Definition

A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is an *orthogonal set* if each pair each pair of vectors in this set is orthogonal, i.e.

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0$$

for all $i \neq j$.

Example.

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ is an orthogonal set in } \mathbb{R}^3.$$

Example.

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} \sqrt{3}\\0\\1 \end{bmatrix}, \begin{bmatrix} \sqrt{3}\\1\\-5\\3 \end{bmatrix} \right\}$$
 is another orthogonal set in \mathbb{R}^3 .

Check:
$$V_1 \cdot V_2 = 1 \cdot (-3) + 2 \cdot 0 + 3 \cdot 1 = -3 + 3 = 0$$

$$= 0$$

$$V_1 \cdot V_3 = 0$$

$$V_2 \cdot V_3 = 0$$

Proposition

If $\{v_1, \ldots, v_k\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n then this set is linearly independent.

$$C_{1}V_{1}+C_{2}V_{2}+...+C_{k}V_{k}=0$$
We need to show that $c_{1}=c_{2}=...=c_{k}=0$
We have:
$$V_{1}\cdot(c_{1}V_{1}+c_{2}V_{2}+...+c_{k}V_{k})=V_{1}\cdot0=0$$

$$V_{1}\cdot(c_{1}V_{1})+V_{1}\cdot(c_{2}V_{2})+...+V_{1}\cdot(c_{k}V_{k})=0$$

$$C_{1}(V_{1}\circ V_{1})+C_{2}(V_{1}\cdot V_{2})+...+C_{k}(V_{1}\circ V_{k})=0$$
This gives: $c_{1}(V_{1}\circ V_{1})=0$
Since $V_{1}\neq0$ we have $V_{1}\circ V_{1}\neq0$, so $c_{1}=0$.
In the same way we get $c_{2}=0$..., $c_{k}=0$

Recall: Any linearly independent set of n vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Corollary

If $\{v_1, \ldots, v_n\}$ is an orthogonal set of n non-zero vectors in \mathbb{R}^n then this set is \sharp a basis of \mathbb{R}^n .

Definition

If V is a subspace of \mathbb{R}^n then we say that a set $\{v_1, \ldots v_k\}$ is an *orthogonal* basis of V if

- 1) $\{v_1, \dots v_k\}$ is a basis of V and
- 2) $\{v_1, \dots v_k\}$ is an orthogonal set.

Recall. If $\mathcal{B} = \{v_1, \dots v_k\}$ is a basis of a vector space V and $\mathbf{w} \in V$ then the coordinate vector of **w** relative to $\mathcal B$ is the vector

$$\left[\begin{array}{c} \mathbf{w} \end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c} c_1 \\ \vdots \\ c_k \end{array}\right]$$

where c_1, \ldots, c_k are scalars such that $c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k = \mathbf{w}$.

Propostion

If $\mathcal{B} = \{v_1, \dots v_k\}$ is an orthogonal basis of V and $\mathbf{w} \in V$ then

$$\left[\begin{array}{c} \mathbf{w} \end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c} c_1 \\ \vdots \\ c_k \end{array}\right]$$

where
$$c_i = \frac{\mathbf{w} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i} = \frac{\mathbf{w} \cdot \mathbf{v}_i}{\left|\left|\mathbf{v}_i\right|\right|^2}$$

Proof: If
$$[W]_{B} = \begin{bmatrix} C_1 \\ \vdots \\ C_N \end{bmatrix}$$
 then $W = C_1V_1 + ... + C_kV_k$

We have: $W \cdot V_1 = (C_1V_1 + C_2V_2 + ... + C_kV_k) \cdot V_1$
 $= C_1(V_1 \cdot V_1) + C_2(V_2 \cdot V_1) + ... + C_k(V_k \cdot V_1)$

So: $W \cdot V_1 = C_1(V_1 \cdot V_1)$

In the same way we get:

 $= C_1 = \frac{W \cdot V_1}{V_1 \cdot V_1}$

In the same way we get:

 $= C_1 = \frac{W \cdot V_1}{V_1 \cdot V_1}$

202 e:= W.V. for i= 1,2,...,k

Example. Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-5\\3 \end{bmatrix} \right\}, \quad \mathbf{w} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

The set \mathcal{B} is an orthogonal basis of \mathbb{R}^3 . Compute $[\mathbf{w}]_{\mathcal{B}}$.

Solution:

$$[W]_{B} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$C_1 = \frac{W \circ V_1}{V_1 \circ V_2} = \frac{3 \cdot 1 + 2 \cdot 2 + 1 \cdot 3}{1^2 + 2^2 + 3^2} = \frac{10}{14} = \frac{5}{7}$$

$$C_2 = \frac{W \circ V_2}{V_2 \circ V_2} = \frac{3 \cdot (-3) + 2 \cdot O + |\cdot|}{(-3)^2 + O^2 + |^2} = \frac{-8}{10} = -\frac{4}{5}$$

$$C_3 = \frac{W \circ V_3}{V_3 \circ V_3} = \frac{3 \cdot 1 + 2 \cdot (-5) + 1 \cdot 3}{1^2 + (-5)^2 + 3^2} = \frac{-4}{35}$$

