Chapter 28: Gene regulation

Principles of gene regulation

- Multiple potential points of regulation
- Energetic and efficiency concerns
- Transcriptional vs. translational control

Gene regulation mediated by proteins

- Transcription: SOS response
- Translation: ribosomal protein synthesis

Gene regulation mediated by RNA

- Regulatory RNAs in bacteria: sRNA, Riboswitch
- Regulatory RNAs in eukarya: miRNA/siRNA

Control at the level of transcription

Induction of the SOS response in E.coli

control of distantly spaced genes- not operon-based

Requires controlled balance: rRNA vs r-proteins

r-protein must be >rRNA for translational repressionhow does this happen?

nutrients are low, ↓aa synthesis, ↑ uncharged**tRNA**

activates the Stringent response- effectively halts rRNA synthesis

forms ppGpp- 2nd messenger

Figure 28-22 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Gene regulation mediated by RNA

Regulatory RNAs in Bacteria

- sRNAs acting by base pairing
- Riboswitches: sensing metabolites or nutrients

Regulatory RNAs in Eukarya

- miRNA/siRNA: the RNA interference pathway
- an abundance of ncRNAs- transcripts of unknown function??

Small RNA regulators (sRNAs) in bacteria

Well-known long before miRNA/siRNA

- First discovered in early 1980's
- More now: more genomes, computational approaches, transcriptional profiling

Some affect activity of proteins

Selecting targets for regulation by base pairing often negative regulation translational inhibition, mRNA degradation or both often requires RNA chaperone: Hfq

General model for sRNA regulation

multiple targets are possible due to limited complementarity (20-25 nt) Waters and Storz, Cell 136, 615-628

sRNA regulation of the rpoS gene

Riboswitches: response to effector molecules

Abundant mechanism in Bacteria

- up to 4% of B. subtilis genes

Two domains

- Aptamer: binds metabolite

- Expression platform: causes change in expression

Sensitive to changes in concentration of metabolites

- effectors: SAM, lysine, glycine, purines, B12, GlcN6P...

General principles of riboswitch gene regulation

Breaker, Cold Spring Harb Perspect Biol 2018

Aptamer domains: highly conserved sequences

Winkler and Breaker, Ann Rev Micro 2005

Purine riboswitch: recognition by base pairing

Winkler and Breaker, Ann Rev Micro 2005

General principles of riboswitch gene regulation

Breaker, Cold Spring Harb Perspect Biol 2018

Expression platform: rearranging RNA structures

Garst et al, Cold Spring Harb Perspect Biol 2011

Gene regulation mediated by RNA

Regulatory RNAs in Bacteria

- sRNAs acting by base pairing
- Riboswitches: sensing metabolites or nutrients

Regulatory RNAs in Eukarya

- miRNA/siRNA: the RNA interference pathway
- an abundance of ncRNAs- transcripts of unknown function??

Eukaryal small RNAs (miRNA, siRNA)

Lessons from petunias...

"Co-suppression"

Now known as RNA interference (RNAi)

The RNA interference (RNAi) pathway

First described in *C. elegans*: Fire and Mello, 1998

- widespread in higher eukaryotes
- short RNAs (<26nt) escape degradation

Many functions in vivo

- developmental timing
- protection from viral attack (particularly plants)
- control activity of transposons
- formation of heterochromatin

miRNA vs siRNA:

- miRNA: control of endogenous genes (*C. elegans*)
- siRNA: defenders from foreign nucleic acid invasion
- common mechanism/themes for both

Gene silencing by RNA interference

RISC complex (RNP): RNA-induced silencing complex

From Molecular Biology: Craig et al, Oxford University Press, 2nd Ed

Gene silencing by RNA interference

RISC complex: affecting translation or stability

Imperfect pairing with target:

- i.e. miRNA/human mRNA
- leads to translation repression

Perfect pairing with target:

- i.e. siRNA/viral RNA
- leads to cleavage

From Molecular Biology: Craig et al, Oxford University Press, 2nd Ed

miRNA and disease: key regulatory players

Example: miR-34 family of tumor suppressors

Lee YS, Dutta A. 2009. Annu. Rev. Pathol. Mech. Dis. 4:199–227

miRNA and disease: potential therapeutics

Shah et al, EBioMedicine 2016

Or just use it for fun...

51-different RNAi induced mitotic spindle morphologies in Drosophila cells

Goshima et al, Science 2007

E. coli CRISPR-Cas system

The tip of the iceberg: ncRNAs in eukaryotes

"The landscape of long noncoding RNAs in the human transcriptome" (RNA from tumors, normal tissues and cell lines)

lyer et al, Nature Genet 2015

Xist: inactivation of the X-chromosome in females

Hoki et al, Development 2009