Hillar-Nie 2006

Jasper Ty

What is this?

This are notes I took while reading "An elementary and constructive solution to Hilbert's 17th Problem for matrices" by Christopher J. Hillar and Jiawang Nie [HN06].

This was for the class "Positive Polynomials and Sums of Squares" I took Winter 2024.

Contents

I	Introduction	2
2	Review of real algebra	3

3 Proof of the theorem 6

Notation

Let $\mathbf{x} = (x_1, \dots, x_m)$ be a collection of indeterminates, and let $F[\mathbf{x}]$ and $F(\mathbf{x})$ denote the polynomial ring and the ring of rational functions with coefficients in the field F respectively.

For any subset S of a commutative ring R, let ΣS^2 denote the **sums of squares** of S, i.e

$$\Sigma S^2 := \left\{ \sum_{i=1}^k r_i^2 : r_1, \dots, r_k \in S \right\}.$$

Similarly, let R^2 denote the **squares** of R.

Let $R^{d\times d}$ denote the set of $d\times d$ matrices in the ring R. And, let $\operatorname{Sym}_d(R)$ denote the subset of $R^{d\times d}$ consisting of symmetric matrices.

If A is a matrix and $J \subseteq \{1, ..., n\}$, let A[J] denote the principal submatrix with indices picked out by *J*.

Introduction

We seek to exposit the proof given in [HNo6] of the following result:

Theorem 1 (Procesi-Schacher, Gondard-Ribenboim). Let $A \in \mathbb{R}^{d \times d}[\mathbf{x}]$ be symmetric. Let $A(\mathbf{x}_0)$ denote A with all entries evaluated at $\mathbf{x}_0 \in \mathbb{R}^d$. If $A(\mathbf{x}_0)$ is positive semidefinite for all choices of $\mathbf{x}_0 \in \mathbb{R}^m$, then A is a sum of squares of

This generalizes Artin's celebrated, classical result on nonnegative polynomials with real coefficients.

Theorem 2 (Artin's solution to Hilbert's 17th Problem). Let $f \in \mathbb{R}[\mathbf{x}]$. The following are equivalent:

- (i) $f(\mathbf{x}) \ge 0$ for all \mathbf{x} . (ii) $f \in \Sigma \mathbb{R}(\mathbf{x})^2$.

We will prove the more general statement, which proves Theorem I with the help of Theorem 2.

Theorem 3. Let F be a real field, and let $A \in \operatorname{Sym}_{A}(F)$ such that $\det A[J] \in \Sigma F^{2}$ for all $J \subseteq \{1, ..., n\}$. Then $A \in \Sigma [\operatorname{Sym}_d(F)]^2$.

Proof that Theorem 3 implies Theorem 1. Let $A \in \operatorname{Sym}_d(\mathbb{R}[\mathbf{x}])$.

We will first show that all principal minors of A are in fact non-negative polynomials. We note that for all matrices $\hat{H} \in \mathbb{R}[\mathbf{x}]^{d \times d}$, $(\det H)(\mathbf{x}_0) = \det(H(\mathbf{x}_0))$ and $H[J](\mathbf{x}_0) = H(\mathbf{x}_0)[J]$ for all $J \subseteq [n]$. In other words, taking determinants and taking submatrices commutes with evaluation. So, if $I \subseteq [n]$,

$$(\det A[J])(\mathbf{x}_0) = \det (A[J](\mathbf{x}_0)) = \det (A(\mathbf{x}_0)[J]) \ge 0,$$

for all $\mathbf{x}_0 \in \mathbb{R}^d$ supposing that $A(\mathbf{x}_0)$ is positive semidefinite for all $\mathbf{x}_0 \in \mathbb{R}^d$. Then we may apply Theorem 2 to det $A[J] \in \mathbb{R}[\mathbf{x}]$, to conclude that det $A[J] \in \Sigma \mathbb{R}(\mathbf{x})^2$.

Now, take A to live in $\operatorname{Sym}_d(\mathbb{R}(\mathbf{x}))$, where we are simply extending the inclusion of $\mathbb{R}[\mathbf{x}]$ into $\mathbb{R}(\mathbf{x})$, then we can apply Theorem 3, with $F = \mathbb{R}(\mathbf{x})$, to say that $A \in \Sigma[\operatorname{Sym}_d(\mathbb{R}(\mathbf{x}))]^2$.

2 Review of real algebra

We will recover basic results in the theory of real symmetric matrices in the more general context of real closed fields.

First, a small digression about ordering. The data involving the order in an ordered field can be encoded as a set that names all the positive elements.

Definition 4. Let P be a subset of F. We say that P is a **ordering** of F if

- (a) $P + P \subseteq P$
- (b) $P \cdot P \subset P$.
- (c) $F^2 \subseteq P$,
- (d) $-1 \notin P$, and
- (e) $P \cup -P = F$

If one has an ordered field F, then one has an ordering P by considering all the elements $p \in F$ such that $p \ge 0$. Conversely, if one has a field and an ordering P and a field F, one can make F an ordered field by putting $p \ge 0$ for all $p \in P$.

