PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 96/40924 C12N 15/29, 15/82, 5/10, A01H 5/00 **A2** (43) International Publication Date: 19 December 1996 (19.12.96) PCT/US96/09897 (81) Designated States: AU, CA, CN, JP, KG, KZ, MX, TJ, TM, (21) International Application Number: TR, US, UZ, European patent (AT, BE, CH, DE, DK, ES, (22) International Filing Date: 7 June 1996 (07.06.96) FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (30) Priority Data: **Published** 08/480,178 7 June 1995 (07.06.95) US Without international search report and to be republished upon receipt of that report. (60) Parent Application or Grant (63) Related by Continuation US Not furnished (CIP) Filed on Not furnished (71) Applicant (for all designated States except US): CALGENE, INC. [US/US]; 1920 Fifth Street, Davis, CA 95616 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): McBRIDE, Kevin [US/US]; 1309 Marina Circle, Davis, CA 95616 (US). STALKER, David, M. [US/US]; 2736 Cumberland Place, Davis, CA 95616 (US). PEAR, Julie, R. [US/US]; 818 Douglass Avenue, Davis, CA 95616 (US). PEREZ-GRAU, Luis [ES/US]; 1230 Elk Place, Davis, CA 95616 (US).

(54) Title: COTTON FIBER TRANSCRIPTIONAL FACTORS

Street, Davis, CA 95616 (US).

(74) Agents: SCHWEDLER, Carl, J. et al.; Calgene, Inc., 1920 Fifth

(57) Abstract

Novel DNA constructs are provided which may be used as molecular probes or inserted into a plant host to provide for modification of transcription of a DNA sequence of interest during various stages of cotton fiber development. The DNA constructs comprise a cotton fiber transcriptional initiation regulatory region associated with a gene which is expressed in cotton fiber. Also provided is novel cotton having a cotton fiber which has a natural color introduced by the expression in the cotton fiber cell, using such a construct, of pigment synthesis genes. Cotton fiber cells having color produced by genetic engineering and cotton cells comprising melanin and indigo pigments are included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria ·	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
				•	

COTTON FIBER TRANSCRIPTIONAL FACTORS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of United States application Serial No. 08/487,087 filed June 7, 1995, and a continuation in part of United States application Serial No. 08/480,178, filed June 7, 1995.

10

15

5

INTRODUCTION

Technical Field

This invention relates to methods of using in vitro constructed DNA transcription or expression cassettes capable of directing fiber-tissue transcription of a DNA sequence of interest in plants to produce fiber cells having an altered phenotype, and to methods of providing for or modifying various characteristics of cotton fiber. The invention is exemplified by methods of using cotton fiber promoters for altering the phenotype of cotton fiber, and cotton fibers produced by the method.

20

Background

In general, genetic engineering techniques have been directed to modifying the phenotype of individual prokaryotic and eukaryotic cells, especially in culture. Plant cells have proven more intransigent than other eukaryotic cells, due not only to a lack of suitable vector systems but also as a result of the different goals involved. For many applications, it is desirable

to be able to control gene expression at a particular stage in the growth of a plant or in a particular plant part. For this purpose, regulatory sequences are required which afford the desired initiation of transcription in the appropriate cell types and/or at the appropriate time in the plant's development without having serious detrimental effects on plant development and productivity. It is therefore of interest to be able to isolate sequences which can be used to provide the desired regulation of transcription in a plant cell during the growing cycle of the host plant.

5

10

15

20

25

One aspect of this interest is the ability to change the phenotype of particular cell types, such as differentiated epidermal cells that originate in fiber tissue, i.e. cotton fiber cells, so as to provide for altered or improved aspects of the mature cell type. Cotton is a plant of great commercial significance. In addition to the use of cotton fiber in the production of textiles, other uses of cotton include food preparation with cotton seed oil and animal feed derived from cotton seed husks.

Despite the importance of cotton as a crop, the breeding and genetic engineering of cotton fiber phenotypes has taken place at a relatively slow rate because of the absence of reliable promoters for use in selectively effecting changes in the phenotype of the fiber. In order to effect the desired phenotypic changes, transcription initiation regions capable of initiating transcription in fiber cells during development are desired.

Thus, an important goal of cotton bioengineering research is the

acquisition of a reliable promoter which would permit expression of a protein selectively in cotton fiber to affect such qualities as fiber strength, length, color and dyability.

Relevant Literature

10

25

Cotton fiber-specific promoters are discussed in PCT publications WO 94/12014 and WO 95/08914, and John and Crow, Proc. Natl. Acad. Sci. USA, 89:5769-5773, 1992. cDNA clones that are preferentially expressed in cotton fiber have been isolated. One of the clones isolated corresponds to mRNA and protein that are highest during the late primary cell wall and early secondary cell wall synthesis stages. John and Crow, supra.

In animals, the ras superfamily is subdivided into the subfamilies ras which is involved in controlling cell growth and division, rab/YPT members which control secretory processes, and rho which is involved in control of cytoskeletal organization (Bourne et al., (1991) Nature 349: 117-127), and number of homologous genes have now been identified in plants (for a review, see Terryn et al., (1993) Plant Mol. Biol. 22: 143-152). None have been found for the important ras subfamily, all but one of the genes identified have been members of the rab/YPT1 subfamily, and there is only one recent report of the cloning of a rho gene in pea (Yang and Watson(1993) Proc. Natl. Acad. Sci. USA 90: 8732-8736).

Little work has been done to characterize the functions of these genes in plants, although one recent report has shown that a small G protein from Arabidopsis can functionally complement a

mutant form in yeast involved in vesicle trafficking, suggesting a similar function for the plant gene (Bednarek et al., (1994) Plant Physiol 104: 591-596).

In animals, two members of the *rho* subfamily, called Rac and Rho, have been shown to be involved in the regulation of actin organization (for a review, see Downward, (1992) Nature 359: 273-274).

5

10

15

20

25

Rac1 has been shown to mediate growth factor-induced membrane ruffling by influencing microfilament alignment on the plasma membrane (Ridley et al, (1992) Cell 70: 401-410), whereas RhoA regulates the formation of actin stress fibers associated with focal adhesions (Ridley and Hall, (1992) Cell 70: 389-399).

In yeast, the CDC42 gene codes for a *rho*-type protein which also regulates actin organization involved in the establishment of cell polarity required for the localized deposition of chitin in the bud scar (Adams et al., (1990) J Cell Biol 111: 131-143.

Disruption of gene function, either by temperature shifts with a CDC42-temperature-sensitive mutant in yeast (Adams et al., 1990), or by micro-injection into fibroblasts of mutant Rac or Rho proteins exibiting a dominant negative phenotype (Ridley et al., 1992; Ridley and Hall, 1992), leads to disorganization of the actin network.

In plants, control of cytoskeletal organization is poorly understood in spite of its importance for the regulation of patterns of cell division, expansion, and subsequent deposition of secondary cell wall polymers. The cotton fiber represents an excellent system for studying cytoskeletal organization. Cotton

fibers are single cells in which cell elongation and secondary wall deposition can be studied as distinct events. These fibers develop synchronously within the boll following anthesis, and each fiber cell elongates for about 3 weeks, depositing a thin primary wall (Meinert and Delmer, (1984) Plant Physiol. 59: 1088-1097; Basra and Malik, (1984) Int Rev of Cytol 89: 65-113). At the time of transition to secondary wall cellulose synthesis, the fiber cells undergo a synchronous shift in the pattern of cortical microtubule and cell wall microfibril alignments, events which may be regulated upstream by the organization of actin (Seagull, (1990) Protoplasma 159: 44-59; and (1992) In: Proceedings of the Cotton Fiber Cellulose Conference, National Cotton Council of America, Memphis RN, pp 171-192.

Agrobacterium-mediated cotton transformation is described in Umbeck, United States Patents Nos. 5,004,863 and 5,159,135 and cotton transformation by particle bombardment is reported in WO 92/15675, published September 17, 1992. Transformation of Brassica has been described by Radke et al. (Theor. Appl. Genet. (1988) 75;685-694; Plant Cell Reports (1992) 11:499-505.

20

25

10

15

SUMMARY OF THE INVENTION

Novel DNA constructs and methods for their use are described which are capable of directing transcription of a gene of interest in cotton fiber, particularly early in fiber development and during secondary cell wall development. The novel constructs include a vector comprising a transcriptional and translational initiation region obtainable from a gene expressed in cotton fiber

and methods of using constructs including the vector for altering fiber phenotype. Both the endogenous 3' regions and 5' regions may be important in directing efficient transcription and translation.

5

10

15

20

25

Three promoters are provided from genes involved in the regulation of cotton fiber development. One, Rac13, is from a protein in cotton which codes for an animal Rac protein homolog. Rac13, shows highly-enhanced expression during fiber development. This pattern of expression correlates well with the timing of reorganization of the cytoskeleton, suggesting that the Rac13 cotton gene may, like its animal counterpart, be involved in the signal transduction pathway for cytoskeletal organization. Rac13 is a gene that is moderately expressed during fiber development turning on at 9 dpa and shutting down approximately 24 dpa. It is maximally expressed between 17-21 dpa developing fiber.

Another promoter from a cotton protein is designated 4-4. The 4-4 mRNA accumulates in fiber cells at day 17 post anthesis and continues towards fiber maturity, which occurs at 60 days or so post anthesis. Data demonstrates that the 4-4 promoter remains very active at day 35 post anthesis.

Also provided is a promoter from a lipid transfer protein (hereinafter sometimes referred to as "Ltp") which is preferentially expressed in cotton fiber.

The methods of the present invention include transfecting a host plant cell of interest with a transcription or expression cassette comprising a cotton fiber promoter and generating a plant which is grown to produce fiber having the desired phenotype.

Constructs and methods of the subject invention thus find use in modulation of endogenous fiber products, as well as production of exogenous products and in modifying the phenotype of fiber and fiber products. The constructs also find use as molecular probes. In particular, constructs and methods for use in gene expression in cotton embryo tissues are considered herein. By these methods, novel cotton plants and cotton plant parts, such as modified cotton fibers, may be obtained.

Also provided are constructs and methods of use relating to modification of color phenotype in cotton fiber. Such constructs contain sequences for expression of genes involved in the production of colored compounds, such as anthocyanins, melanin or indigo, and also may contain sequences which provide for targeting of the gene products to particular locations in the plant cell, such as plastid organelles, or vacuoles. Plastid targeting is of particular interest for expression of genes involved in aromatic amino acid biosynthesis pathways, while vacuolar targeting is of particular interest where the precursors required in synthesis of the pigment are present in vacuoles.

10

15

20

25

Of particular interest are plants producing fibers which are color, that is, with pigment produced in the fiber by the plant during fiber development, as opposed to fibers which are harvested and dyed or otherwise pigmented by separate processing. Fibers from a plant producing such colored fiber may be used to produce colored yarns and/or fabric which have not been subjected to any dyeing process. While naturally colored cotton has been available from various domesticated and wild type cotton varieties, the

instant application provides cotton fiber has a color produced by the expression of a genetically engineered protein.

Thus, the application provides constructs and methods of use relating to modification of color phenotype in cotton fiber. Such constructs contain sequences for expression of genes involved in the production of colored compounds, such as melanin or indigo, and also contain sequences which provide for targeting of the gene products to particular locations in the plant cell, such as plastid organelles, or vacuoles. Plastid targeting is of particular interest for expression of genes involved in the aromatic amino acid biosynthesis pathways, while vacuolar targeting is of particular interest where the precursors required in synthesis of the pigment are present in vacuoles.

5

10

15

20

DESCRIPTION OF THE DRAWINGS

Figure 1 shows the DNA sequence encoding the structural protein from cDNA 4-4.

Figure 2 shows the sequence to the promoter construct pCGN5606 made using genomic DNA from 4-4-6 genomic clone.

Figure 3 shows the sequence to the 4-4 promoter construct pCGN5610.

Figure 4 shows the cDNA sequence encoding the Rac13 gene expressed in cotton fiber.

Figure 5 shows the sequence the promoter region from the 25 rac13 gene.

Figure 6 shows a restriction map for pCGN4735.

Figure 7 shows the sequence of the Ltp promoter region from a cotton fiber specific lipid transfer protein gene.

Figure 8 shows the arrangement of a binary vectors pCGN5148 and pCGN5616 for plant transformation to express genes for melanin synthesis and indigo synthesis, respectively.

Figure 9 provides the results of color measurements taken from fibers of the control Coker 130 cotton used in transformation using color constructs.

Figure 10 shows the results of measurements made of color of plants transformed by the pCGN5148 construct to express genes for melanin synthesis.

Figure 11 shows the results of measurements taken of the color of plants transformed by the pCGN5149 construct to express genes for melanin synthesis.

Figure 12 shows the results of measurements made of color of plants transformed to express genes for indigo synthesis, using construct pCGN5616.

20

25

Figure 13 shows control measurements made of naturally colored cotton plants which are produced by non-transgenic colored cotton plants.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the subject invention, novel constructs and methods are described, which may be used provide for transcription of a nucleotide sequence of interest in cells of a plant host, preferentially in cotton fiber cells to produce cotton fiber having an altered color phenotype.

Cotton fiber is a differentiated single epidermal cell of the outer integument of the ovule. It has four distinct growth phases; initiation, elongation (primary cell wall synthesis), secondary cell wall synthesis, and maturation. Initiation of fiber development appears to be triggered by hormones. The primary cell wall is laid down during the elongation phase, lasting up to 25 days postanthesis (DPA). Synthesis of the secondary wall commences prior to the cessation of the elongation phase and continues to approximately 40 DPA, forming a wall of almost pure cellulose.

5

10

15

20

25

The constructs for use in such cells may include several forms, depending upon the intended use of the construct. the constructs include vectors, transcriptional cassettes, expression cassettes and plasmids. The transcriptional and translational initiation region (also sometimes referred to as a "promoter,"), preferably comprises a transcriptional initiation regulatory region and a translational initiation regulatory region of untranslated 5' sequences, "ribosome binding sites," responsible for binding mRNA to ribosomes and translational initiation. It is preferred that all of the transcriptional and translational functional elements of the initiation control region are derived from or obtainable from the same gene. embodiments, the promoter will be modified by the addition of sequences, such as enhancers, or deletions of nonessential and/or undesired sequences. By "obtainable" is intended a promoter having a DNA sequence sufficiently similar to that of a native promoter to provide for the desired specificity of transcription

of a DNA sequence of interest. It includes natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences.

Cotton fiber transcriptional initiation regions chosen for cotton fiber modification may include the 4-4, racl3 and Ltp cotton fiber promoter regions provided herein.

A transcriptional cassette for transcription of a nucleotide sequence of interest in cotton fiber will include in the direction of transcription, the cotton fiber transcriptional initiation region, a DNA sequence of interest, and a transcriptional termination region functional in the plant cell. When the cassette provides for the transcription and translation of a DNA sequence of interest it is considered an expression cassette. One or more introns may be also be present.

10

20

25

Other sequences may also be present, including those encoding transit peptides and secretory leader sequences as desired.

Fiber-tissue transcription initiation regions of this invention are, preferably, not readily detectable in other plant tissues. Transcription initiation regions capable of initiating transcription in other plant tissues and/or at other stages of fiber development, in addition to the foregoing, are acceptable insofar as such regions provide a significant expression level in cotton fiber at the defined periods of interest and do not negatively interfere with the plant as a whole, and, in particular, do not interfere with the development of fiber and/or fiber-related parts.

Downstream from, and under the regulatory control of, the cotton fiber transcriptional/translational initiation control region is a nucleotide sequence of interest which provides for modification of the phenotype of fiber. The nucleotide sequence may be any open reading frame encoding a polypeptide of interest, for example, an enzyme, or a sequence complementary to a genomic sequence, where the genomic sequence may be an open reading frame, an intron, a noncoding leader sequence, or any other sequence where the complementary sequence inhibits transcription, messenger RNA processing, for example, splicing, or translation. nucleotide sequences of this invention may be synthetic, naturally derived, or combinations thereof. Depending upon the nature of the DNA sequence of interest, it may be desirable to synthesize the sequence with plant preferred codons. The plant preferred 15 codons may be determined from the codons of highest frequency in the proteins expressed in the largest amount in the particular plant species of interest. Phenotypic modification can be achieved by modulating production either of an endogenous transcription or translation product, for example as to the amount, relative distribution, or the like, or an exogenous transcription or translation product, for example to provide for a novel function or products in a transgenic host cell or tissue. Of particular interest are DNA sequences encoding expression products associated with the development of plant fiber, including genes involved in metabolism of cytokinins, auxins, ethylene, abscissic acid, and the like. Methods and compositions for modulating cytokinin expression are described in United States

10

20

25

Patent No. 5,177,307, which disclosure is hereby incorporated by reference. Alternatively, various genes, from sources including other eukaryotic or prokaryotic cells, including bacteria, such as those from Agrobacterium tumefaciens T-DNA auxin and cytokinin biosynthetic gene products, for example, and mammals, for example interferons, may be used.

Other phenotypic modifications include modification of the color of cotton fibers. Of interest are genes involved in production of melanin and genes involved in the production of indigo. Melanins are dark brown pigments found in animals, plants and microorganisms, any of which may serve as a source for sequences for insertion into the constructs of the present invention. Specific examples include the tyrosinase gene which can be cloned from Streptomyces antibioticus. The ORF438 encoded protein in S. antibioticus also is necessary for melanin production, and may provide a copper donor function. In addition. a tyrosinase gene can be isolated from any organism which makes melanin. The gene can be isolated from human hair, melanocytes or melanomas, cuttle fish and red roosters, among others. See, for example, EP Application No. 89118346.9 which discloses a process for producing melanins, their precursors and derivatives in microorganisms. Also, See, Bernan et al. Gene (1985) 37:101-110; and della-Cioppa et al. Bio/Technology (1990) 8:634-638.

10

15

20

25

Indigo may be obtained by use of genes encoding a monooxygenase such as xylene oxygenase which oxidizes toluene and xylene to (methyl) benzyl alcohol and also transforms indole to indigo. Cloning of the xylene oxygenase gene and the nucleotide

and amino acid sequences are described in unexamined Japanese Patent Application Kokai:2-119777, published May 7, 1990. A dioxygenase such as naphthalene dioxygenase which also converts indole to indigo finds use; the naphthalene dioxygenase gene nahA is described in Science (1983) 222: 167. For cloning, nucleotide sequence in characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida. See, Kurkela et al. Gene (1988) 73:355-362. A tryptophanase gene sequence can be used in conjunction with an oxygenase to increase the amount of indole available for conversion to indigo. Sources of tryptophanase gene sequences include E. coli (see, for example, Deeley et al. (1982) J. Bacteriol. 151:942-951).

