Análisis Funcional - 1° cuatrimestre 2017 Final

Índice

1.	Espacios Vectoriales	1
	1.1. Propiedades Elementales	1
	1.2. Normas y productos internos	3
2.	Espacios de Hilbert	5
	2.1. Preliminares	5
	2.2. Conjuntos ortogonales y ortonormales	5
	2.3. Conjuntos ortonormales completos	
	2.4. Ortogonalización de Gram Schmitt	9
	2.5. Dimensión de un espacio de Hilbert	9
	2.6. Proyección ortogonal	
	2.7. Teorema de representación de Riesz	
3.	Espacios de Banach	15
	3.1. Operadores entre espacios normados	15
	3.2. Espacios vectoriales de dimensión finita	
	3.3. Espacio de Operadores entre espacios normados	
	3.4. Espacios cocientes	20
4.	Teorema de Hahn-Banach	21
	4.1. Funcionales Lineales	21
	4.2. El Teorema de Hanh-Banach	22
	4.3. Corolarios de Hanh-Banach	23
	4.4. Separabilidad y Reflexividad	24
	4.5. Consecuencias Geométricas de Hanh-Banach	26
5.	Teoremas fundamentales de espacios de Banach	29
	5.1. Teorema de la aplicación abierta	29
	5.2. Teorema del Gráfico cerrado	
6.	Topologías débiles	30

1. Espacios Vectoriales

1.1. Propiedades Elementales

Definición Si \mathcal{X} es un espacio vectorial sobre un cuerpo \mathbb{F} , un conjunto $\mathcal{B} = \{v_i\}_{i \in I}$ se dice:

- 1. Linealmente independiente si dados $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = 0$ implica que $\lambda_{i_i} = 0$ para todo $1 \le i \le k$.
- 2. Sistema de generadores si dado $v \in \mathcal{X}$ entonces existen $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = v$.
- 3. Base si es a la vez un sistema de generadores linealmente independiente.

Ejemplo $\mathbf{F} = X = \mathbb{R}[X]$ es un espacio vectorial, si consideramos $\mathcal{B} = \{1, X, X^2, \dots\} = \{X^j\}_{j \in \mathbb{N}}$ es base.

■ $X = \mathcal{C}[a, b]$ es un espacio vectorial, si consideramos $\mathcal{B} = \{e^{\alpha x}, \alpha \in [0, 1]\}$ veamos que es linealmente independiente.

Demostración Sean $\alpha_1, \ldots, \alpha_n \in [0,1]$ y $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tal que $\sum_i \lambda_i e^{\alpha_i x} = 0$ para todo $x \in [a,b]$; luego si derivamos n-1 veces tenemos el sistema:

$$\left(\begin{array}{ccc} e^{\alpha_1 x} & e^{\alpha_2 x} & \dots & e^{\alpha_n x} \end{array} \right) \left(\begin{array}{ccc} 1 & \alpha_1 & \dots & \alpha_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \dots & \alpha_n^{n-1} \end{array} \right) \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \right)$$

Y como los α_i son distintos entonces la matriz de Vandermonde es inversible y el sistema admite una única solución, $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Recordemos:

Proposición 1.1.1 (Lema de Zorn) Si (P, \leq) es un conjunto parcialmente ordenado, no vacío, tal que todo subconjunto no vacío $S \subseteq P$ totalmente ordenado admite una cota superior; entonces existe un elemento maximal en P.

Proposición 1.1.2 Si E es un espacio vectorial, entonces E admite una base.

Demostración Consideremos $P = \{S \subseteq E \mid S \text{ es li}\}$ y dotemoslo del orden dado por la inclusión, luego $P \neq \emptyset$ pues si $v \in E$ entonces $\{v\} \in P$.

Sea $\{S_i\}$ una colección de subconjuntos de P totalmente ordenada y sea $T=\bigcup_{i\in I}S_i$, luego es claro que $S_i\leq T$; faltaría ver que $T\in P$.

Para eso sean $v_{i_1}, \ldots, v_{i_k} \in T$ y $\lambda_{i_1}, \ldots, \lambda_{i_k}$ $in\mathcal{F}$ tales que $\sum_k \lambda_i v_i = 0$. Como son finitos existe $k_0 \in \mathbb{N}$ tal que $v_i \in S_{k_0}$ para todo i, que al ser un conjunto linealmente independiente resulta que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$. Concluímos que $T \in P$, luego por 1.1.1 existe $M \in P$ elemento maximal.

Finalmente, sea $v \in E \setminus M > (\text{el conjunto generado por combinaciones lineales de } M)$, luego $M \cup \{v\}$ sería un conjunto li lo que contradice la maximalidad de M; por ende no existe tal v y M resulta base.

Proposición 1.1.3 Sea E un espacio vectorial y sean $\mathcal{B}_1, \mathcal{B}_2$ dos bases de Hamel de E. Luego $\#B_1 = \#B_2$.

Demostración Sea $x \in \mathcal{B}_1$ y llamemos S(x) al conjunto de los elementos $v \in \mathcal{B}_2$ tal que al escribir a x como combinación lineal de elementos de \mathcal{B}_2 aparece v, por lo que si $x = \sum_k \lambda_{i_k} v_{i_k}$ entonces $S(x) = \{v_{i_1}, \dots, v_{i_n}\}$.

Lema 1.1.4
$$\bigcup_{x \in \mathcal{B}_1} S(x) = \mathcal{B}_2$$

Demostración Del lema Si $v \in \bigcup_{x \in \mathcal{B}_1} S(x)$ luego existe $x_0 \in \mathcal{B}_1$ tal que $v \in S(x_0)$ por lo que $v \in \mathcal{B}_2$ por definición de S(x). Recíprocamente, si $v \in \mathcal{B}_2$ pero no existe $x \in \mathcal{B}_1$ tal que $v \in S(x)$, entonces $v \notin \mathcal{B}_1 >= E = \mathcal{B}_2 >$.

Por 1.1.4 tenemos que $\#\mathcal{B}_2 \leq \sum_{x \in \mathcal{B}_1} \#S(x) \leq \#\mathbb{N} \#\mathcal{B}_1 \leq \#B_1$.

Razonando al revés obtenemos la otra desigualdad.

1.2. Normas y productos internos

Definición Si E es un espacio vectorial, una norma definida en E es una aplicación $\|.\|: E \mapsto \mathbb{R}$ tal que:

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $\|\lambda x\| = |\lambda| \|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$

Observación Todo espacio normado es un espacio métrico pero no viceversa.

Definición Si E es un espacio vectorial, un producto interno definido en E es una aplicación $\langle ., . \rangle : E \times E \mapsto F$ tal que:

- 1. $\langle ., z \rangle$ es lineal
- 2. $\langle x, x \rangle = 0 \iff x = 0$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$

Observación Todo espacio con producto interno es un espacio normado pero no viceversa.

Teorema 1.2.1 (Cauchy-Schwartz) Sea E un espacio vectorial $y \langle . \rangle$ un producto interno definido en E; luego si $x, y \in E$ se tiene que $|\langle x, y \rangle| \leq ||x|| ||y||$.

Demostración Sean $x, y \in E$, $\lambda \in \mathbb{C}$ y sea $z = x - \lambda y$, luego $\langle z, z \rangle = \langle x, x \rangle + \left| \lambda^2 \right| \langle y, y \rangle - 2\Re(\lambda \langle y, x \rangle) \ge 0$. Si $\langle y, x \rangle = re^{i\theta}$ sea $\lambda = e^{-i\theta}t$ con $t \in \mathbb{R}$; luego:

$$0 \ge \langle x, x \rangle + t^2 \langle y, y \rangle - 2bt \equiv c - 2bt + at^2 := q(t)$$

Luego como la cuadrática dada es positiva, eso implica que $0 \le 4b^2 - 4ac$ por lo que:

$$0 \le b^2 - ac = \left| \langle x, y \rangle \right|^2 - \langle x, x \rangle \langle y, y \rangle$$

Si $|\langle x,y\rangle| = ||x|| \, ||y||$, entonces $b^2 = \langle x,x\rangle \, \langle y,y\rangle$ por lo que $b^2 - ac = 0$. Esto implica que existe t_0 tal que $q(t_0) = 0$, por lo tanto eso implica que $\langle x - e^{-i\theta}t_0y, x - e^{-i\theta}t_0y \rangle \equiv 0$ y por lo tanto $x = e^{-i\theta}t_0y$.

Definición Un espacio normado que es completo respecto a la distancia inducida por la norma se llama Espacio de Banach

Definición Un *Espacio de Hilbert* es un espacio de Banach donde la norma proviene de un producto interno mediante $||x|| = \sqrt{\langle x, x \rangle}$.

Proposición 1.2.2 Sea E un espacio con producto interno, entonces:

- $\mathcal{R}(\langle x, y \rangle) = \frac{1}{4} (\|x + y\|^2 \|x y\|^2)$
- $\mathcal{I}(\langle x, y \rangle) = \frac{1}{4} \left(\|x + iy\|^2 \|x iy\|^2 \right)$

Demostración Por un lado $||x+y||^2 = ||x||^2 + ||y||^2 + 2\mathcal{R}(\langle x,y\rangle)$ y $||x-y||^2 = ||x||^2 + ||y||^2 - 2\mathcal{R}(\langle x,y\rangle)$; por lo que restando se obtiene:

$$4\mathcal{R}(\langle x, y \rangle) = ||x + y||^2 - ||x - y||^2$$

Por el otro:

$$\begin{aligned} \|x+iy\|^2 &= \langle x+iy, x+iy \rangle \\ &= \|x\|^2 + |i| \|y\|^2 - i \langle x, y \rangle + i \overline{\langle x, y \rangle} \\ &= \|x\|^2 + \|y\|^2 - i2\mathcal{I}(\langle x, y \rangle) \\ \|x-iy\|^2 &= \langle x-iy, x-iy \rangle \\ &= \|x\|^2 + |i| \|y\|^2 + i \langle x, y \rangle - i \overline{\langle x, y \rangle} \\ &= \|x\|^2 + \|y\|^2 + i2\mathcal{I}(\langle x, y \rangle) \end{aligned}$$

Por lo tanto restando ambas obtenemos:

$$4\mathcal{I}(\langle x, y \rangle) = \|x + iy\|^2 - \|x - iy\|^2$$

Proposición 1.2.3 (Ley del paralelogramo) Sea E un espacio normado real, entonces existe $\langle .,. \rangle : E \times E \to \mathbb{C}$ tal que $||x|| = \sqrt{\langle x, x \rangle}$ si y sólo si para todos $x, y \in E$ vale:

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

Demostración Si $||x|| = \sqrt{\langle x, x \rangle}$ entonces de la demostración de 1.2.2 se da el resultado. Recíprocamente definamos:

$$\langle x, y \rangle := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

Luego verifiquemos que es un producto interno.

- 1. $\sqrt{\langle x, x \rangle} = ||x||$
- 2. Como $\|x+y\|=\|y+x\|$ y $\|x-y\|=\|-(y-x)\|=\|y-x\|$ concluímos que $\langle x,y\rangle=\langle y,x\rangle$.
- 3. Dado que $\|.\|, +, -, *$ son $\|.\|$ -continuas entonces $\langle ., x \rangle, \langle x, . \rangle$ es $\|.\|$ -continua.
- 4. Sean $x, y, z \in E$ entonces:

$$||x + y + z||^2 = 2||x + z||^2 + 2||y||^2 - ||x - y + z||^2 = 2||y + z||^2 + 2||x||^2 - ||y - x + z||^2$$

Luego como A=B y A=C implica $A=\frac{B+C}{2}$ se obtiene:

$$\begin{aligned} \|x+y+z\|^2 &= \|x+z\|^2 + \|y\|^2 - \frac{1}{2} \|x-y+z\|^2 + \|y+z\|^2 + \|x\|^2 - \frac{1}{2} \|y-x+z\|^2 \\ \|x+y-z\|^2 &= \|x-z\|^2 + \|y\|^2 - \frac{1}{2} \|x-y-z\|^2 + \|y-z\|^2 + \|x\|^2 - \frac{1}{2} \|y-x-z\|^2 \\ &= \|x-z\|^2 + \|y\|^2 - \frac{1}{2} \|-x+y+z\|^2 + \|y-z\|^2 + \|x\|^2 - \frac{1}{2} \|-y+x+z\|^2 \end{aligned}$$

Por lo tanto:

$$\langle x + y, z \rangle = \frac{1}{4} \left(\|x + y + z\|^2 - \|x + y - z\|^2 \right)$$

$$= \frac{1}{4} \left(\|x + z\|^2 - \|x - z\|^2 \right) + \frac{1}{4} \left(\|y + z\|^2 - \|y - z\|^2 \right)$$

$$= \langle x, z \rangle + \langle y, z \rangle$$

5. Por el item anterior es claro por inducción que $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$ para todo $\lambda \in \mathbb{N}$ y como vale para $\lambda = -1$ tenemos que vale para todo $\lambda \in \mathbb{Z}$. Si $\lambda = \frac{p}{q} \in \mathbb{Q}$ entonces si llamamos $x' = \frac{x}{q}$ tenemos:

$$q\langle \lambda x, y \rangle = q\langle px', y \rangle = p\langle qx', y \rangle = p\langle x, y \rangle$$

Luego $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$ para todo $\lambda \in \mathbb{Q}$. Por lo tanto probamos que fijados $x, y \in E$ la función $g(t) = \frac{1}{t} \langle tx, y \rangle$ y la función constante $h(t) = \langle x, y \rangle$ cumplen que $h|_{\mathbb{Q}} = g|_{\mathbb{Q}}$ y por continuidad entonces $h \equiv g$ para todo $t \in \mathbb{R} \setminus \{0\}$; como el caso $\lambda = 0$ es trivial concluímos que $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$.

2. Espacios de Hilbert

2.1. Preliminares

Proposición 2.1.1 Sea E un espacio vectorial con producto interno, luego el producto interno es continuo.

Demostración Sea $x_n, (y_n)$ tales que $x_n \to x, y_n \to y$, luego:

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle| \\ &\leq |\langle x_n - x, y_n - y \rangle| + |\langle x_n - x, y \rangle| + |\langle x, y_n - y \rangle| \\ &\leq \|x_n - x\| \|y\| + \|x\| \|y_n - y\| + \|x_n - x\| \|y_n - y\| \to 0 \end{aligned}$$

2.2. Conjuntos ortogonales y ortonormales

Definición Sea E un espacio vectorial con producto interno, luego dados dos vectores $x, y \in E$ decimos que son *ortogonales* si $\langle x, y \rangle = 0$.

A su vez decimos que son ortonormales si osn ortogonales y ||x|| = ||y|| = 1

Finalmente dado un conjunto $S \subseteq E$ entonces decimos que es ortogonal / ortonormal si dados cualesquiera $x, y \in S$ resulta que son ortogonales / ortonormales

Ejemplo El conjunto $\{e^{inx}, n \in \mathbb{N}, x \in [0, 2\pi]\}$ es ortonormal.

