The intuition behind quantile regression

Prof. Alex COAD

$$y_i = a + bx_i + \varepsilon_i$$

- If we don't know anything about x, what is our best estimate of y?
- The mean of y: \bar{y}
 - Known as the unconditional mean
- If we do know the value of x, what is our best estimate of y?
 - The conditional mean of y (i.e. conditional on x): E(y|x)

The unconditional mean is our best estimate of y, if we don't know x

```
> 
> # the mean of y
> mean(mydata$y)
[1] 32.42825
> plot(y~x, data=mydata)
> abline(h=mean(mydata$y), lty=2)
>
```


But if we do know x...

- our best estimate of y is the conditional mean
- E(y|x)

```
> # the CONDITIONAL mean of y (conditional on x)
> summary(lm(y~x, data=mydata))
Call:
lm(formula = v \sim x, data = mydata)
Residuals:
            1Q Median
    Min
-12.402 -4.215 -1.378
                        4.881 13.185
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.4855
                        3.1417 4.611 1.21e-05 ***
             1.8621
                        0.3192 5.833 7.01e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.392 on 98 degrees of freedom
Multiple R-squared: 0.2577, Adjusted R-squared: 0.2501
F-statistic: 34.03 on 1 and 98 DF, p-value: 7.009e-08
> plot(y~x, data=mydata)
> abline(lm(y~x, data=mydata))
```


Unconditional quantiles

Unconditional median

• 50% of observations are above the median

Unconditional 90% quantile

• 10% of observations are above the line, if τ =0.9

OLS gives us the conditional mean

Median regression

- Conditional median
- 50% of observations are above the median

Quantile regression

- Conditional quantiles
 - Median regression as a special case, where τ =0.5
 - 10% of observations are above the line, if τ =0.9

Remember the OLS line of best fit

 OLS: Minimize the sum of SQUARES of residuals

Remember the OLS line of best fit

- OLS: Minimize the sum of SQUARES of residuals
- Median regression: Minimize the sum of absolute values of residuals
- Median (unlike mean): 50% of observations must be above, 50% below
- Median regression (unlike OLS): 50% of observations must be above the line of best fit, 50% must be below

Quantile regression: background

- OLS regressions model the (conditional) mean of the dependent variable
- We could calculate from the fitted regression line the value that y
 would take for any values of the explanatory variables
 - "y conditional on x"
- But this would be an extrapolation of the behaviour of the relationship between y and x at the mean to the remainder of the data
 - "the average effect for the average firm" (if you use firm-level data)
- Quantile regression models the entire conditional distribution of y (conditional on the explanatory variables)

Quantile regression: assumptions

- Quantile regression assumes that the error terms are independently distributed and homoscedastic
 - Errors need not be normally distributed
 - Quantile regression & median regression are robust to outliers on the DV that tend to $\pm \infty$
 - Quantile regression is a "semi-parametric" technique since no distributional assumptions are required
 - Semi-parametric, not non-parametric, because we assume the regression model is linear

Quantiles: τ

- Quantiles must lie between 0 and 100%
- Common choices for results tables are: 10%, 25%, 50%, 75%, 90%

- $\tau = 0.5$: the median
- $\tau = 0.99$? Keep in mind the size of your dataset!
 - τ = 0.99 means that only 1% of your observations are above the line of best fit

τ as the "fulcrum": here $\tau = 25\%$

- QR uses all observations
 - But different weights to datapoints above & below the line of best fit
- We can't choose $\tau = 0\%$ and $\tau = 100\%!$

τ as the "fulcrum": here τ = 25%

• When $\tau = 25\%$, points below the best-fit line get 3x higher weights than those above

Analysis of quantiles: how not to do it

- Possible alternative to quantile regression?
- Partition the data into subsamples, and run separate regressions on each
 - E.g., drop the bottom 90% of observations on (conditional) y, and the corresponding data points for the x's, and run an OLS regression on the remainder
- However, this could lead to severe sample selection biases
- Also, you throw away your observations
 - smaller dataset, less statistical power
- Quantile regression does not partition the data
- All observations are used in the estimation of the parameters for every quantile
 - but given different weights

Quantile regression is less sensitive than OLS to outliers on y

```
> 
> # let's manually introduce an outlier in row 5
> mydata$y[5] <- -10
> head(mydata)
```

- The median regression solution changes a bit...
 - Model rq.1: $\hat{b} = 2.132$
 - Model rq.2: $\hat{b} = 2.208$
- ... but not as much as OLS
 - Model ols.1: $\hat{b} = 1.862$
 - Model ols.2: $\hat{b} = 2.159$

References

• Koenker R., Hallock K.F. (2001). Quantile Regression. Journal of Economic Perspectives, 15 (4), 143-156.