第 9 章 b: 偏导数与全微分

数学系 梁卓滨

2016-2017 **学年** II

Outline

1. 偏导数

2. 全微分

We are here now...

1. 偏导数

2. 全微分

• 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?

- 对一元函数 y = f(x): 导数 y' = f'(x)←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导

- 对一元函数 y = f(x): 导数 y' = f'(x)←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导

$$\frac{\partial z}{\partial x}$$
 或 z'_x 或 z_x 或 f_x 对 x 偏导数

- 对一元函数 y = f(x): 导数 y' = f'(x) ←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

- 对一元函数 y = f(x): 导数 y' = f'(x) ←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z'_x 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

- 对一元函数 y = f(x): 导数 y' = f'(x)←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_{x} = \frac{\partial z}{\partial y} = 0$$

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_{x} = 2xy + \frac{\partial z}{\partial y} = 0$$

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_x = 2xy + 2$$

$$\frac{\partial z}{\partial y} =$$

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z_x' 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_x = 2xy + 2$$
$$\frac{\partial z}{\partial y} = (x^2y + 2x + y + 1)'_y =$$

- 对一元函数 y = f(x): 导数 $y' = f'(x) \longleftrightarrow$ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z'_x 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_{x} = 2xy + 2$$
$$\frac{\partial z}{\partial y} = (x^2y + 2x + y + 1)'_{y} = x^2 + 2x + y + 2x$$

- 对一元函数 y = f(x): 导数 y' = f'(x)←→ 变化率
- 对二元函数 z = f(x, y): 导数?
 - 1. 固定 y, 对 x 求导: z = f(x, y) 关于 x 的变化率

$$\frac{\partial z}{\partial x}$$
 或 z'_x 或 z_x 或 f_x 对 x 偏导数

2. 固定 x, 对 y 求导: z = f(x, y) 关于 y 的变化率

$$\frac{\partial z}{\partial y}$$
 或 z'_y 或 z_y 或 f_y 对 y 偏导数

$$\frac{\partial z}{\partial x} = (x^2y + 2x + y + 1)'_{x} = 2xy + 2$$
$$\frac{\partial z}{\partial y} = (x^2y + 2x + y + 1)'_{y} = x^2 + 1$$

例设 $z = f(x, y) = e^{xy} + 2xy^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)_x' = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_{x} = (e^{xy})'_{x} + (2xy^2)'_{x} =$$

$$\frac{\partial z}{\partial y} =$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + \frac{\partial z}{\partial y} = 0$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)_x' = (e^{xy})_x' + (2xy^2)_x' = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} =$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y =$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y =$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 2y^2$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

__ ∂*y*

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例 设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = \frac{\partial z}{\partial y}$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例 设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (2y\sin(3x))_{x}' = 2y(\sin(3x))_{x}' = \frac{\partial z}{\partial y}$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例 设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

__ ∂*V*

$$\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = 2y(\sin(3x))_x' = 2y \cdot 3\cos(3x) = 0$$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设 $z = f(x, y) = 2y \sin(3x)$,求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

解 $\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = 2y(\sin(3x))_x' = 2y \cdot 3\cos(3x) = 6y\cos(3x)$ ∂Z __ ∂*V*

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解 $\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = 2y(\sin(3x))_x' = 2y \cdot 3\cos(3x) = 6y\cos(3x)$ $\frac{\partial z}{\partial v} = (2y\sin(3x))'_y =$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解 $\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = 2y(\sin(3x))_x' = 2y \cdot 3\cos(3x) = 6y\cos(3x)$ $\frac{\partial z}{\partial y} = (2y\sin(3x))'_y = (2y)'_y \cdot \sin(3x) =$

例设
$$z = f(x, y) = e^{xy} + 2xy^2$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$\frac{\partial z}{\partial y} = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

例设
$$z = f(x, y) = 2y \sin(3x)$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解 $\frac{\partial z}{\partial x} = (2y\sin(3x))_x' = 2y(\sin(3x))_x' = 2y \cdot 3\cos(3x) = 6y\cos(3x)$ $\frac{\partial z}{\partial y} = (2y\sin(3x))'_y = (2y)'_y \cdot \sin(3x) = 2\sin(3x)$

解

$$u_x =$$

$$u_y =$$

$$u_z =$$

例 求三元函数
$$u = xyz + \frac{z}{x}$$
 的全部一阶偏导数

$$u_X = (xyz + \frac{z}{x})_X' =$$

$$u_y =$$

$$u_z =$$

例 求三元函数
$$u = xyz + \frac{z}{x}$$
 的全部一阶偏导数

$$u_x = (xyz + \frac{z}{x})'_x = (xyz)'_x + (\frac{z}{x})'_x =$$

$$u_y =$$

$$u_z =$$

例 求三元函数
$$u = xyz + \frac{z}{x}$$
 的全部一阶偏导数

$$u_x = (xyz + \frac{z}{x})'_x = (xyz)'_x + (\frac{z}{x})'_x = yz$$

$$u_y =$$

$$u_z =$$

$$u_x = (xyz + \frac{z}{x})_x' = (xyz)_x' + (\frac{z}{x})_x' = yz - \frac{z}{x^2}$$

$$u_y =$$

$$u_z =$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$
$$u_{y} = (xyz + \frac{z}{x})'_{y} =$$

$$u_z =$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} =$$

$$u_{z} =$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{z} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{z} = (xyz + \frac{z}{x})'_{z} = xz$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{z} = (xyz + \frac{z}{x})'_{z} = (xyz)'_{z} + (\frac{z}{x})'_{z} = xz$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{z} = (xyz + \frac{z}{x})'_{z} = (xyz)'_{z} + (\frac{z}{x})'_{z} = xy$$

$$u_{x} = (xyz + \frac{z}{x})'_{x} = (xyz)'_{x} + (\frac{z}{x})'_{x} = yz - \frac{z}{x^{2}}$$

$$u_{y} = (xyz + \frac{z}{x})'_{y} = (xyz)'_{y} + (\frac{z}{x})'_{y} = xz$$

$$u_{z} = (xyz + \frac{z}{x})'_{z} = (xyz)'_{z} + (\frac{z}{x})'_{z} = xy + \frac{1}{x}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: $f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量:

$$\Delta_X z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$$

- z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) f(x_0, y_0)$
- z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏导数:

