Model Training

Model 1: CNN 1.0

 $Convolution 2D {\longrightarrow} Convolution 2D {\longrightarrow} MaxPooling 2D {\longrightarrow} Convolution 2D {\longrightarrow} MaxPooling 2D {\longrightarrow} Dense {\longrightarrow} Dense$ Train on 3020 samples, validate on 756 samples, Epoch=10

Model 2: PIL 1.0 + CNN 1.0

threshold_yen

 $\label{lem:convolution2D} $\operatorname{Convolution2D} \to \operatorname{Convolution2D} \to \operatorname{Convolution2D} \to \operatorname{Dense} \to \operatorname{$

Model 3: PIL 2.0 + CNN 2.0

threshold_triangle

 $\label{lem:padding2D} $\operatorname{\sf ZeroPadding2D} \to \operatorname{\sf Convolution2D} \to \operatorname{\sf MaxPooling2D} \to \operatorname{\sf ZeroPadding2D} \to \operatorname{\sf Convolution2D} \to \operatorname{\sf MaxPooling2D} \to \operatorname{\sf ZeroPadding2D} \to \operatorname{\sf Convolution2D} \to \operatorname{\sf MaxPooling2D} \to \operatorname{\sf ZeroPadding2D} \to \operatorname{\sf Convolution2D} \to \operatorname{\sf MaxPooling2D} \to \operatorname{\sf Flattern} \to \operatorname{\sf Dense} \to \operatorname{\sf Dense} \to \operatorname{\sf Dense} (\operatorname{softmax})$

Num_folds=3, batch_size = 32, nb_epoch = 10

The 1st fold. Train on 2517 samples, validate on 1259 samples.

Score log_loss: 1.11275574094

The 2^{nd} fold. Train on 2517 samples, validate on 1259 samples.

The 3rd fold. Train on 2518 samples, validate on 1258 samples

Log_loss train independent avg: 1.1566385326

Num_folds=3, batch_size = 32, nb_epoch = 20

The 1st fold. Train on 2517 samples, validate on 1259 samples.

Score log_loss: 0.830910136431

The 2nd fold. Train on 2517 samples, validate on 1259 samples.

Score log_loss: 0.837534641292

The 3rd fold. Train on 2518 samples, validate on 1258 samples

Score log_loss: 1.52328066928

Log_loss train independent avg: 1.06378682657

Num_folds=3, batch_size = 32, nb_epoch = 30

The 1st fold. Train on 2517 samples, validate on 1259 samples.

Score log_loss: 0.658560426445

The 2nd fold. Train on 2517 samples, validate on 1259 samples.

The 3rd fold. Train on 2518 samples, validate on 1258 samples

Log_loss train independent avg: 0.662031375211

Num_folds=6, batch_size = 32, nb_epoch = 30

The 1st fold. Train on 3146 samples, validate on 630 samples.

Score log_loss: 0.701318000325

The 2nd fold. Train on 3146 samples, validate on 630 samples.

The 3rd fold. Train on 3147 samples, validate on 629 samples.

The 4th fold. Train on 3147 samples, validate on 629 samples.

The 5th fold. Train on 3147 samples, validate on 629 samples.

The 6th fold. Train on 3147 samples, validate on 629 samples.

Log_loss train independent avg: 0.629280842749

Num_folds=9, batch_size = 32, nb_epoch = 30

The 1st fold. Train on 3356 samples, validate on 420 samples.

Score log_loss: 0.508859539186

The 2nd fold. Train on 3356 samples, validate on 420 samples.

The 3rd fold. Train on 3356 samples, validate on 420 samples.

The 4th fold. Train on 3356 samples, validate on 420 samples.

The 5th fold. Train on 3356 samples, validate on 420 samples.

The 6th fold. Train on 3357 samples, validate on 419 samples.

The 7th fold. Train on 3357 samples, validate on 419 samples.

The 8th fold. Train on 3357 samples, validate on 419 samples.

The 9th fold. Train on 3357 samples, validate on 419 samples.

Log_loss train independent avg: 0.553974635316

Model 4: Data Set Preprocessing

对训练集进行旋转、放大、缩小等操作,使得训练集的8个类别的数目均等。

	ALB	BET	DOL	LAG	NOF	OTHER	SHARK	YFT
Before	1700	200	117	67	465	299	176	734
After	1719	1700	1702	1702	1700	1704	1701	1704

采用数据集预处理之前效果最好的参数设置

Num_folds=9, batch_size = 32, nb_epoch = 30, CNN 12 layers

	Before	After
Log_loss train independent avg	0.553974635316	0.98998662977

Model 5: Data Set Preprocessing + CNN Changeable Depth

Num_folds=9, batch_size = 32, nb_epoch = 30, CNN 12 layers

The 1st fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.889734941875

The 2nd fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.96977292772

The 3rd fold. Train on 12117 samples, validate on 1515 samples.

