Package 'geohabnet'

July 6, 2023
Title Analysis of cropland connectivity
Version 0.1.0
Description c("Geographical spatial analysis of cropland connectivity. Allows users to visualize risk index plots for a given set of crops. Xing et al. (2021) https://doi.org/10.1093/biosci/biaa067 >. Package currently support crops sourced from monfreda and spam. The analysis produces 3 maps, mean, variance and difference for the risk index.
License file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports colorspace (>= 2.1.0),
mockthat (>= 0.2.8), rmarkdown,
testthat (>= 3.1.7)
<pre>URL https://github.com/GarrettLab/CroplandConnectivity</pre>
<pre>BugReports https://github.com/GarrettLab/CroplandConnectivity/issues</pre>
R topics documented:
calculate_ccri

2 calculate_ccri

ccri_powerlaw)
ccri_variance	6
get_cropharvest_raster	6
get_cropharvest_raster_sum	7
get_crop_raster_fromtif	7
get_geographic_scales	8
get_parameters	8
get_param_metrics	9
get_rasters	9
get_supported_sources	10
global_analysis	10
initialize_cropland_data	11
load_parameters	11
model_powerlaw	12
sa_onrasters	13
sensitivity_analysis_on_cropland_threshold	14
sensitivity_analysis_on_geoextent_scale	15
sensitivity_analysis_on_link_weight	16
senstivity_analysis	17
set_parameters	17
set_parameters_object	18
sonn	19
sp_rast	20
supported_metrics	21

calculate_ccri

Calculate Cropland Connectivity Risk Index (CCRI)

Description

This function calculates CCRI for given parameters using power law and negative exponential. It's required to call initialize_cropland_data() before calling this function.

Usage

```
calculate_ccri(
  link_threshold = 0,
  power_law_metrics =
    the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw,
  negative_exponential_metrics =
    the$parameters_config$`CCRI parameters`$NetworkMetrics$NegativeExponential,
  crop_cells_above_threshold,
  thresholded_crop_values
)
```

```
crop_cells_above_threshold

A list of crop cells above threshold
thresholded_crop_values

A list of crop values above threshold
```

Details

Network metrics should be passed as a list of vectors e.g. list(metrics = c("betweeness"), weights = c(100)). Default values are fetched from parameters.yaml and arguments uses the same structure.

Value

A list of calculated CCRI values

See Also

```
get_param_metrics(), sensitivity_analysis_on_geoextent_scale()
```

```
calculate_difference_map
```

Calculate difference map This function produces a map of difference in rank of cropland harvested area fraction

Description

Calculate difference map This function produces a map of difference in rank of cropland harvested area fraction

Usage

```
calculate_difference_map(
   mean_index_raster_diff,
   cropharvest_aggtm_crop,
   cropharvest_agglm_crop,
   zero_extent_raster,
   map_grey_background_ext,
   resolution = the$parameters_config$`CCRI parameters`$Resolution
)
```

4 ccri_negative_exp

```
calculate_zero_raster Calculate raster objects for given extent and resolution This function returns a list of zero raster and map grey background extent
```

Description

Calculate raster objects for given extent and resolution This function returns a list of zero raster and map grey background extent

Usage

```
calculate_zero_raster(
  geoscale,
  mean_index_raster,
  resolution = the$parameters_config$`CCRI parameters`$Resolution
)
```

Arguments

Value

A list of zero raster and map grey background extent

```
ccri_negative_exp Calculate negative exponential
```

Description

Calculate negative exponential

```
ccri_negative_exp(
  dispersal_parameter_gamma_vals,
  link_threshold = 0,
  metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw,
  crop_cells_above_threshold = NULL,
  thresholded_crop_values = NULL
)
```

ccri_powerlaw 5

Arguments

Value

A list of calculated negative exponential

ccri_powerlaw

Calculate inverse power law

Description

Calculate inverse power law

Usage

```
ccri_powerlaw(
  dispersal_parameter_beta_vals,
  link_threshold = 0,
  metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw,
  crop_cells_above_threshold = NULL,
  thresholded_crop_values = NULL
)
```

Arguments

Details

Network metrics should be passed as a list of vectors e.g. list(metrics = c("betweeness")), weights = c(100)). Default values are fetched from parameters.yaml and arguments uses the same structure.

