

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-34. (canceled)

35. (currently amended) A method for the production of a biomolecular complex, said method comprising the steps of:

i) synthesis of synthesizing a molecular combination of a first functional element (FE₁) and a first binding element (BE₁), BE₁ comprising a nucleotide sequence that binds to a first target molecule or area (T₁), and forming a stock solution of the molecular combination FE₁-BE₁,

ii) synthesis of synthesizing a molecular combination of FE₁ and a second binding element (BE₂), BE₂ comprising a nucleotide sequence that binds to a second target molecule or area (T₂), and forming a stock solution of the molecular combination FE₁-BE₂,

iii) synthesis of synthesizing a molecular combination of a second functional element (FE₂) and BE₁, and forming a stock solution of the molecular combination FE₂-BE₁,

iv) synthesis of synthesizing a molecular combination of FE₂ and BE₂, and forming a stock solution of the molecular combination FE₂-BE₂,

v) synthesis of synthesizing a linker molecule (L) comprising T₁, T₂ and a nucleic acid connecting T₁ and T₂, L and having a pre-determined physical property, and

vi) reacting ~~the linker molecule L with the molecular combination of steps i) and iv), or the molecular combination of steps ii) and iii), with L~~ to obtain self-assembly of the molecular combinations ~~to the linker molecule L~~ in a desired configuration in solution, to produce said biomolecular complex comprising FE₁ and FE₂, wherein each of FE₁ and FE₂ is attached to one of BE₁ and BE₂, each of BE₁ and BE₂ is ~~attached bound~~ to one of T₁ and T₂, and T₁ and T₂ are connected to each other by L (FE₁/FE₂)-(BE₁/BE₂):T₁-L-T₂:(BE₁/BE₂)-(FE₁/FE₂) ~~(FE-BE-T₁-L-T₂-BE-FE)~~.

36. (currently amended) The method according to claim 35, further comprising synthesis of

synthesizing at least one second linker molecule (l) connecting FE₁ or FE₂ with BE₁ or BE₂ ~~that connects FE₁/FE₂ with BE₁/BE₂~~, and

reacting ~~the second linker molecule l in step vi)~~ to produce ~~the~~ a biomolecular complex wherein at least one of FE₁ ~~or~~ and FE₂ are attached to at least one of BE₁ ~~or~~ and BE₂ through the second linker molecule l (FE₁/FE₂)-l-(BE₁/BE₂) ~~(FE-l-BE)~~.

37. (**previously presented**) The method according to claim 36, wherein the second linker molecule 1 is a nucleic acid polymer having a pre-determined physical property.

38. (**currently amended**) The method according to claim 35, further comprising repeating steps i) - iv) for functional elements other than FE_1 and FE_2 , and binding elements other than BE_1 and BE_2 , and

forming a library of separate stock solutions of the molecular combinations of steps i) - iv), and wherein in step vi) L is reacted with the at least two of the molecular combinations from the library of stock solutions.

39. (**currently amended**) A method for the production of a biomolecular complex, said method comprising:

(a) providing separate solutions of different first functional elements (FE_1), each FE_1 adapted to specifically attach to a first binding element (BE_1), and BE_1 adapted to specifically attach to a first target molecule or area (T_1),

(b) providing separate solutions of different second functional elements (FE_2), each FE_2 adapted to specifically attach to a second binding element (BE_2), and BE_2 adapted to specifically attach to a second target molecule or area (T_2),

(c) providing separate solutions of said binding elements BE₁ and BE₂, each binding element comprising a nucleotide sequence,

(d) providing separate solutions of linker molecules (L), each linker molecule comprising a nucleic acid molecule having a distinct physical property,

(e) reacting FE₁ of step (a) with at least one of BE₁ and BE₂ of step (c) to form a first functional element/binding element combination FE₁-(BE₁/BE₂) ~~{FE₁-BE}~~,

(f) reacting FE₂ of step (b) with at least one of BE₁ and BE₂ of step (c), other than the binding element used in step (e), to form a second functional element/binding element combination FE₂-(BE₁/BE₂) ~~{FE₂-BE}~~,

(g) optionally, separately repeating steps (e) and (f) for each of said first functional elements and said second functional elements,

(h) reacting each linker molecule L from step (d) with T₁ and T₂, each of T₁ and T₂ comprising a target sequence capable of specific binding to BE₁ and BE₂ of steps (e) and (f),

(i) reacting FE₁-BE and FE₂-BE FE₁-(BE₁/BE₂) and FE₂-(BE₁/BE₂) of steps (e) and (f) with each linker molecule L reacted with T₁ and T₂ of step (h) to form a combination of functional elements attached to binding elements and target molecules ~~{FE₁-BE-T₁-L-T₂-BE-FE₂}~~ FE₁-(BE₁/BE₂):T₁-L-T₂:(BE₁/BE₂)-FE₂, and

(j) repeating steps (h) and (i) in order to form a library of combinations of functional elements attached to binding elements and target molecules {FE-BE-T-L-T-BE-FE}, to produce said biomolecular complex comprising FE₁ and FE₂, wherein:

FE₁ is specifically attached to a binding element, and the binding element is specifically attached to T₁,

FE₂ is specifically attached to a binding element, and the binding element is specifically attached to T₂, and

T₁ and T₂ are attached by at least one linker molecule (L).

40. (previously presented) The method according to claim 39, wherein L further comprises a marker or label chosen among a reporter gene, a radioactive label, and a fluorescent label.

41. (previously presented) The method according to claim 39, wherein at least one of BE₁ and BE₂ comprise peptide nucleic acids (PNA) sequences.

42. (previously presented) The method according to claim 39, wherein FE₁ and FE₂ are chosen among a natural or synthetic peptide, a lipid, a glycoprotein, a receptor ligand, and a fraction thereof, or any combination thereof.

43. (currently amended) The method according to claim 39, wherein in at least one of steps e) and f) at least one of FE_1 and FE_2 is attached to BE_1 or BE_2 through a second linker molecule (1) $(FE_1/FE_2)-l-(BE_1/BE_2)$.

44. (previously presented) The method according to claim 43, wherein the second linker molecule l is a nucleic acid polymer having a pre-determined physical property.