Teorema 2.2.1 Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ un conjunto ortonormal, luego si $x \in \langle S \rangle$ entonces existe una única escritura de x dada por:

$$x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i \qquad u_i \in S$$

Demostración Como $x \in \langle S \rangle$ entonces existen únicos $\lambda_1, \ldots, \lambda_n$ tal que $x = \sum_{i=1}^n \lambda_i u_i$. Luego:

$$\langle x, u_j \rangle = \sum_{i=1}^n \lambda_i \langle u_i, u_j \rangle = \lambda_j$$

Teorema 2.2.2 (Desigualdad de Bessel) Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ un conjunto ortonormal, luego:

1.
$$SI \ x \in E \ y \ u_1, \dots, u_n \in S \ luego \sum_{i=1}^n |\langle x, u_i \rangle|^2 \le ||x||^2$$

2. Si $x \in E$ entonces $\{u \in S \ / \ \langle x, u \rangle \neq 0\}$ es a lo sumo numerable

3. Si
$$x, y \in E$$
 entonces $\left| \sum_{u \in S} \langle x, u \rangle \, \overline{\langle y, u \rangle} \right| \le ||x|| \, ||y||$

Demostración 1. Sean $u_1, \ldots, u_n \in S$ y sea $z = x - \sum_{i=1}^n \langle x, u_i \rangle$, luego:

$$0 \le \langle z, z \rangle$$

$$= \left\langle x - \sum_{i=1}^{n} \langle x, u_i \rangle, x - \sum_{i=1}^{n} \langle x, u_i \rangle \right\rangle$$

$$= \|x\|^2 + \left\| \sum_{i=1}^{n} \langle x, u_i \rangle \right\|^2 - 2\mathcal{R} \left(\left\langle \sum_{i=1}^{n} \langle x, u_i \rangle, x \right\rangle \right)$$

$$= \|x\|^2 + \sum_{i=1}^{n} \|\langle x, u_i \rangle\|^2 - 2\mathcal{R} \left(\sum_{i=1}^{n} |\langle x, u_i \rangle|^2 \right)$$

$$= \|x\|^2 - \sum_{i=1}^{n} \|\langle x, u_i \rangle\|^2.$$

2. Notemos que
$$S = \{u \in S \ / \ |\langle x, u \rangle| > 0\} = \bigcup_{n \in \mathbb{N}} \underbrace{\left\{u \in S \ / \ |\langle x, u \rangle| \geq \frac{1}{m}\right\}}_{T = 0}.$$

Ahora sean $u_1, \ldots, u_n \in T$ por el item anterior sabemos que:

$$\frac{n}{m^2} \le \sum_{1 \le k \le n} |\langle x, u_k \rangle|^2 \le ||x||^2$$

Por lo que $n \leq m^2 ||x||^2$ y entonces $\#T_m \leq m^2 ||x||^2 < \infty$ para todo m, por lo tanto $\#S \leq \#\mathbb{N} * \#T_m \leq \#\mathbb{N}$.

3. Sean $x, y \in E$ y $u_1, \ldots, u_n \in S$, luego:

$$\left| \sum_{i=1}^{n} \langle x, u_i \rangle \overline{\langle y, u_i \rangle} \right| \leq_{\text{C-S}} \sqrt{\sum_{i=1}^{n} |\langle x, u_i \rangle|^2} \sqrt{\sum_{i=1}^{n} |\langle y, u_i \rangle|^2}$$

$$\leq_{\text{a}} ||x|| ||y||$$

Teorema 2.2.3 Si E es un espacio vectorial con producto interno tal que E es separable, entonces todo conjunto ortonormal es a lo sumo numerable

Demostración Sea $S \subseteq E$ un conjunto ortonormal y sean $u \neq v \in S$, luego $||u - v||^2 = ||u||^2 + ||v||^2 = 2$ y por lo tanto $B_{\frac{\sqrt{2}}{2}}(u) \cap B_{\frac{\sqrt{2}}{2}}(v) = \emptyset$.

Sea $D \subseteq E$ un subconjunto denso numerable, luego $B_{\frac{\sqrt{2}}{2}}(u) \cap D \neq \emptyset$ para todo $u \in S$. Consideremos $f: S \to D$ dado por $f(u) \in B_{\frac{\sqrt{2}}{2}}(u) \cap D$, luego si f(u) = f(v) entonces $f(v) \in B_{\frac{\sqrt{2}}{2}}(u) \cap B_{\frac{\sqrt{2}}{2}}(v)$ y por lo tanto u = v. Como f es inyectiva concluímos que S es a lo sumo numerable.

Teorema 2.2.4 Sean H un espacio de Hilbert, u_n una sucesión de vectores ortonormales y c_n una sucesión de numeros complejos. Luego:

$$\sum_{n \in \mathbb{N}} c_n u_n \in H \iff \sum_{n \in \mathbb{N}} |c_n|^2 < \infty \tag{1}$$

Más aún, $c_n = \left\langle \sum_{n \in \mathbb{N}} c_n u_n, u_n \right\rangle$

Demostración Sea $S_k = \sum_{i=1}^k c_i u_i$, luego como (u_n) son ortonormales dos a dos y H es completo:

$$\left\| \sum_{i=k+1}^{k'} c_n u_n \right\|^2 = \sum_{i=k+1}^{k'} |c_n|^2$$

Por ende:

$$\sum_{n \in \mathbb{N}} c_n u_n \in H \iff \sum_{n \in \mathbb{N}} |c_n|^2 < \infty$$

Finalmente, notemos que $\langle S_k, u_j \rangle = c_j$ para todo $k \geq j$ y ,además si $(c_n)_i n l^2$, entonces $S_k \to \sum_{n \in \mathbb{N}} c_n u_n = x$; por lo tanto por 2.1.1 $c_n = \langle S_k, u_n \rangle \to \langle x, u_n \rangle$.

Definición Sea E un espacio vectorial con producto interno y $M \subseteq E$, definimos el ortogonal a M como $M^{\perp} = \{x \in E \ / \ \langle x, m \rangle = 0 \ \forall m \in M\}.$

Proposición 2.2.5 M^{\perp} es un subespacio cerrado de E

Demostración Si $(x_n) \subset M$ es tal que $x_n \to x$ entonces por 2.1.1 $0 = \langle m, x_n \rangle \to \langle m, x \rangle$, por lo que $x \in M$.

Teorema 2.2.6 Sea H un espacio de Hilbert y sea $S \subseteq H$ un conjunto ortonormal, luego:

- 1. Si $x \in H$ entonces $x_S = \sum_{u \in S} \langle x, u \rangle u$ esta bien definido
- 2. Si $M = \langle S \rangle$ entonces $x \in M$ si y solo si $x = x_S$. Es más si $x \in H$ entonces $x x_S \in M^{\perp}$.

Demostración 1. Dado $x \in H$, de 2.2.2 sea (u_n) una numeración de $S = \{u \in S \ / \ \langle x, u \rangle = 0\}$ y sea (v_n) otra ordenación de los u_n ; notemos $x_1 = \sum_n \langle x, u_n \rangle u_n$ y $x_2 = \sum_n \langle x, u_n \rangle u_n$ que por 2.2.4 y 2.2.2 están bien definidos.

Luego:

$$\begin{split} \langle x_1 - x_2, u_n \rangle &= \langle x_1, u_n \rangle - \langle x_2, u_n \rangle \\ &= \underbrace{\langle x, u_n \rangle - \langle x, v_{m_n} \rangle}_{u_n = v_{m_n} \text{ para algún } m_n} \\ &= \langle x, u_n \rangle - \langle x, u_n \rangle = 0 \end{split}$$

Por ende, $\langle x_1 - x_2, u_n \rangle = \langle x_1 - x_2, v_n \rangle = 0$ para todo $n \in \mathbb{N}$ y se concluye que $\langle x_1 - x_2, x_1 - x_2 \rangle = 0$ por lo que $x_1 = x_2$ y entonces x_S esta bien definido y no depende del orden de la suma.

2. Sea $x_{S_k} = \sum_{i=1}^k \langle x, u_i \rangle u_i \in M$, luego como M es cerrado se tiene que $x_{S_k} \to x_S \in M$. Ahora sea $s \in S$, entonces:

$$\langle x - x_S, v \rangle = \langle x, v \rangle - \langle x_S, v \rangle = \langle x, v \rangle - \langle x, v \rangle = 0$$

Por lo que $x-x_S \in M^{\perp}$. Finalmente, si $x \in M$ entonces como $x_S \in M$ entonces $x-x_S \in M \cap M^{\perp} = \{0\}$, luego $x = x_S$.

2.3. Conjuntos ortonormales completos

Definición Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ ortonormal, diremos que S es completo si $S \subseteq T$ y T es ortonormal, entonces S = T.

Proposición 2.3.1 Sea S un conjunto ortonormal tal que $S^{\perp} = \{0\}$, entonces S es completo

Demostración Sea T ortonormal y sea $v \in T \setminus S$, luego $v \in S^{\perp} = 0$ por lo que S es completo.

Teorema 2.3.2 Sea E un espacio vectorial con producto interno, $S \subseteq E$ ortonormal y sea $M = \langle S \rangle$, entonces:

- 1. $Si\ M = E\ entonces\ S\ es\ completo$
- 2. Si S es completo y E es de Hilbert entonces M = E

Demostración 1. Si $x \in S^{\perp}$ entonces $x \in M^{\perp} = E^{\perp} = \{0\}$, por lo tanto S es completo

2. Sea $x \in E$, luego por 2.2.6 x_S esta bien definido y $x - x_S \in M^{\perp}$, luego como S es completo $x - x_S = 0$ y por 2.2.6 se tiene que $x \in M$.

Corolario 2.3.3 Sea H de Hilbert y $S \subseteq H$ un conjunto ortonormal completo, luego si $x \in H$ entonces $x = \sum_{u \in S} \langle x, u \rangle u$.

Demostración Como H es Hilbert y S es completo entonces por 2.3.2 tenemos que $\langle S \rangle = H$, luego por 2.2.6 si $x \in H$ entonces $x = x_S$.

Teorema 2.3.4 (Identidad de Parseval) Sea E un espacio vectorial con producto interno y $S \subseteq E$ un conjunto ortonormal tal que para todo $x \in E$ vale:

$$||x||^2 = \sum_{u \in S} |\langle x, u \rangle|^2 \tag{2}$$

Luego S es completo. Más aún si E es Hilbert y S es completo entonces vale 2

Demostración Sea $x \in E$ tal que $x \in S^{\perp}$, luego por $2 ||x|| = \sum_{u \in S} \left| \underbrace{\langle x, u \rangle}_{=0} \right|^2 = 0$, luego x = 0 y S es completo.

Si E es Hilbert y S es completo entonces por 2.3.3 y 2.2.2 vale que $x = \sum_{n \in \mathbb{N}} \langle x, u_n \rangle u_n$ por lo que:

$$||x||^{2} = \langle x, x \rangle$$

$$= \left\langle \sum_{n \in \mathbb{N}} \langle x, u_{n} \rangle u_{n}, \sum_{n \in \mathbb{N}} \langle x, u_{n} \rangle u_{n} \right\rangle$$

$$= \sum_{n \in \mathbb{N}} \langle x, u_{n} \rangle \overline{\langle x, u_{n} \rangle}$$

$$= \sum_{n \in \mathbb{N}} |\langle x, u_{n} \rangle|^{2}$$

$$= \sum_{u \in S} |\langle x, u \rangle|^{2}$$

Corolario 2.3.5 Sea H Hilbert y $m \in M = \langle S \rangle$ con $S \subseteq H$ un conjunto ortonormal, luego $||x - m|| \ge ||x - x_S||$

Demostración
$$||x - m||^2 = \left\|\underbrace{x - x_S}_{\in M^{\perp}} + \underbrace{x_S - m}_{\in M}\right\|^2 = ||x - x_S||^2 + ||x_S - M||^2 \ge ||x - x_S||^2$$

2.4. Ortogonalización de Gram Schmitt

Teorema 2.4.1 (Ortogonalización de Gram-Schmidt) Sea E un espacio vectorial con producto interno y sea D un conjunto linealmente independiente no vacío, luego si D es a lo sumo numerable existe $S \subseteq E$ ortonormal tal que:

- #S = #D

Demostración Sea $D = \{x_n\}$ y definamos:

$$y_{1} = x_{1} , u_{1} = \frac{y_{1}}{\|y_{1}\|} , S_{1} = \{u_{1}\}$$

$$y_{2} = x_{2} - x_{S_{1}} , u_{2} = \frac{y_{2}}{\|y_{2}\|} , S_{2} = \{u_{1}, u_{2}\}$$

$$\vdots \vdots , \vdots , \vdots , \vdots$$

$$y_{n} = x_{n} - x_{S_{n-1}} , u_{n} = \frac{y_{n}}{\|y_{n}\|} , S_{n} = \{u_{1}, \dots, u_{n}\}$$

Luego sea $S = \bigcup_{n \in \mathbb{N}} S_n$ y es claro verificar ambas propiedades.

Proposición 2.4.2 Sea E un espacio vectorial con producto interno de dimensión infinita, luego si E es separable existe $S \subseteq E$ ortonormal, completo y numerable tal que $\overline{\langle S \rangle} = E$.

Demostración Como E es separable existe $D = \{x_n\} \subseteq E$ denso numerable. Sea $n_1 = \min\{n \in \mathbb{N} \mid x_n \neq 0\}$ y $y_1 = x_{n_1}$ e inductivamente sea $n_k = \min\{\underbrace{n \in \mathbb{N} \mid x_n \notin \langle y_1, \dots, y_{k-1} \rangle}_{A_k}$ y $y_k = x_{n_k}$, luego

por la buena ordenación de \mathbb{N} y el hecho que D es denso y $dim(E) = \infty$ entonces $A_k \neq \emptyset$ para todo $k \in \mathbb{N}$ por lo que n_k esta bien definido. Sea $Y = \bigcup_{k \in \mathbb{N}} \{y_k\}$

Lema 2.4.3 $\langle D \rangle = \langle Y \rangle$ e Y es linealmente independiente.

Demostración (del Lema) Si $x_{n_0} \in D$ luego si $n_0 = n_k$ para algún k se concluye que $x_{n_0} \in Y$, si no entonces por Arquimedianidad $A = \{n \in \mathbb{N} \mid n > n_0 , \exists k \in \mathbb{N} , n = n_k \} \neq \emptyset$ y sea $\hat{k} = \min A$; luego $x_{n_0} \in \langle A_{\hat{k}-1} \rangle \subseteq \langle Y \rangle$. Se concluye que $D \subseteq \langle Y \rangle$ y entonces $\langle D \rangle \subseteq \langle Y \rangle$.

Recíprocamente sea $y \in Y$, luego por definición de y se tiene que $y = x_{n_k} \in \langle D \rangle$ para algún k y entonces $Y \subseteq \langle D \rangle$ por lo que $\langle Y \rangle = \langle D \rangle$.

Finalmente por construcción Y es linealmente independiente.

Luego por 2.4.1 existe $S \subseteq E$ ortonormal tal que $\langle S \rangle = \langle Y \rangle = \langle D \rangle$, y como D es denso se tiene que

$$\overline{\langle S \rangle} = \overline{\langle D \rangle} \supseteq \overline{D} = E.$$

2.5. Dimensión de un espacio de Hilbert

Proposición 2.5.1 Sea E un espacio vectorial con producto interno y sean $S_1, S_2 \subseteq E$ conjuntos ortonormales y completos, luego $\#S_1 = \#S_2$

Demostración Si S_1 es finito entonces $S = \{u_1, \ldots, u_k\}$, sea $x \in E$ entonces $x - x_{S_1} = x - \sum_{i=1}^k \langle x, u_i \rangle u_i \in S_1^{\perp} = \{0\}$ por lo que S_1 es generador y ortonormal; concluímos que S_1 es base y dimE = k. Análogamente $S_2 = \{v_1, \ldots, v_j\}$ es base y finalmente sea $T \in End(E)$ dada por $T(u_i) = v_i$, luego T es biyectiva y $\#S_1 = \#S_2$.

