Regressão Linear

Prof. Dr. Leandro Balby Marinho

Aprendizagem de Máquina

Roteiro

1. Introdução

2. Regressão Linear Simple

3. Aprendizado de Parâmetros

Regressão

De atributos para previsão.

Regressão

De atributos para previsão.

Salário depois de formado

- ▶ De quanto será o seu salário depois de formado? (y = R\$)
- ► Depende de x = anos de estudo, desempenho geral, desempenho em disciplinas específicas, participação em projetos, fluência em inglês, ...

Previsão de preços de ações

Introdução

- ▶ Qual será o preço de determinada ação amanhã? (y).
- ▶ Depende de *x* = histórico de preço recente da ação, notícias recentes, commodities relacionadas,....

Popularidade de Tweet

- ▶ Quantas pessoas vão retuitar o meu tweet? (y).
- ▶ Depende de x = # seguidores, atributos do texto tuitado, popularidade da hashtag, # retweets passados,

Predição de Salário

Anos de Escolaridade	Salário Anual (em milhares de R\$)
8	26
8	21
10	26
11	36
÷.	i i

Dado que eu tenho x anos de escolaridade, qual será meu salário?

Componentes da Aprendizagem

- ► Entrada: x
- ► Saída: *y*
- ▶ Função alvo: $f: \mathcal{X} \to \mathcal{Y}$
- ▶ Dados de Treino: $\mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\}$
- ▶ Hipótese: $g: \mathcal{X} \rightarrow \mathcal{Y}$

Componentes da Aprendizagem [Yaser, 2012]

Modelo: Como assumimos que o mundo funciona

Modelo de Regressão: $y_i = f(x_i) + \epsilon_i$, tal que $E[\epsilon] = 0$

Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?

Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?

Tarefa 2: Dado f(x), como estimar $\hat{f}(x)$ dos dados?

Regressão Workflow

Roteiro

1. Introdução

2. Regressão Linear Simples

3. Aprendizado de Parâmetros

Regressão Linear Simples

Assume-se que a relação entre a variável de entrada e saída é **linear**:

$$f(x) = w_0 + w_1 x$$

onde w_0 e w_1 são chamados de parâmetros do modelo. Cada observação é então definida por

$$y_i = w_0 + w_1 x_i + \epsilon_i$$

Parâmetros do Modelo

 w_0 ... Coeficiente linear w_1 ... Coeficiente angular

$$w_0 = 0.5, w_1 = 0$$

$$w_0 = 0.5, w_1 = 1.5$$

Custo de uma única linha de regressão

Custo: Soma dos erros quadrados

$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Para diferentes escolhas de w_0 e w_1 tem-se diferentes RSS.

Modelo vs linha de regressão

- ▶ Modelo de regressão linear: $y_i = w_0 + w_1 + \epsilon_i$
- ▶ Parâmetros estimados: $\hat{w_0}$, $\hat{w_1}$

Usando o modelo aprendido

▶ Por exemplo, para x = 5:

$$\hat{y}=\hat{f}(5)=\hat{w}_0+5\hat{w}_1$$

- ► Assumindo por exemplo: $\hat{w_0} = 0, \hat{w_1} = 1.5$
- ▶ $\hat{y} = 7,5$

Interpretando a Linha de Regressão

- $\qquad \qquad \hat{y} = \hat{w}_0 + \hat{w_1}x$
- $ightharpoonup w_0 \dots$ valor de \hat{y} quando $\hat{w}_1 = 0$
- $w_1 \dots$ mudança prevista em \hat{y} por mudança de uma unidade em x.

Roteiro

1. Introdução

3. Aprendizado de Parâmetros

Regressão como um Problema de Otimização

- ▶ Ideia: Escolha w_0 , w_1 tal que $\hat{y} \approx y$ nos dados de treino.
- \triangleright Especificamente, escolha w_0 , w_1 tal que o RSS seja mínimo:

$$\underset{w_0,w_1}{\operatorname{argmin}} \operatorname{RSS}(w_0,w_1)$$

► Esse método também é chamado de mínimios quadrados ou Ordinary Least Squares (OLS)

Funções Côncavas e Convexas

Máximos e Mínimos em uma Dimensão

Qaul o valor de w que maximiza a função $g(w) = 5 - (w - 10)^2$?

Calcule a derivada e iguale a zero (por que?)

Achando Máximos e Mínimos de Forma Analítica

Considere $\mathcal{D}^{\mathsf{train}} = \{(1,1), (2,2), (3,3)\}$

Mantendo $w_0 = 0$ fixo.

Considere $\mathcal{D}^{\mathsf{train}} = \{(1,1), (2,2), (3,3)\}$

Mantendo $w_0 = 0$ fixo.

 $RSS(w_1=0)$

Considere $\mathcal{D}^{\text{train}} = \{(1,1), (2,2), (3,3)\}$

Mantendo $w_0 = 0$ fixo.

 $\mathsf{RSS}(w_1=0.5)$

Considere
$$\mathcal{D}^{\mathsf{train}} = \{(1,1), (2,2), (3,3)\}$$

Mantendo $w_0 = 0$ fixo.

 $RSS(w_1 = 1)$

Considere $\mathcal{D}^{\text{train}} = \{(1,1), (2,2), (3,3)\}$

Mantendo $w_0 = 0$ fixo.

Formato da Função de Erro

Considere $\mathcal{D}^{\mathsf{train}} = \{(1,1), (2,2), (3,3)\}$

Mantendo $w_0 = 0$ fixo.

Mínimo via Hill Descent

- ► Quando a derivada é positiva queremos diminuir w.
- ▶ Quando negativa queremos aumentar w.

