

整数规划

翟卫欣 副教授

zhaiweixin@cau.edu.cn

中国农业大学信息与电气工程学院

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

指派问题

目录

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

华派问题

整数规划的含义

线性整数规划:除目标函数和约束函数是线性函数外,还要求决策变 量取整数值, 简称为整数规划。

- 所有变量取整数值: 纯整数规划
- 部分变量取整数值: 混合整数规划
- 变量只取0或1: 0 1规划

一般表示为:

$$min \quad cx$$

$$s.t. \quad Ax = b, \tag{P_0}$$

 $x \ge 0$, x_i 为整数, $\forall j \in IN$.

其中 IN 是取整数的变量的下标集, A 为 $m \times n$ 矩阵, c 是 n 维行向量, b 是 m 维列向量.

最优化方法 4 / 44

目录

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

华派问题

分支定界法的计算过程涉及松弛、分解和探测三个基本概念。

1.松弛

将整数规划 (P_0) 去掉整数性约束,得到线性规划:

$$min \quad cx$$

$$s.t. \quad Ax = b,$$

$$x \ge 0.$$

 (\overline{P}_0)

称 (\overline{P}_0) 为整数规划 (P_0) 的松弛问题.

整数规划 (P_0) 与它的松弛问题 (\overline{P}_0) 之间有下列关系:

- (1) 若 (\overline{P}_0) 没有可行解,则 (P_0) 无可行解;
- (2) (\overline{P}_0) 的最小值给出 (P_0) 的最小值的下界 F_L ;
- (3) 若 (\overline{P}_0) 的最优解是 (P_0) 的可行解,则也是 (P_0) 的最优解.

4 D > 4 A D > 4 B > B + 9 Q (

CHINA AGRICU

2.分解

设整数规划问题 (P_0) 的可行集为 $S(P_0)$,子问题 $(P_1), \cdots, (P_k)$ 的可行集分别为 $S(P_1), \cdots, S(P_k)$,每个子问题与 (P_0) 有相同的目标函数,满足条件 $\bigcup\limits_{i=1}^k S(P_i) = S(P_0)$ 及 $S(P_i) \bigcap S(P_j) = \varnothing, \forall i \neq j$,则称 (P_0) 分解成子问题 $(P_1), \cdots, (P_k)$ 之和。

7/44

最优化方法 Optimization Methods

下面给出一种分解方法:

设松弛问题 (\overline{P}_0) 的最优解不满足 (P_0) 中整数性要求. 任选一个不满足整数性要求的变量 x_j ,设其取值为 \overline{b}_j ,用 $[\overline{b}_j]$ 表示小于 \overline{b}_j 的最大整数,将约束 $x_j \leq [\overline{b}_j]$ 和 $x_j \geq [\overline{b}_j] + 1$ 分别置于问题 (P_0) 中,则将 (P_0) 分解成下列两个子问题:

min cx min cx s.t. Ax = b, (P_1) s.t. Ax = b, (P_2) $x_j \leq [\overline{b}_j]$, $x_j \geq [\overline{b}_j] + 1$, $x \geq 0$, x_i 为整数, $\forall j \in IN$. $x \geq 0$, x_j 为整数, $\forall j \in IN$.

◆ロ → ◆ 個 → ◆ 量 → ● ● り へ ○

3.探测

设整数规划 (P_0) 已分解成 $(P_1), \cdots, (P_k)$ 之和,各自的松弛问题分别记作 $(\overline{P}_1), \cdots, (\overline{P}_k)$,又知 (P_0) 的一个可行解 \overline{x} ,则有下列探测结果 $(i \neq 0)$:

- 若松弛问题 (P̄_i) 没有可行解,则探明相应的子问题 (P̄_i) 没有可行解,可将 (P̄_i) 删去.
- 若 (\overline{P}_i) 的最小值不小于 $c\overline{x}$,则探明子问题 (P_i) 没有比 \overline{x} 更好的可行解,因此可以删去.
- 若松弛问题 (\overline{P}_i) 的最优解是 (P_i) 的可行解,则也是 (P_i) 的最优解. 因此,在以后的分解或探测中,子问题 (P_i) 不必再考虑. 若 (P_i) 的最优值 $cx^{(i)} < c\overline{x}$,则令 $c\overline{x} = cx^{(i)}$,即将 (P_i) 的最优值 $cx^{(i)}$ 作为 (P_0) 的最优值 的一个新的上界.
- 如果各个松弛问题 (P̄_i) 的最小值均不小于问题 (P₀) 最优值的已知上界,
 则整数规划 (P₀) 达到最优解.

