专题二 聚 类

目录

- ■聚类的定义
- ■聚类的类型
- ■两种常见的聚类方法
 - K-means
 - ■层次聚类

1. 聚类的定义

从对象集中发现对象组,使得处于同一组中的对象相互之间是相似的(或相关的),而不同组中的对象是不同的(不相关的).

4

1. 聚类的定义——应用

■ 聚类的部分应用场景

- 浏览相关文档的组,
- ■具有类似功能的基因和蛋白组
- 有类似价格浮动的股票组.

目录

- ■聚类的定义
- ■聚类的类型
- ■两种常见的聚类方法
 - K-means
 - ■层次聚类

2. 聚类的类型

- 整个簇集合通常称为聚类.
- 不同类型的聚类之间最常讨论的差别是: 簇的集合是层次的(嵌套的), 还是划分的(非嵌套的).
- 划分的聚类:
 - 简单地将数据对象集划分成不重叠的子集 (簇),使得每个数据对象恰在一个子集中, 如上页中的例子。
- 层次的聚类:
 - 是嵌套簇的集族(允许簇具有子簇), 组织成一棵树。

2. 聚类的类型——划分的聚类

Original Points

A Partitional Clustering

每个数据对象属于且仅属于一个簇 2020/11/9

2. 聚类的类型——层次的聚类

p1 p2 p3 p4

系统树图 (一种表示 p² p³ p⁴ 亲缘相似关 系的树状图 解)

除叶节点外, 树中每一个节点 (簇) 都是其子女 (子簇) 的并, 而树根是包含所有对象的簇。

目录

- ■聚类的定义
- ■聚类的类型
- ■两种常见的聚类方法
 - K-means
 - ■层次聚类

3.1 K-均值聚类——般过程

- 一种划分聚类方法.
- 每个簇被指定一个质心 (中心点), 代 表相应的簇.
- 然后,每个点被指派到最近的质心,而 指派到同一个质心的点集形成一个簇. 之后,根据指派到簇的点,更新每个簇的 质心.重复指派和更新过程,直到质心不 发生变化.
- 簇的数量 〖,必须被用户指定.
- 基本算法非常简单.

3.1 K-均值聚类——般过程

■基本〖─均值算法

选择《个点作为初始质心 repeat

将每个点指派到最近的质心,形成《个簇》

重新计算每个簇的质心。

Until 质心不再发生变化。

3.1 K-均值聚类——细节

- 初始化质心通常是任意被选择的.
 - 通常是任意选择的. 如随机初始化.
 - 使用其它方法初始化(层次聚类)。
- 指派数据点到最近的质心
 - 典型地, 质心是簇中所有点的均值.
 - 最近'可用欧几里德距离、余弦相似度、相关性等度量。
 - 指派最近质心所代表的簇中。

3.1 K-均值聚类——细节

- 质心和目标函数
 - 质心是由簇中的数据点计算而得到的. 当数据点重新指派后, 簇的质心可能发生变化, 需要重新计算.
 - 聚类的目标通常用一个目标函数表示。目标 函数的形式依赖于邻近性度量.如 基于欧几 里得距离的误差平方和.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- 基于上述相似性度量,《一均值算法随着选 代的进行而逐渐收敛。
- 大部分收敛发生在最初的几次迭代中.
 - 通常停止条件被改变为 「直到几乎没有点改 变其分簇」

3.1 K-均值聚类——示例

Optimal Clustering

Sub-optimal Clustering

3.1 K-均值聚类——评价

- 最常用的度量是误差的平方和 (SSE)
 - 对每个点,我们求它到最近簇的质心的距离 (误差).
 - 为得到 SSE, 我们求它们的平方和.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- $lacksymbol{\blacksquare}_{X}$ 是簇 \mathcal{C}_{i} 中的数据点而 m_{i} 簇 \mathcal{C}_{i} 的代表点.
 - №,可对应为簇的中心(均值).
- 给定由2次运行K-均值产生的2个不同的簇集, 我们更喜欢误差的平方和最小的那个.

3.1 K-均值聚类--初始质心 Iteration 1 Iteration 2 Iteration 3 1.5 0.5 0.5 0.5 -1.5 -1.5 -1.5 Iteration 4 Iteration 5 Iteration 6 2.5 1.5 0.5 0.5 0.5 -1.5 -0.5 0.5 1.5 -1.5 0.5 -1.5 0.5

2020/11/9

3.1 K-均值聚类——初始质心

3.1 K-均值聚类——初始质心

3.1 K-均值聚类——初始质心

- 多次运行
 - 有帮助,但概率不会总在你这边.
- 采样并使用层次聚类来决定初始质心.
- 选择多于 k 的初始质心, 然后从这些初始质心中再进行选择.
 - 选择原则:进行相差最大的分割.
- 使用后处理来"修补"所产生的簇集.
- 二分 (Bisecting) K-均值
 - 不太受初始化问题的困扰.

