Advanced Counting Techniques

Chapter 8

With Question/Answer Animations

Chapter Summary

- Applications of Recurrence Relations
- Solving Linear Recurrence Relations
 - Homogeneous Recurrence Relations
 - Nonhomogeneous Recurrence Relations
- Divide-and-Conquer Algorithms and Recurrence Relations
- Generating Functions
- Inclusion-Exclusion
- Applications of Inclusion-Exclusion

Applications of Recurrence Relations

Section 8.1

Section Summary

- Applications of Recurrence Relations
 - Fibonacci Numbers
 - The Tower of Hanoi
 - Counting Problems
- Algorithms and Recurrence Relations (not currently included in overheads)

Recurrence Relations

(recalling definitions from Chapter 2)

Definition: A *recurrence relation* for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_n , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

Recurrence Relations

(recalling definitions from Chapter 2)

Definition: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_n , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

• A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relations

(recalling definitions from Chapter 2)

- **Definition:** A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
- A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.
- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Rabbits and the Fiobonacci Numbers

Example: A young pair of rabbits (one of each gender) is placed on an island:

- A pair of rabbits does not breed until they are 2 months old.
- After they are 2 months old, each pair of rabbits produces another pair each month.

Find a recurrence relation for *the number of pairs of rabbits on the island after n months*, assuming that rabbits never die.

This is the original problem considered by Leonardo Pisano (Fibonacci) in the thirteenth century.

Rabbits and the Fiobonacci Numbers (cont.)

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	n'in	1	0	1	1
	0 10	2	0	1	1
0 40	0 to	3	1	1	2
0 40	&\$ &\$	4	1	2	3
0 40 C 40	***	5	2	3	5
040040	***	6	3	5	8
	es es				

Modeling the Population Growth of Rabbits on an Island

Rabbits and the Fibonacci Numbers (cont.)

Solution: Let f_n be the *the number of pairs of rabbits after n months*.

- There are $f_1 = 1$ pairs of rabbits on the island at the end of the first month.
- We also have f_2 = 1 because the pair does not also breed during the second month.
- To find the number of pairs on the island after n months, add the number on the island after the previous month, f_{n-1} , and the number of newborn pairs, which equals f_{n-2} , because each newborn pair comes from a pair at least two months old.

Rabbits and the Fibonacci Numbers (cont.)

Solution: Let f_n be the number of pairs of rabbits after n months.

- There are is $f_1 = 1$ pairs of rabbits on the island at the end of the first month.
- We also have f_2 = 1 because the pair does not breed during the first month.
- To find the number of pairs on the island after n months, add the number on the island after the previous month, f_{n-1} , and the number of newborn pairs, which equals f_{n-2} , because each newborn pair comes from a pair at least two months old.

Consequently the sequence $\{f_n\}$ satisfies the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$ with the initial conditions $f_1 = 1$ and $f_2 = 1$. The number of pairs of rabbits on the island after n months is given by the nth Fibonacci number.

The Tower of Hanoi

- Three pegs on a board with disks of different sizes.
- Initially all of the disks are on the first peg *in order of size*, with the largest on the bottom.

Peg 2

Peg 3

The Tower of Hanoi

Rules:

You are allowed to move the disks one at a time from one peg to another as long as a larger disk is never placed on a smaller.

Goal:

Using allowable moves, end up with all the disks on the second peg in order of size with largest on the bottom.

 $\{H_n\}$: the number of moves needed to solve the Tower of Hanoi Puzzle with n disks.

Solution: Set up a recurrence relation for the sequence $\{H_n\}$.

The Initial Position in the Tower of Hanoi Puzzle

• Begin with *n* disks on peg 1.

- Begin with *n* disks on peg 1.
- We can transfer the top n-1 disks, following the rules of the puzzle, to peg 3 using H_{n-1} moves.

• First, we use 1 move to transfer the largest disk to the second peg.

• Then we transfer the n-1 disks from peg 3 to peg 2 using H_{n-1} additional moves.

• Then we transfer the n-1 disks from peg 3 to peg 2 using H_{n-1} additional moves.

$$H_n = 2H_{n-1} + 1.$$

- The initial condition is $H_1 = 1$
 - a single disk can be transferred from peg 1 to peg 2 in one move.