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏导数:

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数:
$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数:

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x \to x_0}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数: $(x$ 方向的导数)
$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x = x_0}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数: $(x$ 方向的导数)
$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x = x_0}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数: $(x$ 方向的导数)

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x = x_0}$$

$$\frac{\partial z}{\partial x}$$
 z'_{x} z_{x}

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 x 的偏导数: $(x$ 方向的导数)
$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

$$\int_{0}^{\infty} \frac{1}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x}$$
$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x = x_0}$$

$$\frac{\partial Z}{\partial x}\Big|_{\substack{x=x_0'\\y=y_0}}$$

$$Z_{x}'\Big|_{\substack{x=x_0\\y=y_0}}$$

$$Z_X \Big|_{\substack{x=x_0\\y=y_0}}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏导数: (x 方向的导数)

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x \to x}$$

偏导数记号:

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=x_0'\\y=y_0}}$$

$$\frac{\partial f}{\partial x}$$

$$Z_x'\Big|_{\substack{x=x_0\\y=y_0}},$$

 $Z_X \Big|_{\substack{x=x_0\\y=y_0}}$

$$f_{\mathsf{X}}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏增量: (x 方向的改变量) $\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 x 的偏导数: (x) 方向的导数)

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
$$= \frac{d}{dx} [f(x, y_0)] \Big|_{x \to x}$$

记号:
$$\frac{\partial z}{\partial x}\Big|_{\substack{x=x_0'\\y=y_0}}, \qquad z_x'\Big|_{\substack{x=x_0'\\y=y_0}}, \qquad z_x\Big|_{\substack{x=x_0\\y=y_0}}$$

$$\frac{\partial f}{\partial x}(x_0, y_0), \qquad f_x'(x_0, y_0), \qquad f_x(x_0, y_0)$$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: $f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: $\Delta_y z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

- z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y) 方向的改变量) $\Delta_y z = f(x_0, y_0 + \Delta y) f(x_0, y_0)$
- z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数:

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y) 方向的改变量) $\Delta_y z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数:

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 y 的偏导数:
$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 y 的偏导数:

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y = y_0}$$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 y 的偏导数: (y) 方向的导数)
$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y 方向的改变量) $\Delta_y z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

•
$$z = f(x, y)$$
 在点 (x_0, y_0) 关于 y 的偏导数: (y) 方向的导数)
$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y \to y_0}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y 方向的改变量) $\Delta_y z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数: (y) 方向的导数)

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y = y_0}$$

$$\frac{\partial Z}{\partial V}$$
 Z'_{y} Z_{y}

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y 方向的改变量) $\Delta_y z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数: (y) 方向的导数 $\Delta_v z$ $f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y = y_0}$$

$$\frac{\partial Z}{\partial y}\Big|_{\substack{x=x_0\\y=y_0}}$$

$$Z_y'\Big|_{\substack{x=x_0\\y=y_0}}$$

$$Z_y \Big|_{\substack{x=x_0\\y=y_0}}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y) 方向的改变量) $\Delta_{V}z = f(x_{0}, v_{0} + \Delta v) - f(x_{0}, v_{0})$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数: (y 方向的导数)

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y \to y_0}$$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏增量: (y) 方向的改变量) $\Delta_{v}z = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

• z = f(x, y) 在点 (x_0, y_0) 关于 y 的偏导数: (y) 方向的导数)

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$
$$= \frac{d}{dy} [f(x_0, y)] \Big|_{y \to y_0}$$

数记号:
$$\frac{\partial z}{\partial y}\Big|_{\substack{x=x_0'\\y=y_0}} z_y'\Big|_{\substack{x=x_0\\y=y_0}} z_y\Big|_{\substack{x=x_0\\y=y_0}} z_y\Big|_{\substack{x=x_0\\y=y_0}} dy$$

解法一

$$\frac{\partial z}{\partial x} =$$

$$\frac{\partial Z}{\partial y} =$$

解法一

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial y} =$$

$$\frac{\partial Z}{\partial X}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=2\\z=2}} = \frac{\partial Z}{\partial y}\Big|_$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})_x' = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

$$\frac{\partial Z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=2\\z=2}} = \frac{\partial Z}{\partial y}\Big|_$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})_x' = (xy)_x' + (\frac{x}{y})_x' = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

$$\frac{\partial Z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{\partial z}{\partial y} = 0$$

$$\frac{\partial Z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})_x' = (xy)_x' + (\frac{x}{y})_x' = y + \frac{1}{y}$$

$$\frac{\partial z}{\partial y} =$$

$$\frac{\partial Z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{\partial Z}{\partial y}\Big|_{\substack{x=1\\y=1}} = \frac{\partial Z}{\partial y}\Big|_$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})_x' = (xy)_x' + (\frac{x}{y})_x' = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} =$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} =$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})_x' = (xy)_x' + (\frac{x}{y})_x' = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} =$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\z=2}} =$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{1}{y}$$

$$\frac{\partial z}{\partial y} =$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=2}} = \frac{1}{y} + \frac{1}{y} = \frac{1}{y}$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_x = (xy)'_x + (\frac{x}{y})'_x = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_y =$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{1}{y} = \frac{1}{y}$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_x = (xy)'_x + (\frac{x}{y})'_x = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_y = (xy)'_y + (\frac{x}{y})'_y =$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{1}{y} = \frac{1}{y}$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_x = (xy)'_x + (\frac{x}{y})'_x = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_y = (xy)'_y + (\frac{x}{y})'_y = x$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{1}{y} = \frac{1}{y}$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_{y} = (xy)'_{y} + (\frac{x}{y})'_{y} = x - \frac{x}{y^{2}}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{1}{y} = \frac{1}{y}$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_{y} = (xy)'_{y} + (\frac{x}{y})'_{y} = x - \frac{x}{y^{2}}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = (x - \frac{x}{y^2})\Big|_{\substack{x=2\\y=1}} =$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_{y} = (xy)'_{y} + (\frac{x}{y})'_{y} = x - \frac{x}{y^{2}}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = (x - \frac{x}{y^2})\Big|_{\substack{x=2\\y=1}} = 2 - \frac{2}{1} = 2$$

