第4回 AI エッジコンテスト (実装コンテスト②)

TFlite delegate を用いた実装

山下 伸逸 ハードウェアエンジニア 主にアナログ回路設計

概要

- TensorFlow Lite の delegate 機構を用い、FPGA にアクセラレータを実装した
- 実装は、主に System Verilog を用いた RTL 記述で行った
- 推論ネットワークは deeplabv3 mobilenetv3 を用いた
- アプリケーションは TFlite の python インターフェースを用いて開発した

TensorFlow Lite は Google の提供する Mobile / Edge Device 用の軽量な推論プラットフォーム TensorFlow や Keras のネットワークから軽量な FlatBuffer 形式の graph に変換する converter と その graph で推論を実行する、各種 Mobile デバイスに対応した Interpreter が提供されている delegate 機構によって演算を外部アクセラレータに委譲することができる

推論ネットワーク 1

- ネットワーク
 - TensorFlow DeepLab Model Zoo mobilenetv3_small_cityscapes_trainfine 1025x2049 の入力画像サイズを 513x1025 に縮小 (メモリオーバーで学習できず)
- 19 class → 評価対象 4 + bg の 5 class で転移学習
 - クラス数を減らして推論実行速度を上げる
 - 信号、歩行者の精度が上がらないのでラベルの重みを調整した
- 転移学習後 quantization-aware training で 8bit 量子化
 - → TFlite FlatBuffer 形式の graph に変換
- 結果: mIOU = 0.51(float)、0.47(uint8) 基準満たせず

推論ネットワーク 2

mobilenetv3_small_cityscape 5 class 8bit 量子化ネット TFlite benchmark aarch64 cpu 実行結果

Number of nodes exe	cuted: 128	aarch64	
======== Summary by node type ==========			
[Node type]	[count]	[avg ms]	[avg %]
CONV 2D	45	285.908	45.176%
DEPTHWISE CONV 2D	11	159.624	25.222%
RESIZE BILINEAR	5	80.827	12.771%
ARG MAX	1	55.767	8.812%
MUL	20	20.289	3.206%
HARD SWISH	18	13.774	2.176%
MEAN	9	9.709	1.534%
ADD	17	6.371	1.007%
AVERAGE POOL 2D	1	0.589	0.093%
Misc Runtime Ops	1	0.019	0.003%
·	count=52	avg=632.942	, ,

Conv2D,dwConv2Dで 70.4%を占める → この2つの演算を FPGA に delegate する

システム構成

- TFlite Interpreter の delegate API を用いて FPGA に演算を渡す
 - Interpreter にインターフェース関数をリンクする
- delegate する演算種別 (Conv2D, depthwiseConv2D) を登録する
- Interpreter は FlatBuffer 形式の graph を実行し、登録した演算のみインターフェー ス関数に渡して実行を委譲
- インターフェース関数には Conv 演算パラメータと、input, filter, bias, output の 4 つの Tensor へのポインターが渡され、これを FPGA に渡して ハードウェアを kick し、演算終了を待つ
- データは CMA 領域を用いてやり取りする Linux の仮想記憶領域と CMA 領域の間で memcpy が発生する

ハードウエア構成 1

- Conv 演算(MAC)は、Np 個並列に実装、Conv2D/dwConv2D は共通回路
- input, output のデータアクセスには Np 個並列にキャッシュメモリを設けた
- filter, bias は Conv 演算で共通、それぞれ 1 個のバッファメモリを設けた

ハードウエア構成 2

- input は畳み込みのタップで大きくアドレスが飛ぶので、32ラインのキャッシュメモリ構造にした
 - movilenet-v3では5x5のconv演算がある
- 並列数 Np と cache メモリサイズは、RAM リソース、配線性、動作速度など様々なトレードオフになる

並列化のアドレス分割

- output Tensor の WxH を Np 分割した
- WxH < Np のときは並列実行数は WxH に制限される

システム開発手順

アプリケーション python interface

```
import tflite runtime interpreter as tflite
# Instantiate interpreter
interpreter = tflite.Interpreter(model path=model,
      experimental delegates=[tflite.load delegate('{path-to}/libmydelegate.so.1')])
                                  Interpreter にインターフェース関数 (共有ライブラリ)を指定するだけ
interpreter.allocate tensors()
# Get input and output tensors.
input details = interpreter.get_input_details()
output details = interpreter.get output details()
# set image
interpreter.set_tensor(input details[0]['index'], np.uint8(image))
# Invoke
interpreter.invoke()
# Output inference result
segments = interpreter.get tensor(output details[0]['index'])[0]
```

実行結果

まとめ

- TFlite の delegate 機構を用いた FPGA アクセラレータを開発し、 動作を確認することができた
- FPGA の実行時間の内、input cache のメモリアクセス待ち時間が 多くを占める
 - input data のアクセス効率を上げる工夫は有効である。画像アクセスの性質を利用し、プリフェッチするなどが考えられる
- 今回の方式は、TFlite 用に開発したネットワークを加工することなく そのまま実行することができる
 - 実装した Conv2D/dwConv2D の2つの演算のみ高速化される
- 演算の種類を増やすには、それぞれの演算に応じた回路を実装するか、より汎用性をもたせた演算回路を開発するか、回路規模と演算スピードのトレードオフになる

以上

Utilization

Np:32

clock: 150 MHz

input-cache: 512 B/line

Power

Np:32

clock: 150 MHz

input-cache:

512 B/line

Block Design に2つの RTL ブロックを読み込んで接続

