

HIGH PRECISION VOLTAGE REGULATOR

- INPUT VOLTAGE UP TO 40V
- OUTPUT VOLTAGE ADJUSTABLE FROM 2 TO 37V
- POSITIVE OR NEGATIVE SUPPLY OPERATION
- SERIES, SHUNT, SWITCHING OR FLOATING OPERATION
- OUTPUT CURRENT TO 150mA WITHOUT EXTERNAL PASS TRANSISTOR
- ADJUSTABLE CURRENT LIMITING

DESCRIPTION

The LM723 is a monolithic integrated programmable voltage regulator, assembled in 14-lead dual in-line plastic and SO-14 micro package. The circuit provides internal current limiting. When the output current exceeds 150mA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shut-down.

SCHEMATIC DIAGRAM

September 2003 1/16

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramatan.	Va	lue	11:4	
Symbol	Parameter	LM723	LM723C	Unit	
V _I	DC Input Voltage	40	40	V	
ΔV_{I-O}	Dropout Voltage	40	40	V	
Io	Output Current	150	150	mA	
I _{REF}	Current from V _{REF}	15	25	mA	
T _{op}	Operating Temperature	-55 to 125	0 to 70	°C	
T _{stg}	Storage Temperature	-65 to 150	-65 to 150	°C	
T _J	Junction Temperature	150	125	°C	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter		DIP14	SO-14	Unit
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	200	160	°C/W

PIN CONNECTION (top view)

ORDERING CODES

TYPE	DIP-14	SO-14
LM723	LM723N	
LM723C	LM723CN	LM723CD

TEST CIRCUITS (pin configuration relative to the plastic package)

 V_I = 12V; V_O = 5V: I_O = 1mA; $R_1/R_2 \le 10 K\Omega$

ELECTRICAL CHARACTERISTICS FOR LM723 (refer to the test circuits, $T_{amb} = 25$ °C, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
$\Delta V_{O}/\Delta V_{I}$	Line Regulation	V _I = 12 to 15 V	V _I = 12 to 15 V		0.01	0.1	%
		V _I = 12 to 40 V		0.02	0.2		
		$V_I = 12 \text{ to } 15 \text{ V}, \qquad T_a = -58$	5 to 125°C			0.3	
$\Delta V_{O}/V_{O}$	Load Regulation	I _O = 1 to 50 mA			0.03	0.15	%
		$I_O = 1 \text{ to } 10 \text{ mA}$ $T_a = -58$	5 to 125°C			0.6	
V _{REF}	Reference Voltage	I _{REF} = 160 μA	I _{REF} = 160 μA			7.35	V
SVR	Supply Voltage Rejection	f = 100 Hz to 10KHz	C _{REF} = 0		74		dB
			$C_{REF} = 5\mu F$		86		
$\Delta V_{O}/\Delta T$	Output Voltage Drift		•			150	ppm/°C
I _{SC}	Output Current Limit	$R_{SC} = 10\Omega$ $V_O = 0$	V		65		mA
V _I	Input Voltage Range			9.5		40	V
Vo	Output Voltage Range			2		37	V
V _O -V _I				3		38	V
I _d	Quiescent Current	$V_I = 30V$, $I_O = 0 \text{ mA}$		2.3	5	mA	
K _{VH}	Long Term Stability				0.1		%/1000 hrs
eN	Output Noise Voltage	BW = 100 Hz to 10 KHz			20		μV
			$C_{REF} = 5\mu F$		2.5		

