Algorithm 1 Soft Q-learning

 $\theta, \phi \sim$ some initialization distributions.

Assign target parameters: $\bar{\theta} \leftarrow \theta$, $\bar{\phi} \leftarrow \phi$.

 $\mathcal{D} \leftarrow$ empty replay memory.

for each epoch do for each t do

Collect experience

Sample an action for s_t using f^{ϕ} :

 $\mathbf{a}_t \leftarrow f^{\phi}(\xi; \mathbf{s}_t) \text{ where } \xi \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}).$

Sample next state from the environment:

$$\mathbf{s}_{t+1} \sim p_{\mathbf{s}}(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t).$$

Save the new experience in the replay memory:

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}.$$

Sample a minibatch from the replay memory

$\{(\mathbf{s}_t^{(i)}, \mathbf{a}_t^{(i)}, r_t^{(i)}, \mathbf{s}_{t+1}^{(i)})\}_{i=0}^N \sim \mathcal{D}.$

Update the soft Q-function parameters

Sample $\{\mathbf{a}^{(i,j)}\}_{j=0}^{M} \sim q_{\mathbf{a}'}$ for each $\mathbf{s}_{t+1}^{(i)}$.

Compute empirical soft values $\hat{V}_{\text{soft}}^{\bar{\theta}}(\mathbf{s}_{t+1}^{(i)})$ in (10).

Compute empirical gradient $\hat{\nabla}_{\theta} J_Q$ of (11).

Update θ according to $\hat{\nabla}_{\theta} J_Q$ using ADAM.

Update policy

Sample $\{\xi^{(i,j)}\}_{j=0}^{M} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}\right)$ for each $\mathbf{s}_{t}^{(i)}$.

Compute actions $\mathbf{a}_t^{(i,j)} = f^{\phi}(\xi^{(i,j)}, \mathbf{s}_t^{(i)}).$

Compute Δf^{ϕ} using empirical estimate of (13).

Compute empiricial estimate of (14): $\hat{\nabla}_{\phi}J_{\pi}$.

Update ϕ according to $\hat{\nabla}_{\phi}J_{\pi}$ using ADAM.

end for

if epoch mod update_interval = 0 **then**

Update target parameters: $\bar{\theta} \leftarrow \theta$, $\bar{\phi} \leftarrow \phi$.

end if

end for