Deep Learning

Episodio 2: Redes Neuronales Completas

Fernando Gama

Escuela de Graduados en Ingeniería Informática y Sistemas, Facultad de Ingeniería, UBA

7 de Julio de 2022

Escenas del capítulo anterior...

- ightharpoonup Programación tradicional \Rightarrow Especificar cada instrucción a la computadora
- ▶ Aprendizaje automático ⇒ Determinar las operaciones posibles y dejar que la computadora elija
 - ⇒ La computadora elige mirando datos
- ▶ Describir los datos de manera numérica ⇒ Matemática ⇒ Álgebra y Probabilidad
 - \Rightarrow Determinan las operaciones posibles sobre los datos
- \blacktriangleright Algoritmos que funcionen bien sobre datos no vistos \Rightarrow Generalización

Minimización del Riesgo Empírico

Minimización del Riesgo Empírico

Redes Neuronales

Optimización

¿Qué es aprender? ¿Cómo describimos el aprendizaje?

- ▶ Necesitamos definir, de alguna manera, qué quiere decir aprender
 - ⇒ Realizamos una observación. Inferimos alguna conclusión. La contrastamos.
 - ⇒ La próxima vez que nos topemos con una observación similar, queremos la inferencia adecuada
- ► Sabemos que para definir algo de manera unívoca, necesitamos usar matemática
 - \Rightarrow Una observación es un dato que denotamos como ${\bf x}$
 - \Rightarrow La inferencia la llamamos información y la denotamos con ${f y}$
 - \Rightarrow El proceso de inferencia tiene que ser una función $f:\mathbf{x}\mapsto\mathbf{y}$
 - \Rightarrow El contraste con la realidad lo tenemos que $\mathit{medir},$ con otra función J

- La próxima vez que nos topemos con una observación similar, queremos la inferencia adecuada
 - ⇒ Determinar qué quiere decir que dos observaciones sean similares
- Adoptamos una concepción probabilística
 - ⇒ Dos muestras son similares si vienen de la misma distribución de probabilidades

$$oldsymbol{X} \sim \mathsf{f}_x(\mathbf{x})$$

⇒ Las observaciones son realizaciones de la variable aleatoria

$$X \rightsquigarrow \{\mathbf{x}_1, \mathbf{x}_2, \ldots\}$$

- Si las observaciones futuras no vienen de la misma distribución
 - ⇒ No podemos esperar que nuestro aprendizaje funcione
 - ⇒ No existe un único algoritmo de aprendizaje que funcione para todo

- ightharpoonup Tenemos un conjunto de datos que provienen de una misma distribución X
- ▶ Tenemos un algoritmo de aprendizaje f que proporciona una inferencia y
- ▶ Tenemos una medida de qué tan errónea es la inferencia J
- Con todo esto podemos definir la noción del riesgo R del algoritmo f

$$\mathsf{R}\{\mathsf{f}\} = \mathbb{E}_{\boldsymbol{X} \sim \mathsf{f}_x} \left[\mathsf{J}(\mathsf{f}(\boldsymbol{X})) \right]$$

- \Rightarrow Obtenemos la inferencia $\boldsymbol{Y} = \mathsf{f}(\boldsymbol{X})$ resultante de aplicar el algoritmo de aprendizaje f
- \Rightarrow Calculamos cuán errónea es esa inferencia $\mathsf{J}(\mathsf{f}(\boldsymbol{X}))$
- \Rightarrow Obtenemos el error medio sobre todos los datos posibles a través de su distribución

- El riesgo es una medida para saber qué tan bueno es nuestro algoritmo de aprendizaje
- Podemos, entonces, buscar el algoritmo de aprendizaje que minimiza el riesgo

$$\min_{\mathsf{f}} \, \mathsf{R}\{f\} = \min_{\mathsf{f}} \mathbb{E}_{\boldsymbol{X} \sim \mathsf{f}_x} \big[\mathsf{J}(\mathsf{f}(\boldsymbol{X})) \big]$$

- Esta formulación es razonable, pero de difícil implementación práctica (por no decir imposible)
 - \Rightarrow ¿Cómo puedo conocer la distribución f_x de los datos?
 - ⇒ ¿Cómo puedo resolver el problema de minimización?

Ley de los Grandes Números

- ightharpoonup No conocemos la distribución f_x de los datos
- ▶ Pero tenemos acceso a un gran conjunto de datos

$$X \rightsquigarrow \{\mathbf{x}_1, \dots, \mathbf{x}_M\}$$

- \Rightarrow Las muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_M\}$ son independientes, idénticamente distribuidas (i.i.d.)
- ightharpoonup Si las muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_M\}$ son i.i.d.
- \triangleright Y si la cantidad de muestras M es lo suficientemente grande

$$\mathbb{E}_{\boldsymbol{X} \sim \mathsf{f}_x} \big[\mathsf{g}(\boldsymbol{X}) \big] \approx \frac{1}{M} \sum_{m=1}^{M} \mathsf{g}(\mathbf{x}_m)$$

- ⇒ Este resultado se conoce como la Ley de los Grandes Números
- ⇒ El promedio se parece a la media si la cantidad de muestras es grande y son i.i.d.

Minimización del Riesgo Empírico

- ightharpoonup Tenemos acceso a una gran cantidad de datos $\{\mathbf{x}_1, \dots, \mathbf{x}_M\}$
- Asumimos que son i.i.d. v usamos la Lev de los Grandes Números
- Proponemos, entonces, resolver el problema de minimización del riesgo empírico

Minimización del Riesgo Empírico

$$\min_{\mathsf{f}} \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m))$$

- La función f que encontremos va a ser un algoritmo de aprendizaje
- ▶ Pero también queremos que funcione en datos no observados ⇒ Generalización
 - ⇒ Esto será cierto si los datos no observados tienen la misma distribución
- Esto resuelve el problema de no conocer la distribución de los datos
 - \Rightarrow Simplemente juntamos muchos datos y usamos la Ley de los Grandes Números
- Pero la otra pregunta persiste: ¿Cómo minimizamos el riesgo empírico?

Minimización del Riesgo Empírico

Redes Neuronales

Optimización

▶ El problema de minimización del riesgo empírico es el siguiente

$$\min_{\mathsf{f}} \hat{\mathsf{R}}(\mathsf{f}) = \min_{\mathsf{f}} \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m))$$

- \triangleright En este contexto, el riesgo empírico es una función $\hat{R}(f)$ de una función f
 - ⇒ En matemática, esto se conoce como un funcional (asigna una función a un número)
- Encontrar la función que minimiza otra función es un problema difícil en extremo
 - ⇒ ¿Cómo diseñar un algoritmo que actúe sobre funcionales? (Álgebra y Análisis Matemático)
 - ⇒ Optimización funcional ⇒ Cálculo de variaciones, métodos de kernels, etc.
- Es mucho más fácil encontrar vectores (o matrices, o tensores) que minimizan una determinada función
 - ⇒ Transformar un problema de optimización funcional en uno de optimización paramétrica

ightharpoonup Elegir una familia paramétrica \Rightarrow La función f depende de ciertos parámetros heta

$$f(\mathbf{x}) = f(\mathbf{x}; \textcolor{red}{\boldsymbol{\theta}})$$

- \Rightarrow Ahora el riesgo empírico es una función de un vector $\hat{R}(f) = \hat{R}(\theta) \Rightarrow$ Una función
- ⇒ Y pensar en un algoritmo que opere sobre vectores es mucho más factible
- Ciertamente, ahora no se minimiza sobre todas las funciones posibles
 - \Rightarrow Se minimiza sobre todos los parámetros que caracterizan a la función f

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^D} \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m; \boldsymbol{\theta}))$$

 \Rightarrow Pero ahora es un problema que se puede resolver una forma mucho más fácil

Ejemplo: Parametrización Lineal

- Ahora la pregunta pasa a ser: ¿Qué parametrización elijo?
 - ⇒ Este es el problema fundamental en los problemas de aprendizaje
 - ⇒ Elegir una parametrización adecuada determina el éxito del algoritmo de aprendizaje
- La elección más elemental posible es una parametrización lineal

$$f(\mathbf{x}; \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b}$$

- Ejemplo del episodio 1: Dados datos $\{(\mathbf{x}_m, y_m)\}$ y función de costo $J(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
- ► Se adopta una parametrización lineal $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x} \ (\mathbf{W} \Rightarrow \mathbf{w}, \mathbf{b} \Rightarrow 0)$
- Resulta fácil encontrar cuál es la solución al problema de minimización del riesgo empírico

$$\min_{\mathbf{w} \in \mathbb{R}^N} \frac{1}{M} \sum_{m=1}^M (y_m - \mathbf{w}^\mathsf{T} \mathbf{x}_m)^2 \quad \Rightarrow \quad \mathbf{w}^* = \left[\sum_{m=1}^M \mathbf{x}_m \mathbf{x}_m^\mathsf{T} \right]^{-1} \left[\sum_{m=1}^M y_m \mathbf{x}_m \right]$$

