Contents

Preface xiii

I Foundations

	Intr	oduction 3			
1	1 The Role of Algorithms in Computing 5 1.1 Algorithms 5				
	1.1	Algorithms as a technology 11			
2	Gett	Setting Started 16			
	2.1	Insertion sort 16			
	2.2	Analyzing algorithms 23			
	2.3	Designing algorithms 29			
3	3 Growth of Functions 43				
	3.1	Asymptotic notation 43			
	3.2	Standard notations and common functions 53			
4	Divi	ivide-and-Conquer 65			
	4.1	The maximum-subarray problem 68			
	4.2	Strassen's algorithm for matrix multiplication 75			
	4.3	The substitution method for solving recurrences 83			
	4.4	The recursion-tree method for solving recurrences 88			
	4.5	The master method for solving recurrences 93			
*	4.6	Proof of the master theorem 97			
5	Probabilistic Analysis and Randomized Algorithms 114				
	5.1	The hiring problem 114			
	5.2	Indicator random variables 118			
	5.3	Randomized algorithms 122			
*	5.4	Probabilistic analysis and further uses of indicator random variables			
		130			

II Sorting and Order Statistics

Introduction 147

6 Heapsort 151

- 6.1 Heaps 151
- 6.2 Maintaining the heap property 154
- 6.3 Building a heap 156
- 6.4 The heapsort algorithm 159
- 6.5 Priority queues 162

7 Quicksort 170

- 7.1 Description of quicksort 170
- 7.2 Performance of quicksort 174
- 7.3 A randomized version of quicksort 179
- 7.4 Analysis of quicksort 180

8 Sorting in Linear Time 191

- 8.1 Lower bounds for sorting 191
- 8.2 Counting sort 194
- 8.3 Radix sort 197
- 8.4 Bucket sort 200

9 Medians and Order Statistics 213

- 9.1 Minimum and maximum 214
- 9.2 Selection in expected linear time 215
- 9.3 Selection in worst-case linear time 220

III Data Structures

Introduction 229

10 Elementary Data Structures 232

- 10.1 Stacks and queues 232
- 10.2 Linked lists 236
- 10.3 Implementing pointers and objects 241
- 10.4 Representing rooted trees 246

11 Hash Tables 253

- 11.1 Direct-address tables 254
- 11.2 Hash tables 256
- 11.3 Hash functions 262
- 11.4 Open addressing 269
- ★ 11.5 Perfect hashing 277

Contents

12 Binary Search Trees 286

- 12.1 What is a binary search tree? 286
- 12.2 Querying a binary search tree 289
- 12.3 Insertion and deletion 294
- ★ 12.4 Randomly built binary search trees 299

13 Red-Black Trees 308

- 13.1 Properties of red-black trees 308
- 13.2 Rotations *312*
- 13.3 Insertion *315*
- 13.4 Deletion *323*

14 Augmenting Data Structures 339

- 14.1 Dynamic order statistics 339
- 14.2 How to augment a data structure 345
- 14.3 Interval trees 348

IV Advanced Design and Analysis Techniques

Introduction 357

15 Dynamic Programming 359

- 15.1 Rod cutting 360
- 15.2 Matrix-chain multiplication 370
- 15.3 Elements of dynamic programming 378
- 15.4 Longest common subsequence 390
- 15.5 Optimal binary search trees 397

16 Greedy Algorithms 414

- 16.1 An activity-selection problem 415
- 16.2 Elements of the greedy strategy 423
- 16.3 Huffman codes 428
- ★ 16.4 Matroids and greedy methods 437
- ★ 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451

- 17.1 Aggregate analysis 452
- 17.2 The accounting method 456
- 17.3 The potential method 459
- 17.4 Dynamic tables 463

V Advanced Data Structures

Introd	uction	481
шиоч	ucuon	701

18 B-Trees 484

- 18.1 Definition of B-trees 488
- 18.2 Basic operations on B-trees 491
- 18.3 Deleting a key from a B-tree 499

19 Fibonacci Heaps 505

- 19.1 Structure of Fibonacci heaps 507
- 19.2 Mergeable-heap operations 510
- 19.3 Decreasing a key and deleting a node 518
- 19.4 Bounding the maximum degree 523

20 van Emde Boas Trees 531

- 20.1 Preliminary approaches 532
- 20.2 A recursive structure 536
- 20.3 The van Emde Boas tree 545

