Package 'polyMatrix'

October 14, 2022

Version 0.9.16

Title Infrastructure for Manipulation Polynomial Matrices

Description

Implementation of class `polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial.

It is based on the package 'polynom' and uses a lot of its methods to implement matrix operations.

This package includes 3 methods of triangularization of polynomial matrices:

Extended Euclidean algorithm which is most classical but numerically unstable;

Sylvester algorithm based on LQ decomposition;

Interpolation algorithm is based on LQ decomposition and Newton interpolation.

Both methods are described in

D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization,

IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-

508) <doi:10.1109/9.751344>

and in

Salah Labhalla, Henri Lombardi & Roger Marlin,

Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux,

Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-

92) <doi:10.1016/0304-3975(95)00090-9>.

Type Package

Imports methods, polynom, Matrix

License MIT + file LICENSE

Depends R (>= 4.0)

Suggests testthat, withr

Repository CRAN

URL https://github.com/namezys/polymatrix

BugReports https://github.com/namezys/polymatrix/issues

RoxygenNote 7.1.1

NeedsCompilation no

Author Tamas Prohle [aut], Peter Prohle [aut],

Nikolai Ryzhkov [aut, cre] (https://orcid.org/0000-0003-2324-8183>), Ulas Onat Alakent [ctb]

Maintainer Nikolai Ryzhkov <namezys@gmail.com>

Date/Publication 2021-07-18 14:00:02 UTC

R topics documented:

Index

adjoint	3
cbind	3
charpolynom	4
cofactor	5
degree	6
diag	7
GCD	9
inv	10
is.polyMatrix	10
is.proper	11
is.zero	12
LCM	13
matrix.degree	14
minor	15
newton	16
parse.polyMatrix	16
parse.polynomial	17
polyMatrix	18
polyMatrix-Arith	18
polyMatrix-class	20
polyMatrix.apply	23
polyMatrixCharPolynomial-class	24
t,polyMatrix-method	24
tr	25
triang_Interpolation	26
triang_Sylvester	27
zero.round	28
zero_lead_hyp_rows	29
zero_lead_rows	30
[,polyMatrix,missing,missing,missing-method	30
%*%,polyMatrix,polyMatrix-method	32
	33

adjoint 3

adjoint

Adjungate or classical adjoint of a square matrix

Description

The adjungate or classical adjoint of a square matrix is the transpose of its cofactor matrix. It is also occasionally known as adjunct matrix, though this nomenclature appears to have been decreased in usage.

Usage

```
adjoint(x)
## S4 method for signature 'polyMatrix'
adjoint(x)
```

Arguments

x a matrix

Methods (by class)

• polyMatrix: adjungate of polynomial matrix DON'T UNDERSTAND!!!

cbind

Combine polynomial matrices by rows or columns

Description

Combine polynomial matrices by rows or columns

Usage

```
cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)
```

Arguments

```
... (generalized) vectors or matrices. If any of the objects is a polynomail matrix departs elevel details in the base function, polynomial matrices doesn't use this argument
```

Value

if at least one argument is a polynomial matrix, the result will be a combined polynomial matrix. Otherwise, the base package implementation base::cbind() or base::rbind() will be called.

4 charpolynom

Functions

• rbind: row based bind DON'T UNDERSTAND.. !!!

See Also

```
base::cbind()
```

charpolynom

Characteristic polynomial of a matrix

Description

Characteristic polynomial of a matrix

Usage

```
charpolynom(x)

## S4 method for signature 'matrix'
charpolynom(x)

## S4 method for signature 'polynomial'
charpolynom(x)

## S4 method for signature 'polyMatrix'
charpolynom(x)

## S4 method for signature 'polyMatrixCharPolynomial,ANY'
x[[i]]

## S4 method for signature 'polyMatrixCharPolynomial'
degree(x)

## S4 method for signature 'polyMatrixCharPolynomial'
predict(object, newdata)

## S4 method for signature 'polyMatrixCharPolynomial'
show(object)
```

Arguments

x an matrix

i the degree of the polynomial coefficient to be extract

object an R object

newdata the value to be evaluated

cofactor 5

Details

The characteristic polynom of a polynomial matrix is a polynom with polynomial coefficients.

Value

When the input is a numerical matrix of matrix class the value is a polynomial object.

When the input is a polyMatrix object then the value is polyMatrixCharClass class object,

Methods (by class)

- matrix: for numerical matrix it is a polynomial with numerical coefficients
- polynomial: for polynomial it treats as a matrix 1x1
- polyMatrix: for polynomial matrix has polynomial coefficients
- x = polyMatrixCharPolynomial, i = ANY: get polynomial coefficient of characteristic polynomial
- polyMatrixCharPolynomial: the degree of char polynomial of polynomial matrix
- polyMatrixCharPolynomial: the value of char polynomial in a polynomial point
- polyMatrixCharPolynomial: prints out a text representation of a characteristic polynomial of a polynomial matrix

See Also

polyMatrixCharClass

Examples

cofactor

Cofactor of a matrix

Description

Cofactor of a matrix

Usage

```
cofactor(x, r, c)
```

Arguments

```
x a matrix
```

r, c the rows and columns

6 degree

Value

cofactor which is a number or a polynomial

See Also

```
adjoint()
```

degree

Gets the maximum degree of polynomial objects

Description

Returns the maximum degree as an integer number.

