INTERNATIONAL DESIGN COMPETITION

INTERNATIONAL DESIGN COMPETITION

Structure

- Introduction of the team and the car
- Motivation to develop rear wheel steering
- Mechanical realization
- Electric drivetrain
- Vehicle dynamics and simulation
- Control systems and software
- Results

INTERNATIONAL DESIGN COMPETITION

Ignition Racing Team eletric

- FSE team from the UAS Osnabrück
- 45 active team members in 2014/2015
- First participation FSC 2007
- Since 2011 participation in FSE

INTERNATIONAL DESIGN COMPETITION

- 5th electric car
- 225 kg overall
- Single motor at rear axle (YASA 750)
- Full-carbon fiber monocoque
- 378 V, 6.6 kWh Lithium-Polymer accumulator
- Only car using Rear Wheel Steering (RWS) at FSG and FSS 2015

- Improving the lateral dynamics of the car
- Active changes in vehicles performance possible
- System weight is quite low (only 3 kg overall)
- System is easy exchangeable
- Innovation in Formula Student

INTERNATIONAL DESIGN COMPETITION

First Task: name the system - find cool acronym

Active Steering System (ASS)

INTERNATIONAL DESIGN COMPETITION

INTERNATIONAL DESIGN COMPETITION

Concept

Goal: actuator steers the rear axle (± 3 ° allowed)

INTERNATIONAL DESIGN COMPETITION

Concept

INTERNATIONAL DESIGN COMPETITION

Concept

INTERNATIONAL DESIGN COMPETITION

Concept Decisions

- Goal: actuator steers the rear axle (± 3 ° allowed)
- One actuator per wheel
- Integrate the actuator into the tie rod
- Driven by electric motor

INTERNATIONAL DESIGN COMPETITION

- Transform rotary movement from the motor in linear movement
- Self-locking in case of system failure
- Small weight and small volume
- Fit actuators into the rest of the suspension

INTERNATIONAL DESIGN COMPETITION

- Transform rotary in linear movement
- Small lead angle
 - self-locking
- Special nitriding steel
 - reduced wear
 - constant friction coefficient

INTERNATIONAL DESIGN COMPETITION

Realization of the Actuator – Belt Drive

- Transmits the torque from the motor to the spindle nut
- Transmission ratio 1:2
- Decouples the motor from the linear forces

INTERNATIONAL DESIGN COMPETITION

A Sectional Drawing of the Actuator

Axial forces are transferred by deep groove ball bearing

INTERNATIONAL DESIGN COMPETITION

A Sectional Drawing of the Actuator

Axial forces are transferred by deep groove ball bearing

INTERNATIONAL DESIGN COMPETITION

A Sectional Drawing of the Actuator

Axial forces are transferred by deep groove ball bearing

 Fixed by locating grooved ball bearing and a floating slide bearing inside the housing

The spindle transfers the movement to the tie rod

Electrical Drivetrain

- Max. force in the rear tie rod 1.6kN
 - Simulated in MSC Adams CAR (based on caster, align torque, max. lateral forces and steering arm length)

- Power
 - max. speed: $1200 \frac{1}{min}$ > steer 3° in 0.2 seconds
 - max. torque:

$$M_{S} = \frac{F_{T}}{2*\pi*\eta_{S}} * \frac{\nabla}{1000} = \frac{1600}{2*\pi*0.3} * \frac{2}{1000} = 1.69 Nm$$

→ Power: 187 W mechanical!

INTERNATIONAL DESIGN COMPETITION

Electrical Drivetrain

- Developed own calculation program
- Includes all relevant data
- Calculates electric
 parameters based on
 mechanical parameters