5

10

15

20

25

Plastid targeting sequences (transit peptides) are available from a number of plant nuclear-encoded plastid proteins, such as the small subunit (SSU) of ribulose bisphosphate carboxylase. plant fatty acid biosynthesis related genes including acyl carrier protein (ACP), stearoyl-ACP desaturase, ß-ketoacyl-ACP synthase and acyl-ACP thioesterase, or LHCPII genes. The encoding sequence for a transit peptide which provides for transport to plastids may include all or a portion of the encoding sequence for a particular transit peptide, and may also contain portions of the mature protein encoding sequence associated with a particular transit There are numerous examples in the art of transit peptide. peptides which may be used to deliver a target protein into a plastid organelle. The particular transit peptide encoding sequence used in the instant invention is not critical, as long as delivery to the plastid is obtained.

As an alternative to using transit peptides to target pigment synthesis proteins to plastid organelles, the desired constructs may be used to transform the plastid genome directly. In this instance, promoters capable of providing for transcription of genes in plant plastids are desired. Of particular interest is the use of a T7 promoter to provide for high levels of transcription. Since plastids do not contain an appropriate polymerase for transcription from the T7 promoter, T7 polymerase may be expressed from a nuclear construct and targeted to plastids using transit peptides as described above. (See McBride et al. (1994) Proc. Nat. Acad. Sci. 91:7301-7305; see also copending US patent application entitled "Controlled Expression of Transgenic Constructs in Plant Plastids*, serial no. 08/472,719, filed June 6, 1995, and copending US patent application SN 08/167,638, filed December 14, 1993 and PCT/US94/14574 filed December 12, 1994.) Tissue specific or developmentally regulated promoters may be useful for expression of the T7 polymerase in order to limit expression to the appropriate tissue or stage of development.

10

15

20

Targeting of melanin synthesis genes to vacuoles is also of interest in plant tissues which accumulate the tyrosine substrate involved in melanin synthesis in vacuoles. The protein signal for targeting to vacuoles may be provided from a plant gene which is normally transported across the rough endoplasmic reticulum, such as the 32 amino acid N-terminal region of the

25 metallocarboxypeptidase inhibitor gene from tomato (Martineau et al. (1991) Mol. Gen. Genet. 228:281-286). In addition to the signal sequence, vacuolar targeting constructs also encode a

vacuolar localization signal (VLS) positioned at the carboxy terminus of the encoded protein. Appropriate signal sequences and VLS regions may be obtained from various other plant genes and may be similarly used in the constructs of this invention. Numerous vacuolar targetting peptides are known to the art, as are reviewed in Chrispeels et al., Cell (1992) 68:613-616.

The Maize Al gene which encodes a dihydroflavonol reductase, an enzyme of the anthocyanin pigmentation pathway is one such In cells that express the Al gene, dihydrokempferol is converted to 2-8 alkylleucopelargonidin, which may be further metabolized to pelargonidin pigment by endogenous plant enzymes. Other anthocyanin or flavonoid type pigments may also be of interest for modification of cotton cell fibers, and have been suggested for use in plant flowers (for a review of plant flower color, see van Tunen et al., Plant Biotechnology Series, Volume 2 (1990) Developmental Regulation of Plant Gene Expression, D. Grierson ed.). Anthocyanin is produced by a progression of steps from cellular phenylalanine pools. The R and C1 genes are maize regulatory proteins which are active by positively affecting upstream steps in the anthocyanin biosynthesis from these pools. The R gene is described in Perot and Cone (1989) Nucl. Acids Res., 17:8003, and the C1 gene is described in Paz-Ares et al (1987) EMBO, 6:3553-3558. Lloyd et al. (1992) Science, 258:1773-1775 discussed both genes.

10

15

20

25

Although cotton fibers in commercially grown varieties are primarily white in color, other naturally occurring cotton varieties have brown or reddish-brown fibers. Additionally, a

Cotton line containing green colored fibers has been identified. Cotton lines providing such fibers are available from various sources, including the BC variety cottons (BC Cotton Inc., Box 8656, Bakersfield, CA 93389) and Fox Fibre cottons (Natural Cotton Colors, Inc., P.O. Box 791, Wasco, CA 93280).

The existence of such colored cotton lines suggests that the precursors required for the anthocyanin pigment pathways are present in cotton fibers cells, thus allowing further color phenotype modifications. Thus, the maize R and Cl genes could be used in enhancing the levels of of anthocyanin produced in fiber cells. As the R and Cl proteins are proteins with a positive control at the regulatory level on anthocyanin pigment precursor biosynthesis, these proteins are expressed in the nucleus, and not targetted to plastids or vacuoles.

10

aspects of the fiber. For example, it is of interest to modify various aspects of cotton fibers, such as strength or texture of a fiber. Thus, the appropriate gene may be inserted in the constructs of the invention, including genes for PHB biosynthesis (see, Peoples et al. J. Biol. Chem. (1989) 264: 15298-15303 and Ibid. 15293-15397; Saxena, Plant Molecular Biology (1990) 15:673-683, which discloses cloning and sequencing of the cellulose synthase catalytic subunit gene; and Bowen et al. PNAS (1992) 89:519-523 which discloses chitin synthase genes of Saccharomyces cerevisiae and Candida albicans. Various constructs and methods are disclosed for the use of hormones to effect changes to fiber quality in copending US patent application entitled *Cotton

Modification Using Ovary-Tissue Transcriptional factors, serial no. 08/397,652 filed February 2, 1995, the teachings of which are incorporated herein by reference.

5

10

15

20

25

Transcriptional cassettes may be used when the transcription of an anti-sense sequence is desired. When the expression of a polypeptide is desired, expression cassettes providing for transcription and translation of the DNA sequence of interest will be used. Various changes are of interest; these changes may include modulation (increase or decrease) of formation of particular saccharides, hormones, enzymes, or other biological parameters. These also include modifying the composition of the final fiber that is changing the ratio and/or amounts of water, solids, fiber or sugars. Other phenotypic properties of interest for modification include response to stress, organisms, herbicides, brushing, growth regulators, and the like. These

herbicides, brushing, growth regulators, and the like. These results can be achieved by providing for reduction of expression of one or more endogenous products, particularly an enzyme or cofactor, either by producing a transcription product which is complementary (anti-sense) to the transcription product of a native gene, so as to inhibit the maturation and/or expression of the transcription product, or by providing for expression of a gene, either endogenous or exogenous, to be associated with the development of a plant fiber.

The termination region which is employed in the expression cassette will be primarily one of convenience, since the termination regions appear to be relatively interchangeable. The termination region may be native with the transcriptional

initiation region, may be native with the DNA sequence of interest, may be derived from another source. The termination region may be naturally occurring, or wholly or partially synthetic. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. In some embodiments, it may be desired to use the 3' termination region native to the cotton fiber transcription initiation region used in a particular construct.

As described herein, in some instances additional nucleotide sequences will be present in the constructs to provide for targeting of a particular gene product to specific cellular locations. For example, where coding sequences for synthesis of aromatic colored pigments are used in a construct, particularly coding sequences for enzymes which have as their substrates aromatic compounds such tyrosine and indole, it is preferable to include sequences which provide for delivery of the enzyme into plastids, such as an SSU transit peptide sequence. Also, for synthesis of pigments derived from tyrosine, such as melanin, targeting to the vacuole may provide for enhanced color modifications.

10

15

20

25

For melanin production, the tyrosinase and ORF438 genes from Streptomyces antibioticus (Berman et al. (1985) 37:101-110) are provided in cotton fiber cells for expression from a 4-4 and Racl3 promoter. In Streptomyces, the ORF438 and tyrosinase proteins are expressed from the same promoter region. For expression from constructs in a transgenic plant genome, the coding regions may be

provided under the regulatory control of separate promoter regions. The promoter regions may be the same or different for the two genes. Alternatively, coordinate expression of the two genes from a single plant promoter may be desired. Constructs for expression of the tyrosinase and ORF438 gene products from 4-4 and rac promoter regions are described in detail in the following examples. Additional promoters may also be desired, for example plant viral promoters, such as CaMV 35S, can be used for constitutive expression of one of the desired gene products, with the other gene product being expressed in cotton fiber tissues from the 4-4 and rac promoter.

10

15

20

25

Similarly, other constitutive promoters may also be useful in certain applications, for example the mas, Mac or DoubleMac, promoters described in United States Patent No. 5,106,739 and by Comai et al., Plant Mol. Biol. (1990) 15:373-381). When plants comprising multiple gene constructs are desired, for example plants expressing the melanin genes, ORF438 and tyrosinase, the plants may be obtained by co-transformation with both constructs, or by transformation with individual constructs followed by plant breeding methods to obtain plants expressing both of the desired genes.

A variety of techniques are available and known to those skilled in the art for introduction of constructs into a plant cell host. These techniques include transfection with DNA employing A. tumefaciens or A. rhizogenes as the transfecting agent, protoplast fusion, injection, electroporation, particle acceleration, etc. For transformation with Agrobacterium.

plasmids can be prepared in E. coli which contain DNA homologous with the Ti-plasmid, particularly T-DNA. The plasmid may or may not be capable of replication in Agrobacterium, that is, it may or may not have a broad spectrum prokaryotic replication system such as does, for example, pRK290, depending in part upon whether the transcription cassette is to be integrated into the Ti-plasmid or to be retained on an independent plasmid. The Agrobacterium host will contain a plasmid having the vir genes necessary for transfer of the T-DNA to the plant cell and may or may not have the complete T-DNA. At least the right border and frequently both the right and left borders of the T-DNA of the Ti- or Ri-plasmids will be joined as flanking regions to the transcription construct. use of T-DNA for transformation of plant cells has received extensive study and is amply described in EPA Serial No. 120,516, Hoekema, In: The Binary Plant Vector System Offset-drukkerij Kanters B.V., Alblasserdam, 1985, Chapter V, Knauf, et al., Genetic Analysis of Host Range Expression by Agrobacterium, In: Molecular Genetics of the Bacteria-Plant Interaction, Puhler, A. ed., Springer-Verlag, NY, 1983, p. 245, and An, et al., EMBO J. (1985) 4:277-284.

10

15

20

25

For infection, particle acceleration and electroporation, a disarmed Ti-plasmid lacking particularly the tumor genes found in the T-DNA region) may be introduced into the plant cell. By means of a helper plasmid, the construct may be transferred to the A. tumefaciens and the resulting transfected organism used for transfecting a plant cell; explants may be cultivated with transformed A. tumefaciens or A. rhizogenes to allow for transfer

of the transcription cassette to the plant cells. Alternatively, to enhance integration into the plant genome, terminal repeats of transposons may be used as borders in conjunction with a transposase. In this situation, expression of the transposase should be inducible, so that once the transcription construct is integrated into the genome, it should be relatively stably integrated. Transgenic plant cells are then placed in an appropriate selective medium for selection of transgenic cells which are then grown to callus, shoots grown and plantlets generated from the shoot by growing in rooting medium.

10

15

20

25

To confirm the presence of the transgenes in transgenic cells and plants, a Southern blot analysis can be performed using methods known to those skilled in the art. Expression products of the transgenes can be detected in any of a variety of ways, depending upon the nature of the product, and include immune assay, enzyme assay or visual inspection, for example to detect pigment formation in the appropriate plant part or cells. Once transgenic plants have been obtained, they may be grown to produce fiber having the desired phenotype. The fibers may be harvested, and/or the seed collected. The seed may serve as a source for growing additional plants having the desired characteristics. The terms transgenic plants and transgenic cells include plants and cells derived from either transgenic plants or transgenic cells.

The various sequences provided herein may be used as molecular probes for the isolation of other sequences which may be useful in the present invention, for example, to obtain related transcriptional initiation regions from the same or different

plant sources. Related transcriptional initiation regions obtainable from the sequences provided in this invention will show at least about 60% homology, and more preferred regions will demonstrate an even greater percentage of homology with the probes. Of particular importance is the ability to obtain related transcription initiation control regions having the timing and tissue parameters described herein. For example, using the probe 4-4 and rac, at least 7 additional clones, have been identified, but not further characterized. Thus, by employing the techniques described in this application, and other techniques known in the art (such as Maniatis, et al., Molecular Cloning, - A Laboratory Manual (Cold Spring Harbor, New York) 1982), other transcription initiation regions capable of directing cotton fiber transcription as described in this invention may be determined. The constructs can also be used in conjunction with plant regeneration systems to obtain plant cells and plants; thus, the constructs may be used to modify the phenotype of fiber cells, to provide cotton fibers which are colored as the result of genetic engineering to heretofor unavailable hues and/or intensities.

10

15

25

Various varieties and lines of cotton may find use in the described methods. Cultivated cotton species include Gossypium hirsutum and G. babadense (extra-long stable, or Pima cotton), which evolved in the New World, and the Old World crops G. herbaceum and G. arboreum.

Color phenotypes can be assessed by the use of a colorimeter, an instrument which is already used to provide objective measurements of the color of cotton samples. A colorimeter uses a

combination of light sources and filters to make various estimates of a samples colors, sometimes referred to as tristimulus values.

In the past such estimtes have been used to calculate a value (Hunter's + b, described below) indicating the degree of yellowness of a cotton sample. The yellowness and reflectance (from Rd, the degree of lightness or darkness of the samples) has been used to provide cotton color measurements for grading. Tests are typically conducted by exposing the face of a sample to a controlled light source. A typical color chart showing how the official grade standards relate to Rd and+ b measurements is shown in Cotton, RJ Kohel and CF Lewis, Editors #24 in AGRONOMY Series-American Soc. Agromony (see Fig. 12-6).

5

10

15

20

25

Various colorimeter methods can be so used to quantify color and express it numerically. The Munsell method, devised by the American artist A.. Munsell, uses a classification system of paper color chips assorted according to their hue (Munsell Hue), lightness (Munsell Value), and saturation (Munsell Chroma) for visual comparison with a specimen color.

Other methods for expressing color numerically have been developed by an international organization concerned with light and color, the Commission Internationale de l'Eclairage (CIE), having a Central Bureau located at Kegelgasse 27, A-1030 Vienna, AUSTRIA. The two most widely known of these methods are the Yxy color space, devised in 1931 based on the tristimulus value XYZ, as defined by CIE, and the L*a*b* color space, devised in 1976 to provide more uniform color differences in relation to visual differences. Color spaces* such as these are now used throughout

the world for color communication. The Hunter Lab color space was developed in 1948 by R.S. Hunter as a uniform color space which could be read directly from a photoelectric colorimeter (tristimulus method).

The L*C*h color space uses the same diagram as the L*a*b* color space, but uses cylindrical coordinates instead of rectangular coordinates. In this color space, L* indicates lightness and is the same as the L* of the L*a*b* color space, C* is chroma, and h is the hue angle. The value of chroma C is 0 at the center and increases according to the distance from the center. Hue angle is defined as starting at the +a axis of the L*a*b* space, and is expressed in degrees in a counterclockwise rotation. Thus, relative to the L*a*b* space, 0° and 360° would be at the +a* line, 90° would be +b*, 180° would be -a* and 270° would be -b*.

All of the above methods can be used to obtain precise measurements of a cotton fiber color phenotype.

EXPERIMENTAL

The following examples are offered by way of illustration and not by limitation.

Example 1

cDNA libraries

Tissue preparation for cDNA synthesis

5

10

15

Leaf and root tissue were isolated from 8 inch tall greenhouse grown seedlings and immediately frozen in liquid nitrogen. Flowers were collected at the rapidly expanding 3 day

preanthesis stage and also frozen. Seed was collected from 21 day postanthesis locules which had been removed from the boll and frozen entire in liquid nitrogen. Once frozen, the fiber was removed from the seed and the denuded seed used for RNA isolation. All fibers were removed from the seed under liquid nitrogen and the fiber was ground to a powder prior to RNA isolation. Fibers were from bolls which had been tagged at anthesis.

DNA and RNA Manipulations

- The lambda ZapIITM cDNA library system of Stratagene was used for screening, and was prepared from cDNA derived from poly-A⁺ mRNA isolated from fibers of *Gossypium hirsutum* cultivar Acala SJ-2. The fibers were isolated from bolls harvested at approximately 21 dpa using field-grown plants in Israel.
- Total RNA was isolated from 21 dpa seeds (*G. hirsutum* cv Coker 130 from which the fiber had been removed) using the method of Hughes and Galau ((1988) Plant Mol Biol Reporter, 6:253-257.) All other RNAs were prepared according to Hall et al. ((1978), Proc Natl Acad Sci USA 75: 3196-3200), with the following modifications. After the second 2M LiCl wash, the pellet was dissolved in 1/10 original volume of 10 mM Tris pH7.5 and brought to 35mM potassium acetate pH6.5 and 1/2 volume EtOH was added slowly. The mixture was placed on ice for 15 minutes and then centrifuged at 20,000 x g for 15 minutes at 4°C. The potassium acetate concentration was brought to 0.2M, 2 1/2 volumes EtOH added and the RNA placed at -20°C for several hours. The precipitate was centrifuged at 12,000 x g for 30 minutes at 4°C.

and the pellet was resuspended in diethylpyrocarbonate-treated water. Poly-A+ RNA was prepared from total mRNA utilizing an oligo(dT)-cellulose kit (Becton Dickenson) and following the manufacturer's protocol.

5

10

15

20

25

Cotton genomic DNA was prepared as follows. Four grams of young cotton leaf tissue (cv Coker 130) was ground to a powder in N2 and placed in an Oak Ridge tube with 0.4g polyvinylpyrolidone and 20mls extraction buffer (200mM Ches/NaOH ph9.1, 200mM NaCl, 100mMEDTA/NaOH pH9.0, 2% SDS, 0.5% Na deoxycholate, 2% Nonidet NP-40, 20mM B-mercaptoethanol) was added to sample, gently mixed and incubated at 65⁰C in a shaking water bath for 10 minutes. 7.0 mls of 5M potassium acetate pH6.5 was added and carefully mixed. Incubation was carried out on ice for 30 minutes with gentle mixing every 5 minutes. The sample was centrifuged for 20 minutes at 21,000 x g and the supernatant was filtered through Miracloth into another tube and centrifuged as before. The supernatant was again filtered through Miracloth into 15 mls of room temperature isopropanol in an Oak Ridge tube. After gentle mixing, the sample was incubated at room temperature for 10-60 minutes until the DNA precipitated. The DNA was spooled and allowed to air dry before being resuspended in 4 mls of TE on ice for 1 hour. CsCl was added to 0.97g/ml final concentration and 300 ul 10mg/ml ethidium bromide was also added before filling VTi80 quick seal tubes. sample was centrifuged overnight at 225,000 x g overnight. DNA was extracted with water saturated butanol and enough water was added to bring the volume to 4 mls before adding 2 volumes

EtOH. The DNA was spooled, air dried and resuspended in 200 ul sterile water.