4 D > 4 D > 4 E > 4 E > E 990

最优化方法

CHINA AGRICUL

用分支定界法求解问题 (P_0) 时,首先要给定一个最优值上界 $c\bar{x}$,如果还未求出 (P_0) 的一个可行解 \bar{x} ,可令 $c\bar{x} = +\infty$. 然后将 P_0 分解成若干个子问题,并用单纯形法依次求解各个松弛子问题,确定子问题目标函数值的下界,根据计算结果决定现行子问题是否作进一步分解,并逐步更新 (P_0) 的最优值的上界,使之越来越小. 最终所有需要探测的子问题均已探明,并给出了 (P_0) 的最优解,或得出无界的结论.

例:用分支定界法求解整数规划(P):

$$min$$
 $2x_1 - x_2$ $s.t.$ $5x_1 + 4x_2 \le 20$, $-3x_1 + x_2 \le 3$, $x_1, x_2 \ge 0$, x_1, x_2 为整数.

解:由于(0,0)为可行解,知目标函数值一个上界 $F_u=0$,用单纯形方法解松 弛问题

min
$$2x_1 - x_2$$

s.t. $5x_1 + 4x_2 \le 20$,
 $-3x_1 + x_2 \le 3$,
 $x_1, x_2 \ge 0$.

最优解 $\bar{x}_1 = \frac{8}{17}$, $\bar{x}_2 = \frac{75}{17}$,最小值 $f = -\frac{59}{17}$,因此(P)的最优值 $F^* \in \left[-\frac{59}{17}, 0\right]$

12 / 44

分支界定法

由于松弛问题的解不满足整数型要求,引进条件 $x_1 \leq [\bar{x}_1]$ 和 $x_1 \geq [\bar{x}_1] + 1$,即 $x_1 \leq 0$ 及 $x_1 \geq 1$,将 (P) 分解为 (P_1) 、 (P_2) 2 个子问题:

$$min$$
 $2x_1 - x_2$ min $2x_1 - x_2$ $s.t.$ $5x_1 + 4x_2 \le 20$, $s.t.$ $5x_1 + 4x_2 \le 20$, $-3x_1 + x_2 \le 3$, (P_1) $-3x_1 + x_2 \le 3$, (P_2) $x_1 \le 0$, $x_1, x_2 \ge 0$, $x_1, x_2 > 0$, $x_1, x_2 > 0$, $x_1, x_2 > 0$ x_1, x_2

对于 (\overline{P}_1) ,最优解为 $\overline{x}_1=0$, $\overline{x}_2=3$,最优值 $f_1=-3$,是整数规划 (P) 的可行解,因此令 (P) 的最优值的一个新上界 $F_u=-3$. (P_1) 不需要再分解, (P) 的最优值 $F^*\in [-\frac{59}{17},-3]$.

对于 (\overline{P}_2) ,最优解为 $\overline{x}_1=1$, $\overline{x}_2=\frac{15}{4}$,最优值 $f_2=-\frac{7}{4}$,由于 x_2 取值非整数,所以这个解不是子问题 (P_2) 的可行解. 但是,它给出 (P_2) 最优值的下界 $-\frac{7}{4}$,这个值大于 (P) 的最优值的上界 $F_u=-3$,因此不必再分解,已得到整数规划的最优解 $x_1^*=0, x_2^*=3$,最优值 $F^*=-3$.

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

华派问题

最优化方法

割平面法首先求解整数规划的线性松弛问题. 如果得到的最优解满足整数要求,则为整数规划的最优解; 否则, 选择一个不满足整数要求的基变量, 定义一个新约束, 增加到原来的约束集中. 这个约束的作用是, 切掉一部分不满足整数要求的可行解, 缩小可行域, 而保留全部整数可行解. 然后, 解新的松弛线性规划. 重复以上过程, 直至求出整数最优解. 在这种方法中, 关键是如何定义切割约束, 下面进行介绍.

4 D > 4 B > 4 E > 4 E > 9 Q C

14 / 44

(2)

割平面法

考虑整数规划

$$s.t.$$
 $Ax = b,$

 $x \ge 0$, x 的分量为整数.

松弛问题为

$$s.t.$$
 $Ax = b$,

$$x \ge 0$$
.

其中 $A = (p_1, p_2, \dots, p_n)$ 为 $m \times n$ 矩阵, p_j 是 A 的第 j 列,假设 (2) 式的最优 基为 B . 最优解

$$x^* = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} = \begin{bmatrix} \overline{b} \\ 0 \end{bmatrix} \geqslant 0.$$

若 x^* 的分量均为整数,则 x^* 是整数规划 (1) 的最优解,否则选择一个不满足整数要求的基变量,比如 x_{B_i} ,用包含这个基变量的约束方程(称为源约束)定义切割约束。