Usage

```
degree(x)
## S4 method for signature 'numeric'
degree(x)
## S4 method for signature 'matrix'
degree(x)
## S4 method for signature 'polynomial'
degree(x)
## S4 method for signature 'polyMatrix'
degree(x)
```

Arguments

x an R objects

Details

By default, this function raises error for unknown type of object.

A numerical scalar can be treated as a polynomial with zero degree.

A numerical matrix has zero degree as each of its items has zero degree as well.

For polynomials this function returns the highest degree of its terms with non-zero coefficient.

Value

The value is an integer number which can be different from zero only for polynomial objects.

diag 7

Methods (by class)

- numeric: a scalar argument always has zero degree
- matrix: a numerical matrix always has zero degree
- polynomial: the degree of a polynomial
- polyMatrix: the degree of a polynomial matrix is the highest degree of its elements

Examples

```
# numerical
degree(1) ## 0

# numerical matrix
degree(matrix(1:6, 3, 2)) ## 0

# polinomial
degree(parse.polynomial("1")) ## 0
degree(parse.polynomial("1 + x")) ## 1
degree(parse.polynomial("1 + x^3")) ## 3

# polynomial matrices
degree(parse.polyMatrix(
    "x; x^2 + 1",
    "0; 2x"))
## 2
```

diag

Polynomial matrix Diagonals Extract or construct a diagonal polynomial matrix.

Description

Polynomial matrix Diagonals Extract or construct a diagonal polynomial matrix.

Usage

```
diag(x = 1, nrow, ncol, names = TRUE)
## S4 method for signature 'polynomial'
diag(x, nrow, ncol)
## S4 method for signature 'polyMatrix'
diag(x)
```

8 diag

Arguments

```
x a polynomial matrix, or a polynomial, or an R object
nrow, ncol optional dimensions for the result when x is not a matrix
names not used for polynomial matrices
```

Details

In case of polynomial objects, diag has 2 distinct usage:

- x is a polynomial, returns a polynomial matrix the given diagonal and zero off-diagonal entries.
- x is a polynomial matrix, returns a vector as a polynomial matrix of diagonal elements

For polynomial, either nrow or ncol must be provided.

Methods (by class)

- polynomial: for a polynomial, returns a polynomial matrix with the given diagonal
- polyMatrix: for a polynomial matrix extracts diagonal For polynomial matrix, neither nrow nor ncol cannot be provided.

See Also

Base base::diag() for numericals and numerical matrices

```
# numericals and numerical matrices
diag(matrix(1:12, 3, 4)) ## 1 5 8
diag(9, 2, 2)
    [,1] [,2]
## [1,] 9 0
## [2,] 0
# polynomial
diag(parse.polynomial("1+x+3x^2"), 2, 3)
        [,1] [,2] [,3]
## [1,] 1 + x + 3x^2
## [2,]
               0 	 1 + x + 3x^2
# polynomial matrix
diag(parse.polyMatrix(
 "-3 + x^2, 2 + 4 x, -x^2",
       1, 2, 3 + x",
2x, 0, 2 - 3x"
))
```

GCD 9

```
## [,1] [,2] [,3]
## [1,] -3 + x^2 2 2 - 3x
```

GCD

GCD for polynomial matrices

Description

The greatest common divisor of polynomials or polynomial matrices.

Usage

```
GCD(...)
## S4 method for signature 'polyMatrix'
GCD(...)
```

Arguments

... a list of polynomial objects

Methods (by class)

• polyMatrix: the greatest common divisor of all elements of the polynomial matrix

See Also

```
polynomial implementation polynom::GCD() and LCM()
```

10 is.polyMatrix

inv

Inverse polynomial matrix

Description

During inversion we will try to round elememnts to zero.

Usage

```
inv(x, eps = ZER0\_EPS)
```

Arguments

eps

a polynomial matrix Х zero threshold

Details

Right now only matrices with numerical determinant are supported.

is.polyMatrix

Check if object is polyMatrix

Description

Check if object is polyMatrix

Usage

```
is.polyMatrix(x)
```

Arguments

an R object

Value

TRUE if object is a polynomial matrix

```
is.polyMatrix(c(1, 2, 3))
is.polyMatrix(polyMatrix(0, 2, 2))
```

is.proper 11

is.proper

Proper polynomial matrices

Description

Tests the proper property of a polynomial matrix. A polynomial matrix is proper if the associeted matrix has a full rank.