解法一

$$\frac{\partial z}{\partial x} = (xy + \frac{x}{y})'_{x} = (xy)'_{x} + (\frac{x}{y})'_{x} = y + \frac{1}{y}$$
$$\frac{\partial z}{\partial y} = (xy + \frac{x}{y})'_{y} = (xy)'_{y} + (\frac{x}{y})'_{y} = x - \frac{x}{y^{2}}$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = (y + \frac{1}{y})\Big|_{\substack{x=2\\y=1}} = 1 + \frac{1}{1} = 2$$

$$\frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = (x - \frac{x}{y^2})\Big|_{\substack{x=2\\y=1}} = 2 - \frac{2}{1} = 0$$

$$\left. \frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} \left[f(x, y_0) \right] \right|_{x = x_0},$$

例 设
$$z = xy + \frac{x}{y}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和在点 (2, 1) 处的偏导数值

$$\frac{\partial z}{\partial x}(x_0, y_0) = [f(x, y_0)] \qquad ,$$

$$\left. \frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} \left[f(x, y_0) \right] \right|_{x = x_0},$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

解法二 利用

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = [f(x_0, y)]$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

例 设
$$z = xy + \frac{x}{y}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和在点 (2, 1) 处的偏导数值

 $\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$

例 设
$$z = xy + \frac{x}{y}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和在点 (2, 1) 处的偏导数值

 $\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$

所以
$$f(x, 1) = 2x$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] =$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} \left[f(x, y_0) \right] \bigg|_{x = x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} \left[f(x_0, y) \right] \bigg|_{y = y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\Rightarrow \frac{\partial z}{\partial x}\Big|_{x=2} = \frac{d}{dx}[f(x, 1)]\Big|_{x=2} = 2,$$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\Rightarrow \frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{d}{dx}[f(x, 1)]\Big|_{\substack{x=2}} = 2,$$

f(2, y)

例 设
$$z = xy + \frac{x}{y}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和在点 (2, 1) 处的偏导数值

解法二利用
$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\Rightarrow \frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{d}{dx}[f(x, 1)]\Big|_{\substack{x=2}} = 2,$$

 $f(2, y) = 2y + \frac{2}{y}$

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \bigg|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$$

$$\Rightarrow \frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{d}{dx}[f(x, 1)]\Big|_{x=2} = 2,$$

$$f(2, y) = 2y + \frac{2}{y} \Rightarrow \frac{d}{dy}[f(2, y)] =$$

解法二 利用
$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$$

所以
$$f(x, 1) = 2x \Rightarrow \frac{d}{dx} [f(x, 1)] = 2$$
$$\Rightarrow \frac{\partial z}{\partial x} \Big|_{\substack{x=2\\y=1}} = \frac{d}{dx} [f(x, 1)] \Big|_{\substack{x=2}} = 2,$$
$$f(2, y) = 2y + \frac{2}{y} \Rightarrow \frac{d}{dy} [f(2, y)] = 2 - \frac{2}{y^2}$$

 $f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$

 $f(2, y) = 2y + \frac{2}{y} \implies \frac{d}{dy}[f(2, y)] = 2 - \frac{2}{v^2}$

 $\Rightarrow \frac{\partial z}{\partial x}\Big|_{\substack{x=2\\y=1}} = \frac{d}{dx} [f(x, 1)]\Big|_{\substack{x=2}} = 2,$

 $\left. \frac{d}{dy} [f(2, y)] \right|_{y=1} = 0.$

所以

 $\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$

解法二 利用

偏导数与全微分

 $f(x, 1) = 2x \Rightarrow \frac{d}{dx}[f(x, 1)] = 2$

 $f(2, y) = 2y + \frac{2}{y} \implies \frac{d}{dy}[f(2, y)] = 2 - \frac{2}{v^2}$

所以

$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = \frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0}$$

$\Rightarrow \frac{\partial z}{\partial y}\Big|_{\substack{x=2\\y=1}} = \frac{d}{dy} [f(2, y)]\Big|_{y=1} = 0.$

 $\Rightarrow \frac{\partial z}{\partial x}\Big|_{\substack{x=2\\ x=2}} = \frac{d}{dx} [f(x, 1)]\Big|_{\substack{x=2}} = 2,$

例设 $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$,求 $f_x(0, 0), f_y(0, 0)$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_x(0, 0), f_y(0, 0)$

解

$$f_{x}(0, 0)$$

$$f_y(0, 0)$$

例设 $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$,求 $f_x(0, 0), f_y(0, 0)$

$$f_X(0, 0)$$
 $f(x, 0)$

$$f_y(0, 0)$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_x(0, 0), f_y(0, 0)$

$$f_{x}(0, 0) = \frac{d}{dx}[f(x, 0)]\Big|_{x=0}$$

$$f_{V}(0, 0)$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_{X}(0, 0) = \frac{d}{dx}[f(x, 0)]\Big|_{x=0} = \frac{d}{dx}[0]\Big|_{x=0}$$

$$f_{V}(0, 0)$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_x(0, 0), f_y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_{v}(0, 0)$$

章 b: 偏导数与全微分

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_{X}(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_{V}(0, 0) \qquad f(0, y)$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_{x}(0, 0) = \frac{d}{dx}[f(x, 0)]\Big|_{x=0} = \frac{d}{dx}[0]\Big|_{x=0} = 0,$$

$$f_{y}(0, 0) = \frac{d}{dy}[f(0, y)]\Big|_{x=0}$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_Y(0, 0) = \frac{d}{dy} [f(0, y)] \Big|_{x=0} = \frac{d}{dy} [0] \Big|_{y=0}$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_Y(0, 0) = \frac{d}{dy} [f(0, y)] \Big|_{x=0} = \frac{d}{dy} [0] \Big|_{x=0} = 0,$$

例设
$$f(x, y) = \begin{cases} \frac{\lambda y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_Y(0, 0) = \frac{d}{dy} [f(0, y)] \Big|_{x=0} = \frac{d}{dy} [0] \Big|_{y=0} = 0,$$

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0,$$

$$f_Y(0, 0) = \frac{d}{dy} [f(0, y)] \Big|_{x=0} = \frac{d}{dy} [0] \Big|_{y=0} = 0,$$

