OBJECTIVE TYPE QUESTIONS

Choose the correct alternative:

1. The value of
$$\lim_{(x,y)\to(0,0)} (x+y) \sin \frac{1}{(x+y)}$$
, $x \neq 0$, $y \neq 0$ is

- (i) limit does not exist (ii) 0

Ans. (i)

2. The value of the
$$\lim_{(x, y) \to (0, 0)} \frac{x + \sqrt{y}}{\sqrt{(x^2 + y)}}, x \neq 0, y \neq 0$$
 is

- (i) limit does not exist (ii) 0
- (*iii*) 1
- (iv) -1(AMIETE, Dec. 2007) Ans. (iii)

- 3. The value of $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ is

- (iv) Does not exist

 $\lim_{(x,y)\to(0,0)}$

- (i) 0
- (ii) 1
- (iii) -1
- (iv) Does not exist
- Ans. (i)

- 5. The value of limit $\lim_{\substack{x \to 1 \\ y \to 1}} \frac{8x^2y}{x^2 + y^2 + 5}$ is

- (iv) None of these

- 6. The value of $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{4xy}{6x^2 + y^2}$ is
- (ii) $\frac{2}{3}$
- (iv) None of these

7. The value of
$$\lim_{\substack{y \to 0 \\ x \to 1}} \frac{2x^2 + y}{4x - y}$$
 is

(1)
$$\frac{3}{2}$$

(ii)
$$\frac{1}{2}$$

(iii) 1

Ans. (ii) (iv) None of these

8. The value of
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2x^2 + y}{4x^2 - y}$$
 is

(i)
$$-1$$

(ii)
$$\frac{1}{2}$$

(iii) 1

(iv) Limit does not exist Ans. (iv)

9. The value of
$$\lim_{\substack{y \to 0 \\ x \to 0}} \frac{2x^2 + y}{4x^2 - y}$$
 is

(i)
$$\frac{3}{4}$$

(ii)
$$\frac{2}{1}$$

(iii) $\frac{1}{2}$

(iv) None of these Ans. (iv)

10. If
$$u = x^2 + y^2$$
 then the value of $\frac{\partial^2 u}{\partial x \partial y}$ is equal to

$$(i)$$
 0

(iii)
$$2x + 2y$$

(iv)
$$y x^{i}$$
 (A.M.I.E.T.E. Dec. 2008) Ans. (i)

11. If
$$u = y^x$$
, then $\frac{\partial u}{\partial x}$ is

(i)
$$xy^{x-1}$$

(iii) $y^x \log y$ (iv) none of these Ans. (iii)

(iii) 0

(iv) 1

(A.M.I.E.T.E. Dec. 2008) Ans. (iv)

13. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then

(i)
$$\frac{\partial x}{\partial r} = \frac{\partial r}{\partial x}$$

(ii)
$$\frac{\partial x}{\partial \theta} = 0$$

(iii)
$$\frac{\partial x}{\partial r} = 0$$

(i)
$$\frac{\partial x}{\partial r} = \frac{\partial r}{\partial x}$$
 (ii) $\frac{\partial x}{\partial \theta} = 0$ (iii) $\frac{\partial x}{\partial r} = 0$ (iv) $\frac{\partial x}{\partial r} = \frac{1}{\partial r/\partial x}$

Ans. (i)

14. If
$$u = y^x$$
 then $\frac{\partial u}{\partial y}$ is

(i)
$$xy^{x-1}$$

(ii)
$$y^x \log y$$

(iv) none of these Ans. (i)

15. If
$$u = x^y$$
 then the value of $\frac{\partial u}{\partial y}$ is equal to

(ii)
$$x^y \log(x)$$
 (iii) xy^{x-1}

(iv)
$$yx^{y-1}$$

(A.M.I.E.T.E. Dec. 2007) Ans. (ii)

16. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\frac{\partial r}{\partial x}$ is equal to

Ans. (iii)