Usage

```
is.proper(pm)
is.column.proper(pm)
is.row.proper(pm)
```

Arguments

pm

a polyMatrix object

Details

A polynomial matrix is column (row, full) proper (or reduced) if the associated matrix has the same rank as the number of columns (rows)

Value

True if object pm is a (row-/column-) proper matrix

Functions

- is.column.proper: tests if its argument is a column-proper matrix
- is.row.proper: tests if its argument is a row-proper matrix

is.zero

is.zero

Tests if something is zero or not

Description

Generic function to check if we can treat on object as being zero. For matrices the result is a matrix of the same size.

Usage

```
is.zero(x, eps = ZERO_EPS)
## S4 method for signature 'polynomial'
is.zero(x, eps = ZERO_EPS)
## S4 method for signature 'polyMatrix'
is.zero(x, eps = ZERO_EPS)
```

Arguments

x An R object
eps The minimal numerical value which will not be treated as zero

Details

Different type of objects can be treated as zero in different ways:

- Numerical types can be compared by absolute value with eps.
- Other types should define its own method.

```
By befault eps = \{r\} ZERO_EPS
```

Value

TRUE if the object can be treat as zero

Methods (by class)

- polynomial: a polynomial can be treated as zero if all its coefficients can be treated as zero
- polyMatrix: for a polynomial matrix every item is checked if it is zero polynomial

See Also

```
zero.round()
```

LCM 13

Examples

```
# numericals and matrices
is.zero(0) ## TRUE

is.zero(0.0001, eps=0.01) ## TRUE

is.zero(c(0, 1, 0)) ## TRUE, FALSE, TRUE

is.zero(matrix(c(1, 9, 0, 0), 2, 2))
## FALSE TRUE

# polynomials
is.zero(parse.polynomial("0.1 - 0.5 x")) ## FALSE
is.zero(parse.polynomial("0.0001 - 0.0005 x + 0.00002 x^2"), eps=0.01) ## TRUE
```

LCM

LCM for polynomial matrices

Description

The least common multiple of polynomials or polynomial matrices.

Usage

```
LCM(...)
## S4 method for signature 'polyMatrix'
LCM(...)
```

Arguments

a list of polynomial objects

Methods (by class)

• polyMatrix: the least common multiple of polynomial matrices

See Also

```
polynomial implementation polynom::GCD() and GCD()
```

14 matrix.degree

Examples

```
# LCM of polynomial matrix
LCM(parse.polyMatrix(
   " 1 - x, 1 - x^2, 1 + 2*x + x^2",
   "x - x^2, 1 + x, 1 - 2*x + x^2"
)) ## 0.25*x - 0.5*x^3 + 0.25*x^5
```

matrix.degree

Degree of each item of the matrix

Description

Returns a matrix obtained by applying a function degree() for each element of the matrix.

Usage

```
matrix.degree(x)
## S4 method for signature 'matrix'
matrix.degree(x)
## S4 method for signature 'polynomial'
matrix.degree(x)
## S4 method for signature 'polyMatrix'
matrix.degree(x)
```

Arguments

x an R object

Details

Degree of each item is calculated using degree() which is defined for polynomials as the highest degree of the terms with non-zero coefficients.

For convenience this function is defined for any object, but returns zero for non polynomial objects.

Value

If the argument is a matrix, the result is a matrix of the same size containing the degrees of the matrix items.

For a numerical matrix the value is always a zero matrix of the same size

For a polynomial the value is the degree of the polynomial

minor 15

Methods (by class)

- matrix: the degree of a numerical matrix is a zero matrix for compatibility
- polynomial: the degree of a polynomial
- polyMatrix: a matrix of degrees for each polynomial item of the source matrix

Examples

```
# numerical matrices
matrix.degree(matrix(1:6, 2, 3))
       [,1] [,2] [,3]
## [1,]
          0
               0
                    0
## [2,]
                    0
# polynomials
matrix.degree(parse.polynomial("x + 1")) ## 1
matrix.degree(parse.polynomial("x^3 + 1")) ## 3
matrix.degree(parse.polynomial("1")) ## 0
# polynomial matrices
matrix.degree(parse.polyMatrix(
   "x; x^2 + 1",
   "0; 2x"))
##
      [,1] [,2]
## [1,] 1 2
## [2,]
          0
               1
```

minor

Minor of matrix item

Description

A minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors).

Usage

```
minor(x, r, c)
```

Arguments

```
x a matrix r, c row and column
```

16 parse.polyMatrix

newton Build matrix of polynimal decomposition using Newton interpolation in Newton bais: $(x-x_0)$, $(x-x_0)*(xx_1)$

Description

Build matrix of polynimal decomposition using Newton interpolation in Newton bais: $(x-x_0)$, $(x-x_0)$ * $(x x_1)$

Usage

```
newton(C, points)
```

Arguments

C Matrix of values of polinomials in columns

points point in which the values of polynomials were got

Value

Matrix of coefficients in columns (from higher degree to lower)

parse.polyMatrix Parse polynomial matrix from strings

Description

This is a convenient way to input a polynomial matrix.