Value

A list of calculated inverse power law

ccri_variance

Calculate variance of CCRI This function produces a map of variance of CCRI based on inpt parameters

Description

Calculate variance of CCRI This function produces a map of variance of CCRI based on inpt parameters

Usage

```
ccri_variance(
  indexes,
  variance_mean_index_raster,
  zero_extent_raster,
  map_grey_background_ext,
  resolution = the$parameters_config$`CCRI parameters`$Resolution
)
```

Arguments

```
get_cropharvest_raster

Get raste
```

Get raster object for crop

Description

Get cropland information in a form of raster object from data source for crop

Usage

```
get_cropharvest_raster(crop_name, data_source)
```

Arguments

crop_name Name of the crop

data_source Data source for cropland information

```
get_cropharvest_raster_sum
```

Value

Raster object

Examples

```
get_cropharvest_raster("avocado", "monfreda")
```

```
get_cropharvest_raster_sum
```

Get sum of rasters for individual crops

Description

Takes crop names and returns raster object which is sum of raster of individual crops. Currently, only supports crops listed in geodata::monfredaCrops(), geodata::spamCrops() If crop is present in multiple sources, then their mean is calculated.

Usage

```
get_cropharvest_raster_sum(crop_names)
```

Arguments

crop_names

A named list of source along with crop names

Value

Raster object which is sum of all the individual crop rasters

Examples

```
## Not run:
get_cropharvest_raster_sum(list(monfreda = c("wheat", "barley"), spam = c("wheat", "potato")))
## End(Not run)
```

```
{\tt get\_crop\_raster\_fromtif}
```

Get raster object from tif file

Description

This is a wrapper of raster::raster() and generates a raster object if provided with a TIF file.

Usage

```
get_crop_raster_fromtif(path_to_tif)
```

```
path_to_tif TIF file
```

8 get_parameters

Value

Raster object

Examples

```
## Not run:
# Generate raster for usage
fp <- .get_helper_filepath("avocado")</pre>
get_crop_raster_fromtif(fp)
get_crop_raster_fromtif("avocado_HarvestedAreaFraction.tif")
## End(Not run)
```

get_geographic_scales Get geographical scales from the paramters This function returns a list of geographical scales set global and custom extent in parameters.yaml

Description

Get geographical scales from the paramters This function returns a list of geographical scales set global and custom extent in parameters.yaml

Usage

```
get_geographic_scales()
```

Value

A list of geographical scales

get_parameters

Get Parameters

Description

Retrieves the parameters and copies the parameter file to the specified output path.

Usage

```
get_parameters(iwindow = FALSE, out_path = getwd())
```

Arguments

iwindow Logical. If TRUE, prompts the user to select the output directory using a file

chooser window.

Character. The output path where the parameter file will be copied. out_path

Value

Character. The path to the copied parameter file.

get_param_metrics 9

get_param_metrics

Get metrics from parameters

Description

Get metrics and parameters stored in parameters.yaml.

Usage

```
get_param_metrics(params = load_parameters())
```

Arguments

params

R object of load_parameters(). Default is load_parameters().

Value

List of metrics - parameters and values. See usage.

Examples

```
# Get metrics from parameters
get_param_metrics()
get_param_metrics(load_parameters())
```

get_rasters

Get rasters object from parameters

Description

Takes named list of hosts as an input. See host object in get_parameters() or load_parameters(). Function creates 2 raster object - one is a sum of all the crops specified under sources and other using the provided raster file. See get_crop_raster_fromtif()

Usage

```
get_rasters(hosts)
```

Arguments

hosts

List of hosts and values. It is synonym to Hosts object in parameters

Value

List of rasters

See Also

```
load\_parameters(), get\_parameters(), get\_crop\_raster\_fromtif(), get\_cropharvest\_raster()
```

10 global_analysis

Examples

Description

Get supported sources of crops When provided, get_cropharvest_raster() will look for cropland data in this specific source.

Usage

```
get_supported_sources()
```

Value

return vector of supported sources. Also used as a lookup to find get raster object.

Examples

```
# Get currently supported sources
get_supported_sources()
```

global_analysis

Global cropland density map Only when user has enabled global analysis

Description

Global cropland density map Only when user has enabled global analysis

Usage

```
global_analysis(
  map_grey_background_extent,
  resolution = the$parameters_config$`CCRI parameters`$Resolution
)
```

```
map_grey_background_extent
A raster object for map's grey background
resolution resolution to plot raster and map
```

```
initialize_cropland_data
```

intialize cropland data with geiven paramters, it will be later used to calculate CCRI and other functions

Description

intialize cropland data with geiven paramters, it will be later used to calculate CCRI and other functions

Usage

```
initialize_cropland_data(
  cropharvest_raster,
  resolution = 12,
  geo_scale,
  host_density_threshold = 0,
  agg_method = "sum"
)
```

Arguments

```
cropharvest_raster
```

A raster object for cropland harvest

resolution resolution to plot raster and map (default: 12)

geo_scale A list of longitude and latitude values for cropland analysis

host_density_threshold

A threshold value for cropland density (default: 0)

agg_method A method to aggregate cropland raster (default: "sum")

Details

This function also creates global variables which are result of applying aggregate functions into raster. Theese global variables are used when applying allgorithms - iplccri_powerlaw() and neccri_negative_exp().

load_parameters

Load Parameters from YAML File

Description

This function loads parameters from a YAML file and stores them in an object.

```
load_parameters(filepath = .get_helper_filepath(.kparameters_file_type))
```

12 model_powerlaw

Arguments

filepath

Path to the YAML file containing the parameters. By default, it takes the value of ".kparameters_file_type" which is set to "parameters.yaml".

