Information Retrieval

Venkatesh Vinayakarao

Term: Aug – Dec, 2018 Indian Institute of Information Technology, Sri City

Mission defines strategy, and strategy defines structure.

- Peter Drucker.

Documents with Structure

- So far, we discussed unstructured text.
- Many documents in reality have a structure.
 - They are composed of Zones and Fields.

Identify Some Key Components

How do top students study?

Top students aren't always the few who study throughout their "waking hours".

I discovered goal of my life only after observing lives of two of my **Topper**

How to search effectively when components exist?

motors while other became a Licenced contractor of his town.

Zones and Fields

 A document is associated with metadata which are useful in search.

METADATA Fields

filename
author
title
date of creation

- Sample Query: find documents authored by William Shakesphere in 1601 containing the phrase "you brutus"
- Sample Query: find documents with merchant in the title and william in the author list and the phrase gentle rain in the body

Zones and Fields

- Zones are arbitrary free text.
- Fields may take relatively small set of values.
 - Fields may call for range query (year between 1600 and 1700) support

How to index zones and fields?

Quiz

- Assume we are indexing stackoverflow data. Which of the following are zones?
 - question
 - answer
 - number of answers
 - comments
 - number of comments
 - code blocks

Quiz

- Assume we are indexing stackoverflow data. Which of the following are zones?
 - question
 - answer
 - number of answers
 - comments
 - number of comments
 - code blocks

Indexing Zones and Fields

- Create separate Index for each field and each zone.
 - Standard Inverted Index +
 - Parametric Indexes (one for each field) +
 - Zone Indexes (one for each zone)

Is there a better way to index zones and fields?

We can do better...

Encode zones in postings.

Weighted Zones

- Not all zones are equally important!
- Consider a collection where documents have three zones (l = 3):
 - author (least important)
 - title (more important)
 - body (most important)
- We can associate a weight, gi to each zone
 - author $(g_1 = 0.2)$
 - title $(g_2 = 0.3)$
 - body $(g_3 = 0.5)$

$$\sum_{i=1}^{l} g_i = 1$$

$$g_i \in [0,1]$$

Weighted Zone Scoring

- If all query terms appear in ith zone,
 - we say $s_i = 1$.
- Then, we score the document as

$$\sum_{i=1}^{l} g_{i} S_{i}$$

Quiz

- Consider a collection with the following zone weights
 - author $(g_1 = 0.2)$
 - title $(g_2 = 0.3)$
 - body $(g_3 = 0.5)$
- If the term *Shakespeare* were to appear in the title and body zones but not in author zone, the score of the document would be **0.8** .

Weighted Zone Scoring on Inverted Index

A Match Found? Add g_i to an array score[docID]. This array is often called Accumulator.

How to assign zone weights?

How do top students study?

Top students aren't always the few who study throughout their "waking hours".

I discovered goal of my life only after observing lives of two of my **Topper**

motors while other became a Licenced contractor of his town.

Machine Learned Relevance

- Use human annotated training examples
- Consider:
 - Only two zones exist: title and body.
 - $S_T(d,q)=1$ if query term exists in title.
 - $S_{R}(d,q)=1$ if query term exists in body.

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6 Φ_7	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

Learning Weights (without ML)

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

Judgment of 1 implies the document is relevant.

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	?
system	238	0	1	?
kernel	1741	1	1	?
driver	2094	0	1	?

Assume zone weights: title ($g_1 = 0.3$) and body ($g_2 = 1 - 0.3 = 0.7$)

Learning Weights

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	0.7
kernel	1741	1	1	1
driver	2094	0	1	0.7

Quiz

• If g is the title weight, how to quantify the error?

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

S _T	S _B	Score
0	0	0
0	1	1 - g
1	0	g
1	1	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	1 – g
kernel	1741	1	1	1
driver	2094	0	1	1 - g

Learning Weights

$$score = g.sT + (1 - g).sB$$

Then the error,

$$\epsilon$$
 = (relevance – $score$)²

Our objective is to find g such that we minimize the total error,

$$\sum_{all\ documents} \epsilon$$

For the 01 Case...

How to quantify the error?

Query	DocID	User Judgment
linux	37	1
system	238	1
kernel	1741	1
driver	2094	1

S _T	S _B	Score
0	0	0
0	1	1 - g
1	0	g
1	1	1

Query	DocID	In Title? (S _T)	In Body? (S _B)	Our Score
linux	37	1	1	1
system	238	0	1	1 – g
kernel	1741	1	1	1
driver	2094	0	1	1 - g

^{*}What if we have non-relevant judgments also?

For 01 case...

Error =
$$[1 - (1 - g)]^2 n_{01r} + [0 - (1 - g)]^2 n_{01n}$$
.

Total Error

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1-g)^2 + n_{00r} + n_{11n}$$

Can you guess the optimal value of g for which the total error is minimum?

Total Error

$$(n_{01r} + n_{10n})g^2 + (n_{10r} + n_{01n})(1-g)^2 + n_{00r} + n_{11n}$$

Differentiate w.r.t g and equate to zero

$$\frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}}$$

Thank You!