Now, we discuss real closed fields.

Definition 5. The first order language of ordered fields OrdField consists of well-formed sentences involving the usual logical symbols and connectives, as well as the non-logical symbols +, \cdot , 0, 1, $^{-1}$, \leq .

A **real closed field** is an ordered field for which a sentence ψ in OrdField is true if and only if it is true over \mathbb{R} .

This is not the usual definition of a real closed field. We will discuss a few important, equivalent definitions.

Theorem 6 (Artin-Schreier 1926). Let F be a field. The following are equivalent:

(i) $-1 \notin \Sigma F^2$, and $-1 \in \Sigma G^2$ for any nontrivial algebraic extension G of F.

(ii) F^2 is an ordering of F, and every odd degree polynomial with coefficients in F has a root in F.

(iii) $F \neq F[\sqrt{-1}]$, and $F[\sqrt{-1}]$ is algebraically closed.

Proof. See Theorem 1.2.9 in [N]

Theorem 7 (Tarski 19??). Let F be a field. The following are equivalent:

- (i) F is real closed. (ii) F satisfies any of the statements in Theorem 6.

Proof. We will define RCF to be the **theory of real closed fields**, to be the field axioms adjoined with (the correct encoding of) statement (ii) in Theorem 6.

One can prove quantifier elimination is possible in RCF, and moreover algorithmically possible, hence RCF is a decidable theory. Moreover, one can show that RCF can prove or disprove any quantifier free statement in OrdField, hence RCF is complete. Lastly, $\mathbb{R} \models \mathsf{RCF}$, so by basic model theory, if $R \models \mathsf{RCF}$, R and \mathbb{R} are elementarily equivalent, i.e, they agree on all sentences in OrdField.

With the logic out of the way, we can begin to glean some properties of real closed fields.

Proposition 8 (The ordering on RCFs). In a real closed field R, the set R^2 identifies all the positive elements.

Proof. Consider the OrdField sentences

$$\forall y (y^2 \ge 0)$$

and

$$\forall x \Big(x \ge 0 \iff \exists y (x = y^2) \Big),$$

which are evidently true in \mathbb{R} .

Proposition 9 (Characterizations of PSD matrices over an RCF). Let R be a realclosed field and let $A \in \operatorname{Sym}_d(R)$. The following are equivalent

(i) All the principal minors of A are nonnegative.

- (ii) $\mathbf{x}^T A \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^d$.
- (iii) A is diagonalizable with nonnegative eigenvalues.

Proof. If we fix d, we may completely encode the statement (i) \implies (ii) in OrdField, hence its truth in R coincides with its truth in R.

As an example, put d=2. Then our statement in the first order language of ordered fields is

$$\forall a, b, c, d$$

$$\left[\underbrace{\left(a \ge 0 \land d \ge 0 \land ad - bc \ge 0\right)}_{\text{nonnegative principal minors}} \implies \underbrace{\forall x, y \left(ax^2 + (b+c)xy + dy^2 \ge 0\right)}_{\text{positive-semidefiniteness}}\right].$$

Similarly, we may do (ii) \implies (iii).

The statement " $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is diagonalizable with nonnegative eigenvalues", in the d=2 case, is ¹

$$\exists e, f, g, h$$

$$\begin{bmatrix} eh - fg = 1 \land e^2b + efd - fea + f^2c = 0 \land g^2b + ghd - hga + h^2c = 0 \\ \land hea + hfc - geb - gfd \ge 0 \land egb + ehd - fga - fhc \ge 0 \end{bmatrix}$$

The point is, we can encode the whole theorem for a fixed d entirely as a sentence in OrdField. Then, we use the fact that the theorem is true for real symmetric matrices.

Next, we discuss weaker objects than real closed fields, which we will need.

Definition 10. A real field is a field F in which $-1 \notin \Sigma F^2$.

Proposition 11. All real fields F have at least one ordering \leq such that (F, \leq) is an ordered field. Moreover, when equipped with such an order, there exists an ordered field R such that R is real closed, R is algebraic extension of K, and the order on R extends the order on F. We call R a **real closure** of F.

Proof. Theorem 1.4.2 in
$$[N]$$
.

¹Trust me

3 Proof of the theorem

We will need the following lemma.

Lemma 12. Let F be a real field and suppose A satisfies the hypotheses of Theorem 3; $A \in \operatorname{Sym}_d(F)$ such that $\det A[J] \in \Sigma F^2$ for all $J \subseteq \{1, \dots, n\}$.

Then the minimal polynomial $m(t) \in F[t]$ of A is of the form:

$$m(t) = \sum_{i=0}^{k} (-1)^{k-i} a_i t^i = t^k - a_{k-1} t^{k-1} + \dots + (-1)^k a_0.$$

where $a_i \in \Sigma F^2$ for all *i*. Moreover, $a_1 \neq 0$.

Proof. This proof happens fairly quickly in [HNo6]. We will spend some more detail on this.

