Metodo de Newton - Raphson

1) Usa el emtodo de Newton – Raphson para estimar las soluciones

de la escuando $f(x) = x^2 + x - 1 = 0$ empezando con $x_o = -1$ para la raiz izquierda

$$x_1 = x_0 - \frac{f(x)}{f'(x)}$$

$$f'(x) = 2x + 1$$

$$x_1 = -1 - \frac{(-1)^2 + 1 - 1}{2(-1) - 1} = -2$$

$$x_2 = -1.67 - \left(\frac{2.1189}{-2.34}\right)$$

x_n	x_{n+1}	error
$x_o = -1$	-2	50%
$x_1 = -2$	-1.67	19%
x_2	-1.62	2.5%

2) Usar el metodo de Newton — Raphson para encontrar una raiz negativa del siguiente polinomio $f(x) = x^3 - 2x + 1$ usando como valor inicial $x_o = -1.5$ con 4 decimales de presición

$$f(x) = x^3 - 2x + 1$$
$$f'(x) = 3x^2 - 2$$

$$x_1 = x_o - \frac{f(x)}{f'(x)}$$

$$x_1 = -1.5 - \frac{0.625}{4.75} = -1.6316$$

$$x_2 = -1.6182$$

x_i	x_{i+1}
$x_o = -1.5$	$x_1 = -1.6316$
$x_1 = -1.6316$	$x_2 = -1.6182$
$x_2 = -1.6182$	$x_3 = -1.618$

*La ra*í*z es* − 1.618

3) Dada la función $f(x) = \ln(x) - 2$ realiza la grafica y encuentra la aproximación a la raíz utilizando como valor inicial $x_o = 8$

$$f(x) = \ln(x) - 2$$
$$f'(x) = \frac{1}{x}$$

x_i	x_{i+1}
$x_{o} = 8$	$x_1 = 7.3645$
$x_1 = 7.3645$	$x_2 = 7.389$
$x_2 = 7.389$	$x_3 = 7.3891$

la raíz es 7.3891

