Segmentación de superficies trianguladas utilizando una muestra de la matriz de afinidad

Jornada Científica ICIMAF 2018

Autores

Victoria Hernández Mederos, ICIMAF. Jorge Estrada Sarlabous, ICIMAF. Frankie Mujica Cal, Universidad de La Habana.

Motivación

▶ Superficie triangulada: superficie definida por una triangulación 3D T = (V, F), $V = (v_i)$ conj. vértices, $F = (f_i)$ conj. triángulos o caras.

- Las superficies trianguladas se utilizan para representar y manipular computacionalmente objetos geométricos virtuales o reales.
- Se obtienen al discretizar superficies definidas matemáticamente o al construir superficies que aproximan grandes volúmenes de datos.

Segmentación de superficies trianguladas

Segmentación: partición del conjunto F de caras en n_c subconjuntos disjuntos (clases).

Aplicaciones

- Identificación automática de objetos.
- Parametrización de superficies.
- Edición de superficies.
- Mapeos de textura.
- Medicina
- Animación.

Algoritmos de segmentación

El ingrediente principal de un método de segmentación es el criterio que utiliza para decidir cuáles triángulos pertenecen a una misma clase.

Algoritmo básico de segmentación

Dada T = (F, V) con n triángulos y un número n_c de clases:

1. Construir una matriz $W = (w_{ij})$, donde w_{ij} es la afinidad entre las

$$W = \begin{pmatrix} w_{11} & w_{1n} \\ \hline w_{i1} & \cdots & w_{in} \\ \hline w_{n1} & \cdots & w_{nn} \end{pmatrix}$$

caras f_i y f_j con $1 \le i, j \le n$.

La fila i de W es un vector en \mathbb{R}^n que representa la afinidad entre f_i y el resto de las caras.

2. Aplicar un algoritmo de agrupamiento kmeans para decidir a qué clase pertenece cada uno de los triángulos f_i .

Matriz de afinidad W

- \blacktriangleright W es una matriz de dimensión n= número de triángulos.
- ▶ Se define a partir de la matriz $D = (d_{ij})$ de las distancias entre las caras f_i y f_j :

$$w_{ij} = e^{-d_{ij}/(2\sigma^2)}$$

donde
$$\sigma = \frac{1}{n^2} \sum_i \sum_j d_{ij}$$

- $ightharpoonup 0 < w_{ij} < 1, i, j = 1, ..., n, w_{ii} = 1, i = 1, ..., n$
- ▶ menor distancia ⇒ mayor afinidad
- ▶ W es simétrica.

Reducción de la dimensión

- ► Calcular W cuesta $O(n^2c_d)$, donde c_d es el costo de calcular la distancia d entre dos caras.
- ► En la práctica *n* es muy grande (decenas o cientos de miles).
- ► Cálculo de *W* es muy costoso!
- ▶ El costo se reduce a $O(nc_d)$ haciendo una inmersión de las filas de W en un subespacio de \mathbb{R}^k con k << n.

Inmersiones para la segmentación

Idea: Para k << n se busca una matriz X^k de orden $n \times k$, tal que la proyección de las filas de W (vectores de \mathbb{R}^n) en el espacio generado por las columnas de X^k sea una buena aproximación de W.

Diferentes inmersiones

- Espectral: las columnas de X^k son los vectores propios asociados a los mayores valores propios de W. Teóricamente óptima, pero costosa.
- ▶ Muestreo pesado: las columnas de X^k son las k columnas de W con la mayor puntuación. La puntuación se calcula a partir de los **vectores singulares derechos de** W asociados a los mayores valores singulares.
- Muestreo de las caras más alejadas: nuestra proposición, las columnas de X^k son las columnas de W correspondientes a las k caras más alejadas según la distancia escogida.

Nuestro método: muestreo de las caras más alejadas

ldea: Para aproximar la matriz de distancias D es suficiente escoger un conjunto de triángulos distinguidos \mathscr{F} tales que la distancia entre dos triángulos arbitrarios f_i y f_j se puede aproximar en términos de la distancia de cada uno a los triángulos en \mathscr{F} .

