Refresher courses in Mathematics ${\it Matrices}$

Olivier DAZEL & Mathieu GABORIT

September 6, 2016

Chapter 1

Matrices

Algebraic Calculus 1.1

Exercice 1.1. Let consider the following matrices

$$\left[\mathbf{\Phi}(\xi)\right] = \begin{bmatrix} (1-\xi)/2\\ \xi/2 \end{bmatrix} \tag{1.1}$$

Compute (if it exists)

$$\int_{0}^{1} [\mathbf{\Phi}(\xi)] [\mathbf{\Phi}(\xi)]^{T} d\xi, \qquad (1.2)$$

where T is the transposition.

Exercice 1.2. The Forward Euler's Method is defined by the recurence relation:

$$\mathbf{S}_{k+1} = ([\mathbf{I}_2] + \Delta t[\boldsymbol{\alpha}]) \, \mathbf{S}_k. \tag{1.3}$$

Compute the first three steps $\mathbf{S}_1,\,\mathbf{S}_2$ and \mathbf{S}_3 of Forward Euler's Method for

Exercice 1.3. Compute $[\mathbf{M}]^n \mathbf{X}$ for

$$[\mathbf{M}] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \mathbf{X} = \begin{Bmatrix} 1 \\ -1 \end{Bmatrix}$$
 (1.5)

Exercice 1.4. What are the conditions all the possible matrix $[\mathbf{M}] \in \mathbb{R}^{2 \times 2}$ which are their own inverse (i.e. $[\mathbf{M}]^{-1} = [\mathbf{M}]$)

$$[\mathbf{M}] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \tag{1.6}$$

Exercice 1.5. Let consider the following matrix

$$[\mathbf{M}] = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (1.7)

- What is the value of $|[\mathbf{M}]|$?
- What is the value of $[\mathbf{M}]^5$?
- \bullet What is the value of $|[\mathbf{M}]|$?

Exercise 1.6. The rotation matrices $[\mathbf{R}_x(\theta_x)]$, $[\mathbf{R}_y(\theta_y)]$ and $[\mathbf{R}_z(\theta_z)]$ are respectively

defined by:

$$[\mathbf{R}_x(\theta_x)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & \sin(\theta_x) \\ 0 & -\sin(\theta_x) & \cos(\theta_x) \end{bmatrix}, \quad [\mathbf{R}_y(\theta_y)] = \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix}, \quad (1.8)$$

$$[\mathbf{R}_z(\theta_z)] = \begin{bmatrix} \cos(\theta_z) & \sin(\theta_z) & 0 \\ -\sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(1.9)

- What is the determinant of $[\mathbf{R}_x(\theta_x)][\mathbf{R}_y(\theta_y)][\mathbf{R}_z(\theta_z)]$?
- What is the value of $[\mathbf{R}_x(\pi/2)][\mathbf{R}_y(\pi/2)][\mathbf{R}_z(\pi/2)]$ and the value of $[\mathbf{R}_z(\pi/2)][\mathbf{R}_y(\pi/2)][\mathbf{R}_x(\pi/2)]$? Comment this result.

Compute the following transformations:

Exercice 1.7. The Hooke's matrix [C] for a material relates the vector of strain ε to the vector of stresses σ .

$$\boldsymbol{\sigma} = [\mathbf{C}] \, \boldsymbol{\varepsilon}. \tag{1.10}$$

For an isotropic material, the Hooke's matrix depends on only two coefficients called the Lamé coefficients λ and μ and

$$[\mathbf{C}] = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\mu & 0 & 0 \\ 0 & 0 & 0 & 0 & 2\mu & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\mu \end{bmatrix}$$
(1.11)

The Lamé coefficients λ and μ can be expressed from the young's modulus E and Poisson

coeficient
$$\nu$$
 by

$$\lambda = \frac{1+\nu}{1-2\nu}, \quad \mu = \frac{E}{2(1+\nu)}$$
 (1.12)

The compliance matrix [S] is defined as the inverse of [C].

What is the value of the compliance matrix as a function of E and ν ?

Determinant of matrices 1.2

Exercice 1.8. What is the determinant of

$$[\mathbf{M}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{bmatrix}? \tag{1.13}$$

 $\stackrel{\bullet}{\underline{\underline{\mathbf{Y}}}}$ **Exercice** 1.9. What is the link between determinants of matrice $[\mathbf{M}]$ and $[\mathbf{N}]$ defined

$$[\mathbf{M}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{bmatrix}, \quad [\mathbf{N}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 1 & 0 & 1 & 5 \\ 2 & 3 & 1 & 5 \end{bmatrix}$$
(1.14)

Exercice 1.10. What is the determinant of

$$[\mathbf{M}] = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}? \tag{1.15}$$

Exercice 1.11. What is the determinant of

$$[\mathbf{M}] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} ? \tag{1.16}$$

Exercice 1.12. What is the determinant of

$$[\mathbf{M}] = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} ? \tag{1.17}$$

Exercice 1.13. What is the determinant of

$$[\mathbf{M}] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} ? \tag{1.18}$$

Exercice 1.14. Given

$$[\mathbf{A}] = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 3 & 4 & 1 & 3 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 3 \end{bmatrix} , \quad [\mathbf{P}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 (1.19)

evaluate:

- 1. [**P**][**A**]
- 2. $\det([\mathbf{A}])$
- 3. $\det([\mathbf{P}][\mathbf{A}])$

What is the effect of $[\mathbf{P}]$ on $[\mathbf{A}]$?