最优化方法 Optimization Methods 15/44

16 / 44

割平面法

方法如下: 假设含有 xB; 的约束方程为

$$x_{B_i} + \sum_{j \in R} y_{ij} x_j = \overline{b}_i \tag{3}$$

其中 R 为非基变量下标集, y_{ij} 是 $B^{-1}p_i$ 的第 i 个分量, \bar{b}_i 是 \bar{b} 的第 i 个分量,记作

$$y_{ij} = [y_{ij}] + f_{ij}, j \in R,$$
$$\bar{b}_i = [\bar{b}_i] + f_i,$$

$$b_i = [b_i] + J_i$$

式中 $[y_{ij}]$ 、 $[\bar{b}_i]$ 分别表示不大于 y_{ij} 、 \bar{b}_i 的最大整数, f_{ij} 和 f_i 是相应的小数部分, (3) 式 写作

$$x_{B_i} + \sum_{j \in R} [y_{ij}]x_j - [\overline{b}_i] = f_i - \sum_{j \in R} f_{ij}x_j,$$
 (4)

由于 $0 < f_i < 1, 0 \le f_{ij} < 1, x_i \ge 0$,由 (4)式得到

$$f_i - \sum_{i \in R} f_{ij} x_j < 1$$

对于任意的整数可行解,由于(4)式左端为整数,则右端为小于1的整数,得到整数解的必要条件为

$$f_i - \sum_{i \in R} f_{ij} x_j \leqslant 0 \tag{5}$$

将上式作为切割条件,增加到(2)式的约束中,得到线性规划

min
$$cx$$

 $s.t.$ $Ax = b,$
 $f_i - \sum_{j \in R} f_{ij} x_j \leqslant 0,$ (6)

再用对偶单纯形法求解.

易知原来的非整数最优解 $x^* = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ 必不是 (6) 式的可行解;否则,由于 $x_j = 0, \forall j \in R$ 以及 $f_i > 0$,必然得到 (5) 式左端大于 0 ,矛盾. 因此,条件 (5) 切掉非整数最优解. 另一方面, (5) 式并不切掉整数可行解. 对于任何整数可行解,带入 (4) 式,左端为整数,因此右端也为整数,必满足 (5) 式.

 $x \ge 0$.

例: 用割平面法求解整数规划:

$$min$$
 $x_1 - 2x_2$ $s.t.$ $-x_1 + 3x_2 \le 2$, $x_1 + x_2 \le 4$, $x_1, x_2 \ge 0$, x_1, x_2 为整数.

解: 先用单纯形法解松弛问题

min
$$x_1 - 2x_2$$

s.t. $-x_1 + 3x_2 \le 2$,
 $x_1 + x_2 \le 4$,
 $x_1, x_2 \ge 0$.

最优单纯形表为:

	x_1	x_2	x_3	x_4	
x_2	-1/3	1	1/3	0	2/3
x_4	4/3	0	-1/3	1	10/3
	-1/3	0	-2/3	0	-4/3

最优解为 $x_1 = 0, x_2 = 2/3$,不满足整数要求,任选一个取值非整数的基变量,比如 x_2 ,由上表知,源约束为

$$-\frac{1}{3}x_1 + x_2 + \frac{1}{3}x_3 = \frac{2}{3}$$

将非基变量 x_1 和 x_3 的系数以及常数项分别分解为 -1/3 = -1 + 2/3, 1/3 = 0 + 1/3, 2/3 = 0 + 2/3,得到切割条件为

$$\frac{2}{3} - \frac{2}{3}x_1 - \frac{1}{3}x_3 \leqslant 0,$$

即

$$-2x_1 - x_3 \leq -2$$
.

引进松弛变量 x_5 ,将此条件置入上面的最优表,得到

	x_1	x_2	x_3	x_4	x_5	
x_2	-1/3	1	1/3 -1/3	0	0	2/3
x_4	-1/3 4/3	0	-1/3	1	0	10/3
<i>x</i> ₅	-2	0	-1	0	1	-2
	-1/3	0	-2/3	0	0	-4/3

用对偶单纯形方法求解,最优解 $x_1=1,x_2=1$,最优值 $f_{min}=-1$,这个解也是整数规划的最优解.

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

华派问题

最优化方法

考虑 0-1 规划 (P):

$$min$$

$$\sum_{j=1}^{n} c_{j}x_{j}$$
 $s.t.$
$$\sum_{j=1}^{n} a_{ij}x_{j} \geqslant b_{i}, \quad i = 1, \dots, m,$$
 x_{j} 取 0 或 $1, \quad j = 1, \dots, n.$

其中 c_i , a_{ii} , b_i 均为整数.

