

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 April 2001 (12.04.2001)

PCT

(10) International Publication Number
WO 01/25466 A1

(51) International Patent Classification⁷: **C12N 15/867,**
15/90, 5/10, 7/01, A61K 48/00

(UK) Limited, Medawar Centre, Robert Robinson Avenue,
The Oxford Science Park, Oxford OX4 4GA (GB).

(21) International Application Number: PCT/GB00/03837

(74) Agents: HARDING, Charles, Thomas et al.; D Young &
Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(22) International Filing Date: 5 October 2000 (05.10.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

9923558.2 5 October 1999 (05.10.1999) GB

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:

(75) Inventors/Applicants (*for US only*): SLINGSBY, Jason
[GB/GB]; 91 Lacy Road, Putney, London SW15 1NR
(GB). KINGSMAN, Susan, Mary [GB/GB]; Oxford
BioMedica (UK) Limited, Medawar Centre, Robert
Robinson Avenue, The Oxford Science Park, Oxford
OX4 4GA (GB). ROHLL, Jonathan [GB/GB]; Oxford
BioMedica (UK) Limited, Medawar Centre, Robert Robin-
son Avenue, The Oxford Science Park, Oxford OX4 4GA
(GB). SLADE, Andrew [GB/GB]; Oxford BioMedica

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/25466 A1

(54) Title: PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

(57) Abstract: A method is provided for modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3'LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

FIELD OF THE INVENTION

5

The present invention relates to retroviral vectors, in particular to high titre regulatable retroviral vectors.

BACKGROUND TO THE INVENTION

10

Retroviruses have been proposed as a delivery system (otherwise expressed as a delivery vehicle or delivery vector) for *inter alia* the transfer of a nucleotide sequence of interest (NOI), or a plurality of NOIs, to one or more sites of interest. The transfer can occur *in vitro*, *ex vivo*, *in vivo*, or combinations thereof. When used in this fashion, the retroviruses 15 are typically called retroviral vectors or recombinant retroviral vectors. Retroviral vectors have been exploited to study various aspects of the retrovirus life cycle, including receptor usage, reverse transcription and RNA packaging (reviewed by Miller, 1992 Curr Top Microbiol Immunol 158:1-24).

20 In a typical recombinant retroviral vector for use in gene therapy, at least part of one or more of the *gag*, *pol* and *env* protein coding regions may be removed from the virus. This makes the retroviral vector replication-defective. The removed portions may even be replaced by a NOI in order to generate a virus capable of integrating its genome into a host genome but wherein the modified viral genome is unable to propagate itself due to a 25 lack of structural proteins. When integrated in the host genome, expression of the NOI occurs - resulting in, for example, a therapeutic effect. Thus, the transfer of a NOI into a site of interest is typically achieved by: integrating the NOI into the recombinant viral vector; packaging the modified viral vector into a virion coat; and allowing transduction of a site of interest - such as a targetted cell or a targetted cell population.

30

It is possible to propagate and isolate quantities of retroviral vectors (e.g. to prepare suitable titres of the retroviral vector) for subsequent transduction of, for example, a site of interest by using a combination of a packaging or helper cell line and a recombinant vector.

-2-

- In some instances, propagation and isolation may entail isolation of the retroviral *gag*, *pol* and *env* genes and their separate introduction into a host cell to produce a "packaging cell line". The packaging cell line produces the proteins required for packaging retroviral RNA but it does not produce RNA-containing retroviral vectors. However, when a recombinant vector carrying a NOI and a *psi* region is introduced into the packaging cell line, the helper proteins can package the *psi*-positive recombinant vector to produce the recombinant virus stock. This can be used to infect cells to introduce the NOI into the genome of the cells. The recombinant virus whose genome lacks all genes required to make viral proteins can infect only once and cannot propagate. Hence, the NOI is introduced into the host cell genome without the generation of potentially harmful retrovirus. A summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).
- Retroviral packaging cell lines have been developed to produce retroviral vectors. These cell lines are designed to express three components, which may be located on three separate expression constructs. The *gag/pol* expression construct encodes structural and enzymatic components required in particle formation, maturation, reverse transcription and integration. The envelope (*env*) construct expresses a retroviral or non-retroviral envelope protein, which mediates viral entry into cells by binding to its cognate receptor. The third expression construct produces the retroviral RNA genome containing a *psi* region, which is packaged into mature, enveloped retroviral particles.
- It has been observed that different methods, such as electroporation, transfection and retroviral transduction, which have been used to introduce the retroviral expression construct for the RNA genome, termed "the genome", into packaging cells produce different results. These different results can include different end points or "yield" of retroviral producer lines resulting from the derived cell lines. Moreover, electroporation and transfection methods can be problematic in the sense that the titre levels are not always at a satisfactory level.

