ASSIGNEMNT-3: Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Dataset Description: The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as Customerld, CreditScore, Geography, Gender, Age, Tenure, Balance, etc. Link to the Kaggle project: https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling Perform following steps:

- 1. Read the dataset.
- 2. Distinguish the feature and target set and divide the data set into training and test sets.
- 3. Normalize the train and test data.
- 4. Initialize and build the model. Identify the points of improvement and implement the same.
- 5. Print the accuracy score and confusion matrix.

```
In [1]:
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt #Importing the libraries

In [2]:
    df = pd.read_csv("Churn_Modelling.csv")
```

Preprocessing.

10000.00000

5000.50000

count

mean

1.000000e+04

1.569094e+07

10000.000000

650.528800

```
In [3]:
           df.head()
Out[3]:
             RowNumber
                           CustomerId Surname
                                                  CreditScore
                                                               Geography
                                                                            Gender
                                                                                     Age
                                                                                          Tenure
                                                                                                     Balance
                                                                                                              NumOfProducts
          0
                                                                            Female
                             15634602
                                        Hargrave
                                                          619
                                                                    France
                                                                                                         0.00
          1
                        2
                             15647311
                                             Hill
                                                          608
                                                                                                    83807.86
                                                                     Spain
                                                                            Female
          2
                        3
                             15619304
                                            Onio
                                                          502
                                                                    France
                                                                                                   159660.80
                                                                                                                            3
                                                                            Female
          3
                                                                                                                            2
                        4
                             15701354
                                            Boni
                                                          699
                                                                    France
                                                                            Female
                                                                                                         0.00
                        5
                             15737888
                                                                                                  125510.82
                                         Mitchell
                                                          850
                                                                     Spain
                                                                            Female
                                                                                      43
                                                                                                                            1
In [4]:
           df.shape
          (10000, 14)
Out[4]:
In [5]:
           df.describe()
                  RowNumber
                                 CustomerId
                                               CreditScore
                                                                                 Tenure
                                                                                               Balance
                                                                                                         NumOfProducts
Out[5]:
                                                                     Age
                                                                                                                           Has(
```

10000.000000

38.921800

10000.000000

5.012800

10000.000000

76485.889288

10000.000000

1.530200

10000

wNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	Has(
2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0
1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0
2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0
5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1
7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1
0000.0000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1
	2886.89568 1.00000 2500.75000 5000.50000	2886.89568 7.193619e+04 1.00000 1.556570e+07 2500.75000 1.562853e+07 3000.50000 1.569074e+07 2500.25000 1.575323e+07	1.00000 1.556570e+07 350.000000 2500.75000 1.562853e+07 584.000000 3500.25000 1.575323e+07 718.000000	2886.89568 7.193619e+04 96.653299 10.487806 1.00000 1.556570e+07 350.000000 18.000000 2500.75000 1.562853e+07 584.000000 32.000000 3000.50000 1.569074e+07 652.000000 37.000000 2500.25000 1.575323e+07 718.000000 44.000000	2886.89568 7.193619e+04 96.653299 10.487806 2.892174 1.00000 1.556570e+07 350.000000 18.000000 0.0000000 2500.75000 1.562853e+07 584.000000 32.000000 3.000000 2500.50000 1.569074e+07 652.000000 37.000000 7.0000000 2500.25000 1.575323e+07 718.000000 44.000000 7.0000000	2886.89568 7.193619e+04 96.653299 10.487806 2.892174 62397.405202 1.00000 1.556570e+07 350.000000 18.000000 0.000000 0.000000 2500.75000 1.562853e+07 584.000000 32.000000 3.000000 0.000000 3000.50000 1.569074e+07 652.000000 37.000000 5.000000 97198.540000 2500.25000 1.575323e+07 718.000000 44.000000 7.000000 127644.240000	2886.89568 7.193619e+04 96.653299 10.487806 2.892174 62397.405202 0.581654 1.00000 1.556570e+07 350.000000 18.000000 0.000000 0.000000 1.0000000 2500.75000 1.562853e+07 584.000000 32.000000 3.000000 0.000000 1.000000 3000.50000 1.569074e+07 652.000000 37.000000 5.000000 97198.540000 1.000000 2500.25000 1.575323e+07 718.000000 44.000000 7.000000 127644.240000 2.000000

In [6]:

df.isnull()

Out[6]:	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	. False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
•••										
9995	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False
9997	' False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False

10000 rows × 14 columns

```
In [7]:
        df.isnull().sum()
       RowNumber
                       0
       CustomerId
                          0
       Surname
                          0
       CreditScore
                          0
       Geography
       Gender
       Age
       Tenure
                          0
       Balance
       NumOfProducts
       HasCrCard
                          0
       IsActiveMember
                          0
       EstimatedSalary
                          0
       Exited
                          0
       dtype: int64
```