- Iterative approach to solve this recurrence relation
 - by repeatedly expressing H_n in terms of the previous terms of the sequence.

```
\begin{split} H_n &= 2H_{n-1} + 1 \\ &= 2(2H_{n-2} + 1) + 1 = 2^2 H_{n-2} + 2 + 1 \\ &= 2^2(2H_{n-3} + 1) + 2 + 1 = 2^3 H_{n-3} + 2^2 + 2 + 1 \\ \vdots \\ &= 2^{n-1}H_1 + 2^{n-2} + 2^{n-3} + \dots + 2 + 1 \\ &= 2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2 + 1 \quad \text{because } H_1 = 1 \\ &= 2^n - 1 \quad \text{using the formula for the sum of the terms of a geometric} \end{split}
```

series

- Find the number of bit strings of length *n* without two consecutive 0s.
 - Find a recurrence relation and give initial conditions
 - How many such bit strings are there of length five?

Number of bit strings of length *n* without two consecutive 0s.

• a_n denote the number of bit strings of length n without two consecutive 0s.

Number of bit strings of length *n* without two consecutive 0s.

- a_n denote the number of bit strings of length n without two consecutive 0s.
- The number of bit strings of length *n* that do not have two consecutive 0s:
 - the number of bit strings ending with a 0
 - the number of such bit strings ending with a 1

Number of bit strings of length *n* without two consecutive 0s.

- a_n denote the number of bit strings of length n without two consecutive 0s.
- Now assume that $n \ge 3$.
- The bit strings of length n ending with 1 without two consecutive 0s are the bit strings of length n-1 with no two consecutive 0s with a 1 at the end.
 - Hence, there are a_{n-1} such bit strings.
- The bit strings of length n ending with 0 without two consecutive 0s are the bit strings of length n-2 with no two consecutive 0s with 10 at the end.
 - Hence, there are a_{n-2} such bit strings.

Number of bit strings of length *n* without two consecutive 0s.

- Now assume that $n \ge 3$.
- The bit strings of length n ending with 1 without two consecutive 0s are the bit strings of length n-1 with no two consecutive 0s with a 1 at the end.
 - Hence, there are a_{n-1} such bit strings.
- The bit strings of length n ending with 0 without two consecutive 0s are the bit strings of length n-2 with no two consecutive 0s with 10 at the end.
 - Hence, there are a_{n-2} such bit strings.

 $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$.

Bit Strings (continued)

$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 3$.

The initial conditions are:

- $a_1 = 2$, since both the bit strings 0 and 1 do not have consecutive 0s.
- $a_2 = 3$, since the bit strings 01, 10, and 11 do not have consecutive 0s, while 00 does.

To obtain a_5 , we use the recurrence relation three times to find that:

- $a_3 = a_2 + a_1 = 3 + 2 = 5$
- $a_4 = a_3 + a_2 = 5 + 3 = 8$
- $a_5 = a_4 + a_3 = 8 + 5 = 13$

Note that $\{a_n\}$ satisfies the same recurrence relation as the Fibonacci sequence. Since $a_1 = 2 = f_3$ and $a_2 = 3 = f_4$, we conclude that $a_n = f_{n+2}$

- Find a recurrence relation for C_n :
 - •The number of ways to parenthesize the product of n + 1 numbers, $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_n$, to specify the order of multiplication.
 - For example, $C_3 = 5$, since all the possible ways to parenthesize 4 numbers are

$$((x_0 \cdot x_1) \cdot x_2) \cdot x_3,$$

 $(x_0 \cdot (x_1 \cdot x_2)) \cdot x_3,$
 $(x_0 \cdot x_1) \cdot (x_2 \cdot x_3),$
 $x_0 \cdot ((x_1 \cdot x_2) \cdot x_3),$
 $x_0 \cdot (x_1 \cdot (x_2 \cdot x_3))$

$$((x_{0} \cdot x_{1}) \cdot x_{2}) \cdot x_{3}, (x_{0} \cdot (x_{1} \cdot x_{2})) \cdot x_{3}, (x_{0} \cdot x_{1}) \cdot (x_{2} \cdot x_{3}), x_{0} \cdot ((x_{1} \cdot x_{2}) \cdot x_{3}), x_{0} \cdot (x_{1} \cdot (x_{2} \cdot x_{3}))$$

Solution: Note that however parentheses are inserted in $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_n$,

- one "·" operator remains outside all parentheses.
- This final operator appears between two of the n + 1 numbers, say x_k and x_{k+1} .
- Since there are C_k ways to insert parentheses in the product $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_k$ and
- C_{n-k-1} ways to insert parentheses in the product $x_{k+1} \cdot x_{k+2} \cdot \cdots \cdot x_n$, we have