Value

object with parameters and values

Examples

```
# Load parameters from default file
load_parameters()
```

model_powerlaw

Calculate risk index using inbuilt models.

Description

- model_powerlaw() calculates risk index using power law.
- model_neg_exp() calculates risk index using negative exponential.

```
model_powerlaw(
  beta,
  link_threshold,
  distance_matrix = the$distance_matrix,
  thresholded_crop_values,
  adj_mat = NULL,
  crop_raster,
  crop_cells_above_threshold,
 metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw
model_neg_exp(
  gamma_val,
  link_threshold,
  distance_matrix = the$distance_matrix,
  thresholded_crop_values,
  adj_mat = NULL,
  crop_raster,
  crop_cells_above_threshold,
 metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw
)
```

sa_onrasters 13

Arguments

beta A list of beta values. DispersalParameterBeta in parameters.yaml.

link_threshold A threshold value for link.

distance_matrix

distance matrix, generated during initialize_cropland_data().

thresholded_crop_values

crop values above threshold.

adj_mat Adjacency matrix(optional) representing un-directed graph network. If this is provided, then gamma_val, distance_matrix, link_threshold and thresholded_crop_values are ignored.

 ${\tt crop_raster} \qquad A \ raster \ object \ for \ cropland \ harvest.$

crop_cells_above_threshold

crop cells above threshold. Only contains cells and not the the values.

metrics A list 2 vectors - metrics and weights.

gamma_val A list of beta values. DispersalParameterGamma in parameters.yaml.

Details

Network metrics should be passed as a list of vectors e.g. list(metrics = c("betweeness"), weights = c(100)). Default values are fetched from parameters.yaml and arguments uses the same structure.

Value

risk index

sa_onrasters

Run analysis

Description

Run analysis

```
sa_onrasters(
  cropharvest_raster,
  geo_scales,
  link_thresholds,
  host_density_thresholds,
  aggregate_methods = c("sum", "mean"),
  resolution
)
```

Arguments

```
cropharvest_raster
Raster object which will be used in analysis.

geo_scales
List of geographical scales to be used in analysis. The rasters will be cropped to provided geographical scale. Independent analysis is run on each sale.

link_thresholds
A list of threshold values for link

host_density_thresholds
A list of host density threshold values

aggregate_methods
A list of aggregation methods

resolution
resolution to plot raster and map
```

Value

A list of calculated CCRI values using negative exponential

See Also

Use get_rasters() to obtain raster object.

```
sensitivity_analysis_on_cropland_threshold
```

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

Description

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

```
sensitivity_analysis_on_cropland_threshold(
  link_thresholds,
  host_density_thresholds,
  geo_scale,
  aggregate_methods = c("sum", "mean"),
  cropharvest_raster,
  resolution
)
```

Arguments

```
A list of threshold values for link
host_density_thresholds
A list of host density threshold values
geo_scale longitude and latitude values for cropland analysis
aggregate_methods
A list of aggregation methods
cropharvest_raster
A raster object for cropland harvest
resolution resolution to plot raster and map
```

Value

A list of calculated CCRI values using negative exponential

```
sensitivity_analysis_on_geoextent_scale
```

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

Description

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

Usage

```
sensitivity_analysis_on_geoextent_scale(
  link_threshold = 0,
  geo_scale,
  aggregate_methods = c("sum", "mean"),
  cropharvest_raster,
  host_density_threshold = 0,
  resolution = 24
)
```

```
link_threshold A threshold value for link

geo_scale A list of longitude and latitude values for cropland analysis
aggregate_methods

A list of aggregation methods. It can be sum or mean.

cropharvest_raster

A raster object for cropland harvest
host_density_threshold

A host density threshold value

resolution resolution to plot raster and map
```

Value

A list of calculated CCRI values using negative exponential

```
sensitivity_analysis_on_link_weight
```

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

Description

Calculate sensitivity analysis on cropland harvested area fraction This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. It can be used as entry point for sensitivity analysis.

Usage

```
sensitivity_analysis_on_link_weight(
  link_threshold = 0,
  host_density_thresholds,
  geo_scale,
  aggregate_methods,
  cropharvest_raster,
  resolution
)
```

Arguments

Value

A list of calculated CCRI values using negative exponential

senstivity_analysis 17

senstivity_analysis Calculate sensitivity analysis on parameters

Description

This function runs sensitivity analysis on parameters based on provided parameters through set_parameters(). It can be used as entry point for sensitivity analysis. Plots results of sensitivity analysis.

