Physik Anwendung für Inßformatik / Felix Tran, Joshua Beny Hürzeler / 1

1 Grundlagen

1.1 Trigometrie

$\sin\left(\alpha\right) = \frac{G}{H}$	
$\cos(\alpha) = \frac{A}{H}$	
$\tan (\alpha) = \frac{G}{A} = \frac{G}{A}$	sin (α)
$\frac{\tan(a)}{A}$	cos (a)

	0°	30°	45°	60°	90°
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

1.2 Vektorrechnung

Länge des Vektors: $|\vec{u}| = \sqrt{u_x^2 + u_y^2 + u_z^2}$

1.3 Ableitungen

Funktion	Ableitung
x^a	$a \cdot x^{a-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos(2)^x}$

1.3.1 Physikalische Grösser

v	-	m/s
a	-	m/s^2
D	-	N/m
f	Hertz	1/s
F	Newton	$kg \cdot m/s^2$
E	Joule	$N \cdot m$
W	Joule	$J = N \cdot m$
P	Watt	J/s
	a D f F E W	a - D - f Hertz F Newton E Joule W Joule

^{* 4.19} Joule = 1 Cal, 1 Joule = 1 Watt/s => $3.6 \cdot 10^6 J = 1 \text{ kWh}$

1.3.2 Basisgrössen

Länge	l	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s

1.3.3 Abhängigkeit Weg Geschwindigkeit und Beschleunigung über die Zeit

Wegfunktion	s(t)
Geschwindigkeitsfunktion	$v(t) = \dot{s}(t)$
Beschleunigungsfunktion	$a(t) = \dot{v}(t) = \ddot{s}(t)$

1.3.4 Konstanten

Fallbeschleunigung	g	$9.80665m/s^2$
Lichtgeschwindigkeit	c	$2.99792458 \cdot 10^8 m/s$
Gravitationskon- stante	G	$\frac{6.673 \cdot 10^{-}11 N}{m^2/{\rm kg}^2} \cdot$

Konservative Kraft: Die Kraft ist konservativ, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reell wer- $y = x \cdot \tan(\alpha_0) - \frac{g}{2v_0^2 \cos^2(\alpha_0)}$ tige Funktion einer Variable eine Stammfunktion besitzt. Das tige Funktion einer Variable eine Stammfunktion besitzt. Das Hook'schen Gesetz beschreibt eine konservative Kraft, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reellwnur von Ortskoordinaten abhängt, und da -F(x) als reellwertige Funktion einer Variable eine Stammfunktion besitzt $y_{\max} = \frac{v_0^2 \sin^2(\alpha_0)}{2a}$

Mittlere Geschwindigkeit: $\bar{v} = \frac{\Delta v}{\Delta c}$ Mittlere Beschleunigung: $\bar{a} = \frac{\Delta v}{\Delta t}$ Gleichförmige Bewegung: $s = s_0 + v \cdot ta \Rightarrow \frac{s}{r} = t$ Geradlinige Bewegung: $\Delta s = \bar{v}\Delta t$ Gleichmässig beschleunigte Bewegung:

$$\begin{split} s &= s_0 + v_0 \cdot t + \frac{1}{2}at^2 \\ v &= v_0 + at \\ v^2 &= v_0^2 + 2a(s - s_0) \Rightarrow \text{wenn } v_0 = 0 \Rightarrow s = \frac{v^2}{2a} \\ \bar{v} &= \frac{v_1 + v_2}{2} \\ t &= \frac{v}{a} = \frac{v_0 - v}{a} \end{split}$$

2.1 Gleichförmige Kreisbewegung (ω = konst.)			
Umlaufzeit:	T	[T] = s	
Frequenz:	$f = \frac{1}{T}$	$[f] = s^{-1} = \mathbf{H}$	
Winkelkoordinate:	$\varphi = \frac{b}{r}$	$[\varphi] = \operatorname{rad} = \frac{m}{m}$	
Winkel- geschwindigkeit:	$\omega = \Delta \frac{\varphi}{\Delta} t$ $= 2\frac{\pi}{T} =$	$[\omega] = \frac{\text{rad}}{s}$	
Bahngeschwindigkeit:		$v = r\omega$	
Zentripetalbeschleunig	jung: a	$u_z=rac{v^2}{r}=r\omega^2$	

Tangentialgeschwindigkeit: Radialbeschleunigung/ Zentripetalbeschleunigung: Tangentialbeschleunigung: Kreisbewegung Funktion:

$$\begin{aligned} a_T &= \frac{v_1 - v_0}{t} \\ r(t) &= r \binom{\cos(wt + \varphi_0)}{\sin(wt + \varphi_0)} \end{aligned}$$

