Language Models

Joost Bastings

http://joost.ninja

you know nothing, jon ____

life is like a box of ___

the ___

the quick ___

the quick brown ___

the quick brown fox ____

the quick brown fox jumps ____

the quick brown fox jumps over ___

the quick brown fox jumps over the ___

the quick brown fox jumps over the lazy ____

the quick brown fox jumps over the lazy dog

Predicting the future

Language models give us the probability of a sentence.

At any time step, they assign a **probability** to the next word.

Applications

This is useful when we deal with **noisy input**:

speech recognition
handwriting recognition
spelling correction
machine translation

Source: J&M

n-gram based Im feature based Im neural network based Im

Probability of a sentence

```
p(you know nothing jon snow) = ????
```

We can use the **chain rule**:

$$p(B \mid A) = p(A, B) / p(A)$$

p(you know nothing jon snow) =

p(know | you) p(nothing | you know) p(jon | you know nothing) p(snow | you know nothing jon)

n-gram language models

To make (count based) estimation possible, we need a markov assumption

bi-gram case:

$$p(x_i | x_1 x_2 ... x_{i-1}) \approx p(x_i | x_{i-1})$$

parameters: $\theta_{\mathbf{x}|\mathbf{x}'} \ \forall \ \mathbf{x}, \mathbf{x}' \in \mathcal{V}$

n-gram case:

$$p(x_i | x_1 x_2 ... x_{i-1}) \approx p(x_i | x_{i-n+1} ... x_{i-1})$$

parameters: $\theta_{\mathbf{x}|\mathbf{h}} \quad \forall \ \mathbf{x} \in \mathcal{V}, \mathbf{h} \in \mathcal{V}^{\text{n-1}}$

Smoothing

If we didn't observe a certain bigram, then $p(x_i | x_{i-1})$ will be 0 This makes the probability of the sentence also 0!

MLE:
$$p_{MLE}(x_i | x_{i-1}) = count(x_{i-1}, x_i) / count(x_{i-1})$$

Laplace / add-one smoothing:
$$p_{Add1}(x_i | x_{i-1}) = count(x_{i-1}, x_i) + 1$$

/ $count(x_{i-1}) + V$

This doesn't work so well for language modeling.

For more advanced smoothing, cf. Kneser-Ney, Stupid Backoff.

Source: J&M

18

Perplexity

We would like our models to assign high probability to "real" sentences

Let **x** =
$$x_1 x_2 ... x_N$$

$$pp(\mathbf{x}) = exp - \frac{1}{N} \sum_{i} ln P(x_i)$$

$$pp(\mathbf{x}) = P(x_1 x_2 ... x_N)^{-1/N}$$

Log-linear models

$$p_{w}(Y=y \mid X=x) = \frac{\exp \mathbf{w} \cdot \phi(x, y)}{\sum_{y' \in \mathcal{Y}} \exp \mathbf{w} \cdot \phi(x, y')}$$

Y is the **next word** (and *Y* the vocabulary)

X is the history

φ is a **feature function** which returns a d-dimensional vector

w are the model parameters

Why use log-linear models with features?

With *features* of words and histories we can share **statistical weight**

Mind: with n-grams, there is no sharing at all!

We also get smoothing

We can add arbitrary features, e.g. we could condition the text on properties of the author (gender, age, political affiliation,..) We can easily interpret these kinds of models

Each feature ϕ_k controls a *factor* to the probability (e^{wk})

if $w_k < 0$, then ϕ_k makes the event *less likely* by a factor of $1/e^{wk}$

if $w_k > 0$, then ϕ_k makes the event *more likely* by a factor of e^{wk}

if $W_k = 0$, then ϕ_k has no effect

What features should we use?

n-gram features: "
$$X_{j-1}$$
 = the ^ X_j = puppy"

gappy n-gram features: "
$$X_{j-2}$$
 = the ^ X_j = puppy"

spelling features: "X's first character is Capitalized"

class features: "X_i is a member of class 123"

gazetteer features: "X_i is a geographic place name"

Source: Noah Smith / csep 517

Comparison: n-gram vs. log-linear

n-gram

$$p_{\theta}(\mathbf{x}) = \prod_{i} \theta_{xi \mid \mathbf{h}i}$$

parameters:

$$\theta_{x|h} \quad \forall x \in \mathcal{V}, h \in \mathcal{V}^{n-1}$$

MLE:

$$\theta_{x|h}^{^{\wedge}} = count(h, x) / count(h)$$

log-linear

$$p_{\theta}(\mathbf{x}) = \prod_{i} \exp \mathbf{w} \cdot \phi(\mathbf{h}_{i}, \mathbf{x}_{i}) / Z_{\mathbf{w}}(\mathbf{h}_{i})$$

parameters:

$$W_k \forall k \in \{1, ..., d\}$$

MLE:

No closed form! → use SGD

training data $\{(x_i, h_i)\}_{i=1}^N$

MLE: $\max_{\mathbf{w}} \sum_{i} \mathbf{w} \cdot \phi(\mathbf{h}_{i}, \mathbf{x}_{i}) - \log Z_{\mathbf{w}}(\mathbf{h}_{i})$

$$\nabla_{\mathbf{w}} \mathbf{f}_{i} = \phi(\mathbf{h}_{i}, \mathbf{x}_{i}) - \sum_{\mathbf{v}} p(\mathbf{v} \mid \mathbf{h}_{i}) \cdot \phi(\mathbf{h}_{i}, \mathbf{v})$$

Observed features

Expected features

Stochastic Gradient Descent

Goal: minimize $\sum_{i}^{N} f_{i}(\mathbf{w})$ with respect to \mathbf{w}

Input: initial values **w**, learning rate α

SGD:

while "not converged":

sample training instance i from {1, ..., N}

$$w \leftarrow w - \alpha \cdot \nabla_w f_i$$

Source: Noah Smith / csep 517

Regularization

Problem:

if a certain feature is often positive, we can increase the objective by making its weight slightly larger every time

This can cause overfitting!

Solution:

Regularization

We add a term $\lambda ||\mathbf{w}||^2$ to our objective ("L2-norm") to discourage large weights

Source: Noah Smith / csep 517

Summary so far

n-gram

h_i is n-1 previous words

estimation: count and normalize

think about smoothing

log-linear

featurized representation of $(\mathbf{h}_{i'}, \mathbf{x}_{i})$

estimation with SGD

think about features

26

Neural language models

Motivation

n-gram language models have proven to be effective for various tasks amaybe we do not need the **full** history

log-linear models allow sharing statistical weight through features sharing is important for generalization

maybe our history is still too limited (n-1 words) ♥
sometimes larger histories are useful, but hard to estimate parameters

we need to find useful features ♥

and be careful of overfitting with too many features

Motivation (2)

Consider:

- 1. The cat is walking in the bedroom
 - 2. A dog was running in a room

Observing (1) should help us generalize to make (2) almost as likely.

But with the previous methods this is hard to accomplish!

Bengio et al. (2003)

Feed-forward NN approach

with neural networks we can exploit distributed representations to allow statistical weight sharing

how it works:

- each word is assigned a distributed m-dimensional feature vector
- 2. a probability function of word sequences is expressed in terms of those vectors
- 3. we jointly learn the feature vectors and the parameters of that probability function

Bengio et al. (2003)

Why would this work?

Similar words are expected to have a similar feature vector

```
(dog, cat), (is, was), (running, walking), (room, bedroom), ...
```

With this, probability mass is naturally transferred from (1) to (2):

- 1. The cat is walking in the bedroom
 - 2. A dog was running in a room

and to many, many other similar sentences.

The point: the presence of only 1 sentence in the training data will increase the probability for a combinatorial number of "neighbors" in sentence space.

Feed-forward NN language model

 $y = W'' \tanh(Wx + b) + W'x + b'$

Bengio et al. (2003)

Why does it work?

the nonlinear NN function allows feature combinations a linear model cannot get

end-to-end training on next word prediction

Recurrent NN language model

we now have much better generalization, but still a limited context

recurrent neural networks (RNNs) have an unlimited context

Mikolov et al. (2010)

Recurrent NN language model

$$h_i = \sigma(Wx + Rh_{i-1} + b)$$

 $y_i = W'' h_i + b'$

Mikolov et al. (2010)

Recurrent NN language model

Mikolov et al. (2010)

Final note on neural language models

- the log-likelihood function is not concave
- so when we evaluate a new neural language model,
 we also evaluate our algorithm to estimate the parameters
 (and its hyperparameters)
- 3. RNNs suffer from the vanishing gradient problem (next lecture)
- many improved language models have been proposed since these ones
 e.g. log-bilinear lm, LSTM-based, character based

Preview: Encoder-decoder

Sutskever et al. (2014), Cho et al. (2014)

References

Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155.

Mikolov, Tomas, et al. "Recurrent neural network based language model." Interspeech. Vol. 2. 2010.

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

Noah Smith, CSEP517:

http://courses.cs.washington.edu/courses/csep 517/17sp/

Jurafsky & Martin. Speech and Language Processing (3rd ed. draft).

https://web.stanford.edu/~jurafsky/slp3/