Exercice 1.15. Given

$$[\mathbf{A}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{bmatrix} , \quad [\mathbf{P}]_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} , \quad [\mathbf{P}]_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 (1.20)

evaluate:

- 1. $\det([\mathbf{A}])$
- 2. $\det([\mathbf{P}]_1[\mathbf{A}])$
- 3. $\det([\mathbf{P}]_2[\mathbf{A}])$

Can you deduce a more general rule for the determinants of permutated matrices?

Exercice 1.16. Given

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} , B = \begin{bmatrix} 7 & 9 \\ 0 & 2 \end{bmatrix} , C = \begin{bmatrix} 5 & 6 \\ 4 & 3 \end{bmatrix} , D = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$
 (1.21)

and $\mathbf{0}_n$ a $n \times n$ matrix of zeros; evaluate

$$\begin{bmatrix} [\mathbf{A}] & \mathbf{0}_2 \\ \mathbf{0}_2 & [\mathbf{D}] \end{bmatrix}, \begin{bmatrix} [\mathbf{A}] & [\mathbf{B}] \\ \mathbf{0}_2 & [\mathbf{D}] \end{bmatrix}, \begin{bmatrix} [\mathbf{A}] & \mathbf{0}_2 \\ [\mathbf{C}] & [\mathbf{D}] \end{bmatrix}$$
(1.22)

What rule(s) can you deduce from the previous calculations?

1.3 Operation on Matrices

1.4 Change of basis

Exercice 1.17. What is the image
$$[\mathbf{M}']$$
 of $[\mathbf{M}] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ in the $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Exercice 1.18. What is the image
$$[\mathbf{M}']$$
 of $[\mathbf{M}] = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ in the $\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$

Exercice 1.19. What is the image
$$[\mathbf{M}']$$
 of $[\mathbf{M}] = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ in the $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ basis

Exercice 1.20. What is the image
$$[\mathbf{M}']$$
 of $[\mathbf{M}] = \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ in the $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ basis

Exercice 1.21. What is the image
$$[\mathbf{M}']$$
 of $[\mathbf{M}] = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}$ in the $\begin{bmatrix} 2 & 10 \\ 3 & 5 \end{bmatrix}$ basis

Eigenvalues and Eigenvectors

Exercice 1.22. Let $\xi \neq 1$. What are the eigenvalues p and the associated eigenvectors

of

$$\begin{bmatrix} -2\omega_0 \xi & -\omega_0^2 \\ 1 & 0 \end{bmatrix} \tag{1.23}$$

 \bullet Exercice 1.23. Compute the eigenvalues δ and the associated eigenvectors Φ of prob-

$$[\mathbf{K}] \mathbf{\Phi} = \delta^2 [\mathbf{M}] \mathbf{\Phi}, \tag{1.24}$$

with

$$[\mathbf{K}] = \begin{bmatrix} \hat{P} & 0 \\ 0 & \widetilde{K}_{eq} \end{bmatrix} [\mathbf{M}] = \begin{bmatrix} \widetilde{\rho}_s & \widetilde{\gamma} \widetilde{\rho}_{eq} \\ \widetilde{\gamma} \widetilde{\rho}_{eq} & \widetilde{\rho}_{eq} \end{bmatrix}$$
 (1.25)

Resolution of linear systems 1.6

Exercice 1.24. What is the solution of

$$\left[\begin{array}{cc} 3 & 0 \\ 0 & 5 \end{array}\right] \mathbf{X} = \left\{\begin{array}{c} 5 \\ 3 \end{array}\right\}$$

Exercice 1.25. What is the solution of

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

Exercice 1.26. What is the solution of

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{bmatrix} \mathbf{X} = \left\{ \begin{array}{c} 4 \\ 12 \\ 38 \end{array} \right\}$$

Exercice 1.27. What is the solution of

$$\begin{bmatrix} 3 & 2 & 7 \\ 5 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 9 \\ 3 \\ 2 \end{bmatrix}$$

Exercice 1.28. What is the solution of

$$\begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 18 \\ 6 \\ 14 \end{bmatrix}$$

$\stackrel{\diamondsuit}{=}$ Exercice 1.29. What is the solution of

$$\begin{bmatrix} -1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 5 & 4 & 3 & 2 \\ 0 & 0 & 2 & -1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 4 \\ 9 \\ 24 \\ 5 \end{bmatrix}$$