1. Simulation – Parameter Tuning

<model 1>

 $Y_1 = \sin(\beta_1^T X) + \sin(\beta_2^T X) + 0.5\varepsilon$

n=300, p=40

Case (1) : true beta 0 개수 78개	Sparse DR					
Case (1)	method	р	corr1	corr2	mse1	mse2
$\beta_1 = (1, 0, \dots, 0)^{T} \beta_2 = (0, 1, 0, \dots, 0)^{T}$	dr	0.00	0.7092513	0.12164155	2.602801	1.965467
$\lambda 1 = 0.1, 0.05$	sparse dr	77.16	0.8865939	0.06533786	2.749936	1.929122
$\lambda 2 = 0.05$						
slice 개수: 4개						
Case (1)	method	p	corr1	corr2	mse1	mse2
$\beta_1 = (1, 0, \dots, 0)^{T} \ \beta_2 = (0, 1, 0, \dots, 0)^{T}$	dr			0.1045944	2.838022	1.963565
$\lambda 1 = 0.1, 0.01$	sparse	62.33	0.892805	0.4696206	2.952623	2.441872
$\lambda 2 = 0.01$	dr					
slice 개수: 10개						
Case (1) -처음 결과	method	p	corr1	corr2	mse1	mse2
$\beta_1 = (1, 0, \dots, 0)^{T} \ \beta_2 = (0, 1, 0, \dots, 0)^{T}$	dr	0.00	0.7092513	0.12164155	2.602801	1.965467
$\lambda 1 = 0.01, 0.01$	sparse dr	59.94	0.7548557	0.07432311	2.724729	2.125324
$\lambda 2 = 0.01$	ui					
slice 개수: 4개						

Case (2) : true beta 0 개수 60개	Sparse DR					
Case (2) $\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.00,0)$	method dr	p 0.00	corr1 0.1373907	corr2 0.1228866	mse1 2.074601	mse2 1.904770
$\beta_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$ $\lambda 1 = 0.05, 0.01$	sparse dr	62.66	0.1829674	0.1011862	2.230346	2.137052
λ2 = 0.01 slice: 107ዘ						
Case (2)	method	р	corr1	corr2	mse1	mse2
: $\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.0,00,0)$	dr	0.00	0.1391564	0.1217259	2.140710	1.942375
$\beta_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$ $\lambda 1 = 0.05, 0.01$	sparse dr	66.65	0.1422226	0.1467648	2.127528	2.093356
$\lambda 2 = 0.01$						
slice: 4개						

Case (2)	method	р	corr1	corr2	mse1	mse2
$\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,0,00,0)$	dr	0	0.1416286	0.1105666	2.086301	1.882642
$B_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$	sparse dr	78	0.1094201	0.1119920	2.069400	1.972753
$\lambda 1 = 0.05, 0.05$						
λ2 = 0.01	lambda를	키웠더	니 beta	0의 개수	가 너무	많게 나
slice: 4개						
Case (2)—가장 처음 결과	method	р	corr1	corr2	mse1	mse2
$\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,0,00,0)$	dr	0.00	0.1395863	0.1152813	2.099900	1.933958
$B_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$	sparse dr	55.27	0.1792127	0.1335033	2.245751	2.133104
\1 = 0.01, 0.01						
λ2 = 0.01						
slice: 4개						

Case (3) : true beta 0 개수 60개	Sparse DR	}				
Case (3)	method	р	corr1	corr2	mse1	mse2
: $\beta_1 = (1,1,1,1,1,1,1,1,1,1,1,0,00,0)$	dr	0.00	0.1543846	0.1349226	2.146090	1.944538
$\beta_2 = (0,00,0,0,1,1,1,1,1,1,1,1,1,1)$	sparse dr	77.96	0.1269302	0.1231912	2.113108	1.934631
$\lambda 1 = 0.05, 0.05$		느려다		. 00l 7ll/		 많게 나옴
$\lambda 2 = 0.05$	IaIIIDUa宣	ᆯᄍᄓ	-i -i beta	3 041 7117		녀게 나눔
slice: 10개						
5 (2)						
Case (3)	method	р	corr1	corr2	mse1	mse2
: β ₁ =(1,1,1,1,1,1,1,1,1,1,0,00,0)	dr	0.00	0.1610913	0.1147005 2.	078947 1.9	23570
$\beta_2 = (0,00,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	sparse dr	63.01	0.2124721	0.1095257 2.	.088260 2.1	62515
λ1 = 0.1, 0.01						
$\lambda 2 = 0.01$						
slice: 10개						
Cara (2) 7151 H S 7171						
Case (3)—가장 처음 결과	method	р				mse2
$: \beta_1 = (1,1,1,1,1,1,1,1,1,1,0,00,0) $	dr	0.00	0.1407008	5 0.1310424	2.094963	1.959305
$\beta_2 = (0,00,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	sparse dr	55.28	0.204340	0.1515334	2.277170	2.051917
λ1 = 0.01, 0.01						
λ2 = 0.01						
slice: 4개						

<model 2>

$$Y_2 = \frac{\beta_1^T X}{0.5 + (2\beta_2^T X + 0.3)^2} + 0.3\varepsilon$$
, n=300, p=50