We get: [W]
$$_{13} = \begin{bmatrix} 5/7 \\ -4/5 \\ -4/35 \end{bmatrix}$$

Theorem (Gram-Schmidt Process)

Let $\{v_1, \ldots, v_n\}$ be a basis of V. Define vectors $\{w_1, \ldots, w_k\}$ as follows:

$$w_1 = v_1$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \left(\frac{\mathbf{w}_1 \cdot \mathbf{v}_2}{\mathbf{w}_1 \cdot \mathbf{w}_1}\right) \mathbf{w}_1$$

$$w_3 = v_3 - \left(\frac{w_1 \cdot v_2}{w_1 \cdot w_1}\right) w_1 - \left(\frac{w_2 \cdot v_3}{w_2 \cdot w_2}\right) w_2$$

...

$$\mathbf{w}_k = \mathbf{v}_k - \left(\frac{\mathbf{w}_1 \cdot \mathbf{v}_k}{\mathbf{w}_1 \cdot \mathbf{w}_1}\right) \mathbf{w}_1 - \left(\frac{\mathbf{w}_2 \cdot \mathbf{v}_k}{\mathbf{w}_2 \cdot \mathbf{w}_2}\right) \mathbf{w}_2 - \ldots - \left(\frac{\mathbf{w}_{k-1} \cdot \mathbf{v}_k}{\mathbf{w}_{k-1} \cdot \mathbf{w}_{k-1}}\right) \mathbf{w}_{k-1}$$

Then the set $\{w_1, \ldots, w_k\}$ is an orthogonal basis of V.

$$W_1 \cdot W_2 = W_1 \cdot \left(V_2 - \left(\frac{W_1 \cdot V_2}{W_1 \cdot W_1} \right) W_1 \right)$$

$$= V_1 \cdot \left(V_2 - \left(\frac{V_1 \cdot V_2}{V_1 \cdot V_1} \right) V_1 \right)$$

Example. In \mathbb{R}^4 take

$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\3\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 7\\4\\3\\-3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5\\7\\7\\8 \end{bmatrix}$$

The set $\mathcal{B} = \{v_1, v_2, v_3\}$ is a basis of some subspace $V \subseteq \mathbb{R}^4$. Find an orthogonal basis of V.

Solution: apply the Gram - Schmidt process

$$W_{1} = V_{1} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

$$W_{2} = V_{2} - \left(\frac{W_{1} \cdot V_{2}}{W_{1} \cdot W_{1}} \right) W_{1}$$

$$W_{1} \cdot V_{1} = 2 \cdot 7 + 1 \cdot A + 3 \cdot 3 + (-1) \cdot (-3) = 30$$

$$W_{1} \cdot W_{1} = 2^{2} + 1 \cdot 3^{2} + (-1)^{2} = 15$$

$$50: \qquad W_{2} = \begin{bmatrix} 7 \\ 4 \\ 3 \\ -3 \end{bmatrix} - \frac{30}{15} \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -3 \\ -1 \end{bmatrix}$$

$$W_{3} = V_{3} - \left(\frac{W_{1} \cdot V_{3}}{W_{1} \cdot W_{1}} \right) W_{1} - \left(\frac{W_{2} \cdot V_{3}}{W_{2} \cdot W_{2}} \right) W_{2}$$

$$W_{1} \cdot W_{1} = 15$$

$$W_{1} \cdot V_{3} = 2 \cdot 5 + 1 \cdot 7 + 3 \cdot 7 + (-1) \cdot 8 = 30$$

$$W_{2} \cdot V_{3} = 3 \cdot 5 + 2 \cdot 7 + (-3) \cdot 7 + (-1) \cdot 8 = 0$$

$$W_{2} \cdot W_{2} = 3^{2} + 2^{2} + (-3)^{2} + (-1)^{2} = 23$$

$$50: \qquad W_{3} = \begin{bmatrix} 5 \\ 7 \\ 7 \\ 8 \end{bmatrix} - \frac{30}{15} \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix} + \underbrace{0}_{1} \begin{bmatrix} 3 \\ 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 1 \\ 10 \end{bmatrix}$$
We dotain an orthogonal basis of V :
$$205 \left\{ W_{1}, U_{2}, U_{3} \right\} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ 1 \\ 10 \end{bmatrix}$$

Definition

An orthogonal basis $\mathcal{B} = \{w_1, \dots, w_k\}$ of V is called an *orthonormal basis* if $||w_i|| = 1$ for $i = 1, \dots, k$.

Propostion

If $\mathcal{B} = \{v_1, \dots v_k\}$ is an orthonormal basis of V and $\mathbf{w} \in V$ then

$$\left[\begin{array}{c}\mathbf{w}\end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c}c_1\\\vdots\\c_k\end{array}\right]$$

where $c_i = \mathbf{w} \cdot \mathbf{v}_i$.

Note. If $\mathcal{B} = \{v_1, \dots v_k\}$ is an orthogonal basis of V then

$$C = \left\{ \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \dots, \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|} \right\}$$

is an orthonormal basis of V.