WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/44, 1/48, 1/68, C12P 19/34, C12N 9/22, 15/00, C07H 21/02, 21/04 A1

(11) International Publication Number:

WO 00/26401

(43) International Publication Date:

11 May 2000 (11.05.00)

(21) International Application Number:

PCT/US99/25251

(22) International Filing Date:

2 November 1999 (02.11.99)

(30) Priority Data:

60/106,925 09/309,175 3 November 1998 (03.11.98) US

10 May 1999 (10.05.99) US

(71) Applicant: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE [US/US]; 720 Rutland Avenue, Baltimore, MD 21205 (US).

(72) Inventors: ISSA, Jean-Pierre; 12310 Longworth Lane, Houston, TX 77024 (US). BAYLIN, Stephen; Apt. 419, Harbor Hill Apartments, 301 Warren Avenue, Baltimore, MD 21230 (US). TOYOTA, Minoru; Apt. 102, 6804 Harrowdale Road, Baltimore, MD 21209 (US).

(74) Agent: HAILE, Lisa, A.; Gray Cary Ware & Friedenrich LLP, Suite 1600, 4365 Executive Drive, San Diego, CA 92121-2189 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHYLATED CpG ISLAND AMPLIFICATION (MCA)

(57) Abstract

A method is provided for identifying a methylated CpG containing nucleic acid including contacting a nucleic acid with a methylation sensitive restriction endonuclease that cleaves unmethylated CpG sites, contacting the sample with an isoschizomer of the methylation sensitive restriction endonuclease, wherein the isoschizomer cleaves both methylated and unmethylated CpG sites. The method also includes adding an oligonucleotide under conditions and for a time to allow ligation of the oligonucleotide to nucleic acid cleaved by the restriction endonuclease, and amplifying the nucleic acid. A method is also provided for detecting an age associated disorder including contacting a nucleic acid with a methylation sensitive restriction endonuclease that cleaves unmethylated CpG sites, contacting the sample with an isoschizomer of the methylation sensitive restriction endonuclease, wherein the isoschizomer cleaves both methylated and unmethylated CpG sites. The method also includes adding an oligonucleotide under conditions and for a time to allow ligation of the oligonucleotide to nucleic acid cleaved by the restriction endonuclease, and amplifying the nucleic acid. The amplified digested nucleic acid is adhered to a membrane, and hybridized with a probe of interest. A kit useful for detection of a CpG containing nucleic acid is also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHYLATED CpG ISLAND AMPLIFICATION (MCA)

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with Government support under Grant No. CA43318 and CA54396, awarded by the National Cancer Institute and Grant No. CA43318, a Colon Cancer Spore Grant. The government may have certain rights in the invention.

5

FIELD OF THE INVENTION

The present invention relates generally to regulation of gene expression and more specifically to a method of determining the DNA methylation status of CpG sites in a given locus.

10

15

20

25

BACKGROUND OF THE INVENTION

DNA methylases transfer methyl groups from the universal methyl donor S-adenosyl methionine to specific sites on the DNA. Several biological functions have been attributed to the methylated bases in DNA. The most established biological function for methylated DNA is the protection of DNA from digestion by cognate restriction enzymes. The restriction modification phenomenon has, so far, been observed only in bacteria. Mammalian cells, however, possess a different methylase that exclusively methylates cytosine residues that are 5' neighbors of guanine (CpG). This modification of cytosine residues has important regulatory effects on gene expression, especially when involving CpG rich areas, known as CpG islands, located in the promoter regions of many genes.

Methylation has been shown by several lines of evidence to play a role in gene activity, cell differentiation, tumorigenesis, X-chromosome inactivation, genomic imprinting and other major biological processes (Razin, A., H., and Riggs, R.D. eds. in <u>DNA</u>

Methylation Biochemistry and Biological Significance, Springer-Verlag, New York, 1984).

Methylation has been shown by several lines of evidence to play a role in gene activity, cell differentiation, tumorigenesis, X-chromosome inactivation, genomic imprinting and other major biological processes (Razin, A. H. and Riggs, R.D. eds. in DNA Methylation Biochemistry and Biological Significance, Springer-Verlag, New York, 1984). In eukaryotic 5 cells, methylation of cytosine residues that are immediately 5' to a guanosine, occurs predominantly in CG poor regions (Bird, A., Nature, 321:209, 1986). In contrast, CpG islands remain unmethylated in normal cells, except during X-chromosome inactivation (Migeon, et al., supra) and parental specific imprinting (Li, et al., Nature, 366:362, 1993) where methylation of 5' 10 regulatory regions can lead to transcriptional repression. De novo methylation of the Rb gene has been demonstrated in a small fraction of retinoblastomas (Sakai, et al., Am. J. Hum. Genet., 48:880, 1991), and recently, a more detailed analysis of the VHL gene showed aberrant methylation in a subset of sporadic 15 renal cell carcinomas (Herman, et al., Proc. Natl. Acad. Sci., U.S.A., 91:9700, 1994). Expression of a tumor suppressor gene can also be abolished by de novo DNA methylation of a normally unmethylated CpG island (Issa, et al., Nature Genet., 7:536, 1994; Herman, et al., supra; Merlo, et al., Nature Med., 1:686, 1995; Herman, et al., Cancer Res., 56:722, 1996; Graff, et al., Cancer Res., 55:5195, 1995; Herman, et al., Cancer Res., 55:4525, 1995). 20

Human cancer cells typically contain somatically altered nucleic acid, characterized by mutation, amplification, or deletion of critical genes. In addition, the nucleic acid from human cancer cells often displays somatic changes in DNA methylation (E.R. Fearon, et al., Cell, 61:759, 1990; P.A. Jones, et al., Cancer Res., 46:461, 1986; R. Holliday, Science, 238:163, 1987; A. De Bustros, et al., Proc. Natl. Acad. Sci., USA, 85:5693, 1988); P.A Jones, et al., Adv. Cancer Res., 54:1, 1990; S.B. Baylin, et al., Cancer

10

15

20

25

Cells, 3:383, 1991; M. Makos, et al., Proc. Natl. Acad. Sci., USA, 89:1929, 1992; N. Ohtani-Fujita, et al., Oncogene, 8:1063, 1993). However, the precise role of abnormal DNA methylation in human tumorigenesis has not been established. Aberrant methylation of normally unmethylated CpG islands has been described as a frequent event in immortalized and transformed cells, and has been associated with transcriptional inactivation of defined tumor suppressor genes in human cancers. In the development of colorectal cancers (CRC), a series of tumor suppressor genes (TSG) such as APC, p53, DCC and DPC4 are inactivated by mutations and chromosomal deletions (reviewed in Kinzler and Vogelstein 1996). Some of these alterations result from a chromosomal instability phenotype described in a subset of CRC (Lengauer et al., 1997a). Recently, an additional pathway has been shown to be involved in a familial form of CRC, hereditary non-polyposis colorectal cancer. The cancers from these patients show a characteristic mutator phenotype which causes microsatellite instability (MI), and mutations at other gene loci such as TGF-B-RII (Markowitz et al., 1995) and BAX (Rampino et al., 1997). This phenotype usually results from mutations in the mismatch repair (MMR) genes hMSH2 and hMLH1 (reviewed by Peltomaki, and de la Chapelle, 1997). A subset of sporadic CRC also show MI, but mutations in MMR genes appear to be less frequent in these tumors (Liu et al., 1995; Moslein et al., 1996).

Another molecular defect described in CRC is CpG island (CGI) methylation. CGIs are short sequences rich in the CpG dinucleotide and can be found in the 5' region of about half of all human genes (Bird, 1986). Methylation of cytosine within 5' CGIs is associated with loss of gene expression and has been seen in physiological conditions such as X chromosome inactivation and genomic imprinting (reviewed in Latham, 1996). Aberrant methylation of CGIs has been detected in genetic diseases

such as the fragile-X syndrome (Hansen et al., 1992), in aging cells (Issa et al., 1994) and in neoplasia. About half of the tumor suppressor genes which have been shown to be mutated in the germline of patients with familial cancer syndromes have also been shown to be aberrantly methylated in some proportion of sporadic cancers, including Rb, VHL, p16, hMLH1, and BRCA1 (reviewed in Baylin et al., 1998; Jones 1997). TSG methylation in cancer is usually associated with (1) lack of gene transcription and (2) absence of coding region mutation. Thus it has been proposed that CGI methylation serves as an alternative mechanism of gene inactivation in cancer.

10

15

20

5

The causes and global patterns of CGI methylation in human cancers remain poorly defined. Aging could play a factor in this process because methylation of several CGIs could be detected in an age-related manner in normal colon mucosa as well as in CRC (Issa et al., 1994). In addition, aberrant methylation of CGIs has been associated with the MI phenotype in CRC (Ahuja et al., 1997) as well as specific carcinogen exposures (Issa et al., 1996). However, an understanding of aberrant methylation in CRC has been somewhat limited by the small number of CGIs analyzed to date. In fact, previous studies have suggested that large numbers of CGIs are methylated in immortalized cell lines (Antequera et al., 1990), and it is not well understood whether this global aberrant methylation is caused by the cell culture conditions or whether they are an integral part of the pathogenesis of cancer.

25

Most of the methods developed to date for detection of methylated cytosine depend upon cleavage of the phosphodiester bond alongside cytosine residues, using either methylation-sensitive restriction enzymes or reactive chemicals such as hydrazine which differentiate between cytosine and its 5-methyl derivative. Genomic sequencing protocols which identify a 5-MeC

10

15

20

25

residue in genomic DNA as a site that is not cleaved by any of the Maxam Gilbert sequencing reactions have also been used, but still suffer disadvantages such as the requirement for large amount of genomic DNA and the difficulty in detecting a gap in a sequencing ladder which may contain bands of varying intensity.

Mapping of methylated regions in DNA has relied primarily on Southern hybridization approaches, based on the inability of methylation-sensitive restriction enzymes to cleave sequences which contain one or more methylated CpG sites. This method provides an assessment of the overall methylation status of CpG islands, including some quantitative analysis, but is relatively insensitive and requires large amounts of high molecular weight DNA.

Another method utilizes bisulfite treatment of DNA to convert all unmethylated cytosines to uracil. The altered DNA is amplified and sequenced to show the methylation status of all CpG sites. However, this method is technically difficult, labor intensive and without cloning amplified products, it is less sensitive than Southern analysis, requiring approximately 10% of the alleles to be methylated for detection.

Identification of the earliest genetic changes in tumorigenesis is a major focus in molecular cancer research. Diagnostic approaches based on identification of these changes are likely to allow implementation of early detection strategies and novel therapeutic approaches targeting these early changes might lead to more effective cancer treatment.

SUMMARY OF THE INVENTION

The invention provides a method for detecting a methylated CpG-containing nucleic acid. This method can be used to identify sequences which are differentially methylated during a disease process such as a cell proliferative disorder.

In one embodiment, a method is provided for identifying a methylated CpG-containing nucleic acid. The method includes contacting a nucleic acid sample suspected of containing a CpG-containing nucleic acid, with a methylation sensitive restriction endonuclease that cleaves only unmethylated CpG sites, under conditions and for a time to allow cleavage of unmethylated nucleic acid; and contacting the sample with an isoschizomer of the methylation sensitive restriction endonuclease, wherein the isoschizomer of the methylation sensitive restriction endonuclease cleaves both methylated and unmethylated CpG sites. Oligonucleotides are added to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to nucleic acid cleaved by the restriction endonuclease and the digested nucleic acid is amplified for further analysis.

20

25

5

10

15

In another embodiment, a method is provided for detecting an ageassociated disorder associated with methylation of CpG islands in a nucleic acid sequence of interest in a subject having or at risk of having said disorder. The method includes contacting a nucleic acid sample suspected of comprising a CpG-containing nucleic acid with a methylation sensitive restriction endonuclease that cleaves only unmethylated CpG sites under conditions and for a time to allow cleavage of unmethylated nucleic acid, and contacting the sample with an isoschizomer of the methylation sensitive restriction

-7-

endonuclease, wherein the isoschizomer of the methylation sensitive restriction endonuclease cleaves both methylated and unmethylated CpG sites. Oligonucleotides are added to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to nucleic acid cleaved by the restriction endonuclease, and the digested nucleic acid is amplified. The amplified, digested nucleic acid is contacted with a membrane and the membrane is hybridized with a probe of interest.

5

10

15

20

25

In yet another embodiment, a method is provided for evaluating the response of a cell to an agent. The method includes contacting a nucleic acid sample suspected of containing a CpG-containing nucleic acid with a methylation sensitive restriction endonuclease that cleaves only unmethylated CpG sites, under conditions and for a time to allow cleavage of unmethylated nucleic acid, and contacting the sample with an isoschizomer of the methylation sensitive restriction endonuclease, wherein the isoschizomer of the methylation sensitive restriction endonuclease cleaves both methylated and unmethylated CpG sites. Oligonucleotides are added to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to nucleic acid cleaved by the restriction endonuclease, and the digested nucleic acid is amplified. The amplified, digested nucleic acid is adhered to a membrane and the membrane is hybridized with a probe of interest.

In a further embodiment, a kit for the detection of a methylated CpGcontaining nucleic acid is provided. In one embodiment the kit includes a carrier means containing one or more containers including a container containing an oligonucleotide for ligation of the oligonucleotides to nucleic acid, a second container containing a methylation sensitive restriction endonuclease and a third container containing an isoschizomer of the methylation sensitive endonuclease. In another embodiment the kit includes a carrier means containing one or more containers containing a membrane, wherein the membrane has a member of the group consisting SEQ ID NO:1,
SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 (MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10,
MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33 immobilized on the membrane.

In a further embodiment, an isolated nucleic acid including a member selected from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 (MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33) is provided. An isolated methylated nucleic acid sequence having a sequence as set forth in a member of the group consisting of SEQ ID NOs:1-33 (MINT1-33) is also provided.

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of MCA. A hypothetical fragment of genomic DNA is represented by a solid line, with 7 SmaI sites depicted by tick marks. Methylated SmaI sites are indicated by an m. Fragments B and D are CpG islands. B is methylated in both normal (right) and cancer (left), while D is differentially methylated in cancer. For MCA, unmethylated SmaI sites are eliminated by digestion with SmaI (which is methylation-sensitive and does not cleave when its recognition sequence CCCGGG contains a methylated CpG), which leaves the fragment blunt ended. Methylated SmaI sites are then digested with the non-methylation sensitive SmaI isoschizomer XmaI, which digests methylated CCCGGG sites, leaving a CCGG overhang (sticky ends). Adaptors are ligated to these sticky ends, and PCR is performed to amplify the methylated sequences. The MCA amplicons can be used directly in a dot blot analysis to study the methylation status of any gene for which a probe is available (left). Alternatively, MCA products can be used to clone differentially methylated sequence by RDA (right).

FIG. 2 shows an the nucleotide sequence of a differentially Methylated Clone, MINT2 obtained by MCA Followed by RDA. The restriction endonuclease sites for Smal are underlined. Primer sequences used for bisulfite-PCR are also underlined. The restriction endonuclease site for BstUI used to detect methylation after bisulfite PCR is shown by a gray box.

FIG. 3 show a map of the *versican* gene first exon (filled box) and
flanking regions. The position of MINT11 is shown by a solid line (on top).

CpG sites are indicated below. Location of the primers used for bisulfite-PCR are shown by arrows.

20

25

FIG. 4 is a pictorial representation of global hypermethylation in CRC. Each column represents a separate gene locus. Each row is a primary colorectal cancer (samples above the bold solid line) or polyp (below the bold solid line). Black squares: methylation > 10%. Gray squares: 1-10% methylation. White squares: < 1% methylation. A: GH+MI+, B: GH+MI-, C: GH-MI+, D: GH-MI-, E: GH+, F: GH-. A-D are cancers. E and F are adenomas. MI denotes the presence of microsatellite instability. ND, not done.

FIG. 5 shows a model integrating CGI methylation in colorectal carcinogenesis.

FIGS. 6A-H are the nucleic acid sequences of MINT1-33 (SEQ ID NO: 1-33).

15 **DESCRIPTION OF THE PREFERRED EMBODIMENTS**

The present invention provides a method for identifying a methylated CpG-containing nucleic acid called methylated CpG island amplification (MCA). MCA can be used to study methylation in normal and neoplastic cells, and allows rapid screening of nucleic acid samples for the presence of hypermethylation of specific genes. MCA can also be used to clone genes and nucleic acid sequences differentially methylated in normal and abnormal tissues and cells.

It should be noted that as used herein and in the appended claims, the singular forms "a," "and," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the restriction enzyme" includes

reference to one or more restriction enzymes and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described.

10

5

All publications mentioned herein are incorporated herein by reference in full for the purpose of describing and disclosing the methodologies which are described in the publications which might be used in connection with the presently described invention. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

20

25

15

Any nucleic acid sample, in purified or nonpurified form, can be utilized as the starting nucleic acid or acids, provided it contains, or is suspected of containing, a nucleic acid sequence containing the target locus (e.g., CpG-containing nucleic acid). In general the CpG-containing nucleic acid will be DNA. However, the process may employ, for example, samples that contain DNA, or DNA and RNA, including messenger RNA, wherein DNA or RNA may be single stranded or double stranded, or a DNA-RNA hybrid may be included in the sample. A mixture of nucleic acids may also be employed. The specific nucleic acid sequence to be detected may be a fraction

-12-

of a larger molecule or can be present initially as a discrete molecule, so that the specific sequence constitutes the entire nucleic acid. It is not necessary that the sequence to be studied be present initially in a pure form; the nucleic acid may be a minor fraction of a complex mixture, such as contained in whole human DNA. The nucleic acid may be contained in a biological sample. Such samples include but are not limited to a serum, urine, saliva, cerebrospinal fluid, pleural fluid, ascites fluid, sputum, stool, or biopsy sample. The nucleic acid-containing sample used for detection of methylated CpG may be from any source including, but not limited to, brain, colon, urogenital, hematopoietic, thymus, testis, ovarian, uterine, prostate, breast, colon, lung and renal tissue and may be extracted by a variety of techniques such as that described by Maniatis, *et al.* (Molecular Cloning: a Laboratory Manual, Cold Spring Harbor, NY, pp 280, 281, 1982).

5

10

15

20

25

The nucleic acid of interest can be any nucleic acid where it is desirable to detect the presence of a CpG island. In one embodiment, the CpG island comprises a CpG island located in a gene. A "CpG island" is a CpG rich region of a nucleic acid sequence. The nucleic acid sequence may be, for example, a p16, a Rb, a VHL, a hMLH1, or a BRCA1 gene. Alternatively the nucleic acid of interest can be, for example, a MINT1-33 nucleic acid sequence. However, any gene or nucleic acid sequence of interest containing a CpG sequence can be detected using the method of the invention.

The presence of methylated CpG in the nucleic acid-containing specimen may be indicative of a disorder. In one embodiment, the disorder is a cell proliferative disorder. A "cell proliferative disorder" is any disorder in which the proliferative capabilities of the affected cells is different from the normal proliferative capabilities of unaffected cells. An example of a cell

proliferative disorder is neoplasia. Malignant cells (*i.e.*, cancer) develop as a result of a multistep process. Specific, non-limiting examples of disorders associated with increased methylation of CpG-islands are colon cancer, lung cancer, renal cancer, leukemia, breast cancer, prostate cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.

In another embodiment, the disorder is an age-associated disorder. The term "age-associated disorder" is used to describe a disorder observed with the biological progression of events occurring over time in a subject. Preferably, the subject is a human. Non-limiting examples of age-associated disorders include, but are not limited to, atherosclerosis, diabetes melitis, and dementia. An age-associated disorder may also be a cell proliferative disorder. Examples of age-associated disorders which are cell proliferative disorders include colon cancer, lung cancer, breast cancer, prostate cancer, and melanoma, amongst others. An age-associated disorder is further intended to mean the biological progression of events that occur during a disease process that affects the body, which mimic or substantially mimic all or part of the aging events which occur in a normal subject, but which occur in the diseased state over a shorter period of time.

20

25

5

10

15

In one embodiment, the age-associated disorder is a "memory disorders or learning disorders" which are characterized by a statistically significant decrease in memory or learning assessed over time by the Randt Memory Test (Randt et al., Clin. Neuropsychol., 2:184, 1980), Wechsler Memory Scale (J. Psych., 19:87-95, 1945), Forward Digit Span test (Craik, Age Differences in Human Memory, in: Handbook of the Psychology of Aging, Birren, J., and Schaie, K., Eds., New York, Van Nostrand, 1977), Mini-Mental State Exam (Folstein et al., J. of Psych. Res. 12:189-192, 1975),

or California Verbal Learning Test (CVLT) wherein such non-neurodegenerative pathological factors as aging, anxiety, fatigue, anger, depression, confusion, or vigor are controlled for. (See, U.S. Patent No. 5,063,206 for example).

5

If the sample is impure (e.g., plasma, serum, stool, ejaculate, sputum, saliva, cerebrospinal fluid or blood or a sample embedded in paraffin), it may be treated before amplification with a reagent effective for opening the cells, fluids, tissues, or animal cell membranes of the sample, and for exposing the nucleic acid(s). Methods for purifying or partially purifying nucleic acid from a sample are well known in the art (e.g., Sambrook et al., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Press, 1989, herein incorporated by reference).

15

20

25

10

In one embodiment, a method is provided for identifying a methylated CpG-containing nucleic acid, including contacting a nucleic acid sample suspected of comprising a CpG-containing nucleic acid with a methylation sensitive restriction endonuclease that cleaves only unmethylated CpG sites under conditions and for a time to allow cleavage of unmethylated nucleic acid. The sample is further contacted with an isoschizomer of the methylation sensitive restriction endonuclease, that cleaves both methylated and unmethylated CpG-sites, under conditions and for a time to allow cleavage of methylated nucleic acid. Oligonucleotides are added to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to nucleic acid cleaved by the restriction endonuclease, and the digested nucleic acid is amplified. Following identification, the methylated CpG-containing nucleic acid can be cloned, using method well

10

15

20

25

known to one of skill in the art (see Sambrook et al., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Press, 1989).

A "methylation sensitive restriction endonuclease" is a restriction endonuclease that includes CG as part of its recognition site and has altered activity when the C is methylated as compared to when the C is not methylated. Preferably, the methylation sensitive restriction endonuclease has inhibited activity when the C is methylated (e.g., Smal). Specific non-limiting examples of a methylation sensitive restriction endonucleases include Smal, BssHII, or HpaII. Such enzymes can be used alone or in combination. Other methylation sensitive restriction endonucleases will be known to those of skill in the art and include, but are not limited to SacII, EagI, and BstUI, for example. An "isoschizomer" of a methylation sensitive restriction endonuclease is a restriction endonuclease which recognizes the same recognition site as a methylation sensitive restriction endonuclease but which cleaves both methylated and unmethylated CGs. One of skill in the art can readily determine appropriate conditions for a restriction endonuclease to cleave a nucleic acid (see Sambrook et al., Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Press, 1989). Without being bound by theory, actively transcribed genes generally contain fewer methylated CGs than in other genes.

In the method of the invention, a nucleic acid of interest is cleaved with a methylation sensitive endonuclease. In one embodiment, cleavage with the methylation sensitive endonuclease creates a sufficient overhang on the nucleic acid of interest. Following cleavage with the isoschizomer, the cleavage product can still have a sufficient overhang. An "overhang" refers to nucleic acid having two strands wherein the strands end in such a manner that

a few bases of one strand are not base paired to the other strand. A "sufficient overhang" refers to an overhang of sufficient length to allow specific hybridization of an oligonucleotide of interest. In one embodiment, a sufficient overhang is at least two bases in length. In another embodiment, the sufficient overhang is four or more bases in length. An overhang of a specific sequence on the nucleic acid of interest may be desired in order for an oligonucleotide of interest to hybridize. In this case, the isoschizomer can be used to create the overhang having the desired sequence on the nucleic acid of interest.

10

15

5

In another embodiment, the cleavage with a methylation sensitive endonuclease results in a reaction product of the nucleic acid of interest that has a blunt end or an insufficient overhang. In this embodiment, an isoschizomer of the methylation sensitive restriction endonuclease can create a sufficient overhang on the nucleic acid of interest. "Blunt ends" refers to a flush ending of two stands, the sense stand and the antisense strand, of a nucleic acid.

Once a sufficient overhang is created on the nucleic acid of interest, an oligonucleotide is ligated to the nucleic acid cleaved of interest which has been cleaved by the methylation specific restriction endonuclease. "Ligation" is the attachment of two nucleic acid sequences by base pairing of substantially complementary sequences or by the formation of a covalent bonds between two nucleic acid sequences. An "oligonucleotide" is a nucleic acid sequence of 2 to 40 bases in length. Preferably the oligonucleotide is from 15 to 35 bases in length. In one embodiment, the oligonucleotide is ligated to the overhang on the nucleic acid sequence of interest by base pairing.

In one embodiment, two oligonucleotides are utilized to form an adaptor. An "adaptor" is a double-stranded nucleic acid sequence with one end that has a sufficient single-stranded overhang at one or both ends such that the adaptor can be ligated by base-pairing to a sufficient overhang on a nucleic acid of interest that has been cleaved by a methylation sensitive restriction enzyme or an isoschizomer of a methylation sensitive restriction enzyme. In one embodiment, two oligonucleotides can be used to form an adaptor; these oligonucleotides are substantially complementary over their entire sequence except for the region(s) at the 5' and/or 3' ends that will form a single stranded overhang. The single stranded overhang is complementary to an overhang on the nucleic acid cleaved by a methylation sensitive restriction enzyme or an isoschizomer of a methylation sensitive restriction enzyme, such that the overhang on the nucleic acid of interest will base pair with the 3' or 5' single stranded end of the adaptor under appropriate conditions. The conditions will vary depending on the sequence composition (GC vs AT), the length, and the type of nucleic acid (see Sambrook et al., Molecular Cloning: a Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Plainview, NY, 1998).

20

25

5

10

15

Following the ligation of the oligonucleotide, the nucleic acid of interest is amplified using a primer complementary to the oligonucleotide. Specifically, the term "primer" as used herein refers to a sequence comprising two or more deoxyribonucleotides or ribonucleotides, preferably more than three, and most preferably more than 8, which sequence is capable of initiating synthesis of a primer extension product, which is substantially complementary to a nucleic acid such as an adaptor or a ligated oligonucleotide. Environmental conditions conducive to synthesis include the presence of

-18-

nucleoside triphosphates and an agent for polymerization, such as DNA polymerase, and a suitable temperature and pH. The primer is preferably single stranded for maximum efficiency in amplification, but may be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. In one embodiment, the primer is an oligodeoxyribo-nucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent for polymerization. The exact length of primer will depend on many factors, including temperature, buffer, and nucleotide composition. The oligonucleotide primer typically contains 12-20 or more nucleotides, although it may contain fewer nucleotides.

5

10

15

20

25

Primers of the invention are designed to be "substantially" complementary to each strand of the oligonucleotide to be amplified and include the appropriate G or C nucleotides as discussed above. This means that the primers must be sufficiently complementary to hybridize with their respective strands under conditions which allow the agent for polymerization to perform. In other words, the primers should have sufficient complementarity with a 5' and 3' oligonucleotide to hybridize therewith and permit amplification of CpG containing nucleic acid sequence.

Primers of the invention are employed in the amplification process which is an enzymatic chain reaction that produces exponential quantities of target locus relative to the number of reaction steps involved (e.g., polymerase chain reaction or PCR). Typically, one primer is complementary to the negative (-) strand of the locus and the other is complementary to the positive (+) strand. Annealing the primers to denatured nucleic acid followed by extension with an enzyme, such as the large fragment of DNA Polymerase I

-19-

(Klenow) and nucleotides, results in newly synthesized + and - strands containing the target locus sequence. Because these newly synthesized sequences are also templates, repeated cycles of denaturing, primer annealing, and extension results in exponential production of the region (*i.e.*, the target locus sequence) defined by the primer. The product of the chain reaction is a discrete nucleic acid duplex with termini corresponding to the ends of the specific primers employed.

5

10

15

20

25

The oligonucleotide primers of the invention may be prepared using any suitable method, such as conventional phosphotriester and phosphodiester methods or automated embodiments thereof. In one such automated embodiment, diethylphosphoramidites are used as starting materials and may be synthesized as described by Beaucage, et al. (Tetrahedron Letters, 22:1859-1862, 1981). One method for synthesizing oligonucleotides on a modified solid support is described in U.S. Patent No. 4,458,066.

Where the CpG-containing nucleic acid sequence of interest contains two strands, it is necessary to separate the strands of the nucleic acid before it can be used as a template for the amplification process. Strand separation can be effected either as a separate step or simultaneously with the synthesis of the primer extension products. This strand separation can be accomplished using various suitable denaturing conditions, including physical, chemical, or enzymatic means, the word "denaturing" includes all such means. One physical method of separating nucleic acid strands involves heating the nucleic acid until it is denatured. Typical heat denaturation may involve temperatures ranging from about 80° to 105°C for times ranging from about 1 to 10 minutes. Strand separation may also be induced by an enzyme from the class of enzymes known as helicases or by the enzyme RecA, which has helicase

10

15

20

25

activity, and in the presence of riboATP, is known to denature DNA. The reaction conditions suitable for strand separation of nucleic acids with helicases are described by Kuhn Hoffmann-Berling (CSH-Quantitative Biology, 43:63, 1978) and techniques for using RecA are reviewed in C. Radding (Ann. Rev. Genetics, 16:405-437, 1982).

When complementary strands of nucleic acid or acids are separated, regardless of whether the nucleic acid was originally double or single stranded, the separated strands are ready to be used as a template for the synthesis of additional nucleic acid strands. This synthesis is performed under conditions allowing hybridization of primers to templates to occur. Generally synthesis occurs in a buffered aqueous solution, generally at a pH of about 7-9. Preferably, a molar excess (for genomic nucleic acid, usually about 108:1 primer:template) of the two oligonucleotide primers is added to the buffer containing the separated template strands. It is understood, however, that the amount of complementary strand may not be known if the process of the invention is used for diagnostic applications, so that the amount of primer relative to the amount of complementary strand cannot be determined with certainty. As a practical matter, however, the amount of primer added will generally be in molar excess over the amount of complementary strand (template) when the sequence to be amplified is contained in a mixture of complicated long-chain nucleic acid strands. A large molar excess is preferred to improve the efficiency of the process.

The deoxyribonucleoside triphosphates dATP, dCTP, dGTP, and dTTP are added to the synthesis mixture, either separately or together with the primers, in adequate amounts and the resulting solution is heated to about 90°-100°C from about 1 to 10 minutes, preferably from 1 to 4 minutes. After this

-21-

heating period, the solution is allowed to cool to approximately room temperature, which is preferable for the primer hybridization. To the cooled mixture is added an appropriate agent for effecting the primer extension reaction (called herein "agent for polymerization"), and the reaction is allowed to occur under conditions known in the art. The agent for polymerization may also be added together with the other reagents if it is heat stable. This synthesis (or amplification) reaction may occur at room temperature up to a temperature above which the agent for polymerization no longer functions. Thus, for example, if DNA polymerase is used as the agent, the temperature is generally no greater than about 40°C. Most conveniently the reaction occurs at room temperature.

5

10

15

20

25

The agent for polymerization may be any compound or system which will function to accomplish the synthesis of primer extension products, including enzymes. Suitable enzymes for this purpose include, for example, *E. coli* DNA polymerase I, Klenow fragment of *E. coli* DNA polymerase I, T4 DNA polymerase, other available DNA polymerases, polymerase muteins, reverse transcriptase, and other enzymes, including heat-stable enzymes (*i.e.*, those enzymes which perform primer extension after being subjected to temperatures sufficiently elevated to cause denaturation). Suitable enzymes will facilitate combination of the nucleotides in the proper manner to form the primer extension products which are complementary to each locus nucleic acid strand. Generally, the synthesis will be initiated at the 3' end of each primer and proceed in the 5' direction along the template strand, until synthesis terminates, producing molecules of different lengths. There may be agents for polymerization, however, which initiate synthesis at the 5' end and proceed in the other direction, using the same process as described above.

Preferably, the method of amplifying is by PCR, as described herein and as is commonly used by those of ordinary skill in the art. However, alternative methods of amplification have been described and can also be employed.

5

10

15

20

Once amplified, the nucleic acid can be attached to a solid support, such as a membrane, and can be hybridized with any probe of interest, to detect any nucleic acid sequence. Several membranes are known to one of skill in the art for the adhesion of nucleic acid sequences. Specific non-limiting examples of these membranes include nitrocellulose (Nitropure) or other membranes used in for detection of gene expression such as polyvinylchloride, diazotized paper and other commercially available membranes such as GenescreenTM, ZetaprobeTM (Biorad), and NytranTM. Methods for attaching nucleic acids to these membranes are well known to one of skill in the art. Alternatively, screening can be done in a liquid phase.

In nucleic acid hybridization reactions, the conditions used to achieve a particular level of stringency will vary, depending on the nature of the nucleic acids being hybridized. For example, the length, degree of complementarity, nucleotide sequence composition (e.g., GC v. AT content), and nucleic acid type (e.g., RNA v. DNA) of the hybridizing regions of the nucleic acids can be considered in selecting hybridization conditions. An additional consideration is whether one of the nucleic acids is immobilized, for example, on a filter.

25

An example of progressively higher stringency conditions is as follows: 2 x SSC/0.1% SDS at about room temperature (hybridization conditions); 0.2 x SSC/0.1% SDS at about room temperature (low stringency conditions); 0.2 x SSC/0.1% SDS at about 42°C (moderate stringency

conditions); and 0.1 x SSC at about 68°C (high stringency conditions). Washing can be carried out using only one of these conditions, e.g., high stringency conditions, or each of the conditions can be used, e.g., for 10-15 minutes each, in the order listed above, repeating any or all of the steps listed. However, as mentioned above, optimal conditions will vary, depending on the particular hybridization reaction involved, and can be determined empirically. In general, conditions of high stringency are used for the hybridization of the probe of interest.

The probe of interest can be detectably labeled, for example, with a radioisotope, a fluorescent compound, a bioluminescent compound, a chemiluminescent compound, a metal chelator, or an enzyme. Those of ordinary skill in the art will know of other suitable labels for binding to the probe, or will be able to ascertain such, using routine experimentation.

15

20

25

10

5

In one embodiment, representational difference analysis (RDA, see Lisitsyn et al., Science 259:946-951, 1993, herein incorporated by reference) can be performed on CpG-containing nucleic acid following MCA. MCA utilizes kinetic and subtractive enrichment to purify restriction endonuclease fragments present in one population of nucleic acid fragments but not in another. Thus, RDA enables the identification of small differences between the sequences of two nucleic acid populations. RDA uses nucleic acid from one population as a "tester" and nucleic acid from a second population as a "driver," in order to clone probes for single copy sequences present in (or absent from) one of the two populations. In one embodiment, nucleic acid from a "normal" individual or sample, not having a disorder such as a cell-proliferative disorder is used as a "driver," and nucleic acid from an "affected" individual or sample, having the disorder such as a cell proliferative disorder

10

15

is used as a "tester." In one embodiment, the nucleic acid used as a "tester" is isolated from an individual having a cell proliferative disorder such as colon cancer, lung cancer, renal cancer, leukemia, breast cancer, prostate cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma. The nucleic acid used as a "driver" is thus normal colon, normal lung, normal kidney, normal blood cells, normal breast, normal prostate, normal uterus, normal astrocytes, normal glial and normal neurons, respectively. In an additional embodiment, the nucleic acid used as a "driver" is isolated from an individual having a cell proliferative disorder such as colon cancer, lung cancer, renal cancer, leukemia, breast cancer, prostate cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma. The nucleic acid used as a "tester" is thus normal colon, normal lung, normal kidney, normal blood cells, normal breast, normal prostate, normal uterus, normal astrocytes, normal glial and normal neurons, respectively. One of skill in the art will readily be able to identify the "tester" nucleic acid useful with to identify methylated nucleic acid sequences in given "driver" population.

10

15

20

25

SCREENING AGENTS FOR AN EFFECT ON METHYLATION

The invention provides a method for identifying an agent which can affect methylation. An agent can affect methylation by either increasing or decreasing methylation. The method includes incubating an agent and a sample containing a CpG-containing polynucleotide under conditions sufficient to allow the components to interact, and measuring the effect of the compound on the methylation of the CpG-containing nucleic acid. In one embodiment, the sample is a cell expressing a polynucleotide of interest. In another embodiment, the sample is substantially purified nucleic acid. "Substantially purified" nucleic acid is nucleic acid which has been separated from the cellular components which naturally accompany it, or from contaminating elements such as proteins, lipids, or chemical resins. Substantially pure nucleic acid can be extracted from any cell type, or can be chemically synthesized. Purity can be measured by any appropriate method, such as measuring the absorbance of light (e.g., A₂₆₀/A₂₈₀ ratio).

The nucleic acid can be identified by the methylated CpG island amplification, as described above. The methylation of the polynucleotide in the sample can then be compared to the methylation of a control sample not incubated with the agent. The effect of the agent on methylation of a polynucleotide can be measured by assessing the methylation of the polynucleotide by the methods of the invention. Alternatively, the effect of the agent on methylation of a polynucleotide can be measured by assessing the expression of the polynucleotide of interest. Means of measuring expression are well known to one of skill in the art (e.g., Northern blotting or RNA dot blotting, amongst others).

The agents which affect methylation can include peptides, peptidomimetics, polypeptides, pharmaceuticals, and chemical compounds and biological agents. Psychotropic, antiviral, and chemotherapeutic compounds can also be tested using the method of the invention.

5

10

15

20

25

"Incubating" includes conditions which allow contact between the test agent and the cell of interest. "Contacting" includes in solution and solid phase. The test agent may also be a combinatorial library for screening a plurality of compounds. Agents identified in the method of the invention can be further cloned, sequenced, and the like, either in solution of after binding to a solid support, by any method usually applied to the isolation of a specific DNA sequence Molecular techniques for DNA analysis (Landegren et al., Science 242:229-237, 1988) and cloning have been reviewed (Sambrook et al., Molecular Cloning: a Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Plainview, NY, 1998.

The sample can be any sample of interest. The sample may be a cell sample or a membrane sample prepared from a cell sample. Suitable cells include any host cells containing a nucleic acid including a CpG island. The cells can be primary cells or cells of a cell line.

In one embodiment, the agent is incubated with the sample of interest suspected of including a CpG-containing nucleic acid and methylation is evaluated by MCA. Thus, nucleic acid from the sample suspected of including a CpG-containing nucleic acid is contacted with a methylation sensitive restriction endonuclease which cleaves only unmethylated CpG sites under conditions and for a time to allow cleavage of unmethylated nucleic acid. An isoschizomer of the methylation sensitive restriction endonuclease is

-27-

also utilized. An oligonucleotide is added to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotide to nucleic acid cleaved by said restriction endonuclease, and the digested nucleic acid is amplified. The digested nucleic acid is adhered to a membrane, and the membrane is hybridized with a probe of interest. In one embodiment, representation difference analysis can also be performed.

KITS

5

10

15

20

25

The materials for use in the assay of the invention are ideally suited for the preparation of a kit. Such a kit may comprise a carrier means containing one or more container means such as vials, tubes, and the like, each of the container means comprising one of the separate elements to be used in the method. One of the container means can comprise a container containing an oligonucleotide for ligation to nucleic acid cleaved by a methylation sensitive restriction endonuclease. One or more container means can also be included comprising a primer complementary to the oligonucleotide. In addition, one or more container means can also be included which comprise a methylation sensitive restriction endonuclease. One or more container means can also be included containing an isoschizomer of said methylation sensitive restriction enzyme.

In another embodiment, the kit may comprise a carrier means containing one or more container means comprising a solid support, wherein the solid support has a nucleic acid sequence selected from the group consisting of MINT1-33 immobilized on the solid support. In one embodiment, the solid support is a membrane. Several membranes are known to one of skill in the art for the adhesion of nucleic acid sequences. Specific

20

25

non-limiting examples of these membranes include nitrocellulose (Nitropure) or other membranes used in for detection of gene expression such as polyvinylchloride, diazotized paper and other commercially available membranes such as GenescreenTM, ZetaprobeTM (Biorad), and NytranTM. The MINT1-33 sequences immobilized on the solid support can then be hybridized to nucleic acid sequences produced by performing the MCA procedure on the nucleic acids of a sample of interest in order to determine if the nucleic acid sequences contained in the sample are methylated.

10 POLYNUCLEOTIDES AND POLYPEPTIDES

In another embodiment, the invention provides isolated MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotides (SEQ ID NO:1, SEO ID NO:2, SEO ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEO ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33, respectively). These polynucleotides include DNA, cDNA and RNA sequences which encode MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polypeptides. It is understood that naturally occurring, synthetic, and intentionally manipulated polynucleotides are included. For example, MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 nucleic acids may be subjected to site-directed mutagenesis. The nucleic acid sequence for MINT1,

MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 also includes antisense sequences, and sequences encoding dominant negative forms of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33.

The invention provides methylated and unmethylated forms of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, 10 MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27. MINT30, MINT31, MINT32 and MINT33 polynucleotides (SEQ ID NO:1, SEO ID NO:2, SEO ID NO:4, SEO ID NO:6, SEQ ID NO:8, SEQ ID NO:9, SEO ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEO ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, 15 SEO ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33, respectively). Methylated nucleic acid sequences are also provided which include MINT3, MINT5, MINT 7, MINT11, MINT12, MINT13, MINT16, MINT18, MINT21, MINT25, MINT26, MINT28, and MINT29 20 (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:12, SEO ID NO:13, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:21, SEO ID NO:25, SEQ ID NO:26, SEQ ID NO:28, and SEQ ID NO:29, respectively). It is understood that naturally occurring, synthetic, and intentionally manipulated polynucleotides are included.

25

The polynucleotides of the invention includes "degenerate variants" sequences that are degenerate as a result of the genetic code. There are 20 natural amino acids, most of which are specified by more than one codon.

Therefore, all degenerate nucleotide sequences are included in the invention as long as the amino acid sequence of a polypeptide encoded by the nucleotide sequence of SEQ ID NOs: 1-33 is functionally unchanged.

Specifically disclosed herein are methylated and unmethylated isolated 5 polynucleotide sequences of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33. Preferably, the nucleotide sequence is SEQ ID NO:1, SEQ ID 10 NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEO ID NO:30, SEO ID NO:31, SEQ ID NO:32, and SEQ ID NO:33, respectively. Specifically disclosed herein are methylated isolated polynucleotide sequences of MINT3, MINT5, MINT 7, MINT11, MINT12, 15 MINT13, MINT16, MINT18, MINT21, MINT25, MINT26, MINT28, and MINT29. Preferably, the nucleotide sequence is SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, and SEQ ID NO:29, respectively. The term "polynucleotide" 20 or "nucleic acid sequence" refers to a polymeric form of nucleotides at least 10 bases in length. By "isolated polynucleotide" is meant a polynucleotide that is not immediately contiguous with both of the coding sequences with which it is immediately contiguous (one on the 5' end and one on the 3' end) in the naturally occurring genome of the organism from which it is derived. The 25 term therefore includes, for example, a recombinant DNA which is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote, or which exists as a

separate molecule (e.g., a cDNA) independent of other sequences. The nucleotides of the invention can be ribonucleotides, deoxyribonucleotides, or modified forms of either nucleotide. The term includes single and double forms of DNA.

5

The polynucleotide encoding MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 includes SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEO ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEQ 10 ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33, dominant negative forms of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, 15 MINT27, MINT30, MINT31, MINT32 and MINT33, and nucleic acid sequences complementary to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEO ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEO ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEO ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID 20 NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33. A complementary sequence may include an antisense nucleotide. When the sequence is RNA, the deoxynucleotides A, G, C, and T of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, 25 SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 are replaced by ribonucleotides A, G, C, and U, respectively. Also included in the invention are fragments of the above-described nucleic acid sequences that are and are at least 15 bases in length, which is sufficient to permit the fragment to selectively hybridize to DNA that encoded by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 under physiological conditions or a close family member of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33. The term "selectively hybridize" refers to hybridization under moderately or highly stringent conditions which excludes non-related nucleotide sequences. Hybridization conditions have been described above.

15

20

25

5

10

The MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33 nucleotide sequence includes the disclosed sequence and conservative variations of the polypeptides encoded by MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotides. The term "conservative variation" as used herein denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acid, or glutamine for

asparagine, and the like. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.

5

10

15

MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 nucleic acid sequences can be expressed *in vitro* by DNA transfer into a suitable host cell. "Host cells" are cells in which a vector can be propagated and its DNA expressed. The cell may be prokaryotic or eukaryotic. The term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. However, such progeny are included when the term "host cell" is used. Methods of stable transfer, meaning that the foreign DNA is continuously maintained in the host, are known in the art.

In one aspect, the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22,

20 MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotide sequences may be inserted into an expression vector. The term "expression vector" refers to a plasmid, virus or other vehicle known in the art that has been manipulated by insertion or incorporation of the sequence of interest genetic sequences. Polynucleotide sequence which encode sequence of interest can be operatively linked to expression control sequences. "Operatively linked" refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. An expression control sequence operatively linked to a coding

-34-

sequence is ligated such that expression of the coding sequence is achieved under conditions compatible with the expression control sequences. As used herein, the term "expression control sequences" refers to nucleic acid sequences that regulate the expression of a nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the transcription and, as appropriate, translation of the nucleic acid sequence. Thus expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (i.e., ATG) in front of a protein-encoding gene, splicing signal for introns, maintenance of the correct reading frame of that gene to permit proper translation of mRNA, and stop codons. The term "control sequences" is intended to included, at a minimum, components whose presence can influence expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences. Expression control sequences can include a promoter.

5

10

15

20

25

By "promoter" is meant minimal sequence sufficient to direct transcription. Also included in the invention are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for cell-type specific, tissue-specific, or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the gene. Both constitutive and inducible promoters, are included in the invention (see, e.g., Bitter et al., Methods in Enzymology 153:516-544, 1987). For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage γ , plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used. When cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from

mammalian viruses (e.g., the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used. Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the nucleic acid sequences of the invention.

5

10

15

20

25

In the present invention, the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotide sequence may be inserted into an expression vector which contains a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific genes which allow phenotypic selection of the transformed cells. Vectors suitable for use in the present invention include, but are not limited to the T7-based expression vector for expression in bacteria (Rosenberg *et al.*, *Gene* 56:125, 1987), the pMSXND expression vector for expression in mammalian cells (Lee and Nathans, *J. Biol. Chem.* 263:3521, 1988) and baculovirus-derived vectors for expression in insect cells. The DNA segment can be present in the vector operably linked to regulatory elements, for example, a promoter (*e.g.*, T7, metallothionein I, or polyhedron promoters).

MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotide sequences can be expressed in either prokaryotes or eukaryotes. Hosts can include microbial, yeast, insect and mammalian organisms. Methods of expressing DNA sequences having eukaryotic or viral sequences in prokaryotes are well known in the art. Biologically functional viral and

plasmid DNA vectors capable of expression and replication in a host are known in the art. Such vectors are used to incorporate DNA sequences of the invention.

By :transformation" is meant a genetic change induced in a cell following incorporation of new DNA (*i.e.*, DNA exogenous to the cell). Where the cell is a mammalian cell, the genetic change is generally achieved by introduction of the DNA into the genome of the cell (*i.e.*, stable).

By "transformed cell" is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding sequence of interest. Transformation of a host cell with recombinant DNA may be carried out by conventional techniques as are well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method using procedures well known in the art. Alternatively, MgCl₂ or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell if desired.

20

25

5

10

15

When the host is a eukaryote, such methods of transfection of DNA as calcium phosphate co-precipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes, or virus vectors may be used. Eukaryotic cells can also be cotransformed with DNA sequences encoding the sequence of interest, and a second foreign DNA molecule encoding a selectable phenotype, such as the herpes simplex thymidine kinase gene. Another method is to use a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papilloma virus, to

10

15

20

25

transiently infect or transform eukaryotic cells and express the protein (see for example, <u>Eukaryotic Viral Vectors</u>, Cold Spring Harbor Laboratory, Gluzman ed., 1982).

Isolation and purification of microbial expressed polypeptide, or fragments thereof, provided by the invention, may be carried out by conventional means including preparative chromatography and immunological separations involving monoclonal or polyclonal antibodies.

In one embodiment, the invention provides substantially purified polypeptide encoded by MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotide sequences. The term "substantially purified" as used herein refers to a polypeptide which is substantially free of other proteins, lipids, carbohydrates or other materials with which it is naturally associated. One skilled in the art can purify a polypeptide encoded by MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polynucleotide sequence using standard techniques for protein purification. The substantially pure polypeptide will yield a single major band on a non-reducing polyacrylamide gel. The purity of the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 and MINT33 polypeptide can also be determined by amino-terminal amino acid sequence analysis.

Minor modifications of the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33 primary amino acid sequences may result in proteins which have substantially equivalent activity as compared to the unmodified counterpart polypeptide described herein. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous. All of the polypeptides produced by these modifications are included herein as long as the biological activity still exists.

10

15

20

25

The polypeptides of the invention also include dominant negative forms of the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 polypeptide which do not have the biological activity of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 polynucleotide sequence. A "dominant negative form" of MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15. MINT17. MINT19. MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, or MINT33 is a polypeptide that is structurally similar to MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 polypeptide but does not have wild-type MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 function. For example, a dominant-negative MINT1, MINT2,

20

25

MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 polypeptide may interfere with wild-type MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 function by binding to, or otherwise sequestering, regulating agents, such as upstream or downstream components, that normally interact functionally with the MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32 or MINT33 polypeptide.

EXAMPLES

The following examples are intended to illustrate but not to limit the invention in any manner, shape, or form, either explicitly or implicitly. While they are typical of those that might be used, other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.

EXAMPLE 1

DETECTION OF METHYLATED CPG ISLANDS USING MCA

The principle underlying MCA involves amplification of closely spaced methylated Smal sites to enrich for methylated CGIs. The MCA technique is outlined in Figure 1A. About 70 to 80% of CpG islands contain at least two closely spaced (<1kb) Smal sites (CCCGGG). Only those Smal sites within these short distances can be amplified using MCA, ensuring representation of the most CpG rich sequences. Briefly, DNA is digested with Smal, which cleaves only unmethylated sites, leaving blunt ends between the C and G. DNA is then digested with the Smal isoschizomer Xmal, which

does cleave methylated CCCGGG sites, and which leaves a 4 base overhang. Adaptors are ligated to this overhang, and PCR is performed using primers complementary to these adaptors. The amplified DNA is then spotted on a nylon membrane and can be hybridized with any probe of interest.

5

10

15

20

25

As a model experiment, amplification of the p16 gene CGI was examined because (1) hypermethylation of this CGI in cancer is well characterized, and correlates with silencing of the gene (Herman et al., 1995), and (2) this CGI contains two closely spaced SmaI sites (400bp) which can be amplified by MCA. Initially, the reaction was optimized by testing different primers with a variable GC content, and different PCR conditions. As shown in Figure 1B, using primers with a 70% GC content, the p16 CGI is amplified strongly in the Caco2 cell line, where it is known to be hypermethylated, while no signal above background was detected from any normal colon mucosa. To examine the quantitative aspect of MCA, DNA from Caco2 and normal colon mucosa were mixed in various proportions, and the methylation level of each mix was determined using MCA. MCA detected p16 methylation in a semiquantitative manner between 1% and 100% methylated alleles. Finally, MCA was performed on 109 samples of normal colonic mucosa and adjacent primary colorectal tumor that had previously been typed for p16 methylation by Southern blot analysis (Ahuja et al., 1997). MCA and Southern blot were concordant in 107/109 (98%) of the cases. In one case, MCA detected a low level of methylation (5-10 %) in a cancer sample that had been judged negative by Southern blot. In the other discordant case (positive by MCA, negative by Southern blot), the discordance may be related to heterogeneous p16 methylation, as has been described (Costello et al., 1996).

10

15

20

25

MCA is a novel PCR-based technique that allows for the rapid enrichment of hypermethylated CG rich sequences, with a high representation of methylated CpG islands. This technique can have several potential applications. MCA is very useful for the determination of the methylation status of a large number of samples at multiple loci simultaneously. By optimizing the PCR conditions, it should be readily adaptable to the study of the methylation status of any gene that has two closely spaced Smal sites. As shown herein, there is a very high concordance rate between MCA and other methods for the detection of hypermethylation such as Southern blot analysis and bisulfite-based methods. However, MCA (1) requires good quality DNA, excluding the study of paraffin-embedded samples, (2) examines only a limited number of CpG sites within a CGI and (3) is sensitive to incomplete digestion using the methylation-sensitive enzyme Smal. Nevertheless, many steps in MCA are amenable to automation and, by allowing for the examination of multiple genes relatively quickly, may have important applications in population-based studies of CGI methylation.

EXAMPLE 2 IDENTIFICATION OF DIFFERENTIALLY METHYLATED CG IN CRC BY MCA/RDA

To identify novel CGIs aberrantly methylated in CRC, RDA (Lisitsyn et al., 1993) was performed on MCA amplicons from the colon cancer cell line Caco2 as a tester, and a mixture of DNA from the normal colon mucosa of 5 different men (to avoid cloning polymorphic Smal sites or inactive and methylated X chromosome genes from women) as a driver. Two separate experiments were conducted, one using a lower annealing temperature (72/C), and the other using a higher annealing temperature (77/C) and more GC rich primers. After two rounds of RDA, the PCR products were cloned, and

10

15

20

25

colonies containing inserts were identified by PCR. Based on initial experiments, we expected most of the recovered clones to contain Alu repetitive sequences, which are CG rich and hypermethylated (Kochanek *et al.*, 1993). All clones were therefore probed with an Alu fragment, and only non-hybridizing clones were analyzed further. Out of 160 non-Alu clones, 46 were independent clones and 33 of these (MINT1-33, Methylated in Tumors, SEQ ID NOs:1-33, respectively) appeared to be differentially methylated in Caco2 cells by comparing hybridization to MCA products from Caco2 and normal colon (Figure 1C). 19 of the clones (MINT1-19) were obtained using the lower annealing temperature, and 14 (MINT 20-33) using the higher temperature.

To confirm the aberrant methylation of these clones, Southern blot analysis was performed using DNA digested with SmaI or XmaI. All of the 33 clones were hypermethylated in Caco2 compared to normal colon mucosa. Of these 33, one clone (MINT13) detected highly repeated sequences and two clones (MINT18 and MINT28) appeared to correspond to mildly repeated gene families (data not shown). All others appeared to detect single copy DNA fragments. In addition, hypermethylation at CpG sites within the clones and distinct from the SmaI sites was confirmed by bisulfite-PCR for 6 clones. In each case, Caco2 was found to be hypermethylated at these sites.

By DNA sequencing (example shown in Figure 2), we found that 29 clones had a GC content greater than 50%, and satisfied the minimal criteria for CGIs (200bp, GC content>50%, CpG/GpC>0.5) (Gardiner-Garden and Frommer, 1987). As might be expected, clones obtained with the higher annealing temperature and more GC rich primers had a relatively higher GC content (Table 1). The size of each clone, percentage of GC nucleotide,

observed/expected CGs, sequence homology and, chromosomal location are summarized in Table 1. MINT5, MINT8, MINT11, MINT14 and MINT16 contained GC rich regions only in one end of the clones, and these may have been recovered from the edge of CGIs.

Table 1: Summary of the 33 Differentially Methylated Clones Isolated by MCA-RDA

Clone	Size (bp)	%GC	O/E	CGI	Blast Homology	Chromosome Map	Methyla- tion Pattern
MINT1	528	56	0.6	Yes	None	5q13-14	Type C
MINT2	562	50	0.8	Yes	None	2p22-21	Type C
MINT3	563	55	1	Yes	Human EST AA557808	1p34-35	Type a
MINT4	481	60	0.8	Yes	None	15q 25-26	Type a
MINT5	852	46	0.5	Yes*	Human CpG clone 88c1	14q21-22	Type a
MINT6	401	59	0.6	Yes	None	12q14-15	Type a
MINT7	481	49	0.9	Yes	Human genomic DNA	6p21-22	Type A
MINT8	617	46	0.5	Yes*	None	N.D	Type A
MINT9	605	54	0.3	No	None	1p34-35	Type A
MINT10	608	49	0.6	Yes	None	9q34-Ter	Type A
MINT11	637	49	0.6	Yes*	Versican	5q12-13	Type A
MINT12	552	49	0.6	Yes	CpG clone 33h2	7q31-32	Type C
MINT13	308	60	0.9	Yes	LINE1	N.D	Cell line
MINT14	620	54	0.4	Yes*	None	10p13-15	Type A
MINT15	641	53	0.7	Yes	None	11p12-13	Type A
MINT16	664	62	0.5	Yes*	Alpha-tubulin	2q	Type A
MINT17	491	54	0.7	Yes	None	6	Type C
MINT18	435	58	0.1	No	Acrogranin	N.D	Cell line
MINT19	443	55	0.2	No	None	N.D	Type A
MINT20	510	67	0.8	Yes	mouse OTP	N.D	Type A
MINT21	411	62	0.4	No	None	22q13	Type A
MINT22	438	60	0.9	Yes	None	10p12	Type A
MINT23	346	64	0.8	Yes	Csx	5q34-35	Type A
MINT24	525	63	0.7	Yes	None	3p25-26	Type A
MINT25	339	60	0.7	Yes	Human genomic DNA	22q11	Type C
MINT26	591	58	0.8	Yes	CpG clone 73el	7q11	Type A
MINT27	242	74	0.7	Yes	None	N.D	Type C
MINT28	463	58	1	Yes	Ribosomal RNA gene	N.D	Type A
MINT29	429	60	0.7	Yes	CpG clone 20b1	7q11	N.D
MINT30	536	65	0.5	Yes	None	20q11	Type A
MINT31	673	65	0.8	Yes	None	17q21	Type C
MINT32	464	66	1	Yes	None	20q13	Type A
MINT33	139	65	0.8	Yes	None	N.D	N.D

O/E: Observed/expected numbers of CpGs. N.D: not determined.

^{*} Only one portion of the clones has a CpG island.

10

15

20

25

By DNA homology search using the BLAST program (BLAST 2.0, default parameters, see http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nphnewblast?J-form=0), 4 clones were identical to human gene sequences, four clones were identical to CGIs randomly sequenced from a CGI library (Cross et al., 1994), one was identical to an EST, two clones were identical to high throughput genomic sequences deposited in Genbank, three clones had significant homology to other genes and the other 19 had no significant match in the database; MINT11 was identical to exon 1 and intron 1 of the human versican gene (Zimmerman et al., 1989), and corresponded to the 3' edge of a promoter associated CGI; MINT14 was identical to exon 1 of the human alpha-tubulin gene (Dobner, P.R., et al., 1987), and was also the 3' edge of the CGI; MINT 24 corresponded to the 3' noncoding region of the human homeobox gene CSX (Turbay et al., 1996); MINT21 had a region with 94% homology at the nucleotide level to exon 2 of the mouse OPT gene (Simeone et al., 1994) and probably represents the human homologue of this gene; MINT28 was homologous to ribosomal gene sequences; MINT18 was homologous to the acrogranin gene family. To examine the presence of potential promoter sequences in these clones, promoter prediction was performed using several computer programs (see programs available at http://dot.imgen.bcm.tmc.edu:9331/seq-search/gene-search.html). Twenty out of the 33 clones were predicted as promoters using the NNPP program, and 6 were predicted as promoters by using the TSSG program.

The chromosomal position of most of the unknown clones was determined using a somatic cell hybrid panel and a radiation hybrid panel (Table 1). Of note, MINT3 and MINT9 mapped to chromosome 1p35-36, MINT13 mapped to 7q31, MINT24 mapped to 3p25-26, MINT25 mapped to

10

15

20

25

22q11-Ter, and MINT31 mapped to 17q21. All of these chromosomal segments are areas that are frequently deleted in various tumors.

An important application of MCA is in the discovery of novel genes hypermethylated in cancer. As demonstrated here, MCA coupled with RDA is a rapid and powerful technology for this purpose, and compares favorably with other described techniques (Hayashizaki *et al.*, 1994, Gonzalgo *et al.*, 1997; Huang *et al.*, 1997). In addition to the identification of genes hypermethylated in cancer, MCA could potentially be used to discover novel imprinted genes using parthenogenetic DNA (Kaneko-Ishino *et al.*, 1995), as well as novel X-chromosome genes.

EXAMPLE 3

SILENCING OF THE VERSICAN GENE IN CRC

To determine whether some of these clones truly represented genes silenced by methylation, we examined the *versican* gene in more detail. Versican is a secreted glycoprotein that appears to be regulated by the *Rb* tumor suppressor gene (Rohde *et al.*, 1996). MINT11 corresponds to part of exon 1 and part of intron 1 of the *versican* gene (Figure 3A). Hypermethylation of the two Smal sites in exon 1 and intron 1 in colon cancer cell lines was confirmed by both Southern blot analysis and MCA. In order to determine if this methylation was representative of the entire CGI, including the proximal promoter, PCR was performed on bisulfite-treated DNA using primers designed to amplify the region around the transcription start site of this gene. The PCR product was then digested with restriction enzymes that distinguish methylated from unmethylated DNA. The *versican* promoter was found to be completely methylated in the colon cancer cell lines, DLD1, LOVO, SW48

10

15

and SW837, and partially methylated in HCT116 and HT29 (Figure 3B). In primary colon tumors, versican was hypermethylated in 17 out of 25 cases (68%). Interestingly, some methylation of the versican promoter was also found in normal tissues, albeit at lower levels when compared to tumors. The level of methylation in normal colon mucosa increased with age of the patient (Fig3C), from an average of 6.9% in patients between 20 and 30 years of age, to an average of 28.9% in patients over 80. A linear regression analysis revealed a significant association between age and versican promoter methylation (R=0.7, P<0.000001). Using RT-PCR, we next examined the expression of versican in normal colon mucosa and CRC cell lines. Versican was found to be expressed in normal colon epithelium, but was markedly down-regulated or absent in methylated colon cancer cell lines. Expression of versican in all these cell lines was easily restored after treatment with the demethylating agent, 5-aza-deoxycytidine. These data suggest that versican becomes methylated in normal colon in an age-dependent manner, and that this leads to hypermethylation and loss of expression in most colorectal tumors.

20 and characterized in detail. By sequencing, we found that 29 out of the 33 clones satisfy the criteria of CpG islands, demonstrating that MCA can represent CGIs specifically. Of these 29 clones 5 were already known genes (versican, alpha-tubulin, CSX, OPT homologue and ribosomal RNA gene). Of these, versican is most interesting in that this proteoglycan is an Rb inducible gene (Rohde et al., 1996), suggesting that down regulation of this gene product may have an important role in colorectal carcinogenesis, where Rb mutations are rare. The data clearly show that aberrant methylation of the versican gene promoter is correlated with silencing of this gene. In addition,

10

15

20

25

methylation of the alpha-tubulin gene in Caco2 is consistent with the results of studying the gene expression profile of colorectal cancers using SAGE (Zang et al., 1997), which demonstrated that alpha-tubulin is markedly down-regulated in CRC. Methylation of the CSX and OPT genes does not coincide with their 5' end, and is therefore not expected to silence these genes. It is possible, however, that these CpG islands are associated with alternate transcripts of the genes, or with other nearby genes, which would then be silenced by methylation (Wutz, A., et al., 1997). Finally, methylation of ribosomal genes has previously been seen in aging tissues (Swisshelm, K., et al., 1990) and therefore is not surprising to find in cancers. Because some of the clones recovered are in the exon 1 region of expressed genes, identification of new tumor suppressor genes might be facilitated by using MCA/RDA clones as probes for screening cDNA library. Indeed, based on their chromosome location, several clones map to chromosomal regions thought to harbor TSGs because they are highly deleted in various tumors (e.g., chromosome 1p35, 3p25-26, 7q31, 17q21 and 22q11-Ter).

EXAMPLE 4 TWO TYPES OF METHYLATION IN CRC

By examining the methylation status of several known genes in colorectal tumors, it has been previously demonstrated that some genes tend to be methylated in an age-dependent manner in normal colon (Issa *et al.*, 1994), and are frequently methylated in CRC, while others are methylated in cancers exclusively (Ahuja *et al.*, 1997). To examine this issue on a genome wide level in some detail, the methylation profile of 31 MINT clones in a panel of colorectal tumors and corresponding normal colon mucosa was examined using MCA (two clones could not be accurately studied because of high background (MINT29) or small size (MINT33)). Because all of theses clones

were recovered from a CRC cell line, there was an initial concern that many of these were not representative of methylation in primary (uncultured) tumors. However, of the 31 clones, 29 were also found to be methylated in some primary CRC. The two clones methylated only in the cell line Caco2 were (1) MINT14, a LINE element, and (2) MINT18, a sequence that had a very low 5 CpG frequency and did not qualify as a CGI. Thus, all non-repetitive CGIs recovered were methylated in primary CRC as well as cell lines. Hypermethylation patterns of these 29 clones fell into two distinct categories. A majority of the clones (22 out of 29) were found to be frequently methylated (>70%) in the tumors tested, and a slight amount of methylation was also 10 detected in normal colon mucosa. For all of these clones, the normal colon mucosa obtained from young patients showed less methylation compared to the normal mucosa from older patients (Figure 4B). Thus, the majority of CGIs hypermethylated in CRC are methylated in normal colon mucosa as well, in an age related manner. This methylation was named Type A for 15 aging-specific methylation.

The remaining 7 clones were methylated exclusively in CRC, and their frequency of methylation was significantly lower than type A methylation (ranging from 10% to 50%). This type of methylation was named type C for cancer-specific.

WO 00/26401 PCT/US99/25251

Recently, several reports have suggested that aberrant methylation of CGIs may play an important role in cancer development (Baylin *et al.*, 1998; Jones 1997). However, there is little integrated information on aberrant CGI methylation in cancer at multiple loci, probably because of the lack of a method to detect methylation in a large number of samples for unselected CGIs throughout the genome. Furthermore, it has been shown that cultured cell lines have a high degree of CGI methylation (Antequera *et al.*, 1990) but it was not known to what extent this reflects methylation in primary cancers. To address these issues, the relatively quantitative and high output features of MCA allowed us to determine the methylation profile of 31 differentially methylated loci in a panel of colorectal carcinomas.

5

10

15

20

25

Despite the fact that all sequences were initially recovered from a colon cancer cell line, only 2 out of the 31 clones showed cell line restricted methylation. From the sequence data, one of these two clones was a repeated sequences (LINE1), and the other was not a CGI. Thus most of the single copy clones recovered proved to be methylated not only in cell lines but also in some primary colon cancers. Analysis of these 29 clones revealed two distinct types of hypermethylation in cancer (Type A for aging and Type C for cancer), which may have distinct causes, and different roles in cancer development. Type A methylation was seen in the majority of these clones: 22 of 29 (74%) clones were methylated in an age-related manner in normal colon tissue, and hypermethylated at a high frequency in CRC, as we have shown for the ER gene (Issa et al., 1994) and others (Issa et al., 1996; Ahuja et al., submitted). These results suggest that a large number of CGIs in the human genome are incrementally methylated during the aging process and, for many genes, this methylation correlates with reduced gene expression as shown for ER (Issa et al., 1994) and versican. Although the mechanism of

Type A methylation is unknown, it is likely to result from physiological processes rather than a genetic alteration because (1) it is very frequent and affects large numbers of cells, (2) it is present in all individuals, not just patients with cancer and (3) this process is gene and tissue specific (Ahuja et al., submitted). Because the methylation status at a given CGI is thought to be related to positive (methylator) factors (Mummaneni et al., 1993; Mummaneni et al., 1995; Magewu and Jones, 1994, Vertino et al., 1996) and negative (protector) factors (Macleod et al., 1994; Brandeis et al., 1994; Turker and Bestor, 1997; Chen et al., 1997), it is possible that for some genes, this balance favors slightly de-novo methylation, and that this is reflected by progressive hypermethylation after repeated cell divisions.

EXAMPLE 5 GLOBAL HYPERMETHYLATION IN CRC

15

20

10

5

To understand the patterns of cancer-specific methylation in CRC, the methylation status of all 7 type C clones was analyzed, as well as p16 in primary cancers and polyps (Figure 4). Two of these clones (MINT1 and MINT2) were studied by both MCA and bisulfite-PCR, and the concordance between the two techniques was found to be 98%. P16 was studied by both MCA and Southern blot, with a concordance rate of 98%. When we considered the six clones that were methylated in more than 10% of the cases, as well as p16, a remarkable pattern emerged (summarized in Figure 5 and Table 2).

Table 2: Percentage of Tumors Methylated at Multiple MINT Loci, p16 and hMLH1.

		ľ	Type C Methylation	Methyl	ation					Type /	Type A Methylation	ylation		
	MINT	MINT	MINT MINT MINT MINT MINT PIG HMLH	MINT	MINT	MINT	9I <i>q</i>	- hMLH	MINT	MINT MINT MINT MINT MINT	MINT	MINT	MINT	MINT
		7	12	17	25	31	•	I	9	00	22	24	30	32
MI+ Cancer														
EI + (n=12)	100%	100%	%001	%76	100% 92%	%76	83%	100%	100%	100% 100% 100% 100% 100%	100%	100%	100%	100%
El- (n=4)	25%	%0	%0	%0	%0	%0	%0	25%	100%	100%	100% 100%	75%	75%	%0\$
MI- Cancer														
EI+(n=17)	%59	82%	%65	41%	100% 82%	82%	29%	%0	94%		100%	100% 100% 100%	%09	93%
EI- (n=17)	%0	12%	%0	%0	12%	%	%0	%0	82%	%98	100%	82%	40%	%59
Adenoma														
EI + (n=7)	%98	%98	71%	29%	%98	71%	57%	%0	%98	83%	100%	100%	43%	%98
EI- (n=8)	%0	%0	%0	%0	%0	13%	%0	%0	20%	100%	100% 86%	%05	13%	25%

WO 00/26401 PCT/US99/25251 -

-53-

The 50 CRC fell into two distinct groups: (1) A group with a high level of Type C methylation, whereby all the tumors had methylation of 4 or more loci simultaneously and (2) a group where methylation of any type C clone is extremely rare. Thus, the first group of tumors appears to display profound global hypermethylation (GH+), which is lacking in the second group (GH-). Interestingly, there was a great concordance between methylation of the *p16* gene, which was not selected for by our cloning process, and the presence of GH. In sharp contrast, Type A methylation was not significantly different between GH+ and GH- tumors (Table 2).

5

10

15

20

25

GH was also detected in a subset of colorectal adenomas (Figure 5), suggesting that it is an early event in carcinogenesis. Interestingly, while 5 of 5 small adenomas (<7 mm) were GH-, 6 of 9 large adenomas (>10 mm) were GH+, suggesting that this defect may be acquired in the transition between small and large adenomas. In 6 cases, both an adenoma and a cancer from the same patients were examined. In one of these, GH was detected both in the adenoma and the cancer; in 3 cases, GH was detected in the cancer but not in the adenoma and in 2 cases, GH was detected in neither the adenoma nor the cancer.

By contrast to type A methylation, type C methylation is relatively infrequent in primary CRC, and is never observed in normal colon mucosa. Furthermore, detailed analysis of type C methylation in CRC revealed a striking pattern, suggesting the presence of global hypermethylation in a subset of these tumors: GH positive cases are characterized by frequent and concordant methylation of all type C clones examined, such that each tumor has at least four methylation events. By contrast, type C methylation is

10

15

20

25

virtually non-existent in tumors without GH. This concordance cannot be due to simple experimental variation or artifacts because (1) methylation was verified using separate methods (MCA, bisulfite-PCR and Southern blots), (2) the concordance was not limited to MCA/RDA derived clones since it also affected the p16 (Herman et al., 1995) and hMLH1 (Kane et al., 1997) genes, and (3) there was no significant difference in type A methylation between GH+ and GH- tumors. Global hypermethylation appears to be an early event in the development of CRC, being detectable in large pre-neoplastic adenomas. Because many genes are potential candidates for inactivation through promoter methylation (Baylin et al., 1998; Jones, 1996), global hypermethylation may have profound pathophysiologic consequences in neoplasia through the simultaneous inactivation of tumor-suppressor genes (such as p16), metastasis-suppressor genes (such as E-cadherin), angiogenesis inhibitors (such as Thrombospondin-1) and others. In fact, our data suggest that global hypermethylation could also result in mismatch repair deficiency through methylation and inactivation of the hMLH1 promoter, and may explain up to 75% of cases of sporadic CRC with microsatellite instability. The causes of type A and type C methylation are probably different because the latter is detected only in a limited number of cases, and the genes affected are different. Because of the remarkable concordance in type C methylation among GH+ cases, it appears likely that these tumors all share a specific defect in the maintenance of the methylation-free state in CGIs. This defect could be either aberrant de-novo methylation (through a mutation in DNA-methyltransferase for example), or loss of protection against de-novo methylation, through the loss of a trans-activating factor (Macleod et al., 1994; Chen et al., 1997). Because DNA-methyltransferase activity is similar in the two groups, the latter hypothesis is more likely. Thus, at least in colorectal cancer, it appears likely that type C methylation (an epigenetic error) is

WO 00/26401 PCT/US99/25251 -

-55-

actually caused by a genetic event that results in an increased chance of methylating a subset of CGIs. Ironically, this epigenetic defect may then result in additional genetic lesions through the induction of mismatch-repair deficiency.

5

10

15

20

25

EXAMPLE 6

MICROSATELLITE INSTABILITY IS LINKED TO GLOBAL HYPERMETHYLATION IN CRC

In a previous study (Ahuja et al., 1997), a link was reported between microsatellite instability and a hypermethylator phenotype in sporadic CRC. Relatively few mutations in mismatch repair genes have been reported in sporadic MI+ cancers, but hMLHI methylation has recently been observed in some cases (Kane et al., 1997). To determine the relation between global hypermethylation and microsatellite instability in CRC, we measured hMLH1 methylation using bisulfite/PCR in our panel of CRC which had also been previously typed for the presence of microsatellite instability (Figure 5). hMLH1 was studied by bisulfite-PCR only because it does not have 2 SmaI sites in its CGI. Overall, 16 out of 50 (32%) cancers had evidence of microsatellite instability. Among the 29 GH+ cases, 12 had evidence of hMLH1 methylation, suggesting that hMLH1 is one of the targets of global hypermethylation in CRC. All of these 12 tumors had microsatellite instability. By contrast, hMLH1 methylation was detected in only one of the 21 GH- cases. These data establish a strong link between the GH phenotype, hMLH1 methylation and microsatellite instability in CRC. Two lines of evidence suggest that microsatellite instability may follow, and be caused by, global hypermethylation and hMLH1 methylation. First, GH is detectable in about half of colonic adenomas, but none of these tumors have hMLH1

methylation, and microsatellite instability is extremely rare in this preneoplastic lesion (Samowitz and Slattery, 1997). Second, GH is not simply
caused by mismatch repair defects because microsatellite instability is absent
in more than half of the GH+ cases, and GH was absent in 4 of the 16 cancers
with microsatellite instability. Overall, our data suggest that, in sporadic
CRC, the majority (12 out of 16, or 75%) of cases with microsatellite
instability may be caused by GH followed by hMLH1 methylation, loss of
hMLH1 expression and resultant mismatch repair deficiency (Herman et al.,
submitted).

10

15

20

25

5

Based on these data, the following model has been developed integrating CGI methylation into CRC development (Figure 6). In this model, CGI methylation plays two distinct roles, and appears to arise through distinct mechanisms. Initially, type A methylation arises as a function of age in normal colorectal epithelial cells. By affecting genes that regulate the growth and/or differentiation of these cells, such methylation results in a hyperproliferative state, which is thought to precede tumor formation in the colon (reviewed by Lipkin, 1988). Such hyperproliferation is known to arise with age in colorectal epithelium (Holt et al., 1988, Roncucci et al., 1988), and to be marked in patients with CRC. The cause of type A methylation is unknown, but without being bound by theory it is possible that it is related to endogenous factors inherent to the structure of DNA, and that it may be modulated by factors such as level of ongoing expression and exposure to carcinogenic insults. Furthermore, modulation of type A methylation may provide one possible explanation for the reduction in CRC tumorigenesis by reducing levels of DNA-methyltransferase (Laird et al., 1995).

WO 00/26401 PCT/US99/25251 -

A second major role for CGI methylation appears later, perhaps at the transition between small and large adenomas in the colon. This methylation (type C) affects only a subset of tumors, which then evolve along a pathway of global hypermethylation. This GH leads to cancer development through the simultaneous inactivation of multiple tumor-suppressor genes such as p16, and induction of mismatch repair deficiency through inactivation of hMLH1. The cause of this global hypermethylation is unknown, but may well be related to inactivation of a gene that protects CGIs from de-novo methylation. Finally, we propose that tumors without GH evolve along more classic genetic instability pathways, including chromosomal instability (Lengauer *et al.*, 1997A). Interestingly in this regard, Lengauer et al found an inverse correlation between chromosomal instability and MMR deficiency in CRC cell lines (Lengauer *et al.*, 1997B).

While based on CRC, this model is applicable to most human malignancies. In evidence has also been found for type A and type C methylation in brain tumors (Li et al., 1998). Preliminary evidence also suggests the presence of global hypermethylation in multiple types of cancers, including stomach cancers, brain tumors and hematopoietic malignancies.

20

25

10

15

In conclusion, a novel method, MCA, has been developed to selectively amplify methylated CGIs. Using MCA/RDA 33 differentially methylated clones in CRC were isolated. The methylation profile of these clones revealed that nearly all methylation in CRC can be accounted for by (1) age-related methylation and (2) a hypermethylator phenotype presumably caused by global hypermethylation. Deciphering the mechanisms underlying these phenomena should facilitate the early detection, prevention and therapy of cancers, including colorectal cancers.

EXAMPLE 7 IDENTIFICATION OF CACNAIG AS A TARGET FOR HYPERMETHYLATION ON HUMAN CHROMOSOME 17q21

5

10

15

20

25

To identify genes differentially methylated in colorectal cancer, methylated CpG island amplification was used followed by representational difference analysis (Razin and Cedar, Cell 17: 473-476, 1994, herein incorporated by reference). One of the clones recovered (MINT31, see above) mapped to human chromosome 17q21 using a radiation hybrid panel, and a Blast search revealed this fragment to be completely identical to part of a BAC clone (Genbank: AC004590) sequenced by high throughput genomic sequence. The region surrounding MINT31 fulfills the criteria of a CpG island: GC content 0.67, CpG/GpC ratio 0.78 and a total of 305 CpG sites in a 4 kb region. Using this CpG island and 10 kb of flanking sequences in a Blast analysis, several regions highly homologous to the rat T-type calcium channel gene, CACNAIG, were identified (Perez-Reyes et al., Nature 391: 896-900. 1998, herein incorporated by reference). Several ESTs were also identified in this region. Using Genscan, 2 putative coding sequences (G1, and G2) were identified. Blastp analysis revealed that G1 has a high homology to the EHdomain-binding protein, epsin, while G2 is homologous to a C-elegans hypothetical protein (accession No. 2496828).

The MINT31 CpG island corresponds to the 3' regions of G1 and G2, based on the direction of the open reading frame and the presence of a poly A tail, and is unlikely to influence their transcription. The EST closest to MINT31 (H13333) was sequenced entirely and was found not to contain a continuous open reading frame, but a poly-adenylation signal was identified

10

15

20

25

on one end, along with a poly A tail. These data suggest that H13333 corresponds to the last 2 exons of an unidentified gene. MINT31 is in the intron of this gene and is unlikely to influence its transcription. However, based on both promoter prediction (TSSG) analysis of this region and homology to the rat *CACNA1G* sequence, the MINT31 CpG island is also in the 5' region of human *CACNA1G* gene and may play a role in its transcriptional activity.

The human CACNA1G sequence deposited in Genbank lacks the 5' region of the gene, when compared to the rat homologue. To determine the 5' region of human CACNA1G, we amplified cDNA by RT-PCR using primers based on the BAC sequence (Genbank: AC004590, herein incorporated by reference). The PCR products were cloned and sequenced, and the genomic organization of the gene was determined by comparing the newly identified sequences as well as the known sequences to the BAC that covers this region. CACNAIG is composed of 34 exons which span a 70 kb area. Based on sequences deposited in Genbank, the gene has two possible 3' ends caused by alternate splicing. CACNAIG is highly homologous to rat CACNAIG with 93% identity at the protein level, and 89% identity at the nucleotide level. The 5' flanking region of CACNAIG lacks TATA and CAAT boxes, which is similar to many housekeeping genes. A putative TFIID binding site was identified 547-556 bp upstream from the translation start site, and several other potential transcription factor binding sites such as AP1 (1 site), AP2 (2 sites) and SP1 (10 sites), were identified upstream of CACNAIG exon 1 using the promoter prediction program, TESS (data not shown).

The CACNAIG CpG island is 4 kb, and is larger than many typical CpG islands. MINT31 corresponds to the 5' edge of the island while

10

15

20

25

CACNA1G is in the 3' region. It is not known whether large CpG islands such as this are coordinately regulated with regards to protection from methylation, and aberrant methylation in cancer. To address this issue, the methylation status of the 5' region of CACNA1G was studied using bisulfite-PCR of DNA from normal tissues as well as 35 human cancer cell lines from colon, lung, prostate, breast and hematopoietic tumors. The CpG island was divided into 8 regions and their methylation status was examined separately. The genomic DNA was treated with sodium bisulfite and PCR amplified using primers containing no or a minimum number of CpG sites. Methylated alleles were detected by digesting the PCR products using restriction enzymes which specifically cleave sites created or retained due to the presence of methylated CpGs. None of the regions was methylated in normal colon, consistent with a uniform protection against de-novo methylation.

Regions 1 and 2 were frequently methylated in cancer cell lines, and behaved in a concordant manner. These 2 regions were methylated in most cancer cell types except gliomas, and most cell lines where methylation was found methylated both regions simultaneously. Region 3, which is less CG rich than any of the other regions, had either no methylation or very low levels of methylation in most cell lines. Regions 5, 6, and 7 behaved quite differently compared to 1-3. Methylation of these regions was less frequent than regions 1-2, as 22/35 cell lines had no detectable methylation there, despite often showing methylation of region 1-2. However, when methylation was present (in 13/35 cell lines), it affected all 3 regions simultaneously, although to varying extents. Finally, regions 4 and 8 behaved differentially again, being partially methylated primarily in colon and breast cell lines. Therefore, with regards to hypermethylation in cancer, the CpG rich region upstream of *CACNA1G* appears to be composed of 2 CpG islands which

behave independently. MINT31 corresponds to the upstream CpG island (island 1, regions 1 and 2), while the 5' region of *CACNA1G* is contained in the downstream CpG island (island 2, regions 5-7). Regions 3, 4 and 8 correspond to the edge of these CpG islands, and behave a little differentially than the hearts of the CpG islands, as previously described for the *E-Cad* gene (Graff, et al., *J. Biol. Chem.* 272: 22322-22329, 1997).

5

10

15

20

25

Overall, the methylation patterns fell into 5 distinct categories: (1) No methylation in any region (normal tissue). (2) Slight methylation of island 1 (6 cell lines, see for example TSU-PRL in Fig. 2). (3) Heavy methylation of island 1 but no methylation of island 2 (16 cell lines, see for example Caco2 in Fig. 2). (4) Heavy methylation of island 1 and moderate to heavy methylation of island 2 (6 cell lines, see for example RKO and Raji in Fig. 2). (5) High methylation of island 1 and low to moderate methylation of island 2 (7 cell lines, see for example MB-231 in Fig. 2).

In a previous study of rat *CACNA1G*, this gene was shown to be expressed most abundantly in the brain (Perez-Reyes et al., *Nature* 391: 896-900. 1998). To determine the expression of *CACNA1G* in normal and neoplastic human cells, RT-PCR was performed using cDNA from various normal tissues and from a panel of 27 tumor cell lines. *CACNA1G* was expressed ubiquitously in a variety of tissues and cell lines. In normal tissues expression was relatively low but easily detectable, while most cell lines had relatively high expression of *CACNA1G*. However, some cell lines had negligible or totally absent levels of *CACNA1G* expression. The results of *CACNA1G* expression was correlated with the detailed methylation analysis previously described. In this analysis, a remarkable pattern emerged. Methylation of region 1-4 and 8 had no effect on *CACNA1G* expression.

However, there was a strong correlation between methylation of regions 5-7 and expression of the gene. In fact, all cell lines that lack methylation of this region strongly express the gene. All 6 cell lines with pattern 4 methylation studied had no detectable expression. Finally, the 7 cell lines with pattern 5 methylation (examples DLD-1 and MB-453) had variable levels of expression ranging from very low to near normal. The fact that patterns 3 and 5 differ significantly with regards to expression, but are almost identical with regards to methylation of all regions except 7 suggests that this area is important in the inactivation of *CACNA1G*.

10

5

To confirm whether methylation of the 5' CpG island of *CACNA1G* is really associated with gene inactivation, 3 non-expressing cell lines showing pattern 4 methylation (RKO, SW48 and Raji) and 2 weakly expressing cell lines showing pattern 5 methylation (MB-231 and MB-435) were treated with 1 M of the methyl-transferase inhibitor 5-deoxy-azacitidine. After treatment, all these cell lines re-expressed *CACNA1G* mRNA. Consistent with re-expression, demethylation of region 7 was observed after 5-deoxy-azacitidine treatment (Fig. 3C).

20

25

15

De novo cytosine methylation is thought to sometimes occur in vitro during cell propagation (Antequera et al., *Cell* <u>62</u>: 503-514, 1990). To determine whether the methylation of *CACNA1G* occurs in vivo, primary human tumors were examined for methylation of the 5' region of *CACNA1G*. Aberrant methylation was detected in 17 out of 49 (35%) colorectal cancers, 4 out of 28 colorectal adenomas (25%), 4 out of 16 (25%) gastric cancers and 3 out of 17 (18%) acute myelogenous leukemia cases. In colorectal cancers, there was a significant correlation between methylation of *CACNA1G* and methylation of *p16* (p<0.005) and *hMLH1* (p<0.001), as well as a strong

WO 00/26401 PCT/US99/25251

correlation with the presence of microsatellite instability, and the recently identified CpG island methylator phenotype (CIMP), supporting that *CACNAIG* is also a target for CIMP in colorectal cancer.

5

10

15

To determine whether aberrant methylation of the 5' region of *CACNAIG* affects the expression status of this gene in primary tumors, we performed RT-PCR using cDNA from a series of colorectal adenomas. Six out of 8 cases which showed no methylation of region 7 expressed *CACNAIG*. In sharp contrast, all 5 cases that showed methylation of region 7 had no detectable expression of this gene.

Thus, a human T-type calcium channel gene (*CACNAIG*) has been identified and cloned using the MINT31 sequence as a probe. The human T-type calcium channel gene has been determined to be a target of aberrant methylation and silencing in human tumors. The data show that MINT31 (a representative sequence of MINT1-33) can be used as a probe to identify genes that play a role in disorders such as cell proliferative disorders.

that methylation 300 to 800 bp upstream of the gene closely correlated with transcriptional inactivation. The CACNA1G promoter is contained in a large CG rich area that is not coordinately methylated in cancer. The CpG island around MINT31 is much more frequently methylated in cancers compared to that just upstream of CACNA1G. This may simply be caused by differential susceptibility to de-novo methylation between these two regions, with methylation of MINT31 serving as a trigger, and eventually spreading to CACNA1G, as described in other genes (Graff, et al., J. Biol. Chem. 272: 22322-22329, 1997). However, it is likely that these 2 regions are controlled

10

15

20

25

by different mechanisms because (1) cell lines kept in culture for countless generations do not in fact spread methylation from MINT31 to CACNAIG (e.g., Caco2), (2) region 3 that separates the 2 islands is infrequently and sparsely methylated in cancer and (3) 2 cases of primary colorectal cancer were found which are methylated at the CACNAIG promoter but not at MINT31). Therefore, methylation of MINT31 appears to be independent of methylation of CACNAIG suggesting that they are 2 distinct CpG islands regulated by different mechanisms. These data leave open the possibility that MINT31 is the promoter for an unidentified gene, which may perhaps be transcribed opposite to CACNAIG.

Many CpG islands of silenced genes appear to be methylated uniformly and heavily throughout the island (e.g., Graff, et al., J. Biol. Chem. 272: 22322-22329, 1997). In contrast the methylation patterns of the 5' region of CACNAIG (region 5-7) was heterogeneous in the cell lines which did not express this gene. Nevertheless, methylation does appear to play a role in CACNAIG repression since demethylation readily reactivates the gene.

The causes of *CACNA1G* methylation remain to be determined. Methylation was not detected in normal colon mucosa, placenta, normal breast epithelium and normal bone marrow, including samples from aged patients, suggesting that methylation of this region is cancer specific. However, there was a significant correlation between methylation of *CACNA1G* and other tumor suppressor genes such as *p16* and *hMLH1*. Thus, *CACNA1G* probably is a target for the recently described CIMP phenotype, which results in a form of epigenetic instability with simultaneous inactivation of multiple genes. It should be noted that a gene identified by the method of the invention

10

15

(MINT31) has been successfully utilized to identify another gene of interest (CACNA1G) whose methylation pattern correlates with the presence of specific cell proliferative disorders.

rhythm generation but also in the control of cytosolic calcium during cell proliferation and cell death (reviewed in Berridge, et al., *Nature* 395: 645-648, 1998). The results demonstrate that the expression of *CACNAIG* is not limited to brain and heart, suggesting that it may play a role in these other tissues. It has previously been shown that Ca²⁺ influx via T-type channels is an important factor during the initial stages of cell death such as apoptosis (Berridge, et al., *Nature* 395: 645-648, 1998), ischemia (Fern, *J. Neurosci.* 18: 7232-7243, 1998) and complement-induced cytotoxicity (Newsholme, et al., *Biochem. J.* 295: 773-779, 1993.). These studies determining the methylation status of the *CACNAIG* suggest that the impairment of voltage gated calcium channels may play an important role in cancer development and progression through altering calcium signaling.

EXAMPLE 8

EXPERIMENTAL PROCEDURES

Methylated CpG Island Amplification.

The procedure is outlined in Figure 1. Five µg of DNA were digested 5 with 100 units of Smal for 6 hours (all restriction enzymes were from NEB). The DNA was then digested with 20 units of XmaI for 16 hours. DNA fragments were then precipitated with ethanol. RXMA and RMCA PCR adaptors were prepared by incubation of the oligonucleotides RXMA24 (5'-AGCACTCTCCAGCCTCTCACCGAC-3') (SEQ ID NO: 34) and RXMA12 (5'-CCGGGTCGGTGA-3') (SEQ ID NO:35), or RMCA24 10 (5'-CCACCGCCATCCGAGCCTTTCTGC-3') (SEQ ID NO:36) and RMCA12 (5'-CCGGGCAGAAAG-3') (SEQ ID NO:37) at 65% for two min. followed by cooling to room temperature. 0.5 µg of DNA was ligated to 0.5 nmol of RXMA or RMCA adaptor using T4 DNA ligase (NEB). PCR was performed using 3 µl of each of the ligation mix as a template in a 100 µl 15 volume containing 100 pmol of RXA24 or RMC24 primer, 5 units of Taq DNA polymerase, (GIBCO-BRL.), 4 mM MgCl2, 16 mM of NH4 (SO₄)2, 10mg/ml of BSA, and 5% v/v DMSO. The reaction mixture was incubated at 72°/C at 5 min and at 95°/C for 3 min. Samples were then subjected to 25 20 cycles of amplification consisting of 1 min at 95%, and 3 min either at 72% or 77°/C in a thermal cycler (Hybaid, Inc.). The final extension time was 10 min.

Detection of Aberrant Methylation Using MCA.

25

MCA products from normal colon mucosa and corresponding cancer tissues were prepared as described above. One µg of MCA products was resuspended in 4 µl of TE (10 mM Tris pH 8.0, 1 mM EDTA pH 8.0), mixed with 2 µl of 20 X SSC, and 1 µl aliquot of this mix was blotted onto nylon

membranes (Nunc) using a 96 well replication system (Nunc). The membranes were baked at 80°/C, UV crosslinked for 2 min. and hybridized using ³²P labeled probes. Each sample was blotted in duplicate. Each filter included mixtures of a positive control (Caco2) and a negative control (normal colon mucosa from an 18 year old individual). The filters were exposed to a phosphor screen for 24 to 72 hours and developed using a phosphorimager (Molecular Dynamics). The intensity of each signal was calculated using the Image Quant software, and methylation levels were determined relative to the control samples.

10

15

5

RDA.

RDA was performed essentially as previously reported (Lisitsyn et al., 1993) with the following modifications. For the first and second rounds of competitive hybridization, 500 ng and 100 ng of ligation mix was used, respectively. To eliminate the digested adaptor, a cDNA spun column (Amersham) was used instead of excising from the agarose gel. Primers used for the first and second rounds of RDA are as follows:

JXMA24	5'-ACCGACGTCGACTATCCATGAACC-3'	SEQ ID NO:38
JXMA12	5'-CCGGGGTTCATG-3'	SEQ ID NO:39
JMCA24	5'-GTGAGGGTCGGATCTGGCTGGCTC-3'	SEQ ID NO:40
JMCA12	5'-CCGGGAGCCAGC-3'	SEQ ID NO:41
NXMA24	5'-AGGCAACTGTGCTATCCGAGTGAC-3'	SEQ ID NO:42
NXMA12	5'-CCGGGTCACTCG-3'	SEQ ID NO:43
NMCA24	5'-GTTAGCGGACACAGGGCGGGTCAC-3'	SEQ ID NO:44
NMCA12	5'-CCGGGTGACCCG-3'	SEQ ID NO:45

After the second round of competitive hybridization, PCR products were digested with XmaI. The J adaptor was eliminated by column filtration. The PCR products were then subcloned into Bluescript SK(-) (Stratagene). To screen for inserts, a total of 396 clones were cultured overnight in LB medium with ampicillin and 3 μ l of the culture was directly used as template for a PCR reaction. Each clone was amplified with

- T3 (5'-AATTAACCCTCACTAAAGGG-3') (SEQ ID NO:46) and
- T7 (5'-GTAATACGACTCACTATAGGGC-3') (SEQ ID NO:47) primers,

blotted onto nylon membranes, and screened for cross hybridization with 32P labeled inserts. The clones differentially hybridizing to tester and driver MCA products were further characterized by Southern blot analysis and DNA sequencing.

15

20

10

5

Southern blot analysis.

Five μg of DNA was digested with 20-100 units of restriction enzymes as specified by the manufacturer (NEB). DNA fragments were separated by agarose gel electrophoresis and transferred to a nylon membrane (Zeta-probe, Bio-Rad). Filters were hybridized with 32P-labeled probes and washed at 65°/C with 2X SSC, 0.1 % SDS for 10 min. twice, and 0.1X SSC, 0.1 % SDS for 20 min. Filters were then exposed to a phosphor screen for 24-72 hours and analyzed by using a phosphorimager (Molecular Dynamics).

25 DNA sequencing and analysis.

Plasmid DNA was prepared using the Wizard Plus Minipreps
(Promega) according to the suppliers recommendation. Sequence analysis was carried out at the Johns Hopkins Core Sequencing Facility using automated

DNA sequencers (Applied Biosystems). Sequence homologies were identified using the BLAST program of the National Center for Biotechnology Information (NCBI) available at http://www.ncbi.nlm.nih.gov/BLAST using the default parmaters of the web site. Putative promoter sequences were predicted using the computer programs NNPP and TSSG available through the Baylor college of Medicine launcher at http://dot.imgen.bcm.tmc.edu:9331.

Bisulfite-restriction methylation analysis.

DNA from colon tumors, cell lines and normal colon mucosa was treated with bisulfite as reported previously (Herman *et al.*, 1996). Primers used for PCR were as follows:

	hMLH1,	5'-TAGTAGTYGTTTTAGGGAGGGA-3' (SEQ ID
		NO:44),
		5'-TCTAAATACTCAACRAAAATACCTT-3' (SEQ
15		ID NO:45);
	MINT1,	5'-GGGTTGGAGAGTAGGGGAGTT-3' (SEQ ID
		NO:46),
		5'-CCATCTAAAATTACCTCRATAACTTA-3' (SEQ
		ID NO:47);
20	MINT2,	5'-YGTTATGATTTTGTTTAGTTAAT-3' (SEQ ID
		NO:48), 5'-TACACCAACTACCCAACTACCTC-3'
		(SEQ ID NO:409);
	Versican,	5'-TTATTAYGTTTTTTATGTGATT-3' (V1) (SEQ
		ID NO:50), 5'-ACCTTCTACCAATTACTTCTTT-3'
25		(V2) (SEQ ID NO:51).

Ten to 20 μ l of the amplified products were digested with restriction enzymes which distinguish methylated from unmethylated sequences as

reported previously (Sadri et al., 1996; Xiong et al., 1997), electrophoresed on 3 % agarose or 5% acrylamide gels, and visualized by ethidium bromide staining.

5 RT-PCR

Total RNA was prepared from normal colon epithelium and tumor cell lines using TRIZOL (GIBCO-BRL). To study gene expression following demethylation, cell lines were treated with 1 M of 5-aza-2ÿ-deoxycytidine for 2-5 days. cDNA was prepared using random hexamers and reverse transcriptase as specified by the manufacturer (Boehringer). The expression of versican was determined by RT-PCR using the primers

VF 5'-GCTGCCTATGAAGATGGATTTGAGC-3' (SEQ ID NO:52) and

VR 5'-GGAGTTCCCCCACTGT-TGCCA-3' (SEQ ID NO:53).

15

10

The PCR products were visualized by ethidium bromide staining. The cDNA samples were also amplified using GAPDH gene, primers

GAPF 5'-CGGAGTCAACGGATTGGTCGTAT-3' (SEQ ID NO:54) and

GAPR 5'-AGCCTTCTCCATGGTGGTGAAGAC-3' (SEQ ID NO:55)

as a control for RNA integrity. All reactions were performed using RT (-) controls where the reverse transcriptase enzyme was omitted.

25

Chromosomal mapping.

The chromosomal location of clones that did not correspond to known genes was determined using a human-rodent somatic cell hybrid panel and a

5

10

15

radiation hybrid panel (Research Genetics). PCR reactions were performed using 30 ng of each of the hybrid panel DNA as a template in a 40 µl volume containing 15 pmol of each primer, 0.5 units of Taq DNA polymerase, (GIBCO BRL), 2mM MgCl2, BSA and 5% DMSO. First denaturation was carried out at 95°/C for 3 min. Samples were then subjected to 35 cycles of amplification consisting of 25 sec. at 94°/C, 1 min at 60 to 68°/C and 1.5 min. at 72°/C in a thermal cycler (Hybaid). The final extension time was 10 min. Ten µl of the PCR product were electrophoresed in a 2 % agarose and the genotype of each panel was determined. Linkage analysis was performed using the RH server of Stanford University as described (Stewart *et al.*, 1997).

Although the invention has been described with reference to the presently preferred embodiment, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

What is claimed is:

1. A method for identifying a methylated CpG-containing nucleic acid, comprising

- a) contacting a nucleic acid sample suspected of containing a CpG-containing nucleic acid with a methylation sensitive restriction endonuclease, under conditions and for a time to allow cleavage of the nucleic acid;
- b) contacting the sample with an isoschizomer of said methylation sensitive restriction endonuclease, wherein said isoschizomer of said methylation sensitive restriction endonuclease cleaves both methylated and unmethylated CpG sites.
- c) adding oligonucleotides to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to the nucleic acid cleaved by said restriction endonuclease; and
- d) amplifying said cleaved nucleic acid.
- 2. The method of claim 1, wherein said methylation sensitive restriction endonuclease is SmaI.
- 3. The method of claim 1, wherein said amplifying is by polymerase chain reaction amplification.

- 4. The method of claim 3, wherein said amplifying by polymerase chain reaction amplification comprises annealing primers complementary to said oligonucleotide.
- The method of claim 1, wherein said oligonucleotide comprises a sequence as set forth in a member of the group selected from SEQ ID NO:34 (RXMA24) and SEQ ID NO:35 (RXMA12).
- 6. The method of claim 1, wherein said oligonucleotide comprises a sequence as set forth in a member of the group selected from SEQ ID NO:36 (RMCA24) and SEQ ID NO:37 (RMCA12).
- 7. The method of claim 1, further comprising adhering the amplified nucleic acid to a membrane.
- 8. The method of claim 7, further comprising hybridizing the membrane with a probe of interest.
- 9. The method of claim 1, wherein the CpG containing nucleic acid comprises a methylated CpG island.
- 10. The method of claim 9, wherein the CpG island comprises a CpG island located in a gene selected from the group consisting of a p16, a Rb, a VHL, a hMLH1, and a BRCA1 gene.

- 11. The method of claim 1, wherein said sample is selected form the group consisting of a brain cell, a colon cell, a urogenital cell, a lung cell, a renal cell, a hematopoietic cell, a breast cell, a thymus cell, a testis cell, an ovarian cell, a uterine cell, an intestinal cell, serum, urine, saliva, cerebrospinal fluid, pleural fluid, ascites fluid, sputum, and stool.
- 12. The method of claim 1, wherein the presence of methylated CpG containing nucleic acid in the sample is indicative of a cell proliferative disorder.
- 13. The method of claim 12, wherein the cell proliferative disorder is selected from the group consisting of colon cancer, lung cancer, renal cancer, leukemia, breast cancer, prostate cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.
- 14. The method of claim 1, further comprising performing representation difference analysis, wherein said representation difference analysis comprises hybridizing a driving nucleic acid as a driver.
- 15. The method of claim 14, wherein said representation difference analysis uses nucleic acid isolated from a member of the group consisting of normal colon, normal lung, normal kidney, normal blood cells, normal breast, normal prostate, normal uterus, normal astrocytes, normal glial and normal neurons.
- 16. A nucleic acid identified by the method of claim 1.
- 17. A vector comprising the nucleic acid of claim 16.

- 18. A method for detecting an age-associated disorder, associated with methylation of CpG islands, in a nucleic acid sequence of interest in a subject having or at risk of having said disorder, comprising:
- a) contacting a nucleic acid sample suspected of comprising a CpGcontaining nucleic acid with a methylation sensitive restriction endonuclease, under conditions and for a time to allow cleavage of the nucleic acid;
- b) contacting the sample with an isoschizomer of said methylation sensitive restriction endonuclease, wherein said isoschizomer of said methylation sensitive restriction endonuclease cleaves both methylated and unmethylated CpG-sites, under conditions and for a time to allow cleavage of methylated nucleic acid;
- c) adding oligonucleotides to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotides to nucleic acid cleaved by said restriction endonuclease;
- d) amplifying said cleaved nucleic acid;
- e) adhering the amplified digested nucleic acid to a membrane; and
- f) hybridizing the membrane with a probe of interest.
- 19. The method of claim 18, wherein the sample is selected form the group consisting of brain cells, colon cells, urogenital cell, lung cells, renal cells, hematopoietic cells, breast cell, thymus cells, testis cells, ovarian cells, uterine cells, serum, urine, saliva, cerebrospinal fluid, pleural fluid, ascites fluid, sputum, and stool.
- 20. The method of claim 18, wherein the probe of interest is a nucleic acid sequence.

- The method of claim 18, wherein the nucleic acid sequence is selected from the group consisting of a p16, a Rb, a VHL, a hMLH1, and a BRCA1 nucleic acid.
- 22. The method of claim 21, wherein said nucleic acid sequence is a p16 nucleic acid sequence.
- 23. The method of claim 18, wherein the sample is a tissue sample or a biological fluid sample.
- 24. The method of claim 18, wherein the probe is detectably labeled.
- 25. The method of claim 24, wherein the label is selected from the group consisting of a radioisotope, a bioluminescent compound, a chemiluminescent compound, a fluorescent compound, a metal chelate, and an enzyme.
- 26. The method of claim 18, wherein said age-associated disorder is selected from the group consisting of atherosclerosis, diabetes melitis, and dementia.
- 27. The method of claim 18, wherein said age-associated disorder is a cell proliferative disorder.
- 28. The method of claim 18, wherein the nucleic acid of interest is a member of the group consisting of SEQ ID NOs:1-33 (MINT 1-33).

- 29. The method of claim 27, wherein said cell proliferative disorder is selected from the group consisting of colon cancer, lung cancer, renal cancer, leukemia, breast cancer, prostate cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.
- 30. The method of claim 18, further comprising performing representation difference analysis, wherein said representation difference analysis comprises hybridizing a driving nucleic acid as a driver.
- 31. The method of claim 30, wherein said representation difference analysis uses nucleic acid isolated from a member of the group consisting of normal colon, normal lung, normal kidney, normal blood cells, normal breast, normal prostate, normal uterus, normal astrocytes, normal glial and normal neurons.

- 32. A method for determining the response of a cell to an agent, comprising:
 - a) contacting a nucleic acid sample suspected of comprising a CpG-containing nucleic acid from said cell with a methylation sensitive restriction endonuclease, under conditions and for a time to allow cleavage of unmethylated nucleic acid;
 - b) contacting the sample with an isoschizomer of said methylation sensitive restriction endonuclease, wherein said isoschizomer of said methylation sensitive restriction endonuclease cleaves methylated and unmethylated CpG-sites, under conditions and for a time to allow cleavage of methylated nucleic acid;
 - c) adding an oligonucleotide to the nucleic acid sample under conditions and for a time to allow ligation of the oligonucleotide to nucleic acid cleaved by said restriction endonuclease;
 - d) amplifying said cleaved nucleic acid;
 - e) adhering the amplified cleaved nucleic acid to a membrane; and
 - f) hybridizing the membrane with a probe of interest.
- 33. The method of claim 32, further comprising performing representation difference analysis, wherein said representation difference analysis comprises hybridizing a nucleic acid as a driver.

- 34. The method of claim 32, wherein the agent is selected from the group consisting of peptide, peptidomimetic, chemical compound, and a pharmaceutical compound.
- 35. The method of claim 32, wherein said agent is a chemotherapeutic agent.
- 36. The method of claim 32, wherein said methylation sensitive restriction endonuclease is SmaI.
- 37. The method of claim 32, wherein said amplifying is by polymerase chain reaction amplification.
- 38. The method of claim 37, wherein said amplifying by polymerase chain reaction amplification comprises annealing primers complementary to said oligonucleotide.
- 39. The method of claim 32, wherein said oligonucleotide comprises a sequence as set forth in a member of the group selected from SEQ ID NO:34 (RXMA24) and SEQ ID NO:35 (RXMA12).
- 40. The method of claim 32, wherein said oligonucleotide comprises a sequence as set forth in a member of the group selected from SEQ ID NO:36 (RMCA24) and SEQ ID NO:37 (RMCA12).

- The method of claim 32, wherein said cell is selected form the group consisting of a brain cell, a colon cell, an intestinal cell, a urogenital cell, a lung cell, a renal cell, a hematopoietic cell, a breast cell, a thymus cell, a testis cell, an ovarian cell, a uterine cell, an exocrine cell, and an endocrine cell.
- 42. A kit useful for the detection of a methylated CpG-containing nucleic acid comprising carrier means containing one or more containers comprising a container containing oligonucleotides for ligation to nucleic acid, a second container containing a methylation sensitive restriction endonuclease and a third container containing an isoschizomer of the methylation sensitive restriction endonuclease.
- 43. The kit of claim 42, wherein said oligonucleotides comprises a sequence as set forth in a member of the group selected from SEQ ID NO:34 (RXMA24) and SEQ ID NO:35 (RXMA12).
- 44. The kit of claim 42, wherein said oligonucleotide comprises a sequence as set forth in a member of the group selected from SEQ ID NO:36 (RMCA24) and SEQ ID NO:37 (RMCA12).
- 45. The kit of claim 42, further comprising one or more containers comprising a primer complementary to said oligonucleotide.

- A kit useful for the detection of a methylated CpG-containing nucleic acid comprising a carrier means containing one or more containers comprising a membrane, wherein said membrane has a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 (MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33 immobilized on said membrane.
- 47. An isolated nucleic acid comprising a member selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33 (MINT1, MINT2, MINT4, MINT6, MINT8, MINT 9, MINT10, MINT14, MINT15, MINT17, MINT19, MINT20, MINT22, MINT23, MINT24, MINT27, MINT30, MINT31, MINT32, and MINT33), and degenerate variants thereof.
- 48. The nucleic acid of claim 47, wherein said nucleic acid is methylated.

- 49. The nucleic acid of claim 48, wherein said nucleic acid is unmethylated.
- 50. An substantially purified polypeptide encoded by the nucleic acid of claim 47.
- 51. The nucleic acid of claim 47, wherein said nucleic acid is operatively linked to an expression control sequence.
- 52. The nucleic acid of claim 51, wherein the expression control sequence is a promoter.
- 53. The nucleic acid of claim 52, wherein the promoter is tissue specific.
- 54. An expression vector containing the nucleic acid of claim 47.
- 55. The vector of claim 54, wherein the vector is a plasmid.
- 56. The vector of claim 54, wherein the vector is a viral vector.
- 57. The vector of claim 56, wherein the viral vector is a retroviral vector.
- 58. A host cell containing the vector of claim 54.
- 59. The host cell of claim 58, wherein the cell is a eukaryotic cell.
- 60. The host cell of claim 58, wherein the cell is a prokaryotic cell.

- 61. An isolated nucleic acid sequence comprising a methylated nucleic acid having a sequence as set forth in a member of the group consisting of SEQ ID NOs:1-33.
- 62. A method of identifying a compound that affects methylation of a nucleic acid, comprising:
 - a) incubating components comprising the compound and a sample comprising a nucleic acid sequence identified by the method of claim 1 under conditions sufficient to allow the components to interact; and
 - b) determining the effect of the compound on expression of the nucleic acid sequence.
- 63. The method of claim 62, wherein said sample is a cell.
- 64. The method of claim 62, wherein said sample is a substantially purified nucleic acid.
- 65. The method of claim 62, wherein the compound is selected from the group consisting of a peptide, a peptidomimetic, a chemical compound, and a pharmaceutical compound.

Figure 1

Figure 2

Probe: MINT2

C

Smal

CONSEGUEST GCCAAATGTA AACAATCCSS CATGATTCT TOSTITAGET AATCGAACCT
GCGGCGGTCT CGAGTCCCAG GCGCTCCCTC TCCCTTCTCT CGCGTTGCCC CCTGGGGCTC
TCTTTTATTT ATTTATTTGT CTCTCCCCCC ACCCGGCCT TAGTCTTTCC CTCTCTTTAG
TCTTAGTAGC TGCTTTTAAT GGAAGTCGAG GCAGTTGGGT AGTTGTGCA GGGAGTGCGG
TGGTGGTTT TATAAATACA GGTAAAATAA TACCCAAATT TCAGGCTGAG GTGCAGTTTC
TTGGAAGAGG AGGAGGTGT TCCTCTCCTT CCCTCCCTCT TTCCCCCTCC CCCGTTTATT
AGAGTATCCT CGGTGGAAG TGCCAGAAAA ATGTGCTGCA TCTCTGAGTC ACCTTTTCTT
CCCCCCGGAAC TCTAGCACCC AAGTTCCCTG GCGGATTTTG GACTCTCCCA AAGTGCTGAG
TTCGTCGTTT ACTTTGAAG CCCTGAAATAT AACTGATGTC CAACTGCAGA AAGGGCGCACG
GAATCGCCGC CACCATGCGG GG
Smal

MINT2: 562 bp

Figure 3

A

D

Figure 5

FIGURE 6A

MINT1 (SEQ	ID NO:1)				
	GTACCTGGAC	CTATACCTTC	ATAGCTGCCT	TAGGCTCAAC	TTTTCGGCGG
		AGGTGGCGGG		TAGCCGCAGT	
	AGAAACACCA			CATACATTCC	CGAAGCGCCT
GTCTGGCGTC		CAAGAGAGGG	CTGGAGAGCA	GGGGAGCCCG	CGGGGCTGAG
	AGCGCCTGCA		TACAACGCCT	TCATTCAGCA	
GGGCGCCTGC		GCCAGGCGAA		GNTGTGAAGC	TCAGAGGGGA
	TCGCAGTAAA		AGGTAATCTT	AGATGGNGAT	GAGGGCAGGA
	GNCGACCTCT		TTAGGGGGTT	TTCCCCTTCC	
		TCCAGAGCGT			0001000110
IAGAACIGGG	AROMITTIC	ICCAGAGCGI	cococomoc		
MINT2 (SEQ	TD NO.2)		•		
CCCGGGCGCT		AACAATCCGC	CATGATTTCT	TTGTTTAGCT	AATCGAACCT
GCCGCCGTCT	CGAGTCCCAG			CCCCTTCCCC	
	ATTTATTTGT		ACCCCGCCCT	TAGTCTTTCC	
	TGCTTTTAAT			AGTTGGTGCA	
		GGTAAAATAA		TCAGGCTGAG	
			CCCTCCCTCT	TTCCCCCTCC	
	AGGAGGGTGT		ATGTGCTGCA		
AGAGTATCCT	CGGTGGAAAG				
CCCGCCGAAC	TCTAGCACCC	AAGTTCGCTG	GCGGAIIIIG	GACTCTGCCA	AAGIGCIGAG
			AACTGATGTC	CAACTGCAGA	AAGGCGCACG
GAATCGCCGC	CACCATCCCG	GG			•
	TD NO. 21				
MINT3 (SEQ		COMPCON COMP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCCTCCTACA	א א בייייייייייי בא ביב
	CAGCTTCTCC			TGTGTCCGAG	
CTTCAGTCTG		AGATCTGGGA		TTATGAACCT	
	GCCTGAATGC		GGTTGTGCAG		
	AAGACGCTGG		CCACATGACC		
	TCTGGATCTG		TAGTTCGTGT	GGCTGTGTAA	
	TGTACCTATG			ACTGCGATGG	
	GGTGTATGTG		TGCGTGTCCG	TACATTTGAG	
GCGTGTGACT		CGAACATGTA			
	CGTGTGCCTG		GGTCTGCGCG	GGGATTCCCG	ACCCCCCCAC
ACTCACACCC	TCCAAGCCCC	GGG			
MINT4 (SEQ			\.	003303000	
CCCGGGCCTC	TGGCCCTCTG	CGTCTGCTAG	NCTCTTTCCC	CCAAGACTCC	CCGAGGTGGG
GAGAGNACTG	GTGNTCCCTG	GAGAAATCAA	GGTGTCCAAC	ATTCTCTCCG	AGGCGAGGCT
GCTTGAGCGC	CAGCAACAGG	NCCTGCTGAA	CTTTCTTCCC	CGGCTCCTAC	GCTCCGGTTG
				ATACTCCTCG	
CCCTTGACTA	TCCAAAGCAG	CCCGAAGTTG	GCGAGGAGAC	TCTGCCGGGT	GTNCGGGCAA
ATGNCCCGCC	GGGTGGCTCC	AGAAATGGNC	TGTGANCTGC	ACTCGCCTCG	GAGAAATTCC
AACTCTTGGT	TGAAGACTCT	GACTCAGAGG	AGCCCTCTGA	GGATGCGCCC	CTGGAGAAAG
NGCACGGGAG	GGAAAGTGGA	GAGAACTCGN	CCTCCCCAGG	GGCTAGNCAG	CTACTCCCGG
G					

7/13 FIGURE 6B

GGGAAAGTG TCTTAATTCG ACTGTCCTTG ATTCCTCANA TCCTTAACAC CCTCAAGACC GGTGCTTTCC ATGGACTATG ATGCTAAAAA CTGCCAGTCT TGTTGTGGTT	TGAGCCCTGC GATGCAACAC CCCACCAGC AGTCCCAGGG AGTAGGTGGG AGTATATAAG TCATTTGGGC AGTGTCCTCT TCTCCGGCTT TCCTTTAATC TTTCCAATCA TCCCCAATTT CCATGGGAAC GTCCTCGGAG TGGGGGTTGA	CCTGTTCCCA TTCAGGCTTG CATTTACTGA TCTGCAACCG GATTGGCATC AAAAGACCCC TGGAANAANC CCCCTCAATC CCAAAGAGNC AGAATATGTT TAAAAGATGG AGGATCCAGA ATCCTTTGAC TCTTGGAGAA	TGGAACACGG GTCTCCTCTA CCAANCAGAA TTACAATCAC ATANTGGGAT TACCCATATC	GGGTTGGCAG GGTTTGCCTT AACAGGGGTT ATCACTTTAT GANGAAGGTT TCAATGACCA CCTCCGTAAN CCCCTATTGA NCCAAATGCG CCCAGGGAGT GCCCATTGGT TCAATTCGAN ANCCTTTTTG TGTCTTTTAA	
TCAACACCAA	GAAGAGTAGG	GAAAGAAGCA	GCGGNGGTCC	TGGGTCCCCG	٠
GG					
MINT6 (SEQ CCCGGGCCCT GCGAGAGGTG GACAGTGGCT GCCGGGGTCA GATCCTTTTC TCCCACTTGT	CAGAGGCCGC TGTGGGGGCG GCAAAGGCAA GCTCGAACTG ATAGGTGAGG CAGCCTTGTT	GAGAGTGGCA AATCGGGTGT GAGCCTGTAA TCCCAGGAAC GTTTACCCAT	CAGGTTTGAC TATTTTCCCA TTTGTGAGTG GAGCCTGGTC	CTCGCAGGAA ACTGCAGGTC AGAGTCCCTT CGAGTGGGGA NGTGCTTAGG TCCCAGACTT	GGAGGAGGAA CAGCGTGAGT GCAGCAGGAG CAAAGGCCCT
GCCCGGTAGT TTAAGGCCCT GTCTTTCATA GAGGCTGGGG TCTCTGCTGC	GCCCAGAACG ATGCGAAGAC GAACACATTG GTAAGGACTT CTGGGGATGG CTACTCCTAA GCCAGGTCGT	ACGCATAACG AGCAAAAAGT TATTAAAAAG GGACGTCCTC ACGCAGCCGG CCATGGGGGT	CAAAAGGATT AGATCTGTCT CAGGCACTCG TGTTTTCTGG CAAAAATGAG TTTCAAGCGT	GCAGGACACA CCCGTCCTGG GTACAGACGT AATCCTAGGT TTGTGCACAT ACGTCAACTA TTTCTCGATG ACCTCCTGCT	ACTTTGGGAA TTCTTTCCAC GGGTAGATGG TAAAAATAAC AGCGCCGTTT ACTGATTTTT
CCATGCATTA GCCCAAAGGC TCCGGTTCGA AAGGCTTGCA CACAAAAACT CAAGNCACCC TTTTCCCAGC	GGCGGTGCAA GTAGTACTAC CCCAGGAGGG GTTATGCCAT GCTGCCTCCA TAATCCTGGN GATTTAATTT AGATCCTGCT CCGGTGCCTT ATTACCAGAT	CAAGCTATTC CAAGCTAATA AATCAATAGA TTGGAGGCTA ATCCCCAAAC ACGTCTGTCG CAACCATCTT	CTGTTAGAAC CGCCCCAGTC TATTGTGACT TTGTCAAAGA CATAATCAGA TTTTAGGCAA GGTTTGTAAT TAATTAAAAG	GACAGAAAAG AAGTTAAAAG ACTCAGGCTC GCTCTTCTCT AATATTGAAA AATTGTGCTA ATTTTATTT GTAATTTGTA CATAATTAAG TAGTTGCGCA	TAAGGGTTGA CCCTCGCTTC CCTGTGACAA ACAATCATGA CTTGTTCTTC CCCGGGACCT ATTNCTNCCC GGAAGATCTA

FIGURE 6C

MITETIO (CEI)	TD 370 01				
	ID NO:9)	CGACCAGGGG	3 CT3 CCC3 CC	CCCACTAGCC	ACCCGTCTTT
CCCGGGTCAT '				CCCCCAGTCC	
ATCTCCTAGA		ACCTCTTCAA		ACTCTGAAAC	
		GAGCGCATTT	TAGGGTGGTT	TACCCACCAG	
TAGGAATCTA		0.10 1110111	GAAGTACCTC		
CCCTCTCTCA	GCAGTGGATG		GGGGGTAGGG	ACGAGAAGGC	
GAAACAGCTT	CAAGACTCTT	TGGGTTCCTC	CTGCTCTCCA	GGGGAGCTTA	
	CACAGGTTTG	GAGGGAGGAA	AGAAGGAAGA		
	TTCCTCTTTT	CTTAACTTGG	GGGGAGGCC	AGGAAAACTT	CTTGAGTCAA
1 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GAGGNAGACA	TCAGATGTNG	GCAAGAGGCA	GACAGATTTT	GGGAAGGCAG
GAAATCTTGG		AAGCCTGTGT	TGTCCCCAGG	CTCTTCCCTG	TTCCCCCATC
	Williamourc	12100010101			
CCGGG					
MINT10 (SEC	ID NO:10)		oma communica	CCTTGGGCTC	CA TICCTIA CINIC
CCCGGGGGCT		GAGTCTTCNC	CTAGGTTTGG		
CCTGAATGTG		CTTCGTCCCA		TGAATGCCAA	
CGCTGGCCAG	GACNGAATAT	TTTTATGGTA	AAAAATGACC	GGCAGTTGCA	TCAGCTCCAG
GAGGGTGGGA		GAGGTCGCAC		ATGAAAATTC	TGCTTATAAA
	CCCCATTAAT	TAGGGGGGAG	GGGGCGCTCC	GGAGCCACCA	
CCACGGNCAA		AACATTTTCC	ACGAAGGATT	GAAAATGTAA	ATTAACTTTC
			AAGGTCGCCA	TACTGGGTGT	CATTTATCTC
	ATGTCACCAA	GGIAIGGAAA	ATTTCTTAAA	ATTAATGTTT	TATGTTGCTC
GTTGTGGATT	TAAAGAGCTT		AATTGATCAT	TACAGCCCCT	GGGATTTAGC
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AAACAATTAT	GGGCTTAAAG	AATIGATCAT		NGGCCGGGCA
GCTGCAGGCT	GATNNCCCTG	AAAAACCTCT	GATTIATCAG	GGNICGIWII	Modeccood
AGCCCGGG					
MINT11 (SE	D ID NO:11)		•		
CCCGGAGTG	GCTAACCAGG	AANANNAGGC	ACTGNCCACA	CACCANGGGC	TGGGAAATCA
AGTGGCCTGC	ACCAAGGCGG		CTTGTCTGTG	GCAAGTCTTG	GTAGTCCCCA
TTCAAACTTT				*********	AAGTGCCAAA
TTCAAACIII	TCCCTCCACC	CTCTTAAGAA	CAACAACAAA	WWWWWICH	
	TGCCTCGAGC	GTGTTAAGAA			TTTACAATTT
GGTCCCTCTC	TTCTCTCCAG	CTCAAGAACC	CACCACTTTT	CTATGATTTC	TTTACAATTT
GGTCCCTCTC ATTCCCTCCC	TTCTCTCCAG TTCCCCCAAT	CTCAAGAACC TCCGTTAGTC	CACCACTTTT ACTTTACCCC	CTATGATTTC CACCCCACCC	TTTACAATTT TGGGTTTCTT
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT	TTCTCTCCAG TTCCCCCAAT CTTTTCAAC	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC	CACCACTTTT ACTTTACCCC CTCTGTATGC	CTATGATTTC CACCCCACCC CTCTCCCCAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC	TTCTCTCCAG TTCCCCCAAT CTTTTTCAAC CTGCATTTTT	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC	TTCTCTCCAG TTCCCCCAAT CTTTTCAAC	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC	TTCTCTCCAG TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA	TTCTCTCCAG TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGGGGGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTG GGCTTATTGC	TTCTCTCCAG TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTG	TTCTCTCCAG TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG	TTCTCTCCAG TTCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12)	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12)	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC	TTCTCTCCAG TTCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG AGACTCCAGC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT	TTCTCTCCAG TTCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC CGTCTGCGGTC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG AGGGCTCAGA CCCAGATATG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG AGACTCCAGC GGGCCCCGCA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA	TTCTCTCCAG TTCCCCAAT TTCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC AGGTCAGTGA	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG AGGGCTCAGA CCCAGATATG	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG AGACTCCAGC GGGCCCCGCA GTTTTGGNCA CTGAATAATT	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC AGGTCAGGTC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG CCCGGG CCCAGATATGC CAGAATTTAGC	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG AGACTCCAGC GGGCCCCGCA GTTTTGGNCA CTGAATAATT GGGATTCTCC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA TTCACTTCCT ACCAAACAAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC AGGTCAGTGA AGGTCAGTGA AGGTCAGTGA AGGTCAGTGA CAAATTAGAA	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG CCCGGG CCCAGATATGC CAGAATTTAGCATTCCGTTTGCATTCCGTTTGCATTTCCATTTGCATTTGCATTTGCATTTGCATTTGCATTTGCATTTGCATTTGCATTTAGCATTAGCATTAGCATTAGATTAGCATTAGAT	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG AGACTCCAGC GGGCCCCGCA GTTTTGGNCA CTGAATAATT GGATTCTCCACCT TATTAACCAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT	TTCTCTCCAG TTCCCCAGT TTCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGGG	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGG ACCAGGTTTC AGGTCAGTGA AGGTCAGTGA AGGTCAGTGA ACGCTCCTAAC ACGCTCCTTAA	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTC CCCGGG AGGGCTCAGA CCCAGATATC CAGAATTTAC TTCCGTTTGC TAATNTGCAT ACCTTTCTGA	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG GGGCCCCGCA GTTTTGGNCA CTGAATAATT GGATTCTCCAG TATTAACCAA AGCCTCAGTTT	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGGA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGC AGCGTCGGTCA AGGTCAGTGA CAAATTAGAA TCAAATTAGAA TGGCTGCCCACC CTTACCCAGC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTC CCCGGG AGGGCTCAGA CCCAGATATC CAGAATTTAC TTCCGTTTGC ATAATNTGCAT ACCTTTCTGA TCGGAGGACCT	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC CGCGACTGGG GGGCCCCGCA GTTTTGGNCA CTGAATAATT GGATTCTCCAG TATTAACCAA GCCTCAGTTT GTTGGAATTC	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT NTTCGTCTGT	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA Q ID NO:12) AGCCCTGAGG CGCAGATTGT GATTATCCAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGG	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGC ACCAGGTTTC AGGTCAGTGA CAAATTAGAA TCAAATTAGAA TTGGCTGCCCAGC TTGCTGCCCCAGC TTGCTGCCCCAGC TTGCTGCCCCAGC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTC CCCGGG AGGGCTCAGA CCCAGATATC CAGAATTTAC TTCCGTTTGC ATAATNTGCAT ACCTTTCTGA ACCTTTCTGA ACCTTTCTGA ACCTTTCTGA ACCTTTCTGA AGTGCTTTGCA AGTGCTTTGCA	CTATGATTTC CACCCCACCC CTCTCCCCAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC GGGCCCCGCA GGGCCCCGCA GTTTTGGNCA GCTGAATAATT GGATTATCCA GCTCAGTT GGCTCAGTT GTTGGAATT GTTGGAATT GTTGGAATT GTTGGAATT GTTGGAATT GTTGGAATT GTTGGAATT GTTGGAATT GAACAGCAAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT NTTCGTCTGT GAAATATTCC	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA C ID NO:12) AGCCCTGAGG CGCAGATTGT ACCAAACAAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGGAG AAATTGGGAG AATAAGGAAC AGGGGTCAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGA ACCAGGTTTC AGGTCAGTGA CAATTGCTAA TGGCTCCAAC TGGCTGCCCAC TGGCTGCCCCAC TGGCTGCCCCAC TGGCTGCCCCCCCCCC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG AGGGCTCAGA CCCAGATATG CAGAATTTAG TTCCGTTTGG ATAATNTGCAT ACCTTTCTGAG AGTGCTCTGAG TCTGCAGTCAG CTCTGCAGTCAG CTCTGCAGTCAG CTCTTCTGAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTC	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC GGGCCCCGCA GGGCCCCGCA GGATTATTCG GTTTTGGNCA GCTTAACCAA AGCTCAGTTT GTTGGAATTA CCACCCAAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT NTTCGTCTGT GAAATATTCC	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA C ID NO:12) AGCCCTGAGG CGCAGATTGT ACCAAACAAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGGAG AAATTGGGAG AATAAGGAAC AGGGGTCAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGA ACCAGGTTTC AGGTCAGTGA CAATTGCTAA TGGCTCCAAC TGGCTGCCCAC TGGCTGCCCCAC TGGCTGCCCCAC TGGCTGCCCCCCCCCC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG AGGGCTCAGA CCCAGATATG CAGAATTTAG TTCCGTTTGG ATAATNTGCAT ACCTTTCTGAG AGTGCTCTGAG TCTGCAGTCAG CTCTGCAGTCAG CTCTGCAGTCAG CTCTTCTGAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTC	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC GGGCCCCGCA GGGCCCCGCA GGATTATTCG GTTTTGGNCA GCTTAACCAA AGCTCAGTTT GTTGGAATTA CCACCCAAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG
GGTCCCTCTC ATTCCCTCCC ATTCCCTCCC TTGTCTGAAT GAAAGTTAC CCTTAATTAA AAGTTTTTTG GGCTTATTGC CCCAGGCGGG MINT12 (SE CCCGGGTCCC GAGGTTCCCT GCCTTCAGCA CGGGCCATGT CGGACCCCAA GAGTTGGGAT CTTAACATTT NTTCGTCTGT GAAATATTCC	TTCTCTCCAG TTCCCCAAT TTCCCCCAAT CTTTTTCAAC CTGCATTTTT AGCCTTCTAC TTTTTGTTTT AGTTTGGGGG TCACATAGGA C ID NO:12) AGCCCTGAGG CGCAGATTGT ACCAAACAAA TTCACTTCCT ACCAAACAAA TTTTCTGTCT ATTTGTTGGGAG AAATTGGGAG AATAAGGAAC AGGGGTCAA	CTCAAGAACC TCCGTTAGTC ACCAAGGTCC TAAGTGCCTA CAATTGCTTC TTAAGGGGGG GAAAATTCAC AGCGTGGTGC ACCAGGTTTC AGGTCAGTGA CAAATTAGAA TCAAATTAGAA TTGGCTGCCCAGC TTGCTGCCCCAGC TTGCTGCCCCAGC TTGCTGCCCCAGC	CACCACTTTT ACTTTACCCC CTCTGTATGC CATTTCTTAA TTTTTTCTAA AACAAAAGAA TGCAGCGCTG CCCGGG AGGGCTCAGA CCCAGATATG CAGAATTTAG TTCCGTTTGG ATAATNTGCAT ACCTTTCTGAG AGTGCTCTGAG TCTGCAGTCAG CTCTGCAGTCAG CTCTGCAGTCAG CTCTTCTGAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTC	CTATGATTTC CACCCCACC CTCTCCCCAA CTTCGCCTAA CTTCGCCTAA GCTCGCGGGT ACGTGATTAC GGGCCCCGCA GGGCCCCGCA GGATTATTCG GTTTTGGNCA GCTTAACCAA AGCTCAGTTT GTTGGAATTA CCACCCAAA	TTTACAATTT TGGGTTTCTT AAGCCCTTAT CAGCTCTTTG TTTTTTCAAT CTTGGAAGGC TTCGGCGTTG

FIGURE 6D

MINT13 (SE	Q ID NO:13)				
CCCGGGTGTG	TGTTGTTCCC		CACGTGTTTG		
CTGTCCCCCT	GAGAGGCCCT			ATGTATCCAC	
		TCCCCCTGAG		GTGTGTTGTT	
	TTTGTCCTGA		GTCCTGATGC	CCCTGAGAGG TCTCCTACCC	
	CTCCATGTAC	CCACGIGIII	GICCIGAIGC	ICICCIACCC	CCIGICCCC
TGANANGCCC	GGG				
	Q ID NO:14)				
CCCGGGAGTG	GCCCTGCCTG	GCCATTTGCT		GCAAGCCGGA	
GTGCACCTTG	TTCCTTGTTC		•		
AGCGAAGAAG	GCCACCTTTC			TCACATCCTT	
	AGTCATGAGT		TCCCCGCCAA		
		GACGGAATCT	TCCTCGGCTT	GTTCCGAGAC CAAGGCAGGA	
GATAGAGAAG	CCCCCGGCTC GCGGCAGAGG	CATCAGGGGC		TAAAGATNTC	
	TGCTCTGTAG		TGAACAGTGA		
	GGGATGTACA			TGAGTTAAAA	
	CCTTTTGCCA			CGATGGCTTC	
	CCAGCCCGGG	GIIGGACICG	11/110000110		000111011101
GGGGAGGCIG	ecaccecoo				
MINT15 (SEC	ID NO:15)				
	CTGCGGTTAC		CCTGCCAGCC		
	ACAGGACAGG		AGGAGGAAAA		
	CATCTGCGTC	TAAGCCACAC	CGTGCTCCTG	GTAGATTAAA	
	TCTCTCCTAT		CTGTTTTCTG	CCTTGCTTGA TCCCATTCTT	
	GAAAGTTATG	GGTAGATCCT			
	AGGGAGGGAA	ACGGAGGCGA	AAGGAGGGCG		
	GGTTTTCCTG GGCCTTTGAC		ATGCAAAGGC		
	AGACCCTAAA	TTTTCCGTAGG	AAATCGTCGG	ACACGCACTT	AATCGGNCTT
TGCAANCTTT	CCCTCGAAGT	TGCACGCGGG		GGAGGCGAGG	
			CTCCGCCCGG		
MINT16 (SE	Q ID NO:16)		·		
CCCGGGACAA	GGCGGGTCAC	CTCTGGGGCC	TCACCGCAGT	TCCACTTCCT	
TTTGGAAACC	GTCACCCCGC	CATTTCGGTG	TGGGAAGAGC	GCGCGGGCCC	TGCCGGACTT
TAGTGCTTTA	GGGGTTAATT	TCGGGCTGAC	AGGGACGGAG	CCTAAGGCAG	TGAGCGCCCC
AGTACCCTCA	AACCTTATTG	CTGGCCCCTG	CTGTCTGAGC	TIACAAGCAT	TACCGCCGCTC
ATTTCCGTGC	GGGCTGACAC	A TOOCA TOO	TCCCCICICACC	CACACCCAGGG	TGCGGGGGTG TTAAAGGTGA
GAGGTGGGGA	CAUGAGCCAG	AIGGGAIIGA	AGTTGATGCC	ACATTCCATC	CCTCACACAC
DDDADDADD CCCCCCCCCCCCCCCCCCCCCCCCCCCCC	L APCPGGYYYG	ACAGAGGGA	AGCCTTCTAT	י קאאידרדאהר	TGTTCATACT
CICIGCAGCI	CAPACOUADA: CAPTCATTCA '	CTCCCCCCCC	GGCCTCTAGC	TGTAAACCCA	TACCTCTAGG
A A A C C TTTTTTC	TCATGTGGAG	CCACAGTGCT	CACTTGACAG	ATTCCCCACT	GAGAAGTGGG
CTAAGAGGTT	GGCCTGCATT	GCTGGGTGCC	TCCAGGTGGG	GAGTCCTGTA	CCTGGGAGCC
CGGG					

10/13

FIGURE 6E

MINT17 (SE	Q ID NO:17)		•		
	GGGGGTCCCA	ጥርር እርጥጥርጥር	CCTACCTTCT	CTCTCTCCTG	TTGGAGAGGC
CAGGGGCTCC	CGCGACTGAA		CTGAGGCTGC	CCAATCCCAG	
	ATGGATCGCG			GAGCGACAGA	
	ATTTGGGAAG			AAGAGGAAGA	
				AGAAAAAGAG	
GCNACGAGAT	GGGGAGGGAC				
GAAAACAAGT	TGCAAGACAA		GAATGAGAAG	GAAAGANAGG	
AATCAAATTA	GAACTGTTGG		TGGGACACGG	CTTTCTCTGG	TTCTGTCCTC
CCAAGAAATT	GGAAACCTCT	CCCCTTCCCG	GCACCAANCT	TNCGGGATGT	TCCGGTGCCC
CTCCCCGGG					
			•		
MINT18 (SI	EQ ID NO:18)				
CCCGGGAGTG	CTCCTGCCGG	CAGCATGTCC	ACTTGCTAGG	GGCAGAGGGG	CAGTGGGAGT
GTCCCCCATG	TGCCAGCCTG	TCCCCACACT	TGGGTTAACC	TTCAGTCACC	
				CCTGACAGTC	ACAGGCTGTA
CTCTCCCACT	GACAGAGGCC				
	TA ACCOTTA AC	CCTACCCTAA	CCCTAACCCA	GCCCTAACTC	TAGCCCTAGC
CCCTAACCCC	GCCCTAAGCC	CCIACCCIAA	AACCCTAACC	CCNNNCCCCC	
CCTAGCCCTA	GCCCTAAGCC	CIAAGCCCII	AAGCCIAACC	CCCTCCTTCC	CERTER ON A CC
	ACCCTTAACC	CTTCCCTCAA	GCCTCTCNAA	CCCIGCIIGG	GITIACAAGG
TTATTNAACC	CCGGG				
_					
MINT19 (SI	EQ ID NO:19)) 			
CCCGGGATTG	GTCTTTTGGC	TGGGATGTAA	AGGAGGAGGA	ACTAGCTGGG	GAAAGGCTGG
GTAAGGGGGA	AAACCCAGGG	AATTTAACCC	CCTCTTCTGT	AAAATGAGAA	
CACTTAGCAA	ATCTTTATGG	AGCTCTGTAG	GGGCCCTGGG	GGAAGGCGAC	CAGAGTGTCT
GAAAGCAAAG	AGCAGGAGAG	TGTGGACTCA	GCTGAGAGGA	GAGCAGAGGC	TGAGTGTCAG
	GGGAAGGGGT		CAACAAGGAC	ACAAGCCAAG	GTGTTGCAGT
	GGGAACGTAT		CCTGCCAGCT	TCCCTGGCGG	TGTCCTATTC
CCTCCATCCA	TTTTGGACCA	TGAGCCCCTT	CTCTTACCCT	CTGGCCAGGA	CCGAATGCCA
	CAGATTGCCC		0.0		
IMOMCIICCC	CHOMITOCCC				
MINTO (SE	Q ID NO:20)				
	AGGGCGGCCC	GAACCCCAGC	CAAGCCGGCC	AGCAGCAGGG	CCAACAGAAG
	ACCGGACGCG	CTTCACCCCC		ACGAGTTGGA	
	ACCEGACECE		CGTGAGGAGC	TGGCACTGCG	TATCGGGCTG
				GACAGAAGGC	AAGGACAGGG
	GAGTGCAGGT				CCTGGGCTGC
CGGGAGGATT		GAGCAGGGTC		CTGTCGAGAT	-
TTTCAGGCTG	CCTGTGCGTT	CCTGTATCGA	GTTATCTCCA	TCTCTACCCG	GAAACTGGTC
CCCATCGCCA	TCCCCCAATG	GACACGCAAG	GCCCGTCTCC	GGCCAGTATA	GCGACATCCC
GGAAGAAGCT	CCTCAAAATC	GAAGCCCGGC	GTTGTCGGGC	TACAGGGCTC	GCCTCCTCCG
CCTGAGAAGG	CAACCTCAGC	GCCCCCGGG			•
MINT21 (SE	Q ID NO:21)				
CCCGGGAACT	ACCTAACGCT	AGTTCAGTCC	CAAAATGCTG	CCCAACGACA	GAATGCTCGC
CTCCTTGCTT	CCTCTAACAC	TCTGGCACAC	CCACTTGGTG	TCGGGCCTCT	ATGGGCTCGC
ACTGAAGCCC	TGAGCCTGGG	CTGCCCCTTC	CCATGTGCCC	CCTGCCAGCC	GGCCCTCCCT
	GCCCCATCCC	TCCAGTCAAC	TCCTAGCCGA	CCCTTAAGAG	TCAGGTATTT
CCCTTIGGGT	CTGACATCCC	TCCCAGGCTG	TCCCACTGCC	AGCAGGACGA	GCCTGCCCCT
GIMGCCIICC	, כוסת האוכככ י רכיתיה האוככיי	ATACCTACCC	TTGGCCATA	TCACTAATCC	ACCAGGAAAC
CCICCACCCI	GCAGAGCCAC	CCCV V V CCCC	LEGGCONIAN	CCCCCCCCC	""COLIOOLENIC
ACCUTGGCGC	, GCAGAGCCAC	CGCMAMGIGG	CCCGCICAGG		

11/13

FIGURE 6F

MINTO /CEO ID N	(O - 22)			
MINT22 (SEQ ID N	NO:22) NAAGGG AAGGATGTGG	~~~~~~~~~	CCTCCACCCA	CMCD CD CCMD
	MAGGG AAGGAIGIGG SCGTGC CCCCCTGGAG		GGTGGAGGCA GGGGCTTATA	TAGGTGCGAC
	STTTTT CACTCGGGGC			
	AAGGAG AGAGAGAACC			TTCTGATGGC
	AGGAG AGAGAGAACC SCTGGG GGTTCGGAGT			GGTGGGGACA
				GACGCTCCAG
	GCAGAG GTCGAGGCAG			GGTCGCTACG
	CCTTTG GAAGCTGGTC	ATTAATTCTT	GICAICGGGA	GGTTTCGCGG
ANGGCGACAG CGCCC	_GGG			
MINT23 (SEQ ID N	vo:23)			
· · · · · · · · · · · · · · · · · · ·	CTGGC TCGCGGAATG	GGCGGCCAGA	TCTCAGGCCC	TGCGTGCCCG
	CCAAC CGGGGGTGCC			TCCTGGGGGG
	AGGCTG CAGGATCACT			CCGCCACAAA
	AGAACA AACGCGCGTG			TCTCCGCAGG
	CAGGG GACTCAGGGT			CCCCCGAGAG
	AGGTGG GATCGGTGAG		_	TTCCCTACCA
	CAGCG TGGACACTCC			CGGG
COLLOCATA COMIC	iaree reguereree	CORCITOCIC	rocconstice	CGGG
MINT24 (SEQ ID N	NO:24)			
CCCGGGGACG	GGGAGG AGGGCTGCCG	GGATGTGAAC	CGGGGAAGGC	AGCTGGGGCT
GGAGAGCAGC GCGGA	AAAGGG GGCCCAGGGA	GCTGGAAAGC	GAGCCAAGAG	GAGGGCAAGG
AAGGTGGCGG GCTAC	CGGGGA GGGGAAAGAA	AAAGGGTGTC	TTGGCGGTGG	CCTTGGTAAG
AGAAAGGGC AAGG	GGTATA ATTGACAAGG	CACTGAAAGT	ATTGAAGTCA	GAGCCTTGGG
AAGGATCTAC CGAAC	CTCTCG GCGGTCCACG	CGGGGACAGA	CCTCAGCCCG	TGAGCCTTGA
GCTCCACGCG GGGA	CAGACC TCAGCCCGTG	AGCCTTGAGC	TCCACGCGGG	GACAGACCTC
AGCCCGTGAG CCTTC	GAGCTC CACGCGGGGA	CAGACCTCAG	CCCGTGAGCC	TTGANCCCAG
AAGGAGTGGC AACCT	ICANGA CGTTTGCCAA	GTGGCCTGGA	ATGTTANGGA	AACCCCAGCC
CCGCCAGGAA CANAI	NCTGGC ACTAATTCCC	NGCTCGGNCC	GGG	
14717707 /474 77				
MINT25 (SEQ ID N				
CCCGGGGTGG GAGCT		GCGCTGCGCG		
	CGGAAG GCGCCGACGA		-	TTGGGGATGG
	GGCCGG GTGGGCAGCG	_		CTAGCTATAA
	GGGACA GGAAGATGGT		·	GGCCCGTTAT
	GACCTT GCCCCGCAGC	_		AGGGGTAACG
	GGGGTG GGCACATAGA		GAGTTGGCGG	CGGGGCTCTC
CCATGCACTT GGTTC	GTTTGT CGTTTCTGCT	TTTCCCGGG		
MINT26 (SEQ ID I	NO:26)			
	TAGCTC TAGATTAACO	AGCTGGGCGA	CGGGGGGGGG	GGCAGCATGC
	CGGCCG GGGTTCTTAG			
	ACGACA CCGGCCGGC			
	GGCTTG CGGAGCCCAG			
	TTGAAC CACGTAATTO			
	AAGGTT ATTAAATGGA			
	AAGAGG GAAACTCTT			
AATGCGGGGA GGTT	AAACAA AGCTTCTCCT	ANGACTCCAC	GATTCATTTC	TAACAACTTC
	TCTCNG GAGCAGACGO			
	GGCCCC TTGCCAGAGO			

FIGURE 6G

:					
MINT27 (SE	Q ID NO:27)		cccmccc110	maaccamaax	accacamaca
CCCGGGATCC	GGGAAGGCTC	CCCCGAGCCG	GGGTCGGAAC	1GCGGC1GGA	ACCCCTCCCC
CTTGAGGAGG	ATCTGGGAGG	GCGGGGGCTC	AGTCCTGGCC	ACCAGGIGIG	AGGGG1CGG
TGCGGAGCCC	TGTGTCAGAC	GCGGCGTGA	AGGCTGTAGC	CCTGCTCTCC	GGGAIGGGG
TGGTACTCTC	ACCGCACCCT	GCCCCAAGCC	GCAGGGAGCC	CCIGGCGCCC	CIGGCGCCCG
GG					
14T1TTO 0 / CEO	TD NO.20)				
MINT28 (SEQ	TCCCCCCCAC	Nececce	cccccccccc	CTCCCACTTA	ጥጥሮጥን ሮን ሮርጥ
			TCAAGCTCAA		TTCTACACCT
				ATAGTAGGTA	
GATTCCGCCA	CATCCATTCA	TECECETCAC	TAATTAGATG	ACCACCCATT	TGGCTACCTT
BARICICGII	TACTTACTCA	CCCCCTTTAC	CCGCGCTTCA	TTGAATTTCT	TCACTTTGAC
AAGAGAGICA	CTGGGCAGAA	ATCACATCGC	GTCAACACCC	GCCGCGGGCC	TTCGCGATGC
TTTCAGAGCA	TTALACAGTC	GGATTCCCCT	GGTCCGCACC	AGTTCTAAGT	
			CCGCGGGCCC		-
GCGCCGGCCG	Middanida		000000000		
	•				
MINT29 (SEC	ID NO:29)				
CCCGGGAGCT	GACCGTGGGG	AGGCCGGTTC	CGCTGGTTTC	AACCAGCCCA	CTCTCCCCTC
TTGGGATGCC	CAACCCCGCG	TACTCACCAT	TTCCTGGTTT	CCAGGATGTC	CTGGCATCTT
AGCTATGCAT	TTCCAGTACC	TCCAGACCTC	AGGGCAACAA	AGGATGTGAC	AAAGTCACCT
				TCTCAGGCTC	CGGCCTGAGC
CAGAGACAAA	GGCCGCGCCA	AACGCTGGAA	GCCACGCCCT	CCTCCCCAAC	TGCGTGCCTG
ATAGGACGGT	TCCTACTCTG	ACAGATTGAA	TAAGGCTCCA	GGACCCTCCC	CCACACCCAC
CGTCCCCAGC	ATTAGTGCGC	TTTATGGACA	GGGAAACGGG	ATCCTGTANG	CGGGGTCACA
CGCCCCGGG					i .
	>				
MINT30 (SEC) ID NO:30)			a. aaaaaaa	
				GAGGCCCCCA	
	CAGGGGTTCG		TGGTGGCGGA		GGCCGCGGGG
			TGGAAGGGGA		CTGGACGTGT
AATGGCCCTT	GGTCTCTTTT	GGCCGAACCT	GCCGCTCCGA	TCCCCCTCCA CCTTCTTCCT	TCCCTTCATC
			GATGTGGGAA		GGGGGAGGG
	AGGGGCTGTC			AGAGGGGGTG	
	CAAAGGCCAG AAACTTGGAG		AGCGGTGGGT		ACCCCCACCT
			GGGGGGCTGC		CCCGGG
GCCTTGGMAG	TOGGWWIGW	CALACCOCA		1.011 CONGCC	
MINTS1 (SE	Q ID NO:31)				
CCCGGGGCCT	CTATCCTGGC	GGGAAGGGCA	GGCCGACCCG	GCAGACTGCG	GCCTCTCGGG
AGGGAAGAAG	GTGTCAGACG	CGCGGAGCAA	CCATAAATAG	CCCCCTTTC	CCAGAAGACG
				GAGCAGAGAC	
AAAAAAGGGC	ACTTAGGGGA	TCTGCTCATT	AACATGAAAT	GCAAATGAGC	CCGCCCGGCC
TCATTTACAC	AACTCTGTGC	ATGGATTCGG	CGAAAGGGCA	ACCAGGGAGA	CGACGGCGCA
GCAGCCACTC	TGCCACTTCC	CCCATCCCCT	CCCCCCATC	GGCCGGGGCG	GGAACTGAGA
				TGCGTGGGTG	
				GTGAGGGGTG	
TCATCCGACC	CATCCCGCCG	CCTCTCCGCA	GTGGCGCAAG	CGCCCCAAAA	TCTCCGGAGA
NGGAACTGAG	TGACCCACTA	GGTTCCGCCG	TGTCTACCTC	TCGCAGATGT	TGGGGAAGTG
CTTCCCGGCG	TGACCCACTA TCTAATCCTC	GGTTCCGCCG GCTGTTCCCC	TGTCTACCTC	TCGCAGATGT CGCCCAGCAC	TGGGGAAGTG ACCCGCGGCG
NGGAACTGAG CTTCCCGGCG CTCCGCTCCC	TGACCCACTA TCTAATCCTC	GGTTCCGCCG	TGTCTACCTC	TCGCAGATGT CGCCCAGCAC	TGGGGAAGTG ACCCGCGGCG

13/13

FIGURE 6H

MINT32 (SEQ ID NO:32) CCCGGGTACC TGCACAGCTC CCTCGGTGAG GCCTTCCCTG CTTCCAGGCG CGCAGCCGAA TCCCGAAAAC AGCCTCTGAG CTCGTTGACT AGCTCTTGAG GACTCCAGGA GAGTGTAATT GGACTCTGCG CCGGACGCTT CGCGGGTCCG GAGAACCTCT	GACAACGCAT GCCCAGTGCC GGGTCCTCTG AGGAGTGGCT TACAAAGGCG CGCCCGCCCT	TTGAAACGTA AAGGAGGCCG AGCATCCTTC AGAGGAATCC GGGGGCGGGG TTCAGGTCCC	ACCCCAAGGC GAGACTCGGG CAGCGTGTTT AGGCGGGGAA ACGCCCAGGT CTGCCCGGTC	TGCCCGCGCA GGGAGGCAAA GGGGACGGTG CCGAGTCCCA
MINT33 (SEQ ID NO:33) CCCGGGCAGA AAGGCTCGGA CCTGGTCCCT CCGGGTCACT			GGAGGCGGTG GGACTGGGCA	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/25251

A CLA	COLETON OF CUREOF MATERIA						
A. CLA IPC(6)	SSIFICATION OF SUBJECT MATTER :Please See Extra Sheet.						
	:Please See Extra Sheet.						
According	According to International Patent Classification (IPC) or to both national classification and IPC						
	B. FIELDS SEARCHED						
Minimum d	documentation searched (classification system follow	ed by classification symbols)					
	435/6, 15, 19, 91.2, 91.52, 199, 320.1, 810; 536/	•					
0,0,	10070, 10, 17, 71.0, 71.02, 177, 320.1, 610, 3307.	23.1, 24.31, 24.33	į				
Documenta	tion searched other than minimum documentation to th	ne extent that such documents are included	in the fields searched				
Fleatronia	data hase consulted during the interestical and t						
	data base consulted during the international search (name of data base and, where practicable	e, search terms used)				
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.				
Y	WO 97/45560 A1 (NORTH SHORE RESEARCH CORPORATION) 04 De entire reference, especially pages 2-6,	ecember 1997 (04.12.97), see	1-4, 7-27, 29-38, 41-42, 45, 62-65				
Y	ZRIHAN-LICHT et al. DNA methylation status of the Muc1 gene coding for a breast-cancer-associated protein. Int. J. Cancer. July 1995, Vol. 62, No. 3, pages 245-251, especially pages 246-259.						
Y	WO 96/35704 A1 (THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE) 14 November 1996 (14.11.96), see entire reference, especially pages 24, 32.						
X Furth	ner documents are listed in the continuation of Box (C. See patent family annex.					
•	ecial categories of cited documents:	"T" later document published after the inte	rnational filing date or priority				
	cument defining the general state of the art which is not considered be of particular relevance	date and not in conflict with the appli the principle or theory underlying the	invention				
	lier document published on or after the international filing date	*X* document of particular relevance; the	claimed invention cannot be				
	cument which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider when the document is taken alone	ed to involve an inventive step				
	ed to establish the publication date of another citation or other cital case (as specified)	"Y" document of particular relevance; the	claimed invention cannot be				
O doc	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination				
	cument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent					
	actual completion of the international search	Date of mailing of the international sea	rch report				
01 MARC	ен 2000	2/1 MAR 2000	7				
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks n. D.C. 20231	Authorized efficery DIANA OHANNSEN	Allinfor				
Facsimile N	o. (703) 305-3230	Telephone No (703) 308-0196	<i>[]</i>				

International application No.
PCT/US99/25251

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	1
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	MERLO et al. 'DNA methylation and inactivation of tumor suppressor genes.' In: Hereditary Cancer, Second International Research Conference on Familial Cancer. Edited by Hj. Muller et al. Basel: Karger, 1996, pages 152-160, see entire reference, especially pages 153-157.	10, 21-22
Y	WEST et al. Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. J. Mol. Neuroscience. 1995, Vol. 6, No. 2, pages 141-146, especially page 143.	26
A	AHUJA et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Proceedings of the American Association for Cancer Research. March 1997, Vol. 38, pages 360-361.	1-4, 7-27, 29-38, 41-42, 45, 62-65
A	US 5,786,146 A (HERMAN ET AL) 28 July 1998 (28/7/98), see entire reference.	1-4, 7-27, 29-38, 41-42, 45, 62-65
A, P	US 5,912,147 A (STOLER ET AL) 15 June 1999 (15/6/99), see entire reference.	1-4, 7-27, 29-38, 41-42, 45, 62-65.
A	US 5,501,964 A (WIGLER ET AL) 26 March 1996 (26/3/96), see entire reference.	1-4, 7-27, 29-38, 41
A	LISITSYN et al. Cloning the differences between two complex genomes. Science. 12 February 1993, Vol. 259, pages 946-951, see entire reference.	1-4, 7-27, 29-38, 41

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/25251

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: 5-6, 28, 39-40, 43-44, 46-61 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: A sequence search could not be conducted due to errors in the computer readable form of the sequence listing.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/25251

A.	CLASSIF	TCATION	OF	SUBJECT	MATTER
----	---------	---------	----	---------	--------

IPC (6):

C12Q 1/44, 1/48, 1/68; C12P 19/34; C12N 9/22, 15/00; C07H 21/02, 21/04

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/6, 15, 19, 91.2, 91.52, 199, 320.1, 810; 536/23.1, 24.31, 24.33

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

USPT, EPAB, JPAB, DWPI, MEDLINE, CANCERLIT, CAPLUS, LIFESCI, SCISEARCH, EMBASE, BIOSIS search terms: CpG islands, methylation, restriction, ligation, adaptor, adapter, isoschizomer, SmaI, XmaI, PCR, hybridization, cancer, carcinoma, tumor, malignancy, atherosclerosis, diabetes, dementia, representation difference analysis, p16, Rb, VHL, hMLH1, BRCA1, chemotherapy, pharmaceutical

10/603, 138
6/23/03
Catherine
Lofton - Day et al.

Sequence Listing

Part 1

Sequence listing

<110> Cathy Lofton-Day Andrew Sledziewski Jorn Lewin Fabian Model Tamas Rujan

<120> Methods and nucleic acids for analyses of colorectal cell proliferative disorders.

<130> 47675-47

<160> 8475

<210> 1

<211> 2280

<212> DNA <213> Homo Sapiens

<400> 1

60 accagcacag aattgctacc ataggatege agectaagea etagagtgae attaattggt catgcttaac tgcctcaaaa tcatttttta aataattaca ctgatactat aatagaaatc 120 atgggtactt attttacatt cagatggaag gcattattgg atatgtatta aaaaaaagac 180 cccctgaaaa aaataaaata aaataaaaca tcaccatcaa aataaaagaa cccaaaacaa 240 cccctaaaaa cttccctcaa caaaatacat tgttaactca taaaatggac tgatgactag 300 ccatgcaaat gtcctaaata aaacctttac atttttttca cagttaactt atgctctgaa 360 ctgcctaccg atcacaata atggcgaaat ggcactttct gattatactg tattttgttt 420 atagaaagtt tgatacgatg gaacttatca ggtaagaggg tgggtgctgt gaacgagatg 480 ccgtctccag tcgcggggc gggcagagtc cctggagcgc gtggattcca tgcgagccat 540 gcagcacttt ttgttttttg tcagaagtca aagttactta tttacaatac attcatgcct 600 tegtgeaact geceateeet gegtageeaa cagggageea teaegggget aateeacagg 660 ggaaaaatag atatetatet etetatatag atgtggatat atgtatatat gtatagaace 720 geggeateea acceeacagg ceeeggggee gagggegagg geactgteag ttettecage 780 agggtcgtgc tgggctttct gtcaaaaggg gctctcagca aagagcgagc tggctgcgct 840 900 ctcccagctc tccacagtct gctctttgtt tcaaggaggg agctaagtaa ggggtcaggc cettteggit gtgegagete acagttattt atetaettat geceateeag getgatggeg 960 eggggatttg ggtacaegee eeteeageee eeggggtgee tgeggtgggg aaggatgtat 1020 egeetteeet etgeeeteee etattggggt tggggtetta gtetgagage gagtgagage 1080 cacagtcata cactetgtgg geoccatetg egttgtaagg eccattgtge cagtaggaag 1140 agtcacagac tgtctgtagg gaattaatct cggacgcgga ggagttggca tctcgtctct 1200 tggaccgctt tcggttcctc aggataaaca cgagcatgcc caccacggtg aaggcggagg 1260 tgacaaacac cagcagcagt cccgggacca acaccgagat ggacaccctg ctggtgtcta 1320 ggtaggagtt ggagtgcgtc ccggtctccg ccaacccagt gctgttttta ctgtgcgaag 1380 ttaacgtggg cgagatccta gcgtacagct gagggcagat ctcgtcattg gagaggagca 1440 tgaaatcctt tctaaagaag ttcaccggcg tctcacactt gaggtcgctc atcagcactt 1500 cggaacccaa gcgttctgcc cactgcttga aaggcacaat tgtgcaggag cactcccagg 1560 ggtttccgtg gaggtctatc tggatgatgg aggttaactg gtccagcacc cctgccaccg ggaggtacat gaagtaattg ttgtgcaggc tgagtttaga gagcgagacc ccagcgaaca 1620 1680 cgtccacagg cagggacctc agcaggttgt tgttgagaat gaggatcctc agtttgggca 1740 tggcattgaa agtgcccggg aggatgagct ggatagcgtt gtactccacg ttcaggtact 1800 ctaggttttg cagccccgcg aatttctccc gggacagcgt gtccaggtaa ttgctatcca 1860 tgtatagcca cctgaggtcc aaaaggttct tgaaagtgtt qttctctaca qtagcgatgt 1920 tattgttgcc cagatccaac agaatgaggt tcttgtaatc cacaaagtgc gattttcgga 1980 tgctgtggat cttgttatct cgtaggaaaa gctcctgcac gttagagagc ttgggcttca 2040 aatcagccaa gctgctcacg ttcctgttgt tgcagttcat ctttaaaccc gaccctggga 2100 tgtggtcgca gctgcagccc ccagggcagg gtaaactgtt agctaagggt ttgttcctgg 2160 agctaccegt egetateget getgtgggte tgattttgat etgecagttg cetgggatet 2220 ttgtacctcc gtttggagca gaccctggtg tggcatgatc ctcttgccca tttgtcttga 2280

60

2400

2460 2477

```
<211> 2477
<212> DNA
<213> Homo Sapiens
<400> 2
tggcacagac atggccctta aagccaaaaa ccatgatgga gtgaaggaca gctgtgctca
```

120 gacctgcgtc ctgtcctctg gaggctgctg tggttctggg gatgagtcgg aggtgggcag gcagcggtct ccggggcctg cagcagggag gccaccacct gcacagcaga acacagcacc 180 240 attccacagg gagcatcccg gggcgggcag caactctgga ggcacccccg ggaaggagcc 300 aggcatgggg gaggcggagg cgaccccaga agcagaggag ccgctgggga gccacggcct 360 420 ctgggggcca aggcccctaa ctccgaggac tggggccgcc aacatgggca gcagcacagg 480 aggecgagag gaggtecaca agggetgeac tteetteetg getgeagtee acceeccaga 540 gcagggggg cgtggagcca ctctcaccag tattgttggc cttgagggcc tggtgggcag 600 tgccgcctgg tgtgggggac agctcctgag caggctgccg cattcctggc actctggtct 660 720 ccctgggatt ctcaggtggc ccacgctcgg cagtgctcgc cttctgggct ctcagggctc gtttctgttg cagetectge agtgggagea tegetgagea etgteeetgg gagaggaega 780 840 ccccaggete cacagecaag etgecetgag getaagtgte eeggggeeca gggageecca 900 gcagcagccc cgcacggtca ggcctgggcc acggtgctgc tcagtggtcc ctgcgcggtc agcacctgaa tggctgctcg cctggcttgg cgtgccttct cctcccgggc cttcctcctg 960 gctgcctctt tctgctggtg caggtccaag agggtcccct cgcctgaccg ctgccgctgc 1020 tectgecaaa gaageeggtg ceatgtggeg titacatetg gaagaeggaa tecagaeeca 1080 gaccagaggt ttccccacaa cgccctggag tcccctagag ttcgtggaat ctcagggcca 1140 gcagggaaag tgaaacccca ccaggacctt gaacctgcca tttctctgct ctacagagga 1200 tgagccctac gtcgcaggtg gccaacagtt ctggcgtggg ggagacagct ctgccccac 1260 agaacgteet cetgagaete tecageetgg gatggaeeca geaggegttt cetgaeacee 1320

1380 aggecetgag gacegecagt gaggaceace etgaetgtee geggggaece agggteaaga aggatgctgc acccagagac ggggcccacg agcaatccta ggctttgatt ccacctgtcc 1440 cagaaactca aacccctggg attctgggcc agaccccccg ggggagcatg gagtgactga 1500 gacgcccaca ctgacctccc gcttggcctg aagcaagtgc tccaggcggg cagctcctgc 1560 teegegeege tgeacetggt geeggtacea gegetggatg gtgacagtgg cetggtteae 1620 ctggtggata aacctgcccg gagagcagga ctcagggcca agacaggacc agcgcccgg 1680 caggacccag ctggctgctg gtggaaggtc gagccgggga agagagaagc cggcggctgc 1740 acticaagtag cocttttcac aaggcaggac cagcccacct ggaccatttt cacatggcag 1800 gaccagccgc ctggaccagc tccactaaaa cccaaaacct tcttcctggg aaggtgccca 1860 ggggagagga aacgcctacc cacgcaggcc tgtgtggcct tatttacaat tgccaggaag 1920 tgggaagagt tcaaatgccc atgacctggc tacagcgtga atactggatg gcgggaccct 1980 acceacagge aacaggeeeg ggaeteagge cagtgeagae cacaggeegt ggeteeacag 2040 agagggtggt cggaacaggc agggctatga gggaacagac tggtggctgc tggcatctgg 2100 gcggggaagg agctcgaggg aagcctggtg gtgctgggcc gtttccttat cttggtctgc 2160 tgtgtccaca gacagcacta tacaccctgg tggaatctca tggaactgca cacttacaat 2220 gggcaccttc tattgtatac aaattatact aagtaaaact gattaagcaa aaaaaaaaat 2280 getteacett ggeteteggg accatgtgtg gattetetea geaaaggeae taacagagaa 2340

cccagaacgt gtgagcccta gctcgggagc agtctgcccc gggcagaact ggggggcttc

aaqqqqttqc gggcttctgg tcccccttcc ctcgtgccac ccaccgcgtc tacaqqcctq

<210> 3 <211> 3685 <212> DNA <213> Homo Sapiens

gtctccctag ccctaac

<400> 3

caagcctcct	tccccggcgc	acaggcacgc	agccacaggc	caagctgcga	cgcgagctcc	60
gcgcgcggga	tctccgcaaa	aggtccgccc	gatgcgttgg	gcgggaatcg	agcccgggtc	120
aactgcttgg	aaggcaacta	tgctcaccac	tataccacca	acgccgcacg	gcgcgggcag	180
ccccgccgcg	ccggcccggg	gctcccacca	gcgcgccgcc	gacgcccggg	gcaggccggc	240
cccgacgccc	ggtccgtccg	cccgcccgca	gctccgcgct	gccgcggcct	ctccaaaggc	300
cgccccgcgc	cccaccggtg	caaggccagc	gcggctgacc	cgttacgccc	gcctgcctct	360
gggggcgctc	tcgctcactc	gccgcctcgg	gcccccagag	cccttcccca	acaggtgccc	420
			Dage	2		

Page 2

			4/0/3-4			
				cgcttcccac		480
				gagccggcag		540
				aagccgcgga		600
				gcaggccagg		660
caccctgcga	ctagctggag	ggcggaggaa	ggagaaggag	ggcccacagg	ctgggtccga	720
ggcggcggcc	caaaaagcac	ggctgcctcc	ccgtcgggga	atcgaacccc	ggtctcccgc	780
				acggcgacgg		840
gccagacccc	actccgaccg	cggacgccta	gccctgcctt	gatcccctcc	cccgacggca	900
				cccgccaccc		960
acccgtcacc	tgccacccgc	cccccgccac	cgttggcacg	acctaccccg	acacccaaca	1020
				gaccccgaca		1080
				acgcggggat		1140
				aggacgcggt		1200
cctgcggggt	tcggcgagcg	gaggcgcggg	ggctggggcg	tgcgccggcg	gcggccggcc	1260
				gtccacgcca		1320
				cggttgcgca		1380
				cagccatgcc		1440
				gctgcgttca		1500
				cgaccttttg		1560
				cgcttcctgc		1620
				caaaacgccg		1680
				aaacagccca		1740
				cgccctcccc		1800
				accaccttcc		1860
				acagacacag		1920
				ccgcccaccg		1980
				cagcccgccc		2040
				gtggagccgc		2100
				cgacccctcg		2160
				cccacctcgc		2220
				cggacgcctg		2280
				acccggaaag		2340
				cacaaacgcc		2400
				ccgcggcctg		2460
				gctctgccga		2520
				ggccggaccc		2580 2640
				gacctggtct		2700
				ccccgctcgc		2760
				ggccccacgg		2820
				aagaaagaaa		2880
				aaaactctgg		2940
				cacacgggca		3000
				tctctcgacc gctctccctc		3060
				gccccatcgg		3120
				gaccagtgaa		3180
tagagaatta	cactatacca	acttccatta	ggcaggcggc	tcggtgcatg	agtagttcag	3240
				attcccggcc		3300
				tgcgctcgcc		3360
				cgctcccacg		3420
				atgagcctac		3480
				gcgccagaca		3540
				gcctctgccc		3600
				ctcgcaccac		3660
	cgcctcgcct					3685
	5 5					

<210> 4 <211> 2407 <212> DNA <213> Homo Sapiens

<400> 4

			4/0/3-4	/ . CXC		
taaggtctgg	gtattctcag	gcagcaggga	caaggtgggc	ttttttcctg	gttgctaaac	60
		gggactggag				120
cgaccgggga	cctgcatgca	cctctgccgt	gctgccctga	gtcctccaat	cctccacact	180
cttcctctgt	tatgtacacg	tctccaccca	ggcctgcaaa	agtcccagct	tcctccaggg	240
		ccagggcttg				300
ctggtttcca	gccgatcgtc	agagtcccaa	ggcccagcaa	ccttcctcac	aaaggcctcg	360
ttaagaggcg	aggaaacaag	agccgggaga	ggggcgcgga	acggcgggcg	ggacgaacga	420
ccagctccgc	gcctccggcc	agctgcgtcg	agccaggggc	accgcggctg	ttgtgcggct	480
ggaaatctag	gaatgggaag	gttcggggcc	tgctcggctc	cggaggcagc	tggcgggtcg	540
tccctggcgg	cgttggagcg	gtcagtggca	gccgggcacg	ggcgaccggg	tcgcccgggt	600
cgccctcaga	ccgtgactcc	cgaaaaacct	tgcgggcggg	gcgcgcccgc	gccgtctctt	660
gccggaaggt	gcgagttagt	gcgctcgatt	gtgggcgggg	gcggaaagag	gcgcgtttta	720
aagtggtaac	agatggtttt	cttatccaat	aggattaaaa	aatttgtcct	tacccggccg	780
accgcggaag	tagagtaggc	gggcggccaa	tggggacatg	atggggggcg	gagccgaggc	840
ctccgaagcg	gaagtgggtt	gctgttgagg	cggcggcatc	tttctcgagg	agctctcctg	900
ggcggctgaa	gaaggagctt	cttctccgga	gtgcgccggc	ggtggcgcct	gcggacctaa	960
ctagctccag	gttaggccga	gctttgcggg	aaagcagcgg	taagtcaggg	ccttgcagat	1020
gcgaggttta	ggcagcttcg	cggcctacag	aggcctcggc	ccgcgcctct	tgggggagcc	1080
gcgctgcgcg	gcttgaccca	gccgaggctt	tgcagcccgg	gacctcgagc	cagctctggt	1140
cgctcgcact	gccgtccgcg	cgggcgcacc	gagcccggct	tggcgcgggc	aacagaagtt	1200
aggaggtctg	cgtctgggtc	tcggctcacc	ctggggggcc	gcggccatgg	ggcttagttc	1260
ctagcctagg	aagggaaact	gagactctgg	gaggggcagg	aacgccccca	aggtcacttg	1320
		tgttaggggg				1380
		ttcgcgccgc				1440
ccggggtgcg	tgggccgcgt	ggcggggcct	tttgtaggtc	gggaggatct	gagtacgggt	1500
gcgggcctga	ccgtgggggc	gccgaggtcg	cagtctaaaa	cttagtaggg	cctcgatttc	1560
		ggctggtggt				1620
		gcccttcacc	gctctggcgc	gcctatagac	aggtgtatga	1680
agattctcac	gacccgaaac	agagttgcta	gtaaacaccg	cttttccgcc	tttgatccat	1740
	ggaaaaggat		caagccgttt		_	1800
gtctttcact	tgtcagttcc		cacaaactta			1860
gcaccaagtt			tcagctctgg			1920
	gagactgagg		tgaagtggtc			1980
		gttaagtcct				2040
		tgtcaataaa				2100
		atggacaagg				2160
		cgagtagcaa				2220
		actttaacac				2280
		aaacattgtt				2340
	tttcttttta	tataatgtat	gcacatctgt	gctttgtaca	taaaatgagt	2400
aagattt						2407

<210> 5 <211> 2229 <212> DNA <213> Homo Sapiens

<400> 5

tctttcctcg	gcgctggctg	gtgcgggttg	gggtcaggtg	gagaagccgc	tctttgttaa	60
ggtgacagaa	cgtgctgggg	gtgggggccg	gggccagggc	cggtgcaact	agggggccgc	120
tgccctttcc	tggacacagt	ggaagcttct	tccgcatcac	caaatttttg	tcatcctttc	180
tgagggacct	gcttccaggc	agcacgcaag	ttgttgtccc	gggtttactc	cgcacccctc	240
tactgggtga	ggaaggagca	tcttgaatgg	agatgggggt	gtccccggtt	tatacatctg	300
cagagaagag	gtgtgccggg	ctgcacctct	ggaggccgcg	gtaactgata	ttagagaaga	360
ccccggttgc	agctgggaag	gctcactggc	tggaaagagg	tgcctcctcc	ttccagcaaa	420
gggccctgtt	tggaagggct	gcttctcacc	tgtctagtgg	caccacagga	cggtcggctt	480
ccactcgaat	tcccccggac	ggtatcatca	catagccggg	tcctcgcagt	gttggtttcc	540
caatccgatg	actgtcacct	cggtgaggac	ctgtgctgat	ggccggagaa	ccctgcgctg	600
cgggcgcaca	tggccaggtg	gcgcctggca	ggcgacgtcc	gggtgcagga	cggcgctctt	660
accgccccac	cccaaaccgt	tgcctgggcc	taggtccttc	ggcttcctga	acaggggttt	720
ggggggctaa	ggacgctgag	gctccggggg	caggaagttc	tctctggtta	agcgttctct	780
cttctctccg	gcatacactc	ccctacccac	ccacctcgcc	taccctcggg	gcgagaggct	840

Page 4

caccaaggca	gggcgcgccc	cccccatgaa	tcatcccaag	gcctctgagc	cgcgggggct	900
ccgggcaact	atccccctcc	tctcctggcc	tcaggcaccc	cagtccaggg	gtctgcagag	960
		cgcgccggac				1020
aaggccaata	tatttccatt	tcttatttca	gtttgccacc	aaaacaaagc	tgcgcgcggc	1080
tgagggcagg	aaggcgctga	gaccgagaag	aagggacgtc	ccggagaaag	tgcgcccagc	1140
tgatcttaga	aaccagagtc	ctccgggact	tcgccgagat	tttctgtagg	gcgttttaat	1200
ctgttttcct	actgcgtgcc	ggcgtcgcag	cgcgtgcggc	tcagggcttg	gtgactccgg	1260
cttagcccgg	cggtcgcggc	gaggttcctg	gcgcagccgc	ttggaacttc	gcattagaat	1320
cgggaccgcg	caaatgccct	ggctgaagtg	tcaccctatt	caagaaacac	tgctgtcagg	1380
aacaaaatgg	ggtccccggt	gctccgaagt	atcttctgaa	attttcttaa	aacaacttac	1440
aaaaaatgtt	tttgctttaa	cgttttacaa	cgtttaagga	aacatgtaaa	tggtctgttt	1500
ctttatcgag	atggtcgtcc	taactaacag	tgtacacata	cataacaatt	cttccaactt	1560
tcctcctcag	agctaagcac	ttcactatat	gtaaattata	ataaagaaaa	gattgtgcaa	1620
gatcatgcaa	gtcgattgac	ttaaaatatt	gagttttaat	ccaggccctc	tgtttttcta	1680
tttaacaact	tttgtgtttg	gaccagactg	gtgaagcagg	ctatggaaat	taacaaagta	1740
aaaaattaaa	agcatcttcc	ttcgccatcc	ctccctccaa	aattaaacaa	cagtcgcccc	1800
ttcctgagca	ggcttcagtc	ccaggctcga	gttttcctgc	gatcacccca	cagtcaccca	1860
cagcagctgt	tgctgcttct	gtcgggtttt	cgtttctgcc	ttctttgggt	cgtctcttgt	1920
atacaaaaca	caccccagtt	ctctaactaa	attcaaatac	gaccccggca	gaatttacac	1980
atttcgtggt	gcatggattg	tgtcggtgca	ggggaaataa	ataccctctg	gtatttaacc	2040
actgagtcta	attcgaaaaa	tcgggactgg	gcccctaggc	ggcaccccag	gggctccaac	2100
ctggcccgcg	cctccccaga	ccttggcgct	gagagcgctg	cttttgcggg	tgggtggacg	2160
gagaggtaac	aatctgcttt	caacaaaaac	ctgtcgccac	cgaatcgaaa	gcgaaaggga	2220
agggagaag		•				2229

<210> 6 <211> 6887 <212> DNA <213> Homo Sapiens

<400> 6

cgccgcccgt gggccgccgg ccggccgcag ctcgctggcg acgagggcac tacagttgct 60 ctgaccgcgt agattatgca tgtcccggcc tcgggaattt accatgcatt agaatacatt 120 agogoctgca tittaaaagg ctaaactatt ggctcccagc tagggactct cggtaagtgg 180 cttgttagtg acgagtgttt gtctatactg gcacatagcg gagtcttttg ctcccqgctt 240 actegeetee aggaaagett tggggtgagg egaaggegat tgaageaatg eeeetteeee 300 cagategeag etgeteaggg gggacacage aeggeatett teacegaate tetetegete 360 getegeacte cageeteect etecceageg acceeceae etteteetee etecetetee 420 ttgacgtttg attccagtag caaaggaggt aaaaaaggca ccgagccgtc agccaaacct 480 gaaaagtgog goocogooco otocacagoo actggtagot tocogtggaa ggoocgooto 540 ccggggcagc tgcggcctcg gagtggttgc gcttggcgcc cgtcgggcgt ggccccgccc 600 caggiceggg agggtaggtt ggctgeeeg gegageggea gageeettet ggacagetee 660 cgctcaccca aacagaagac gtcggcgccg gagcgggctc ggacatggcg aggctgcgag 720 ceggeeegag eggeggggee eggtgateee teeeteeete eeegteeeet eeeeteteee 780 geacgeacge coegicogee eccacecege eccaceceg ggegageceg eccgeagece 840 ggggcgcaca cccgcacgcg cactcctctc cactcactcc cgcgcccgcc cccactcccg 900 cagoogagoo cogocacgog ogocttgooc goocgooggo ogoccoogcog 960 cccccgggcc ctgatggact gaatgaaggc tgcctacacc gcctatcgat gcctcaccaa 1020 agacctagaa ggctgcgcca tgaacccgga gctgacaatg gaaagtctgg gcactttgca 1080 egggeeggee ggeggeggea gtggeggggg eggeggggg ggeggegggg geggegggg gggeegggg gggeegggg eatgageagg agetgetgge cageeceage eeceaceaeg egggeeggg 1140 1200 cgccgctggc tcgctgcggg gccctccgcc gcctccaacc gcgcaccagg agctgggcac 1260 ggcggcagcg gcggcagcgg cggcgtcgcg ctcggccatg gtcaccagca tggcctcgat 1320 cctggacggc ggcgactacc ggcccgagct ctccatcccg ctgcaccacg ccatgagcat 1380 gtcctgcgac tcgtctccgc ctggcatggg catgagcaac acctacacca cgctgacacc 1440 getecageeg etgecaeeca tetecaeegt gtetgacaag ttecaeeaec eteaeeegea 1500 ccaccatccg caccaccacc accaccacca ccaccagege etgteeggea aegteagegg 1560 cagetteace etcatgegeg aegagegegg geteeeggee atgaacaace tetacagtee 1620 ctacaaggag atgcccggca tgagccagag cctgtccccg ctggccgcca cgccgctggg 1680 caacgggcta ggcggcctcc acaacgcgca gcagagtctg cccaactacg gtccgccggg 1740 ccacgacaaa atgctcagcc ccaacttcga cgcgcaccac actgccatgc tgacccgcgg 1800 tgagcaacac ctgtcccgcg gcctgggcac cccacctgcg gccatgatgt cgcacctgaa 1860

Page 5

			4/0/3-4	/.cxc		
caacctacac	cacccgggcc	acactcagtc	tcacgggccg	gtgctggcac	ccagtcgcga	. 1920
						1980
geggeeacee	legiceleat	cgggctcgca	ggtggccacg	Legggeeage	tggaagaaat	
caacaccaaa	gaggtggccc	agcgcatcac	agcagaacta	aaqcqctaca	gtatccccca	2040
						2100
		tgctgtgccg				
qaatccaaaa	ccqtqqaqta	aactcaaatc	tqqcaqqqaq	accttccqca	qqatqtqqaa	2160
						2220
		tccagcgcat				
ggctagccag	gggccaggct	gctgggaaga	gggctccggg	tccggtgctt	gtggcccaag	2280
tetacacaca	gagtcacttc	tcttgattct	ttccttctct	ttcctataca	catcatatt	2340
cttctcgttt	ttatttcttc	ttccattttc	tetttetet	ccgctcttcc	cctactttcc	2400
cttctccctt	ttctttttct	ttcttactct	ctccttatcc	ctgagctttc	attgaccgac	2460
cccccccat	ttcattcgcc	ctcccctcaa	tgtgccaacc	tttgccctat	ttccgatctt	2520
		atgggggtgt				2580
		ctgcccttat				2640
agacaacaca	tttcaatttt	ccgggctgac	tagtctccct	qtqcaqaqqc	aqttqaqaqq	2700
						2760
		agagctctct				
tttggtcatt	ggctgaaggc	acagccttgc	ccccqcqqqq	aaccqqcqqc	caqqatacaa	2820
		tctggccttg				2880
tgaggggctc	gggccagctc	caatgtcact	acctacagcg	agggcagggt	gtaaggttga	2940
		tgggaggacg				3000
tgeettgete	accogccotc	cttgccccgg	teecagegtt	tgetgggatt	tgccaggatt	3060
taccaaaact	ccaaaaaacc	ctgagcactc	gcaggaagag	gtgctgagaa	attaaaaatt	3120
						3180
		tgccgccggc				
ctgattgtgc	acacctaaca	accgcgggga	qqactqqcqq	cccqcqqqaq	gggacgggta	3240
						3300
		ctggagccgg				
agctgcgagg	tacagccctc	tattgttcta	ggagcacaga	aacctcctgt	gtgggcggcg	3360
		agatgcagta				3420
tttgtgcgca	cggaccccgc	gcggtgtgcg	tggcgactgc	gctgccccta	ggagcaagcc	3480
acgggccag	aggggcaaaa	tgtccaggtc	ccccactaga	aaggacacac	tataccctat	3540
ggcaagccag	ggcgggcgac	ttcccatgga	ccgggcggag	gggggtatet	ttcaggatcg	3600
acaaacaatc	taggggaaca	attcgtggtg	acaataattt	acataacaca	aatcttaaaa	3660
						3720
		cctcgcacag				
cacccccqat	cccccqqqct	ttcctcgcac	cgctgagccc	agcttgtggg	qtqcactcqa	3780
ccaacacaca	acaddactad	ggaatgtgac	addcadcadd	ttcacccaaa	cttagagaga	3840
gggagtttcc	gctttgacag	cattttcctt	tgccgtctgc	tggtggattc	ctattcccag	3900
tcggtaatcg	ccccacaata	ttgatctaag	aaqqtaaaqa	aaactaggtt	tccctgcaaa	3960
and at a a a	canategge	gagtagagat	agtttgagtg	gatttagaaa	tttatataat	4020
		gactccggat				
ctttctcctt	tagtttattt	ttcatcctct	cctacagttt	tctctgattt	gctgttggtt	4080
cagaacaaga	taaagcagcc	agtagagagc	gataataata	acaacaaaaa	atgaactgga	4140
gactggctga	Cagilicitaa	cattttgtca	Lagalecce	cgaatgtccc	aggergrete	4200
taataaattt	tagtacccgc	cggcttcttg	qqcaccqqqq	accaqaaqqa	acttqqcaqc	4260
		aaggcaggat				4320
ctgccgcccc	ctcatgccgg	tcgcgcaaag	aacacagctt	ttaaaaaaca	cgtgccttct	4380
gcccatatag	gtctgaaagt.	gatgaggaaa	gtaatgcttc	gcctattagc	gagtttcagc	4440
5000000000	3000344430	*****	3000000	3000000000	349000430	
		ttgctgagat				4500
ccccacccqc	gcccatggtg	caagtctgca	qqqacaqqcc	cagacagca	ctacccacac	4560
		atcgctgaag				4620
cagcgagtgg	aaaaggcctg	ctgaggaccc	cgctttgctc	gagcattcaa	atgtgtgtct	4680
		aaagggacaa				4740
geeceaeeae			gagereage	cccccaccc	ggccaccca	
tcagcaacta	caagtgtgtt	gagtggttat	tattacatag	gaggetttte	agtttggggt	4800
cagtagatca	gtctcttcag	acactgatgc	agaaget.ggg	actootaagt	aggtattatg	4860
tagtagassa	22222222	2222222	~~~~~			
rgereggage	gctaggggac	aggagcaaat	yyayaayaaa	ageggagget	tteteegeee	4920
ggagtatcga	tcqqaatccc	cgccggtacg	ccacaaaaaa	ccctcaccat	tagaccccag	4980
gggtttaaga	300003000	ctccccacac	aactaaaca	anatatanan	accetaceta	E040
gggcccaaca	ageceageeg	ctccgcaggc	ggcccggccg	yacticidaya	ccggcgcccg	5040
gaagacaccq	tccctgcccc	cctcccgcca	aacctgcctc	ttctctttct	ctcataggtt	5100
ataggttccc	tttctctctc	attttggccc	cacccccaaa	tectacess	Cauccaagea	5160
ggccggggtt	tagggggctc	agaatgaaga	ggtctgattt	ggccagcgcc	ggcaaagctc	5220
accettagge	gaggtcacaa	cagaggcagg	teetteetee	ccagectocc	aatataatca	5280
		aaggaaaagg				5340
caacqttaga	tttcaqaqaa	attgactcca	aatqcacqqa	ttcqttcqqa	aagggcggct	5400
						5460
aayuyyuayy	Lygulycaac	cccgcccggt	cygycciccg	cayayyttcc	ccaagaccag	
cccttgcagg	gcggttttca	gcaacctgac	aagaggcggc	caagacaaat	ttctgcgggt	5520
		gttgggcccc				5580
22222222	02200000	tagaagtte-	2000000	anatonagea	2222244	
yggagtgaga	gaacccaggc	tagaacttgc			aagcgaggcc	5640
			Page			

		,	47675-4	7.txt		
tcggtggcag	gcatgttttc	ttccgacgcc	cgaaaatcga	gccgagcgcc	cgactacatt	5700
		ccagtgagcc				5760
tctccagtcc	ccgccgtagt	ccgacgcacg	gccctctcct	ggcagcaagc	tcccagcggc	5820
cagtctgaag	ccaattctgt	tcaggcggcc	gagggccctt	agccaaccca	ccatgatgtc	5880
gcctgggcca	cctgatgccc	gcagcggcgg	gacacggccc	gggcagtgcg	cagtggctcc	5940
tgctaggggc	accgcgtgcg	tgcttgtctc	ccgctgcgcc	ggggacgtcc	ttgggtgaca	6000
cgggccgctg	ggcacctccc	aagccgagga	aacggacccc	cttcgcagag	tctcgcgccc	6060
accccccaac	ctcccacctc	gtttctcgct	gctagggctc	ccgactcagc	ccacctctcc	6120
tggcggttta	gttagggatc	agagctggag	aggctgaacg	caacccgtgc	cagtacggaa	6180
		tagctgcttg				6240
gtgcttcgtc	aagtcccggg	tgccgggaga	acaccttccc	aacacgcatc	agggtgggcg	6300
ggagcgggca	gaggaggcgg	gacccgaggg	aggagagtga	acccgagcag	gagaagcagc	6360
ccaggcagcc	aggcgccctc	gatgcgagag	gctgggcatt	tatttttatt	ccaggctttc	6420
cactgtgtgg	ttatgtcact	ttctcaaaca	aatgtgtata	tggagggaga	tcgatgctga	6480
taatgtttag	aagattaaaa	gagcattaat	gctggcaaca	ataacgtaaa	cgtgtggacc	6540
		cttgatccgg				6600
ttcccagcag	agcgctcacc	agcgccacgg	ccccgcggtt	ttccagcggt	gccgcttcgc	6660
cagctctgcg	cgggttctcc	cgtctgaccg	cagctcctcc	cccgcgaggc	cccagcccgc	6720
cttacttccc	cgaggttttc	tcctcctctc	gcggggctct	ctgccctctg	cacccctcc	6780
cccgacctct	gcaccacccg	cccctgtgcg	cacacaccgc	tacttgcgct	tccggcgatc	6840
cgcctgggcg	gctgggtccg	cgaagccaat	gcgctgaacg	gtgcccg		6887

<210> 7 <211> 3952 <212> DNA <213> Homo Sapiens

<400> 7

ggccgcagcc	ggagaggaac	aggaaccgca	gtggggacgc	cctggtcccc	gggcccacag	60
catccgggac	ggacgcgcag	tagcgcgggc	cgggaactgg	gtaccagggc	gggatgggtg	120
agaggctcta	agggacaagg	cagggagaag	cgcagcgggg	tgcggggaac	cgcacgccct	180
ccctttgcct	ctgcttccca	ccccgaggcg	gcagggcggg	cgggcgcggt	tccgggggtg	240
ggcgggctgg	gcggggcgga	ggcggggccg	cagcactggc	ttcacccagc	ctctcccgcc	300
	gcgagccgag			-	gctggagcgc	360
	agccccatca				gcgctgccgc	420
gggaggcggg	cgatgggggc	aggtgccacc		tggacgggcc	gcgcctgctg	480
	ttctgggggt					540
	gaagagccgg					600
agatactgag	ggtgggtggt	gggaaaggac	ctctgatgcc	gggaccacga	aggagggtct	660
agggttcccg	gagcgcagag	gcgactctcc	agggtggaga	tgagggcaag	accggagcac	720
	cctcaggtac					780
	ggctctccga					840
	ctttcccctc		tctctggaga		agaaccaagg	900
cgagagaagg			tagagatgag		tgggctgggg	960
cggggagccc	gggacgacgg	gatggaacaa	tggaggaggt	cggagggact	ggaggcagag	1020
gggacccggc	aaggacaatg	gggaccggcc	agacaatggg	ggggagggc	gtcggaggga	1080
	agcgggagag					1140
	gcagagagat					1200
	gggtcccgcc			gacgagaaga		1260
gcttggacat	ttccagcgcc			cggcctctcc		1320
attggggctg	cggatctaag	gctgggaggg	gagtgcccac	ttcgccgggg	cgaacccgct	1380
cccggggttc	ccccacggcc			gtgttctcac		1440
agcgcagcgg	atcgcgaggg	acggagcggg	tgtgccccta	cccgggctgg	cggtggctac	1500
gtctcggggt	gcagagcgcc	ggggcgcact	aggcggggac	ccttcctggc	cgcgcgcagc	1560
tctggctacg	caggcgggag	gcggcaggca	gggggcgctg	cggggcgagg	caagtgcagt	1620
ccgccgctgc	ctgcctgcga	gtctggggct	gcgcgccgct	ccccacctag	ctgcgcgacc	1680
cgagcgccgc	gcccaccgcg	ctccgtgggc	tcccgcgcct	cgaagggtcg	ggatccggtc	1740
tgagcctctc	ctggctctcg	gtgcaagccg				1800
acgcctcgga	ttctgtagcg	cggtatcccg	ggccaccgac	tcggcaaagg	tcggcgggtc	1860
	tccgacgaga					1920
	ctggcaacgg					1980
	cccaaattcc					2040
_		_	Page	7	_	

cgacttggcc	aagatctcac	agcaagttgg	gccagagtcg	tggctagact	ccccgacctg	2100
attcccagct	cggtactccc	ccaccttttc	agggggcagc	cgctgtccca	gctcggggtc	2160
acggctgcgt	ttcccagcag	ggcggggggg	gttgacactg	tccccagagt	ccgtcggcgg	2220
tagagcctgc	gggtgaggtg	ggcagagatt	ctgtccgggt	gcgggcccca	gcccgaaagc	2280
tcagccccag	ttccctggag	ctgtcaggac	ctgtggctgc	gtccggggat	ttgggagcga	2340
ccgcgggcac	gtctgctgac	taacgccgct	ggttagagac	gctgctcaga	cgcgggtggg	2400
cgagcgtaga	ccaggagagc	ggggaggagg	gaccggatcc	cagaggggca	acgacttggg	2460
ctccgggtct	gggcaagagc	gagggtcccc	gcgcgaagac	ccaaggaagg	aggggagctg	2520
ggcgtggagg	acctgggcgc	ttgggaaggt	gtaccccgac	aggaacctgc	cgtctgcagc	2580
			cggctgctcg			2640
gtccgagttt	cttcctgggc	cgcggtgaga	gagagaggc	tgaaaccaga	gcgcgtcccg	2700
gcgggtcggc	tggcgggccg	cgccggtaat	ggaggcactt	tgtcattcag	acgtctgtaa	2760
ccagagccgc	cgggctggct	aatgcgccta	atagggatgg	aacgagggca	gcaaatgggc	2820
gtgcgtgagc	ggccgggctg	agctgggtgg	atggtggatg	gggaggcagc	tccgcggggg	2880
acgggcccct	accgcactgt	tccagcccag	tctggctcaa	gcgcctcgct	tcttccctgg	2940
gggaccgcgt	ggggaggcgg	gaataatcga	tgtgctgagt	tcctactaag	tgccttgcac	3000
ttccctggta	gtttctcttg	aattatttaa	tccttataag	gtcctagcaa	ggtgaattta	3060
gttattccca	cttcgcagtt	gaggaaacag	aaccttctag	actttcaggc	ccgagaccag	3120
gctcccccag	tgagtcagtg	gtggcgtctt	tgttggaacc	caggatgctt	ggcctgggat	3180
gttctctttc	ctacatatgc	caggctccct	cccgccccct	accttctaga	tcatggaagg	3240
agtcgtggct	ctgagagatt	aaatcgtgcc	ctatgccttt	ggccccacac	atttagatct	3300
gagccccttc	tccacacgca	gaggccctgc	cccctctcaa	gtctctatgc	tacattatct	3360
tgggtaatta	gctcctttcc	tcccaactcc	tcccctatcc	aaagggagtg	aggggtatgt	3420
gccagtgcct	cccctgggtt	tgcatcgacc	tcaaaaggcc	ctccaggtgt	ttgaaaatct	3480
ctcccatccc	atggcggtga	ccacggcccc	attcacttaa	gagctctttg	ctgaagctgt	3540
tggaatggcc	agggctgatt	atactgaaac	attcgtatgg	tttcaaatac	tttcaactgt	3600
ttcgctgttt	ctctctttc	tctaattaaa	aaaaatgaaa	attcttaaaa	gtcaattcat	3660
			agccttgaaa			3720
caagcgttct	taaaaatgag	atgaaatcat	tctgtcaaat	gtgaaatgac	taagtgtaac	3780
			atccctataa			3840
ttttggagca	attagcctga	atgttagtca	cccctcccta	cttggctaaa	ctctcccctc	3900
ctgcctgggg	tctccttaag	atgagatgct	tctttgataa	ctaacattta	tt	3952

