Scilab Textbook Companion for Heat And Mass Transfer by V. K. Dwivedi¹

Created by
Priyanka Saini
B.Tech
Electronics Engineering
Uttarakhand Tech. University
College Teacher
Arshad Khan
Cross-Checked by
Mukul R. Kulkarni

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Heat And Mass Transfer

Author: V. K. Dwivedi

Publisher: Umesh Publications

Edition: 3

Year: 2009

ISBN: 81-88114-54-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction To Heat Transfer	5
2	General Heat Conduction Equation	16
3	Fins Heat transfer from Extended Surfaces	26
4	Transient Heat Conduction	39
5	Forced Convection Heat Transfer	55
6	Free Convection	70
7	Radiation Heat Transfer	81
8	Heat Exchangers	93
9	Condensation and Boiling	111
10	Mass Transfer	117

List of Scilab Codes

Exa 1.1	Rate of heat transfer
Exa 1.2	Area of wall perpendicular to heat flow
Exa 1.3	Rate of heat loss
Exa 1.4	Electric power supplied to coil
Exa 1.5	Inside Plate temperature
Exa 1.6	Total heat loss by the pipe
Exa 1.7	Rate of heat transfer
Exa 1.9	Steady state heat transfer
Exa 1.10	Rate of heat transfer
Exa 1.11	Temperature drop across the contact joint
Exa 1.12	Heat transfer rate
Exa 1.13	Rate of heat transfer
Exa 1.14	Heat transfer rate
Exa 1.15	Central temperature
Exa 1.16	Equilibrium temperature
Exa 2.5	Heat transfer rate and interface temperature 16
Exa 2.6	Percentage increase in heat transfer rate
Exa 2.7	Heat transfer coefficient water to air heat transfer and
	temperature drom
Exa 2.8	Percentage increase in heat dissipation
Exa 2.9	Maximum value of thermal conductivity 20
Exa 2.10	Current carried by the copper wire
Exa 2.11	Critical radius of insulation and heat loss
Exa 2.12	Temperature of inner surface
Exa 2.13	Maximum steady state current
Exa 2.16	Maximum possible current that may be passed by the
	wire
Exa 3.1	Temperature distribution equation and heat loss 26

Exa 3.2	Thermal conductivity of the rod material
Exa 3.3	Fin efficiency
Exa 3.4	Heat loss by the fin
Exa 3.5	Rate of heat transfer
Exa 3.6	Temperature at the centre of the rod and heat transfer
	by the rod
Exa 3.7	Temperature distribution in the rod temp at the free end heat flow out the source and heat flow rate at the
	free end
Exa 3.8	Rate of heat transfer
Exa 3.9	Temperature distribution in the rod temp at the free
LAG 0.0	end heat flow out the source and heat flow rate
Exa 3.10	Measurement error
Exa 3.11	Measurement error percent
Exa 3.12	Minimum length of pocket
Exa 3.13	Length of shaft
Exa 4.1	Rate of change of energy storage in the wall
Exa 4.2	Time required to cool the sphere Initial rate of cooling
	and Instantaneous rate of heat transfer
Exa 4.3	Time constant and temp attained by junction
Exa 4.4	Time constant and time required to the temp change.
Exa 4.5	Rate of heat energy stored
Exa 4.6	Time constant and time required for the plate to reach
	the temp of 40 deg C
Exa 4.7	Time required to cool plate to 80 deg C and in air
Exa 4.8	Maximum speed of ingot passing through the furnace.
Exa 4.9	Junction diamete and time required for the thermocou-
	ple junction
Exa 4.10	Heat leaving and entering the slap
Exa 4.11	Time required for cooling process
Exa 4.12	Time to keep furnace
Exa 4.13	Centre temperature
Exa 5.1	Boundary layer thickness
Exa 5.2	Rate of heat transfer and length of plate
Exa 5.3	Heat transfer rate
Exa 5.4	Length of tube
Exa 5.5	Average heat transfer coefficient
Exa. 5.6	Heat transfer coefficient and friction factor

Exa 5.7	Average heat transfer coefficient and tube length 62
Exa 5.8	Reynold number heat transfer coefficient and pipe length 63
Exa 5.9	Tube length
Exa 5.10	Heat transfer rate from the cylinder 65
Exa 5.11	Heat loss by the sphere
Exa 5.12	Heat transfer coefficient
Exa 5.13	Heat transfer rate
Exa 5.14	Heat transfer rate
Exa 5.15	Initial rate of heat loss
Exa 6.1	Heat transfer rate from the plate in two oriention 70
Exa 6.2	Heat loss from the two surface of the plate
Exa 6.3	Heat loss from the pipe
Exa 6.4	Heat transfer coefficient and initial rate of cooling of the
	plate
Exa 6.5	Total rate of heat loss from the pipe
Exa 6.6	Heat gained by the duct per meter
Exa 6.7	Average heat transfer coefficient and Local heat flux . 77
Exa 6.8	Heat transfer by natural convection
Exa 6.9	Heat transfer and overall heat transfer coefficient 79
Exa 7.1	Monochromatic emissive power and Maximum emissive
	power
Exa 7.2	Heat transfer by radiation and natural convection 82
Exa 7.3	Heat transfer rate
Exa 7.4	Energy emitted by a grey surface
Exa 7.5.1	Absorbed Transmitted and emitted energy 85
Exa 7.5.2	Net heat exchange between the two surface 85
Exa 7.6	heat loss and net heat transfer between pipe and duct 86
Exa 7.10	Shape factor of a cylinderical cavity
Exa 7.11	Net heat transfer rate and rate of evaporation of liquid
	oxygen
Exa 7.12	Radiation heat transfer
Exa 7.13	Steady state temperature
Exa 7.14	Rate of absorption and emission
Exa 7.15	Radient Heat transfer
Exa 8.1	Surface area of heat exchanger
Exa 8.2	Length of heat exchanger
Exa 8.3	Area of heat exchanger tube
Exa 8.4	The overall heat transfer

Exa 8.5	Heat transfer rate	96
Exa 8.6	Type of heat exchanger required	97
Exa 8.7	Heat transfer area	98
Exa 8.8	Rate of heat condensation	99
Exa 8.9	Heat transfer area	100
Exa 8.10	Exit temperature of water	102
Exa 8.11	Exit temperature	102
Exa 8.12	Exit temperature	104
Exa 8.13	Outlet temperature	105
Exa 8.14	Total heat transfer and outlet temperature	106
Exa 8.15	Surface area of heat exchanger	107
Exa 8.16	Heat exchanger area	108
Exa 8.17	Overall heat transfer coefficient	108
Exa 9.1	Rate of heat transfer	111
Exa 9.2	Condensation rate	112
Exa 9.3	Length of tube and total heat transfer rate	113
Exa 9.4	Film thickness	114
Exa 9.5	Heat transfer rate	115
Exa 10.1	Molar concentration and molar and mass diffusion	117
Exa 10.2	Diffusion coefficient of hydrogen	118
Exa 10.3	Diffusion coefficient of NH3	118
Exa 10.4	Mass flow rate	119
Exa 10.5	Diffusion flux rate	120
Exa 10.6	Loss of H2 by diffusion	121
Exa 10.7	Time taken to evaporate	122
Exa 10.8	Diffusion Flux rate of air	123

Chapter 1

Introduction To Heat Transfer

Scilab code Exa 1.1 Rate of heat transfer

```
1 //Exa 1.1
2 clc;
3 clear;
4 close
5 // given data
6 t1=38; // in degree C
7 t2=21; // in degree C
8 k=0.19; // unit less
9 x=4; //in cm
10 x=x*10^-2; // in meter
11 // Formula q=k*A*(t1-t2)/x;
12 q_by_A=k*(t1-t2)/x;
13 disp("The rate of heat transfer is: "+string(q_by_A)+" W/m^2");
```

Scilab code Exa 1.2 Area of wall perpendicular to heat flow

```
1 // Exa 1.2
```

```
2 clc;
3 clear;
4 close
5 // given data
6 t_i=120; // in degree C
7 t_o=40; // in degree C
8 \text{ K=0.04;} // \text{ unit less}
9 x = 0.06; //in m
10 Q=50;// in W
11 disp("Assuming steady state heat transfer in the
      wall.");
12 // Rate of heat transfer across the wall = Rate of
      electrical energy dissipation in the furnance
13 // Formula Q= K*A*(t_i-t_o)/x;
14 A=Q*x/(K*(t_i-t_o));
15 disp(A, "Area of wall in square meter is: ")
```

Scilab code Exa 1.3 Rate of heat loss

```
1 //Exa 1.3
2 clc;
3 clear;
4 close
5 // given data
6 t_f=30; // in degree C
7 t_s=400; // in degree C
8 d=0.04; // in m
9 h=20; // in W/m^2K
10 l=1; // in meter
11 A=%pi*d*l;
12 q=h*A*(t_s-t_f); // in W
13
14 disp(q,"Rate of heat loss in watt is:")
```

Scilab code Exa 1.4 Electric power supplied to coil

```
1 // Exa 1.4
2 clc;
3 clear;
4 close
5 // given data
6 t_s=100; // in degree C
7 t_w=80; // in degree C
8 d=2*10^-3; //in m
9 h=3000; // in W/m<sup>2</sup> degree C
10 L=100; // in mm
11 L=L*10^-3; // in meter
12 A = \%pi * d * L;
13 // Heat loss by convection = Electric power supplied
14 // Formula h*A*(t_s-t_w) = Q
15 Q= h*A*(t_s-t_w);
16 disp(Q, "Electric power supplied in watt is: ")
```

Scilab code Exa 1.5 Inside Plate temperature

```
1 //Exa 1.5
2 clc;
3 clear;
4 close
5 // given data
6 A=0.6*0.9; // in square meter
7 x=.025; // in meter
8
9 t_s=310; // in degree C
10 t_f=15; // in degree C
11 h=22; // in W/m^2 degree C
```

Scilab code Exa 1.6 Total heat loss by the pipe

```
1 / Exa 1.6
2 clc;
3 clear;
4 close
5 // given data
6 T1=50; // in degree C
7 T1=T1+273; // in K
8 T2=20; // in degree C
9 T2=T2+273; // in K
10 d=5*10^-2; //in m
11 h=6.5; // in W/m<sup>2</sup>K
12 l=1; //in meter
13 epsilon=0.8;
14 \text{ sigma=5.67*10^--8};
15 A=%pi*d*1;// in Square meter
16 q_conv = h*A*(T1-T2); // in W/m
17 disp(q_conv, "The heat loss by convection in W/m")
18 // formula q= sigma*A*F_g12*(T1^4-T2^4) = sigma*A*
      epsilon*(T1^4-T2^4) (since A1<<A2, so F_g12=
      epsilon)
19 q_rad = sigma*A*epsilon*(T1^4-T2^4); // in W/m
20 disp(q_rad," Heat loss by radiation in W/m")
```

```
21 q_total = q_conv+q_rad;
22 disp(q_total, "Total heat loss in W/m is :")
```

Scilab code Exa 1.7 Rate of heat transfer

```
1 //Exa 1.7
2 clc;
3 clear;
4 close
5 // given data
6 T1=1350; // in degree C
7 T2=50;// in degree C
8 L=25*10^-2; //in meter
9 // Formula q = -k*A*dT/dx
10 // or q/A = -k*dT/dx
11 // let q/A = q_by_A
12 q_by_A = (integrate('-0.838*(1+0.0007*T)', 'T', T1, T2))
     /(integrate('1', 'x',0,L));
13 disp(q_by_A," Heat transfer rate per square meter
     through the cylinder in watt is: ");
14
15 // Note : Answer in the book is wrong
```

Scilab code Exa 1.9 Steady state heat transfer

```
1  //Exa 1.9
2  clc;
3  clear;
4  close
5  // given data
6  K_A=0.5; // in W/m degree C
7  K_B=0.8; // in W/m degree C
8  Ti_A=600; // inside temp. of slab A in degree C
```

```
9 To_B=100; // outside temp. of slab B in degree C
10 t_A=4*10^-2; // thickness of slab A
11 t_B=6*10^-2; // thickness of slab B
12 // Heat transfer rate per square meter through the
     slab A
13 // q/A = +K_A * (Ti_A - T) / t_A
                                              (1)
14 // Heat transfer rate through slab B
15 // q/A = +K_B * (T - To_B) / t_B
                                             (2)
16 // Equating Eqns (1) and (2)
17 // K_A*(Ti_A - T)/t_A = K_B*(T - To_B)/t_B
   T=t_A*t_B/(K_A*t_B+K_B*t_A)*(K_A*Ti_A/t_A + K_B*t_A)
18
      To_B/t_B);
19 disp("T, intermediate temperature of slab A and B is
      : "+string(T)+" degree C");
20 //Putting the value of T in Eq(1), we get
21 \ q_by_A = K_A*(Ti_A - T) / t_A;
22 disp ("Steady state heat transfer rate per square
     meter is : "+string(q_by_A)+" W/m^2")
23 //Note: Answer in the book is wrong
```

Scilab code Exa 1.10 Rate of heat transfer

```
1 //Exa 1.10
2 clc;
3 clear;
4 close
5 // given data
6 La=3*10^-2; // in meter
7 Aa=1; // in m^2
8 ka=150; // in W/m-K
9
10 Lb=8*10^-2; // in meter
11 Ab=0.5; // in m^2
12 kb=30; // in W/m-K
```

```
14 Lc=8*10^-2; // in meter
15 Ac=0.5; // in m<sup>2</sup>
16 kc=65; // in W/m-K
17
18 Ld=5*10^-2; // in meter
19 Ad=1; // in m<sup>2</sup>
20 kd=50; // in W/m-K
21
22 T1=400; // in degree C
23 T2=60; // in degree C
24
25 \text{ Ra=La/(ka*Aa)};
26 Rb=Lb/(kb*Ab);
27 \text{ Rc=Lc/(kc*Ac)};
28 \text{ Rd}=\text{Ld}/(\text{kd}*\text{Ad});
29 //The equivalent resistance for Rb and Rc
30 Re=Rb*Rc/(Rb+Rc);
31 //Total Resistance
32 sigmaR=Ra+Re+Rd;
33 // heat transfer rate per square meter
34 q = (T1-T2)/sigmaR;
35 disp("Heat transfer rate per square meter is: "+
      string(q)+" Watt");
```

Scilab code Exa 1.11 Temperature drop across the contact joint

```
1 //Exa 1.11
2 clc;
3 clear;
4 close
5 // given data
6 k_Al=202; // in W/mK
7 x_Al=0.005; // in m
8 del_T=80; // in degree C
9 R_contact=0.88*10^-4; // in m^2K/W
```

Scilab code Exa 1.12 Heat transfer rate

```
1 / Exa 1.12
2 clc;
3 clear;
4 close
5 // given data
6 T1=100; // in degree C
7 T2=10; // in degree C
8 A=3*5; //in square meter
9 x=40*10^-2; // thickness in m^2
10 k=1.6; // in W/mk
11 h=10; // in W/m<sup>2</sup>k
12 // Total resistance in heat flow path
13 sigmaR = x/(k*A) + 1/(h*A);
14 // so heat transfer rate
15 q=(T1-T2)/sigmaR;// in Watt
16 q=q*10^-3; //in kW
17 disp(q,"Heat transfer rate in kW is :");//
18
19 // Note: Answer in the book is wrong
```

Scilab code Exa 1.13 Rate of heat transfer

```
1 //Exa 1.13
2 clc;
```

```
3 clear;
4 close
5 // given data
6 k='2.0+0.0005*T';// in W/m-k
7 A=3*5;//in square meter
8
9 T1=150;// in degree C
10 T2=50;// in degree C
11 L=20*10^-2;// thickness in m^2
12 // Formula q= -k*A*dt/dx
13 q=-A*(integrate(k,'T',T1,T2))/(integrate('1','x',0,L'));// in Watt
14 q=q*10^-3;//in kW
15 disp(q,"Rate of heat transfer in kW is:");
```

Scilab code Exa 1.14 Heat transfer rate

```
1 //Exa 1.14
2 clc;
3 clear;
4 close
5 // given data
6 T1=300; //in degree C
7 T2=50; //in degree C
8 x2=2*10^-2; // thickness of boiler wall in m
9 tc2=58; // thermal conductivity of wall in W/mk
10 x3=0.5*10^-2; // thickness of outer surface of the
      wall in m
11 tc3=116*10^-3; // thermal conductivity of outer
     surface of the wall in W/mk
12 R1=2.3*10^-3; // in k/W
13 R2=x2/tc2;
14 R3=x3/tc3;
15 sigmaR=R1+R2+R3;// Total Resistance
16 q=(T1-T2)/sigmaR;
```

```
17 disp(q,"Heat transfer rate per unit area in W/m^2 :"
    )
18 // Note: Answer in the book is wrong
```

Scilab code Exa 1.15 Central temperature

```
1 / Exa 1.15
2 clc;
3 clear;
4 close
5 // given data
6 Tf=80; // in degree C
7 I = 200; // in amp
8 h=4000;// in W/m^2 degree C
9 rho = 70 * 10^{-6};
10 L=100; // in cm
11 R=0.1; // in ohm
12 d=3; // in mm
13 d=d*10^-3;
14 As= \%pi*d;
15 //Formula I^2*R = h*As*(Tw-Tf)
16 Tw = I^2*R/(h*As)+Tf;
17 disp(Tw, "Central temperature of the wire in C")
```

Scilab code Exa 1.16 Equilibrium temperature

```
1 //Exa 1.16
2 clc;
3 clear;
4 close
5 // given data
6 E=500;//Absorb solar energy in W/m^2
7 epsilon= 0.9;
```

