제 1회 KAIST genomics workshop 2일차

Quantification

Normalization

Mapping이 잘 되었는지 확인

```
$ cd ~/day1/star/example1
$ ls
example1Chimeric.out.sam
example1Chimeric.out.junction
example1Aligned.out.bam
example1SJ.out.tab
example1Log.progress.out
example1Log.out
example1Log.final.out
```

Samtools 준비

```
$ ln -s ~/../kjyi/bin/samtools ~/bin
$ samtools -h view example1Aligned.out.bam | less
```

```
samtools 사용법 확인
$ samtools ¦ less
$ samtools view ¦ less
```

HD = header, VN = format version

SQ = sequence dictionary, SN = reference sequence name, LN = Reference sequence length

PG = 프로그램 (bam 파일을 생성한)

CO = 코멘트 (STAR가 생성함)

여기부터 alignment section

https://samtools.github.io/hts-specs/SAMv1.pdf

FLAG: Combination of bitwise FLAGs.⁷ Each bit is explained in the following table:

Bit		Description					
1	0x1	template having multiple segments in sequencing					
2	0x2	each segment properly aligned according to the aligner					
4	0x4	segment unmapped					
8	0x8	next segment in the template unmapped					
16	0x10	SEQ being reverse complemented					
32	0x20	SEQ of the next segment in the template being reverse complemented					
64	0x40	the first segment in the template					
128	0x80	the last segment in the template					
256	0x100	secondary alignment					
512	0x200	not passing filters, such as platform/vendor quality controls					
1024	0x400	PCR or optical duplicate					
2048	0x800	supplementary alignment					

Mate의 FLAG는? 0x1 + 0x2 + 0x80 = 131

Sort, index

\$ samtools sort example1Aligned.out.bam > example1Aligned.sort.bam

\$ samtools index example1Aligned.sort.bam

(sort된 bam file 만 indexing할 수 있습니다.)

IGV 실습을 위해 example1Aligned.sort.bam file and example1Aligned.sort.bam.bai 파일을 다운로드하세요

https://software.broadinstitute.org/software/igv/download

맥사용자 윈도우 사용자 리눅스, 기타 사용자

- 1. open bam file (sorted, indexed)
- 2. Go to the region chr2:29,445,324-29,447,615
- 3. right click alignment tract -> group by supplementary flag
- 4. Right click one of improperly mapped reads, Select View mate region in split screen

제 1회 KAIST genomics workshop 2일차

Quantification

Normalization

Advanced bash commands

(for, while, if, md5sum)

Introduction to R

Quantification of Gene Expression

- Estimate relative abundance of transcripts
- Count reads, fetch depth/coverage
- Differential expression
 - 두 조건에서 얻은 gene expression profile을 비교하여, 어떤 transcript 가 두 조건 사이에서 발현에 차이를 보이는지를 찾는 것

Quantification of Gene Expression (2)

고려해야 할 것들

- Absolute quantification
- Sequencing throughput (depth)
- Gene length
- Transcript variant (different exon usage)

- Gene length
- Sequencing throughput

Sample 1

RPKM – Reads Per Kilobase per Million mapped reads

- 1. 샘플의 total read에 1,000,000을 나눈다. 이것이 per million scaling factor이다.
- 2. Read counts를 per million scaling factor로 나눈다. 이것이 reads per million (RPM)
- 3. RPM을 유전자(transcript)의 (평균)길이(kb 단위)로 나눈다. 이것이 RPKM이다.

FPKM은 read pair 수를 이용하면 된다. Pair 중 하나만 mapping이 된 경우, 1로 취급한다.

TPM – transcript per million

- 1. Read count를 각 유전자의 길이(kb 단위)로 나눈다. 이것이 reads per kilobase(RPK)
- 2. 한 샘플의 모든 transcript의 RPK를 다 더해서, 1,000,000로 나눈다. 이것이 per million scaling factor이다.
- 3. RPK를 per million scaling factor로 나눈다. 이것이 TPM이다.

Normalization for comparing a gene across samples

- 1. Technical spike-in
- 2. Cross-sample normalization

$$\hat{s}_j = \mathop{\mathrm{median}}\limits_i rac{k_{ij}}{\left(\prod_{v=1}^m k_{iv}
ight)^{1/m}}$$

Gene i의 여러 샘플에서의 read count의 geometric mean

Size factor of sample j

$$\hat{q}_{i
ho} = rac{1}{m_
ho} \sum_{j:
ho(j)=
ho} rac{k_{ij}}{\hat{s}_j}$$

Zhao, Shanrong, Li Xi, and Baohong Zhang. "Union exon based approach for RNA-seq gene quantification: To be or not to be?." *PLoS One* 10.11 (2015): e0141910.

Total gene length after exon flattening: 5kb Total reads: 32 RPKM for gene: 6.4 (=32/5)

Transcript based approach

Exon union model underestimate gene expression

Transcript model을 이용하는 counting을 해야 한다

RSEM

• 주어진 read들 (sequencing 결과)를 가장 잘 설명해주는 transcript abundance를 확률 모델과 expectation maximization 기법으로 추정함

https://bmcbioinformatics.biomedcentral.com/articles/10 .1186/1471-2105-12-323

RSEM 실습

```
준비
$ mkdir -p ~/day2/star
$ cd ~/day2/star
$ ln -s ~/../kjyi/day2/star/* .
$ cd ..
```

```
NSCLC_01_NTIL._STARpass1
NSCLC_01_NTIL.Aligned.sortedByCoord.out.bam
NSCLC_01_NTIL.Aligned.sortedByCoord.out.bam.bai
NSCLC_01_NTIL.Aligned.toTranscriptome.out.bam
NSCLC_01_NTIL.Chimeric.out.junction
NSCLC_01_NTIL.Chimeric.out.sorted.bam
NSCLC_01_NTIL.Chimeric.out.sorted.bam.bai
NSCLC_01_NTIL.Log.final.out
NSCLC_01_NTIL.Log.out
NSCLC_01_NTIL.Log.out
NSCLC_01_NTIL.Log.progress.out
NSCLC_01_NTIL.Log.progress.out
NSCLC_01_NTIL.SJ.out.tab
```

~/day2/run_rsem.sh를 아래와 같이 작성

```
/usr/local/bin/rsem-calculate-expression \
    --num-threads 2 \
    --no-bam-output \
    --estimate-rspd \
    --bam ./star/NSCLC_01_NTIL.Aligned.toTranscriptome.out.bam \
    /home/users/kjyi/ref/hg19/rsem_reference/rsem_reference \
    NSCLC_01_NTIL.rsem
```

30분 정도 소요

제 1회 KAIST genomics workshop 2일차

Quantification

Normalization

Advanced bash commands

(for, while, if, md5sum)

Introduction to R

Normalization

Mean and Standard deviation Z-score normalization

Mean

Standard Deviation

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$

Z-score normalization

mean sd

(x-mean)/sd

2	4	4
5	4	14
4	6	8
3	5	8
3	3	9

3.33	1.15
7.67	5.51
6	2
5.33	2.52
5	3.46

-1.2	0.6	0.6		
-0.48	-0.67	1.15		
-1	0	1		
-0.93	-0.13	1.05		
-0.58	-0.58	1.15		

Quantile normalization example

	Original		Ranked		Averaged			Re-ordered			
2	4	4	2	3	4	3	3	3	3	5	3
5	4	14	3	4	8	5	5	5	8	5	8
4	6	8	3	4	8	5	5	5	6	8	5
3	5	8	4	5	9	6	6	6	5	6	5
3	3	9	5	6	14	8	8	8	5	3	6

Quantile normalization 방법 자세히 소개 (쉬운 강의) https://www.youtube.com/watch?v=v0j4guy_z30

다양한 normalization 방법을 자세히 소개 (어려움)

Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." *Genome biology* 11.10 (2010): R106.

Take home message

- Gene expression profile은 cell 내의 여러 transcript의 relative abundance 를 조사하는 것이다.
- Absolute quantification을 위해 technical spike-in이 도움이 될 수 있다.
- Normalization은 technical bias를 compensation하는 주 목적이다.
- Different exon usage로 인해 Quantification 방법에 따라 결과가 달라진다
 - Union-exon based approach < Transcript based approach (RSEM)