In [8]:

df.info()

```
#
             Column
                              Non-Null Count Dtype
                               -----
         0
             RowNumber
                               10000 non-null int64
         1
             CustomerId
                               10000 non-null int64
         2
             Surname
                              10000 non-null object
         3
             CreditScore
                              10000 non-null int64
         4
             Geography
                               10000 non-null object
         5
             Gender
                               10000 non-null object
         6
             Age
                              10000 non-null int64
         7
             Tenure
                              10000 non-null int64
         8
             Balance
                               10000 non-null float64
         9
             NumOfProducts
                             10000 non-null int64
         10 HasCrCard
                             10000 non-null int64
         11 IsActiveMember 10000 non-null int64
         12 EstimatedSalary 10000 non-null float64
                               10000 non-null int64
         13 Exited
        dtypes: float64(2), int64(9), object(3)
        memory usage: 1.1+ MB
In [9]:
         df.dtypes
        RowNumber
                             int64
Out[9]:
        CustomerId
                             int64
        Surname
                             object
        CreditScore
                             int64
        Geography
                             object
        Gender
                            object
                             int64
        Age
        Tenure
                             int64
        Balance
                            float64
        NumOfProducts
                             int64
        HasCrCard
                             int64
        IsActiveMember
                             int64
        EstimatedSalary
                            float64
        Exited
                              int64
        dtype: object
In [10]:
         df.columns
        Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
Out[10]:
                'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
                'IsActiveMember', 'EstimatedSalary', 'Exited'],
               dtype='object')
In [11]:
         df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis= 1) #Dropping the unnecessary columns
In [12]:
         df.head()
Out[12]:
           CreditScore Geography Gender Age Tenure
                                                   Balance NumOfProducts HasCrCard IsActiveMember Estimate
        0
                                                      0.00
                 619
                         France
                               Female
                                       42
                                               2
                                                                     1
                                                                               1
                                                                                            1
                                                                                                   1(
         1
                 608
                                                  83807.86
                          Spain
                               Female
                                       41
                                               1
                                                                     1
                                                                               0
                                                                                            1
                                                                                                   1
```

Data columns (total 14 columns):

2

3

4

502

699

850

France Female

France Female

Spain Female

42

39

43

8 159660.80

2 125510.82

1

0.00

3

2

1

1

0

1

0

0

1

11

ć

Visualization

```
In [13]:
          def visualization(x, y, xlabel):
              plt.figure(figsize=(10,5))
              plt.hist([x, y], color=['red', 'green'], label = ['exit', 'not exit'])
              plt.xlabel(xlabel, fontsize=20)
              plt.ylabel("No. of customers", fontsize=20)
              plt.legend()
In [14]:
          df churn exited = df[df['Exited']==1]['Tenure']
          df churn not exited = df[df['Exited']==0]['Tenure']
In [15]:
          visualization(df churn exited, df churn not exited, "Tenure")
             1200
                      exit
                      not_exit
             1000
         No. of customers
              800
              600
              400
              200
                                                   Tenure
In [16]:
          df churn exited2 = df[df['Exited']==1]['Age']
```

```
In [16]:
    df_churn_exited2 = df[df['Exited']==1]['Age']
    df_churn_not_exited2 = df[df['Exited']==0]['Age']
```

In [17]: visualization(df_churn_exited2, df_churn_not_exited2, "Age")

Converting the Categorical Variables

Splitting the training and testing Dataset

```
In [20]:
           df.head()
             CreditScore
                                                                   NumOfProducts HasCrCard IsActiveMember Estimate
Out[20]:
                        Geography
                                    Gender
                                           Age
                                                 Tenure
                                                          Balance
          0
                                                             0.00
                    619
                             France
                                    Female
                                             42
                                                      2
                                                                                          1
                                                                                                                  1(
                                                                                                                  11
          1
                    608
                                                          83807.86
                                                                                          0
                             Spain
                                    Female
                                             41
          2
                    502
                                    Female
                                                                                                                  1
                             France
                                             42
                                                         159660.80
                                                                               2
          3
                    699
                                                             0.00
                                                                                          0
                                                                                                          0
                             France
                                    Female
                                             39
                    850
                                                       125510.82
                             Spain
                                    Female
                                             43
In [21]:
           X = df[['CreditScore','Age','Tenure','Balance','NumOfProducts','HasCrCard','IsActiveMember
In [22]:
           y = df['Exited']
In [23]:
           from sklearn.model selection import train test split
           X train, X test, y train, y test = train test split(X, y, test size = 0.30)
```

