# Raport pracy domowej #5

Metody Losowe Optymalizacji Globalnej

Piotr Podbielski 11 maja 2020

## 1 Cel pracy domowej

Celem pracy domowej jest:

- 1. zaimplementowanie algorytmów: Evolution Strategy, Biological Evolution (pol. algorytm ewolucyjny), Particle Swarm Optimization oraz Differential Evolution,
- 2. porównanie działania powyższych algorytmów z poprzednio zaimplementowanymi algorytmami, w szczególności z algorytmem *Hill Climbing* (należy zwrócić uwagę na sprawiedliwe porównywanie metod jednopunktowych z populacyjnymi),
- 3. napisanie raportu zawierającego: (1) wykresy zbieżności algorytmów, (2) wnioski.

### 2 Przebieg wykonywania zadania

### 2.1 Zebranie zbioru wartości hiperparametrów dla poprzednio zaimplementowanych algorytmów

Wyniki w ramach poprzednich prac domowych były uzyskiwane z wykorzystaniem hiperparametrów, które były wybierane metodą empiryczną (manualnie). W ramach ostatniej pracy domowej, która ma na celu implementacje różnych algorytmów postanowiono dopisać moduł przeszukujący przestrzeń hiperparametrów w celu odnalezienia optymalnej konfiguracji algorytmów. Tablice 1, 2, 3, 4 ukazują wartości poszczególnych hiperparametrów dla pewnych algorytmów.

#### 2.2 Zaimplementowanie algorytmu Evolution Strategy

Wszelkie algorytmy zaimplementowane w ramach tej pracy domowej zostały zaimplementowane na podstawie pseudokodów udostępnionych przez prowadzącego w [1]. Algorytm *Evolution Strategy* został zaimplementowany 1 : 1. Tablica 5 przedstawia wartości optymalnych hiperparametrów uzyskanych poprzez uruchomienie algorytmu z 500 różnymi konfiguracjami. Każda konfiguracja przeliczana była 500 razy, a następnie końcowy wynik był uśredniany co pozwalało na porównanie różnych zestawów hiperparametrów.

W przypadku obu funkcji jako optymalna wartość parametru *Step mutation coefficient* została wybrana liczba 0.990, co oznacza, że w tym wypadku opłaca się modyfikować obszar przeszukiwań (*step*, będący odchyleniem standardowym) o małe wartości.

Tablica 1: Optymalne wartości hiperparametrów dla algorytmu Hill Climbing.

| Nazwa                         | Wartość dla funkcji |            |
|-------------------------------|---------------------|------------|
| Nazwa                         | Rosenbrocka         | Rastrigina |
| Failures to reset             | 49                  | 14         |
| Step                          | 0.211               | 0.030      |
| Reset resets failures counter | False               | False      |

Tablica 2: Optymalne wartości hiperparametrów dla algorytmu Hill Climbing with Adaptive Step Size.

| Nazwa               | Wartość dla funkcji |            |
|---------------------|---------------------|------------|
| INazwa              | Rosenbrocka         | Rastrigina |
| Number of particles | 13                  | 11         |

Tablica 3: Optymalne wartości hiperparametrów dla algorytmu Bit Switch Hill Climbing.

| Nazwa                                         | Wartość dla funkcji |            |
|-----------------------------------------------|---------------------|------------|
| Nazwa                                         | Rosenbrocka         | Rastrigina |
| Failures to reset                             | 13                  | 1          |
| Step                                          | 8                   | 2          |
| Reset resets failure counter                  | True                | False      |
| Number of bits for grid mapping per dimension | 6                   | 15         |

Tablica 4: Optymalne wartości hiperparametrów dla algorytmu Bit Switch Hill Climbing with Variable Neighborhood Search.