Si S_1 es infinito entonces para $x \in S_1$ sea $S_2(x) = \{u \in S_2 / \langle u, x \rangle \neq 0\}$, luego por 2.2.2 sabemos que $S_2(x)$ es a lo sumo numerable.

Lema 2.5.2
$$\bigcup_{x \in S_1} S_2(x) = S_2$$

Demostración (del Lema) Supongamos que existe $y \in S_2$ tal que $y \notin S_2(x)$ para todo $x \in S_1$, luego $y \in S_1^{\perp} = \{0\}$; concluímos que $S_2 \subseteq \bigcup_{x \in S_2} S_2(x)$ pues S_2 es ortonormal.

Trivialmente se da la otra inclusión.

Por lo tanto $\#S_2 \leq \#(\mathbb{N} \times S_1) = \#S_1$; análogamente $\#S_1 \leq \#S_2$ y se concluye el resultado.

Definición Se define dim(E) = #S donde $S \subseteq E$ es un sistema ortonormal completo.

Definición Sean E y F dos espacios vectoriales con producto interno, decimos que son *congruentes* si existe $T \in L(E, F)$ isomorfismo tal que $||T(x)||_F = ||x||_E$

Definición Sea
$$Q \neq \emptyset$$
, luego definimos $l^2(Q) = \left\{ f: Q \to \mathbb{R} \ / \ \# \{q \in Q \ / \ f(q) \neq 0\} \leq \aleph_0 \ , \ \sum_{q \in Q} |f(q)|^2 < \infty \right\}.$

Proposición 2.5.3 Valen:

- 1. $l^2(Q)$ es un espacio de Hilbert con producto interno dado por $\langle f,g\rangle=\sum_{q\in Q}f(q)\overline{g(q)}$
- 2. Sea $S = \{\chi_{\{q\}}\}_{q \in Q}$ es ortonormal y completo
- 3. $Si \# Q > \# \mathbb{N} \text{ entonces } l^2(Q) \text{ no es separable}$

Proposición 2.5.4 Todo espacio vectorial con producto interno admite un sistema ortonormal completo.

Demostración Sea $P = \{S \subseteq E \mid S \text{ ortonormal}\}$ y dotemoslo del orden dado por la inclusión, luego $P \neq \emptyset$ pues si $v \in E$ entonces $\{v\} \in P$.

Sea $\{S_i\}$ una colección de subconjuntos de P totalmente ordenada y sea $T = \bigcup_{i \in I} S_i$, luego es claro que $S_i \leq T$; faltaría ver que $T \in P$.

Para eso sean $v_1, v_2 \in T$, luego existe S_i tal que $v_1, v_2 \in S_i$ y como este es ortonormal resulta que $\langle v_1, v_2 \rangle = 0$ y $||v_1|| = ||v_2|| = 1$. Concluímos que $T \in P$, luego por 1.1.1 existe $M \in P$ elemento maximal.

Finalmente sea $v \in M^{\perp}$, luego $M \cup \left\{ \frac{v}{\|v\|} \right\}$ sería un conjunto ortonormal lo que contradice la maximalidad de M; por ende no existe tal v y M resulta completo.

Teorema 2.5.5 Sea H Hilbert tal que $\dim H = \alpha$ entonces $H \cong l^2(Q)$ con $\#Q = \alpha$

Demostración Sea $S_{\alpha} = \{u_i\}_{i \in Q}$ un sistema ortonormal, completo de H que existe por 2.5.4; luego $x \in H$ entonces $x = \sum_{i \in Q} \langle x, u_i \rangle u_i$, y debido a 2.3.4 y 2.2.2 $\{\langle x, u_i \rangle\}_{i \in Q} \subset l^2(Q)$. Definimos $T: H \to l^2(Q)$ dado por $T(x) = (\langle x, u_i \rangle)_{i \in Q}$ y veamos que es la indicada.

1. T es lineal

Sean
$$x, y \in H$$
 y $\lambda \in \mathbb{F}$, luego $T(x + \lambda y) = (\langle x + \lambda y, u_i \rangle) = (\langle x, u_i \rangle + \lambda \langle y, u_i \rangle) = T(x) + \lambda T(y)$.

2. T es monomorfismo

Si
$$T(x)=(0)$$
 luego $\langle x,u_i\rangle=0$ para todo $i\in Q$, luego $x\in S^\perp=\{0\}$ pues S es completo.

3. T es epimorfimso

Si
$$(c_i) \in l^2(Q)$$
 luego por 2.2.4 $x = \sum_{i \in Q} c_i u_i \in H$ y $T(x) = (c_i)$

4. T es isometría

Por 2.3.4

Corolario 2.5.6 Sea H Hilbert separable de dimensión infinita, luego H es congruente a l²

2.6. Proyección ortogonal

Ejemplo El sistema $\left\{\frac{e^{int}}{\sqrt{2\pi}}, t \in [0, 2\pi]\right\}_{n \in \mathbb{N}}$ es completo.

Demostración Supongamos que $\int_{-\pi}^{\pi} f(t)e^{int}dt = 0$ para todo $n \in \mathbb{N}$ y sea $g(t) = \int_{-\pi}^{t} f(t)dt$, luego g es continua y g' = f ctp por el teorema de diferenciación de Lebesgue. Notemos que:

$$g(\pi) = \int_{-\pi}^{\pi} f(t)dt = \int_{-\pi}^{\pi} f(t)e^{i0t}dt = 0 = g(-\pi)$$
$$\int_{-\pi}^{\pi} g(t)e^{int}dt = \frac{g(t)e^{int}}{ni}|_{-\pi}^{\pi} - \frac{\int_{-\pi}^{\pi} f(t)e^{int}}{in} = 0$$

Por lo tanto tenemos que $\int_{-\pi}^{\pi} g(t)e^{int}dt = 0$ donde g es continua y $g(-\pi) = g(\pi) = 0$, por Stone-Weirstrass existe $(p_n)_{n\in\mathbb{N}}$ sucesión de polinomios trigonométricos tal que $p_n \rightrightarrows g$, por lo tanto:

$$\int_{-\pi}^{\pi} p_k(t) e^{int} \to \int_{-\pi}^{\pi} g(t) e^{int} dt = 0 \quad n \in \mathbb{N}$$

No obstante, si $p_k \neq cte$ entonces para todo $k \in \mathbb{N} \langle p_k, e^{int} \rangle \neq 0$ para algún n, luego $p_k = cte = g(\pi) = 0$. Concluímos que g = 0 y entonces f = 0 ctp.

Teorema 2.6.1 Sea H Hilbert y K cerrado y convexo, luego si $x \in H$ entonces existe un único $k \in K$ tal que ||x - k|| = d(x, K)

Demostración Sea $d_n = ||x - k_n||$ una sucesión minimizante, luego para todo $n \ge N \in \mathbb{N}$ vale que $d + \frac{1}{N} \ge ||x - k_n||$ por lo que por 1.2.3:

$$\|(x-k_n) - (x-k_m)\|^2 + \|(x-k_n) + (x-k_m)\|^2 = 2\|x-k_n\|^2 + 2\|x-k_m\|^2$$

Por lo tanto:

$$||k_n - k_m||^2 = 2||x - k_n||^2 + 2||x - k_m||^2 - ||2x - k_n - k_m||^2$$

$$= 2||x - k_n||^2 + 2||x - k_m||^2 - 4||x - \underbrace{\frac{k_n - k_m}{2}}_{\in K}||^2$$

$$\leq 2\left(d + \frac{1}{n}\right)^2 + 2\left(d + \frac{1}{m}\right)^2 - 4d^2$$

$$= \frac{4d}{n} + \frac{2}{n^2} + \frac{4d}{m} + \frac{2}{m^2} \quad \overrightarrow{n, m \to \infty} \quad 0$$

Luego (k_n) es de Cauchy y como H es completo existe $k \in K$ tal que $k_n \to K$; por 2.1.1 d = ||x - k||. Si $h \in K$ tal que ||x - h|| = d luego como K es convexo $\frac{k+h}{2} \in K$ por lo que:

$$d \leq \left\|x - \frac{k+h}{2}\right\| \leq \frac{\|x-k\| + \|x-h\|}{2} = d$$

Luego por 1.2.3:

$$||k - h||^2 = 2 ||x - k||^2 + 2 ||x - h||^2 - 4 ||x - \frac{k - h}{2}||^2 = 0$$

Por lo que k = h.

Definición Sea $M \subseteq H$ un subespacio cerrado de H Hilbert, luego por 2.6.1 existe un único $f_0 \in M$ tal que para todo $x \in H$ vale $||x - f_0|| = d(x, M)$. A su vez como M es cerrado también es un espacio de Hilbert, luego por 2.5.4 existe $S \subseteq M$ tal que $M = \langle S \rangle$, finalmente por 2.2.4 vale que $f_0 = x_S$.

En resumen, dado $M \subseteq H$ subespacio cerrado y $h \in H$ existe un único elemento f_0 tal que $h - f_0 \in M^{\perp}$. Definimos la proyección ortogonal sobre M $P_M : H \to M$ dado por $P_M(h) = f_0$.

Proposición 2.6.2 Sea $M \subseteq H$ un subespacio cerrado en un Hilbert, sea $h \in H$ y $Ph := P_M(h)$ el único elemento tal que $h - Ph \in M^{\perp}$, luego:

- 1. P es lineal
- $2. \|Ph\| \le \|h\|$
- 3. $P^2 = P$
- 4. $\ker P = M^{\perp} \ y \ ran P = M$

Demostración 1. Sean $x, y \in H$, $\lambda \in \mathbb{F}$ $y \in M$; luego $\langle x + \lambda y - Px + \lambda Py, f \rangle = \langle x - Px, f \rangle + \lambda \langle y - Py, f \rangle = 0$. Por unicidad en 2.6.1 vale que $P(x + \lambda y) = Px + \lambda Py$.

- 2. Notemos que $||h||^2 = \left\|\underbrace{h Ph}_{\in M^{\perp}} + \underbrace{Ph}_{\in M}\right\|^2 = ||h Ph||^2 + ||Ph||^2 \ge ||Ph||^2$.
- 3. Como $P|_M = Id_M$ entonces P(Ph) = Ph para todo $h \in H$.
- 4. Si Ph = 0 entonces $h Ph = h \in M^{\perp}$; recíprocamente si $h \in M^{\perp}$ entonces $h 0 \in M^{\perp}$ por lo que $h \in \ker P$.

Corolario 2.6.3 Sea $M \subseteq H$ un subespacio cerrado en un Hilbert, entonces $(M^{\perp})^{\perp} = M$

Demostración Primero notemos que:

Lema 2.6.4 $Id - P_M = P_{M^{\perp}}$

Demostración del lema Sea $m \in M^{\perp}$ y $h \in H$, luego $\langle h - (Id - P_M)(h), m \rangle = \langle h - h + P_M(h), m \rangle = \langle P_M(h), m \rangle = 0$, por la unicidad de 2.6.1 vale que $P_{M^{\perp}} = Id - P_M$.

Luego por 2.6.2 vale que
$$(M^{\perp})^{\perp} = \ker P_{M^{\perp}} = \ker (Id - P_M) \underbrace{=}_{0=h-Ph \Leftrightarrow h=Ph} ran \ P = M.$$

Corolario 2.6.5 Sea $A \subseteq H$ un conjunto en un Hilbert, luego $(A^{\perp})^{\perp} = \overline{\langle A \rangle}$

Demostración Para esto vamos a utilizar dos lemas:

Lema 2.6.6 $\langle A \rangle^{\perp} = A^{\perp}$

Demostración Por un lado si $f \in A^{\perp}$ luego $\left\langle f, \sum_{i=1}^{n} c_{i} a_{i} \right\rangle = \sum_{i=1}^{n} c_{i} \left\langle f, a_{i} \right\rangle = 0$ por lo que $f \in \langle A \rangle^{\perp}$. Recíprocamente si $f \in \langle A \rangle^{\perp}$ y sea $a \in A$, luego $\left\langle f, \underbrace{a}_{A \subseteq \langle A \rangle} \right\rangle = 0$ por lo que $f \in A^{\perp}$.

Lema 2.6.7 Sea $U \subseteq H$ un conjunto en un Hilbert, entonces $U^{\perp} = \overline{U}^{\perp}$.

Demostración Sea $h \in U^{\perp}$, luego si $u \in \overline{U}$ entonces existe $\{u_n\}_{n \in \mathbb{N}} \subset U$ tal que $u_n \to u$. Por 2.1.1 entonces $0 = \langle h, u_n \rangle \to \langle h, u \rangle$ por lo que $h \in \overline{U}^{\perp}$.

Recíprocamente, si $h \in \overline{U}^{\perp}$ y $u \in U \subseteq \overline{U}$ entonces $\langle h, u \rangle = 0$; concluímos que $h \in U^{\perp}$.

Luego por el corolario previo
$$\overline{\langle A \rangle} = \left(\overline{\langle A \rangle}^{\perp} \right)^{\perp} \underbrace{=}_{26.7} \left(\langle A \rangle^{\perp} \right)^{\perp} \underbrace{=}_{26.6} \left(A^{\perp} \right)^{\perp}.$$

Corolario 2.6.8 Sea $M \subseteq H$ una variedad lineal en un Hilbert, luego M es denso si y sólo si $M^{\perp} = \{0\}$

Demostración Si
$$\overline{M} = H$$
 entonces $M^{\perp} = \overline{M}^{\perp} = \overline{M}^{\perp} = H^{\perp} = \{0\}.$

Recíprocamente de 2.6.5 sabemos que $\overline{M} = (M^{\perp})^{\perp} = \{0\}^{\perp} = H$.

2.7. Teorema de representación de Riesz

Proposición 2.7.1 Sea H un espacio de Hilbert y sea $L: H \to \mathbb{F}$ un funcional lineal, entonces son equivalentes:

- 1. L es continua
- 2. L es continua en 0
- 3. L es continua en algún punto
- 4. Existe c > 0 tal que:

$$|L(h)| \le c \|h\| \quad \forall h \in H \tag{3}$$

Demostración Es claro que $1) \Longrightarrow 2) \Longrightarrow 3$) y que $4) \Longrightarrow 2$), veamos las que faltan:

- 3) \Longrightarrow 1) Supongamos que L es continua en $h_0 \in H$ y sea $h \in H$; luego si $h_n \to h$ entonces $h_n h + h_0 \to h_0$, por lo tanto $L(h_0) = \lim_{n \to \infty} L(h_n h + h_0) = \lim_{n \to \infty} L(h_n) L(h) + L(h_0)$ y concluímos que $L(h) = \lim_{n \to \infty} L(h_n)$.
- 2) \Longrightarrow 4) Como L es continua en 0 entonces si $V = \{\alpha \in \mathbb{F} \ / \ |\alpha| < 1\}$ entonces $L^{-1}(V)$ es abierto; es decir existe $\delta > 0$ tal que $||h|| < \delta$ implica |L(h)| < 1.

