Week 3: Heuristic Search

COMP90054 – Al Planning for Autonomy

Key concepts

- Heuristic Functions and their properties and relations
- Heuristic search algorithms
- State-space model and size of the problem

Heuristic function

h(s) estimates the distance from the current state s to the <u>closest</u> goal state

 $h^*(s)$ is a **perfect heuristic**, the optimal cost from the current state to the goal state

Heuristic function's properties

4 properties:

- **Safe**: if a solution exists from state s, then $h(s) < \infty$
- **Goal-aware**: All goal states have a heuristic h = 0
- Admissible: never over-estimate the cost
 - $f(s) \leq f^*(s)$
- **Consistent**: the cost diff between the parent and the child heuristics is never larger than the actual cost

$$h(s) - h(s') \leq C(s,s')$$

parent child

Thao Le

consistent

goal-aware

safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$;

goal-aware if h(s) = 0 for all goal states $s \in S^G$;

admissible <

admissible if $h(s) \le h^*(s)$ for all $s \in s$;

consistent if $h(s) \leq h(s') + c(a)$ for all transitions $s \stackrel{a}{\rightarrow} s'$.

goal-aware

safe

h1, h2, h3

 $h(s1) - h(s_3) = 6-10 = -4 < 2$

 \rightarrow $h(s) - h(s') \leq c(c,s') \leq$ Parent child actual cost

Which heuristics are consistent?

h1, h2

Dominate relation

h1 dominates h2 if

- both heuristics are admissible
- h2 <= h1 <= h* for all s in S

Does any of the heuristic dominate any other?

h2 dominates h1 h2 dominates h3

Note: If h1 >= h2, A* with h1 will generally expand fewer nodes than A* with h2

Heuristic search algorithms

Search node: $n = \langle s, f(n), g(n), parent n \rangle$ f(n) is a priority value for node in the priority queue

DS: priority queue

- Uniform-cost search (Dijkstra): $f(n) = g(n) \leftarrow blind search$
- Greedy best-first search: f(n) = h(s) A*) f(n) = h(s) + g(n)
- $WA^*: f(n) = W^* h(s) + g(n)$

heuristic search.

blind seurch; do not consider heuristic function.

Greedy best-first search

Search node: $n = \langle s, f(n), g(n) \rangle$ parent n > 0

f(n) = h(s)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n3 = <s4, 0="" 1,="" 5,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n4 = <s6, 2,="" 3="" 4,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n5 = <s7, 0,="" 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

Search node: n = <s, f(n), g(n), parent n>

f(n) = h(s) + g(n)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n3 = <s4, 0="" 1,="" 6,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n4 = <s6, 2,="" 3="" 6,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n5 = <s7, 5="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

1(52)= 2+5=7 x 1(s3)=2+10=12

Solution: s1 -> s4 -> s6 -> s7

WA* (W = 2)

Search node: n = <s, f(<="" th=""><th>n), g(n), parent n></th></s,>	n), g(n), parent n>
$f(n) = W^* h(s) + g(n)$	W = 2

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 12,="" none=""></s1,>	
2	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n3 = <s4, 0="" 1,="" 11,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n4 = <s6, 10,="" 2,="" 3=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n5 = <s7, 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

Heuristic algorithms

Which is the path returned as solution? (using h2 and A* as example)

Is this the optimal plan? Has the algorithm proved this? (using h2 and A* as example)

Yes. h2 is both admissible and consistent

Note about A* optimality

A* will return an optimal solution:

- If using A* with re-opening (lecture slides) and heuristic function is admissible
- If using A* without re-opening (original algo) and heuristic function is both admissible and consistent

```
A* (with duplicate detection and re-opening)
open := new priority queue ordered by ascending g(state(\sigma)) + h(state(\sigma))
open.insert(make-root-node(init()))
closed := \emptyset
best-g := \emptyset/* maps states to numbers */
while not open.empty():
       \sigma := open.pop-min()
       if state(\sigma) \notin closed or g(\sigma) < best-g(state(\sigma)):
          /* re-oper if better g hote that all \sigma' with same state but worse g
             are behind \sigma in open, and will be skipped when their turn comes */
          closed := closed \cup \{state(\sigma)\}\
          best-g(state(\sigma)) := g(\sigma)
          if is-goal(state(\sigma)): return extract-solution(\sigma)
          for each (a, s') \in \operatorname{succ}(\operatorname{state}(\sigma)):
              \sigma' := \mathsf{make-node}(\sigma, a, s')
              if h(state(\sigma')) < \infty: open.insert(\sigma')
return unsolvable
```

State space model

Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

Formulate a state-based search problem to find a tour to all the desired points

State space model:

$$P = \langle s_0, S, S_G, A, f, c \rangle$$

a state = <current coordinate, a set of remaining coordinates>

1st way

Initial state $s_0 = <(0,0), G \setminus \{(0,0)\}>$

Goal state
$$S_C = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G \}$$

Action A(<
$$(x, y)$$
, V' >) = { $(dx, dy) \mid dx, dy \in \{-1, 0, 1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0, ..., m - 1\}$ }

Transition
$$f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$$

$$Cost c(a, s) = 1$$

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

state space

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

Formulate a state-based search problem to find a tour to all the desired points

State space model:

 $P = \langle s_0, S, S_G, A, f, c \rangle$

a state = <current coordinate, a set of visited coordinates>

2rd way

(,y)	

Initial state
$$s_0 = <(0,0), \{(0,0)\}>$$

Goal state
$$S_G = \{ \langle (x, y), V \rangle \mid x, y \in \{0, ..., m-1\} \land G \subseteq V \}$$

State
$$S = \{ \langle (x, y), V \rangle | x, y \in \{0, ..., m-1\} \land V \subseteq \{(x', y') | x', y' \in \{0, ..., m-1\} \} \}$$

Action A(
$$<(x,y), V>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0, ..., m-1\}\}$

Transition
$$f(<(x,y), V >, (dx, dy)) = <(x + dx, y + dy), V \cup \{(x + dx, y + dy)\} >$$

$$Cost c(a, s) = 1$$

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the branching factor of the search?

4 (branching factor = max number of child nodes)

 $\bigcap_{x,y} (x,y)$

Consider an m imes m Manhattan Grid, and set of coordinates G o visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the size of the state space in terms of m and G?

If using V' (a set of remaining coordinates), then $m^2 \times 2^{|G|}$

If using V (a set of visited coordinates), then $m^2 \times (2^{|m \times m|})$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G \}$$

2 < not visited yet

State
$$S = \{ \langle (x,y), V \rangle | x,y \in \{0,...,m-1\} \land V \subseteq \{(x',y') | x',y' \in \{0,...,m-1\} \} \}$$

to do the 1st

way

Thao Le

17