GCNs for Relation Extraction

杨晰 xyang4l@stu.ecnu.edu.cn

Outline

- Background
 - Graph Convolution Networks (GCN)
 - Relation Extraction (RE)
- Applications
 - Syntactic GCNs
 - RE-SIDE
 - GraphRel
- Conclusion

- 无向图G = (V, E)
 - V: 节点集合

$$h_v = ReLU\left(\sum_{u \in \mathcal{N}(v)} (Wx_u + b)\right)$$

·单层GCN

$$h_v = ReLU \left(\sum_{u \in \mathcal{N}(v)} (Wx_u + b) \right)$$
 初始节点特征

· 单层GCN

K层GCN

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W^{(k)} h_u^{(k)} + b^{(k)}\right)$$

BGII: Relation Extraction(RE)

Sentence-level RE Example

[ACL17] Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling

Diego Marcheggiani, Ivan Titov

ILLC, University of Amsterdam, ILCC, School of Informatics, University of Edinburgh

Contributions

- Syntactic GCN over syntactic dependency trees integrates syntax, context
- GCN, LSTM complement each other
- GCN-based SRL model

input sentece Lane disputed those estimates

directed, labeled

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

over-parameterized

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$W_{L(u,v)}^{(k)} = V_{dir(u,v)}^{(k)}$$

$$dir(u,v) = \begin{cases} \rightarrow & \text{if edge exists in dependency parse} \\ \leftarrow & \text{if edge is an inverse edge} \\ \top & \text{if edge is a self-loop} \end{cases}$$

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$W_{L(u,v)}^{(k)} = V_{dir(u,v)}^{(k)}$$

$$dir(u,v) = \begin{cases} \rightarrow & \text{if edge exists in dependency parse} \\ \leftarrow & \text{if edge is an inverse edge} \\ \top & \text{if edge is a self-loop} \end{cases}$$

$$g_{u,v}^{(k)} = \sigma \left(h_u^{(k)} \cdot \hat{v}_{dir(u,v)}^{(k)} + \hat{b}_{L(u,v)}^{(k)} \right) \text{ Edge-wise gating}$$

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

$$W_{L(u,v)}^{(k)} = V_{dir(u,v)}^{(k)}$$

$$dir(u,v) = \begin{cases} \rightarrow & \text{if edge exists in dependency parse} \\ \leftarrow & \text{if edge is an inverse edge} \\ \top & \text{if edge is a self-loop} \end{cases}$$

$$g_{u,v}^{(k)} = \sigma \left(h_u^{(k)} \cdot \hat{v}_{dir(u,v)}^{(k)} + \hat{b}_{L(u,v)}^{(k)} \right) \text{ Edge-wise gating}$$

$$\begin{aligned} h_v^{(k+1)} &= ReLU(\\ &\sum_{u \in \mathcal{N}(v)} g_{v,u}^{(k)}(V_{dir(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)})) \end{aligned}$$

Complementarity of GCNs and LSTMs

- LSTM vs GCN
 - LSTM: extract sequential information
 - GCN: extract regional information, 'teleport' even over a single (longest) syntactic dependency edge

LSTM-based SRL model

Syntax-Aware Neural SRL Encoder

Experiments

System (English)	P	R	F ₁
LSTMs	84.3	81.1	82.7
LSTMs + GCNs (K=1)	85.2	81.6	83.3
LSTMs + GCNs (K=2)	84.1	81.4	82.7
LSTMs + GCNs (K=1), no gates	84.7	81.4	83.0
GCNs (no LSTMs), K=1	79.9	70.4	74.9
GCNs (no LSTMs), K=2	83.4	74.6	78.7
GCNs (no LSTMs), K=3	83.6	75.8	79.5
GCNs (no LSTMs), K=4	82.7	76.0	79.2

Table 1: SRL results without predicate disambiguation on the English development set.

