Sistemas Distribuídos

Aula 11 – Segurança

DCC/IM/UFRRJ
Marcel William Rocha da Silva

Objetivos da aula

Aula anterior

Tolerância à Falha

Aula de hoje

- Segurança
 - Criptografia
 - Canais seguros
 - Controle de acesso
 - Gerenciamento de segurança

Segurança em sistemas distribuídos

- A segurança de um sistema distribuído passa pelos seguintes pontos:
 - Confidencialidade: apenas o remetente e o destinatário são capazes de entender o conteúdo das mensagens
 - Integridade: remetente e destinatário querem impedir que ocorram mudanças nas mensagens (intencionais ou não)
 - Autenticação: remetente e destinatário querem confirmar a identidade um do outro
 - Disponibilidade e Controle de acesso: serviços precisam estar disponíveis e ser acessados apenas por usuários qualificados

Modelo para o estudo de segurança

- Alice e Bob querem se comunicar de forma segura
- Trudy (intruso) que deseja "interferir" na comunicação

Modelo para o estudo de segurança

- O que um intruso pode fazer?
 - Interceptar mensagens
 - Inserir novas mensagens da conexão
 - Forjar pacotes com outro endereço de origem
 - Sequestrar um conexão (remover Alice ou Bob)
 - Impedir que outros se comuniquem

Políticas e mecanismos de segurança

 Não basta declarar que um SD deva resolver todos os problemas anteriores para ter segurança

- Devemos definir:
 - Políticas de segurança

 quais ações as entidades de um sistema têm permissão de realizar e quais são proibidas
 - Mecanismos de segurança

 ferramentas para impor as políticas de segurança desejadas

Mecanismos de segurança

- Criptografia: transformação de dados em algo que um atacante não possa entender
- Autenticação: validação da identidade do par de comunicação (usuário, cliente, servidor ou outra entidade)
- Autorização: após autenticação, verifica se o par possui permissão de executar a ação
- Auditoria: rastrear quais recursos foram acessados por quais pares, e de que maneira

Criptografia

- Duas possibilidades:
 - Chaves simétricas: Alice e Bob possuem uma mesma chave $(K_A = K_B)$
 - Chave pública (chaves assimétricas): criptografa com uma chave pública, decriptografa com uma chave privada (K_A ≠ K_B)

Criptografia com chaves simétricas

- Ambas as partes compartilham uma mesma chave
 - Serve para criptografar e decriptografar o texto
- Exemplos de algoritmos muito usados na prática
 - DES e AES

Criptografia com chaves públicas

- Utiliza um um par de chaves:
 - Chave publica → conhecida por todos
 - Chave privada
 conhecida apenas pelo destinatário

Criptografia com chaves públicas

Algoritmo RSA

- Utiliza conceitos da teoria dos números
- As chaves são escolhidas de tal forma que através da chave pública K⁺_B é impossível obter a chave privada K⁻_B
- A seguinte equivalência também é garantida:

$$K_{B}(K_{B}(m)) = m = K_{B}(K_{B}(m))$$

Decriptografar com a chave pública uma mensagem criptografada com a chave privada

Decriptografar com a chave privada uma mensagem que foi criptografada com a chave pública

Canais seguros

- Um canal seguro protege remetente e destinatário de:
 - Interceptação de mensagens (confidencialidade)
 - Garantida com uso de criptografia
 - Modificação e "invenção" de mensagens (autenticação e integridade)
 - Garantidas com mecanismos de autenticação e assinatura digital

Autenticação

- Objetivo \rightarrow Permitir que Alice prove sua identidade à Bob
- Duas possibilidades
 - Usando chaves simétricas ou públicas

- Provar que Alice está "ao vivo" na outra ponta
- Bob envia um nonce (**R**) que será criptografado na hora por Alice com a chave simétrica
 - nonce → número que será usado apenas uma vez

Na prática

 queremos autenticar ambas as partes

- Possível reduzir o número de etapas
- Cuidado!

 Melhoria torna o protocolo sujeito a ataques de reflexão

Exemplo de ataque de reflexão

Autenticação com chave pública

Idem ao anterior, mas usando chave pública

Bob computa:

$$K_A^+(K_A^-(R)) = R$$

e sabe que apenas Alice poderia ter esta chave privada que cifrou R, tal que: _ _

 $K_A^+ (K_A^-(R)) = R$

Problema → Como obter a chave pública da Alice?