Normalizing the values with mean as 0 and Standard

Deviation as 1

```
In [24]:
         from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
In [25]:
         X train = sc.fit transform(X train)
         X test = sc.transform(X test)
In [26]:
        X train
        array([[-1.59854167, -0.94412505, -1.0440418 , ..., 0.90375116,
                -0.58174919, 1.73073215],
                [\ 0.39192495,\ -0.94412505,\ -1.39017672,\ \ldots,\ 0.90375116,
                -0.58174919, -0.57779016],
                [-0.88321773, -0.65980305, 1.37890261, ..., -1.10649927,
                 1.71895383, -0.57779016],
                [0.17421766, -0.47025505, -0.00563705, ..., -1.10649927,
                -0.58174919, 1.73073215],
                [ 0.06018051, -0.47025505, 0.34049786, ..., -1.10649927,
                -0.58174919, 1.73073215],
               [1.20055202, -0.09115905, 0.68663278, ..., -1.10649927,
                 1.71895383, -0.57779016]])
In [27]:
         X test
        array([[ 0.60963224, -0.28070705, 0.68663278, ..., -1.10649927,
Out[27]:
                -0.58174919, -0.57779016],
                [-1.02835592, -0.37548105, 0.68663278, ..., 0.90375116,
                -0.58174919, -0.57779016],
                [-0.9350528, 1.70954695, -1.73631163, ..., 0.90375116,
                -0.58174919, -0.57779016],
                [1.52192944, -0.94412505, -1.39017672, ..., -1.10649927,
                -0.58174919, -0.57779016],
                [0.49559509, 0.09838895, -1.73631163, ..., -1.10649927,
                -0.58174919, 1.73073215],
                [0.18458468, 0.66703295, -1.73631163, ..., 0.90375116,
                -0.58174919, -0.57779016]])
```

Building the Classifier Model using Keras

```
In [28]:
         import keras #Keras is the wrapper on the top of tenserflow
         #Can use Tenserflow as well but won't be able to understand the errors initially.
In [29]:
         from keras.models import Sequential #To create sequential neural network
         from keras.layers import Dense #To create hidden layers
In [30]:
         classifier = Sequential()
In [31]:
         #To add the layers
         #Dense helps to contruct the neurons
         #Input Dimension means we have 11 features
         # Units is to create the hidden layers
```

```
classifier.add(Dense(activation = "relu", input dim = 11, units = 6, kernel initializer = "units")
In [32]:
   classifier.add(Dense(activation = "relu", units = 6, kernel initializer = "uniform"))
                                        #Add
In [33]:
    classifier.add(Dense(activation = "sigmoid", units = 1, kernel initializer = "uniform")) #Fi
In [34]:
   classifier.compile(optimizer="adam",loss = 'binary crossentropy',metrics = ['accuracy'])
In [35]:
   classifier.summary() #3 layers created. 6 neurons in 1st, 6neurons in 2nd layer and 1 neuro
   Model: "sequential"
   Layer (type)
               Output Shape
                          Param #
   ______
               (None, 6)
    dense (Dense)
   dense 1 (Dense)
               (None, 6)
                          42
   dense 2 (Dense)
               (None, 1)
   Total params: 121
   Trainable params: 121
   Non-trainable params: 0
In [36]:
   classifier.fit(X train,y train,batch size=10,epochs=50) #Fitting the ANN to training datast
   Epoch 1/50
   Epoch 2/50
   Epoch 3/50
   Epoch 4/50
   Epoch 5/50
   Epoch 6/50
   Epoch 7/50
   Epoch 8/50
   Epoch 9/50
   Epoch 10/50
   Epoch 11/50
   Epoch 12/50
   Epoch 13/50
   Epoch 14/50
   Epoch 15/50
```

#Uniform helps to distribute the weight uniformly

```
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
Epoch 36/50
Epoch 37/50
Epoch 38/50
Epoch 39/50
Epoch 40/50
Epoch 41/50
Epoch 42/50
Epoch 43/50
Epoch 44/50
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
```

```
Epoch 49/50
       Epoch 50/50
       <keras.callbacks.History at 0x1a7b365d0a0>
Out[36]:
In [37]:
       y pred =classifier.predict(X test)
       y pred = (y pred > 0.5) #Predicting the result
In [38]:
       from sklearn.metrics import confusion matrix,accuracy score,classification report
In [39]:
       cm = confusion matrix(y test, y pred)
In [40]:
       cm
       array([[2304,
                   79],
Out[40]:
            [ 399,
                  218]], dtype=int64)
In [41]:
       accuracy = accuracy score(y test,y pred)
In [42]:
       accuracy
       0.8406666666666667
Out[42]:
In [45]:
       plt.figure(figsize = (10,7))
       sns.heatmap(cm,annot = True,fmt = ".1f")
       plt.xlabel('Predicted')
       plt.ylabel('Truth')
```

Text(69.0, 0.5, 'Truth')

Out[45]:

In [44]: print(classification_report(y_test,y_pred))

support	f1-score	recall	precision	
2383	0.91	0.97	0.85	0
617	0.48	0.35	0.73	1
3000	0.84			accuracy
3000	0.69	0.66	0.79	macro avg
3000	0.82	0.84	0.83	weighted avg