Northern and Southern Analysis

5

10

15

20

25

For Northerns, 10ug of total RNA was isolated from various tissues, separated by electrophoresis in 1.2% agarose-formaldehyde gels and transfered onto Nytran Plus membranes (Schleicher and Schuell). Hybridization conditions consisted of a solution containing 50% formamide(v/v), 5xSSC, 0.1% SDS, 5mM EDTA, 10x Denhardts solution, 25mM sodium phosphate pH6.5 and 250 ug/ml carrier DNA. Washes were performed in 2xSSC, 0.1% SDS at 42°C 3 times for 30 minutes each time.

Cotton genomic DNA (12ug) was digested with various restriction endonucleases, electrophoresed in 0.9% agarose gels and blotted onto Nytran Plus membranes. Hybridization and filter washing conditions for both the 3' specific and full-length cDNA insert probes were as described for Northern analysis.

Probes derived from 3'-untranslated regions were synthesized via oligonucleotide primers from the Racl3 cDNA, corresponding to bases 600-619 and 843-864 (Figure 4). Each set of primers was used in a polymerase chain reaction to synthesize copies of 3'-specific DNA sequences. These sequences were used as templates in the generation of single-stranded, ³²P-labeled probes off the antisense strand in a polymerase chain reaction. The full-length cDNA inserts for Racl3 were used as templates for double stranded, random primed probes using the Prime-It kit (Stratagene).

Example 2

Isolation of cDNA Clones from Cotton

cDNA to the 4-4 clone was isolated from the cotton fiber library described above, and shown to express in fiber but not other tissues. This sequence was not related to any known protein. Only 400 kb of encoding sequence was present in this clone, so the library was rescreened using the cDNA to obtain full-length clones. The full-length encoding sequence is provided in Figure 1.

5

25

By comparing sequences of random cDNA clones against various sequence data banks via BLAST, a National Center for Biotechnology Information service, a clone, designated #105, was found to have an encoding sequence related to that of a reported lipid transfer protein.

Another clone was sequenced which showed high homology to animal Rac proteins. This clone, designated Rac, was not quite full-length, and the library was re-screened using this initial Rac DNA segment as probe. Of approximately 130,000 primary plaques screened, 56 screened positive; of these, 14 clones were isolated and sequenced. Of these 14 clones, 12 showed identical sequence homology to the original Rac clone and one of these cDNA clones encoded a full length cDNA and received the name Rac13. Figure 4 shows the cDNA sequence encoding the Rac13 gene expressed in cotton fiber.

One other partial-length cDNA clone, designated Rac9, was clearly related, but distinct in DNA and amino acid sequence from Rac13. Re-screening of 150,000 plaques resulted in the isolation

of 36 positive clones of which only two clones corresponded to the Rac9 sequence (both full-length clones), the remainder being Rac13. These results suggest that cotton contains genes for at least two distinct Rac proteins. Based upon the frequency of clone isolation, Rac13 is relatively highly-expressed and Rac9 less so in cotton fibers at 21 days post-anthesis (dpa), the age at which polyA+ mRNA was isolated for library construction.

5

10

15

20

25

Comparisons of the deduced amino acid sequence of Rac13 with other small G-proteins showed that the cotton Rac proteins are very closely related to the Rhol protein sequence deduced from a cDNA clone isolated recently from pea (Yang and Watson, supra). After the pea Rhol, mammalian Rac proteins show the highest homology with the cotton Rac proteins. Other proteins of the rho subfamily, such as the yeast CDC42 and human RhoA, are also clearly related to the cotton Rac genes. By contrast, the other small G-proteins of the Rab/YPT subfamily isolated from plants such as the example shown of the tobacco RAB5 protein, as well as the human Ras proteins, are least homologous to the cotton Rac proteins of all the small G-proteins compared. The cotton and pea proteins, as well as the mammalian Racs, all have pI's above 9, whereas those of other rho and ras proteins are in the range of 5.0-6.5.

Example 3

Expression of Cotton Fiber Genes in Developing Fibers

Expression of the Rac13 and 4-4 genes was assessed using

mRNA prepared from various cotton tissues and from fibers at

different stages of development. Blots were hybridized with probes derived from untranslated regions of Ltp, Rac13 and 4-4 genes. The gene for Rac13 exhibits highly-enhanced expression in fibers; virtually no detectable mRNA is present in leaves, roots, or flower parts, even under conditions of extended development time. Rac13 expression is detected in seeds at an age that corresponds to the highest expression levels observed in fiber tissue derived from seeds of this same age. The pattern of Rac13 expression in fibers is very dependent upon the developmental stage. Expression is very low during the stage of primary wall synthesis (0-14 dpa, see Meinert and Delmer, 1977), reaches a maximum during the transition to secondary wall synthesis (about 15-18 dpa), and declining during the stage of maximal secondary wall cellulose synthesis (about 24-28 dpa).

10

15 4-4 mRNA is begins to accumulate in fiber cells only at day
17 post anthesis and continues through at least day 35 post
anthesis. Levels peak at day 21 and remain high. 4-4 mRNA is not
detected in other cotton tissues, and is not detected in fiber
tissue before onset at 17 days post anthesis.

20 The #105 lipid transfer protein cDNA clone was used as a probe against cotton tissue and in a cotton fiber northern. The northern showed that the cotton fiber Ltp is highly expressed in cotton fiber. The mRNA that codes for this protein is expressed throughout fiber development at extremely high level. Northern 25 blots indicate that this mRNA is expressed at 5 dpa and is continually expressed at a high level at 40 dpa.

Example 4

Genomic DNA

cDNA for both the 4-4 and Rac13 was used to probe for genomic clones. For both, full length genomic DNA was obtained from a library made using the lambda dash 2 vector from StratageneTM, which was used to construct a genomic DNA library from cotton variety Coker 130 (Gossypium hirsutum cv. coker 130), using DNA obtained from germinating seedlings.

The cotton genomic library was probed with a 3'-specific Ltp
probe and 6 genomic phage candidates were identified and purified.
Figure 7 provides an approximately 2 kb sequence of the Ltp
promoter region which is immediately 5' to the Ltp encoding
region.

Six genomic phage clones from the cotton genomic library were identified using a 3'-specific probe for the Ltp mRNA. This was done to select the promoter from the Ltp gene that is maximally expressed in cotton fiber from the family of Ltp genes in cotton. The Ltp promoter is active throughout the fiber development period.

20

15

Example 5

Preparation of 4-4 Promoter Constructs

pCGN5606

The pCGN5606 promoter construct comprises the 4-4 cotton

25 fiber expression cassette in a first version, version I (Figure

2). The sequences from nt1 to 65 and nt 5,494 to 5,547 correspond
to fragments of the pBluescriptII polylinker where this cassette

is cloned. Unique restriction enzyme sites present in these regions flanking the cassette allow the cloning of the fiber expression cassette into binary vectors including the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained in a lambda phage clone of a cotton Coker 130 genomic library. This lambda genomic clone was given the designation 4-4(6).

The region from nt 65 to nt 4,163 corresponds to the 5' flanking region of the 4-4(6) gene. At nt 4,163 there is a NcoI restriction site sequence that corresponds to the first codon of the 4-4 (6)ORF.

The region from nucleotide 4,163 to 4,502 corresponds to part of the 4-4 (6)ORF. The sequence from nt 4,502 to 4,555 is a synthetic polylinker oligonucleotide that contains unique target sites for the restriction enzymes EcoRI, SmaI, SalI, NheI and BglII. This fragment from nt4,163 to 4,555 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations.

The genes to be expressed in cotton fiber cells using this

cassette can be cloned between the NcoI restriction site and any
of the polylinker sites. This operation will replace the stuffer
fragment with the gene of interest. The region from nt 4,555to
5,494 corresponds to the 940 nucleotides downstream of the stop
codon and constitute the 3' flanking region of the 4-4 (6) gene.

There is a unique AscI restriction enzyme site at nt 5483.

pCGN5610

5

10

15

The pCGN5610 construct is a second version of a 4-4 cotton fiber expression cassette, version II, which is a modified version of pCGN5606. The two versions of the 4-4 cotton fiber expression cassette are designed to allow the cloning of tandem arrays of two fiber cassettes in one binary plasmid. The differences with respect to pCGN5606 are very minor and described below.

5

20

25

The XbaI restriction site in the region of nt 1 to 65 has been deleted by standard cloning manipulations.

The polylinker region is in the reverse orientation of pCGN5606.

There is a unique XbaI restriction enzyme site at nt5484. The sequences from nt1 to 57 and nt 5,494 to 5,518 of pCGN5610 correspond to fragments of the pBluescriptII polylinker where this cassette is cloned. Unique restriction enzyme sites present in these regions allow the cloning of the fiber expression cassette into binary vectors of the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained a lambda phage clone of a Coker 130 genomic library. This clone is described in my notebook as lambda genomic clone 4-4(6). The region from nt 57 to nt 4,155 corresponds to the 5' flanking region. At nt 4,155 there is a NcoI restriction site sequence that corresponds to the first codon of the 4-4 ORF.

The region from nucleotide 4,156 to 4,500 corresponds to part of the 4-4 ORF. This fragment from nt4,156 to 4,550 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations. The sequence from nt 4,500 to 4,550 is a synthetic polylinker oligonucleotide containing unique target

sites for the restriction enzymes BglII, NheI, SalI, SmaI and EcoRI.

The genes to be expressed in cotton fiber cells using this cassette can be cloned between the NcoI restriction site and any of the polylinker sites. This operation replaces the stuffer fragment with the gene of interest. The region from nt 4,550 to 5,494 corresponds to the 940 nucleotides downstream of the stop codon and constitute the 3' flanking region of the 4-4 (6) gene.

10

15

20

Example 6

Preparation of Rac13 Promoter Constructs

Genomic clone

From a genomic clone designated 15-1, mapping was done with restriction endonucleases. The largest fragment with the Rac13 coding region was identified. Theis was a Pst fragment, and when subcloned in the Bluescript^m KS+ vector (BSKS+; Stratagene) was named pCGN4722. The insert had a length of 9.2 kb.

The region of the Pst fragment with the Rac13 coding sequence was identified. DNA sequence was determined for approximately 1.7 kb 5' of the start codon and approximately 1.2 kb 3' of the stop codon. The entire Rac coding region (exons and introns) was conveniently flanked by Nde1 sites.

pCGN4722 was digested with Xba1, and a 2.7 kb fragment was removed. Religation gave pCGN4730, which was then digested with Nde1, dropping out a 1.7 kb fragment containing the entire Rac coding region. Religation yielded pCGN4731.

A polylinker region was created using overlapping synthetic oligonucleotides which were PCR'ed using primers homologous to the 5' and 3' ends of the resynthesized section. The resulting product was digested with EcooR1 and Hind III and ligated into BSKS+ at the EcoR1 and Hind III sites. The resulting plasmid was designated pCGN4733.

5

pCGN4731 and pCGN4633 were digested with Nde1 and the Nde1 fragment containing the synthesized polylinker region from pCGN4733 was dropped in the Nde1 site of 4731, giving pCGN4734.

This last plasmid was digested with Sal and Xba, and so was pCGN5133. pCGN5133 was the 9.2 kb pst fragment in BSKS+ where the polylinker sites flanking the insert were altered to different sites for ease of manipulation. The fragment from pCGN4734 was then placed into the equivalent site of pCGN5143, giving pCGN4735.

A sequence for approximately 3 kb of the promoter construct pCGN4735 is provided in Figure 5. The resynthesized sequence falls between the Ndel sites located at bases 1706 and 1898 of the sequences. Thus, the sequence in Figure 5 includes approximately 1.7 kb 5' to the Ndel site 5' to the resynthesized polylinker region. There is a roughly 2.5 kb sequence 5' from this sequence which is not provided in Figure 5, relative to the total 9.2 kb insert. The sequence of Figure 5 also includes approximately 1.1 kb 3' to the 3' Ndel site. Approximately 3 kb which is most 3' in the Rac13 insert is not provided in Figure 5. A map for pCGN4735 is provided in Figure 6.

Example 7

Pigment Synthesis Genes

Melanin

10

15

20

25

A binary construct for plant transformation to express genes for melanin synthesis is prepared as follows. The melanin genes were originally isolated from the common soil bacterium Streptomyces antibioticus (Bernan et al. (1985) 34:101-110). Melanin production is composed of a two gene system. The first gene, tyrA, encodes the catalytic unit responsible for the polymerization of the amino acid tyrosine, the primary substrate, and is termed tyrosinase. The second gene, ORF438, is responsible for binding copper and delivering copper to the tyrosinase and activating the enzyme. Expression of both the ORF438 and tyrA genes ensures maximal tyrosinase activity.

The genes for both ORF438 and tyrA were fully re-synthesized with respect to their DNA sequence. This was performed as the initial DNA sequence isolated from Streptomyces has a very high guanine and cytosine (G+C) DNA content. Thus, the ORF438 and tryA genes were re-synthesized to appear more "plant-like" (reduced G+C content) with respect to plant preferred codons encoding their corresponding amino acids.

Indigo

Indigo production involves conversion of the amino acid tryptophan, the primary substrate, into indole which is then converted into indoxyl. Molecules of indoxyl spontaneously convert to indigo in the presence of oxygen. A two gene system was used to affect indigo production in fiber cells. The first

gene (tna) was obtained from the bacterium E. coli and encodes the enzyme tryptophanase. The designation tna stands for the gene encoding tryptophanase from E. coli, an enzyme which converts tryptophan to indole (Stewart et al., (1986) J Bacteriol 166:217-223).

The pig designation is used for the encoding sequence to the protein for indigo production from Rhodococcus, which produces indigo from indole (Hart et al., (1990) J Gen Microbiol 136:1357-1363). Both that and pig were obtained by PCR. Tryptophanase is responsible for the conversion of tryptophan to indole, while the second gene (pig) encodes an indole oxygenase enzyme responsible for the conversion of indole to indoxyl. Both these bacterial genes were utilized in their native form.

15

20

25

10

5

Example 8

Constructs for Targeting Pigment Synthesis Genes

For plastid targeting, the constructs contain a fragment of the tobacco ribulose bisphosphate carboxylase small subunit gene encoding the transit peptide and 12 amino acids of the mature protein (Tssu) positioned in reading frame with the appropriate encoding sequence.

For vacuolar targeting of the melanin synthesis genes, constructs include a fragment of the metallocarboxypeptidase inhibitor gene, encoding the entire 32 amino acid N-terminus signal peptide of that protein plus 6 amino acids of the mature protein (CPI+6) (Martineau et al., supra), positioned in reading frame with the appropriate encoding sequences. In addition to the

signal peptide, a sequence encoding a vacuolar localization signal (VLS) is inserted 3' of the protein encoding sequence.

Constructs which contain encoding sequences for bacterial genes involved in biosynthesis of pigmented compounds and sequences for directing transport of the encoded proteins into plastids or vacuoles are prepared as follows.

Melanin

10

15

20

25

The re-synthesized ORF438 and tyrA genes were treated in two distinct ways depending on which compartment in the fiber cell the final protein products would be localized. One chimeric gene/plant binary construct (designated pCGN5148) contained the genes targeted to the fiber cell plastids. To do this, 12 amino acids of a gene for the small subunit of carboxylase (SSU) plus the original 54 amino acid SSU transit peptide were fused to the amino termini of both the ORF438 and tyrA gene products respectively. These peptide sequences allow the ORF438 and tyrA gene products (proteins) to be efficiently targeted to the plastid. This targeting was initiated as the plastid is the site of tyrosine production within the fiber cell.

The second chimeric gene/plant binary construct (designated pCGN5149) contained the ORF438 and tyrA genes targeted to the vacuole within the fiber cell. Based on information from other biological systems, it was postulated that the fiber cell vacuole may contain a high concentration of tyrosine for melanin polymerization. Both the ORF438 and tryA genes contain the 29 amino acid signal peptide from a tomato carboxypeptidase inhibitor

(CPI) protein as amino terminal gene fusions to direct these proteins to the endoplasmic reticulum (ER) secretory system of the fiber cell.

In addition, the tyrA gene has an 8 amino acid vacuolar targeting peptide (VTP) from CPI fused at the carboxy terminus so that the mature copper-activated tyrosinase will eventually be targeted to the vacuole of the fiber cell. Both the ORF438 and tyrA proteins also had potential glycosylation sites removed via site-directed mutagenesis of the ORF438 and tyrA genes respectively. Potential plant cell glycosylation of these proteins upon their expression in fiber cells could result in tyrosinase inactivation, hence removal of potential glycosylation sites was deemed necessary.

15 <u>Indigo</u>

5

10

The only modification to the indigo genes was the fusion of the tobacco SSU transit peptide encoding DNA sequences onto the amino terminal region of both the tra and pig genes to affect the localization of both the tryptophanase and indole oxygenase proteins to the fiber cell plastid. These are the same exact gene fusions that were made for the plastid-directed proteins for melanin production in construct 5148. The tra and pig gene products were targeted to the fiber cell plastid as that is the primary site of tryptophan synthesis.

25

20

Example 9

Expression Constructs

<u>Melanin</u>

5

10

15

20

25

The modified genes for both the plastid and vacuolar targeted ORF438 and tyrosinase proteins were placed into a fiber expression cassette to be "switched" on during development of the cotton fiber cell. The "switch" (promoter) utilized for the melanin constructs was 4-4. The modified ORF438 and tyrA genes were cloned into the 4-4 promoter cassette and these chimeric genes then inserted into a binary plasmid to create plasmids pCGN5148 and pCGN5149, containing the modified genes for plastid and vacuolar targeted ORF438 and tyrosinase proteins, respectively. These binary plasmids also contain genetic determinants for their stable maintenance in E. coli and Agrobacterium and also contain a chimeric gene for plant cell expression of the bacterial kanamycin resistance gene. This kanamycin resistance marker allows for the selection of transformed versus non-transformed cotton cells when plant hypocotyl or leaf segments are infected with Agrobacterium containing the binary plasmids.

A block diagram of the plasmid pCGN5149, having vacuolor targetting sequences, is shown in Figure 8. Plasmid pCGN5148 (not shown) is constructed the same as 5149, only pCGN5148 has plastid-targetting sequences.