最优化方法 Optimization Methods

记

$$X = (x_1, x_2, \dots, x_n)^T, \quad c = (c_1, c_2, \dots, c_n),$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

(P) 可写成下列形式:

$$min$$
 cx
 $s.t.$ $A_ix \geqslant b_i,$ $i = 1, 2, \dots, m,$
 x_j 取 0 或 1, $j = 1, \dots, n.$

为了不失一般性,做两点假设:

- (1) $c_i \ge 0$ $(j = 1, 2, \dots, n)$. 如果某个 $c_i < 0$,则作变量替换,令 $x_i^{'} = 1 x_i$,对 变换后的 x_i^{\prime} , 必有系数 $-c_i>0$.
- (2) $c_1 \leq c_2 \leq \cdots \leq c_n$,如果此项规定不满足,则更改变量下标,使假设成立 \in

隐数法的基本思路是,把问题 (P) 分解成若干个子问题,按一定规则检查各子问题,直至找到最优解.

具体地,先按 x_1 取 1 或 0 把 (P) 分解成两个子问题 (P_1) 和 (P_2) . (P_1) 记作 $\{+1\}$, (P_2) 记作 $\{-1\}$, x_1 称为固定变量, x_2, x_3, \cdots , x_n 称为自由变量. 再按 x_2 取 1 或 0 分解每个子问题,分别记为 $\{+2\}$ 、 $\{-2\}$. 若取 x_1 、 x_2 作为固定变量, x_3, x_4, \cdots , x_n 作为自由变量,则得到 4 个子问题,分别记作 $\{+1, +2\}$, $\{+1, -2\}$, $\{-1, +2\}$, $\{-1, -2\}$. 一般地,若 x_i, x_j, \cdots , x_k 为固定变量,分别 取值 $1, 0, \cdots$, 1 , 用 $\{\sigma\}$ 表示相应的子问题,则记作 $\{\sigma\} = \{+i, -j, \cdots, +k\}$,其他变量为自由变量,在 $\{\sigma\}$ 中不作记录.

按上述方法,有 3 个变量的 0-1 规划完全分解成子问题后,可得到下列 树枝形式:

隐数法是从问题 (P) (也记作 $\{\phi\}$)出发,沿各树枝,从左到右依次探测各子问题,直至给出最优解,或得出原问题无可行解的结论。

在探测过程中,对于每个子问题 $\{\sigma\}$,取自由变量等于 0 的点作为探测点,记作 σ_0 . 显然,由于 $0 \le c_1 \le c_2 \le \cdots \le c_n$,若 σ_0 是可行点,则必是子问题 $\{\sigma\}$ 的最小点. 下面介绍几条探测规则.

设已知整数规划 (P) 的一个可行点 \bar{x} ,它的目标函数值 $\bar{f} = c\bar{x}$. 现在考虑 (P) 的任一个子问题 $\{\sigma\}$,相应的探测点记作 σ_0 . 设 x_j 是 $\{\sigma\}$ 中具有最小下标的自由变量,则依次有下列探测结果:

- (1) 若 $c\sigma_0 \ge \bar{f}$,则子问题 $\{\sigma\}$ 中没有比 \bar{x} 更好的可行解.
- (2) 若 $c\sigma_0 < \bar{f}$,且 σ_0 是 (P) 的可行解,则 σ_0 是比原来的 \bar{x} 更好的可行解,因此置 $\bar{x} = \sigma_0, \bar{f} = c\sigma_0$.
- (3) 若 $c\sigma_0 < \bar{f}$, σ_0 不是 $\{\sigma\}$ 的可行解,且 $c\sigma_0 + c_j \ge \bar{f}$,则 $\{\sigma\}$ 中没有比 \bar{x} 更好的可行解.

(ロ) (面) (重) (重) (配) (の)

(4) 设自由变量有 $x_{j_1}, x_{j_2}, \dots, x_{j_k}$, 满足不等式 $c\sigma_0 + c_{j_1} \leqslant \dots \leqslant c\sigma_0 + c_{j_r} < \bar{f} \leqslant c\sigma_0 + c_{j_{r+1}} \leqslant \dots \leqslant c\sigma_0 + c_{j_k}$, 记作 $J = \{j_1, j_2, \dots, j_r\}$, 称 J 为可选集.

令 $s_i = A_i \sigma_0 - b_i (i = 1, \dots, m)$, s_i 为第 i 个约束的松弛变量. 若所有的 $s_i \ge 0$,则 σ_0 是比现行的 \bar{x} 更好的可行解,置 $\bar{x} = \sigma_0, \bar{f} = c\sigma_0$.

(5) 若 σ_0 不是可行解,置 $I = \{i \mid s_i < 0\}$,称 I 为违背约束集. 置

$$J_i = \{j | j \in J, a_{ij} > 0\}, \quad i \in I,$$

$$q_i = \sum_{i \in I} a_{ij}, \quad i \in I$$

式中 a_{ii} 是系数矩阵 A 的第 i 行第 j 列元素.