 $((x_{0} \cdot x_{1}) \cdot x_{2}) \cdot x_{3},$ $(x_{0} \cdot (x_{1} \cdot x_{2})) \cdot x_{3},$ $(x_{0} \cdot x_{1}) \cdot (x_{2} \cdot x_{3}),$ $x_{0} \cdot ((x_{1} \cdot x_{2}) \cdot x_{3}),$ $x_{0} \cdot (x_{1} \cdot (x_{2} \cdot x_{3}))$

Solution: Note that however parentheses are inserted in $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_n$,

- one "." operator remains outside all parentheses.
- This final operator appears between two of the n + 1 numbers, say x_k and x_{k+1} .
- Since there are C_k ways to insert parentheses in the product $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_k$ and
- C_{n-k-1} ways to insert parentheses in the product $x_{k+1} \cdot x_{k+2} \cdot \cdots \cdot x_n$, we have

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-2} C_1 + C_{n-1} C_0$$

$$= \sum_{k=0}^{n-1} C_k C_{n-k-1}$$

The initial conditions are $C_0 = 1$ and $C_1 = 1$.

 $((x_{0} \cdot x_{1}) \cdot x_{2}) \cdot x_{3},$ $(x_{0} \cdot (x_{1} \cdot x_{2})) \cdot x_{3},$ $(x_{0} \cdot x_{1}) \cdot (x_{2} \cdot x_{3}),$ $x_{0} \cdot ((x_{1} \cdot x_{2}) \cdot x_{3}),$ $x_{0} \cdot (x_{1} \cdot (x_{2} \cdot x_{3}))$

Solution: Note that however parentheses are inserted in $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_n$,

- one "·" operator remains outside all parentheses.
- This final operator appears between two of the n + 1 numbers, say x_k and x_{k+1} .
- Since there are C_k ways to insert parentheses in the product $x_0 \cdot x_1 \cdot x_2 \cdot \cdots \cdot x_k$ and
- C_{n-k-1} ways to insert parentheses in the product $x_{k+1} \cdot x_{k+2} \cdot \cdots \cdot x_n$, we have

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-2} C_1 + C_{n-1} C_0$$

$$= \sum_{k=0}^{n-1} C_k C_{n-k-1}$$

The sequence $\{C_n\}$ is the sequence of **Catalan Numbers**.

Solving Linear Recurrence Relations

Section 8.2

Section Summary

- Linear Homogeneous Recurrence Relations
- Solving Linear Homogeneous Recurrence Relations with Constant Coefficients.
- Solving Linear Nonhomogeneous Recurrence Relations with Constant Coefficients.

Linear Homogeneous Recurrence Relations

Definition: A *linear* homogeneous recurrence relation of *degree* k *with* constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where c_1 , c_2 ,, c_k are real numbers, and $c_k \neq 0$

- *linear*: the right-hand side is a sum of the previous terms of the sequence each multiplied by a function of *n*.
- homogeneous because no terms occur that are not multiples of the a_j 's. Each coefficient is a constant.
- *degree* is k because a_n is expressed in terms of the previous k terms of the sequence.

Linear Homogeneous Recurrence Relations

Definition: A *linear homogeneous recurrence relation of degree* k *with constant coefficients* is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where c_1 , c_2 ,, c_k are real numbers, and $c_k \neq 0$

By strong induction, a sequence satisfying such a recurrence relation is uniquely determined by the recurrence relation and the k initial conditions

$$a_0 = C_0$$
, $a_1 = C_1$,..., $a_{k-1} = C_{k-1}$.

Examples of Linear Homogeneous Recurrence Relations

- $P_n = (1.11)P_{n-1}$ linear homogeneous recurrence relation of degree one
- $f_n = f_{n-1} + f_{n-2}$ linear homogeneous recurrence relation of degree two
- not linear $a_n = a_{n-1} + a_{n-2}^2$ $H_n = 2H_{n-1} + 1$ not homogeneous
- $B_n = nB_{n-1}$ coefficients are not constants

Solving Linear Homogeneous Recurrence Relations

• The basic approach is to look for solutions of the form $a_n = r^n$, where r is a constant.

- The basic approach is to look for solutions of the form $a_n = r^n$, where r is a constant.
- Note that $a_n = r^n$ is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ if and only if $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$.