[ACL18] RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya, Partha Talukdar Indian Institute of Science, ²Birla Institute of Technology and Science, Pilani

RESIDE

- Task
 - Multi-instance learning: given a bag of sentences (or instances) {s1, s2, ...sn} for a given entity pair, predict the relation between them.
- Motivation
 - Distantly-supervised Relation Extraction methods use relation instances in Knowledge Base (KB)
 - KBs often contain other relevant side information, such as aliases of relations

RESIDE Architecture

Partl: Syntactic Sentence Encoding

Partl: Syntactic Sentence Encoding

Syntactic Sentence Encoding

Partll: Side Information Acquisition

Syntactic Sentence Encoding

Instance Set Aggregation

PartII: Relation Alias Side Information

Partll: Relation Alias Side Information

Partll: Relation Alias Side Information

Partll: Relation Alias Side Information

Partll: Relation Alias Side Information

Instance Set Aggregation

Instance Set Aggregation

Instance Set Aggregation

	One		Two			All			
	P@100	P@200	P@300	P@100	P@200	P@300	P@100	P@200	P@300
PCNN	73.3	64.8	56.8	70.3	67.2	63.1	72.3	69.7	64.1
PCNN+ATT	73.3	69.2	60.8	77.2	71.6	66.1	76.2	73.1	67.4
BGWA	78.0	71.0	63.3	81.0	73.0	64.0	82.0	75.0	72.0
RESIDE	80.0	75.5	69.3	83.0	73.5	70.6	84.0	78.5	75.6

Table 2: P@N for relation extraction using variable number of sentences in bags (with more than one sentence) in Riedel dataset. Here, One, Two and All represents the number of sentences randomly selected from a bag. RESIDE attains improved precision in all settings.

[ACL19] GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction

Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma Academia Sinica

GraphRel Architecture

• Bi-LSTM + Dependency Edge 🖸 Bi-GCN 🖸 Prediction

Bi-LSTM

$$h_u^0 = Word(u) \oplus POS(u)$$

 $h_u^0 = Word(u) \oplus POS(u)$

 $h_u^{l+1} = h_u^{\stackrel{\rightarrow}{l+1}} \oplus h_u^{\stackrel{\leftarrow}{l+1}},$

Bi-LSTM

$$\begin{split} h_{u}^{\overrightarrow{l}+1} &= ReLU \left(\sum_{v \in \overrightarrow{N}(u)} \left(\overrightarrow{W}^{l} \ h_{v}^{l} + \vec{b}^{l} \right) \right) \\ h_{u}^{\overleftarrow{\leftarrow}} &= ReLU \left(\sum_{v \in \overleftarrow{N}(u)} \left(\overset{\leftarrow}{W}^{l} \ h_{v}^{l} + \overset{\leftarrow}{b}^{l} \right) \right) \end{split}$$

Bi-LSTM

$$h_u^0 = Word(u) \oplus POS(u)$$

Bi-GCN

$$h_{u}^{\overrightarrow{l+1}} = ReLU \left(\sum_{v \in N(u)} \left(\overrightarrow{W} h_{v}^{l} + \overrightarrow{b}^{l} \right) \right)$$

$$h_{u}^{\overleftarrow{l+1}} = ReLU \left(\sum_{v \in N(u)} \left(\overrightarrow{W} h_{v}^{l} + \overleftarrow{b}^{l} \right) \right)$$

$$h_{u}^{l+1} = h_{u}^{\overrightarrow{l+1}} \oplus h_{u}^{\overleftarrow{l+1}},$$