Usage

```
parse.polyMatrix(..., var = "x")
```

Arguments

... string or strings to parse

var variable character. Only lower latin characters are allowed except 'e' which is

reseved for numbers

Details

Space and tabulation characters are ignored.

Row should be divided by new line "\n" or backslash "\" (TeX style).

Elements in each row can be divided by ", ", "; " or "&" (TeX style)

For convenience, this function can accept multiple string. In this case each string will be treated as a new row.

This function accepts TeX matrix format.

parse.polynomial 17

Value

new polynomial matrix of polyMatrix class

See Also

```
parse.polynomial()
```

Examples

parse.polynomial

Parse polynomial from string

Description

Parse string representation of polynomial into a polynomial object.

Usage

```
parse.polynomial(s, var = "x")
```

Arguments

```
s an string for parsing var an variable name
```

Value

```
new polynomial as polynom::polynomial object
```

See Also

```
parse.polyMatrix()
```

18 polyMatrix-Arith

7		
polyMatrix	Create polyMatrix object	

Description

This function will create a polynomial object from coefficient matrix or signle value

Usage

```
polyMatrix(data, nrow, ncol, degree)
```

Arguments

data	A matrix containing matrices of coefficients or a number or a polynomial
nrow	The numer of rows of a polynomial matrix. Must be postive. If data is a matrix, the default value is the number of rows of matrix data. In other cases it is a required parameter.
ncol	A number of columns of a polynomial matrix. Must be positive. If data is a matrix, the default value is the number of columns of matrix data. In other cases it is a required parameter.
degree	Degree of polynomials in the coefficient matrix. Must be zero or positive. If data is polynomial, degree can be evaluated automatcal. In other case, default value is 0.

Details

A coefficient matrix is a matrix which contains matrices of coefficients starting from lower degree to higher ones, side-by-side

Value

new polynomial matrix of polyMatrix class

|--|

Description

These unary and binary operators perform arithmetical operations on polynomial or numerical marices.

polyMatrix-Arith 19

Usage

```
## S4 method for signature 'polyMatrix,missing'
e1 + e2
## S4 method for signature 'polyMatrix,polyMatrix'
e1 + e2
## S4 method for signature 'polyMatrix,polynomial'
## S4 method for signature 'polyMatrix,numeric'
## S4 method for signature 'polyMatrix,matrix'
e1 + e2
## S4 method for signature 'ANY,polyMatrix'
e1 + e2
## S4 method for signature 'polyMatrix,numeric'
## S4 method for signature 'polyMatrix,polynomial'
e1 * e2
## S4 method for signature 'polyMatrix,polyMatrix'
e1 * e2
## S4 method for signature 'ANY,polyMatrix'
e1 * e2
## S4 method for signature 'polyMatrix,polyMatrix'
## S4 method for signature 'polyMatrix,ANY'
e1 - e2
## S4 method for signature 'ANY,polyMatrix'
e1 - e2
```

Arguments

e1, e2 first and second operands

Details

Both operands can be:

· numerical scalar

20 polyMatrix-class

- · polynomial scalar
- · numerical matrix
- · polynomial matrix

Value

Unary + return same object.

Binary + with two matrix operands returns elementwise summation.

Binary + with matrix and scalar operands returns elementwise summation with scalar.

Binary * is elementwise multiplication with matrix or scalar operands.

Unary - return a matrix with changed sign.

Binary '-' of matrices or scalar operands returns matrix subtraction.

Functions

- +,polyMatrix,missing-method: unary +
- -,polyMatrix,polyMatrix-method: unary -

polyMatrix-class

A class to represent a matrix of polynomials

Description

A class to represent a matrix of polynomials

Usage

```
## S4 method for signature 'polyMatrix,numeric'
x[[i]]

## S4 method for signature 'polyMatrix'
det(x)

## S4 method for signature 'polyMatrix'
nrow(x)

## S4 method for signature 'polynomial'
nrow(x)

## S4 method for signature 'polyMatrix'
ncol(x)

## S4 method for signature 'polyMatrix'
ncol(x)
```

polyMatrix-class 21

```
## S4 method for signature 'polyMatrix'
dim(x)
## S4 method for signature 'polyMatrix'
predict(object, newdata)
## S4 method for signature 'polyMatrix'
round(x, digits = 0)
## S4 method for signature 'polyMatrix'
show(object)
## S4 method for signature 'polyMatrix,polyMatrix'
e1 == e2
## S4 method for signature 'polyMatrix,polynomial'
e1 == e2
## S4 method for signature 'polyMatrix,matrix'
e1 == e2
## S4 method for signature 'polyMatrix,numeric'
e1 == e2
## S4 method for signature 'ANY,polyMatrix'
e1 == e2
## S4 method for signature 'polyMatrix,ANY'
e1 != e2
## S4 method for signature 'ANY,polyMatrix'
e1 != e2
```