ELECTRICAL CHARACTERISTICS FOR LM723C (refer to the test circuits, $T_{amb} = 25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
$\Delta V_{O}/\Delta V_{I}$	Line Regulation	V _I = 12 to 15 V		0.01	0.1	%	
		V _I = 12 to 40 V		0.1	0.5		
		$V_I = 12 \text{ to } 15 \text{ V}, \qquad T_a = 0 \text{ to } 15 \text{ V}$	o 70°C			0.3	
$\Delta V_{O}/V_{O}$	Load Regulation	I _O = 1 to 50 mA			0.03	0.2	%
		$I_O = 1$ to 10 mA $T_a = 0$ to	o 70°C			0.6	
V _{REF}	Reference Voltage	I _{REF} = 160 μA		6.8	7.15	7.5	V
SVR	Supply Voltage Rejection	f = 100 Hz to 10KHz	C _{REF} = 0		74		dB
			C _{REF} = 5µF		86		
$\Delta V_{O}/\Delta T$	Output Voltage Drift					150	ppm/°C
I _{SC}	Output Current Limit	$R_{SC} = 10\Omega$ $V_O = 0$	V		65		mA
V _I	Input Voltage Range			9.5		40	V
V _O	Output Voltage Range			2		37	V
V _O -V _I				3		38	V
I _d	Quiescent Current	$V_{I} = 30V$, $I_{O} = 0 \text{ mA}$		2.3	4	mA	
K _{VH}	Long Term Stability			0.1		%/1000 hrs	
eN	Output Noise Voltage	BW = 100 Hz to 10 KHz			20		μV
			C _{REF} = 5µF		2.5		

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$)

Figure 1 : Maximum Output Current vs Voltage Drop

Figure 2: Current Limiting Characteristics

Figure 3 : Current Limiting Characteristics vs Junction Temperature

Figure 4: Load Regulation Characteristics without Current Limiting

Figure 5 : Load Regulation Characteristics with Current Limiting

Figure 6 : Load Regulation Characteristics with Current Limiting

Figure 7: Line Regulation vs Voltage Drop

Figure 8: Load Regulation vs Voltage Drop

Figure 9 : Quiescent Drain Current vs Input Voltage

Figure 10 : Line Transient Response

Figure 11: Load Transient Response

Figure 12 : Output Impedance vs Frequency

TABLE 1: Resistor Values ($K\Omega$) for standard Output Voltages

Output	Applicable Figures	Fixed Ou	tput ± 5%	Output Adjustable ± 10% *			
Voltage	Applicable Figures	R1	R2	R1	P1	R2	
+3	13, 16, 17, 18, 21, 23	4.12	3.01	1.8	0.5	1.2	
+5	13, 16, 17, 18, 21, 23	2.15	4.99	0.75	0.5	2.2	
+6	13, 16, 17, 18, 21, 23	1.15	6.04	0.5	0.5	2.7	
+9	14, 16, 17, 18, 21, 23	1.87	7.15	0.75	1	2.7	
+12	14, 16, 17, 18, 21, 23	4.87	7.15	2	1	3	
+15	14, 16, 17, 18, 21, 23	7.87	7.15	3.3	1	3	
+28	14, 16, 17, 18, 21, 23	21	7.15	5.6	1	2	
+45	19	3.57	48.7	2.2	10	39	
+75	19	3.57	78.7	2.2	10	68	
+100	19	3.57	102	2.2	10	91	
+250	19	3.57	255	2.2	10	240	
-6**	15	3.57	2.43	1.2	0.5	0.75	
-9	15	3.48	5.36	1.2	0.5	2	
-12	15	3.57	8.45	1.2	0.5	3.3	
-15	15	3.65	11.5	1.2	0.5	4.3	
-28	15	3.57	24.3	1.2	0.5	10	
-45	20	3.57	21.2	2.2	10	33	
-100	20	3.57	97.6	2.2	10	91	
-250	20	3.57	249	2.2	10	240	

