Concepts and Ideas

Thursday, August 11, 2016 12:35 PM

- Replication
 - Ultimate standard for strengthening scientific findings- constant replication of same results
 - Offers credibility
- Issues with replication
 - o Difficult due to complexities of each study
 - Expensive timewise and moneywise
- Reproducible research
 - o Middle ground: not full replication, but enough to be usable
- Data size and amount increased, thus we need to make sure we can replicate the collection/storing and analyses
- Research Pipeline:

- Recommendations for reproducibility:
 - Data/metadata available
 - o Computer code available
 - Descriptions for steps of code
- What do we need
 - Analytic data avialbalbe
 - Analytic code available
 - o Documentation of code
 - Standard means of distribution
- Reality
 - Authors just put stuff on web
 - Some supplementary materials via journal
 - o Reader just try to piece it together
- Literate statistical programming
 - Article is a stream of text and code

- o Documentation language (human readable)
- Programming language (machine readable)
- o Put together to make an interpretable way to access data
- o Different languages for this:
 - Knitr (uses markdown, R)
 - Sweave (LaTeX focused)

Scripting Analysis

Thursday, August 11, 2016 12:56 PM

Make everything via scripts, record everyhting on comp to make as reproducible as possible.

Structure of a Data Analysis

Thursday, August 11, 2016 1:00 PM

- Key challenge in data analysis
 - o You will either have too much or too little data
- 1. Define a question
 - a. Narrow down question, you know what data you need and what dimensions to reduce
 - b. Choose data, pick specific stats method development and choice
 - c. Start general, then make concrete
- 2. Define ideal data set
 - a. Different types based on situation
 - b. Descriptive (a whole population)
 - c. Exploratory (random sample with many vars)
 - d. Inferential (correct population but random samples)
 - e. Predictive (training and test data set from same population)
 - f. Causal (data from random study)
 - g. Mechanistic (data of all components of study)
- 3. Determine data you can access
 - a. Sometimes you can find free data on web
 - b. Respect terms of use
- 4. Obtain the data
 - a. Try to obtain raw data
 - b. Reference the source
 - c. Properly cite how getting data (maybe include time in case the data changes on public domain)
- 5. Clean data
 - a. Raw data often needs to be processed
 - b. If pre-processed understand how
 - c. Understand source
- 6. Exploratory data analysis
 - a. Look at summaries of data
 - b. Check for missing data
 - c. Create exploratory plots
 - d. Perform exploratory analyses
- 7. Statistical prediction/modeling
 - a. Informed by exploratory results
 - b. Methods + data dependent on question
 - c. Uncertainty should be reported
 - d. Example steps:
 - i. Create classifications of data
 - ii. Get measure of uncertainty by calculating error rate of classification methods
- 8. Interpret results
 - a. Objective, descriptive
 - i. "predicts", "correlates with", "causes"
 - b. Give potential explanations for correlations
 - c. Acknowledge uncertainties
- 9. Challenge results
 - a. Challenge all steps
 - i. Question
 - ii. Data source issues
 - iii. Processing

- iv. Analysis
- v. Conclusions
- b. Challenge uncertainty
- c. Challenge model choices
- d. Think of potential alternative analyses/potentially utilize
- e. You will be challenged inevitably, so recognize and challenge yourself first
- 10. Synthesize/write-up result
 - a. Lead with question
 - b. Summarize analyses in story
 - c. Don't include every analysis
 - i. Only relevant for story
 - ii. Or to address a foresought challenge
 - iii. Still, remember all analyses that came into play to use later if potentially further challenged
 - d. Strong figures to support

11. CREATE REPRODUCIBLE CODE

Organizing Data Analysis

Thursday, August 11, 2016 1:25 PM

- Data Analysis Files:
 - o Data
 - Raw data
 - Processed data
 - Figures
 - Exploratory
 - Final
 - o R code
 - Raw/unused scripts
 - Final scripts
 - R Markdwon files
 - Text
 - README files
 - Text of analysis/report
- Raw data
 - In analysis folder
 - log file describing source
- · Processed Data
 - Document how raw -> processed
- Exploratory figures
 - Made during course of analysis
 - Don't need to be pretty
 - Not necessarily part of final report
- · Final figures
 - Labeled/annotated well
 - Maximally utilize colors and legends
 - Only a subset of original plots
- Raw scripts
 - Less commented
 - May be multiple versions
 - Sometimes have discarded analyses
- Final scripts
 - Clearly commented
 - Small comments liberally
 - Bigger comments for whole sections
 - Only analyses in final write-up
- R-markdown files
 - Reproducible results
 - o Text + code in one spot (look @ Literal Stastical Programming inConcepts and Ideas)
 - o Sometimes alleviates point of README
- Text of doc
 - o Title, intro, methods, results, and conclusions
 - o Tell a story
 - Not all analyses, enough that are relevant to understand process

