Tushar B Kute,

Assistant Professor, Sandip Institute of Technology and Research Centre, Nashik (INDIA)

tbkute@gmail.com

University of Pune T.E. I.T.

Subject code: 314441

OPERATING SYSTEM

Part 20: Paging and Segmentation

- Partition memory into small equal fixed-size chunks and divide each process into the same size chunks
- The chunks of a process are called pages
- The chunks of memory are called frames

- Operating system maintains a page table for each process
- Contains the frame location for each page in the process
- Memory address consist of a page number and offset within the page

Frame number	Main memory	
0	A.0	
1	A.1	
2	A.2	
3	A.3	
1 2 3 4 5 6 7 8 9	D.0	
5	$\frac{\text{D.0}}{\text{D.1}}$	
6		
7	D.2	
8	<u>C.0</u>	
	C.1	
10	C.2	
11	C.3	
12	D.3	
13		
14	D.4	

Page Table

0	0	
1	1	
2	2	
3	3	
Process A		
nage table		

^		
U		
1	_	
2	_	

Process B page table

0	7
1	8
2	9
3	10

Process C page table

0	4
1	5
2	6
3	- 11
4	12

Process D page table

13
14

Free frame list

Logical Addresses

Segmentation

- A program can be subdivided into segments
- Segments may vary in length
- There is a maximum segment length
- Addressing consist of two parts
- a segment number and
- an offset
- Segmentation is similar to dynamic partitioning

Segmentation

Reference Books

"Operating System: Internals and Design Principles" by William Stallings, Pearson Education.