Practical 3

Secant Method

To find a root of an equation using secant method in given number of iterations.

(1) Find a real root of the equation $f(x) = x^3 - 5x + 1 = 0$ using secant method in six iterations.

```
m(*) = Secant[x0_, x1_, n_, f_] := Module[\{xk, xk1, xk2\}, xk = N[x0];
     xk1 = N[x1];
     i = 0;
     Output = { };
     While[i < n, xk2 = (xk * f[xk1] - xk1 * f[xk]) / (f[xk1] - f[xk]);
      interval = "[" <> ToString[NumberForm[xk, 12]] <>
       "," <> ToString[NumberForm[xk1, 12]] <> "]";
      xk = xk1;
      xk1 = xk2; i++;
      Output = Append[Output, {i, interval, xk2, f[xk2]}];];
     Print[NumberForm[TableForm[Output, TableHeadings →
        {None, {"i", "interval", "xi", "f[xi]"}}], 8]];
     Print[" Root after ", n, " iterations ",
     NumberForm[xk2, 8]];
     Print[" Function value at approximated root,f[xi] = ",
     NumberForm[f[xk2], 8]];]
   g[x_{-}] := x^3 - 5x + 1;
Plot[g[x], {x, -4, 4}]
   Secant[0, 1, 6, g]
                     15
                     10
                     5
                     -5
                    -10
                    -15
```

i	interval	xi	f[xi]
1	[0.,1.]	0.25	-0.234375
2	[1.,0.25]	0.18644068	0.074277312
3	[0.25,0.186440677966]	0.20173626	-0.00047111617
4	[0.186440677966,0.201736256179]	0.20163985	-8.642293×10^{-7}
5	[0.201736256179,0.201639852891]	0.20163968	$1.0352719 \times \mathbf{10^{-11}}$
6	[0.201639852891,0.201639675721]	0.20163968	$-2.220446 \times 10^{-16}$

Root after 6 iterations 0.20163968

Function value at approximated root, f[xi] = $-2.220446 \times 10^{-16}$

(2) Find a real root of the equation $f(x) = \cos x - xe^x$ using secant method in eight iterations

$$f[x] := f[x] := Cos[x] - x Exp[x];$$
 $Plot[f[x], \{x, -1, 1\}]$
 $Secant[0, 1, 8, f]$

i	interval	xi	f[xi]
1	[0.,1.]	0.31466534	0.51987117
2	[1.,0.314665337801]	0.44672814	0.20354478
3	[0.314665337801,0.446728144591]	0.53170586	-0.042931093
4	[0.446728144591,0.531705860645]	0.51690447	0.0025927631
5	[0.531705860645,0.516904467567]	0.51774747	0.000030111941
6	[0.516904467567,0.517747465271]	0.51775737	$-2.1513165 \times 10^{-8}$
7	[0.517747465271,0.517757370754]	0.51775736	$1.7807977 \times \mathbf{10^{-13}}$
8	[0.517757370754,0.517757363682]	0.51775736	$-3.3306691 \times 10^{-16}$

Root after 8 iterations 0.51775736

Function value at approximated root,f[xi] = $-3.3306691 \times 10^{-16}$