Wood, Phillips, Katz, Clark & Mortimer

FOUNDED IN 1876 ATTORNEYS AT LAW **SUITE 3800**

500 West Madison Street Chicago, Illinois 60661-2511

TELEPHONE TELECOPIER (312) 876-1800 (312) 876-2020 E-MAIL

info@woodphillips.com www.woodphillips.com SOMCHAY CHINYAVONG WASHINGTON, D.C. LEGAL ASSISTAN 2001 JEFFERSON DAVIS HIGHWAY ARLINGTON, VA 22202 (703) 415-0880 FAX (703) 415-0883

OF COUNSEL WILLIAM A. VANSANTEN HAROLD A. WILLIAMSON

JOEL E. SIEGEL LISA V. MUELLER

JEFFREY L. CLARK
JEFFERY N. FAIRCHILD
STEPHEN D. GEIMER
ALLEN J. HOOVER
MARTIN L. KATZ
F. WILLIAM McLAUGHLIN
DEAN A. MONCO
JOHN S. MORTIMER
BAUL M. GOELL
RICHARD S. PHILLIPS
KOEL F. SIEGEL

Sent

FAX COVER SHEET

DATE:	7/11/08
ATTENTION:	X'ET CHRISTING SUNG
FROM:	John Mortimer (312) 876 2113
RE:	5# 10 1 583 579
PACES TO ANSMI	TTED. 8 i This Transmitted Press.

PAGES TRANSMITTED: __o__ + This Transmittal Page

ADDITIONAL MESSAGE:

PROPOSED CLAIM AMENDMENTS

This facsimile may contain PRIVILEGED AND CONFIDENTIAL INFORMATION intended only for the use by the person(s) named above. If you are not a person to whom this facsimile is addressed, you are hereby notified that any distribution, copying, or disclosure of the contents of this facsimile is strictly prohibited. However, any review of this facsimile by other than the person(s) identified above shall not constitute a waiver of privilege or confidentiality. If you have received this facsimile in error, please notify the sender immediately by telephone, collect, and return the original to the above address.

IF YOU HAVE ANY DIFFICULTY RECEIVING THIS TRANSMISSION, PLEASE CONTACT TERRI AT (312) 876-1800. □ ORIGINAL WILL NOT FOLLOW

☐ ORIGINAL WILL FOLLOW VIA:		
Overnight Mail	🗆 Regular Mail	
Hand Delivery	□ Other	

Claims

- 1. (Currently Amended) A method for separating and measuring ³⁷Ar quickly from a soil gas sample or an atmospheric sample, which comprises the following steps in turn:
- sampling, which comprises collecting soil gas sample or directly collecting atmospheric air with a syringe sampler;
- 2) eliminating impurities, which comprises passing the gas sample as collected through a room temperature molecular sieve column to eliminate H_2O and CO_2 , and through a room temperature deaerator to eliminate O_2 ;
- 3) separating, which comprises allowing the gas sample after eliminating impurities to be adsorbed by entering a sampling column positioned in a cold trap at a temperature from -170°C to -185°C, and then washing the sampling column with a He gas stream, whereby a majority of Ar and partial O₂ and N₂ at the front end of the sampling column are carried by the He gas stream to enter a molecular sieve collection column in a liquid nitrogen cold trap;
- 4) purifying, which comprises taking the collection column out of the cold trap, and washing it with a He carrier gas stream after heating, whereby Ar, O_2 and N_2 are detached from the collection column before entering a separation column in a chromatographic system at a temperature from -20°C to -70°C for chromatographic separation; allowing the gas after separation to enter a room temperature catalytic deoxidizing column, whereby eliminating trace O_2 that is inseparable from Ar and further purifying Ar; then, allowing the gas after purification to be analyzed by entering a thermal conductivity detector;
- 5) measuring the sum of Ar, which comprises measuring the sum of Ar as collected with the thermal conductivity detector;
- 6) collecting Ar, which comprises collecting Ar in tail gas out of the thermal conductivity detector with an activated carbon collection column positioned in a liquid nitrogen cold trap (i.e., preparative chromatography), heating the activated carbon collection column, and collecting Ar gas as desorbed with a proportional counter; and
- 7) measuring the activity of 37 Ar, which comprises filling the proportional counter with a working gas methane in a ratio of Ar/CH₄=9:1, and measuring the activity of radioactive 37 Ar after thoroughly mixing the two gases.

JUL-11-2008 16:35 WOOD PHILLIPS 312 876 2020 P.03

2. (Currently Amended) A system for separating and measuring ³⁷Ar quickly used in the method according to claim 1, which comprises a sampling unit for sampling the gas to be measured; a separating-purifying unit for separating-purifying-extracting the gas to be measured and for measuring the production of Ar; a measuring unit for measuring the radioactivity of ³⁷Ar gas as extracted; and a control unit for controlling the working process of the above three units by using a computer and a software; wherein, the sampling unit, the separating-purifying unit, and the radioactivity measuring unit are connected in turn, and the control unit is connects respectively to <u>and causes operation of</u> the sampling unit, the separating-purifying unit, and the radioactivity measuring unit <u>to carry out the steps set</u> forth in claim 1.