Ejemplo: Parametrización Lineal

En vez de resolver el problema sobre todas las posibles funciones f

$$\min_{\mathbf{w} \in \mathbb{R}^N} \frac{1}{M} \sum_{m=1}^M \left(y_m - \mathbf{w}^\mathsf{T} \mathbf{x}_m \right) \quad \Rightarrow \quad \mathbf{w}^* = \left[\sum_{m=1}^M \mathbf{x}_m \mathbf{x}_m^\mathsf{T} \right]^{-1} \left[\sum_{m=1}^M y_m \mathbf{x}_m \right]$$

- \Rightarrow Lo resolvimos sobre todas las posibles funciones lineales $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$
- LEs esta una buena parametrización para el problema en cuestión?
 - \Rightarrow Lo va a ser si es cierto que la relación entre \mathbf{x} e \mathbf{y} es lineal $\mathbf{Y} = \mathbf{w}^\mathsf{T} \mathbf{X}$
- Las parametrizaciones lineales tienen varias ventajas
 - ⇒ Trazabailidad matemática ⇒ Otorga garantías de funcionamiento
 - \Rightarrow Ofrece expresiones 'cerradas' (que no siempre son buenas para la computación)
- ¿Qué hacemos si la relación entre entrada y salida del algoritmo es no lineal?

- ▶ Muchas veces, asumimos que un modelo lineal es suficiente ⇒ Pero a veces realmente no alcanza
- ▶ Consideremos el ejemplo de querer aprender una XOR \Rightarrow Una función binaria $f: \{0,1\}^2 \to \{0,1\}$

(x_1, x_2)	$f(x_1,x_2)$
(0,0)	0
(0, 1)	1
(1,0)	1
(1, 1)	0

- Asumimos que tenemos acceso a las cuatro muestras $\{((0,0),0),((0,1),1),((1,0),1),((1,1),0)\}$
- Proponemos una parametrización lineal para la función $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$ con $\mathbf{w} \in \mathbb{R}^2$ y $b \in \mathbb{R}$
- \blacktriangleright Adoptamos un costo cuadrático $\mathsf{J}(y,\mathsf{f}(\mathbf{x})) = (y-\mathsf{f}(\mathbf{x}))^2$

Modelo Lineal No Aprende XOR

Resolvemos el problema de minimización del riesgo empírico para la familia paramétrica

$$\min_{\mathbf{w} \in \mathbb{R}^2, b \in \mathbb{R}} \frac{1}{4} \sum_{m=1}^{4} (y_m - \mathbf{w}^\mathsf{T} \mathbf{x}_m - b)^2$$

La solución viene dada por $\mathbf{w} = \mathbf{0}$ y b = 1/2 de tal forma que $f(\mathbf{x}) = 0.5$

(x_1, x_2)	$f(x_1, x_2)$
(0,0)	0,5
(0, 1)	0,5
(1,0)	0,5
(1, 1)	0,5

- ▶ Hasta en ejemplos fáciles, mirar sólo algoritmos lineales puede ser un problema
 - ⇒ Resigno la trazabailidad matemática (y en muchos casos las garantías)
 - ⇒ Mejoramos en el desempeño empírico de los algoritmos

- L'Cuál es la forma más sencilla de conseguir un algoritmo no-lineal?
 - ⇒ Le agrego una función no lineal a la salida del algoritmo lineal

Perceptrón

$$f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- $\Rightarrow \sigma: \mathbb{R} \to \mathbb{R}$ es una función no lineal aplicada a cada elemento del vector
- \Rightarrow La elección de σ es muy importante y es área activa de investigación
- ▶ Por razones neurobiológicas esta ecuación se conoce como un **perceptrón**

El agregado de una función no lineal puntual alcanza para aprender la función XOR

$$f(\mathbf{x}; \boldsymbol{\Theta}) = \mathbf{w_2}^\mathsf{T} \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b_1}) + b_2$$
, $\boldsymbol{\Theta} = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{w}_2, b_2\}$

- $\Rightarrow \sigma(x) = \max\{0, x\}$ es una ReLU (rectified linear unit), $\mathbf{w}_2 \in \mathbb{R}^2$, $\mathbf{W} \in \mathbb{R}^{2 \times 2}$
- ⇒ Un perceptrón seguido de una función lineal es suficiente para aprender la XOR
- ightharpoonup Los parámetros para que $f(x; \Theta)$ sea igual a la XOR son

$$\mathbf{W}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} , \mathbf{b}_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} , \mathbf{w}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} , \mathbf{b}_2 = 0$$

Comprobamos que efectivamente lo aprende

$$\begin{bmatrix} 1 & -2 \end{bmatrix} \sigma \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & -2 \end{bmatrix} \sigma \begin{pmatrix} \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} \max\{0, 0\} & \max\{0, 1\} & \max\{0, 1\} & \max\{0, 2\} \\ \max\{0, -1\} & \max\{0, 0\} & \max\{0, 0\} & \max\{0, 1\} \end{bmatrix} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 \Rightarrow Y la última multiplicación de matrices arroja $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$ que es lo que queríamos

- Un perceptrón seguido de una función lineal es capaz de aprender una XOR
- ▶ Una red neuronal se define como una cascada de perceptrones

Perceptrón Multicapa $\mathsf{f}(\mathbf{x};\boldsymbol{\Theta}) = \mathbf{x}_L \quad \text{con} \quad \mathbf{x}_\ell = \frac{\sigma_\ell \left(\mathbf{W}_\ell \mathbf{x}_{\ell-1} + \mathbf{b}_\ell \right)}{\ell} \;, \; \ell = 1,\dots,L \quad \text{y} \quad \mathbf{x}_0 = \mathbf{x}$

ightharpoonup El perceptrón multicapa es una parametrización \Rightarrow Aprendemos $\Theta = \{(\mathbf{W}_{\ell}, \mathbf{b}_{\ell})\}_{\ell=1,...,L}$

Perceptrón Multicapa

$$f(\mathbf{x}; \boldsymbol{\Theta}) = \mathbf{x}_L \quad \text{con} \quad \mathbf{x}_{\ell} = \frac{\sigma_{\ell}(\mathbf{W}_{\ell}\mathbf{x}_{\ell-1} + \mathbf{b}_{\ell})}{\ell}, \ \ell = 1, \dots, L \quad \mathbf{y} \quad \mathbf{x}_0 = \mathbf{x}_0$$

- ightharpoonup L es la cantidad de capas del perceptrón \Rightarrow Se elige por diseño \Rightarrow Profundidad
- $\mathbf{x}_{\ell} \in \mathbb{R}^{N_{\ell}}$ es la salida de la capa ℓ , los parámetros son $\mathbf{W}_{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ y $\mathbf{b}_{\ell} \in \mathbb{R}^{N_{\ell}}$
- $ightharpoonup N_{\ell}$ es la dimensión del vector de salida (hidden units) \Rightarrow Se elige por diseño \Rightarrow Ancho
- $ightharpoonup \sigma_\ell$ es una no-linealidad puntual conocida como función de activación

Perceptrón Multicapa

$$f(\mathbf{x}; \boldsymbol{\Theta}) = \mathbf{x}_L \quad \text{con} \quad \mathbf{x}_{\ell} = \frac{\sigma_{\ell}(\mathbf{W}_{\ell} \mathbf{x}_{\ell-1} + \mathbf{b}_{\ell})}{\ell}, \ \ell = 1, \dots, L \quad \mathbf{y} \quad \mathbf{x}_0 = \mathbf{x}$$

- El perceptrón multicapa (multilayer perceptron; MLP por sus siglas en inglés) recibe muchos nombres
 - \Rightarrow Redes neuronales feedforward porque la información sólo fluye hacia adelante
 - \Rightarrow Redes neuronales completas (fully connected) porque las matrices \mathbf{W}_ℓ pueden tomar cualquier valor
- El término red neuronal surge por los primeros modelos matemáticos de la actividad neuronal

- ▶ La inclusión de una función de activación no lineal σ_{ℓ} es clave \Rightarrow ¿Cómo elegir σ_{ℓ} ?
 - ⇒ Hay muchos tipos de activaciones disponibles ⇒ Es una elección del diseñador
 - ⇒ Suele ser difícil determinar cuál es la apropiada
 - ⇒ Conocer cuáles son las opciones y sus características principales ayuda
 - \Rightarrow Saber de antemano cuál es la mejor de todas es prácticamente imposible
 - \Rightarrow Se eligen por prueba y error observando el desempeño del algoritmo en las muestras de prueba
- Vamos a presentar varias de las opciones y discutir sus características principales