Indigo

As with the melanin genes, the plastid-directed that and pig genes were placed in the fiber-specific 4-4 promoter cassette and these chimeric genes subsequently inserted into a binary plasmid

to create plasmid pCGN5616. A block diagram of plasmid pCGN5616 is shown in Figure 8.

Anthocyanin

A construct has been prepared for the expression of the maize R and CI genes in developing cotton fiber. These genes are known to be responsible for the production of Anthocyanin pigments by acting in a regulatory manner to turn on the chalcone pathway for production of anthocyanins (red spectrum colors). The R and CI genes were placed under the control of the Rac13 promoter cassette. A binary plasmid designated pCGN4745 (not shown), contains both the R and CI genes each under control of the Rac13 promoter.

15

20

25

10

5

Example 10

Cotton Transformation

Explant Preparation

Coker 315 seeds are surface disinfected by placing in 50% Clorox (2.5% sodium hypochlorite solution) for 20 minutes and rinsing 3 times in sterile distilled water. Following surface sterilization, seeds are germinated in 25 x 150 sterile tubes containing 25 mls 1/2 x MS salts: 1/2 x B5 vitamins: 1.5% glucose: 0.3% gelrite. Seedlings are germinated in the dark at 28°C for 7 days. On the seventh day seedlings are placed in the light at 28±2°C.

Cocultivation and Plant Regeneration

Single colonies of A. tumefaciens strain 2760 containing binary plasmids pCGN2917 and pCGN2926 are transferred to 5 ml of MG/L broth and grown overnight at 30°C. Bacteria cultures are diluted to 1 x 10⁸ cells/ml with MG/L just prior to cocultivation. Hypocotyls are excised from eight day old seedlings, cut into 0.5-0.7 cm sections and placed onto tobacco feeder plates (Horsch et al. 1985). Feeder plates are prepared one day before use by plating 1.0 ml tobacco suspension culture onto a petri plate containing Callus Initiation Medium CIM without antibiotics (MS salts: B5 vitamins: 3 % glucose: 0.1 mg/L 2,4-D: 0.1 mg/L kinetin: 0.3% gelrite, pH adjusted to 5.8 prior to autoclaving). A sterile filter paper disc (Whatman #1) was placed on top of the feeder cells prior to use. After all sections are prepared, each section was dipped into an A. tumefaciens culture, blotted on sterile paper towels and returned to the tobacco feeder plates.

10

15

20

25

Following two days of cocultivation on the feeder plates, hypocotyl sections are placed on fresh Callus Initiation Medium containing 75 mg/L kanamycin and 500 mg/L carbenicillin. Tissue was incubated at 28±2°C, 30uE 16:8 light:dark period for 4 weeks. At four weeks the entire explant was transferred to fresh callus initiation medium containing antibiotics. After two weeks on the second pass, the callus was removed from the explants and split between Callus Initiation Medium and Regeneration Medium (MS salts: 40mM KNO3: 10 mM NH4Cl:B5 vitamins:3% glucose:0.3% gelrite:400 mg/L carb:75 mg/L kanamycin).

Embryogenic callus was identified 2-6 months following initiation and was subcultured onto fresh regeneration medium.

Embryos are selected for germination, placed in static liquid Embryo Pulsing Medium (Stewart and Hsu medium: 0.01 mg/l NAA: 0.01 mg/L kinetin: 0.2 mg/L GA3) and incubated overnight at 30°C. The embryos are blotted on paper towels and placed into Magenta boxes containing 40 mls of Stewart and Hsu medium solidified with Gelrite. Germinating embryos are maintained at 28±2°C 50 uE m⁻²s⁻¹ 16:8 photoperiod. Rooted plantlets are transferred to soil and established in the greenhouse.

Cotton growth conditions in growth chambers are as follows:

16 hour photoperiod, temperature of approximately 80-85°, light intensity of approximately 500µEinsteins. Cotton growth conditions in greenhouses are as follows: 14-16 hour photoperiod with light intensity of at least 400µEinsteins, day temperature 90-95°F, night temperature 70-75°F, relative humidity to approximately 80%.

Plant Analysis

5

20

25

anthesis in the greenhouse. Squares (cotton flower buds), flowers, bolls etc. are harvested from these plants at various stages of development and assayed for enzyme activity. GUS fluorometric and histochemical assays are performed on hand cut sections as described in co-pending application filed for Martineau et al., supra. For fiber color characteristics, plants are visually inspected, or northern or western analysis can be performed, if necessary.

Example 11

Expression of Transgenic Pigment Synthesis Genes

Melanin

5

10

15

20

25

Plants that exhibited resistance to the kanamycin selectable marker via a leaf assay and corresponding Western analysis were considered transformed. Transgenic fiber was collected from individual plant transformants at different stages of fiber development and analyze in two ways. One was to analyze fiber at a single developmental time point for each transgenic cotton plant to compare tyrosinase expression between transgenic events. The other was to screen developing fiber from selected plants to analyze the timing of tyrosinase expression under the control of the fiber-specific 4-4 promoter, by Western blots using antisera prepared against purified tyrosinase protein.

For the plastid-targeted construct pCGN5148 9 of 13 events screened for tyrosinase expression were positive, while 13 of the 16 transformed vacuolar-targeted construct pCGN5149 events which were screened were positive. Expression level in the fiber in tyrosinase positive plants is approximately 0.1-0.5% fiber cell protein. Clearly, the cotton fiber cells comprising the DNA color constructs DNA produce the necessary proteins required for synthesis of a pigment.

Visually, the lint from the tyrosinase positive events
exhibits color to varying degrees, while plants that do not
express the enzyme do not exhibit any color. Colorimeter
measurements of cotton fiber taken from control Coker 130 plants

and plants from various events transformed with pCGN5148 are provided in Figures 9 and 10, respectively.

Fiber from pCGN5148 (plastid-directed) plants demonstrates a bluish-green color phenotype. One event, 5148-50-2-1 included cotton fiber cells (linters) which were colored and which had an negative a* value less than - 8.0, as measured on the L*a*b* color space. Coker 130 cotton fiber cells do not typically demonstrate a negative a* value.

These colored cotton cells also had a color located on the L*C*h color space with a relatively high hue angle value h, greater than 135°. Normal Coker 130 fibers have a similar value which is not greater than about 90° as measured by this method.

Results of colorimeter measurements of cotton fiber taken from plants transformed with pCGN5149 are provided in Figure 11. Fiber from plants expressing tyrosinase from construct pCGN5149 (vacuolar-targetted) tends to have a light brown phenotype.

<u>Indigo</u>

5

10

15

20

25

Resistance to the kanamycin selectable marker via leaf assay and Western analysis was again the criterion for designating a plant as transformed by pCGN5616. Transgenic fiber was collected from individual plant transformants at different stages of fiber development. The transgenic developing fiber is screened from selected plants to analyze the timing of tna and pig gene expression under the control of the fiber-specific 4-4 promoter and fiber is also analyzed at a single developmental time point for each transgenic cotton plant for comparison of both

tryptophanase and indole oxygenase expression between transgenic events, by using Western blots with antisera prepared against the tryptophanase and indole oxygenase proteins.

For the indigo events, 15 of 24 screened plants were positive for expression of both the tryptophanase and indole oxygenase enzymes. Expression levels in the fiber of these proteins is between 0.05-0.5% fiber cell protein. Approximately half of these transformants are expressing both genes in the fiber resulting in a very faint light blue color phenotype. Visually, there is a faint blue color in the majority of these positive events, particularly in 20-30 dpa fiber in the unopened boll. Results of colorimeter measurements of cotton fiber taken from various events of plants transformed with pCGN5616 are provided in Figure 12. Many of these events had relatively low a* values (less than 2) with elevated b* values (greater than 10), as measured on the 15 L*a*b* color space. Similarly, several 5149 events also measured with an a* value less than 2 while maintaining a b* value greater than 10.

20 BC Cotton

25

10

Colorimeter measurements taken on naturally colored fiber from four separate BC cotton lines is provided in Figure 13.

The above results demonstrate that the color phenotype of a transgenic cotton fiber cell can be altered by expressing pigment synthesis genes. The transgenic cotton fiber cells include both a pigment synthesizing protein, and pigment produced by the pigment

synthesizing protein. As shown from the results of Figures 9 through 13, expression of a pigment gene of interest can result in cotton fiber cells in which the synthesis of pigments combined with appropriate targeting sequences results in modification of color phenotype in the selected plant tissue, yielding colored cotton fiber by expression from a genetically engineered construct.

5

10

15

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application are specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail, by way of illustration and example for purposes of clarity and understanding, it will be readily apparent to those of ordinary skill in the art that certain changes and modifications may be made thereto, without departing from the spirit or scope of the appended claims.

CLAIMS

What is claimed is:

15

A DNA construct comprising as operably joined
 components in the direction of transcription, a cotton fiber transcriptional factor and an open reading frame encoding a protein of interest, wherein said transcriptional factor is selected from the group consisting of the Ltp, the 4-4 and the rac promoter sequences.

- 2. The DNA construct according to Claim 1, further comprising a transport signal encoding sequence from a plant nuclear-encoded gene.
 - 3. The DNA construct according to Claim 2, wherein said transport signal encoding sequence comprises a plastid transit peptid.
 - 4. The DNA construct according to Claim 1, wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
- 5. The DNA construct according to Claim 4, wherein said sequence further comprises, 3' to said open reading frame, a vacuolar localization signal.
 - 6. The DNA construct of Claim 1 wherein said pigment is melanin or indigo.
- 7. The DNA construct of Claim 6 wherein said open reading frame is from a bacterial gene.

8. The DNA construct of Claim 7 wherein said bacterial gene is selected from the group consisting of ORF438, tyrA, anthocyanin R gene, anthocyanin Cl gene, pig, and tna.

- 9. A plant cell comprising a DNA construct of Claim 1.
- 10. A cotton plant cell according to Claim 9.

5

25

- 11. A cotton fiber cell according to Claim 10.
- 12. A plant comprising a cell of any one of Claims 9-11.
- 13. A method of modifying fiber phenotype in a cotton10 plant, said method comprising:

transforming a plant cell with DNA comprising a construct for expression of a protein in a pigment biosynthesis pathway, wherein said construct comprises as operably joined components:

a transcriptional initiation region functional in cells of said cotton plant,

an open reading frame encoding a protein of interest, and

a transcriptional termination region functional in cells of said cotton plant,

wherein said plant cell comprises a substrate of said protein; and

growing said plant cell to produce a cotton plant,
wherein said protein reacts with said substrate to produce
said pigment.

14. The method of Claim 13 wherein said construct further comprises a transport signal encoding sequence from a plant nuclear-encoded gene.

- 15. The method of Claim 13 wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
 - 16. The method of Claim 13 wherein said DNA comprises constructs for expression of two proteins in a pigment biosynthesis pathway, wherein each of said constructs comprises components i) through iv), and wherein said two proteins are not encoded by the same gene.

10

25

- 17. The method of Claim 16 wherein said pigment is melanin and said proteins are encoded by tyrA and ORF438.
- 15 18. The method of Claim 16 wherein said pigment is indigo and said proteins are tna and pig.
 - 19. The method of Claim 16 wherein said pigment is anythocyanin and said constructs comprise the anthocyanin R and C1 regulatory genes.
- 20. The method of Claim 13 wherein plant cell is a cotton fiber cell, and wherein said transcriptional region is a fiber tissue transcription iniation region.
 - 21. The method of Claim 20 wherein said transcriptional region is selected from the group consisting of the Ltp, the 4-4 and the *rac* promoter sequences
 - 22. A recombinant DNA construct comprising the cotton tissue transcriptional sequence shown in Figure 2.

23. A recombinant DNA construct comprising the cotton tissue transcriptional sequence shown in Figure 5.

- 24. An isolated DNA encoding sequence of Figure 1.
- 25. An isolated DNA encoding sequence of Figure 4.
- 26. The method of Claim 13 wherein said protein of interest is involved in the synthesis of a plant hormone.

5

- 27. An isolated DNA sequence comprising the cotton lipid transfer protein encoding sequence of Figure 7.
- 28. A cotton fiber cell comprising a DNA sequence, wherein said DNA sequence comprises as operably joined components in the direction of transcription, a cotton fiber transcriptional factor and an open reading frame encoding a protein required for synthesis of a pigment.
- 29. A cotton fiber cell according to Claim 27 comprising
 15 pigment produced by said pigment synthesizing protein.
 - 30. A cotton fiber cell according to Claim 27 wherein said DNA sequence further comprises a transport signal encoding a sequence from a plant nuclear-encoded gene.
- 31. A cotton fiber cell according to Claim 29, wherein said transport signal encoding sequence comprises a plastid transit peptid.
 - 32. A cotton fiber cell according to Claim 29, wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
- 33. A cotton fiber cell according to Claim 31, wherein said sequence further comprises, 3' to said open reading frame, a vacuolar localization signal.

34. A cotton fiber cell according to Claim 27 wherein said transcriptional factor is selected from the group consisting of the cotton fiber lipid transfer promoter sequence, the 4-4 promoter sequence and the rac promoter sequence.

- 5 35. A cotton fiber cell according to Claim 27 wherein said pigment is melanin or indigo.
 - 36. A cotton fiber cell according to Claim 27 wherein said open reading frame is from a bacterial gene.
- 37. A cotton fiber cell according to Claim 35 wherein said bacterial gene is selected from the group consisting of ORF438, tyrA, anthocyanin R gene, anthocyanin C1 gene, pig, and tna.
 - 38. A cotton fiber cell comprising melanin.
 - 39. A cotton fiber cell comprising indigo.
- 40. A cotton fiber cell which is colored by genetic

 15 engineering and which has a negative a* value less than 1.0 as

 measured on the L*a*b* color space.
 - 41. The cotton fiber cell of Claim 39 wherein said negative a* value is less than a -5.0.
- 42. The cotton fiber cell of Claim 40 wherein said negative 20 a* value is less than a -8.0.
 - 43. A cotton fiber cell which is colored by genetic engineering and which has an a* value less than 2 and the b* value greater than 10 as measured on the L*a*b* color space.
- 44. A cotton fiber cell which is colored by genetic

 25 engineering and which has a hue angle value h of greater than 100° as measured on the L*C*h color space.

45. The cotton fiber cell of Claim 43 wherein said h value is greater than a 135°.

٨	٨		٨	^		٨					
TTC Phe>	CAC His>		TCA Ser>	TCT Ser>	240	AAG Lys>	GAA Glu>		AAA Lys>	AAA Lys>	
TTC	AGC Ser	140	ACC	GAG Glu		GAG Glu	CAT His		GAT Asp	380 GAG Glu	
40 CCT Pro	GGT Gly	-	ACA Thr	GAA Glu		CAT	80 CAT His		TAC	3 CAC His	
CAT His	ATC		CAA Gln	CAC His		AAA Lys	28 AAA Lys		GAG Glu	GAG Glu	
CGT	ATG Met		ACA Thr	180 AAG Lys		CCA	TGC		GAA Glu	AAA Lys	420
TTT Phe	80 CTA Leu		CAC	GAA Glu		TAC	CCC	320	CAC His	CCT	
AAC Asn	TCA		TTC	TAC	220	GAG Glu	CAA AAA CCC Gln Lys Pro	(M)	GAG Glu	AAG Lys	
CAT His	GTC Val		TTA	AAA TAC Lys Tyr	22	GAA Glu	CAA Gln		AAG Lys	GAA Glu	
GCT	ACT	120	CAT	TCA		CAT His	AAA Lys		TCG	360 TGG Trp	
20 ATG Met	ATT Ile		CGA Arg	GCT		$\mathtt{TAT}\\\mathtt{TY}_{\mathcal{I}}$	260 GAA Glu		GAA Glu	AAA Lys	
ACC Thr	CTC		GCT	50 TTG Leu		AAA Lys	GAG Glu		CGC Arg	CCC	0
TTA Leu	TTA Leu		GCG Ala	160 CAA TTG Gln Leu		CCA	AAG Lys		TCA	TTC	400
TGG	60 CTT Leu		TCA	CCA		CAG Gln	TAC	300	GAG Glu	GAT Asp	
ATT Ile	CAA Gln		TCG	CTG	200	AAA Lys	ATG Met		CAC His	CCC	
TCT	TTC	100	GTC	GAG Glu	.,	$\mathbf{T}\mathbf{A}\mathbf{C}$	GAA Glu		TAC	AAA Lys	
CTT	CTT	ĭ	ACC	TCA		GAA Glu	CCT		GAG Glu	340 GAA AU Glu Ly	

FIGURE 1A

AAG GAC AAA CAA GAT Lys Asp Lys Gln Asp>

TAC

GAA TAT CCG AAA ATA CCC GAG Glu Tyr Pro Lys Ile Pro Glu

GAA GTC Glu Val

CAC

FIGURE 1B

480 TCG Ser>		TGG Trp>	ATA Ile>		GAG Glu>	ATA Ile>	720	TAC Tyr>	CAT His>	
GAA Glu		AAA Lys	aaa Lys	620	CAT	GGC G1y		GTT Val	GTG Val	
CAC His	520	CCC Pro	CCG	w	AAA Lys	AAA Lys		CAT His	50 CTG Leu	
TCA	52	TTC	TAT Tyr		CAT His	GAG Glu		GTC Val	760 ACA CTG Thr Leu	
GAG Glu		GAT Asp	GAA Glu		GAA Glu	660 CCT Pro		GAA Glu	ATG	
CAG Gln		CCC	560 GCC Ala		AAG Lys	aaa Lys		GCC	CAT	800
460 G TGC u Cys		AAA Lys	5 AAA Lys		GAT Asp	AAG Lys	0,*	ATG	AGC	w
46 GAG Glu		GAA Glu	CAT His		GAG Glu	GAG Glu	700	TGA * * *	TTA	
GAA Glu		AAA Lys	AAA Lys	009	GAT Asp	GAG Glu		GCC	GCC	
gat Asp	200	GAG Glu	GAG Glu		CTA	GAA Glu		AAT Asn	740 TAA ***	
AAA Lys	υ,	TAC	CAC His		AAA Lys	640 GAA AAA Glu Lys		TAA ***	CAC	
CAT		GAG	GGG Gly		GAA Glu	64 GAA Glu		GGT	GAG Glu	
AAA Lys	,	GAA Glu	540 AAA Lys		AAG Lys	CAT His		GTG Val	CTC Leu	780
440 AAG Lys		CAC His	CCT		TGC	AAG Lys	089	TGA * * *	TGG	
AAT Asn		GAG Glu	AAG Lys	580	GAG Glu	CCA		CCC	GTC Val	
GAG Glu		AAA Lys	GAA Glu	25	CCT	TTC		GTA Val	TCA	