Arguments x

	3
i	the degree of the matrix of coefficient to be extracted
object	an R object
newdata	the value to be evaluated
digits	an integer indicating the number of decimal places (round) or significant digits (signif) to be used
e1	an left operand
e2	an right operand

Methods (by generic)

• [[: get coefficient matrix by degree

a matrix object

22 polyMatrix-class

- det: determinant of a polynomial matrix
- nrow: the number of rows of a polynomial matrix
- nrow: a polynomial has only one row
- ncol: the number of columns of a polynomial matrix
- ncol: a polynomial has only one column
- dim: the dimension of a polynomial matrix
- predict: the value of a polynomial matrix in a point
- round: rounding of a polynomial matrix is rounding of polynomial coefficients
- show: prints out a text representation of a polynomial matrix
- ==: equal operator for two polinomial matrices, result is a boolean matrix
- ==: equal operator for polinomail matrix and polinomail, result is a matrix
- ==: equal operator for polinomial and numerical matrices
- ==: equal operator for polinomial matrix and number, result is a matrix
- ==: equal operator for aby object and polinomial matrix
- !=: not equal operator
- !=: not equal operator

Slots

coef A matrix of coefficients which are joined into one matrix from lower degree to higher ncol The actual number of columns in the polynomial matrix

```
# create a new polynomial matrix by parsing strings
pm <- parse.polyMatrix(</pre>
     "x; 1 + x^2; 3 \times - x^2",
     "1; 1 + x^3; - x + x^3"
)
# get coefficient matrix for degree 0
pm[[0]]
       [,1] [,2] [,3]
## [1,] 0 1 0
## [2 ]
# get coefficient matrix for degree 1
pm[[1]]
       [,1] [,2] [,3]
## [1,] 1 0 3
             0 -1
## [2 ]
        0
# dimensions
nrow(pm) ## 2
```

polyMatrix.apply 23

```
ncol(pm) ## 3
dim(pm) ## [1] 2 3
# round
round(parse.polyMatrix(
                             1 - x^2, 1 + 2.0003*x + x^2",
  " 1.0001 - x,
  "0.0001 + x - x^2, 1 + x + 0.0001 x^2, 1 - 2*x + x^2"
           [,1] [,2] [,3]
1 - x 1 - x^2 1 + 2x + x^2
## [1,]
## [2,] x - x^2
                      1 + x \quad 1 - 2x + x^2
# print out a polynomial matrix
show(parse.polyMatrix(
  " 1.0001 - x, 1 - x^2, 1 + 2.0003*x + x^2", "0.0001 + x - x^2, 1 + x, 1 - 2*x + x^2",
          12.3 x^3, 2 + 3.5 x + x^4, -0.7 + 1.6e-3 x^3"
))
##
                      [,1]
                                          [,2]
## [1,] 1.0001 - x 1 - x^2 1 + 2.0003x + x^2 ## [2,] 1e-04 + x - x^2 1 + x 1 - 2x + x^2 ## [3,] 12.3x^3 2 + 3.5x + x^4 -0.7 + 0.0016x^3
```

polyMatrix.apply

Apply for polynomial matrix

Description

Apply function to each element of matrix

Usage

```
polyMatrix.apply(x, f)
```

Arguments

```
x an polynomial matrix
```

f an function with only one argument

24 t,polyMatrix-method

```
polyMatrixCharPolynomial-class
```

A class to repesent characteristic polynomial of a polynomial matrix

Description

Characteristic polynomial of a polynomial matrix is a polynomial with polynomial coefficients

```
t,polyMatrix-method
```

Polynomial matrix transpose

Description

Given a polyMatrix, t returns the transpose of x

Usage

```
## S4 method for signature 'polyMatrix' t(x)
```

Arguments

Х

a polyMatrix

See Also

base::t() for numerical matrix tranpose

tr 25

tr

Trace of a 'matrix' or 'polyMatrix' class matrix

Description

Trace of a matrix is the sum of the diagonal elements of the given matrix.

Usage

```
tr(x)
```

Arguments

Х

a matrix or a polynomial matrix

Details

If the given matrix is a polynomial matrix, the result will be a polynomial.

Value

Returns the trace of the given matrix as a number or a polynomial.

```
# numerical matrices
m <- matrix(1:12, 3, 4)</pre>
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,]
        2 5 8 11
## [3,]
        3
             6 9
                        12
tr(m) ## 15
# polynomial matrix
pm <- parse.polyMatrix(</pre>
 "-3 + x^2, 2 + 4 x, -x^2",
" 1, 2, 3 + x",
" 2, 3 + x",
                 0, 2 - 3 x"
       2*x,
tr(pm) ## 1 - 3*x + x^2
```

26 triang_Interpolation

triang_Interpolation Triangularization of a polynomial matrix by interpolation method

Description

The parameters point_vector, round_digits can significantly affect the result.