<210> 8 <211> 2820 <212> DNA <213> Homo Sapiens

cctaggggac	aatacccagg	catgttaacg	gagtttaaaa	tgccaaggaa	attacaccac	60
aattctgccc	agtatactac	aggctgtcaa	accgaaatgc	tatgccagct	aggagtgcag	120
caactcccat	cctctggccc	tatttaatta	ggaagcttca	gcagagcgaa	gcctgccaag	180
cgttcgccgt	cagaatctga	aggaacccga	gcgagcaaga	agagtgcctg	acccactcca	240
cagaagcctg	tccagaaatg	gaggagtcag	cgcccactga	agtcggttcc	gccctcggct	300
		agcctcagtc				360
gtgttctttt	tctcaactcc	cctgtactac	cttgaagctt	agggaagcaa	agagagggc	420
		atgtcttttg				480
		agagagagag				540
agaaattcta	ttgaaaccca	gctcctctag	aatctgtgtg	acctggtctt	caacgggaga	600
ccagtgcgac	ctcatggcac	ctttgccagg	aatcagcgat	tcccctgcag	tcaccatttg	660
atttattgct	ttctcgctca	ttctttctca	taaagttatt	tcttcctcat	cctagtaaga	720
		aaagcttctg				780
ttcaaaacag	tgaacccaga	aaaccatccc	gtttaatatt	tctcaaaatc	ctcgcagctc	840
caatgtaagc	gcaagcatgc	aaaggtttcc	tgctacacct	gcactttctg	cccatcccag	900
aaccacccct	cacccccggg	cctgcaacag	ttccccttgt	ttctctggat	agaggtgggt	960
ggtattaggg	gtctagggca	gtaggaggtg	aggggctgag	gaggccgcta	gggtaggctg	1020
		ttcttctgcg				1080
		ccggtgggcg				1140
cagcgagctt	caccgggcgg	gctacgatga	gtagcatgac	gggcagcagc	agcagccagc	1200
aaaagccctc	gcaaagtgtc	cagctgctgc	actgccgcgg	ggactcccac	agcaccatga	1260
		gcagcaaacg				1320
gggcagcggg	ctactgagca	tcccgcggac			cggtggcagt	1380
			Page	Ų		

ggcaccegge ggggaageag cagecaaace egegeatgat etegagagtt teageaacat	
ccagggactg ggctcagccc cggagcgaga gggtcgtccg ctgagaagct gcgccggaga	1500
cgcgggaagc tgctgccata aggagggagc tctgggaagc cggaggacag gaggagacgg	1560
gagtccaggg gcagacgagt ggagcccgag gaggcagggt ggagggagag tcaaggcgcc	1620
cegeageeeg geageegeet etegagetet geegeeegea teeetetgge gtttgggaag	1680
cagcaggtcc tcagcccgcc cggggtcacg tgggaagagg cagtcgggct ctgattggtg	1740
gagcaggatg caggtcccgg gagggagggg tcgacgagga ggtgcaagga tgcaaggagg	1800
aggeggeege ggaageeaca gatgggeteg etegeeagge getggeeega gtggggetag	1860
geggggatgg etcaaatgag aageteggge tteagggtgg getaceegca caeteatata	1920
ccattcgcct cactetecge tecaggaege cecetacega aggeggggte eggaetageg	L980
cccctcttcc gcgcgtgacc ccgggccgcg agtgcgggcc gcggctgggt ggcgtctctc 2	2040
cgagctggag atggtggggg cggaggtgtc agaggagcag cagcagcagg gcagagaggg 2	2100
gegagtegge gegggagagg gegteetget ggegacegge geteeagegt gegggagege 2	2160
geegeetagg etgtaggggg atgeaggetg ggaatgtege ggeggagagg ceagggaegt 2	2220
ttetetaggg atttacagga aagagggtga gaggegatgg tgttagaace getettgeeg	2280
55 5	2340
gcageteage cateceggea ggegetetee tteettetet etteteeet eteteeteee 2	2400
aggeeeeeg cageteegae eeageeeaag egttegeagg tttgaateee teteeteate 2	2460
accegeteet etecageeeg tageetatta gtgtgteeac etgggaggtg eggteagatg 2	2520
tgtttggaag gtcagattgg tcgggacaag tggtctgaga gaaagagaaa ggctcctctg	2580
catacgccgc gggtgggttg ccgggagcat cggccgggca gcggcgtccg ggaaggggag 2	2640
agegggetee atttgttgge ceaggeagtg accetgegtt cettactegg gtetttgeeg 2	2700
	2760
cgcgtttctt tcattctctc cagcgggaag ggcaaacggc atagcgggac ccgccttccg 2	2820

<210> 9 <211> 2265 <212> DNA <213> Homo Sapiens

<400> 9

cacccccacc	cagcgtgctc	agggcacccg	caccgtgcta	gcttgtggcg	gctctcaaac	60
taatcctgac	tgagtttttg	aggcagcctt	ctattcccac	tcgcaccaac	ccagcacgct	120
taccaaaatt	cccaagtaac	cttctctttg	ttacgcaaac	gccaggagct	gcttgattct	180
		ccctttccag				240
		cttggaaggt				300
ccacagggct	ctcctactaa	aaatccctaa	aatgctggcc	cgagaaactc	tctttgttgg	360
agggtctgag	tcctactccc	ttctgccgcg	tgcgccccca	ctgccgtgaa	ccgctgtgac	420
		tcgcgccccc				480
cttccccctg	tccatgtacc	tggctggttg	gtggcgcttg	ggacgcggtt	gtaggcgccg	540
ccgtactggt	ggtaggagct	agcgtagcta	tagtcggcat	aagctttggc	tgggtagctc	600
		gtgatactga				660
gaagccgagg	taggagagca	gtagccgtgc	ggggctcccc	ccgtagggct	gtagtagtca	720
		gggcaaagtt				780
		ttggaagtcg				840
		cgggcggcgg				900
	agttggctgt		tggtctaagc			960
		gaggagagaa				1020
actgggagtc	gtgaagtctc	tgtctccggc	cggctgactg	ctggctgagg	cgcagcacag	1080
		gcgcgcttac			ttctattggc	1140
		taacacccta				1200
cattgcttaa	aaagggggtg	gggggtactg	agggggtgtg	tgtgtttgtg	tgtgtgcgcg	1260
		tttgcttgtt			agtctatctg	1320
		catcgcagaa			gatgtctggg	1380
gacaatgtgt	tccaatcaga	agcctcaaaa	gtgcacatgt	tttgggaatg	aggtgggcga	1440
ccatctttcc	ttgcttccca	ctaccccgcc	cccgtgggct	gcaccaaagg	cgagtgtaga	1500
		tagggagtca			ggggggatgt	1560
aggatggagg	caagaaggaa	gggaaacagc	atttttttt	tttttagtgg	agtgttggga	1620
agcaagttgt	aacttacatg	ttttgaaaat	ttgctctttg	gggaaagagg	caacttcctt	1680
tgcaggagat	gagtatetee	cggacgcggg	ctggacagga	atgcccaaga	aggcacaatg	1740
tccattaagc	cggtgaatgg	cagggagagt	tcctgcagcc	caaagtcctt	ataatgactt	1800
ttaaaaatta	ctgtcttaaa	cacatataac			gttgctggct	1860
			Dago	0		

tgcaaaaaga	gccaaacagc	tccacttctg	tttaatattt	tcatctattt	tcaagacatt	1920
ggaataaagg	ctctttaact	atgttcagtg	gccaaagact	cccgcaaagg	tgaatggatc	1980
catgtataac	ctgccatacc	tccaggaaag	aatgggaaag	tctcggaagt	ggggaaggag	2040
acaaggatca	aagcctttgc	aaagtcagat	gatgctcatt	gatttccccc	tcctggctcc	2100
atgaatgtgg	cccagtctct	ccatttccca	gacccgggtt	tctgtaccct	ctccccttta	2160
tttcctgctg	caaagacatc	ctacttagct	cgtatgcaag	ggaagaaagg	attcaagaat	2220
cattcagttg	atacacgaga	tctaaacttt	gctcttcagg	aggtg		2265

<210> 10 <211> 5907 <212> DNA <213> Homo Sapiens

(400) 10						
accatcagaa	cagggcccca	gcgcaccgcg	agcctctgct	tectecacet	tacaacacca	60
		gcctggcccc		_		120
		gagaggtgtc				180
		agccaacctt				240
		cacaatcgct				300
gaecggegge	gagegaeeeg	gaggctgagc	ttccttagaa	acastcasta	ccaccactt	360
		cggccgggtt				420
		cgcgagagac				480
		agaggatctg				540
		tgcgagcatc				600
		ggatgcgagc				660
		ctcggcgctc				720
		gccccagct				780
		acgtcccctg				840
		cgaggggcgg				900
						960
		ctgctctgac				1020
		cccgcggcag				1020
		gctgccagct				1140
		agccagagag				1200
		cagccctcgc				1260
		gtccccaccg				1320
		gtgtccaaca				1380
		gccacggatg				1440
		cagggcctgc				1500
		gaagcgcccg				1560
		tccggctcca				1620
		atcacggcgt				1680
		ccagttctgc				1740
		gcccggtgat				1800
tttccccct	aacccaccc	ctcccagccc	gggggggg	ggaagaggg	taggetgaag	1860
ttcaatctaa	gacacctgtc	ccctcccaac	ggcaccagcc	aggasataga	aggergaag	1920
		cggagacact				1980
		gaaaatcagg				2040
		tttttgggag				2100
		acgcatagac				2160
		acgaacaaag				2220
		atccccaaat				2280
		ataccaaaca				2340
		gacaggaacc				2400
		acgaaagcac				2460
		tgtgcacaga				2520
accycaaaya	ggtggttagt	tcctccccgt	greatecting	taaggggggg	atagagget	2520
		aggccctctc				
		tagggagcag				2640
		agctttctgg				2700
		ccgcggcgtc				2760
		gaggcctccc				2820
gaccccaccg	ggccccgaac	accagatggc			ccccggggcc	2880
			Page	10		

			47675-4	/.txt		
cggcgagacg	gccttgctgg	atcacggacc	cggggctgct	cccgccttcg	ctgtgccccg	2940
cgacttcccg	gggcgtcttt	caaggctccg	tttgataggc	cccaagggag	gccagggcag	3000
		ctccgggacc				3060
ggattctaaa	ccctacagcc	ctgtccgcct	gaccctgaag	cttctggttc	tagactcttg	3120
		tccctggcgc				3180
tccccagcct	ccacttagtc	cccttcctta	ggtctcgccc	tcgcctcact	ctaactccag	3240
ccttgtccta	agactctcaa	tttccagccc	tgcttcctcc	tccccgcgcg	ctgctcccca	3300
agcgtcttca	cattgtctct	gttcttgcct	cccaggggct	ttgccccacc	ttcagcccct	3360
		cttttcgcct				3420
tggtctgagc	ctgagacgcc	cgagttttcc	tctttagctc	ccgtgcccca	ttccagcccc	3480
accacaaatc	ccgtgcccac	tctttccact	ggcccaggcc	cagctcacta	cctttcttag	3540
agcccctttc	cgactacgct	cccttctgtc	ccttctcatc	tcctcccca	actcctcatt	3600
ctgttcctgt	ccccagaaac	catcccgaag	tatctccctt	ccctcctgtg	gcttctccct	3660
		ctagccctct				3720
ttctcagatc	cgtccataca	tccctccctc	tccatctctg	gctcgacacc	cgggctcact	3780
		cccgcagcct				3840
		agcgccccct				3900
		gttcgctgag				3960
		ctaccctacg				4020
		gttgtgtgct				4080
tgtacgagga	gaatgaagac	ggcgaggtgg	tgcgcgtgcg	ggactcgtac	gtggccatag	4140
		cgcttcccaa				4200
		acgtgcatcc				4260
acaacagctt	cccggggctg	cccgtgtcgc	agaagtcctg	gtccattatc	qccacqqccq	4320
		cttaagaacc				4380
		atcaatatcc				4440
		gtcaagttct				4500
		tacacgtctc				4560
tgcagcagcc	cagcgagttc	cactgcatga	tgaactggac	gcacatcgca	gcctgcgtgc	4620
tcaagggcct	cttcgcgctc	gtcgcctacc	tcacctgggc	cgacgagacc	aaggaggtca	4680
		tccatccgcg				4740
cgctgttgtc	ctatcctctg	ccattctttg	ccgctgtcga	ggtgctggag	aagtcgctct	4800
		tttttcccgg				4860
		tgcgcgctcg				4920
tgccgcactt	cgcgctgctc	atgggcctca	ccggcagcct	cacgggcgcc	ggcctctgtt	4980
		cacctgcgcc				5040
tcttcttcga	cgtcgccatc	ttcgtcatcg	gcggcatctg	cagcgtgtcc	ggcttcgtgc	5100
actccctcga	gggcctcatc	gaagcctacc	gaaccaacgc	ggaggactag	ggcgcaaggg	5160
cgagcccccg	ccgcgcttct	gcgctctctc	ccttctcccc	tcaccccgcc	cccaccagcc	5220
cagtgcgccc	tgccgccgcg	ttgggaggcc	aagctttaaa	catctctggt	tcctagtttc	5280
tgattattcg	gggatggggg	ggatgggagg	ggacagggat	tcacgatcca	tegegtetge	5340
gtttctgttg	tcctttcttt	tccacaacac	cctggttttg	gggggaggcg	gggtgcattt	5400
gcgggcaggg	ttctctgtcc	ttccaagtgg	ggccccgaca	ctttggttcc	agtcatcgag	5460
ggggttggga	agggagggag	agggggcgca	gctcgcaggc	gtggcaactt	gaccttgggg	5520
gaatatttca	catccatcca	gagctcggaa	tctacagcgt	ccagccattt	ccagcaagag	5580
cgcttcccat	tccggagacg	tttcaaccct	gcagcgggaa	aggctgactg	ggaaatccat	5640
tttgggtggg	caatttcctt	caacgaagcc	ggaaggcgag	aagccgcggc	ggggccagct	5700
tgcctgccgg	ttttcaggaa	tctaaactct	catcttgtgc	aatttatcag	gtgtggaact	5760
gttctactgt	gcgtgtggtg	tgctcgtggt	gaataagatg	aaatgtatat	cagaaaaaaa	5820
		cggtacataa	ttatatccgc	aaataaagaa	gagacaaagg	5880
cttgcgcggc	ccggtgtcgg	gtttgtg				5907
-210- 11						

<210>	11	
<211>	3049	
<212>	DNA	
/2135	Homo	Sapien

<213> Homo Sapiens

tactcggtgt agctggtcca gatcttgtc	c tcgctctggt	cggtgctgct	ggcaaaggcg	60
caggtgcccg tggagctgca cgccaccat	g tggaagcccg	actcggacag	cttgtcgaag	120
gcctgctcca ggaagttgaa cttgaggta				180
tcggggtccc ggctttcgtt cagggtgtc				240
	Page	11		

			47675-47	7.txt		
ccgcaaacgg	tgatgcgcgc	cactcgccgg	aacttggcgt	ccgcctgcgc	gtcccgcccg	300
atggtgtagg	agccgcggta	gccgatggtg	atgtagcccg	agcgccggct	gccgtccagc	360
	gcgtgagcag					420
	gcgacggcgc					480
	gcagctcgtc					540
	ggccgggctg					600
	cctcgcgctg					660
	gcaggtaatc					720
	tgctgtcccg					780
	cgggcaccga					840
	ccacgatgtc					900
ctgccgcccc	cgccgccgcc	cccqttqqqt	aatccacqtq	tactatccac	cagagecatg	960
	ggccgggccg					1020
	cggagccccg					1080
	ccgccgccac					1140
	cgccgctgtg					1200
	gcgagtgccg					1260
	gcgcgcagga					1320
	cggggactcg					1380
	ctcgcgagcg					1440
	tggtcccgcc					1500
	gaagacagct					1560
	ccaaggactc					1620
gagtggaaat	gcgtggccgc	ctccggccct	cccgcctgcg	gaactgggcg	cttccagcag	1680
tgcagctgcg	gcctgccatc	gttggttgtc	gtgtcactga	aagtagagag	acgcgaaaaa	1740
cctggagaga	cgaaagagcc	gccccagtcc	gagcgagcca	gattttgttc	aagttgcctt	1800
gcagccagcc	tggaaaataa	ataaataaac	ctagaaacaa	aaagcaaacc	tcagtgtccc	1860
gcagtaggat	gctttacgat	agtttatttt	ctggctgcag	agacaaaatg	agatgaagct	1920
tcaaatctgc	tcttaattgc	aattccctct	tcccgcaggg	ccttcgaggc	acttcacttc	1980
	ggtaagactc					2040
	tagactcaca					2100
	tttatccttc					2160
	cctgtccaag					2220
gcccttgtct	ggatcccatc	tctcaactcc	tgctgcctac	acgtttgctt	ttccccctcg	2280
gactgcagcc	cacagaaccg	cccctcccc	ctggaagctt	tccctggctt	cccaggtggg	2340
tggggcctct	ggatggctcc	ctacacactg	tctgcgctgc	tcccagcacg	ttctgaaatg	2400
tcatatttat	gagtgattat	ctgatcactg	atttgggtat	gaaaataagt	aagagctcct	2460
gaatgctgca	aaaagagaag	agtgcagagg	agggtgtcaa	gaaatgattg	ggtcactgaa	2520
tgtttcttgt	gtacctgcta	ttatttgcag	ggcaccaggg	agtgaggaat	gcaaaggcga	2580
ataatctcca	aagcgctttc	agtgtagccc	aataagcaaa	gggtcagggg	tctgcgcagt	2640
tatcacatca	gtttgaagta	tagaccacac	atcaggataa	atcaggcaag	atctttgttc	2700
ttgataaaat	ttatccttct	gtgtaactac	ccagtgagct	tcacagtctc	ctcacagata	2760
aatgtcattt	ttattttgaa	atgtttatat	ctgctcaaca	attaccgcgc	tcatgtcagt	2820
gtgctgaaat	gagatcaacc	cccaaaccag	ttatcttaat	tgcaagtaca	gattttgata	2880
ctgaatgtat	ttcaacattc	tttttttgtt	gttgttctgt	tctttgggat	aaataataga	2940
	cttccaagtc				ctaggcgtta	3000
	agagacctga					3049
<210> 12						

<210> 12 <211> 4721 <212> DNA <213> Homo Sapiens

ctctatttct aac tgagaaaatc cat caagagaaaa taa ttcttttagc cca	cacctcc ccaagccttt ttaagat aagcaggata cgggtat ctggagtaag aggccca gccatgagaa actgttt gtcttagctg ttagctg tcagataaac	ttttaaaaat gaggggggg gagagataga tgggggttgg	catctactca agactctgaa aacttatgat aggcagggcc	ccagttggtt attaaaaaag aacagaggca cgaggcggtg	60 120 180 240 300
ttcttttagc cca		tgggggttgg	aggcagggcc	cgaggcggtg	
ctccgctcct cca	cgtctgc ggccgcagcc agccgcg cacttcacag	gccgcgctcg	gctggcccgg ggggggcgac	ctggaaacca	420 480

ccccgtcctc ggactccaga cccagctccc agcaacctcg gctccccgcc ccggcccgcc 540 ccccaggcgt gcaattcacc tctgcccccg ccggtccgct cggcactcgc gcgggggaca 600 cggggctgcc cattectagc gcacteggga gatgcatece aagegtgctg gggaacgtgg 660 gggatctgcg ggcgcccggg gtgaaccctc acatcacact ctgtgtacag agacgtagag 720 taaaggaagg aatggagaaa gctgagagga taaaaggaaa ggagtttcag ggtctcagcc 780 gagaagccca ggccccagcg cagtaagagg cgacaacgtc actgaggcgc cggggcccca 840 ctaatctaca gacttatctg tgcggaagga aggaaaaagt aggggacacc caacttctcc 900 960 tgcctgtttg ttcctctgca ccctggggct ggcagagttg aaaggagaca gatacccagt teggeettee atecaactet etttgeecca aaactecaaa ggtgegegge caegacagta 1020 tctgggccac tggtgttcga cgtgattctc cgtatttact aaaggagtaa atacggagac 1080 1140 cttccagcct ttatagcacg cctctcccag ccttccttgg cgggcctgga ccaaatccaa ctcggccaca cacctcaacg tctttccggg tgcggggagg cgtgacccc ccacctccct ctgcacccc ttgttgatcc ggaaatgaag gcgtctaatt tttaaccgca gactgcagga 1200 1260 gcagtgcccg tagacccctt cggggcaaca caggagaaaa cctggaaggg aacccccagg 1320 gaatgccctt tgagtttccc cttgtccctt ctctactttc agcccccagt ctcttcccag gagggtatgc acactetece aggagggtat geacactete ecaggagggt atgeacacte 1440 1500 cccctggagg gatggctgca caaacgcact gccctagggg cttttcttcc agcactggcg 1560 ctccggaaaa tgttgggggt agggggacaa cttctcacct agttcgcaga gtcggctaag gtgatggggg ttgcagcaca ccagctcggg gttgatcttc ccgtaagatt cacagcaaca 1620 1680 cagcetettg aetteegagg aatgeetgag ateeggeeae etgaacaett tgeacageag gagggggagc gagtaggacg agggcggctg cgcaggctgc gcgccggcgg gcgcccccgg 1740 geccageetg cagtecagge ggeegggeag caggaggeae geggtgegeg teeegeegeg 1800 ggactccacg gcctggagca gcagctccag ctgccgctcc ttcagtttct tgagcaccga 1860 gtgcgtgagc gccttcagat ccgcctcggc gcccccggcc gcgccggcgc ccgcggctgg 1920 cgggtgggga tggtggtgac ctttggcacc tcgcaccgcc ttgcccaggc agcatccagc 1980 cetgeceggg cegeegecac eggeeceatg egeteggetg teegtegeec etteteeeeg 2040 2100 cagetegeet ectecteeae etececetge geeeteetee tegteetege egeegggege 2160 acggctcctc cagagacgcc ggacgagcgc agatcgtttg gtcctgaaca tgcggggcga ggaggcgagg agaaaagtcg tttgcctgct aaggagcgaa catgacctcc gcacaccatg 2220 2280 aagaagtegg gegeegagtt ggggeageag gegeaggega cageageage ageaggggee cgggcaggag cggcggcgc ccgaggggcg ctccgtggca tgcgccagtc tcccggaggc 2340 2400 eggggegege gegggggeee ggggggeeee geeggggate gggggeetge geteeggetg ccccacccg cgcggcccgc gccctgcgcg gctctccggc cccggcgcgc cccggaggaa 2460 cceggcegec gettecctgg ggacggeega geetgeeece gteggegeet ecceaaaaag 2520 aggececce geagtggete eegaatgteg ggetegeeag ceteggette etacatggaa 2580 ggtccgcggg ggcaaaaaac gaaaggcgtt cggctgggct gttggaagaa ggaaaaagcc 2640 2700 tctttccccc ttgctaagca acttaatttg ggggtgggga gaagcaggca attaaaaaa aaaaagcaag cgatttattt ttttcctcta tatccttagt aaccggatct cctcgaattc 2760 cgcgcacacg aagactcagg ggaggggcc gagtggactt caccccgcat gagacgtctg 2820 gcaaaataag aaggctctcg caaaacctaa caaccaaata tgcaaagccc caaatgaaaa 2880 ccaccacctc ctcgaacctc agaggtctgg gggcgtccgg ctggaactgg ggtttaaaaa 2940 aagaaaatgt ttacaaagta taacaagatg tttgatgggt ggaaaaatgt atccacgagt 3000 tacatcccc cgtttccttg caaagccccg ctggtcttcc tctccttttc ttctgccaaa 3060 3120 aaaaaaaaaa aaaatcgtgt atttttttaa tccacagaaa gctttggcta gaccgcttca atcctgcgca tctgggtggt ttaggggagt ctctggtctt tccccctgcg ctcctggggg 3180 cccaggtcct cggcggggac ttcctcgagg ctggcgcggg cgcaggggca gaagatgctg 3240 3300 cggcggcggc tgagcccggc ggggctgaca gcgcggggga gggtggcgcg gcggcggcgg agggccccag acgggtcgcg cgttctcgcc cccccgggc acaagctgct tgctagtgca 3360 ggggccgccg atgtcccttc ccctggccgc ggctggccgc cgaggctccc cgcatgggct 3420 getegeeteg acceagetge ggeggeagga ggeeceggtg teetetegge geeteeteet 3480 ccgagactet cctcgtcgcg cccgggagcc tccttgtccc cggtccgccc tctcctggcg 3540 ctoogstoot totgoogoog coaggagete geogogoogo actoaggage toaggageog 3600 ggegetegge ggeteggege egaeggaetg getetgtete gggeagetet etecegegeg 3660 gcgagcggac cgagcacggc gcccggctgg ctcggctggc gcggctcggg gacaggatct 3720 teegtgegee gageageaag egagtgtgee eggggeteae egeeteeege aaggeeteee 3780 geocegece cettecetee ceettectee ceettecete eccegecece ageogecgea 3840 3900 geogegeege etecteeceg ecceecegea ecceecetee ggeeetetge teggetggtt ccactgcgca gtggcgcgcc cggctccggc ctcgtcacgt ggccgtctag acaccctgtc 3960 gctttaaaaa aaaaaaaaa gcgattgtgt ttcgcaaaca acagatcggg tttctaaaag 4020 4080 ctatttctcc ccccaaccc ccgccaccgc cacccctcc cgggtctgta gagggggtac 4140 cgatggaggg gagagagata ggtgggggc agagaagctc ccagaatgga ttgagccccg gccggagcca tggagaaatt ggaaaagcag ggagcaccga gcgggcttcg ccgcgagttt 4200 tggagetgag egagegggte ggtggeeega tittegaeeeg getgggttte geggtggeea 4260

47675-47.txt 4320 tetegegege getegeeeta gegetteatt cattggtttt gttttaaagg ceetggeggt ggatcccttg gccgccccg agggcaaggg gaggagagcg ctgtctcggt ttaaaagaca 4380 4440 tttataccgg actggaccga ggccctggga agtgtgcgct gaggggaaca gccgccgagg 4500 geggggagge ggegtgaata tgaceteage ggeggeegeg egeteeetee egeeetetea gctccgggct ccggtttcta ggactgcctg gagaagtgtg tcttgtgcac agctctggaa 4560 tgcatttggc cggctgacga gctgtgaggg gcagcatccc ggcgggagaa ggggagcggg 4620 ggtgggggct cgcctgcgcg ccgcgggcag gtttcctccc gggcccggaa gacctccgcc 4680 4721 accegecace etgecteecg gegegggaag gttacceage g <210> 13 <211> 2146 <212> DNA <213> Homo Sapiens <400> 13 aggtttgtgc accegggtag tecetggetg etgetgeeag getgeeteag eeggtegetg 60 120 ctgccgcggc gactggcgac aagctaccag ccacctacga tggcccaagg aggcgaagaa 180 gagcaagcga tcaggacacc aaaacggtta tcggaggcag gttcccagca caccagccgg 240 ccgagggccg agcccgcgg gcggcagcaa gttttgggag ctggaggtaa ccgaattaaa aggegeetta gaaacteege ttegggaett tgeteageag ggeteegggt tggagggege 300 cgaggcctgg cggacgggac agtgggaaga gagaaaggtg ctaaggggac ccaagatctg 360 420 ggatccagaa caagaggggg tggggaacaa ctctaccaag ccaaacagat ctatttccct tgcctccatg ttggaaaaat tcaggttcca tatggctcct cgggagggag ggagggagac 480 ggtggctgcc ggcttccccc cagggtctcg ctggagaagg gagatgagcc ccccgcaaga 540 accccacctt gccaagcaca ccccagggag agccaggaga gtaacaatag ctggggaagc 600 660 cccgagagag gggataggcc atcttccagg acttaaaaaa attaatggga gaaagaaaaa taacaagaaa ggaagacaga gaaaggttga gactttctta gcagccgcgg agaaaattca 720 gccctggatc tggctgctga aagaaaagag agagaggaga aaagaggaga gaagcaggaa 780 840 agggaggag ggagagaga agtcgctgcg tggaaggaag cttaaagctt gtgaactctt 900 960 cttgaaccga gattggagtc atatgggcca taaatcattg agacatactc tccgccattc acaaactgat agcctatttc agtccagctt accttagcca ccgacgaggg gagaacaggc 1020 agacataata tatattcaca tegageeeca gagegagegg caggegacaa ateteeecte 1080 cttgaaggca aaggaaaaaa agaccactgt ttaaagctgc gtcgccccc gccccccgc 1140 ccccgccccg caaagccacc ccggctgggg agcccgaggg gcagaccggc cagaggagcc 1200 gegeggegte egetteaatt caeteggett aggageaggg gtgegeagga gggaggggt 1260 gggggagcgg gaaaaaaaat agaagaccga aaggtgccgg gcggctcagc tcgccagaat 1320 ccagctccgg gctccagcag ggctaagccg ccacagtgtg gttgccctat aagactggta 1380 cgccctactc tccgtaacaa tggcctctgc ttttgcacag ggaaaaaaaa ccacacagac 1440 1500 acacacacac actcactcac acacaagete acacecece aceteteece etttageaaq 1560 cttagatgcc tgataaggag ggaaggtgat ggtggtgatg gggaaggggg gaaattttaa aatacccgcc tccccaaaaa aagagtaaga agaaaagaag gagggttttt tttttttcc 1620 ttaaagaaca ggtaaaaatt taaatctaga ttggagggac agggaggaag aggtgagcaa 1680 aggcaaggaa gggcggtgaa gttcacagct ccccccatac cccactagtg aactattatg 1740 ctaatatgag aagtagtatt tggaggctga gtcaaaggca ggcctggccc gggggtgagg 1800 gtgccgggtg cccctctgca ctcattcgca attggaacac caggactttt ttagaaagta 1860 gttctgggtc tccaaccctc acactctggc tccctccttc tgagtctcca gccccggctt 1920 cttccctcca ctacaccctc tctattcctc ccaaatctcc ctccagtctc caggcccagt 1980 ctctaaccaa gggagaggga aagaccagaa cttaaaaaaa aaacaaaaaa aaaacacccc 2040 tececetttt tetttttgag aacagacaac aageggtgag tgatgatttt aaaaactetg 2100 aacatcttgc agggggagga gggttgagaa aagggtgaca aaagga 2146 <210> 14 <211> 2427 <212> DNA <213> Homo Sapiens <400> 14 tttcctgggg tctgggtggg gagccctttc cagtaataaa catgagaggg acagagaatg 60 ccagagaget teetgttggg actgggatgg etggagggea teacageact ggtttegaac 120 actgaacgga gaactgccat gcaacaagaa cctgggcaca tcagacccct gcaggcaccc 180

tragazeres	cadaticacac	actcgatggg	cactcacaaa	acqtqaatqq	catctcoota	240
acaccaaacc	cagaccgcac	gccacagggt	gcctttcacc	acctacca	acctectaga	300
ccacactact	caccccaga	ctgcagggga	gccccccacc	cttttttt	tttcatgatt	360
cttatataa	ttctaattaa	gaaacattac	attcacaatt	ataggactca	cantgatagt	420
tttcacaaaca	ctctaaccaa	ttctttgcta	cttaagaact	acageaccata	cagegaeage	480
cctasatasa	ttettaaate	agtgagtagg	accactetaa	ttttcctact	tataactcta	540
ttagaggtta	ctcttaaaty	agtgactacc	accaccccaa	cttttaage	ctttggcgct	600
ccacaggcca	ctgaccacaa	gtgttggcaa	agaaactgcc	tactcaagca	ttaactctct	660
ccctggagtg	acggccattc	ccagcagcta	aactgtatca	ggaaaaaaa	2222222	720
		aaatacaaat				720
		aatccctggt				
		ctacctgctg				840
		aaacggcccg				900
ccagacccgg	agctgcaggc	agggctcagc	aggaccccag	gcgggcacac	aggggctcat	960
		caggctacag				1020
		gggcacaggc				1080
		ttttacttta				1140
		ctgctgcaga				1200
		acccctctaa				1260
		tggggccaga				1320
		cccgccccaa				1380
		agtgggaggg				1440
gggaaacaaa	caccctccca	ctcggcaagg	acaaatcaag	caactgccga	gacaggtgtc	1500
cgcgtcccaa	cccaaggctg	cccagacaga	caagcgctca	ccgccgcact	gccctaacag	1560
ctgctgagac	acattcctgc	agccgcctca	gctagagcca	gggaggccct	gggagaatgg	1620
		ctctcatctt				1680
		ttgctcagag				1740
		gggctgtcac				1800
		tcaggacaca				1860
cagaaaggcc	ccagcccaga	tggcactgga	ataaacagtt	ttccccaagt	cactttaaaa	1920
		cttctaaaga				1980
		tgcttggctg				2040
		gccagcctga				2100
		cagaggcagt				2160
		acatcactgc				2220
		agggacacac				2280
		acagcaactt				2340
		ctactcccag				2400
	ctgcagcagt	_	33 3	5555		2427
	999					- ·

<210> 15 <211> 3015 <212> DNA <213> Homo Sapiens

<400> 15

tctccttctt	ctcctggcag	aactgctcga	tggccttgat	catgcccagg	cccatctcga	60
tgcagcagta	ggcatggtcg	gcccggggct	cgggacagcc	cgccacgcag	tagtaacagt	120
		tcacacttgg				180
acagatcgtt	caggagaccc	accagggcgt	gggcagactt	gttggcactc	atcttggtga	240
agcccacgat	atctgcaaat	aaaatactga	cttcttcgat	ctgctgcatc	ttaaaagggc	300
		tggatggaag				360
tggcatgcct	cttgacagaa	ttctcactct	cctcatctcc	ctgcttcatt	aagtcatcgg	420
ctatgattct	tggcatcacg	gaatgaatca	tcctctcttt	gagggctttt	tccacttcca	480
ggtccttccc	gtgcataatg	gattgcccca	ccttgaggaa	ggtgctcctg	gacctcacct	540
gggacatgac	gaacaggtgg	accccgatgg	cgtggatgca	gccgtggagc	agccccctgc	600
tcagcagctc	ccagtgcagg	gccccggctc	cgggcgaggg	gaagcaggct	tcatcccgga	660
		aaaaggacag				720
acaaaggtaa	gtgcatgacg	gtatagagca	aaaagagcac	ttcgatgcac	atggagaagc	780
		gtatctgtgg				840
gccgcgtcct	gagacaggcg	tcaagacctg	gaactgcgca	gccagggtca	gggcgaacac	900
		aggtccacgc				960
		acaccaggag				1020

cagtctggat	ctcatgtgga	ccgcaaaata	gatgctccac	agaaggcagg	cgaagccgat	1080
gtagaagagc	gcataccgga	accggcgctg	ggtctgcggg	aagcagcgct	ccaggcaggc	1140
ctcctccagg	ttcaccgagt	cgaacttggg	gtcccaccag	cggctggagg	ccctctcgaa	1200
cagctggggc	agcttcttct	gcctgcgcag	ccggcctccg	ccgcccactc	gccgggggac	1260
gcccccggag	tccccagagc	tgctgcagct	agaggagatg	ctgtatttgc	agtgcttggg	1320
gtggctgttg	gaggacagct	gcttggggtt	gatcttgacg	cgcacgctgt	tgctgtcccc	1380
gctggagtcg	cagctcacct	cggtgctgtg	gtgatgcagc	agctgctggt	ggggtgggga	1440
agccatgttg	tcgagtcccg	gggcctgccc	cggccggggt	caccagtacc	tgccagcaaa	1500
acggggagag	ttagcggcgc	tcccacctag	gcatgcacgc	ctagaggccc	gggacctgct	1560
cctgtcctaa	ggggcggctc	cagcacgcga	cctggacagg	caccatctgt	tcctgtggtt	1620
cccggctcag	cggtgctccc	accgccccca	ccgccccac	cttcgaggcg	cacgagaacc	1680
gctcgggacg	gacctagaac	gcccgggggt	ccccgccgcg	tggccgccgt	ggctccggga	1740
ccgctttgct	cgctcgcctt	ccgcgcctct	cgccccgagg	gtggcctccg	cgccgcgcgg	1800
		gcctcctcca				1860
		gccgcctgcg				1920
ctccatcctg	caggagccgc	gctccgatgc	gtcaaaggcg	gcgcgcggcc	ggccccgggc	1980
ccggaccccg	acccggagca	gcgagcttcg	gcgggcgccc	ccggctcgcg	ctccccggcc	2040
gccccccgcg	ctccgggccg	gccctgcccg	cggcggcggg	cgctgggggt	gggggcgccc	2100
		cccgtcggcg				2160
gagtgcgccg	ccgctcccgc	cgcggccgca	gctgtcccgg	gaccgagcgc	gtggaaccac	2220
		gcggcggtgc				2280
		cgcccgcgcc				2340
		gccgccgtgt				2400
		cggcccctgc	-	-		2460
		cgcagcgcgc			_	2520
		cgggccgcgc				2580
		aacaaaacaa				2640
ggcggcgccg	cttctaggcg	gcgggctgtg	gccgctgtcc	gcgctccggg	cgctgtgggc	2700
_		agaggccgcg				2760
		gaagaagccg				2820
_		ctttgggata		_		2880
		ctgtaagcaa				2940
		gaccttcacg	ggcctagcct	ccaaagctgg	gcccaccgac	3000
gaccacgttc	ccccg					3015

<210> 16 <211> 3093 <212> DNA <213> Homo Sapiens

<400> 16

gtcactacat	ccggcagcgg	ggtggcccct	agctcctgct	gccccccgc	cctttctccc	60
cgcccgcccc	cggagctcag	ccgatttctg	aggctccaac	tctacccact	ccctccccgg	120
gccgccgccg	ccgcgccttc	ccccattctt	actccctcga	ggagagccac	aggttgcaaa	180
tccaaccaac	ctcgcaatct	atttttgcaa	aatcactcac	aaagatctcc	ctttcgcgcc	240
cgcgcccgct	cctcccgcgc	cgggtcccct	cagccacggc	cacaaagtgc	ccttctctcc	300
tcctgagtct	tgcacataag	gaacgcgggc	tggggctctg	ttcgtctttc	tcctcgccca	360
aggtaaggac	ctcgggaatc	tgaagcctgg	cgtccactac	gctcaggccc	gcagttccct	420
ttttacagag	cttgcaccat	gggaaaaaat	aaaataaaat	ttaggaaagg	gaggcaacag	480
ccattgggag	ccaacacaga	gtcacgcagc	gcccaaaata	caaacaccgc	agcggccaga	540
aatcccgcca	cctttctcgt	tctcccaggc	tgtcctgtcg	aggttccctg	agtccccccg	600
cacactgaaa	ggcatcgcag	gtgcagtgcg	cacccctttc	ccacccaccc	caagaagccc	660
		tcctcgggat				720
tccctcgact	acaaccaaga	aagaataatt	ttcaaagtgt	tcaacatccc	cgcccccaag	780
ctccccaaaa	cacaggggca	gggaacacca	aaacactcgg	ctctcattag	gaagatcacg	840
gctctgaaag	gaaatagtag	acacgatact	tcatctcatc	tggatttatg	accaaaaaaa	900
caaaaacaaa	aacccaaaga	gttcgcttgc	attttttcct	tccaaatctc	ggttcggctc	960
gaaggcaggg	aatctaaaag	accgaggccg	atggaagaga	gccagcgggg	cgagcgagcg	1020
ggcagcctcc	ctttttgcct	cccggagtta	cccagaagga	caggggaagg	gaaggaagaa	1080
gaggcgagga	aaaagaggag	ggagggaagc	ggaggccagg	agcgacggag	caaggaaagc	1140
agtttgcaag	cgagaaaaga	gggaaaaaac	acagccgcac	gaatccagag	agatcacaag	1200
ccgtacgcaa	gcagcagcag	aaagagcgag	agcgcgagcg	cgcgtcctct	ccgcgtctgg	1260
			_			

			4/6/5-4	/.LXL		
ggccagacag	ccccagact	agcccgaatc	accccccaag	cactgtctcg	tcctctctgc	1320
tccggccgcc	ccctaattcc	cctccttcct	ctcctccacc	tcctttccaa	aaaccaaaac	1380
aacacaaggg	agggtggcaa	aagcctcccc	aaaccggccg	attcactcaa	agacaacaat	1440
		aatctatatc				1500
cggcatttat	tttaacacct	gacagctaga	ataaataaat	atatacattt	atatcaatag	1560
atacacatag	aaaacttgga	gccaaagcat	ttggcaagag	cggaaaaaaa	aagaattaaa	1620
aggtaaaata	atgatcatga	gcagcggcgg	cggcagcggc	accagcggca	acagcggcgg	1680
cggcggcagt	agcagcagca	gcggcggcag	caacagcaat	aatcacctgg	tgtccggcct	1740
ttcctagaaa	cttcttgcat	caccacttct	aagaacccca	gttctaagaa	tcaacagagc	1800
tcaattctcg	gaatttgagc	ttcggacttt	accactgcta	cgtggcaggg	gaggacttgg	1860
tgtcagctct	ccgagatttt	tactgcccct	ggccaaccaa	aagccctcaa	agccacaaga	1920
ttttttcact	ggccggcata	tttcgaggtc	ctcataagca	gagcgtctcg	gatttggagg	1980
ttccggttcg	aggctcgagg	ggcctgaagg	tggctctccc	tccccgggcc	caagacgatg	2040
gtatggcctg	ctccgccacc	atcacgtggg	ctcctcctct	gtgacgtcgg	cgccttcgct	2100
gtagcaaagc	tcggcctctg	gaattctgag	aactaatttg	ctattcggtg	acataagagg	2160
gggagtgcgc	tttgctttcc	cggggtctgg	ggctaattcc	ttctttctta	cccataaact	2220
cagcagatcg	agctaaatgc	acaaaaggga	gcgagaggtt	tgaaccactg	ggaaaagtat	2280
gttatatata	tagtagggtt	agagaggcga	gtaagagaaa	aataaaataa	aataaacatc	2340
acagctcttt	ccaactagaa	tattaggcac	cacgagaaaa	atatttgcca	agcagttttc	2400
ggtgggttca	tttgctttat	ttttatttag	gacaggggtt	tttgctgttg	ttctgggttt	2460
ttttctttct	ggtgtggtgg	cttgggattt	ttggtttctg	tattttgatg	gtttatggat	2520
ttttgcttct	gattttttgc	cttttgcaag	tttgtggtgt	tacgtaaatc	acaggatcgg	2580
catcggttgg	atttttttgt	acgtgccttt	tctttcccta	tctaatccct	caagcgtttt	2640
aaagatgtat	tatttcaata	ctaatactat	tgaaagaagc	ttaaattttt	ggccatatgt	2700
aacaatccca	gcccccactt	tttttttt	tttttccttt	ggtgcaattt	tctttttccc	2760
ccttggactt	ttgctgaagt	gtgtctctcc	tgcacttcag	agaaatgttc	aaaggatttg	2820
ttttggtttg	gtttgtttct	ttccaggaca	gcaagtggtg	ggtttaatct	gttattgttg	2880
actcttggga	aatttcttgt	tgcaagaaac	gtgtgtgtgg	gggggagggt	gggggtggcg	2940
gggtggtatg	tgtgtgtttt	ctacaaaatt	ctgtgagcca	aatacctgtt	tgtgttttgt	3000
tttctcttaa	ggtcttgaga	tttttgtttt	cgaggctcgt	ttcaaggtcg	ttgtaaaaaa	3060
atctcttcag	tctgtgttta	agagatcagc	cgg			3093

<210> 17 <211> 2436 <212> DNA

<213> Homo Sapiens

agttctggat	gacaaggact	aattgcccag	ggcgttggcc	gagaggaata	ggaagagcgc	60
		agaagagccg				120
caggaagagg	aagagctgca	gcacgaaggt	caccagggag	atgcacaaga	agtaggcggg	180
		gcagggccag				240
		actacggcgt				300
		acgcgactcc				360
		ccggatcagg				420
		gggtgagtgt				480
		caggagggag				540
		taggactcct				600
		cctccctagg				660
caggagaatc	agcggcactt	gacctgctgg	aaatcctgct	tcacactccc	ctttctccgt	720
ccctgcgtcc	ccacccacac	acacatcttg	ggcagcactc	agggacctca	ccaggttacc	780
caaggctctt	tggaggtatg	tgtgcgtgag	ggaccacgat	gtgtgtgtgt	gtgtccttgt	840
ctgtgactct	gtacgtgtaa	tctgtgtgcg	cttgagtatc	tgtatttgtg	tatgtatata	900
tctgcgtgta	cagacacgca	gcctctgcta	tctagcttta	aaaaaatcaa	ttgaaacaat	960
cgatacactc	acactcgctc	tcgggcaccg	ggtgaggtgg	gggcgcaacc	agaatacctg	1020
tgtcagcggg	tcctggccag	cacatctctc	caacgctggc	tgcccgggct	atttctttgc	1080
gaagagcgtt	ttcatttgag	gcgaaattaa	aatcccccct	tcgcgcccgc	ctcccgccct	1140
cctgctgaga	gaaacccaaa	caaccctcat	ggcgccgaaa	tcctttccat	gccgacaagc	1200
ccgccctggg	cgcacgagtg	gatgcttggc	cagcctttcc	tgggatcgac	cccgccgccg	1260
tgctcagccc	tcaccacgtc	cccatcccac	cccacgcctc	acagccgggg	ttcctggcca	1320
gcttcggaag	ccaccgagaa	ataggattcc	gtgcgcccga	gagaactttt	ccaggggcta	1380
aggaatcggc	cagccggagg	cgcgagaaaa	gttctgggaa	ggcggttgca	cctaggatgg	1440
			Page	17		

				4/0/3-4	/ . LAL		
	gtggatgcca	cggggcctcc	gtccaggctg	tcccgtccgc	acgggtcgac	tggtcacctt	1500
	ggaatcccct	ttgcaggtcc	cagcgccccc	cgggaacccg	cagcctccgc	ggagagcgtg	1560
	ggcctctccc	taccgctggg	gcgcagcgca	gtgcacgcct	gagggtggtc	gccgggggct	1620
	gggcacgccc	ccagtcctgc	gccgccgggg	gctgcggcgg	tgctgcccac	cccagagagc	1680
	cctcggcctg	gggctccggc	gaagcaagtg	ccttcccggc	gccggtcgcc	aggggggcgc	1740
	gggagcagcc	agatgcgccg	cagcgctggg	aaggcggcga	aggacagggg	ctaggggagt	1800
	gaggggcgct	cggcaggcag	cctcagccct	ggccctgcgc	gggagaaggg	acagcagaga	1860
	ccgcccgtgg	ggccccgggg	tgtagggagc	tgtccgttca	gccctggcgc	ccgcctcgcc	1920
	cgcggcagag	ggcggcacag	ccggagcctt	ggaaagaccg	gcagcgccgg	cagccgcggg	1980
	cttctcggcc	actgcctccc	ggacgcacgg	gaagccgccc	cccgcgccgc	cgccgccgca	2040
	ctgccgccgt	cgcagagggg	tgaggaaatc	aactcaccga	gctctggtcg	ccgacaagag	2100
	gagccccgga	cgccggctct	cgccctgccc	gaggctgcaa	agttgtggac	tcggcccggc	2160
	tggctcgcag	cctgcgcttc	gcttcgggaa	ctgggcaagt	agcggggatg	tggggaggag	2220
•	ggagcgggca	gctgctggct	tcccacttgg	gcgccagcga	gtaagggcca	ggaagcggcg	2280
	gggatggcag	ctgggcaccc	cccagccccg	ccacccctcc	ctccgctcct	gggggcggtg	2340
	ctctggccgc	cagtctcagc	atcgtggact	tgccccctcc	tcccctctcg	attccccttg	2400
	agcgggctgg	ggcgccctgc	ctggtttcag	cgcccg			2436

<210> 18 <211> 17219 <212> DNA <213> Homo Sapiens

ttcactgcac	accatccatc	ctttaggctg	ctagcgtggc	cctcagtttc	cttcaagcca	60
		gaataagtgt				120
					aggagtgttt	
		aagcatggat				240
agtgaccctc	ttcacacctt	taaatgggct	attgtctctg	gaacgcactt	acagaaattc	300
tgccccagtt	tccagctcaa	caaagtctgg	gatttttctc	tcagaatatc	gctatacatc	360
		tttacattcc				420
tcttgttcca	tttgggcaac	ggagcccaag	tgtcttgatt	tgtctcagca	catgtcattc	480
aagcgcacat	cttaatctga	gcattcgtac	tacttccatt	ctttttgctt	tgcctataat	540
gtggctcttt	cccaggccag	accaatatgg	gtttgcagtt	taaatgtaaa	cagaggatcc	600
		aagaaaggaa				660
		ggtaacccat				720
ataaatgtct	gcagaggtgt	attaaaattt	tagaccaatt	taatattagc	catatatata	780
cacacacaaa	cgatggatct	cacaacacat	cagtgtccag	ctcctctttg	gaggctgtct	840
ccttgcacat	atctaactcc	tcacaagttc	ctggttaaaa	gtatgtctat	ttatatagag	900
acaactcaaa	gaccgctttg	ctctcttcag	tgcatacctg	tacatgctgg	cggggcattt	960
caggctcagg	tccttggtct	gcagcagtca	tagtcagagg	ccccacccga	ctacagctat	1020
gtgcagacct	tcccgtcctt	gaacacccgc	atgaattctc	tttgggaaca	ttgagtctac	1080
gtctgtcttc	caaactcagt	ttttaaagtg	agggtgttca	ttgtgtgtgt	tcacagctcc	1140
ccgactgaga	aatacctggt	caaactagat	catctagcag	ctgcgtttgg	tttgtggaag	1200
aatcgagccc	gatgcaccaa	gatgtgaccg	tgcacacata	agagaaagga	aaaccctagg	1260
cccagactca	cagctcctcc	ccactgcgag	ctactctgcc	tccaggaatt	tccactaggc	1320
tctttgcccc	cctttcccta	ttacactacc	ccaccacggc	ctttaaaggg	ttaagagaaa	1380
ccccacggc	cttccctcca	cccagctcct	gggcccggag	gctagctcgc	tcactcgcag	1440
ctcacagagt	ctgctgccat	ctccgcgcct	ccccccctc	cagtccttca	gccgggaggg	1500
agcctgcatg	cctgtctaga	ccgatctatc	accggcacac	caacaacacc	cgcgagagcg	1560
cggagaccct	gcccaggtcc	cccggcccgc	acggttcacg	gcggacagaa	cccggggagc	1620
		ggggtagggg				1680
cacgggtcct	ctccagctcc	ggccccccgc	gctcccacca	gcccggctgc	cggggcacag	1740
tcacagctcc	gcgcgctggg	cagtcctatt	tttatcttgt	ctaatcctaa	actgggcggg	1800
gagcacaggc	gtcgtgctta	gagaacaaga	gataggcgcg	ggaggcgggg	aggagcagcc	1860
aggcagcgac	gcgagcggga	gcgagttaaa	gacacagtgg	aggcgaccgc	gggcaggaag	1920
aaagagcggg	ctgcgcgggc	ctcgaggcgc	cgcacgcaac	gcgccgcccc	gcgaagttac	1980
actcgcttcc	ccgccgtccc	tcgctaccgg	cccctcccca	cttcccagcg	gcgctccccg	2040
cagcctggac	agcgaggccc	cggcctgtgt	gggaggcgga	ggccaggacg	gccctgcaaa	2100
gggctggaga	gaatcgctaa	tgagctgtgc	agcccattga	tccggagaac	acttcctaat	2160
taactctcag	tcacctactg	gtgacagcgc	ctcaaaggac	agcgctgggg	ccagccgagc	2220
cccagccgcg	acttgccggc	cgggcgcctg	ctgcccaaaa	cccgcgcgct	cccctaaaca	2280
			Page	18		

ccccaaggca attggtgtgc gtggcggtgt atacccgcac actgaaggcc agcctcggat 2340 taaacctgga tggcatatta atcategeet tececeecca eteegeteta egegetgaaa 2400 ccctgcccaa aataaacacg aaaaccaaca ctgcaaaacc cacaccagat aacaggtcga 2460 gagaggagtg ggcagggtca aggaacgagc gtattcccta agtgtccacg tacaggaatc 2520 tttgaggetg acaattaaaa tgeetteeac geaageaatt etgttggeaa aacegaacee 2580 aacacttegt aaggattgat tteggeeege ggtgteegtt teeagtgeea eaggaagtgt 2640 2700 cagatggcca gaaataccca agtotgtotg cactcaccac ccaccacctt ctqqqqtqqq ccatttcctc ctagtcttta ctcccaggcc attttaagga tctttctcca aaagactacc 2760 cctagaacca aataccacac tacccctcct ctagcgtctt ctcaaaacga aaaaaggggg 2820 ggaaaacaca gctaaaaccc cgagctgtct agtctagacg cagcgaggct gtgcgaatac 2880 ctatttgaag cgcgttggtt tctttttaag gtttgtttct aaatacacat aaccctcctc 2940 ctteettett egetetteea tteececcae ceccaecete caqaeqeeqq eqqeqeqe 3000 cctggcgcgc gggcactcac agcctctagc tggagatcgc ggactttctg gaaaagattc 3060 attaacagca aattacgcct cgcccggcca cggcctacac gctgccagac tcgtccgtct 3120 ccgggacccc gggaagggcc cactcgagcg tgcgagcggc gggaagcccg ccgggaccac 3180 gegtgaette ggeegeeeta etecacacae ggtgeeecaa ggetetetee gtaaacagea 3240 ggcgctcgtc accgccgccg cgagcccccg agttggcgga ggctctgcgg cgcagccgcc 3300 egeeggetee gagegegge eeegeggege etegeeetee eegeettege egaggatett 3360 gccccggtgc gcaagttcct cttcgcctac agectccttg ccacacgccc tccgagtggg 3420 accaacttce teeggeegea gaettteaca egeceateag ggetacecae cagaeteece 3480 attgcccage ggagggccca ggtctcgccc gccccgccc tccctccacg acgctgcccc 3540 cgcacaagca cattctacac ccacccctgg gggctcataa cttaaaacct acgctgaaca 3600 tcggggaggg agaggaggg gaaagcggga gggggatcgc agattataat cttaaaagaa catttacaaa acaaagcgtc tgacctggct ggcgggcggg ccaagtcgga accccttgct 3660 3720 ctgctcgatt tcttagtagt tttttttttt aatccacgtg attcgtgctt tggggcaagc 3780 caagaaaaaa cgggactccc ctcccgagtt gcgcggcagc ggcggcaggt cgagctcggc 3840 teggeeegag geactegeea cacacetteg egeaegeaca egeegaegtt ceaettggag 3900 gaacgaccgg cccccggaga ggcgagacga ggcggcggtg gcggcggctg ggggttttta 3960 cagttettte cegagtegaa aaagaaagea gaeggeaace egetgeeete eeetteetge 4020 tegegageta aegeegaace cagetteeca getteeagee caceteecee ceeteegeee 4080 gactegegge geteagegge gacegegete eegegeacag acacacacag getgeaaact 4140 tccactctgc gaactccctg ctctcctcct ggcccaccgg gaggcgccag gccccagcc 4200 gegececete cetecetggt geceaegegg ggeegettag gttggetgea ttttaaataa catagetatg aaataaaaac gaaagegage caageageca aagggaageg egaggcaaaa 4260 4320 gettegeggg gtacgetgeg ggaggggge eegggagagg gggeegaetg eageetteag 4380 cgcgcccgcc cgcccacccg tccgcggtct cccgggggaa aggtgttccg ggcactgacc 4440 tgaaatcccc ggtgggggag taggcaggga gcctgcgatc cggctctttg aagttttccc 4500 ccaagcggac tcgaggcggc gagaaggagc ggggggcggt tgggtgggtg gagagagata 4560 tgaggggtgg ggggggttgg cgacgttaac gagcggagaa ggagccgggc cggagaagcg 4620 eggegageag caaagtttge ggteecegge tgeeegeage eegetegegg egeegegete 4680 actegaetee etegeegtet getggeagee ggetgeeete ggggteggee eegeegaggg 4740 gtgggetetg ggeegggtgg gggeggggete ggggeeteeg ggeaggtgge 4800 gacageceeg tgegateete egggeteeeg cagetggaet gggettggee gageteagea 4860 gctcccgcgc tgccgccgcc gcccgcgctc gggcaggagc cccagcgcca tgttgacggt 4920 tegeogegag egecegeteg ggetgggtgt gtgtgagtgt gtgtgagtgt tggecaagte 4980 gtecetgege ggegaeageg eggettggge teteegeeeg geggetegeg ggeteeeeet 5040 cegeegeege egeeegeeta geteeegete teggtegegg tetgggetee tgegegtete 5100 ccccgcagcc gccgagctcg gcccgcgttc agcgaggagc gcagctctgc ctcaccttgc 5160 cgctgggagc ccaggctccg tctgccgccg cacgccgcga tcccaacgcg tccccctcc 5220 etggtteect cetetteete etececetee etecgecegt cetecetece geeegeeeta 5280 cetecetece teccaacage egectecet ecceegeag gegeageget egggegacag eegecegee gegeegeet ecageteteg caagtttgag etcegecagt etcegeteae ecteegetge ggegeeteeg eggegggtt tegggagggg tgatteeca ggaaaggttt 5340 5400 5460 gcccgagttt ccccggccgt catcgatgca cggcccggca cgttttggcc tctctggatc 5520 cgaaccccgg accaettggg tggcgcccc cetectegte ceceggeete cecteccag 5580 etegggeega gttggetgeg eaegeeegae eegggegeae gteetgggeg ageeggagae 5640 cgacttgggc ggcggcggcg gcgagggctg ccggcagagc cagagccgaa gggatggggg 5700 cggcggggc ggctctccca gccgcgcgcc gagactcccc tcgctaccca gaaggccagt 5760 ggaggaccgc aattaccata aagcgcctcg cactccgctc agccaaagct gtcaaacccc 5820 ageggeagea geogetgeeg eegectettg ecaceagege tgegetetee eggeetegte 5880 ccctccgaga cccagcggag cgtggcctgt gtgctcccgt gctcaccccc accccagttt 5940 gccccttcct cccagaggag ccctttccca tttcggtgtt aaaagctacc tgaaaacacc 6000 accccaggea acggtggccg ttccgcctga actccgcgcc cgagttcccc ggacgtttca 6060

			1/0/3 1	7.0220		
attatataga	aattgtttgg	aggtgggga	agggggagc	agcccgtgga	ggcaccggga	6120
				tttctcccgg		6180
				aggcccctcg		6240
gggagattat	ctcccgcgtt	ttattttcct	tgacagggag	caacttttgg	cttacaccgt	6300
				gtgcttggcg		6360
						6420
				agcttctcca		
cgcggctctg	ggcgcggggg	gagggcgggg	gcaggcggga	gggagggga	agcggagaag	6480
cqaqqttccq	acctccccaa	agcgcaaagc	ctcaagggcg	agccgagaag	ccctagttgg	6540
				tccggactaa		6600
				ggctgcccac		6660
ttatactggg	aagggggtgg	ggtgtctctt	tctgcctaag	gacaagatgg	tgcaggctcc	6720
atgaaacata	aatctgaaat	agaagtagct	tgtaaatcca	cacggaaagt	ttttaaaata	6780
				caagttgatt		6840
				cttttaaaaa		6900
tactgactgt	gggactggta	ttaggtgcga	ttttattcat	tctgttttag	ttctcagcac	6960
				atctctaccg		7020
						7080
				ttataacaac		
				gctgggccgc		7140
aggaccagcg	cctgcagaat	ggaatgcacg	cttttttctt	cctggtcttt	ctgggggtgg	7200
				gtaacaagca		7260
				ttaggaccag		7320
ttattagatt	gaacgcatgc	gagttacaga	cacagctgga	gaaaaggcct	ctggttgtgt	7380
qttqtqqcaa	catttcttt	tgaagcgact	ccttttattc	aaaacaagtc	aaaaataacc	7440
				gtggttccag		7500
						7560
				ccagtgtgga		
gctcttccgg	ctcggttagg	ccgaaccgca	gaggccctgg	cccggcgccc	agccaccttc	7620
tatcccctcc	cctcqtctcc	ccaactctqc	ccccaqqcac	aggcttttct	cagaattcaa	7680
				accgageteg		7740
				aggcctgttt		7800
aaaagtccta	gaattcggga	ggctgagcca	ggagaatcgc	ttgaacccgg	gaggcggagg	7860
ttacaataaa	ccgagatcgc	accattacac	tccaqcctqq	gcaacaagag	cgaaactccg	7920
				tcctagagtt		7980
				agggctgact		8040
tttgatgctg	gagacaaaca	ggccagtaaa	ttcgcctttg	acgtaatttg	caacatcctc	8100
ccccaccttt	tctagggatc	ttqcctccac	ggtaggctgg	taggattaaa	agatttctcc	8160
				caaaaatatc		8220
				actgggaatt		8280
attttcccga	ggcgctataa	ggcagagggg	gggagggag	attacaccta	ttggcccggt	8340
				gaagggcaat		8400
				cggggcctgc		8460
ggeggtttgg	cectteteet	geeceeteet	eteetgeeet	cccacaagcc	cttegggage	8520
tgacccgggg	gtcaggctgc	tatacccagc	actcagcaag	gggaggattt	caatgaaaac	8580
				ggaggccgtg		8640
agaaataaag	aaataddtdc	cdaaatdada	gatactacaa	atggagcagc	aggaggtagg	8700
aguacaaag	anataggege	taaaataaaa	9909009099	attata	9999900900	
				attataacaa		8760
ctcaggctaa	ccaggccctg	caactgggca	atcgagctgg	cccttctagg	agcaggcctt	8820
gageetgget	gcccttctca	aggcaggttg	actctqcaaq	acccgctagg	gcctctccca	8880
				catcctgtgt		8940
						9000
				tatactagga		
aaagcttata	acgtatgtgt	aggcttccga	tggtcctcct	cggaggctgt	tctcagggcg	9060
atgacacttg	qtactqqaac	aggtgggact	cqqatqaqta	cagataatgt	atttttacat	9120
				tagtcttctg		9180
acaagaactc	Lygycttate	caacygcacc	LLadadadda	tccgctgccc	Catectecaa	9240
gcacaaggca	cagctggctt	cccctctgaa	actcaaacga	ggtaacaaac	aggaggcgca	9300
tcctcctccc	aggatttcac	tcatctggaa	acatctaaaq	gtagctgcct	cccaqqqcaq	9360
aagactocto	gacttaaggg	togocaggot	gaacatgact	gttctttctt	cttcctagec	9420
+++c~~~~-		ttacacacaca	January and	300000000	taaataatta	
				gggcagcctc		9480
ctagcaacca	tcttggaatt	tctggtctgg	gctcgatttg	ggtcaggccc	tgagctcccc	9540
				ggggcccgca		9600
ataticaacca	aatgggcata	atacaggagg	cttctaggag	gctggccgcc	tottacacto	9660
505050000	taacacaca		acactacaa	acception	agagataaa	
				gggtgctcct		9720
ccggacgcca	cgtcccgcct	cggctgctta	tttagcaagg	cgccttctgc	gcatatttta	9780
cccggctggg	ggcagtgagt	gggaaccgcc	gggagagggq	gcggggaacc	accaactact	9840
33 333			Page	20		
			- 496	~ ~		

cgccttcgga cccagtgtgc cggcctccgg ccccagccat tttgtatcca gcttccctcc 9900 9960 tecaetecea eegggteest gegaagaege accaeeega acceettege ggtaceaete ccgaactgga ggggtagaga aggctctgcc agcccctcgc ctgcagcagg aaggtgggta 10020 cggaccagca gaagggaaag cggtgctgat ctgtctctaa atacctctgc cctcccgccc 10080 10140 ccaacaaagt cggtcacaga ggtgagtggc gcgggatggt tgcctcgaga aggtcgcagc caggagcaaa getttgggge teacaacgga etgggeatte caaacggtgt aatettegge 10200 acatttcacc egeteceatt ceacetteeg aaceaetetg eteteggtge teateeteet 10260 ctccatacct gcgttcccag cgcgttagca gccgcgcagc ccccggccct gagtgcgggg 10320 10380 ggtggggtgg gggggctcag ggtggtttgt gtggtgcggc ctgacagaac cttctgtgtg cggcggaggg aggaggctaa tgcataatgc acagcgcctg gaagcccggc cattagcggc 10440 ctgtcggtga cacagacaaa cgactgagag ggaggagatc cagctcgctc tggagtttaa 10500 atagaccage gtggaggga aacgecatga tttaaaagtg tgtgtttgca gacactegca 10560 tatattttaa tgatttccag caggctatgt gtcctagcct tgcatccccc cctccccaaa 10620 10680 aggaggatgt gtctagagga gggaggatga aggcagagtg agaggcctca acccagaccc accagcaget tttgagagat gaaggagggg agaagtteag aaagegagge etggggaage 10740 cacacgaccc aaggccaagc ccagattitig ticttaaaat aataatttaa aaaaagagcc 10800 acccagcett ccaccetgga etacaceetg tgttgtacca gaaaggeetg ggggaaagaa 10860 taaattetge caecettget teeceeggga geceacattt ttgaatette etttteeact 10920 gacactecag agacetectt ceteceggtt taacacacta gtgtttttta geaattaagg 10980 cgagaagggg gtggggataa agataagcca atttttttt ccgccatgca agtgtgagag 11040 ataagataac gctaagctgg ggcaaagcgg ctgcttacaa cctcccctta gcgattttga 11100 toggtcactt cttatctcgc aaaaatgctc ttttcgaaaa ctggatcaaa aaagaaaaag 11160 agaaaaagaa aagaaagaaa gattttcatt tggaagtgac atttaaaacc cacctcccct 11220 11280 ccactgacaa cccaccccc attggcgggg ctccccagga aaagtcgcac ctcgactgca ggatttcagg ctttctcgcg gggggcagga ttactagtgc aattaggctg aataaaacca 11340 gggatgcgtg atgaggattt atcctgtatc caacccaage tegeggetgg gtttteette 11400 tettagttae tggtegatgt ttgtgttteg ceategeact eagtgeette aaactaaaca 11460 ggtagttata cttgggaggg tcatataact atgtcaacat gaagtggttg ttaatgcgaa 11520 11580 ataagaagaa actcttctga tatttatagg cccctataaa gggagagaaa ggaaatcaca ctccctagaa cccgaaagct cccagccgaa ccggaccctc ggggagtttt agaaatcctt 11640 ctttccgcac aggaatttcg cgaaggggtt tccggaagac tttgtcgagg aaggttttgg 11700 tatcagacte caegacetea gagegeeetg caaatteeee eeggeeeagt ggetageeee 11760 agaatgcaaa cctcaaggcg ggcgccccag accaagctga cctagcctct gcccaccccc agctcacaac cccgaggctc ccaccccctg cccccgaccg ggtcggcacc gtggcgtccg 11820 11880 gcacatgcca agtetacegt etecaageca ggetgcaaga tecaaaggtt ggggeetgee 11940 geggaeggat tgtccetggg gagetgaaac egeceagegg ggaaaceeet cetetegeee 12000 ttccccgaaa agcttggccg cggtctaagc tccgagcaag cgggtatccg ctgacagccg 12060 12120 ggcctcacgt aaggcccaca cgcgtcccat tagtcagccc gagttcccct cgggcgagcc geetggegeg geeceaagge egggeteagg eggggagagg gtgeggggee geagegaget 12180 gegggeggag gtgegggete egeggageee ggeeaggete ggtteegegt teetgggeee 12240 gcgggtaagc tgagtcggcg gggcaggccg ctccctggct ggcgccgggg cgccaagctg 12300 cgcttcacgt gcccgccata tcagcagcag cggcggcggc ggcgaggagg gggtgctggg 12360 aggegegeg cegtteeege ggggteteeg gacceegeet ceeegeeet eeegtgggg 12420 gctgggccga gaccaccctg cggcccccat cccagcgcaa gccgaaagcg gcgctgccag 12480 acgcagagag geteetgggg egeegtteeg agageegege ggeggeagea geeaggggag 12540 ggtgctcctc gcggccgccc cgccgccgcc gccgcagtca cggggaccqq aaqccctcqc 12600 geegeeega geggeeteeg etggeeecag ggetgtteea gaegaggget ggeegeget 12660 cacccetgat ecetectege eccaggegae caccegggee etgeggtate eeggtgtaag 12720 ccgagaggac ccttcctgcg gtccgatgag atgtccctgt ccctctgcta ccaccataag 12780 cacgccccc cgcaccgctc gcagctccgc agctgggacc ggaggggcgc ggagccgcca ctccggccgg gcaggaacac ctgctcccag gccctgcagc tgggcgcgtg ctgctgtgag 12840 12900 aggetgeeta etgttgtgtg cagagatege ggaggagaaa atagggetee gaageteagg 12960 gccaggagca gccaagcctc ggccaccccc atctcccacc cactgcaggc gacagagcgc 13020 gaagccagag ggcctgctgg gggcccgggt ctcctttcga aggtcgaagg gccgccaccc 13080 ctgggatccg gcttctggcc tgaagaggtc gttcataaaa cagatggggc aaaacctgtt 13140 ttgggagcct tcccagtgtc cgcccccgct ctccaaacca gacacactca tctccccctc 13200 agccctactc tagcctccgg cgggggacgg gagtaggtca tggcggcacc ggtactccac 13260 ccgccccct ccacgtaggg acgtagggtc ggctgcgggg ctcggacttt gccactccac 13320 ctagggaagg gccaatggac gctccccgtc tcctccgtgt ccggaggaga tccggcggcg 13380 gagetgacet geaaggettg coetgeetea eccaeecece aceteegtee caeeeteece 13440 gactetectg geceagggee eggeeeggga aggegttgtt ttgeeagegg gageegageg 13500 agtgcacaga gaaaagcete eetaetetaa tgagagtgca cacagegetg cagegaggag 13560 gatgattacc cggcgggcgg ggggcgcggg ctcgggccgc gggcggcgtg tgcggcgcc 13620

eegegggeee ggagteeeeg eetgtetgge tgetaatege aegetttetg etgttaegga 13680 ggcaggcggg agccggcggc cgagcccagc gccgacgact cggcgggtga cacggaaaca 13740 tggcgcageg coecteece geoegegete eegecteeeg ceeteeege geteeegeet 13800 cocgeetege acttectece geoegegegg cttttgeagt tttaatgete tgetttegge 13860 ctggcaccat tacgctagca gccgcttctc cgcggccccg cgcgtctctt tcccctttgt 13920 tttcggggtc tatagaaaac gtttgctttt gtcccgagct ctcgttaaac caaacttgtg 13980 gtggcaacgg aaggcggtgc aggcggggag gggtccgggg attttggcag tagccggcca 14040 gagegtggtg gaaacttete tegetgggtt eteegeteee teecaeteee eeteeceaae 14100 acagageege eggeeteeeg aegettetee ettegeeeee gagaggeeee agtgeteeag 14160 gaaggtctgg gccacagaga ctgtgaccag gggtgaagaa ctcagagtgc gtgtctgtga 14220 gccccgaggt tttggcactc gatgaccttg ctccctgcag ccccgactta cctctttccc 14280 tttggtcatt cggggctttg tatcagtcgg tgaagaaggg gagggaagag aaagtgtttc tttcgtgcgt gtggttttta ttttaaggat ttgttggaat ctgtcaccc caactgcaca 14340 14400 gccccctccc gtataggatc tagggcgaaa gcggggaaac gtcggattta gggggaaagg 14460 gtcgggtcag aaacctagcc ctggaggctg gatcgtactc tcctggcggg ctcagccaca 14520 cttggtcggc acgcggggcg gggcgaccca gcagagtggg ggacgcaagg gccaggtccc 14580 teggtecagg agacgecaaa egttecaace ttggagegag agageaggaa eeceegeee 14640 cacccaageg egegetee etagetegae gegeaageeg tggeteteeg egecagaget 14700 gctcaggcgg caattittta agcctgcaat taagcgaggc gtcgccgtgt cctctgctag 14760 tgtcggtcot gtcagtcgca catggccttg gtgctccggt ccgaggcccc gcgattagtc 14820 acaggetege ttegeteett eectaateeg eetetgeagg eageetgggg aegeggeega 14880 14940 cegetgegee egageeggeg egggeeetgg ggtgegggtt tggegeeet eceeteteae 15000 agccccctgg ctggggtggc ggcgcccctc ctcctcccgc ccctctcccg ggcctgcgag 15060 atctatttgt gtggtgtcat ttgcataaaa ataggacaag tgtttctgtg cgttcatacg 15120 cgggaggcga aatcettatt gatgtgtetg tgtggageet tegattgteg gageggtttg 15180 atttagggtg tttgtgttgc cttctacaag aaaggagaga aagtccttct caactccttc 15240 ggcggcctgg gcccccagaa gcatgtccct ctgcgcggcc ggaatggtcc accacttggg 15300 ccccaagege geeggateea cagegageag gttgagggee aggegggagg cccattatga etcataaaat eggegggeet aategeeage tgeeaaceea tttacatgtg gagetteeea atgeteett egeeegggee eggetteetg agggtttgee eegacacage tagageegee 15360 15420 15480 aagtgggage taatetagtg geeteteett eeegteggea gegtggette eetteeeegg 15540 cgacccccgc tetettggcc tactgcgctg etcgccagca actectcage ttggacaaat 15600 agctgggagg gcgccggccg cgcggagcca gtaaatcaat cattaactcc caagcgaggc 15660 ctggaccagg ggagggagcg gcggccagag ccgagtccgc gaggcgagcg caaagcctcc 15720 accggggtta ggagccaccc acgcgccaac gaaccgggtg cgtgaaggcg ggtcccgcca 15780 tggcctcccg ggcccctcca gaagcctccg cccgccgggc ctttcaagcc cgcaccttgc 15840 ctggccaggc aggtcgcgtt acagcgctgc ccctgggaga gcttgaacat taacgagtcg 15900 cetegggeet cageggeetg etetecacag gagagegtee egegettggg caageteete ggateeggee gggeteetee tggeteagge ttgetaaace aaactgateg caecetgtat 15960 16020 cgaccaatet ceetgeggea ceetetteee teageceaeg gtggageegg caegeagggg 16080 gttaaaagcc ccggttcgct ctggctcctc ggctgcgagg agaaaacgct gatcaaagtg 16140 cttaagggga aggtaacaca tgcacattcg gtcccgggtc gaaggaggcc gactggagac 16200 ggeteeegag eeaeeegeet egaeeegett eeeaeaetee egggaaegeg geggeggegg 16260 cggccctggc ccgcacgatt cgctcggcgg agcgctgcgc tgctgggctg ggagggcggc 16320 ggggaggagg agagacgagg gggcgggagg cgaacccggg ctgcgccca agaggcccgg 16380 agoogoagat tagtoacogo toggototgo gotocogggt gogocoggga acogggaggg 16440 caggogtogg coccgotoag cogggotoco oggtoctogg cgcgggtgcc cocaccoca 16500 ccccegegeg ctectggege ggetggeteg actetegggg accegegeag cegagateca 16560 cttgtcaggt caagggcagg acagaaactc tgcaagcgga gtcttgcttg cgaacaggaa 16620 attteteett gatgaggtge tgeeceteee ceaegeeggg etteaaaaca aaacteeaga 16680 gegggeggee aggtacecag cetegetege catggeegge gaceteeget ceteggeece 16740 ggccccgggc ggcggagcca agccaacaga gccggcggac ggactcggcg ccggccccgc 16800 ggagggggc aggetgccac ceteegggg eeggaegggg teggegggg tgeggagee 16860 cggagccccc gcgcctcccc aggttctaca gccaccgagc ggttttgcgg agctgcccga 16920 ggccgccggg tcagcggctc cccggagggc gtggggggcg gggaggccgc gcggcgccgc 16980 cgactcggcg aatcccgctg cgggagcccg ggagggctgc gagctcggcc tggcaaagtt cctgtggaaa ctccatgttt tgaaactcct gcggcgtcgc agaaggaggg ggagagggga 17040 17100 gcgcgggaag cgcgcggggg cggtctgcac ccgcctctcc ccgccgggga gtgggttccg 17160 eggeceeceg ggeeteatgg gaaagetgga gggeggggae ggeegggtee eegggeeeg 17219

<212> DNA <213> Homo Sapiens

<400> 19

gaccagcctg	gccaacatgg	taaaaccccg	tctctactaa	aaatacaaaa	attagctggg	60
catggtggtg	tgcgcctgta	atcctagcta	ctcgggaggc	tgaagcagga	gaatcgcgtg	120
aacccaggag	gcgcaggttg	cagtgggcca	gagatcgcgc	cattgttctc	cagcccgggc	180
gactctcagg	ttaaatcgtg	ttcgatataa	aagtctatat	cgatatagac	ttttcgatat	240
aaaagtctat	ctccctttga	caggtctgat	cgaccctcct	tcctataaag	acaaaagttg	300
		catattgcgg				360
		tgtgacattg		-		420
		gaagtagctt				480
		accgaaccag				540
		tctggaggga			_	600
		cggcgagcag				660
		cctacctcgc				720
		tcctctggga				780
		tccgactccc				840
		gataggattg				900
		agctgcacag				960
		ctctcctgag				1020
		gtttggcgac				1080
		tcgctaggaa				1140
		tttcgcctgt				1200
		tgggggactg				1260
		gggactggta				1320
		cgggcctgtg				1380
		acaaaaagtc				1440
		gactgcctac				1500
		tacccaatta				1560
		agtctgacac				1620
		agaggaaggt				1680
		tgaagtggtg				1740
	gagatacgag			ctgggtatga		1800
gcacctatta	catatttaat	ttatgcgtgc	tgaaagaatg			1860
	atctctttgt			ttaccgtatt		1920
ggagctccca	aaacctttgg	ggaaggagcg				1980
tttgtccctt	tccacctgca	taatgggggc	ccacaaggcg	ctgtccccat	gccccgagag	2040
		gtccacctgc				2100
		ggggcgcggt				2160
		ggagggggtg				2220
		gagcccgagc				2264
		_	•	-		

<210> 20 <211> 3104 <212> DNA <213> Homo Sapiens

		ggaggtgctg				60
gattggcaga	gccacccggt	gactgacagg	gggtctccat	ggcgcccgcg	ccgccaatcc	120
gcccacccca	atagcggagc	cagctcgcct	gccggcgtgc	ctgagccgag	ccgagcccga	180
accccaagcc	gcggagccag	cacctcctcc	agtcggggtc	gtccgctccc	ggccgttgag	240
ccaccgccgc	cacccggtag	tgtgtcccgc	tgccccaatc	cgcctcatca	acaagcgcct	300
ggcacactca	gccaggcccg	cgggcatctg	ctgcgtgtcc	cgctccgggc	tcagtgccct	360
cgccgccgcc	ggcactgcct	cgatgttcca	gctgcccatc	ttgaatttca	gcccccagca	420
agtggccggg	gtatgtgaga	ccctggaaga	gagcggcgat	gtggagcgcc	tgggtcgctt	480
cctctggtcg	ctgcccgtgg	cccctgcggc	ctgcgaggcc	ctcaacaaga	atgagtcggt	540
gctacgcgca	cgagccatcg	tggcctttca	cggtggcaac	taccgcgagc	tctatcatat	600
cctggaaaac	cacaagttca	ccaaggagtc	gcacgccaag	ctgcaggcgc	tgtggcttga	660
agcacactac	caggaggctg	agaagctgcg	tggaagaccc	ctgggacctg	tggacaagta	720
			Page	23		

ccgagtaagg	aagaagttcc	cgctgccgcg	caccatttgg	gacggcgaac	agaagacaca	780
		ggcacctgct				840
		agctcgccca				900
		gacaaaggga				960
		tgagcgcacc				1020
		gactccaatt				1080
		gggctcctgg				1140
cacccgctgg	ctccccacgc	ctgcgggcag	ctgcagcagc	tggtcccggt	caccaaacca	1200
		ggggaagaga				1260
		taattcttgt				1320
gaagcctggc	ttattagcaa	tgtgtcggtt	tcatgttaat	tatcattttc	aaagcccagg	1380
tatatccctc	cctaatgctt	tgaaaacagt	tttcaatgga	cttttgagaa	atgggaagtc	1440
gagttttcct	cttcccatgc	gctgcctgcc	actcttgtct	caaaacagca	aactagtccg	1500
		cccggagtgt				1560
		ggcccaaatg				1620
ggccgacccg	atccaacgcg	atcgcgggag	cacttgctca	ggcgtaagcc	ccaggcagac	1680
gcaccgttag	aaatggtatc	ccatgtccct	gggaccgatc	tgtccttgtc	acccacactt	1740
cgtttatttc	ctgacagtcc	tgtaaatctc	ccaaaagtgc	acaacaaca	gggaggacac	1800
tgcaagccca	gtatataaaa	gacctgggag	ctgcggcgct	gagaaagggc	gcgaatcatg	1860
		cccgcggagg				1920
cgccttgccg	agtaatcctc	gccttaactg	ctggggtctt	cggaagaacc	tctagccgcc	1980
		gtggtggggg				2040
gacccgtgtt	ccctttcttc	cccgtagact	ccagcagcag	gtcctgtcac	agggttccgg	2100
		gcgacggcac				2160
ggccgccagt	ctatccagca	aggcggccac	ttcagccatc	tccatcacgt	ccagcgacag	2220
cgagtgcgac	atctgagttg	cccatccagg	atgctcagaa	gcagattcca	gtgtaaaaac	2280
		ggggaagaag				2340
agccaggtga	ccagggaccc	gcgggctcgg	gttgccgttt	cccgccccac	cccgcggccg	2400
gcctggcttc	actggcgccc	tttggccgcg	accacgggaa	ccagcgtgag	gcctgaccca	2460
gcaccacgtt	cttcttgctt	tgctttttcc	taaggatttt	gctgcaaagt	ctcttcggaa	2520
		cctgcccaga				2580
		tttcgcttta				2640
		agaccgccat				2700
ctgtttctaa	acatgcaggc	tggtggtgat	gggttctgtg	tggagaagcc	aaacaataaa	2760
acaacctagt	gggcaacctt	cttaattaag	ggagctgctc	tcagattcct	tttcttctta	2820
ttattattaa	tatcattccc	ttcaccaggc	atgcagggac	ccttgagcaa	atggtctccg	2880
		ttttgccttc				2940
acctatggta	ggtctataac	cacctcccac	gtcaaattac	acgtatgtgc	atatatgtat	3000
gtacctatac	aaacatatgt	atgtacctat	acaaacatat	gtatgtatgc	atacacgtga	3060
tatatttaag	gctagaaatt	ggcaacatgt	gagcgtcctc	tcta		3104

<210> 21 <211> 2493 <212> DNA <213> Homo Sapiens

<400> 21

actggcatga	ctagagtaga	aggagggcat	cctaattccc	agccttatcc	accgctttgc	60
aagaaccagg	aaaatgaatt	cctgttggcc	ataaaactag	ttgcaggtga	tgtaacccat	120
cctattcggc	ctcccatatt	tacagctata	caggaacaac	tctctgaaac	tcagtctcct	180
cacccgtaaa	atgggatggt	aatacgtgcc	cctgggagcc	agcgagaatt	aaaagggata	240
agatgcactg	gctcccaggg	gcaagcacta	gcagacaagg	aatagggcag	tcctcccttc	300
acactccaca	gagaagaaat	gtcctccaac	tctcccagga	ggcagagccc	agctctcctt	360
ccaaacagcc	ttggagttgc	ttggcctctc	cacttcttca	acgaagttgt	gggcagaaga	420
caaatgcaga	gttctcttgt	acctgacaag	gagagagaag	cagaccctgt	gtgagtctct	480
tgctgttgac	gttgatccac	agggggtgca	ggatgggact	gaggcaggcc	cacctgcctg	540
gaaagcctgc	ctgtaccctg	accccatggg	gccctaacac	acaccctccc	agccacaggg	600
gctctgcaga	gctaagccag	ctgtcctatg	gaggtgggga	ccctcctcct	gccctgccac	660
tctctcttc	tcctggagag	gacaggcagg	tgggcatggc	cacaggagaa	cttctcgaag	720
		agaaaggtgg				780
gagagcatgg	gagaagttga	gagggaggag	gaaagtgcac	gccatcctgc	gcgcagcctc	840
gccttaggga	aagcatgtgt	gagaagtggt	ggtaggcggt	tgctagcctt	ggaaacaaac	900
			D	0.4		

aaacagccaa	ccaaaaggct	tcggaaggaa	ggagtgtcta	attaatcagc	cccgagggac	960
aggtccgcac	tgcctgactg	tgctcctcag	cctggtttca	ggccaccgag	tccaagtttc	1020
tgccacagtt	ccagggccga	ggctgtttcc	aaagagccct	gtaattgttt	tccacctgtg	1080
tctcacccaa	acaccaaggc	tggcgcaggt	ggacaccttc	ccacttttct	ccctccaggc	1140
tgggccccag	aaatcagtag	aggagggagg	aatcagtcag	cgtggccatg	cctgggagga	1200
gaggcccgtg	tgggtctgtg	gggctaagag	gcaaaggcgg	gtggcggatg	tgggccagcg	1260
ggagcctgga	ggggttgaca	ccgcctgctc	caccgcaagc	ccctggagga	agagccccgc	1320
		ggcaggtgta				1380
gcgcagcctc	cttccctccc	agggacaccg	cccagctgcg	ccccgcgccc	cgccgactgc	1440
gcgggccttg	agacgctggt	ggctgcctcg	gggttggcct	gctcctcgcg	cacatgttca	1500
gggtcatccg	cgctgcgcct	ctgcttcagg	tgcttggcta	gagaaagggc	ggcaagacgg	1560
		gggcaagtgc				1620
gtgtctgcgc	ttgtgcgtgt	ccaggggaac	cacagggagc	accctcattc	taagcctcca	1680
		agatagaaac				1740
		tgtattccca				1800
atgcttaata	aacagctgtt	gagttaatca	acggactcta	ggaatggagg	cagaccggcc	1860
		acaaggccac				1920
		gccaatcctt				1980
		ctcccctttg				2040
		agaggaagac				2100
		tctggaagga				2160
tcttcagctc	ctccctttgg	gaattgggac	tttgagcttc	agtttcctca	ctttgaaata	2220
		gcaggattgt				2280
		ctacagaaac				2340
		gtggctgagg				2400
cacccctcct	tttttcacaa	aatgccttga	ggagaattta	atggctgtcg	aaaattaagg	2460
caagcttcat	ttctaaaaca	ttcaggagtc	aat			2493

<210> 22 <211> 2315 <212> DNA <213> Homo Sapiens

ctgtacctgg	cgtgaggtct	cctggccacg	gacgttgttg	gcgtcacacc	tgtggcacct	60
		aaacggcacc				120
		ggaaggaagg				180
ggagcgtgtg	ttcacagctt	tagacaggac	aacccactgc	aaatccaaag	cagaaaacat	240
ggtccaactc	catctctgtg	gcaccttcat	agatggtgcc	cacctgcctt	ggcagtgatg	300
accgacactg	cgaacgctgt	gctggcagtg	tgtttaaggg	ctttaactga	atcatctcga	360
tggagctgaa	atccagcccc	attttacaga	agagaaaact	gaggcttaga	gagatcaggt	420
gtcaagttct	atgccaagca	cagggaagca	aaaacaggac	acactcaaca	taaggtggcc	480
		cacgggaggt				540
gaggtggcct	gttggagggt	cctggacctt	ccagaaaaga	ggacatcagc	tgctcaggga	600
gggaaggttt	gagatggatt	ctggctggtg,	tggatcagcc	catggtgtgt	ttgcaggcag	660
		ggctgagggg				720
gggctggccg	gcagggtccg	ctggtcatgg	gaggcctggc	ctgcagcagc	agggcccatc	780
		ctgatggaca				840
		ggccagggag				900
taggggagcc	tcctgcatag	aagacttcct	acctgaggcc	gtcccctagg	agttcagcca	960
		tgactgtgga				1020
		ttttgcagaa				1080
		gtggggctac				1140
		actgtttgct				1200
		cagggagctt				1260
		gccgggccaa				1320
tctcttctgc	aagaggtgag	ccttcccttt	agctgtcagt	tcacaaggga	aggaggaggc	1380
		cgcccacaga				1440
		cacaagatat				1500
		aatttaaata				1560
		agccaagaac				1620
cagcaggcaa	caaaaaggaa	acacaacggg		catcaccaca	gtcattgcct	1680
			n	^ C		

47675-47, txt 1740 ggagagtttc taggtcatga gccacagctg ccggactccc cagatggagg aggtcaggct 1800 gagaatccag ggagaccaca gcagctcgag tccgccgtgt agaactccag aggagagggc tgcgccgaga aagcctcaga gaaggtcccc ctctctgaag gaaatgactg aaggctgcag 1860 1920 aacatttatc ctaaagcaga gattggcaga ctatagccac gggccaaatc tggtcctcgg cctgttttgc aagtaaaatc tcactggaca cagccacacc catttattac tcgctcagcc 1980 2040 acgcctaaaa ggtttattct ctggcccttt acacaaaaaa tttaccttcc cttgttctaa 2100 agatetgaag ggaeggtget eaggggeagg aatgagtaae ateggtttee aeeggeeaca 2160 ggcagaaatg tcataattca cagggcacta actggaatgc acacaaagga ctcgcctcac 2220 taacgtggag taagtagccc aaagtgattg ttgctctagg cctgactgat acatcataaa 2280 agcaagacct gaaaggatca aactgttcac aagtatctta actgattctg agaacaaagc 2315 tcaagaataa gaattttta aacatcaaca aaaaa <210> 23 <211> 2304 <212> DNA <213> Homo Sapiens <400> 23 60 cgattctctt gcctcagcct cccgagtagc tagaattaca ggtgtgagat atgcacccag 120 ctaatttttt gtgtctttta gtagaaacgg ggtttcacca tgttggccac gctggcctcg aactcctgac ctcaagtgat ccacccacct tcgcctccca aagtgttggg atttcaggag 180 240 tgatcccgca tgcccagcca tcaataaata cttactaagt gcctactttg ttcccaagag 300 tgctgggaac ttagcagtga acaaaataaa taccttccct cggggacctt gaactcaagt ctagtcaggg atcactctat taagagatca agtcaacact caattctcct acagactcag 360 ataggatagt attttaattt ctcgttgatc tgctccctca gaccctagac catgggcact 420 gcagattttt gcaccttttg tagaggcagg gtttcaccac taccagagac tttaccatca 480 tttctatgtg aagggaaaca gtgccctttc agtagacaac gttaaatcag ccatcagacg 540 600 tgggtcatgg tgggtttgcc gtgactgcca caaacacgcc tcaccgaagt ctgccagggg 660 acgccatacc ctcccctaga aagtaagaaa cagagaaagg ctttctcctg ccccggactg tetttetete agetetaaga aatttettta eagetgttae tittateetgg eetgtetett 720 780 gagtaagaaa actgctggaa agagtctgcc attcactcag atcataatca gggagcctgc tgtcactcag gaagggcttt aaaaaattct tctgatttac tgtgagtgca aatctctgat 840 attectgeat etecceatee atettatttt gattttacae atagtgegat tttgaaagga 900 agoggtgttt ttggagaggt agaaaaactc tggaaaataa ggcttatgac gttggccatc 960 agcacggggc tgctgtctgc tgtgtgacat gctcaggggt gacgcgcctc ccgaaagaga 1020 cacttggtag agaaggcacg ggcgcgaagc ccggctgcgg gagagctggg agcctgaatg 1080 tegetggetg cegtteacag caggetetet etgageaceg tggggaggea gtgacaceeg 1140 ctggcctcgc agcgacactc cggcagctgt cctgttttcc agcctggacg tgataggtgt 1200 gtcttggagg acagtcagag gaagacaggc aagccatact ggcctccctc gaggttatac 1260 cetegettag gttaggttge ttetaacaga cateeteege gggegttgag geageeaget teaetgteae ecagacaatt tttetetege tetgeeaace etgtteeeet tteaagaatg 1320 1380 tttaaactet teatteaage gatgagaggg aaacaettga getgeacaet caaggagatg 1440 tgggtttcca ttctggcctt gcgatatatt attggtggga ccgtgggtga gtcacttaac 1500 ttctctagtc ctcagttttc ttatctgtaa agtgggctcc agcatacggc ttaactgagg 1560 taacacacgt tgttcatgtc agctgttgct ttcatgccgg ctctgcctag gtctccccat 1620 qqcaacagga taggagttct ctgcctgtgc gtcagttttt cactagcgtg ggaatgctgt 1680 gaggaggggg cggaactcgg tgtagcaagg gtttctgtcc gtatcttcta ttttttttt 1740 ttttttttt ttgagactga gtcttgctct gtcgctcagg ctggagtgca gtggcgcgat 1800 1860 ctccgctcac tgcaagctcc gcttccaggg ttcacgccat tctcctgcct cagcctccca agtagctggg actacaggcg cccgccacca agcccagcta atttttgta tttttagtag agacggggtt tcaccgtttt agccgggatg gtctcgatct cctgacctcg tgatccgcc 1920 1980 gcctcggcct cccaaagtgc tgggattaca ggcgtgacta ccgcgcccgg cccgtatctt 2040 ctattaagaa ccagcaacca cgggctgggc gtggtggctc acgcctgtaa tcccagcact 2100 tagggaggcc aaagtgggcg gatcacgagg tcaggcgatc cagaccatcc tggataacac 2160 ggtgaaaccc cgtctctact aaaaatacaa aaaatttggc aggcgtggtg gcgggcgcct 2220 gtagtcccag ctactcggga ggctgaggga ggagaatggc gtgaacctgg gaggcggagc 2280 ttgcagtgag ccgagatggc acca 2304 <210> 24 <211> 2470 <212> DNA

<213> Homo Sapiens

<400> 24

	gtggaacaca	tcctccatat	agccacacta	ctcaaaattc	actgtcttta	agtctttact	60
	caaatgcttc	tccgtgaagc	catccctgag	ccctctttaa	aattgcagcc	ccccactcct	120
•	gtactcctta	ttgtctctca	tttttaattt	ttgttattgt	agttagaacc	atctgacaca	180
			ttttgttatg				240
			gtgtttgctg				300
			ctttgaatca				360
			gaaatcatcc				420
			ggggcccatt				480
	cagcaacagc	ctcaccaagg	actccatgaa	tatcaaagcc	catatccaca	tgttgctaga	540
	ggtgagagca	geteaceeca	ctaccagact	ctgtgtttag	ggtggtgacc	cgaagaagga	600
	agagagegaa	agaagggaag	gaccatcttt	coctctaaac	tggagtcaag	ggagggaggt	660 720
			aacccagacc acaaggcctg				780
			acattaaaga				840
			ctagttgcca				900
			tctctctgtg				960
			tatttgccag				1020
			ccacctcacc				1080
			atgggccaat				1140
			tacgctttca				1200
	ttacacccaa	accctaactc	agccctacct	tgtcttagcc	cctqcttqta	agtgttccag	1260
			ggatcccgct				1320
			tgcagagcca				1380
			gcatttcgtt				1440
			cctccgctgt				1500
	gtcttgtcta	accgtagagc	tgccctgccc	gcctacgcgg	agcccagtcc	gacccactcc	1560
			tctatacaag				1620
			tggcaggggt				1680
			gtccttgggg				1740
			gccccccga				1800
			aatcggcgtg				1860
			cgttccatca				1920
			ccaacccctc				1980
			acattgggct				2040
			aggtgctgcc				2100
			ggggcggtgg				2160
			accgccacgc				2220
			cccacgtatc				2280 2340
	tatagastta	ctgctggtgt	tcgactcccc	tagtggatgt	ccacggctgg	tagacetgeg	2400
			tcgtccctta				2460
	ggactcgtcc	acaacygacc	ggtctgcgtg	cccacgcccc	tececacyce	aacccagggc	2470
	ggactegeee						2470
	<210> 25						
	<211> 2470						
	<212> DNA						
	<213> Homo	Sapiens					
	•	•					
	<400> 25						
	tccaaaaagc	tctgtaaacc	aaaagtttgg	gggtaaactc	atttggtagc	aaattttgac	60
			tattctgtat				120
	gttttactgc	atgtttgatt	tcagcatgtt	ccccagact	ctctgggggt	gtttacgtat	180
	gccggtgggg	gaaagagacc	aactctcaaa	tattatctca	aacagttggt	ttcactgtgc	240
	ttgcttgggt	agcacatata	ccaaaattgg	aatgacccct	gcacagggat	gaaatgcaaa	300
	ttcgtgaagc	atactgtatt	tttcttagca	cataccacct	ttggcaatat	tcttttttt	360
	tttttgagag	ggagtcttgc	tctgtcgccc	aggctggagt	gcagaggcgc	gatctcggct	420
			gggttcacac				480
			ccacgccagg				540
	gtttcactgt	gttagccagg	atggtctcga			cccacctccg	600
				Page	27		

cccccccc	gaagtgccga	gtgctgggac	tacaggcgtg	agccactgcg	cccggccccc	660
gcctttttt	tttagattga	ttttattact	tgcctagcaa	aggagaacct	tctggcagaa	720
cagtctccaa	gaacaaggca	aacaactaat	tttacatagg	tttttaccaa	tgtacagctg	780
ttgattgtga	ctggtttccg	gcaatctgga	tttcacaatc	tggataaggg	gacaaacaat	840
tgtctgtctt	ccactatctt	tcttgaattt	gaatagaacc	tttttattct	catagcctct	900
tagctttctt	tcttttttt	ttgagacgga	gtttcgctct	tgtcgcccag	gctggagtgc	960
agtggcgcga	ccttggctca	ctgcaaacgc	tgcctcccag	gttcaagtta	ttctcctgcc	1020
tcagcctccc	aagtagctgg	gattacaggc	gcatgccacc	acgcccggct	aatttttgga	1080
tttttagtag	agacgggggt	ttcaccatgt	tgactaggct	ggtcttcaac	gcctgacctc	1140
aggtgatccg	cccgcctcgg	catcccaaag	tgctgggatt	acaggcgtga	gccactgcgc	1200
ccggcctctc	atagtctctt	agctttctaa	aatttgaaaa	atcctgtaaa	gacacacctg	1260
ggtcaaaggg	ctcagataac	ggactgtggc	ccttaagtac	ttacgtcaca	ggttattgag	1320
aggatcgatt	tagttaccag	atgtaaaatg	ctgggatcag	tgcctggcaa	aggaaaactt	1380
tgtacagctg	caggctttca	ccatacacaa	cagcatcgct	aacgaatgct	attacaatat	1440
tcatttagcg	tttaccaagt	gcctactcta	tacaaatctt	gagaatacaa	cgtgaaggtg	1500
aactgctgac	taaagtttgg	tccctttcgc	tccgtctcct	tgcgaaaatg	ctctaacggc	1560
aggaggtcac	gcgagcgctg	gacgcgtttc	tccccgcgag	cccctttccg	aggcctttcg	1620
ggtccccccg	gttatccccg	cccgggcggt	gcgcgcccc	gctgttcccg	cttccgctcc	1680
agagaggcag	ggctttccga	gcctgctagc	cccgcggccg	caactaaccc	cgggtcggag	1740
tgttccggcc	cggccagccc	cgcggcgtga	gggaagggga	gctcagcagt	tccccgcgcg	1800
		gggcgggccc				1860
cccaccagtg	tgccagcccc	gcccttcccc	acgtcgccgc	gcgcccgggg	gcggggcctg	1920
gcgcgcaccg	cccgcgcacg	gcgaggcgcc	tgttgattgg	ccactggggc	ccgggttcct	1980
ccggcggagc	gcgcctcccc	ccagatttcc	cgccagcagg	agccgcgcgg	tagatgcggt	2040
gcttttagga	gctccgtccg	acagaacggt	tgggccttgc	cggctgtcgg	tatgtcgcga	2100
cagagcaccc	tgtacagctt	cttccccaag	tctccggcgc	tgagtgatgc	caacaaggcc	2160
tcggccaggg	cctcacgcga	aggcggccgt	gccgccgctg	ccccggggc	ctctccttcc	2220
ccaggcgggg	atgcggcctg	gagcgaggct	gggcctgggc	ccaggccctt	ggcgcgctcc	2280
gcgtcaccgc	ccaaggcgaa	gaacctcaac	ggagggctgc	ggagatcggt	agcgcctgct	2340
gcccccacca	ggtagcgggg	tgggggtggg	gtcgaaggcg	ggggcatagc	ggcggggcgc	2400
ttggaacccg	gcgaggggag	gctcgcacag	ggggttgggg	gggtgcacgg	cctggccctg	2460
ggctcggagg						2470

<210> 26 <211> 2470 <212> DNA

<212> DNA <213> Homo Sapiens

<400> 26

atatattata	tcgtgtatgt	aatgtataag	tatttatttc	gtttgcttgg	ggttttgttt	60
gcttttgctg	agtccgaccc	ctctacctgc	cgcctggccc	ttgcctcacg	ctccagtgcc	120
actgagatca	aggagagaac	gaatttgccg	ctgactgggc	agagcgagcg	cgtggatcgc	180
ggccaccgcc	cgttcatcac	ccgcgcgcat	ctgggctggc	accgggcgaa	gaatcgtgcg	240
ggtctgggac	ctgggggccc	agagggagcg	agctcctgcg	cgggcgctcg	gtccgcaggt	300
ttcgcaggct	caggggcgtg	cctcgttctc	acccccactc	cggaccccgg	tcctcttccc	360
	-	ccctggctcc				420
cgccggcgcc	tctagggccc	cccagatcgc	gcagaccctg	acatccccgc	ctggccctgg	480
gttctgggag	ctgagagccg	gccagggtcc	tgctcgtacc	tccgggcgcc	cagcctcggg	540
tctgctcccc	gcggacgccc	caacctcccc	ggccgaatgg	atggtggtgc	gcgcgcgtcc	600
tactccggcg	gtgccggcct	tttctgttgc	caaaactaga	cccaaacctc	tgcatgggat	660
tcgtctttgg	gtccccaccc	cgtgcgccca	gcaaacagtg	ggtgagccat	gaagatgtgc	720
gagtcagccg	gaccctcccc	gtcaggcgcg	gacccgctgc	ggccagagaa	cccagtctgc	780
gccagcccgg	ctcgctcgcg	aagccacggg	cttcactgac	gcgactttcc	aagacgtggg	840
ggtcaccatg	ggcagaggac	atcggttcgg	agccagatca	cgggccccat	aagcatcaga	900
ccataagcag	cgccgccact	gagagccgct	cggaactcgc	ccagcatgtc	gggtccccta	960
gccagggcct	ggtgtacgtg	gtcgagggcc	ctggaagccc	cgatggccta	ggaggagcag	1020
gcgggcgggg	cggcgggtgt	cgctggccgg	tagagagctt	cggcctgacc	tagcgcaggt	1080
ctggtgcgcg	cagagaacaa	ctccaagcgc	accgacgccc	gcgagctcct	tccaaacacc	1140
gaacgggatc	cagagcccga	gcccacaggc	ggcggccggg	ggagggagca	gggtgctggc	1200
cgccgcccgg	gagtgttcgc	gtcctgggtg	acccctggaa	ggacgtgggg	cccaaactcc	1260
ggctggggtt	gggagagcag	ccccagagg	ctctccgcgg	gatcctctgc	cgggcgggac	1320
cgtggctcca	caggagaagt	gggtggcaag	ccctgcttgg	cggaaagcag	ccgttcccct	1380
			Dage	2.0		

cctcctgggc	ctggggcggc	gcccctcacc	cctgttcccc	gcccctcacc	cctgttcccc	1440
gccggccaca	tcccctgccc	cttggattcc	aagcgccccg	cgcgccgagg	agcccagcgc	1500
tagtggcggc	ggccaggaga	gacccgggtg	tcaggaaaga	tgggccgtct	gggggacagc	1560
agggagtccg	ggggaaacgc	aggcgtcggg	cacagagtcg	gcaccggcgt	ccccagctct	1620
gccgaagatc	gcggtcgggt	ctggcccgcg	ggagggccc	tggcgccgga	cctgcttcgg	1680
ccctgcgtgg	gcggcctcgc	cgggctctgc	aggagcgacg	cgcgccaaaa	ggcggcggga	1740
aggaggcggg	gcagagcgcg	cccgggaccc	cgacttggac	gcggccagct	ggagaggcgg	1800
agcgccggga	ggagaccttg	gccccgccgc	gactcggtgg	cccgcgctgc	cttcccgcgc	1860
gccgggctaa	aaaggcgcta	acgcccgcgg	ccgcctactc	cccgcggcgc	ctcccctccc	1920
cgcgcccata	taacccgcct	aggggccggg	cagcccgccc	tgcctccccg	cccgcgcacc	1980
cgcccggagg	ctcgcgcgcc	cgcgaagggg	acgcagcgaa	accggggccc	gcgccaggcc	2040
agccgggacg	gacgccgatg	cccggggctg	cgacggctgc	aggtaggagg	cccagggccg	2100
gggggcggtt	cggctccgcg	ggcgggggct	ggagcgcagc	gctgggcagg	cacctgggct	2160
cgcagctccg	aagctgggag	gtgagggag	agcgatcggg	gacgagctgg	gacaaggcga	2220
cacaggggct	ccctcggagt	tggatcggcc	cctgggactt	ggcgctcgcg	agaggctgga	2280
		gaggagacgc				2340
gcgccaaaga	cagccccgca	ggggttccgg	gagggccctc	ctcctgctgt	cccctctcca	2400
ccccgggctc	cgagggccgt	tgggagggta	accccgggaa	gaggccgggg	tgcggggcgc	2460
gggtgcaggt						2470

<210> 27 <211> 2470 <212> DNA <213> Homo Sapiens

<400> 27

aaaattgaac	atctgagaac	actggaccca	cattcctgag	ggcaacaatc	tgctagagtt	60
gagcagctgt	tccttttagt	tatggcatgg	atattccaat	ttgccatttt	ccctatcatt	120
ccccattgtc	ttacacaagg	ccagtctcac	tcatttgctt	tacttgtctg	gcctctgtag	180
ccatttgaat	ctgcaaacac	tatctagacc	tttcctgtct	tccatcaaag	cttactttgt	240
		agtgtttcaa				300
ggtcctttaa	catgtgcttt	ctggagacag	catcttaaca	gaaagagatg	actctgcagg	360
		ggattacaat				420
		acctcactgt				480
ggtagaacaa	tggacgctgg	tcttatgtat	gaaatcttct	caagctgcac	ttttatagat	540
caccctagtt	ccaaaagatc	caaagctacc	acgggctcct	ctgacccccc	catttcctcg	600
		ctgacggcat				660
gcgctgggca	gttgcgccca	aggagcgcgc	gcatccagca	tgagctcatt	tctcatgggc	720
		gccgcgcaca				780
		cggccgccca				840
cattttagcg	tctgagagct	tgcagccggc	tgggaaggcc	cccttggtcc	gtctggccct	900
ttcggggaag	aggccaacac	tcggcacacg	cgatccacgg	cagaggggag	ccttgggcgc	960
gcagaattgg	ctgcgccccg	ccgagagcct	cctgtgggtg	gggagagccc	ctccacccct	1020
ctgctcgctt	gagcgctcag	agcccagggc	cgccgaccgc	agcactttcc	gatttgctgc	1080
accgagggcc	cgcggtccct	gtgtgcggtt	tccaccgttg	ttggaggcgg	ccgcaggcga	1140
accgtcgggt	cgtcagccac	gacccgagtc	aggcatctcc	ccgctcctgg	gaccggggcc	1200
gaaggccaat	cacactgcag	ctaggtcttg	cgattggacg	gcagtgagag	ccgattggcc	1260
		ccctcctct				1320
tcaggccaat	gagacagcgc	tttatagacg	ccctcccttc	gctttcttct	ccccaccttg	1380
gagagggagg	ggaagtcctg	actggccaga	ctgtcctcgg	aagccccctt	ctcttcacca	1440
		cccagcggag				1500
gcccagccgt	gcagtttcac	cagcgtctct	gggtttcacc	gtcctcaact	cttcaagcct	1560
cttcgtaagg	gccggcgact	ctgattggcc	actgttgcca	ttgtcgaatg	tctcctccag	1620
ccagccaccg	aacaaggcga	attcaccctt	tccgttcggc	taccttcggc	attttccgct	1680
ctttgggcgt	ggcttcccag	cgtcactttc	taattggttt	ctcaggctga	tcggcttttt	1740
ccgggaggag	ccgcaaacaa	acgacgtccg	tgattggctc	cgttcgggct	tcggctccca	1800
gccgaagcgg	gcgagcgtgg	ggctcggccg	gcgattccca	gacgcctgtt	acgcgggcgg	1860
cggggcgctg	ggcggtgtaa	ggctgggtgg	gggaggaagg	aggtggagga	cgagtaggag	1920
gggggaggag	gagtggggaa	gtgcaaggcg	gctgcgcaga	cagcgctcct	cacacagagc	1980
		gcgggcttgt				2040
aagtgacaaa	ggaaggaagg	aagcgaggag	gagccggccc	cgcagccgct	gacagggctc	2100
tgggctgggg	caaagcgcgg	acacttcctg	agcgggcacc	gagcagagcc	gaggggggg	2160
		_	Page			

			47675-4	/.txt		
cgggttccca gggagctgcc ggcgcaatga	tgtccccggc tccgccaccg ggagaggagc	gaatggggaa ccatggccgc cgccgccacc	gagggggccc cagtcgagga tggatccagc gccaccgccc ccgtcagccc	gccgctgcct cgccgcctgc gcctctgact	ggggtctgaa agctgctcct gactcgcgac	2220 2280 2340 2400 2460 2470
<210> 28 <211> 2470 <212> DNA <213> Homo <400> 28	Sapiens					
			tgctctcagg			60
			tatgaattgt			120
			gagtgataat			180
			aaaagtgata			240
			agagccagac			300
			ttaacagtgg			360
			atgaaatttc			420
			ctcacaacag			480
			cagtacctac	_		540
			tatcttgaac			600
			ctgtatatat			660
			gatcggaact			720
			tggaatagct			780
			cgtaaagaca			840
			cctgcatagg			900
			ctatgtattt			960
			tttatcacat			1020
			ataaaaacca			1080
			gctgctatgg			1140 1200
			cccaggctgg			
			tgccattctc			1260 1320
			gctacttttt			1320
geeeccat	greacygeag	gerggeereg	aactcctgac	tetaggugag		1360

gccaggttgt cattccccaa agcttcccct tcatcatcca agaaggcatt caggtctttc tgtgctaggc cccaggtaaa gtgctggact acccagtaat tgggttcagt agcaggatgg cctcagattg aggtcccagg gccaaaggac cactcctctc ctcagcgctg gtccgggaaa ggcaagetee gggegggage geaegeegeg ceeeegaage etggeteeet egeeaegeee

agtetectee tetgegteet eggeegegge eegggteeet egeaaageeg etgeeateee

aaggaggtag aatggatccc cttggccttc ccctgtgggc gggggcgggc cagggtgggc cgcgttgcca ggcagccctg ccgtgttgct aggcagcctg gtcgccggcg tgggcgatgc cggcgctggg

cagectecca aagtgetggg attacaggea tgagecaeca tgtecagtet getatggtte ttaaaatatt catagaatag aaattgaagt aagtctattc gtttttatat taaaagtagc tagtacggtg ctctgtactt atgcactcca tggatgctga atgagtcatt gaatgaagtg gagtctaggt tgtgcctcag gccttccagt ggggctggaa ggaacagttg tgaagttgtg gggcggcttc tgtgcatcgg gggactctgg agttagatgg tttcccaggg ctctgaagga gaagagetgt gtteetaata atgateteaa tgggaataga gattgetggg gaeegeaggg

acttectgee eccatecege geettteeag gtetteteee ggtgaacegg atgetetgte

ggagggccca gccagcgggc tcccggaggc tggccgggca ggcgtggtgc gcggtaggag ctgggcgcgc acggctaccg cgcgtggagg agacactgcc ctgccgcgat gggggcccgg ggcgctcctt cacgccgtag gcaagcgggg cggcggctgc ggtacctgcc caccgggagc tttcccttcc ttctcctgct gctgctgctc tgcatccagc tcgggggagg acagaagaaa

1440 1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

2220

<210> 29

<211> 2470

<212> DNA

<213> Homo Sapiens

	·					
agctgctctg	tctagaagcc	gattttctga	tgcctccaac	gtctggtcta	attgatctgt	60
		tgaggagcga				120
						180
		gagacactga				
		ggcggagatg				240
aaaaaaaag	atttcgttga	ggcactgagg	tgctgcacga	tcacatctct	caaaggagaa	300
gttaaaaagc	aaggaagtgg	gaggaggttg	gaggttaaag	tacttaaaag	gattactcgg	360
		ggtgtctgca				420
		ttgggaatgg				480
						540
		cacagaaaga				
		tgaaagcggg				600
		gagaagataa				660
tcacacacca	aaaagaaagc	tcttccctat	ggggcatcca	aaacactgag	actgcaatag	720
		agatgttcct				780
		tccattaggc				840
		ccgctatgcc				900
						960
		tcctgccgag				
		agtaaggaac				1020
gcccgctctc	cccttcccgg	acgccgctgc	ccggccgatg	ctcccggcaa	cccacccgcg	1080
gcgtatgcag	aggagccttt	ctctttctct	cagaccactt	gtcccgacca	atctgacctt	1140
		ctcccaggtg				1200
		attcaaacct				1260
and the second s						
		ggagaagaga				1320
		cttggggttg				1380
tccaggtcgg	caagagcggt	tctaacacca	tcgcctctca	ccctctttcc	tgtaaatccc	1440
tagagaaacg	tccctggcct	ctccgccgcg	acattcccag	cctgcatccc	cctacagcct	1500
		ctggagcgcc				1560
gactcgcccc	tctctgccct	gctgctgctg	ctcctctgac	acctccaccc	ccaccatctc	1620
						1680
		cagccgcggc				
		cccgccttcg				1740
cgaatggtat	atgagtgtgc	gggtagccca	ccctgaagcc	cgagcttctc	atttgagcca	1800
tccccgccta	gccccactcg	ggccagcgcc	tggcgagcga	gcccatctgt	ggcttccgcg	1860
		ttgcacctcc				1920
		ccgactgcct				1980
		agagggatgc				2040
		tccctccacc				2100
		tcctccggct				2160
tcccgcgtct	ccggcgcagc	ttctcagcgg	acgaccctct	cgctccgggg	ctgagcccag	2220
tccctggatg	ttgctgaaac	tctcgagatc	atgcgcgggt	ttggctgctg	cttccccgcc	2280
		ccgcctctgc				2340
		ctgtgttcct				2400
						2460
	rggrgergrg	ggagtccccg	cygcagcyca	gcagccggac	actitigegag	
ggcttttgct						2470
	•					
<210> 30						
<211> 2470						
<212> DNA						
<213> Homo	Saniana					
(213) HOIIIO	Saprens					
<400> 30						
acatttaaat	tgcatatttg	gcttgtaata	tattacatat	ttaaaagaat	tactattttt	60
ctgaatacca	ttaatactaa	taatagcatc	acaqtqacta	agagtggact	taaataaagg	120
		gccatttatt				180
		agaaaataaa				240
		attaactggc				300
		gtgccaaccc				360
cagaaaagga	aacattatgc	ctggcaatgc	ctacaccctc	caaaataaat	ctgcaggaaa	420
gaacacccag	taagtgatga	gagcagcaac	gactgccttt	atcattttaa	atttacaaca	480
		taagcattgt				540
		gttgatactg				600
		agaggatgaa				660
acttagtgaa	tatattaaaa	ctaaactttc			acggattaat	720
			Page	31		
			-			

attagagacc cctcatcttt actcatgtac aaacatttat agaggtgatt cccctggttg gtgcatgcgc tgacgccgcc tatacctgca agaccgctta aaaagcgccc tcctgcacagg ctccccttctgt cctgcacagg ctcccctcag ggcgcggag ctggcgcggag ctggcgcggag ctggcgcggag ctgggcggaa agcccccggaa gcccccggcaa gcccccggaa gcccccggaa cccttccttt tcggggaaaact tgcgggaaaact tgcgggaaaa cttctccttt tcggagccga acactggagg acactggagg	actggatttg tataccggct cataagtgac tatcaatatg aaatggatgc tggcatacac agaaggctta ttggaagtaa cccagcagca gtccttcata cagtctggtc cgaactggag cctggagag cctggagag cctacggaga cccacggaga cccacggaga tgggtccccg ggctcacga tgccgaggct tccatcctgt gcaggagct ccacgaggct ccaccgaggcct accgaggaga tccatcctgt accgaggaga tccatcacga tgccgaggagt cccaccagagcc accacgagaga taccacagagaata aaccagaga	cctaaggtaa tctttggaaa taataatgac caatacaatg acagagaagg aaaatttatg acaggagat gacacgaaat gtcgttggcg acatatatet ggggtaagtg agggtaagtg agggtaaggg tggctcccg gcagcagcagcagcagcagcagcagcagcagcagcagcag	agtcactcat caccgtagag attgacactc tgccgctaaa gattgtttat ataaaatcgt gtcatttcag cctgacctt cccaggccct ccacggaaaa ttatttcac gaaaggagtc tccaggcaca gccccagggag gagtcgccggcgcgcgcgcgcgcgcgcgcgcgcgcgcgcg	gttgtatcat gattctttgg ttgtcatgga agtgatttat atagacaata tccgtctacc aaatcctatg caatgtgcct gggcgtcttgg tcgcagcaca gggtatttcc gttgttgcaa cggcagggg tccggggggc gagagggggc gagagggggc gcagtccaccg gcagtcgccct tccttggcgccct tcttaggagagg gcgctctcttc tgtgtacgc tcttaggagag gcgctctcttc tgtgtacgc tcttacgcg tctcctttc tgtgtacgc tctgcaaggg	gctttggttt agttaaatga caataaatta ggtttttgga tttgctgtgt tagtcgcgta agagaagctc gacggatgcc gcctatcccc tcccgtcaga gtaggcgaag ccgcagagggt ccgcgaggggc ccgaggggcc gaggtcaaat cgccgaaggcc gaggtcacact cccggcatcc gaggtcacact cccggcatcc gaggtcacact cctcccccacct ccgggaaagac cgcggaagagc attttcttt ctcctcccc attgttgtg gaaacttcga gctgggacag tccaaccc	780 840 900 960 1020 1080 1140 1260 1320 1380 1440 1500 1680 1740 1860 1920 1980 2040 2160 2220 2280 2340 2460 2470
<210> 31 <211> 947 <212> DNA <213> Homo <400> 31	Sapiens					
ctgctgctct agagaaacgg ggagccgcgc ctccttgagg cgccgtggag gaggatggag cacagggtac ccgctacaac ccccatccg aggcagcggg tcattttcag ggcggggctg gacatggggc gattacatct atcacccagc ggcgagtgcc	cctctgtggg ccggaggagg tatttcagca tacgtagacg ccgcgggagc gccaaggcca cagagcgagg ccacggaccg acccgccag tttaggccaa actgcgggga ccgacggacg ccctgaacga gcttctatga	ggccctgacc gaggagtgag gtctggcggg ccgctgtgtc acacgcaatt cgtgggtgga acgcacagac ctggtgagtg cccgggtccc acctccacc aatccccgcg ccggctaggg cctcctccgc ggacctgcgc ggacctgcgc ggcagaggaa ccgcagatac	gggcccgccc tctcagcccc gcggcccggc cctgcggttc gcaagagggg tgaccgagtg aacccggccg tcagagtctc cgggagagtc ggttgggcgg tctcacaccc gggtatcacc tcctggaccg tatgcagagg	ggtggggggg tcctcgccc cgcggggagc gacagcgacg ccgcagtatt gccctgagga ggggcgcagg cggatccgaa ccaggcgcct ggaggggcg tccagggaat agcacgcgta cggcggacac agttcaggac	caggactcag caggctccca cccgctacat ccgcgattcc gggagtggac acctgctccg tcacgaccac atctaccccg ttacccaggt gggctagctg gaatggctgc cgacggcaag	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 947
<210> 32 <211> 3120 <212> DNA <213> Homo <400> 32	Sapiens					
	ttaggccggg	cacagtggct	cacqcatqta	atcccactac	ttaaaaaaaa	60

			47675-41			
cgaggtgggc	ggatcacaag	gtcaggagat	tgagaccatc	ctggccagca	tggtgaaacc	120
ccgtctctac	taaaaataca	aaacttagct	gggcatgatg	gcacgtgcct	gtagtcccag	180
ctacttggga	ggctgaggca	ggagaatcgc	ttgaacccgg	gaggtggagg	ttgcagtgag	240
		tcgcctggtg				300
		gtatcctttt				360
		ttaagtttaa				420
tccttcaacc	tcataaaatt	gggaatttaa	gcatcacctg	gttcgattta	aatgcaatgt	480
agaatttgca	ttaaaatact	acattaaagc	ctcagatttg	tagtagctaa	cagcacttct	540
atgtatgtgt	cagggactgc	tctaaatact	tcatatatat	taactcctct	attctgtact	600
		caggaaattg				660
cagagetaga	gtgacaggag	taaagcttca	actcaggcaa	cccagacttc	cagagttctg	720
atctccacta	ctaagctgct	agcatagctt	ttctggtaac	tatttttaat	tcaaatataa	780
ttcgagtgat	ctatctaaca	agtcatcact	ctgacaactc	agtgacttgt	aatgtaaaat	840
		atattattgt				900
agatgtaatt	tattactctc	cctcccacct	ccggcatctt	gtgctaatcc	ttctgccctg	960
cggacctccc	ccgactcttt	actatgcgtg	tcaactgcca	tcaacttcct	tgcttgctgg	1020
ggactggggc	cgcgagggca	tacccccgag	gggtacgggg	ctagggctag	gcaggctgtg	1080
cggttgggcg	gggccctgtg	ccccactgcg	gagtgcgggt	cgggaagcgg	agagagaagc	1140
agctgtgtaa	tccgctggat	gcggaccagg	gcgctcccca	ttcccgtcgg	gagcccgccg	1200
attggctggg	tgtgggcgca	cgtgaccgac	atgtggctgt	attggtgcag	cccgccaggg	1260
tgtcactgga	gacagaatgg	aggtgctgcc	ggactcggaa	atggggtagg	tgctggagcc	1320
accatggcca	ggcttgctgc	ggggggaggg	gggaaggtgg	ttttccctcg	cactgtctta	1380
		cacagggtcc				1440
		ctgcagcact				1500
		gaagggggag				1560
aaaagctgtt	tttgaagcca	gaaggggttt	ttgtttttat	aatgccattt	gacagagtgg	1620
		cgggtagagg				1680
		ttgaaaggct				1740
		aggagacaaa				1800
		agagaaagag				1860
		ctggtcacca				1920
		gtggcaaaca				1980
		ggacgactgc				2040
		taagaaacct				2100
		aatgcagcct				2160
		tatgaatgtt				2220
		ctcaaattct				2280
		agtggatctt				2340
		aaccacttta				2400
		taatatttaa				2460 2520
ttttggttgtt	angaraata	actgaataaa gcttttcttc	tacttaagat	tatatttag	grataataat	2520
		agtgtttttc				2640
						2700
adaageetae	cactacgcat	acttatagta gtaaagccct	gccagcccgc	tacacctccc	tattaaataa	2760
		ttaagatgac				2820
		cttagataaa				2880
		ttatttctgc				2940
		gggcgtggtg				3000
		ggaggatcac				3060
		tcaaaaaaaa				3120
caaccaagca	agaccctact	ccaaaaaaaa	gracerayay		addactigat	3140
<210> 33						
<211> 2501						
<212> DNA						
<213> Homo	Sapiens					
	-					

gtgttctagc tcctgaatcc atgctgttcg tcactacact gtactgcctg tggatg	gactt 60				
actigicect gragitical eigaagaati ecteeteett tieetitigag geetge	ctca 120				
aatatcactt cccctgtgaa gactgcctgg tgttctccag gagagagtgt gactco	cttc 180				
tctaggaatg gtagcaccc aaacacacac attttgcagc atatttcacc ttgcat	ggta 240				
Page 33					

atggcctgct	tgtgagtttt	attccgtacc	agagggtgag	ggctctgaag	atagcgccag	300
		ccacaacact				360
		tctcaacttt				420
		gcatggttcc				480
tttcattttc	tgtgtaactc	accaggcaag	aagtccatgc	agatttactt	ttagtagttc	540
acatgacaaa	taaatactgc	gtttgatttc	caaacattaa	accatagtat	attatagata	600
gatatagagt	tatcattcaa	agtatgatat	ttcaatctca	aaaggcttcc	cctgaagaat	660
		ttaagatctg				720
aatgtttaca	cagaaaggag	gataatgggg	gcaaaaataa	tagatgaacg	tatgggtgga	780
tgagagaatg	gataaaatga	taggtggata	tgttgatctt	ggacagatgg	gaaatgagtg	840
gatatatcaa	taaacagata	tgtgggtgga	tgggtggaga	agaggatggt	ggatggttgt	900
ggttttatga	agagatgtga	aaaaggaagt	gtggaatgat	ggatgagaag	ttgtatggga	960
		ggttgaataa				1020
gagtgggatg	atagatggac	ctaagtggtt	agtggatgga	caggaggatg	gatggatgtg	1080
agagccccag	aaggacataa	ggaaagatgg	gtggatagat	ggatgggcgg	atggaaggat	1140
atttaggagg	atgaatgagc	atgtgtgtgg	agagaggtgc	ccattcacac	tggcttgaac	1200
acatgggtta	gctgagccaa	atgccagccc	tatgacaggc	catcagtagc	tttccctgag	1260
ctgttctgcc	aagaagctaa	aattcattca	agccatgtgg	acttgttatt	gagggaaaa	1320
agaatgagct	ctccctcttt	ccacttggaa	gattcaccaa	ctccccaccc	ctcactcccc	1380
actgtgggca	cggaggcact	gcgccaccca	gggcaagacc	tcgccctctc	tccagctcct	1440
		ctgtgaaacc				1500
aatttagcgg	gaaaggagag	gccaaaggct	gaacccaatg	gtgcaaggtt	ttacggttcg	1560
gtcatcctct	gtcctgacgc	cgcggggcca	gcgggagaag	aaagccagtg	cgtctctggg	1620
cgcaggggcc	agtggggctc	ggaggcacag	gcaccccgcg	acactccagg	ttccccgacc	1680
cacgtccctg	gcagccccga	ttatttacag	cctcagcaga	gcacggggcg	ggggcagagg	1740
ggcccgcccg	ggagggctgc	tacttcttaa	aacctctgcg	ggctgcttag	tcacagcccc	1800
ccttgcttgg	gtgtgtcctt	cgctcgctcc	ctccctccgt	cttaggtcac	tgttttcaac	1860
ctcgaataaa	aactgcagcc	aacttccgag	gcagcctcat	tgcccagcgg	accccagcct	1920
		tcctcgtccc				1980
ggatcctcca	gctcctttcg	cccgcgccct	ccgttcgctc	cggacaccat	ggacaagttt	2040
tggtggcacg	cagcctgggg	actctgcctc	gtgccgctga	gcctggcgca	gatcggtgag	2100
tgcccgccgc	agcctgggca	gcaagatggg	tgcggggtgc	tcagcgcgga	cccggcggca	2160
gcccctccgg	ctgagtcggc	cctgggggac	tggagtcaag	tgagctgtct	gcgaagtgca	2220
ttgggctccg	gaaagcaggg	ctgggatttg	cgctaaaccg	ttggagaatg	tgtctgtgga	2280
agcaccattt	ggttgaaaga	aaaagagaaa	gagaagaaag	tttgttgggc	aggctgccgg	2340
cgcgcagttt	tgggcgaggt	cgctagagct	gcagcacatg	gcagaaagta	accgttctcc	2400
cggatgcgca	cagtcgttgt	ctggactaac	aggctcctgt	gcccaagggc	tcgccaagcc	2460
ccaccgggct	gtgtctaggc	agggcagagc	tgggcggggc	a		2501

<210> 34 <211> 2501 <212> DNA <213> Homo Sapiens

<400> 34

agatttactc	aaatttaaga	atgagaatac	aaatccacat	cttgaagtgt	ttcacagaaa	60
ggtctatctt	aatgtctgga	gtatatattt	caatgaacat	tcattttatt	ttatttctct	120
ccattcctga	atcaagcaat	cttgaatcta	aagttgctat	gattagcact	gaaaagacca	180
ctggactatt	aattgtgtga	ctttgggaca	gtaactttct	gcaccttagt	ttgtttacat	240
		tctgattctg				300
aaatcaaatt	tcagtgtttg	gaatggtagt	acaataaatt	tactaagaat	aaataattca	360
ctgcaaaaac	acattgattt	ccaaatgatg	taactgacag	ttatattact	gcagagggct	420
gataaataac	aaaagaaatg	aaagatgcac	atggtgagaa	ctgaaattat	cctgacaagt	480
cttctacctg	tttatcactt	aaaatcaatg	accatgctga	atgcctacaa	attacaaaat	540
ataaaagaaa	tcttataaat	gcgcatgtac	aggagtctaa	gttactaaaa	gttttaaagc	600
ataagtttaa	accaaactaa	tcaaagaagt	tgagaggaaa	aattggcttt	catctttaat	660
cactactgtt	ttgaggtcct	atgtttaata	taattttcta	agtagaggct	tcagagagaa	720
gagttgtgag	gatactttca	tatttgtgta	gaaggaaaag	tttgccatcc	attctagtat	780
ccctagtgtt	atactgatgt	gcaccttgga	tttattttgt	tcctattgta	taaactcata	840
cttgacttca	aagaaaagga	aaatccaaag	tccctcttt	ctaaggggac	agaaatcctt	900
		tttctctgta				960
tgcaggggac	tcttccatgt	gttgatgctg	tttacacagt	ggggtgggcc	tgactgaaga	1020

	aaaaaaatcg	catatacgca	tgaaagatta	tggtcttatt	tccggaaagc	atgaaaggtg		1080
			cctgttactc					1140
	tacttggaaa	gactgaagga	aaggaagaac	gaagaaagca	gaatctagac	ttatgtgggg		1200
•			aagtattctc				;	1260
	aatttcctgt	ccagcctttt	attaccaggg	tcttttgaag	ccgggctccc	cattgggcag		1320
	ttccctggga	gtgcagtggg	gaattcttac	actttccctc	taggtccccg	aaggatctcg		1380
	ttttctcagt	gtctctttca	ggttggcagg	agccttgagc	ctgacacttc	cctttgatgg		1440
			gcgtaaacac					1500
	gttttgtgtg	ctcccgagaa	gaagtgatcg	tactcaattg	tctattgctg	gcctgccccc		1560
	taagagcctg	ggggctcctt	tcccctaacc	cagaactagc	tgcacggggg	gcggggaaat		1620
	gggggtgggg	aaggagtggg	agggcagtgg	tttccgcgag	cagagcgatg	ttactgagtg		1680
	agtccctgaa	tggggagcgc	tgctgtcccc	aagccgattg	gtacttcttg	tcaggaagaa		1740
	acgccaagag	gtgggagtgc	ctggggaggg	aggcaggcgg	tccctaccgc	aggcgcgggg		1800
	agctgccttt	ccgcccctcc	gcctgctttc	caagcctgga	ctcttaggag	tggctgaagc		1860
	tgcggagcgc	ttttggagcc	tgtgaatgaa	ccctcctcct	ctccctcctc	cttcttctcg		1920
	ctgagtctcc	tcctcggctc	tgacggtaca	gtgatataat	gatgatgggt	gtcacaaccc		1980
	gcatttgaac	ttgcaggcga	gctgccccga	gcctttctgg	ggaagaactc	caggcgtgcg		2040
	gacgcaacag	ccgagaacat	taggtgttgt	ggacaggagc	tgggaccaag	atcttcggcc		2100
	agccccgcat	cctcccgcat	cttccagcac	cgtcccgcac	cctccgcatc	cttccccggg		2160
	ccaccacgct	tcctatgtga	cccgcctggg	caacgccgaa	cccagtcgcg	cagcgctgca		2220
	gtgaattttc	ccccaaact	gcaataagcc	gccttccaag	gtaatcacgt	ttcttttgtt		2280
	cccccttaa	aaaacaaaaa	caaaaaactt	atagaaaaaa	acccgcgagc	ttagaaaaaa		2340
	gaagcaattg	gtagaaggct	ttaattaagg	caaagagctg	taaggcgaag	ttaagaaaat		2400
	gtaggcactt	aaaaaatgca	ggtaactttc	ataagggctt	ttggggagag	gcatacagag		2460
	ggaccttggt	gttgaaaaag	attcagacaa	aagaaaccca	g			2501

<210> 35 <211> 3000 <212> DNA <213> Homo Sapiens

<400> 35

acatttaaat	tgcatatttg	gcttgtaata	tattacatat	ttaaaagaat	tactattttt	60
ctgaatacca	ttaatactaa	taatagcatc	acagtgacta	agagtggact	taaataaagg	120
ctggcttgaa	actcaggtct	gccatttatt	agcaagcttc	taaaaattct	gagcccttag	180
		agaaaataaa				240
tatttttctc	tccagtgtat	attaactggc	attcctcgtt	aggccagaat	gtgctctcaa	300
ccatgctcca	aatccgcttt	gtgccaaccc	cactgccaga	accctttcta	ccttgagaac	360
cagaaaagga	aacattatgc	ctggcaatgc	ctacaccctc	caaaataaat	ctgcaggaaa	420
gaacacccag	taagtgatga	gagcagcaac	gactgccttt	atcattttaa	atttacaaca	480
ccaccttttc	tagagcctct	taagcattgt	agataattcc	ccactcatta	aaaaataaat	540
tgtaaccata	agtattcagg	gttgatactg	cttttgaatt	agacagtgct	catatcagtt	600
gcataagacc	aacctaaagt	agaggatgaa	atctttttc	tgaacctttt	tcagaacgta	660
acttagtgaa	tatattaaaa	ctaaactttc	tttgaatggg	agtaatttct	acggattaat	720
ctgtaatctc	ttagaccaca	cctaaggtaa	tgtagaggtt	gttgtatcat	aggctttgtg	780
		tctttggaaa				840
		taataatgac				900
		caatacaatg				960
		acagagaagg				1020
		aaaatttatg				1080
		acgtgtgggt				1140
		gacacgaaat				1200
		gtcgttgctg				1260
		ctggaagggg				1320
		acatatatct				1380
		tgggttggtt				1440
		ggggtaagtg			cccgcagtgg	1500
		agcgagagag				1560
		tggctctccg				1620
		gcagccgctc				1680
		ttacggcggc				1740
ctgggcggtc	cccacgcgag	atcgcaaacc	atgacaatag	gcagtcaccc	gaggtcaaat	1800

		gcgcgccgcc				1860
ggcccccggc	ggcctcacga	gcccgcagta	gccggtggcg	acgtcgcccc	cgccccacct	1920
ccctgcgcaa	gtgcgaggct	gccggcagcg	cggcgcacgc	tccggccgtt	cccggcttcc	1980
gcgcaaaact	tccatcctgt	ccacgtgaag	ttgtcgctgc	cttagagagg	gggaaagagc	2040
		gacgactgcg				2100
cttctccttt	ccccctgtc	gcagtccgga	gttttggctc	ctctcctttc	ctcctccccc	2160
		cgccccgctt				2220
gggtggccga	aggggatgtc	ctgttttcac	cagaggcaca	gcgcgaaggg	gaaacttcga	2280
cactggaagg	aacgagaata	aatacttaat	tacggacgca	ctgaaccgcg	gctgggacag	2340
acacttcggg	aacccgaggc	ggaccgggcg	acgaggtgag	tgaccccttc	ttccaacccc	2400
		agcctgagtt				2460
		gccgagcgct				2520
gtgggcgcct	gcgtccccgg	ggggcgcttg	gaggccgggt	gccccacgcc	tgagggcccg	2580
ggccgctcgg	accgcagcgg	tgctctctgc	cctagaagac	gtccccaagc	cccaagggtc	2640
ccttccgagc	ctgcctgtcc	cttccggggt	cggcgcggag	cctgcgcgta	acggagttca	2700
tccagcagtc	cagcgcgcgg	cttctacctg	caccccgcct	ccacctggca	gaggcgcgag	2760
catcggggtc	tcccccacat	ctttcttatg	acgtgtatta	ctttctgatg	accccctaga	2820
tggtccaggc	gcgaggatgc	tgacccagag	tccttcggag	ggtcacaggc	gcctgggctt	2880
tcccggtgcc	gggtgcgtgt	gtactttaaa	ggctcgcgtt	ctaatctcca	ggcactgatc	2940
gggcttttca	actgcggcga	tcccacttta	atagttttta	tgtggcgtgg	actgaatgtc	3000

<210> 36 <211> 2501 <212> DNA <213> Homo Sapiens

gtcacttcca	tgtgtcctgc	agttctctga	aggggcgtgg	gacctaccga	tgccaattat	60
ccagcattat	ctccagattc	caagaagttg	gggtgtgagc	cagcaatcag	tacagaaaag	120
agataccaaa	ataagtttga	gttggggagt	gttccttcaa	cttcagtttt	ctggaagaga	180
		cagagtttcg				240
acgatctcgg	ctcaccgcaa	cctcctcctc	ccgggttcaa	gcgattctcc	tccctcagcc	300
		agacatgcac				360
gccgggcgtg	gtggcgcacg	cctgtaatct	cagctactgg	ggaggctgag	gcaggagaat	420
cgcttgaaac	caggaggcgg	agattgtacc	aagatagttt	gttccagcta	aacaacctgg	480
cgctagtgca	ggaaaaggtg	gaaggcacgg	ggctagcaca	ggagggttca	atattttcaa	540
ccttatcaag	ccatattttg	gcaactcttg	tttttcacga	gaagcccccg	ctgggcttgt	600
		tcccccatga				660
		agagtggctc				720
		cttgacctcg				780
ggtaggggtg	gccccgctcc	ttccaggtcc	gcaagcccag	gttcccgccc	accgggctca	840
gcccaccctg	cggccgttca	gggaggccgt	tggcacccgt	gacctacgac	ccccttcccg	900
agccccaccg	aggtcacagc	cgtggcctcg	tctccccatg	cctgcttccc	gccccctgcc	960
cgtgacgggc	gtctccgagg	accaatgagc	gcgctgtatc	cacccctcgg	gcggggccaa	1020
gcgccgacca	atcgccgctc	gggcgcccgg	ccgggtccaa	acgctccaat	cgtcagcggc	1080
ggcggggcgg	gcagagggcc	ggggatggca	ggttcaacca	acgggtgggc	acgtcgtcct	1140
cgcgaggagg	cgtgccctgc	ggccgggcgt	gcggtgtccg	cggcggcgca	gggagggga	1200
gggaggtaaa	caagatggcg	gcggcgtgtc	gggcgcggaa	gggggaggcg	gcccggggcg	1260
cccgcgagtg	aggcgcgggg	cggcgaaggg	agcgcgggtg	gcggcacttg	ctgccgcggc	1320
cttggatggg	ctgggccccc	ctcgccgctc	cgcctcctcc	acacgcgcgg	cggccgcggc	1380
		ggcccggcac				1440
gcctgcgccg	cctcggccgc	cgggagcccc	gtggagcccc	cgccgccgcg	ccgccccgcg	1500
		cggggcgggg				1560
		gcgaccacct				1620
cagtgcgggc	cctcgcgggc	gccgggcagc	gaccagccct	gagcggagct	gttggccgcg	1680
gcgggaggcc	tcccggacgc	ccccagcccc	ccgaacgctc	gcccgggccg	gcgggagtcg	1740
gcgccccccg	ggaggtccgc	tcggtcgtcc	gcggcggagc	gtttgctcct	gggacaggcg	1800
gtgggaccgg	ggcgtcgccg	gagacgcccc	cagcgaagtt	gggctctcca	ggtgtggggg	1860
tcccgggggg	tagcgacgtc	gcggacccgg	cctgtgggat	gggcggcccg	gagaagactg	1920
cgctcggccg	tgttcatact	tgtccgtggg	cctgaggtcc	ccggaggatg	acctagcact	1980
		cccagggtcc				2040
		ggtcccactg				2100
			Page			
			2			

47675-47.txt eceggtgeee geeggteege agaceetgea eegggettgg actegeagee gggaetgaeg 2160 tgtagaacaa tegtttetgt tggaagaagg gttttteeet teettttggg gtttttgttg 2220 ccttttttt ttctttttc tttgtaaaat tttggagaag ggaagtcgga acacaaggaa 2280 2340 ggaccgctca cccgcggact cagggctggc ggcgggactc caggaccctg ggtccagcat ggaggtggtg gacccgcagc agctgggcat gttcacggag ggcgagctga tgtcggtggg 2400 tatggacacg ttcatccacc gcatcgactc caccgaggtc atctaccagc cgcgccgcaa 2460 gcgggccaag ctcatcggca agtacctgat gggggacctg c 2501 <210> 37 <211> 2501 <212> DNA <213> Homo Sapiens <400> 37 ggaggataga aatataaatt aaagaatgac acaaataatt ataaagttac agctgttaaa 60 agaaaagcat atggtgccaa gagaacgtgt aatacaagat ctactcatgg aggtgaggga 120 aagettgeee atcaaagaag ttatgattea atecaegaag accaggagtt ggetgggtga 180 agaaaaaaag gtcagaggaa ggaagtccac actggggaag gctctaagca taaagggtag 240 300 gaggattaca gaggcatatt cacgaaattt ggagaaggct ttcagtaagc aaggagaagc caaatgaaag tttacgggag agttggaggc ttgaagacac gttcaaggat ctggttttta 360 tcttctcttt atctcaagag cagtgggaag ccattaaatg attttaatca gagggttggt 420 ataactagtt ttgtattttg aaaagctgaa ttcagctctc gtttgagaaa ctgagtgaaa 480 gagcccagaa cggccgtggc tgagggtgac tcgtgggaga ctcctacaca agccatggca 540 gtggcatggg ctggtggcag aagagggaat agggagaaga tttggaactc aatcttcctc 600 cattgacaaa gtcactccag ctttggcaag gcaattaatt ggtgggaaag aagatgccta 660 720 gccctcctga tttcactgca ctttctgcat cttcaacatg agtactggga agtggcaaaa catccagagg cagcttgggt gctaggtgga gcatgagtta aaattccagg atgaagcaaa 780 tgaacactta gaatgacagg aaagatttgg gagttgggtt tgggggaggg ctatttacct 840 900 ttattccctg gagaccctgg cacaaaccct tgcctctgca atcttcctct caggtaaagg aattcattaa atgaattgct agaagatcta ctgaccagag ggctgtacag aatcatatct 960 ttgagagtgg gaagtaggtt gatcacatag tttattatcc aatcaggaca tatctgaaag agaaaggggg ttctattaat atttaaacta caaaacatgt acaccaggaa tgtcttgggc 1020 1080 adatotggtt goodtagoaa gaaaggaaat ttgaaagttt atactgttot gotoocatgt 1140 taccccgttt gcacatgaga gggtaagtat tctctttctt cacctgcatt aagggaataa 1200 aagcacaagc attcaggtga ctcccaaccc acttttaatt ttacagtttc tgctatactc 1260 tatacattct gaaaattaca tttcccacca ctatcacttc gtgataggtg atcatttaca 1320 attactcact gactcagtcc cgggaagagg cggtgcaaaa tgggacgctc tatccaggtg 1380 ctcattagaa atgcagaatc tctgcctgcc tcctagacct actgaattag aatctgcatt 1440 tttaaataag atttccaggt gatcaatatg tacattaaaa cttgagaaaa acctctagac 1500 ttcgacctaa agaaaaacat tttacaactt gacagtgtat gcacatacat acatgcatat 1560 agacacaact gaagcacaaa tttaatgaag tagaatttac cgttactatt ttatttggga 1620 aagaaatgtg ctcgcgactc aatagattgg agtattcact cctggatctc aacttgcaat 1680 ttgaaaacgc atctctaaag cacctaggag caatctgaag aaagctgagg ggaggcggca 1740 gatgttctga tctactaggg aaaacgtgga cgttttctgt tgttactttg tgaactgtgt 1800 gcacttagtc attettgagt aaatacttgg agegaggaac teetgagtgg tgtgggaggg 1860 cggtgagggg cagctgaaag tcggccaaag ctctcggagg ggctggtcta ggaaacatga 1920 ttggcagcta cgagagagct aggggctgga cgtcgaggag agggagaagg ctctcgggcg 1980 gagagaggte etgeceaget gttggegagg agttteetgt tteeceegea gegetgagtt 2040 gaagttgagt gagtcactcg cgcgcacgga gcgacgacac ccccgcgcgt gcacccgctc 2100 gggacaggag ceggacteet gtgeagette ceteggeege egggggeete eeegegeete 2160 geoggeetee aggeecete etggetggeg agegggegee acatetggee egeacatetg 2220 2280 gggaaggcgc cgtccgctgc gctgggggct cggtctatga cgagcagcgg ggtctgccat 2340 gggtcggggg ctgctcaggg gcctgtggcc gctgcacatc gtcctgtgga cgcgtatcgc 2400 cagcacgate ceaeegeacg tteagaagte gggtgagtgg teeecageee gggeteggeg 2460 gggcgccggg ggtcttcctg gggtccccgc ctctccgctg c 2501 <210> 38 <211> 1508 <212> DNA

<213> Homo Sapiens

<400	> 3	8
------	-----	---

attccattgt cttatttcga gcctgcttat acaggcaccc cctaaagggt ttttcaaggg ggactgcctt gggctctctg atccgcctcc aaaataatct ggggtgctc ccacgcctccggg cagccaccgc tcagttgctt tcgggcgtgct tcgggcgtgcc tcgggcctc gaggggcct atctgggccct gaggggcct attgggtcct gaggggcct attgggtcct attgggtcct gcggaaccccg aggtgttatt cggcaggtc	tccagaaaat agcgtttggg ttttctttcc acacagattc tcctagccgt cagagatgga aggacatggc caggcgcgtc cccgggaacc gtccaagccc cccaccctcag taaagcacag gggggaagtgt cggggaagtgt cgggggagcc ttgggcccaa cggtccggc ttgggcccaa cggtccggcc ttgggcccaa cggtccggcc taccgagtc ccaagcggc	tagtgtattt atcggtaata agacattca acaccgacta cttccataccc acttgggcca aggatagtgg ggctccctcc ccccgtggg gctgccagaa gcagaacaaa tgccttttt cccaaggaaa acgtagactc ttccacttcg gtgaagagaa tgagctagtg gtgaagagaa tgagctagtt ctgcgtgcctgc	aaattataga gaaacggatg gatgtaaacg ggatccacaa tccctctgtg atgggccggg attgtttctg ccccctgctg ttcaaagcgg gagaaacgtt ccttggggag cctttggtgg tcccccata cctccccata cgaggtaggc tatctgcct gagcactcct gcaggaatg ggacacggaa ctggatgggt ggggttcgaa tccccgggac tccccgggac	aaagttaaag ggaaatgtta agtgtcacca agtttagatg aaacagggaa gggtgggggg ccgccttgtt agaagaagcc gaaaatgttg cttactcgct tgcctagacc gcggccagga caatacaaga gttttcgggg tccaaatatcg tccaaatatg tttatggggt tctagggtttt aaggggattg ctagggattg ctaggattg ttatgggatt aaagtggatt ctagcaaa caaaatctt	atcttcattt aattctgcat aaagtacacc tgaaatgtac gacacatgtg aagttggaag gcccataccg ctgccaaaac cctcaggttt ctctgcccc cggggcagca agctcctcc agccacgggc ccgactgctg caccgctgaa tcctaatgga gggtcctaatgga gggtcctgac gggtgcgc caagggtgga ccctgtcgc gcagggtgga gcgcccaaaa gaaacatct	60 120 180 240 300 360 420 480 540 660 720 780 900 960 1080 1140 1200 1320 1380 1440 1508
<210> 39 <211> 286 <212> DNA <213> Homo	Sapiens					
<400> 39						
gaatcagctg aaatgggatg tgcaaaacga	gcattgccca ccacctccgc gggagcgtta	gccgccagtc gcgtgatttg ggggctcgct ggaaggaatc gtgatgctgc	tgaggctgag cctcgcgagg cgtcttgtaa	ccccaacagt tgctcacccc agccattggt	ccaaagaagc gtatctgcca	60 120 180 240 286
<210> 40 <211> 2501 <212> DNA <213> Homo	Sapiens					
<400> 40						
aacagttttc tttggagtct gagcattatt ctcctgtcca catagttctc caattcctat ttcaaatgag aggctgtagc caggcctttg tgagtctaga gtggaacata tcatatccag	agatgtggaa ttcagaccca tctcacctta ttgttcattc ctggctctga tgagcaatgc gttgaagtat cattaaaatc tgttctggaa gtctagctca gaacaaatta tcttccttgc	taaatgacac actgtgaaga ggtttgaatg ggttttttttc agtgatttt gacctatgtt tagttgaaag ctacgcattc tcaggaaata ggttcattta aatagcaatg tgtccttgtt ctttaggttt gcacaagata	caatgttggt tcagactgct aggcctcttt gcaccttcct aattccattc ttgtggtggg tacttacata attttcacc tagccatttc gactggaaga tcagcctgtt gagttacctt	gatgtggaag ttttattcag gtgtctatgt tcactgttag taccatcctg attaaatgtt tggtgaggta tcctcaggtg ccaaatgaca ctagtttagg catctgtgaa ctttggtcaa	caacataaac agtaacttca gtcctcttca tgtgtagaca ccagcccact gcaatgagta tattcaagga aaagggtctt atgcgattga ttttactaat atagagccta ggtaagtaaa	60 120 180 240 300 360 420 480 540 660 720 780 840
5 5			Page			

ctctgtagaa	gactgcaaaa	agcaaaagag	acccaggcaa	aaatctcgga	atgacttttg	900
gaacagagag	cctccccaga	atcagaagtc	aaaggaattt	aaaacatagg	gaggcccagg	960
gtctctactg	acataaagga	aagatgtttt	ccttataggt	ttacgtttac	attttctctc	1020
tctttccatt	cccacttgca	tctccacctt	tacacagggc	ttatgggacc	tcctccacaa	1080
		acatcatcct				1140
		atccttggat				1200
aggcaacttg	gaaaagcaag	cggctgcata	caaagcaaac	gtttacagag	ctctggacaa	1260
		atggcaagtg				1320
		gagtctggat				1380
		agggtagaaa				1440
tagagcaaat	ggcacaatgc	cacgaggccc	gatctatccc	tatgacggaa	tctaaggttt	1500
cagcaagtat	ctgctggctt	ggtcatggct	tgctcctcag	tttgtaggag	actctcccac	1560
		atcagtcctg				1620
ttcctatcgt	ccttttcctc	cctccctcgc	ctccaccctg	ttggtttttt	agattgggct	1680
ttggaaccaa	atttggtgag	tgctggcctc	caggaaatct	ggagccctgg	cgcctaaacc	1740
ttggtttagg	aaagcaggag	ctattcagga	agcaggggtc	ctccagggct	agagctagcc	1800
tctcctgccc	tcgcccacgc	tgcgccagca	cttgtttctc	caaagccact	aggcaggcgt	1860
tagcgcgcgg	tgaggggagg	ggagaaaagg	aaaggggagg	ggagggaaaa	ggaggtggga	1920
aggcaaggag	gccggcccgg	tgggggcggg	acccgactcg	caaactgttg	catttgctct	1980
ccacctccca	gcgccccctc	cgagatcccg	gggagccagc	ttgctgggag	agcgggacgg	2040
tccggagcaa	gcccagaggc	agaggaggcg	acagagggaa	aaagggccga	gctagccgct	2100
ccagtgctgt	acaggagccg	aagggacgca	ccacgccagc	cccagcccgg	ctccagcgac	2160
agccaacgcc	tcttgcagcg	cggcggcttc	gaagccgccg	cccggagctg	ccctttcctc	2220
ttcggtgaag	tttttaaaag	ctgctaaaga	ctcggaggaa	gcaaggaaag	tgcctggtag	2280
gactgacggc	tgcctttgtc	ctcctcctct	ccaccccgcc	tccccccacc	ctgccttccc	2340
accetecece	gtcttctctc	ccgcagctgc	ctcagtcggc	tactctcagc	caacccccct	2400
		,dccccccdc			cagcccgagt	2460
ttgcagagag	gtaactccct	ttggctgcga	gcgggcgagc	t		2501

<210> 41 <211> 2448 <212> DNA <213> Homo Sapiens

<400> 41

ctgccctgcc	tctacgacaa	aagccaacgg	gtcttcagta	cttttattaa	aaaatagtca	60
cgcagacagt	gccctggtgg	ctctgccccg	catcccaact	ctggggtggg	ggaaaggggt	120
caacgttttc	gcagccccaa	accgggccat	cacttgccca	ccgagtcgaa	tatgatgcgg	180
ttctgctcgg	cgcgctcccg	ctggctctgc	gtccgcgcca	ctccagcagg	gtccgcagca	240
		gacagagaag				300
tcccgagtcc	caatcggccg	ggccccgcgc	gggcgagaag	cgtccgccag	cagcaagagg	360
		tggttccgtg				420
ggacccggcc	gcctcggggc	tcctctggct	gctcccaggg	cacagctgta	ccaggagcag	480
		cgtcccgcct				540
		tgcgcctggg				600
		gccgccgccc				660
cactgcgcca	gtgctgttcc	atcccttcca	cccagcctcc	ctccccggag	gagcgtggtg	720
		ggtgcagggg				780
		tacggtccaa				840
		aacacagggt				900
		acgtcagcga				960
		cggctggcgg				1020
		cgctggaagc				1080
ctggggcgta	aagactgctc	tgggacccac	gggagtccca	tegeeceget	tagaacagcc	1140
agcaatgact	agggccgtcc	ccagaccaga	ctagtccggg	tcgcgtgttc	tgacacacga	1200
aagggaggcg	ggaccgtgag	gctgtccatg	gtgctgaccc	cgtcctctgc	ctctagaagt	1260
		tgtgccgctg				1320
		agtccaccgc				1380
gagaggcagt	ctgccacaac	caaagtctcc	cagcattctt	atctttttcc	agccccagga	1440
tccaaatttg	tagggctgtc	tgacaggcac	catgtaacag	agggtctcta	gcatccgagt	1500
gctttcagac	cacaaatggc	tggcccatct	gcttttgagt	ttgccaaagt	agtttagcaa	1560
agttcagttt	ctctcctggg	aatcatagca	gcagtgtaac	tctgcccatg	agcagcaaag	1620

aaatatgggt	tcaagtttct	gctaactcct	ggtgtggaca	ggtcacctcc	ctcctaccaa	1680
		agactgggct				1740
cccaacactt	tgggaggccg	aggcaggcgg	atcacgaggt	cagtagtttg	aaaccagcct	1800
ggccaatatg	gcgaaacccc	atctctacta	aaaatacaaa	aattagccgg	gcgtggcggt	1860
atgcgcctgt	ggtcccagct	actcaggagg	ctgaggcagg	agaactgctt	gaacccagga	1920
ggcggaagct	gcagtgaggc	aagatcgcgc	cactgcactc	cagcctggga	gacagagcaa	1980
gaccctgtct	caaaaaaaa	aaaaaaaaa	aaaaaaaaa	ttgggcttgg	tggtctcttg	2040
gcttctttcc	agctctagaa	atgactcccc	aatagttttc	tgcttaaaaa	cttactcatt	2100
accactgcag	attccggatt	acatatttaa	taacatattt	actgaggcac	catataaagg	2160
gttccgggag	tctctaaaga	gctggagcta	caagaagcct	aggcagggtt	agagtaacaa	2220
atgtgtctat	gaagagtggg	gatgagtggc	atttgctggg	atatgggtgt	aaagttgata	2280
aggtcatgaa	ggttcaacag	atatttatgg	agtgcctagt	atgtggtggg	aataagacta	2340
ttatcaaggg	ctctaaagca	gtcagtgtac	attttagagt	gaagagggc	attgcagggt	2400
gctagtcctc	ttaagctctg	accggcaacc	caaccccgtg	gaaactgg		2448

<210> 42 <211> 2344 <212> DNA <213> Homo Sapiens

geetggetae eteaagaete ecaeggaggt teagtteeae acteeetee acceteecag getggtttet ecetgetgee gaegeetggg ageecagaga geggetteee gtteeegeg 120 gatecetgga gaggteegge eegaaaegeg eeeceeteee eeeteeee 240 eaceaceaee ecaeceaee accaecaee eaceaeeae eageeggeeg 300 geeceaggee tegaegeeette eggggtgggg egggetgee eagggggget 360 geeceaggee tegaegeeet eegaegeeg egggetgtee eaggggggget 360 eacegeeate eatgaagggg tggageetge etgeegtgg egggetgtee eaggggggget 360 eacegeeate eatgaagggg tggageetge etgeegtgg geetttaeaa gggeggetgg 420 etgaeggetgg egggetgee etgeegggg eegggetgg eacagteegg 480 etgaggteae egggageeeg eteeggagg eegggeteee etgeeggg teegggetgg eacagteegg 480 eggggaeggag acgggaegg agaeteette tetgeeegg teegteegtg aaattgegge 540 eggggaeggag acggegaegg agaeteegtt ggaeeeegga eacaegeagg geeetgeagg 660 eetgetttga geggaaeeeg taceeggga tegeeagag ecaaagggag geeetgeag 660 eetgetttga geggaaeeeg taceeggea tegeeaeeag geeeagge 720 teggeattee ggageeagg gteeagattt ggttteagaa tgagaggtea egeeagetga 780 ggaageaeeg geeggaatet eggeeetgge eegggaaeeg eggeeegea gaaggeegge 840 gaaageggae egeegtaaee ggateeeaga eegeetgee etteggaeg 660 eetgettee aggeateee ggateeeaga eegeetgee etteggagge etteeggagt 900 ategettee aggeategee geeggaagg agetggeeag agagaeegge etteeggagt 960 eeaggaatea gaatetggtt eagaategaa gggeeagge etteeggag 1020
gatccctgga gaggtccgga gagccggccc ccgaaacgcg cccccctccc ccctcccccc 180 tctcccctt cctcttcgtc tctccggccc caccaccacc accgccacca cgccctcccc 240 caccaccccc cccacccacc accaccacc accaccac
totoccott cotottogte totocggee caccaccae accgecacca egecotocce caccaccae caccaccae caccaccae egecotocce caccaccae accaccae caccaccae caccaccae egecotocce ggecotocte eggggtgggg egggetgtee caggggggt 360 caccgccatt catgaagggg tggagcetge etgecogtgg geetttacaa gggeggetgg 420 ctggetgget ggetgtee ggetgtee egggetgget etggetgg
caccacccc cccacccac accaccac ccaccaccac caccac
gccccaggcc tegacgcet gggtcccttc eggggtggg egggctgtce cagggggct 360 caccgccatt catgaagggg tggagcctgc etgecegtgg gcctttacaa gggcggctgg 420 ctggctggct ggctgtccgg gcaggcctcc tggctgcacc tgccgcagtg cacagtccgg 480 ctgagggtgac egggagccg ecggcctctc tetgecegeg teegtcogtg aaattgeggc 540 eggggactacc egegatggc etceegacac etteggacag eaceeteece geggaagece 600 ggggacgagg acggcgacgg agactcgttt ggaccecgag ecaaagegag gccctgegag 660 eetgetttga geggaacceg taccegggca tegecaccag agaacggctg geccaggca 720 teggcattcc ggagcccagg gtccagattt ggtttcagaa tgagaggtca egecagetga 780 ggcagcaccg gegggaatet eggccetggc ecgggaagacg eggecegeca gaaggceggc 840 gaaageggac egecgtcacc ggatcccaga ecgecetget ecteegagc tttgagaagg 900 ategettec aggcategc geceggagg agetggccag agagacgggc etceeggagt 960 ecaggattca gatctggttt eagaategaa gggccaggc ecgggacagg gtggcagggc 1020
caccgccatt catgaaggg tggagcctgc ctgcccgtgg gcctttacaa gggcggctgg ctggctggctggctggctggctggctgg
ctggctggct ggctgtccgg gcaggcctcc tggctgcacc tgccgcagtg cacagtccgg 480 ctgaggtgca cgggagcccg ccggcctctc tctgcccgcg tccgtccgtg aaattgcggc 540 cgggggctcac cgcgatggcc ctcccgacac cttcggacag caccetccc gcggaagccc 600 ggggacgagg acggcgacgg agactcgttt ggaccccgag ccaaagcgag gccctgcgag 660 cctgctttga gcggaacccg tacccgggca tcgccaccag agaacggctg gcccaggcca 720 tcggcattcc ggagcccagg gtccagattt ggtttcagaa tgagaggtca cgccagctga 780 ggcagcaccg gcgggaatct cggccctggc ccgggagacg cggcccgcca gaaggccggc 840 gaaagcggac cgccgtcacc ggatcccaga ccgccctgct cctccgagcc tttgagaagg 900 atcgctttcc aggcatcgc gccgggagg agctggccag agaagcgggc ctcccggagt 960 ccaggattca gatctggttt cagaatcgaa gggccaggc ccgggacagg gtggcaggc 1020
ctgaggtgca cgggagcccg ccggcctctc tctgcccgcg tccgtccgtg aaattgcggc cgggggctcac cgcgatggcc ctcccgacac cttcggacag caccetccc gcggaagccc 600 ggggacgagg acggcgacgg agactcgttt ggaccccgag ccaaagcgag gccctgcgag 660 cctgctttga gcggaacccg tacccgggca tcgccaccag agaacggctg gcccaggcca 720 tcggcattcc ggagcccagg gtccagattt ggtttcagaa tgagaggtca cgccagctga 780 ggcagcaccg gcgggaatct cggccctggc ccgggagacg cggcccgcca gaaggccggc 840 gaaagcggac cgccgtcacc ggatcccaga ccgccttgct cctccgagcc tttgagaagg 900 atcgctttcc aggcatcgc gcccggagg agctggccag agagacgggc ctcccggagt 960 ccaggattca gatctggttt cagaatcgaa gggccaggc ccgggacagg gtggcagggc 1020
eggggeteae egegatgge etecegaeae etteggaeag eaceeteeee geggaageee 600 ggggaegagg aeggegaegg agaetegtt ggaeeeegag ecaaagegag geeetgegag 660 eetgetttga geggaaeeeg taeeegggea tegeeaeeag agaaeggetg geeeaggeea 720 teggeattee ggageeeagg gteeagattt ggttteagaa tgagaggtea egeeagetga 780 ggeageaeeg gegggaatet eggeeetgge eegggagaeg eggeeegeea gaaggeegge 840 gaaageggae egeegteaee ggateeeaga eegeeetget eeteegagee tttgagaagg 900 ategetttee aggeatege geeeggagg agetggeeag agaagaeggge eteeeggagt 960 eeaggattea gatetggtt eagaategaa gggeeagge eegggaagg gtggeaggg
ggggacgagg acggcgacgg agactcgttt ggaccccgag ccaaagcgag gccctgcgag 660 cctgctttga gcggaacccg tacccgggca tcgccaccag agaacggctg gcccaggcca 720 tcggcattcc ggagcccagg gtccagattt ggtttcagaa tgagaggtca cgccagctga 780 ggcagcaccg gcgggaatct cggccctggc ccgggagacg cggcccgcca gaaggccggc 840 gaaagcggac cgccgtcacc ggatcccaga ccgccctgct cctccgagcc tttgagaagg 900 atcgctttcc aggcatcgc gccgggagg agctggccag agagacgggc ctcccggagt 960 ccaggattca gatctggttt cagaatcgaa gggccaggc ccgggacagg gtggcagggc 1020
cetgetttga geggaaceg taccegggea tegecaceag agaacegetg geceaggeea 720 teggeattee ggageceagg gtecagattt ggttteagaa tgagaggtea egecagetga 780 ggeageaceg gegggaatet eggeeetgge eegggagaeg eggeeegeea gaaggeegge 840 gaaageggae egeegteace ggateeeaga eegeeetget eeteegagee tttgagaagg 900 ategetttee aggeategee geeeggagg agetggeeag agagaeggge eteeeggagt 960 eeaggattea gatetggttt eagaategaa gggeeaggee eegggaeagg gtggeaggge 1020
teggeattee ggageeeagg gteeagattt ggttteagaa tgagaggtea egeeagetga 780 ggeageaceg gegggaatet eggeeetgge eegggagaeg eggeeegeea gaaggeegge 840 gaaageggae egeegteace ggateeeaga eegeeetget eeteegagee tttgagaagg 900 ategetttee aggeategee geeegggagg agetggeeag agagaeggge eteeeggagt 960 eeaggattea gatetggttt eagaategaa gggeeaggee eegggaeagg gtggeaggge 1020
ggcagcaccg gcgggaatct cggccctggc ccgggagacg cggcccgcca gaaggccggc 840 gaaagcggac cgccgtcacc ggatcccaga ccgccctgct cctccgagcc tttgagaagg 900 atcgctttcc aggcatcgcc gcccgggagg agctggccag agagacgggc ctcccggagt 960 ccaggattca gatctggttt cagaatcgaa gggccaggcc ccgggacagg gtggcagggc 1020
gaaageggae egeegteace ggateeeaga eegeeetget eeteegagee tittgagaagg 900 ategetitee aggeategee geeegggagg agetggeeag agagaeggge eteeeggagt 960 eeaggattea gatetggtit eagaategaa gggeeaggee eegggaeagg gtggeaggge 1020
gaaageggae egeegteace ggateeeaga eegeeetget eeteegagee tittgagaagg 900 ategetitee aggeategee geeegggagg agetggeeag agagaeggge eteeeggagt 960 eeaggattea gatetggtit eagaategaa gggeeaggee eegggaeagg gtggeaggge 1020
ccaggattca gatctggttt cagaatcgaa gggccaggcc ccgggacagg gtggcagggc 1020
ccaggattca gatctggttt cagaatcgaa gggccaggcc ccgggacagg gtggcagggc 1020
angranging angranging totangers angranging agranting to the state of t
gcccgcgcag gcaggcggcc tgtgcagcgc ggcccccggc gggggtcacc ctgctccctc 1080
gtgggtcgcc ttcgcccaca ccggcgcgtg gggaacgggg cttcccgcac cccacgtgcc 1140
ctgcgcgcct ggggctctcc cacagggggc tttcgtgagc caggcagcga gggccgcccc 1200
egegetgeag cecageeagg cegegeegge agaggggate teceaacetg ceceggegeg 1260
eggggattte geetaegeeg ceeeggetee teeggaeggg gegeteteee aeceteagge 1320
tecteggtgg ceteegeace eggggeaaaa geegggagga eegggaeeeg eagegegaeg 1380
geetgeeggg ceeetgegeg gtggeacage etgggeeege teaagegggg cegeagggee 1440
aaggggtgct tgcgccaccc acgtcccagg ggagtccgtg gtggggctgg ggccggggtc 1500
cccaggtcgc cggggcggcg tgggaacccc aagccggggc agctccacct ccccagcccg 1560
cgcccccgga cgcctccgcg cggcaggggc agatgcaagg catcccggcg ccctcccagg 1620
egetecagga geeggegeee tggtetgeae teceetgegg eetgetgetg gatgagetee 1680
tggcgagccc ggagtttetg cagcaggege aaceteteet agaaaeggag geeeeggggg 1740
agetggagge eteggaagag geegeetege tggaageace eeteagegag gaagaatace 1800
gggctctgct ggaggagctt taggacgcgg ggttgggacg gggtcgggtg gttcggggca 1860
gggcggtggc ctctctttcg cggggaacgc ctggctggct acggaggggc gtgtctccgc 1920
cccgccccct ccaccgggct gaccggcctg ggattcctgc cttctaggcc taggcccggt 1980
gagagactee acacagegga gaactgeeat tettteetgg geateeeggg gateeeagag 2040
ccggcccagg taccagcagg tgggccgcct actgcgcacg cgcgggtttg cgggcagccg 2100
cetgggetgt gggageagee egggeagage teteetgeet etecaceage ecacecegee 2160
geotgacego deceteceda ececeacede eegeooogg aaaaegegte gteecetggg 2220
ctgggtggag accccgtcc cgcgaaacac cgggccccgc gcagcgtccg ggcctgacac 2280
cgctccggcg gctcgcctcc tctgcgcccc cgcgccaccg tcgcccgccc gcccgggccc 2340
ctgc 2344

	47675-47.txt					
<210> 43 <211> 2350 <212> DNA <213> Homo S	Sapiens					
<400> 43						
cagatgcact of cocttgaccc of gractcottgacct of gractatacct of gaccataacc of cagaatccct of aggcagaatt of cagacataacc of cagaatccct of cagacataacc of cagagaact of cottgacacag of caccatgagac of cagagatgaccc of cagagatgagatgaatt of cagagagatgagagatgaatt of cagagagagatga of caccagagagat of caccagagagatgagagagagagagagagagagagagaga	agateacaac gagateacaac gagateacaac gagacectgaga agaceccaact gagaceccaact gatacectgace tetegaceccettgaceccettgaceccettgaceccettgaceccettgaceccettgaceccettgaceccettgaceccetgacecceggggaceccetgacecceggggggacecceggggggacecceggggggaceccettccaacccaac	tatgacctgg ctcctgaccc tgacagtaac agcaattgtg gtgacatttg gtgacatttg gactcttggtt actataactt agccgaatcc atttctgatc gaaacctaga cctacccacc ctgaaacccacc ctccccaga ctacccacg gagtctggaa caaggcggaa caggcggaac tggcggagac tggcggagac tggcggagac tggcggaac tgcctggaa cagaggagac tgggggacc tccgctctctc cctctcccc tcctctccc cctctcccc cctctccc cctctccc cctctccc cctctccc ccccc ccgggccc ccccc ccccc ccccc cccc ccccc ccccc cccc	ccgtaacctc tgacctggac atttgaccct accctcatga accctaatca cctatctctt tcataatccc ctgatcctaat cctatcctgat cctaccatga ccttgccatag ccttgccatac ccaccgccata ccaccccca cactggtcggc ttgtcgggag tgggaggagc ttgtcgaggag ttgtaccggag tgggaggagctcggaggagctcggaggagctcggaggagcctggaggagcccggagccccc acttccccct agacggaggagccccggacccccccc tcttgtatc ccagacggaggacccc acttccccct aactcccccc aactccccca cacgggagagcaccc tcgacccc tcgacccc tcgacccc tcgacccc agggagaccc cccccccc aactcccccc aactccccccc aactcccccc ccacccccc ccaccccccc ccaccccccc ccacccccc	ctgacctgga cacaactctt aaccatcacc ctactggccct taaccacctggc ctgaccttagtta ccctagttta ccctagttta ccctagttta ccctagtggatt agccctcacc caaggggatt agccctggattcagg cgttcaggcctg ggttcagggt tagcagggt tagcagggt tagcagggt tcttgatcct gggggattcagggt tgtgataccg gggtgggaagg ggtgggaagg ggtgggaagg cgtattggggaagg cgtagggggggggg	cctcagtccc gaccctgaat cttgatgata gaatgtgacc ccatagcact tgcctctttg attccagtca taatacttga actccaaaat ggtccccaa ggtcggtgt cgaatgcagt cgaagccggtg cgaatgccggt cgcaggtgactccct tgcgaggcggcgcgcaaagccggcgcgcgcaaagccggtg cgtgatccct tggctagagcagt cgtgatgactccgaggcgcggtgatcccct tggcgagaaaaa gggaaaaaaa tcgtgattgacct tggctggctcc tcgcgggtgctccct tcgcggctccct ccctgctccct ccctgctcccc gaggcgcccca	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1320 1380 1440 1500 1620 1680 1740 1860 1980 2040 2160 22160 22160 2220 2340 2350
<210> 44 <211> 2206 <212> DNA <213> Homo S	Sapiens					
<400> 44						
gggcattccc taggcgtcagg acccagggca to agcagctgca taggtcatgcg acctgggctg accctgagcg accctgagcg accctgagcg accctgagcg	aggcetgete geeceegeat ceggattget gagggeeca aaacgeatge cgacaggagg	gggtctgcat tggaagctct gagcttggaa cgtactctgc ccatccgacc ctcggcgccc	gtgcctgggc aggaacttgg cagctcctcc acacatcagc tccgaccttg tcaggcacct	ttggcaggtg atctaggctg tagacacagt agcccatccg ttcctggtca ggcaggcttt gaattaggag	gggaggcggc aaggcctttg gtggcgcggg accttgtccc tgcaggttcc cccgaccttc	60 120 180 240 300 360 420 480

gaggagcctg	gcggaacccg	gtcctggctg	tgtgccgagt	ggcggggcac	ccacagggag	540
atgagccagt	gcctatctct	tgcctcagtc	tccccgtggt	cgcctccttc	ctcagaaggg	600
gctggcccag	gctggtgcct	ccgtggcccc	tggagcatac	ctgctgccgc	cttccctggc	660
ctctggcgac	agcaggcctt	ccgtactcca	cctgtccccc	agccagcatg	gctccacaca	720
gaacacggcc	gcagacaacc	ctcctgtgtc	ctgcatagcg	aactgccact	ctgcgtgggc	780
cccactgcca	ggttagggag	gcaggagctg	ccccacccc	ctgcccggga	gctgtcgtct	840
gtctttcgga	tgagtcagga	acaaatgcgt	caacactggg	tggccgccct	cgccactcct	900
gcgcacgggc	cctgtgggga	gagccaggca	gtgggtggcg	tgggacaggt	gatgcccatg	960
cccagtactc	aggagacctg	catggcagct	cctaagatgg	gtacaagcga	tcataaggag	1020
ggatgtacgt	gtctcatctc	cccacccacc	acgggatcag	gttgaggccg	tccagggagt	1080
gcatgggagg	gctgcgctcg	gcgcatctgc	agagatcccc	tgaagagggg	ccctggctgc	1140
ctcccactgg	ggtaggtgcg	ggcccaggtc	cccgacaccg	tgacggtgct	gtgggacttt	1200
gatggacctc	acccggggag	cccaggcctg	ctccacggca	aggtggccac	gcactgcctc	1260
tgcagtcctg	agcacaggct	ccatacggga	cctgaggcct	gggctccatg	acacttgggc	1320
tatgtgcttc	cctggtgctt	ccctcctggg	gatgaaatca	cacccatagg	taaaggtttg	1380
ggagtggagg	gagacagcag	gagacaaagc	aaggggacga	ggactctggc	agccacaaag	1440
gcagcgggag	ggccctggag	gctcctgttg	ggcagcgcag	tcaggaaagg	gcccactagg	1500
tgggagaggc	aggcgcctgg	tgagtgctga	gatctgcacc	acgagaaggg	ctgggctccc	1560
aaggcatgca	tggggcctgg	gagtggaggg	agtgtgagcg	ggtgttagga	cggggtctgg	1620
ggcgagcggg	tgttaggacg	ggcctgggag	cggagggagt	gcgagcgggt	gttaggacgg	1680
ggtctgggag	tggagggagc	gcgagcgggt	gttaggacgg	ggcctgggag	tggagggagc	1740
gagagcgggt	gttaggacgg	ggtctgggag	tggagggagc	gcgagcgggt	gttaggacgg	1800
ggtctgggag	tggagggagc	gcgagcgggt	gttaggacgg	ggtctgggag	tggagggagc	1860
gagagcgggt	gtcaggacgg	ggtctgggag	tggagggagc	gcgagcgggt	gtcaggacgg	1920
ggtctgggag	tggagggagc	gcgagcgggt	gttaggacgg	ggtctgggag	tggagggagc	1980
gcgagcgggt	gttaggacgg	ggtctgggag	tggagggagc	gcgagcgggt	gttaggacgg	2040
gtctgggagt	ggagggagcg	cgagcgggtg	ttaggacggg	tctgggagtg	gagggagcgc	2100
gagcgggtgt	taggacgggt	ctgggagtgg	agggagcgcg	agcgggtgtt	aggacggggt	2160
ctgggagtgg	agggagcgcg	agcgggtgtt	aggacggggt	ctggga		2206

<210> 45 <211> 2233 <212> DNA <213> Homo Sapiens

<400> 45

ctgctggacg	tggacgcaga	cagcgggctc	ctctacacca	agcagcgcat	cgaccgcgag	60
tccctgtgcc	gccacaatgc	caagtgccag	ctgtccctcg	aggtgttcgc	caacgacaag	120
gagatctgca	tgatcaaggt	agagatccag	gacatcaacg	acaacgcgcc	ctccttctcc	180
tcggaccaga	tcgaaatgga	catctcggag	aacgctgctc	cgggcacccg	cttccccctc	240
accagcgcac	atgaccccga	cgccggcgag	aatgggctcc	gcacctacct	gctcacgcgc	300
gacgatcacg	gcctctttgg	actggacgtt	aagtcccgcg	gcgacggcac	caagttccca	360
gaactggtca	tccagaaggc	tctggaccgc	gagcaacaga	atcaccatac	gctcgtgctg	420
actgccctgg	acggtggcga	gcctccacgt	tccgccaccg	tacagatcaa	cgtgaaggtg	480
attgactcca	acgacaacag	cccggtcttc	gaggcgccat	cctacttggt	ggaactgccc	540
gagaacgctc	cgctgggtac	agtggtcatc	gatctgaacg	ccaccgacgc	cgatgaaggt	600
cccaatggtg	aagtgctcta	ctctttcagc	agctacgtgc	ctgaccgcgt	gcgggagctc	660
ttctccatcg	accccaagac	cggcctaatc	cgtgtgaagg	gcaatctgga	ctatgaggaa	720
aacgggatgc	tggagattga	cgtgcaggcc	cgagacctgg	ggcctaaccc	tatcccagcc	780
cactgcaaag	tcacggtcaa	gctcatcgac	cgcaacgaca	atgcgccgtc	catcggtttc	840
gtctccgtgc	gccagggggc	gctgagcgag	gccgcccctc	ccggcaccgt	catcgccctg	900
gtgcgggtca	ctgaccggga	ctctggcaag	aacggacagc	tgcagtgtcg	ggtcctaggc	960
ggaggaggga	cgggcggcgg	cgggggcctg	ggcgggcccg	ggggttccgt	ccccttcaag	1020
cttgaggaga	actacgacaa	cttctacacg	gtggtgactg	accgcccgct	ggaccgcgag	1080
acacaagacg	agtacaacgt	gaccatcgtg	gcgcgggacg	ggggctctcc	tcccctcaac	1140
tccaccaagt	cgttcgcgat	caagattcta	gacgagaacg	acaacccgcc	tcggttcacc	1200
aaagggctct	acgtgcttca	ggtgcacgag	aacaacatcc	cgggagagta	cctgggctct	1260
gtgctcgccc	aggatcccga	cctgggccag	aacggcaccg	tatcctactc	tatcctgccc	1320
tcgcacatcg	gcgacgtgtc	tatctacacc	tatgtgtctg	tgaatcccac	gaacggggcc	1380
atctacgccc	tgcgctcctt	taacttcgag	cagaccaagg	cttttgagtt	caaggtgctt	1440
gctaaggact	cgggggcgcc	cgcgcacttg	gagagcaacg	ccacggtgag	ggtgacagtg	1500
ctagacgtga	atgacaacgc	gccagtgatc	gtgctcccca	cgctgcagaa	cgacaccgcg	1560

gagctgcagg	tgccgcgcaa	cgctggcctg	ggctatctgg	tgagcactgt	gcgcgcccta	1620
		cgggcgtctc				1680
cacctgtttg	agatcgaccc	gtccagcggc	gagatccgca	cgctgcaccc	tttctgggag	1740
gacgtgacgc	ccgtggtgga	gctggtggtg	aaggtgaccg	accacggcaa	gcctaccctg	1800
tccgcagtgg	ccaagctcat	catccgctcg	gtgagcggat	cccttcccga	gggggtacca	1860
cgggtgaatg	gcgagcagca	ccactgggac	atgtcgctgc	cgctcatcgt	gactctgagc	1920
actatctcca	tcatcctcct	agcggccatg	atcaccatcg	ccgtcaagtg	caagcgcgag	1980
aacaaggaga	tccgcactta	caactgccgc	atcgccgagt	acagccaccc	gcagctgggt	2040
gggggcaagg	gcaagaagaa	gaagatcaac	aaaaatgata	tcatgctggt	gcagagcgaa	2100
gtggaggaga	ggaacgccat	gaacgtcatg	aacgtggtga	gcagcccctc	cctggccacc	2160
tcccccatgt	acttcgacta	ccagacccgc	ctgcccctca	gctcgccccg	gtcggaggtg	2220
atgtatctca	aac					2233

<210> 46 <211> 2398 <212> DNA

<213> Homo Sapiens

<400> 46

actgtatttc tggccccaca	gtcttctact	gccgacttta	ggtctctctg	gatctcaggc	60
ccccttctct aagatgcato	: ctagaggacc	aaaaatacac	tttatttggg	cttcgcctgc	120
ttttgtggaa gggtagttta	ctagaggata	taatctcgtg	ttttaatttg	ctctctctcc	180
taaaggaaat gtggagaaaa	aaaaaaagca	gaaattggaa	ataaccaata	tttagtttat	240
ttcattcgat tcttagggga	actggtgagg	agcctaagat	gattttccct	tcctagagaa	300
agaatccaaa gtccagggaa					360
ccttggctac tctccgctgc	gatcgcagga	tagctctcat	tagcaggaga	atcgggcaag	420
tgtgtggata agtagagagt					480
catggttccc taaaaggctt					540
cacaaaagta gaagtagaag					600
agaccagagt agcagaaaad					660
tttcagattt cacattacat					720
gcctccactg cattgttctc					780
taaattcgat tcttaacagg					840
tgggatggaa gaaaggaatd					900
attttacttg gggtgtgggg					960
gcgccatccc tgcacttcca	ggcgcgcggg	agggaccggc	ggggacgcga	gctgcggact	1020
ctggcgaact cgggggaggc					1080
cctcccgca gccggcggg	ttttctcctg	acagetecag	gaaaggcaga	cccttccc	1140
agccagccag gtaaggtaaa					1200
ctggggagac cgaagcttgc	cactgcggga	ttctgtgggg	taacctgggt	ctacggaagt	1260
ttcctgaaag aggggagaag					1320
atttcgtttg atgtattcaa	ctggtagaag	tgagatttca	acaggtagca	gagagcgctc	1380
acgtggagga ggtttgggg					1440
tttctaaagt tacacgtcga					1500
gagtccgcgg cgacattggg	ccgtggggtg	gctgggaacg	gtcccctcct	ccggaaaaac	1560
cagagaacgg cttggagagc					1620
ttcaggaccg ctgagctccg	tagggcgtcc	ttgggggacg	ccaggtcgcc	ggctcctctg	1680
ccctcgttga gatggacaac	gcctcgttct	cggagccctg	gcccgccaac	gcatcgggcc	1740
cggacccggc gctgagctgc	tccaacgcgt	cgactctggc	gccgctgccg	gcgccgctgg	1800
cggtggctgt accagttgto					1860
ccgtgctgta cgtgttgctg					1920
tcaacctggc catcgccgac	gagctcttca	cgctggtgct	gcccatcaac	atcgccgact	1980
tcctgctgcg gcagtggccc	ttcggggagc	tcatgtgcaa	gctcatcgtg	gctatcgacc	2040
agtacaacac cttctccago	ctctacttcc	tcaccgtcat	gagcgccgac	cgctacctgg	2100
tggtgttggc cactgcggag					2160
cggtgagcct ggccgtgtgg	gggatcgtca	cactcgtcgt	gctgcccttc	gcagtcttcg	2220
cccggctaga cgacgagcag					2280
ccttctggtg gcgcgcgagc					2340
ccaccatctg tgtcctctat					2398

<212> DNA <213> Homo Sapiens

<400> 47

aaagttacag	cagaagggaa	gctgaagttt	gaaaacacat	tacattttgt	cccttggttc	60
tcaaaccccc	tcagttaaaa			tccaatacag		120
taaaacttca	gaacagtaaa	caaaggacat	aaagaaatgt	atcttcatct	cccttaaatc	180
gaaaacaagc	aaaacactac	agaatcagat	tttgctccat	tatataggaa	ttgtctggca	240
aagatccctc	tttttttcct	aaaggtgaaa	tttcaggctg	ctgaacattg	aatgggtaaa	300
gatttttaca	atgctgtatc	taagtgagca	ctaatgactt	cacctactaa	taacgactac	360
ttcttgggaa	taagaattta	ctaggaagca	atttttaaaa	ctttacaaag	gatccaattg	420
gtccctacaa	catggccagt	agtcacatgt	aaattctatc	tggaagattg	gggtgaaatt	480
aaggggttgg	tgaaggaatc	caggaaaatt	aaaacattaa	atccattttt	aatagctgac	540
aatgctatgc	ctcaagagaa	gaaaaagagt	atattctgct	acagtgtgtg	agaaacccaa	600
tttttgtttt	tggatgatgg	tggtatgtca	cttcccttaa	agttaggcac	cagtgtgagt	660
agtgtcccag	agaggtgaac	gtgtagctgt	gtcagacatt	tatagcccca	ttcttaaaag	720
acacatggga	aaacagtcaa	aagtcctccc	ataactgcac	caatttgacc	aataggaaaa	780
caagtggaaa	atgcagtttc	accaaagcag	agtagaggtt	ccttttcatc	aaaccctcag	840
gaggggagg	ggagaacaca	gaatggccag	ggggtacttt	ctggaagccg	aagagagatt	900
		ccccgctgt				960
ttctccttca	tgttaactct	ggattccccg	agtaatttgg	agcctatgct	ccaggtttcc	1020
tgaagattag	aagctcaaga	agatgggaat	ttttagaaca	ataactaggg	gaaactgttt	1080
acttgaaggg	ccaagggtag	ggggctgcgt	ttggtatttt	actgagaccc	cgtccattga	1140
aaacattgtt	tctaacgaaa	tcacccagca	ccttgctcta	tttgcgtggc	tgttttcctt	1200
acagtggtgt	aacttgtgtt	agctgattgt	ctttaggatt	gttgtaaatc	ttctgatgag	1260
cagcacttag	aaggggcttt	agtaaaaacc	atgcgcccca	aatttctaaa	gcttcgtttg	1320
ggagagaggt	tgacatttgc			aaacagcagg		1380
aggggcgaag	taaccccggg			ttacggattc		1440
ctggcataag	caattctgtc	accgggcggt	cttttctaat	tcgtgtgggg	gctgatatta	1500
acataagcag	ccgcctcttc	gggtgcgagt	gggatcccag	gtccgggatg	tggtgggtgc	1560
ggtgcgggag	aggcacccgc	cgcccccttc	actcggatgt	tagaggcaag	ttgttcgtgt	1620
gaactcgagc	gaacgactgg	aggttggctg	ttgtaggttc	actccttcag	gatgtgggtt	1680
tcagggggcg	ttttgatgtg	atttaattcc	gaccgtgaaa	acaattgcta	ggggctggct	1740
ggattgctgt	tggtttttcc	cctcctggtg	gctttgcttg	gtttgggttt	agtttgggaa	1800
caaacttgtt	ttatatcaac	acttccttct	acatcgggcg	ccgtcgcctc	aactgcgcgt	1860
ggggggcgag	gcgcccaccc	cgcacaagaa	cagaggagcg	ggggagaaga	gacggcctcg	1920
ctgctcactg	ggtaagcgga	gcccagcccc	gctcgggagc	gggcaggaga	gacagggtag	1980
tgacccccac	tcacaccaga	aaacccctcc	ccccggcgat	tttgctgcca	actcgagtcg	2040
gctacagaca	gtccagtgag	tccttaatta	caaggacgag	agaaaagcac	ggtgccctc	2100
gagtcctctc	cgcc					2114

<210> 48 <211> 2382 <212> DNA <213> Homo Sapiens

<400> 48

aggccctgga	ggtggccact	gtcggtccag	gcacggcttc	gctcgggact	actggctgcc	60
ctcgtggggt	gccccgcctg	gggttccctc	ttaccctggg	acgttccagg	cgcgttcagc	120
ctgagctggt	ggagagggcg	ggggcggggg	cggctggggt	cccgaagtcc	aggtccctct	180
tcccacttcc	ccgccggccc	tgccgctgcg	gccctcgctc	ccgcgctcgc	tcgctctcga	240
gtctctccct	ctctctctc	tcttcctctc	tctctctctg	cagtagtaac	aacctgatcc	300
cgcttccccc	acccgcctct	tgagatgctc	ctcacatccg	cctgcacaca	gcgcgtgcgg	360
cccctccgaa	ggcgatcccc	gcaaaccgcg	acgcaggtcc	tccgccccag	gcaatccccg	420
ctgcgggaga	ggccgcctcc	tggcgcccac	gccccccttc	tgcagtcctt	actgccggcc	480
gaggggaaa	tgggcgacag	gggaagggga	ggtgtgtgcg	ggacggacta	ggctggggca	540
gaggggttta	aactggcgcg	gtcctacaga	agtttgagga	gggcggggcc	ggctccgagc	600
ccccggagcc	ctacgggact	cccccgattc	tactgaggag	tccccgccag	ctccgtgcac	660
tcctgcaaca	ctccccaccc	cacccgccag	ctccgagttt	acagcctctc	gggtccgggg	720
attggctggg	ggagggacg	ggggggaggg	gaccccctgg	ctgtagggaa	cggcgtgcgg	780
gcgggggtgg	gagggaaacg	atttgcttca	ggagataggg	atgaaggttt	tcctgagtca	840
			Dage	11		

Page 44

agggagggag	aagagaggtg	gaacaaaagg	cagatgctgg	aggggaaggg	gagctgggga	900
gctcgccccg	agggctccgg	cagcccgcgg	tcccctgcct	cagtctgtcc	cagagggtga	960
ggtcaaggct	ggtgccaggg	ctcttcaccg	gccacctgga	tcccacgcgc	ccagcaccca	1020
cttctctccg	cacgcccact	tcatgcacct	ccccgcgccc	ttcccacggc	ttctctgcgg	1080
cgagtcgcct	ttgcttcccc	gcaggtcccc	ggtcccagcg	ctaaggcacc	gcggcttctc	1140
tcgccttctc	tccgcgttga	acccgggctc	tccgcgggga	gaaataggtt	gggggcgagg	1200
ggttcccgag	ataattcagg	acacctcccc	ggggtctagc	caggtaattc	cgacgcccat	1260
ggatttccgg	attacagttc	ccaccgcggg	ctcagtccta	ctcttagttt	atcccgcggt	1320
gagcgccaag	ccccaaaagt	cggagtgtca	ccgtttggtg	accccgcgtc	cgcccgcgcc	1380
tcttaaccta	tggtcatctg	tctgtcacag	cgaacctttc	cctaggaaag	aatctgccct	1440
ctgcaaagag	gatgtgtaat	gctggaaagc	ccgcctttct	ccccatcagc	tggattctga	1500
gagttgggag	agatgaccaa	tgaacaggct	gagggtgtca	cagccctgct	actttgggat	1560
ggggggtgca	gtaggggagc	tacagtcttc	ccagaggcca	ggtcattcta	cccagctgca	1620
ccccatcccc	aacctttcag	tgggcgacac	ctgcagggtg	ttgggactgg	gagaaacctc	1680
agatacctta	aattccaaac	cccattttcc	agatgaagat	actgaggccc	agagtgggtc	1740
agtgagttgc	ccaaggtcat	aggacaggtc	agaatggaag	ctttccgact	ctccccgggg	1800
cgctgggttc	acagctccac	cttgccaccc	cctgccccgg	aagtgagcac	tgaagtcact	1860
taagagaggc	cagtgaccaa	aggcagcgat	tcccaggtgc	agaggctggg	gcagacgtgc	1920
ccatgagctt	gttcccccgc	gcaccctccc	ccacctcgtc	cccattcctg	tcttggttac	1980
catgtgcctc	catcatcctg	agattcagag	aggtgcagcg	gcttgtcgaa	ggtcacacag	2040
cacactgagt	agggccctcg	tttccactgc	ccagctgccc	cctcccattg	cccacccggg	2100
cctctgcaag	cttgccagga	tccccgggag	cctgcttcct	ccaatgcaca	gagccgtggc	2160
gcgtgtcaaa	gtgtgggaaa	gttcctggga	gagggaaggg	gtagaaaata	cagccgctca	2220
tctcaacctt	ggacggctgc	ggcaaggcag	gggcgctcag	aaaggcagcc	agtcctgcgc	2280
accgccggtg	cctccggcac	accccactct	gcgccagggg	ctccccaggg	tcgcgcgagc	2340
atgttcttcc	agctcctcct	cagcgaagca	ggcgcggcgg	gg		2382

