ACTL2131 1.5 - Sequences and Convergence of Random Variables

Tadhg Xu-Glassop 2025T1

Chebyshev's Inequality

Chebyshev's Inequality

For any random variable X with mean μ and variance σ^2 , we have for any $\epsilon>0$,

$$\mathbb{P}(|X - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

Setting $\epsilon = k \cdot \sigma$ gives the more common form,

$$\mathbb{P}(|X - \mu| > k \cdot \sigma) \le \frac{1}{k^2}.$$

Proof (not necessary at all)

Proof.

We prove the latter form given in the previous slide.

$$\sigma^{2} = \mathbb{E}[|X - \mu|^{2}]$$

$$= \int_{-\infty}^{\infty} |x - \mu|^{2} f(x) dx$$

$$= \int_{|x - \mu| < k\sigma} |x - \mu|^{2} f(x) dx + \int_{|x - \mu| \ge k\sigma} |x - \mu|^{2} f(x) dx$$

$$\geq \int_{|x - \mu| \ge k\sigma} |x - \mu|^{2} f(x) dx$$

$$\geq \int_{|x - \mu| \ge k\sigma} k^{2} \sigma^{2} f(x) dx \quad \text{using inequality in bound,}$$

$$= k^{2} \sigma^{2} \cdot \mathbb{P}(|X - \mu| \ge k\sigma).$$

Rearranging and letting $k = \epsilon/\sigma$ gives the result.

Convergence

From here, we discuss the behaviour of a sequence of random variables, denoted X_1, X_2, \ldots, X_n . We denote the *i*th element of the sequence X_i .

Convergence in Probability

Convergence in Probability

we say X_n converges in probability to the random variable X as $n \to \infty$ iff, for every $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0$$
, as $n \to \infty$,

and we write $X_n \xrightarrow{p} X$ as $n \to \infty$.

In English, as we observe more and more of our sequence X_n , it will approach a certain value X.

Law of Large Numbers

Let X_1, X_2, \ldots, X_n be independent random variables with common mean and variance, so $\mathbb{E}[X_k] = \mu$ and $\text{Var}(X_k) = \sigma^2$ for $k \in \mathbb{Z}^+$. Then, the sample mean converges in probability to μ , that is,

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{p} \mu.$$

This is very intuitive and even more powerful!

Convergence in Distribution

We say X_n converges in distribution to the random variable X as $n \to \infty$ iff, for every x,

$$F_{X_n}(x) \to F_X(x), \quad n \to \infty,$$

and we write $X_n \stackrel{d}{\rightarrow} X$

Again in English, as we observe more and more of our sequence, it will start to follow a particular distribution.

Remark: It doesn't have to be the CDF particularly - we could equivalently show the PDF or the MGF converges to that of a particular distribution.

Motivating the CLT

Let $X \sim \text{Gamma}(1,1)$, and consider an experiment where we generate an n size sample and compute the sample mean, \bar{X} .

If we do this process, say, 1,000 times and plot our results, what will it look like?

Sample Means, \bar{X} , n = 10,000

$$X \sim \text{Gamma}(1, 1), n = 10,000$$

Sample Means, \bar{X} , $n = 10{,}000$

$$X \sim \text{Gamma}(1,1), n = 10,000$$

Sample Means, \bar{X} , n = 1,000,000

$$X \sim \text{Gamma}(1,1), \ n = 1,000,000$$

Sample Means, \bar{X} , n = 1,000,000

$$X \sim \text{Gamma}(1,1), n = 1,000,000$$

Motivating CLT (cont.)

OK! So increasing the sample size reduces the variance of the sample mean.

But what about changing the variance of the actual random variable itself?

Sample Means, \bar{X} , $n=10{,}000$

$$X \sim \text{Gamma}(1,1), n = 10,000$$

$$\mathbb{E}[X] = 1, \mathsf{Var}(X) = 1.$$

Sample Means, \bar{Y} , n = 10,000

$$Y \sim \text{Gamma}(0.4, 0.4), n = 10,000$$
 $\mathbb{E}[Y] = 1, \text{Var}(Y) = 2.5$

$$\mathbb{E}[Y] = 1, \mathsf{Var}(Y) = 2.5$$

Sample Means, \bar{Y} , n = 10,000

$$Y \sim \text{Gamma}(0.4, 0.4), n = 10,000$$
 $\mathbb{E}[Y] = 1, \text{Var}(Y) = 2.5$

Motivating CLT (cont.)

It should be clear that the distribution of \bar{X} must,

- Have mean $\mathbb{E}[X]$,
- Have variance proportional to Var(X),
- The variance should vanish to 0 as *n* becomes large,
- The PDF has a familiar bell curve shape...

Central Limit Theorem

Central Limit Theorem

Let X_1, X_2, \ldots, X_n be independent, identically distributed (iid) random variables with **finite** mean and variance, μ and

$$\sigma^2$$
. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then,

$$\bar{X}_n \xrightarrow{d} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

Further,

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1).$$

Central Limit Theorem (cont.)

It is easy to show (MGF technique), that if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $nX \sim \mathcal{N}(n\mu, n^2\sigma^2)$.

Central Limit Theorem (cont.)

It is easy to show (MGF technique), that if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $nX \sim \mathcal{N}(n\mu, n^2\sigma^2)$.

Corollary

Let X_1, X_2, \ldots, X_n be independent, identically distributed (iid) random variables with **finite** mean and variance, μ and σ^2 . Then,

$$n \cdot \bar{X}_n = \sum_{i=1}^n X_i \xrightarrow{d} \mathcal{N}(n\mu, n\sigma^2).$$

Tutorial Questions

1.4.9, 1.5.2, 1.5.7, 1.5.3 (hint: use Chebyshev)