PROBLEM SET - 2

1) Solve the following initial value problems for t > 0 using Laplace transform method:

a)
$$\frac{d^2y}{dt^2} + y = 1$$
; $y(0) = y'(0) = 0$

b)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} = (1 - H(t - 1)); \quad y(0) = 1, y'(0) = -1$$

c)
$$\frac{d^2y}{dt^2} + y = f(t)$$
; $y(0) = y'(0) = 0$; where $f(t) = \begin{cases} \cos t, & 0 \le t \le \pi \\ 0, & t > \pi \end{cases}$

2) Solve the following boundary value problems using Laplace transform methods:

a)
$$\frac{d^2y}{dt^2} + y = \sin t$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = \pi$,

b)
$$\frac{d^2y}{dt^2} + 9\lambda = t$$
, $y(0) = 1$, $y'\left(\frac{\pi}{3}\right) = -1$

3) Solve the following differential equations using Laplace transform method:

a)
$$t\frac{d^2y}{dt^2} - \frac{dy}{dt} = -1$$
; $y(0) = 0$

b)
$$t\frac{d^2y}{dt^2} + (t+1)\frac{dy}{dt} + 2y = e^{-t}; y(0) = 0$$

4) Solve the following integral equations using Laplace transform method:

a)
$$y(t) = \sin t + 2 \int_{0}^{t} y(u) \cos(t - u) du$$

b)
$$\frac{dy(t)}{dt} + 3y(t) + 2\int_{0}^{t} y(u) du = t; y(0) = 1$$