Joint Distribution of Discrete Random Variables (DRV)

Det Given n DRVs, X=(I, I, ... II)

Their joint part (jpart) 12

given by

Pr (x, x, ..., x, 1=P(I, x, I, x, ... In x,))

Example - n=2 X, X Px(x,y) . P(xex, Xey) (1)

Con recover in dividual distribution (or distribution of a Jub collection)

Using Total Probabilist Formula

Det (Marginalisation) case ne 2

(Note: Pg(x) = P(Z=x)

Con Marsinalier out en subsollanton & summing - For example it no 4

Ps, x, x, 1 e \(\frac{1}{2} \) \(\frac{1

Expretation Given

Z= [X, X..., X,] end

I. 3(Z' Z" " Z")

Then

E[3] = \(\int \alpha \a

= [x] P3,8 (x4) + [y [3,8 (x4)]

= E(Z)+'E(Z)' (II)

=> E[8+8] = E[8] + E[8] ' (1)

This easily generalises:

(X) E[X'+2" · +2"]: ÇE[X?] (13)

Note - We already home E[CE] = ce(8)

S E[.] " C "Liver Transformation"

*1 E[5] : [5] (14)

(171)

What about the Variance of a sum?
Ly 2. 8.5

Na 131 = E[(5-14)] = E[3,] - mg 112

Non W; = (W2+W3/ (9)

E(5,) = E(A+2),]

· [[X,+ 583 + 3,]

* E[2,] + s E[23] + E[2,]

=>

$$-(N_{s}^{2} + sN^{2}N^{2} \cdot N_{s}^{2})$$

$$= E(E_{s}/1+rE(E_{s})) + E(E_{s})$$

$$(18)$$

$$\wedge out_{s}/1 = E(f_{s}/1-N_{s}^{2})$$

Eleas = members (mem)

Then

Val+1: Val III + Var [2] (82)

Mecessaril 20 11 -

Def Coverience of E. T.

Cov (X, Y) = E[(X-N2)(Y-N2)]

(53)

Properties of Cov(.,.) (1) Cov (B' Z) = E(ZZ) - WZ WZ MC3 / Cov(XX)= Cov(XX) MC31 Cov 11 Bilinger Cov (48+69, 21: a Cov (5, 21+6 (av (5, 2) Cov (E, a Y+63) = a Cov (E, y)+6 Cov (E, d)

(4.) Cov(X, XI = Var(X)

(5) Var(X+XI = Var(XI+ Var(X)

+ 2 Cov(X, X)

(6) Cov(X+a, X) = Cov(X, X)

Data Coverience Metrix Given Belg, E. . . En] detine Z'e Ruxn Z' = Cov(X; X;) (25) Note Zii = Van [8i] G. G. * G.

Properties of Z (1) Z= ZT (symmetric) (3) \$>0 (boritive remigletinite) (なてなる) いくなさる) (31 Given [c, a...an]= a e R (#) Van (\(\Sai\) = \(\pi \) [\(\pi \) (\(\pi \) ai\) [\(\pi \) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\pi \) (\(\pi \)) = \(\pi \) [\(\pi \) (\pi \) (\pi \) (\(\pi \)) = \(\pi \) (\(\pi \)) [\pi \) (\(\pi \) (\pi In particular if &= [1,1,...1] (85) [12] [2] = [UE...E+1E] vor/(4) = \(\int \var_1 \mathbb{T}_i \rangle + 2 \int \int \cov(\mathbb{T}_i, \mathbb{T}_i)\) (4)

Note for N=2 Con(3,3) Con(3,3) Con(3,3)

Interpretation of Coveriance

Con(x) \(\(\) \(

tend to be on Same side

of their meens with high probability

(34)

Application Hedge Find. like Stocks with negative Coveriences

Proof of Property 1 of Cov. Cov (X, 91= E((X-Mg)(Y-Mg)] (30) = E[82-M27-M22+ M2M2]G11 = E(83) - WZE(Z)-NZE(Z)+WZNZ FIZZI-MEME-MEME +MEME E[22] - MEME.

BACL to Van (X+X) -Lo Van (X+X) = Van (X) + Van (X) +2 Cov (X, X) (35)

Now. If Cov(E, I) (20) [more Variation Than Jum of Lives

Verlances!

wh! if Cov (8,51<0 when one por other neg" - tends to canel our variation!