注 偏导数存在 ≯ 连续

(上述 f(x, y) 在 (0, 0) 处存在偏导数 $f_x(0, 0)$ 和 $f_y(0, 0)$,但在 (0, 0) 处不连续)

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_x(0, 0), f_y(0, 0)$

$$\begin{aligned} f_X(0, 0) &= \frac{d}{dx} [f(x, 0)] \Big|_{x=0} = \frac{d}{dx} [0] \Big|_{x=0} = 0, \\ f_Y(0, 0) &= \frac{d}{dy} [f(0, y)] \Big|_{x=0} = \frac{d}{dy} [0] \Big|_{x=0} = 0, \end{aligned}$$

注 偏导数存在 ≯ 连续 (上述 f(x, y) 在 (0, 0) 处存在偏导数 $f_x(0, 0)$ 和 $f_v(0, 0)$,但在

(上述
$$f(x, y)$$
 在 $(0, 0)$ 处存在偏导数 $f_x(0, 0)$ 和 $f_y(0, 0)$,但在 $(0, 0)$ 处不连续)

例设
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
,求 $f_X(0, 0), f_Y(0, 0)$

$$f_X(0, 0) = \frac{d}{dx}[f(x, 0)]\Big|_{x=0} = \frac{d}{dx}[0]\Big|_{x=0} = 0,$$

$$f_Y(0, 0) = \frac{d}{dy}[f(0, y)]\Big|_{x=0} = \frac{d}{dy}[0]\Big|_{x=0} = 0,$$

注 偏导数存在 ≯ 连续

(上述 f(x, y) 在 (0, 0) 处存在偏导数 $f_x(0, 0)$ 和 $f_v(0, 0)$,但在

(0,0) 处不连续)

例 求 $z = e^{xy} + 2xy^2$ 全部二阶偏导数

解

$$z_x =$$

$$z_y =$$

$$z_x =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

例 求
$$z = e^{xy} + 2xy^2$$
 全部二阶偏导数

$$z_x = (e^{xy} + 2xy^2)_x' =$$
$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

例 求
$$z = e^{xy} + 2xy^2$$
 全部二阶偏导数

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)_x' = (e^{xy})_x' + (2xy^2)_x' = ye^{xy} + 2y^2$$

 $z_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 2y^2$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{vx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)_x' =$$

$$z_{xy} =$$

$$z_{vx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

 $z_{xy} =$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)_x' = (e^{xy})_x' + (2xy^2)_x' = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)_y' = (e^{xy})_y' + (2xy^2)_y' = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + z_{yx} = z_{yy} = z_{yy} = z_{yy}$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)_x' = (e^{xy})_x' + (2xy^2)_x' = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)_y' = (e^{xy})_y' + (2xy^2)_y' = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x =$$

$$z_{yy} =$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + z_{yy} = e^{xy} + z_{yy} = e^{x$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_y = (xe^{xy} + 4xy)'$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_y = (xe^{xy})'_y + (4xy)'_y = (xe^{xy})'_y + (xe$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_y = (xe^{xy})'_y + (4xy)'_y = x^2e^{xy} + ye^{xy} + 4y$$

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_y = (xe^{xy})'_y + (4xy)'_y = x^2e^{xy} + 4x$$

解

$$z_x = (e^{xy} + 2xy^2)'_x = (e^{xy})'_x + (2xy^2)'_x = ye^{xy} + 2y^2$$

$$z_y = (e^{xy} + 2xy^2)'_y = (e^{xy})'_y + (2xy^2)'_y = xe^{xy} + 4xy$$

$$z_{xx} = (ye^{xy} + 2y^2)'_x = (ye^{xy})'_x + (2y^2)'_x = y^2e^{xy}$$

$$z_{xy} = (ye^{xy} + 2y^2)'_y = (ye^{xy})'_y + (2y^2)'_y = e^{xy} + xye^{xy} + 4y$$

$$z_{yx} = (xe^{xy} + 4xy)'_x = (xe^{xy})'_x + (4xy)'_x = e^{xy} + xye^{xy} + 4y$$

$$z_{yy} = (xe^{xy} + 4xy)'_y = (xe^{xy})'_y + (4xy)'_y = x^2e^{xy} + 4x$$

注 此例成立 $z_{xy} = z_{yx}$

例 求 $z = x^3y^2 - 3xy^3 - xy + 1$ 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

解

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_{x} =$$

$$z_y =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' =$$

 $z_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2$$

 $z_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3$$

 $z_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$

 $z_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$\begin{aligned}
z_x &= (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y \\
z_y &= (x^3y^2 - 3xy^3 - xy + 1)_y' =
\end{aligned}$$

$$Z_{XX} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_{x} = (x^{3}y^{2} - 3xy^{3} - xy + 1)'_{x} = 3x^{2}y^{2} - 3y^{3} - y$$

$$z_{y} = (x^{3}y^{2} - 3xy^{3} - xy + 1)'_{y} = 2x^{3}y - 9xy^{2} - x$$

$$z_{xx} =$$
 $z_{xy} =$
 $z_{yx} =$
 $z_{yy} =$

 $z_{xxx} =$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^2y^2 - 3y^3 - y)_x' =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^2y^2 - 3y^3 - y)_x' = 6xy^2$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2}$$

$$z_{yx} =$$

$$z_{yy} =$$

 $z_{xxx} =$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = z_{yy} = 0$$

 $z_{xxx} =$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} =$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2}$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} =$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 2x^{3}$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 2x^{3} - 18xy$$

$$z_{xxx} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)_x' = 3x^2y^2 - 3y^3 - y$$
$$z_y = (x^3y^2 - 3xy^3 - xy + 1)_y' = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 2x^{3} - 18xy$$

$$z_{xxx} = (6xy^2)'_{y} =$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$z_x = (x^3y^2 - 3xy^3 - xy + 1)'_x = 3x^2y^2 - 3y^3 - y$$

$$z_y = (x^3y^2 - 3xy^3 - xy + 1)'_y = 2x^3y - 9xy^2 - x$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 2x^{3} - 18xy$$

$$z_{xxx} = (6xy^2)_x' = 6y^2$$

例 求
$$z = x^3y^2 - 3xy^3 - xy + 1$$
 全部二阶偏导数及 $\frac{\partial^3 z}{\partial x^3}$

