# Problem Solving with AI Techniques Hidden Markov Models

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018



- Motivation of Hidden Markov Models
- What is a Hidden Markov Model (HMM)?
- 3 How to do inference in HMMs?
- 4 How to learn HMMs?

#### Motivation

- State transition may be stochastic
- True state is not observed
- Sequential observations (time series data)
- Applications:
  - Robot localization
  - Object tracking in videos
  - Speech processing
  - Medical monitoring
- Idea: Use a Markov model with hidden state and observation nodes

# Example: Precipitation



from (Nuel, 2012)

# Example: Precipitation (Contd.)



$$\mathbb{P}(S_{i} = L \mid S_{i-1} = H) = 0.3 
\mathbb{P}(S_{i} = H \mid S_{i-1} = L) = 0.1 
\mathbb{P}(Y_{i} = k \mid S_{i} = L) \sim Poisson(\lambda_{L} = \mathbb{E}[Y_{i} \mid S = L] = 3) 
\mathbb{P}(Y_{i} = k \mid S_{i} = H) \sim Poisson(\lambda_{H} = \mathbb{E}[Y_{i} \mid S = H] = 0.1)$$

Table 1: Distribution of  $Y_i$  conditionally to  $S_i$  in the precipitation HMM.

|                                          |      |      |      |      |      |      |      | _    |      |      |      |
|------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| k                                        | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| $\mathbb{P}(Y_i = k   S_i = L)$          | .050 | .149 | .224 | .224 | .168 | .101 | .050 | .022 | .008 | .003 | .001 |
| $\mathbb{P}(Y_i = k   S_i = \mathbf{H})$ | .607 | .303 | .076 | .013 | .002 | .000 | .000 | .000 | .000 | .000 | .000 |

Motivation of Hidden Markov Models

- 2 What is a Hidden Markov Model (HMM)?
- 3 How to do inference in HMMs?

4 How to learn HMMs?

#### Definition of Hidden Markov Model

- An HMM is defined as a tuple:
  - ullet  ${\cal S}$  a set of states
  - O a set of observations
  - $\mathbb{P}(S' \mid S)$  transition probabilities, denoted  $\boldsymbol{p} = (p_{ss'})$
  - ullet  $\mathbb{P}(O \,|\, S)$  emission probabilities, denoted  $oldsymbol{q} = (q_{so})$
  - $\mathcal{P}(S_0)$  probability distribution of initial states, denoted  $\pi = (\pi_s)$



• This defines the joint probability:

$$\mathbb{P}(S_{0:T}, O_{0:T}) = \mathbb{P}(S_0) \prod_{t=1}^{T} \mathbb{P}(S_t \mid S_{t-1}) \prod_{t=1}^{T} \mathbb{P}(O_t \mid S_t)$$

# Examples of HMM

- Speech recognition
  - Observations: acoustic signals
  - States: positions in words
- Hand gesture recognition with video camera
  - Observations: video frames
  - States: positions/orientations of hands
- GPS localization
  - Observations: GPS reading
  - States: positions on a map

#### What Can We Do With an HMM?

#### Different inference problems:

- Posterior marginal:  $\mathbb{P}(S_t \mid o_{0:T})$
- Filtering:  $\mathbb{P}(S_t \mid o_{0:t})$
- Prediction:  $\mathbb{P}(S_{t'} | o_{0:t})$  where t' > t
- Smoothing:  $\mathbb{P}(S_{t'} | o_{0:t})$  where t' < t
- Likelihood:  $\mathbb{P}(o_{0:T})$
- Viterbi path:  $\operatorname{arg\,max}_{s_{0:T}} \mathbb{P}(S_{0:T} = s_{0:T} \mid o_{0:T})$

Motivation of Hidden Markov Models

- 2 What is a Hidden Markov Model (HMM)?
- 3 How to do inference in HMMs?

4 How to learn HMMs?

#### Inference in HMMs

- HMM = Bayes net with a tree structure
- Inference in HMMs is therefore efficient
- Many conditional independences:

$$S_{t-k} \perp \!\!\! \perp S_{t+k'} \mid S_t$$
$$O_{t-k} \perp \!\!\! \perp O_{t+k'} \mid S_t$$

Factor graph of an HMM



• Let's apply belief propagation to it to get the marginals  $\mathbb{P}(S_t \mid o_{0:T})$ 

## Belief Propagation in HMMs when $O_{0:T} = o_{0:T}$



Assuming  $O_{0:T} = o_{0:T}$ , the message passing equations yield:

Forward messages: 
$$\mu_{S_{-1} \to S_0}(S_0) = \mathbb{P}(S_0)$$
  

$$\mu_{S_{t-1} \to S_t}(S_t) = \sum_{s} \mathbb{P}(S_t \mid S_{t-1}) \mu_{S_{t-2} \to S_{t-1}}(S_{t-1}) \mu_{o_{t-1} \to S_{t-1}}(S_{t-1})$$