Chapter 2

General Heat Conduction Equation

Scilab code Exa 2.5 Heat transfer rate and interface temperature

```
1 // Exa 2.5
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ r1=5;} // \text{ in cm}
7 \text{ r2=5+4; // in cm}
8 \text{ r3= 9+2.5;} // \text{ in cm}
9 \text{ k1=0.0701; // in W/mK}
10 k2=0.1; // in W/mK
11 L=20; // in m
12 disp("Saturation temperature of steam at 171*10^4 N/
      m<sup>2</sup> is 204.36 degree C. So temperature of steam
      passing through the pipe is = 204.36+30 = 234.36
      degree C")
13 T1=234.36; // in degree C
14 T3=24; // in degree C
15 sigmaR= (\log(r2/r1)/(2*\%pi*k1*L) + \log(r3/r2)/(2*\%pi*k1*L)
      *k2*L));
```

```
16
17
18  // Part (i)
19  q=(T1-T3)/sigmaR; // in watt
20  disp(q,"Heat transfer rate in watt");
21
22  // Part(ii)
23  // Formula q= (T1-T2)/(log(r2/r1)/(2*%pi*k1*L))
24  T2 =T1- (q*(log(r2/r1)/(2*%pi*k1*L)));
25  disp(T2,"Interface temperature of insulation in degree ")
```

Scilab code Exa 2.6 Percentage increase in heat transfer rate

```
1 / Exa 2.6
2 clc;
3 clear;
4 close;
5 //given data
6 k_brick=0.93; // in W/mK
7 k_insulation=0.12; // in W/mK
8 \text{ k_wood=0.175; // in W/mK}
9 \text{ k_Al} = 204; // \text{ in W/mK}
10 k1=k_brick;
11 k2=k_insulation;
12 k3=k_wood;
13 T1=200; // in degree C
14 T4=10; // in degree C
15 x1=10*10^-2; // in m
16 \text{ x2=25*10^--2;} // \text{ in m}
17 x3=1*10^-2; // in m
18 A = 0.1; // in m^2
19 sigmaR= x1/(k1*A)+x2/(k2*A)+x3/(k3*A);
20 q1 = (T1 - T4) / sigmaR;
21 disp(q1," Heat transfer rate without rivet in Watt");
```

```
22
23 // Heat transfer rate with rivet
24 d=3*10^-2; // in meter
25 x = x1 + x2 + x3;
26 k_rivet=k_Al;
27 A_rivet=\%pi*d^2/4;// in m^2
28 R_rivet= x/(k_rivet*A_rivet);
29 A_eff=A-A_rivet; // in m^2
30 sigmaRw= 1/A_eff*(x1/k1+x2/k2+x3/k3); // in k/W
31 R_eq= R_rivet*sigmaRw/(R_rivet+sigmaRw);// in k/W
32 q2 = (T1 - T4) / R_eq; // in watt
33 disp(q2,"Heat transfer rate with rivet in Watt");
34 percentIncrease=(q2-q1)*100/q1;// percent increase
      in heat flow due to rivet
35 disp(ceil(percentIncrease), "Percentage increase in
      heat flow due to rivet in %")
```

Scilab code Exa 2.7 Heat transfer coefficient water to air heat transfer and temperature drom

```
1 //Exa 2.7
2 clc;
3 clear;
4 close;
5 //given data
6 k_cu=384; // in W/mK
7 k_s=1.75; // in W/mK
8 k1=k_cu;
9 k2=k_s;
10 hi=221; // in W/m^2K
11 ho=3605; // in W/m^2K
12 Ti=100; // in degree C
13 To=125; // in degree C
14 r1=0.2; // in m
15 r2=0.02+0.006; // in m
```

```
16 \text{ r3} = 0.026 + 0.003; // in m
17 ri=0.02; // in m
18 L=1;// in m
19 // Part(i)
20 Ao = 2*\%pi*r3*L;
21 \text{ Ai} = 2*\%pi*r1*L;
22 // Formula Uo= 1/Ao*sigmaR
23 Uo= 1/[r3/(ri*hi) + r3/k1*log(r2/r1) + r3/k2*log(r3)
      /r2) + 1/ho ]; // in w/m^2K
24 disp(Uo, "Overall heat transfer coefficient based on
      outer area in W/m<sup>2</sup>K");
25
26 // Part(ii)
27 del_T= To-Ti;
28 q=Uo*Ao*del_T;
29 disp(q,"Water to air heat transfer rate in W/m");
30
31 // Part (iii)
32 // Formula q = T/(\log(r_3/r_2)/(2*\%p_i*k*L)) , where T =
      T2-T3 and k=k_s
33 k=k_s;
34 \text{ T} = q*log(r3/r2)/(2*%pi*k*L);
35 disp(T, "Temperature drop across the scale deposited
      in degree C")
36
  // Note: In Part (i), they put wrong value of r2 and
       r1 in \log(r2/r1) to calculate the value of Uo.
      So there is some difference in answer of coding
      and book
```

Scilab code Exa 2.8 Percentage increase in heat dissipation

```
1 //Exa 2.8
2 clc;
3 clear;
```

```
4 close;
5 //given data
6 \text{ k=0.175; // in W/mK}
7 h_infinite=9.3; // in W/m^2K
8 T_{infinite=30;//in degree C}
9 T_s=70; // in degree C
10 d=10*10^-3; // in m
11 r=d/2;
12 L=1; // in m
13 rc=k/h_infinite;// in m
14 CriticalThickness = rc-r; // in meter
15 CriticalThickness=CriticalThickness*10^3;
16 disp(CriticalThickness, "Critical thickness in mm");
17
18 q1=2*%pi*r*L*h_infinite*(T_s-T_infinite);// in W/m
19 q2= (T_s-T_infinite)/(log(rc/r)/(2*%pi*k*L)+1/(2*%pi)
     *rc*h_infinite));// in W/m
20 PerIncHeatDiss= (q2-q1)*100/q1;
21 disp(PerIncHeatDiss," Percentage increase in heat
      dissipation rate in %")
22 //Also q1=I1^2*R with bare cable
          q2=I2^2*R with insulated cable
24 I2_by_I1 = sqrt(q2/q1);
25 // (I2-I1) / I1 = (I2-by_I1 -1) / 1
26 // Percentage increase in current carrying capacity
27 PerIncCurrent = (I2_by_I1 -1) / 1 *100;
28 disp(floor(PerIncCurrent),"Increase in current
     carrying capacity in %")
```

Scilab code Exa 2.9 Maximum value of thermal conductivity

```
1 //Exa 2.9
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 \text{ k_in=0.3; // in W/mK}
7 k_gw=0.038; // in W/mK
8 ro=1.5; // in cm
9 ho=12; // in W/m<sup>2</sup> degree C
10 rc=k_in/ho; // in m
11 rc=rc*10^2; // in cm
12 disp(rc, "Critical radius in cm")
13 if ro<rc then
       disp("Since radius of insulation ("+string(ro)+"
14
           cm) is less than critical radius of
          insulation ("+string(rc)+" cm), so heat
          transfer rate will increase by adding thsi
          insulation");
       disp("and hence it is not effective")
15
16 \text{ end}
17 ro=ro*10^-2; // in meter
18 // For effective insulation
19 // ro >= rc
20 // Kin/ho \le ro
21 roho=ro*ho; // in W/mK
22 /// Kin  <= ro*ho
23 disp(roho, "Maximum value of thermal conductivity in
     W/mK")
```

Scilab code Exa 2.10 Current carried by the copper wire

```
1 //Exa 2.10
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9)
7 d=1.2*10^-3;// in m
8 r=d/2;// in m
```

```
9 rc=1.8*10^-3; // in m
10 T1=100; // in degree C
11 T_infinite=30; // in degree C
12 k=0.3; // in W/mK
13 h=10; // in W/m<sup>2</sup>K
14 L=1; // in m
15 ke=5.1*10^7;
q = (T1 - T_infinite) / (log(rc/r) / (2*%pi*k) + 1 / (2*%pi*rc*h))
      ));// in W/m
  // Volume of wire for one meter length
17
18 vol= %pi*r^2*L;// in m^3
19 disp("in steady state heat transfer process, the
      heat produced by the wire is dissipated to
      surrounding.")
20 // Heat produced per unit volume of the wire
21 HeatProduced = q/vol; // in w/m^2
22 // Formula HeatProduced= I^2*R = I^2/ke
23 I = sqrt (HeatProduced*ke); // in amp/m^2
24 // Area of wire
25 A = \%pi*r^2;
26 // so current carrying capacity of the given wire
27 Current = I*A;
28 disp(Current,"The current carried by the copper wire
       in amphere")
```

Scilab code Exa 2.11 Critical radius of insulation and heat loss

```
1 //Exa 2.11
2 clc;
3 clear;
4 close;
5 //given data
6 d_i=.1; // inner dia in m
7 r_i=d_i/2; // in m
8 Ti=473; // in K
```

```
9 T_infinite=293; // in K
10 k=1; // in W/mK
11 h=8; // in W/m^2K
12 rc=k/h; // in m
13 disp(rc, "Critical radius in meter");
14 //when
15 ro=rc;
16 q_by_L= (Ti-T_infinite)/(log(rc/r_i)/(2*%pi*k)+1/(2*%pi*rc*h)); // in W/m
17 disp(q_by_L, "Heat loss per meter length of pipe in W/m")
18
19 // Note: To calculate the value of q_by_L the calculation is wrong in the book so answer in the book is wrong
```

Scilab code Exa 2.12 Temperature of inner surface

```
1 //Exa 2.12
2 clc;
3 clear;
4 close;
5 //given data
6 r1=100*10^{-3}; // in m
7 r2=200*10^-3; // in m
8 q1=1.16*10^5; // in W/m^2
9 t2=30;// in degree C
10 k=50; // in W/mK
11 L=1;// in m
12 // Total heat passing through the cylinder q
13 / q = q1 * 2 * \% pi * r1 * L
14 // and heat conducted through the cylinder
15 // q= 2*\%pi*k*L(t1-t2)/log(r2/r1)
16 // From (1) and (2)
17 t1= t2+ q1*2*%pi*r1*L*\log(r2/r1)/(2*\%pi*k*L); // in
```

```
degree C
18 disp(t1, "Temperature of inner surface in degree C");
```

Scilab code Exa 2.13 Maximum steady state current

```
1 //Exa 2.13
2 clc;
3 clear;
4 close;
5 //given data
6 d1=1*10^-3; // in m
7 d2=3*10^-3; // in m
8 r1=d1/2;
9 r2=d2/2;
10 kp=384; // in W/mK
11 kw = 0.35; // in W/mK
12 rho=1.96*10^-8; // in Wm
13 t_s=95; // in degree C
14 t_infinite=40; // in degree C
15 h=8.75; // in W/m<sup>2</sup>K
16 q_by_L = (t_s-t_infinite)/(log(r2/r1)/(2*%pi*kp)
      +1/(2*\%pi*r2*h));
17 // Also q_by_L = I^2*R/L = I^2*rho/(\%pi/4*d^2)
18 I = sqrt(q_by_L*(\%pi/4*d1^2)/rho); // in amp
19 disp(I,"The maximum steady state current in amphere"
      )
```

Scilab code Exa 2.16 Maximum possible current that may be passed by the wire

```
1 //Exa 2.16
2 clc;
3 clear;
```

```
4 close;
5 // given data
6 d1=10*10^-3; // in mm
7 r1=d1/2;
8 \text{ K=0.2; // in W/mK}
9 T_max=177; // in degree C
10 T_infinite=27; // in degree C
11 ho=10; // in W/m<sup>2</sup>K
12 R=10; // in W/m
13 rc=K/ho; // in m
14 x=rc-r1;// in m
15 q_by_L= (T_max-T_infinite)/(log(rc/r1)/(2*%pi*K)
      +1/(2*%pi*ho*rc));
16 // Also q_by_L = I^2*R
17 I= sqrt(q_by_L/R); // in amp
18 disp(I, "The maximum possible current in amphere")
19
20 // Note: Answer in the book is wrong
```

Chapter 3

Fins Heat transfer from Extended Surfaces

Scilab code Exa 3.1 Temperature distribution equation and heat loss

```
1 / Exa 3.1
2 clc;
3 clear;
4 close
5 // given data
6 format('v',5);
7 d=20; // in mm
8 d=d*10^-3; //in m
9 h=5; // in W/m<sup>2</sup>K
10 T_0=100; // in degree C
11 T_infinite=20; // in degree C
12 K=15; // in W/m-K
13 //(i) Temperature distribution equation
14 disp("(i) Temperature distribution equation");
15 \operatorname{disp}("theta/theta_0 = (T-T_infinite)/(T_0-T_infinite)
       = \%e^-m*x ")
16 rho = \%pi*d; // in m
17 A=\%pi*d^2/4; //in square meter
18 m = sqrt(h*rho/(K*A));
```

Scilab code Exa 3.2 Thermal conductivity of the rod material

```
1 //Exa 3.2
2 clc;
3 clear;
4 close
5 // given data
6 format('v',13);
7 d=3; // in cm
8 d=d*10^-2; //in m
9 h=20; // in W/m<sup>2</sup>K
10 T1=140; // in degree C
11 T2=100; // in degree C
12 L=15*10^-2; // in meter
13 T_infinite=30; // in degree C
14 // Let at
15 x=0; T_0=T1;
16 \text{ x=15; } // \text{in cm}
17 x = x * 10^{-2}; // in m
18 T=100; // in degree C
19 rho = \%pi*d;
20 A = \%pi*d^2/4;
21 // Formula (T-T_infinite)/(T_0-T_infinite) = \%e^-m*x
```

```
22 m=log((T_0-T_infinite)/(T-T_infinite))/x;
23 // Formula m=sqrt(h*rho/(k*A))
24 k=h*rho/(m^2*A);
25 disp(k, "Thermal conductivity of the rod material in W/m-k is ")
```

Scilab code Exa 3.3 Fin efficiency

```
1 // Exa 3.3
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9);
7 t=1; // in mm
8 t=t*10^-3;// in meter
9 L = 10; // in mm
10 L= L*10^-3; // in meter
11 k= 380; // W/mK
12 To = 230; // in
13 T_inf = 30; // in
14 h = 40; // in W/m<sup>2</sup>K
15 B= 1;// in meter
16 Ac= B*t; // in m<sup>2</sup>
17 rho = 2*(B+t);
18 m = sqrt(h*rho/(k*Ac));
19 // Part (a)
20 nita= tanh(m*L)/(m*L)*100; // fin efficiency in %
21 disp(nita, "Fin efficiency in %");
22
23 // Part (b)
24 N=1000/9+1; // number of fin
25 Af = N*rho*L; // in square meter
26 A1= 1; // plate area in m<sup>2</sup>
27 A2= N*1*1*10^-3; // Area where fins are attached in
```

Scilab code Exa 3.4 Heat loss by the fin

```
1 //Exa 3.4
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9);
7 \text{ w=}5*10^-2; // \text{ in meter}
8 L=1; // in meter
9 t=2.5*10^-2; // in meter
10 h=47; // in W/m<sup>2</sup>K
11 k=16.3; // in W/mK (for 18.8 steel)
12 T_0=100; // in degree C
13 T_infinite=20; // in degree C
14 Ac=w*t; // in square meter
15 \text{ rho} = 2*(w+t);
16 m = sqrt(h*rho/(k*Ac));
17 q_fin=k*Ac*m*(T_0-T_infinite)*[(tanh(m*L)+h/(k*m))]
      /(1+h/(m*k)*tanh(m*L))];
```

```
18 disp("The heat lost by the fin of one meter length
    is : "+string(q_fin)+" W");
```

Scilab code Exa 3.5 Rate of heat transfer

```
1 / Exa 3.5
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',13)
7 \text{ w=1;} // \text{ in meter}
8 L=2.5*10^-2; // in meter
9 t=0.8*10^{-3};// in meter
10 l=1; // in meter
11 T_0=150; // in degree C
12 T_infinite=40; // in degree C
13 h=20; // in W/m<sup>2</sup>K
14 k=65; // in W/mK (for 18.8 steel)
15 Ac=w*t;
16 d=5*10^-2; // Cylinder dia in meter
17 rho = 2*(w+t);
18 rho=floor(rho);
19
20 m = sqrt(h*rho/(k*Ac));
21 \quad mL = m * L;
22 // heat transfer rate from 12 fins
23 q_fin=12*k*Ac*m*(T_0-T_infinite)*[(tanh(m*L)+h/(k*m))]
         )/(1+h/(m*k)*tanh(m*L))];
24 disp("Heat transfer rate from 12 fins si: "+string(
      q_fin)+" watt");
25 \text{ Au} = \% \text{pi} * \text{d} * \text{l} - 12 * \text{w} * \text{t};
26 \text{ qu=h*Au*}(T_0-T_infinite);
27 disp("Now heat transfer from unfinned surface area
      is : "+string(qu)+" watt");
```

Scilab code Exa 3.6 Temperature at the centre of the rod and heat transfer by the rod

```
1 / Exa 3.6
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',5)
7 T_0=100; // in degree C
8 T_infinite=30; // in degree C
9 T_L=100; // in degree C
10 d=6*10^-3; // copper rod dia in meter
11 L=50*10^-2; // developed length in meter
12 Ac = \pi^2/4; // in square meter
13 rho=%pi*d;// in meter
14 h=30; // in W/m<sup>2</sup>K
15 k = 330; // in W/mK
16 m = sqrt(h*rho/(k*Ac));
17 //(i) Temperature distribution equation for the fin
18 // (T-T_infinite)/(T_0-T_infinite) = ([(T_L-T_infinite)]
      /(T_0-T_{infinite}) | * sinh (m*x) + sinh (m*(L-x)) / sinh
      (m*L)
19 //Temperature at
20 x = 0.25; // in m
21 T= ([(T_L-T_infinite)/(T_0-T_infinite)]*sinh(m*x)+
      sinh(m*(L-x)))/sinh(m*L)*(T_0-T_infinite)+
      T_infinite;
22 disp("(i) Temperature at the centre of the rod is:
      "+string(T)+" degree C");
23 disp("(ii) Heat transfer rate from the fin - This is
```