ReLU: Rectified Linear Units

- $ightharpoonup \operatorname{ReLU}(x) = \max\{0, x\}$
 - ⇒ Elección por default ⇒ Fáciles de optimizar cuando el comportamiento es casi lineal
 - ⇒ La unidad se considera activa cuando está en los positivos
 - \Rightarrow Al inicializar \mathbf{b}_{ℓ} es bueno que sean positivos para asegurarse que todas las unidades están activas
- Limitaciones: Las ReLU no pueden aprender cuando están inactivas
- Extensiones: LeakyReLU $(x) = \max\{0, x\} + \alpha \min\{0, x\}$ para algún valor α a elección, valor absoluto |x|

LeakyReLU

Valor absoluto

Sigmoideas y Tangente Hiperbólico

- Sigmoidea $\sigma(x) = 1/(1 + \exp(-x))$, tangente hiperbólico $\sigma(x) = \tanh(x)$
 - ⇒ Saturan la entrada ⇒ Es importante cuando sabemos que queremos valores limitados
 - ⇒ Cuando saturan, no aprenden ⇒ Son particularmente útiles si los valores están cerca de cero
 - ⇒ Se dice que han caído en desuso ⇒ Su utilidad depende de la función de costo J

Tangente hiperbólico

Ambas

Hiperparámetros

- ▶ Un perceptrón multicapa tiene varios valores que dependen del diseñador
 - \Rightarrow La elección de la función de activación σ_{ℓ}
 - \Rightarrow La cantidad de unidades en cada capa N_{ℓ}
 - \Rightarrow La cantidad de capas L
- Estos valores se conocen como hiperparámetros (los parámetros son los que se aprenden)
- Los mejores valores de los hiperparámetros se encuentran mediante prueba y error
 - \Rightarrow Existen métodos para automatizar la búsqueda de hiperparámetros (pero es costoso)

Capacidad de Aproximación

- ightharpoonup El objetivo de una red neuronal es aproximar una función $f(\mathbf{x}; \boldsymbol{\Theta}) \approx f(\mathbf{x})$
- Sabemos que un algoritmo lineal sirve para describir modelos lineales
 - \Rightarrow Son fáciles de aprender y tienen trazabilidad matemática para dar garantías
 - \Rightarrow Muchas veces los modelos lineales son suficientes $\,\Rightarrow$ Pero muchas veces, no
- ▶ Por lo que, en general, queremos algoritmos de aprendizaje para modelos más complejos
- Si un algoritmo lineal aprende modelos lineales, ¿qué clase de modelos aprende una red neuronal?

Sea $\sigma: \mathbb{R} \to \mathbb{R}$ una función continua, no-constante, acotada y monótonamente creciente. Sea $f \in \mathbb{C}([0,1]^N)$ una función continua $f:[0,1]^N \to \mathbb{R}$.

Dadas una función f $\in \mathbb{C}([0,1]^N)$ y un $\varepsilon > 0$, entonces existen: un entero N_1 y matrices $\mathbf{W}_1 \in \mathbb{R}^{N_1 \times N}$, y vectores $\mathbf{b}_1, \mathbf{w}_2 \in \mathbb{R}^{N_1}$, tal que la red neuronal

$$f(\mathbf{x}; \boldsymbol{\Theta}) = \mathbf{w}_2^{\mathsf{T}} \sigma (\mathbf{W}_1 \mathbf{x} + \mathbf{b}_2)$$

con $\Theta = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{w}_2\}$ satisface

$$|f(\mathbf{x}) - f(\mathbf{x}; \Theta)| \le \varepsilon$$

para todo $\mathbf{x} \in \mathbb{R}^N$.

$$\left| f(\mathbf{x}) - \mathbf{w_2}^\mathsf{T} \sigma \left(\mathbf{W}_1 \mathbf{x} + \mathbf{b_2} \right) \right| \le \varepsilon$$

- ightharpoonup Una red neuronal con una sóla capa es suficiente para aproximar f(x)
 - \Rightarrow Siempre y cuando sea lo suficientemente ancha $\,\Rightarrow\,N_1$ tiene que ser grande
- ▶ Podemos aprender funciones no lineales con una red neuronal de una capa
 - \Rightarrow No es necesario diseñar algoritmos complejos específicos para cada tarea

$$\left| f(\mathbf{x}) - \mathbf{w_2}^\mathsf{T} \sigma \left(\mathbf{W}_1 \mathbf{x} + \mathbf{b_2} \right) \right| \le \varepsilon$$

- \triangleright El teorema es válido para funciones definidas en cualquier subconjunto compacto de \mathbb{R}^N
- El teorema también es válido para funciones que mapean entre espacios discretos
- Las derivadas de la red neuronal también aproximan las derivadas de la función
- \blacktriangleright La formulación original del teorema requiere que σ sea tanh o similar
 - \Rightarrow Se pueden probar resultados similares para $\sigma(x) = \mathsf{ReLU}(x)$ y sus extensiones

$$\left| f(\mathbf{x}) - \mathbf{w_2}^\mathsf{T} \sigma \left(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_2 \right) \right| \le \varepsilon$$

- El teorema dice que podemos aprender cualquier modelo con una red neuronal lo suficientemente ancha
 - \Rightarrow No nos aclara qué tan ancha tiene que ser (puede ser necesario una cant. exponencial)
- Tampoco nos garantiza que el entrenamiento va a ser suficiente para aprender el modelo
- Incluso si la red neuronal puede representar la función, el aprendizaje puede fallar
 - \Rightarrow El algoritmo de optimización puede no encontrar los valores correctos
 - \Rightarrow Si las muestras de entrenamiento no son representativas, podemos incurrir en over fitting
- ightharpoonup Nada es Gratis \Rightarrow No hay un procedimiento universal de aprendizaje que permita generalizar

Implicancias y Extensiones del Teorema

$$\left| f(\mathbf{x}) - \mathbf{w_2}^\mathsf{T} \sigma \left(\mathbf{W}_1 \mathbf{x} + \mathbf{b_2} \right) \right| \le \varepsilon$$

- Si bien en teoría podemos aprender cualquier función usando una red neuronal
 - \Rightarrow Puede que tenga que ser imprácticamente ancha
 - ⇒ Puede que la optimización falle y/o la red entrenada no generalice
- Muchas veces es más conveniente usar redes neuronales profundas
 - ⇒ Menos anchas y con mejores propiedades de generalización
 - → Más difíciles de entrenar
- ▶ Hay un tradeoff entre el ancho y la profundidad de las redes neuronales

Minimización del Riesgo Empírico

Redes Neuronales

Optimización

Minimización del Riesgo Empírico

▶ Aprendizaje \Rightarrow Encontrar el algoritmo f : $\mathbb{R}^N \to \mathbb{R}^{N'}$ que minimice el riesgo R(f)

$$\min_{\mathbf{f}} \; \mathbb{E}_{oldsymbol{X} \sim \mathsf{f}_x} \left[\mathsf{J}(\mathbf{f}(oldsymbol{X})) \right]$$

- No conocemos $X \sim f_x$ la distribución de los datos
 - \Rightarrow Tenemos acceso a una muestra $X \leadsto \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \Rightarrow$ Minimización del Riesgo Empírico

$$\min_{\mathsf{f}} \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m))$$

► Minimizar sobre funcionales es sumamente difícil ⇒ Parametrización

$$\min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m; \boldsymbol{\theta}))$$

▶ ¿Cómo resolvemos el problema de minimización?

- L'Cómo resolvemos el problema de minimización?
- En el caso de aprender la XOR lo hicimos "a ojo", probando con criterio
- ▶ En el caso de regresión lineal con costo cuadrático encontramos el punto crítico
 - \Rightarrow Tomamos la derivada de la función, la igualamos a cero, y resolvimos
- Y en un caso general, ¿cómo hacemos?

¿Se puede automatizar el problema de optimización?