Usage

```
triang_Interpolation(
  pm,
  point_vector,
  round_digits = 5,
  eps = .Machine$double.eps^0.5
)
```

Arguments

pm source polynimial matrix

point_vector vector of interpolation points

round_digits we will try to round result on each step

eps calculation zero errors

Details

Default value of 'eps" usually is enought to determintate real zeros.

In a polynomial matrix the head elements are the first non-zero polynomials of columns. The sequence of row indices of this head elements form the shape of the polynomial matrix. A polynomial matrix is in left-lower triangular form, if this sequence is monoton increasing.

This method offers a solution of the triangulrization by the Interpolation method, described in the article of Labhalla-Lombardi-Marlin (1996).

Value

Tranfortmaiton matrix

triang_Sylvester 27

triang_Sylvester Triangularization of a polynomial matrix by Sylvester method	triang_Sylvester	Triangularization of a polynomial matrix by Sylvester method
---	------------------	--

Description

The function triang_Sylvester triangularize the given polynomial matrix.

Usage

```
triang_Sylvester(pm, u, eps = ZERO_EPS)
```

Arguments

pm	an polynomial	matrix to	triangularize
la	F J		

u the minimal degree of the triangularizator multiplicator

eps threshold of non zero coefficients

Details

The u parameter is a necessary supplementary input without default value. This parameter give the minimal degree of the searched triangulizator to solve the problem.

In a polynomial matrix the head elements are the first non-zero polynomials of columns. The sequence of row indices of this head elements form the *shape* of the polynomial matrix. A polynomial matrix is in left-lower triangular form, if this sequence is monoton increasing.

This method search a solution of the triangulrization by the method of Sylvester matrix, descripted in the article Labhalla-Lombardi-Marlin (1996).

Value

T - the left-lower triangularized version of the given polynomial matrix U - the right multiplicator to triangularize the given polynomial matrix

References

Salah Labhalla, Henri Lombardi, Roger Marlin: Algorithm de calcule de la reduction de Hermite d'une matrice a coefficients polynomiaux, Theoretical Computer Science 161 (1996) pp 69-92

28 zero.round

zero.round

Rounds objects to zero if there is too small

Description

Rounds objects to zero if there is too small

Usage

```
zero.round(x, eps = ZERO_EPS)
## S4 method for signature 'polynomial'
zero.round(x, eps = ZERO_EPS)
## S4 method for signature 'polyMatrix'
zero.round(x, eps = ZERO_EPS)
```

Arguments

x an R object

eps Minimal numerical value which will not be treated as zero

Details

```
By befault eps = \{r\} ZERO_EPS
```

Methods (by class)

- polynomial: rounding of a polynomial means rounding of each coefficient
- polyMatrix: rounding of a polynomial matrix

See Also

```
is.zero()
```

```
# numerical
zero.round(1) ## 1
zero.round(0) ## 0
zero.round(0.1, eps=0.5) ## 0
zero.round(c(1, 0, .01, 1e-10)) ## 1.00 0.00 0.01 0.00

# polynomials
zero.round(parse.polynomial("0.1 + x + 1e-7 x^2")) ## 0.1 + x
zero.round(parse.polynomial("0.1 + x + 1e-7 x^2"), eps=0.5) ## x
```

zero_lead_hyp_rows 29

```
# polynomial matrix
zero.round(parse.polyMatrix(
 "1 + 0.1 x, 10 + x + 3e-8 x^2, 1e-8",
 "0.1 + x^2, .1 + 1e-8 x^4, 1e-8 x^5"
))
             [,1]
                     [,2] [,3]
## [1,]
       1 + 0.1x \quad 10 + x
## [2,] 0.1 + x^2
                      0.1
zero.round(parse.polyMatrix(
 "1 + 0.1 x, 10 + x + 3e-8 x^2, 1e-8",
 "0.1 + x^2,
             .1 + 1e-8 x^4, 1e-8 x^5"
), eps=0.5)
## [,1]
               [,2] [,3]
## [1,] 1 10 + x 0
## [2,] x^2
              0
```

zero_lead_hyp_rows

Get zero lead hyper rows of size sub_nrow of matrix M

Description

Get zero lead hyper rows of size sub_nrow of matrix M

Usage

```
zero_lead_hyp_rows(M, sub_nrow, esp = ZERO_EPS)
```

Arguments

M Numerical matrixsub_nrow Size of hyper rowesp Machine epsilon to determinate zeros

Value

vector of idx of hyperrows, NaN for columns without zeros

zero_lead_rows

Get zero lead rows of matrix M

Description

Get zero lead rows of matrix M

Usage

```
zero_lead_rows(M, eps = ZERO_EPS)
```

Arguments

M Numerical matrix

eps Machine epsilon to determinate zeros

Value

vector of idx (length is equal to column number), NULL in case of error

[,polyMatrix,missing,missing,missing-method Extract or Replace Parts of a polynomial matrix