By way of example, the transfection of a plasmid DNA construct into packaging cells from a MLV packaging cell line of human origin, called FLYA13, yielded low retroviral

-3-

vector titres even when different transfection reagents such as calcium phosphate precipitation and fugene transfection reagent were used. The average titres from selected stably transfected cell lines clones ranged from about 10^3 to about 10^4 per ml. In addition, clones generated by electroporation of constructs gave similar titres of from 5 about 10^3 to about 10^4 per ml with no clones identified producing at $>10^5$ per ml. However, when MLV vector particles are prepared in a transient transfection system with a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell, stably transduced cell lines made by this transduction method produce retrovirus at 10^6 to 10^7 per ml. Therefore, these results suggest that retroviral transduction 10 is a preferred method for genome introduction into packaging cell lines in order to generate high titre producer cell lines. However, when retroviral transduction is used to introduce a regulated/inactivated retroviral vector genome into packaging cell lines, the regulated retroviral vectors may not be produced in sufficient quantities from these cell lines.

15

By way of example, some retroviral vectors may comprise (i) internal expression constructs which are themselves regulated or (ii) regulated elements which are present in retroviral 3' LTR sequences, either by design or by their nature. Examples of these regulated vectors include but are not limited to hypoxic regulated vectors and self 20 inactivating (SIN) vectors. If transduced producer cell lines are generated with these regulated vectors, the regulated or inactivated 3' U3 sequence of the LTR is copied to the 5' LTR by the process of retroviral reverse transcription and integration. Therefore, in the producer cell line, the 5' U3 promoter sequence directing expression of retroviral RNA genomes is identical to the regulated or inactivated 3' U3 promoter. This will result in 25 very low levels of retroviral genome production and consequently low titres of functional retrovirus vectors being produced.

One example of such a regulated retroviral system includes MLV and lentivirus vector constructs where the 3' retroviral U3 enhancer element is replaced with a hypoxia 30 responsive element (HRE) or other physiologically regulated, tumour specific or tissue-specific promoters. When these vectors are used to make a transduced producer cell line, the 3' U3 sequence containing the HRE element is copied to the 5' LTR position and retroviral genomes will only be produced under hypoxic conditions or chemical mimics

-4-

of hypoxia, such as heavy metal ions and desferrioxamine. Such a requirement for "induction for retroviral production" is not preferable as the different hypoxia induction protocols negatively affect retroviral producer cell viability.

- 5 By way of further example, lentivector U3 enhancers are dependent on the transactivator TAT for transcriptional activation. Therefore, a lentivector producer cell line generated by transduction requires the presence of TAT for high level expression of the lentivector genome construct. The expression of TAT is not preferable in such a packaging cell line and therefore, in the absence of TAT, only very low titres will be produced from
10 transduced producer cells generated in this way.

Another example of a regulated retroviral systems includes MLV or lentivirus self-inactivating (SIN) vectors. These vectors contain deletions of the elements in their 3' U3 sequences responsible for transcriptional activity. Therefore, on transduction of target
15 cells, the transcriptionally inactive 3' U3 sequence is copied to the 5' LTR position. In standard configurations, an internal expression cassette directs therapeutic or marker gene expression. However, if SIN vectors are used to make a transduced retroviral producer line, there will be no transcriptional elements present to direct high levels of retroviral RNA genome expression.
20

Although it is possible to carry out retroviral transduction with much lower-titre vector stocks, for practical reasons, high-titre retrovirus is desirable, especially when a large number of cells must be infected. In addition, high titres are a requirement for transduction of a large percentage of certain cell types. For example, the frequency of
25 human hematopoietic progenitor cell infection is strongly dependent on vector titre, and useful frequencies of infection occur only with very high-titre stocks (Hock and Miller 1986 Nature 320: 275-277; Hogge and Humphries 1987 Blood 69: 611-617). In these cases, it is not sufficient simply to expose the cells to a larger volume of virus to compensate for a low virus titre. On the contrary, in some cases, the concentration of
30 infectious vector virions may be critical to promote efficient transduction.

