8.1

G. Find all intervals on which the sequence $f_n(x) = \frac{x^{2n}}{n+x^{2n}}, n \ge 1$, converges uniformly.

This function is asymptotic with f(x)=1 and $f_n(0)=0$. Further, we notice that if $|x|\leq 1$ then we can make the denominator infinitely large, but the numerator will never be larger than 1, therefore for any ε we can find some N such that if $n\geq N$ then $f_n(x)\leq \varepsilon$ and so on the interval [-1,1] we see that f_n converges to f=0. Now if |x|>1 then we notice that the second derivatives of the top and bottom are both the same, so L'Hôpital tells us that we must converge to f=1. Now our problem spot is -1,1. Our maximum f_n in the case of $|x|\leq 1$ is at the ones. Obviously we can make $\frac{1}{n+1}$ as small as we want, so any subinterval of [-1,1] will converge uniformly. Now lets pick $\varepsilon=\frac{1}{2}$. If we can find some $f_n(x)\leq \frac{1}{2}$ for some $x\in (1,\infty)$ and for any n then we have a problem.

$$\frac{1}{2} = \frac{x^{2n}}{n + x^{2n}}$$
$$n = x^{2n}$$
$$x = \pm \sqrt[2n]{n}$$

That's a strange number but it is bigger than one, so the function does not converge uniformly the interval $(1,\infty)$. We should be fine though if we choose any subinterval of $[a,\infty)$ where a>1. And the same thing for negatives.

H. Suppose that $f_n:[0,1]\to\mathbb{R}$ is a sequence of C^1 functions (i.e., functions with continuous derivatives) that converges pointwise to a function f. If there is a constant M such that $||f'_n||_{\infty} \leq M$ for all n, then prove that (f_n) converges to f uniformly.

If we assume that M

I. Prove **Dini's Theorem**: if f and f_n are continuous functions on [a, b] such that $f_n \leq f_{n+1}$ for all $n \geq 1$ and (f_n) converges to f pointwise, then (f_n) converges to f uniformly.

HINT: Work with $g_n = f - f_n$ which decrease to 0. Show that for any point x_0 and $\varepsilon > 0$, there are an integer N and a positive r > 0 such that $g_N(x) \le \varepsilon$ on $(x_0 - r, x_0 + r)$. If convergence is not uniform, say $\lim ||g_n||_{\infty} = d > 0$, find x_n such that $\lim g_n(x_n) = d$. Obtain a contradiction.

If we can show that $g_n = f - f_n$ converges uniformly to g = 0 then we will have an equivalent result. Naturally if f and f_n are continuous functions, then g_n must also be continuous. Thus we know that for any $\varepsilon > 0$ and $x_0 \in [a, b]$ we can find some r > 0 and N for all x such that $|x - x_0| < r$ will satisfy $|g_N(x) - g_N(x_0)| < \varepsilon$. That is to say we can find some range

 $(x_0 - r, x_0 + r)$ where $g_N(x) \le \varepsilon$. And because g_n is monotonic, then $g_k(x) \le \varepsilon$ for all $k \ge N$ and $x \in (x_0 - r, x_0 + r)$

J. Find an example which shows that Dini's Theorem is false if [a, b] is replaced with a non compact subset of \mathbb{R} .

If we take $f_n(x) = -\left(\frac{x}{n}\right)^2$ then we have a function that converges pointwise to f(x) = 0 and $-\left(\frac{x}{n}\right)^2 \le -\left(\frac{x}{n+1}\right)^2$ for all $n \in \mathbb{N}$ and $x \in [0, \infty)$. If we have a compact subset we can get uniform convergence with this thing, but if we look at say $[0, \infty)$ then we see that no matter how small ε is, if we go far enough out, we can always find some $x \in [0, \infty)$ such that $f_n(x) > \varepsilon$ for any n no matter how big.

- K. (a) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous. Let $f_n(x) = f(x+1/n)$. Prove that f_n converges uniformly to f on \mathbb{R} . If we choose any $\varepsilon > 0$ then we know we can find some $\delta > 0$ so that if $||x-y|| < \delta$ then $||f(x)-f(y)|| < \varepsilon$. That is uniform continuity. So then we just need to pick N large enough that $1/N < \delta$ and we have $||f(x)-f(x+1/n)|| < \varepsilon$ for all $n \geq N$.
 - (b) Does this remain true if f is just continuous? Prove it or provide a counterexample.

It does not remain true. Take $f(x)=x^2$ for example. If we choose $\varepsilon=1$ then we should be able to find some N so that $|x^2-(x+1/n)^2|<1$ for all $x\in\mathbb{R}$ and $n\geq N$. But this implies that $|2x/n+1/n^2|<1$ which is clearly false for all $x\geq \frac{1}{2n}$ no matter how big we make n.