Case(1): : true beta 0 개수 98개	Sparse DR	}					
Case (1)	method	р	corr1	corr2	mse1	mse2	
$\beta_1 = (1, 0, \dots, 0)^{T}, \beta_2 = (0, 1, 0, \dots, 0)^{T}$	dr	0	0.8344419	0.1473274	0.3430334	2.111377	
λ1 = 0.1, 0.1	sparse dr	98	1.0000000	0.5477459	0.0000000	1.223341	
$\lambda 2 = 0.1$							
slice: 10개							
Case (1) - 가장 처음 결과	method	р	corr1	corr2	mse1	mse2	
$\beta_1 = (1, 0, \dots, 0)^T, \beta_2 = (0, 1, 0, \dots, 0)^T$	dr	0.00	0.8219249	0.2578787	0.36904806	1.966568	
λ1 = 0.01, 0.01	sparse dr	79.11	0.9833684	0.4017083	0.03622688	2.077622	
$\lambda 2 = 0.01$							
slice: 4개							

Case(2) : : true beta 0 개수 80개	Sparse DR
Case (2)	method p corr1 corr2 mse1 mse2
$\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,0,00,0)$	dr 0.00 0.7676112 0.1834386 3.420411 2.004947
$\beta_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$	sparse 97.84 0.5064309 0.1217545 2.915175 2.048526
λ1 = 0.05, 0.05	
λ2 = 0.01	lambda를 늘렸더니 beta 0의 개수가 너무 많게 나옴
slice: 10개	
Case (2)	method p corr1 corr2 mse1 mse2
$\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0,00,0)$	dr 0.0 0.7676112 0.1834386 3.420411 2.004947
$\beta_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1)$	sparse 80.7 0.4086287 0.1507352 2.542006 2.208538
λ1 = 0.05, 0.01	u u
$\lambda 2 = 0.01$	
slice: 10개	
Silect 107	
C (2) 711 +10 717	
Case (2) - 가장 처음 결과	method p corr1 corr2 mse1 mse2
$\beta_1 = (1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.00,0)$	dr 0.00 0.6001518 0.1900158 2.916600 2.112913
$\beta_2 = (0,00,0,0.1,0.1,0.1,0.1,0.1,1,1,1,1,1,$	sparse 75.04 0.6409069 0.2345991 2.955934 2.252680
$\lambda 1 = 0.01, 0.01$	

λ2 = 0.01	
slice: 4개	

Case(3): : true beta 0 개수 80개	Sparse D)R						
Case (3)	method	ļ.) C0	orr1	corr2	m	se1 i	mse2
$\beta_1 = (1,1,1,1,,1,1,1,0,00,0)$	dr	0.00	0.3479	419 0.171	9531	2.255	180 2.00	9467
$\beta_2 = (0,00,0,0,1,1,1,1,,1,1)$	sparse	85.56	3 0.27342	218 0.164	19450	2.192	834 2.14	7575
$\lambda 1 = 0.05, 0.01$	dr							
$\lambda 2 = 0.01$								
slice: 4개								
								_
Case (3)	method	р	corr1	corr2	mse	e1	mse2	
$\beta_1 = (1,1,1,1,,1,1,1,0,00,0)$	dr	0.00 0).4743199	0.1638061	2.2597	02 2.03	30333	
$\beta_2 = (0,00,0,0,1,1,1,1,,1,1)$	sparse dr	81.02 0).2930573	0.1406950	2.3276	12 2.19	7306	
$\lambda 1 = 0.05, 0.01$								
$\lambda 2 = 0.01$								
slice: 10개								
Case (3) - 가장 처음 결과	method	р	corr	1 cor	r2	mse1	mse2	
$\beta_1 = (1,1,1,1,,1,1,1,0,00,0)$	dr		0.347941	9 0.171953	31 2.2	55180	2.009467	
$\beta_2 = (0,00,0,0,1,1,1,1,,1,1)$	sparse dr	73.48	0.363968	1 0.177922	25 2.3	60421	2.225217	
$\lambda 1 = 0.01, 0.01$	- ui							
$\lambda 2 = 0.01$								
slice: 4개								

2. Application

Data1: mnist data

https://github.com/jlmelville/mnist

grayscale의 28*28 data (60000개 - training data, 10000개 - test data)