$$\begin{aligned} z_{x} &= (x^{3}y^{2} - 3xy^{3} - xy + 1)'_{x} = 3x^{2}y^{2} - 3y^{3} - y \\ z_{y} &= (x^{3}y^{2} - 3xy^{3} - xy + 1)'_{y} = 2x^{3}y - 9xy^{2} - x \end{aligned}$$

$$z_{xx} = (3x^{2}y^{2} - 3y^{3} - y)'_{x} = 6xy^{2}$$

$$z_{xy} = (3x^{2}y^{2} - 3y^{3} - y)'_{y} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yx} = (2x^{3}y - 9xy^{2} - x)'_{x} = 6x^{2}y - 9y^{2} - 1$$

$$z_{yy} = (2x^{3}y - 9xy^{2} - x)'_{y} = 2x^{3} - 18xy$$

$$z_{xxx} = (6xy^2)_{x}' = 6y^2$$

解

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

解
$$z_X =$$

$$z_y =$$

解
$$Z_X =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yx} =$$
 $z_{yy} =$

$$\mathbf{z}_{\mathsf{X}} =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

$$z_{x} = (x \sin(3y))_{x}' =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

$$z_y =$$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$z_x = (x \sin(3y))'_x = \sin(3y)$$

 $z_y = (x \sin(3y))'_y =$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$z_x = (x \sin(3y))'_x = \sin(3y)$$

 $z_y = (x \sin(3y))'_y = 3x \cos(3y)$

$$z_{xx} =$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$\begin{aligned} z_{x} &= (x \sin(3y))'_{x} = \sin(3y) \\ z_{y} &= (x \sin(3y))'_{y} = 3x \cos(3y) \\ z_{xx} &= (\sin(3y))'_{x} = \end{aligned}$$

$$z_{xy} =$$

$$z_{yx} =$$

$$z_{yy} =$$

$$z_{xyy} =$$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$\begin{aligned}
\mathbf{g} z_x &= (x \sin(3y))_x' = \sin(3y) \\
z_y &= (x \sin(3y))_y' = 3x \cos(3y) \\
z_{xx} &= (\sin(3y))_x' = 0 \\
z_{xy} &= \\
z_{yx} &= \\
z_{yy} &= \\
z_{yy} &=
\end{aligned}$$

 $z_{xyy} =$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$\begin{aligned}
\mathbf{g} z_{x} &= (x \sin(3y))_{x}' = \sin(3y) \\
z_{y} &= (x \sin(3y))_{y}' = 3x \cos(3y) \\
z_{xx} &= (\sin(3y))_{x}' = 0 \\
z_{xy} &= (\sin(3y))_{y}' = 0 \\
z_{yx} &= z_{yy} = 0
\end{aligned}$$

 $z_{xyy} =$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$\begin{aligned}
z_x &= (x \sin(3y))_x' = \sin(3y) \\
z_y &= (x \sin(3y))_y' = 3x \cos(3y) \\
z_{xx} &= (\sin(3y))_x' = 0 \\
z_{xy} &= (\sin(3y))_y' = 3\cos(3y) \\
z_{yx} &= \\
z_{yy} &=
\end{aligned}$$

 $z_{xyy} =$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$z_x = (x \sin(3y))_x' = \sin(3y)$$

$$z_y = (x \sin(3y))_y' = 3x \cos(3y)$$

$$z_{xx} = (\sin(3y))_x' = 0$$

$$z_{xy} = (\sin(3y))_y' = 3\cos(3y)$$

$$z_{yx} = (3x \cos(3y))_x' = 0$$

 $z_{yy} =$

 $Z_{XYY} =$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$z_x = (x \sin(3y))_x' = \sin(3y)$$

$$z_y = (x \sin(3y))_y' = 3x \cos(3y)$$

$$z_{xx} = (\sin(3y))_x' = 0$$

$$z_{xy} = (\sin(3y))_y' = 3\cos(3y)$$

$$z_{yx} = (3x \cos(3y))_x' = 3\cos(3y)$$

$$z_{yy} = (3x \cos(3y))_x' = 3\cos(3y)$$

 $Z_{XYY} =$

例 求 $z = x \sin(3y)$ 全部二阶偏导数及 z_{xyy} 解 $z_x = (x\sin(3y))'_y = \sin(3y)$ $z_y = (x \sin(3y))_y' = 3x \cos(3y)$ $z_{xx} = (\sin(3y))'_{x} = 0$ $z_{xy} = (\sin(3y))_{y}' = 3\cos(3y)$ $z_{yx} = (3x\cos(3y))'_{y} = 3\cos(3y)$ $z_{yy} = (3x\cos(3y))_{y}' =$

 $Z_{XYY} =$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy} $z_x = (x \sin(3y))^2 = \sin(3y)$

$$\begin{aligned}
\mathbf{g}_{x} &= (x \sin(3y))'_{x} = \sin(3y) \\
z_{y} &= (x \sin(3y))'_{y} = 3x \cos(3y) \\
z_{xx} &= (\sin(3y))'_{x} = 0 \\
z_{xy} &= (\sin(3y))'_{y} = 3\cos(3y)
\end{aligned}$$