Si
$$h \in H$$
 y $\epsilon > 0$ entonces $\left\| \frac{\delta h}{\|h\| + \epsilon} \right\| < \delta$ por lo que:

$$1 > \left| L \left[\frac{\delta h}{\|h\| + \epsilon} \right] \right| = \frac{\delta}{\|h\| + \epsilon} |L(h)|$$

Por lo que si $\epsilon \to 0$:

$$|L(h)| < \frac{1}{\delta} \left(\|h\| \right) := c \|h\|$$

Definición Decimos que $L: H \to \mathbb{F}$ es *acotado* si vale 3. De 2.7.1 vemos que un funcional es acotado si y sólo si es continuo.

En ese caso definimos:

$$||L|| = \sup\{|L(h)|: ||h|| \le 1\}$$

Proposición 2.7.2 Si L es un funcional acotado entonces:

$$||L|| := \sup \{|L(h)| : ||h|| \le 1\}$$

$$= \sup \{|L(h)| : ||h|| = 1\}$$

$$= \sup \left\{ \frac{|L(h)|}{||h||} : h \ne 0 \right\}$$

$$= \inf \{c > 0 : |L(h)| \le c ||h|| h \in H\}$$
(4)

Es más, vale que $|L(h)| \le ||L|| ||h||$ para todo $h \in H$.

Demostración Notemos(solo por esta demostración):

$$\begin{split} \|L\|_2 &= & \sup\left\{|L(h)|: \ \|h\| = 1\right\} \\ \|L\|_3 &= & \sup\left\{\frac{|L(h)|}{\|h\|}: \ h \neq 0\right\} \\ \|L\|_4 &= & \inf\left\{c > 0: \ |L(h)| \leq c \, \|h\| \ h \in H\right\} \end{split}$$

Vamos por partes,

■ Primero como $\{|L(h)|: ||h|| = 1\} \subseteq \{|L(h)|: ||h|| \le 1\}$ entonces vale que $||L||_2 \le ||L||$. Recíprocamente, si $||h|| \le 1$ entonces:

$$\begin{split} \left|L\left(\frac{h}{\|h\|}\right)\right| &\leq \|L\|_2\\ \Longrightarrow \quad \frac{1}{\|h\|} \left|L(h)\right| &\leq \|L\|_2\\ \Longrightarrow \quad |L(h)| &\leq \|L\|_2 \, \|h\| &\leq \|L\|_2\\ \Longrightarrow \quad \sup_{\|h\| \leq 1} |L(h)| &\leq \|L\|_2\\ \Longrightarrow \quad \|L\| &\leq \|L\|_2 \end{split}$$

• Si $h \neq 0$ entonces:

$$\begin{split} \left|L\left(\frac{h}{\|h\|}\right)\right| &\leq \|L\|_2 \\ \Longrightarrow & \frac{1}{\|h\|} |L(h)| \leq \|L\|_2 \\ \Longrightarrow & \sup_{h \neq 0} \left\{\frac{1}{\|h\|} |L(h)|\right\} \leq \|L\|_2 \\ \Longrightarrow & \|L\|_3 \leq \|L\|_2 \end{split}$$

Recíprocamente notemos que $\{|L(h)|: \|h\|=1\}=\left\{\frac{|L(h)|}{\|h\|}: \|h\|=1\right\}\subseteq \left\{\frac{|L(h)|}{\|h\|}: h\neq 0\right\}$ por lo tanto $\|L\|_2\leq \|L\|_3$.

• Sea $\epsilon > 0$, luego:

$$\begin{vmatrix} L\left(\frac{h}{\|h\|+\epsilon}\right) & \leq \|L\| \\ \Longrightarrow & |L(h)| \leq (\|h\|+\epsilon) \|L\| \\ \text{Si } \epsilon \to 0 \Longrightarrow & |L(h)| \leq \|L\| \|h\| \\ \Longrightarrow & \|L\|_4 \leq \|L\| \end{aligned}$$

Recíprocamente, si $||L(h)|| \le c ||h||$ entonces $||L|| \le c$ por lo que $||L|| \le ||L||_4$.

Teorema 2.7.3 (Teorema de Representación de Riesz) Sea $L: H \to \mathbb{F}$ un funcional, entonces L es acotado si y sólo si existe un único $h_0 \in H$ tal que $L(h) = \langle h, h_0 \rangle$. En ese caso $||L|| = ||h_0||$.

Demostración Sea $M = \ker L$, como L es acotada entonces M es cerrado y como $L \neq 0$ (en cuyo caso $h_0=0$) entonces $M^{\perp}\neq\{0\}$. Como $H=M\oplus M^{\perp}$ entonces existe $f_0\in M^{\perp}$ tal que $L(f_0)=1$.

Sea $h \in H$, entonces $L(h - L(h)f_0) = 0$ por lo que $h - L(h)f_0 \in M$; de aquí concluímos:

$$0 = \langle h - L(h)f_0, f_0 \rangle$$

$$\Rightarrow 0 = \langle h, f_0 \rangle - L(h) \|f_0\|^2$$

$$\Rightarrow L(h) = \frac{1}{\|f_0\|^2} \langle h, f_0 \rangle$$

$$\Rightarrow L(h) = \frac{f_0}{\|f_0\|^2}$$

Si h_0' es tal que $\langle h, h_0 \rangle = L(h) = \langle h, h_0' \rangle$ entonces $0 = \langle h, h_0 - h_0' \rangle$ para todo $h \in H$, en particular $0 = \langle h_0 - h'_0, h_0 - h'_0 \rangle = ||h_0 - h'_0||^2 \text{ por lo que } h_0 = h'_0.$

Recíprocamente, si
$$L(h) = \langle h, h_0 \rangle$$
 entonces por 1.2.1 $|L(h)| \leq ||h|| ||h_0||$ por lo tanto $||L|| \leq ||h_0||$.
En ese caso, $L\left(\frac{h_0}{||h_0||}\right) = \frac{1}{||h_0||} \langle h_0, h_0 \rangle = ||h_0||$ por lo que $||L|| = ||h_0||$.

3. Espacios de Banach

3.1. Operadores entre espacios normados

Proposición 3.1.1 Sea E un espacio normado, entonces:

- 1. La suma es continua
- 2. El producto por un escalar es continuo
- 3. La norma es continua

1. Si $x_n \to x$ y $y_n \to y$ entonces $||x + y - x_n - y_n|| \le ||x_n - x|| + ||y_n - y|| \to 0$ Demostración

- 2. Si $x_n \to x$ y $\lambda \in \mathbb{F}$ entonces $\|\lambda x_n \lambda x\| = |\lambda| \|x_n x\| \to 0$.
- 3. Si $x_n \to x$ entonces por definición $||x_n x|| \to 0$.

Proposición 3.1.2 Sea E un espacio normado $y \ x_0 \in E$ entonces $\overline{B_r(x_0)} = B_r[x_0]$

Demostración Si $x \in B_r(x_0)$ entonces existe $\{x_n\} \subset B_r(x_0)$ tal que $x_n \to x$, como $||x_n - x_0|| < r$ entonces por 3.1.1 se tiene que $||x_n - x_0|| \to ||x - x_0||$ por lo que $x \in B_r[x_0]$.

Recíprocamente si $x \notin \overline{B_r(x_0)}$ entonces existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \cap B_r(x_0) = \emptyset$; luego $||x - x_0|| > \epsilon + r > r$ por lo que $x \notin B_r[x_0]$.

Teorema 3.1.3 Sea X un espacio normado, entonces X es de Banach si y sólo si vale:

$$Si (x_n) cumple que \sum_{n \in \mathbb{N}} ||x_n|| < \infty \implies \sum_{n \in \mathbb{N}} x_n \in X$$
 (5)

Demostración Sea $S_k = \sum_{n \le k} x_n$, entonces si k > k', $||S_k - S_{k'}|| = \left\|\sum_{n=k'+1}^k x_n\right\| \le \sum_{n=k'+1}^k ||x_n|| \xrightarrow{k,k' \to \infty} 0$. Luego S_k es de Cauchy y como X es Banach $S_k \to \sum_{n \in \mathbb{N}} x_n \in X$.

Recíprocamente, sea $(x_n) \subset X$ de Cauchy y para cada $k \in \mathbb{N}$ sea $\epsilon = \frac{1}{2^k}$ y $n_k \in \mathbb{N}$ tal que $||x_n - x_m|| < \frac{1}{2^k}$ si $n, m \ge n_k$. Luego si $z_k = x_{n_{k+1}} - x_{n_k}$ entonces $\sum\limits_k ||z_k|| < \sum\limits_k \frac{1}{2^k} < \infty$; luego por hipótesis $S_m = \sum\limits_{k=1}^m z_k$ converge, pero $S_m = x_{n_{m+1}} - x_{n_1}$, luego $\lim\limits_m x_{n_m} = x_{n_1} + \lim\limits_m S_m \in X$; como x_n es de Cauchy y tiene una subsucesión convergente entonces (x_n) es convergente.

Definición Si X, Y son espacios normados un isomorfismo topológico es $T: X \to Y$ tal que:

- ullet T es isomorfismo lineal
- $T y T^{-1}$ son continuas

Proposición 3.1.4 Seax X,Y espacios normados y sea $T:X\to Y$ un operador lineal, entonces son equivalentes:

- 1. T es continua
- 2. T es continua en 0
- 3. T es continua en algún punto
- 4. Existe c > 0 tal que:

$$||T(x)||_{Y} \le c ||x||_{X} \quad \forall x \in X \tag{6}$$

- 5. T está acotado en $B_1[0]$
- 6. T está acotado en $B_r[x_0]$ para todos $x_0 \in X$ y r > 0
- 7. T está acotado en $\partial B_r[x_0]$ para todos $x_0 \in X$ y r > 0

Demostración Es claro que $1) \Longrightarrow 2) \Longrightarrow 3$, que $4) \Longrightarrow 2$) y que $6) \Longrightarrow 7$), veamos las que faltan:

- 3) \Longrightarrow 1) Supongamos que T es continua en $x_0 \in X$ y sea $x \in X$; luego si $x_n \to x$ entonces $x_n x + x_0 \to x_0$, por lo tanto $T(x_0) = \lim_{n \to \infty} T(x_n x + x_0) = \lim_{n \to \infty} T(x_n) T(x) + T(x_0)$ y concluímos que $T(x) = \lim_{n \to \infty} T(x_n)$.
- 2) \Longrightarrow 4) Como T es continua en 0 entonces si $V=\{y\in Y\ /\ \|y\|_Y<1\}$ entonces $T^{-1}(V)$ es abierto; es decir existe $\delta>0$ tal que $\|x\|_X<\delta$ implica $\|T(x)\|_Y<1$.

Si
$$x \in X$$
 y $\epsilon > 0$ entonces $\left\| \frac{\delta x}{\|x\|_X + \epsilon} \right\|_X < \delta$ por lo que:

$$1 > \left\| T \left[\frac{\delta x}{\|x\|_X + \epsilon} \right] \right\|_Y = \frac{\delta}{\|x\|_X + \epsilon} \|T(x)\|_Y$$

Por lo que si $\epsilon \to 0$:

$$||T(x)||_Y < \frac{1}{\delta} (||x||_X) := c ||x||_X$$

- 4) \Longrightarrow 5) Sea $x \in B_1[0]$, luego $||T(x)||_Y \le c ||x||_X \le c$.
- 5) \Longrightarrow 6) Sea r > 0 y $x_0 \in X$, luego si $x \in B_r[x_0]$ entonces existe M > 0 tal que $\left\| T\left(\frac{x x_0}{r}\right) \right\|_Y \le M$ pues $\frac{x x_0}{r} \in B_1[0]$

Por lo tanto $||T(x) - T(x_0)||_Y \le Mr$ lo que implica que $||T(x)||_Y \le rM + ||T(x_0)||_Y := C$.

7) \Longrightarrow 1) Sea $x_0 \in X$, luego por hipótesis si $||x - x_0||_X = 1$ entonces $||T(x - x_0)||_Y \le C$; por lo tanto:

$$\left\| T\left(\frac{x - x_0}{\|x - x_0\|_X}\right) \right\|_Y \le C$$

$$\implies \|T(x) - T(x_0)\|_Y \le C \|x - x_0\|_X$$

Cuando
$$||x - x_0||_X < \delta = \frac{\epsilon}{C}$$
.

Ejemplo Si X = Y = C[a, b] dotados de la norma supremo entonces $T(f)(x) = \int_a^x f(t)dt$ es un operador lineal acotado que no es un isomorfismo topológico.

Corolario 3.1.5 Sean X, Y normados y sea $T: X \to Y$ un isomorfismo lineal. Entonces T es isomorfismo topológico si y sólo si existen $C_1, C_2 > 0$ tal que $C_1 ||x|| \le ||T(x)|| \le C_2 ||x||$

Demostración Si T es isomorfimso topológico entonces:

Por lo tanto vale que:

$$C_1 ||x|| \le ||T(x)|| \le C_2 ||x||$$

Recíprocamente, por * se concluye que T es acotado y por 3.1.4 es continua; asimismo de \star si $x = T^{-1}(y)$ se ve que T^{-1} es continua.

3.2. Espacios vectoriales de dimensión finita

Definición Si $\|.\|_1$, $\|.\|_2$ son dos normas en un espacio vectorial X entonces decimos que son equivalentes si $1_X : (X, \|.\|_1) \to (X, \|.\|_2)$ es un isomorfismo topológico.

Teorema 3.2.1 Sea X un espacio vectorial de dimensión finita, entonces:

- 1. Dos normas siempre son equivalentes
- 2. X es topológicamente isomorfo a \mathbb{R}^n con $n = \dim X$

Demostración 1. Sea $\|.\|$ una norma en X y veamos que $\|.\|$ y $\|.\|_{\infty}$ son equivalentes.

Sea
$$a = \sum_{i=1}^{k} a_i e_i$$
, luego $||a|| \le \sum_{i=1}^{k} |a_i| ||e_i|| \le ||a||_{\infty} C$.

Luego sea $id:(X,\|.\|_{\infty})\to (X,\|.\|)$

Sabemos que $B_1[0]$ es compacta en $(X, \|.\|_{\infty})$ y por la cuenta anterior id es continua, por lo tanto id(S) = S es compacta en $(X, \|.\|)$ y por ende alcanza mínimo y máximo.

Sean $C_1 = \min_{\|x\|_{\infty}=1} \|x\|$ y $C_2 = \max_{\|x\|_{\infty}=1} \|x\|$, por lo tanto si $x \in X$ entonces:

$$C_1 \le \left\| \frac{x}{\|x\|_{\infty}} \right\| \le C_2$$

2. Si $x = \sum_{i=1}^{k} a_i e_i$ definimos $T(x) = (a_1, \dots, a_n)$, luego:

$$C_1 \|x\| < \|T(x)\|_{\infty} = \|x\|_{\infty} < C_2 \|x\|$$

Por lo que T es isomorfismo topológico.

Corolario 3.2.2 Todo espacio vectorial de dimensión finita es Banach.

Corolario 3.2.3 Si X es normado de dimensión finita, entonces todo subconjunto cerrado y acotado es compacto.