<210> 49 <211> 2192 <212> DNA <213> Homo Sapiens

<400> 49

ccatataatt	tttaaaaaga	aagaaacccc	taaattacag	atgtgcctgg	aaccagaacc	60
cagaaagcat	ctgggtaggg	aaaatagttt	ctagtgttca	aggccaaagc	cagtagggcc	120
		atgagactgc				180
ttgtgttttc	atcccttccc	tcagtcacct	acacgttttc	tttttccagc	taaaatgaat	240
ctaatctttg	ttacagtact	tcaccttgtt	aataaaaccc	aggactgaag	aatgagaata	300
		tttcttaatt				360
cattctagaa	aattggcata	gggagcattt	attagcagtt	gtaacatatc	actgccaaag	420
ggagggattc	tgtaaggcgg	cactgggtgt	ctcatatgta	tgggaaaccc	gaggccacgt	480
		tttcatctct				540
agctctcaac	ctcttttaaa	atgagaaaga	gatggtttct	tccagagtct	ttcagcttct	600
		cgtatgctgt				660
aaataagtta	ggatggactt	tgttgaccgt	gatggctcag	tgctacatct	catatatcct	720
		atagtgctgc				780
agagaggagg	aactggcatt	gaaagaaata	gttgagtttc	actacgccac	gtggggcgct	840
		cccctccctg				900
tccctcccct	ccgcgttgcc	ttggagacca	tgggcgtcca	gctgcagttg	tcgctggacc	960
ggccctggct	gccttgagag	gtgctttctg	caggcgggga	cgcggccagg	ccggacgcaa	1020
ggcctccctc	caatctaccg	ggctcagggg	gacggccagg	ggctgctcag	tctacttggc	1080
gggctaggga	gggggatggc	agaggctggt	tgggtcttct	cagcacacag	taggcgccta	1140
		gttactctct				1200
		atgcgaattc				1260
		ttttccccga				1320
atcctgtatt	attcgcgttc	ccagagtccc	ttcggatttg	cgccatgcgc	ggcggggaga	1380
accggcctcc	tgctcgagtt	cagagctcat	ctgaggttag	tttcatcgtt	tcgttgaaag	1440
ttaaaaccct	aagtcgacgt	tccccagccg	cctaccccc	agcagagagt	ccttccccgg	1500
ggagtcctgc	cctggggtgc	cgcctcgagg	ccagacgtcg	tcccgcctgg	acctgaacct	1560
gagtttggga	cgggcgattt	cccaacctca	ggaattggaa	ttgagacacc	aaagcctaga	1620
cgcgtttcct	ggacgacggc	ttcccggcag	gggcatccag	ccagcggcca	agatgtcgtc	1680
agtggggaag	gtgacccagg	ttccgaatgg	gaaagcctac	cagcagatct	tccaggctga	1740
			_			

ggtaggagcc gccctctgtc ccgcttttct ccatccccct tcccttgctt tcttccaaac 1800 ttccctccct cccagggctt ccctactgga aattgaataa aacaagggct ttgaaattac 1860 tttgatttta aaaataattc ttgcttgttc ttaaatcgta ccaatacaaa attagaatgt 1920. cagttcttga aaattagaaa acttaaatta aaattttaaa tgtaaattac tcagaaatag 1980 cctggatgga accactgggt gacctctgtt tttcccatgc ataaaaacat gactaatttt 2040 tgtatttaaa aaataggttt cattctgtac tagtgttttg aaatctgctt tttcttcata 2100 acagtatete acagaccett ttetatgece gtgggegece atgtatttea ceatactgag 2160 cagetececa ettgttgace taggaetece at 2192 <210> 50 <211> 2192 <212> DNA <213> Homo Sapiens <400> 50 ccatataatt tttaaaaaga aagaaacccc taaattacag atgtgcctgg aaccagaacc 60 cagaaaqcat ctgggtaggg aaaatagttt ctagtgttca aggccaaagc cagtagggcc 120 tccttggatg ggaaagagat atgagactgc aagtaattcc tggacattac ctatttgtta 180 ttgtgttttc atcccttccc tcagtcacct acacgttttc tttttccagc taaaatgaat 240 ctaatctttg ttacagtact tcaccttgtt aataaaaccc aggactgaag aatgagaata 300 aaagggtttt atactcacca tttcttaatt tctgattcta gtctggacag aacaatcact 360 cattctagaa aattggcata gggagcattt attagcagtt gtaacatatc actgccaaag 420 ggagggattc tgtaaggcgg cactgggtgt ctcatatgta tgggaaaccc gaggccacgt 480 tragigocaa ccacaagcat titicatotot ggocaggoaa goottgatoo otgaatititg 540 agctctcaac ctcttttaaa atgagaaaga gatggtttct tccagagtct ttcagcttct 600 aacttacagg caaacactac cgtatgctgt cccccagcag agattggttt taaccaaggc 660 aaataagtta ggatggactt tgttgaccgt gatggctcag tgctacatct catatatcct 720 accacctttc agaacattta atagtgctgc tcctggcagc cctggggttg tagtccttgt 780 840 agagaggagg aactggcatt gaaagaaata gttgagtttc actacgccac gtggggcgct cccattgcta agagcaatct cccctccctg ggaagaaaag cgtgggcggg gccggggcag 900 teceteceet eegegttgee ttggagaeea tgggegteea getgeagttg tegetggaee 960 ggccctggct gccttgagag gtgctttctg caggcgggga cgcggccagg ccggacgcaa 1020 ggcctccctc caatctaccg ggctcagggg gacggccagg ggctgctcag tctacttggc 1080 gggctaggga gggggatggc agaggctggt tgggtcttct cagcacacag taggcgccta 1140 attagcqtga cctgaatcag gttactctct ccctccaatt ctcctccctg tgtcccatgg 1200 agggtggatt agggtcccgg atgcgaattc tgcgccgcat tagagttcca gtcccaaccg 1260 acaccttgag cgccgttaac ttttccccga agagcatggc agagtgaagc acaagcaata 1320 atcctgtatt attcgcgttc ccagagtccc ttcggatttg cgccatgcgc ggcggggaga 1380 accggcctcc tgctcgagtt cagagctcat ctgaggttag tttcatcgtt tcgttgaaag 1440 ttaaaaccct aagtcgacgt tccccagccg cctaccccc agcagagagt ccttccccgg 1500 ggagtcctgc cctggggtgc cgcctcgagg ccagacgtcg tcccgcctgg acctgaacct 1560 gagtttggga cgggcgattt cccaacctca ggaattggaa ttgagacacc aaagcctaga 1620 cgcgtttcct ggacgacggc ttcccggcag gggcatccag ccagcggcca agatgtcgtc 1680 agtggggaag gtgacccagg ttccgaatgg gaaagcctac cagcagatct tccaggctga 1740 ggtaggagcc gccctctgtc ccgcttttct ccatccccct tcccttgctt tcttccaaac 1800 ttccctccct cccagggctt ccctactgga aattgaataa aacaagggct ttgaaattac 1860 tttgatttta aaaataattc ttgcttgttc ttaaatcgta ccaatacaaa attagaatgt 1920 cagttcttga aaattagaaa acttaaatta aaattttaaa tgtaaattac tcagaaatag 1980 cctggatgga accactgggt gacctctgtt tttcccatgc ataaaaacat gactaatttt 2040 tgtatttaaa aaataggttt cattctgtac tagtgttttg aaatctgctt tttcttcata 2100 acagtatete acagaceett ttetatgeee gtgggegeee atgtatttea ceatactgag 2160 cagetececa ettgttgace taggactece at 2192 <210> 51 <211> 2244 <212> DNA <213> Homo Sapiens <220> <221> unsure <222> (2126, 2128, 2131, 2132) <223> unknown base

<400> 51

(400) 21						
ttctccctcaa atgggggtgt ctgcccttgac ccgggccttttc cagggccttttc cagggcccttttc cagggcccttttc cagggccctct ccagggcccctc caatgtgagcccct cagggccccct ccagggccccc ctgagcccccc cacggggga cttgagcccactc accgggggga cttgagcccatggtc cacggggga tattgcatggtca ccatggcccatggtc tcccatggcccatggtc tcccatggcccatggtc tcccatggccccatggtc tcccatggtcccatggtc tcccatggtcccatggtc tcccatggtcccatggtc tcccatggtcccatgtcct tcccatggccactc tccctcggcaatttccag tctccatgact tcgacttctcag tctccatgact tcgacttctcag tctcagact tcgacttctcg aaggcaaa tcgacgaaa tcgacaag tcgacaaag tcgacaaag tcgacaaag tcgacaaag tcgacaaag tcgacaaag tcgacaag tcgacaaag tcacacacac tcacacacac tcacacacac tcacacaca	tcttttctctctctctctctctctctctctctctctct	ctgagettte ctagecetat ctaggagece atgeaettea gtgeaetata accggegge caccatata aaccggegge agggaettte gaettgaggatt gtgetgaggatt gtgetgagaat cccggggeetet cccggggeetet cctgeaeceta aggggeaeacet cggggeetet aacctegeae tgtgeeggg tgtgtgagaa tcacggaggtetgeggg tgtgtgtgggg tgtgtgagaa tcacggaggtetgeggg tgtgtgtgtgggg tcaccte cggaatttgtgtggg tgtgtgtgtgtgtgtgtg tgagetete caccacac tggeaeacet gagetete tgattaggaa tcacggaagg tcacggaagg tcggaattt gcgaattage cgaattage cgaattage gcccgggae cccgggae cccgggae gcccgggae	attgaccgac ttccgatctt tgtctttcca agtctctatt agtctctatt agtctctatt agtctctatt agtctgagagat caggatacaa tgaccgggttga gaaagcggtt ttgcaagagccgggtt attaagcgggcca gggaccgggct ggagccaggcca gttgcgggccat tgcaggccat tgcaggccat tgcaggccat tgcaggccat tgcaggccat tgcaggccat tgcaggccat tgcaggccat ttttattgtattg	ccccccat ccaggtact agaccacag agacaacaca ctttgctcatt cagcgctcct tgaggggctc gaaggtcaca tgcctggggtt caggttagtt ctgattgtgc gagctgcgag ggtgcgcag ggtgcgcag ggtgcgcag ggtgcgcag ggtgcgcag ggggggggtt caaaggcccag gggaagcccag gggaagcccag gggaagcccag gggaagcccac gggaaccccgcc tcaaacgcccc ccttcctt cggggaac ggggcccag gttgcgcaa ggcgcccac gggaattc ccaaacgctcc ccaaacgttcc cgggaacccc gcgtaatcc ccaaacgttcc ccttcctt cgggcaag ttggccaag gttgcccac gcgcaac gcgccccac gcgaacccc ccttcctt cggggaac tccccccc ctttcctt cgggcaac tggtcaaca gactggccaac gcgccaaca gttgcccac gccaaacgttcc ccttcctt cgggcaaca tggtcccac gactgcccac cctttcctt cgggcaaca tggtcccac cctttcctt cggccccac tagccccccccc cctttccctt cggccccac gcccaaacgttcc ccttcctt cggccccac gactgccccac tcccccccccc	ttcattcgcc gggaggcggg aaaccaggac tttcaatttt cagagggaaa ggctgaaggc ggagcccatc gggccagctc ttcaccgctt accggctgcc aatgcatccc gcgcctggcg ttacattgtt tacagcccgc ttacagggaaa cggagcccaaa ggtggggaaa cgggggcaaaa ggtggggaaca tccgaggggaca tccgagggcaca tccgagggctg cacaggggctg cacagggctg cacagggctg tacattcttatt tacagcccaa ggtgggcaaca cggggccaaca cggggccaaca ccggggccagt ccaggggctg cacagggctg cacatccgc tacagggct tacagggct cacagggct cacagggct tacagggct tacagggcca tcgcagggct tacaggccca tcgcaggcc tcgcagtc cagttcttaa tagtacccgc ggtacagtta ctcatgccgg gcccaacgc ccgcgcccat	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1260 1320 1380 1440 1560 1620 1680 1740 1860 1920 1980 2040 2160 2220 2244
<210> 52 <211> 2420 <212> DNA <213> Homo	Sapiens					
ccaagaaaga ggggcaggga tagtagacac caaagagttc taaaagaccg ttgcctcccg gaggagggag aaaagaggga cagcagaaaag ccagactagc	cgggatgagc ataatttca acaccaaaac gatacttcat gcttgcattt aggccgatgg gagttaccca ggaagcggag aaaaacacag agcgagagcg ccgaatcacc ccttcctctc	aagtgttcaa actcggctct ctcatctgga tttccttcca aagagagcca gaaggacagg gccaggagcg ccgcacgaat cgagcgcgcg ccccaagcac ctccacctcc	catccccgcc cattaggaag tttatgacca aatctcggtt gcggggcgag ggaagggaag	cccaagctcc atcacggctc aaaaaacaaa cggctcgaag cgagcgggca gaagaagagg gaaagcagtt cacaagccgt ggtctggggc tctctgctcc ccaaaacaac	ccaaaacaca tgaaaggaaa aacaaaaacc gcagggaatc gcctcccttt cgaggaaaaa tgcaagcgag acgcaagcag cagacagccc ggccgcccc acaagggagg	60 120 180 240 300 360 420 480 540 660 720 780

Page 47

gtggcaaaag cctccccaaa ccggccgatt cactcaaaga caacaataat aataataaat

acataacaat ctatatccta tggtgggaga gacgtgggac taatcttcgg catttatttt

840

		47675-4	7.txt		
aacacctgac agctagaat	a aataaatata	tacatttata	tcaatagata	cacatagaaa	900
acttggagcc aaagcattt		aaaaaaaag			960
atcatgagca gcggcggcg	g cagcggcacc	agcggcaaca	gcggcggcgg	cggcagtagc	1020
agcagcagcg gcggcagca		cacctggtgt			1080
cttgcatcac cacttctaa	g aaccccagtt	ctaagaatca	acagagctca	attctcggaa	1140
tttgagcttc ggactttac	c actgctacgt	ggcaggggag	gacttggtgt	cagctctccg	1200
agatttttac tgcccctgg	c caaccaaaag	ccctcaaagc	cacaagattt	tttcactggc	1260
cggcatattt cgaggtcct	c ataagcagag	cgtctcggat	ttggaggttc	cggttcgagg	1320
ctcgaggggc ctgaaggtg	g ctctccctcc	ccgggcccaa	gacgatggta	tggcctgctc	1380
cgccaccatc acgtgggct	c ctcctctgtg	acgtcggcgc	cttcgctgta	gcaaagctcg	1440
gcctctggaa ttctgagaa	c taatttgcta	ttcggtgaca	taagaggggg	agtgcgcttt	1500
gctttcccgg ggtctgggg	c taattccttc	tttcttaccc	ataaactcag	cagatcgagc	1560
taaatgcaca aaagggagc	g agaggtttga	accactggga	aaagtatgtt	atatatatag	1620
tagggttaga gaggcgagta	a agagaaaaat	aaaataaaat	aaacatcaca	gctctttcca	1680
actagaatat taggcacca	c gagaaaaata	tttgccaagc	agttttcggt	gggttcattt	1740
gctttatttt tatttagga	aggggttttt	gctgttgttc	tgggttttt	tctttctggt	1800
gtggtggctt gggattttt	g gtttctgtat	tttgatggtt	tatggatttt	tgcttctgat	1860
tttttgcctt ttgcaagtt					1920
tttttgtacg tgccttttc	ttccctatct	aatccctcaa	gcgttttaaa	gatgtattat	1980
ttcaatacta atactattg	a aagaagctta	aatttttggc	catatgtaac	aatcccagcc	2040
cccacttttt tttttttt	ttcctttggt	gcaattttct	ttttccccct	tggacttttg	2100
ctgaagtgtg tctctcctg	c acttcagaga	aatgttcaaa	ggatttgttt	tggtttggtt	2160
tgtttctttc caggacagca	a agtggtgggt	ttaatctgtt	attgttgact	cttgggaaat	2220
ttcttgttgc aagaaacgtg					2280
gtgttttcta caaaattctq					2340
cttgagattt ttgttttcg	a ggctcgtttc	aaggtcgttg	taaaaaaatc	tcttcagtct	2400
gtgtttaaga gatcagccg	3				2420

<210> 53 <211> 2344 <212> DNA <213> Homo Sapiens

<400> 53

gcctggcaca	ctcaagactc	ccacggaggt	tcagttccac	actcccctcc	accctcccag	60
gctggtttct	ccctgctgcc	gacgcgtggg	agcccagaga	gcggcttccc	gttcccgcgg	120
gatccctgga	gaggtccgga	gagccggccc	ccgaaacgcg	ccccctccc	ccctccccc	180
tctccccctt	cctcttcgtc	tctccggccc	caccaccacc	accgccacca	cgccctcccc	240
caccaccccc	cccaccccac	accaccacca	ccaccaccac	caccaccacc	ccgccggccg	300
gccccaggcc	tcgacgccct	gggtcccttc	cggggtgggg	cgggctgtcc	caggggggct	360
caccgccatt	catgaagggg	tggagcctgc	ctgcccgtgg	gcctttacaa	gggcggctgg	420
ctggctggct	ggctgtccgg	gcaggcctcc	tggctgcacc	tgccgcagtg	cacagtccgg	480
ctgaggtgca	cgggagcccg	ccggcctctc	tctgcccgcg	tccgtccgtg	aaattgcggc	540
cggggctcac	cgcgatggcc	ctcccgacac	cttcggacag	caccctcccc	gcggaagccc	600
ggggacgagg	acggcgacgg	agactcgttt	ggaccccgag	ccaaagcgag	gccctgcgag	660
cctgctttga	gcggaacccg	tacccgggca	tcgccaccag	agaacggctg	gcccaggcca	720
	ggagcccagg					780
ggcagcaccg	gcgggaatct	cggccctggc	ccgggagacg	cggcccgcca	gaaggccggc	840
gaaagcggac	cgccgtcacc	ggatcccaga	ccgccctgct	cctccgagcc	tttgagaagg	900
atcgctttcc	aggcatcgcc	gcccgggagg	agctggccag	agagacgggc	ctcccggagt	960
ccaggattca	gatctggttt	cagaatcgaa	gggccaggcc	ccgggacagg	gtggcagggc	1020
gcccgcgcag	gcaggcggcc	tgtgcagcgc	ggcccccggc	gggggtcacc	ctgctccctc	1080
gtgggtcgcc	ttcgcccaca	ccggcgcgtg	gggaacgggg	cttcccgcac	cccacgtgcc	1140
ctgcgcgcct	ggggctctcc	cacagggggc	tttcgtgagc	caggcagcga	gggccgcccc	1200
cgcgctgcag	cccagccagg	ccgcgccggc	agaggggatc	tcccaacctg	ccccggcgcg	1260
cggggatttc	gcctacgccg	ccccggctcc	tccggacggg	gcgctctccc	accctcaggc	1320
tcctcggtgg	cctccgcacc	cggggcaaaa	gccgggagga	ccgggacccg	cagcgcgacg	1380
gcctgccggg		gtggcacagc				1440
aaggggtgct	tgcgccaccc	acgtcccagg	ggagtccgtg	gtggggctgg	ggccggggtc	1500
	cggggcggcg					1560
cgcccccgga	cgcctccgcg	cggcaggggc	agatgcaagg	catcccggcg	ccctcccagg	1620
cgctccagga	gccggcgccc	tggtctgcac	tcccctgcgg	cctgctgctg	gatgagctcc	1680

Page 48

tggcgagccc	ggagtttctg	cagcaggcgc	aacctctcct	agaaacggag	gccccggggg	1740
agctggaggc	ctcggaagag	gccgcctcgc	tggaagcacc	cctcagcgag	gaagaatacc	1800
gggctctgct	ggaggagctt	taggacgcgg	ggttgggacg	gggtcgggtg	gttcggggca	1860
gggcggtggc	ctctctttcg	cggggaacgc	ctggctggct	acggaggggc	gtgtctccgc	1920
cccgccccct	ccaccgggct	gaccggcctg	ggattcctgc	cttctaggcc	taggcccggt	1980
gagagactcc	acacagcgga	gaactgccat	tctttcctgg	gcatcccggg	gatcccagag	2040
ccggcccagg	taccagcagg	tgggccgcct	actgcgcacg	cgcgggtttg	cgggcagccg	2100
cctgggctgt	gggagcagcc	cgggcagagc	tctcctgcct	ctccaccagc	ccaccccgcc	2160
gcctgaccgc	cccctcccca	ccccacccc	ccgcccccgg	aaaacgcgtc	gtcccctggg	2220
ctgggtggag	acccccgtcc	cgcgaaacac	cgggccccgc	gcagcgtccg	ggcctgacac	2280
cgctccggcg	gctcgcctcc	tctgcgcccc	cgcgccaccg	tcgcccgccc	gcccgggccc	2340
ctgc						2344

<210> 54

<211> 2366

<212> DNA

<213> Homo Sapiens

<400> 54

teteettett eteetggeag aactgetega tggeettgat eatgeeeagg eceatetega 60 tgcagcagta ggcatggtcg gcccggggct cgggacagcc cgccacgcag tagtaacagt 120 ctcccagggt gctgattttc tcacacttgg tctcctcaca caggcggtcg aagcgaccga 180 acagategtt caggagacce accagggegt gggcagactt gttggcacte atcttggtga 240 agcccacgat atctgcaaat aaaatactga cttcttcgat ctgctgcatc ttaaaagggc 300 ggaaggctat aggagctttt tggatggaag actttttctt cctgttcttg gggctcgagg 360 420 tggcatgcct cttgacagaa ttctcactct cctcatctcc ctgcttcatt aagtcatcgg ctatgattct tggcatcacg gaatgaatca tcctctcttt gagggctttt tccacttcca 480 ggtccttccc gtgcataatg gattgcccca ccttgaggaa ggtgctcctg gacctcacct 540 gggacatgac gaacaggtgg accccgatgg cgtggatgca gccgtggagc agccccctgc 600 tcagcagctc ccagtgcagg gccccggctc cgggcgaggg gaagcaggct tcatcccgga aatggtagcc aaaggtctcg aaaaggacag agtaggccac ccccagacac aaactcaggt 660 720 acaaaggtaa gtgcatgacg gtatagagca aaaagagcac ttcgatgcac atggagaagc 780 tccccacttg agataagcaa gtatctgtgg gccgggctgt ggccgtaagg ttggagctgt 840 cgccgcgtcc tgagacaggc gtcaagacct ggaactgcgc agccagggtc agggcgaaca 900 ccagcagggt gagagccagc gaggtccacg cgtaatgccg ggcgtacagc ttggtgaagg 960 1020 taaacagaaa gaagcccaca cacaccagga ggaagcacag cgcgggggcg accatgacga tcagtctgga tctcatgtgg accgcaaaat agatgctcca cagaaggcag gcgaagccga 1080 tgtagaagag cgcataccgg aaccggcgct gggtctgcgg gaagcagcgc tccaggcagg 1140 cctcctccag gitcaccgag tcgaacttgg ggtcccacca gcggctggag gccctctcga 1200 acagetgggg cagettette tgeetgegea geeggeetee geeggeeact egeegggga 1260 cgcccccgga gtccccagag ctgctgcagc tagaggagat gctgtatttg cagtgcttgg 1320 ggtggctgtt ggaggacage tgettggggt tgatettgae gegeaegetg ttgetgteee 1380 1440 aagccatgtt gtcgagtccc ggggcctgcc ccggccgggg tcaccagtac ctgccagcaa 1500 aacggggaga gttagcggcg ctcccaccta ggcatgcacg cctagaggcc cgggacctgc 1560 tcctgtccta aggggcggct ccagcacgcg acctggacag gcaccatctg ttcctgtggt 1620 teceggetea geggtgetee cacegeeeee acegeeeea cettegagge geaegagaac 1680 cgctcgggac ggacctagaa cgcccggggg tccccgccgc gtggccgccg tggctccggg 1740 accoctttge tegetegeet teegegeete tegeceegag ggtggeetee gegeegegeg 1800 getteteete etegegeget egeeteetee agetgegget eeggagggaa gitteagaeet 1860 tgagegetee cageeegeg ageegeetge geacaaacaa eteegetgge ggegeggage 1920 cctccatcct gcaggagccg cgctccgatg cgtcaaaggc ggcgcgcggc cggccccggg 1980 cceggaccc gacceggage agegagette ggegggegee cceggetege geteccegge 2040 egececeege geteegggee ggeeetgeee geggeggegg gegetggggg tggggggeee 2100 ccgggctgcg agtgcgcgga gcccgtcggc gcggcccgtc tagtggggcc tgcttccccc 2160 cgagtgcgcc gccgctcccg ccgcggccgc agctgtcccg ggaccgagcg cgtggaacca 2220 eggacgeggg eccetegeeg ggeggeggtg cagacgetge egeagageeg ggeteeegeg 2280 acqueggeeg ggacgeeege cegeeegege ceaegeeggg ggeegeetee eegagetaga 2340 gatgcggccg ccgccgcgcc cgccgc 2366

<212> DNA <213> Homo Sapiens

<400> 55

gaccagcctg	gccaacatgg	taaaaccccg	tctctactaa	aaatacaaaa	attagctggg	60
catggtggtg	tgcgcctgta	atcctagcta	ctcgggaggc	tgaagcagga	gaatcgcgtg	120
aacccaggag	gcgcaggttg	cagtgggcca	gagatcgcgc	cattgttctc	cagcccgggc	180
gactctcagg	ttaaatcgtg	ttcgatataa	aagtctatat	cgatatagac	ttttcgatat	240
aaaagtctat	ctccctttga	caggtctgat	cgaccctcct	tcctataaag	acaaaagttg	300
		catattgcgg				360
		tgtgacattg				420
		gaagtagctt				480
		accgaaccag				540
		tctggaggga				600
		cggcgagcag				660
gcctcatcag	tacatctctt	cctacctcgc	cttcctccgc	tgcagcttct	ttcaagtcca	720
		tcctctggga				780
		tccgactccc				840
		gataggattg				900
ggcagaagct	cggaaacccg	agctgcacag	gccaggatct	tacttcctgt	cgtcgcgcag	960
cgatgacatc	acccctaccg	ctctcctgag	gggtcatttt	gaggcgcgcg	tagaggacta	1020
		gtttggcgac				1080
gctcagacta	tggatcctcc	tcgctaggaa	accagcactt	gtgaaggagc	gcagttttgt	1140
ttactaaata	actttttcct	tttcgcctgt	ctaaaaatgc	aatgtcagtt	aatcccttcg	1200
ttaacccctc	agagtaaagt	tgggggactg	ggagaaaact	cagttccgtt	gtatggcggt	1260
gtcgtggaat	gaggctcccc	gggactggta	aactttcagg	caaggactca	accttgtata	1320
tttcaactgg	cccgaaaccg	cgggcctgtg	tgtacataga	attgctagca	tttcccctcc	1380
		acaaaaagtc				1440
		gactgcctac				1500
aacaaaacac	acatagtttc	tacccaatta	aatgattttt	ttcagttcgc	cagtactgaa	1560
gattgaggtt	tgtttttaca	agtctgacac	ttttctatca	gtttggttaa	tctcattaaa	1620
actaagagga	aagcctaaag	agaggaaggt	gtctcctttg	aacgtttcac	tttaatgaac	1680
tagttcacgt	actgggagga	tgaagtggtg	aggatatttc	tgttttaaaa	ttttcttctc	1740
ttccctcatt	gagatacgag	ggggagggcg	ttttattcac	ctgggtatga	ctaggtcccc	1800
		ttatgcgtgc				1860
		ttctacgctg				1920
ggagctccca	aaacctttgg	ggaaggagcg	cacttcggga	ggcgcgtaca	ggtgggcctg	1980
tttgtccctt	tccacctgca	taatgggggc	ccacaaggcg	ctgtccccat	gccccgagag	2040
		gtccacctgc				2100
gagctagggg	gcggggcgcg	ggggcgcggt	gacgcgtgac	gccggatccc	ggaagtgacg	2160
cgctcgtggg	gaaaaggcag	ggaggggtg	gtgtccccag	ccggtttggg	gggtgcgttg	2220
cccggagacg	gaaagtttgg	gagcccgagc	aggctcggct	gcag		2264

<210> 56 <211> 1334 <212> DNA <213> Homo Sapiens

<400> 56

gggcgccttg	actctccctc	caccctgcct	cctcgggctc	cactcgtctg	cccctggact	60
cccgtctcct	cctgtcctcc	ggcttcccag	agctccctcc	ttatggcagc	agcttcccgc	120
gtctccggcg	cagcttctca	gcggacgacc	ctctcgctcc	ggggctgagc	ccagtccctg	180
gatgttgctg	aaactctcga	gatcatgcgc	gggtttggct	gctgcttccc	cgccgggtgc	240
cactgccacc	gccgccgcct	ctgctgccgc	cgtccgcggg	atgctcagta	gcccgctgcc	300
cggcccccgc	gatcctgtgt	tcctcggaag	ccgtttgctg	ctgcagagtt	gcacgaacta	360
		cccgcggcag				420
tgctggctgc	tgctgctgcc	cgtcatgcta	ctcatcgtag	cccgcccggt	gaagctcgct	480
		tgactgccaa				540
tccagaaccc	ccgtccccga	ccctttaact	ccgcagaaga	acacgcgtat	ccagcacaga	600
		tcctcagccc				660
ccacccacct	ctatccagag	aaacaagggg	aactgttgca	ggcccggggg	tgaggggtgg	720
			D =			

Page 50

ttctgggatg	ggcagaaagt	gcaggtgtag	caggaaacct	ttgcatgctt	gcgcttacat	780
	aggattttga					840
aaagagcacc	aatcctaggg	gaaacactga	aacagaagct	ttgtcatcat	taaagaaaaa	900
agtcttacta	ggatgaggaa	gaaataactt	tatgagaaag	aatgagcgag	aaagcaataa	960
atcaaatggt	gactgcaggg	gaatcgctga	ttcctggcaa	aggtgccatg	aggtcgcact	1020
ggtctcccgt	tgaagaccag	gtcacacaga	ttctagagga	gctgggtttc	aatagaattt	1080
ctctctctct	ctctctctct	ctctctctct	atctctctct	ctctctcatt	cccttctctc	1140
ctaggcggca	aaagacattg	gttttgcagt	ccagatatgc	ccctctcttt	gcttccctaa	1200
gcttcaaggt	agtacagggg	agttgagaaa	aagaacactt	tgcgggtctc	ccaggccgga	1260
gtgggcatga	ctgaggctgg	tcaggctcca	tgtaggcgag	ccgagggcgg	aacccgactt	1320
cagtgggcgc	tgac					1334

<210> 57 <211> 2501 <212> DNA <213> Homo Sapiens

<400> 57

tctttgaaaa	ttgctaataa	aaactcgctg	gttttacggc	tcagggggca	tcacggaacc	60
tgcggacatg	tgatgtctcc	cctggacacc	cggctttaaa	atgtctctct	tttgtactct	120
ttccctttat	ttctcaggcc	agccgacact	tagggaaaat	aggaaaggac	ccacgtgaaa	180
	tgaatttccc					240
	ttaactttta					300
	tcttcggtgt					360
	gttctctttt					420
	tgttgtttcc					480
	catccagtat					540
	catccatgtc					600
	ttaaagatac					660
	attacactta					720
	gatggaatag					780
	aaatggagat					840
	cacagccact					900
	cgttagcctc					960
	ataagtggga					1020
	tgcctgttga					1080
	ggcttaatac					1140
	tgtaacaaac					1200
	caggcgtggt					1260
	acctaaggtc					1320
	aaatacaaaa					1380
	aagcagaatt					1440
	gcactccagc					1500
	ataaaataaa					1560
	aaaataaaat					1620
	ccctgccctg					1680
	cccgcgatgt					1740
tcttcctgct	gtctgtttac	tccctaggcc	ccgctgggac	ctgggaaaga	gggaaaggct	1800
tccccggcca	gctgcgcggc	gactccgggg	actccagggc	gcccctctgc	ggccgacgcc	1860
cggggtgcag	cggccgccgg	ggctggggcc	ggcgggagtc	cgcgggaccc	tccagaagag	1920
cggccggcgc	cgtgactcag	cactggggcg	gagcggggcg	ggaccaccct	tataaggctc	1980
ggaggccgcg	aggcttcgct	ggagtttcgc	cgccgcagtc	ttcgccacca	gtgagtacgc	2040
gcggcccgcg	tccccgggga	tggggctcag	agctcccagc	atggggccaa	cccgcagcat	2100
caggcccggg	ctcccggcag	gctcctcgcc	cacctcgaga	cccgggacgg	gggcctaggg	2160
gacccaggac	gtccccagtg	ccgttagcgg	ctttcagggg	gcccggagcg	cctcggggag	2220
ggatgggacc	ccgggggcgg	ggagggggg	cagactgcgc	tcaccgcgcc	ttggcatcct	2280
ccccgggct	ccagcaaact	tttctttgtt	cgctgcagtg	ccgccctaca	ccgtggtcta	2340
	cgaggtagga					2400
cagcccacag	cccctcgccc	acccggagag	atccgaaccc	ccttatccct		2460
gcttttaccc	cgggcctcct	tcctgttccc	cgcctctccc	g		2501

<211> 2327

```
<212> DNA
<213> Homo Sapiens
<400> 58
                                                                            60
cccccaccc ccccaccgc caccettgcc tccgggccac tgcccctctc tgcaagettt
                                                                           120
gtccgctgga ctccgttgcc cttgcgcggc cgccccatca ctcacgcttg actggaggaa
ataaaattgg cgttggcttt ttaattccaa gcttcgtgct tgattggggg aggggttatt
                                                                           180
taggtatttt ttttttcaaa cagaagaaat ttaggtacta attgtaaaca ccccgttgct
                                                                           240
cttcttgaaa gtatgtatca tattagccga ggccttggag acacacggcc tattactcat
                                                                           300
ttccagcctc taggcaaaga attctatgga gatccaccag taaaaccaga tttcttaagg
                                                                           360
gaaattacca ggacgtcttc agactctctt caagggatat tactggttgt cgattacact
                                                                           420
tgagcacact cttctctagc ccacccctac cattttattt tgggatcacc ctaaggaaat
                                                                           480
tagccatttg cagaaagctt gaaatcccga aaggagaggc acaacctagg gtaaaagaga
                                                                           540
ccgagtgaag cttttcagat tgattgtctc cactggggcc acttttcata aggtcgggag
                                                                           600
tggagaggag tgtctgcaga agagagacta cctttaaagg ggctctcccg aactcaggag
                                                                           660
gtgaggggga cttcctagag ttgtcaccac ctgtaggtgg atttgtcatc actatgtagt
                                                                           720
                                                                           780
gtctcctggg gagccagcct gttctcccca gagtccccct caggtactgt cccagagttc
aggggagcct ttagcgcttt ctccgtttgc cctgagggta ttgcatgtac aaaagctcct
                                                                           840
tcacgcgcgc gcgcacacat agacatccag cgggtttgga gtgtacccct gtttatttgt
                                                                           900
caccacgtgg taaaccccag atttggaagt catcactatg cgggcgcgca tcaggatcca
                                                                           960
ggggagactg tgtggggttg ggactgcgca caaacacagg ggccgcacgg aagccttgca
                                                                          1020
tattttaaag tgtaacctga geettegegg tttcagette aettaaaaca tgcaaattet
                                                                          1080
tgaaattgaa aaatctgaaa aacttccgaa gagttctatc tgaataaatc caaatccatt
                                                                          1140
                                                                          1200
gggagtcgct ttgaggagac aaaacgcaca gcgatttggg gtgagggata tttgtgggga
ggcaggacgt gctggattgg gtttccaggg tcaaggtgtc tctgggcctt cgacgatagc
                                                                          1260
cttagcgcag agcagggaag tggcaccgct aggcagcaag ctcagttgct ctacttttgt
                                                                          1320
gacccatgag ccagtcctga ggctctggct tcagggccta gtttccattt atgccgcgtt
                                                                          1380
tttgagagtc taatactgtg tctggcacat ggtaggtgct cactgaatag tcgtggtatg
                                                                          1440
aatgaatgaa cgaatgaatg aatgaatgaa tgaatgaata taagtttaat gggggaaacc
                                                                          1500
cgggcctcct aataaaggta ggggctgggg gatacctagg ggcttcccca ggaggatttc
                                                                          1560
ttttttcatc atcccacccc tgggagaaag gtccacgcag gatggtcgct tcccccttgc tgagagtttt gccttcagcc tatctgggcc gctggaaaag aggagaagaa taaacaagag
                                                                          1620
                                                                          1680
acaaqcaact actoccotac oggoqttoog toottqtoot cactqccaaa tocactocaa
                                                                          1740
agccgaggat ggtgagactg tgaagttgca aagaaacaca gagcccaccc ccttaaagaa
                                                                          1800
ttacgatata tttaaagttt gcctctttca ggtttctctc cttggctcct gcccctttcc
                                                                          1860
cctcccggct ccttgtcctt gactgaacct catgggacag agaacctcct gtcccccacg
                                                                          1920
aggcaaggcg cgaacccgca gagatctggg gtgccctttg gttccctgcg ctgccctgga ggcgtccata gaggcctttg ccgccaagga cagcaattgt tttattttcg atggttgctc
                                                                          1980
                                                                          2040
gccaggcctg cgggtcgcgg gcccacccag ccgtcgaact ttccagtcgt tatcagcgct
                                                                          2100
gctcctaact taatggaata atgcaaatta tagcctgccc agctgacacg tccctgcgaa
                                                                          2160
tgcgccgggg ctgagctctg gccagccgct ctctcgacgt cctggacggc cggagggaat
                                                                          2220
gaagetetga attgtgacaa aagtgggggg ggggcacece aaatteteaa agcaatgtte
                                                                          2280
tttttttttt ctttttctt aagcaattga gccttaccaa atgtcgg
                                                                          2327
<210> 59
<211> 17
<212> DNA
<213> Homo Sapiens
<400> 59
                                                                            17
tggacgcagg aaagcga
<210> 60
<211> 20
<212> DNA
<213> Homo Sapiens
<400> 60
                                                                            20
acccacggga gtcccatcgc
```

Page 52

<210> 61 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 61			
actagtccgg	gtcgcgt		17
<210> 62 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 62			
cacacgaaag	ggaggcgg		18
<210> 63 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 63			
ggcgtgtcgc	cagcctta		18
<210> 64 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 64			
tccgactgac	gtcagcga		18
<210> 65 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 65			
cttcgagtct	gacggc		16
<210> 66 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 66			
cccggagggc	gcacct		16
<210> 67 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 67			
catccctggc	agcagc	Page 53	16

<210> 68 <211> 17 <212> DNA <213> Homo Sapiens	5		
<400> 68			
taacaaagta aaaaatt	=	1	7
<210> 69 <211> 16 <212> DNA <213> Homo Sapiens	5		
<400> 69			
tggaccagac tggtga		1	5
<210> 70 <211> 16 <212> DNA <213> Homo Sapiens	5		
<400> 70			
gatcatgcaa gtcgat		10	5
<210> 71 <211> 16 <212> DNA <213> Homo Sapiens	3		
<400> 71			
tgtaaattat aataaa		16	5
<210 > 72 <211 > 16 <212 > DNA <213 > Homo Sapiens	3		
<400> 72			
agctaagcac ttcact		16	5
<210> 73 <211> 17 <212> DNA <213> Homo Sapiens	3		
<400> 73			
gtgctccgaa gtatctt	;	17	7
<210> 74 <211> 18 <212> DNA <213> Homo Sapiens	;		
<400> 74			
gcaactatcc ccctcct		18 Page 54	3

<210> 75 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 75		
cagtccaggg	gtctgc	16
<210> 76 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 76		
ccggacgtca	acaacc	16
<210> 77 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 77		
cacgcagttg	cgcgct	16
<210> 78 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 78		
aaccggcggc	caggat	16
<210> 79 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 79		
tctgaccggg	cttgag	16
<210> 80 <211> 18 <212> DNA <213> Homo	Sapiens	
<400> 80		
cctgagcact	cgcaggaa	18
<210> 81 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 81		
agaggcgcgg	gttaca	16 Page 55

<210><211><211><212><213>	18 DNA	Sapiens		
<400>				
ctagcg	gcca	agctgcga		18
<210><211><212><212><213>	20 DNA	Sapiens		
<400>	83			
ggtcga	cgag	gaggtgcaag		20
<210><211><211><212><213>	16 DNA	Sapiens		
<400>	84			
acgtgg	gaag	aggcag		16
<210><211><211><212><213>	17 DNA	Sapiens		
<400>	85			
ccgccc	gcat	ccctctg		17
<210><211><211><212><212><213>	17 DNA	Sapiens		
<400>	86			
tggccg	gcat	atttcga ·		17
<210><211><211><212><213>	16 DNA	Sapiens		
<400>	87		•	
ggaggt	tccg	gttcga		16
<210> <211> <212> 1< <213> 1	16 DNA	Sapiens		
<400>	88			
ccagcg	gcaa	cagcgg	Page 56	16

<210> 89 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 89	•		
accaccacca	ccacca	1	16
<210> 90 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 90			
caccaccccc	cccacc	1	16
<210> 91 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 91			
ctcggttcgt	acccgg	1	16
<210> 92 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 92			
aaaaaaacaa	ggcgtgga	1	18
<210> 93 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 93			
tttagccggg	gtattcca	1	L 8
<210> 94 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 94			
gaagttcaga	ccttga	1	L6
<210> 95 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 95			
ctcgcgcgct	cgcctc	Page 57	۱6

<210> 96 <211> 17 <212> DNA <213> Homo	Sanjens	
<400> 96	Japrens -	
ctgttcctgt	ggttccc	17
<210> 97 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 97		
acctgctcct	gtccta	16
<210> 98 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 98		
tgcgccgccg	ctcccg	16
<210> 99 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 99		
ccgcggcggc	gggcgc	16
<210> 100 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 100		
ggcgccgagg	tcgcag	16
<210> 101 <211> 17 <212> DNA <213> Homo	Sapiens	
<400> 101		
agggcctcga	tttccgg	17
<210> 102 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 102		
tggaacgtgc	gactgt	Page 59

<210> 103 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 103			
ctctggcgcg	cctata		16
<210> 104 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 104			
agattctcac	gacccga		17
<210> 105 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 105			
ggacaaggac	atattg		16
<210> 106 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 106			
tccgtcggcg	gtagag		16
<210> 107 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 107			
gaccgcgggc	acgtct		16
<210> 108 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 108			
ctaacgccgc	tggtta		16
<210> 109 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 109			
cccgcgcgaa	gaccca	Page 59	16

<210> 110 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 110			
cccgacaccg	tgacgg	1	6
<210> 111 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 111			
agaacacggc	cgcaga	1	6
<210> 112 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 112			
cactcctgcg	cacggg	1	6
<210> 113 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 113			
ccacggtgaa	ggcgga	1	6
<210> 114 <211> 20 <212> DNA <213> Homo	Sapiens		
<400> 114			
cccgggacca	acaccgagat	2	0
<210> 115 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 115			
tcccggtctc	cgccaac	1	7
<210> 116 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 116			
tgtgcgaagt	taacgt	1 Page 60	6

<210> 117 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 117		
aagttcaccg	gcgtct	16
<210> 118 <211> 18 <212> DNA <213> Homo	Sapiens	
<400> 118		
acttcggaac	ccaagcgt	18
<210> 119 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 119		
tactccacgt	tcaggt	16
<210> 120 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 120		
cccgggagga	tgagct	16
<210> 121 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 121		
tcccaggggt	ttccgt	. 16
<210> 122 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 122		
agacggggcc	cacgag	16
<210> 123 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 123		
tgccggtacc	agcgct	Page 61

<210> 124 <211> 16 <212> DNA <213> Homo Sapien	s		
<400> 124			
tggcccacgc tcggca			16
<210> 125 <211> 16 <212> DNA <213> Homo Sapien	.s		
<400> 125			
cccgcacggt caggcc			. 16
<210> 126 <211> 16 <212> DNA <213> Homo Sapien	.s		
<400> 126			
acagcgactt cggcga			16
<210> 127 <211> 18 <212> DNA <213> Homo Sapien	.s		
<400> 127			
ggcgtctcac ctacga	ga		18
<210> 128 <211> 17 <212> DNA <213> Homo Sapien	S		
<400> 128			
atcgtggacg gcaacg	a		17
<210> 129 <211> 16 <212> DNA <213> Homo Sapien	s		
<400> 129			
ttgagatcga cccgtc			16
<210> 130 <211> 16 <212> DNA <213> Homo Sapien	s		
<400> 130			
ggcgagatcc gcacgc		Page 62	16

		·
<210> 131 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 131		
tgacgcccgt	ggtgga	16
<210> 132 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 132		
gtgaccgacc	acggca	16
<210> 133 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 133		
atcatccgct	cggtga	16
<210> 134 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 134		
catcgccgtc	aagtgc	16
<210> 135 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 135		
tgcaagcgcg	agaaca	16
<210> 136 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 136		
ctcgttgctg	gcttgc	16
<210> 137 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 137		
ttttaaaaat	tactgt	, 16

<210> 138 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 138			
gagagcgctc	acgtgga		17
<210> 139 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 139			
catttcgttt	gatgta		16
<210> 140 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 140			
cctatggagg	attctt		16
<210> 141 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 141			
ccgcgcctat	ttctaa		16
<210> 142 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 142			
tgaaagccga	gggaga		16
<210> 143 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 143			
aggccaagat	gagcgg		16
<210> 144 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 144			
ccgcatcctc	gggtcc	Page CA	16

<210><211><212><213>	16 DNA	Sapiens		
<400>	145			
gcacco	gcctg	attccg		16
<210><211><212><213>	16 DNA	Sapiens		
<400>	146			
gcgago	catca	gcccac		16
<210><211><212><213>	16 DNA	Sapiens		
<400>	147			
agagad	cgcga	aaaacc		16
<210><211><212><213>	16 DNA	Sapiens		
<400>	148			
agacga	aaaga	geegee		16
<210><211><212><212><213>	17 DNA	Sapiens		
<400>	149			
gacgto	gaact	ttcggaa		17
<210><211><212><212><213>	16 DNA	Sapiens		
<400>	150			
aatgc	gtggc	cgcctc		16
<210><211><211><212><213>	16 DNA	Sapiens		
<400>	151			
tcccgc	cctgc	ggaact	Page 65	16

<210> 152 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 152			
tgttcgacgt	gattct		16
<210> 153 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 153	•		
caacgtcttt	ccgggt		16
<210> 154 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 154	•		
tgttgatccg	gaaatġa		17
<210> 155 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 155			
aggaggcgcg	ggcgaa		16
<210> 156 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 156			
cccgcgcgcc	ctgcct		16
<210> 157 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 157			
ccggaccccg	acaggta		17
<210> 158 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 158			
tgggacccgg	agccggag	Page 66	18

<210> 159 <211> 16 <212> DNA <213> Homo Sapiens		,	
<400> 159			
aacaaagcac cctgcg			16
<210> 160 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 160			
caccgcccac cgcctt			16
<210> 161 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 161			
ctgcgctgcc cagagg			16
<210> 162 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 162			
aagcttcgtt tgggag			16
<210> 163 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 163			
ctggaagccg 'aagaga			16
<210> 164 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 164			
gatcgcaccc tgtatc			16
<210> 165 <211> 16 <212> DNA <213> Homo Sapiens			
<400> 165			
tagggacccg cggagg	ם	2200 67	16

<210> 166 <211> 18 <212> DNA				
<213> Homo	Sapiens			
<400> 166				
ttgccgagta	atcctcgc		1	.8
<210> 167 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 167				
cactacgggc	ggaggg		1	.6
<210 > 168 <211 > 16 <212 > DNA <213 > Homo	Sapiens			
<400> 168				
gacggcacgc	cagagg		1	. 6
<210> 169 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 169				
ctgggcgtcg	ccacca		. 1	. 6
<210> 170 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 170				
caccagcccg	gccgcc		1	.6
<210> 171 <211> 17 <212> DNA <213> Homo	Sapiens			
<400> 171				
ccatcacgtc	cagcgac		1	.7
<210> 172 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 172				
acagcgagtg	cgacat	Page 68	1	.6

<210> 173 <211> 16 <212> DNA			
<213> Homo	Sapiens		
<400> 173			
aaagtgtggg	aaagtt		16
<210> 174 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 174			
tagacgtggg	gctacgc		17
<210> 175 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 175			
acctcggggc	agtaccgc		18
<210> 176 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 176			
atggcggtgt	cgtgga		16
<210> 177 <211> 21 <212> DNA <213> Homo	Sapiens		
<400> 177			
ttgaggcgcg	cgtagaggac t	•	21
<210> 178 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 178			
aacccgagct	gcacag		16
<210> 179 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 179			
taggtgcgcg	ttacat	Page 69	16

<210> 180 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 180			
tacgctgcct	ggacgaat		18
<210> 181 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 181			
aaggagcgca	cttcgg		16
<210> 182 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 182			
gccggatccc	ggaagt		16
<210> 183 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 183			
gaagtgacgc	gctcgt		16
<210> 184 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 184			
caggcaagga	ctcaac		16
<210> 185 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 185			
aggattccgt	gcgccc		16
<210> 186 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 186			
cgccgccgtg	ctcagc	Page 70	16

<210> 187 <211> 16 <212> DNA		
<213> Homo	Sapiens	
<400> 187		
acgagtggat	gcttgg	16
<210> 188 <211> 17 <212> DNA <213> Homo	Sapiens	
<400> 188		
gaggcgaaat	taaaatc	17
<210> 189 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 189		
cgaagagcgt	tttcat	16
<210> 190 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 190		
cactcgctct	cgggca	16
<210> 191 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 191		
acaatcgata	cactca	16
<210> 192 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 192		
aaaaaatcaa	ttgaaa	16
<210> 193 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 193		
gtgccttccc	ggcgcc	16

<210> 194 <211> 20 <212> DNA <213> Homo	Sapiens		
<400> 194			
gggctgggca	cgccccagt		20
<210> 195 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 195			
gtggatgcca	cggggc		16
<210> 196 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 196			
ccctctgtta	ggccga		16
<210> 197 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 197	·		
cggacgactg	cagcagt		17
<210> 198 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 198			
cagtgtcttt	gttagt		16
<210> 199 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 199			
tctaagtaaa	ctccct		16
<210> 200 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 200			
ggtggtgttg	gttggtga	Page 72	18

<210> 201 <211> 18 <212> DNA <213> Homo	Sapiens				
<400> 201					
acaaggacac	atgcattg				18
<210> 202 <211> 18 <212> DNA <213> Homo	Sapiens				
<400> 202					
attcatggcg	aggagcaa	•			18
<210> 203 <211> 16 <212> DNA <213> Homo	Sapiens				
<400> 203					,
ttacggttcg	gtcatc				16
<210> 204 <211> 16 <212> DNA <213> Homo	Sapiens				٠
<400> 204					
gacgccgcgg	ggccag			•	16
<210> 205 <211> 16 <212> DNA <213> Homo	Sapiens				
<400> 205					
aggcaccccg	cgacac				16
<210> 206 <211> 17 <212> DNA <213> Homo	Sapiens				
<400> 206					
gttccccgac	ccacgtc	•			17
<210> 207 <211> 18 <212> DNA <213> Homo	Sapiens				
<400> 207					
ggcagccccg	attattta		Page 73		18

<210> 208 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 208			
cagagcacgg	aacaaa		16
<210> 209 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 209			
ttgcccagcg	gaccccag		_ 18
<210> 210 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 210			
caggttcggt	ccgccat		17
<210> 211 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 211			
tggtggcacg	cagcctgg		18
<210> 212 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 212			
cctggcgcag	atcggt		16
<210> 213 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 213			
agtgcccgcc	gcagcc		16
<210> 214 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 214			
gtgctcagcg	cggacc	Page 74	16

<210> 215 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 215			
ttcggccagc	cccgcat		17
<210> 216 <211> 18 <212> DNA <213> Homo	Sapiens		•
<400> 216			
gacccgcctg	ggcaacgc		18
<210> 217 <211> 17 <212> DNA <213> Homo	Sapiens ·		
<400> 217			
gccgaaccca	gtcgcgc		17
<210> 218 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 218			
aacccgcgag	cttaga		16
<210> 219 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 219			
catacacacg	tgtgggta		18
<210> 220 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 220			
tatgtagtcg	cgtagt		16
<210> 221 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 221			
agtgcatgcg	cagaaggc	Page 75	18

<210> 222 <211> 18 <212> DNA <213> Hor			
<400> 222	2		
cttagacad	eg aaatgtca		18
<210 > 223 <211 > 18 <212 > DNA <213 > Hor			
<400> 223	3		
aagtaagto	eg ttgetgee		18
<210> 224 <211> 16 <212> DNA <213> Hor			
<400> 224	1		
ggactacag	gg cgtgtg		16
<210 > 225 <211 > 17 <212 > DNA <213 > Hor			
<400> 225	5		
gcagaggcg	gc gatctcg		17
<210> 226 <211> 16 <212> DNA <213> Hor			
<400> 226			
agggagtct	t gctctg		16
<210> 227 <211> 16 <212> DNA <213> Hor			
<400> 227	7		
agcgccgad	cc aatcgc		16
<210> 228 <211> 16 <212> DNA <213> Hor			
<400> 228	3		
cccggccgg	gg tccaaa	Page 76	16

<210> 229 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 229		
caatcgtcag	cggcgg	16
<210> 230 <211> 17 <212> DNA <213> Homo	Sapiens	
<400> 230		
ccaacgggtg	ggcacgt	17
<210> 231 <211> 17 <212> DNA <213> Homo	Sapiens	
<400> 231		
aggccgttgg	cacccgt	17
<210> 232 <211> 17 <212> DNA <213> Homo	Sapiens	
<400> 232		
ttcccgagcc	ccaccga	17
<210> 233 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 233		
acagccgtgg	cctcgt	16
<210> 234 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 234		
tgacgggcgt	ctccga	16
<210> 235 <211> 16 <212> DNA <213> Homo	Sapiens	
<400> 235		
caatgagcgc	gctgta	16 Page 77

<210 > 236 <211 > 18 <212 > DNA <213 > Homo	Sapiens			
<400> 236				
ctggtccggg	aaaggcaa			18
<210> 237 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 237				
tcccggtgaa	ccggat			16
<210> 238 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 238				
ctcgcaaagc	cgctgc			16
<210> 239 <211> 18 <212> DNA <213> Homo	Sapiens			
<400> 239				
gcccagccag	cgggctcc			18
<210> 240 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 240				
gggcgcgcac	ggctac			16
<210 > 241 <211 > 16 <212 > DNA <213 > Homo	Sapiens			
<400> 241				
ctaccgcgcg	tggagg			16
<210> 242 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 242				
ggtgcgcgca	gagaac	Page 78		16

<210 > 243 <211 > 16 <212 > DNA <213 > Homo	Sapiens		
<400> 243	Daptono		
caagcgcacc	gacgcc		16
<210> 244 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 244			
aaacaccgaa	cgggat		16
<210> 245 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 245			
ccagagcccg	agcccaca		18
<210> 246 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 246			
tcaggcgcgg	acccgc		16
<210> 247 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 247			
ctcgcgaagc	cacggg		16
<210> 248 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 248			
catcggttcg	gagcca		16
<210> 249 <211> 16 <212> DNA <213> Homo	Sapiens	•	
<400> 249			
aagcagcgcc	gccact	Page	16

<210> 250 <211> 16 <212> DNA	on a		
<213> Homo Sapio	EIIS	,	
	aa	·	16
gccgctcgga actcg	30		
<211> 251 <211> 16 <212> DNA <213> Homo Sapio	ens		
<400> 251			
tacgtggtcg aggg	cc	(16
<210> 252 <211> 18 <212> DNA <213> Homo Sapid	ens		
<400> 252			
ggaagccccg atgg	ccta		18
<210> 253 <211> 17 <212> DNA <213> Homo Sapio	ens		
<400> 253			
ggcgttggca ccgc	tga		17
<210> 254 <211> 16 <212> DNA <213> Homo Sapio	ens		
<400> 254			
ccaagacgcg tttt	ct		16
<210> 255 <211> 16 <212> DNA <213> Homo Sapie	ens		
<400> 255			
ccctgtcgcg ggaad	cc		16
<210> 256 <211> 16 <212> DNA <213> Homo Sapie	ens		
<400> 256			
atacgtagac tcgg	ag	Page 80	16

<210> 257 <211> 18 <212> DNA			
<213> Homo	Sapiens		
<400> 257			
gaagtggccg	ccagtccc		18
<210> 258 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 258			
aaggaatccg	tcttgtaa		18
<210> 259 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 259			
aatgctttcg	tgatgctg		18
<210> 260 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 260			
caaaacgagg	gagcgt		16
<210> 261 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 261			
aggagccggc	cccgca		16
<210 > 262 <211 > 16 <212 > DNA <213 > Homo	Sapiens		
<400> 262			
caaagcgcgg	acactt		16
<210> 263 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 263			
cctgagcggg	caccga	Page 81	16

<210> 3 <211> 3 <212> 1 <213> 1	16 DNA	Sapiens	•				
<400>		•					
cagagc	cgag	gggcgg				•	16
<210 > 2 <211 > 3 <212 > 1 <213 > 1	16 DNA	Sapiens					
<400>	265						
ccccga	ggga	cggaag					16
<210 > 3 <211 > 3 <212 > 1 <213 > 1	16 DNA	Sapiens					
<400>		·					
catgtc		gcgaat					16
<210> 2 <211> 3 <212> 1	267 16 DNA						
		Sapiens					
<400> 2							
acagtc		agccgc					16
<210> 2 <211> 3 <212> I <213> I	18 DNA	Sapiens					
<400> 2	268						
acttgt	cccg	accaatct .					18
<210> 2 <211> 3 <212> I <213> I	18 DNA	Sapiens					
<400> 2	269						
aacctg	cgaa	cgcttggg					18
<210> 2 <211> 3 <212> I <213> F	16 DNA	Sapiens					
<400> 2	270						
gccgato	gctc	ccggca		Page	82		16

<210> 271 <211> 17 <212> DNA <213> Homo	Sapiens			
<400> 271				
gagccccgct	acatcgc			17
<210> 272 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 272				
ttcctgcggt	tcgaca			16
<210> 273 <211> 20 <212> DNA <213> Homo	Sapiens			
<400> 273				
tacgccaagg	ccaacgcaca			20
<210> 274 <211> 17 <212> DNA <213> Homo	Sapiens			
<400> 274				
tgctccgccg	ctacaac			17
<210> 275 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 275				
ggcgcaggtc	acgacc			16
<210> 276 <211> 16 <212> DNA <213> Homo	Sapiens		•	٠
<400> 276				
atccgccacg	gaccgc			16
<210> 277 <211> 16 <212> DNA <213> Homo	Sapiens			
<400> 277				
agtctccgga	tccgaa	Danie 02	•	16

<210> 278 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 278			
taccccgagg	cagcgg	1	16
<210> 279 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 279			
gagagaaacg	gcctctgt	1	18
<210> 280 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 280		•	
cccgacggac	gcctcc	1	L 6
<210> 281 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 281			
gtacgacggc	aaggat	1	۱6
<210> 282 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 282			
agttgctccg	cagatact	1	L 8
<210> 283 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 283			
aagaggcgaa	aagcag	1	۱6
<210> 284 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 284			
agcaagcggc	tgcatac	1	. 7

<210> 285 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 285			
aaattgagcg	cctatgt		17
<210> 286 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 286			
gcagggctca	gcagga		16
<210> 287 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 287			
accctcacac	tetgge		16
<210> 288 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 288			
tggagggaca	gggagga		17
<210> 289 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 289			
ctccgcgggc	gttgag		16
<210> 290 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 290			
gacagtcaga	ggaagac		17
<210> 291 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 291			
caggggtgac	gcgcct	Page 85	16

<210> 292 <211> 17 <212> DNA <213> Homo	Sapiens		
<400> 292	•		
ctcctcgcgc	acatgtt		· 17
<210> 293 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 293			
aagggcggca	agacgg		16
<210> 294 <211> 16 <212> DNA <213> Homo	Sapiens		-
<400> 294			
ccaggccgga	cgcaag		16
<210> 295 <211> 18 <212> DNA <213> Homo	Sapiens		
<400> 295			
taggcgccta	attagcgt		18
<210> 296 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 296			
cgctttcaca	caccca	·	16
<210> 297 <211> 20 <212> DNA <213> Homo	Sapiens		
<400> 297			
acctgggccc	cccacctcac		20
<210> 298 <211> 16 <212> DNA <213> Homo	Sapiens		
<400> 298			
cccataaacc	ctgcta	Page 86	16

<210> 299 <211> 16 <212> DNA <213> Homo Sapiens	
<400> 299	
cctcagacat taaaga	16
<210> 300 <211> 16 <212> DNA <213> Homo Sapiens	
<400> 300	
aaaacgtgga cgtttt	16
<210> 301 <211> 18 <212> DNA <213> Homo Sapiens	
<400> 301	
acttggagcg aggaactc	18
<210> 302 <211> 18 <212> DNA <213> Homo Sapiens	
<400> 302	
ctgaaagtcg gccaaagc	18
<210> 303 <211> 18 <212> DNA <213> Homo Sapiens	
<400> 303	
ggcagctacg agagagct	18
<210> 304 <211> 2280 <212> DNA <213> Artificial Sequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 304	
atgggtattt attttatatt tagatggaag gtattattgg atatgtatta aaaaaaagat tttttgaaaa aaataaaata aaataaaata ttattattaa aataaaagaa tttaaaataa tttttaaaaaa ttttttaa taaaatatat tgttaattta tagatggat tgatgattag ttatgtaaat gttttaaata aaatttttat atttttta tagttaattt atgttttgaa	60 120 180 240 300 360 420

atagaaagtt	tgatacgatg	gaatttatta	ggtaagaggg	tgggtgttgt	gaacgagatg	480
		gggtagagtt				540
gtagtatttt	ttgttttttg	ttagaagtta	aagttattta	tttataatat	atttatgttt	600
tcgtgtaatt	gtttattttt	gcgtagttaa	tagggagtta	ttacggggtt	aatttatagg	660
ggaaaaatag	atatttattt	ttttatatag	atgtggatat	atgtatatat	gtatagaatc	720
gcggtattta	attttatagg	tttcggggtc	gagggcgagg	gtattgttag	tttttttagt	780
agggtcgtgt	tgggtttttt	gttaaaaggg	gtttttagta	aagagcgagt	tggttgcgtt	840
tttttagttt	tttatagttt	gttttttgtt	ttaaggaggg	agttaagtaa	ggggttaggt	900
tttttcggtt	gtgcgagttt	atagttattt	atttatttat	gtttatttag	gttgatggcg	960
cggggatttg	ggtatacgtt	tttttagttt	tcggggtgtt	tgcggtgggg	aaggatgtat	1020
cgttttttt	ttgtttttt	ttattggggt	tggggtttta	gtttgagagc	gagtgagagt	1080
tatagttata	tattttgtgg	gttttatttg	cgttgtaagg	tttattgtgt	tagtaggaag	1140
		gaattaattt				1200
tggatcgttt	tcggtttttt	aggataaata	cgagtatgtt	tattacggtg	aaggcggagg	1260
tgataaatat	tagtagtagt	ttcgggatta	atatcgagat	ggatattttg	ttggtgttta	1320
		tcggttttcg				1380
		gcgtatagtt				1440
tgaaattttt	tttaaagaag	tttatcggcg	ttttatattt	gaggtcgttt	attagtattt	1500
cggaatttaa	gcgttttgtt	tattgtttga	aaggtataat	tgtgtaggag	tatttttagg	1560
ggttttcgtg	gaggtttatt	tggatgatgg	aggttaattg	gtttagtatt	tttgttatcg	1620
ggaggtatat	gaagtaattg	ttgtgtaggt	tgagtttaga	gagcgagatt	ttagcgaata	1680
cgtttatagg	tagggatttt	agtaggttgt	tgttgagaat	gaggattttt	agtttgggta	1740
tggtattgaa	agtgttcggg	aggatgagtt	ggatagcgtt	gtattttacg	tttaggtatt	1800
ttaggttttg	tagtttcgcg	aattttttc	gggatagcgt	gtttaggtaa	ttgttattta	1860
tgtatagtta	tttgaggttt	aaaaggtttt	tgaaagtgtt	gttttttata	gtagcgatgt	1920
		agaatgaggt				1980
tgttgtggat	tttgttattt	cgtaggaaaa	gtttttgtac	gttagagagt	ttgggtttta	2040
aattagttaa	gttgtttacg	tttttgttgt	tgtagtttat	ttttaaattc	gattttggga	2100
		ttagggtagg				2160
agttattcgt	cgttatcgtt	gttgtgggtt	tgattttgat	ttgttagttg	tttgggattt	2220
ttgtattttc	gtttggagta	gattttggtg	tggtatgatt	tttttgttta	tttgttttga	2280

```
<210> 305
<211> 2280
```

<220:

<223> chemically treated genomic DNA (Homo sapiens)

<400> 305

agattttagg taat ttaggaataa attt ttttagggtc gggt tgaagtttaa gttt	taagag gattatgtta tggtag attaaaatta ttagtt aatagtttat ttaaag atgaattgta tttaac gtgtaggagt tttgtg gattataaga	gatttatagt tttgttttgg ataataggaa tttttttacg	agcgatagcg gggttgtagt cgtgagtagt agataataag	acgggtagtt tgcgattata ttggttgatt atttatagta	60 120 180 240 300 360
tggatagtaa ttat	ıgagaat aatattttta :ttggat acgttgtttc	gggagaaatt	cgcggggttg	taaaatttag	420 480
	gagtat aacgttattt attttt atttttaata	_		_	540 600
	tcgttt tttaaattta	-			660
	ttggat tagttaattt				720
	tgtata attgtgtttt gatttt aagtgtgaga				780 840
	gacgag atttgtttt		-		900
	aatagt attgggttgg				960
	gtgttt atttcggtgt				1020
-	gtggtg ggtatgttcg	_			1080
	aatttt ttcgcgttcg	-	_		1140
	aatggg ttttataacg ttagat taagatttta				1200 1260
geeceate gee	ccayac caayaccca		88	agggaaggeg	1260

<212> DNA

<213> Artificial Sequence

```
atatattttt ttttatcgta ggtatttcgg gggttggagg ggcgtgtatt taaattttcg
                                                                  1320
cgttattagt ttggatgggt ataagtagat aaataattgt gagttcgtat aatcgaaagg
                                                                  1380
gtttgatttt ttatttagtt ttttttttga aataaagagt agattgtgga gagttgggag
                                                                  1440
agogtagtta gttcgttttt tgttgagagt tttttttgat agaaagttta gtacgatttt
                                                                  1500
gttggaagaa ttgatagtgt tttcgttttc ggtttcgggg tttgtggggt tggatgtcgc
                                                                  1560
1620
tttgtggatt agtttcgtga tggttttttg ttggttacgt agggatgggt agttgtacga
                                                                  1680
                                                                  1740
aggtatgaat gtattgtaaa taagtaattt tgatttttga taaaaaataa aaagtgttgt
atggttcgta tggaatttac gcgttttagg gattttgttc gttttcgcga ttggagacgg
                                                                  1800
tatttcgttt atagtattta ttttttatt tgataagttt tatcgtatta aattttttat
                                                                  1860
aaataaaata tagtataatt agaaagtgtt atttcgttat tatttgtgat cggtaggtag
                                                                  1920
tttagagtat aagttaattg tgaaaaaaat gtaaaqgttt tatttaggat atttgtatgg
                                                                  1980
ttagttatta gtttatttta tgagttaata atgtattttg ttgagggaag tttttagggg
                                                                  2040
ttgttttggg tttttttatt ttgatggtga tgttttattt tattttattt tttttagggg
                                                                  2100
gttttttttt taatatatat ttaataatgt titttatttg aatgtaaaat aagtatttat
                                                                  2160
gatttttatt atagtattag tgtaattatt taaaaaaatga ttttgaggta gttaagtatg
                                                                  2220
attaattaat gttattttag tgtttaggtt gcgattttat ggtagtaatt ttgtgttggt
                                                                  2280
```

<210> 306 <211> 2477 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 306

tggtatagat	atggttttta	aagttaaaaa	ttatgatgga	gtgaaggata	gttgtgttta	60
gatttgcgtt	ttgttttttg	gaggttgttg	tggttttggg	gatgagtcgg	aggtgggtag	120
	tcggggtttg					180
attttatagg	gagtatttcg	gggcgggtag	taattttgga	ggtattttcg	ggaaggagtt	240
aggtatgggg	gaggcggagg	cgattttaga	agtagaggag	tcgttgggga	gttacggttt	300
tttgggtgtg	gagttgtgga	ggatgagtgt	tattttttt	tttcgggttt	tttattttgt	360
agggatttt	acgtttagga	ttatttgatt	gttaaggttt	cggtattttc	gttaggttag	420
	aggtttttaa					480
aggtcgagag	gaggtttata	agggttgtat	ttttttttg	gttgtagttt	attttttaga	540
	cgtggagtta					600
tgtcgtttgg	tgtgggggat	agtttttgag	taggttgtcg	tatttttggt	attttggttt	660
	tttaggtggt					720
gtttttgttg	tagtttttgt	agtgggagta	tcgttgagta	ttgtttttgg	gagaggacga	780
	tatagttaag					840
gtagtagttt	cgtacggtta	ggtttgggtt	acggtgttgt	ttagtggttt	ttgcgcggtt	900
agtatttgaa	tggttgttcg	tttggtttgg	cgtgttttt	tttttcgggt	ttttttttg	960
gttgttttt	tttgttggtg	taggtttaag	agggttttt	cgtttgatcg	ttgtcgttgt	1020
ttttgttaaa	gaagtcggtg	ttatgtggcg	tttatatttg	gaagacggaa	tttagattta	1080
gattagaggt	ttttttataa	cgttttggag	ttttttagag	ttcgtggaat	tttagggtta	1140
gtagggaaag	tgaaatttta	ttaggatttt	gaatttgtta	tttttttgtt	ttatagagga	1200
tgagttttac	gtcgtaggtg	gttaatagtt	ttggcgtggg	ggagatagtt	ttgtttttat	1260
agaacgtttt	tttgagattt	tttagtttgg	gatggattta	gtaggcgttt	tttgatattt	1320
aggttttgag	gatcgttagt	gaggattatt	ttgattgttc	gcggggattt	agggttaaga	1380
aggatgttgt	atttagagac	ggggtttacg	agtaatttta	ggttttgatt	ttatttgttt	1440
tagaaattta	aatttttggg	attttgggtt	agatttttcg	ggggagtatg	gagtgattga	1500
gacgtttata	ttgatttttc	gtttggtttg	aagtaagtgt	tttaggcggg	tagtttttgt	1560
ttcgcgtcgt	tgtatttggt	gtcggtatta	gcgttggatg	gtgatagtgg	tttggtttat	1620
ttggtggata	aatttgttcg	gagagtagga	tttagggtta	agataggatt	agcgtttcgg	1680
taggatttag	ttggttgttg	gtggaaggtc	gagtcgggga	agagagaagt	cggcggttgt	1740
atttaagtag	ttttttttat	aaggtaggat	tagtttattt	ggattatttt	tatatggtag	1800
gattagtcgt	ttggattagt	tttattaaaa	tttaaaattt	tttttttggg	aaggtgttta	1860
	aacgtttatt				tgttaggaag	1920
tgggaagagt	ttaaatgttt	atgatttggt	tatagcgtga	atattggatg	gcgggatttt	1980
	aataggttcg					2040
agagggtggt	cggaataggt	agggttatga	gggaatagat	tggtggttgt	tggtatttgg	2100

gcggggaagg agttcgaggg aagtttggtg gtgttgggtc gtttttttat tttggtttgt tgtgtttata gatagtatta tatattttgg tggaatttta tggaattgta tatttataat

47675-47.txt

2160

2220

2280 2340

2400

2460

2477

gtttttttag ttttaat

<210> 307 <211> 2477 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 307

gttagggtta gggagattag gtttgtagac gcggtgggtg gtacgaggga agggggatta 60 gaagttegta attittigaa giittitagt tiigtieggg giagatigti tiegagitag 120 ggtttatacg ttttgggttt tttgttagtg tttttgttga gagaatttat atatggtttc 180 240 tataatagaa ggtgtttatt gtaagtgtgt agttttatga gattttatta gggtgtatag 300 tgttgtttgt ggatatagta gattaagata aggaaacggt ttagtattat taggtttttt 360 tegagttttt ttttegttta gatgttagta gttattagtt tgttttttta tagttttgtt 420 tgiticgatt attitittg iggagttacg gtttgtggtt tgtattggtt tgagtttcgg 480 gtttgttgtt tgtgggtagg gtttcgttat ttagtattta cgttgtagtt aggttatggg 540 tatttgaatt ttttttattt tttggtaatt gtaaataagg ttatataggt ttgcgtgggt 600 aggcgttttt ttttttttgg gtattttttt aggaagaagg ttttgggttt tagtggagtt 660 720 780 tagttagttg ggttttgtcg gggcgttggt tttgttttgg ttttgagttt tgtttttcgg 840 gtaggtttat ttattaggtg aattaggtta ttgttattat ttagcgttgg tatcggtatt 900 aggtgtagcg gcgcggagta ggagttgttc gtttggagta tttgttttag gttaagcggg 960 aggttagtgt gggcgtttta gttattttat gttttttcgg ggggtttggt ttagaatttt 1020 aggggtttga gtttttggga taggtggaat taaagtttag gattgttcgt gggtttcgtt 1080 tttgggtgta gtatttttt tgattttggg ttttcgcgga tagttagggt ggtttttatt 1140 ggcggttttt agggtttggg tgttaggaaa cgtttgttgg gtttatttta ggttggagag 1200 ttttaggagg acgttttgtg ggggtagagt tgttttttt acgttagaat tgttggttat ttgcgacgta gggtttattt tttgtagagt agagaaatgg taggtttaag gttttggtgg 1260 1320 ggttttattt tttttgttgg ttttgagatt ttacgaattt taggggattt tagggcqttq 1380 tggggaaatt tttggtttgg gtttggattt cgttttttag atgtaaacgt tatatggtat 1440 cggttttttt ggtaggagta gcggtagcgg ttaggcgagg ggattttttt ggatttgtat 1500 tagtagaaag aggtagttag gaggaaggtt cgggaggaga aggtacgtta agttaggcga 1560 gtagttattt aggtgttgat cgcgtaggga ttattgagta gtatcgtggt ttaggtttga 1620 tcgtgcgggg ttgttgttgg ggttttttgg gtttcgggat atttagtttt agggtagttt 1680 ggttgtggag tttggggtcg tttttttta gggatagtgt ttagcgatgt ttttattgta 1740 ggagttgtaa tagaaacgag ttttgagagt ttagaaggcg agtattgtcg agcgtgggtt 1800 atttgagaat tttagggaga ttagagtgtt aggaatgcgg tagtttgttt aggagttgtt 1860 ttttatatta ggcggtattg tttattaggt ttttaaggtt aataatattg gtgagagtgg 1920 1980 ggatttittt teggtttttt gigtigtigt ttatgitgge ggttitagti tteggagtta 2040 ggggttttgg tttttagttg atttgacgag ggtgtcgaga ttttgataat taaatggttt 2100 tggacgtagg gatttttata gagtagaagg ttcggaaggg aggggtggta tttattttt 2160 atagtittat atttagaagg tcgtggtttt ttagcggttt ttttgttttt ggggtcgttt 2220 tegttttttt tatgtttggt tttttttegg gggtgttttt agagttgttg ttegtttegg 2280 gatgtttttt gtggaatggt gttgtgtttt gttgtgtagg tggtggtttt tttgttgtag 2340 gtttcggaga tcgttgtttg tttattttcg atttattttt agaattatag tagtttttag 2400 aggataggac gtaggtttga gtatagttgt tttttatttt attatggttt ttggttttaa 2460 gggttatgtt tgtgtta 2477

<210> 308 <211> 3685

<212> DNA

<213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 308 taagtttttt ttttcggcgt ataggtacgt agttataggt taagttgcga cgcgagtttc 60 gcgcgcggga ttttcgtaaa aggttcgttc gatgcgttgg gcgggaatcg agttcgggtt 120 aattgtttgg aaggtaatta tgtttattat tatattatta acgtcgtacg gcgcgggtag 180 tttcgtcgcg tcggttcggg gtttttatta gcgcgtcgtc gacgttcggg gtaggtcggt ttcgacgttc ggttcgttcg ttcgttcgta gtttcgcgtt gtcgcggttt ttttaaaggt 240 300 cgtttcgcgt tttatcggtg taaggttagc gcggttgatt cgttacgttc gtttgttttt 360 gggggcgtit tegtttatte gtegtttegg gttittagag titttttta ataggtgtte 420 gggggggaaa cggtcggcgt cggtagggtt tttattttta cgttttttat cgggcgtagg 480 gtttcgtgtg tcgtagaaag tttttttcga taattatttt gagtcggtag ttcgttgggc 540 gtcgtgtagg gttagaggag gtttttcggt tgtcgttatt aagtcgcgga cgagaagaaa 600 agataggagg ttaaggaggt ttagaaggtt aaagggttag gtaggttagg ttcgagatgg 660 720 tattttgcga ttagttggag ggcggaggaa ggagaaggag ggtttatagg ttgggttcga ggcggcggtt taaaaagtac ggttgttttt tcgtcgggga atcgaatttc ggtttttcgc 780 840 gtgataggcg gggatattta ttattatatt aacgaggacg acggcgacgg tcgtcgggac 900 ggggtcgggc gcgtgttcgt tttttattcg tcgttcgtcg ttcgttattc gttatacgtt 960 attogttatt tgttattogt ttttogttat ogttggtacg atttatttog atatttaata 1020 aagtattttg cgatttcgtt gggattcgga gtcggagtcg gatttcgata ggtatcggag 1080 cggcgtggaa ttttttcgcg cgttttgttt gttgttttta acgcggggat cgcgtcgggg 1140 taggaggagg cgcgggcgaa atagttaggt cgttgttttt aggacgcggt gggcgtacgt 1200 1260 cgacgcggat tttttgggtt cggggtgggg acgcgggggc gtttacgtta acgttagtcg 1320 gtttcgttta tttggcgttc gtttttttcg cgcggttcgt cggttgcgta tcgaatttag 1380 ataggcgtcg gttaagggcg taggcgttcg cgtcgggttt tagttatgtt agcggcgaag 1440 cgtttcggcg cgtcgttagg atggtcgagc ggtttaaggc gttgcgttta ggtcgtagtt 1500 tttttttggag gcgtgggttc gaattttatt tttgataagt cgattttttg gttcgttcgt 1560 cggagggtaa cgtttatggt aattttggag tatttttggt cgttttttgt tttgagtttt 1620 tgttcgtttt ttagatttta gtttttttga agtaagtttt taaaacgtcg tcgttttta 1680 ggtacgttcg tttttttgt ttattcgtcg gttgtcgtag aaatagttta ggattatgcg 1740 ttagcgttcg cgatttttta ttaattgttt ttcggataga cgttttttt attattttat 1800 acgttttttt ttttggtttt atatatagcg agcgatcgcg attatttttt acgttttttt 1860 ttgtttattt ttttcgttcg ttttttttt attcgtttaa atagatatag tttagatttt 1920 ttttttattt tttttttt tttttttt ttatcggttt tcgtttatcg tttatcgttt 1980 tgaatcgtcg ttgcgttgtt tagaggcgtt ttggtttgaa tagttcgttc ggttttattt 2040 tttaattttt gategttgag tagtagegag egattegite gtggagtegt atataegttt 2100 2160 gcgtatttta ttttgtcgat attttagtta ggtcgtcgat tttatttcgt tatttgtgtt 2220 ttttttttcgt taatatttgt ttgtcggttt atttgtagtt cggacgtttg tcggttagag 2280 gtagcgggaa ttttgtatat agtcgggtag gcgagtttaa attcggaaag atagtttaag 2340 aggaattacg agcggaagtt ttagattttc gttattcgtt tataaacgtt tggittcgtc 2400 gggattagtt ttgcgttata gcgtattttt acgcgggaag tcgcggtttg ggtcgtttta 2460 gttatattta gcgcgttttt tttagggtta gttagttgcg gttttgtcga agcgttttt 2520 cgtttttttt tcgcgtttta gtttttttat tagtttaggg ggtcggattt taagtgcgag 2580 toggtggcgt gggttagagc gtaggagcga ggcgtttacg gatttggttt gcgtttttga 2640 gtcgtacgtt acggttgcga gattcgtttt ttatcgtcgt tttcgttcgt tgatatattt 2700 attiogittt ttättigtig gigatataag igagaaggit ggittiacgg iggigaaaaa 2760 2820 aagaaagaaa gatagaaaga aataataaaa ataaaatata aaaattttgg gtttgtgtcg 2880 gggattegeg tttagtaagg ttegttatag taaatttgtt tataegggta ttegggegeg 2940 ggttacggtc ggtttttttt ttggagattt cggcgggtag tttttcgatt ttgggcggta 3000 gagaaagcgt aagatgggac gagtcggttt tttttttttc gtttttttt cgcgtttcgt 3060 tttaggtttt tcgacgtgac gagagttttt ttttttgttc gttttatcgg gttagtttt 3120 cgtggacgtt gtaataggac ggaggtttac ggtaggcggt gattagtgaa cggcggttgg 3180 tggcgagttt cgttgtgtta gttttcgttg gcgtttgtta tcggtgtatg ggtggtttag 3240 tggtagaatt ticgitigtt acgcgggagg ticgggitcg attitcggti tatgiagtac 3300

```
47675-47.txt
gtttttttat tttggtgttg tagtagtatt aaggcgtagt tgcgttcgtt tttgtcgttt
                                                                         3360
ttttatattc ggggcgcgcg agcgagttcg gtatcggttg cgtttttacg cgcgacggtt ttttgttttt tttttcgtgt tttttcgat tgatttaggg atgagtttat ttttcgtatt
                                                                         3420
                                                                         3480
                                                                         3540
tatatatttt ggtgataata attttttag atacgagagc gcgttagata ttagaatttg
gtagtttttt ggttttgttt ttttttattg ttttgttatc gtttttgttc gacgtatttt
                                                                         3600
attttacgga atatcgttag gtattacggg tttgtagtta ttcgtattat ttttttttt
                                                                         3660
                                                                         3685
tatattttat cgtttcgttt ttttt
<210> 309
<211> 3685
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 309
                                                                           60
gagagaggcg aggcggtgaa atgtgaagag aaggggtggt gcgagtggtt gtaagttcgt
                                                                          120
ggtgtttggc ggtgtttcgt gaagtgaaat gcgtcgggta gaggcggtgg tagggtaatg
aagagaaata ggattaggag gttgttaagt tttggtgttt ggcgcgtttt cgtgtttgga
                                                                          180
ggggttgttg ttattaaggt gtgtgggtgc ggggggtagg tttattttta agttagtcga
                                                                          240
                                                                          300
gagaggtacg gaagaaaggg tagagggtcg tcgcgcgtgg gagcgtagtc ggtgtcggat
tegttegege gtttegagtg taaggaggeg gtagaggega gegtagttae gttttggtgt
                                                                          360
tgttgtagta ttaaaatggg agggcgtgtt gtatgggtcg ggaatcgaat tcgggttttt
                                                                          420
cgcgtggtag gcgagaattt tattattgaa ttatttatgt atcgatggta aacgttaacg
                                                                          480
                                                                          540
gaagttggta tagcggaatt cgttattagt cgtcgtttat tggttatcgt ttgtcgtggg
ttttcgtttt attgtagcgt ttacgagagg ttggttcgat ggggcgagta gaaggggagg
                                                                          600
ttttcgttac gtcgagggat ttgaggcggg gcgcggaggg agagcggagg gagagaggtc
                                                                          660
gattcgtttt attttgcgtt ttttttgtcg tttagggtcg agagattgtt cgtcggggtt
                                                                          720
tttaggggaa ggatcggtcg tggttcgcgt tcgaatgttc gtgtgggtag atttgttgtg gcgggttttg ttgagcgcgg attttcggta tagatttaga gtttttgtgt tttgtttttg
                                                                          780
                                                                          840
tratteret trattett terrette terrette terrette terrette terrette
                                                                          900
ttitttttt cgigtggtgt ttttttttt tattatcgtg gggttagttt ttttatttgt
                                                                          960
gttattagta ggtgagaggc gggatgggtg tgttagcgag cgggggggcg gatggggaac
                                                                         1020
gggtttcgta gtcgtggcgt gcggtttaga aacgtagatt aggttcgtgg gcgtttcgtt
                                                                         1080
ttigegtitt gatttaegtt ateggttegt attiggggtt eggtttittig ggttggtagg
                                                                         1140
gaggttggag cgcgagaaag gagcggagga gcgtttcggt agagtcgtag ttggttgatt
                                                                         1200
ttggagaagg cgcgttgggt gtggttggga cggtttaggt cgcggttttt cgcgtgggga
                                                                         1260
tgcgttgtgg cgtagagttg gtttcggcgg ggttaggcgt ttgtgggcgg gtgacgggga
                                                                         1320
tttaqqqttt tcqttcqtqa ttttttttgg qttqtttttt cqqqtttqqa ttcqtttqtt
                                                                         1380
cggttgtgtg tagggttttc gttgtttttg gtcggtaggc gttcgggttg taggtgggtc ggtaggtagg tgttagcggg aagggagtat aggtagcgag gtgggatcgg cgatttggtt
                                                                         1440
                                                                         1500
agggtgtcgg tagaatggaa tgcgcggtcg gggttcgagg ggtcggagga aaggatagga
                                                                         1560
tgttggatgg cgtgtttttg gtgggagacg tgtgtgcggt tttacgagcg agtcgttcgt
                                                                         1620
tgttgtttag cggttagaag ttggagggtg aaatcgggcg ggttgtttag gttaggacgt
                                                                         1680
ttttgggtag cgtagcggcg atttaaggcg gtgggcggtg ggcggaggtc ggtgggagga
                                                                         1740
                                                                         1800
gaaggcgggc ggaggagata ggtagggaag agcgtggaag gtggtcgcgg tcgttcgttg
                                                                         1860
tgtgtggggt tagggaagag ggcgtgtgag gtggtgggga gggcgtttgt tcgaagggta
                                                                         1920
attggtagag ggtcgcgggc gttggcgtat ggttttgggt tgtttttgcg atagtcggcg
                                                                         1980
ggtgggtagg aagaacggac gtgtttgaga agcggcggcg ttttggaggt ttgttttaag
                                                                         2040
ggggttggag tttggagagc gggtaagggt ttaaggtagg aagcggttaa aggtgtttta
                                                                         2100
gggttgttat gggcgttgtt tttcggcggg cgggttaaaa ggtcggtttg ttaggagtgg
                                                                         2160
gattcgaatt tacgttttta ggggagattg cgatttgaac gtagcgtttt agatcgttcg
                                                                         2220
gttattttga cggcgcgtcg gggcgtttcg tcgttggtat ggttgggatt cggcgcgaac
                                                                         2280
gtttgcgttt ttggtcggcg tttgtttggg ttcggtgcgt aatcgacgga tcgcgcgggg
                                                                         2340
ggagcgggcg ttaagtgaac ggagtcggtt ggcgttggcg tggacgtttt cgcgttttta
                                                                         2400
```

gttttagcgg gatcgtaggg tgttttgttg ggtgtcgggg taggtcgtgt taacggtggc Page 92 2460

2520 2580

2640

2700

tttcggattt aaagggttcg cgtcgggtcg gtcgtcgtcg gcgtacgttt tagttttcgc

gttttcgttc gtcgaatttc gtagggcgtg cgtttatcgc gttttaggag tagcggtttg attgtttcgt tcgcgttttt ttttgtttcg gcgcgatttt cgcgttggag atagtaggta

gggcgcgcgg ggaggtttta cgtcgtttcg gtatttgtcg gggttcggtt tcggtttcgg

```
ggggggcggg tggtaggtga cgggtggcgt gtggcgggtg gcgggcggcg ggcggcgggt
ggaaggcgag tacgcgttcg gtttttgtcg tcgggggagg ggattaaggt agggttaggc
                                                                      2820
gttcgcggtc ggagtggggt ttggcgtttc ggcgatcgtc gtcgtcgttt tcgttagtat
                                                                      2880
agtggtgagt attttcgttt gttacgcggg agatcggggt tcgatttttc gacggggagg
                                                                      2940
tagtcgtgtt ttttgggtcg tcgtttcgga tttagtttgt gggttttttt tttttttt
                                                                      3000
tegtttttta gttagtegta gggtgttatt tegggtttgg tttgtttggt tttttggttt
                                                                      3060
3120
gaggtttttt ttggttttgt acggcgttta acgagttgtc ggtttaaagt ggttgtcgga
                                                                      3180
agaggttttt tgcgatatac ggggttttgc gttcggtggg aagcgtagga gtggggattt
                                                                      3240
tgtcggcgtc ggtcgttttt ttttcgggta tttgttgggg aagggttttg ggggttcgag
                                                                      3300
gcggcgagtg agcgagagcg tttttagagg taggcgggcg taacgggtta gtcgcgttgg
ttttgtatcg gtggggcgc gggcggtttt tggagaggtc gcggtagcgc ggagttgcgg
gcgggcggac ggatcgggcg tcggggtcgg tttgtttcgg gcgtcggcgg cgcgttggtg
                                                                      3360
                                                                      3420
                                                                      3480
ggagtttcgg gtcggcgcgg cggggttgtt cgcgtcgtgc ggcgttggtg gtatagtggt
                                                                      3540
gagtatagtt gttttttaag tagttgattc gggttcgatt ttcgtttaac gtatcgggcg
                                                                      3600
3660
tttgtgcgtc ggggaaggag gtttg
                                                                      3685
<210> 310
<211> 2407
<212> DNA
```

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 310

taaggtttgg	gtatttttag	gtagtaggga	taaggtgggt	ttttttttg	gttgttaaat	60
ttacgttaaa	gtcgagttta	gggattggag	tttaagaaat	ttatcgttta	ttttttagtt	120
cgatcgggga	tttgtatgta	tttttgtcgt	gttgttttga	gttttttaat	tttttatatt	180
		tttttattta				240
		ttagggtttg				300
		agagttttaa				360
		agtcgggaga				420
		agttgcgtcg				480
	gaatgggaag		tgttcggttt			540
tttttggcgg	cgttggagcg	gttagtggta				600
		cgaaaaattt				660
		gcgttcgatt				720
aagtggtaat	agatggtttt	tttatttaat	aggattaaaa	aatttgtttt	tattcggtcg	780
atcgcggaag	tagagtaggc	gggcggttaa	tggggatatg	atggggggcg	gagtcgaggt	840
tttcgaagcg	gaagtgggtt	gttgttgagg	cggcggtatt	tttttcgagg	agtttttttg	900
ggcggttgaa	gaaggagttt	ttttttcgga	gtgcgtcggc	ggtggcgttt	gcggatttaa	960
ttagttttag	gttaggtcga	gttttgcggg	aaagtagcgg	taagttaggg	ttttgtagat	1020
gcgaggttta	ggtagtttcg	cggtttatag	aggtttcggt	tcgcgttttt	tgggggagtc	1080
		gtcgaggttt				1140
cgttcgtatt	gtcgttcgcg	cgggcgtatc	gagttcggtt	tggcgcgggt	aatagaagtt	1200
aggaggtttg	cgtttgggtt	tcggtttatt	ttggggggtc	gcggttatgg	ggtttagttt	1260
		gagattttgg				1320
		tgttaggggg				1380
gacgacgttt	tttttgtgtg	ttcgcgtcgt	cgtttcgtta	tcgtggggtt	tgcgagtttg	1440
		ggcggggttt				1500
		gtcgaggtcg				1560
		ggttggtggt				1620
		gttttttatc				1680
		agagttgtta				1740
cggggaagag	ggaaaaggat	agagtttggg	taagtcgttt	tggtagggat	tttagttttt	1800
		tatagacgtt				1860
gtattaagtt	tttgagttag	acgtagggtt	ttagttttgg	agtttggttt	agattgttta	1920
		tttagaaaag				1980
		gttaagtttt				2040
attaggagtt	ttgggattat	tgttaataaa	agagatattg	aagggaattt	tttgttattt	2100
			Page	9.3		

47675-47.txt ttttqqtqat ttqtttttta atqqataaqq atatattqqq tttaqtttta tttqtqaqtt 2160 2220 tgaggtgaaa tagaggtatt cgagtagtaa gatatattgt tggtttttgt attgtttgaa titgagtttt taaaaatttt attitaatat atcgtttait gaitttttit tgaattaita 2280 tttitgtaag gattttttgt aaatattgtt tttitaattt itatgaaatt tiaatgttat 2340 2400 acgtaaatta ttttttttta tataatgtat gtatatttgt gttttgtata taaaatgagt 2407 aagattt <210> 311 <211> 2407 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 311 60 aaattttatt tattttatgt ataaagtata gatgtgtata tattatata aaagaaatag tttacgtatg gtattaagat tttatgaaga ttagaaaaat aatgtttata aaaggttttt 120 ataaaggtag taatttaaga aaagattaat aaacgatgtg ttaaagtaag atttttggaa 180 240 gtttaaattt aggtaatata aaagttagta atatattttg ttattcgaat gtttttattt tattttaaat ttatagataa aattgaattt aatatgtttt tgtttattaa aaagtaaatt 300 360 attaagaaag taataaaaga ttttttttaa tgttttttt attgatagtg gttttaaaat 420 aaatagttgg ttatgtgatt ttgggtagat tattttattt ttttggattt tagtttttt 480 agttagttgg atagtttaag ttaggtttta gagttgagat tttacgtttg gtttaagaat 540 tiggtgtaga aatagaacga agattattaa gtttgtgaac gtttatggga attgataagt 600 gaaagataaa agttgaaatt tttattaaaa cggtttgttt aagttttatt tttttttt 660 720 tttttcgatg gattaaaggc ggaaaagcgg tgtttattag taattttgtt tcgggtcgtg agaattīttā tatatttgīt tataggcgcg ttagagcggt gaagggttcg agcggtgtag 780 ggttgggtcg taagttttat agtcgtacgt tttattaatt attagtcggg gttcggaagc 840 gcgttcggaa atcgaggttt tattaagttt tagattgcga tttcggcgtt tttacggtta 900 ggttcgtatt cgtatttaga ttttttcgat ttataaaaagg tttcgttacg cggtttacgt 960 atttcggtaa attcgtaggt tttacgatgg cggggcggcg gcgcgaatat ataaaggagg 1020 cqtcqttaqc qqqqaataaa aattttqttc qqqttttttt tttaataqta tattttqttc 1080 gattttttaa gtgattttgg gggcgttttt gttttttta gagttttagt tttttttt 1140 aggttaggaa ttaagtttta tggtcgcggt tttttagggt gagtcgagat ttagacgtag 1200 attitttaat tittgttgtt cgcgttaagt cgggttcggt gcgttcgcgc ggacggtagt 1260 gcgagcgatt agagttggtt cgaggtttcg ggttgtaaag tttcggttgg gttaagtcgc 1320 gtagcgcggt ttttttaaga ggcgcgggtc gaggtttttg taggtcgcga agttgtttaa 1380 atttcgtatt tgtaaggttt tgatttatcg ttgttttttc gtaaagttcg gtttaatttg 1440 1500 agtogtttag gagagttttt cgagaaagat gtogtogttt taatagtaat ttattttogt 1560 1620 tcgcggtcgg tcgggtaagg ataaattttt taattttatt ggataagaaa attatttgtt 1680 attattttaa aacqcqtttt ttttcqtttt cqtttataat cqaqcqtatt aattcqtatt 1740 tttcggtaag agacggcgcg ggcgcgtttc gttcgtaagg tttttcggga gttacggttt 1800 gagggcgatt cgggcgattc ggtcgttcgt gttcggttgt tattgatcgt tttaacgtcg 1860 ttagggacga ttcgttagtt gttttcggag tcgagtaggt ttcgaatttt tttatttta 1920 gatttttagt cgtataatag tcgcggtgtt tttggttcga cgtagttggt cggaggcgcg gagttggtcg ttcgtttcgt tcgtcgtttc gcgtttttt ttcggttttt gttttttcgt 1980 2040 tttttaacga ggtttttgtg aggaaggttg ttgggttttg ggattttgac gatcggttgg 2100 aaattaggtt tggttttgtt ttagtatttt cgcgtgttaa gttttgggtc ggcgtgcggg 2160 tttttgtttt tggaggaagt tgggattttt gtaggtttgg gtggagacgt gtatalaata 2220 gaggaagagt gtggaggatt ggaggattta gggtagtacg gtagaggtgt atgtaggttt 2280 teggteggat tggagaatgg geggtgggtt ttttgagttt tagtttttga gttegatttt 2340 gacgtgggtt tagtaattag gaaaaaagtt tattttgttt ttgttgtttg agaatattta 2400 2407 gatttta <210> 312 <211> 2229 <212> DNA

<213> Artificial Sequence

```
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 312
ttttttttcg gcgttggttg gtgcgggttg gggttaggtg gagaagtcgt tttttgttaa
                                                                        60
ggtgatagaa cgtgttgggg gtgggggtcg gggttagggt cggtgtaatt agqqqqtcqt
                                                                       120
tgtttttttt tggatatagt ggaagttttt ttcgtattat taaatttttg ttatttttt
                                                                       180
tgagggattt gtttttaggt agtacgtaag ttgttgtttc gggtttattt cgtattttt
                                                                       240
tattgggtga ggaaggagta ttttgaatgg agatgggggt gttttcggtt tatatatttg
                                                                       300
tagagaagag gtgtgtcggg ttgtattttt ggaggtcgcg gtaattgata ttagagaaga
                                                                       360
tttcggttgt agttgggaag gtttattggt tggaaagagg tgttttttt ttttagtaaa gggttttgtt tggaaagggtt gtttttatt tgtttagtgg tattatagga cggtcggttt
                                                                       420
                                                                       480
ttattcgaat titttcggac ggtattatta tatagtcggg ttttcgtagt gttggttttt
                                                                       540
taattcgatg attgttattt cggtgaggat ttgtgttgat ggtcggagaa ttttgcgttg
                                                                       600
cgggcgtata tggttaggtg gcgtttggta ggcgacgttc gggtgtagga cggcgttttt
                                                                       660
atcgttttat tttaaatcgt tgtttgggtt taggtttttc ggttttttga atagggqttt
                                                                       720
ggggggttaa ggacgttgag gtttcggggg taggaagttt tttttggtta agcgtttttt
                                                                       780
ttttttttcg gtatatattt ttttatttat ttatttcgtt tattttcggg gcgagaggtt
                                                                       840
tattaaggta gggcgcgttt tttttatgaa ttattttaag gtttttgagt cgcgggggtt
                                                                       900
tcgggtaatt attitittt ttttttggtt ttaggtattt tagtttaggg gtttgtagag
                                                                       960
aagttcgaag ttcggataaa cgcgtcggac gttaataatt ttttattttt ggtagtagta
                                                                      1020
aaggttaata tatttttatt ttttatttta gtttgttatt aaaataaagt tgcgcgcggt
                                                                      1080
tgagggtagg aaggcgttga gatcgagaag aagggacgtt tcggagaaag tgcgtttagt
                                                                      1140
tgattttaga aattagagtt tttcgggatt tcgtcgagat tttttgtagg gcgttttaat
                                                                      1200
ttgtttttt attgcgtgtc ggcgtcgtag cgcgtgcggt ttagggtttg gtgatttcgg
                                                                      1260
tttagttcgg cggtcgcggc gaggtttttg gcgtagtcgt ttggaatttc gtattagaat
                                                                      1320
1380
aataaaatgg ggttttcggt gtttcgaagt attttttgaa attttttaa aataatttat
                                                                      1440
aaaaaatgtt tttgttttaa cgttttataa cgtttaagga aatatgtaaa tggtttgttt
                                                                      1500
ttttatcgag atggtcgttt taattaatag tgtatatata tataataatt tttttaattt
                                                                      1560
ttttttttag agttaagtat tttattatat gtaaattata ataaagaaaa gattgtgtaa
                                                                      1620
gattatgtaa gtcgattgat ttaaaatatt gagttttaat ttaggttttt tgtttttta
                                                                      1680
                                                                      1740
tttaataatt tttgtgtttg gattagattg gtgaagtagg ttatggaaat taataaagta
aaaaattaaa agtatttttt ttcgttattt tttttttttaa aattaaataa tagtcqtttt
                                                                      1800
ttttttgagta ggttttagtt ttaggttcga gtttttttgc gattatttta tagttattta
                                                                      1860
tagtagttgt tgttgttttt gtcgggtttt cgtttttgtt tttttttgggt cgttttttgt
                                                                      1920
atataaaata tattitagtt ittiaattaa atttaaatac gatttcggta gaatttatat
                                                                      1980
atttcgtggt gtatggattg tgtcggtgta ggggaaataa atattttttg gtatttaatt
                                                                      2040
attgagttta attcgaaaaa tcgggattgg gtttttaggc ggtattttag gggttttaat
                                                                      2100
ttggttcgcg tttttttaga ttttggcgtt gagagcgttg tttttgcggg tgggtggacg
                                                                      2160
gagaggtaat aatttgtttt taataaaaat ttgtcgttat cgaatcgaaa gcgaaaggga
                                                                      2220
agggagaag
                                                                      2229
<210> 313
<211> 2229
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 313
tttttttttt tttttcgtt ttcgattcgg tggcgatagg tttttgttga aagtagattg
                                                                        60
ttattttttc gtttatttat tcgtaaaagt agcgttttta gcgttaaggt ttggggaggc
                                                                       120
gcgggttagg ttggagtttt tggggtgtcg tttaggggtt tagtttcgat ttttcgaatt
                                                                       180
agatttagtg gttaaatatt agagggtatt tattttttt gtatcgatat aatttatgta
                                                                       240
ttacgaaatg tgtaaatttt gtcggggtcg tatttgaatt tagttagaga attggggtgt
                                                                       300
gttttgtata taagagacga tttaaagaag gtagaaacga aaattcgata gaagtagtaa
                                                                       360
tagttgttgt gggtgattgt ggggtgatcg taggaaaatt cgagtttggg attgaagttt
                                                                       420
gtttaggaag gggcgattgt tgtttaattt tggagggagg gatggcgaag gaagatgttt
                                                                       480
                                       Page 95
```

47675-47.txt 540 ttaatttttt attttgttaa tttttatagt ttgttttatt agtttggttt aaatataaaa gttgttaaat agaaaaatag agggtttgga ttaaaattta atattttaag ttaatcgatt 600 660 tgtatgattt tgtataattt tttttttatt ataatttata tatagtgaag tgtttagttt 720 tcgataaaga aatagattat ttatatgttt ttttaaacgt tgtaaaacgt taaagtaaaa 780 840 atattttttg taagttgttt taagaaaatt ttagaagata tttcggagta tcggggattt 900 tattttgttt ttgatagtag tgttttttga atagggtgat attttagtta gggtatttgc 960 gcqqtttcqa ttttaatqcq aaqttttaag cggttgcgtt aggaatttcg tcgcgatcgt 1020 cgggttaagt cggagttatt aagttttgag tcgtacgcgt tgcgacgtcg gtacgtagta 1080 ggaaaataga ttaaaacgtt ttatagaaaa tttcggcgaa gtttcggagg attttggttt ttaagattag ttgggcgtat ttttttcggg acgtttttt ttttcggttt tagcgttttt 1140 ttgtttttag tcgcgcgtag ttttgttttg gtggtaaatt gaaataagaa atggaaatat 1200 attggttttt gttgtta gggatgagag gttgttgacg ttcggcgcgt ttgttcgggt 1260 ttcgggtttt tttgtagatt tttggattgg ggtgtttgag gttaggagag gagggggata 1320 gttgttcgga gttttcgcgg tttagaggtt ttgggatgat ttatgggggg ggcgcgtttt 1380 gttttggtga gtttttcgtt tcgagggtag gcgaggtggg tgggtagggg agtgtatgtc 1440 1500 gqaqaqaaqa qaqaacqttt aattagagag aattttttgt tttcggagtt ttagcgtttt 1560 tagtttttta aatttttgtt taggaagtcg aaggatttag gtttaggtaa cggtttgggg 1620 tggggcggta agagcgtcgt tttgtattcg gacgtcgttt gttaggcgtt atttggttat gtgcgttcgt agcgtagggt ttttcggtta ttagtatagg tttttatcga ggtgatagtt 1680 atoggattigg gaaattaata ttgcgaggat tcggttatigt gatgatatcg ttcgggggaa 1740 ttcgagtgga agtcgatcgt tttgtggtgt tattagatag gtgagaagta gtttttttaa 1800 atagggtttt tigtiggaag gaggaggtat ttttttttag ttagtgagtt tttttagttg 1860 taaloggggt tttttttaat attagttato goggttttta gaggtgtagt toggtatatt 1920 ttttttttgt agatgtataa atcggggata tttttatttt tatttaagat gtttttttt 1980 tatttagtag aggggtgcgg agtaaattcg ggataataat ttgcgtgttg tttggaagta 2040 2100 ggttttttag aaaggatgat aaaaatttgg tgatgcggaa gaagttttta ttgtgtttag gaaagggtag cggtttttta gttgtatcgg ttttggtttc ggtttttatt tttagtacgt 2160 tttgttattt taataaagag cggttttttt atttgatttt aattcgtatt agttagcgtc 2220 gaggaaaga 2229 <210> 314 <211> 6887 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 314 cgtcgttcgt gggtcgtcgg tcggtcgtag ttcgttggcg acgagggtat tatagttgtt 60 tīgaīcgcgt agattatgta tgtttcggtt tcgggaattt attatgtatt agaatatatt 120 180 agogtttgta ttttaaaagg ttaaattatt ggtttttagt tagggatttt oggtaagtgg tttgttagtg acgagtgttt gtttatattg gtatatagcg gagttttttg ttttcggttt 240 attegttett aggaaagttt tggggtgagg cgaaggcgat tgaagtaatg ttttttttt 300 360 tagatcgtag ttgtttaggg gggatatagt acggtatttt ttatcgaatt tttttcgttc 420 ttgacgtttg attttagtag taaaggaggt aaaaaaggta tcgagtcgtt agttaaattt gaaaagtgcg gtttcgtttt ttttatagtt attggtagtt tttcgtggaa ggttcgtttt 480 540 teggggtagt tgeggttteg gagtggttge gtttggegtt egtegggegt ggtttegttt taggtteggg agggtaggtt ggttgttteg gegageggta gagttttttt ggatagttt 600 660 cgittatita aatagaagac gtcggcgtcg gagcgggitc ggatatggcg aggttgcgag 720 780 gtacgtacgt ttcgttcgtt tttatttcgt ttttatttcg ggcgagttcg ttcgtagttc 840 ggggcgtata ttcgtacgcg tattttttt tatttatttt cgcgttcgtt tttattttcg 900 tagtogagtt togttacgog ogttttgtto gttogtoggt ogttttogto gttttogtog 960 ttttcgggtt ttgatggatt gaatgaaggt tgtttatatc gtttatcgat gttttattaa 1020

Page 96

1080

1140

1200

1260

1320

agatttagaa ggttgcgtta tgaattcgga gttgataatg gaaagtttgg gtattttgta

gggttcgggt tatgagtagg agttgttggt tagttttagt ttttattacg cgggtcgcgg

cgtcgttggt tcgttgcggg gtttttcgtc gtttttaatc gcgtattagg agttgggtac

ggcggtagcg gcggtagcgg cggcgtcgcg ttcggttatg gttattagta tggtttcgat

				-		
+++aaaaaa	aaaaattata	aattaaaatt	47675-4		++-+~-~+-+	1200
	ggcgattatc tcgttttcgt					1380 1440
	ttgttattta					1500
	tattattatt					1560
	tttatgcgcg					1620
	atgttcggta					1680
	ggcggttttt					1740
	atgtttagtt					1800
	ttgtttcgcg					1860
	tattcgggtt					1920
	tcgtttttat					1980
	gaggtggttt					2040
	gcgtagaggg					2100
	tcgtggagta					2160
	gagttcgagt					2220
	gggttaggtt					2280 2340
	gagttatttt ttatttttt					2400
	tttttttt					2460
tttttttat	tttattcgtt	tttttttaa	tatattaatt	tttattttat	tttccatttt	2520
	gggaggcggg					2580
	aaattaggat					2640
	ttttaatttt					2700
	tagagggaaa					2760
tttggttatt	ggttgaaggt	atagttttgt	tttcgcgggg	aatcggcggt	taggatataa	2820
tagcgttttt	ggagtttatt	tttggttttg	gcgttggcgt	agggattttt	tgatcgggtt	2880
	gggttagttt					2940
	tttatcgttt					3000
	atcggtcgtt					3060
tgtcggggtt	tcgggagatt	ttgagtattc	gtaggaagag	gtgttgagaa	attaaaaatt	3120
	aatgtatttt					3180
	gcgtttggcg					3240 3300
	ttatattgtt tatagttttt					3360
	ttagagggaa					3420
	cggatttcgc					3480
	aggggtaaaa					3540
	ggtgggcgat					3600
	taggggaata					3660
	ttcgagttag					3720
	ttttcgggtt					3780
	atagggttgg					3840
gggagttttc	gttttgatag	tattttttt	tgtcgtttgt	tggtggattt	ttatttttag	3900
	tttcgtagtg					3960
	taaatcggcg					4020
	tagtttattt					4080 4140
	taaagtagtt tagtttttaa					4200
	tagtattcgt					4260
tagttttagg	ggtatagtta	aaggtaggat	gatagttatt	tttttgttta	ttttagagcg	4320
ttatcatttt	tttatgtcgg	tcqcqtaaaq	aatataqttt	ttaaaaaata	catattttt	4380
	gtttgaaagt					4440
	attttaagcg					4500
ttttattcgc	gtttatggtg	taagtttgta	gggataggtt	cgggatagta	ttgtttacgt	4560
tgttagattt	ttcgtagagg	atcgttgaag	ttgttttcgt	gggagataga	atgtttttt	4620
	aaaaggtttg					4680
	tttgggttga					
ttagtaatta	taagtgtgtt	gagtggttat	tattatatag	gaggttttt	agtttggggt	4800
	gtttttttag					4860
	gttaggggat					4920
ggagtatcga	tcggaatttt	tttcataca	cottocata	citicgtcgt	taggtetegg	4980
gggcctaata	agtttagtcg tttttgtttt	tttttcctta	aatttattt	ttttttt	tttatacett	5040 5100
gaagatateg	ceeegeeee	cccccgcca	Page		cccacayycc	2100
			rage			

47675-47.txt ataggttttt ttttttttt attttggttt cgttttcggg ttttgttaaa tagttaagta 5160 ggtcggggtt tagggggttt agaatgaaga ggtttgattt ggttagcgtc ggtaaagttt 5220 atttttaggc gaggttataa tagaggtagg ttttttttgt ttagtttgtc ggtgtagtta 5280 5340 tagttaaggg tggtatttga aaggaaaagg gagaaaattt cggagaaatt tagattgttt taacgttaga ttttagagaa attgatttta aatgtacgga ttcgttcgga aagggcggtt 5400 5460 aagtggtagg tggttgtaat ttcgttcggt cgggttttcg tagaggtttt ttaagattag tttttgtagg gcggttttta gtaatttgat aagaggcggt taagataaat ttttgcgggt 5520 5580 tcgagtatat attttcgggc gttgggtttt agagattttt aaattaagta taaataagaa 5640 gggagtgaga gaatttaggt tagaatttgt acgggtattt tattgaggaa aagcgaggtt 5700 teggtggtag gtatgttttt tttegaegtt egaaaatega gtegagegtt egattatatt tattgtagag gttttcgttt ttagtgagtt cggatttttt agcggtttgt tcggagttgg tttttagttt tcgtcgtagt tcgacgtacg gtttttttt ggtagtaagt ttttagcggt 5760 5820 tagtttgaag ttaattttgt ttaggcggtc gagggttttt agttaattta ttatgatgtc 5880 gtttgggtta tttgatgttc gtagcggcgg gatacggttc gggtagtgcg tagtggtttt tgttagggt atcgcgtgcg tgtttgtttt tcgttgcgtc ggggacgttt ttgggtgata 5940 6000 cgggtcgttg ggtatttttt aagtcgagga aacggatttt tttcgtagag tttcgcgttt 6060 attititaat tittitattic gittiticgit gittagggitt tegatitagi tiattititt 6120 6180 tggcggttta gttagggatt agagttggag aggttgaacg taattcgtgt tagtacggaa tagacgatat gtttgtttgt tagttgtttg gatgaataat tgaaaagttc gttgtagttt 6240 6300 gtgtttcgtt aagtttcggg tgtcgggaga atattttttt aatacgtatt agggtgggcg 6360 ggagcgggta gaggaggcgg gattcgaggg aggagagtga attcgagtag gagaagtagt ttaggtagtt aggcgttttc gatgcgagag gttgggtatt tatttttatt ttaggttttt 6420 6480 6540 taatgtttag aagattaaaa gagtattaat gttggtaata ataacgtaaa cgtgtggatt 6600 tagattttat tgatttggaa tttgattcgg cgcgttttta gtaagttcga cggcgcgttt tttttagtag agegtttatt agegttaegg tittegeggtt ttttageggt gtegtttegt 6660 tagttttgcg cgggtttttt cgtttgatcg tagttttttt ttcgcgaggt tttagttcgt 6720 tttatttttt cgaggttttt ttttttttc gcggggtttt ttgttttttg tattttttt 6780 6840 ttcgattttt gtattattcg tttttgtgcg tatatatcgt tatttgcgtt ttcggcgatt 6887 cgtttgggcg gttgggttcg cgaagttaat gcgttgaacg gtgttcg <210> 315 <211> 6887 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 315 60 cgggtatcgt ttagcgtatt ggtttcgcgg atttagtcgt ttaggcggat cgtcggaagc gtaagtagcg gtgtgtgcgt ataggggcgg gtggtgtaga ggtcggggga gggggtgtag 120 agggtagaga gtttcgcgag aggaggagaa aatttcgggg aagtaaggcg ggttggggtt 180 240 tegeggggga ggagttgegg ttagaeggga gaattegegt agagttggeg aageggtate qttgqaaaat cgcggggtcg tggcgttggt gagcgttttg ttgggaagaq cgcqtcqtcq 300 ggtttattgg aaacgcgtcg gattaagttt tagattaatg aaatttgggt ttatacgttt 360 acgttattgt tgttagtatt aatgtttttt taatttttta aatattatta gtatcgattt 420 ttttttatat atatatttgt ttgagaaagt gatataatta tatagtggaa agtttggaat 480 aaaaataaat gtttagtttt tcgtatcgag ggcgtttggt tgtttgggtt gtttttttg ttcgggttta tttttttt tcgggtttcg ttttttttgt tcgttttcgt ttattttgat 540 600 gcgtgttggg aaggtgtttt ttcggtattc gggatttgac gaagtataga ttgtagcgaa 660 ttttttaatt atttatttaa gtagttagta ggtaaatata tcgtttgttt cgtattggta 720 cgggttgcgt ttagtttttt tagttttgat ttttaattaa atcgttagga gaggtgggtt 780 gagtcgggag ttttagtagc gagaaacgag gtgggaggtt ggggggtggg cgcgagattt 840 tgcgaagggg gttcgttttt tcggtttggg aggtgtttag cggttcgtgt tatttaagga 900 960 cgttttcggc gtagcgggag ataagtacgt acgcggtgtt tttagtagga gttattgcgt attgttcggg tcgtgtttcg tcgttgcggg tattaggtgg tttaggcgat attatggtgg gttggttaag ggttttcggt cgtttgaata gaattggttt tagattggtc gttgggagtt 1020 1080 tgttgttagg agagggtcgt gcgtcggatt acggcgggga ttggagatta gtttcgggta 1140 ggtcgttggg ggattcgggt ttattggagg cggaaatttt tgtagtaaat gtagtcgggc 1200 gttcggttcg attttcgggc gtcggaagaa aatatgtttg ttatcgaggt ttcgttttt 1260

Page 98

1320

6 6 t t t t			47675-4			1200
ttggtttaga	ggtttttggg	gtttaacgtt	cgagagtgtg	tgttcgaatt	cgtagaaatt	1380
		aggttgttga				1440
		gggcggggtt				1500
		agttaatttt				1560
		tttttttta				1620
		gtttttgttg				1680
		ttattttgag				1740
		ttaaaatgag				1800
		cgggaggggg				1860
					gggtttaacg	
		atcggcgggg				1980
		tgtttttgtt				2040 2100
		ttagtgtttg				
		attatttaat				2160 2220
		tttttttta				2220
		tttttagtag				2340
		tagcgatttt				2400
		agatttgtat				2460
		ttagtaacgt				2520
tttttaaaa	ttatatttt	ttttattatt tgcgcgatcg	gtatgaggg	acagtaga	tttgagatga	2580
		ttgtttttaa				2640
		gaagtcggcg				2700
		taaaatgtta				2760
		ttttattggt				2820
		ggatgaaaaa				2880
		cggagttcgt				2940
		agattaatat				3000
		gaaaatgttg				3060
gggtgaattt	attatttatt	atatttttta	attttatcaa	acattaatca	agtgtatttt	3120
ataagttggg	tttagcggtg	cgaggaaagt	tcagagaatc	gagagtagaa	atttgagttc	3180
		tgcgaggttg				3240
		tacgaattgt				3300
		atgggaagtc				3360
tgttttttt	aqcqqqqqat	ttggatattt	tatttttta	gattcataat	ttqtttttaq	3420
		atatcgcgcg				3480
		tgtattttt				3540
		aataatagag				3600
		gttttagaat				3660
		tcgcggtcgt				3720
		ggcggtaggg				3780
ttagtatttt	tttttgcgag	tgtttagggt	ttttcggagt	ttcggtaaat	tttggtaaat	3840
tttagtaaac	gttgggatcg	gggtaaggac	ggtcggtgag	taaggtaaag	cgttttttat	3900
tttagttttt	ttttttacgt	ttttttaaag	cggtgaatgt	gattttttta	attttatatt	3960
ttgttttcgt	tgtaggtagt	gatattggag	ttggttcgag	ttttttaagt	tcggttagaa	4020
agtttttgcg	ttaacgttaa	ggttagagat	gggttttagg	agcgttgttg	tattttggtc	4080
gtcggttttt	cgcgggggta	aggttgtgtt	tttagttaat	gattaaataa	gtttgtttat	4140
atggtgggtg	ggagagtaga	gagtttttt	ttttttgtag	agtaaagttt	tttaattgtt	4200
tttgtatagg	gagattagtt	agttcggaaa	attgaaatgt	gttgtttaaa	agagatttga	4260
		agggtaggtt				4320
tttttagagg	aaaacgtata	tttttatttc	gttttttagt	atttgggaag	atcggaaata	4380
gggtaaaggt	tggtatattg	aggggagggc	gaatgaaatg	gggggggtc	ggttaatgaa	4440
agtttaggga	taaggagaga	gtaagaaaga	aaaagaaaag	ggagaaggga	aagtagggga	4500
agagcggaag	agaaagagaa	aatggaagaa	gaaataaaaa	cgagaagaaa	gaggacgtgt	4560
acaggaaaga	gaaggaaaga	attaagagaa	gtgattcggc	gcgtagattt	gggttataag	4620
tatcggattc	ggagttttt	ttttagtagt	ttggtttttg	gttagtttcg	gttttatttg	4680
ttaggcgtaa	ggcggatatg	cgttggaatt	cgggtttttg	aagttatttt	tatattttgc	4740
ygaaggtttt	ttgctagat	ttgagtttat	tttacggttt	tggatttcgg	agtaggtcgg	4800
agagagetet	tttaattata	tatagtattt	tttgcgtaaa	gatcgtttgg	gggatattgt	4860
agegetetag	cattatta	atgcgttggg	ccatttttt	ggtgttgatt	ttttttagtt	4920
ttagtatage	tteaterest	gagttcgatg	aggacgaggg	tggtcgttcg	cgattgggtg	4980
ttataataat	aggtggggt	tgagtgtggt	ccgggtggtg	Laggicgitt	aggrgcgata	5040
ccacggccgt	ayyryyygrg	tttaggtcgc			cgggttagta	5100
			Page	99		

tggtagtgtg	gtgcgcgtcg	aagttggggt	tgagtatttt	gtcgtggttc	ggcggatcgt	5160
agttgggtag	attttgttgc	gcgttgtgga	ggtcgtttag	ttcgttgttt	agcggcgtgg	5220
cggttagcgg	ggataggttt	tggtttatgt	cgggtatttt	tttgtaggga	ttgtagaggt	5280
tgtttatggt	cgggagttcg	cgttcgtcgc	gtatgagggt	gaagttgtcg	ttgacgttgt	5340
cggataggcg	ttggtggtgg	tggtggtggt	ggtggtgcgg	atggtggtgc	gggtgagggt	5400
ggtggaattt	gttagatacg	gtggagatgg	gtggtagcgg	ttggagcggt	gttagcgtgg	5460
tgtaggtgtt	gtttatgttt	atgttaggcg	gagacgagtc	gtaggatatg	tttatggcgt	5520
ggtgtagcgg	gatggagagt	tcgggtcggt	agtcgtcgtc	gtttaggatc	gaggttatgt	5580
tggtgattat	ggtcgagcgc	gacgtcgtcg	ttgtcgtcgt	tgtcgtcgtg	tttagttttt	5640
ggtgcgcggt	tggaggcggc	ggagggtttc	gtagcgagtt	agcggcgtcg	cggttcgcgt	5700
ggtgggggtt	ggggttggtt	agtagttttt	gtttatggtt	cgggttttcg	tcgtcgtttt	5760
cgtcgttttc	gtcgtcgttt	tcgttattgt	cgtcgtcggt	cggttcgtgt	aaagtgttta	5820
gattttttat	tgttagtttc	gggtttatgg	cgtagttttt	taggtttttg	gtgaggtatc	5880
gataggcggt	gtaggtagtt	tttatttagt	ttattagggt	tcgggggcgg	cgggggcggc	5940
gggggcggtc	ggcgggcggg	taaggcgcgc	gtggcggggt	tcggttgcgg	gagtgggggc	6000
gggcgcggga	gtgagtggag	aggagtgcgc	gtgcgggtgt	gcgtttcggg	ttgcgggcgg	6060
gttcgttcgg	ggtgggggg	gggtggggc	ggacggggcg	tgcgtgcggg	agagggagg	6120
ggacggggag	ggagggaggg	attatcgggt	ttcgtcgttc	gggtcggttc	gtagtttcgt	6180
tatgttcgag	ttcgtttcgg	cgtcgacgtt	ttttgtttgg	gtgagcggga	gttgtttaga	6240
agggttttgt	cgttcgtcgg	ggtagttaat	ttatttttc	ggatttgggg	cggggttacg	6300
ttcgacgggc	gttaagcgta	attatttcga	ggtcgtagtt	gtttcgggag	gcgggttttt	6360
tacgggaagt	tattagtggt	tgtggagggg	gcggggtcgt	attttttagg	tttggttgac	6420
ggttcggtgt	tttttttatt	ttttttgtta	ttggaattaa	acgttaagga	gagggaggga	6480
ggagaaggtg	ggggggtcgt	tggggagagg	gaggttggag	tgcgagcgag	cgagagagat	6540
tcggtgaaag	atgtcgtgtt	gtgtttttt	tgagtagttg	cgatttgggg	gaaggggtat	6600
tgttttaatc	gttttcgttt	tattttaaag	tttttttgga	ggcgagtaag	tcgggagtaa	6660
		tatagataaa	_	_		6720
		agtttagttt				6780
		cgggatatgt			aattgtagtg	6840
ttttcgtcgt	tagcgagttg	cggtcggtcg	gcggtttacg	ggcggcg		6887

<210> 316 <211> 3952 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 316

aatcataatc	adadaaat	aggaatcgta	ataaaaacat	tttaatttta	acatttataa	60
		tagcgcgggt				120
		tagggagaag				180
						240
_	_	tttcgaggcg				
		ggcggggtcg		_	_	300
cgtagttaga	gcgagtcgag	tcgcggttag	tttcggcggg	tagggggggc	gttggagcgt	360
agcgtagcgt	agttttatta	gttcgtaaag	cggatcgagt	tggaagtcga	gcgttgtcgc	420
gggaggcggg	cgatgggggt	aggtgttatc	ggtcgcgtta	tggacgggtc	gcgtttgttg	480
ttgttgttgt	ttttgggggt	gagtgttagt	cggagggggt	tcgtttttt	tttcgggatt	540
agaatttcga	gaagagtcgg	gcgtcgttat	taaggaaata	gaatagagta	ttggggtttt	600
agatattgag	ggtgggtggt	gggaaaggat	ttttgatgtc	gggattacga	aggagggttt	660
agggttttcg	gagcgtagag	gcgattttt	agggtggaga	tgagggtaag	atcggagtac	720
ggatgtcggt	ttttaggtat	cgtagggggc	ggtgggggag	ttgggagggg	ttttttaaga	780
gggggtatgg	ggtttttcga	tgtttaggtt	tttcggaaga	ggatattcga	atgtcgggat	840
ttcgaaggga	tttttttt	agtatttcgg	tttttggaga	gtcgtgggat	agaattaagg	900
cgagagaagg	agggggaatt	ggacggggat	tagagatgag	aggggcgagt	tgggttgggg	960
cggggagttc	gggacgacgg	gatggaataa	tggaggaggt	cggagggatt	ggaggtagag	1020
gggattcggt	aaggataatg	gggatcggtt	agataatggg	ggggagggc	gtcggaggga	1080
gaggttgggg	agcgggagag	aggttgagaa	gtgggttagg	gagggtagaa	gaggggcgac	1140
ggcgagggcg	gtagagagat	ggaagtagaa	ggaaaggaga	tagagcgggg	cgcggatttt	1200
qaaqtqqtcg	gggtttcgtt	tgttcgttga	gggatagtga	gacgagaaga	gagagtagag	1260
		tgttttcgcg				1320

```
1380
attggggttg cggatttaag gttgggaggg gagtgtttat ttcgtcgggg cgaattcgtt
ttcggggttt ttttacggtc ggcgggtttt ttcgacgcgc gtgtttttac ggtttgaagt
                                                                      1440
agcgtagcgg atcgcgaggg acggagcggg tgtgttttta ttcgggttgg cggtggttac
                                                                      1500
gtttcggggt gtagagcgtc ggggcgtatt aggcggggat tttttttggt cgcgcgtagt
                                                                      1560
tttggttacg taggcgggag gcggtaggta gggggcgttg cggggcgagg taagtgtagt
                                                                      1620
tegtegttgt tigittgega gittggggit gegegtegit tiltatitag tigegegatt
                                                                      1680
cgagcgtcgc gtttatcgcg tttcgtgggt tttcgcgttt cgaagggtcg ggattcggtt
                                                                      1740
tgagtttttt ttggttttcg gtgtaagtcg ttgggtattt aacgagacgg gggcgttcgg
                                                                      1800
acgtttcgga ttttgtagcg cggtatttcg ggttatcgat tcggtaaagg tcggcgggtt
                                                                      1860
tttcgggtgg ttcgacgaga ttgttagatg tggtttgttt tatggttatg aatcgaatgt
                                                                      1920
tttggaaggt ttggtaacgg aggaggcgtt tttatttttt tcgttagtat ttttattag
                                                                      1980
agtattgcgt tttaaatttc ggttttatag atacggagat tgaggttttg agagtttaaa cgatttggtt aagattttat agtaagttgg gttagagtcg tggttagatt tttcgatttg atttttagtt cggtatttt ttatttttt agggggtagt cgttgttta gttcggggtt
                                                                      2040
                                                                      2100
                                                                      2160
acggttgcgt tttttagtag ggcggggggg gttgatattg tttttagagt tcgtcggcgg
                                                                      2220
tagagtttgc gggtgaggtg ggtagagatt ttgttcgggt gcgggtttta gttcgaaagt
                                                                      2280
ttagttttag ttttttggag ttgttaggat ttgtggttgc gttcggggat ttgggagcga
                                                                      2340
tegegggtae gtttgttgat taacgtegtt ggttagagae gttgtttaga egegggtggg
                                                                      2400
cgagcgtaga ttaggagagc ggggaggagg gatcggattt tagaggggta acgatttggg
                                                                      2460
tttcgggttt gggtaagagc gagggttttc gcgcgaagat ttaaggaagg aggggagttg
                                                                      2520
ggcgtggagg atttgggcgt ttgggaaggt gtatttcgat aggaatttgt cgtttgtagt
                                                                      2580
tittgcggti ttcgtittcg tttcggcgcg cggttgttcg gtttgggatg gttgtgcgcg
                                                                      2640
gttcgagttt ttttttgggt cgcggtgaga gagagagggt tgaaattaga gcgcgtttcg
                                                                      2700
gegggteggt tggegggteg egteggtaat ggaggtattt tgttatttag aegtttgtaa
                                                                      2760
ttagagtcgt cgggttggtt aatgcgttta atagggatgg aacgagggta gtaaatgggc
                                                                      2820
gtgcgtgagc ggtcgggttg agttgggtgg atggtggatg gggaggtagt ttcgcggggg
                                                                      2880
acgggttttt atcgtattgt tttagtttag tttggtttaa gcgtttcgtt ttttttttgg
                                                                      2940
gggatcgcgt ggggaggcgg gaataatcga tgtgttgagt ttttattaag tgttttgtat
                                                                      3000
tttttttggta gttttttttg aattatttaa tttttataag gttttagtaa ggtgaattta
                                                                      3060
gttattttta tttcgtagtt gaggaaatag aattttttag atttttaggt tcgagattag
                                                                      3120
3180
                                                                      3240
agtcgtggtt ttgagagatt aaatcgtgtt ttatgttttt ggttttatat atttagattt
                                                                      3300
gagttttttt tttatacgta gaggttttgt tttttttaa gtttttatgt tatattattt
                                                                      3360
tgggtaatta gtttttttt ttttaatttt tttttattt aaagggagtg aggggtatgt
                                                                      3420
gttagtqttt tttttgggtt tgtatcqatt ttaaaaqqtt ttttaqqtqt ttgaaaattt
                                                                      3480
tttttatttt atggcggtga ttacggtttt atttatttaa gagttttttg ttgaagttgt
                                                                      3540
tggaatggtt agggttgatt atattgaaat attcgtatgg ttttaaatat ttttaattgt
                                                                      3600
ttcgttgttt tttttttt tttaattaaa aaaaatgaaa atttttaaaa gttaatttat
                                                                      3660
ttaaggattt ttttatttta gttttttgta agttttgaaa tggttaaaaat aaaaagatta
                                                                      3720
taagcgtttt taaaaatgag atgaaattat tttgttaaat gtgaaatgat taagtgtaat
                                                                      3780
atatataaat tttagggaaa tttatttgtt atttttataa attaattttt ttggatttga
                                                                      3840
3900
ttgtttgggg tttttttaag atgagatgtt tttttgataa ttaatattta tt
                                                                      3952
<210> 317
<211> 3952
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 317
aataaatgtt agttattaaa gaagtatttt attttaagga gattttaggt aggaggggag
                                                                        60
                                                                       120
agtttagtta agtagggagg ggtgattaat atttaggtta attgttttaa aattagattt
aaaaggatta atttataggg atgatagata aatttttttg aaatttgtat gtgttatatt
                                                                       180
tagttatttt atatttgata gaatgatttt attttatttt taagaacgtt tgtaattttt
                                                                       240
ttgttttggt tattttaagg tttataagga attaaggtgg aaggattttt agatgaattg
                                                                       300
atttttaaga atttttattt tttttaatta gagaaaagag agaaatagcg aaatagttga
                                                                       360
aagtatttga aattatacga atgttttagt ataattagtt ttggttattt taatagtttt
                                                                       420
```

Page 101

480

		47675 4	7		
222525555	t gaggtggatg	47675-4		atatatatt	540
aaatatttgg agggttttt tttatttttt ttggatagg					600
tagtatagag atttgagag					660
atgtgtgggg ttaaaggta			agagttacga		720
gatttagaag gtaggggg	g ggaggagtt	tggtatatgt	aggaaagaga	atattttagg	780
ttaagtattt tgggtttta					840
gggtttgaaa gtttagaag			agtgggaata		900
ttttgttagg attttataa					960
tatttagtag gaatttagt					1020
gaagcgaggc gtttgagtt					1080
gagttgtttt tttatttat	_			_	1140
gttgttttcg ttttatttt					1200
gtttgaatga taaagtgtt					1260
gttttggttt tagtttttt					1320
gttattttag atcgagtag					1380
cggtaggttt ttgtcgggg					1440
ttttttttt gggttttcg					1500 1560
gttgtttttt tgggattcg					1620
cgtttgagta gcgttttta aaattttcgg acgtagtta			aattggggtt		1680
gttggggttc gtattcgga					1740
ggattttggg gatagtgtt					1800
gttgggatag cggttgttt					1860
ggagtttagt tacgatttt					1920
tttagagttt tagttttcg					1980
agatgttggc ggggagagt					2040
tttatggtta taaagtagg					2100
gatttttgtc gagtcggtg					2160
tttcgtttcg ttaggtgtt					2220
ttcgattttt cgaggcgcg					2280
agttaggtgg ggagcggcg					2340
tgtttcgttt cgtagcgtt	t tttgtttgtc	gtttttcgtt	tgcgtagtta	gagttgcgcg	2400
cggttaggaa gggttttcg					2460
cgttagttcg ggtaggggt	a tattcgtttc	gtttttcgcg	attcgttgcg	ttgttttaag	2520
tcgtgagaat acgcgcgtc					2580
cgtttcggcg aagtgggta					2640
tgggagaggt cgcgagtag					2700
ttttttttcg ttttattgt					2760
cgtttcgttt tgtttttt					2820
ttttttgttt tttttaatt					2880
acgttttttt tttttattg ttagtttttt cgattttt	t tottettte	tttactgttt	tagagettt	aattttaatt	2940 3000
tagttcgttt tttttattt					3060
ttgttttacg atttttacg					3120
attcgagtgt tttttttcg					3180
gattttttt agtttttt					3240
gttttgtttt tatttttat					3300
tttcgtggtt tcggtatta					3360
aatgittigt ttigtttt					3420
gaaagggagc gggtttttt					3480
gcggttcgtt tatggcgcg	g tcggtggtat	ttgtttttat	cgttcgtttt	tcgcggtagc	3540
gttcgatttt tagttcggt	t cgttttgcgg	attgatgggg	ttgcgttgcg	ttgcgtttta	3600
gcgttttttt tgttcgtcg	g agttggtcgc	ggttcggttc	gttttggttg	cgggcgggag	3660
aggttgggtg aagttagtg	t tgcggtttcg	ttttcgtttc	gtttagttcg	tttattttcg	3720
gaatcgcgtt cgttcgttt	t gtcgtttcgg	ggtgggaagt	agaggtaaag	ggagggcgtg	3780
cggtttttcg tatttcgtt	g cgttttttt	tgttttgttt	tttagagttt	tttatttatt	3840
tcgttttggt atttagttt	t cggttcgcgt	tattgcgcgt	tcgtttcgga	tgttgtgggt	3900
tcggggatta gggcgtttt	ı attgeggttt	ctgtttttt	tcggttgcgg	CC	3952

<210> 318 <211> 2820 <212> DNA <213> Artificial Sequence

<220> <223> chemically treated genomic DNA (Homo sapiens) <400> 318 60 aattitigitt agtatattat aggttgttaa atcgaaatgt tatgttagtt aggagtgtag 120 taatttttat tittiggitt taittaatta ggaagittia gtagagogaa gittgitaag 180 cgttcgtcgt tagaatttga aggaattcga gcgagtaaga agagtgtttg atttatttta 240 tagaagttig titagaaatg gaggagttag cgittattga agtcggittc gitticggit cgittatatg gagtitgatt agtittagti atgittatti cggittigga gattcgiaaa 300 360 gtgttttttt ttttaatttt tttgtattat tttgaagttt agggaagtaa agagagggt 420 atatttggat tgtaaaatta atgttttttg tcgtttagga gagaagggaa tgagagag 480 540 agaaatttta ttgaaattta gtttttttag aatttgtgtg atttggtttt taacqqqaqa 600 ttagtgcgat tttatggtat ttttgttagg aattagcgat ttttttgtag ttattatttg 660 atttattgtt ttttcgttta tttttttta taaagttatt tttttttat tttagtaaga 720 tttttttttt taatgatgat aaagtttttg ttttagtgtt ttttttagga ttggtgtttt 780 tttaaaaatag tgaatttaga aaattatttc gtttaatatt ttttaaaatt ttcgtagttt 840 taatgtaagc gtaagtatgt aaaggttttt tgttatattt gtattttttg tttattttag 900 aattattttt tattiteggg titgtaatag tittititigt tittitiggat agaggigggt 960 ggtattaggg gtttagggta gtaggaggtg aggggttgag gaggtcgtta gggtaggttg 1020 gtttgtgttg gatacgcgtg tttttttgcg gagttaaagg gtcggggacg ggggttttgg 1080 atttattaga gtaattttag teggtgggeg tttggtagtt atttaaggag gtagggaaag 1140 tagcgagttt tatcgggcgg gttacgatga gtagtatgac gggtagtagt agtagttagt 1200 aaaagttttc gtaaagtgtt tagttgttgt attgtcgcgg ggatttttat agtattatga 1260 ttägttcgtg taattttgta gtagtaaacg gttttcgagg aatataggat cgcgggggtc 1320 gggtagcggg ttattgagta tttcgcggac ggcggtagta gaggcggcgg cggtggtagt 1380 ggtattcggc ggggaagtag tagttaaatt cgcgtatgat ttcgagagtt ttagtaatat 1440 ttagggattg ggtttagttt cggagcgaga gggtcgttcg ttgagaagtt gcgtcggaga cgcgggaagt tgttgttata aggagggagt tttgggaagt cggaggatag gaggagacgg 1500 1560 gagtttaggg gtagacgagt ggagttcgag gaggtagggt ggagggagag ttaaggcgtt 1620 tegtagtteg gtagtegttt ttegagtttt gtegttegta tttttttgge gtttgggaag 1680 tagtaggttt ttagttcgtt cggggttacg tgggaagagg tagtcgggtt ttgattggtg 1740 gagtaggatg taggtttcgg gagggagggg tcgacgagga ggtgtaagga tgtaaggagg 1800 aggcggtcgc ggaagttata gatgggttcg ttcgttaggc gttggttcga gtggggttag 1860 gcggggatgg tttaaatgag aagttcgggt tttagggtgg gttattcgta tatttatata ttattcgttt tattttcgt tttaggacgt ttttatcga aggcggggtt cggattagcg 1920 1980 tttttttttc gcgcgtgatt tcgggtcgcg agtgcgggtc gcggttgggt ggcgtttttt 2040 cgagttggag atggtgggg cggaggtgtt agaggagtag tagtagtagg gtagagaggg 2100 gcgagtcggc gcgggagagg gcgttttgtt ggcgatcggc gttttagcgt gcgggagcgc 2160 gtcgtttagg ttgtaggggg atgtaggttg ggaatgtcgc ggcggagagg ttagggacgt 2220 tttttttaggg atttatagga aagagggtga gaggcgatgg tgttagaatc gtttttqtcq 2280 atttggaagt aatagtagta ttttttataa gagcgtgtaa ttttaaggtt gttcgtcgag 2340 gtagtttagt tattteggta ggegtttttt ttttttttt ttttttt tttttttt 2400 aggtttttcg tagtttcgat ttagtttaag cgttcgtagg tttgaatttt tttttttatt 2460 attogttttt ttttagttcg tagtttatta gtgtgtttat ttgggaggtg cggttagatg 2520 tgtttggaag gttagattgg tcgggataag tggtttgaga gaaagagaaa ggtttttttg 2580 tatacgtcgc gggtgggttg tcgggagtat cggtcgggta gcggcgttcg ggaaggggag 2640 agcgggtttt atttgttggt ttaggtagtg attttgcgtt ttttattcgg gtttttgtcg 2700 gatggtcggt gatttggggc gacgagagaa ggtttaattc ggtaggagtt tttggttttg 2760 cgcgtttttt ttatttttt tagcgggaag ggtaaacggt atagcgggat tcgtttttcg 2820 <210> 319 <211> 2820 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 319

cqqaaqqcqq	gtttcgttat	gtcgtttgtt	tttttcqttq	qaqaqaatqa	aagaaacqcq	60
		gagttagatt				120
cggtaaagat	tcgagtaagg	aacgtagggt	tattgtttgg	gttaataaat	ggagttcgtt	180
ttttttttt						240
		ttttagatta				300 360
		gtggatatat				420
		tttgcgaacg agagaaggaa				480
		ttgtacgttt				540
cggtaagagc						600
		gcgatatttt				660
gcgttttcgt						720
		ttgtttttt				780
gagagacgtt						840
		tcggtagggg				900 960
tatatgagtg		gtttggcgag				1020
		ttttcgtcga				1080
		tttttttta				1140
ttttttaaac	gttagaggga	tgcgggcggt	agagttcgag	aggcggttgt	cgggttgcgg	1200
ggcgttttga	tttttttt	attttgtttt	ttcgggtttt	attcgtttgt	ttttggattt	1260
		gttttttaga				1320
		cggacgattt				1380
		attatgcgcg				1440 1500
ggttttcgcg	atttatatt	tgttgtcgtc	catttattat	tatagaatta	tacquattac	1560
		tcgcggtagt				1620
		gttatgttat				1680
		gattgttaaa				1740
		tttttaattt				1800
		tttagttttt				1860
		ataaggggaa				1920
		aggtgtagta				1980 2040
		aatattaaac aatattgaaa				2100
		aataatttta				2160
		atcgttgatt				2220
		tatatagatt				2280
		tttttttt				2340
tttttttta						2400
gtttttttt						2460
tttgcgggtt						2520 2580
		ttagtgggcg ttttgttcgt				2640
tttggtaggt	ttcattttat	tgaagttttt	taattaaata	gggttagagg	atggggagttg	2700
		gtatttcggt				2760
gtggtgtaat						2820
210. 220						
<210> 320 <211> 2265						•
<211> 2203 <212> DNA						
<213> Artif	icial Seque	ence				
	-					
<220>	cally troat	ed genomic	DNA (Home o	saniena)		
<223> CHemi	cally treat	led genomic	DNA (HOIIO S	saprens)		
<400> 320						
tatttttatt	tagcgtgttt	agggtattcq	tatcgtgtta	gtttgtaaca	gtttttaaat	60
taattttgat	tgagtttttg	aggtagtttt	ttattttat	tcgtattaat	ttagtacgtt	120
tattaaaatt						180
tttttttt	tatttttatt	tttttttag			ggtaagttgg	240
			Page 1	104		

gaatttagcg attgaagggt tttggaaggt gtcggagggg agagacgtta gttcgaattt 300 360 ttatagggtt tttttattaa aaatttttaa aatgttggtt cgagaaattt tttttgttgg 420 agggtttgag ttttattttt ttttgtcgcg tgcgttttta ttgtcgtgaa tcgttgtgat 480 ttttaattta ttattttatt tcgcgttttt agcgttttag tcgttttgta tttgtttagt tttttttttg tttatgtatt tggttggttg gtggcgtttg ggacgcggtt gtaggcgtcg 540 600 tegtattggt ggtaggagtt agegtagtta tagteggtat aagttttggt tgggtagttt tcggcggagt cgtttacgtc gtgatattga tattggtagg ggttgagagt tttgttatag 660 720 gaagtcgagg taggagagta gtagtcgtgc ggggtttttt tcgtagggtt gtagtagtta 780 gaatcggtag ttgaagattc gggtaaagtt ggcgattttt gagacggatg gtgtatagtt 840 900 aatatttttg ttatcgttta cgggcggcgg tagcggttgt ttttgttgtt gtggcggcgg tagttgtttt agttggttgt ggggttgttt tggtttaagt agatatggtt gtgggagcga 960 1020 1080 ttttggttaa attttaatt gcgcgtttac gtatagcggg gtggatttgg ttttattggt 1140 tagggtttcg ggagtaatag taatatttta attcgtttaa ttagttttag tataataaag 1200 tattgtttaa aaagggggtg gggggtattg agggggtgtg tgtgtttgtg tgtgtgcgcg 1260 1320 ttcgcgcgtt tgtgtgtgtt tttgtttgtt gtggagtggg gaggggtttt agtttatttg 1380 tttttagtaa attttaaaga tatcgtagaa gttatagtat aaggttttgt gatgtttggg 1440 gataatgtgt tttaattaga agttttaaaa gtgtatatgt tttgggaatg aggtgggcga ttattttttt ttgttttta ttatttcgtt ttcgtgggtt gtattaaagg cgagtgtaga 1500 attaaatatt galattgaaa tagggagtta aggtgtaggg agtggggagc ggggggatgt 1560 1620 agtaagttgt aatttatatg tittgaaaat tigttittig gggaaagagg taattittit 1680 1740 tgtaggagat gagtattttt cggacgcggg ttggatagga atgtttaaga aggtataatg 1800 tttattaagt cggtgaatgg tagggagagt ttttgtagtt taaagttttt ataatgattt 1860 ttaaaaatta ttgttttaaa tatatataat ttaaggaagt ttaaattttc gttgttggtt 1920 1980 ggaataaagg ttttttaatt atgtttagtg gttaaagatt ttcgtaaagg tgaatggatt 2040 tatgtataat ttgttatatt tttaggaaag aatgggaaag tttcggaagt ggggaaggag ataaggatta aagtttttgt aaagttagat gatgtttatt gattttttt ttttggtttt 2100 atgaatgtgg tttagttttt ttatttttta gattcgggtt tttgtatttt tttttttta 2160 ttttttgttg taaagatatt ttatttagtt cgtatgtaag ggaagaaagg atttaagaat 2220 tatttagttg atatacgaga tttaaatttt gttttttagg aggtg 2265 <210> 321 <211> 2265 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 321 tattttttga agagtaaagt ttagatttcg tgtattaatt gaatgatttt tgaatttttt 60 ttttttttgt atacgagtta agtaggatgt ttttgtagta ggaaataaag gggagagggt 120 atagaaatto gggtttggga aatggagaga ttgggttata tttatggagt taggaggggg 180 240 300 gcgggagttt ttggttattg aatatagtta aagagttttt attttaatgt tttgaaaata 360 gatgaaaata ttaaatagaa gtggagttgt ttggtttttt ttgtaagtta gtaacgagga 420 tttgggtttt tttaagttat atgtgtttaa gatagtaatt tttaaaagtt attataagga 480 ttttgggttg taggaatttt ttttgttatt tatcggttta atggatattg tgtttttttg 540 qqtatttttg tttagttcgc gttcgggaga tatttatttt ttgtaaagga agttgttttt 600 ttttttaaag agtaaatttt taaaatatgt aagttataat ttgtttttta atattttatt 660 aaaaaaaaaa aaaatgttgt tttttttttt ttttgttttt attttatatt ttttcgtttt 720 ttattttttg tattttgatt ttttatttta gtattagtgt ttaattttat attcgtttt 780 840 ttaaaatatg tgtatttttg aggtttttga ttggaatata ttgtttttag atattataga 900 gttttgtgtt gtggtttttg cgatgttttt ggaatttatt aaaaatagat agattaagat 960 ttttttttat tttataataa gtaaaaatat atataagcgc gcgggcgcgt atatatataa 1020 atatatatat ttttttagta ttttttattt tttttttaag taatgttttg ttgtgttaaa 1080 Page 105

```
47675-47.txt
attagttgga cgagttaggg tgttattgtt gttttcgagg ttttggttaa tagaattaga
                                                                    1140
tttatttcgt tgtgcgtaag cgcgtaatta aggatttaat taaggttgtg ttgcgtttta
                                                                    1200
1260
                                                                    1320
tgtttgttta gattagagta gttttatagt taattagggt agttgtcgtc gttataatag
                                                                    1380
taaggatagt cgttgtcgtc gttcgtgagc gatgatagga gtgtttgata gaagggtttt
                                                                    1440
tagtattcga ttcggcgatt tttaagtttc gttttagacg ttcgtagtta tgtattattc
                                                                    1500
gttttaggaa tcgttaattt tgttcgagtt tttagttatc gattttgatt attataqttt
                                                                    1560
tacgggggga gtttcgtacg gttattgttt ttttatttcg gttttttatg gtaaagtttt
                                                                    1620
                                                                   1680
taatttttat tagtattagt attacggcgt gaacggtttc gtcgggagtt atttagttaa
agtttatgtc gattatagtt acgttagttt ttattattag tacggcggcg tttataatcg
                                                                    1740
cgttttaagc gttattaatt agttaggtat atggataggg ggaaggttgg gtagatatag ggcgattagg acgttggggg cgcgagatgg ggtggtagat tggggggttat agcggtttac ggtagtggg gcgtacgcgg tagaagggag taggatttag atttttaat aaagagagtt
                                                                   1800
                                                                   1860
                                                                   1920
tttcgggtta gtattttagg gatttttagt aggagagttt tgtggaggtt cgaattagcg
                                                                   1980
ttttttttt tcggtatttt ttaaggtttt ttagtcgttg aatttttagt ttgttcggtt
                                                                    2040
2100
                                                                   2160
2220
taagttagta cggtgcgggt gttttgagta cgttgggtgg gggtg
                                                                    2265
<210> 322
<211> 5907
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 322
gtcgtcggag tagggtttta gcgtatcgcg agtttttgtt tttttcgttt tgtagcgtcg
                                                                     60
cgagtttitt ttitttcgc gtttggtttc gtttgcgttt ttttcggcgt gggtattcgt
                                                                    120
agattegtta ggaggttgae gagaggtgtt tttatagagt tttgttttt tttagatttt
                                                                     180
taaacgaaaa gaaagagaaa agttaatttt tcgtttttat tttgtacgta tttggagagc
                                                                     240
ggttggtggc gagcgattcg tataatcgtt tttttcgcgg cgtttttgga cgggcggaga
                                                                     300
gaattcgggt gattgagttt gaggttgagt ttttttggga gcgatttatg ttagttattt
                                                                     360
                                                                    420
ttatttttaa gggggattcg cggtcgggtt tacgcgcgaa ggatgggtgt tagggaaatt
gatttataga cgattcgttt cgcgagagat tgataattta gttttgcggg ttttcggggc
                                                                     480
gtttagatta gtttttagtt agaggatttg gggttgtata gttttcggat tttggagggg gtggttcggg ggtgggagat tgcgagtatt agtttacgtc ggttttttt tattttgcgg
                                                                     540
                                                                     600
cggcgaggtg ggaagggtta ggatgcgagt ttagtatttt tittagaaat gtagtatttc
                                                                     660
gtttttttat ttttttgtt ttcggcgttt ttttttttac gcgttttttt tcgtttttt
                                                                     720
```

tttaagggcg ttttttttt gtttttagtt tacgtttgaa tttttcggcg ttttttttt 780 tttttttttag ttttttttt acgttttttg ttttcgggta ttttttttt ttaattttt 840 attttcgtat cgtttgattt cgaggggcgg gagcgtattg ggttgcgtac gggtgggggc 900 960 gtcgcgttag tttcgcgtag ttgttttgac gtcgttgtcg tcgtcgtcgt cgtcgtcgtt tttcgtagtt tagttcgcgt ttcgcggtag tttcgtagtg tattagttat tatcgtcgtc 1020 gtcgtcgttt cgttagattt gttgttagtt tgttcggttt agttttgaga gagtttcgaa 1080 cgttagttgc gagggttatg agttagagag tttcggggcg tcgcgcggag agtaagcgga gatagcgatt ttgcgttttt tagttttcgt ttttttgtat cgcgtttttc gtatttcgg 1140 1200 gtttttttgt ttttttcgtt gtttttatcg tcgttatggt tattttgttt cgtagtaagt 1260 tgtttaacgt ggttacgttc gtgtttaata agttttaggt taagatgagc ggtatgttcg 1320 ttaggatggg tttttaggcg gttacggatg aggaggcggt gggtttcgcg tattgcgacg 1380 atttcgattt tgagtatcgt tagggtttgt agatggatat tttgaaagtc gagggagagt 1440 tttgcgggga cgagggcgtt gaagcgttcg tcgagggaga tatttattat tagcgaggta 1500 gcggagtttt titgtcgttt ttcggtttta aggattaggt gggaggtggt ggcgaattcg 1560 ggggttacga taagtttaaa attacggcgt gggaggtagg ttggaacgtg attaacgtta 1620 tttaggtaag cgcgggattt ttagttttgt ttgttttttt tttttttagt ttagcgtgtc 1680 gggttttgtt ttcgatagtc gttcggtgat ttcggtttgg agattttttt ttgtatttag 1740 gaattttttt ttttttattt tttttagttt tgcgcgggga tttacgtttt taggcggtgt 1800 ttttcgtttt aatttacgtt tttttttaac ggtattagtt gtaagatcgt taggttgaag 1860 1920

			47675-47			
aggaagcgat	gagaaagaaa	gaaaattagg	attggagggt	acggtttggt	tttggatttt	1980
	tatagttgta					2040 2100
	tttcgtatat					2160
	tttttttt					2220
atasaartat	ttatagtatt atatttgtat	atttttaaat	taccaatatt	catttaata	tatotatata	2280
	gatgtatgta					2340
	gtatatatat					2400
	tagtattatt					2460
	ggcggttagt					2520
aagaatggtt	tttgttttt	aggtttttt	tttttatttt	taatttttta	ttttttatta	2580
	gatttttata					2640
	ggtaggtcgt					2700
	tagtttggtt					2760
	tttgggagta					2820
	ggtttcgaat					2880
	gttttgttgg					2940
	gggcgttttt					3000
	gttcgtaggt					3060
	ttttatagtt					3120
ttcggttcgg	ttttttggtt	tttttggcgt	tttttcgtta	agttttttt	tttgtttgtt	3180
	ttatttagtt					3240
ttttgtttta	agatttttaa	tttttagttt	tgttttttt	ttttcgcgcg	ttgtttttta	3300
	tattgttttt					3360
	attttattt					3420
	ttgagacgtt					3480 3540
	tcgtgtttat					3600
	cgattacgtt ttttagaaat					3660
	tttttttatt					3720
	cgtttatata					3780
	ttatatttat					3840
	tagtgttttt					3900
	tcgttgttaa					3960
	cgtgttgggt					4020
	tttcgtcgtc					4080
	gaatgaagac					4140
	ttgcgtttcg					4200
	gttggtgatg					4260
	ttcggggttg					4320
	ttgcgttttt					4380
	ttatttcgtt					4440
gcgattgggt	ttgggagaag	gttaagtttt	atatcgacgt	taagaagttt	tttattttta	4500
	cgtgtttagt					4560
	tagcgagttt					4620
	tttcgcgttc					4680
ttacggataa	tttgttcggt	tttattcgcg	tegtggttaa	cattttttttg	gtggttaagg	4740
	ttattttttg					4800 4860
	tagtcgcgtt gacgttgcgt					4920
	cgcgttgttt					4920
	tagtttttt					5040
	cgtcgttatt					5100
attttttcga	gggttttatc	gaagtttatc	gaattaacgc	ggaggattag	ggcccgcgc	5160
cgagttttcg	tcgcgttttt	gcatttttt	ttttttttt	ttatttcgtt	tttattagtt	5220
	tgtcgtcgcg					5280
	gggatggggg					5340
	tttttttt					5400
	ttttttgttt					5460
	agggagggag					5520
	tatttattta					5580
cgttttttat	ttcggagacg	ttttaatttt	gtagcgggaa	aggttgattg	ggaaatttat	5640
tttgggtggg	taatttttt	taacgaagtc	ggaaggcgag	aagtcgcggc	ggggttagtt	5700
			Page 1			

tgtttgtcgg tttttaggaa gttttattgt gcgtgtggtg tttattttta atttagagtg tttgcgcggt tcggtgtcgg	tgttcgtggt cggtatataa	gaataagatg	aatttattag aaatgtatat	tagaaaaaaa	5760 5820 5880 5907
<210> 323 <211> 5907 <212> DNA <213> Artificial Sequ	ence				
<220> <223> chemically trea	ted genomic	DNA (Homo	sapiens)		
<400> 323					
tataaattcg tgtatcgtat tttaaattag acgagtatat tttgaaaatcg tttcgttgaag gaaattgttt gttgaaacgt tttcgttgaag gtttttttt ttttggaagga tttttttt ttttggaagga tttttttt	agatagatt gtagagataagt gtagagtaaattt gtagagtaaattt gtagagtattt attattttaa ggatatttttaa tagatatttgtt tagagagtt attagtgagagtt agagagaagtagtt aggagaagtagttt ttttagtggagaattttt tttttgttaatggagt aggagaatttttt tttttttt	ttittgata tttatatig tgattttgata tggttttggaaa tgggtttggatttggatttggatttggatttggatttggatttggatttggatttggattggttggattgggttgggttgggtttggatttggatgggtttggattttggattttggattttggattttggttttggattttggattttggttttggattttggttttggattttggttttggattttggttttggattttggttttggattttggttttggttttggttttggttttggttttggtttt	tataattttata ataaatttttta ataaattttttt tagtttgactt ttggttgacgttgacgtt attatttttgactt ttggttgacgtgacg	ttaattatta ta agatta agatta attagatt to consider the consider the consideration and the	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 1020 1260 1260 1320 1380 1440 1500 1620 1680 1740 1860 1980 2040 2160 2220 2280 2340
agaagggagc gtagtcggaa ggaaagagtg ggtacgggat aaattcgggc gttttaggtt	aggggtttta ttgtggtggg	agaaaggtag gttggaatgg	tgagttgggt ggtacgggag	ttgggttagt ttaaagagga	2400 2460 2520
cgaaaaggaa atagggtaga	gagggagagg	ggttgaaggt	ggggtaaagt	ttttqqqaqq	2580
taagaataga gataatgtga ttggaaattg agagttttag	agacgtttgg	ggagtagcgc	gcggggagga	ggaagtaggg	2640 2700
ggaaggggat taagtggagg	ttggggaggt	aagtaqaaq	aggagtttag	cgggaacca	2700 2760
ttagggaggt tagaaagtcg	aatcgagtaa	gagtttagaa	ttagaagttt	tagggttagg	2820
cggatagggt tgtagggttt	agaatttata	cggggattaa Page 1	gagttaacga	aatttagggt	2880

```
ttcggaggtt tacgagtttt tagttttttg ttttggtttt ttttggggtt tattaaacgg
                                                                            2940
 agttttgaaa gacgtttcgg gaagtcgcgg ggtatagcga aggcgggagt agtttcgggt
tcgtgattta gtaaggtcgt ttcgtcgggt ttcgtagcgg aaagcgtttt gggtcgggtt
                                                                            3000
                                                                            3060
 attiggtgtt cggggttcgg tggagttttg tttatttcga tatatggaat aattitttggg
                                                                            3120
 aggtittigt tittagaaaa titgtittic giggtittag igatagigcg tittagggac
                                                                            3180
 gtcgcggggt taagttgtaa gggatcgggg ttgtttagag ttgaagtttt tttcggttta
                                                                            3240
                                                                            3300
 gaaagttgcg gtttgttagt ttttgttagt tcggaggtcg ttgttaagat tttaaatttg
                                                                            3360
 ttttttatgt aggagttttg cgtcgtttgg tggggagtgg ggggttagga ataaggggag
 agggtttaga gagtaggggt tatttttagt ttttggagag ggtttcgtta gggttatacg
                                                                            3420
 gggaggagtt ggtcgttttt ttgcggtgta gtcgggattt cgggcgagag gggcgagttt
                                                                            3480
 gtgtataggt aatgttggat tattgcggat taaatgtgtt tgtgtgggag tatgtgtgt
                                                                            3540
 ttttcgtgtg tgtatatttg tatgttttta atagggtcgt atttaaggga gtaggttggt
                                                                            3600
 ttttgtttgt atgtatttgt gtatgtgtg gtgtatatgt ttaaacgaat attcgtgtgt
                                                                            3660
 ttggtatgtg taggtatatg tttttgtttg tggagttgta ggggtgtacg taggtgtatt
                                                                            3720
 tggggatagt attgtggttt atatatagat atatgtcgtg tgcgtttgtg tttgcgtttt
                                                                            3780
 tgttcgtggg aagggggtt gtgggtatgt ggtgtgtttg tttatatacg tgtgcgtgtt
                                                                            3840
                                                                            3900
 tatgcgtgtg tgcggggga ggagatttcg attttagcga ttttttttt tttttttt
 ttaaaaatgt agttgtgaat tcgttttaga gtttaagatt aaatcgtgtt ttttaatttt
                                                                            3960
 gatttttttt ttttttatc gttttttgtt ttttttttt attttttta tttttgtagt
                                                                            4020
                                                                            4080
 gttttcggat aggtgtttta gatcgaattt tagtttagcg gttttgtagt tggtgtcgtt
 gggagggagc gtgggttagg gcggaaaata tcgtttgggg gcgtaggttt tcgcgtaggg
                                                                            4140
 ttgggaggga tggagaaagg gagatttttg ggtataggag ggggttttta ggtcgagatt atcgggcgat tgtcgggggt agagttcggt acgttgagtt gggaggggg aggataggta
                                                                            4200
                                                                            4260
 gaattgggaa tttcgcgttt atttggatgg cgttggttac gttttagttt gttttttacg
                                                                            4320
 tegtgatttt gggtttgteg tggttttega attegttatt attttttatt tggtttttgg
                                                                            4380
 agtcggaggg cggtagagga gtttcgttgt ttcgttgata atggatgttt ttttcgacgg
                                                                            4440
 gcgttttagc gttttcgttt tcgtagggtt ttttttcggt ttttaggatg tttatttgta
                                                                            4500
                                                                            4560
 ggttttggcg gtgtttaaag tcgaggtcgt cgtaatgcgc gaagtttatc gtttttttat
 togtggtogt tigaaaatti attitiggoga atatgtogtt tattitiggtt tigggattigt
                                                                            4620
 tggatacgga cgtggttacg ttggatagtt tgttgcggag taaggtggtt atggcggcgg
                                                                            4680
                                                                            4740
 tggggatagc ggaaaggata gaaggattcg aggatgcggg gaacgcgatg taagaaggcg
 agggttgggg ggcgtaaagt cgttattttc gtttgttttt cgcgcggcgt ttcggggttt
                                                                            4800
 tttggtttat gattttcgta gttggcgttc gaggtttttt tagggttgga tcgggtaagt
                                                                            4860
 tggtagtagg tttggcggag cggcggcggc ggcggtggtg gttagtgtat tgcggagttg
                                                                            4920
 tegeggggeg egagttgggt tgeggaggge ggeggeggeg geggeggeg tageggegtt
                                                                            4980
 agagtagtta cgcgaagttg gcgcggcgtt tttattcgtg cgtagtttaa tgcgttttcg
                                                                            5040
                                                                            5100
 tttttcggaa ttaggcggtg cgggggtggg ggattggaga gaggaaatat tcggaggtag
 gggacgtgag gaaggggtta ggagaagaga aagggggcgt cgagggattt agacgtgagt
                                                                            5160
 tgggggtaga agaagggcgt ttttgggaag gaggcgggag ggagcgcgtg aaagagggag
                                                                            5220
cgtcgagggt aggggaggtg ggggggggaa gtgttgtatt tttaggggag gtgttaagtt cgtattttgg tttttttat ttcgtcgtcg tagggtgga gggggtcggc gtgggttgat gttcgtagtt ttttatttc ggattatttt ttttagggtt cgggagttgt gtagttttag
                                                                            5280
                                                                            5340
                                                                            5400
 attittiggt taaggatigg titigggcgtt tcgaaagtic gtaggatiga gitgtiagti
                                                                            5460
 tttegeggag egggtegttt ataagttagt ttttttggta tttatttte gegegtaaat
                                                                            5520
 teggtegega gttttttttg aaggtagaag tggttggtat ggategtttt taaggaagtt
                                                                            5580
 tagttttagg tttagttatt cggqtttttt tcgttcgttt agggacqtcq cqaqqqaaqc
                                                                            5640
gattgtgcgg atcgttcgtt attagtcgtt ttttaaatgc gtgtagaatg gaggcgaaag
                                                                            5700
gttggttttt ttttttttt tcgtttgggg gtttggaaga aggtaggatt ttatgaggat
                                                                            5760
 atttttcgtt agttttttag cgggtttgcg aatgtttacg tcgagagggg cgtagacggg
                                                                            5820
 gttaggcgcg gaggaaagaa gggttcgcgg cgttgtaagg cggaggaagt agaggttcgc
                                                                            5880
 ggtgcgttgg ggttttgttt cgacggt
                                                                            5907
```

```
<210> 324

<211> 3049

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 324
```

				4/6/3-4			
					attcggatag		120
					tgtagcgttt		180
					ttttggttag		240
					tcgtttgcgc		300
	atggtgtagg	agtcgcggta	gtcgatggtg	atgtagttcg	agcgtcggtt	gtcgtttagc	360
					acggattgcg		420
	tttagcgtgg	gcgacggcgt	ttcggtagag	gcgttttttt	gttgttcggg	tttcgagtag	480
	ttaagcggta	gtagttcgtt	atttagcgag	ttttttttgt	gtatttcgcg	tcgcgagggc	540
					gtacgagttt		600
	aagtattcgg	tttcgcgttg	tagtcggttg	cgttcgggga	agtagtcggg	tagtacgagt	660
	tgtaagtttc	gtaggtaatt	taggatgtag	cggaagagga	agtcgtttcg	gtttagaaag	720
	aagcggtttt	tgttgtttcg	ggttagtttt	tgcggttgtt	gttgcgtgaa	tatgcgttag	780
					ttacgtatat		840
	acgtttagtt	ttacgatgtc	ggggaagagc	ggtggtttcg	cggaggacga	cgaggagtta	900
					tgttgttcgt		960
					gttgtattta		1020
					ttttgcgttt		1080
					agagtcgcgc		1140
					cgtttcgttc		1200
	cgcgttttag	gcgagtgtcg	ggtcgcggtt	cgcgcgttgt	ttaagtagag	tcgtttgttt	1260
					ttcgtttatc		1320
	aggtggggag	cggggattcg	atttgtattt	taaacgcgga	cgttacgcgg	ggttgttggt	1380
					attcgttttt		1440
					agaggattcg		1500
					cgtttttttt		1560
					tcggaagttt		1620
					gaattgggcg		1680
					aagtagagag		1740
					gattttgttt		1800
					aaagtaaatt		1860
					agataaaatg		1920
					ttttcgaggt		1980
					ttttatttag		2040
					atttttaaag		2100
					ttttttcgta		216Ó
					ggatatttat		2220
					acgtttgttt		2280
					tttttggttt		2340
,					ttttagtacg		2400
					gaaaataagt		2460
	gaatgttgta	aaaagagaag	agtgtagagg	agggtgttaa	gaaatgattg	ggttattgaa	2520
					agtgaggaat		2580
	ataatttta	aagcgttttt	agtgtagttt	aataagtaaa	gggttagggg	tttgcgtagt	2640
					attaggtaag		2700
	ttgataaaat	ttatttttt	gtgtaattat	ttagtgagtt	ttatagtttt	tttatagata	2760
					attatcgcgt		2820
	gtgttgaaat	gagattaatt	tttaaattag	ttattttaat	tgtaagtata	gattttgata	2880
	ttgaatgtat	tttaatattt	tttttttgtt	gttgttttgt	tttttgggat	aaataataga	2940
	taatataaaa	tttttaagtt	ttagtgtagg	atttcgaggt	ggttgtgtta	ttaggcgtta	3000
	tattagtgtt	agagatttga	taaaattagt	tttttttta	taaatttaa		3049
	<210> 325						

```
<210> 325
<211> 3049
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 325
```

ttggatttgt agaaaagagg ttggttttgt taggtttttg atattaatat aacgtttagt agtataatta tttcgaaatt ttgtattggg atttggaagt tttgtgttat ttattattta
Page 110

		4/6/5-4			
ttttaaagaa taga	aataata ataaaaaaa	, aatgttgaaa	tatatttagt	attaaaattt	180
gtatttgtaa ttaa	agataat tggtttgggg	gttgatttta	ttttagtata	ttgatatgag	240
cgcggtaatt gtt	gagtaga tataaatatt	: ttaaaataaa	aatgatattt	atttgtgagg	300
agattgtgaa gtt	tattggg tagttatata	ı gaaggataaa	ttttattaag	aataaagatt	360
	tttgatg tgtggtttat				420
ttttgatttt ttg	tttattg ggttatattg	g aaagcgtttt	ggagattatt	cgtttttgta	480
ttttttattt ttt	ggtgttt tgtaaataat	agtaggtata	taagaaatat	ttagtgattt	540
aattattttt tga	tattttt ttttgtattt	: ttttttttt	gtagtattta	ggagttttta	600
tttattttta tat	ttaaatt agtgattaga	ı taattattta	taaatatgat	attttagaac	660
gtgttgggag tag	cgtagat agtgtgtagg	gagttattta	gaggttttat	ttatttggga	720
agttagggaa agt	ttttagg gggaggggg	ggttttgtgg	gttgtagttc	gaggggaaa	780
	gtagtag gagttgagag				840
	ttgagat tgacgggaat				900
	ggcgttt ggatttttgg				960
tttaaaaatt acg	ttagatt tgtaattgtt	gtgagtttaa	gggcgcgatt	taacgaaggt	1020
	gagatcg aacgtttcgg				1080
	gcgggaa gagggaattg				1140
	agttaga aaataaatta				1200
gtttgttttt tgt	ttttagg tttatttatt	tatttttag	gttggttgta	aggtaatttg	1260
aataaaattt ggt	tcgttcg gattggggcg	gttttttcgt	ttttttaggt	ttttcqcqtt	1320
	tgatacg ataattaacg				1380
	ggcggga gggtcggagg				1440
	ttacgtt tttttttag				1500
	gattgtt tttttaagga				1560
	aagaggg agaaagttgg				1620
	gtťcggg cgtttťtago				1680
	cgtttaa gatgtaaato				1740
	cgtcgtc gtttacgttt				1800
	cgcgcgg gtcgcgatto				1860
	ggaattt aagggggcgt				1920
	ggtggcg gcggtggcgg				1980
	gcgagcg ttcgggtttc				2040
	ttttttg ttattgtttc				2100
	tggatta tttaacgggg				2160
	gttatcg tttttttcg				2220
	gcgttgt acggtggtgt				2280
	gtcgtag gagttggttd				2340
	ttttcgt tatattttgg				2400
	cgagcgt agtcggttgt				2460
	tttcggg gcgttttagt				2520
	ggagggt tcgttgggtg				2580
	gggcgtt tttgtcgggg				2640
	gggcgcg gcgggttcgt				2700
	ttatatt attatcggtt				2760
	taagttt cggcgagtgg				2820
	gtttggg gatattttga				2880
	gcgttat tattttaagt				2940
	tttttat atggtggcgt				3000
	gagcgag gataagattt			3	3049
3 3 3		35 5	J		
<210> 326					
<211> 4721					
<212> DNA					
<213> Artificia	al Sequence				
	•				
<220>					
<223> chemical:	ly treated genomic	DNA (Homo	sapiens)		
	- 3		•		
<400> 326					
acgtgaagtt tag	tattttt ttaagtttt	gtttatatat	aaaaagttac	gttttagagg	60
ttttattttt aati	ttaagat aagtaggata	ttttaaaaat	tatttattta	ttagttggtt	120
tgagaaaatt tato	cgggtat ttggagtaag			attaaaaaag	180
		Page :	111		

	47675-47.txt										
taaqaqaaaa	taaaggttta	gttatgagaa			aataqaqqta	240					
	ttaattgttt					300					
attgttttga	tatttagttg	ttagataaat	aaaagaggtc	gtttggcgtt	agtttcggcg	360					
tttcgttttt	ttacgtttgc	ggtcgtagtc	gtcgcgttcg	gttggttcgg	ttggaaatta	420					
	cggagtcgcg					480					
	ggattttaga					540					
	gtaatttatt					600					
cggggttgtt	tatttttagc	gtattcggga	gatgtatttt	aagcgtgttg	gggaacgtgg	660					
	ggcgttcggg					720					
	aatggagaaa					780					
	ggttttagcg					840					
	gatttatttg					900					
	tttttttgta					960					
	atttaatttt					1020					
	tggtgttcga					1080					
	ttatagtacg					1140					
	tattttaacg					1200 1260					
	ttgttgattc					1320					
	tagatttttt					1380					
	tgagtttttt					1440					
	atatttttt gatggttgta					1500					
tttcggaaaa	tgttgggggt	agggggataa	ttttttattt	agttcgtaga	atcasttaaa	1560					
	ttgtagtata					1620					
	attttcgagg					1680					
	gagtaggacg					1740					
	tagtttaggc					1800					
	gtttggagta					1860					
	gtttttagat					1920					
	tggtggtgat					1980					
	tcgtcgttat					2040					
	tttttttat					2100					
	tagagacgtc					2160					
	agaaaagtcg					2220					
	gcgtcgagtt					2280					
	cggcggcggt					2340					
	gcgggggttc					2400					
	cgcggttcgc					2460					
	gtttttttgg					2520					
	gtagtggttt					2580					
	ggtaaaaaac					2640 2700					
	ttgttaagta					2760					
	cgatttattt aagatttagg					2820					
	aaggttttcg					2880					
	ttcgaatttt					2940					
	ttataaagta					3000					
	cgtttttttg					3060					
	aaaatcgtgt					3120					
	tttgggtggt					3180					
	cggcggggat					3240					
	tgagttcggc					3300					
	acgggtcgcg					3360					
ggggtcgtcg	atgtttttt	ttttggtcgc	ggttggtcgt	cgaggttttt	cgtatgggtt	3420					
	atttagttgc					3480					
	tttcgtcgcg					3540					
	tttgtcgtcg					3600					
	ggttcggcgt					3660					
	cgagtacggc					3720					
	gagtagtaag					3780					
	tttttttt					3840					
	tttttttcg					3900					
ccaccycyca	gtggcgcgtt	cggttttggt			acacticyco	3960					
Page 112											

```
gttttaaaaa aaaaaaaaa gcgattgtgt ttcgtaaata atagatcggg tttttaaaag
                                                                     4020
ttatttttt ttttaatttt tcgttatcgt tattttttt cgggtttgta gagggggtat
                                                                     4080
cgatggaggg gagagagata ggtgggggt agagaagttt ttagaatgga ttgagtttcg
                                                                     4140
gtcggagtta tggagaaatt ggaaaagtag ggagtatcga gcgggtttcg tcgcgagttt
                                                                     4200
tggagttgag cgagcgggtc ggtggttcga tttcgattcg gttgggtttc gcggtggtta
                                                                     4260
tttcgcgcgc gttcgtttta gcgttttatt tattggtttt gttttaaagg ttttggcggt
                                                                     4320
ggattttttg gtcgcgttcg agggtaaggg gaggagagcg ttgtttcggt ttaaaagata
                                                                     4380
                                                                     4440
tttatatcgg attggatcga ggttttggga agtgtgcgtt gaggggaata gtcgtcgagg
gcggggaggc ggcgtgaata tgattttagc ggcggtcgcg cgttttttt cgtttttta
                                                                     4500
gtttcgggtt tcggttttta ggattgtttg gagaagtgtg ttttgtgtat agttttggaa
                                                                     4560
tgtatttggt cggttgacga gttgtgaggg gtagtatttc ggcgggagaa ggggagcggg
                                                                     4620
ggtgggggtt cgtttgcgcg tcgcgggtag gttttttttc gggttcggaa gattttcgtt
                                                                     4680
attcgttatt ttgtttttcg gcgcgggaag gttatttagc g
                                                                     4721
```

<210> 327 <211> 4721

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 327

cgttgggtaa	ttttttcgcg	tcgggaggta	gggtggcggg	tggcggaggt	ttttcgggtt	60
cgggaggaaa	tttgttcgcg	gcgcgtaggc	gagtttttat	tttcgttttt	tttttttcgt	120
cgggatgttg	ttttttatag	ttcgttagtc	ggttaaatgt	attttagagt	tgtgtataag	180
			gagttcggag			240
gcgcggtcgt	cgttgaggtt	atatttacgt	cgttttttcg	ttttcggcgg	ttgtttttt	300
tagcgtatat	tttttagggt	ttcggtttag	ttcggtataa	atgtttttta	aatcgagata	360
			ttaagggatt			420
taaaattaat	gaatgaagcg	ttagggcgag	cgcgcgcgag	atggttatcg	cgaaatttag	480
tcgggtcgaa	atcgggttat	cgattcgttc	gtttagtttt	aaaattcgcg	gcgaagttcg	540
ttcggtgttt	tttgttttt	taatttttt	atggtttcgg	tcggggttta	atttattttg	600
ggagttttt	tgttttttat	ttatttttt	tttttttatc	ggtattttt	ttatagattc	660
gggaggggt	ggcggtggcg	gggggttggg	gggagaaata	gtttttagaa	attcgatttg	720
ttgtttgcga	aatataatcg	ttttttttt	ttttttaaag	cgatagggtg	tttagacggt	780
tacgtgacga	ggtcggagtc	gggcgcgtta	ttgcgtagtg	gaattagtcg	agtagagggt	840
cggaggggg	gtgcgggggg	gcggggagga	ggcggcgcgg	ttgcggcggt	tgggggcggg	900
ggagggaagg	gggaggaagg	gggagggaag	ggggcggggg	cgggaggttt	tgcgggaggc	960
ggtgagtttc	gggtatattc	gtttgttgtt	cggcgtacgg	aagattttgt	tttcgagtcg	1020
cgttagtcga	gttagtcggg	cgtcgtgttc	ggttcgttcg	tcgcgcggga	gagagttgtt	1080
cgagatagag	ttagttcgtc	ggcgtcgagt	cgtcgagcgt	tcggtttttg	agtttttgag	1140
tgcggcgcgg	cgagtttttg	gcggcggtag	aaggatcgga	gcgttaggag	agggcggatc	1200
ggggataagg	aggttttcgg	gcgcgacgag	gagagtttcg	gaggaggagg	cgtcgagagg	1260
			tcgaggcgag			1320
ggcggttagt	cgcggttagg	ggaagggata	tcggcggttt	ttgtattagt	aagtagtttg	1380
tgttcggggg	gggcgagaac	gcgcgattcg	tttggggttt	ttcgtcgtcg	tcgcgttatt	1440
			agtcgtcgtc			1500
			gaggatttgg			1560
			atgcgtagga			1620
			tttttttt			1680
			ggggggatgt			1740
			aatattttt			1800
			ggaggtggtg			1860
			ttttattttg			1920
gaagtttatt						1980
			gtttgttttt			2040
			agggggaaag			2100
			tttcgcggat			2160
gttggcgagt						2220
cgggggtagg						2280
ggtcggagag	tcgcgtaggg	cgcgggtcgc	acaaaataaa	gtagtcggag	cgtaggtttt	2340

47675-47.txt 2400 cgattttcgg cgggcgtttt cgggttttcg cgcgcgtttc ggttttcggg agattggcgt atgttacgga gcgtttttcg ggtcgtcgtc gtttttgttc gggtttttgt tgttgttgtt gtcgtttgcg tttgttgttt taattcggcg ttcgattttt ttatggtgtg cggaggttat 2460 2520 gttegtttti tagiaggtaa aegattiiti tttiegtttt ttegiitegt atgittagga 2580 2640 ttaaacgatt tgcgttcgtt cggcgttttt ggaggagtcg tgcgttcggc ggcgaggacg aggaggaggg cgtaggggga ggtggaggag gaggcgagtt gcggggagaa ggggcgacgg 2700 2760 atagtcgagc gtatggggtc ggtggcggcg gttcgggtag ggttggatgt tgtttgggta 2820 aggcggtgcg aggtgttaaa ggttattatt atttttattc gttagtcgcg ggcgtcggcg cggtcggggg cgtcgaggcg gatttgaagg cgtttacgta ttcggtgttt aagaaattga 2880 aggagcggta gttggagttg ttgttttagg tcgtggagtt tcgcggcggg acgcgtatcg 2940 cgtgtttttt gttgttcggt cgtttggatt gtaggttggg ttcggggggg ttcgtcggcg cgtagtttgc gtagtcgttt tcgttttatt cgttttttt tttgttgtgt aaagtgttta 3000 3060 ggtggtcgga ttttaggtat ttttcggaag ttaagaggtt gtgttgttgt gaattttacg 3120 ggaagattaa tttcgagttg gtgtgttgta atttttatta ttttagtcga ttttgcgaat 3180 taggigagaa gtigittitt tattittaat attitteega gegitagigt tggaagaaaa 3240 gtttttaggg tagtgcgttt gtgtagttat ttttttaggg ggagtgtgta tatttttttg 3300 3360 ggagagtgtg tatatttttt tgggagagtg tgtatatttt tttgggaaga gattgggggt 3420 gttttttttt gtgttgtttc gaaggggttt acgggtattg tttttgtagt ttgcggttaa 3480 3540 aaattagacg tttttatttt cggattaata agggggtgta gagggaggtg ggggggttac gttttttcgt attcggaaag acgttgaggt gtgtggtcga gttggatttg gtttaggttc 3600 3660 gttaaggaag gttgggagag gcgtgttata aaggttggaa ggttttcgta tttatttttt tagtaaatac ggagaattac gtcgaatatt agtggtttag atattgtcgt ggtcgcgtat 3720 ttttggagtt ttggggtaaa gagagttgga tggaaggtcg aattgggtat ttgtttttt 3780 ttaattttgt tagttttagg gtgtagagga ataaataggt aggagaagtt gggtgttttt 3840 3900 tatttttttt tttttttcgt atagataagt ttgtagatta gtggggtttc ggcgttttag tgacgttgtc gttttttatt gcgttggggt ttgggttttt cggttgagat tttgaaattt 3960 ttttttttt attttttag tttttttat ttttttttt attttacgtt tttgtatata 4020 gagtgtgatg tgagggttta tttcgggcgt tcgtagattt tttacgttt ttagtacgtt tgggatgtat ttttcgagtg cgttaggaat gggtagtttc gtgtttttcg cgcgagtgtc 4080 4140 gagcggatcg gcgggggtag aggtgaattg tacgtttggg gggcgggtcg gggcggggag tcgaggttgt tgggagttgg gtttggagtt cgaggacggg gagggggtat ggtcgttttt cgttttgtga attgtgaagt gcgcggtttc ggtcgagtcg gtggttttta gtcgggttag 4200 4260 4320 tcgagcgcgg cggttgcggt cgtagacgtg gaggagcgga gcgtcgaggt tggcgttagg 4380 cggttttttt tgtttatttg atagttaaat attaaggtaa ttatcgtttc gggttttgtt 4440 4500 tttaattttt atagttaaga taaatagttg ggttaaaaga atgtttttgt tattataagt 4560 ttttttttt ttttattta gatattcgat ggattttttt aaattaattg gtgagtagat 4620 gatttttaaa atattttgtt tattttaagt tagaaataga gtttttagaa cgtggttttt 4680 tgtgtgtagg taaaggtttg gggaggtgtt gggttttacg t 4721 <210> 328 <211> 2146 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 328 aggtttgtgt attcgggtag tttttggttg ttgttgttag gttgttttag tcggtcgttg 60 ttgtcgcggc gattggcgat aagttattag ttatttacga tggtttaagg aggcgaagaa 120 gagtaagcga ttaggatatt aaaacggtta tcggaggtag gtttttagta tattagtcgg 180 tcgagggtcg agtttcgcgg gcggtagtaa gttttgggag ttggaggtaa tcgaattaaa 240 aggogtttta gaaatttogt ttogggattt tgtttagtag ggtttogggt tggagggogt 300 cgaggtttgg cggacgggat agtgggaaga gagaaaggtg ttaaggggat ttaagatttg 360 ggatttagaa taagaggggg tggggaataa ttttattaag ttaaatagat ttatttttt tgtttttatg ttggaaaaat ttaggtttta tatggttttt cgggagggag ggagggagac 420 480 ggtggttgtc ggttttttt tagggtttcg ttggagaagg gagatgagtt tttcgtaaga 540 attttatttt gttaagtata ttttagggag agttaggaga gtaataatag ttggggaagt 600 660 taataagaaa ggaagataga gaaaggttga gattttttta gtagtcgcgg agaaaattta 720

			1,0,3	, , 0100		
gttttggatt	tggttgttga	aagaaaagag	agagaggaga	aaagaggaga	gaagtaggaa	780
gatagagggg	agagagagag	ggagagagag	agagagagag	agagggagag	agagggaggg	840
agggaggag	ggagagagag	agtcgttgcg	tggaaggaag	tttaaagttt	gtgaattttt	900
	gattggagtt					960
ataaattgat	agtttatttt	agtttagttt	attttagtta	tcgacgaggg	gagaataggt	.1020
agatataata	tatatttata	tcgagtttta	gagcgagcgg	taggcgataa	atttttttt	1080
tttgaaggta	aaggaaaaaa	agattattgt	ttaaagttgc	gtcgtttttc	gttttttcgt	1140
tttcgtttcg	taaagttatt	tcggttgggg	agttcgaggg	gtagatcggt	tagaggagtc	1200
gcgcggcgtt	cgttttaatt	tattcggttt	aggagtaggg	gtgcgtagga	gggaggggt	1260
	gaaaaaaaat					1320
ttagtttcgg	gttttagtag	ggttaagtcg	ttatagtgtg	gttgttttat	aagattggta	1380
cgttttattt	ttcgtaataa	tggtttttgt	ttttgtatag	ggaaaaaaaa	ttatatagat	1440
atatatat	atttatttat.	atataagttt	atatttttt	atttttttt	ttttagtaag	1500
tttagatgtt	tgataaggag	ggaaggtgat	ggtggtgatg	gggaaggggg	gaaattttaa	1560
aatattcgtt	tttttaaaaa	aagagtaaga	agaaaagaag	gagggttttt	tttttttt	1620
ttaaagaata	ggtaaaaatt	taaatttaga	ttggagggat	agggaggaag	aggtgagtaa	1680
aggtaaggaa	gggcggtgaa	gtttatagtt	ttttttatat	tttattagtg	aattattatg	1740
	aagtagtatt					1800
gtgtcgggtg	tttttttgta	tttattcgta	attggaatat	taggattttt	ttagaaagta	1860
gttttgggtt	tttaattttt	atattttggt	ttttttttt	tgagttttta	gtttcggttt	1920
tttttttta	ttatatttt	tttattttt	ttaaattttt	ttttagtttt	taggtttagt	1980
ttttaattaa	gggagaggga	aagattagaa	tttaaaaaaa	aaataaaaaa	aaaatatttt	2040
tttttttt	tttttttgag	aatagataat	aagcggtgag	tgatgatttt	aaaaattttg	2100
aatattttgt	agggggagga	gggttgagaa	aagggtgata	aaagga		2146
<210> 329						

<211> 2146 <212> DNA <213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 329

tttttttgtt	atttttttt	taatttttt	ttttttgtaa	gatgtttaga	gtttttaaaa	60
		tttgttttta				120
ttgtttttt	tttaagtttt	ggttttttt	ttttttttgg	ttagagattg	ggtttggaga	180
		aatagagagg				240
gatttagaag	gagggagtta	gagtgtgagg	gttggagatt	tagaattatt	ttttaaaaaa	300
gttttggtgt	tttaattgcg	aatgagtgta	gaggggtatt	cggtatttt	attttcgggt	360
taggtttgtt	tttgatttag	tttttaaata	ttattttta	tattagtata	atagtttatt	420
agtggggtat	ggggggagtt	gtgaatttta	tcgtttttt	ttgtttttgt	ttatttttt	480
ttttttgttt	ttttaattta	gatttaaatt	tttatttgtt	ttttaaggaa	aaaaaaaaa	540
atttttttt	tttttttt	atttttttt	tggggaggcg	ggtattttaa	aattttttt	600
tttttttatt	attattatta	tttttttt	ttattaggta	tttaagtttg	ttaaaggggg	660
agaggtgggg	gggtgtgagt	ttgtgtgtga	gtgagtgtgt	gtgtgtgttt	gtgtggtttt	720
		aggttattgt				780
ggtaattata	ttgtggcggt	ttagttttgt	tggagttcgg	agttggattt	tggcgagttg	840
agtcgttcgg	tatttttcgg	ttttttattt	tttttttcgt	ttttttattt	ttttttttt	900
gcgtatttt	gtttttaagt	cgagtgaatt	gaagcggacg	tcgcgcggtt	tttttggtcg	960
gtttgttttt	cgggttttt	agtcggggtg	gttttgcggg	gcgggggcgg	gggggcgggg	1020
ggcgacgtag	ttttaaatag	tggttttttt	tttttttgtt	tttaaggagg	ggagatttgt	1080
cgtttgtcgt	tcgttttggg	gttcgatgtg	aatatatatt	atgtttgttt	gtttttttt	1140
cgtcggtggt	taaggtaagt	tggattgaaa	taggttatta	gtttgtgaat	ggcggagagt	1200
atgttttaat	gatttatggt	ttatatgatt	ttaatttcgg	tttaagaaga	gtttataagt	1260
		gcgattttt				1320
		tttttttt				1380
ttttttttt	tttttttt	ttttttttag	tagttagatt	tagggttgaa	tttttttcgc	1440
ggttgttaag	aaagttttaa	ttttttttg	tttttttt	ttgttatttt	ttttttttt	1500
attaattttt	ttaagttttg	gaagatggtt	tattttttt	ttcggggttt	ttttagttat	1560
tgttattttt	ttggtttttt	ttggggtgtg	tttggtaagg	tggggttttt	gcggggggtt	1620
tattttttt	ttttagcgag	attttggggg	gaagtcggta	gttatcgttt	tttttttt	1680

1740 ttttcgagga gttatatgga atttgaattt ttttaatatg gaggtaaggg aaatagattt 1800 gtttggtttg gtagagttgt tttttatttt tttttgtttt ggattttaga ttttgggttt 1860 ttttagtatt ttttttttt tttattgttt cgttcgttag gtttcggcgt tttttaattc 1920 ggagttttgt tgagtaaagt ttcgaagcgg agtttttaag gcgtttttta attcggttat ttttagttit taaaattigt tgtcgttcgc ggggttcggt tttcggtcgg ttggtgtt 1980 2040 gggaattigt titcgataat cgittiggig tittgatcgi tigittitti tcgittitti gggttatcgt aggtggttgg tagtttgtcg ttagtcgtcg cggtagtagc gatcggttga 2100 2146 ggtagtttgg tagtagtagt tagggattat tcgggtgtat aaattt <210> 330 <211> 2427 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 330 ttttttgggg tttgggtggg gagtttttt tagtaataaa tatgagaggg atagagaatg 60 ttagagagtt ttttgttggg attgggatgg ttggagggta ttatagtatt ggtttcgaat 120 attgaacgga gaattgttat gtaataagaa tttgggtata ttagattttt gtaggtattt 180 tegggattta tagategtat attegatggg egttegtagg aegtgaatgg tattteggta 240 300 acgttaagtt ttattttaga gttatagggt gttttttatt aggttacgga gttttttggg 360 tttgtatgaa ttttaattaa gaaatattat atttagaatt atagtattta tagtgatagt 420 ttttagaaga ttgtaatagt ttttttgtta tttaaggggt atagacggtg tagttgttta 480 tttgaatgat tttttaaatg agtgattatt attattttaa ttttttagt tgtagttttg 540 ttataggtta ttgattataa gtgttggtaa agaaattgtt tttttaagta ttttggcgtt 600 ttttggagtg acggttattt ttagtagtta aattgtatta tatttttatt ttaattttgt 660 gattgtttta gtatttttaa aaatataaat cgatttttta ggaaaaaata aaaaaacgaa 720 aaaatttttt attttttta aatttttggt ttaggtttat ttgatttttt gtaagttgtt 780 840 taggtagagt ttgtttttgg aaacggttcg gttatttggg agggaataaa taggtattgt 900 ttagattcgg agttgtaggt agggtttagt aggattttag gcgggtatat aggggtttat 960 ttggagggat ttgaggggta taggttatag tcgggagagt ttcgggtagg tatatagggg 1020 tttatttgga gggatttgag gggtataggt tatagttagg agagtataga taagaggttt 1080 tcgaggttat tagggtcgat ttttatttta ttttaaggat tagggacgta aaaggatttt 1140 aataaagacg gttatattat ttgttgtaga atgagtataa atgttttttt tagttttcga 1200 ggtcggtatt ggtttcgttg attttttaa ttttgttatt tgtgtagtag gcggtaatag 1260 ggataggtag acgatatagt tggggttaga ggacgacgta gagagattta tattagagat 1320 tttcggggag tgatagagtt ttcgttttaa ttttagtgag tgggataggt tgagtgggga 1380 ttgagtacgt ttagggttag agtgggaggg ttagtcgtgt cggtttttaa agaggatttc 1440 gggaaataaa tatttttta ttcggtaagg ataaattaag taattgtcga gataggtgtt 1500 cgcgttttaa tttaaggttg tttagataga taagcgttta tcgtcgtatt qttttaataq 1560 ttgttgagat atatttttgt agtcgtttta gttagagtta gggaggtttt gggagaatgg 1620 1680 gatattttcg ggttttttat ttgtttagag tttgtttagt ggggtattta acggtggata 1740 ggtgagagag gtgaggggtt gggttgttat cgcggttaag ggagttatgg ttitttagtt 1800 tqaacggttt ttgttcgaaa ttaggatata aatatagtat tatatatagt agaaatagtt 1860 tagaaaggtt ttagtttaga tggtattgga ataaatagtt ttttttaagt tattttaaaa 1920 tgaaagtttt gggttattta tttttaaaga ggattttagg atagttttag gagttttttt 1980 atgatatatt ttatggagaa tgtttggttg ttgcgtttat ttaatgtagt tattgaatag 2040 aaatttaaga gcgttgtttt gttagtttga aatttttttt atgtttttag ttattagggt 2100 tttagttagg ttagaaataa tagaggtagt aggttttttt agaatagtag tgtgaggttt 2160 2220 taaagttttt aacgtgtttt agggatatac ggcgaatgga gaaacgttta tttaagaaaa 2280 ttatttaagt ggtagtagga atagtaattt cgtgatattt gggttataat ttgtttttt 2340 attittatgt gataaaagtt ttattittag taggtaatcg agaagatagg ttittitttt 2400 tttagtgtta ttgtagtagt ggcgggt 2427