U
러
61
2
Ö
ខ
F

GTT Val>	TGA ***>		AGT Ser>	960 ATG Met>	
ATT Ile	860 CCA Pro		TAT Tyr	TGT Cys	
TAT Tyr	S CAT His		$_{\rm GGT}^{\rm GGT}$	TGT Cys	
AAT Asn	ATT Ile		AAT Asn	GAA Glu	
$ extsf{TGT}$	TGC Cys	006	CTG	TTT	
TAT Tyr	GTG Val		ATT Ile	AAT Asn	
GGA Gly	TGT Cys		GAG	940 GAA ATT Glu I le	
ATG Met	ATG		ATA Ile	94 GAA Glu	
TTC Phe	840 GAA Glu		TGC	AGT Ser	
AAT Asn	TGG Trp		GCA Ala	TCT	·
AGT Ser	GAG Glu	880	TTT Phe	TGT Cys	
TGC	GGT Gly	88	CTC	GTT Val	
TCA	GAT Asp		AAT Asn	ATC Ile	
TCA	AAA Lys		CTG	920 F TAT	₽ XXX
CCA	20 AAA Lys		ATG Met	TGT Cys	TGT Cys
GTG Val	82 AAT Asn		GCA Ala	TTA	TAA * * *

80 ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGA ACTAGTGGAT	120	CCCCCGTGGA CTAAACAAAA CATGGGAAGA TTTGCTGTAA AAAAATAAAA GAAGCTTACT	160 TATACAAAAG ACTCAATGAA AAACAATAAC TCAATACACT	240	CTTTATATAG GCTGAAACTA CAACAACTTT AGCTAAAAAA	300	ATAGGATAAC CTAATAGCAA AATCACAATC AGAT ATTAAA CCATGATTTT AGCTAACCAT	360 TGATATGCCC AAGATTTTAG	420	GCCACTAACC GATTTGGTGG TGAACTTTAA CATGTCATGC ATTTGTAACT GTTTGAAACA	480 AGTTTTTGC ATTATTTAC TATATGAACT GTTTGATTAG GTTGAGTTAC ACACTGAGCT	540	TGTAAGCTCA CTCAAATTTT TCTAATTTCT AAGGTGATCA GCAAACTTAG GACCGGGGGG	009	CGTACGAGAG CTCGGATTGA TTTTCTAGTT AATAAATAAG ACGATTTATG TTTTTAAACT
CCGCTCTAG	,	AAAAATAAA	AAACAATAA		CAACAACTT		CCATGALT			ATTTGTAAC	GTTGAGTTA(GCAAACTTA		ACGATTTAT
40 cccarcacca	100	TTTGCTGTAA	160 ACTCAATGAA	220	GCTGAAACTA	280	AGATATTAAA	320 TATTGAAACT AATTTGAATA TITCATCTGC	400	CATGTCATGC	460 GTTTGATTAG	520	AAGGTGATCA	580	AATAAATAAG
GAGCTCCACC		CATGGGAAGA					AATCACAATC	AATTTGAATA		TGAACTTTAA	TATATGAACT		TCTAATTTCT		TTTTCTAGTT
20 ACAAAAGCTG	80	CTAAACAAAA	140 CAATAACACT TTGTGAATTG	200	TTTTTTCACT GATTTACATC	260	CTAATAGCAA		380	GATTTGGTGG	440 ATTATTTAC	500	CTCAAATTTT	260	CTCGGATTGA
ACTAAAGGGA		CCCCGTGGA	CAATAACACT		TTTTTCACT		ATAGGATAAC	TTAACAACTT		GCCACTAACC	AGTTTTTTGC		TGTAAGCTCA		CGTACGAGAG

rigure 2A

1260		1240		1220	
TCTGTTCTAC	ATCTGATGCA	TATTATTGAA	ATTGATTTGT	TTCTAATTAA	ATTGTGGCTA
1200		1180		1160	
GGCATGTGAC	CAATTCTTAT	TGTTTTATTC	GTATATAGTA	CGTGTGATAA	TGTTTTATCT
1140		1120		1100	,
1080 CTTTTGTGTG	ATGTTTTTT	1060 TTAACGAAAT	GATTGTCCGA	1040 TGATATGTAT	CTTCGATGAA
A'ITTTGTAAA	AAGGTCAAAG	TTGCATATTC	GAGTTTTAGA	AGTTAGGGCC	GAGTAAGTAT
1020		1000		980	
960 GGCTCATTTT	AGGGCGAGTG	940 GGAGTGTTAC	GGCGGGGTTT	920 ATAACATCTA	GTCTAGGCAA
GGGCGATATC	ATATGTTACA	ACACATGTTT	ACCAAAATTA GTATGTCAAA		AAATTGATTT
006		880		860	
TAAAAATTGG	AGTATTTTCC	AATTTTAACG AGTATTTTCC	ATAAATAAAT	СТСТААТАА	AGTGTTTTT
840		820		800	
780 TAATCATTTA	CAAAATAAAG	760 TTTTTCGCTG	TAACTTAGAA	740 CAAAATTCCA	TCACAGTTTT
ACAAACTAAG	ATATGTTTTT	* CTGCAAAATT	TATTTTAAA	TAGTAATTAT	TTTTGGATT
720		700		089	
660 ттатттастт	TTTTGTTTT	640 TGGGACTTTA	TGTAACTGTT	620 ATTATGGACT TTTTGGACTA	ATTATGGACT

Figure 2E

AAAGCATGGA ATCTCATGCC TACTGCTTTC TGTTAAAGAT ACGATTGCAA GTTTAACATG

1320	GGGATGATAT	1380 CTGGTGGTTT AACCACATAT	1440	TTCTGGAAAT	1500	GGATGGACGA	1560 GAAAAAATT	1620	AATTTTGGTC	1680 ATATGTGTTT	1740	ATCATTTCAG	1800	TCTCACATCA	1860 GACTAATTTT
	CTTACTATTT TGATTTTGTC CTTGCATGCT ATGTCACATT ACATGGGGTT GGGATGATAT		,	CGGTTATGGT GGCTCGACCG CCCATATCTG TTCTGGAAAT		TTATCTGTGA CTCTGGTGGC ATTGTCTACA ATTATTTGIT GGTGTTTTT GGATGGACGA	1560 GTGTGTTGCG GAGTTGGGTA GGAAATTTTC GAAAAAATT		TGCATTGIGT TITICIGAAA AATATIGCAT TAACATAATC AIGCATICIC AATTITIGGIC	1640 AATTGAACGT TATAAAATTC TCTATGATAT CCTGATCTGT TTATTACATT ATATGTGTTT		ATGCTTGAGT TAAGTCAAAC ATTGAGATTC ATAGCTCACC CAATTATTTA ATCATTTCAG		GCAATCTGCA GACTTAGGAT TGGATGGCGT TCAGGAGCTT GGATTGGTTT	1860 TGGACTGTCT GACTAATTTT
1300	ATGTCACATT	1340 GGTAAGGAGG AAGTTTTGAC AGTTTTAATGA TTTGCACTAT	1420	GGCTCGACCG	1480	ATTATTTGIT	1540 GAGTTGGGTA	1600	TAACATAATC	1660 CCTGATCTGT	1720	ATAGCTCACC	1780	TCAGGAGCIT	1840 AATTAAAATT TATGGACTTT
	CTTGCATGCT	AGTTTAATGA				ATTGTCTACA			AATATTGCAT	TCTATGATAT		ATTGAGATTC		TGGATGGCGT	AATTAAAATT
1280	TGATTTTGTC	1340 AAGTTTTGAC	1400	ATCTTGACTG	1460	crcrecreec	1520 GTCGTGGGGA ACTCTATTTG	1580	TTTTCTGAAA	1640 TATAAAATTC	1700	TAAGTCAAAC	1760	GACTTAGGAT	1820 AATAATTATT
	CTTACTATTT	GGTAAGGAGG		TTGTTATGGC		TTATCTGTGA	GTCGTGGGGA		TGCATTGTGT	AATTGAACGT		ATGCTTGAGT		GCAATCTGCA	1820 TATTTTTA AATAATTATT

Figure 2C

1920	TTAAATATTC	1980 TTTTTCAAAA TTGAAACGTT	2040	AAGATTAAAT	2100	TTTGAACATA	2160 TCTTTTTGT	2220	CTTTAAGTAG	2280 GCTACAGTAG	2340	CTACAACTTT	2400	ATTTATTACG	2460 TTCAATTCAG
	GATAATTATT	TTTTCAAAA		GTTTTTAGA		AATGTATGTT	2140 AATAAACGGA AATATCTTCT		TTGGGGAGCA AATAATCTAG	AGTTTGCTGT		AGGGTCGAAT		ATCTATAATA	TATAAGTCAG
1900	CAGAATTITIA TITIGGITITI GGGTITITGIT GAAT ITITIA GATAATITATI TIAAATATIC	1960 GTTCGAATTT	2020	TAAGAATTTT TACTACTGCA AATTCAGAAT AAGT GAATT T GTTTTTAGA AAGATTAAAT	2080	AAGTTAGTAT TACGATTTTT AGTTTGATTT GGTGGAAAGT AATGTATGTT TTTGAACATA		2200	TTGGGGAGCA	2260 TTCTAGGCTG	2320	TAAGTCTATA GAAACTTACC TGACAAAACG ACATGACGTC AGGGTCGAAT CTACAACTTT	2380	TCCTTTTTCT TCAATTAACA TATGGTTGAT TCAAGTTCCG	2440 CTATTATAAA
	GGGTTTTGTT	TGAAAAGGAT		AATTCAGAAT		AGTTTGATTT	TTTTCTAGGG		AAACAACGTT	TGGTCATAAC		TGACAAAACG		TATGGTTGAT	TTATATCATC
1880	TTTTGGTTTT	1940 TTCTGTTATT	2000	TACTACTGCA	2060	TACGALTTTT	2120 ATTATTTGAC AATAATTAAG	2180	AAAATTACTA ATGCAAGAAC AAACAACGTT	2240 TCTCAAAATC	2300	GAAACTTACC	2360	TCAATTAACA	2420 TTCAATTACC
	CAGAATTTTA	TGCATAATTT		TAAGAATTTT		AAGTTAGTAT	ATTATTTGAC		AAAATTACTA	TCAGTGTAAC		TAAGTCTATA		TCCTTTTTCT	ATTTATCAAT

Figure 21

2580 TTATATCTTT CAATCTAT TCATTTCAT CCTTTTATAA 2640		CATAAATTTC AAATTAATTT TGAAATATTT ACACTTTAGT	2680	ATTITICACTT TAGAAATTAA TCATITITICA CATCTAAGCA	2760 CAAATTTCAT GATTAGTTAG ATCAAGCTTT TGAGTCTTCA	2800 2820	AAAAACAAAC TTAAAATCAT TTATCAATTT GAACAACAAA	2880 CTTAAAAATG GCTTCTTTTG TTTCTTTTTG TTGCAAACGG	2920 2940	AGAITGACCA TATITITIA TTATGTTTTA ACATATAATA	2980 3000	ATACTTTGGT GAATGTGACA GTGGGGAGAT ACGTAAAGTA	3040 CAAGCAGTTG GCTGGTCTAC CCAAGAGTGA TCAAAGTTTG	3100 3120
	2540 TTATATCTTT CAAATTTAAG TI	2600 * CTCTCTATTA TCTATAATTA CA	2660	CCCTAAGTTC AAAACTATAA ATTTTCACTT	2720 TCAAATTTAA CCAAATGACA CA	2780	AAACATAAAA ATTACAAAAA AAAAACAAAC	2840 GCTTGGCCGA ATGCTAAGAG C1	2900	TGGAGAAAG AGGGAAATGA AGATTGACCA	2960	TTAATAATTT AATCATAATT ATACTTTGGT	3020 TTTTAACATT ATACTTTTTG CA	3080

Figure 2E

3720		3700		3680		
3660 TTTATGGAAA	TTATCATAAT	3640 AATACATAAT	3640 TTTACTTATT AATACATAAT TTATCATAAT TTTATGGAAA	3620 ATTTATTTCA ACATCGTATA	ATTTATTTCA	
TGATTTATAA	ATTTTAACTA	TCCACTAAAT	ACAATCGCTT	GATTATAATT ATGGTGGGAT ACAATCGCTT TCCACTAAAT ATTTTAACTA TGATTTATAA	GATTATAATT	
3600		3580		3560		
TATTAATTCT	TTTATTAGTA TATTAATTCT	TGATGATTTA	ATATTTACCT	TATAAGTATT	ACTTCAAAAT	
3540		3520		3500		
3480 CTCATGTTAT	GTTGAAACAA	3460 TTTCCTTAAT	AAAAATAATT	3480 AATAAAATTT AAATCTAAAT AAAAATAATT TTTCC TTAA T GTTGAAACAA CTCATGTTAT	AATAAAATTT	
ATTTTTCAA	AATTTAGTCT	TATTTTAATT	TTATTTCTAT	AATTTTGAAT CAATTAATTT TTATTTCTAT TATT TTAATT AATTTAGTCT ATTTTTCAA	AATTTTGAAT	
3420		3400		3380		
3360 CATAATATTA	AAATTACAAG	3340 AATTAACTTT	3340 TATAAAGTGT AATTAACTTT AAATTACAAG CATAATATTA	3320 ATAATATTAA AATATAGTAA	ATAATATTAA	
ATTTCGTAAC	CCATACTATA	TTGGAGCATT	TTATTTAGAT TCTTAATATT TTGGAGCATT CCATACTATA ATTTCGTAAC		TAAAATTATG	
3300		3280		3260		
TATTTTAAAA	TGTAATATTA	TATTACGGAA	TTGAATITITA	aaaaaactaa tgitggitgg ttgaatitita tattacggaa tgtaatatta tattitaaaa	AAAAACTAA	
3240		3220		3200		
3180 CACACACAAA	GGCCTGGTCA	3160 AAAATAAGGT	AAATGAAATT	3180 CTGCTCACAG AATAATGTTA AAATGAAATT AAAATAAGGT GGCCTGGTCA CACACAAA	CTGCTCACAG	
TTTAGTTCAA	AGGCAATTTG	TAATGGATAA	TTTTTGCCCA	AGCTGCCTTC AATGAGCCAA TTTTTGCCCA TAATGGATAA AGGCAATTTG TTTAGTTCAA	AGCTGCCTTC	

rigure 2F

3840

3820

3800

TTGAGACCAA GAAACATTAA GAGAACAAAT TCTATAACAA AGACAATTTA GAAAAAATG

3780 TACTITIAGG TATITIAAG TACTICITAAC CAAACACAAA AATICAAATIC AAATGAACTA

AATAAGATAA TATAACATAC GGAACATCTT ACTTGTAATC TTACATTCCC ATAATTTAT

20
igure
124

CCC TIT CIT CCT TIT CCA ACT TIT ACT CAT AAG TGT CTC ACT AGT GAC <Gly Lys Lys Lys Arg Lys Trp Ser Lys Ser Met Leu Thr Glu Ser Thr Val

3900	AATTATT ATCTAAATAA	3960 GAAAGATTAT ATTTTGTATA	4020	CACCITCITA ACATAATCCC ACCATAAGTC	4080 CCCACC AAACCATCTC		ACACA C AAA TAC <phe th="" val<=""><th>4180 TAG CAT TCG TCA Leu Met Arg ***</th><th></th></phe>	4180 TAG CAT TCG TCA Leu Met Arg ***	
3880	AACT AAATGTTGTC ACA	3940 TCATATATT	4000	IGAG CACCTTCTTA ACA!	4060 AACA ACGTGGGGGCC AAAT	4120	NCAC ATAGACAACA ATCO	4160 TCT TTC TAT TTG ATT AAC CAT GGC TCA TAG Arg Glu Ile Gln Asn Val Met Ala *** Leu	4220
3860	TATGAAAAT AATCTTATAT TACTCGAACT AAATGTTGTC ACAAATTATT ATCTAAATAA	3920 AGAAAACAC TTAATTTTTA TAACATTTTT	3980	TTTACGTAAA AATATTTGAC ATAGATTGAG	4080 AAGTATGTAG ATGAGAAATT GGTACAAACA ACGTGGGGCC AAATCCCACC AAACCATCTC	4100	TCATTCTCTC CTATAAAAGG CTTGCTACAC ATAGACAACA ATCCACACA C AAA TAC	4140 ACG TTC TTT TCT TTC TAT TTG A <arg a<="" arg="" gln="" glu="" ile="" lys="" td=""><td>4200</td></arg>	4200

4280 ACA Cys		CAC Val	ACG		AAC Val	CAA Leu			4580 4580 CGTCGACGGC TAGCGAAGAT CTTCGGGCCC GTCGAGCCTT GAATCATATG ACACTGGTGC	4640	TATATCGTAA TATATAGTTA ATAAAAAGA	4700	TGGTGATTGG GAAATGTGTG TGTGCATTCC TCCATGCACT AATGGTGAAT CTCTTTGCAT
GAC Val		AAG Leu	ATC Asp	4420	AAA Phe	AAT Ile	4520	9995	CACT		TAAA		TCTT
CGA	02	CGA	AGT Thr	44	AGG Pro	ACG	7'	נכככ	TG A		TA A		AT C
ATT Asn	4320	ATA Tyr	CAA Leu		AGG Pro	CAC Val		TTC	CATA		TAGT		GTGA
TTT Lys		AAA Phe	AGC Ala		AAA Phe	4460 AGT Thr		TCGACGAA TTCCCCCGGG	GAAT		TATA		AATG
ACG Arg		TTC	4360 ACA AAC Cys Val		TGC	ACG Arg		TCGA	4560 CCTT	4620	TAA	4680	ACT
4260 GGC TCG Ala Arg		GGC	43 ACA Cys		AAA	AGT ACC Thr Gly	o *	AAA ATC Phe Asp	4 GAGC	♥.	ATCG	4	ATGC
426 GGC Ala		ATT Asn	AAT Ile		CTG Gln	AGT Thr	4500	AAA Phe	GTC				TCC
AGC Ala		ACA Cys	CAG Leu	4400	AGC Ala	AAG Leu		AAG Leu	၁၁၁၅		ATGG		TTCC
GGC Ala	4300	CCC Gly	AGC	4	AGA	ATG		AGA	TCGG		TTTC		TGCA
TTC	4	GCT	AAA Phe		TTG	10 AGC Ala		ACG AGA Arg Ser	o E	o +	T.	0	o TG
TGT Thr		AGA Ser	ACG		AAC Val	4440 AAC AGC Val Ala		AGT	4540 AAGAT	4600	GCAG	4660	GTGT
CAC Val		ATC Asp	4340 AAT Ile		CAA Leu	GCA Cys		AAG Leu	AGCG		ATCATGCAGT AATTTCATGG		AAAT
4240 G CCA		CTC	crc Gln		ACT	CCT	4480	AAA Phe	1 190 1				99
TA Le		AAC Val	AGT	0	AGT Thr	AAC Val	44	AGC	GACG		ATGTGCCATC		GATT
CGG <pro< td=""><td></td><td>AGC <ala< td=""><td>GAG <leu< td=""><td>4380</td><td>AAG <leu< td=""><td>AAA <phe< td=""><td></td><td>AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<></td></phe<></td></leu<></td></leu<></td></ala<></td></pro<>		AGC <ala< td=""><td>GAG <leu< td=""><td>4380</td><td>AAG <leu< td=""><td>AAA <phe< td=""><td></td><td>AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<></td></phe<></td></leu<></td></leu<></td></ala<>	GAG <leu< td=""><td>4380</td><td>AAG <leu< td=""><td>AAA <phe< td=""><td></td><td>AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<></td></phe<></td></leu<></td></leu<>	4380	AAG <leu< td=""><td>AAA <phe< td=""><td></td><td>AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<></td></phe<></td></leu<>	AAA <phe< td=""><td></td><td>AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<></td></phe<>		AGG <pro< td=""><td>CGTC</td><td></td><td>ATGI</td><td></td><td>TGGT</td></pro<>	CGTC		ATGI		TGGT
						-		•					