| Nazwa                                         | Wartość dla funkcji |            |
|-----------------------------------------------|---------------------|------------|
| Nazwa                                         | Rosenbrocka         | Rastrigina |
| Neighbor looks                                | 350                 | 800        |
| Number of bits for grid mapping per dimension | 16                  | 29         |

Tablica 5: Optymalne wartości hiperparametrów dla algorytmu Evolution Strategy

| Nazwa                        | Wartość dla funkcji |            |
|------------------------------|---------------------|------------|
| Nazwa                        | Rosenbrocka         | Rastrigina |
| Improvements loop iterations | 600                 | 2000       |
| Step                         | 0.048               | 0.906      |
| Step mutation coefficient    | 0.990               | 0.990      |

Tablica 6: Optymalne wartości hiperparametrów dla algorytmu Biological Evolution.

| Nazwa                | Wartość dla funkcji |            |
|----------------------|---------------------|------------|
| Nazwa                | Rosenbrocka         | Rastrigina |
| Population           | 39                  | 40         |
| Crossover population | 19                  | 19         |
| Mutation probability | 1                   | 0.004      |
| Mutation step        | 0.471               | 1.670      |

Tablica 7: Optymalne wartości hiperparametrów dla algorytmu Particle Swarm Optimization.

| Nazwa               | Wartość dla funkcji |            |
|---------------------|---------------------|------------|
| Nazwa               | Rosenbrocka         | Rastrigina |
| Number of particles | 39                  | 40         |
| Omega               | -0.084              | -0.077     |
| C1                  | 1.071               | 0.903      |
| C2                  | 2.052               | 2.302      |

#### 2.3 Zaimplementowanie algorytmu Biological Evolution

Algorytm Biological Evolution został zaimplementowany w następujący sposób:

- krzyżowanie arytmetyczne uśredniające, dla każdego wymiaru osobno losowane dwa punkty,
- mutacja arytmetyczna Gauss'a z pewnym prawdopodobieństwem jej wykonania,
- selekcja elitarna.

Tablica 6 przedstawia wartości optymalnych hiperparametrów uzyskanych dla algorytmu *Biological Evolution* (pol. *Algorytmu Ewolucyjnego*).

Ciekawą pracą w przyszłości mogłoby być zaimplementowanie innych sposobów selekcji i porównanie wyników uzyskanych dla tych sposobów z wynikami umieszczonymi w wykładzie przez prowadzącego.

### 2.4 Zaimplementowanie algorytmu Particle Swarm Optimization

Algorytm  $Biological\ Evolution$  został zaimplementowany zgodnie z pseudokodem umieszczonym w wykładzie, z zaznaczeniem, że  $p_{best}$  to najlepszy punkt uzyskany do czasu t, a  $g_{best}$  to punkt będący najbliższym sąsiadem punktu, który obecnie jest ewaluowany. Najbliższy sąsiad wyznaczany jest z użyciem metryki euklidesowej.

Tablica 7 przedstawia wartości optymalnych hiperparametrów uzyskanych dla algorytmu *Particle Swarm Optimization* (pol. *Optymalizacja Rojem Cząstek*).

#### 2.5 Zaimplementowanie algorytmu Differential Evolution

Podczas implementacji algorytmu Biological Evolution dwie rzeczy były istotne:

- 1. jaki zakres parametru F przeszukiwać,
- 2. w jaki sposób zaimplementować krzyżowanie.

Ze względu na brak doprecyzowania w wykładzie, zdecydowano się przeszukiwać zakres od 0 do 1 dla parametru F. Krzyżowanie zaś zaimplementowano na zasadzie podmiany wartości danego wymiaru pomiedzy dwoma punktami x i v.

Tablica 8 przedstawia wartości optymalnych hiperparametrów uzyskanych dla algorytmu Differential Evolution.

### 2.6 Wygenerowanie wykresów

Zgodnie z prośbą prowadzącego, wygenerowano wymagane wykresy.