Demostración Si $A \subseteq X$ es cerrado y acotado, entonces existe $x_0 \in X, r > 0$ tal que $A \subset B_r[x_0]$ y $B_r[x_0]$ es compacto pues $B_1[0]$ lo es. Por lo tanto A es un cerrado en un compacto.

Teorema 3.2.4 Si X es un espacio normado de dimensión infinita, entonces $B_1[0]$ no es compacta

Demostración Veamos primero el siguiente lema:

Lema 3.2.5 (Lema de Riesz) Sea $M \subseteq X$ un subespacio no denso en un Banach, dado $r \in (0,1)$ existe $x \in X$ tal que ||x|| = 1 pero $d(x, M) \ge r$

Demostración del lema Sea $y \in X \setminus \overline{M}$ y notemosR = d(y, M), luego si $\epsilon > 0$ existe $m_1 \in M$ tal que $\|m_1 - y\| < R + \epsilon$. Sea $x = \frac{y - m_1}{\|y - m_1\|}$, luego $\|x\| = 1$ y:

$$\begin{split} d(x,M) &= \inf_{m \in M} \|x - m\| \\ &= \inf_{m \in M} \left\| m - \frac{y}{\|y - m_1\|} + \frac{m_1}{\|y - m_1\|} \right\| \\ &= \frac{\inf_{m \in M} \|m - y\|}{\|m_1 - y\|} \\ &= \frac{R}{R + \epsilon} \nearrow 1 \end{split}$$

Sea $x_1 \in \partial B_1[0]$, luego por 3.2.5 aplicado a $S_1 = \langle x_1 \rangle$ existe $x_2 \in \partial B_1[0]$ tal que $\|x_1 - x_2\| > \frac{1}{2}$. Inductivamente sea $x_n \in \partial B_1[0]$ tal que $d(x_n, S_{n-1}) = d(x_n, \{x_1, x_2, \dots, x_{n-1}\}) > \frac{1}{2}$. Luego por construcción $\{x_n\}_{n \in \mathbb{N}} \subset B_1[0]$ es una sucesión tal que $\|x_n - x_m\| > \frac{1}{2}$ para todos $n \neq m$ por lo tanto es una sucesión acotada que no admite subsucesión convergente. Concluímos que $B_1[0]$ no es compacto

3.3. Espacio de Operadores entre espacios normados

Definición Dados X,Y normados decimos que $T:X\to Y$ es acotado si vale 6. De 3.1.4 vemos que un funcional es acotado si y sólo si es continuo.

En ese caso definimos:

$$||T|| = \sup \{||T(x)|| : ||x|| \le 1\}$$

Proposición 3.3.1 Si T es un operador acotado entonces:

$$||T|| := \sup \{||T(x)|| : ||x|| \le 1\}$$

$$= \sup \{||T(x)|| : ||x|| = 1\}$$

$$= \sup \left\{\frac{||T(x)||}{||x||} : x \ne 0\right\}$$

$$= \inf \{c > 0 : ||T(x)|| \le c ||x|| \ x \in X\}$$
(7)

Es más, vale que $||T(x)|| \le ||T|| \, ||x||$ para todo $x \in X$.

Demostración Notemos(solo por esta demostración):

$$\begin{split} \|T\|_2 &= & \sup\left\{|T(x)|: \ \|x\| = 1\right\} \\ \|T\|_3 &= & \sup\left\{\frac{|T(x)|}{\|x\|}: \ x \neq 0\right\} \\ \|T\|_4 &= & \inf\left\{c > 0: \ |T(x)| \leq c \, \|x\| \ x \in X\right\} \end{split}$$

Vamos por partes,

■ Primero como $\{|T(x)|: ||x|| = 1\} \subseteq \{|T(x)|: ||x|| \le 1\}$ entonces vale que $||T||_2 \le ||T||$. Recíprocamente, si $||x|| \le 1$ entonces:

$$\begin{split} \left| T \left(\frac{x}{\|x\|} \right) \right| &\leq \|T\|_2 \\ \Longrightarrow & \frac{1}{\|x\|} |T(x)| \leq \|T\|_2 \\ \Longrightarrow & |T(x)| \leq \|T\|_2 \|x\| \leq \|T\|_2 \\ \Longrightarrow & \sup_{\|x\| \leq 1} |T(x)| \leq \|T\|_2 \\ \Longrightarrow & \|T\| \leq \|T\|_2 \end{split}$$

• Si $x \neq 0$ entonces:

$$\begin{split} & \left| T \left(\frac{x}{\|x\|} \right) \right| \leq \|T\|_2 \\ \Longrightarrow & \frac{1}{\|x\|} |T(x)| \leq \|T\|_2 \\ \Longrightarrow & \sup_{x \neq 0} \left\{ \frac{1}{\|x\|} |T(x)| \right\} \leq \|T\|_2 \\ \Longrightarrow & \|T\|_3 \leq \|T\|_2 \end{split}$$

Recíprocamente notemos que $\{|T(x)|: ||x||=1\} = \left\{\frac{|T(x)|}{||x||}: ||x||=1\right\} \subseteq \left\{\frac{|T(x)|}{||x||}: x \neq 0\right\}$ por lo tanto $||T||_2 \leq ||T||_3$.

• Sea $\epsilon > 0$, luego:

$$\begin{vmatrix} T\left(\frac{x}{\|x\|+\epsilon}\right) & \leq \|T\| \\ \Longrightarrow & |T(x)| \leq (\|x\|+\epsilon) \|T\| \\ \text{Si } \epsilon \to 0 \longrightarrow & |T(x)| \leq \|T\| \|x\| \\ \longrightarrow & \|T\|_4 \leq \|T\|$$

Recíprocamente, si $||T(x)|| \le c ||x||$ entonces $||T|| \le c$ por lo que $||T|| \le ||T||_{A}$.

Definición Sean X, Y normados, definimos $L(X, Y) = \{T : X \to Y \mid T \text{ lineal y acotado}\}$

Proposición 3.3.2 Si X, Y son normados entonces L(X, Y) es normado

Demostración Probemos al desigualdad triangular pues las demás son triviales:

Sean
$$T, W : X \to Y$$
 lineales y acotadas, entonces $||T + W|| = \sup_{\|x\| \le 1} \|(T + W)(x)\| = \sup_{\|x\| \le 1} \|Tx + Wx\| \le \sup_{\|x\| \le 1} \|Tx\| + \|Wx\| \le \sup_{\|x\| \le 1} \|T(x)\| + \sup_{\|x\| \le 1} \|W(x)\| = \|T\| + \|W\|.$

Teorema 3.3.3 Sean X, Y normados, entonces Y es de Banach si y sólo si L(X, Y) es de Banach

Demostración Sea $(T_n)_{n\in\mathbb{N}}\subset L(X,Y)$ una sucesión de Cauchy, y sea $\epsilon>0$ entonces existe $N\in\mathbb{N}$ tal que $\|T_n-T_m\|<\epsilon$ para todos $n,m\geq N$.

En particular dado $x \in B_1[0]$ vale que $||T_n(x) - T_m(x)|| \le \sup_{\|x\| \le 1} ||T_n(x) - T_m(x)|| = ||T_n - T_m|| < \epsilon$ por lo que $(T_n(x))_{n \in \mathbb{N}} \subset Y$ es una sucesión de Cauchy; como Y es Banach lím $T_n(x) \in Y$. Además si $||x|| \ge 1$ entonces lím $T_n(x) = \lim ||x|| T_n\left(\frac{x}{||x||}\right) = ||x||$ lím $T_n\left(\frac{x}{||x||}\right) \in Y$; luego definimos:

$$T(x) = \lim T_n(x) \quad \forall x \in X$$

Veamos que $T_n \to T$ y que $T \in L(X, Y)$.

- Por 3.1.1 y la linealidad de T_n vale que T es lineal
- Sea $x \in B_1[0]$ y $\epsilon > 0$, luego sea $N \in \mathbb{N}$ tal que $||T_n T_m|| < \epsilon$ para todos $n, m \ge N$; entonces $||T(x)|| = ||T(x) T_N(x) + T_N(x)|| \le ||T(x) T_N(x)|| + ||T_N(x)|| < \epsilon + C$.
- Sea $\epsilon > 0$, luego $\epsilon > \sup_{\|x\| \le 1} \|T_n(x) T_m(x)\| \xrightarrow{m \to \infty} \sup_{\|x\| \le 1} \|T_n(x) T(x)\| = \|T_n T\|$.

La vuelta la probaremos con Hanh-Banach.

Definición Sea X espacio normado, luego notamos $X^* := L(X, \mathbb{F})$ y se llama *espacio dual topológico*. Si pensamos a X como espacio vectorial solamente también esta definido $X' := \{T : X \to \mathbb{F}, / T \text{ lineal}\}$ el *dual algebraico*.

3.4. Espacios cocientes

Sea X un espacio vectorial normado y $S\subseteq X$ un subespacio cerrado. Definimos la siguiente relación de equivalencia en X:

$$x \sim_S y \iff x - y \in S$$

y definimos $||[x]||_S := \inf \{||t|| : x \in [t]\}.$

Proposición 3.4.1 El espacio $(X/S, \|.\|_S)$ es un espacio normado con la suma definida por $[x] + [y] = [x + y], [\lambda x] = \lambda.[x]$

Demostración • Sean $x, x' \in X$ tal que [x] = [x'], entonces $x - x' \in S$ por lo que $\lambda(x - x') \in S$; en conclusión $\lambda \cdot [x] := [\lambda x] = [\lambda x'] =: \lambda \cdot [x']$.

- Sean $x, x'y, y' \in X$ tal que [x] = [x'], [y] = [y'], luego $x x' \in S$ y $y y' \in S$ por lo que $(x x') + (y y') = (x + y) (x' + y') \in S$; en conclusión [x] + [y] := [x + y] = [x' + y'] =: [x'] + [y'].
- $\bullet \ \operatorname{Sean} \ [x] \in X \ / S \, , \ \lambda \in \mathbb{F}, \ \operatorname{luego} \ \|\lambda[x]\| = \|[\lambda x]\| = \inf_{t \in [\lambda x]} \|t\| = \inf_{t \in [x]} \|\lambda t\| = |\lambda| \ \|[x]\|$
- $\bullet \ \operatorname{Sean} \ [x], [y] \in X \ / S, \ \operatorname{luego} \ \|[x] + [y]\| = \|[x + y]\| = \inf_{t \in [x + y]} \|t\| \leq \inf_{t \in [x]w \in [y]} \|t + w\| \leq \|[x]\| + \|[y]\|$
- Si ||[x]|| = 0 entonces existe t_n tal que $||t_n|| < \frac{1}{n}$ con $t_n \in [x]$, por lo tanto $x + s_n = t_n \to 0$ y entonces $s_n \to -x$. Como S es cerrado $-x \in S$ y como es subespacio $x \in S$; luego [x] = [0]

Trivialmente si $x \in S$ entonces [x] = [0] y entonces ||[x]|| = 0.

Proposición 3.4.2 Sean $S \subseteq X$ un subespacio cerrado en un normado, entonces:

$$||[x]|| = d(x, S)$$

Demostración $d(x,S)=\inf_{s\in S}\|x-s\|_X=\inf_{-s\in S}\|x+s\|_X=\inf_{t\in [x]}\|t\|_X.$

Teorema 3.4.3 Sea $M \subseteq X$ un subespacio cerrado de un espacio normado y notemos $Q: X \to X/M$ la proyección canónica, entonces:

- 1. Q es continua $y ||Q|| \leq 1$.
- 2. Si X es de Banach entonces X/M lo es.
- 3. Si $W \subset X/M$ entonces W es abierto si y sólo si $Q^{-1}(W)$ es abierto.
- 4. Si $U \subset X$ es abierto entonces $Q(U) \subset X/_M$ es abierto.

Demostración Vayamos de a partes:

- 1. $||Q(x)|| = ||[x]|| = d(x, M) \le ||x||$ pues $0 \in M$; concluímos por 3.1.4.
- 2. Sea $([x_n]) \subset X/M$ una sucesión tal que $\sum_{n \in \mathbb{N}} ||[x_n]|| < \infty$, y para cada $n \in \mathbb{N}$ tal que $||[x_n]|| \neq 0$ sea $\epsilon_n = ||[x_n]||$. Luego $||[x_n]|| + \epsilon_n = 2 ||[x_n]|| > ||x_n + m_n||$ para cierto $m_n \in M$ (Si $||[x_n]|| = 0$ entonces $x_n \in M$ y tomamos $m_n = -x_n \in M$), como $\sum_{n \in \mathbb{N}} ||[x_n]|| < \infty$ entonces $\sum_{n \in \mathbb{N}} ||m_n + x_n|| < \infty$ y por $3.1.3 \sum_{n \in \mathbb{N}} m_n + x_n \in X$. Como $S_p = \sum_{n=1}^p x_n + m_n \to \sum_{n \in \mathbb{N}} m_n + x_n := v \in X$ y Q es continua entonces $\sum_{n=1}^p [x_n] = Q(S_p) \to Q(v) \in X/M$; concluímos por 3.1.3 que X/M es de Banach.
- 3. Sea $W \subset X/M$ tal que $Q^{-1}(W)$ es abierto, luego si $[x_0] \in W$ entonces $x_0 \in Q^{-1}(W)$ y existe un r > 0 tal que $x_0 + B_r(0) \subset Q^{-1}(W)$. Veamos el siguiente lema:

Lema 3.4.4
$$Q(B_r(0)) = B_r([0])$$

Demostración del lema Si ||x|| < r, entonces $||[x]|| = ||Qx|| \le ||x|| < r$. Recíprocamente si ||[x]|| < r entonces existe $y \in M$ tal que ||x + y|| < r por lo que $[x] = Q(x + y) \in Q(B_r(0))$.

Por el lema $W = QQ^{-1}(W) \supset Q(x_0 + B_r(0)) = B_r([x_0])$ por lo que W es abierto.

4. Si $U \subset X$ es abierto entonces $Q^{-1}(Q(U)) = U + M = \bigcup_{m \in M} U + y$ que es una unión de abiertos, por lo que $Q^{-1}(Q(U))$ es abierto; por el punto anterior Q(U) es abierto.

Proposición 3.4.5 Si X es normado, $M \subseteq X$ es un subespacio cerrado y $N \subseteq X$ es de dimensión finita entonces M + N es un subespacio cerrado.

Demostración Consideremos $Q: X \to X/M$, como dim $Q(N) \le \dim N < \infty$ entonces Q(N) es cerrado y como Q es continua entonces $Q^{-1}(Q(N)) = N + M$ es cerrado .

4. Teorema de Hahn-Banach

4.1. Funcionales Lineales

Definición Sea X un $\mathbb F$ espacio vectorial, un hiperplano en X es una variedad lineal M tal que dim X/M

Proposición 4.1.1 Una variedad lineal es un hiperplano si y sólo si existe $f \neq 0 \in X'$ tal que $M = \ker f$

Demostración Si $f \in X'$ es no nulo entonces f induce $\bar{f}: X/\ker f \to \mathbb{F}$ isomorfismo por lo que $\ker f$ es un hiperplano.

Recíprocamente, si M es un hiperplano entonces existe $T: X/M \to \mathbb{F}$ un isomorfismo; luego si consideramos $f = Q \circ T$ cumple que $f \in X'$ y $M = \ker f$.

