Cosine Distance

Measures the angular difference between vectors, ignoring their magnitude

$$d_{cos}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

Terms Explained:

- \triangleright x, y: Non-zero vectors in \mathbb{R}^n
- **▶** $x \cdot y$: Dot product
- $\|x\|, \|y\|$: Euclidean norms
- Range: 0 (same direction) to 2 (opposite directions)

Use Cases:

Information Retrieval: Document similarity

Recommender Systems: User preference matching

Euclidean Distance

Measures the straight-line distance between two vectors in space; equal to the length of their difference vector

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = ||x - y||_2$$

Terms Explained:

- \triangleright x, y: Vectors in \mathbb{R}^n
- $\triangleright x_i y_i$: Difference at dimension i
- $\|\mathbf{x} \mathbf{y}\|_2$: L₂ norm of the difference vector

Use Cases:

k-Nearest Neighbors: Finding similar data points *k*-Means: Clusters data by minimizing intra-cluster distances.

Mahalanobis Distance

Measures distance while accounting for correlations among features

$$d(x,y) = \sqrt{(x-y)^T \mathbf{\Sigma}^{-1}(x-y)}$$

Terms Explained:

- \triangleright x, y: Vectors in \mathbb{R}^n
- $\triangleright \Sigma^{-1}$: Inverse covariance matrix
- Normalizes by feature covariances

Use Cases:

Outlier Detection: Accounts for feature correlations Classification: Handles different feature scales and correlations

Hellinger Distance

Measures how different two probability distributions are

$$H(\boldsymbol{P},\boldsymbol{Q}) = \frac{1}{\sqrt{2}}\sqrt{\sum_{i=1}^{n}(\sqrt{P_i}-\sqrt{Q_i})^2}$$

Terms Explained:

- P, Q: Probability distributions
- ▶ $\sqrt{P_i}$: Square root of probability at position *i*
- \vdash $H(P,Q) \in [0,1]$: 0 = identical, 1 = no overlap

Use Cases:

Anomaly Detection: Identifies statistical deviations Imbalance-aware Algorithms: Used in Hellinger Distance Decision Trees for handling class imbalance.

@AlinMinutes

Jaccard Distance

Measures how different two sets are by comparing their shared and unique elements

$$d_J(X,Y)=1-\frac{|X\cap Y|}{|X\cup Y|}$$

Terms Explained:

 \triangleright X, Y: Two sets

 $|X \cap Y|$: Size of intersection

 $|X \cup Y|$: Size of union

Range: 0 (identical) to 1 (disjoint)

Use Cases:

Document Similarity: Comparing text as word sets
Recommender Systems: Finding similar user preferences

Manhattan Distance

Measures distance as the sum of absolute differences along each axis

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i| = ||x - y||_1$$

Terms Explained:

- \triangleright x, y: Vectors in \mathbb{R}^n
- $|x_i y_i|$: Absolute difference at dimension i
- $\|x y\|_1$: L₁ norm (taxicab norm)

Use Cases:

Grid Navigation: Calculating city block distances

Feature Selection: L1 Regularizer

Correlation Distance

Measures dissimilarity based on how variables are statistically related

$$d_{\mathrm{corr}}({m x},{m y}) = 1 -
ho({m x},{m y}) = 1 - rac{\mathrm{cov}({m x},{m y})}{\sigma_{{m x}}\sigma_{{m y}}}$$

Terms Explained:

- x, y: Data vectors of equal length
- ho(x,y): Pearson correlation coefficient
- ightharpoonup cov(x, y): Covariance between x and y
- $ightharpoonup \sigma_{x}, \sigma_{y}$: Standard deviations

Use Case:

Feature Agglomeration: Correlation Clustering

Dice Distance/Loss

Measures set dissimilarity, placing greater emphasis on shared elements than the Jaccard distance

$$d_D(X, Y) = 1 - \frac{2|X \cap Y|}{|X| + |Y|}$$

Terms Explained:

► X, Y: Two sets

 $|X \cap Y|$: Size of intersection

|X| + |Y|: Sum of set sizes

Range: 0 (identical) to 1 (no overlap)

Use Cases:

Image Segmentation: Evaluates segmentation overlap in image analysis; also as a loss function

Hamming Distance

Counts the number of positions where two sequences differ

$$d_H(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n \mathbb{I}(x_i \neq y_i)$$

Terms Explained:

- **x**, **y**: Equal-length sequences
- ▶ $\mathbb{I}(x_i \neq y_i)$: Indicator function (1 if $x_i \neq y_i$, 0 otherwise)
- Counts positions where elements differ

Use Cases:

Error Detection: Hamming codes for transmission errors

Bioinformatics: Comparing DNA sequences

@AlinMinutes

Chebyshev Distance

Measures distance between vectors using the largest absolute difference in any dimension

$$d_{\infty}(\boldsymbol{x},\boldsymbol{y}) = \max_{i} |x_{i} - y_{i}| = \|\boldsymbol{x} - \boldsymbol{y}\|_{\infty}$$

Terms Explained:

- \triangleright x, y: Vectors in \mathbb{R}^n
- $ightharpoonup \max_i |x_i y_i|$: Maximum absolute difference
- ▶ $\|x y\|_{\infty}$: L_∞ norm (chessboard distance)

Use Cases:

Anomaly Detection: Flags outliers based on the largest

deviation across features

Warehouse Optimization: Finding minimax distances

@AlinMinutes