17. If
$$u = \tan^{-1} (x + y)$$
, then $(u_x - u_y)$ equals

$$(iv) \sin x \cos y$$

18. If
$$P = r \tan \theta$$
, then $\frac{\partial P}{\partial r}$ is equal to

(ii)
$$sec^2 \theta$$

(iii)
$$\tan \theta + r \sec^2 \theta$$
 (iv) $\frac{1}{2} \tan \theta$

Ans. (i)

19. If
$$Q = r \cot \theta$$
, then $\frac{\partial Q}{\partial r}$ is equal to

(i)
$$\cot \theta$$

$$(ii) - \csc^2$$

(ii)
$$-\csc^2\theta$$
 (iii) $\cot\theta - r\csc^2\theta$ (iv) $\frac{1}{2}\cot\theta$

(iv)
$$\frac{1}{2}\cot\theta$$

Ans. (1)

20. If
$$f(x, y, z) = 0$$
, then the value of $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ is:

$$(i)$$
 1

$$(ii)$$
 -1

Ans. (ii)

21. If
$$f(x, y) = 0$$
, then $\frac{dy}{dx}$ is equal to

(i)
$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$

(ii)
$$\frac{\partial f}{\partial y}$$

(1)
$$\frac{\frac{\partial f}{\partial x}}{\frac{\partial g}{\partial y}}$$
 (ii) $\frac{\frac{\partial f}{\partial y}}{\frac{\partial g}{\partial x}}$ (iii) $-\frac{\frac{\partial f}{\partial y}}{\frac{\partial g}{\partial x}}$ (iv) $-\frac{\frac{\partial f}{\partial x}}{\frac{\partial g}{\partial x}}$

$$(iv) - \frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

22. If
$$f(x, y, z) = \frac{x^2}{y^2} + \frac{y^2}{z^2} + \frac{z^2}{x^2}$$
, then $x f_x + y f_y + z f_z$ is

$$(i)$$
 0

$$(ii)$$
 -1

23. If
$$x = r \cos \theta$$
, $y = r \sin \theta$ then $\frac{\partial r}{\partial x}$ is equal to

(i)
$$\sec \theta$$

24. If
$$u = ax^2 + 2hxy + by^2$$
 then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is equal to

(i) $2u$ (ii) u

(iii) 0

(iv) None of these

25. If
$$P = s \tan \theta$$
, $q = s \cot \theta$, then

(a)
$$\frac{\partial P}{\partial S}$$
 is equal to

(i)
$$\tan \theta$$

(ii)
$$sec^2 \theta$$

(ii)
$$\sec^2 \theta$$
 (iii) $\tan \theta + s \sec^2 \theta$ (iv) $\frac{1}{2} \tan \theta$

(b)
$$\frac{\partial q}{\partial s}$$
 is equal to

(i)
$$\cot \theta$$

$$(ii) - \csc^2 \theta$$

(ii)
$$-\csc^2\theta$$
 (iii) $\cot\theta - s\csc^2\theta$ (iv) $\frac{1}{2}\cot\theta$

(c)
$$\frac{\partial s}{\partial p}$$
 is equal to

(i)
$$\cot \theta$$
 (ii) $\cos^2 \theta$ (iii) $\frac{1}{\tan \theta + s \sec^2 \theta}$ (iv) $\frac{1}{2} \cot \theta$ Ans. (iv)

(d)
$$\frac{\partial s}{\partial q}$$
 is equal to

$$(ii) - \sin^2 \theta$$

(i)
$$\tan \theta$$
 (ii) $-\sin^2 \theta$ (iii) $\frac{1}{\cot \theta + s \sec^2 \theta}$ (iv) $\frac{1}{2} \tan \theta$ Ans. (iv)

$$(iv) = \frac{1}{2} \tan \theta$$

26. If
$$u = f\left(\frac{x}{y}\right)$$
 then

(i)
$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = 0$$

$$(ii) \quad x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

(iii)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

$$(iv) \quad x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$

Ans. (ii)

(U.P. 1 Sem. Jan 2011)

27. If
$$u = x^3 e^{-\frac{x}{y}}$$
 then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ is equal to

$$(iv) -u$$

Ans. (ii)