IRTe Rear Wheel Steering Caluclation									
Suspension Data			Mechanical Calculation			eletrical calculation			
Positioning-Force Wheel	1600	N	positioning way:	14,11765	mm	Max. Voltage	29,4	٧	
Positioning Speed:	35	mm/s	minium positioning speed	28,23529	mm/s	Nom. Voltage	25,9	٧	
max .steer angle	3	0	(0,2s for 80% Travel)			Min. Voltage	21	٧	
steer angle / positioning way	0,425	deg/mm	positioning power	56	W	Peak Power	476	W	
Mechanical Data		spindle nut speed	2100	1/min	Peak Current	22,66667	Α		
spindle gradient	1	mm	spindle nut torque	1,018592	Nm	Energy Comsumption	31,73333	Wh	
spindle efficiency	0,25		spindle nut power	224	W	Capacity	1,225225	Ah	
ratio belt drive	2		belt drive torque	0,509296	Nm	Req Voltage at Motor for act. Speed	35,68142	٧	
planet gear ratio	4,8		belt drive speed	4200	1/min	motor current	7,847877	Α	
planet gear efficiency	0,8		planet gear torque	0,132629	Nm	Drop through torque	2321,01	1/min	
Motor Data			planet gear speed	20160	1/min	real voltage	39,7894	٧	
max. current motor controller	10	А	motor speed	20160	1/min	Motor efficiency	85	%	
torque constant	0,0169	Nm/A	motor torque	0,132629	Nm				
nominal current	2,79	Α	Motor Power	280	W				
thermic time constant winding	19,3	S							
Kennliniensteigung	17500	1/min/Nm							
RPM factor	565	1/min*V							
Load Data									
Load cycle	0,2								
Load Time	20	min							
Line Center	7								

INTERNATIONAL DESIGN COMPETITION

Electrical Drivetrain

- Position controlled electric drivetrain
- Motor: Brushless DC Motor, Ø40 mm x 26 mm (170 g)
- Planetary-gearbox: 4,8:1 (118 g)
- Position encoder: 512 position per turn
- Controller: 240 W peak power per side 10 A, 24 V (170 g)

INTERNATIONAL DESIGN COMPETITION

Vehicle Dynamics

Reasons to use RWS:

- Velocity pole shifting
- Yaw control
- Side slip angle influence
- Active toe correction
- ... aaannnd it is pretty cool ;-)

Mitschke, Wallentowitz; Dynamik der Kraftfahrzeuge

INTERNATIONAL DESIGN COMPETITION

Vehicle Dynamics

Velocity Pole Shifting:

- RWS creates a virtual wheelbase
- VP: intersection of the lines based orthogonally on the steered wheels
- Steering inversely:
 - VP moves towards the front axle
 - WB and turning cycle are reduced
- Steering accordantly
 - VP moves behind the rear axle
 - WB and turning cycle are increased
- No VP when front and rear wheels steer with same angle
 - → Vehicle moves parallel

INTERNATIONAL DESIGN COMPETITION

Velocity Pole Shifting:

Steering	Accordantly	Inversely	Neutral
Wheelbase [mm]	1681	1411	1535
Turning cycle radius [mm]	2802	2352	2554

INTERNATIONAL DESIGN COMPETITION

Vehicle Dynamics

Yaw control:

- RWS creates and supports lateral forces on the rear tires
- Inversely:
 - Improvement of yaw moment
 - Higher lateral acceleration
- Accordantly:
 - Weakening of the yaw moment
 - Improvement of understeering

posite directional steering angle Increased yawing moment

INTERNATIONAL DESIGN COMPETITION

Vehicle Dynamics

Side slip angle influence:

- Describes the orientation of the car and its velocity
- Effects caused by using RWS:
 - Rear axle is immediately taken into account of the vehicle's movement → lateral forces on tires
 - β will decrease
 - RWS systems can improve the vehicle stability during over- or understeering situations

Active toe correction

Passive feature > new degree of freedom while developing the kinematics

© ZF Friedrichshafen AG

INTERNATIONAL DESIGN COMPETITION

Simulation

Simulation

 Linear one track model modified to rear wheel steering as a LTI state space system