The 4th fold. Train on 12117 samples, validate on 1515 samples.

The 5th fold. Train on 12117 samples, validate on 1515 samples.

The 6^{th} fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.929546614081

The 7th fold. Train on 12117 samples, validate on 1515 samples.

The 8^{th} fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 1.15552021685

The 9th fold. Train on 12117 samples, validate on 1515 samples.

Log_loss train independent avg: 0.98998662977

Num_folds=9, batch_size = 32, nb_epoch = 30, CNN 9 layers

The 1st fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.812375929501

The $2^{\rm nd}$ fold. Train on 12117 samples, validate on 1515 samples.

The 3rd fold. Train on 12117 samples, validate on 1515 samples.

The 4th fold. Train on 12117 samples, validate on 1515 samples.

The 5th fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.77100477067

The 6th fold. Train on 12117 samples, validate on 1515 samples.

The 7th fold. Train on 12117 samples, validate on 1515 samples.

The 8th fold. Train on 12117 samples, validate on 1515 samples.

The 9th fold. Train on 12117 samples, validate on 1515 samples.

Log_loss train independent avg: 0.799194265061

Num_folds=9, batch_size = 32, nb_epoch = 30, CNN 6 layers

The 1st fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.530585245137

The 2nd fold. Train on 12117 samples, validate on 1515 samples.

The 3rd fold. Train on 12117 samples, validate on 1515 samples.

The 4th fold. Train on 12117 samples, validate on 1515 samples.

The 5th fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.52929186425

The 6th fold. Train on 12117 samples, validate on 1515 samples.

The 7th fold. Train on 12117 samples, validate on 1515 samples.

The 8th fold. Train on 12117 samples, validate on 1515 samples.

The 9^{th} fold. Train on 12117 samples, validate on 1515 samples.

Log_loss train independent avg: 0.543642761965

Model 6: Data Set Preprocessing + CNN Changeable Layers

Num_folds=9, batch_size = 32, nb_epoch = 30, CNN 6 layers 见上个模型

Num_folds=9, batch_size = 32, nb_epoch = 40, CNN 6 layers

The 1st fold. Train on 12117 samples, validate on 1515 samples.

Score log_loss: 0.537487356773

The 2nd fold. Train on 12117 samples, validate on 1515 samples.

The 3rd fold. Train on 12117 samples, validate on 1515 samples.

The 4th fold. Train on 12117 samples, validate on 1515 samples.

The 5th fold. Train on 12117 samples, validate on 1515 samples.

0-

The $\boldsymbol{6}^{\text{\tiny{th}}}$ fold. Train on 12117 samples, validate on 1515 samples.

The 7th fold. Train on 12117 samples, validate on 1515 samples.

The 8th fold. Train on 12117 samples, validate on 1515 samples.

The 9^{th} fold. Train on 12117 samples, validate on 1515 samples.

Log_loss train independent avg: 0.511056723889

Num_folds=20, batch_size = 32, nb_epoch = 40, CNN 6 layers

Start KFold number 1 from 20 Split train: 12950 12950

Split valid: 682 682

Score log_loss: 0.466676341159

Start KFold number 2 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.444404848058

Start KFold number 3 from 20 Split train: 12950 12950

Split valid: 682 682

Start KFold number 4 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.538885324641

Start KFold number 5 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.475941460551

Start KFold number 6 from 20

Split train: 12950 12950 Split valid: 682 682

Start KFold number 7 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.554854240419

Start KFold number 8 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.547703572482

Start KFold number 9 from 20

Split train: 12950 12950 Split valid: 682 682

Start KFold number 10 from 20

Split train: 12950 12950 Split valid: 682 682

Score log_loss: 0.529728088976

Start KFold number 11 from 20

Split train: 12950 12950Split valid: 682 682

Score log_loss: 0.564599159538

Start KFold number 12 from 20

Split train: 12950 12950 Split valid: 682 682

Start KFold number 13 from 20

Split train: 12951 12951 Split valid: 681 681

Score log_loss: 0.60388425191

Start KFold number 14 from 20

Split train: 12951 12951 Split valid: 681 681

Score log_loss: 0.526043185517

Start KFold number 15 from 20

Split train: 12951 12951 Split valid: 681 681

Start KFold number 16 from 20

Split train: 12951 12951 Split valid: 681 681

Score log_loss: 0.529066442208

Start KFold number 17 from 20

Split train: 12951 12951 Split valid: 681 681

Score log_loss: 0.516335703569

Start KFold number 18 from 20

Split train: 12951 12951 Split valid: 681 681

Start KFold number 19 from 20

Split train: 12951 12951Split valid: 681 681

Score log_loss: 0.554950593557

Start KFold number 20 from 20

Split train: 12951 12951 Split valid: 681 681

Log_loss train independent avg: 0.52138646123