Hojas de Ejercicios de Topología

Ejercicios Distancias

Ejercicio 1

¿Son distancias en \mathbb{R} .?

$$1. \ d(x,y) = |x - y|$$

2.
$$d(x,y) = |x^2 - y^2|$$

3.
$$d(x,y) = |x - 2y|$$

4.
$$d(x,y) = (x-y)^2$$

$$5. \ d(x,y) = \sin^2(x-y)$$

6.
$$d(x,y) = \arctan |x-y|$$

¿Es o no distancia entre dos conjuntos A y B ? $d(A,B) = |A \cup B| - |A \cap B|$.

Ejercicio 3

¿Son distancias en \mathbb{R}^2 ?

a)
$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2},$$

b)
$$d_{\times}((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| \cdot |y_1 - y_2|,$$

c)
$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|,$$

d)
$$d_{\min}((x_1, y_1), (x_2, y_2)) = \min\{|x_1 - x_2|, |y_1 - y_2|\},\$$

e)
$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

Demuestra que en un conjunto finito sólo hay una distancia posible que tenga valores 0 o 1.

Ejercicio 6

Demuestra que la distancia Taxicab/Manhattan en \mathbb{R}^2 es equivalente a la euclidiana

Calcula el número π en la Taxicab

Ejercicio 9

Calcula la distancia entre $f(x) = \sin 2x, \, g(x) = \cos(x)$ en $[0,\pi]$

- a) En la métrica integral
- b) En la métrica del supremo

Hojas 3: Ejercicios sobre Topologías

Ejercicio 1

¿Son una topología?

- 1. $X = \{a, b, c\}, T_1 = \{\emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}.$
- 2. $X = \mathbb{R}, \mathcal{T} = \{(a, +\infty) : a \in \mathbb{R}\}.$
- 3. $X = \mathbb{R}, S = \{[a, b) : a, b \in \mathbb{R}, a < b\}.$

Ejercicio 2

¿Son una topología?

- 1. $X = \{a, b, c\}, T_2 = \{\emptyset, \{a\}, \{c\}, \{b, c\}, \{a, b\}, X\}.$
- 2. $X = \mathbb{R}, C = \{U \subseteq \mathbb{R} : |\mathbb{R} \setminus U| < \infty\}.$

Halla un ejemplo de topología heredada de un espacio que no coincida con la topología interior

Ejercicio 4

Busca interior, frontera y clausura

- 1. (0,2) en \mathbb{R}
- 2. $\{1/n : n \in \mathbb{Z}^+\}$ en \mathbb{R}
- 3. (0,2) en (0,4)

Busca interior, frontera y clausura

- 1. $A = \{-3 \frac{1}{n} : n \in \mathbb{N}\} \cup (1, 2) \cup \{4 + \frac{1}{n} : n \in \mathbb{N}\}$ en Sorgenfrey.
- 2. $[1,2] \cup \{3\}$ en \mathbb{R}

Ejercicio 6

Busca interior, frontera y clausura

- a. $\mathbb Q$ en $\mathbb R$ (topología canónica).
- b. $(\mathbb{R} \setminus \mathbb{Z}) \times (\mathbb{R} \setminus \mathbb{Q})$ en \mathbb{R}^2 (topología canónica).

¿Es verdad que?

- c. $Fr(A) = \overline{A} \cap \overline{A^c}$.
- d. $Int(A \cup B) = Int(A) \cup Int(B)$.
- e. $Int(A \cap B) = Int(A) \cap Int(B)$.
- f. $Int(Fr(A)) = \emptyset$.