полягає у наведенні функціональних залежностей*, що демонструють висновки. У випадку невідповідності надати опис необхідних змін у схемі;
- У випадку проведення змін у схемі бази даних надати оновлену версію схеми, інакше не наводити схему.

У звіті щодо пункту №4 завдання має бути:

- навести копії екрану з pgAdmin4, що відображають назви, типи та обмеження на стовпці (доступне у закладці "Columns" та "Constraints" властивостей "Properties" таблиць дерева об'єктів у pgAdmin4);
- навести копії екрану з pgAdmin4, що відображають вміст таблиць бази даних у PostgreSQL. Таблиці на зображенні обов'язково **повинні мати назву**!

Виконання лабораторної роботи

1. Розробка моделі "сутність-зв'язок обраної предметної галузі"

Перелік основних сутностей предметної галузі та опис їх призначення		
Назва сутності	Призначення	
Client	Зберігає дані про клієнта, який замовив страву: ім'я, прізвище, адресу електронної пошти, номер телефону	
Dish	Зберігає дані про страви, які замовив клієнт: ідентифікатор стави, назву, масу, ціну та обрану кількість порцій	
Order	Зберігає дані про замовлення, яке оформив клієнт: номер замовлення, адресу доставки, дату та час доставки, електронну адресу клієнта, який оформив замовлення та номер телефону кур'єра, який доставляє дане замовлення	
Courier	Зберігає дані про кур'єра, який доставляє замовлення до клієнтів: номер телефону кур'єра, ім'я кур'єра, вид транспорту, яким він користується та рейтинг кур'єра	

Опис зв'язків між сутностями

Опис зв'язку	Вид зв'язку	Пояснення
Order CONTAIN dishes	M : N	Одне замовлення може містити багато страв. Так само одна страва може міститися в багатьох замовленнях
Client MAKES orders	1 : N	Один клієнт може оформити декілька замовлень, але одне замовлення може бути оформлене тільки одним клієнтом
Courier DELIVERS orders	1 : N	Один кур'єр може доставляти багато замовлень, але одне замовлення може бути доставлене лише одним кур'єром

Діаграма "сутність-зв'язок"

Використана нотація: нотація Пітера Чена

2. Перетворення ЕR-діаграми у схему бази даних

Наявні у ER-діаграмі сутності були перетворені на однойменні таблиці схеми бази даних.

Створення основних таблиць

• Створення таблиці Client

• Створення таблиці **Dish**

• Створення таблиці **Order**

• Створення таблиці Courier

Реалізація обов'язкових зв'язків 1: N

• Реалізація зв'язку 1 : N між таблицями Client та Order

• Реалізація зв'язку 1 : N між таблицями Courier та Order

• Реалізація зв'язку 1:N між таблицями **Order** та **Dish**

ER-діаграма, згенерована утилітою pgAdmin4 на основі створених таблиць та зв'язків

3. Нормалізація схеми бази даних

- Перевірка відповідності першій нормальній формі (НФ1) Кожна з 4-х основних таблиць відповідає вимогам НФ1. Кожне значення є атомарним (значення складених атрибутів також можна вважати атомарними, оскільки згідно вимог предметної галузі, не буде потреби у зверненні окремо до кожного простого атрибуту, що є частиною складеного атрибуту (наприклад, до значення атрибуту "Назва вулиці" складеного атрибуту "Адреса доставки")). Відсутність повторень рядків у одній таблиці забезпечується наявністю первинного ключа у кожній таблиці.
- Перевірка відповідності другій нормальній формі (НФ2) Кожна з основних таблиць схеми бази даних відповідає вимогам НФ1, а також у кожній з цих таблиць наявний первинний ключ (див. попередній абзац поточного розділу). Крім того, для всіх таблиць виконується й інша умова їх відповідності НФ2 всі атрибути кожної таблиці, що не є первинними ключами або їх частинами залежать від первинного ключа в цілому, а не від його окремих складових. Останнє не є можливим, оскільки у кожній з таблиць схеми бази даних є лише прості (утворені одним атрибутом) ключі.
 - Перевірка відповідності третій нормальній формі (НФ3)

Кожна з основних таблиць відповідає вимогам НФ2. Перевіримо чи відповідає вона правилу НФ3: кожний неключовий атрибут має нетранзитивно залежати лише від первинного ключа.

Розглянемо функціональні залежності таблиці Client:

PhoneNumber → EmailAddress

PhoneNumber → Name

PhoneNumber → EmailAddress, Name

Розглянемо функціональні залежності таблиці **Dish**:

DishId → Weight

DishId → DishName

 $\underline{\text{DishId}} \rightarrow \text{Price}$

DishId → ServingsAmount

<u>DishId</u> → Weight, DishName, Price, Servings amount

Розглянемо функціональні залежності таблиці Order:

 $\underline{OrderNumber} \rightarrow DeliveryAddress$

<u>OrderNumber</u> → DeliveryDateTime

<u>OrderNumber</u> → ClientEmailAddress

<u>OrderNumber</u> → CourierPhoneNumber

<u>OrderNumber</u> → DeliveryAddress, DeliveryDateTime, ClientEmailAddress,

CourierPhoneNumber

Розглянемо функціональні залежності таблиці Courier:

<u>PhoneNumber</u> → FirstName

<u>PhoneNumber</u> → TransportKind

<u>PhoneNumber</u> → CourierRating

<u>PhoneNumber</u> → FirstName, TransportKind, CourierRating

Неключові атрибути кожної з таблиць нетранзитивно залежать лише від її первинного ключа. Отже, можна стверджувати, що кожна з таблиць відповідає вимогам НФ3.

4. Внесення рядків до таблиць бази даних

• Внесення даних до таблиці Client

• Внесення даних до таблиці **Dish**

• Внесення даних до таблиці **Order**

• Внесення даних до таблиці Courier