Figure 2H

4760 ACATAGAAAT TCTAAATGGT TATAGTTTAT GTTATAGTGT ATGTTGTAGT GAAATTAATT	4820	TTAAATGITG TATCTAATGT TAACATCACT TGGCTTGATT TATGTTATGT	4880 TGATCATTAT ACTCTTCTAC	4940	GTTTTGTTTA AACTTTTAC AAGTTAAGAC ATGTATAAAT	0005	AATGTTAGCT ATCTTAGTAT GTTATTGATG	5060 ТАААТААТАА САААТААТТА	5120	TTGTAATATA ATACATTAAA TGCAACAAAA AATGAAATAA ATAAAATAAA	5180 ATTGTTATAA TATTGTAATA TAATATGTAC CATATTCTTA ACTGAAATAG GGTCTAACCT	5240	ATAATCCCTA AAATTTCAGT TTAAATATTT TTATACCTAC CATATTATTA GAACTCTTTT	5300	TAAATATATT AAAATTTTAA TTATACCAAT TTAATTAA
4740 TATAGTTTAT GTTATAGTGT	4800	TAACATCACT TGGCTTGATT	4860 ATTGTTAATT TAACATTGCT	4920		4980	ATAATTACAG GTTTTAGTTC AATGTTAGCT	5040 AATTCCACTT AAAATTTTAA	5100	TGCAACAAA AATGAAATAA	5160 TAATATGTAC CATATTCTTA	5220	TTAAATATTT TTATACCTAC	5280	TTATACCAAT TTAATTAAAC
4720 ACATAGAAAT TCTAAATGGT	4780	TTAAATGTTG TATCTAATGT	4840 ACTTTAATGA TATTGCATGT	4900	TATTAATTAT AAATGGCACT	4960	ATATGACAAT ATAATTACAG	5020 ATCTTAATTA CATTTAAACA	5080	TTGTAATATA ATACATTAAA	5140 ATTGTTATAA TATTGTAATA	5200	ATAATCCCTA AAATTTCAGT	5260	TAAATATATT AAAATTTTAA

gure 21

27
ure
119

5360 TTTAAAACTC	5420	CTCCACCCAG	5480 TGATCAGGGT	5540	CTCACTGCGT	
TCTTATCTAA		TTGTAACCTC	TGAGATGGCG		ATTACGCGCG	
5320 S340 S320 ATCTAAAATTA TCCTAATTA TCTTATCTAA TTTAAAACTC	5400	TAATTATCCT AATTTAATTT AAATTCTTAA TTATCTTAAT TTGTAACCTC CTCCACCAG	5480 CTAGATGCTG GACCCGAATC CGGGAGATTA CATCGGCCAT TGAGATGGCG TGATCAGGGT	5520	TIGGCGCGCC GGTACCCAAT TCGCCCTATA GIGAGIICGI ATTACGCGCG CICACIGCGI	
TATTAATAAA		AAATTCTTAA	CGGGAGATTA		TCGCCCTATA	
5320 TTATTTAACC	5380	AATTTAATTT	5440 GACCCGAATC	5500	GGTACCCAAT	
ATCTAAAATT		TAATTATCCT	CTAGATGCTG		TTGGCGCGCC	الرازادية

60 ATCCCCCGTG	120	CTCAATAACA	180 CTTTTTTCA	240	AAATAGGATA	300	ATTTAACAAC	360 CCAAGATTTT AGGCCACTAA	420	CAAGTTTTTT	480 CTTGTAAGCT	540	GGCGTACGAG	009	CTATTÀTGGA
CCGCTCTAGG		AAGAAGCTTA	ACTCAATACA		TTAGCTAAAA		TTAGCTAACC			CTGTTTGAAA	ACACACTGAG		AGGACCGGGC		TGTTTTAAA
20 ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGG ATCCCCCGTG	100	GACTAAACAA AACATGGGAA GATTTGCTGT AAAAAAATAA AAGAAGCTTA CTCAATAACA	180 CTITGIGAAT TGTATACAAA AGACTCAATG AAAAACAATA ACTCAATACA CTITTTTTCA	220	CTGATTTACA TCCTTTATAT AGGCTGAAAC TACAACAACT TTAGCTAAAA AAATAGGATA	280	AAAATCACAA TCAGATATTA AACCATGATT TTAGCTAACC ATTTAACAAC	320 TTTATTGAAA CTAATTTGAA TATTTCATCT GCTGATATGC	400	CCGATTTGGT GGTGAACTTT AACATGTCAT GCATT TGTAA CTGTTTGAAA CAAGTTTTTT	480 GCATTATTIT ACTATATGAA CTGTTTGATT AGGTTGAGTT ACACACTGAG CTTGTAAGCT	520	CACTCAAATT TTTCTAATTT CTAAGGTGAT CAGCAAACTT AGGACCGGGC GGCGTACGAG	580	AGCTCGGATT GATTTTCTAG TTAATAAATA AGACG ATTTA TGTTTTAAA CTATTA [†] TGGA
GAGCTCCACC		GATTTGCTGT	AGACTCAATG		AGGCTGAAAC		TCAGATATTA	TATTTCATCT		AACATGTCAT	CTGTTTGATT		CTAAGGTGAT		TTAATAAATA
20 ACAAAAGCTG	80	AACATGGGAA	140 TGTATACAAA	200	TCCTTTATAT	260		320 CTAATTTGAA	380	GGTGAACTTT	440 ACTATATGAA	500	TTTCTAATTT	560	GATTTTCTAG
ACTAAAGGGA		GACTAAACAA	CTTTGTGAAT		CTGATTTACA		ACCTAATAGC	TTTATTGAAA		CCGATTTGGT	GCATTATTTT		CACTCAAATT		AGCTCGGATT

Figure 37

1260		1240		1220	
ACAAAGCATG	CATCTGTTCT	AAATCTGATG	TAITCTAAIT AAAITGAITI GITAITAITG AAAICIGAIG CAICTGITCI ACAAAGCAIG	AAATTGATTT	TATTCTAATT
1200		1180		1160	
ACATTGTGGC	TATGITITAT ICCAAITCIT AIGGCAIGIG ACATIGIGGC	TCCAATTCTT	TATGTTTTAT	AAGTATATAG	CTCGTGTGAT
1140		1120		1100	
1080 TGTGTTTTAT	TTCTTTTGTG	1060 ATATGITITI	1060 GATTAACGAA ATATGTTTTT	1040 AATGATATGT ATGATTGTCC	AATGATATGT
AACTTCGATG	TCAAGGTCAA AGATTTTGTA AACTTCGATG	TCAAGGTCAA	CCGAGTTTTA GATTGCATAT	CCGAGTTTTA	ATAGTTAGGG
1020		1000		980	
960 TTGAGTAAGT	TGGGCTCATT	940 TYGGAGTGTT ACAGGGCGAG		920 TAGGCGGGGT	AAATAACATC
TCGTCTAGGC	CAGGGCGATA	TTATATGTTA	TAGTATGTCA AAACACATGT TTATATGTTA CAGGGCGATA		TTACCAAAAT
006		880		860	
GGAAATTGAT	CCTAAAAATT	CGAGTATTT	TTCTGTAATA AAATAAATAA ATAATTTTAA CGAGTATTTT	AAATAAATAA	TTCTGTAATA
840		820		800	
780 TAAGTGTTTT	AGTAATCATT	760 AATTTTTCGC TGCAAAATAA		740 CATAACTTAG	TTCAAAATTC
AGTCACAGTT	TTACAAACTA	TTATATGTTT	TTTAGTAATT ATTATTTTA AACTGCAAAA TTATATGTTT TTACAAACTA AGTCACAGTT	ATTATTTTA	TTTAGTAATT
720		700		089	
660 Titttitgga	TTTTATTTGC	640 TTTGGGACTT TATTTTTTTT		620 CTTTTTGGAC TATGTAACTG	CITITITIGGAC

Figure 3B

GAATCTCATG CCTACTGCTT TCTGTTAAAG ATACGATTGC AAGTTTAACA TGCTTACTAT

1860 CTGACTAATT TTCAGAATTT		1820 TTAATTAAAA TTTATGGACT TTTGGACTGT	1820 TTAATTAAAA	TAAATAATTA	
TTTCTCACAT CATATTTAT		GTTCAGGAGC	CAGACTTAGG ATTGGATGGC GTTCAGGAGC TTGGATTGGT	CAGACTTAGG	
1800	1780		1760		
TAATCATTTC AGGCAATCTG		TCATAGCTCA	GTTAAGTCAA ACATTGAGAT TCATAGCTCA CCCAATTATT	GTTAAGTCAA	
1740	1720		1700		
1680 TTATATGTGT TTATGCTTGA		1640 TCTCTATGAT ATCCTGATCT GTTTATTACA		GTTATAAAAT	
TCAATTTTGG TCAATTGAAC	TCATGCATTC	ATTAACATAA	AAAATATTGC	GTTTTTCTGA	
1620	1600		1580		
1560 TCGAAAAAA TTTGCATTGT	1540 CGGAGTTGGG TAGGAAATTT TC	CGGAGTTGGG	1520 GAACTCTATT TGGTGTGTTG	GAACTCTATT	
GACTCTGGTG GCATTGTCTA CAATTATTTG TTGGTGTTT TTGGATGGAC GAGTCGTGGG	TTGGTGTGTT TT	CAATTATTTG	GCATTGTCTA	GACTCTGGTG	
1500	1480		1460		
GCATCITGAC IGCGGTTAIG GIGGCICGAC CGCCCAIAIC IGTICIGGAA ALTIAICIGI	CGCCCATAIC TG	GTGGCTCGAC	rgcggttatg	GCATCTTGAC	
1440	1420		1400		
1380 TTAACCACAT ATTTGTTATG		1360 GATTTGCACT ATCTGGTGGT	1340 ACAGTTTAAT	GGAAGTTTTG	
TTGGGATGAT ATGGTAAGGA	CTATGTCACA TTACATGGGG TT	CTATGTCACA	TCCTTGCATG	TTTGATTTTG	
1320	1300		1280		
) 			

Figure 3C

1900 TAGATAATTA 1960 TTTTTTTTTAA 2020 TTGTTTTTTA 2080 GAAATATCT 2200 CAAATAATCT 2260 TGAGTTTGC 2320 TCAGGGTCGA 2380 CGATCTATAA	1920 TCTGCATAAT	1016CAIAAI 1980 TTTAAGAATT	TCTGCATAAT	2040 ATAAGTTAGT	2100 * TAATTATTTG	2160 GTAAAATTAC	2220	AGTCAGTGTA	2280 AGTAAGTCTA	2340	TITCCTITIT	2400	CGATTTATCA	2460 AGTTTTCGAA
1900 * 1960 * 1960 * 1960 * 2020 * 2080 * 2140 * 2200 * 3220 * * * * * * * * * * * * * * * * * *	1920 TTTTAAATAT TCTGCATAAT			GAAAGATTAA	TTTTGAACA	2160 CTTCTTTTT GTAAAATTAC		AGCTTTAAGT	2280 GTGCTACAGT AGTAAGTCTA		ATCTACAACT		TAATTTATTA	2460 AGTTCAATTC AGTTTTCGAA
	1900 * TAGATAATTA	1960 TTTTTTTCAA	TAGATAATTA	2020 TTGTTTTTA	2080 GTAATGTATG	2140 GAAATATCTT	2200		2260 TGAGTTTGCT	2320	TCAGGGTCGA	2380	CGATCTATAA	2440 AATATAAGTC
TTGAATTTT ATAAGTGAA TTGGTGGAA TTTTGGGGGA TTTTGGGGGA ACTTCTAGG	TTGAATTTTT	ATGTTCGAAT	TTGAATTTTT	ATAAGTGAAT	TTGGTGGAAA	GGAATAAACG		TTTTGGGGAG	ACTTCTAGGC		CGACATGACG		ATTCAAGTTC	2440 TCCTATTATA AATATAAGTC
TATTTTGGTT TTGGGTTTTG TTGAATTTTT TTTTACTGTTA TTTGAAAAGG ATGTTCGAAT 2000 ATTACTACTG CAAATTCAGA ATAAGTGAAA 2120 ACAATAATTT TTAGTTTGAT TTGGTGGAAA 2180 TAATGCAAGA ACAAACAACG TTTTGGGGAG 2240 ACTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		11GGG1111G 1940 TTTGAAAAGG		2000 * CAAATTCAGA	2060 TTAGTTTGAT	2120 AGTTTTCTAG	2180	ACAAACAACG	2240 TCTGGTCATA	2300	CCTGACAAA	2360	CATATGGTTG	2420 CCTTATATCA
TTTTCTGTTA TTTACTACTG TTTACTACTG ACAATAATTA ACAATCAAAA ACTCTCAAAAA CTTCAATTAA	TATTTTGGTT	TTTTCTGTTA	TATTTGGTT	TTTACTACTG	ATTACGATIT	ACAATAATTA		TAATGCAAGA	ACTCTCAAAA		TAGAAACTTA		CTTCAATTAA	ATTTCAATTA

figure 3

AAGCTTGGCC 2880 GGTGGAGAGA 2940 TATTAATAAT 3000 TATTTTAACA TGAGCTGCCT	TTGAACAACA TGTTGCAAAC TAACATATAA ATACGTAAAG		ACTTAAAATC TGGCTTCTTT CATATTTTTT GTGAATGTGA	AGAGGGAAAT AAAAAACAA ACTTAAAATC ATTTATCAAT 2840 GAATGCTAAG AGCTTAAAAA TGGCTTCTTT TGTTTCTTTT 2920 3920 TTAATCATAA TTATACTTTG GTGAATGTGA CAGTGGGGAG TTAATCATAA TTATACTTTG GTGAATGTGA CAGTGGGGAG 3020 TTAATACTTTT TGCAAGCAGT TGGCTGGTCT ACCCAAGAGT 3080 3100	AAATTACAAA GAATGCTAAG AGAGGAAAT TTAATCATAA
GGTGGA	TGTTGCAAAC	2860 TGTTTCTTTT 2920	TGGCTTCTTT	2840 AGCTTAAAAA 2900	rgctaag
AAGCTTGGCC		ZOUU * ATTTATCAAT	ACTTAAAATC	AAAAAAACAA	Itacaaa
2760 CAAAACATAA	TTTGAGTCTT	2740 ATGATTAGTT AGATCAAGCT	ATGATTAGTT	2720 CACAAATTTC	AACCAAATGA
* CATCAAATTT	CACATCTAAG	TTTAGAAATT AATCATTTTT	TTTAGAAATT	AAATTTTCAC	TCAAAACTAT
GTCCCTAAGT 2700	TTACACTTTA	TTTGAAATAT 2680	тсаааттаат	TACATAAATT 2660	ТАТСТАТААТ
2640		2620		2600	
2580 ATCCTTTTAT AACTCTCTAT	ATCCTTTTAT	2560 TTCAATCCGA TTTCAATTTC	TTCAATCCGA	2540 TTCAAATTTA AGTTTCATTT	AAATTTA
AGTTATATCT	AAACCGAAAT	TTATTCCCTA	TTTATTAAAT	AGTTCCCAAA AATTTTGAAT TTTATTAAAT TTATTCCCTA AAACCGAAAT AGTTATATCT	rcccaaa
2520		2500		2480	

rigure 3E

3720		3700		3680	
3660 AATTGAGACC	3660 ATTTTATGGA AATTGAGACC	3640 TTAATACATA ATTTATCATA	TTAATACATA	3620 TATTTACTTA	CAACATCGTA
AAATTTATTT	TATGATTTAT	ATATTTTAAC	TTTCCACTAA	TTATGGTGGG ATACAATCGC TTTCCACTAA ATATTTTAAC TATGATTTAT AAATTTATTT	TTATGGTGGG
3600		3580		3560	
CTGATTATAA	TATATTAATT	TTATATTTAC CTTGATGATT TATTTATTAG TATATTAATT CTGATTATAA	CTTGATGATT		ATTATAAGTA
3540		3520		3500	
3480 AACTCATGTT ATACTTCAAA		3460 TTTTTCCTTA ATGTTGAAAC	TTTTTCCTTA	3440 TTAAATCTAA ATAAAATAA	TTAAATCTAA
AAAATAAAT	CTATTTTTC	TTTTATTTCT ATTATTTAA TTAATTTAGT CTATTTTTC AAAATAAAAT	ATTATTTAA		ATCAATTAAT
3420		3400		3380	
3360 TAAATTTTGA	AGCATAATAT	3340 GTAATTAACT TTAAATTACA AGCATAATAT TAAATTTTGA		3320 AAAATATAGT AATATAAAGT	AAAATATAGT
ACATAATAT	TAATTTCGTA	TTCCATACTA	TTTTGGAGCA	TGTTATTTAG ATTCTTAATA TTTGGAGCA TTCCATACTA TAATTTCGTA ACATAATAT	TGTTATTTAG
3300		3280		3260	
AATAAAATTA	ТАТАТТТАА	GGTTGAATTT TATATTACGG AATGTAATAT TATATTTAA AATAAATTA	TATATTACGG	GGTTGAATTT	AATGTTGGTT
3240		3220		3200	
3180 CACACACA AAAAAAACT		3160 TTAAAATAAG GTGGCCTGGT		3140 TAAAATGAAA	AGAATAATGT
AACTGGTCAC	TGTTTAGTTC	AAAGGCAATT	CATAATGGAT	TCAATGAGCC AATTTTTGCC CATAATGGAT AAAGGCAATT TGTTTAGTTC AACTGGTCAC	TCAATGAGCC

