

MECH366: Modeling of Mechatronic Systems

L10: Modeling of DC motors

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

- Up to now, we have studied for mechanical and electrical systems
 - How to draw linear graphs
 - How to derive state-space models from linear graphs
- Today, we will study modeling of DC motors.

__ : State variable

Constitutive relation for

	Energy storage element		Energy dissipating element
System type	A-Type	T-Type	D-Type
Mechanical	Mass	Spring	Viscous Damper
(translational)			
v: velocity acros	ss var. $m\underline{\dot{v}} = f$	$\underline{\dot{f}} = kv$	f = bv
f: force through	var. m: mass	k: stiffness	b: damping const.
Electrical	Capacitor	Inductor	Resistor
v : voltage across var. $C\underline{\dot{v}} = i$		$L\underline{\dot{i}} = v$	v = Ri
i: current through C : capacitance		L: inductance	R: resistance
Thermal	Thermal capacitor	None	Thermal resistor
T: temperature	$C_t \dot{T} = Q$		$T = R_t Q$
Q: heat transfer rate	C: thermal capacitance		R_t : thermal resistance
Fluid	Fluid capacitor	Fluid inertor	Fluid resistor
P: pressure difference	$C_f \dot{P} = Q$	$I_f \dot{Q} = P$	$P = R_f Q$
Q: volume flow rate	C_f : fluid capacitance	I_f : fluid inertance	R_f : fluid resistance

power

$$\mathcal{P} = fv$$

$$\mathcal{P} = iv$$

DC motor

 An actuator, converting electrical energy into rotational mechanical energy

(You will see DC motor in Lab #3-#5.)

Why DC motor?

- Advantages
 - high torque
 - speed controllability
 - portability, etc.
- Widely used in mechatronics
 - Robot, drone
 - Tape drives
 - Printers
 - Machine tool industries
 - Radar tracking system, etc.

Example (taken from the optional textbook by Dr. de Silva, p. 131) Robotic hand turning a door-knob

Example Armature circuit & mechanical system

Due to sign convention of transformer

Example Linear graph drawing

Example State-variable selection

- Select the following as state variables:
 - Across variables (v & ω) for A-type elements (C & J)
 - Through variables (i & T) for T-type elements (L & k)

Example Constitutive equations

States

Basic elements

$$v_R = R_a i_R$$
 $L_a \dot{i}_L = v_L$ $\dot{\omega}_J = \frac{1}{J_d} T_J$ $T_d = b_d \omega_d$ $\dot{T}_k = k_d \omega_k$

Transformer (electromechanical)

$$\omega_m = \frac{1}{k_m} v_b$$
$$T_m = -k_m i_b$$

Example Loop and node equations $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} := \begin{bmatrix} i_L \\ \omega_J \\ T_k \end{bmatrix}$

States

12

From loop equations:

$$\begin{cases} v_a = v_R + v_L + v_b \\ \omega_m = \omega_J = \omega_b = \omega_k \end{cases}$$

From node equations:

MECH 366

Example State-space model

$$\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] := \left[egin{array}{c} i_L \ \omega_J \ T_k \end{array}
ight]$$

Input
$$u := v_a$$
 Outputs $y := \begin{bmatrix} \omega_J \\ T_k \end{bmatrix}$

$$\dot{i}_L = \frac{1}{L_a} v_L = \frac{1}{L_a} (v_a - v_R - v_b) = \frac{1}{L_a} (v_a - R_a i_R - k_m \omega_m) = \frac{1}{L_a} (v_a - R_a i_L - k_m \omega_J)$$

$$\dot{\omega}_J = \frac{1}{J_d} T_J = -\frac{1}{J_d} (T_m + T_k + T_b) = -\frac{1}{J_d} (-k_m i_b + T_k + b_d \omega_b) = -\frac{1}{J_d} (-k_m i_L + T_k + b_d \omega_J)$$

$$\dot{T}_k = k_d \omega_k = k_d \omega_J$$

$$y = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right]$$

Example State-space model

States

If the system does not contain rotational spring, and the output contains rotational angle ...

$$\begin{array}{ll} \text{Input} \\ u := v_a & \text{Outputs} \ \ y := \left[\begin{array}{c} \omega_J \\ \theta_J \end{array} \right] \end{array}$$

$$\dot{i}_{L} = \frac{1}{L_{a}} v_{L} = \frac{1}{L_{a}} (v_{a} - v_{R} - v_{b}) = \frac{1}{L_{a}} (v_{a} - R_{a} i_{R} - k_{m} \omega_{m}) = \frac{1}{L_{a}} (v_{a} - R_{a} i_{L} - k_{m} \omega_{J})$$

$$\dot{\omega}_{J} = \frac{1}{L_{d}} T_{J} = -\frac{1}{L_{d}} (T_{m} + T_{d}) = -\frac{1}{L_{d}} (-k_{m} i_{b} + b_{d} \omega_{b}) = -\frac{1}{L_{d}} (-k_{m} i_{a} + b_{d} \omega_{J})$$

 $\theta_J = \omega_J$ (This equation is not from the linear graph.)

$$\begin{array}{c}
\bullet \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -R_a/L_a & -k_m/L_a & 0 \\ k_m/J_d & -b_d/J_d & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1/L_a \\ 0 \\ 0 \end{bmatrix} u \\
y = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Summary

- Modeling of DC motors
 - Linear graph drawing
 - Derivation of the state-space model
- After midterm,
 - Fluid systems
 - Thermal systems
- No homework, no lab this week

Announcement

- Midterm
 - October 11 (Friday), 3-3:50pm in CEME 1215
 - Covers up to today's material
 - Come to class 5-10 min before 3pm.
 - Policies
 - Closed-book, no calculator/PC
 - One page letter-size hand-written cheat-sheet (both sides)
 - Office hours: Any time! (as long as I am in my office.)
 - Study hard! (Read lecture slides, redo the homework questions, past exams.)