28. If
$$f(x, y) = \begin{cases} \frac{x^2 + xy}{x + y} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$
 then $f_x(0, 0)$ equals

$$(i)$$
 -1

Ans. (iii)

29. If
$$z = F(x^l y^k)$$
 satisfies the equation $x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = 0$, then $\frac{l}{k}$ equals

$$(i)$$
 1

$$(iv)$$
 4

Ans. (ii)

30. If
$$Z = g(x^a y^b)$$
 satisfies the equation $2x \frac{\partial z}{\partial x} - 3y \frac{\partial z}{\partial y} = 0$ then $\frac{b}{a}$ satisfies

(i)
$$3b^2 = 4a^2$$
 (ii) $3a^2 = 4b^2$

(ii)
$$3a^2 = 4b^2$$

$$(iii) 4b^2 = 9a^2$$

$$(iv) 9b^2 = 4a^2$$

Ans. (iv)

31. If
$$z = f(x + ct) + g(x - ct)$$
, then

$$(i) \quad z_{tt} = z_{xx}$$

(ii)
$$z_i = 1$$

(iii)
$$z_{tt} = c^2 z_{xx}$$
 (iv) $z_{xx} = c^2 z_{tt}$

$$(iv) z_{xx} = c^2 z_{tt}$$

Ans. (iii)

32. If
$$u = x^2 - y^2$$
, $v = xy$ then $\frac{\partial x}{\partial u}$ equals

(i)
$$\frac{x}{2(x^2+y^2)}$$
 (ii) $\frac{y}{2(x^2+y^2)}$ (iii) $\frac{y}{x^2+y^2}$

(iii)
$$\frac{y}{x^2+y^2}$$

$$(iv) \frac{x}{x^2 + y^2}$$

Ans. (i)

33. If
$$z = f(x^j y^k)$$
 satisfies the equation $x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = 0$, then $\frac{j}{k}$ equals

Ans. (ii)

34. If
$$u = \sin^{-1} \left(\frac{x}{y} \right)$$
 then $\frac{\partial x}{\partial u}$ equals to

(i)
$$\frac{1}{\sqrt{y^2-x^2}}$$
 (ii) $\frac{1}{\sqrt{x^2-y^2}}$ (iii) $\sqrt{1-x^2}$ (iv) None of these

$$(ii) \ \frac{1}{\sqrt{x^2-y^2}}$$

(iii)
$$\sqrt{1-x^2}$$

35. If
$$u = \tan^{-1} \left(\frac{y}{x} \right)$$
 then $\left(\frac{\partial u}{\partial y} \right)$ equals to

(i)
$$\frac{x^2}{x^2-y^2}$$

$$(ii) \quad \frac{x}{x^2 + y^2}$$

(i)
$$\frac{x^2}{x^2 + y^2}$$
 (ii) $\frac{x}{x^2 + y^2}$ (iii) $\frac{y}{x^2 + y^2}$

36. If
$$u = \frac{1}{2} \log (x^2 + y^2)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

(iii)
$$x^2 + y^2$$

Ans. (iv)

(i)
$$2u$$
 (ii) u
37. If $x = r \cos \theta$, $y = r \sin \theta$, then

(1)
$$\left(\frac{\partial r}{\partial x}\right)_y = -\left(\frac{\partial x}{\partial r}\right)_\theta$$

(ii)
$$r\left(\frac{\partial x}{\partial r}\right)_{\theta} = -\left(\frac{\partial y}{\partial \theta}\right)_{r}$$

(iii)
$$\left(\frac{\partial x}{\partial \theta}\right)_r = r^2 \left(\frac{\partial \theta}{\partial x}\right)_y$$

(iv) None of these

Ans. (4

38. If
$$v = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, then $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} + z\frac{\partial v}{\partial z} =$

(i) $= v$ (ii) v (iii) $2v$

(iv) None of these Ans. ((R.G.P.V., Bhopal, Feb. 2005

39.
$$u = \frac{x}{x^2 + y^2}$$
 then $\frac{\partial u}{\partial y}$ is equal to