Description

Extract or Replace Parts of a polynomial matrix

Usage

```
## S4 method for signature 'polyMatrix,missing,missing,missing'
x[i, j, ..., drop = TRUE]

## S4 method for signature 'polyMatrix,missing,ANY,missing'
x[i, j]

## S4 method for signature 'polyMatrix,ANY,missing,missing'
x[i, j]

## S4 method for signature 'polyMatrix,logical,logical,missing'
x[i, j]

## S4 method for signature 'polyMatrix,logical,numeric,missing'
x[i, j]
```

```
## S4 method for signature 'polyMatrix, numeric, logical, missing'
x[i, j]
## S4 method for signature 'polyMatrix,numeric,numeric,missing'
x[i, j]
## S4 replacement method for signature 'polyMatrix,missing,missing,ANY'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix,missing,ANY,ANY'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix, ANY, missing, ANY'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix,numeric,numeric,numeric'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix, numeric, numeric, matrix'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix,numeric,numeric,polynomial'
x[i, j] \leftarrow value
## S4 replacement method for signature 'polyMatrix,numeric,numeric,polyMatrix'
x[i, j] \leftarrow value
```

Arguments

x a polynomial matrix
i row indeces
j column indeces
... unused
drop unused
value new value

Functions

- [,polyMatrix,missing,ANY,missing-method: get columns
- [,polyMatrix,ANY,missing,missing-method: gets rows
- [,polyMatrix,logical,logical,missing-method: gets by logical index
- [,polyMatrix,logical,numeric,missing-method: gets by logical index and numerical indices
- [,polyMatrix,numeric,logical,missing-method: gets by logical index and numerical indices
- [,polyMatrix,numeric,numeric,missing-method: gets by row and column indices

- [<-,polyMatrix,missing,missing,ANY-method: replace o matrix by a new one
- [<-,polyMatrix,missing,ANY,ANY-method: assigns rows
- [<-,polyMatrix,ANY,missing,ANY-method: assigns columns
- [<-,polyMatrix,numeric,numeric,numeric-method: replace part of matrix by one number
- [<-,polyMatrix,numeric,numeric,matrix-method: replace part of matrix by another numerical matrix. Size of the new matrix should be same as replaced part
- [<-,polyMatrix,numeric,numeric,polynomial-method: replace part of matrix by one polynomail
- [<-,polyMatrix,numeric,numeric,polyMatrix-method: replace part of matrix by another polunomial matrix. Size of the new matrix should be same as replaced part

Description

Matrix multiplication accepts both polynomial and numerical matrices.

Usage

```
## S4 method for signature 'polyMatrix,polyMatrix'
x %*% y
## S4 method for signature 'polyMatrix,matrix'
x %*% y
## S4 method for signature 'matrix,polyMatrix'
x %*% y
```

Arguments

x, y first and second operands

Index

!=,ANY,polyMatrix-method	(polyMatrix-class), 20
(polyMatrix-class), 20	[,polyMatrix,ANY,missing,missing-method
!=,polyMatrix,ANY-method	<pre>([,polyMatrix,missing,missing,missing-method)</pre>
(polyMatrix-class), 20	30
*,ANY,polyMatrix-method	[,polyMatrix,logical,logical,missing-method
(polyMatrix-Arith), 18	<pre>([,polyMatrix,missing,missing,missing-method)</pre>
*,polyMatrix,numeric-method	30
(polyMatrix-Arith), 18	[,polyMatrix,logical,numeric,missing-method
*,polyMatrix,polyMatrix-method	<pre>([,polyMatrix,missing,missing,missing-method)</pre>
(polyMatrix-Arith), 18	30
*,polyMatrix,polynomial-method	[,polyMatrix,missing,ANY,missing-method
(polyMatrix-Arith), 18	<pre>([,polyMatrix,missing,missing,missing-method)</pre>
+,ANY,polyMatrix-method	30
(polyMatrix-Arith), 18	[,polyMatrix,missing,missing,missing-method,
+,polyMatrix,matrix-method	30
(polyMatrix-Arith), 18	[,polyMatrix,numeric,logical,missing-method
+,polyMatrix,missing-method	<pre>([,polyMatrix,missing,missing,missing-method)</pre>
(polyMatrix-Arith), 18	30
+,polyMatrix,numeric-method	[,polyMatrix,numeric,numeric,missing-method
(polyMatrix-Arith), 18	([,polyMatrix,missing,missing,missing-method)
+,polyMatrix,polyMatrix-method	30
(polyMatrix-Arith), 18	<pre>[<-,polyMatrix,ANY,missing,ANY-method</pre>
+,polyMatrix,polynomial-method	([,polyMatrix,missing,missing,missing-method)
(polyMatrix-Arith), 18	30
-,ANY,polyMatrix-method	<pre>[<-,polyMatrix,missing,ANY,ANY-method</pre>
(polyMatrix-Arith), 18	([,polyMatrix,missing,missing,missing-method)
-,polyMatrix,ANY-method	30
(polyMatrix-Arith), 18	<pre>[<-,polyMatrix,missing,missing,ANY-method</pre>
-,polyMatrix,polyMatrix-method	([,polyMatrix,missing,missing,missing-method)
(polyMatrix-Arith), 18	30
==,ANY,polyMatrix-method	[<-,polyMatrix,numeric,numeric,matrix-method
(polyMatrix-class), 20	([,polyMatrix,missing,missing,missing-method)
==,polyMatrix,matrix-method	30
(polyMatrix-class), 20	[<-,polyMatrix,numeric,numeric,numeric-method
==,polyMatrix,numeric-method	([,polyMatrix,missing,missing,missing-method)
(polyMatrix-class), 20	30
==,polyMatrix,polyMatrix-method	[<-,polyMatrix,numeric,numeric,polyMatrix-method
(polyMatrix-class), 20	([,polyMatrix,missing,missing,missing-method)
==,polyMatrix,polynomial-method	30