Optimización de Gradiente Descendente

- Usemos lo que sabemos del análisis matemático para diseñar un método automático
- ightharpoonup Queremos minimizar la función $\hat{\mathsf{R}}(\pmb{\theta}) = \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathsf{f}(\mathbf{x}_m; \pmb{\theta}))$ numéricamente y automáticamente
 - \Rightarrow Supongamos que lo queremos hacer de manera iterativa $\theta_{k+1} \leftarrow \mathtt{algoritmo}(\theta_k)$
 - \Rightarrow Empezamos con un punto $\theta_0 \Rightarrow \lambda$ dónde nos movemos luego?
- ▶ Un poco de inspiración: En una dimensión $\hat{R}(\theta + \varepsilon) \approx \hat{R}(\theta) + \varepsilon \hat{R}'(\theta)$ para $\varepsilon \approx 0$, $\varepsilon > 0$
 - \Rightarrow Si yo muevo el valor de θ a $\theta + \varepsilon$, la función se va a mover en $\varepsilon \hat{R}'(\theta)$
 - \Rightarrow Es evidente que si $\hat{\mathsf{R}}'(\theta)<0$ la función va a ser más chica en $\theta+\varepsilon$
 - \Rightarrow Pero si $\hat{\mathsf{R}}'(\theta) > 0$ la función va a ser más grande en $\theta + \varepsilon$
- ightharpoonup ¿Cómo podemos elegir ε , entonces? Si $\varepsilon = -\eta \hat{\mathsf{R}}'(\theta)$ obtenemos que $\hat{\mathsf{R}}(\theta + \varepsilon) \approx \hat{\mathsf{R}}(\theta) \eta (\hat{\mathsf{R}}'(\theta))^2$
 - \Rightarrow Es decir, la función siempre es más chica $(\eta$ es tal que $\eta \hat{\mathsf{R}}'(\theta) = \varepsilon \ll 0)$

$$\theta_{k+1} \leftarrow \theta_k - \eta \hat{\mathsf{R}}'(\theta_k)$$

Optimización de Gradiente Descendente

- La derivada contiene información de los lugares donde la función (de)crece
- ightharpoonup Para $\hat{\mathsf{R}}:\mathbb{R}^M\to\mathbb{R}$ una función de múltiples dimensiones \Rightarrow Gradiente $\nabla_{\boldsymbol{\theta}}$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathsf{R}} = \begin{bmatrix} \frac{\partial \ \hat{\mathsf{R}}}{\partial [\boldsymbol{\theta}]_1} & \frac{\partial \ \hat{\mathsf{R}}}{\partial [\boldsymbol{\theta}]_2} & \cdots & \frac{\partial \ \hat{\mathsf{R}}}{\partial [\boldsymbol{\theta}]_M} \end{bmatrix} \in \mathbb{R}^M$$

▶ Derivada direccional ⇒ Pendiente de la función R̂ en la dirección ŭ

$$\frac{\partial}{\partial \alpha} \left\{ \hat{\mathbf{R}} \big(\boldsymbol{\theta} + \alpha \tilde{\mathbf{u}} \big) \right\} \Big|_{\alpha = 0} = \tilde{\mathbf{u}}^\mathsf{T} \nabla_{\boldsymbol{\theta}} \hat{\mathbf{R}}$$

- \Rightarrow La contribución a la pendiente en la dirección $\check{\mathbf{u}}$ es $\langle \check{\mathbf{u}}, \nabla_{\theta} \hat{\mathsf{R}} \rangle$
- L'Cuál es la dirección donde la función decrece lo más posible?
 - $\Rightarrow \langle \check{\mathbf{u}}, \nabla_{\theta} \hat{\mathsf{R}} \rangle$ es un producto interno \Rightarrow El mínimo es cuando $\check{\mathbf{u}}$ va en la dirección de $-\nabla_{\theta} \hat{\mathsf{R}}$

Gradiente Descendente

$$\theta_{k+1} \leftarrow \theta_k - \eta \nabla_{\boldsymbol{\theta}} \hat{\mathsf{R}}(\boldsymbol{\theta}_k)$$

Gradiente Descendente

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k - \boldsymbol{\eta} \nabla_{\boldsymbol{\theta}} \hat{\mathsf{R}}(\boldsymbol{\theta}_k)$$

- El valor de η se conoce como tasa de aprendizaje (learning rate) \Rightarrow Determina el tamaño del salto
 - ⇒ Es un parámetro fundamental para que la optimización de gradiente descendente sea exitosa
- ▶ ¿Qué pasa cuando $\nabla_{\boldsymbol{\theta}} \hat{\mathsf{R}}(\boldsymbol{\theta}_k) = 0$? El algoritmo no cambia $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k$
 - \Rightarrow Los puntos donde $\nabla_{\theta} \hat{\mathsf{R}}(\theta) = 0$ se conocen como puntos críticos
 - ⇒ Pueden ser mínimos, máximos o puntos de ensilladura

Es fundamental calcular el gradiente del riesgo, aunque sea numéricamente

$$\hat{\mathsf{R}}(\theta) = \frac{1}{M} \sum_{m=1}^{M} \mathsf{J}(\mathbf{f}(\mathbf{x}_m; \theta))$$

- ▶ Para nosotros, $f(\mathbf{x}_m; \boldsymbol{\theta})$ tiene una forma muy particular \Rightarrow Perceptrón multicapa
 - \Rightarrow ¿Cómo queda la derivada cuando $f(\mathbf{x}_m; \boldsymbol{\theta}) = \mathbf{x}_L$ para $\mathbf{x}_\ell = \sigma(\mathbf{W}_\ell \mathbf{x}_{\ell-1} + \mathbf{b}_\ell)$?
- ▶ En el caso del perceptrón multicapa, $\boldsymbol{\Theta} = \{(\mathbf{W}_1, \mathbf{b}_1), \dots, (\mathbf{W}_L, \mathbf{b}_L)\}$
- ▶ ¿Cómo calculamos la derivada? ⇒ Usando la regla de la cadena

ightharpoonup Empecemos fácil \Rightarrow Una sóla capa \Rightarrow Calculemos el gradiente para un perceptrón

$$f(\mathbf{x}_m; \mathbf{W}_1, \mathbf{b}_1) = \sigma(\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1)$$

- ▶ Recordemos la regla de la cadena: (f(g(x)))' = f'(y)g'(x) con y = g(x)
- ▶ Lo función $\hat{\mathsf{R}}(\mathbf{W}_1, \mathbf{b}_1)$ es $\hat{\mathsf{R}} : \mathbb{R}^{N_1 \times N} \times \mathbb{R}^{N_1} \to \mathbb{R}$, lo que implica que las derivadas que queremos

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_1} \in \mathbb{R}^{N_1 \times N} : \left[\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_1} \right]_{ij} = \frac{\partial \hat{\mathbf{R}}}{\partial [\mathbf{W}_1]_{ij}} \quad \mathbf{y} \quad \frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{b}_1} \in \mathbb{R}^{N_1} : \left[\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{b}_1} \right]_i = \frac{\partial \hat{\mathbf{R}}}{\partial [\mathbf{b}_1]_i}$$

 \triangleright Empecemos a calcular $\partial \hat{\mathsf{R}}/\partial \mathbf{W}_1$

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{1}} = \frac{\partial}{\partial \mathbf{W}_{1}} \left\{ \frac{1}{M} \sum_{m=1}^{M} \mathsf{J} \big(\mathsf{f}(\mathbf{x}_{m}; \mathbf{W}_{1}, \mathbf{b}_{1}) \big) \right\} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial}{\partial \mathbf{W}_{1}} \left\{ \mathsf{J} \big(\mathsf{f}(\mathbf{x}_{m}; \mathbf{W}_{1}, \mathbf{b}_{1}) \big) \right\}$$

▶ El paso siguiente es calcular $\partial J/\partial W_1 \Rightarrow Para$ eso definimos $x_{1m} = f(x_m; W_1, b_1) \in \mathbb{R}^{N_1}$

$$\frac{\partial J}{\partial \mathbf{W}_1} = \frac{\partial}{\partial \mathbf{W}_1} \left\{ J \left(f(\mathbf{x}_m; \mathbf{W}_1, \mathbf{b}_1) \right) \right\} = \frac{\partial J}{\partial \mathbf{x}_{1m}} \frac{\partial}{\partial \mathbf{W}_1} \left\{ f(\mathbf{x}_m; \mathbf{W}_1, \mathbf{b}_1) \right\}$$

 \Rightarrow La función J(y) como función de su argumento va de $\mathbb{R}^{N_1} \to \mathbb{R}$, con lo que $\partial J/\partial \mathbf{x}_{1m} \in \mathbb{R}^{N_1}$ implica

$$\frac{\partial \mathsf{J}}{\partial \mathsf{x}_{1m}} = \left. \frac{\partial \mathsf{J}}{\partial \mathsf{y}} \right|_{\mathsf{y} = \mathsf{x}_{1m} = \mathsf{f}(\mathsf{x}_m; \mathsf{W}_1, \mathsf{b}_1)} \Rightarrow \left[\frac{\partial \mathsf{J}}{\partial \mathsf{x}_{1m}} \right]_i = \left. \frac{\partial \mathsf{J}}{\partial [\mathsf{y}]_i} \right|_{\mathsf{y} = \mathsf{x}_{1m} = \mathsf{f}(\mathsf{x}_m; \mathsf{W}_1, \mathsf{b}_1)}$$

 \Rightarrow Para simplificar la notación, denotamos $\mathbf{g}_{\mathsf{J}'(\mathbf{x}_{1m})} = \partial \mathsf{J}/\partial \mathbf{x}_{1m}$ como un vector en \mathbb{R}^{N_1}