(i)
$$\frac{xy}{(x^2+y^2)^2}$$

(ii)
$$\frac{2xy}{(x^2+y^2)^2}$$

(iii)
$$\frac{-2xy}{(x^2+y^2)^2}$$

(i)
$$\frac{xy}{(x^2+y^2)^2}$$
 (ii) $\frac{2xy}{(x^2+y^2)^2}$ (iii) $\frac{-2xy}{(x^2+y^2)^2}$ (iv) $\frac{xy}{(x^2-y^2)^2}$

40. If
$$u = x^2 \tan^{-1} \left(\frac{y}{x} \right)$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at $x = y = 1$ is

(i)
$$\frac{\pi}{4}$$

(ii)
$$\frac{\pi}{2}$$

$$(iv)$$
 $-\frac{\pi}{4}$

41. If
$$u = \frac{x^2 + y^2 + xy}{x + y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals

(iv) 2u

42. If
$$z = \log [(x^3 + y^3)/(x + y)]$$
, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to

(iv) 0

Ans. (i)

43. If
$$z = \frac{x^3 + y^3}{xy}$$
, then the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ equals

(i) 1

(ii) 2z

(iii) $\frac{x^3+y^3}{x}$

(iv) None of these Ans. (iii)

44. Let
$$u(x, y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right), x \neq 0, y \neq 0$$
 then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ equals

(i) 0 (ii) 2u (iii) u (iv) 3u

45. If
$$u = \frac{x^2y^2}{x^2 + y^2} \log \frac{y}{x}$$
 and $v = \cos^{-1} \left(\frac{xy}{x^2 - y^2} \right)$ and $z = u + v$ then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ equals

(i) $4v$ (ii) $4u$ (iii) $2u$ (iv) $4u + v$ Ans. (iii)

46. If
$$u = \frac{x^3 + y^3}{x + y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

(iii) 2u

47. Euler's Theorem on Homogeneous function if z is a Homogeneous of x, y of order n, then:

(1)
$$u$$
 (iii) $2u$ (iv) $3u$ Ans.

(i)
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz$$

(ii)
$$x^2 \frac{\partial z}{\partial y} + y^2 \frac{\partial z}{\partial r} = nz$$

(iii)
$$x\frac{\partial z}{\partial y} + y\frac{\partial z}{\partial x} = nz$$

(iv)
$$y^2 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial y} = nz$$

48. If
$$u = \frac{x^{1/4} + y^{1/4}}{x^{1/5} + y^{1/5}}$$
, then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

(ii) 5u

(iii) 20u

(iv) $\frac{1}{20}u$

(R.G.P.V., Bhopal, 1st Semester, June 2007)

Fill in the blanks:

49. If
$$u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
 then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \dots$ Ans. 0

Ans.
$$\frac{\partial \theta}{\partial x} = -\frac{\sin^2 \theta}{y}$$
, $\frac{\partial \theta}{\partial y} = \frac{\cos^2 \theta}{x}$

51. If
$$z = x^3 \cos(y/x)$$
 then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to

Ans. 3z

Ans.
$$\frac{\partial u}{\partial x} = \frac{1}{2}$$
, $\frac{\partial v}{\partial y} = -\frac{1}{2}$

53. If
$$u = \log\left(\frac{x}{y}\right) + \tan\left(\frac{x}{y}\right)$$
 then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \dots$ Ans. 0

54. If
$$u = x^3 \cos\left(\frac{y}{x}\right)$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

55. State, whether the statement is

(i) If
$$u = \frac{x^2 + y^2}{x^2 - y^2} + 4$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 4$

(i) True

(ii) False

(iii) Could be either

(iv) Do not know.

(ii) If
$$u = \frac{x^3 - x^2y + xy^2 + y^3}{x^2 - xy - y^2}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$

(iii) Could be either (iv) Do not know.

(c) If
$$u = \log_e \frac{x^4 - y^4}{x^3 + y^3}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{4}{3}$

(i) True

(ii) False

(iii) Could be either (iv) Do not know.