-5-

SUMMARY OF THE INVENTION

- We have now shown that it is possible to obtain transduced producer cells capable of producing high titre regulated retroviral vectors by replacing at least the 3'LTR of the 5 integrated provirus using a recombinase based system. Thus whereas with the prior art, the U3 region of the 3'LTR is the same as that of the U3 region of the 5' LTR (and vice versa for the U5 region) in the provirus due to the way in which the viral vector integrates, the introduction of, for example, a replacement 3'LTR results in a provirus that has a 5'LTR and a 3'LTR that differ. The packaged viral vectors produced by transcription of the proviral genome within the producer cells may then ultimately be used to transduce target cells where the regulatable sequences present in the 3'LTR of the provirus in the producer cells are then present in the 5'LTR of the provirus in the target cells and consequently regulate transcription from the provirus as required.
- This allows the introduction of a 3'LTR, for example a regulatable 3'LTR, into the provirus that was not desirable in the original viral vector used to transduce the producer cells since the consequential appearance of the regulatable 3'LTR U3 sequences in the 5'LTR in the provirus may lead to a reduced viral titre.
- Consequently, the present invention allows transduced producer cells to be constructed that are capable of producing high titre regulated retroviral vectors by virtue of comprising a 5'LTR that directs high level expression of the viral genome in the producer cell and a different 3'LTR which as a result of the process of integration into a target cell will then result in a provirus in the target cell genome that exhibits regulatable expression.
- In particular, the present invention allows the modification of a provirus integrated into the genome of the producer cells that have been selected for their high titre virus production such that the resulting packaged viral particles produced from the provirus may be used to transduce target cells resulting in a provirus integrated into the genome of the target cells that has a different, and preferably regulatable 5'LTR to that of the producer cell provirus.

-6-

The present invention is not limited to replacement of the 3'LTR of the provirus in the high titre producer cells, but may also include replacement of the 5'LTR and other viral sequences and/or the introduction of NOIs by the use of suitable constructs, as shown in the Figures.

5

Accordingly, the present invention provides a method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase 10 recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

15 Preferably the LTR is a heterologous regulatable LTR.

The present invention further provides a nucleic acid vector comprising a 5' recombinase recognition sequence, a regulatable LTR and a 3' recombinase recognition sequence in that order.

20

In any of the above aspects and embodiments of the invention, preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises at least one NOI between the 5' recombinase recognition sequence and the regulatable LTR.

25 Preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises a 5'LTR and/or a packaging signal

In one embodiment of the invention, the LTR is inactive/transcriptionally quiescent.

30 The construct, nucleic acid molecule and/or nucleic acid vector of the invention may be used in a recombinase assisted method to introduce a regulated LTR into a proviral genome integrated into a producer cell genome.

-7-

The present invention also provides a producer cell obtainable by the method of the invention, preferably a high titre producer cells. Also provided is an infectious retroviral particle obtained by the above method.

- 5 The present invention further provides a high titre producer cell comprising integrated into its genome a provirus, which provirus comprises a recombinase recognition site, a 5' LTR and a 3'LTR which 3'LTR differs from the 5'LTR. Such a producer cell will typically have been produced by the method of the invention.
- 10 Preferably the 5'LTR and the 3'LTR referred to for the purposes of comparison are both "active". The term "active" within the present context means transcriptionally active, that is to say, the 5'LTR comprises a promoter that directs transcription of the viral genome and the 3'LTR comprises a transcriptional stop sequence to terminate transcription. This distinction is relevant since if a provirus produced by the method of the invention 15 comprises more than one 5' LTR or 3'LTR, at least one but not all must be active to allow viral production. Further, if the provirus comprises more than one 3'LTR then it is generally the upstream one that will be active since transcription will tend not to read through to the downstream 3' LTR.
- 20 In addition, where the method of the invention results in an insertion of a 3'LTR upstream of the original 3'LTR, the comparison should be performed between the additional 3'LTR and the original 5'LTR and not the two original LTRs. Thus it is permitted to have a 5'LTR and 3'LTR within the same provirus that are the same provided that there is also a 5'LTR and 3'LTR that differ.
- 25 In another aspect, the present invention provides a derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the 30 producer cell.

