you can fully understand what's happening at each step, along with explanations of the parameters used.

Phase 1: Data Collection and Loading

Explanation:

- pd.read_csv(): Loads the dataset from the specified path.
 - /kaggle/input/ugransome-dataset/final(2).csv is the path to your dataset.
- Renaming Columns: Assigns readable column names to improve clarity.

Data Cleaning

Step 1: Correcting Misspelled Values

```
# Renaming the attack "Bonet" to "Botnet"
df2['Threats'] = df2['Threats'].str.replace('Bonet', 'Botnet')
```

Explanation:

• str.replace(): Corrects spelling mistakes in the 'Threats' column.

Step 2: Dropping Duplicate Rows

```
df2 = df2.drop_duplicates()
```

Explanation:

drop_duplicates(): Removes rows that are identical.

☆ Data Transformation

Handling the 'Time' Column

```
# Adjusting 'Time' values by adding 11
df2['Time'] = df2['Time'] + 11
```

Explanation:

 This is used to shift all time entries by 11 units, possibly for correcting time zone differences or alignment.

Applying Mathematical Transformations to Reduce Skewness

Transformations help normalize data distribution, making it easier for models to learn patterns.

Log Transformation on Netflow_Bytes

```
df2['Netflow_Bytes'] = np.log(df2['Netflow_Bytes'] + 1)
```

- np.log(): Compresses the range of data, especially useful for right-skewed distributions.
- +1: Ensures no issues with log(0), as the logarithm of zero is undefined.

Square Root Transformation on USD

```
df2['USD'] = np.sqrt(df2['USD'])
```

np.sqrt(): Reduces skewness but is less aggressive than log transformations.

Yeo-Johnson Transformation on BTC

```
from scipy import stats
df2['BTC'], _ = stats.yeojohnson(df2['BTC'])
```

• Yeo-Johnson: Handles both positive and negative values, making it more versatile than Box-Cox.

📊 Data Normalization and Scaling

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df2_normalized = df2.copy()
df2_normalized[['USD', 'BTC', 'Netflow_Bytes']] = scaler.fit_transform(df2[['USD', 'BTC', 'Netflow_Bytes']])
```

Explanation:

- StandardScaler: Scales features to have a mean of 0 and standard deviation of 1.
- Normalization is essential for models sensitive to feature scaling (e.g., SVM, KNN).

Data Visualization

Plotting Transformed Data Distributions

```
fig, ax = plt.subplots(figsize=(10, 6))
ax.hist(df2['USD'], bins=50, alpha=0.5, color='blue', label='USD (Square Root)')
ax.hist(df2['BTC'], bins=50, alpha=0.5, color='green', label='BTC (Yeo-Johnson)')
ax.hist(df2['Netflow_Bytes'], bins=50, alpha=0.5, color='red', label='Netflow_Bytes
(Log)')
ax.set_xlabel('Transformed Values')
ax.set_ylabel('Frequency')
ax.set_title('Distribution of Transformed Columns')
ax.legend()
plt.show()
```

Explanation:

- plt.hist(): Plots histograms for visualizing the distribution of transformed features.
- Multiple histograms are overlaid to compare distributions.

Density Plot of Normalized Features

```
sns.kdeplot(df2_normalized['USD'], color='blue', label='USD', ax=ax)
sns.kdeplot(df2_normalized['BTC'], color='green', label='BTC', ax=ax)
sns.kdeplot(df2_normalized['Netflow_Bytes'], color='red', label='Netflow_Bytes',
ax=ax)
ax.set_title('Density Plot of Normalized Columns')
plt.show()
```

Encoding Categorical Variables

```
from sklearn import preprocessing
lab_encoder = preprocessing.LabelEncoder()
df2['Protocol'] = lab_encoder.fit_transform(df2['Protocol'])
df2['Flag'] = lab_encoder.fit_transform(df2['Flag'])
df2['Family'] = lab_encoder.fit_transform(df2['Family'])
df2['SeedAddress'] = lab_encoder.fit_transform(df2['SeedAddress'])
df2['ExpAddress'] = lab_encoder.fit_transform(df2['ExpAddress'])
df2['IPaddress'] = lab_encoder.fit_transform(df2['IPaddress'])
```

```
df2['Threats'] = lab_encoder.fit_transform(df2['Threats'])
df2['Prediction'] = lab_encoder.fit_transform(df2['Prediction'])
```

Explanation:

LabelEncoder: Converts categorical values into numeric labels.

📊 Model Training and Evaluation

Splitting Data into Training and Testing Sets

```
from sklearn.model_selection import train_test_split

X = df2.iloc[:, :-1]
y = df2.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=42)
```

Explanation:

train_test_split(): Splits the data into training (80%) and testing (20%) sets.

Ensemble Models: Random Forest, SVM, Naive Bayes

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import GaussianNB
# Random Forest
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)
rf_accuracy = accuracy_score(rf_pred, y_test)
# SVM
svr = LinearSVC()
svr.fit(X_train, y_train)
svr_pred = svr.predict(X_test)
svr_accuracy = accuracy_score(svr_pred, y_test)
# Naive Bayes
nb = GaussianNB()
nb.fit(X_train, y_train)
```

```
nb_pred = nb.predict(X_test)
nb_accuracy = accuracy_score(nb_pred, y_test)
```

Explanation:

- RandomForestClassifier: Uses an ensemble of decision trees for classification.
- LinearSVC: A linear support vector classifier.
- GaussianNB: Naive Bayes classifier for normally distributed data.

* Evaluating Model Performance

```
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

print('Accuracy of Random Forest:', rf_accuracy)
print('Accuracy of SVM:', svr_accuracy)
print('Accuracy of Naive Bayes:', nb_accuracy)

print('Classification Report (Random Forest):\n', classification_report(rf_pred, y_test))
print('Confusion Matrix (Random Forest):\n', confusion_matrix(rf_pred, y_test))
```

Z Ensemble Learning with Stacking Classifier

```
from sklearn.ensemble import StackingClassifier

estimators = [
    ('rf', RandomForestClassifier(n_estimators=1000, random_state=42)),
    ('svr', LinearSVC(random_state=42))
]

clf = StackingClassifier(estimators=estimators, final_estimator=GaussianNB())
clf.fit(X_train, y_train)
pred = clf.predict(X_test)

eb_accuracy = accuracy_score(pred, y_test)
print('Accuracy of Ensemble Model:', eb_accuracy)
```

Visualization of Model Metrics

```
models = ['Random Forest', 'SVM', 'Naive Bayes', 'Ensemble Learning']
accuracies = [rf_accuracy, svr_accuracy, nb_accuracy, eb_accuracy]
plt.figure(figsize=(10, 6))
```

```
plt.bar(models, accuracies)
plt.xlabel('Models')
plt.ylabel('Accuracy')
plt.title('Model Accuracy Comparison')
plt.show()
```

This comprehensive breakdown should help you understand each part of the process. Let me know if you have further questions or need clarification on any specific section!