FIT1043 Introduction to Data Science Module 3: Data Types and Storage Lecture 6

Monash University

Unit Schedule: Modules

Module	Week	Content	
1.	1	overview and look at projects	
	2	(job) roles, and the impact	
2.	3	data business models	
	4	application areas and case studies	
3.	5	characterising data and "big" data	
	6	processing big data sources and case studies	
4.	7	resources and standards	
	8	resources case studies	
5.	9	data analysis theory	
	10	data analysis process	
6.	11	issues in data management	
	12	data management frameworks	

Discussion: R

- Powerful language for visualising and building predictive models of data
- Very easy to use with lots of inbuilt functionality.
- Great for exploratory data analysis
- ▶ Not as scalable as programming languages: Java, Python,

Discussion: Assessment

- First assignment due in Week 8.
- Are there any questions about the assignment?

Big Data Processing (ePub section 3.4)

processing data at scale, especially for analysis

- databases
 - storing and accessing data
- distributed processing
 - breaking up computation to scale it up

Business Context

- businesses function in a continuously changing environment:
 - fixed formats as per Relational Database Management System (RDBMS) not suitable
- businesses function in a continuously changing environment:
 - usage varies, requires complex analytical queries
- need to reach insights faster and act on them in real time
 - stream processing

Big Data Processing: Databases

storing and accessing data

SQL Review

- Relational Database Management Systems (RDBMS)
- SQL ::= structured query language

```
UPDATE clause - UPDATE country

SET clause - SET population = population + 1

MHERE clause - WHERE name = 'USA';

Predicts

Predicts
```

- rather like large scale set of Excel spreadsheets with better indexing and retrieval
- transaction oriented with support for throughput, correctness, distribution, ...

JSON Example

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
  "streetAddress": "21 2nd Street".
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office".
    "number": "646 555-4567"
"children": [],
"spouse": null
```

- example from Wikipedia
- no fixed format
- semi-structured, key-value pairs, hierarchical
- "friendly" alternative to XML
- self-documenting structure
- example, EventRegistry file

Graph Database Example

- example graph
- example content FreeBase page for "Arnold Schwarzenegger"
- example content format <u>FreeBase extract</u>
- stores graph, commonly as triples, subject, verb, object
- commonly used to store Linked Open Data

Database Background Concepts

in-database analytics: the analytics is done within the DB

in-memory database: the DB content resides memory

cache: data stored in-memory

key-value: value accessible by key, e.g., hash table

information silo: an insular information system incapable of reciprocal operation with other, related information systems

- if two big banks merge, then initially their RDBMSs will be siloed
- in a big insurance company, auto and home insurance customer RDBMSs may be siloed

Database Background Concepts, cont.

Many NoSQL and SQL DBs offer:

- large scale, distributed processing
- robustness
- general query languages
- some notion of consistencye.g. "eventually" as nodes spread updates

Beyond SQL Databases

Туре	Examples	Notes
RDBMS	MySQL,	SQL
	MSSQL Server	
Object DB	Zope,	navigate network
	Objectivity	
Doc. DB	MongoDB,	JSON like, Javascript like
	CouchDB	queries
key-val cache	Memcached,	in-memory
	<u>Coherence</u>	
key-val store	Aerospike,	not in-memory but highly opti-
	<i>HyperDex</i>	mised
tabular key-val	<u>Cassandra</u> ,	relational-like, "wide column
	<u>HBase</u>	store"
graph DB	<u>Neo4j</u> ,	RDF, SPARQL,
	OrientDB	

Beyond SQL Databases (NoSQL)

- NoSQL databases offer a rich variety beyond traditional relational.
- Many target web applications.
- ► See blog post by Eric Knorr 19/11/2012 on Infoworld.com, "The wild, crazy world of databases"
- ► See blog post by Fabian Pascal 12/17/2015 on AllAnalytics.com,
 - "Data Fundamentals for Analysts: Documents and Databases".

Overview: Databases

Figure 4: Data Storage Technologies

Overview: Processing

Figure 5: Information Flow

Interactive: bringing humans into the loop

Streaming: massive data streaming through system with little

storage

Batch: data stored and analysed in large blocks,

"batches," easier to develop and analyse

Big Data Processing: Distributed processing

breaking up computation to scale it up

Processing Background Concepts

in-memory: in RAM, i.e., not going to disk

parallel processing: performing tasks in parallel

distributed computing: across multiple machines

multi-threaded processing: multiple threads on the one

machine (usually shared memory)

scalability: to handle a growing amount of work; to be

enlarged to accommodate growth (not just "big")

data parallel: processing can be done independently on

separate chunks of data

yes: process all documents in a collection to extract

names

no: convert a wiring diagramme into a physical design

(optimisation)

Distributed Analytics

- legacy systems provide powerful statistical tools on the desktop
 - SAS, R, Matlab

but often-times without distributed or multi-processor support

- supporting distributed/multi-processor computation requires special redesign of algorithms
- in-database analytics systems intended to support this
- e.g. MADLib from Pivotal and MLLib from Spark integrates with their distributed SQL;

Map-Reduce

Simple distributed processing framework developed at Google

- published by Dean and Ghemawat of Google in 2004
- intended to run on commodity hardware; so has fault-tolerant infrastructure
- from a distributed systems perspective, is quite simple

Map-Reduce Example

for a simple word-count task: (1) divide data across machines (2) map() to key-value pairs (3) sort and merge() identical keys

Map-Reduce, cont.

- requires simple data parallelism followed by some merge ("reduce") process
- stopped using by Google probably in 2005
- ▶ Google now uses <u>"Cloud Dataflow"</u> (and <u>here</u>), available commercially, as open source

Hadoop

Open-source Java implementation of Map-Reduce

- originally developed by Doug Cutting while at Yahoo!
- architecture:

Common: Java libraries and utilities

YARN: job scheduling and cluster management

HDFS: Hadoop Distributed File System

MapReduce: core paradigm

- huge tool ecosystem
- well passed the peak of the hype curve

Spark

- another (open source) Apache top-level project at *Apache Spark*
- developed at <u>AMPLab</u> at UC Berkeley
- builds on Hadoop infrastructure (HDFS, etc.)
- interfaces in Java, Scala, Python, R
- provides in-memory analytics
- works with some of the Hadoop ecosystem

Next: Module 4 Data Resources, Processes, Standards and Tools