计算 $s_i+q_i, \forall i\in I$. 若对某个 $i\in I$,有 $s_i+q_i<0$,则本子问题没有更好的可行解.

计算步骤:

- (1) 给定一个可行解 \bar{x} , 置 $\bar{f} = c\bar{x}$ (或令 $\bar{x} = \phi, \bar{f} = +\infty$), 置子问题 $\{\sigma\} = \{\phi\}$,探测点 $\sigma_0 = (0, 0, \dots, 0)^T$,执行步骤 (2).
- (2) 若 $c\sigma_0 \geqslant \bar{f}$,本子问题没有比 \bar{x} 更好的可行解,则转步骤 (7);否则执行步骤 (3).
- (4) 若无自由变量则转步骤 (7). 当存在自由变量时,设自由变量为 $x_{j_1}, x_{j_2}, \cdots, x_{j_k}$ $(j_1 < j_2 < \cdots < j_k)$. 若 $c\sigma_0 + c_{j_1} \geqslant \bar{f}$,本子问题没有比 \bar{x} 好的可行解,则转步骤 (7);否则执行步骤 (5).
- (5) 置可选集

$$J = \{ j_t | c\sigma_0 + c_{j_t} < \bar{f}, t \in \{1, 2, \cdots, k\} \}$$

对每个违背约束集 $i \in I$,置带有正系数的部分自由变量下标集

对每个违背约束集 $i \in I$. 今

$$q_i = \sum_{i \in I_i} a_{ij}, \quad i \in I \quad (若J_i = \phi, 则置q_i = 0)$$

计算 $s_i + q_i$, $\forall i \in I$. 若对某个 $i \in I$,有 $s_i + q_i < 0$,本子问题没有更好的可行解,则转步骤 (7);否则执行步骤 (6).

- (6) 检验每个指标 $j \in J$,若存在约束指标 $i \in I$,使得 $j \notin J_i$,且 $s_i + q_i + a_{ij} < 0$,则置 $J := J \setminus \{j\}$.检查完毕时,若 $J = \phi$,则转步骤 (7);若 $J \neq \phi$,则令 $l = \min\{j \mid j \in J\}$.置子问题 $\{\sigma, +l\} \rightarrow \{\sigma\}$,置探测点 $\sigma_0 := \sigma_0 + e_l$,其中 e_l 是第 l 个分量为 1 的单位向量. 转步骤 (2).
- (7) 当 $\{\sigma\}$ 中固定变量均取 0 时,探测完毕. 此时,若 $\bar{x} \neq \phi$, \bar{x} 就是最优解;否则无可行解.

当 $\{\sigma\}$ 中固定变量不全为 0 时,不妨假设 $\{\sigma\}=\{\cdots,+u,-v,\cdots\}$,即 x_u 是最后一个固定为 1 的变量,置子问题 $\{\cdots,-u\}\to\{\sigma\}$,并置探测点 $\sigma_0:=\sigma_0-e_u(e_u$ 是第 u 个分量为 1 的单位向量),然后转步骤 (2).

例:用隐数法求解下列0-1规划:

min
$$x_1 + 3x_2 + 4x_3 + 6x_4 + 7x_5$$

s.t. $x_1 - 5x_2 + 3x_3 - 4x_4 + 6x_5 \ge 2$,
 $4x_1 + x_2 - 2x_3 + 3x_4 + x_5 \ge 1$,
 $-2x_1 + 2x_2 + 4x_3 - x_4 + 4x_5 \ge 1$,
 x_i 段 0 或 1, $j = 1, \dots, 5$.

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix} = \begin{bmatrix} 1 & -5 & 3 & -4 & 6 \\ 4 & 1 & -2 & 3 & 1 \\ -2 & 2 & 4 & -1 & 4 \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

◆□ ▶ ◆昼 ▶ ◆ 昼 ▶ ● 9 へ ○

- (1) 置初始可行解 $\bar{x} = (0\ 0\ 0\ 1)^T$,在 \bar{x} 处的函数值 $\bar{f} = c\bar{x} = 7$,置子问题 $\{\sigma\} = \{\phi\}$,取探测点 $\sigma_0 = (0\ 0\ 0\ 0)^T$
- (2) $c\sigma_0 = 0 < \bar{f} = 7$
- (3) $s_1 = A_1\sigma_0 b_1 = -2$, $s_2 = A_2\sigma_0 b_2 = -1$, $s_3 = A_3\sigma_0 b_3 = -1$, 置 违背约束集 $I = \{1, 2, 3\}$.
- (4) 自由变量有 x_1, x_2, x_3, x_4, x_5 .

$$c\sigma_0 + c_1 = 1 < \bar{f} = 7.$$

(5) 根据条件 $c\sigma_0 + c_j < \bar{f}$,求得可选集 $J = \{1, 2, 3, 4\}$.

$$J_1 = \{1,3\}, J_2 = \{1,2,4\}, J_3 = \{2,3\}.$$

$$q_1 = 4$$
, $q_2 = 8$, $q_3 = 6$; $s_1 + q_1 = 2$, $s_2 + q_2 = 7$, $s_3 + q_3 = 5$.

