Due: April 22nd

- 1. Using the $\delta \epsilon$ condition, show that $f(x) = x^3$ is continuous at an arbitrary $x_0 \in \mathbb{R}$. HINT: $x^3 - x_0^3 = (x - x_0)(x^2 + xx_0 + x_0^2)$.
- 2. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x\chi_{\mathbb{Q}}(x)$. That is, f(x) is 0 for x irrational and is x for $x \in \mathbb{Q}$. Show that f is continuous at 0 and that this is the only point where f is continuous.
- 3. (a) Suppose $f:(a,b)\to\mathbb{R}$ is continuous. Show that if f(r)=0 for each rational number $r\in(a,b)$, then f(x)=0 for all $x\in(a,b)$.
 - (b) Suppose $f, g: (a, b) \to \mathbb{R}$ are continuous. Show that if f(r) = g(r) for each rational number $r \in (a, b)$, then f = g.
- 4. Suppose that $f:[0,2] \to \mathbb{R}$ is continuous and f(0)=f(2). Prove that there $x,y \in [0,2]$ so that |x-y|=1 and f(x)=f(y). HINT: consider g(x)=f(x+1)-f(x) for $x \in [0,1]$.
- 5. Suppose that $f:[a,b]\to\mathbb{R}$ and $g:[b,c]\to\mathbb{R}$ are both continuous and f(b)=g(b). Define $h:[a,c]\to\mathbb{R}$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in [a, b], \\ g(x) & \text{if } x \in (b, c]. \end{cases}$$

Show that h is continuous on [a, c].

6. EXTRA CREDIT: Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies f(u+v) = f(u) + f(v) for all $u, v \in \mathbb{R}$. Show that if f is continuous, then there is some $m \in \mathbb{R}$ so that for all $x \in \mathbb{R}$, f(x) = mx.

HINT: start with u and v integers.