Ahora viene la parte de $\partial f/\partial \mathbf{W}_1$ donde tenemos que usar que $f(\mathbf{x}_m; \mathbf{W}_1, \mathbf{b}_1) = \sigma(\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1)$

$$\frac{\partial f}{\partial \mathbf{W}_1} = \frac{\partial}{\partial \mathbf{W}_1} \left\{ \sigma(\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1) \right\} = \frac{\partial \sigma}{\partial \mathbf{z}_{1m}} \frac{\partial}{\partial \mathbf{W}_1} \left\{ \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1 \right\} \text{ donde } \mathbf{z}_{1m} = \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1$$

 \Rightarrow La función $\sigma(\mathbf{z})$ como función de su argumento va de $\mathbb{R}^{N_1} \to \mathbb{R}^{N_1}$, con lo que $\partial \sigma/\partial \mathbf{z}_{1m} \in \mathbb{R}^{N_1 \times N_1}$

$$\frac{\partial \sigma}{\partial \mathbf{z}_{1m}} = \frac{\partial \sigma}{\partial \mathbf{y}} \bigg|_{\mathbf{y} = \mathbf{z}_{1m} = \mathbf{W}_1 \times_m + \mathbf{b}_1} \Rightarrow \left[\frac{\partial \sigma}{\partial \mathbf{z}_{1m}} \right]_{ij} = \frac{\partial \sigma_i}{\partial [\mathbf{z}_{1m}]_j} = \sigma'([\mathbf{z}_{1m}]_j)$$

- \Rightarrow Pero σ es una función puntual, con lo que cada fila de la matriz $\partial \sigma/\partial \mathbf{z}_{1m}$ es igual
- \Rightarrow Para simplificar la notación, denotamos $\mathbf{G}_{\sigma'(\mathbf{z}_{1m})} = \partial \sigma/\partial \mathbf{z}_{1m}$ una matriz en $\mathbb{R}^{N_1 \times N_1}$

Gradiente Descendente para un Perceptrón

- ▶ El último paso: $\partial \{\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1\} / \partial \mathbf{W}_1 \Rightarrow \text{Como función de } \mathbf{W}_1, \text{ va de } \mathbb{R}^{N_1 \times N} \rightarrow \mathbb{R}^{N_1}$
 - \Rightarrow La derivada es un tensor de tamaño $N_1 \times N_1 \times N$ (pero es una función lineal)

$$\left[\frac{\partial}{\partial \mathbf{W}_1} \{\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1\}\right]_{ijk} = \frac{\partial [\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1]_i}{\partial [\mathbf{W}]_{jk}}$$

- \Rightarrow La derivada del elemento i de $\mathbf{W}_1\mathbf{x}_m + \mathbf{b}_1$ respecto del elemento (j,k) de la matriz \mathbf{W}_1
- ightharpoonup Calculamos el elemento i de $\mathbf{W}_1\mathbf{x}_m + \mathbf{b}_1$ como

$$\left[\mathbf{W}_{1}\mathbf{x}_{m} + \mathbf{b}_{1}\right]_{i} = \sum_{k'=1}^{N} \left[\mathbf{W}_{1}\right]_{ik'} \left[\mathbf{x}_{m}\right]_{k'} + \left[\mathbf{b}\right]_{i}$$

 \Rightarrow Primera observación: $\partial [\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1]_i / \partial [\mathbf{W}]_{jk} = 0$ si $i \neq j \Rightarrow$ La fila j de \mathbf{W}_1 no participa

$$\frac{\partial [\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1]_i}{\partial [\mathbf{W}]_{i\mathbf{k}}} = \frac{\partial}{\partial [\mathbf{W}]_{i\mathbf{k}}} \left\{ \sum_{k'=1}^N [\mathbf{W}_1]_{ik'} [\mathbf{x}_m]_{k'} + [\mathbf{b}]_{\mathbf{i}} \right\} = \sum_{k'=1}^N \frac{\partial [\mathbf{W}_1]_{ik'} [\mathbf{x}_m]_{k'}}{\partial [\mathbf{W}]_{i\mathbf{k}}}$$

 \Rightarrow Esto es no-nulo únicamente cuando $\mathbf{k} = \mathbf{k}'$ con lo cual la derivada es $[\mathbf{x}_m]_{\mathbf{k}}$

En resumen, tenemos que el tensor de derivadas $\partial \{\mathbf{W}_1\mathbf{x}_m + \mathbf{b}_1\}/\partial \mathbf{W}_1 \in \mathbb{R}^{N_1 \times N_1 \times N}$ satisface

$$\[\frac{\partial}{\partial \mathbf{W}_1} \{ \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1 \} \]_{ijk} = \begin{cases} [\mathbf{x}_m]_k & \text{si } i = j \\ 0 & \text{en caso contrario} \end{cases}$$

 \triangleright Si pensamos los tensores como un conjunto de N_1 matrices de tamaño $N_1 \times N$ tenemos algo así

$$\frac{\partial}{\partial \mathbf{W}_1} \left\{ \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1 \right\} = \left\{ \begin{bmatrix} [\mathbf{x}_m]_1 & [\mathbf{x}_m]_2 & \cdots & [\mathbf{x}_m]_N \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ [\mathbf{x}_m]_1 & [\mathbf{x}_m]_2 & \cdots & [\mathbf{x}_m]_N \end{bmatrix}, \right\}$$

 \Rightarrow Se repite el dato en las filas \Rightarrow Se puede escribir de manera compacta como

$$\frac{\partial}{\partial \mathbf{W}_1} \left\{ \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1 \right\} = \left\{ \begin{bmatrix} \mathbf{x}_m^\mathsf{T} \\ \mathbf{0}^\mathsf{T} \\ \vdots \\ \mathbf{0}^\mathsf{T} \end{bmatrix}, \begin{bmatrix} \mathbf{0}^\mathsf{T} \\ \mathbf{x}_m^\mathsf{T} \\ \vdots \\ \mathbf{0}^\mathsf{T} \end{bmatrix}, \cdots \begin{bmatrix} \mathbf{0}^\mathsf{T} \\ \mathbf{0}^\mathsf{T} \\ \vdots \\ \mathbf{x}_m^\mathsf{T} \end{bmatrix} \right\}$$

▶ Ahora juntamos todo para obtener la derivada

$$\frac{\partial \hat{\mathsf{R}}}{\partial \mathbf{W}_{1}} = \frac{1}{M} \sum_{m=1}^{M} \underbrace{\mathbf{g}_{\mathsf{J}'(\mathbf{x}_{1m})}^{\mathsf{T}}}_{1 \times N_{1}} \underbrace{\mathbf{G}_{\sigma'(\mathbf{z}_{1m})}^{\mathsf{T}}}_{N_{1} \times N_{1}} \underbrace{\frac{\partial}{\partial \mathbf{W}_{1}} \{\mathbf{W}_{1} \mathbf{x}_{m} + \mathbf{b}_{1}\}}_{N_{1} \times N_{1} \times N}$$

- Recordamos multiplicación con tensores: pensarlo como un conjunto de N_1 matrices de tamaño $N_1 \times N$
 - \Rightarrow El resultado es N_1 multiplicaciones de $(1\times N_1)(N_1\times N_1)(N_1\times N)=1\times N$
 - \Rightarrow Da por resultado N_1 vectores de tamaño $N \ \Rightarrow$ Matriz $N_1 \times N \ \Rightarrow$ Lo que estábamos buscando
- ▶ Para obtener $\partial \hat{\mathsf{R}}/\partial \mathbf{b}_1$ sólo el último término cambia (función $\mathbb{R}^{N_1} \to \mathbb{R}^{N_1}$)

$$\left[\frac{\partial}{\partial \mathbf{b}_1} \{ \mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1 \} \right]_{ij} = \frac{\partial}{\partial [\mathbf{b}_j]} \{ [\mathbf{W}_1 \mathbf{x}_m + \mathbf{b}_1]_i \} = \frac{\partial}{\partial [\mathbf{b}_j]} \left\{ \sum_{k=1}^N [\mathbf{W}_1]_{ik} [\mathbf{x}_m]_k + [\mathbf{b}]_i \right\}$$

 \Rightarrow Esto es igual a 1 si i=j y 0 en otro caso $\Rightarrow \partial \{\mathbf{W}_1\mathbf{x}_m + \mathbf{b}_1\}/\partial \mathbf{b}_1 = \mathbf{I}_{N_1 \times N_1}$

► Hasta ahora, para el caso del perceptrón, tenemos

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{1}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{\mathbf{J}'(\mathbf{x}_{1m})}^{\mathsf{T}} \underbrace{\mathbf{G}_{\sigma'(\mathbf{z}_{1m})}^{\mathsf{T}}}_{\text{activación}} \underbrace{\frac{\partial}{\partial \mathbf{W}_{1}} \{\mathbf{W}_{1} \mathbf{x}_{m} + \mathbf{b}_{1}\}}_{\text{operación lineal}}$$