Scilab code Exa 3.7 Temperature distribution in the rod temp at the free end heat flow out the source and heat flow rate at the free end

```
1 / Exa 3.7
2 clc;
3 clear;
4 close;
5 //given data
6 T_0=100; // in degree C
7 T_infinite=25; // in degree C
8 d=5*10^-2; // in meter
9 L=15*10^-2; // in meter
10 h=8; // in W/m<sup>2</sup>K
11 k=20; // in W/mK
12 rho=%pi*d;// in meter
13 Ac=\%pi*d^2/4; // in square meter
14 m = sqrt(h*rho/(k*Ac));
15
16
  //(i) Temperature distribution in the rod
17
    disp("(i) Temperature distribution in the rod")
18
    disp("(T-T_infinite))/(T_0-T_infinite) = (cosh(m*(L-T_infinite)))
       (x) + h/(k*m)*sinh(m(L-x))/(cosh(m*L)+h/(k*m)*
       sinh (m*L))")
19
20 //(ii) Temperature at free end i.e. at
21 x=L;
22 // Formula (T_L-T_infinite)/(T_0-T_infinite) = 1/(
      \cosh (m*L)+h/(k*m)*\sinh (m*L)
```

```
23 T_L = (1/(\cosh(m*L) + h/(k*m) * \sinh(m*L))) * (T_0 - m*L) + h/(k*m) * sinh(m*L))
      T_infinite)+T_infinite;
24 disp("(ii) Temperature at free end is: "+string(T_L
      ) + " degree C");
25
26 //(iii) Heat flow out the source means heat transfer
       from the fin
27 \text{ q_f=} \frac{\text{sqrt}(h*rho*k*Ac)*(T_0-T_infinite)*[(h/(k*m)+tanh)]}{\text{tanh}}
      (m*L))/(1+h*tanh(m*L)/(k*m))];
  disp("(iii) Heat flow out the source : "+string(q_f)
      +" watt");
29
30 // (iv) Heat flow rate at free end
31 q_L=h*Ac*(T_L-T_infinite);
32 disp("(iv) Heat flow rate at free end is: "+string(
      q_L)+" watt");
```

Scilab code Exa 3.8 Rate of heat transfer

```
1 / Exa 3.8
2 clc;
3 clear;
4 close;
5 //given data
6 T_0=150; // in degree C
7 T_infinite=40;// in degree C
8 \text{ w=1;} // \text{ in m}
9 t=0.75*10^-3; // in m
10 d=5*10^-2; // in meter
11 L=25*10^-3; // in meter
12 k = 75; // in W/mK
13 h=23.3; // in W/m<sup>2</sup>K
14 N=12; // numbers of fins
15 Ac=w*t; //in square meter
16 rho=2*(w+t);// in meter
```

```
17 delta=Ac/rho;
18 L_c=L+delta;
19 ML_c=L_c*sqrt(h*rho/(k*Ac))
20 q_fin= N*sqrt(h*rho*k*Ac)*(T_0-T_infinite)*tanh(ML_c);
21 q_fin=floor(q_fin);
22 A_0=%pi*d*w-12*Ac
23 q_unfin= h*A_0*(T_0-T_infinite);
24 q_total=q_fin+q_unfin;
25 disp("Rate of heat transfer is: "+string(q_total)+" watt");
```

Scilab code Exa 3.9 Temperature distribution in the rod temp at the free end heat flow out the source and heat flow rate

```
1 // Exa 3.9
2 clc;
3 clear;
4 close;
5 disp ("Temperature distribution equation for fin with
       insulated end is ");
6 disp("(T-T_infinite)/(T_0-T_infinite)= cosh(m*(L-x))
      /\cosh(m*L)");
8 //given data
9 L=0.06; // in meter
10 A=4.64*10^-4; // in m^2
11 rho=0.12; // in m
12 h=442; // in W/m<sup>2</sup>
13 T_0 = 773; // in K
14 T_{infinite}=1143; // in K
15 K=23.2; // in W/mK
16 m = sqrt(h*rho/(K*A));
17 q=sqrt(h*rho*K*A)*(T_0-T_infinite)*tanh(m*L);
18 disp("Heat transfer rate is: "+string(q)+" watt");
```

```
19
20 // Note: Answer in the book is wrong
```

Scilab code Exa 3.10 Measurement error

```
1 //Exa 3.10
2 clc;
3 clear;
4 close;
5 //given data
6 L=0.12; // in meter
7 t=.15*10^-2; // thickness in m
8 \text{ K} = 55.5; // \text{ in W/mK}
9 h=23.5; // in W/mK
10 T_L=357; // in K
11 T_0=313; // in K
12
13 // Formula m=sqrt(h*rho/(K*A)) and rho=%pi*d and A=
      %pi*d*t, putting value of rho and A
14 m=sqrt(h/(K*t));
15 mL=m*L;
16 mL=floor(mL);
17 // Formula (T_L-T_infinite)/(T_0-T_infinite) = 1/\cosh
      (m*L)
18 T_{infinite} = (T_L - T_0/\cosh(mL))/(1-1/\cosh(mL));
19 T_infinite=ceil(T_infinite);
20 measurement_error=T_infinite-T_L;
21 disp("Measurement Error is: "+string(
      measurement_error) +" K")
22
23 // Note: In the book, Unit of answer is wrong
```

Scilab code Exa 3.11 Measurement error percent

```
1 / Exa 3.11
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ k=20; // in W/mK}
7 T_L=150; // in degree C
8 T_0=70;// in degree C
9 L=12*10^-2; // in meter
10 h=80; // in W/m<sup>2</sup>K
11 t=3*10^-3; // in m
12 // Formula m=sqrt(h*rho/(K*A)) and rho=\%pi*d and A=
      %pi*d*t, putting value of rho and A
13 m = sqrt(h/(k*t));
14 // Formula (T_L-T_infinite)/(T_0-T_infinite) = 1/\cosh
15 T_{infinite} = (T_L - T_0 / \cosh(m*L)) / (1 - 1 / \cosh(m*L));
16 PercentageError=(T_infinite-T_L)*100/T_infinite;
17 disp("Percentage Error is: "+string(PercentageError
      )+" %");
```

Scilab code Exa 3.12 Minimum length of pocket

```
1 //Exa 3.12
2 clc;
3 clear;
4 close;
5 //given data
6 k=30; // in W/mK
7 h=100; // in W/m^2K
8 T_infinite=300; // in degree C
9 d=2*10^-2; // in m
10 t=1*10^-3; // in m
11 err=1; // in % of applied temperature difference
12 // Formula m=sqrt(h*rho/(K*A)) and rho=%pi*d and A=
```

Scilab code Exa 3.13 Length of shaft

```
1 //Exa 3.13
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ k=32;} // \text{ in W/m}^2 \text{ degree C}
7 h=14.8; // in W/m<sup>2</sup> degree C
8 t_o=480; // in degree C
9 t_i=55;// in degree C
10 t_a=20; // in degree C
11 d=2.5*10^-2; // in m
12 rho = \%pi*d; // in m
13 Ac=\%pi*d^2/4; // in m^2
14 m = sqrt(h*rho/(k*Ac));
15 disp("In this case, the shaft heat from the pump
      towards motor");
16 disp("The temperature distribution considering the
      shaft as a fin insulated at the tip is given by")
17 \operatorname{disp}(Q/Q_o = (t-t_a)/(t_o-t_a) = \cosh(m(L-x))/\cosh(m)
      *L)")
18 // From (t-t_a)/(t_o-t_a) = \cosh(m(L-x))/\cosh(m*L)
19 L=acosh((t_o-t_a)/(t_i-t_a))/m; // at x=L, t=t_i
20 disp("Length of shaft specified between the motor
```

```
and the pump is : "+string(L)+" meter");
```

Chapter 4

Transient Heat Conduction

Scilab code Exa 4.1 Rate of change of energy storage in the wall

```
1 //Exa 4.1
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9)
7 L=1; // in m
8 rho=1600; // in kg/m^3
9 \text{ k=40; // in w/mK}
10 Cp=4*10^3; // in J/kgK
11 a=900; // in degree C
12 b=-300; // in degree C/m
13 c=-50; // in degree C/m^2
14 Qg=1*10^3; // in kW/m<sup>2</sup>
15 A=10; // area in m^2
16 / t = a + b * x + c * x^2 at any instant, so
17 // dtBYdx = b+2*c*x
18 // d2tBYdx2 = 2*c, then
19
20 // Part(a)
21 / q1 = -k*A*dtBYdx, at
```

```
22 x = 0;
23 q1= -k*A*(b+2*c*x); // in w
24 / q2 = -k*A*dtBYdx, at
25 \quad x=L;
26 \text{ q2} = -k*A*(b+2*c*x); // in w
27 E_stored = (q1-q2)+Qg*A*L;//in watt
28 disp(E_stored,"The rate of change of energy storage
      in watt")
29
30 // Part(b)
31 alpha= k/(rho*Cp); // in m^2s
32 d2tBYdx2 = 2*c;
33 dtBYdtoh= alpha*(d2tBYdx2+Qg/k); // in degree C/\sec
34 disp(dtBYdtoh," Rate of change of temperature in
      degree C/sec");
35 disp("Since dt by dx is independent of x. Hence time
       rate of charge of temperature throughout wall
      will remain same.")
```

Scilab code Exa 4.2 Time required to cool the sphere Initial rate of cooling and Instantaneous rate of heat transfer

```
1 //Exa 4.2
2 clc;
3 clear;
4 close;
5 //given data
6 k=40; // in W/mK
7 rho=7800; // in kg/m^3
8 C=450; // in J/kgK
9 d=20*10^-3; // in m
10 r=d/2;
11 t_i=400; // in degree C
12 t=85; // in degree C
13 t_infinite=25; // in degree C
```

```
14 h=80; // in W/m<sup>2</sup>K
15 //1_s = V/A = (4/3 * \%pi * r^3) / (4 * \%pi * r^2) = r/3
16 \ l_s=r/3; // in m
17 Bi= h*l_s/k;
18 // since Biot number is less than 0.1, hence lumped
      heat capacity system analysis can be applied
19
20 // Part(a)
21 // Formula (t-t_infinite)/(t_i-t_infinite) = \%e^(-h*A)
      * toh / (rho *V*C)) = \%e^{-(-h*toh / (rho*l_s*C))}
22 toh= -log((t-t_infinite)/(t_i-t_infinite))*(rho*l_s*
      C)/h;// in sec
  disp(toh, "The time require to cool the sphere in sec
23
      ");
24
25 // Part (b)
26 // dtBYdtoh = h*A*(t_i-t_infinite)/(rho*V*C) = h*(
      t_i - t_i n finite ) / (rho * l_s * C)
27 dtBYdtoh = h*(t_i-t_infinite)/(rho*l_s*C);//in
      degree C/sec
  disp(dtBYdtoh, "Initial rate of cooling in degree C/
      sec");
29
30 // Part(c)
31 A=4*\%pi*r^2;
32 \text{ toh=60};
33 q_{in} = h*A*(t_i-t_i)*%e^(-h*toh/(rho*l_s*C));
     // in watt
34 disp(q_in, "Instantaneous heat transfer rate in watt"
      );
35
36 // Part(d) Total energy transferred during first one
       minute
37 V=4/3*\%pi*r^3;
38 TotalEnergy = rho*C*V*(t_i-t_i)*(1-%e^(-h*toh))
      /(rho*C*l_s)));
39 disp(TotalEnergy, Total energy transferred during
      first one minute in watt")
```

```
40
41 // Note: Answer of first and last part in the book
is wrong
```

Scilab code Exa 4.3 Time constant and temp attained by junction

```
1 / Exa 4.3
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ k=40; // in W/mK}
7 rho=8200; // in kg/m^3
8 C=400; // in J/kgK
9 D=6*10^-3; // in m
10 R=D/2;
11 t_i=30; // in degree C
12 t_infinite1=400; // for 10 sec in degree C
13 t_infinite2=20;// for 10 sec in degree C
14 h=50; // in W/m<sup>2</sup>K
15
16 // Part(a)
17 //l_s = V/A = R/3
18 l_s= R/3; // in m
19 // toh = rho *V*C/(h*A) = rho *C*l_s/h
20 toh= rho*C*l_s/h; // in sec
21 disp(toh, "Time constance in sec")
22
23 // Part (b)
24 Bi= h*l_s/k;
25 // since Bi < 0.1 , hence lumped heat capacity
      analysis is valid. Now, temperature attained by
      junction in 10 seconds when exposed to hot air at
       400 degree C
26 toh=10; // in sec
```

```
(t-t_{infinite1})/(t_{i-t_{infinite1}}) = \%e^{-(-h*A*toh/(
     rho*V*C) = \%e^{-(-h*toh/(rho*l_s*C))}
28 t= e^{-h*toh/(rho*l_s*C)}*(t_i-t_infinite1)+
     t_infinite1;// in degree C
29
30 disp ("The junction is taken out from hot air stream
     and placed in stream of still air 20 degree C.
     The initial temperature in this case will be "+
      string(t)+" .")
31 t_i=t;
32 \text{ toh=20;}// \text{ in sec}
33 t= e^{-h*toh/(rho*l_s*C)}*(t_i-t_infinite2)+
      t_infinite2; // in degree C
34 disp(t,"The temperature attained by junction in
      degree C");
35
36 // Note: In the last, calculation to find the value
     of t is wrong so Answer in the book is wrong
```

Scilab code Exa 4.4 Time constant and time required to the temp change

```
1 //Exa 4.4
2 clc;
3 clear;
4 close;
5 //given data
6 k=8; // in W/mK
7 alpha=4*10^-6; // in m^2/s
8 h=50; // in W/m^2K
9 D=6*10^-3; // in m
10 R=D/2;
11 T=0.5; // where T = (t-t_infinite)/(t_i-t_infinite)
12 //l_s= V/A = R/3
13 l_s= R/2; // in m
14 Bi= h*l_s/k;
```

Scilab code Exa 4.5 Rate of heat energy stored

```
1 / Exa 4.5
2 clc;
3 clear;
4 close;
5 //given data
6 / t = 450 - 500 \times x + 100 \times x^2 + 150 \times x^3 at any instant, so
7 // dtBYdx = -500 + 200 * x + 450 * x^2
9 L=0.5; // thickness of the wall in meter
10 k=10; // in W/mK
11 // Rate of heating entering in the wall per unit
      area, at
12 x = 0;
13 / q1 = -k*dtBYdx
14 q1= -k*(-500+200*x+450*x^2); // in W/m<sup>2</sup>
15 // Rate of heat going out of the wall per unit area
      , at
16 \text{ x=L};
```

```
17 q2= -k*(-500+200*x+450*x^2);// in W/m^2

18 E=q1-q2;// in W/m^2

19 disp(E,"Heat energy stored per unit area in W/m^2")
```

Scilab code Exa 4.6 Time constant and time required for the plate to reach the temp of 40 deg C

```
1 / Exa 4.6
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ k=385; // in W/mK}
7 h=100; // in W/m<sup>2</sup>K
8 delta =2*10^-3; // thickness of plate in meter
9 A=25*25; // area of plate in square meter
10 rho=8800; // kg/m^3
11 C=400; // J/kg-K
12 // l_s = V/A = L*B*delta/(2*L*B) = delta/2
13 l_s= delta/2; // in meter
14 Bi= h*l_s/k;
15 // since Bi < 0.1 , hence lumped heat capacity
      analysis can be applied
16
17 // Part(i)
18 // toh = rho*V*C/(h*A) = rho*C*l_s/h
19 toh= rho*C*l_s/h; // in second
20 disp(toh, "Time constant in seconds");
21
22 // Part(ii)
23 t_i=400; // in degree C
24 t=40; // in degree C
25 t_infinite=25; // in degree C
26 // (t-t_infinite)/(t_i-t_infinite) = %e^(-h*A*toh)
      /(\text{rho}*V*C)) = \%e^{-(-h*toh/(\text{rho}*l_s*C))}
```

```
27 toh= -log((t-t_infinite)/(t_i-t_infinite))*rho*C*l_s
    /h;// in sec
28 disp(toh,"The time required for the plate to reach
    the temperature of 40 degree C in seconds");
```

Scilab code Exa 4.7 Time required to cool plate to 80 deg C and in air

```
1 / Exa 4.7
2 \text{ clc};
3 clear;
4 close;
5 //given data
6 \text{ k=380; // in W/mK}
7 delta =6*10^-2; // thickness of plate in meter
8 rho=8800; // kg/m^3
9 C=400; // J/kg-K
10 // l_s = V/A = delta/2
11 l_s = delta/2; // in meter
12 t=80; // in degree C
13 t_i=200; // in degree C
14 t_{inf}=30;//in degree C
15 hw = 75; // in W/m<sup>2</sup>K
16 ha= 10;// in W/m^2K
17
18 // Part(i)
19 // ha*A*(t-t_inf_a) + hw*A*(t-t_inf_w) = -rho*V*C*
      dtBYdtho, since t_ini_a = t_inf_w = t_inf = 30
      degree C
20 // (ha+hw)*A*(t-t_inf) = -rho*V*C*dtBYdtho
21 // (ha+hw)/(rho*C*V)*A*dtoh = -dt/(t-t_inf)
22 // integrate('(ha+hw)/(rho*V*C)*A', 'toh', 0, toh) =
      integrate('1/(t-t_inf)', 't', t_i, t)
23 toh= -rho*l_s*C/(ha+hw)*log((t-t_inf)/(t_i-t_inf));
24 disp("Time required to cool plate to 80 degree C is
      : "+string(toh)+" seconds = "+string(toh/60)+"
```

Scilab code Exa 4.8 Maximum speed of ingot passing through the furnace

```
1 / Exa 4.8
2 clc;
3 clear;
4 close;
5 //given data
6 k=45; // in W/m degree C
7 d = 0.1; // in meter
8 \ 1 = 0.30; // in meter
9 t=800; // in degree C
10 t_i=100; // in degree C
11 t_infinite=1200;// in degree C
12 h = 120; // in W/m<sup>2</sup> degree C
13 alpha=1.2*10^-5; // in meter
14 rhoC= k/alpha;
15 V = \%pi/4*d^2*1; // in m^3
16 A= \%pi*d*l + 2*\%pi/4*d^2; // in m^2
17 // l_s = V/A = (\%pi/4*d^2*l)/(\%pi*d*l + 2*\%pi/4*d^2)
      = d*l/(4*l+2*d^2)
18 l_s = d*1/(4*1+2*d^2);
19 Bi= h*l_s/k;
20 // since Bi < 0.1 , hence lumped heat capacity
      analysis can be applied
21 // (t-t_infinite) / (t_i-t_infinite) = \%e^(-h*A*toh)
      /(rho*V*C)) = \%e^(-h*toh/(rho*l_s*C)) = \%e^(-h*toh/(rho*l_s*C))
      toh/(rhoC*l_s)
```