15

What about if Cov(\$ \$1 =0 (\$1=) Van(\$+\$1: Van(\$1+Van(\$1)

Not In This case

[Not In This case

[S2+2] # G2+62 (27)

ht rater

G.Z.+2 = VG2+62 (38)

20.

Defn Ve say two DRVis are Independent, f for any two subub ABER P(XeA, ZeB /= P(XeM)P(XeB) Not Il X X Independent

PX2(x,1): P(X=x, X=4)
= P(X=x) P(X=4) (40)

= P8(x1 P2/41.

1.e. Joint pont = product of majinal pont 11.

This idea generalises to n variables (n>2.)
In abutout way.

Example 2011 red and screen fair
dice - R = dots on top of red
die G = dots on top of screen
die . —

Then

$$= \frac{36}{1} \cdot \frac{36}{1} = \frac{18}{18}$$
 (46)

Tenen Il I, I interendent.

Ten E[III] = E[III] = MEMI

and (1) Cov (E, I) = 0

(2) Van(II+II) = Van(II) + Van(II)

In general - it Ii, I, int. isi

(31 Van (ŽII) = ŽVan (Ii)

ELEA) = C C xx B (x, 4)

ING. x y

B (x) B (x) B (1)

(44)

FIRICIAI - WENZ (21)

Question: We know 8, 9 ind.

 $=> E(\Delta \Delta) = E(\Delta)E(\Delta)'(25)$

11 14 true Dut E(88): E(8)E(8)

=) I I malperdut?

Answer No! in general

Examp X= [-1]

 $(*) \quad \Sigma = |\Sigma| = \begin{cases} 1 & \frac{3}{2} \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{cases} (54)$

(#1 & Z = Z | Z | = { o } ; " C 2

BJT

$$P_{X,B}(I,I) = P(X=I,X=I) \quad (S9)$$

$$= P(X=I) = \frac{1}{3} \quad (G1)$$

$$P_{X}(I) P_{X}(I) = P(X=I) P(X=I) \quad (G2)$$

$$= \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{9} \quad (G3)$$

=> PES(1") * BE (1) PE(1) or duy endent. Deta Correlation Coefficient
of X. X

Pxx = Cov(8.21)
Gx 6x

Propertiel Correlation Coeff.

M(1) XX in dependent => Px=0

(S) BE = 0 => Z Z mcorreler,

(Pt not necessary in gabenful)

(31 -1 < P82 < 1

Pf of (21 Let & be a scalar 0 < Van (X+2) = Van(8)+2- Van(8)(67) +2x Cov(X, X) (8) = P(x) - quedretic 169 (4) => 12-40c <0 - 100 Ga 4 Cov (8,2) - 4 Var (9) Van (5) 50 Con (8,81 & Van (8) Van (8) 1 Cov (8,9115 G& G & G)

$$= \sum_{x \in \mathcal{X}} p(x, x) = Cou(x, x)$$

$$= \sum_{x \in \mathcal{X}} c_x (x, x)$$

=) if X, Y lineary reland => P= ± 1 (80)

1.e. Indrendent-

(B1)

P8,9 moeson of dependent of I.S. - In 1000 Lence

1 (3.5) Invy it (±1) when

I I 'very' related in

most dependent faithion!

Example 1 &~ NB(5 P)

=> X = X' + X' ... + X ~ (6s)

X; ~; G(p) (83)

iid - independent udentically

distribuld.

E[Z] = E[ZZ:] (BA)

= EIRI] = E' = E . Col

Van 181 = Van (28;) (86)

- & Vun (E:) = & (1-p) _ r(1-p)

 $Q^{2} = \sqrt{\Lambda^{2}(1-b)}$ (88)

Example 50 In H(N'u'w)

Example 50 In H(N'u'w)

Method 1 Number distinguished chjects (d.o.s) 1,2,3..., m so you can tell them apart.

