地理信息系统与遥感应用

第二讲 空间坐标系与投影

南方科技大学·环境科学与工程学院

田勇

2018年9月5日

Why dose the same place have different coordinates?

Google Map: 22.5979422000,113.9934485100

谷歌地图: 22.5950697284,113.9984320543 百度地图: 22.6014216192,114.0049045474

腾讯高德: 22.5950690000,113.9984360000

图吧地图: 22.5958522000,113.9902285100

谷歌地球: 22.5979422000,113.9934485100

Baidu Map: 22.6014216192,114.0049045474

Distance between the two points:

1.2394km

Which map is right?

Which map is correct?

Map Puzzle

-, Spatial Coordinate System

Two primary spatial coordinate system (SCS)

Units of SCS:

- Degree, minute, second
- Meter, Km

What is spatial coordinate system?

中华人民共和国政府关于钓鱼岛及其附属岛屿领海基线的声明

二0一二年九月十日

中华人民共和国政府根据一九九二年二月二十五日《中华人民共和国<u>领海</u>及毗连区 法》,宣布中华人民共和国钓鱼岛及其附属岛屿的领海基线。

一、钓鱼岛、黄尾屿、南小岛、北小岛、南屿、北屿、飞屿的领海基线为下列各相邻基点之间的直线连线:

1、钓鱼岛1 北纬25°44.1′ 东经123°27.5′

2、钓鱼岛2 北纬25°44.2′ 东经123°27.4′

3、钓鱼岛3 北纬25°44.4′ 东经123°27.4′

4、钓鱼岛4 北纬25°44.7′ 东经123°27.5′

5、海豚岛 北纬25°55.8′ 东经123°40.7′

6、下虎牙岛 北纬25°55.8′ 东经123°41.1′

How to determine latitude?

How to determine latitude?

How to determine longitude?

Why are there so many one-eye captains?

How to accurately determine longitude?

Harrison's Clock

www.alamy.com - F11TR9

The history of SCSs

- > China
 - ➤ 1954年北京坐标系 (Beijing1954)
 - ➤ 1980西安坐标系(Xian1980)
 - ➤ 2000国家大地坐标系(CGCS2000)
- ➤ U.S.
 - ➤ 1927年北美坐标系(NAD1927)
 - ➤ 1983年北美坐标系(NAD1983)
 - ➤ World Geodetic System 1984 (WGS-84)

Why do we need different SCSs?

1、对地球不断认识的过程

- Ellipsoid:参考椭球体,半长轴、半短轴、扁率
- Datum: 大地基准面,是利用特定椭球体对特定地区地球表面的逼近,因此每个 国家或地区均有各自的大地基准面
- Geoid:大地水准面,是指与平均海水面重合并延伸到大陆内部的水准面。是正高的基准面。在测量工作中,均以大地水准面为依据。

不同地区可选择不同Ellipsoid,以更好匹配当地地形

Ellipsoid Parameters

Spheroid	Semimajor axis (m)	Semiminor axis (m) 6356583.8 6356752.31414	
Clarke 1866 GRS80 1980	6378206.4		
	6378137		
WGS84 1984	6378137	6356752.31424518	

semi-major axis: a

semi-minor axis: b

Flattening:
$$f = \frac{a-b}{a}$$

Relationship between Ellipsoid and Datum

- 我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面
- 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面

Figure 21

大地坐标系根据其原点的位置不同,分为地心坐标系和参心坐标系

- 地心坐标系的原点与地球质心重合
- 参心坐标系的原点与某一地区或国家所采用的参考椭球中心重合,通常与地球质心 不重合(北京54、西安80)

Datum	Ellipsoid	Datum shift (m)*		
		(Dx,	Dy,	Dz)
Alaska (NAD-27)	Clarke 1866	-5	135	172
Bahamas (NAD-27)	Clarke 1866	-4	154	178
Bermuda 1957	Clarke 1866	-73	213	296
Central America (NAD-27)	Clarke 1866	0	125	194
Bellevue (IGN)	Hayford	-127	-769	472
Campolnchauspe	Hayford	-148	136	90
Hong Kong 1963	Hayford	-156	-271	-189
Iran	Hayford	-117	-132	-164

How to measure elevation?

珠穆朗玛峰:北纬27°59′14″东经86°55′26″

Google Earth: 8839m?

What is Geoid?

JUSTech | Environment of Science

Relationship between Geoid and Ellipsoid

