Una equazione di ordine n è una equazione del tipo:

$$F(x, y(x), y'(x), \dots, y^{(n-1)}(x), y^{(n)}(x)) = 0$$

$$x \in I \subseteq \mathbb{R}$$

dove l'incognita è la qualunque y(x). F è funzione di (n+2) variabili $x, y(x), y'(x) \dots$

Definizione: Soluzione (curva) integrale

La soluzione di una EDO di ordine n sull'intervallo I

$$F(x, y(x), y'(x), \ldots) = 0 \tag{1}$$

$$x \in I \subseteq \mathbb{R}$$

 $\varphi(x)$ che sia definita (almeno) in I e ivi derivabile fino all'ordine n per cui valga 1, ovvero:

$$F(x, \varphi(x), \varphi'(x), \ldots) = 0$$

 $\forall x \in I$

Chiaramente cambia a seconda dell'intervallo

Definizione: Integrale Generale

Si chiama integrale generale di 1 in I l'insieme di tutte le soluzioni di 1 in I

Definizione: Forma normale

Una Equazione Differenziale Ordinaria (EDO) di ordine n si dice in forma normale se è in forma

$$y^{(n)} = f(x, y(x), y'(x), \dots, y^{(n-1)}), x \in I$$

Esempio:

$$y''' = -5y' + \sin x$$

Quella sopra è un EDO di III ordine normale.

Definizione: EDO di ordine n lineare

Una EDO di ordine n si dice lineare se è nella forma

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)} + \ldots + a_2(x)y''(x) + a_1(x)y'(x) + a_0y(x) = f(x), x \in I$$

Dove le funzioni

$$a_0(x), a_1(x), a_2(x), \dots, a_n(x), f(x)$$

sono assegnate (continue) in I

Esempio:

$$xy'' + 5y = sinx$$

Definizione: Funzione continua in più variabili

Sia una funzione e sia P_0 un punto di accumulazione per a, si dice che la funzione è continua in P_0 se:

$$\lim_{P \to P_0} f(P) = f(P_0)$$

se P_0 è un punto isolato per A per convenzione f è continua

Definizione 7

Limite per coordinate polari:

$$\lim_{\rho \to 0^+} f(x_0 + \rho cos\theta, y_0 + \rho sen\theta) = l$$

ovvero che:

$$\forall \varepsilon > 0, \exists \sigma > 0$$

per ogni:

$$\underbrace{0<\rho<\sigma}_{\rho\to 0^+}, \forall \theta\in(0,2\pi)$$

si ha:

$$|f(x_0 + \rho cos\theta, y_0 + \rho sin\theta) - l| < \varepsilon$$

Definizione: Curva

Una curva è un'applicazione continua:

$$\varphi:I\subset\mathbb{R}\to\mathbb{R}^n$$

per I = [a, b]:

$$\bar{\varphi}(t) = (\varphi_1(t), \varphi_2(t), \dots, \varphi_n(t)) \in \mathbb{R}^n$$

Le equazioni parametriche sono:

 $\varphi =$

$$\begin{cases} x_1(t) = \varphi_1(t) \\ x_2(t) = \varphi_2(t) \\ \vdots \\ x_n(t) = \varphi_n(t) \end{cases}$$

Definizione: Curva regolare

Una curva si dice regolare se l'applicazione φ è di classe C^1 (le derivate prime sono continue) e $\varphi'(t) \neq 0$

In particolare $\varphi'(t) \neq 0$ significa che il vettore:

$$(\varphi_1'(t),\ldots,\varphi_n'(t))=\varphi'(t)$$

non ha mai tutte le componenti contemporaneamente nulle.

Definizione 10

Si dice che f è differenziabile in $\bar{x} \in A$ se f è derivabile in \bar{x} ed inoltre vale la seguente relazione:

$$\lim_{h \to 0} \frac{f(\bar{x} + \bar{h}) - f(\bar{x}) - \langle \nabla f(\bar{x}), \bar{h} \rangle}{|\bar{h}|} = 0$$

dove $\bar{h} \in \mathbb{R}^n$ e in particolare $|\bar{h}| = \sqrt{\sum_{i=1}^n h_i^2}$, inoltre:

$$\langle \nabla f(\bar{x}), \bar{h} \rangle = \frac{\partial f}{\partial x_1}(\bar{x})h_1 + \frac{\partial f}{\partial x_2}(\bar{x})h_2 + \ldots + \frac{\partial f}{\partial x_n}(\bar{x})h_n$$

