Calculus and Analytical Geometry

Lecture no. 18

Amina Komal

May 2022

Topic: The indefinite integral of exponential functions, logarithmic, and trigonometric functions

- Formulas
- Examples
- Practice questions

DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$1. \ \frac{d}{dx}[x] = 1$	$\int dx = x + C$
$2. \frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r (r \neq -1)$	$\int x^{r} dx = \frac{x^{r+1}}{r+1} + C (r \neq -1)$
$3. \ \frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$4. \ \frac{d}{dx}[-\cos x] = \sin x$	$\int \sin x dx = -\cos x + C$
$5. \frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$6. \ \frac{d}{dx}[-\cot x] = \csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
8. $\frac{d}{dx}[-\csc x] = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$9. \ \frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$
10. $\frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x (0 < b, b \neq 1)$	$\int b^{x} dx = \frac{b^{x}}{\ln b} + C (0 < b, \ b \neq 1)$
11. $\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$	$\int_{-1}^{2} \frac{1}{1+x^2} dx = \tan^{-1} x + C$
13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1 + x^2}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C$
14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

Some more formulas of integration:

$$\int \frac{du}{a^2 + u^2} = \frac{1}{2} tan^{-1} \frac{u}{a} + C$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = sin^{-1} \frac{u}{a} + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} sec^{-1} \left| \frac{u}{a} \right| + C$$

Examples:

1. Evaluate the integral $\int \left[\frac{2}{x} + 3e^x \right] dx$

$$\int \left[\frac{2}{x} + e^x\right] dx = \int \frac{2}{x} dx + 3 \int e^x dx$$
$$= 2 \ln x + 3 e^x + C$$

2. Evaluate the integral $\int [csc^2 t - sec t tan t]dt$

$$\int [csc^2 t - \sec t \tan t]dt = \int csc^2 t dt - \int \sec t \tan t dt$$
$$= -\cot t - \sec t + C$$

3. Evaluate $\int (x^2 + 1)^{50} \cdot 2x \, dx$ Let $x^2 + 1 = u$, du = 2x

$$\int u^{50} du = \frac{u^{50+1}}{50+1} + C$$
$$= \frac{u^{51}}{51} + C$$
$$= \frac{(x^2+1)^{51}}{51} + C$$

4. Evaluate $\int \cos 5x \ dx$

Let u = 5x, du = 5 dx

$$dx = \frac{1}{5}du$$

$$\int \cos 5x \ dx = \int \cos u \cdot \frac{1}{5}du$$

$$= \frac{1}{5}\int \cos u \ du$$

$$= \frac{1}{5}\sin u + C = \frac{1}{5}\sin 5x + C$$

5. Evaluate $\int \sin^2 x \cos x \, dx$

Let
$$\sin x = u$$
, $\frac{du}{dx} = \cos x$

$$du = \cos x \, dx$$

$$\int \sin^2 x \cos x \, dx = \int u^2 du$$

$$= \frac{u^3}{3} + C$$

$$= \frac{\sin^3 x}{3} + C$$

6. Evaluate $\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$

Let
$$u = e^x$$
, $du = e^x dx$

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \int \frac{du}{\sqrt{1 - u^2}}$$
$$= \sin^{-1}u + C$$
$$= \sin^{-1}(e^x) + C$$

7. Evaluate $\int \frac{\cos x}{\sin^2 x} dx$

$$\int \frac{\cos x}{\sin^2 x} dx = \int \frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} dx$$
$$= \int \cot x \cdot \csc x dx$$
$$= -\csc x + C$$

8. Evaluate $\int x\sqrt{x^2-1} dx$

Let
$$f(x) = x^2 - 1$$
, $\frac{dy}{dx} = 2x$

$$dy = 2x dx$$

$$\int x\sqrt{x^2 - 1} dx = \int \sqrt{x^2 - 1} \cdot x dx$$

$$= \frac{1}{2} \int \sqrt{x^2 - 1} \cdot 2x dx = \frac{1}{2} \int \sqrt{y} dy$$

$$= \frac{1}{2} \left[\frac{y^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right] + C = \frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right] + C = \frac{1}{2} \left(\frac{2}{3} \right) y^{\frac{3}{2}} + C$$
$$= \frac{1}{3} (x^2 - 1)^{\frac{3}{2}} + C$$

9. Evaluate
$$\int \frac{4}{x\sqrt{x^2-1}} + \frac{1+x+x^3}{1+x^2} dx$$

As,

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a}sec^{-1} \left| \frac{u}{a} \right| + C$$

Here, u = x, a = 1

$$\int \frac{4}{x\sqrt{x^2 - 1}} dx = 4sec^{-1} \left| \frac{x}{1} \right| + C = 4sec^{-1}|x| + C$$

$$\int \frac{1 + x + x^3}{1 + x^2} dx = \int \left(x + \frac{1}{1 + x^2} \right) dx$$

$$= \int x dx + \int \frac{1}{1 + x^2} dx$$

$$= \frac{1}{2}x^2 + tan^{-1}x + C$$

$$\int \frac{4}{x\sqrt{x^2 - 1}} + \frac{1 + x + x^3}{1 + x^2} dx = 4sec^{-1}|x| + \frac{1}{2}x^2 + tan^{-1}x + C$$

10. Evaluate $\int \sec x (\sec x + \tan x) dx$

$$\int \sec x (\sec x + \tan x) dx = \int (\sec^2 x + \sec x \tan x) dx$$
$$= \tan x + \sec x + C$$

11. Evaluate $\int \frac{dx}{x\sqrt{1-(\ln x)^2}}$

Let $\ln x = u$, $\frac{1}{x} dx = du$

$$\int \frac{dx}{x\sqrt{1 - (\ln x)^2}} = \int \frac{du}{\sqrt{1 - (u)^2}}$$
$$= \sin^{-1}(u) + C$$
$$= \sin^{-1}(\ln x) + C$$

Practice Questions:

Evaluate the following integrals

$$\bullet \int \frac{e^{\sqrt{2t+1}}}{\sqrt{2t+1}} dy$$

•
$$\int \cot x \csc^2 x \, dx$$

•
$$\int (1+\sin t)^9 \cot t \, dt$$

$$\bullet \quad \int \left[\frac{1}{2\sqrt{1-x^2}} - \frac{3}{1+x^2} \right] dx$$

•
$$\int e^{\sin x + \cos x} dx$$

$$\bullet \quad \int \frac{1-\sin x}{1-\sin^2 x} \ dx$$

$$\bullet \int \frac{\sec x + \cos x}{2\cos x}$$

•
$$\int [1 + \sin^2\theta \csc\theta] d\theta$$

•
$$\int [3\sin x - 2\sin^2 x] dx$$

•
$$\int \left(\frac{1}{x} + sec^2\pi x\right) dx$$