Scilab code Exa 4.9 Junction diamete and time required for the thermocouple junction

```
1 / Exa 4.9
2 clc;
3 clear;
4 close;
5 //given data
6 rho=8500; // in kg/m^3
7 C=400; // J/kgK
8 \text{ toh=1;}// \text{ in sec}
9 h= 400; // in W/m<sup>2</sup> degree C
10 t=198; // in degree C
11 t_i=25; // in degree C
12 t_infinite=200;// in degree C
13
14 // Part (1)
15 // \text{ toh } = \text{rho} *V*C/(h*A) = \text{rho} *C*l_s/h
16 l_s = toh*h/(rho*C);
17 // l_s = V/A = r/3
18 r=3*1_s; // in m
19 r=r*10^3; // in mm
20 d=2*r; // in m
21 disp(d, "Junction diameter needed for the
      thermocouple in mili miter");
```

```
22
23  // Part(ii)
24  // toh= -rho*V*C/(h*A)*log((t-t_infinite))/(t_i-t_infinite))
25  toh = -toh*log((t-t_infinite))/(t_i-t_infinite));
26  disp(toh, "Time required for the thermocouple junction to reach 198 degree C in seconds");
```

Scilab code Exa 4.10 Heat leaving and entering the slap

```
1 // Exa 4.10
2 clc;
3 clear;
4 close;
5 //given data
6 L=40*10^-2; // in m
7 \text{ k=1.5; // in W/mK}
8 A=4; // in square meter
9 alpha=1.65*10^-3; // in m^2/h
10 / T = 50 - 40 \times x + 10 \times x^2 + 20 \times x^3 - 15 \times x^4, so
11 // dtBYdx = -40 + 20 * x + 60 * x^2 - 60 * x^3
12 // d2tBYdx2 = 20+120*x-180*x^2
13
14 // Part (a) Heat entering the slab
15 //q1 = -k*A*dtBYdx, at
16 x = 0;
17 qi= -k*A*(-40+20*x+60*x^2-60*x^3); // in w
18 disp(qi," Heat entering the slab in watt")
19 // Heat leaving the slab
20 // ql = -k*A*dtBYdx, at
21 \quad x=L;
22 ql= -k*A*(-40+20*x+60*x^2-60*x^3); // in w
23 disp(ql,"Heat leaving the slab in watt")
24
25 // Part (b) Rate of heat storage
```

```
26 RateOfHeatStorage = qi-ql; // in watt
27 disp(RateOfHeatStorage,"Rate of heat storage in watt
     ");
28
29 // Part (c) Rate of temperature change
30 // d2tBYdx2 = 1/alpha*dtBYdtoh
31 // dtBYdtoh = alpha*d2tBYdx2, at
32 x = 0;
33 dtBYdtoh = alpha*(20+120*x-180*x^2); // in degree C/h
34 disp(dtBYdtoh,"The rate of temperature change at
      entering the slab in degree C/h")
35 // dtBYdtoh = alpha*d2tBYdx2, at
36 \quad x = L
37 dtBYdtoh = alpha*(20+120*x-180*x^2); // in degree C/h
38 disp(dtBYdtoh,"The rate of temperature change at
      leaving the slab in degree C/h")
39
40 // Part (d) for the rate of heating or cooling to be
      maximum
41 // dBYdx of dtBYdtoh = 0
42 // dBYdx of (alpha*d2tBYdx2) =0
43 // d3tBYdx3 = 0
44 x=120/360; // in meter
45 disp(x," The point where rate of heating or cooling
      is maximum in meter")
```

Scilab code Exa 4.11 Time required for cooling process

```
1 //Exa 4.11
2 clc;
3 clear;
4 close;
5 //given data
6 k=40;// in W/m degree C
7 d =12*10^-3;// in meter
```

```
8 t=127; // in degree C
9 t_i=877; // in degree C
10 t_infinite=52;// in degree C
11 h= 20; // in W/m<sup>2</sup> degree C
12 rho=7800; // in W/m<sup>2</sup>K
13 C=600; // in J/kg K
14 r=d/2; // in meter
15 //l_s = V/A = r/3
16 l_s = r/3;
17 Bi= h*l_s/k;
18 // since Bi < 0.1 , hence lumped heat capacity
      analysis can be applied
19 // (t-t_infinite)/(t_i-t_infinite) = \%e^(-h*A*toh)
      /(\text{rho}*V*C)) = \%e^{-(-h*toh/(\text{rho}*l_s*C))} = \%e^{-(-h*toh/(\text{rho}*l_s*C))}
      toh/(rho*C*l_s)
20 toh = -\log((t-t_infinite)/(t_i-t_infinite))*rho*C*
      l_s/h; // in sec
21 disp("Time required for cooling process: "+string(
      toh) + " seconds or "+string(toh/60) + " minutes")
```

Scilab code Exa 4.12 Time to keep furnace

```
1 //Exa 4.12
2 clc;
3 clear;
4 close;
5 //given data
6 D=10*10^-2; // in m
7 b=D/2;
8 h= 100; // in W/m^2 degree C
9 T_o=418; // in degree C
10 T_i=30; // in degree C
11 T_infinite=1000; // in degree C
12
13 disp(" (A) For copper cylinder ");
```

```
14 k = 350; // in W/mK
15 alpha=114*10^-7; // in m^2/s
16 Bi= h*b/k;
17 theta_0_t = (T_o-T_infinite)/(T_i-T_infinite);
18 Fo=18.8;
19 // Formula Fo= alpha*t/b^2
20 t=Fo*b^2/alpha;
21 disp("Time required to reach for the cylinder
      centreline temperature 418 degree C: "+string(t)
     +" seconds or "+string(t/3600)+" hours")
22
23 // (2) Temperature at the radius of 4 cm
24 theta_0_t = 0.985;
25 // Formula theta_0_t = (T-T_infinite)/(T_o-
      T_infinite)
26 T= theta_0_t*(T_o-T_infinite)+T_infinite;// in
      degree C
27 disp(T, "Temperature at the radius of 4 cm")
28 disp("It has very less temperature gradients over 4
     cm radius")
29
30 disp(" (B) For asbestos cylinder ");
31 \text{ k=0.11; // in W/mK}
32 alpha=0.28*10^-7; // in m^2/s
33 Bi= h*b/k;
34 theta_0_t = (T_o-T_infinite)/(T_i-T_infinite);
35 \text{ Fo=0.21};
36 // Formula Fo= alpha*t/b^2
37 t=Fo*b^2/alpha;
38 disp("Time required to reach for the cylinder
      centreline temperature 418 degree C: "+string(t)
     +" seconds or "+string(t/3600)+" hours")
39
40 // (2) Temperature at the radius of 4 cm
41 \text{ theta_x_t} = 0.286;
42 // Formula theta_x_t = (T-T_infinite)/(T_o-
      T_infinite)
43 T= theta_x_t*(T_o-T_infinite)+T_infinite;// in
```

```
degree C

44 disp(T, "Temperature at the radius of 4 cm")

45 disp("It has large temperature gradients")
```

Scilab code Exa 4.13 Centre temperature

```
1 / Exa 4.13
2 clc;
3 clear;
4 close;
5 // given data
6 D=5*10^-2; // in m
7 b=D/2;
8 h= 500; // in W/m<sup>2</sup> degree C
9 \text{ k=60; // in W/m}^2K
10 rho=7850; // in kg/m^3
11 C=460; // in J/kg
12 alpha=1.6*10^-5; // in m^2/s
13 T_i=225; // in degree C
14 T_infinite=25; // in degree C
15 t=2; // in minute
16
17 // Part(i)
18 Bi= h*b/k;
19 Fo= alpha*t/b^2;
20 theta_0_t = 0.18;
21 // Formula theta_0_t = (T_o-T_infinite)/(T_i-
      T_infinite)
22 T_o= theta_0_t*(T_i-T_infinite)+T_infinite;// in
      degree C
23 disp(T_o, "Centreline Temperature of the sphere after
       2 minutes of exposure in degree C ");
24
25 // Part (2)
26 depth= 10*10^-3; // in meter
```

```
27 r=b-depth; // in meter
28 \text{ rBYb=r/b};
29 \text{ theta_x_t} = 0.95;
30 // Formula theta_x_t = (T-T_infinite)/(T_o-
      T_infinite)
31 T= theta_x_t*(T_o-T_infinite)+T_infinite;// in
      degree C
32 disp(T,"The Temperature at the depth of 1 cm from
      the surface after 2 minutes in degree C ");
33
34 // Part (3)
35 BiSquareFo= Bi^2*Fo;
36 QbyQo= 0.8; // in kJ
37 \quad A=4/3*\%pi*b^3;
38 Qo= rho*A*C*(T_i-T_infinite); // in J
39 Qo = Qo * 10^{-3}; // in kJ
40 // The heat transferred during 2 minute,
41 Q= Qo*QbyQo; // in kJ
42 disp(Q,"The heat transffered during 2 minutes in kJ"
      )
```

Chapter 5

Forced Convection Heat Transfer

Scilab code Exa 5.1 Boundary layer thickness

```
1 / Exa 5.1
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9)
7 rho=1.14; // in kg/m^3
8 \text{ k=2.73*10^--2;} // \text{ in W/mK}
9 Cp=1.005; // in kg/kgK
10 v= 16*10^-6; // in m^2/s
11 Pr = 0.67;
12 // Other data given in the problem are
13 V = 2; // in m/s
14 w = 20 * 10^{-2}; // in m
15 t_infinite = 10; // in degree C
16 t_s=65; // in degree C
17 x=0.25; // in m from leading edge
18 // \text{Re} = \text{rho}*Vx/\text{miu} = V*x/v
19 Re= V*x/v;
```

```
20 //Since Re<5*10^5 , hence the flow is a laminar flow
21 //(a) Boundary layer thickness
22 delta= 5*x/(sqrt(Re));// in m
23 delta=delta*10^2; // in cm
24 disp(delta, "Boundary layer thickness in cm")
25
26 //(b) Thermal boundary layer thickness
27 delta_t= delta/Pr^(1/3); // in cm
28 disp(delta_t, "Thermal boundary layer thickness in ch
      ")
29
30 //(c) Local friction coefficient
31 Cfx= 0.664/sqrt(Re);
32 disp(Cfx, "Local friction coefficient");
33 Cf = 2 * Cfx;
34 disp(Cf, "Average friction coefficient");
35
36 //(d) Total drag force
37 \quad A = .25 * .2; // in m^2
38 \quad toh_o = Cf * (rho * V^2/2);
39 \quad F = toh_o * A;
40 disp(F, "Total drag force in N");
41
42 // (e)
43 // Formula Nux= hx*x/k = 0.332*Re^{(1/2)*Pr^{(1/3)}}
44 hx = 0.332*k/x*Re^{(1/2)*Pr^{(1/3)}}; // in W/m<sup>2K</sup>
45 disp(hx,"Local heat transfer coefficient in W/m^2K")
46 h = 2 * hx;
47 disp(h, "Average heat transfer coefficient in W/m^2K"
      )
48 //(f)
49 q=h*A*(t_s-t_infinite);
50 disp(q,"Rate of heat transfer in W/m<sup>2</sup>K");
51
52 //Note: In the book, they calculated wrong value of
      Re so all the answer in the book is wrong
```

Scilab code Exa 5.2 Rate of heat transfer and length of plate

```
1 / Exa 5.2
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9)
7 rho=998;// in kg/m^3
8 \text{ k=.648; // in W/mK}
9 v= 0.556*10^-6; // in m^2/s
10 Pr=3.54;
11 V=2; // in m/s
12 t_infinite = 10; // in degree C
13 t_s=90; // in degree C
14 Re=5*10^5;
15 A=1*1; // in m^2
16 // Re= rho*Vx/miu = V*x/v
17 x=Re*v/V; // in m
18 disp(x,"Length of the plate in m")
19
20
21 // Nu = h*x/k = Pr^(1/3)*(0.037*Re^0.8-872)
22 x = 1;
23 Re= V*x/v;
24 h= Pr^{(1/3)}*(0.037*Re^{0.8-873})*k/x;// in W/m^2
25 q=h*A*(t_s-t_infinite);
26 disp(q*10^-3,"Heat transfer from entire plate in kW"
      )
```

Scilab code Exa 5.3 Heat transfer rate

```
1 // Exa 5.3
2 clc;
3 clear;
4 close;
5 //given data
7 rho=1.06; // in kg/m<sup>3</sup>
8 \text{ K} = .0289;
9 v= 18.97*10^-6; // in m^2/s
10 Pr = 0.696;
11 V=2.2; // in m/s
12 L=0.9; // in m
13 B=0.45; // in m
14 t_infinite = 30; // in degree C
15 t_s=90; // in degree C
16 //(a) For first half of the plate
17 \text{ x=L/2; // in m}
18 Re=V*x/v;
19 // Nu = h*x/K = 0.664*Re^{(1/2)*Pr^{(1/3)}}
20 h= 0.664*Re^{(1/2)*Pr^{(1/3)}*K/x};// in W/m^2 degree C
21 A = x * B;
22 Q1=h*A*(t_s-t_infinite); // in watt
23 disp(Q1," Heat transfer rate from first half of the
      plate in watt");
24
25 //(b) Heat transfer from entire plate
26 \text{ x=L}; // \text{ in m}
27 Re=V*x/v;
28 // Nu = h*x/K = 0.664*Re^{(1/2)*Pr^{(1/3)}}
29 h= 0.664*Re^{(1/2)*Pr^{(1/3)}*K/x}; // in W/m<sup>2</sup> degree C
30 A = L * B;
31 Q2=h*A*(t_s-t_infinite); // in watt
32 disp(Q2,"Heat transfer rate from entire plate in
      watt");
33
34 //(c) From next half of the plate
35 \quad Q3 = Q2 - Q1;
36 disp(Q3," Heat transfer rate from next half of the
```

```
plate")
```

Scilab code Exa 5.4 Length of tube

```
1 // Exa 5.4
2 clc;
3 clear;
4 close;
5 //given data
6 rho=985; // \text{ in } \text{kg/m}^3
7 k = .654; // in W/mK
8 Cp=4.18; // in kgJ/kgK
9 Cp = Cp * 10^3; // in J/kgK
10 v= 0.517*10^-6; // in m^2/s
11 Pr=3.26;
12 V=1.2; // in m/s
13 t_s=85;// in degree C
14 t_i=40; // in degree C
15 t_o=70; // in degree C
16 Ax = 15*35; // in mm
17 P=15+35;
18 de=4*Ax/(2*P); // in mm
19 de=de*10^-3; // in m
20 Re=V*de/v;
21 // Formula Nu= h*de/k = 0.023 Re^0.8*Pr^0.4
22 h=0.023*Re^0.8*Pr^0.4*k/de;// in W/m^2K
23 m = \%pi*de^2*V*rho/4;
24 d=de;
25 L=m*Cp*log((t_s-t_i)/(t_s-t_o))/(%pi*d*h);
26 disp(L,"The length of tube in meter")
```

Scilab code Exa 5.5 Average heat transfer coefficient

```
1 // \text{Exa} \ 5.5
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ k=.026; // in W/mK}
7 v= 16.8*10^-6; // in m^2/s
8 \text{ miu} = 2*10^-5; // \text{ in } \text{kg/ms}
9 Pr = 0.708;
10 V = 15; // in m/s
11 x=2; // in m
12 A = 2 * 1; // in m^2
13 Re=V*x/v;
14 del_t=40-10;// in degree C
15 // since Re > 3 *10^5, hence turbulent flow at x=2 m
       length of laminar flow region is x_L then
16 Re_1=3*10^5;
17 // Re_1 = 3*10^5 = V*x_L/v
18 \text{ x_L= Re_1*v/V};
19
20 // Part (a)
21 //\text{Nu} = h * x_L/k = 0.664 * Re_1^(1/2) * Pr^(1/3);
22 h= 0.664*Re_1^(1/2)*Pr^(1/3)*k/x_L;// in W/m^2
23 disp(h, "The average heat transfer coefficient over
      the laminar boundary layer in W/m<sup>2</sup> ");
24
25 // Part(b)
26 / \text{Nu} = h*x/k = (0.037*Re^0.8-872)*Pr^(1/3);
27 h= (0.037*Re^0.8-872)*Pr^(1/3)*k/x;// in W/m^2
28 disp(h,"The average heat transfer coefficient over
      entire plate in W/m<sup>2</sup> ");
29
30 // Part (c)
31 q=h*A*del_t;
32 disp(q, "Total heat transfer rate in watt");
33
34 // Note: Calculation of the part(a) in this book is
      wrong, so answer of the part(a) in the book is
```

Scilab code Exa 5.6 Heat transfer coefficient and friction factor

```
1 // Exa 5.6
2 clc;
3 clear;
4 close;
5 //given data
6 rho=997; // \text{ in } \text{kg/m}^3
7 \text{ k=0.608; // in W/mK}
8 Cp= 4180; // in J/kg K
9 miu=910*10^-6; // in Ns/m^2
10 d=30*10^{-3}; // in m
11 m=0.02;// in kg/s
12 t_o=30; // in degree C
13 t_i=20; // in degree C
14 Re= 4*m/(\%pi*d*miu);
15 q_desh=12*10^3; // in W/m^2
16 // since Re < 2300, flow is laminar one
17
18 // Part(a)
19 // Nu = h*d/k = 4.36
20 h=4.36*k/d;
21 disp(h, "Heat transfer coefficient in W/m^2K");
22
23 // Part (b)
24 L=m*Cp*(t_o-t_i)/(q_desh*\%pi*d);
25 disp(L,"Length of pipe in meter");
26
27 // Part(c)
28 // q_desh = h*(t_infinite-t_o)
29 t_infinite = q_desh/h+t_o;
30 disp(t_infinite,"The inner tube surface temperature
      at the outlet in degree C");
```

```
31
32  // Part(d)
33  f=64/Re;
34  disp(f,"Friction Factor ");
35
36  // Part(e)
37  V=4*m/(%pi*d^2*rho); // in m/s ( because m= rho*V*A , m= rho*V*%pi*d^2/4 )
38  del_P= f*L*rho*V^2/(d*2); // in N/m^2
39  disp(del_P,"The pressure drop in the pipe in N/m^2");
40
41  // Note: In part(b) value of L is miss printed actual value is .739 m
```