knitr

Thursday, August 11, 2016 4:51 PM

- Big tool for making Literal Statistical Programming
- knitr supports variety of documentation languages
- · Creating reproducibility
 - Decide to do so early
 - Keep track of things
 - Don't save output
 - Don't use proprietary formats
- Literate Programming
 - o Pros
 - Text + code in one place
 - Code is live when building doc
 - Cons
 - Text + code in one place... long and extensive (both of them)
 - Can slow processing of data
- knitr: R Markdown, LaTeX, HTML
- Good for:
 - o Manuals
 - o Technical docs
 - Tutorials
 - Reports
 - Data preprocessing docs/summaries
- Bad for:
 - Long research articles
 - o Complex time-consuming computations
 - Docs that need precise formatting

Communicating Results

Friday, August 12, 2016 11:11 AM

- Often useful to break down results of analysis into different levels of granularity/detail
- Hierarchy of Information: Research Paper
 - Title/Author List
 - Abstract
 - o Body/Results
 - o Supplementary Materials/the gory details
 - Code/Data/really gory details
- Hierarchy of Email Presentation
 - Subject line/Sender info
 - o Email body
 - Attachments
 - Reports
 - Links to supp materials
 - Github!
- Choose what levels of hierarchy based on audience and requirements

Reproducible Research Checklist

Friday, August 12, 2016 11:16 AM

- DO: Start With Good Science
 - o Coherent, focused question simplifies many problems
 - Working with good collaborators and reinforces good practices
 - o Be interested in it
- DON'T: DO Things by hand
 - Editing spreadsheets and data
 - Removing outliers
 - Validating certain measurements
 - Downloading data via links (oh shit we've been doing this)
 - NO "We're just doing this once"
- DON'T: Use GUIs and "Point & Click" Softwares
 - Very difficult to reproduce process later
- DO: Teach a Computer
 - o le make your computer able to repeatedly do it via scripts, programs, etc.
 - Makes it repeatable
 - o Easily modifiable
 - Modularized specific steps
- DO: Version code
 - Slow things down
 - See process and thought process of deicisions
- DO: Keep Track of Software Environment:
 - Computer Architecture
 - \circ OS
 - o Software toolchain
 - Compilers
 - Interpreters
 - Command shell
 - Language
 - Supporting software (libraries, packages, etc.)
 - External dependencies
 - Version numbers
- DON'T: Save Output
 - Avoid saving data analysis output
 - Just save and know the process (ie original data and processing code)
- DO: Set your seed
 - o Make sure you can exactly reproduce the results you got
- DO: Think About the Entire Pipeline
 - Data analysis is a lengthy process
 - Raw -> processed -> analysis -> report

Evidence-based Data Analysis

Saturday, August 13, 2016 1:26 PM

- Replication and Reproducibility
 - Replication
 - Standard for proving scientific claims
 - Reproducibility
 - Increases validity, ability to replicate, etc.
- Background and Underlying Trends
 - o Databases can be merged
 - Some studies cannot be replicated due to resources
 - o Computational application exists all fields
- Result
 - Difficult to replicate
- Reproducibility
 - Transparency
 - Data Availability
 - Improved Transfer of Knowledge
 - Don't get
 - Validity (NOT A GIVEN)
 - o Problems:
 - Addresses
- Who reproduces research?
 - Scientists, people trying to prove you wrong
 - o Not reproducible can make proving you're right very difficult
- Evidence-based Data Analysis
 - Most data analyses involve stringing together different tools and methods
 - o Aim to have a mostly standardized set of data analyses, specified for different situations
 - Create analytic pipelines from evidence-based components
 - Analysis with a "transparent box"
 - Reduce "researcher degrees of freedom"
 - Write as a deterministic state machine- distinct states that are moved through
- Case Study: Estimating Acute Effects of Air Pollution
 - o DSM Modules for Time Series Studies of Air Pollution and Health
 - Check for outliers, overdispersion, etc
 - Fill in missing data? NO (Doesn't usually work out well!)
 - Model selection: estimate degrees of freedom to adjust for unmeasured confounders

Caching Computations

Saturday, August 13, 2016 1:58 PM

- cacher package
 - o Evaluates code
 - o Stores results in a key-value database
- Using cacher as an Author
 - o Parse R file
 - Cycle through expressions
 - o If cache result exists for specific parts retrieve results, otherwise if new run computation
 - Knowing the id for results at specific points can help when authoring a paper, provide the id for different points