-8-

Preferably the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.

- 5 In a preferred embodiment, the first vector further comprises an internal LTR located upstream of the first NOI and downstream of the packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.

Preferably the heterologous R and U5 sequences are lentiviral derivable R and U5 sequences, such as EIAV R and U5 sequences.

In a further preferred embodiment, the third 3'LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.

- 15 In another embodiment, the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence. Preferably the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

- 20 Preferably, the second NOI comprises a discistronic construct, more preferably a discistronic construct comprising a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.

The present invention further provides in another embodiment, a method for producing a high titre regulatable retroviral vector, the method comprising the steps of:

- (i) providing a derived producer cell comprising integrated into its genome a first vector;
(ii) introducing a second vector into the derived producer cell using a recombinase assisted method; wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.

-9-

The present invention also provides the use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.

5 Aspects of the present invention are also presented in the accompanying claims and in the following description and discussion.

These aspects are presented under separate section headings. However, it is to be understood that the teachings under each section heading are not necessarily limited to
10 that particular section heading.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is advantageous because:

15

(i) it enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

20 20 (ii) it removes the uncertainty associated with the process of producer cell line derivation and the necessity to screen large numbers of producer cell lines each time a new retroviral expression construct is introduced into a producer cell line.

25 25 (iii) it greatly facilitates the generation of high titre retroviral stocks without the use of marker genes (such as but not limited to β -galactosidase, green fluorescent protein) and antibiotic resistance genes.

(iv) it avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

30

(v) it enables the production of SIN vectors by stable cell line producer technology. Previously, SIN vectors have not been amenable to production by stable cell line producer technology because the deletion of the 3'U3 sequence resulted in at least a tenfold lower

-10-

titre of self-inactivating (SIN) vectors in comparison with vectors having intact LTRs. Consequently, SIN vectors have had to be prepared using transfection-based transient expression systems.

5 PRODUCER CELL

The high titre regulated retroviral vector particles of the present invention are typically generated in a suitable producer cell. Producer cells are generally mammalian cells but can be, for example, insect cells. A producer cell may be a packaging cell containing the 10 virus structural genes, normally integrated into its genome into which the regulated retroviral vectors of the present invention are introduced. Alternatively the producer cell may be transfected with nucleic acid sequences encoding structural components, such as *gag/pol/env* on one or more vectors such as plasmids, adenovirus vectors, herpes viral vectors or any method known to deliver functional DNA into target cells. The vectors 15 according to the present invention are then introduced into the packaging cell by the methods of the present invention.

As used herein, the term "producer cell" or "vector producing cell" refers to a cell which contains all the elements necessary for production of regulated retroviral vector particles 20 and regulated retroviral delivery systems.

Preferably, the producer cell is obtainable from a stable producer cell line.

Preferably, the producer cell is obtainable from a derived stable producer cell line.

25

Preferably, the producer cell is obtainable from a derived producer cell line

As used herein, the term "derived producer cell line" is a transduced producer cell line which has been screened and selected for high expression of a marker gene. Such cell 30 lines contain retroviral insertions in integration sites that support high level expression from the retroviral genome. The term "derived producer cell line" is used interchangeably with the term "derived stable producer cell line" and the term "stable producer cell line".

-11-

Preferably the derived producer cell line includes but is not limited to a retroviral and/or a lentiviral producer cell.

5 Preferably the derived producer cell line is an HIV or EIAV producer cell line, more preferably an EIAV producer cell line.

10 Preferably the envelope protein sequences, and nucleocapsid sequences are all stably integrated in the producer and/or packaging cell. However, one or more of these sequences could also exist in episomal form and gene expression could occur from the episome.

PACKAGING CELL

15 As used herein, the term "packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant virus which are lacking in a recombinant viral vector. Typically, such packaging cells contain one or more expression cassettes which are capable of expressing viral structural proteins (such as *gag*, *pol* and *env*) but they do not contain a packaging signal.

20 The term "packaging signal" which is referred to interchangeably as "packaging sequence" or "*psi*" is used in reference to the non-coding sequence required for encapsidation of retroviral RNA strands during viral particle formation.