Scilab code Exa 5.7 Average heat transfer coefficient and tube length

```
1 / Exa 5.7
2 clc;
3 clear;
4 close;
5 //given data
6 rho=977.3; // in kg/m^3
7 kf = 0.665; // in W/mK
8 Cp= 4186;// in J/kg~K
9 miu=4.01*10^-4; // in kg/m-s
10 Pr=2.524;
11 d=0.02; // in m
12 m=0.5; //in kg/s
13 t_o=70; // in degree C
14 t_i=20;// in degree C
15 t_s=100; // in degree C
16 Re= 4*m/(\%pi*d*miu);
17
18 // Since Re > 2300, flow is turbulent flow. Then
```

```
Nusselt Number

19  // Nu = h*d/k = 0.023*Re^0.8*Pr^0.4
20 h=0.023*Re^0.8*Pr^0.4*kf/d; // in W/m^2
21 disp(h, "Average heat transfer coefficient in W/m^2")
    ;
22 L=m*Cp*log((t_s-t_i)/(t_s-t_o))/(%pi*d*h); // in
    meter
23 disp(L, "Length of tube in meter");
24
25
26  // Note: Calculation of Re is wrong so the answer in
    the book is wrong
```

Scilab code Exa 5.8 Reynold number heat transfer coefficient and pipe length

```
1 // \text{Exa} \ 5.8
2 clc;
3 clear;
4 close;
5 //given data
6 rho=977; // in kg/m^3
7 k=0.608; // in W/mK
8 Cp = 4180; // in J/kg K
9 miu=910*10^-6; // in poise
10 d=0.02; // in m
11 m=0.02; // in kg/s
12 t_o=40; // in degree C
13 t_i=10; // in degree C
14 q_desh= 20*10^3; // in W/m<sup>2</sup>
15
16 // Part (a)
17 Re= 4*m/(%pi*d*miu);
18 disp(Re, "Reynold number is :")
19
```

```
20  // Part(b)
21  // Nu = h*d/k = 4.364
22  h=4.364*k/d;
23  disp(h,"Heat transfer coefficient in W/m^2K");
24
25  // Part (c)
26  // q= q_desh*A = m*Cp*(t_o-t_i)
27  // q_desh *( %pi*d*l) = m*Cp*(t_o-t_i)
28  l=m*Cp*(t_o-t_i)/(q_desh*%pi*d);
29  disp(l,"Length of pipe in meter");
```

Scilab code Exa 5.9 Tube length

```
1 / Exa 5.9
2 clc;
3 clear;
4 close;
5 //given data
6 rho=7.7*10^3; // in kg/m^3
7 \text{ k=12; // in W/mK}
8 Cp= 130; // in J/kg degree C
9 \text{ Pr} = 0.011;
10 delta=8*10^--8; // in m^2/s
11
12
13 d=0.06; // in m
14 m=4; // in kg/s
15 t_i=200; // in degree C
16 del_t=25; // in degree C
17 miu=rho*delta;
18 Re= 4*m/(\%pi*d*miu);
19 // From correlation Nu =h*d/k = 4.82+0.0185*Pe
      0.827
20 Pe=Re*Pr;
21 h=(4.82+0.0185*Pe^0.827)*k/d;// in W/m^2K
```

```
22  // Length of tube required by doing every balance
23  // m*Cp*del_t = h*A*(t_s-t_b) = h*(%pi*d*l)*(t_s-t_b)  // its given (t_s-t_b) = 40 degree C
24 l= m*Cp*del_t/(h*(%pi*d)*40); // in meter
25 disp(1,"Length of tube in meter");
```

Scilab code Exa 5.10 Heat transfer rate from the cylinder

```
1 / \text{Exa} 5.10
2 clc;
3 clear;
4 close;
5 //given data
6 d=0.058; // in m
7 t_infinite=30; // in degree C
8 t_s=155; // in degree C
9 V = 52; // in m/s
10 T_f=(t_s+t_infinite)/2;// in degree C
11 T_f = T_f + 273; // in K
12 // Fluid properties at 92.5 degree C and 1 atm
13 miu= 2.145*10^{-5}; // in kg/ms
14 Pr=0.696;
15 P=1.0132*10^5;
16 R = 287;
17 k=0.0312; // in W/mK
18 rho=P/(R*T_f);// in kg/m^3
19 Re=rho*V*d/miu;
20 C=0.0266;
21 n = 0.805;
22 / Nu = h*d/k = C*(Re)^n*Pr^(1/3)
23 h=C*(Re)^n*Pr^(1/3)*k/d;// in W/m^2K
24 //So, heat transfer rate per unit length from
      cylinder
25 q_by_L= h*(\%pi*d)*(t_s-t_infinite); // in W/m
26 disp(q_by_L," Heat transfer rate per unit length from
```

```
cylinder in W/m");
27
28
29 // Note: Calculation of q_by_L in the book is wrong
, so the answer in the book is wrong
```

Scilab code Exa 5.11 Heat loss by the sphere

```
1 //Exa 5.11
2 clc;
3 clear;
4 close;
5 //given data
6 delta=15.68*10^-6; // in m^2/s
7 t_infinite=25+273; // in K
8 t_s = 80 + 273; // in K
9 t_infinite=25+273; // in K
10 k=0.02625; // in W/m degree C
11 Pr = 0.708;
12 miu_infinite=1.846*10^-5; //in kg/ms
13 miu_s= 2.076*10^-5; // in kg/ms
14 d=10*10^-3; // in m
15 V=5; // in m/s
16 A=4*\%pi*(d/2)^2;
17 Re=V*d/delta;
18 Nu= 2+ (0.4*Re^{(1/2)}+0.06*Re^{(2/3)})*Pr^{0.4*}
      miu_infinite/miu_s)^(1/4);
19 // Nu = h*d/k
20 h=Nu*k/d;// in W/m^2K
21 // heat transfer rate
22 q=h*A*(t_s-t_infinite);// in watt
23 disp(q,"Heat transfer rate in watt")
```

Scilab code Exa 5.12 Heat transfer coefficient

```
1 / Exa 5.12
2 clc;
3 clear;
4 close;
5 //given data
6 Cp=4179; // in J/kg-K
7 rho= 997; // in kg/m^3
8 V=2; // in m/s
9 miu= 855*10^-6; // in Ns/m^2
10 Pr=5.83;
11 k=0.613;
12 Do=6; //outer dia in cm
13 Di=4; //inner dia in cm
14 // de = 4*A/P = 4*\%pi/4*(Do^2-Di^2)/(\%pi*(Do+Di))
15 // or
16 de= Do-Di;// in cm
17 de=de*10^-2; // in m
18 Re= rho*V*de/miu;
19 // Since Re > 2300, hence flow is turbulent. Hence
      using Dittus Boelter equation
20 // \text{Nu} = 0.023 * \text{Re}^0.8 * \text{Pr}^0.4 = h * \text{de}/k
21 h= 0.023*Re^0.8*Pr^0.4*k/de;// in W/m^2K
22 disp(floor(h), "Heat transfer coefficient in W/m<sup>2</sup>K")
```

Scilab code Exa 5.13 Heat transfer rate

```
1 //Exa 5.13
2 clc;
3 clear;
4 close;
5 //given data
6 Cp=0.138; // in KJ/kg-K
```

```
7 m=8.33; // in kg/sec
8 Pr=0.0238;
9 k=8.7; // in W/mk
10 d=1.5*10^-2; // in m
11 miu=1.5*10^-3; // in kg/ms
12
13 Re=4*m/(%pi*miu*d);
14 Pe=Re*Pr;
15 // Nu = h*d/k = 7+0.025*Pe^0.8
16 h= (7+0.025*Pe^0.8)*k/d; // in W/m^2 degree C
17 disp(h,"Heat transfer coefficient in W/m^2 degree C");
```

Scilab code Exa 5.14 Heat transfer rate

```
1 / \text{Exa} \ 5.14
2 clc;
3 clear;
4 close;
5 //given data
6 rho=887; // in kg/m^3
7 Pr=0.026;
8 k=25.6; // in W/mk
9 d=2.5*10^-2; // in m
10 miu=0.58*10^-3; // in kg/ms
11 V=3; // in m/s
12
13 Re=rho*V*d/(miu);
14 Pe=Re*Pr;
15 \text{ Nu} = 4.8+0.015*Pe^0.85*Pr^0.08
16 h= Nu*k/d; // in W/m^2 degree C
17 disp(h," Heat transfer coefficient in W/m<sup>2</sup> degree C"
      );
18
19 // Note: There is some difference in coding and book
```

Scilab code Exa 5.15 Initial rate of heat loss

```
1 / \text{Exa} 5.15
2 clc;
3 clear;
4 close;
5 //given data
6 delta=38.1*10^-6; // in m^2/s
7 Pr = 501;
8 \text{ Prs} = 98;
9 K=0.138; // in W/mk
10 T_{infinite=353;}//in K
11 T_s=423; // in K
12 V=2; // in m/s
13 d=12.5*2*10^{-3}; // in m
14 Re=V*d/delta;
15 n=0.36// \text{ for } Pr >= 10
16 C=0.26; // for Re between 10^3 and 2*10^5
17 m=0.6; // for Re between 10^3 and 2*10^5
18 Nu = C*Re^m*Pr^n*(Pr/Prs)^(1/4);
19 h= Nu*K/d; // in W/m^2 degree C
20 A = \%pi * 25 * 10^{-3};
21 del_t=T_s-T_infinite;
22 // Formula q=h*A*del_t
23 \text{ q_by_L = h*A*del_t};
24 disp(q_by_L,"Initial rate of heat loss per meter
      length of cylinder");
25
26 // Note: calculation in the book is wrong so answer
       in the book is wrong
```

Chapter 6

Free Convection

Scilab code Exa 6.1 Heat transfer rate from the plate in two oriention

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 //given data
6 // (i) when
7 x = .3; // in m
8 T_s=100; // in degree C
9 T_infinite=30;// in degree C
10 T_f = (T_s + T_infinite)/2; // in degree C
11 T_f = T_f + 273; // in K
12 Bita=1/T_f;
13 // Other fluid properties at film temperature
14 \text{ Pr} = 0.703;
15 K=0.0301; // in W/mK
16 T=1.8*10^-5 ; // in m^2/s
17 g=9.81;
18 del_T=T_s-T_infinite;
19 Gr=(g*Bita*del_T*x^3)/T^2;
20 Ra=Gr*Pr;
21 disp("Rayleigh Number is : "+string(Ra));
```

```
22 //Since Ra<10<sup>9</sup>, hence flow is laminar, then
      correlation for vertical plate in laminar flow
23 // Formula Nu=0.59*Ra^{(1/4)}=h*x/K
24 h=0.59*Ra^(1/4)*K/x;// in W/m^2K
25 \quad A = 2 * .3 * .5;
26 q1=h*A*(T_s-T_infinite);
27 disp("Heat transfer rate from the plate, when the
      vertical height is 0.3 m : "+string(q1)+" W");
28
29 //(ii) when
30 \text{ x=0.5;} // \text{ in m}
31 Gr=(g*Bita*del_T*x^3)/T^2;
32 Ra=Gr*Pr;
33 // Formula Nu=0.59*Ra^{(1/4)}=h*x/K
34 h=0.59*Ra^(1/4)*K/x;// in W/m^2K
35 q2=h*A*(T_s-T_infinite);
36 disp("Heat transfer rate from the plate, when the
      vertical height is 0.5 m : "+string(q2)+" W");
37 PercentageDecrease=(q1-q2)/q1*100;
38 disp ("Percentage decreases in heat transfer rate
      when x=0.5 m as compared to when x=0.3 m is : "+
      string(PercentageDecrease) + "%")
39
40 //Note: In the book, In part (b), calculation of
      getting the value of h is wrong
```

Scilab code Exa 6.2 Heat loss from the two surface of the plate

```
1 //Exa 6.2
2 clc;
3 clear;
4 close;
5 //given data
6 Pr=0.694;
7 K=0.0296; // in W/mK
```

```
8 rho=1.029; // in kg/m^3
9 miu=20.6*10^-6; // in poise
10 x = .2; // in m
11 T_s=110; // in degree C
12 T_infinite=30; // in degree C
13 T_f = (T_s + T_infinite)/2; // in degree C
14 T_f = T_f + 273; // in K
15 Bita=1/T_f;
16 \text{ g=9.81};
17 del_T=T_s-T_infinite;
18 Gr=(rho^2*g*Bita*del_T*x^3)/miu^2;
19 Ra=Gr*Pr;
20 //since Rayleigh number is less than 10^10, hence
21 Nu=0.68*Pr^{(1/2)}*Gr^{(1/4)}/((.952+Pr)^{(1/4)});
22 h = Nu * K/x;
23 A = 2 * 0.2 * 1;
24 q=h*A*(T_s-T_infinite);
25 disp("Heat transfer rate is : "+string(q)+" W");
```

Scilab code Exa 6.3 Heat loss from the pipe

```
1 //Exa 6.3
2 clc;
3 clear;
4 close;
5 //given data
6 d=7.5*10^-2; // in m
7 x=2; // in m
8 T_s=70; // in degree C
9 T_infinite=10; // in degree C
10 del_T=T_s-T_infinite;
11 g=9.81;
12 calculation=4.5*10^10; // value of g*Bita*rho^2*C_p /(miu*k)
13 K=2.75*10^-2; // in W/mK
```

Scilab code Exa 6.4 Heat transfer coefficient and initial rate of cooling of the plate

```
1 //Exa 6.4
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ m=15;} // \text{ in kg}
7 C_p=420; // in J/kg K
8 T_s=200; // in degree C
9 T_infinite=30; // in degree C
10 T_f = (T_s + T_infinite)/2; // in degree C
11 T_f = T_f + 273; // in K
12 \text{ Pr=0.688};
13 K=0.0321; // in W/mK
14 delta=23.18*10^-6; // in m^2/s
15 Bita=1/T_f;
16 \text{ g=9.81};
17 x = 0.3; // in m
18 del_T=T_s-T_infinite;
19 Gr=(g*Bita*del_T*x^3)/delta^2;
20 Ra=Gr*Pr;
```

```
21 //Since Ra<10<sup>9</sup>, hence it is laminar flow using the
      relation
22 // Formula Nu=0.59*Ra^{(1/4)}=h*x/K
23 h=0.59*Ra^(1/4)*K/x;// in W/m^2K
24 disp("(i) Heat transfer coefficient is: "+string(h)
      +" W/m^2K")
25
26 // (b) Initial rate of cooling
27 // Formula h*A*(T_s-T_infinite) = m*C_p*dt_by_toh
28 \quad A = 2*0.3*0.5;
29 dt_by_toh = h*A*(T_s-T_infinite)/(m*C_p);//in
      degree C/sec
30 dt_by_toh=dt_by_toh*60; // in degree C /min
31 disp("(ii) Initial rate of cooling of the plate is:
       "+string(dt_by_toh)+" degreeC /min");
32
33 //(c) Time taken by plate to cool from 200 degree C
      to 50 degree C
34 \text{ T_i=200;} // \text{ in degree C}
35 T=50; // in degree C
36 // Formula (T-T_infinite)/(T_i-T_infinite) = \%e^(-h*A)
      * toh / (m*C_p);
37 toh= -log((T-T_infinite)/(T_i-T_infinite))*m*C_p/(h*
      A); // in sec
38 \text{ toh=toh/60;} // \text{ in min}
39 disp("(iii) Time required to cool plate from 200
      degree C to 50 degree C is: "+string(toh)+"
      minutes");
```

Scilab code Exa 6.5 Total rate of heat loss from the pipe

```
1 //Exa 6.5
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 rho=0.8; // in kg/m<sup>3</sup>;
7 C_p=1.01; // in KJ/kg K
8 \text{ Pr} = 0.684;
9 d=15*10^-2; // diameter in meter
10 K = 0.035; // in W/mK
11 delta=2.78*10^-5; // in m^2/s
12 g=9.81;
13 x=2; // in m
14 T_s=250; // in degree C
15 T_infinite=30; // in degree C
16 T_f = (T_s + T_infinite)/2; // in degree C
17 T_f = T_f + 273; // in K
18 Bita=1/T_f;
19 del_T=T_s-T_infinite;
20 disp("Heat Transfer (loss) from plate= heat loss
      from vertical part + heat transfer from
      horizontal part by convection + heat transfer by
      radiation ")
21
22 //Heat loss from vertical part by free convection
24 Gr = (g*Bita*del_T*x^3)/delta^2;
25 \text{ Ra=Gr*Pr};
26 //Since Ra>10^9, hence turbulent flow
27 // Formula Nu= h*x/K = 0.13*Ra^(1/3)
28 h=0.13*Ra^(1/3)*K/x;// in W/m^2K
29 A = 2 * \%pi * d;
30 q1=h*A*del_T;//w
31 q1=q1*10^-3; // in kW
32 disp("Heat loss from vertical part is: "+string(q1)
      +" kW")
33
34 //Heat loss for Horizontal part
35 // here
36 \text{ x=d};
37 \text{ Gr}=(g*Bita*del_T*x^3)/delta^2;
38 Ra=Gr*Pr;
```

