



# Object Detection on Street View Images: from Panoramas to Geotags

Vladimir A. Krylov

in collaboration with Eamonn Kenny (TCD), Rozenn Dahyot (TCD)







Motivation. Billions of images (by Google, Bing, Mapillary) covering mlns of kms of road.





- ➤ Motivation. Billions of images (by Google, Bing, Mapillary) covering mlns of kms of road.
- > Target. Automatic mapping of stationary recurring objects from Street View.





- Motivation. Billions of images (by Google, Bing, Mapillary) covering mlns of kms of road.
- > Target. Automatic mapping of stationary recurring objects from Street View.
- > State-of-the-art: **Object recognition.**





Mapillary Vistas Dataset



- Motivation. Billions of images (by Google, Bing, Mapillary) covering mlns of kms of road.
- Target. Automatic mapping of stationary recurring objects from Street View.
- > State-of-the-art: Object recognition. Image geolocation.

**Query Image** 

Matching Database





Lin T. et al., CVPR 2015



Weyand T. et al., ECCV 2016





- Motivation. Billions of images (by Google, Bing, Mapillary) covering mlns of kms of road.
- Target. Automatic mapping of stationary recurring objects from Street View.
- > State-of-the-art: Object recognition. Image geolocation. **Object geolocation**.



Fine-Grained Geographic Tree Catalog Wegner, J. et al., CVPR 2016



#### Processing pipeline: semantic segmentation



- Object detection: Semantic segmentation with Fully Convolutional NNs:
  - Introduce extra FP penalty
  - Retrain on one or multiple classes of objects: on Mapillary Vistas, Cityscapes



#### Processing pipeline: monocular depth estimation



#### > Spatial scene analysis:

- Stereo-vision, Structure-from-Motion
  - Requires more data, assumptions.
- Monocular depth estimation
  - Provides approximate accuracies;
  - Requires segmented objects.





Laina I. et al., 3d Vision 2016



#### Processing pipeline: geotagging



- > Strategies to estimate the position of objects from images:
  - Depth-based



- ✓ Single view: sensitivity
- ✓ Single view: false positives
- ✓ Low accuracy: up to 7m error

• Triangulation-based



- ✓ High accuracy
- ✓ Multiple views
- ✓ Matching required



#### Processing pipeline: geotagging

- ➤ We define a **Markov Random Field** (MRF) model over the space of all view-rays intersections:
  - label z=0 if not occupied by object
  - label *z*=1 if occupied
- MRF configuration is characterized by its corresponding energy U. Optimal = minimum of U. Energy terms:
  - Unary term. Consistency with depth.

$$u_1(z) = z \sum_{j=1,2} ||\Delta_j - d_j||$$

Pairwise term. No occlusions. No spread.

$$u_2(z) = z \sum_k z_k \|x - x_k\|$$

o Ray term. Penalize not matched rays.

$$u_3(z) = (1-z) \prod_k (1-z_k)$$

<u>Total energy</u>:

$$\mathcal{U}(\mathbf{z}) = \sum_{i=1}^{N_{\mathcal{Z}}} \left[ \alpha u_1(z_i) + \beta u_2(z_i) + (1 - \alpha - \beta) u_3(z_i) \right]$$

$$\alpha, \beta \geqslant 0, \alpha + \beta \leqslant 1.$$



 $\Delta$  – depth estimates

*d* – triangulated distances

x – Euclidean intersections



#### Processing pipeline: geotagging



- ➤ The geotagging is performed as follows:
  - ✓ Calculate the space of all intersections;
  - ✓ Optimize the MRF model;
  - ✓ Discard non-paired instances;
  - ✓ Cluster the results. Take intra-cluster averages:
    - Sparsity assumption.





# **Processing pipeline: OVERVIEW**



#### Object detection pipeline:

- DL: pixel-level segmentation to identify objects;
- DL: monocular depth (camera-to-object distance) estimation:
  - max distance from camera: 25m;
- GPS-tagging based on triangulation and Markov Random field model:
  - mild object sparsity assumption 1m apart;
- Clustering.



#### **Results: traffic lights**

- Geotagging of traffic lights in Regent str., London, UK:
  - 87 GSV panoramas, 47 out of 50 objects discovered (94% recall)

#### Map view:



#### Quantitative performance:

| Object | #Actual | #Detected | TP | FP | FN | Recall | Precision |
|--------|---------|-----------|----|----|----|--------|-----------|
| *      | 50      | 51        | 47 | 4  | 3  | 94.0%  | 92.2%     |





Results: DEMO www.adaptcentre.ie

- Geotagging of telegraph poles over a 2km road, co. Kildare:
  - 170 GSV panoramas, 37 out of 38 objects discovered (97.4% recall)



We gratefully acknowledge financial support and expertise of eir in producing these results



We have developed an image processing pipeline that:

- Is fully automatic;
- The geotagging accuracy comparable with commercial-range GPS-unit;
- Detects and geotags objects at approx. 1.1 GSV panorama per second rate (~3.000 km in 24h on a desktop PC with 2 GPUs);
- Can accommodate custom detection and depth estimation modules.









# Thank you!

Contact Us
O'Reilly Building
Trinity College Dublin
Dublin 2
Ireland

adaptcentre.ie