$$z_{yx} = (3x\cos(3y))_{x}' = 3\cos(3y)$$

$$z_{yy} = (3x\cos(3y))'_y = -9x\sin(3y)$$

$$z_{xyy} =$$

$$Z_{x} = (x \sin(3y))'_{x} = \sin(3y)$$

$$Z_{y} = (x \sin(3y))'_{y} = 3x \cos(3y)$$

$$Z_{xx} = (\sin(3y))'_{x} = 0$$

$$Z_{xy} = (\sin(3y))'_{y} = 3\cos(3y)$$

$$Z_{yx} = (3x \cos(3y))'_{y} = 3\cos(3y)$$

 $z_{yy} = (3x\cos(3y))_y' = -9x\sin(3y)$

$$Z_{x} = (x \sin(3y))'_{x} = \sin(3y)$$

$$Z_{y} = (x \sin(3y))'_{y} = 3x \cos(3y)$$

$$Z_{xx} = (\sin(3y))'_{x} = 0$$

$$Z_{xy} = (\sin(3y))'_{y} = 3\cos(3y)$$

$$Z_{yx} = (3x \cos(3y))'_{x} = 3\cos(3y)$$

$$Z_{yy} = (3x \cos(3y))'_{y} = -9x \sin(3y)$$

 $z_{xyy} = (3\cos(3y))_{y}' = -9\sin(3y)$

例 求
$$z = x \sin(3y)$$
 全部二阶偏导数及 z_{xyy}

$$z_x = (x \sin(3y))'_x = \sin(3y)$$

$$z_y = (x \sin(3y))'_y = 3x \cos(3y)$$

$$z_{xx} = (\sin(3y))'_x = 0$$

$$z_{xy} = (\sin(3y))'_y = 3\cos(3y)$$

$$z_{yx} = (3x \cos(3y))'_x = 3\cos(3y)$$

$$z_{yy} = (3x \cos(3y))'_y = -9x \sin(3y)$$

$$z_{xyy} = (3\cos(3y))'_y = -9\sin(3y)$$

注 此例成立 $Z_{xy} = Z_{yx}$

解

$$z_x = (x \sin(3y))'_x = \sin(3y)$$

 $z_y = (x \sin(3y))'_y = 3x \cos(3y)$

例 求 $z = x \sin(3y)$ 全部二阶偏导数及 z_{xyy}

$$z_{y} = (x \sin(3y))'_{y} = 3x \cos(3y)$$

$$z_{xx} = (\sin(3y))'_{x} = 0$$

$$z_{xy} = (\sin(3y))'_{y} = 3\cos(3y)$$

$$z_{yx} = (3x \cos(3y))'_{x} = 3\cos(3y)$$

$$z_{yy} = (3x\cos(3y))'_{y} = -9x\sin(3y)$$
$$z_{xyy} = (3\cos(3y))'_{y} = -9\sin(3y)$$

注 此例成立 $Z_{xy} = Z_{yx}$

性质 设有二元函数 z = f(x, y)。若 $\frac{\partial^2 z}{\partial y \partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$ 均连续,则

$$rac{\partial^2 Z}{\partial y \partial x} = rac{\partial^2 Z}{\partial x \partial y}$$
第 9章 b : 偏导数与全微分

We are here now...

1. 偏导数

2. 全微分

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微, 指

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o($)

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 回忆: 一元函数
$$z = f(x)$$
 在 $x = x_0$ 处可微,指
$$\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{-dz} + o(\Delta x) \approx dz$$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0) \Delta x}_{=dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{-dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= A\Delta x + B\Delta y + o()$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{-dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= A\Delta x + B\Delta y + o()$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{-dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= A\Delta x + B\Delta y + o(\rho)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= \underbrace{A\Delta x + B\Delta y}_{} + o(\rho)$

• 回忆: 一元函数 z = f(x) 在 $x = x_0$ 处可微,指 $\Delta z = f(x_0 + \Delta x) - f(x_0) = \underbrace{f'(x_0)\Delta x}_{=dz} + o(\Delta x) \approx dz$

• 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微,指 3 数 A, B 使得: $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= \underline{A\Delta x + B\Delta y} + o(\rho) \approx dz$

1. 函数在该点 (x_0, y_0) 处连续;

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$;

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0)$, $\frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \Delta x + \Delta y$$

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0), \frac{\partial z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \Delta y$$

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号: $\Delta x = dx$, $\Delta y = dy$ 。

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0), \frac{\partial z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号: $\Delta x = dx$, $\Delta y = dy$ 。这样全微分(存在的话)写成:

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0), \frac{\partial z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号: $\Delta x = dx$, $\Delta y = dy$ 。这样全微分(存在的话)写成: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial v} dy$

- 1 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0), \frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号:
$$\Delta x = dx$$
, $\Delta y = dy$ 。这样全微分(存在的话)写成: ∂z , ∂z ,

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

定理 (可微充分条件)

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0), \frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号:
$$\Delta x = dx$$
, $\Delta y = dy$ 。这样全微分(存在的话)写成:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

定理(可微充分条件) 设函数
$$z = f(x, y)$$
 的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点 (x_0, y_0) 连续,

- 1 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0), \frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号:
$$\Delta x = dx$$
, $\Delta y = dy$ 。这样全微分(存在的话)写成:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y}$$

定理(可微充分条件) 设函数
$$z = f(x, y)$$
 的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点

 (x_0, y_0) 连续,则 z = f(x, y) 在该点 (x_0, y_0) 处可微

- 1. 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0)$, $\frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号: $\Delta x = dx$, $\Delta y = dy$ 。这样全微分(存在的话)写成: $\partial z = \partial z$

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

定理(可微充分条件) 设函数 z = f(x, y) 的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点 (x_0, y_0) 连续,则 z = f(x, y) 在该点 (x_0, y_0) 处可微,进而在该点处 微分为

- 1 函数在该点 (x_0, y_0) 处连续;
- 2. 函数在该点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0), \frac{\partial Z}{\partial y}(x_0, y_0)$;
- 3. 函数在该点 (x_0, y_0) 处的全微分为

$$dz = \frac{\partial z}{\partial x}(x_0, y_0)\Delta x + \frac{\partial z}{\partial y}(x_0, y_0)\Delta y$$

注 通常的记号: $\Delta x = dx$, $\Delta y = dy$ 。这样全微分(存在的话)写成:

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

定理(可微充分条件) 设函数 z = f(x, y) 的偏导数 $\frac{\partial Z}{\partial x}$, $\frac{\partial Z}{\partial x}$ 在点 (x_0, y_0) 连续,则 z = f(x, y) 在该点 (x_0, y_0) 处可微,进而在该点处

微分为 $dz = \frac{\partial Z}{\partial x}(x_0, y_0)dx + \frac{\partial Z}{\partial y}(x_0, y_0)dy$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$
$$= [(x + \Delta x)^2 + (y + \Delta y)^2]$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

= $[(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

解法一(按定义)

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + \rho(\rho)$$

所以 $z = x^2 + y^2$ 可微,并且 dz = 2xdx + 2ydy

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

所以
$$z = x^2 + y^2$$
 可微,并且 $dz = 2xdx + 2ydy$

解法二(利用定理)

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

所以 $z = x^2 + y^2$ 可微,并且 dz = 2xdx + 2ydy

$$\frac{\partial Z}{\partial x} = \quad , \qquad \frac{\partial Z}{\partial y} =$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

