## Week 2

# Introduction to Representation Theory

### 2.1 Matrix Representations of Symmetry Operations

- 10/3: Tools for identifying symmetry elements.
  - Chem 3D (visualization).
  - Otterbein University symmetry gallery (examples of molecules that satisfy all of the point groups).
  - Gives examples of molecules that satisfy the high-symmetry point groups.
    - $-C_{\infty v}$ : CO.
    - $-D_{\infty h}$ : CO<sub>2</sub>.
    - $-T_d$ : CH<sub>4</sub>.
    - $T_h: [Co(NO_2)_6]^{3+}.$ 
      - $T_h$  is  $T_d$  with  $\sigma_h$  symmetry.
    - $O_h: [Co(NH_3)_6]^{3+}$
    - $-I_h$ : N/a.
      - 120 symmetry elements in total; we will not be asked to identify all of these!
    - $-K_h: N/a.$ 
      - Symmetry of the sphere.
    - -T, O, I are subgroups of  $T_h, O_h, I_h$ , respectively, and only have proper (not improper) rotations. These are very rare point groups. An example of a molecule in the T point group is  $[Ca(THF)_6]^{2+}$ .
  - Learn T, O, I from Otterbein University example and ask questions!
  - Low symmetry:  $C_1, C_i, C_s$ .
  - The mirror plane in a  $C_s$  molecule is denoted by  $\sigma$  (no subscript).
  - Vector: A series of numbers which we write in a row or a column.
  - Matrix: Any rectangular array of numbers set between two brackets.
  - Basics of matrix multiplication:  $A \cdot \vec{x} = \vec{y}$  given in terms of matrix multiplication, e.g., if A is  $n \times m$  and  $\vec{x} \in \mathbb{R}^m$ , then

$$y_i = \sum_{j=1}^m a_{ij} x_j$$

for i = 1, ..., n.

- Matrix representations:
  - E: What matrix A satisfies  $A \cdot \vec{x} = \vec{x}$  for all  $\vec{x}$ ? The  $3 \times 3$  matrix I does.
  - -i: What matrix A satisfies  $A \cdot \vec{x} = -\vec{x}$  for all  $\vec{x}$ ? The  $3 \times 3$  matrix -I does.
  - $-\sigma_{xy}$ : What matrix A flips the sign of the z-coordinate of  $\vec{x}$ ? The  $3\times 3$  matrix diag(1,1,-1) does.
  - $C_2$ : What matrix A flips the sign of the x, y-coordinates of  $\vec{x}$ ? The  $3 \times 3$  matrix diag(-1, -1, 1) does.
  - $C_3$ : Consider a  $C_{3v}$  molecule.



Figure 2.1:  $C_3$  matrix representation setup.

Instead of describing a rotation in  $\mathbb{R}^3$  using radians, we can think of a rotation as a permutation of the numbered atoms. So in this example,

$$\underbrace{\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}}_{G_2} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- We will only be asked for matrix representations of very simple things, e.g., these or  $90^{\circ}$  or  $180^{\circ}$  turns.
- The above matrices form a mathematical group, which obeys the same multiplication table as the operations.
  - For example,

$$\underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{C_2} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}}_{\sigma_h} = \underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}}_{i}$$

- The matrix representations given above are not the "simplest" way of describing these symmetry operations.
  - The simplest way is using the **character**.
  - We find the character using a similarity transformation to take our matrix representations to block-diagonalized forms and then compute the characters of the blocks from there.
  - Recall that analogous blocks multiply in a block-diagonal matrix.
- Character (of a symmetry operation): The trace (sum of the diagonal elements) of the matrix representation of that operation. Denoted by  $\chi$ .
- Similarity transformation (matrix): The matrix which, when conjugated with a matrix representation of a symmetry operation, yields the block-diagonalized form of that matrix. *Denoted by* **R**.
  - We don't need to know how to compute these.

• Similarity transformation example: The  $C_3$  matrix representation given above is not block diagonal, but there exists a matrix R (that we don't have to know how to find) such that

$$RC_3R^{-1} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2}\\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

- The characters of the blocks of the above matrix are 1 and -1, respectively. The character of the overall matrix is still 0.

### 2.2 Characters and Irreducible Representations

- The PSet has been posted remember that its graded for completion.
  - Answer key will be posted the day it's due.
  - Submit via email or give her a printed copy/write it out on blank paper (preferred).
  - Review: NH<sub>3</sub> is in the  $C_{3v}$  point group.