```
39 //Since Ra<10^9, hence laminar fluid flow
40 // Formula Nu= h*x/K = 0.53*Ra^(1/4)
41 h=0.53*Ra^(1/4)*K/x;// in W/m^2K
42 A = \%pi*d*8;
43 q2=h*A*del_T; // w
44 q2=q2*10^-3; // in kW
45 disp("Heat loss for horizontal part is: "+string(q2
      ) +" kW")
46
47 //Heat loss by radiation
48 \text{ sigma} = 5.67 * 10^-8;
49 epsilon=0.65;// emissivity of steel
50 A = \%pi*d*10;
51 \text{ T_s=T_s+273; // in } K
52 T_infinite=T_infinite+273; // in K
53 q3=sigma*A*epsilon*(T_s^4-T_infinite^4);// in w
54 q3=q3*10^-3; // in kW
55 disp("Heat loss by radiation is: "+string(q3)+" kW"
56
57 //Total heat loss
58 theta=q1+q2+q3;
59 disp("Total heat loss is: "+string(theta)+" kW");
60
61
62 // Note: value of q3 and theta in the book is wrong
      so answer in the book is wrong
```

Scilab code Exa 6.6 Heat gained by the duct per meter

```
1 //Exa 6.6
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 rho=1.205; // in kg/m^3;
7 C_p=1006; // in J/kg K
8 \text{ Pr} = 0.71;
9 K=0.0256; // in W/mK
10 delta=1.506*10^-5; // in m^2/s
11 T_s=35; // in degree C
12 T_infinite=5; // in degree C
13 T_f = (T_s + T_infinite)/2; // in degree C
14 T_f = T_f + 273; // in K
15 Bita=1/T_f;
16 del_T=T_s-T_infinite;
17 g=9.81;
18 // Formula 1/x = 1/Lh + 1/Lv
19 Lh=50; // in cm
20 Lv=50; // in cm
21 x=Lh*Lv/(Lh+Lv); // in cm
22 x=x*10^-2; // in m
23
24 // Formula Gr=(g*Bita*del_T*x^3)/delta^2;
25 Gr=(g*Bita*del_T*x^3)/delta^2;
26 \text{ Ra=Gr*Pr};
27 // Formula Nu= h*x/K = 0.53*Ra^(1/4)
28 h=0.53*Ra^(1/4)*K/x;// in W/m^2K
29 \quad A = 2*(0.5+0.5);
30 \text{ q=h*A*del_T; // w}
31 disp("Heat loss per meter length of pipe is: "+
      string(q)+" watt")
32
33 // Note: In the book, value of h is wrong due to
      place miss value of x, so the answer in the book
      is wrong
```

Scilab code Exa 6.7 Average heat transfer coefficient and Local heat flux

```
1 //Exa 6.7
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 L=3;// in m
7 delta=0;
8 hx = 10 * x^{(-1/4)}
9 // (a) Average heat transfer coefficient
10 h=1/L*integrate(hx, 'x', delta,L);
11 disp("(a) Average heat transfer coefficient is: "+
     string(h) + W/m^2K
12
13 // (b) Heat transfer rate
14 A=3*.3; // in m^2
15 Tp=170;// plate temp. in degree C
16 Tg=30; // gas temp. in degree C
17 del_T=Tp-Tg;
18 q=h*A*del_T;// in W
19 disp("(b) Heat transfer rate is: "+string(q)+" W")
20
21 // (c)
22 x=2; // in m
23 qx_by_A = 10*x^(-1/4)*(Tp-Tg);
24 disp("Local heat flux 2 m from the leading edge is:
      "+string(qx_by_A)+"W/m^2");
```

Scilab code Exa 6.8 Heat transfer by natural convection

```
1 //Exa 6.8
2 clc;
3 clear;
4 close;
5 //given data
6 Pr=0.712;
7 K=0.026; // in W/mK
```

```
8 delta=1.57*10^-5; // in m^2/s
9 T_s=320; // in K
10 T_{infinite=280;//in K}
11 del_T=T_s-T_infinite;
12 T_f = (T_s + T_infinite)/2; // in K
13 Bita=1/T_f;
14 d1=20; // in cm
15 d2=30; // in cm
16 x = (d2-d1)/2; // in cm
17 x = x * 10^{-2}; // in m
18 \text{ g=9.81};
19 Gr=(g*Bita*del_T*x^3)/delta^2;
20 Ra=Gr*Pr;
21
22 // Formula Nu= h*x/K = 0.228*Ra^{(0.226)}
23 h=0.228*Ra^(0.226)*K/x;// in W/m^2K
24 A = \%pi*(d1*10^-2)^2;
25 q=h*A*del_T; // w
26 disp("Heat transfer rate is : "+string(q)+" watt");
```

Scilab code Exa 6.9 Heat transfer and overall heat transfer coefficient

```
1 //Exa 6.9
2 clc;
3 clear;
4 close;
5 //given data
6 K=0.0278; // in W/mK
7 rho=1.092; // in kg/m^3
8 miu=19.57*10^-6; // in kg/ms
9 Cp=1007; // in kg/kg degree C
10 epsilon=0.9;
11 sigma=5.67*10^-8;
12 d=75+2*25; // in mm
13 d=d*10^-3; // in meter
```

```
14 T_s=80; // in degree C
15 T_infinite=20; // in degree C
16 T_f = (T_s + T_infinite)/2; // in degree C
17 T_f = T_f + 273; // in K
18 Bita=1/T_f;
19 g=9.81;
20 del_T=T_s-T_infinite;
21 Pr=miu*Cp/K;
22 Gr=(rho^2*g*Bita*del_T*d^3)/miu^2;
23
24 // Formula Nu= h*d/K = 0.53*(Gr*Pr)^(1/4);
25 h = 0.53*(Gr*Pr)^(1/4)*K/d;
26
\frac{27}{(a)} Heat loss from 6 m length of pipe
28 A = \%pi*d*6;
29 Q_{conv=h*A*del_T};
30 \quad Q_{rad}=epsilon*sigma*A*((T_s+273)^4-(T_infinite+273)
      ^4);
31 //total heat transfer rate
32 Q=Q_conv+Q_rad;
33 disp("Total heat transfer rate is: "+string(Q)+" W"
      );
34
35 // (b) Overall heat transfer coefficient
36 // Formula Q=U*A*del_T
37 \quad U=Q/(A*del_T);
38 disp("Overall heat transfer coefficient is: "+
      string(U)+" W/m^2 degree C");
```

Chapter 7

Radiation Heat Transfer

Scilab code Exa 7.1 Monochromatic emissive power and Maximum emissive power

```
1 // \text{Exa} 7.1
2 clc;
3 clear;
4 close;
5 //given data
6 lamda=2*10^-6; // in m
7 C1=0.374*10^-15;
8 T=2000+273; // in K'
9 C2=1.4388*10^-2;
10
11 //(a)
12 // Formula Eb_lamda= (C1*lamda^-5)/[exp(C2/(lamda*T)
13 Eb_lamda= (C1*lamda^-5)/[exp(C2/(lamda*T))-1];
14 disp(Eb_lamda, "Monochromatic emissive power at 2
      micro wavelength in W/m<sup>2</sup> is :");
15
16 //(b)
17 // Formula lamda_max * T = 2898 // in micro m K
18 lamda_max = 2898/T; // in micro m
```

Scilab code Exa 7.2 Heat transfer by radiation and natural convection

```
1 //Exa 7.2
2 clc;
3 clear;
4 close;
5 //given data
6 lamda=2*10^-6; // in m
7 C1=0.374*10^-15;
8 T = 2000 + 273; // in K'
9 C2=1.4388*10^-2;
10
11 epsilon=0.3;
12 sigma=5.67*10^-8;
13 T1=300; // in K
14 T2=200; // in K
15 \text{ del}_T=T1-T2;
16 h=12; // in W/m<sup>2</sup> degree C
17 d=4*10^-2; // diameter in m
18 l=1;// in m
```

```
19 A=%pi*d*l;
20 // Heat transfer rate by radiation ,
21 q_r= epsilon*sigma*A*(T1^4-T2^4); // in W
22 // Heat transfer rate by convection ,
23 q_c=h*A*del_T; // in W
24 // Total heat transfer ,
25 q=q_r+q_c;
26 // Formula q=U*A*del_T
27 U=q/(A*del_T); // Overall heat tranfer coefficient
28 disp(U," Overall heat tranfer coefficient in W/m^2 degree C");
29
30 //Note: Value of q_c is wrong in the book, so the answer in the book is wrong
```

Scilab code Exa 7.3 Heat transfer rate

```
1 / Exa 7.3
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ epsilon=0.5};
7 \text{ T1=1200; // in } K
8 T2=300; // in K
9 //(a) Heat transfer rate between the two plates is
10 // Formula Fg12=1/((1/epsilon1+(1/epsilon2-1)*A1/A2)
11 epsilon1=epsilon;
12 epsilon2=epsilon;
13 AlbyA2=1;
14 Fg12=1/(1/epsilon1+(1/epsilon2-1)*A1byA2);
15 // Formula q12 = sigma *A*Fg12*(T1^4-T2^4)
16 sigma=5.67*10^-8;
17 q12byA=sigma*Fg12*(T1^4-T2^4); // in W/m^2
```

Scilab code Exa 7.4 Energy emitted by a grey surface

```
1 //Exa 7.4
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9);
7 T1=800+273; // in K
8 A= 5*6; // in square meter
9 epsilon=0.45;
10 sigma=5.67*10^-8;
11 q=epsilon*sigma*A*T1^4; //in watt
12 disp(q,"Energy emitted by a grey surface in watt:");
```

Scilab code Exa 7.5.1 Absorbed Transmitted and emitted energy

```
1 //Exa 7.4
2 clc;
3 clear;
4 close;
5 //given data
6 A=5; // in m^2
7 intensity=660; // in W/m<sup>2</sup>
9 disp("alpha= 2*rho
                                rho=alpha/2")
                          or
10 disp("alpha= 3*toh
                          or
                                toh=alpha/3")
11 \operatorname{disp}("as alpha + rho + toh = 1")
12 disp("then alpha+alpha/2+alpha/3 = 1")
13 disp("alpha = 6/11")
14 disp("rho = 6/22")
15 disp("toh = 6/33")
16 alpha=6/11;
17 \text{ rho} = 6/22;
18 toh=6/33;
19 energy_absorbed= intensity*alpha*A;// in watt
20 disp(energy_absorbed, "Energy absorbed in watt: ")
21 energy_transmitted=intensity*rho*A; //in watt
22 disp(energy_transmitted, "Energy transmitted in watt
23 energy_emitted= intensity*toh*A;// in watt
24 disp(energy_emitted, "Energy emitted in watt: ")
```

Scilab code Exa 7.5.2 Net heat exchange between the two surface

```
1 //Exa 7.5
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 T1=200+273; // in K
7 T2=100+273; // in K
8 A= 1*2; // in square meter
9 sigma=5.67*10^-8;
10 x_D= 1/4;
11 y_D= 1/2;
12 Fg12= 0.033;
13 q12= Fg12*sigma*A*(T1^4-T2^4); // in watt
14 disp(q12, "The net heat exchange between two surfaces in watt")
```

Scilab code Exa 7.6 heat loss and net heat transfer between pipe and duct

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 //given data
6 d=20*10^-2; // diameter of pipe in m
7 l=1; // length of pipe in m
8 s=30*10^{-2}; // side of duct in m
9 A1=\%pi*d*l;// area of pipe in m^2
10 A2=4*s*s; // area of duct in m<sup>2</sup>
11 \text{ epsilon1=0.8};
12 \text{ epsilon2=0.9};
13 T1 = 200 + 273; // in K
14 T2=20+273; // in K
15 // Formula Fg12=1/((1/epsilon1+(1/epsilon2-1)*A1/A2)
16 Fg12=1/((1/epsilon1+(1/epsilon2-1)*A1/A2));
17 // Heat transfer rate between pipe and duct
18 sigma=5.67*10^-8;
19 q12=sigma*Fg12*A1*(T1^4-T2^4); // in W
20 disp(q12," Heat transfer rate between pipe and duct
      in W");
```

Scilab code Exa 7.10 Shape factor of a cylinderical cavity

```
1 // \text{Exa} 7.10
2 clc;
3 clear;
4 close;
5 //given data
6 D=150*10^-3;// in m
7 \text{ H}=400*10^{-3}; // in m
8 T1 = 500; // in K
9 \text{ epsilon=0.7};
10 // Formula F11 = (4*H)/(4*H+D)
11 F11 = (4*H)/(4*H+D);
12 sigma=5.67*10^-8;
13 A1 = \%pi * D * H;
14 q=sigma*A1*epsilon*T1^4*[(1-F11)/(1-F11*(1-epsilon))
      ];
15 disp(q,"Heat Heat loss for cavity in W");
16
17 // Note: There is some difference between Code answer
       and book answer because value of F11 is wrong in
       the book
```

Scilab code Exa 7.11 Net heat transfer rate and rate of evaporation of liquid oxygen

```
1 //Exa 7.11
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 \text{ epsilon1} = .04;
7 epsilon2=epsilon1;
8 T1 = -153 + 273; // in K
9 T2=27+273; // in K
10 h_fg=209; // in kJ/kg
11 h_fg=h_fg*10^3; // in J/kg
12 d1=20*10^-2; // in m
13 d2=30*10^-2; // in m
14 A1=d1^2; // in square meter
15 A2=d2^2; // in square meter
16 A=4*\%pi*(d2-d1)^2;
17 Fg12=1/((1/epsilon1+(1/epsilon2-1)*A1/A2));
18 sigma=5.67*10^-8;
19 q12=sigma*A*Fg12*(T1^4-T2^4);// in W
20 disp(q12,"Net radiant heat transfer rate in watt")
21 disp("Negative sign indicates that heat flows into
      the sphere")
22 q12 = -q12;
23 \text{ m=q12*60/h_fg};
24 disp(m,"Rate of evaporation per minutes in kg/min")
```

Scilab code Exa 7.12 Radiation heat transfer

```
1 //Exa 7.12
2 clc;
3 clear;
4 close;
5 //given data
6 T1=500; // in K
7 T2=300; // in K
8 sigma=5.67*10^-8;
9 A=2; // surface area of each plate in m^2
10 //(a) If the plates are perfectly black
11 F12=1;
```

```
12 q12=sigma*A*F12*(T1^4-T2^4);
13 disp(q12," Radiation heat transfer between two black
                                parellel plates in watt");
14
15 //(b) If the plates are gray surface
16 //in this case
17 F12=1;
18 / A1 = A2, so
19 A1byA2=1
20 \text{ epsilon1}=.4;
21 epsilon2=epsilon1;
22 / Fg12 = 1/(1/epsilon1 + (1/epsilon2 - 1)*A1byA2);
23 Fg12=1/((1-epsilon1)/epsilon1 + 1/F12 + [(1-epsilon2) + 1/F12 + [(1-epsilon2) + 1/F12] + [(1-epsilon2) + [(1-epsilo
                               )/epsilon2]*A1byA2);
24 q12=sigma*A*Fg12*(T1^4-T2^4); // in W
25 disp(q12,"Heat transfer rate in watt")
```

Scilab code Exa 7.13 Steady state temperature

```
1 //Exa 7.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 //given data
7 \text{ T1=800; // in } K
8 T3 = 200; // in K
9 sigma=5.67*10^-8;
10 d1=20*10^-2; // in m
11 d2=30*10^-2; // in m
12 d3=40*10^-2; // in m
13 A1=4*%pi*(d1/2)^2; // in m^2
14 A2=4*%pi*(d2/2)^2; // in m^2
15 A3=4*\%pi*(d3/2)^2; // in m^2
16 \text{ epsilon1=0.2};
```

```
17 epsilon2=epsilon1
18 epsilon3=epsilon1
19 Fg12=1/(1/epsilon1+(1/epsilon2-1)*A1/A2);
20 Fg23=1/(1/epsilon2+(1/epsilon3-1)*A2/A3);
21 // Under steady state condition
22 // q12 = q23
23 // A1*Fg12*sigma*(T1^4-T2^4) = A2*Fg23*sigma*(T2^4-T3^4)
24 T2 = ((A2*Fg23*T3^4/(A1*Fg12)+T1^4)/(A2*Fg23/(A1*Fg12)+1))^(1/4)
25 disp(T2, "Steady state temperature of the intermediate sphere in K");
```

Scilab code Exa 7.14 Rate of absorption and emission

```
1 / \text{Exa} 7.14
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //given data
7 T1 = 400; // in K
8 \text{ T2=500; // in } K
9 T3=1200; // in K
10 alpha1=0.70;
11 alpha2=0.6;
12 alpha3=0.4;
13 // First part
14 disp ("Radiation falling on the body is emitted by
      the furnace wall at 1200 K ")
15 disp("The absorptivity of the body for this
      radiation is 0.4.")
16 \text{ sigma=5.67*10}^-8;
17 qa=alpha3*sigma*T3^4;
18 disp(qa,"The rate of energy absorption in W/m^2");
```

```
19
20 // Second part
21 disp("The emissivity of surface equals its
      absoptivity at 127 degree")
22 qa=alpha1*sigma*T1^4;
23 disp(qa,"The rate of emission of radiation energy in
      W/m^2");
24
25
26 // Note: Answer of the first part in the book is
      wrong
```

Scilab code Exa 7.15 Radient Heat transfer

```
1 // \text{Exa} 7.15
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data
7 d1 = 100; // in mm
8 d1=d1*10^-3; // in m
9 d2=100+10*2; // in mm
10 d2=d2*10^-3; // in m
11 l=1;// in m
12 A1byA2=d1^2/d2^2;
13 A1=\%pi*d1*l;// in m^2
14 \text{ sigma=}5.67*10^-8;
15 T1=120+273; // in K
16 T2=35+273; // in K
17 \text{ epsilon1}=.8;
18 \text{ epsilon2=.1};
19 Fg12=1/(1/epsilon1+(1/epsilon2-1)*A1byA2);
20 // Radiant heat transfer from the tube
21 q = A1 * Fg12 * sigma * (T1^4 - T2^4)
```

```
22 disp(q," Radiant heat transfer from the tube in W/m"
    );
23
24
25 //Note: Answer in the book is wrong
```