(6) 检查 J 中每个指标,修改 J ,置可选集 $J = \{1,3\}$.

取
$$l = min\{j | j \in J\} = 1$$
.

置
$$\{\sigma\} = \{+1\}$$
,置探测点 $\sigma_0 = (1\ 0\ 0\ 0)^T$.

(ロ) (部) (注) (注) 注 の(0)

- (2) $c\sigma_0 = 1 < \bar{f} = 7$.
- (3) $s_1 = A_1\sigma_0 b_1 = -1$, $s_2 = A_2\sigma_0 b_2 = 3$, $s_3 = A_3\sigma_0 b_3 = -3$, $\Xi I = \{1, 3\}$.
- (4) 自由变量有 x_2, x_3, x_4, x_5 .

$$c\sigma_0 + c_2 = 4 < \bar{f} = 7.$$

(5) 置可选集 $J = \{2,3\}$.

$$J_1 = \{3\}, \quad J_2 = \{2,3\}; \quad q_1 = 3, \quad q_3 = 6; \quad s_1 + q_1 = 2, \quad s_3 + q_3 = 3.$$

(6) 检查 J 中每个指标,置 $J = \{3\}$.

取
$$l = 3$$
; 置 $\{\sigma\} = \{+1, +3\}$; 取 $\sigma_0 = (1\ 0\ 1\ 0\ 0)^T$.

- (2) $c\sigma_0 = 5 < \bar{f} = 7$.
- (3) $s_1 = A_1 \sigma_0 b_1 = 2$, $s_2 = A_2 \sigma_0 b_2 = 1$, $s_3 = A_3 \sigma_0 b_3 = 1$.

 σ_0 是可行解,置 $\bar{x} = \sigma_0 = (1\ 0\ 1\ 0\ 0)^T$.

置 $\bar{f}=5$.

(7) 置子问题 $\{\sigma\} = \{+1, +3\}$. 置探测点 $\sigma_0 = (1\ 0\ 0\ 0.0)^T$.

最优化方法 Optimization Methods 30

(3)
$$s_1 = A_1 \sigma_0 - b_1 = -1$$
, $s_2 = A_2 \sigma_0 - b_2 = 3$, $s_3 = A_3 \sigma_0 - b_3 = -3$.
 $I = \{1, 3\}$.

(4) 自由变量有 x_2, x_4, x_5 .

$$c\sigma_0 + c_2 = 4 < \bar{f} = 5.$$

(5) 置可选集
$$J = \{2\}$$
.

$$J_1 = \{\phi\}, \mathbb{Z} \ q_1 = 0.$$

$$J_3 = \{2\}, \quad q_3 = 2; \quad s_1 + q_1 = -1, \quad s_3 + q_3 = -1.$$

(7) 置子问题
$$\{\sigma\} = \{-1\}$$
.

置探测点
$$\sigma_0 = (0\ 0\ 0\ 0)^T$$
.

4 D > 4 D > 4 E > 4 E > E 990

- (2) $c\sigma_0 = 0 < \bar{f} = 5$.
- (3) $s_1 = A_1 \sigma_0 b_1 = -2$, $s_2 = A_2 \sigma_0 b_2 = -1$, $s_3 = A_3 \sigma_0 b_3 = -1$. $I = \{1, 2, 3\}$.
- (4) 自由变量有 x_2, x_3, x_4, x_5 .

$$c\sigma_0 + c_2 = 3 < \bar{f} = 5.$$

(5) 置可选集 $J = \{2,3\}$,

$$J_1 = \{3\}, J_2 = \{2\}, J_3 = \{2, 3\}.$$

$$J_1 = \{3\}, J_2 = \{2\}, J_3 = \{2, 3\}.$$

$$q_1 = 3$$
, $q_2 = 1$, $q_3 = 6$; $s_1 + q_1 = 1$, $s_2 + q_2 = 0$, $s_3 + q_3 = 5$.

- (6) 检查 J 中指标,修改 J,置 $J = \{\phi\}$.
- (7) $\{\sigma\}$ 中固定变量均取 0,因此探测完毕. 最优解 $\bar{x}=(1\ 0\ 1\ 0\ 0)^T$,最优值 $\bar{f}=5$.

