Advanced Calculus, Homework 1

Adam Frank

August 2020

Problem 1. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be an indexed collection of subsets of a set X. Prove:

a.
$$X \setminus (\bigcup_{\alpha \in I} A_{\alpha}) = \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$$

b. $X \setminus (\bigcap_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$

(a.) We prove containment in both directions. For $X \setminus (\bigcup_{\alpha \in I} A_{\alpha}) \subseteq \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$ start by letting $x \in X \setminus (\bigcup_{\alpha \in I} A_{\alpha})$. Then certainly $x \in X$ and $x \notin \bigcup_{\alpha \in I} A_{\alpha}$. This second fact entails that $x \notin A_{\alpha}$ for every $\alpha \in I$. Hence $x \in X \setminus A_{\alpha}$ for every $\alpha \in I$. Then $x \in \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$.

We can reproduce this in the other direction. Let $x \in \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$. Then we have $x \in X \setminus A_{\alpha}$ for every $\alpha \in I$. Therefore for each α we have $x \in X$ and $x \notin A_{\alpha}$. In particular we now know $x \in X$. Also because $x \notin A_{\alpha}$ for each α then $x \in \bigcap_{\alpha \in I} A_{\alpha}$. Now we can infer $x \in X \setminus (\bigcap_{\alpha \in I} A_{\alpha})$.

(b.) The proof is nearly identical to part (a.). If $x \in X \setminus (\bigcap_{\alpha \in I} A_{\alpha})$ then $x \in X$ and $x \notin \bigcap_{\alpha \in I} A_{\alpha}$. So $x \notin A'_{\alpha}$ for at least one $\alpha' \in I$. Then $x \in X \setminus A'_{\alpha}$ for that α' . Then $x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$.

Going in the other direction, $x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$. So there is at least one $\alpha \in I$ such that $x \in X \setminus A_{\alpha}$. Thus $x \in X$ and for some $\alpha' \in I$ we have $x \notin A_{\alpha'}$. Then $x \notin \bigcap_{\alpha \in I} A_{\alpha}$ and we have arrived at $x \in X \setminus (\bigcap_{\alpha \in I} A_{\alpha})$.

Problem 2. Compute:

- (a.) $\bigcap_{n=1}^{\infty} [n, \infty)$ (b.) $\bigcup_{n=1}^{\infty} [0, 2 1/n]$
- (c.) $\limsup (-1 + (-1)^n/n, 1 + (-1)^n/n)$
- (d.) $\lim_{n \to \infty} \inf_{n \to \infty} (-1 + (-1)^n/n, 1 + (-1)^n/n)$
- (a.) Ø

For any $x \in \mathbb{R}$ there is some $n' \in \mathbb{N}$ such that x < n' by the Archimedian property. So $x \notin [n', \infty)$ and therefore $x \notin \bigcap_{n=1}^{\infty} [n, \infty)$.

(b.) [0,2)

Certainly for all x < 0 then $x \notin [0, 2-1/n]$ for any $n \in \mathbb{N}$ and just as clearly this is true for $x \geq 2$.

For every $0 \le x < 2$ we have that x < 2 - 1/n if and only if 1/n < 2 - xso that by the Archimedian property there must be some n' satisfying this. For such a choice we have $x \in [0, 2-1/n']$ and therefore $x \in \bigcup_{n=1}^{\infty} [0, 2-1/n]$.

(c.) [-1,1]

First let's see what these intervals are. If we call

$$I_k = \left(-1 + \frac{(-1)^k}{k}, \quad 1 + \frac{(-1)^k}{k}\right)$$

then

$$I_{1} = (-2,0)$$

$$I_{2} = \left(-\frac{1}{2}, \frac{3}{2}\right)$$

$$I_{3} = \left(-\frac{4}{3}, \frac{2}{3}\right)$$

$$I_{4} = \left(-\frac{3}{4}, \frac{5}{4}\right)$$

$$I_{5} = \left(-\frac{6}{5}, \frac{4}{5}\right)$$

We first want to union these starting at an arbitrary index. For any $x \in \mathbb{R}$ such that x < -1 or x > 1 eventually x will lie outside of every interval if the starting index n is chosen large enough. On the other hand every $-1 \le x \le 1$ is eventually in some interval. Thus x is in the union no matter where n starts, and then x is in the intersection over all of these.

(d.) (-1,1)

We use the same intervals as before except this time start with intersections and then take unions over them. I claim that for each $x \in \mathbb{R}$ where $x \leq -1$ there is some interval which excludes x and therefore $x \notin I_k$ for some sufficiently large k. Similarly if $x \ge 1$. Hence all such values will not be in the intersection, regardless of the starting index n. Since they will not be in any such intersection thereafter, x will not be in the union over them.