Step 1 Characterize sums of squares in terms of nonnegativity in real closures

Sums of squares play a special role in real fields *K*. We have that

$$\Sigma K^2 = \bigcap_{\substack{P \text{ is an} \\ \text{ordering of } K}} P. \qquad ([N] \text{ Theorem 1.1.16})$$

One can interpret this as saying that they are the elements that will *always* be positive regardless of the order one realizes on K. So, if $x \in \Sigma F^2$, that means that $x \ge 0$ in *any* ordering of F. In fact, if $x \ge 0$ in any real closure, then this means that $x \in \Sigma K^2$, as $x \ge 0$ in a real closure R means that $x \in P$ in some ordering P of F which R extends. We conclude:

If
$$x \ge 0$$
 in all real closures of F , then $x \in \Sigma F^2$, and conversely.

Then the path ahead is clear: we want to show that $a_i \ge 0$ in all real closures R of F.

Step 2 Show that A has nonnegative eigenvalues in every real closure

If R is a real closure of F, all the principal minors det A[J] of A are nonnegative in R, as, by the hypothesis, they are sums of squares in F, hence they are sums of squares in R, and the nonnegative elements of R are precisely the squares (Theorem 8), so det A[J] is a sum of nonnegative elements of R.

Then, we have the following:

In any real closure of F, all the principal minors of A are nonnegative.

Now, combined with 9, this statement reads

In any real closure of F, A is diagonalizable with nonnegative eigenvalues.

Step 3 Prove the LEMMA

Each a_i is a sum of products of eigenvalues of A. (Specifically, it is an elementary symmetric polynomial in the distinct eigenvalues of A, since A is diagonalizable).

Then a_i is nonnegative in every real closure R of A, as we have shown that its eigenvalues in R are nonnegative. But, as we have noted, this means that a_i is a sum of squares in F! This completes the proof of the first statement.

Finally, we complete the theorem by proving the second statement.

Since A is diagonalizable, m(t) has no repeated roots, hence 0 can only appear at most once. This means that there is exactly 1 term in a_1 , the k-1th elementary symmetric polynomial in the roots of m(t), that avoids this zero and is hence positive, hence $a_1 \neq 0$.

There is a formula in [H&J] that expresses the characteristic polynomial directly in terms of principal minors, and I'm sure it simplifies this proof, but I haven't had the time to try it.

We are now ready to prove the main theorem.

Proof of Theorem 3. Let F be a real field and let $A \in \operatorname{Sym}_d(F)$ be a matrix whose principal minors are all nonnegative.

Let $m(t) = t^k - a_{k-1}t^{k-1} + \dots + (-1)^k a_0$ be the minimal polynomial of A.

Then, by Cayley-Hamilton, m(A) = 0, so by splitting the even and odd degree terms.

$$(A^{k-1} + a_{k-2}A^{k-3} + \dots + a_1I)A = a_{m-1}A^{k-1} + a_{m-3}A^{m-3} + \dots + a_0I.$$

Now put $B = A^{k-1} + a_{k-2}A^{k-3} + \dots + a_1I \in \operatorname{Sym}_d(F)$. B is invertible, since $a_1 = 0$, hence it does not have 0 as an eigenvalue. Moreover, B's inverse is also symmetric, i.e $B^{-1} \in \operatorname{Sym}_d(F)$.

Then,
$$B^{-1} = B \cdot B^{-2} = B \cdot (B^{-1})^2$$
, so

$$A = B\left(a_{k-1}B^{-2}A^{k-1} + a_{k-3}B^{-2}A^{k-3} + \dots + a_0B^{-2}\right).$$

Everything "in sight" is a sum of squares.

- All coefficients $a_i \in F$ appearing are sums of squares; $a_i \in \Sigma F^2$.
- Each A^{k-2l} term is a square, as k is odd; $A^{k-2l} \in [\operatorname{Sym}_d(F)]^2$.
- B itself is a sum of squares, as $B=A^{k-1}+a_{k-2}A^{k-3}+\cdots+a_1I$, and k is odd; $B\in\Sigma\bigl[\operatorname{Sym}_d(F)\bigr]^2$
- And finally, $B^{-2} = (B^{-1})^2 \in [Sym_d(F)]^2$.

So, in all, $A \in \Sigma[\operatorname{Sym}_d(F)]^2$. The k even case is similarly argued. \Box

References

- [H&J] Roger Horn, Charles Johnson, Matrix Analysis.
- [N] Tim Netzer, Real Algebra and Geometry, Universität Innsbruck, https://www.uibk.ac.at/mathematik/algebra/media/teaching/ragen.pdf.
- [S] Markus Schweighofer, Real Algebraic Geometry, Positivity and Convexity, Universität Konstanz, https://cloud.uni-konstanz.de/index.php/s/3bcgdnT2eXR9EKF.

 Also available as arXiv: 2205.04211.
- [HN06] Christopher Hillar and Jiewang Nie, An elementary and constructive solution to Hilbert's 17th Problem for Matrices, Proc. Amer. Math. Soc. 136 (2008), 73-76.

https://doi.org/10.1090/S0002-9939-07-09068-5.

Also available as arXiv:math/0610388v3.