FLUJO MÁXIMO EN UNA RED

TTPS: Técnicas y Estrategias para la Resolución de Problemas Facundo Miglierini

CONTENIDOS

01 | Red de flujo

Definición, ejemplos

02 | Algoritmos

Métodos para obtener el flujo máximo en una red

03 Problemas resueltos

Solución de los ejercicios aceptados por el juez

01

RED DE FLUJO

¿Qué es una red de flujo?

DEFINICIÓN

- Grafo dirigido donde los ejes transportan algún flujo
- Vértices funcionan como conmutadores de tráfico entre los ejes
- El vértice fuente genera el tráfico, y el vértice sumidero lo absorbe
- Capacidad: cantidad máxima que un eje puede transportar
- Flujo: cantidad transportada por un eje en un momento dado

EJEMPLOS

EJEMPLOS

FLUJO MÁXIMO

Tasa mayor a la cual el material transportado en una red de flujo puede ser transmitido desde la fuente hasta el sumidero.

EJEMPLO

02

ALGORITMOS

Cálculo del Flujo Máximo en una red de flujo

VARIANTES

FORD-FULKERSON

- Realiza recorridos DFS
- Busca un único camino de aumento por recorrido
- 0(mf * E)

EDMONDS-KARP

- Busca un único camino de aumento por recorrido
- 0(V * E^2)

DINIC

- Realiza recorridos BFS
- En cada recorrido construye un grafo de niveles y envía múltiples flujos
- O(V² * E)

03

PROBLEMAS RESUELTOS

Aplicación de los algoritmos vistos en ejercicios de programación competitiva

INTERNET BANDWIDTH

- Conjunto de máquinas interconectadas
- Pueden haber varias conexiones entre dos mismas computadoras
- Cada conexión tiene un ancho de banda que indica la máxima cantidad de datos por unidad de tiempo que puede ser transmitida desde un nodo a otro
- Es posible transmitir datos por muchos caminos a la vez
- Dada una topología de red, calcular el ancho de banda total desde un origen hacia un destino.

ENTRADA

SALIDA

- Número de nodos en la red
- Fuente, sumidero y cantidad de conexiones
- Los datos de cada conexión indicando su origen, destino y ancho de banda

 Ancho de banda total entre las computadoras fuente y sumidero

EJEMPLO

- Construcción de una matriz de adyacencias, donde cada componente indica la suma del ancho de banda de todas las conexiones dadas entre dos computadoras
- Cálculo del flujo máximo desde nodo fuente hasta sumidero

MY T-SHIRT SUITS ME

- Se deben repartir N remeras a M personas
- Existe la misma cantidad de remeras por talle (XS,S,M,L,XL,XXL)
- Cada persona solamente puede usar dos talles
- Determinar si existe una forma de repartir las remeras de manera que cada persona pueda obtener una remera que le quede bien

ENTRADA

SALIDA

- Número de casos de prueba
- Se indica la cantidad de remeras disponibles y el número de voluntarios
- Finalmente, se especifican los dos talles que puede usar cada voluntario

"YES", si existe una distribución donde las remeras le quedan bien a todos los voluntarios. En caso contrario, se devuelve "NO"

EJEMPLO

- Construcción de una red de flujo a partir de los talles y los voluntarios
- El vértice fuente tiene una conexión de capacidad 2 con cada talle
- Cada vértice de talle tiene una conexión de capacidad 1 con los voluntarios que pueden usar dicho talle
- Los vértices de voluntarios tienen una conexión de capacidad 1 con un vértice sumidero
- Cálculo del flujo máximo desde la fuente hasta el sumidero

COLLECTORS PROBLEM

- Bob y sus amigos coleccionan stickers
- Se intercambian los stickers repetidos entre ellos
- Bob descubre que a veces le conviene intercambiar stickers repetidos por otros que ya tiene
- Asumiendo que los amigos de Bob únicamente intercambian los stickers repetidos con él, indicar la cantidad máxima de stickers diferentes que puede obtener

ENTRADA

SALIDA

- Número de casos de prueba
- Tamaño del grupo de amigos de Bob
- Cantidad de stickers diferentes a coleccionar
- La cantidad de stickers que tiene cada amigo y cuáles tiene, incluyendo a Bob

 Número de caso de prueba junto con el número máximo de stickers distintos que puede tener Bob

EJEMPLO

- Construcción de una red de flujo a partir de Bob, sus amigos y los stickers
- Bob actúa como vértice fuente
- Existe una conexión desde cada amigo hasta cada sticker que posee, con una capacidad igual a las veces que lo tiene duplicado
- Los vértices de stickers tienen una conexión de capacidad 1 con un vértice sumidero y con cada amigo que no lo tiene
- Cálculo del flujo máximo desde la fuente hasta el sumidero

FIN