

决策树

张雪雯

zhangxw53@mail2.sysu.edu.cn

实验课安排

周次	实验	拓展
1-2	实验1:数据处理与KNN	
3-4	实验2: 决策树	数据降维
5-6	实验3:逻辑回归与感知机算法	集成学习
7	实验4:无信息搜索与启发式搜索	
8-11	期中project	CNN
12-13	实验5: 博弈树搜索	RNN
14	实验6: 贝叶斯网络	
15-19	期末project	预训练模型基础

SUN X TISEN UNITE

批改报告

原理: 30

伪代码流程图: 20

关键代码截图: 10

实验结果分析: 30

思考题: 10

创新: +10

我们不会给出具体分数,只会给ABCD的等级,并在公布等级时指出哪个部分没写好。

每次的报告我们会评1~3份优秀报告,直接加实验课总评分1~2分

实验课分数组成: 签到10%, 报告50%, 期中pro15%, 期末pro25%

实验需注意的问题

- 1. 关于模型结果,可以调库来检查自己模型的正确与否。以及AI课只会教导模型原理,不回答代码问题。
- 2. 关于调库,原则上只能调涉及计算的库,例如numpy,pandas等,公式的实现需要自己完成。
- 3. 训练集验证集测试集划分、数据的过拟合和欠拟合(https://zhuanlan.zhihu.com/p/72038532)
- (https://zhuanlan.zhihu.com/p/72038532)
- 4. 数据集处理,词表太长可以怎么处理,stemming, stopwords, embedding等
- 5. 实验报告关键代码才截图
- 6. 测试集不需要交。之后只提供数据集,如何划分数据集以及验证效果同学们自己决定。
- 7. 只收代码,不要交类似环境数据一类的东西。
- 8. 除了project,不要在意指标。考查的是对模型的理解而不是指标,不要花时间在调参上!! 保证模型没出错的情况下也不要太纠结指标为什么这么差。
- 9. 提交压缩包,后序版本加v1, v2, 例如命名格式为"学号_姓名拼音_v1. zip"
- 10. 实验补交降级
- 11. 不要忘记验收!!

目录

- 简单回顾
- 建树步骤
- 特征选择
- 处理连续型特征
- 剪枝
- 思考题
- 实验要求

简单回顾

- 有监督 (supervised)
- 分类模型
- ID3, C4.5, CART
- 树形结构

建树步骤

- 1. 初始化: 创建根结点,它拥有全部数据集和全部特征。
- 选择特征:
 遍历当前结点的数据集和特征,根据某种原则,选择一个特征。
- 3. 划分数据: 根据这个特征的取值,将当前数据集划分为若干个子数据集。
- 4. 创建结点: 为每个子数据集创建一个子结点,并删去刚刚选中的特征。
- 5. 递归建树: 对每个子结点,回到第2步。直到达到边界条件,则回溯。
- 6. 完成建树: 叶子结点采用多数投票的方式判定自身的类别。

举例

	-			
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

首先创建根结点:

假设选定特征age。 该特征有三种取值: <=30,31-40,>40。 那么,为根结点添加三个子结点。

举例

age='<=30'

age	income	student	credit_rating	buy_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

age='31-40'

age	income	student	credit_rating	buy_computer
31-40	high	no	fair	yes
31-40	1ow	yes	excellent	yes
31-40	medium	no	excellent	yes
31-40	high	yes	fair	yes

• age='>40'

age	income	student	credit_rating	buy_computer
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

如左图所示,根据age特征的不同取值,将 数据集划分为三个子数据集。

如下图所示,每个子数据集分配给一个子结点。左结点和右结点都可以继续划分,而中间结点的数据标签全为`yes`,无需划分。

举例

income	student	credit_rating	buy_computer
high	no	fair	no
high	no	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	excellent	yes

- 现在对上一步中的左结点进一步划分。
- 该结点的数据,应当是上一步中,age特征<=30的那些数据,即如左图所示。注意age 特征已被删去。
- 假设从剩下的特征中,选中student特征来划分这些数据。它有yes和no两种取值,所以为左结点添加两个子结点。结果如右图所示。