Figure 3F

AAGAAACATT	AAGAAACATT AAGAGAACAA ATTCTATAAC AAAGACAATT TAGAAAAAAA TGTACTTTTA	ATTCTATAAC	AAAGACAATT	TAGAAAAAA	TGTACTTTTA
GGTAATTTTA	3740 GGTAATTTTA AGTACTCTTA ACCAAACACA AAAATTCAAA TCAAATGAAC TAAATAAGAT	ACCAAACACA	3760 AAAATTCAAA	TCAAATGAAC	3780 TAAATAAGAT
	3800		3820		3840
AATATAACAT	AATATAACAT ACGGAACATC TTACTTGTAA TCTTACATTC CCATAATTTT ATTATGAAAA	TTACTTGTAA	TCTTACATTC	CCATAATTTT	ATTATGAAAA
	3860		3880		3900
ATAATCTTAT	ATAATCTTAT ATTACTCGAA CTAAATGTTG TCACAAATTA TTATCTAAAT AAAGAAAAC	CTAAATGTTG	TCACAAATTA	ттатстааат	AAAGAAAAAC
ACTTAATTTT	3920 ACTTAATTTT TATAACATTT	3940 TTTCATATAT TTGAAAGATT	3940 TTGAAAGATT	3960 ATATTTTGTA TATTTACGTA	3960 TATTTACGTA
	3980		4000		4020
AAAATATTTG	AAAATATTTG ACATAGATTG AGCACCTTCT TAACATAATC CCACCATAAG TCAAGTATGT	AGCACCTTCT	TAACATAATC	CCACCATAAG	TCAAGTATGT
AGATGAGAAA	4040 AGATGAGAAA TTGGTACAAA CAACGTGGGG CCAAATCCCA CCAAACCATC TCTCATTCTC	CAACGTGGGG	4060 CCAAATCCCA	CCAAACCATC	4080 TCTCATTCTC
	4100		4120		
TCCTATAAAA	TCCTATAAAA GGCTTGCTAC ACATAGACAA CAATCCACAC A CA AAT ACA CGT TCT	ACATAGACAA	CAATCCACAC	A CA AAT ACA	A CGT TCT

4140
TTT CTT TCT ATT TGA TTA ACC ATG G CTCATAGCAT TCGTCACCCT TTCTTCCTTT <Lys Lys Arg Asn Ser *** Gly His 4240 4220 4200

TCCAACTTTT ACTCATAAGT GTCTCACTAG TGACCGGTAG CCACACTGTT TCGGCAGCGG 4300 4280 4260

Figure 3G

	4900		4880		4860	
AATTTAACAT	ATGTATTGTT	TTTTACTTTA ATGATATTGC ATGTATTGTT AATTTAACAT	TTTTACTTTA	ATGTTATGTA	GATTTATGTT	
	4840		4820		4800	
CACTIGGCTT	4780 ATGTTAACAT	4780 TAGTGAAAKT AATTTTAAAT GTTGTATCTA ATGTTAACAT	4760 AATTTTAAAT	TAGTGAAAKT	4740 GTGTATGTTG	
TTATGTTATA	TGGTTATAGT	AAATTCTAAA	GCATACATAG	CACTAATGGT GAATCTCTTT GCATACATAG AAATTCTAAA TGGTTATAGT TTATGTTATA	CACTAATGGT	
	4720		4700		4680	
TTCCTCCATG	4660 TGTGTGTGCA	TTGGGAAATG	4640 AAGATGGTGA	4620 GTAATATATA GTTAATAAAA AAGATGGTGA TTGGGAAATG TGTGTGTG	4620 G TAATA TATA	
ATGGTATATC	CAGTAATTTC ATGGTATATC	CATCATCATG	GTGCATGTGC	CCTTGAATCA TATGACGCTG GTGCATGTGC CATCATCATG	CCTTGAATCA	
	4600		4580		4560	
ATTCGTCGAG	GCCCGGGGGA	AGCCGTCGAC	GATCTTCGCT	AAAATCTCGA CGGGCCCGAA GATCTTCGCT AGCCGTCGAC GCCCGGGGGA ATTCGTCGAG	AAAATCTCGA	
	4540		4520		4500	
TACGAGAAAG	4480 GCAAAAAGAG	AATCAAAGGA	4460 GAGTCACACG	4440 AACAGCATGA AGAGTACCAC GAGTCACACG AATCAAAGGA GCAAAAAGAG	4440 AACAGCATGA	
AAACCCTGCA	GGAAAAACAA	TGCAAAAGGA	AAGCCTGAAA	AAGAGTACTC AAAACTTGAG AAGCCTGAAA TGCAAAAGGA GGAAAAACAA AAACCCTGCA	AAGAGTACTC	
	4420		4400		4380	
AAGTATCACG	4360 CAAACAGCCA	AGCCAGAATA	4340 GAATACGAAA	4320 ACGAAAAGCA CGAAGAGTCT GAATACGAAA AGCCAGAATA CAAACAGCCA AAGTATCACG	4320 ACGAAAAGCA	
GCTTCAAAAT	CCCACAATTG	CATCAGAGCT	CAAGCAACCT	CTCGACGTTT ATTCGAGACA CAAGCAACCT CATCAGAGCT CCCACAATTG GCTTCAAAAT	CTCGACGTTT	

Figure 3H

CGCCCTATAG	GGCATTGAGA TGGCCTAGTA GTGATCAGGG TTTTCTAGAG GTACCCAATT CGCCCTATAG	TTTTCTAGAG	GTGATCAGGG	TGGCCTAGTA	GGCATTGAGA
	5500		5480		5460
AGATTACATC	CTTÄATTTGT AACCTCCTCC ACCCAGCTAG ATGCTGGACC CGAATCCGGG AGATTACATC	ATGCTGGACC	ACCCAGCTAG	AACCTCCTCC	CTTAATTTGT
	5440		5420		5400
TCTTGATTAT	5380 TGATTTAAAT	TATCCTAAIT	5360 ATCTAATTTA AAACTCTAAT	ATCTAATTTA	5340 TAATTATCTT
ATTAAATTCC	CTAAAATCTA AAATTTTATT TAACCTATTA ATTAAATTCC	AAATTTATT	CTAAAATCTA	TAAACTATTA ATTATCTTAA	TAAACTATTA
	5320		5300		5280
CAATTTAATT	5260 TATTAAAATT TTAATTATAC		5240 TTTTAAATA	5220 CTGCCATATT ATTAGAACTC	5220 CTGCCATATT
CAGTTTAAAT ATTTTTATAC		CCTAAAATTT	ACCTATAATC	CTTAACTGAA ATAGGGTCTA ACCTATAATC	CTTAACTGAA
	5200		5180		5160
GTACCATATT	ataaataaaa taaaatagca aataattgtt ataa <mark>tattgt aa</mark> tataatat gtaccatatt	ATAATATTGT	AATAATTGTT	TAAAATAGCA	ATAAATAAAA
	5140		5120		5100
aaaaaatgaa	5040 TTAATAAATA ATAACAAATA ATTATTGTAA TATAATACAT TAAATGCAAC AAAAAATGAA	TATAATACAT	5060 ATTATTGTAA	ATAACAAATA	5040 TTAATAAATA
ACTTAAAATT	GATGATCTTA ATTACATTTA AACAAATTCC ACTTAAAATT	ATTACATTTA		AGCTATCTTA GTATGTTATT	AGCTATCTTA
	5020		2000		4980
GTTCAATGTT	4960 ACAAGTTTTA	CAATATAATT	4940 AGACATGTAT AAATATATGA	AGACATGTAT	4920 TTACAAGTTA
TTTAAACTTT	TGCTTGATCA TTATACTCTT CTACTATTAA TTATAAATGG CACTGTTTTG TTTAAACTTT	TTATAAATGG	CTACTATTAA	TTATACTCTT	TGCTTGATCA

ligure 31

20	86	146	194	242	290	338	386	434	482
ATG AGC ACT GCA AGA TTT ATC AAG TGT GTC ACG GTC GGT GAT Met Ser Thr Ala Arg Phe Ile Lys Cys Val Thr Val Gly Asp 1	GCT GTG GGG AAA ACT TGT ATG CTC ATT TCA TAT ACC AGC AAT ACT 98 Ala Val Gly Lys Thr Cys Met Leu Ile Ser Tyr Thr Ser Asn Thr 20	CCA ACG GAT TAT GTT CCA ACA GTA TTT GAT AAC TTT AGT GCC AAT 146 Pro Thr Asp Tyr Val Pro Thr Val Phe Asp Asn Phe Ser Ala Asn 35	GTG GTG GAT GGC ACA GTG AAC CTT GGC CTA TGG GAC ACT GCC 194 Val Val Asp Gly Ser Thr Val Asn Leu Gly Leu Trp Asp Thr Ala 50 55	CAA GAA GAT TAT AAT AGG CTA AGG CCA CTG AGT TAT AGA GGA GCT 242 Gln Glu Asp Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Ala 65	GTG TTT TTG TTG GCC TTT TCT CTT ATA AGC AAG GCC AGT TAT GAA 290 Val Phe Leu Leu Ala Phe Ser Leu Ile Ser Lys Ala Ser Tyr Glu 80	ATC TAC AAA AAG TGG ATC CCA GAG CTA AGA CAT TAT GCT CAT AAT 338 Ile Tyr Lys Lys Trp Ile Pro Glu Leu Arg His Tyr Ala His Asn 100	CCA GIT GIG CIT GIT GGA ACC AAA CIA GAT TIG CGA GAT GAC AAG 386 Pro Val Val Leu Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys 115	TTC CTC ATT GAT CAC CCT GGA GCA ACA CCA ATA TCA ACA TCT CAG 434 Phe Leu Ile Asp His Pro Gly Ala Thr Pro Ile Ser Thr Ser Gln 130	GAA GAA CTA AAG AAG ATG ATA GGA GCA GTT ACT TAT ATA GAA TGC 482
AAAAACA	GGA G Gly A 15	TTC C	GTG G Val V	666 61y 6	GAT G ASD V	AAC A' Asn I	GTA CO	CAG T	GGA G

FIGURE 44

Gly Glu Glu Leu Lys Lys Met Ile Gly Ala Val Thr Tyr Ile Glu Cy 150	Cys	
AGC TCC AAA ACC CAA CAG AAT GTG AAG GCT GTT TTC GAT GCT GCA A: Ser Ser Lys Thr Gln Gln Asn Val Lys Ala Val Phe Asp Ala Ala II 160	ATA 530 Ile	0
AAA GTA GCT TTG AGG CCA CCA AAA CCA AAG AGA AAG CCT TGC AAA AC Lys Val Ala Leu Arg Pro Pro Lys Pro Lys Arg Lys Pro Cys Lys A1 175	AGG 578 Arg 190	œ
AGA ACA TGT GCT TTC CTT TGAATATTGG ATCATTATTA CAGTCAAAAAAAA Arg Thr Cys Ala Phe Leu	626	9
CAGTTAACAA AAGCTGTTGC AGATAAACAC TGAATCTGCT ATAGTTTGTT TTTGGTTTAC	PTTAC 686	9
ATATGITCCA CGIGAAACTA TGAAGCATCT CTAAGAAAAC CCAAACTAIC ATATCAACCC	AACCC 746	9
ATCGATCAAT GAATCGATTT CAATTTTCGC AGTATAAGTT CCTTTTAATC CTTTCTTTTT	rrrr 806	9
ACTICATITI ATAACGAATI CTATGGATAA TGITCCCTAC AAACAIGTCA TTACAAIGTT	1TGTT 866	9
TAATTATAAA TTCCATTCTT CTATTTTACT AAAAAAAA	910	0

FIGURE 41

Ŋ

AAATATTCAT	ATAATTATAT	CCATATACAA	ATTTACAAGC	ACATAAAAA AATTGTACAC ATTTACAAGC CCATATACAA ATAATTATAT AAATATTCAT	ACATAAAAA	
009		580		260		
TGATATTTTA	AATTTTTAGT	Trigicacca	TCTAATTTTA	AGTTATATTA TTTTTTATC TCTAATTTTA TTTGTCGCCA AATTTTTAGT TGATATTTTA	AGTTATATTA	
540		520		500		
480 AATAATTTAC	ATTGTGTTTA	460 TATAATAAA	CTTCAAATTT	480 GTGTACATAT ATATATAT CTTCAAATTT TATAATAAAA ATTGTGTTTA AATAATTTAC	GTGTACATAT	
AAGTTTGATT	AACTTTAACA	TAAGTCACCA	TGAACTTTGA	TAIGGIGIGA ICTICACTIT IGAACTITGA TAAGICACCA AACTITAACA AAGTITIGAIT	TATGGTGTGA	
420		400		380		
360 ATAANCGAAA	ATAAGTCGAC	340 TTGTATGATG	CATTTTGAGT	340 GTCTTTTAAA TCACATATCA CATTTTGAGT TTGTATGATG ATAAGTCGAC ATAANCGAAA	GTCTTTTAAA	
GATGTACGAT	TAGGTGTATT	GCTTTGGTGA	AATGTTTGTG	* TGGACATGTA TTTTCATCTT AATGTTTGTG GCTTTGGTGA TAGGTGTATT GATGTACGAT	TGGACATGTA	
300		280	•	260		
TACATATTCT	GAAAGATAAA	TAATTTAAAT	TTTGTAGATG	AGTCTTAACC ATCTTTAATA TTTGTAGATG TAATTTAAAT GAAAGATAAA TACATATTCT	AGTCTTAACC	
240	•	220		200		
180 TTCAAATTGA	ATAAATTTTA	160 CATCGTAGAA	ATAATAAATA	180 GAATTITCIT GTGTTACAAT ATAATAATA CATCG TAGAA ATAAATITTA TTCAAATTGA	GAATTTTCTT	
TGGCAATCGA	CCTCTAGGCT	ATTTTGCTTT	TCATTCTTCT	CCTAGTACAA GAGCTTTTAT TCATTCTTCT ATTTTGCTTT CCTCTAGGCT TGGCAATCGA	CCTAGTACAA	
120		100		80		
60 AAAGCTGACT	TTTTAATAAT	40 CCTAACCAAT	AATAGTAAAN	20 TTGGATGAGA ACCAATTTTT AATAGTAAAN CCTAACCAAT TTTTAATAAT AAAGCTGACT	TTGGATGAGA	

20

30

35

FIGURE 5/A

1200 * CTTATTTCC 1260	GATTAATTTA	1180 AACACGTAGG 1240	PTGATCT	TAT	1160 1200 * AATAGAAAGG GTCAAATTGT TATTTGATCT AACACGTAGG GATTAATTTA CTTATTTTCC 1260
GTAATTTTTA	AGAAATGAAT	TTTTAACAGT	CACGCTAAT	Ħ	CTATCTGGTT ATTCTATCAA TCACGCTAAT TTTTAACAGT AGAAATGAAT GTAATTTTTA
1140		1120			1100
1080 CCACGTATAA	ATGTTACATG	1060 AATAAGGTAC	TTACATTAA	H	1080 TATTGTTAAA AGCTGGTCCG TTTACATTAA AATAAGGTAC ATGTTACATG CCACGTATAA
1020 TGTCCCATTC	AACTAGATTT	1000 * TCAAAGAACA	TACATTAGA	r	980 * TAATAGATAA ATTAATTGTG GTACATTAGA TCAAAGAACA AACTAGATTT TGTCCCATTC
960 TCTACTTAAA	TTTTGTCGCA	940 TCATATTGCA	TACTAATAG	H	920 AAAATATAAT GAAAGTCGTT TTACTAATAG TCATATTGCA TTTTTGTCGCA TCTACTTAAA
GATTGAATGA	AATAATTAAG	ATTTAAATAA	ATACAAAAT	E	* TTTCTTCTTT TTAATATTT TATACAAAT ATT TAAATAA AATAA TTAAG GATTGAATGA
006		880			860
AAGTTGATGT	ATACATAATG	TGTTTATATT	TAAGTTCA	A	AAATGGAAGG GAAATTTGAG AGTAAGTTCA TGTTTATATT ATACATAATG AAGTTGATGT
840		. 820			008
780 TCCAAAAAGA	780 GTTTTGAAGT TCCAAAAGA	760 TAACTTCTTG	ATTTTAT	\aleph	760 GTCGTAAACA TAATCACTAA CCATTTTTAT TAACTTCTTG
GAGTATATAT	TTGTAAAGAT	GGTTAGTTTA	AATTAATAA	Ĕ	GATAACATAG GTTAAATGTA TAATTAATAA GGTTAGTTTA TTGTAAAGAT GAGTATATAT
720		700			089
660 TCTACTTTAA	660 TTAGAATTAT TCTACTTTAA	640 AGGATATAAA TATAACTATT	GGATATAAA	Ø	620 TAAAAATAT ATTTAAATAT A

