# **Lead Scoring Case Study**

#### **Prepared by:**

Ritij Srivastava

Sanjay Tom Perayil

#### **Problem Statement**

- An education company named X Education sells online courses to industry professionals. It markets its courses on several websites and search engines like Google to generate leads.
- ➤ X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted which is typically 30%.
- Senior management of the company wants the lead conversion rate to be 80%.

### **Goal**

- ► To build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads.
- A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

#### **Methodology**

- Data Cleaning and Data manipulation.
  - ▶ Check and handle missing values from the dataset.
  - Drop columns, if it contains large amount of missing values and not useful for the analysis.
- ► EDA
  - Univariate Analysis
  - ▶ Bi- Variate Analysis
- ▶ Dummy variables & Feature Scaling and splitting of the dataset.
- Classification technique: logistic regression is used for the modelling and prediction.
- Model Evaluation.
- Final Model presentation.
- Conclusion and recommendation.

#### **Conversion of Leads to Clients**



7.5 10.0 12.5 15.0 17.5 20.0

Total Visit, Total time spent on website & Page Views per visit might impact in lead conversion. Hence, we keep these variables.

# **Bi-Variate Analysis of Categorical Variable**

#### Lead Origin and Lead Source





# **Categorical Variable Relation**

#### **Specialization and Current Occupation**





### **Model Building Steps**

- Splitting the data into training and testing data sets.
- ▶ The primary step for regression is performing a train-test split with a ratio of 70:30.
- ▶ Use RFE for Feature selection.
- Running RFE with 15 variables as output.
- ▶ Building model by removing the variables whose p-value is greater than 0.05 and VIF value is greater than 5.
- Using above approach we have eliminated below variables:
  - Lead Source\_Reference
  - ► Last Notable Activity\_Had a Phone Conversation
  - ▶ What is your current occupation\_Housewife
  - What is your current occupation\_Working Professional

#### Feature Selection Using RFE

Lead Origin\_Lead Add Form

Lead Source\_Reference

Lead Source\_Welingak Website

What is your current occupation\_Unemployed

Last Activity\_Had a Phone Conversation

Last Notable Activity\_Had a Phone Conversation

Total Time Spent on Website

TotalVisits

Last Activity\_SMS Sent

What is your current occupation\_Working Profes...

Lead Source\_Olark Chat

Do Not Email\_Yes

What is your current occupation\_Student

What is your current occupation\_Housewife

Last Notable Activity\_Unreachable

Initially we started building the model with 15 variable selected through RFE method.

#### Factors/Features affecting the lead conversion

#### **Features**

What is your current occupation\_Unemployed

Total Time Spent on Website

**TotalVisits** 

Last Activity\_SMS Sent

Lead Origin\_Lead Add Form

Lead Source\_Olark Chat

Lead Source\_Welingak Website

Do Not Email\_Yes

What is your current occupation\_Student

Last Activity\_Had a Phone Conversation

Last Notable Activity\_Unreachable

These are the feature which is having direct impact on the lead conversion.

#### **Sensitivity & Specificity**

- Checking Sensitivity & Specificity is import to evaluate our model.
- ► In our model:
  - Sensitivity is 0.7394
  - ► Specificity is 0.8343
- Sensitivity measure is used to determine the proportion of actual positive cases, which got predicted correctly.
- Specificity measure is used to determine the proportion of actual negative cases, which got predicted correctly.

#### **ROC Curve**





- Plotting the ROC curve by randomly choosing the 0.5 as cut-off
- After plotting Accuracy, Sensitivity & Specificity we found that optimal cut-off value will be around 0.42.
- Sensitivity & Specificity is 0.7933 & 0.7884 resp. which quite significant

# **Precision - Recall Curve**



As we can see from above plot that our model is working find on test set and can predict
the values with 78.95% accuracy with Precision value of 0.7840 & Recall of 0.7771

#### **Conclusion**

- We can observe from our model feature which matter most in lead conversion are mentioned below (In descending order):
  - ▶ Total time spend on the Website
  - Total number of visits
  - When lead was sourced from:
    - ▶ Direct traffic on website
    - Olark Chat
    - ▶ Welingak website
  - Basis upon the last activity:
    - ► SMS
    - ► Had phone Conversation
  - ▶ When the lead is generated from the Landing Page Submission.
  - ▶ Students are also likely to enrol for the course but we should focus on specific segment of student.
- In order to reach the targeted conversion ratio which is 80%. X education must focus on these features & segment for lead generation. As lead generated from these channel are most likely to get converted.

#### **Recommendation**

- ▶ We would recommend X Education to focus on below datapoints:
  - ▶ What is your current occupation\_Unemployed
  - Total Time Spent on Website
  - TotalVisits
  - Last Activity\_SMS Sent
  - Lead Origin\_Lead Add Form
  - Lead Source\_Olark Chat
  - Lead Source\_Welingak Website
  - Do Not Email\_Yes
  - ▶ What is your current occupation\_Student
  - ► Last Activity\_Had a Phone Conversation
  - ► Last Notable Activity\_Unreachable



# Thank You