(d) If
$$f(x, y) = \frac{1}{x^3} + \frac{1}{x^2y} + \frac{1}{x^3 + 5y^3}$$
, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + 3f = 0$

(i) True

(ii) False

(iii) Could be either (iv) Do not know.

Ans. (i)

that the plane ax + by + cz + d = 0 touches the surface $px^2 + qy^2 + 2z = 0$, if $\frac{a^2}{a^2} + \frac{b^2}{a^2} + 2 c d = 0$.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer :

1. If $f = x^2 + y^2$, x = r + 3s, y = 2r - s, then $\frac{\partial f}{\partial r}$ is

(i)
$$4x + 2y$$

(ii)
$$2x + y$$

(iii)
$$2x + 4y$$

(iv)
$$x + 4y$$
 Ans. (iii)

2. If f = x + 4y, x = 2s + t, y = s + 2t, then $\frac{\partial f}{\partial t}$ is

$$(iv) -7$$

3. If z = xy, $x = e^r \cos \theta$, $y = e^{\theta} \sin r$, then $\frac{\partial z}{\partial x}$ is

(i)
$$xy - x e^{\theta} \cos r$$

(iii) $xy + x e^{\theta} \sin r$

$$t + x e^{\theta} \sin x$$

(ii)
$$xy + x e^{\theta} \cos r$$

(iv) $xy + y e^{\theta} \cos r$

4. If $z = x^2 + y^2$ and x = r + t, $y = r^2 + t^2$, then $\frac{\partial z}{\partial t}$ is

(i)
$$x + 6yt$$

(ii)
$$2x + 2yt$$

(iii)
$$x + 4yt$$

(iv)
$$2x + 4yt$$
 Ans. (iv)

5. If z = x + y, $x = e^{r \cos \theta}$, $y = e^{r \sin \theta}$, then $\frac{\partial z}{\partial \theta}$ is

(i)
$$r (\cos \theta e^{r \cos \theta} - \sin \theta e^{r \sin \theta})$$

(i)
$$r (\cos \theta e^{r \cos \theta} - \sin \theta e^{r \sin \theta})$$

(ii)
$$r(\cos\theta e^{r\sin\theta} - \sin\theta e^{r\cos\theta})$$

(iii)
$$r e^r (\cos \theta - \sin \theta)$$
 (iv)

(ii)
$$r (\cos \theta e^{r \sin \theta} - \sin \theta e^{r \cos \theta})$$

(iv) $r (\cos \theta e^{r \sin \theta} + \sin \theta e^{r \cos \theta})$ Ans. (ii)

(i)
$$2xy\left(\frac{xs}{r}+y\log s\right)$$

(iii)
$$2xy\left(\frac{ys}{r} + x\log s\right)$$

(ii)
$$2 xy (ys + x \log s)$$

(iv)
$$2xy\left(\frac{ys}{r}-x\log s\right)$$

7. If z = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial z}{\partial r}$ is

(i)
$$\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$$

(iii)
$$\frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta$$

(ii)
$$\frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta$$

(iv)
$$\frac{\partial f}{\partial x}\sin\theta - \frac{\partial f}{\partial y}\cos\theta$$

8. If z = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{1}{r} \frac{\partial z}{\partial \theta} =$

(i)
$$\frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta$$

(iii)
$$\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$$

(ii)
$$-\frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta$$

(iv)
$$\frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta$$

9. If
$$z = f(x, y)$$
, $x = s + t$, $y = s - t$ then $\frac{\partial z}{\partial s}$ is equal to

(i)
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

(ii)
$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}$$

(iii)
$$\frac{\partial f}{\partial y} - \frac{\partial f}{\partial x}$$

(iv) None of these

10. If
$$z = x + y$$
, $x = 2t$, $y = t^2$ then $\frac{\partial z}{\partial t}$ is equal to

(i)
$$2 + 2t$$

(ii)
$$2-2t$$

(iii)
$$2t - 2$$

$$(iv) 2t + 5$$

Ans. (i)

