(Pages: 4)

P - 2479

Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics ·

Core Course

MM 1541: REAL ANALYSIS I

(2014-2017 Admissions)

Time: 3 Hours

Max. Marks: 80

SECTION I

All the first ten questions are compulsory.

- 1. State the order properties of real numbers.
- 2. Give an example of a set that contains its supremum and infimum.
- 3. Define a sequence of nested intervals.
- 4. Define E-neighborhood of an element.
- 5. Define m-tail of a sequence.
- 6. Give an example of a monotonically increasing bounded sequence.
- 7. Find $\lim_{n\to\infty} \left(\frac{\sqrt{n}-1}{\sqrt{n}+1} \right)$.
- 8. State the nth term test for series.
- 9. Give an example of a set in which every point is a cluster point.
- 10. Give an example of a function that has a right-hand limit but not a left-hand limit at a point.

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION II

Answer any eight questions. Each question carries 2 marks.

- 11. State and prove Bernoulli's inequality.
- 12. Find all $x \in \mathbb{R}$ that satisfy both |2x-3| < 5 and |x+1| > 2 simultaneously.
- 13. Let $J_n = \left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \phi$.
- 14. Prove that $\sup(a+S) = a + SupS$.
- 15. Let (x_n) converge to x. Prove that $(|x_n|)$ converges to |x|.
- 16. Prove that if a sequence converges to a real number L, then any subsequence of this sequence converges to L.
- 17. Show that if (x_n) is an unbounded sequence, then there exists a properly divergent subsequence.
- 18. Discuss the convergance of $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 1}$.
- 19. Using sequential criteria prove that $\lim_{n\to 0} \operatorname{sgn}(x)$ does not exist, where $\operatorname{sgn}(x)$ is the signum function.
- 20. Find $\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}$ where x>0.
- 21. Find $\lim_{x\to 0^+} \frac{(x+2)}{\sqrt{x}}, x>0$.
- 22. Prove that if $F:A\to\mathbb{R}$ has a limit at $c\in\mathbb{R}$, then F is bounded on some neighborhood of C.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION III

Answer any six questions. Each question carries 4 marks.

- 23. Define least upper bound for a non empty subset of \mathbb{R} . State and prove a necessary and sufficient condition for a real number to be the least upper bound of a set.
- 24. State and prove density theorem.
- 25. If a set $S \subseteq \mathbb{R}$ contains one of its upper bounds, show that this upper bound is the supremum of S.
- 26. State and prove squeeze theorem for sequences.
- 27. Prove that $\lim_{x \to \infty} (C^{\frac{1}{n}}) = 1$ for C > 1.
- 28. Prove that the alternating harmonic series converges.
- 29. Prove that every convergent sequence is bounded. Is the converse true. Justify your answer.
- 30. Show that $\lim \left(\frac{n^2}{n!}\right) = 0$.
- 31. Prove that $\lim_{x\to 0} \frac{\cos x 1}{x} = 0$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION IV

Answer any two questions. Each question carries 15 marks.

- 32. (a) Using the definition of limits prove that $\lim_{x\to c} x^2 = c^2$.
 - (b) Prove that $\lim_{x\to 0} x \cos\left(\frac{1}{x}\right) = 0$.

- 33. (a) Let $I_n = [a_n, b_n]$, $n \in \mathbb{N}$, be a nested sequence of closed bounded intervals. PT there exists a number $\xi \in \Re$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.
 - (b) Under what conditions will ξ be unique. Prove your argument.
- 34. (a) State and prove monotone subsequence theorem.
 - (b) State and prove the limit comparison test for convergence of series.
- 35. (a) State and prove Cauchy Convergence criterion for sequences.
 - (b) Let (x_n) be a Cauchy sequence such that x_n is an integer for every $n \in \mathbb{N}$. Show that (x_n) is ultimately a constant.

 $(2 \times 15 = 30 \text{ Marks})$