Proposición 4.1.2 Sean $f, g \in X'$, luego ker $f = \ker g$ si y sólo si $g = \alpha f$ con $\alpha \in \mathbb{F}$

Demostración Sea $x_0 \in X$ tal que $f(x_0) = 1$, luego $g(x_0) = \alpha \neq 0$ y entonces $x - f(x)x_0 \in \ker f = \ker g$; por lo tanto $g(x) = \alpha f(x)$.

Proposición 4.1.3 Si X es un espacio normado y M es un hiperplano entonces M es denso o cerrado.

Demostración Sabemos que \overline{M} es una variedad lineal y vale que $M \subset \overline{M}$ por lo que $\dim^X/\overline{M} \leq \dim^X/M = 1$.

Teorema 4.1.4 Si X es normado y $f \in X'$ entonces f es acotada si y sólo si ker f es cerrado.

Demostración Sea $M = \ker f$ cerrado, entonces por 3.4.3 Q es continua y sea $T : X / \ker f \to \mathbb{F}$ un isomorfismo entonces T es continua pues $||Tx|| \leq \sum_{i=1}^k |\lambda_i| \, ||Te_i|| \leq C \, ||x||_\infty \leq D \, ||x||$. Luego $g = T \circ Q \in X^*$ y $\ker g = \ker f$, por 4.1.2 vale que $f = \alpha g \in X^*$.

Proposición 4.1.5 Si X es normado de dimensión finita e Y es normado, luego si $T: X \to Y$ es lineal entonces es continua.

Demostración Ver arriba.

4.2. El Teorema de Hanh-Banach

Definición Sea X un espacio vectorial, un funcional sublineal es una $q: X \to \mathbb{R}$ tal que:

- 1. Dados $x, y \in X$ vale $q(x+y) \le q(x) + q(y)$
- 2. Dado $x \in X$ vale $q(\alpha x) = \alpha q(x)$ para todo $\alpha \ge 0$

Proposición 4.2.1 Sea X un \mathbb{C} espacio vectorial, entonces:

- 1. Si $f: X \to \mathbb{R}$ es un \mathbb{R} funcional lineal, entonces $\tilde{f}(x) = f(x) if(ix)$ es un \mathbb{C} funcional lineal.
- 2. Si $g: X \to \mathbb{C}$ es un \mathbb{C} funcional lineal $y f = \Re g$, entonces $g = \tilde{f}$.
- 3. Si p es una seminorma entonces $|f| \le p \iff \left| \tilde{f} \right| \le p$
- 4. Si X es normado entonces $\|f\| = \left\| \tilde{f} \right\|$

Demostración 1. Es claro que \tilde{f} es \mathbb{R} lineal y además notemos que $\tilde{f}(ix) = f(ix) - if(-x) = if(x) + f(ix) = i(f(x) - if(ix)) = i\tilde{f}(x)$; por lo tanto \tilde{f} es \mathbb{C} lineal.

- 2. Como g es $\mathbb C$ lineal entonces g(ix)=ig(x) y luego $\Im g(ix)=\Im ig(x)=\Re g=f(x)$ por lo que $-f(ix)=\Im g(x)$ y concluímos que $g=\tilde f$.
- 3. Si $|f| \leq p$ luego como $\tilde{f} = e^{i\theta} \left| \tilde{f} \right|$ entonces $\left| \tilde{f} \right| = \tilde{f}(e^{-i\theta}x) = \Re \tilde{f}(e^{-i\theta}x) = f(e^{-i\theta}x) \leq p(e^{-i\theta}x) = \left| e^{-i\theta} \right| p(x)$.

Recíprocamente si $\left|\tilde{f}\right| \leq p$ entonces $\pm f(x) = \Re f(\tilde{\pm}x) \leq \left|\tilde{f}(\pm x)\right| \leq p$ por lo que $|f| \leq p$.

4. Como ||f|| es una seminorma, entonces $||\tilde{f}|| \le ||f||$.

Lema 4.2.2 Sea X un \mathbb{R} espacio vectorial y sea q un funcional sublineal en X. Si $M \subseteq X$ es un hiperplano y $f: M \to \mathbb{R}$ es un funcional tal que $f \le q$ para todo $x \in M$ entonces existe $F: X \to \mathbb{R}$ una extensión tal que $F \le q$.

Demostración Sea $x_0 \in X \setminus M$ por lo que $X = M \oplus \langle x_0 \rangle$, asumamos que existe tal extensión F y notemos $\alpha_0 = F(x_0)$. Si t > 0 y $y_1 \in M$ entonces $F(tx_0 + y_1) = t\alpha_0 + f(y_1) \le q(tx_0 + y_1)$ por lo que $\alpha_0 \le q(x_0 + \frac{y_1}{t}) - f(\frac{y_1}{t})$ para todo $y_1 \in M$ que se reduce a (M variedad):

$$\alpha_0 \le q(x_0 + y_1) - f(y_1) \quad \forall y_1 \in M$$

Además si $t \ge 0$, $y_2 \in M$ entonces $F(-tx_0 + y_2) = -t\alpha_0 + f(y_2) \le q(-tx_0 + y_2)$ y concluímos:

$$q(-x_0 + y_2) + f(y_2) \le \alpha_0 \le q(x_0 + y_1) - f(y_1) \quad \forall y_1 y_2 \in M$$
(8)

Y recíprocamente si α_0 cumple 8 entonces volviendo se cumple lo necesitado para F. Reordenando necesitamos probar que $f(y_1 + y_2) \le q(x_0 + y_1) + q(-x_0 + y_2)$; pero:

$$f(y_1 + y_2) \le q(y_1 + y_2) = q(x_0 + y_1 - x_0 + y_2)$$

$$\le q(x_0 + y_1) + q(-x_0 + y_2)$$

Luego, elegimos α_0 tal que $\sup_{y_2 \in M} \{f(y_2) - q(-x_0 + y_2)\} \le \alpha_0 \le \inf_{y_1 \in M} \{q(x_0 + y_1) - f(y_1)\}$ y definimos $F(tx_0 + y) := t\alpha_0 + f(y)$ y F es una extensión de f tal que $F \le q$.

Teorema 4.2.3 (Teorema de Hanh-Banach (Versión real)) Sea X un \mathbb{R} espacio vectorial y sea q un funcional sublineal en X. Si $M \subseteq X$ es un subespacio y $f: M \to \mathbb{R}$ es un funcional tal que $f \le q$ para todo $x \in M$ entonces existe $F: X \to \mathbb{R}$ una extensión tal que $F \le q$.

Demostración Sea $S = \{(M_1, f_1), M_1 \supseteq M, M_1 \text{ variedad }, f_1 \in M_1', f_1|_M = f, f_1 \leq q|_{M_1}\}$ y lo dotamos del orden dado por:

$$(M_1, f_1) \leq_S (M_2, f_2) \iff M_1 \subseteq M_2 , f_2|_{M_1} = f_1$$

Luego (S, \leq_S) es un poset. Sea $C = \{(M_i, f_i)\}_{i \in I}$ una cadena en S y sea $N = \bigcup_{i \in I} M_i$, luego N es variedad y definimos $F: N \to \mathbb{R}$ dado por $F(x) = f_i(x)$ si $x \in M_i$.

Si $x \in M_i, M_j$ entonces como \mathcal{C} esa cadena $M_i \subseteq M_j$ y $F(x) = f_j(x) = f_i(x)$ pues $f_j|_{M_i} = f_i$ por lo que F esta bien definida. Con una cuenta análoga se ve que F es lineal y que $F \leq q$ por lo que $(N, F) \in \mathcal{S}$ es una cota superior para \mathcal{C} .

Por 1.1.1 existe (Y, F) un elemento maximal y por 4.2.2 Y = X.

Teorema 4.2.4 (Teorema de Hanh-Banach) Sea X un espacio vectorial (real o complejo) y sea p una seminorma en X. Si $M \subseteq X$ es un subespacio y $f: M \to \mathbb{C}$ es un funcional tal que $|f| \le q$ para todo $x \in M$ entonces existe $F: X \to \mathbb{C}$ una extensión tal que $|F| \le q$.

Demostración Por 4.2.1(2) si notamos $f_1 = \Re f$ entonces $f(x) = f_1(x) - if_1(ix)$ y además de la cuenta de la demostración de la vuelta de 4.2.1(3) $|f_1| \le p$ para todo $x \in M$, luego por 4.2.3 existe $F_1 \in X'$ extensión de f_1 tal que $|F_1| \le p$ por la misma cuenta que antes en 4.2.1(3).

Sea
$$F = F_1$$
 y por 4.2.1(3) vale que $|F| \le p$.

4.3. Corolarios de Hanh-Banach

Corolario 4.3.1 Si X es normado, M es subespacio y $f \in M^*$ entonces existe $F \in X^*$ tal que $F|_M = f$ y ||F|| = ||f||

Demostración Sea p(x) = ||f|| ||x||, luego $|f(x)| \le p$ y por 4.2.4 existe $F: X \to \mathbb{F}$ extensión tal que $|F(x)| \le p = ||f|| ||x||$ por lo que $||F|| \le ||f||$; finalmente $||f|| = \sup_{\substack{x \in S \\ ||x|| = 1}} ||f(x)|| = \sup_{\substack{x \in S \\ ||x|| = 1}} ||F(x)|| \le ||F||$ entonces

$$||f|| = ||F||.$$

Corolario 4.3.2 Si X es normado y $\{x_1, \ldots, x_d\}$ es un conjunto linealmente independiente y $\alpha_1, \ldots, \alpha_d \in \mathbb{F}$ entonces existe $f \in X^*$ tal que $f(x_i) = \alpha_i$ para todo $1 \le i \le d$.

Demostración Sea $M = \langle x_1, \dots, x_d \rangle$ y sea $g(\sum_{i=1}^k \beta_i x_i) = \sum_{i=1}^k \beta_i \alpha_i \in M^*$ por 4.1.5, sea f la extensión dada por 4.3.1.

Corolario 4.3.3 Si X es normado $y x \in X$ entonces:

$$||x|| = \max\{|f(x)|, f \in X^*, ||f|| \le 1\}$$
(9)

Demostración Sea $f \in X^*$ tal que $||f|| \le 1$, entonces $|f(x)| \le ||f|| \, ||x|| \le ||x||$ por lo que sup $\{|f(x)|, f \in X^*, ||f|| \le 1\}$ ||x||.

Sea ahora $M = \langle x \rangle$ y definamos $g \in M^*$ dado por $g(\beta x) = \beta ||x||$ que es continua por 4.1.5 y ||g|| = 1. Por 4.3.1 existe $f \in X^*$ tal que ||f|| = 1 y f(x) = g(x) = ||x||.

Corolario 4.3.4 Si X es normado, $M \subseteq X$ es un subespacio cerrado, $x_0 \in X \setminus M$ y $d = dist(x_0, M)$ entonces existe $f \in X^*$ tal que $M \subset \ker f$, $f(x_0) = 1$ y $||f|| = \frac{1}{d}$

Demostración Sea $Q: X \to X/M$ la proyección al cociente, como $||[x_0]|| = d$ entonces por 4.3.3 existe $g \in (X/M)^*$ tal que $g([x_0]) = d$ y ||g|| = 1. Luego si consideramos $f = d^{-1} \circ g \circ Q: X \to \mathbb{F}$ cumple que $f \in X^*$, $f(x_0) = 1$ y $M \subseteq \ker f$; además $|f(x)| = d^{-1} |g(Q(x))| \le d^{-1} ||g|| ||Q|| ||x||$ por lo que $||f|| \le d^{-1}$.

 $f \in X^*, \ f(x_0) = 1 \ \text{y} \ M \subseteq \ker f; \ \text{además} \ |f(x)| = d^{-1} |g(Q(x))| \le d^{-1} ||g|| \, ||Q|| \, ||x|| \ \text{por lo que } ||f|| \le d^{-1}.$ Por otro lado, como $||g|| = 1 \ \text{existe} \ [x_n] \subset B_1([0]) \subseteq X / M \ \text{tal que } |g([x_n])| \to 1, \ \text{sea } y_n \in Q^{-1}[x_n] \ \text{que cumple que } ||x_n + y_n|| < 1, \ \text{entonces} \ |f(x_n + y_n)| = d^{-1} |g([x_n])| \to d^{-1} \ \text{por lo que } ||f|| = d^{-1}.$

Corolario 4.3.5 Si X es normado y M es un subespacio, entonces:

$$\overline{M} = \bigcap_{\substack{f \in X^* \\ M \subseteq \ker f}} \ker f \tag{10}$$

Demostración Si $f \in X^*$, $x \in \overline{M}$ y sea $\{x_n\}_{n \in \mathbb{N}} \subset M$ con $x_n \to x$ tal que $f(x_n) = 0$, entonces como f es continua $0 = f(x_n) \to f(x) = 0$ por lo que $x \in \ker f$.

Recíprocamente si $x_0 \notin \overline{M}$ entonces por 4.3.4 existe $f \in X^*$ tal que $M \subset \ker f \not\ni x_0$ por lo que $x_0 \notin \bigcap_{\substack{f \in X^* \\ M \subseteq \ker f}} \ker f$.

Corolario 4.3.6 Si X es normado y M es subespacio, entonces M es denso si y sólo si dado $f \in X^*$ tal que $M \subseteq \ker f$ implique que f = 0.

Demostración Si $\overline{M} = X$ dado $x \in X$ existe $m_n \subset M$ tal que $m_n \to x$ por lo que $0 = f(m_n) \to f(x) = 0$ por lo que f(x) = 0 para todo $x \in X$.

Recíprocamente, si $\bigcap_{\substack{f\in X^*\\ M\subseteq \ker f}} \ker f = \ker 0 = X \text{ entonces por } 4.3.5 \text{ vale que } X = \overline{M}.$

4.4. Separabilidad y Reflexividad

Teorema 4.4.1 Sea X normado tal que X^* es separable, entonces X es separable

Demostración Como X^* es separable entonces $B = \partial B_1[0]$ lo es, sea $D = \{f_n\}_{n \in \mathbb{N}}$ un conjunto denso en B. Sea $0 < \epsilon < 1$, como $||f_n|| = 1$ entonces existe x_n tal que $||x_n|| = 1$ y $|f(x_n)| \ge \epsilon$ y sea $M = \overline{\langle x_1, \dots, x_n, \dots \rangle}$. Sea $x_0 \in X \setminus M$, luego por 4.3.6 existe $f \in X^*$ tal que $f(x_0) \ne 0$ y $M \subseteq \ker f$. Luego $\epsilon \le |f_n(x_n)| = 0$

$$\left| f_n(x_n) - \underbrace{f(x_n)}_{x_n \in M \subset \ker f} \right| = |(f - f_n)(x_n)| \le ||x_n|| \, ||f - f_n|| = ||f - f_n||, \text{ por lo que } ||f - f_n|| \ge \epsilon \text{ para todo}$$

 $n \in \mathbb{N}$; como D era denso concluímos que X = M.

Finalmente si $F = \langle \{x_n\}_{n \in \mathbb{N}} \rangle_{\mathbb{O}}$ con las combinaciones lineales con escalares racionales de M, entonces $\overline{F} = M = X$ por lo que X es separable.

Teorema 4.4.2 Sea X normado, S subespacio y $S^{\circ} = \{f \in X^* / S \subset \ker f\}$; luego S° es un subespacio cerrado y $X^*/S^\circ \simeq S^*$.