25 Packaging cell lines suitable for use with the above-described vector constructs may be readily prepared (see also WO 92/05266), and utilised to create producer cell lines for the production of retroviral vector particles. As already mentioned, a summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).

30 The packaging cell lines are useful for providing the gene products necessary to encapsidate and provide a membrane protein for a high titre regulated retrovirus vector and regulated nucleic gene delivery vehicle production. When regulated retrovirus sequences are introduced into the packaging cell lines, such sequences are encapsidated

-12-

with the nucleocapsid (*gag/pol*) proteins and these units then bud through the cell membrane to become surrounded in cell membrane and to contain the envelope protein produced in the packaging cell line. These infectious regulated retroviruses are useful as infectious units *per se* or as gene delivery vectors.

5

The packaging cell may be a cell cultured *in vitro* such as a tissue culture cell line. Suitable cell lines include but are not limited to mammalian cells such as murine fibroblast derived cell lines or human cell lines. Preferably the packaging cell line is a human cell line, such as for example: HEK293, 293-T, TE671, HT1080.

10

Alternatively, the packaging cell may be a cell derived from the individual to be treated such as a monocyte, macrophage, blood cell or fibroblast. The cell may be isolated from an individual and the packaging and vector components administered *ex vivo* followed by re-administration of the autologous packaging cells.

15

Methods for introducing retroviral packaging and vector components into packaging/producer cells are described in the present invention.

Preferably the method of the present invention utilises a recombinase assisted mechanism.

20

Preferably the method of the present invention utilises a recombinase assisted mechanism which facilitates the production of high titre regulated retroviral vectors from the producer cells of the present invention.

25 RECOMBINASE ASSISTED MECHANISM

As used herein, the term "recombinase assisted system" includes but is not limited to a system using the Cre recombinase / loxP recognition sites of bacteriophage P1 or the site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between

30 34 bp FLP recognition targets (FRTs).

The site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs) has been configured into DNA constructs

-13-

in order to generate high level producer cell lines using recombinase-assisted recombination events (Karreman *et al.* (1996) NAR 24, 1616-1624). A similar system has been developed using the Cre recombinase / loxP recognition sites of bacteriophage P1. This was configured into a retroviral genome such that high titre retroviral producer 5 cell lines were generated (Vanin *et al.* (1997) J Virol 71, 7820-7826). However, the use of the second method (Vanin *et al ibid*) has centered around the exchange of the central portions of a retroviral cassette using a recombinase-assisted system. Moreover, these methods have used genes encoding selectable markers such as neo^R and puro^R (Vanin *et al ibid*) and luciferase and puro^R linked by an IRES sequence (Karreman *et al ibid*). 10 Karreman and Vanin do not demonstrate or *suggest* that: (i) a regulated or inactive 3'U3 sequence of the 3'LTR can be introduced into a producer cell via a recombinase-assisted mechanism or (ii) that therapeutic genes under the control of a regulated LTR may be introduced into a producer cell line via a recombinase assisted step. Vanin *et al ibid* suggests that his Cre-mediated recombination approach to retroviral producer cell line 15 production may be used in combination with other modifications which should result in improved vector performance. Vanin *et al ibid* also suggests that his approach provides a means to generate high titre SIN vectors. However, there is no worked example and in fact no enabling disclosure because the skilled person would not have been aware, on the basis of the Vanin *et al* paper, of the necessary modifications to make the suggested 20 approach work. Vanin *et al* makes no reference to hypoxic regulated vectors and/or regulated/inactivated lentiviral vectors.

LTRs

25 As already indicated, each retroviral genome comprises genes called *gag*, *pol* and *env* which code for virion proteins and enzymes. In the provirus, these genes are flanked at both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral gene. Encapsidation of 30 the retroviral RNAs occurs by virtue of a *psi* sequence located at the 5' end of the viral genome.

-14-

As used herein, the term "long terminal repeat (LTR)" is used in reference to domains of base pairs located at the end of retroviral DNAs.

- The LTRs themselves are identical sequences that can be divided into three elements,
5 which are called U3, R and U5. U3 is derived from the sequence unique to the 3' end of the RNA. R is derived from a sequence repeated at both ends of the RNA and U5 is derived from the sequence unique to the 5' end of the RNA. The sizes of the three elements can vary considerably among different retroviruses.
- 10 For ease of understanding, a simple, generic structures (not to scale) of the RNA and the DNA forms of the MLV retroviral genome is presented in Figure 7 in which the elementary features of the LTRs and the relative positioning of *gag/pol* and *env* are indicated. Please note that (i) *gag/pol* and *env* are normally not spaced apart; and (ii) the overlap normally present between the *pol* and *env* genes and the poly A tail normally
15 present at the 3' end of the RNA transcript are not illustrated in Figure 7.