On the other hand, if -1 < x < 1 then for some sufficiently large n we will have $x \in I_n$. And then for all $k \geq n$ we will similarly have $x \in I_k$ so that $x \in \limsup_{n \to \infty} I_k.$

Problem 3. Rudin page 21 problem 1. (A rational plus irrational, and a rational times irrational, is always irrational.

Let $r \in \mathbb{Q}$ and $r \neq 0$. Also let $x \in \mathbb{R} \setminus \mathbb{Q}$. We first prove that $r + x \notin \mathbb{Q}$ by contradiction.

Suppose $r+x\in\mathbb{Q}$ so that there are $p,q\in\mathbb{Z}$ with $q\neq 0$ and r+x=p/q. Since also $r\in\mathbb{Q}$ we know there are $a,b\in\mathbb{Z}$ with $b\neq 0$ such that r=a/b. Then

$$x = \frac{p}{q} - \frac{a}{b} = \frac{pb - qa}{qb}$$

Now $pb - qa \in \mathbb{Z}$ and $qb \in \mathbb{Z}$. Since $q \neq 0 \neq b$ then $qb \neq 0$ and hence $x \in \mathbb{Q}$ contrary to our assumption that $x \notin \mathbb{Q}$.

Now to show that $rx \notin \mathbb{Q}$ we again assume $rx \in \mathbb{Q}$ for contradiction. Then rx = p/q with the obvious constraints on p and q. We again use r = a/b. Then

$$x = \frac{pb}{qa}$$

Now $q \neq 0 \neq a$ so $qa \neq 0$ and hence $x \in \mathbb{Q}$ contradicting $x \notin \mathbb{Q}$.

Problem 4. Rudin page 22, problem 2. (Prove there is no rational whose square is 12.)

Suppose for contradiction that there are $p,q\in\mathbb{Z}$ with $q\neq 0$ and both numbers p and q are coprime. And assume $(p/q)^2=12$ so that

$$p^2 = 12q^2$$

hence p^2 has a factor of 3 since $12q^2$ does. But then p has a factor of 3 and therefore p^2 has two factors of 3. Say $p^2=9k$ so that

$$9k = 12q^2$$

and hence

$$3k = 4q^2$$

This then entails that q^2 has a factor of 3, since 4 does not. But then q has a factor of 3. We then get the contradiction that (p,q)=1 and $(p,q)\geq 3$. f

Problem 5. Suppose $f: X \to Y$ and $B \subseteq Y$. Prove that $f(f^{-1}(B)) \subseteq B$ and equality holds if f is onto.

Let $y \in f\Big(f^{-1}(B)\Big)$ so that by definition there is some $x \in f^{-1}(B)$ such that f(x) = y. We want to then show that $y \in B$. Since we have $x \in f^{-1}(B)$ we know that $f(x) \in B$ but then $y = f(x) \in B$. \square

For the second part, suppose f is onto. Then let $b \in B$ so that we'd like to prove $b \in f\Big(f^{-1}(B)\Big)$. Since f is onto we know there is some $x \in X$ such that f(x) = b. By definition $x \in f^{-1}(B)$. Then $f(x) = b \in f\Big(f^{-1}(B)\Big)$. \square

Problem 6. Suppose $f: X \to Y$ and $\{A_{\alpha}\}_{{\alpha} \in I}$ is an indexed collection of subsets of a set X. Prove $f\left(\bigcap_{{\alpha} \in I} A_{\alpha}\right) \subseteq \bigcap_{{\alpha} \in I} f(A_{\alpha})$ with equality if f is one-to-one.

Let $y \in f(\bigcap_{\alpha \in I} A_{\alpha})$ so that there must be some $x \in \bigcap_{\alpha \in I} A_{\alpha}$ such that f(x) = y. Then for all $\alpha \in I$ we have that $x \in A_{\alpha}$, and then $y \in f(A_{\alpha})$. But then we have $y \in \bigcap_{\alpha \in I} f(A_{\alpha})$. \square

Now for the second part assume that f is one-to-one. Also let $y \in \bigcap_{\alpha \in I} f(A_{\alpha})$. Then for each $\alpha \in I$ we have $y \in f(A_{\alpha})$. Because f is one-to-one it has an inverse, and then $f^{-1}(y) \in A_{\alpha}$. Thus we have $f^{-1}(y) \in \bigcap_{\alpha \in I} A_{\alpha}$ and since $f(f^{-1}(y)) = y$ we must have $y \in f(\bigcap_{\alpha \in I} A_{\alpha})$. \square

Problem 7. Prove $|a-b| \leq |a-c| + |c-d| + |d-b|$ for all $a,b,c,d \in \mathbb{C}.$

This is the triangle inequality with two terms wiggled in.

$$|a-b| = |a-c+c-d+d-b|$$

 $\leq |a-c| + |c-d+d-b|$
 $\leq |a-c| + |c-d| + |d-b|$

Problem 8. Rudin page 23, problem 12. (Triangle inequality generalized to finite sums.)