$$\begin{bmatrix} \dot{\beta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} -\frac{c_{\mathsf{f}} + c_{\mathsf{r}}}{mv} & -\left(1 + \frac{c_{\mathsf{f}} l_{\mathsf{f}} - c_{\mathsf{r}} l_{\mathsf{r}}}{mv^2}\right) \\ -\frac{l_{\mathsf{f}}^2 c_{\mathsf{f}} + l_{\mathsf{r}}^2 c_{\mathsf{r}}}{Iv} & -\frac{c_{\mathsf{f}} l_{\mathsf{f}} - c_{\mathsf{r}} l_{\mathsf{r}}}{I} \end{bmatrix} \begin{bmatrix} \beta \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} \frac{c_{\mathsf{f}}}{mv} & \frac{c_{\mathsf{r}}}{mv} \\ \frac{l_{\mathsf{f}} c_{\mathsf{f}}}{J} & -\frac{l_{\mathsf{r}} c_{\mathsf{r}}}{J} \end{bmatrix} \begin{bmatrix} \delta_{\mathsf{f}} \\ \delta_{\mathsf{r}} \end{bmatrix} & \underline{Y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta \\ \dot{\psi} \end{bmatrix}$$

- Simulation using MATLAB script + Simulink model → fast and effective
- Parameters were choosen simplified and based on literature vales

Modell analysis:

- MIMO system
- PTD1 behavior
- Most important characteristic: step response
 - → level of the required dynamics of the drivetrain

INTERNATIONAL DESIGN COMPETITION

Simulation

Results:

- Proof of theory:
 - Improving of yaw rate at low speeds & weakening at high speeds
 - Side slip angle is reduced
 - Vehicle remains stable
- Basic idea how the control system needs to work
- Changing point of rear steering direction at $11 \frac{m}{s}$

Main tasks:

- Parametrization drivetrain
- Communication
- Develop control system
- Implementation into main software
- Start up and visualization
- Data analysis and improvement

Control system and software

Drivetrain + communication:

Fit values like max. acceleration, speed, PID tuning,

operation mode to the requirements

- Two actuators → twice parametrization
- CANopen bus @ 1mbit/s
- Triggered signals to remain functionality
- Choose necessary messages wisely

INTERNATIONAL DESIGN COMPETITION

Control systems

- Review on project targets: reliability, reproducibility, easy handling, stability
- Main question: open or closed loop control

	Advantages	Disadvantages
Open Loop	React immediatelyReproducibleStable	 No elimination of external influences Target will not always be reached Accuracy depends on model
Closed loop	 Elimination of external influences Target will be reached 	May be instableMight react slowHardly reproducible

INTERNATIONAL DESIGN COMPETITION

Control system and software

Controller:

- Basis nonlineare factor, based current vehicle speed for front steering angle
- Created from simulation results
- Using cubic spline interpolation
- Further influence by:
 - Desired driver acceleration
 - Motor current
 - Security checks

Implementation:

- VCU: dSPACE MicroAutoBox II → Simulink
- Initialization by using last motor positions saved in VCU's flash storage
- Error detection by motor controllers, driver resettable at very low speeds and no steering
- Power measurement to shut down when LV battery is empty
- dSPACE ControlDesk for fast parameter optimizing

INTERNATIONAL DESIGN COMPETITION

- Unfortunately we had several problems ... only 150 km before FSG
- But, pretty amazing results!
- Setup:
 - Hoosier LC0 at 14 psi
 - Very rough, dry surface
 - 1200 Nm
 - Max. Power 55kW → Endurance Test
 - Focus: Laptimes!

Testing

Track (length: 670m)

Overall results:

- Laptimes improved up to 1 s
 - Avg. speed using RWS: $50.51 \frac{km}{h}$
 - Avg. speed without RWS: $48.54 \frac{km}{h}$
- Vehicle corners recognizable faster
- Driver feedback:
 - Less steering forces
 - Handling is easier
 - Acclimatization is very necessary

Testing

Testing

INTERNATIONAL DESIGN COMPETITION

Testing

INTERNATIONAL DESIGN COMPETITION

Testing

Resume

- Managed to reach all project targets!
- Increased the vehicle performance a lot and measureable
- A large amount of testing time is necessary
 - Optimize the control systems
 - Driver car interaction
- Possible future prospects:
 - Reduce weight ;-)
 - Implement a closed loop control system
 - Compare it to 2 wheel driven torque vectoring

Thanks for your attention!

Feel free to ask Questions