3.1 K-均值聚类——局限性

- 当簇具有下列不同特性(K-均值并不适合所有的数据类型), K-均值很难找到"自然的" 簇.
 - 大小(不同尺寸)
 - 密度(不同密度)
 - ■非球形簇
- 当数据包含离群点, K-均值也存在问题,需要 进行离群点检测和删除。
- K-均值仅限于具有中心(质心)概念的数据.

3.2 层次聚类——概述

- 层次聚类可以产生一组能组织成一个层次树的 嵌套簇图。是第2种重要的聚类方法。
- 能被可视化为一个树状图.
 - 该图记录了簇-子簇联系和簇合并(凝聚) 或分裂的次序。

3.2 层次聚类——优势

- 不必假设具体的簇数量.
 - 在适当等级截断树状图,便获得任何理想数量的簇。
- 它们可能符合意味深长的分类法.
 - 例如, 在生物科学中(如., 动物界, 语系 发展, ...)
- ■能够反映聚类的过程

3.2 层次聚类——类型

2种主要类型:

- 凝聚的层次聚类:
 - 从点作为个体簇开始.
 - 每一步合并2个最接近的簇,直到仅剩1个 (or k 个)簇. 需要定义邻近性概念.
- 分裂的层次聚类:
 - 从包含所有点的一个簇开始,
 - ■每一步分裂一个簇,直到仅剩单点簇(or 存在 k 个簇).需要确定每一步分裂哪个簇,以及如何分裂.
- 传统的层次聚类算法使用一种相似性或距离度量.
 - 每次合并或分裂一个簇.

3.2.1 凝聚的聚类算法——过程

- 较流行的层次聚类技术.
- 基本算法的表达很直接了当.
 - 1. 如果需要, 计算邻近度矩阵.
 - 2. 令每个数据点为一个簇;
 - 3. Repeat
 - 4. 合并最接近的2个簇
 - 5. 更新邻近度矩阵, 以反映新簇与原来其它簇之间的
 - 6. 邻近性.
 - 7. Until 仅剩1个簇.
- 关键操作是2个簇的邻近度计算。
 - 簇之间距离的不同定义方法导致了不同的算法.

邻近度矩阵 (Proximity Matrix)

p1 p2 p3 p4 p9 p10 p11 p12

在经过一些合并后,我们得到一些簇,

	C1	C2	C 3	C4	C 5
C 1					
C2					
С3					
<u>C4</u>					
C 5					

我们想合并2个最近的簇(C2和C5) 邻近度矩阵.

并且更新

■ 问题是 "我们如何更新邻近度矩阵?" C2

3.2.1 凝聚的聚类算法——邻近性

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

- ■基于图的观点
 - MIN
 - MAX
 - 组平均 (Group Average)

3.2.1 凝聚的聚类算法——邻近性

MIN(单链):定义簇的邻近度 为不同簇的2个最近的点之间的 邻近度.或不同的节点子集中2 个节点之间的最短边.

示例: 样本数据

表	6个点的x	y坐标
1	0 1 777 177	y

点	x 坐标	y 坐标
p1	0.4005	0.5306
p2	0. 2148	0.3854
рЗ	0. 3457	0.3156
p4	0. 2652	0. 1875
р5	0.0789	0.4139
р6	0.4548	0.3022

0.6 0.5 0.4 0.3 0.2 0.1

6个点的欧几里德距离矩阵

	p1	р2	р3	P4	р5	р6
р1	0	0. 2357	0. 2218	0. 3688	0. 3421	0. 2347
p2	0. 2357	0	0. 1483	0. 2042	0.1388	0. 254
р3	0. 2218	0. 1483	0	0. 1513	0. 2843	0.11
p4	0.3688	0. 2042	0. 1513	0	0. 2932	0. 2216
р5	0. 3421	0. 1388	0. 2843	0. 2932	0	0. 3921
р6	0. 2347	0. 254	0.11	0. 2216	0.3921	0

聚类邻近度—— MIN (单链)

- 2个簇的邻近度定义为2个不同簇中任意2点之间的最短距离(最大邻近度).基于2个不同簇中最大相似的点(最短距离),只需要加一条链.
 - 从所有点作为单点簇开始,每次在点之间加上一条链,最短的链先加,则这些链将点合并成簇.
 - 1. dist(3,6) = 0.11; $3.dist(\{3,6\},\{2,5\}) = min(dist(3,2), dist(6,2), dist(3,5), dist(6,5))$ = min(0.15,0.25,0.28,0.39) = 0.15