11. If
$$z = x^2 + y^2$$
, $x = t^2$ and $y = t^3$ then $\frac{\partial z}{\partial t}$ is equal to

(i)
$$4t^3 - 6t^5$$

(ii)
$$4t^3 + 6t^5$$

(iii)
$$6t^3 - 4t^5$$

(iv)
$$6t - 5$$
 Ans. (fi)

12. If
$$z = 2x + 3y$$
, $x = \sin \theta$ and $y = \cos \theta$ then $\frac{\partial z}{\partial \theta}$ is equal to

(i)
$$2 \cos \theta + 3 \sin \theta$$

(iii) $2 \cos \theta - 3 \sin \theta$

(ii)
$$3 \sin \theta - 2 \cos \theta$$

(iv)
$$3\cos\theta + 2\sin\theta$$

Ans. (iii)

13. If
$$z = x^2 y^2$$
, $x = t$ and $y = 2 t$ then $\frac{\partial z}{\partial t}$ is equal to

(i)
$$2 xy (2x - y)$$

(ii)
$$xy(2x + y)$$

(iv)
$$2 xy (2x + y)$$

Ans. (iv)

(iii) 2 xy (x + 2y)14. If $z = x^3y^3$ then $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ is equal to

(ii)
$$6xy(x+y)$$

(iii)
$$6xy(x-y)$$

(iv)
$$xy(x^2 + y^2)$$
 Ans. (i)

15. If
$$z = \sqrt{xy}$$
 then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to

(ii)
$$\frac{1}{4z}$$

(iii)
$$\frac{z}{4}$$
 (iv) $\frac{4}{z}$

(iv)
$$\frac{4}{z}$$

Ans. (ii)

16. If
$$u = x^2 + y^2 + z^2$$
, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$ then $\frac{\partial u}{\partial r}$ is equal to

(i) r (ii) $2r$ (iii) r^2 (iv) $2r^2$ Ans. (iii)

$$(iv)$$
 $2r^2$

Ans. (ii)

17. If
$$y = e^x + \sin x$$
, then $\frac{d^2y}{dx^2}$ is equal to

(i)
$$e^x + \sin x$$

(ii)
$$e^x - \sin x$$

(iii)
$$e^x - \cos x$$

(iv) None of these Ans. (ii)

18. If
$$y = \tan x + \sec x$$
 then $\frac{d^2y}{dx^2}$ is equal to

(i)
$$\sec x (\tan^2 x + \sec^2 x)$$

(iii)
$$\sec x$$
 (2 $\sec x \tan x + \tan^2 x + \sec^2 x$)

(ii)
$$\sec x (\sec x \tan x + \tan^2 x \sec^2 x)$$

Ans. (iii)

19. If
$$f(x, y, z) = 0$$
, then $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ is equal to

20. If z = f(x, y) where $x = \phi(t)$, $y = \psi(t)$, then $\frac{dz}{dt}$ is equal to

(i)
$$\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

(ii)
$$\frac{\partial z}{\partial x} \frac{\partial x}{\partial t} - \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

(iii)
$$\frac{\partial z}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial z}{\partial y}$$

(iv)
$$\frac{dx}{dt} + \frac{\partial z}{\partial t} \frac{dx}{dt}$$

Ans. (i)

21. If f(x, y) = 0, then $\frac{dy}{dx}$ is equal to

$$(i) \quad \frac{\frac{\partial y}{\partial f}}{\frac{\partial x}{\partial f}}$$

$$(ii) \quad -\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$$

$$(iii) - \frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}$$

(i)
$$\frac{\partial y}{\partial f}$$
 (ii) $-\frac{\partial f}{\partial x}$ (iii) $-\frac{\partial f}{\partial x}$ (iii) $-\frac{\partial f}{\partial x}$ (iv) $\frac{\partial y}{\partial x} \cdot \frac{\partial f}{\partial y}$ Ans. (iii)