- The basic approach is to look for solutions of the form $a_n = r^n$, where r is a constant.
- Note that $a_n = r^n$ is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ if and only if $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$.
- Algebraic manipulation yields the *characteristic equation*:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$

- The basic approach is to look for solutions of the form $a_n = r^n$, where r is a constant.
- Algebraic manipulation yields the characteristic equation:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k-1}r - c_{k} = 0$$

The sequence $\{a_n\}$ with $a_n = r^n$ is a solution if and only if r is a solution to the characteristic

- The basic approach is to look for solutions of the form $a_n = r^n$, where r is a constant.
- Algebraic manipulation yields the *characteristic equation*:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k-1}r - c_{k} = 0$$

The sequence $\{a_n\}$ with $a_n = r^n$ is a solution if and only if r is a solution to the characteristic

- The solutions to the characteristic equation are called the characteristic roots of the recurrence relation.
- The roots are used to give an explicit formula for all the solutions of the recurrence relation.

Solving Linear Homogeneous Recurrence Relations of Degree Two

Theorem 1: Let c_1 and c_2 be real numbers.

Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2 .

Then the sequence $\{a_n\}$ is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if

for $n = 0, 1, 2, \dots$, where $\alpha_1 = \alpha r_1^n + \alpha_2 r_2^n$ are constants.

Using Theorem 1

Example: What is the solution to the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$
 with $a_0 = 2$ and $a_1 = 7$?

Solution:

- The characteristic equation is $r^2 r 2 = 0$.
- Its roots are r = 2 and r = -1.
- $\{a_n\}$ is a solution to the recurrence relation if and *only* if
 - $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$, for some constants α_1 and α_2 .

Using Theorem 1

Example: What is the solution to the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$
 with $a_0 = 2$ and $a_1 = 7$?

Solution: The characteristic equation is $r^2 - r - 2 = 0$. Its roots are r = 2 and r = -1.

- $\{a_n\}$ is a solution to the recurrence relation if and only if
 - $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$, for some constants α_1 and α_2 .

To find the constants α_1 and α_2 :

$$a_0 = 2 = \alpha_1 + \alpha_2$$

 $a_1 = 7 = \alpha_1 2 + \alpha_2 (-1)$.

Solving these equations, we find that $\alpha_1 = 3$ and $\alpha_2 = -1$.

Hence, the solution is the sequence $\{a_n\}$ with $a_n = 3 \cdot 2^n - (-1)^n$.

An Explicit Formula for the Fibonacci Numbers

We can use Theorem 1 to find an explicit formula for the Fibonacci numbers.

The sequence of Fibonacci numbers satisfies the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with the initial conditions: $f_0 = 0$ and $f_1 = 1$.

Solution: The roots of the characteristic equation $r^2 - r - 1 = 0$ are

$$r_1 = \frac{1+\sqrt{5}}{2}$$

$$r_2 = \frac{1 - \sqrt{5}}{2}$$

Fibonacci Numbers (continued)

Therefore by Theorem 1

$$f_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

for some constants α_1 and α_2 .

Using the initial conditions $f_0 = 0$ and $f_1 = 1$, we have

$$f_0 = \alpha_1 + \alpha_2 = 0$$
 Solving, $f_1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right) = 1$. Hence,
$$\alpha_1 = \frac{1}{\sqrt{5}} \ , \quad \alpha_2 = -\frac{1}{\sqrt{5}}$$

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

The Solution when there is a Repeated Root

Theorem 2: Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has one *repeated root* r_0 . Then the sequence $\{a_n\}$ is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if

 $a_n = \alpha r_0^n + \alpha_2 n r_0^n$ for n = 0,1,2,... , where α_1 and α_2 are constants.

Using Theorem 2

Example: What is the solution to the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

Using Theorem 2

Example: What is the solution to the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

Solution: The characteristic equation is $r^2 - 6r + 9 = 0$.

The only root is r = 3. Therefore, $\{a_n\}$ is a solution to the recurrence relation if and only if $a_n = \alpha_1 3^n + \alpha_2 n(3)^n$

where α_1 and α_2 are constants.

To find the constants α_1 and α_2 , note that

$$a_0 = 1 = \alpha_1$$
 and $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$.

Solving, we find that $\alpha_1 = 1$ and $\alpha_2 = 1$. Hence, $a_n = 3^n + n3^n$.