• • • • • • •

层次聚类——MIN

Nested Clusters

Dendrogram

3.2.1 凝聚的聚类算法——邻近性

	p1	p2	р3	p4	р5	<u> </u>
p1						
<u>p2</u>						
рЗ						
p4						
р5						

Proximity Matrix

MAX (全链):定义簇的邻近度 为不同簇的2个最远的点之间的 邻近度。或不同的节点子集中2 个节点之间的最长边。

2020/11/9

示例: 样本数据

点	x 坐标	у 坐标
р1	0.4005	0.5306
p2	0. 2148	0. 3854
р3	0. 3457	0.3156
p4	0. 2652	0. 1875
р5	0.0789	0.4139
р6	0. 4548	0.3022

0.6 0.5 0.4 0.4 0.3 0.2 0.1 0 0.1 0 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6

6个点的欧几里德距离矩阵

	p1	p2	р3	P4	р5	р6
р1	0	0. 2357	0. 2218	0. 3688	0. 3421	0. 2347
p2	0. 2357	0	0. 1483	0. 2042	0. 1388	0. 254
р3	0. 2218	0. 1483	0	0. 1513	0. 2843	0.11
p4	0. 3688	0. 2042	0. 1513	0	0. 2932	0. 2216
p5	0. 3421	0. 1388	0. 2843	0. 2932	0	0. 3921
р6	0. 2347	0. 254	0.11	0. 2216	0. 3921	0

聚类邻近度——MAX

- 2个簇的邻近度定义为2个不同簇中任意2点之间的最长距离(最小邻近度).基于2个不同簇中最小相似的点(最长距离),需要加所有的链。
- 从所有点作为单点簇开始,每次在点之间加上一条链,最短的链先加,则一组点直到其中所有的点都完全被连接(即形成团)才形成一个簇。
- (例 第3步)

$$dist(\{3,6\},\{4\}) = \max(dist(3,4).dist(6,4)) = \max(0.15,0.22) = 0.22.$$

 $dist(\{3,6\},\{2,5\}) = \max(dist(3,2),dist(6,2),dist(3,5),dist(6,5))$
 $= \max(0.15,0.25,0.28,0.39) = 0.39.$
 $dist(\{3,6\},\{1\}) = \max(dist(3,1).dist(6,1)) = \max(0.22,0.23) = 0.23.$
......

层次聚类——MAX (全链)

Nested Clusters

Dendrogram

3.2.1 凝聚的聚类算法——邻近性

	р1	p2	р3	p4	р5	<u>.</u> .
р1						
p2						
рЗ						
p4						
p5						

• 组平均:定义簇的邻近度为取自不同簇的所有点对的逐对邻近度和的平均。

示例: 样本数据

表 6个点的x y坐标

点	x 坐标	y 坐标
p1	0.4005	0.5306
p2	0. 2148	0. 3854
рЗ	0. 3457	0.3156
p4	0. 2652	0. 1875
р5	0.0789	0.4139
р6	0. 4548	0.3022
р5	0. 0789	0. 4139

6个点的欧几里德距离矩阵

	p1	p2	р3	P4	р5	р6
p1	0	0. 2357	0. 2218	0. 3688	0. 3421	0. 2347
p2	0. 2357	0	0. 1483	0. 2042	0. 1388	0. 254
рЗ	0. 2218	0. 1483	0	0. 1513	0. 2843	0.11
p4	0.3688	0. 2042	0. 1513	0	0. 2932	0. 2216
p5	0. 3421	0. 1388	0. 2843	0. 2932	0	0. 3921
р6	0. 2347	0. 254	0.11	0. 2216	0. 3921	0

聚类邻近度——组平均

2个簇的邻近度定义为:不同簇的所有点对的平均邻近度。 $\sum_{proximity(p_i,p_i)}$

$$proximity(Cluster_i, Cluster_j) = \frac{p_i \in Cluster_i}{|Cluster_i| + |Cluster_j|}$$

下图显示组平均用于6个点数据例子的结果.(例 第4步)

$$dist({3,6,4},{1}) = (0.22 + 0.37 + 0.23)/(3*1) = 0.28.$$

 $dist({2,5},{1}) = (0.2357 + 0.3421)/(2*1) = 0.2889.$
 $dist({3,6,4},{2,5}) = (0.15 + 0.28 + 0.25 + 0.39 + 0.2 + 0.29)/(3*2) = 0.26.$

层次聚类——组平均

Nested Clusters

Dendrogram

Min、Max和组平均的优势与局限性

■ Min的优势与局限性

- 优势: 能处理非椭圆形状的簇
- 局限性: 对噪声和离群点很敏感

■ Max的优势与局限性

- 优势: 对噪声和离群点不太敏感』
- 局限性: 可能使大的簇破裂; 偏好球形...

■ 组平均的优势与局限性

- 优势:对噪声和离群点不太敏感』
- 局限性:偏好球形。

