Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 15, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 3. Insurance, Collars, and Other Strategies

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

It is possible to mimic a long forward position on an asset by

buying a call + selling a put,

with each option having the same strike price and expiration time.

Ш

A synthetic forward

Example 3.2-1 Working with the S&R index. Suppose that

6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
premium for 1000-strike 6-month put	\$74.201

Draw profit digram for the combined position of a purchased call with a written put, namely,

Solution.

A synthetic long forward contract

We pay the net option premium

We pay the strike price

The actual forward

We pay zero premium

We pay the forward price

Basic Assumption

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

NO ARBITRAGE!

Basic Assumption

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

NO ARBITRAGE!

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}\left(F_{0,T} - K\right)$$

- K: strike pric
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call
- ightharpoonup Put (\cdot, \circ) : the premium for pu
- ▶ F_{0,7}: the lorward price at time I if one enters at time 0 into a long forward position.
- ▶ PV(·): the present value function

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}\left(F_{0,T} - K\right)$$

- ► *K*: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call(\cdot , \circ): the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- $ightharpoonup F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- \triangleright PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call(\cdot , \circ): the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- $ightharpoonup F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$\begin{aligned} \text{PV}(\$1,000 \times 1.02 - \$1,000) &= \text{PV} (1,000 \times (1.02 - 1)) \\ &= \text{PV} (1,000 \times 0.02) \\ &= \frac{1,000 \times 0.02}{1.02} \\ &= \$19.61. \end{aligned}$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$\begin{aligned} \text{PV}(\$1,000 \times 1.02 - \$1,000) &= \text{PV} (1,000 \times (1.02 - 1)) \\ &= \text{PV} (1,000 \times 0.02) \\ &= \frac{1,000 \times 0.02}{1.02} \\ &= \$19.61. \end{aligned}$$

$$\begin{aligned} \operatorname{Call}(K,T) - \operatorname{Put}(K,T) &= \operatorname{PV}\left(F_{0,T} - K\right) \\ &\updownarrow \\ \operatorname{PV}\left(F_{0,T}\right) + \operatorname{Put}(K,T) &= \operatorname{Call}(K,T) + \operatorname{PV}\left(K\right) \end{aligned}$$

Buying the index and buying the put

generate the same payoff as

buying the call and buying a zero-coupon bond (i.e. lending) $\mathrm{PV}(K)$

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$
 \updownarrow

 $PV(F_{0,T}) - Call(K, T) = PV(K) - Put(K, T)$

Writing a covered call has the same profit as lending PV(K) and selling a put

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}\left(F_{0,T}\right) - \operatorname{PV}\left(K\right)$$

Position	Meaning	equivalent to
Inuring a long position (floors)		
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(\textit{K},\textit{T}) - \operatorname{Put}(\textit{K},\textit{T}) = \operatorname{PV}\left(\textit{F}_{0,\textit{T}}\right) - \operatorname{PV}\left(\textit{K}\right)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	
Covered put writing		

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound – Put
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound – Put
Covered put writing	−Index − Put	

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound – Put
Covered put writing	-Index - Put	- Bound - Call