Indicator Random Variables
For i=1,2,...m, Let

It = (1 ith d.o. in sample 99)

Example 3c

IN BUMPI

(90)

Define Ii= { | Succession ithties O otherwise (91)

i=1,2,...n

121,3...,1 (M) Ten, I TINBULPI

(Y)

iid. 2. I ~ BUP

(4)

(A)

(1-1 I X. ŽII

(93) 4. E181: E[[II]

(94) = ÉEIIJ

179. qn = q3 =

S. Va(81= Va(ŽIi)= ÊVa(Ii) (G)

$$=$$
 $\sum_{i=1}^{n} p(i-p)$

#

Withen
$$\Sigma = \sum_{i=1}^{m} I_i$$
 (00)

$$= \sum_{i=1}^{m} E[\Sigma] = E[\sum_{i=1}^{m} I_i]$$
(102)

Now
$$E[I_i] = 1. P(i + 1.0. in Jampe)$$

$$+ 0. P(i + 1.0. in Jampe)$$

$$= (N-1) = Pt + 1.0. in Jampe)$$
Then chose the rest
$$(N)$$

 $\frac{N!}{N!} = \frac{N!}{N!} (105)$

What about Varience? -

Vor II: 1 = E[I] - (")2 (110)

$$Cov(\underline{Ti},\underline{Ti}) = E[\underline{Ti},\underline{Ti}] - E[\underline{Ti}]E[\underline{Ti}]$$

X

X

N! (N°N)! (120)

= N(N-1) (121)

=> Cov(I; I) = n(n-1) - (n) (n) (122)

Van(X)= CVan(I)+2 & Cov(I, I,)

X = \(\langle \langle

= MN(N-N) + 5 W(W-1) (N(N-1) - (V))

サニング(1-以)(ハーン) (156)

(note then one

1 + 2 + 3 . . + m = 1 = m (m = 1)

2

terms in [[127]

Method 2

For in 1, 2, Let

Ji= [i-th element in

Sample is distinguished

(0) Otherwise (128)

In it 2~ H(N' w' m) (1581

 $X = \sum_{i=1}^{n} J_i \qquad (130)$

Now ful E[8] and Var(8)
as in metal 1.

Example 3

Not I. I independent f. R-1R, J. R-R (131) => f(8), g(5) indy=- bent. P(f(81 cA, g(2)EB) = P(Xef'(A), Xeg'(B)) (132) = P(&.f.(A1) P(Zeg.(B1) (133) = P(f(&1:A)P(g(21EB.), (134)

Claim X, I independent -Ten Mx+9(+)= Mx(+)Mx(+)(135)

$$M_{Z+Z}[+1: E[e^{\pm Z+Z]}]$$
 (136)
= $E[e^{\pm Z+LZ}]$ (138)
= $E[e^{\pm Z}]E[e^{\pm Z}]$ (139)
= $M_{Z}[+1]M_{Z}[+1]$ (140)

If X: ~, X, =>M, 2 (+1 = Mg (+1).

Example &n CIPI =1 Mg (+1= Pet (14

Distribution el a Jum.

X~PE I~PE

(146)

6812(+1 + b (812 = +)

(146)

= [P(X=x, Y=2.x) (14+1

= \(\(\text{P}(\text{Z}:x)\text{P(\text{Z}:x)}\) (148)

Nou if in addition 8, 9 indpendent

P8+2(11.P(8+9++) (49)

= 2 Px (x) Px (2.x) (150)

= (Px * Px / 121 (151)

Convolution Product.

Example Bubling In Blimp) ind Z=8+9=> R(E)= {0,12, ..., m+n] Park is a motor - x+x=k=) X < K ×
Park is Park is Park is (152) = 2 (1) pi (1-pn-i (m-i) ph-i 11-pl = 2 (3)(m) ph (1-p) m+n-k >= P"(1-P)"+n-r ∑ (")(") ["...] (155) = (m+n) pr(1-p|m+n-r & (n)(m-i) (15h)

Consider -

ひゃ H(n+m, k, n)

(1841)

Per(j)= (j)(L-j) j.0,1,2...L (m+n) (158)

=) $1 = \frac{1}{120} \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) = \frac{1}{120} \left(\frac{1}{120} \right) \left(\frac{1}{120} \right)$

=>

* P2(K) = ("+N) Pr(1-1/m+n-r

4 + 0, 1, 1 . . , m+n

=> ZNB(m+n,p)

(161)