10/5:

• Denote the bond vectors of NH<sub>3</sub> by  $d_1, d_2, d_3$ . Let's use them as a basis of the representation  $\Gamma$ . Also label the hydrogen atoms 1-3.

| Symmetry element                  | Matrix                                                                                                                                                                | Character |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| E                                 | $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix}$ | 3         |
| $C_3$                             | $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_2 \\ H_3 \\ H_1 \end{bmatrix}$ | 0         |
| $C_3^2$                           | $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_3 \\ H_1 \\ H_2 \end{bmatrix}$ | 0         |
| $\sigma_v \text{ (along } d_1)$   | $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_1 \\ H_3 \\ H_2 \end{bmatrix}$ | 1         |
| $\sigma'_v$ (along $d_2$ )        | $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_3 \\ H_2 \\ H_1 \end{bmatrix}$ | 1         |
| $\sigma_v \; ({ m along} \; d_1)$ | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} = \begin{bmatrix} H_2 \\ H_1 \\ H_3 \end{bmatrix}$ | 1         |

Table 2.1: NH<sub>3</sub> symmetry operations, matrices, and characters.

- Draw out each symmetry operation, its effect on each H atom, and the matrix representation of each. What is the character for each matrix representation? See the above table.
- The characters for each matrix divide the symmetry operations into three classes (the identity, rotation, and reflection classes).

• If we use the Cartesian axes as our basis, we get the following transformation matrices.

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad C_3 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad C_3^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_a = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_b = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_c = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- All of these are block-diagonal, so there must be some similarity transformation that gets us from the matrices in Table 2.1 to these matrices.
- Notice that the character is preserved under similarity transformation.
- The matrix representations in  $\vec{e}$  have blocks, which we can call the 2D block and the 1D block.
- Building a character table with different representations.

$$\begin{array}{c|cccc} C_{3v} & E & 2C_3 & 3\sigma_v \\ \hline \Gamma_e & 3 & 0 & 1 \\ \Gamma_{2D} & 2 & -1 & 0 \\ \Gamma_{1D} & 1 & 1 & 1 \\ \end{array}$$

Table 2.2: Some representations of  $C_{3v}$ .

- $-\Gamma_e$  is the representation corresponding to the full  $3 \times 3$  matrices.
- $\Gamma_{2D}$  is the representation corresponding to the 2D blocks.
- $\Gamma_{1D}$  is the representation corresponding to the 1D blocks.
- The latter two are called the irreducible representations; the first one is called a reducible representations. In fact,

$$\Gamma_e = \Gamma_{2D} + \Gamma_{1D}$$

- Every point group has a specific number of irreducible representations (IRRs); are  $\Gamma_{2D}$ ,  $\Gamma_{1D}$  it?
  - No we will use the rules to find the others.
- IRRs have 4 rules.
  - 1. The number of IRRs: The number of non-equivalent IRRs is equal to the number of classes in the group.
  - 2. Dimensionality of IRRs: The sum of the squares of the dimensions  $\ell$  of IRRs in a class is equal to the order of the group.

$$\sum_{i} \ell_i^2 = \sum_{i} \chi_i^2(\text{class}) = h$$

3. Characters of IRRs: The sum of the squares of the characters under any IRR equals the order of the group.

$$\sum_{R} g(R)\chi_i^2(R) = h$$

4. Orthogonality rule: The sum of the products of characters under any two irreducible representations is equal to zero.

$$\sum_{R} g(R)\chi_i(R)\chi_j(R) = 0$$

- Examples of the rules in  $C_{3v}$ .
  - Rule 1:  $C_{3v}$  has three classes, so it must have there must be one more IRR than listed in Table 2.2
  - Rule 2: We must have that

$$1^2 + 2^2 + \ell_3^2 = 6$$

- Rule 3: For  $\Gamma_{2D}$ , for example,

$$(1)(2)^2 + 2(-1)^2 + 3(0)^2 = 6$$

- Rule 4: With  $\Gamma_{1D}$ ,  $\Gamma_{2D}$ , for example,

$$(1)(1)(2) + (2)(1)(-1) + (3)(1)(0) = 0$$

- Finding the last representation of  $C_{3v}$ .
  - General procedure: Apply rule 1, then 2, then 4. Check with 3.
  - For example, we can find that the last  $\Gamma = (1, 1, -1)$ .

### 2.3 Character Tables and Mulliken Symbols

- The algebraic rules discussed last lecture are sufficient to derive a character table. They are summarized in the following procedure.
  - 1. Determine the number of classes in order to find the number of irreducible representations.
  - 2. All groups have a totally symmetric irreducible representation.
  - 3. Determine the dimensionality of the irreducible representations.
  - 4. Apply the orthogonality rule.
  - 5. Verify using the sum of square of characters rule.
  - Example: Deriving the  $C_{3v}$  character table using the above strategy.

| $C_{3v}$         | E | $2C_3$ | $3\sigma_v$ | linear            | quadratic                   |
|------------------|---|--------|-------------|-------------------|-----------------------------|
| $\overline{A_1}$ | 1 | 1      | 1           | z                 | $z^2$                       |
| $A_2$            | 1 | 1      | -1          | $R_z$             |                             |
| E                | 2 | -1     | 0           | $(x,y),(R_x,R_y)$ | $(x^2 - y^2, xy), (xz, yz)$ |

Table 2.3:  $C_{3v}$  character table.

