

Praxis: Dijkstra-Algorithmus

Philipp Hanisch, Valentin Roland

6. Oktober 2022

Python-Grundlagen

Gliederung

1. Problemstellung

2. Der Dijkstra-Algorithmus

3. Aufgaben

Problemstellung

Das Problem

gegeben:

- ein gerichteter, kantenbewerteter Graph G = (V, E, d)
- ein Startknoten S

gesucht:

• kürzeste Wege zu den anderen Knoten

Das Problem

Modellierung

- Knotenmenge als Listehier: [1, 2, 3, 4, 5, 6, 7]
- Kantenbewertung als Dictonary: (Knoten, Knoten) \rightarrow Zahl hier: {(1,2):4, (1,3):1, (1,4):4, (2,4):3, (2,5):3, (3,4):2, ...}

Der Dijkstra-Algorithmus

Die Idee

1. Initialisierung:

- 2. Schleife:
 - Wähle erreichbaren Knoten mit minimaler Entfernung
 - Markiere Knoten als besucht
 - Aktualisiere die Information der anderen Knoten

3. Ausgabe

I_1	I_2	I_3	I_4	I_5	I_6	<i>I</i> ₇	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-

I_1	I_2	I_3	14	<i>I</i> ₅	16	17	p_1	p_2	p_3	p_4	p_5	p_6	<i>p</i> ₇
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-

I_1	I_2	I_3	I_4	<i>I</i> ₅	I_6	17	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
	4												
*		*											

I_1	I_2	I_3	I_4	<i>I</i> ₅	I_6	17	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-

I_1	I_2	I_3	I_4	<i>I</i> ₅	16	17	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-

I_1	I_2	I_3	14	I_5	16	17	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-
*	*	*	*	7	*	7	-	1	1	3	2	4	6

I_1	I_2	I_3	14	<i>I</i> ₅	16	17	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-
*	*	*	*	7	*	7	_	1	1	3	2	4	6
*	*	*	*	*	*	7	-	1	1	3	2	4	6

I_1	I_2	I_3	14	<i>I</i> ₅	16	17	p_1	p_2	<i>p</i> ₃	p_4	p_5	p_6	<i>p</i> ₇
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-
*	*	*	*	7	*	7	-	1	1	3	2	4	6
*	*	*	*	*	*	7	_	1	1	3	2	4	6
*	*	*	*	*	*	*	-	1	1	3	2	4	6

Bezeichner

- Graph G = (V, E, d)
- Menge *K* an erreichbaren Knoten
- Startknoten S
- bisher kürzeste Entfernungen I(k) für Knoten $k \in V$
- derzeitiger Vorgänger p(k) für Knoten $k \in V$

Der Dijkstra-Algorithmus

1. Initialisierung:

- $I(k) = \infty$ für alle Knoten $k \in V \setminus \{S\}$
- I(S) = 0
- $p(k) = \text{None für alle Knoten } k \in V$
- $K = \{S\}$

2. **Schleife:** Solange $K \neq \emptyset$...

- Wähle einen erreichbaren Knoten v mit minimaler Entfernung: $v \in K$ mit $I(v) = min\{I(k) : k \in K\}$
- Markiere Knoten v als besucht: K := K \ {v}
- Aktualisiere die Information der anderen Knoten k ∈ V: Wenn I(v) + d(v, k) < I(k): dann setze I(k) := I(v) + d(v, k) und p(k) := v Füge k ggf. zu K hinzu

3. Ausgabe

Aufgaben

Aufgaben

Implementiert den Dijkstra-Algorithmus!