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 331
gttcgttatt gttgtagtgg tattggggga gagggagttt gttttttcgg ttgtttgttg
                                                                           60
ggagtagagt ttttgttata tggggatggg gaagtaggtt gtggtttaag tgttacgaag
                                                                          120
ttqttqtttt tqttqttatt taqqtqqttt ttttggataa gcgttttttt attcgtcgtg
                                                                          180
tgittitaag alacgitagg gallitaagt gggtgitgtt iglaatgitt attaliggta gtgatgitgt tggagagggi tigtggagag tittatatig tigtitigga agagtitati
                                                                          240
                                                                          300
gtitttgtig tittigatit ggttgaaatt ttgatggttg gaagtatgaa gaaggtttta
                                                                          360
ggttggtaga gtaacgtttt tgagtttttg tttaatggtt atattgagta aacgtagtag
                                                                          420
                                                                          480
ttaagtattt tttatggggt gtgttatgga ggaatttttg gaattgtttt gaagtttttt
                                                                          540
ttagaagtag gtagtttaaa atttttattt taaagtgatt tggggaaaat tgtttatttt
agtgttattt gggttggggt ttttttgggt tgtttttgtt gtgtatgatg ttgtgtttgt
                                                                          600
                                                                          660
gttttgattt cgggtagaag tcgtttaggt tggagggtta tggttttttt ggtcgcggtg
atagtitagt tititaitti ttttatttgt ttatcgttgg gtgttttatt gagtagattt
                                                                          720
tgagtaaatg aggggttcgg agatgttagt tagggtaaaag gggggaaaag gtttttgaag
                                                                          780
atgagaggag gttgagagta ggtaaggtta tttttttagg gtttttttgg ttttagttga
                                                                          840
ggcggttgta ggaatgtgtt tragtagttg tragggtagt gcggcggtga gcgtttgttt
                                                                          900
gtttgggtag ttttgggttg ggacgcggat atttgtttcg gtagttgttt gatttgtttt
                                                                          960
tgtcgagtgg gagggtgttt gtttttcggg gtttttttttg gaagtcggta cggttggttt
                                                                         1020
                                                                         1080
ttttattttg gttttagacg tgtttagttt ttatttagtt tgttttattt attggggttg
gggcgggggt tttgttattt ttcgagggtt tttgatgtgg gtttttttgc gtcgtttttt
                                                                         1140
ggttttagtt gtgtcgtttg tttgtttttg ttgtcgtttg ttgtataggt ggtaggatta
                                                                         1200
gaggggttag cgaggttagt gtcggtttcg aaggttaaga agggtattta tatttatttt
                                                                         1260
gtagtaggtg gtgtggtcgt ttttgttaaa atttttttgc gtttttgatt tttaggataa
                                                                         1320
agtaaaagtc ggttttggtg gtttcggggg ttttttgttt gtgtttttt gattgtagtt tgtgtttttt aggtttttt agatgagttt ttgtgtgttt gttcggggtt ttttcgattg
                                                                         1380
                                                                         1440
tagittgtgt titttaggtt titttagatg agittitgtg igttcgiitg gggttitgti
                                                                         1500
gagttttgtt tgtagtttcg ggtttgggta gtgtttgttt gtttttttt aggtggtcgg
                                                                         1560
gtcgttttta aggataggtt ttgtttgttt agttggagtg gggtggagaa gtagacgtag
                                                                         1620
taggtagggt tgggatttgt tttgaagggt agtttgtagg aggttaggtg agtttggatt
                                                                         1680
agggatitga aggaagtgag aagttttttc gtttttttgt tttttttgg agagtcgatt
                                                                         1740
tgtattttta aaaatattga aatagttata gagttaaagt gggagtatga tatagtttag
                                                                         1800
tigttgggaa tggtcgttat tttagggagc gttaaagtgt ttaaaagaat agttttttg
                                                                         1860
ttaatatttg tggttagtaa tttgtaatag agttataatt aggaaaatta gagtggtggt
                                                                         1920
                                                                         1980
agttatttat ttaagaagtt atttaggtaa gtagttgtat cgtttgtatt ttttaagtag
taaagaagtt gttatagttt tttgaaaatt attattgtga gtgttataat tttgaatgta
                                                                         2040
atgtttttta attagaattt atataagaat tatgaaaaa aaaaaagagt aattttttt
                                                                         2100
tttgtagaat gtttttgagt agtgtggttt aggaggtttc gtagtttggt gaaaggtatt
                                                                         2160
ttgtggtttt ggggtggagt ttggcgttat cgagatgtta tttacqtttt gcgagcgttt
                                                                         2220
atcqaqtgtg cgatttgtgg gtttcgaggg tgtttgtagq qgtttgatgt gtttaggttt
                                                                         2280
ttgttgtatg gtagtttttc gtttagtgtt cgaaattagt gttgtgatgt tttttagtta
                                                                         2340
ttitagttti aataggaagt tttttggtat tttttgttit ittlaigtit attattggaa
                                                                         2400
agggtttttt atttagattt taggaaa
                                                                         2427
<210> 332
<211> 3015
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 332
tttttttttt tttttggtag aattgttcga tggttttgat tatgtttagg tttatttcga
                                                                           60
tgtagtagta ggtatggtcg gttcggggtt cgggatagtt cgttacgtag tagtaatagt
                                                                          120
tttttagggt gttgattttt ttatatttgg ttttttata taggcggtcg aagcgatcga
                                                                          180
                                        Page 117
```

```
atagatcgtt taggagattt attagggcgt gggtagattt gttggtattt attttggtga
                                                                          240
                                                                          300
agtttacgat atttgtaaat aaaatattga ttttttcgat ttgttgtatt ttaaaagggc
360
tggtatgttt titgatagaa titttatttt tittattitt tigittati aagitatogg
                                                                          420
480
ggtttttttc gtgtataatg gattgtttta ttttgaggaa ggtgtttttg gattttattt
                                                                          540
                                                                          600
gggatatgac gaataggtgg atttcgatgg cgtggatgta gtcgtggagt agttttttgt
                                                                          660
ttagtagttt ttagtgtagg gtttcggttt cgggcgaggg gaagtaggtt ttatttcgga
aatggtagtt aaaggtttcg aaaaggatag agtaggttat ttttagatat aaatttaggt
                                                                          720
ataaaggtaa gtgtatgacg gtatagagta aaaagagtat ttcgatgtat atggagaagt
                                                                          780
tttttatttg agataagtaa gtatttgtgg gtcggttgtg gtcgtaaggt tggagttgtc
                                                                          840
gtcgcgtttt gagataggcg ttaagatttg gaattgcgta gttagggtta gggcgaatat
                                                                          900
tagtagggtg agagttagcg aggtttacgc gtaatgtcgg gcgtatagtt tggtgaaggt aaatagaaag aagtttatat atattaggag gaagtatagc gcgggggcga ttatgacgat
                                                                          960
                                                                         1020
tagtttggat tttatgtgga tcgtaaaata gatgttttat agaaggtagg cgaagtcgat
                                                                         1080
gtagaagagc gtatatcgga atcggcgttg ggtttgcggg aagtagcgtt ttaggtaggt
                                                                         1140
ttttttttagg tttatcgagt cgaatttggg gttttattag cggttggagg ttttttcgaa
                                                                         1200
tagttggggt agtttttttt gtttgcgtag tcggttttcg tcgtttattc gtcgggggac
                                                                         1260
gttttcggag tttttagagt tgttgtagtt agaggagatg ttgtatttgt agtgtttggg
                                                                         1320
gtggttgttg gaggatagtt gtttggggtt gattttgacg cgtacgttgt tgttgttttc
                                                                         1380
gttggagtcg tagtttattt cggtgttgtg gtgatgtagt agttgttggt ggggtgggga
                                                                         1440
agttatgttg tcgagtttcg gggtttgttt cggtcggggt tattagtatt tgttagtaaa acggggagag ttagcggcgt ttttatttag gtatgtacgt ttagaggttc gggatttgtt
                                                                         1500
                                                                         1560
tttgttttaa ggggcggttt tagtacgcga tttggatagg tattatttgt ttttgtggtt
                                                                         1620
ttcggtttag cggtgttttt atcgttttta tcgtttttat tttcgaggcg tacgagaatc
                                                                         1680
gttcgggacg gatttagaac gttcgggggt tttcgtcgcg tggtcgtcgt ggtttcggga
                                                                         1740
tegttttgtt egttegtttt tegegttttt egtttegagg gtggtttteg egtegegeg
                                                                         1800
tttttttttt tcgcgcgttc gtttttttta gttgcggttt cggagggaag tttagatttt
                                                                         1860
gagcgttttt agtttcgcga gtcgtttgcg tataaataat ttcgttggcg gcgcggagtt
                                                                         1920
ttttattttg taggagtcgc gtttcgatgc gttaaaggcg gcgcgcggtc ggtttcgggt
                                                                         1980
teggattteg atteggagta gegagttteg gegggegttt teggttegeg tittteggte
                                                                         2040
gtttttcgcg tttcgggtcg gttttgttcg cggcggcggg cgttgggggt gggggcgttt cgggttgcga gtgcgcggag ttcgtcggcg cggttcgttt agtggggttt gtttttttc
                                                                         2100
                                                                         2160
gagtgcgtcg tcgttttcgt cgcggtcgta gttgtttcgg gatcgagcgc gtggaattac ggacgcggt ttttcgtcgg gcggcggtgt agacgttgtc gtagagtcgg gttttcgcga
                                                                         2220
                                                                         2280
cgtcggtcgg gacgttcgtt cgttcgcgtt tacgtcgggg gtcgtttttt cgagttagag
                                                                         2340
atgeggtegt egtegegtte gtegtegtgt ttttegeggt egttgtttta tgteggaaga
                                                                         2400
gttgtcgtcg ttattatttt cggtttttgt ttcgttcgtt gttattgata gacgcgcgtt
                                                                         2460
cgcgtcgttt ttcgtttagt cgtagcgcgt acgcgcggtt cgcgttcgtc gttatcgttt
                                                                         2520
tttggtttcg gatacgcgta cgggtcgcgc gtcgtttcgt tttggtgcgc gcgttgggtt
                                                                         2580
ggggttgcgg ggcggggcgg ggcggggcgg ggcgcgcgtt cggtttcgtt tttcgtttcg
                                                                         2640
ggcggcgtcg tttttaggcg gcgggttgtg gtcgttgttc gcgtttcggg cgttgtgggt
                                                                         2700
togittitti toggogitti agaggiogog ogtogitogg ggittogati tigoggagag
                                                                         2760
atttgaagge gtttgtegtg gaagaagteg ttggtegtaa egtttgggaa attaaaatgt
                                                                         2820
tgtttttta ttcggtacgt ttttgggata aatcgaagtt tttaatcgtt ggatttttt
                                                                         2880
ttcqqqaggt tttttttgtt ttgtaagtaa tgaatgcggg tttcggggta ttcggtttgt
                                                                         2940
tttqqatttq tttacqqqqc qatttttacq qgtttagttt ttaaaqttqq qtttatcqac
                                                                         3000
                                                                         3015
gattacgttt tttcg
<210> 333
<211> 3015
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
```

cgggggaacg	tggtcgtcgg	tgggtttagt	tttggaggtt	aggttcgtga	aggtcgtttc		60
gtgagtaggt	ttagggtagg	tcgagtgttt	cggggttcgt	atttattgtt	tatagagtaa	,	120
ggggagtttt	tcgggaggga	aatttaacgg	ttggaaattt	cgatttattt	taaaggcgtg		180
tcgagtggga	aggtaatatt	ttgattttt	aaacgttgcg	gttagcggtt	ttttttacgg		240
		Page 118					

	4/6/5-4	7.txt		
taggcgtttt taggtttttt cgtagg	ggtcg ggatttcggg	cggcgcgcgg	tttttgggac	300
gtcgagggag ggcgggttta tagcgi	tcgg agcgcggata	gcggttatag	ttcgtcgttt	360
agaagcggcg tcgttcgggg cgggg	ggcgg agtcgagcgc	gcgtttcgtt	tcgtttcgtt	420
tcgtttcgta gttttagttt agcgcg	gcgta ttaaggcggg	gcggcgcgcg	gttcgtgcgc	480
gtgttcgggg ttaggaggcg gtggcg	ggcga gcgcgggtcg	cgcgtgcgcg	ttgcggttgg	540
gcgaggggcg gcgcgggcgc gcgttt	gtta gtgatagcgg	gcggggtagg	ggtcggagat	600
ggtggcggcg gtagtttttt cgata	gagg tagcggtcgc	gggggatacg	gcggcgggcg	660
cggcggcggt cgtattttta gttcg				720
gcgtttcggt cggcgtcgcg ggagtt	cggt tttgcggtag	cgtttgtatc	gtcgttcggc	780
gaggggttcg cgttcgtggt tttacg				840
agcggcggcg tattcggggg gaagta	aggtt ttattagacg	ggtcgcgtcg	acgggtttcg	900
cgtattcgta gttcggggcg ttttta	atttt tagcgttcgt	cgtcgcgggt	agggtcggtt	960
cggagcgcgg ggggcggtcg gggag	cgcga gtcgggggcg	ttcgtcgaag	ttcgttgttt	1020
cgggtcgggg ttcgggttcg gggtcg	ggtcg cgcgtcgttt	ttgacgtatc	ggagcgcggt	1080
ttttgtagga tggagggttt cgcgto	egtta geggagttgt	ttgtgcgtag	gcggttcgcg	1140
gggttgggag cgtttaaggt ttgaat				1200
cgcgaggagg agaagtcgcg cggcg	ggag gttattttcg	gggcgagagg	cgcggaaggc	1260
gagcgagtaa agcggtttcg gagtta	acggc ggttacgcgg	cggggatttt	cgggcgtttt	1320
aggttcgttt cgagcggttt tcgtg	gttt cgaaggtggg	ggcggtgggg	gcggtgggag	1380
tatcgttgag tcgggaatta taggaa				1440
gttttttagg ataggagtag gtttcg				1500
gttaattttt ttcgttttgt tggtag				1560
ttcgataata tggttttttt atttta				1620
agttgcgatt ttagcgggga tagtaa				1680
ttttttaata gttattttaa gtatto	gtaaa tatagtattt	tttttagttg	tagtagtttt	1740
ggggatttcg ggggcgtttt tcggcg				1800
aagttgtttt agttgttcga gagggt	tttt agtcgttggt	gggattttaa	gttcgattcg	1860
gtgaatttgg aggaggtttg tttgga				1920
tatgcgtttt tttatatcgg tttcgt				1980
atgagattta gattgatcgt tatggt				2040
ggtttttttt tgtttatttt tattaa	agttg tacgttcggt	attacgcgtg	gatttcgttg	2100
gtttttattt tgttggtgtt cgtttt				2160
gttttaggac gcggcgatag ttttaa				2220
tattttaagt ggggagtttt tttatg				2280
tgtatttatt tttgtatttg agtttg				2340
tttttggtta ttattttcgg gatgaa				2400
attgggagtt gttgagtagg gggttg				2460
tgttcgttat gttttaggtg aggttt				2520
tgtacgggaa ggatttggaa gtggaa				2580
tgttaagaat tatagtcgat gattta				2640
ttaagaggta tgttatttcg agtttt				2700
tttttatagt ttttcgtttt tttaag				2760
tagatatcgt gggttttatt aagatg				2820
ttttgaacga tttgttcggt cgtttc	gate gtttgtgtga	ggagattaag	tgtgagaaaa	2880
ttagtatttt gggagattgt tattat				2940
atgtttattg ttgtatcgag atgggt	ittgg gratgattaa	ggttatcgag	tagttttgtt	3000
aggagaagaa ggaga				3015
-210- 224				
<210> 334				
<211> 3093 <212> DNA				
<213> Artificial Sequence				
<220>				
<223> chemically treated ger	omic DNA (Homo	eaniene)		
	CHILC DIVA (110110	orbicity,		
<400> 334				
· • • ·				
gttattatat tcggtagcgg ggtggt	tttt agtttttgtt	gttttttcgt	tttttttt	60
cgttcgtttt cggagtttag tcgatt				120
gtcgtcgtcg tcgcgttttt ttttat				180
tttaattaat ttcgtaattt atttt	gtaa aattattat	aaagattttt	ttttcgcgtt	240
cgcgttcgtt tttttcgcgt cgggtt				300
	Page	119		
	_			

ttttgagttt tgtatataag gaacgcgggt tggggttttg ttcgttttt ttttcgttta 360 420 aggtaaggat ttcgggaatt tgaagtttgg cgtttattac gtttaggttc gtagtttttt ttttatagag tttgtattat gggaaaaaat aaaataaaat ttaggaaagg gaggtaatag 480 ttattgggag ttaatataga gttacgtagc gtttaaaata taaatatcgt agcggttaga 540 aatttcgtta ttttttcgt ttttttaggt tgttttgtcg aggttttttg agttttttcg 600 tatattgaaa ggtatcgtag gtgtagtgcg tatttttttt ttatttattt taagaagttt 660 720 tgtttcgtta ttagtttttt ttttcgggat gagtagggag agcgcgcgga ggttttcgat 780 tttttcgatt ataattaaga aagaataatt tttaaagtgt ttaatatttt cgtttttaag ttttttaaaa tataggggta gggaatatta aaatattcgg tttttattag gaagattacg 840 900 960 gaaggtaggg aatttaaaag atcgaggtcg atggaagaag gttagcgggg cgagcgagcg ggtagttttt ttttttgttt ttcggagtta tttagaagga taggggaagg gaaggaagaa 1020 1080 gaggcgagga aaaagaggag ggagggaagc ggaggttagg agcgacggag taaggaaagt 1140 agtttgtaag cgagaaaaga gggaaaaaat atagtcgtac gaatttagag agattataag 1200 tegtaegtaa gtagtagtag aaagagegag agegegageg egegtttttt tegegtttgg 1260 ggttagatag tttttagatt agttcgaatt attttttaag tattgtttcg ttttttttgt 1320 1380 aatataaggg agggtggtaa aagttttttt aaatcggtcg atttatttaa agataataat 1440 aataataata aatatataat aatttatatt ttatggtggg agagacgtgg gattaatttt 1500 1560 atatatatag aaaatttgga gttaaagtat ttggtaagag cggaaaaaaa aagaattaaa 1620 aggtaaaata atgattatga gtagcggcgg cggtagcggt attagcggta atagcggcgg 1680 cggcggtagt agtagtagta gcggcggtag taatagtaat aattatttgg tgttcggttt 1740 tttttagaaa ttttttgtat tattatttt aagaatttta gttttaagaa ttaatagagt 1800 ttaattttcg gaatttgagt ttcggatttt attattgtta cgtggtaggg gaggatttgg 1860 tgttagtttt tcgagatttt tattgttttt ggttaattaa aagtttttaa agttataaga 1920 tttttttatt ggtcggtata tttcgaggtt tttataagta gagcgtttcg gatttggagg 1980 2040 tttcggttcg aggttcgagg ggtttgaagg tggttttttt ttttcgggtt taagacgatg 2100 gtagtaaagt tcggtttttg gaattttgag aattaatttg ttattcggtg atataagagg 2160 gggagtgcgt tttgtttttt cggggtttgg ggttaatttt tttttttta tttataaatt 2220 tagtagatcg agttaaatgt ataaaaggga gcgagaggtt tgaattattg ggaaaagtat 2280 2340 atagtttttt ttaattagaa tattaggtat tacgagaaaa atatttgtta agtagttttc 2400 ggtgggttta tttgttttat ttttatttag gataggggtt tttgttgttg ttttgggttt 2460 tttttttttt ggtgtggtgg tttgggattt ttggtttttg tattttgatg gtttatggat 2520 ttttgttttt gattttttgt tttttgtaag tttgtggtgt tacgtaaatt ataggatcgg 2580 tatcggttgg attittttgt acgtgttttt tittttttta titaattitt taagcgtttt 2640 aaagatgtat tattttaata ttaatattat tgaaagaagt ttaaattttt ggttatatgt 2700 2760 ttttggattt ttgttgaagt gtgtttttt tgtattttag agaaatgttt aaaggatttg 2820 ttttggtttg gtttgtttt ttttaggata gtaagtggtg ggtttaattt gttattgttg 2880 atttttggga aattttttgt tgtaagaaac gtgtgtgtgg gggggagggt gggggtggcg 2940 qqqtqqtatg tqtqtqtttt ttataaaatt ttqtqaqtta aatatttqtt tqtqttttqt 3000 tttttttttaa ggttttgaga tttttgtttt cgaggttcgt tttaaqqtcq ttqtaaaaaa 3060 attttttag tttgtgttta agagattagt cgg 3093 <210> 335 <211> 3093 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 335 tcggttgatt ttttaaatat agattgaaga gattttttta taacgatttt gaaacgagtt 60 tcgaaaataa aaattttaag attttaagag aaaataaaat ataaataqqt atttqqttta 120 tagaattttg tagaaaatat atatatatta tttcgttatt tttattttt tttttatata 180 tacgtttttt gtaataagaa attttttaag agttaataat aatagattaa atttattatt 240 300 Page 120

			4/6/5-4	/.txt		
	tatattttag					360
	aaaaagtggg					420
	tagtattgaa					480
	cgtataaaaa					540
	aaggtaaaaa					600
	aagttattat					660
	aaaataaagt					720
	atattttagt					780
	tttaatttta					840
	tgtgtattta					900
	tcgggaaagt					960
	ttttagaggt					1020
gagtttacgt	gatggtggcg	gagtaggtta	tattatcgtt	ttgggttcgg	ggagggagag	1080
	gtttttcgag					1140
	aaatatgtcg					1200
gttaggggta	gtaaaaattt	cggagagttg	atattaagtt	tttttttgtt	acgtagtagt	1260
	gaagtttaaa					1320
	gtgatgtaag					1380
ttgttgtcgt	cgttgttgtt	gttattgtcg	tcgtcgtcgt	tgttgtcgtt	ggtgtcgttg	1440
	tgtttatgat					1500
taaatgtttt	ggttttaagt	tttttatgtg	tatttattga	tataaatgta	tatatttatt	1560
tattttagtt	gttaggtgtt	aaaataaatg	tcgaagatta	gttttacgtt	ttttttatta	1620
	attgttatgt					1680
tttggggagg	tttttgttat	ttttttttgt	gttgttttgg	tttttggaaa	ggaggtggag	1740
	aggggaatta					1800
	gttagtttgg					1860
gttttcgttt	tttttgttgt	tgtttgcgta	cggtttgtga	tttttttgga	ttcgtgcggt	1920
tgtgttttt	tttttttt	tcgtttgtaa	attgtttttt	ttgtttcgtc	gtttttggtt	1980
ttcgtttttt	tttttttt	tttttttcgt	tttttttt	tttttttt	ttgtttttt	2040
	gggaggtaaa					2100
	ggttttttag					2160
	aattttttgg					2220
tgaagtatcg	tgtttattat	ttttttttag	agtcgtgatt	tttttaatga	gagtcgagtg	2280
ttttggtgtt	ttttgtttt	gtgttttggg	gagtttgggg	gcggggatgt	tgaatatttt	2340
gaaaattatt	tttttttggt	tgtagtcgag	ggagtcggga	attttcgcgc	gttttttttg	2400
tttatttcga	ggagagagat	tgatggcggg	atagggtttt	ttggggtggg	tgggaaaggg	2460
gtgcgtattg	tatttgcgat	gttttttagt	gtgcgggggg	atttagggaa	tttcgatagg	2520
	agaacgagaa					2580
ggcgttgcgt	gattttgtgt	tggtttttaa	tggttgttgt	tttttttt	taaattttat	2640
tttattttt	tttatggtgt	aagttttgta	aaaagggaat	tgcgggtttg	agcgtagtgg	2700
	ttagattttc					2760
ttagttcgcg	ttttttatgt	gtaagattta	ggaggagaga	agggtatttt	gtggtcgtgg	2820
ttgaggggat	tcggcgcggg	aggagcgggc	gcgggcgcga	aagggagatt	tttgtgagtg	2880
attttgtaaa	aatagattgc	gaggttggtt	ggatttgtaa	tttgtggttt	ttttcgaggg	2940
agtaagaatg	ggggaaggcg	cggcggcggc	ggttcgggga	gggagtgggt	agagttggag	3000
ttttagaaat	cggttgagtt	tcgggggcgg	gcggggagaa	agggcggggg	ggtagtagga	3060
gttaggggtt	atttcgttgt	cggatgtagt	gat			3093
<210> 336						
<211> 2436						
<212> DNA						
<213> Arti	ficial Seque	ence				
<220>						
<223> chem:	ically treat	ed genomic	DNA (Homo s	sapiens)		
<400> 336						
	gataaggatt					60
	agggcgggcg					120
taggaagagg	aagagttgta	gtacgaaggt	tattagggag	atgtataaga	agtaggcggg	180
	ttgagtagtc					240
ggtgagaaga	ggattgattg	attacggcgt			ttttttcgtg	300
			Page 1	121		

47675-47.txt tegegegttt ggggtattgt aegegatttt aegtttttaa ttttttgttt egeggatttt 360 ttttttttag ttttttaatt tcggattagg taggttagag attcgagttc gtagcggttt 420 cgggtttagg ttttatttgg gggtgagtgt tgtttggggt tttgagcgag ttcggcgttt 480 540 tggcgcggta gagtttggta taggagggag ggattcgttt gtagttttta ggagttgtga gggtggggg tatcggggga taggattttt tttttttgtg gatgtggaaa taagtttagg 600 tttgggattt ttggtttaga tttttttagg aggagaaagg gaaggatttg gggtcggggg 660 taggagaatt agcggtattt gatttgttgg aaattttgtt ttatattttt tttttttcgt 720 ttttgcgttt ttatttatat atatattttq qqtaqtattt agggatttta ttaggttatt 780 840 taaggttttt tggaggtatg tgtgcgtgag ggattacgat gtgtgtgtgt gtgtttttgt ttgtgatttt gtacgtgtaa tttgtgtgcg tttgagtatt tgtatttgtg tatgtatata 900 tttgcgtgta tagatacgta gtttttgtta tttagtttta aaaaaattaa ttgaaataat 960 cgatatattt atattcgttt tcgggtatcg ggtgaggtgg gggcgtaatt agaatatttg tgttagcggg ttttggttag tatattttt taacgttggt tgttcgggtt atttttttgc 1020 1080 gaagagegtt tttatttgag gegaaattaa aattttttt tegegttegt ttttegtttt 1140 tttgttgaga gaaatttaaa taatttttat ggcgtcgaaa tttttttat gtcgataagt 1200 tegttttggg egtaegagtg gatgtttggt tagtttttt tgggategat ttegtegteg 1260 tgtttagttt ttattacgtt tttattttat tttacgtttt atagtcgggg tttttggtta 1320 gtttcggaag ttatcgagaa ataggatttc gtgcgttcga gagaattttt ttaggggtta 1380 aggaatcggt tagtcggagg cgcgagaaaa gttttgggaa ggcggttgta tttaggatgg 1440 gtggatgtta cggggttttc gtttaggttg tttcgttcgt acgggtcgat tggttatttt 1500 1560 ggaatttttt ttgtaggttt tagcgttttt cgggaattcg tagttttcgc ggagagcgtg ggtttttttt tatcgttggg gcgtagcgta gtgtacgttt gagggtggtc gtcgggggtt 1620 gggtacgttt ttagttttgc gtcgtcgggg gttgcggcgg tgttgtttat tttagagagt 1680 tttcggtttg gggtttcggc gaagtaagtg ttttttcggc gtcggtcgtt aggggggcgc 1740 gggagtagtt agatgcgtcg tagcgttggg aaggcggcga aggatagggg ttaggggagt 1800 gaggggcgtt cggtaggtag ttttagtttt ggttttgcgc gggagaaggg atagtagaga 1860 1920 cgcggtagag ggcggtatag tcggagtttt ggaaagatcg gtagcgtcgg tagtcgcggg 1980 2040 tttttcggtt attgttttc ggacgtacgg gaagtcgttt ttcgcgtcgt cgtcgtcgta ttgtcgtcgt cgtagagggg tgaggaaatt aatttatcga gttttggtcg tcgataagag 2100 2160 tggttcgtag tttgcgtttc gtttcgggaa ttgggtaagt agcggggatg tggggaggag 2220 ggagcgggta gttgttggtt ttttatttgg gcgttagcga gtaagggtta ggaagcggcg 2280 gggatggtag trgggtattt trtagttreg trattritt trtegttrt gggggcggtg 2340 ttttggtcgt tagttttagt atcgtggatt tgtttttttt tttttttcg attttttttg 2400 agcgggttgg ggcgttttgt ttggttttag cgttcg 2436 <210> 337 <211> 2436 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 337 cgggcgttga aattaggtag ggcgttttag ttcgtttaag gggaatcgag aggggaggag 60 ggggtaagtt tacgatgttg agattggcgg ttagagtatc gtttttagga gcggagggag 120 gggtggcggg gttggggggt gtttagttgt tattttcgtc gttttttggt ttttattcgt tggcgtttaa gtgggaagtt agtagttgtt cgttttttt tttttatatt ttcgttattt 180 240 gtttagtttt cgaagcgaag cgtaggttgc gagttagtcg ggtcgagttt ataattttgt 300 agtttcgggt agggcgagag tcggcgttcg gggttttttt tgtcggcgat tagagttcgg 360 tgagttgatt tttttatttt tttgcgacgg cggtagtgcg gcggcggcgg cgcgggggc 420 ggttttttcgt gcgttcggga ggtagtggtc gagaagttcg cggttgtcgg cgttgtcggt 480 ttttttaagg tttcggttgt gtcgtttttt gtcgcgggcg aggcgggcgt tagggttgaa 540 cggatagttt tttatatttc ggggttttac gggcggtttt tgttgttttt tttttcgcgt 600 agggttaggg ttgaggttgt ttgtcgagcg tttttattt ttttagtttt tgttttcgt 660 cgttttttta gcgttgcggc gtatttggtt gttttcgcgt ttttttggcg atcggcgtcg 720 ggaaggtatt tgtttcgtcg gagttttagg tcgagggttt tttggggtgg gtagtatcgt 780 cgtagttttc ggcggcgtag gattgggggc gtgtttagtt ttcggcgatt attittaggc 840 gtgtattgcg ttgcgtttta gcggtaggga gaggtttacg tttttcgcgg aggttgcggg 900 ttttcggggg gcgttgggat ttgtaaaggg gattttaagg tgattagtcg attcgtgcgg 960 Page 122

47675-47.txt acgggatagt ttggacggag gtttcgtggt atttatttat tttaggtgta atcgttttt 1020 1080 tagaattttt ttcgcgtttt cggttggtcg attttttagt ttttggaaaa gttttttcgg 1140 gcgtacggaa ttttattttt cggtggtttt cgaagttggt taggaatttc ggttgtgagg cgtggggtgg gatggggacg tggtgagggt tgagtacggc ggcggggtcg attttaggaa 1200 1260 aggttggtta agtatttatt cgtgcgttta gggcgggttt gtcggtatgg aaaggatttc 1320 ggcgttatga gggttgtttg ggtttttttt agtaggaggg cgggaggcgg gcgcgaaggg 1380 qqqattttaa tttcqtttta aatqaaaacq tttttcqtaa agaaatagtt cgggtagtta 1440 gcgttggaga gatgtgttgg ttaggattcg ttgatatagg tattttggtt gcgtttttat tttattcggt gttcgagagc gagtgtgagt gtatcgattg ttttaattga ttttttaaa 1500 gttagatagt agaggttgcg tgtttgtata cgtagatata tatatata aatatagata 1560 tttaagcgta tatagattat acgtatagag ttatagataa ggatatatat atatatatcg 1620 1680 tggtttttta cgtatatata tttttaaaga gttttgggta atttggtgag gtttttgagt 1740 gttgtttaag atgtgtgtgt gggtggggac gtagggacgg agaaagggga gtgtgaagta ggatttttag taggttaagt gtcgttgatt tttttgtttt cgattttaaa ttttttttt 1800 tittttttta gggaggttig aattagaaat tttaaatttg ggtttgtttt tatatttata 1860 gaggggagga gttttatttt tcggtgtttt ttatttttat aatttttaaa gattgtaaac 1920 1980 gagttttttt tttttgtgtt agattttgtc gcgttaaggc gtcgagttcg tttaaaattt taggtaatat ttattttag gtggggttta gattcgaggt cgttgcgggt tcgggttttt 2040 2100 ggtttgtttg attcggggtt agggaattgg ggaggggaaa ttcgcgggat agggggttgg gggcgtggag tcgcgtgtag tgttttagac gcgcggtacg gaggagcggg cgagggcgtt 2160 ttttggacgt cgtagttagt tagtttttt tttatttcgg gtttcgtagg aatgtaatcg aggatgttgg ttttgcggtt gtttaacgtg gtggttttcg tttattttt gtgtatttt 2220 2280 ttggtgatit tcgtgttgta gttttttttt tttttgttta gtatgcgcga ggatttcgcg 2340 gtegtteggt titttegtt egittigtit taeggggegt tittittatt tittteggtt 2400 aacgttttgg gtaattagtt tttgttattt agaatt 2436 <210> 338 <211> 17219 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 338 60 tttattgtat attatttatt ttttaggttg ttagcgtggt ttttagtttt ttttaagtta aagatatatt attittitgt gaataagtgt gigaatgigg tigtgiggit tattittitg 120 tatttaagtc ggttttattt attcggtagg aaagttttcg ttaggtattg aggagtgttt 180 gttatttagt tigtgtattt aagtatggat gtatgtatat gaatgttitt tgtgttttta 240 agtgattttt tttatatttt taaatgggtt attgtttttg gaacgtattt atagaaattt 300 360 titqtatitg tataittatg tttatatttt ttttggttag ttttttattt tttatgtatt 420 ttttqtttta tttgggtaac ggagtttaag tgttttgatt tgttttagta tatgttattt 480 aagcgtatat tttaatttga gtattcgtat tatttttatt ttttttgttt tgtttataat 540 gtggtttttt tttaggttag attaatatgg gtttgtagtt taaatgtaaa tagaggattt 600 tttaagatta taaattttta aagaaaggaa gaggaggag gaggagattg gaatgttagt aatgagttat ttatgtatag ggtaatttat tcgtttattt taagttgaag aaagaattag 660 720 780 840 ttttgtatat atttaatttt ttataagttt ttggttaaaa gtatgtttat ttatatagag 900 ataatttaaa gatcgttttg ttttttttag tgtatatttg tatatgttgg cggggtattt 960 taggtttagg tttttggttt gtagtagtta tagttagagg ttttattcga ttatagttat 1020 gtgtagattt tttcgttttt gaatattcgt atgaattttt tttgggaata ttgagtttac 1080 1140 togattgaga aatatttggt taaattagat tatttagtag ttgcgtttgg tttgtggaag 1200 aatcgagttc gatgtattaa gatgtgatcg tgtatatata agagaaagga aaattttagg 1260 tttagattta tagttttttt ttattgcgag ttattttgtt tttaggaatt tttattaggt 1320 tttttgtttt tttttttta ttatattatt ttattacggt ttttaaaggg ttaagagaaa 1380 tttttacggt tttttttta tttagttttt gggttcggag gttagttcgt ttattcgtag 1440

Page 123

1500

1560

1620

tttatagagt ttgttgttat tttcgcgttt ttttttttt tagtttttta gtcgggaggg

aqtttqtatg tttgtttaga tcgatttatt atcggtatat taataatatt cqcqaqaqcq

cggagatttt gtttaggttt ttcggttcgt acggtttacg gcggatagaa ttcggggagc

1680 gtgacggtgt ttgcggggtg ggggtagggg gtttataggt attggtcgtt tcgagcgtat tacgggtttt ttttagtttc ggtttttcgc gtttttatta gttcggttgt cggggtatag ttatagtttc gcgcgttggg tagttttatt tttattttgt ttaattttaa attgggcggg 1740 1800 1860 gagtataggc gtcgtgttta gagaataaga gataggcgcg ggaggcgggg aggagtagtt aggtagcgac gcgagcggga gcgagttaaa gatatagtgg aggcgatcgc gggtaggaag 1920 aaagagcggg ttgcgcgggt ttcgaggcgt cgtacgtaac gcgtcgtttc gcgaagttat 1980 2040 2100 tagtttggat agcgaggttt cggtttgtgt gggaggcgga ggttaggacg gttttgtaaa gggttggaga gaatogttaa tgagttgtgt agtttattga ttoggagaat attttttaat 2160 taatttttag ttatttattg gtgatagcgt tttaaaggat agcgttgggg ttagtcgagt 2220 tttagtcgcg atttgtcggt cgggcgtttg ttgtttaaaa ttcgcgcgtt tttttaaata 2280 ttttaaggta attggtgtgc gtggcggtgt atattcgtat attgaaggtt agtttcggat 2340 2400 ttttgtttaa aataaatacg aaaattaata ttgtaaaatt tatattagat aataggtcga 2460 gagaggagtg ggtagggtta aggaacgagc gtatttttta agtgtttacg tataggaatt 2520 tttgaggttg ataattaaaa tgttttttac gtaagtaatt ttgttggtaa aatcgaattt 2580 aatatttegt aaggattgat tteggttege ggtgttegtt tttagtgtta taggaagtgt 2640 2700 2760 tttagaatta aatattatat tattttttt ttagcgtttt tttaaaacga aaaaaggggg 2820 ggaaaatata gttaaaattt cgagttgttt agtttagacg tagcgaggtt gtgcgaatat 2880 2940 tttttttttt cgttttttta ttttttttat ttttattttt tagacgtcgg cggcgcgt 3000 tttggcgcgc gggtatttat agtttttagt tggagatcgc ggattttttg gaaaagattt 3060 attaatagta aattacgttt cgttcggtta cggtttatac gttgttagat tcgttcgttt 3120 tegggattte gggaagggtt tattegageg tgegagegge gggaagtteg tegggattae 3180 gcgtgatttc ggtcgtttta ttttatatac ggtgttttaa ggtttttttc gtaaatagta 3240 ggcgttcgtt atcgtcgtcg cgagttttcg agttggcgga ggttttgcgg cgtagtcgtt cgtcggtttc gagcgcggt ttcgcggcgt ttcgtttttt tcgtttttggt cgaggatttt 3300 3360 gtttcggtgc gtaagttitt tttcgtttat agtttttttg ttatacgttt ttcgagtgg 3420 attaattttt ttcggtcgta gatttttata cgtttattag ggttatttat tagatttttt attgtttagc ggagggttta ggtttcgttc gttttcgttt tttttttacg acgttgtttt 3480 3540 cgtataagta tattttatat ttatttttgg gggtttataa tttaaaattt acgttgaata 3600 tcggggaggg agaggaggg gaaagcggga gggggatcgt agattataat tttaaaagaa 3660 tatttataaa ataaagcgtt tgatttggtt ggcgggcggg ttaagtcgga attttttgtt 3720 ttgttcgatt ttttagtagt ttttttttt aatttacgtg attcgtgttt tggggtaagt 3780 taagaaaaaa cgggattttt ttttcgagtt gcgcggtagc ggcggtaggt cgagttcggt 3840 3900 teggttegag gtattegtta tatatttteg egtaegtata egtegaegtt ttatttggag gaacgatcgg ttttcggaga ggcgagacga ggcggcggtg gcggcggttg ggggttttta 3960 tagttttttt tcgagtcgaa aaagaaagta gacggtaatt cgttgttttt tttttttgt 4020 togogagtta acgtogaatt tagtttttta gtttttagtt tattttttt tttttcgttc 4080 gattegegge gtttagegge gategegttt tegegtatag atatatatag gttgtaaatt 4140 tttattttgc gaattttttg ttttttttt ggtttatcgg gaggcgttag gtttttagtc 4200 gcgttttttt tttttttggt gtttacgcgg ggtcgtttag gttggttgta ttttaaataa 4260 4320 tatagttatg aaataaaaac gaaagcgagt taagtagtta aagggaagcg cgaggtaaaa 4380 gtttcgcggg gtacgttgcg ggagggggtt tcgggagagg gggtcgattg tagtttttag 4440 cgcgttcgtt cgtttattcg ttcgcggttt ttcggggggaa aggtgtttcg ggtattgatt tgaaattttc ggtgggggag taggtaggga gtttgcgatt cggttttttg aagttttttt 4500 ttaagcggat tcgaggcggc gagaaggagc ggggggcggt tgggtgggtg gagagagata 4560 tgaggggtgg ggggggttgg cgacgttaac gagcggagaa ggagtcgggt cggagaagcg 4620 cggcgagtag taaagtttgc ggttttcggt tgttcgtagt tcgttcgcgg cgtcgcgttt 4680 attogattti ttogiogitt gitggtagic ggttgittic ggggtoggit togtogaggg 4740 gtgggttttg ggtcgggtgg gggcggggcg gggcgggttc ggggttttcg ggtaggtggc 4800 gatagtttcg tgcgattttt cgggttttcg tagttggatt gggtttggtc gagtttagta 4860 gttttcgcgt tgtcgtcgtc gttcgcgttc gggtaggagt tttagcgtta tgttgacggt 4920 tegtegegag egttegtteg ggttgggtgt gtgtgagtgt gtgtgagtgt tggttaagte 4980 5040 tegtegtegt egttegttta gitttegitt teggtegegg ittigggtitt igegegtttt 5100 tttcgtagtc gtcgagttcg gttcgcgttt agcgaggagc gtagttttgt tttattttgt 5160 cgttgggagt ttaggtttcg tttgtcgtcg tacgtcgcga ttttaacgcg ttttttttt 5220 ttggtttttt tttttttt tttttttt tttcgttcgt tttttttc gttcgttta 5280 ttttttttt ttttaatagt cgttttttt tttttcgtag gcgtagcgtt cgggcgatag 5340 togttogtto gtogtogttt ttagttttog taagtttgag tttogttagt tttogtttat 5400

5460 ttttcgttgc ggcgttttcg cggcggggtt tcgggagggg tgatttttta ggaaaggttt 5520 gttcgagttt tttcqqtcqt tatcqatqta cqqttcqqta cqttttqqtt tttttggatt 5580 cgaatttcgg attatttggg tggcgttttt ttttttcgtt tttcggtttt tttttttag ttcgggtcga gttggttgcg tacgttcgat tcgggcgtac gttttgggcg agtcggagat 5640 5700 cgatttgggc ggcggcggcg gcgagggttg tcggtagagt tagagtcgaa gggatggggg cggcgggggc ggttttttta gtcgcgcgtc gagatttttt tcgttattta gaaggttagt 5760 5820 ggaggatcgt aattattata aagcgtttcg tatttcgttt agttaaagtt gttaaatttt 5880 ageggtagta gtegttgteg tegttttttg ttattagegt tgegtttttt eggtttegtt tttttcgaga tttagcggag cgtggtttgt gtgttttcgt gtttatttt attttagttt 5940 gttttttttt tttagaggag ttttttttta tttcggtgtt aaaagttatt tgaaaatatt 6000 6060 attttaggta acggtggtcg tttcgtttga atttcgcgtt cgagtttttc ggacgtttta attgtgtggg aattgtttgg aggtggggga aggggggagt agttcgtgga ggtatcggga 6120 6180 ggcgtgtggg gggcggtcgg cgagcggaga ttcgtttgta tttttttcgg ttttcgagta tttttacggt tigtattttt gatggttgga ggggttgttt aggtttttcg tttcggcgtt 6240 gggagattat ttttcgcgtt ttatttttt tgatagggag taatttttgg tttatatcgt 6300 tcgttttata aatttttatt cggtaacgtc gtgttgatcg gtgtttggcg gcggcgtata 6360 gtttgcgttc gtagtagttt aatttaattg atacgtattg agttttttta gcgtattcgg 6420 6480 cgcggttttg ggcgcgggg gagggcgggg gtaggcggga gggagggga agcggagaag cgaggtttcg gtttttcgg agcgtaaagt tttaagggcg agtcgagaag ttttagttgg 6540 tgaagttggc gggaaggggt aggagtgggg gagggggtat ttcggattaa tcgcgtttag 6600 attgcgggtt cggatttcgc ggttaatggt gattttattc ggttgtttat tagggttttt 6660 ttatattggg aaggggtgg ggtgtttttt tttgtttaag gataagatgg tgtaggtttt 6720 atgaaatata aatttgaaat ggaggtggtt tgtaaattta tacggaaagt tittaaaata 6780 ttttggagtg tttttatgtt aaaaataatt aaaagtattt taagttgatt attaagttaa 6840 ggttaaggtt aaaattagtt ttagttagta gatatttttt tttttaaaaa ttagatttat 6900 tattgattgt gggattggta ttaggtgcga ttttatttat tttgttttag tttttagtat 6960 atagttataa aaatagtttt ttttaaagta gaagtgaaat atttttatcg tttgaaattc 7020 7080 gaaatttcgg tagaattaaa tttttatgtt ttagagttgt ttataataat tgatgtaaaa gataggcgag taagtgtttt cgcgagtagt gtttagttag gttgggtcgc gaacgttttt 7140 7200 atatttttgt aagttaattt atatattttt ttaattttcg gtaataagta gaaagatatt tggattatta tgttgtaaaa ttattttta taaagatatt ttaggattag atattaaaag 7260 7320 ttattagatt gaacgtatgc gagttataga tatagttgga gaaaaggttt ttggttgtgt 7380 gttgtggtaa tattitttt tgaagcgatt ttttttattt aaaataagtt aaaaataatc 7440 gggaaggttg aagttgggta tttgtgggga aattttgaac gtggttttag gcgaggaggt 7500 cgttttgttg ttgtaggttg gacgggagaa ttggtttggg ttagtgtgga gtcgtgttag 7560 gttttttcgg ttcggttagg tcgaatcgta gaggttttgg ttcggcgttt agttattttt 7620 tatttttttt tttcgttttt ttaattttgt ttttaggtat aggttttttt cggagttcga 7680 agtcgtatgt aaacgtttag aatttttaga aaatttagga atcgagttcg gggtttgtag 7740 tttttttagag ttttacggtt tttcggggtt gttgataaag aggtttgttt gtttaatttt 7800 aaaagtttta gaatteggga ggttgagtta ggaqaategt ttgaattegg gaqqeqqaqq 7860 ttgcggtgag tcgagatcgc gtcgttgtat tttagtttgg gtaataagag cgaaatttcg 7920 7980 ggggtggtgg gggtgttgta aatgcgaagg ggtcgaggg agggttgatt gggggagaaa 8040 tttgatgttg gagataaata ggttagtaaa ttcgtttttg acgtaatttg taatattttt 8100 ttttattttt tttagggatt ttgtttttac ggtaggttgg taggattaaa qqqttttttt 8160 tttatttttt agggatatat tttttaattt cgtgggattt taaaaatatt ttattaaggg 8220 agttttaaga ggtatgagtg gtggggggga ttcgtgattt attgggaatt aaaatgtggg 8280 8340 tagttttaat tgttttgggg aaaataagta gaaagttgtc gaagggtaat tttattttgt 8400 gtttttattt aagaaggggt ttagggagtt ggggatgtcg cggggtttgt aatgggtgtc 8460 ggcggtttgg ttttttttt gtttttttt tttttgtttt tttataagtt tttcgggagt 8520 tgattcgggg gttaggttgt tatatttagt atttagtaag gggaggattt taatgaaaat 8580 agaggaggag gagagagtga gtaaaggagt gtatgggagg ggaggtcgtg tagtttacgg 8640 agaaataaag aaataggtgt cgaaatgaga ggtgttgcgg atggagtagc gggggttgtt 8700 ttttcgttat taattttttt ttttatggaa gtgttttttg attataataa attattcgat 8760 tttaggttaa ttaggttttg taattgggta atcgagttgg tttttttagg agtaggtttt 8820 gagtitggtt gtttttttta aggtaggttg attttgtaag attcgttagg gittitttta 8880 tatattttta gttttatttt ggtttagggg aaaggttagg tattttgtgt ttggggggat 8940 tttggttttt taattttgtg tgtaagattt atttataacg tatattagga tttatattat 9000 aaagtttata acgtatgtgt aggttttcga tggttttttt cggaggttgt ttttaqqqcq 9060 atgatatttg gtattggaat aggtgggatt cggatgagta tagataatgt atttttatat 9120 aatgtgaggt agtttttttt taaaaatata tttatattta tagttttttg gttattttgt 9180

9240 ataagaattt tgggtttatt taatggtatt ttaaaaaaata ttcgttgttt tattttttaa gtataaggta tägttggttt tttttttgaa atttaaacga ggtaataaat aggaggcgta 9300 tttttttttt aggattttat ttatttggaa atatttaaag gtagttgttt tttagggtag 9360 aagattgttg gatttaaggg tcgttaggtt gaatatgatt gtttttttt tttttagtt 9420 9480 tttggagggt tattgggtgt ttggggaagg aaggttttaa gggtagtttt ttcgtggttt ttagtaatta ttttggaatt tttggtttgg gttcgatttg ggttaggttt tgagtttttc 9540 gaatataggt acgtgtggt gaattggtat ttatattacg ggggttcgta gggtggttgg 9600 gtgtcgatta aatgggtata atataggagg tttttgggag gttggtcgtt ttttgcgttc 9660 ggtaagggtt taagagtttt cgacgtcgtc gcgttgggtc gggtgttttt gtagataaat 9720 9780 teggaegtta egittegitt eggitgitta titagiaagg egittitige giatattita ttcggttggg ggtagtgagt gggaatcgtc gggagagggg gcgggggaatt attaattatt cgttttcgga tttagtgtgt cggttttcgg ttttagttat tttgtattta gttttttt 9840 9900 tttattttta tcgggttttt gcgaagacgt attatttcga attitttcgc ggtattattt 9960 tcgaattgga ggggtagaga aggttttgtt agtttttcgt ttgtagtagg aaggtgggta 10020 cggattagta gaagggaaag cggtgttgat ttgtttttaa atatttttgt tttttcgttt 10080 10140 ttaataaagt cggttataga ggtgagtggc gcgggatggt tgtttcgaga aggtcgtagt 10200 taggagtaaa gttttggggt ttataacgga ttgggtattt taaacggtgt aattttcggt atattttatt cgtttttatt ttatttttcg aattattttg ttttcggtgt ttatttttt 10260 10320 ttttatattt gegtttttag egegttagta gtegegtagt ttteggtttt gagtgegggg ggtggggtgg gggggtttag ggtggtttgt gtggtgcggt ttgatagaat tttttgtgtg 10380 cggcggaggg aggaggttaa tgtataatgt atagcgtttg gaagttcggt tattagcggt 10440 ttgtcggtga tatagataaa cgattgagag ggaggagatt tagttcgttt tggagtttaa 10500 atagattagc gtggagggga aacgttatga tttaaaagtg tgtgtttgta gatattcgta 10560 tatattttaa tgatttttag taggttatgt gttttagttt tgtatttttt tttttttaaa 10620 aggaggatgt gtttagagga gggaggatga aggtagagtg agaggtttta atttagattt 10680 10740 attagtagtt tttgagagat gaaggaggg agaagtttag aaagcgaggt ttggggaagt tatacgattt aaggttaagt ttagattttg tttttaaaat aataatttaa aaaaagagtt 10800 atttagtttt ttättttgga ttatattttg tgttgtatta gaaaggtttg ggggaaagaa taaattttgt tatttttgtt tttttcggga gtttatattt ttgaattttt ttttttatt 10860 10920 gatattttag agattttttt tttttcggtt taatatatta gtgtttttta gtaattaagg 10980 11040 ataagataac gttaagttgg ggtaaagcgg ttgtttataa tttttttta gcgattttga 11100 toggitatti titatitogi aaaaatgitti tittogaaaa tiggattaaa aaagaaaaag 11160 agaaaaagaa aagaaagaaa gatttttatt tggaagtgat atttaaaatt tattttttt 11220 ttattgataa tttattttt attggcgggg ttttttagga aaagtcgtat ttcgattgta 11280 ggattttagg ttttttcgcg gggggtagga ttattagtgt aattaggttg aataaaatta 11340 gggatgcgtg atgaggattt attttgtatt taatttaagt tcgcggttgg gtttttttt 11400 ttttagttat tggtcgatgt ttgtgtttcg ttatcgtatt tagtgttttt aaattaaata 11460 ggtagttata tttgggaggg ttatataatt atgttaatat gaagtggttg ttaatgcgaa 11520 ataagaagaa attititiga tatttatagg titttataaa gggagagaaa ggaaattata 11580 ttttttagaa ttcgaaagtt tttagtcgaa tcggattttc ggggagtttt agaaattttt 11640 tttttcgtat aggaatttcg cgaaggggtt ttcggaagat tttgtcgagg aaggttttgg 11700 tattagattt tacgatttta gagcgttttg taaatttitt tcggtttagt ggttagttit 11760 agaatgtaaa ttttaaggcg ggcgttttag attaagttga tttagttttt gtttattttt 11820 agtttataat ttcgaggttt ttattttttg ttttcgatcg, ggtcggtatc gtggcgttcg 11880 gtatatgtta agtttatcgt ttttaagtta ggttgtaaga tttaaaggtt ggggtttgtc 11940 gcggacggat tgtttttggg gagttgaaat cgtttagcgg ggaaattitt tititcgttt 12000 tttttcgaaa agtttggtcg cggtttaagt ttcgagtaag cgggtattcg ttgatagtcg 12060 ggttttacgt aaggtttata cgcgttttat tagttagttc gagttttttt cgggcgagtc 12120 gtttggcgcg gttttaaggt cgggtttagg cggggagagg gtgcggggtc gtagcgagtt gcgggcggag gtgcgggttt cgcggagttc ggtttaggttc ggtttcgcgt ttttgggttc 12180 12240 gcgggtaagt tgagtcggcg gggtaggtcg tittttggtt ggcgtcgggg cgttaagttg 12300 cgttttacgt gttcgttata ttagtagtag cggcggcggc ggcgaggagg gggtgttggg 12360 aggegegegg tegttttege ggggtttteg gatttegill tillegilli tillegiggg 12420 gttgggtcga gattattttg cggtttttat tttagcgtaa gtcgaaagcg gcgttgttag 12480 acgtagagag gtttttgggg cgtcgtttcg agagtcgcgc ggcggtagta gttaggggag 12540 ggtgtttttc gcggtcgttt cgtcgtcgtc gtcgtagtta cggggatcgg aagttttcgc 12600 gtcgtttcga gcggttttcg ttggttttag ggttgtttta gacgagggtt ggtcgcgcgt tatttttgat ttttttcgt tttaggcgat tattcgggtt ttgcggtatt tcggtgtaag 12660 12720 tcgagaggat ttttttgcg gttcgatgag atgtttttgt ttttttgtta ttattataag 12780 tacgittitt cgtatcgitc gtagittcgi agitgggaic ggaggggcgc ggagtcgtta 12840 tttcggtcgg gtaggaatat ttgtttttag gttttgtagt tgggcgcgtg ttgttgtgag 12900 aggttgttta ttgttgtgtg tagagatcgc ggaggagaaa atagggtttc gaagtttagg 12960

gttaggagta gttaagtttc ggttattttt atttttatt tattgtaggc gatagagcgc 13020 gaagttagag ggtttgttgg gggttcgggt tttttttcga aggtcgaagg gtcgttattt 13080 ttgggattcg gtttttggtt tgaagaggtc gtttataaaa tagatggggt aaaatttgtt 13140 ttgggagttt ttttagtgtt cgttttcgtt ttttaaatta gatatattta ttttttttt 13200 agttttattt tagttttcgg cgggggacgg gagtaggtta tggcggtatc ggtattttat 13260 tegttttttt ttacqtaqqq acqtaqqqte ggttqeqqqq tteqqatttt gttattttat 13320 13380 ttagggaagg gttaatggac gtttttcgtt tttttcgtgt tcggaggaga ttcggcggcg 13440 gagttgattt gtaaggtttg ttttgtttta tttatttttt attttcgttt tattttttc gatttttttg gtttagggtt cggttcggga aggcgttgtt ttgttagcgg gagtcgagcg 13500 agtgtataga gaaaagtttt tttattttaa tgagagtgta tatagcgttg tagcgaggag 13560. gatgattatt cggcgggcgg ggggcgcggg ttcgggtcgc gggcggcgtg tgcggcggtt tcgcgggttc ggagttttcg tttgtttggt tgttaatcgt acgttttttg ttgttacgga 13620 13680 ggtaggcggg agtcggcggt cgagtttagc gtcgacgatt cggcgggtga tacggaaata 13740 tggcgtagcg ttttttttc gttcgcgttt tcgtttttcg ttttttcgc gttttcgttt' 13800 ttcgtttcgt atttttttc gttcgcgcgg tttttgtagt tttaatgttt tgttttcggt 13860 13920 tttcggggtt tatagaaaac gtttgttttt gtttcgagtt ttcgttaaat taaatttgtg 13980 14040 gtggtaacgg aaggcggtgt aggcggggag gggttcgggg attttggtag tagtcggtta gagcgtggtg gaaatttttt tcgttgggtt tttcgttttt ttttattttt ttttttaat 14100 atagagtcgt cggtttttcg acgttttttt tttcgttttc gagaggtttt agtgttttag 14160 gaaggtttgg gttatagaga ttgtgattag gggtgaagaa tttagagtgc gtgtttgtga 14220 gtttcgaggt tttggtattc gatgattttg ttttttgtag tttcgattta ttttttttt 14280 tttggttatt cggggttttg tattagtcgg tgaagaaggg gagggaagag aaagtgtttt 14340 tttcgtgcgt gtggttttta ttttaaggat ttgttggaat ttgttatttt taattgtata 14400 gttttttttc gtataggatt tagggcgaaa gcggggaaac gtcggattta gggggaaagg 14460 gtcgggttag aaatttagtt ttggaggttg gatcgtattt ttttggcggg tttagttata 14520 tttggtcggt acgcggggcg gggcgattta gtagagtggg ggacgtaagg gttaggtttt 14580 tcggtttagg agacgttaaa cgttttaatt ttggagcgag agagtaggaa ttttcgtttt 14640 14700 tatttaagcg cgcgcgtttt ttagttcgac gcgtaagtcg tggtttttcg cgttagagtt gtttaggcgg taatttttta agtttgtaat taagcgaggc gtcgtcgtgt tttttgttag 14760 tgtcggtttt gttagtcgta tatggttttg gtgtttcggt tcgaggtttc gcgattagtt ataggttcgt ttcgttttt ttttaattcg tttttgtagg tagtttgggg acgcggtcga 14820 14880 14940 tegttgegtt egagteggeg egggttttgg ggtgegggtt tggegttttt tttttttat agttttttgg ttggggtgge ggegttttt tttttttegt ttttttteg ggttgegag 15000 15060 atttatttgt gtggtgttat ttgtataaaa ataggataag tgtttttgtg cgtttatacg 15120 cgggaggcga aatttttatt gatgtgtttg tgtggagttt tcgattgtcg gagcggtttg 15180 atttagggtg tttgtgttgt tttttataag aaaggagaga aagttttttt taattttttc 15240 ggcggtttgg gtttttagaa gtatgttttt ttgcgcggtc ggaatggttt attatttggg 15300 ttttaagcgc gtcggattta tagcgagtag gttgagggtt aggcgggagg tttattatga 15360 tttataaaat cgggcggttt aatcgttagt tgttaattta tttatatgtg gagttttta 15420 15480 atgttttttt cgttcgggtt cggttttttg agggtttgtt tcgatatagt tagagtcgtt aagtgggagt taatttagtg gtttttttt ttcgtcggta gcgtggtttt ttttttcgg 15540 cgattittegt ttttttggtt tattgegttg ttegttagta attitttagt ttggataaat 15600 agttgggagg gcgtcggtcg cgcggagtta gtaaattaat tattaatttt taagcgaggt 15660 ttggattagg ggagggagcg gcggttagag tcgagttcgc gaggcgagcg taaagttttt 15720 atoggggtta ggagttattt acgcgttaac gaatogggtg ogtgaaggog ggtttoqtta 15780 tggtttttcg ggttttttta gaagttttcg ttcgtcgggt tttttaagtt cgtattttgt 15840 ttggttaggt aggtcgcgtt atagcgttgt ttttgggaga gtttgaatat taacgagtcg 15900 tttcgggttt tagcggtttg ttttttatag gagagcgttt cgcgtttggg taagtttttc ggattcggtc gggttttttt tggtttaggt ttgttaaatt aaattgatcg tattttgtat 15960 16020 cgattaattt ttitgeggta ttitttittt ttagtttaeg gtggagtegg taegtagggg 16080 gttaaaagtt tcggttcgtt ttggtttttc ggttgcgagg agaaaacgtt gattaaagtg 16140 tttaagggga aggtaatata tgtatattcg gtttcgggtc gaaggaggtc gattggagac 16200 ggttttcgag ttattcgttt cgattcgttt tttatatttt cgggaacgcg gcggcggcgg 16260 eggttttggt tegtaegatt egtteggegg agegttgegt tgttgggttg ggagggegge 16320 16380 ggggaggagg agagacgagg gggcgggagg cgaattcggg ttgcgcgtta agaggttcgg agtogtagat tagttatogt toggttitgo gttttogggt gogttoggga atogggaggg 16440 taggcgtcgg tttcgtttag tcgggttttt cggttttcgg cgcgggtgtt tttatttta 16500 ttttcgcgcg tttttggcgc ggttggttcg attttcgggg attcgcgtag tcgagattta tttgttaggt taagggtagg atagaaattt tgtaagcgga gttttgtttg cgaataggaa 16560 16620 attittttt gatgaggtgt tgttttttt ttacgtcggg ttttaaaaata aaattttaga 16680 gegggeggtt aggtatttag titegttegt tatggtegge gattttegtt titeggttie 16740

```
ggtttcgggc ggcggagtta agttaataga gtcggcggac ggattcggcg tcggtttcgc 16800 ggagggcgtt aggttgttat ttttcggggt tcggacgggg tcggcggggg tgcggagttt 16860 cggagttttc gcgtttttt aggttttata gttatcgagc ggttttgcgg agttgttcga 16920 ggtcgtcggg ttagcggtt ttcggagggc gtgggggcg gggaggtcgc gcggcgtcgt 16980 cgattcggcg aatttcgttg cgggagttcg ggagggttgc gagttcggtt tggtaaagtt 17040 tttgtggaaa ttttatgttt tgaaattttt gcggcgtcgt agaaggaggg ggagagggga 17100 gcgcgggaag cgcgcgggg cggtttgtat tcgtttttt tcgtcgggga gtgggttcg 17160 cggtttttcg ggttttatgg gaaagttgga gggcgggac ggtcggttt tcgggttcg 17219
```

<211> 339

<212> DNA <213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 339

caaattcaaa	gattcggtcg	ttttcqtttt	ttaqtttttt	tatgaggttc	agagaatcac	60
				tttcgcgcgt		120
				aatatggagt		180
attttattag	atcaaattca	tagttttttc	agattttcat	agcgggattc	atcaaatcaa	240
				agtcgttgat		300
				gggaggcgcg		360
				tggtagtttg		420
				ggtttcgtcg		480
				tgggtatttg		540
				tattttatta		600
				ttgtttttga		660
				cgttaggagc		720
				tgagcggggt		780
tttttcaatt	ttcgggcgta	ttcagaaaca	tagagtcgag	cggtgattaa	tttacaattt	840
				ttcgttttt		900
				atcgtgcggg		960
				ggcgggtggt		1020
				gtgttatttt		1080
				gcgaatcggg		1140
				gtcgtaggga		1200
				gaggagttcg		1260
				aggtcgttga		1320
				acgcgatttg		1380
				ggaggggttc		1440
				ggtggttttt		1500
				gtttttttt		1560
				ggtcggcgtt		1620
				gttaagagag		1680
cggggaaggg	aagttacgtt	gtcgacggga	aggagaggtt	attagattag	tttttatttg	1740
gcggttttag	ttgtgtcggg	gtaaattttt	aggaagtcgg	gttcgggcga	agggagtatt	1800
gggaagtttt	atatgtaaat	gggttggtag	ttggcgatta	ggtcgttcga	ttttatgagt	1860
				ggattcggcg		1920
ttaagtggtg	gattatttcg	gtcgcgtaga	gggatatgtt	tttgggggtt	taggtcgtcg	1980
aaggagttga	gaaggatttt	tttttttt	ttgtagaagg	taatataaat	attttaaatt	2040
				ataaggattt		2100
				tgatattata		2160
tcgtaggttc	gggagagggg	cgggaggagg	aggggcgtcg	ttattttagt	tagggggttg	2220
tgagaggga	ggggcgttaa	attcgtattt	tagggttcgc	gtcggttcgg	gcgtagcggg	2280
				ttttgttagc		2340
				aggagcgaag		2400
				gcgattgata		2460
				aaaaaattgt		2520
				gagcgcgcgc		2580
gggcgggggt	ttttgttttt	tcgttttaag	gttggaacgt	ttggcgtttt	ttggatcgag	2640

			47675-4		++	. 2700
		ttattttgtt				2700 2760
		agtacgattt ttttttcgtt				2820
		ttttaataaa				2880
		tttttttat				2940
		tgtagggagt				3000
		tttttattt				3060
		ggggcgaagg				3120
		ggagcggaga				3180
		ttcggatttt				3240
		gttcgggata				3300
		ggggtcgcgg				3360
		ttgtaaaagt				3420
		gggaggcggg				3480
		gtcgtcggcg				3540
		cgattagtag				3600 3660
		cggttcgagt gtatttttat				3720
		ataacgtttt				3780
		gggggtgggt				3840
		tacggaggag				3900
		ttcgtagtcg				3960
		gatttatttt				4020
		ggtttggaga				4080
ataggttttg	ttttatttgt	tttatgaacg	atttttttag	gttagaagtc	ggattttagg	4140
		cgaaaggaga				4200
		gtgggagatg				4260
		tttttttcg				4320
		ttgtagggtt				4380
		gttttagttg				4440 4500
		tagggatatt gttcgggtgg				4560
		ggaatagttt				4620
		gattgcggcg				4680
		cgcggttttc				4740
		tgcgttggga				4800
		ggcggggttc				4860
ttagtatttt	tttttcgtcg	tcgtcgtcgt	tgttgttgat	atggcgggta	cgtgaagcgt	4920
		gttagggagc				4980
		agtttggtcg				5040
gttcgttgcg	gtttcgtatt	tttttttcgt	ttgagttcgg	ttttggggtc	gcgttaggcg	5100
		ggttgattaa				5160
		ttgttcggag				5220 5280
		cgttgggcgg tttgtagttt				5340
		ggtcgggggt				5400
ggaggagata	gaggttaggt	tagtttggtt	tagaacattc	gttttgaggt	ttgtattttg	5460
		gggaatttgt				5520
		tttttcggaa				5580
		agggttcggt				5640
gtgattttt	tttttttt	ttataggggt	ttataaatat	tagaagagtt	tttttttatt	5700
tcgtattaat	aattatttta	tgttgatata	gttatatgat	ttttttaagt	ataattattt	5760
gtttagtttg	aaggtattga	gtgcgatggc	gaaatataaa	tatcgattag	taattaagag	5820
aaggaaaatt	tagtcgcgag	tttgggttgg	atataggata	aatttttatt	acgtatttt	5880
		tattagtaat				5940
		tttggggagt				6000 6060
		ttatttttaa tttcgaaaag				6120
taaaatcott	aaqqqqaaqqt	tgtaagtagt	cattttattt	tagtttaggg	ttattttatt	6180
		aaaaaaaatt				6240
		agtgtgttaa				6300
gtggaaaagg	aagatttaaa	aatgtgggtt	ttcgggggaa	gtaagggtgg	tagaatttat	6360
tttttttt	aggtttttt	ggtataatat	agggtgtagt	ttagggtgga	aggttgggtg	6420
			Page 1			

47675-47, txt

gttttttttt taaattatta ttttaagaat aaaatttggg tttggttttg ggtcgtgtgg 6480 ttttttttagg tttcgttttt tgaatttttt ttttttttta ttttttaaaa gttgttggtg 6540 ggtttgggtt gaggtttttt attttgtttt tattttttt tttttagata tattttttt 6600 6660 ttggggaggg ggggatgtaa ggttaggata tatagtttgt tggaaattat taaaatatat gcgagtgttt gtaaatatat atttttaaat tatggcgttt tttttttacg ttggtttatt 6720 taaattttag agcgagttgg atttttttt ttttagtcgt ttgtttgtgt tatcgatagg 6780 6840 tegttaatgq tegggttttt aggegttgtg tattatgtat tagttttttt ttttegtegt 6900 atatagaagg ttttgttagg tcgtattata taaattattt tgagtttttt tattttattt ttcgtattta gggtcggggg ttgcgcggtt gttaacgcgt tgggaacgta ggtatggaga 6960 ggaggatgag tatcgagagt agagtggttc ggaaggtgga atgggagcgg gtgaaatgtg tcgaagatta tatcgtttgg aatgtttagt tcgttgtgag ttttaaagtt ttgtttttgg 7020 7080 ttgcgatttt ttcgaggtaa ttatttcgcg ttatttattt ttgtgatcga ttttgttggg 7140 7200 atttatttt ttgttgtagg cgaggggttg gtagagtttt ttttattttt ttagttcggg 7260 agtggtatcg cgaaggggtt cggggtggtg cgttttcgta gggattcggt gggagtggag 7320 gagggaagtt ggatataaaa tggttggggt cggaggtcgg tatattgggt tcgaaggcga 7380 7440 gtagttggtg gtttttcgtt ttttttttcg gcggttttta tttattgttt ttagtcgggt 7500 aaaatatgcg tagaaggcgt tttgttaaat aagtagtcga ggcgggacgt ggcgttcggg tttatttgta ggagtattcg gtttagcgcg gcggcgtcga gggtttttaa gtttttgtcg 7560 agcgtaagag gcggttagtt ttttagaagt tttttgtatt atgtttattt ggtcgatatt 7620 taattatttt gegggtttte gtagtgtaga tgttagttta tttataegtg tttgtgtteg gggagtttag ggtttgattt aaategagtt tagattagaa attttaagat ggttgttagg 7680 7740 aattacggag aggttgtttt tagggttttt tttttttaaa tatttaataa ttttttaaag 7800 gttaggaaga agaaagaata gttatgttta gtttggcgat ttttaagttt agtagttttt 7860 tgttttggga ggtagttatt tttagatgtt tttagatgag tgaaattttg ggaggaggat 7920 7980 gcgttttttg tttgttattt cgtttgagtt ttagagggga agttagttgt gttttgtgtt tggaggatgg ggtagcggat gttttttaaa gtgttattgg ataagtttag agtttttgta 8040 8100 taaagtgatt agaagattat aagtgtgggt gtgtttttaa agaaaggtta ttttatatta tgtaaaaata tattatttgt atttattcga gttttatttg ttttagtatt aagtgttatc 8160 gttttgagaa tagttttcga ggaggattat cggaagttta tatatacgtt ataagtttta 8220 8280 tgatgtggat tttagtatac gttataaata aattttgtat ataaggttag aaggttaggg tittittaaa tataggatgt itggtttttt tittaggtta gggtggagti ggaggtgtgt 8340 gggagaggtt ttagegggtt ttgtagagtt aatttgtttt gagaagggta gttaggttta 8400 aggtttgttt ttagaagggt tagttcgatt gtttagttgt agggtttggt tagtttgagg 8460 tcgagtggtt tgttataatt aggagatatt tttatgggaa gggagattgg tggcggaggg 8520 gtagttttcg ttgttttatt cgtagtattt tttatttcgg tatttatttt tttatttt 8580 8640 tttttattga aatttttttt ttgttgagtg ttgggtatag tagtttgatt ttcgggttag 8700 ttttcgaagg gtttgtggga gggtaggaga ggagggggta ggagaagggt taaatcgtcg 8760 gtatttattg taggtttcgc ggtattttta gttttttgag tttttttta agtgaggata 8820 taagatggga ttgtttttcg atagtttttt gtttgttttt tttagaataa ttggaattaa 8880 togggttaat aggtgtaatt ttttttttt tttttgttt tatagegttt egggaaaatt 8940 ttatatttta atttttagtg agttacgaat tttttttatt atttatgttt tttaggattt 9000 ttttaataag atatttttga aattttacgg agttgaaaaa tgtattttta ggagatggag 9060 9120 gagaaatttt ttaattttat tagtttatcg tggaggtaag atttttagaa aaggtggggg aggatgttgt aaattacgtt aaaggcgaat ttattggttt gtttgttttt agtattaaat 9180 ttttttttta gttagttttt ttttcggttt tttcgtattt atagtatttt tattatttt 9240 9300 ggagtttegt ttttgttgtt taggttggag tgtaaeggeg egattteggt ttategtaat tttegttttt eggtttaag egatttttt ggtttagttt ttegaatttt aggattttta 9360 9420 aagttagata aataggtttt titgttagta gittcgggag gtcgtaagat titgagaggt 9480 tglaggitte gagtieggtt tttggattit ttaaaagitt iggaegtita tatgegatit 9540 cgaatttcga gaaaagtttg tgtttggggg tagagttggg gagacgaggg gaggggatag 9600 aaggtggttg ggcgtcgggt tagggttttt gcggttcggt ttaatcgagt cggaagagtt 9660 tggtacggtt ttatattggt ttaggttagt tttttcgttt agtttgtagt agtagagcgg 9720 ttttttcgtt tggaattacg tttagagttt ttttataaat atttagtttt agtttttcg 9780 gttatttttg atttgttttg aataaaagga gtcgttttaa aaagaaatgt tgttataata 9840 tataattaga ggttttttt ttagttgtgt ttgtaattcg tatgcgttta atttaataat 9900 ttttaatgtt tggttttaaa atgtttttat aaaaaatagt tttatagtat aatagtttag 9960 gtgttttttt gtttgttatc ggagattaaa aaaatgtgtg ggttggtttg tagagatatt 10020 tatttttaga aagattagga agaaaaaagc gtgtatttta tittgtaggc gtiggttttg 10080 gaagcgttcg cggtttagtt tggttgggta ttgttcgcgg gggtatttgt tcgtttgttt 10140 tttgtattag ttgttataag tagttttgga gtatgaagat ttaattttgt cgaagtttcg 10200

ggttttaaac ggtagagatg ttttattttt gttttgagaa gggttgtttt tataattatg 10260 tgttgagaat taaaatagaa tgaataaaat cgtatttaat attagtttta tagttagtag 10320 10380 tgatttagta attaatttga gatgtttttg attatttttg gtatggggat attttaggat 10440 attttaaaaa tttttcgtgt ggatttataa gttattttta ttttagattt atgttttatg 10500 gagtttgtat tattttgttt ttaggtagaa agagatattt tattttttt ttagtataaa 10560 aagattttag tgggtagtcg aatggggtta ttattggtcg cgaagttcgg gttcgtagtt 10620 10680 tgggcgcggt tagttcggaa tatttttttt tttattttta tttttttcg ttagttttat taattagggt ttttcggttc gtttttgagg ttttgcgttt cggggaggtc ggaatttcgt 10740 tttttcgttt ttttttttt ttcgtttgtt ttcgttttt tttcgcgttt agagtcgcgt 10800 10860 gtacgtcgtc gttaagtatc gattagtacg acgttatcga gtggaaattt atggggcgaa 10920 cggtgtaagt taaaagttgt tttttgttaa ggaaaataaa acgcgggaga taatttttta 10980 acgtcggggc gaggggtttg ggtagttttt ttaattatta gaggtataga tcgtgaaaat 11040 gttcgagaat cgggagaaat ataggcggat tttcgttcgt cgatcgtttt ttatacgttt 11100 ttcggtgttt ttacgggttg tttttttttt tttttatttt taaataattt ttatataatt 11160 gaaacgttcg gggaattcgg gcgcggagtt taggcggaac ggttatcgtt gtttggggtg 11220 gtgtttttag gtagttttta atatcgaaat gggaaagggt tittttggga ggaaggggta 11280 aattggggtg ggggtgagta cgggagtata taggttacgt ttcgttgggt ttcggagggg 11340 acgaggtcgg gagagcgtag cgttggtggt aagaggcggc ggtagcggtt gttgtcgttg 11400 gggtttgata gttttggttg agcggagtgc gaggcgtttt atggtaattg cggtttttta 11460 ttggtttttt gggtagcgag gggagtttcg gcgcgcggtt gggagagtcg ttttcgtcgt 11520 ttttattttt teggttttgg ttttgteggt agttttegte gtegtegteg tttaagtegg 11580 ttttcggttc gtttaggacg tgcgttcggg tcgggcgtgc gtagttaatt cggttcgagt 11640 tggggagggg aggtcggggg acgaggaggg ggggcgttat ttaagtggtt cggggttcgg 11700 atttagagag gttaaaacgt gtcgggtcgt gtatcgatga cggtcgggga aattcgggta 11760 aatttittt ggggaattat tittitcgaa atticgtcgc ggaggcgtcg tagcggaggg 11820 tgagcggaga ttggcggagt ttaaatttgc gagagttgga ggcggcggcg ggcgggcggt 11880 tgtcgttcga gcgttgcgtt tgcgggggga ggggaggcgg ttgttgggag ggagggaggt 11940 agggcgggcg ggagggagga cgggcggagg gagggggagg aggaagagga gggaattagg gaggggggac gcgttgggat cgcggcgtgc ggcggtagac ggagtttggg tttttagcgg 12000 12060 taaggtgagg tagagttgcg tttttcgttg aacgcgggtc gagttcggcg gttgcgggg 12120 agacgcgtag gagtttagat cgcgatcgag agcgggagtt aggcgggcgg cggcggga 12180 gggggagttc gcgagtcgtc gggcggagag tttaagtcgc gttqtcqtcq cqtaqqqacq 12240 attiggitaa tattiatata tatttatata tattiagitic gagoggoggt togoggogaa 12300 tcgttaatat ggcgttgggg tttttgttcg agcgcggcg gcggcggtag cgcgggagtt 12360 gttgagttcg gttaagttta gtttagttgc gggagttcgg aggatcgtac ggggttgtcg 12420 ttatttgttc ggaggtttcg agttcgtttc gtttcgtttt tattcggttt agagtttatt 12480 tttcggcggg gtcgatttcg agggtagtcg gttgttagta gacggcgagg gagtcgagtg 12540 agcgcggcgt cgcgagcggg ttgcgggtag tcggggatcg taaattttgt tgttcgtcgc 12600 gttttttcgg ttcggttttt ttttcgttcg ttaacgtcgt taattttttt tatttttat 12660 attttttttt atttatttaa togtttttog ttttttttog togtttogag ttogtttggg 12720 ggaaaatttt aaagagtcgg atcgtaggtt ttttgtttat ttttttatcg gggattttag 12780 gttagtgttc ggaatatttt tttttcggga gatcgcggac gggtgggcgg gcgggcgcgt 12840 tgagggttgt agtcggtttt ttttttcggg gttttttttc gtagcgtatt tcgcgaagtt 12900 tttgtttcgc gtttttttt ggttgtttgg ttcgttttcg tttttatttt atagttatgt 12960 tatttaaaat gtagttaatt taagcggttt cgcgtgggta ttagggaggg agggggcgcg 13020 gttgggggtt tggcgttttt cggtgggtta ggaggagagt agggagttcg tagagtggaa 13080 gtttgtagtt tgtgtgtgtt tgtgcgcggg agcgcggtcg tcgttgagcg tcgcgagtcg 13140 ggcggagggg ggggaggtgg gttggaagtt gggaagttgg gttcggcgtt agttcgcgag 13200 taggaagggg agggtagcgg gttgtcgttt gttttttttt tcgattcggg aaagaattgt 13260 aaaaattitt agtcgtcgtt atcgtcgttt cgtttcgttt tttcgggggt cggtcgtttt 13320 tttaagtgga acgtcggcgt gtgcgtgcgc gagggtgtgt ggcgagtgtt tcgggtcgag 13380 tcgagttcga tttgtcgtcg ttgtcgcgta attcgggagg ggagtttcgt tttttttgg 13440 tttgttttaa agtacgaatt acgtggatta aaaaaaaaa ttattaagaa atcgagtaga 13500 13560 ttttttaaga ttataatttg cgatttttt ttcgtttttt ttttttttt tttttcgat 13620 gtttagcgta ggttttaagt tatgagtttt taggggtggg tgtagaatgt gtttgtgcgg 13680 gggtagcgtc gtggagggag ggcgggggcg ggcgagattt gggtttttcg ttgggtaatg 13740 gggagtttgg tgggtagttt tgatgggcgt gtgaaagttt gcggtcggag gaagttggtt 13800 ttattcggag ggcgtgtggt aaggaggttg taggcgaaga ggaatttgcg tatcggggta 13860 agattttcgg ttaaggcggg gagggcgagg cgtcgcgggg ttcgcgttcg gagtcggcgg 13920 geggttgegt egtagagitt tegttaatte gggggttege ggeggeggtg acgagegttt 13980

```
gttgtttacg gagagagttt tggggtatcg tgtgtggagt agggcggtcg aagttacgcg
                                                                  14040
                                                                  14100
tggtttcggc gggtttttcg tcgttcgtac gttcgagtgg gtttttttcg gggtttcgga
gacggacgag tttggtagcg tgtaggtcgt ggtcgggcga ggcgtaattt gttgttaatg
                                                                  14160
                                                                  14220
aattttttt agaaagttcg cgatttttag ttagaggttg tgagtgttcg cgcgttaggg
cgcgcgtcgt cggcgtttgg agggtggggg tggggggaat ggaagagcga agaaggaagg
                                                                  14280
aggagggtta tgtgtattta gaaataaatt ttaaaaagaa attaacgcgt tttaaatagg
                                                                  14340
                                                                  14400
tattcgtata gtttcgttqc gtttagatta gataqttcqq ggttttagtt gtgttttttt
                                                                  14460
tttttttttt cgttttgaga agacgttaga ggaggggtag tgtggtattt ggttttaggg
gtagtttttt ggagaaagat ttttaaaaatg gtttgggagt aaagattagg aggaaatggt
                                                                  14520
14580
tattttttgt ggtattggaa acggatatcg cgggtcgaaa ttaattttta cgaagtgttg
                                                                  14640
ggttcggttt tgttaataga attgtttgcg tggaaggtat tttaattgtt agttttaaag
                                                                  14700
attittgtac giggatatti agggaatacg ticgttitti gattitgtit attittitt
                                                                  14760
cgatttgtta tttggtgtgg gttttgtagt gttggttttc gtgtttattt tgggtagggt
                                                                  14820
tttagcgcgt agagcggagt ggggggggaa ggcgatgatt aatatgttat ttaggtttaa
                                                                  14880
ttcgaggttg gtttttagtg tgcgggtata tatcgttacg tatattaatt gttttggggt
                                                                  14940
                                                                  15000
gtttagggga gcgcgcgggt tttgggtagt aggcgttcgg tcggtaagtc gcggttgggg
                                                                  15060
ttcggttggt tttagcgttg ttttttgagg cgttgttatt agtaggtgat tgagagttaa
ttaggaagig tttticggat taatgggttg tatagtttat tagcgatitt tittagtttt
                                                                  15120
ttgtagggtc gttttggttt tcgtttttta tataggtcgg ggtttcgttg tttaggttgc
                                                                  15180
ggggagcgtc gttgggaagt ggggaggggt cggtagcgag ggacggcggg gaagcgagtg
                                                                  15240
taatttegeg gggeggege ttgegtgegg egtttegagg ttegegtagt tegttttttt
                                                                  15300
tttttgtteg eggtegtttt tattgtgttt ttaattegtt ttegttegeg tegttgtttg
                                                                  15360
gttgtttttt ttcgtttttc gcgtttattt tttgtttttt aagtacgacg tttgtgtttt
                                                                  15420
tegtttagtt taggattaga taagataaaa ataggattgt ttagegegeg gagttgtgat
                                                                  15480
tgtgtttcgg tagtcgggtt ggtgggagcg cggggggtcg gagttggaga ggattcgtgg
                                                                  15540
                                                                  15600
tgcgttcgga gcggttagtg tttgtgggtt ttttattttt atttcgtagg tatcgttacg
                                                                  15660
tttttcgggt tttgttcgtc gtgaatcgtg cgggtcgggg gatttgggta gggttttcgc
gttttcgcgg gtgttgttgg tgtgtcggtg atagatcggt ttagataggt atgtaggttt
                                                                  15720
tttttcggtt gaaggattgg aggggggga ggcgcggaga tggtagtaga ttttgtgagt tgcgagtgag cgagttagtt ttcgggttta ggagttggt ggagggaagg tcgtggggt
                                                                  15780
                                                                  15840
tttttttaat tttttaaagg tcgtggtggg gtagtgtaat agggaaaggg gggtaaagag
                                                                  15900
tttagtggaa atttttggag gtagagtagt tcgtagtggg gaggagttgt gagtttgggt
                                                                  15960
ttagggtttt ttttttttt atgtgtgtac ggttatattt tggtgtatcg ggttcgattt
                                                                  16020
ttttataaat taaacgtagt tgttagatga tttagtttga ttaggtattt tttagtcggg
                                                                  16080
gagttgtgaa tatatataat gaatattttt attttaaaaa ttgagtttgg aagatagacg
                                                                  16140
tagatttaat gtttttaaag agaatttatg cgggtgttta aggacgggaa ggtttgtata
                                                                  16200
tagttgtagt cgggtggggt ttttgattat gattgttgta gattaaggat ttgagtttga
                                                                  16260
aatqtttcgt tagtatgtat aggtatgtat tgaaqaqagt aaaqcqqttt ttqaqttqtt
                                                                  16320
tttatataaa tagatatatt tttaattagg aatttgtgag gagttagata tgtgtaagga
                                                                  16380
gatagttttt aaagaggagt tggatattga tgtgttgtga gatttatcgt ttgtgtgtgt
                                                                  16440
16500
tagttttttt tttagtttga aatgggcgga tgggttattt tatatataaa taatttatta
                                                                  16560
16620
gattttttgt ttatatttaa attgtaaatt tatattggtt tggtttggga aagagttata
                                                                  16680
ttataggtaa agtaaaaaga atggaagtag tacgaatgtt tagattaaga tgtgcgtttg
                                                                  16740
aatgatatgt gttgagataa attaagatat ttgggtttcg ttgtttaaat ggaataagag
                                                                  16800
atatataaga gataaagaat tggttaaggg gaatgtaaat atgggtatgt aaatatagag atgtatagcg atattttgag agaaaaattt tagattttgt tgagttggaa attggggtag
                                                                  16860
                                                                  16920
aatttttgta agtgcgtttt agagataata gtttatttaa aggtgtgaag agggttattt
                                                                  16980
ggaaatataa aaagtattta tatgtatata tttatgttta gatatatagg ttgaatgata
                                                                  17040
aatatttttt aatgtttgac gaagattttt ttgtcgagtg agtgagatcg atttgggtat
                                                                  17100
17160
ggtttgaagg aaattgaggg ttacgttagt agtttaaagg atggatggtg tgtaqtqaa
                                                                  17219
```

```
<210> 340
```

<211> 2264

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 340

tatggtggtg aatttaggag gatttaggag gatttaggag gattttaggatttatt gttgttattatt gttgttttattta	tgcgtaggttga gcgtaggttga ttaaggttttttga ttaagagttttttga aattttttgga aatttttttgga aattatttttggtttttt ggttaattattttt ggtttaatttttt ggtttaatttttt ggtttaatttttt ggtttaatttttt aggttttaattttt tggtttaatttttt ggttgatttaattttt aggtttaatttttt ggttgatttaattttt ggtgatttaattttt aggttattaattttt aggttattaattttt ggtgaattttttaatttt gattttaattttt aggtgaatattttt atttttaatttttaatt ttggaggtaattttt atttttaatttttaa attttttaaggtaattttt aaggtgaatattttt aaggtgaatattttt aaggtgaatattttt aaggtgaatattttt aaggtgaatattttt aaggtgaatatttt aagggggaa ggaaaaggg	taaataggttaa tagggttaataattgggttaataggttaattgggttaattagggttaattagggttaattagggttaattagggttaattggggttaattggaagtaggaagtattggaggtatttggggttatttggggttatttggggttatttggggtttttt	ttcggaggt aagattattt tgagattattt tgaatatttttt gattattatat taattttgagtta ttaattttgagttat tttttttt	tgaagtagga tattataggtttataggtttatataggttttataggttttataggttttatttaggttttaggttttaggttttaggtttgttg	gaatcgggc tagtcgggc tagtcgggc tttagagttcggatat ataaagtttaac aaaatattt tcgtaatttt tcgtattttta ttcgtgggtttta ttagggtttta ttagggtggggatgta tagggggatgtgtat tagggggatgtgtat tagggggattttcgggattttcggattttcggtattttttt gtattttttcgttttt tagggtgtgtttaa ttcgggggatttaagttttcggtatttt atttttttatttttcgttttt tagtttttt tagtttttttttt	60 120 180 240 300 360 420 480 540 660 720 780 900 1020 1080 1140 1260 1320 13280 1440 1560 1680 1740 1860 1980 2040 2160 2220 2264
<220>	ficial Seque					
<223> chemi	cally treat.	ed genomic	DNA (Homo s	sapiens)		
tcggttgggg cggcgttacg tttcgcggat atagcgtttt cgtttttcga gtaattcgtt agtttatttt ttaggtgaat aatagaaata cgtttaaagg	atattattt cgttatcgcg tagcgtaggt gtgggtttt agtgcgtttt taggtagcgt tttagtacgt aaaacgtttt tttttattat agatatttt	gtttttaaat ttttttgttt ttttcgcgtt ggattttgtt attatgtagg ttttttaaag agaaataaag ataaattaaa tttttcgta tttattttt ttttttag gatttgtaaa	ttttttacg tcgttttta gtgtcgagat tggaaaggga gttttgggag agataaatgt tatgtaatag ttttaatgag tagtacgtga gttttttt	agcgcgttat gtttatttag acgtttttcg taaataggtt tttttgggat aacgcgtatt gtgcggggat ggaagagaag attagtttaat tagttttaat aatttttagt	tttcgggatt ttgggcgggg gggtatgggg tatttgtacg aggaaatacg tatatttta ttagttatat aaaattttaa taaagtgaaa gagattaatt	60 120 180 240 300 360 420 480 540 600 660 720

47675-47.txt tgaaaaaaat tatttaattg ggtagaaatt atgtgtgttt tgttttttgg tattagtatt gtttttaaat cgaagtaggt agttaatagt tgtggatgaa taaatgaatt ggataaattt tgttcgagtt atatgatttt ttgttgttaa ggtgtttgcg gaatggaggg gaaatgttag taattitatg tatalatagg ttogoggttt ogggttagtt gaaatatala aggttgagtt attgagtttt titttagttt tttaatttta ttttgagggg ttaacgaagg gattaattga tattgtattt ttagataggc qaaaaggaaa aagttattta gtaaataaaa ttgcgttttt ttataagtgt tggtttttta gcgaggagga tttatagttt gagtttttta cgtttaattt tttcgttttt tattgtcgtt aaattaaagt taaaatgagt tttttagttt tttacgcgcg

ttttaaaatg atttttagg agagcggtag gggtgatgtt atcgttgcgc gacgatagga agtaagattt tggtttgtgt agttcgggtt ttcgagtttt tgttttaggt attttcgcga tttttttttt tttttaattt tattcgtgat ggacgatgtt tacgagtcgt ttttcgataa aggtggagag ataggggagt cggatgagac ggtcgttgtg ttcgggggatt cgggggttat

cgatatcgat ggaattttag aggaaattga cggagacgta gatgtggatt tgaaagaagt tgtagcggag gaaggcgagg taggaagaga tgtattgatg aggttgaagg aatatttaga gattgtgtta ttggttgttc gtcgggtttt tggttagttt ttaataagtt acgagaattc gaatttatta gaatttttt tagatcgtta attttgaggg ggaagagagg ggacgattaa ataaaatttt agtgttggtt cggttttaga ggtttaagta ttgttaatat ttttagtttt

gtttttaggg attaaagtta tttttaaggg agttataata gttcgttggt tttggtggtg aggaaattgg gatttaatgt tatattgaga cgtagtgtaa gagttaaaat ttaggattcg tagtattttt tttatcgtaa tatggttttt tttagatgtt aagataattt ttgtttttat aggaaggagg gtcgattaga tttgttaaag ggagatagat ttttatatcg aaaagtttat atogatatag attittatat cgaatacgat ttaatttgag agtogttogg gttggagaat

aatggcgcga tttttggttt attgtaattt gcgttttttg ggtttacgcg atttttttgt tttagttttt cgagtagtta ggattatagg cgtatattat tatgtttagt taatttttgt atttttagta gagacggggt tttattatgt tggttaggtt ggtt

2160 2220 2264

780 840

900

960 1020

1080 1140

1200

1260

1320 1380

1440

1500

1560

1620 1680

1740

1800

1860 1920

1980

2040

2100

<210> 342 <211> 3104 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 342

gegggegttg tegagtaegg ggaggtgttg aaatagtttt ggegtgttga tttaagtttt 60 gattggtaga gttattcggt gattgatagg gggtttttat ggcgttcgcg tcgttaattc 120 gtttatttta atageggagt tagttegttt gteggegtgt ttgagtegag tegagttega 180 attttaagtc gcggagttag tattttttt agtcggggtc gttcgttttc ggtcgttgag 240 ttatogtögt tattoggtag tgtgtttogt tgttttaatt ogttttatta ataagogttt 300 ggtatāttīa gttaggītog ogggtattīg tīgogtgttt ogtttogggt ttagīgīttt 360 cgtcgtcgtc ggtattgttt cgatgtttta gttgtttatt ttgaatttta gtttttagta 420 480 agtggtcggg gtatgtgaga ttttggaaga gagcggcgat gtggagcgtt tgggtcgttt tttttqqtcg ttgttcgtgg tttttgcggt ttgcgaggtt tttaataaga atgagtcqqt 540 gttacgcgta cgagttatcg tggtttttta cggtggtaat tatcgcgagt tttattatat 600 tttggaaaat tataagttta ttaaggagtc gtacgttaag ttgtaggcgt tgtggtttga 660 agtatattat taggaggttg agaagttgcg tggaagattt ttgggatttg tggataagta 720 togagtaagg aagaagtttt cgttgtcgcg tattatttgg gacggcgaat agaagatata 780 ttgttttaag gagcgtacgc ggtatttgtt acgcgagtgg tatttgtagg atttatattt 840 taattttagt aaaaaacgtg agttcgttta ggtaatcgga ttgattttta cgtaggtggg 900 taattggttt aaaaatcgtc gataaaggga tcgagcggtt gtagttaaga ataggtcggt 960 atttagaggt tttcgcgttt tgagcgtatc ggggaggagg cgggtggagg tatttttggc 1020 gtttttattt agtttttggc gattttaatt tagtaggagt tgggagcgcg gtttgttttg 1080 ggttaagagt tttgcgtttt gggtttttgg tcgggagttt ttttgtcggt tttgttttt 1140 tattogttgg ttttttaogt ttgcgggtag ttgtagtagt tggtttcggt tattaaatta 1200 aggttttatt gggacggaga ggggaagaga aataaaaaat taaaatttta taaatagtta 1260 gggattttaa gatttaaagt taatttttgt tagtttgggt ataggttttt attattaatc 1320 gaagtttggt ttattagtaa tgtgtcggtt ttatgttaat tattattttt aaagtttagg 1380 tatatttitt tttaatgitt tgaaaatagi tittaatgga tittigagaa atgggaagid 1440 gagttttttt ttttttatgc gttgtttgtt atttttgttt taaaatagta aattagttcg 1500 tgggtcgagg tttttcgttt ttcggagtgt ggatttcgat tagttaaata ttttgcggaa 1560

gagttcggtt	ttattttta	ggtttaaatg	ttttttataa	ttttttttgt	ttttaggtcg	1620
		atcgcgggag				1680
gtatcgttag	aaatggtatt	ttatgttttt	gggatcgatt	tgtttttgtt	atttatattt	1740
		tgtaaatttt				1800
		gatttgggag				1860
		ttcgcggagg				1920
		gttttaattg				1980
gggttggagg	gacgtaggag	gtggtgggg	cgggcgacgg	gcggttgtgt	tacgagttgt	2040
gattcgtgtt	tttttttt	ttcgtagatt	ttagtagtag	gttttgttat	agggtttcgg	2100
		gcgacggtac				2160
		aggcggttat				2220
cgagtgcgat	atttgagttg	tttatttagg	atgtttagaa	gtagatttta	gtgtaaaaac	2280
gagaaaaata	aaatgaaaga	ggggaagaag	atgagagatt	tgtaaattta	gcgttataga	2340
agttaggtga	ttagggattc	gcgggttcgg	gttgtcgttt	ttcgttttat	ttcgcggtcg	2400
gtttggtttt	attggcgttt	tttggtcgcg	attacgggaa	ttagcgtgag	gtttgattta	2460
gtattacgtt	ttttttgttt	tgttttttt	taaggatttt	gttgtaaagt	tttttcggaa	2520
ttcgaattgt	aagttgagcg	tttgtttaga	tttttttatg	ggtattttac	gtcgaaagga	2580
cgttgttata	tatgtataat	tttcgtttta	aagtttttt	ttaataaaat	atatatatgt	2640
tgtttattta	tttatttaag	agatcgttat	ggtaggtttt	tttgtagttt	ggggaatttg	2700
ttgtttttaa	atatgtaggt	tggtggtgat	gggttttgtg	tggagaagtt	aaataataaa	2760
ataatttagt	gggtaatttt	tttaattaag	ggagttgttt	ttagattttt	tttttttta	2820
ttattattaa	tattatttt	tttattaggt	atgtagggat	ttttgagtaa	atggttttcg	2880
gaaggtttta	tttatatatt	ttttgtttt	tttggtgttt	tttggtatat	gttttaaata	2940
atttatggta	ggtttataat	tattttttac	gttaaattat	acgtatgtgt	atatatgtat	3000
gtatttatat	aaatatatgt	atgtatttat	ataaatatat	gtatgtatgt	atatacgtga	3060
tatatttaag	gttagaaatt	ggtaatatgt	gagcgttttt	ttta		3104

<210> 343 <211> 3104 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

tagagaggac	gtttatatgt	tgttaatttt	tagttttaaa	tatattacgt	gtatgtatat	60
		atatatatat				120
acgtgtaatt	tgacgtggga	ggtggttata	gatttattat	aggttgttta	aaatatatat	180
taggaagtat	taaagaaggt	aaaagatata	taggtaagat	ttttcggaga	ttatttgttt	240
aagggttttt	gtatgtttgg	tgaagggaat	gatattaata	ataataagaa	gaaaaggaat	300
ttgagagtag	tttttttaat	taagaaggtt	gtttattagg	ttgttttatt	gtttggtttt	360
tttatataga	atttattatt	attagtttgt	atgtttagaa	atagtaagtt	ttttaagtta	420
tagagaaatt	tattatggcg	gttttttaaa	taagtaaata	aatagtatat	atatgttttg	480
ttaaaaaaaa	attttaaagc	gaaagttata	tatatgtaat	agcgtttttt	cgacgtgaaa	540
tatttatggg	agaatttggg	taggcgttta	gtttgtagtt	cgggtttcga	agagattttg	600
tagtaaaatt	tttaggaaaa	agtaaagtaa	gaagaacgtg	gtgttgggtt	aggttttacg	660
ttggttttcg	tggtcgcggt	taaagggcgt	tagtgaagtt	aggtcggtcg	cggggtgggg	720
		tcgcgggttt				780
		tttttttt				840
		tgggtaattt				900
		gttttgttgg				960
		tcgtttttcg				1020
		cggggaagaa				1080
tcgttcgtcg	ttcgttttta	ttattttttg	cgttttttta	gttcggcggt	tagaggtttt	1140
		aggcgaggat				1200
		cgggttttta				1260
ttttagcgtc	gtagttttta	ggttttttat	atattgggtt	tgtagtgttt	tttttgtttg	1320
ttgtgtattt	ttgggagatt	tataggattg	ttaggaaata	aacgaagtgt	gggtgataag	1380
		atgggatatt				1440
		cgatcgcgtt				1500
aggattgtaa	ggagtatttg	ggtttggggg	atgaggtcgg	gttttttcgt	aaaatgtttg	1560
			Page 1	135		

			47675 41	7 +		
attaataaa	2++2+2++	6666333663	47675-4		agettattat	1620
		cgggaaacga				1680
		tagcgtatgg		_		
_		tttaaagtat				1740
-	-	tatattgtta		_		1800
		attagttttg				1860
		ttttttttcg				1920
attagttgtt	gtagttgttc	gtaggcgtgg	ggagttagcg	ggtggggaag	tagagtcggt	1980
aagggaattt	tcggttagga	gtttagaacg	tagggttttt	aatttaagat	agatcgcgtt	2040
tttaattttt	gttgaattgg	agtcgttagg	gattgggtaa	gggcgttaga	ggtgttttta	2100
ttcgtttttt	tttcggtgcg	tttaaagcgc	ggaggttttt	aggtatcgat	ttgtttttgg	2160
ttgtagtcgt	tcggtttttt	tgtcggcggt	ttttgaatta	gttgtttatt	tgcgtagggg	2220
ttagttcggt	tgtttgggcg	agtttacgtt	ttttgttggg	gttagggtat	ggattttgta	2280
ggtattattc	gcgtagtagg	tgtcgcgtgc	gttttttgaa	gtagtgtgtt	ttttgttcgt	2340
cgttttaaat	ggtgcgcggt	agcgggaatt	tttttttat	tcggtatttg	tttataggtt	2400
ttaggggttt	tttacgtagt	tttttagttt	tttggtagtg	tgttttaagt	tatagcgttt	2460
gtagtttggc	gtgcgatttt	ttggtgaatt	tgtggttttt	taggatatga	tagagttcgc	2520
ggtagttgtt	atcgtgaaag	gttacgatgg	ttcgtgcgcg	tagtatcgat	ttatttttgt	2580
tgagggtttc	gtaggtcgta	ggggttacgg	gtagcgatta	gaggaagcga	tttaggcgtt	2640
ttatatcgtc	gtttttttt	agggttttat	atatttcggt	tatttgttgg	gggttgaaat	2700
ttaagatggg	tagttggaat	atcgaggtag	tgtcggcggc	ggcgagggta	ttgagttcgg	2760
		ttcgcgggtt				2820
		tatattatcg				2880
		ggtgttggtt				2940
		gttggtttcg				3000
		agttatcggg				3060
		tttttcgtgt			5 5	3104

<210> 344 <211> 2493 <212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

attggtatga	ttagagtaga	aggagggtat	tttaattttt	agttttattt	atcgttttgt	60
aagaattagg	aaaatgaatt	tttgttggtt	ataaaattag	ttgtaggtga	tgtaatttat	120
tttattcggt	tttttatatt	tatagttata	taggaataat	tttttgaaat	ttagtttttt	180
tattcgtaaa	atgggatggt	aatacgtgtt	tttgggagtt	agcgagaatt	aaaagggata	240
agatgtattg	gtttttaggg	gtaagtatta	gtagataagg	aatagggtag	ttttttttt	300
atattttata	gagaagaaat	gttttttaat	ttttttagga	ggtagagttt	agttttttt	360
ttaaatagtt	ttggagttgt	ttggtttttt	tatttttta	acgaagttgt	gggtagaaga	420
taaatgtaga	gtttttttgt	atttgataag	gagagagaag	tagattttgt	gtgagttttt	480
		agggggtgta				540
		attttatggg				600
		ttgttttatg				660
		gataggtagg				720
		agaaaggtgg				780
		gagggaggag				840
		gagaagtggt				900
aaatagttaa	ttaaaaggtt	tcggaaggaa	ggagtgttta	attaattagt	ttcgagggat	960
		tgttttttag				1020
		ggttgttttt				1080
ttttatttaa	atattaaggt	tggcgtaggt	ggatattttt	ttatttttt	ttttttaggt	1140
		aggagggagg				1200
		gggttaagag				1260
		tcgtttgttt				1320
		ggtaggtgta				1380
		agggatatcg				1440
		ggttgtttcg				1500
		ttgttttagg			-	1560
		5 55	Page 1			
			_			

```
ggtagtgcgt gtgcgcgcgc gggtaagtgt atgtgagtgt atatttatgt gagcgtatgt
                                                                          1620
gtgtttgcgt ttgtgcgtgt ttaggggaat tatagggagt atttttattt taagttttta
                                                                          1680
gaggattgtt tgaagtcgtt agatagaaat ttttttagaa tgtaagtttc gggggggagg
                                                                          1740
gagittigtt igatggtigt igtattitta gigtitatig aagtatiggg gatatatiag
                                                                          1800
atgtttaata aatagttgtt gagttaatta acggatttta ggaatggagg tagatcggtt
                                                                          1860
ttttttggaat tggagaaagg ataaggttat attttatcgt tttttttgtt tttggtatta
                                                                          1920
1980
                                                                          2040
tttgttcgtg tttatatttt tttttttttg tttttgtttt ttgttggttt ttgtgtgtaa
                                                                          2100
gtattttagt agttagagtg agaggaagac gaaagaagta gaattttgga aatagagagt
tattagggtg gtttttttt tttggaagga tacggaaaga tggggtgaga ttggcgtttttttttagttt tttttttgg gaattgggat tttgagttt agtttttta ttttgaaata
                                                                          2160
                                                                          2220
gtagttattt tatttgtttc gtaggattgt tgtaagaagt taggtaggag gttgaaaagt tttggagtat atgataggtg ttatagaaac gttcgtttcg ttttttgatt agtatttaat
                                                                          2280
                                                                          2340
agttigggag tgitttaggi gtggtigagg gtggitatgg tttgataatt attattagaa
                                                                          2400
tattttttt tttttataa aatgttttga ggagaattta atggttgtcg aaaattaagg
                                                                          2460
taagttttat ttttaaaata tttaggagtt aat
                                                                          2493
```

<210> 345

<211> 2493

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

attgattttt	gaatgtttta	gaaatgaagt	ttgttttaat	tttcgatagt	tattaaattt	60
tttttaaggt	attttgtgaa	aaaaggaggg	gtgttttggt	ggtggttatt	aaattataat	120
tatttttagt	tatatttggg	gtatttttag	attgttggat	gttagttagg	agacgaaacg	180
aacgtttttg	tagtatttat	tatgtgtttt	agaattttt	agttttttgt	ttgattttt	240
gtaataattt	tgcgaggtag	gtggaatagt	tgttatttta	aagtgaggaa	attgaagttt	300
aaagttttaa	tttttaaagg	gaggagttga	agaagagcgt	tagttttatt	ttatttttc	360
gtgtttttt	agaaggaaga	ggttattttg	gtagtttttt	atttttagaa	ttttgttttt	420
ttcgtttttt	ttttattttg	attgttgggg	tgtttatata	taggggttag	taggaaatag	480
agataaaggg	gagaaggtgt	aaatacgagt	agggaggaaa	atttggtata	agttggatgt	540
gagaaggatt	ggcgttgtcg	gggacgttag	ggttggtatt	aagaatagag	gagacggtga	600
aatgtggttt	tgttttttt	ttagttttag	aagggtcggt	ttgtttttat	ttttagagtt	660
cgttgattaa	tttaatagtt	gtttattaag	tatttaatgt	gtttttagta	ttttaatggg	720
				ttcggagttt		780
				ttagaatgag		840
				tttatataag		900
				gtcgtttttt		960
				gtgcgcgagg		1020
				gcggggcgcg		1080
				tcggagtttt		1140
				tttttttta		1200
gtggagtagg	cggtgttaat	ttttttaggt	tttcgttggt	ttatattcgt	tattcgtttt	1260
tgttttttag	ttttatagat	ttatacgggt	tttttttt	aggtatggtt	acgttgattg	1320
atttttttt	tttttattga	tttttggggt	ttagtttgga	gggagaaaag	tgggaaggtg	1380
				ggaaaataat		1440
				ggattcggtg		1500
				ggggttgatt		1560
tttttttt	cgaagttttt	tggttggttg	tttgtttgtt	tttaaggtta	gtaatcgttt	1620
				cgcgtaggat		1680
tttttttt	tttttaattt	tttttatgtt	tttttaattt	ttggtagata	attttttatt	1740
				aagtttttt		1800
				ggtaggagga		1860
				gttgggaggg		1920
				gtgggtttgt		1980
				tatatagggt		2040
				tttataattt		2100
				gttgggtttt		2160
	-		Page 1			
			_			

agagttggag gatattttt ttttgtggag tgtgaaggga ggattgtttt atttttgtt 2220 tgttagtgtt tgtttttggg agttagtgta ttttatttt tttaattttc gttggttttt 2280 2340 aggggtacgt attattattt tattttacgg gtgaggagat tgagttttag agagttgttt 2400 ttgtatagtt gtaaatatgg gaggtcgaat aggatgggtt atattatttg taattagttt tatggttaat aggaatttat ittittiggtt tiligtaaagc ggtggataag gitgggaatt 2460 2493 aggatgtttt ttttttattt tagttatgtt agt <210> 346 <211> 2315 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 346 60 ttgtatttgg cgtgaggttt tttggttacg gacgttgttg gcgttatatt tgtggtattt gaggtgaatt gtttagatgg aaacggtatt attaggtaat tggtaataga agtttaaagt 120 tttgggtgtt ttaggttaga ggaaggaagg aatgtaaggg tttcgttttt tttaatgtta 180 ggagcgtgtg tttatagttt tagataggat aatttattgt aaatttaaag tagaaaatat 240 ggtttaattt tatttttgtg gtatttttat agatggtgtt tatttgtttt ggtagtgatg 300 atcgatattg cgaacgttgt gttggtagtg tgtttaaggg ttttaattga attatttcga 360 tggagttgaa atttagttit attitataga agagaaaatt gaggtttaga gagattaggt 420 gttaagtttt atgttaagta tagggaagta aaaataggat atatttaata taaggtggtt 480 540 ttaggaatta gtggttagga tacgggaggt gtgttgagcg tagatgggta gatgtaagtt gaggtggttt gttggagggt tttggatttt ttagaaaaga ggatattagt tgtttaggga 600 660 720 ggatattttg aatagatatg ggttgagggg agtttgtgtg gagcgtggtt agtgaaggtt gggttggtcg gtagggttcg ttggttatgg gaggtttggt ttgtagtagt agggtttatt 780 aaagatatgg ggatggatgg ttgatggata agatggttga tggatagcgt tttagaaggt 840 cgtaggtttg tttaggttga ggttagggag ggttagggtt tttagggaag gagagtaagt taggggagtt ttttgtatag aagattttt atttgaggtc gttttttagg agtttagtta 900 960 ttlegtggag agttiggegt tgattgtgga agaggtgatg gaegtgegte gtgtgttggt 1020 gaaggtcgag atggaaaagt ttttgtagaa taaggagttt tttagtagtt tgaagaaggg 1080 gaaggtgagg ttgtttagac gtggggttac gtttttgttc gttgggttag gggcgggtgt 1140 cgagagggtt agtttttagg attgtttgtt tatgatttgg ttgggagttt tgagggggta 1200 gtagggatag ggcgggattt tagggagttt tggataaagc ggggttttaa ttagttttt 1260 ttgatagatt tgttgttgtt gtcgggttaa gttttcgttg ttttcgtggt cgtttagttg 1320 tttttttttt agttgttagt ttataaggga aggaggaggc 1380 qaqaaatttc ggggtagtat cgtttataga attttttgtg attttagqaa tqttttagta 1440 tgttcgatgg ttgatgagtt tataagatat ggttagtacg aatgaggagt taaattttaa 1500 attgtattta aattaaatta aatttaaata gitaagtaat ttttagitti agttaagatg 1560 gggtaatagg tatttttat agttaagaat aaataggatg tgaaataatg gtttttaaga 1620 tagtaggtaa taaaaaggaa atataacggg gtaagtttgt tattattata gttattgttt 1680 1740 gagaatttag ggagattata gtagttcgag ttcgtcgtgt agaattttag aggagagggt 1800 tgcgtcgaga aagttttaga gaaggttttt ttttttgaag gaaatgattg aaggttgtag 1860 aatatttatt ttaaagtaga gattggtaga ttatagttac gggttaaatt tggttttcgg 1920 1980 acgittaaaa ggittatttt ttggtiittt atataaaaaa tttattttt ttigttttaa 2040 agatttgaag ggacggtgtt taggggtagg aatgagtaat atcggttttt atcggttata 2100 ggtagaaatg ttataattta tagggtatta attggaatgt atataaagga ttcgtttat 2160 2220 agtaagattt gaaaggatta aattgtttat aagtatttta attgattttg agaataaagt 2280 ttaagaataa gaattttta aatattaata aaaaa 2315 <210> 347 <211> 2315 <212> DNA <213> Artificial Sequence

47675-47.txt

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 347

ttttttgttg	atgtttaaaa	aatttttatt	tttgagtttt	gtttttagaa	ttagttaaga	60
tatttgtgaa	tagtttgatt	tttttaggtt	ttgtttttat	gatgtattag	ttaggtttag	120
agtaataatt	attttgggtt	atttatttta	cgttagtgag	gcgagttttt	tgtgtgtatt	180
ttagttagtg	ttttgtgaat	tatgatattt	ttgtttgtgg	tcggtggaaa	tcgatgttat	240
		cgttttttta				300
tgtgtaaagg	gttagagaat	aaattttta	ggcgtggttg	agcgagtaat	aaatgggtgt	360
ggttgtgttt	agtgagattt	tatttgtaaa	ataggtcgag	gattagattt	ggttcgtggt	420
		tttaggataa				480
gagagggga	tttttttga	ggttttttcg	gcgtagtttt	tttttttgga	gttttatacg	540
gcggattcga	gttgttgtgg	tttttttgga	tttttagttt	gattttttt	atttggggag	600
ttcggtagtt	gtggtttatg	atttagaaat	tttttaggta	atgattgtgg	tgatggtagg	660
		ttttgttgtt				720
		agatgtttat				780
ttagttattt	aaatttaatt	taatttaaat	ataatttaaa	atttaatttt	ttattcgtat	840
taattatatt	ttgtggattt	attagttatc	gaatatgtta	gaatatttt	ggaattatag	900
		gtttcgaggt				960
		tttttgtaga				1020
		tagtaaattt				1080
		tcgttttgtt				1140
ttatgagtaa	atagttttgg	gaattggttt	tttcggtatt	cgtttttgat	ttagcgggta	1200
		ggtagtttta				1260
		tttatttcgg				1320
tttttttat	agttagcgtt	aggtttttta	cggggtggtt	gaatttttag	gggacggttt	1380
taggtaggaa	gttttttatg	taggaggttt	ttttagttta	tttttttt	ttgaggattt	1440
		ttaaataagt				1500
tattttgttt	attagttatt	tatttttatg	tttttgatgg	gttttgttgt	tgtaggttag	1560
		tttgtcggtt				1620
		ttgtttaagg				1680
		attttaaatt				1740
		ttaataggtt				1800
agtatattt	tcgtgttttg	gttattgatt	tttggggtta	ttttatgttg	agtgtgtttt	1860
		ggtatagaat				1920
		tggattttag				1980
		gttcgtagtg				2040
		agatggagtt				2100
		gtgaatatac				2160
		tttgaggtat				2220
		tgaataattt				2280
		ttacgttagg			= =	2315
-	_	- J J	_			

```
<210> 348
```

<220:

<223> chemically treated genomic DNA (Homo sapiens)

<400> 348

ttaatttttt aatttttgat tgatttcgta tgttgggaat ttagttaggg	gtgttttta tttaagtgat tgtttagtta ttagtagtga attattttat	ttcgagtagt gtagaaacgg ttatttattt ttaataaata ataaaataaa	ggitttatta tcgtttttta tttattaagt tattttttt agttaatatt	tgttggttac aagtgttggg gtttattttg cggggatttt `taatttttt	gttggtttcg attttaggag tttttaagag gaatttaagt atagatttag	60 120 180 240 300 360
ataggatagt	attttaattt gtattttttg	ttcgttgatt tagaggtagg	tgttttttta gttttattat		tatgggtatt tttattatta	420 480 540

<211> 2304

<212> DNA

<213> Artificial Sequence

			47675-47	7.txt		
tgggttatgg	tgggtttgtc	gtgattgtta	taaatacgtt	ttatcgaagt	ttgttagggg	600
		aagtaagaaa				660
		aatttttta				720
		agagtttgtt				780
		aaaaaatttt				840
atttttgtat	ttttttattt	attttattt	gattttatat	atagtgcgat	tttgaaagga	900
agcggtgttt	ttggagaggt	agaaaaattt	tggaaaataa	ggtttatgac	gttggttatt	960
agtacggggt	tgttgtttgt	tgtgtgatat	gtttaggggt	gacgcgtttt	tcgaaagaga	1020
tatttggtag	agaaggtacg	ggcgcgaagt	tcggttgcgg	gagagttggg	agtttgaatg	1080
tcgttggttg	tcgtttatag	taggtttttt	ttgagtatcg	tggggaggta	gtgatattcg	1140
ttggtttcgt	agcgatattt	cggtagttgt	tttgttttt	agtttggacg	tgataggtgt	1200
gttttggagg	atagttagag	gaagataggt	aagttatatt	ggttttttc	gaggttatat	1260
		ttttaataga				1320
		tttttttcgt				1380
tttaaatttt	ttatttaagc	gatgagaggg	aaatatttga	gttgtatatt	taaggagatg	1440
		gcgatatatt				1500
		ttatttgtaa				1560
		agttgttgtt				1620
		ttgtttgtgc				1680
		tgtagtaagg				1740
		gttttgtttt				1800
-		gtttttaggg	_	_	_	1860
		ttcgttatta		_		1920
		agtcgggatg				1980
		tgggattata				2040
	_	cgggttgggc			_	2100
		gattacgagg				2160
	-	aaaaatataa				2220
		ggttgaggga	ggagaatggc	gtgaatttgg	gaggcggagt	2280
ttgtagtgag	tcgagatggt	atta				2304

<210> 349 <211> 2304 <212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

agtttttcga gtagttggga ttataggcgt tcgttattac gtttgttaaa ttttttgtat ttttagtaga gacggggttt tatcgtgtta tttaggatgg tttggatcgt ttggattcgt ttggattcgt tttaggttta ttttaggatgg tttggatcgt ttggatttagg ttcgttggtggt ttaggtttagggtgggtgggggggggg
gattcgttta ttttggtttt tttaagtgtt gggattatag gcgtgagtta ttacgtttag ttcgtggttg ttggtttta atagaagata cgggtcgggc gcggtagtta cgtttgtaat 300 tttagtattt tgggaggtcg aggcggggggggggggg
ttcgtggttg ttggtttta atagaagata cgggtcgggc gcggtagtta cgtttgtaat 300 tttagtattt tgggaggtcg aggcggcgg attacgaggt taggagatcg agattattc 360 ggttaaaacg gtgaaatttc gtttttatta aaaatataaa aaattagttg ggtttggtgg 420 cgggcgtttg tagttttagt tatttgggag gttgaggtag gagaatggcg tgaattttgg 480 aagcggagtt tgtagtgagc ggagatcgcg ttattgtatt ttagtttgag cgatagagta 540 agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaaatt tttattttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaaagtcgta tgttggagtt tattttatag 780 ataaagaaaat tgaggattag agaagttaag tgatttatt acggttttat taataatata 840 tcgtaaaggtt agaatggaaa tttatattt tttgagtgg tagtttaagt gtttttttt
tttagtattt tgggaggtcg aggcggcgg attacgaggt taggagatcg agattatttc ggttaaaacg gtgaaatttc gtttttatta aaaatataaa aaattagttg ggtttggtgg 420 cgggcgtttg tagttttagt tatttgggag gttgaggtag gagaatggcg tgaattttgg 480 aagcggagtt tgtagtgagc ggagatcgcg ttattgtatt ttagtttgag cgatagagta 540 agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacgggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttatttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
ggttaaaacg gtgaaatttc gtttttatta aaaatataaa aaattagttg ggtttggtgg 420 cgggcgtttg tagttttagt tatttgggag gttgaggtag gagaatggcg tgaattttgg 480 aagcggagtt tgtagtgagc ggagatcgcg ttattgtatt ttagtttgag cgatagagta 540 agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttattttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
cgggcgtttg tagttttagt tatttgggag gttgaggtag gagaatggcg tgaattttgg 480 aagcggagtt tgtagtgagc ggagatcgcg ttattgtatt ttagtttgag cgatagagta 540 agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttattttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttatt acggttttat taataatata 840 tcgtaaggtt agaatggaaa tttatatttt tttgagtgtg tagtttaagt gtttttttt
aagcggagtt tgtagtgagc ggagatcgcg ttattgtatt ttagtttgag cgatagagta 540 agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttattttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
agatttagtt ttaaaaaaaa aaaaaaaaa aaaatagaag atacggatag aaatttttgt 600 tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttatttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
tatatcgagt ttcgttttt ttttatagta tttttacgtt agtgaaaaat tgacgtatag 660 gtagagaatt tttatttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
gtagagaatt tttattttgt tgttatgggg agatttaggt agagtcggta tgaaagtaat 720 agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
agttgatatg aataacgtgt gttattttag ttaagtcgta tgttggagtt tattttatag 780 ataagaaaat tgaggattag agaagttaag tgatttattt
ataagaaaat tgaggattag agaagttaag tgatttattt
togtaaggtt agaatggaaa titatatttt titgagtgtg tagittaagt gtttttttt 900 tatogtttga atgaagagtt taaatatttt tgaaagggga atagggttgg tagagcgaga 960 gaaaaattgt ttgggtgata gtgaagttgg ttgttttaac gttcgcggag gatgtttgtt 1020
tatcgtttga atgaagagtt taaatatttt tgaaagggga atagggttgg tagagcgaga 960 gaaaaattgt ttgggtgata gtgaagttgg ttgttttaac gttcgcggag gatgtttgtt 1020
gaaaaattgt ttgggtgata gtgaagttgg ttgttttaac gttcgcggag gatgtttgtt 1020
agaagtaatt taatttaagc gagggtataa tttcgaggga ggttagtatg gtttgtttgt 1080
ttttttttga ttgtttttta agatatattt attacgttta ggttggaaaa taggatagtt 1140
gtcggagtgt cgttgcgagg ttagcgggtg ttattgtttt tttacggtgt ttagagagag 1200
tttgttgtga acggtagtta gcgatattta ggtttttagt tttttcgtag tcgggtttcg 1260
cgttcgtgtt ttttttatta agtgtttttt tcgggaggcg cgttattttt gagtatgtta 1320
Page 140

47675-47.txt 1380 tatagtagat agtagtttcg tgttgatggt taacgttata agttttattt tttagagttt 1440 ttttattttt ttaaaaatat cgtttttttt taaaatcgta ttatgtgtaa aattaaaata 1500 agatggatgg ggagatgtag gaatattaga gatttgtatt tatagtaaat tagaagaatt 1560 ttttaaagtt ttttttgagt gatagtaggt tttttgatta tgatttgagt gaatggtaga ttttttttag tagtttttt atttaagaga taggttagga taaagtaata gttgtaaaga 1620 1680 aattttttag agttgagaga aagatagttc ggggtaggag aaagtttttt tttgttttt 1740 attitttagg ggagggtatg gcgttttttg gtagatttcg gtgaggcgtg tttgtggtag 1800 ttacggtaaa tttattatga tttacgtttg atggttgatt taacgttgtt tattgaaagg gtattgtttt tttttatata gaaatgatgg taaagttttt ggtagtggtg aaattttgtt 1860 tttataaaag gtgtaaaaat ttgtagtgtt tatggtttag ggtttgaggg agtagattaa 1920 cgagaaatta aaatattatt ttatttgagt ttgtaggaga attgagtgtt gatttgattt 1980 2040 tttaatagag tgatttttga ttagatttga gtttaaggtt ttcgagggaa ggtatttatt 2100 ttgtttattg ttaagttttt agtatttttg ggaataaagt aggtatttag taagtattta ttgatggttg ggtatgcggg attatttttg aaattttaat attttgggag gcgaaggtgg 2160 gtggattatt tgaggttagg agttcgaggt tagcgtggtt aatatggtga aatttcgttt 2220 2280 ttattaaaag atataaaaaa ttagttgggt gtatatttta tatttgtaat tttagttatt cgggaggttg aggtaagaga atcg 2304 <210> 350 <211> 2470 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 350 gtggaatata ttttttatat agttatatta tttaaaattt attgttttta agtttttatt 60 taaatgtttt ttcgtgaagt tatttttgag ttttttttaa aattgtagtt ttttatttt 120 gtatttttta ttgtttttta tttttaattt ttgttattgt agttagaatt atttgatata 180 240 ggtcgggagt tttgtttgtt gtgtttgttg ttatttttta gtgtttaaaa ttgtttggta 300 tatagtaggt atttaataat ttttgaatta gtgaaaatta gatggtggtt tggtattttt 360 atataggaat gagttaggtg gaaattattt aggatataag tagattttga agtgataagg 420 aagggttatt ataattatgt ggggtttatt ttgttttttt ttgtttttt tttttaggtt 480 tagtaatagt tttattaagg attttatgaa tattaaagtt tatatttata tgttgttaga 540 ggtgagagta gtttatttta ttattagatt ttgtgtttag ggtggtgatt tgaagaagga 600 660 tagaqtaaqt ttqqqqqcqt aatttagatt taqtttttqt ttaatttttt ttqtttttt 720 ttttaggggt ttagagaatt ataaggtttg tagaattttt tagagaagtt ttattattga 780 tttttttttt ttatttttag atattaaaga gtttgaatgt ttttgagtta tatggttttt 840 tttttttttt ataaattttg ttagttgtta ogggggttig tttttagggt ataaagttat 900 tgagagattt agagatttag tttttttgtg gaatttttaa aatgttttag tagttttgtt 960

tttaqtttqt tgtttggtag tatttgttag ttgattttat qtattqtttt tttttttqtt 1020 1080 1140 aattaaaggg ttttaaggtt tacgttttta tatatttaat tattttttag gtattttaaa 1200 1260 tttttaatgg gtatagattt ggatttcgtt ttttttagtc gggtttttat tttaggttga 1320 gtttagttat cgttaattaa tgtagagtta ggtttttttt ttttttaatt ttggtcgtag 1380 tttaattttg ttttttgaaa gtatttcgtt tttgttattt aatgtttttt cgtgtgtttg 1440 atagttattt tgttttttta ttttcgttgt gttttaaatt cgtttttatt tagttttatg 1500 gttitgttta aicgtagagt tgttttgttc gtttacgcgg agtttagttc gatttatttt 1560 cgtcggttgt tacgtttatt tttatataag ttttgttttc gttgagtagt atggcgtgcg 1620 atategtttt tttggtgttt tggtaggggt ttagaagttt ttegttegtt aattagagaa 1680 aaatagggtt atttattttc gtttttgggg gttgtttttt attaatttta tgtaagttaa 1740 ttagtgtgag gtagattttc gttttttcga tataggtttc gagttttttt agttgtttat 1800 agttegttag tttttgagtt aateggegtg gagtategtg aaggtegaae gegtttttte 1860 gggattttag gggtcgtgag cgttttatta ttttttttta cgttaattac ggtatagttt 1920 tgtagggaag ggttcgtttt ttaatttttc gaggttttgc ggtcgattaa tagcgttttg 1980 gitaattagc gagcggcggg atattgggtt ttitttttic gggtttacgt gagttgtagg 2040 gaaacgtagg ggcggttttt aggtgttgtc gtcgttatcg ttattattat ttttatcgtc 2100

```
gtttcggaat ttaggtttgg ggggcggtgg ggtcgcgtat ggagttttcg tttttcggag 220 ttgtaatat tgttaacgtt atcgttacgt tatatatagg tgagttttgg gtttggaggg 2220 tggagggttt agttcgtgat tttacgtatt tttttcgttt tcgcgtagag gatgtggttt ggtcggtggt ttgttggtgt tcgatttttc gtcgttatta ttacggttgg tggatttgcg 2340 tgtgggtattg tttaagttt tcgttttta tagtggattt gatcgtggt taatttttt 2400 ttttcgttgt ataatggatc ggtttgcgtg tttatgttt tttttacgtt aatttagggt 2460 ggattcgttt 220 > 351
```

<210> 351 <211> 2470 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 351

ggacgagttt attttaagtt ggcgtgggga aaaatataag tacgtagatc gatttattat 60 ataacgggag ggggaggtta ggttacggtt agatttatta taagggacga agggtttgag 120 taatgttata cgtaggttta ttagtcgtgg tggtggcggc ggggagtcga atattagtag 180 gttatcggtt aagttatatt ttttgcgcgg gggcgggaag gatacgtggg gttacggatt 240 300 gggtttttta ttttttaggt ttagagttta tttgtgtgta gcgtggcggt ggcgttggta atgttggtag tttcgggggg cgggggtttt atacgcggtt ttatcgtttt ttaggtttgg 360 gtttcgaggc ggcggtggag gtggtggtgg cggtggcggc ggtagtattt agaagtcgtt 420 tttgcgtttt tttatagttt acgtgggttc gaggaggagg agtttaatgt ttcgtcgttc 480 540 gttgattggt taaagcgtta ttaatcggtc gtaaggtttc gaggggttgg gggacgggtt tttttttata gagttgtgtc gtgattggcg taaggggaaa tgatggaacg tttacggttt 600 ttggagtttc gaggaggcgc gttcggtttt tacggtgttt tacgtcgatt ggtttaagga 660 ttgacggatt gtgagtaatt gaaaaggttc ggggtttgtg tcggggggc gggggtttgt 720 tttatattga ttggtttata tgggattgat ggaagatagt ttttaaggac gggggtgggt 780 ggttttgttt ttttttgatt ggcggacgag ggatttttag atttttgtta aaatattaag 840 ggggcggtgt cgtacgttat gttgtttagc ggaagtaggg tttgtataga aatgggcgta 900 960 tagataagat tatagagttg ggtaaagacg aatttagaat atagcggagg taggagggta 1020 ggatggttgt taggtatacg aaagagtatt gagtggtaga aacgaaatgt ttttagaggg 1080 tagggttgaa ttgcggttag agttaaaaag gggaggaatt tggttttgta ttgattggcg 1140 gtggttggat ttaatttaga ataggggttc gattagggag agcgggattt aggtttgtgt 1200 ttattggaag ttggaatatt tataagtagg ggttaagata aggtagggtt gagttagggt 1260 ttgggtgtaa tttggggtat ttggggaatg attgggtgtg tgaaagcgta aattttaggg 1320 ttttttgatt gttgtgggaa tgaataaatt tttattatga attggtttat tttttatggt 1380 aatttaaagg gtggcgttta ggaaaaggaa tggaagaaag ggtgaggtgg ggggtttagg 1440 ttgttaagat gatagaagag agggtagtgt ataaggttaa ttggtaaata ttgttaggta 1500 ataggttgga ggtaggattg ttggggtatt ttggaggttt tatagagaga ttggattttt 1560 gggtttttta gtaattttgt gttttaggaa taggttttcg tggtaattag tagggtttat 1620 ggggaaaaag aagggttatg tgatttaaag gtatttaggt tttttaatgt ttgaggatgg 1680 ggggaagaag ttaatggtga ggtttttttg ggaaattttg taggttttgt agttttttaa 1740 gtttttgaaa aagaggatag aagagattga ataaagattg ggtttgggtt acgtttttag 1800 1860 ttcgtttttt tttttttta ggttattatt ttaaatatag agtttggtag tggggtgagt 1920 tgtttttatt tttagtaata tgtggatatg ggttttgata tttatggagt ttttggtgag 1980 gttgttgttg agtttagaga aaagaaataa gaaagggtaa aatgggtttt atatgattat 2040 gatgattttt tittattatt ttaagattta tttatatttt ggatgatttt tatttggttt 2100 attittatgt ggaaatgtta agttattatt tggtttttat tgatttaaag attattaaat 2160 2220 attttcggtt tgatggattt taaatttttg taaagaaaga tataataaaa aattaatgga 2280 ataaaagtta tgtgttagat ggttttaatt ataataataa aaattaaaaa tgagagataa 2340 taaggagtat aggagtgggg ggttgtaatt ttaaagaggg tttagggatg gttttacgga 2400 gaagtatttg agtaaagatt taaagatagt gaattttgag tagtgtggtt atatggagga 2460 tgtgttttat 2470

<210> 352 <211> 2470

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 352
tttaaaaagt tttgtaaatt aaaagtttgg gggtaaattt atttggtagt aaattttgat
                                                                     60
ttgaggttat ttatagttta tattttgtat tttttttatt tagtatgaat aagtatgtaa
                                                                    120
gttttattgt atgtttgatt ttagtatgtt tttttagatt ttttgggggt gtttacgtat
                                                                    180
gtcggtgggg gaaagagatt aatttttaaa tattattta aatagttggt tttattgtgt
                                                                    240
                                                                    300
ttgtttgggt agtatatata ttaaaattgg aatgattttt gtatagggat gaaatgtaaa
360
tttttgagag ggagttttgt tttgtcgttt aggttggagt gtagaggcgc gatttcggtt
                                                                    420
tattgtaagt ttcgtttttc gggtttatat tattttttta ttttagtttt tttagtagtt
                                                                    480
                                                                    540
gggattatag gcgtgtgtta ttacgttagg ttaatttttt gtattttag tagaggcggg
gttttattgt gttagttagg atggtttcga ttttttgatt tcgtgattcg tttattttcg
                                                                    600
ttttttttttc gaagtgtcga gtgttgggat tataggcgtg agttattgcg ttcggttttc
                                                                    660
gttttttttt tttagattga ttttattatt tgtttagtaa aggagaattt tttggtagaa
                                                                    720
tagtttttaa gaataaggta aataattaat tttatatagg tttttattaa tgtatagttg
                                                                    780
                                                                    840
tgittgitit ttattatttt ttttgaattt gaatagaatt titttattit tatagttttt
                                                                    900
tagttttttt ttttttttt ttgagacgga gtttcgtttt tgtcgtttag gttggagtgt
                                                                    960
agtggcgcga ttttggttta ttgtaaacgt tgttttttag gtttaagtta tttttttgtt
                                                                   1020
ttagtttttt aagtagttgg gattataggc gtatgttatt acgttcggtt aatttttgga
                                                                   1080
ttttttagtag agacgggggt tttattatgt tgattaggtt ggtttttaac gtttgatttt
                                                                   1140
aggtgattcg ttcgtttcgg tattttaaag tgttgggatt ataggcgtga gttattgcgt
                                                                   1200
                                                                   1260
tcggtttttt atagtttttt agttttttaa aatttgaaaa attttgtaaa gatatatttg
ggttaaaggg tttagataac ggattgtggt ttttaagtat ttacgttata ggttattgag
                                                                   1320
aggatcgatt tagttattag atgtaaaatg ttgggattag tgtttggtaa aggaaaattt
                                                                   1380
tgtatagttg taggttttta ttatatataa tagtatcgtt aacgaatgtt attataatat
                                                                   1440
ttatttagcg tttattaagt gtttatttta tataaatttt gagaatataa cgtgaaggtg
                                                                   1500
aattgttgat taaagtttgg tttttttcgt ttcgtttttt tgcgaaaatg ttttaacggt
                                                                   1560
aggaggttac gcgagcgttg gacgcgtttt ttttcgcgag tttttttcg aggttttcg
                                                                   1620
gqttttttcg gttattttcg ttcgggcggt gcgcgttttc gttgttttcg ttttcgtttt
                                                                   1680
agagaggtag ggtttttcga gtttgttagt ttcgcggtcg taattaattt cgggtcggag
                                                                   1740
tgtttcggtt cggttagttt cgcggcgtga gggaagggga gtttagtagt ttttcgcgcg
                                                                   1800
gggtttaggc gtcggcggta gggcgggttt tttatcgtta gcgtgttagt ttcgttttta
                                                                   1860
tttattagtg tgttagtttc gtttttttt acgtcgtcgc gcgttcgggg gcggggtttg
                                                                   1920
gcgcgtatcg ttcgcgtacg gcgaggcgtt tgttgattgg ttattggggt tcgggttttt
                                                                   1980
teggeggage gegttttttt ttagattttt egttagtagg agtegegegg tagatgeggt
                                                                   2040
gtilttagga gtitcgttcg atagaacggt tgggtittgi cggtigicgg taigtcgcga
                                                                   2100
tagagtattt tgtatagttt tttttttaag ttttcggcgt tgagtgatgt taataaggtt
                                                                   2160
teggttaggg tittaegega aggeggtegt gtegtegtig titteggggt tittititit
                                                                   2220
ttaggegggg atgeggtttg gagegaggtt gggtttgggt ttaggttttt ggegegttte
                                                                   2280
qcqttatcqt ttaaggcgaa gaattttaac ggagggttgc ggagatcggt agcgtttgtt
                                                                   2340
gtttttatta ggtagcgggg tgggggtggg gtcgaaggcg ggggtatagc ggcggggcgt
                                                                   2400
ttggaattcg gcgaggggag gttcgtatag ggggttgggg gggtgtacgg tttggttttg
                                                                   2460
ggttcggagg
                                                                   2470
<210> 353
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 353
ttttcgagtt tagggttagg tcgtgtattt ttttaatttt ttgtgcgagt ttttttcgt
                                                                     60
cgggttttaa gcgtttcgtc gttatgtttt cgttttcgat tttatttta tttcgttatt
                                                                    120
                                     Page 143
```

```
tggtgggggt agtaggcgtt atcgattttc gtagtttttc gttgaggttt ttcgttttgg
                                                                           180
gcggtgacgc ggagcgcgtt aagggtttgg gtttaggttt agtttcgttt taggtcgtat
                                                                           240
tttcgtttgg ggaaggagag gtttcggggg tagcggcggt acggtcgttt tcgcgtgagg
                                                                           300
ttttggtcga ggttttgttg gtattattta gcgtcggaga tttggggaag aagttgtata
                                                                           360
gggtgttttg tcgcgatata tcgatagtcg gtaaggttta atcgttttgt cggacggagt
                                                                           420
ttttaaaagt atcgtattta tcgcgcggtt tttgttggcg ggaaatttgg ggggaggcgc
                                                                           480
                                                                           540
gtttcgtcgg aggaattcgg gttttagtgg ttaattaata ggcgtttcgt cgtgcgcggg
                                                                           600
cggtgcgcgt taggtttcgt tttcgggcgc gcggcgacgt ggggaagggc ggggttggta
                                                                           660
tattggtggg taggggggg gttggtacgt tggcggtgag gggttcgttt tgtcgtcgac
gtttgggttt cgcgcgggga attgttgagt tittttttt ttacgtcgcg gggttggtcg
                                                                           720
                                                                           780
ggtcggaata tttcgattcg gggttagttg cggtcgcggg gttagtaggt tcggaaagtt
ttgttttttt ggagcggaag cgggaatagc gggggcgcgt atcgttcggg cggggataat
                                                                           840
cggggggatt cgaaaggttt cggaaagggg ttcgcgggga gaaacgcgtt tagcgttcgc
                                                                           900
gtgatttttt gtcgttagag tattttcgta aggagacgga gcgaaaggga ttaaatttta
                                                                           960
gttagtagtt tatitttacg ttgtattitt aagatttgta tagagtaggt atttggtaaa
                                                                          1020
cgttaaatga atattgtaat agtattcgtt agcgatgttg ttgtgtatgg tgaaagtttg
                                                                          1080
tagttgtata aagttttttt ttgttaggta ttgattttag tattttatat ttggtaatta
                                                                          1140
                                                                          1200
aatcgatttt tttaataatt tgtgacgtaa gtatttaagg gttatagttc gttatttgag
ttttttgatt taggtgtgtt tttataggat tttttaaaatt ttagaaagtt aagagattat
                                                                          1260
                                                                          1320
gagaggtegg gegtagtggt ttaegtttgt aattttagta ttttgggatg tegaggeggg
cggattattt gaggttaggc gttgaagatt agtttagtta atatggtgaa attttcgttt
                                                                          1380
ttattaaaaa tttaaaaatt agtogggogt ggtggtatgo gtttgtaatt ttagttattt gggaggttga ggtaggagaa taatttgaat ttgggaggta gcgtttgtag tgagttaagg
                                                                          1440
                                                                          1500
tcgcgttatt gtattttagt ttgggcgata agagcgaaat ttcgttttaa aaaaaaaaga
                                                                          1560
aagaaagtta agaggttatg agaataaaaa ggttttattt aaatttaaga aagatagtgg
                                                                          1620
aagatagata attgtttgtt tttttattta gattgtgaaa tttagattgt cggaaattag
                                                                          1680
ttataattaa tagttgtata ttggtaaaaa tttatgtaaa attagttgtt tgttttgttt
                                                                          1740
ttggagattg ttttgttaga aggttttttt ttgttaggta agtaataaaa ttaatttaaa
                                                                          1800
                                                                          1860
aaaaaaaggc gggggtcggg cgtagtggtt tacgtttgta gttttagtat tcggtatttc
ggggggggg cggaggtggg cggattacga ggttaggaga tcgagattat tttggttaat
                                                                          1920
atagtgaaat ttcgttttta ttaaaaatat aaaaaattag tttggcgtgg tagtatacgt
                                                                          1980
ttgtagtttt agttattggg gaggttgagg taggagaatg gtgtgaattc gggaggcgga gtttgtagtg agtcgagatc gcgtttttgt attttagttt gggcgataga gtaagatttt
                                                                          2040
                                                                          2100
tttttaaaaa aaaaaaaaga atattgttaa aggtggtatg tgttaagaaa aatatagtat
                                                                          2160
gttttacgaa tttgtatttt atttttgtgt aggggttatt ttaattttgg tatatgtgtt
                                                                          2220
2280
ttttatcggt atacgtaaat atttttagag agtttggggg aatatgttga aattaaatat
                                                                          2340
gtagtaaaat ttatatgttt atttatatta agtagaaaga atatagaata tagattataa
                                                                          2400
atagttttag gttaaaattt gttattaaat gagtttattt ttaaattttt ggtttataga
                                                                          2460
gttttttgga
                                                                          2470
<210> 354
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 354
atatattata tcgtgtatgt aatgtataag tatttatttc gtttgtttgg ggttttgttt
                                                                            60
gtttttgttg agttcgattt ttttatttgt cgtttggttt ttgttttacg ttttagtgtt
                                                                           120
attgagatta aggagagaac gaatttgtcg ttgattgggt agagcgagcg cgtggatcgc
                                                                           180
ggttatcgtt cgtttattat tcgcgcgtat ttgggttggt atcgggcgaa gaatcgtgcg
                                                                           240
ggtttgggat ttgggggttt agagggagcg agtttttgcg cgggcgttcg gttcgtaggt
                                                                           300
ttcgtaggtt taggggcgtg tttcgttttt atttttattt cggatttcgg tttttttt
                                                                           360
tagatagcgg tttttttat ttttggtttt cgtaggtcgt tagtagttcg cgttaggttt
                                                                           420
cgtcggcgtt tttagggttt tttagatcgc gtagattttg atattttcgt ttggttttgg gttttggag ttgagagtcg gttagggttt tgttcgtatt ttcgggcgtt tagtttcggg tttgttttc gcggacgttt taattttttc ggtcgaatgg atggtggtgc gcgcgcttt
                                                                           480
                                                                           540
                                                                           600
tatitcggcg gtgtcggttt tttttgttgt taaaattaga tttaaattit tgtatgggat
                                                                           660
```

tegtttttgg gtttttattt egtgegttta gtaaatagtg ggtgagttat gaagatgtge

Page 144

720

```
780
gaqttagtcg gatttttttc qttaqqcgcg gattcgttgc ggttagagaa tttagtttgc
                                                                  840
gttagttcgg ttcgttcgcg aagttacggg ttttattgac gcgatttttt aagacgtggg
ggttattatg ggtagaggat atcggttcgg agttagatta cgggttttat aagtattaga
                                                                  900
ttataagtag cgtcgttatt gagagtcgtt cggaattcgt ttagtatgtc gggtttttta
                                                                  960
gttagggttt ggtgtacgtg gtcgagggtt ttggaagttt cgatggttta ggaggagtag
                                                                 1020
gegggeggg eggeggtgt egttggtegg tagagagttt eggtttgatt tagegtaggt
                                                                 1080
ttggtgcgcg tagagaataa ttttaagcgt atcgacgttc gcgagttttt tttaaatatc
                                                                 1140
                                                                 1200
gaacgggatt tagagttcga gtttataggc ggcggtcggg ggagggagta gggtgttggt
cgtcgttcgg gagtgttcgc gttttgggtg atttttggaa ggacgtgggg tttaaatttc
                                                                 1260
ggttggggtt gggagagtag tttttagagg tttttcgcgg gattttttgt cgggcgggat
                                                                 1320
1380
                                                                 1440
                                                                 1500
tagtggcggc ggttaggaga gattcgggtg ttaggaaaga tgggtcgttt gggggatagt
                                                                 1560
agggagttcg ggggaaacgt aggcgtcggg tatagagtcg gtatcggcgt ttttagtttt
                                                                 1620
gtcgaagatc gcggtcgggt ttggttcgcg ggaggggttt tggcgtcgga tttgtttcgg
                                                                 1680
ttttgcgtgg gcggtttcgt cgggttttgt aggagcgacg cgcgttaaaa ggcggcqqqa
                                                                 1740
                                                                 1800
aggaggeggg gtagagegeg ttegggattt egatttggae geggttagtt ggagaggegg
agegteggga ggagattttg gtttegtege gatteggtgg ttegegttgt tttttegege
                                                                 1860
1920
cgcgtttata taattcgttt aggggtcggg tagttcgttt tgttttttcg ttcgcgtatt
                                                                 1980
cgttcggagg ttcgcgcgtt cgcgaagggg acgtagcgaa atcggggttc gcgttaggtt
                                                                 2040
agtcgggacg gacgtcgatg ttcggggttg cgacggttgt aggtaggagg tttagggtcg
                                                                 2100
gggggcggtt cggtttcgcg ggcgggggtt ggagcgtagc gttgggtagg tatttgggtt
                                                                 2160
cgtagtttcg aagttgggag gtgaggggag agcgatcggg gacgagttgg gataaggcga
                                                                 2220
tataggggtt ttttcggagt tggatcggtt tttgggattt ggcgttcgcg agaggttgga
                                                                 2280.
gcggttagag tttagtttgc gaggagacgc gggttttgtt tttagcgtcg gtcgtttttg
                                                                 2340
gcgttaaaga tagtttcgta ggggtttcgg gagggttttt ttttttgttgt ttttttttta
                                                                 2400
tttcgggttt cgagggtcgt tgggagggta atttcgggaa gaggtcgggg tgcggggcgc -
                                                                 2460
gggtgtaggt
                                                                 2470
```

```
<210> 355
<211> 2470
<212> DNA
```

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 355

atttqtattc	acatttcata	tttcggtttt	ttttcaaaat	tatttttta	acggttttcg	60
	tggagagggg			tcggaatttt		120
	taaaqqcqqt			gcgttttttc	0 0000 0	180
~~ ~	tttagttttt			ggtcgattta		240
	tcgttttgtt			tttttttat		300
	agtttaggtg			agttttcgtt		360
aatcqttttt			gtagtcgtcg		tatcggcgtt	420
cgtttcggtt				ttttttcgcg		480
	ggtgcgcggg		000 000 0	ttcggttttt		540
tatgggcgcg	gggagggag		gagtaggcgg		tagcgttttt	600
ttagttcggc	gcgcgggaag	gtagcgcggg	ttatcgagtc	gcggcggggt	taaggttttt	660
tttcggcgtt	tcgttttttt	agttggtcgc	gtttaagtcg	gggtttcggg	cgcgttttgt	720
ttcgttttt	tttcgtcgtt	ttttggcgcg	cgtcgttttt	gtagagttcg	gcgaggtcgt	780
ttacgtaggg	tcgaagtagg	ttcggcgtta	gggtttttt	cgcgggttag	attcgatcgc	840
gattttcggt	agagttgggg	acgtcggtgt	cgattttgtg	ttcgacgttt	gcgtttttt	900
cggattttt	gttgttttt	agacggttta	tttttttga	tattcgggtt	ttttttggtc	960
gtcgttatta	gcgttgggtt	tttcggcgcg	cggggcgttt	ggaatttaag	gggtagggga	1020
tgtggtcggc	ggggaatagg	ggtgagggc	ggggaatagg	ggtgaggggc	gtcgttttag	1080
gtttaggagg	aggggaacgg	ttgtttttcg	ttaagtaggg	tttgttattt	atttttttg	1140
tggagttacg	gtttcgttcg	gtagaggatt	tcqcqqaqaq	tttttggggg	ttgttttttt	1200
aattttagtc	ggagtttggg		ttttaggggt		gcgaatattt	1260
tcgggcggcg	gttagtattt	tgttttttt			tcgggttttg	1320
		-	Dage 1			

```
1380
gatttcgttc ggtgtttgga aggagttcgc gggcgtcggt gcgtttggag ttgttttttg
cgcgtattag atttgcgtta ggttaggtcg aagtttttta tcggttagcg atattcgtcg
                                                                             1440
tttcgttcgt ttgtttttt taggttatcg gggtttttag ggttttcgat tacgtatatt
                                                                             1500
aggttttggt taggggattc gatatgttgg gcgagtttcg agcggttttt agtggcggcg ttgtttatgg tttgatgttt atggggttcg tgatttggtt tcgaatcgat gttttttgtt
                                                                             1560
                                                                             1620
tatggtgatt tttacgtttt ggaaagtcgc gttagtgaag ttcgtggttt cgcgagcgag
                                                                             1680
tegggttgge gtagattggg tittttggte gtagegggtt egegtttgae ggggagggtt
                                                                             1740
cggttgattc gtatattttt atggtttatt tattgtttgt tgggcgtacg gggtggggat
                                                                             1800
                                                                             1860
ttaaagacga attttatgta gaggtttggg tttagttttg gtaatagaaa aggtcggtat
cgtcggagta ggacgcgcg gtattattat ttattcggtc ggggaggttg gggcgttcgc
                                                                             1920
ggggagtaga ttcgaggttg ggcgttcgga ggtacgagta ggattttggt cggtttttag
                                                                             1980
tttttagaat ttagggttag gcggggatgt tagggtttgc gcgatttggg gggttttaga
                                                                             2040
ggcgtcggcg gggtttggcg cggattatta gcggtttgcg ggagttaggg gtggaggggg
tcgttgttta gggaagagga tcggggttcg gagtggggt gagaacgagg tacgtttttg
                                                                             2100
                                                                             2160
agtttgcgaa atttgcggat cgagcgttcg cgtaggagtt cgttttttt gggtttttag
                                                                             2220
gttttagatt cgtacgattt ttcgttcggt gttagtttag atgcgcgcgg gtgatgaacg
                                                                             2280
ggcggtggtc gcgatttacg cgttcgtttt gtttagttag cggtaaattc gtttttttt
                                                                             2340
tgattttagt ggtattggag cgtgaggtaa gggttaggcg gtaggtagag gggtcggatt
                                                                             2400
tagtaaaagt aaataaaatt ttaagtaaac gaaataaata tttatatatt atatatacga
                                                                             2460
tataatatat
                                                                             2470
<210> 356
```

<211> 2470

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

aaaattgaat	atttgagaat	attggattta	tatttttgag	ggtaataatt	tgttagagtt	60
gagtagttgt	tttttttagt	tatggtatgg	atattttaat	ttgttatttt	ttttattatt	120
ttttattgtt	ttatataagg	ttagttttat	ttatttgttt	tatttgtttg	gtttttgtag	180
ttatttgaat	ttgtaaatat	tatttagatt	ttttttgttt	tttattaaag	tttattttgt	240
tttgttttaa	gttttttatt	agtgttttaa	agtaagagtt	aggtaatttg	attaaatata	300
ggttttttaa	tatgtgtttt	ttggagatag	tattttaata	gaaagagatg	attttgtagg	360
		ggattataat				420
tgttattttg	acgtagttat	attttattgt	tttaaagtag	attaaaggaa	ttggttttat	480
ggtagaataa	tggacgttgg	ttttatgtat				540
tattttagtt	ttaaaagatt	taaagttatt	acgggttttt	ttgattttt	tattttttcg	600
gaggttttag	gatattcggt	ttgacggtat	tttttttat	ttgttttcgg	ggttcgtttt	660
gcgttgggta	gttgcgttta	aggagcgcgc	gtatttagta	tgagtttatt	ttttatgggc	720
gtttttagag	gttcggtcgg	gtcgcgtata	ttaagcgtag	taagtttttg	tattaatggt	780
tttcgcggtt	gggcggggcg	cggtcgttta	aaggcgttgt	ttttttggaa	gttttgtttt	840
tattttagcg	tttgagagtt	tgtagtcggt	tgggaaggtt	tttttggttc	gtttggtttt	900
ttcggggaag	aggttaatat	tcggtatacg	cgatttacgg	tagaggggag	ttttgggcgc	960
gtagaattgg	ttgcgtttcg	tcgagagttt	tttgtgggtg	gggagagttt	ttttatttt	1020
ttgttcgttt	gagcgtttag	agtttagggt	cgtcgatcgt	agtattttc	gatttgttgt	1080
atcgagggtt	cgcggttttt	gtgtgcggtt	tttatcgttg	ttggaggcgg	tcgtaggcga	1140
atcgtcgggt	cgttagttac	gattcgagtt	aggtatttt	tcgtttttgg	gatcggggtc	1200
gaaggttaat	tatattgtag	ttaggttttg	cgattggacg	gtagtgagag	tcgattggtc	1260
gtcgtcgcga	gtttcgggtt	tttttttt	tttttttgtt	ttaattttag	cgtttaagtt	1320
ttaggttaat	gagatagcgt	tttatagacg				1380
gagaggagg	ggaagttttg	attggttaga	ttgttttcgg	aagtttttt	ttttttatta	1440
attatcgaag	gaggtacgtt	tttagcggag	ttttttagtt	aattataaag	cggcggcggc	1500
gtttagtcgt	gtagttttat	tagcgttttt	gggttttatc	gtttttaatt	ttttaagttt	1560
tttcgtaagg	gtcggcgatt	ttgattggtt	attgttgtta	ttgtcgaatg	tttttttag	1620
ttagttatcg	aataaggcga	atttatttt	ttcgttcggt	tattttcggt	atttttcgtt	1680
ttttgggcgt	ggttttttag	cgttattttt	taattggttt	tttaggttga	tcggtttttt	1740
tcgggaggag	tcgtaaataa	acgacgttcg	tgattggttt	cgttcgggtt	tcggttttta	1800
gtcgaagcgg	gcgagcgtgg	ggttcggtcg	gcgattttta	gacgtttgtt	acgcgggcgg	1860
cggggcgttg	ggcggtgtaa	ggttgggtgg	gggaggaagg	aggtggagga	cgagtaggag	1920
			Page 1	146		

47675-47.txt gggggaggag gagtggggaa gtgtaaggcg gttgcgtaga tagcgttttt tatatagagt 1980 agtttttgat tegggegaat gegggtttgt gtegtegteg tegtegtegt egttegggtt 2040 aagtgataaa ggaaggaagg aagcgaggag gagtcggttt cgtagtcgtt gatagggttt 2100 tgggttgggg taaagcgcgg atattttttg agcgggtatc gagtagagtc gaggggcggg 2160 agggcggtcg agttgttgtc gcggacgggg gagggggttt cgagggacgg aagcggttgt 2220 cgggttttta tgttttcggc gaatggggaa tagtcgagga gtcgttgttt ggggtttgaa 2280 gggagttgtt ttcgttatcg ttatggtcgt tggatttagt cgtcgtttgt agttgttttt 2340 ggcgtaatga ggagaggagt cgtcgttatc gttatcgttc gtttttgatt gattcgcgat 2400 ttegtegttt tttagttegt egggtttttg tegttagtte gteggattte geggtttgte 2460 ggagttgtag 2470 <210> 357 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 357 ttgtagtttc ggtaagtcgc gggattcggc gggttgacgg taggggttcg gcgaattaga 60 gggcggcgga gtcgcgagtt agttagaggc gggcggtggc ggtggcggcg gtttttttt 120 ttattgcgtt aggagtagtt gtaggcggcg gttggattta gcggttatgg cggtggcgga 180 ggtagttttt tttagatttt aggtageggt ttttegattg ttitttatte gteggggata 240 tgggaatteg gtaategttt tegttttteg gggttttttt tttegttege ggtaatagtt 300 eggtegtttt ttegttttte ggttttgtte ggtgttegtt taggaagtgt tegegttttg 360 420 tttgttattt ggttcgggcg gcggcggcgg cggcggcggt ataagttcgt attcgttcgg 480 gttaggagtt gttttgtgtg aggagcgttg tttgcgtagt cgttttgtat ttttttattt 540 tttttttttt tttttattog titttatti ttttttttt tiatttägtt ttatatogtt 600 tagcgtttcg tcgttcgcgt aataggcgtt tgggaatcgt cggtcgagtt ttacgttcgt 660 tegttteggt tgggagtega agttegaaeg gagttaatta eggaegtegt ttgtttgegg 720 780 tttttttcgg aaaaagtcga ttagtttgag aaattaatta gaaagtgacg ttgggaagtt acgtttaaag agcggaaaat gtcgaaggta gtcgaacgga aagggtgaat tcgttttgtt 840 cggtggttgg ttggaggaga tattcgataa tggtaatagt ggttaattag agtcgtcggt 900 ttttacgaag aggtttgaag agttgaggac ggtgaaattt agagacgttg gtgaaattgt 960 acggttgggc gtcgtcgtcg ttttgtgatt ggttggaaaa tttcgttggg agcgtatttt 1020 tttcggtgat tggtgaagag aagggggttt tcgaggatag tttggttagt taggattttt 1080 ttttttttt taaggtgggg agaagaaagc gaagggaggg cgtttataaa gcgttgtttt 1140 attggtttga agtttaggcg ttggagttgg ggtaaaaggg agagggaggg agttcgaaat tcgcggcggc ggttaatcgg tttttattgt cgtttaatcg taagatttag ttgtagtgtg 1200 1260 attggtttte ggttteggtt ttaggagegg ggagatgttt gattegggte gtggttgaeg 1320 attcgacggt tcgtttgcgg tcgtttttaa taacggtgga aatcgtatat agggatcgcg 1380 ggttttcggt gtagtaaatc ggaaagtgtt gcggtcggcg gttttgggtt ttgagcgttt 1440 aagcgagtag aggggtggag gggttttttt tatttatagg aggttttcgg cggggcgtag 1500 ttaattttgc gcgtttaagg tttttttttg tcgtggatcg cgtgtgtcga gtgttggttt 1560 ttttttcgaa agggttagac ggattaaggg ggttttttta gtcggttgta agtttttaga 1620 cgttaaaatg ggaataaagt tittagaaag gtagcgttit tgggcggtcg cgtttcgttt 1680 agtcgcgggg gttattgata tagaggtttg ttgcgtttgg tgtgcgcggt tcggtcgggt 1740 ttttggaaac gtttatgaga aatgagttta tgttggatgc gcgcgttttt tgggcgtaat 1800 tgtttagcgt aaaacgggtt tcgaaagtag gtgaggggaa atgtcgttag gtcggatatt 1860 ttgaagtttt cgaggaaatg ggggggttag aggagttcgt ggtagttttg gattttttgg 1920 aattagggtg atttataaaa gtgtagtttg agaagatttt atatataaga ttagcgttta 1980 ttgttttatt atagaattag tttttttggt ttgttttaga atagtgaggt atggttacgt 2040 taagataata gagaaagtag aatagatagt tgttattttg attgtaattt agtggtgttt 2100 gtaattttta titgtagagt tattittit tgitaagatg tigittitag aaagtatatg 2160 ttaaaggatt tatatttgat tagattattt ggtttttgtt ttgaaatatt gatgaaggat 2220 ttgggataga ataaagtaag ttttgatgga agataggaaa ggtttagata gtgtttgtag 2280 atttaaatgg ttatagaggt tagataagta aagtaaatga gtgagattgg ttttgtgtaa 2340 gataatgggg aatgataggg aaaatggtaa attggaatat ttatgttata attaaaagga 2400 atagttgttt aattttagta gattgttgtt tttaggaatg tgggtttagt gtttttagat 2460 gtttaatttt 2470

```
<210> 358
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 358
ttttgttttt atgtttagtt tattgaagtt tgtttttagg ttattggagt tgagttttt
                                                                     60
120
aaagtttatt ttgtttaaag tttttaatag gagtgataat ttaggtaaaa tgtttatata
                                                                    180
atagtgggaa attaaaagtt tgcgatatag aaaagtgata tatatttgta aattttttta
                                                                    240
ataaaggtat cgtagtataa gtatgattgt agagttagat tgttaatgtt taaatttttt
                                                                    300
ttgggtttta atttttttat ttgaaaatcg ttaatagtgg aatttagttg atagggttgt
                                                                    360
tgtggagtaa gcgtttttaa tttggagttt atgaaatttt agtatttgtg aattttgtat
                                                                    420
tgaaaaaatc gtaattttat gtttattaat tttataatag tttcgttttt ttgaattata
                                                                    480
aaggtaggta ataaattata gtagtattat tagtatttat aattttgttt tttatagaaa
                                                                    540
ttatttttat atttagtaag ttgttgtaga tattttgaat aattatacgt atatatttt
                                                                    600
taagtattat atatataata tttttatatt ttgtatatat tttttggagat agggttttgt
                                                                    660
tttgtttttt aggttggagt gttgtagtat gatcggaatt tattgtaatt ttaaattttt
                                                                    720
gggttttagt gattttttta gttttagttt tggaatagtt aggattataa gtatttttta
                                                                    780
ttatatttag ttgttaattt ttttttttt cgtaaagata aggttttatt attttgttta
                                                                    840
ggttgttttt taatttttgg atataagttt tttgtatagg ttttttaaag tattgggttt
                                                                    900
ataggtgtga gttatcgtgt ttggttaata ttatgtattt aattttatgc gtttagaaat
                                                                    960
atgtgttatt ttaagaaggc gtttataggt tttattatat tattaaaggt gtttatggta
                                                                   1020
taagtgaaga aatttttaga tattagagta ataaaaatta tgatgtatta gaacggatta
                                                                   1080
1140
ttttttttga gatagagttt tattttgttt tttaggttgg agtgtagtgg agtgatttcg gtttattgta atttttgttt ttcgggttta tgttatttt ttgttttagt tttttaagta
                                                                   1200
                                                                   1260
gaggaattgt aaggcgtttt attatgttcg gttatttttt gtatttttag tagaaatggg
                                                                   1320
gtttttttat gttacggtag gttggttttg aatttttgat tttaggtgag ttatttgttt
                                                                   1380
tagtttttta aagtgttggg attataggta tgagttatta tgtttagttt gttatggttt
                                                                   1440
ttaaaatatt tatagaatag aaattgaagt aagtttattc gtttttatat taaaagtagt
                                                                   1500
tagtacggtg ttttgtattt atgtatttta tggatgttga atgagttatt gaatgaagtg
                                                                   1560
gagtttaggt tgtgttttag gttttttagt ggggttggaa ggaatagttg tgaagttgtg
                                                                   1620
gggcggtttt tgtgtatcgg gggattttgg agttagatgg ttttttaggg tttttgaagga
                                                                   1680
gaagagttgt gtttttaata atgattttaa tgggaataga gattgttggg gatcgtaggg
                                                                   1740
gttaggttgt tattttttaa agtttttttt ttattattta agaaggtatt taggttttt
                                                                   1800
tgtgttaggt tttaggtaaa gtgttggatt atttagtaat tgggtttagt agtaggatgg
                                                                   1860
ttttagattg aggttttagg gttaaaggat tattttttt tttagcgttg gttcgggaaa
                                                                   1920
ggtaagtttc gggcgggagc gtacgtcgcg ttttcgaagt ttggtttttt cgttacgttt
                                                                   1980
attittigtt titatiticgc gittititag gittititic ggigaatcgg aigititigti
                                                                   2040
agtttttttt tttgcgtttt cggtcgcggt tcgggttttt cgtaaagtcg ttgttatttc
                                                                   2100
ggagggttta gttagcgggt tttcggaggt tggtcgggta ggcgtggtgc gcggtaggag
                                                                   2160
ttgggcgcgt acggttatcg cgcgtggagg agatattgtt ttgtcgcgat gggggttcgg
                                                                   2220
2280
                                                                   2340
aaggaggtag aatggatitt ittiggtittt tittgtgggc gggggcgggt tagggtgggt
                                                                   2400
cgcgttgtta ggtagttttg tcgtgttgtt aggtagtttg gtcgtcggcg tgggcgatgt
                                                                   2460
cggcgttggg
                                                                   2470
<210> 359
<211> 2470
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 359
```

aatatttaa gaattatagt agattggata tggtggttta tgtttgtaat tttagtattt tgggaggttg aggtaggt	60 11 12 13 13 14 16 16 17 18 19 10 10 10 10 10 10 10 10 10 10
agttgttttg tttagaagtc gattttttga tgtttttaac gtttggttta attgatttgt tttaatggag ttttcgtcgg tgaggagcga gatgttatcg attagaatgt tgggatttgt tgttaattg ttaggagtga gagatattga gatttagaaa tttttggagg tgggagggga gagggatagt ttcggacgga ggcggagatg taagataaag ggatggattt tatataggaa aaaaaaaa	60 120 180 240 300 360 420 480 540

agggaggatt	cggaggtttt	tgaaagcggg	gggagaagaa	ggaggaggga	taatagagag	600
				aaataggaat		660
				aaatattgag		720
				gttttcgaaa		780
tcgttattgg	cgattaaaat	tttattaggt	taaagagtgt	gtttaattgt	ttgaagaatg	840
tagtagacgg	aaggcgggtt	tcgttatgtc	gtttgttttt	ttcgttggag	agaatgaaag	900
aaacgcgtag	agttagagat	ttttgtcgag	ttagattttt	tttcgtcgtt	ttaggttatc	960
ggttattcgg	taaagattcg	agtaaggaac	gtagggttat	tgtttgggtt	aataaatgga	1020
gttcgttttt	tttttttcgg	acgtcgttgt	tcggtcgatg	ttttcggtaa	tttattcgcg	1080
gcgtatgtag	aggagttttt	tttttttt	tagattattt	gtttcgatta	atttgatttt	1140
ttaaatatat	ttgatcgtat	tttttaggtg	gatatattaa	taggttacgg	gttggagagg	1200
agcgggtgat	gaggagaggg	atttaaattt	gcgaacgttt	gggttgggtc	ggagttgcgg	1260
ggggtttggg	aggagagagg	ggagaagaga	gaaggaagga	gagcgtttgt	cgggatggtt	1320
gagttgtttc	ggcgagtagt	tttggggttg	tacgtttttg	tgggagatgt	tgttgttgtt	1380
tttaggtcgg	taagagcggt	tttaatatta	tcgtttttta	tttttttt	tgtaaatttt	1440
tagagaaacg	tttttggttt	tttcgtcgcg	atatttttag	tttgtatttt	tttatagttt	1500
aggcggcgcg	ttttcgtacg	ttggagcgtc	ggtcgttagt	aggacgtttt	ttttcgcgtc	1560
gattcgtttt	tttttgtttt	gttgttgttg	tttttttgat	attttcgttt	ttattatttt	1620
tagttcggag	agacgttatt	tagtcgcggt	tcgtattcgc	ggttcggggt	tacgcgcgga	1680
agaggggcgt	tagttcggat	ttcgttttcg	gtagggggcg	ttttggagcg	gagagtgagg	1740
cgaatggtat	atgagtgtgc	gggtagttta	ttttgaagtt	cgagtttttt	atttgagtta	1800
ttttcgttta	gttttattcg	ggttagcgtt	tggcgagcga	gtttatttgt	ggttttcgcg	1860
gtcgtttttt	ttttgtattt	ttgtattttt	tcgtcgattt	tttttttcg	ggatttgtat	1920
tttgttttat	taattagagt	tcgattgttt	ttttttacgt	gatttcgggc	gggttgagga	1980
tttgttgttt	tttaaacgtt	agagggatgc	gggcggtaga	gttcgagagg	cggttgtcgg	2040
gttgcggggc	gttttgattt	tttttttatt	ttgtttttc	gggttttatt	cgtttgtttt	2100
tggattttcg	ttttttttg	tttttcggtt	ttttagagtt	tttttttat	ggtagtagtt	2160
tttcgcgttt	tcggcgtagt	tttttagcgg	acgattttt	cgtttcgggg	ttgagtttag	2220
tttttggatg	ttgttgaaat	tttcgagatt	atgcgcgggt	ttggttgttg	ttttttcgtc	2280
gggtgttatt	gttatcgtcg	tcgtttttgt	tgtcgtcgtt	cgcgggatgt	ttagtagttc	2340
gttgttcggt	tttcgcgatt	ttgtgttttt	cggaagtcgt	ttgttgttgt	agagttgtac	2400
gaattagtta	tggtgttgtg	ggagttttcg	cggtagtgta	gtagttggat	attttgcgag	2460
ggtttttgtt						2470
<210> 361						

<210> 361 <211> 2470

<212> DNA <213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 361

	agtaaaagtt	ttcgtaaagt	gtttagttgt	tgtattgtcg	cggggatttt	tatagtatta	60
	tgattagttc	gtgtaatttt	gtagtagtaa	acggttttcg	aggaatatag	gatcgcgggg	120
	gtcgggtagc	gggttattga	gtatttcgcg	gacggcggta	gtagaggcgg	cggcggtggt	180
	agtggtattc	ggcggggaag	tagtagttaa	attcgcgtat	gatttcgaga	gttttagtaa	240
	tatttaqqqa	ttgggtttag	tttcggagcg	agagggtcgt	tcgttgagaa	attacatcaa	300
			ataaggaggg				360
			agtggagttc				420
	J J J J		tttttcgagt				480
	aagtagtagg				aggtagtcgg		540
	gtggagtagg	_	cgggagggag				600
	J J J J J J J J		atagatgggt				660
			gagaagttcg				720
		ttttatttt			cgaaggcggg		780
	_	ttcgcgcgtg			gtcgcggttg		840
	- -	gagatggtgg			tagtagtagt		900
							960
	JJJ J J		agggcgtttt		ggcgttttag	J J J J J J	
	cgcgtcgttt	aggttgtagg	gggatgtagg	ttgggaatgt	cgcggcggag	aggttaggga	1020
	cgttttttta	gggatttata	ggaaagaggg	tgagaggcga	tggtgttaga	atcgtttttg	1080
	tcgatttgga	agtaatagta	gtattttta	taagagcgtg	taattttaag	gttgttcgtc	1140
Page 150							
				_			

47675-47.txt 1200 tttaggtttt tcgtagtttc gatttagttt aagcgttcgt aggtttgaat ttttttttt 1260 attattcgtt tttttttagt tcgtagttta ttagtgtgtt tatttgggag gtgcggttag 1320 atgtgtttgg aaggttagat tggtcgggat aagtggtttg agagaaagag aaaggttttt 1380 ttgtatacgt cgcgggtggg ttgtcgggag tatcggtcgg gtagcggcgt tcgggaaggg 1440 gagagcqqqt tttatttqtt qqtttagqta qtqattttgc gttttttatt cgggtttttg 1500 teggatggte ggtgatttgg ggegaegaga gaaggtttaa tteggtagga gtttttggtt ttgegegttt tttttatttt ttttageggg aagggtaaae ggtatagegg gattegtttt 1560 1620 tcgtttgttg tatttttag gtagttagat atattttta gtttaatgga attttagtcg ttagtaacgg gattaagagt tttcggggat aagggtggag aggaatattt ttttttatg 1680 1740 1800 tggtgtgtga ttatttagtg atttttgttt ttgtttttgt ttatttttt ttcgttttt 1860 ttttttatit ttttttgita ttttttitt ttttttttt ttcgttttta aaagttttcg 1920 gatttttttt ttttttattt aaattttttt tttgtgtttt tttttttgtg ttttttgaat 1980 ttaggagagt atttgataat atttaatagg taattagtgt ttatttttaa ttatttaaaa 2040 gaggtattta tatattttga aaacgggatt atttattttt tgtagatatt agtagaaaaa 2100 taaattgtat tcgagtaatt tttttaagta ttttaatttt taatttttt ttatttttt 2160 gttttttaat tttttttttg agagatgtga tcgtgtagta ttttagtgtt ttaacgaaat 2220 tttttttttt tttttgtgtg aaatttattt ttttatttta tattttcgtt ttcgttcgag 2280 attgtttttt tttttttta tttttaaaga tttttgaatt ttagtgtttt ttatttttgg 2340 taattaagta gtagatttta gtattttagt cggtggtatt tcgtttttta tcgacgaaga 2400 ttttattaaa atagattaat tagattagac gttggaggta ttagaaaatc ggtttttaga 2460 2470 tagagtagtt <210> 362 <211> 2470 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 362 atatttaaat tgtatatttg qtttqtaata tattatatat ttaaaaqaat tattattttt 60 120 ttggtttgaa atttaggttt gttatttatt agtaagtttt taaaaatttt gagtttttag 180 240 tatttttttt tttagtgtat attaattggt atttttcgtt aggttagaat gtgtttttaa 300 ttatgtttta aattogtttt gtgttaattt tattgttaga.atttttttta ttttgagaat 360 420 gaatatttag taagtgatga gagtagtaac gattgttttt attattttaa atttataata 480 540 tgtaattata agtatttagg gttgatattg tttttgaatt agatagtgtt tatattagtt 600 660 atttagtgaa tatattaaaa ttaaattttt tttgaatggg agtaattttt acggattaat 720 ttgtaatttt ttagattata tttaaggtaa tgtagaggtt gttgtattat aggttttgtg 780 840 ttttatittt tatatoggtt taataatgat tatogtagag ttgttatgga agttaaatga 900 atttatgtat tataagtgat taatataatg attgatattt agtgatttat taataaatta 960 aaatatttat tattaatatg atagagaagg tgtcgttaaa atagataata ggtttttgga 1020 agaggtgatt aaatggatgt aaaatttatg gattgtttat ttcgtttatt tttgttgtgt 1080 tttttggttg tggtatatat acgtgtgggt ataaaatcgt aaattttatg tagtcgcgta 1140 gtgtatgcgt agaaggttta gatacgaaat gttattttag taatgtgttt agagaagttt 1200 tgacgtcgtt ttggaagtaa gtcgttgttg tttgattttt gggcgtttgg gacggatgtt 1260 tatatttgta tttagtagta ttggaagggg tttaggtttt tcgtagtata gtttattttt 1320 agatogttta gttttttata atatatattt ttaoggaaaa gggtattttt tttogttaga 1380 aaaagcgttt tagtttggtt tgggttggtt tttattttac gttgttgtaa gtaggcgaag 1440 ttttttttgt ttttttttt ggggtaagtg gaaaggagtt cggtaggggg ttcgtagtgg 1500 tttgtatagg ggaattgggt agcgagagag ttttaggtaa tttcgggggt tgttttatag 1560 aagtaggtgg ggatcgatag tggtttttcg gtttagggag gagagcgcgg tcgcgggttt 1620 tttttttag tttggaggtt gtagtcgttc gagtcggttc gggtgggggc ggggtggggg 1680 cggcgcggag ggtacggaga ttacggcggc gttattcggg atatttaggg tttcgaggtt 1740

1800 ttgggcggtt tttacgcgag atcgtaaatt atgataatag gtagttattc gaggttaaat aaaaacggag tgggtttttc gcgcgtcgtc gtttttcgcg ttttttggcgg tttttttcga 1860 1920 ggttttcggc ggttttacga gttcgtagta gtcggtggcg acgtcgtttt cgttttattt 1980 ttttgcgtaa gtgcgaggtt gtcggtagcg cggcgtacgt ttcggtcgtt ttcggttttc gcgtaaaatt tttattttgt ttacgtgaag ttgtcgttgt tttagagagg gggaaagagt 2040 2100 tgcgggaaaa gtcggggagt gacgattgcg gcggttgggc gcgttttttt attttttt tttttttttt ttttttqtc qtaqttcqqa qttttqqttt tttttttt ttttttt 2160 2220 teggagtegg tittititt egittegitt tittitegit tgtgtaegit attigtigtg gggtggtcga aggggatgtt ttgtttttat tagaggtata gcgcgaaggg gaaatttcga 2280 tattggaagg aacgagaata aatatttaat tacggacgta ttgaatcgcg gttgggatag 2340 atatttcggg aattcgaggc ggatcgggcg acgaggtgag tgatttttt ttttaatttt 2400 cgttttaggg ttttcggggg agtttgagtt gagagaattt ttaaattttt cgggaaagtg 2460 cgcgaggttt 2470 <210> 363 <211> 2470 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 363 gagtttcgcg tattttttcg gaaagtttgg gggttttttt aatttaggtt ttttcgggag 60 ttttggggcg ggggttggaa gaaggggtta tttatttcgt cgttcggttc gtttcgggtt 120 180 ttcgaagtgt ttgttttagt cgcggtttag tgcgttcgta attaagtatt tattttcgtt tttttttagtg tcgaagtttt tttttcgcgt tgtgtttttg gtgaaaatag gatatttttt 240 tcggttattt tataataaat agcgtatata agcgggggag aagcggggcg gagggagaag 300 360 tcggtttcga gggggaggag gaaaggagag gagttaaaat ttcggattgc gatagggggg aaaggagaag aaaagaaaat gagagagcgc gtttagtcgt cgtagtcgtt atttttcggt 420 ttttttcgta gtttttttt ttttttaag gtagcgataa ttttacgtgg ataggatgga 480 agttttgege ggaagteggg aacggtegga gegtgegteg egttgteggt agtttegtat ttgegtaggg aggtgggeg ggggegaegt egttateggt tattgegggt tegtgaggte gtegggggtt tegggggagg tegttaggga egeggggge ggeggegeg gggggattta 540 600 660 tttegttttt atttgattte gggtgattgt ttattgitat ggtttgegat ttegegtggg 720 gategtttag ggtttegggg ttttggatgt ttegggtgge gtegtegtaa ttttegtgtt 780 tttegegteg tttttattte gtttttatte gggtegatte gageggttgt agtttttagg 840 900 ttgaggggag ggattcgcga tcgcgttttt ttttttgggt cggagagtta ttgtcgattt ttatttgttt ttgtggggta gttttcggaa ttgtttggaa ttttttcgtt atttagtttt 960 tttgtgtagg ttattgcggg ttttttgtcg gatttttttt tatttatttt aagggaggag 1020 atagaaggga tttcgtttat ttgtaataac gtgaaataaa aattaattta gattagattg 1080 gggcgttttt tttgacggga ggaaatattt tttttcgtgg agatatatgt tatgaaggat 1140 taagcggttt ggggataggt tgtgttgcga agggtttggg ttttttttag tgttgttggg 1200 1260 tgtaggtata ggtattcgtt ttagacgttt aaaggttagg tagtaacgat ttatttttaa ggcggcgtta gagttttttt aggtatattg ttgaaatgat atttcgtgtt taagtttttt 1320 qcqtatqtat tacgcgatta tataggattt acqattttat atttatacqt qtqtatqtta 1380 taattagggg atatagtaaa ggtagacgga ataaataatt tataaatttt gtatttattt 1440 aattattttt tttaaaaatt tattgtttat tttageggta ttttttttgt tatattgata 1500 1560 1620 1680 ggtitttaat tataaagtit atgatataat aattittata ttattttagg tgtggtttaa 1740 gagattatag attaattcgt agaaattatt tttatttaaa gaaagtttag ttttaatata 1800 tttattaagt tacgttttga aaaaggttta gaaaaaagat tttatttttt attttaggtt 1860 ggttttatgt aattgatatg agtattgttt aatttaaaag tagtattaat tttgaatatt 1920 tatggttata atttatttt taatgagtgg ggaattattt ataatgttta agaggtttta 1980 gaaaaggtgg tgttgtaaat ttaaaatgat aaaggtagtc gttgttgttt ttattattta 2040 ttgggtgttt tittttgtag atttattttg gagggtgtag gtattgttag gtataatgtt 2100 tttttttttg gtttttaagg tagaaagggt tttggtagtg gggttggtat aaagcggatt 2160 tggagtatgg ttgagagtat attttggttt aacgaggaat gttagttaat atatattgga 2220 gagaaaaata tgaatggata gatttaatta attttgtaga tttattttt ttattttata 2280 tgtgagaaaa ttaagggttt agaattttta gaagtttgtt aataaatggt agatttgagt 2340

47675-47.txt

```
tttaagttag tttttattta agtttatttt tagttattgt gatgttatta ttagtattaa
                                                                        2400
tggtatttag aaaaatagta attttttaa atatgtaata tattataagt taaatatgta
                                                                        2460
atttaaatgt
                                                                        2470
<210> 364
<211> 947
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 364
ttgttgtttt taggggtttt ggttttgatc gatatttggg cgggtgagtg cggggtttag
                                                                          60
agagaaacgg tttttgtggg gaggagtgag gggttcgttc ggtgggggcg taggatttag
                                                                         120
ggagtcgcgt tcggaggagg gtttggcggg ttttagtttt ttttcgtttt taggtttta
                                                                         180
ttttttgagg tattttagta tcgttgtgtc gcggttcggt cgcggggagt ttcgttatat
                                                                         240
cgtcgtggag tacgtagacg atacgtaatt tttgcggttc gatagcgacg tcgcgatttc
                                                                         300
                                                                         360
gaggatggag tcgcgggagt cgtgggtgga gtaagagggg tcgtagtatt gggagtggat
tatagggtac gttaaggtta acgtatagat tgatcgagtg gttttgagga atttgtttcg
                                                                         420
tcgttataat tagagcgagg ttggtgagtg aattcggtcg ggggcgtagg ttacgattat
                                                                         480
tttttattcg ttacggatcg ttcgggtttt ttagagtttt cggattcgaa atttatttcg
                                                                         540
aggtagcggg attcgtttag attttttatt cgggagagtt ttaggcgttt ttatttaggt
                                                                         600
ttatttttag tttaggttaa aattttcgcg ggttgggcgg ggagggggcg gggttagttg
                                                                         660
ggcggggttg attgcgggga tcggttaggg ttttatattt tttagggaat gaatggttgc
                                                                         720
gatatggggt tcgacggacg ttttttcgc gggtattatt agtacgcgta cgacggtaag
                                                                         780
gattatattt ttttgaacga ggatttgcgt ttttggatcg cggcggatat cgtggtttag
                                                                         840
                                                                         900
attatttagc gtttttatga ggtagaggaa tatgtagagg agtttaggat ttatttggag
                                                                         947
ggcgagtgtt tggagttgtt tcgtagatat ttggagaatg ggaagga
<210> 365
<211> 947
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 365
ttttttttat tttttaagta tttgcggagt aattttaggt attcgttttt taggtaggtt
                                                                          60
ttgaattttt ttgtatattt ttttgtttta tagaagcgtt gggtgatttg agttacggtg
                                                                         120
ttcgtcgcgg tttaggagcg taggttttcg tttagggaga tgtaattttt gtcgtcgtac
                                                                         180
gcgigtiggt gatattcgcg gaggaggcgt tcgtcgggtt ttatgtcgta gttatttatt
                                                                         240
ttttggaggg tgtgagattt tagtcggttt tcgtagttag tttcqtttag ttagtttcgt
                                                                         300
                                                                         360
tttttttttcg tttaattcgc ggggattttg gtttaaattg aaaatgaatt tgggtaaagg
                                                                         420
cgtttgggat tttttcgggt ggagggtttg ggcgggtttc gttgtttcgg ggtagatttc
ggattcggag attttgaggg attcgggcgg ttcgtggcgg atggggggtg gtcgtgattt
                                                                         480
gcgttttcgg tcgggtttat ttattagttt cgttttggtt gtagcggcgg agtaggtttt
                                                                         540
ttagggttat tcggttagtt tgtgcgttgg ttttggcgta ttttgtggtt tatttttaat attgcggttt tttttgtttt atttacggtt tcgcggttt tattttcgga atcgcggcgt
                                                                         600
                                                                         660
cgttgtcgaa tcgtaggaat tgcgtgtcgt ttacgtattt tacggcgatg tagcggggtt
                                                                         720
tttcgcggtc gggtcgcgat atagcggtgt tgaaatattt taaggagtgg gagtttgggg
                                                                         780
gcgaggaggg gttgagattc gttagatttt ttttcgggcg cggttttttg agttttgcgt
                                                                         840
ttttatcggg cgggtttttt atttttttt atagaggtcg tttttttttg gatttcgtat
                                                                         900
ttattcgttt aagtatcggt tagggttagg gtttttgaga gtagtag
                                                                         947
<210> 366
<211> 3120
<212> DNA
<213> Artificial Sequence
```

<220>

<223> chemically treated genomic DNA (Homo sapiens) <400> 366 60 aattttaagt ttaggtcggg tatagtggtt tacgtatgta attttagtat ttggagggat cgaggtgggc ggattataag gttaggagat tgagattatt ttggttagta tggtgaaatt 120 180 tcgtttttat taaaaatata aaatttagtt gggtatgatg gtacgtgttt gtagttttag 240 ttatttggga ggttgaggta ggagaatcgt ttgaattcgg gaggtggagg ttgtagtgag 300 360 taaagaaaat ttgaagtata gtatttttt aaattttaaa tagataatag aaattggttt ttttttattt aaattaqaat ttaaqtttaa ttttatatat ttttqataqt ttqqattttq 420 480 540 600 tttgttttcg ttttatatag taggaaattg aaatattgag aggttaagta attaaagtta 660 tagagttaga gtgataggag taaagtttta atttaggtaa tttagatttt tagagttttg 720 780 atttttatta ttaagttgtt agtatagttt ttttggtaat tatttttaat ttaaatataa ttcgagtgat ttatttaata agttattatt ttgataattt agtgatttgt aatgtaaaat 840 tatttattgt aatttattta atattattgt ttttttgtgt tgtaaaaatt atagtaatcg 900 960 cggatttttt tcgatttttt attatgcgtg ttaattgtta ttaatttttt tgtttgttgg 1020 ggattggggt cgcgagggta tattttcgag gggtacgggg ttagggttag gtaggttgtg 1080 cggttgggcg gggttttgtg ttttattgcg gagtgcgggt cgggaagcgg agagagaagt 1140 agttgtgtaa ttcgttggat gcggattagg gcgtttttta ttttcgtcgg gagttcgtcg 1200 attggttggg tgtgggcgta cgtgatcgat atgtggttgt attggtgtag ttcgttaggg 1260 tgttattgga gatagaatgg aggtgttgtc ggattcggaa atggggtagg tgttggagtt 1320 attatggtta ggtttgttgc ggggggaggg gggaaggtgg ttttttttcg tattgtttta 1380 1440 aatcgatggt ttttttttgg tatagggttt attgtagtat gttaaacgag gaggtagggg cgtcgttttt tcgtttttta ttgtagtatt ggagatggat tttttgtatt tcggatttag 1500 ggtttttgat agaagaggaa gaagggggag gggtagaagt gttaagggga gtttgttgag aaaagttgtt tttgaagtta gaaggggttt ttgttttat aatgttattt gatagagtgg 1560 1620 aataatagta tttaaggaaa cgggtagagg ataataaaga atggagtata tttatggcga 1680 1740 tattggtggt taaaagagag aggagataaa atcgttgtag atggttgatg tgaatttagt 1800 ggaaagagtt attggggatg agagaaagag gaggaggtag gtattgtaga gcgtgagtgg 1860 tggtgttggt tggtgaaata ttggttatta gtagtgtgtt tgtttttgta aaatatttaa 1920 1980 gtaaattttt tgtgaatagg gtggtaaata gatattagtg tttttgttag ttataaaatg tagtggtagt ggttttttgc ggacgattgt agtagtgttt ttttttttt tgttaggtcg 2040 aaaagataat tgtagaggaa taagaaattt tgtagtaaat gttggggtag aagtttattt 2100 ataagaagtt atagtttata aatgtagttt gaatagtaga aaaaaaatta ttgtttttta 2160 aagtaggaat aatgttaggt tatgaatgtt ttgttattgg aatgtattgg atattttgat 2220 tttatattac gaaagtgatg tttaaatttt ttgatttaat ataaatttta tacgaaattt 2280 2340 aattaggtta tttaagagta aattatttta taacgtaaat tattttgtta aaaattatgg 2400 tgaataaatt tttgtaggtt taatatttaa gatttatagt taagtaattt tatatttttt 2460 tttggttgtt tttagataat attgaataaa tatttaagat attaatttag tgtgtaaata 2520 ttttaaatta aagtaatatg gttttttttt tagatgtatt tttgtttagt gagtatttat 2580 2640 aaaagtttat ttttatgtat atttatagta gttagtttgt tatatttttt tatttttga 2700 ataaggatgg tagtggtttt gtaaagtttt ttagggttag tgatagtgtt ttttaaataa 2760 tgtttatgta atagaaagtt ttaagatgat ttattatatt gttttagtaa tatttttaag 2820 ataatgcgga attgggttgg tttagataaa taagattata taagtttttt attgataaat 2880 ttaaatagit ttttaaaaaa ttattttgt tttaagaatt atttgattat ggatattagg 2940 gttaatagta tttaggagtc gggcgtggtg gtttatgttt gtaatataag ttaaatagga 3000 ggttgaggga agttgaggta ggaggattat ttgagttttg gcgtttaaga ttagtttggg 3060 3120 <210> 367 <211> 3120 <212> DNA <213> Artificial Sequence

47675-47.txt <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 367 tttaggttgg ttttgaacgt taaggtttaa gtgatttttt tgttttagtt ttttttagtt ttttgtttag tttgtattat aggtatgggt tattacgttc ggtttttaag tattattaat tttgatattt atgattaagt aatttttaaa gtagaaataa ttttttaaag aattatttaa attiattagt gaaaaattta tgtagtttta tttatttaag ttagtttaat ttcgtattat tttgaaaata ttattgaaat aatataatag gttattttaa gattttttat tatataaata ttatttaaga gatattgtta ttgattttgg agggttttat aaagttattg ttattttgt ttagggagtg gggaggtgtg gtaggttggt tattataagt atgtataaag ataggtttt atatttaggt aaaggaaaaa aaagtttaat gaaaaatatt ttatattaag agtatatttt atgagtattt attaaataga aatatattta gaagaaaagt tatgttgttt taatttaaaa gagaaatata aaattattta attataggtt ttaaatatta ggtttataaa aatttgttta ttataatttt tgataaagta atttacgttg taaagtggtt tgtttttgaa tgatttaatt aatggtataa aagttttatt aataaaagaa aagatttatt gttttatata taatttatta agatttcgta taggatttat gttaaattaa agaatttgag tattattttc gtgatgtaga attaaagtgt ttaatatatt ttaatgataa aatatttata gtttgatatt atttttattt taaaaaatag taattttttt tttgttgttt aggttgtatt tataaattat ggttttttgt 1020 aaatgggttt ttattttagt atttgttgta aggtttttta tttttttgta gttgttttt 1080 cggtttaata gagggagaaa aagtattgtt gtagtcgttc gtaaaaagtt attattattg 1140 1200 ttagatgttt tataaaagta ggtatattat tggtgattag tattttatta attaatatta 1260 1320 attagattta tattagttat ttgtagcggt tttgtttttt ttttttttg gttattaatg 1380 tatgtgtttt tgtcgttagg gaggaaaaga agtttttaa tggggtagag tttttgtttt tcgttatgaa tatgttttat tttttgttgt tttttattcg tttttttaga tattgttatt ttatttgtt aaatggtatt ataaaaataa aaatttttt tggttttaaa aatagtttt 1440 1500 1560 1620 ttggattcga agtataggaa atttattttt agtgttgtag tggggggcgg ggggacgacg 1680 tttttgtttt ttcgtttggt atgttgtagt ggattttgtg ttaaggaaag gttatcggtt 1740