Backward messages:  $\mu_{S_{T+1} \to S_T}(S_T) = 1$ 

$$\mu_{S_{t+1} \to S_t}(S_t) = \sum_{S_{t+1}} \mathbb{P}(S_t \mid S_{t+1}) \mu_{S_{t+2} \to S_{t+1}}(S_{t+1}) \mu_{o_{t+1} \to S_{t+1}}(S_{t+1})$$

Observation messages:  $\mu_{o_t \to S_t}(S_t) = \mathbb{P}(o_t \mid S_t)$ 

## Forward-Backward Algorithm

Belief propagation is known as forward-backward algorithm with

$$\alpha_t(S_t) = \mu_{S_{t-1} \to S_t}(S_t) \mu_{o_t \to S_t}(S_t)$$
$$\beta_t(S_t) = \mu_{S_{t+1} \to S_t}(S_t)$$

Posterior marginals:

$$\mathbb{P}(S_{t} \mid o_{0:T}) \propto \alpha_{t}(S_{t})\beta_{t}(S_{t})$$

$$\mathbb{P}(S_{t}, S_{t+1} \mid o_{0:T}) \propto \alpha_{t}(S_{t})\mathbb{P}(S_{t+1} \mid S_{t})\mu_{o_{t+1} \to S_{t+1}}(S_{t+1})\beta_{t+1}(S_{t+1})$$

• How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t + 1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = 1$

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t + 1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = 1$
- How can we solve a smoothing query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' < t)?

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t+1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = \mathbf{1}$
- How can we solve a smoothing query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' < t)?
- How can we solve a likelihood query (e.g.,  $\mathbb{P}(o_{0:T})$ )?

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t+1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = 1$
- How can we solve a smoothing query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' < t)?
- How can we solve a likelihood query (e.g.,  $\mathbb{P}(o_{0:T})$ )?
  - Belief propagation applies again

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t+1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = 1$
- How can we solve a smoothing query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' < t)?
- How can we solve a likelihood query (e.g.,  $\mathbb{P}(o_{0:T})$ )?
  - Belief propagation applies again
  - The message received by  $o_0$  or  $o_T$  provides the likelihood

- How can we solve a filtering query (e.g.,  $\mathbb{P}(S_t \mid o_{0:t})$ )?
- How can we solve a prediction query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' > t)?
  - Belief propagation applies with  $O_{t+1:t'}$  non-observed
  - Obs. messages for  $\tau = t+1, \dots t'$  become  $\mu_{O_{\tau} \to S_{\tau}}(S_{\tau}) = 1$
- How can we solve a smoothing query (e.g.,  $\mathbb{P}(S_{t'} | o_{0:t})$  with t' < t)?
- How can we solve a likelihood query (e.g.,  $\mathbb{P}(o_{0:T})$ )?
  - Belief propagation applies again
  - The message received by  $o_0$  or  $o_T$  provides the likelihood
- How can we compute the Viterbi path (e.g.,  $\arg \max_{s_0:T} \mathbb{P}(s_0:T|o_0:T)$ )?

Motivation of Hidden Markov Models

- 2 What is a Hidden Markov Model (HMM)?
- 3 How to do inference in HMMs?
- 4 How to learn HMMs?

#### How to Learn the Parameters of an HMM?

- Goal: Given i.i.d. training data  $\mathcal{D} = \{o_{0:T}^1, \dots, o_{0:T}^N\}$ , learn parameters  $\theta = \{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{\pi}\}$
- Issue: the ML and MAP approaches cannot be applied directly.
   Because of the hidden variables, the likelihood is not decomposable anymore:

$$\begin{split} \mathbb{P}(o_{0:T} \mid \boldsymbol{\theta}) &= \sum_{S_{0:T}} \mathbb{P}(S_{0:T}, o_{0:T}) \\ &= \sum_{S_{0:T}} \mathbb{P}(S_0) \prod_{t=1}^T \mathbb{P}(S_t \mid S_{t-1}) \mathbb{P}(o_t \mid S_t) \end{split}$$

- Idea: Use the Expectation-Maximization (EM) algorithm
- EM algorithm applied to HMM is called the Baum-Welch algorithm.