As shown in Figure 7, the basic molecular organisation of an infectious retroviral RNA genome is (5') R - U5 - *gag/pol*, *env* - U3-R (3'). In a defective retroviral vector genome *gag*, *pol* and *env* may be absent or not functional. The R regions at both ends of the
20 RNA are repeated sequences. U5 and U3 represent unique sequences at the 5' and 3' ends of the RNA genome respectively.

Upon cellular transduction, reverse transcription of the virion RNA into double stranded DNA takes place in the cytoplasm and involves two jumps of the reverse transcriptase from the 5' terminus to the 3' terminus of the template molecule. The result of these jumps is a duplication of sequences located at the 5' and 3' ends of the virion RNA. These sequences then occur fused in tandem on both ends of the viral DNA, forming the long terminal repeats (LTRs) which comprise R U5 and U3 regions. On completion of the reverse transcription, the viral DNA is translocated into the nucleus where the linear
30 copy of the retroviral genome, called a preintegration complex (PIC), is randomly inserted into chromosomal DNA with the aid of the virion integrase to form a stable provirus. The number of possible sites of integration into the host cellular genome is very large and very widely distributed.

-15-

Preferably the retroviral genome is introduced into packaging cell lines using retroviral transduction.

Preferably retroviral vector particles (such as MLV vector particles) are prepared in a
5 transient expression system with a different envelope pseudotype to the packaging cell,
and used to transduce a retroviral packaging cell.

Preferably the retroviral transduction step identifies retroviral insertions in integration
sites that support high level expression of the resulting regulated retroviral genome.

10

Preferably stable transduced producer cell lines made by this initial retroviral transduction
step produce retrovirus at titres of at least 10^6 per ml, such as from about 10^6 to about 10^7
per ml, more preferably at least about 10^7 per ml.

15 HIGH TITRE

As used herein, the term "high titre" means an effective amount of a retroviral vector or
particle which is capable of transducing a target site such as a cell.

20 As used herein, the term "effective amount" means an amount of a regulated retroviral or
lentiviral vector or vector particle which is sufficient to induce expression of an NOI at a
target site.

25 Preferably the titre is from at least 10^6 retrovirus particles per ml, such as from about 10^6
to about 10^7 per ml, more preferably at least about 10^7 retrovirus particles per ml.

TRANSCRIPTIONAL CONTROL

30 The control of proviral transcription remains largely with the noncoding sequences of the
viral LTR. The site of transcription initiation is at the boundary between U3 and R in the
left hand side LTR (as shown in Figure 7) and the site of poly (A) addition (termination)
is at the boundary between R and U5 in the right hand side LTR (as shown in Figure 7).
The 3'U3 sequence contains most of the transcriptional control elements of the provirus,

-16-

which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

REGULTABLE LTRs

5

AN LTR present, for example, in the construct of the invention and as a 3'LTR in the provirus of the producer cell of the invention may be a native LTR or a heterologous regulatable LTR. It may also be a transcriptionally quiescent LTR for use in SIN vector technology.

10

As used herein, the terms "regulatable LTR" and "regulatable 3'LTR" include vectors which contain responsive elements which are present in retroviral 3' LTR sequences, either by design or by their nature. As used herein, vectors comprising a "regulatable 3'LTR" are referred to as "regulated retroviral vectors". Within the regulatable 3'LTR region, the 3'U3 sequence contains most of the transcriptional control elements of the provirus, which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

20

Responsive elements include but are not limited to elements which comprise, for example, promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins and/or elements which have been modified to render them inactive. As used herein, the term "modified" includes but is not limited to silencing, disabling, mutating, deleting or removing all of the U3 sequence or a part thereof.

25

The term "regulated LTR" also includes an inactive LTR such that the resulting provirus in the target cell can not produce a packagable viral genome (self-inactivating (SIN) vector technology) - see the Examples and Figure 6 for a particular embodiment.