FIGURE 5/B

1860 GCTGTTGCAG	GTTAACAAAA	1840 GTCAAAAACA	CATTATTACA	1860 CAGAGCTCTG AATATTGGAT CATTATTACA GTCAAAACA GTTAACAAAA GCTGTTGCAG	CAGAGCTCTG
CTGGACTAGT	CGAGCAAGAT	CCATGGCTCT	AAACAAAAA	AATCAAGATA AGTCCTCAGC AAACAAAAA CCATGGCTCT CGAGCAAGAT CTGGACTAGT	AATCAAGATA
1800		1780		1760	
ATAATCACAG	TAAGTTCTTT	GGTTCTATTA	TTCTTCATAT	CCACTCCACA CCCTCCAATT TTCTTCATAT GGTTCTATTA TAAGTTCTTT ATAATCACAG	CCACTCCACA
1740		1720		1700	
1680 TTCATCCTCC	CCCTTTTCTT	1660 CCCTCAACTT	TAAAACCCGG	1680 ATGGGTTTGC ACCAAGTTGT TAAAACCCGG CCCTCAACTT CCCTTTTCTT TTCATCCTCC	ATGGGTTTGC
AAGTTGGTTG	TCAACAGATA	TATCGAGGCC	AATCATTCCA	GAAAAGTAAA GCTAACCTGC AATCATTCCA TATCGAGGCC TCAACAGATA AAGTTGGTTG	GAAAAGTAAA
1620		1600		1580	
1560 TGCACTTAAA	GCCATGTCCT	1540 CCTATTTCTA	TTAATAGCCA	1560 CACCCAGCAC CAAACGCACT TTAATAGCCA CCTATTTCTA GCCATGTCCT TGCACTTAAA	CACCCAGCAC
ACCCAACTAA	CAATACTTAA	crecerecer	CCCGCCCIGC	ATCATTAATC CTATCAATAC CCCGCCCTGC CTCCCTCCCT CAATACTTAA ACCCAACTAA	ATCATTAATC
1500		1480		1460	
CAAAATAATC	CCATAATTAT	TCTAGTTAAG	<u> Դ</u> ՄԳՐՐՐԴԱՐ	GTCATTAATT CCATCATGGG TTTTTTTTTT TCTAGTTAAG CCATAATTAT CAAAATAATC	GTCATTAATT
1440		1420		1400	
1380 TTTTTTCTTC	TTGAATAAAT	1360 CAGTTAAAAT	CTCATATACA	1380 AAAAGTTAGT TATGGTGTGA CTCATATACA CAGTTAAAAT TTGAATAAAT TTTTTTTTCTTC	AAAAGTTAGT
TAGAAACACC	TTAAAAAACA	AGTAACAAAR	ATATTGTGAG	CATATTTTAC TTATAATTTA ATATTGTGAG AGTAACAAAR TTAAAAAACA TAGAAACACC	CATATTTTAC
1320		1300		1280	
TAAAGAAATA AGTAAAATAT AATTTGAATC TTAATACAAA AACTTTCATG ATACTTTTAT	AACTTTCATG	TTAATACAAA	AATTTGAATC	AGTAAAATAT	TAAAGAAATA

10

ß

15

25

30

35

20

FIGURE 5/C

1920	ATAAACACTG AATCTGCTAT AGTTTGTTTT TGGTTTACAT ATGTTCCACG TGAAACTATG	1980 CGATCAATGA ATCGATTTCA	2040	TTTTAATCCT TTCTTTTAC TTCATTTTAT AACGAATTCT	2100	TICCCTACAA ACATGTCATT ACAATGTTTA ATTATAAATT CCATTCTTCT	2160 ACTAATTTAT TATTAAA	2220	TTAATATTAT TATTATTATT	2280 AAATTAAAAT AAATGAATTA	2340	ATTICICAAT TITICGIGCA ACTATTACAA AAAICCIICA TAGICCIAAT CTIAATIIGA	2400	AATGGGCCGG GTTTGAGCTG	2460 TTCAACCCAG CTCGAAATAT
1900	TGGTTTACAT	1960 AAACTATCAT ATCAACCCAT	2020	TTCTTTTTAC	2080	ACAATGTTTA	2140 ACTTCAAACT GCTGATTTTT	2200	CAATAATTTA ACAACAATAT	2260 ATTTCTCAAT TTTTATTAAA CAAAAACATA AATTTTTGAC	2320	AAATCCTTCA	2380	ATAATAATCT TAATTTGATG CAGAGGTAAT AATGGGCCGG	2440 GTACTTTATA TTTTTCCAAA
	AGTTTGTTTT	AAACTATCAT		TTTTAATCCT		ACATGTCATT				CAAAAACATA		ACTATTACAA		TAATTTGATG	GTACTTTATA
1880	AATCTGCTAT	1940 AAGCATCTCT AAGAAAACCC	2000	ATTTTCGCAG TATAAGTTCC	2060	TTCCCTACAA	2120 ATTTTACTAA GATATTAGTA	2180	TTGTTAGAAT GATTATTTT	2240 TTTTATTAAA	2300	TTTTCGTGCA	2360	ATAATAATCT	2420 TGATATTGAC
	ATAAACACTG	AAGCATCTCT		ATTTTCGCAG		ATGGATAATG	ATTTTACTAA		TTGTTAGAAT	ATTTCTCAAT		ATTTCTCAAT		TGCAGAGGTG	2420 GACTTAAGCA TGATATTGAC
	L	n	7	0 7		15		20		25		ć	30		35

FIGURE 5/D

GAGTCTAAAA TTTTGTCCAA TTTAATCCAA GCCCATTTTA AGTTCGTCCA TATTATTTT	2580 TAATTTAAAA AATTTATATC ATTTTATTTT AATATTTAAT TATTTTATAT ATTTTTATAT	2600 2620 2640	TATTGAAAAT TTTTATATAG TCATCTTAAC ATTATGTTAA TGTTTATATT AGAGTAGTAT	2660 2680 2700	TATATATAT TAGTATAGGT TTATTTTGTT AATAAACTTA AAAATGGGTC TTGTGGGCTA	2720 GACTIGGACC TTAAATGCTC AAACTCAAAC TTAATICATA TITTAAACAG GCTTAATATT	2780 2820 2820	TITATITACA CIGITICAAA ITTITICGGGI GAAATAICIT CGAGICIAGA ITAATAACAC	2880 CACAGGICTA ATTIGATGCT CAATGAAAT GAAAICAIAT TGAGCITAAT TAATATICCA	2900 2920 2940	TICTICITIG CIGAAAGGAC CAAGCAATIC GAGTIACAIT AAGGTIAAAG AGIAIGGGAI	2960 2980 3000	CCGCCAAACC TGCCCCAATG TCTCTTCAAC CATCCAAAAA CTTGAGTCAG TATCACATAC	3020 ATGTACCGNT ATTTATTTAT TTATTGAAAT TGGCATTATT TCTTG
	rv		10		L T	T3	C C	0.7	į.	7 2		30		35

FIGURE 5/E

FIGURE 6

480 540 900 099 720 780 840 900 960 1020 240 300 360 420 09 120 180 CTCAACCCCT AACCACGCAA CAATCAGCAA TACTCCAAGC AACCATTTTC CTTACAAGTT 1080 ACCACCAAGC TGAAAAAAA AAAATAAAAC TCAACTTTTG GCAATAAAAA CCCTCCTACC AACCATTGAT TCACGCAATT GGTCATCGCA CTTAGTTGAA AAGCTAGGGG TGCGAAGCTA GTGTCCGTTG CCTGATTGCC AACCCCAATA ACACGTGTTG TAGGTTTAAC CATGTTTATG AAAGATAAGG TITITITITIT TATAAGCAAG CAACTATAGG GGTTTACTIC CGTGCGCAAA TITITIAGGIT ACCIAITITIG GGAGGGGGA TIAIGATICA AGTGAAAGAA AGTIGGCACA CACACAATCA GTACATCTGT TTTGACAGAG ACACAGCCTA AAAACAGCAG CAAACAAGCC AGATTAGTTT TATCTTACTG ATGGTCACAT CACAATAGTA ATTCAACTTA ATACGAGAGG CCGTACGCTG GATTATGATT GAACACCTCT AAGTCAGAAT CCGAATTAGA AACAATGCAC TAAAGGAATC ACCCAAAAAC AACAACCAAA AGTACAGAGG AAAACAAAAG AATCCCTGTT GGGCATTCCA CACGACCATG TGTCCCCTAT TTCCAGGCAT TTTGAGACTT CACCTAAACT TCTAGAGTIG TITCAAAITA GCCCCTAITI GIICTIAAAI CAITITAGGA ICITGIAAAC ATTATTATTT TTTAGATATT GTATAACTCT TGTTTTATTT TTAATTTTGT TACTATTTCA AAGGCATTTG TTTGTAGTGT TATTTCGAGT AGGTTTTATG GGTGAACAAC CCTTGACCGC CAAATCAATC ACAAGAGTTC AACATTTTAT TTATTTTGAA ATGTATTAAA AATCGTTAAT CTATATATIC GCCCCATIAT TGGGATTAAA TATTCACAAG GGTTTAGACC GTCATGAGAC TTGATTGATT TNGTAGTAAT GCCCGTGACC CTAATCCGTT AGCGAAGAGG GGTTAGGGGT TAGGGGTTTT TCGTATTTAG GACTAAATGT GTAATTTATA CTTTAATTAT GATTGATTAA

FIGURE 7A

1133	1181	1229	1277	1325	1380
TGTTTTTCTT GTGATTAATC CAT ATG GCT AGC TCC ATG TCC CTT AAG CTT GCA 1133 Met Ala Ser Ser Met Ser Ser Leu Lys Leu Ala>		CTT CCT Leu Pro>		rgr ggr Cys Gly>	
CTT AAG Leu Lys	NG GCT C? eu Ala G]	SC TGC CT	rr gar gc 1 Asp Al	CTC	TGGAGT
ATG TCC Met Ser	GTG TTG TGC ATG GTG GGT GCA CCC CTG GCT CAA GGG Val Leu Cys Met Val Val Gly Ala Pro Leu Ala Gln Gly>	GAC GTA ACC CGT GCT GAT GGC GTA GTC ACC CTT CCA CGC TGC Asp Val Thr Leu Pro Arg Cys	TTA TTG ATA GGG AAT GGT AAT GGT GCT GAT GCT GAT GTT GAT GCC CCA Leu Leu Ile Gly Asn Gly Asn Gly Ala Asp Ala Asp Val Asp Ala Pro>	TGC TGC GAC ATC GTC AGG GGT CTC TTG AGC TCG CTG Cys Cys Asp ile Val Arg Gly Leu Leu Ser Ser Leu	GGT GTT TAGGAACCG ATCTAGCTTG AAATCGGGTT CGGATACGGG TGGAGTTTCAGIV Val>
AGC TCC Ser Ser	G GGT GC	C ACC CT	T GAT GC	C TTG AG	GGGTT CG
NTG GCT fet Ala	GTG GT Val Va	GTA GI	GGT GC	GGT CT	C AAATC
IC CAT A	TGC ATC	GAT GGC Asp Gly	GGT AAT Gly Asr	GTC AGG Val Arg	CTAGCTY
тбаттаал	GTG TTG Val Leu	CGT GCT Arg Ala	GGG AAT Gly Asn	GAC ATC ASP Ile	AACCG A
rricty G	CTA	GTA ACC	rrg ATA Leu Ile	rgc Tgc	STT TAGG
TGTT.	TGT CTG Cys Leu	GAC (TTA 1	GCT 7	GGT (

AATTGGTGTG TTATGGAATC CCAACTTAAT CGTGTTTAGG GGTGGGATCC AATTGTGTGTGA 1440 TACATTACAG AGCATGGTTG TGGATTGTTT TCTCATATGT TTTGATTGAC TTGCTTGATA 1500 CATTGGATGA TTCGATAAGG TGACCGGTTT ACCTGGGTAT CCAACCATCA TCCGATTACT 1560 TITIDADAAT TATITGITIC TICITIANGT IGICIGICIT TITGITICIT GAICIATAAC 1620 ATTATATITIG CCCAAATTT CGCATTTTCC ATATGTAGCT TATATATGTA TATATATATT 1680 CAATAAAGTA TATTGATTTA GCAGATGATT TGTGTATATA TTTAAATCAA ATCAAACATT 1740 1871 AATGATCATT CACTAGCGTC TTAATCTTGA AAAATTCATC AACGGTTATC CTTTGCAGCA 1800 TATATAAAA AAATTGCCAA CCCTATGCTT TTACACCTAA TTCAAGGGAT AACATAAGTC 1860 GATTAAAACG A

FIGURE 7B

FIGURE 8

						, , ,	21.52	1
60.00	.3206	0.3266	91.84	0.16	5.51	91.84	5.51	88.4
77.62	.3232	0.3282	9.06	99.0	6.45	9.06	6.48	84.2
80.98	.3197	0.3257	92.12	0.13	5.04	92.12	5.04	88.6
80.16	.3200	0.3255	91.75	0.35	5.00	91.75	5.01	86.1
77.03	.3220	0.3271	90.33	0.61	5.84	90.33	5.87	84.1
73.67	.3258	0.3293	88.76	1.35	7.14	88.76	7.28	79.4
82.43	.3178	0.3237	92.76	0.15	4.05	92.76	4.05	87.9
82.21	.3196	0.3255	95.66	0.19	4.99	92.66	4.99	87.9
81.19	.3194	0.3241	92.21	0.77	4.42	92.21	4.48	80.2
76.11	.3243	0.329	6.68	0.74	6.89	89.8	6.92	84
82.28	.3178	0.3238	92.69	0.19	4.00	92.69	4.00	87.3
874.03	3.5302	3.5883	1005.62	5.30	59.33	1005.62	59.61	938.10
79.46	.3209	.3262	91.42	0.48	5.39	91.42	5.42	85.28
2.91	.0026	.0020	1.33	0.38	1.08	1.33	1.11	3.22
82.43-73.67	.38583178	0.32933236	92.76-88.76	1.3513	7.14-4.00	92.76-88.76	7.26-4.00	88.6-79.4
	.0021	.0017	1.11	0.31	0.88	1.11	06.0	2.64
								:
Hunter L	Hunter a	Hunter B						
89.63	0.15	5.42						
88.10	99.0	6.27						
89.98	0.13	4.98						
89.53	0.38	4.94						
87.76	0.61	5.69						
85.83	1.35	6.85						
90.79	0.15	4.03						
90.67	0.19	4.95						
90.10	0.78	4.38						
87.23	0.75	6.65						
90.70	0.19	3.98						
980.32	5.32	58.14						
89.12	0.48	5.29						
1.65	0.39	0.99						
90.79-85.83	1.3513	6.85-3.98						
1.37	0.31	0.81						
			CLC					

36/39

_																
LCh, h	81.3	82.2	86.6		135.2											
LCh,C	15.28	14.44	11.31		11.29											
LCh, L	82.24	82.85	90.95		53.48											
Lab,b	15.11	14.31	11.29		7.97											
Lab,a	2.32	1.97	0.68		-8.01			•								
Lab, L	82.24	82.82	90.95		53.48			.								FIGURE 10
Yxy, y	0.35	0.34	0.3375		0.3489	,		Hunter B	13.35	12.75	10.71		90.9			
Yxy, x	0.34	0.34	0.3324		.3155			Hunter a	2.25	1.92	0.69		-6.35			
Yxy, Y	60.76	61.89	78.39		21.49			Hunter L	77.94	78.67	88.53		46.35			
5148	68-1	68-1	50-2-1	50-2-1	(lint fiber)			5148	68-1	68-1	50-2-1	50-2-1	(lint fiber)			

36		
	20.2	0.0
	0.3474	0.3474
4	0.3474	0.3474
	0.3278	0.3278
	0.3354	0.3354
	0.3436	0.3436
	0.3475	0.3475
	0.3444	
	0.3445	0.3445
109 83.77	0.3409	0.3409
394 85.56	0.3394	
_	0.3511	0.3511
	0.3442	0.3442
147 84.02	0.3447	0.3447
87.09	0.3447	0.3447
83.86	0.3468 8	0.3468 8
-		
	F	-
0 0	a nunter o	15
60	1	0.00
0.5	14	
=		0.91 5.81
96	9.08	
75	12.75	_
60	14.09	
05		
73	12.73	
85		2.35 11.65
14	11.14	_
36	15.36	15
20	13	2.43 13.07
28	13.28	_
88		
_	14	-
FIGURE 11		

38/39

IAY,	- 17-1							
72.28	0.3215	0.3254	88.09	1.1	5.06	88.09	5.17	77.8
58.69	0.3284	0.3335	81.12	0.6	8.36	81.12	8.38	85.9
52.78	0.3358	0.3335	77.74	3.55	9.22	77.74	9.87	69
72.03	0.3312	0.3338	87.98	1.72	9.52	87.98	9.67	79.8
72.34	0.3295	0.332	88.13	1.79	8.64	88.13	8.82	78.4
71.98	0.3295	0.3313	87.95	2.09	8.39	87.95	8.64	76.1
73.01	0.3256	0.3305	88.45	0.88	7.51	88.45	7.54	84.9
75.85	0.3274	0.3306	89.78	1.52	7.94	89.78	8.08	79.3
72.6	0.3271	0.3303	88.25	1.48	7.68	88.25	7.8	79.1
69.02	0.3352	0.3377	86.51	1.78	11.37	86.51	11.5	81.2
69.5	0.3364	0.3401	86.75	1.26	12.41	86.75	12.47	84.2
72.21	0.3324	0.3343	88.06	2.09	9.6	88.06	10.11	78.2
70.46	0.3327	0.3353	87.22	1.73	10.22	87.22	10.38	80.5
75.59	0.3268	0.3299	99.68	1.58	7.58	89.68	7.73	78.4
73.13	0.3284	0.3316	88.5	1.48	8.36	88.5	8.48	80.1
65.33	0.3371	0.3388	84.65	2.07	11.83	84.65	12	80.1
Hunter L	Hunter a	Hunter B						
85	1.09	4.89						
76.61	0.58	7.64						
72.64	3.38	8.22						
84.87	1.72	8.97						
85.05	1.79	8.2						
84.84	2.08	7.96						
85.44	0.67	7.18						
87.08	1.52	7.62						
85.2	1.48	7.31						
83.07	1.76	10.52						
83.36	1.25	11.43						
84.97	2.08	9.32						
83.94	1.72	9.56						
86.94	1.57	7.29						
85.51	1.46	7.96						
80.82	2.04	10.81						

1		_	_	-			-		_					_							
	LCh, h	80.1	2	7.67	68.9	77.8															
	LCh,C	24.54	24 11		21.11	21.62															_
	LCh, L	66.01	68.15	F. 0.4	20.01	74.08															
	Lap,o	24.18	23.31	25.52	20:02	21.13														<u> .</u>	_
240	Labia	4.24	6.18	10.96	9 7	0.			•						_		-		-		
- 4e	86.04	00.01	68.15	56.31	74.08													_		FIGURE 13	
Yxv. v	0 3717	200	0.3002	0.3728	0.3599			0.00	nuiller D	17.92	17.69	17.14	17.02	20:11		•				ш.	
Yxv. x	0.3779	0 2770	0.3770	0.4055	0.3657			Himter	BIOLINI	3.79	5.62	9.42	4.31								
Yxy, Y	33.34	2 ac		24.23	46.84			Hunter t		59.44	61.78	49.22	68.43								
8	12 Green	22 Brown		2 Hed	4 Ivory			8		12 Green	22 Brown	3 Red	4 Ivory						-		

SUBSTITUTE SHEET (RULE 26)