Usage

```
senstivity_analysis()
```

Examples

```
## Not run:
# Run analysis on specified parameters.yaml
senstivity_analysis()
## End(Not run)
```

set_parameters

Set Parameters

Description

This function allows you to set the parameters by replacing the existing parameters file with a new one. Use get_parameters() to modify the parameter values.

Usage

```
set_parameters(new_parameters_file, iwindow = FALSE)
```

Arguments

new_parameters_file

The path to the new parameters file.

iwindow

Logical indicating whether to prompt the user to select the new parameters file using a file selection window. Defaults to FALSE.

Value

None

```
set_parameters_object Set Parameters function
```

Description

This function allows you to override existing parameters with new values.

Usage

```
set_parameters_object(
 dispersal_parameter_beta = c(0.5, 1, 1.5),
 dispersal_parameter_gamma = c(0.05, 1, 0.2, 0.3),
  aggregation_strategy = c("sum", "mean"),
 hosts = c("avocado"),
 host_density_threshold = c(0.0015, 0.002, 0.0025),
 link_{threshold} = c(0, 1e-06, 6e-04),
 resolution = 24,
  global_analysis = FALSE,
 west_extent = c(-24, -180, -58, 60),
  east_extent = c(-140, -34, --58, 60),
 custom_{extent} = list(c(-115, -75, -5, 32)),
 metrics_inv_powerlaw = c("betweeness", "node_strength", "sum_of_nearest_neighbors",
    "eigenvector_centrality"),
 metrics_neg_exponential = c("betweeness", "node_strength", "sum_of_nearest_neighbors",
    "eigenvector_centrality")
```

```
dispersal_parameter_beta
                 Numeric vector of dispersal parameter beta values
dispersal_parameter_gamma
                 Numeric vector of dispersal parameter gamma values
aggregation_strategy
                 Character vector of aggregation strategies
                 Character vector of hosts
hosts
host_density_threshold
                 Numeric vector of host density threshold values
link_threshold Numeric vector of link threshold values
resolution
                 Numeric vector of resolution values
global_analysis
                 Logical vector of global analysis values
                 Numeric vector of west extent values
west_extent
                 Numeric vector of east extent values
east_extent
                 List of custom extent values
custom_extent
metrics_inv_powerlaw
                 Character vector of inv_powerlaw metrics
metrics_neg_exponential
                 Character vector of neg_exponential metrics
```

sonn 19

Value

TRUE if the parameters were set successfully, FALSE otherwise

See Also

```
load_parameters() set_parameters()
```

Examples

```
## Not run:
# Set parameters
set_parameters_object()
# Set parameters with custom beta values
set_parameters_object(dispersal_parameter_beta = c(0.5, 1, 1.5))
## End(Not run)
```

sonn

Calculation on network matrix. These are basically an abstraction of functions under the igraph package.

Description

The functions included in this abstraction are:

- sonn(): Calculates the sum of nearest neighbors.
- node_strength(): Calculates the sum of edge weights of adjacent nodes.
- betweeness(): Calculates the vertex and edge betweenness based on the number of geodesics.
- ev(): Calculates the eigenvector centralities of positions within the network.
- closeness(): measures how many steps is required to access every other vertex from a given vertex.
- degree(): number of adjacent edges
- page_rank(): page rank score for vertices

```
sonn(crop_dm, we)
node_strength(crop_dm, we)
betweeness(crop_dm, we)
ev(crop_dm, we)
degree(crop_dm, we)
closeness(crop_dm, we)
page_rank(crop_dm, we)
```

sp_rast

Arguments

crop_dm Distance matrix. In the internal workflow, the distance matrix comes from

initialize_cropland_data() and risk functions.

we Weight in percentage.

Value

Matrix with the mean value based on the assigned weight.

sp_rast

get raster for specified crop from spam dataset.

Description

get raster for specified crop from spam dataset.

Usage

```
sp_rast(crp)
```

Arguments

crp

name of a crop. Case-insensitive.

Details

```
See geodata::spamCrops() for supported crops.
```

Value

spatRaster

References

www.mapspam.com/data International Food Policy Research Institute, 2020. Spatially-Disaggregated Crop Production Statistics Data in Africa South of the Sahara for 2017. https://doi.org/10.7910/DVN/FSSKBW, Harvard Dataverse, V2

Examples

```
## Not run:
sp_rast("rice")
## End(Not run)
```

supported_metrics 21

supported_metrics

Returns metrics currently supported in the analysis.

Description

Returns metrics currently supported in the analysis.

Usage

```
supported_metrics()
```

Value

vector of supported metrics.

Examples

```
supported_metrics()
```