Série d'exercices 2Nombres complexes

Matière: Maths 1

Année: 2022-2023

Figure 1: Cercle trigonométrique

Exercice 01: Donner la forme algébrique, le module et l'argument des nombres complexes suivants:

1.
$$z_1 = \frac{2+2i}{\sqrt{3}+i}$$

4. $z_4 = \frac{(1+i\sqrt{3})^2}{(1-i)^3}$.

5. $z_5 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\left(\frac{1-i\sqrt{3}}{2}\right)(1+i)$.

6. $z_6 = \frac{\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)}{1+i}$.

Exercice 02: Soit $a \in \mathbb{R}$. Pour quelle valeur de a la quantité $(a-i)^3$ est un réel? un imaginaire pur?

Exercice 03: Soient les nombres complexes $z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$, $z_2 = \sqrt{2}e^{-i\frac{\pi}{4}}$ et $z_3 = e^{i\frac{\pi}{12}}$.

- 1. Écrire z_1 sous la forme trigonométrique et la forme exponentielle.
- 2. Déterminer la forme algébrique de z_2 .
- 3. Montrer que $z_3 = \frac{z_1}{z_2}$.
- 4. En déduire $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 04: Résoudre dans $\mathbb C$ les équations suivantes:

1.
$$z^2 - 2z + 3 = 0$$

3.
$$z^6 = (1+i)^2$$

5.
$$2z^2 + (5+i)z + 2 + 2i = 0$$

2.
$$z^5 - z = 0$$

4.
$$z^3 + 8i = 0$$

6.
$$iz^2 + (1 - 5i)z - 2 + 6i = 0$$

Exercice 05: (Devoir de maison)

1. Calculer les racines troisièmes de 2i et de 1+i.

2. Déterminer les solutions complexes z de l'équation : $z^2 - (1+3i)z - 2 + 2i = 0$.

3. En déduire les solutions complexes z de l'équation : $z^6 - (1+3i)z^3 - 2 + 2i = 0$.

Exercice 07: Soit $z_1 = 2 + 2i$.

1. Résoudre dans $\mathbb C$ les deux équations : $z^2=z_1$ et $z^2=\overline{z_1}$.

2. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

3. Résoudre dans $\mathbb C$ l'équation $z^2 - 4z + 8 = 0$.

4. En déduire les solutions de $z^4 - 4z^2 + 8 = 0$.

Exercice 08: On considère le polynôme P(z) suivant :

$$P(z) = z^3 + 9iz^2 + 2(6i - 11)z - 3(4i + 12).$$

1. Démontrer que l'équation P(z) = 0 admet une solution réelle z_1 .

2. Déterminer un polynôme Q(z) tel que $P(z)=(z-z_1)Q(z)$.

3. Démontrer que l'équation Q(z)=0 admet une solution imaginaire pure z_2 .

4. Résoudre dans \mathbb{C} l'équation P(z) = 0.

Exercice 10:

1. Linéariser les expressions suivantes

(a)
$$\sin^3(\theta)\cos(\theta)$$
.

(b)
$$\cos(2\theta)\sin^2(\theta)$$
.

2. Montrer que $\forall x, y \in \mathbb{R}$, $\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y))$.

Exercice 09:

1. Développer $\sin(4\theta)$ et $\cos(4\theta)$.

2. En déduire que $\tan(4\theta) = \frac{4\tan(\theta) - 4\tan^3(\theta)}{1 - 6\tan^2(\theta) + \tan^4(\theta)}$.