- Supongamos ahora que tenemos un perceptrón multicapa \mathbf{x}_L tal que $\mathbf{x}_\ell = \sigma_\ell(\mathbf{W}_\ell \mathbf{x}_{\ell-1} \mathbf{b}_\ell)$
 - \Rightarrow Definimos $\mathbf{x}_{\ell m} = \sigma(\mathbf{z}_{\ell m})$ y $\mathbf{z}_{\ell m} = \mathbf{W}_{\ell} \mathbf{x}_{(\ell-1)m} \mathbf{b}_{\ell}$
- \blacktriangleright Ahora podemos calcular la derivada con respecto a los parámetros de la capa ℓ

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{\ell}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{\mathbf{J}'(\mathbf{x}_{Lm})}^{\mathsf{T}} \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{\ell}} \{ \mathbf{W}_{L} \mathbf{x}_{(L-1)m} + \mathbf{b}_{L} \}$$

▶ Lo que nos falta ahora es $\partial \{\mathbf{W}_L \mathbf{x}_{(L-1)m} + \mathbf{b}_L\} / \partial \mathbf{W}_{\ell} \Rightarrow \text{Recordar que } \mathbf{x}_{(L-1)m}$ es función de \mathbf{W}_{ℓ}

$$\frac{\partial}{\partial \mathbf{W}_{\ell}} \left\{ \mathbf{W}_{L} \mathbf{x}_{(L-1)m} + \mathbf{b}_{L} \right\} = \mathbf{W}_{L} \frac{\partial \mathbf{x}_{(L-1)m}}{\partial \mathbf{W}_{\ell}}$$

lacktriangle Pero ya conocemos la derivada $\partial \mathbf{x}_{(L-1)m}/\partial \mathbf{W}_{\ell}$ porque es la derivada del perceptrón

$$\frac{\partial \mathbf{x}_{(L-1)m}}{\partial \mathbf{W}_{\ell}} = \frac{\partial}{\partial \mathbf{W}_{\ell}} \left\{ \sigma(\mathbf{z}_{(L-1)m}) \right\} = \mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{\ell}} \left\{ \mathbf{W}_{L-1} \mathbf{x}_{(L-2)m} + \mathbf{b}_{L-1} \right\}
= \mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \mathbf{W}_{L-1} \frac{\partial \mathbf{x}_{(L-2)m}}{\partial \mathbf{W}_{\ell}}$$

- \Rightarrow Y se repite recursivamente hasta llegar a la capa ℓ
- ▶ Juntando todo, ahora tenemos que

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{\ell}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{\mathbf{J}'(\mathbf{x}_{Lm})}^{\mathsf{T}} \underbrace{\mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}^{\mathsf{T}} \mathbf{W}_{L}}_{\text{capa } L} \underbrace{\mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \mathbf{W}_{L-1}}_{\text{capa } L-1} \cdots \mathbf{G}_{\sigma'(\mathbf{z}_{\ell m})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{\ell}} \{ \mathbf{W}_{\ell} \mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell} \}$$

- \Rightarrow Acá tenemos que $\partial \{\mathbf{W}_{\ell}\mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell}\}/\partial \mathbf{W}_{\ell}$ el tensor $N_{\ell} \times N_{\ell} \times N_{\ell-1}$
- \Rightarrow Si queremos $\partial \{\mathbf{W}_{\ell}\mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell}\}/\partial \mathbf{W}_{\ell}$ simplemente reemplazamos el último término por $\mathbf{I}_{N_{\ell} \times N_{\ell}}$

Implementación Numérica: Backpropagation

- El algoritmo de backpropagation refiere a un procedimiento para calcular la derivada [Rumelhart, 1986]
- ightharpoonup Recordemos que estamos haciendo gradiente descendente para actualizar \mathbf{W}_{ℓ} y \mathbf{b}_{ℓ} para todo ℓ

$$\mathbf{W}_{\ell(k+1)} = \mathbf{W}_{\ell k} - \eta \frac{\partial \,\hat{\mathsf{R}}}{\partial \mathbf{W}_{\ell k}} \quad , \quad \mathbf{b}_{\ell(k+1)} = \mathbf{b}_{\ell k} - \eta \frac{\partial \,\hat{\mathsf{R}}}{\partial \mathbf{b}_{\ell k}}$$

▶ En la iteración k conocemos $\mathbf{W}_{\ell k}$ y $\mathbf{b}_{\ell k}$ para todo ℓ ; y además tenemos \mathbf{x}_m

$$\mathbf{x}_m \to \left(\mathbf{z}_{1m}, \mathbf{x}_{1m}\right) \to \left(\mathbf{z}_{2m}, \mathbf{x}_{2m}\right) \to \cdots \to \left(\mathbf{z}_{Lm}, \mathbf{x}_{Lm}\right) \quad \text{con} \quad \mathbf{z}_{\ell m} = \mathbf{W}_{\ell k} \mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell k}, \ \mathbf{x}_{\ell m} = \sigma(\mathbf{z}_{\ell m})$$

- ⇒ Y de esta manera hacemos una pasada 'hacia adelante' para calcular la salida
- ▶ Pero para calcular el gradiente necesitamos

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{\ell k}} = \frac{1}{M} \sum_{m=1}^{M} \underbrace{\mathbf{g}_{\mathsf{J}'(\mathbf{x}_{Lm})}^{\mathsf{T}} \mathbf{g}_{\mathsf{J}'(\mathbf{z}_{Lm})}^{\mathsf{T}} \mathbf{W}_{L k}}_{\text{capa } L} \underbrace{\mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \mathbf{W}_{(L-1)k}}_{\text{capa } L-1} \cdots \mathbf{G}_{\sigma'(\mathbf{z}_{\ell m})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{\ell k}} \left\{ \mathbf{W}_{\ell k} \mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell k} \right\}$$

▶ Pero para calcular el gradiente necesitamos

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{\ell k}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{\mathbf{J}'(\mathbf{x}_{Lm})}^{\mathsf{T}} \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}^{\mathsf{T}} \mathbf{W}_{L k} \mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \mathbf{W}_{(L-1)k} \cdots \mathbf{G}_{\sigma'(\mathbf{z}_{\ell m})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{\ell k}} \left\{ \mathbf{W}_{\ell k} \mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell k} \right\}$$

- ▶ Se observa que cada capa necesita el valor de la capa anterior
 - ⇒ En la pasada hacia delante, también podemos calcular lo que necesitamos para el gradiente

$$\mathbf{x}_{m} \to \left(\mathbf{z}_{1m}, \mathbf{x}_{1m}, \mathbf{G}_{\sigma'(\mathbf{z}_{1m})}, \frac{\partial}{\partial \mathbf{W}_{1k}} \{\mathbf{W}_{1k}\mathbf{x}_{m} + \mathbf{b}_{1k}\}\right) \to \left(\mathbf{z}_{2m}, \mathbf{x}_{2m}, \mathbf{G}_{\sigma'(\mathbf{z}_{2m})}, \frac{\partial}{\partial \mathbf{W}_{2k}} \{\mathbf{W}_{2k}\mathbf{x}_{1m} + \mathbf{b}_{2k}\}\right)$$

$$\to \cdots \to \left(\mathbf{z}_{Lm}, \mathbf{x}_{Lm}, \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}, \frac{\partial}{\partial \mathbf{W}_{Lk}} \{\mathbf{W}_{Lk}\mathbf{x}_{(L-1)m} + \mathbf{b}_{Lk}\}\right) \to \left(\mathsf{J}(\mathbf{x}_{Lm}), \mathbf{g}_{\mathsf{J}'(\mathbf{x}_{Lm})}\right)$$

Y ahora que calculamos todo lo que necesitamos en la pasada hacia adelante

$$\mathbf{x}_{m} \to \left(\mathbf{z}_{1m}, \mathbf{x}_{1m}, \mathbf{G}_{\sigma'(\mathbf{z}_{1m})}, \frac{\partial}{\partial \mathbf{W}_{1k}} \{\mathbf{W}_{1k} \mathbf{x}_{m} + \mathbf{b}_{1k}\}\right) \to \left(\mathbf{z}_{2m}, \mathbf{x}_{2m}, \mathbf{G}_{\sigma'(\mathbf{z}_{2m})}, \frac{\partial}{\partial \mathbf{W}_{2k}} \{\mathbf{W}_{2k} \mathbf{x}_{1m} + \mathbf{b}_{2k}\}\right)$$

$$\to \cdots \to \left(\mathbf{z}_{Lm}, \mathbf{x}_{Lm}, \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}, \frac{\partial}{\partial \mathbf{W}_{Lk}} \{\mathbf{W}_{Lk} \mathbf{x}_{(L-1)m} + \mathbf{b}_{Lk}\}\right) \to \left(\mathsf{J}(\mathbf{x}_{Lm}), \mathbf{g}_{\mathsf{J}'(\mathbf{x}_{Lm})}\right)$$

