

TD1 - Intégrale et sommes de Riemann

Exercice 1. Soient φ et ψ les fonctions en escalier définies sur [0,2] par :

$$\varphi(x) := \begin{cases} 1 & \text{si } x \in \left[0, \frac{1}{2}\right[\\ -2 & \text{si } x \in \left[\frac{1}{2}, \frac{3}{2}\right[\\ 4 & \text{si } x \in \left[\frac{3}{2}, 2\right] \end{cases}, \qquad \psi(x) := \begin{cases} -1 & \text{si } x \in \left[0, \frac{1}{4}\right[\\ 1 & \text{si } x \in \left[\frac{1}{4}, \frac{1}{2}\right[\\ 3 & \text{si } x \in \left[\frac{1}{2}, \frac{7}{4}\right[\\ -1 & \text{si } x \in \left[\frac{7}{4}, 2\right] \end{cases} \end{cases}$$

- **1.** Représenter les fonctions φ et ψ .
- **2.** Montrer que $\varphi + \psi$ est une fonction en escalier.
- **3.** Vérifier que $\int_0^2 (\varphi + \psi) = \int_0^2 \varphi + \int_0^2 \psi$.

Exercice 2. Soit $f: [0,1] \to \mathbb{R}$ la fonction définie par $f(x) \coloneqq x^2$. Soit $n \in \mathbb{N}^*$, on considère φ_n la fonction en escalier définie par $\varphi_n(x) \coloneqq \frac{i^2}{n^2}$ si $x \in \left[\frac{i}{n}, \frac{i+1}{n}\right[$, pour $i \in [0, n-1]$, et on pose $\varphi_n(1) = \frac{(n-1)^2}{n^2}$.

- **1.** Montrer qu'il existe c > 0 (à déterminer) telle que $|f(x) \varphi_n(x)| \le \frac{c}{n}$ pour tout $x \in [0, 1]$.
- **2.** En déduire que f est Riemann-intégrable et calculer $\int_0^1 f(x) \, dx$ à partir de la définition de l'intégrale de Riemann.

Exercice 3. Soit $f: [a,b] \to \mathbb{R}$ une fonction. On suppose que pour tout $\varepsilon > 0$, il existe g Riemann-intégrable sur [a,b] telle que $|f-g| \le \varepsilon$. Montrer que f est Riemann-intégrable.

Exercice 4. Soit [a, b] un intervalle de \mathbb{R} .

1. On admet que pour toutes fonctions en escalier φ, ψ , on a $\int_a^b (\lambda \varphi + \psi) = \lambda \int_a^b \varphi + \int_a^b \psi$. Montrer que pour toutes fonctions Riemann-intégrables f, g, la fonction $\lambda f + g$ est Riemann-intégrable et on a :

$$\int_{a}^{b} (\lambda f + g) = \lambda \int_{a}^{b} f + \int_{a}^{b} g.$$

- **2.** Montrer que si f est positive et Riemann-intégrable, alors $\int_a^b f \ge 0$. En déduire que si f et g sont Riemann-intégrables et $f \le g$, alors $\int_a^b f \le \int_a^b g$.
- 3. Montrer que si f est Riemann-intégrable, alors |f| est Riemann-intégrable et $\left| \int_a^b f \right| \le \int_a^b |f|$.

Exercice 5.

1. Soit $f: [a,b] \to \mathbb{R}$ une fonction Riemann-intégrable. Montrer que :

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

2. Calculer les limites suivantes :

$$\mathbf{a.} \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^3$$

b.
$$\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{n}{n^2 + k^2}$$

c.
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \cos^2 \left(\frac{k\pi}{n} \right)$$

d.
$$\lim_{n \to +\infty} \sum_{k=0}^{2n-1} \frac{1}{2n+3k}$$

Exercice 6. Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , posons $M = \sup_{[a,b]} |f'| \in \mathbb{R}_+$ (pourquoi $M < +\infty$?).

- **1.** Montrer que pour tous $c, d \in [a, b], \left| \int_c^d (f(x) f(c)) dx \right| \le \frac{M}{2} (d c)^2$.
- 2. En déduire que :

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - \frac{1}{n} \sum_{k=0}^{n-1} f(a_{k}) \right| \le \frac{M}{2n} (b - a)^{2},$$

où
$$a_k := a + k \frac{b-a}{n}$$
.

Exercice 7. Soit I := [a, b] un intervalle et soit $\sigma := (a_i)_{1 \le i \le n}$ une subdivision de I. On considère une fonction bornée $f : I \to \mathbb{R}$. On appelle *somme de Darboux inférieure* et *somme de Darboux supérieure* associée à la subdivision σ les sommes :

$$\Sigma^{-}(f,\sigma) := \sum_{i=0}^{n-1} m_i (a_{i+1} - a_i), \qquad \Sigma^{+}(f,\sigma) := \sum_{i=0}^{n-1} M_i (a_{i+1} - a_i),$$

où
$$m_i \coloneqq \inf_{[a_i, a_{i+1}]} f$$
 et $M_i \coloneqq \sup_{[a_i, a_{i+1}]} f$.

- **1.** Montrer que $m(b-a) \le \Sigma^-(f,\sigma) \le \Sigma^+(f,\sigma) \le M(b-a)$ où $m := \inf_I f$ et $M := \sup_I f$.
- **2.** Soient f^+ et f^- les fonctions en escalier :

$$f^+ = \sum_{i=0}^{n-1} M_i \mathbf{1}_{I_i}, \quad f^- = \sum_{i=0}^{n-1} m_i \mathbf{1}_{I_i},$$

où $I_i = [a_i, a_{i+1}[$ si $1 \le i \le n-2$ et $I_{n-1} = [a_{n-1}, a_n]$, et $\mathbf{1}_{I_i}$ est la fonction indicatrice de l'intervalle I_i . Montrer que $f^-(x) \le f^+(x)$ pour tout $x \in I$. Que valent les intégrales de f^+ et f^- ?

- **3.** On suppose que pour tout $\varepsilon > 0$, il existe une subdivision σ telle que $\Sigma^+(f,\sigma) \Sigma^-(f,\sigma) \le \varepsilon$. Montrer que f est Riemann-intégrable sur I.
- **4.** On veut prouver la réciproque de la question précédente. Supposons que f est Riemann-intégrable sur I.
 - **a.** Montrer que pour tout $\varepsilon > 0$ et pour toute subdivision $\sigma = (a_i)_{0 \le i \le n}$, il existe des pointages $\xi^+ = (\xi_i^+)_{0 \le i \le n}$ et $\xi^- = (\xi_i^-)_{0 \le i \le n}$ associés à σ tels que :

$$\Sigma^+(f,\sigma) \le S(f,\sigma,\xi^+) + \varepsilon$$
 et $\Sigma^-(f,\sigma) \ge S(f,\sigma,\xi^-) - \varepsilon$.

- **b.** En déduire que tout $\varepsilon > 0$, il existe une subdivision σ telle que $\Sigma^+(f,\sigma) \Sigma^-(f,\sigma) \le \varepsilon$.
- **5.** En déduire que toute fonction monotone sur *I* est Riemann-intégrable.