Ejercicios Módulo 10

1. En
$$\mathbb{R}^2$$
, si $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, sea $(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + 2x_2y_2$.

Demuestre que (x, y) es un producto interno.

- 2. Con el producto interno definido en el ejercicio 1, sea $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Calcule (\mathbf{x}, \mathbf{y}) y $\|\mathbf{x}\|$.
- 3. Considere una forma de «normar» el ascenso a una montaña. Los índices de dificultad son como se muestra:

Categoría	Ángulo de ascenso	Índice de dificultad
1	0° ≤ θ < 10°	1
2	10° ≤ θ < 25°	2
3	25°≤ θ < 45°	4

Una norma de dificultad para un viaje de x_1 millas en la categoría 1, x_2 millas en la categoría 2 y x_3 millas en la categoría 3 es $\|(x_1, x_2, x_3)\| = \sqrt{x_1^2 + 2x_2^2 + 4x_3^2}$, la cual se genera mediante el producto interno

$$((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + 2x_2y_2 + 4x_3y_3.$$

De los ascensos siguientes, ¿cuál es el más difícil?

Viaje	Categoría 1	Categoría 2	Categoría 3	(en millas)
T_1	3	2	1	
T_2	0	6	0	
T_3	5	0	1	

4. Sea D_n el conjunto de matrices diagonales de $n \times n$ con componentes reales, si $A y B \in D_n$; entonces se define (A,B) así: $(A,B) = a_{11}b_{11} + a_{22}b_{22} + ... + a_{nn}b_{nn}$.

Pruebe que D_n es un espacio con producto interno.

- 5. Encuentre una base ortonormal para D_n .
- 6. Encuentre una base ortonormal para $\mathbb{P}_2[0, 1]$.
- 7. En \mathbb{C}^2 encuentre una base ortonormal comenzando con la base (1, i), (2-i, 3+2i).
- 8. Si $A = (a_{ij})$ es una matriz real de $n \times n$, la traza de A, que se escribe tr A, es la suma de los componentes de la diagonal de A: tr $A = a_{11} + a_{22} + ... + a_{nn}$. En M_{nn} se define (A, B) = tr (AB').

Demuestre que con esta operación $M_{\scriptscriptstyle mn}$ es un espacio con producto interno.

- 9. Encuentre una base ortonormal para M_{22} .
- 10. En $\mathbb{P}_3[0, 1]$, sea W el subespacio de \mathbb{P}_3 con base $B = \{x, x^2\}$. Determine una base ortonormal para W.