Class Notes for STT861

Kenyon Cavender

2019-09-06

1 Review

Definitions

 $\mathbf{S}(\neq \emptyset)$ is the sample space.

 $\mathscr{A}:\alpha$ - field on **S**

A set function $P: \mathcal{A} \mapsto \mathbb{R}$ is a probability if it satisfied

- i) $P(A) \ge 0 \ \forall A \in \mathscr{A}$
- ii) P(S) = 1
- iii) if $A_1, A_2, ... \in \mathscr{A}$ are pairwise disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\inf ty} P(A_i)$

Consequences

- a) $P(\emptyset) = 0$
- b) if A and B are pairwise disjoint, then $P(A \cup B) = P(A) + P(B)$ General Form: if A_1, \ldots, A_n are pairwise disjoint, then $P(\cup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$
- c) $P(A^c) = 1 P(A)$
- d) if $A \subset B$, then $P(A) \geq P(B)$ and $P(B \setminus A) = P(B) P(A)$
- e) $P(A) \ge 1, \forall A \subset (A)$

2 Class Notes

<u>Def.</u> A collection of sets $\{E_1, E_2, ...\}$ is called a **partition** of event A if:

- i) $E_i \cap E_j = \emptyset$, $\forall i \neq j \ (pairwise \ disjoint)$
- ii) $\bigcup_{i=1}^{\infty} E_i = A$ (Exhaustive)

Remark. Partition $\{E_1, ..., E_n\}$ is a finite partition

Remark. For S, $\{A, A^c\}$ is a partition

Remark. If $E_n: n \geq 1$ is a partition of A, then $P(A) = \sum_{i=1}^{\infty} P(E_i)$

More Consequences

- f) Suppose A and B are two events. Then $\{A \cap B, A^c \cap B\}$ is a partition of B. Also, $P(A^c \cap B) = P(B) P(A \cap B)$
- g) A and B are two events. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (This is the generalized version of b))
- h) if $\{C_1, C_2, ...\}$ is a partition of **S**, then $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$

<u>Def</u>. i) Boole's Inequality

$$P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)$$

$\frac{\textbf{Def. j) Bonferroni's Inequality}}{P(\cap_{i=1}^{\infty}A_i) \geq 1 - \sum_{i=1}^{\infty}P(A_i^c)}$

<u>**Def.**</u> A sequence of events $\{A_1, A_2...\}$ is **increasing to event** A if:

 $A_1 \subset A_2 \subset \dots$ and $A = \bigcup_{n=1}^{\infty} A_n$ Notation: $A_n \uparrow A$

<u>Def.</u> Similarly, $B_n \downarrow B$ if $B_1 \supset B_2 \supset ...$ and $B = \bigcap_{n=1}^{\infty} B_n$

k) If
$$A_n \uparrow A$$
, then $P(A) = \lim_{n \to \infty} P(A_n)$
l) If $B_n \downarrow B$ then $P(B) = \lim_{n \to \infty} P(B_n)$