Demostración Sea
$$s \in S$$
 y $\{f_n\}_{n \in \mathbb{N}} \subset S^{\circ}$ tal que $f_n \to f$, luego $|f(s)| = \left| (f - f_n)(s) + \underbrace{f_n(s)}_{f_n \in S^{\circ}} \right| \le$

 $||f - f_n|| \, ||s|| \to 0$ por lo que $f \in S^{\circ}$ y S° es cerrado.

Sea entonces $F: S^* \to X^*/S^\circ$ dada por $F(f) = [\hat{f}]$ donde \hat{f} es la de 4.3.1, F esta bien definida pues si g es otra extensión continua entonces $[g] = [\hat{f}]$ pues $g|_S = \hat{f}|_S = f$. Es claro que F es lineal e inyectiva, si $h \in X^*/S^\circ$ entonces F(f) = h si y sólo si $[\hat{f}] = h = [\hat{h}]$, luego si

 $f = \hat{h}|_{S}$ entonces F(f) = h por lo que F es sobreyectiva.

Finalmente, si $f \in S^*$ entonces $||F(f)|| = ||[\hat{f}]|| = dist(\hat{f}, S^\circ) \le ||\hat{f}|| = ||f||$; por lo que $||F|| \le 1$;

recíprocamente si $f \in S^*$ y $g \in S^\circ$ entonces $||f|| = ||f + g||_S || \le ||\hat{f} + g||_S$, luego $||f|| \le \inf_{g \in S^\circ} ||\hat{f} + g||_S = 1$ $\|[\hat{f}]\| = \|F(f)\|$. Concluímos que F es un isomorfismo.

Definición Sea X normado y $(X^*)^*$ su doble dual, definimos la aplicación canónica $p: X \to (X^*)^*$ dada por P(x)(f) = f(x).

Observación Si p es la aplicación canónica luego vale que:

- 1. $p(x) \in (X^*)^*$ para todo $x \in X$
- 2. p es lineal y monomorfismo
- 3. ||p|| = 1

Demostración Si
$$x \in X$$
 luego $|p(x)(f)| = |f(x)| \le ||f|| ||x||$ por lo que $||p|| \le 1$ y $p \in (X^*)^*$; es más $||p(x)|| = \sup_{\substack{f \in (X)^* \\ ||f|| = 1}} |p(x)(f)| = \sup_{\substack{f \in (X)^* \\ ||f|| = 1}} |f(x)| = ||x||.$

Definición Sea X normado, decimos que es un espacio reflexivo si p es sobreyectiva.

Ejemplo Todo espacio de dimensión finita es reflexivo

Demostración Como dim X = n y p es monomorfismo entonces es isomorfismo y luego en particular es sobrevectiva.

Observación Si $f, g \in (H)^*$ entonces por 2.7.3 existen $x_0, y_0 \in H$ tal que $f(z) = \langle z, x_0 \rangle, g(z) = \langle z, y_0 \rangle$. Luego el producto interno que refiere a $\|\|_{(H)^*}$ es $\langle f, g \rangle_{(H)^*} = \langle y_0, x_0 \rangle_H$

Teorema 4.4.3 Sea H Hilbert entonces H es reflexivo.

Demostración Ya sabemos de 2.7.3 que la aplicación $F: H \to (H)^*$ dada por $F(h)(x) = f(x) = \langle x, h \rangle$ es una isometría lineal. Sea $g \in (H^*)^*$ por lo que $g(f) = \langle f, f_0 \rangle$ para algún $f_0 \in (H)^*$, que a su vez existe $z_0 \in H$ tal que $f_0(x) = \langle x, z_0 \rangle$; luego $p(z_0)(f) = f(z_0) = \langle x, z_0 \rangle = \langle f, f_0 \rangle_{(H)^*} = g(f)$.

Proposición 4.4.4 Si $\mathcal{B} = \{v_i\}_{i \in I}$ es base ortonormal de H Hilbert entonces si definimos $f_{v_i}(x) = \langle x, v_i \rangle \in I$ $(H)^*$ vale que $\mathcal{F} = \{f_{v_i}\}_{i \in I}$ es base ortonormal de $(H)^*$

Demostración Sean $f_{vi}, f_{v_j} \in \mathcal{F}$ luego $\langle f_{v_i}, f_{v_j} \rangle = \langle v_j, v_i \rangle = \delta_{i,j}$ por lo que \mathcal{F} es ortonormal. Finalmente si $f \in (H)^*$ entonces existe $x \in H$ tal que $f(z) = \langle z, x \rangle$ y entonces $0 = \langle f, f_{v_i} \rangle = \langle v_i, x \rangle$ para todo $i \in I$, por la completitud de \mathcal{B} concluímos que x = 0 por lo que f = 0.

Corolario 4.4.5 Si H es Hilbert entonces $H \simeq (H)^*$

Demostración Por 2.5.5 dos veces tenemos que $H, (H)^* \simeq l^2(I)$, luego por transitividad $H \simeq (H)^*$.

Teorema 4.4.6 Sea X normado y reflexivo, entonces $(X)^*$ es reflexivo

Demostración Sea $(p)^*: (X)^* \to ((X^*)^*)^*, g \in ((X^*)^*)^*, h \in (X^*)^*$ y definimos $f := g \circ p \in (X)^*$. Como $h \in (X^*)^*$ entonces existe $x_h \in X$ tal que $p(x_h) = h$ y luego:

- $(p)^*(f)(h) = h(f) = p(x_h)(f) = f(x_h)$
- $g(h) = g \circ p(x_h) = f(x_h)$

Luego $(p)^*(f) = g$ y concluímos que $(X)^*$ es reflexivo.

Teorema 4.4.7 Si X es reflexivo $y \subseteq X$ subespacio cerrado entonces S es reflexivo

Demostración Sea $g \in (S^*)^*$ y consideremos $(x^*)^* \in (X^*)^*$ dada por $(x^*)^*(f) = g \circ T \circ \pi(f)$ donde $T:(X)^*/S^{\circ} \to (S)^*$ es el isomorfismo isométrico dado en 4.4.2, $\pi:(X)^* \to (X)^*/S^{\circ}$ la proyección al cociente dada por 3.4.3. Como X es reflexivo entonces existe $x \in X$ tal que $p(x) = (x^*)^*$, si $x \notin S$ entonces por 4.3.4 existe $f \in (X)^*$ tal que $f|_S = 0$ y $f(x) \neq 0$ por lo que $f(x) = p(x)(f) = (x^*)^*(f) = g \circ T \circ \pi(f) = 0$

y concluímos que $x \in S$.

Sea $f \in (S)^*$ y \hat{f} su extensión dada por 4.3.1, entonces $g(f) = g \circ T \circ \pi(\hat{f}) = (x^*)^* (\hat{f}) = p(x)(\hat{f}) = \hat{f}(x) = f(x) = p(x)(f)$ y concluímos que p(x) = g por lo que S es reflexivo.

Observación l^1 no es reflexivo

Demostración Si l^1 fuese reflexivo entonces $l^1 \simeq (l^{\infty})^*$ y como l^1 es separable entonces por 4.4.1 concluímos que l^{∞} es separable, concluímos que l^1 no es reflexivo.

4.5. Consecuencias Geométricas de Hanh-Banach

Definición Sea X un espacio vectorial real y $K \subset X$ convexo, decimos que es *absorbente* si para todo $x \in X$ existe $\epsilon > 0$ tal que $\alpha x \in K$ para todo $\alpha \in \mathbb{R}$, $|\alpha| < \epsilon$

Definición Sea X un espacio vectorial real y $K \subset X$ convexo absorbente tal que $0 \in K$, definimos la funcional de Minkowsky asociada a K como la aplicación $p_K(x) = \inf \{\alpha > 0 \mid x \mid_{\alpha} \in K\}$

Definición Sea X un espacio vectorial real y sea f un funcional lineal, llamaremos hiperplano a los conjuntos $f^{-1}(\alpha)$. Si $S \subset X$ decimos que $H = f^{-1}(\{\alpha\})$ deja a un lado(estrictamente) a S si $S \subset \{x \in X \mid f(x) \leq \alpha\}$ ($\{x \in X \mid f(x) < \alpha\}$) u el análogo con los signos opuestos.

Proposición 4.5.1 Si H es hiperplano y $K \subseteq X$ es convexo entonces H deja a un lado estrictamente a K si y sólo si $K \cap H = \emptyset$

Demostración Sea α tal que $H = f^{-1}(\{\alpha\})$ y supongamos que existe $x_1, x_2 \in K$ tal que $f(x_1) < \alpha$ y $f(x_2) > \alpha$, luego si consideramos $g(t) = f(tx_1 + (1-t)x_2) = tf(x_1 - x_2) + (1-t)f(x_2)$ por Bonzano existe $t_0 \in (0,1)$ tal que $g(t_0) = \alpha$ por lo que $t_0x_1 + (1-t_0)x_2 \in H \cap K$ pues K es convexo

Proposición 4.5.2 Si H es un hiperplano y K es convexo absorbente disjunto de H entonces existe g funcional lineal tal que:

1.
$$H = g^{-1}(1)$$

2.
$$-p_K(-x) \le g(x) \le p(x)$$
 para todo $x \in X$

Demostración Sea $\alpha \in \mathbb{R}$ y $f \in X'$ tal que $H = f^{-1}(\alpha)$, luego si $g = \frac{f}{\alpha}$ entonces $x \in H$ si y sólo si $f(x) = \alpha$ si y sólo si $\frac{f(x)}{\alpha} = g(x) = 1$ por lo que $H = g^{-1}(x)$. Como $K \cap H = \emptyset$ entonces por 4.5 entonces $K \subset g^{-1}((-\infty, 1))$ o $K \subset g^{-1}((1, \infty))$ pero como $g(\underbrace{0}_{0 \in K}) = 0$ entonces $K \subset g^{-1}((1, \infty))$.

Como K es absorbente dado $x \in X$ existe $\beta > 0$ tal que $\frac{x}{\beta} < 1$ por lo que $g(x) < \beta$ y concluímos que $g(x) \le p(x)$.

Proposición 4.5.3 Sea $H \subseteq X$ un hiperplano en un espacio normado, $S \subset X$ tal que $\mathring{S} \neq \emptyset$ entonces H es cerrado.

Demostración Sea $\alpha \in \mathbb{R}$ y $f \in X'$ tal que $H_{\alpha} = f^{-1}(\alpha)$, si $H_{\alpha+1}$ no fuera cerrado entonces por 4.1.3 es denso y como $S \neq \emptyset$ eso implica que $S \cap H_{\alpha+1} \neq \emptyset$. Luego si $x_n \subset \ker f$ e $y \in H_{\alpha+1}$ entonces $H_{\alpha+1} \ni Z$ = $\lim_{x_n+y\in H_{\alpha+1}} (x_n+y) = \lim_{x_n+y\in H_{\alpha+1}} x_n + y$ pero f(z-y) = f(z) - f(y) = 0 por lo que $\lim_{x_n} x_n \in \ker f$ y por 4.1.4 f es continua; concluímos que H es cerrado.

Definición Sea $K \subset X$ un conjunto, decimos que es balanceado si $\alpha x \in K$ para todo $x \in K$ y $|\alpha| \le 1$.

Proposición 4.5.4 Si $K \subset X$ es convexo, absorbente tal que $0 \in K$ entonces p_K es sublineal. Más aún si K es balanceado entonces p_K es seminorma $y : K = \{x \in X \mid p_K(x) < 1\}$.

Demostración Como K es absorbente entonces $X = \bigcup_{n \in \mathbb{N}} nK$ por lo que $p_K(x)$ está bien definido para todo $x \in X$. Como $p_K(0) = 0$ trivialmente, si $\alpha > 0$:

$$\begin{split} p_K(\alpha x) &= \inf \left\{ t \geq 0 \ / \ \alpha x \in tV \right\} \\ &= \inf \left\{ t \geq 0 \ / \ x \in \left(\frac{t}{\alpha} V \right) \right\} \\ &= \alpha \inf \left\{ \frac{t}{\alpha} \geq 0 \ / \ x \in \left(\frac{t}{\alpha} V \right) \right\} \\ &= \alpha p_K(x) \end{split}$$

Por otro lado si $\alpha, \beta \geq 0$ y $a, b \in K$ entonces:

$$\alpha a + \beta b = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} a + \frac{\beta}{\alpha + \beta} b \right) \in (\alpha + \beta) K$$

Por la convexidad de K, luego si $x, y \in K$ y $p_K(x) = \alpha, p_K(y) = \beta$ y $\delta > 0$ entonces $x \in (\alpha + \delta) K, y \in (\beta + \delta) K$ pues K es absorbente. Entonces por convexidad $x + y \in (\alpha + \beta + 2\delta) K$ y si $\delta \to 0$ entonces $p_K(x + y) \le \alpha + \beta = p_K(x) + p_K(y)$.

Supongamos ahora que K es balanceado, si $p_K(x) = \alpha < 1$ entonces para $\alpha < \beta < 1$ vale que $x \in \beta K \subset K$ por lo que $\{x \in X \mid p_K(x) < 1\} \subseteq K$. Recíprocamente si $x \in K$ entonces $p_K(x) \le 1$ y como K es absorbente existe $\epsilon > 0$ tal que si $0 < t < \epsilon$ entonces $y = (1+t)x = x+tx \in K$, luego $p_K(x) = (1+t)^{-1}p_K(y) \le (1+t)^{-1} < 1$.

Teorema 4.5.5 (Hanh-Banach Geométrico) Si X es normado, $K \subset X$ es un convexo absorbente abierto tal que $0 \in K$ y $V \subset X$ es una variedad lineal tal que $V \cap K = \emptyset$ entonces existe H hiperplano cerrado tal que $V \subset H$ y H deja a un lado estrictamente a K.

Demostración Sea $x_0 \in V$ y $S = V - x_0$ un subespacio tal que $x_0 \notin S$, definimos $T = \langle S, x_0 \rangle$ entonces $\dim T/S = 1$ y $K \cap S$ es un convexo absorbente abierto en T tal que $V := S + x_0 \cap (K \cap S) = \emptyset$, luego por 4.5.2 existe $g \in T'$ tal que $V = g^{-1}(1)$ y $g \leq p_K$ que es sublineal por 4.5.4. Por 4.2.3 existe $f \in X'$ extensión dominada por p_K , luego si $H = f^{-1}(1)$ es un hiperplano que contiene a V y por 4.5.1 deja estrictamente a un lado a K. Finalmente como K es abierto por 4.5.3 f es continua.

Teorema 4.5.6 Si X es normado real y A, B son conjuntos disjuntos convexos con A abierto, entonces existe $f \in (X)^*$ y $\alpha \in \mathbb{R}$ tal que $f|_A < \alpha$ y $f|_B \ge \alpha$. Más aún si B es abierto entonces la separación es estricta.