建树步骤

- 1. 初始化: 创建根结点,它拥有全部数据集和全部特征。
- 选择特征:
 遍历当前结点的数据集和特征,根据某种原则,选择一个特征。
- 3. 划分数据: 根据这个特征的取值,将当前数据集划分为若干个子数据集。
- 4. 创建结点: 为每个子数据集创建一个子结点,并删去刚刚选中的特征。
- 5. 递归建树: 对每个子结点,回到第2步。直到达到边界条件,则回溯。
- 6. 完成建树: 叶子结点采用多数投票的方式判定自身的类别。

递归的边界条件

假设当前结点的数据集为D. 特征集为A

- 1. D中的样本属于同一类别C,则将当前结点标记为C类叶结点。
- 2. A为空集,或D中所有样本在A中所有特征上取值相同,此时无法划分。将 当前结点标记为叶结点,类别为**D中出现最多的类**。
- 3. D为空集,则将当前结点标记为叶结点,类别为父结点中出现最多的类。

特征选择

- 3种方法
- 使用信息增益: ID3
- 使用信息增益率: C4.5
- 使用GINI指数: CART

K L X ELSEN UNITED SEN UNITED SEN

ID3

- 决策策略: 信息增益(Information Gain)
- 步骤:
 - (1) 计算数据集D的经验熵 $H(D) = -\sum_{d \in D} p(d) \log p(d)$
 - (2) 计算特征A对数据集D的条件熵H(D|A) $H(D|A) = \sum_{a \in A} p(a)H(D|A = a)$
 - (3) 计算信息增益 g(D,A) = H(D) H(D|A)
 - (4) 选择信息增益最大的特征作为决策点

ID3举例

数据	长鼻子(x)	大耳朵(y)	是否大象(1 or 0)
A1	1	1	1
A2	0	1	0
A3	1	0	0
A4	0	0	0

1. 计算经验熵:

$$H(D)=-1/4*log(1/4) - 3/4*log(3/4)$$

2. 计算每个特征下的条件熵:

$$\begin{split} H(D|A="x")=&(2/4)*(-(1/2)*log(1/2)-(1/2)*log(1/2))\\ &+(2/4)*(0-(2/2)*log(2/2)))\\ H(D|A="y")=&(2/4)*(-(1/2)*log(1/2)-(1/2)*log(1/2))+(2/4)*0 \end{split}$$

3. 计算: 信息增益

$$g(D, A="x")=H(D)-H(D|A="x")$$

 $g(D, A="y")=H(D)-H(D|A="y")$

4. 选择信息增益最大的特征作为决策点

C4.5

- 决策策略: 信息增益率(Information Gain Ratio)
- 步骤:
 - (1) 计算特征A对数据集D的信息增益 g(D,A) = H(D) H(D|A)
 - (2) 计算数据集D关于特征A的值的熵SplitInfo(D,A) $SplitInfo(D,A) = -\sum_{i=1}^{v} \frac{|D_{i}|}{|D|} \times log(\frac{|D_{i}|}{|D|})$
 - (3) 计算信息增益率 gRatio(D, A) = (H(D) - H(D|A))/SplitInfo(D, A)
 - (4) 选择信息增益率最大的特征作为决策点

C4.5举例

数据	长鼻子(x)	大耳朵(y)	是否大象(1 or 0)
A1	1	1	1
A2	0	1	0
A3	1	0	0
A4	0	0	0

1. 计算在每个特征条件下的信息增益

$$g(D, A="x")=H(D)-H(D|A="x"); g(D, A="y")=H(D)-H(D|A="y")$$

2. 计算每个特征的熵

SplitInfo(D,A="x")=-
$$(2/4)*log(2/4)-(2/4)*log(2/4)$$

SplitInfo(D,A="y")=- $(2/4)*log(2/4)-(2/4)*log(2/4)$

3. 计算信息增益率

4. 选择信息增益率最大的特征作为决策点

CART

- 决策策略: GINI系数(Gini Index,值越小表示不确定性越小)
- 步骤:
 - (1) 计算特征A的条件下,数据集D的GINI系数

gini(D, A) =
$$\sum_{j=1}^{v} p(A_j) \times gini(D_j | A = A_j)$$

$$\not \sqsubseteq \psi : \qquad gini(D_j | A = A_j) = \sum_{i=1}^n p_i (1 - p_i) = 1 - \sum_{i=1}^n p_i^2$$