60

120 180

240

300

360

420 480

540

600

660

720 780

840 900

960

2880

2940

3000

3060

3120

taagatagtg cgagggaaaa ttattttttt tttttttttc gtagtaagtt tggttatggt 1800 ggttttagta tttattttat tttcgagttc ggtagtattt ttattttgtt tttagtgata 1860 ttttggcggg ttgtattaat atagttatat gtcggttacg tgcgtttata tttagttaat 1920 cggcgggttt tcgacgggaa tggggagcgt tttggttcgt atttagcgga ttatatagtt 1980 gittititt tcgtttttcg attcgtattt cgtagtgggg tatagggttt cgtttaatcg 2040 tatagtttgt ttagttttag tttcgtattt ttcggggggta tgttttcgcg gttttagttt 2100 ttagtaagta aggaagttga tggtagttga tacgtatagt aaagagtcgg gggaggttcg 2160 tagggtagaa ggattagtat aagatgtcgg aggtgggagg gagagtaata aattatattt 2220 cgattgttat gatttttgta gtatagagaa ataataatat taaatgaatt ataatgaata 2280 2340 attittatatt ataagittatt gagitgitag agigatgatt tigttagatag attattogaa ttatatttga attaaaaata gttattagaa aagttatgtt agtagtttag tagtggagat 2400 tagaattttg gaagtttggg ttgtttgagt tgaagtttta tttttgttat tttagttttg 2460 taattttagt tatttaattt tttagtgttt taattttttg ttgtataaaa cgggaataga 2520 2580 agaagtgttg ttagttatta taaatttgag gttttaatgt agtattttaa tgtaaatttt atattgtatt taaatcgaat taggtgatgt ttaaattttt aattttatga ggttgaagga 2640 2700 taaaatttaa attgttaaga atatataaag ttaaatttaa attttggttt aaatgggggg 2760 aaattaqttt ttattattta tttaaaattt aaaaggatat tatattttaa gtttttttg 2820

tttgtttttt gagatagagt tttgttttgt tattaggcga gtgtagtggt gtaattttcg

tttattgtaa tttttatttt tcgggtttaa gcgatttttt tgttttagtt ttttaagtag

ttgggattat aggtacgtgt tattatgttt agttaagttt tgtattttta gtagagacgg

ggttttatta tgttggttag gatggtttta attttttgat titgtgattc gtttatttcg

gtttttttaa gtattgggat tatatgcgtg agttattgtg ttcggtttaa atttaaagtt

<210> 368 <211> 2501 <212> DNA <213> Artificial Sequence

<220>

```
<223> chemically treated genomic DNA (Homo sapiens)
<400> 368
gtgttttagt ttttgaattt atgttgttcg ttattatatt gtattgtttg tqgatqattt
                                                                     60
attigittit gtagittiat itgaagaatt tittittit tittittqaq qittqittta
                                                                    120
aatattattt tttttgtgaa gattgtttgg tgttttttag gagagagtgt gattttttt
                                                                    180
tttaggaatg gtagtatttt aaatatatat attttgtagt atattttatt ttgtatggta
                                                                    240
atggtttgtt tgtgagtttt atttcgtatt agagggtgag ggttttgaag atagcgttag gttttattta tttcgatatt ttataatatt tattatatgt ttgatgaatg aatgtatagg
                                                                    300
                                                                    360
420
attitititti agaagtittg gtatggtttt tittattitg ttatagttat tgataattat
                                                                    480
540
atatgataaa taaatattgc gtttgatttt taaatattaa attatagtat attatagata
                                                                    600
gatatagagt tattatttaa agtatgatat tttaatttta aaaggttttt tttgaagaat
                                                                    660
attataaatt ttttttttt ttaagatttg ttgggtagga aagatgggag aaaatqaatt
                                                                    720
aatgtttata tagaaaggag gataatgggg gtaaaaataa tagatgaacg tatgggtgga
                                                                    780
tgagagaatg gataaaatga taggtggata tgttgatttt ggatagatgg gaaatgagtg
                                                                    840
gatatattaa taaatagata tgtgggtgga tgggtggaga agaggatggt ggatggttgt
                                                                    900
ggttttatga agagatgtga aaaaggaagt gtggaatgat ggatgagaag ttgtatggga
                                                                    960
1020
1080
agagttttag aaggatataa ggaaagatgg gtggatagat ggatgggcgg atggaaggat
                                                                   1140
1200
atatgggtta gttgagttaa atgttagttt tatgataggt tattagtagt tttttttgag
                                                                   1260
ttgttttgtt aagaagttaa aatttattta agttatgtgg atttgttatt gaggggaaaa
                                                                   1320
agaatgagtt ttttttttt ttatttggaa gatttattaa ttttttattt tttattttt
                                                                   1380
attgtgggta cggaggtatt gcgttattta gggtaagatt tcgttttttt tttagttttt
                                                                   1440
tttttaggat atttaatatt ttgtgaaatt tagagatttt gttttagtcg gatttagaga aatttagcgg gaaaggagag gttaaaggtt gaatttaatg gtgtaaggtt ttacggttcg gttatttttt gttttgacgt cgcggggtta gcgggagaag aaagttagtg cgtttttggg
                                                                   1500
                                                                   1560
                                                                   1620
cgtaggggtt agtggggttc ggaggtatag gtatttcgcg atattttagg tttttcgatt
                                                                   1680
tacgtttttg gtagtttcga ttatttatag ttttagtaga gtacggggcg ggggtagagg
                                                                   1740
ggttcgttcg ggagggttgt tattttttaa aatttttgcq ggttqtttaq ttataqtttt
                                                                   1800
ttttgtttgg gtgtgttttt cgttcgtttt tttttttcgt tttaggttat tgtttttaat
                                                                   1860
ttcgaataaa aattgtagtt aattttcgag gtagttttat tgtttagcgg attttagttt
                                                                   1920
ttgttaggtt cggttcgtta ttttcgtttc gtttttcgtc ggtttttgtt tcgcgtttag
                                                                   1980
ggatttttta gttttttcg ttcgcgtttt tcgttcgttt cggatattat ggataagttt
                                                                   2040
tggtggtacg tagtttgggg attttgtttc gtgtcgttga gtttggcgta gatcggtgag
                                                                   2100
tgttcgtcgt agtttgggta gtaagatggg tgcggggtgt ttagcgcgga ttcggcggta
                                                                   2160
gttttttcgg ttgagtcggt tttgggggat tggagttaag tgagttgttt gcgaagtgta
                                                                   2220
ttgggtttcg gaaagtaggg ttgggatttg cgttaaatcg ttggagaatg tgtttgtgga
                                                                   2280
agtattattt ggttgaaaga aaaagagaaa gagaagaaag tttgttgggt aggttgtcgg
                                                                   2340
egegtagttt tgggegaggt egttagagtt gtagtatatg gtagaaagta ategttttt
                                                                   2400
cggatgcgta tagtcgttgt ttggattaat aggtttttgt gtttaagggt tcgttaaqtt
                                                                   2460
ttatcgggtt gtgtttaggt agggtagagt tgggcggggt a
                                                                   2501
<210> 369
<211> 2501
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 369
tgtttcgttt agttttgttt tgtttagata tagttcggtg gggtttggcg agtttttggg
                                                                     60
tataggagtt tgttagttta gataacgatt gtgcgtattc gggagaacgg ttatttttg
                                                                    120
ttatgtgttg tagttttagc gatttcgttt aaaattgcgc gtcggtagtt tgtttaataa
                                                                    180
atttttttt tttttttt ttttttaat taaatggtgt ttttatagat atattttta
                                                                    240
acggtttagc gtaaatttta gttttgtttt tcggagttta atgtatttcg tagatagttt
                                                                    300
                                     Page 156
```

```
atttgatttt agttttttag ggtcgattta gtcggagggg ttgtcgtcgg gttcgcgttg
                                                             360
agtatttcgt atttattttg ttgtttaggt tgcggcgggt atttatcgat ttgcgttagg
                                                             420
tttagcggta cgaggtagag tttttaggtt gcgtgttatt aaaatttgtt tatggtgttc
                                                             480
ggagcgaacg gagggcgcgg gcgaaaggag ttggaggatt tttgggcgcg gggtaggggt
                                                             540
cggcggagga cgggacgagg atggcggatc gaatttggta gaggttgggg ttcgttgggt
                                                             600
aatgaggttg tttcggaagt tggttgtagt ttttattcga ggttgaaaat agtgatttaa
                                                             660
qacqqaggga gggagcgagc gaaggatata tttaagtaag gggggttgtg attaaqtaqt
                                                             720
togtagaggt titaagaagt agtagttitt togggogggt tittitgtit togtitogtg
                                                             780
ttttgttgag gttgtaaata atcggggttg ttagggacgt gggtcgggga atttggagtg
                                                             840
tcgcggggtg tttgtgtttt cgagttttat tggtttttgc gtttagagac gtattggttt
                                                             900
ttttttttcg ttggtttcgc ggcgttagga tagaggatga tcgaatcgta aaattttgta
                                                             960
ttattgggtt tagtttttgg tttttttttt ttcgttaaat ttttttgaat tcggttggaq
                                                            1020
taagattttt gggttttata ggatgttgga tattttggga gaggagttgg agagagggg
                                                            1080
aggittigtt tigggiggigg tagtgittic gigittatag tiggggagiga ggggigggga
                                                            1140
1200
tttatatggt ttgaatgaat tttagttttt tggtagaata gtttagggaa agttattgat
                                                            1260
ggtttgttat agggttggta tttggtttag ttaatttatg tgtttaagtt agtgtgaatq
                                                            1320
gqtatttttt tttatatata tgtttattta tttttttaaa tatttttta ttcqtttatt
                                                            1380
tatttattta tttattttt tttatgtttt tttggggttt ttatatttat ttatttttt
                                                            1440
1500
1560
1620
1680
taagattaat atatttattt attattttat ttatttttt atttatttat acgtttattt
                                                            1740
1800
tttttattta gtagatttta aagagaggaa gagtttgtaa tattttttag gggaagtttt
                                                            1860
ttgagattga aatattatat tttgaatgat aattttatat ttattataa tatattatgg
                                                            1920
tttaatgttt ggaaattaaa cgtagtattt atttgttatg tgaattatta aaagtaaatt
                                                            1980
                                                            2040
tgtatggatt ttttgtttgg tgagttatat agaaaatgaa agtgattatt agtggttgtg
2100
2160
gatatgtaat gagtgttgtg gggtatcgag gtaaataaga tttggcgtta tttttagagt ttttatttt tggtacggaa taaaatttat aagtaggtta ttattatgta aggtgaaata
                                                            2220
                                                            2280
tgttgtaaaa tgtgtgtgtt tggggtgtta ttatttttag agaagggagt tatatttttt
                                                            2340
tttggagaat attaggtagt ttttataggg gaagtgatat ttgaggtagg ttttaaagga
                                                            2400
aaaggaggag gaatttttta gatgaaatta tagggataag taagttattt ataggtagta
                                                            2460
tagtgtagtg acgaatagta tggatttagg agttagaata t
                                                            2501
<210> 370
<211> 2501
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 370
agatttattt aaatttaaga atgagaatat aaatttatat tttgaagtgt tttatagaaa
                                                              60
ggtttatttt aatgtttgga gtatatattt taatgaatat ttattttatt ttatttttt
                                                             120
ttatttttga attaagtaat tttgaattta aagttgttat gattagtatt gaaaagatta
                                                             180
ttggattatt aattgtgtga ttttgggata gtaatitttt gtattitagt ttgtttatat
                                                             240
gttatatatg aaggttgaag tttgattttg ttttgtgatt attattttaa atatttgatg
                                                             300
aaattaaatt ttagtgtttg gaatggtagt ataataaatt tattaagaat aaataattta
                                                             360
ttgtaaaaat atattgattt ttaaatgatg taattgatag ttatattatt gtagagggtt
                                                             420
gataaataat aaaagaaatg aaagatgtat atggtgagaa ttgaaattat tttgataagt
                                                             480
tttttatttg tttattattt aaaattaatg attatgttga atgtttataa attataaaat
                                                             540
ataaaagaaa ttttataaat gcgtatgtat aggagtttaa gttattaaaa gttttaaagt
                                                             600
ataagtītaa attaaattaa ttaaagaagt tgagaggaaa aattggtttt tatttttaat
                                                             660
tattattgtt ttgaggtttt atgtttaata taattttta agtagaggtt ttagagagaa
                                                             720
gagttgtgag gatattttta tatttgtgta gaaggaaaag tttgttattt attttagtat
                                                             780
ttttagtgtt atattgatgt gtattttgga tttattttgt ttttattgta taaatttata
                                                             840
```

900

960 tgtgttaatt gtttgatttt tttttttgta aggttttatt ggaaattttt tgtaatataa 1020 1080 aaaaaaatcg tatatacgta tgaaagatta tggttttatt ttcggaaagt atgaaaggtg 1140 attgatattt ttaagaagtt tttgttattt aggaaaatta ttaaatattt tatttagaga tatttggaaa gattgaagga aaggaagaac gaagaaagta gaatttagat ttatgtgggg 1200 1260 agagatttgt ggtagaggaa aagtattttt tttgaattcg ataagggatt tgtttggggg aattttttgt ttagtttttt attattaggg ttttttgaag tcgggttttt tattgggtag 1320 1380 1440 ttttttttagt gtttttttta ggttggtagg agttttgagt ttgatatttt tttttgatgg 1500 gataggtaag ttttgtgggc gcgtaaatac gttgtaatta agttttttgt tgattttata 1560 gttttgtgtg ttttcgagaa gaagtgatcg tatttaattg tttattgttg gtttgtttt taagagtttg ggggtttttt ttttttaatt tagaattagt tgtacggggg gcggggaaat gggggtgggg aaggagtggg agggtagtgg ttttcgcgag tagagcgatg ttattgagtg agtttttgaa tggggagcgt tgttgtttt aagtcgattg gtattttttg ttaggaagaa 1620 1680 1740 acgttaagag gtgggagtgt ttggggaggg aggtaggcgg tttttatcgt aggcgcgggg 1800 agttgttttt tcgtttttc gtttgttttt taagtttgga tttttaggag tggttgaagt 1860 1920 1980 ttgagttttt ttttcggttt tgacggtata gtgatataat gatgatgggt gttataattc 2040 gtatttgaat ttgtaggcga gttgtttcga gtttttttgg ggaagaattt taggcgtgcg gacgtaatag tcgagaatat taggtgttgt ggataggagt tgggattaag attttcggtt 2100 agtttcgtat tttttcgtat tttttagtat cgtttcgtat ttttcgtatt ttttttcggg 2160 ttattacgtt ttttatgtga ttcgtttggg taacgtcgaa tttagtcgcg tagcgttgta 2220 gtgaattitt titttaaatt gtaataagte gittittaag gtaattaegt tittittgit 2280 ttttttttaa aaaataaaaa taaaaaattt atagaaaaaa attcgcgagt ttagaaaaaa 2340 gaagtaattg gtagaaggtt ttaattaagg taaagagttg taaggcgaag ttaagaaaat 2400 gtaggtattt aaaaaatgta ggtaattttt ataagggttt ttggggagag gtatatagag 2460 2501 ggattttggt gttgaaaaag atttagataa aagaaattta g <210> 371 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 371 60 aaagttttta tgaaagttat ttgtattttt taagtgttta tattttttta atttcgtttt 120 180 ttttttttta taagtttttt gtttttgttt tttaaggggg gaataaaaga aacgtgatta 240 ttttggaagg cggtttattg tagtttgggg ggaaaattta ttgtagcgtt gcgcgattgg 300 gttcggcgtt gtttaggcgg gttatatagg aagcgtggtg gttcggggaa ggatgcggag 360 ggtgcgggac ggtgttggaa gatgcgggag gatgcggggt tggtcgaaga ttttggtttt 420 agtttttgtt tataatattt aatgttttcg gttgttgcgt tcgtacgttt ggagtttttt 480 540 tttagaaagg ttcggggtag ttcgtttgta agtttaaatg cgggttgtga tatttattat tattatatta ttgtatcgtt agagtcgagg aggagattta gcgagaagaa ggaggaggga 600 gaggaggagg gtttatttat aggttttaaa agcgtttcgt agttttagtt atttttaaga 660 gtttaggttt ggaaagtagg cggaggggcg gaaaggtagt ttttcgcgtt tgcggtaggg 720 atcqtttqtt ttttttttta ggtattttta ttttttgqcg tttttttttg ataagaaqta 780 ttaatcggtt tggggatagt agcgtttttt atttagggat ttatttagta atatcgtttt 840 gttcgcggaa attattgttt ttttattttt tttttatttt tatttttcg tttttcgtgt 900 agttagtttt gggttagggg aaaggagttt ttaggttttt agggggtagg ttagtaatag 960 ataattgagt acgattattt tttttcggga gtatataaaa ttgtaaaatt agtaaagaat 1020 ttggttatag cgtgtttacg cgtttataga gtttgtttgt tttattaaag ggaagtgtta 1080 ggtttaaggt ttttgttaat ttgaaagaga tattgagaaa acgagatttt tcggggattt 1140 agagggaaag tgtaagaatt ttttattgta tttttaggga attgtttaat ggggagttcg 1200 gittitaaaag attttggtaa taaaaggttg gataggaaat ttttttaggt aaattttttg 1260 toggatttaa agagaatatt tiittitigi tataaattit tiittatata agiitagatt 1320 ttqttttttt cgtttttttt tttttttagt ttttttaagt atttttgagt agaatatttg 1380 ataatttttt tgagtaatag ggattttttg gaagtattaa ttatttttta tgtttttcgg 1440 aaataagatt ataatttttt atgcgtatat gcgatttttt ttttttagtt aggtttattt 1500

Page 158

47675-47.txt tattgtgtaa atagtattaa tatatggaag agttttttgt attgtgttat aaaagatttt 1560 taataggatt ttatagagaa aagggttaaa tagttgatat aaaggatttt tgttttttta 1620 gaaaagaggg attttggatt tttttttttt ttgaagttaa gtatgagttt atataatagg 1680 aataaaataa atttaaggtg tatattagta taatattagg gatattagaa tggatggtaa 1740 1800 ttagaaaatt atattaaata taggatttta aaatagtagt gattaaagat gaaagttaat 1860 tttttttttt aatttttttg attagtttgg tttaaattta tgttttaaaa tttttagtaa 1920 1980 tttagatttt tgtatatgcg tatttataag atttttttta tattttgtaa tttgtaggta tttagtatgg ttattgattt taagtgataa ataggtagaa gatttgttag gataatttta 2040 2100 attgttagtt atattatttg gaaattaatg tgtttttgta gtgaattatt tatttttagt aaatttattg tattattatt ttaaatattg aaatttgatt ttattagatg tttagaatga 2160 2220 tagttataga gtagaattag attttaattt ttatgtataa tatgtaaata aattaaggtg 2280 tagaaagtta ttgttttaaa gttatataat taatagttta gtggtttttt tagtgttaat 2340 tatagtaatt ttagatttaa gattgtttga tttaggaatg gagagaaata aaataaaatg 2400 2460 gatgtggatt tgtattttta tttttaaatt tgagtaaatt t 2501 <210> 372 <211> 3000 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 372 60 atatttaaat tgtatatttg gtttgtaata tattatatat ttaaaagaat tattatttt 120 ttggtttgaa atttaggttt gttatttatt agtaagtttt taaaaatttt gagtttttag 180 240 tatttttttt titagtgtat attaattggt atttttcgtt aggttagaat gtgtttttaa 300 ttatgtttta aattcgtttt gtgttaattt tattgttaga atttttttta ttttgagaat 360 420 gaatatttag taagtgatga gagtagtaac gattgttttt attattttaa atttataata 480 540 tgtaattata agtatttagg gttgatattg tttttgaatt agatagtgtt tatattagtt 600 660 atttagtgaa tatattaaaa ttaaattttt tttgaatggg agtaattttt acggattaat 720 ttgtaatttt ttagattata tttaaggtaa tgtagaggtt gttgtattat aggttttgtg 780 840

ttttattttt tataloggtt taataalgat tatogtagag ttgttatgga agttaaatga 900 atttatgtat tataagtgat taatataatg attgatattt agtgatttat taataaatta 960 aaatatttat tattaatatg atagagaagg tgtcgttaaa atagataata ggtttttgga 1020 agaggtgatt aaatggatgt aaaatttatg gattgtttat ttcgtttatt tttgttgtgt 1080 tttttggttg tggtatatat acgtgtgggt ataaaatcgt aaattttatg tagtcgcgta 1140 1200 gtgtatgcgt agaaggttta gatacgaaat gttattttag taatgtgttt agagaagttt tgacgtcgtt ttggaagtaa gtcgttgttg tttgattttt gggcgtttgg gacggatgtt 1260 tatatttgta tttagtagta ttggaagggg tttaggtttt tcgtagtata gtttattttt agatcgttta gttttttata atatattt ttacggaaaa gggtatttt tttcgttaga 1320 1380 aaaagcgttt tagtttggtt tgggttggtt tttattttac gttgttgtaa gtaggcgaag 1440 ttttttttgt tttttttt ggggtaagtg gaaaggagtt cggtaggggg ttcgtagtgg 1500 tttgtatagg ggaattgggt agcgagagag ttttaggtaa tttcgggggt tgttttatag 1560 aagtaggtgg ggatcgatag tggtttttcg gtttagggag gagagcgcgg tcgcgggttt 1620 ttttttttag tttggaggtt gtagtcgttc gagtcggttc gggtgggggc ggggtggggg 1680 cggcgcggag ggtacggaga ttacggcggc gttattcggg atatttaggg tttcgaggtt 1740 ttgggcggtt tttacgcgag atcgtaaatt atgataatag gtagttattc gaggttaaat 1800 aaaaacggag tgggtttttc gcgcgtcgtc gtttttcgcg tttttggcgg ttttttcga 1860 ggttttegge ggttttacga gttegtagta gteggtggeg acgtegtttt egttttattt ttttgegtaa gtgegaggtt gteggtageg eggegtaegt tteggtegtt tteggtttte 1920 1980 gcgtaaaatt tttatttgt ttacgtgaag ttgtcgttgt tttagagagg gggaaagagt 2040 tgcgggaaaa gtcggggagt gacgattgcg gcggttgggc gcgtttttt attttttt 2100

2160 tttttttttt tttttttgtc gtagttcgga gttttggttt ttttttttt tttttttt 2220 toggagtogg tittitttt ogtitogtit tittitogti tgtgtacgti attigtigtg gggtggtcga aggggatgtt tigtttitat tagaggtata gcgcgaaggg gaaatttcga 2280 tattggaagg aacgagaata aatatttaat tacggacgta ttgaatcgcg gttgggatag 2340 atatttcggg aattcgaggc ggatcgggcg acgaggtgag tgattttttt ttttaatttt 2400 cgttttaggq ttttcqqqqq aqtttqaqtt qagagaattt ttaaattttt cgggaaagtg 2460 2520 cgcgaggttt cgtcggggac gtcgagcgtt gggtattgag gacgcgtagt tggacggtgc 2580 gtgggcgttt gcgttttcgg ggggcgtttg gaggtcgggt gttttacgtt tgagggttcg ggtcgttcgg atcgtagcgg tgttttttgt tttagaagac gtttttaagt tttaagggtt 2640 tttttcgagt ttgtttgttt ttttcggggt cggcgcggag tttgcgcgta acggagttta 2700 tttagtagtt tagcgcgcgg tttttatttg tatttcgttt ttatttggta gaggcgcgag tatcggggtt ttttttatat ttttttatg acgtgtatta ttttttgatg atttttaga 2760 2820 tggtttaggc gcgaggatgt tgatttagag tttttcggag ggttataggc gtttgggttt 2880 tttcggtgtc gggtgcgtgt gtattttaaa ggttcgcgtt ttaattttta ggtattgatc 2940 gggtttttta attgcggcga ttttatttta atagttttta tgtggcgtgg attgaatgtt 3000 <210> 373 <211> 3000 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 373 gatatttagt ttacgttata taaaaattat taaagtggga tcgtcgtagt tgaaaagttc 60 gattagtgtt tggagattag aacgcgagtt tttaaagtat atacgtattc ggtatcggga 120 180 aagtttaggc gtttgtgatt tttcgaagga ttttgggtta gtattttcgc gtttggatta tttagggggt tattagaaag taatatacgt tataagaaag atgtggggga gatttcgatg 240 ttcgcgtttt tgttaggtgg aggcggggtg taggtagaag tcgcgcgttg gattgttgga 300 tgaatttegt taegegtagg tttegegteg attteggaag ggataggtag gtteggaagg 360 gatttttggg gtttggggac gttttttagg gtagagagta tcgttgcggt tcgagcggtt cgggttttta ggcgtgggt attcggtttt taagcgtttt tcggggacgt aggcgtttac 420 480 gtatcgttta gttgcgcgtt tttagtattt agcgttcggc gttttcggcg gagtttcgcg 540 tattttttcg gaaagtttgg gggttttttt aatttaggtt ttttcgggag ttttggggcg 600 ggggttggaa gaaggggtta tttatttcgt cgttcggttc gtttcgggtt ttcgaagtgt 660 ttgttttagt cgcggtttag tgcgttcgta attaagtatt tattttcgtt ttttttagtg 720 tcgaagtttt tttttcgcgt tgtgtttttg gtgaaaatag gatatttttt tcggttattt 780 tataataaat agcgtatata agcgggggag aagcggggcg gagggagaag tcggtttcga 840 gggggaggag gaaaggagag gagttaaaat ttcggattgc gatagggggg aaaggagaag 900 aaaagaaaat gagagagcgc gtttagtcgt cgtagtcgtt atttttcggt ttttttcgta 960 gttttttttt tttttttaag gtagcgataa ttttacgtgg ataggatgga agttttgcgc 1020 1080 ggaagteggg aaeggtegga gegtgegteg egttgteggt agtttegtat ttgegtaggg aggtggggcg ggggcgacgt cgttatcggt tattgcgggt tcgtgaggtc gtcgggggtt 1140 tcgggggagg tcgttaggga cgcggggggc ggcggcgc gggggattta tttcgttttt 1200 atttgatttc gggtgattgt ttattgttat ggtttgcgat ttcgcgtggg gatcgtttag 1260 ggtttcgggg ttttggatgt ttcgggtggc gtcgtcgtaa ttttcgtgtt tttcgcgtcg 1320 titttatitc gtttttattc gggtcgattc gagcggttgt agtttttagg ttgaggggag 1380 ggattegega tegegttttt ttttttgggt eggagagtta ttgtegattt ttatttgttt 1440 ttgtggggta gttttcggaa ttgtttggaa ttttttcgtt atttagtttt tttqtqtaqq 1500 ttattgcggg ttttttgtcg gatttttttt tatttatttt aagggaggag atagaaggga 1560 tttcgtttat ttgtaataac gtgaaataaa aattaattta gattagattg gggcgttttt 1620 tttgacggga ggaaatattt tttttcgtgg agatatatgt tatgaaggat taagcggttt 1680 ggggataggt tgtgttgcga agggtttggg ttttttttag tgttgttggg tgtaggtata 1740 ggtattcgtt ttagacgttt aaaggttagg tagtaacgat ttatttttaa ggcggcgtta 1800 gagttttttt aggtatattg ttgaaatgat atttcgtgtt taagtttttt gcgtatgtat 1860 tacgcgatta tataggattt acgattttat atttatacgt gtgtatgtta taattagggg 1920 atatagtaaa ggtagacgga ataaataatt tataaatttt gtatttattt aattattttt 1980 tttaaaaatt tattgtttat tttagcggta ttttttttgt tatattgata ataaatgttt 2040 2100 ttatttaatt tttatgataa ttttacggtg gttattatta agtcggtata aaagatgagg 2160 aaattaaagt ttaaagaatt atgagtgatt tttttaaaga taaatttagt ggtttttaat 2220 Page 160

47675-47.txt 2280 tataaagttt atgatataat aatttttata ttattttagg tgtggtttaa gagattatag attaattogt agaaattatt tttatttaaa gaaagtttag tittaatata tttattaagt 2340 2400 tacgttttga aaaaggttta gaaaaaagat tttatttttt attttaggtt ggttttatgt aattgatatg agtattgttt aatttaaaag tagtattaat tttgaatatt tatggttata 2460 atttattttt taatgagtgg ggaattattt ataatgttta agaggtttta gaaaaggtgg 2520 tqttqtaaat ttaaaatqat aaaqqtaqtc qttqttqttt ttattattta ttqqqtqttt 2580 2640 2700 gtttttaagg tagaaagggt tttggtagtg gggttggtat aaagcggatt tggagtatgg ttgagagtat attttggttt aacgaggaat gttagttaat atatattgga gagaaaaata 2760 tgaatggata gatttaatta attttgtaga tttatttttt ttattttata tgtgagaaaa 2820 ttaagggttt agaattttta gaagtttgtt aataaatggt agatttgagt tttaagttag 2880 tttttattta agtttatttt tagttattgt gatgttatta ttagtattaa tggtatttag 2940 aaaaatagta attttttaa atatgtaata tattataagt taaatatgta atttaaatgt 3000 <210> 374 <211> 2501 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 374 gttattttta tgtgttttgt agttttttga aggggcgtgg gatttatcga tgttaattat 60 ttagtattat ttttagattt taagaagttg gggtgtgagt tagtaattag tatagaaaag 120

180 tttttttttt ttttttgaga tagagtttcg tttttattgt ttaagttgga gtgtagtggt 240 300 acgatttcgg tttatcgtaa ttttttttt tcgggtttaa gcgatttttt tttttagtt ttttgagtag ttgggattat agatatgtat ttgtaatttt tattaaaaat ataaaaatta 360 gtcgggcgtg gtggcgtacg titgtaattt tagttattgg ggaggttgag gtaggagaat 420 cgtttgaaat taggaggcgg agattgtatt aagatagttt gttttagtta aataatttgg 480 cgttagtgta ggaaaaggtg gaaggtacgg ggttagtata ggagggttta atatttttaa 540 tittattaag tiatatitti gtaattittig tittttacga gaagtittcg tigggtitgt 600 tttagcgttg ttttgaggtt ttttttatga gtttcgatag ggtagaggtc gttttgagcg 660 tttttttttt ttttggttta agagtggttt aaaagaagga tttttgattg gaattggtta 720 ttttgtgtta ttttttgatt tttgatttcg ttttaaaggg ggatgcgggg gaggggtttt 780 840 ggtaggggtg gtttcgtttt ttttaggttc gtaagtttag gttttcgttt atcgggttta gtttattttg cggtcgttta gggaggtcgt tggtattcgt gatttacgat tttttttcg 900 agttttatcg aggttatagt cgtggtttcg tttttttatg tttgtttttc gttttttgtt 960 cgtgacgggc gttttcgagg attaatgagc gcgttgtatt tatttttcgg gcggggttaa 1020 gcgtcgatta atcgtcgttc gggcgttcgg tcgggtttaa acgttttaat cgttagcggc 1080 ggcggggcgg gtagagggtc ggggatggta ggtttaatta acgggtgggt acgtcgtttt 1140 cgcgaggagg cgtgttttgc ggtcgggcgt gcggtgttcg cggcggcgta gggagggga 1200 1260 gggaggtaaa taagatggcg gcggcgtgtc gggcgcggaa gggggaggcg gttcggggcg ttcgcgagtg aggcgcgggg cggcgaaggg agcgcgggtg gcggtatttg ttgtcgcggt 1320 tttggatggg ttgggttttt ttcgtcgttt cgtttttttt atacgcgcgg cggtcgcggc 1380 gagggggacg cgtcgttcgg ggttcggtat tttcgggaat ttttcggttc ggagtttgcg 1440 gtttgcgtcg tttcggtcgt cgggagtttc gtggagtttt cgtcgtcgcg tcgtttcgcg 1500 gatcggacgt tgagggtatt cggggcgggg cgcgcgttcg ggtagacgtt tgcggggagg ggggcgtttg tcgggtttcg gcgattattt tgggggtcgc gggtcggttc ggggggcgtt 1560 1620 tagtgcgggt tttcgcgggc gtcgggtagc gattagtttt gagcggagtt gttggtcgcg 1680 gegggaggtt ttteggacgt ttttagtttt tegaacgtte gttegggteg gegggagteg 1740 gcgtttttcg ggaggttcgt tcggtcgttc gcggcggagc gtttgttttt gggataggcg 1800 gtgggatcgg ggcgtcgtcg gagacgtttt tagcgaagtt gggtttttta ggtgtgggg 1860 tttcgggggg tagcgacgtc gcggattcgg tttgtgggat gggcggttcg gagaagattg 1920 1980 cgttcggtcg tgtttatatt tgttcgtggg tttgaggttt tcggaggatg atttagtatt gaaaagtttc ggtcggtttt tttagggttt tcgaggacga agttgatttt gatcgggtcg 2040 ttttttagtt ttgaggttcg ggttttattg gaattcgcgt ttgagtcgtc gtttcggatt ttcggtgttc gtcggttcgt agattttgta tcgggtttgg attcgtagtc gggattgacg 2100 2160 tgtagaataa tcgtttttgt tggaagaagg gttttttttt tttttttggg gtttttgttg 2220 ttttttttt ttttttt tttgtaaaat tttggagaag ggaagtcgga atataaggaa 2280 ggatcgttta ttcgcggatt tagggttggc ggcgggattt taggattttg ggtttagtat 2340

```
2400
ggaggtggtg gattcgtagt agttgggtat gtttacggag ggcgagttga tgtcggtggg
tatggatacg tttatttatc gtatcgattt tatcgaggtt atttattagt cgcgtcgtaa
                                                                        2460
                                                                        2501
gcgggttaag tttatcggta agtatttgat gggggatttg t
<210> 375
<211> 2501
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 375
                                                                         60
gtaggttttt tattaggtat ttgtcgatga gtttggttcg tttgcggcgc ggttggtaga
tgattteggt ggagtegatg eggtggatga aegtgtttat atttategat attagttegt
                                                                        120
ttttcgtgaa tatgtttagt tgttgcgggt ttattatttt tatgttggat ttagggtttt
                                                                        180
ggagtttcgt cgttagtttt gagttcgcgg gtgagcggtt tttttttgtg tttcgatttt
                                                                        240
                                                                        300
aagggaaaaa ttttttttt aatagaaacg attgttttat acgttagttt cggttgcgag
                                                                        360
tttaagttcg gtgtagggtt tgcggatcgg cgggtatcgg gggttcggga cggcggttta
                                                                        420
gacgcgagtt ttagtgggat tcgggtttta gaattgggag acggttcggt tagggttaat
                                                                        480
ttcgttttcg gggattttgg ggaggtcggt cggggttttt tagtgttagg ttattttcg gggattttag gtttacggat aagtatgaat acggtcgagc gtagttttt tcgggtcgtt
                                                                        540
                                                                        600
tattttatag gtcgggttcg cgacgtcgtt atttttcggg atttttatat ttggagagtt
                                                                        660
taatttegti gggggegtti teggegaegt tteggttita tegtttgttt taggagtaaa
                                                                        720
cgtttcgtcg cggacgatcg agcggatttt tcggggggcg tcgattttcg tcggttcggg
                                                                        780
cgagcgttcg gggggttggg ggcgttcggg aggtttttcg tcgcggttaa tagtttcgtt
                                                                        840
                                                                        900
tagggttggt cgttgttcgg cgttcgcgag ggttcgtatt gggcgttttt cgagtcggtt
cgcgattttt aaggtggtcg tcggggttcg gtaggcgttt tttttttcgt aaacgtttgt
                                                                        960
tegagegege gtttegttte gagtgttttt agegtteggt tegeggggeg gegeggege
                                                                       1020
gggggtttta cggggttttc ggcggtcgag gcggcgtagg tcgtaggttt cgggtcgggg
ggttttcgaa ggtgtcgggt ttcgggcggc gcgtttttt cgtcgcggtc gtcgcgcgtg
                                                                       1080
                                                                       1140
tggaggaggc ggagcggcga ggggggttta gttatttaa ggtcgcggta gtaagtgtcg
                                                                       1200
ttattcgcgt ttttttcgtc gtttcgcgtt ttattcgcgg gcgtttcggg tcgtttttt
                                                                       1260
ttttcgcgtt cgatacgtcg tcgttatttt gtttattttt tttttttt ttgcqtcqtc
                                                                       1320
geggatateg taegtteggt egtagggtae gttttttege gaggaegaeg tgtttatteg
                                                                       1380
1440
tttggattcg gtcgggcgtt cgagcggcga ttggtcggcg tttggtttcg ttcgaggggt
                                                                       1500
ggatatagcg cgtttattgg ttttcggaga cgttcgttac gggtaggggg cgggaagtag
                                                                       1560
gtatggggag acgaggttac ggttgtgatt tcggtggggt tcgggaaggg ggtcgtaggt
tacgggtgtt aacggttttt ttgaacggtc gtagggtggg ttgagttcgg tgggcgggaa
                                                                       1620
                                                                       1680
tttgggtttg cggatttgga aggagcgggg ttatttttat tagagtttit ttttcgtatt
                                                                       1740
tttttttggg gcgaggttaa gggttaaaaa gtaatataaa gtggttaatt ttagttaaaa
                                                                       1800
attttttttt tgagttattt ttggattagg ggaaagagaa acgtttaggg cggtttttgt
                                                                       1860
tttatcggaa tttatggggg aagttttagg atagcgttgg gataagttta gcqqqqqttt
                                                                       1920
ttcgtgaaaa ataagagttg ttaaaatatg gtttgataag gttgaaaata ttgaattttt
                                                                       1980
ttgigitagt ttcgtgtttt ttatttttt ttgtattagc gttaggttgt ttagttggaa
                                                                       2040
taaattattt tggtataatt ttcgtttttt ggttttaagc gatttttttg ttttagtttt
                                                                       2100
tttagtagtt gagattatag gcgtgcgtta ttacgttcgg ttaatttttg tatttttagt agaaattata ggtgtatgtt tgtaatttta gttatttaga aggttgaggg aggagaatcg
                                                                       2160
                                                                       2220
tttgaattcg ggaggaggag gttgcggtga gtcgagatcg tgttattgta ttttagtttg
                                                                       2280
ggtaataaga gcgaaatttt gttttaaaaa aaaaaaaaag attttttta gaaaattgaa
                                                                       2340
2400
ggtttatatt ttaatttttt ggaatttgga gataatgttg gataattggt atcggtaggt
                                                                       2460
tttacgtttt tttagagaat tgtaggatat atggaagtga t
                                                                       2501
<210> 376
<211> 2501
<212> DNA
<213> Artificial Sequence
```

<223> chemically treated genomic DNA (Homo sapiens)

<400> 376

ggaggataga	aatataaatt	aaagaatgat	ataaataatt	ataaagttat	agttgttaaa	60
		gagaacgtgt				120
		ttatgattta				180
agaaaaaaag	gttagaggaa	ggaagtttat	attggggaag	gttttaagta	taaagggtag	240
gaggattata	gaggtatatt	tacgaaattt	ggagaaggtt	tttagtaagt	aaggagaagt	300
		agttggaggt				360
ttttttttt	attttaagag	tagtgggaag	ttattaaatg	attttaatta	gagggttggt	420
ataattagtt	ttgtattttg	aaaagttgaa	tttagttttc	gtttgagaaa	ttgagtgaaa	480
		tgagggtgat				540
		aagagggaat				600
tattgataaa	gttattttag	ttttggtaag	gtaattaatt	ggtgggaaag	aagatgttta	660
gtttttttga	ttttattgta	ttttttgtat	ttttaatatg	agtattggga	agtggtaaaa	720
		gttaggtgga				780
		aaagatttgg				840
ttattttttg	gagattttgg	tataaatttt	tgtttttgta	atttttttt	taggtaaagg	900
aatttattaa	atgaattgtt	agaagattta	ttgattagag	ggttgtatag	aattatattt	960
		gattatatag				1020
agaaaggggg	ttttattaat	atttaaatta	taaaatatgt	atattaggaa	tgttttgggt	1080
		gaaaggaaat				1140
		gggtaagtat				1200
		tttttaattt				1260
		ttttttatta				1320
		cgggaagagg				1380
		tttgtttgtt				1440
		gattaatatg				1500
		tttataattt				1560
		tttaatgaag				1620
		aatagattgg				1680
		tatttaggag				1740
		aaaacgtgga				1800
		aaatatttgg				1860
		tcggttaaag				1920
		aggggttgga				1980
		gttggcgagg				2040
		cgcgtacgga				2100
		gtgtagtttt				2160
gtcggttttt	aggtttttt	ttggttggcg	agcgggcgtt	atatttggtt	cgtatatttg	2220
cgttgtcggt	tcggcgcggg	gttcggagag	ggcgcggcgc	ggaggcgtag	ttaggggttc	2280
		gttgggggtt				2340
		gtttgtggtc				2400
		tttagaagtc			gggttcggcg	2460
		gggttttcgt				2501
<210> 377						

```
<210> 377
<211> 2501
```

<212> DNA <213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 377

attatttatt cga cgatgtgtag cgg gttatagatc gag cgcgtcgcgt ttt	ggggatt ttaggaagat tttttga acgtgcggtg ttatagg tttttgagta tttttag cgtagcggac tttcgga tttcgcgtcg ttagtta ggagggggtt	ggatcgtgtt gttttcgatt ggcgtttttt ggtcggtagc	ggcgatacgc tatggtagat cggatttttg gtagatgtgc	gtttatagga ttcgttgttc gttgcgtttt gggttagatg	60 120 180 240 300 360
Page 163					

420 ggcggtcgag ggaagttgta taggagttcg gtttttgttt cgagcgggtg tacgcgcggg ggtgtcgtcg tttcgtgcgc gcgagtgatt tatttaattt taatttagcg ttgcgggga 480 aataggaaat ttttcgttaa tagttgggta ggattttttt tcgttcgaga gtttttttt 540 ttttttcgac gtttagtttt tagtttttc gtagttgtta attatgtttt ttagattagt 600 tttttcgaga gttttggtcg atttttagtt gttttttatc gtttttttat attatttagg 660 agtttttcgt tttaagtatt tatttaagaa tgattaagtg tatatagttt ataaagtaat 720 780 aataqaaaac qtttacqttt tttttaqtaq attaqaatat ttgtcgtttt tttttagttt 840 tttttagatt gtttttaggt gttttagaga tgcgttttta aattgtaagt tgagatttag gagtgaatat tttaatttat tgagtcgcga gtatattttt tttttaaata aaatagtaac 900 960 tatatattgt taagttgtaa aatgtttttt tttaggtcga agtttagagg ttttttttaa 1020 1080 taggtttagg aggtaggtag agattttgta tttttaatga gtatttggat agagcgtttt 1140 attitgtatc gittititic gggattgagt tagtgagtaa itgiaaatga itattiatta 1200 cgaagtgata gtggtgggaa atgtaatttt tagaatgtat agagtatagt agaaattgta 1260 aaattaaaag tgggttggga gttatttgaa tgtttgtgtt tttatttttt taatgtaggt 1320 gaagaaagag aatatttatt tttttatgtg taaacggggt aatatgggag tagaatagta 1380 1440 taaattttta aattttttt tttgttaggg taattagatt tgtttaagat atttttggtg 1500 tggataataa attatgtgat taatttattt tttatttta aagatatgat tttgtatagt 1560 tttttggtta gtagattttt tagtaattta tttaatgaat ttttttattt gagaggaaga 1620 1680 aaatttaatt tttaaatttt ttttgttatt ttaagtgttt atttgtttta ttttggaatt 1740 ttaatttatg ttttatttag tatttaagtt gtttttggat gttttgttat tttttagtat 1800 ttatgttgaa gatgtagaaa gtgtagtgaa attaggaggg ttaggtattt tttttttat 1860 taattaattg ttttgttaaa gttggagtga ttttgttaat ggaggaagat tgagttttaa 1920 attittitt tattittit titgttatta gittatgtta litgttatggt tigtgtagga 1980 2040 gttttttacg agttattttt agttacggtc gttttgggtt tttttattta gttttttaaa cgagagttga atttagtttt ttaaaatata aaattagtta tattaatttt ttgattaaaa 2100 ttatttaatg gtttttatt gtttttgaga taaagagaag ataaaaatta gatttttgaa cgtgttttta agtttttaat tttttcgtaa atttttattt ggttttttt tgtttattga 2160 2220 aagttttttt taaatttcgt gaatatgttt ttgtaatttt tttatttttt atgtttagag 2280 ttittttag tgtggattit ittttitga ttitttttt tttatttagt taattttgg 2340 ttttcgtgga ttgaattata atttttttga tgggtaagtt ttttttatt tttatgagta 2400 qattttqtat tatacqtttt tttqqtatta tatqtttttt ttttaataqt tqtaatttta 2460 taattatttg tgttattttt taatttatat ttttatttt t 2501 <210> 378 <211> 1508 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 378 attttataat tataaatatt tagtgtattt tgtaaatatg gtataatttg ttggtataaa 60 attttattgt tttagaaaat atcggtaata aaattataga aaagttaaaq atttttattt 120 tttatttcga agcgtttggg agatatttta gaaacggatg ggaaatgtta aattttgtat 180 gtttgtttat tttttttt atatcgatta gatgtaaacg agtgttatta aaagtatatt 240 ataggtattt atatagattt tttttataag ggatttataa agtttagatg tgaaatgtat 300 tttaaagggt ttttagtcgt tttttatttt tttttttgtg aaatagggaa gatatatgtg 360 tttttaaggg tagagatgga atttgggtta atgggtcggg gggtgggggg aagttggaag 420 ggattgtttt aggatatggt aggatagtgg attgtttttg tcgttttgtt gtttatatcg 480 gggttttttg taggcgcgtc ggtttttttt ttttttgttg agaagaagtt ttgttaaaat 540 attogttttt ttogggaatt tittogtggg tttaaagogg gaaaatgitg ttttaggttt 600 aaaataattt gtttaagttt tttagcgcgg gagaaacgtt tttattcgtt ttttgttttc 660 gggggtgttt ttcgtttttt gttgttagaa ttttggggag tgtttagatt cggggtagta 720 tacgttcggg ttaatcgcga gtagaataaa tttttggtgg gcggttagga agttttttt 780 840 ttaqtttttt taaagtatag tttaaggaaa tttttttata gtttttattt agttacgggt 900 tagtatgttt gggggtaaat acgtagattc ggaggtaggt attcgtgggg gggcgtcggt 960 Page 164

```
47675-47.txt
tegggegtge ggggaagtgt tegtttttgt tatttgtttt tttaaatatt tegattgttg
                                                                   1020
                                                                   1080
atttggtttt ttagtttttt ttttatttcg gagtattttt ttggcgttgg tatcgttgaa
                                                                   1140
gaatgggttt gggcggggag gtgaagagaa gttaggaatg ttttatgttt ttttaatgga
gagggggttt cgggagtttt tgagttagga ggatacggaa aaggggattg gggttttgag
                                                                   1200
attgggtttg ttgggtttaa gacgcgtttt ttggatgggt ttaggatgtt tttttgtcgc
                                                                   1260
gggaatttcg cggttcggtt ttgtttgttg ggggttcgaa aaagtggatt gtagggtgga
                                                                   1320
                                                                   1380
aggtgttatt tattcgagtt ttggggatag ttttcgggat ttttcgttaa gcgtttaaaa
                                                                  1440
cggtaggttt ttaagcggcg cgcggtgttt ttgtattttt taaaattttt gaaatatttt
1500
taaatqta
                                                                   1508
<210> 379
<211> 1508
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 379
                                                                     60
tgtatttggg agggaggttt attttttttg gaaaattttg ttagacgtta agatgtagaa
                                                                    120
ggatttttga gatgttttaa gaattttgga aagtgtaaaa atatcgcgcg tcgtttgggg
atttgtcgtt ttgggcgttt ggcggagagt ttcggggatt gtttttagga ttcgggtaaa
                                                                    180
taatattitt taititigtaa titattittt cgaattitta gtaggtaggg tcggatcgcg
                                                                    240
                                                                    300
gggttttcgc gataggggag tattttagat ttatttagaa aacgcgtttt gggtttaata
gatttaattt taggatttta atttttttt tcgtgttttt ttagtttagg ggttttcgag
                                                                    360
gtttttttt tattaggaaa atataaaata tttttggttt ttttttattt tttcgtttag
                                                                    420
                                                                    480
gtttattttt tagcggtgtt aacgttagag gagtgtttcg aagtggaaag agggttgggg
ggttagatta gtagtcggga tatttggaga ggtagatagt agaagcggat atttttcgt
                                                                    540
acgttcgagt cggcgttttt ttacggatgt ttattttcga gtttacgtat ttgtttttag
                                                                    600
atatgttggt tcgtggttgg atgaaaattg tgaggaggtt tttttgggtt gtgttttaag
                                                                    660
ggaattgagg aaggaagatt ttgtattgta tggggggaaa aaaaggtatt ggagggggc
                                                                    720
ggtggttggg agggagtttt ttggtcgttt attaaaggtt tgttttgttc gcggttggtt
                                                                    780
cggacgtgtg ttgtttcggg tttaggtatt ttttaaggtt ttggtagtag agggcgggga
                                                                    840
gtattttcgg gggtagagag cgagtaagaa cgtttttttc gcgttggggg gtttggatag
                                                                    900
attattttaa atttgaggta atattttttc gttttgaatt tacgggggg ttttcggggg
                                                                    960
aggcggatgt tttggtaggg tttttttta gtaggggggg agggagtcga cgcgtttgta
                                                                   1020
qaqaqtttcg qtatgggtaa taaggcggta gaaataattt attattttgt tatgttttaa
                                                                   1080
ggtagttttt tttaattttt ttttattttt cggtttattg gtttaagttt tatttttgtt
                                                                   1140
1200
tttitagggt atattitata tttaaatttt gtggatttit tatggaagga atttgtgg
                                                                  1260
gtgtttgtgg tgtatttttg gtgatattcg tttatattta gtcggtgtgg aaagaaaaat
                                                                   1320
aagtaggtat gtagaattta atatttttta ttcgtttttg aaatgttttt taaacgtttc
                                                                   1380
qaaataaqaa atgaagattt ttaatttttt tataatttta ttatcgatat tttttgqaat
                                                                  1440
aatggaattt tatgttaata ggttatgtta tatttgtaaa atatattaaa tgtttataat
                                                                   1500
tgtagaat
                                                                   1508
<210> 380
<211> 286
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 380
tttgtattag gttggaagtg gtcgttagtt tttcgtgtaa ttttattttt tggaaaagtg
                                                                     60
gaattagttg gtattgttta gcgtgatttg tgaggttgag ttttaatagt ttaaagaagt
                                                                    120
aaatgggatg ttattttcgc ggggttcgtt tttcgcgagg tgtttatttc gtatttgtta
                                                                    180
tqtaaaacqa qqqaqcqtta qqaaqqaatt cqttttqtaa aqttattqqt tttqqttatt
                                                                    240
agtttttatt taatgttttc gtgatgttgt tgttgattta tttggg
                                                                    286
```

```
<210> 381
<211> 286
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 381
tttaaataga ttagtagtag tattacgaaa gtattgggta gaggttgatg attaggatta
                                                             60
atggttttat aagacggatt ttttttaac gttttttcgt tttgtatggt agatacgggg
                                                             120
tgagtatttc gcgaggagcg agtttcgcgg aggtggtatt ttatttgttt ttttggattg
                                                             180
ttggggttta gttttataaa ttacgttggg taatgttagt tgattttatt tttttagaga
                                                             240
286
<210> 382
<211> 2501
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 382
tttatatata ttatgttttt taaatgatat attagttttt tgagggtaat ttatattggt
                                                             60
aatagttttt agatgtggaa attgtgaaga taatgttggt gatgtggaag taatataaat
                                                             120
180
240
ttittgttta ttgtttattt agtgattttt gtattttttt ttattgttag tgtgtagata
                                                             300
tatagttttt ttggttttga gatttatgtt aattttattt tattattttg ttagtttatt
                                                             360
taatttttat tgagtaatgt tagttgaaag ttgtggtggg attaaatgtt gtaatgagta
                                                             420
tttaaatgag gttgaagtat ttacgtattt tatttatata tggtgaggta tatttaagga
                                                             480
aggttgtagt tattaaaatt ttaggaaata attttttatt tttttaggtg aaagggtttt
                                                             540
taggtttttg tgttttggaa ggtttattta tagttatttt ttaaatgata atgcgattga
                                                             600
tgagtttaga gtttagttta aatagtaatg gattggaaga ttagtttagg ttttattaat
                                                             660
gtggaatata gaataaatta tgtttttgtt ttagtttgtt tatttgtgaa atagagttta
                                                             720
780
tgtttatgat gtttggttgt gtataagata aagttataat aaagttataa tttattttt
                                                             840
ttttgtagaa gattgtaaaa agtaaaagag atttaggtaa aaatttcgga atgatttttg
                                                             900
gaatagagag tttttttaga attagaagtt aaaggaattt aaaatatagg gaggtttagg
                                                            960
gtttttattg atataaagga aagatgtttt ttttataggt ttacgtttat atttttttt
                                                            1020
tttttttatt tttatttgta tttttatttt tatatagggt ttatgggatt ttttttataa
                                                            1080
aagagtagtt gtagtaattt atattatttt ttacgtttgg ttgtttatta agaggcqaaa
                                                            1140
agtagtttta tataggtttt atttttggat agttttagtt gtaaagttta aaatatgcga
                                                            1200
aggtaatttg gaaaagtaag cggttgtata taaagtaaac gtttatagag ttttggataa
                                                            1260
1320
ttgggtgatt ttgtttttga gagtttggat gagaaatgta tggttaaagg taattttaga
                                                            1380
taggaagaaa ggtagagaag agggtagaaa tgatttttga tttttgggggt tgagggtttt
                                                            1440
tagagtaaat ggtataatgt tacgaggttc gatttatttt tatgacggaa tttaaqqttt
                                                            1500
tagtaagtat tigtiggtit ggttatggtt tgttttttag titgtaggag attttttat
                                                            1560
ttttttattt gcgcgttttt attagttttg aaaagaattt ttggtagtta ggagtaggta
                                                            1620
tttttatcgt tttttttttt tttttttcgt ttttattttg ttggtttttt agattgggtt
                                                            1680
ttggaattaa atttggtgag tgttggtttt taggaaattt ggagttttgg cgtttaaatt
                                                            1740
1800
ttttttgttt tegtttaegt tgegttagta tttgtttttt taaagttatt aggtaggegt
                                                            1860
tagcgcgcgg tgaggggagg ggagaaaagg aaaggggagg ggagggaaaa ggaggtggga
                                                            1920
1980
                                                            2040
ttcggagtaa gtttagaggt agaggaggcg atagagggaa aaagggtcga gttagtcgtt
                                                            2100
ttagtgttgt ataggagtcg aagggacgta ttacgttagt tttagttcgg ttttagcgat
                                                            2160
```

agttaacgtt ttttgtagcg cggcggtttc gaagtcgtcg ttcggagttg ttttttttt 2220 2280 ttcggtgaag tttttaaaag ttgttaaaga ttcggaggaa gtaaggaaag tgtttggtag gattgacggt tgtttttgtt ttttttttt ttatttegtt ttttttttt 2340 tttttttttt gtttttttt togtagttgt tttagtoggt tatttttagt taattttttt 2400 2460 tattattttt ttttttattc gttttttcgt tttcgtcggt ttagcgttgt tagttcgagt ttgtagagag gtaatttttt ttggttgcga gcgggcgagt t 2501 <210> 383 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 383 agttcgttcg ttcgtagtta aagggagtta tttttttgta aattcgggtt ggtagcgttg 60 ggtcgacggg ggcggggggg cgggtgggga gaagggtggt gaggggggtt ggttgagagt 120 180 agtcgattga ggtagttgcg ggagagaaga cgggggaggg ggggaaggta gggtgggggg aggcggggtg gagaggagga ggataaaggt agtcgttagt tttattaggt attttttttg 240 300 tttttttcga gtttttagta gtttttaaaa attttatcga agaggaaagg gtagtttcgg geggeggttt egaagtegte gegttgtaag aggegttggt tgtegttgga gtegggttgg 360 ggttggcgtg gtgcgttttt tcggtttttg tatagtattg gagcggttag ttcggttttt 420 tttttttttg tcgttttttt tgtttttggg tttgtttcgg atcgtttcgt ttttttagta 480 agttggtttt tcgggatttc ggagggggcg ttgggaggtg gagagtaaat gtaatagttt 540 gcgagtcggg tttcgttttt atcgggtcgg tttttttgtt tttttatttt tttttttt 600 ttttttttt tttttttt tttttttt atcgcgcgtt aacgtttgtt tagtggtttt 660 ggagaaataa gtgttggcgt agcgtgggcg agggtaggag aggttagttt tagttttgga 720 ggatttttgt tttttgaata gtttttgttt ttttaaatta aggtttaggc gttagggttt 780 tagatttttt ggaggttagt atttattaaa tttggtttta aagtttaatt taaaaaatta 840 atagggtgga ggcgagggag ggaggaaaag gacgatagga atatttgttt ttggttgtta 900 ggggtttttt ttaggattga taagagcgcg tagatgggag agtgggagag ttttttataa 960 attgaggagt aagttatgat taagttagta gatatttgtt gaaattttag atttcgttat 1020 agggatagat cgggtttcgt ggtattgtgt tatttgtttt aggaattttt agttttaaga 1080 attagaggtt attittattt tittittigt tittittitt gittggaatt gittitaatt 1140 atgtattttt tatttagatt tttaaaggta aaattattta gataagtagg taaatatata 1200 aatattaaaa atatttgtta tgtatatata ggcgtttaat tttgtttaga gttttgtaaa 1260 cgtttgtttt gtatgtagtc gtttgttttt ttaagttgtt ttcgtatatt ttaaatttta 1320 taattggaat tatttaagga tagaatttat atagggttgt ttttcgtttt ttgatggata 1380 gttaggcgta gaggatgatg tgggttattg taattgtttt tttgtggagg aggttttata 1440 agttttgtgt aaaggtggag atgtaagtgg gaatggaaag agagagaaaa tgtaaacgta 1500 aatttataag gaaaatattt tttttttatg ttagtagaga ttttgggttt ttttatgttt 1560 taaatttttt tgatttttga ttttggggag gttttttgtt ttaaaagtta tttcgagatt 1620 tttgtttggg ttttttttgt tttttgtagt tttttataga gaaaagatgg gttgtagttt 1680 1740 gaaggtaatt taaatttaaa ggtaaggaag attggatatg ataggtttta ttttatagat 1800 gaataggttg aaataaggat ataatttgtt ttatgttta tattagtaaa atttaaatta 1860 gttttttagt ttattgttat ttgagttaga ttttagattt attaatcgta ttgttatttg 1920 ggaaatggtt ataaatgaat tttttagaat ataaaggttt gaagattttt ttatttgagg 1980 aggtgaaaaa ttattttttg agattttaat ggttatagtt ttttttgaat atattttatt 2040 atatgtaagt agaatgcgta gatattttaa tittattiga atatttattg taatatttaa 2100 ttttattata atttttaatt agtattgttt aataggaatt gagtgggttg gtaggatggt 2160 agaatggaat taatataggt titagagtta ggagaattat gtgtttatat attaatagtg 2220 aaggaaggtg taaaaattat tgaatgaata atggatagga gtgaagagga tatatagata 2280 taaagaggtt tgaaaaaaaa ttaaggtgag aaataatgtt ttgaagttat tttgaataaa 2340 aagtagtitg atatttaaat tigggtitga aagattitaa agtitatgit giittiatat 2400 tattaatatt gtttttatag tttttatatt tgaaaattgt tgttaatata agttattttt 2460 agaaggttag tgtgttattt aaaagatata atgtgtatag a 2501 <210> 384 <211> 2448

47675-47.txt

<212> DNA

```
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 384
                                                                        60
ttgttttgtt tttacgataa aagttaacgg gtttttagta tttttattaa aaaatagtta
                                                                       120
cgtagatagt gttttggtgg ttttgtttcg tattttaatt ttggggtggg ggaaaggggt
taacgttttc gtagttttaa atcgggttat tatttgttta tcgagtcgaa tatgatgcgg
                                                                       180
ttttgttcgg cgcgttttcg ttggttttgc gttcgcgtta ttttagtagg gttcgtagta ggtgaaaggt gaggttaatg gatagagaag ggttgtttcg tcgcggtcgt tcgtttgtcg
                                                                       240
                                                                       300
tttcgagttt taatcggtcg ggtttcgcgc gggcgagaag cgttcgttag tagtaagagg
                                                                       360
agegegeggg tttegtatti tggtttegtg ttteggggtt ttagegtaga ttegggtttt
                                                                       420
ggattcggtc gtttcggggt tttttttggtt gtttttaggg tatagttgta ttaggagtag
                                                                       480
tagcgcggtt agtagcgttg cgtttcgttt gttttatggt gtcgtcggtt ttggatatat
                                                                       540
                                                                       600
aggggtagcg tagggtgagg tgcgtttggg atagttgtag gcgtcgtttt ttttttcgcg
ttcgttcggc gattttttcg gtcgtcgttt aatgttcgta gtttgttttt tagttttagt
                                                                       660
tattgcgtta gtgttgtttt attitttta tttagttitt ittticggag gagcgtggtg
                                                                       720
                                                                       780
gttgagttga gcggagtttt ggtgtagggg gaggttgggc ggacgttttg agttatttat
aggttgtcgg cgagcgtttg tacggtttaa gattgagttt tagtttttgt ttttcggggt
                                                                       840
                                                                       900
aggttgaaga cgttttgggg aatatagggt ttgtttcggc gtgtcgttag ttttatatag
                                                                       960
tgttaggata gtttcgattg acgttagcga agaatatgta ttgattgtag aagtaatgat
agttatagtt tcgagtttga cggttggcgg gtttcggagg gcgtattttt ttatattagt
                                                                      1020
tttcgtgttt ttgggcgtag cgttggaagt agtattggac gtaggaaagc gagaagtcgg
                                                                      1080
1140
agtaatgatt agggtcgttt ttagattaga ttagttcggg tcgcgtgttt tgatatacga
                                                                      1200
aagggaggcg ggatcgtgag gttgtttatg gtgttgattt cgttttttgt tittagaagt
                                                                      1260
ggttagaaat gtgagaacgt tgtgtcgttg gaatttattg tttttttgta gttattagtt ttgtaaatgt aggtattagg agtttatcgt tggtatttag ttaatatagt gggatttatt gagaggtagt ttgttataat taaagttttt tagtatttt attttttt agttttagga
                                                                      1320
                                                                      1380
                                                                      1440
tttaaattig tagggttgtt tgataggtat talgtaatag agggttttta gtattcgagt
                                                                      1500
gtttttagat tataaatggt tggtttattt gtttttgagt ttgttaaagt agtttagtaa
                                                                      1560
agtttagttt tttttttggg aattatagta gtagtgtaat tttgtttatg agtagtaaag
                                                                      1620
aaatatqqqt ttaaqttttt qttaattttt ggtgtggata ggttattttt tttttattaa
                                                                      1680
ttttagggtt tttatttgta agattgggtt tggttaggcg cggtggttta cgtttgtaat
                                                                      1740
tttaatattt tgggaggtcg aggtaggcgg attacgaggt tagtagtttg aaattagttt
                                                                      1800
ggttaatatg gcgaaatttt atttttatta aaaatataaa aattagtcgg gcgtggcggt
                                                                      1860
atgcgtttgt ggttttagtt atttaggagg ttgaggtagg agaattgttt gaatttagga
                                                                      1920
ggcggaaqtt gtagtgaggt aagatcgcgt tattgtattt tagtttggga gatagagtaa
                                                                      1980
2040
2100
attattgtag atttcggatt atatatttaa taatattt attgaggtat ťatataaagg
                                                                      2160
gtttcgggag tttttaaaga gttggagtta taagaagttt aggtagggtt agagtaataa
                                                                      2220
atgtgtttat gaagagtggg gatgagtggt atttgttggg atatgggtgt aaagttgata
                                                                      2280
aggttatgaa ggtttaatag atatttatgg agtgtttagt atgtggtggg aataagatta
                                                                      2340
                                                                      2400
ttattaaggg ttttaaagta gttagtgtat attttagagt gaagaggggt attgtagggt
gttagttttt ttaagttttg atcggtaatt taatttcgtg gaaattgg
                                                                      2448
<210> 385
<211> 2448
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 385
ttagttttta cggggttggg ttgtcggtta gagtttaaga ggattagtat tttgtaatgt
                                                                        60
tttitttat tilaaaaigi atattgattg ttitagagit titgataata gttitattit
                                                                       120
tattatatat taggtatttt ataaatattt gttgaatttt tatgatttta ttaattttat
                                                                       180
atttatattt tagtaaatgt tatttatttt tattttttat agatatattt gttattttaa
                                                                       240
                                      Page 168
```

300 ttttgtttag gttttttgta gttttagttt tttagagatt ttcggaattt tttatatggt gttttagtaa atatgttatt aaatatgtaa ttcggaattt gtagtggtaa tgagtaagtt 360 tttaagtaga aaattattgg ggagttattt ttagagttgg aaagaagtta agagattatt 420 aagtttaatt ttttttttt ttttttt tttttttgag atagggtttt gttttgttt 480 ttaggttgga gtgtagtggc gcgattttgt tttattgtag ttttcgtttt ttgggtttaa 540 gtagtttttt tgttttagtt ttttgagtag ttgggattat aggcgtatat cgttacgttc 600 ggttaatttt tgtattttta gtagagatgg ggtttcgtta tattggttag gttggtttta 660 aattattgat ticgtgattc gtttgtttcg gttttttaaa gtgttgggat tataggcgtg 720 agttatcgcg tttggttaag tttagtttta taaatgagga ttttgaggtt ggtaggaggg 780 aggtgatttg tttatattag gagttagtag aaatttgaat ttatattttt ttgttgttta 840 tgggtagagt tatattgttg ttatgatttt taggagagaa attgaatttt gttaaattat 900 tttggtaaat ttaaaagtag atgggttagt tatttgtggt ttgaaagtat tcggatgtta 960 gagatttttt gttatatggt gtttgttaga tagttttata aaittggatt ttggggttgg 1020 aaaaagataa gaatgttggg agattttggt tgtggtagat tgttttttag tgggttttat 1080 tgtgttggtt gagtgttagc ggtggattit tgatgttigt atttgtagaa ttgatagttg 1140 tagggaggta gtgggtttta gcggtatagc gtttttatat ttttggttat ttttagaggt 1200 agaggacggg gttagtatta tggatagttt tacggtttcg tttttttttc gtgtgttaga 1260 atacgcgatt cggattagtt tggtttgggg acggttttag ttattgttgg ttgttttaag 1320 1380 cggggcgatg ggattttcgt gggttttaga gtagttttta cgttttagtc ggtttttcgt tititiggt tiagtgttgt tittagcgtt acgtttaggg gtacgaaggt tggtgtaggg 1440 aggtgcgttt ttcggggttc gttagtcgtt agattcgaag ttgtggttgt tattgttttt 1500 ataattagtg tatgtttttc gttgacgtta gtcggagttg ttttggtatt atataaggtt 1560 ggcgatacgt cgggatagat tttgtgtttt ttaaggcgtt tttagtttgt ttcgagggat 1620 agagattgga gtttaatttt ggatcgtata gacgttcgtc gataatttgt gagtggttta 1680 gagegttegt tragtttttt titgtattag gatttegitt agtttagtia traegitttt 1740 1800 tcggggaggg aggttgggtg gaagggatgg aatagtattg gcgtagtggt tggggttgga gggtaggttg cgggtattgg gcggcggtcg gaggggtcgt cgggcgagcg cggggagggg 1860 agcggcgttt gtagttgttt taggcgtatt ttattttgcg ttgtttttgt gtgtttaggg 1920 1980 teggeggtat tatgaggtag gegggaegta gegttgttgg tegegttgtt gtttttggta tagttgtgtt ttgggagtag ttagaggagt ttcgaggcgg tcgggtttag gattcgagtt 2040 tgcgttggag tttcggggta cggaattagg gtgcggggtt cgcgcgtttt ttttgttgtt 2100 ggcggacgtt tttcgttcgc gcggggttcg gtcgattggg attcgggacg gtaggcgagc ggtcgcggcg ggataatttt tttttgttta ttgatttat tttttatttg ttgcggattt 2160 2220 tgttggagtg gcgcggacgt agagttagcg ggagcgcgtc gagtagaatc gtattatatt 2280 2340 tattttagag ttgggatgcg gggtagagtt attagggtat tgtttgcgtg attattttt 2400 aataaaagta ttgaagattc gttggttttt gtcgtagagg tagggtag 2448 <210> 386 <211> 2344 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 386 gtttggtata tttaagattt ttacggaggt ttagttttat attttttt attttttag 60 gttggttttt ttttgttgtc gacgcgtggg agtttagaga gcggtttttc gttttcgcgg gatttttgga gaggttcgga gagtcggttt tcgaaacgcg ttttttttt tttttttt 120 180 tttttttttt ttttttcgtt ttttcggttt tattattatt atcgttatta cqttttttt 240 300 gttttaggtt tcgacgtttt gggttttttt cggggtgggg cgggttgttt taggggggtt 360 tatogttatt tatgaagggg tggagtttgt ttgttcgtgg gtttttataa gggcggttgg 420 ttggttggtt ggttgttcgg gtaggttttt tggttgtatt tgtcgtagtg tatagttcgg 480 ttgaggtgta cgggagttcg tcggtttttt tilgticgcg ticgitcgtg aaatigcggt 540 cggggtttat cgcgatggtt ttttcgatat tttcggatag tattttttc gcggaagttc 600 ggggacgagg acggcgacgg agattcgttt ggatttcgag ttaaagcgag gttitgcgag 660 tttgttttga gcggaattcg tattcgggta tcgttattag agaacggttg gtttaggtta 720 toggtattic ggagtttagg gtttagattt ggttttagaa tgagaggtta cgttagttga 780 ggtagtatcg gcgggaatti cggttitggt tcgggagacg cggttcgtta gaaggtcggc 840 gaaagcggat cgtcgttatc ggattttaga tcgttttgtt ttttcgagtt tttgagaagg 900 Page 169

```
atcgtttttt aggtatcgtc gttcgggagg agttggttag agagacgggt ttttcggagt
                                                                             960
ttaggattta gatttggttt tagaatcgaa gggttaggtt tcgggatagg gtggtagggc
                                                                            1020
gttcgcgtag gtaggcggtt tgtgtagcgc ggttttcggc gggggttatt ttgtttttc
                                                                           1080
gtgggtcgtt ttcgtttata tcggcgcgtg gggaacgggg tttttcgtat tttacgtgtt
                                                                           1140
ttgcgcgttt ggggtttttt tatagggggt tttcgtgagt taggtagcga gggtcgtttt
                                                                           1200
cgcgttgtag tttagttagg tcgcgtcggt agaggggatt ttttaatttg tttcggcgcg
                                                                           1260
cggggatttc gtttacgtcg tttcggtttt ttcggacggg gcgttttttt atttttaggt
                                                                           1320
ttttcggtgg ttttcgtatt cggggtaaaa gtcgggagga tcgggattcg tagcgcgacg
                                                                           1380
gtttgtcggg tttttgcgcg gtggtatagt ttgggttcgt ttaagcgggg tcgtagggtt
                                                                           1440
aaggggtgtt tgcgttattt acgttttagg ggagttcgtg gtggggttgg ggtcggggtt
tttaggtcgt cggggcggcg tgggaatttt aagtcggggt agttttattt ttttagttcg
                                                                           1500
                                                                           1560
cgttttcgga cgttttcgcg cggtaggggt agatgtaagg tatttcggcg tttttttagg cgttttagga gtcggcgttt tggtttgtat ttttttgcgg tttgttgttg gatgagtttt
                                                                           1620
                                                                           1680
tggcgagttc ggagtttttg tagtaggcgt aattttttt agaaacggag gtttcggggg
                                                                           1740
agttggaggt ttcggaagag gtcgtttcgt tggaagtatt ttttagcgag gaagaatatc
                                                                           1800
gggttttgtt ggaggagttt taggacgcgg ggttgggacg gggtcgggtg gttcggggta
                                                                           1860
gggcggtggt ttttttttcq cgqqqaacqt ttqqttqqtt acgqagqqc qtqttttcqt
                                                                           1920
ttcgtttttt ttatcgggtt gatcggtttg ggatttttgt tttttaggtt taggttcggt
                                                                           1980
gagagatttt atatagcgga gaattgttat ttttttttgg gtatttcggg gattttagag
                                                                           2040
teggtttagg tattagtagg tgggtcgttt attgcgtacg cgcgggtttg cgggtagtcg
                                                                           2100
tttgggttgt gggagtagtt cgggtagagt ttttttgttt ttttattagt ttatttcgtc
                                                                           2160
gtttgatcgt ttttttttta tttttatttt tcgttttcgg aaaacgcgtc gttttttggg
                                                                           2220
ttgggtggag attttcgttt cgcgaaatat cgggtttcgc gtagcgttcg ggtttgatat
                                                                           2280
cgtttcggcg gttcgttttt tittgcgtttt cgcgttatcg tcgttcgttc gttcgggttt
                                                                           2340
ttqt
                                                                           2344
```

<210> 387 <211> 2344 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 387

gtaggggttc	gggcgggcgg	gcgacggtgg	cgcgggggcg	tagaggaggc	gagtcgtcgg	60
agcggtgtta	ggttcggacg	ttgcgcgggg	ttcggtgttt	cgcgggacgg	gggtttttat	120
ttagtttagg	ggacgacgcg	tttttcgggg	gcggggggtg	ggggtgggga	gggggcggtt	180
aggcggcggg	gtgggttggt	ggagaggtag	gagagttttg	ttcgggttgt	ttttatagtt	240
taggcggttg	ttcgtaaatt	cgcgcgtgcg	tagtaggcgg	tttatttgtt	ggtatttggg	300
tcggttttgg	gattttcggg	atgtttagga	aagaatggta	gtttttcgtt	gtgtggagtt	360
ttttatcggg	tttaggttta	gaaggtagga	attttaggtc	ggttagttcg	gtggaggggg	420
cggggcggag	atacgttttt	tcgtagttag	ttaggcgttt	ttcgcgaaag	agaggttatc	480
gttttgtttc	gaattattcg	atttcgtttt	aatttcgcgt	tttaaagttt	ttttagtaga	540
		gaggggtgtt				600
agttttttcg	gggttttcgt	ttttaggaga	ggttgcgttt	gttgtagaaa	tttcgggttc	660
		taggtcgtag				720
		gatgttttgt				780
ggcgcgggtt	ggggaggtgg	agttgtttcg	gtttggggtt	tttacgtcgt	ttcggcgatt	840
		ttattacgga				900
ttttggtttt	gcggtttcgt	ttgagcgggt	ttaggttgtg	ttatcgcgta	ggggttcggt	960
		tcggttttt				1020
		gcgtttcgtt				1080
		gggagatttt				1140
		tttggtttac				1200
gtagggtacg	tggggtgcgg	gaagtttcgt	tttttacgcg	tcggtgtggg	cgaaggcgat	1260
		tttcgtcggg			ttgtttgcgc	1320
		tcggggtttg			gatttgaatt	1380
ttggatttcg	ggaggttcgt	ttttttggtt	agttttttc	gggcggcgat	gtttggaaag	1440
		gaggagtagg				1500
		gtcgcgtttt				1560
		tttattttga				1620
_	-		Page :			

tegatggttt gggttagteg ttttttggtg gegatgtteg ggtaegggtt tegtttaaag 1680 1740 taggttegta gggtttegtt ttggtteggg gtttaaaega gttttegteg tegttttegt 1800 tttcgggttt tcgcggggag ggtgttgttc gaaggtgtcg ggagggttat cgcggtgagt 1860 tteggtegta attttaegga eggaegeggg tagagagagg teggegggtt ttegtgtatt ttagtcggat tgtgtattgc ggtaggtgta gttaggaggt ttgttcggat agttagttag 1920 1980 ttagttagtc gtttttgtaa aggtttacgg gtaggtaggt tttatttttt tatgaatggc ggtgagtitt ittgggatag ticgttttat ttcggaaggg atttagggcg tcgaggtttg 2040 2100 2160 ggtgggggag ggcgtggtgg cggtggtggt ggtggggtcg gagagacgaa gaggaagggg gagagggggg aggggggagg ggggcgcgtt tcgggggtcg gtttttcgga tttttttagg 2220 2280 gatttcgcgg gaacgggaag tcgttttttg ggtttttacg cgtcggtagt agggagaaat tagtttggga gggtggaggg gagtgtggaa ttgaattttc gtgggagttt tgagtgtgtt 2340 2344 <210> 388 <211> 2350 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 388 tagatgtatt ggtgagatta ggttttggtt gtgattttgg gtttgtatta tgattttcga 60 tttttgattt agattataat tatgatttgg tcgtaatttt ttgatttgga ttttagtttt 120 180 ttagttttta gagtttgtga tttttgattt tgatttggat tataattttt gattttgaat gtgatttttg agatttaatt tgatagtaat atttgatttt aattattatt tttgatgata 240 gtttttgttt atattttgat agtaattgtg atttttatga ttttggtttt gaatgtgatt 300 tataattttt gaatttgatt gtgatatttg attttaatta taattattaa ttatagtatt 360 gattataatt ttgattgtgt gatttttggt tttatttttt ttatagtttt tgttttttt tagaattttt tttttggt ttataatttt tgattttggt tttttgatttg 420 480 aggtagaatt ttggattttg attataattt ttgattttaa ttggatttag attttagtta 540 ttaattttga tttatggttt agtcgaattt tatttaatga ttttagttta taatatttga 600 660 tttggtatag gtagttttta gaaatttaga tttataggat ttgtaattat ggttttcgga 720 780 tttatgagat tttttattat tttttttaga tattttattt taaggggatt ggtcgggtgt 840 gtttcgagat tggatttttt ttgaatattt ttatttttta tagatgtgga cgaatgtagt 900 togggtgttt ttttttgtgg tttttaoggt tattgtatta atatogaagg tttttttogt 960 tqtaqttqcg cgttaggtta tcgggcgtcg tcgggtcggt tcgggttttg cgtaggtgaq 1020 tagtataggg attcgttaga gagtttggga gtagggtttg ggttttaggg taaagtcggt 1080 tggaaaggtg gaggcgggat taaggcgttg tgggaggagt ttagaaattt ggtattggtg 1140 ggggcggggt tattgcgatg tgggcggagt ttgtttggga ggtcgggttt cgtgatttcg 1200 tttaattttt cgcgtatttt agacgtgaac gagtgtttgg agggcgattt ttqttttttt 1260 tacggcgagt gttttaatat tgacggtttt tttgtttgta tttgtgtttt tggttatcga 1320 ttcggatttc gcggagtttt ttgtttcggt tcgtattcgg gttgattttg gtttcggaaa 1380 gggtgggttt agggtaggaa aaggcgggac ggggagaaga gggcgaaaag gggaaaacga gtttttagtc ggggtatttt agtaggatta gggggtagtt ggtgggagtt tcgaggtagt 1440 1500 gaggggggc ggggcgtgga gatgaaaggg tcgagtttgg gtatttggat cgtgattgta 1560 aagaagttgt tttaaattcg tcggggggcg gtgtttgtag ggagggaagt agcgtgaggt 1620 aggttgggga aggcgtgaga ggtttaggag agtcgagggg cggtggaggg gtgtggttta 1680 gaatgttagg cggagcggga ggtgggtcgg gttttcggac gttttgtttc gtagacgttg 1740 acgagtgtag cgaggaggat ttttgttaga gcggtatttg tattaatatc gacggttttt 1800 tegagtgtat ttgttttteg ggatategeg ttggttegga tttegttttt tgttteggtg 1860 agaggtttcg tttcggtttg atttttttt ttttcgattt ttcgattcgt cgattggttt 1920 tttatttttg tttttttt ttcgttttt tttttttt attttttt ttcgttttt 1980 tttttagttt ttttaatttt tttttatttt aattttttt tgttttttt tttgttttt 2040 eggtttittt tttttgattt ttttttttt tttttgtatt ttttattttg 2100 ttttatattc gattattcga ttttttttt tagacgtgga cgaatgtcgc gagcgaggtt 2160 tagttttgtg cgggtcgtag cgttgtgaga attttttcgg tttttatcgt tgtgttcggg 2220 attgcgattt tgggtattac gcgggtttcg agggtatttg tgacggtgag tttgtttta 2280 ttcgttttcg ttagcgtttg taacgcggtg ttggaggttg tttttttggg gattgaggag 2340

Page 171

```
2350
gggcgttttg
<210> 389
<211> 2350
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 389
tagggcgttt ttttttagtt tttaagggag tagtttttag tatcgcgttg taagcgttag
                                                                      60
cgaaggcggg tgggggtagg tttatcgtta taggtgtttt cggggttcgc gtggtattta
                                                                      120
ggatcgtagt ttcggatata gcggtaggag tcgggagagt ttttatagcg ttgcgattcg
                                                                      180
tatagggttg ggtttcgttc gcgatattcg tttacgtttg aggagagagg tcgggtggtc
                                                                      240
ggatgtggga agtagggagg taagatgggg gatataaaga ggggagagga gagttagaag
                                                                      300
ggggaggtcg gggaagtaga ggagagggta ggagaagatt ggggtagagg agagttgggg
                                                                      360
aggttaggag aggaggcggg ggaaagaggt aaggggaggg gagaagcgga ggaggaaaga
                                                                      420
tagaggtggg aggttaatcg gcgagtcggg gagtcgaagg gaggagggat taggtcgggg
                                                                      480
cggggttttt tatcgaggta ggaggcgagg ttcgggttag cgcggtgttt cggaggatag
                                                                      540
atgtattcga aggagtcgtc ggtgttggta tagatgtcgt tttggtaaag gtttttttcg
                                                                      600
660
ttlaatatit taggitatat itttttatcg ittticggit ttittaggit ttttacgtti
                                                                     720
tttttaattt gttttacgtt atttttttt ttgtaaatat cgtttttcga cgggtttaga
                                                                     780
atagtttttt tataattacg gtttaaatat ttagattcgg tttttttatt tttacgtttc
                                                                      840
gttttttttt attgtttcga gatttttatt agttgttttt tgattttgtt ggaatatttc
                                                                      900
ggttaaaaat tcgttttttt tttttcgttt tttttttttc gtttcgtttt tttttgtttt
                                                                      960
aagtttattt ttttcggggt taggattagt tcgggtacga atcgaggtaa gaggtttcgc
                                                                    1020
ggggttcggg tcggtagtta ggggtataag tataggtaaa ggagtcgtta gtgttgaggt
                                                                    1080
attegtegtg agggaagtag aaategtttt ttaggtatte gtttacgttt agggtacgeg
                                                                     1140
ggagattggg cggagttacg ggattcggtt ttttagataa gtttcgttta tatcgtagta
                                                                    1200
atticgtitt tattaatgti aggtttitaa gttttttta tagcgttttg gtttcgtttt
                                                                    1260
tatttttttttttt gtoggttttg tiltggaatt taggttttat ttiltagatti tttggogggt
                                                                    1320
ttttatgttg tttatttgcg tagggttcgg gtcgattcga cqqcqttcqg tagtttqqcq
                                                                    1380
gggtattcga attgtattcg tttatatttg tggggggtgg gggtgtttag aaagggttta
                                                                    1500
gtttcgggat atattcgatt aatttttttg gagtagggtg tttgggggag gtggtgggaa
                                                                    1560
gttttatgag ttggaggttg ggggagggtt ttatggtaga ggtgggtagg gttgattaag
                                                                    1620
gttttcgggt ttcggggatt atggttgtaa gttttgtggg tttaggtttt taggaattat
                                                                    1680
ttgtgttagg attttggagt taggagaggg attagatagg gattagaaat taattagggt
                                                                     1740
aagggattag ttaagtatta taaattagga ttattggatg ggattcggtt gagttatggg
                                                                    1800
ttagagttag tgattggaat ttgaatttag ttaggattag aagttatagt tagggtttag
                                                                    1860
aattttgttt taagttaggg gttagggtta gggattatga atttaattag gttttagaga
                                                                    1920
agggattttg agaagaggta ggggttgtga aagagatagg attaagagtt atatagttaa
                                                                    1980
ggttatggtt agtgttatgg ttagtggtta tgattagggt taaatgttat agttaaattt
                                                                    2040
aggagttata ggttatattt agggttagag ttatgagggt tataattgtt attagggtat
                                                                    2100
gggtagggat tattattaag ggtgatggtt agggttaaat gttattgtta agttgggttt
                                                                    2160
taggagttat atttagggtt aagagttgtg gtttaggtta gggttaggag ttataggttt
                                                                    2220
tggggattga gggattgagg tttaggttag gaggttacgg ttaggttata gttgtgattt gggttaaggg tcgggggtta tgatgtaggt ttaaggttat agttagggtt tggtttatt
                                                                    2280
                                                                    2340
agtgtatttg
                                                                    2350
<210> 390
<211> 2206
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 390
```

60 gggtattttt tgggatggta agtggtatta gcgttgtgag atggtttttt ttttgtcgtt aggcgttagg aggtttgttc gggtttgtat gtgtttgggt ttggtaggtg gggaggcggt 120 180 atttagggta gttttcgtat tggaagtttt aggaatttgg atttaggttg aaggtttttg 240 ttttagagtt tcggattgtt gagtttggaa tagttttttt tagatatagt gtggcgcggg 300 agtagttgta tgagggttta cgtattttgt atatattagt agtttattcg attttgtttt 360 tggttatgcg aaacgtatgt ttattcgatt ttcgattttg tttttggtta tgtaggtttc 420 gtttgggttg tgataggagg ttcggcgttt ttaggtattt ggtaggtttt ttcgattttt 480 gaggagtttg gcggaattcg gttttggttg tgtgtcgagt ggcggggtat ttatagggag 540 atgagttagt gtttattttt tgttttagtt ttttcgtggt cgtttttttt tttagaaggg 600 gttggtttag gttggtgttt tcgtggtttt tggagtatat ttgttgtcgt tttttttggt 660 ttttggcgat agtaggtttt tcgtatttta tttgtttttt agttagtatg gttttatata gaatacggtc gtagataatt tttttgtgtt ttgtatagcg aattgttatt ttgcgtgggt 720 780 tttattgtta ggttagggag gtaggagttg tttttatttt ttgttcggga gttgtcgttt 840 gtttttcgga tgagttagga ataaatgcgt taatattggg tggtcgtttt cgttattttt 900 gcgtacgggt tttgtgggga gagttaggta gtgggtggcg tgggataggt gatgtttatg 960 1020 tttagtattt aggagatttg tatggtagtt tttaagatgg gtataagcga ttataaggag ggatgtacgt gttttatttt tttatttatt acgggattag gttgaggtcg tttagggagt 1080 gtatgggagg gttgcgttcg gcgtatttgt agagattttt tgaagagggg ttttggttgt 1140 tttttattgg ggtaggtgcg ggtttaggtt ttcgatatcg tgacggtgtt gtgggatttt 1200 gatggatttt attcggggag tttaggtttg ttttacggta aggtggttac gtattgtttt 1260 tgtagttttg agtalaggtt ttatacggga tttgaggttt gggttttatg atatttgggt 1320 tatgigttti titggtgitt titttiggg gatgaaatta tatttatagg taaaggtttg 1380 ggagtggagg gagatagtag gagataaagt aaggggacga ggattttggt agttataaag 1440 1500 gtagcgggag ggttttggag gtttttgttg ggtagcgtag ttaggaaagg gtttattagg tgggagaggt aggcgtttgg tgagtgttga gatttgtatt acgagaaggg ttgggttttt 1560 1620 aaggtatgta tggggtttgg gagtggaggg agtgtgagcg ggtgttagga cggggtttgg ggcgagcggg tgttaggacg ggtttgggag cggagggagt gcgagcgggt gttaggacgg 1680 ggtttgggag tggagggagc gcgagcgggt gttaggacgg ggtttgggag tggagggagc 1740 gagagegggt gttaggaegg ggtttgggag tggagggage gegagegggt gttaggaegg 1800 ggtttgggag tggagggagc gcgagcgggt gttaggacgg ggtttgggag tggagggagc 1860 gagagegggt gttaggaegg ggtttgggag tggagggage gegagegggt gttaggaegg 1920 ggtttgggag tggagggagc gcgagegggt gttaggaegg ggtttgggag tggagggage 1980 gcgagcgggt gttaggacgg ggtttgggag tggagggagc gcgagcgggt gttaggacgg 2040 gtttgggagt ggagggagcg cgagcgggtg ttaggacggg tttgggagtg gagggagcgc 2100 gagcgggtgt taggacgggt ttgggagtgg agggagcgcg agcgggtgtt aggacggggt 2160 2206 ttgggagtgg agggagcgcg agcgggtgtt aggacggggt ttggga <210> 391 <211> 2206 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 391 ttttagattt cgttttaata ttcgttcgcg ttttttttat ttttagattt cgttttaata 60 ttcgttcgcg ttttttttat ttttagattc gttttaatat tcgttcgcgt tttttttatt 120 tttagattcg ttttaatatt cgttcgcgtt ttttttattt ttagattcgt tttaatattc 180 gttegegtti tttttatttt tagatitegt tttaatatte gttegegtit tttttatttt 240 tagatttegt tttaatatte gttegegttt tttttatttt tagatttegt tttgatatte 300 gttcgcgttt tttttatttt tagatttcgt tttgatattc gttttcgttt tttttatttt 360 tagatttegt tttaatatte gttegegttt tttttatttt tagatttegt tttaatatte 420 gttcgcgttt tttttatttt tagatttcgt tttaatattc gttttcgttt tttttatttt 480 taggtttcgt tttaatattc gttcgcgttt tttttatttt tagatttcgt tttaatattc 540 gttcgtattt ttttcgtttt taggttcgtt ttaatattcg ttcgttttag atttcgtttt 600 aatattogtt tatatttttt ttatttttag gttttatgta tgttttggga gtttagtttt 660 tttcgtggtg tagattttag tatttattag gcgtttgttt titttattta gtgggttttt 720 ttttgattgc gttgtttaat aggagttttt agggtttttt cgttgttttt gtggttgtta 780 gagtittegt ittittgitt tgittttigt tgittttitt tattittaaa ittitaitta 840 tgggtgtgat tttattttta ggagggaagt attagggaag tatatagttt aagtgttatg 900 Page 173

		47675-4	7.txt		
gagtttaggt tttaggttt	gtatggagtt	tgtgtttagg	attgtagagg	tagtgcgtgg	960
ttattttgtc gtggagtag	tttgggtttt	tcgggtgagg	tttattaaag	ttttatagta	1020
tcgttacggt gtcggggat	: tgggttcgta	tttattttag	tgggaggtag	ttagggtttt	1080
tttttagggg atttttgtag	g atgcgtcgag	cgtagttttt	ttatgtattt	tttggacggt	1140
tttaatttga tttcgtggtg	g ggtggggaga	tgagatacgt	atatttttt	ttatgatcgt	1200
ttgtatttat tttaggagt	gttatgtagg	ttttttgagt	attgggtatg	ggtattattt	1260
gttttacgtt atttattgt	: tggtttttt	tatagggttc	gtgcgtagga	gtggcgaggg	1320
cggttattta gtgttgacg	: atttgttttt	gatttattcg	aaagatagac	gatagttttc	1380
gggtaggggg tgggggtag	: ttttgtttt	ttaatttggt	agtggggttt	acgtagagtg	1440
gtagttcgtt atgtaggata	ı taggagggtt	gtttgcggtc	gtgttttgtg	tggagttatg	1500
ttggttgggg gataggtgg	ı gtacggaagg	tttgttgtcg	ttagaggtta	gggaaggcgg	1560
tagtaggtat gttttaggg					1620
gaggcgatta cggggagat	0 00 0		_	0 000 0	1680
ttcgttattc ggtatatag	: taggatcggg	tttcgttagg	tttttttgag	gagagttttt	1740
taattttatt tggatttgt					1800
tttgttaggt gtttgaggg		-			1860
taggaataag gtcggaggt	ggatgggtat	gcgtttcgta	tgattaggga	taaggtcgga	1920
tgggttgttg atgtgtgtag		_			1980
tgtttaggag gagttgttt					2040
ttagatttaa gtttttagag	_				2100
tgttaagttt aggtatatg				gtaggaagga	2160
aattatttta tagcgttgg	gttatttgtt	attttaggga	atgttt		2206

<210> 392 <211> 2233 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 392

ttgttggacg	tggacgtaga	tagcgggttt	ttttatatta	agtagcgtat	cgatcgcgag	60
tttttgtgtc	gttataatgt	taagtgttag	ttgtttttcg	aggtgttcgt	taacgataag	120
gagatttgta	tgattaaggt	agagatttag	gatattaacg	ataacgcgtt	tttttttt	180
tcggattaga	tcgaaatgga	tatttcggag	aacgttgttt	cgggtattcg	tttttttt	240
attagcgtat	atgatttcga	cgtcggcgag	aatgggtttc	gtatttattt	gtttacgcgc	300
gacgattacg	gtttttttgg	attggacgtt	aagtttcgcg	gcgacggtat	taagttttta	360
gaattggtta	tttagaaggt	tttggatcgc	gagtaataga	attattatac	gttcgtgttg	420
attgttttgg	acggtggcga	gtttttacgt	ttcgttatcg	tatagattaa	cgtgaaggtg	480
attgatttta	acgataatag	ttcggttttc	gaggcgttat	tttatttggt	ggaattgttc	540
gagaacgttt	cgttgggtat	agtggttatc	gatttgaacg	ttatcgacgt	cgatgaaggt	600
tttaatggtg	aagtgtttta	tttttttagt	agttacgtgt	ttgatcgcgt	gcgggagttt	660
ttttttatcg	attttaagat	cggtttaatt	cgtgtgaagg	gtaatttgga	ttatgaggaa	720
aacgggatgt	tggagattga	cgtgtaggtt	cgagatttgg	ggtttaattt	tattttagtt	780
tattgtaaag	ttacggttaa	gtttatcgat	cgtaacgata	atgcgtcgtt	tatcggtttc	840
gttttcgtgc	gttagggggc	gttgagcgag	gtcgtttttt	tcggtatcgt	tatcgttttg	900
gtgcgggtta	ttgatcggga	ttttggtaag	aacggatagt	tgtagtgtcg	ggttttaggc	960
ggaggaggga	cgggcggcgg	cgggggtttg	ggcgggttcg	ggggtttcgt	tttttttaag	1020
tttgaggaga	attacgataa	tttttatacg	gtggtgattg	atcgttcgtt	ggatcgcgag	1080
atataagacg	agtataacgt	gattatcgtg	gcgcgggacg	ggggttttt	tttttttaat	1140
tttattaagt	cgttcgcgat	taagatttta	gacgagaacg	ataattcgtt	tcggtttatt	1200
aaagggtttt	acgtgtttta	ggtgtacgag	aataatattt	cgggagagta	tttgggtttt	1260
gtgttcgttt	aggatttcga	tttgggttag	aacggtatcg	tattttattt	tattttgttt	1320
tcgtatatcg	gcgacgtgtt	tatttatatt	tatgtgtttg	tgaattttac	gaacggggtt	1380
atttacgttt	tgcgtttttt	taatttcgag	tagattaagg	tttttgagtt	taaggtgttt	1440
gttaaggatt	cgggggcgtt	cgcgtatttg	gagagtaacg	ttacggtgag	ggtgatagtg	1500
ttagacgtga	atgataacgc	gttagtgatc	gtgttttta	cgttgtagaa	cgatatcgcg	1560
gagttgtagg	tgtcgcgtaa	cgttggtttg	ggttatttgg	tgagtattgt	gcgcgtttta	1620
gatagcgatt	tcggcgagag	cgggcgtttt	atttacgaga	tcgtggacgg	taacgacgat	1680
tatttgtttg	agatcgattc	gtttagcggc	gagattcgta	cgttgtattt	tttttgggag	1740
gacgtgacgt	tcgtggtgga	gttggtggtg	aaggtgatcg	attacggtaa	gtttattttg	1800
			Dago 1	7/		

ttcqtagtgg ttaagtttat tattcgttcg gtgagcggat tttttttcga gggggtatta 1860 cgggtgaatg gcgagtagta ttattgggat atgtcgttgt cgtttatcgt gattttgagt 1920 attattttta ttatttttt ageggttatg attattateg tegttaagtg taagegegag 1980 aataaggaga ttcgtattta taattgtcgt atcgtcgagt atagttattc gtagttgggt 2040 qqqqqtaaqq qtaaqaaqaa qaaqattaat aaaaatqata ttatqttqqt qtaqaqcqaa 2100 qtqqaggaga ggaacgttat gaacgttatg aacgtggtga gtagtttttt tttggttatt 2160 ttittatgt atttegatta ttagattegt ttgtttttta gttegttteg gteggaggtg 2220 2233 atgtatttta aat <210> 393 <211> 2233 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 393 gtttgagata tattattttc gatcggggcg agttgagggg taggcgggtt tggtagtcga 60 agtatatggg ggaggtggtt agggaggggt tgtttattac gtttatgacg tttatggcgt 120 180 tgtttttgtt tttatttagt tgcgggtggt tgtattcggc gatgcggtag ttgtaagtgc 240 ggattttttt gttttcgcgt ttgtatttga cggcgatggt gattatggtc gttaggagga 300 360 tgatggagat agtgtttaga gttacgatga gcggtagcga tatgttttag tggtgttgtt cgttatttat tcgtggtatt ttttcgggaa gggattcgtt tatcgagcgg atgatgagtt 420 tggttattgc ggatagggta ggtttgtcgt ggtcggttat ttttattatt agttttatta 480 cgggcgttac gttttttag aaagggtgta gcgtgcggat ttcgtcgttg gacgggtcga 540 ttttaaatag gtggtcgtcg ttgtcgttta cgatttcgta ggtgagacgt tcgttttcgt 600 cgaagtcgtt gtttagggcg cgtatagtgt ttattagata gtttaggtta gcgttgcgcg 660 gtatttgtag tttcgcggtg tcgttttgta gcgtggggag tacgattatt ggcgcgttgt 720 tatttacgtt tagtattgtt atttttatcg tggcgttgtt ttttaagtgc gcgggcgttt 780 tcgagttttt agtaagtatt ttgaatttaa aagttttggt ttgttcgaag ttaaaggagc 840 gtagggcgta gatggtttcg ttcgtgggat ttatagatat ataggtgtag atagatacgt 900 cgtcgatgtg cgagggtagg atagagtagg atacggtgtc gttttggttt aggtcgggat 960 tttgggcgag tatagagttt aggtattttt tcgggatgtt gttttcgtgt atttgaagta 1020 cgtagagttt tttggtgaat cgaggcgggt tgtcgttttc gtttagaatt ttgatcgcga 1080 1140 attegttttg tgtttegegg tttageggge ggttagttat tategtgtag aagttgtegt 1200 agttttttt aagtttgaag gggacggaat tttcgggttc gtttaggttt tcgtcgtcgt 1260 tegttttttt ttegtttagg attegatatt gtagttgtte gtttttgtta qaqtttegqt 1320 tagtgattcg tattagggcg atgacggtgt cgggaggggc ggtttcgttt agcgtttttt 1380 ggcgtacgga gacgaaatcg atggacggcg tattgtcgtt gcggtcgatg agtitgatcg 1440 tgattttgta gtgggttggg atagggttag gttttaggtt tcgggtttgt acgttaattt 1500 ttagtatttc gttttttta tagtttagat tgttttttat acggattagg tcggttttgg 1560 ggtcgatgga gaagagtttt cgtacgcggt taggtacgta gttqttqaaa qaqtaqaqta 1620 ttttattatt gggattttta tcggcgtcgg tggcgtttag atcgatgatt attgtattta 1680 geggagegtt ttegggtagt tttattaagt aggatggegt ttegaagate gggttgttgt 1740 cgttggagtt aattattttt acgttgattt gtacggtggc ggaacgtgga ggttcgttat 1800 cgtttagggt agttagtacg agcgtatggt gattttgttg ttcgcggttt agagtttttt ggatgattag ttttgggaat ttggtgtcgt cgtcgcggga tttaacgttt agtttaaaga 1860 1920 ggtcgtgatc gtcgcgcgtg agtaggtagg tgcggagttt attttcgtcg gcgtcggggt 1980 tatgtgcgtt ggtgaggggg aagcgggtgt tcggagtagc gtttttcgag atgtttattt 2040 cgatttggtt cgaggagaag gagggcgcgt tgtcgttgat gttttggatt tttattttga 2100 ttatgtagat ttttttgtcg ttggcgaata tttcgaggga tagttggtat ttggtattgt 2160 ggcggtatag ggattcgcgg tcgatgcgtt gtttggtgta gaggagttcg ttgtttqcgt 2220 ttacgtttag tag 2233 <210> 394 <211> 2398 <212> DNA <213> Artificial Sequence

<220> <223> chemically treated genomic DNA (Homo sapiens) <400> 394 attgtatttt tqqttttata qttttttatt gtcgatttta qqtttttttg gattttaggt 60 120 tttttttttt aagatgtatt ttagaggatt aaaaatatat tttatttggg tttcgtttgt ttttgtggaa gggtagttta ttagaggata taatttcgtg ttttaatttg tttttttt 180 240 300 360 agaatttaaa gtttagggaa atagcgatag gggagtttaa gattgttttt gttagttttt ttttggttat ttttcgttgc gatcgtagga tagtttttat tagtaggaga atcgggtaag 420 tgtgtggata agtagagagt gtgttgaata atttgtaacg ttttatgaaa tacgtattgt 480 tatggttttt taaaaggttt tgcggaagtc gtttgttttt attaattaag tttttattta 540 tataaaagta gaagtagaag tagttttaga aaatatatta ataatttttt atttttttga 600 660 720 ttttagattt tatattatat tagtttattt gtgttacggt gtataaaaaa tggaataggc gtttttattg tattgttttt ttttaaaaaat agattattta tattttaatt ttgtttttt 780 840 taaattcgat ttttaatagg agagtttttt attattttag atggagtgag gttgtacgat tgggatggaa gaaaggaatt ttttaaattt gggggaattt ttgttttttg ttttaagatt 900 attttatttg gggtgtgggg gtgggcgcgg cggttagggt agtggaacgt agtcgcggtt 960 gegttatttt tgtattttta ggegegeggg agggategge ggggaegega gttgeggatt 1020 ttggcgaatt cgggggaggt agataggggg aggcggatat ttagtcggta ggcgttttag 1080 1140 1200 agttagttag gtaaggtaaa gattgttgtt gagtttgttg ttattgaggg cgtatagatt ttggggagat cgaagtttgt tattgcggga ttttgtgggg taatttgggt ttacggaagt 1260 tttttgaaag aggggagaag ggtttgtatt ttttttatgg aggatttttt tttttttagt 1320 1380 atttcgtttg atgtatttaa ttggtagaag tgagatttta ataggtagta gagagcgttt acgtggagga ggtttggggc gtcgcggcgt tatttttatt ttttttcggg atcgcgttta 1440 tttttaaagt tatacgtcga cgaattaatt tatgttttaa atttttttt ttagtttcgt 1500 gagttcgcgg cgatattggg tcgtggggtg gttgggaacg gttttttttt tcggaaaaat 1560 tagagaacgg tttggagagt tgaaacgagc gttcgcgagt aggttcgtgt agaatcgggt 1620 tttaggateg ttgagttteg tagggegttt ttgggggaeg ttaggtegte ggtttttttg 1680 ttttcgttga gatggataac gtttcgtttt cggagttttg gttcgttaac gtatcgggtt 1740 eggattegge gttgagttgt tttaaegegt egattttgge gtegttgteg gegtegttgg 1800 eggtggttgt attagttgtt taegeggtga tttgegtegt gggtttggeg ggtaattteg 1860 tegtgttgta egtgttgttg egggegttte gtatgaagat egttattaat ttgtttattt 1920 ttaatttggt tatcgtcgac gagtttttta cgttggtgtt gtttattaat atcgtcgatt 1980 ttttgttgcg gtagtggttt ttcggggagt ttatgtgtaa gtttatcgtg gttatcgatt 2040 agtataatat tttttttagt ttttattttt ttatcgttat gagcgtcgat cgttatttgg 2100 tggtgttggt tattgcggag tcgcgtcggg tggtcqgtcg tatttatagc gtcgcgcgcg 2160 cggtgagttt ggtcgtgtgg gggatcgtta tattcgtcgt gttgtttttc gtagttttcg 2220 tteggttaga egacgagtag ggteggegtt agtgegtgtt agtttttteg tagttegagg 2280 tttttttggtg gcgcgcgagt cgtttttata cgttcgtgtt gggtttcgtt attttcgtgt 2340 ttattatttg tgttttttat attattttgt tgtgtcggtt gtatgttatg cggttgga 2398 <210> 395 <211> 2398 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 395 tttagtcgta tggtatgtag tcggtatagt agggtggtat agaggatata gatggtggat 60 acggggatgg cgaagtttag tacgagcgtg tagaggcggt tcgcgcgtta ttagaaggtt 120 tegggttgeg gaaagattag taegtattgg egteggtttt gttegtegtt tagtegggeg 180 aagattgcga agggtagtac gacgagtgtg acgatttttt atacggttag gtttatcgcg 240 cgcgcggcgt tgtaggtgcg gtcggttatt cggcgcgatt tcgtagtggt taatattatt 300 aggtagcggt cggcgtttat gacggtgagg aagtagaggt tggagaaggt gttgtattgg 360 tcgatagtta cgatgagttt gtatatgagt ttttcgaagg gttattgtcg tagtaggaag 420 Page 176

tcggcgatgt	tgatgggtag	tattagcgtg	aagagttcgt	cggcgatggt	taggttgagg	480
		ttttatgcgg				540
gagttgttcg	ttagatttac	ggcgtagatt	atcgcgtaga	taattggtat	agttatcgtt	600
		tagagtcgac				660
ttcgatgcgt	tggcgggtta	gggtttcgag	aacgaggcgt	tgtttattt	aacgagggta	720
		ttttttaagg				780
		tcgcggacgt				840
tttttcggag	gaggggatcg	tttttagtta	ttttacggtt	taatgtcgtc	gcggatttac	900
ggggttggaa	agaggaattt	aaagtatagg	ttagttcgtc	gacgtgtaat	tttagaaata	960
		tgggggtggc				1020
gcgttttttg	ttatttgttg	aaattttatt	tttattagtt	gaatatatta	aacgaaatgt	1080
tagagagaga	agaattttt	ataggaaaaa	tgtaaatttt	tttttttt	tttaggaaat	1140
tttcgtagat	ttaggttatt	ttatagaatt	tcgtagtggt	aagtttcggt	ttttttaggg	1200
tttgtgcgtt	tttagtaata	gtaagtttaa	tagtagtttt	tattttattt	ggttggttgg	1260
ggaaggggtt	tgttttttt	ggagttgtta	ggagaaaagt	tcgtcggttg	cggggaggtt	1320
gagacgtttg	tcggttgggt	gttcgttttt	ttttgtttgt	ttttttcgag	ttcgttagag	1380
ttcgtagttc	gcgttttcgt	cggttttttt	cgcgcgtttg	gaagtgtagg	gatggcgtag	1440
tcgcgattgc	gttttattgt	tttgatcgtc	gcgtttattt	ttatatttta	agtaaaatgg	1500
ttttggaata	gagaatagaa	attttttaa	atttaaggga	tttttttt	ttattttagt	1560
cgtgtaattt	tattttattt	gaaataatag	aaagtttttt	tgttaagaat	cgaatttaag	1620
gaaaataaag	ttagggtgta	agtgatttat	ttttaaagga	gaataatgta	gtggaggcgt	1680
ttgttttatt	ttttatatat	cgtaatataa	atgggttaat	gtaatgtgaa	atttgaaagg	1740
aggaaaaagt	gagtgtaatt	ttataatgta	aattatttgt	tttttgttat	tttggttttt	1800
aaggggatag	aagattgtta	gtatgttttt	taaaattatt	tttatttta	tttttgtgta	1860
agtaaagatt	tgattagtaa	agataaacgg	ttttcgtaaa	gttttttagg	gaattatgat	1920
aatgcgtatt	ttataaaacg	ttataagttg	tttaatatat	tttttattta	tttatatatt	1980
tgttcgattt	ttttgttaat	gagagttatt	ttgcgatcgt	agcggagagt	agttaaggaa	2040
ggattagtag	gggtagtttt	gaatttttt	gtcgttattt	ttttggattt	tggatttttt	2100
ttttaggaag	ggaaaattat	tttaggtttt	ttattagttt	ttttaagaat	cgaatgaaat,	2160
aaattaaata	ttggttattt	ttaatttttg	tttttttt	ttttttatat	tttttttagg	2220
agagagagta	aattaaaata	cgagattata	ttttttagta	aattatttt	ttataaaagt	2280
aggcgaagtt	taaataaagt	gtatttttgg	ttttttagga	tgtattttag	agaagggggt	2340
ttgagattta	gagagattta	aagtcggtag	tagaagattg	tggggttaga	aatatagt	2398

<210> 396 <211> 2114

<212> DNA <213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 396

		gttgaagttt				60
ttaaattttt	ttagttaaaa	atttaggtaa	aattattata	tttaatatag	taattatttg	120
taaaatttta	gaatagtaaa	taaaggatat	aaagaaatgt	atttttattt	tttttaaatc	180
gaaaataagt	aaaatattat	agaattagat	tttgttttat	tatataggaa	ttgtttggta	240
aagattttt	tttttttt	aaaggtgaaa	ttttaggttg	ttgaatattg	aatgggtaaa	300
gatttttata	atgttgtatt	taagtgagta	ttaatgattt	tatttattaa	taacgattat	360
tttttgggaa	taagaattta	ttaggaagta	atttttaaaa	ttttataaag	gatttaattg	420
		agttatatgt				480
		taggaaaatt				540
		gaaaaagagt				600
		tggtatgtta				660
		gtgtagttgt				720
		aagtttttt				780
taagtggaaa	atgtagtttt	attaaagtag	agtagaggtt	tttttttatt	aaatttttag	840
gaggggagg	ggagaatata	gaatggttag	ggggtatttt	ttggaagtcg	aagagagatt	900
aaatgatgat	ttttatattt	ttttcgttgt	ttaagtgttg	aaattaattt	agattttatt	960
	_	ggatttttcg		-		1020
		agatgggaat				1080
atttgaaggg	ttaagggtag	ggggttgcgt	ttggtatttt	attgagattt	cgtttattga	1140
			D			

1200 aaatattgtt tttaacgaaa ttatttaqta ttttgtttta tttqcqtqgt tgttttttt 1260 atagtggtgt aatttgtgtt agttgattgt ttttaggatt gttgtaaatt ttttgatgag tagtatttag aaggggtttt agtaaaaatt atgcgtttta aatttttaaa gtttcgtttg 1320 ggagagaggt tgatatttgt atatgaagtt tgttttttgg aaatagtagg aggacgtagg 1380 1440 ttggtataag taattttgtt atcgggcggt tttttttaat tcgtgtgggg gttgatatta 1500 1560 atataagtag tegtttttte gggtgegagt gggattttag gttegggatg tggtgggtge 1620 ggtgcgggag aggtattcgt cgtttttttt attcggatgt tagaggtaag ttgttcgtgt gaattcgagc gaacgattgg aggttggttg ttgtaggttt attttttag gatgtgggtt 1680 ttagggggcg ttttgatgtg atttaatttc gatcgtgaaa ataattgtta ggggttggtt 1740 ggattgttgt tggttttttt ttttttggtg gttttgtttg gtttgggttt agtttgggaa 1800 taaatttgtt ttatattaat atttttttt atatcgggcg tcgtcgtttt aattgcgcgt 1860 gggggggag gcgtttattt cgtataagaa tagaggagcg ggggagaaga gacggtttcg 1920 ttgtttattg ggtaagcgga gtttagtttc gttcgggagc gggtaggaga gatagggtag 1980 tgatttttat ttatattaga aaatttttt tttcggcgat tttgttgtta attcgagtcg 2040 gttatagata gtttagtgag tttttaatta taaggacgag agaaaagtac ggtgtttttc 2100 gagttttttt cqtt 2114 <210> 397 <211> 2114 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 397 ggcggagagg attcgagggg tatcgtgttt ttttttcgtt tttgtaatta aggatttatt 60 ggattgtttg tagtcgattc gagttggtag taaaatcgtc ggggggaggg gtttttttggt gtgagtgggg gttattattt tgttttttt gttcgtttc gagcggggtt gggtttcgtt 120 180 tatttagtga gtagcgaggt cgtttttttt ttttcgtttt tttgtttttg tgcggggtgg 240 gcgtttcgtt ttttacgcgt agttgaggcg acggcgttcg atgtagaagg aagtgttgat 300 ataaaataag tttgttttta aattaaattt aaattaagta aagttattag gaggggaaaa 360 attaatagta atttagttag tttttagtaa ttgtttttac ggtcggaatt aaattatatt 420 aaaacgtttt ttgaaattta tattttgaag gagtgaattt ataatagtta atttttagtc 480 gttcgttcga gtttatacga ataatttgtt tttaatattc gagtgaaggg ggcggcgggt 540 gtttttttcg tatcgtattt attatatttc ggatttggga ttttattcgt attcgaagag 600 gcggttgttt atgttaatat tagtttttat acgaattaga aaagatcgtt cggtgataga 660 attigttiatg ttaggaatta tattgaattc gtaagggagg gggaagaacg tttttcggg 720 gttatttcgt tttttttgcg tttttttgtt gtttttaaaa gatagatttt atgtgtaaat 780 gttaattttt tttttaaacg aagttttaga aatttggggc gtatggtttt tattaaagtt 840 tttttttaagt gttgtttatt agaagattta taataatttt aaagataatt agttaatata 900 agttatatta ttgtaaggaa aatagttacg taaatagagt aaggtgttgg gtgatttcqt 960 tagaaataat gtttttaatg gacggggttt tagtaaaata ttaaacgtag ttttttattt 1020 1080 ttggtttttt aagtaaatag ttttttttag ttattgtttt aaaaattttt atttttttga gtitttaatt tttaggaaat ttggagtata ggttttaaat tattcgggga atttagagtt 1140 aatatgaagg agaaagtggg atttgaatta gttttagtat ttaaatagcg ggggggatgt aagagttatt atttaatttt ttttcggttt ttagaaagta ttttttggtt attttgtgtt 1200 1260 ttttttttt ttttttgagg gtttgatgaa aaggaatttt tattttgtt tggtgaaatt 1320 gtatttttta tttgttttt tattggttaa attggtgtag ttatgggagg atttttgatt 1380 gtttttttat gtgtttttta agaatggggt tataaatgtt tgatatagtt atacgtttat 1440 tttttttggga tattatttat attggtgttt aattttaagg gaagtgatat attattatta 1500 1560 tgaggtatag tattgttagt tattaaaaat ggatttaatg ttttaatttt tttggatttt 1620 1680 tatgttgtag ggattaattg gattttttgt aaagttttaa aaattgtttt ttagtaaatt 1740 tttattttta agaagtagte gttattagta ggtgaagtta ttagtgttta tttagatata 1800 gtattgtaaa aattittatt tatttaatgt ttagtagttt gaaattttat ttttaggaaa 1860 aaaagaggga tttttgttag ataattttta tataatggag taaaatttga ttttgtagtg 1920 ttttgtttgt tttcgattta agggagatga agatatattt ttttatgttt tttqtttatt 1980 gttttgaagt tttatagatg gttattgtat tggatataat aattttgttt agatttttaa 2040 ttgagggggt ttgagaatta agggataaaa tgtaatgtgt ttttaaattt tagtttttt 2100 Page 178

```
tttqttqtaa tttt
                                                                         2114
<210> 398
<211> 2382
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 398
aggttttgga ggtggttatt gtcggtttag gtacggtttc gttcgggatt attggttgtt
                                                                           60
ttcgtggggt gtttcgtttg gggttttttt ttattttggg acgttttagg cgcgtttagt
                                                                          120
ttgagttggt ggagagggcg ggggcggggg cggttggggt ttcgaagttt aggtttttt
                                                                          180
ttttattttt tegteggttt tgtegttgeg gttttegttt tegegttegt tegttttega
                                                                          240
300
cgtttttttt attcgttttt tgagatgttt tttatattcg tttgtatata gcgcgtgcqq
                                                                          360
ttttttcgaa ggcgattttc gtaaatcgcg acgtaggttt ttcgttttag gtaattttcg
                                                                          420
ttgcgggaga ggtcgttttt tggcgtttac gtttttttt tgtagttttt attgtcggtc
                                                                          480
gagggggaaa tgggcgatag gggaagggga ggtgtgtgcg ggacggatta ggttggggta
                                                                          540
gaggggttta aattggcgcg gttttataga agtttgagga gggcggggtc ggtttcgagt
tttcggagtt ttacgggatt ttttcgattt tattgaggag ttttcgttag tttcgtgtat
                                                                          600
                                                                          660
ttttgtaata ttttttattt tattcgttag tttcgagttt atagtttttc gggttcgggg
                                                                          720
attggttggg ggagggacg gggggaggg gattttttgg ttgtagggaa cggcgtgcgg
                                                                          780
gcgggggtgg gagggaaacg atttgtttta ggagataggg atgaaggttt ttttgagtta
                                                                          840
agggagggag aagagaggtg gaataaaagg tagatgttgg aggggaaggg gagttgggga
                                                                          900
gttcgtttcg agggtttcgg tagttcgcgg ttttttgttt tagtttgttt tagagggtga
                                                                          960
ggttaaggtt ggtgttaggg ttttttatcg gttatttgga ttttacgcgt ttagtattta
tttttttcg tacgtttatt ttatgtattt tttcgcgttt tttttacggt ttttttgcgg
                                                                         1020
                                                                         1080
cgagtcgttt ttgtttttc gtaggttttc ggttttagcg ttaaggtatc gcggtttttt tcgtttttt ttcgcgttga attcgggttt ttcgcgggga gaaataggtt gggggcgagg
                                                                         1140
                                                                         1200
ggttttcgag ataatttagg atatttttc ggggtttagt taggtaattt cgacgtttat
                                                                         1260
ggattttcgg attatagttt ttatcgcggg tttagtttta tttttagttt atttcgcggt
                                                                         1320
gagcgttaag tittaaaagt cggagtgtta tcgtttggtg atttcgcgtt cgttcgcgtt
                                                                         1380
ttttaattta tggttatttg tttgttatag cgaatttttt tttaggaaag aatttgtttt
                                                                         1440
ttgtaaagag gatgtgtaat gttggaaagt tcgttttttt ttttattagt tggattttga
                                                                         1500
gagttgggag agatgattaa tgaataggtt gagggtgtta tagttttgtt attttgggat
                                                                         1560
ggggggtgta gtaggggagt tatagttttt ttagaggtta ggttatttta tttagttgta
                                                                         1620
ttttattttt aatttttag tgggcgatat ttgtagggtg ttggggattgg gagaaatttt agatatttta aattttaaat tttattttt agatgaagat attgaggttt agagtgggtt
                                                                         1680
                                                                         1740
agtgagttgt ttaaggttat aggataggtt agaatggaag tttttcgatt tttttcgggg
                                                                         1800
cgtigggtit atagitttat titgttattt titgtticgg aagtgagtat tgaagttatt
                                                                         1860
taaqagagt tagtgattaa aggtagcgat ttttaggtgt agaggttggg gtagacgtgt
                                                                         1920
ttatqaqttt gttttttcgc gtattttttt ttatttcqtt tttatttttq ttttqqttat
                                                                         1980
tatgtgtttt tattattttg agatttagag aggtgtagcg gtttgtcgaa ggttatatag
                                                                         2040
tatattgagt agggttttcg tttttattgt ttagttgttt ttttttattg tttattcggg
                                                                         2100
tttttgtaag tttgttagga ttttcgggag tttgttttt ttaatgtata gagtcgtggc
                                                                         2160
gcgtgttaaa gtgtgggaaa gtttttggga gagggaaggg gtagaaaata tagtcgttta
                                                                         2220
2280
                                                                         2340
atgtttttt agttttttt tagcgaagta ggcgcggcgg gg
                                                                         2382
<210> 399
<211> 2382
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 399
```

```
tttcgtcgcg tttgtttcgt tgaggaggag ttggaagaat atgttcgcgc gattttgggg
                                                                         60
                                                                         120
agtttttggc gtagagtggg gtgtgtcgga ggtatcggcg gtgcgtagga ttggttgttt
                                                                        180
ttttgagegt ttttgttttg tegtagtegt ttaaggttga gatgageggt tgtatttttt
attttttttt ttttttagga atttttttat attttgatac gcgttacggt tttgtgtatt
                                                                        240
                                                                        300
ggaggaagta ggttttcggg gattttggta agtttgtaga ggttcgggtg ggtaatggga
gggggtagtt gggtagtgga aacgagggtt ttatttagtg tgttgtgtga ttttcgataa
                                                                        360
gtcgttgtat ttttttgaat tttaggatga tggaggtata tggtaattaa gataggaatg
                                                                        420
                                                                        480
gggacgaggt gggggagggt gcgcggggga ataagtttat gggtacgttt gttttagttt
                                                                        540
ttgtatttgg gaatcgttgt ttttggttat tggttttttt taagtgattt tagtgtttat
                                                                        600
tttcggggta gggggtggta aggtggagtt gtgaatttag cgtttcgggg agagtcggaa
agtttttatt ttgatttgtt ttatgatttt gggtaattta ttgatttatt ttgggtttta
                                                                        660
gtatttttat ttggaaaatg gggtttggaa tttaaggtat ttgaggtttt ttttagtttt aatattttgt aggtgtcgtt tattgaaagg ttggggatgg ggtgtagttg ggtagaatga tttggttttt gggaagattg tagtttttt attgtatttt ttatttaaa gtagtagggt
                                                                        720
                                                                        780
                                                                        840
tgtgatattt ttagtttgtt tattggttat tttttttaat ttttagaatt tagttgatgg
                                                                        900
960
gggaaaggtt cgttgtgata gatagatgat tataggttaa gaggcgcggg cggacgcggg
                                                                       1020
gttattaaac ggtgatattt cgatttttgg ggtttggcgt ttatcgcggg ataaattaag
                                                                       1080
agtaggattg agttcgcggt gggaattgta attcggaaat ttatgggcgt cggaattatt
                                                                       1140
tggttagatt tcggggaggt gttttgaatt atttcgggaa tttttcgttt ttaatttatt
                                                                       1200
                                                                       1260
ttttttcgcg gagagttcgg gtttaacgcg gagagaaggc gagagaagtc gcggtgtttt
agcgttggga tcggggattt gcggggaagt aaaggcgatt cgtcgtagag aagtcgtggg
                                                                       1320
aagggcgcgg ggaggtgtat gaagtgggcg tgcggagaga agtgggtgtt gggcgcgtgg
                                                                       1380
gatttaggtg gtcggtgaag agttttggta ttagttttga ttttattttt tgggatagat
                                                                       1440
tgaggtaggg gatcgcgggt tgtcggagtt ttcggggcga gttttttagt tttttttt
                                                                       1500
1560
atttttattt tttgaagtaa atcgtttttt ttttattttc gttcgtacgt cgttttttat
                                                                       1620
agttaggggg ttttttttt ttcgtttttt tttttagtta attttcggat tcgagaggtt
                                                                       1680
gtaaattcgg agttggcggg tggggtgggg agtgttgtag gagtgtacgg agttggcggg
                                                                       1740
gattttttag tagaatcggg ggagtttcgt agggtttcgg gggttcggag tcggtttcgt
                                                                       1800
tttttttaaa tttttgtagg atcgcgttag tttaaatttt tttgttttag tttagttcgt ttcgtatata ttttttttt ttttgtcgtt tattttttt tcggtcggta gtaaggattg
                                                                       1860
                                                                       1920
tagaaggggg gcgtgggcgt taggaggcgg ttttttttcgt agcggggatt gtttggggcg
                                                                       1980
gaggattigc gtcgcggttt gcggggatcg ttttcggagg ggtcgtacgc gttgtgtgta
                                                                       2040
ggcggatgtg aggagtattt taagaggcgg gtgggggaag cgggattagg ttgttattat
                                                                       2100
tgtagagaga gagagaggaa gagaagagag agagggagag attcgagagc gagcgagcgc
                                                                       2160
gggagcgagg gtcgtagcgg tagggtcggc ggggaagtgg gaagagggat ttggatttcg
                                                                       2220
ggattttagt cgttttcgtt ttcgtttttt ttattagttt aggttgaacg cgtttggaac
                                                                       2280
gttttagggt aagagggaat tttaggcggg gtattttacg agggtagtta gtagtttcga
                                                                       2340
gcgaagtcgt gtttggatcg atagtggtta tttttagggt tt
                                                                       2382
<210> 400
<211> 2192
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 400
ttatataatt tttaaaaaga aagaaatttt taaattatag atgtgtttgg aattagaatt
tagaaagtat ttgggtaggg aaaatagttt ttagtgttta aggttaaagt tagtagggtt
```

60 120 tttttggatg ggaaagagat atgagattgt aagtaatttt tggatattat ttatttgtta 180 ttgtgttttt atttttttt ttagttattt atacgttttt tttttttagt taaaatgaat 240 ttaatttttg ttatagtatt ttattttgtt aataaaattt aggattgaag aatgagaata 300 aaagggtttt atatttatta ttttttaatt tttgatttta gtttggatag aataattatt 360 tattttagaa aattggtata gggagtattt attagtagtt gtaatatatt attgttaaag 420 ggagggattt tgtaaggcgg tattgggtgt tttatatgta tgggaaattc gaggttacgt 480 ttagtgttaa ttataagtat ttttattttt ggttaggtaa gttttgattt ttgaattttg 540 agtttttaat tttttttaaa atgagaaaga gatggttttt tttagagttt tttagttttt 600 aatttatagg taaatattat cgtatgttgt tttttagtag agattggttt taattaaggt 660 aaataagtta ggatggattt tgttgatcgt gatggtttag tgttatattt tatatatttt 720 Page 180

```
780
attatttttt aqaatattta ataqtqttgt ttttggtagt tttgggggttg tagtttttgt
agagaggagg aattggtatt gaaagaaata gttgagtttt attacgttac gtggggcgtt
                                                                    840
tttattgtta agagtaattt tttttttttg ggaagaaaag cgtgggcggg gtcggggtag
                                                                    900
tttttttttt tcgcgttgtt ttggagatta tgggcgttta gttgtagttg tcgttggatc
                                                                    960
ggttttggtt gttttgagag gtgttttttg taggcgggga cgcggttagg tcggacgtaa
                                                                   1020
ggtttttttt taatttatcg ggtttagggg gacggttagg ggttgtttag tttatttggc
                                                                   1080
                                                                   1140
gggttaggga gggggatggt agaggttggt tgggtttttt tagtatatag taggcgttta
1200
agggtggatt agggtttcgg atgcgaattt tgcgtcgtat tagagtttta gttttaatcg
                                                                   1260
atattttgag cgtcgttaat tttttttcga agagtatggt agagtgaagt ataagtaata
                                                                   1320
attittgtatt attogogitt ttagagittt ttoggattig ogttatgogo ggoggggaga
                                                                   1380
ateggttttt tgttcgagtt tagagtttat ttgaggttag ttttategtt tegttgaaag
                                                                   1440
ttaaaatttt aagtegaegt tttttagteg tttattttt agtagagagt ttttttegg
                                                                   1500
ggagttttgt tttggggtgt cgtttcgagg ttagacgtcg tttcgtttgg atttgaattt
                                                                   1560
gagtttggga cqqqcqattt tttaatttta qgaattggaa ttgagatatt aaagtttaga
                                                                   1620
cgcgtttttt ggacgacggt ttttcggtag gggtatttag ttagcggtta agatgtcgtt
                                                                   1680
agtggggaag gtgatttagg tttcgaatgg gaaagtttat tagtagattt tttaggttga
                                                                   1740
ggtaggagtc gttttttgtt tcgttttttt ttatttttt ttttttgttt tttttaaat
                                                                   1800
tttttttttt tttagggttt ttttattgga aattgaataa aataagggtt ttgaaattat
                                                                   1860
tttgatttta aaaataattt ttgtttgttt ttaaatcgta ttaatataaa attagaatgt
                                                                   1920
tagtttttga aaattagaaa atttaaatta aaattttaaa tgtaaattat ttagaaatag
                                                                   1980
tttggatgga attattgggt gatttttgtt ttttttatgt ataaaaatat gattaatttt
                                                                   2040
tgtatttaaa aaataggttt tattttgtat tagtgttttg aaatttgttt ttttttata
                                                                   2100
atagtatttt atagattttt ttttatgttc gtgggcgttt atgtatttta ttatattgag
                                                                   2160
                                                                   2192
tagittitta titgitgatt taggattitt at
```

<210> 401 <211> 2192

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 401

atgggagttt	taggttaata	agtggggagt	tgtttagtat	ggtgaaatat	atgggcgttt	60
acgggtatag	aaaagggttt	gtgagatatt	gttatgaaga	aaaagtagat	tttaaaatat	120
tagtatagaa	tgaaatttat	tttttaaata	taaaaattag	ttatgttttt	atgtatggga	180
aaaatagagg	ttatttagtg	gttttattta	ggttattttt	gagtaattta	tatttaaaat	240
tttaatttaa	gttttttaat	ttttaagaat	tgatatttta	attttgtatt	ggtacgattt	300
aagaataagt	aagaattatt	tttaaaatta	aagtaatttt	aaagtttttg	ttttatttaa	360
tttttagtag	ggaagttttg	ggagggaggg	aagtttggaa	gaaagtaagg	gaagggggat	420
ggagaaaagc	gggatagagg	gcggttttta	ttttagtttg	gaagatttgt	tggtaggttt	480
ttttattcgg	aatttgggtt	attttttta	ttgacgatat	tttggtcgtt	ggttggatgt	540
ttttgtcggg		ttaggaaacg				600
tttgaggttg	ggaaatcgtt	cgttttaaat	ttaggtttag	gtttaggcgg	gacgacgttt	660
ggtttcgagg	cggtatttta	gggtaggatt	tttcggggaa	ggattttttg	ttggggggta	720
ggcggttggg	gaacgtcgat	ttagggtttt	aatttttaac	gaaacgatga	aattaatttt	780
		taggaggtcg				840
		ataatatagg				900
		cgtttaaggt				960
		ttaatttatt				1020
		ggttacgtta				1080
taattagttt	ttgttatttt	tttttttagt	tcgttaagta	gattgagtag	tttttggtcg	1140
tttttttgag	ttcggtagat	tggagggagg	ttttgcgttc	ggtttggtcg	cgttttcgtt	1200
tgtagaaagt	attttttaag	gtagttaggg	tcggtttagc	gataattgta	gttggacgtt	1260
tatggttttt	aaggtaacgc	ggaggggagg	gattgtttcg	gtttcgttta	cgttttttt	1320
tttagggagg	ggagattgtt	tttagtaatg	ggagcgtttt	acgtggcgta	gtgaaattta	1380
attattttt	ttaatgttag	tttttttt	ttataaggat	tataatttta	gggttgttag	1440
		ttgaaaggtg				1500
ttacggttaa	taaagtttat	tttaatttat	ttgttttggt	taaaattaat	ttttgttggg	1560
ggatagtata	cggtagtgtt	tgtttgtaag	ttagaagttg	aaagattttg	gaagaaatta	1620

47675-47.txt 1680 ttagagatga aaatgtttgt ggttggtatt gaacgtggtt tcggggttttt tatatatatg agatatttag tgtcgtttta tagaattttt ttttttggta gtgatatgtt ataattgtta 1740 1800 ataaatgttt titatgttaa ttitttagaa tgagtgattg ttitgtttag attagaatta 1860 gaaattaaga aatggtgagt ataaaatttt titatittta ttttttagtt ttgggtttta 1920 1980 gtaggtgatt gagggaaggg atgaaaatat aataataaat aggtaatgtt taggaattat 2040 ttgtagtttt atatttttt tttatttaag gaggttttat tggttttggt tttgaatatt agaaattatt ttttttattt agatgttttt tgggttttgg ttttaggtat atttgtaatt 2100 2160 taggggtttt tttttttta aaaattatat gg 2192 <210> 402 <211> 2192 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 402 ttatataatt tttaaaaaga aagaaatttt taaattatag atgtgtttgg aattagaatt 60 tagaaagtat ttgggtaggg aaaatagttt ttagtgttta aggttaaagt tagtagggtt 120 ttttttggatg ggaaagagat atgagattgt aagtaatttt tggatattat ttatttgtta 180 ttgtgttttt attttttt ttagttattt atacgttttt tttttttagt taaaatgaat 240 ttaatttttg ttatagtatt ttattttgtt aataaaattt aggattgaag aatgagaata 300 aaagggtttt atatttatta ttttttaatt tttgatttta gtttggatag aataattatt 360 tattttagaa aattggtata gggagtattt attagtagtt gtaatatatt attgttaaag 420 ggagggattt tgtaaggcgg tattgggtgt tttatatgta tgggaaattc gaggttacgt ttagtgttaa ttataagtat ttttattttt ggttaggtaa gttttgattt ttgaattttg 480 540 agtttttaat tttttttaaa atgagaaaga gatggttttt tttagagttt tttagttttt 600 aatttatagg taaatattat cgtatgttgt tttttagtag agattggttt taattaaggt 660 aaataagtta ggatggattt tgttgatcgt gatggtttag tgttatattt tatatatttt 720 attatttttt agaatattta atagtgttgt ttttggtagt ttttggggttg tagtttttgt 780 agagaggagg aattggtatt gaaagaaata gttgagtttt attacgttac gtggggcgtt 840 tttattgtta agagtaattt tttttttttg ggaagaaaag cgtgggcggg gtcggggtag 900 tttttttttt tcgcgttgtt ttggagatta tgggcgttta gttgtagttg tcgttggatc 960 ggttttggtt gttttgagag gtgttttttg taggcgggga cgcggttagg tcggacgtaa 1020 ggtttttttt taatttatcg ggtttagggg gacggttagg ggttgtttag tttatttggc 1080 gggttaggga gggggatggt agaggttggt tgggtttttt tagtatatag taggcgttta 1140 attagogtga titgaattag gitattitit tilittaatt tilittitg tgittiatgg 1200 agggtggatt agggtttcgg atgcgaattt tgcgtcgtat tagagtttta gitttaatcg 1260 atattttgag cgtcgttaat tttttttcga agagtatggt agagtgaagt ataagtaata 1320 attttgtatt attcgcgttt ttagagtttt ttcggatttg cgttatgcgc ggcggggaga 1380 atcggttttt tgttcgagtt tagagtttat ttgaggttag ttttatcqtt tcqttqaaaq 1440 ttaaaatttt aagtcgacgt tttttagtcg tttatttttt agtagagagt ttttttcgg 1500 ggagttttgt tttggggtgt cgtttcgagg ttagacgtcg tttcgtttgg atttgaatit 1560 gagtttggga cgggcgattt tttaatttta ggaattggaa ttgagatatt aaagtttaga 1620 cgcgtttttt ggacgacggt ttttcggtag gggtatttag ttagcggtta agatgtcgtt 1680 agtggggaag gtgatttagg tttcgaatgg gaaagtttat tagtagattt tttaggttga ggtaggagtc gttttttgtt tcgtttttt ttatttttt ttttttgtt tttttaaat 1740 1800 ttttttttt tttagggttt ttttattgga aattgaataa aataagggtt ttgaaattat 1860 tttgatttta aaaataattt ttgtttgttt ttaaatcgta ttaatataaa attagaatgt 1920 tagtttttga aaattagaaa atttaaatta aaattttaaa tgtaaattat ttagaaatag 1980 tttggatgga attattgggt gatttttgtt ttttttatgt ataaaaatat qattaatttt 2040 tgtatttaaa aaataggttt tattttgtat tagtgttttg aaatttgttt ttttttata 2100 atagtatttt atagattttt ttttatgttc gtgggcgttt atgtatttta ttatattgag 2160 tagtttttta tttgttgatt taggattttt at 2192 <210> 403 <211> 2192 <212> DNA

<213> Artificial Sequence

```
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 403
                                                                           60
atqqqaqttt taqqttaata aqtqqqqaqt tgtttagtat qgtgaaatat atgggcgttt
                                                                          120
acgggtatag aaaagggttt gtgagatatt gttatgaaga aaaagtagat tttaaaatat
tagtatagaa tgaaatttat tttttaaata taaaaattag ttatgttttt atgtatggga
                                                                          180
aaaatagagg tiatttagtg gttttattta ggttattttt gagtaattta tatttaaaat tttaatttaa gtttttaat ttttaagaat tgatattta attttgtatt ggtacgattt
                                                                          240
                                                                          300
360
                                                                          420
tttttagtag ggaagttttg ggagggaggg aagtttggaa gaaagtaagg gaagggggat
ggagaaaagc gggatagagg gcggttttta ttttagtttg gaagatttgt tggtaggttt
                                                                          480
ttttattcgg aatttgggtt attttttta ttgacgatat tttggtcgtt ggttggatgt
                                                                          540
                                                                          600
ttttgtcggg aagtcgtcgt ttaggaaacg cgtttaggtt ttggtgtttt aattttaatt
                                                                          660
tttgaggttg ggaaatcgtt cgttttaaat ttaggtttag gtttaggcgg gacgacgttt
ggtttcgagg cggtatttta gggtaggatt tttcgggggaa ggattttttg ttggggggta
                                                                          720
ggcggttggg gaacgtcgat ttagggtttt aattittaac gaaacgatga aattaatttt
                                                                          780
agatgagttt tgaattcgag taggaggtcg gtttttttcg tcgcgtatgg cgtaaattcg
                                                                          840
aagggatttt gggaacgcga ataatatagg attattgttt gtgttttatt ttgttatgtt
                                                                          900
tttcggggaa aagttaacgg cgtttaaggt gtcggttggg attggaattt taatgcggcg
                                                                          960
tagaattogt attogggatt ttaatttatt ttttatggga tatagggagg agaattggag
                                                                         1020
ggagagagta atttgattta ggttacgtta attaggcgtt tattgtgtgt tgagaagatt
                                                                         1080
taattaqttt ttqttatttt tttttttagt tcgttaagta gattgagtag tttttggtcg
                                                                         1140
                                                                         1200
tttttttgag ttcggtagat tggagggagg ttttgcgttc ggtttggtcg cgttttcgtt
tgtagaaagt atttttaag gtagttaggg tcggtttagc gataattgta gttggacgtt
                                                                         1260
tatggttttt aaggtaacgc ggaggggagg gattgtttcg gtttcgttta cgttttttt
tttagggagg ggagattgtt tttagtaatg ggagcgttt acgtggcgta gtgaaattta
attattttt ttaatgttag tttttttt ttataaggat tataatttta gggttgttag
gagtagtatt attaaatgtt ttgaaaggtg gtaggatata tgagatgtag tattgagtta
ttacggttaa taaagtttat tttaatttat ttgttttggt taaaattaat ttttgttggg
                                                                         1320
                                                                         1380
                                                                         1440
                                                                         1500
                                                                         1560
ggatagtata cggtagtgtt tgtttgtaag ttagaagttg aaagattttg gaagaaatta
                                                                         1620
1680
ttaqaqatqa aaatgtttgt ggttggtatt gaacgtggtt tcgggttttt tatatatatg
                                                                         1740
agatatttag tgtcgtttta tagaattttt ttttttggta gtgatatgtt ataattgtta
                                                                         1800
ataaatgtti titaigttaa tittttagaa tgagtgattg tittgttiag attagaatta
                                                                         1860
gaaattaaga aatggtgagt ataaaatttt tttattttta tttttagtt ttgggtttta
                                                                         1920
1980
gtaggtqatt gagggaaggg atgaaaatat aataataaat aggtaatgtt taggaattat
                                                                         2040
ttgtagtttt atatttttt tttatttaag gaggttttat tggttttggt tttgaatatt
                                                                         2100
agaaattatt ttttttattt agatgttttt tgggttttgg ttttaggtat atttgtaatt
                                                                         2160
taggggtttt tttttttta aaaattatat gg
                                                                         2192
<210> 404
<211> 2244
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<220>
<221> unsure
<222> (2126, 2128, 2131, 2132)
<223> unknown base
<400> 404
ttttattttt tttttttt tcgtttttt tttattttt ttttttt ttttttt
                                                                           60
tttttatttt ttttttgttt ttgagttttt attgatcgat ttttttttat tttattcgtt
                                                                          120
ttttttttaa tgtgttaatt tttgttttat tttcgatttt tttaggtatt gggaggcggg
                                                                          180
atgggggtgt gcgttttttt ttaggagttt tgtttttta agatttatag aaattaggat
                                                                          240
                                        Page 183
```

47675-47.txt 300 tcgggttgat tagtttttt gtgtagaggt agttgagagg ttttgttttg tagagggaaa 360 agagtttttt attttttat ttattatata ggtaaattta tttggttatt ggttgaaggt 420 atagttttgt tttcgcgggg aatcggcggt taggatataa tagcgttttt ggagtttatt 480 tttggttttg gcgttggcgt agggattttt tgatcgggtt tgaggggttc gggttagttt 540 taatgttatt atttatagcg agggtagggt gtaaggttga gaaggttata tttatcgttt 600 660 tttgtttcgg ttttagcgtt tgttgggatt tgttaggatt tgtcggggtt tcgggagatt 720 ttgagtattc gtaggaagag gtgttgagaa attaaaaatt taggttagtt aatgtatttt 780 tgtcgtcggt tgtaggtttc gtttttgtat taagcgggcg ttgattgtgc gcgtttggcg 840 atcgcgggga ggattggcgg ttcgcgggag gggacgggta gaggcgcggg ttatattgtt ttggagtcgg ttcggttttt tgtgtttttt ttagcggtta agttgcgagg tatagttttt 900 960 taitgittta ggagtataga aattittigt gigggcggcg ggigcgcgag itagagggaa 1020 agatgtagta gttattgcga ttggtacgta gttgcgcgtt tttgtgcgta cggatttcgc 1080 geggtgtgeg tggegattge gttgttttta ggagtaagtt aegggtttag aggggtaaaa 1140 tgtttaggtt tttcgttggg aaggatatat tatattttat ggtaagttag ggtgggcgat 1200 tttttatgga tcgggtggag gggggtattt tttaggatcg gcgggcggtt taggggaata 1260 attcgtggtg gcgatgattt gtatagcgcg ggttttggga tgcgcgcggt ttcgagttag 1320 tttcgtatag ttcgttttcg gagttgcgag tttaggtttt tattttcgat ttttcggtt 1380 tttttcgtat cgttgagttt agtttgtggg gtgtattcga ttaacgttcg atagggttgg 1440 ggaatgtgat aggtagtagg tttattcggg tttggggagg gggagttttc gttttgatag tattttttt tgtcgtttgt tggtggattt ttatttttag tcggtaatcg tttcgtagtg 1500 1560 ttgatttaag aaggtaaaga aaattaggtt tttttgtaaa gagttttttt taaatcggcg 1620 1680 tttatttttt tttatagttt tttttgattt gttgttggtt cggggtaaga taaagtagtt 1740 agtagagagc gataataata gcggcgggaa atgaattgga gattggttga tagtttttaa 1800 1860 tattttgtta tagatttttt cgaatgtttt aggttgtttt tggtgggttt tagtattcgt cggttttttg ggtatcgggg attagaagga atttggtagt tggttttagg ggtatagtta aaggtaggat gatagttatt tttttgttta ttttagagcg ttgtcgtttt tttatgtcgg 1920 1980 tcgcgtaaag aatatagttt ttaaaaaata cgtgtttttt gtttatatag gtttgaaagt 2040 gatgaggaaa gtaatgittc gtttattagc gagttttagt itttaaaatg atttiaagcg ttgttgagat gagaaagcgt ggtatnintt nngggggttt ttagttttat tcgcgtttat 2100 2160 ggtgtaagtt tgtagggata ggttcgggat agtattgttt acgttgttag atttttcgta 2220 gaggatcgtt gaagttgttt tcgt 2244 <210> 405 <211> 2244 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <220> <221> unsure <222> (113, 114, 117, 119) <223> unknown base <400> 405 acqaaggtag ttttagcgat tttttgcgga aaatttagta gcgtgggtag tgttgtttcg 60 ggtttgttt tgtagatttg tattatgggc gcgggtgggg ttgaggattt ttnnggngna 120 tgttacgttt tittatttta gtaacgittg ggattatitt aaaagitgaa attcgttaat 180 aggcgaagta ttatttttt tattattttt agatttatat gggtagaagg tacgtgtttt 240 ttaaaagttg tgttttttgc gcgatcggta tgagggggcg gtagcgtttt gagatgagta 300 qqagaatagt tgttattttg tttttaattg tatttttaag attaqttqtt aaqttttttt 360 tggttttcgg tgtttaagaa gtcggcgggt attaaaattt attagagata gtttgggata 420 ttcgggggga tttatgataa aatgttaaga attgttagtt agtttttagt ttattttcg 480 togttattat tatogttttt tattggttgt tttattttgt ttogaattaa tagtaaatta 540 qaqaaaattg taggagagga tgaaaaataa attaaaggag aaagattata taaattttta 600 aatttattta aagtattegg agttegtega tttggggggag gttttttgta qqqaaattta 660 gtttttttta tttttttaga ttaatattgc ggggcgatta tcgattggga ataggaattt 720 780 Page 184

```
840
tgaatttgtt gtttgttata ttttttagtt ttgtcgggcg ttggtcgagt gtattttata
                                                                          900
agttgggttt agcggtgcga ggaaagttcg ggggatcggg ggtggaaatt tgagttcgta
gtttcggaag cgagttgtgc gaggttggtt cggaatcgcg cgtattttaa gattcgcgtt
                                                                          960
atgtaaatta tegttattae gaattgtttt tttagategt tegtegattt tgaaagatat
                                                                         1020
                                                                         1080
tttttttttat tcgatttatg ggaagtcgtt tattttggtt tgttataggg tatagtgtgt
                                                                         1140
ttttttttagc gggggatttg gatattttgt tttttttgggt tcgtggtttg tttttagggg
                                                                         1200
tagcgtagtc gttacgtata tcgcgcgggg ttcgtgcgta taaaagcgcg taattgcgtg
ttagicgiag taattattgt attttttt ttagttcgcg tattcgtcgt ttatatagga
                                                                         1260
                                                                         1320
ggtttttgtg tttttagaat aatagagggt tgtatttcgt agtttggtcg ttagaggagg
tataaagagt cgagtcggtt ttagaataat gtaattcgcg tttttattcg ttttttttcg
                                                                         1380
                                                                         1440
cgggtcgtta gtttttttcg cggtcgttag gcgcgtataa ttagcgttcg tttaatgtaa
aggoggagtt tgtagtoggo ggtagggatg tattaattaa tttgaatttt taattttta
                                                                         1500
gtattttttt ttgcgagtgt ttagggtttt tcggagtttc ggtaaatttt ggtaaatttt
                                                                         1560
agtaaacgtt gggatcgggg taaggacggt cggtgagtaa ggtaaagcgt tttttatttt
                                                                         1620
agtttttttt tttacgtttt tttaaagcgg tgaatgtgat ttttttaatt ttatattttg
                                                                         1680
                                                                         1740
ttttcgttgt aggtagtgat attggagttg gttcgagttt tttaagttcg gttagaaagt
                                                                         1800
ttttgcgtta acgttaaggt tagagatggg ttttaggagc gttgttgtat tttggtcgtc
ggttttttcgc gggggtaagg ttgtgttttt agttaatgat taaataagtt tgtttatatg
                                                                         1860
gtgggtggga gagtagagag tttttttttt tttgtagagt aaagtttttt aattgttttt
                                                                         1920
gtatagggag attagttagt tcggaaaatt gaaatgtgtt gtttaaaaga gatttgaagt
                                                                         1980
gtatggggtt ttgaataagg gtaggttttg gtttttgtgg gttttggaaa gatagggttt ttagaggaaa acgtatattt ttatttcgtt ttttagtatt tgggaagatc ggaaataggg
                                                                         2040
                                                                         2100
                                                                         2160
taaaggttgg tatattgagg ggagggcgaa tgaaatgggg gggggtcggt taatgaaagt
ttagggataa ggagagagta agaaagaaaa agaaaaggga gaagggaaag taggggaaga
                                                                         2220
                                                                         2244
gcggaagaga aagagaaaat ggaa
```

<210> 406 <211> 2420

<211> 242 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 406

cgggatgagt	agggagagcg	cgcggaggtt	ttcgattttt	tcgattataa	60
ataatttta	aagtgtttaa	tattttcgtt	tttaagtttt	ttaaaatata	120
atattaaaat	attcggtttt	tattaggaag	attacggttt	tgaaaggaaa	180
gatattttat	tttatttgga	tttatgatta	aaaaaataaa	aataaaaatt	240
gtttgtattt	tttttttta	aatttcggtt	cggttcgaag	gtagggaatt	300
aggtcgatgg	aagagagtta	gcggggcgag	cgagcgggta	gtttttttt	360
gagttattta	gaaggatagg	ggaagggaag	gaagaagagg	cgaggaaaaa	420
ggaagcggag	gttaggagcg	acggagtaag	gaaagtagtt	tgtaagcgag	480
aaaaatatag	tcgtacgaat	ttagagagat	tataagtcgt	acgtaagtag	540
agcgagagcg	cgagcgcgcg	tttttttcgc	ggtttggggt	tagatagttt	600
tcgaattatt	ttttaagtat	tgtttcgttt	tttttgtttc	ggtcgttttt	660
tttttttt	ttttatttt	tttttaaaaa	ttaaaataat	ataagggagg	720
tttttttaaa	tcggtcgatt	tatttaaaga	taataataat	aataataaat	780
ttatatttta	tggtgggaga	gacgtgggat	taattttcgg	tatttattt	840
					900
aaagtatttg	gtaagagcgg	aaaaaaaag	aattaaaagg	taaaataatg	960
gcggcggcgg	tagcggtatt	agcggtaata	gcggcggcgg	cggtagtagt	1020
gcggtagtaa	tagtaataat	tatttggtgt	tcggttttt	ttagaaattt	1080
tatttttaag	aattttagtt	ttaagaatta	atagagttta	attttcggaa	1140
					1200
tgtttttggt	taattaaaag	tttttaaagt	tataagattt	ttttattggt	1260
					1320
ttgaaggtgg	tttttttt	tcgggtttaa	gacgatggta	tggtttgttt	1380
acgtgggttt	tttttttgtg	acgtcggcgt	tttcgttgta	gtaaagttcg	1440
	-				1500
					1560
aaagggagcg	agaggtttga	attattggga	aaagtatgtt	atatatatag	1620
	ataattitta atattaaaat gatattttat gatttgtattt aggtcgatgg gagttattta ggaagcggag aaaaatatag agcgagagcg tcgaattatt tttttttt ttttttaaa taatataa agcgagcggag gcggtagtaat gcggcggcgg gcggtagtaat gcgggtagtaat ggtttttttt ttgtttttt ttgtttttgg tcgaggttt ttgttttgg gcgttgg gcgttttt tgtttttgg tcgaggttt ttgttttgg acgtgggtt ttggagatt ttgaaggtt ttggagatt tttgagaat ggtttgg	ataattitta aagtgittaa atattaaaat tittattittat aggtcgatgg aagaggatta gagttatta gaaggataagg gaagcggag gttaggagcg aaaaatatag tcgtacgaat agcgagagcg cgagcgcgcg tcgaattatt tittitt tittaattit tittitaaa tcggtcgatt tittititaa tcggtcgatt tittititaa tcggtcgatt tittititaa tcggtcgat agtagaata agaatata aaatatta ggcggcgcg tagagaatatt gggtcggcg tagagaatatt gcggtagtaa aatatataa aaagtattagaa aattitaagt ggattitaat tattitaag tagaataa aattititagt taattititag taattitititit tittititititititititititi	ataattitta aagtgtttaa tattitcgtt atattaaaat tttattitgga ttattaggaag gatatttat tttatttgga ttattaggtta aggtcgatgg aagagggtta geggggggggggggggggggggg	ataattitta aagigittaa tattitegit titaagitti atattaaaat atteggitti tattaggaag attaeggitti gatattitat titattigga titatgatta aaaaaataaa gittgiatti tittittita aatteeggit eggitegaag aggeegatg aagagagita geggggegag egagegggita gagttatta gaaggatagg ggaagggaag gaagaagagg ggaagegag gitaggageg acggagtaag gaagaagagg ggaagegag egagegegeg tittiteegit tattaagtegi agegagageg egagegegeg tittiteegi ggitteggggitegaattatti tittaagiat tittitaaa teggegata tattaagata tittititaa teggieggat tattaaaga taataatattitititaa teggieggaga gaeggggat taattattiteegi ggitteggggitegaattattitititaa teggieggaga gaeggggat taattiteegi gaeggggat taataataat tittitaaa teggieggaga gaegggggat taattiteegi aaaaaaaaa aaaaaaaaa aaaaaaaaaaaaaaa	cgggatgagt agggagagcg cgcggaggtt ttcgatttt tcgattata ataatttta aagtgttaa tatttcgtt ttaaagttt ttaaaata atattaaaat attcggttt tattaggaag attacggttt tgaaagagaa gatatttat tttatttga tttattgatta aaaaaataaa aataaaaatt gtttgtattt ttttttta aatttcggtt cggttcgaag gtagggaatt aggtcgatgg aagagagta gcggggcgag cgagcggggt cgagcggaatt aggtcgatgg gtaggagaag gaaagaagag gaaagaagag cgaggaaaaa gaaaatataa tcgatcgaat ttagaagaat tataagtcgt tgtaagcgag aacagaagagag gaagaagagg aacagaagag gaaagaagag cgaggaaaaa gagagaggag cgaggagaaaaa tataagaagag cgagcgcgg ttttttcgc ggtttggggt tagatagtt tcgaattatt ttttaagtat tgtttcgttt tttttgttt ggtcgattattta tggtgggaa gacgtgggat taataataat ataaagaggagg tttttttaaa tcggtcgatt tatttaaaaa taaaaaat aaaaaaatt taatattta tggtgggaa gacgtgggat taatttcgg tatttattt aggtaggaga aaaaaaaaaa

1680 1740 attagaatat taggtattac gagaaaaata tttgttaagt agttttcggt gggtttattt 1800 gttttatttt tatttaggat aggggttttt gttgttgttt tgggtttttt ttttttggt gtggtggttt gggatttitg gittitgtat ittgatggtt taliggatttt tgtttttgat 1860 tttttgtttt ttgtaagttt gtggtgttac gtaaattata ggatcggtat cggttggatt 1920 tttttgtacg tqtttttttt ttttttattt aattttttaa qcqttttaaa qatqtattat 1980 tttaatatta atattattga aagaagttta aatttttggt tatatgtaat aattttagtt 2040 2100 ttgaagtgtg ttttttttgt attttagaga aatgtttaaa ggatttgttt tggtttggtt 2160 tgtttttttt taggatagta agtggtgggt ttaatttgtt attgttgatt tttgggaaat 2220 2280 2340 tttgagattt ttgttttcga ggttcgtttt aaggtcgttg taaaaaaatt tttttagttt 2400 gtgtttaaga gattagtcgg 2420 <210> 407 <211> 2420 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 407 tcggttgatt ttttaaatat agattgaaga gattttttta taacgatttt gaaacgagtt 60 togaaaataa aaattttaag attttaagag aaaataaaat ataaataggt atttggttta 120 tagaattttg tagaaaatat atatatatta tttcgttatt tttattttt tttttatata 180 tacgtttttt gtaataagaa attttttaag agttaataat aatagattaa atttattatt 240 300 gtaggagaga tatattttag taaaagttta agggggaaaa agaaaattgt attaaaggaa 360 aaaaaaaaa aaaaagtggg ggttgggatt gttatatatg gttaaaaatt taagtttttt ttaatagtat tagtattgaa ataatatatt tttaaaaacgt ttgagggatt agatagggaa 420 480 agaaaaggta cgtataaaaa aatttaatcg atgtcgattt tgtgatttac gtaatattat 540 aaatttgtaa aaggtaaaaa attagaagta aaaatttata aattattaaa atatagaaat 600 taaaaatttt aagttattat attagaaaga aaaaaattta gaataatagt aaaaattttt 660 gttttaaata aaaataaagt aaatgaattt atcgaaaatt gtttggtaaa tatttttttc 720 gtggtgttta atattttagt tggaaagagt tgtgatgttt attttatttt attttttt 780 tattcgtttt tttaatttta ttatatatat aatatattt ttttagtggt ttaaattttt 840 cgttttttt tgtgtattta gttcgatttg ttgagtttat gggtaagaaa gaaggaatta gttttagatt tcgggaaagt aaagcgtatt tttttttta tgttatcgaa tagtaaatta 900 960 gtttttagaa ttttagaggt cgagttttgt tatagcgaag gcgtcgacgt tatagaggag 1020 gagtttacgt gatggtggcg gagtaggtta tattatcgtt ttgggttcgg ggagggagag 1080 ttatttttag gtttttcgag tttcgaatcg gaatttttaa attcgagacg ttttgtttat 1140 gaggatttcg aaatatgtcg gttagtgaaa aaattttgtg gttttgaggg tttttggttg 1200 gttaggggta gtaaaaattt cggagagttg atattaagtt tttttttgtt acqtaqtaqt 1260 ggtaaagttc gaagtttaaa tttcgagaat tgagttttgt tgatttttag aattggggtt 1320 tttagaagtg gtgatgtaag aagtttttag gaaaggtcgg atattaggtg attattgttg 1380 ttgttgtcgt cgttgttgtt gttattgtcg tcgtcgtcgt tgttgtcgtt ggtgtcgttg 1440 1500 1560 tattttagtt gttaggtgtt aaaataaatg tcgaagatta gttttacgtt ttttttatta 1620 taggatatag attgttatgt atttattatt attattgttg tttttgagtg aatcggtcgg 1680 tttggggagg tttttgttat tttttttgt gttgttttgg tttttggaaa ggaggtggag 1740 gagaggaagg aggggaatta gggggcggtc ggagtagaga ggacgagata gtgtttgggg 1800 ggtgattcgg gttagtttgg gggttgtttg gttttagatc gcggagagga cgcgcgttcg 1860 cgttttcgtt ttttttgttg ttgtttgcgt acggtttgtg atttttttgg attcgtgcgg 1920 ttgtgttttt tttttttt ttcgtttgta aattgttttt tttgtttcgt cgtttttggt 1980 2040 2100 ttatcggttt cggtttttta gattttttgt tttcgagtcg aatcgagatt tggaaggaaa 2160 aaatgtaagc gaattttttg ggtttttgtt tttgtttttt tggttataaa tttagatgag 2220 atgaagtate gtgtttatta ttttttttta gagtegtgat ttttttaatg agagtegagt 2280

Page 186

47675-47.txt 2340 gttttggtgt tttttgtttt tgtgttttgg ggagtttggg ggcggggatg ttgaatattt tgaaaattat ttttttttgg ttgtagtcga gggagtcggg aattttcgcg cgtttttttt 2400 2420 gtttatttcg aggagagaga <210> 408 <211> 2344 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 408 gtttggtata tttaagattt ttacggaggt ttagttttat atttttttt attttttag 60 gttggttttt ttttgttgtc gacgcgtggg agtttagaga gcggtttttc gttttcgcgg 120 gatttttgga gaggttcgga gagtcggttt tcgaaacgcg ttttttttt tttttttt 180 240 tttttttttt tttttcgtt ttttcggttt tattattatt atcgttatta cgtttttttt 300 gttttaggtt tcgacgtttt gggttttttt cggggtgggg cgggttgttt taggggggtt 360 tatcgttatt tatgaagggg tggagtttgt ttgttcgtgg gtttttataa gggcggttgg 420 ttggttggtt ggttgttegg gtaggttttt tggttgtatt tgtegtagtg tatagttegg 480 ttgaggtgta cgggagttcg tcggtttttt tttgttcgcg ttcgttcgtg aaattgcggt 540 cggggtttat cgcgatggtt ttttcgatat tttcggatag tattttttc gcggaagttc 600 660 ggggacgagg acggcgacgg agattcgttt ggatttcgag ttaaagcgag gttttgcgag tttgttttga gcggaattcg tattcgggta tcgttattag agaacggttg gtttaggtta 720 tcggtatttc ggagtttagg gtttagattt ggttttagaa tgagaggtta cgttagttga 780 ggtagtatcg gcgggaattt cggttttggt tcgggagacg cggttcgtta gaaggtcggc 840 gaaagcggat cgtcgttatc ggattttaga tcgttttgtt ttttcgagtt tttgagaagg 900 atcgtttttt aggtatcgtc gttcgggagg agttggttag agagacgggt ttttcggagt 960 ttaggattta gatttggttt tagaatcgaa gggttaggtt tcgggatagg gtggtagggc gttcgcgtag gtaggcggtt tgtgtagcgc ggttttcggc gggggttatt ttgttttttc 1020 1080 gtgggtcgtt ttcgtttata tcggcgcgtg gggaacgggg tttttcgtat tttacgtgtt 1140 ttgcgcgttt ggggtttttt tatagggggt tttcgtgagt taggtagcga gggtcgtttt 1200 cgcgttgtag tttagttagg tcgcgtcggt agaggggatt ttttaatttg tttcggcgcg 1260 eggggattte gtttaegteg ttteggtttt tteggaeggg gegttttttt atttttaggt 1320 ttttcggtgg ttttcgtatt cggggtaaaa gtcgggagga tcgggattcg tagcgcgacg 1380 gtttgtcggg tttttgcgcg gtggtatagt ttgggttcgt ttaagcgggg tcgtagggtt 1440 aaggggtgtt tgcgttattt acgttttagg ggagttcgtg gtggggttgg ggtcggggtt 1500 tttaggtcgt cggggcggcg tgggaatttt aagtcggggt agttttattt ttttagttcg 1560 cgttttcgga cgttttcgcg cggtaggggt agatgtaagg tatttcggcg tttttttagg 1620 cgttttagga gtcggcgttt tggtttgtat ttttttgcgg tttgttgttg gatgagtttt 1680 tggcgagttc ggagtttttg tagtaggcgt aattttttt agaaacggag gtttcggggg 1740 aqttggaggt ttcggaagag gtcgtttcgt tggaagtatt ttttagcgag gaagaatatc 1800 gggttttgtt ggaggagttt taggacgcgg ggttgggacg gggtcgggtg gttcggggta 1860 gggeggtggt tttttttteg eggggaaegt ttggttggtt aeggagggge gtgttttegt 1920 ttcgttttt ttatcgggtt gatcggtttg ggatttttgt tttttaggtt taggttcggt gagagatttt atatagcgga gaattgttat ttttttttgg gtatttcggg gattttagag 1980 2040 teggtttagg tattagtagg tgggtegttt attgegtaeg egegggtttg egggtagteg 2100 tttgggttgt gggagtagtt cgggtagagt ttttttgttt ttttattagt ttatttcqtc 2160 gtttgatcgt tttttttta tttttatttt tcgttttcgg aaaacgcgtc gttttttggg 2220 ttgggtggag attttcgttt cgcgaaatat cgggtttcgc gtagcgttcg ggtttgatat 2280 cglitcggcg gttcgttttt titgcgtttt cgcgttatcg tcgttcgttc gttcgggttt 2340 ttgt 2344 <210> 409 <211> 2344

```
<210> 409
<211> 2344
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
```

<400> 409

gtaggggttc ggggggggg ttggggggg tcggggggg tcgggggggg	60 120 180 240 300 360 420 480 540 660 720 780 960 1020 11200 1220 12320 1380 1560 1560 1620 1740 1860 1920 1980 2040 2160 22280 2344
<210> 410 <211> 2366 <212> DNA <213> Artificial Sequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 410	
ttttttttt tttttggtag aattgttcga tggttttgat tatgtttagg tttatttcga tgtagtagta ggtatggtcg gttcggggtt cgggatagtt cgttacgtag tagtaatagt tttttaggt gttgatttt ttatatttgg ttttttata taggcggtcg aagcgatcga atagatcgtt taggagattt attagggcgt gggtagattt gttggtattt attttggtga agtttacgat atttgtaaat aaaatattga ttttttcgat ttgttgtatt ttaaaagggc ggaaggttat aggagtttt tggatggaag atttttttt	60 120 180 240 300 360 420 480 540

ttagtagttt	ttagtgtagg	gtttcggttt	cgggcgaggg	gaagtaggtt	ttatttcgga	660
aatggtagtt	aaaggtttcg	aaaaggatag	agtaggttat	ttttagatat	aaatttaggt	720
ataaaggtaa	gtgtatgacg	gtatagagta	aaaagagtat	ttcgatgtat	atggagaagt	780
tttttatttg	agataagtaa	gtatttgtgg	gtcgggttgt	ggtcgtaagg	ttggagttgt	840
		gttaagattt				900
ttagtagggt	gagagttagc	gaggtttacg	cgtaatgtcg	ggcgtatagt	ttggtgaagg	960
taaatagaaa	gaagtttata	tatattagga	ggaagtatag	cgcgggggcg	attatgacga	1020
		atcgtaaaat				1080
		aatcggcgtt			tttaggtagg	1140
tttttttag	gtttatcgag	tcgaatttgg	ggttttatta	gcggttggag	gttttttcga	1200
atagttgggg	tagtttttt	tgtttgcgta	gtcggttttc	gtcgtttatt	cgtcggggga	1260
cgttttcgga	gtttttagag	ttgttgtagt	tagaggagat	gttgtatttg	tagtgtttgg	1320
ggtggttgtt	ggaggatagt	tgtttggggt	tgattttgac	gcgtacgttg	ttgttgtttt	1380
cgttggagtc	gtagtttatt	tcggtgttgt	ggtgatgtag	tagttgttgg	tggggtgggg	1440
aagttatgtt	gtcgagtttc	ggggtttgtt	tcggtcgggg	ttattagtat	ttgttagtaa	1500
aacggggaga	gttagcggcg	tttttattta	ggtatgtacg	tttagaggtt	cgggatttgt	1560
ttttgtttta	aggggcggtt	ttagtacgcg	atttggatag	gtattatttg	tttttgtggt	1620
tttcggttta	gcggtgtttt	tatcgttttt	atcgttttta	ttttcgaggc	gtacgagaat	1680
cgttcgggac	ggatttagaa	cgttcggggg	ttttcgtcgc	gtggtcgtcg	tggtttcggg	1740
		ttcgcgtttt				1800
		cgttttttt				1860
		agtcgtttgc				1920
tttttattt	gtaggagtcg	cgtttcgatg	cgttaaaggc	ggcgcgcggt	cggtttcggg	1980
ttcggatttc	gattcggagt	agcgagtttc	ggcgggcgtt	ttcggttcgc	gtttttcggt	2040
cgtttttcgc	gtttcgggtc	ggttttgttc	gcggcggcgg	gcgttggggg	tgggggcgtt	2100
tcgggttgcg	agtgcgcgga	gttcgtcggc	gcggttcgtt	tagtggggtt	tgttttttt	2160
cgagtgcgtc	gtcgttttcg	tcgcggtcgt	agttgtttcg	ggatcgagcg	cgtggaatta	2220
cggacgcggg	tttttcgtcg	ggcggcggtg	tagacgttgt	cgtagagtcg	ggttttcgcg	2280
acgtcggtcg	ggacgttcgt	tcgttcgcgt	ttacgtcggg	ggtcgttttt	tcgagttaga	2340
gatgcggtcg	tcgtcgcgtt	cgtcgt				2366

<210> 411 <211> 2366 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 411

geggegggeg egge	ggcggt cgtatttt:	a gttcggggag	gcggttttcg	gcgtgggcgc	60
gggcgggcgg gcgt	tteggt eggegtege	g ggagttcggt	tttgcggtag	cgtttgtatc	120
gtcgttcggc gagg	ggttcg cgttcgtggi	tttacgcgtt	cggtttcggg	atagttgcgg	180
tcgcggcggg agcg	gcggcg tattcgggg	g gaagtaggtt	ttattagacg	ggtcgcgtcg	240
acgggtttcg cgta	ttcgta gttcggggc	g tttttatttt	tagcgttcgt	cgtcgcgggt	300
agggtcggtt cgga	gcgcgg ggggcggtcg	g gggagcgcga	gtcgggggcg	ttcgtcgaag	360
ttcgttgttt cggg	tcgggg ttcgggttc	g gggtcggtcg	cgcgtcgttt	ttgacgtatc	420
ggagcgcggt tttt	gtagga tggagggtt	cgcgtcgtta	gcggagttgt	ttgtgcgtag	480
gcggttcgcg gggt	tgggag cgtttaagg	ttgaattttt	tttcggagtc	gtagttggag	540
gaggcgagcg cgcg	aggagg agaagtcgc	g cggcgcggag	gttattttcg	gggcgagagg	600
cgcggaaggc gagc	gagtaa agcggtttc	g gagttacggc	ggttacgcgg	cggggatttt	660
cgggcgtttt aggt	tcgttt cgagcggtt!	tcgtgcgttt	cgaaggtggg	ggcggtgggg	720
gcggtgggag tatc	gttgag tcgggaatta	a taggaataga	tggtgtttgt	ttaggtcgcg	.780
tgttggagtc gttt	tttagg ataggagtag	g gtttcgggtt	tttaggcgtg	tatgtttagg	840
tgggagcgtc gtta	attttt ttcgttttgt	tggtaggtat	tggtgatttc	ggtcggggta	900
ggtttcggga ttcg	ataata tggtttttt	attttattag	tagttgttgt	attattatag	960
tatcgaggtg agtt	gcgatt ttagcgggg	a tagtaatagc	gtgcgcgtta	agattaattt	1020
taagtagttg tttt	ttaata gttattttaa	a gtattgtaaa	tatagtattt	tttttagttg	1080
tagtagtttt gggg	atttcg ggggcgttt!	tcggcgagtg	ggcggcggag	gtcggttgcg	1140
taggtagaag aagt	tgtttt agttgttcga	a gagggttttt	agtcgttggt	gggattttaa	1200
gttcgattcg gtga	atttgg aggaggtttg	g tttggagcgt	tgtttttcgt	agatttagcg	1260
tcggtttcgg tatg	cgtttt tttatatcg	g tttcgtttgt	tttttgtgga	gtatttattt	1320

Page 189

```
tgcggtttat atgagattta gattgatcgt tatggtcgtt ttcgcgttgt gtttttttt
                                                                      1380
ggtgtgtgtg ggtttttttt tgtttatttt tattaagttg tacgttcggt attacgcgtg
                                                                      1440
gatttegttg gtttttattt tgttggtgtt egttttgatt ttggttgegt agttttaggt
                                                                      1500
tttgacgttt gttttaggac gcggcgatag ttttaatttt acggttatag ttcggtttat
                                                                      1560
agalatitgt trattitaag iggggagtti tittatgtgt atcgaagtgi tittittgtt
                                                                      1620
ttatatogtt atgtatttat tilligtattt gagtttgtgt ttgggggtgg tttattttgt
                                                                      1680
tttttttcgag atttttggtt attattttcg ggatgaagtt tgttttttt cgttcggagt
                                                                      1740
cggggttttg tattgggagt tgttgagtag ggggttgttt tacggttgta tttacgttat
                                                                      1800
cggggtttat ttgttcgtta tgttttaggt gaggtttagg agtatttttt ttaaggtggg
                                                                      1860
gtaatttatt atgtacggga aggatttgga agtggaaaaa gtttttaaag agaggatgat
                                                                      1920
ttatttcgtg atgttaagaa ttatagtcga tgatttaatg aagtagggag atgaggagag
                                                                      1980
tgagaatttt gttaagaggt atgttatttc gagttttaag aataggaaga aaaagttttt
                                                                      2040
tatttaaaaa gtttttatag tttttcqttt ttttaagatg tagtagatcg aagaagttag
                                                                      2100
tattttattt gtagatatcg tgggttttat taagatgagt gttaataagt ttgtttacgt
                                                                     2160
tttggtgggt tttttgaacg atttgttcgg tcgtttcgat cgtttgtgtg aggagattaa
                                                                      2220
gtgtgagaaa attagtattt tgggagattg ttattattgc gtggcgggtt gtttcgagtt
                                                                      2280
tegggtegat tatgtttatt gttgtatega gatgggtttg ggtatgatta aggttatega
                                                                      2340
gtagttttgt taggagaaga aggaga
                                                                      2366
```

<210> 412

<211> 2264

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 412

gattagtttg	gttaatatgg	taaaatttcg	tttttattaa	aaatataaaa	attagttggg	60
tatggtggtg	tgcgtttgta	attttagtta	ttcgggaggt	tgaagtagga	gaatcgcgtg	120
aatttaggag	gcgtaggttg	tagtgggtta	gagatcgcgt	tattgttttt	tagttcgggc	180
gatttttagg	ttaaatcgtg	ttcgatataa	aagtttatat	cgatatagat	ttttcgatat	240
		taggtttgat				300
ttttaatatt	taagaggaat	tatattgcgg	tgaaaggggt	gttacgaatt	ttgggtttta	360
gtttttgtat	tacgttttag	tgtgatattg	gattttaatt	tttttattat	taaagttaac	420
gggttattat	aatttttta	gaagtagttt	taatttttaa	agataagatt	aaaaatatta	480
atagtgtttg	agtttttgga	atcgaattag	tattggagtt	ttgtttggtc	gtttttttt	540
		tttggaggga				600
ttagggatta	attagaagtt	cggcgagtag	ttagtaatat	aatttttggg	tatttttta	660
gttttattag	tatattttt	tttatttcgt	tttttttcgt	tgtagttttt	tttaagttta	720
tatttgcgtt	ttcgttagtt	ttttttggga	ttttatcggt	gtcggtagtt	ttcgggtttt	780
cgggtatagc	ggtcgtttta	ttcgattttt	ttgtttttt	atttttgtcg	gagggcgatt	840
cgtgggtatc	gtttattacg	gataggattg	gaggggagag	gagatcgcgg	agatgtttga	900
		agttgtatag				960
cgatgatatt	atttttatcg	tttttttgag	gggttatttt	gaggcgcgcg	tagaggatta	1020
gaggatttat	tttaattttg	gtttggcgat	agtgggaagc	gggaaaattg	gacgtaaaga	1080
gtttagatta	tggattttt	tcgttaggaa	attagtattt	gtgaaggagc	gtagttttgt	1140
ttattaaata	atttttttt	tttcgtttgt	ttaaaaatgt	aatgttagtt	aattttttcg	1200
ttaattttt	agagtaaagt	tgggggattg	ggagaaaatt	tagtttcgtt	gtatggcggt	1260
gtcgtggaat	gaggtttttc	gggattggta	aatttttagg	taaggattta	attttgtata	1320
ttttaattgg	ttcgaaatcg	cgggtttgtg	tgtatataga	attgttagta	tttttttt	1380
atttcgtaag	tattttaata	ataaaaagtt	atatagttcg	agtagaattt	atttaattta	1440
tttatttatt	tataattatt	gattgtttat	ttcgatttag	aaatagtgtt	agtattaggg	1500
aataaaatat	atatagtttt	tatttaatta	aatgattttt	tttagttcgt	tagtattgaa	1560
gattgaggtt	tgtttttata	agtttgatat	ttttttatta	gtttggttaa	ttttattaaa	1620
		agaggaaggt				1680
		tgaagtggtg				1740
		ggggagggcg				1800
gtatttatta	tatatttaat	ttatgcgtgt	tgaaagaatg	gatttggaaa	tgtaggtgcg	1860
		ttttacgttg				1920
ggagttttta	aaatttttgg	ggaaggagcg	tatttcggga	ggcgcgtata	ggtgggtttg	1980
tttgttttt	tttatttgta	taatgggggt	ttataaggcg	ttgtttttat	gtttcgagag	2040
			Page 1			

Page 190

47675-47.txt gcgtgtttcg gtatagtaaa gtttatttgc gttggttcgc ggagtttcgt ttagttaggt 2100 2160 gagttagggg gcggggcgc ggggcgcggt gacgcgtgac gtcggatttc ggaagtgacg 2220 cgttcgtggg gaaaaggtag ggagggggtg gtgtttttag tcggtttggg gggtgcgttg ttcggagacg gaaagtttgg gagttcgagt aggttcggtt gtag 2264 <210> 413 <211> 2264 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 413 ttgtagtcga gtttgttcgg gtttttaaat ttttcgtttt cgggtaacgt atttttaaa 60 120 tcggttgggg atattatttt ttttttgttt tttttttacg agcgcgttat tttcgggatt eggegttaeg egttategeg tittegegtt tegtititta gittatitag itgggegggg 180 tttcgcggat tagcgtaggt ggattttgtt gtgtcgagat acgtttttcg gggtatgggg 240 300 atagcgtttt gtgggttttt attatgtagg tggaaaggga taaataggtt tatttgtacg cgtttttcga agtgcgtttt ttttttaaag gttttgggag tttttgggat aggaaatacg 360 gtaattcgtt taggtagcgt agaaataaag agataaatgt aacgcgtatt tatattttta 420 agtttatttt tttagtacgt ataaattaaa tatgtaatag gtgcggggat ttagttatat 480 ttaggtgaat aaaacgtttt ttttttcgta ttttaatgag ggaagagaag aaaattttaa 540 aatagaaata tttttattat tttatttttt tagtacgtga attagtttat taaagtgaaa 600 660 aaattgatag aaaagtgtta gatttgtaaa aataaatttt aatttttagt attggcgaat 720 tgaaaaaaat tatttaattg ggtagaaatt atgtgtgttt tgttttttgg tattagtatt 780 gtttttaaat cgaagtaggt agttaatagt tgtggatgaa taaatgaatt ggataaattt 840 tgttcgagtt atatgatttt ttgttgttaa ggtgtttgcg gaatggaggg gaaatgttag 900 taattttatg tatatatagg ttcgcggttt cgggttagtt gaaatatata aggttgagtt 960 1020 attgagtitt titttagtti tttaatttta ttttgagggg ttaacgaagg gattaattga 1080 tattgtattt ttagataggc gaaaaggaaa aagttattta gtaaataaaa ttgcgttttt 1140 ttataagtgt tggtttttta gcgaggagga tttatagttt gagtttttta cgtttaattt 1200 tttcgttttt tattgtcgtt aaattaaagt taaaatgagt tttttagttt tttacgcgcg 1260 ttttaaaatg attttttagg agagcggtag gggtgatgtt atcgttgcgc gacgatagga 1320 agtaagattt tggtttgtgt agttcgggtt ttcgagtttt tgttttaggt attttcgcga 1380 tttttttttt tttttaattt tattcgtgat ggacgatgtt tacgagtcgt ttttcgataa 1440 aggtggagag ataggggagt cggatgagac ggtcgttgtg ttcgggggatt cgggggttat 1500 cgatatcgat ggaattttag aggaaattga cggagacgta gatgtggatt tgaaagaagt 1560 tgtagcggag gaaggcgagg taggaagaga tgtattgatg aggttgaagg aatatttaga 1620 gattgtgtta ttggttgttc gtcgggtttt tggttagttt ttaataagtt acgagaattc 1680 gaatttatta gaatttttt tagatcgtta attttgaggg ggaagagagg ggacgattaa 1740 ataaaatttt agtgttggtt cggttttaga ggtttaagta ttgttaatat ttttaqtttt 1800 gtttttaggg attaaagtta tttttaaggg agttataata gttcgttggt tttggtggtg 1860 aggaaattgg gatttaatgt tatattgaga cgtagtgtaa gagttaaaat ttaggattcg 1920 tagtattttt tttatogtaa tatggttttt titagatgtt aagataattt ttgttttat 1980 aggaaggagg gtcgattaga tttgttaaag ggagatagat ttttatatcg aaaagtttat atcgatatag atttttatat cgaatacgat ttaatttgag agtcgttcgg gttggagaat 2040 2100 aatggcgcga tttttggttt attgtaattt gcgttttttg ggtttacgcg attttttgt tttagtttt cgagtagtta ggattatagg cgtatattat tatgtttagt taatttttgt 2160 2220 atttttagta gagacggggt titattatgt tggttaggtt ggtt 2264 <210> 414 <211> 1334 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 414

60

```
gggcgttttg attitittt tattitgttt titcgggttt tattcgtttg titttggatt
ttcgtttttt tttgtttttc ggttttttag agttttttt ttatggtagt agtttttcgc
                                                                   120
gttttcggcg tagtttttta gcggacgatt ttttcgtttc ggggttgagt ttagtttttg
                                                                   180
gatgttgttg aaattttcga gattatgcgc gggtttggtt gttgtttttt cgtcgggtgt
                                                                   240
tattgttatc gtcgtcgttt ttgttgtcgt cgttcgcggg atgtttagta gttcgttgtt
                                                                   300
cggttttcgc gattttgtgt ttttcggaag tcgtttgttg ttgtagagtt gtacgaatta
                                                                   360
gttatggtgt tgtgggagtt ttcgcggtag tgtagtagtt ggatattttg cgagggtttt
                                                                   420
tgttggttgt tgttgttgtt cgttatgtta titatcgtag ticgttcggt gaagttcgtt
                                                                   480
gittittia tittitaag tgattgttaa acgtttatcg gttggaattg ttttggtaag
                                                                   540
tttagaattt tegttttega tittttaatt tegtagaaga atacgegtat ttagtataga
                                                                   600
ttagtttatt ttagcgcgtt tttttagttt tttatttttt attgttttag attittaata
                                                                   660
ttatttattt ttatttagag aaataagggg aattgttgta ggttcggggg tgaggggtgg
                                                                   720
ttttgggatg ggtagaaagt gtaggtgtag taggaaattt ttgtatgttt gcgtttatat
                                                                   780
tggagttgcg aggattttga gaaatattaa acgggatggt tttttgggtt tattgttttg
                                                                   840
                                                                   900
aaagagtatt aattttaggg gaaatattga aatagaagtt ttgttattat taaagaaaaa
agttttatta ggatgaggaa gaaataattt tatgagaaag aatgagcgag aaagtaataa
                                                                   960
attaaatggt gattgtaggg gaatcgttga tttttggtaa aggtgttatg aggtcgtatt
                                                                  1020
ggtttttcgt tgaagattag gttatataga ttttagagga gttgggtttt aatagaattt
                                                                  1080
1140
1200
gttttaaggt agtatagggg agttgagaaa aagaatattt tgcgggtttt ttaggtcgga
                                                                  1260
gtgggtatga ttgaggttgg ttaggtttta tgtaggcgag tcgagggcgg aattcgattt
                                                                  1320
tagtgggcgt tgat
                                                                  1334
<210> 415
<211> 1334
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 415
gttagcgttt attgaagtcg ggtttcgttt tcggttcgtt tatatggagt ttgattagtt
                                                                   60
ttagttatgt ttattteggt ttgggagatt egtaaagtgt ttttttttt aatttttttg
                                                                   120
tattattttg aagtttaggg aagtaaagag aggggtatat ttggattgta aaattaatgt
                                                                   180
                                                                   240
agagagagag agagaaattt tattgaaatt tagttttttt agaatttgtg tgatttqqtt
                                                                   300
tttaacggga gattagtgcg attttatggt atttttgtta ggaattagcg atttttttgt
                                                                   360
agttattatt tgatttattg ttttttcgtt tattttttt tataaagtta tttttttt
                                                                   420
attttagtaa gattttttt tttaatgatg ataaagtttt tgttttagtg tttttttag
                                                                   480
qattqqtqtt tttttaaaat aqtqaattta qaaaattatt tcqtttaata ttttttaaaa
                                                                   540
ttttcgtagt tttaatgtaa gcgtaagtat gtaaaggttt tttgttatat ttgtattttt
                                                                   600
tgtttatttt agaattattt tttattttcg ggtttgtaat agtttttttt gtttttttgg
                                                                   660
atagaggtgg gtggtattag gggtttaggg tagtaggagg tgaggggttg aggaggcgcg
                                                                   720
ttagggtagg ttggtttgtg ttggatacgc gtgttttttt gcggagttaa agggtcgggg
                                                                   780
acgggggttt tggatttatt agagtaattt tagtcggtgg gcgtttggta gttatttaag
                                                                   840
gaggtaggga aagtagcgag ttttatcggg cgggttacga tgagtagtat gacgggtagt
                                                                   900
agtagtagtt agtaaaagtt ttcgtaaagt gtttagttgt tgtattgtcg cggggatttt
                                                                   960
tatagtatta tgattagttc gtgtaatttt gtagtagtaa acggttttcg aggaatatag
                                                                  1020
gatcgcgggg gtcgggtagc gggttattga gtatttcgcg gacggcggta gtagaggcgg
                                                                 1080
cggcggtggt agtggtattc ggcggggaag tagtagttaa attcgcgtat gatttcgaga
                                                                  1140
gttttagtaa tatttaggga ttgggtttag tttcggagcg agagggtcgt tcgttgagaa
                                                                  1200
gttgcgtcgg agacgcggga agttgttgtt ataaggaggg agttttggga agtcggagga
                                                                 1260
taggaggaga cgggagttta ggggtagacg agtggagttc gaggaggtag ggtggaggga
                                                                 1320
gagttaaggc gttt
                                                                  1334
<210> 416
<211> 2501
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 416
tttttgaaaa ttgttaataa aaattcgttg gttttacggt ttagggggta ttacggaatt
                                                                60
tgcggatatg tgatgttttt tttggatatt cggttttaaa atgtttttt tttgtatttt
                                                               120
ttttttttat tttttaggtt agtcgatatt tagggaaaat aggaaaggat ttacgtgaaa
                                                               180
tattgggggt tgaatttttt tcgataataa gttttttaaa aaagattttt aaatqaaatt
                                                               240
tttttgtttt ttaattttta tttttgtttt gggggtatat gtgaaggttt gttatataag
                                                               300
taaattegtg titteggtgt tigttgtata gaatatitta ttattlaggt attatgtega
                                                               360
420
480
taagtgagaa tatttagtat ttggattttt gtttttgtat tagtttgtta aqqataataq
                                                               540
tttttagttt tatttatgtt ttataaaaga tatgatttag tttttttaa tggttgtatt
                                                               600
660
gttgaatttg attatattta aattaacgag ttttgtttta tgaaagattt tttggataaa
                                                               720
tttgatagtt gatggaatag gagaagttgt ttgttatgtt taaagttaat aagagattaa
                                                               780
tatitagaat aaatggagat ttgtaaatta atagaaagta ggtagtaaag ttaaagaaaa
                                                               840
tagtttaagg tatagttatt aaaaggaacg tgattatgtt ttttgtaggg atatgggtgg
                                                               900
agitggaagi cgttagtttt agtaaattta tataggaata gaaaattagc gagatcgtat
                                                               960
ggttttattt ataagtggga gttgaataat gagaatatat ggttatatgg cggcgattaa
                                                              1020
tatatattgg tgtttgttga gcggggtgtt ggggagggag agtattagga agaatagtta
                                                              1080
agggatattg ggtttaatat ttgggtgatg ggatgatttg tatagtaaat tattatggcg
                                                              1140
1200
gttggacggt taggcgtggt ggtttacgtt tgtaatttta gtatttttgg gaagtcgagg
                                                              1260
cgtgtagatt atttaaggtt aggagttcga gattagttcg gttaatatgg tgaaatttcg
                                                              1320
tttttattaa aaatataaaa attagttaga tgtggtacgt tatttataat tttatttatt
                                                              1380
1440
                                                              1500
ataatataaa ataaaataaa ataaaataaa ataaaataaa ataaaataaa ataaaataaa
                                                              1560
1620
tatttttttt ttttgttttg tgaagegggt gtgtaagttt egggategta geggttttag
                                                              1680
ggaatttttt ttcgcgatgt ttcggcgcgt tagttcgttg cgtatatttc qttqcqqttt
                                                              1740
tttttttgtt gtttgtttat tttttaggtt tcgttgggat ttgggaaaga gggaaaggtt
                                                              1800
ttttcggtta gttgcgcggc gatttcgggg attttagggc gtttttttgc ggtcgacgtt
                                                              1860
cggggtgtag cggtcgtcgg ggttggggtc ggcgggagtt cgcgggattt tttagaagag
                                                              1920
cggtcggcgt cgtgatttag tattggggcg gagcggggcg ggattatttt tataaggttc
                                                              1980
ggaggtegeg aggtttegtt ggagtttegt egtegtagtt ttegttatta gtgagtaege
                                                              2040
gcggttcgcg ttttcgggga tggggtttag agtttttagt atggggttaa ttcgtagtat
                                                              2100
taggttcggg ttttcggtag gtttttcgtt tatttcgaga ttcgggacgg gggtttaggg
                                                              2160
gatttaggac gtttttagtg tcgttagcgg tttttagggg gttcggagcg tttcggggag
                                                              2220
ggatgggatt tcgggggcgg ggaggggggg tagattgcgt ttatcgcgtt ttggtatttt
                                                              2280
ttttcgggtt ttagtaaatt tttttttgtt cgttgtagtg tcgttttata tcgtgqttta
                                                              2340
ttttttagtt cgaggtagga gtatgtgttt ggtagggaag ggaggtaggg gttggggttg
                                                              2400
tagtttatag tttttcgttt attcggagag attcgaattt ttttattttt tcgtcgtgtg
                                                              2460
gtttttattt cgggtttttt ttttgttttt cgttttttc g
                                                              2501
<210> 417
<211> 2501
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 417
cgggagaggc ggggaatagg aaggaggttc ggggtaaaag ttatacgacg gagggataag
                                                               60
ggggttcgga ttttttcggg tgggcgaggg gttgtgggtt gtagttttag tttttgtttt
                                                               120
ttttttttgt tagatatatg tttttatttc gaattgggaa atagattacg gtgtagggcg
                                                               180
gtattgtagc gaataaagaa aagtttgttg gagttcgggg gaggatgtta aggcgcggtg
                                                               240
                                  Page 193
```

47675-47.txt 300 agogtagttt gttttttttt ttogttttog gggttttatt ttttttogag gogtttoggg 360 tttttttgaaa gtcgttaacg gtattgggga cgttttgggt tttttaggtt ttcgtttcgg gtttcgaggt gggcgaggag tttgtcggga gttcgggttt gatgttgcgg gttggtttta 420 tgttgggagt titgagtitt attitegggg aegegggteg egegtattia itggitggega 480 agattgcggc ggcgaaattt tagcgaagtt tcgcggtttt cgagttttat aagggtggtt 540 tegtttegtt tegttttagt gttgagttae ggegteggte gtttttttgg agggtttege 600 660 ggattttcgt cggttttagt ttcggcggtc gttgtatttc gggcgtcggt cgtagagggg 720 cgttttggag ttttcggagt cgtcgcgtag ttggtcgggg aagttttttt tttttttta ggttttagcg gggtttaggg agtaaataga tagtaggaag aggatcgtag cgaagtgtgc 780 gtagcgaatt ggcgcgtcgg gatatcgcgg ggggaaattt tttaagatcg ttgcgatttc ggagtttgta tattcgtttt atagggtagg ggagaggggt ggaggtcgtt tagaggaaag 840 900 gaaattgttt tattttattt tattttattt tattttattt ttttatttta ttttatttta 960 1020 ttttatttta ttttatttta ttttatttta ttttgtgtta ttttatttta ttttatgacg 1080 tagttttacg ttgtggttta ggttggagtg tagtggcgcg atttcggcgg tttattgtaa ttttcgtttt cgggtttaag taattttgtt ttagtttttc gagtaggtgg aattataggt 1140 1200 ggcgtgttat atttggttga tttttgtatt tttagtagag acggggtttt attatgttgg tegggttggt ttegaatttt tgattttagg tgatttgtae gttteggttt tttaagagtg 1260 1320 ttgggattat aggcgtgagt tattacgttt ggtcgtttaa tttttatttg aagttttggg 1380 gtatatgtag aggatgtgta ggtttgttat ataggtgtgt gcgttatgat ggtttgttgt atagattatt ttattattta ggtattaagt ttagtatttt ttagttattt tttttggtat 1440 1500 tttttttttt tagtatttcg tttaataggt attagtgtgt gttgatcgtc gttatgtgat tatgtgtttt tattgtttag tttttattta taagtgagat tatgcggttt cgttggtttt 1560 ttgtttttgt gtgagtttgt tgaggttaac ggtttttagt tttatttatg tttttgtaaa 1620 ggatatgatt acgtitttit tagiggttgt gitttaggtt attittttg gttttgttgt 1680 ttatttttttg ttgatttgta gatttttatt tattttagat attgattttt tgttggttit 1740 1800 atgaaataaa attogttaat ttaagtgtaa ttaaatttag taagggattt ttgtggtggg 1860 gaagaggttg gtgtttatgt tgtattttta aaattttatt taatgtagtt attaaaaaga 1920 1980 attagattat gttttttgtg ggatatggat ggagttagag gttattattt ttagtaaatt 2040 aatgtaggaa tagaaattta aatattggat gtttttattt gtaagtggga gttaaatgat gagaatttat aatataaata aggaaataat agatattgtg gttgatttta gggtgtaagga 2100 tgggaggaag gagaggagta gaaaagagaa ttattgggta ttcggtataa tatttgggtg 2160 atgaaatatt ttgtataata aatatcgaag atacgagttt atttatgtaa taaattttta 2220 tatgtatttt taaaatagaa ataaaagtta aaaaataaag aaattttatt taaaagtttt 2280 ttttaagaga tttattatcg ggggaaattt agtttttaat attttacgtg ggttttttt 2340 tatttttttt aagtgtcggt tggtttgaga aataaaggga aagagtataa aagagagata 2400 ttttaaagtc gggtgtttag gggagatatt atatgttcgt aggtttcgtg atgttttttg 2460 agtcgtaaaa ttagcgagtt tttattagta atttttaaag a 2501 <210> 418 <211> 2327 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 418 ttttttattt tttttatcgt tatttttgtt ttcgggttat tgttttttt tgtaagtttt 60 qttcqttqqa tttcgttgtt tttgcgcggt cgttttatta tttacgtttg attggaggaa 120 ataaaattgg cgttggtttt ttaattttaa gtttcgtgtt tgattggggg aggggttatt 180 taggtattīt tīttīttaaa tagaagaaat ttaggtaīta aitgtaaata tītcgttgtt 240 ttitttgaaa gtatgtatta tattagtcga ggttttggag atatacggtt tattatttat 300 ttttagtttt taggtaaaga attttatgga gatttattag taaaattaga ttttttaagg 360 gaaattatta ggacgttttt agattttttt taagggatat tattggttgt cgattatatt 420 tgagtatatt tttttttagt ttatttttat tattttattt tgggattatt ttaaggaaat 480 tagitattig tagaaagitt gaaatticga aaggagaggi ataattiagg giaaaagaga 540 tcgagtgaag ttttttagat tgattgtttt tattggggtt attttttata aggtcgggag 600 tggagaggag tgtttgtaga agagagatta tttttaaagg ggttttttcg aatttaggag 660 gtgaggggga ttttttagag ttgttattat ttgtaggtgg atttgttatt attatgtagt 720