22. If f(x, y) = 0 and $\phi(y, z) = 0$, then $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{\partial z}{\partial x}$ is equal to

(i)
$$\frac{\partial x}{\partial y} \cdot \frac{\partial \phi}{\partial y}$$

(ii)
$$\frac{\partial f}{\partial x} \cdot \frac{\partial y}{\partial \phi}$$

(iii)
$$\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial x}$$

(ii)
$$\frac{\partial f}{\partial x} \cdot \frac{\partial y}{\partial \phi}$$
 (iii) $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial x}$ (iv) $\frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}$ Ans. (iv)

23. If f(x, y) = 0, then $\frac{d^2y}{dx^2}$ is equal to

(i)
$$-\frac{q^2r-2pqs+p^2t}{q^3}$$
 (ii) $\frac{q^2r-2pqs+p^2t}{q}$

$$(ii) \quad \frac{q^2 r - 2pqs + p^2 t}{q}$$

(iii)
$$\frac{q^2r - 2pqs - p^2t}{q^3}$$
 (iv) $\frac{q^2r - 2pqs + p^2t}{q^3}$

$$(iv) \quad \frac{q^2r - 2pqs + p^2t}{q^3}$$

Ans. (i)

24. The equation of the tangent plane to the surface $x^2 + y^2 + z^2 = 14$ at (1, 2, 3) is

(i)
$$2x + 4y + 6z = 14$$

(ii)
$$x + 2y + 3z = 0$$

$$(iii) x + 2y + 3z = 1$$

(iv)
$$x + 2y + 3z = 14$$

Ans. (iv)

25. The equation of the normal to the tangent plane $x^2 + y^2 + z^2 = 6$ at (-1, -2, -1) is

to the first transfer to the second of the s

(i)
$$\frac{x+1}{2} = \frac{y \div 2}{-4} = \frac{z+1}{-2}$$
 (ii) $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+1}{1}$

(ii)
$$\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+1}{1}$$

(iii)
$$\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+1}{-1}$$
 (iv) $\frac{x+1}{1} = \frac{y+2}{-2} = \frac{z+1}{1}$

(iv)
$$\frac{x+1}{1} = \frac{y+2}{-2} = \frac{z+1}{1}$$

Ans. (ii)

, laxiblans

3. If
$$\frac{\partial (u, v)}{\partial (x, y)} \times \frac{\partial (x, y)}{\partial (u, v)}$$
 is equal to

(ii) - 1

(iii) zero

(iv) none of these

Ans. (i)

4. If
$$x = r \cos \theta$$
, $y = r \sin \theta$ then $J\left(\frac{x,y}{r,\theta}\right) J\left(\frac{r,\theta}{x,y}\right)$ is equal to

(0.1

(ii) -1

(iii) 0

(iv) none of these

Ans. (i)

5. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\frac{\partial (r, \theta)}{\partial (x, y)}$ is equal to

(a) 1

(ii) r

(iii) $\frac{1}{z}$

(iv) 0

Ans. (iii)

6. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ then $\frac{\partial (x, y, z)}{\partial (r, \theta, z)}$ is equal to

(0 r

 $(ii) \frac{1}{r^2} \sin \theta$

(iv) none of these

Ans. (i)

7. Jacobian
$$\frac{(u,v)}{(r,s)}$$
 Jacobian $\frac{(r,s)}{(x,y)}$ =

Cylindrical coordinates are

(i) $x = r \sin \theta$, $y = r \cos \theta$, z = z

(ii) $x = r \cos \theta$, $y = r \sin \theta$, z = z

(iii) $x = r \cos \theta$, $y = r \sin \theta$, $z = r \sin \theta \cos \theta$

(iv) $x = r \cos \theta$, $y = r \sin \theta$, $z = \cos \theta$

Ans. (ii)

Spherical coordinates are

(i) $x = r \sin \theta$, $\cos \phi$, $y = r \cos \theta \sin \phi$, $z = r \sin \theta$