Solving Linear Homogeneous Recurrence Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous recurrence relations with constant

Theorem 3: Let c_1 , c_2 ,..., c_k be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \dots - c_k = 0$$

has k distinct roots r_1 , r_2 , ..., r_k . Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 if and only if

for
$$n = 0, 1, 2, ...$$
, where $\alpha_1, \alpha_2, ..., n_k$ are constants. $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n$

The General Case with Repeated Roots Allowed

Theorem 4: Let c_1 , c_2 ,..., c_k be real numbers. Suppose that the characteristic equation $r^k - c_1 r^{k-1} - \cdots - c_k = 0$

has t distinct roots $r_1, r_2, ..., r_t$ with multiplicities $m_1, m_2, ..., m_t$, respectively so that $m_i \ge 1$ for i = 0, 1, 2, ..., t and $m_1 + m_2 + ... + m_t = k$. Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 if and only if

multiplicity of root $r_{_{\scriptscriptstyle 1}}$

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n \quad \text{multiplicity of root } r_2$$
 for $n = 0, 1, 2, \dots$, where $\alpha_{i,j}$ are constants for $1 \le i \le m_2$ and $0 \le j \le m_i$.
$$+(\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n \quad \text{multiplicity of root } r_t$$

$$+ \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

Linear Nonhomogeneous Recurrence Relations with Constant Coefficients

Definition: A linear nonhomogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n)$$

where c_1 , c_2 ,, c_k are real numbers, and F(n) is a function not identically zero depending only on n.

The recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

is called the associated homogeneous recurrence relation.

The following are linear nonhomogeneous recurrence relations with constant coefficients:

$$a_n = a_{n-1} + 2^n$$
,
 $a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$,
 $a_n = 3a_{n-1} + n3^n$,
 $a_n = a_{n-1} + a_{n-2} + a_{n-3} + n!$

where the following are the associated linear homogeneous recurrence relations, respectively:

$$\begin{aligned} a_n &= a_{n-1} \;, \\ a_n &= a_{n-1} + a_{n-2}, \\ a_n &= 3a_{n-1} \;, \\ a_n &= a_{n-1} + a_{n-2} + a_{n-3} \end{aligned}$$

Theorem 5: If $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$
, then every solution is of the form $\{a_n^{(p)} + a_n^{(h)}\}$, where $\{a_n^{(h)}\}$: solution of the associated homogeneous recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

Because F(n) = 2n is a polynomial in n of degree one, to find a particular solution we might try a linear function in n, say $p_n = cn + d$, where c and d are constants.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

Because F(n) = 2n is a polynomial in n of degree one, to find a particular solution we might try a linear function in n, say $p_n = cn + d$, where c and d are constants.

Suppose that $p_n = cn + d$ is such a solution.

Then $a_n = 3a_{n-1} + 2n$ becomes cn + d = 3(c(n-1) + d) + 2n.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

Because F(n) = 2n is a polynomial in n of degree one, to find a particular solution we might try a linear function in n, say $p_n = cn + d$, where c and d are constants.

```
Then a_n = 3a_{n-1} + 2n becomes cn + d = 3(c(n-1) + d) + 2n.
```

Simplifying yields (2 + 2c)n + (2d - 3c) = 0. It follows that cn + d is a solution if and only if 2 + 2c = 0 and 2d - 3c = 0. Therefore, cn + d is a solution if and only if c = -1 and d = -3/2. Consequently, $a_n^{(p)} = -n - 3/2$ is a particular solution.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. $a_n^{(h)} = \alpha 3^n$, homogeneous solution.

 $a_n^{(p)} = -n - 3/2$ is a particular solution.

By Theorem 5, all solutions are of the form

 $a_n = a_n^{(p)} + a_n^{(h)} = -n - 3/2 + \alpha 3^n$, where α is a constant.

Example: Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: The associated linear homogeneous equation is $a_n = 3a_{n-1}$. $a_n^{(h)} = \alpha 3^n$, homogeneous solution.

 $a_n^{(p)} = -n - 3/2$ is a particular solution.

By Theorem 5, all solutions are of the form

$$a_n = a_n^{(p)} + a_n^{(h)} = -n - 3/2 + \alpha 3^n$$
, where α is a constant.

To find the solution with $a_1 = 3$, let n = 1 in the above formula for the general solution.

Then $3 = -1 - 3/2 + 3 \alpha$, and $\alpha = 11/6$.

Hence, the solution is $a_n = -n - 3/2 + (11/6)3^n$.