Page 194

780

840

gttttttggg gagttagttt gtttttttta gagttttttt taggtattgt tttagagttt

aggggagttt ttagcgtttt tttcgttttgt tttgagggta ttgtatgtat aaaagttttt

47675-47.txt 900 ttacgcgcgc gcgtatatat agatatttag cgggtttgga gtgtattttt gtttatttgt 960 tattacgtgg taaattttag atttggaagt tattattatg cgggcgcgta ttaggattta 1020 ggggagattg tgtggggttg ggattgcgta taaatatagg ggtcgtacgg aagttttgta tattttaaag tgtaatttga gttttegegg ttttagtttt atttaaaata tgtaaatttt 1080 1140 tgaaattgaa aaatttgaaa aattttcgaa gagttttatt tgaataaatt taaatttatt gggagtcgtt ttgaggagat aaaacgtata gcgatttggg gtgagggata tttgtgggga 1200 1260 ggtaggacgt gttggattgg gtttttaggg ttaaggtgtt tttgggtttt cgacgatagt 1320 tttagcgtag agtagggaag tggtatcgtt aggtagtaag tttagttgtt ttatttttgt gatttatgag ttagttttga ggttttggtt ttagggttta gtttttattt atgtcgcgtt 1380 tttgagagtt taatattgtg tttggtatat ggtaggtgtt tattgaatag tcgtggtatg 1440 aatgaatgaa cgaatgaatg aatgaatgaa tgaatgaata taagtttaat gggggaaatt 1500 1560 cgggtttttt aataaaggta ggggttgggg gatatttagg ggtttttta ggaggatttt tttttttatt attttattt tgggagaaag gtttacgtag gatggtcgtt ttttttttgt 1620 tgagagtttt gtttttagtt tatttgggtc gttggaaaag aggagaagaa taaataagag 1680 ataagtaatt attttttat cggcgtttcg tttttgtttt tattgttaaa tttattttaa 1740 agtcgaggat ggtgagattg tgaagttgta aagaaatata gagtttattt ttttaaagaa 1800 1860 tttttcggtt ttttgttttt gattgaattt tatgggatag agaatttttt gttttttacg 1920 aggtaaggcg cgaattcgta gagatttggg gtgttttttg gttttttgcg ttgttttgga 1980 ggcgtttata gaggtttttg tcgttaagga tagtaattgt tttattttcg atggttgttc 2040 gttaggtttg cgggtcgcgg gtttatttag tcgtcgaatt ttttagtcgt tattagcgtt 2100 2160 tgcgtcgggg ttgagttttg gttagtcgtt ttttcgacgt tttggacggt cggagggaat 2220 2280 gaagttttga attgtgataa aagtgggggg ggggtatttt aaatttttaa agtaatgttt ttttttttt tttttttt aagtaattga gttttattaa atgtcgg 2327 <210> 419 <211> 2327 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 419 tcgatatttg gtaaggttta attgtttaag aaaaaagaaa aaaaaaagaa tattgttttg 60 agaatttggg gtgttttttt tttatttttg ttataattta gagttttatt tttttcggtc 120 180 gttagttggg taggttataa tttgtattat tttattaagt taggagtagc gttgataacg 240 attggaaagt tcgacggttg ggtgggttcg cgattcgtag gtttggcgag taattatcga 300 aaataaaata attgttgttt ttggcggtaa aggtttttat ggacgttttt agggtagcgt 360 agggaattaa agggtatttt agattittgc gggttcgcgt titgtttcgt gggggatagg 420 aggitttttg tittatgagg titagttaag gataaggagt cgggagggga aaggggtagg 480 agttaaggag agaaatttga aagaggtaaa ttttaaaatat atcgtaattt tttaaggggg 540 tgggttttgt gtttttttgt aattttatag ttttattatt ttcggttttg gagtggattt 600 ggtagtgagg ataaggacgg aacgtcggta ggggagtagt tgtttgtttt ttgtttattt 660 tttttttttt ttttagcggt ttagataggt tgaaggtaaa atttttagta agggggaagc 720 gattattttg cgtggatttt ttttttaggg gtgggatgat gaaaaaagaa atttttttgg ggaagttttt aggtatttt tagtttttat ttttattagg aggttcgggt ttttttatt 780 840 aaatttatat ttatttattt atttatttat ttattcgttt atttatttat attacgatta 900 tttagtgagt atttattatg tgttagatat agtattagat ttttaaaaaac gcggtataaa 960 tggaaattag gttttgaagt tagagtttta ggattggttt atgggttata aaagtagagt 1020 1080 gtttagagat attttgattt tggaaattta atttagtacg ttttgttttt ttataaatat 1140 tttttatttt aaatcgttgt gcgttttgtt tttttaaagc gatttttaat ggatttggat 1200 ttatttagat agaatttttc ggaagttttt tagatttttt aattttaaga atttgtatgt 1260 tttaagtgaa gttgaaatcg cgaaggttta ggttatattt taaaatatgt aaggttttcg 1320 tgcggttttt gtgtttgtgc gtagttttaa ttttatatag ttttttttgg attttgatgc gcgttcgtat agtgatgatt tttaaatttg gggtttatta cgtggtgata aataaatagg 1380 1440 ggtatatttt aaattcgttg gatgtttatg tgtgcgcgcg cgcgtgaagg agtttttgta 1500 tatgtaatat ttttagggta aacggagaaa gcgttaaagg tttttttgaa ttttgggata 1560

gtatttgagg gggattttgg ggagaatagg ttggtttttt aggagatatt atatagtgat

Page 195

1620

1680 gataaattta tttataggtg gtgataattt taggaagttt tttttatttt ttgagttcgg 1740 gagagttttt ttaaaggtag tttttttttt gtagatattt ttttttattt tcgattttat 1800 gaaaagtggt tttagtggag ataattaatt tgaaaagttt tattcggttt tttttatttt 1860 aggttgtgtt tttttttcg ggattttaag ttttttgtaa atggttaatt tttttagggt gattttaaaa taaaatggta ggggtgggtt agagaagagt gtgtttaagt gtaatcgata 1920 attagtaata ttttttgaag agagtttgaa gacgttttgg taattttttt taagaaattt 1980 ggttttattg gtggattttt atagaatttt ttgtttagag gttggaaatg agtaataggt 2040 2100 cgtgtgtttt taaggtttcg gttaatatga tatatatttt taagaagagt aacggggtgt 2160 2220 ttaattaagt acgaagtttg gaattaaaaa gttaacgtta attttattt ttttagttaa gcgtgagtga tggggcggtc gcgtaagggt aacggagttt agcggataaa gtttgtagag 2280 2327 aggggtagtg gttcggaggt aagggtggcg gtggggggg tgggggg <210> 420 <211> 2280 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 420 60 attagtatag aattgttatt ataggattgt agtttaagta ttagagtgat attaattggt 120 tatgtttaat tgttttaaaa ttattttta aataattata ttgatattat aatagaaatt atgggtattt attttatatt tagatggaag gtattattgg atatgtatta aaaaaaagat 180 240 tttttgaaaa aaataaaata aaataaaata ttattattaa aataaaagaa tttaaaataa 300 tttttaaaaa tttttttaa taaaatatat tgttaattta taaaatggat tgatgattag ttatgtaaat gttttaaata aaatttttat attttttta tagttaattt atgttttgaa 360 420 ttgtttattg attataaata atggtgaaat ggtatttttt gattatattg tattttgttt atagaaagtt tgatatgatg gaatttatta ggtaagaggg tgggtgttgt gaatgagatg 480 540 ttgittttag tigtgggggt gggtagagtt tttggagtgt gtggatttta tgtgagttat gtagtatttt ttgttttttg ttagaagtta aagttattta tttataatat atttatgttt 600 ttgtgtaatt gtttatttt gtgtagttaa tagggagtta ttatggggtt aatttatagg 660 ggaaaaatag atatttattt ttttatatag atgtggatat atgtatatat gtatagaatt 720 gtggtattta attttatagg tttttggggtt gagggtgagg gtattgttag tttttttagt 780 840 tititagitt titatagitt gittitigit titaaggaggg agitaagtaa ggggitaggi 900 960 tggggatttg ggtatatgtt tttttagttt ttggggtgtt tgtggtgggg aaggatgtat 1020 tqtttttttt ttqttttttt ttattggggt tggggtttta gtttgagagt gagtgagagt 1080 tatagttata tattttgtgg gttttatttg tgttgtaagg tttattgtgt tagtaggaag 1140 agttatagat tgtttgtagg gaattaattt tggatgtgga ggagttggta ttttgttttt 1200 tggattgttt ttggtttttt aggataaata tgagtatgtt tattatggtg aaggtggagg 1260 tqataaatat taqtaqtaqt tttqqqatta atattqaqat ggatattttg ttgqtgttta 1320 qqtaqqaqtt ggagtgtgtt ttggtttttg ttaatttagt gttgttttta ttgtgtgaag 1380 ttaatgtggg tgagatttta gtgtatagtt gagggtagat tttgttattg gagaggagta 1440 tgaaatttt tttaaagaag tttattggtg ttttatattt gaggttgttt attagtattt tggaatttaa gtgttttgtt tattgtttga aaggtataat tgtgtaggag tatttttagg 1500 1560 ggtttttgtg gaggtttatt tggatgatgg aggttaattg gtttagtatt tttgttattg ggaggtatat gaagtaattg ttgtgtaggt tgagtttaga gagtgagatt ttagtgaata 1620 1680 tgtttatagg tagggatttt agtaggttgt tgttgagaat gaggattttt agtttgggta 1740 tggtattgaa agtgtttggg aggatgagtt ggatagtgtt gtattttatg tttaggtatt 1800 ttaggttitg tagttttgtg aatttttttt gggatagtgt gtttaggtaa ttgttattta 1860 tqtataqtta tttgaggttt aaaaggtttt tgaaagtgtt gttttttata gtagtgatgt 1920 tattgttgtt tagatttaat agaatgaggt ttttgtaatt tataaagtgt gatttttgga 1980 tgttgtggat tttgttattt tgtaggaaaa gtttttgtat gttagagagt ttgggtttta 2040 aattagttaa gttgtttatg tttttgttgt tgtagtttat ttttaaattt gattttggga tgtgggttgta gttgtagttt ttagggtagg gtaaattgtt agttaagggt ttgtttttgg agttatttgt tgttattgtt gttgtgggtt tgattttgat ttgttagttg tttgggattt 2100 2160 2220 2280

```
<211> 2280
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 421
                                                                     60
ttaagataaa tgggtaagag gattatgtta tattagggtt tgttttaaat ggaggtataa
agattttagg taattggtag attaaaatta gatttatagt agtgatagtg atgggtagtt
                                                                    120
ttaggaataa attttagtt aatagtttat tttgttttgg gggttgtagt tgtgattata
                                                                    180
ttttagggtt gggtttaaag atgaattgta ataataggaa tgtgagtagt ttggttgatt
                                                                    240
tgaagtttaa gttttttaat gtgtaggagt tttttttatg agataataag atttatagta
                                                                    300
tttgaaaatt gtattttgtg gattataaga attttatttt gttggatttg ggtaataata
                                                                    360
atattgttat tgtagagaat aatattttta agaatttttt ggattttagg tggttatata
                                                                    420
tggatagtaa ttatttggat atgttgtttt gggagaaatt tgtggggttg taaaatttag
                                                                    480
agtatttgaa tgtggagtat aatgttattt agtttatttt tttgggtatt tttaatgtta
                                                                    540
tgtttaaatt gaggattttt atttttaata ataatttgtt gaggtttttg tttgtggatg
                                                                    600
tgtttgttgg ggttttgttt tttaaattta gtttgtataa taattatttt atgtattttt
                                                                    660
tggtggtagg ggtgttggat tagttaattt ttattattta gatagatttt tatggaaatt
                                                                    720
tttgggagtg tttttgtata attgtgtttt ttaagtagtg ggtagaatgt ttgggttttg
                                                                    780
aagtgttgat gagtgatttt aagtgtgaga tgttggtgaa tttttttaga aaggatttta
                                                                    840
tgtttttttt taatgatgag atttgttttt agttgtatgt taggattttg tttatgttaa
                                                                    900
ttttgtatag taaaaatagt attgggttgg tggagattgg gatgtatttt aatttttatt
                                                                    960
1020
tttttgtttt tattgtggtg ggtatgtttg tgtttatttt gaggaattga aagtggttta
                                                                   1080
agagatgaga tgttaatttt tttgtgttttg agattaattt tttatagata gtttgtgatt
                                                                   1140
ttttttattg gtataatggg ttttataatg tagatggggt ttatagagtg tatgattgtg
                                                                   1200
gtttttattt gtttttagat taagatttta attttaatag gggagggtag agggaaggtg
                                                                   1260
atatattttt ttttattgta ggtattttgg gggttggagg ggtgtgtatt taaatttttg tgttattagt ttggatggt ataagtagat aaataattgt gagtttgtat aattgaaagg
                                                                   1320
                                                                   1380
gtttgatttt ttatttagtt ttttttttga aataaagagt agattgtgga gagttgggag
                                                                   1440
agtgtagtta gtttgttttt tgttgagagt tttttttgat agaaagttta gtatgatttt
                                                                   1500
gitggaagaa tigatagigt titigittit ggittigggg titigiggggi tggatgitgi
                                                                   1560
1620
tttgtggatt agttttgtga tggttttttg ttggttatgt agggatgggt agttgtatga
                                                                   1680
aggtatgaat gtattgtaaa taagtaatti tgatttttga taaaaaataa aaagtgttgt
                                                                   1740
atggtttgta tggaatttat gtgttttagg gattttgttt gtttttgtga ttggagatgg
                                                                   1800
tattttgttt atagtattta tttttttatt tgataagttt tattgtatta aattttttat
                                                                   1860
1920
tttagagtat aagttaattg tgaaaaaaat gtaaaggttt tatttaggat atttgtatgg
                                                                   1980
ttaqttatta gtttatttta tgagttaata atgtattttg ttgagggaag tttttagggg
                                                                   2040
ttgttttggg tttttttatt ttgatggtga tgttttattt taltttattt tttttagggg
                                                                   2100
gttttttttt taatatatat ttaataatgt tttttatttg aatgtaaaat aagtatttat
                                                                   2160
gatttttatt atagtattag tgtaattatt taaaaaatga ttttgaggta gttaagtatg
                                                                   2220
attaattaat gttattttag tgtttaggtt gtgattttat ggtagtaatt ttgtgttggt
                                                                   2280
<210> 422
<211> 2477
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 422
tggtatagat atggttttta aagttaaaaa ttatgatgga gtgaaggata gttgtgttta
                                                                     60
gatttgtgtt ttgttttttg gaggttgttg tggttttggg gatgagttgg aggtgggtag
                                                                    120
gtagtggttt ttggggtttg tagtagggag gttattattt gtatagtaga atatagtatt
                                                                    180
attitatagg gagtattttg gggtgggtag taattttgga ggtatttttg ggaaggagtt
                                                                    240
aggtatgggg gaggtggagg tgattttaga agtagaggag ttgttgggga gttatggttt
                                                                    300
                                     Page 197
```

360 agggattttt atgtttagga ttatttgatt gttaaggttt tggtattttt gttaggttag 420 ttgggggtta aggtttttaa ttttgaggat tggggttgtt aatatgggta gtagtatagg 480 aggttgagag gaggtttata agggttgtat titttttttg gttgtagttt attttttaga 540 gtagggtggg tgtggagtta tttttattag tattgttggt tttgagggtt tggtgggtag 600 tgttgtttgg tgtgggggat agtttttgag taggttgttg tatttttggt attttggttt 660 720 ttttgggatt tttaggtggt ttatgtttgg tagtgtttgt tttttgggtt tttagggttt 780 gtttttgttg tagtttttgt agtgggagta ttgttgagta ttgtttttgg gagaggatga ttttaggttt tatagttaag tigttttgag gttaagtgtt ttgggggttta gggagtttta 840 gtagtagttt tgtatggtta ggtttgggtt atggtgttgt ttagtggttt ttgtgtggtt 900 960 gttgtttttt tttgttggtg taggtttaag agggtttttt tgtttgattg ttgttgttgt 1020 ttttgttaaa gaagttggtg ttatgtggtg tttatatttg gaagatggaa tttagattta 1080 gattagaggt ttttttataa tgttttggag ttttttagag tttgtggaat tttagggtta 1140 gtagggaaag tgaaatttta ttaggatttt gaatttgita tttttttgtt ttatagagga 1200 tgagttttat gttgtaggtg gttaatagtt ttggtgtggg ggagatagtt ttgttttat 1260 agaatgtttt tttgagattt tttagtttgg gatggattta gtaggtgttt tttgatattt 1320 aggttttgag gattgttagt gaggattatt ttgattgttt gtggggattt agggttaaga 1380 aggatgttgt atttagagat ggggtttatg agtaatttta ggttttgatt ttatttgttt 1440 tagaaattta aatttttggg attttgggtt agattttttg ggggagtatg gagtgattga 1500 1560 tttgtgttgt tgtatttggt gttggtatta gtgttggatg gtgatagtgg tttggtttat 1620 1680 ttggtggata aatttgtttg gagagtagga tttagggtta agataggatt agtgttttgg taggatttag ttggttgttg gtggaaggtt gagttgggga agagagaagt tggtggttgt 1740 atttaagtag ttttttttat aaggtaggat tagtttattt ggattatttt tatatggtag 1800 gattagttgt ttggattagt tttattaaaa tttaaaattt tttttttggg aaggtgttta 1860 ggggagagga aatgtttatt tatgtaggtt tgtgtggttt tatttataat tgttaggaag 1920 tgggaagagt ttaaatgttt atgatttggt tatagtgtga atattggatg gtgggatttt 1980 atttataggt aataggtttg ggatttaggt tagtgtagat tataggttgt ggttttatag 2040 agagggtggt tggaataggt agggttatga gggaatagat tggtggttgt tggtatttgg 2100 gtggggaagg agtttgaggg aagtttggtg gtgttgggtt gtttttttat tttggtttgt 2160 tgtgtttata gatagtatta tatattttgg tggaatttta tggaattgta tatttataat 2220 2280 gttttatttt ggtttttggg attatgtgtg gattttttta gtaaaggtat taatagagaa 2340 2400 aaggggttgt gggtttttgg tttttttttt tttgtgttat ttattgtgtt tataggtttg 2460 gtttttttag ttttaat 2477 <210> 423 <211> 2477 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 423 60 gaagtttgta attitttgaa gtittttagt titgtttggg gtagattgtt titgagttag 120 ggtttatatg ttttgggttt tttgttagtg tttttgttga gagaatttat atatggtttt 180 240 tataatagaa ggtgtttatt gtaagtgtgt agttttatga gattttatta gggtgtatag 300 tgttgtttgt ggatatagta gattaagata aggaaatggt ttagtattat taggtttttt 360 ttgagttttt tttttgttta gatgttagta gttattagtt tgttttttta tagttttgtt 420 tgttttgatt atttttttg tggagttatg gtttgtggtt tgtattggtt tgagttttgg gtttgttgtt tgtgggtagg gttttgttat ttagtattta tgttgtagtt aggttatgg tatttgaatt ttttttattt tttggtaatt gtaaataagg ttatataggt ttgtgtgggt 480 540 600 660 720 aaaagggtta titgagtgta gitgttggtt titttittit tiggittgat titttattag 780 tagttagttg ggttttgttg gggtgttggt tttgttttgg ttttgagttt tgtttttgg 840 gtaggtttat ttattaggtg aattaggtta ttgttattat ttagtgttgg tattggtatt 900 Page 198

```
aggtgtagtg gtgtggagta ggagttgttt gtttggagta tttgttttag gttaagtggg
                                                                 960
aggttagtgt gggtgtttta gttattttat gtttttttgg ggggtttggt ttagaatttt
                                                                1020
1080
tttgggtgta gtatttttt tgattttggg tttttgtgga tagttagggt ggtttttatt
                                                                1140
1200
tittaggagg atgitttgtg ggggtagagt tgtttitttt atgitagaat tgttggttat ttgtgatgta gggtttattt tttgtagagt agagaaatgg taggtttaag gttttggtgg
                                                                1260
                                                                1320
ggttttattt titttgttgg ttttgagatt ttatgaattt taggggattt tagggtgttg
                                                                1380
tggggaaatt tttggtttgg gtttggattt tgttttttag atgtaaatgt tatatggtat
                                                                1440
tggtttttt ggtaggagta gtggtagtgg ttaggtgagg ggatttttt ggatttgtat tagtagaaag aggtagttag gaggaaggtt tgggaggaga aggtatgtta agttaggtga gtagttattt aggtgttgat tgtgtaggga ttattgagta gtattgtggt ttaggtttga
                                                                1500
                                                                1560
                                                                1620
ttgtgtgggg ttgttgttgg ggttttttgg gttttgggat atttagtttt agggtagttt
                                                                1680
ggttgtggag tttggggttg tttttttta gggatagtgt ttagtgatgt ttttattgta
                                                                1740
ggagttgtaa tagaaatgag ttttgagagt ttagaaggtg agtattgttg agtgtgggtt
                                                                1800
1860
ttttatatta ggtggtattg tttattaggt ttttaaggtt aataatattg gtgagagtgg
                                                                1920
1980
ggattttttt ttggtttttt gtgttgttgt ttatgttggt ggttttagtt tttggagtta
                                                                2040
ggggttttgg tttttagttg atttgatgag ggtgttgaga ttttgataat taaatggttt
                                                                2100
tggatgtagg gatttttata gagtagaagg tttggaaggg aggggtggta tttattttt
                                                                2160
atagtittat atttagaagg tigtggttit tiagiggtti tilligttitt ggggttgttt
                                                                2220
ttgtttttt tatgtttggt ttttttttgg gggtgttttt agagttgttg tttgttttgg
                                                                2280
gatgtttttt gtggaatggt gttgtgtttt gttgtgtagg tggtggtttt tttgttgtag
                                                                2340
2400
aggataggat gtaggtttga gtatagttgt tttttatttt attatggttt ttggttttaa
                                                                2460
gggttatgtt tgtgtta
                                                                2477
```

<210> 424

<211> 3685

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 424

taagttttt	tttttggtgt	ataggtatgt	agttataggt	taagttgtga	tgtgagtttt	60
gtgtgtggga	tttttgtaaa	aggtttgttt	gatgtgttgg	gtgggaattg	agtttgggtt	120
aattgtttgg	aaggtaatta	tgtttattat	tatattatta	atgttgtatg	gtgtgggtag	180
		gtttttatta				240
		tttgtttgta				300
tgttttgtgt	tttattggtg	taaggttagt	gtggttgatt	tgttatgttt	gtttgtttt	360
gggggtgttt	ttgtttattt	gttgttttgg	gtttttagag	tttttttta	ataggtgttt	420
ggggggaaa	tggttggtgt	tggtagggtt	tttatttta	tgttttttat	tgggtgtagg	480
gttttgtgtg	ttgtagaaag	tttttttga	taattattt	gagttggtag	tttgttgggt	540
		gttttttggt				600
		ttagaaggtt				660
tattttgtga	ttagttggag	ggtggaggaa	ggagaaggag	ggtttatagg	ttgggtttga	720
		ggttgttttt				780
		ttattatatt				840
		tggatgttta				900
ggggttgggt	gtgtgtttgt	tttttatttg	ttgtttgttg	tttgttattt	gttatatgtt	960
	tgttatttgt			atttattttg		1020
aagtattttg	tgattttgtt	gggatttgga		gattttgata		1080
tggtgtggaa	tttttttgtg	tgttttgttt		atgtggggat		1140
taggaggagg	tgtgggtgaa	atagttaggt		aggatgtggt		1200
tttgtggggt	ttggtgagtg	gaggtgtggg		tgtgttggtg		1260
tgatgtggat	tttttgggtt	tggggtgggg	atgtgggggt	gtttatgtta	atgttagttg	1320
gttttgttta	tttggtgttt	gttttttttg		tggttgtgta		1380
ataggtgttg	gttaagggtg	taggtgtttg		tagttatgtt		1440
tgttttggtg	tgttgttagg	atggttgagt		gttgtgttta		1500
			Dage 1	100		

1560 tggagggtaa tgtttatggt aattttggag tatttttggt tgttttttgt tttgagtttt 1620 1680 tgtttgtttt ttagatttta gtttttttga agtaagtttt taaaatgttg ttgttttta 1740 ggtatgtttg ttttttttgt ttatttgttg gttgttgtag aaatagttta ggattatgtg 1800 1860 atgttttttt ttttggtttt atatatagtg agtgattgtg attatttttt atgtttttt ttqtttattt tttttqtttq ttttttttt atttqtttaa ataqatatag tttagatttt 1920 1980 ttttttattt ttttttttt ttttttttt ttattggttt ttgtttattg tttattgttt 2040 2100 2160 gtgtatttta ttttgttgat attttagtta ggttgttgat tttattttgt tatttgtgtt 2220 ttttttttgt taatattigt tigttggttt attigtagtt tggatgtttg tiggttagag 2280 gtagtgggaa ttttgtatat agttgggtag gtgagtttaa atttggaaag atagtttaag 2340 aggaattatg agtggaagtt ttagattttt gttatttgtt tataaatgtt tggttttgtt 2400 gggattagtt ttgtgttata gtgtattttt atgtgggaag ttgtggtttg ggttgtttta 2460 gttatattta gtgtgttttt tttagggtta gttagttgtg gttttgttga agtgtttttt 2520 tgtttttttt ttgtgtttta gtttttttat tagtttaggg ggttggattt taagtgtgag 2580 2640 ttggtggtgt gggttagagt gtaggagtga ggtgtttatg gatttggttt gtgtttttga 2700 attttgtttt ttatttgttg gtgatataag tgagaaggtt ggttttatgg tggtgaaaaa 2760 2820 2880 aagaaagaaa gatagaaaga aataataaaa ataaaatata aaaattttgg gtttgtgttg gggatttgtg tttagtaagg tttgttatag taaatttgtt tatatgggta tttgggtgtg 2940 ggttatggtt ggttttttt ttggagattt tggtgggtag ttttttgatt ttgggtggta 3000 3060 tttaggtttt ttgatgtgat gagagttttt ttttttgttt gttttattgg gttagttttt 3120 3180 tgtggatgtt gtaataggat ggaggtttat ggtaggtggt gattagtgaa tggtggttgg 3240 tggtagaatt tttgtttgtt atgtgggagg tttgggtttg atttttggtt tatgtagtat 3300 3360 ttttatattt ggggtgtgtg agtgagtttg gtattggttg tgtttttatg tgtgatggtt ttttgtttt ttttttgtgt tttttttgat tgatttaggg atgagtttat tttttgtat 3420 3480 tatatatttt ggtgataata attttttag atatgagagt gtgttagata ttagaatttg 3540 qtaqtttttt ggttttgttt ttttttattg ttttgttatt gtttttgttt qatqtatttt 3600 3660 tatattttat tgttttgttt ttttt 3685 <210> 425 <211> 3685 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 425 gagagaggtg aggtggtgaa atgtgaagag aaggggtggt gtgagtggtt gtaagtttgt 60 ggtgtttggt ggtgttttgt gaagtgaaat gtgttgggta gaggtggtgg tagggtaatg 120 180 240 300 ttgtttgtgt gttttgagtg taaggaggtg gtagaggtga gtgtagttat gttttggtgt 360 tgitgtagia itaaaatggg agggtgtgtt gtatgggttg ggaattgaat ttgggttttt 420 tqtqtqgtag gtgagaattt tattattgaa ttatttatgt attqatqqta aatqttaatq 480 gaagttggta tagtggaatt tgttattagt tgttgtttat tggttattgt ttgttgtggg 540 ttttttgtttt attgtagtgt ttatgagagg ttggtttgat ggggtgagta gaaggggagg 600 tttttgttat gttgagggat ttgaggtggg gtgtggaggg agagtggagg gagagaggtt 660 gatttgttt attttgtgtt ttttttgttg tttagggttg agagattgtt tgttggggtt tttaggggaa ggattggttg tggtttgtgt ttgaatgttt gtgtgggtag atttgttgtg 720 780 gtgggttttg ttgagtgtgg atttttggta tagatttaga gtttttgtgt tttgtttttg 840 900 Page 200

		4/6/5-4	/.txt		
ttttttttt tgtgtggtg	t ttttttttt	tattattgtg	gggttagttt	ttttatttgt	960
gttattagta ggtgagagg	t gggatgggtg	tgttagtgag	tgggggtggt	gatggggaat	1020
gggttttgta gttgtggtg	t gtggtttaga	aatgtagatt	aggtttgtgg	gtgttttgtt	1080
titgtgtttt gatttatgt					1140
gaggttggag tgtgagaaa					1200
ttggagaagg tgtgttggg					1260
tgtgttgtgg tgtagagtt					1320
tttagggttt ttgtttgtg					1380
					1440
tggttgtgtg tagggtttt					1500
ggtaggtagg tgttagtgg					
agggtgttgg tagaatgga					1560
tgttggatgg tgtgttttt					1620
tgttgtttag tggttagaa					1680
ttttgggtag tgtagtggt					1740
aggagggaaa aggaggaat					1800
gaaggtgggt ggaggagat	a ggtagggaag	agtgtggaag	gtggttgtgg	ttgtttgttg	1860
tgtgtggggt tagggaaga	g ggtgtgtgag	gtggtgggga	gggtgtttgt	ttgaagggta	1920
attggtagag ggttgtggg	t gttggtgtat	ggttttgggt	tgtttttgtg	atagttggtg	1980
ggtgggtagg aagaatgga					2040
ggggttggag tttggagag					2100
gggttgttat gggtgttgt					2160
gatttgaatt tatgittit					2220
gttattttga tggtgtgtt					2280
gtttgtgttt ttggttggt					2340
ggagtgggtg ttaagtgaa					2400
					2460
ttttggattt aaagggttt					
gtttttgttt gttgaattt					2520
attgttttgt ttgtgtttt					2580
gggtgtgtgg ggaggtttt					2640
gttttagtgg gattgtagg					2700
ggggggtggg tggtaggtg					2760
ggaaggtgag tatgtgttt	g gtttttgttg	ttgggggagg	ggattaaggt	agggttaggt	2820
gtttgtggtt ggagtgggg	t ttggtgtttt	ggtgattgtt	gttgttgttt	ttgttagtat	2880
agtggtgagt atttttgtt	t gttatgtggg	agattggggt	ttgatttttt	gatggggagg	2940
tagttgtgtt ttttgggtt					3000
ttgtttttta gttagttgt					3060
tttgggtttt tttggtttt					3120
gaggtttttt ttggttttg					3180
agaggttttt tgtgatata					3240
tgttggtgtt ggttgtttt					3300
gtggtgagtg agtgagagt					3360
					3420
ttttgtattg gtggggtgt					3480
gtgggtggat ggattgggt	g traggageraga	tatattatat	gractagrag	atataataat	3540
ggagttttgg gttggtgtg					
gagtatagtt gttttttaa					3600
gattttttgt ggagatttt		ttgtgttgta	geeeggeeeg	tggttgtgtg	3660
tttgtgtgtt ggggaagga	g gtttg				3685
<210> 426					
<211> 2407					
<212> DNA					
<213> Artificial Seq	uence				
<220>					
<223> chemically tre	ated genomic	DNA (Homo s	sapiens)		
		•			
<400> 426					
			LEELESS		
taaggtttgg gtattttta					60
ttatgttaaa gttgagttt					120
tgattgggga tttgtatgt					180
ttttttttgt tatgtatat					240
gtagggattt gtatgttgg	t ttagggtttg			agggttaggt	300
		Page 2	201		

47675-47.txt 360 420 ttagttttgt gtttttggtt agttgtgttg agttaggggt attgtggttg ttgtgtggtt 480 ggaaatttag gaatgggaag gtttggggtt tgtttggttt tggaggtagt tggtgggttg 540 600 ttttttggtgg tgttggagtg gttagtggta gttgggtatg ggtgattggg ttgtttgggt 660 720 780 aagtggtaat agatggtttt tttatttaat aggattaaaa aatttgtttt tatttggttg 840 attgtggaag tagagtaggt gggtggttaa tgggggatatg atggggggtg gagttgaggt ttttgaagtg gaagtgggtt gttgttgagg tggtggtatt ttttttgagg agtttttttg ggtggttgaa gaaggagttt tttttttgga gtgtgttggt ggtggttgtt gtggatttaa 900 960 ttagttttag gttaggttga gttttgtggg aaagtagtgg taagttaggg ttttgtagat 1020 gtgaggttta ggtagttttg tggtttatag aggttttggt ttgtgttttt tgggggagtt 1080 gtgttgtgtg gtttgattta gttgaggttt tgtagtttgg gattttgagt tagttttggt 1140 tgtttgtatt gttgtttgtg tgggtgtatt gagtttggtt tggtgtgggt aatagaagtt 1200 aggaggtttg tgtttgggtt ttggtttatt ttgggggggtt gtggttatgg ggtttagttt 1260 1320 ttagtttagg aagggaaatt gagattttgg gaggggtagg aatgttttta aggttatttg gaaagttggg taggatgtgt tgttaggggg aagatttggg tagggttttt gtttttgtt 1380 gatgatgttt tttttgtgtg ttttgtgttgt tgttttgtta ttgtggggtt tgtgagtttg 1440 ttggggtgtg tgggttgtgt ggtggggttt tttgtaggtt gggaggattt gagtatgggt 1500 gtgggtttga ttgtgggggt gttgaggttg tagtttaaaa tttagtaggg ttttgatttt 1560 tgggtgtgtt tttgggtttt ggttggtggt tggtggaatg tgtgattgtg aggtttgtgg 1620 tttagttttg tattgtttgg gttttttatt gttttggtgt gtttatagat aggtgtatga 1680 agatttttat gatttgaaat agagttgtta gtaaatattg tttttttgtt tttgatttat 1740 tggggaagag ggaaaaggat agagtttggg taagttgttt tggtagggat tttagttttt 1800 gttttttatt tgttagtttt tatagatgtt tataaattta ataattttg ttttgtttt 1860 gtattaagtt titgagttag atgtagggtt tiagttitgg agttitggtit agattgtita 1920 attgattggg gagattgagg tttagaaaag tgaagtggtt tgtttaaggt tatatagtta 1980 gttatttggt agtagatgag gttaagtttt atttgtaaga tttgggtttt gaatttattg 2040 attaggagtt tigggattat tgttaataaa agagatattg aagggaattt tttgttattt 2100 ttttggtgat ttgtttttta atggataagg atatattggg tttagtttta tttgtgagtt 2160 tgaggtgaaa tagaggtatt tgagtagtaa gatatattgt tggtttttgt attgtttgaa 2220 tttgagtttt taaaaatttt attttaatat attgtttatt gattttttt tgaattatta 2280 tttttgtaag gattttttgt aaatattgtt tttttaattt ttatgaaatt ttaatgttat 2340 atgtaaatta tttttttta tataatgtat gtatatttgt gttttgtata taaaatgagt 2400 aagattt 2407 <210> 427 <211> 2407 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 427 aaattttatt tattttatgt ataaagtata gatgtgtata tattatataa aaagaaatag 60 tttatgtatg gtattaagat tttatgaaga ttagaaaaat aatgtttata aaaggttttt 120 ataaaggtag taatttaaga aaagattaat aaatgatgtg ttaaagtaag atttttggaa 180 qtttaaattt aggtaatata aaagttagta atatattttg ttatttgaat qttttattt 240 tattttaaat ttatagataa aattgaattt aatatgtttt tgtttattaa aaagtaaatt 300 attaagaaag taataaaaga ttttttttaa tgttttttt attgatagtg gttttaaaat 360 420 aaatagttgg ttatgtgatt ttgggtagat tattttattt ttttggattt tagtitttt 480 agttagttgg atagtttaag ttaggtttta gagttgagat tttatgtttg gtttaaqaat 540 ttggtgtaga aatagaatga agattattaa gtttgtgaat gtttatggga attgataagt 600

Page 202

660

720

780

840

900

960

ttttttgatg gattaaaggt ggaaaagtgg tgtttattag taattttgtt ttgggttgtg

agaattttta tatatttgtt tataggtgtg ttagagtggt gaagggtttg agtggtgtag

ggttgggttg taagttttat agttgtatgt tttattaatt attagttggg gtttggaagt

gtgtttggaa attgaggttt tattaagttt tagattgtga ttttggtgtt tttatggtta

ggtttgtatt tgtatttaga tttttttgat ttataaaagg ttttgttatg tggtttatgt

```
attttggtaa atttgtaggt tttatgatgg tggggtggtg gtgtgaatat ataaaggagg
                                                          1020
                                                          1080
tgttgttagt ggggaataaa aattttgttt gggttttttt tttaatagta tattttgttt
1140
aggttaggaa ttaagtttta tggttgtggt tttttagggt gagttgagat ttagatgtag
                                                          1200
attttttaat ttttgttgtt tgtgttaagt tgggtttggt gtgtttgtgt ggatggtagt
                                                          1260
1320
qtaqtqtqqt ttttttaaqa qqtqtqqqtt qaqqtttttq taqqttqtqa aqttqtttaa
                                                          1380
                                                          1440
attitgtatt tgtaaggtit tgattiattg tigtititit gtaaagtitg gittaatitg
                                                          1500
agttgtttag gagagttttt tgagaaagat gttgttgttt taatagtaat ttattttgt
                                                          1560
titggaggti itggittigt titttattat gtttttattg gttgtttgtt tattttattt
                                                          1620
ttgtggttgg ttgggtaagg ataaattttt taattttatt ggataagaaa attatttgtt attattttaa aatgtgtttt tttttgtttt tgtttataat tgagtgtatt aatttgtatt
                                                          1680
                                                          1740
ttttggtaag agatggtgtg ggtgtgtttt gtttgtaagg ttttttggga gttatggttt
                                                          1800
1860
ttagggatga tttgttagtt gtttttggag ttgagtaggt tttgaatttt tttatttta
                                                          1920
gatttttagt tgtataatag ttgtggtgtt tttggtttga tgtagttggt tggaggtgtg
                                                          1980
gagttggttg titgttttgt tigttgtttt gigttitttt titiggittit gittittigt
                                                          2040
                                                          2100
aaattaggtt tggttttgtt ttagtatttt tgtgtgttaa gttttgggtt ggtgtgtggg
                                                          2160
tttttgtttt tggaggaagt tgggattttt gtaggtttgg gtggagatgt gtatataata
                                                          2220
gaggaāgagt gīggāggatt ggaggattta gggtagtatg gtagaggtgt atgtaggttt
                                                          2280
ttggttggat tggagaatgg gtggtgggtt ttttgagttt tagtttttga gtttgatttt
                                                          2340
gatgtgggtt tagtaattag gaaaaaagtt tattttgttt ttgttgtttg agaatattta
                                                          2400
                                                          2407
gatttta
```

<210> 428 <211> 2229

<212> DNA <213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 428

ttttttttg	gtgttggttg	gtgtgggttg	gggttaggtg	gagaagttgt	tttttgttaa	60
ggtgatagaa	tgtgttgggg	gtgggggttg	gggttagggt	tggtgtaatt	agggggttgt	120
tgttttttt	tggatatagt	ggaagttttt	tttgtattat	taaatttttg	ttatttttt	180
tgagggattt	gtttttaggt	agtatgtaag	ttgttgtttt	gggtttattt	tgtattttt	240
tattgggtga	ggaaggagta	ttttgaatgg	agatgggggt	gtttttggtt	tatatatttg	300
tagagaagag	gtgtgttggg	ttgtattttt	ggaggttgtg	gtaattgata	ttagagaaga	360
ttttggttgt	agttgggaag	gtttattggt	tggaaagagg	tgttttttt	ttttagtaaa	420
gggttttgtt	tggaagggtt	gttttttatt	tgtttagtgg	tattatagga	tggttggttt	480
ttatttgaat	ttttttggat	ggtattatta	tatagttggg	tttttgtagt	gttggttttt	540
taatttgatg	attgttattt	tggtgaggat	ttgtgttgat	ggttggagaa	ttttgtgttg	600
tgggtgtata	tggttaggtg	gtgtttggta	ggtgatgttt	gggtgtagga	tggtgttttt	660
attgttttat	tttaaattgt	tgtttgggtt	taggtttttt	ggttttttga	ataggggttt	720
ggggggttaa	ggatgttgag	gttttggggg	taggaagttt	tttttggtta	agtgttttt	780
ttttttttg	gtatatattt	ttttatttat	ttattttgtt	tatttttggg	gtgagaggtt	840
tattaaggta	gggtgtgttt	tttttatgaa	ttattttaag	gtttttgagt	tgtgggggtt	900
ttgggtaatt	atttttttt	ttttttggtt	ttaggtattt	tagtttaggg	gtttgtagag	960
aagtttgaag	tttggataaa	tgtgttggat	gttaataatt	ttttatttt	ggtagtagta	1020
	tatttttatt					1080
	aaggtgttga					1140
	aattagagtt					1200
	attgtgtgtt					1260
	tggttgtggt					1320
tgggattgtg	taaatgtttt	ggttgaagtg	ttattttatt	taagaaatat	tgttgttagg	1380
	ggtttttggt					1440
aaaaaatgtt	tttgttttaa	tgttttataa	tgtttaagga	aatatgtaaa	tggtttgttt	1500
	atggttgttt					1560
tttttttag	agttaagtat	tttattatat	gtaaattata	ataaagaaaa	gattgtgtaa	1620

Page 203

gattatgtaa gttgattgat ttaaaatatt gagttttaat ttaggttttt tgtttttta 1680 1740 1800 tttttgagta ggttttagtt ttaggtttga gtttttttgt gattatttta tagttattta 1860 1920 atataaaata tattttagtt ttttaattaa atttaaatat gattttggta gaatttatat 1980 attttgtggt gtatggattg tgttggtgta ggggaaataa atattttttg gtatttaatt 2040 2100 attgagttta atttgaaaaa ttgggattgg gtttttaggt ggtattttag gggttttaat 2160 ttggtttgtg tttttttaga ttttggtgtt gagagtgttg tttttgtggg tgggtggatg gagaggtaat aatttgtttt taataaaaat ttgttgttat tgaattgaaa gtgaaaggga 2220 agggagaag 2229 <210> 429 <211> 2229 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 429 tttttttttt tttttttgtt tttgatttgg tggtgatagg tttttgttga aagtagattg 60 ttattttttt gtttatttat ttgtaaaagt agtgttttta gtgttaaggt ttggggaggt 120 gtgggttagg ttggagtttt tggggtgttg tttaggggtt tagttttgat tttttgaatt 180 240 ttatgaaatg tgtaaatttt gttggggttg tatttgaatt tagttagaga attggggtgt 300 gttttgtata taagagatga tttaaagaag gtagaaatga aaatttgata gaagtagtaa 360 420 tagttgttgt gggtgattgt ggggtgattg taggaaaatt tgagtttggg attgaagttt 480 ttaatttttt attttgttaa tttttatagt ttgttttatt agtttggttt aaatataaaa 540 gttgttaaat agaaaaatag agggtttgga ttaaaattta atattttaag ttaattgatt tgtatgatt tgtataattt tttttttatt ataatttata tatagtgaag tgtttagttt 600 660 720 ttgataaaga aatagattat ttatatgttt ttttaaatgt tgtaaaatgt taaagtaaaa 780 atattttttg taagttgttt taagaaaatt ttagaagata ttttggagta ttggggattt 840 tattttgttt ttgatagtag tgttttttga atagggtgat attttagtta gggtatttgt 900 gtggttttga ttttaatgtg aagttttaag tggttgtgtt aggaattttg ttgtgattgt 960 tgggttaagt tggagttatt aagttttgag ttgtatgtgt tgtgatgttg gtatgtagta 1020 ggaaaataga ttaaaatgtt ttatagaaaa ttttggtgaa gttttggagg attttggttt 1080 ttaaqattag ttqqqtqtat tttttttqqq atqttttttt tttttqqttt taqtqttttt 1140 ttgtttttag ttgtgtgtag ttttgttttg gtggtaaatt gaaataagaa atggaaatat 1200 attggttttt gttgttgtta gggatgagag gttgttgatg tttggtgtgt ttgtttgggt 1260 tttgggtttt tttgtagatt tttggattgg ggtgtttgag gttaggagag gagggggata 1320 gttgtttgga gtttttgtgg tttagaggtt ttgggatgat ttatggggggg ggtgtttt 1380 gttttggtga gttttttgtt ttgagggtag gtgaggtggg tgggtagggg agtgtatgtt 1440 1500 ggagagaaga gagaatgttt aattagagag aattttttgt ttttggagtt ttagtgtttt tagtttttta aatttttgtt taggaagttg aaggatttag gtttaggtaa tggtttgggg 1560 tggggtggta agagtgttgt tttgtatttg gatgttgttt gttaggtgtt atttggttat 1620 gtgtgtttgt agtgtagggt tttttggtta ttagtatagg tttttattga ggtgatagtt 1680 attggattgg gaaattaata ttgtgaggat ttggttatgt gatgatattg tttgggggaa 1740 tttgagtgga agttgattgt tttgtggtgt tattagatag gtgagaagta gtttttttaa 1800 atagggtttt tigtiggaag gaggaggtat tittittag tiagtgagtt titttagttg 1860 taattggggt tttttttaat attagttatt gtggttttta gaggtgtagt ttggtatatt 1920 1980 tatttagtag aggggtgtgg agtaaatttg ggataataat ttgtgtgttg tttggaagta 2040 ggttttttag aaaggatgat aaaaatttgg tgatgtggaa gaagttttta ttgtgtttag 2100 gaaagggtag tggtttttta gttgtattgg ttttggtttt ggtttttatt tttagtatgt 2160 tttgttattt taataaagag tggttttttt atttgatttt aatttgtatt agttagtgtt 2220 gaggaaaga 2229

47675-47.txt

<210> 430 <211> 6887

<212> DNA

<213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 430 tgttgtttgt gggttgttgg ttggttgtag tttgttggtg atgagggtat tatagttgtt 60 ttgattgtgt agattatgta tgttttggtt ttgggaattt attatgtatt agaatatatt 120 180 agtgtttgta ttttaaaagg ttaaattatt ggtttttagt tagggatttt tggtaagtgg 240 300 tagattgtag tigtttaggg gggatatagt atggtatttt ttattgaatt ttttttgttt 360 gtitgtatti tagttttiti tittttagtg attttttat tttttttt ttttttt 420 ttgatgtttg attttagtag taaaggaggt aaaaaaggta ttgagttgtt agttaaattt 480 540 600 ttggggtagt tgtggttttg gagtggttgt gtttggtgtt tgttgggtgt ggttttgttt taggtttggg agggtaggtt ggttgttttg gtgagtggta gagtttttt ggatagtttt 660 720 tgtttattta aatagaagat gttggtgttg gagtgggttt ggatatggtg aggttgtgag 780 gtatgtatgt tttgtttgtt tttattttgt ttttattttg ggtgagtttg tttgtagttt 840 900 960 tttttgggtt ttgatggatt gaatgaaggt tgtttatatt gtttattgat gttttattaa 1020 agatttagaa ggttgtgtta tgaatttgga gttgataatg gaaagtttgg gtattttgta 1080 1140 1200 gggtttgggt tatgagtagg agttgttggt tagttttagt ttttattatg tgggttgtgg 1260 tgttgttggt ttgttgtggg gttttttgtt gtttttaatt gtgtattagg agttgggtat 1320 ggtggtagtg gtggtagtgg tggtgttgtg ttttggttatg gttattagta tggttttgat tttggatggt ggtgattatt ggtttgagtt ttttattttg ttgtattatg ttatgagtat gttttgtgat ttgtttttgt ttggtatggg tatgagtaat atttatatta tgttgatatt 1380 1440 gttttagttg ttgttattta tttttattgt gtttgataag ttttattatt tttatttgta 1500 ttattatttg tattattatt attattatta ttattagtgt ttgtttggta atgttagtgg 1560 tagttttatt tttatgtgtg atgagtgtgg gtttttggtt atgaataatt tttatagttt 1620 ttataaggag atgtttggta tgagttagag tttgtttttg ttggttgtta tgttgttggg 1680 taatgggtta ggtggttttt ataatgtgta gtagagtttg tttaattatg gtttgttggg 1740 ttatgataaa atgtttagtt ttaattttga tgtgtattat attgttatgt tgatttgtgg 1800 tgagtaatat ttgttttgtg gtttgggtat tttatttgtg gttatgatgt tgtatttgaa 1860 tggtttgtat tatttgggtt atatttagtt ttatgggttg gtgttggtat ttagttgtga 1920 giggttattt tigttittat tgggttigta ggiggitatg tigggitagt iggaagaaat 1980 taatattaaa gaggtggttt agtgtattat agtggagttg aagtgttata gtattttta 2040 2100 gaatttaaaa ttgtggagta aatttaaatt tggtagggag attttttgta ggatgtggaa 2160 2220 ggttagttag gggttaggtt gttgggaaga gggttttggg tttggtgttt gtggtttaag 2280 titgtgtgtgtt gagttatttt ttttgatttt tttttttit tttitatata igittttti 2340 2400 2460 ttttttttat tttatttgtt ttttttttaa tgtgttaatt tttgttttat ttttgatttt 2520 tttaggtatt gggaggtggg atgggggtgt gtgttttttt ttaggagttt tgtttttta 2580 agatttatag aaattaggat ttgtttttat ttaaaatttt atgtatttta agttttttt 2640 agataatata ttttaatttt ttgggttgat tagttttttt gtgtagaggt agttgagagg 2700 ttttgttttg tagagggaaa agagtttttt atttttttat ttattatata ggtaaattta 2760 tttggttatt ggttgaaggt atagttttgt ttttgtgggg aattggtggt taggatataa 2820 tagtgttttt ggagtttatt tttggttttg gtgttggtgt agggattttt tgattgggtt 2880 tgaggggttt gggttagttt taatgttatt atttatagtg agggtagggt gtaaggttga 2940 gaaggttata tttattgttt tgggaggatg tgggagaaga gattgaggtg gaaagtgttt 3000 tgttttgttt attggttgtt tttgttttgg ttttagtgtt tgttgggatt tgttaggatt 3060 tgttggggtt ttgggagatt ttgagtattt gtaggaagag gtgttgagaa attaaaaatt 3120 taggitagit aatgialitt tgitgitggi igtaggilti gilittigiat taagigggig 3180 ttgattgtgt gtgtttggtg attgtgggga ggattggtgg tttgtgggag gggatgggta 3240 gaggtgtggg ttatattgtt ttggagttgg tttggttttt tgtgtttttt ttagtggtta 3300 Page 205

agttqtqaqq tataqttttt tattqtttta qqaqtataqa aattttttgt gtgggtggtg 3360 3420 ggtgtgtgag ttagagggaa agatgtagta gttattgtga ttggtatgta gttgtgtgtt 3480 tttgtgtgta tggattttgt gtggtgtgtg tggtgattgt gttgttttta ggagtaagtt atgggtttag aggggtaaaa tgtttaggtt ttttgttggg aaggatatat tatattttat 3540 3600 ggtaagttag ggtgggtgat tttttatgga ttgggtggag gggggtattt tttaggattg gtgggtggtt taggggaata atttgtggtg gtgatgattt gtatagtgtg ggttttggga 3660 3720 tgtgtgtggt tttgagttag ttttgtatag tttgtttttg gagttgtgag tttaggtttt 3780 tatttttgat tttttgggtt ttttttgtat tgttgagttt agtttgtggg gtgtatttga ttaatgtttg atagggttgg ggaatgtgat aggtagtagg tttatttggg tttggggagg 3840 3900 ttggtaattg ttttgtagtg ttgatttaag aaggtaaaga aaattaggtt tttttgtaaa 3960 gagttttttt taaattggtg gattttggat attttgagtg gatttagaaa tttatgtaat ttttttttt tagtttattt tttattttt tttatagttt tttttgattt gttgttggtt 4020 4080 tggggtaaga taaagtagtt agtagagagt gataataata gtggtgggaa atgaattgga 4140 gattggttga tagtitttaa tattitgtta tagatttttt tgaatgtttt aggttgtttt 4200 tggtgggttt tagtatttgt tggttttttg ggtattgggg attagaagga atttggtagt 4260 tggttttagg ggtatagtta aaggtaggat gatagttatt tttttgttta ttttagagtg 4320 4380 ttgttgtttt tttatgttgg ttgtgtaaag aatatagttt ttaaaaaata tgtgttttt gtttatatag gtttgaaagt gatgaggaaa gtaatgtttt gtttattagt gagttttagt 4440 ttttaaaatg attttaagtg ttgttgagat gagaaagtgt ggtattttgg gggtttttag 4500 ttttatttgt gtttatggtg taagtttgta gggataggtt tgggatagta ttgtttatgt 4560 4620 tgttagattt tttgtagagg attgttgaag ttgtttttgt gggagataga atgtttttt 4680 gttttattat tttgggttga aaagggataa gagttttagt ttttttattt ggttatttta 4740 ttagtaatta taagtgtgtt gagtggttat tattatatag gaggtttttt agtttggggt 4800 tagtagatta gtttttttag atattgatgt agaagttggg attggtaagt aggtattatg 4860 4920 tgtttggagt gttaggggat aggagtaaat ggagaagaaa agtggaggtt ttttttgttt 4980 ggagtattga ttggaatttt tgttggtatg ttgtagaggg tttttgttgt tgggttttgg gggtttaata agtttagttg tittgtaggt ggtttggttg gatttttaga tiggtgtttg gaagatattg titttgttt tittttgtta aatttgttt titttttt titataggtt 5040 5100 ataggttttt tttttttt attttggttt tgtttttggg ttttgttaaa tagttaagta 5160 ggtiggggtt tagggggttt agaatgaaga ggtttgattt ggttagtgtt ggtaaagttt 5220 attittaggt gaggitataa tagaggtagg titttittgt tiagtitgtt ggtgtagtta 5280 tagttaaggg tggtatttga aaggaaaagg gagaaaattt tggagaaatt tagattgttt 5340 taatgttaga tittagagaa attgattita aatgtatgga titgtitgga aagggtggtt 5400 aagtggtagg tggttgtaat tttgtttggt tgggtttttg tagaggtttt ttaagattag 5460 tttttgtagg gtggttttta gtaatttgat aagaggtggt taagataaat ttttgtgggt 5520 ttgagtatat atttttgggt gttgggtttt agagattttt aaattaagta taaataagaa 5580 gggagtgaga gaatttaggt tagaatttgt atgggtattt tattgaggaa aagtgaggtt 5640 ttggtggtag gtatgttttt ttttgatgtt tgaaaattga gttgagtgtt tgattatatt 5700 tattgtagag gtttttgttt ttagtgagtt tggatttttt agtggtttgt ttggagttgg 5760 5820 tagtttgaag ttaattttgt ttaggtggtt gagggttttt agttaattta ttatgatgtt 5880 gtttgggtta tttgatgttt gtagtggtgg gatatggttt gggtagtgtg tagtggtttt 5940 tgttaggggt attgtgtgtg tgtttgtttt ttgttgtgtt ggggatgttt ttgggtgata 6000 tgggttgttg ggtatttttt aagttgagga aatggatttt ttttgtagag ttttgtgttt 6060 attitttaat titttatttt gtttttgtt gttagggttt ttgatttagt ttatttttt 6120 tggtggttta gttagggatt agagttggag aggttgaatg taatttgtgt tagtatggaa 6180 tagatgatat gtttgtttgt tagttgtttg gatgaataat tgaaaagttt gttgtagttt 6240 6300 ggagtgggta gaggaggtgg gatttgaggg aggagagtga atttgagtag gagaagtagt 6360 ttaggtagtt aggtgttttt gatgtgagag gttgggtatt tatttttatt ttaggttttt 6420 6480 taatgtttag aagattaaaa gagtattaat gttggtaata ataatgtaaa tgtgtggatt 6540 tagattttat tgatttggaa tttgatttgg tgtgttttta gtaagtttga tggtgtgttt 6600 ttittagtag agtgtttatt agtgttatgg ttttgtggtt ttttagtggt giigititgt 6660 tagttttgtg tgggtttttt tgtttgattg tagtttttt tttgtgaggt tttagtttgt 6720 tttattttt tgaggttttt ttttttttt gtggggtttt ttgtttttt 6780 tttgattttt gtattatttg tttttgtgtg tatatattgt tatttgtgtt tttggtgatt 6840 tgtttgggtg gttgggtttg tgaagttaat gtgttgaatg gtgtttg 6887

47675-47.txt <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 431 tgggtattgt ttagtgtatt ggttttgtgg atttagttgt ttaggtggat tgttggaagt gtaagtagtg gtgtgtgtt ataggggtgg gtggtgtaga ggttggggga gggggtgtag agggtagaga gttttgtgag aggaggagaa aattttgggg aagtaaggtg ggttggggtt ttgtggggga ggagttgtgg ttagatggga gaatttgtgt agagttggtg aagtggtatt gtiggaaaat igiggggtig iggigtiggi gagtgtitig tigggaagag igigtigtig ggtttattgg aaatgtgttg gattaagttt tagattaatg aaatttgggt ttatatgttt atgttattgt tgttagtatt aatgttittt taatttitta aatattatta gtattgattt ttttttatat atatatttgt ttgagaaagt gatataatta tatagtggaa agtttggaat tttgggttta tttttttt ttgggttttg tttttttgt ttgttttgt ttattttgat gtgtgttggg aaggtgtttt tttggtattt gggatttgat gaagtataga ttgtagtgaa gagttgggag ttttagtagt gagaaatgag gtgggaggtt gggggtggg tgtgagattt tgtgaagggg gtttgttttt ttggttttggg aggtgtttag tggtttgtgt tatttaagga tgtttttggt gtagtgggag ataagtatgt atgtggtgtt tttagtagga gttattgtgt attgtttggg ttgtgttttg ttgttgtggg tattaggtgg tttaggtgat attatggtgg gttggttaag ggtttttggt tgtttgaata gaattggttt tagattggtt gttgggagtt tgttgttagg agagggttgt gtgttggatt atggtgggga ttggagatta gttttgggta

ggttgttggg ggatttgggt ttattggagg tggaaatttt tgtagtaaat gtagttgggt gtttggtttg atttttgggt gttggaagaa aatatgtttg ttattgaggt tttgttttt ttggtttaga ggtttttggg gtttaatgtt tgagagtgtg tgtttgaatt tgtagaaatt tgttttggtt gtttttgtt aggttgttga aaattgtttt gtaagggttg gtttttgggga

gaatgaattt gtgtatttgg agttaatttt tttgaaattt aatgttgggg taatttaaat ttttttgaag ttttttttt tttttttta agtgttattt ttggttgtga ttatattggt aggttgggta ggaaggattt gtttttgttg tgattttgtt taagggtgag ttttgttggt gttggttaaa ttagattttt ttattttgag ttttttaaat tttggtttgt ttggttgtt ggtaggattt gggggtgggg ttaaaatgag agagaaaggg aatttataat ttatgagaga

tattagtttt agtttttgta ttagtgtttg aagagattga tttattgatt ttaaattgaa aagtttttta tgtaataata attatttaat atatttgtag ttgttgataa aatggttaga taaaaaaggtt aaagtttttg ttttttttta atttagggta ataaaataga tatattttg

tttttaaaag ttgtgttttt tgtgtgattg gtatgagggg gtggtagtgt tttgagatga gtaggagaat agttgttatt tigttittaa tigtatiitt aagattagit gttaagittit ttttggtttt tggtgtttaa gaagttggtg ggtattaaaa tttattagag atagtttggg atatttgggg ggatttatga taaaatgtta agaattgtta gttagttttt agtttatttt

ttaaatttat ttaaagtatt tggagtttgt tgatttgggg gaggtttttt gtagggaaat tttattagta gatggtaaag gaaaatgttg ttaaagtgga aattttttt ttttaagttt

ataagttggg tttagtggtg tgaggaaagt ttgggggatt gggggtggaa atttgagttt gtagtttigg aagtgagttg tgtgaggttg gtttggaatt gtgtgtattt taagatttgt gttatgtaaa ttatigitai tatgaaitgi itttiiagat igitigttga ttiigaaaga

aagagaagag gtaggtttgg tgggaggggg gtagggatgg tgttttttag gtattggttt gagagtttgg ttgagttgtt tgtggagtgg ttgggtttgt taaatttttg gggtttaatg gtgagggttt tttgtggtgt attggtgggg attttgattg atattttggg tggagaaagt

gttttttatg aaggtagttt tagtgatttt ttgtggaaaa tttagtagtg tgggtagtgt tgttttgggt ttgttttgt agatttgtat tatgggtgtg ggtggggttg aggatttttg ggatgttatg tttttttatt ttagtaatgt ttgggattat tttaaaagtt gaaatttgtt aataggtgaa gtattatttt ttttattatt tttagattta tatgggtaga aggtatgtgt

ttgttgttat tattattgtt ttttattggt tgttttattt tgttttgaat taatagtaaa ttagagaaaa ttgtaggaga ggatgaaaaa taaattaaag gagaaagatt atataaattt

60

1920 1980 2040 2100 2160

3120 3180 3240 3300

3360 tatttttttt tatttgattt atgggaagtt gtttattttg gtttgttata gggtatagtg tgttttttt agtgggggat ttggatattt tgtttttttg ggtttgtggt ttgtttttag 3420 3480 gggtagtgta gttgttatgt atattgtgtg gggtttgtgt gtataaaagt gtgtaattgt gtgttagttg tagtaattat tgtattttt titttagttt gtgtatttgt tgtttatata 3540 ggaggttttt gtgtttttag aataatagag ggttgtattt tgtagtttgg ttgttagagg 3600 aggtataaaq aqttqaqttq qttttagaat aatqtaattt qtqtttttat ttgttttttt 3660 3720 ttgtgggttg ttagtttttt ttgtggttgt taggtgtgta taattagtgt ttgtttaatg 3780 taaaggtgga gtttgtagtt ggtggtaggg atgtattaat taatttgaat ttttaatttt 3840 ttagtatttt tttttgtgag tgtttagggt tttttggagt tttggtaaat tttggtaaat tttagtaaat gttgggattg gggtaaggat ggttggtgag taaggtaaag tgtttttat tttagtttt tttttatgt tttttaaaag tggtgaatgt gatttttta attttatat 3900 3960 ttgtttttgt tgtaggtagt gatattggag ttggtttgag ttttttaagt ttggttagaa 4020 agtttttgtg ttaatgttaa ggttagagat gggttttagg agtgttgttg tattttggtt 4080 4140 atggtgggtg ggagagtaga gagttttttt ttttttgtag agtaaagttt tttaattgtt 4200 4260 tttgtatagg gagattagtt agtttggaaa attgaaatgt gttgtttaaa agagatttga 4320 agtgtatggg gttttgaata agggtaggtt ttggtttttg tgggtttttgg aaagataggg tttttagagg aaaatgtata tttttatttt gtttttagt atttgggaag attggaaata 4380 4440 agtttaggga taaggagaga gtaagaaaga aaaagaaaag ggagaaggga aagtagggga 4500 agagtggaag agaaagagaa aatggaagaa gaaataaaaa tgagaagaaa gaggatgtgt 4560 4620 ataggaaaga gaaggaaaga attaagagaa gtgatttggt gtgtagattt gggttataag tattggattt ggagtttttt ttttagtagt ttggtttttg gttagttttg gtttatttg 4680 ttaggtgtaa ggtggatatg tgttggaatt tgggtttttg aagttatttt tatattttgt 4740 ggaaggtttt tttgttagat ttgagtttat tttatggttt tggattttgg agtaggttgg 4800 agagagtttt ttgagattgg tatagtattt tttgtgtaaa gattgtttgg gggatattgt 4860 agtgttttag ttttgttgtg atgtgttggg ttattttttt ggtgttgatt ttttttagtt 4920 4980 ggtttgatgt ggttatttgt gagtttgatg aggatgaggg tggttgtttg tgattgggtg ttagtattgg titgtgagat tgagtgtggt ttgggtggtg taggttgttt aggtgtgata 5040 ttatggttgt aggtggggtg tttaggttgt gggataggtg ttgtttattg tgggttagta tggtagtgtg gtgtgtttg aagttggggt tgagtatttt gttgtggttt ggtggattgt 5100 5160 agttgggtag attttgttgt gtgttgtgga ggttgtttag tttgttgttt agtggtgtgg 5220 tggttagtgg ggataggttt tggtttatgt tgggtatttt tttgtaggga ttgtagaggt 5280 tgtttatggt tgggagtttg tgtttgttgt gtatgagggt gaagttgttg ttgatgttgt 5340 tggataggtg ttggtggtgg tggtggtggt ggtggtgtgg atggtggtgt gggtgagggt 5400 ggtggaattt gttagatatg gtggagatgg gtggtagtgg ttggagtggt gttagtgtgg 5460 tgtaggtgtt gtttatgttt atgttaggtg gagatgagtt gtaggatatg tttatggtgt 5520 ggtgtagtgg gatggagagt ttgggttggt agttgttgtt gtttaggatt gaggttatgt 5580 tggtgattat ggttgagtgt gatgttgttg ttgttgttgt tgttgttgtg tttagtttt 5640 ggtgtgtggt tggaggtggt ggagggtttt gtagtgagtt agtggtgttg tggtttgtgt 5700 ggtgggggtt ggggttggtt agtagttttt gtttatggtt tgggtttttg ttgttgtttt 5760 tgttgttttt gttgttgttt ttgttattgt tgttgttggt tggtttgtgt aaagtgttta 5820 gattttttat tgttagtttt gggtttatgg tgtagttttt taggtttttg gtgaggtatt 5880 gataggtggt gtaggtagtt tttatttagt ttattagggt ttgggggtgg tgggggtggt 5940 gggggtggtt ggtgggtggg taaggtgtgt gtggtggggt ttggttgtgg qaqtqqqqt 6000 6060 6120 6180 tatgittgag titgittigg tgttgatgtt ttttgtttgg gtgagtggga gttgtttaga 6240 agggtttigt tgtttgttgg ggtagttaat ttattttttt ggatttgggg tggggttatg tttgatgggt gttaagtgta attattttga ggttgtagtt gttttgggag gtgggttttt 6300 6360 tatgggaagt tattagtggt tgtggagggg gtggggttgt attttttagg tttggttgat 6420 6480 6540 ttggtgaaag atgttgtgtt gtgttttttt tgagtagttg tgatttgggg gaaggggtat 6600 tgttttaatt gtttttgttt tattttaaag tttttttgga ggtgagtaag ttgggagtaa 6660 aagattttgt tatgtgttag tatagataaa tatttgttat taataagtta tttattgaga 6720 gtttttagtt gggagttaat agtttagttt tttaaaatgt aggtgttaat gtattttaat 6780 gtatggtaaa tittigaggt tgggatatgt ataatttatg tggttagagt aattgtagtg 6840 tttttgttgt tagtgagttg tggttggttg gtggtttatg ggtggtg 6887

<212> DNA

<213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 432 ggttgtagtt ggagaggaat aggaattgta gtggggatgt tttggttttt gggtttatag 60 tatttgggat ggatgtgtag tagtgtgggt tgggaattgg gtattagggt gggatgggtg 120 agaggtttta agggataagg tagggagaag tgtagtgggg tgtggggaat tgtatgtttt 180 ttttttgttt ttgttttta ttttgaggtg gtagggtggg tgggtgtggt tttgggggtg 240 ggtgggttgg gtggggtgga ggtggggttg tagtattggt titatttagt tttttttgtt 300 tgtagttaga gtgagttgag ttgtggttag ttttggtggg taggggggt gttggagtgt 360 agtgtagtgt agttttatta gtttgtaaag tggattgagt tggaagttga gtgttgttgt 420 480 540 ttgttgttgt ttttgggggt gagtgttagt tggagggggt ttgtttttt ttttgggatt agaattttga gaagagttgg gtgttgttat taaggaaata gaatagagta ttggggtttt 600 agatattgag ggtgggtggt gggaaaggat ttttgatgtt gggattatga aggagggttt 660 agggtttttg gagtgtagag gtgatttttt agggtggaga tgagggtaag attggagtat ggatgttggt ttttaggtat tgtaggggt ggtggggag ttgggagggg ttttttaaga 720 780 gggggtatgg ggtttittga tgtttaggtt tittggaaga ggatatttga atgttgggat 840 tttgaaggga ttttttttt agtattttgg tttttggaga gttgtgggat agaattaagg 900 tgagagaagg agggggaatt ggatggggat tagagatgag aggggtgagt tgggttgggg 960 tggggagttt gggatgatgg gatggaataa tggaggaggt tggagggatt ggaggtagag 1020 1080 gggatttggt aaggataatg gggattggtt agataatggg ggggaggggt gttggaggga gaggttgggg agtgggagag aggttgagaa gtgggttagg gagggtagaa gaggggtgat 1140 ggtgagggtg gtagagagat ggaagtagaa ggaaaggaga tagagtgggg tgtggatttt 1200 gaagtggttg gggttttgtt tgtttgttga gggatagtga gatgagaaga gagagtagag 1260 gtttggatat tittagtgtt tgtttttgtg titttgttg tggttttttt tagttttgga 1320 attggggttg tggatttaag gttgggaggg gagtgtttat tttgttgggg tgaatttgtt tttgggggttt ttttatggtt ggtgggtttt tttgatgtg gtgtttttat ggttgaagt 1380 1440 agtgtagtgg attgtgaggg atggagtggg tgtgttttta tttgggttgg tggtggttat 1500 gtttttggggt gtagagtgtt ggggtgtatt aggtggggat tttttttggt tgtgtagt 1560 tttggttatg taggtgggag gtggtaggta gggggtgttg tggggtgagg taagtgtagt 1620 1680 tgagtgttgt gtttattgtg ttttgtgggt ttttgtgttt tgaagggttg ggatttggtt 1740 tgagtttttt ttggtttttg gtgtaagttg ttgggtattt aatgagatgg gggtgtttgg 1800 atgitttgga tittgtagtg tggtattttg ggttattgat ttggtaaagg ttggtgggtt 1860 1920 tttggaaggt ttggtaatgg aggaggtgtt titattittt ttgttagtat ttttattat 1980 agtattgtgt tttaaatttt ggttttatag atatggagat tgaggttttg agagtttaaa 2040 tgatttggtt aagattttat agtaagttgg gttagagttg tggttagatt ttttgatttg 2100 attittagit tggtattitt ttattittit agggggtagt tgttgtitta gittggggtt 2160 atggttgtgt tttttagtag ggtggggggg gttgatattg tttttagagt ttgttggtgg 2220 tagagtttgt gggtgaggtg ggtagagatt ttgtttgggt gtgggtttta gtttgaaagt 2280 ttagttttag ttttttggag ttgttaggat ttgtggttgt gtttggggat ttgggagtga 2340 2400 tgagtgtaga ttaggagagt ggggaggagg gattggattt tagaggggta atgatttggg 2460 2520 ggtgtggagg atttgggtgt ttgggaaggt gtattttgat aggaatttgt tgtttgtagt 2580 2640 gtttgagttt ttttttgggt tgtggtgaga gagagagggt tgaaattaga gtgtgttttg 2700 gtgggttggt tggtgggttg tgttggtaat ggaggtattt tgttatttag atgtttgtaa 2760 ttagagttgt tgggttggtt aatgtgttta atagggatgg aatgagggta gtaaatgggt 2820 gtgtgtgagt ggttgggttg agttgggtgg atggtggatg gggaggtagt tttgtggggg 2880 2940 gggattgtgt ggggaggtgg gaataattga tgtgttgagt ttttattaag tgttttgtat 3000 ttttttggta gttttttttg aattatttaa tttttataag gttttagtaa ggtgaattta 3060 gttattttta ttttgtagtt gaggaaatag aattttttag atttttaggt ttgagattag 3120 gtttttttag tgagttagtg gtggtgtttt tgttggaatt taggatgttt ggtttgggat 3180 qttttttttt ttatatatgt taggtttttt tttgttttt atttttaga ttatggaagg 3240 agttgtggtt ttgagagatt aaattgtgtt ttatgttttt ggttttatat atttagattt 3300 Page 209

```
47675-47.txt
3360
tgggtaatta gtttttttt ttttaatttt tttttattt aaagggagtg aggggtatgt
                                                          3420
gttagtgttt tttttgggtt tgtattgatt ttaaaaggtt ttttaggtgt ttgaaaattt
                                                          3480
3540
tggaatggtt agggttgatt atattgaaat atttgtatgg ttttaaatat ttttaattgt
                                                          3600
tttgttgttt tttttttt tttaattaaa aaaaatgaaa atttttaaaa gttaatttat
                                                          3660
ttaaggattt ttttatttta gttttttgta agttttgaaa tggttaaaat aaaaagatta
                                                          3720
taagtgtttt taaaaatgag atgaaattat tttgttaaat gtgaaatgat taagtgtaat
                                                          3780
atatataaat tttagggaaa tttatttgtt atttttataa attaattttt ttggatttga
                                                          3840
3900
ttgtttgggg tttttttaag atgagatgtt tttttgataa ttaatattta tt
                                                          3952
<210> 433
<211> 3952
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 433
60
agtttagtta agtagggagg ggtgattaat atttaggtta attgttttaa aattagattt
                                                           120
aaaaggatta atttataggg atgatagata aatttttttg aaatttqtat qtqttatatt
                                                           180
tagttatttt atatttgata gaatgatttt attttatttt taagaatgtt tgtaattttt
                                                           240
ttgttttggt tattttaagg tttataagga attaaggtgg aaggattttt agatgaattg
                                                           300
atttttaaga atttttattt tttttaatta gagaaaagag agaaatagtg aaatagttga
                                                           360
aagtatttga aattatatga atgttttagt ataattagtt ttggttattt taatagtttt
                                                           420
agtaaagagt ttttaagtga atggggttgt ggttattgtt atgggatggg agagattttt
                                                           480
540
                                                           600
                                                           660
atgtgtgggg ttaaaggtat agggtatgat ttaatttttt agagttatga tttttttat
                                                           720
gatttagaag gtagggggtg ggagggagtt tggtatatgt aggaaagaga atattttagg
                                                           780
ttaagtattt tgggttttaa taaagatgtt attattgatt tattggggga gtttggtttt
                                                           840
gggtttgaaa gtttagaagg ttttgttttt ttaattgtga agtgggaata attaaattta
                                                           900
ttttgttagg attttataag gattaaataa tttaagagaa attattaggg aagtgtaagg
                                                           960
tatttagtag gaatttagta tattgattat ttttgttttt ttatgtggtt ttttagggaa
                                                          1020
1080
                                                          1140
1200
gtttgaatga taaagtgttt ttattattgg tgtggtttgt tagttgattt gttgggatgt
                                                          1260
gttttggttt tagtttttt ttttttattg tggtttagga agaaatttgg attgtgtata
                                                          1320
gttattttag attgagtagt tgtgtgttga ggtggaggtg ggagttgtag gggttgtaga
                                                          1380
tggtaggttt ttgttggggt atattttttt aagtgtttag gttttttatg tttagttttt
                                                          1440
tttttttttt gggtttttgt gtggggattt ttgtttttgt ttagatttgg agtttaagtt
                                                          1500
gttgtttttt tgggatttgg ttttttttt ttgttttttt ggtttatgit tgtttatttg
                                                          1560
1620
aaattittigg atgtagttat aggttttgat agttttaggg aattggggtt gagtttttgg
                                                          1680
gttggggttt gtatttggat agaatttttg tttattttat ttgtaggttt tattgttgat
                                                          1740
ggattttggg gatagtgtta attttttttg ttttgttggg aaatgtagtt gtgattttga
                                                          1800
gttgggatag tggttgtttt ttgaaaaggt gggggagtat tgagttggga attaggttgg
                                                          1860
ggagtttagt tatgattttg gtttaatttg ttgtgagatt ttggttaagt tgtttaaatt
                                                          1920
tttagagttt tagtttttgt atttgtaaag ttggaatttg gggtgtagtg ttttgatgaa
                                                          1980
agatgttggt ggggagagtg aagatgtttt ttttgttgtt agatttttta gggtatttgg
                                                          2040
```

Page 210

2100

2160

2220

2280

2340

2400

2460

tttatggtta taaagtaggt tatatttgat aattitgttg gattatttgg aggatttgtt

gatttttgtt gagttggtgg tttgggatat tgtgttatag aatttgaggt gtttgggtgt

ttttgttttg ttaggtgttt agtggtttgt attgagagtt aggagaggtt tagattggat

tttgattttt tgaggtgtgg gagtttatgg agtgtggtgg gtgtggtgtt tgggttgtgt

agttaggtgg ggagtggtgt gtagttttag alttgtaggt aggtagtggt ggaltgtalt

tgttttgttt tgtagtgttt tttgtttgtt gttttttgtt tgtgtagtta gagttgtgtg

tggttaggaa gggtttttgt ttagtgtgtt ttggtgtttt gtattttgag atgtagttat

tgttagtttg	ggtaggggta	tatttgtttt	gttttttgtg	atttgttgtg	ttgttttaag	2520
ttgtgagaat	atgtgtgttg	gaggagtttg	ttggttgtgg	gggaattttg	ggagtgggtt	2580
tgttttggtg	aagtgggtat	tttttttta	gttttagatt	tgtagtttta	attttgggat	2640
tgggagaggt	tgtgagtagg	agtgtgggga	taggtgttgg	aaatgtttaa	gtttttgttt	2700
ttttttttg	ttttattgtt	ttttagtggg	taggtgggat	tttgattatt	ttagggtttg	2760
tgttttgttt	tgttttttt	ttttttgttt	ttatttttt	gttgtttttg	ttgttgtttt	2820
ttttttgttt	tttttaattt	attttttaat	ttttttttg	ttttttaatt	ttttttttg	2880
atgtttttt	tttttattgt	ttggttggtt	tttattgttt	ttgttgggtt	ttttttgttt	2940
ttagtttttt	tgatttttt	tattgtttta	ttttgttgtt	ttgggttttt	tgttttagtt	3000
tagtttgttt	tttttattt	tagtttttgt	ttagtttttt	tttttttt	tgttttggtt	3060
ttgttttatg	attttttaga	gattgagatg	ttgaggggaa	agtttttttg	ggattttggt	3120
atttgagtgt	ttttttttga	agaatttggg	tattggagag	ttttatgttt	ttttttgaaa	3180
		ttgttttttg				3240
gttttgtttt	tatttttatt	ttggagagtt	gtttttgtgt	tttgggaatt	ttagattttt	3300
ttttgtggtt	ttggtattag	aggtttttt	ttattattta	tttttagtat	ttgggatttt	3360
aatgttttgt	tttgttttt	tggtggtggt	gtttggtttt	ttttggagtt	ttgattttgg	3420
gaaagggagt	gggtttttt	tggttaatat	ttatttttag	aagtagtaat	agtagtaggt	3480
gtggtttgtt	tatggtgtgg	ttggtggtat	ttgtttttat	tgtttgtttt	ttgtggtagt	3540
gtttgatttt	tagtttggtt	tgttttgtgg	attgatgggg	ttgtgttgtg	ttgtgtttta	3600
gtgtttttt	tgtttgttgg	agttggttgt	ggtttggttt	gttttggttg	tgggtgggag	3660
		tgtggttttg				3720
		gttgttttgg				3780
		tgttttttt				3840
	_	tggtttgtgt				3900
ttggggatta	gggtgttttt	attgtggttt	ttgtttttt	ttggttgtgg	tt	3952

<210> 434 <211> 2820 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 434

tttaggggat	aatatttagg	tatgttaatg	gagtttaaaa	tgttaaggaa	attatattat	60
aattttgttt	agtatattat	aggttgttaa	attgaaatgt	tatgttagtt	aggagtgtag	120
taatttttat	tttttggttt	tatttaatta	ggaagtttta	gtagagtgaa	gtttgttaag	180
tgtttgttgt	tagaatttga	aggaatttga	gtgagtaaga	agagtgtttg	atttatttta	240
tagaagtttg	tttagaaatg	gaggagttag	tgtttattga	agttggtttt	gtttttggtt	300
tgtttatatg	gagtttgatt	agttttagtt	atgtttattt	tggtttggga	gatttgtaaa	360
gtgtttttt	ttttaatttt	tttgtattat	tttgaagttt	agggaagtaa	agagagggt	420
atatttggat	tgtaaaatta	atgttttttg	ttgtttagga	gagaagggaa	tgagagagag	480
		agagagagag				540
agaaatttta	ttgaaattta	gtttttttag	aatttgtgtg	atttggtttt	taatgggaga	600
ttagtgtgat	tttatggtat	ttttgttagg	aattagtgat	ttttttgtag	ttattatttg	660
atttattgtt	tttttgttta	tttttttta	taaagttatt	tttttttat	tttagtaaga	720
ttttttttt	taatgatgat	aaagtttttg	ttttagtgtt	ttttttagga	ttggtgtttt	780
tttaaaatag	tgaatttaga	aaattatttt	gtttaatatt	ttttaaaatt	tttgtagttt	840
taatgtaagt	gtaagtatgt	aaaggttttt	tgttatattt	gtattttttg	tttattttag	900
aattatttt	tatttttggg	tttgtaatag	ttttttttgt	ttttttggat	agaggtgggt	960
ggtattaggg	gtttagggta	gtaggaggtg	aggggttgag	gaggttgtta	gggtaggttg	1020
gtttgtgttg	gatatgtgtg	tttttttgtg	gagttaaagg	gttggggatg	ggggttttgg	1080
atttattaga	gtaattttag	ttggtgggtg	tttggtagtt	atttaaggag	gtagggaaag	1140
tagtgagttt	tattgggtgg	gttatgatga	gtagtatgat	gggtagtagt	agtagttagt	1200
aaaagttttt	gtaaagtgtt	tagttgttgt	attgttgtgg	ggatttttat	agtattatga	1260
ttagtttgtg	taattttgta	gtagtaaatg	gtttttgagg	aatataggat	tgtgggggtt	1320
gggtagtggg	ttattgagta	ttttgtggat	ggtggtagta	gaggtggtgg	tggtggtagt	1380
ggtatttggt	ggggaagtag	tagttaaatt	tgtgtatgat	tttgagagtt	ttagtaatat	1440
ttagggattg	ggtttagttt	tggagtgaga	gggttgtttg	ttgagaagtt	gtgttggaga	1500
tgtgggaagt	tgttgttata	aggagggagt	tttgggaagt			1560
gagtttaggg	gtagatgagt	ggagtttgag	gaggtagggt	ggagggagag	ttaaggtgtt	1620
_			Page 2	211		

47675-47.txt 1680 tagtaggttt ttagtttgtt tggggttatg tgggaagagg tagttgggtt ttgattggtg 1740 gagtaggatg taggttttgg gagggagggg ttgatgagga ggtgtaagga tgtaaggagg 1800 aggtggttgt ggaagttata gatgggtttg titgttaggt gttggtttga gtggggttag 1860 gtggggatgg tttaaatgag aagtttgggt tttagggtgg gttatttgta tatttatata 1920 ttatttgttt tattttttgt tttaggatgt tttttattga aggtggggtt tggattagtg 1980 tttttttttt gtgtgtgatt ttgggttgtg agtgtgggtt gtggttgggt ggtgtttttt 2040 2100 tgagttggag atggtgggg tggaggtgtt agaggagtag tagtagtagg gtagagaggg gtgagttggt gtgggagagg gtgttttgtt ggtgattggt gttttagtgt gtgggagtgt 2160 gttgtttagg ttgtaggggg atgtaggttg ggaatgttgt ggtggagagg ttagggatgt 2220 ttttttaggg atttatagga aagagggtga gaggtgatgg tgttagaatt gtttttgttg atttggaagt aatagtagta ttttttataa gagtgtgtaa ttttaaggtt gtttgttgag 2280 2340 2400 aggittttig tagtttigat itagtttaag tgtttgtagg tttgaatttt tttttttatt 2460 alltgttttt ttitagtitg tagittatta gigtgittat ttgggaggtg tggttagatg 2520 tgtttggaag gttagattgg ttgggataag tggtttgaga gaaagagaaa ggtttttttg 2580 tatatgttgt gggtgggttg ttgggagtat tggttgggta gtggtgtttg ggaaggggag 2640 agtgggtttt atttgttggt ttaggtagtg attttgtgtt ttttatttgg gtttttgttg 2700 2760 gatggttggt gatttggggt gatgagagaa ggtttaattt ggtaggagtt tttggttttg tgtgtttttt ttatttttt tagtgggaag ggtaaatggt atagtgggat ttgttttttg 2820 <210> 435 <212> DNA

<211> 2820

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 435

tggaaggtgg	gttttgttat	gttgtttgtt	ttttttgttg	gagagaatga	aagaaatgtg	60
tagagttaga	gatttttgtt	gagttagatt	tttttttgtt	gttttaggtt	attggttatt	120
tggtaaagat	ttgagtaagg	aatgtagggt	tattgtttgg	gttaataaat	ggagtttgtt	180
tttttttt	tggatgttgt	tgtttggttg	atgtttttgg	taatttattt	gtggtgtatg	240
		ttttagatta				300
tatttgattg	tattttttag	gtggatatat	taataggtta	tgggttggag	aggagtgggt	360
gatgaggaga	gggatttaaa	tttgtgaatg	tttgggttgg	gttggagttg	tggggggttt	420
		agagaaggaa				480
tttggtgagt	agttttgggg	ttgtatgttt	ttgtgggaga	tgttgttgtt	gtttttaggt	. 540
tggtaagagt	ggttttaata	ttattgtttt	ttatttttt	ttttgtaaat	ttttagagaa	600
atgtttttgg	tttttttgtt	gtgatatttt	tagtttgtat	ttttttatag	tttaggtggt	660
gtgtttttgt	atgttggagt	gttggttgtt	agtaggatgt	tttttttgt	gttgatttgt	720
ttttttttgt	tttgttgttg	ttgtttttt	gatatttttg	tttttattat	ttttagtttg	780
		ggtttgtatt				840
		ttggtagggg				900
tatatgagtg	tgtgggtagt	ttattttgaa	gtttgagttt	tttatttgag	ttatttttgt	960
ttagttttat	ttgggttagt	gtttggtgag	tgagtttatt	tgtggttttt	gtggttgttt	1020
		tttttgttga				1080
tattaattag	agtttgattg	tttttttta	tgtgattttg	ggtgggttga	ggatttgttg	1140
ttttttaaat	gttagaggga	tgtgggtggt	agagtttgag	aggtggttgt	tgggttgtgg	1200
		attttgtttt				1260
		gttttttaga				1320
tttttggtgt	agttttttag	tggatgattt	ttttgttttg	gggttgagtt	tagtttttgg	1380
		attatgtgtg				1440
		tgttgttgtt				1500
ggtttttgtg	attttgtgtt	ttttggaagt	tgtttgttgt	tgtagagttg	tatgaattag	1560
		ttgtggtagt				1620
		gttatgttat				1680
tttttttat	ttttttaagt	gattgttaaa	tgtttattgg	ttggaattgt	tttggtaagt	1740
ttagaatttt	tgtttttgat	tttttaattt	tgtagaagaa	tatgtgtatt	tagtatagat	1800
		tttagttttt				1860
atttatttt	atttagagaa	ataaggggaa			aggggtggtt	1920
			D	110		

Page 212

1980 ttgggatggg tagaaagtgt aggtgtagta ggaaattttt gtatgtttgt gtttatattg 2040 gagttgtgag gattttgaga aatattaaat gggatggttt tttgggttta ttgttttgaa 2100 agagtattaa ttttagggga aatattgaaa tagaagtttt gttattatta aagaaaaaag 2160 taaatggtga ttgtagggga attgttgatt tttggtaaag gtgttatgag gttgtattgg 2220 ttttttgttg aagattaggt tatatagatt ttagaggagt tgggttttaa tagaattttt 2280 2340 2400 ttttttttta tttttttt ttttaggtgg taaaagatat tggttttgta gtttagatat gttttttttt ttgttttttt aagttttaag gtagtatagg ggagttgaga aaaagaatat 2460 tttgtgggtt ttttaggttg gagtgggtat gattgaggtt ggttaggttt tatgtaggtg 2520 agttgagggt ggaattgatt ttagtgggtg ttgatttttt tatttttgga taggtttttg 2580 tggagtgggt taggtatttt ttttgtttgt ttgggttttt ttagattttg atggtgaatg 2640 tttggtaggt tttgttttgt tgaagttttt taattaaata gggttagagg atgggagttg 2700 ttgtattttt agttggtata gtattttggt ttgatagttt gtagtatatt gggtagaatt 2760 gtggtgtaat tittiiggta itttaaatit tgitaalatg ittgggtatt gilttitagg 2820 <210> 436 <211> 2265 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 436 tatttttatt tagtgtgttt agggtatttg tattgtgtta gtttgtggtg gtttttaaat 60 taattttgat tgagtttttg aggtagtttt ttatttttat ttgtattaat ttagtatgtt 120 180 tattaaaatt tttaagtaat tttttttttg ttatgtaaat gttaggagtt gtttgatttt tttttttttt tatttttatt tttttttag tttagttggt tttttggttg ggtaagttgg 240 gaatttagtg attgaagggt tttggaaggt gttggagggg agagatgtta gtttgaattt 300 ttatagggtt tttttattaa aaatttttaa aatgttggtt tgagaaattt tttttgttgg 360 agggtttgag ttttattttt ttttgttgtg tgtgttttta ttgttgtgaa ttgttgtgat 420 ttttaattta ttattttatt ttgtgttttt agtgttttag ttgttttgta tttgtttagt 480 tttttttttg tttatgtatt tggttggttg gtggtgtttg ggatgtggtt gtaggtgttg 540 ttgtattggt ggtaggagtt agtgtagtta tagttggtat aagttttggt tgggtagttt 600 660 ttggtggagt tgtttatgtt gtgatattga tattggtagg ggttgagagt tttgttatag gaagttgagg taggagagta gtagttgtgt ggggtttttt ttgtagggtt gtagtagtta 720 780 840 aatatttttg ttattgttta tgggtggtgg tagtggttgt ttttgttgtt gtggtgg 900 tagttgttit agttggttgt ggggttgttt tggtttaagt agatatggtt gtgggagtga 960 1020 attgggagtt gtgaagtttt tgtttttggt tggttgattg ttggttgagg tgtagtatag 1080 ttttggttaa atttttaatt gtgtgtttat gtatagtggg gtggatttgg ttttattggt 1140 tagggttttg ggagtaatag taatatttta atttgtttaa ttagttttag tataataaag 1200 1260 1320 tttttagtaa attttaaaga tattgtagaa gttatagtat aaggttttgt gatgtttggg 1380 1440 ttatttttt ttgttttta ttattttgtt tttgtgggtt gtattaaagg tgagtgtaga 1500 attaaatatt gatattgaaa tagggagtta aggtgtaggg agtggggagt ggggggatgt 1560 1620 agtaagttgt aatttatatg ttttgaaaat ttgttttttg gggaaagagg taattttttt 1680 tgtaggagat gagtattttt tggatgtggg ttggatagga atgtttaaga aggtataatg 1740 tttattaagt tggtgaatgg tagggagagt ttttgtagtt taaagttttt ataatgattt 1800 ttaaaaatta ttgttttaaa tatatataat ttaaggaagt ttaaattttt gttgttggtt 1860 1920 ggaataaagg ttttttaatt atgtttagtg gttaaagatt tttgtaaagg tgaatggatt 1980 tatgtataat ttgttatatt tttaggaaag aatgggaaag ttttggaagt ggggaaggag 2040 2100 2160 2220 Page 213

47675-47.txt tatttagttg atatatgaga tttaaatttt gttttttagg aggtg 2265 <210> 437 <211> 2265 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 437 tattttttga agagtaaagt ttagattttg tgtattaatt gaatgatttt tgaatttttt 60 tttttttttgt atatgagtta agtaggatgt tittgtagta ggaaataaag gggagagggt 120 atagaaattt gggtttggga aatggagaga ttgggttata tttatggagt taggaggggg 180 aaattaatga gtattatttg attttgtaaa ggttttgatt tttgttttt tttttatttt 240 300 gtgggagttt ttggttattg aatatagtta aagagttttt attttaatgt tttgaaaata 360 gatgaaaata ttaaatagaa gtggagttgt ttggtttttt ttgtaagtta gtaatgagga 420 tttgggtttt tttaagttat atgtgtttaa gatagtaatt tttaaaagtt attataagga 480 ttttgggttg taggaatttt ttttgttatt tattggttta atggatattg tgtttttttg 540 600 ttttttaaag agtaaattit taaaatatgt aagttataat ttgtttttta atattttatt 660 aaaaaaaaaa aaaatgttgt tttttttttt ttttgttttt attttatatt tttttgtttt 720 ttattttttg tattttgatt ttttatttta gtattagtgt ttaattttat atttgtttt 780 ggtgtagttt atgggggtgg ggtagtggga agtaaggaaa gatggttgtt tattttattt 840 900 ttaaaatatg tgtatttttg aggtttttga ttggaatata ttgtttttag atattataga gttttgtgtt gtggtttttg tgatgttttt ggaatttatt aaaaatagat agattaagat 960 1020 atatatat ttttttagta ttttttattt ttttttaag taatgttttg ttgtgttaaa 1080 attagttgga tgagttaggg tgttattgtt gtttttgagg ttttggttaa tagaattaga 1140 tttattttgt tgtgtgtaag tgtgtaatta aggatttaat taaggttgtg ttgtgtttta 1200 gttagtagtt agttggttgg agatagagat tttatgattt ttagttttt ttttgttgtg 1260 attattattt tittiittii tittiitt tuttittt tuttittt tuttittt 1320 tgtttgttta gattagagta gttttatagt taattagggt agttgttgtt gttataatag 1380 taaggatagt tgttgttgtt gtttgtgagt gatgatagga gtgtttgata gaagggtttt 1440 tagtatttga tttggtgatt tttaagtttt gttttagatg tttgtagtta tgtattattt 1500 gttttaggaa ttgttaattt tgtttgagtt tttagttatt gattttgatt attatagttt 1560 tatgggggga gttttgtatg gttattgttt ttttattttg gttttttatg gtaaagtttt 1620 taatttttat tagtattagt attatggtgt gaatggtttt qttqqqaqtt atttaqttaa 1680 agtttatgtt gattatagtt atgttagttt ttattattag tatggtggtg tttataattg 1740 tgttttaagt gttattaatt agttaggtat atggataggg ggaaggtigg gtagatatag 1800 ggtgattagg atgttggggg tgtgagatgg ggtggtagat tggggggttat agtggtttat 1860 gqtaqtqqqg gtgtatgtqg tagaaqqqaq taqqatttaq atttttaat aaaqaqaqtt 1920 ttttgggtta gtattttagg gatttttagt aggagagttt tgtggaggtt tgaattagtg 1980 tttttttttt ttggtatttt ttaaggtttt ttagttgttg aatttttagt ttgtttggtt 2040 2100 ttggtgtttg tgtaataaag agaaggttat ttgggaattt tggtaagtgt gttgggttgg 2160 2220 taagttagta tggtgtgggt gttttgagta tgttgggtgg gggtg 2265 <210> 438 <211> 5907 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 438 gttgttggag tagggtttta gtgtattgtg agtttttgtt ttttttgtt tgtagtgttg 60 tgagtttttt ttttttttgt gtttggtttt gtttgtgttt tttttggtgt gggtatttgt 120 Page 214

agatttgtta ggaggttgat gagaggtgtt tttatagagt tttgtttttt tttagatttt 180 240 ggttggtggt gagtgatttg tataattgtt ttttttgtgg tgtttttgga tgggtggaga 300 gaattigggt gaitgagtti gaggttgagt ttttttggga gtgatttatg ttagttatit 360 ttatttttaa gggggatttg tggttgggtt tatgtgtgaa ggatgggtgt tagggaaatt 420 gatttataga tqatttqttt tqtqaqaqat tqataattta gttttgtggg tttttggggt 480 gtttagatta gtttttagtt agaggatttg gggttgtata gtttttggat tttggagggg 540 600 tggtgaggtg ggaagggtta ggatgtgagt ttagtatttt ttttagaaat gtagtatttt 660 gtttttttat ttttttgtt tttggtgttt tttttttat gtgtttttt ttgtttttt 720 780 840 atttttgtat tgtttgattt tgaggggtgg gagtgtattg ggttgtgtat gggtgggggt 900 gttgtgttag ttttgtgtag ttgtttgat gttgttgttg ttgttgttgt tgttgttgt 960 ttttgtagtt tagtttgtgt tttgtggtag ttttgtagtg tattagttat tattgttgtt 1020 1080 gttgttgttt tgttagattt gttgttagtt tgtttggttt agttttgaga gagttttgaa 1140 tgttagttgt gagggttatg agttagagag ttttggggtg ttgtgtggag agtaagtgga gatagigait tigigittit tagttitigi tittitgiat tgigittiti giattitigg 1200 1260 gtttttttgt ttttttgtt gtttttattg ttgttatggt tattttgttt tgtagtaagt tgtttaatgt ggttatgttt gtgtttaata agttttaggt taagatgagt ggtatgtttg 1320 ttaggatggg tttttaggtg gttatggatg aggaggtggt gggttttgtg tattgtgatg 1380 attitgatti tgagtatigi tagggittgi agatggatat titgaaagtt gagggagagt 1440 1500 gtggagtttt tttgttgttt tttggtttta aggattaggt gggaggtggt ggtgaatttg 1560 ggggttatga taagtttaaa attatggtgt gggaggtagg ttggaatgtg attaatgtta 1620 tttaggtaag tgtgggattt ttagttttgt ttgttttttt tttttttagt ttagtgtgtt 1680 gggttttgtt tttgatagtt gtttggtgat tttggtttgg agattttttt ttgtatttag 1740 gaattttttt ttttttattt tttttagttt tgtgtgggga tttatgtttt taggtggtgt 1800 tttttgtttt aatttatgtt tttttttaat ggtattagtt gtaagattgt taggttgaag 1860 1920 1980 ggaatggatt tatagttgta tttttgggag gaaagaagaa ggggaaattg ttgaggttgg 2040 agttttttt ttttgtatat atgtatagat atgtatatgt atataggtag gtatattata 2100 tgtttatagt ttttttttt atgaataaag gtgtaggtat aggtgtatat gatatgtatt 2160 tatatataga ttatagtatt atttttaaat gtatttgtgt atatttttat agttttataa 2220 ataaaagtat atattigtat atattaaata tatgaatatt tgtttgaata tatgtatata 2280 2340 agatatatag gtatatatat atgaaagtat atatatgttt ttatataaat atatttagtt 2400 tgtaataatt tagtattatt tgtgtataga tttgtttttt ttgtttgaaa ttttgqttgt 2460 attgtaaaga ggiggttagt titittttgt gtgattttgg tgaagttttt tttagaggtt 2520 aagaatggtt titgtttttt aggtttttt tttttattt taattttta tttttatta 2580 ggtggtgtag gatttttata tagggagtag gtttggagtt ttggtaatga tttttgagtt 2640 agtaggggtt ggtaggttgt agttttttgg gttgaaggag attttagttt taggtaattt 2700 tggtttttta tagtttggtt ttgtggtgtt tttggagtgt attattattg gggttatgga 2760 aggtaggttt tttgggagta gaggtttttt aggggttgtt ttatgtattg gggtaagtag 2820 gattttattg ggttttgaat attagatggt ttgatttaag gtgttttttg ttttggggtt tggtgagatg gttttgttgg attatggatt tggggttgtt tttgtttttg ttgtgttttg tgatttttt ggggttttt taaggttttt tttgatggt tttaagggag gttagggtag gaggttggag gtttgtaggt ttttgggatt ttggattttt ttagttttta gtttttgtgt 2880 2940 3000 3060 ggattttaaa ttttatagtt ttgtttgttt gattttgaag tttttggttt tagattttg 3120 titggtttgg ttttttggtt tttttggtgt ttttttgtta agtttittt ttigtttgti 3180 tttttagttt ttatttagtt tttttttta ggttttgttt ttgttttatt ttaattttag 3240 ttttgtttta agatttttaa tttttagttt tgttttttt tttttgtgtg ttgttttta 3300 agtgttttta tattgttttt gtttttgttt tttagggggtt ttgttttatt tttagtttt 3360 3420 tggtttgagt ttgagatgtt tgagtttttt tttttagttt ttgtgtttta ttttagtttt 3480 attataaatt ttgtgtttat tttttttatt ggtttaggtt tagtttatta tttttttag 3540 agtttttttt tgattatgtt tttttttgtt ttttttatt ttttttta attttttatt 3600 ttgtttttgt ttttagaaat tattttgaag tattttttt ttttttgtg gttttttt 3660 atttttagtt tttttttatt ttagttittt tgttattatt agttattagt gtatttttt 3720 tttttagatt tgtttatata ttttttttt tttatttttg gtttgatatt tgggtttatt 3780 3840 atttaatttt tagtgttttt agtgtttttt ttgggttata gtgttaagtt atgtttttg 3900

Page 215

ggttttttat tigttgttaa gtitgttgag tgtttgtgtt tggttgtttt titgttttat 3960 agggtatgtt tgtgttgggt ttattttatg ttattttgta tggtggttat ttggggttgt 4020 tttttattat ttttgttgtt gttgtgtgtt gttatattgg taagattttt attgtgtgtt 4080 4140 ttaatgtttg ttgtgttttg tgttttttaa tgttgggtgg ttgagtggtg aatgtagtgt 4200 4260 agattattga gttggtgatg atgtgtattt tgtatgtggt ggtgagtggt aattttatgt 4320 ataatagttt tttggggttg tttgtgttgt agaagttttg gtttattatt gttatggttg tgttgttgtt ttgtgttttt tttaagaatt ttaaggttgt gtttaagttt agtttgttgt 4380 gtattttggt ttattttgtt attaatattt tggttatagt ttattgtta ttgtgggtgt 4440 gtgattgggt ttgggagaag gttaagtttt atattgatgt taagaagttt tttatttta ttggtattat tgtgtttagt tatatgtttt agattttttt gtttttgttg gagggtaata 4500 4560 tgtagtagtt tagtgagttt tattgtatga tgaattggat gtatattgta gtttgtgtgt 4620 ttaagggttt ttitgtgttt gttgtttatt ttatttgggt tgatgagatt aaggaggtta 4680 ttatggataa tttgtttggt tttatttgtg ttgtggttaa tatttttttg gtggttaagg 4740 tgttgttgtt ttattttttg ttattttttg ttgttgttga ggtgttggag aagttgtttt 4800 tttaggaagg tagttgtgtt ttttttttgg tttgttatag tggtgatggg tgtttgaagt 4860 4920 tgttgtattt tgtgttgttt atgggtttta ttggtagttt tatgggtgtt ggtttttgtt 4980 ttttgttgtt tagttttttt tatttgtgtt tgttttggtg taagttgttg tggtattaag 5040 ttttttttga tgitgttatt tttgtiaitg giggtatitg tagtgtgttt ggttttgtgt 5100 atttttttga gggttttatt gaagtttatt gaattaatgt ggaggattag ggtgtaaggg 5160 5220 tagtgtgttt tgttgttgtg ttgggaggtt aagttttaaa tatttttggt ttttaqtttt 5280 tgattatttg gggatggggg ggatgggagg ggatagggat ttatgattta ttgtgtttgt 5340 gtttttgttg tttttttt tttataatat tttggttttg gggggaggtg gggtgtattt 5400 5460 gtgggtaggg ttttttgttt ttttaagtgg ggttttgata ttttggtttt agttattgag ggggttggga agggagggag agggggtgta gtttgtaggt gtggtaattt gattttgggg 5520 gaatatttta tatttattta qaqtttqqaa tttataqtqt ttaqttattt ttaqtaaqaq 5580 5640 5700 tgtttgttgg tttttaggaa tttaaatttt tattttgtgt aatttattag gtgtggaatt 5760 gttttattgt gtgtgtggtg tgtttgtggt gaataagatg aaatgtatat tagaaaaaaa 5820 tttattttta atttagagtg tggtatataa ttatatttgt aaataaagaa gagataaagg 5880 tttgtgtggt ttggtgttgg gtttgtg 5907 <210> 439 <211> 5907 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 439 tataaatttg atattgggtt gtgtaagttt ttgttttttt tttatttgtg gatataatta 60 120 atgagtatat tatatgtata gtagaatagt tttatatttg ataaattgta taagatgaga 180 240 300 gttgaaatgt ttttggaatg ggaagtgttt ttgttggaaa tggttggatg ttgtagattt 360 tgagttttgg atggatgtga aatatttttt taaggttaag ttgttatgtt tgtgagttgt 420 gttttttttt tttttttt taattttttt gatgattgga attaaagtgt tggggtttta 480 540 ttgtggaaaa gaaaggataa tagaaatgta gatgtgatgg attgtgaatt tttgtttttt 600 tttatttttt ttatttttga ataattagaa attaggaatt agagatgttt aaagtttggt 660 tttttaatgt ggtggtaggg tgtattgggt tggtgggggt ggggtgaggg gagaagggag 720 agagtgtaga agtgtggtgg gggtttgttt ttgtgtttta gttttttgtg ttggtttggt 780 aggttttgat gaggtttttg agggagtgta tgaagttgga tatgttgtag atgttgttga 840 tgatgaagat ggtgatgttg aagaagattt ggtgttatag tagtttgtgt tagagtaggt 900 gtaggtgaaa gaggttgggt agtaagaaat agaggttggt gtttgtgagg ttgttggtga 960 ggtttatgag tagtgtgaag tgtggtatat aaatggttat gagtagtgtg aagatgatga 1020 gtgtgtagtg tagtgttagt ttttaggatt ttaggtgttt gttgttgttg tagtaggttg 1080 Page 216

1140 ggaaaaaaggt qtggttgttt ttttggaaga qtgatttttt tagtattttg atagtggtaa agaatggtag aggataggat aatagtgttt tggttattag aaagatgttg attatggtgt 1200 1260 aggtgatgag tgtgaagagg tttttgagta tgtaggttgt gatgtgtgtt tagtttatta 1320 tgtagtggaa tttgttgggt tgttgtatat tgttttttag tgaaggtagg aagatttgag 1380 atgtgtagtt gaatatgatg atgttaatgg agatggggaa ttttttgatg ttgatgtaga 1440 1500 atttgatttt tttttaggtt tagttgtgtg tttgtgatag atagtaggtt atgattagga 1560 tattgatgat gaagtgggtt agagtgtata gtagattgaa tttggatatg gttttgaggt 1620 ttttaaggaa ggtgtaaggt agtagtatgg ttgtggtgat aatggattag gatttttgtg atatgggtag ttttgggaag ttgttgtata tgaggttgtt atttattatt atgtatagga 1680 tgtatgttat tattagtttg atgatttgtg ttatgtttat tatttggttg tttagtgttg 1740 ggaagtgtgg ggtgtagtag gtgttggtta tggttatgta tgagttttgt atgtgtatta ttttgttgtt tttattttt ttgtataggt atgtgatgag gattttgttg gtgtagtagt 1800 1860 atataatggt ggtgaagatg atgagaaata attttaggta gttgttgtgt aggatggtgt 1920 agggtaggtt tagtatgaat atgttttgtg gggtggagag gtaattagat gtggatgttt 1980 2040 agtgaatttg gtaatggatg aggggtttgg ggggtgtggt ttaatgttgt ggtttgaagg 2100 gggtgttaag gatattgaga attgggtttg agttgttggg gaggagaggt taagagtagg ttgtggggtg gatgtagggg aattaatagt gagtttgggt gttgagttag agatggagag 2160 2220 gggttagggt gggagagggt tgagaatagg gagaagttat aggagggaag ggagatattt tgggatggtt tttggggata ggaatagaat gaggagttgg gggaggagat gagaagggat 2280 2340 agaagggagt gtagttggaa aggggtttta agaaaggtag tgagttgggt ttgggttagt 2400 ggaaagagtg ggtatgggat ttgtggtggg gttggaatgg ggtatgggag ttaaagagga 2460 aaatttgggt gttttaggtt tagattagag gaggaaatgt taaaggttgt agttgtgagg 2520 tgaaaaggaa atagggtaga gagggagagg ggttgaaggt ggggtaaagt ttttgggagg 2580 taagaataga gataatgtga agatgtttgg ggagtagtgt gtggggagga ggaagtaggg 2640 ttggaaattg agagttttag gataaggttg gagttagagt gaggtgaggg tgagatttaa 2700 ggaagggat taagtggagg ttggggaggt aagtaggagg aggagtttgg tgggaaggtg 2760 ttagggaggt tagaaagttg aattgagtaa gagtttagaa ttagaagttt tagggttagg tggatagggt tgtagggttt agaatttata tggggattaa gagttaatga aatttagggt 2820 2880 tttggaggtt tatgagtttt tagttttttg ttttggtttt ttttggggtt tattaaatgg 2940 agttttgaaa gatgttttgg gaagttgtgg ggtatagtga aggtgggagt agttttgggt 3000 ttgtgattta gtaaggttgt tttgttgggt tttggagtgg aaagtgtttt gggttgggtt 3060 atttggtgtt tggggtttgg tggagttttg tttattttga tatatggaat aatttttggg 3120 aggtttttgt ttttagaaaa tttgtttttt gtggttttag tgatagtgtg ttttagggat 3180 gttgtggggt taagttgtaa gggattgggg ttgtttagag ttgaagtttt ttttggttta 3240 gaaagtigtg gttigttagt tittgttagt tiggaggtig tigttaagat tittaaattig 3300 ttttttatgt aggagttttg tgttgtttgg tggggagtgg ggggttagga ataaggggag agggtttaga gagtaggggt tatttttagt ttttggagag ggttttgtta gggttatatg 3360 3420 gggaggagtt ggttgttttt ttgtggtgta gttgggattt tgggtgagaq qqqtqaqttt 3480 gigtalaggt aatgitggat taltgiggat taaalgigtt tgigtgggag talgigtgigt 3540 ttttttgtgtg tgtatatttg tatgttttta atagggttgt atttaaggga gtaggttggt 3600 ttttgtttgt atgtatttgt gtatgtgtgt gtgtatatgt ttaaatgaat atttgtgtgt 3660 ttggtatgtg taggtatatg tttttgtttg tggagttgta ggggtgtatg taggtgtatt 3720 tggggatagt attgtggttt atatatagat atatgttgtg tgtgtttgtg tttqtqtttt 3780 tgtttgtggg aaggggggtt gtggggtatgt ggtgtgtttg tttatatatg tgtgtgtt 3840 3900 ttaaaaatgt agttgtgaat ttgttttaga gtttaagatt aaattgtgtt ttttaatttt 3960 gattittttt tittittatt gittitigtt tittittit attitttta tittiqtaqt 4020 gtttttggat aggtgtttta gattgaattt tagtttagtg gttttgtagt tqqtqttqtt 4080 gggagggagt gtgggttagg gtggaaaata ttgtttgggg gtgtaggttt ttgtgtaggg 4140 ttgggaggga tggagaaagg gagatttttg ggtataggag ggggttttta ggttgagatt 4200 attgggtgat tgttgggggt agagtttggt atgttgagtt gggagggggg aggataggta 4260 gaattgggaa ttttgtgttt atttggatgg tgttggttat gttttagttt gtttttatg 4320 ttgtgatttt gggtttgttg tggtttttga atttgttatt attttttatt tggtttttgg 4380 agttggaggg tggtagagga gttttgttgt tttgttgata atggatgttt tttttgatgg 4440 gigtittagt gittigitt tigtagggit tittitiggt tittaggatg titatitgia 4500 ggttttggtg gtgtttaaag ttgaggttgt tgtaatgtgt gaagtttatt gttttttat 4560 ttgtggttgt ttgaaaattt attttggtga atatgttgtt tattttggtt tgggatttgt 4620 tggatatgga tgtggttatg ttggatagtt tgttgtggag taaggtggtt atggtggtgg 4680 tggggatagt ggaaaggata gaaggatttg aggatgtggg gaatgtgatg taagaaggtg 4740 agggttgggg ggtgtaaagt tgttattttt gtttgttitt tgtgtggtgt tttggggttt 4800 tttggtttat gatttttgta gttggtgttt gaggtttttt tagggttgga ttgggtaagt 4860

Page 217

4920 tggtagtagg tttggtggag tggtggtggt ggtggtggtg gttagtgtat tgtggagttg ttgtggggtg tgagttgggt tgtggagggt ggtggtggtg gtggtggtgg tagtggtgtt 4980 agagtagtta tgtgaagttg gtgtggtgtt tittatttgtg tgtagtttaa tgtgtttttg 5040 ttttttggaa ttaggtggtg tgggggtggg ggattggaga gaggaaatat ttggaggtag 5100 5160 gggatgtgag gaaggggtta ggagaagaga aagggggtgt tgagggattt agatgtgagt 5220 tgggggtaga agaagggtgt ttttgggaag gaggtgggag ggagtgtgtg aaagagggag 5280 tgttgagggt aggggaggtg ggggggtgaa gtgttgtatt tttagggggag gtgttaagtt tgtattttgg ttttttttat tttgttgttg tagggtggga gggggttggt gtgggttgat 5340 gtttgtagtt ttttattttt ggattatttt ttttagggtt tgggagttgt gtagttttag 5400 attttttggt taaggattgg titgggtgtt ttgaaagttt gtaggattga gttgttagtt ttttgtggag tgggttgttt ataagttagt ttttttggta tttattttt gtgtgtaaat 5460 5520 5580 tagitttagg tttagttati tgggttittt ttgtttgttt agggatgttg tgagggaagt 5640 gattgtgtgg attgtttgtt attagttgtt ttttaaatgt gtgtagaatg gaggtgaaag 5700 gttggttttt ttttttttt ttgtttgggg gtttggaaga aggtaggatt ttatgaggat 5760 attitttgtt agtittitag tgggtttgtg aatgtitatg ttgagagggg tgtagatggg 5820 5880 gttaggtgtg gaggaaagaa gggtttgtgg tgttgtaagg tggaggaagt agaggtttgt 5907 ggtgtgttgg ggttttgttt tgatggt <210> 440 <211> 3049 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 440 tatttggtgt agttggttta gattttgttt ttgttttggt tggtgttgtt ggtaaaggtg 60 taggtgtttg tggagttgta tgttattatg tggaagtttg atttggatag tttgttgaag 120 gttigtttta ggaagttgaa titgaggtaa tagtgtgagg tgtagtgtti tgggggatgg 180 ttggggtttt ggttittgtt tagggtgttt ttaaatattt tittggttag tgatgtttit 240 300 atggtgtagg agttgtggta gttgatggtg atgtagtttg agtgttggtt gttgtttagt 360 420 tttagtgtgg gtgatggtgt tttggtagag gtgttttttt gttgtttggg ttttgagtag 480 540 ggtggttttg ggttgggttg ttggggtgtt ttgaggtggt gtatgagttt tggtagtttg 600 aagtatttgg ttttgtgttg tagttggttg tgtttgggga agtagttggg tagtatgagt tgtaagtttt gtaggtaatt taggatgtag tggaagagga agttgttttg gtttagaaag 660 720 aagtggtttt tgttgttttg ggttagtttt tgtggttgtt gttgtgtgaa tatgtgttag 780 agtagtgagt tgggtattga tattattgtg tagtgttggg ttatgtatat ttggttttt 840 atgtttagtt ttatgatgtt ggggaagagt ggtggttttg tggaggatga tgaggagtta 900 960 atagagaggt ggttgggttg ggatagtggt aggaagttgt gttgtattta ggagttgtaa 1020 1080 gtigttgtta tigttgttat tgttattgtt gttatttttt agagttgtgt ggagttgagt 1140 1200 1260 1320 1380 1440 1500 1560 tagtttgtat ttaaggattt tggaaggagg atgtgaattt ttggaagttt gttgttttgg 1620 gagtggaaat gtgtggttgt tittggtttt tttgtttgtg gaattgggtg tttttagtag 1680 tgtagttgtg gtttgttatt gttggttgtt gtgttattga aagtagagag atgtgaaaaa 1740 titggagaga tgaaagagtt gttttagttt gagtgagtta gattttgttt aagttgtttt 1800 gtagttagtt tggaaaataa ataaataaat ttagaaataa aaagtaaatt ttagtgtttt 1860 gtagtaggat gttttatgat agtttatttt ttggttgtag agataaaatg agatgaagtt 1920 ttaaatttgt ttttaattgt aattttttt ttttgtaggg tttttgaggt attttatttt 1980 2040

Page 218

47675-47.txt attgtgtttt tagatttata atagttgtag atttaatgta atttttaaag ttatttttgg 2100 tgtttgtatg tttatttttt taaaagttta ggtgtttttt tttttttgta tgttttggtt 2160 attttttggt tttgtttaag tttttgttag ttttagaaag ggatatttat atatttgaag 2220 2280 gattgtagtt tatagaattg tttttttttt ttggaagttt tttttggttt tttaggtggg 2340 tggggttttt ggatggtttt ttatatattg tttgtgttgt ttttagtatg ttttgaaatg 2400 ttatatttat gagtgattat ttgattattg atttgggtat gaaaataagt aagagttttt 2460 2520 gaatgttgta aaaagagaag agtgtagagg agggtgttaa gaaatgattg ggttattgaa tgttttttgt gtatttgtta ttatttgtag ggtattaggg agtgaggaat gtaaaggtga 2580 ataattttta aagtgtttt agtgtagttt aataagtaaa gggttagggg tttgtgtagt 2640 tattatatta gtttgaaqta tagattatat attaggataa attaggtaag atttttgttt 2700 ttgataaaat ttatttttt gtgtaattat ttagtgagtt ttatagtttt tttatagata 2760 aatgttattt ttattttgaa atgtttatat ttgtttaata attattgtgt ttatgttagt 2820 gtgttgaaat gagattaatt tttaaattag ttattttaat tgtaagtata gattttgata 2880 ttgaatgtat tttaatattt tttttttgtt gttgttttgt ttttttgggat aaataataga 2940 taatataaaa tttttaagtt ttagtgtagg attttgaggt ggttgtgtta ttaggtgtta 3000 3049 <210> 441 <211> 3049 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 441 60 ttggatttgt agaaaagagg ttggttttgt taggtttttg atattaatat aatgtttagt agtataatta tittgaaatt tigtatiggg attiggaagt titgtgttat tiattatita 120 ttttaaagaa tagaataata ataaaaaaag aatgttgaaa tatatttagt attaaaattt 180 gtatttgtaa ttaagataat tggtttgggg gttgatttta ttttagtata ttgatatgag tgtggtaatt gttgagtaga tataaatatt ttaaaataaa aatgatattt atttgtgagg 240 300 agattgtgaa gtttattggg tagttatata gaaggataaa ttttattaag aataaagatt 360 ttgtttgatt tattttgatg tgtggtttat attttaaatt gatgtgataa ttgtgtagat 420 ttttgatttt ttgtttattg ggttatattg aaagtgtttt ggagattatt tgtttttgta 480 ttttttattt tttggtgttt tgtaaataat agtaggtata taagaaatat ttagtgattt 540 600

tttattttta tatttaaatt agtgattaga taattattta taaatatgat attttagaat 660 gtgttgggag tagtgtagat agtgtgtagg gagttattta gaggttttat ttatttggga 720 780 agttagggaa agtttttagg gggagggggt ggttttgtgg gttgtagttt gagggggaaa 840 agtaaatgtg taggtagtag gagttgagag atgggattta gataagggtt tttagatata taaatattti ttiitgagai igatgggaat ttggataggg itgaagagtg attgaggtat 900. gtgggagaga aggggtgttt ggatttttgg aaggataaat atgtaggtgt taaaggtggt 960 tttaaaaaatt atqttaqatt tqtaattqtt qtqaqtttaa qqqtqtqatt taatqaaqqt 1020 tgaatgggat ttggagattg aatgttttgg agttttattt ttttattttg aagtgaagtg 1080 1140 ttttgaaggt tttgtgggaa gagggaattg taattaagag tagatttgaa gttttatttt attttgtttt tgtagttaga aaataaatta ttgtaaagta ttttattgtg ggatattgag 1200 1260 1320 1380 gtttagtttt gtaggtggga gggttggagg tggttatgta tttttatttt tggggtgata 1440 ggtttttgaa agtttatgtt ttttttttag agtttttggg tgtggggttgg ggtgagaggg 1500 gagggggtgt ggtgattgtt tttttaagga gttgtttttt gaagttgtta agttttgggt 1560 1620 1680 ggagtgggtg ggagtttggg tgtttttagt gtttgtgagt tggggtggag ttagtagttt 1740 gtaagtgagg tittgitgit gittatgitt titgigtgit atggiattag agtaggiggi 1800 tttatttaag tagtgtgtgg gttgtgattt ggtatttgtt tggagtgtgt gggtaaggtg ggtggagtgt attggaattt aagggggtgt atagtggtgt gtttgtattg tttggttttg 1860 1920 1980 ggtgtagggt tgagtgagtg tttgggtttt ggggttttgg ggaaggtggt tgtagttttt 2040 gagtgtagtg tggttttttg ttattgtttt ggtttggtta tttttttgtt atggttttgg 2100

Page 219

tggatagtat atgtggatta tttaatgggg gtggtggtgg gggtggtagt ggttttttgt 2160 tgttttttgt ggagttattg ttttttttg atattgtgga gttgaatgtg gggggttagg tgtatgtgat ttggtgttgt atggtgtttg ttggtgtttga tttgttgtt tggtgtatgt 2220 2280 ttatgtagta gtagttgtag gagttggttt gggatagtaa aggttgtttt tttttggatt 2340 gggatggttt tttttttgt tatattttgg attatttgtg ggatttgtag tttgtgttgt 2400 ttgattattt ttttgagtgt agttggttgt agtgtgaggt tgagtatttt gagttgttag 2460 agtttgtgtg ttgttttggg gtgttttagt agtttggttt ggggttgttg tttttgtggt 2520 2580 gtggggtgta taaggagggt ttgttgggtg atgagttgtt gttgtttggt tatttggagt ttgaatagta ggagggtgtt tttgttgggg tgttgttgtt tatgttggag ttggttagtt 2640 gtagtttgtt tgggggtgtg gtgggtttgt tgtttatgtt gttttagttg ttggatggta gttggtgttt gggttatatt attattggtt attgtggttt ttatattatt gggtgggatg 2700 2760 tgtaggtgga tgttaagttt tggtgagtgg tgtgtattat tgtttgtgga aagatgttgt 2820 tggttaagga ggtgtttggg gatattttga atgaaagttg ggattttgat tgttttttgg agtgttatat tttgtgttat tattttaagt ttaattttt ggagtaggtt tttgataagt 2880 2940 tgtttgagtt gggttittat atggtggtgt gtagttttat gggtattigt gttittgtta 3000 gtagtattga ttagagtgag gataagattt ggattagtta tattgagta 3049 <210> 442 <211> 4721 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 442 atgtgaagtt tagtattttt ttaagttttt gtttatatat aaaaagttat gttttagagg 60 120 tgagaaaatt tattgggtat ttggagtaag gaggggggg agattttgaa attaaaaaag 180 taagagaaaa taaaggttta gttatgagaa gagagataga aatttatgat aatagaggta 240 tttttttagt ttaattgttt gttttagttg tgggggttgg aggtagggtt tgaggtggtg attgttttga tatttagttg ttagataaat aaaagaggtt gtttggtgtt agttttggtg 300 360 ttttgttttt ttatgtttgt ggttgtagtt gttgtgtttg gttggtttgg ttggaaatta 420 ttggtttggt tggagttgig tattitatag tttatagggt ggggggtgat tatgttttt 480 ttttgttttt ggattttaga tttagttttt agtaattttg gttttttgtt ttggtttgtt 540 ttttaggtgt gtaatttatt tttgtttttg ttggtttgtt tggtatttgt gtgggggata 600 tggggttgtt tatttttagt gtatttggga gatgtatttt aagtgtgttg gggaatgtgg 660 gggatttgtg ggtgtttggg gtgaattttt atattatatt ttgtgtatag agatgtagag 720 taaaggaagg aatggagaaa gttgagagga taaaaggaaa ggagttttag ggttttagtt 780 gagaagttta ggttttagtg tagtaagagg tgataatgtt attgaggtgt tggggtttta 840 ttaatttata gatttatttg tgtggaagga aggaaaaagt aggggatatt taatttttt 900 tgtttgtttg tttttttgta ttttggggtt ggtagagttg aaaggagata gatatttagt 960 ttggtttttt atttaatttt ttttgtttta aaattttaaa ggtgtgtggt tatgatagta 1020 1080 1140 tttggttata tattttaatg tttttttggg tgtggggagg tgtgattttt ttatttttt 1200 ttgtattttt ttgttgattt ggaaatgaag gtgtttaatt tttaattgta gattgtagga 1260 gtagtgtttg tagatttttt tggggtaata taggagaaaa tttggaaggg aatttttagg 1320 qaatgttttt tgagtttttt tttgtttttt ttttattttt agtttttagt tttttttag 1380 gagggtatgt atattttttt aggagggtat gtatattttt ttaggagggt atgtatattt 1440 1500 ttttggaaaa tgttgggggt agggggataa ttttttattt agtttgtaga gttggttaag 1560 gtgatggggg ttgtagtata ttagtttggg gttgattttt ttgtaagait tatagtaata 1620 tagttttttg atttttgagg aatgtttgag atttggttat ttgaatattt tgtatagtag 1680 gagggggagt gagtaggatg agggtggttg tgtaggttgt gtgttggtgg gtgtttttgg 1740 gtttagtttg tagtttaggt ggttgggtag taggaggtat gtggtgtgtg ttttgttgtg 1800 ggattttatg gtttggagta gtagttttag ttgttgtttt tttagttttt tgagtattga 1860 gigtgigagi gittitagat tigtitiggi gittitiggit gigtiggigt tigiggitigg 1920 tgggtgggga tggtggtgat ttttggtatt ttgtattgtt ttgtttaggt agtatttagt 1980 titgtitggg tigtigtiat tggttitatg tgittggitg ttigttgtit tittttttig 2040 2100 atggtttttt tagagatgtt ggatgagtgt agattgtttg gttttgaata tgtggggtga 2160

Page 220

47675-47.t>	t
ggaggtgagg agaaaagttg tttgtttgtt aaggagtgaa tat	qattttt qtatattatq 2220
aagaagttgg gtgttgagtt ggggtagtag gtgtaggtga tag	tagtagt agtaggggtt 2280
tgggtaggag tggtggtggt ttgaggggtg ttttgtggta tgt	gttagtt ttttggaggt 2340
tggggtgtgt gtgggggttt gggggtgttt gttggggatt gg	
ttttattttg tgtggtttgt gttttgtgtg gttttttggt ttt	
tttggttgtt gtttttttgg ggatggttga gtttgttt	JJ J J JJ JJ
	JJ J
aggttttttt gtagtggttt ttgaatgttg ggtttgttag ttt	3 3
ggtttgtggg ggtaaaaaat gaaaggtgtt tggttgggtt gtt	33 3 3 3 3
ttttttttt ttgttaagta atttaatttg ggggtgggga gaa	
aaaaagtaag tgatttattt ttttttttta tatttttagt aat	
tgtgtatatg aagatttagg ggagggggtt gagtggattt tat	
gtaaaataag aaggtttttg taaaatttaa taattaaata tgt	
ttattatttt tttgaatttt agaggtttgg gggtgtttgg ttg	gaattgg ggtttaaaaa 2940
aagaaaatgt ttataaagta taataagatg tttgatgggt gga	aaaatgt atttatgagt 3000
tatatttttt tgtttttttg taaagttttg ttggtttttt ttt	
aaaaaaaaa aaaattgtgt attttttaa tttatagaaa gtt	
attttgtgta tttgggtggt ttaggggagt ttttggtttt ttt	
tttaggtttt tggtggggat ttttttgagg ttggtgtggg tgt	
tggtggtggt tgagtttggt ggggttgata gtgtggggga ggg	
agggttttag atgggttgtg tgtttttgtt ttttttgggt ata	agttgtt tgttagtgta 3360
ggggttgttg atgtttttt ttttggttgt ggttggtt	
gtttgttttg atttagttgt ggtggtagga ggttttggtg ttt	JJ
ttgagatttt ttttgttgtg tttgggagtt tttttgtttt tgg	7 77 7
ttttggtttt tttgttgttg ttaggggttt gttgtgttgt att	
ggtgtttggt ggtttggtgt tgatggattg gttttgtttt ggg	
gtgagtggat tgagtatggt gtttggttgg tttggttgg	
tttgtgtgtt gagtagtaag tgagtgtgtt tggggtttat tgt	
gtttttgttt tttttttt tttttttt ttttttt ttt	
gttgtgttgt tttttttttg tttttttgta tttttttt	tttttgt ttggttggtt 3900
ttattgtgta gtggtgtgtt tggttttggt tttgttatgt ggt	tgtttag atattttgtt 3960
gttttaaaaa aaaaaaaaaa gtgattgtgt tttgtaaata ata	
ttattttttt ttttaattit ttgttattgt tattttttt tgg	
tgatggaggg gagagagata ggtggggggt agagaagttt tta	
gttggagtta tggagaaatt ggaaaagtag ggagtattga gtg	3 33 33 3
tggagttgag tgagtgggtt ggtggtttga ttttgatttg gtt	JJ J J J J
ttttgtgtgt gtttgtttta gtgttttatt tattggtttt gtt	
ggattttttg gttgtgtttg agggtaaggg gaggagagtg ttg	33 33 33
	22
tttatattgg attggattga ggttttggga agtgtgtgt	
gtggggaggt ggtgtgaata tgattttagt ggtggttgtg tgt	
gttttgggtt ttggttttta ggattgtttg gagaagtgtg ttt	
tgtatttggt tggttgatga gttgtgaggg gtagtatttt ggt	
ggtgggggtt tgtttgtgtg ttgtgggtag gtttttttt	
atttgttatt ttgttttttg gtgtgggaag gttatttagt g	4721
<210> 443	
<211> 4721	
<212> DNA	
<213> Artificial Sequence	
<u>-</u>	
<220>	
<223> chemically treated genomic DNA (Homo sapi	ens)
	·
<400> 443	
tgttgggtaa tttttttgtg ttgggaggta gggtggtggg tgg	tggaggt tttttgggtt 60
tgggaggaaa tttgtttgtg gtgtgtaggt gagtttttat ttt	
toggatotto tittitatao titottaott oottaaatot att	tgttttt ttttttttgt 120
tgggatgttg ttttttatag tttgttagtt ggttaaatgt att	tgttttt tttttttttgt 120 ttagagt tgtgtataag 180
atatatttt ttaggtagtt ttagaaattg gagtttggag ttg	tgttttt tttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240
atatatittt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgtttttt 300
atatatittt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt tagtgtatat tttttagggt tttggtttag tttggtataa atg	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgtttttt 300 tttttta aattgagata 360
atatattitt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt tagtgtatat tttttagggt tttggtttag tttggtataa atg gtgtttttt ttttttgttt ttgggtgtgg ttaagggatt tat	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgttttttt 300 ttttta aattgagata 360 tgttagg gtttttaaaa 420
atatatttt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt tagtgtatat tttttagggt tttggtttag tttggtataa atg gtgtttttt ttttttgttt ttgggtgtgg ttaagggatt tat taaaattaat gaatgaagtg ttagggtgag tgtgtgtg	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgttttttt 300 ttttta aattgagata 360 tgttagg gtttttaaaa 420 gttattg tgaaatttag 480
atatatttt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt tagtgtatat tttttagggt tttggtttag tttggtataa atg gtgtttttt ttttttgttt ttgggtgtgg ttaagggatt tat taaaattaat gaatgaagtg ttagggtgag tgtgtgtg	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgttttttt 300 ttttta aattgagata 360 tgttagg gtttttaaaa 420 gttattg tgaaatttag 480
atatatttt ttaggtagtt ttagaaattg gagtttggag ttg gtgtggttgt tgttgaggtt atatttatgt tgtttttttg ttt tagtgtatat tttttagggt tttggtttag tttggtataa atg gtgtttttt ttttttgttt ttgggtgtgg ttaagggatt tat taaaattaat gaatgaagtg ttagggtgag tgtgtgtg	tgttttt ttttttttgt 120 ttagagt tgtgtataag 180 agagggt gggagggagt 240 ttggtgg ttgttttttt 300 ttttta aattgagata 360 tgttagg gtttttaaaa 420 gttattg tgaaatttag 480

600 ggagtttttt tgttttttat ttattttttt ttttttatt ggtatttttt ttatagattt 660 720 gggagggggt ggtggtggtg gggggttggg gggagaaata gtttttagaa atttgatttg ttgtttgtga aatataattg ttttttttt tttttaaag tgatagggtg tttagatggt 780 tatgtgatga ggttggagtt gggtgtgtta ttgtgtagtg gaattagttg agtagagggt 840 tggaggggg gtgtggggg gtggggagga ggtggtgtgg ttgtggtggt tgggggtggg 900 ggagggaagg gggaggaagg gggagggaag ggggtggggg tgggaggttt tgtgggaggt 960 1020 ggtgagtttt gggtatattt gtttgttgtt tggtgtatgg aagattttgt ttttgagttg 1080 tgagatagag ttagtttgtt ggtgttgagt tgttgagtgt ttggtttttg agtttttgag 1140 1200 tgtggtgtgg tgagtttttg gtggtggtag aaggattgga gtgttaggag agggtggatt ggggataagg aggtttttgg gtgtgatgag gagagttttg gaggaggagg tgttgaggg atattggggt tttttgttgt tgtagttggg ttgaggtgag tagtttatgt ggggagtttt 1260 1320 ggtggttagt tgtggttagg ggaagggata ttggtggttt ttgtattagt aagtagtttg 1380 tgtttggggg gggtgagaat gtgtgatttg tttggggttt tttgttgttg ttgtgttatt 1440 tttttttgtg ttgttagttt tgttgggttt agttgttgtt gtagtatttt ttgtttttgt 1500 gtttgtgtta gttttgagga agtttttgtt gaggatttgg gtttttagga gtgtaggggg 1560 aaagattaga gattttttta aattatttag atgtgtagga ttgaagtggt ttagttaaag 1620 1680 1740 aggaagatta gtggggtttt gtaaggaaat ggggggatgt aatttgtgga tatatttttt tatttattaa atattitgtt atattttgta aatatttttt ttttttaaat tttagtttta 1800 gttggatgtt tttagatttt tgaggtttga ggaggtggtg gtttttattt ggggttttgt 1860 atatttggtt gttaggtttt gtgagagttt ttttattttg ttagatgttt tatgtggggt 1920 1980 2040 2100 ttttttattt ttaaattaag ttgtttagta agggggaaag aggttttttt tttttttaa tagtttagtt gaatgttttt tgttttttgt ttttgtggat tttttatgta ggaagttgag 2160 gttggtgagt ttgatatttg ggagttattg tgggggggtt tttttttggg gaggtgttga tggggggtagg tttggttgtt tttagggaag tggtggttgg gtttttttgg ggtgtttgg 2220 2280 2340 2400 2460 2520 gtttgttttt tagtaggtaa atgatttttt tttttgtttt tttgttttgt atgtttagga 2580 ttaaatgatt tgtgtttgtt tggtgttttt ggaggagttg tgtgtttggt ggtgaggatg 2640 aggaggaggg tgtaggggga ggtggaggag gaggtgagtt gtggggagaa ggggtgatgg 2700 atagttgagt gtatggggtt ggtggtggtg gtttgggtag ggttggatgt tgtttgggta 2760 aggtggtgtg aggtgttaaa ggttattatt atttttattt gttagttgtg ggtgttggtg 2820 tggttggggg tgttgaggtg gatttgaagg tgtttatgta tttggtgttt aagaaattga aggagtggta gttggagttg ttgttttagg ttgtggagtt ttgtggtggg atgtgtattg 2880 2940 tgtgtttttt gttgtttggt tgtttggatt gtaggttggg tttgggggtg tttgttggtg 3000 tgtagtttgt gtagttgttt ttgttttatt tgttttttt tttgttgtgt aaagtgttta 3060 ggtggttgga ttttaggtat tttttggaag ttaagaggtt gtgttgttgt gaattttatg 3120 ggaagattaa ttttgagttg gtgtgttgta atttttatta ttttagttga ttttgtgaat 3180 taggtgagaa gttgtttttt tatttttaat attttttgga gtgttagtgt tggaagaaaa 3240 gtitttaggg tagtgtgttt gtgtagttat ttttttaggg ggagtgtgta tattttttg ggagagtgtg tatattttt tgggagagtg tgtatatttt tttgggaaga gattggggt 3300 3360 3420 3480 3540 gtttttttgt atttggaaag atgttgaggt gtgtggttga gttggatttg gtttaggttt 3600 gttaaggaag gttgggagag gtgtgttata aaggttggaa ggtttttgta tttattttt 3660 tagtaaatat ggagaattat gttgaatatt agtggtttag atattgttgt ggttgtgtat 3720 ttttggagtt ttggggtaaa gagagttgga tggaaggttg aattgggtat ttgtttttt 3780 ttaattttgt tagttttagg gtgtagagga ataaataggt aggagaagtt gggtgttttt 3840 tatttttttt tttttttgt atagataagt ttgtagatta gtggggtttt ggtgttttag 3900 tgatgttgtt gttttttatt gtgttggggt ttgggttttt tggttgagat tttgaaatti 3960 4020 gagtgtgatg tgagggttta ttttgggtgt ttgtagattt tttatgtttt ttagtatgtt 4080 tgggatgtat tttttgagtg tgttaggaat gggtagtttt gtgttttttg tgtgagtgtt 4140 4200 ttgaggttgt tgggagttgg gtttggagtt tgaggatggg gagggggtat ggttgttttt 4260 tgttttgtga attgtgaagt gtgtggtttt ggttgagttg gtggttttta gttgggttag 4320

```
47675-47.txt
ttgagtgtgg tggttgtggt tgtagatgtg gaggagtgga gtgttgaggt tggtgttagg
                                                     4380
                                                     4440
tggttttttt tgtttatttg atagttaaat attaaggtaa ttattgtttt gggttttgtt
                                                     4500
tttaattttt atagttaaga taaatagttg ggttaaaaga atgtttttgt tattataagt
4560
                                                     4620
gatttttaaa atattttgtt tattttaagt tagaaataga gtttttagaa tgtggttttt
                                                     4680
                                                     4721
tgtgtgtagg taaaggtttg gggaggtgtt gggttttatg t
<210> 444
<211> 2146
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 444
aggtttgtgt atttgggtag tttttggttg ttgttgttag gttgttttag ttggttgttg
                                                       60
120
gagtaagtga ttaggatatt aaaatggtta ttggaggtag gtttttagta tattagttgg
                                                      180
                                                      240
ttgagggttg agttttgtgg gtggtagtaa gttttgggag ttggaggtaa ttgaattaaa
aggtgtttta gaaattttgt tttgggattt tgtttagtag ggttttgggt tggagggtgt
                                                      300
tgaggtttgg tggatgggat agtgggaaga gagaaaggtg ttaaggggat ttaagatttg
                                                      360
ggatttagaa taagaggggg tggggaataa ttttattaag ttaaatagat ttatttttt
                                                      420
480
ggtggttgtt ggttttttt tagggttttg ttggagaagg gagatgagtt ttttgtaaga
                                                      540
attttatttt gttaagtata ttttagggag agttaggaga gtaataatag ttggggaagt
                                                      600
660
taataagaaa ggaagataga gaaaggttga gattttttta gtagttgtgg agaaaattta
                                                      720
gttttggatt tggttgttga aagaaaagag agagaggaga aaagaggaga gaagtaggaa
                                                      780
840
900
tttgaattga gattggagtt atatgggtta taaattattg agatatattt tttgttattt
                                                      960
ataaattgat agtttatttt agtttagttt attttagtta ttgatgaggg gagaataggt
                                                     1020
1080
tttgaaggta aaggaaaaaa agattattgt ttaaagttgt gttgtttttt gttttttgt
                                                     1140
ttttgttttg taaagttatt ttggttgggg agtttgaggg gtagattggt tagaggagtt
                                                     1200
gtgtggtgtt tgttttaatt tatttggttt aggagtaggg gtgtgtagga gggaggggt
                                                     1260
gggggagtgg gaaaaaaaat agaagattga aaggtgttgg gtggtttagt ttgttagaat
                                                     1320
ttagttttigg gttttagtag ggttaagttg ttatagtgtg gttgttttat aagattggta
                                                     1380
1440
1500
tttagatgtt tgataaggag ggaaggtgat ggtggtgatg gggaaggggg gaaattttaa
                                                     1560
1620
ttaaagaata ggtaaaaatt taaatttaga ttggagggat agggaggaag aggtgagtaa
                                                     1680
aggtaaggaa gggtggtgaa gtttatagtt ttttttatat tttattagtg aattattatg
                                                     1740
ttaatatgag aagtagtatt tggaggttga gttaaaggta ggtttggttt gggggtgagg
                                                     1800
gtgttgggtg tttttttgta tttatttgta attggaatat taggattttt ttagaaagta
                                                     1860
1920
ttttttttta ttatattttt tttattttt ttaaattttt ttttagtttt taggtttagt
                                                     1980
ttttaattaa gggagaggga aagattagaa tttaaaaaaa aaataaaaa aaaatatttt
                                                     2040
tttttttttt tttttttgag aatagataat aagtggtgag tgatgatttt aaaaattttg
                                                     2100
aatattttgt agggggagga gggttgagaa aagggtgata aaagga
                                                     2146
<210> 445
<211> 2146
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
```

<400> 445

ttttttgtt attttttt tttttttttttttttttttt	ttgttttta ggtttttt ggttttttg gatagagagg gatgtgata ttgatttttttt	aaaagaaaaa ttttttgg gtgtaggattt gtgtaggagattt gaggggtattt tttgtttttttt tttagtgaggatttt tttgggaggttttt tttgggaggtttt tttgggaggtttt tttgggaggtttt tttgggaggtttt tttagtggaggtttt tagtggagttttt gatttttttt gattttttttt taatttttttt tttatttttttttt	gggagggg ttagagattg gggaagaattttt taggtagtatttta ttgtatttta ttgtattttt aggtagtgtatt ttttaaggtgattt agttgattttt gtgggggagtt ttgtgggggagtt tttgtgggggagtt tttgtggggggtt agttttaagttgtattt ttgtggggggtt tttttttt	tgtttttt ggtttggaga tgtttggaga ttttagggttgga ttttaaaaaa atttttggttt taaaaaaaa	60 120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1260 1320 1320 1440 1560 1620 1620 1620 1620 1620 1620 1620 16
<210> 446 <211> 2427 <212> DNA <213> Artificial Sequen	nce				
<220> <223> chemically treate	ed genomic	DNA (Homo s	sapiens)		
<400> 446					
ttttttgggg tttgggtggg g ttagagagtt ttttgttggg a attgaatgga gaattgttat g ttgggattta tagattgtat a atgttaagtt ttattttaga g ttatattgtt tagggatatt t tttgtatgaa ttttaattaa g ttttgaatgat ttttaaataa g ttttgaatgat tttttaaatg ttttgaatgat tttttaaatg ttttgaggtg atggttattt t gattgttta gtattttaa a aaaattttt attttttaa t	attgggatgg gtaataagaa atttgatggg gttatagggt ctgtagggga gaaatattat ctttttgtta agtgattatt gtgttggtaa ctagtagtta aaatataaat	ttggagggta tttgggtata tgtttgtagg gttttttatt ggaaattgtt atttagaatt tttaaggggt attatttaa agaaattgtt aattgtatta tgattttta tggttatta ttgattttta ttaggtttat	ttatagtatt ttagattttt atgtgaatgg aggttatgga tttttttt	ggttttgaat gtaggtattt tattttggta gttttttggg ttttatgatt tagtgatagt tagttgtta tgtagttttg ttttggtgtt ttaattttgt aaaaaatgaa gtaagttgtt	60 120 180 240 300 360 420 480 540 600 660 720 780 840

taggtagagt	ttgtttttgg	aaatggtttg	gttatttggg	agggaataaa	taggtattgt	900
		agggtttagt				960
		taggttatag				1020
tttatttgga	gggatttgag	gggtataggt	tatagttagg	agagtataga	taagaggttt	1080
ttgaggttat	tagggttgat	ttttatttta	ttttaaggat	tagggatgta	aaaggatttt	1140
aataaagatg	gttatattat	ttgttgtaga	atgagtataa	atgtttttt	tagtttttga	1200
ggttggtatt	ggttttgttg	attttttaa	ttttgttatt	tgtgtagtag	gtggtaatag	1260
ggataggtag	atgatatagt	tggggttaga	ggatgatgta	gagagattta	tattagagat	1320
ttttggggag	tgatagagtt	tttgttttaa	ttttagtgag	tgggataggt	tgagtgggga	1380
ttgagtatgt	ttagggttag	agtgggaggg	ttagttgtgt	tggtttttaa	agaggatttt	1440
gggaaataaa	tatttttta	tttggtaagg	ataaattaag	taattgttga	gataggtgtt	1500
tgtgttttaa	tttaaggttg	tttagataga	taagtgttta	ttgttgtatt	gttttaatag	1560
		agttgtttta				1620
ttttgtttgt	ttttagtttt	tttttattt	taggagtttt	tttttttt	tattttaatt	1680
gatatttttg	ggttttttat	ttgtttagag	tttgtttagt	ggggtattta	atggtggata	1740
ggtgagagag	gtgaggggtt	gggttgttat	tgtggttaag	ggagttatgg	ttttttagtt	1800
tgaatggttt	ttgtttgaaa	ttaggatata	aatatagtat	tatatatagt	agaaatagtt	1860
tagaaaggtt	ttagtttaga	tggtattgga	ataaatagtt	ttttttaagt	tattttaaaa	1920
tgaaagtttt	gggttattta	tttttaaaga	ggattttagg	atagttttag	gagtttttt	1980
		tgtttggttg				2040
		gttagtttga				2100
		tagaggtagt				2160
tttatagatt	ttttttagta	atattattgt	tagtggtgaa	tattataaat	agtatttatt	2220
		agggatatat				2280
ttatttaagt	ggtagtagga	atagtaattt	tgtgatattt	gggttataat	ttgtttttt	2340
atttttatgt	gataaaagtt	ttatttttag	taggtaattg	agaagatagg	tttttttt	2400
tttagtgtta	ttgtagtagt	ggtgggt				2427

<210> 447 <211> 2427

<212> DNA

<213> Artificial Sequence

<220s

<223> chemically treated genomic DNA (Homo sapiens)

<400> 447

gtttgttatt	gttgtagtgg	tattggggga	gagggagttt	gtttttttgg	ttgtttgttg	60
ggagtagagt	ttttgttata	tggggatggg	gaagtaggtt	gtggtttaag	tgttatgaag	120
ttgttgtttt	tgttgttatt	taggtggttt	ttttggataa	gtgtttttt	atttgttgtg	180
tgtttttaag	atatgttagg	gattttaagt	gggtgttgtt	tgtaatgttt	attattggta	240
gtgatgttgt	tggagagggt	ttgtggagag	ttttatattg	ttgttttgga	agagtttatt	300
gtttttgttg	tttttgattt	ggttgaaatt	ttgatggttg	gaagtatgaa	gaaggtttta	360
ggttggtaga	gtaatgtttt	tgagtttttg	tttaatggtt	atattgagta	aatgtagtag	420
ttaagtattt	tttatggggt	gtgttatgga	ggaatttttg	gaattgtttt	gaagttttt	480
		atttttattt				540
		ttttttgggt				600
gttttgattt	tgggtagaag	ttgtttaggt	tggagggtta	tggtttttt	ggttgtggtg	660
atagtttagt	tttttattt	ttttatttgt	ttattgttgg	gtgttttatt	gagtagattt	720
		agatgttagt				780
		ggtaaggtta				840
		ttagtagttg				900
		ggatgtggat				960
		gttttttggg				1020
		tgtttagttt				1080
gggtggggt	tttgttattt	tttgagggtt	tttgatgtgg	gtttttttgt	gttgtttttt	1140
ggttttagtt	gtgttgtttg	tttgtttttg	ttgttgtttg	ttgtataggt	ggtaggatta	1200
		gttggttttg				1260
		ttttgttaaa				1320
agtaaaagtt	ggttttggtg	gttttggggg	ttttttgttt	gtgtttttt	gattgtagtt	1380
_		agatgagttt	_			1440
		tttttagatg				1500
2 2 2				ກາ້		

```
1560
gttgttttta aggataggtt ttgtttgttt agttggagtg gggtggagaa gtagatgtag
                                                                 1620
taggtagggt tgggatttgt tttgaagggt agtttgtagg aggttaggtg agtttggatt
                                                                 1680
agggatttga aggaagtgag aagittiitt gitttittgi tttttttgg agagttgatt
                                                                 1740
tgtattttta aaaatattga aatagttata gagttaaagt gggagtatga tatagtttag
                                                                 1800
ttgttgggaa tqqttqttat tttaqqqaqt qttaaaqtqt ttaaaagaat agtttttttq
                                                                 1860
ttaatatttg tggttagtaa tttgtaatag agttataatt aggaaaatta gagtggtggt
                                                                 1920
agttatttat ttaagaagtt atttaggtaa gtagttgtat tgtttgtatt ttttaagtag
                                                                 1980
taaagaagtt gttatagttt tttgaaaatt attattgtga gtgttataat tttgaatgta
                                                                 2040
atgtttttta attagaattt atataagaat tatgaaaaaa aaaaaagagt aattttttt
                                                                 2100
tttgtagaat gtttttgagt agtgtggttt aggaggtttt gtagtttggt gaaaggtatt
                                                                 2160
ttgtggtttt ggggtggagt ttggtgttat tgagatgtta tttatgtttt gtgagtgttt
                                                                 2220
attgagtgtg tgatttgtgg gttttgaggg tgtttgtagg ggtttgatgt gtttaggttt
                                                                 2280
ttgttgtatg gtagtttttt gtttagtgtt tgaaattagt gttgtgatgt tttttagtta
                                                                 2340
ttttagtttt aataggaagt tttttggtat tttttgtttt ttttatgttt attattggaa
                                                                 2400
agggtttttt atttagattt taggaaa
                                                                 2427
```

<210> 448

<211> 3015

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 448

tttttttt	tttttggtag	aattgtttga	tggttttgat	tatgtttagg	tttattttga	60
tgtagtagta	ggtatggttg	gtttggggtt	tgggatagtt	tgttatgtag	tagtaatagt	120
tttttagggt	gttgattttt	ttatatttgg	tttttttata	taggtggttg	aagtgattga	180
atagattgtt	taggagattt	attagggtgt	gggtagattt	gttggtattt	attttggtga	240
agtttatgat	atttgtaaat	aaaatattga	tttttttgat	ttgttgtatt	ttaaaagggt	300
ggaaggttat	aggagttttt	tggatggaag	atttttttt	tttgtttttg	gggtttgagg	360
tggtatgttt	tttgatagaa	tttttattt	ttttatttt	ttgttttatt	aagttattgg	420
ttatgatttt	tggtattatg	gaatgaatta	tttttttt	gagggttttt	tttatttta	480
ggttttttt	gtgtataatg	gattgtttta	ttttgaggaa	ggtgtttttg	gattttattt	540
gggatatgat	gaataggtgg	attttgatgg	tgtggatgta	gttgtggagt	agttttttgt	600
		gttttggttt				660
aatggtagtt	aaaggttttg	aaaaggatag	agtaggttat	ttttagatat	aaatttaggt	720
		gtatagagta				780
tttttatttg	agataagtaa	gtatttgtgg	gttggttgtg	gttgtaaggt	tggagttgtt	840
		ttaagatttg				900
tagtagggtg	agagttagtg	aggtttatgt	gtaatgttgg	gtgtatagtt	tggtgaaggt	960
aaatagaaag	aagtttatat	atattaggag	gaagtatagt	gtgggggtga	ttatgatgat	1020
tagtttggat	tttatgtgga	ttgtaaaata	gatgttttat	agaaggtagg	tgaagttgat	1080
		attggtgttg			ttaggtaggt	1140
tttttttagg	tttattgagt	tgaatttggg	gttttattag	tggttggagg	tttttttgaa	1200
		gtttgtgtag				1260
gtttttggag	tttttagagt	tgttgtagtt	agaggagatg	ttgtatttgt	agtgtttggg	1320
gtggttgttg	gaggatagtt	gtttggggtt	gattttgatg	tgtatgttgt	tgttgttttt	1380
		tggtgttgtg				1440
agttatgttg	ttgagttttg	gggtttgttt	tggttggggt	tattagtatt	tgttagtaaa	1500
atggggagag	ttagtggtgt	ttttatttag	gtatgtatgt	ttagaggttt	gggatttgtt	1560
tttgttttaa	ggggtggttt	tagtatgtga	tttggatagg	tattatttgt	ttttgtggtt	1620
		attgttttta			tatgagaatt	1680
gtttgggatg	gatttagaat	gtttgggggt	ttttgttgtg	tggttgttgt	ggttttggga	1740
ttgttttgtt	tgtttgtttt	ttgtgttttt	tgttttgagg	gtggtttttg	tgttgtgtgg	1800
ttttttttt	ttgtgtgttt	gtttttttta	gttgtggttt	tggagggaag	tttagatttt	1860
gagtgttttt	agttttgtga	gttgtttgtg	tataaataat	tttgttggtg	gtgtggagtt	1920
ttttattttg	taggagttgt	gttttgatgt	gttaaaggtg	gtgtgtggtt	ggttttgggt	1980
ttggattttg	atttggagta	gtgagttttg	gtgggtgttt	ttggtttgtg	ttttttggtt	2040
gttttttgtg	ttttgggttg	gttttgtttg	tggtggtggg	tgttgggggt	gggggtgttt	2100
tgggttgtga	gtgtgtggag	tttgttggtg	tggtttgttt	agtggggttt	gtttttttt	2160

47675-47.txt gagtgtgttg ttgtttttgt tgtggttgta gttgttttgg gattgagtgt gtggaattat 2220 ggatgtgggt tttttgttgg gtggtggtgt agatgttgtt gtagagttgg gtttttgtga 2280 tgttggttgg gatgtttgtt tgtttgtgtt tatgttgggg gttgtttttt tgagttagag 2340 2400 2460 2520 2580 tttggttttg gatatgtgta tgggttgtgt gttgttttgt tttggtgtgt gtgttgggtt ggggttgtgg ggtggggtgg ggtggggtgg ggtgtgtgtt tggttttgtt ttttgttttg 2640 2700 2760 2820 2880 titgggaggt tttittgit ttgtaagtaa tgaatgtggg ttttggggta tttggtttgt 2940 tttggatttg tttatggggt gatttttatg ggtttagttt ttaaagttgg gtttattgat 3000 gattatgttt ttttg 3015 <210> 449 <211> 3015 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 449 tgggggaatg tggttgttgg tgggtttagt tttggaggtt aggtttgtga aggttgtttt 60 gtgagtaggt ttagggtagg ttgagtgttt tggggtttgt atttattgtt tatagagtaa 120 180 240 ttgagtggga aggtaatatt ttgatttttt aaatgttgtg gttagtggtt ttttttatgg taggtgtttt taggtttttt tgtagggttg ggattttggg tggtgtgtg tttttgggat 300 gttgagggag ggtgggttta tagtgtttgg agtgtggata gtggttatag tttgttgttt 360 agaagtggtg tigittgggg tggggggtgg agttgagtgt gtgttttgtt ttgttttgtt 420 tigtitigta gtittagtit agigigigta tiaaggigg gtggtgtgtg gtitgtgtgt 480 540 gtgaggggtg gtgtgggtgt gtgtttgtta gtgatagtgg gtggggtagg ggttggagat 600 660 720 780 gaggggttig tgittgtggt titatgtgtt tggttttggg atagttgtgg ttgtggtggg 840 900 960 tggagtgtgg ggggtggttg gggagtgtga gttgggggtg tttgttgaag tttgttgttt 1020 1080 ttttgtagga tggagggttt tgtgttgtta gtggagttgt ttgtgtgtag gtggtttgtg 1140 gggttgggag tgtttaaggt ttgaattttt ttttggagtt gtagttggag gaggtgagtg 1200 tgtgaggagg agaagttgtg tggtgtggag gttatttttg gggtgagagg tgtggaaggt 1260 gagtgagtaa agtggttttg gagttatggt ggttatgtgg tgggggatttt tgggtggtttt aggtttgtt tgagtggttt ttgtgtgttt tgaaggtggg ggtggtggg gtggtgggag tattgttgag ttgggaatta taggaataga tggtgtttgt ttaggttgtg tgttggagtt 1320 1380 1440 1500 1560 tttgataata tggtttttt attttattag tagttgttgt attattatag tattgaggtg 1620 1680 tittitaata gttattttaa gtattgtaaa tatagtattt tttttagttg tagtagtttt 1740 1800 aagttgtttt agttgtttga gagggttttt agttgttggt gggattttaa gtttgatttg 1860 gtgaatttgg aggaggtttg tttggagtgt tgttttttgt agatttagtg ttggttttgg 1920 1980 2040 ggtttttttt tgtttatttt tattaagttg tatgtttggt attatgtgtg gattttgttg 2100 gittttattt tgttggtgtt tgttttgatt ttggttgigt agttttaggt tttgatgtti 2160 gttttaggat gtggtgatag ttttaatttt atggttatag ttggtttata gatatttgtt 2220 Page 227

tattttaagt ggggagtttt tttatgtgta ttgaagtgtt ttttttgttt tatattgtta 2280 tgtatttait titgtatttg agtttgtgtt tgggggtggt ttattttgtt ttttttgaga 2340 tttttggtta ttatttttgg gatgaagttt gillittitit gtttggagtt ggggttligt 2400 attgggagtt gttgagtagg gggttgtttt atggttgtat ttatgttatt ggggtttatt 2460 tgtttgttat gttttaggtg aggtttagga gtattttttt taaggtgggg taatttatta 2520 tgtatgggaa ggatttggaa gtggaaaaag tttttaaaga gaggatgatt tattttgtga 2580 2640 tgttaagaat tatagttgat gatttaatga agtagggaga tgaggagagt gagaattttg 2700 ttaagaggta tgttattttg agttttaaga ataggaagaa aaagtttttt atttaaaaag tttttatagt tttttgtttt tttaagatgt agtagattga agaagttagt attttatttg 2760 tagatattgt gggttttatt aagatgagtg ttaataagtt tgtttatgtt ttggtgggtt 2820 ttttgaatga tttgtttggt tgttttgatt gtttgtgtga ggagattaag tgtgagaaaa 2880 ttagtattit gggagatigt tattatigtg tggtgggtig tittgagttt tgggttgatt 2940 atgtttattg ttgtattgag atgggtttgg gtatgattaa ggttattgag tagttttgtt 3000 aggagaagaa ggaga 3015 <210> 450 <211> 3093 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 450 60 120 gttgttgttg ttgtgttttt ttttattttt attttttga ggagagttat aggttgtaaa 180 240 300 tittgagitt tgtatataag gaatgtgggt tggggttitg tttgttitt tttttgttta aggtaaggat tttgggaatt tgaagtttgg tgtttattat gtttaggttt gtagttttt 360 420 ttttatagag tttgtattat gggaaaaaat aaaataaaat ttaggaaagg gaggtaatag 480 ttattgggag ttaatataga gttatgtagt gtttaaaata taaatattgt agtggttaga 540 aattttgtta tttttttgt ttttttaggt tgttttgttg aggttttttg agtttttttg 600 660 tgttttgtta ttagttttt tttttgggat gagtagggag agtgtgtgga ggtttttgat 720 ttttttgatt ataattaaga aagaataatt tttaaagtgt ttaatatttt tgtttttaag 780 ttttttaaaa tataggggta gggaatatta aaatatttgg tttttattag gaagattatg 840 gttttgaaag gaaatagtag atatgatatt ttattttatt tggatttatg attaaaaaaa 900 960 1020 1080 gaggtgagga aaaagaggag ggagggaagt ggaggttagg agtgatggag taaggaaagt 1140 agtttqtaag tgagaaaaga gggaaaaaat atagttqtat qaatttaqaq aqattataaq 1200 ttgtatgtaa gtagtagtag aaagagtgag agtgtgagtg tgtgtttttt ttgtgtttgg 1260 ggttagatag tttttagatt agtttgaatt attttttaag tattgttttg tttttttgt 1320 1380 1440 1500 1560 atatatatag aaaatttgga gttaaagtat ttggtaagag tggaaaaaaa aagaattaaa 1620 aggtaaaata atgattatga gtagtggtgg tggtagtggt attagtggta atagtggtgg 1680 tggtggtagt agtagtagta gtggtggtag taatagtaat aattatttgg tgtttggttt 1740 tttttagaaa ttttttgtat tattatttt aagaatttta gttttaagaa ttaatagagt 1800 ttaattittg gaatttgagt tttggatttt attattgtta tgtggtaggg gaggatttgg 1860 1920 tittttatt ggttggtata ttttgaggtt tttataagta gagtgttttg gatttggagg 1980 2040 2100 2160 2220 tagtagattg agttaaatgt ataaaaggga gtgagaggtt tgaattattg ggaaaagtat 2280

Page 228

47675-47.txt

47675-47.txt 2340 ataqtttttt ttaattagaa tattaggtat tatgagaaaa atatttgtta agtagttttt 2400 ggtgggttta tttgttttat ttttatttag gataggggtt tttgttgttg ttttgggttt 2460 ttttttttt ggtgtggtgg tttgggattt ttggtttttg tattttgatg gtttatggat 2520 ttttqttttt gattttttgt tttttgtaag tttgtggtgt tatgtaaatt ataggattgg 2580 2640 2700 aaaqatgtat tattttaata ttaatattat tgaaagaagt ttaaattttt ggttatatgt 2760 ttttggattt ttgttgaagt gtgtttttt tgtattttag agaaatgttt aaaggatttg 2820 ttttggtttg gtttgttttt ttttaggata gtaagtggtg ggtttaattt gttattgttg 2880 2940 qqqtqqtatq tqtqtgtttt ttataaaatt ttgtgagtta aatatttgtt tqtgttttgt 3000 ttitttttaa ggttttgaga tttttgtttt tgaggtttgt tttaaggttg ttgtaaaaaa 3060 3093 attttttag tttgtgttta agagattagt tgg <210> 451 <211> 3093 <212> DNA <213> Artificial Sequence <220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 451

ttqqttqatt ttttaaatat agattqaaga gattttttta taatgatttt qaaatgagtt 60 ttgaaaataa aaattttaag attttaagag aaaataaaat ataaataggt atttggttta 120 tagaattttg tagaaaatat atatatta ttttgttatt tttattttt ttttatata 180 240 tatgtttttt gtaataagaa attttttaag agttaataat aatagattaa atttattatt 300 gtaggagaga tatattttag taaaagttta agggggaaaa agaaaattgt attaaaggaa 360 aaaaaaaaa aaaaagtggg ggttgggatt gttatatatg gttaaaaatt taagttttt ttaatagtat tagtattgaa ataatatatt tttaaaatgt ttgagggatt agatagggaa 420 480 agaaaaggta tgtataaaaa aatttaattg atgttgattt tgtgatttat gtaatattat 540 aaatttqtaa aaqqtaaaaa attaqaaqta aaaatttata aattattaaa atataqaaat 600 taaaaatttt aagttattat attagaaaga aaaaaattta gaataatagt aaaaattttt 660 gttttaaata aaaataaagt aaatgaattt attgaaaatt gtttggtaaa tattttttt 720 780 tatttgtttt tttaatttta ttatatatat aatatattt ttttagtggt ttaaattttt 840 tgtttttttt tgtgtattta gtttgatttg ttgagtttat gggtaagaaa gaaggaatta 900 qttttaqatt ttqqqaaaqt aaagtgtatt ttttttttta tgttattqaa taqtaaatta 960 gtttttågaa ttttågaggt tgagttttgt tatagtgaag gtgttgatgt tatagaggag 1020 1080 ttatttttag gttttttgag ttttgaattg gaatttttaa atttgagatg ttttgtttat 1140 gaggattttg aaatatgttg gttagtgaaa aaattttgtg gttttgaggg tttttggttg 1200 gttaggggta gtaaaaattt tggagagttg atattaagtt tttttttgtt atgtagtagt 1260 1320 ggtaaagttt gaagtttaaa ttttgagaat tgagttttgt tgatttttag aattggggtt tttagaagtg gtgatgtaag aagtttttag gaaaggttgg atattaggtg attattgttg 1380 ttgttgttgt tgttgttgtt gttattgttg ttgttgttgt tgttgttgtt ggtgttgttg 1440 1500 taaatgttit ggttttaagt tttttatgtg tatttattga tataaatgta talatttatt 1560 tattttagtt gttaggtgtt aaaataaatg ttgaagatta gttttatgtt ttttttatta 1620 1680 tttggggagg tttttgttat tttttttgt gttgttttgg tttttggaaa ggaggtggag 1740 qagagqaagg aggggaatta gggggtggtt ggagtagaga ggatgagata qtqtttgqqq 1800 ggtgatttgg gttagtttgg gggttgtttg gttttagatg tggagaggat gtgtgtttgt 1860 gtttttgttt tttttgttgt tgtttgtgta tggtttgtga tttttttgga tttgtgtggt 1920 tgtgtttttt ttttttttt ttgtttgtaa attgtttttt ttgttttgtt gtttttggtt 1980 titgittit tittittit tittittigt tittittit tittititt titgittitt 2040 2100 2160 aatgtaagtg aattttttgg gtttttgttt ttgttttttt ggttataaat ttagatgaga 2220 tgaagtattg tgtttattat ttttttttag agttgtgatt tttttaatga gagttgagtg 2280

47675-47.txt ttttggtgtt ttttgttttt gtgttttggg gagtttgggg gtggggatgt tgaatatttt 2340 2400 tttattttga ggagagagat tgatggtggg atagggtttt ttggggtggg tgggaaaggg 2460 2520 gtgtgtattg tatttgtgat gttttttagt gtgtgggggg atttagggaa ttttgatagg 2580 atagtttggg agaatgagaa aggtggtggg atttttggtt gttgtggtgt ttgtattttg 2640 tttatttttt tttatggtgt aagttttgta aaaagggaat tgtgggtttg agtgtagtgg 2700 atgttaggtt ttagattttt gaggttttta ttttgggtga ggagaaagat gaatagagtt 2760 2820 ttagtttgtg ttttttatgt gtaagattta ggaggagaga agggtatttt gtggttgtgg 2880 ttgaggggat ttggtgtggg aggagtgggt gtgggtgtga aagggagatt tttgtgagtg attttgtaaa aatagattgt gaggttggtt ggatttgtaa tttgtggttt tttttgaggg 2940 3000 agtaagaatg ggggaaggtg tggtggttggt ggtttgggga gggagtgggt agagttggag ttttagaaat tggttgagtt ttgggggtgg gtggggagaa agggtggggg ggtagtagga 3060 3093 gttaggggtt attttgttgt tggatgtagt gat <210> 452 <211> 2436 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 452 60 agttttggat gataaggatt aattgtttag ggtgttggtt gagaggaata ggaagagtgt tttgtggagt agggtgggtg agaagagttg ggtggttgtg gggtttttgt gtatgttggg 120 taggaagagg aagagttgta gtatgaaggt tattagggag atgtataaga agtaggtggg 180 240 ggttattatg ttgagtagtt gtagggttag tatttttgat tatatttttg tggggtttgg 300 ttgtgtgttt ggggtattgt atgtgatttt atgtttttaa ttttttgttt tgtggatttt 360 420 480 540 600 tttgggattt ttggtttaga tttttttagg aggagaaagg gaaggatttg gggttggggg 660 720 ttttgtgttt ttatttatat atatattttg ggtagtattt agggatttta ttaggttatt 780 840 ttgtgatttt gtatgtgtaa tttgtgtgtg tttgagtatt tgtatttgtg tatgtatata 900 tttgtgtgta tagatatgta gtttttgtta tttagtttta aaaaaattaa ttgaaataat 960 tgatatattt atatttgitt itgggtattg ggtgaggtgg gggtgtaatt agaatatttg tgttagtggg ttttggttag tatattttt taatgttggt tgtttgggtt attttttgt 1020 1080 1140 tttgttgaga gaaatttaaa taatttttat ggtgttgaaa tttttttat gttgataagt 1200 ttgttttggg tgtatgagtg gatgtttggt tagttttttt tgggattgat tttgttgttg 1260 tgtttagttt ttattatgtt tttattttat tttatgttt atagttgggg tttttggtta 1320 gttttggaag ttattgagaa ataggatttt gtgtgtttga gagaattttt ttaggggtta 1380 aggaattggt tagttggagg tgtgagaaaa gttttgggaa ggtggttgta tttaggatgg 1440 1500 1560 ggtttttttt tattgttggg gtgtagtgta gtgtatgttt gagggtggtt gttgggggtt 1620 gggtatgttt ttagttttgt gttgttgggg gttgtggtgg tgttgtttat tttagagagt 1680 1740 gggagtagtt agatgtgttg tagtgttggg aaggtggtga aggatagggg ttaggggagt 1800 gaggggtgtt tggtaggtag ttttagtttt ggttttgtgt gggagaaggg atagtagaga 1860 1920 tgtggtagag ggtggtatag ttggagtttt ggaaagattg gtagtgttgg tagttgtggg ttttttggtt attgtttttt ggatgtatgg gaagttgttt tttgtgttgt tgttgttgta ttgttgttgt tgtagagggg tgaggaaatt aatttattga gttttggttg ttgataagag 1980 2040 2100 gagttitgga tgttggtttt tgttttgttt gaggttgtaa agttgtggat ttggtttggt 2160 tggtttgtag titgtgtttt gitttgggaa tigggtaagt agiggggatg iggggaggag 2220 ggagtgggta gttgttggtt ttttatttgg gtgttagtga gtaagggtta ggaagtggtg 2280 Page 230

47675-47.txt gggatggtag ttgggtattt tttagttttg ttattttttt ttttgttttt gggggtggtg 2340 2400 agtgggttgg ggtgttttgt ttggttttag tgtttg 2436 <210> 453 <211> 2436 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 453 tgggtgttga aattaggtag ggtgttttag tttgtttaag gggaattgag aggggaggag 60 120 gggtggtggg gttggggggt gtttagttgt tatttttgtt gttttttggt ttttatttgt 180 240 300 agtttttgggt agggtgagag ttggtgtttg gggttttttt tgttggtgat tagagtttgg 360 tgagttgatt titttatitt titgtgatgg tggtagtgtg gtggtggtgg tgtgggggt 420 ggttttttgt gtgtttggga ggtagtggtt gagaagtttg tggttgttgg tgttgttggt 480 540 tggatagttt tttatatttt ggggttttat gggtggtttt tgttgttttt ttttttgtgt 600 agggttaggg ttgaggttgt ttgttgagtg ttttttattt tittagtttt tgttttigt 660 tgttttttta gtgttgtggt gtatttggtt gtttttgtgt ttttttggtg attggtgttg 720 ggaaggtatt tgttttgttg gagttttagg ttgagggttt tttgggggtgg gtagtattgt 780 tgtagttttt ggtggtgtag gattgggggt gtgtttagtt tttggtgatt atttttaggt 840 gtgtattgtg ttgtgtttta gtggtaggga gaggtttatg ttttttgtgg aggttgtggg 900 960 1020 tagaattttt tttgtgtttt tggttggttg atttttagt ttttggaaaa gttttttgg 1080 gtgtatggaa ttttattttt tggtggtttt tgaagttggt taggaatttt ggttgtgagg 1140 tgtggggtgg gatggggatg tggtgagggt tgagtatggt ggtggggttg attttaggaa 1200 1260 ggtgttatga gggttgtttg ggtttttttt agtaggaggg tgggaggtgg gtgtgaaggg 1320 gggattttaa ttttgtttta aatgaaaatg ttttttgtaa agaaatagtt tgggtagtta 1380 gtgttggaga gatgtgttgg ttaggatttg ttgatatagg tattttggtt gtgtttttat 1440 1500 1560 1620 tggtttttta tgtatatata tttttaaaga gttttgggta atttggtgag gtttttgagt 1680 gttgtttaag atgtgtgtgt gggtggggat gtagggatgg agaaagggga gtgtgaagta 1740 1800 1860 gaggggagga gttttatttt ttggtgtttt ttatttttat aatttttaaa gattgtaaat 1920 gagttttttt tttttgtgtt agattttgtt gtgttaaggt gttgagtttg tttaaaattt 1980 taggtaatat ttatttttag gtggggttta gatttgaggt tgttgtgggt ttgggttttt 2040 ggtttgtttg atttggggtt agggaattgg ggaggggaaa tttgtgggat agggggttgg gggtgtggag ttgtgtgtag tgttttagat gtgtggtatg gaggagtggg tgagggtgtt 2100 2160 ttttggatgt tgtagttagt tagttttttt tttattttgg gttttgtagg aatgtaattg 2220 aggatgttgg ttttgtggtt gtttaatgtg gtggtttttg tttatttttt gtgtattttt 2280 ttggtgattt ttgtgttgta gttttttttt tttttgttta gtatgtgtga ggattttgtg 2340 gttgtttggt tttttttgtt tgttttgttt tatggggtgt tttttttatt ttttttggtt 2400 aatgttttgg gtaattagtt tttgttattt agaatt 2436 <210> 454 <211> 17219 <212> DNA <213> Artificial Sequence

```
<220>
<223> chemically treated genomic DNA (Homo sapiens)
Page 231
```

<400> 454

tttattgtat	attatttatt	ttttaggttg	ttagtgtggt	ttttagtttt	ttttaaqtta	60
						120
		gaataagtgt				-
		atttggtagg				180
		aagtatggat				240
agtgattttt	tttatatttt	taaatgggtt	attgtttttg	gaatgtattt	atagaaattt	300
		taaagtttgg				360
		tttatatttt				420
						480
		ggagtttaag				
		gtatttgtat				540
gtggttttt	tttaggttag	attaatatgg	gtttgtagtt	taaatgtaaa	tagaggattt	600
tttaaqatta	taaattttta	aagaaaggaa	qaqqaqqaq	gaggagattg	gaatgttagt	660
		ggtaatttat				720
		attaaaattt				780
		tataatatat				840
ttttgtatat	atttaatttt	ttataagttt	ttggttaaaa	gtatgtttat	ttatatagag	900
ataatttaaa	gattgttttg	ttttttttag	tgtatatttg	tatatgttgg	tggggtattt	960
		gtagtagtta				1020
		gaatatttgt				1080
						1140
		ttttaaagtg				
		taaattagat				1200
aattgagttt	gatgtattaa	gatgtgattg	tgtatatata	agagaaagga	aaattttagg	1260
tttagattta	tagtttttt	ttattgtgag	ttattttgtt	tttaggaatt	tttattaggt	1320
		ttatattatt				1380
		tttagttttt				1440
		ttttgtgttt				1500
		ttgatttatt				1560
		tttggtttgt				1620
gtgatggtgt	ttgtggggtg	ggggtagggg	gtttataggt	attggttgtt	ttgagtgtat	1680
tatqqqtttt	ttttagtttt	ggttttttgt	qtttttatta	atttaattat	tggggtatag	1740
		tagttttatt				1800
		gagaataaga				1860
		gtgagttaaa				1920
		tttgaggtgt				1980
		ttgttattgg				2040
tagtttggat	agtgaggttt	tggtttgtgt	gggaggtgga	ggttaggatg	gttttgtaaa	2100
gggttggaga	gaattgttaa	tgagttgtgt	agtttattga	tttqqaqaat	attttttaat	2160
		gtgatagtgt				2220
		tgggtgtttg				2280
		gtggtggtgt				2340
		attattgttt				2400
ttttgtttaa	aataaatatg	aaaattaata	ttgtaaaatt	tatattagat	aataggttga	2460
gagaggagtg	ggtagggtta	aggaatgagt	gtattttta	agtgtttatg	tataggaatt	2520
		tgttttttat				2580
		tttggtttgt				2640
		agtttgtttg				2700
		tttttaggtt				2760
		tattttttt				2820
ggaaaatata	gttaaaattt	tgagttgttt	agtttagatg	tagtgaggtt	gtgtgaatat	2880
ttatttqaaq	tgtgttggtt	tttttttaag	gtttgttttt	aaatatatat	aattttttt	2940
		tttttttat				3000
		agtttttagt				3060
		tgtttggtta				3120
		tatttgagtg				3180
		ttttatatat				3240
ggtgtttgtt	attgttgttg	tgagtttttg	agttggtgga	ggttttgtga	tgtagttqtt	3300
		tttgtggtgt				3360
		ttttgtttat				3420
						3480
		gatttttata				
		ggttttgttt				3540
tgtataagta	tattttatat	ttatttttgg			atgttgaata	3600
			Page 2	232		

ttggggaggg agaggaggg gaaagtggga gggggattgt agattataat tttaaaagaa 3660 3720 ttgtttgatt ttttagtagt tttttttttt aatttatgtg atttgtgttt tggggtaagt 3780 taagaaaaaa tgggattttt tttttgagtt gtgtggtagt ggtggtaggt tgagtttggt 3840 3900 gaatgattgg tttttggaga ggtgagatga ggtggtggtg gtggtggttg ggggttttta 3960 4020 4080 ttgtgagtta atgttgaatt tagtttttta gtttttagtt tattttttt ttttttgttt 4140 tttattttgt gaattititg ttttttttt ggittattgg gaggtgttag gtttttagtt 4200 4260 4320 gttttgtggg gtatgttgtg ggagggggtt ttgggagagg gggttgattg tagtttttag 4380 tgtgtttgtt tgtttatttg tttgtggttt tttggggggaa aggtgttttg ggtattgatt 4440 tgaaattttt ggtgggggag taggtaggga gtttgtgatt tggttttttg aagttttttt 4500 4560 tgaggggtgg ggggggttgg tgatgttaat gagtggagaa ggagttgggt tggagaagtg 4620 4680 4740 gtgggttttg ggttgggtgg gggtgggtt ggggtttttg ggtaggtggt gatagttttg tgtgattttt tgggtttttg tagttggatt gggtttggt gagtttagta 4800 4860 gtttttgtgt tgttgttgtt gtttgtgttt gggtaggagt tttagtgtta tgttgatggt 4920 ttgttgtgag tgtttgtttg ggttgggtgt gtgtgagtgt gtgtgagtgt tggttaagtt 4980 5040 ttgttgttgt tgtttgttta gtttttgttt ttggttgtgg ttttgggtttt tgtgtgtttt 5100 ttttgtagtt gttgagtttg gtttgtgttt agtgaggagt gtagttttgt tttattttgt 5160 5220 5280 ttttttttt ttttaatagt tgttttttt ttttttgtag gtgtagtgtt tgggtgatag 5340 ttgtttgttt gttgttgttt ttagtttttg taagtttgag ttttgttagt ttttgttat tttttgttgt ggtgtttttg tggtggggtt ttgggagggg tgattttta ggaaaggttt 5400 5460 gtttgagtit tittggttgt taltgalgta tggtttggla tgttttggtt titttggatt 5520 5580 tttgggttga gttggttgtg tatgtttgat ttgggtgtat gttttgggtg agttggagat 5640 tgatttgggt ggtggtggtg gtgagggttg ttggtagagt tagagttgaa gggatggggg 5700 tggtgggggt ggttttttta gttgtgtgtt gagatttttt ttgttattta gaaggttagt 5760 ggaggattgt aattattata aagtgttttg tattttgttt agttaaagtt gttaaatttt 5820 agtggtagta gttgttgttg, ttgttttttg ttattagtgt tgtgtttttt tggttttgtt 5880 tittitgaga ittagtggag tgtggtttgt gtgtttttgt gtttatttt attttagttt 5940 gtttttttt tttagaggag ttttttttta ttttggtgtt aaaaqttatt tqaaaatatt 6000 attttaggta atggiggitg ttttgtttga atttigigt tgagittttt ggatgtttta 6060 attgtgtggg aattgtttgg aggtggggga aggggggagt agtttgtgga ggtattggga 6120 6180 tttttatggt tigtattttt gatggttgga ggggttgttt aggttttttg ttttggtgtt 6240 gggagattat tittigigit tiattititt igatagggag taattitigq titatatigt 6300 ttgttttata aatttttatt tggtaatgtt gtgttgattg gtgtttggtg gtggtgtata 6360 gtttgtgttt gtagtagttt aatttaattg atatgtattg agitttitta gtgiaittgg 6420 tgtggttttg ggtgtggggg gagggtgggg gtaggtggga gggaggggga agtggagaag 6480 tgaggttttg gtttttttgg agtgtaaagt tttaagggtg agttgagaag ttttagttgg 6540 tgaagttggt gggaaggggt aggagtgggg gagggggtat tttggattaa ttgtgtttag attgtgggtt tggattttgt ggttaatggt gattttattt ggttgtttat tagggttttt 6600 6660 ttatattggg aagggggtgg ggtgttttt tttgtttaag gataagatgg tgtaggtttt 6720 atgaaatata aatttgaaat ggaggtggtt tgtaaattta tatggaaagt ttttaaaata 6780 ttttggagtg tttttatgtt aaaaataatt aaaagtattt taagttgatt attaagttaa 6840 ggttaaggtt aaaattagtt ttagttagta gatatttttt tttttaaaaa ttaqatttat 6900 6960 atagitataa aaatagiitt tittaaagta gaagtgaaat attittatig titgaaatti 7020 gaaattttgg tagaattaaa tttttatgtt ttagagttgt ttataataat tgatgtaaaa 7080 7140 7200 atatttttgt aagttaattt atatatttt ttaatttttg gtaataagta gaaagatatt 7260 tggattatta tgttgtaaaa ttattttta taaagatatt ttaggattag atattaaaag 7320 ttattagatt gaatgtatgt gagttataga tatagttgga gaaaaggttt ttggttgtgt 7380

gttgtggtaa tattttttt tgaagtgatt ttttttattt aaaataagtt aaaaataatt 7440 gggaaggttg aagttgggta tttgtgggga aattttgaat gtggttttag gtgaggaggt 7500 tgttttgttg ttgtaggttg gatgggagaa ttggtttggg ttagtgtgga gttgtgttag 7560 gtttttttgg tttggttagg ttgaattgta gaggttttgg tttggtgttt agttatttt 7620 tatttttttt ttttgttttt ttaattttgt ttttaggtat aggttttttt tggagtttga 7680 agttgtatgt aaatgtttag aatttttaga aaatttagga attgagtttg gggtttgtag 7740 7800 aaaagtttta gaatttggga ggttgagtta ggagaattgt ttgaatttgg gaggtggagg 7860 7920 7980 ggggtggtgg gggtgttgta aatgtgaagg ggttgaggg agggttgatt gggggagaaa 8040 tttgatgttg gagataaata ggttagtaaa tttgtttttg atgtaatttg taatatttt 8100 ttttattttt tttagggatt ttgttttat ggtaggttgg taggattaaa gggtttttt 8160 tttatttttt agggatatat tttttaattt tgtgggattt taaaaatatt ttattaaggg 8220 agttttaaga ggtatgagtg gtggggggga tttgtgattt attgggaatt aaaatgtggg 8280 atttttttga ggtgttataa ggtagagggg gggaggggag attatattta ttggtttggt 8340 tagttttaat tgttttgggg aaaataagta gaaagttgtt gaagggtaat tttattttgt 8400 gtttttattt aagaaggggt ttagggagtt ggggatgttg tggggtttgt aatgggtgtt 8460 ggtggtttgg ttttttttt gtttttttt tttttgtttt tttataagtt ttttgggagt 8520 tgatttgggg gttaggttgt tatatttagt atttagtaag gggaggattt taatgaaaat 8580 agaggaggag gagagagtga gtaaaggagt gtatgggagg ggaggttgtg tagtttatgg 8640 agaaataaag aaataggtgt tgaaatgaga ggtgttgtgg atggagtagt gggggttgtt 8700 tttttgttat taatttttt ttttatggaa gtgttttttg attataataa attatttgat 8760 tttaggttaa ttaggttttg taattgggta attgagttgg tttttttagg agtaggtttt 8820 8880 tatattttta gttttatttt ggtttagggg aaaggttagg tattttgtgt ttggggggat 8940 tttggttttt taattttgtg tgtaagattt atttataatg tatattagga tttatattat 9000 aaagtttata atgtatgtgt aggtttttga tggttttttt tggaggttgt ttttagggtg 9060 atgatattig gtattggaat aggigggatt iggatgagta taqataatgi attittatat 9120 aatgtgaggt agttttttt taaaaatata titatattta tagttttttg gttattttgt ataagaattt tgggtttatt taatggtatt ttaaaaaata tttgttgttt tatttttaa 9180 9240 gtataaggta tagttggttt tttttttgaa atttaaatga ggtaataaat aggaggtgta 9300 tttttttttt aggattttat ttatttggaa atatttaaag gtagttgttt tttagggtag 9360 9420 tttggagggt tattgggtgt ttggggaagg aaggttttaa gggtagtttt tttgtggttt 9480 ttagtaatta ttttggaatt tttggtttgg gtttgatttg ggttaggttt tgagtttttt 9540 gaatataggt atgtgtggt gaattggtat ttatattatg ggggtttgta gggtggttgg 9600 9660 ggtaagggtt taagagtttt tgatgttgtt gtgttgggtt gggtgttttt gtagataaat 9720 ttggatgtta tgttttgttt tggttgttta tttagtaagg tgttttttgt gtatatttta 9780 9840 9900 tttattttta ttgggttttt gtgaagatgt attattttga atttttttgt ggtattattt 9960 ttgaattgga ggggtagaga aggttttgtt agttttttgt ttgtagtagg aaggtgggta 10020 tggattagta gaagggaaag tggtgttgat ttgtttttaa atatttttqt tttttqttt 10080 ttaataaagt tggttataga ggtgagtggt gtgggatggt tgttttgaga aggttgtagt 10140 taggagtaaa gttttggggt ttataatgga ttgggtattt taaatggtgt aatttttggt 10200 atattttatt tgtttttatt ttattttttg aattattttg tttttggtgt ttatttttt 10260 ttttatattt gtgttttag tgtgttagta gttgtgtagt ttttggtttt gagtgtgggg 10320 ggtggggtgg gggggtttag ggtggtttgt gtggtgtggt ttgatagaat tttttgtgtg tggtggaggg aggaggttaa tgtataatgt atagtgtttg gaagtttggt tattagtggt ttgttggtga tatagataaa tgattgagag ggaggagatt tagtttgtt tggagtttaa 10380 10440 10500 atagattagt gtggagggga aatgttatga tttaaaagtg tgtgtttgta gatatttgta 10560 tatattttaa tgatttttag taggttatgt gttttagitt tgtatttitt tttttttaaa 10620 aggaggatgt gtttagagga gggaggatga aggtagagtg agaggtttta atttagattt 10680 attagtagtt tttgagagat gaaggagggg agaagtttag aaagtgaggt ttggggaagt 10740 tatatgattt aaggttaagt ttagattttg tttttaaaat aataatttaa aaaaagagtt 10800 atttagtttt ttattttgga ttatattttg tgttgtatta gaaaggtttg ggggaaagaa 10860 taaattttgt tatttttgtt ttttttggga gtttatattt ttgaattttt tttttttatt 10920 gatattttag agatttttt ttttttggtt taatatatta gtgtttttta gtaattaagg 10980 11040 11100 ttggttattt tttattttgt aaaaatgttt tttttgaaaa ttggattaaa aaagaaaaaq 11160

			47675-4			11000
		gatttttatt				11220
		attggtgggg				11280 11340
		gggggtagga attttgtatt				11400
		ttgtgttttg				11460
		ttatataatt				11520
		tatttatagg				11580
		tttagttgaa				11640
		tgaaggggtt				11700
		gagtgttttg				11760
		ggtgttttag				11820
		ttattttttg				11880
gtatatgtta	agtttattgt	ttttaagtta	ggttgtaaga	tttaaaggtt	ggggtttgtt	11940
		gagttgaaat				12000
		tggtttaagt				12060
		tgtgttttat				12120
		tgggtttagg				12180
		tgtggagttt				12240
		gggtaggttg				12300
		ttagtagtag				12360
		ggggtttttg				12420 12480
atgtagagag	gattatttgggg	tggtttttat tgttgttttg	acacttetet	grigadagig	attaggggag	12540
actattttt	ataattattt	tgttgttgtt	attataatta	tagagattag	aagttttgt	12600
		ttggttttag				12660
tatttttgat	ttttttttat	tttaggtgat	tatttgggtt	ttataatatt	ttggtgtaag	12720
ttgagaggat	tttttttata	gtttgatgag	atattttat	ttttttqtta	ttattataaq	12780
					ggagttgtta	
		ttgtttttag				12900
		tagagattgt				12960
		ggttattttt				13020
gaagttagag	ggtttgttgg	gggtttgggt	tttttttga	aggttgaagg	gttgttattt	13080
		tgaagaggtt				13140
		tgtttttgtt				13200
agttttattt	tagtttttgg	tgggggatgg	gagtaggtta	tggtggtatt	ggtatttat	13260
		atgtagggtt				13320
		gttttttgtt				13380 13440
		ttttgtttta tggtttggga				13440
agtgtataga	gaaaagtttt	tttattttaa	tgagagtgta	tatagtgttg	tagtgaggg	13560
gatgattatt	taataaataa	ggggtgtggg	tttagattat	gaataatata	tataataatt	13620
		tttgtttggt				13680
		tgagtttagt				13740
		gtttgtgttt				13800
tttgttttgt	atttttttt	gtttgtgtgg	tttttgtagt	tttaatgttt	tgtttttggt	13860
		gttgttttt				13920
ttttggggtt	tatagaaaat	gtttgttttt	gttttgagtt	tttgttaaat	taaatttgtg	13980
		aggtggggag				14040
		ttgttgggtt				14100
atagagttgt	tggttttttg	atgtttttt	ttttgtttt	gagaggtttt	agtgttttag	14160
gaaggeeegg	tttaatagaga	ttgtgattag	gggtgaagaa	tttagagtgt	grgrrrgrga	14220 14280
tttaattatt	taggattta	gatgattttg tattagttgg	taaaaaaaaa	gaggaaga	aaagtgttt	14280
ttttatatat	ataatttta	ttttaaggat	ttattagaat	ttattattt	taattotata	14340
attttttt	gtataggatt	tagggtgaaa	gtggggaaat	attagattta	addadaaaaada	14460
gttgggttag	aaatttaqtt	ttggaggttg	gattgtattt	ttttggtaga	tttagttata	14520
tttggttggt	atgtqqqqtq	gggtgattta	gtagagtaga	qqatqtaaqq	qttaqqtttt	14580
ttggtttagg	agatgttaaa	tgttttaatt	ttggagtgag	agagtaggaa	tttttattt	14640
tatttaagtg	tgtgtgtttt	ttagtttgat	gtgtaagttg	tggttttttg	tgttagagtt	14700
gtttaggtgg	taattttta	agtttgtaat	taagtgaggt	gttgttgtgt	tttttgttag	14760
tgttggtttt	gttagttgta	tatggttttg	gtgttttggt	ttgaggtttt	gtgattagtt	14820
ataggtttgt	tttgttttt	ttttaatttg	tttttgtagg	tagtttgggg	atgtggttga	14880
tttggtggtg	ttggtaggga	gttattgttt			agtgttagtt	14940
			Page 2	235		

47675-47.txt 15000 agittitigg tiggggiggi ggigtttti tittititgt tittitttg ggtttgtgag 15060 atttatttgt gtggtgttat ttgtataaaa ataggataag tgtttttgtg tgtttatatg 15120 tgggaggtga aatttttatt gatgtgtttg tgtggagttt ttgattgttg gagtggtttg 15180 atttagggtg tttgtgttgt tttttataag aaaggagaga aagttttttt taatttttt 15240 15300 ggtggttttgg gtttttagaa gtatgttttt ttgtgtggtt ggaatggttt attatttggg 15360 ttttaagtgt gttggattta tagtgagtag gttgagggtt aggtgggagg tttattatga tttataaaat tgggtggttt aattgttagt tgttaattta tttatatgtg gagtttttta 15420 atgttttttt tgtttgggtt tggttttttg agggtttgtt ttgatatagt tagagttgtt 15480 aagtgggagt taatttagtg gtttttttt tttgttggta gtgtggtttt tttttttgg 15540 15600 tgatttttqt ttttttqqtt tattqtqttq tttqttaqta attttttagt ttggataaat agttgggagg gtgttggttg tgtggagtta gtaaattaat tattaatttt taagtgaggt 15660 ttggattagg ggagggagtg gtggttagag ttgagtttgt gaggtgagtg taaagttttt 15720 attggggtta ggagttattt atgtgttaat gaattgggtg tgtgaaggtg ggttttgtta 15780 tggtittttg ggtittttta gaagittttg ittgtigggi titttaagit igtattttgt 15840 15900 ttggttaggt aggttgtgtt atagtgttgt ttttggggaga gtttgaatat taatgagttg 15960 ttttgggttt tagtggtttg ttttttatag gagagtgttt tgtgtttggg taagtttttt 16020 tgattaattt tittgtggta tittttttt ttagtttatg gtggagttgg tatgtagggg 16080 16140 gttaaaagtt ttggtttgtt ttggtttttt ggttgtgagg agaaaatgtt gattaaagtg tttaagggga aggtaatata tgtatatttg gttttgggtt gaaggaggtt gattggagat 16200 ggtttttgag ttatttgttt tgatttgttt tttatatttt tgggaatgtg gtggtggtgg 16260 16320 tggttttggt ttgtatgatt tgtttggtgg agtgttgtgt tgttgggttg ggagggtggt ggggaggagg agagatgagg gggtgggagg tgaattttggg ttgtgttta agaggtttgg 16380 agttgtagat tagttattgt ttggttttgt gtttttgggt gtgtttggga attgggaggg 16440 taggtgttgg ttttgtttag ttgggttttt tggtttttgg tgtgggtgtt tttatttta 16500 16560 ttttttgtgtg tttttggtgt ggttggtttg atttttgggg atttgtgtag ttgagattta 16620 atttttttt gatgaggtgt tgttttttt ttatgttggg ttttaaaata aaattttaga 16680 16740 ggttttgggt ggtggagtta agttaataga gttggtggat ggatttggtg ttggttttgt 16800 ggagggtgtt aggttgttat ttttttggggt ttggatgggg ttggtggggg tgtggagttt 16860 tggagttttt gtgtttttt aggttttata gttattgagt ggttttgtgg agttgtttga 16920 ggttgttggg ttagtggttt tttggagggt gtgggggtg gggaggttgt gtggtgttgt 16980 tgatttggtg aattttgttg tgggagtttg ggagggttgt gagtttggtt tggtaaagtt 17040 tttgtggaaa ttttatgttt tgaaattttt gtggtgttgt agaaggaggg ggagagggga 17100 gtgtgggaag tgtgtggggg tggtttgtat ttgtttttt ttgttgggga gtgggttttg 17160 tggttttttg ggttttatgg gaaagttgga gggtggggat ggttgggttt ttgggtttg 17219 <210> 455 <211> 17219 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 455 tgggtttggg gatttggttg tttttgtttt ttagttttt tatgaggttt ggggggttgt 60 ggaatttatt ttttggtggg gagaggtggg tgtagattgt ttttgtgtgt tttttgtgtt 120 tttttttttt ttttttttg tgatgitgta ggagttttaa aatatggagt ttttatagga 180 attttgttag gttgagtttg tagttttttt gggtttttgt agtgggattt gttgagttgg 240 tggtgttgtg tggttttttt gttttttatg ttttttgggg agttgttgat ttggtggttt 300 tgggtagttt tgtaaaattg tttggtggtt gtagaatttg gggaggtgtg ggggttttgg 360 ggttttgtat ttttgttgat tttgtttggg ttttggaggg tggtagtttg gtgttttttg 420 tggggttggt gttgagtttg tttgttggtt ttgttggttt ggttttgttg tttggggttg 480 540 600 tttigtttgt aagtaagatt ttgtttgtag agtttttgtt ttgtttttga ttlgataagt 660