Mínimo via Hill Descent

Hill-Descent

1 while not converged

$$w^{(t+1)} = w^{(t)} - \alpha \frac{d}{dw} g(w^{(t)})$$

Formato da Função de Erro em duas Dimensões

Derivadas Parciais

Para uma função multivariada, como $f(x, y) = x^2y$, calcular derivadas parciais se resume a:

$$\frac{\partial f}{\partial x} = \underbrace{\frac{\partial}{\partial x} x^2 y}_{\text{trate } y \text{ como constante}} = 2xy$$

$$\frac{\partial f}{\partial y} = \underbrace{\frac{\partial}{\partial y} x^2 y}_{\text{trate } x \text{ como constante}} = x^2 \cdot 1$$

Gradiente

O gradiente de uma função multivariada f(x, y, ...), denotada por ∇f , empacota todas suas derivadas parciais em um vetor:

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{pmatrix}$$

O gradiente aponta para a direção onde a função está mudando mais rapidamente.

Gradiente Descendente

Gradient-Descent

1 while not converged

2
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla g(\mathbf{w}^{(t)})$$

Note que agora \mathbf{w} e $\nabla g(\mathbf{w})$ são vetores.

Calculando o gradiente de RSS

Lembrando que:
$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Derivada em relação a w₀:

$$\frac{\partial}{\partial w_0} RSS(w_0, w_1) = \sum_{i=1}^N \frac{\partial}{\partial w_0} (y_i - [w_0 + w_1 x_i])^2$$
$$\frac{\partial}{\partial w_1} RSS(w_0, w_1) = \sum_{i=1}^N \frac{\partial}{\partial w_1} (y_i - [w_0 + w_1 x_i])^2$$

Note que a derivada da soma é a soma das derivadas.

Derivada em relação a w₀:

Lembrando que: RSS $(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$

$$\frac{\partial}{\partial w_0} RSS(w_0, w_1) = \sum_{i=1}^{N} 2(y_i - [w_0 + w_1 x_i])(-1)$$
$$= -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])$$

Derivada em relação a w₁

Lembrando que: RSS $(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$

$$\frac{\partial}{\partial w_1} RSS(w_0, w_1) = \sum_{i=1}^{N} 2(y_i - [w_0 + w_1 x_i])(-x_i)$$
$$= -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])x_i$$

Gradiente de RSS

$$\nabla \mathsf{RSS}(w_0, w_1) = \begin{pmatrix} -2\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i]) \\ -2\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])x_i \end{pmatrix}$$

Estimativa dos Coeficientes

Podemos achar os parâmetros ótimos de forma fechada, igualando suas derivadas a 0.

$$\hat{w}_0 = \bar{y} - \hat{w}_1 \bar{x}$$

$$\hat{w}_1 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

Também chamadas de equações normais.

Prova para w₀

$$\frac{\partial}{\partial w_0} RSS(w_0, w_1) = -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i]) = 0$$

$$Nw_0 = \sum_{i=1}^{N} y_i - w_1 \sum_{i=1}^{N} x_i$$

$$w_0 = \frac{1}{N} \sum_{i=1}^{N} y_i - \frac{w_1}{N} \sum_{i=1}^{N} x_i$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

Algoritmo Regressão Simples

```
RegSimples(\mathcal{D}^{train})
 1 tmp_{y} = 0
 2 \text{ tmp}_{v} = 0
 3 for i = 1 to N
            tmp_{\downarrow} = tmp_{\downarrow} + x_i
            tmp_v = tmp_v + y_i
 6 \bar{x} = \text{tmp}_{\star}/N
 7 \quad \bar{y} = \text{tmp}_{v}/N
 8 a = 0
 9 b = 0
10 for i = 1 to n
11
            a = a + (x_i - \bar{x})(y_i - \bar{y}_i)
            b = b + (x_i - \bar{x})^2
13 w_1 = a/b
14 w_0 = \bar{y} - w_1 \bar{x}
15
      return (w_0, w_1)
```

Gradiente Descendente

- \triangleright Comece com algum valor para w_0, w_1 .
- \blacktriangleright Atualize w_0, w_1 iterativamente, **reduzindo** RSS(w_0, w_1), até atingir o mínimo.
- ▶ Ideia: Atualize w_0, w_1 proporcionalmente as derivadas parciais (gradiente) da função de erro em relação a $w_0, w_1.$

Algoritmo Gradiente Descendente

```
GradientDescent(\alpha, \epsilon)
     initialize w_0, w_1
     while ||\nabla RSS(w_0, w_1)|| \ge \epsilon
           tmp_0 = w_0 + 2\alpha \sum_{\substack{i=1\\N}}^{N} (y_i - [w_0 + w_1 x_i])
3
            tmp_1 = w_1 + 2\alpha \sum_{i=1}^{n} (y_i - [w_0 + w_1 x_i])(x_i)
            w_0 = tmp_0
            w_1 = \mathsf{tmp}_1
     return (w_0, w_1)
```

Convergência e tamanho da taxa de aprendizagem

- ► Taxas grandes podem grandes ultrapassar o alvo repetidamente.
- ► Taxas pequenas podem deixar a aprendizagem muito lenta.
- Normalmente o valor ideal é achado via validação cruzada (mais adiante no curso).
- Uma alternativa é diminuir a taxa com o aumento de interações:

$$\alpha^{(t)} = \frac{\alpha}{t}$$
 ou $\frac{\alpha}{\sqrt{t}}$

Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail. Learning from Data, AMLBook, 2012.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www. coursera.org/specializations/machine-learning. Último acesso: 31/08/2017.