⇒ Podemos volver hacia atrás, calculando las derivadas, de la última a la primera

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{Lk}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{J'(\mathbf{x}_{Lm})}^{\mathsf{T}} \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{Lk}} \{ \mathbf{W}_{Lk} \mathbf{x}_{(L-1)m} + \mathbf{b}_{Lk} \}
\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{W}_{(L-1)k}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{g}_{J'(\mathbf{x}_{Lm})}^{\mathsf{T}} \mathbf{G}_{\sigma'(\mathbf{z}_{Lm})}^{\mathsf{T}} \mathbf{W}_{Lk} \mathbf{G}_{\sigma'(\mathbf{z}_{(L-1)m})}^{\mathsf{T}} \frac{\partial}{\partial \mathbf{W}_{(L-1)k}} \{ \mathbf{W}_{(L-1)k} \mathbf{x}_{(L-2)m} + \mathbf{b}_{(L-1)k} \}
\vdots$$

Implementación Numérica: Backpropagation

- ▶ El algoritmo de backpropagation sirve para calcular el gradiente y consiste en dos fases
 - ⇒ 'Hacia adelante': calcula la salida y guarda valores relevantes para el gradiente
 - ⇒ 'Hacia atrás': multiplica esos valores para calcular el gradiente en cada capa

Algoritmo de Backpropagation

```
Dados \{\mathbf{W}_{\ell k}, \mathbf{b}_{\ell k}\} para todo \ell; dado \mathbf{x}_m Para cada \ell = 1, \ldots, L Calcular \mathbf{z}_{\ell m} = \mathbf{W}_{\ell k} \mathbf{x}_{(\ell-1)m} + \mathbf{b}_{\ell k} Calcular \mathbf{x}_{\ell m} = \sigma(\mathbf{z}_{\ell m}) Calcular \mathbf{G}_{\sigma'(\mathbf{z}_{\ell m})} Calcular \partial \mathbf{z}_{\ell m}/\partial \mathbf{W}_{\ell k} Calcular \partial \mathbf{z}_{\ell m}/\partial \mathbf{b}_{\ell k} Para cada \ell = L, \ldots, 1 Calcular \partial \hat{\mathbf{R}}/\partial \mathbf{W}_{\ell k} Calcular \partial \hat{\mathbf{R}}/\partial \mathbf{b}_{\ell k}
```


- ► El algoritmo de gradiente descendente es sencillo $\Rightarrow \theta_{k+1} \leftarrow \theta_k \eta \ \partial \hat{R} / \partial \theta_k$
- La clave está en calcular el gradiente del riesgo empírico $\hat{R}(\theta)$

$$\frac{\partial \hat{R}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left\{ \frac{1}{M} \sum_{m=1}^{M} J(f(\mathbf{x}_m; \boldsymbol{\theta})) \right\} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial}{\partial \boldsymbol{\theta}} \left\{ J(f(\mathbf{x}_m; \boldsymbol{\theta})) \right\}$$

- \Rightarrow Para $\mathsf{f}(\mathbf{x}; m{ heta})$ un perceptrón multicapa \Rightarrow Usamos backpropagation para calcular el gradiente
- Ahora bien, el uso de backpropagation parece razonable, pero abre dos interrogantes
 - \Rightarrow Teórico \Rightarrow ¿Hacer gradiente descendente sobre el riesgo empírico \hat{R} sirve para el riesgo R?
 - \Rightarrow Práctico $\,\Rightarrow$ Cada pasada del backpropagation se realiza para una sola muestra

Gradiente Descendente Estocástico (SGD)

- ▶ ¿Hacer gradiente descendente sobre el riesgo empírico sirve para minimizar el riesgo? ***
 - \Rightarrow Recordemos que el riesgo es $R(\theta) = \mathbb{E}_{\mathbf{X} \sim f_x}[J(f(\mathbf{X}; \theta))] \Rightarrow Su derivada es <math>\partial R/\partial \theta = \mathbb{E}_{\mathbf{X} \sim f_x}[\partial J/\partial \theta]$
 - \Rightarrow No tenemos acceso a $\mathbb{E}_{X \sim f_x}[\partial \mathsf{J}(\mathsf{f}(X; \boldsymbol{\theta}))/\partial \boldsymbol{\theta}]$, sólo tenemos acceso a $\partial \mathsf{J}(\mathsf{f}(\mathbf{x}_m; \boldsymbol{\theta}))/\partial \boldsymbol{\theta}$
 - \Rightarrow Ley de los grandes números $\Rightarrow M^{-1} \sum_{m=1}^{M} \partial J(f(\mathbf{x}_m; \boldsymbol{\theta})) / \partial \boldsymbol{\theta} \approx \mathbb{E}_{\boldsymbol{X} \sim f_x} [\partial J(f(\boldsymbol{X}; \boldsymbol{\theta})) / \partial \boldsymbol{\theta}], M \gg 1$
 - \Rightarrow Gradiente Descendente Estocástico (SGD: stochastic gradient descent) (muestras, no esperanza)
- Cada pasada del backpropagation se realiza para una sola muestra
 - \Rightarrow Necesito muchas muestras para estimar bien la esperanza
 - \Rightarrow Pero cada muestra demanda una pasada "hacia adelante y hacia atrás" del algoritmo
 - ⇒ Cuantas más muestras, más tardo en actualizar los parámetros

Batches y Epochs

- \blacktriangleright Tenemos una muestra de tamaño $M\colon \{\mathbf{x}_1,\dots,\mathbf{x}_M\} \ \Rightarrow M$ debería ser grande
- ▶ Tomamos un subconjunto de muestras $M' \ll M$ de manera aleatoria $\{\mathbf{x}_{m'}\}_{m'=1}^{M'}$
- ightharpoonup Hacemos una pasada del backpropagation, sólo sobre las M' muestras \Rightarrow Más rápido
- ► El estimador del gradiente ahora es $M'^{-1} \sum_{m'=1}^{M'} \partial \mathsf{J}(\mathsf{f}(\mathbf{x}_{m'}; \boldsymbol{\theta})) / \partial \boldsymbol{\theta} \Rightarrow \mathbf{U} \mathsf{n}$ estimador un poco peor
- ► Actualizamos: $\theta_{k+1} \leftarrow \theta_k \eta \ \partial \hat{\mathsf{R}} / \partial \theta_k \ \Rightarrow$ Pero usando $\partial \hat{\mathsf{R}} / \partial \theta_k$ estimado sobre las M' muestras
- ightharpoonup Tomamos un nuevo subconjunto de M' muestras \Rightarrow Repetimos el proceso actualizando los parámetros
- ► Cada subconjunto de M' muestras se conoce como batch (minibatch)
- Si queremos seguir actualizando los parámetros, podemos volver a pasar por la muestra (en otro orden)
 - \Rightarrow El estimador del gradiente deja de consistir en muestras i.i.d. \Rightarrow Sesgo
- ▶ Cada pasada por el conjunto completo de muestras se conoce como *epoch*

Batches y Epochs

- ► Implementación práctica del uso de batches y epochs
 - \Rightarrow Para cada epoch, reordenamos los índices $\{1,...,M\}$ de manera aleatoria
 - \Rightarrow Elegimos M'índices de manera consecutiva del conjunto reordenado $\,\Rightarrow$ Un batch
 - \Rightarrow Una vez que llegamos a la última muestras, termina el epoch
 - \Rightarrow Realizamos un nuevo reordenamiento aleatorio de los índices y repetimos \Rightarrow Nueva epoch
- ightharpoonup Valores de M' más grandes mejoran el estimador, pero no de manera lineal
- ightharpoonup Procesamiento en paralelo \Rightarrow Cada muestra va a un procesador \Rightarrow Memoria escala con M'
- Si los batches son muy pequeños pueden quedar procesadores sin utilizar
- Es común utilizar una cantidad de batches que sean potencias de 2 (especialmente en GPUs)
- ▶ La aleatoriedad del SGD parece tener un efecto regularizador que ayuda a la generalización

Garantías: Gradiente Descendente Estocástico

- ► Cuando usamos SGD estamos estimando el gradiente ⇒ La estimación no es perfecta
 - ⇒ El algoritmo va a seguir saltando alrededor del mínimo por cambios en cada estimación
 - ⇒ Es necesario reducir la tasa de aprendizaje a medida que nos acercamos al mínimo

Convergencia de SGD

Cuando usamos SGD, cambiamos la tasa de aprendizaje a cada iteración:

$$\theta_{k+1} \leftarrow \theta_k - \eta_k \ \partial \hat{\mathsf{R}} / \partial \theta_k$$