Prediction

$$S_{(w1,r,w2)} = W_r^3 ReLU \left(W_r^1 h_{w1} \oplus W_r^2 h_{w2} \right)$$

 $P_r(w1,w2) = \text{Softmax}(S_{(w1,r,w2)})$

- Categorical loss: eloss_lp, rloss_2p
- Relation Distribution of each word pair

2nd-phase Prediction

• Ist-phase Node Embeddings + Relational Graph D Bi-GCN D Prediction

2nd-phase Prediction

• Relation-weighted Complete graph for each relation

2nd-phase Prediction

• Relation-weighted Complete graph for each relation

$$h_u^{l+1} = \operatorname{ReLU}\left(\sum_{v \in V} \sum_{r \in R} P_r\left(u, v\right) \times \left(W_r^l h_v^l + b_r^l\right)\right) + h_u^l$$

Train & Relation Prediction

Joint training

$$loss_{all} = (eloss_{1p} + rloss_{1p}) + \alpha (eloss_{2p} + rloss_{2p})$$

- Relation Prediction
 - Threshold inference: all word pairs of an entity mention pair are taken into account, choose the most probable class of them if proportion > threshold
 - Default: threshold = 0

Results on NYT and WebNLG datasets

Method		NYT		WebNLG			
Method	Precision	Recall	F1	Precision	Recall	F1	
NovelTagging	62.4%	31.7%	42.0%	52.5%	19.3%	28.3%	
OneDecoder	59.4%	53.1%	56.0%	32.2%	28.9%	30.5%	
MultiDecoder	61.0%	56.6%	58.7%	37.7%	36.4%	37.1%	
$GraphRel_{1p}$	62.9%	57.3%	60.0%	42.3%	39.2%	40.7%	
GraphRel _{2p}	63.9 %	60.0%	$\boldsymbol{61.9\%}$	44.7%	41.1%	42.9%	

Case Study for GraphRel_Ip and GraphRel_2p

Sentence	GraphRel _{1p}	GrapRel _{2p}		
Agra Airport is in India where	(Agra Airport, location, India)	(Agra Airport, location, India)		
one of its leaders is Thakur.	(India, leader_name, Thakur)	(India, leader_name, Thakur)		
In Italy, the capital is Rome and	(Italy, captical, Rome)	(Italy, captical, Rome)		
A.S. Gubbio 1910 is located there.	(Italy, Captical, Kollie)	(A.S. Gubbio 1910, ground, Italy)		
Asam pedas (aka Asam padeh) is	(Asam pedas, alias, Asam padeh)	(Asam pedas, alias, Asam padeh)		
from the Sumatra and Malay	(Asam pedas, region, Malay Peninsula)	(Asam pedas, region, Malay Peninsula)		
Peninsula regions of Malaysia.	(Asam pedas, country, Malaysia)	(Asam padeh, region, Malay Peninsula)		
		(Asam pedas, country, Malaysia)		
		(Asam padeh, country, Malaysia)		

Case Study for GraphRel_Ip and GraphRel_2p

Sentence	GraphRel _{1p}	GrapRel _{2p}		
Agra Airport is in India where	(Agra Airport, location, India)	(Agra Airport, location, India)		
one of its leaders is Thakur.	(India, leader_name, Thakur)	(India, leader_name, Thakur)		
In Italy, the capital is Rome and	(Italy contical Dome)	(Italy, captical, Rome)		
A.S. Gubbio 1910 is located there.	(Italy, captical, Rome)	(A.S. Gubbio 1910, ground, Italy)		
Asam pedas (aka Asam padeh) is	(Asam pedas, alias, Asam padeh)	(Asam pedas, alias, Asam padeh)		
from the Sumatra and Malay	(Asam pedas, region, Malay Peninsula)	(Asam pedas, region, Malay Peninsula)		
Peninsula regions of Malaysia.	(Asam pedas, country, Malaysia)	(Asam padeh, region, Malay Peninsula)		
		(Asam pedas, country, Malaysia)		
		(Asam padeh, country, Malaysia)		

Conclusion

- RNNs and GCNs with dependency tree are complementary
 - RNNs: extract sequential features of text
 - GCNs: extract regional features of text
- GCNs are effective tool for exploiting graph structure in end-to-end learning
 - Graph structure is very important to GCNs

Q&A