CS202M Final Exam

Feb 21, 2024

Duration: 2 hrs

Max Marks: 65

Closed Book and Open Lecture Notes and Open Printouts of Course Website Material

Instructions

- 1. The exam is closed book and open lecture-notes and open printouts of course website material.
- 2. Your answers should be as complete as in closed notes exam.
- 3. You are not allowed to have electronic devices such as mobile phones, laptops or tablet PCs with you during the exam.
- 4. Answers should be clear, and to the point. Also write your answers neatly and strike out any rough work.
- 5. In your derivations, for each inference rule applied please write its name alongside.

Q1(marks-4+8)

(i) In a lattice $\mathbf{L} = (L, \leq, \wedge, \vee, 0, 1)$ which of the two identities always holds? Prove it.

$$(a \lor b) \land (a \lor c) \le a \lor (b \land c)$$

 $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$

(ii) Show that if L above is finite and distributive then one can define ' \rightarrow ' in it to make it a Heyting algebra. Prove the correctness of your construction.

Q2(marks-3+4)

- (i) Give a four element sub-algebra of Boolean algebra $(P(\{1,2,3\}),\subseteq,\cap,\cup,\neg,\emptyset,\{1,2,3\})$.
- (ii) Which of the following hold in four valued para-consistent logic of Belnap? Prove your answers. [operator ' \rightarrow ' is material implication and designated values are b and 1]
 - (a) $\models p \rightarrow p$
 - **(b)** $\neg (p \land q) \models \neg p \lor \neg q$

Q3(marks-3+8+5)

- (i) Let $\mathbf{B}_1 = (B_1, \leq_1, \wedge_1, \vee_1, \neg_1, 0_1, 1_1)$ and $\mathbf{B}_2 = (B_2, \leq_2, \wedge_2, \vee_2, \neg_2, 0_2, 1_2)$ be Boolean algebras. Structure $\mathbf{B}_1 \times \mathbf{B}_2$ is a Boolean algebra with domain $B_1 \times B_2$ and componentwise definitions of operations. Show the operations and constants of $\mathbf{B}_1 \times \mathbf{B}_2$ in terms of operations and constants of \mathbf{B}_1 and \mathbf{B}_2 . (You do not need to prove that $\mathbf{B}_1 \times \mathbf{B}_2$ is a Boolean algebra under these operations.)
- (ii) Let $\mathbf{B} = (B, \leq, \wedge, \vee, \neg, 0, 1)$ be a Boolean algebra and let $a \in B$, be s.t. 0 < a < 1. In a question of an earlier exam, we saw that $\mathbf{B} \upharpoonright a = (B \upharpoonright a, \leq, \wedge, \vee, \neg', 0, a)$, where $B \upharpoonright a = \{x \in B \mid x \leq a\}, \neg'(x) = \neg x \wedge a$ is a Boolean algebra. Consider Boolean algebra $(\mathbf{B} \upharpoonright a) \times (\mathbf{B} \upharpoonright \neg a)$.

Show that the function $f: B \to (B \upharpoonright a) \times (B \upharpoonright \neg a)$, defined as $f(x) = (x \land a, x \land \neg a)$ is 1-1 and onto.

(iii) The function f in (ii) is in fact an isomorphism of Boolean algebras. For the purpose of this part you may simply assume it without proving it. That is, you may assume that Boolean algebras \mathbf{B} and $(\mathbf{B} \upharpoonright a) \times (\mathbf{B} \upharpoonright \neg a)$ are isomorphic. Using this assumption argue that every finite Boolean algebra can be expressed as a (finite) product of Boolean algebras $\mathbf{2}$.

Q4(marks-5)

Show that CNF satisfiability problem, in which each clause has at most one negative literal can be solved in polynomial time.

Q5(marks-20) For each of the following judgment either derive it in the weakest system (minimal, intuitionistic or classical) needed to derive it or give a falsifying interpretation to show that it is not true in classical logic. Your derivations should be complete

in themselves, without making reference to class-notes, but details of purely propositional reasoning may be suppressed. Quantifier steps should be shown clearly.

(i)
$$\exists x \forall y. A(x,y) \vdash \forall y \exists x. A(x,y)$$

(ii)
$$\exists x.(C(x) \to D(x)) \vdash \forall x.C(x) \to D(x)$$

(iii)
$$\forall y \exists x. A(x,y) \vdash \exists x \forall y. A(x,y)$$

(iv)
$$\phi \to \exists x. \psi(x) \vdash \exists x. (\phi \to \psi(x)), x \notin FV(\phi)$$

(v)
$$\forall x A(x) \vdash \exists x A(x)$$

[Note: Not all parts of this question carry equal marks. Actual break-up of marks is not shown to avoid hinting at the relative difficulty.]

Q6(marks-5) Which of the following hold in Fuzzy logic (with threshold 1). Prove your answers.

(i)
$$\models_1 (p \rightarrow q) \rightarrow \neg p \lor q$$

(ii)
$$\models_1 \neg p \lor q \to (p \to q)$$

(iii)
$$p \to q \models_1 (p \land r \to q)$$

-----End-