34 INDEX

<pre>[<-,polyMatrix,numeric,numeric,polynomial-m</pre>	et G601, 9
<pre>([,polyMatrix,missing,missing,missing)</pre>	ng 660(h od);
30	GCD, polyMatrix-method (GCD), 9
[[,polyMatrix,numeric-method	
(polyMatrix-class), 20	inv, 10
[[,polyMatrixCharPolynomial,ANY-method	is.column.proper(is.proper), 11
(charpolynom), 4	is.polyMatrix, 10
%*%,matrix,polyMatrix-method	is.proper, 11
(%*%,polyMatrix,polyMatrix-method),	is.row.proper(is.proper), 11
32	is.zero, 12
%*%,polyMatrix,matrix-method	is.zero(), 28
<pre>(%*%,polyMatrix,polyMatrix-method),</pre>	is.zero,polyMatrix-method(is.zero), 12
32	is.zero,polynomial-method(is.zero), 12
%*%,polyMatrix,polyMatrix-method,32	3 1 1 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7, poly. ac. 1x, poly. ac. 1x meetics, 22	LCM, 13
adjoint, 3	LCM(), 9
adjoint(), 6	LCM, polyMatrix-method (LCM), 13
adjoint,polyMatrix-method(adjoint),3	26.1, po 25.1.d of 27. mo 51.0 d (26.1), 10
adjoint, polynder ix meenod (dajointe), 5	matrix.degree, 14
base::cbind(), <i>3</i> , <i>4</i>	matrix.degree,matrix-method
base::diag(), 8	(matrix.degree), 14
base::rbind(), 3	matrix.degree,polyMatrix-method
base::t(), 24	(matrix.degree), 14
	matrix.degree,polynomial-method
cbind, 3	(matrix.degree), 14
charpolynom, 4	minor, 15
charpolynom, matrix-method	minor, 15
(charpolynom), 4	ncol,polyMatrix-method
charpolynom, polyMatrix-method	(polyMatrix-class), 20
(charpolynom), 4	ncol, polynomial-method
charpolynom, polynomial-method	(polyMatrix-class), 20
(charpolynom), 4	newton, 16
cofactor, 5	nrow,polyMatrix-method
coractor, 3	(polyMatrix-class), 20
degree, 6	nrow, polynomial-method
degree(), <i>14</i>	· · · · · ·
degree, matrix-method (degree), 6	(polyMatrix-class), 20
degree, numeric-method (degree), 6	narca nalyMatrix 16
	parse.polyMatrix() 17
degree, polyMatrix-method (degree), 6	parse.polymatrix(), 17
degree, polyMatrixCharPolynomial-method	parse.polynomial, 17
(charpolynom), 4	parse.polynomial(), 17
degree, polynomial-method (degree), 6	polyMatrix, 18
det,polyMatrix-method	polyMatrix-Arith, 18
(polyMatrix-class), 20	polyMatrix-class, 20
diag, 7	polyMatrix.apply, 23
diag, polyMatrix-method (diag), 7	polyMatrixCharClass, 5
diag, polynomial-method (diag), 7	polyMatrixCharClass
dim,polyMatrix-method	(polyMatrixCharPolynomial-class)
(polyMatrix-class), 20	24

INDEX 35

```
polyMatrixCharPolynomial-class, 24
polyMatrixClass(polyMatrix-class), 20
polynom::GCD(), 9, 13
predict,polyMatrix-method
        (polyMatrix-class), 20
\verb|predict,polyMatrixCharPolynomial-method|\\
        (charpolynom), 4
rbind (cbind), 3
round,polyMatrix-method
        (polyMatrix-class), 20
show,polyMatrix-method
        (polyMatrix-class), 20
\verb|show,polyMatrixCharPolynomial-method|\\
        (charpolynom), 4
t,polyMatrix-method, 24
tr, 25
triang_Interpolation, 26
triang_Sylvester, 27
zero.round, 28
zero.round(), 12
zero.round,polyMatrix-method
        (zero.round), 28
zero.round,polynomial-method
        (zero.round), 28
zero_lead_hyp_rows, 29
zero_lead_rows, 30
```