Nuestro método: muestreo de las caras más alejadas

Dados: k tamaño de la muestra y n_c número de clases

- 1. Escoger aleatoriamente una cara f_{i_1} de la triangulación. Calcular la distancia de todas las caras a f_{i_1} .
- 2. Determinar la cara f_{i_2} más alejada de f_{i_1} . Calcular la distancia de todas las caras a f_{i_2} .
- 3. Determinar la cara f_{i_2} más alejada simultáneamente de f_{i_1} y f_{i_2} .
- 4. Repetir el proceso anterior hasta que se hayan escogido k caras y se tenga una matriz D^k de orden $n \times k$ de las distancias a las caras escogidas.
- 5. Calcular a partir de D^k la muestra X^k de la matriz de afinidad W.
- 6. Aplicar kmeans a los n vectores de \mathbb{R}^k definidos por las filas de X^k para clasificarlos en n_c clases.

Métrica

Métrica: combinación convexa de las distancias geodésica d_g y angular d_a:

$$d(f_i, f_j) = \alpha d_g(f_i, f_j) + (1 - \alpha) d_a(f_i, f_j)$$

Distancia geodésica

Distancia angular

Evaluación de los resultados

... basada en el índice de Rand

- Para evaluar la calidad de una segmentación automática S_a se compara ésta con una segmentación manual S_m con el mismo número de clases.
- Las segmentaciones S_a y S_m son iguales si $R_I(S_a, S_m) = 1$, donde $0 \le R_I(S_a, S_m) \le 1$ es el índice de Rand entre S_a y S_a .
- La distancia entre S_a y S_m se calcula como

$$d(S_a, S_m) = 1 - R_I(S_a, S_m)$$

▶ Mientras menor sea $d(S_a, S_m)$ más parecidas son las segmentaciones automática y manual.

Base de datos Princeton

http://segeval.cs.princeton.edu/

- ▶ 400 triangulaciones, 19 categorías de objetos.
- más de 10 segmentaciones manuales por cada triangulación.
- ▶ número de triángulos *n* hasta 55000

- ▶ número de triángulos *n* = 2682
- ▶ tamaño de la muestra k = 268
- número de clases $n_c = 4$

Manual

$$d(S_a, S_m) = 0.046$$

- ▶ número de triángulos *n* = 3026
- ▶ tamaño de la muestra k = 302
- ▶ número de clases $n_c = 7$

Manual

$$d(S_a, S_m) = 0.143$$

- ▶ número de triángulos *n* = 2956
- ▶ tamaño de la muestra k = 295
- ▶ número de clases $n_c = 7$

Manual

$$d(S_a, S_m) = 0.095$$

- ▶ número de triángulos *n* = 9408
- ▶ tamaño de la muestra k = 940
- número de clases $n_c = 6$

Manual

$$d(S_a, S_m) = 0.075$$

- ▶ número de triángulos *n* = 16152
- ▶ tamaño de la muestra k = 161
- ▶ número de clases $n_c = 7$

Manual

$$d(S_a, S_m) = 0.201$$

Comparación de resultados con el método de Nyström

Implementación computacional

- ▶ Programa en C#.
- Diferentes métricas: geodésica, angular, volumétrica y combinaciones.
- Permite escoger el tamaño de la muestra de la matriz de afinidad.
- Cálculo del índice de Rand para comparar la segmentación automática con la manual.
- Facilidades para la visualización de resultados.

Conclusiones

- ► Se propuso un método de segmentación de superficies trianguladas más económico que otros existentes.
- El método propuesto solamente requiere calcular una muestra de la matriz de afinidad.
- La muestra está formada por los triángulos más alejados en la métrica escogida.
- Los resultados obtenidos son buenos para una muestra de apenas el 10% de los triángulos.

Trabajo futuro

- Proponer una nueva métrica que tiene en cuenta el volumen contenido en el interior de la superficie.
- Proponer un nuevo índice para evaluar la calidad de la segmentación que tenga en cuenta la clasficación correcta de los triágulos y el área de los mismos.