Tablica 8: Optymalne wartości hiperparametrów dla algorytmu Differential Evolution.

| Nazwa        | Wartość dla funkcji |            |
|--------------|---------------------|------------|
| INAZWA       | Rosenbrocka         | Rastrigina |
| Population   | 19                  | 34         |
| $\mathbf{F}$ | 0.511               | 0.505      |

#### 2.6.1 Wykresy zbieżności

Wykresy zbieżności algorytmów wykonano dla funkcji Rosenbrock'a oraz Rastrigin'a. Zostały na nich przedstawione porównania algorytmów:

- Biological Evolution (BE),
- Bit Switch Hill Climbing (BSHC),
- Bit Switch Hill Climbing with Variable Neighbourhood Search (BSHC + VNS).
- Differential Evolution (DE),
- Evolution Strategy (ES),
- Hill Climbing (HC),
- Hill Climbing with Adaptive Step Size (HC + AdSS),
- Particle Swarm Optimization (PSO).

Z porównania wyłączono algorytmy Grid Search, Monte Carlo oraz Simulated Annealing.

Podczas generowania wykresów zrezygnowano ze wstąg obrazujących wartość odchylenia standardowego, ponieważ zaciemniały one obraz. Wyniki dla każdego algorytmu uśredniane są z 500 wykonań tego algorytmu dla tego samego zestawu parametrów. Dzięki tak dużej liczbie wywołań ukryte wartości odchylenia standardowego są redukowane.

Wykres dla funkcji Rosenbrock'a został przedstawiony na rysunku 1.



Rysunek 1: Wykres porównujący wyniki optymalizacji z użyciem różnych algorytmów. Optymalizacja wykonana została dla funkcji Rosenbrock'a. Linie przedstawiają wartość średnią z 500 wywołań procesu optymalizacji.

Wykres dla funkcji Rastrigin'a został przedstawione na rysunku 2.



Rysunek 2: Wykres porównujący wyniki optymalizacji z użyciem różnych algorytmów. Optymalizacja wykonana została dla funkcji *Rastrigin*'a. Linie przedstawiają wartość średnią z 500 wywołań procesu optymalizacji.

## 3 Implementacja

Ze względu na objętość kodu napisanego w ramach 5. pracy domowej oraz ogólną dobrą jakość kodu, kod implementacji dostępny jest na portalu GitHub w repozytorium VictorAtPL/random-global-optimization-methods.

#### 4 Wnioski

Analizując rysunki 1 oraz 2 ciężko jest jednoznacznie stwierdzić, czy metody wielopunktowe (populacyjne) mają przewagę nad metodami jednopunktowymi. Na wykresie dla funkcji *Rastrigin*'a widać, że metoda jednopunktowa BSHC zbiega szybciej niż inne metody. Dla funkcji *Rosenbrock*'a, ta sama metoda jednopunktowa BSHC zbiega najszybciej, ale nie do optimum globalnego. Do optimum globalnego zbiega zaś metoda HC + AdSS wprowadzająca do metody jednopunktowej, jaką jest *Hill Climbing*, elementy metod populacyjnych do kontroli kroku skoków.

W przypadku metod losowej optymalizacji globalnej pozytywnym aspektem jest to, że metoda może być prosta, a hiperparametry dla niej możemy odnaleźć pół-automatycznie (na przykład dzięki bibliotece HyperOpt w j. Python). Niestety nadal nie rozstrzygniętą w ramach zajęć kwestią jest pytanie, czy metody te nadadzą się do bardziej skomplikowanych funkcji, niż dwuwymiarowe funkcje Rastrigin'a i Rosenbrock'a.

## Bibliografia

[1] Michał Okulewicz. Populacyjne algorytmy optymalizacji globalnej. [Online; accessed 11. May 2020]. Kw. 2020. URL: http://www.mini.pw.edu.pl/~okulewiczm/downloads/mlog/MLOG\_03\_ES\_EA\_PSO\_DE.pdf.