v表示属性A的取值个数,n表示类别个数

(2) 选择GINI系数最小的特征作为决策点

CART举例

数据	长鼻子(x)	大耳朵(y)	是否大象(1 or 0)
A1	1	1	1
A2	0	1	0
A3	1	0	0
A4	0	0	0

1. 计算在每个特征的条件下,数据集的GINI系数

2. 选择GINI系数最小的特征作为决策点

处理连续型特征

• 以上的例子中,遇到的都是离散型特征。

• 离散型特征: 取值可以看成一个有限集合, 比如 {yes, no} 或 {high, medium, low}。

连续型特征:取值可以看成一个区间,比如 [0,10]或 (-∞,+∞)。

• 问题: 连续型特征的取值理论上是无穷多的, 这样就要求无穷多个子结点, 如何处理?

处理连续型特征

- 方法: 把连续型特征当作离散型处理。
- 举例: 某一特征所有取值为 {0.15, 0.21, 0.32, 0.39, 0.53}。
- 这样的特征虽然是连续型的,但由于数据集有限,所以出现的取值也有限,所以可以当成离散型来处理。
- 用两个数的中位数来划分: 0.18, 0.265, 0.355, 0.46。
- 小于0.18则为0, 0.18-0.265则为1, 0.265-0.355则为2, 0.355-0.46则为3, 大于0.46则为4。
- 这样, 该特征的取值变为了 {0, 1, 2, 3, 4}。
- 该方法可以改进,比如只用0.15和0.53的中位数0.34来划分,则该特征只有两种取值: $\{ \le 0.34, > 0.34 \}$ 。这样树的分支会更少,树的结构会更简单。

剪枝

• 作用: 提升泛化性能

• 方法: 使用验证集

• 种类: 预剪枝 VS 后剪枝

• 网上有更多的剪枝方法,这里只讲最简单的两种,参考周志华《机器学习》

预剪枝

- 在决策树生成过程中进行。
- 对于当前的结点,判断是否应当继续划分。如果无需划分,则直接将当前结点设置为叶子结点。
- 如何判断:
 - 假设基于ID3,选择了某个特征进行划分。如果划分后,决策树在验证集上的准确率不提高,则无需划分。
 - 定义整体损失函数,衡量模型拟合程度与复杂度,如果剪枝后损失下降,则无需划分。

后剪枝

- 先生成完整的决策树,再自底向上地对非叶结点进行考察。
- 后序遍历,对于某个非叶结点,假如将它变成叶子结点,决策树在验证集上的准确率不降低,则将它变成叶子结点。

思考题

- 决策树有哪些避免过拟合的方法?
- C4.5相比于ID3的优点是什么, C4.5又可能有什么缺点?
- 如何用决策树来进行特征选择(判断特征的重要性)?

实验要求

- 实现ID3, C4.5, CART三种决策树, 只提交一份代码
- 不要求实现连续型数据的处理
- 不要求实现剪枝
- 本次数据为Car_train.csv每个文件有7列,前6列为特征(都为离散型),最后一列是标签(0 or 1)。
- 请自行分好训练验证集(在报告里说明怎么分的),评测指标为验证集上的准确率
- 提交格式: 学号_姓名拼音.zip
 - 学号_姓名拼音.pdf
 - /code
- DDL: 09-29号 23:00:00

课外拓展

- 随机森林
 - https://blog.csdn.net/zrjdds/article/details/50133843
 - https://zhuanlan.zhihu.com/p/28217071
- 提升树(AdaBoost Decision Tree)
 - https://blog.csdn.net/tianxiaguixin002/article/details/47701881
- GBDT (Gradient Boosting Decision Tree)
 - https://blog.csdn.net/w28971023/article/details/8240756