[SoC Lab] Lab3

tags: SoC Lab, SOC Design

Student ID	Name
311551095	林聖博

附上此篇Hackmd Link: https://hackmd.io/@Sheng08/BkA-NLfzT

- [SoC Lab] Lab3
 - o Lab 3
 - Overview
 - Block diagram
 - Finite State Machine
 - Operation
 - AXI-Lite control
 - AXI-Stream control
 - BRAM (in calculation)
 - How ap_done is generated
 - Resource usage
 - LUT & FF
 - BRAM
 - Register
 - DSP
 - Timing Report
 - Max Delay Path
 - Simulation
 - o Github link
 - 。 補充

Lab 3

• https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/lab-fir

Configuration Register Address map

Address

Overview

本次 Lab3 主要設計一個 11-tap 的 FIR 濾波器,並 host 與 testbench 需透過 AXI interface (AXI-LITE 與 AXI-Stream)溝通。其中,AXI-LITE 負責處理配置(configuration)的指令,如:開始(ap_start)或讀取配置狀態 (ap_done, ap_idle);而 AXI-Stream 主要是負責資料的傳輸,如:將輸入值x[t]送至 FIR,並在完成計算後得到輸出。

此 Design 可以大致分為配置和資料處理兩大部分。

- 配置(Configuration): 主要是透過 AXI-LITE 來設定濾波器的參數
- 資料處理(FIR Dataflow): 則是透過 AXI-Stream 來進行資料傳輸和計算

本次要求 FIR 中存取兩個 BRAM module,分別為 Tap_ram 和 Data_ram。前者用於儲存 filter 的參數,後者則用於儲存了計算所需的前幾次的輸入值。

而整個系統運作時,首先將進行配置階段,即設定 filter 相關參數並儲存在 Tap_ram 中。當配置完成後,接著設定 ap_start 啟動計算階段,處理來自 Host 的輸入資料並產生相對應的 FIR 輸出。

Block diagram

Finite State Machine

Operation

AXI-Lite control

Read/write configuration

- 在 testbench 開始輸入 coefficients 之前,會檢查只有在 FIR engine 處於 idle 狀態(ap_idle
 1)時, Write channel 才會啟用
 - 當 FIR 接收到所有 coefficients 後,testbench 會開始讀取系數coefficients
 - 如果所有 coefficients 都是正確的,那麼 testbench 寫入 ap_start 為 1,然後 FIR 開始計算
- o ap_start 由 testbench 設定,並由 FIR reset
- 。 當同時接收 read 與 write 請求時,為避免 resource competition,則優先 read channel

• AXI4-Lite Read

- 若 address == 0, FIR 立即輸出 {ap_idle, ap_done, ap_start}
- 。 若 address == 1, FIR 立即輸出 data_length
- 。 若為其他 address,表示 testbench 要讀取 coefficients,則從 tap_ram 讀取對應 coefficients 並輸出
 - Reading 過程需 3個 cycles,其中 1個 cycle 向 tap_ram 請求資料, 另 1個 cycle 用於 tap_bram 的讀取,而最後 1個 cycle 用於輸出資料
 - Note: Reading 過程可 pipeline,因此 arready 只會在 1個 cycle 內拉低為0

• AXI4-Lite Write

- 若 address == 0, FIR 將立即改變 ap_idle, ap_done, ap_start 的狀態
- o 若 address == 1, FIR 將立即改變 data_length 的值
- 。 若為其他 address,即輸入的 coefficients,則將資料寫入到 tap_ram 中

AXI-Stream control

AXI4-Stream Read

。 當 FIR 需要資料時,將 ss_t ready 設為 1 於 一個 cycle

AXI4-Stream Write

。 當 FIR 完成計算,同一時間將 sm_tvalid 設為 1 於 一個 cycle 並設定 sm_tdata 為輸出(答案)

1. 初始化: 在任何計算開始前,在 tap_ram 中將除了 address 0x00 的所有 address 都寫為 0。其因為前 n 個答案只使用前 n 個資料進行計算。

