

Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, Xiao Huang Jinan University, The Hong Kong Polytechnic University

 $\mathcal{P}_{\{K_{m,K_{1}}\}}^{db} = \{K^{gold}, K^{gen} \mid \chi_{db}(V^{gold}, V^{gen}) = 0\}$

 $\mathcal{P}^{sql}_{\{K_w, K_l\}} = \{K^{gold}, K^{gen} \mid \chi_{sql}(K^{gold}, Y) = 1, \chi_{sql}(K^{gen}, Y) = 0\}$

 $\mathcal{L}_{\text{PL}}(\pi^{DPO}; \pi^{SFT}) = -\mathbb{E}_{\pi}[\log \sigma(\beta R(K_w) - \beta R(K_l))]$

☐ Then, the DPO training is conducted as further preference learning refinement:

Experiments

	Models	EX		VES		Model	Simp.	Mod.	Chall.	All
		w/o knowledge	w/ DELLM	w/o knowledge	w/ DELLM	GPT-3.5-Turbo GPT-3.5-Turbo + D	35.58 43.09	14.60 18.30	17.61 17.61	27.6 33.3
BIRD	T5-3B	10.37	16.68 (+6.31)	13.62	20.84 (+7.22)	GPT-3.5-Turbo + E	50.27	31.81	20.42	41.9
	GPT-3.5-Turbo	27.64	33.31 (+5.67)	28.64	36.12 (+7.48)	GPT-4	41.05	21.13	21.13	33.2
	GPT-4	33.25	37.94 (+4.69)	35.92	42.15 (+6.23)	GPT-4 + D	47.16	24.18	21.83	37.9
	Claude-2	30.05	35.53 (+5.48)	32.97	39.71 (+6.74)	GPT-4 + E	54.01		31.69	46.6
	GPT-3.5-Turbo + CoT	27.25	32.79 (+5.54)	29.16	35.51 (+6.35)	☐ Compared to h	ا ه اف	-	t anno	otatio
	DAIL-SQL + GPT-4	40.89	45.81 (+4.92)	45.13	51.59 (+6.46)	4 EX 77%		VES	76%	
	MAC-SQL + GPT-4	43.65	48.92 (+5.27)	48.07	54.78 (+6.71)	20%	2			
Spider	GPT-3.5-Turbo	67.89	69.60 (+1.71)	68.33	70.16 (+1.83)	0	0-	219		
	GPT-4	70.02	71.68 (+1.66)	71.03	72.82 (+1.79)	-2 - Improve	ment 24	% 40%	60%	80%
	The improvement bro	☐ Performance	on pa	rtial tr	aining	g dat				

- Contact: hongzijin@stu2020.jnu.edu.cn, xiaohuang@comp.polyu.edu.hk, huangfr@jnu.edu.cn (corresponding author)
- Code: https://github.com/Rcrossmeister/Knowledge-to-SOL Paper: https://arxiv.org/pdf/2402.11517