Radialgeschwindigkeit:

2.2 Schiefer Wurf

Bewegungsgleichung:

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{g}t^2$$

3 Messen und Messfehler

Systematische Fehler: z.B. messen mit falsch kalibriertem Messgerät Berechnet sich der Wert einer Grösse z aus Messwerten der Grössen x und y.

$$z = f(x, y)$$

und wurden die Messgrössen x und y mit einem Fehler von Δx bzw. Δy bestimmt, so ist der Wert von z nur ungenau bestimmt. Für den prognostizierten Wert und den prognostizierten Messfehler gilt

$$\begin{split} z &= z_0 \pm \Delta z \\ z_0 &= f(x_0, y_0) \\ \Delta z &= \left| \frac{\partial}{\partial x} f(x_0, y_0) \right| \cdot \Delta x + \left| \frac{\partial}{\partial y} f(x_0, y_0) \right| \cdot \Delta y \end{split}$$

sofern die Grössen x und y, z.B. auf Grund von fehlerhaften Messinstrumenten, systematisch falsch bestimmt wurz den. Die Fehlerabschätzung durch systematische Fehler ist Gewichtskraft eine «worst-case»-Abschätzung Statistische Fehler: bei Federkraft mehrfach messen unterschiedliche Ergebnisse

⇒ mehrmals mässen und Mittelwert nehmen verkleinert den Fehler Fehlerfortpflanzung für normalverteilte Fehler. Berechnet sich der Wert einer Grösse z aus Messwerten der Grössen x und y gemäss

$$z = f(x, y)$$

und wurden die Messgrössen x und y durch Mehrfachmessung (x n-fach gemessen, y m-fach gemessen) und ohne systematischen Fehler bestimmt, so darf von statistisch normalverteilten Fehlern ausgegangen werden. In diesem Fall errechnet sich die Standardunsicherheit der Messwerte von x und v gemäss

$$\begin{split} \Delta x &= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n \left(x_i - \bar{x}\right)^2} = \frac{\sigma_x}{\sqrt{n}} \\ \Delta y &= \sqrt{\frac{1}{m(m-1)} \sum_{i=1}^m \left(y_i - \bar{y}\right)^2} = \frac{\sigma_y}{\sqrt{m}} \\ \sigma &= \text{Standardabweichung} \\ \bar{x} &= \frac{1}{n} \sum_{i=n}^n x_i = \text{Mittelwert} \\ \text{Es gilt also} \end{split}$$

 $y = \bar{y} \pm \Delta y$ Ausserdem ist der prognostizierte Wert und der statistische Fehler von z durch folgende Formeln berechenbar

 $x = \bar{x} \pm \Delta x$

$$\begin{split} z &= z \pm \Delta z \\ \bar{z} &= f(\bar{x}, \bar{y}) \end{split}$$

$$\Delta z &= \sqrt{\left(\frac{\partial}{\partial x} f(x_0, y_0) \cdot \Delta x\right)^2 + \left(\frac{\partial}{\partial y} f(x_0, y_0) \cdot \Delta y\right)^2}$$

Beispiel Systematischer Fehler: Ein Gewicht unbekannter Masse wird auf einer schiefen Ebene mit dem Neigungswinkel α platziert, auf der es reibungsfrei gleiten kann. Die Hangabtriebskraft und der Neigungswinkel α werden experimentell bestimmt. Die Werte sind $\alpha = (30^{\circ} \pm 2^{\circ}), F_H =$ $(10 \pm 0.3)N$. Aus Tabelle $g = (9.81 \pm 0.03)$

$$F_H = mg \cdot \sin(\alpha) \Rightarrow m = \frac{F_H}{g \cdot \sin(\alpha)}$$

$$m = \frac{10N}{9.81 m/s^2 \cdot \sin(30^\circ)} = 2.0387$$

Partielle Ableitungen:

$$\begin{split} \frac{\partial}{\partial g} \left(\frac{F_H}{g \cdot \sin(\alpha)} \right) &= -\frac{F_H}{g^2 \cdot \sin(\alpha)} \\ \frac{\partial}{\partial \alpha} \left(\frac{F_H}{g \cdot \sin(\alpha)} \right) &= -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^{2\circ}(F_H)} \\ \Delta m &= \left| -\frac{F_H}{g^2 \cdot \sin(\alpha)} \cdot \Delta g \right| + \left| -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^2(F_H)} \cdot \Delta \alpha \right| \\ + \left| \frac{1}{g \cdot \sin(\alpha)} \cdot \Delta F_H \right| &= 0.191 \text{kg} \\ m &= (2.04 \pm 0.19) \text{kg} \end{split}$$

Achtung $\Delta \alpha$ muss in Bogenmass sein!