Se f è differenziabile in ogni punto di A si dice che f è differenziabile in A

Definisco $L: \mathbb{R}^n \to \mathbb{R}$ (funzione lineare) è l'applicazione che ad \bar{h} associa il prodotto scalare:

$$\langle \nabla f(\bar{x}), \bar{h} \rangle$$

si chiama differenziale di f in \bar{x} e si indica con df(x) è un'applicazione lineare da \mathbb{R}^n in \mathbb{R} della variabile \bar{h}

$$df(\bar{x})(\bar{h}) = \langle \nabla f(\bar{x}), \bar{h} \rangle$$

Definizione 12

Sia $A \subseteq \mathbb{R}^n$ con A aperto, $f: A \to R$ una funzione e sia $x_0 \in A$. Si dice che f è differenziabile in x_0 se $\exists L: \mathbb{R}^n \to \mathbb{R}$ funzione lineare t.c.:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} = 0$$

dove $L(h) = \langle \nabla f(x_0), h \rangle$

Definizione: Derivate seconde

Se \exists sono della forma:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = f_{x_i x_j}$$

e si ottengono al variare di i, j da 1 ad n.

Definizione: Matrice Hessiana

Attraverso le derivate seconde si ottiene una matrice $n \times n$ che ha come elementi tutte le derivate seconde. Questa è chiamata matrice Hessiana, e si indica come:

$$Hf = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix} = \begin{bmatrix} f_{x_1 x_1} & f_{x_1 x_2} & \cdots & f_{x_1 x_n} \\ f_{x_2 x_1} & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_n x_1} & \cdots & \cdots & f_{x_n x_n} \end{bmatrix}$$

Definizione: Derivate Pure

Sono quelle che derivano per la stessa variabile (stanno sulla diagonale della matrice Hessiana):

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{(\partial x_i)^2}$$

Definizione: Derivate Miste

$$\frac{\partial^2 f}{\partial x_i \partial x_j}$$

Definizione: Formula di Taylor con resto di Lagrange

Sia $f \in \mathbb{C}^k(A)$, scriviamo la formula di Taylor di ordine k-1 con **resto di Lagrange** Osserviamo che F(0) = f(x), F(1) = f(x+h). Esiste $\theta \in (0,1)$ tale che:

$$F(1) = F(0) + F'(0)(1 - 0) + \frac{F''(0)}{2}(1 - 0)^2 + \dots + \frac{F^k(\theta)}{k!}(1 - 0)^k =$$

$$= F(0) + F'(0) + \frac{F''(0)}{2} + \dots + \underbrace{\frac{F^k(\theta)}{k!}}_{\text{resto di Lagrange}}$$

Definizione 18

 $f\in\mathbb{C}^2(A),$ stesse ipotesi di sopra. Allora:

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle Hf(x) \cdot h, h \rangle + o(|h|)$$

Definizione: Resto di Peano in due variabili

Dati
$$\bar{x} = (x_0, y_0), \bar{h} = (h, k)$$
:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial x}(x_0, y_0)k + \frac{1}{2} \left[\frac{\partial^2 f}{\partial x \partial x}(x_0, y_0)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)hk + \frac{\partial^2 f}{\partial y \partial y}(x_0, y_0)k^2\right] + o(h^2 + k^2)$$

Il pezzo tra parentesi quadre si verifica facendo i conti espliciti (prodotto scalare tra matrice per vettore e un vettore) considerando che $f_{xy} = f_{yx}$ perché $f \in \mathbb{C}^2$ (per il teorema di Schwarz).

Definizione: Massimo e minimo locale

 $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D dominio (cioè aperto insieme alla sua frontiera). Si dice che $x_0 \in D$ è un punto di minimo locale se esiste un intorno sferico $B(x_0, \sigma)$ tale che:

$$f(x_0) \le f(x)$$

 $\forall x \in D \cap B(x_0, \sigma)$

La definizione è analoga per il punto di massimo locale.

Definizione: Massimo/Minimo stretto

Il punto di minimo o massimo locale si dice stretto se la disuguaglianza è stretta.

Definizione: Massimo/Minimo globale

Se la disuguaglianza vale per tutto il dominio $\forall x \in D$ e non solo per la palla

Definizione: Punti stazionari

I punti $x_0 \in A$ tali che $\nabla f(x_0) = 0$ si dicono **punti stazionari** (o **critici**).