目录

整数规划的含义

分支定界法

割平面法

0-1规划的隐数法

指派问题

运输问题中,若令 $m = n, a_i = b_j = 1$,限定变量只取 0 或 1,则得到一种重要的特殊情形,称为指派问题. 其含义可作如下解释: 设有 n 项任务,指派 n 个人去完成,每人均承担一项任务,每项任务各由一个人来完成. 由于劳动者的素质、效率及劳动质量等各不相同,劳务费用自然有别,设第 i 个人完成第 j 项任务的劳务费用为 c_{ij} ,试确定总劳务费最小的分派方案. 这类问题就是指派问题.

指派问题中,决策变量为第 i 个人完成第 j 项任务的劳动量,记作 $x_{ij}(i,j=1,2,\cdots,n)$. 若第 i 个人分配到第 j 项任务,则 $x_{ij}=1$,否则 $x_{ij}=0$. 因此决策变量是 0-1 变量. 数学模型如下:

$$min$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 $s.t.$
$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, 2, \dots, n,$$

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, 2, \dots, n,$$
 x_{ij} 取 0 或 $1, \quad i, j = 1, 2, \dots, n.$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 の Q O

35 / 44

最优化方法

(2)

指派问题

用矩阵形式, 可表达为

$$min$$
 cx $s.t.$ $Ax = e$, x_{ij} 取 0 或 1, $i,j = 1, 2, \cdots, n$.

其中

$$x = (x_{11}, x_{12}, \cdots, x_{1n}, x_{21}, x_{22}, \cdots, x_{2n}, \cdots x_{n1}, x_{n2}, \cdots, x_{nn})^{T}$$

$$c = (c_{11}, c_{12}, \cdots, c_{1n}, c_{21}, c_{22}, \cdots, c_{2n}, \cdots c_{n1}, c_{n2}, \cdots, c_{nn})$$

 $A \in (2n) \times n^2$ 矩阵,A 中对应 x_{ij} 的列 $p_{ij} = e_i + e_{n+j}, e_i, e_{n+j} \in \mathbb{R}^{2n}$,是单位向量, e_i 的第 i 个分量是 1, e_{n+j} 的第 n+j 个分量是 1,其他分量均为 $0. \ e = (11 \cdots 1)^T \in \mathbb{R}^{2n}$.

由于矩阵 A 具有特殊性质及 e 的分量全是 1,则有 $Ax = e, x \ge 0$ 的基本可行解中每个 x_{ij} 均为非负整数,且只能等于 0 或 1,从而可以用下列线性规划取代:

min
$$cx$$

 $s.t.$ $Ax = e,$ (3)
 $x \ge 0.$

其对偶问题为:

$$\max \sum_{i=1}^{n} u_i + \sum_{j=1}^{n} v_j$$
s.t. $u_i + v_i \le c_{ii}, \quad i, j = 1, \dots n.$ (4)

对于指派问题,线性规划的各种求解方法均试用。由于指派问题的高度退化性,基本可行解中仅有 n 个基变量取值为 1 ,其他 n-1 个基变量取值均为 0 ,因此存在更加简便有效的特殊解法,下面介绍原始-对偶算法。

《□》《□》《臺》《臺》《臺》 臺 ◆〇〇○ 最优化方法 Optimization Methods 37/44

算法要点是,先给定对偶问题一个可行解,由此出发,设法求出原问题一个满足互补松弛条件的可行解,即满足下列条件的可行解:

$$(c_{ij} - u_i - v_j)x_{ij} = 0, \quad i, j = 1, 2, \dots, n$$
 (5)

这样的可行解当然就是最优解。

下面分析怎样求满足上述条件的可行解. 首先,将费用系数向量 c 排成矩阵形式,令

$$(c_{ij})_{n \times n} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

$$(6)$$

利用这个矩阵求对偶问题 (4) 的一个可行解, 比如, 令

$$\begin{cases} u_{i} = \min_{1 \leq j \leq n} \left\{ c_{ij} \right\} & i = 1, 2, \dots, n \\ v_{j} = \min_{1 \leq i \leq n} \left\{ c_{ij} - u_{i} \right\} & j = 1, 2, \dots, n \end{cases}$$
(7)

最优化方法 Optimization Methods 38 / 44

则必有

$$u_i + v_j \leqslant c_{ij}, \quad \forall i, j.$$

因此, $(u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n)$ 是 (4) 的可行解. 然后,计算对偶松弛变量的取值 \hat{c}_{ii} ,令

$$\hat{c}_{ij} = c_{ij} - u_i - v_j, \quad i, j = 1, 2, \dots, n.$$
 (8)

实际上,这个计算可利用矩阵来完成. 先从每一行减去本行的最小数(第 i 行最小数记作 u_i),在得到的矩阵中,再从每一列减去本列的最小数(第 j 列最小数记作 v_i),这样便得到由对偶松弛变量取值 \hat{c}_i 构成的 n 阶矩阵

$$(\hat{c}_{ij})_{n \times n} = \begin{bmatrix} \hat{c}_{11} & \hat{c}_{12} & \cdots & \hat{c}_{1n} \\ \hat{c}_{21} & \hat{c}_{22} & \cdots & \hat{c}_{2n} \\ \vdots & \vdots & & \vdots \\ \hat{c}_{n1} & \hat{c}_{n2} & \cdots & \hat{c}_{nn} \end{bmatrix}$$
(9

通常称为约化费用系数矩阵,简称为约化矩阵,它的元素 \hat{c}_{ij} 均为非负数.