이미지 데이터를 불러와 70000*784 matrix로 변환하여 진행

<X train set(60000*784) matrix - sparse dr 결과>

Sparse dr 후 beta (784*5 matrix)

```
> ssdr.result1 <- ssdr.lambda(x.tra, y.tra, method="dr", d=5, nslices=10, lambda1=c(0.01,0.01,0.01,0.01,0.01), lambda2=0.01, m
ax.iter=100, eps.conv=1e-7)
ax.iter=100, eps.ConV=1e-/)
> beta = beta.order(ssdr.result1$beta)
> beta
                                                                            0.000000000
0.0000000000
                                           0.000000e+00
0.000000e+00
         0.000000e+00
0.000000e+00
                           0.000000000
                                                            0.00000000
         0.000000e+00
                           0.000000000
                                           0.0000000e+00
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
                             000000000
                                              000000e+00
                                                               00000000
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
  [6,
[7,
         0.000000e+00
0.000000e+00
                           0.000000000
                                           0.000000e+00
0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
                           0.000000000
                                                             0.00000000
                                                                              . 0000000000
  [8,
[9,
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.00000000000
         0.000000e+00
0.000000e+00
                           0.000000000
                                             .000000e+00
.000000e+00
                                                            0.00000000
                                                                            0.0000000000
 [10,
 [11
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
                             .000000000
                                             .000000e+00
.000000e+00
                                                             0.00000000
                                                                              .0000000000
 Γ13.
         0.000000e+00
                           0.000000000
                                                             0.00000000
                                                                            0.0000000000
 [14,
[15,
[16,
         0.000000e+00
0.000000e+00
                           0.000000000
0.000000000
                                             .000000e+00
                                                             0.00000000
                                                                            0.0000000000
                                              000000e+00
                                                               00000000
                                                                              0000000000
         0.000000e+00
                           0.000000000
                                             .000000e+00
                                                             0.00000000
                                                                            0.0000000000
 [17,
[18,
[19,
         0.000000e+00
0.000000e+00
                                             . 986332e-02
. 000000e+00
                           0.000000000
                                                             0.00000000
                                                                            0.0000000000
                           0.148874260
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
0.000000e+00
                           0.004863110
0.000000000
                                             .000000e+00
.000000e+00
                                                            0.00000000
                                                                            0.0000000000
 [22,
[23,
[24,
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
0.000000e+00
                           0.000000000
-0.003701105
                                              196173e-04
                                                            0.00000000
-0.19249843
                                                                            0.0000000000
                                              000000e+00
 [25
[26
         0.000000e+00
0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                            0.51898810
                                                                            0.0000000000
                             000000000
                                              000000e+00
                                                               00000000
                                                             0.00000000
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                                            0.0017398978
 [28
         0.000000e+00
0.000000e+00
                             . 0000000000
                                             .000000e+00
.791777e-02
                                                             0.00000000
                                                                            0.0000000000
                           0.534223866
                                                             0.00000000
                                                                            0.0000000000
 [29]
 Ī30.
         0.000000e+00
                           0.000000000
                                              000000e+00
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
0.000000e+00
                           0.000000000
                                           0.000000e+00
0.000000e+00
                                                                            0.0000000000
                                                               .00000000
                                                            -0.31181533
 [32,
 ĪЗЗ
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.00000000000
           .000000e+00
                             000000000
                                              000000e+00
                                                             0.00000000
                                                                              . 0000000000
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.0000000000
 Γ35.
         0.000000e+00
         0.000000e+00
0.000000e+00
                           0.000000000
0.000000000
                                              000000e+00
                                                             0.00000000
                                                                            0.0000000000
                                              000000e+00
                                                               00000000
                                                                              .0000000000
  38.
         0.000000e+00
                           0.000000000
                                              000000e+00
                                                             0.00000000
                                                                            0.0000000000
                           0.000000000
                                             .000000e+00
.000000e+00
  39
           .515690e-03
                                                             0.00000000
                                                                            0.0000000000
                                                             0.00000000
                                                                            0.0000000000
         0.000000e+00
 [40
 Γ41
           .020160e-02
                           0.000000000
                                           0.000000e+00
                                                             0.00000000
                                                                            0.00000000000
         -5.376417e-02
0.000000e+00
                           0.000000000
                                           0.000000e+00
0.000000e+00
                                                            0.00000000
                                                                            0.0000000000
 [43,
[44.
         0.0000000+00
                           0.000000000
                                           0.0000000e+00
                                                             0.00000000
                                                                            0.0000000000
 [45,
[46,
         0.000000e+00
                                              000000e+00
         0.000000e+00
                           0.000000000
                                           0.000000e+00
                                                            0.00000000
                                                                            0.0000000000
        -8.042546e-02
-7.105272e-02
                           0.000000000
0.000000000
                                                            0.00000000
                                                                            0.000000000
0.0000000000
                                           0.000000e+00
                                           0.000000e+00
        -1.066256e-02
                           0.000000000
                                           0.000000e+00
                                                            0.00000000
                                                                            0.00000000000
```

Data2: 태양 전지 결함 데이터 – 전기 발광 이미지 (Visual Identification of Defective Solar Cells in Electroluminescence Imagery)

https://github.com/zae-bayern/elpv-dataset : 300*300, n=2624

cell0001.png cell0002.png cell0003.png

labels.csv

attribute	Description
Image url	이미지 저장 이름
Defect probability	결함 확률(0, 0.33333, 0.66666, 1)
	1로 가까워질수록 결함이 있는 태양 전지이다.
Solar module type	태양 전지의 종류(mono/poly)
	Mono: 단일 실리콘 결정으로 만들어진 검은색
	태양전지를 가지고 있으며, 일반적으로 효율이
	더 높다. 가격이 비싸다.
	Poly: 여러 개의 실리콘 결정으로 만들어지며
	파란색 셀을 가지고 있다. 효율은 다소 떨어지
	지만 가격이 저렴하다.