Demostración Sea G = A - B, entonces usemos:

Lema 4.5.7 G es convexo, abierto $y \ 0 \notin G$

Demostración del lema Si $x, y \in G$ entonces $x = a_x - b_x, y = a_y - b_y$, luego $tx + (1 - t)y = ta_x - tb_x + ta_y$

$$(1-t)a_{y} - (1-t)b_{y} = \underbrace{\left(ta_{x} + (1-t)a_{y}\right)}_{\in A} - \underbrace{\left(tb_{x} + (1-t)b_{y}\right)}_{\in B} = a_{tx+(1-t)y} - b_{tx+(1-t)y} \in G.$$
Además $G = \bigcup_{b \in B} A - b$ por lo que G es abierto. Finalmente como $A \cap B = \emptyset$ enotnces $0 \notin G$

Por 4.5.7 y 4.5.5 existe H hiperplano cerrado tal que $H \cap G = \emptyset$ y sea $f \in (X)^*$ tal que $H = f^{-1}(0)$ que existe por 4.5.2. Luego f(G) es convexo y $0 \notin f(G)$, luego $f|_{G} > 0$ (sino lo es para -f), lo que implica que f(a) > f(b) para todos $a \in A$, $b \in B$; sea α tal que:

$$\sup \{f(b), b \in B\} \le \alpha \le \inf \{f(a), a \in A\}$$

Luego α es el buscado.

Si B es abierto, notemos:

Lema 4.5.8 Si $f \in (X)^*$ y A es abierto convexo entonces f(A) es un intervalo abierto

Demostración del lema Sea $a, b \in A$, luego $tf(a) + (1-t)f(b) = f(ta+(1-t)b) \in f(A)$ por lo tanto f(A) es convexo y como los únicos convexos de \mathbb{R} son los intervalos, f(A) es un intervalo.

Sea x_0 tal que $f(x_0) = 1$ y $x \in A$, luego existe $\epsilon > 0$ tal que $x \pm \epsilon x_0 \in A$, luego $f(x \pm \epsilon x_0) = f(x) \pm \epsilon \in f(A)$, luego $(f(x) - \epsilon, f(x) + \epsilon) \subset f(A)$ y f(A) es abierto.

Luego por 4.5.8 f(A), f(B) son intervalo abiertos por lo que α separa de manera estricta.

Teorema 4.5.9 Sea X normado y $A, B \subset X$ dos subconjuntos cerrados, convexos y disjuntos; luego si Bes compacto entonces A y B se separan de manera estricta.

Demostración Primero notemos:

Lema 4.5.10 Si X es normado, $K \subseteq X$ es un compacto y $K \subseteq V \subseteq X$ es abierto entonces existe $U \ni 0$ un entorno tal que $K + U \subset V$

Demostración del lema Sea \mathcal{U}_0 todos los entornos abiertos de 0 y supongamos que para todo $U \in \mathcal{U}_0$, $K+U \not\subseteq V$, luego para cada U existe $x_u \in K$, $y_u \in U$ tal que $x_u + y_u \in V^c$ y ordenemos \mathcal{U}_0 por la inclusión inversa; luego $\{x_u\}$, $\{y_u\}$ son redes en X, más aún $y_u \to 0$ y existe $x \in X$ tal que x es punto de acumulación de la red. Luego, x es punto de acumulación de $x_u + y_u$ y entonces $x \in \overline{V^c} = V^c$; pero $x \in K \subset V$ por lo que existe dicho $U \in \mathcal{U}_0$.

Usando 4.5.10 sobre B, A^c existe U_1 entorno de 0 tal que $B + U_1 \subset A^c$ y por 4.5.4 existe p seminorma tal que $\{x \in X, \ p(x) < 1\} \subset U_1$. Sea $U = \left\{x \in X, \ p(x) < \frac{1}{2}\right\}$, notemos:

Lema 4.5.11 $(B+U) \cap (A+U) = \emptyset$ y ambos son abiertos convexos.

Luego por 4.5.11 y 4.5.6 se concluye que A y B se separan estrictamente.

5. Teoremas fundamentales de espacios de Banach

Teorema de la aplicación abierta 5.1.

Definición Un espacio topológico X es de primera cvategoría si $X = \bigcup_{n \in \mathbb{N}} A_n$ con $\overline{A_n} = \emptyset$. Decimos que es de segunda categoría si no es de primera categoría.

Teorema 5.1.1 Sean X, Y espacios normados y $T \in L(X, Y)$ tal que ran T es de segunda categoría. Entonces si $U \ni 0$ es un entorno abierto en X luego existe $V \ni 0$ entorno abierto en Y tal que $V \subseteq \overline{T(U)}$.

Demostración Sea $U \ni 0$ un entorno abierto en X y $\alpha > 0$ tal que $B_{\alpha}(0) \subseteq U$, finalmente sea $W = B_{\frac{\alpha}{2}}(0)$. Notemos:

Lema 5.1.2
$$\bigcup_{n\in\mathbb{N}}T\left(nW\right)=\bigcup_{n\in\mathbb{N}}nT\left(W\right)=\operatorname{ran}T$$

Demostración del lema Si $y \in \operatorname{ran} T$ entonces existe $x \in X$ tal que T(x) = y; por arquimedianidad esta bien definido $n_0 = \min\left\{n \in \mathbb{N} : \frac{\|x\|}{n} < \frac{\alpha}{2}\right\}$ por lo que $x \in n_0 W$ y se concluye que $y \in T(n_0 W)$. Trivialmente $T(nW) \subset \operatorname{ran} T$ para todo $n \in \mathbb{N}$ por lo que $\bigcup_{n \in \mathbb{N}} T(nW) \subset \operatorname{ran} T$.

Trivialmente
$$T(nW) \subset \operatorname{ran} T$$
 para todo $n \in \mathbb{N}$ por lo que $\bigcup_{n \in \mathbb{N}} T(nW) \subset \operatorname{ran} T$.

Como ran T es de segunda categoría existe $n_0 \in \mathbb{N}$ tal que $n_0 \overline{T(W)} \neq \emptyset$; como además $f(x) = \frac{x}{n_0} \in \mathbb{N}$ $\operatorname{Hom}(Y)$ entonces concluímos que $\overline{T(W)} \neq \emptyset$. Por lo tanto existe $z_0 \in Y \text{ y } \delta > 0$ tal que $B_{\delta}(z_0) \cap T(W) \neq \emptyset$, sea $T(x_0) = y_0 \in B_{\delta}(z_0) \cap T(W)$ y r > 0 tal que $B_r(y_0) \subseteq B_{\delta}(z_0) \subseteq \overline{T(W)}$.

Como
$$B_r(y_0) \subseteq \overline{T(W)}$$
 entonces $B_r(0) \subseteq \overline{T(W)} - y_0 = \overline{T(W) - y_0} = \overline{T(W - x_0)} \subseteq \overline{T(B_\alpha(0))} \subseteq \overline{T(U)}$.

Teorema 5.1.3 (Teorema de la aplicación abierta) Sean X, Y normados con X Banach y sea $T \in$ L(X,Y) tal que ran T es de segunda categoría, entonces:

- 1. Si $\alpha > 0$ entonces existe $\beta > 0$ tal que $B_{\beta}[0] \subseteq T(B_{\alpha}[0])$
- $2. \operatorname{ran} T = Y$
- 3. T es abierta.

Demostración Vayamos de a partes:

1. Sea $\alpha > 0$ y consideremos $B_{\frac{\alpha}{2}}(0) \subset B_{\alpha}[0]$, por 5.1.1 existe $\beta > 0$ tal que $B_{\beta}(0) \subseteq \overline{T(B_{\frac{\alpha}{2}}(0))}$, sea $t > \frac{\alpha}{2}$ y veamos que $B_{\beta}(0) \subset T(B_t(0))$.

Sea
$$\{\epsilon_n\}_{n\in\mathbb{N}}\subset\mathbb{R}_+$$
 tal que $\sum_{n\in\mathbb{N}}\epsilon_n< t-\frac{\alpha}{2}$, por 5.1.1 para cada $n\in\mathbb{N}$ existe $\delta_n>0$ tal que $B_{\delta_n}(0)\subseteq\overline{T_{\epsilon_n}(0)}$ y llamando $\tilde{\delta_n}=\frac{\delta_n}{2^n}$ podemos suponer sin pérdida de generalidad que $\delta_n\to0$.

Sea $y \in B_{\beta}(0)$, luego $B_{\delta_1}(y) \cap T\left(B_{\frac{\alpha}{2}}(0)\right) \neq \emptyset$ por lo que existe $T(x_0) = y_0 \in Y$ tal que $||y - y_0|| < \delta_1$ con $||x_0|| \le \frac{\alpha}{2}$. Como $y - y_0 \in B_{\delta_1}(0) \subseteq \overline{T(B_{\epsilon_1}(0))}$ entonces existe $T(\underbrace{x_1}) = y_1 \in Y$ tal que

$$\|y-y_0-y_1\|<\delta_2. \text{ Inductivamente contruímos } \{y_n\}_{n\in\mathbb{N}}\subset Y \text{ tal que } \|y-\left(\sum_{1\leq n\leq k}y_n\right)\|<\delta_{k+1},$$

$$y_n=T(x_n) \text{ y } x_n\in B_{\epsilon_n}(0). \text{ Notemos que como } \delta_n\to 0 \text{ entonces } \sum_{n\in\mathbb{N}_0}y_n=y; \text{ por otro lado } \sum_{n\in\mathbb{N}}\|x_n\|<\sum_{n\in\mathbb{N}}\epsilon_n< t-\frac{\alpha}{2} \text{ luego por } 3.1.3 \sum_{n\in\mathbb{N}_0}x_n=x\in X \text{ y como } T \text{ es continua, } T(x)=\sum_{n\in\mathbb{N}_0}T(x_n)=\sum_{n\in\mathbb{N}_0}y_n=y.$$

Finalmente notemos que
$$||x|| \le \sum_{n \in \mathbb{N}_0} ||x_n|| = \underbrace{||x_0||}_{<\frac{\alpha}{2}} + \underbrace{\sum_{n \in \mathbb{N}} ||x_n||}_{< t - \frac{\alpha}{2}} < t$$
; por lo tanto $B_{\beta}(0) \subseteq T(B_t(0))$.

- 2. Sea $y \in Y$ y $\alpha, \beta > 0$ que cumplan 1, sea $n \in \mathbb{N}$ tal que $\frac{y}{n} \in B_{\frac{\beta}{2}}[0]$, entonces por 1 $\frac{y}{n} \in \operatorname{ran} T$ por lo que $y \in \operatorname{ran} T$.
- 3. Sea $U \subseteq X$ abierto y sea $T(x_0) = y_0 \in T(U)$, luego $U x_0 \ni 0$ es un entorno abierto. Sea r > 0 tal que $B_r(0) \subseteq U x_0$ luego $T(B_{\frac{r}{2}[0]}) \subseteq T(B_r(0)) \subseteq T(U) y_0$; por 1 existe $\delta > 0$ tal que $B_{\delta[0]} \subseteq T\left(B_{\frac{r}{2}}[0]\right) \subseteq T(U) y_0$ por lo que $B_{\frac{\delta}{2}(y_0)} \subseteq T(U)$.

Corolario 5.1.4 (Teorema de la inversa acotada) Sean X, Y Banach y sea $T \in L(X, Y)$ tal que T es isomorfismo lineal, entonces T es isomorfismo de Banach.

Demostración Como T es isomorfismo lineal entonces ran T = Y y como Y es Banach, es completo y por el teorema de Baire es de segunda categoría; luego por 5.1.3 T es abierta si y sólo si T^{-1} es acotada.

5.2. Teorema del Gráfico cerrado

Definición Sean X, Y normados y $T: X \to Y$ un operador lineal cuyo dominio $D(T) \subset X$ es subespacio y ran $T \subset Y$ es subespacio a su vez. Luego diremos que T es $\operatorname{cerrado}$ si $\operatorname{Gr} T \subset X \times Y$ es cerrado.

Proposición 5.2.1 Sean X, Y normados $y \in L(D(T), Y)$ con D(T) subespacio cerrado de X, entonces T es cerrado.

Demostración Si $x_n \to x$ y $T(x_n) \to y$, luego por 3.1.4 $T(x) \leftarrow T(x_n) \to y$ por lo que y = T(X).

Proposición 5.2.2 Sean X, Y normados con Y Banach y $T: X \to Y$ un operador cerrado y acotado, entonces D(T) es subespacio cerrado.

Demostración Sea $x_n \subset D(T)$ tal que $x_n \to x$, luego como T es acotado y lineal $||T(x_n) - T(x_m)|| = ||T(x_n - x_m)|| \le ||T|| \, ||x_n - x_m|| \to 0$ y como Y es Banach existe $y = \lim T(x_n)$. Luego como $x_n \to x$, $T(x_n) \to y$ y T es cerrada entonces $x \in D(T)$ y T(x) = y.

Teorema 5.2.3 (Teorema del gráfico cerrado) Sean X, Y Banach $y : X \to Y$ lineal y cerrado, entonces $T \in L(X,Y)$.

Demostración Como T es cerrada entonces GrT

6. Topologías débiles

Definición Sea X normado, la topología débil en X es la topología inicial respecto a la familia $\mathcal{B} = \{p_{(x)^*}: (x)^* \in (X)^*\}$, donde:

$$p_{(x)^*}(x) = |\langle x, (x)^* \rangle|$$

Y la notaremos wk o $\sigma(X,(X)^*)$. Asimismo la topología débil estrella en $(X)^*$ es la topología inicial respecto a la familia $\mathcal{F} = \{p_x : x \in X\}$ donde:

$$p_x((x)^*) = |\langle x, (x)^* \rangle|$$

Observación $U \subset X$ es wk-abierto si y sólo si para todo $x_0 \in U$ existen $\epsilon > 0$ y $(x_1)^*, \dots, (x_n)^* \in (X)^*$ tal que:

$$\bigcap_{1 \le k \le n} \left\{ x \in X : p_{(x_k)^*}(x - x_0) < \epsilon \right\} \subset U$$

Por lo que $\{x_i\} \subset X$ converge débilmente a x_0 si y sólo si $\langle x_i, (x)^* \rangle \to \langle x_0, (x)^* \rangle$ para todo $(x)^* \in (X)^*$.

Recíprocamente, $U \subset (X)^*$ es $(wk)^*$ –abierto si y sólo si para todo $(x_0)^* \in U$ existen $\epsilon > 0$ y $x_1, \ldots, x_n \in X$ tal que:

$$\bigcap_{1 \le k \le n} \{ (x)^* \in (X)^* : p_{x_k}((x)^* - (x_0)^*) < \epsilon \} \subset U$$

Por lo que $\{(x_i)^*\}\subset (X)^*$ converge débil estrella a $(x_0)^*$ si y sólo si $\langle (x_i)^*,x\rangle\to \langle (x_0)^*,x\rangle$ para todo $x\in X$.

Proposición 6.0.1 Sea X normado, entonces $(X, wk)^* = (X)^*$

Demostración Sea $f \in (X, wk)^*$ y $V \subset \mathbb{F}$ un abierto, luego $f^{-1}(V)$ es wk-abierto en X, luego al ser intersección e abiertos (pues $p_{(x)^*}$ son continuas) $f^{-1}(V)$ es abierto fuertemente por lo que $f \in (X)^*$.

Recíprocamente, sea $f \in (X)^*$ y $\{x_i\} \subset X$ una red tal que $x_i \xrightarrow{wk} x_0$, luego $f(x_i) \to f(x_0)$ si y sólo si $\langle f(x_i), (x)^* \rangle \to \langle f(x_0), (x)^* \rangle$ si y sólo si $p_{(x)^*} \circ f(x_i) \to p_{(x)^*} \circ f(x_0)$ que vale pues ambas son continuas.