- 3. (Currently Amended) The system for separating and measuring ³⁷Ar quickly according to claim 2, characterized in that the sampling unit comprises a syringe sampler (1) for collecting soil gas, a room temperature molecular sieve dehydration column (5) for eliminating H₂O and CO₂, a room temperature deaerator (6) for eliminating O₂ from the collected gas, and a sampling column (7) positioned in a low temperature cold trap for collecting gas and primarily separating Ar by the virtue of temperature difference.
- 4. (Currently Amended) The system for separating and measuring ³⁷Ar quickly according to claim 3, characterized in that the syringe sampler (1) is made from metal or alloy tube, wherein the <u>a</u> needlepoint part is conical with pinholes closely distributed on its <u>a</u> surface of the needlepoint part, the <u>an</u> end part of the syringe sampler is sealed, and a pipeline joint is positioned near the end part of the syringe <u>sampler</u> for connecting <u>a</u> <u>an</u> aspirator pump.
- 5. (Currently Amended) The system for separating and measuring 37 Ar quickly according to any one of claims 2-4 claim 2, characterized in that the separating-purifying unit comprises a molecular sieve collection column (8) positioned in a liquid nitrogen cold trap for concentrating Ar and part N_2 as well as trace O_2 , a preparative chromatographic system, a proportional counter (11) for collecting 37 Ar and measuring its radioactivity, a He carrier

JUL-11-2008 16:36 WOOD PHILLIPS 312 876 2020 P.04

gas source (16) for a thermal conductivity detector of preparative chromatography, and a methane working gas source (15) for measuring the radioactivity of ³⁷Ar, which are connected in turn; wherein, the preparative chromatographic system consists of a chromatographic separation column (9) for separating Ar and N₂, a room temperature catalytic deoxidizing column (12) for eliminating trace O₂, a thermal conductivity detector (14) for further purifying Ar and measuring the sum of Ar, and an activated carbon collection column (10) for collecting chromatographic pure Ar, which are connected in turn.

- 6. (Currently Amended) The system for separating and measuring ³⁷Ar quickly according to any one of claims 2-5 <u>claim 2</u>, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.
- 7. (Currently Amended) The system for separating and measuring ³⁷Ar quickly according to any one of claims 2-6 <u>claim 2</u>, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:

initializing the system;

- collecting and processing the relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into the <u>a</u> sensor.
- 8. (New) The system for separating and measuring ³⁷Ar according to claim 3, characterized in that the separating-purifying unit comprises a molecular sieve collection column (8) positioned in a liquid nitrogen cold trap for concentrating Ar and part N₂ as well as trace O₂, a preparative chromatographic system, a proportional counter (11) for collecting ³⁷Ar and measuring its radioactivity, a He carrier gas source (16) for a thermal conductivity detector of preparative chromatography, and a methane working gas source (15) for measuring the radioactivity of ³⁷Ar, which are connected in turn; wherein, the preparative chromatographic system consists of a chromatographic separation column (9)

JUL-11-2008 16:36 WOOD PHILLIPS 312 876 2020 P.05

for separating Ar and N_2 , a room temperature catalytic deoxidizing column (12) for eliminating trace O_2 , a thermal conductivity detector (14) for further purifying Ar and measuring the sum of Ar, and an activated carbon collection column (10) for collecting chromatographic pure Ar, which are connected in turn.

- 9. (New) The system for separating and measuring ³⁷Ar according to claim 4, characterized in that the separating-purifying unit comprises a molecular sieve collection column (8) positioned in a liquid nitrogen cold trap for concentrating Ar and part N₂ as well as trace O₂, a preparative chromatographic system, a proportional counter (11) for collecting ³⁷Ar and measuring its radioactivity, a He carrier gas source (16) for a thermal conductivity detector of preparative chromatography, and a methane working gas source (15) for measuring the radioactivity of ³⁷Ar, which are connected in turn; wherein, the preparative chromatographic system consists of a chromatographic separation column (9) for separating Ar and N₂, a room temperature catalytic deoxidizing column (12) for eliminating trace O₂, a thermal conductivity detector (14) for further purifying Ar and measuring the sum of Ar, and an activated carbon collection column (10) for collecting chromatographic pure Ar, which are connected in turn.
- 10. (New) The system for separating and measuring ³⁷Ar according to claim 3, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.
- 11. (New) The system for separating and measuring ³⁷Ar according to claim 4, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.
- 12. (New) The system for separating and measuring ³⁷Ar according to claim 5, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.

JUL-11-2008 16:36 WOOD PHILLIPS 312 876 2020 P.06

13. (New) The system for separating and measuring ³⁷Ar according to claim 8, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.

- 14. (New) The system for separating and measuring ³⁷Ar according to claim 9, characterized in that the radioactivity measuring unit consists of a proportional counter, a shield and an electronics system.
- 15. (New) The system for separating and measuring ³⁷Ar according to claim 3, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:

initializing the system;

collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;

conducting on-off control on electromagnetic valves in the system; and presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.

16. (New) The system for separating and measuring ³⁷Ar according to claim 4, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:

initializing the system;

collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;

conducting on-off control on electromagnetic valves in the system; and presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.

- 17. (New) The system for separating and measuring ³⁷Ar according to claim 5, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 18. (New) The system for separating and measuring ³⁷Ar according to claim 8, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 19. (New) The system for separating and measuring ³⁷Ar according to claim 9, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.

- 20. (New) The system for separating and measuring ³⁷Ar according to claim 6, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 21. (New) The system for separating and measuring ³⁷Ar according to claim 10, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 22. (New) The system for separating and measuring ³⁷Ar according to claim 11, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
 - initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.

P.09

- 23. (New) The system for separating and measuring ³⁷Ar according to claim 12, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
- initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 24. (New) The system for separating and measuring ³⁷Ar according to claim 13, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
 - initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.
- 25. (New) The system for separating and measuring ³⁷Ar according to claim 14, characterized in that the control unit uses the computer and the software, wherein the software has the following functions:
 - initializing the system;
- collecting and processing relevant sensor signals, chromatographic detector signals and radioactivity measuring information, and giving data results;
- conducting on-off control on electromagnetic valves in the system; and
- presetting, modifying, real-time displaying and transfinite alarming with respect to all signal parameters inputted into a sensor.