(ii) $x = r \cos \theta$, $y = r \sin \theta$, $z = r \cos \phi$

(iii) $x = r \cos \theta$, $\sin \phi$, $y = r \cos \theta$, $\cos \phi z = r \sin \theta$

(iv) $x = r \sin \theta$, $\cos \phi$, $y = r \sin \theta$, $\sin \theta z = r \cos \theta$

Ans. (ii)

10. If
$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then the value of the Jacobian $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} =$

(iii) $r^2 \sin \theta$

(iii) $r^2 \cos \theta$

(iv) r2 cos 6

Ans. (ii)

Fill in the blanks:

II. If $x = r \cos \theta$, $y = r \sin \theta$, then the value of the Jacobian $\frac{\partial (x, y)}{\partial (x, \theta)}$ is

Ans. r

12. If u = x(1-y), v = xy, then the value of the Jacobian $\frac{\partial (u, v)}{\partial (x, v)}$ is

Ans. x

13.
$$\frac{\partial (u,v)}{\partial (r,s)} \times \frac{\partial (r,s)}{\partial (x,y)} = \dots$$

Ans. $\frac{\partial (u, v)}{\partial (x, v)}$

14.
$$\frac{\partial(x,y)}{\partial(r,\theta)} \times \frac{\partial(r,\theta)}{\partial(x,y)} = \dots$$

Indicate True or False for the following:

tate True or False for the following:
15. If
$$u = 2axy$$
, $v = a(x^2 - y^2)$, where $x = r \cos \theta$, $y = r \sin \theta$ then Jacobian $\frac{\partial (x, y)}{\partial (r, \theta)}$ is $-4a^2r^3$.

Ans. True

16. If
$$x = \sqrt{vw}$$
, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and $u = r \sin \theta \cos \phi$, $v = r \sin \theta \sin \phi$, $w = r \cos \theta$ then the value

of the Jacobian
$$\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)}$$
 is $-\frac{1}{4}$.

Ans. Fals

17. If
$$u = x + y$$
, $y = uv$ then Jacobian $\frac{\partial (u, v)}{\partial (x, y)}$ is $(x + y)^{-1}$

Ans. True

18. If
$$u = \frac{x+y}{1-xy}$$
, $v = \tan^{-1} x + \tan^{-1} y$ then Jacobian $\frac{\partial (u, v)}{\partial (x, y)}$ is 0.

Ans. True

19. If x = u (1 - v), y = uv then the value of Jacobian $\frac{\partial (x, y)}{\partial (u, v)}$ is $\frac{1}{u}$

Ans. False

20. (i)
$$\frac{\partial (r, \theta, z)}{\partial (x, y, z)}$$

(a)
$$\frac{\partial (u,v)}{\partial (r,s)} \times \frac{\partial (r,s)}{\partial (x,y)}$$

(ii)
$$\frac{\partial (r, \theta, \phi)}{\partial (x, y, z)}$$

(iii)
$$\frac{\partial (u,v)}{\partial (x,y)}$$

(c)
$$\frac{1}{r^2 \sin \theta}$$

(iv)
$$\frac{\partial (u, v)}{\partial (x, y)} \times \frac{\partial (x, y)}{\partial (u, v)}$$

(d)
$$\frac{1}{r}$$

21. (i)
$$u = x^2$$
, $v = y^2$
(ii) $u = x + y$, $v = xy$

(a)
$$J(u, v) = x - y$$

(ii)
$$u = x + y$$
, $v = xy$

(b)
$$J(u, v) = -29$$

(iii)
$$u = x + y$$
, $v = \frac{y}{x + y}$

(c)
$$J(u,v)\frac{1}{x+y}$$

(iv)
$$u = 3x + 5y$$
, $v = 4x - 3y$

(d)
$$J(u, v) = 4xy$$

Ans. (i) \rightarrow (d) $(ii) \rightarrow (0)$ (iii) \rightarrow (c)

Ans. $(i) \rightarrow (d)$ $(ii) \rightarrow (c)$ $(iii) \rightarrow (a)$ $(iv) \rightarrow (b)$

$$(iv) \rightarrow (b)$$