- 2. **資料存放**: 從 AXI-Stream 輸入的資料會依序儲存在 data_ram 中。當 data_ram 滿時,替換最舊的資料。
 - 第 i 個資料會儲存在 data_ram 的 i % 12 address

3. 資料的計算:

- 由於只有一個乘法器,所以每對資料在1個 cycle 內相乘。然後,將 product 結果加到一個 sum 的 register 中
- 。 從 data_ram 讀取的第一筆資料位址為 0,之後,位址會按遞減順序讀取
- 。 從 tap_ram 讀取的第一筆資料位址為 0,之後,位址會按**遞增**順序讀取
- 經過 11個計算 cycle 後, sum 將被輸出到 sm_tdata, 並同時將 sm_tvalid 設為 1 於 一個 cycle

How ap_done is generated

- 當 FIR 接收到帶有高位 ss_tlast 的 stream data 時, FIR 將計算這最後一筆資料,並在計算完成後, 將 ap_done 設為 1。
- 在最後一筆資料成功傳送到 testbench 後,FIR 將會將 ap_idle 設為1。

Resource usage

LUT & FF

BRAM

Register

DSP

Timing Report

合成設定 cycle time 為 15 ns, timing report 如下:

Max Delay Path

```
Max Delay Paths
Slack (MET):
                         1.767ns (required time - arrival time)
 Source:
                         tap_A_r_reg[5]/C
                           (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@7.500ns period=15.000ns})
 Destination:
                          sum_r_reg[31]/D
                          (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@7.500ns period=15.000ns})
 Path Group:
                         axis clk
 Path Type:
                         Setup (Max at Slow Process Corner)
  Requirement:
                         15.000ns (axis_clk rise@15.000ns - axis_clk rise@0.000ns)
 Data Path Delay:
                         13.096ns (logic 8.684ns (66.308%) route 4.412ns (33.692%))
 Logic Levels:
                         12 (CARRY4=5 DSP48E1=2 LUT2=3 LUT3=1 LUT6=1)
 Clock Path Skew:
                         -0.145ns (DCD - SCD + CPR)
   Destination Clock Delay (DCD):
                                     2.128ns = ( 17.128 - 15.000 )
   Source Clock Delay
                           (SCD):
                                     2.456ns
   Clock Pessimism Removal (CPR):
                                     0.184ns
                         0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Clock Uncertainty:
   Total System Jitter
                                     0.071ns
    Total Input Jitter
                                     0.000ns
   Discrete Jitter
                                     0.000ns
   Phase Error
                                     0.000ns
                            (PE):
```

