M2 meeting

Open Systems Management

Supply Chain configuration

- ▶ The supply chain is modeled into a network
 - Each node represents a processEx: screen manufacturing, transportation, etc...
 - Each node has several optionsEx: for transportation we have plane and truck
- We choose the options at each stage to minimize the total supply chain cost
- Solved with a dynamic algorithm

A few equations...

Optimization problem:

Safety stock cost

$$\mathbf{P} \quad \min \sum_{i=1}^{N} \boxed{\alpha c_i \left[D_i \left(s_i^{\text{in}} + t_i - s_i^{\text{out}} \right) - \left(s_i^{\text{in}} + t_i - s_i^{\text{out}} \right) \mu_i \right]} \\ + \boxed{\alpha \left(c_i - \frac{x_i}{2} \right) t_i \mu_i} + \boxed{\beta x_i \mu_i}$$

$$\text{Pipeline stock cost} \qquad \text{COGS}$$

Functional equations for the algorithm:

FE(i) = min[cost of stage I + FE(subnetwork linked to i)]

Running the algorithm

The inputs

Cost and leadtime at each stage

The inputs

- External demand:
 - The mean of the demand
 - The maximum demand function (depends on the standard deviation of the demand)
- The external service time

 And of course the shape of the network and the number of options (=2 here)

Results

- ▶ The algorithm calculates:
 - The optimal total cost of the supply chain
 - The optimal options at each stage
 - ▶ The optimal service time at each stage

Simulation with a high holding cost

 The high-cost/short-leadtime are taken at the downstream stages (not at the upstream stages)

Simulation with a low holding cost

- The high-cost/short-leadtime options are almost not selected. Only for the last option
- SC total cost: 33508.3

Simulation with low demand deviation

SC total cost: 61395.1

Simulation with a high demand deviation

- There is more high-cost/low-leadtime options selected
- SC total cost: 66062.7