Definizione: Sella

L'essere punto stazionario è condizione necessaria ma non sufficiente per essere punto di estremo: in una variabile un punto stazionario che non era un punto di estremo si diceva flesso, in più variabili si parla di **sella**.

Definizione 25

 $q(\bar{h})$ si dice **definita positiva** se $\forall h \neq 0$ si ha $q(\bar{h}) > 0$

 $q(\bar{h})$ si dice **definita negativa** se $\forall h \neq 0$ si ha $q(\bar{h}) < 0$

Definizione 27

 $q(\bar{h})$ si dice **indefinita** se $\exists \bar{h_1}, \bar{h_2} \in \mathbb{R}^2$ t.c. $q(\bar{h_1}) < 0 < q(\bar{h_2})$ cioè cambia segno

Definizione: Somma inferiore

Definiamo somma inferiore di f rispetto a D:

$$s(f, D) = \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} \cdot A_{ij}$$

cioe' la somma dei parallelepipedi piccoli (vedi figura)

Definizione: Somma superiore

Definiamo somma superiore di f rispetto a D:

$$S(f, D) = \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} \cdot A_{ij}$$

cioe' la somma dei parallelepipedi grandi (vedi figura)

Definizione: Funzione integrabile secondo Riemann

Sia $f:R=[a,b]\times [c,d]\to \mathbb{R}$ limitata, si dice integrabile secondo Riemann se:

$$sups(f, D) = infS(f, D)$$

In tal caso il valore comune si dice **integrale** di f su R si indica in vari modi:

$$\int_{R} f$$

$$\iint_R f$$

9

$$\iint_R f(x,y) dx dy$$

$$\int_{b}^{a} \int_{d}^{c} f(x,y) dx dy$$

f è limitata su $D \subset \mathbb{R}^2$ con D insieme limitato di \mathbb{R}^2 .

Diciamo che f è integrabile (secondo Reimann) su D, se la \bar{f} è integrabile su R (secondo Reimann) e in tal caso si scrive:

$$\iint_D f(x,y) \, dxdy = \iint_R \bar{f}(x,y) \, dxdy$$

Definizione: Insieme numerabile (Peano-Jordan)

Un sottoinsieme limitato del piano $D \subset \mathbb{R}^2$ si dice misurabile (secondo Peano-Jordan) se la funzione f(x,y)=1 è integrabile su D

In tal caso poniamo:

$$Area(D) = \underbrace{|D|}_{area} = \iint 1 \, dx dy$$

e dunque ogni rettangolo $R = [a,b] \times [c,d]$ è misurabile secondo Peano-Jordan:

$$|R| = \int_a^b \int_c^d 1 \, dx \, dx = (b-a)(d-c)$$

Definizione: Vettore

Il vettore $n \in \mathbb{R}^n$ è una n-pla $x = (x_1, x_2, \dots, x_n)$

Definizione: Norma

Il numero reale (non negativo)

$$|x| := \sqrt{x \bullet x} = \sqrt{\langle x, x \rangle}$$

si chiama lunghezza o norma del vettore

Definizione: Disuguaglianza triangolare

La disuguaglianza triangolare si definisce come:

$$|x+y| \le |x| + |y|$$

se
$$|x+y|=|x|+|y| \to y=0 \ \lor \ x=\lambda y$$
 con $\lambda \geq 0$:

Definizione: Distanza Euclidea

Distanza Euclidea si definisce come d(x, y):

$$d(x,y) := |x-y| = \sqrt{\langle x-y, x-y \rangle} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \ge 0$$

questa è la norma

Definizione: Spazio metrico

Uno spazio metrico è un insieme X dotato di un'applicazione definita: $X \times X \to \mathbb{R}$ che verifica le proprietà sopra:

$$(\mathbb{R}^n, \underbrace{d}_{\text{distance qualides}})$$
 spazio metrico

esistono altre distanze che ci definiscono relative metriche equivalenti

Definizione: Successione

Una successione è un elenco ordinato di numeri $\{x_n\} \subset \mathbb{R}^n$ (gli elementi della successione sono elementi di \mathbb{R}^n ovvero n-ple di reali)

$$x_n = (x_n^1, x_n^2, \dots, x_n^n)$$

si dice che converge a $x \in \mathbb{R}^n$ se:

$$d(x_n, x) \xrightarrow{n \to +\infty} 0$$

cioè:

$$\forall \varepsilon > 0, \exists \bar{N} \in \mathbb{N}$$

$$d(x_n, x) < \varepsilon, \forall n \ge \bar{N}$$

$$|x_n - x| = \sqrt{(x_n^1 - x^1)^2 + \dots + (x_n^n - x^n)^2}$$

Definizione 39

Si definisce palla aperta, disco aperto, intorno sferico di centro x_0 e raggio r l'insieme e che si indica con $B(x_0, r)$ l'insieme:

$$B(x_0, r) := \{ x \in \mathbb{R}^n, d(x, x_0) < r \} \subset \mathbb{R}^n$$

praticamente un intorno di x_0 in \mathbb{R}^n

Definizione: Sottoinsieme limitato

 $A \subset X$ si dice limitato se esiste una palla aperta in cui A risulta interamente contenuto:

$$\exists r > 0, \exists x_0 \in X \text{ t.c. } A \subset B(x_0, r)$$

Definizione: Punto interno

Un punto di $x_0 \in X$ si dice interno ad A dove $A \subset X$ e non solo $x_0 \in A$ ma esiste (almeno) un suo intorno sferico interamente contenuto in A:

$$\exists r > 0 \ B(x_0, r) \subset A$$

 \dot{A} insieme di punti interni ad A

Definizione: Punto esterno

 $x_0 \in X$ si dice esterno ad A ($A \subset X$) se non solo x_0 non appartiene ad A ma vi è almeno un suo intorno sferico completamente disgiunto ad A

$$x_0 \in A \in \exists r > 0 \ B(x_0, r) \cap A = \emptyset$$

Definizione: Insieme aperto

 $A \subset X$ si dice aperto se $A = \emptyset$ oppure se ogni punto è un punto interno di A (ovvero per ogni punto di A c'è un intorno sferico tutto contenuto in A)

Definizione: Insieme chiuso

Un insieme $C \subset X$ si chiuso se il suo complementare è un insieme aperto:

$$X \setminus C = A$$

Definizione: Punto di accumulazione

Un punto $x_0 \in \mathbb{R}^n$ di accumulazione per $A \subseteq \mathbb{R}^n$ si dice punto di accumulazione se in ogni intorno circolare di x_0 c'è almeno un punto di A diverso da x_0

Definizione: Convergenza in \mathbb{R}^n

Data una successione $\{x_n\} \in \mathbb{R}^n$ questa si dice che converge a $x_0 \in \mathbb{R}^n$ se:

$$\lim_{n \to +\infty} d(x_n, x_0) = 0$$

questo equivale a dire $\forall \varepsilon > 0, \exists \bar{N} \in \mathbb{N}$ e $\forall n \geq \bar{N}$ si ha:

$$d(x_n, x_0) < \varepsilon$$

Definizione: Punto di accumulazione con limiti

 x_0 è di accumulazione per $A \Leftrightarrow x_0$ è il limite di una successione di elementi di Atutti diversi da x_0

Definizione: Chiusura di un insieme $A \subset \mathbb{R}^n$

Si indica con \bar{A} è un sottoinsieme di \mathbb{R}^n dato dall'unione di A e dei suoi punti di accumulazione (DA)

 \bar{A} è un insieme chiuso. Lo si può pensare come l'intersezione dei chiusi contenenti A. Si può inoltre dimostrare che:

$$\bar{A} = A \cup \delta A$$

Definizione: Dominio

Un dominio D in \mathbb{R}^n è la chiusura di un insieme aperto:

$$D = \bar{A} = A \cup \delta A$$

Definizione: Limite di funzioni in più variabili

Sia $x_0 \in \mathbb{R}^n$ un punto di accumulazione per A

Si dice che $f(\bar{x})$ tende (ha limite) a l per \bar{x} che tende a x_0 :

$$\lim_{\bar{x}\to x_0} f(\bar{x}) = l$$

scrivendolo tramite gli intorni: se \forall intorno $U\subset\mathbb{R}$ di l esiste un intorno di x_0 (sferico) $I(x_0,r)$ con r>0

tale che
$$f(\bar{x}) \in U \ \forall \bar{x} \in \underbrace{I(x_0, r)}_{B(x_0, r)} \cap (A \setminus \{x_0\})$$

L'altra definizione con i delta:

$$\forall \varepsilon > 0 \; \exists \delta > 0$$

tale che

$$\underbrace{|f(\bar{x}) - l|}_{d(f(\bar{x}), l) \in \mathbb{R}} < \varepsilon$$

$$\forall \bar{x} \in A \setminus \{x_0\} \text{ con } |\bar{x} - x_0| < \delta$$