 TABLE 2: Formula for Intermediate Output Voltages

Outputs from 2 to 7V	Outputs from 4 to 250V	Current Limit
Fig. 13, 16, 17, 18, 21, 23	Fig. 19	I _{LIMIT} =V _{SENSE} /R _{SC}
$V_O = (V_{REF} x R_2) / (R_1 + R_2)$	$V_O = (V_{REF}/2)x[(R_2-R_1)/R_1]; R_3 = R_4$	
Outputs from 7 to 37V	Outputs from -6 to -250V	Foldback Current Limiting
Fig. 14, 16, 17, 18, 21, 23	Fig. 15, 20	$I_{\text{KNEE}} = [(V_{\text{O}}xR_3)/(R_{\text{SC}}xR_4)]x[V_{\text{SENSE}}x(R_3+R_4)]/$
$V_{O} = V_{REF} x[(R_1 + R_2)/R_2]$	$V_O = (V_{REF}/2)x[(R_1+R_2)/R_1]; R_3 = R_4$	$(R_{SC}xR_4)$
		$I_{SHORTCKT} = (V_{SENSE}/R_{SC})x[(R_3+R_4)/R_4]$

^{*} Replace R1/R2 divider with the circuit of fig. 24.

** V+ must be connected to a +3V or greater supply.

APPLICATIONS INFORMATION

Figure 13 : Basic Low Voltage Regulator ($V_O = 2$ to 7V).

NOTE: $R_3 = (R_1xR_2)/(R_1+R_2)$ for minimum temperature drift. R_3 may be eliminated for minimum component count. Typical performance Regulated Output Voltage......5V Line Regulation ($\Delta V_1 = 3V$)......0.5mV Load Regulation ($\Delta I_0 = 50$ mA)...1.5mV

Figure 14: Basic High Voltage Regulator (V_O = 7 to 37V)

NOTE: $R_3 = (R_1xR_2)/(R_1+R_2)$ for minimum temperature drift. R_3 may be eliminated for minimum component count. Typical performance Regulated Output Voltage......15V Line Regulation ($\Delta V_1 = 3V$).......1.5mV Load Regulation ($\Delta I_0 = 50$ mA).....4.5mV

Figure 15: Negative Voltage Regulator

Typical performance Regulated Output Voltage......15V Line Regulation ($\Delta V_{I} = 3V$)......1mV Load Regulation ($\Delta I_{O} = 100$ mA)....2mV

Figure 16 : Positive Voltage Regulator (External NPN Pass Transistor)

Typical performance Regulated Output Voltage......15V Line Regulation ($\Delta V_I = 3V$).......1.5mV Load Regulation ($\Delta I_O = 1A$)......15mV

Figure 17 : Positive Voltage Regulator (External PNP Pass Transistor)

Typical performance Regulated Output Voltage.....5V Line Regulation ($\Delta V_I = 3V$).....0.5mV Load Regulation ($\Delta I_O = 1A$).....1.5mV

Figure 18: Foldback current limiting

Typical performance Regulated Output Voltage......5V Line Regulation ($\Delta V_{I} = 3V$)......0.5mV Load Regulation ($\Delta I_{O} = 10$ mA).....1mV Current Limit Knee.....20mA

Figure 19: Positive Floating Regulator

Typical performance Regulated Output Voltage.......100V Line Regulation ($\Delta V_{I} = 20V$)........15mV Load Regulation ($\Delta I_{O} = 50$ mA)......20mV

Figure 20 : Negative Floating Regulator

Typical performance Regulated Output Voltage.....-100V Line Regulation ($\Delta V_I = 20V$)......30mV Load Regulation ($\Delta I_O = 100$ mA).....20mV

Figure 21: Positive Switching Regulator

Typical performance Regulated Output Voltage......5V Line Regulation ($\Delta V_I = 30V$).......10mV Load Regulation ($\Delta I_O = 2A$).....80mV

Figure 22: Remote Shutdown Regulator with Current Limiting

Note: current limit transistor may be used for shutdown if current limiting is not required. Typical performance

Figure 23 : Shunt Regulator

Figure 24 : Output Voltage Adjust

Plastic DIP-14 MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

SO-14 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)	•		
D	8.55		8.75	0.336		0.344	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S			8° (ı	max.)	•	•	

Tape & Reel SO-14 MECHANICAL DATA

DIM.		mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.4		6.6	0.252		0.260	
Во	9		9.2	0.354		0.362	
Ko	2.1		2.3	0.082		0.090	
Ро	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com