Week 3 – Data Link Layer

COMP90007 Internet Technologies

Lecturer: Ling Luo

Semester 2, 2020

The Data Link Layer in OSI and TCP/IP

- Reliable, efficient communication of "frames" between two adjacent machines.
- Handles transmission errors and flow control.

Functions of the Data Link Layer

- Functions of the data link layer:
 - Provide a well-defined service interface to network layer
 - 2. Handling transmission errors
 - 3. Data flow regulation
- Primary process:
 - Take <u>packets</u> from network layer, and encapsulate them into <u>frames</u> (containing a header, a payload, a trailer)

Relation Between Packets and Frames

Link layer accepts <u>packets</u> from the network layer, and encapsulates them into <u>frames</u> that it sends using the physical layer; reception is the opposite process

Typical Implementation

Type of Services

- Connection-Oriented vs Connectionless: Whether a connection is setup before sending a message
- Acknowledged vs Unacknowledged: Whether the receiver gives the sender an acknowledgement upon receiving the message

Services Provided to Network Layer

 Transferring data from the network layer on source host to the network layer on destination host

- Services provided:
 - Unacknowledged connectionless service
 - Acknowledged connectionless service
 - Acknowledged connection-oriented service

Unacknowledged Connectionless Service

- Source host transmits independent frames to recipient host with no acknowledgement
- No logical connection establishment or release
- No lost frame recovery mechanism (or left to higher levels)
- Applications:
 - Ethernet LANs
 - Real-time traffic, e.g. voice

Acknowledged Connectionless Service

- Source host transmits independent frames to recipient host with acknowledgement
- No logical connection establishment or release
- Each frame is individually acknowledged, and retransmitted if lost or errors
- Application: Wireless IEEE 802.11 WiFi

Acknowledged Connection-Oriented Service

- Source host transmits independent frames to recipient host after connection establishment and with acknowledgement
- Connection established and released (communicate rate and details of message)
- Frames numbered, counted, acknowledged with logical order enforced
- Application: Unreliable links such as satellite channel or long-distance telephone circuit

Framing (1)

- Framing: breaks raw bit stream into discrete units
- Physical layer provides no guarantee a raw stream of bits is error free
- The primary purpose of framing is to provide some level of reliability over the unreliable physical layer
- Checksums can be computed and embedded at the source, then computed and compared at the destination checksum = f(payload)

Framing (2)

- Methods:
 - Character (Byte) count
 - Flag bytes with byte stuffing
 - Start and end flags with bit stuffing
- Most data link protocols use a combination of character count and one other method

Character Counts

 Uses a field in the frame header to specify the number of characters in a frame

Flag Bytes with Byte Stuffing

Each frame starts and ends with a special byte -"flag byte"

Start and End Flags with Bit Stuffing

- Frames contain an arbitrary number of bits
- Each frame begins and ends with a special bit pattern01111110

(c) 01101111111111111110010

Destuffing at receiver

Insert 0 after five ones (11111)

Error Control

- Adding check bits to ensure that a garbled message by the physical layer is not considered as the original message by the receiver
- Error Control deals with
 - Detecting the error
 - Correcting the error
 - Re-transmitting lost frames

Error Detection and Correction (1)

- Physical media may be subject to errors
- Errors may occur <u>randomly or in bursts</u>
 - Single-bit error
 - Burst error: two or more bits have changed

Bursts of errors are easier to detect but harder to resolve

Error Detection and Correction (2)

Resolution needs to occur before handing data to network layer

- Key issues
 - Fast mechanism and <u>low computational overhead</u>
 - Minimum amount of extra bits send with the data
 - Detection of different kinds of error

Example

- Repeat the bits, if a copy is different than the other, there is an error
 - 01101 -> 000 111 111 000 111
- What is the overhead?
- How many errors can receiver detect?
- How many errors can receiver correct?
- What is the minimum number of errors that can fail the algorithm?

Error Bounds – Hamming distance

- Code turns data of n bits into codewords of n+k bits
- Hamming distance is the minimum bit flips to turn one valid codeword into any other valid one.
 - Example with 4 codewords of 10 bits (n=2, k=8):
 - 0000000000

Hamming distance is 5

- 0000011111
- **11111100000**
- 11111111111
- Bounds for a code with distance:
 - 2d+1 can correct d errors (e.g., 2 errors above)
 - d+1 can detect d errors (e.g., 4 errors above)

Error Bounds

Q: Why can a code with distance 2d+1 **correct** up to d errors?

- Errors are corrected by mapping a received invalid codeword to the nearest valid codeword, i.e., the one that can be reached with the fewest bit flips
- If there are more than d bit flips, then the received codeword may be closer to another valid codeword than the codeword that was sent

Example: Sending 000000000 with 2 flips might give 1100000000 which is closest to 000000000, correcting the error.

But with 3 flips 1110000000 might be received, which is closest to 1111100000, which is still an error