所以 $z = x^2 + y^2$ 可微,并且 dz = 2xdx + 2ydy

$$\frac{\partial z}{\partial x} = 2x, \qquad \frac{\partial z}{\partial y} = -\frac{\partial z}{\partial y} =$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

所以 $z = x^2 + y^2$ 可微,并且 dz = 2xdx + 2ydy

$$\frac{\partial z}{\partial x} = 2x, \qquad \frac{\partial z}{\partial y} = 2y$$

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$

所以 $z = x^2 + y^2$ 可微,并且 dz = 2xdx + 2ydy

解法二(利用定理) 先计算偏导数:

$$\frac{\partial z}{\partial x} = 2x, \qquad \frac{\partial z}{\partial y} = 2y$$

可见偏导数存在,且连续。

 $\Delta z = f(x + \Delta x, v + \Delta v) - f(x, v)$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$
所以 $z = x^2 + y^2$ 可微,并且 $dz = 2xdx + 2ydy$

解法二(利用定理) 先计算偏导数:

$$\frac{\partial z}{\partial x} = 2x, \qquad \frac{\partial z}{\partial y} = 2y$$

可见偏导数存在,且连续。所以函数可微,并且全微分为

 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

 $\Delta z = f(x + \Delta x, v + \Delta v) - f(x, v)$

$$= [(x + \Delta x)^2 + (y + \Delta y)^2] - [x^2 + y^2]$$

$$= 2x\Delta x + 2y\Delta y + [(\Delta x)^2 + (\Delta y)^2]$$

$$= 2x\Delta x + 2y\Delta y + \rho^2$$

$$= 2x\Delta x + 2y\Delta y + o(\rho)$$
所以 $z = x^2 + y^2$ 可微,并且 $dz = 2xdx + 2ydy$

解法二(利用定理) 先计算偏导数:

$$\frac{\partial z}{\partial x} = 2x, \qquad \frac{\partial z}{\partial y} = 2y$$

可见偏导数存在,且连续。所以函数可微,并且全微分为

解 先计算偏导数

$$\frac{-}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x}$$

ðΖ

$$\frac{\partial z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x}$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial x}$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}'$$

$$\frac{\partial Z}{\partial x} =$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$

$$\frac{\partial Z}{\partial x} =$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' =$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{y}'$$

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{y}' = \frac{1}{x}e^{\frac{y}{x}}$$

解 先计算偏导数

$$\frac{\partial z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{y}' = \frac{1}{x}e^{\frac{y}{x}}$$

可见函数在其自然定义域 $D = \{(x, y) | x \neq 0\}$ 上存在偏导数且偏导数连续。

解 先计算偏导数

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{y}' = \frac{1}{x}e^{\frac{y}{x}}$$

可见函数在其自然定义域 $D = \{(x, y) | x \neq 0\}$ 上存在偏导数且偏导数连续。所以函数可微,并且全微分为

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

解 先计算偏导数

$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{x}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{x}' = -\frac{y}{x^{2}}e^{\frac{y}{x}}$$
$$\frac{\partial Z}{\partial x} = \left(e^{\frac{y}{x}}\right)_{y}' = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)_{y}' = \frac{1}{x}e^{\frac{y}{x}}$$

可见函数在其自然定义域 $D = \{(x, y) | x \neq 0\}$ 上存在偏导数且偏导数连续。所以函数可微,并且全微分为

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{y}{x^2}e^{\frac{y}{x}}dx + \frac{1}{x}e^{\frac{y}{x}}dy$$

• 对三元函数 u = f(x, y, z), 其全微分 $du = u_x dx + u_y dy + u_z dz$

• 对三元函数 u = f(x, y, z), 其全微分

$$du = u_x dx + u_y dy + u_z dz$$

此时

$$\Delta u = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

• 对三元函数
$$u = f(x, y, z)$$
,其全微分
$$du = u_x dx + u_y dy + u_z dz$$
 此时
$$\Delta u = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

 $= u_x \Delta x + u_y \Delta y + u_z \Delta z + o$

● 对三元函数 *u* = *f*(*x*, *y*, *z*), 其全微分

$$du = u_x dx + u_y dy + u_z dz$$

此时

$$\Delta u = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$
$$= u_x \Delta x + u_y \Delta y + u_z \Delta z + o\left(\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}\right)$$

● 对三元函数 *u* = *f*(*x*, *y*, *z*), 其全微分

$$du = u_x dx + u_y dy + u_z dz$$

此时

$$\Delta u = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

$$= u_x \Delta x + u_y \Delta y + u_z \Delta z + o\left(\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}\right)$$

$$\approx du$$

例 设 $u = x^{yz}$, 计算全微分 du

例 设 $u = x^{yz}$, 计算全微分 du

例 设 $u = x^{yz}$, 计算全微分 du

$$u_x =$$

$$u_y =$$

$$u_z =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_x = (x^{yz})'_x = u_y = u_z = u_z = u_z$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_x = (x^{yz})'_x = yz \cdot x^{yz-1}$$

$$u_y =$$

$$u_z =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_x = (x^{yz})'_x = yz \cdot x^{yz-1}$$

$$u_y = (x^{yz})'_y =$$

$$u_z =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_x = (x^{yz})'_x = yz \cdot x^{yz-1}$$

$$u_y = (x^{yz})'_y = x^{yz} \ln(yz) \cdot z$$

$$u_z =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_x = (x^{yz})'_x = yz \cdot x^{yz-1}$$

$$u_y = (x^{yz})'_y = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_z =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_{x} = (x^{yz})'_{x} = yz \cdot x^{yz-1}$$

$$u_{y} = (x^{yz})'_{y} = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_{z} = (x^{yz})'_{z} =$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_{x} = (x^{yz})'_{x} = yz \cdot x^{yz-1}$$

$$u_{y} = (x^{yz})'_{y} = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_{z} = (x^{yz})'_{z} = x^{yz} \ln(yz) \cdot y$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_{x} = (x^{yz})'_{x} = yz \cdot x^{yz-1}$$

$$u_{y} = (x^{yz})'_{y} = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_{z} = (x^{yz})'_{z} = x^{yz} \ln(yz) \cdot y = y \cdot x^{yz} \ln(yz)$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_{x} = (x^{yz})'_{x} = yz \cdot x^{yz-1}$$

$$u_{y} = (x^{yz})'_{y} = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_{z} = (x^{yz})'_{z} = x^{yz} \ln(yz) \cdot y = y \cdot x^{yz} \ln(yz)$$

