Tarea #8 Cálculo Multivariable

Entrega, jueves 05 de marzo

Nombre:_____ Carnet: _____

Tema:	1	2	3	4	5	Total
Puntos:	20	32	24	24	20	120
Nota:						

1. Encuentre dy/dx.

(a) (10 pts.)
$$y \tan^{-1}(x) = x \sin^{-1}(y) + x^2 y^2$$

(b) (10 pts.)
$$yx + x^3 \ln y = (x^2 + y^2)^2$$

2. Encuentre las derivadas parciales de z para las sigs. funciones implícitas.

(a)
$$(16 \text{ pts.}) \sin(xy) + \cos(yz) = \cot(zx)$$

(b) (16 pts.)
$$\sqrt{x^2y^2 + y^2z^2} = \frac{1}{x - 2y - 3z}$$

3. Encuentre la ecuación del plano tangente a la superficie dada en el punto especificado.

(a) (12 pts.)
$$z = \frac{2x+3}{4y+1}$$
, $(0,0,0)$

(b) (12 pts.)
$$z = \sec(xy^2)$$
, $\left(\frac{\pi}{3}, 1, 2\right)$

4. Encuentre la aproximación lineal L(x, y) de la función en el punto indicado.

(a) (12 pts.)
$$z = \frac{x}{x+y}$$
, (4,-2)

(b) (12 pts.)
$$z = e^{-xy} \sin(y)$$
, $\left(\frac{\pi}{2}, 0\right)$

5. Encuentre las ecuaciones paramétricas de las rectas tangente a la superficie z = f(x, y) en el punto indicado. L_1 es la tangente en la dirección de x y L_2 es la tangente en la dirección de y.

(a) (10 pts.)
$$z = \sqrt{x^2 + y^2}$$
, (3,4)

(b) (10 pts.)
$$z = 2\sin^2(3x - 2y) + 4\cos^2(x + y)$$
, $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$

Recuerde encontrar una función vectorial para encontrar la recta tangente a la superficie z = f(x, y).

Dirección-x	Dirección-y		
x = t	x = a		
y = b	y = t		
z = f(t, b)	z = f(a, t)		