21 Data Structures for Disjoint Sets 561

- 21.1 Disjoint-set operations 561
- 21.2 Linked-list representation of disjoint sets 564
- 21.3 Disjoint-set forests 568
- ★ 21.4 Analysis of union by rank with path compression 573

VI Graph Algorithms

Introduction 587

22 Elementary Graph Algorithms 589

- 22.1 Representations of graphs 589
- 22.2 Breadth-first search 594
- 22.3 Depth-first search 603
- 22.4 Topological sort 612
- 22.5 Strongly connected components 615

23 Minimum Spanning Trees 624

- 23.1 Growing a minimum spanning tree 625
- 23.2 The algorithms of Kruskal and Prim 631

Contents

24 Single-Source Shortest Paths 643

- 24.1 The Bellman-Ford algorithm 651
- 24.2 Single-source shortest paths in directed acyclic graphs 655
- 24.3 Dijkstra's algorithm 658
- 24.4 Difference constraints and shortest paths 664
- 24.5 Proofs of shortest-paths properties 671

25 All-Pairs Shortest Paths 684

- 25.1 Shortest paths and matrix multiplication 686
- 25.2 The Floyd-Warshall algorithm 693
- 25.3 Johnson's algorithm for sparse graphs 700

26 Maximum Flow 708

- 26.1 Flow networks 709
- 26.2 The Ford-Fulkerson method 714
- 26.3 Maximum bipartite matching 732
- ★ 26.4 Push-relabel algorithms 736
- ★ 26.5 The relabel-to-front algorithm 748

VII Selected Topics

Introduction 769

27 Multithreaded Algorithms 772

- 27.1 The basics of dynamic multithreading 774
- 27.2 Multithreaded matrix multiplication 792
- 27.3 Multithreaded merge sort 797

28 Matrix Operations 813

- 28.1 Solving systems of linear equations 813
- 28.2 Inverting matrices 827
- 28.3 Symmetric positive-definite matrices and least-squares approximation 832

29 Linear Programming 843

- 29.1 Standard and slack forms 850
- 29.2 Formulating problems as linear programs 859
- 29.3 The simplex algorithm 864
- 29.4 Duality 879
- 29.5 The initial basic feasible solution 886

30	Polynomials and the FFT 898						
		Representing polynomials 900 The DFT and FFT 906					
		Efficient FFT implementations 915					
31	Num	Number-Theoretic Algorithms 926					
		Elementary number-theoretic notions 927					
		Greatest common divisor 933					
		Modular arithmetic 939					
		Solving modular linear equations 946					
		The Chinese remainder theorem 950					
		Powers of an element 954					
_		The RSA public-key cryptosystem 958 Primality testing 965					
* *		Integer factorization 975					
32							
		The naive string-matching algorithm 988					
		The Rabin-Karp algorithm 990					
		String matching with finite automata 995					
*	32.4	The Knuth-Morris-Pratt algorithm 1002					
33		Computational Geometry 1014					
		Line-segment properties 1015					
		Determining whether any pair of segments intersects 1021					
		Finding the convex hull 1029					
	33.4	Finding the closest pair of points 1039					
34	NP-Completeness 1048						
		Polynomial time 1053					
		Polynomial-time verification 1061					
		NP-completeness and reducibility 1067					
		NP-completeness proofs 1078 NP-complete problems 1086					
35		roximation Algorithms 1106					
		The vertex-cover problem 1108					
		The traveling-salesman problem 1111					
		The set-covering problem 1117					
		Randomization and linear programming 1123					
		The subset-sum problem 1128					

Contents xi

VIII Appendix: Mathematical Background

Introduction 1143

A Summations 1145

- A.1 Summation formulas and properties 1145
- A.2 Bounding summations 1149

B Sets, Etc. 1158

- B.1 Sets 1158
- B.2 Relations 1163
- B.3 Functions 1166
- B.4 Graphs 1168
- B.5 Trees 1173

C Counting and Probability 1183

- C.1 Counting *1183*
- C.2 Probability 1189
- C.3 Discrete random variables 1196
- C.4 The geometric and binomial distributions 1201
- \star C.5 The tails of the binomial distribution 1208

D Matrices 1217

- D.1 Matrices and matrix operations 1217
- D.2 Basic matrix properties 1222

Bibliography 1231

Index 1251