最优化方法 Optimization Methods 39 / 44

算法计算步骤概括如下:

- (1) 变换费用系数矩阵,按照 (7) (9) 式建立约化矩阵 $(\hat{c}_{ij})_{n \times n}$.
- (2) 运用最少直线覆盖约化矩阵所有 0 元素. 若最小直线数等于 n,则从
- 0 元素中选择 n 个独立 0 元素(任何两个均不同行又不同列的 n 个 0 元素),令相应的 $x_{ij} = 1$,其他 $x_{ij} = 0$,从而得到一个最优解;否则进行步骤 (3).
- (3) 变换约化矩阵,选择未被覆盖的最小数,每个未被覆盖的元素减去这个最小数,被二次覆盖的元素加上这个最小数.返回步骤(2).

40 / 44

例: 给定指派问题:

$$s.t.$$
 $Ax = e$,

$$x_{ii}$$
 取 0 或 1, $i, j = 1, 2, \dots, 5$.

其中 $A = (p_{11}, \cdots, p_{15}, p_{21}, \cdots, p_{25}, \cdots, p_{51}, \cdots, p_{55}), p_{ij} = e_i + e_{5+j}, e = (1, 1, \cdots, 1)^T \in \mathbb{R}^{10}$,将费用系数向量c排成矩阵形式,有

$$(c_{ij})_{5\times 5} = \begin{bmatrix} 4 & -2 & 0 & 3 & 5 \\ 3 & 1 & 4 & 4 & 1 \\ 1 & 7 & 2 & 2 & 1 \\ 3 & 2 & 4 & 5 & 1 \\ 1 & -1 & 2 & 3 & 6 \end{bmatrix}$$

试确定最优指派方案, 使总费用最小.

解: 先求一个约化矩阵,令 u = (-2111-1),其中每个分量 u_i 是 $(c_{ij})_{5\times 5}$ 的第 i 行中最小元素,从 $(c_{ij})_{5\times 5}$ 的每一行减去相应的 u_i ,得到

$$\begin{bmatrix} 6 & 0 & 2 & 5 & 7 \\ 2 & 0 & 3 & 3 & 0 \\ 0 & 6 & 1 & 1 & 0 \\ 2 & 1 & 3 & 4 & 0 \\ 2 & 0 & 3 & 4 & 7 \end{bmatrix}$$

再令 v = (00110),从每列减去相应的 v_i ,得到约化矩阵

$$(\hat{c}_{ij})_{5\times5} = \begin{bmatrix} 6 & 0 & 1 & 4 & 7 \\ 2 & 0 & 2 & 2 & 0 \\ 0 & 6 & 0 & 0 & 0 \\ 2 & 1 & 2 & 3 & 0 \\ 2 & 0 & 2 & 3 & 7 \end{bmatrix}$$

用最少直线,即第 3 行,第 2 列和第 5 列的 3 条直线覆盖全部 0 元素.未被覆盖的元素中最小数是 1.

最优化方法 Optimization Methods 42/44

43 / 44

指派问题

未被覆盖的元素减少1,两次覆盖的元素增加1,修改得到新的约化矩阵

$$\begin{bmatrix} 5 & 0 & 0 & 3 & 7 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 7 & 0 & 0 & 1 \\ 1 & 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 2 & 7 \end{bmatrix}$$

再用最少直线,即通过第 1 行、第 3 行、第 2 列、第 5 列的 4 条直线覆盖全部 0 元素.未被覆盖的元素中最小数是 1,得到新的约化矩阵:

$$\begin{bmatrix} 5 & 1 & 0 & 3 & 8 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

对于此矩阵,最少用 5 条直线覆盖全部 0 元素,因此达到最优解. 从中选取任何两个均不同行又不同列的 5 个 0 元素,令其对应的变量取值为 1,其他变量取值为 0. 如令 $x_{13}=x_{25}=x_{34}=x_{41}=x_{52}=1$,其他 $x_{ii}=0$,这就是最优解. 最优值

$$f = 0 \times 1 + 1 \times 1 + 2 \times 1 + 3 \times 1 + (-1) \times 1 = 5$$

Thank you for your attention!

翟卫欣 副教授

zhaiweixin@cau.edu.cn

中国农业大学信息与电气工程学院

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @