

Analysis 3

1. Nützliches Wissen $e^{ix} = \cos(x) + i \cdot \sin(x)$

1.1. S	Sinus, 0 $= \frac{1}{2i} ($	Cosinus $(e^{ix} - e^{-})$	$\sin^2(x)$	$+\cos^2\cos x =$	$(x) = 1$ $\frac{1}{2}(e^{ix} - \frac{1}{2})$	-e-ix)		
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\frac{1}{2}\pi$	π	$1\frac{1}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm\infty$	0	∓∞	0

Additionstheoreme

$cos(x - \frac{\pi}{2}) = sin x$	$\int x \cos(ax) dx = \frac{dx \sin(dx) + \cos(dx)}{2}$
$\cos(x-2)=\sin x$	$\int x \cos(ax) dx = a^2$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(ax) dx = \frac{a^2}{\sin(ax) - ax \cos(ax)}$
2/	$a^2 = \sin(2ax)$
$\sin 2x = 2 \sin x \cos x$	$\int \sin^2(ax) \mathrm{d}x = \frac{x}{2} - \frac{\sin(\frac{a^2}{2ax})}{4a}$
$\cos 2x = 2\cos^2 x - 1$	$\int \sin^2(ax) \mathrm{d}x = \frac{x}{2} + \frac{4a}{\sin(2ax)}$
. ()	$\int \cos^2(ax) dx = 2 + 4a$
$tan(x) = \frac{sin(x)}{cos(x)}$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$
$\sin(x \pm y) = \sin x \cos y \pm c$	$\cos x \sin y$
$cos(x + y) = cos x cos y \mp$	

 $ar \sin(ar) + \cos(ar)$

Sinus/Cosinus Hyperbolicus

$\sinh x = \frac{1}{2}(e^x - e^{-x}) = -i \sin(ix)$	$\cosh^2 x - \sinh^2 x = 1$
$ \cosh x = \frac{1}{2}(e^x + e^{-x}) = \cos(ix) $	$\cosh x + \sinh x = e^x$
$\sin(x)$	$\sin(\pi x)$

1.2. Integrale $\int e^x dx = e^x = (e^x)'$ Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x)) g'(x) dx = \int f(t) dt$

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	$_{x}q$	$q x^{q-1}$
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) - b \cos(bt)}{a^2 + b^2} \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$\int \frac{1}{\sqrt{at+b}} \mathrm{d}t = \frac{2\sqrt{at+b}}{a}$	$\int t^2 e^{at} dt = \frac{(at-1)^2 + 1}{a^3} e^{at}$
$\int t e^{at} \mathrm{d}t = \frac{at-1}{a^2} e^{at}$	$\int x e^{ax^2} \mathrm{d}x = \frac{1}{2a} e^{ax^2}$

1.3. Exponential funktion und Logarithmus $k \in \mathbb{Z}$

$$\begin{array}{lll} a^x \stackrel{\cdot}{=} e^x \ln a & \log_a x \stackrel{\cdot}{=} \frac{\ln x}{\ln a} & \ln x \le x - 1 \\ \ln(x^a) = a \ln(x) & \ln(\frac{x}{a}) = \ln x - \ln a & \log(1) = 0 \\ e^0 = e^{i2\pi k} = 1 & e^{i\pi k} = (-1)^k & e^{i\frac{\pi}{2}k} = i^k \end{array}$$

1.4. Betrag komplexer Zahlen und komplexe Wurzel $|\mathbf{z}|^2 = \mathbf{z}\mathbf{z}^* = x^2 + y^2$

$$|\mathbf{z}|^2 = \mathbf{z}\mathbf{z}^+ = x^2 + y^2$$
 $\sqrt[n]{\mathbf{z}} = \sqrt[n]{|\mathbf{z}|} \exp\left(\frac{\mathrm{i}\,\varphi}{n} + k\frac{2\pi\mathrm{i}}{n}\right) \text{ mit } k = 0,\dots,n-1$

2. Fourierreihe $f(x) \sim F(x)$ $\omega = \frac{2\pi}{T}$

- 1. f ist T-periodisch im Intervall I, meist $I=[-\frac{T}{2}\,,\,\frac{T}{2}\,)$ oder $I=[0,\,T)$

- 3. In den endlich viele Unstetigkeitsstellen existieren links- und rechtsseitige Grenzwerte f ist T-periodisch, falls $f(x+T)=f(x) \Rightarrow \text{auch } n \cdot T$ periodisch.

$$F(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos{(k\omega x)} + b_k \sin{(k\omega x)}$$

$$T$$

$$\min \, a_k \,, b_k \in \mathbb{R} \, (\text{bzw. } \mathbb{C} \,) : \left\{ \begin{matrix} a_k \\ b_k \end{matrix} \right. = \frac{2}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} \, f(x) \left\{ \begin{matrix} \cos \left(k \omega x \right) \, \mathrm{d}x \end{matrix} \right. \right.$$

a_0 immer separat berechnen mit k=0 Komplexe Fourierreihe:

$$\begin{split} F(x) &= \sum_{k=-\infty}^{\infty} c_k \exp\left(\mathrm{i}k\omega x\right) \\ \text{mit } c_k &\in \mathbb{C} : c_k = \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \exp\left(-\mathrm{i}k\omega x\right) \mathrm{d}x \end{split}$$

- f in x stetig & stückweise stetig differenzierbar $\Rightarrow F(x) = f(x)$
- f in x nicht stetig $\Rightarrow x = a_i$ und $F(x) = \frac{f(a_i^+) + f(a_i^-)}{2}$

2.1. Rechenregeln

$\alpha f + \beta g \longrightarrow \alpha c_k + \beta d_k$
$\overline{f} \circ \longrightarrow \overline{c_{-k}}$
$f(-t) \circ - c_{-k}$
$f(\gamma t) \longrightarrow c_k; \gamma > 0; \tilde{T} = \frac{T}{\gamma} \Leftrightarrow \tilde{\omega} = \gamma \omega$
$f(t+a) \longrightarrow e^{ik\omega a}c_k$
$e^{in\omega t}f(t) \longrightarrow c_{k-n}$
$\dot{f}(t) \longrightarrow ik\omega c_k$
$\dot{f}(t) \longrightarrow ik\omega c_k - \frac{1}{T} \sum_{j=1}^N \Delta_j e^{-k\omega t j}$
$c_{0} = 0$ $f * g \longrightarrow c_{k} d_{k}$
$f * g \hookrightarrow c_k d_k$

2.2. Symmetrien \bullet f gerade (achsensym.) Funktion: f(t) = f(-t)

$$b_k = 0 \qquad a_k = \frac{4}{T} \int_0^{T/2} f(x) \cos\left(k\omega x\right) \mathrm{d}x$$
 • f ungerade (punktsym.) Funktion: $f(t) = -f(-t)$

$$a_k = 0$$
 $b_k = \frac{4}{T} \int_0^{T/2} f(x) \sin(k\omega x) dx$

 \bullet $f(\frac{T}{2})$ -periodisch: $f(\frac{T}{2}+t)=f(t)$

$$\begin{array}{l} \int \frac{1}{2} \operatorname{periodisch} \int \left(\frac{1}{2} + t\right) - \int (t) \\ c_{2k+1} = a_{2k+1} = b_{2k+1} = 0 \\ \begin{cases} a_{2k} & = \frac{1}{T} \int_{0}^{T/2} f(t) \begin{cases} \cos\left(2k\omega t\right) \\ \sin\left(2k\omega t\right) \end{cases} & \mathrm{d}t \end{cases} \end{array}$$

- \bullet f ohne $\frac{T}{2}$ -periodischen Anteil: $f(\frac{T}{2}+t)=-f(t)$ $c_{2k}=a_{2k}=b_{2k}=0$
- $\begin{cases} a_{2k+1} \\ b_{2k+1} \end{cases} = \frac{1}{T} \int_0^{T/2} f(t) \begin{cases} \cos{((2k+1)\omega t)} \\ \sin{((2k+1)\omega t)} \end{cases} dt$

- $\bullet \ c_0 = \tfrac{a_0}{2} \ c_k = \tfrac{1}{2}(a_k \mathrm{i} b_k) \ c_{-k} = \tfrac{1}{2}(a_k + \mathrm{i} b_k)$

2.4. Umrechnung von T in S periodische Funktionen

$$f$$
 ist T periodisch, $g(x) = f\left(\frac{T}{S}x\right)$, S periodisch, denn $g(x+S) = f\left(\frac{T}{S}(x+S)\right) = f\left(\frac{T}{S}x+T\right) = f\left(\frac{T}{S}x\right) = g(x)$

2.5. LTI-Systeme (c_k sind Fourierkoeffizienten von $x(t)$)
2.5. LTI-Systeme (c_k sind Fourierkoeffizienten von $x(t)$) $L[y](t) = a_n y^{(n)}(t) + \cdots + a_1 \dot{y}(t) + a_0 y(t) = x(t)$
$\frac{\mathrm{d}^n}{\mathrm{d}t^n} \to s^n \Rightarrow P(s) = a_n s^n + \dots + a_1 s + a_0$
$h_T(t) = \sum_{k=-\infty}^{\infty} d_k e^{\mathrm{i}k\omega t}$ mit $d_k = \frac{1}{P(\mathrm{i}k\omega)}$
$y(t) = h_T(t) * x(t) = \int_0^T h_T(\tau) x(t-\tau) \mathrm{d}\tau = \sum c_k d_k e^{\mathrm{i} k \omega t}$

2.6. Funktionen

$$\begin{array}{l} \textbf{2.6.1. Siggrahnfunktion} \\ s(t) = \frac{1}{2}(\pi - t), \quad 0 < t < 2\pi, \quad T = 2\pi, \quad \omega = 1 \\ c_0 = 0 \quad c_{k \neq 0} = \frac{1}{2k\mathrm{i}} \quad \mathrm{bzw}. \quad a_0 = 0 \quad a_k = 0 \quad b_k = \frac{1}{k} \\ S(t) = \sum_{k=1}^{\infty} \frac{1}{k} \frac{e^{\mathrm{i}kt} - e^{-\mathrm{i}kt}}{2\mathrm{i}} = \sum_{k \neq 0} \frac{1}{2\mathrm{i}k} e^{\mathrm{i}kt} \end{array}$$

$f: [-\pi, \pi) \to \mathbb{R}, f(x) = x$	$a_k = 0, b_k = \frac{2}{k}(-1)^{k+1}$
$f: [-\pi, \pi) \to \mathbb{R}, f(x) = \operatorname{sgn}(x)$	$a_k = 0, b_{2k-1} = \frac{4}{(2k-1)\pi}$
Treppe mit Sprungwert Δ_n an t_n	$a_k = 0, b_{2k-1} = \frac{4}{(2k-1)\pi}$ $c_k = \frac{1}{2k\pi i} \sum_{n=0}^{m} \Delta_n e^{ikt_n}$

3. Fouriertransformation $f(t) \to F(\omega)$

Voraussetzungen:

- f stückweise stetig differenzierbar
- 2. $f(t) = \frac{1}{2} \left(f(t^+) + f(t^-) \right)$
- 3. $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ (f absolut integrierbar)

$$f(t) \circ \xrightarrow{\mathcal{F}} F(\omega) := \int_{-\infty}^{\infty} f(t) \exp(-\mathrm{i}\omega t) dt$$

- f gerade $\Leftrightarrow \hat{f}(\omega) = 2 \int_0^\infty f(t) \cos(\omega t) dt$
- f ungerade $\Leftrightarrow \hat{f}(\omega) = -2i \int_{0}^{\infty} f(t) \sin(\omega t) dt$

3.1. Die Inverse Fouriertransformation

$$\widetilde{f}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(\mathrm{i}\omega t) \, \mathrm{d}\omega = \begin{cases} f(t) & \text{, f stetig in t} \\ \frac{f(t^-) + f(t^+)}{2} & \text{, f unstetig t} \end{cases}$$

$$(g * f)(x) = (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

$$\begin{split} &L[y](t) = P\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)y(t) = b(t) \ \text{o}^{\overbrace{-\bullet}} \ P(\mathrm{i}\omega)Y(\omega) = B(\omega) \\ &Y(\omega) = \frac{1}{P(\mathrm{i}\omega)}B(\omega) \quad \Rightarrow \frac{1}{P(\mathrm{i}\omega)} = H(\omega) \ \text{o}^{\overbrace{-\bullet}} \ h(t) \\ &y(t) = h * b(t) \ (\mathrm{Partikul\"are\ L\"osung}) \end{split}$$

3.4. Rechenregeln

Linearität	$\alpha f(t) + \beta g(t)$	$\circ \xrightarrow{\mathcal{F}} \alpha F(\omega) + \beta G(\omega)$
Konjugation	$\overline{f(t)}$	$\circ \xrightarrow{\mathcal{F}} \overline{F(-\omega)}$
Skalierung	f(ct)	$o \frac{\mathcal{F}}{ c } F(\frac{\omega}{c})$
Verschiebung t	f(t-a)	$\circ \xrightarrow{\mathcal{F}} \exp(-\mathrm{i}\omega a)F(\omega)$
Verschiebung ω	$\exp(\mathrm{i}\tilde{\omega}t)f(t)$	$\circ \xrightarrow{\mathcal{F}} F(\omega - \tilde{\omega})$
Ableitung t	$f^{(n)}(t)$	$\circ \xrightarrow{\mathcal{F}} (\mathrm{i}\omega)^n F(\omega)$ [FT Bedingung]
Ableitung ω	$t^n f(t)$	$o \xrightarrow{\mathcal{F}} i^n F^{(n)}(\omega)$
Integration t	$\int_{-\infty}^t x(\tau) \mathrm{d}\tau$	$\circ \frac{\mathcal{F}}{\mathrm{i}\omega} X(\omega) + \pi X(0)\delta(\omega)$
Integration ω	$\frac{\mathrm{i}}{t}x(t) + \pi x(0)\delta(t)$	$\circ \xrightarrow{\mathcal{F}} \int_{-\infty}^{\omega} X(\Omega) d\Omega$
Faltung:	(f * g)(t)	$\circ \xrightarrow{\mathcal{F}} F(\omega) \cdot G(\omega)$
Modulation	$f(t) \cdot g(t)$	$\circ \frac{\mathcal{F}}{2\pi} X_1(\omega) * X_2(\omega)$

3.5. Symmetrie f(t) $F(\omega)$ $F(-\omega) = F^*(\omega)$ gerade gerade ungerade reell u. gerade reell u. gerade reell u. ungerade imaginär u. ungerade imaginär u. gerade imaginär u. gerade imaginär u. ungerade reell u. gerade

4. Laplacetransformation $\mathcal{L}(f(t)) = F(s)$

Voraussetzung:
$$|f(t)| \leq Me^{\sigma t} \quad \forall t > 0; \qquad \sigma = Re(s)$$

$$f(t) \circ \stackrel{\mathcal{L}}{\longrightarrow} F(s) := \int_{0}^{\infty} f(t) \exp(-st) dt$$

$$1 \circ \stackrel{\mathcal{L}}{\smile} \frac{1}{s} \qquad \delta(t-t_0) \circ \stackrel{\mathcal{L}}{\smile} e^{-st_0}$$

$$t^n \circ \stackrel{\mathcal{L}}{\smile} \frac{n!}{s^{n+1}} \qquad e^{at} \circ \stackrel{\mathcal{L}}{\smile} \frac{1}{s-a}$$

$$\sin(at) \circ \stackrel{\mathcal{L}}{\smile} \frac{a}{s^2+a^2} \qquad \cos(at) \circ \stackrel{\mathcal{L}}{\smile} \frac{s}{s^2+a^2}$$

$$\sinh(at) \circ \stackrel{\mathcal{L}}{\smile} \frac{a}{s^2+a^2} \qquad \cosh(at) \circ \stackrel{\mathcal{L}}{\smile} \frac{s}{s^2+a^2}$$

$$\frac{\sin(at)}{t} \circ \stackrel{\mathcal{L}}{\smile} \arctan\left(\frac{a}{s}\right) \qquad t^{n-1} \circ \stackrel{\mathcal{L}}{\smile} \frac{s}{s^2-a^2}$$

$$e^{-at} \sin(bt) \circ \stackrel{\mathcal{L}}{\smile} \frac{s}{(s+a)^2+b^2}$$

$$e^{-at} \cos(bt) \circ \stackrel{\mathcal{L}}{\smile} \frac{s+a}{(s+a)^2+b^2}$$

$$\frac{ae^{-at}-be^{-bt}}{a-b} \circ \stackrel{\mathcal{L}}{\smile} \frac{s}{(s+a)(s+b)}$$

4.1. Die Inverse Laplacetransformation $f(t) = \frac{1}{2\pi \mathrm{i}} \int\limits_{\gamma - \mathrm{i}\infty}^{-\gamma + \mathrm{i}\infty} F(s) \exp(st) \, \mathrm{d}s$

4.2. Rechenregeln

Linearität	$\alpha f(t) + \beta g(t)$	$\circ \stackrel{\mathcal{L}}{\longleftarrow} \alpha F(s) + \beta G(s)$
Skalierung	f(ct)	$\circ \frac{\mathcal{L}}{c} F(\frac{s}{c})$
Verschiebung t	f(t-a) u(t-a)	$e^{-as}F(s)$
${\sf Verschiebung}\ s$	$e^{-at}f(t)$	$\circ \stackrel{\mathcal{L}}{\longleftarrow} F(s+a)$
Ableitung t	f'(t)	$\circ \stackrel{\mathcal{L}}{\longleftarrow} sF(s) - f(0)$
	f''(t)	$\circ \stackrel{\mathcal{L}}{\longleftarrow} s^2 F(s) - s f(0) - f'(0)$
$f^{(n)} \circ \stackrel{\mathcal{L}}{\longleftarrow}$	$s^n F(s) - s^{n-1} f(0)$	$-s^{n-2}f'(0)f^{(n-1)}(0)$
Ableitung s	$(-t)^n f(t)$	$\circ \stackrel{\mathcal{L}}{\longleftarrow} F^{(n)}(s)$
Integration t	$\int_0^t f(x) \mathrm{d}x$	$\circ \stackrel{\mathcal{L}}{\longrightarrow} \frac{1}{s} F(s)$
Integration s	$\frac{1}{t}f(t)$	$\circ \stackrel{\mathcal{L}}{\longrightarrow} \int_{s}^{\infty} F(s')ds'$
Faltung	(f * g)(t)	$\circ \stackrel{\mathcal{L}}{\longleftarrow} F(s) \cdot G(s)$

Faltung: $(f*g)(t) := \int_0^t f(t-\tau)g(\tau)\,\mathrm{d}\tau$

Es gibt eine eineindeutige Korespondens zwischen den Originalfkt und Bildfkt. Meist Nennergrad > Zählergrad: Bruch geschickt umformen! Laplacetransformierte als Summe nie auf gemeinsamen Nenner bringen!!

4.3. DGL Laplace-Transformierbar Geg:
$$af''(t) + bf'(t) + cf(t) = s(t) \text{ mit } f(0) = d \text{ und } f'(0) = e$$
 Falls gilt $f(t) \circ \overset{\mathcal{L}}{\bullet} F(s) \text{ und } s(t) \circ \overset{\mathcal{L}}{\bullet} S(s)$:
$$a(s^2F(s) - sf(0) - f'(0)) + b(sF(s) - f(0)) + cF(s) = S(s)$$
 Auflösen der Gleichung liefert $F(s) = \frac{S(s) + a(sd + e) + bd}{as^2 + bs + c}$ Rücktransformation von $F(s)$ liefert die Lösung $f(t)$

4.4. DGL-System Laplace-Transformierbar $\dot{x}(t) = ax(t) + by(t) + s_1(t)$ $\dot{y}(t) = cx(t) + dy(t) + s_2(t)$

Falls alle Funktionen LaPlace transformierbar gilt:

$$\begin{bmatrix} s-a & -b \\ -c & s-d \end{bmatrix} \cdot \begin{pmatrix} X(s) \\ Y(s) \end{pmatrix} = \begin{pmatrix} S_1(s) \\ S_2(s) \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

Die Resolvente ist definiert als: $(s\underline{I} - \underline{A})^{-1} \bullet^{\underline{L}} \circ \exp(t\underline{A})$

5. Funktionentheorie (Komplexe Funktionen)

 $\sin(\mathbf{z}) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$ cos(z) = cos(x) cosh(y) - i sin(x) sinh(y) $\sinh(z) = \cos(y) \sinh(x) + i \sin(y) \cosh(x)$ $\cosh(z) = \cos(y)\cosh(x) + i\sin(y)\sinh(x)$

5.2. Holomorphe (analytische, reguläre) Funktionen f Eine Funktion f ist ...

holomorph falls f in G komplex differenzierbar ist. falls f in ganz C komplex differenzierbar ist. falls Kurven Winkel- und Orientierungstreu bleiben konform

f ist genau dann holomorph, falls f(x + yi) = u(x, y) + iv(x, y) und

- ullet $u\,,\,v$ sind stetig partiell diffbar
- Cauchy-Riemann DGLen sind erfüllt auf Gebiet G:

 $\partial_x u(x, y) = \partial_y v(x, y)$ $\partial_y u(x, y) = -\partial_x v(x, y)$

Holomorph: $\exp, \sin, \cosh, \mathsf{Polynome}, m{f} \pm m{g}, m{fg}, m{f}(m{g}), m{f}^{m{(n)}}, orall n \in \mathbb{N}$ wert der Funktionswerte auf dem Rand des Kreises mit dem Mittelpunkt z_0 : $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$

5.3. Harmonische Funktionen u, v

 $\Delta u = \partial_{xx} u + \partial_{yy} u = 0$ $\Delta v = \partial_{xx} v + \partial_{yy} v = 0$ oder falls ${m f}({m z})=u+{\rm i} v$ holomorph ist; denn mit Satz von Schwarz: $\Delta u = \partial_{yx} v - \partial_{xy} v = 0$ $\Delta v = -\partial_{yx} u + \partial_{xy} u = 0$

Bestimmen der harmonischen Koniugierten

- ullet Geg: harm. Fkt. $u:G o \mathbb{R}, (x,y) o u(x,y)$
- ullet Ges: harm. Fkt. $v\,:\,G\, o\,\mathbb{R},\,(x,y)\, o\,v(x,y)$ so, dass $f\,:\,G\, o\,$ V, f(z) = u(x, y) + iv(x, y)
- $ullet \ v(x,y) = \int u_x \ \mathrm{d}y$ mit Integrationskonstante g(x)
- $v_x = -u_y \Rightarrow g'(x)$
- $g(x) = \int g'(x) dx \Rightarrow v$ bis auf Konstante C bestimmt
- ullet zugehörige holomorphe Fkt. $f(z)=u(x,y)+\mathrm{i} v(x,y)$

Einzige bijektive, holomorphe, konforme Abbildung von $\hat{\mathbb{C}}$ auf sich selbst. $f: \mathbb{C}\setminus\{-\frac{d}{c}\}\to \mathbb{C}\setminus\{-\frac{d}{c}\}, f(z)=\frac{az+b}{cz+d}$ $ad-bc\neq 0$

5.4. Komplexes Kurvenintegral für $D\subset \mathbb{C}$ Gebiet, $f:D\to \mathbb{C}$ stetig, $\gamma:[t_1,t_2]\to \mathrm{stetig}$ diffbar Kurve

Berechnen eines komplexen Kurvenintegrals

- ullet Bestimme Parametrisierung von $oldsymbol{\gamma}$
- $m{\gamma} = m{\gamma}_1 + \ldots + m{\gamma}_2, m{\gamma}_i : [a_i, b_i] o \mathbb{C}$ $m{\bullet}$ Stelle Integrale auf

$$\int_{\boldsymbol{\gamma}_i} \boldsymbol{f}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = \int_{a_i}^{b_i} \boldsymbol{f}(\boldsymbol{\gamma}_i(t)) \cdot \dot{\boldsymbol{\gamma}}_i(t) \, \mathrm{d}t$$

Falls $m{f}$ holomorph: $\int_{m{\gamma}} m{f}(m{z}) \, \mathrm{d}m{z} = m{F}ig(m{\gamma}(b)ig) - m{F}ig(m{\gamma}(a)ig)$

$$\int_{\boldsymbol{\gamma}} \boldsymbol{f}(z) \, \mathrm{d}\boldsymbol{z} = \sum_{i=1}^{h} \int_{\boldsymbol{\gamma}_{i}} \boldsymbol{f}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z}$$

5.5. Cauchy-Integralformel lst γ eine geschlossene, doppelpunktfreie und positiv durchlaufene Kurve in einem einfach zusammenhängenden Gebiet G und $f:G\to\mathbb{C}$ holomorph, so gilt für jedes

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

$$\oint_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz = \frac{2\pi i}{k!} f^{(k)}(z_0)$$

5.6. Integralsatz von Cauchy Falls keine Unstetigkeitsstelle innerhalb der Kurve γ

 $f:G o \mathbb{C}$ komplex diffbar auf offenem, einfach zusammenhängendem Gebiet $G \subset \mathbb{C}$. γ sei einfach geschlossene Kurve in G (keine Doppelpunkte). $\oint \boldsymbol{f}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = 0$

5.7. Existenz einer Stammfunktion und Wegunabhängigkeit list $f:G\to \mathbb{C}$ holomorph auf dem einfach zsh. Gebiet G, so existiert zu f eine Stammfunktion F, und es gilt für jede in G verlaufende Kurve γ mit Anfangspunkt $\gamma(a)$ und Endpunkt $\gamma(b)$:

$$\int\limits_{\boldsymbol{\gamma}} \boldsymbol{f}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = \boldsymbol{F}(\boldsymbol{\gamma}(b)) - \boldsymbol{F}(\boldsymbol{\gamma}(a)) = \int\limits_{a}^{b} \boldsymbol{f}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t$$

Isolierte Singularität $m{z}_0\in G\colon$ $m{f}:G\setminus\{m{z}_0\} o\mathbb{C}$ (einzelne Punkte, wo f nicht

- Hebbare Singularität, falls f auf punktierter Umgebung beschränkt ist
- ullet Pol m-ter Ordnung: $(oldsymbol{z} oldsymbol{z}_0)^m oldsymbol{f}(oldsymbol{z})$ ist hebbar in $oldsymbol{z}_0$
- Wesentliche Singularität: Sonst

5.9. Taylorreihe und Laurentreihe

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k = \underbrace{\sum_{k=-\infty}^{-1} c_k (z-z_0)^k}_{} + \underbrace{\sum_{k=0}^{\infty} c_k (z-z_0)^k}_{}$$

Konvergenz falls Hauptteil und Nebenteil konvergiert

Konvergenzradien: $R = \lim \left| \frac{c_k}{c_{k+1}} \right| \in [0, \infty]$

Resiudensatz: $\operatorname{Res}_{z_0} f = c_{-1} = \frac{1}{2\pi i} \oint f(z) \, \mathrm{d}z$

$$\begin{array}{ll} \operatorname{Res}_{\boldsymbol{z}_0} \ \frac{g}{h} = \frac{g(\boldsymbol{z}_0)}{h'(\boldsymbol{z}_0)} & \operatorname{Res}_{\boldsymbol{z}_0} \ \frac{g(\boldsymbol{z})}{(\boldsymbol{z}-\boldsymbol{z}_0)m} = \frac{g^{(m-1)}(\boldsymbol{z}_0)}{(m-1)!} \\ \operatorname{Res}_{\boldsymbol{z}_0} g \, \frac{h'}{h} = mg(\boldsymbol{z}_0) & m : \text{Ordnung der Polstelle} \end{array}$$

Allgemeiner Residuensatz $f:G\setminus \{z_1,\ldots,z_n\} o \mathbb{C}$ holomorph \forall doppelpunktfrei, geschlossene und pos. orientierte Kurven γ mit z_1,\ldots,z_n liegen

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 2\pi \mathrm{i} \sum_{k=1}^{n} \mathrm{Res}_{z_{k}} f$$

Bestimmen reeller Integrale mit dem Residuenkalkiil

- Reelles Integral $\int_{-\infty}^{\infty} \frac{p(x)}{a(x)} dx$
- Bestimme Singularitäten z_1, \ldots, z_n der komplexen Funktion $f(z) = \frac{p(z)}{q(z)}$ in der oberen Halbebene, $\mathrm{Im}\left\{z_i\right\}>0$ \bullet Bestimme Residuen von f(z) in den Singularitäten z_1,\ldots,z_n
- $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z_k} f$

Bestimmen reeller trigonometischer Integrale mit dem Residuenkalkül

- Reelles Integral $\int_{-0}^{2\pi} R(\cos t, \sin t) dt$
- Substituiere $\frac{1}{2}(z+1/z)=\cos t$, $\frac{1}{2i}(z-1/z)=\sin t$, $\frac{1}{iz}\,\mathrm{d}z=\mathrm{d}t$
- Erhalte komplexe Fkt. $f(z) = R\left(\frac{1}{2}(z+1/z), \frac{1}{2!}(z-1/z)\right) \frac{1}{iz}$
- ullet Bestimme Singularitäten z_1,\ldots,z_n der komplexen Funktion $f(oldsymbol{z})=rac{p(oldsymbol{z})}{q(oldsymbol{z})}$
- ullet Bestimme Residuen von f(z) in den Singularitäten z_1,\ldots,z_n
- $\int_{-0}^{2\pi} R(\cos t, \sin t) dt = 2\pi i \sum_{k=1}^{n} \text{Res}_{z_k} f$

5.10. Wichtige Taylorreihen

$\sum_{n=0}^{\infty} \frac{z^n}{n!}$	$\forall z \in \mathbb{C}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (z-1)^n$	$0 < z \le 2$
$\sum_{n=0}^{\infty} z^n$	z < 1
	$\forall z\in\mathbb{C}$
$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$	$\forall z \in \mathbb{C}$
$\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$	$\forall z \in \mathbb{C}$
$\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$	$\forall z\in\mathbb{C}$

6. Partielle Differentialgleichungen 1. Ordnung

6.1. Lineare pDGLen 1. Ordnung mit konstanten Koeffizienten Geg.: $au_x + bu_y = f(x,y)$ mit $a \neq 0 \neq b$, ges.: u = u(x,y)

Lösen einer linearen pDGL 1. Ordnung mit konstanten Koeffizienten

- $\bullet \;$ Substitution: r=r(x,y)=bx+ay und s=s(x,y)=bx-ay
- $F(r,s) = f(\frac{r+s}{2b}, \frac{r-s}{2a}) = f(x,y)$
- Einsetzen liefert $U_r = \frac{1}{2ab}F(r,s)$
- ullet Lösung U: $U(r,s)=\int rac{1}{2ab} F(r,s) \, \mathrm{d}r + G(s)$ mit diff'barem G(s)
- Anfangsbedingung z.B. u(x, 0) = g(x) legt G(s) fest

6.2. Lineare pDGL 1. Ordnung Geg.: $a(x, y)u_x + b(x, y)u_y = 0$, ges.: u = u(x, y)

- $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b(x,y)}{a(x,y)}$ (ist gDGL), alternativ $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{a(x,y)}{b(x,y)}$
- Löse die Gleichung y(x) = F(x,c) nach c = c(x,y) auf (falls möglich)
- ullet u(x,y)=f(c(x,y)) ist für jede stetig diff'bare Fkt. f eine Lösung der
- ullet f wird durch evtl. gegebene Anfangsbedingung festgelegt

Geg.: $a(x, y, z)u_x + b(x, y, z)u_y + c(x, y, z)u_z = 0$, ges.: u

Lösen einer linearen homogenen pDGL 1. Ordnung (3 Variablen)

- $\bullet \ \, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b(x,y,z)}{a(x,y,z)} \ \, \mathrm{und} \ \, \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{c(x,y,z)}{a(x,y,z)} \ \, \text{(ist ein System von gDGL)}$
- Löse das System von gDGLen und erhalte $y = y(x) = F(c_1, x) \text{ und } z = z(x) = G(c_2, x)$
- ullet Löse das System $y(x) = F(c_1,x)$ und $z(x) = G(c_2,x)$ nach $c_1 =$
- $c_1(x,y,z)$ und $c_2=c_2(x,y,z)$ auf (falls möglich) • $u(x, y, z) = f(c_1(x, y, z), c_2(x, y, z))$ ist für jede stetig diff'bare Fkt.
- f wird durch evtl. gegebene Anfangsbedingung festgelegt

6.3. Quasilineare pDGL 1. Ordnung Geg.: $a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u)$, ges.: u=u(x,y)

- Betrachte lineare pDGL in drei Variablen x, y, u: $a(x, y, u)F_x + b(x, y, u)F_y + c(x, y, u)F_u = 0$
- Löse lineare pDGL mit Ansatz aus 6.2 und erhalte F = F(x, y, u)
- Durch F(x, y, u) = 0 ist implizit eine Lösung u = u(x, y) gegeben

AWP gegeben u(p(x), q(x)) = r(x), z.B. u(x, 0) = x

Lösen einer quasilinearen pDGL 1. Ord. mit dem Charakteristikverfahren

- Ansatz: v(s) = u(x(s), y(s)) (u hängt nur von einer Variable s ab)
- Ableiten des Ansatzes nach s (Kettenregel): $\dot{v} = u_x \dot{x} + u_y \dot{y}$
- Vergleichen mit pDGL liefert DGL-System:
- $\dot{x} = a(x, y, u) \qquad \dot{y} = b(x, y, u) \qquad \dot{v} = c(x, y, u)$
- Setze s=0 in Ansatz v(s): v(0)=u(x(0),y(0)) mit $x=x_0$
- Vergleichen mit AWP der pDGL liefert AWP für DGL-System: $x(0) = p(x_0)$ $y(0) = q(x_0)$ $v(0) = r(x_0)$
- Löse DGL-System und erhalte v(s)
- ullet Bestimme s=f(x,y) und $x_0=g(x,y)$ und mit Rücksub. u(x,y)

7. Partielle Differentialgleichungen 2. Ordnung

7.1. Lösungsmethode

Lösen der pDGL mit dem Separationsansatz

- ullet Setze u(x,y)=f(x)g(y) in die pDGL ein und erhalte zwei gDGLen für fund g. (Faktor k nicht vergessen!)
- Löse die zwei gDGLen und erhalte f = f(x) und q = q(y)• Eine Lösung der pDGL ist u(x, y) = f(x)g(y)

8. Laplace- und Poissongleichung $-\Delta u = f$

$$\begin{array}{l} \textbf{8.1. Laplacegleichung} & -\Delta \ u = 0 \\ \textbf{8.1.1. Allgemeine Lösung der Laplacegleichung} \\ u_n(r,\varphi) = \begin{cases} u_n(r,\varphi) = (a_n\cos(n\varphi) + b_n\sin(n\varphi))r^n & \text{für } n \in \mathbb{Z} \setminus \{0\} \\ a+b \ \ln(r) & \text{für } n = 0 \end{cases}$$

für beliebige
$$a_n$$
 , $b_n \in \mathbb{R}$ bzw. a , $b \in \mathbb{R}$. 8.1.2. Dirichlet'sches RWP für einen Kreis Geg.: $-\Delta u(x,y) = 0$ für $x^2 + y^2 < R^2$ und $u(x,y) = u_0(x,y)$ für $x^2 + y^2 = R^2$

Lösen eines Dirichlet'schen RWP für einen Kreis

- ullet Bestimme die Koeffizienten a_n und b_n der Fourierreihe der 2π -periodischer Funktion $u_0(\varphi):[0,2\pi)\to\mathbb{R}$
- ullet Erhalte die Lösung u=u(r,arphi) als Reihendarstellung in Polarkoordinaten: $u(r,\varphi) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\varphi) + b_k \sin(k\varphi) \right) \left(\frac{r}{R} \right)^k$
- \bullet Falls AWP gegeben als $x^2+y^2>R^2$, wird r und R vertauscht: $u(r,\varphi) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\varphi) + b_k \sin(k\varphi) \right) \left(\frac{R}{r} \right)^k$
- Umformen von $u(r,\varphi)$ mit $x=r\cos\varphi$, $y=r\sin\varphi$ ergibt u(x,y)

8.1.3. Dirichlet'sches RWP für ein Quadrat

Geg.: $-\Delta u(x,y) = 0$ auf dem Quadrat $D = [0,a]^2$ mit definierten Randwerten $u(x,0), u(x,a), u(0,y) \text{ und } u(a,y) \text{ für } x,y \in [0,a]$

Lösen eines Dirichlet'schen RWP mit dem Separationsansatz

- \bullet Ansatz u(x,y)=f(x)g(y) aus 7.1 liefert: $\frac{f^{\prime\prime}}{f}=k$ und $\frac{g^{\prime\prime}}{g}=-k$

• Alisatz
$$u(x,y) = f(x)g(y)$$
 aus H heleft. $\frac{1}{f} = k$ und $\frac{1}{g} = k$
• Lösen der gDGLen 2. Ordnung liefert:
$$f(x) = \begin{cases} c_1 e^{\sqrt{k}x} + c_2 e^{-\sqrt{k}x} & \text{für } k > 0 \\ c_1 + c_2 x & \text{für } k = 0 \\ c_1 \cos \sqrt{-k}x + c_2 \sin \sqrt{-k}x & \text{für } k < 0 \end{cases}$$

$$g(y) = \begin{cases} d_1 \cos \sqrt{k}y + d_2 \sin \sqrt{k}y & \text{für } k > 0 \\ d_1 + d_2 y & \text{für } k = 0 \\ d_1 e^{\sqrt{-k}y} + d_2 e^{-\sqrt{-k}y} & \text{für } k < 0 \end{cases}$$

• Vorgegebene Randwerte definieren die Lösung des RWP u(x,y) = f(x)g(y)durch die Konstanten $k,\,c_1,\,c_2,\,d_1,\,d_2\in\mathbb{R}$

9. Wärmeleitungsgleichung $u_t = c^2 \Delta u$

 $u_t=c^2u_{xx}$ für $x\in(0,l),\,t\geq0$ Geg: u(x,0)=g(x) und u(0,t)=u(l,t)=0 und Länge l und

Lösen eines Nullrandproblems für einen Stab

- Bestimme Koeffizienten b_n von g(x):
- $b_n = \frac{2}{l} \int_0^l g(x) \sin(n \frac{\pi}{l} x) dx$ für n = 1, 2, 3, 4, ...

$$u(x,t) = \sum_{n=1}^{\infty} b_n \exp\left(-c^2 \left(\frac{n\pi}{l}\right)^2 t\right) \sin\left(n\frac{\pi}{l}x\right)$$

 $u_t=c^2u_{xx}$ für $x\in(0,l),t\geq0$ Geg: u(x,0)=g(x) und $u_x(0,t)=u_x(l,t)=0$

Lösen eines modifizierten Nullrandproblems für einen Stab

- $a_n = \frac{2}{I} \int_0^l g(x) \cos(n \frac{\pi}{I} x) dx$ für n = 0, 1, 2, 3, ...

$$\begin{array}{l} \bullet \text{ L\"osung } u(x,t) \text{ als Reihendarstellung:} \\ u(x,t) = \frac{a_0}{2} + \sum\limits_{n=1}^{\infty} a_n \exp\left(-c^2 \left(\frac{n\pi}{l}\right)^2 t\right) \cos\left(n\frac{\pi}{l}x\right) \end{array}$$

10. Wellengleichung $u_{tt} = c^2 \Delta u$

 $u_{tt} - c^2 u_{xx} = 0$ Geg: l= Länge der Saite und u(x,0)=g(x), $u_t(x,0)=v(x),$ u(0,t)=u(l,t) = 0 und c = const > 0

Lösung eines Anfangs-Randwertproblems für eine schwingende Saite

- ullet Bestimme Koeffizienten a_n von g(x) und b_n von v(x): $a_n = \frac{2}{l} \int_0^l g(x) \sin\left(n\frac{\pi}{l}x\right) dx$ für $n = 1, 2, 3, 4, \dots$ $b_n = \frac{2}{n\pi c} \int_0^l v(x) \sin\left(n\frac{\pi}{l}x\right) dx \qquad \text{für } n = 1, 2, 3, 4, \dots$
- $u(x,t) = \sum_{l=1}^{\infty} \sin\left(\frac{n\pi}{l}x\right) \left(a_n \cos\left(c\frac{n\pi}{l}t\right) + b_n \sin\left(c\frac{n\pi}{l}t\right)\right)$