Multidimensional dynamics of the cerebellar output neurons encoding saccadic eye movement

<u>Jisub Bae</u>¹, Zong-peng Sun², Peter Thier² & Sungho Hong^{1†}

¹Center for Cognition and Sociality, Institute for Basic Science, South Korea; ²Dept. of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; [†]sunghohong@ibs.re.kr

Introduction

Deep cerebellar nuclei (DCN)

- Final output region of the cerebellum (red) integrating the mossy fiber and Purkinje cell inputs (green),
- Fastigial nucleus (FN), a DCN region involved in eye movement, remains poorly understood due to difficulty of recording from this area.
- We analyzed the recordings from **FN neurons** (**FNN**; *n*=67) by Sun et al. [1] in rhesus monkeys performing saccadic eye movement tasks (see below).

Neural manifold (in the cerebellum)

- A small number of patterns (dimensions) explaining a large fraction of cell-to-cell variability in the neural population activity,
- Highly successful at explaining the population activity of various neurons in many brain regions, including **mossy fibers** and **Purkinje cells** in the cerebellum [2] (figures above: Purkinje cell case).
- What about FNNs, their common postsynaptic targets?

Results

On average, FNNs prominently burst like mossy fibers

FNN activity dimensionally reduces like Purkinje cells

Direction-independent latent dynamics underlies FNN manifolds

FNNs have intrinsic reference directions [3] controlling their spike latency coding of eye movement directions

Data-driven network models show that FNN population activity is dominantly influenced by the Purkinje cell manifold

Acknowledements

This work was supported by the Center for Cognition and Sociality (IBS-R001-D2), Institute for Basic Science, South Korea.

Institute for Basic Science, South Ko

References

- Sun et al. (2016) Eur J Neurosci 44, 2531-42.
 Markanday Hong et al. (2023) Nat Commun. 14, 2548.
- Markanday, Hong et al. (2023) Nat Commun 14, 2548.
 Fakharian et al. (2025) Science 388, 869-75.
- Fakharian et al. (2025) Science 388, 869-7
 Semedo et al. (2019) Neuron 102, 249-59.

