Emotion AI: Predicting Humans Affectively

Zachary Villarreal

Motivation

Emotion Al: Emotion recognition technology.

- What it attempts: Detect emotion from multiple channels such as facial images or audio clips
- **Its Goal**: Develop machines that are capable of interpreting human affect, the same way we, as humans, do

Emotion AI: Applications

Medical Diagnosis: Help doctors detect diseases such as depression and dementia by voice analysis

Automotive: Detect whether drivers are tired or stressed based on facial expressions

Robotics: Use of emotional data to depict emotions on robots similar to how humans would.

Overview / Data

Goal: Be able to predict emotion from not only facial images but audio clips, as well, to create a more accurate representation of human emotion

Audio Data: 13,000 audio clips, 7 emotions over 2 sexes

- Crema-D: Crowd Sourced Emotional Multimodal Actors
 Dataset
- RAVDESS: Ryerson Audio-Visual Database of Emotional Speech and Song
- **SAVEE**: Surrey Audio-Visual Expressed Emotion
- **TESS**: Toronto emotional speech set

Image Data: 36,000 images, 7 emotions

- **FER2013**: Facial Expression Recognition Competition

Audio Pipeline

Audio Convolutional Neural Network

Purpose: To predict emotion and sex from audio files

Baseline: 7% Accuracy

Achieved Score: 67% Accuracy

4 Million Parameters 4 CNN layers 6 Dense layers 14 classifiers (emotions+sex)

Image Pipeline

Image Convolutional Neural Network

Purpose: To predict emotion and sex from image files

Baseline: 14% Accuracy

Achieved Score: 67% Accuracy

4 Million Parameters6 CNN layers3 dense layers7 classifiers (emotions)

Conclusion

Emotional AI:

- We can predict, with certain accuracy, emotion from both audio and images
- We now can see the importance that emotional AI has in our future

Takeaways:

We can't always detect emotion from just two sources, humans are
often far more complicated, but this project created a more accurate representation
of human emotion as a whole.

Future Work:

- Try to take in more audio files and facial images to create better models that can predict emotion more accurately

Application Overview

App Link: Click Here

Emotion Detection App

Drag and drop or click to select a file to upload.

Image File Detected!

Sex Detected

MALE

Image File

Emotion Detected

HAPPY

Audio File

Tech Stack

plotly

Thank you for listening!

LinkedIn: linkedin.com/in/zachary-p-villarreal/

GitHub: github.com/ZacharyVillarreal

Email: zvillarreal@ucdavis.edu

Phone: (818) 879-3377

Audio Pipeline

Audio Clip - (.wav format)

Image Pipeline

Image - (.jpg format)

OpenCV: Facial Recognition

Augmentation

2D Convolutional-NN

Predict Sex

Predict Emotion

Call to audio dir.

Output Audio Clip

Audio Neural Network Structure

4 Million Parameters
6 dense layers
14 classifiers (emotions+sex)

Layer (type)	Output	Chang	Param #
======================================		511ape	======================================
conv1d_16 (Conv1D)		49, 32)	128
batch_normalization_16 (Batc			128
max_pooling1d_16 (MaxPooling			0
conv1d_17 (Conv1D)	(None,	24, 64)	6208
batch_normalization_17 (Batc	(None,	24, 64)	256
max_pooling1d_17 (MaxPooling	(None,	12, 64)	0
conv1d_18 (Conv1D)	(None,	12, 128)	41088
batch_normalization_18 (Batc	(None,	12, 128)	512
max_pooling1d_18 (MaxPooling	(None,	6, 128)	0
conv1d_19 (Conv1D)	(None,	6, 256)	98560
batch_normalization_19 (Batc	(None,	6, 256)	1024
max_pooling1d_19 (MaxPooling	(None,	3, 256)	0
flatten_5 (Flatten)	(None,	768)	0
dense_13 (Dense)	(None,	512)	393728
activation_13 (Activation)	(None,	512)	0
dense_14 (Dense)	(None,	256)	131328
activation_14 (Activation)	(None,	256)	0
dropout_5 (Dropout)	(None,	256)	0
dense_15 (Dense)	(None,	14)	3598
activation_15 (Activation)	(None,	14)	0
Total params: 676,558 Trainable params: 675,598 Non-trainable params: 960			

Image Neural Network Structure

4 Million Parameters8 dense layers7 classifiers (emotions)

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	48, 48, 64)	640
conv2d_2 (Conv2D)	(None,	48, 48, 64)	36928
batch_normalization_1 (Batch	(None,	48, 48, 64)	256
max_pooling2d_1 (MaxPooling2	(None,	24, 24, 64)	0
conv2d_3 (Conv2D)	(None,	24, 24, 128)	204928
conv2d_4 (Conv2D)	(None,	24, 24, 128)	409728
batch_normalization_2 (Batch	(None,	24, 24, 128)	512
max_pooling2d_2 (MaxPooling2	(None,	12, 12, 128)	0
conv2d_5 (Conv2D)	(None,	12, 12, 256)	295168
conv2d_6 (Conv2D)	(None,	12, 12, 256)	590080
batch_normalization_3 (Batch	(None,	12, 12, 256)	1024
max_pooling2d_3 (MaxPooling2	(None,	6, 6, 256)	0
flatten_1 (Flatten)	(None,		0
dense_1 (Dense)	(None,	256)	2359552
activation_1 (Activation)	(None,	256)	0
dense_2 (Dense)	(None,	256)	65792
activation_2 (Activation)	(None,	256)	0
dropout_1 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	7)	1799
activation_3 (Activation)	(None,	7)	0
Total params: 3,966,407 Trainable params: 3,965,511 Non-trainable params: 896			

Application Overview