# Principle of the general EM Algorithm

- Problem: Hard to maximize  $\log \mathbb{P}(\boldsymbol{O} \mid \boldsymbol{\theta}) = \log \sum_{\boldsymbol{S}} \mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \mid \boldsymbol{\theta})$  assuming there is only one observed sequence.
- Idea: Use Jensen inequality and maximize a lower bound!

$$\log \mathbb{P}(\boldsymbol{O} \mid \boldsymbol{\theta}) = \log \sum_{\boldsymbol{S}} \mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \mid \boldsymbol{\theta})$$

$$= \log \sum_{\boldsymbol{S}} \mathbb{Q}(\boldsymbol{S} \mid \boldsymbol{O}) \frac{\mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \mid \boldsymbol{\theta})}{\mathbb{Q}(\boldsymbol{S} \mid \boldsymbol{O})}$$

$$\geq \sum_{\boldsymbol{S}} \mathbb{Q}(\boldsymbol{S} \mid \boldsymbol{O}) \log \frac{\mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \mid \boldsymbol{\theta})}{\mathbb{Q}(\boldsymbol{S} \mid \boldsymbol{O})}$$

$$= \mathbb{E}_{\boldsymbol{S} \sim \mathbb{Q}}[\log \mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \mid \boldsymbol{\theta})] + H(\mathbb{Q})$$

$$= F(\mathbb{Q}, \boldsymbol{\theta})$$

## General EM Algorithm

$$\max_{\mathbb{Q}, \boldsymbol{\theta}} F(\mathbb{Q}, \boldsymbol{\theta}) = \max_{\mathbb{Q}, \boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{S} \sim \mathbb{Q}} [\log \mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \,|\, \boldsymbol{\theta})] + H(\mathbb{Q})$$

- EM algorithm is coordinate-ascent on F
- It is therefore an iterative algorithm
- It is guaranteed to converge to a stationary point of F
- It alternates between the two following steps from initial parameter  $\theta_0$ 
  - Expectation step:  $\mathbb{Q}_{\tau+1} = \arg\max_{\mathbb{Q}} F(\mathbb{Q}, \theta_{\tau})$
  - Maximization step  $\theta_{\tau+1} = \arg \max_{\theta} F(\mathbb{Q}_{\tau+1}, \theta)$



from Wikipedia

## EM Algorithm Applied to HMMs

• Expectation Step:  $\mathbb{Q}_{ au+1} = \mathsf{arg} \; \mathsf{max}_{\mathbb{Q}} \; F(\mathbb{Q}, m{ heta}_{ au}) = \mathbb{P}(m{S} \,|\, m{O}, m{ heta}_{ au})$ 

$$egin{aligned} F(\mathbb{P}(oldsymbol{S} \,|\, oldsymbol{O}, oldsymbol{ heta}_{ au}), oldsymbol{ heta}_{ au}) &= \sum_{oldsymbol{S}} \mathbb{P}(oldsymbol{S} \,|\, oldsymbol{O}, oldsymbol{ heta}_{ au}) \log rac{\mathbb{P}(oldsymbol{S} \,|\, oldsymbol{O}, oldsymbol{ heta}_{ au})}{\mathbb{P}(oldsymbol{S} \,|\, oldsymbol{O}, oldsymbol{ heta}_{ au}) \log \mathbb{P}(oldsymbol{O} \,|\, oldsymbol{ heta}_{ au})} \ &= \log \mathbb{P}(oldsymbol{O} \,|\, oldsymbol{ heta}_{ au}) \geq F(\mathbb{Q}, oldsymbol{ heta}_{ au}) \end{aligned}$$

In HMMs, this is equivalent to defining (using D):

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

• They can be computed by the forward-backward algorithm!

# EM Algorithm Applied to HMMs

Maximization step

$$\begin{split} \boldsymbol{\theta}_{\tau+1} &= \arg\max_{\boldsymbol{\theta}} F(\mathbb{Q}_{\tau+1}, \boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{S} \sim \mathbb{Q}_{\tau+1}} [\log \mathbb{P}(\boldsymbol{S}, \boldsymbol{O} \,|\, \boldsymbol{\theta})] \\ &= \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{S} \sim \mathbb{Q}_{\tau+1}} [\log \left( \mathbb{P}(S_0, \boldsymbol{\theta}) \prod_{t=1}^T \mathbb{P}(S_t \,|\, S_{t-1}, \boldsymbol{\theta}) \mathbb{P}(o_t \,|\, S_t, \boldsymbol{\theta}) \right)] \\ &= \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{S} \sim \mathbb{Q}_{\tau+1}} [\log \mathbb{P}(S_0, \boldsymbol{\theta}) + \sum_{t=1}^T \left( \log \mathbb{P}(S_t \,|\, S_{t-1}, \boldsymbol{\theta}) + \log \mathbb{P}(o_t \,|\, S_t, \boldsymbol{\theta}) \right)] \end{split}$$

This finally amounts to computing (using D):

$$\pi_s = \frac{\sum_{n=1}^N \gamma_0^n(s)}{N} \quad p_{ss'} \quad = \frac{\sum_{n=1}^N \sum_{t=1}^T \xi_t^n(s,s')}{\sum_{n=1}^N \sum_{t=0}^{T-1} \gamma_t^n(s)} \quad q_{so} = \frac{\sum_{n=1}^N \sum_{t=0}^T \gamma_t^n(s)[o_t^n = o]}{\sum_{n=1}^N \sum_{t=0}^T \gamma_t^n(s)}$$