559	Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
560 561		(clock axis clk rise edge)			
562		(Clock axis_clk rise edge)	0.000	0.000 r	
563			0.000	0.000 r	axis_clk (IN)
564		net (fo=0)	0.000	0.000	axis_clk
565					axis_clk_IBUF_inst/I
566		IBUF (Prop_ibuf_I_0)	0.972		axis_clk_IBUF_inst/0
567		net (fo=1, unplaced)	0.800	1.771	axis clk IBUF
568					axis_clk_IBUF_BUFG_inst/I
569		BUFG (Prop_bufg_I_0)	0.101		axis_clk_IBUF_BUFG_inst/O
570		net (fo=260, unplaced)	0.584	2.456	axis_clk_IBUF_BUFG
571		FDCE		r	tap_A_r_reg[5]/C
572					
572					
573		FDCE (Prop_fdce_C_Q)	0.478	2.934 r	tap_A_r_reg[5]/Q
574		net (fo=5, unplaced)	0.993	3.927	tap_A_OBUF[5]
575					
576		LUT6 (Prop_lut6_I0_0)	0.295		sum_w1_i_18/0
577		net (fo=32, unplaced)	0.520	4.742	sum_w1_i_18_n_0
578					sum_w1_i_1/I1
579		LUT3 (Prop_lut3_I1_0)	0.124	4.866 r	
580		net (fo=2, unplaced)	0.800	5.666	sum_w1_i_1_n_0
581 582		DSP48E1 (Prop_dsp48e1_B[16	1 PCOUT[4		sum_w10/B[16]
583		D3F46E1 (FF0P_dsp46E1_b[10	3.851	9.517 r	sum_w10/PCOUT[47]
584		net (fo=1, unplaced)	0.055	9.572	sum_w10_n_106
585				r	sum_w11/PCIN[47]
586		DSP48E1 (Prop_dsp48e1_PCIN	[47] P[0])	, , ,
587			1.518	11.090 r	sum_w11/P[0]
588		net (fo=2, unplaced)	0.800	11.890	sum_w11_n_105
589					
590		LUT2 (Prop_lut2_I0_0)	0.124	12.014 r	
591		net (fo=1, unplaced)	0.000	12.014	sum_r[19]_i_10_n_0
592		CARRYA (Para arraya 5[1] C		r	sum_r_reg[19]_i_7/S[1]
593 594		CARRY4 (Prop_carry4_S[1]_C		12.547 r	sum n nog[10] ; 7/00[3]
595		net (fo=1, unplaced)	0.533 0.009	12.547	sum_r_reg[19]_i_7/C0[3] sum_r_reg[19]_i_7_n_0
596				r	
597		CARRY4 (Prop_carry4_CI_CO[31)		
598			0.117	12.673 r	sum_r_reg[23]_i_7/C0[3]
599		net (fo=1, unplaced)	0.000	12.673	sum_r_reg[23]_i_7_n_0
600					sum_r_reg[27]_i_7/CI
601		CARRY4 (Prop_carry4_CI_0[3			
602			0.331	13.004 r	sum_r_reg[27]_i_7/0[3]
603		net (fo=1, unplaced)	0.618	13.622	sum_r_reg[27]_i_7_n_4
604			0.707	r	sum_r[27]_i_3/I1
605 606		LUT2 (Prop_lut2_I1_0) net (fo=1, unplaced)	0.307 0.000	13.929 r 13.929	sum_r[27]_i_3/0 sum_r[27]_i_3_n_0
607				r	sum_r_reg[27]_i_2/S[3]
608		CARRY4 (Prop_carry4_S[3]_C	0[31)		Juni_, _, e8[2,]_1_1_2, J[3]
609			0.376	14.305 r	sum_r_reg[27]_i_2/C0[3]
610		net (fo=1, unplaced)	0.000	14.305	sum_r_reg[27]_i_2_n_0
611				r	sum_r_reg[31]_i_3/CI
612		CARRY4 (Prop_carry4_CI_0[3])		
613			0.331	14.636 r	
614		net (fo=1, unplaced)	0.618	15.254	sum_r_reg[31]_i_3_n_4
615					sum_r[31]_i_2/I0
616		LUT2 (Prop_lut2_I0_0)	0.299	15.553 r	
617		net (fo=1, unplaced)	0.000	15.553	sum_w[31]
618		FDCE		r	sum_r_reg[31]/D
619					

619				
620				
621	(clock axis_clk rise edge)			
622		15.000	15.000 r	
623		0.000	15.000 r	axis_clk (IN)
624	net (fo=0)	0.000	15.000	axis_clk
625				axis_clk_IBUF_inst/I
626	IBUF (Prop_ibuf_I_0)	0.838	15.838 r	axis_clk_IBUF_inst/0
627	net (fo=1, unplaced)	0.760	16.598	axis_clk_IBUF
628				axis_clk_IBUF_BUFG_inst/I
629	BUFG (Prop_bufg_I_0)	0.091	16.689 r	axis_clk_IBUF_BUFG_inst/0
630	net (fo=260, unplaced)	0.439	17.128	axis_clk_IBUF_BUFG
631	FDCE		r	sum_r_reg[31]/C
632	clock pessimism	0.184	17.311	
633	clock uncertainty	-0.035	17.276	
634	FDCE (Setup_fdce_C_D)	0.044	17.320	sum_r_reg[31]
635				
636	required time		17.320	
637	arrival time		-15.553	
638				
639	slack		1.767	

Simulation

At the begin:

At the end:

RAM access control:

Github link

• https://github.com/Sheng08/SoC-Lab-FIR

由於對於 Lab3 實作不熟悉與花許多時間理解與學習,並與同組學弟討論,因此敘述報告敘述內容有 部分相似。敬請見諒