Page 236

720

780

840

gggggtgggg gtatttgtgt tgaggattgg ggagtttggt tgagtggggt tgatgtttgt

ttitttggtt tttgggtgta tttgggagtg tagagttgag tggtgattaa titgiggtit

900 ttgttttttt agtitagtag tgtagtgttt tgttgagtga attgtgtggg ttagggttgt 960 1020 tttttagttg gttttttttg atttgggatt gaatgtgtat gtgttatttt tttttaagt 1080 attttgatta gtgtttttt tttgtagttg aggagttaga gtgaattggg gtttttaatt 1140 ttttgtgtgt tggttttatt gtgggttgag ggaagagggt gttgtaggga gattggttga 1200 1260 tatagggtgt gattagtttg gtttagtaag tttgagttag gaggagtttg gttggatttg 1320 aggagtttgt ttaagtgtgg gatgtttttt tgtggagagt aggttgttga ggtttgaggt gattigttaa tgtttaagtt tttttagggg tagtgttgta atgtgattig titggttagg 1380 taaggtgtgg gtttgaaagg tttggtgggt ggaggttttt ggaggggttt gggaggttat 1440 1500 1560 ttilgtttgg gagtlaatga tigatttatt ggttttgigt ggttggtgtt ttiltagtta 1620 tttgtttaag ttgaggagtt gttggtgagt agtgtagtag gttaagagag tgggggttgt 1680 tggggaaggg aagttatgtt gttgatggga aggagaggtt attagattag tttttatttg 1740 gtggttttag ttgtgttggg gtaaattttt aggaagttgg gtttgggtga agggagtatt 1800 gggaagtttt atatgtaaat gggttggtag ttggtgatta ggttgtttga ttttatgagt 1860 1920 ttaagtggtg gattattttg gttgtgtaga gggatatgit titgggggtt taggttgttg 1980 aaggagttga gaaggatttt ttttttttt ttgtagaagg taatataaat attttaaatt 2040 2100 aaattgtttt gataattgaa ggttttatat agatatatta ataaggattt tgttttttgt gtatgaatgt atagaaatat ttgttttatt tttatgtaaa tgatattata taaatagatt 2160 ttgtaggttt gggagagggg tgggaggagg aggggtgttg ttattttagt tagggggttg 2220 tgagagggga ggggtgttaa atttgtattt tagggtttgt gttggtttgg gtgtagtggg 2280 gttggtattg gttaggaggt ttgttttgtg ggtagtggtt ttttgttagt gttgttaagt 2340 tggttgtgtt tttaggttgt ttgtagaggt ggattaggga aggagtgaag tgagtttgtg 2400 2460 tagtagagga tatggtgatg ttttgtttaa ttgtaggttt aaaaaattgt tgtttgagta 2520 gtittggtgt ggagagitai ggtttgtgtg ttgagttagg gagtgtgtgt gtttgggtgg 2580 gggtggggt ttttgtttt ttgttttaag gttggaatgt ttggtgttt ttggattgag ggatttggt tttgtgttt ttattttgtt gggttgttt gttttgtgt ttgattaagt gtggttgagt ttgttaggag agtatgatt agtttttagg gttaggtttt tgatttgat 2640 2700 2760 ttttttttt aaatttgatg tttttttgtt tttgttttag attttatatg ggaggggtt 2820 gtgtagttgg gggtgataga ttttaataaa tttttaaaaat aaaaattata tgtatgaaag 2880 aaatattttt ttttttttt tttttttat tgattgatat aaagttttga atgattaaag 2940 ggaaagaggt aagttggggt tgtagggagt aaggttattg agtgttaaaa ttttggggtt 3000 tatagatatg tattttgagt titttatttt tggttatagt tittgtgggtt tagatitttt 3060 tggagtattg gggttttttg ggggtgaagg gagaagtgtt gggaggttgg tggttttgtg 3120 3180 3240 ataagtttqq tttaatgaga gtttgggata aaagtaaatg ttttttatag attttgaaaa 3300 3360 taaaggggaa agagatgtgt ggggttgtgg agaagtggtt gttagtgtaa tggtgttagg ttgaaagtag agtattaaaa ttgtaaaagt tgtgtgggtg ggaggaagtg tgaggtggga 3420 3480 ggtgggagtg tggggagggt gggaggtggg agtgtgggtg ggggaggggt gttgttat qtttttqtqt tatttgttga gttgttggtg ttgggtttgg ttgttggttt ttgtttgttt 3540 3600 ttgtaatagt agaaagtgtg tgattagtag ttagataggt ggggattttg ggtttgtggg 3660 tttttgttgt agtgttgtgt gtatttttat tagagtaggg aggttttttt ttgtgtattt 3720 gtttggtttt tgttggtaaa ataatgtttt tttgggttgg gttttgggtt aggagagttg 3780 gggagggtgg gatggaggtg gggggtgggt gaggtagggt aagttitgta ggttagtttt gttgttggat titttttgga tatggaggag atggggagtg titattggtt tittttagg 3840 3900 tggagtggta aagtttgagt tttgtagttg attttatgtt tttatgtgga ggggggtggg 3960 tggagtattg gtgttgttat gatttatttt tgttttttgt tggaggttag agtagggttg 4020 agggggagat gagtgtgttt ggtttggaga gtgggggtgg atattgggaa ggtttttaaa 4080 ataggittitg tittattigt tittatgaatg attitttag gitagaagti ggattitagg 4140 ggtggtggtt ttttgatttt tgaaaggaga tttgggtttt tagtaggttt tttggttttg 4200 tgttttgttg tttgtagtgg gtgggagatg ggggtggttg aggtttggtt gtttttggtt ttgagttttg gagttttatt ttttttttg tgatttttgt atataatagt aggtagtttt 4260 4320 ttatagtagt atgtgtttag ttgtagggtt tgggagtagg tgtttttgtt tggttggagt 4380 ggtggttttg tgtttttttg gttttagttg tggagttgtg agtggtgtgg gggggtgtgt 4440 ttatggtggt agtagaggga tagggatatt ttattggatt gtaggaaggg tttttttggt 4500 ttatattggg atattgtagg gtttgggtgg ttgtttgggg tgaggaggga ttaggggtga 4560 tgtgtggtta gtttttgttt ggaatagttt tggggttagt ggaggttgtt tggggtggtg 4620

.			47675-4			4600
		gattgtggtg tgtggttttt				4680 4740
		tgtgttggga				4800
		ggtggggttt				4860
		ttgttgttgt				4920
		gttagggagt				4980
		agtttggttg				5040
gtttgttgtg	gttttgtatt	ttttttttgt	ttgagtttgg	ttttggggtt	gtgttaggtg	5100
		ggttgattaa				5160
		ttgtttggag				5220
		tgttgggtgg				5280
		tttgtagttt				5340
ggatgttatg	gtgttgattt	ggttgggggt	agggggtggg	agttttgggg	ttgtgagttg	5400 5460
ggggtgggta	ttagattaga	tagtttggtt	agggtgttt	geettataa	agtttgatat	5520
		gggaatttgt ttttttggaa				5580
		agggtttggt				5640
		ttataggggt				5700
		tgttgatata				5760
		gtgtgatggt				5820
		tttgggttgg				5880
		tattagtaat				5940
		tttggggagt				6000
		ttatttttaa				6060
		ttttgaaaag				6120
		tgtaagtagt				6180
		aaaaaaaatt				6240
		agtgtgttaa				6300 6360
ttttttt	aagattttt	aatgtgggtt ggtataatat	aggatataat	ttagggtgg	agaattagata	6420
		ttttaagaat				6480
		tgaattttt				6540
		attttgtttt				6600
		ggttaggata				6660
		atttttaaat				6720
taaattttag	agtgagttgg	atttttttt	ttttagttgt	ttgtttgtgt	tattgatagg	6780
		aggtgttgtg				6840
		ttgtattata				6900
		ttgtgtggtt				6960
		agagtggttt				7020
		aatgtttagt				7080 7140
		ttattttgtg tagagataga				7200
		tgaggggttg				7260
		tggggtggtg				7320
		tggttggggt				7380
		ttttttttg				7440
aaaatatgtg	tagaaggtgt	tttgttaaat	aagtagttga	ggtgggatgt	ggtgtttggg	7500
		gtttagtgtg				7560
		ttttagaagt				7620
		gtagtgtaga				7680
		aaattgagtt				7740
aattatggag	aggitgitti	tagggttttt	atttaataat	tatttaataa	ttttttaaag	7800
		gttatgttta tttagatgtt				7860 7920
atattttta	tttattatt	tgtttgagtt	ttagagggga	agttagttgt	atttatatt	7920 7980
tagaggatag	ggtagtagat	gttttttaaa	gtgttattgg	ataagtttag	agtttttata	8040
taaaqtqatt	agaaqattat	aagtgtgggt	gtgtttttaa	agaaaggtta	ttttatatta	8100
tgtaaaaata	tattatttgt	atttatttga	gttttatttq	ttttagtatt	aagtgttatt	8160
gttttgagaa	tagtttttga	ggaggattat	tggaagttta	tatatatgtt	ataagtttta	8220
tgatgtggat	tttagtatat	gttataaata	aattttgtat	ataaggttag	aaggttaggg	8280
ttttttaaa	tataggatgt	ttggtttttt	ttttaggtta	gggtggagtt	ggaggtgtgt	8340
gggagaggtt	ttagtgggtt	ttgtagagtt			gttaggttta	8400
			Page 2	238		

8460 aggtttgttt ttagaagggt tagtttgatt gtttagttgt agggtttggt tagtttgagg ttgagtggtt tgttataatt aggagatatt tttatgggaa gggagattgg tggtggaggg 8520 8580 tgtgggttgt atggttttt tttttatgta tttttttgtt tattttttt 8640 tttttattga aattttttt ttgttgagtg ttgggtatag tagtttgatt tttgggttag 8700 8760 tttttgaagg gtttgtggga gggtaggaga ggagggggta ggagaagggt taaattgttg 8820 8880 ttgggttaat aggtgtaatt ttttttttt ttttttgttt tatagtgttt tgggaaaatt 8940 ttatatttta atttttagtg agttatgaat tttttttatt atttatgttt tttaggattt 9000 ttttaataag atatttttga aattttatgg agttgaaaaa tgtattttta ggagatggag 9060 gagaaatttt ttaattttat taqtttattg tggaggtaaq atttttagaa aaggtggggg 9120 9180 ttttttttta gttagttttt tttttggttt ttttgtattt atagtattt tattatttt 9240 9300 ggagttttgt ttttgttgtt taggttggag tgtaatggtg tgattttggt ttattgtaat 9360 ttttgttttt tgggtttaag tgatttttt ggtttagttt tttgaatttt aggattttta 9420 aagttagata aataggtttt titgttagta gittitgggag gitgtaagat titgagaggi tgtaggittt gagittggit titggattit tiaaaagitt tggatgitta tatgigatti 9480 9540 9600 tgaattttga gaaaagtttg tgtttggggg tagagttggg gagatgaggg gaggggatag aaggtggttg ggtgttgggt tagggttttt gtggtttggt ttaattgagt tggaagagtt 9660 tggtatggtt ttatattggt ttaggttagt ttttttgttt agtttgtagt agtagagtgg 9720 tttttttgtt tggaattatg tttagagttt ttttataaat atttagtttt agtttttttg 9780 gttatttttg atttgttttg aataaaagga gttgttttaa aaagaaatgt tgttataata 9840 tataattaga ggttttttt ttagttgtgt ttgtaatttg tatgtgttta atttaataat 9900 ttttaatgtt tggttttaaa atgtttttat aaaaaatagt tttatagtat aatagtttag 9960 10020 tatttttaga aagattagga agaaaaaagt gtgtatttta ttttgtaggt gttggttttg 10080 gaagtgttig tggtttagit tggttgggta ttgtttgtgg gggtattigt ttgtttgttt tttgtattag ttgttataag tagttttgga gtatgaagat ttaattttgt tgaagttttg 10140 10200 ggttttaaat ggtagagatg ttttattttt gttttgagaa gggttgtttt tataattatg 10260 10320 10380 tgatttagta attaatttga gatgtttttg attatttttg gtatggggat attttaggat 10440 attittaaaaa tittitigigi ggattiataa gitattitta tittagatti aigittiaig 10500 gagtttgtat tattttgttt ttaggtagaa agagatattt tattttttt ttagtataaa 10560 10620 aagattttag tgggtagttg aatggggtta ttattggttg tgaagtttgg gtttgtagtt 10680 taattagggt tttttggttt gtttttgagg ttttgtgttt tggggaggtt ggaattttgt 10740 ttttttgttt tttttttt tttgtttgtt tttgttttt ttttgtgtgtt agagttgtgt 10800 tgggtgtgtt ggagaagttt aatatgtgtt aattgaattg aattgttgtg ggtgtaggtt 10860 gtatgttgtt gttaagtatt gattagtatg atgttattga gtggaaattt atggggtgaa 10920 tggtgtaagt taaaagttgt tttttgttaa ggaaaataaa atgtgggaga taatttttta 10980 atgttggggt gaggggtttg ggtagttttt ttaattatta gaggtataga ttgtgaaaat 11040 11100 tttggtgttt ttatgggttg tttttttttt tttttatttt taaataattt ttatataatt 11160 gaaatgtttg gggaatttgg gtgtggagtt taggtggaat ggttattgtt gtttggggtg 11220 gtgttittag gtagttttta atattgaaat gggaaagggt ttttttggga ggaaggggta 11280 aattggggtg ggggtgagta tgggagtata taggttatgt tttgttgggt tttggagggg 11340 atgaggttgg gagagtgtag tgttggtggt aagaggtggt ggtagtggtt gttgttgttg 11400 gggtttgata gttttggttg agtggagtgt gaggtgtttt atggtaattg tggtttttta 11460 ttggtttttt gggtagtgag gggagttttg gtgtgtggtt gggagagttg titttgttgt 11520 ttttattttt ttggttttgg ttttgttggt agtttttgtt gttgttgttg tttaagttgg 11580 tttttggttt gtttaggatg tgtgtttggg ttgggtgtgt gtagttaatt tggtttgagt 11640 tggggagggg aggttggggg atgaggaggg ggggtgttat ttaagtggtt tggggtttgg 11700 atttagagag gttaaaatgt gttgggttgt gtattgatga tggttgggga aatttgggta 11760 aattttttt ggggaattat ttttttgaa attttgttgt ggaggtgttg tagtggaggg 11820 11880 11940 agggtgggtg ggagggagga tgggtggagg gagggggagg aggaagagga gggaattagg 12000 gaggggggat gtgttgggat tgtggtgtgt ggtggtagat ggagtttggg tttttagtgg 12060 taaggtgagg tagagttgtg ttttttgttg aatgtgggtt gagtttggtg gttgtggggg 12120 12180

gggggagttt gtgagttgtt gggtggagag tttaagttgt gttgttgttg tgtagggatg 12240 12300 atttggttaa tatttatata tatttatata tatttagttt gagtgggtgt ttgtggtgaa 12360 ttgttaatat ggtgttgggg tttttgtttg agtgtgggtg gtggtggtag tgtgggagtt gtigagttig gttaagttia gtttagttgt gggagttigg aggattgtat ggggttgttg 12420 ttatttgttt ggaggttttg agtttgtttt gttttgtttt tatttggttt agagtttatt 12480 ttttggtggg gttgattttg agggtagttg gttgttagta gatggtgagg gagttgagtg 12540 12600 12660 gtttttttgg tttggttttt tttttgtttg ttaatgttgt taattttttt tatttttat 12720 ggaaaatttt aaagagttgg attgtaggtt ttttgtttat ttttttattg gggattttag 12780 12840 12900 12960 13020 gttgggggtt tggtgttttt tggtgggtta ggaggagagt agggagtttg tagagtggaa 13080 gtttgtagtt tgtgtgtgtt tgtgtgtggg agtgtggttg ttgttgagtg ttgtgagttg 13140 ggtggagggg ggggaggtgg gttggaagtt gggaagttgg gtttggtgtt agtttgtgag 13200 13260 aaaaattttt agttgttgtt attgttgttt tgttttgttt ttittgggggt tggitgttit 13320 13380 tttaagtgga atgttggtgt gtgtgtgtgt gagggtgtgt ggtgagtgtt ttgggttgag 13440 13500 gtaaggggtt ttgatttggt ttgtttgtta gttaggttag atgttttgtt ttgtaaatgt 13560 13620 gtttagtgta ggttttaagt tatgagtttt taggggtggg tgtagaatgt gtttgtgtgg 13680 13740 gggtagtgtt gtggagggag ggtgggggtg ggtgagattt gggtttttttg ttgggtaatg gggagtttgg tgggtagttt tgatgggtgt gtgaaagttt gtggttggag gaagttggtt 13800 ttatttggag ggtgtgtggt aaggaggttg taggtgaaga ggaatttgtg tattggggta 13860 13920 agatttttgg ttaaggtggg gagggtgagg tgttgtgggg tttgtgtttg gagttggtgg gtggttgtgt tgtagagttt ttgttaattt gggggtttgt ggtggtggtg atgagtgttt 13980 gttgtttatg gagagagttt tggggtattg tgtgtggagt agggtggttg aagttatgtg 14040 14100 gatggatgag titiggtagtg tgtaggitgt ggttgggtga ggtgtaatti gitgttaatg 14160 aatttttttt agaaagtttg tgatttttag ttagaggttg tgagtgtttg tgtgttaggg 14220 14280 aggagggtta tgtgtattta gaaataaatt ttaaaaaagaa attaatgtgt tttaaatagg 14340 14400 tatttgtata gttttgttgt gtttagatta gatagtttgg ggttttagtt gtgtttttt ttttttttt tgttttgaga agatgttaga ggaggggtag tgtggtattt ggttttaggg 14460 gtagtttttt ggagaaagat ttttaaaaatg gtttgggagt aaagattagg aggaaatggt 14520 14580 tattttttgt ggtattggaa atggatattg tgggttgaaa ttaattttta tgaagtgttg 14640 ggtttggttt tgttaataga attgtttgtg tggaaggtat tttaattgtt agttttaaag 14700 14760 tgatttgtta tttggtgtgg gttttgtagt gttggttttt gtgtttattt tgggtagggt 14820 tttagtgtgt agagtggagt gggggggaa ggtgatgatt aatatgttat ttaggtttaa 14880 tttgaggtig gittitagig igigggtata tattgttatg tatattaatt gttiiggggt 14940 gtttagggga gtgtgtgggt tttgggtagt aggtgtttgg ttggtaagtt gtggttgggg 15000 tttggttggt tttagtgttg ttttttgagg tgttgttatt agtaggtgat tgagagttaa ttaggaagtg ttttttggat taatgggttg tatagtttat tagtgatttt ttttagtttt 15060 15120 ttgtagggtt gttttggttt ttgtttttta tataggttgg ggttttgttg tttaggttgt 15180 15240 taattitigtg gggtggtgtg tigtgtgtgg tgittigagg tittgigtagi itgittiti 15300 15360 gttgtttttt tttgtttttt gtgtttattt tttgtttttt aagtatgatg tttgtgtttt 15420 ttgtttagtt taggattaga taagataaaa ataggattgt ttagtgtgtg gagttgtgat 15480 tgtgttttgg tagttgggtt ggtgggagtg tggggggttg gagttggaga ggatttgtgg 15540 tgtgtttgga gtggttagtg tttgtgggtt ttttattttt attttgtagg tattgttatg 15600 tittttgggt titgtttgtt gtgaattgtg tgggttgggg gatttgggta gggtttttgt 15660 gtttttgtgg gtgttgttgg tgtgttggtg atagattggt ttagataggt atgtaggttt 15720 ttttttggtt gaaggattgg aggggggga ggtgtggaga tggtagtaga ttttgtgagt 15780 tgtgagtgag tgagttagtt tttgggttta ggagttgggt ggagggaagg ttgtggggt 15840 tittittaat titttaaagg tigtggtggg gtagtgtaat agggaaaggg gggtaaagag 15900 tttagtggaa atttttggag gtagagtagt ttgtagtggg gaggagttgt gagtttgggt 15960

```
ttagggtttt ttttttttt atgtgtgtat ggttatattt tggtgtattg ggtttgattt
                                            16020
ttttataaat taaatgtagt tgttagatga tttagtttga ttaggtattt tttagttggg
                                            16080
16140
tagatttaat gtttttaaag agaatttatg tgggtgttta aggatgggaa ggtttgtata
                                            16200
tagttgtagt tgggtggggt ttttgattat gattgttgta gattaaggat ttgagtttga
                                            16260
aatgttttgt tagtatgtat aggtatgtat tgaagagagt aaagtggttt ttgagttgtt
                                            16320
tttatataaa tagatatatt tttaattagg aatttgtgag gagttagata tgtgtaagga
                                            16380
                                            16440
16500
16560
16620
gattttttgt ttatatttaa attgtaaatt tatattggtt tggtttggga aagagttata
                                            16680
ttataggtaa agtaaaaaga atggaagtag tatgaatgtt tagattaaga tgtgtgtttg
                                            16740
aatgatatgt gitgagataa attaagatat ttgggttitg ttgtttaaat ggaataagag
                                            16800
atatataaga gataaagaat tggttaaggg gaatgtaaat atgggtatgt aaatatagag
                                            16860
atgtatagtg atattttgag agaaaaattt tagattttgt tgagttggaa attggggtag
                                            16920
16980
ggaaatataa aaagtattta tatgtatata tttatgttta gatatatagg ttgaatgata
                                            17040
aatatttttt aatgtttgat gaagattttt ttgttgagtg agtgagattg atttgggtat
                                            17100
17160
17219
```

<210> 456 <211> 2264 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 456

gattagtttg	gttaatatgg	taaaattttg	tttttattaa	aaatataaaa	attagttggg	60
tatggtggtg	tgtgtttgta	attttagtta	tttgggaggt	tgaagtagga	gaattgtgtg	120
aatttaggag	gtgtaggttg	tagtgggtta	gagattgtgt	tattgttttt	tagtttgggt	180
gatttttagg	ttaaattgtg	tttgatataa	aagtttatat	tgatatagat	tttttgatat	240
aaaagtttat	ttttttttga	taggtttgat	tgatttttt	ttttataaag	ataaaagttg	300
ttttaatatt	taagaggaat	tatattgtgg	tgaaaggggt	gttatgaatt	ttgggtttta	360
		tgtgatattg				420
gggttattat	aatttttta	gaagtagttt	taatttttaa	agataagatt	aaaaatatta	480
atagtgtttg	agtttttgga	attgaattag	tattggagtt	ttgtttggtt	gtttttttt	540
		tttggaggga				600
ttagggatta	attagaagtt	tggtgagtag	ttagtaatat	aatttttggg	tatttttta	660
		tttattttgt				720
tatttgtgtt	tttgttagtt	ttttttggga	ttttattggt	gttggtagtt	tttgggtttt	780
tgggtatagt	ggttgtttta	tttgattttt	ttgtttttt	atttttgttg	gagggtgatt	840
tgtgggtatt	gtttattatg	gataggattg	gaggggagag	gagattgtgg	agatgtttga	900
ggtagaagtt	tggaaatttg	agttgtatag	gttaggattt	tattttttgt	tgttgtgtag	960
tgatgatatt	atttttattg	tttttttgag	gggttatttt	gaggtgtgtg	tagaggatta	1020
gaggatttat	tttaattttg	gtttggtgat	agtgggaagt	gggaaaattg	gatgtaaaga	1080
		ttgttaggaa				1140
ttattaaata	atttttttt	ttttgtttgt	ttaaaaatgt	aatgttagtt	aatttttttg	1200
		tgggggattg				1260
gttgtggaat	gaggtttttt	gggattggta	aatttttagg	taaggattta	attttgtata	1320
ttttaattgg	tttgaaattg	tgggtttgtg	tgtatataga	attgttagta	tttttttt	1380
attttgtaag	tattttaata	ataaaaagtt	atatagtttg	agtagaattt	atttaattta	1440
tttatttatt	tataattatt	gattgtttat	tttgatttag	aaatagtgtt	agtattaggg	1500
aataaaatat	atatagtttt	tatttaatta	aatgattttt	tttagtttgt	tagtattgaa	1560
gattgaggtt	tgtttttata	agtttgatat	ttttttatta	gtttggttaa	ttttattaaa	1620
attaagagga	aagtttaaag	agaggaaggt	gttttttttg	aatgttttat	tttaatgaat	1680
tagtttatgt	attgggagga	tgaagtggtg	aggatatttt	tgttttaaaa	tttttttt	1740
tttttttatt	gagatatgag	ggggagggtg	ttttatttat	ttgggtatga	ttaggttttt	1800
gtatttatta	tatatttaat	ttatgtgtgt	tgaaagaatg	gatttggaaa	tgtaggtgtg	1860
			Page 2	241		

47675-47.txt tgttatattt attitttigt tittatgtig titggatgaa ttattgtatt tittgttita 1920 1980 ggagttttta aaatttttgg ggaaggagtg tattttggga ggtgtgtata ggtgggtttg tttgtttttt tttatttgta taatgggggt ttataaggtg ttgttttat gttttgagag 2040 2100 2160 gagttagggg gtggggtgtg ggggtgtggt gatgtgtgat gttggatttt ggaagtgatg tgtttgtggg gaaaaggtag ggagggggtg gtgtttttag ttggtttggg gggtgtgttg 2220 tttggagatg gaaagtttgg gagtttgagt aggtttggtt gtag 2264 <210> 457 <211> 2264 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 457 ttgtagttga gtttgtttgg gtttttaaat tttttgtttt tgggtaatgt attttttaaa 60 ttggttgggg atattatttt ttttttgttt ttttttatg agtgtgttat ttttgggatt 120 180 ttttgtggat tagtgtaggt ggattttgtt gtgttgagat atgttttttg gggtatgggg 240 atagtgtttt gtgggttttt attatgtagg tggaaaggga taaataggtt tatttgtatg 300 tgttttttga agtgtgtttt ttttttaaag gttttgggag tttttgggat aggaaatatg 360 420 gtaatttgtt taggtagtgt agaaataaag agataaatgt aatgtgtatt tatattttta agtttatttt tttagtatgt ataaattaaa tatgtaatag gtgtggggat ttagttatat 480 ttaggtgaat aaaatgtttt tttttttgta ttttaatgag ggaagagaag aaaattttaa 540 aatagaaata tttttattat tttattttt tagtatgtga attagtttat taaagtgaaa 600 660 aaattgatag aaaagtgtta gatttgtaaa aataaatttt aatttttagt attggtgaat 720 tgaaaaaaat tatttaattg ggtagaaatt atgtgtgttt tgttttttgg tattagtatt gtttttaaat tgaagtaggt agttaatagt tgtggatgaa taaatgaatt ggataaattt 780 840 tgtttgagtt atatgatttt tigttgttaa ggtgtttgtg gaatggaggg gaaatgttag 900 taattttatg tatatatagg titgtggttt tgggttagtt gaaatatata aggttgagtt 960 tttgtttgaa agtttattag ttttggggag ttttatttta tgatattgtt atataatgga 1020 attgagtttt tttttagttt tttaatttta ttttgagggg ttaatgaagg gattaattga 1080 1140 ttataagtgt tggtttttta gtgaggagga tttatagttt gagtttttta tgtttaattt 1200 ttttgttttt tattgttgtt aaattaaagt taaaatgagt tttttagttt tttatgtgtg 1260 ttttaaaatg atttttagg agagtggtag gggtgatgtt attgttgtgt gatgatagga agtaagattt tggtttgtgt agtttgggt tttgagttt tgttttaggt atttttgtga 1320 1380 ttttttttt tttttaattt tatttgtgat ggatgatgtt tatgagttgt tttttgataa 1440 aggtggagag ataggggagt tggatgagat ggttgttgtg tttgggggatt tgggggttat 1500 tgatattgat ggaattttag aggaaattga tggagatgta gatgtggatt tgaaagaagt 1560 tgtagtggag gaaggtgagg taggaagaga tgtattgatg aggttgaagg aatatttaga 1620 gattgtgtta ttggttgttt gttgggtttt tggttagttt ttaataagtt atgagaattt 1680 gaatttatta gaatttttt tagattgtta attttgaggg ggaagagagg ggatgattaa 1740 ataaaatttt agtgttggtt tggttttaga ggtttaagta ttgttaatat tittagtttt 1800 gtttttaggg attaaagtta tttttaaggg agttataata gtttgttggt tttggtggtg 1860 aggaaattgg gatttaatgt tatattgaga tgtagtgtaa gagttaaaat ttaggatttg tagtatttt tttattgtaa tatggtttt tttagatgtt aagataattt ttgttttat 1920 1980 2040 2100 aatggtgtga tttttggttt attgtaattt gtgttttttg ggtttatgtg attittttgt 2160 tttagttttt tgagtagtta ggattatagg tgtatattat tatgtttagt taatttttgt 2220 atttttagta gagatggggt tttattatgt tggttaggtt ggtt 2264 <210> 458 <211> 3104 <212> DNA <213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 458

```
60
gtgggtgttg ttgagtatgg ggaggtgttg aaatagtttt ggtgtgttga tttaaqtttt
gattggtaga gttatttggt gattgatagg gggtttttat ggtgtttgtg ttgttaattt
                                                                 120
gtttatttta atagtggagt tagtttgttt gttggtgtgt ttgagttgag ttgagtttga
                                                                 180
240
ttattgttgt tatttggtag tgtgttttgt tgttttaatt tgttttatta ataagtgttt
                                                                 300
ggtatattta gttaggtttg tgggtatttg ttgtgtgttt tgttttgggt ttagtgtttt
                                                                 360
tgttgttgtt ggtattgttt tgatgtttta gttgtttatt ttgaatttta gtttttagta
                                                                 420
agtggttggg gtatgtgaga ttttggaaga gagtggtgat gtggagtgtt tgggttgttt
                                                                 480
tttttggttg ttgtttgtgg tttttgtggt ttgtgaggtt tttaataaga atgagttggt
                                                                 540
gttatgtgta tgagttattg tggtttttta tggtggtaat tattgtgagt tttattatat
                                                                 600
tttggaaaat tataagttta ttaaggagtt gtatgttaag ttgtaggtgt tgtggtttga
                                                                 660
                                                                 720
agtatattat taggaggttg agaagttgtg tggaagattt ttgggatttg tggataagta
ttgagtaagg aagaagtttt tgttgttgtg tattatttgg gatggtgaat agaagatata
                                                                 780
                                                                 840
ttgttttaag gagtgtatgt ggtatttgtt atgtgagtgg tatttgtagg atttatattt
taattttagt aaaaaatgtg agtttgttta ggtaattgga ttgattttta tgtaggtggg
                                                                 900
                                                                 960
taattggttt aaaaattgtt gataaaggga ttgagtggtt gtagttaaga ataggttggt
atttagaggt ttttgtgttt tgagtgtatt ggggaggagg tgggtggagg tatttttggt
                                                                1020
1080
ggttaagagt tttgtgtttt gggtttttgg ttgggagttt ttttgttggt tttgttttt
                                                                1140
tatttgttgg ttttttatgt ttgtgggtag ttgtagtagt tggttttggt tattaaatta
                                                                1200
aggttttatt gggatggaga ggggaagaga aataaaaaat taaaatttta taaatagtta
                                                                1260
gggattttaa gatttaaagt taatttttgt tagtttgggt ataggttttt attattaatt
                                                                1320
gaagtttggt ttattagtaa tgtgttggtt ttatgttaat tattattttt aaagtttagg
                                                                1380
tatatttttt tttaatgttt tgaaaatagt ttttaatgga tttttgagaa atgggaagtt
                                                                1440
gagtttttt ttttttatgt gttgtttgtt atttttgtt taaaatagta aattagtttg tgggttgagg ttttttgtt tttggagtgt ggattttgat tagttaaata ttttgtggaa
                                                                1500
                                                                1560
gagittggit ttattitta ggtttaaatg tttttataa tttttttgt ttttaggttg
                                                                1620
ggttgatttg atttaatgtg attgtgggag tatttgttta ggtgtaagtt ttaggtagat
                                                                1680
1740
1800
tgtaagttta gtatataaaa gatttgggag ttgtggtgtt gagaaagggt gtgaattatg
                                                                1860
gtggggtata atagtaggga tttgtggagg ggtggttgtg gatttttgtt tgatttttgt
                                                                1920
tgttttgttg agtaattttt gttttaattg ttggggtttt tggaagaatt tttagttgtt
                                                                1980
gggttggagg gatgtaggag gtggtggggg tgggtgatgg gtggttgtgt tatgagttgt
                                                                2040
gatttgtgtt ttttttttt tttgtagatt ttagtagtag gttttgttat agggttttgg
                                                                2100
gtgggtatta tgggtggagg gtgatggtat gttagaggtg ttgggtgttg ttattagttt
                                                                2160
ggilgttagt ttattlagta aggtggitat ittagttatt ttlattatgi ttagtgatag
                                                                2220
tgagtgtgat atttgagttg tttatttagg atgtttagaa gtagatttta gtgtaaaaat
                                                                2280
gagaaaaata aaatgaaaga ggggaagaag atgagagatt tgtaaattta gtgttataga
                                                                2340
agttaggtga ttagggattt gtgggtttgg gttgttgttt tttgttttat tttgtggttg
                                                                2400
gtttggtttt attggtgttt tttggttgtg attatgggaa ttagtgtgag gtttgattta
                                                                2460
gtattatgtt tittitgttt tgtttttttt taaggatttt gttgtaaagt tittttggaa
                                                                2520
tttgaattgt aagttgagtg tttgtttaga tttttttatg ggtattttat gttgaaagga
                                                                2580
tgtigttata taigtataai tttigttita aagttttti tiaataaaat ataiataigt
                                                                2640
tgtttattta tttatttaag agattgttat ggtaggtttt tttgtagttt ggggaatttg ttgttttaa atatgtaggt tggtggtgat gggttttgtg tggagaagtt aaataataa
                                                                2700
                                                                2760
ataatttagt gggtaatttt titaattaag ggagttgttt ttagattttt tttttttta
                                                                2820
ttattattaa tattattitt titattaggi algiagggat titlgagtaa atggtittig
                                                                2880
gaaggtttta tttatatatt ttttgttttt tttggtgtttt ttttggtatat gttttaaata
                                                                2940
3000
3060
tatatttaag gttagaaatt ggtaatatgt gagtgttttt ttta
                                                                3104
```

<210> 459

<211> 3104

<212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 459

```
60
120
                                                               180
240
taggaagtat taaagaaggt aaaagatata taggtaagat tttttggaga ttatttgttt
aagggttttt gtatgtttgg tgaagggaat gatattaata ataataagaa gaaaaggaat ttgagagtag tttttttaat taagaaggtt gtttattagg ttgttttatt gtttggtttt
                                                               300
                                                               360
tttatataga atttattatt attagtttgt atgtttagaa atagtaagtt ttttaagtta
                                                               420
tagagaaatt tattatggtg gttttttaaa taagtaaata aatagtatat atatgttttg
                                                               480
ttaaaaaaaa attttaaagt gaaagttata tatatgtaat agtgittttt tgatgtgaaa
                                                               540
tatttatggg agaatttggg taggtgttta gtttgtagtt tgggttttga agagattttg
                                                               600
tagtaaaatt tttaggaaaa agtaaagtaa gaagaatgtg gtgttgggtt aggttttatg
                                                               660
720
                                                               780
tgggaaatgg taatttgagt ttgtgggttt ttggttattt ggtttttgtg gtgttggatt
tgtaggtttt ttattttttt ttttttttt attttgtttt ttttgttttt atattggaat
                                                               840
ttgtttttga gtattttgga tgggtaattt agatgttgta tttgttgttg ttggatgtga
                                                               900
                                                               960
tggagatggt tgaagtggtt gttttgttgg atagattggt ggttgggttg gtggtgatgt
ttagtatttt tggtgtgttg ttgttttttg tttgtagtgt ttgtttggaa ttttgtgata
                                                              1020
ggatttgttg ttggagttta tggggaagaa agggaatatg ggttatagtt tgtaatatag
                                                              1080
ttgtttgttg tttgttttta ttattttttg tgttttttta gtttggtggt tagaggtttt
                                                              1140
tttgaagatt ttagtagtta aggtgaggat tätttggtaa ggtgatagag gttgggtagg
                                                              1200
agtttgtggt tgtttttttg tgggttttta ttgttgtgtt ttattatgat ttgtgttttt
                                                              1260
1320
                                                              1380
ttgtgtattt ttgggagatt tataggattg ttaggaaata aatgaagtgt gggtgataag
gatagattgg ttttagggat atgggatatt atttttaatg gtgtgtttgt ttggggttta
                                                              1440
tgtttgagta agtgtttttg tgattgtgtt ggattgggtt ggtttgattt aaaggtaaaa
                                                              1500
aggattgtaa ggagtatttg ggtttggggg atgaggttgg gtttttttgt aaaatgtttg gttaattgag atttatattt tgggaaatga aaagttttgg tttatggatt agtttgttgt
                                                              1560
                                                              1620
1680
                                                              1740
gataattaat atgaaattga tatattgtta ataagttagg ttttgattaa tagtaggagt
                                                              1800
ttgtgtttag gttgataaga attagttttg ggttttgggg tttttaattg tttgtaggat
                                                              1860
tttaattttt tattttttt ttttttttg ttttagtgaa gttttggttt ggtgattggg
                                                              1920
attagttgtt gtagttgttt gtaggtgtgg ggagttagtg ggtggggaag tagagttggt
                                                              1980
aagggaattt ttggttagga gtttagaatg tagggttttt aatttaagat agattgtgtt
                                                              2040
tttaattttt gttgaattgg agttgttagg gattgggtaa gggtgttäga ggtgttttta
                                                              2100
tttgtttttt ttttggtgtg tttaaagtgt ggaggttttt aggtattgat ttgtttttgg
                                                              2160
ttgtagttgt ttggtttttt tgttggtggt tittgaatta gitgtttatt tgtgtagggg
                                                              2220
ttagtttggt tgtttgggtg agtttatgtt ttttgttggg gttagggtat ggattttgta
                                                              2280
2340
2400
ttaggggttt tttatgtagt tttttagttt tttggtagtg tgttttaagt tataqtqttt
                                                              2460
gtagtttggt gtgtgatttt ttggtgaatt tgtggttttt taggatatga tagagtttgt
                                                              2520
ggtagttgit attgtgaaag gttatgatgg tttgtgtgtg tagtattgat ttatitttgt
                                                              2580
tgagggtttt gtaggttgta ggggttatgg gtagtgatta gaggaagtga tttaggtgtt
                                                              2640
ttatattgtt gtttttttt agggttttat atattttggt tatttgttgg gggttgaaat
                                                              2700
ttaagatggg tagttggaat attgaggtag tgttggtggt ggtgagggta ttgagtttgg
                                                              2760
agtgggatat gtagtagatg tttgtgggtt tggttgagtg tgttaggtqt ttgttqatqa
                                                              2820
ggtggattgg ggtagtggga tatattattg ggtggtggtg gtggtttaat ggttgggagt
                                                              2880
ggatgatttt gattggagga ggtgttggtt ttgtggtttg gggtttgggt ttggtttggt
                                                              2940
ttaggtatgt tggtaggtga gttggttttg ttattggggt gggtggattg gtggtgtggg
                                                              3000
tgttatggag attttttgtt agttattggg tggttttgtt aattaaagtt tgaattagta
                                                              3060
tgttaggatt attttagtat ttttttgtgt ttgatagtgt ttgt
                                                              3104
```

<210> 460

<211> 2493

<212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 460

```
attggtatga ttagagtaga aggagggtat tttaattttt agttttattt attgttttgt
                                                          60
aagaattagg aaaatgaatt tttgttggtt ataaaattag ttgtaggtga tgtaatttat
                                                          120
                                                          180
tttatttggt tttttatatt tatagttata taggaataat tttttgaaat ttagttttt
                                                          240
tatttgtaaa atgggatggt aatatgtgtt tttgggagtt agtgagaatt aaaagggata
300
360
ttaaatagtt ttggagttgt ttggtttttt tatttttta atgaagttgt gggtagaaga
                                                          420
480
540
gaaagtttgt ttgtattttg attttatggg gttttaatat atatttttt agttataggg
                                                          600
660
tttttttttt ttttggagag gataggtagg tgggtatggt tataggagaa ttttttgaag
                                                          720
gtgttaattg gtttagagaa agaaaggtgg tttggtaggg agttgtttat tagagattga
                                                          780
                                                          840
gagagtatgg gagaagttga gagggaggag gaaagtgtat gttattttgt gtgtagtttt
gttttaggga aagtatgtgt gagaagtggt ggtaggtggt tgttagttit ggaaataaat
                                                          900
960
aggtttgtat tgtttgattg tgttttttag tttggtttta ggttattgag tttaagtttt
                                                         1020
tgttatagtt ttagggttga ggttgttttt aaagagtttt gtaattgttt tttatttgtg
                                                         1080
tittattiaa ataitaaggt iggigtaggt ggataittit itattiitt titttaggi
                                                         1140
1200
gaggtttgtg tgggtttgtg gggttaagag gtaaaggtgg gtggtggatg tgggttagtg
                                                         1260
ggagtttgga ggggttgata ttgtttgttt tattgtaagt ttttggagga agagttttgt
                                                         1320
tgtgtttgag agtgagtgtg ggtaggtgta attatttggg gttggggttt tgggggtttt
                                                         1380
gtgtagtttt ttttttttt agggatattg tttagttgtg ttttgtgttt tgttgattgt
                                                         1440
                                                         1500
gggttatttg tgttgtgttt ttgttttagg tgtttggtta gagaaagggt ggtaagatgg
                                                         1560
ggtagtgtgt gtgtgtgtgt gggtaagtgt atgtgagtgt atatttatgt gagtgtatgt
gtgtttgtgt ttgtgtgtgt ttaggggaat tatagggagt atttttattt taagttttta
                                                         1620
                                                         1680
gaggattgtt tgaagttgtt agatagaaat ttttttagaa tgtaagtttt gggggggagg
                                                         1740
gagitttigtt tgatggtigt tgtatittta gtgtttaltg aagtattggg gatatattag
                                                         1800
atgtttaata aatagttgtt gagttaatta atggatttta ggaatggagg tagattggtt
                                                         1860
ttttttggaat tggagaaagg ataaggttat attttattgt tttttttgtt tttggtatta
                                                         1920
gttttggtgt ttttggtaat gttaattttt tttatattta gtttgtgtta agttttttt
                                                         1980
                                                         2040
tttgtttgtg tttatatttt ttttttttg tttttgtttt ttgttggttt ttgtgtgtaa
gtattttagt agttagagtg agaggaagat gaaagaagta gaattttgga aatagagagt
                                                         2100
tattagggtg gttttttttt tttggaagga tatggaaaga tggggtgaga ttggtgtttt
                                                         2160
tttttagttt tttttttgg gaattgggat tttgagtttt agtttttta ttttgaaata
                                                         2220
2280
tttggagtat atgataggtg ttatagaaat gittgittig ttiittgatt agtatttaat
                                                         2340
agtttgggag tgttttaggt gtggttgagg gtggttatgg tttgataatt attattagaa
                                                         2400
tatttttttt ttttttataa aatgttttga ggagaattta atggttgttg aaaattaagg
                                                         2460
taagttttat ttttaaaata tttaggagtt aat
                                                         2493
<210> 461
```

```
<211> 2493
```

<212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 461

attgatttt	gaatgtttta	gaaatgaagt	ttgttttaat	ttttgatagt	tattaaattt	60		
tttttaaggt	attttgtgaa	aaaaggaggg	gtgttttggt	ggtggttatt	aaattataat	120		
		gtatttttag				180		
aatgtttttg	tagtatttat	tatgtgtttt	agaattttt	agttttttgt	ttgattttt	240		
gtaataattt	tgtgaggtag	gtggaatagt	tgttatttta	aagtgaggaa	attgaagttt	300		
aaagttttaa	tttttaaagg	gaggagttga	agaagagtgt	tagttttatt	ttatttttt	360		
D 045								

420

900

960

gtgttttttt agaaggaaga ggttattttg gtagtttttt atttttagaa ttttgttttt

```
tttgtttttt ttttattttg attgttgggg tgtttatata taggggttag taggaaatag
                                                                   480
                                                                   540
agataaaggg gagaaggtgt aaatatgagt agggaggaaa atttggtata agttggatgt
gagaaggatt ggtgttgttg gggatgttag ggttggtatt aagaatagag gagatggtga
                                                                   600
aatgtggttt tgttttttt ttagttttag aagggttggt ttgtttttat ttttagagtt
                                                                   660
tgttgattaa tttaatagtt gtttattaag tatttaatgt gtttttagta ttttaatggg
                                                                   720
780
ggagttttta tttagtggtt ttaggtagtt ttttggaggt ttagaatgag ggtgtttttt
                                                                   840
gtggtttttt tggatatgta taagtgtaga tatatatgtg tttatataag tgtgtattta
                                                                   900
tatgtatttg tttgtgtgtg tatatgtatt gttttgtttt gttgttttt ttttagttaa
                                                                   960
gtatttgaag tagaggtgta gtgtggatga ttttgaatat gtgtgtgagg agtaggttaa
                                                                  1020
ttttgaggta gttattagtg ttttaaggtt tgtgtagttg gtggggtgtg gggtgtagtt gggtggtgtt tttgggaggg aaggaggttg tgtggagttt ttggagtttt agttttgggt
                                                                  1080
                                                                  1140
1200
gtggagtagg tggtgttaat ttttttaggt ttttgttggt ttatatttgt tatttgtttt
                                                                  1260
                                                                  1320
attittittt titttatiga tittiggggt tiagtitgga gggagaaaag igggaaggig
                                                                  1380
tttatttgtg ttagttttgg tgtttgggtg agatataggt ggaaaataat tatagggttt
                                                                  1440
tttggaaata gttttggttt tggaattgtg gtagaaattt ggatttggtg gtttgaaatt
                                                                  1500
1560
                                                                  1620
attattattt tttatatatg ttttttttaa ggtgaggttg tgtgtaggat ggtgtatt
                                                                  1680
tttttttttt tttttaattt tttttatgtt tttttaattt ttggtagata atttttatt
                                                                  1740
aggttatttt tttttttttg ggttagttag tatttttgag aagttttttt gtggttatgt
                                                                  1800
ttatttgttt gtttttttta ggagaaagag agagtggtag ggtaggagga gggtttttat
                                                                  1860
ttttatagga tagttggttt agttttgtag agtttttgtg gttgggaggg tgtgtgttag
                                                                  1920
ggttttatgg ggttagggta taggtaggtt ttttaggtag gtgggtttgt tttagtttta
                                                                  1980
                                                                  2040
ttttgtattt tttgtggatt aatgttaata gtaagagatt tatatagggt ttgtttttt
ttttttgtta ggtataagag aattttgtat ttgttttttg tttataattt tgttgaagaa gtggagaggt taagtaattt taaggttgtt tggaaggaga gttgggtttt gtttttgg
                                                                  2100
                                                                  2160
agagtiggag gatattittt tittigtggag tgigaaggga ggatigitti attittigit
                                                                  2220
tgttagtgtt tgtttttggg agttagtgta ttttattitt titaaitttt gttggttitt
                                                                  2280
aggggtatgt attattattt tattttatgg gtgaggagat tgagttttag agagttgttt
                                                                  2340
ttgtatagtt gtaaatatgg gaggttgaat aggatgggtt atattatttg taattagttt
                                                                  2400
tatggttaat aggaatttat ttttttggtt tttgtaaagt ggtggataag gttgggaatt
                                                                  2460
aggatgtttt ttttttattt tagttatgtt agt
                                                                  2493
<210> 462
<211> 2315
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 462
ttgtatttgg tgtgaggttt tttggttatg gatgttgttg gtgttatatt tgtggtattt gaggtgaatt gtttagatgg aaatggtatt attaggtaat tggtaataga agtttaaagt
                                                                    60
                                                                   120
tttgggtgtt ttaggttaga ggaaggaagg aatgtaaggg ttttgttttt tttaatgtta
                                                                   180
ggagtgtgtg tttatagttt tagataggat aatttattgt aaatttaaag tagaaaatat
                                                                   240
ggtttaattt tatttttgtg gtatttttat agatggtgtt tatttgtttt ggtagtgatg
                                                                   300
attgatattg tgaatgttgt gttggtagtg tgtttaaggg ttttaattga attattttga
                                                                   360
tggagttgaa atttagtttt attttataga agagaaaatt gaggtttaga gagattaggt
                                                                   420
                                                                   480
gttaagtttt atgttaagta tagggaagta aaaataggat atatttaata taaggtggtt
ttaggaatta gtggttagga tatgggaggt gtgttgagtg tagatgggta gatgtaagtt
                                                                   540
gaggtggttt gttggagggt tttggatttt ttagaaaaga ggatattagt tgtttaggga
                                                                   600
660
720
                                                                  780
aaagatatgg ggatggatgg ttgatggata agatggttga tggatagtgt tttagaaggt
                                                                   840
```

tgtaggtttg tttaggttga ggttagggag ggttagggtt tttagggaag gagagtaagt

taggggagtt ttttgtatag aagatttttt atttgaggtt gttttttagg agtttagtta

47675-47.txt ttttgtggag agtttggtgt tgattgtgga agaggtgatg gatgtgtgtt gtgtgttggt gaaggttgag atggaaaagt tittgiagaa taaggagtti ittagtagtt tgaagaaggg tgagagggtt agittttagg attgittgtt tatgatitgg itgggagtti igagggggta gtagggatag ggtgggattt tagggagttt tggataaagt ggggttttaa ttagttttt ttgatagatt tqttqttqtt qttqqqttaa qtttttqttq tttttqtqqt tqtttagttg tttttttttgt aagaggtgag tttttttttt agttgttagt ttataaggga aggaggaggt gagaaatttt ggggtagtat tgtttataga attttttgtg attttaggaa tgttttagta tgtttgatgg ttgatgagtt tataagatat ggttagtatg aatgaggagt taaattttaa

1020

1080 1140

1200

1260

1320 1380

1440

1500

1560

1620 1680 1740

1800

1860

1920 1980

2040 2100

2160

2220

2280

2315

attgtattta aattaaatta aatttaaata gttaagtaat ttttagtttt agttaagatg gggtaatagg tatttttat agttaagaat aaataggatg tgaaataatg gtttttaaga tagtaggtaa taaaaaggaa atataatggg gtaagtttgt tattattata gttattgttt ggagagtttt taggttatga gttatagttg ttggatttt tagatggagg aggttaggtt

gagaatttag ggagattata gtagtttgag tttgttgtgt agaattttag aggagagggt tgtgttgaga aagttttaga gaaggttttt ttttttgaag gaaatgattg aaggttgtag aatatttatt ttaaagtaga gattggtaga ttatagttat gggttaaatt tggtttttgg

atgtttaaaa ggtttatttt ttggtttttt atataaaaaa tttatttttt tttgttttaa agatttgaag ggatggtgtt taggggtagg aatgagtaat attggttttt attggttata ggtagaaatg ttataattta tagggtatta attggaatgt atataaagga tttgttttat

agtaagatti gaaaggatta aattgittat aagtattita attgattitg agaataaagt ttaagaataa gaattttta aatattaata aaaaa <210> 463

<211> 2315 <212> DNA <213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 463

tttttttgttg atgtttaaaa aatttttatt tttgagtttt gtttttagaa ttagttaaga 60 tatttgtgaa tagtttgatt tttttaggtt ttgtttttat gatgtattag ttaggtttag 120 agtaataatt attttgggtt atttattita tgttagtgag gtgagttttt tgtgtgtatt 180 240 ttaitttigt ttttgagtat tgttttttta gatttttaga ataagggaag gtaaattttt 300 tgtgtaaagg gttagagaat aaattttta ggtgtggttg agtgagtaat aaatgggtgt 360 ggttgtgttt agtgagattt tatttgtaaa ataggttgag gattagattt ggtttgtggt 420 tatagtitgt taattittgt tittaggataa atgiittigta gittitagit attittitta 480 gagaggggga ttttttttga ggtttttttg gtgtagtttt tttttttgga gttttatatg 540 600 tttggtagtt gtggtttatg atttagaaat tttttaggta atgattgtgg tgatggtagg 660 tttgttttgt tgtgttttt ttttgttgtt tgttgttttg aaaattattg ttttatattt 720 780 ttagttattt aaatttaatt taatttaaat ataatttaaa atttaatttt ttatttgtat 840 taattatatt ttgtggattt attagttatt gaatatgtta gaatattttt ggaattatag 900 960 tagttaaagg gaaggtttat tttttgtaga agagatagtt gggtggttat gagaatagtg 1020 ggaatttggt ttggtagtag tagtaaattt gttaggagag attggttaga gttttgttt 1080 gtttaaagtt ttttggggtt ttgttttgtt tttgttattt ttttagggtt tttaattaga 1140 ttatgagtaa atagttttgg gaattggttt ttttggtatt tgtttttgat ttagtgggta 1200 agagigiagt titatgitta ggtagittta tittittit tittagattg tigaagagit 1260 tittgittig taaaaatttt titattttgg tttttattag tatatggtgt atgtttatta 1320 ttttttttat agttagtgtt aggtttttta tggggtggtt gaatttttag gggatggttt 1380 taggtaggaa gittittatg taggaggttt tittagitta tttttttt tigaggattt 1440 taattttttt tggttttagt ttaaataagt ttgtgatttt ttaaaatgtt gtttattagt 1500 tattttgttt attagttatt tatttttatg tttttgatgg gttttgttgt tgtaggttag 1560 gttttttatg attagtggat tttgttggtt agtttagttt ttattggtta tqttttatat 1620 aaattttttt tagtttatgt ttgtttaagg tgtttttgtt tgtaaatata ttatgggttg 1680 1740

47675-47.txt tttggaaggt ttaggatttt ttaataggtt attttagttt gtatttgttt atttgtgttt 1800 agtatatttt ttgtgttttg gttattgatt tttggggtta ttttatgttg agtgtttt 1860 gtttttgttt ttttgtgttt ggtatagaat ttgatatttg attttttaa gttttagttt 1920 tttttttttgt aaaatggggt tggattttag ttttattgag atgatttagt taaagttttt 1980 aaatatattg ttagtatagt gtttgtagtg ttggttatta ttgttaaggt aggtgggtat 2040 tatttatgaa ggtgttatag agatggagtt ggattatgtt ttttgttttg gatttgtagt 2100 qqqttqtttt qtttaaaqtt qtqaatatat qtttttqqta ttqgggggag tgqggttttt 2160 gtattttttt tttttttga tttgaggtat ttagggtttt aggtttttgt tgttagttgt 2220 ttgatggtgt tgtttttatt tgaataattt attttaggtg ttataggtgt gatgttaata 2280 atgtttgtgg ttaggagatt ttatgttagg tatag 2315 <210> 464 <211> 2304 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 464 tgattttttt gttttagttt tttgagtagt tagaattata ggtgtgagat atgtatttag 60 120 ttaatttttt gtgtttttta gtagaaatgg ggttttatta tgttggttat gttggttttg aatttttgat tttaagtgat ttatttattt ttgtttttta aagtgttggg attttaggag 180 240 tgattttgta tgtttagtta ttaataaata tttattaagt gtttattttg tttttaagag tgttgggaat ttagtagtga ataaaataaa tattttttt tggggatttt gaatttaagt 300 ttagttaggg attattttat taagagatta agttaatatt taatttttt atagatttag 360 ataggatagt attttaattt tttgttgatt tgttttttta gattttagat tatgggtatt 420 gtagattttt gtatttttg tagaggtagg gttttattat tattagagat tttattatta 480 tttttatgtg aagggaaata gtgtttttt agtagataat gttaaattag ttattagatg 540 tgggttatgg tgggtttgtt gtgattgtta taaatatgtt ttattgaagt ttgttagggg 600 atgitatatt tittttaga aagtaagaaa tagagaaagg titttittig tittggattg 660 ttittttttt agttttaaga aatttttta tagttgttat tttattttgg tttgttttt 720 780 tqttatttag gaagggtttt aaaaaatttt tttgatttat tgtgagtgta aatttttgat 840 atttttgtat ttttttattt attttatttt gattttatat atagtgtgat tttgaaagga 900 agtggtgttt ttggagaggt agaaaaattt tggaaaataa ggtttatgat gttggttatt 960 agtatggggt tgttgtttgt tgtgtgatat gtttaggggt gatgtgtttt ttgaaagaga 1020 tatttggtag agaaggtatg ggtgtgaagt ttggttgtgg gagagttggg agtttgaatg 1080 ttgttggttg ttgtttatag taggttttt ttgagtattg tggggaggta gtgatatttg ttggttttgt agtgatattt ttggtagttgt tttgtttttt agtttggatg tgatagtgt 1140 1200 gtiltggagg atagttagag gaagataggt aagttatatt ggtttittt gaggttatat 1260 1320 ttattqttat ttagataatt ttttttttqt tttqttaatt ttqtttttt tttaaqaatq 1380 tttaaatttt ttatttaagt gatgagaggg aaatatttga gttgtatatt taaggagatg 1440 tgggttttta ttttggtttt gtgatatatt attggtggga ttgtgggtga gttatttaat 1500 tttttttagtt tttagttttt ttatttgtaa agtgggtttt agtatatggt ttaattgagg 1560 taatatatgt tgtttatgtt agttgttgtt tttatgttgg ttttgtttag gttttttat ggtaatagga taggagtttt ttgtttgtgt gttagttttt tattagtgtg ggaatgttgt 1620 1680 1740 1800 ttttgtttat tgtaagtttt gtttttaggg tttatgttat ttttttgttt tagttttta 1860 agtagttggg attataggtg tttgttatta agtttagtta attttttgta tttttagtag 1920 agatggggtt ttattgtttt agttgggatg gttttgattt tttgattttg tgatttgttt 1980 gttttggttt tttaaagtgt tgggattata ggtgtgatta ttgtgtttgg tttgtatttt 2040 ttattaagaa ttagtaatta tgggttgggt gtggtggttt atgtttgtaa ttttagtatt 2100 tagggaggtt aaagtgggtg gattatgagg ttaggtgatt tagattattt tggataatat 2160 ggtgaaattt tgtttttatt aaaaatataa aaaatttggt aggtgtggtg gtgggtgttt 2220 gtagttttag ttatttggga ggttgaggga ggagaatggt gtgaatttgg gaggtggagt 2280 ttgtagtgag ttgagatggt atta 2304

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 465
60
agttttttga gtagttggga ttataggtgt ttgttattat gtttgttaaa ttttttgtat
                                                             120
ttttagtaga gatggggttt tattgtgtta tttaggatgg tttggattgt ttgattttgt
                                                             180
gatttgttta ttttggtttt tttaagtgtt gggattatag gtgtgagtta ttatgtttag
                                                             240
tttgtggttg ttggttttta atagaagata tgggttgggt gtggtagtta tgtttgtaat
                                                             300
tttagtattt tgggaggttg aggtgggtgg attatgaggt taggagattg agattatttt
                                                             360
ggttaaaatg gtgaaatttt gtttttatta aaaatataaa aaattagttg ggtttggtgg
                                                             420
tgggtgtttg tagttttagt tatttgggag gttgaggtag gagaatggtg tgaattttgg
                                                             480
aagtggagtt tgtagtgagt ggagattgtg ttattgtatt ttaqtttgag tgatagagta
                                                             540
agatttagtt ttaaaaaaaa aaaaaaaaaa aaaatagaag atatggatag aaatttttgt
                                                             600
tatattgagt tttgtttttt ttttatagta tttttatgtt agtgaaaaat tgatgtatag
                                                             660
gtagagaatt tttattttgt tgttatgggg agatttaggt agagttggta tgaaagtaat
                                                             720
agttgatatg aataatgtgt gttattttag ttaagttgta tgttggagtt tattttatag
                                                             780
840
ttgtaaggtt agaatggaaa titatattti titgagtgtg tagittaagt gtttttttt
                                                             900
tattgtttga atgaagagtt taaatatttt tgaaagggga atagggttgg tagagtgaga
                                                             960
1020
1080
tittitttga ttgtttttta agatatattt attatgttta ggttggaaaa taggatagtt
                                                            1140
1200
tttgttgtga atggtagtta gtgatattta ggtttttagt ttttttgtag ttgggttttg
                                                            1260
tgtttgtgtt ttttttatta agtgtttttt ttgggaggtg tgttattttt gagtatgtta
                                                            1320
tatagtagat agtagttttg tgttgatggt taatgttata agttttattt tttagagttt
                                                            1380
ttttatttt ttaaaaatat tgttttttt taaaattgta ttatgtgtaa aattaaaata
                                                            1440
agatggatgg ggagatgtag gaatattaga gatttgtatt tatagtaaat tagaagaatt
                                                            1500
ttttaaagtt ttttttgagt gatagtaggt tttttgatta tgatttgagt gaatggtaga
                                                            1560
ttttttttag tagttttttt atttaagaga taggttagga taaagtaata gttgtaaaga
                                                            1620
aattttttag agttgagaga aagatagttt ggggtaggag aaagtttttt tttgtttttt
                                                            1680
attttttagg ggagggtatg gtgttttttg gtagattttg gtgaggtgtg tttgtggtag
                                                            1740
ttatggtaaa tttattatga tttatgtttg atggttgatt taatgttgtt tattgaaagg
                                                            1800
gtatigtttt titttatata gaaatgatgg taaagttttt ggtagtggtg aaattttgtt titataaaag gtgtaaaaat tigtagtgtt tatggtttag ggtitgaggg agtagattaa
                                                            1860
                                                            1920
tgagaaatta aaatattatt ttattigagt ttgtaggaga attgagtgtt gattigattt
                                                            1980
2040
ttgtttattg ttaagttttt agtatttttg ggaataaagt aggtatttag taagtattta
                                                            2100
ttgatggttg ggtatgtggg attatttttg aaattttaat attttgggag gtgaaggtgg
                                                            2160
gtggattatt tgaggttagg agtttgaggt tagtgtggtt aatatggtga aattttgttt
                                                            2220
ttattaaaag atataaaaaa ttagttgggt gtatatttta tatttgtaat tttagttatt
                                                            2280
tgggaggttg aggtaagaga attg
                                                            2304
<210> 466
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 466
gtggaatata ttttttatat agttatatta tttaaaattt attgttttta agtttttatt
                                                              60
120
gtattittta ttgittitta tttttaatti ttgttattgt agttagaatt atttgatata
                                                             180
240
ggttgggagt tttgtttgtt gtgtttgttg ttatttttta gtgtttaaaa ttgtttggta
                                                             300
                                 Page 249
```

		4/6/5-4	/.txt		
tatagtaggt atttaataat					360
atataggaat gagttaggtg					420
aagggttatt ataattatgt					480
tagtaatagt tttattaagg					540
ggtgagagta gtttatttta					600
agagagtgaa agaagggaag	gattattttt	ttttttaaat	tggagttaag	ggagggaggt	660
tagagtaagt ttgggggtgt	aatttagatt	tagtttttgt	ttaattttt	ttgtttttt	720
ttttaggggt ttagagaatt	ataaggtttg	tagaattttt	tagagaagtt	ttattattga	780
ttttttttt ttattttag					840
ttttttttt ataaattttg	ttagttgtta	tgggggtttg	tttttagggt	ataaagttat	900
tgagagattt agagatttag	tttttttgtg	gaattttaa	aatgttttag	tagttttgtt	960
tttagtttgt tgtttggtag	tatttgttag	ttgattttat	gtattgtttt	tttttttgtt	1020
attttggtaa tttgggtttt					1080
tttttgaatt gttatagaga					1140
aattaaaggg ttttaaggtt					1200
ttatatttaa attttaattt					1260
tttttaatgg gtatagattt					1320
gtttagttat tgttaattaa					1380
tttaattttg ttttttgaaa					1440
atagttattt tgttttttta					1500
gttttgttta attgtagagt					1560
tgttggttgt tatgtttatt					1620
atattgtttt tttggtgttt					1680
aaatagggtt atttattttt					1740
ttagtgtgag gtagattttt					1800
agtttgttag tttttgagtt					1860
					1920
gggattttag gggttgtgag					1920
tgtagggaag ggtttgtttt					
gttaattagt gagtggtggg					2040
gaaatgtagg ggtggttttt					2100
gttttggaat ttaggtttgg					2160
ttgttaatat tgttaatgtt					2220
tggagggttt agtttgtgat					2280
ggttggtggt ttgttggtgt					2340
tgtggtattg tttaagtttt	ttgtttttta	tagtggattt	gattgtggtt	taatttttt	2400
tttttgttgt ataatggatt	ggtttgtgtg	tttatgtttt	tttttatgtt	aatttagggt	2460
ggatttgttt					2470
<210> 467					
<211> 2470					
<212> DNA					
<213> Artificial Seque	ence				
<220>					
<223> chemically treat	ed genomic	DNA (Homo s	sapiens)		
<400> 467					
ggatgagttt attttaagtt					60
ataatgggag ggggaggtta	ggttatggtt	agatttatta	taagggatga	agggtttgag	120
taatgttata tgtaggttta	ttagttgtgg	tggtggtggt	ggggagttga	atattagtag	180
gttattggtt aagttatatt	ttttgtgtgg	gggtgggaag	gatatgtggg	gttatggatt	240
gggtttttta tttttaggt					300
atgttggtag ttttgggggg					360
gttttgaggt ggtggtggag					420
tttgtgtttt tttatagttt					480
gttgattggt taaagtgtta					540
ttttttata gagttgtgtt					600
					660
ttggagtttt gaggaggtgt					
ttgatggatt gtgagtaatt					720
tttatattga ttggtttata					780
ggttttgttt ttttttgatt					840
ggggtggtgt tgtatgttat	gttgtttagt			aatgggtgta	900
		Page 2	250		

gtagttggtg	ggagtgggtt	ggattgggtt	ttgtgtaggt	gggtagggta	gttttatggt	960
tagataagat	tatagagttg	ggtaaagatg	aatttagaat	atagtggagg	taggagggta	1020
ggatggttgt	taggtatatg	aaagagtatt	gagtggtaga	aatgaaatgt	ttttagaggg	1080
tagggttgaa	ttgtggttag	agttaaaaag	gggaggaatt	tggttttgta	ttgattggtg	1140
		ataggggttt				1200
ttattggaag	ttggaatatt	tataagtagg	ggttaagata	aggtagggtt	gagttagggt	1260
ttgggtgtaa	tttggggtat	ttggggaatg	attgggtgtg	tgaaagtgta	aattttaggg	1320
ttttttgatt	gttgtgggaa	tgaataaatt	tttattatga	attggtttat	tttttatggt	1380
aatttaaagg	gtggtgttta	ggaaaaggaa	tggaagaaag	ggtgaggtgg	ggggtttagg	1440
ttgttaagat	gatagaagag	agggtagtgt	ataaggttaa	ttggtaaata	ttgttaggta	1500
ataggttgga	ggtaggattg	ttggggtatt	ttggaggttt	tatagagaga	ttggattttt	1560
gggttttta	gtaattttgt	gttttaggaa	taggtttttg	tggtaattag	tagggtttat	1620
ggggaaaaag	aagggttatg	tgatttaaag	gtatttaggt	tttttaatgt	ttgaggatgg	1680
ggggaagaag	ttaatggtga	ggtttttttg	ggaaattttg	taggttttgt	agttttttaa	1740
gtttttgaaa	aagaggatag	aagagattga	ataaagattg	ggtttgggtt	atgtttttag	1800
gtttgttttg	atttttttt	tttgatttta	gtttagaggg	aaagatggtt	tttttttt	1860
tttgtttttt	tttttttta	ggttattatt	ttaaatatag	agtttggtag	tggggtgagt	1920
tgtttttatt	tttagtaata	tgtggatatg	ggttttgata	tttatggagt	ttttggtgag	1980
gttgttgttg	agtttagaga	aaagaaataa	gaaagggtaa	aatgggtttt	atatgattat	2040
gatgattttt	ttttattatt	ttaagattta	tttatatttt	ggatgatttt	tatttggttt	2100
atttttatgt	ggaaatgtta	agttattatt	tggtttttat	tgatttaaag	attattaaat	2160
gtttattgta	tgttaggtaa	ttttaggtat	tgggagatag	tagtaaatat	aataaataaa	2220
atttttggtt	tgatggattt	taaatttttg	taaagaaaga	tataataaaa	aattaatgga	2280
ataaaagtta	tgtgttagat	ggttttaatt	ataataataa	aaattaaaaa	tgagagataa	2340
taaggagtat	aggagtgggg	ggttgtaatt	ttaaagaggg	tttagggatg	gttttatgga	2400
gaagtatttg	agtaaagatt	taaagatagt	gaattttgag	tagtgtggtt	atatggagga	2460
tgtgttttat		•		•		2470

<210> 468 <211> 2470 <212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 468

tttaaaaagt	tttgtaaatt	aaaagtttgg	gggtaaattt	atttggtagt	aaattttgat	60
ttgaggttat	ttatagttta	tattttgtat	tttttttatt	tagtatgaat	aagtatgtaa	120
gttttattgt	atgtttgatt	ttagtatgtt	tttttagatt	ttttgggggt	gtttatgtat	180
gttggtgggg	gaaagagatt	aatttttaaa	tattattta	aatagttggt	tttattgtgt	240
ttgtttgggt	agtatatata	ttaaaattgg	aatgattttt	gtatagggat	gaaatgtaaa	300
tttgtgaagt	atattgtatt	ttttttagta	tatattattt	ttggtaatat	tttttttt	360
tttttgagag	ggagttttgt	tttgttgttt	aggttggagt	gtagaggtgt	gattttggtt	420
tattgtaagt	tttgttttt	gggtttatat	tatttttta	ttttagtttt	tttagtagtt	480
gggattatag	gtgtgtgtta	ttatgttagg	ttaattttt	gtatttttag	tagaggtggg	540
gttttattgt	gttagttagg	atggttttga	ttttttgatt	ttgtgatttg	tttatttttg	600
ttttttttt	gaagtgttga	gtgttgggat	tataggtgtg	agttattgtg	tttggttttt	660
gtttttttt	tttagattga	ttttattatt	tgtttagtaa	aggagaattt	tttggtagaa	720
tagtttttaa	gaataaggta	aataattaat	tttatatagg	tttttattaa	tgtatagttg	780
ttgattgtga	ttggtttttg	gtaatttgga	ttttataatt	tggataaggg	gataaataat	840
tgtttgtttt	ttattattt	ttttgaattt	gaatagaatt	tttttattt	tatagttttt	900
		ttgagatgga				960
agtggtgtga	ttttggttta	ttgtaaatgt	tgttttttag	gtttaagtta	tttttttgtt	1020
ttagtttttt	aagtagttgg	gattataggt	gtatgttatt	atgtttggtt	aatttttgga	1080
tttttagtag	agatgggggt	tttattatgt	tgattaggtt	ggtttttaat	gtttgatttt	1140
aggtgatttg	tttgttttgg	tattttaaag	tgttgggatt	ataggtgtga	gttattgtgt	1200
ttggtttttt	atagttttt	agttttttaa	aatttgaaaa	attttgtaaa	gatatatttg	1260
ggttaaaggg	tttagataat	ggattgtggt	ttttaagtat	ttatgttata	ggttattgag	1320
aggattgatt	tagttattag	atgtaaaatg	ttgggattag	tgtttggtaa	aggaaaattt	1380
tgtatagttg	taggttttta	ttatatataa	tagtattgtt	aatgaatgtt	attataatat	1440
		gtttatttta				1500
			Dage 1			

47675-47.txt aattgttgat taaagtttgg tittittigt titgttittt tgtgaaaatg tittaatggt 1560 1620 ggtttttttg gttatttttg tttgggtggt gtgtgttttt gttgtttttg tttttgtttt 1680 1740 tgttttggtt tggttagttt tgtggtgtga gggaagggga gtttagtagt tttttgtgtg 1800 gggtttaggt gttggtggta gggtgggttt tttattgtta gtgtgttagt tttgttttta 1860 1920 tttattagtg tgttagtttt gtttttttt atgttgttgt gtgtttgggg gtggggtttg gtgtgtattg tttgtgtatg gtgaggtgtt tgttgattgg ttattggggt ttgggttttt 1980 ttggtggagt gtgttttttt ttagattttt tgttagtagg agttgtgtgg tagatgtggt 2040 gtttttagga gttttgtttg atagaatggt tgggttttgt tggttgttgg tatgttgtga tagagtattt tgtatagttt tttttttaag tttttggtgt tgagtgatgt taataaggtt 2100 2160 2220 ttaggtgggg atgtggttig gagtgaggtt gggtttgggt ttaggtttit ggtgtgtttt 2280 2340 gtttttatta ggtagtgggg tgggggtggg gttgaaggtg ggggtatagt ggtggggtgt 2400 ttggaatttg gtgaggggag gtttgtatag ggggttgggg gggtgtatgg tttggttttg 2460 2470 ggtttggagg <210> 469 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 469 60 tgggttttaa gtgttttgtt gttatgtttt tgtttttgat tttatttta ttttgttatt 120 tggtgggggt agtaggtgtt attgattttt gtagtttttt gttgaggttt tttgttttgg 180 gtggtgatgt ggagtgttt aagggtttgg gtttaggttt agttttgttt taggttgtat 240 tttigtttgg ggaaggagag gtttiggggg tagtggtggt atggttgttt ttgtgtgagg 300 ttttggttga ggttttgttg gtattattta gtgttggaga tttgggggaag aagttgtata 360 420 ttttaaaagt attgtattta ttgtgtggtt tttgttggtg ggaaatttgg ggggaggtgt 480 540 tggtgtgtgt taggttttgt ttttgggtgt gtggtgatgt ggggaagggt ggggttggta 600 660 720 ggttggaata tittgatitg gggttagtig tggttgtggg gttagtaggt tiggaaagti 780 ttgttttttt ggagtggaag tgggaatagt gggggtgtgt attgtttggg tggggataat 840 tggggggatt tgaaaggttt tggaaagggg tttgtgggga gaaatgtgtt tagtgtttgt 900 gtgatttttt gttgttagag tatttttgta aggagatgga gtgaaaggga ttaaatttta 960 gttagtagtt tatttttatg ttgtattttt aagatttgta tagagtaggt atttggtaaa 1020 tgttaaatga atattgtaat agtatttgtt agtgatgttg ttgttgtatgg tgaaagtttg 1080 tagttgtata aagttttttt ttgttaggta ttgattttag tattttatat ttggtaatta 1140 aattgatttt tttaataatt tgtgatgtaa gtatttaagg gttatagttt gttatttgag 1200 ttttttgatt taggtgtgtt tttataggat tttttaaatt ttagaaagtt aagagattat 1260 gagaggttgg gtgtagtggt ttatgtttgt aattttagta ttttgggatg ttgaggtggg 1320 tggattatti gaggttaggt gttgaagatt agtttagtta atatggtgaa atttttgttt 1380 ttattaaaaa tttaaaaatt agttgggtgt ggtggtatgt gtttgtaatt ttagttattt 1440 gggaggttga ggtaggagaa taatttgaat tigggaggta gtgtttgtag tgagttaagg 1500 1560 aagaaagtta agaggttatg agaataaaaa ggttttattt aaatttaaga aagatagtgg 1620 aagatagata attgtttgtt tttttattta gattgtgaaa tttagattgt tggaaattag 1680 ttataattaa tagttgtata ttggtaaaaa tttatgtaaa attagttgtt tgttttgttt 1740 ttggagattg ttttgttaga aggttttttt ttgttaggta agtaataaaa ttaatttaaa 1800 aaaaaaaggt gggggttggg tgtagtggtt tatgtttgta gttttagtat ttggtatttt 1860 gggggggggg tggaggtggg tggattatga ggttaggaga ttgagattat tttggttaat 1920 atagtgaaat tttgttttta ttaaaaatat aaaaaattag tttggtgtgg tagtatatgt 1980 ttgtagtttt agttattggg gaggttgagg taggagaatg gtgtgaattt gggaggtgga 2040 gtttgtagtg agttgagatt gtgtttttgt attttagttt gggtgataga gtaagatttt 2100

47675-47.txt tttttaaaaa aaaaaaaaga atattgttaa aggtggtatg tgttaagaaa aatatagtat 2160 gttttatgaa tttgtatttt atttttgtgt aggggttatt ttaattttgg tatatgtgtt 2220 atttaagtaa gtatagtgaa attaattgtt tgagataata tttgagagtt ggttttttt 2280 ttttattggt atatgtaaat atttttagag agtttggggg aatatgttga aattaaatat 2340 gtagtaaaat ttatatgttt atttatatta agtagaaaga atatagaata tagattataa 2400 atagttttag gttaaaattt gttattaaat gagtttattt ttaaattttt ggtttataga 2460 2470 gttttttgga <210> 470 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 470 60 gtttttgttg agtttgattt ttttatttgt tgtttggttt ttgttttatg ttttagtgtt 120 180 240 ggtttgggat ttgggggttt agagggagtg agtttttgtg tgggtgtttg gtttgtaggt 300 360 tagatagtgg ttttttttat ttttggtttt tgtaggttgt tagtagtttg tgttaggttt 420 tgttggtgtt tttagggttt tttagattgt gtagattttg atatttttgt ttggttttgg 480 gittigggag tigagagtig gitagggtit tgttigtatt titigggtgit tagittiggg titgttitt giggatgtit taattitti ggtigaatgg atggiggigt gigtgtgtt 540 600 tattttggtg gtgttggttt tttttgttgt taaaattaga tttaaatttt tgtatgggat 660 ttgtttttgg gtttttattt tgtgtgttta gtaaatagtg ggtgagttat gaagatgtgt 720 gagttagttg gatttttttt gttaggtgtg gatttgttgt ggttagagaa tttagtttgt 780 gttagtttgg tttgtttgtg aagttatggg ttttattgat gtgatttttt aagatgtggg 840 ggttattatg ggtagaggat attggtttgg agttagatta tgggttttat aagtattaga 900 ttataagtag tgttgttatt gagagttgtt tggaatttgt ttagtatgtt gggtttttta 960 gttagggttt ggtgtatgtg gttgagggtt ttggaagttt tgatggttta ggaggagtag 1020 gtgggtgggg tggtgggtgt tgttggttgg tagagagttt tggtttgatt tagtgtaggt 1080 ttggtgtgtg tagagaataa ttttaagtgt attgatgttt gtgagttttt tttaaatatt 1140 1200 tgttgtttgg gagtgtttgt gttttgggtg atttttggaa ggatgtgggg tttaaatttt 1260 1320 1380 ttttttgggt ttggggtggt gtttttatt tttgttttt gtttttatt tttgttttt 1440 gttggttata ttttttgttt tttggatttt aagtgttttg tgtgttgagg agtttagtgt 1500 tagtggtggt ggttaggaga gatttgggtg ttaggaaaga tgggttgttt gggggatagt 1560 agggagtttg ggggaaatgt aggtgttggg tatagagttg gtattggtgt ttttaqtttt 1620 gttgaagatt gtggttgggt ttggtttgtg ggaggggttt tggtgttgga tttgttttgg 1680 ttttgtgtgg gtggttttgt tgggttttgt aggagtgatg tgtgttaaaa ggtggtggga 1740 aggaggtggg gtagagtgtg tttgggattt tgatttggat gtggttagtt ggagaggtgg 1800 1860 1920 tgtgtttata taatitgttt aggggttggg tagtttgttt tgtttttttg tttgtgtatt 1980 tgtitggagg tttgtgtgtt tgtgaagggg atgtagtgaa attggggttt gtgttaggtt 2040

<210> 471 <211> 2470

gggtgtaggt

2100

2160

2220

2280

2340

2400

2460

2470

agttgggatg gatgttgatg tttggggttg tgatggttgt aggtaggagg tttagggttg

gggggtggtt tggttttgtg ggtgggggtt ggagtgtagt gttgggtagg tatttgggtt

tgtagttttg aagttgggag gtgaggggag agtgattggg gatgagttgg gataaggtga

tataggggtt ttittggagt tggattggtt tttgggattt ggtgtttgtg agaggttgga

gtggttagag tttagtttgt gaggagatgt gggttttgtt tttagtgttg gttgtttttg

ttitgggttt tgagggttgt tgggagggta attttgggaa gaggttgggg tgtggggtgt

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 471
atttgtattt gtgttttgta ttttggtttt tttttggggt tatttttta atggtttttg
                                                       60
gagtttgggg tggagagggg atagtaggag gagggttttt ttggaatttt tgtggggttg
                                                      120
180
                                                      240
                                                      300
tggagttgtg agtttaggtg tttgtttagt gttgtgtttt agtttttgtt tgtggagttg
                                                      360
aattgttttt tggttttggg ttttttattt gtagttgttg tagttttggg tattggtgtt
                                                      420
480
                                                      540
600
tatgggtgtg gggaggggag gtgttgtggg gagtaggtgg ttgtgggtgt tagtgttttt
ttagtttggt gtgtgggaag gtagtgtggg ttattgagtt gtggtggggt taaggttttt
                                                      660
ttttggtgtt ttgtttttt agttggttgt gtttaagttg gggttttggg tgtgttttgt
                                                      720
tttgttttt ttttgttgtt ttttggtgtg tgttgttttt gtagagtttg gtgaggttgt
                                                      780
ttatgtaggg ttgaagtagg tttggtgtta gggttttttt tgtgggttag atttgattgt
                                                      840
gatttttggt agagttgggg atgitggtgt tgattttgtg titgatgttt gtgtitttit
                                                      900
960
gttgttatta gtgttgggtt ttttggtgtg tggggtgttt ggaatttaag gggtagggga
                                                      1020
tgtggttggt ggggaatagg ggtgaggggt ggggaatagg ggtgaggggt gttgttttag
                                                     1080
1140
tggagttatg gttttgtttg gtagaggatt ttgtggagag tttttggggg ttgtttttt
                                                     1200
aattttagtt ggagtttggg ttttatgttt ttttaggggt tatttaggat gtgaatattt
                                                     1260
ttgggtggtg gttagtattt tgttttttt tttggttgtt gtttgtgggt ttgggttttg
                                                      1320
gattttgttt ggtgtttgga aggagtttgt gggtgttggt gtgtttggag ttgttttttg
                                                     1380
tgtgtattag atttgtgtta ggttaggttg aagtttttta ttggttagtg atatttgttg
                                                     1440
ttttgtttgt ttgttttttt taggttattg gggtttttag ggtttttgat tatgtatatt
                                                     1500
aggttttggt taggggattt gatatgttgg gtgagttttg agtggttttt aqtqqtqqtq
                                                     1560
ttgtttatgg tttgatgttt atggggtttg tgatttggtt ttgaattgat gttttttgtt
                                                     1620
1680
ttgggttggt gtagattggg ttttttggtt gtagtgggtt tgtgtttgat ggggagggtt
                                                     1740
1800
ttaaagatga attttatgta gaggtttggg tttagttttg gtaatagaaa aggttggtat tgttggagta ggatgtgtgt gtattattat ttatttggtt ggggaggttg gggtgtttgt
                                                     1860
                                                     1920
ggggagtaga tttgaggttg ggtgtttgga ggtatgagta ggattttggt tggtttttag
                                                     1980
tttttagaat ttagggttag gtggggatgt tagggtttgt gtgatttggg gggttttaga
                                                     2040
ggtgttggtg gggtttggtg tggattatta gtggtttgtg ggagttaggg gtggaggggg
                                                     2100
ttgttgttta gggaagagga ttgggggtttg gagtgggggt gagaatgagg tatgtttttg
                                                     2160
2220
2280
2340
2400
2460
tataatatat
                                                     2470
<210> 472
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 472
aaaattgaat atttgagaat attggattta tatttttgag ggtaataatt tqttaqaqtt
                                                       60
gagtagttgt tttttttagt tatggtatgg atattttaat ttgttatttt ttttattatt
                                                      120
                             Page 254
```

180 ttatttgaat ttgtaaatat tatttagatt ttttttgttt tttattaaag tttattttgt 240 tttgttttaa gttttttatt agtgttttaa agtaagagtt aggtaatttg attaaatata 300 ggtittttaa tatgtgtttt tiggagatag tattitaata gaaagagatg attitgtagg 360 420 tgttattttg atgtagttat attttattgt tttaaagtag attaaaggaa ttggttttat 480 ggtagaataa tggatgttgg ttttatgtat qaaatttttt taagttgtat ttttatagat 540 tattttagtt ttaaaagatt taaagttatt atgggttttt ttgatttttt tattttttg 600 660 gtgttgggta gttgtgttta aggagtgtgt gtatttagta tgagtttatt ttttatgggt 720 gtttttagag gtttggttgg gttgtgtata ttaagtgtag taagtttttg tattaatggt 780 ttttgtggtt gggtggggtg tggttgttta aaggtgttgt ttttttggaa gttttgtttt 840 tattttagtg titgagagtt tgtagttggt tgggaaggtt tttttggttt gtttggtttt 900 tttggggaag aggttaatat ttggtatatg tgatttatgg tagaggggag ttttgggtgt 960 gtagaattgg tigtgtittg tigagagtit titgtgggtg gggagagitt tittattit 1020 ttgtttgttt gagtgtttag agtttagggt tgttgattgt agtatttttt gatttgttgt 1080 attgagggtt tgtggttttt gtgtgtggtt tttattgttg ttggaggtgg ttgtaggtga 1140 attgttgggt tgttagttat gatttgagtt aggtattttt ttgtttttgg gattggggtt 1200 gaaggttaat tatattgtag ttaggttttg tgattggatg gtagtgagag ttgattggtt 1260 gttgttgtga gttttgggtt ttttttttt tittttgtt ttaattttag tgtttaagtt 1320 1380 gagagggagg ggaagttttg attggttaga ttgtttttgg aagttttttt ttttttatta 1440 attattgaag gaggtatgtt tttagtggag ttttttagtt aattataaag tggtggtggt 1500 gtttagttgt gtagttttat tagtgttttt gggttttatt gtttttaatt ttttaagttt 1560 1620 1680 ttttgggtgt ggttttttag tgttattttt taattggttt tttaggttga ttggtttttt 1740 1800 ttgggaggag ttgtaaataa atgatgtttg tgattggttt tgtttgggtt ttggttttta 1860 tggggtgttg ggtggtgtaa ggttgggtgg gggaggaagg aggtggagga tgagtaggag 1920 gggggaggag gagtggggaa gtgtaaggtg gttgtgtaga tagtgttttt tatatagagt 1980 agtitttgat tigggigaat gigggittgi gilgitgilg tigitgilgi igtilgggit 2040 aagtgataaa ggaaggaagg aagtgaggag gagttggttt tgtagttgtt gatagggttt 2100 tgggttgggg taaagtgtgg atattttttg agtgggtatt gagtagagtt gaggggtggg 2160 agggtggttg agttgttgtt gtggatgggg gagggggttt tgagggatgg aagtggttgt 2220 tgggttttta tgtttttggt gaatggggaa tagttgagga gttgttgttt ggggtttgaa 2280 2340 ggtgtaatga ggagaggagt tgttgttatt gttattgttt gtttttgatt gatttgtgat 2400 tttgttgttt tttagtttgt tgggtttttg ttgttagttt gttggatttt gtggtttgtt 2460 ggagttgtag 2470

<210> 473 <211> 2470 <212> DNA

<213> Artificial Sequence

<223> chemically treated genomic DNA (Homo sapiens)

<400> 473

ttgtagtttt	ggtaagttgt	gggatttggt	gggttgatgg	taggggtttg	gtgaattaga	60
gggtggtgga	gttgtgagtt	agttagaggt	gggtggtggt	ggtggtggtg	gtttttttt	120
ttattgtgtt	aggagtagtt	gtaggtggtg	gttggattta	gtggttatgg	tggtggtgga	180
ggtagttttt	tttagatttt	aggtagtggt	tttttgattg	ttttttattt	gttggggata	240
			gggttttttt			300
			ggtgtttgtt			360
ttttagttta	gagttttgtt	agtggttgtg	gggttggttt	ttttttgttt	tttttttt	420
tttgttattt	ggtttgggtg	gtggtggtgg	tggtggtggt	ataagtttgt	atttgtttgg	480
-			tttgtgtagt			540
			ttttttttt			600
	_		tgggaattgt	_	_	660
			gagttaatta			720
Down 255						

47675-47.txt 780 840 atgtttaaag agtggaaaat gttgaaggta gttgaatgga aagggtgaat ttgttttgtt 900 tggtggttgg ttggaggaga tatttgataa tggtaatagt ggttaattag agttgttggt 960 ttttatgaag aggtttgaag agttgaggat ggtgaaattt agagatgttg gtgaaattgt 1020 atggttgggt gttgttgttg ttttgtgatt ggttggaaaa ttttgttggg agtgtatttt ttttggtgat tggtgaagag aagggggttt ttgaggatag tttggttagt taggattttt 1080 1140 1200 ttgtggtggt ggttaattgg tttttattgt tgtttaattg taagatttag ttgtagtgtg 1260 attggttttt ggttttggtt ttaggagtgg ggagatgttt gatttgggtt gtggttgatg 1320 atttgatggt ttgtttgtgg ttgtttttaa taatggtgga aattgtatat agggattgtg 1380 1440 aagtgagtag aggggtggag gggttttttt tatttatagg aggtttttgg tggggtgtag 1500 ttaattitgt gigittaagg tittittitg tigiggatig tgigtgtiga gigitggtit 1560 1620 tgttaaaatg ggaataaagt ttttagaaag gtagtgtttt tgggtggttg tgttttgttt 1680 1740 1800 ttttggaaat gtttatgaga aatgagttta tgttggatgt gtgtgttttt tgggtgtaat tgtttagtgt aaaatgggtt ttgaaagtag gtgaggggaa atgttgttag gttggatatt 1860 ttgaagtttt tgaggaaatg gggggttag aggagtttgt ggtagttttg gattttttgg 1920 aattagggtg atttataaaa gtgtagtttg agaagatttt atatataaga ttagtgttta ttgttttatt atagaattag tttttttggt ttgttttaga atagtgaggt atggttatgt 1980 2040 taagataata gagaaagtag aatagatagt tgttattttg attgtaattt agtggtgttt 2100 gtaattttta titgtagagt tattitttt tgttaagatg ttgttttag aaagtatatg 2160 ttaaaggatt tatatttgat tagattattt ggtttttgtt ttgaaatatt gatgaaggat 2220 ttgggataga ataaagtaag ttttgatgga agataggaaa ggtttagata gtgtttgtag 2280 atttaaatgg ttatagaggt tagataagta aagtaaatga gtgagattgg ttttgtgtaa 2340 2400 gataatgggg aatgataggg aaaatggtaa attggaatat ttatgttata attaaaagga atagttgttt aattttagta gattgttgtt tttaggaatg tgggtttagt gtttttagat 2460 gtttaatttt 2470 <210> 474 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 474 ttttgttttt atgtttagtt tattgaagtt tgtttttagg ttattggagt tgagttttt 60 120 aaagtttatt ttgtttaaag tttttaatag gagtgataat ttaggtaaaa tqtttatata 180 atagtgggaa attaaaagtt tgtgatatag aaaagtgata tatatttgta aattttttta 240 ataaaggtat tgtagtataa gtatgattgt agagttagat tgttaatgtt taaatttttt 300 ttgggtttta attttttat ttgaaaattg ttaatagtgg aatttagttg atagggttgt 360 tgtggagtaa gtgtttttaa tttggagttt atgaaatttt agtatttgtg aattttgtat 420 tgaaaaaatt gtaattttat gtttattaat tttataatag ttttgttttt ttgaattata 480 aaggtaggta ataaattata gtagtattat tagtatttat aattitgttt tttatagaaa 540 ttattttat atttagtaag ttgttgtaga tattttgaat aattatatgt atatatttt 600 taagtattat atatataata tttttatatt ttgtatatat ttttggagat agggttttgt 660 tttgtttttt aggttggagt gttgtagtat gattggaatt tattgtaatt ttaaattttt 720 gggttttagt gatttttta gttttagttt tggaatagtt aggattataa gtattttta 780 ttatatttag tigitaatit tittittitt tgtaaagata aggittiatt attitqtita 840 ggttgttttt taatttttgg atataagttt tttgtatagg ttttttaaag tattgggttt 900

Page 256

960

1020

1080

1140

1200

1260

1320

ataggtgtga gttattgtgt ttggttaata ttatgtattt aattttatgt gtttagaaat

atgtgttatt ttaagaaggt gtttataggt tttattatat tattaaaggt gtttatggta

taagtgaaga aatttttaga tattagagta ataaaaatta tgatgtatta gaatggatta

ttttttttga gatagagttt tattttgttt tttaggttgg agtgtagtgg agtgattttg

gtttattgta atttttgttt tttgggttta tgttattttt ttgttttaqt tttttaaqta

gaggaattgt aaggtgtttt attatgtttg gttatttttt gtatttttag tagaaatggg

47675-47.txt 1380 gtttttttat gttatggtag gttggttttg aatttttgat tttaggtgag ttatttgttt 1440 tagtttttta aagtgttggg attataggta tgagttatta tgtttagttt gttatggttt ttaaaatatt tatagaatag aaattgaagt aagtttattt gittttatat taaaagtagt 1500 tagtatggtg ttttgtattt atgtatttta tggatgttga atgagttatt gaatgaagtg 1560 gagtttaggt tgtgttttag gttttttagt ggggttggaa ggaatagttg tgaagttgtg 1620 1680 gggtggtttt tgtgtattgg gggattttgg agttagatgg ttttttaggg tttttgaagga 1740 gaagagttgt gtttttaata atgattttaa tgggaataga gattgttggg gattgtaggg gttaggttgt tatttttaa agtttttttt ttattattta agaaggtatt taggttttt 1800 1860 tgtgttaggt tttaggtaaa gtgttggatt atttagtaat tgggtttagt agtaggatgg ttttagattg aggttttagg gttaaaggat tattttttt tttagtgttg gtttgggaaa 1920 ggtaagtttt gggtgggagt gtatgttgtg tttttgaagt ttggtttttt tgttatgttt 1980 2040 2100 ggagggttta gttagtgggt ttttggaggt tggttgggta ggtgtggtgt gtggtaggag 2160 ttgggtgtgt atggttattg tgtgtggagg agatattgtt ttgttgtgat gggggtttgg 2220 ggtgtttttt tatgttgtag gtaagtgggg tggtggttgt ggtatttgtt tattgggagt 2280 ttttttttt ttttttgtt gttgttgttt tgtatttagt ttgggggagg atagaagaaa 2340 2400 tgtgttgtta ggtagttttg ttgtgttgtt aggtagtttg gttgttggtg tgggtgatgt 2460 2470 tggtgttggg <210> 475 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 475 tttagtgttg gtattgttta tgttggtgat taggttgttt agtaatatgg tagggttgtt 60 tggtaatgtg gtttattttg gtttgttttt gtttataggg gaaggttaag gggatttatt 120 ttattttttt tttttttttt tttttttga gttggatgta gagtagtagt agtaggagaa 180 240 300 aaggagtgtt ttgggttttt attgtggtag ggtagtgttt tttttatgtg tggtagttgt gtgtgtttag tttttattgt gtattatgtt tgtttggtta gtttttggga gtttgttggt 360 tgggtttttt gggatggtag tggttttgtg agggatttgg gttgtggttg aggatgtaga 420 ggaggagatt gatagagtat ttggtttatt gggagaagat ttggaaaggt gtgggatggg 480 540 ggtaggaagt gggtgtggtg agggagttag gttttggggg tgtggtgtgt gtttttgttt ggagtttgtt ttttttggat tagtgttgag gagaggagtg gttttttggt tttgggattt 600 660 taatttgagg ttattttgtt attgaattta attattgggt agtttagtat tttatttggg gtttagtata gaaagatttg aatgtttttt tggatgatga aggggaagtt ttggggaatg 720 ataatttggt ttttgtggtt tttagtaatt tttattttta ttgagattat tattaggaat 780 atagtttttt ttttttagag ttttgggaaa ttatttaatt ttagagtttt ttgatgtata 840 gaagttgttt tataatttta taattgtttt ttttagtttt attggaaggt ttgaggtata 900 atttagattt tattttattt aatgatttat ttagtattta tggagtgtat aagtatagag 960 tattgtatta gttattttta atataaaaat gaatagattt attttaattt ttattttatg 1020 aatattttaa gaattatagt agattggata tggtggttta tgtttgtaat tttagtattt 1080 tgggaggttg aggtaggtgg tttatttgag gttaggagtt taagattagt ttgttgtaat 1140 atggggaaat titatittia ttaaaaatat aaaaagtagt tgggtatggt ggagtgtttt 1200 gtagtttttt tatttgggag gttgaggtag gagaatggta taaatttggg aggtagaggt 1260 tgtagtgagt tgagattatt ttattgtatt ttagtttggg agatagaatg agattttgtt 1320 ttaaaaaaaa aaaaaaaaaa aaaaaaagaa ttatagtagt agattgtatg ttgaatgttt 1380 gatatgggtt tgatttgttt taatgtatta tggtttttat tattttagta tttagagatt 1440 tttttatttg tgttatgaat atttttggta atgtgataaa atttgtagat gtttttttaa 1500 1560 ttatatttgt aaatttaatg ttttgggaga tttatgtagg aggtttgtgt ttaagagttg 1620 gagagtagit tgggtaagai agtgagatit tgtttttatg aaaaaaaaa aaattaatag 1680 ttgggtatgg tggggagtat ttgtagtttt agttatttta agattgaggt tggaaggatt 1740 attagagttt aggagtttga ggttatagtg agttttgatt atgttatagt attttagttt 1800 1860 ataatattta aggaatatat atgtataatt gtttaagata tttgtaataa tttattgagt 1920

47675-47.txt atgaaaataa tttttgtagg aaataaagtt gtaggtattg ataatattat tgtggtttgt 1980 tgtttgtttt tataatttaa agaaatgaaa ttgttgtgag gttaatagat ataaagttat 2040 gattttttta atataaagtt tatagatgtt gaaattttat ggattttaga ttaagaatgt 2100 ttgttttata ataattttat taattaggtt ttattgttaa tgatttttag ataaagaaat 2160 taaggtttag aaaaaatttg aatattgata gtttggtttt atagttatgt ttatgttatg 2220 2280 tttttattat tatgtgaata ttttgtttga attattattt ttgttaaaaa ttttagataa 2340 aataaatttt atattttatt ttagtaaata ataatttata aatttgtagt attttgaatt 2400 agaagtgttt agaaagttta gttttagtgg tttgagagta agttttaata gattaaatat 2460 aaaaataaag 2470 <210> 476 <211> 2470 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 476 agttgttttg tttagaagtt gattttttga tgtttttaat gtttggttta attgatttgt 60 tttaatggag tttttgttgg tgaggagtga gatgttattg attagaatgt tgggatttgt 120 tgtttaattg ttaggagtga gagatattga gatttagaaa tttttggagg tgggagggga 180 240 aaaaaaaaag attttgttga ggtattgagg tgttgtatga ttatattttt taaaggagaa 300 gttaaaaagt aaggaagtgg gaggaggttg gaggttaaag tatttaaaag gattatttgg 360 gtataatttg tttttttgtt ggtgtttgta aaggatagat agttttgttt ttaaagtata 420 tgaatgtttt ttttaagtga ttgggaatgg atattaattg tttgttaaat gttattaaat 480 gtttttttaa atttagggga tatagaaaga ggggtataaa aggagaattt aaatagaaaa 540 agggaggatt tggaggtttt tgaaagtggg gggagaagaa ggaggaggga taatagagag 600 gaatagagaa ggagagtgga gagaagataa ataaaaataa aaataggaat tattgaataa 660 ttatatatta aaaagaaagt tttttttat ggggtattta aaatattgag attgtaatag 720 tgattttggt tatggaagaa agatgttttt ttttattttt gtttttgaaa qtttttqqtt 780 ttgttattgg tgattaaaat tttattaggt taaagagtgt gtttaattgt ttgaagaatg 840 900 aaatgigtag agttagagat tittgttgag ttagattitt tittgttgtt ttaggttatt 960 ggttatttgg taaagatttg agtaaggaat gtagggttat tgtttgggtt aataaatgga 1020 1080 1140 ttaaatatat tigattgtat tttttaggtg gatatattaa taggttatgg gttggagagg 1200 agtgggtgat gaggagaggg atttaaattt gtgaatgttt gggttgggtt ggagttgtgg 1260 1320 gagttgtttt ggtgagtagt tttggggttg tatgtttttg tgggagatgt tgttgttg 1380 1440 tagagaaatg tttttggttt ttttgttgtg atatttttag tttgtatttt tttatagttt 1500 aggtggtgtg tttttgtatg ttggagtgtt ggttgttagt aggatgtttt tttttgtgtt 1560 gattigtitt tittigtitt gitgitgitg tittittgat attittigtit trattatitt 1620 tagttiggag agatgttatt tagttgtggt ttgtatttgt ggtttggggt tatgtgtgga 1680 agaggggtgt tagtttggat tttgtttttg gtagggggtg ttttggagtg gagagtgagg tgaatggtat atgagtgtgt gggtagttta ttttgaagtt tgagttttt atttgagtta 1740 1800 1860 1920 tttgttttat taattagagt ttgattgttt ttttttatgt gattttgggt gggttgagga 1980 tttgttgttt tttaaatgtt agagggatgt gggtggtaga gtttgagagg tggttgttgg 2040 2100 2160 tittgtgttt ttggtgtagt tttttagtgg atgattttt tgttttgggg ttgagtttag 2220 tttttggatg ttgttgaaat ttttgagatt atgtgtgggt ttggttgttg ttttttgtt 2280 gggtgttatt gttattgttg ttgtttttgt tgttgttgtt tgtgggatgt ttagtagttt 2340 gitgittggt itttgtgati tigtgttitt tggaagtigt tigitgitgt agagtigtat 2400 gaattagtta tggtgttgtg ggagtttttg tggtagtgta gtagttggat attitgtgag

ggtttttgtt

2460

2470

```
<210> 477
<211> 2470
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 477
agtaaaagtt tttgtaaagt gtttagttgt tgtattgttg tggggatttt tatagtatta
                                                           60
tgattagitt gigiaattit giagtagiaa aiggittiig aggaatatag gattgiggg
                                                           120
gttgggtagt gggttattga gtattttgtg gatggtggta gtagaggtgg tggtggt
                                                           180
agtggtattt ggtggggaag tagtagttaa atttgtgtat qattttqaqa qttttaqtaa
                                                           240
tatttaggga ttgggtttag ttttggagtg agagggttgt ttgttgagaa gttgtgttgg
                                                           300
agatgtggga agttgttgtt ataaggaggg agttttggga agttggagga taggaggaga
                                                          360
tgggagttta ggggtagatg agtggagttt gaggaggtag ggtggaggga gagttaaggt
                                                           420
gttttgtagt ttggtagttg ttttttgagt tttgttgttt gtatttttt ggtgtttggg
                                                           480
aagtagtagg ttittagtti gittggggti atgigggaag aggtagitgg gittigatig
giggagtagg atgiaggitt igggagggag gggtigatga ggaggigtaa ggatgiaagg
                                                          540
                                                          600
660
taggtgggga tggtttaaat gagaagtttg ggttttaggg tgggttattt gtatatttat
                                                          720
atattatttg ttttattttt tgttttagga tgttttttat tgaaggtggg gtttggatta
                                                          780
gtgttttttt tttgtgtgtg attttgggtt gtgagtgtgg gttgtggttg ggtggtgttt
                                                          840
ttttgagttg gagatggtgg gggtggaggt gttagaggag tagtagtagt agggtagaga
                                                          900
ggggtgagtt ggtgtgggag agggtgtttt gttggtgatt ggtgttttag tgtgtgggag
                                                          960
tgtgttgttt aggttgtagg gggatgtagg ttgggaatgt tgtggtggag aggttaggga
                                                          1020
tgttttttta gggatttata ggaaagaggg tgagaggtga tggtgttaga attgtttttg
                                                          1080
1140
1200
1260
attatttgtt tttttttagt ttgtagttta ttagtgtgtt tatttgggag gtgtggttag
                                                          1320
atgtgtttgg aaggttagat tggttgggat aagtggtttg agaqaaagaq aaaggttttt
                                                          1380
gagagtgggt tttatttgtt ggtttaggta gtgattttgt gttttttatt tgggtttttg
                                                          1500
ttggatggtt ggtgatttgg ggtgatgaga gaaggtttaa tttggtagga gtttttggtt
                                                          1560
ttgtgtgttt tttttatttt ttttagtggg aagggtaaat ggtatagtgg gatttgtttt
                                                          1620
ttgtttgttg tattttttag gtagttagat atatttttta gtttaatgga attttagttg
                                                          1680
ttagtaatgg gattaagagt ttttggggat aagggtggag aggaatattt ttttttatg
                                                          1740
1800
tggigiga ttattiagig attitigttt tigttittgt ttalitttit tttgttttt
                                                          1860
1920
gatttttttt ttttttattt aaattttttt tttgtgtttt tttttttgtg ttttttqaat
                                                          1980
ttaggagagt atttgataat atttaatagg taattagtgt ttatttttaa ttatttaaaa
                                                          2040
2100
taaattgtat ttgagtaatt tttttaagta ttttaatttt taatttttt ttatttttt
                                                          2160
gttttttaat tttttttttg agagatgtga ttgtgtagta ttttagtgtt ttaatgaaat
                                                          2220
2280
attgtttttt tttttttta tttttaaaga tttttgaatt ttagtgtttt ttatttttqq
                                                          2340
taattaagta gtagatttta gtattttagt tggtggtatt ttgtttttta ttgatgaaga
                                                          2400
ttttattaaa atagattaat tagattagat giiggaggta ttagaaaatt ggittitaga
                                                          2460
tagagtagtt
                                                          2470
<210> 478
<211> 2470
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 478
```

atatttaaat tgt ttgaatatta tta	atatttg g	gtttgtaata	tattatatat	ttaaaagaat	tattatttt taaataaagg	60 120
ttggtttgaa att	taggttt g	gttatttatt	agtaagtttt	taaaaatttt	gagtttttag	180
tttttttata tgt						240 300
tattttttt ttt ttatgtttta aat						360
tagaaaagga aat	attatgt t	tggtaatgt	ttatatttt	taaaataaat	ttgtaggaaa	420
gaatatttag taa						480 540
ttatttttt tag tgtaattata agt						600
gtataagatt aat	ttaaagt a	agaggatgaa	atttttttt	tgaattttt	ttagaatgta	660
atttagtgaa tat ttgtaatttt tta						720 780
attagagatt att						840
ttttatttt tat	attggtt t	aataatgat	tattgtagag	ttgttatgga	agttaaatga	900
atttatgtat tat aaatatttat tat						960 1020
agaggtgatt aaa						1080
tttttggttg tgg	jtatatat a	atgtgtgggt	ataaaattgt	aaattttatg	tagttgtgta	1140
gtgtatgtgt aga						1200 1260
tgatgttgtt ttg tatatttgta ttt						1320
agattgttta gtt	ttttata a	atatatattt	ttatggaaaa	gggtattttt	ttttgttaga	1380
aaaagtgttt tag						1440 1500
ttttttttgt ttt tttgtatagg gga						1560
aagtaggtgg gga	ittgatag t	ggttttttg	gtttagggag	gagagtgtgg	ttgtgggttt	1620
ttttttttag ttt tggtgtggag ggt						1680 1740
ttgggtggtt ttt						1800
aaaaatggag tgg	gtttttt g	gtgtgttgtt	gttttttgtg	tttttggtgg	tttttttga	1860
ggtttttggt ggt ttttgtgtaa gtg						1920 1980
gtgtaaaatt ttt						2040
tgtgggaaaa gtt	ggggagt g	gatgattgtg	gtggttgggt	gtgtttttt	atttttttt	2100
ttttttttt ttt						2160 2220
ttggagttgg ttt gggtggttga agg						2280
tattggaagg aat	gagaata a	atatttaat	tatggatgta	ttgaattgtg	gttgggatag	2340
atattttggg aat						2400 2460
tgttttaggg ttt tgtgaggttt	.ccggggg a	igittgagtt	gagagaaccc	ccaaacccc	tgggaaagtg	2470
<210> 479						
<211> 2470						
<212> DNA	-1					
<213> Artifici	.al Sequen	ice				
<220> <223> chemical	ly treate	ed genomic	DNA (Homo s	sapiens)		
<400> 479						
gagttttgtg tat						60
ttttggggtg ggg tttgaagtgt ttg						120 180
ttttttagtg ttg	aagtttt t	tttttgtgt	tgtgtttttg	gtgaaaatag	gatattttt	240
ttggttattt tat	aataaat a	gtgtatata	agtgggggag	aagtggggtg	gagggagaag	300
ttggttttga ggg aaaggagaag aaa						360 420
tttttttgta gtt						480
agttttgtgt gga			gtgtgtgttg	tgttgttggt		540
			Page 2	:60		

ttgtgtaggg aggtggggtg ggggtgatgt tgttattggt tattgtgggt ttgtgaggtt 600 gttgggggtt ttgggggagg ttgttaggga tgtggggggt ggtggtgtgt gggggattta 660 ttttgttttt atttgatttt gggtgattgt ttattgttat ggtttgtgat tttgtgtggg 720 gattgtttag ggttttgggg ttttggatgt tttgggtggt gttgttgtaa tttttgtgtt 780 ttttgtgttg tttttatttt gtttttattt gggttgattt gagtggttgt agtttttagg 840 900 ttgaggggag ggatttgtga ttgtgttttt tttttttgggt tggagagtta ttgttgattt 960 1020 1080 gggtgttttt tttgatggga ggaaatattt ttttttgtgg agatatatgt tatgaaggat 1140 1200 tgtaggtata ggtatttgtt ttagatgttt aaaggttagg tagtaatgat ttatttttaa 1260 ggtggtgtta gagttttttt aggtatattg ttgaaatgat attttgtgtt taagttttt 1320 gigiatgiat taigtgatta taiaggatti atgatttiat atttaiaigt gigiatgita 1380 1440 1500 1560 gtatatgagt ttatttaatt tttatgataa ttttatggtg gttattatta agttggtata 1620 aaagatgagg aaattaaagt ttaaagaatt atgagtgatt tttttaaaga taaatttagt 1680 ggtttttaat tataaagttt atgatataat aatttttata ttattttagg tgtggtttaa 1740 1800 tttattaagt tatgttttga aaaaggttta gaaaaaagat tttattttt attttaggtt 1860 ggttttatgt aattgatatg agtattgttt aatttaaaag tagtattaat titgaatatt 1920 tatggttata atttatttt taatgagtgg ggaattattt ataatgttta agaggtttta 1980 gaaaaggtgg tgttgtaaat ttaaaatgat aaaggtagtt gttgttgttt ttattattta 2040 ttgggtgttt ttttttgtag atttattttg gagggtgtag gtattgttag gtataatgtt 2100 2160 tttttttttg gtttttaagg tagaaagggt tttggtagtg gggttggtat aaagtggatt 2220 2280 tgtgagaaaa ttaagggttt agaattttta gaagtttgtt aataaatggt agatttgagt 2340 tttaagttag tttttattta agtttatttt tagttattgt gatgttatta ttagtattaa 2400 tggtatttag aaaaatagta attttttaa atatgtaata tattataagt taaatatgta 2460 2470 atttaaatgt <210> 480 <211> 947 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 480 ttgttgtttt taggggtttt ggttttgatt gatatttggg tgggtgagtg tggggtttag 60 120 ggagttgtgt ttggaggagg gtttggtggg ttttagtttt tttttgtttt taggtttta 180 ttttttgagg tattttagta ttgttgtgtt gtggtttggt tgtggggagt tttgttatat 240 tgttgtggag tatgtagatg atatgtaatt tttgtggttt gatagtgatg ttgtgatttt 300 gaggatggag ttgtgggagt tgtgggtgga gtaagagggg ttgtagtatt gggagtggat 360 tatagggtat gttaaggtta atgtatagat tgattgagtg gttttgagga atttgttttg 420 ttgttataat tagagtgagg ttggtgagtg aatttggttg ggggtgtagg ttatgattat 480 540 aggtagtggg atttgtttag attttttatt tgggagagtt ttaggtgttt ttatttaggt 600 ttatttttag tttaggttaa aatttttgtg ggttgggtgg ggaggggtg gggttagttg 660 ggtggggttg attgtgggga ttggttaggg ttttatattt tttagggaat gaatggttgt 720 gatatggggt ttgatggatg ttttttttgt gggtattatt agtatgtgta tgatggtaag 780 gattatattt ttttgaatga ggatttgtgt ttttggattg tggtggatat tgtggtttag 840 900 attatttagt gtttttatga ggtagaggaa tatgtagagg agtttaggat ttatttggag ggtgagtgtt tggagttgtt ttgtagatat ttggagaatg ggaagga 947 <210> 481 <211> 947

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 481
60
ttgaattttt ttgtatattt ttttgtttta tagaagtgtt gggtgatttg agttatggtg
                                                             120
tttgttgtgg tttaggagtg taggtttttg tttagggaga tgtaattttt gttgttgtat
                                                             180
240
                                                             300
tttttttttg tttaatttgt ggggattttg gtttaaattg aaaatgaatt tgggtaaagg
                                                             360
tgtttgggat ttttttgggt ggagggtttg ggtgggtttt gttgttttgg ggtagatttt
                                                             420
ggatttggag attttgaggg atttgggtgg tttgtggtgg atggggggtg gttgtgattt
                                                             480
gtgtttttgg ttgggtttat ttattagttt tgttttggtt gtagtggtgg agtaggtttt
                                                             540
                                                             600
ttagggttat ttggttagtt tgtgtgttgg ttttggtgta ttttgtggtt tatttttaat
attgtggttt tttttgtttt atttatggtt tttgtggttt tatttttgga attgtggtgt
                                                             660
tgttgttgaa ttgtaggaat tgtgtgttgt ttatgtattt tatggtgatg tagtggggtt
                                                             720
                                                             780
ttttgtggtt gggttgtgat atagtggtgt tgaaatattt taaggagtgg gagtttgggg
gtgaggaggg gttgagattt gttagatttt tttttgggtg tggttttttg agttttgtgt
                                                             840
900
ttatttgttt aagtattggt tagggttagg gtttttgaga gtagtag
                                                             947
<210> 482
<211> 3120
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 482
60
tgaggtgggt ggattataag gttaggagat tgagattatt ttggttagta tggtgaaatt
                                                             120
ttgtttttat taaaaatata aaatttagtt gggtatgatg gtatgtgttt gtagttttag
                                                             180
ttatttggga ggttgaggta ggagaattgt ttgaatttgg gaggtggagg ttgtagtgag
                                                             240
tggagattgt attattgtat ttgtttggtg atagagtaag attttatttt aaaaaataaa
                                                             300
taaaqaaaat ttgaagtata gtattttttt aaattttaaa tagataataq aaattggttt
                                                             360
ttttttattt aaattagaat ttaagtttaa ttttatatat ttitgatagi ttggattttg
                                                             420
ttttttaatt ttataaaatt gggaatttaa gtattatttg gtttgattta aatgtaatgt
                                                             480
agaatttgta ttaaaatatt atattaaagt tttagatttg tagtagttaa tagtattttt
                                                             540
atgtatgtqt tagggattgt tttaaaatatt ttatatatat taattttttt attttgtatt
                                                             600
tttgtttttg ttttatatag taggaaattg aaatattgag aggttaagta attaaagtta
                                                             660
tagagttaga gtgataggag taaagtttta atttaggtaa tttagatttt tagagttttg
                                                             720
attittatta ttaagitgit agtatagitt tiltggtaat tattittaat ttaaatataa
                                                             780
tttgagtgat ttatttaata agttattatt ttgataattt agtgatttgt aatgtaaaat
                                                             840
tatttattgt aatttattta atattattgt ttttttgtgt tgtaaaaatt atagtaattg
                                                             900
960
1020
ggattggggt tgtgagggta tatttttgag gggtatgggg ttagggttag gtaggttgtg
                                                            1080
tggttgggtg gggttttgtg ttttattgtg gagtgtgggt tgggaagtgg agagagaagt
                                                            1140
agttgtgtaa tttgttggat gtggattagg gtgtttttta tttttgttgg gagtttgttg
                                                            1200
attggttggg tgtgggtgta tgtgattgat atgtggttgt attggtgtag tttgttaggg
                                                            1260
tgttattgga gatagaatgg aggtgttgtt ggatttggaa atggggtagg tgttggagtt
                                                            1320
1380
aattgatggt ttttttttgg tatagggttt attgtagtat gttaaatgag gaggtagggg
                                                            1440
tgttgttttt ttgttttta ttgtagtatt ggagatggat tttttgtatt ttggatttag
                                                            1500
ggtttttgat agaagaggaa gaagggggag gggtagaagt gttaagggga gtttgttgag
                                                            1560
aaaagttgtt titgaagita gaaggggitt tigittitat aatgitatit gatagagigg
                                                            1620
aataatagta tttaaggaaa tgggtagagg ataataaaga atggagtata tttatggtga
                                                            1680
                                 Page 262
```

```
ggagtaaaaq ttttatttta ttqaaaqqtt ttttttttt tttqqtgata aggatatatg
                                                                1740
                                                                1800
tattggtggt taaaagagag aggagataaa attgttgtag atggttgatg tgaatttagt
                                                                1860
ggaaagagtt attggggatg agagaaagag gaggaggtag gtattgtaga gtgtgagtgg
tggtgttggt tggtgaaata ttggttatta gtagtgtgtt tgtttttgta aaatatttaa
                                                                1920
gtaaattttt tgtgaatagg gtggtaaata gatattagtg tttttgttag ttataaaatg
                                                                1980
2040
aaaagataat tqtaqaqqaa taaqaaattt tqtaqtaaat qttqqqqtag aagtttattt
                                                                2100
                                                                2160
ataagaagtt atagtttata aatgtagttt gaatagtaga aaaaaaatta ttgtttttta
aagtaggaat aatgttaggt tatgaatgtt ttgttattgg aatgtattgg atattttgat
                                                                2220
tttatattat gaaagtgatg tttaaatttt ttgatttaat ataaatttta tatgaaattt
                                                                2280
taataaatta tgtatgaaat agtggatttt tttttttgtt agtgaagttt ttatgttatt
                                                                2340
aattaggtta tttaaqaqta aattatttta taatgtaaat tattttgtta aaaattatgg
                                                                2400
tgaataaatt tttgtaggtt taatatttaa gatttatagt taagtaattt tatatttttt
                                                                2460
titggttgtt tttagataat attgaataaa tatttaagat attaatttag tgtgtaaata
                                                                2520
ttttaaatta aagtaatatg gtttttttt tagatgtatt tttgtttagt gagtatttat
                                                                2580
2640
aaaagtttat ttttatgtat atttatagta gttagtttgt tatatttttt tatttttga
                                                                2700
                                                                2760
ataaggatgg tagtggtttt gtaaagtttt ttagggttag tgatagtgtt ttttaaataa
tgtttatgta atagaaagtt ttaagatgat ttattatatt gttttagtaa tatttttaag
                                                                2820
                                                                2880
ataatgtgga attgggttgg tttagataaa taagattata taagtttttt attgataaat
ttaaatagtt ttttaaaaaa ttatttttgt tttaagaatt atttgattat ggatattagg
                                                                2940
gttaatagta tttaggagtt gggtgtggtg gtttatgttt gtaatataag ttaaatagga ggttgaggga agttgaggta ggaggattat ttgagttttg gtgtttaaga ttagtttggg
                                                                3000
                                                                3060
3120
```

<210> 483 <211> 3120 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 483

attagatttt	aaaaaagaga	ttttaagtat	ttttttttga	gatagggttt	tgtttggttg	. 60
tttaggttgg	ttttgaatgt	taaggtttaa	gtgattttt	tgttttagtt	ttttttagtt	120
ttttgtttag	tttgtattat	aggtatgggt	tattatgttt	ggtttttaag	tattattaat	180
tttgatattt	atgattaagt	aatttttaaa	gtagaaataa	ttttttaaag	aattatttaa	240
atttattagt	gaaaaattta	tgtagtttta	tttatttaag	ttagtttaat	tttgtattat	300
tttgaaaata	ttattgaaat	aatataatag	gttattttaa	gattttttat	tatataaata	360
ttatttaaga	gatattgtta	ttgattttgg	agggttttat	aaagttattg	ttatttttgt	420
ttagggagtg	gggaggtgtg	gtaggttggt	tattataagt	atgtataaag	ataggttttt	480
atatttaggt	aaaggaaaaa	aaagtttaat	gaaaaatatt	ttatattaag	agtatatttt	540
atgagtattt	attaaataga	aatatattta	gaagaaaagt	tatgttgttt	taatttaaaa	600
tatttgtata	ttgaattaat	attttaaata	tttatttagt	gttatttaaa	agtaattaaa	660
gagaaatata	aaattattta	attataggtt	ttaaatatta	ggtttataaa	aatttgttta	720
ttataatttt	tgataaagta	atttatgttg	taaagtggtt	tgtttttgaa	tgatttaatt	780
aatggtataa	aagttttatt	aataaaagaa	aagatttatt	gttttatata	taatttatta	840
agattttgta	taggatttat	gttaaattaa	agaatttgag	tattatttt	gtgatgtaga	900
		ttaatgataa				960
taaaaaatag	taatttttt	tttgttgttt	aggttgtatt	tataaattat	ggttttttgt	1020
		atttgttgta				1080
tggtttaata	gagggagaaa	aagtattgtt	gtagttgttt	gtaaaaagtt	attattattg	1140
tattttgtaa	ttaataaaga	tattggtatt	tgtttgttat	tttgtttata	gggagtttat	1200
		ggtatattat				1260
ttatttatgt	tttgtagtat	ttgtttttt	ttttttttt	tatttttagt	agttttttt	1320
		ttgtagtggt				1380
		gaggaaaaga				1440
ttgttatgaa	tatgttttat	tttttgttgt	tttttatttg	tttttttaga	tattgttatt	1500
ttattttgtt	aaatggtatt	ataaaaataa	aaatttttt	tggttttaaa	aatagttttt	1560
		atttttattt				1620
ttggatttga	agtataggaa	atttatttt	agtgttgtag	tggggggtgg	ggggatgatg	1680
			Dage	262		

tttttgtttt	tttgtttggt	atgttgtagt	ggattttgtg	ttaaggaaag	gttattggtt	1740
taagatagtg	tgagggaaaa	ttatttttt	tttttttt	gtagtaagtt	tggttatggt	1800
ggttttagta	tttattttat	ttttgagttt	ggtagtattt	ttattttgtt	tttagtgata	1860
ttttggtggg	ttgtattaat	atagttatat	gttggttatg	tgtgtttata	tttagttaat	1920
tggtgggttt	ttgatgggaa	tggggagtgt	tttggtttgt	atttagtgga	ttatatagtt	1980
gtttttttt	ttgttttttg	atttgtattt	tgtagtgggg	tatagggttt	tgtttaattg	2040
tatagtttgt	ttagttttag	ttttgtattt	tttgggggta	tgtttttgtg	gttttagttt	2100
ttagtaagta	aggaagttga	tggtagttga	tatgtatagt	aaagagttgg	gggaggtttg	2160
tagggtagaa	ggattagtat	aagatgttgg	aggtgggagg	gagagtaata	aattatattt	2220
tgattgttat	gatttttgta	gtatagagaa	ataataatat	taaatgaatt	ataatgaata	2280
attttatatt	ataagttatt	gagttgttag	agtgatgatt	tgttagatag	attatttgaa	2340
ttatatttga	attaaaaata	gttattagaa	aagttatgtt	agtagtttag	tagtggagat	2400
tagaattttg	gaagtttggg	ttgtttgagt	tgaagtttta	tttttgttat	tttagttttg	2460
taattttagt	tatttaattt	tttagtgttt	taattttttg	ttgtataaaa	tgggaataga	2520
agtatagaat	agaggagtta	atatatatga	agtatttaga	gtagtttttg	atatatatat	2580
agaagtgttg	ttagttatta	taaatttgag	gttttaatgt	agtattttaa	tgtaaatttt	2640
atattgtatt	taaattgaat	taggtgatgt	ttaaattttt	aattttatga	ggttgaagga	2700
taaaatttaa	attgttaaga	atatataaag	ttaaatttaa	attttggttt	aaatgggggg	2760
aaattagttt	ttattattta	tttaaaattt	aaaaggatat	tatattttaa	gttttttttg	2820
tttgttttt	gagatagagt	tttgttttgt	tattaggtga	gtgtagtggt	gtaatttttg	2880
tttattgtaa	tttttattt	ttgggtttaa	gtgattttt	tgttttagtt	ttttaagtag	2940
ttgggattat	aggtatgtgt	tattatgttt	agttaagttt	tgtattttta	gtagagatgg	3000
ggttttatta	tgttggttag	gatggtttta	attttttgat	tttgtgattt	gtttattttg	3060
gtttttttaa	gtattgggat	tatatgtgtg	agttattgtg	tttggtttaa	atttaaagtt	3120

<210> 484 <211> 2501 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 484

gtgttttagt	ttttgaattt	atgttgtttg	ttattatatt	gtattgtttg	tggatgattt	60
						120
aatattattt	tttttgtgaa	gattgtttgg	tgttttttag	gagagagtgt	gattttttt	180
tttaggaatg	gtagtatttt	aaatatatat	attttgtagt	atattttatt	ttgtatggta	240
atggtttgtt	tgtgagtttt	attttgtatt	agagggtgag	ggttttgaag	atagtgttag	300
gttttattta	ttttgatatt	ttataatatt	tattatatgt	ttgatgaatg	aatgtatagg	360
gggatggttg	ggtgtatttt	ttttaatttt	ttaattttt	gaaataaata	ataaaatttt	420
atttttttt	agaagttttg	gtatggtttt	ttttattttg	ttatagttat	tgataattat	480
ttttatttt	tgtgtaattt	attaggtaag	aagtttatgt	agatttattt	ttagtagttt	540
atatgataaa	taaatattgt	gtttgatttt	taaatattaa	attatagtat	attatagata	600
gatatagagt	tattatttaa	agtatgatat	tttaatttta	aaaggttttt	tttgaagaat	660
attataaatt	tttttttt	ttaagatttg	ttgggtagga	aagatgggag	aaaatgaatt	720
aatgtttata	tagaaaggag	gataatgggg	gtaaaaataa	tagatgaatg	tatgggtgga	780
tgagagaatg	gataaaatga	taggtggata	tgttgatttt	ggatagatgg	gaaatgagtg	840
gatatattaa	taaatagata	tgtgggtgga	tgggtggaga	agaggatggt	ggatggttgt	900
ggttttatga	agagatgtga	aaaaggaagt	gtggaatgat	ggatgagaag	ttgtatggga	960
agatgaatag	aagaataggt	ggttgaataa	attaaaaggt	gtgtggttgg	atgaatgaat	1020
gagtgggatg	atagatggat	ttaagtggtt	agtggatgga	taggaggatg	gatggatgtg	1080
agagttttag	aaggatataa	ggaaagatgg	gtggatagat	ggatgggtgg	atggaaggat	1140
atttaggagg	atgaatgagt	atgtgtgtgg	agagaggtgt	ttatttatat	tggtttgaat	1200
atatgggtta	gttgagttaa	atgttagttt	tatgataggt	tattagtagt	tttttttgag	1260
ttgttttgtt	aagaagttaa	aatttattta	agttatgtgg	atttgttatt	gagggaaaa	1320
agaatgagtt	tttttttt	ttatttggaa	gatttattaa	ttttttattt	tttattttt	1380
attgtgggta	tggaggtatt	gtgttattta	gggtaagatt	ttgtttttt	tttagttttt	1440
tttttaggat	atttaatatt	ttgtgaaatt	tagagatttt	gttttagttg	gatttagaga	1500
aatttagtgg	gaaaggagag	gttaaaggtt	gaatttaatg	gtgtaaggtt	ttatggtttg	1560
						1620
tgtaggggtt	agtggggttt	ggaggtatag	gtattttgtg	atattttagg	ttttttgatt	1680
	attigttitt aatattatti tattaggaatt tttaggttitt gttittatttt ggttitatttt tttatttat atatagagtt ttttatttat atatagagtt attitatagagtt attigagagtatat atgagatattagg gagatatttagg gagagtttggggt attigaggtt aggagttggggt attigagtg attigagtgt attigagtgt attigagtgt attigagtgt attitagggt ttagtt agtigt attitagggt ttagtt agtigt attitagggt ttagt attitagggt ttagt attitagggt ttagt attitagggt ttagt attitagggt	attigititi gtagttitat aatattatti tittigigaa titaggaatg gtagtattit gtittattia tittigatatt gggatggitig ggtgtattit attititit agaagtititi atatgataaa taaaattigi gatataaaat tattititit aatagataa taaaatatigi gatatataaa tattitititi aatgittata tagaaaaggag gatatattaa agagaatga gagtittataa gaaaatgag gatatataa agagaatgag gatatataa agagaatgag gattiaggaaaa atagaataa aagatgagtita aagaaaggitaaa attigigggta tittititititi attigigggta tittititititi agaaatgagtt attititititi agaaaggitaat attigigggta tittititititi attigigggta tittitititit attigigggta tittiaatatt agaaaggatgagg gttattiti	attigitti gtagittiat tigaagaatt aatatatt tittigigaa gattgitigg titaaggaatg gtagiatti aatatata atggittigi tigigagitti attitigitatt gittiatta tittigatatt tiaaaatatt gggatggitg ggigitatti tittiaatti aggaatgitg ggigitatti tittiaatti tigigiaatti attagittit tittiatiiti tigigiaatti attaggiaagg atatgataa taaatattig gittigaatti gatatagata taaatattig gittigaatti gatatagagi tattattiaa agtatgatat attaaaati tittiitiit tidaagaatiga gataatatta taaaaaagagag gataatatta taaaaaagaa taagaagaga gatatatat	attigtitit gtagtittat tigaagaati tittittitaatatatatatatatatatatatata	atttgtttt gtagttttat ttgaagaatt tttttttt	gtgttttagt ttttgaattt ttgaagaatt tttttttt

rtigig ata Page 264

tatgtttttg gtagttttga ttatttatag ttttagtaga gtatggggtg ggggtagagg 1740 1800 1860 tttgaataaa aattgtagtt aatttitgag gtagttttat tgtttagtgg attttagttt 1920 1980 ttgttaggtt tggtttgtta tttttgtttt gtttttgtt ggtttttgtt ttgtgtttag 2040 2100 tggtggtatg tagtttgggg attttgtttt gtgttgttga gtttggtgta gattggtgag 2160 tgtttgttgt agtttgggta gtaagatggg tgtggggtgt ttagtgtgga tttggtggta gittittigg tigagtiggt titigggggat tggagttaag tgagtigtit gtgaagtgta 2220 ttgggttttg gaaagtaggg ttgggatttg tgttaaattg ttggagaatg tgtttgtgga 2280 agtattattt ggttgaaaga aaaagagaaa gagaagaaag tttgttgggt aggttgttgg 2340 tgtgtagttt tgggtgaggt tgttagagtt gtagtatatg gtagaaagta attgttttt tggatgtgta tagttgttgt ttggattaat aggtttttgt gtttaagggt ttgttaagtt 2400 2460 2501 <210> 485 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 485 tgttttgttt agttttgttt tgtttagata tagtttggtg gggtttggtg agtttttggg 60 tataggagtt tgttagttta gataatgatt gtgtgtattt gggagaatgg ttattttttg 120 180 ttatgtgttg tagttttagt gattttgttt aaaattgtgt gttggtagtt tgtttaataa attttttttt ttttttttt tttttttaat taaatggtgt ttttatagat atattttta 240 atggtttagt gtaaatttta gttttgtttt ttggagttta atgtattitg tagatagttt 300 360 420 tttagtggta tgaggtagag tttttaggtt gtgtgttatt aaaatttgtt tatggtgttt 480 ggagtgaatg gagggtgtgg gtgaaaggag ttggaggatt tttgggtgtg gggtaggggt 540 tggtggagga tgggatgagg atggtggatt gaatttggta gaggttgggg tttgttgggt 600 aatgaggttg ttttggaagt tggttgtagt ttttatttga ggttgaaaat agtgatttaa 660 720 780 ttttgttgag gttgtaaata attggggttg ttagggatgt gggttgggga atttggagtg 840 ttgtggggtg tttgtgtttt tgagtittat tggtttttgt gtttagagat gtattggttt 900 tttttttttg ttggttttgt ggtgttagga tagaggatga ttgaattgta aaattttgta 960 1020 taagattttt gggttttata ggatgttgga tattttggga gaggagttgg agagagggtg 1080 aggttttgtt ttgggtggtg tagtgttttt gtgtttatag tggggagtga gggqtqqqqa 1140 1200 tttatatggt ttgaatgaat tttagttttt tggtagaata gtttagggaa agttattgat 1260 ggtttgttat agggttggta tttggtttag ttaatttatg tgtttaagtt agtgtgaatg 1320 ggtatttttt tttatatata tgtttattta tttttttaaa tatttttta tttgtttatt 1380 tatttattta titattitt titatgtitt titggggtit tiatatttat tiattittit 1440 1500 1560 1620 1680 taagattaat atatttattt attattttat ttatttttt atttatttat atgtttattt 1740 1800 tttttattta gtagatttta aagagaggaa gagtttgtaa tattttttag gggaagtttt 1860 1920 tttaatgttt ggaaattaaa tgtagtattt atttgttatg tgaattatta aaagtaaatt 1980 tgtatggatt ttttgtttgg tgagttatat agaaaatgaa agtgattatt agtggttgtg 2040 gtaagatgaa aggaattatg ttaggatttt tgagggaagg taagattttg ttattt 2100 2160 gatatgtaat gagtgttgtg gggtattgag gtaaataaga tttggtgtta tttttaqaqt 2220 ttttattttt tggtatggaa taaaatttat aagtaggtta ttattatgta aggtgaaata 2280 Page 265

47675-47.txt 2340 tqttqtaaaa tqtqtqtqtt tqqqqtqtta ttatttttag agaagggagt tatatttttt titggagaat aitaggtagt tittataggg gaagtgatat tigaggtagg tittaaagga 2400 aaaggaggag gaattittta gatgaaatta tagggataag taagttatti ataggtagta 2460 tagtgtagtg atgaatagta tggatttagg agttagaata t 2501 <210> 486 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 486 agatttattt aaatttaaga atgagaatat aaatttatat tttgaagtgt tttatagaaa 60 120 ggtttatttt aatgtttgga gtatatattt taatgaatat ttattttatt ttatttttt ttatttttga attaagtaat tttgaattta aagttgttat gattagtatt gaaaagatta 180 ttggattatt aattgtgtga ttttgggata gtaatttttt gtatttagt ttgtttatat 240 gttatatatg aaggttgaag titgattitg tittgtgatt attattitaa atattigatg 300 aaattaaatt ttagtgtttg gaatggtagt ataataaatt tattaagaat aaataattta ttgtaaaaat atattgattt ttaaatgatg taattgatag ttatattatt gtagagggtt 360 420 gataaataat aaaagaaatg aaagatgtat atggtgagaa ttgaaattat tttgataagt 480 tttttatttg tttattattt aaaattaatg attatgttga atgtttataa attataaaat 540 ataaaagaaa ttttataaat gtgtatgtat aggagtttaa gttattaaaa gttttaaagt 600 660 ataagtttaa attaaattaa ttaaagaagt tgagaggaaa aattggtttt tatttttaat tattattgtt ttgaggtttt atgtttaata taatttttta agtagaggtt ttagagagaa 720 gagttgtgag gatattttta tatttgtgta gaaggaaaag titgitaitt attitagtat 780 ttttagtgtt atattgatgt gtattttgga tttattttgt ttttattgta taaatttata 840 900 tgtgttaatt gtttgatttt tttttttgta aggttttatt ggaaattttt tgtaatataa 960 1020 aaaaaaattg tatatatgta tgaaagatta tggttttatt tittggaaagt atgaaaggtg 1080 attgatattt ttaagaagtt tttgttattt aggaaaatta ttaaatattt tatttagaga 1140 tatttggaaa gattgaagga aaggaagaat gaagaaagta gaatttagat ttatgtgggg 1200 agagatttgt ggtagaggaa aagtattttt tttgaatttg ataagggatt tgtttggggg 1260 aattttttgt ttagtttttt attattaggg ttttttgaag ttgggttttt tattgggtag 1320 1380 ttttttttagt gtttttttta ggttggtagg agttttgagt ttgatatttt tttttgatgg 1440 gataggtaag tittgtgggt gtgtaaatat gttgtaatta agttitttgt tgatittata 1500 gttttgtgtg tttttgagaa gaagtgattg tatttaattg titattgtig gittgtttt 1560 taagagtttg ggggtttttt ttttttaatt tagaattagt tgtatggggg gtggggaaat 1620 gggggtgggg aaggagtggg agggtagtgg tttttgtgag tagagtgatg ttattgagtg 1680 agtttttgaa tggggagtgt tgttgttttt aagttgattg gtattttttg ttaggaagaa 1740 1800 agttgttttt ttgttttttt gtttgttttt taagtttgga tttttaggag tggttgaagt 1860 1920 ttgagttttt tttttggttt tgatggtata gtgatataat gatgatgggt gttataattt 1980 gtatttgaat ttgtaggtga gttgttttga gtttttttgg ggaagaattt taggtgtgtg 2040 gatgtaatag ttgagaatat taggtgttgt ggataggagt tgggattaag atttttggtt agttttgtat ttttttgtat tttttagtat tgttttgtat ttttttggg 2100 2160 ttattatgtt ttttatgtga tttgtttggg taatgttgaa tttagttgtg tagtgttat 2220 gtgaattitt titttaaatt gtaataagtt gtittttaag gtaattatgt tittittgtt 2280 ttitttttaa aaaataaaaa taaaaaattt atagaaaaaa atttgtgagt ttagaaaaaa 2340 gaagtaattg gtagaaggtt ttaattaagg taaagagttg taaggtgaag ttaagaaaat 2400 gtaggtattt aaaaaatgta ggtaattttt ataagggttt ttggggagag gtatatagag 2460 ggattttggt gttgaaaaag atttagataa aagaaattta g 2501 <210> 487 <211> 2501

<212> DNA

<213> Artificial Sequence

```
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 487
ttqqqttttt tttqtttqaa ttttttttaa tattaaqqtt tttttqtatg tttttttta
                                                                 60
                                                                120
aaagttttta tgaaagttat ttgtattttt taagtgttta tatttttta attttgtttt
                                                                180
240
ttttttttta taagtttttt gtttttgttt tttaaggggg gaataaaaga aatgtgatta
ttttggaagg tggtttattg tagtttgggg ggaaaattta ttgtagtgtt gtgtgattgg
                                                                300
gtttggtgtt gtttaggtgg gttatatagg aagtgtggtg gtttggggaa ggatgtggag ggtgtgggat ggtgttggaa gatgtgggag gatgtggggt tggttgaaga ttttggtttt
                                                                360
                                                                420
agtitttigtt tataatattt aatgtitttig gttgttgtgt tigtatgtit ggagtitttt
                                                                480
titagaaagg titggggtag titgttigta agtitaaatg tgggttgtga tatitattat
                                                                540
tattatatta ttqtattqtt agagttgagg aggagattta gtgagaagaa ggaggaggga
                                                                600
                                                                660
gaggaggagg gtttatttat aggttttaaa agtgttttgt agttttagtt atttttaaga
                                                                 720
gtttaggttt ggaaagtagg tggaggggtg gaaaggtagt tttttgtgtt tgtggtaggg
780
ttaattggtt tggggatagt agtgtttttt atttagggat ttatttagta atattgtttt gtttgtggaa attattgttt ttttatttt tttttatttt tattttttgtgt
                                                                840
                                                                900
agttagtitt gggttagggg aaaggagttt ttaggttttt agggggtagg ttagtaatag
                                                                960
ataattgagt atgattattt ttttttggga gtatataaaa ttgtaaaatt agtaaagaat
                                                               1020
1080
ggtttaaggt ttttgttaat ttgaaagaga tattgagaaa atgagatttt ttgggggattt
                                                               1140
agagggaaag tgtaagaatt ttttattgta tttttaggga attgtttaat ggggagtttg
                                                               1200
gttttaaaag attttggtaa taaaaggttg gataggaaat ttttttaggt aaattttttg
                                                               1260
ttggatttaa agagaatatt ttttttttgt tataaatttt tttttatata agtttagatt
                                                               1320
ttgttttttt tgttttttt tttttttagt ttttttaagt atttttgagt agaatatttg
                                                               1380
ataatttttt tgagtaatag ggattttttg gaagtattaa ttattttta tgttttttgg aaataagatt ataattttt atgtgtatat gtgattttt ttttttagtt aggtttattt
                                                               1440
                                                               1500
tattgtgtaa atagtattaa tatatggaag agttttttgt attgtgttat aaaagatttt
                                                               1560
taataggatt ttatagagaa aagggttaaa tagttgatat aaaggatttt tgttttttta
                                                               1620
gaaaagaggg attttggatt tttttttttt ttgaagttaa gtatgagttt atataatagg
                                                               1680
aataaaataa atttaaggtq tatattagta taatattagg gatattagaa tggatggtaa
                                                               1740
attititit tiatataaat atgaaagtat tittataatt tittititig aagtittiat
                                                               1800
ttagaaaatt atattaaata taggatttta aaatagtagt gattaaagat gaaagttaat
                                                               1860
ttttttttt aattttttg attagtttgg tttaaattta tgttttaaaa tttttagtaa
                                                               1920
1980
                                                               2040
2100
attgttagtt atattattg gaaattaatg tgtttttgta gtgaattatt tatttttagt aaatttattg tattattatt ttaaatattg aaatttgatt ttattagatg tttagaatga
                                                               2160
                                                               2220
tagttataga gtagaattag attttaattt ttatgtataa tatgtaaata aattaaggtg
                                                               2280
tagaaagtta ttgttttaaa gttatataat taatagttta gtggtttttt tagtgttaat
                                                               2340
tatagtaatt ttagatttaa gattgtttga tttaggaatg gagagaaata aaataaaatg
                                                               2400
2460
gatgtggatt tgtattttta tttttaaatt tgagtaaatt t
                                                               2501
<210> 488
<211> 3000
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
<400> 488
atatttaaat tgtatatttg gtttgtaata tattatatat ttaaaagaat tattatttt
                                                                 60
120
ttggtttgaa atttaggttt gttatttatt agtaagtttt taaaaatttt gagtttttag
                                                                180
240
tattttttt tttagtgtat attaattggt attttttgtt aggttagaat gtgttttaa
                                                                300
                                   Page 267
```

	47675-4	7.txt		
ttatgtttta aatttgtttt gtgttaatt	: tattgttaga	attttttta	ttttgagaat	360
tagaaaagga aatattatgt ttggtaatgi	ttatatttt	taaaataaat	ttgtaggaaa	420
gaatatttag taagtgatga gagtagtaa				480
ttatttttt tagagttttt taagtattg				540
tgtaattata agtatttagg gttgatatt				600
gtataagatt aatttaaagt agaggatgaa				660
atttagtgaa tatattaaaa ttaaatttt				720
ttgtaatttt ttagattata tttaaggta	tgtagaggtt	gttgtattat	aggttttgtg	780
attagagatt attggatttg tttttggaaa				840 900
ttttatttt tatattggtt taataatga				960
atttatgtat tataagtgat taatataatg aaatatttat tattaatatg atagagaagg				1020
agaggtgatt aaatggatgt aaaatttatg				1020
tttttggttg tggtatatat atgtgtggg				1140
gtgtatgtgt agaaggttta gatatgaaa				1200
tgatgttgtt ttggaagtaa gttgttgttg				1260
tatatttgta tttagtagta ttggaaggg				1320
agattgttta gttttttata atatatatt				1380
aaaagtgttt tagtttggtt tgggttggtt				1440
tttttttgt ttttttttt ggggtaagtg				1500
tttgtatagg ggaattgggt agtgagaga				1560
aagtaggtgg ggattgatag tggtttttt				1620
tttttttag tttggaggtt gtagttgtt				1680
tggtgtggag ggtatggaga ttatggtggt				1740
ttgggtggtt tttatgtgag attgtaaatt				1800
aaaaatggag tgggtttttt gtgtgttgtt				1860
ggtttttggt ggttttatga gtttgtagta	gttggtggtg	atgttgtttt	tgttttattt	1920
ttttgtgtaa gtgtgaggtt gttggtagtg	, tggtgtatgt	tttggttgtt	tttggttttt	1980
gtgtaaaatt tttattttgt ttatgtgaag				2040
tgtgggaaaa gttggggagt gatgattgtg				2100
ttttttttt tttttttgtt gtagtttgg				2160
ttggagttgg ttttttttt tgttttgtt				2220
gggtggttga aggggatgtt ttgtttttat				2280
tattggaagg aatgagaata aatatttaat				2340
atattttggg aatttgaggt ggattgggtg				2400
tgttttaggg tttttggggg agtttgagtt				2460
tgtgaggttt tgttggggat gttgagtgtt				2520
gtgggtgttt gtgtttttgg ggggtgttt				2580
ggttgtttgg attgtagtgg tgttttttgt				2640
ttttttgagt ttgtttgttt tttttggggt				2700
tttagtagtt tagtgtgtgg tttttatttg				2760 2820
tattggggtt ttttttatat tttttttatg tggtttaggt gtgaggatgt tgatttagag				2820
				2940
ttttggtgtt gggtgtgtgt gtattttaaa gggttttta attgtggtga ttttatttta				3000
gggcccca accgcggcga ccccacccc	acageeeea	cgcggcgcgg	accyaacycc	3000
<210> 489				
<211> 3000				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> chemically treated genomic	DNA (Homo s	sapiens)		
		_		
<400> 489				
gatatttagt ttatgttata taaaaattat				60
gattagtgtt tggagattag aatgtgagtt				120
aagtttaggt gtttgtgatt ttttgaagga				180
tttagggggt tattagaaag taatatatgt				240
tttgtgtttt tgttaggtgg aggtggggtg				300
tgaattttgt tatgtgtagg ttttgtgttg	attttggaag	ggataggtag	gtttggaagg	360
gatttttggg gtttggggat gttttttagg			rrgagrggtt	420
	Page 2	160		

		47675-47	7.txt		
tgggttttta ggtgtggggt	atttggtttt	taagtgtttt	ttggggatgt	aggtgtttat	480
gtattgttta gttgtgtgtt					540
tatttttttg gaaagtttgg					600
ggggttggaa gaaggggtta	tttattttgt	tgtttggttt	gttttgggtt	tttgaagtgt	660
ttgttttagt tgtggtttag	tgtgtttgta	attaagtatt	tatttttgtt	ttttttagtg	720
ttgaagtttt ttttttgtgt					780
tataataaat agtgtatata					840
gggggaggag gaaaggagag					900
aaaagaaaat gagagagtgt					960
gtttttttt ttttttaag					1020
ggaagttggg aatggttgga					1080
aggtggggtg ggggtgatgt					1140
ttgggggagg ttgttaggga					1200
atttgatttt gggtgattgt					1260
ggttttgggg ttttggatgt					1320
titttattit gttttattt					1380
ggatttgtga ttgtgttttt					1440
ttgtggggta gtttttggaa					1500
ttattgtggg ttttttgttg					1560
ttttgtttat ttgtaataat					1620
tttgatggga ggaaatattt					1680
ggggataggt tgtgttgtga					1740
ggtatttgtt ttagatgttt					1800
gagttttttt aggtatattg					1860
tatgtgatta tataggattt					1920
atatagtaaa ggtagatgga					1980
tttaaaaatt tattgtttat					2040
taatttattg ataaattatt					2100
ttatttaatť tttatgataa					2160
aaattaaagt ttaaagaatt					2220
tataaagttt atgatataat					2280
attaatttgt agaaattatt					2340
tatgttttga aaaaggttta					2400
aattgatatg agtattgttt					2460
atttattttt taatgagtgg					2520
tgttgtaaat ttaaaatgat					2580
ttttttgtag atttattttg	gagggtgtag	gtattgttag	gtataatgtt	ttttttttg	2640
gtttttaagg tagaaagggt					2700
ttgagagtat attttggttt					2760
tgaatggata gatttaatta					2820
ttaagggttt agaattttta	gaagtttgtt	aataaatggt	agatttgagt	tttaagttag	2880
tttttattta agtttatttt					2940
aaaaatagta attttttaa					3000
<210> 490					
<211> 2501					
<212> DNA					
<213> Artificial Seque	ence				
<220>					
<223> chemically trea	ced genomic	DNA (Homo s	sapiens)		
<400> 490					
gttattttta tgtgttttgt	agttttttaa	aggaatataa	gatttattga	tottaattat	60
ttagtattat ttttagattt					120
agatattaaa ataagtttga					180
tttttttt tttttgaga					240
atgattttgg tttattgtaa					300
ttttgagtag ttgggattat	agatatgtat	ttqtaatttt	tattaaaaat	ataaaaatta	360
gttgggtgtg gtggtgtatg					420
tgtttgaaat taggaggtgg					480
					400
tyttaytyta yyaaaayyty					540
tgttagtgta ggaaaaggtg	gaaggtatgg		ggagggttta		

600 ttttattaag ttatattttg gtaatttttg ttttttatga gaagtttttg ttgggtttgt tttagtgttg ttttgaggtt ttttttatga gttttgatag ggtagaggtt gttttgagtg 660 ttttttttt ttttggttta agagtggttt aaaagaagga tttttgattg gaattggtta 720 ttttgtgtta tttttgatt tttgattttg ttttaaaggg ggatgtgggg gaggggtttt 780 840 ggtaggggtg gttttgtttt ttttaggttt gtaagtttag gtttttgttt attgggttta 900 960 agttttattg aggttatagt tgtggttttg tttttttatg tttgtttttt gttttttgtt 1020 tgtgatgggt gtttttgagg attaatgagt gtgttgtatt tattttttgg gtggggttaa gtgttgatta attgttgttt gggtgtttgg ttgggtttaa atgttttaat tgttagtggt 1080 1140 1200 gggaggtaaa taagatggtg gtggtgtgtt gggtgtggaa gggggaggtg gtttggggtg tttgtgagtg aggtgtgggg tggtgaaggg agtgtgggtg gtggtatttg ttgttgtggt tttggatggg ttgggttttt tttgttgttt tgttttttt atatgtgtgg tggttgtggt 1260 1320 1380 gagggggatg tgttgtttgg ggtttggtat tttttgggaat tttttggttt ggagtttgtg 1440 gtttgtgttg ttttggttgt tgggagtttt gtggagtttt tgttgttgtg ttgttttgtg 1500 gattggatgt tgagggtatt tgggggtgggg tgtgtgtttg ggtagatgtt tgtggggagg 1560 1620 1680 gtgggaggtt ttttggatgt ttttagtttt ttgaatgttt gtttgggttg gtgggagttg 1740 1800 gtgggattgg ggtgttgttg gagatgtttt tagtgaagtt gggtttttta ggtgtggggg ttttgggggg tagtgatgtt gtggatttgg tttgtgggat gggtggtttg gagaagattg 1860 1920 tgtttggttg tgtttatatt tgtttgtggg tttgaggttt ttggaggatg atttagtatt 1980 gaaaagitti ggttggtttt titagggtti ttgaggatga agitgaitti gattgggttg 2040 ttttttagtt ttgaggtttg ggttttattg gaatttgtgt ttgagttgtt gttttggatt 2100 tttggtgttt gttggtttgt agattttgta ttgggtttgg atttgtagtt gggattgatg 2160 2220 tittitttt titttttt titgtaaaat titggagaag ggaagtigga atataaggaa 2280 ggattgttta tttgtggatt tagggttggt ggtgggattt taggattttg ggtttagtat 2340 2400 2460 gtgggttaag tttattggta agtatttgat gggggatttg t 2501 <210> 491 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 491 60 tgattttggt ggagttgatg tggtggatga atgtgtttat atttattgat attagtttgt 120 tttttgtgaa tatgtttagt tgttgtgggt ttattatttt tatgttggat ttagggtttt 180 ggagttttgt tgttagtttt gagtttgtgg gtgagtggtt tttttttgtg ttttgatttt 240 300 aaqggaaaaa tttttttttt aatagaaatg attgttttat atgttagttt tggttgtgag 360 tttaagtttg gtgtagggtt tgtggattgg tgggtattgg gggtttggga tggtggttta 420 gatgtgagtt ttagtgggat ttgggtttta gaattgggag atggtttggt tagggttaat 480 tttgtttttg gggattttgg ggaggttggt tggggttttt tagtgttagg ttatttttg 540 gggattttag gtttatggat aagtatgaat atggttgagt gtagtttttt ttgggttgtt 600 tattttatag gttgggtttg tgatgttgtt attttttggg atttttatat ttggagagtt 660 taattttgtt gggggtgttt tiggtgatgt tttggtttta ttgtttgttt taggagtaaa 720 tgttttgttg tggatgattg agtggatttt ttgggggggtg ttgatttttg ttggtttggg 780 tgagtgtttg gggggttggg ggtgtttggg aggttttttg ttgtggttaa tagttttgtt 840 tagggttggt tgttgtttgg tgtttgtgag ggtttgtatt gggtgttttt tgagttggtt 900 960 1020 gggggtttta tggggttttt ggtggttgag gtggtgtagg ttgtaggttt tgggttgggg 1080 1140 Page 270

```
1200
ttatttgtgt tttttttgtt gttttgtgtt ttatttgtgg gtgttttggg ttgtttttt
                                                  1260
1320
gtggatattg tatgttiggt tgtagggtat gtttttttgt gaggatgatg tgtttatttg
                                                 1380
ttggttgaat ttgttatttt tggttttttg tttgttttgt tgttgttgat gattggagtg
                                                 1440
1500
1560
gtatggggag atgaggttat ggttgtgatt ttggtggggt ttgggaaggg ggttgtaggt
                                                 1620
1680
                                                 1740
tttgggtttg tggatttgga aggagtgggg ttatttttat tagagttttt tttttgtatt
tttttttggg gtgaggttaa gggttaaaaa gtaatataaa gtggttaatt ttagttaaaa
                                                 1800
atttttttt tgagttattt ttggattagg ggaaagagaa atgtttaggg tggtttttgt
                                                 1860
tttattggaa tttatggggg aagttttagg atagtgttgg gataagttta gtgggggttt
                                                 1920
tttgtgaaaa ataagagttg ttaaaatatg gtttgataag gttgaaaata ttgaattttt
                                                 1980
ttgtgttagt tttgtgtttt ttatttttt ttgtattagt gttaggttgt ttagttggaa
                                                 2040
taaattattt tggtataatt tttgtttttt ggttttaagt gatttttttg ttttagtttt
                                                 2100
tttagtagtt gagattatag gtgtgtgtta ttatgtttgg ttaatttttg tatttttagt
                                                 2160
agaaattata ggtgtatgtt tgtaatttta gttatttaga aggttgaggg aggagaattg
                                                 2220
tttgaatttg ggaggaggag gttgtggtga gttgagattg tgttattgta ttttagtttg
                                                 2280
2340
2400
ggtttatatt ttaatttttt ggaatttgga gataatgttg gataattggt attggtaggt
                                                 2460
tttatgtttt tttagagaat tgtaggatat atggaagtga t
                                                 2501
```

<210> 492 <211> 2501 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 492

ggaggataga	aatataaatt	aaagaatgat	ataaataatt	ataaagttat	agttgttaaa	60
agaaaagtat	atggtgttaa	gagaatgtgt	aatataagat	ttatttatgg	aggtgaggga	120
aagtttgttt	attaaagaag	ttatgattta	atttatgaag	attaggagtt	ggttgggtga	180
agaaaaaaag	gttagaggaa	ggaagtttat	attggggaag	gttttaagta	taaagggtag	240
gaggattata	gaggtatatt	tatgaaattt	ggagaaggtt	tttagtaagt	aaggagaagt	300
taaatgaaag	tttatgggag	agttggaggt	ttgaagatat	gtttaaggat	ttggttttta	360
tttttttt	attttaagag	tagtgggaag	ttattaaatg	attttaatta	gagggttggt	420
ataattagtt	ttgtattttg	aaaagttgaa	tttagttttt	gtttgagaaa	ttgagtgaaa	480
gagtttagaa	tggttgtggt	tgagggtgat	ttgtgggaga	tttttatata	agttatggta	540
		aagagggaat				600
		ttttggtaag				660
		ttttttgtat				720
tatttagagg	tagtttgggt	gttaggtgga	gtatgagtta	aaattttagg	atgaagtaaa	780
		aaagatttgg				840
ttattttttg	gagattttgg	tataaatttt	tgtttttgta	atttttttt	taggtaaagg	900
aatttattaa	atgaattgtt	agaagattta	ttgattagag	ggttgtatag	aattatattt	960
ttgagagtgg	gaagtaggtt	gattatatag	tttattattt	aattaggata	tatttgaaag	1020
agaaaggggg	ttttattaat	atttaaatta	taaaatatgt	atattaggaa	tgttttgggt	1080
		gaaaggaaat				1140
		gggtaagtat				1200
aagtataagt	atttaggtga	tttttaattt	atttttaatt	ttatagtttt	tgttatattt	1260
tatatattt	gaaaattata	ttttttatta	ttattatttt	gtgataggtg	attatttata	1320
		tgggaagagg				1380
		tttgtttgtt				1440
		gattaatatg				1500
		tttataattt				1560
		tttaatgaag				1620
		aatagattgg				1680
ttgaaaatgt	atttttaaag	tatttaggag	taatttgaag	aaagttgagg	ggaggtggta	1740
			Page 2	271		

gatgttttga tttattaggg aaaatgtgga tgttttttgt tgttattttg tgaattgtgt 1800 1860 gtatttagtt atttttgagt aaatatttgg agtgaggaat ttttgagtgg tgtgggaggg 1920 1980 ttggtagtta tgagagagtt aggggttgga tgttgaggag agggagaagg tttttgggtg gagagaggtt ttgtttagtt gttggtgagg agttttttgt tttttttgta gtgttgagtt 2040 gaagttgagt gagttatttg tgtgtatgga gtgatgatat ttttgtgtgt gtatttgttt 2100 gggataggag ttggattttt gtgtagtttt ttttggttgt tggggggtttt tttgtgtttt 2160 gttggttttt aggttttttt ttggttggtg agtgggtgtt atatttggtt tgtatatttg 2220 2280 tgttgttggt ttggtgtggg gtttggagag ggtgtggtgt ggaggtgtag ttaggggttt 2340 gggaaggtgt tgtttgttgt gttgggggtt tggtttatga tgagtagtgg ggtttgttat 2400 gggttggggg ttgtttaggg gtttgtggtt gttgtatatt gttttgtgga tgtgtattgt tagtatgatt ttattgtatg tttagaagtt gggtgagtgg tttttagttt gggtttggtg 2460 2501 <210> 493 <211> 2501 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 493 60 gtagtggaga ggtggggatt ttaggaagat ttttggtgtt ttgttgagtt tgggttggg attatttatt tgatttttga atgtgtggtg ggattgtgtt ggtgatatgt gtttatagga 120 tgatgtgtag tggttatagg tttttgagta gtttttgatt tatggtagat tttgttgttt 180 gttatagatt gagtttttag tgtagtggat ggtgtttttt tggatttttg gttgtgtttt 240 tgtgttgtgt tttttttggå ttttgtgttg ggttggtagt gtagatgtgt gggttagatg tggtgtttgt ttgttagtta ggagggggtt tggaggttgg tgaggtgtgg ggaggttttt 300 360 420 480 540 tttttttgat gtttagtttt tagtttttt gtagttgtta attatgtttt ttagattagt 600 tttttttgaga gttttggttg atttttagtt gttttttatt gttttttat attatttagg 660 agttttttgt tttaagtatt tatttaagaa tgattaagtg tatatagttt ataaagtaat 720 aatagaaaat gtttatgttt tttttagtag attagaatat ttgttgtttt tttttagttt 780 tttttagatt gtttttaggt gttttagaga tgtgttttta aattgtaagt tgagatttag 840 gagtgaatat tttaatttat tgagttgtga gtatattttt tttttaaata aaatagtaat 900 960 1020 1080 taggtttagg aggtaggtag agattttgta tttttaatga gtatttggat agagtgtttt 1140 1200 tgaagtgata gtggtgggaa atgtaatttt tagaatgtat agagtatagt agaaattgta 1260 aaattaaaag tgggttggga gttatttgaa tgtttgtgtt tttatttttt taatgtaggt 1320 gaagaaagag aatatttatt tttttatgtg taaatggggt aatatgggag tagaatagta 1380 taaatttita aattttttt tttgttaggg taattagatt tgtttaagat atttttggtg 1440 1500 tggataataa attatgtgat taatttatīt tttatttta aagatatgat ttīgtatāgt 1560 ttittggtta gtagattitt tagtaattta tttaatgaat ttitttattt gagaggaaga 1620 1680 aaatttaatt tttaaatttt ttttgttatt ttaagtgttt atttgtttta ttttggaatt 1740 ttaatttatg tittatttag tatttaagtt gittitggat gittigttat titttagtat 1800 ttatgttgaa gatgtagaaa gtgtagtgaa attaggaggg ttaggtattt tttttttat 1860 taattaattg ttttgttaaa gttggagtga ttttgttaat ggaggaagat tgagttttaa 1920 attttttttt tattitttt ittgttatta gtttatgtta ttgttatggt tigtgtagga 1980 2040 tgagagttga atttagtttt ttaaaatata aaattagtta tattaatttt ttgattaaaa 2100 ttatttaatg gttttttatt gtttttgaga taaagagaag ataaaaatta gatttttgaa 2160 tqtqttttta agtttttaat ttttttgtaa atttttattt ggttttttt tgtttattga 2220 aagttttttt taaattttgt gaatatgttt ttgtaatttt tttatttttt atgtttagag 2280 2340

47675-47.txt

47675-47.txt tttttgtgga ttgaattata atttttttga tgggtaagtt ttttttatt tttatgagta 2400 gattttqtat tatatgtttt tttggtatta tatgttttt ttttaatagt tgtaatttta 2460 taattatttg tgttattttt taatttatat ttttatttt t 2501 <210> 494 <211> 1508 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 494 attittataat tataaatatt tagtgtattt tgtaaatatg gtataatttg ttggtataaa 60 attttattqt tttaqaaaat attqqtaata aaattataqa aaaqttaaaq atttttattt 120 tttattttga agtgtttggg agatatttta gaaatggatg ggaaatgtta aattttgtat 180 gtttgtttat tttttttt atattgatta gatgtaaatg agtgttatta aaagtatatt 240 ataggtattt atatagattt tttttataag ggatttataa agtttagatg tgaaatgtat 300 tttaaagggt ttttagttgt tttttatttt ttttttgtg aaatagggaa gatatatgtg 360 tttttaaggg tagagatgga atttgggtta atgggttggg gggtgggggg aagttggaag 420 ggattgtttt aggatatggt aggatagtgg attgtttttg ttgttttgtt gtttatattg 480 gggttttttg taggtgtgtt ggtttttttt ttttttgttg agaagaagtt ttgttaaaat 540 atttgttttt tttgggaatt tttttgtggg tttaaagtgg gaaaatgttg ttttaggttt 600 aaaataattt gtttaagttt tttagtgtgg gagaaatgtt tttatttgtt ttttgttttt 660 gggggtgttt tttgtttttt gttgttagaa ttttggggag tgtttagatt tggggtagta 720 780 840 ttagtttttt taaagtatag tttaaggaaa tttttttata gtttttattt agttatgggt 900 960 1020 attiggttit tragttitt ttttatttig gagtattitt ttggtgtigg tattgtigaa 1080 gaatgggttt gggtggggag gtgaagagaa gttaggaatg ttttatgttt ttttaatgga 1140 gagggggttt tgggagtttt tgagttagga ggatatggaa aaggggattg gggttttgag 1200 attgggtttg ttgggtttaa gatgtgtttt ttggatgggt ttaggatgtt tttttgttgt 1260 gggaattttg tggtttggtt ttgtttgttg ggggtttgaa aaagtggatt gtagggtgga 1320 1380 aggtgttatt tatttgagtt ttggggatag tttttgggat tttttgttaa gtgtttaaaa tggtaggttt ttaagtggtg tgtggtgttt ttgtattttt taaaattttt gaaatatttt 1440 1500 taaatgta 1508 <210> 495 <211> 1508 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 495 tgtatttggg agggaggttt attttttttg gaaaattttg ttagatgtta agatgtagaa 60 qqatttttga gatgttttaa gaattttgga aagtgtaaaa atattgtgtg ttgtttgggg 120 atttgttgtt ttgggtgttt ggtggagagt tttggggatt gtttttagga tttgggtaaa 180 240 gggtttttgt gataggggag tattttagat ttatttagaa aatgtgtttt gggtttaata 300 gatttaatīt taggāttītā atttttttt ttgtgttttt ttagtttagg ggtttttgag 360 gttttttttt tattaggaaa atataaaaata tttttggttt ttttttattt ttttgtttag 420 gtttattttt tagtggtgtt aatgttagag gagtgttttg aagtggaaag agggttgggg 480 ggttagatta gtagttggga tatttggaga ggtagatagt agaagtggat atttttttgt 540 atgtttgagt tggtgttttt ttatggatgt ttatttttga gtttatgtat ttgtttttag 600 atatgttggt ttgtggttgg atgaaaattg tgaggaggtt tttttgggtt gtgttttaag 660

ggaattgagg aaggaagatt ttgtattgta tggggggaaa aaaaggtatt ggaggggggt

Page 273

720

40C0C 40 4 4	
tggatgtgt ttgttttggg tttaggtatt ttttaaggtt ttggtagtag agggtgggga 8 gtatttttgg gggtagagag tgagtaagaa tgttttttt gtgttggggg gtttggatag 9 attattttaa atttgaggt atatttttt gttttgaatt tatggggggg tttttggggg 9 aggtggatgt tttggtaggg ttttttttt gtaggggggg agggagttga tgtgtttgta 10 gagagttttg gtatgggtaa taaggtggta gaaataattt attatttgt tatgtttaa 10 ggtagtttt tttaatttt ttttatttt tggtttattg gtttaaggtt tattttgt 11 tttgaaaata tatgtgttt ttttgttta tagagggagg	780 340 960 920 980 980 980 980 980 980 980 980 980 98
<210> 496 <211> 286 <212> DNA <213> Artificial Sequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 496	
gaattagttg gtattgttta gtgtgatttg tgaggttgag ttttaatagt ttaaagaagt 1. aaatgggatg ttatttttgt ggggtttgtt ttttgtgagg tgtttatttt gtatttgtta 1. tgtaaaatga gggagtgtta ggaaggaatt tgttttgtaa agttattggt tttggttatt 2.	60 .20 .80 !40 !86
<210> 497 <211> 286 <212> DNA <213> Artificial Sequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 497	
atggttttat aagatggatt tttttttaat gttttttgt tttgtatggt agatatgggg 1: tgagtatttt gtgaggagtg agttttgtgg aggtggtatt ttatttgtt ttttggattg 1: ttggggttta gttttataaa ttatgttggg taatgttagt tgattttatt tttttagaga 2:	60 .20 .80 !40
<210> 498 <211> 2501 <212> DNA <213> Artificial Sequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 498	
aatagttttt agatgtggaa attgtgaaga taatgttggt gatgtggaag taatataaat 1: tttggagttt tttagattta ggtttgaatg ttagattgtt ttttattta	60 20 80 40 60

```
47675-47.txt
taatttttat tgagtaatgt tagttgaaag ttgtggtggg attaaatgtt gtaatgagta
                                                        420
tttaaatgag gttgaagtat ttatgtattt tatttatata tggtgaggta tatttaagga
                                                        480
aggttgtagt tattaaaatt ttaggaaata attttttatt tttttaggtg aaagggtttt
                                                        540
taggtittig tgttttggaa ggtitattta tagttatttt ttaaatgata atgigattga
                                                        600
                                                        660
tgagtttaga gtttagttta aatagtaatg gattggaaga ttagtttagg ttttattaat
gtggaatata gaataaatta tgtttttqtt ttaqtttqtt tatttqtqaa ataqaqttta
                                                        720
                                                        780
840
tgtttatgat gtttggttgt gtataagata aagttataat aaagttataa tttattttt
ttttgtagaa gattgtaaaa agtaaaagag atttaggtaa aaattttgga atgatttttg
                                                        900
gaatagagag tttttttaga attagaagtt aaaggaattt aaaatatagg gaggtttagg
                                                        960
1020
tttttttati tttatttgta tttttatttt tatatagggt ttatgggatt ttttttataa
                                                        1080
aagagtagtt gtagtaattt atattatttt ttatgtitgg ttgtttatta agaggtgaaa
                                                        1140
agtagtttta tataggtttt atttttggat agttttagtt gtaaagttta aaatatgtga
                                                        1200
aggtaatttg gaaaagtaag tggttgtata taaagtaaat gtttatagag ttttggataa
                                                        1260
1320
                                                        1380
ttgggtgatt ttgtttttga gagtttggat gagaaatgta tggttaaagg taattttaga
taggaagaaa ggtagagaag agggtagaaa tgatttttga tiittggggt tgagggttit
                                                        1440
1500
tagtaagtat ttgttggttt ggttatggtt tgttttttag tttgtaggag attttttat
                                                        1560
ttttttattt gtgtgttttt attagttttg aaaagaattt ttggtagtta ggagtaggta
                                                        1620
tttttattgt tttttttt tttttttgt ttttattttg ttggtttttt agaitgggtt
                                                        1680
ttggaattaa atttggtgag tgttggtttt taggaaattt ggagttttgg tgtttaaatt
                                                        1740
1800
1860
tagtgtgtgg tgaggggagg ggagaaaagg aaaggggagg ggagggaaaa ggaggtggga
                                                       1920
aggtaaggag gttggtttgg tgggggtggg atttgatttg taaattgttg tatttgtttt
                                                        1980
ttatttttta gtgttttttt tgagattttg gggagttagt ttgttgggag agtgggatgg
                                                        2040
tttggagtaa gtttagaggt agaggaggtg atagagggaa aaagggttga gttagttgtt
                                                        2100
ttagtgttgt ataggagttg aagggatgta ttatgttagt tttagtttgg ttttagtgat
                                                        2160
2220
tttggtgaag tttttaaaag ttgttaaaga tttggaggaa gtaaggaaag tgtttggtag
                                                       2280
2340
tttttttttt qtttttttt ttqtaqttqt tttaqttqqt tatttttaqt taatttttt
                                                        2400
tattattttt ttttttattt gtttttttgt ttttgttggt ttagtgttgt tagtttqagt
                                                        2460
ttgtagagag gtaatttttt ttggttgtga gtgggtgagt t
                                                        2501
<210> 499
<211> 2501
<212> DNA
<213> Artificial Sequence
```

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 499

agtttgtttg	tttgtagtta	aagggagtta	tttttttgta	aatttgggtt	ggtagtgttg	60
ggttgatggg	ggtgggggg	tgggtgggga	gaagggtggt	gaggggggtt	ggttgagagt	120
agttgattga	ggtagttgtg	ggagagaaga	tgggggaggg	ggggaaggta	gggtggggg	180
aggtggggtg	gagaggagga	ggataaaggt	agttgttagt	tttattaggt	atttttttg	240
tttttttga	gtttttagta	gtttttaaaa	attttattga	agaggaaagg	gtagttttgg	300
		gtgttgtaag				360
ggttggtgtg	gtgtgttttt	ttggtttttg	tatagtattg	gagtggttag	tttggttttt	420
ttttttttg	ttgtttttt	tgtttttggg	tttgttttgg	attgttttgt	ttttttagta	480
		ggagggggtg				540
gtgagttggg	ttttgttttt	attgggttgg	tttttttgtt	tttttattt	ttttttttt	600
tttttttt	tttttttt	tttttttt	attgtgtgtt	aatgtttgtt	tagtggtttt	660
		agtgtgggtg				720
ggatttttgt	tttttgaata	gtttttgttt	ttttaaatta	aggtttaggt	gttagggttt	780
		atttattaaa				840
atagggtgga	ggtgagggag	ggaggaaaag	gatgatagga	atatttgttt	ttggttgtta	900
ggggttttt	ttaggattga	taagagtgtg	tagatgggag	agtgggagag	tttttataa	960

```
attgaggagt aagttatgat taagttagta gatatttgtt gaaattttag attttgttat
                                                                   1020
agggatagat tgggttttgt ggtattgtgt tatttgtttt aggaattttt agttttaaga
                                                                   1080
attagaggtt attittatit tittttitgt titttittt giitggaatt gitttaatt
                                                                   1140
atgtattttt tatttagatt tttaaaggta aaattattta gataagtagg taaatatata
                                                                   1200
aatattaaaa atatttgtta tgtatatata ggtgtttaat tttgtttaga gttttgtaaa
                                                                   1260
tgtttgtttt gtatgtagtt gtttgttttt ttaagttgtt tttgtatatt ttaaatttta
                                                                   1320
taattiggaat tatttaagga tagaatttat atagggttigt tittitgttit titgatggata
                                                                   1380
gttaggtgta gaggatgatg tgggttattg taattgtttt tttgtggagg aggttttata
                                                                   1440
agttttgtgt aaaggtggag atgtaagtgg gaatggaaag agagagaaaa tgtaaatgta aatttataag gaaaatattt tttttttatg ttagtagaga ttttgggttt ttttatgttt
                                                                   1500
                                                                   1560
taaatttttt tgatttttga ttttggggag gttttttgtt ttaaaagtta ttttgagatt
                                                                   1620
tttgtttggg ttttttttgt tttttgtagt tttttataga gaaaagatgg gttgtagttt
                                                                   1680
1740
gaaggtaatt taaatttaaa ggtaaggaag attggatatg ataggtttta ttttatagat
                                                                   1800
gaataggttg aaataaggat ataatttgtt ttatgtttta tattagtaaa atttaaatta
                                                                   1860
gttttttagt ttattgttat ttgagttaga ttttagattt attaattgta ttgttatttg
                                                                   1920
ggaaatggtt ataaatgaat tttttagaat ataaaggttt gaagattttt ttatttgagg
                                                                   1980
aggtgaaaaa ttattttttg agattttaat ggttatagtt ttttttgaat atattttatt
                                                                   2040
2100
ttttattata atttttaatt agtattgttt aataggaatt gagtgggttg gtaggatggt
                                                                   2160
agaatggaat taatataggt tittagagtta ggagaattat gtgtttatat attaatagtg
                                                                   2220
aaggaaggtg taaaaattat tgaatgaata atggatagga gtgaagagga tatatagata
                                                                   2280
taaaqaqqtt tqaaaaaaaa ttaaqqtqaq aaataatqtt ttqaaqttat tttqaataaa
                                                                   2340
aagtagtttg atatttaaat ttgggtttga aagattttaa agtttatgtt gtttttatat
                                                                   2400
tattaatatt gtttttatag tttttatatt tgaaaattgt tgttaatata agttattttt
                                                                   2460
agaaggttag tgtgttattt aaaagatata atgtgtatag a
                                                                   2501
```

<210> 500 <211> 2448 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 500

ttgttttgtt	tttatgataa	aagttaatgg	gtttttagta	tttttattaa	aaaatagtta	60
tgtagatagt	gttttggtgg	ttttgttttg	tattttaatt	ttggggtggg	ggaaaggggt	120
taatgttttt	gtagttttaa	attgggttat	tatttgttta	ttgagttgaa	tatgatgtgg	180
ttttgtttgg	tgtgtttttg	ttggttttgt	gtttgtgtta	ttttagtagg	gtttgtagta	240
		gatagagaag				300
		ggttttgtgt				360
		tggttttgtg				420
		ttttttggtt				480
		tgttttgttt				540
		tgtgtttggg				600
tttgtttggt	gatttttttg	gttgttgttt	aatgtttgta	gtttgttttt	tagttttagt	660
tattgtgtta	gtgttgtttt	attttttta	tttagttttt	ttttttggag	gagtgtggtg	720
		ggtgtagggg				780
		tatggtttaa				840
		aatatagggt				900
		atgttagtga			-	960
agttatagtt	ttgagtttga	tggttggtgg	gttttggagg	gtgtatttt	ttatattagt	1020
ttttgtgttt	ttgggtgtag	tgttggaagt	agtattggat	gtaggaaagt	gagaagttgg	1080
ttggggtgta	aagattgttt	tgggatttat	gggagtttta	ttgttttgtt	tagaatagtt	1140
		ttagattaga				1200
aagggaggtg	ggattgtgag	gttgtttatg	gtgttgattt	tgttttttgt	ttttagaagt	1260
ggttagaaat	gtgagaatgt	tgtgttgttg	gaatttattg	tttttttgta	gttattagtt	1320
ttgtaaatgt	aggtattagg	agtttattgt	tggtatttag	ttaatatagt	gggatttatt	1380
gagaggtagt	ttgttataat	taaagttttt	tagtatttt	atttttttt	agttttagga	1440
tttaaatttg	tagggttgtt	tgataggtat	tatgtaatag	agggttttta	gtatttgagt	1500
gtttttagat	tataaatggt	tggtttattt	gtttttgagt	ttgttaaagt	agtttagtaa	1560

agtttagttt tttttttggg aattatagta gtagtgtaat tttgtttatg agtagtaaag 1620 aaatatgggt ttaagttttt gttaattttt ggtgtggata ggttattttt tttttattaa 1680 ttttagggtt tttatttgta agattgggtt tggttaggtg tggtggttta tgtttgtaat 1740 tttaatattt tgggaggttg aggtaggtgg attatgaggt tagtagtttg aaattagttt 1800 ggttaatatg gtgaaatttt atttttatta aaaatataaa aattagttgg gtgtggtggt 1860 1920 atgtgtttgt ggttttagtt atttaggagg ttgaggtagg agaattgttt gaatttagga 1980 ggtggaagtt gtagtgaggt aagattgtgt tattgtattt tagttttggga gatagagtaa 2040 2100 attattgtag attttggatt atatatttaa taatatattt attgaggtat tatataaagg 2160 gttttgggag tttttaaaga gttggagtta taagaagttt aggtagggtt agagtaataa 2220 atgtgtttat gaagagtggg gatgagtggt atttgttggg atatgggtgt aaagttgata 2280 aggttatgaa ggtttaatag atatttatgg agtgtttagt atgtggtggg aataagatta 2340 ttattaaggg ttttaaagta gttagtgtat attttagagt gaagaggggt attgtagggt 2400 gttagttttt ttaagttttg attggtaatt taattttgtg gaaattgg 2448 <210> 501 <211> 2448 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens) <400> 501 ttagttttta tggggttggg ttgttggtta gagtttaaga ggattagtat tttgtaatgt 60 ttttttttat tttaaaatgt atattgattg ttttagagtt tttgataata gttttatttt 120 tattatatat taggtatttt ataaatattt gttgaatttt tatgatttta ttaattttat 180 atttatattt tagtaaatgt tatttatttt tattttttat agatatattt gttattttaa 240 ttttgtttag gtttttgta gttttagttt tttagagatt tttggaattt tttatatggt 300 gttttagtaa atatgttatt aaatatgtaa tttggaattt gtagtggtaa tgagtaagtt 360 tttaagtaga aaattattgg ggagttattt ttagagttgg aaagaagtta agagattatt 420 aagtttaatt ttttttttt ttttttttt tttttttgag atagggtttt gttttgttt 480 ttaggttgga gtgtagtggt gtgattttgt tttattgtag tttttgtttt ttgggtttaa 540 gtagtttttt tgttttagtt ttttgagtag ttgggattat aggtgtatat tgttatgttt 600 ggttaatttt tgtattttta gtagagatgg ggttttgtta tattggttag gttggtttta 660 aattattgat tttgtgattt gtttgttttg gttttttaaa gtgttgggat tataggtgtg 720 agttattgtg tttggttaag tttagtttta taaatgagga ttttgaggtt ggtaggaggg 780 aggtgatttg tttatattag gagttagtag aaatttgaat ttatattttt ttgttqttta 840 tgggtagagt tatattgttg ttatgatttt taggagagaa attgaatttt gttaaattat 900 tttggtaaat ttaaaagtag atgggttagt tatttgtggt ttgaaagtat ttggatgtta 960 gagatttttt gttatatggt gtttgttaga tagttttata aatttggatt ttggggttgg 1020 aaaaagataa gaatgttggg agattttggt tgtggtagat tgttttttag tgggttttat 1080 tgtgttggtt gagtgttagt ggtggatttt tgatgtttgt atttgtagaa ttgatagttg 1140 tagggaggta gtgggtttta gtggtatagt gtttttatat ttttggttat ttttagaggt 1200 1260 atatgtgatt tggattagtt tggtttgggg atggttttag ttattgttgg ttgttttaag 1320 tggggtgatg ggatttttgt gggttttaga gtagttttta tgttttagtt ggttttttgt 1380 ttttttgtgt ttagtgttgt ttttagtgtt atgtttaggg gtatgaaggt tggtgtaggg 1440 aggtgtgttt tttggggttt gttagttgtt agatttgaag ttgtgggttgt tattgttttt 1500 ataattagtg tatgittttt gttgatgtta gttggagttg ttttggtatt atataaggtt 1560 ggtgatatgt tgggatagat tttgtgtttt ttaaggtgtt tttagttttgt tttgagggat 1620 1680 gagtgtttgt ttagtttttt tttgtattag gattttgttt agtttagtta ttatgtttt 1740 ttggggaggg aggttgggtg gaagggatgg aatagtattg gtgtagtggt tggggttgga 1800 gggtaggttg tgggtattgg gtggtggttg gaggggttgt tgggtgagtg tggggagggg 1860 agtggtgttt gtagttgttt taggtgtatt ttattttgtg ttgtttttgt gtgtttaggg 1920 ttggtggtat tatgaggtag gtgggatgta gtgttgttgg ttgtgttgtt gtttttggta 1980 tagitgigtt tigggagtag tiagaggagt titgaggtigg tigggittag gattigagti 2040 tgtgttggag ttttggggta tggaattagg gtgtggggtt tgtgtgtttt ttttgttgtt 2100 ggtggatgtt ttttgtttgt gtggggtttg gttgattggg atttgggatg gtaggtgagt 2160 ggttgtggtg ggataatttt tttttgttta ttgattttat tttttatttg ttgtggattt 2220

·47675-47.txt

2280