- There are three classes; hence, we will have  $\Gamma_1, \Gamma_2, \Gamma_3$ .
  - See below for an explanation of their labels.
- Let  $\Gamma_1=(1,1,1)$  be the totally symmetric irreducible representation.
- If we want the sum of the squares of the dimensionalities to be natural numbers which add to h=6, then we must choose  $\ell_2=1$  and  $\ell_3=2$ .
- Applying the orthogonality rule, we can find the remaining four values in the table (those in the lower-right block) by inspection.
- We may, indeed, confirm using the sum of the squares rule.
- Also see below for an explanation of the Cartesian coordinates on the right-hand side.
- It will be beneficial to have a standard method for naming our irreducible representations.

- Mulliken symbol: The designation of an irreducible representation assigned according to the following procedure. Given by
  - 1. All 1D representations are A or B. 2D is E. 3D is T.
  - 2. Distinguishing A and B.
    - (a)  $\chi(C_n) = +1 \implies A$ .
    - (b)  $\chi(C_n) = -1 \implies B$ .
  - 3. Numerical subscripts: For groups that contain a secondary  $C_2$  axis (or in its absence,  $\sigma_v$ ).
    - (a)  $\chi(C_2 \text{ or } \sigma_v) = +1 \implies \text{Subscript 1.}$
    - (b)  $\chi(C_2 \text{ or } \sigma_v) = -1 \implies \text{Subscript } 2.$
  - 4. Alphabetical subscripts: For groups that contain i.
    - (a)  $\chi(i) = +1 \implies \text{Subscript } g$ .
    - (b)  $\chi(i) = -1 \implies \text{Subscript } u$ .
  - 5. Prime subscripts: For groups that contain  $\sigma_h$ .
    - (a)  $\chi(\sigma_h) = +1 \implies \text{Superscript '}.$
    - (b)  $\chi(\sigma_h) = -1 \implies \text{Superscript "}.$
- **Symmetric** (IRR wrt. a symmetry operation): An IRR for which the character of the symmetry operation in question is +1.
- Unsymmetric (IRR wrt. a symmetry operation): An IRR for which the character of the symmetry operation in question is -1. Also known as antisymmetric.
- Based on the above rules, we can conclude that for  $C_{3v}$ ,  $\Gamma_1 = A_1$ ,  $\Gamma_2 = A_2$ , and  $\Gamma_3 = E$ .
- The last two elements we need to construct the  $C_{3v}$  character table are the Cartesian coordinates. These are easy to derive for z-axis elements and groups that contain x- and y-axis rotations (e.g.,  $C_2, C_4$ ). If n is odd, these latter ones will be given to you.
  - There are two types of linear bases to consider: x, y, z and  $R_x, R_y, R_z$ . The former corresponds to p orbitals. The latter corresponds to rotations about one of the Cartesian axes.
  - There is one type of quadratic base to consider:  $z^2, x^2 y^2, xy, xz, yz$ . These correspond to d orbitals.
  - Wuttig draws out the effect of each symmetry operation in  $C_{3v}$  on  $p_z$ ,  $d_{z^2}$ , and  $R_z$ . She concludes for the first two that they are totally symmetric with respect to the operations; hence, they are  $A_1$ . She also concludes with respect to the last one that it is symmetric to the identity and to rotation, but unsymmetric to reflection about the z-axis; hence, it is  $A_2$ .
  - The others are filled in toward us.
- Summary: Anatomy of a character table.
  - 1. Point group.
  - 2. Irreducible representations, as denoted by Mulliken symbols.
  - 3. Classes of symmetry operations.
  - 4. Characters of irreducible representations.
  - 5. Linear basis: Axes and rotations (basis functions for the irreducible representations).
    - (a) p orbitals: Denoted as z, x, y.
    - (b) Rotations around z, x, y: Denoted as  $R_z, R_x, R_y$ .
  - 6. Quadratic basis (basis functions for the irreducible representations).
    - (a) d orbitals: Denoted as  $z^2, x^2 y^2, xy, xz, yz$ .

• Example: Filling in the  $C_{2v}$  character table.

| $C_{2v}$ | E | $C_2$ | $\sigma_v(xz)$ | $\sigma'_v(yz)$ | linear   | quadratic                      |
|----------|---|-------|----------------|-----------------|----------|--------------------------------|
| $A_1$    | 1 | 1     | 1              | 1               | z        | $x^2, y^2, z^2$ $xy$ $xz$ $yz$ |
| $A_2$    | 1 | 1     | -1             | -1              | $R_z$    | xy                             |
| $B_1$    | 1 | -1    | 1              | -1              | $x, R_y$ | xz                             |
| $B_2$    | 1 | -1    | -1             | 1               | $y, R_x$ | yz                             |

Table 2.4:  $C_{2v}$  character table.

– Special case where the two  $\sigma$  have different characters: With respect to determining which of the bottom two representations is  $B_1$  and which is  $B_2$ , we must pick a  $\sigma_v$  to use as a reference and stick with it.