Si la tasa de aprendizaje satisface que

$$\sum_{k=1}^{\infty} \eta_k = \infty \quad \mathbf{y} \quad \sum_{k=1}^{\infty} \eta_k^2 < \infty$$

entonces el algoritmo de SGD converge a un mínimo.**

 \Rightarrow Típicamente $\eta_k = (1 - k/\tau)\eta_0 + ke_\tau/\tau$ para algún horizonte τ

Garantías: Optimización Convexa

- En general, los algoritmos de optimización no ofrecen garantías de optimalidad
 - ⇒ A menos que se trate de un problema de optimización convexa
 - ⇒ En ese caso, siempre se garantiza que se llega al punto óptimo
- En casos no-convexos, como lo es la mayoría de los problemas de deep learning, hay que tener cuidado

Mejorando SGD: Momentum

- Los problemas con mínimos locales parecen ser menos relevantes en la práctica
- ► Los problemas con puntos de ensilladura son un poco más críticos ⇒ Diseñar métodos para superarlos
 - \Rightarrow Todos los métodos construyen sobre las nociones básicas de SGD (gradiente descendente)
- Momentum: Acelerar la convergencia utilizando una media móvil de los últimos valores
 - ⇒ El algoritmo tiene tendencia a moverse en la misma dirección en la que venía

SGD con Momentum

Dado: tasa de aprendizaje η , parámetro α , valor inicial $\boldsymbol{\theta}_0$, velocidad inicial \mathbf{v}_0

Para cada $k = 0, 1, \dots$

Obtener un batch de muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_{M'}\}$

Estimar el gradiente: $\mathbf{g}_k \leftarrow M'^{-1} \sum_{m'} \partial \mathsf{J}(\mathsf{f}(\mathbf{x}_{m'}; \boldsymbol{\theta}_k)) / \partial \boldsymbol{\theta}_k$

Calcular la velocidad $\mathbf{v}_{k+1} \leftarrow \alpha \mathbf{v}_k - \eta \mathbf{g}_k$

Actualizar los parámetros $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$

Mejorando SGD: Tasa de Aprendizaje

- Es evidente para cualquier usuario de deep learning que la tasa de aprendizaje es fundamental
 - ⇒ Y es uno de los hiperparámetros más difíciles de determinar correctamente

AdaGrad (Duchi et al, 2011)

Dado: tasa de aprendizaje η , valor inicial θ_0 , constante $\delta \approx 10^{-7}$

Inicializar $\mathbf{r}_0 = \mathbf{0}$

Para cada $k = 0, 1, \dots$

Obtener un batch de muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_{M'}\}$

Estimar el gradiente: $\mathbf{g}_k \leftarrow M'^{-1} \sum_{m'} \partial \mathsf{J}(\mathsf{f}(\mathbf{x}_{m'}; \boldsymbol{\theta}_k)) / \partial \boldsymbol{\theta}_k$

Calcular el cuadrado del gradiente $\mathbf{r}_{k+1} \leftarrow \mathbf{r}_k + \mathbf{g}_k^2$

Actualizar los parámetros $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k - \frac{\eta}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}_k$

- ► Parámetros con gradiente elevado decrecen más rápido ⇒ Avanza en direcciones no muy inclinadas
- \triangleright Acumular gradientes desde el principio del entrenamiento ocasiona un excesivo decrecimiento de η

Mejorando SGD: Tasa de Aprendizaje

RMSProp (Hinton, 2012)

Dado: tasa de aprendizaje η , decaimiento ρ , valor inicial θ_0 , constante $\delta \approx 10^{-6}$

Inicializar $\mathbf{r}_0 = \mathbf{0}$

Para cada $k = 0, 1, \dots$

Obtener un batch de muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_{M'}\}$

Estimar el gradiente: $\mathbf{g}_k \leftarrow M'^{-1} \sum_{m'} \partial \mathsf{J}(\mathsf{f}(\mathbf{x}_{m'}; \boldsymbol{\theta}_k)) / \partial \boldsymbol{\theta}_k$

Calcular el cuadrado del gradiente $\mathbf{r}_{k+1} \leftarrow \rho \mathbf{r}_k + (1-\rho)\mathbf{g}_k^2$

Actualizar los parámetros $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k - \frac{\eta}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}_k$

- ▶ Usa una media móvil para el cálculo del cuadrado de los gradientes ⇒ Decae exponencialmente
 - ⇒ Descarta los cuadrados de los gradientes del pasado

Mejorando SGD: Tasa de Aprendizaje

ADAM (Kingma y Ba, 2014)

Dado: tasa de aprendizaje η , decaimientos ρ_1, ρ_2 , valor inicial θ_0 , constante $\delta \approx 10^{-8}$

Inicializar
$$\mathbf{r}_0 = \mathbf{0} \ \mathrm{y} \ \mathbf{s}_0 = \mathbf{0}$$

Para cada $k = 0, 1, \dots$

Obtener un batch de muestras $\{\mathbf{x}_1, \dots, \mathbf{x}_{M'}\}$

Estimar el gradiente: $\mathbf{g}_k \leftarrow M'^{-1} \sum_{m'} \partial \mathsf{J}(\mathsf{f}(\mathbf{x}_{m'}; \boldsymbol{\theta}_k)) / \partial \boldsymbol{\theta}_k$

Estimar el primer momento $\mathbf{s}_{k+1} \leftarrow \rho_1 \mathbf{s}_k + (1 - \rho_1) \mathbf{g}_k$

Estimar el segundo momento $\mathbf{r}_{k+1} \leftarrow \rho_2 \mathbf{r}_k + (1 - \rho_2) \mathbf{g}_k^2$

Corregir el sesgo $\mathbf{s}_{k+1} \leftarrow \mathbf{s}_{k+1}/(1-\rho_1^{k+1})$ y $\mathbf{r}_{k+1} \leftarrow \mathbf{r}_{k+1}/(1-\rho_2^{k+1})$

Actualizar los parámetros $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k - \eta \mathbf{s}_{k+1}/(\delta + \sqrt{\mathbf{r}_{k+1}})$

- ► Se utiliza momentum para estimar el gradiente (ver vector s)
- ▶ Se corrigen los estimadores de primer y segundo orden

- ▶ Algunos algoritmos no son iterativos sino que proponen una solución para el punto de interés
- Otros algoritmos son iterativos y convergen independientemente de la inicialización
- \triangleright En Deep Learning, los algoritmos son iterativos y son sensibles a la elección de θ_0
 - ⇒ Los puntos de inicialización determinan el tipo de solución, la convergencia y la velocidad
- Las estrategias de inicialización son mayormente heurísticas (dificultad del problema)
- Dijetivo primordial de la inicialización: quebrar la simetría de las distintas hidden units
- Solución típica: elegir los pesos \mathbf{W}_0 de manera aleatoria (normal o uniforme)
 - ⇒ La distribución no parece afectar mucho, pero la escala sí
 - \Rightarrow Valores grandes de inicialización van a quebrar mejor la simetría
 - ⇒ Si son muy grandes puede que desestabilicen numéricamente la optimización
- \triangleright Elegir los vectores de offset \mathbf{b}_0 a una determinada constante (cercana a cero)

Resumen del Capítulo

- ▶ Qué quiere decir aprender ⇒ Resolver el problema de minimización del riesgo empírico
 - ⇒ Usar los datos porque no contamos con la distribución de los mismos
 - ⇒ Problema que persiste: encontrar la mejor función
- Optimizar sobre el espacio de todas las funciones posibles es prácticamente imposible
 - ⇒ Elegir una parametrización de la función de aprendizaje ⇒ Redes Neuronales
 - \Rightarrow Las redes neuronales son cascadas de capas \Rightarrow Transformación lineal + activación no lineal
 - \Rightarrow Las redes neuronales tienen hiperparámetros a cargo del diseñador: profundidad, ancho, activación
- ▶ Optimizar sobre parámetros se puede resolver ⇒ Pero necesitamos automatizar la optimización
 - ⇒ Algoritmo de gradiente (estocástico) descendente
 - \Rightarrow Algoritmo de backpropagation (calcular automáticamente la derivada \Rightarrow regla de la cadena)
 - \Rightarrow Más hiperparámetros para el diseñador: tasa de aprendizaje, tamaño de batch, cantidad de epochs

Escenas del Próximo Capítulo...

- ▶ El algoritmo de gradiente descendente requiere un riesgo derivable
 - ⇒ ¿Qué hacemos en problemas que no ofrecen riesgos derivables de manera natural?
 - ⇒ Elección de la función de costo
- ¿Alcanza sólo con minimizar la función de costo? ¿Se puede incorporar información externa?
 - \Rightarrow Regularización: Técnicas para mejorar el entrenamiento y aprendizaje

