WHAT IS CLAIMED IS;

	1		1.	A method for the formation of rectifying junctions on alloy-semiconductors
	2	compr	ising the	e steps of
l	3	\checkmark	photo-	electrochemical removal of one component of the alloy material and
	A)	p' /	chemic	cal etching of another component of the alloy
	5		to prod	luce a positive-intermediate-negative (PIN) structure semiconductor.
	1		2.	The method according to Claim 1, wherein the alloy semiconductor comprises
	2	a com	bination	of Group II element and a Group VI element.
	1		3.	The method according to Claim 2, wherein the alloy semiconductor comprises
	2	CdTe.		
	1		4.	The method according to Claim 2, wherein the alloy semiconductor comprises
	2	CdZn	Ге.	
	1		5.	The method according to Claim 2, wherein the alloy semiconductor comprises
	2	HgZn	CdTe.	
	1		6.	The method according to Claim 2, wherein the alloy semiconductor comprises
	2	HgCd	ZnSe.	
	1		J.	A method for the formation of rectifying junctions on alloy-semiconductors
	2	compr	ising the	e steps of:
	3		photo-	electrochemical removal of one component of the alloy material to produce one
	4	portio	n of the	junction and
	5		deposi	tion of a second component to produce a second portion of the junction
	6		to proc	luce a positive-intermediate-negative (PIN) structure semiconductor.

8.

17.

1

2

1

The method according to Claim 7, wherein the alloy semiconductor comprises

semiconductor comprises HgZnCdTe.

The PIN structure semiconductor according to Claim 14, wherein the alloy

1	18. The PIN structure semiconductor according to Claim 14, wherein the alloy			
2	semiconductor comprises HgCdZnSe.			
1	A device for detecting and measuring an electrical response due to a single			
2	charge carrier in a room-temperature semiconductor, the device comprising:			
3	a PIN structure semiconductor, said semiconductor having first and second ends;			
4	a first electrode in electrical contact with said first end, said first electrode biased at a			
5	first electrical potential;			
6	a second electrode in electrical contact with said second end, said second electrode			
7	biased at a second electrical potential, said first potential greater than said second potential;			
□ □ 8	wherein the PIN structure semiconductor is constructed by the process consisting of			
09 9 10 11 11 12 10 2	the steps of:			
₩1 110	photo-electrochemical removal of one component of the alloy material and			
11	chemical etching of another component of the alloy			
<u>⊨</u> 12	to produce the PIN structure semiconductor.			
달 5 1	20. The device according to Claim 19, wherein the alloy semiconductor comprises			
2	a combination of Group II element and a Group VI element.			
1	21. The device according to Claim 20, wherein the alloy semiconductor comprises			
2	CdTe.			
1	22. The device according to Claim 20, wherein the alloy semiconductor comprises			
2	CdZnTe.			
1	23. The device according to Claim 20, wherein the alloy semiconductor comprises			

HgZnCdTe.

- 1 24. The device according to Claim 20, wherein the alloy semiconductor comprises
- 2 HgCdZnSe.

1

ANA, >