Chapter 8

Heat Exchangers

Scilab code Exa 8.1 Surface area of heat exchanger

```
1 //Exa 8.1
2 clc;
3 clear;
4 close;
5 //given data
6 t_hi=80;// in degree C
7 t_ci=30;// in degree C
8 t_{ho}=40;// in degree C
9 Mh=0.278; // in kg/s
10 Mc=0.278; // in kg/s
11 Cph=2.09; // in kJ/kg degree C
12 Cpc=4.18; // in kJ/kg degree C
13 U=24;// in W/m^2 degree C
14 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-
      t_ci
15 t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree
16 del_t1=t_hi-t_co;//in degree C
17 del_t2=t_ho-t_ci;//in degree C
18 del_tm= (del_t1-del_t2)/log(del_t1/del_t2);
19 Cph=Cph*10^3; // in J/kg degree C
```

```
20 q=Mh*Cph*(t_hi-t_ho);
21 //Formula q=U*A*del_tm
22 A=q/(U*del_tm);// in m^2
23 disp(A, "Surface area of heat exchange in square meter")
```

Scilab code Exa 8.2 Length of heat exchanger

```
1 //Exa 8.2
2 clc;
3 clear;
4 close;
5 //given data
6 t_hi=160; // in degree C
7 t_ci=25;// in degree C
8 t_ho=60; // in degree C
9 Mh=2; // in kg/s
10 Mc=2;// in kg/s
11 Cph=2.035; // in kJ/kg degree C
12 Cpc=4.187; // in kJ/kg degree C
13 U=250; // in W/m^2 K
14 d=0.5; // in m
15 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-
      t_ci
16 t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree
17 del_t1=t_hi-t_co;//in degree C
18 del_t2=t_ho-t_ci; //in degree C
19 del_tm= (del_t1-del_t2)/log(del_t1/del_t2);
20
21
22 Cph=Cph*10^3; // in J/kg degree C
23 q=Mh*Cph*(t_hi-t_ho);
24
25 //Formula q=U*\%pi*d*l*del_tm
```

```
26 l=q/(U*%pi*d*del_tm);
27 disp(1, "Length of the heat exchanger in meter")
```

Scilab code Exa 8.3 Area of heat exchanger tube

```
1 //Exa 8.3
2 clc;
3 clear;
4 close;
5 //given data
6 t_hi=110; // in degree C
7 t_{ci=35;} // in degree C
8 t_co=75; // in degree C
9 Mh=2.5; // in kg/s
10 Mc=1; // in kg/s
11 Cph=1.9; // in kJ/kg K
12 Cpc=4.18;// in kJ/kg~K
13 U=300; // in W/m^2 K
14
15 // Energy balance Mc*Cpc*(t_co-t_ci) = Mh*Cph*(t_hi-
      t_ho
16 t_ho=t_hi- Mc*Cpc*(t_co-t_ci)/(Mh*Cph);// in degree
     \mathbf{C}
17 del_t1=t_hi-t_co; //in degree C
18 del_t2=t_ho-t_ci; //in degree C
19 del_tm= (del_t1-del_t2)/log(del_t1/del_t2);
20 Cph=Cph*10^3; // in J/kg degree C
21 q=Mh*Cph*(t_hi-t_ho);
22 //Formula q=U*A*del_tm
23 A=q/(U*del_tm);
24 disp(A, "Area of the heat exchanger in square meter")
```

Scilab code Exa 8.4 The overall heat transfer

```
1 / Exa 8.4
2 clc;
3 clear;
4 close;
5 //given data
6 Fi=0.00014; // in m<sup>2</sup> degree C/W
7 hi=2000; // in W/m<sup>2</sup> degree C
8 Fo=0.00015; // in m<sup>2</sup> degree C/W
9 ho=1000; // in W/m<sup>2</sup> degree C
10 di=3*10^-2; // in m
11 do=4*10^-2; //in m
12 \text{ ro=do/2};
13 ri=di/2;
14 k=53; // in W/m degree C
15 U_0=1/(d_0/d_1*1/h_1+d_0/(2*k)*log(r_0/r_1) + 1/h_0 + d_0*F_1
      /di + Fo);
16 disp(Uo, "The overall heat transfer coefficient in W/
      m<sup>2</sup> degree C")
```

Scilab code Exa 8.5 Heat transfer rate

```
1 //Exa 8.5
2 clc;
3 clear;
4 close;
5 //given data
6 V=0.15; // in m/s
7 di=2.5*10^-2; // in m
8
9 delta=0.364*10^-6; // in m^2/s
10 k=0.668; // in W/m degree C
11 Pr=2.22;
12
13 Re=V*di/delta;
14 // Formula Nu= hi*di/k = 0.023*Re^0.8*Pr^0.3
```

```
15 hi=0.023*Re^0.8*Pr^0.3*k/di;// in W/m^2 degree C
16
17 // Now, Reynold number for flow of air across the
      tube
18 delta=18.22*10^-6; // in m^2/s
19 k=0.0281; // in W/m degree C
20 \text{ Pr} = 0.703;
21 d=2.5*10^-2; // in m
22 u=10; // in m/s
23 Re=u*d/delta;
24 Re=floor(Re);
25 //The Nusselt number for this case
26 \text{ Nu} = [0.04*\text{Re}^0.5+ 0.006*\text{Re}^(2/3)]*\text{Pr}^0.4
27 // Formula Nu= ho*do/k
28 \text{ do=di};
29 ho=Nu*k/do;// in W/m^2 degree C
30 disp(ho," Heat transfer coefficient in W/m<sup>2</sup> degree C
      ");
31 \ U=1/(1/hi+1/ho);
32 disp(U,"The overall heat transfer coefficient
      neglecting the wall resistance in W/m<sup>2</sup> degree C"
      );
33 1=1; // in m
34 \text{ Ti=90;} // \text{ in degree } C
35 \text{ To=10;} // \text{ in degree C}
36 q=U*\%pi*d*l*(Ti-To);
37 disp(q," Heat loss per meter length of the tube in W/
      m")
38
39 // Note: Answer in the book is wrong
```

Scilab code Exa 8.6 Type of heat exchanger required

```
1 //Exa 8.6
2 clc;
```

```
3 clear;
4 close;
5 //given data
6 \text{ t_hi=83;// in degree C}
7 t_{ho}=45;// in degree C
8 t_ci=25;// in degree C
9 Mh=5; // in kg/min
10 Mc=9; // in kg/min
11 Cph=4.18; // in kJ/kg K
12 Cpc=2.85; // in kJ/kg K
13 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-
      t_ci
14 t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree
15 disp(t_co, "t_co in degree C");
16 if(t_co>t_ho)
17
18
      disp("since t_co > t_ho, hence counter flow
         arrangment will be suitable")
19 end
```

Scilab code Exa 8.7 Heat transfer area

```
1 //Exa 8.7
2 clc;
3 clear;
4 close;
5 //given data
6 // (a) For parallel flow arrangment
7 del_t1=60-10;// in degree C
8 del_t2=40-30;// in degree C
9 del_tm=(del_t1-del_t2)/log(del_t1/del_t2);// in degree C
10 q=100*10^3;// in W
11 U=75;// in W/m^2 degree C
```

```
// Formula q=U*A*del_tm;
A=q/(U*del_tm);
disp(A, "Area for paraller flow arrangment in square meter");
// (b) For counter flow heat exchange
del_t1=60-30; // in degree C
del_t2=40-10; // in degree C
// In this case
del_tm=(del_t1+del_t2)/2; // in degree C
A=q/(U*del_tm);
disp(A, "Area For counter flow heat exchange in square meter");
disp("In counter flow arrangment less area is required for the above purpose")
```

Scilab code Exa 8.8 Rate of heat condensation

```
1 / Exa 8.8
2 clc;
3 clear;
4 close;
5 //given data
6 Cp=4180; // in J/kg degree C
7 miu=0.86*10^-3; // in kg/m-s
8 \text{ Pr} = 60;
9 k=0.60; // in W/m degree C
10 h_fg = 2372400; // in W
11 ho=6000; // in W/m^2 degree C
12 di=2*10^-2; // in m
13 d_0=3*10^-2; // in m
14 t_co=35; // in degree C
15 t_ci=15; // in degree C
16
17 M = 0.9;
18 Re=4*M/(\%pi*di*miu);
```

Scilab code Exa 8.9 Heat transfer area

```
1 / Exa 8.9
2 clc;
3 clear;
4 close;
5 //given data
6 Cph=3850; // in J/kg degree C
7 t_hi=100; // in degree C
8 t_ci=20; // in degree C
9 t_{ho}=50;// in degree C
10 Mh=8; // in kg/s
11 Mc=10; // in kg/s
12 Cpc=4.18*10^3; // in J/kg degree C
13 U=400; // in W/m^2 degree C
14 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-
     t_ci
15 t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree
```

```
16 // Heat load
17 q=Mh*Cph*(t_hi-t_ho); // in W
18
19 // (a) Parallel flow
20 del_t1=90; // in degree C
21 del_t2=3.16; // in degree C
22 del_tm = (del_t1 - del_t2)/log(del_t1/del_t2);
23 A=q/(U*del_tm);
24 disp(A, "Surface area for parallel flow in meter
      square");
25
26 // (b) Counter flow heat exchanger
27 del_t1=53.16; // in degree C
28 del_t2=40; // in degree C
29 del_tm_counter= (del_t1-del_t2)/log(del_t1/del_t2);
30 A=q/(U*del_tm_counter);
31 disp(A, "Surface area for counter flow heat exchanger
       in meter square");
32
33 //(c) One shell pass and two tube pass.
34 / here
35 t1=10; // in degree C
36 t2=46.84; // in degree C
37 T1=100; // in degree C
38 T2=50; // in degree C
39 P=(t2-t1)/(T1-t1);
40 R = (T1-T2)/(t2-t1);
41 F = 0.88;
42 del_tm=F*del_tm_counter;// in degree C
43 \text{ A=q/(U*del_tm)};
44 disp(A, "Surface area for one shell pass and two tube
       pass in meter square");
45
46 // (d) For cross flow, correction factor
47 \quad F = 0.9;
48 del_tm=F*del_tm_counter;
49 \text{ A=q/(U*del_tm)};
50 disp(A, "Surface area for cross flow in meter square"
```

Scilab code Exa 8.10 Exit temperature of water

```
1 //Exa 8.10
2 clc;
3 clear;
4 close;
5 format('v',13)
6 //given data
7 Cpc=4.18*10^3; // in J/kg degree C
8 Mc=1; // in kg/s
9 Mh=2.4; // in kg/s
10 Cph=2050; // in J/kg degree C
11 t_hi=100;//in degree C
12 t_ci=20; // in degree C
13 C_c=Mc*Cpc; // in W/degree C
14 C_h=Mh*Cph; // in W/degree C
15 U=300; // in W/m<sup>2</sup> degree C
16 A=10; // in m^2
17 C_{min} = C_c;
18 \quad C_{max} = C_h;
19 N = A*U/C_min;
20 C = C_{\min}/C_{\max};
21 // Effectiveness for counter flow heat exchanger
22 epsilon= (1-\%e^{(-N*(1-C))})/(1-C*\%e^{(-N*(1-C))});
23 // Total heat transfer
24 q=epsilon*C_min*(t_hi-t_ci);// in watt
25 disp(q*10^-3, "Total heat transfer in kW");
26 t_co=t_ci+epsilon*C*(t_hi-t_ci);
27 disp(t_co, "Exit temperature of water in degree C");
```

Scilab code Exa 8.11 Exit temperature

```
1 //Exa 8.11
2 clc;
3 clear;
4 close;
5 format('v',13)
6 //given data
7 t_hi=135; // in degree C
8 \text{ t_ci=20;} // \text{ in degree C}
9 t_ho=65; // in degree C
10 t_{co=50}; // in degree C
11 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co)
     -t_ci
12 // C = C_min/C_max = Mh*Cph/(Mc*Cpc)
13 C = (t_{co} - t_{ci})/(t_{hi} - t_{ho});
14 epsilon=(t_hi-t_ho)/(t_hi-t_ci);
15 // Also epsilon = epsilon_parallel = (1-\exp(-NTU*(1+
     (C)))/(1+C)
16 NTU= -\log(1-epsilon*(1+C))/(1+C);
17 // if the existing heat exchanger is to be used as
      counter flow mode, its NTU will not change, i.e.
  epsilon_c= (1-\exp(-NTU*(1-C)))/((1-C*\exp(-NTU*(1-C)))
      ));
19 // Exit temperature
20 // (i) Hot fluid
21 t_ho=t_hi-epsilon_c*(t_hi-t_ci);// in degree C
22 disp(t_ho, "Exit temperature for hot fluid in degree
     C")
23
24 //(ii) Cold fluid
25 t_co= t_ci+epsilon_c*C*(t_hi-t_ci);
26 disp(t_co, "Exit temperature for cold fluid in degree
      C")
27
28 // (iii) // If the parallel flow heat exchanger is
      too long, then body fluid will have common outlet
       temperature (t)
29 // From MCp_h*(t_hi-t) = MCp_c*(t-t_ci)
30
```

```
31 t=(C*t_hi+t_ci)/(1+C);
32 disp(t,"The minimum temperature to which the oil may
        be cooled by increasing the tube length with
        parallel flow operation, in degree C ")
```

Scilab code Exa 8.12 Exit temperature

```
1 / Exa 8.12
2 clc;
3 clear;
4 close;
5 format('v',13)
6 //given data
7 t_hi=78; // in degree C
8 t_ci=23;// in degree C
9 t_{ho}=65;// in degree C
10 t_co=36; // in degree C
11 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co)
     -t_ci
12 // C = C_min/C_max = Mh*Cph/(Mc*Cpc)
13 C = (t_co-t_ci)/(t_hi-t_ho);
14 epsilon=(t_hi-t_ho)/(t_hi-t_ci);
15 // Formula epsilon = (1-\exp(-N*(1+C)))/(1+C)
16 N= -\log(1-epsilon*(1+C))/(1+C);
17 // When flow rates of both fluids are doubled, the
      deat capacity ratio will not change, i.e.
18 // C=1
19 // MCp_new = 2* MCp_old
20 // N=U*A/C_min=N/2
21 N = N/2;
22 epsilon=(1-\exp(-N*(1+C)))/(1+C);
23 // exit temperature
24 t_ho=t_hi-epsilon*(t_hi-t_ci);// in degree C
25 t_co= t_ci+epsilon*(t_hi-t_ci);
26 disp("Exit temperature in degree C: "+string(t_ho)
```

```
+" and "+string(t_co));

27

28 // Note: Answer in the book is wrong due to put wrong value of t_ci in second last line
```

Scilab code Exa 8.13 Outlet temperature

```
1 / Exa 8.13
2 \text{ clc};
3 clear;
4 close;
5 format('v',13)
6 //given data
7 t_hi=125; // in degree C
8 t_ci=22;// in degree C
9 Mh=21; // in kg/s
10 Mc=5;// in kg/s
11 C_{ph}=2100; // in J/kg K
12 C_pc=4100; // in J/kg K
13 Ch=Mh*C_ph;// in Js/kg
14 Cc=Mc*C_pc;// in Js/kg
15 C_{min}=Cc;//in Js/kg
16 C_{max}=Ch;// in Js/kg
17 U=325; // in W/m^2 K
18 d=2.2*10^-2; // in m
19 1=5; // in m
20 total_tube=195;// number of total tubes
21 A=%pi*d*l*total_tube
22 \text{ NTU=U*A/C_min};
23 C=C_min/C_max;
24 epsilon = (1-\exp(-NTU*(1-C)))/(1-C*\exp(-NTU*(1-C)));
25 t_co= t_ci+epsilon*(t_hi-t_ci);
26 t_ho= t_hi-epsilon*Cc/Ch*(t_hi-t_ci);
27 disp("Exit temperature in degree C: "+string(t_co)
      +" and "+string(t_ho));
```

```
28
29 // Total heat transfer
30 q=epsilon*C_min*(t_hi-t_ci);
31 disp(q*10^-3, "Total heat transfer in kW")
```

Scilab code Exa 8.14 Total heat transfer and outlet temperature

```
1 //Exa 8.14
2 \text{ clc};
3 clear;
4 close;
5 format('v',13)
6 //given data
7 t_hi=94; // in degree C
8 t_ci=15;// in degree C
9 Mw=0.36; // in kg/s
10 Mo=0.153; // in kg/s
11 C_{po}=2*10^3; // in J/kg K
12 C_pw=4.186*10^3; // in J/kg K
13 U=10.75*10^2; // in W/m^2 K
14 A=1; // in m^2
15 Ch=Mo*C_po; // in kW/K
16 Cc=Mw*C_pw;// in kW/K
17 C_{min} = Ch; // in W/K
18 C_{max}=Cc;//in W/K
19 C=C_min/C_max;
20 NTU=U*A/C_min;
21 // Effectiveness
22 N = NTU;
23 epsilon = (1-\exp(-N*(1-C)))/(1-C*\exp(-N*(1-C)));
24 mCp_min=C_min;
25 q_max= mCp_min*(t_hi-t_ci);// in W
26 \text{ q_actual= epsilon*q_max;// in W}
27 disp(q_actual, "Total heat transfer in watt")
28 // Outlet temp. of water
```

```
29 t_co= q_actual/Cc+t_ci;// in degree C
30 disp(t_co,"Outlet temperature of water in degree C")
31 // Outlet temp. of oil
32 t_ho=t_hi-q_actual/Ch;//in degree C
33 disp(t_ho,"Outlet temperature of oil in degree C")
34
35
36 //Note: Evaluation of Cc and Ch in the book is wrong so the Answer in the book is wrong
```

Scilab code Exa 8.15 Surface area of heat exchanger

```
1 //Exa 8.15
2 clc;
3 clear;
4 close;
5 //given data
6 U=1800; // in W/m<sup>2</sup> degree C
7 h_fg=2200*10^3; // in J/kg
8 t_ci=20;// in degree C
9 t_{co=90};// in degree C
10 del_t1=120-20; // in degree C
11 del_t2=120-90;// in degree C
12 del_tm=(del_t1-del_t2)/log(del_t1/del_t2);// in
      degree C
13 Mc=1000/3600; // in kg/s
14 Cc = 4180; // in kg/s
15 // Rate of heat transfer
16 q=Mc*Cc*(t_co-t_ci);// in watt
17 // Formula q=U*A*del_tm
18 A=q/(U*del_tm);
19 disp(A, "Surface area in square meter");
20 //Rate of condensation of steam
21 ms=q/h_fg; // in kg/sec
22 disp(ms, "Rate of condensation of steam in kg/sec");
```