Gradmass in Bogenmass $x = \frac{\alpha}{180} \cdot \pi$

Bogenmass in Gradmass $\alpha = \frac{x}{2} \cdot 180$

4 Kraft

Kraft

Hook`sches Gesetz Zentripetalkraft Schiefe Ebene

 $\overrightarrow{F_{\mathrm{res}}} = m \vec{a}$
$$\begin{split} F_G &= mg \\ F_F &= Dy \quad D = \text{Federkonst.} \end{split}$$
 $= |l - l_0|$ $\Delta F = D \cdot \Delta y$ $F_Z = \frac{mv^2}{r}$ $F_C = mg$

Normalkraft: $F_N = mq \cdot \cos(\alpha)$

Hangabtriebskraft: $F_H = mg \cdot \sin(\alpha)$

Haftreibungskraft: $F_{HP} = \mu \cdot F_N$

Physik Anwendung für Inßformatik / Felix Tran, Joshua Beny Hürzeler / 2

4.1 Kraft Statik

In der Statik beewegen sich die Objekte nicht. Dort gilt also: $\sum F = 0, v(t) = 0m/s, a(t) = 0m/s^2$

$$(X)F_s \cdot \cos(18^\circ) - \mu \cdot F_N - F_G \cdot \sin(35^\circ)$$

$$\begin{aligned} -F_G \cdot \sin(35^\circ) &= 0 \\ Y) \ F_s \cdot \sin(18^\circ) &+ F_N \\ -F_G \cdot \cos(35^\circ) &= 0 \\ \text{di} \end{aligned}$$

Totale Ableitung:

x(t) und y(t) in $\check{f}(x,y)$ einsetzen und dann ableiten.

$$\frac{df}{dt}(x(t), y(t)) = \frac{d}{dt} \left(\sin(t)^2 \cdot \sin(t^3)\right)$$

$$=2\sin(t)\cdot\cos(t)\cdot\sin(t^3)+\sin(t)^2\cdot\cos(t^3)\cdot3t^2$$

Altenativ mit mehrdimensionale Kettenregel möglich. Bei dieser werden die partiellen Ableitungen mit der Ableitung $-F_C \cdot \cos(35^\circ) = 0$ der Funktion multipliziert und addiert.

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

6 Weiteres

6.1 Taschenrechner

- Menu \rightarrow 3 \rightarrow 1 für solve()
- Menu \rightarrow 3 \rightarrow 7 \rightarrow 1 für Gleichungsystem lösen
- $doc \rightarrow 7 \rightarrow 2$ für Umstellung von Grad auf Rad

6.2 Fundamentum Mathematik und Physik Inhalt

- Trigometrie: Seite 26
- **Ableitungen:** Seite 60
- Kinematik: Seite 81
- Kräfte: Seite 83
- · Energie: Seite 85

Ein Gewicht der Masse $m=10{
m kg}$ wird entsprechend der obigen Skizze durch Seile an einer Wand befestigt. Welche Kräfte wirken im linken und rechten Seil?

$$\frac{F_L}{\sqrt{3^2+4^2}} {3 \choose 4} + \frac{F_R}{\sqrt{8^2+6^2}} {8 \choose 6} + mg {0 \choose -1} =$$

$$F_L \begin{pmatrix} -\cos(\alpha) \\ \cdot \cdot \cdot \end{pmatrix} + F_R \begin{pmatrix} \cos(\beta) \\ \cdot \cdot \cdot \end{pmatrix} + mg \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

5 Mehrdimensionale Analysis

Linearisierung:

$$f(x) \underset{x \approx x_0}{\approx} f'(x_0)(x - x_0) + f(x_0)$$

Häufig mit Funktionen mehrerer Variablen zu tun, die weitere Funktionen beinhalten.

$$f(x,y) = x^2 \cdot \sin(y)$$

$$x(t) = \sin(t)$$

$$y(t) = t^3$$

Partielle Ableitung:

Nach x und y getrennt ableiten.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} (x^2 \cdot \sin(y)) = 2x \cdot \sin(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} (x^2 \cdot \sin(y)) = x^2 \cdot \cos(y)$$