```
tgttggagtg gtgtggatgt agagttagtg ggagtgtgtt gagtagaatt gtattatatt
2340
tattttagag ttgggatgtg gggtagagtt attagggtat tgtttgtgtg attattttt
                                                            2400
aataaaagta ttgaagattt gttggttttt gttgtagagg tagggtag
                                                            2448
<210> 502
<211> 2344
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 502
                                                              60
gtttggtata tttaagattt ttatggaggt ttagttttat attttttt attttttag
                                                             120
gttggttttt ttttgttgtt gatgtgtggg agtttagaga gtggtttttt gtttttgtgg
180
tttttttttt ttttttgtt tttttggttt tattattatt attgttatta tgttttttt
                                                             240
                                                             300
gttttaggtt ttgatgtttt gggttttttt tggggtgggg tgggttgttt taggggggtt
                                                             360
420
ttggttggtt ggttgtttgg gtaggttttt tggttgtatt tgttgtagtg tatagtttgg
                                                             480
540
tggggtttat tgtgatggtt tttttgatat ttttggatag tattttttt gtggaagttt
                                                             600
ggggatgagg atggtgatgg agatttgttt ggattttgag ttaaagtgag gttttgtgag
                                                             660
                                                             720
tttgttttga gtggaatttg tatttgggta ttgttattag agaatggttg gtttaggtta
ttggtatttt ggagtttagg gtttagattt ggttttagaa tgagaggtta tgttagttga
                                                             780
ggtagtattg gtgggaattt tggttttggt ttgggagatg tggtttgtta gaaggttggt
                                                             840
gaaagtggat tgttgttatt ggattttaga ttgttttgtt tttttgagtt tttgagaagg
                                                             900
attgtttttt aggtattgtt gtttgggagg agttggttag agagatgggt tttttggagt
ttaggattta gatttggttt tagaattgaa gggttaggtt ttgggatagg gtggtagggt
                                                             960
                                                            1020
gtttgtgtag gtaggtggtt tgtgtagtgt ggtttttggt gggggttall ttgtttttt
                                                            1080
gtgggttgtt tttgtttata ttggtgtgtg gggaatgggg ttttttgtat tttatgtgtt
                                                            1140
ttgtgtgttt ggggtttttt tatagggggt ttttgtgagt taggtagtga gggttgtttt
                                                            1200
tgtgttgtag tttagttagg ttgtgttggt agaggggatt ttttaatttg ttttggtgtg
                                                            1260
tggggatttt gtttatgttg ttttggtttt tttggatggg gtgttttttt atttttaggt
                                                            1320
tttttggtgg tttttgtatt tggggtaaaa gttgggagga ttgggatttg tagtgtgatg
                                                            1380
gtttgttggg tttttgtgtg gtggtatagt ttgggtttgt ttaagtgggg ttgtagggtt
                                                            1440
aaggggtgtt tgtgttattt atgttttagg ggagtttgtg gtggggttgg ggttggggtt
                                                            1500
tttaggttgt tggggtggtg tgggaatttt aagttggggt agttttattt ttttagtttg
                                                            1560
tgttiltgga tgttittgtg tggtaggggt agatgtaagg tattttggtg tttttttagg
                                                            1620
tgttttagga gttggtgttt tggtttgtat ttttttgtgg tttgttgttg gatgagttit
                                                            1680
1740
agttggaggt tttggaagag gttgttttgt tggaagtatt ttttagtgag gaagaatatt
                                                            1800
gggttttgtt ggaggagttt taggatgtgg ggttgggatg gggttgggtg gtttggggta
                                                            1860
1920
tttgtttttt ttattgggtt gattggtttg ggatttttgt tttttaggtt taggtttggt
                                                            1980
gagagatttt atatagtgga gaattgttat tittitttgg gtattitggg gattitagag
                                                            2040
ttggtttagg tattagtagg tgggttgttt attgtgtatg tgtgggtttg tgggtagttg
                                                            2100
tttgggttgt gggagtagtt tgggtagagt tttttgttt ttttattagt ttatttgtt
                                                            2160
gtttgattgt ttttttttta tttttatttt ttgtttttgg aaaatgtgtt gttttttggg
                                                            2220
ttgggtggag atttttgttt tgtgaaatat tgggttttgt gtagtgtttg ggtttgatat
                                                            2280
2340
ttgt
                                                            2344
<210> 503
<211> 2344
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
                                 Page 278
```

<400> 503

gtaggggttt gggtgggtgg gtgatggtgg tgtgggggtg tagaggagt gagttttgg agtggtgta ggtttggatg ttttggtggg ttttggtgtt tgtggggatg ggggtgtt tagttaagt ggatgatgt ttttttgggg gtgggggggg	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1140 1260 1320 1320 1340 1560 1680 1740 1860 1920 1980 2040 2160 2220 2280
<213> Artificial Sequence	
(21) Altilitat bequence	
<220> <223> chemically treated genomic DNA (Homo sapiens)	
<400> 504	
tagatgtatt ggtgagatta ggttttggtt gtgattttgg gtttgtatta tgattttgatttttttt	120 180 240 300 360 420 480

600 ttaattttga tttatggttt agttgaattt tatttaatga ttttagttta taatatttga 660 720 tttggtatag gtagttttta gaaatttaga tttataggat ttgtaattat ggtttttgga 780 tttatgagat tttttattat ttttttaga tattttattt taaggggatt ggttgggtgt 840 900 gttttgagat tggatttttt ttgaatattt ttatttttta tagatgtgga tgaatgtagt 960 1020 tgtagttgtg tqttagqtta ttgqqtqttq ttqqqttqqt ttqqqttttq tgtaggtgag 1080 tagtataggg atttgttaga gagtttggga gtagggtttg ggttttaggg taaagttggt 1140 tggaaaggtg gaggtgggat taaggtgttg tgggaggagt ttagaaattt ggtattggtg 1200 ggggtggggt tattgtgatg tgggtggagt ttgtttggga ggttgggttt tgtgattttg tttaattttt tgtgtatttt agatgtgaat gagtgtttgg agggtgattt ttgtttttt 1260 1320 tttggattit gtggagtttt ttgttitggt ttgtattigg gttgattttg gttttggaaa 1380 gggtgggttt agggtaggaa aaggtgggat ggggagaaga gggtgaaaaag gggaaaatga 1440 gtttttagtt ggggtatttt agtaggatta gggggtagtt ggtgggagtt ttgaggtagt 1500 gagggggggt ggggtgtgga gatgaaaggg ttgagtttgg gtatttggat tgtgattgta 1560 1620 aagaagttgt tttaaatttg ttggggggtg gtgtttgtag ggagggaagt agtgtgaggt 1680 aggttgggga aggtgtgaga ggtttaggag agttgagggg tggtggaggg gtgtggttta 1740 gaatgttagg tggagtggga ggtgggttgg gtttttggat gttttgtttt gtagatgttg atgagtgtag tgaggaggat ttttgttaga gtggtatttg tattaatatt gatggttttt 1800 1860 1920 titaltttig tittittt titgittitt tittittt attitttt titgitttt 1980 tttttagttt ttttaatttt tttttatttt aattttttt tgttttttt tttgttttt 2040 tggttttttt tttttgattt ttttttttt tttttgtatt ttttattttg 2100 ttttatattt gattatttga ttttttttt tagatgtgga tgaatgttgt gagtgaggtt 2160 tagttttgtg tgggttgtag tgttgtgaga atttttttgg tttttattgt tgtgtttggg 2220 attgtgattt tgggtattat gtgggttttg agggtatttg tgatggtgag tttgtttta 2280 tttgtttttg ttagtgtttg taatgtggtg ttggaggttg tttttttggg gattgaggag 2340 gggtgttttg 2350 <210> 505 <211> 2350 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 505 tagggtgttt ttttttagtt tttaagggag tagtttttag tattgtgttg taagtgttag 60 tgaaggtggg tgggggtagg tttattgtta taggtgtttt tgggggtttgt gtggtattta 120 qqattqtaqt tttgqatata gtggtaggag ttgggagagt ttttatagtg ttqtqatttq 180 tatagggttg ggttttgttt gtgatatttg tttatgtttg aggagagagg ttgggtggtt 240 300 ggatgtggga agtagggagg taagatgggg gatataaaga ggggagagga gagttagaag ggggaggttg gggaagtaga ggagagggta ggagaagatt ggggtagagg agagttgggg 360 aggttaggag aggaggtggg ggaaagaggt aaggggaggg gagaagtgga ggaggaaaga 420 tagaggtggg aggttaattg gtgagttggg gagttgaagg gaggagggat taggttgggg 480 tggggttttt tattgaggta ggaggtgagg tttgggttag tgtggtgttt tggaggatag 540 atgtatttga aggagttgtt ggtgttggta tagatgttgt tittggtaaag gtittittttg 600 ttgtatttgt taatgtttgt gggatagggt gtttgaaggt ttggtttatt ttttgttttg 660 tttaatattt taggttatat ttttttattg ttttttggtt tttttaggtt ttttatgttt 720 tttttaattt gttttatgtt atttttttt ttgtaaatat tgttttttga tgggtttaga 780 atagtttttt tataattatg gtttaaatat ttagatttgg tttttttatt tttatgtttt 840 gttttttttt attgttttga gatttttatt agttgttttt tgattttgtt ggaatatttt 900 ggttaaaaat tigittitti tittitgitt tittititt gittigitti tittigitti 960 aagtttattt tttttggggt taggattagt ttgggtatga attgaggtaa gaggttttgt 1020 ggggtttggg ttggtagtta ggggtataag tataggtaaa ggagttgtta gtgttgaggt 1080 attigtigt agggaagtag aaattgiitt tiaggtatti gittatgiit agggtatgig 1140 ggagattggg tggagttatg ggatttggtt ttttagataa gttttgttta tattgtagta 1200 1260

Page 280

47675-47.txt 1320 tattttttta gttggttttg ttttggaatt taggttttat ttttagattt tttggtgggt ttttatgttg tttatttgtg tagggtttgg gttgatttga tggtgtttgg tagtttggtg tgtagttgta gtggaaggag tttttggtgt tagtgtagtg gttgtgggga ttatagggag 1380 1440 gggtattiga attgtattig titatattig tggggggtgg gggtgtttag aaagggttta 1500 gttttgggat atatttgatt aatttttttg gagtagggtg tttgggggag gtggtgggaa 1560 gttttatgag ttggaggttg ggggagggtt ttatggtaga ggtgggtagg gttgattaag 1620 gtttttgggt tttggggatt atggttgtaa gttttgtggg tttaggtttt taggaattat 1680 1740 ttgtgttagg attttggagt taggagaggg attagatagg gattagaaat taattagggt 1800 aagggattag ttaagtatta taaattagga ttattggatg ggatttggtt gagttatggg 1860 ttagagttag tgattggaat ttgaatttag ttaggattag aagttatagt tagggtttag aattttgttt taagttaggg gttagggtta gggattatga atttaattag gttttagaga 1920 agggattttg agaagaggta ggggttgtga aagagatagg attaagagtt atatagttaa 1980 ggttatggtt agtgttatgg ttagtggtta tgattagggt taaatgttat agttaaattt 2040 aggagttata ggttatattt agggttagag ttatgagggt tataattgtt attagggtat 2100 gggtagggat tattattaag ggtgatggtt agggttaaat gttattgtta agttgggttt 2160 taggagttat atttagggtt aagagttgtg gtttaggtta gggttaggag ttataggttt 2220 tggggattga gggattgagg tttaggttag gaggttatgg ttaggttata gttgtgattt 2280 gggttaaggg ttgggggtta tgatgtaggt ttaaggttat agttagggtt tggttttatt 2340 2350 agtgtatttg <210> 506 <211> 2206 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 506 gggtattttt tgggatggta agtggtatta gtgttgtgag atggtttttt ttttgttgtt 60 aggtgttagg aggtttgttt gggtttgtat gtgtttgggt ttggtaggtg gggaggtggt 120 atttagggta gtttttgtat tggaagtttt aggaatttgg atttaggttg aaggtttttg 180 ttttagagtt ttggattgtt gagtttggaa tagttttttt tagatatagt gtggtgtggg 240 agtagttgta tgagggttta tgtattttgt atatattagt agtttatttg attttgtttt 300 tggttatgtg aaatgtatgt ttatttgatt tttgattttg tttttggtta tgtaggtttt 360 gtttgggttg tgataggagg tttggtgttt ttaggtattt ggtaggtttt tttgatttt 420 tttttgagtg ataggaatgg gaagtgagta aatttaagta gaattaggag gttttttta 480 gaggagtttg gtggaatttg gttttggttg tgtgttgagt ggtggggtat ttatagggag atgagttagt gtttatttt tgttttagtt tttttgtggt tgttttttt tttagaaggg 540 600 gtiggtttag gttggtgttt tigtggtitt tggagtalat tigttgttgt tttttttggt 660 ttttggtgat agtaggtttt ttgtatttta titgtttttt agitagtaig gttttataia 720 gaatatggtt gtagataatt tttttgtgtt ttgtatagtg aattgttatt ttgtgtgggt 780 tttattgtta ggttagggag gtaggagttg tttttatttt ttgtttggga gttgttgttt 840 gttttttgga tgagttagga ataaatgtgt taatattggg tggttgtttt tgttatttt 900 960 tttagtattt aggagatttg tatggtagtt tttaagatgg gtataagtga ttataaggag 1020 ggatgtatgt gttttatttt tttatttatt atgggattag gttgaggttg tttagggagt 1080 gtatgggagg gttgtgtttg gtgtatttgt agagattttt tgaagagggg ttttggttgt 1140 tttttattgg ggtaggtgtg ggtttaggtt tttgatattg tgatggtgtt gtgggatttt 1200 gatggattit atttggggag tttaggtttg ttttatggta aggtggttat gtattgtttt 1260 tgtagttttg agtataggtt ttatatggga tttgaggttt gggttttatg atatttgggt 1320 tatgtgtttt tttggtgttt tttttttggg gatgaaatta tatttatagg taaaggtttg 1380 ggagtggagg gagatagtag gagataaagt aaggggatga ggattttggt agttataaag 1440 gtagtgggag ggttttggag gtttttgttg ggtagtgtag ttaggaaagg gtttattagg 1500 tgggagaggt aggtgtttgg tgagtgttga gatttgtatt atgagaaggg ttgggtttit 1560 aaggtatgta tggggtttgg gagtggaggg agtgtgagtg ggtgttagga tggggtttgg 1620 1680 1740 1800 1860

Page 281

1920

1980

47675-47.txt 2040 gtttgggagt ggagggagtg tgagtgggtg ttaggatgg tttgggagtg gagggagtgt 2100 gagtgggtgt taggatgggt ttgggagtgg agggagtgtg agtgggtgtt aggatgggt 2160 ttgggagtgg agggagtgtg agtgggtgtt aggatggggt ttggga 2206 <210> 507 <211> 2206 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 507 60 120 tttagatttg ttttaatatt tgtttgtgtt ttttttattt ttagatttgt tttaatattt 180 gtttgtgttt tttttatttt tagattttgt tttaatattt gtttgtgttt tttttatttt 240 tagattttgt tttaatattt gtttgtgttt tttttatttt tagattttgt tttgatattt 300 gtttgtgttt tttttatttt tagattttgt tttgatattt gtttttgttt tttttatttt 360 tagattttgt tttaatattt gtttgtgttt tttttatttt tagattttgt tttaatattt 420 gtttgtgttt tttttatttt tagattttgt tttaatattt gtttttgttt tttttatttt 480 taggttttgt tttaatattt gtttgtgttt tttttatttt tagattttgt tttaatattt 540 gtttgtattt tttttgtttt taggtttgtt ttaatatttg tttgttttag attttgtttt 600 aatatttgtt tatatttttt ttatttttag gttttatgta tgttttggga gtttagtttt 660 720 ttttgattgt gttgtttaat aggagttttt agggtttttt tgttgttttt gtggttgtta 780 gagtitttgt ittittgttt tgitttttgt tgitttttt tattttaaa tttttatta 840 tgggtgtgat tttattttta ggagggaagt attagggaag tatatagttt aagtgttatg 900 gagtttaggt tttaggtttt gtatggagtt tgtgtttagg attgtagagg tagtgtgtgg 960 ttattttgtt gtggagtagg tttgggtttt ttgggtgagg tttattaaag ttttatagta 1020 ttgttatggt gttggggatt tgggtttgta tttattttag tgggaggtag ttagggtttt 1080 tttttagggg atttttgtag atgtgttgag tgtagttttt ttatgtattt tttggatggt 1140 tttaatttqa ttttqtqqtq qqtqqqqaqa tqaqatatqt atatttttt ttatqattqt 1200 ttgtatttat tttaggagtt gttatgtagg ttttttgagt attgggtatg ggtattattt 1260 gttttatgtt atttattgtt tggttttttt tatagggttt gtgtgtagga gtggtgaggg 1320 1380 gggtaggggg tgggggtagt ttttgttttt ttaatttggt agtggggttt atgtagagtg 1440 gtagtttgtt atgtaggata taggagggtt gtttgtggtt gtgttttgtg tggagttatg 1500 ttggttgggg gataggtgga gtatggaagg tttgttgttg ttagaggtta gggaaggtgg 1560 tagtaggtat gttttagggg ttatggaggt attagtttgg gttagttttt tttgaggaag 1620 gaggtgatta tggggagatt gaggtaagag ataggtattg gtttattttt ttgtgggtgt 1680 tttgttattt ggtatatagt taggattggg ttttgttagg tttttttgag gagagttttt 1740 taattttatt tggatttgtt tattttttat ttttgttgtt tagggagaag gttgggaaag 1800 tttgttaggt gtttgaggt gttgagtttt ttgttatagt ttaggtggaa tttgtatgat 1860 taggaataag gttggaggtt ggatgggtat gtgttttgta tgattaggga taaggttgga 1920 tgggttgttg atgtgtgtag agtatgtggg tttttatgta gttgtttttg tgttatattg 1980 tgtttaggag gagttgtttt aagtttagta atttggaatt ttagagtaaa ggtttttagt 2040 ttagatttaa gtitttagag ttittaatgt gggggttgtt ttgggtgttg titttttatt 2100 2160 aattatttta tagtgttggt gttatttgtt attttaggga atgttt 2206 <210> 508 <211> 2233 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens)

<400> 508

47675-47.txt 60 ttgttggatq tqqatqtaqa taqtqqqttt ttttatatta aqtaqtqtat tqattqtqaq tttttgtgtt gitataatgt taagigttag tigttttttg aggigttigt taatgataag 120 180 240 300 gatgattatg gttttttttgg attggatgtt aagttttgtg gtgatggtat taagttttta 360 420 gaattggtta tttagaaggt tttggattgt gagtaataga attattatat gtttgtgttg 480 attgttttgg atggtggtga gtttttatgt tttgttattg tatagattaa tgtgaaggtg 540 attgatttta atgataatag tttggttttt gaggtgttat tttatttggt ggaattgttt gagaatgttt tgttgggtat agtggttatt gatttgaatg ttattgatgt tgatgaaggt tttaatggtg aagtgtttta tttttttagt agttatgtgt ttgattgtgt gtgggagttt 600 660 ttttttattg attttaagat tggtttaatt tgtgtgaagg gtaatttgga ttatgaggaa 720 aatgggatgt tggagattga tgtgtaggtt tgagatttgg ggtttaattt tattttagtt 780 tattgtaaag tratggttaa gittatigat tgtaatgala algtgttgtt tattggtitt 840 gtttttgtgt gttagggggt gttgagtgag gttgtttttt ttggtattgt tattgttttg 900 960 gtgtgggtta ttgattggga ttttggtaag aatggatagt tgtagtgttg ggttttaggt 1020 1080 atataagatg agtataatgt gattattgtg gtgtgggatg ggggtttttt tttttttaat 1140 tttattaagt tgtttgtgat taagatttta gatgagaatg ataatttgtt ttggtttatt 1200 aaagggtttt atgtgtttta ggtgtatgag aataatattt tgggagagta tttgggtttt 1260 1320 ttgtatattg gtgatgtgtt tatttatatt tatgtgtttg tgaattttat gaatggggtt 1380 atttatgttt tgtgtttttt taattttgag tagattaagg tttttgagtt taaggtgttt 1440 gttaaggatt tgggggtgtt tgtgtatttg gagagtaatg ttatggtgag ggtgatagtg 1500 ttagatgtga atgataatgt gttagtgatt gtgtttttta tgttgtagaa tgatattgtg 1560 gagitgiagg tgitgtgiaa igtiggittg ggitattigg tgagiatigt gigtgittia gatagigatt tiggigagag tgggigtitt attiatgaga tigtggatgg taatgatgat 1620 1680 tatttgtttg agattgattt gtttagtggt gagatttgta tgttgtattt tttttgggag 1740 gatgtgatgt ttgtggtgga gttggtggtg aaggtgattg attatggtaa gtttattttg 1800 1860 tgggtgaatg gtgagtagta ttattgggat atgttgttgt tgtttattgt gattttgagt 1920 attattttta ttatttttt agtggttatg attattattg ttgttaagtg taagtgtgag 1980 aataaggaga tttgtattta taattgttgt attgttgagt atagttattt gtagttgggt 2040 2100 gggggtaagg gtaagaagaa gaagattaat aaaaatgata ttatgttggt gtagagtgaa gtggaggaga ggaatgttat gaatgttatg aatgtggtga gtagtttttt tttggttatt 2160 2220 2233 atgtatttta aat <210> 509 <211> 2233 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 509 gtttgagata tattattttt gattggggtg agttgagggg taggtgggtt tggtagttga 60 agtatatggg ggaggtggtt agggaggggt tgtttattat gtttatgatg tttatggtgt 120 ttttttttt tattttgttt tgtattagta tgatattatt tttgttgatt ttttttt 180 tgtttttgtt tttatttagt tgtgggtggt tgtatttggt gatgtggtag ttgtaagtgt 240 ggattttttt gtttttgtgt ttgtatttga tggtgatggt gattatggtt gttaggagga 300 tgatggagat agtgtttaga gttatgatga gtggtagtga tatgttttag tggtgttgtt 360 tgttatttat ttgtggtatt tttttgggaa gggatttgtt tattgagtgg atgatgagtt 420 480 tgggtgttat gtttttttag aaagggtgta gtgtgtggat tttgttgttg gatgggttga 540 ttttaaatag gtggttgttg ttgttgttta tgattttgta ggtgagatgt ttgtttttgt 600 tgaagttgtt gtttagggtg tgtatagtgt ttattagata gtttaggtta gtgttgtgtg 660 gtatitgtag tittgtggtg tigttitgta gigtggggag tatgattati ggigtgtigt 720 tatttatgtt tagtattgtt atttttattg tggtgttgtt ttttaagtgt gtgggtgttt 780 ttgagttttt agtaagtatt ttgaatttaa aagttttggt ttgtttgaag ttaaaggagt 840

```
gtagggtgta gatggttttg tttgtgggat ttatagatat ataggtgtag atagatatgt
                                                                    900
tgttgatgtg tgagggtagg atagagtagg atatggtgtt gttttggttt aggttgggat
                                                                    960
tttgggtgag tatagagttt aggtattttt ttgggatgtt gtttttgtgt atttgaagta
                                                                   1020
tgtagagtti tttggtgaat tgaggtgggt tgttgttitt gtttagaatt ttgattgtga
                                                                   1080
atgatttggt ggagttgagg ggaggagagt ttttgttttg tgttatgatg gttatgttgt
                                                                   1140
1200
                                                                   1260
agtttttttt aagtttgaag gggatggaat ttttgggttt gtttaggttt ttgttgttgt
                                                                   1320
ttgttttttt tttgtttagg atttgatatt gtagttgttt gtttttgtta gagttttggt
tagtgatttg tattagggtg atgatggtgt tgggaggggt ggttttgttt agtgtttttt
                                                                   1380
ggtgtatgga gatgaaattg atggatggtg tattgttgtt gtggttgatg agtttgattg
                                                                   1440
tgattttgta gtgggttggg atagggttag gttttaggtt ttgggtttgt atgttaattt
ttagtatttt gttttttta tagtttagat tgtttttat atggattagg ttggttttgg
                                                                   1500
                                                                   1560
ggttgatgga gaagagtttt tgtatgtggt taggtatgta gttgttgaaa gagtagagta
                                                                   1620
ttttattatt gggattttta ttggtgttgg tggtgttag attgatgatt attgtattta
                                                                   1680
gtggagtgtt tttgggtagt tttattaagt aggatggtgt tttgaagatt gggttgttgt
                                                                   1740
tgttggagtt aattattttt atgttgattt gtatggtggt ggaatgtgga ggtttgttat
                                                                   1800
tgtttagggt agttagtatg agtgtatggt gattttgttg tttgtggttt agagtttttt
                                                                   1860
ggatgattag ttttgggaat ttggtgttgt tgttgtggga tttaatgttt agtttaaaga
                                                                   1920
ggttgtgatt gttgtgtgtg agtaggtagg tgtggagttt atttttgttg gtgttggggt
                                                                   1980
tatgtgtgtt ggtgaggggg aagtgggtgt ttggagtagt gttttttgag atgtttattt
                                                                   2040
tgatttggtt tgaggagaag gagggtgtgt tgttgttgat gttttggatt tttattttga
                                                                   2100
ttatgtagat ttttttgttg ttggtgaata ttttgaggga tagttggtat ttggtattgt
                                                                   2160
2220
ttatgtttag tag
                                                                   2233
```

<210> 510 <211> 2398 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 510

					•	
attgtatttt	tggttttata	gttttttatt	gttgatttta	ggttttttg	gattttaggt	60
tttttttt	aagatgtatt	ttagaggatt	aaaaatatat	tttatttggg	ttttgtttgt	120
		ttagaggata				180
taaaggaaat	gtggagaaaa	aaaaaagta	gaaattggaa	ataattaata	tttagtttat	240
tttatttgat	ttttagggga	attggtgagg	agtttaagat	gattttttt	ttttagagaa	300
agaatttaaa	gtttagggaa	atagtgatag	gggagtttaa	gattgttttt	gttagttttt	360
ttttggttat	tttttgttgt	gattgtagga	tagtttttat	tagtaggaga	attgggtaag	420
tgtgtggata	agtagagagt	gtgttgaata	atttgtaatg	ttttatgaaa	tatgtattgt	480
tatggttttt	taaaaggttt	tgtggaagtt	gtttgttttt	attaattaag	tttttattta	540
tataaaagta	gaagtagaag	tagttttaga	aaatatatta	ataattttt	atttttttga	600
agattagagt	agtagaaaat	aggtgatttg	tattataaaa	ttgtatttat	tttttttt	660
ttttagattt	tatattatat	tagtttattt	gtgttatggt	gtataaaaaa	tggaataggt	720
		ttttaaaaat				780
		agagttttt				840
		ttttaaattt				900
		gtgggtgtgg				960
		ggtgtgtggg				1020
		agataggggg				1080
		ttttttttg				1140
		gattgttgtt				1200
		tattgtggga				1260
tttttgaaag	aggggagaag	ggtttgtatt	ttttttatgg	aggattttt	tttttttagt	1320
attttgtttg	atgtatttaa	ttggtagaag	tgagatttta	ataggtagta	gagagtgttt	1380
		gttgtggtgt				1440
tttttaaagt	tatatgttga	tgaattaatt	tatgttttaa	atttttttt	ttagttttgt	1500
		ttgtggggtg		_		1560
		tgaaatgagt				1620
tttaggattg	ttgagttttg	tagggtgttt			ggtttttttg	1680
			Page 2	284		

```
tttttgttga gatggataat gttttgtttt tggagttttg gtttgttaat gtattgggtt
                                                                     1740
tggatttggt gttgagttgt tttaatgtgt tgattttggt gttgttgttg gtgttgttgg
                                                                     1800
tggtggttgt attagttgtt tatgtggtga tttgtgttgt gggtttggtg ggtaattttg
                                                                     1860
ttgtgttgta tgtgttgttg tgggtgtttt gtatgaagat tgttattaat ttgtttattt
                                                                     1920
ttaatttggt tattgttgat gagtttttta tgttggtgtt gtttattaat attgttgatt
                                                                     1980
ttttgttgtg gtagtggttt tttggggagt ttatgtgtaa gtttattgtg gttattgatt
                                                                     2040
                                                                     2100
agtataatat tttttttagt ttttattttt ttattgttat gagtgttgat tgttatttgg
2160
tggtgagttt ggttgtggg gggattgtta tatttgttgt gttgttttt gtagtttttg
                                                                     2220
titggttaga tgatgagtag ggttggtgtt agtgtgtt agtttttttg tagtttgagg ttttttggtg gtgtgtgagt tgtttttata tgtttgtgtt gggttttgtt atttttgtgt
                                                                     2280
                                                                     2340
ttattattig tgtttttat attatttigt tgtgttggtt gtatgttatg tggttgga
                                                                     2398
<210> 511
```

<211> 2398

<212> DNA <213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 511

tttagttgta	tggtatgtag	ttggtatagt	agggtggtat	agaggatata	gatggtggat	60
atggggatgg	tgaagtttag	tatgagtgtg	tagaggtggt	ttgtgtgtta	ttagaaggtt	120
		tatgtattgg				180
		gatgagtgtg				240
		gttggttatt				300
		gatggtgagg				360
		gtatatgagt				420
		tattagtgtg				480
		ttttatgtgg				540
		ggtgtagatt				600
		tagagttgat				660
		gggttttgag				720
		ttttttaagg				780
		ttgtggatgt				840
		tttttagtta				900
		aaagtatagg				960
		tgggggtggt				1020
		aaattttatt				1080
		ataggaaaaa				1140
		ttatagaatt				1200
		gtaagtttaa				1260
		ggagttgtta				1320
		gtttgttttt				1380
		tggttttttt				1440
		tttgattgtt				1500
		attttttaa				1560
		gaaataatag				1620
		agtgatttat				1680
		tgtaatataa				1740
		ttataatgta				1800
aaggggatag	aagattgtta	gtatgttttt	taaaattatt	tttatttta	tttttgtgta	1860
		agataaatgg				1920
aatgtgtatt	ttataaaatg	ttataagttg	tttaatatat	tttttattta	tttatatatt	1980
tgtttgattt	ttttgttaat	gagagttatt	ttgtgattgt	agtggagagt	agttaaggaa	2040
ggattagtag	gggtagtttt	gaatttttt	gttgttattt	ttttggattt	tggattttt	2100
		tttaggtttt				2160
aaattaaata	ttggttattt	ttaatttttg	tttttttt	ttttttatat	tttttttagg	2220
agagagta	aattaaaata	tgagattata	ttttttagta	aattatttt	ttataaaagt	2280
aggtgaagtt	taaataaagt	gtatttttgg	ttttttagga	tgtattttag	agaagggggt	2340
ttgagattta	gagagattta	aagttggtag	tagaagattg	tggggttaga	aatatagt	2398
			Page 1			

```
<210> 512
<211> 2114
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 512
                                                          60
aaagttatag tagaagggaa gttgaagttt gaaaatatat tatattttgt tttttggttt
                                                         120
ttaaattttt ttagttaaaa atttaggtaa aattattata tttaatatag taattatttg
taaaatttta gaatagtaaa taaaggatat aaagaaatgt atttttattt tttttaaatt
                                                         180
gaaaataagt aaaatattat agaattagat tttgttttat tatataggaa ttgtttggta
                                                         240
aagatttttt ttttttttt aaaggtgaaa ttttaggttg ttgaatattg aatgggtaaa
                                                         300
360
tttttgggaa taagaattta ttaggaagta atttttaaaaa ttttataaag gatttaattg
                                                         420
gtttttataa tatggttagt agttatatgt aaattttatt tggaagattg gggtgaaatt
                                                         480
540
                                                         600
aatgttatgt tttaagagaa gaaaaagagt atattttgtt atagtgtgtg agaaatttaa
660
agtgttttag agaggtgaat gtgtagttgt gttagatatt tatagtttta tttttaaaag
                                                         720
atatatggga aaatagttaa aagttttttt ataattgtat taatttgatt aataggaaaa
                                                         780
taagtggaaa atgtagtttt attaaagtag agtagaggtt tttttttatt aaatttttag
                                                         840
gagggggagg ggagaatata gaatggttag ggggtatitt ttggaagttg aagagagatt
                                                         900
960
tttttttttta tgttaatttt ggattttttg agtaatttgg agtttatgtt ttaggttttt
                                                        1020
                                                        1080
tgaagattag aagtttaaga agatgggaat ttttagaata ataattaggg gaaattgttt
atttgaaggg ttaagggtag ggggttgtgt ttggtatttt attgagattt tgtttattga
                                                        1140
aaatattgtt tttaatgaaa ttatttagta ttttgtttta tttgtgtggt tgttttttt
                                                        1200
atagtggtgt aatttgtgtt agttgattgt ttttaggatt gttgtaaatt ttttgatgag
                                                        1260
1320
ggagagaggt tgatatttgt atatgaagtt tgttttttgg aaatagtagg aggatgtagg
                                                        1380
aggggtgaag taattttggg aagatgtttt tittttttt ttatggattt agtgtagttt
                                                        1440
ttggtataag taattttgtt attgggtggt tttttttaat ttgtgtgggg gttgatatta
                                                        1500
atataagtag tigitititt gggtgtgagt gggattitag gittggggatg tggtgggtgt
                                                        1560
1620
gaatttgagt gaatgattgg aggttggttg ttgtaggttt attttttag gatgtgggtt
                                                        1680
1740
1800
                                                        1860
ggggggtgag gtgtttattt tgtataagaa tagaggagtg ggggagaaga gatggttttg
                                                        1920
ttgtttattg ggtaagtgga gtttagtttt gtttgggagt gggtaggaga gatagggtag
                                                        1980
tgatttttat ttatattaga aaattttttt ttttggtgat tttgttgtta atttgagttg
                                                        2040
gttatagata gtttagtgag tttttaatta taaggatgag agaaaagtat ggtgtttttt
                                                        2100
gagttttttt tgtt
                                                        2114
<210> 513
<211> 2114
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 513
qqtqqaqagg atttqaqgqg tattqtqttt tttttttqtt tttgtaatta aggatttatt
                                                          60
ggattgtttg tagttgattt gagttggtag taaaattgtt ggggggaggg gtttttttggt
                                                         120
180
tatttagtga gtagtgaggt tgtttttttt tttttgtttt tttgtttttg tgtggggtgg
                                                         240
gtgttttgtt ttttatgtgt agttgaggtg atggtgtttg atgtagaagg aagtgttgat
                                                         300
                               Page 286
```

47675-47.txt ataaaataag tttgttttta aattaaattt aaattaagta aagttattag gaggggaaaa 360 attaatagta atttagttag tttttagtaa ttgtttttat ggttggaatt aaattatatt 420 aaaatgtttt ttgaaattta tattttgaag gagtgaattt ataatagtta atttttagtt 480 gtttgtttga gtttatatga ataatttgtt tttaatattt gagtgaaggg ggtggtgggt 540 gttttttttg tattgtattt attatatttt ggatttggga ttttatttgt atttgaagag 600 gtggttgttt atgttaatat tagtttttat atgaattaga aaaqattgtt tggtgataga 660 720 attgtttatg ttaggaatta tattgaattt gtaagggagg gggaagaatg tttttttggg 780 gttattttgt tttttttgtg tttttttgtt gtttttaaaa gatagatttt atgtgtaaat 840 gttaattttt tttttaaatg aagttttaga aatttggggt gtatggtttt tattaaagtt ttttttaagt gttgtttatt agaagattta taataatttt aaagataatt agttaatata 900 agttatatta ttgtaaggaa aatagttatg taaatagagt aaggtgttgg gtgattttgt tagaaataat gtttttaatg gatggggttt tagtaaaata ttaaatgtag ttttttattt 960 1020 ttggtttttt aagtaaatag tttttttag ttattgttt aaaaattttt attttttga 1080 gtttttaatt tttaggaaat ttggagtata ggttttaaat tatttgggga atttagagtt 1140 aatatgaagg agaaagtggg atttgaatta gttttagtat ttaaatagtg ggggggatgt 1200 aagagttatt atttaatttt tttttggttt ttagaaagta ttttttggtt attttgtgtt 1260 1320 tttttttttt ttttttgagg gtttgatgaa aaggaatttt tattttgttt tggtgaaatt 1380 gtatttttta tttgttttt tattggttaa attggtgtag ttatgggagg atttttgatt gtttttttat gtgtttttta agaatggggt tataaatgtt tgatatagtt atatgtttat 1440 ttttttggga tattatttat attggtgttt aattttaagg gaagtgatat attattatta 1500 1560 tgaggtatag tattgttagt tattaaaaat ggatttaatg ttttaatttt tttggatttt 1620 titattaatt tittaattit attitaatti titagataga attitatatgt gattatiggt 1680 tatgttgtag ggattaattg gattttttgt aaagttttaa aaattgtttt ttagtaaatt 1740 tttattttta agaagtagtt gttattagta ggtgaagtta ttagtgttta tttagatata 1800 gtattgtaaa aatttttatt tatttaatgt ttagtagttt gaaattttat ttttaggaaa 1860 aaaagaggga tttttgttag ataattttta tataatggag taaaatttga ttttgtagtg 1920 ttttgtttgt ttttgattta agggagatga agatatattt ttttatgttt tttgtttatt 1980 gttttgaagt tttatagatg gttattgtat tggatataat aattttgttt agatttttaa 2040 ttgagggggt ttgagaatta agggataaaa tgtaatgtgt ttttaaattt tagtttttt 2100 tttgttgtaa tttt 2114 <210> 514 <211> 2382 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 514 aggttttgga ggtggttatt gttggtttag gtatggtttt gtttgggatt attggttgtt 60 tttgtggggt gttttgtttg gggttttttt ttattttggg atgttttagg tgtgtttagt 120 ttgagttggt ggagagggtg ggggtggggg tggttggggt tttgaagttt aggtttttt 180 ttttattttt ttgttggttt tgttgttgtg gtttttgttt ttgtgtttgt ttgttttga 240 300 360 420 480 540 gaggggttta aattggtgtg gttttataga agtttgagga gggtggggtt ggttttgagt 600 ttilggagtt ttatgggatt tttttgattt tattgaggag tttttgttag tittgtgtat 660 ttttgtaata ttttttattt tatttgttag ttttgagttt atagtttttt gggtttgggg 720 attggttggg ggaggggatg ggggggaggg gattttttgg ttgtagggaa tggtgtgtgg 780 840 gtgggggtgg gagggaaatg atttgtttta ggagataggg atgaaggttt ttttgagtta 900 960 ggttaaggtt ggtgttaggg ttttttattg gttatttgga ttttatgtgt ttagtattta tttttttttg tatgtttatt ttatgtattt ttttgtgttt tttttatggt ttttttgtgg 1020 1080

Page 287

1140

1200

1260

tgagttgttt ttgttttttt gtaggttttt ggttttagtg ttaaggtatt gtggttttt

ttgtttttt tttgtgttga atttgggttt tttgtgggga gaaataggtt gggggtgagg

ggtttttgag ataatttagg atattttttt ggggtttagt taggtaattt tgatgtttat

ggatttttgg attatagttt ttattgtggg tttagtttta tttttagttt attttgtggt 1320 gagtgttaag tittaaaagt tggagtgtta tigtitggtg attitgtgtt tgtitgtgtt 1380 ttttaattta tggttatttg tttgttatag tgaatttttt tttaggaaag aatttgtttt 1440 ttgtaaagag gatgtgtaat gttggaaagt ttgtttttt ttttattagt tggattttga 1500 gagttgggag agatgattaa tgaataggtt gagggtgtta tagttttgtt attttgggat 1560 ggggggtgta gtaggggagt tatagttttt ttagaggtta ggttatttta tttagttgta 1620 ttttattttt aattttttag tgggtgatat ttgtagggtg ttgggattqq qaqaaatttt 1680 agatatttta aattttaaat tttatttttt agatgaagat attgaggttt agagtgggtt 1740 agtgagttgt ttaaggttat aggataggtt agaatggaag ttttttgatt ttttttgggg 1800 tgttgggttt atagttttat tttgttattt tttgttttgg aagtgagtat tgaagttatt 1860 taagagaggt tagtgattaa aggtagtgat ttttaggtgt agaggttggg gtagatgtgt 1920 ttatgagttt gtttttttgt gtattttttt ttattttgtt tttatttttg ttttqqttat 1980 tatgigtttt tattattttg agatttagag aggtgtagtg gtttgttgaa ggttatatag 2040 tatattgagt agggtttttg tttttattgt ttagttgttt ttttttattg tttatttggg 2100 tttttgtaag tttgttagga tttttgggag tttgttttt ttaatgtata gagttgtggt 2160 gtgtgttaaa gtgtgggaaa gtttttggga gagggaaggg gtagaaaata tagttgttta 2220 ttttaatttt ggatggttgt ggtaaggtag gggtgtttag aaaggtagtt agttttgtgt 2280 attgttggtg tttttggtat attttatttt gtgttagggg ttttttaggg ttgtgtgagt 2340 atgttttttt agtttttttt tagtgaagta ggtgtggtgg gg 2382 <210> 515 <211> 2382 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 515 ttttgttgtg tttgttttgt tgaggaggag ttggaagaat atgtttgtgt gattttgggg 60 agttittggt gtagagtggg gigtgttgga ggtattggtg gtgtgtagga ttggttgttt 120 ttttgagtgt ttttgttttg ttgtagttgt ttaaggttga galgagtggt tgtattttt 180 atttttttt ttttttagga attttttat attttgatat gtgttatggt tttgtgtatt 240 ggaggaagta ggtttttggg gattttggta agtttgtaga ggtttgggtg ggtaatggga 300 gggggtagtt gggtagtgga aatgagggtt ttatttagtg tgttgtgtga tttttgataa 360 gttgttgtat ttttttgaat tttaggatga tggaggtata tggtaattaa gataggaatg 420 gggatgaggt gggggagggt gtgtggggga ataagtttat gggtatgttt gttttagttt 480 ttgtattigg gaattgttgt ttttggttat tggttttttt taagtgattt tagtgtttat 540 ttttggggta gggggtggta aggtggagtt gtgaatttag tqttttqqqq aqaqttqqaa 600 agttitiatt tigattigtt ttatgattit gggtaattia ttgatttatt tigggttita 660 gtatttttat ttggaaaatg gggtttggaa tttaaggtat ttgaggtttt ttttagtttt 720 aatattttgt aggigttgti taitgaaagg ttggggatgg ggigtagttg ggtagaatga 780 tttggttttt gggaagattg tagttttttt attgtatttt ttattttaaa gtagtagggt 840 tgtgatattt ttagtttgtt tattggttat tttttttaat ttttagaatt tagttgatgg 900 960 gggaaaggtt tgttgtgata gatagatgat tataggttaa gaggtgtggg tggatgtggg 1020 gttattaaat ggtgatattt tgatttttgg ggtttggtgt ttattgtggg ataaattaag 1080 agtaggattg agtttgtggt gggaattgta atttggaaat ttatgggtgt tggaattatt 1140 tggttagatt ttggggaggt gttttgaatt attttgggaa ttttttgttt ttaatttatt 1200 tttttttgtg gagagtttgg gtttaatgtg gagagaaggt gagagaagtt gtggtgtttt 1260 agtgttggga ttggggattt gtggggaagt aaaggtgatt tgitgtagag aagitgtggg 1320 aagggtgtgg ggaggtgtat gaagtgggtg tgtggagaga agtgggtgtt gggtgtgtgg 1380 gatttaggtg gttggtgaag agttttggta ttagttttga ttttattttt tgggatagat 1440 1500 1560 atttttattt tttgaagtaa attgtttttt ttttattttt gtttgtatgt tgttttttat 1620 agttaggggg ttttttttt tttgtttttt tttttagtta atttttggat ttgagaggtt 1680 gtaaatttgg agttggtggg tggggtgggg agtgttgtag gagtgtatgg agttggtggg 1740 gattttttag tagaattggg ggagttttgt agggttttgg gggtttggag ttggtttgt 1800 tttttttaaa tttttgtagg attgtgttag tilaaattit tilgttilag tilagttigt 1860 1920 1980 Page 288

47675-47.txt 2040 gaggatttgt gttgtggttt gtggggattg tttttggagg ggttgtatgt gttgtgtgta 2100 ggtggatgtg aggagtattt taagaggtgg gtgggggaag tgggattagg ttgttattat 2160 2220 gggagtgagg gttgtagtgg tagggttggt ggggaagtgg gaagagggat ttggattttg ggattttagt tgtttttgtt tttgtttttt ttattagttt aggttgaatg tgtttggaat 2280 gttttagggt aagagggaat tttaggtggg gtattttatg agggtagtta gtagttttga 2340 2382 gtgaagttgt gtttggattg atagtggtta tttttagggt tt <210> 516 <211> 2192 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 516 60 ttatataatt tttaaaaaga aagaaatttt taaattatag atgtgtttgg aattagaatt 120 tagaaagtat ttgggtaggg aaaatagttt ttagtgttta aggttaaagt tagtagggtt tttttggatg ggaaagagat atgagattgt aagtaatttt tggatattat ttatttgtta 180 ttgtgttttt atttttttt ttagttattt atatgttttt tttttttagt taaaatgaat 240 ttaatttttg ttatagtatt ttattttgtt aataaaattt aggattgaag aatgagaata 300 aaagggtttt atatttatta ttttttaatt tttgatttta gtttggatag aataattatt 360 tattttagaa aattggtata gggagtattt attagtagtt gtaatatatt attgttaaag 420 ggagggattt tgtaaggtgg tattgggtgt tttatatgta tgggaaattt gaggttatgt 480 540 ttagtgttaa ttataagtat ttttattttt ggttaggtaa gttttgattt ttgaattttg 600 agtttttaat tttttttaaa atgagaaaga gatggttttt tttagagttt tttagttttt aatttatagg taaatattat tgtatgttgt tttttagtag agattggttt taattaaggt 660 aaataagtta ggatggattt tgttgattgt gatggtttag tgttatattt tatatatttt 720 attatttttt agaatattta atagtgttgt ttttggtagt ttttggggttg tagtttttgt 780 agagaggagg aattggtatt gaaagaaata gttgagtttt attatgttat gtggggtgtt 840 900 tttttttttt ttgtgttgtt ttggagatta tgggtgttta gttgtagttg ttgttggatt 960 ggttttggtt gttttgagag gtgttttttg taggtgggga tgtggttagg ttggatgtaa 1020 ggtttttttt taatttattg ggtttagggg gatggttagg ggttgtttag tttatttggt 1080 gggttaggga gggggatggt agaggttggt tgggtttttt tagtatatag taggtgttta 1140 1200 agggtggatt agggttttgg atgtgaattt tgtgttgtat tagagtttta gttttaattg 1260 atattttgag tgttgttaat ttttttttga agagtatggt agagtgaagt ataagtaata 1320 attttgtatt atttgtgttt ttagagtttt tttggatttg tgttatgtgt ggtggggaga 1380 attggttttt tgtttgagtt tagagtttat ttgaggttag ttttattgtt ttgttgaaag 1440 1500 1560 gagittggga tgggtgattt tttaatttta ggaattggaa ttgagatatt aaagtttaga 1620 tgtgtttttt ggatgatggt tttttggtag gggtatttag ttagtggtta agatgttgtt 1680 1740 1800 tttttttttt tttagggttt ttttattgga aattgaataa aataagggtt ttgaaattat 1860 tttgatttta aaaalaattt ttgtttgttt ttaaattgta ttaatataaa attagaatgt 1920 tagittttga aaattagaaa atttaaatta aaattttaaa tgtaaattat ttagaaatag 1980 tttggatgga attattgggt gatttttgtt ttttttatgt ataaaaatat gattaatttt 2040 tqtatttaaa aaataggttt tattttgtat tagtgttttg aaatttgttt ttttttata 2100 atagtatttt atagattttt ttttatgttt gtgggtgttt atgtatttta ttatattgag 2160 tagtttttta tttgttgatt taggattttt at 2192 <210> 517 <211> 2192 <212> DNA <213> Artificial Sequence <223> chemically treated genomic DNA (Homo sapiens)

<400> 517

<400> 517					
atgggagttt taggttaata agtggggagt tgtttagtat ggtgaaatat atgggtgttt atgggtatag aaaaggggtt gtgagatatt gttatgaaga aaaagtagat tttaaaaatt tttagtatta ttttaatata taaaaattag tttattaga gtttttaatta gtttttaattta gtttttaat ttttaaaaat tagaaattat tgatatttta agtattttaa ttttaaaaat tagaaattat tgatatttta agtattttaa ttttaaaaat tagaaattat tttaaaaat tagaaattat tttaaaaat tagaaattat ggaagtatttg ggagggag	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1320 1320 1320 1320 1360 1560 1560 1620 1680 1740 1860 1920 1980 2040 2190 2190 2192				
<210> 518 <211> 2192 <212> DNA <213> Artificial Sequence					
<220> <223> chemically treated genomic DNA (Homo sapiens)					
<400> 518					
ttatataatt tttaaaaaga aagaaattt taaattatag atgtgtttgg aattagaatt tagaaagtat ttgggtaggg aaaatagtt ttagtgttta aggttaaagt tagtagggtt tttttggatg ggaaagagat atgagattgt aagtaattt tggatattat ttatttgtta ttgtgtttt attttttt ttagttatt atatgtttt tttttttagt taaaatgaat ttaatttttg tatattatta ttattttgt aataaaattt aggattgaag aatgagaata aaagggttt atatttata ttttttaatt tttgatttta gtttggatag aataattatt tatttagaa aattggtata gggagtattt attagtatt attagtagt gtaatatatt attgttaaag ggagggattt tgtaaggtgg tattgggtgt tttatatgta tgggaaattt gaggttatgt ttagtgttaa ttataaggt tattatttt ggttaggtaa gttttgattt ttgaatttt aattgttaaa ggtttttaat tttttaat ttttatttt ggttaggtaa gttttgattt tttagtttt aatttatagg taaatattat tgtatgttgt ttttagtag agattggttt taattaaggt aaataattat tgtatgttgt tttttagtag agattggttt taattaaggt aaataagtta ggatggat	60 120 180 240 300 360 420 480 540 600 720				

47675-47.txt 780 attatttttt agaatattta atagtgttgt ttttggtagt ttttggggttg tagtttttgt agagaggagg aattggtatt gaaagaaata gttgagtttt attatgttat gtggggtgtt 840 900 ttttttttt tigigttgtt ttggagatta tgggtgttta gttgtagttg ttgttggatt 960 ggttttggtt gttttgagag gtgttttttg taggtgggga tgtggttagg ttggatgtaa 1020 1080 ggtttttttt taatttattg ggtttagggg gatggttagg ggttgtttag tttatttggt qqqttaqqqa qqqqqatqqt agaggttggt tggqtttttt tagtatatag taggtgttta 1140 1200 agggtggatt agggttttgg atgtgaattt tgtgttgtat tagagtttta gttttaattg 1260 atattttgag tgttgttaat tttttttga agagtatggt agagtgaagt ataagtaata 1320 attittgtatt attitgtgttt ttagagttit tittggattig tgttatgtgt ggtggggaga 1380 attggttttt tgtttgagtt tagagtttat ttgaggttag tittatigit itgitgaaag 1440 ttaaaatttt aagttgatgt tttttagttg tttattttt agtagagagt tttttttgg 1500 ggagttttgt ttiggggtgt tgttttgagg ttagatgttg ttttgtttgg atttgaattt 1560 gagittggga tgggigattt titaatitta ggaattggaa ttgagatati aaagittaga 1620 tgtgtttttt ggatgatggt tttttggtag gggtatttag ttagtggtta agatgttgtt 1680 1740 agtggggaag gtgatttagg ttttgaatgg gaaagtttat tagtagattt tttaggttga ggtaggagtt gttttttgtt ttgttttttt ttatttttt ttttttgtt tttttaaat 1800 tttttttttt tttagggttt ttttattgga aattgaataa aataagggtt ttgaaattat 1860 tttgatttta aaaataatti ttgtttgttt ttaaattgta ttaatataaa attagaatgt 1920 tagtttttga aaattagaaa atttaaatta aaattttaaa tgtaaattat ttagaaatag 1980 tttggatgga attattgggt gatttttgtt ttttttatgt ataaaaatat gattaatttt 2040 tgtatttaaa aaataggttt tattttgtat tagtgttttg aaatttgttt ttttttata 2100 atagtatttt atagattttt ttttatgttt gtgggtgttt atgtatttta ttatattgag 2160 tagtttttta tttgttgatt taggattttt at 2192 <210> 519 <211> 2192 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 519 60 atgggagttt taggttaata agtggggagt tgtttagtat ggtgaaatat atgggtgttt 120 atgggtatag aaaagggttt gtgagatatt gttatgaaga aaaagtagat tttaaaatat tagtatagaa tgaaatttat tttttaaata taaaaattag ttatgttttt atgtatggga 180 aaaatagagg ttatttagtg gttttattta ggttattttt gagtaattta tatttaaaat 240 tttaatttaa gttttttaat ttttaagaat tgatatttta attttgtatt ggtatgattt 300 360 tttttagtag ggaagttttg ggagggaggg aagtttggaa gaaagtaagg gaagggggat 420 ggagaaaagt gggatagagg gtggttttta ttttagtttg gaagatttgt tggtaggttt 480 540 ttttatttgg aatttgggtt attttttta ttgatgatat tttggttgtt ggttggatgt 600 ttttgttggg aagttgttgt ttaggaaatg tgtttaggtt ttggtgtttt aattttaatt tttgaggttg ggaaattgtt tgttttaaat ttaggtttag gtttaggtgg gatgatgttt 660 ggttttgagg tggtatttta gggtaggatt ttttggggaa ggattttttg ttggggggta 720 780 840 aagggatttt gggaatgtga ataatatagg attattgttt gtgttttatt tigttatgtt 900 960 tagaatttgt atttgggatt ttaatttatt ttttatggga tatagggagg agaattggag 1020 ggagagagta atttgattta ggttatgtta attaggtgtt tattgtgtgt tgagaagatt 1080 taattagttt ttgttatttt tttttttagt ttgttaagta gattgagtag tttttggttg 1140 tttttttgag tttggtagat tggagggagg ttttgtgttt ggtttggttg tgtttttgtt 1200 tgtagaaagt attttttaag gtagttaggg ttggtttagt gataattgta gttggatgtt 1260 tatggttttt aaggtaatgt ggaggggagg gattgttttg gttttgttta tgttttttt 1320 1380 1440

Page 291

1500

1560

1620

gagtagtatt attaaatgtt ttgaaaggtg gtaggatata tgagatgtag tattgagtta

ttatggttaa taaagtttat tttaatttat ttgttttggt taaaattaat ttttgttggg

ggatagtata tggtagtgtt tgtttgtaag ttagaagttg aaagattttg gaagaaatta

1680 1740 agalatttag tgttgtttta tagaaltttt ttttttggta gtgatatgtt ataattgtta 1800 ataaatgtti titaigttaa ttitttagaa tgagtgaitg ititgttiag attagaatta 1860 gaaattaaga aatggtgagt ataaaatttt tttattttta ttttttagtt ttgggtttta 1920 ttaataaggt qaaqtattgt aataaagatt agatttattt tagttggaaa aagaaaatgt 1980 2040 gtaggtgatt gagggaaggg atgaaaatat aataataaat aggtaatgtt taggaattat 2100 ttgtagtttt atatttttt tttatttaag gaggttttat tggttttggt tttgaatatt agaaattatt ttttttattt agatgttttt tgggttttgg ttttaggtat atttgtaatt 2160 taggggtttt tttttttta aaaattatat gg 2192 <210> 520 <211> 2244 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <220> <221> unsure <222> (2126, 2128, 2131, 2132) <223> unknown base <400> 520 ttttattttt tttttttt ttgtttttt tttattttt ttttttt ttttttt 60 120 tttttttttaa tgtgttaatt tttgttttat ttttgatttt tttaggtatt gggaggtggg 180 atgggggtgt gtgttttttt ttaggagttt tgttttttta agatttatag aaattaggat 240 ttgttttat ttaaaatttt atgtattta agttttttt agataatata ttttaattt 300 ttgggttgat tagttttttt gtgtagaggt agttgagagg ttttgttttg tagagggaaa 360 agagtttttt attttttat ttattatata ggtaaattta tttggttatt ggttgaaggt 420 atagttttgt ttttgtgggg aattggtggt taggatataa tagtgttttt ggagtttatt tttggttttg gtgttggtgt agggattttt tgattgggtt tgaggggttt gggttagttt 540 600 taatgttatt atttatagtg agggtagggt gtaaggttga gaaggttata tttattgttt tgggaggatg tgggagaaga gattgaggtg gaaagtgttt tgttttgttt attggttgtt 660 tttgttttgg ttttagtgtt tgttgggatt tgttaggatt tgttggggtt ttgggagatt 720 780 ttgagtattt gtaggaagag gtgttgagaa attaaaaatt taggttagtt aatgtatttt tgttgttggt tgtaggtttt gtttttgtat taagtgggtg ttgattgtgt gtgtttggtg 840 900 attgtgggga ggattggtgg tttgtgggag gggatgggta gaggtgtggg ttatattgtt ttggagttgg tttggttttt tgtgttttt ttagtggtta agttgtgagg tatagtttt 960 1020 agatgtagta gttattgtga ttggtatgta gttgtgtgtt tttgtgtgta tggattttgt 1080 gtggtgtgtg tggtgattgt gttgttttta ggagtaagtt atgggtttag aggggtaaaa 1140 1200 1260 1320 ttttgtatag tttgtttttg gagttgtgag tttaggtttt tatttttgat tttttgggtt 1380 ttttttgtat tgttgagttt agtttgtggg gtgtatttga ttaatgtttg atagggttgg ggaatgtgat aggtagtagg tttatttggg tttggggagg gggagttttt gttttgatag 1440 1500 tattttttt tgttgtttgt tggtggattt ttatttttag ttggtaattg ttttgtagtg 1560 ttgatttaag aaggtaaaga aaattaggtt tttttgtaaa gagttttttt taaattggtg 1620 1680 tttatttttt tttatagttt tttttgattt gttgttggtt tggggtaaga taaagtagtt 1740 agtagagagt gataataata gtggtgggaa atgaattgga gattggttga tagtttttaa 1800 tattttgtta tagatttttt tgaatgtttt aggttgtttt tggtgggttt tagtatttgt 1860 tggtttittg ggiattgggg attagaagga atttggtagt tggttttagg ggtatagtta 1920 aaggtaggat gatagttatt tttttgttta ttttagagtg ttgttgtttt tttatgttgg 1980 ttgtgtaaag aatatagttt ttaaaaaata tgtgtttttt gtttatatag gtttgaaagt 2040 gatgaggaaa gtaatgtttt gtttattagt gagttttagt ttttaaaatg attttaagtg 2100 ttgttgagat gagaaagtgt ggtatntntt nngggggttt ttagttttat ttgtgtttat 2160 ggtgtaagtt tgtagggata ggtttgggat agtattgttt atgttgttag attttttgta 2220 Page 292

```
2244
gaggattqtt gaagttqttt ttqt
<210> 521
<211> 2244
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<220>
<221> unsure
<222> (113, 114, 117, 119)
<223> unknown base
<400> 521
atgaaggtag tittagtgat tittigtgga aaatttagta gigtgggtag igitgtitig
                                                                      60
120
tgttatgttt tittatttta gtaatgtttg ggattatttt aaaagttgaa atttgttaat
                                                                      180
aggtgaagta ttattttttt tattattttt agatttatat gggtagaagg tatgtgtttt
                                                                     240
ttaaaagttg tgttttttgt gtgattggta tgagggggtg gtagtgtttt gagatgagta
                                                                     300
ggagaatagt tgttattttg tttttaattg tatttttaag attagttgtt aagtttttt
                                                                     360
tggtttttgg tgtttaagaa gttggtgggt attaaaattt attagagata gtttgggata
                                                                     420
tttgggggga tttatgataa aatgttaaga attgttagtt agtttttagt ttattttttg
                                                                     480
ttgttattat tattgttttt tattggttgt tttattttgt tttgaattaa tagtaaatta
                                                                     540
gagaaaattg taggagagga tgaaaaataa attaaaggag aaagattata taaattttta
                                                                     600
aatttattta aagtatttgg agtttgttga tttgggggag gttttttgta gggaaattta
                                                                     660
gtttttttta ttttttaga ttaatattgt ggggtgatta ttgattggga ataggaattt
                                                                     720
780
tgaattigtt gittgitata tittitagit tigitgggig tiggitgagi giattitata agitgggit agiggiga ggaaagitig ggggatiggg ggiggaaati igagitigta gittiggaag tgagitgig gaggitggit tggaatigtg tgtattitaa gattigtgit
                                                                     840
                                                                     900
                                                                     960
atgtaaatta tigitattat gaattgittt titagattgi tigitgattt igaaagatat
                                                                    1020
ttttttttat ttgatttatg ggaagttgtt tattttggtt tgttataggg tatagtgtgt
                                                                     1080
tttttttagt gggggatttg gatattttgt tttttttgggt ttgtggtttg tttttagggg
                                                                    1140
tagtgtagtt gttatgtata ttgtgtgggg tttgtgtgta taaaagtgtg taattgtgtg
                                                                    1200
ttagttgtag taattattgt atttttttt ttagtttgtg tatttgttgt ttatatagga
                                                                    1260
ggtttttgtg tttttagaat aatagagggt tgtattttgt agtttggttg ttagaggagg
                                                                    1320
1380
tgggttgtta gttttttttg tggttgttag gtgtgtataa ttagtgtttg tttaatgtaa
                                                                    1440
1500
gtatttttt ttgtgagtgt ttagggtttt ttggagtttt ggtaaatttt ggtaaatttt
                                                                    1560
agtaaatgtt gggattgggg taaggatggt tggtgagtaa ggtaaagtgt tttttatttt
                                                                    1620
agtttttttt tttatgtttt tttaaagtgg tgaatgtgat ttttttaatt ttatattttg
                                                                    1680
tttttgttgt aggtagtgat attggagttg gtttgagttt tttaagtttg gttagaaagt
                                                                    1740
ttttgigtta atgttaaggt tagagatggg ttttaggagt gttgttgtat tttggttgtt
                                                                    1800
ggttttttgt gggggtaagg ttgtgttttt agttaatgat taaataagtt tgtttatatg
                                                                    1860
gtgggtggga gagtagagag tttttttttt tttgtagagt aaagtttttt aattgttttt
                                                                    1920
gtatagggag attagttagt ttggaaaatt gaaatgtgtt gtttaaaaga gatttgaagt
                                                                    1980
gtatggggtt ttgaataagg gtaggttttg gtttttgtgg gttttggaaa gatagggttt ttagaggaaa atgtatattt ttattttgtt ttttagtatt tgggaagatt ggaaataggg
                                                                    2040
                                                                    2100
taaaggttgg tatattgagg ggagggtgaa tgaaatgggg gggggttggt taatgaaagt
                                                                    2160
ttagggataa ggagagagta agaaagaaaa agaaaaggga gaagggaaag taggggaaga
                                                                    2220
gtggaagaga aagagaaaat ggaa
                                                                    2244
<210> 522
<211> 2420
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
                                     Page 293
```

<400> 522

ttttttttt tggga	tgagt aggga	aaata tata	aggtt tttga	ittttt ttga	ttataa	60
ttaagaaaga ataat						.20
ggggtaggga atatt						.80
tagtagatat gatat						40
taaagagttt gtttg						00
taaaagattg aggtt						60
ttgttttttg gagtt						20
gaggagggag ggaag						80
aaaagaggga aaaaa	tatag ttgta	tgaat ttaga	agagat tataa	attat atat	aaqtaq 5	40
tagtagaaag agtga						00
ttagattagt ttgaa					-	60
taatttttt tttt					_	20
gtggtaaaag ttttt						80
atataataat ttata						40
aatatttgat agtta						00
atttggagtt aaagt					_	60
attatgagta gtggt					_	20
agtagtagtg gtggt						80
tttgtattat tattt						40
tttgagtttt ggatt						00
agatttttat tgttt						60
tggtatattt tgagg						20
tttgaggggt ttgaa	aataa tttt	ttttt ttga	ittaa gatga	itaata taat		80
tgttattatt atgtg						40
gtttttggaa ttttg					J J	00
gtttttttgg ggttt						60
taaatgtata aaagg					J J	20
tagggttaga gaggt						80
attagaatat taggt						40
gttttatttt tattt						00
gtggtggttt gggat					J J	60
tttttgtttt ttgta						20
tttttgtatg tgttt					J J	80
tttaatatta atatt						40
tttattttt tttt						.00
ttgaagtgtg ttttt					_	60
tgtttttttt tagga						20
tttttgttgt aagaa	atata tatat	aaaaa aasaa	ataaa aataa	rtagaee teeg	atatat 22	80
gtgtttttta taaaa						40
tttgagattt ttgtt					33	00
gtgtttaaga gatta		geece aagge	egeeg caaaa	dade eeee		20
gegeeeaaga gaeea	30033				2 :	20
<210> 523						
<211> 2420						
<212> DNA						
<213> Artificial	Seguence					
<220>						
<223> chemically	treated ge	nomic DNA (Homo sapien	s)		
•			•	•		
<400> 523						
ttggttgatt tttta	aatat agatt	gaaga gattt	tttta taatg	atttt gaaa	tgagtt	60
ttgaaaataa aaatt	ttaag atttt	aagag aaaat	aaaat ataaa	taggt attt	ggttta 1	20
tagaattttg tagaa	aatat atata	tatta ttttc	ttatt tttat	ttttt tttt	tatata 1	80
tatgtttttt gtaata	aagaa atttt	ttaag agtta	ataat aatag	attaa attt	attatt 2	40
tgttgttttg gaaaga						00
graggaga tatati						60

aaaaaaaaa aaaaagtggg ggttgggatt gttatatatg gttaaaaatt taagtttttt ttaatagtat tagtattgaa ataatatatt tttaaaatgt ttgagggatt agatagggaa Page 294 360

420 480

gtaggagaga tatattttag taaaagttta agggggaaaa agaaaattgt attaaaggaa

agaaaaggta tgtataaaaa aatttaattg atgttgattt tgtgatttat gtaatattat 540 600 aaatttgtaa aaggtaaaaa attagaagta aaaatttata aattattaaa atatagaaat taaaaaatttt aagttattat attagaaaga aaaaaattta gaataatagt aaaaattttt 660 gttttaaata aaaataaagt aaatgaattt attgaaaatt gtttggtaaa tattttttt 720 gtggtgttta atattttagt tggaaagagt tgtgatgttt attttatttt attttttt 780 tatttgtttt tttaatttta ttatatatat aatatatttt ttttagtggt ttaaattttt 840 900 tgtttttttt tgtgtattta gtttgatttg ttgagtttat gggtaagaaa gaaggaatta gitttagatt tigggaaagt aaagigtati tittittita igitatigaa tagtaaatta 960 1020 1080 -1140 gaggattttg aaatatgitg gttagtgaaa aaattttgtg gttttgaggg tttttggttg gttaggggta gtaaaaattt tggagagttg atattaagtt tttttttgtt atgtagtagt 1200 1260 ggtaaagttt gaagtttaaa tittgagaat tgagttttgt tgatttttag aattggggtt 1320 tttagaagtg gtgatgtaag aagtttttag gaaaggttgg atattaggtg attattgttg 1380 ttgttgttgt tgttgttgtt gttattgttg ttgttgttgt tgttgttgtt ggtgttqttg 1440 1500 1560 tattttagtt gttaggtgtt aaaataaatg ttgaagatta gttttatgtt ttttttatta 1620 1680 tttggggagg tttttgttat tttttttgt gttgttttgg tttttggaaa ggaggtggag 1740 gagaggaagg aggggaatta gggggtggtt ggagtagaga ggatgagata gtgtttgggg 1800 ggtgatttgg gttagtttgg gggttgtttg gttttagatt gtggagagga tgtgtgtttg 1860 tgtttttgtt ttttttgttg ttgtttgtgt atggtttgtg atttttttgg atttgtgtgg 1920 ttgtgttttt ttttttttt tttgtttgta aattgttttt tttgttttgt tgtttttggt 1980 2040 2100 2160 aaatgtaagt gaattttttg ggtttttgtt tttgtttttt tggttataaa tttagatgag 2220 atgaagtatt gtgtttatta ttttttttta gagttgtgat ttttttaatg agagttgagt 2280 gttttggtgt tttttgtttt tgtgttttgg ggagtttggg ggtggggatg ttgaatattt 2340 tgaaaattat tttttttgg ttgtagttga gggagttggg aatttttgtg tgttttttt 2400 2420 gtttattttg aggagagaga <210> 524 <211> 2344 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 524 60 gttggttttt ttttgttgtt gatgtgtggg agtttagaga gtggtttttt gtttttgtgg 120 180 tttttttttt ttttttgtt tttttggttt tattattatt attgttatta tgttttttt 240 300 gttttaggtt ttgatgtttt gggttttttt tggggtgggg tgggttgttt taggggggtt 360 420 ttggttggtt ggttgtttgg gtaggttttt tggttgtatt tgttgtagtg tatagtttgg 480 540 tggggtttat tgtgatggtt tttttgatat ttttggatag tattttttt gtggaagttt 600 ggggatgagg atggtgatgg agatttgttt ggattttgag ttaaagtgag gttttgtgag 660 tttgttttga gtggaatttg tatttgggta ttgttattag agaatggttg gtttaggtta 720 ttggtatttt ggagtttagg gtttagattt ggttttagaa tgagaggtta tgttagttga 780 ggtagtattg gtgggaattt tggttttggt ttgggagatg tggtttgtta gaaggttggt 840 gaaagtggat tgttgttatt ggattttaga ttgttttgtt tttttgagtt tttgagaagg 900 attgtttttt aggtattgtt gtttgggagg agttggttag agagatgggt tttttggagt 960 ttaggattta gatttggttt tagaattgaa gggttaggtt ttgggatagg gtggtagggt 1020 gtttgtgtag gtaggtggtt tgtgtagtgt ggtttttggt gggggttatt ttgtttttt 1080 gtgggttgtt tttgtttata ttggtgtgtg gggaatgggg ttttttgtat tttatgtgtt 1140 Page 295

47675-47.txt ttgtgtgttt ggggtttttt tatagggggt ttttgtgagt taggtagtga gggttgtttt tgtgttgtag tttagttagg ttgtgttggt agaggggatt ttttaatttg ttttggtgtg tggggatttt gtttatgttg ttttggtttt tttggatggg gtgttttttt atttttaggt tttttggtgg tttttgtatt tggggtaaaa gttgggagga ttgggatttg tagtgtgatg gtttgttggg tttttgtgtg gtggtatagt ttgggtttgt ttaagtgggg ttgtagggtt

aaggggtgtt tgtgttattt atgttttagg ggagtttgtg gtggggttgg ggttggggtt tttaggttgt tggggtggtg tgggaatttt aagttggggt agttttattt ttttagtttg tgtttttgga tgtttttgtg tggtaggggt agatgtaagg tattttggtg tttttttagg tgttttagga gttggtgttt tggtttgtat ttttttgtgg tttgttgttg gatgagtttt

tggtgagttt ggagtttttg tagtaggtgt aattttttt agaaatggag gttttggggg agttggaggt tttggaagag gttgttttgt tggaagtatt ttttagtgag gaagaatatt

gagagatttt atatagtgga gaattgttat tittttttgg gtattttggg gattttagag ttggtttagg tattagtagg tgggttgttt attgtgtatg tgtgggtttg tgggtagttg tttgggttgt gggagtagtt tgggtagagt ttttttgttt ttttattagt ttattttgtt

gtttgattgt ttttttttta tttttatttt ttgtttttgg aaaatgtgtt gttttttggg ttgggtggag atttttgttt tgtgaaatat tgggttttgt gtagtgtttg ggtttgatat ttgt

2280 2340 2344

1200

1260

1320

1380

1440

1500

1560 1620

1680

1740

1800

1860 1920 1980

2040

2100

2160

2220

<210> 525 <211> 2344 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 525

gtaggggttt gggtgggtgg gtgatggtgg tgtgggggtg tagaggaggt gagttgttgg 60 agtggtgtta ggtttggatg ttgtgtgggg tttggtgttt tgtgggatgg gggtttttat 120 ttagtttagg ggatgatgtg ttttttgggg gtgggggtg ggggtgggga gggggtggtt 180 aggtggtggg gtgggttggt ggagaggtag gagagttttg tttgggttgt ttttatagtt 240 taggiggitg titgtaaatt tgtgtgtgtg tagtaggtgg titatitgtt ggtatitggg 300 ttggttttgg gatttttggg atgtttagga aagaatggta gttttttgtt gtgtggagtt 360 ttttattggg tttaggttta gaaggtagga attttaggtt ggttagtttg gtggaggggg 420 tggggtggag atatgttttt ttgtagttag ttaggtgttt tttgtgaaag agaggttatt 480 gttttgtttt gaattatttg attttgtttt aattitgtgt tttaaagtti tittagtaga 540 gtttggtatt tttttttgtt gaggggtgtt tttagtgagg tggtttttt tgaggttttt 600 agttittttg gggttttigt itttaggaga ggttgtgttt gttgtagaaa ttttgggttt 660 gttaggagtt tatttagtag taggttgtag gggagtgtag attagggtgt tggtttttgg 720 aqtgtttggg agggtgttgg gatgttttgt atttgttttt gttgtgtgga ggtgtttggg 780 ggtgtgggtt ggggaggtgg agttgttttg gtttggggtt tttatgttgt tttggtgatt 840 900 tittggtttt giggttitgt tigagtgggt tiaggtigtg tiattgigta ggggttiggt aggttgtigt gitgtgggtt tiggttitt tiggttittig tittgggtgt gaggttattg 960 1020 aggagtttga gggtgggaga gtgttttgtt tggaggagtt ggggtggtgt aggtgaaatt 1080 tttgtgtgtt ggggtaggtt gggagatttt ttttgttggt gtggtttggt tgggttgtag 1140 tgtgggggtg gtttttgttg tttggtttat gaaagttitt tgtgggagag ttttaggtgt 1200 gtagggtatg tggggtgtgg gaagttttgt tttttatgtg ttggtgtggg tgaaggtgat 1260 1320 gggtgttttg ttattttgtt ttggggtttg gttttttgat tttgaaatta gatttgaatt 1380 1440 tgattttttt taaaggtttg gaggagtagg gtggtttggg atttggtgat ggtggtttgt ttttgttggt tttttggtgg gttgtgttt ttgggttagg gttgagattt ttgttggtgt tgttttagtt ggtgtgattt tttattttga aattaaattt ggattttggg tttttggaatg 1500 1560 1620 tigatggitt gggttagttg ttttttggtg gtgatgtttg ggtatgggit ttgtitaaag 1680 taggttigta gggtttigtt tiggttiggg gtttaaatga gttttigtig tigttitigt 1740 ttttgggttt ttgtggggag ggtgttgttt gaaggtgttg ggagggttat tgtggtgagt 1800 1860

Page 296

ttaqttqqat tqtqtattqt ggtaggtgta gttaqqaggt ttqtttqqat aqttaqttaq 1920 1980 ggtgagtttt tttgggatag tttgttttat tttggaaggg atttagggtg ttgaggtttg 2040 2100 ggtggggag ggtgtggtgg tggtggtggt ggtggggttg gagagatgaa gaggaaggg 2160 gagaggggg aggggggagg ggggtgtgtt ttgggggttg gttttttgga ttttttagg 2220 gattttgtgg gaatgggaag ttgttttttg ggtttttatg tgttggtagt agggagaaat 2280 tagtttggga gggtggaggg gagtgtggaa ttgaattttt gtgggagttt tgagtgtgtt 2340 2344 aggt <210> 526 <211> 2366 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 526 tttttttttt tttttggtag aattgtttga tggttttgat tatgtttagg tttattttga 60 tgtagtagta ggtatggttg gtttggggtt tgggatagtt tgttatgtag tagtaatagt 120 tittlagggt gitgatitti itatatitgg tittttata taggtggttg aagtgattga 180 atagattgtt taggagattt attagggtgt gggtagattt gttggtattt attttggtga 240 agtttatgat atttgtaaat aaaatattga tttttttgat ttgttgtatt ttaaaagggt 300 360 tggtatgttt tttgatagaa tttttatttt ttttattttt ttgttttatt aagttattgg 420 480 ggtttttttt gtgtataatg gattgtttta ttttgaggaa ggtgtttttg gattttattt 540 gggatatgat gaataggtgg attttgatgg tgtggatgta gttgtggagt agttttttgt ttagtagttt ttagtgtagg gttttggttt tgggtgaggg gaagtaggtt ttatttttgga aatggtagtt aaaggttttg aaaaggatag agtaggttat ttttagatat aaatttaggt 600 660 720 ataaaggtaa gtgtatgatg gtatagagta aaaagagtat tttgatgtat atggagaagt 780 tttttatttg agataagtaa gtatttgtgg gttgggttgt ggttgtaagg ttggagttgt 840 tgttgtgttt tgagataggt gttaagattt ggaattgtgt agttagggtt agggtgaata 900 ttagtagggt gagagttagt gaggtttatg tgtaatgttg ggtgtatagt ttggtgaagg 960 taaatagaaa gaagtttata tatattagga ggaagtatag tgtgggggtg attatgatga 1020 ttagttigga itttatgtgg attgtaaaat agatgttta tagaaggtag gtgaagttga 1080 1140 ttttttttag gtttattgag ttgaatttgg ggttttatta gtggttggag gtttttttga 1200 atagttgggg tagtttttt tgtttgtgta gttggttttt gttgtttatt tgttgggga 1260 tgtttttgga gtttttagag ttgttgtagt tagaggagat gttgtatttg tagtgtttgg 1320 ggtggttgtt ggaggatagt tgtttggggt tgattttgat gtgtatgttg ttgttgtttt 1380 tgttggagtt gtagtttatt ttggtgttgt ggtgatgtag tagttgttgg tggggtgggg 1440 1500 1560 ttttgtttta aggggtggtt ttagtatgtg atttggatag gtattatttg tttttgtggt 1620 ttttggttta gtggtgtttt tattgttttt attgttttta tttttgaggt gtatgagaat 1680 1740 1800 1860 1920 1980 2040 2100 ttgggttgtg agtgtgtgga gtttgttggt gtggtttgtt tagtggggtt tgttttttt 2160 2220 2280 2340 gatgtggttg ttgttgtgtt tgttgt 2366

```
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 527
gtggtggtg tggtggtgt tgtattttta gtttggggag gtggtttttg gtgtgggtgt
                                                                   60
gggtgggtgg gtgttttggt tggtgttgtg ggagtttggt tttgtggtag tgtttgtatt
                                                                   120
gttgtttggt gaggggtttg tgtttgtggt tttatgtgtt tggttttggg atagttgtgg
ttgtggtggg agtggtggtg tatttggggg gaagtaggtt ttattagatg ggttgtgttg
                                                                  180
                                                                  240
atgggtttig tgtatttgta gtttggggtg tttttatttt tagtgtttgt tgttgtgggt
                                                                  300
agggttggtt tggagtgtgg ggggtggttg gggagtgtga gttgggggtg tttgttgaag
                                                                  360
tttgttgttt tgggttgggg tttgggtttg gggttggttg tgtgttt ttgatgtatt
                                                                  420
ggagtgtggt ttttgtagga tggagggttt tgtgttgtta gtggagttgt ttgtgtgtag
                                                                  480
                                                                  540
gtggtttgtg gggttgggag tgtttaaggt ttgaattttt ttttggagtt gtagttggag
gaggtgagtg tgtgaggagg agaagttgtg tggtgtggag gttatttttg gggtgagagg
                                                                  600
tgtggaaggt gagtgagtaa agtggttttg gagttatggt ggttatgtgg tggggatttt
                                                                  660
tgggtgtttt aggtttgttt tgagtggttt ttgtgtgttt tgaaggtggg ggtggtgggg
                                                                  720
gtggtgggag tattgttgag ttgggaatta taggaataga tggtgtttgt ttaggttgtg
                                                                  780
tgttggagtt gttttttagg ataggagtag gttttgggtt tttaggtgtg tatgtttagg
                                                                  840
900
ggttttggga tttgataata tggttttttt attttattag tagttgttgt attattatag
                                                                  960
1020
                                                                  1080
taagtagttg ttttttaata gttattttaa gtattgtaaa tatagtattt tttttagttg
1140
taggtagaag aagttgtttt agttgtttga gagggttttt agttgttggt gggattttaa
                                                                  1200
1260
                                                                  1320
                                                                 1380
ggtgtgtgtg ggtttttttt tgtttattit tattaagitg tatgtttggt attatgtgtg
                                                                 1440
gattttgitg gittttattt tgttggtgtt tgttttgatt ttggttgigt agttttaggi
                                                                 1500
tttgatgttt gttttaggat gtggtgatag ttttaatttt atggttatag tttggtttat
                                                                  1560
agatatttgt ttattttaag tggggagttt ttttatgtgt attgaagtgt tttttttgtt
                                                                  1620
ttatattgtt atgtatttat ttttgtattt gagtttgtgt ttgggggtgg tttattttgt
                                                                  1680
tttttttgag atttttggtt attatttttg ggatgaagtt tgttttttt tgtttggagt
                                                                  1740
tggggttttg tattgggagt tgttgagtag ggggttgttt tatggttgta tttatgttat
                                                                  1800
tggggtttat ttgtttgtta tgttttaggt gaggtttagg agtattttt ttaaggtggg
                                                                  1860
gtaatttatt atgtatggga aggatttgga agtggaaaaa gtttttaaag agaggatgat
                                                                 1920
ttattttgtg atgttaagaa ttatagttga tgatttaatg aagtagggag atgaggagag
                                                                 1980
tgagaatttt gttaagaggt atgttatttt gagttttaag aataggaaga aaaagttttt
                                                                 2040
tatttaaaaa gtttttatag ttttttgttt ttttaagatg tagtagattg aagaagttag
                                                                  2100
tattttattt gtagatattg tgggttttat taagatgagt gttaataagt ttgtttatgt
                                                                  2160
tttggtgggt tttttgaatg atttgtttgg ttgttttgat tgtttgtgtg aggagattaa
                                                                  2220
gtgtgagaaa attagtattt tgggagattg ttattattgt gtggtgggtt gttttgagtt
                                                                 2280
ttgggttgat tatgtttatt gttgtattga gatgggtttg ggtatgatta aggttattga
                                                                  2340
gtagttttgt taggagaaga aggaga
                                                                  2366
<210> 528
<211> 2264
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 528
gattagtttg gttaatatgg taaaattttg tttttattaa aaatataaaa attagttggg
                                                                   60
tatggtggtg tgtgtttgta attttagtta tttgggaggt tgaagtagga gaattgtgtg
                                                                  120
aatttaggag gtgtaggttg tagtgggtta gagattgtgt tattgttttt tagtttqqqt
                                                                  180
gatttttagg ttaaattgtg tttgatataa aagtttatat tgatatagat tttttgatat
                                                                  240
                                    Page 298
```

```
aaaagtttat tttttttga taggtttgat tgattttttt ttttataaag ataaaagttg
                                                           300
ttttaatatt taagaggaat tatattgtgg tgaaaggggt gttatgaatt ttgggtttta
                                                           360
gtttttgtat tatgttttag tgtgatattg gattttaatt tttttattat taaagttaat
                                                          420
gggttattat aattttttta gaagtagttt taatttttaa agataagatt aaaaatatta
                                                           480
540
ttttttttta agattaatga tttggaggga attttggtga gtttgagttt ttgtaatttg
                                                          600
ttagggatta attagaagtt tggtgagtag ttagtaatat aatttttggg tatttttta
                                                          660
                                                          720
tatttgtgtt tttgttagtt ttttttggga ttttattggt gttggtagtt tttgggtttt
                                                          780
tgggtatagt ggttgtttta tttgattttt ttgttttttt atttttgttg gagggtgatt
                                                          840
tgtgggtatt gtttattatg gataggattg gaggggagag gagattgtgg agatgtttga
                                                          900
ggtagaagtt tggaaatttg agttgtatag gttaggattt tattttttgt tgttgtgtag
                                                          960
tgatgatatt attittattg tittittgag gggttattit gaggtgtgtg tagaggatta
                                                          1020
gaggatttat tttaattttg gtttggtgat agtgggaagt gggaaaattg gatgtaaaga
                                                          1080
gtttagatta tggatttttt ttgttaggaa attagtattt gtgaaggagt gtagttttgt
                                                          1140
                                                          1200
ttattaaata atttttttt ttttgtttgt ttaaaaatgt aatgttagtt aatttttttg
ttaatttttt agagtaaagt tgggggattg ggagaaaatt tagttttgtt gtatggtggt
                                                          1260
gttgtggaat gaggtttttt gggattggta aatttttagg taaggattta attttgtata
                                                          1320
1380
attttgtaag tattttaata ataaaaagtt atatagtttg agtagaattt atttaattta
                                                          1440
tttatttatt tataattatt gattgtttat tttgatttag aaatagtgtt agtattaggg
                                                          1500
aataaaatat atatagtttt tatttaatta aatgattttt tttagtttgt tagtattgaa
                                                          1560
gattgaggtt tgtttttata agtttgatat ttttttatta gtttggttaa ttttattaaa
                                                          1620
1680
1740
1800
gtatttatta tatatttaat ttatgtgtgt tgaaagaatg gatttggaaa tgtaggtgtg
                                                          1860
tgttatattt atttttttgt ttttatgttg tttggatgaa ttattgtatt ttttgtttta
                                                          1920
ggagttttta aaatttttgg ggaaggagtg tattttggga ggtgtgtata ggtgggtttg tttgttttt tttatttgta taatgggggt ttataaggtg ttgtttttat gttttgagag
                                                          1980
                                                          2040
2100
gagttagggg gtggggtgtg ggggtgtggt gatgtgtgat gttggattit ggaagtgatg
                                                          2160
tgtttgtggg gaaaaggtag ggagggggtg gtgtttttag ttggtttggg gggtgtgttg
                                                          2220
tttggagatg gaaagtttgg gagtttgagt aggtttggtt gtag
                                                          2264
```

<210> 529 <211> 2264 <212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 529

ttgtagttga	gtttgtttgg	gtttttaaat	tttttgtttt	tgggtaatgt	attttttaaa	60
ttggttgggg	atattattt	ttttttgttt	tttttttatg	agtgtgttat	ttttgggatt	120
tggtgttatg	tgttattgtg	tttttgtgtt	ttgtttttta	gtttatttag	ttgggtgggg	180
ttttgtggat	tagtgtaggt	ggattttgtt	gtgttgagat	atgtttttg	gggtatgggg	240
atagtgtttt	gtgggttttt	attatgtagg	tggaaaggga	taaataggtt	tatttgtatg	300
tgttttttga	agtgtgtttt	ttttttaaag	gttttgggag	tttttgggat	aggaaatatg	360
gtaatttgtt	taggtagtgt	agaaataaag	agataaatgt	aatgtgtatt	tatatttta	420
agtttatttt	tttagtatgt	ataaattaaa	tatgtaatag	gtgtggggat	ttagttatat	480
		tttttttgta				540
aatagaaata	tttttattat	tttattttt	tagtatgtga	attagtttat	taaagtgaaa	600
		ttttttttag				660
aaattgatag	aaaagtgtta	gatttgtaaa	aataaatttt	aatttttagt	attggtgaat	720
		ggtagaaatt				780
gtttttaaat	tgaagtaggt	agttaatagt	tgtggatgaa	taaatgaatt	ggataaattt	840
tgtttgagtt	atatgatttt	ttgttgttaa	ggtgtttgtg	gaatggaggg	gaaatgttag	900
taattttatg	tatatatagg	tttgtggttt	tgggttagtt	gaaatatata	aggttgagtt	960
tttgtttgaa	agtttattag	ttttggggag	ttttatttta	tgatattgtt	atataatgga	1020
attgagtttt	tttttagttt	tttaatttta	ttttgagggg	ttaatgaagg	gattaattga	1080
			Page 2	299		

47675-47.txt 1140 ttataagtgt tggtttttta gtgaggagga tttatagttt gagtttttta tgtttaattt 1200 ttttgttttt tättgttgtt aaattaaagt taaaatgagt tttttagttt tttatgtgtg 1260 ttttaaaatg atttttagg agagtggtag gggtgatgtt attgttgtgt gatgatagga 1320 agtaagattt tggtttgtgt agtttgggtt tttgagtttt tgttttaggt atttttgtga 1380 tttttttttt tttttaattt tatttgtgat ggatgatgtt tatgagttgt tttttgataa 1440 aggtggagag ataggggagt tggatgagat ggttgttgtg tttgggggatt tgggggttat 1500 tgatattgat ggaattttag aggaaattga tggagatgta gatgtggatt tgaaagaagt 1560 tgtagtggag gaaggtgagg taggaagaga tgtattgatg aggttgaagg aatatttaga 1620 gattgtgtta ttggttgttt gttgggtttt tggttagttt ttaataagtt atgagaattt 1680 gaatttatta gaatttttt tagattgtta attttgaggg ggaagagagg ggatgattaa ataaaatttt agtgttggtt tggttttaga ggtttaagta ttgttaatat ttttagtttt 1740 1800 gtttttaggg attaaagtta tttttaaggg agttataata gtttgttggt tttggtggtg 1860 aggaaattgg gatttaatgt tatattgaga tgtagtgtaa gagttaaaat ttaggatttg 1920 tagtatttit ittattgtaa tatggtittt titagaigtt aagataattt tigiitttai 1980 2040 attgatatag atttttatat tgaatatgat ttaatttgag agttgtttgg gttggagaat 2100 aatggtgtga tttttggttt attgtaattt gtgttttttg ggtttatgtg attttttgt 2160 tttagttttt tgagtagtta ggattatagg tgtatattat tatgtttagt taatttttgt 2220 atttttagta gagatggggt tttattatgt tggttaggtt ggtt 2264 <210> 530 <211> 1334 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 530 60 120 gtttttggtg tagttttta gtggatgatt tttttgtttt ggggttgagt ttagttttg 180 gatgttgttg aaatttttga gattatgtgt gggtttggtt gttgtttttt tgttgggtgt 240 tattgttatt gttgttgttt ttgttgttgt tgtttgtggg atgtttagta gtttgttgtt 300 360 gttatggtgt tgtgggagtt tttgtggtag tgtagtagtt ggatattttg tgagggtttt 420 480 gttttttttta tttttttaag tgattgttaa atgtttattg gttggaattg ttttggtaag 540 tttagaattt ttgtttttga ttttttaatt ttgtagaaga atatgtgtat ttagtataga 600 ttagittatt ttagtgtgtt tttttagttt tttatttttt attgttttag atttttaata 660 ttatttattt ttatttagag aaataagggg aattgttgta ggtttggggg tgaggggtgg 720 ttttgggatg ggtagaaagt gtaggtgtag taggaaattt ttgtatgttt gtgtttatat 780 tggagttgtg aggattttga gaaatattaa atgggatggt tttttgggtt tattgttttg 840 aaagagtatt aattttaggg gaaatattga aatagaagtt ttgttattat taaagaaaaa 900 960 attaaatggt gattgtaggg gaattgttga tttttggtaa aggtgttatg aggttgtatt 1020 1080 1140 1200 gttttaaggt agtatagggg agttgagaaa aagaatattt tgtgggtttt ttaggttgga 1260 gtgggtatga ttgaggttgg ttaggtttta tgtaggtgag ttgagggtgg aatitgattt 1320 tagtgggtgt tgat 1334 <210> 531 <211> 1334 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens)

<400> 531

gttagtgttt attgaagttg ggttttgttt ttggtttgtt tatatggagt ttgattagtt 60 120 tattattttg aagtttaggg aagtaaagag aggggtatat ttggattgta aaattaatgt 180 240 agagagaga agagaaattt tattgaaatt tagtttttt agaatttgtg tgatttggtt 300 tttaatggga gattagtgtg attttatggt atttttgtta ggaattagtg attttttgt 360 420 attttagtaa gattttttt tttaatgatg ataaagtttt tgttttagtg tttttttag 480 gattggtgtt tttttaaaat agtgaattta gaaaattatt ttgtttaata ttttttaaaa 540 tttttgtagt tttaatgtaa gigiaagtat gtaaaggttt ttigttatat ttgtatttt 600 660 atagaggtgg gtggtattag gggtttaggg tagtaggagg tgaggggttg aggaggtgtg 720 ttagggtagg ttggtttgtg ttggatatgt gtgttttttt gtggagttaa agggttgggg 780 atgggggttt tggatttatt agagtaattt tagttggtgg gtgtttggta gttatttaag 840 gaggtaggga aagtagtgag ttttattggg tgggttatga tgagtagtat gatgggtagt 900 agtagtagtt agtaaaagtt tttgtaaagt gtttagttgt tgtattgttg tggggatttt 960 tatagtatta tgattagttt gtgtaatttt gtagtagtaa atggtttttg aggaatatag 1020 gattgtgggg gttgggtagt gggttattga gtattttgtg gatggtggta gtagaggtgg 1080 tggtggtggt agtggtattt ggtggggaag tagtagttaa atttgtgtat gattttgaga 1140 gttttagtaa tatttaggga ttgggtttag ttttggagtg agagggttgt ttgttgagaa 1200 gttgtgttgg agatgtggga agttgttgtt ataaggaggg agttttggga agttggagga 1260 taggaggaga tgggagttta ggggtagatg agtggagttt gaggaggtag ggtggaggga 1320 gagttaaggt gttt 1334 <210> 532

<210> 532 <211> 2501

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 532

tttttgaaaa	ttgttaataa	aaatttgttg	gttttatggt	ttagggggta	ttatggaatt	60
tgtggatatg	tgatgttttt	tttggatatt	tggttttaaa	atgtttttt	tttgtatttt	120
tttttttat	tttttaggtt	agttgatatt	tagggaaaat	aggaaaggat	ttatgtgaaa	180
tattgggggt	tgaattttt	ttgataataa	gttttttaaa	aaagattttt	aaatgaaatt	240
		tttttgtttt				300
taaatttgtg	tttttggtgt	ttgttgtata	gaatatttta	ttatttaggt	attatgttga	360
gtatttaata	gtttttttt	ttgtttttt	tttttttt	attttgtatt	ttggagttaa	420
ttatagtgtt	tgttgttttt	ttgtttgtgt	tataagtttt	tattatttag	tttttattta	480
taagtgagaa	tatttagtat	ttggattttt	gtttttgtat	tagtttgtta	aggataatag	540
		ttataaaaga				600
aaatgaagtt	ttaaagatat	aatataaata	ttaattttt	ttttattata	aaaattttt	660
gttgaatttg	attatattta	aattaatgag	ttttgtttta	tgaaagattt	tttggataaa	720
tttgatagtt	gatggaatag	gagaagttgt	ttgttatgtt	taaagttaat	aagagattaa	780
tatttagaat	aaatggagat	ttgtaaatta	atagaaagta	ggtagtaaag	ttaaagaaaa	840
		aaaaggaatg				900
		agtaaattta				960
ggttttattt	ataagtggga	gttgaataat	gagaatatat	ggttatatgg	tggtgattaa	1020
		gtggggtgtt				1080
agggatattg	ggtttaatat	ttgggtgatg	ggatgatttg	tatagtaaat	tattatggtg	1140
tatatattta	tgtaataaat	ttgtatattt	tttatatgta	ttttagaatt	ttaaataaaa	1200
		ggtttatgtt				1260
tgtgtagatt	atttaaggtt	aggagtttga	gattagtttg	gttaatatgg	tgaaattttg	1320
		attagttaga				1380
		gtttgaattt				1440
		ttgggttata				1500
		ataaaataaa				1560
aaaataaaat	aaaataaaat	aaaataaaat	aaagtaattt	tttttttt	aagtggtttt	1620

Page 301

1680 tatttttttt ttttgttttg tgaagtgggt gtgtaagttt tgggattgta gtggttttag ggaatttttt tttgigatgi titggtgtgt lagtttgttg tglatatitt gtigtggttt 1740 tttttttgtt gtttgtttat tttttaggtt ttgttgggat ttgggaaaga gggaaaggtt 1800 tttttggtta gttgtgtggt gattttgggg attttagggt gtttttttgt ggttgatgtt 1860 1920 tggggtgtag tggttgttgg ggttgggggtt ggtgggagtt tgtgggattt tttagaagag 1980 tggttggtgt tgtgatttag tattggggtg gagtggggtg ggattatttt tataaggttt ggaggttgtg aggttttgtt ggagttttgt tgttgtagtt tttgttatta gtgagtatgt 2040 gtggtttgtg tttttgggga tggggtttag agtttttagt atggggttaa tttgtagtat 2100 taggtttggg tttttggtag gttttttgtt tattttgaga tttgggatgg gggtttaggg 2160 gatttaggat gtttttagtg ttgttagtgg tttttagggg gtttggagtg ttttggggg ggatgggatt ttgggggtgg ggagggggg tagattgtgt ttattgtgtt ttggtatttt tttttgggtt ttagtaaatt tttttttgtt tgttgtagtg ttgttttata ttgtggttta 2220 2280 2340 tttttttagtt tgaggtagga gtatgtgttt ggtagggaag ggaggtaggg gttggggttg 2400 tagtttatag tittitgitt atttggågag atttgaåtti tittattiti tigitgigtg 2460 gtttttattt tgggtttttt ttttgttttt tgttttttt g 2501 <210> 533 <211> 2501 <212> DNA <213> Artificial Sequence <220> <223> chemically treated genomic DNA (Homo sapiens) <400> 533 tgggagaggt ggggaatagg aaggaggttt ggggtaaaag ttatatgatg gagggataag 60 ggggtttgga tttttttggg tgggtgaggg gttgtgggtt gtagttttag tttttgtttt 120 180 ttttttttgt tagatatatg tttttatttt gaattgggaa atagattatg gtgtagggtg gtattgtagt gaataaagaa aagtttgttg gagtttgggg gaggatgtta aggtgtggtg 240 agtgtagttt gtttttttt tttgtttttg gggttttatt tttttttgag gtgttttggg 300 ttttttgaaa gttgttaatg gtattgggga tgttttgggt tttttaggtt tttgttttgg gttttgaggt gggtgaggag tttgttggga gtttgggttt gatgttgtgg gttgtttta 360 420 tgttgggagt tttgagtttt atttttgggg atgtgggttg tgtgtattta ttggtggtga 480 agattgtggt ggtgaaattt tagtgaagtt ttgtggtttt tgagttttat aagggtggtt 540 ttgttttgtt ttgttttagt gttgagttat ggtgttggtt gtttttttgg agggttttgt 600 ggatttttgt tggttttagt tttggtggtt gttgtatttt gggtgttggt tgtagaggg 660 720 ggttttagtg gggtttaggg agtaaataga tagtaggaag aggattgtag tgaagtgtgt 780 gtagtgaatt ggtgtgttgg gatattgtgg ggggaaattt tttaagattg ttgtgatttt ggagtttgta tatttgttt atagggtagg ggagagggt ggaggttgtt tagaggaaag gaaattgttt tattttattt tattttattt tattttattt tttattta 840 900 960 ttttatttta ttttatttta ttttatttta ttttgtgtta ttttatttta ttttatgatg 1020 tagttttatg ttgtggttta ggttggagtg tagtggtgtg attttggtgg tttattgtaa 1080 tttttqtttt tgggtttaag taattttgtt ttagtttttt gagtaggtgg aattataggt 1140 ggtgtgttat atttggttga tttttgtatt tttagtagag atggggtttt attatgttgg 1200 ttgggttggt tttgaatttt tgattttagg tgatttgtat gttttggttt tttaagagtg 1260 ttgggattat aggtgtgagt tattatgttt ggttgtttaa tttttatttg aagttttggg 1320 1380 gtatatgtag aggatgtgta ggtttgttat ataggtgtgt gtgttatgat ggtttgttgt atagattatt ttattattta ggtattaagt ttagtatttt ttagttattt tttttggtat 1440 tttittttt tagtattttg titaataggt attagtgtgt gttgattgtt gttatgtgat 1500 tatgtgtttt tattgtttag tttttattta taagtgagat tatgtggttt tgttggtttt 1560 ttgittttgt gtgagtttgt tgaggttaat ggtttttagt tttatitatg tittigtaaa 1620 1680 ttatttttttg ttgatttgta gatttttatt tattttagat attgattttt tgttggtttt 1740 1800 atgaaataaa atttgttaat ttaagtgtaa ttaaatttag taagggattt ttgtggtggg 1860 gaagaggttg gtgtttatgt tgtattttta aaattttatt taatgtagtt attaaaaaga 1920 attagattat gttttttgtg ggatatggat ggagttagag gttattattt ttagtaaatt 1980 aatgtaggaa tagaaattta aatattggat gtttttattt gtaagtggga gttaaatgat 2040 gagaatttat aatataaata aggaaataat agatattgtg gttgatttta gggtgtagga 2100 tgggaggaag gagaggagta gaaaagagaa ttattgggta tttggtataa tatttgggtg 2160 atgaaatatt ttgtataata aatattgaag atatgagttt atttatgtaa taaattttta 2220 Page 302

```
tatgtatttt taaaatagaa ataaaagtta aaaaataaag aaattttatt taaaagtttt
                                                                2280
ttttaagaga tttattattg ggggaaattt agtttttaat attttatgtg ggttttttt
                                                                2340
tattttttt aagtgttggt tggtttgaga aataaaggga aagagtataa aagagagata
                                                                2400
ttttaaagtt gggtgtttag gggagatatt atatgtttgt aggttttgtg atgttttttg
                                                                2460
agttgtaaaa ttagtgagtt tttattagta atttttaaag a
                                                                2501
<210> 534
<211> 2327
<212> DNA
<213> Artificial Sequence
<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 534
                                                                  60
ttttttattt tttttattgt tatttttgtt tttgggttat tgttttttt tgtaagtttt
gtttgttgga ttttgttgtt tttgtgtggt tgttttatta tttatgtttg attggaggaa
                                                                 120
ataaaattgg tgttggtttt ttaattttaa gttttgtgtt tgattggggg aggggttatt
                                                                 180
taggtattīt tīttīttaaa tagaagaaat ttaggtatta attgtaaata ttttgttgtt
                                                                 240
300
ttttagtttt taggtaaaga attttatgga gatttattag taaaattaga ttttttaagg
                                                                 360
gaaattatta ggatgttttt agattttttt taagggatat tattggttgt tgattatatt
                                                                 420
480
tagttatttg tagaaagttt gaaattttga aaggagaggt ataatttagg gtaaaagaga
                                                                 540
ttgagtgaag ttttttagat tgattgtttt tattggggtt attttttata aggttgggag
                                                                 600
                                                                 660
tggagaggag tgtttgtaga agagagatta tttttaaagg ggtttttttg aatttaggag
gtgaggggga ttttttagag ttgttattat ttgtaggtgg atttgttatt attatgtagt
                                                                 720
gttttttggg gagttagttt gttttttta gagttttttt taggtattgt tttagagttt
                                                                 780
840
ttatgtgtgt gtgtatatat agatatttag tgggtttgga gtgtattttt gtttatttgt tattatgtg taaattttag atttggaagt tattattatg tgggtgtgta ttaggattta
                                                                 900
                                                                 960
ggggagattg tgtggggttg ggattgtgta taaatatagg ggttgtatgg aagttttgta
                                                                1020
tattttaaag tgtaatttga gtttttgtgg ttttagtttt atttaaaata tgtaaatttt
                                                                1080
tgaaattgaa aaatttgaaa aatttttgaa gagttttatt tgaataaatt taaatttatt
                                                                1140
gggagttgtt ttgaggagat aaaatgtata gtgatttggg gtgagggata tttgtgggga
                                                                1200
                                                                1260
ggtaggatgt gttggattgg gtttttaggg ttaaggtgtt tttggggtttt tgatgatagt
tttagtgtag agtagggaag tggtattgtt aggtagtaag tttagttgtt ttatttttgt
                                                                1320
gatttatgag ttagttttga ggttttggtt ttagggttta gtttttattt atgttgtgtt
                                                                1380
tttgagagtt taatattgtg tttggtatat ggtaggtgtt tattgaatag ttgtggtatg
                                                                1440
1500
tgggtttttt aataaaggta ggggttgggg gatatttagg ggttttttta ggaggatttt
                                                                1560
tttttttatt attttatttt tgggagaaag gtttatgtag gatggttgtt tttttttgt
                                                                1620
tgagagtttt gtttttagtt tatttgggtt gttggaaaag aggagaagaa taaataagag
                                                                1680
ataagtaatt atttttttat tggtgttttg tttttgtttt tattgttaaa tttattttaa
                                                                1740
agttgaggat ggtgagattg tgaagttgta aagaaatata gagtttattt ttttaaagaa
                                                                1800
1860
ttttttggtt ttttgttttt gattgaattt tatgggatag agaatttttt gtttttatg
                                                                1920
aggtaaggtg tgaatttgta gagatttggg gtgttttttg gttttttgtg ttgttttgga ggtgtttata gaggtttttg ttgttaagga tagtaattgt tttatttttg atggttgttt
                                                                1980
                                                                2040
gttaggtttg tgggttgtgg gtttatttag ttgttgaatt ttttagttgt tattagtgtt
                                                                2100
2160
tgtgttgggg ttgagttttg gttagttgtt tttttgatgt tttggatggt tggagggaat
                                                                2220
gaagttttga attgtgataa aagtgggggg ggggtatttt aaatttttaa agtaatgttt
                                                                2280
ttttttttt tttttttt aagtaattga gttttattaa atgttgg
                                                                2327
<210> 535
<211> 2327
<212> DNA
<213> Artificial Sequence
<223> chemically treated genomic DNA (Homo sapiens)
```

<400> 535

```
ttgatatttg gtaaggttta attgtttaag aaaaaagaaa aaaaaagaa tattgttttg
                                                               60
                                                              120
agaatttggg gtgttttttt tttatttttg ttataattta gagttttatt ttttttggtt
qtttaggatg ttgagagagt ggttggttag agtttagttt tggtgtattt gtagggatgt
                                                              180
                                                              240
gttagttggg taggttataa tttgtattat tttattaagt taggagtagt gttgataatg
                                                              300
attggaaagt ttgatggttg ggtgggtttg tgatttgtag gtttggtgag taattattga
aaataaaata attgttgttt ttggtggtaa aggtttttat ggatgttttt agggtagtgt
                                                              360
agggaattaa agggtatttt agatttttgt gggtttgtgt tttgttttgt gggggatagg
                                                              420
aggttttttg ttttatgagg tttagttaag gataaggagt tgggagggga aaggggtagg
                                                              480
agttaaggag agaaatttga aagaggtaaa ttttaaatat attgtaattt tttaaggggg
                                                              540
tgggttttgt gtttttttgt aattttatag ttttattatt tttggttttg gagtggattt
                                                              600
660
tittititit tittagtggi ttagataggi igaaggtaaa aittitagta agggggaagt
                                                              720
gattattttg tgtggatttt ttttttaggg gtgggatgat gaaaaaagaa atttttttgg
                                                              780
ggaagttttt aggtattttt tagtttttat ttttattagg aggtttgggt tttttttatt
                                                              840
900
tttagtgagt atttattatg tgttagatat agtattagat ttttaaaaaat gtggtataaa
                                                              960
tggaaattag gttttgaagt tagagtttta ggattggttt atgggttata aaagtagagt
                                                             1020
aattgagttt gttgtttagt ggtgttattt ttttgttttg tgttaaggtt attgttgaag
                                                             1080
gtttagagat attttgattt tggaaattta atttagtatg ttttgttttt ttataaatat
                                                             1140
tttttatttt aaattgttgt gtgttttgtt tttttaaagt gatttttaat ggatttggat
                                                             1200
ttatttagat agaatttttt ggaagttttt tagatttttt aattttaaga atttgtatgt
                                                             1260
tttaagtgaa gttgaaattg tgaaggttta ggttatattt taaaatatgt aaggtttttg
                                                             1320
1380
1440
1500
tatgtaatat ttttagggta aatggagaaa gtgttaaagg tttttttgaa ttttgggata
                                                             1560
gtatttgagg gggattttgg ggagaatagg ttggtttttt aggagatatt atatagtgat gataaattta tttataggtg gtgataattt taggaagttt tttttatttt ttgagtttgg
                                                             1620
                                                             1680
gagagttttt ttaaaggtag tttttttttt gtagatattt ttttttattt ttgattttat
                                                             1740
gaaaagtggt tttagtggag ataattaatt tgaaaagttt tatttggttt tttttatttt
                                                             1800
aggitgigtt tittittitg ggattitaag tittitgtaa atggitaatt tittitagggt
                                                             1860
qattttaaaa taaaatqqta qqqqtqqqtt aqaqaaqaqt qtqtttaaqt qtaattqata
                                                             1920
attagtaata ttttttgaag agagtttgaa gatgttttgg taatttttt taagaaattt
                                                             1980
ggttttattg gtggattttt atagaatttt ttgtttagag gttggaaatg agtaataggt
                                                             2040
tgtgtgtttt taaggttttg gttaatatga tatatatttt taagaagagt aatggggtgt
                                                             2100
2160
ttaattaagt atgaagtttg gaattaaaaa gttaatgtta attttatttt ttttagttaa
                                                             2220
gtgtgagtga tggggtggtt gtgtaagggt aatggagttt agtggataaa gtttgtagag
                                                             2280
aggggtagtg gtttggaggt aagggtggtg gtggggggg tgggggg
                                                             2327
```

```
<210> 536
```

<400> 536

ttggagttaa agtatttggt aaga

<220>

Page 304

24

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Detection primer for

<210> 537

<211> 18

<212> DNA

<213> Artificial Sequence

<223> Detection primer for

	47675-47.txt	
<400> 537		
aaaaccacct tcaaaccc		18
<210> 538 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 538		
atcctccaca ctcttcctct at		22
<210> 539 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 539		
gaaattaggt ttggttttgt tt		22
<210> 540 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 540		
gagattttgg gaggggtag		19
<210> 541 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 541		
aactctatcc ttttccctct tc		22
<210> 542 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 542		
tgttggttgt tgttgttgtt	Page 205	20

<210><211><212><213>	19	
<220> <223>	Detection primer for	
<400>	543	
ctttct	caccc atcccaaaa	1 9
<210><211><212><212><213>	22	
<220> <223>	Detection primer for	
<400>	544	
taagt	gataa aggaaggaag ga	22
<210><211><211><212><213>	18	
<220> <223>	Detection primer for	
<400>	545	
ccttca	aaacc ccaaacaa	18
<210><211><212><212><213>	22	
<220> <223>	Detection primer for	
<400>	546	
ttgttg	gtttt taggggtttt gg	22
<210><211><211><212><213>	22	
<220> <223>	Detection primer for	
<400>	547 .	
tccttc	ccat tctccaaata tc	22
<210>		

Page 306

<212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 548	
tcaactacca tcaacttcct ta	22
<210> 549 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 549	
aatttatttt tagtgttgta gtggg	25
<210> 550 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 550	
gaaaggagag gttaaaggtt g	21
<210> 551 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 551	
aactcactta actccaatcc c	21
<210> 552 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 552	
ggataggagt tgggattaag at	22
<210> 553 <211> 22 <212> DNA <213> Artificial Sequence	

<220> <223> Detection primer for	
<400> 553	
aaatcttttt caacaccaaa at	22
<210> 554 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 554	
tccaataaac acaaacctaa atc	23
<210> 555 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 555	
atatgggatt gatggaagat ag	22
<210> 556 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 556	
ggaagaggtg attaaatgga t	21
<210> 557 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 557	
cccaaaaatc aaacaacaa	19
<210> 558 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 558		
atttgggaaa gagggaaag		19
<210> 559 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 559		
taaaaactct aaaccccatc c		21
<210> 560 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 560		
ccctacccac caatatacc		19
<210> 561 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 561		
agatttgggg aagaagttgt a		21
<210> 562 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 562		
taaaagaagg atttttgatt gg		22
<210> 563 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 563		
catcttattt acctccctcc c	Page 309	21

<210> 564 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 564	
ttttagattg aggttttagg gt	22
<210> 565 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 565	
atccattcta cctccttttt ct	22
<210> 566 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 566	
gtaatttgaa gaaagttgag gg	22
<210> 567 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 567	
ccaacaacta aacaaaacct ct	22
<210> 568 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 568	
agtaaatagt gggtgagtta tgaa	24
<210> 569 <211> 25	

Page 310

<212> DNA <213> Artificial Sequence	47073 47.CAC
<220> <223> Detection primer for	
<400> 569	
gaaaaacctc taaaaactac tctcc	25
<210> 570	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 570	
gttagtatgt ttgggggtaa at	22
<210> 571	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 571	
ataaataaca ccttccaccc ta	22
<210> 572	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 572	
tttgtattag gttggaagtg gt	22
<210> 573 <211> 22	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 573	
cccaaataaa tcaacaacaa ca	22
<210> 574	
<211> 21 <212> DNA	
<213> Artificial Sequence	

<220> <223> Detection primer for	
<400> 574	
ttgtttgggt taataaatgg a	21
<210> 575 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 575	
cttctcttt ctcccctctc	20
<210> 576 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 576	
aatataggga ggtttagggt tt	22
<210> 577 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 577	
taaccataca tttctcatcc aa	22
<210> 578 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 578	
ttttggggaa tatagggttt	20
<210> 579 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 579	
ttctcacatt tctaaccact tct	23
<210> 580 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 580	
ctcctccttc caacaaaaa	19
<210> 581 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 581	
gtttagaggt tttgggatga tt	22
<210> 582 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 582	
tgaatagggt gatattttag ttagg	25
<210> 583 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 583	
ataaatcatc ccaaaacctc ta	22
<210> 584 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 584	
atttggttat tggttgaagg ta	22

<210> 585 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 585	
aatttttaat ttctcaacac ctct	24
<210> 586 <211> 23 <212> DNA <213> Artificial Sequence	
<220>. <223> Detection primer for	
<400> 586	
gaagaggtgt tgagaaatta aaa	23
<210> 587 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 587	
cccaccctaa cttaccataa a	21
<210> 588 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 588	
caattcccct tatttctcta aa	22
<210> 589 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 589 ·	
aattagttat ggtgttgtgg ga	22
<210> 590 <211> 22	

<212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 590	
ttctattaaa acccaactcc tc	22
<210> 591 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 591	
ataaggggaa ttgttgtagg tt	22
<210> 592 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 592	
taccattctt tcctaaacat cc	22
<210> 593 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 593	
gggttggtgg agaggtag	18
<210> 594 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 594	
gaagatgaga ggaggttgag a	21
<210> 595 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223> Detection primer for	
<400> 595	
ccacaccacc tactacaaaa t	21
<210> 596 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 596	
aacaaacctc ctccaaattc	20
<210> 597 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 597	
tgttggtagg tattggtgat t	21
<210> 598 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 598	
tccccactta aaataaacaa at	22
<210> 599 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 599	
gtgaatttgg aggaggttt	19
<210> 600 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 600	17075 171010	
ggggttgata ttgtttttag ag	2	22
<210> 601 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 601		
cccctccttc cttaaatct	=	19
<210> 602 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 602		
ttttagaagg ggttggttta g	2	21
<210> 603 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 603		
actacctaac tctccccaca a	2	21
<210> 604 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 604		
ttgtggggag agttaggtag t	2	21
<210> 605 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 605		
taacccaaat atcataaaac cc	2	22

<210> 606 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 606	
agatggatat tttgttggtg tt	22
<210> 607 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 607	
tacacaatta tacctttcaa acaat	25
<210> 608 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 608	
ccatacaaat atcctaaata aaacc	25
<210> 609 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 609	
ttgttggaag aattgatagt gtt	23
<210> 610 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 610	
agggagttaa gtaaggggtt ag	22
<210> 611 -211> 22	

	4/0/3-4/.UXU
<212> DNA <213> Artificial Sequence	•
<220> <223> Detection primer for	
<400> 611	
aacaccaaca aaatatccat ct	22
<210> 612 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 612	
tggaatttta gggttagtag gg	22
<210> 613 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 613	
caaataaacc aaaccactat ca	22
<210> 614 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 614	
ttgggatttt taggtggttt	20
<210> 615 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 615	
ttcactttcc ctactaaccc ta	22
<210> 616 <211> 22 <212> DNA <213> Artificial Sequence	

<220> <223> Detection primer for	
<400> 616	
tgggttattt ggtgagtatt gt	22
<210> 617 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 617	
cttaccccca cccaacta	18
<210> 618 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 618	
ttcacattac attaacccat tta	23
<210> 619 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 619	
ttggagttgt taggagaaaa gt	22
<210> 620 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 620	
ccttccttaa aaacctcaaa ac	22
<210> 621 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 621		
gtaaagaatg gtagaggata ggat		24
<210> 622 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 622		
cttactaccc aacctctttc ac		22
<210> 623 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 623		
tggaaggata gagaattttg tt		22
<210> 624 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 624		
atcccatctc tcaactccta ct		22
<210> 625 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 625		
tgatttattt tgatgtgtgg tt		22
<210> 626 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 626		
tatttaagga ttttggaagg ag	Page 201	22

<210><211><212><213>	24	
<220> <223>	Detection primer for	
<400>	627	
tcatc	ccatt ttatctctac aacc	24
<210><211><212><213>	19	
<220> <223>	Detection primer for	
<400>	628	
aacaaa	attcc caacacacc	19
<210><211><212><212><213>	22	
<220> <223>	Detection primer for	
<400>	629	
ttttgg	gaaga tggtttattt tt	22
<210><211><211><212><213>	22	
<220> <223>	Detection primer for	
<400>	630	
ttttta	aatat ggaggtaagg ga	22
<210><211><212><212><213>	19	
<220> <223>	Detection primer for	
<400>	631	
aaatto	cccaa cacaccaac	19
<210> <211>		

<212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 632	
cttctccaaa atcaaccaac t	21
<210> 633 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 633	
tttgtgttat tagtaggtga gagg	24
<210> 634 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 634	
ttagaagttg gagggtgaaa t	21
<210> 635 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 635	
cttcctacct taaaccctta cc	22
<210> 636 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 636	
tctaactcct cacaaattcc taa	23
<210> 637 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223> Detection primer for	
<400> 637	
gtagtgtaat agggaaaggg g	21
<210> 638 <211> 22 <212> DNA <213> Artificial Sequence	3-
<220> <223> Detection primer for	
<400> 638	
taaaattccc tcttacccta aa	22
<210> 639 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 639	
tagtaaggat tgtagaaggg gg	22
<210> 640 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 640	
tagtaaggat tgtagaaggg gg	22
<210> 641 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 641	
cctcaaaccc taaaaataac c	21
<210> 642 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 642		
ggagaggagt gtttgtagaa ga	:	22
<210> 643 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 643		
caatctcccc taaatcctaa t	:	21
<210> 644 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 644		
tagtagtttg aagaagggga ag	:	22
<210> 645 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 645		
aaacattcct aaaatcacaa aaa	:	23
<210> 646 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 646		
tttatttggg tatgattagg tttt	:	24
<210> 647 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 647		
actaaaaaca ccaccccct	:	19

<210> 648 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 648		
acaaaccaaa atcttacttc cta 23		
<210> 649 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 649		
gaatggaggg gaaatgtta 19		
<210> 650 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 650		
aaaactcctc ccctctataa at		
<210> 651 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 651		
ttggagagat gtgttggtta g		
<210> 652 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 652		
aatcctaacc aacacatctc tc 2		
<210> 653 <211> 22		

<212> <213>	> DNA > Artificial Sequence		
<220> <223>	> > Detection primer for		
<400>	> 653		
agggga	gatttt aaggtgatta gt	22	
<210><211><212><213>	> 21		
<220> <223>	> > Detection primer for		
<400>	> 654		
ctccc	ccatcc atcttatttt a	21	
<210><211><212><212><213>	> 22		
<220> <223>	> Detection primer for		
<400>	> 655		
attgtt	ttggg tgatagtgaa gt	22	
<210><211><212><213>	> 22		
<220> <223>	> Detection primer for		
<400>	> 656		
taagtt	ttttg gaggaagagt tt	22	
<210><211><212><212><213>	> 22		
<220> <223>	Detection primer for		
<400>	> 657		
aaaatactcc ctataattcc cc 22			
<210><211><212><213>	> 23		

<220> <223> Detection primer for	
<400> 658	
tttctctaac caaacaccta aaa	23
<210> 659 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 659	
agaaattagt agaggaggga gg	22
<210> 660 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 660	
atctaatccc tctcctaact cc	22
<210> 661 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 661	
tttgttttgg aatttaggtt tt	22
<210> 662 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	
<400> 662	
tccacaaaac tctcctacta aaa	23
<210> 663 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection primer for	

<400> 663		
ggaaggttgg gtagatatag g		21
<210> 664 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 664		
ttggtagagt tgaaaggagá tag		23
<210> 665 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 665		
aaaaacattc cctaaaaatt cc	•	22
<210> 666 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 666		
atagaatggt tagggggtat tt		22
<210> 667 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 667		
tacaaatatc aacctctctc cc		22
<210> 668 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Detection primer for		
<400> 668		
ggtggggtat aatagtaggg at	Davis 200	22

<210><211><212><213>	22	
<220> <223>	Detection primer for	
<400>	669	
cttcc	ectet tteattttat tt	22
<210><211><212><213>	22	
<220> <223>	Detection primer for	
<400>	670	
gaggaa	attgg tattgaaaga aa	22
<210><211><211><212><213>	21	
<220> <223>	Detection primer for	
<400>	671	
ctaato	ccacc ctccataaaa c	21
<210><211><212><213>	22	
<220> <223>	Detection primer for	
<400>	672	
ctccaa	attot octooctata to	22
<210><211><211><212><213>	20	
<220> <223>	Detection primer for	
<400>	673	
taattt	ttga ggttgggaaa	20
<210> <211>		

		4.	7675-47.t	v +		
<212> <213>	DNA Artificial Sequence	-	7073 47.0	X.C		
<220> <223>	Detection oligonucleotide for	or				
<400>	674					
gtatg	tagtt gtgtgtt					17
<210><211><212><212><213>	18					
<220> <223>	Detection oligonucleotide for	or			•	
<400>	675					
tttga	gtatt cgtaggaa					18
<210><211><211><212><213>	18					
<220> <223>	Detection oligonucleotide for	or				
<400>	676					
tatta	gtggt aatagtgg					18
<210><211><212><213>	17					
<220> <223>	Detection oligonucleotide for	or	·			
<400>	677					
tgtgta	agtag gtggttt	-				17
<210><211><212><213>	17					
<220> <223>	Detection oligonucleotide for	or				
<400>	678					
agttt	gattt ggtgaat					17
<210><211><212>	18					

<213> Artificial Sequence

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	679			
tacgt	tgttt ggacgaat		=	18
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	680			
gtcgga	atttc ggaagt		1	16
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	681			
tggac	gtagg aaagcga			L 7
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	682			
gatgta	aggaa agtgaga		1	L 7
<210><211><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	683			
atttacggga gttttatcgt 20				
<210><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		

<400> 684	•
atttatggga gttttattgt	20
<210> 685 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 685	
attagttcgg gtcgcgt	17
<210> 686 <211> 17 <212> DNA <213> Artificial Sequence	·
<220> <223> Detection oligonucleotide for	
<400> 686	•
attagtttgg gttgtgt	17
<210> 687 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 687	
tatacgaaag ggaggcgg	18
<210> 688 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligönucleotide for	
<400> 688	
tatatgaaag ggaggtgg	18
<210> 689 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 689	
ggcgtgtcgt tagtttta	Daga 333

<210> 690 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 690	
ggtgtgttgt tagttttata 2	20
<210> 691 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 691	
ttcgattgac gttagcga	18
<210> 692 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 692	
tttgattgat gttagtga	18
<210> 693 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 693	
tttcgagttt gacggt	16
<210> 694 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 694	
ttttgagttt gatggtt	17
<210> 695 <211> 16	

<212>	DNA Artificial Sequence		17073-47.626
	Artificial Sequence		
<220> <223>	Detection oligonucleotide	for	
<400>	695		
ttcgga	agggc gtattt		16
<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	696		
tttgga	agggt gtattt		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	697		
gacgto	eggta egtagt		16
<210><211><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	698		
gatgtt	ggta tgtagtag		18
<210><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	699		
ttcggg	gggaa ttcgagt		17
<210><211><211><212><213>	17		·

<220> <223> Detection oligonucleotide for	
<400> 700	
tttgggggaa tttgagt	17
<210> 701 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 701	
tattgcgagg attcgg	16
<210> 702 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 702	
attgtgagga tttggt .	16
<210> 703 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 703	
gtgcgttcgt agcgta	16
<210> 704 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 704	
tgtgtttgta gtgtagg	17
<210> 705 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	

<400> 70	5	47073 47.CXC	
ggacgtcg	tt tgttag		16
<210> 70 <211> 17 <212> DN <213> Ar	,		
<220> <223> De	tection oligonucleotide for		
<400> 70	6		
ggatgttg	tt tgttagg		17
<210> 70 <211> 16 <212> DN <213> Ar			
<220> <223> De	tection oligonucleotide for		
<400> 70	7		
agagcgtc	gt tttgta		16
<210> 70 <211> 17 <212> DN <213> Ar			
<220> <223> De	tection oligonucleotide for		
<400> 70	8		
agagtgtt	gt tttgtat		17
<210> 70 <211> 17 <212> DN <213> Ar			
<220> <223> De	tection oligonucleotide for		
<400> 70	9		
tttcgagg	gt aggcgag	•	17
<210> 710 <211> 17 <212> DN <213> Ar			
<220> <223> Det	tection oligonucleotide for		
<400> 71	0		
ttttgaggg	gt aggtgag	Page 227	17

<210><211><212><213>	18			
<220> <223>	Detection oligonucleotide fo	or		
<400>	711			
tttcga	atttt aatgcgaa		1	8.
<210><211><212><212><213>	19			
<220> <223>	Detection oligonucleotide for	or		
<400>	712			
tttgat	ttta atgtgaagt		1	.9
<210><211><212><212><213>	16			,
<220> <223>	Detection oligonucleotide fo	or		
<400>	713			
aggaat	ttcg tcgcga		1	.6
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide fo	or		
<400>	714			
aggaat	tttg ttgtgat		1	.7
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide fo	or		
<400>	715			
tttgag	gtogt acgogt		1	.6
<210>				

<212> DNA <213> Artificial Sequence	17075 171010
<220> <223> Detection oligonucleotide f	· Eor
<400> 716	
ttttgagttg tatgtgt	17
<210> 717 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide 1	for
<400> 717	
tacgtagttg cgcgtt	16
<210> 718 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide f	For
<400> 718	
aatcggcggt taggat	16
<210> 719 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide f	for
<400> 719	
gaattggtgg ttagga	16
<210> 720 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide i	for
<400> 720	
tttgatcggg tttgag	16
<210> 721 <211> 17 <212> DNA <213> Artificial Sequence	

			47675-47.txt
<220> <223>	Detection oligonucleotide	for	
<400>	721		
ttttga	attgg gtttgag		17
<210><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	722		
tgagta	atttg taggaaga		18
<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	723		
agagg	cgcgg gttata		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	724		
tagag	gtgtg ggttat		16
<210><211><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	725		
ttagc	ggtta agttgcga		18
<210><211><212><212><213>	18		
<220>			

<223> Detection oligonucleotide for

<400> 726	1,0,0
ttagtggtta agttgtga	18
<210> 727 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 727	
ttcgtagaag aatacgcgta	20
<210> 728 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 728	
tttgtagaag aatatgtgta	20
<210> 729 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 729	
aaacgtttat cggttg	16
<210> 730 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 730	
aatgtttatt ggttgga	17
<210> 731 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 731	
tatcgtagtt cgttcgg	17

<210><211><211><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	732	
attgta	agttt gtttggt.	17
<210><211><212><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	733	
tggtcg	ggtat atttcga	17
<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	734	
ttggtt	eggta tattttga	18
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	735	
ggaggt	ttcg gttcga	16
<210><211><212><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	736	
tggagg	stttt ggtttga	17
<210>		

<212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 737	
ttagcggtaa tagcgg	16
<210> 738 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 738	
tgcgtagtag gcggtt	16
<210> 739 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 739	
taggcggttg ttcgta	16
<210> 740 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 740	
aggtggttgt ttgtaa	. 16
<210> 741 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 741	
gttcgggtcg attcga	16
<210> 742 <211> 17 <212> DNA <213> Artificial Sequence	

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	742			
ggttt	gggtt gatttga			17
<210><211><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for	,	
<400>	743			
ttcgg	gatat attcgatt			18
<210><211><211><212><213>	19			
<220> <223>	Detection oligonucleotide	for		
<400>	744			
ttttg	ggata tatttgatt		·	19
<210><211><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	745			
tattc	gaatt gtattcgt		:	18
<210><211><211><212><213>	20			
<220.> <223>	Detection oligonucleotide	for		
<400>	746			
tttgaa	attgt atttgtttat		:	20
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		

<400> 747	
ttaagttcga ttcggt	16
<210> 748 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 748	
tagttgttcg agaggg	16
<210> 749 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 749	
agttgtttga gagggt	16
<210> 750 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 750	
atagtatcga ggtgagt	17
<210> 751 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 751	
atagtattga ggtgagtt	18
<210> 752 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 752	
ttcgggattc gataat	16

<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	753		
aggttt	tggg atttga		16
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	754		
ttagga	acgcg gcgata		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	755		
aggato	stggt gatagt		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	756		
ttgtac	gttc ggtatt		16
<210><211><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	757		
taagtt	gtat gtttggta		18
<210> <211>			

47675-47.txt <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 758 ggcgtcgagg tcgtag

ggcgtcgagg tcgtag 16
<210> 759

<211> 17 <212> DNA <213> Artificial Sequence

<220>
<223> Detection oligonucleotide for

<400> 759

ggtgttgagg ttgtagt 17

<210> 760 <211> 17 <212> DNA <213> Artificial Sequence <220>

<223> Detection oligonucleotide for

<400> 760

agggtttcga ttttcgg 17

<210> 761 <211> 17 <212> DNA <213> Artif

<213> Artificial Sequence

<220>

<223> Detection oligonucleotide for

<400> 761

agggttttga tttttgg 17

<210> 762 <211> 16 <212> DNA

<213> Artificial Sequence

<220>

<223> Detection oligonucleotide for

<400> 762

tggaacgtgc gattgt 16

<210> 763 <211> 16 <212> DNA <213> Artificial Sequence

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	763			
tggaat	tgtgt gattgt		נ	L 6
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	764		·	
ttttg	gcgcg tttata		נ	L 6
<210><211><212><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	765			
ttggt	gtgtt tatagata		ı	8.
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	766			
agatt	ttac gattcga		1	L 7
<210><211><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	767			
ttttta	atgat ttgaaataga		2	20
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		

<400> 768	
agtattttcg cgtgtt	16
<210> 769 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 769	
tagtattttt gtgtgttaa	19
<210> 770 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 770	
ttcgtcggcg gtagag	16
<210> 771 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 771	
tagagtttgt tggtgg	. 16
<210> 772 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 772	
gatcgcgggt acgttt	16
<210> 773 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 773	
attgtgggta tgtttgt	17

<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	774		
ttaaco	gtcgt tggtta		16
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	775		
tgatta	aatgt tgttggt		17
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	776		
ttcgcg	gcgaa gattta		16
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	777		
gtttt	gtgt gaagatt		17
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide i	for	
<400>	778		
ttcgat	atcg tgacgg		16
<210> <211>			

<212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 779	
ttttgatatt gtgatggt	. 18
<210> 780 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 780	
agaatacggt cgtaga	16
<210> 781 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 781	
tagaatatgg ttgtagata	19
<210> 782 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 782	
tatttttgcg tacggg	16
<210> 783 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 783	
atttttgtgt atgggtt	17
<210> 784 <211> 16 <212> DNA <213> Artificial Sequence	

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	784			
ttacg	gtgaa ggcgga			16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	785			
ttatg	gtgaa ggtgga			16
<210><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	786			
ttcggg	gatta atatcgagat			20
<210><211><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	787			
tttggg	gatta atattgagat			20
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	788			
tttcgg	stttt cgttaat			17
<210><211><211><212><213>	20			
<220>	Detection eligenuslactide	£ a.v.		

<400> 789	
tttggttttt gttaatttag	20
<210> 790 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 790	
tgtgcgaagt taacgt	16
<210> 791 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 791	
ttgtgtgaag ttaatgt	17
<210> 792 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 792	
aagtttatcg gcgttt	16
<210> 793 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 793	
agaagtttat tggtgttt	18
<210> 794 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 794	
atttcggaat ttaagcgt	18

<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	795	
tttgga	aattt aagtgttt	18
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	796	
ttttcg	gcgat tggaga	16
<210><211><212><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	797 .	
gtttt	gtga ttggaga	17
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	798	
atttac	egegt tttagg	16
<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	799	
atggaa	attta tgtgtttt	18
<210> <211>		

<212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 800	
atgtcgcggt tttata	16
<210> 801 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 801	
ggatgttgtg gttttat	17
<210> 802 <211> 16 <212> DNA <213> Artificial Sequence	
<220>	
<400> 802	
agacggggtt tacgag	16
<210> 803 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 803	
agatggggtt tatgag	16
<210> 804 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 804	
tgtcggtatt agcgtt	16
<210> 805 <211> 17 <212> DNA <213> Artificial Sequence	

	_		
			47675-47.txt
<220> <223>	Detection oligonucleotide	for	
<400>	805		•
gtgttg	ggtat tagtgtt		
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	·
<400>	806		
tggttt	acgt teggta		
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	807		
ggttta	atgtt tggtagt		
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	808		
ttcgta	acggt taggtt		
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	809		

agttttgtat ggttagg

<213> Artificial Sequence

<223> Detection oligonucleotide for

<210> 810 <211> 16 <212> DNA 17

16

17

16

17

<4.00> 810	
atagcgattt cggcga	16
<210> 811 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 811	
agtgattttg gtgaga	16
<210> 812 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 812	
ggcgttttat ttacgaga	18
<210> 813 <211> 18 <212> DNA <213> Artificial Sequence	
<220> . <223> Detection oligonucleotide for	
<400> 813	
gggtgtttta tttatgag	18
<210> 814 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 814	
atcgtggacg gtaacga	17
<210> 815 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 815	
attgtggatg gtaatga	17

<210><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	816	
ttgaga	atcga ttcgtt	16
<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	817	
tgagat	ttgat ttgtttag	18
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	818	
ggcgag	gattc gtacgt	16
<210><211><211><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	819	
ggtgag	gattt gtatgtt	17
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	820	
tgacgt	tegt ggtgga	16
<210>		

<212> <213>	DNA Artificial Sequence		
<220> <223>	Detection oligonucleotide f	for	
<400>	821		
gatgtt	tgtg gtggag		16
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide f	for	
<400>	822		
gtgato	cgatt acggta		16
<210><211><212><213>	17		
<220> <223>	Detection oligonucleotide f	for	
<400>	823		
aggtga	ittga ttatggt		17
<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide f	for	
<400>	824		
attatt	cgtt cggtga		16
<210><211><211><212><213>	18		
<220> <223>	Detection oligonucleotide f	For	
<400>	825		
tattat	ttgt ttggtgag		18
<210><211><211><212><213>	16		

	47675-47.txt	
<220> <223> Detection oligonucleotide	for	
<400> 826		
tatcgtcgtt aagtgt		16
<210> 827 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	for	
<400> 827		
tattattgtt gttaagtgt		19
<210> 828 <211> 16 <212> DNA <213> Artificial Sequence	. ·	
<220> <223> Detection oligonucleotide	for	
<400> 828		
tgtaagcgcg agaata		16
<210> 829 <211> 17 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	for	
<400> 829		
agtgtaagtg tgagaat		17
<210> 830 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	for	
<400> 830		
tatagcggtt tacggt		16
<210> 831 <211> 17 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	for	

<400> 831	
tagtggttta tggtagt	17
<210> 832 <211> 16 <212> DNA <213> Artificial Sequence	
<220> \ <223> Detection oligonucleotide for	•
<400> 832	
agggcgatta ggacgt	16
<210> 833 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 833	
agggtgatta ggatgt	16
<210> 834 <211> 17 <212> DNA <213> Artificial Sequence	
<220> . <223> Detection oligonucleotide for	·
<400> 834	
ttcgttagag ttcgtag	17
<210> 835 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 835	
tttgttagag tttgtagt	18
<210> 836 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 836	
tgagacgttt gtcggt	16

<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	837	
tgagat	gttt gttggt	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	838	
gaaaag	gttcg tcggtt	16
<210><211><211><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	839	
agaaaa	agttt gttggtt	17
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	840	
atggcg	gtagt cgcgat	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	841	
tggtgt	agtt gtgatt	16
<210>		

<212> DNA <213> Artificial Sequence	47075 47, CAC
<220>	
<223> Detection oligonucleotide for	
<400> 842	
ttttgacgtc gatgta	16
<210> 843 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	
<223> Detection oligonucleotide for	
<400> 843	
tgatgttgat gtagaatt	18
<210> 844 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	.
<400> 844	
ttgcgatgtg cgttta	16
<210> 845 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	•
<400> 845	
tgtgatgtgt gtttagt	17
<210> 846 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	•
<400> 846	
tgattacggc gcggat	16
<210> 847 <211> 16 <212> DNA <213> Artificial Sequence	

. 220.			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	847			
attat	ggtgt ggatgg		נ	L 6
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	848			
agatg	gcgac gtcgaa		1	16
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	849			
atggt	gatgt tgaaga		נ	16
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	850			
tttaa	gcgcg gcggta		1	L 6
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	851			
tttta	agtgt ggtggta		1	L 7
<210><211><212><213>	16			
<220>	Detection eligenvalentide	£.~		

<400> 852	4/6/3-4/.CXC
agaaacgtag acgcga	16
<pre><210> 853 <211> 17 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Detection oligonucleotide for	
<400> 853	
aatgtagatg tgatgga	17
<210> 854 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 854	
agagacgcga aaaatt	16
<210> 855 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 855	
tagagagatg tgaaaaat	18
<210> 856 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 856	
agacgaaaga gtcgtt	16
<210> 857 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 857	
agagatgaaa gagttgt	17

<210><211><212><212><213>	16	·	
<220> <223>	Detection oligonucleotide f	for	
<400>	858		
ttttag	ttcg agcgta	· .	16
<210><211><211><212><213>	18		
<220> <223>	Detection oligonucleotide f	For	
<400>	859		
ttagtt	tgag tgtagtta	=	18
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide f	for	
<400>	860		
gacgtg	aatt ttcggaa	=	17
<210><211><212><213>	17		
<220> <223>	Detection oligonucleotide f	For	
<400>	861		
aggatg	tgaa tttttgg	:	17
<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide f	For	
<400>	862		
aatgcg	tggt cgtttt .	1	16
<210>			

<212>		47073 47.020	
	Artificial Sequence		
<220> <223>	Detection oligonucleotide	for	
<400>	863		
gaaatg	gtgtg gttgtt		16
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	864		
tttcgt	ttgc ggaatt	,	16
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide	for	
<400>	865		
ttttgt	ttgt ggaattg		17
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	866		
tgttcg	acgt gatttt		16
<210><211><211><212><213>	17		٠
<220> <223>	Detection oligonucleotide	for	-
<400>	867		
gtgttt	gatg tgatttt		17
<210><211><212><212><213>	16		

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	868			
taacg	tttt togggt		1	6
<210><211><212><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	869			
ttaat	gtttt tttgggtg		1	8
<210><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	870			
tgttg	attcg gaaatga		1	7
<210><211><212><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	871 ·			
tttgt	gatt tggaaatg		1	8
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	872			
ttggag	gcgcg agaaag		. 10	6
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		

<400> 873	
ttggagtgtg agaaag	16
<210> 874 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 874	
tacgttatcg gttcgt	16
<210> 875 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 875	•
tatgttattg gtttgtatt	19
<210> 876 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 876	
attaggttcg tgggcgt	17
<210> 877 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 877	
attaggtttg tgggtgt	17
<210> 878 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 878	
tgcggtttag aaacgtag	18

<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	879	
tgtggt	ttag aaatgtag	18
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	880	
gaacg	ggttt cgtagt .	16
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	881	
gggaat	egggt tttgta	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	882	
ttgcga	atagt cggcgg	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	883	
ttgtga	atagt tggtgg	16
<210> <211>		

<212> DNA <213> Artificial Sequence	17075 17.080
<220> <223> Detection oligonucleotide for	e
<400> 884	
aagaacggac gtgttt	16
<210> 885 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	c
<400> 885	
aggaagaatg gatgtg	16
<210> 886 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	c
<400> 886	
aagtttcgtt tgggag	16
<210> 887 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	c
<400> 887	
aaagttttgt ttgggag	17
<210> 888 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	e e
<400> 888	
ttggaagtcg aagaga	16
<210> 889 <211> 17 <212> DNA <213> Artificial Sequence	

		47675-47.txt	
<220> <223>	Detection oligonucleotide fo	r	
<400>	889		
tttgg	aagtt gaagaga		17
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide fo	r	
<400>	890		
tatcg	ggttc gatttt		16
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide fo	r	
<400>	891		
ggtgta	attgg gtttga		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide fo	r	
<400>	892		
taggga	attcg cggagg		16
<210><211><212><212><213>	16		
<220> <223>	Detection oligonucleotide fo	r	
<400>	893		
taggga	atttg tggagg		16
<210><211><212><212><213>	18		
<220>	Detection oligonucleotide fo	r	

<400> 894	47073 47. CXC	
ttgtcgagta attttcgt		18
<210> 895 <211> 18 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	e for	
<400> 895		
tgttgagtaa tttttgtt		18
<210> 896 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	e for	
<400> 896		
tattacgggc ggaggg	•	16
<210> 897 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	e for	
<400> 897		
tattatgggt ggaggg		16
<210> 898 <211> 16 <212> DNA <213> Artificial Sequence		
<220>		
<223> Detection oligonucleotide	e for	
<400> 898		
gacggtacgt tagagg		16
<210> 899 <211> 17 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide	e for	
<400> 899		
gatggtatgt tagaggt	Page 373	17

<210>			•	
<211><212>				
	Artificial Sequence			
	-		•	
<220>	Detection oligonucleotide	for		
<400>	900			
ttgggg	gtcg ttatta			16
<210>	901			
<211>				
<212>	DNA Artificial Sequence			
(2137	Artificial bequeice			
<220>	Date	£		
<223>	Detection oligonucleotide	ior		
<400>	901			
tgggtg	sttgt tattagt			17
<210>				
<211><212>				
	Artificial Sequence			
	-		•	
<220>	Detection oligonucleotide	for		
\ 2 23>	Decection originalization			
<400>	902			
tattag	ttcg gtcgtt			16
<210>	903			
<211>	17			
<212>				
<213>	Artificial Sequence			
<220>		_		
<223>	Detection oligonucleotide	for		
<400>	903			
agtttg	gttg ttagttt			17
<210>	904			
<211>				
<212>	DNA			
<213>	Artificial Sequence			
<220>				
	Detection oligonucleotide	for		
<400>	904			
ttatta	cgtt tagcgat			17
<210>	905			
<211>				

<212> DNA <213> Artificial Sequence	Trons Trient
<220> <223> Detection oligonucleotide for	
<400> 905	
tttttattat gtttagtgat a	21
<210> 906 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 906	
atagcgagtg cgatat	16
<210> 907 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 907	
agggtcgtag cggtag	16
<210> 908 <211> 16 <212> DNA <213> Artificial Sequence	·
<220> <223> Detection oligonucleotide for	
<400> 908	
gagggttgta gtggta	16
<210> 909 <211> 17 . <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 909	
tagacgtggg gttacgt	17
<210> 910 <211> 17 <212> DNA <213> Artificial Sequence	

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	910			
tagatg	tggg gttatgt		=	17
<210><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	911			
atttcg	gggt agtatcgt		1	18
<210><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	912			
attttg	gggt agtattgt		1	L 8
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	913			
tacgcg	cgtt ttaaaa		1	L 6
<210><211><211><212><213>	19			
<220> <223>	Detection oligonucleotide	for		
<400>	914			
ttatgt	gtgt tttaaaatg		1	L 9
<210><211><212><213>	21			
<220> <223>	Detection oligonucleotide	for		

<400> 915	
tacgatatcg ttatataacg g	21
<210> 916 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 916	
tatgatattg ttatataatg g	21
<210> 917 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 917	
tataggttcg cggttt	16
<210> 918 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 918	
tatataggtt tgtggttt	18
<210> 919 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 919	
taggtgcgcg ttatat	16
<210> 920 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 920	
atgtaggtgt gtgttat	17

<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	921	
tatgtt	gttt ggatgaat	18
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	922	
aaggag	egta tittegg	16
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	923	
aggagt	gtat tttggg	16
<210><211><211><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	924	
gttgga	tttt ggaagtg	17
<210><211><211><212> !	16	
<220> <223>	Detection oligonucleotide for	
<400>	925	
gaagtg	acgc gttcgt	16
<210> <211>		

<212> DNA <213> Artificial Sequence	
<220>	
<223> Detection oligonucleotide for	
<400> 926	
gaagtgatgt gtttgt	16
<210> 927 <211> 16 <212> DNA	
<213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 927	
tgttatcgtt gcgcga	16
<210> 928 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 928	
atgttattgt tgtgtga	17
<210> 929 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 929	
tgaaaacgtt tttcgt	16
<210> 930 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 930	
aatgttttt gtaaagaaa	19
<210> 931 <211> 16 <212> DNA <213> Artificial Sequence	

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	931			
aggatt	tegg egttat			16
<210><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	932			
aaagga	atttt ggtgtta			17
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	933	,		
atttat	tcgt gcgttt		:	16
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	934			
tattt	gtgtg tttaggg			17
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	935			
tttcgg	gtggt tttcgaa			17
<210><211><211><212><213>	17			
<220>	Detection oligonyclectide	for		

<400> 936	
tttggtggtt tttgaag	17
<210> 937 <211> 16 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Detection oligonucleotide for</pre>	
<400> 937	
ggcgtacgga atttta	16
<210> 938 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 938	
gggtgtatgg aatttta	17
<210> 939 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 939	•
tggacggagg tttcgt	. 16
<210> 940 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 940	
tggatggagg ttttgt	16
<210> 941 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 941	
tgcggacggg atagtt	16

<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	942	•	
tgtgga	tggg atagtt		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	943		
tgatta	gtcg attcgt		16
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	944		
gatgta	ggga tggaga		16
<210><211><212><213>	20		
<220> <223>	Detection oligonucleotide	for	
<400>	945		
tatcgt	ggtt ttttacgtat		20
<210><211><212><213>	20		
<220> <223>	Detection oligonucleotide	for	
<400>	946		
atattg	tggt tttttatgta		20
<210><211>			

<212> DNA <213> Arti	ficial Sequence		1,0,0	17.010		
<220> <223> Dete	ction oligonucleotide	for				
<400> 947						
tttattcggt	gttcga					16
<210> 948 <211> 17 <212> DNA <213> Arti	ficial Sequence					
<220> <223> Dete	ction oligonucleotide	for				
<400> 948						
tatttggtgt	ttgagag					17
<210> 949 <211> 16 <212> DNA <213> Arti	ficial Sequence					
<220> <223> Dete	ction oligonucleotide	for				
<400> 949						
ggtttcgttt	aatcgt					16
<210> 950 <211> 18 <212> DNA <213> Arti	ficial Sequence					
<220> <223> Dete	ction oligonucleotide	for				
<400> 950						
gggttttgtt	taattgta					18
<210> 951 <211> 17 <212> DNA <213> Arti:	ficial Sequence					
<220> <223> Detec	ction oligonucleotide	for				
<400> 951						
gattcgtatt	tcgtagt					17
<210> 952 <211> 18 <212> DNA <213> Artis	ficial Sequence					

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	952			
tttgta	atttt gtagtggg			18
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	953			
ttcgta	attta gcggat			16
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	954			
ggttt	gtatt tagtgga			17
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	955			
ttaato	eggeg ggtttt			16
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	956			
agttaa	attgg tgggtt			16
<210><211><212><212><213>	18			
<220>				

Page 384

<223> Detection oligonucleotide for

<400> 957	
tattttggcg ggttgtat	18
<210> 958 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 958	
tattttggtg ggttgtat	18
<210> 959 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 959	
aaggttatcg gtttaaga	18
<210> 960 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 960	
aaggttattg gtttaaga	18
<210> 961 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 961	
gggggacgac gtttttgt	18
<210> 962 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 962	
gggggatgat gtttttgt	18

<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	963	
ttacg	gttcg gttatt	16
<210><211><212><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	964	
aggtt	ttatg gtttggt	17
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	965	
gacgt	cgcgg ggttag	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	966	
tgatg	ttgtg gggtta	16
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	967	
aggtai	cttcg cgatat	16
<210>		

47675-47.txt <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 968 aggtattttg tgatatttt <210> 969 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 969 gtttttcgat ttacgtt <210> 970 <211> 19 <212> DNA <213> Artificial Sequence <223> Detection oligonucleotide for <400> 970 taggtttttt gatttatgt <210> 971 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 971

19

17

19

<220>
<223> Detection oligonucleotide for
<400> 972

ggtagttttg attattta 18

<210> 973 <211> 16 <212> DNA <213> Artificial Sequence

000	47675-47.txt
<220> <223> Detection oligonucleotide for	•
<400> 973	
tagagtacgg ggcggg	16
<210> 974 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 974	
tagagtatgg ggtggg	16
<210> 975 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 975	
ttgtttagcg gattttag	18
<210> 976 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 976	
ttgtttagtg gattttag	18
<210> 977 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 977	
taggttcggt tcgttat	17
<210> 978 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	

<400> 978	1,0,3 1,10,10
taggtttggt ttgttatt	18
<210> 979 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 979	
tggtggtacg tagtttgg	18
<210> 980 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 980	
tttggcgtag atcggt	16
<210> 981 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 981	
tttggtgtag attggt	16
<210> 982 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 982	
agtgttcgtc gtagtt	16
<210> 983 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 983	
tgagtgtttg ttgtagt	17

<210> 984 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 984	
gtgtttagcg cggatt	16
<210> 985 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 985	
ggtgtttagt gtggatt	17
<210> 986 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 986	
ttcggttagt ttcgtat	17
<210> 987 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 987	
ttttggttag ttttgtatt	19
<210> 988 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 988	
gattcgtttg ggtaacgt	18
<210> 989 <211> 18	

<212> <213>	DNA Artificial Sequence	1,015 1,1010	
<220> <223>	Detection oligonucleotide f	For	
<400>	989		
gatttg	tttg ggtaatgt		18
<210><211><211><212><213>	17		
<220> <223>	Detection oligonucleotide f	For .	
<400>	990		
gtcgaa	ttta gtcgcgt		17
<210><211><212><213>	18		
<220> <223>	Detection oligonucleotide f	For	
<400>	991		
gttgaa	ttta gttgtgta		18
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide f	for	
<400>	992		
aattcg	cgag tttaga		16
<210><211><212><213>	18		
<220> <223>	Detection oligonucleotide f	for	
<400>	993		
aaaaatttgt gagtttag 18			
<210><211><212><212><213>	18		

47675-47.txt <220> <223> Detection oligonucleotide for <400> 994 tatatatacg tgtgggta <210> 995 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 995 tatatatatg tgtgggta <210> 996 <211> 16 <212> DNA <213> Artificial Sequence

<210> 996
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Detection oligonucleotide for

18

18

18

<400> 996

tatgtagtcg cgtagt 16

<210> 997
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Detection oligonucleotide for

tttatgtagt tgtgtagt
<210> 998
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Detection oligonucleotide for

<400> 998

agtgtatgcg tagaaggt 18

<210> 999
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Detection oligonucleotide for

<400> 997

<400> 999		
agtgtatgtg tagaaggt		18
<210> 1000 <211> 18 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide for		
<400> 1000		
tttagatacg aaatgtta		18
<210> 1001 <211> 18 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide for		
<400> 1001		
tttagatatg aaatgtta		18
<210> 1002 <211> 18 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide for		
<400> 1002		
aagtaagtcg ttgttgtt		18
<210> 1003 <211> 18 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide for		
<400> 1003		
aagtaagttg ttgttgtt 18		
<210> 1004 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Detection oligonucleotide for		
<400> 1004		
tttcgtcgga ggaatt	Page 202	16

<210><211><211><212><213>	17		
<220>	Detection oligonucleotide for		
<400>	1005		
gttttg	gttgg aggaatt	17	
<210><211><212><212><213>	17		
<220> <223>	Detection oligonucleotide for		
<400>	1006		
atcgtt	ettgt cggacgg	17	
<210><211><212><213>	17		
<220> <223>	Detection oligonucleotide for		
<400>	1007		
attgtt	ttgt tggatgg	17	
<210><211><211><212><213>	16		
<220> <223>	Detection oligonucleotide for		
<400>	1008		
tgtcgcgata tatcga			
<210><211><211><212><213>	19		
<220> <223>	Detection oligonucleotide for		
<400>	1009		
tttgtt	gtga tatattgat	19	
<210><211>			

<212>	DNA		47073-47.CXC	
<213>	Artificial Sequence			
<220> <223>	Detection oligonucleotide	for		
<400>	1010			
agcgto	gatt aatcgt			16
<210><211><212><213>	19			
<220> <223>	Detection oligonucleotide	for		
<400>	1011			
ttaagt	gttg attaattgt			19
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1012			
ttcggt	cggg tttaaa			16
<210><211><212><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	1013			
gtttgg	gtttggttgg gtttaaa 17			
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1014			
taatcgttag cggcgg 16				
<210><211><211><212><213>	17			

	47675-47.txt		
<220> <223> Detection oligonucleotide f	for		
<400> 1015			
ttaattgtta gtggtgg		17	
<210> 1016 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide f	For		
<400> 1016			
ttaacgggtg ggtacgt		17	
<210> 1017 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide f	for		
<400> 1017			
ttaatgggtg ggtatgt		17	
<210> 1018 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide f	for		
<400> 1018			
aggtcgttgg tattcgt		17	
<210> 1019 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide f	for		
<400> 1019			
aggttgttgg tatttgt 17			
<210> 1020 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide f	for		

<400> 1020	,
ttttcgagtt ttatcga ,	17
<210> 1021 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1021	
tttgagtttt attgaggt	18
<210> 1022 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	·
<400> 1022	
atagtcgtgg tttcgt	16
<210> 1023 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1023 .	
atagttgtgg ttttgtt	17
<210> 1024 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1024	
tgacgggcgt tttcga	16
<210> 1025 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1025	
gatgggtgtt tttgag	16

<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	1026	
taatga	agcgc gttgta	16
<210><211><211><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	1027	
atgagt	tgtgt tgtattt	17
<210><211><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	1028	
ttggtt	tcggg aaaggtaa	18.
<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	1029	
ttggtt	ttggg aaaggtaa	18
<210><211><212><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	1030	
tttcgg	gtgaa toggat	16
<210><211>		

47675-47.txt <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 1031 tttttggtga attggat <210> 1032 <211> 16 <212> DNA <213> Artificial Sequence

<400> 1032 ttcgtaaagt cgttgt

17

16

18

<210> 1033
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Detection oligonucleotide for

<223> Detection oligonucleotide for

<400> 1033

ggttttttgt aaagttgt
<210> 1034
<211> 18
<212> DNA
<213> Artificial Sequence
<220>

<223> Detection oligonucleotide for <400> 1034

gtttagttag cgggtttt 18

<210> 1035 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 1035

gtttagttag tgggtttt 18

<210> 1036 <211> 16 <212> DNA <213> Artificial Sequence

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	1036			
gggcg	egtac ggttat		1	.6
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1037			
agttg	ggtgt gtatgg		1	.6
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1038			
ttatco	gcgcg tggagg		1	.6
<210><211><211><212><213>	17 .			
<220> <223>	Detection oligonucleotide	for		
<400>	1039			
ttatto	gtgtg tggagga		1	.7
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1040			
ggtgcgcgta gagaat 16				
<210><211><211><212><213>	17			

<220>

<223> Detection oligonucleotide for

<400> 1041	47073-47.CXC
ggtgtgtgta gagaata	17
<210> 1042 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1042	
taagcgtatc gacgtt	16
<210> 1043 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1043	
attttaagtg tattgatgt	19
<210> 1044 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1044	
aaatatcgaa cgggat	16
<210> 1045 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1045	
attgaatggg atttagag	18
<210> 1046 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1046	
ttagagttcg agtttata	18

<210><211><212><213>	18				
<220> <223>	Detection oligonucleotide for				
<400>	1047				
ttagag	gtttg agtttata	18			
<210><211><212><212><213>	16				
<220> <223>	Detection oligonucleotide for				
<400>	1048				
ttaggo	egegg attegt	16			
<210><211><211><212><213>	16				
<220> <223>	Detection oligonucleotide for				
<400>	1049				
taggto	gtgga tttgtt	16			
<210><211><211><212><213>	16				
<220> <223>	Detection oligonucleotide for				
<400>	1050				
ttcgcc	ttcgcgaagt tacggg				
<210><211><212><212><213>	17				
<220> <223>	Detection oligonucleotide for				
<400>	1051				
tttgtgaagt tatgggt 17					
<210><211>					

47675-47.txt <212> DNA <213> Artificial Sequence <220> <223> Detection oligonucleotide for <400> 1052 tatcggttcg gagtta <210> 1053 <211> 17 <212> DNA <213> Artificial Sequence

<400> 1053	
attggtttgg agttaga	

16

17

16

<210>	1054	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Detection oligonucleotide	for

		•	
<400>	1054		

<223> Detection oligonucleotide for

<210>	1055	
<211>	18	
<212>	DNA	
<213>	Artificial	Sequence

aagtagcgtc gttatt

<220>			

<223> Detection oligonucleotide for

<400> 1055

<220>

aagtagtgtt gttattga	18
aagtagtgtt gttattga	18

<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide	for
<400>	1056	

gtcgttcgga attcgt

```
<210> 1057
<211> 17
<212> DNA
<213> Artificial Sequence
```

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	1057			
agttgt	ttgg aatttgt		1	L 7
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1058			
tacgto	ggtcg agggtt		1	16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1059			
tatgt	ggttg agggtt		1	.6
<210><211><212><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	1060			
ggaagt	ttcg atggttta		1	.8
<210><211><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	1061	•		
ggaagttttg atggttta 18				
<210><211><212><213>	17			

<220> <223> Detection oligonucleotide for

<400> 1062	
ggcgttggta tcgttga	17
<210> 1063 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1063	
ggtgttggta ttgttga	17
<210> 1064 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1064	
ttaagacgcg tttttt	16
<210> 1065 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1065	
aagatgtgtt ttttgga	17
<210> 1066 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1066	
ttttgtcgcg ggaatt	16
<210> 1067 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1067	
tttttgttgt gggaatt	17

<210> 1068 <211> 16 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide for			
<400> 1068			
atacgtagat tcggag	L 6		
<210> 1069 <211> 17 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide for			
<400> 1069			
tatgtagatt tggaggt	L 7		
<210> 1070 <211> 18 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide for			
<400> 1070			
gaagtggtcg ttagtttt 1	L 8		
<210> 1071 <211> 19 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide for			
<400> 1071			
gaagtggttg ttagttttt 1	L 9		
<210> 1072 <211> 18 <212> DNA <213> Artificial Sequence			
<220> <223> Detection oligonucleotide for			
<400> 1072			
aaggaattcg ttttgtaa 18			
<210> 1073 <211> 18			

<212> DNA	1,0,3 1,1616
<213> Artificial Sequence	
<220> <223> Detection oligonucleotide fo	or
<400> 1073	
aaggaatttg ttttgtaa	18
<210> 1074 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	or
<400> 1074	
aatgttttcg tgatgttg	18
<210> 1075 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide fo	or
<400> 1075	
aatgtttttg tgatgttg	18
<210> 1076 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide fo	or
<400> 1076	
taaaacgagg gagcgt	16
<210> 1077 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide fo	or
<400> 1077	
aaaatgaggg agtgtt	16
<210> 1078 <211> 16 <212> DNA <213> Artificial Sequence	

			4/6/5-4/.LXL	
<220> <223>	Detection oligonucleotide	for		
<400>	1078			
aggagt	cggt ttcgta			16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1079			
aggagt	tggt tttgta			16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1080			
taaago	egegg atattt			16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1081			
gggtaa	aagtg tggata			16
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1082			
tttgag	geggg tatega			16
<210><211><212><212><213>	16			
<220>	Detection oliconycleotide	for		

<400> 1083	47075 47. CXC
tgagtgggta ttgagt	16
<210> 1084 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1084	
tagagtcgag gggcgg	16
<210> 1085 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	. •
<400> 1085	
tagagttgag gggtgg	. 16
<210> 1086 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1086	
tttcgaggga cggaag	. 16
<210> 1087 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1087	
ttttgaggga tggaag	16
<210> 1088 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1088	
tatgttttcg gcgaat	16

<210> 1089 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1089	
ttttggtgaa tgggga	16
<210> 1090 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1090	
atagtcgagg agtcgt	16
<210> 1091 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1091	
aatagttgag gagttgt	17
<210> 1092 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1092	
atttgtttcg attaattt	18
<210> 1093 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1093	
atttgttttg attaattt	18
<210> 1094 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1094	
aatttgcgaa cgtttggg	18
<210> 1095 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1095	
aatttgtgaa tgtttggg	18
<210> 1096 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1096	
gtcgatgttt tcggta	16
<210> 1097 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1097	
ggttgatgtt tttggta	17
<210> 1098 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1098	
gagtttcgtt atatcgt	17
<210> 1099 <211> 18 <212> DNA <213> Artificial Sequence	

			47675-47. CXC	
<220> <223>	Detection oligonucleotide	for		
<400>	1099			
ggagtt	ttgt tatattgt			18
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1100			
tttttg	geggt tegata			16
<210><211><212><213>	18.			
<220> <223>	Detection oligonucleotide	for		
<400>	1101			
aattt	tgtg gtttgata			18
<210><211><212><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	1102			
tacgtt	aagg ttaacgtata			20
<210><211><211><212><213>	20			
<220> <223>	Detection oligonucleotide	for		
<400>	1103			
tatgtt	aagg ttaatgtata			20
<210><211><211><212><213>	17			
<220>	Detection oligonucleotide	for		

<400> 1104	17073 171686
tgtttcgtcg ttataat	17
<210> 1105 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1105	
gttttgttgt tataattaga	20
<210> 1106 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1106	
ggcgtaggtt acgatt	16
<210> 1107 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1107	
ggggtgtagg ttatga	16
<210> 1108 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1108	
attcgttacg gatcgt	16
<210> 1109 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1109	
tttatttgtt atggattgt	19

<210><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	1110	
agttt	cgga ttcgaa	16
<210><211><212><212><213>	17	
<220> <223>	Detection oligonucleotide for	
<400>	1111	
agagtt	tttg gatttga	17
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	1112	
tattto	gagg tagcgg	16
<210><211><211><212><213>	16	
<220> <223>	Detection oligonucleotide for	
<400>	1113	
tttgag	ggtag tgggat	16
<210><211><212><212><213>	18	
<220> <223>	Detection oligonucleotide for	
<400>	1114	
gagaga	aacg gtttttgt	18
<210><211>		

<212> <213>	DNA Artificial Sequence		
<220> <223>	Detection oligonucleotide	for	
<400>	1115		
gagaga	aaatg gtttttgt		18
<210> .<211> .<212> .<213>	17	·	
<220> <223>	Detection oligonucleotide	for	
<400>	1116		
gtttga	itgga tgttttt		17
<210><211><212><213>	16		
<220> <223>	Detection oligonucleotide	for	
<400>	1117		
gtacga	leggt aaggat		16
<210><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	1118		
gtatga	tggt aaggatta		18
<210><211><212><213>	18		
<220> <223>	Detection oligonucleotide	for	
<400>	1119		
agttgt	ttcg tagatatt		18
<210><211><212><212><213>	18		

			47675-47.txt	
<220> <223>	Detection oligonucleotide	for		
<400>	1120			
agttgt	ttttg tagatatt	•		18
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	1121			
agtaag	gcggt tgtatat			17
<210><211><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	1122			
aaaagt	taagt ggttgtat			18
<210><211><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	1123			
aaatt	gagcg tttatgt			17
<210><211><212><213>	18			
<220> <223>	Detection oligonucleotide	for		
<400>	1124			
attgag	attgagtgtt tatgtgta 18			
<210><211><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		

<400> 1125	
ttgaagtcgg tacggt	16
<210> 1126 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1126	
tgaagttggt atggtt	16
<210> 1127 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1127	
tgggacgcgg atattt	16
<210> 1128 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1128	
gttgggatgt ggatat	16
<210> 1129 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1129	
taaagtttcg aagcgg	16
<210> 1130 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1130	
agttttgaag tggagt	16

<210> 1131 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1131	
aagteggtag ttategt	17
<210> 1132 <211> 18 . <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1132	
aagttggtag ttattgtt	18
<210> 1133 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1133	
gaggcgcgtt attttt	16
<210> 1134 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1134	
gggaggtgtg ttatttt	17
<210> 1135 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1135	
aacggtagtt agcgata	17
<210> 1136 <211> 17	

<212>	DNA Artificial Sequence	4,0,	J 47.0x0	
	Artificial bequence			
<220> <223>	Detection oligonucleotide	for		
<400>	1136			
tgaato	ggtag ttagtga			17
<210><211><212><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1137			
ttttaa	acgtt cgcgga			16
<210><211><212><213>	16			
<220> <223>	Detection oligonucleotide	for		
<400>	1138			
aatgtt	tgtg gaggat			16
<210><211><212><213>	17			
<220> <223>	Detection oligonucleotide	for		
<400>	1139			
tttttc	egegt atatgtt			17
<210><211><212><213>	21			
<220> <223>	Detection oligonucleotide	for		
<400>	1140			
ttttt	gtgt atatgtttag g			21
<210><211><211><212><213>	16			

			47675-47.txt			
<220> <223>	Detection oligonucleotide	for				
<400>	1141					
aaggg	aagggcggta agacgg					
<210><211><212><213>	16					
<220> <223>	Detection oligonucleotide	for				
<400>	1142					
aagggtggta agatgg						
<210><211><211><212><213>	16					
<220> <223>	Detection oligonucleotide	for				
<400>	1143		•			
ttaggt	cgga cgtaag		1	6		
<210><211><211><212><213>	16					
<220> <223>	Detection oligonucleotide	for				
<400>	1144					
ggttag	ggttg gatgta		1	6		
<210><211><212><213>	16					
<220> <223>	Detection oligonucleotide	for				
<400>	1145					
aggggttcga ttaggg						
<210><211><212><212><213>	16					
<220>						

<223> Detection oligonucleotide for

<400> 1146	4/0/3-4/. CAC
aggggtttga ttaggg	16
<210> 1147 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1147	
ttaggtatac gaaagagtat	20
<210> 1148 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1148	
ttaggtatat gaaagagtat	20
<210> 1149 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1149	
tgtcgtacgt tatgtt	16
<210> 1150 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1150	
ggtgttgtat gttatgt	17
<210> 1151 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Detection oligonucleotide for	
<400> 1151	
ttgattggcg gacgag	16

<210> 1152 <211> 16 <212> DNA <213> Artificial Sequence				
<220> <223> Detection oligonucleotide for				
<400> 1152				
ttgattggtg gatgag	16			
<210> 1153 <211> 16 <212> DNA <213> Artificial Sequence				
<220> <223> Detection oligonucleotide for				
<400> 1153				
aaaacgtgga cgtttt	16			
<210> 1154 <211> 18 <212> DNA <213> Artificial Sequence				
<220> <223> Detection oligonucleotide for				
<400> 1154				
atttggagcg aggaattt 18				
<210> 1155 <211> 18 <212> DNA <213> Artificial Sequence				
<220> <223> Detection oligonucleotide for				
<400> 1155				
atttggagtg aggaattt 18				
<210> 1156 <211> 18 <212> DNA <213> Artificial Sequence				
<220> <223> Detection oligonucleotide for				
<400> 1156				
ttgaaagtcg gttaaagt 18				
<210> 1157				

```
47675-47.txt
<212> DNA
<213> Artificial Sequence
<220>
<223> Detection oligonucleotide for
<400> 1157
                                                                          18
ttgaaagttg gttaaagt
<210> 1158
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Detection oligonucleotide for
<400> 1158
ggtagttacg agagagtt
                                                                          18
<210> 1159
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Detection oligonucleotide for
<400> 1159
ggtagttatg agagagtt
                                                                          18
<210> 1160
<211> 18
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1160
GGTTTCGGTT CGAGGTTC
18
<210> 1161
<211> 22
<212> DNA
<213> Artificial Sequence
```

<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.

<400> 1161

ACTTTACTAC AACGAAAACG CC

<220> bisulfite treated

22

```
47675-47.txt
```

```
<210> 1162
<211> 35
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1162
GGGTTTAAGA CGATGGTATG GTTTGTTTCG TTATT
35
<210> 1163
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1163
CGATAATATA ACCTACTCCG CC
22
<210> 1164
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1164
CGGGAAAGTA AAGCGTATTT TT
22
<210> 1165
<211> 32
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1165
AGGCGTCGAC GTTATAGAGG AGGAGTTTAC GT
32
<210> 1166
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1166
ACGATAATAT AACCTACTCC GCC
```

```
<210> 1167
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1167
TCGGGAAAGT AAAGCGTATT T
21
<210> 1168
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1168
TTCGGGAAAG TAAAGCGTAT T
21
<210> 1169
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1169
CGTAAACTCC TCCTCTATAA CGTC
24
<210> 1170
<211> 30
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1170
AGAGGTCGAG TTTTGTTATA GCGAAGGCGT
30
<210> 1171
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1171
CACGTAAACT CCTCCTCTAT AACG
```

```
24
```

```
<210> 1172
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1172
AAACGATAAT ATAACCTACT CCGC
24
<210> 1173
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1173
AACGATAATA TAACCTACTC CGCC
24
<210> 1174
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1174
ACGTAAACTC CTCCTCTATA ACG
23
<210> 1175
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1175
TCATAAACAA AACGTCTCGA AT
22
<210> 1176
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
                                       Page 426
```

```
<400> 1176
 CGTTATAGAG GAGGAGTTTA CGTG
 24
 <210> 1177
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
 <400> 1177
 GGTGGCGGAG TAGGTTATAT TATCGTTTTG GG
 32
 <210> 1178
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
 <400> 1178
 CATAAACAAA ACGTCTCGAA TTTA
 24
 <210> 1179
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
 <400> 1179
 CGAAATCCTC ATAAACAAAA CG
 22
 <210> 1180
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
 <400> 1180
 GTTTACGTGA TGGTGGCG
 18
 <210> 1181
 <211> 26
 <212> DNA
 <213> Artificial Sequence
```

```
47675-47.txt
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1181
ATCGTTTTGG GTTCGGGGAG GGAGAG
26
<210> 1182
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1182
AGTTTACGTG ATGGTGGCG
19
<210> 1183
<211> 18
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1183
CGCCACCATC ACGTAAAC
18
<210> 1184
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1184
CTCATAAACA AAACGTCTCG AA
22
<210> 1185
<211> 25
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO 16.
<400> 1185
ACGTTATAGA GGAGGAGTTT ACGTG
25
<210> 1186
<211> 22
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1186
AGTTTCGCGG TTTATAGAGG TT
22
<210> 1187
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1187
GAACGACCAA AACTAACTCG AA
22
<210> 1188
<211> 28
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1188
GTCGCGTTGC GCGGTTTGAT TTAGTCGA
28
<210> 1189
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1189
AACGATAATA CGAACGACCA AA
22
<210> 1190
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1190
GTTTCGCGGT TTATAGAGGT TT
```

22

```
47675-47.txt
```

```
<210> 1191
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1191
GTAGTTTCGC GGTTTATAGA GG
22
<210> 1192
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1192
TAGTTTCGCG GTTTATAGAG GT
22
<210> 1193
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1193
ACGATAATAC GAACGACCAA AA
22
<210> 1194
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1194
CGATAATACG AACGACCAAA AC
22
<210> 1195
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1195
GGTAGTTTCG CGGTTTATAG AG
```

22

```
<210> 1196
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1196
GTTTAGGTAG TTTCGCGGTT TA
22
<210> 1197
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1197
GAACGATAAT ACGAACGACC AA
22
<210> 1198
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1198
ACGACCAAAA CTAACTCGAA AT
22
<210> 1199
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1199
TTTCGCGGTT TATAGAGGTT T
21
<210> 1200
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1200
TAGTAGGGTT TCGATTTTCG G
```

```
21
```

```
<210> 1201
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1201
TACACCTATC TATAAACGCG CC
22
<210> 1202
<211> 26
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1202
TGGTGGTTGG TGGAACGTGC GATTGT
<210> 1203
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1203
AGGTAGTTTC GCGGTTTATA GAG
23
<210> 1204
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1204
AACGACCAAA ACTAACTCGA AAT
23
<210> 1205
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
                                       Page 432
```

```
<400> 1205
TTAGTAGGGT TTCGATTTTC GG
<210> 1206
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1206
TTCGCGGTTT ATAGAGGTTT C
21
<210> 1207
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1207
CGATAATACG AACGACCAAA A
21
<210> 1208
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1208
CGGTTTATAG AGGTTTCGGT TC
22
<210> 1209
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1209
GTTTCGCGGT TTATAGAGGT T
21
<210> 1210
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
47675-47.txt

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1210

AACGATAATA CGAACGACCA A

21

<210> 1211

<211> 22

<212> DNA

<213> Artificial Sequence
```

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1211

TTTAGGTAGT TTCGCGGTTT AT

22

```
<210> 1212
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4 <400> 1212

GAACGATAAT ACGAACGACC A

21

```
<210> 1213
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1213
GTTTATAGAG GTTTCGGTTC GC
```

22

```
<210> 1214
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1214
TTTCGCGGTT TATAGAGGTT TC
```

22

```
<210> 1215
<211> 21
<212> DNA
```

```
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1215
ACGATAATAC GAACGACCAA A
21
<210> 1216
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1216
TTAGTTTTGT ATCGTTCGGG TT
22
<210> 1217
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1217
TCCCTCGATA AATCAAAAAC G
21
<210> 1218
<211> 47
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1218
ATCGTTTTGG CGCGTTTATA GATAGGTGTA TGAAGATTTT TACGATT
47
<210> 1219
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1219
TTTATAGAGG TTTCGGTTCG C
21
```

<210> 1220

```
47675-47.txt
```

```
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1220
TACGAACGAC CAAAACTAAC TC
22
<210> 1221
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1221
AGTAGGGTTT CGATTTTCGG
20
<210> 1222
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1222
ACACCTATCT ATAAACGCGC C
21
<210> 1223
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1223
TAGGTAGTTT CGCGGTTTAT AGAG
24
<210> 1224
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1224
AATACGAACG ACCAAAACTA ACTC
```

24

```
<210> 1225
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1225
GCGGTTTATA GAGGTTTCGG T
21
<210> 1226
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1226
AACTAACTCG AAATCCCGAA CT
22
<210> 1227
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1227
ATACACCTAT CTATAAACGC GCC
23
<210> 1228
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1228
ACCTATCTAT AAACGCGCCA A
21
<210> 1229
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1229
ATACGAACGA CCAAAACTAA CTC
```

```
<210> 1230
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1230
AGTTTCGCGG TTTATAGAGG T
21
<210> 1231
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1231
AATACGAACG ACCAAAACTA ACT
23
<210> 1232
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1232
CGAACGACCA AAACTAACTC G
21
<210> 1233
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1233
CCTATCTATA AACGCGCCAA
20
<210> 1234
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1234
```

```
47675-47.txt
GATTTCGAGT TAGTTTTGGT CG
22
<210> 1235
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1235
TAACTTCTAT TACCCGCGCC
20
<210> 1236
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1236
TTCGCGCGGG CGTATCGAGT TCGG
24
<210> 1237
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1237
CGAAATCCCG AACTACAAAA
20
<210> 1238
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1238
GGGGGAGTCG CGTTGCGCGG
20
<210> 1239
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220> bisulfite treated

```
47675-47.txt
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1239
CGACCAAAAC TAACTCGAAA T
21
<210> 1240
 <211> 23
 <212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1240
TTAGGTAGTT TCGCGGTTTA TAG
23
 <210> 1241
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
. <400> 1241
AGGTTTAGGT AGTTTCGCGG
20
<210> 1242
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1242
CGTTAAGAGG CGAGGAAATA A
21
<210> 1243
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1243
CCTAACTCGA CGCAACTAAC C
21
<210> 1244
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1244
AACGGCGGC GGGACGAACG ATTAG
25
<210> 1245
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1245
GCGGTTTATA GAGGTTTCGG
20
<210> 1246
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1246
TAACTCGAAA TCCCGAACTA CA
22
<210> 1247
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1247
TCGCGGTTTA TAGAGGTTTC
20
<210> 1248
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1248
CCCTAACTCG ACGCAACTAA
20
<210> 1249
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1249
GGTTTAGGTA GTTTCGCGGT
20
<210> 1250
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1250
TCGAAATCCC GAACTACAAA A
21
<210> 1251
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1251
GATAATACGA ACGACCAAAA CT
22
<210> 1252
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1252
TAGTCGAGGT TTTGTAGTTC GG
22
<210> 1253
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1253
ACGAACGACC AAAACTAACT C
```

```
47675-47.txt
```

```
<210> 1254
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1254
GATAATACGA ACGACCAAAA CTAA
24
<210> 1255
<211> 25
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1255
TAATACGAAC GACCAAAACT AACTC
25 -
<210> 1256
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1256
CACCTATCTA TAAACGCGCC
20
<210> 1257
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1257
TTCGCGGTTT ATAGAGGTTT
20
<210> 1258
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1258
CGGTTTATAG AGGTTTCGGT T
```

```
<210> 1259
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1259
CTCGAAATCC CGAACTACAA
20
<210> 1260
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1260
CGTTAAGAGG CGAGGAAATA AG
22
<210> 1261
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1261
CTAACCGAAA ACGCGAAACT A
21
<210> 1262
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1262
GTCGGGAGAG GGGCGCGGAA CGG
23
<210> 1263
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1263
TAACCGAAAA CGCGAAACTA
```

```
20
<210> 1264
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1264
GTTCGGGATT TCGAGTTAGT TT
22
<210> 1265
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1265
TTATAGAGGT TTCGGTTCGC
20
<210> 1266
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1266
TTTAGGTAGT TTCGCGGTTT A
21
<210> 1267
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1267
GAGTTAGTGC GTTCGATTGT G
21
<210> 1268
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
                                       Page 445
```

```
<400> 1268
GCCTACTCTA CTTCCGCGAT
20
<210> 1269
<211'> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1269
GGGGGCGAA AGAGGCGCGT T
21
<210> 1270
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1270
TAATACGAAC GACCAAAACT AACT
24
<210> 1271
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1271
ATAAAGGTTT CGTTAAGAGG CG
22
<210> 1272
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1272
ATACCCCTAA CTCGACGCA
19
<210> 1273
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
47675-47.txt
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1273
TTTAGTTTTG TATCGTTCGG GTT
```

<210> 1274 <211> 20 <212> DNA <213> Artificial Sequence <220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1274

CGCGGTTTAT AGAGGTTTCG

20

```
<210> 1275
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
```

<400> 1275 GTCGGAAGGT GCGAGTTAGT

20

```
<210> 1276
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
```

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4 <400> 1276
GATCGACCGA ATAAAAACAA AT

22

```
<210> 1277
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1277
CGTTTTTAGA TCGTGATTTT CG
```

```
<210> 1278
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1278
ACTAACTCGC ACCTTCCGAC
20
<210> 1279
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1279
AAGTTTTGCG GGCGGGGCGC GT
22
<210> 1280
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1280
ATTTCGAGTT AGTTTTGGTC GT
22
<210> 1281
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1281
TCGGAAGGTG CGAGTTAGT
19
<210> 1282
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1282
GTAGGGTTTC GATTTTCGG
19
```

<210> 1283

```
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1283
AACTTCTATT ACCCGCGCC
19
<210> 1284
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1284
ATCGTTCGCG CGGGCGTATC GAG
23
<210> 1285
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1285
CAATCGAACG CACTAACTCG
20
<210> 1286
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1286
ACCGAAAACG CGAAACTAAT
20
<210> 1287
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1287
AAGGTGCGAG TTAGTGCGT
```

```
<210> 1288
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1288
AGGTGCGAGT TAGTGCGTT
19
<210> 1289
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1289
TAGTTTTGTA TCGTTCGGGT T
21
<210> 1290
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1290
CTCGATAAAT CAAAAACGAA AA
22
<210> 1291
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1291
ACGCACTAAC TCGCACCTT
19
<210> 1292
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1292
AACGCACTAA CTCGCACCT
```

```
<210> 1293
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1293
TCGGGATTTC GAGTTAGTTT T
21
<210> 1294
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1294
TTCGGGATTT CGAGTTAGTT T
21
<210> 1295
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1295
TCGTTAAGAG GCGAGGAAAT A
21
<210> 1296
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1296
AGTTTCGCGG TTTATAGAGG TTT
2.3
<210> 1297
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1297
```

```
AACCGCGATA CCCCTAACT
19
<210> 1298
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1298
AACTCGAAAT CCCGAACTAC A
21
<210> 1299
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1299
CGGTTTATAG AGGTTTCGGT
20
<210> 1300
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1300
GAAACTAATC GTTCGTCCCG
20
<210> 1301
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1301
CGGGAAAGTA GCGGTAAGT
19
<210> 1302
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
```

```
47675-47.txt
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1302
CCGAACTACA AAACCTCGAC TA
22
<210> 1303
<211> 28
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1303
AGATGCGAGG TTTAGGTAGT TTCGCGGT
28
<210> 1304
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1304
AGGCGAGGAA ATAAGAGTCG
20
<210> 1305
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1305
CCCTAACTCG ACGCAACTAA C
21
<210> 1306
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1306
TTTAGTCGAG GTTTTGTAGT TCG
23
<210> 1307
<211> 33
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1307
TAGTTTTGGT CGTTCGTATT ATCGTTCGCG CGG
33
<210> 1308
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1308
AGGTTTCGTT AAGAGGCGAG
20
<210> 1309
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1309
ACTAACTCGA AATCCCGAAC T
21
<210> 1310
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1310
AGTTCGGGAT TTCGAGTTAG TT
22
<210> 1311
<211> 18
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1311
ACTTCTATTA CCCGCGCC
18
<210> 1312
<211> 21
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1312
AGTCGAGGTT TTGTAGTTCG G
21
<210> 1313
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1313
CCGAAAACGC GAAACTAAT
19
<210> 1314
<211> 25
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1314
ATAATACGAA CGACCAAAAC TAACT
25
<210> 1315
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1315
GCGATACCCC TAACTCGAC
19
<210> 1316
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1316
ACGATAATAC GAACGACCAA
```

```
47675-47.txt
```

```
<210> 1317
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1317
ACTCGAAATC CCGAACTACA A
21
<210> 1318
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1318
ACTAACCGAA AACGCGAAAC
20
<210> 1319
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1319
TCGAAATCCC GAACTACAAA
20
<210> 1320
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1320
GGGTCGTTTT TAGATCGTGA TT
22
<210> 1321
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1321
CGGGTCGTTT TTAGATCGT
```

```
<210> 1322
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1322
CACAATCGAA CGCACTAACT C
21
<210> 1323
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1323
TAAAGGTTTC GTTAAGAGGC G
21
<210> 1324
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1324
TGTTCGGTTT CGGAGGTAG
19
<210> 1325
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1325
ATCACGATCT AAAAACGACC C
21
<210> 1326
<211> 33
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1326
GGCGTTGGAG CGGTTAGTGG TAGTCGGGTA CGG
```

```
47675-47.txt
33
<210> 1327
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1327
CGGTTTGATT TAGTCGAGGT TT
22
<210> 1328
<211> 40
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1328
TTCGGGATTT CGAGTTAGTT TTGGTCGTTC GTATTATCGT
40
<210> 1329
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1329
AAGGTTTCGT TAAGAGGCGA G
21
<210> 1330
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1330
CTAACTCGCA CCTTCCGAC
19
<210> 1331
<211> 20
```

<212> DNA

<213> Artificial Sequence

```
<400> 1331
TCGTTAAGAG GCGAGGAAAT
20
<210> 1332
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1332
ATCGAACGCA CTAACTCGC
19
<210> 1333
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1333
GTTTTGTAGT TCGGGATTTC G
21
<210> 1334
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1334
AACTAACCGA AAACGCGAA
19
<210> 1335
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1335
AACCGAAAAC GCGAAACTA
19
<210> 1336
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
47675-47.txt
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1336
TCTCGAAAAA CTCTCCTAAA CG
```

```
<210> 1337
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1337
```

```
<210> 1338

<211> 26

<212> DNA

<213> Artificial Sequence

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
```

CGTAAAGTTC GGTTTAATTT GG

<400> 1338 AGGCGTTATC GTCGGCGTAT TTCGGA

26

```
<210> 1339
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
```

<400> 1339 CTCGAAAAAC TCTCCTAAAC GA

22

```
<210> 1340
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1340
TCGAAAAACT CTCCTAAACG AC
```

```
<210> 1341
<211> 22
<212> DNA
```

```
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1341
ACACCGCGAC TATTATACGA CT
22
<210> 1342
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1342
TTCGGTTGTT ATTGATCGTT TT
22
<210> 1343
<211> 33
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1343
ATTCGTTAGT TGTTTTCGGA GTCGAGTAGG TTT
33
<210> 1344
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1344
GAGTTAGTTA GGTTCGTAGG CG
22
<210> 1345
<211> 31
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1345
ATCGTCGGCG TATTTCGGAG AAGAAGTTTT T
31
```

<210> 1346

```
47675-47.txt
```

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1346
TCGTGTTCGG TTGTTATTGA T
21
<210> 1347
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1347
GTTCGTGTTC GGTTGTTATT G
21
<210> 1348
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1348
CGAAAAACTC TCCTAAACGA CT
22
<210> 1349
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1349
GAGTTAGTTA GGTTCGTAGG CGT
23
<210> 1350
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1350
CACCGCGACT ATTATACGAC TA
```

```
<210> 1351
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1351
TTCGTGTTCG GTTGTTATTG AT
22
<210> 1352
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1352
TGTTCGGTTG TTATTGATCG TT
22
<210> 1353
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1353
CTTAATAAAA CCTCGATTTC CG
<210> 1354
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1354
TTTGTTTATA GGCGCGTTAG AG
22
<210> 1355
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1355
GGTTCGAGCG GTGTAGGGTT GGGT
```

```
24
```

```
<210> 1356
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1356
TTCGTAAAGT TCGGTTTAAT TTG
23
<210> 1357
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1357
AAACACCGCG ACTATTATAC GA
22
<210> 1358
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1358
AGTTAGTTAG GTTCGTAGGC GT
22
<210> 1359
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1359
ACTTAATAAA ACCTCGATTT CCG
23
<210> 1360
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1360
```

47675-47.txt GTGTTCGGTT GTTATTGATC G 21 <210> 1361 <211> 22 <212> DNA <213> Artificial Sequence <220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4 <400> 1361 TAAAACGATC AATAACAACC GA 22 . <210> 1362 <211> 22 <212> DNA <213> Artificial Sequence <220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4 <400> 1362 GTATTTTCG GTAAGAGACG GC 22 <210> 1363 <211> 34 <212> DNA <213> Artificial Sequence <220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4 <400> 1363 TTCGGGAGTT ACGGTTTGAG GGCGATTCGG GCGA 34

<210> 1364

<211> 22

<212> DNA

<213> Artificial Sequence

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1364

TCGTAAAGTT CGGTTTAATT TG

22

<210> 1365

<211> 21

<212> DNA

<213> Artificial Sequence

<220> bisulfite treated

```
47675-47.txt
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1365
TCGGTTGTTA TTGATCGTTT T
21
<210> 1366
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1366
ACACCGCGAC TATTATACGA CTA
23
<210> 1367
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1367
CGAACGACCA ATAAAAACAT AA
22
<210> 1368
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1368
GCGTATTTCG GAGAAGAAGT TT
22
<210> 1369
<211> 42
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1369
TTCGAGAAG ATGTCGTCGT TTTAATAGTA ATTTATTTTC GT
42
<210> 1370
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1370
TATTTTCGG TAAGAGACGG C
21
<210> 1371
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1371
AATTTATCCT TACCCGACCG
20
<210> 1372
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1372
TCGTTTAGGA GAGTTTTTCG AG
22
<210> 1373
<211> 43
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1373
43
<210> 1374
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1374
ACGAACGACC AATAAAAACA TAA
23
<210> 1375
<211> 22
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1375
TTAAAACGAT CAATAACAAC CG
22
<210> 1376
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1376
ATTTATCCTT ACCCGACCGA C
21
<210> 1377
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1377
TATTTGTTTA TAGGCGCGTT AG
22
<210> 1378
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1378
GTTCGGTTGT TATTGATCGT TTT
23
<210> 1379
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1379
GTTAAAACGA TCAATAACAA CCG
```

```
47675-47.txt
```

```
<210> 1380
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1380
TTGTTTATAG GCGCGTTAGA G
21
<210> 1381
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1381
ACTCTAATCG CTCGCACTAC C
21
<210> 1382
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1382
ATTAAGTTTT ATGGTCGCGG TT
22
<210> 1383
<211> 41
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1383
AGGGTGAGTC GAGATTTAGA CGTAGATTTT TTAATTTTTG T
41
<210> 1384
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1384
AACACCGCGA CTATTATACG A
```

```
<210> 1385
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1385
CCGCGACTAT TATACGACTA AA
22
<210> 1386
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1386
GACCAACTAC GTCGAACCAA
20
<210> 1387
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1387
GTTCGGTTGT TATTGATCGT TT
22
<210> 1388
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1388
CGTTCGTGTT CGGTTGTTAT
20
<210> 1389
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1389
AACACCGCGA CTATTATACG ACT
```

```
23
```

```
<210> 1390
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1390
ACGAACCTAA CCGTAAAAAC G
21
<210> 1391
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1391
TTGGGTCGTA AGTTTTATAG TCG
23
<210> 1392
<211> 43
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1392
TACGTTTTAT TAATTATTAG TCGGGGTTCG GAAGCGCGTT CGG
43
<210> 1393
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1393
ACCGCGACTA TTATACGACT AAA
23
<210> 1394
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
                                       Page 471
```

```
<400> 1394
ACCAACTACG TCGAACCAAA
<210> 1395
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1395
TCGGTTGTTA TTGATCGTTT TA
22
<210> 1396
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1396
ATTTGTTTAT AGGCGCGTTA GAG
23
<210> 1397
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1397
AATTAAGTTT TATGGTCGCG G
21
<210> 1398
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1398
CAACTCTAAT CGCTCGCACT AC
22
<210> 1399
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1399
TAAGTTTTAT GGTCGCGGTT T
21
<210> 1400
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1400
TTAAGTTTTA TGGTCGCGGT T
21
<210> 1401
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1401
TATATTTGTT TATAGGCGCG TT
22
<210> 1402
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1402
AAAACGATCA ATAACAACCG A
21
<210> 1403
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1403
ATATTTGTTT ATAGGCGCGT TAG
23
<210> 1404
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1404
ATTTTTCGGT AAGAGACGGC
20
<210> 1405
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1405
AACCGAAACT TTACAACCCG
20
<210> 1406
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1406
ATTTTTGTTG TTCGCGTTAA GT
22
<210> 1407
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1407
GGTGCGTTCG CGCGGACGGT
20
<210> 1408
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1408
TTTATCCTTA CCCGACCGAC
20
```

<210> 1409

```
47675-47.txt
```

```
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1409
TGGGTCGTAA GTTTTATAGT CG
22
<210> 1410
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1410
GTTTTATGGT CGCGGTTTTT AG
22
<210> 1411
<211> 26
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1411
TTCGCGTTAA GTCGGGTTCG GTGCGT
26
<210> 1412
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1412
AGTTTTATGG TCGCGGTTTT TA
22
<210> 1413
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1413
AACGAACGAC CAATAAAAAC AT
```

```
<210> 1414
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1414
GGCGTATTTC GGAGAAGAAG T
21
<210> 1415
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1415
AGTCGTTTAG GAGAGTTTTT CG
22
<210> 1416
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1416
ACTCGACTCC GAAAACAACT AA
22
<210> 1417
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1417
GCGTTTCGTT CGTAAGGTT
19
<210> 1418
<211> 45
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1418
TTCGTGTTCG GTTGTTATTG ATCGTTTTAA CGTCGTTAGG GACGA
```

```
45
```

```
<210> 1419
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1419
CTCTAATCGC TCGCACTACC
20
<210> 1420
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1420
TCCGAACCCC GACTAATAA
19
<210> 1421
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1421
TAGTAATTTT GTTTCGGGTC GT
22
<210> 1422
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1422
CTCGAACCAA CTCTAATCGC T
21
<210> 1423
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1423
```

```
CGACTATAAA ACTTACGACC CAA
23
<210> 1424
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1424
CGGAAAAGCG GTGTTTATTA G
21
<210> 1425
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1425
AGCGGTGAAG GGTTCGAGCG GTG
23
<210> 1426
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1426
TTTATGGTCG CGGTTTTTAG
20
<210> 1427
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1427
TTTTATGGTC GCGGTTTTTA G
21
<210> 1428
```

<210> 1420

<211> 22

<212> DNA

<213> Artificial Sequence

<220> bisulfite treated

```
47675-47.txt
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1428
AATTTTTGTT GTTCGCGTTA AG
<210> 1429
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1429
CTACTCGACT CCGAAAACAA CT
22
<210> 1430
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1430
TGTTTATAGG CGCGTTAGAG C
21
<210> 1431
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1431
ACCGAAACTT TACAACCCG
19
<210> 1432
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1432
GAATTAAGTT TTATGGTCGC GG
22
<210> 1433
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1433
TTAAGTTTTA TGGTCGCGGT TT
22
<210> 1434
<211> 41
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1434
GGGTGAGTCG AGATTTAGAC GTAGATTTTT TAATTTTTGT T
41
<210> 1435
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1435
TTAATAAAAC CTCGATTTCC G
21
<210> 1436
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1436
CGAAACCTCG AACCAACTCT A
21
<210> 1437
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1437
AAACTTCTTC TCCGAAATAC GC
22
<210> 1438
<211> 20
```

```
47675-47.txt
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1438
GTCGAGGTTT TTGTAGGTCG
20
<210> 1439
<211> 33
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1439
TTTGGAGTTA GTTAGGTTCG TAGGCGTTAT CGT
33
<210> 1440
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1440
AACTCTAATC GCTCGCACTA CC
22
<210> 1441
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1441
CGTTCGTGTT CGGTTGTTAT T
21
<210> 1442
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1442
TTCCGAACCC CGACTAATAA
```

```
47675-47.txt
```

```
<210> 1443
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1443
AGTTAGTTAG GTTCGTAGGC G
21
<210> 1444
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1444
AACCTAACCG TAAAAACGCC
20
<210> 1445
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1445
GTCGTTTAGG AGAGTTTTTC GAG
23
<210> 1446
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1446
TTATCCTTAC CCGACCGAC
19
<210> 1447
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1447
AACTTAATAA AACCTCGATT TCCG
```

```
<210> 1448
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1448
TTTTTCGGTA AGAGACGGC
19
<210> 1449
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1449
TCGAAAACT CTCCTAAACG A
21
<210> 1450
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1450
TCGGGAGTTA CGGTTTGAG
19
<210> 1451
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1451
ACGACTATAA AACTTACGAC CCA
23
<210> 1452
<211> 25
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1452
GGTGAAGGGT TCGAGCGGTG TAGGG
```

```
25
```

```
<210> 1453
<211> 27
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1453
GGAGTTACGG TTTGAGGGCG ATTCGGG
27
<210> 1454
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1454
CGAAAAACTC TCCTAAACGA C
21
<210> 1455
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1455
AAGTTTTATG GTCGCGGTTT
20
<210> 1456
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1456
CGACCTACAA AAACCTCGAC
20
<210> 1457
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
                                       Page 484
```

```
<400> 1457
GTAGTGCGAG CGATTAGAGT TG
22
<210> 1458
<211> 28
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1458
TTCGGTTGGG TTAAGTCGCG TAGCGCGG
28
<210> 1459
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1459
ACCAACTACG TCGAACCAAA A
21
<210> 1460
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1460
CCGAAATCGC AATCTAAAAC T
21
<210> 1461
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1461
AAAACACCGC GACTATTATA CGA
23
<210> 1462
<211> 20
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1462
GTTTATAGGC GCGTTAGAGC
20
<210> 1463
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1463
TTTTGTTGTT CGCGTTAAGT C
21
<210> 1464
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1464
AACTTCTTCT CCGAAATACG C
21
<210> 1465
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1465
TAGTGCGAGC GATTAGAGTT G
21
<210> 1466
<211> 19
<212> DNA
<213> Artificial Sequence.
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1466
CCGAAACTTT ACAACCCGA
19
<210> 1467
<211> 19
<212> DNA
```

```
<213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1467
 CGTTATCGTC GGCGTATTT
 19
 <210> 1468
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1468
 TTTTATTCCC CGCTAACGAC
 20
<210> 1469
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1469
 TTTCGGTAAA TTCGTAGGTT TT
 22
 <210> 1470
 <211> 37
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1470
 TACGATGGCG GGGCGGCGGC GCGAATATAT AAAGGAG
 37
 <210> 1471
 <211> 20
 <212> DNA
<213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1471
 CCAACTACGT CGAACCAAAA
 20
```

<210> 1472

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1472
CGTGTTCGGT TGTTATTGAT
20
<210> 1473
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1473
CGAACCTAAC CGTAAAAACG
20
<210> 1474
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1474
CCAAATTAAA CCGAACTTTA CG
22
<210> 1475
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1475
TTGGGTTAAG TCGCGTAGC
19
<210> 1476
<211> 48
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1476
GTCGCGAAGT TGTTTAAATT TCGTATTTGT AAGGTTTTGA TTTATCGT
```

```
<210> 1477
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1477
GTTCGTAAGG TTTTTCGGGA G
21
<210> 1478
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1478
TTCGGGCGAT TCGGTCGTTC GTGT
24
<210> 1479
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1479
CGAACCAACT CTAATCGCTC
20
<210> 1480
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1480
GAACCAACTC TAATCGCTCG
20
<210> 1481
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1481
TCGAACCAAC TCTAATCGCT
```

20

```
<210> 1482
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1482
TCGAACCAAC TCTAATCGCT C
21
<210> 1483
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1483
ACGATCAATA ACAACCGAAC AC
22
<210> 1484
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1484
GCGTTTCGTT CGTAAGGTTT
20
<210> 1485
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1485
GCGTATTTCG GAGAAGAAGT
20
<210> 1486
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1486
```

TAGTCGTTTA GGAGAGTTTT TCG

```
23
```

```
<210> 1487
<211> 19
<212> DNA
```

<213> Artificial Sequence

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1487

GATTCGGTCG TTCGTGTTC

19

```
<210> 1488
<211> 24
<212> DNA
```

<213> Artificial Sequence

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1488

AACACCGCGA CTATTATACG ACTA

24

```
<210> 1489
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220> bisulfite treated

<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1489

TTCGGTTGTT ATTGATCGTT TTA

23

```
<210> 1490
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220> bisulfite treated <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4

<400> 1490

CTTCCGAACC CCGACTAAT

```
<210> 1491
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
```

```
47675-47.txt
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1491
AATTATTAGT CGGGGTTCGG
20
<210> 1492
<211> 31
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1492
AGCGCGTTCG GAAATCGAGG TTTTATTAAG T
31
<210> 1493
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1493
TACTCGACTC CGAAAACAAC TAA
23
<210> 1494
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1494
CCTCGAACCA ACTCTAATCG
20
<210> 1495
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1495
CGATCAATAA CAACCGAACA C
21
<210> 1496
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1496
GTTAGTTAGG TTCGTAGGCG TTA
23
<210> 1497
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1497
TCGTAAGGTT TTTCGGGAG
19
<210> 1498
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1498
GGTAGTGCGA GCGATTAGAG T
21
<210> 1499
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1499
TTCGTAAGGT TTTTCGGGAG
20
<210> 1500
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1500
CGAGGTTTTT GTAGGTCGC
19
<210> 1501
<211> 22
```

```
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1501
TTTTTGTTGT TCGCGTTAAG TC
22
<210> 1502
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1502
GTTTCGGGTT GTAAAGTTTC G
21
<210> 1503
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1503
TTGGGTTAAG TCGCGTAGCG CGGT
24
<210> 1504
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1504
AGTAATTTTG TTTCGGGTCG T
21
<210> 1505
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1505
GAACCTAACC GTAAAAACGC C
```

```
47675-47.txt
```

```
<210> 1506
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1506
 CTACAAAAC CTCGACCCG
 19
 <210> 1507
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1507
 GTTCGTGTTC GGTTGTTATT GA
 22
 <210> 1508
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1508
 ATTTTTATTC CCCGCTAACG A
 21
 <210> 1509
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1509
 ATTTCGGTAA ATTCGTAGGT TTT
 23
 <210> 1510
. <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220> bisulfite treated
 <223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
 <400> 1510
 ACCAACTACG TCGAACCAA
```

```
<210> 1511
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1511
GTTGGGTCGT AAGTTTTATA GTCG
24
<210> 1512
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1512
TAATTTTGT TGTTCGCGTT AAG
23
<210> 1513
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1513
CTCGACTCCG AAAACAACTA AC
22
<210> 1514
<211> 18
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1514
TCGGGAGTTA CGGTTTGA
18
<210> 1515
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1515
GATAACGCCT ACGAACCTAA CT
```

```
22
```

```
<210> 1516
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1516
CGGGTCGAGG TTTTTGTAG
19
<210> 1517
<211> 37
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1517
GGTTTTGATT TATCGTTGTT TTTTCGTAAA GTTCGGT
37
<210> 1518
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1518
TTAGTCGTTT AGGAGAGTTT TTCG
24
<210> 1519
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1519
CGAAACCTAC TCGACTCCG
19
<210> 1520
<211> 31
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
                                       Page 497
```

```
<400> 1520
GATCGTTTTA ACGTCGTTAG GGACGATTCG T
31
<210> 1521
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1521
TCGTGTTCGG TTGTTATTGA
20
<210> 1522
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1522
CCAACTACGT CGAACCAAA
19
<210> 1523
<211> 20
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1523
TTTTTATTCC CCGCTAACGA
20
<210> 1524
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1524
ACCTCGAACC AACTCTAATC G
21
<210> 1525
<211> 19
<212> DNA
<213> Artificial Sequence
```

```
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1525
CGGTTTTTAG GGTGAGTCG
19
<210> 1526
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1526
CGCGACCTAC AAAAACCTC
19
<210> 1527
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1527
GCGACCTACA AAAACCTCG
19
<210> 1528
<211> 21
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1528
GAAACCTACT CGACTCCGAA A
21
<210> 1529
<211> 19
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1529
CGTTCGTGTT CGGTTGTTA
19
<210> 1530
<211> 31
<212> DNA
```

```
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1530
ATCGTTTTAA CGTCGTTAGG GACGATTCGT T
31
<210> 1531
<211> 23
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1531
AAACGAACGA CCAATAAAAA CAT
23
<210> 1532
<211> 22
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1532
AACGATCAAT AACAACCGAA CA
22
<210> 1533
<211> 24
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1533
TACGACTATA AAACTTACGA CCCA
24
<210> 1534
<211> 37
<212> DNA
<213> Artificial Sequence
<220> bisulfite treated
<223> nucleic acid for analysis of methylation status of SEQ ID NO: 4
<400> 1534
TTACGATGGC GGGGCGGCGG CGCGAATATA TAAAGGA
37
```

<210> 1535