Proof by induction: The case for two terms is the base-case and is the triangle inequality.

For the inductive case, suppose the theorem has been proved up to \boldsymbol{n} terms. Then

$$|z_1 + z_2 + \dots + z_{n+1}| \le |z_1 + \dots + z_n| + |z_{n+1}|$$

by a single application of the triangle inequality. Then by the inductive hypothesis

$$|z_1 + \dots + z_n| + |z_{n+1}| \le |z_1| + \dots + |z_{n+1}|$$

Chaining these inequalities together gives

$$|z_1 + \dots + z_n| \le |z_1| + \dots |z_n|$$

Problem 9. Rudin page 23, problem 13. (Reverse triangle inequality.)

We use the triangle inequality

$$|a+b| \le |a| + |b|$$

but with a = x and b = y - x. Then we have

$$|x - (y - x)| \le |x| + |y - x|$$

which is

$$|y| \le |x| + |y - x|$$

which entails

$$|y| - |x| \le |y - x| = |x - y|$$

Now we repeat the whole argument but with a = y and b = x - y

$$|y - (x - y)| \le |y| + |x - y|$$

which entails

$$|x| \le |y| + |x - y|$$

so

$$|x| - |y| \le |x - y|$$

Thus if $|x| - |y| \ge 0$ then

$$||x| - |y|| = |x| - |y| \le |x - y|$$

and if |x| - |y| < 0 then

$$||x| - |y|| = |y| - |x| \le |x - y|$$

Problem 10. Rudin page 23, problem 17. (Polarization identity.)

The proof merely expands everything in terms of the inner product, $|\vec{x}| = \vec{x} \cdot \vec{x}$.

$$\begin{split} |\vec{x} + \vec{y}|^2 + |\vec{x} - \vec{y}|^2 &= (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) + (\vec{x} - \vec{y}) \cdot (\vec{x} - \vec{y}) \\ &= \vec{x} \cdot \vec{x} + 2(\vec{x} \cdot \vec{y}) + \vec{y} \cdot \vec{y} + \vec{x} \cdot \vec{x} - 2(\vec{x} \cdot \vec{y}) + \vec{y} \cdot \vec{y} \\ &= 2|\vec{x}|^2 + 2|\vec{y}|^2 \end{split}$$

The geometric interpretation is that \vec{x} and \vec{y} form sides that you can close into a parallelogram—this is clearest in two or three dimensions, it's just the usual parallelogram addition law for vectors. The diagonal radiating from the origin is equal to $\vec{x} + \vec{y}$ and the remaining diagonal is $\vec{x} - \vec{y}$. The law then says that the sum of squared magnitudes of the diagonals is half the sum of the squared magnitudes of the sides.

Problem 11. Let $y_1 = 6$ and $y_{n+1} = \frac{2y_n - 6}{3}$ for all $n \in \mathbb{N}$. Prove:

- (a.) $y_n > -6$ for all $n \in \mathbb{N}$ (b.) $\{y_n\}$ is decreasing.
- (a.) We use induction where the base-case, $y_1 = 6 > -6$.

Now suppose the claim holds for all terms y_n with $n \leq N$. Then we show that $y_{N+1} > -6$.

$$y_{N+1} = \frac{2y_N - 6}{3} > \frac{2(-6) - 6}{3} = -6$$

(b.) We prove $y_{n+1} < y_n$ by induction on n. In the base-case, since $y_1 = 6$ and $y_2 = \frac{2(6)-6}{3} = 2$ then we clearly have $y_2 < y_1$. For the inductive case we suppose this holds for all $n \le N$ and now prove

that $y_{N+2} < y_{N+1}$. The inequation

$$y_{N+2} = \frac{2y_{N+1} - 6}{3} < y_{N+1}$$

is equivalent to

$$2y_{N+1} - 6 < 3y_{N+1} \quad \Leftrightarrow$$
$$-6 < y_{N+1}$$

and since this is guaranteed by part (a.) we're done. \Box