## Axioms (or Laws) of Probability

Sample Space and Events [Ross S2.2] Random experiments do not have predictable outcomes.

The set of all possible outcomes is called the **sample space**, and denoted S

(or sometimes  $\Omega$ ).

**Example 2.1:** If we toss two 2 coins, then  $S = \{hh, ht, th, tt\}$ .

 $S = \{(i, j) \in \mathbb{Z}^2 \mid i = 1, 2, \dots, 6, j = 1, 2, \dots, 6\}$ 

Example 2.2: If we toss two 6-sided dice, then

(2.1)

**Example 2.4:** In an experiment measuring the lifetime of a solid-state drive,

**Example 2.3:** In roulette,  $S = \{00, 0, 1, \dots, 36\}$ .

 $S = \{x \in \mathbb{R} \mid x \ge 0\}.$ 

Example 2.5: Two persons will meet. Each will arrive with a delay that is

$$S = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1\}.$$

**Definition 2.1:** A subset 
$$E \subset S$$
 is called an **event**.

 $E = \{hh, tt\}$ 

is the event that both coins come up identical.

each other is:

Example 2.6: In Example 2.1,

between 0 and 1 hour:

 $F = \{(3,6), (4,5), (5,4), (6,3)\}$ 

**Example 2.8:** In roulette, even  $= \{2, 4, 6, \dots, 36\}$  is called an even outcome

and odd = 
$$\{1, 3, 5, \dots, 35\}$$
 is called an odd outcome.

**Example 2.9:** In Example 2.5, the event that both arrive within 1/4 hour of

 $E = \{(x, y) \in S \mid |x - y| \le 1/4\}$ 



We also write EF.

ullet If EF=  $\bullet$  then E and F are said to be **mutually exclusive** or **disjoint**.

•  $E \cap F$  is the event that both E and F occur  $E \cap F = \{x \in S \mid x \in E \text{ and } x \in F\}$ 

•  $E^c$  is the event that E does not occur  $E^c = \{ x \in S \mid x \notin E \}$ 

We also write  $\overline{E}$ 

•  $F = \bigcup_{i=1}^n E_i$ 

Distributive Laws:

**Properties:** 

• Given F and  $E_1, E_2, \ldots, E_n$ , if •  $E_1, E_2, \dots, E_n$  are disjoint (i.e.,  $E_i E_j = \emptyset$  for  $i \neq j$ )

then  $E_1, E_2, \ldots, E_n$  are said to **partition** F.

 $E \cup F = F \cup E$ Commutative Laws:  $(E \cup F) \cup G = E \cup (F \cup G) \quad (EF)G = E(FG)$ Associative Laws:

**Example 2.10:** Venn diagram interpretation of  $EF \cup G = (E \cup G)(F \cup G)$ :

 $EF \cup G =$  $(E \cup F)G = EG \cup FG$  $(E \cup G)(F \cup G)$ 

EF = FE

## **DeMorgan's Laws:** $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c} = \bigcap_{i=1}^{n} E_{i}^{c}$ $\left(\bigcap_{i=1}^{n} E_{i}\right)^{c} = \bigcup_{i=1}^{n} E_{i}^{c}$

**Example 2.11:** Prove the 1st law:  $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$ 

Step 1: We will show 
$$(\cup_i E_i)^c \subset \cap_i E_i^c$$
  
Let  $x \in (\cup_i E_i)^c$   
Then  $x \notin \cup_i E_i$ 

Let  $x \in \cap_i E_i^c$ Then, for each  $i, x \in E_i^c$ 

Then,  $x \in \cap_i E_i^c$ 

Solution:

Let  $x \in (\cup_i E_i)^c$ Then  $x \notin \bigcup_i E_i$ 

Then, for each  $i, x \notin E_i$ 

Then, for each  $i, x \in E_i^c$ 

Then, for each  $i, x \notin E_i$ 

Then,  $x \in \underbrace{(E_1 \cup E_2 \cup \dots \cup E_n)^c}_{(\cup_i E_i)^c}$ 

Step 2: We will show  $\cap_i E_i^c \subset (\cup_i E_i)^c$ 

Home Exercises: Verify other properties with Venn diagrams; prove 2nd

DeMorgan Law.

Then,  $x \notin E_1 \cup E_2 \cup \cdots \cup E_n$ 

 $A \times B = \{(x, y) \mid x \in A, y \in B\}$ 

 $\{0,1\}^{10} = \{\text{all binary strings of length } 10\}$ 

Given two sets A and B, the Cartesian product  $A \times B$  is:

We used the shorthand  $A^2 = A \times A$ .

 $\{0,1\} \times \{0,1,2\} = \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}$ 

Example 2.12:

 $\neq \{0,1,2\} \times \{0,1\}$  $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$