Scilab code Exa 8.16 Heat exchanger area

```
1 //Exa 8.16
2 clc;
3 clear;
4 close;
5 //given data
6 Mh=10000/3600; // in kg/sec
7 Mc=8000/3600; // in kg/sec
8 Cph=2095; // in J/kg K
9 Cpc=4180;// in J/kg K
10 t_hi=80; // in degree C
11 t_ci=25;// in degree C
12 t_{ho}=50; // in degree C
13 U=300; // in W/m^2 K
14 // Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-
      t_ci
15 t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree
16 del_t1=t_hi-t_co;//in degree C
17 del_t2=t_ho-t_ci; //in degree C
18 del_tm = (del_t1 - del_t2)/log(del_t1/del_t2);
19 q=Mh*Cph*(t_hi-t_ho);
20 //Formula q=U*A*del_tm
21 A=q/(U*del_tm); // in m^2
22 disp(A, "Surface area of heat exchange in square
     meter")
```

Scilab code Exa 8.17 Overall heat transfer coefficient

```
1 / Exa 8.17
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 ho=5000; // in W/m<sup>2</sup> degree C
7 rho=988.1; // in kg/m^3
8 \text{ K=0.6474};
9 D=555*10^-9; // in m^2/s
10 Pr = 3.54;
11 n = 100;
12 d_i=2.5*10^-2; // in m
13 ri=d_i/2;
14 d_0=2.9*10^-2; // in m
15 ro=d_o/2;
16 Cp=4174; // in J/kg degree C
17 Mc=8.333; // in kg/s
18 Mw = Mc;
19 t_c1=30; // in degree C
20 t_c2=70; // in degree C
21 t_n1=100; // in degree C
22 t_n2=t_n1;// in degree C
23 R_{fi}=0.0002; // in m^2 degree C/W (In the book, there
       is miss print in this line, they took here R<sub>-</sub>fi =
        .002)
24 // Heat gain by water
25 \ Q=Mc*Cp*(t_c2-t_c1);
26 // Also Q = U*A*del_tm
27 del_t1=t_n1-t_c1; //in degree C
28 del_t2=t_n2-t_c2; //in degree C
29 del_tm = (del_t1-del_t2)/log(del_t1/del_t2);
30 // \text{Mw} = 1/4 * \% \text{pi} * \text{d}_{i} ^2 * \text{V} * \text{rho} * \text{N}, \text{ here}
31 N=n;
32 V=4*Mw/(\%pi*d_i^2*rho*N);
33 // Formula Re=V*d_i/v, here
34 \text{ v=D};
35 Re=V*d_i/v;
36 // Formula Nu= hi*d_i/K = 0.023*Re^0.8*Pr^0.33
37 hi= 0.023*Re^0.8*Pr^0.33*K/d_i;
```

Chapter 9

Condensation and Boiling

Scilab code Exa 9.1 Rate of heat transfer

```
1 / Exa 9.1
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data
7 h_fg=2256*10^3; // in J/kg
8 rho=970; // in kg/m^3
9 rho_v=0.596; // in kg/m^3
10 k=0.66; // in W/mK
11 miu=3.7*10^-4; // in kg/m-s
12 T_sat=100; // in degree C
13 T_s=40; // in degree C
14 L=1.5; // in m
15 d=0.09; // in m
16 \text{ g=9.81};
17 // heat transfer coefficient
18 / h_b ar = 1.13*[ rho*g*(rho-rho_v)*h_fg*k^3/(miu*L*(
      T_sat-T_s))]^(1/4);// in W/m^2k
19 h_bar= 1.13*[
                   rho*g*(rho-rho_v)*h_fg*k^3/(
      L*(T_sat-T_s)
                                         ]^{(1/4)};
```

```
20  // heat transfer rate
21  q=h_bar*%pi*d*L*(T_sat-T_s); // in watt
22  disp(q*10^-3," Heat transfer rate in kW")
23  //rate of condensation
24  m=q/h_fg; // in kg/s
25  disp(m," Rate of condenstion in kg/s")
```

Scilab code Exa 9.2 Condensation rate

```
1 / Exa 9.2
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data
7 h_fg=2310*10^3; // in J/kg
8 rho=980; // in kg/m^3
9 \text{ k=0.67; // in W/mK}
10 Cp=4.18;
11 delta=.41*10^-6; // in m^2/s
12 miu=rho*delta;
13 T_{sat}=70; // in degree C
14 T_s=55;// in degree C
15 L=1; // in m
16 d=0.03; // in m
17 g=9.81;
18 N = 5;
19 // (a) for Horizontal tube
20 h_bar = 0.725*[ rho^2*g*h_fg*k^3/(N*miu*d*(T_sat-T_s))]
      ))]^(1/4);// in W/m^2k
21 // heat transfer rate
22 q=h_bar*\%pi*d*L*N^2*(T_sat-T_s);// in watt
23 disp(q*10^-3,"Heat transfer rate for horizontal tube
       in kW")
24 //rate of condensation
```

Scilab code Exa 9.3 Length of tube and total heat transfer rate

```
1 / Exa 9.3
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data
7 h_fg=2392*10^3; // in J/kg
8 rho=993; // in kg/m^3
9 k=0.63; // in W/mK
10 miu=728*10^-6; // in kJ/m-s
11 N = 10;
12 T_sat=45.7; // in degree C
13 T_s=25; // in degree C
14 d=4*10^-3; // in m
15 \text{ g=9.81};
16 \text{ h_bar} = 0.725*[ \text{ rho^2*g*h_fg*k^3/(N*miu*d*(T_sat-T_s)}]
      ))]^(1/4);// in W/m^2k
17 m = 300/(60*60);
18 // Formula m=q/h_fg
```

```
19 q=m*h_fg;
20 disp(q*10^-3,"Heat transfer rate in kW")
21 // Formula q=h_bar*%pi*d*L*N^2*(T_sat-T_s)
22 L=q/(h_bar*%pi*d*N^2*(T_sat-T_s));
23 disp(L,"Length of tube in m");
24
25 // Note: Answer in the book is wrong
```

Scilab code Exa 9.4 Film thickness

```
1 / Exa 9.4
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given data
7 h_fg = 2400*10^3; // in J/kg
8 rho=993; // in kg/m<sup>3</sup>
9 rho_v=0.0563; // in kg/m^3
10 t_mf = (40+30)/2; // in degree C
11 k=0.625; // in W/mK
12 miu=728*10^-6; // in kJ/m-s
13 x = 0.25;
14 T_{\text{sat}}=40; // in degree C
15 T_s=30; // in degree C
16 g=9.81;
17
18 // (a) Thickness of condensate film
19 delta=[ 4*k*(T_sat-T_s)*miu*x/(rho*(rho-rho_v)*g*
                 ]^{(1/4)}; // in meter
      h_fg)
20 disp(delta*10^3, "Thickness of condensate film in mm"
      );
21
22 //(b) Local value of heat transfer coefficient
23 hx=k/delta; // in W/m^2
```

```
L=0.5; // in m
hm=4/3*(L/x)^(1/4)*hx;
disp(hm, "Average heat transfer coefficient in W/m^2"
     );

// The heat transfer rate
A=0.5*0.5; // in m^2
q=hm*A*(T_sat-T_s); // in watt
disp(q*10^-3, "The heat transfer rate in kW")

// (c)
theta=45; // in degree
h_vertical=hm;
h_inclined=h_vertical*(sind(theta))^(1/4);
disp(h_inclined, "Average heat transfer coefficient when plate is inclined at 45 degree in W/m^2K");
```

Scilab code Exa 9.5 Heat transfer rate

```
1 / Exa 9.5
2 clc;
3 clear;
4 close;
5 format('v',9)
6 //given correlataion
7 / h_A = 5.56 * (det_T)^3
8 //h_P = h_A * (rho/rho_a)^0.4
9 disp("When temperature excess is 25 degree C at
      atmospheric pressure")
10 del_T=25; // in degree C
11 h_A=5.56*(del_T)^3; // in W/m^2K
12 disp(h_A*10^-3, "The heat transfer coefficient in kW/
     m^2K");
13 // and at 20 bar
14 rho=20;
15 rho_a=1;
```

```
16 h_P=h_A*(rho/rho_a)^0.4; // in W/m^2
17 disp(h_P*10^-3,"Value of h_P in kW/m^2")
```

Chapter 10

Mass Transfer

Scilab code Exa 10.1 Molar concentration and molar and mass diffusion

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',13);
7 P1=4; // in bar
8 \text{ P2=2;} // \text{ in bar}
9 T=25; // in degree C
10 Dhp=9*10^-8; // in m^2/s
11 S=3*10^-3; // in kg mole/m<sup>3</sup> bar
12 del_x=0.5*10^-3; // thickness in m
13 //(a) The molar concentration of a gas in terms of
      solubility
14 CH1=S*P1;// in kg mole/m^3
15 CH2=S*P2; // in kg mole/m<sup>3</sup>
16 //(b) Molar diffusion flux of hydrogen through
      plastic memberence is given by Fick's law of
      diffision
17 / N_H = N_h/A = Dhp*(CH1-CH2)/del_x;
18 N_H = Dhp*(CH1-CH2)/del_x; // in kg mole/s-m^2
```

Scilab code Exa 10.2 Diffusion coefficient of hydrogen

```
1 / Exa 10.2
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',13);
7 T=25; // in degree C
8 T=T+273; // in K
9 P=1;
10 V1=12; // Molecular volume of H2 in cm<sup>3</sup>/gm mole
11 V2=30; // Molecular volume of Air in cm<sup>3</sup>/gm mole
12 M1=2; // Molecular weight of H2
13 M2=29; // Molecular weight of Air
14 //The diffusion coefficient for gases in terms of
      molecular volumes may be express as
15 D_AB = .0043*T^(3/2)/(P*(V1^(1/3)+V2^(1/3)))*(1/M1+1/2)
      M2)^(1/2);
16 disp(D_AB, "The diffusion coefficient for gases in
      terms of molecular volumes in cm^2/sec");
```

Scilab code Exa 10.3 Diffusion coefficient of NH3

```
1 / Exa 10.3
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',13);
7 T=300; // temp of gas mixture in K
8 D_HN2=18*10^-6; // in m^2/s at 300 K, 1 bar
9 T1=300; // in K
10 D_H02=16*10^-6; // in m^2/s at 273 K, 1 bar
11 T2=273; // in K
12 \quad 0_2 = 0.2;
13 N_2 = 0.7;
14 \text{ H}_2 = 0.1;
15 //The diffusivity at the mixture temperature and
      pressure are calculated as
16 / D1/D2 = (T1/T2)^{(3/2)} * (P2/P1)
17 D_H02 = (T/T2)^(3/2)*1/4*D_H02;
18 D_HN2 = (T/T1)^(3/2)*1/4*D_HN2;
19 //The composition of oxygen and nitrogen on a H2
      free basis is
20 x_0 = 0_2/(1-H_2);
21 x_N = N_2/(1-H_2);
22
23 // The effective diffusivity for the gas mixture at
      given temperature and pressure is
24
    D = 1/(x_0/D_H02 + x_N/D_HN2); // in m^2/s
25
    disp(D, "Effective diffusivity in m<sup>2</sup>/s")
```

Scilab code Exa 10.4 Mass flow rate

```
1 //Exa 10.4
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 format('v',9);
7 d=3; // in mm
8 d=d*10^-3;// in meter
9 T=25; // in C
10 T=T+273; // in K
11 D= 0.4*10^-4; // in m^2/s
12 R= 8314;
13 P_A1=1; // in atm
14 P_A1=P_A1*10^5; // in w/m^2
15 P_A2=0;
16 C_A2=0;
17 	ext{ x2= } 15; // 	ext{ in meter}
18 \times 1 = 0;
19 A = \%pi/4*d^2;
20 M_A = D*A/(R*T)*(P_A1-P_A2)/(x2-x1); // in kg mole/sec
21 \quad N_B = M_A;
22 M_B = M_A * 29; // in kg/sec
23 disp(N_B, "Value of N_B in kg mole/sec")
24 disp(M_B, "Value of M_B in kg /sec")
```

Scilab code Exa 10.5 Diffusion flux rate

```
1 //Exa 10.5
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',13);
7 P=3;// in atm
8 P=P*10^5;// in N/m^2
9 r1=10;// in mm
10 r1=r1*10^-3;// in m
11 r2=20;// in mm
12 r2=r2*10^-3;// in m
13 R=4160;// in J/kg-K
```

```
14 T=303; // in K
15 D=3*10^-8; // in m^2/s
16 S=3*0.05; // Solubility of hydrogen at a pressure of
       3 atm in m<sup>3</sup>/m<sup>3</sup> of rubber tubing
17 del_x=r2-r1; // in m
18 L=1; // in m
19 Am = 2 * \%pi * L * del_x/log(r2/r1);
20 / Formula P*V= m*R*T
21 V=S;
22 m=P*V/(R*T); // in kg/m<sup>3</sup> of rubber tubing at the
      inner surface of the pipe
23 C_A1 = m;
24 \quad C_A 2 = 0;
25 // Diffusion flux through the cylinder is given
26 \text{ M=D*}(C_A1-C_A2)*Am/del_x;
27 disp(M," Diffusion flux through the cylinder in kg/sm
      ")
```

Scilab code Exa 10.6 Loss of H2 by diffusion

```
1 //Exa 10.6
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',15);
7 R=4160; // in J/kg-K
8 M=2;
9 D_AB=1.944*10^-8; // in m^2/s
10 R_H2=R/M;
11 S=2*0.0532; // Solubility of hydrogen at a pressure of 2 atm in cm^3/cm^3 of pipe
12 P=2; // in atm
13 P=P*1.03*10^5; // N/m^2
14 T=25; // in degree C
```

```
15 T=T+273; // in K
16 \text{ r1=2.5;} // \text{ in mm}
17 r1=r1*10^-3; // in m
18 r2=5; // in mm
19 r2=r2*10^-3;// in m
20 del_x=r2-r1; // in m
21 L=1; // in m
22 //Formula P*V= m*R*T
23 V=S;
24 m=P*V/(R*T); // in kg/m<sup>3</sup> of pipe
  // So, Concentration of H2 at inner surface of the
      pipe
26 C_A1=0.0176; // in kg/m^3
27 // The resistance of diffusion of H2 away from the
      outer surface is negligible i.e.
28 \quad C_A 2 = 0;
29 Am = 2 * \%pi * L * del_x/log(r2/r1);
30 // Loss of H2 by diffusion
31 \quad M_A = D_AB*(C_A1-C_A2)*Am/del_x;
32 disp(M_A, "Loss of H2 by diffusion in kg/s");
33
34
35 // Note: In the book, they put wrong value of C_A1
      to calculate MA, so the answer in the book is
      wrong
```

Scilab code Exa 10.7 Time taken to evaporate

```
1 //Exa 10.7
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',15);
7 Px1= 0.14;// in bar
```

```
8 \text{ Px2} = 0;
9 P=1.013; // in bar
10 Py1=P-Px1; // in bar
11 Py2=P-Px2; // in bar
12 D=8.5*10^-6; // in m^2/s
13 d=5; // diameter in meter
14 L=1; // in mm
15 L=L*10^-3; //in meter
16 M=78; // molecular weight
17 Am_x = 1/4 * \%pi * d^2 * M;
18 R=8314;
19 del_x=3; // thickness in mm
20 del_x=del_x*10^-3; // in m
21 T=20; // in degree C
22 T = T + 273; // in K
23 P=P*10^5; // in N/m^2
24 \text{ m_x = } D*Am_x*P*log(Py2/Py1)/(R*T*del_x);
25 // The mass of the benzene to be evaporated
26 \text{ mass} = 1/4 * \% pi * d^2 * L;
27 density=880; // in kg/m<sup>3</sup>
28 m_b= mass*density;
29 toh=m_b/m_x;//in sec
30 disp(toh, "Time taken for the entire organic compound
       to evaporate in seconds")
31
32
33 // Note: Answer in the book is wrong
```

Scilab code Exa 10.8 Diffusion Flux rate of air

```
1 //Exa 10.8
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 format('v',8);
7 \text{ A=0.5; // in } \text{m}^2
8 Pi=2.2;// in bar
9 Pi=Pi*10^5; // in N/m^2
10 Pf=2.18; // in bar
11 Pf=Pf*10^5; // in N/m^2
12
13 T=300; // in K
14 S=0.072; // in m^3
15 V=0.028; // in m^3
16 L=10; // in mm
17 L=L*10^-3; // in meter
18 R = 287;
19 // Diffusivity of air in rubber D
20 // Initial mass of air in the tube
21 mi= Pi*V/(R*T); // in kg
22 //final mass of air in the tube
23 mf = Pf*V/(R*T); // in kg
24 // Mass of air escaped
25 ma = mi-mf; //in kg
26 // Formula Na = ma/A = mass of air escaped / Time
      elapsed * area
27 \quad A = 6 * 24 * 3600 * 0.5;
28 Na = ma/A; //in kg/sm^2
29 // Solubility of air should be calculated at mean
      temperature
30 S_meanTemperature=(2.2+2.18)/2; // in bar
31 //Solubility of air at the mean inside Pressure is
32 S=S*S_meanTemperature; // in <math>m^3/m^3 of rubber
33 disp("The air which escapes to atmosphere will be 1
      bar and its solubility will remain at 0.72 m<sup>3</sup> of
       air per m<sup>3</sup> of rubber");
34 \text{ V1=S};
35 \quad V2 = 0.072;
36 \text{ T1=T};
37 T2 = T;
38 P1=2.19*10^5; // in N/m^2
39 P2=1*10^5; // in N/m^2
```