Distribuição de chaves é um problema de segurança importante!

Autenticação com chave pública

- Distribuir a chave durante a autenticação
 - Problema: Ataque do homem do meio (man in the middle)

Autenticação com chave pública

- Variante melhor do protocolo anterior
 - Mas também tem problemas → seria necessário Alice obter a chave pública de Bob de uma maneira segura!

Integridade

- Assinatura digital

 permite verificar que Bob é o único possível criador da mensagem
 - Também usa chave pública
- Bob cifra sua mensagem com sua chave privada
 - Integridade pode ser verificada fazendo: K⁺_B(K⁻_B(m))=m

Integridade: Resumo de mensagem

- Pode ser muito custo cifrar a mensagem inteira
 - Principalmente com mensagens muito grandes
- - Aplicar uma função *hash* para reduzir o tamanho da mensagem e tornar mais rápido sua criptografia
 - Função H(.) que mapeia os bits de uma mensagem m
 em um resumo com poucos bits
 - Exemplos de algoritmos de hash muito usados
 - MD5 e SHA1

Integridade: Resumo de mensagem

Bob envia mensagem assinada digitalmente:

Alice verifica a assinatura e a integridade da mensagem assinada:

Comunicação segura entre grupos

 Conjunto de N processos que desejam se comunicar de maneira segura

- Esquema simples

 todos compartilharem a mesma chave secreta
 - Todos devem ser de confiança
 - Sistema fica mais vulnerável a ataques quando comparados com canais seguros ponto-a-ponto

Comunicação segura entre grupos

- Alternativas...
 - Usar uma chave secreta compartilhada a cada par de membros do grupo
 - Se um membro torna-se não confiável, basta parar de mandar mensagens para ele → outras comunicações podem prosseguir
 - Problema → seria necessário manter um número grande de chaves (N(N-1)/2)
 - Usar chaves pública/privada
 - Cada membro tem seu par de chaves
 - Necessárias N chaves ao todo

Controle de acesso

- Após estabelecer um canal seguro → cliente pode enviar requisições a um servidor
- Entretanto, servidor pode estabelecer regras sobre quais requisições podem ser executadas por cada cliente sobre quais objetos
 - Controle de acesso
- Modelo utilizado para o estudo do controle de acesso:

Controle de acesso

- Uma maneira de modelar as regras é através de uma matriz de controle de acesso
 - Linhas representam os sujeitos
 - Colunas representam os objetos
 - Posições da matriz contém uma lista de operações permitidas
- Problema

 matriz pode ser muito grande e esparsa
 - Solução: atribuir a cada objeto uma lista de controle de acesso (ACL)

Controle de acesso

- ACLs também podem ficar extensas
 - Se muitos sujeitos no sistema
- Solução → criar domínios de proteção
 - Grupos de usuários -> conjuntos de usuários com as mesmas permissões
 - Certificados → deixar o usuário carregar sua própria ACL (deve ser impossível o usuário modificar seu certificado)
 - Definir papéis
 permissões são atribuídas aos papéis definidos e cada usuário possui um ou mais papéis

Gerenciamento de segurança

- Problema com chaves simétricas ou chave pública
 - Como distribuir em segredo um chave simétrica?
 - Como saber que a chave publica é realmente de Bob?

- Necessita de um intermediário de confiança
 - Central de distribuição de chaves no caso de chaves simétricas
 - Autoridade certificadora no caso de chaves públicas

Central de distribuição de chaves

- Key distribution center (KDC)
- Entidade que compartilha chaves simétricas com seus vários usuários
 - Cada usuário possui uma chave simétrica única que usa para se comunicar com o KDC

Central de distribuição de chaves

 Como Alice e Bob obtém do KDC uma chave simétrica secreta para se comunicarem?

Alice e Bob se comunicam usando a chave X como uma chave de sessão para a criptografia por chave simétrica

Autoridade certificadora

- Certification authority (CA)
- CA é responsável por emitir certificados
 - Associação entre uma entidade e sua chave pública
 - Entidade fornece "provas de identidade" para a CA
- Certificados emitidos possuem uma assinatura digital com a chave privada da CA
 - Chave pública da CA poderia ser distribuída por algum outro meio confiável