所以

$$du = u_x dx + u_y dy + u_z dz$$

例 设
$$u = x^{yz}$$
, 计算全微分 du

$$u_{x} = (x^{yz})'_{x} = yz \cdot x^{yz-1}$$

$$u_{y} = (x^{yz})'_{y} = x^{yz} \ln(yz) \cdot z = z \cdot x^{yz} \ln(yz)$$

$$u_{z} = (x^{yz})'_{z} = x^{yz} \ln(yz) \cdot y = y \cdot x^{yz} \ln(yz)$$

所以

$$du = u_x dx + u_y dy + u_z dz$$

= $yz \cdot x^{yz-1} dx + z \cdot x^{yz} \ln(yz) dy + y \cdot x^{yz} \ln(yz) dz$

全微分在近似计算中的应用

设 z = f(x, y), 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 (1.04)2.02 的近似值。

$$(1.04)^{2.02} =$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 (1.04)2.02 的近似值。

$$(1.04)^{2.02} = (1 + 0.04)^{2+0.02}$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 (1.04)2.02 的近似值。

$$(1.04)^{2.02} = (1+0.04)^{2+0.02} \approx 1^2 + dz$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 (1.04)^{2.02} 的近似值。

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,\,y+\Delta y)} \approx \underbrace{1^2}_{f(x,\,y)} + dz$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

解设
$$z = f(x, y) = x^y$$
,则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

解设
$$z = f(x, y) = x^y$$
,则
$$(1.04)^{2.02} = \underbrace{(1 + 0.04)^{2+0.02}}_{f(x + \Delta x, y + \Delta y)} \approx \underbrace{1^2}_{f(x, y)} + dz$$

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

解设
$$z = f(x, y) = x^y$$
, 则
$$(1.04)^{2.02} = \underbrace{(1 + 0.04)^{2+0.02}}_{f(x+\Delta x, y+\Delta y)} \approx \underbrace{1^2}_{f(x, y)} + dz$$

$$\overline{m} \qquad dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = yx^{y-1} dx + x^y \ln x dy$$

设
$$z = f(x, y)$$
, 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以
$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 (1.04)^{2.02} 的近似值。

解设
$$z = f(x, y) = x^y$$
,则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

而
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = yx^{y-1} dx + x^y \ln x dy$$

将 (x, y) = (1, 2) 及 $dx = \Delta x = 0.04$ 、 $dy = \Delta y = 0.02$ 代入得:

设 z = f(x, y), 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以 $f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$

$$\mathbf{H}$$
 设 $z = f(x, y) = x^y$,则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

而
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = yx^{y-1} dx + x^y \ln x dy$$

将
$$(x, y) = (1, 2)$$
 及 $dx = \Delta x = 0.04$ 、 $dy = \Delta y = 0.02$ 代入得:

$$dz =$$

设 z = f(x, y), 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

$$\mathbf{H}$$
 设 $z = f(x, y) = x^y$,则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

而
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = yx^{y-1} dx + x^y \ln x dy$$

将
$$(x, y) = (1, 2)$$
 及 $dx = \Delta x = 0.04$ 、 $dy = \Delta y = 0.02$ 代入得:

$$dz = 2 \cdot 1^{1} \cdot 0.04 + 1^{2} \cdot \ln 1 \cdot 0.02$$

设 z = f(x, y), 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

$$\mathbf{H}$$
 设 $z = f(x, y) = x^y$,则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x, y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

而
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = yx^{y-1} dx + x^y \ln x dy$$

将
$$(x, y) = (1, 2)$$
 及 $dx = \Delta x = 0.04$ 、 $dy = \Delta y = 0.02$ 代入得:

$$dz = 2 \cdot 1^{1} \cdot 0.04 + 1^{2} \cdot \ln 1 \cdot 0.02 = 0.08$$

设 z = f(x, y), 则 $f(x + \Delta x, y + \Delta y) - f(x, y) = dz + o(\rho) \approx dz$, 所以

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + dz$$

例 计算 $(1.04)^{2.02}$ 的近似值。

解设
$$z = f(x, y) = x^y$$
, 则

$$(1.04)^{2.02} = \underbrace{(1+0.04)^{2+0.02}}_{f(x+\Delta x,y+\Delta y)} \approx \underbrace{1^2}_{f(x,y)} + dz$$

将 (x, y) = (1, 2) 及 $dx = \Delta x = 0.04$ 、 $dy = \Delta y = 0.02$ 代入得:

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = yx^{y-1}dx + x^y \ln xdy$$

 $dz = 2 \cdot 1^{1} \cdot 0.04 + 1^{2} \cdot \ln 1 \cdot 0.02 = 0.08$

设有二元函数 z = f(x, y)

设有二元函数 z = f(x, y)

• 在点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0)$, $\frac{\partial Z}{\partial y}(x_0, y_0)$ \Rightarrow 在点 (x_0, y_0) 处连续

设有二元函数 z = f(x, y)

- 在点 (x_0, y_0) 处存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0)$, $\frac{\partial Z}{\partial y}(x_0, y_0)$ \Rightarrow 在点 (x_0, y_0) 处连续
- 在点 (x_0, y_0) 处存在可微 \Rightarrow 存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$, 且在点 (x_0, y_0) 处连续

设有二元函数 z = f(x, y)

- 在点 (x_0, y_0) 处存在偏导数 $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$ \Rightarrow 在点 (x_0, y_0) 处连续
- 在点 (x_0, y_0) 处存在可微 \Rightarrow 存在偏导数 $\frac{\partial Z}{\partial x}(x_0, y_0)$, $\frac{\partial Z}{\partial y}(x_0, y_0)$, 且在点 (x_0, y_0) 处连续
- 在点 (x_0, y_0) 附近存在偏导数 $\frac{\partial Z}{\partial x}$, $\frac{\partial Z}{\partial y}$, 且偏导数 $\frac{\partial Z}{\partial x}$, $\frac{\partial Z}{\partial y}$ 在点 (x_0, y_0) 处连续 \Rightarrow 在点 (x_0, y_0) 处存在可微