30

-17-

ENHANCER

As used herein, the term "enhancer" includes a DNA sequence which binds other protein components of the transcription initiation complex and thus facilitates the initiation of
5 transcription directed by its associated promoter.

In one preferred embodiment of the present invention, the enhancer is an ischaemic like response element (ILRE).

10 ILRE

The term "ischaemia like response element" - otherwise written as ILRE - includes an element that is responsive to or is active under conditions of ischaemia or conditions that are like ischaemia or are caused by ischaemia. By way of example, conditions that are
15 like ischaemia or are caused by ischaemia include hypoxia and/or low glucose concentration(s).

The term "hypoxia" means a condition under which a particular organ or tissue receives an inadequate supply of oxygen.

20

Ischaemia can be an insufficient supply of blood to a specific organ or tissue. A consequence of decreased blood supply is an inadequate supply of oxygen to the organ or tissue (hypoxia). Prolonged hypoxia may result in injury to the affected organ or tissue.

25 A preferred ILRE is an hypoxia response element (HRE).

HRE

In one preferred aspect of the present invention, there is hypoxia or ischaemia regulatable expression of the retroviral vector components. In this regard, hypoxia is a powerful regulator of gene expression in a wide range of different cell types and acts by the induction of the activity of hypoxia-inducible transcription factors such as hypoxia inducible factor-1 (HIF-1; Wang & Semenza 1993 Proc Natl Acad Sci 90:430), which

-18-

bind to cognate DNA recognition sites, the hypoxia-responsive elements (HREs) on various gene promoters. Dachs *et al* (1997 Nature Med 5: 515) have used a multimeric form of the HRE from the mouse phosphoglycerate kinase-1 (PGK-1) gene (Firth *et al* 1994 Proc Natl Acad Sci 91:6496-6500) to control expression of both marker and therapeutic genes by human fibrosarcoma cells in response to hypoxia *in vitro* and within solid tumours *in vivo* (Dachs *et al ibid*).

Hypoxia response enhancer elements (HREEs) have also been found in association with a number of genes including the erythropoietin (EPO) gene (Madan *et al* 1993 Proc Natl Acad Sci 90: 3928; Semenza and Wang 1992 Mol Cell Biol 1992 12: 5447-5454). Other HREEs have been isolated from regulatory regions of both the muscle glycolytic enzyme pyruvate kinase (PKM) gene (Takenaka *et al* 1989 J Biol Chem 264: 2363-2367), the human muscle-specific β-enolase gene (ENO3; Peshavaria and Day 1991 Biochem J 275: 427-433) and the endothelin-1 (ET-1) gene (Inoue *et al* 1989 J Biol Chem 264: 14954-14959).

Preferably the HRE of the present invention is selected from, for example, the erythropoietin HRE element (HREE1), muscle pyruvate kinase (PKM), HRE element, phosphoglycerate kinase (PGK) HRE, B-enolase (enolase 3; ENO3) HRE element, endothelin-1 (ET-1)HRE element and metallothionein II (MTII) HRE element.

RESPONSIVE ELEMENT

Preferably the ILRE is used in combination with a transcriptional regulatory element , such as a promoter, which transcriptional regulatory element is preferably active in one or more selected cell type(s), preferably being only active in one cell type.

As outlined above, this combination aspect of the present invention is called a responsive element.

30

Preferably the responsive element comprises at least the ILRE as herein defined.

-19-

Non-limiting examples of such a responsive element are presented as OBHRE1 and XiaMac. Another non-limiting example includes the ILRE in use in conjunction with an MLV promoter and/or a tissue restricted ischaemic responsive promoter. These responsive elements are disclosed in WO99/15684.

5

Other examples of suitable tissue restricted promoters/enhancers are those which are highly active in tumour cells such as a promoter/enhancer from a *MUC1* gene, a *CEA* gene or a *ST4* antigen gene. The alpha fetoprotein (AFP) promoter is also a tumour-specific promoter. One preferred promoter-enhancer combination is a human 10 cytomegalovirus (hCMV) major immediate early (MIE) promoter/enhancer combination.

PROMOTER

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase 15 binding site.

The promoter may be located in the retroviral 5' LTR to control the expression of a cDNA encoding an NOI.

20 Preferably the NOI is capable of being expressed from the retrovirus genome such as from endogenous retroviral promoters in the long terminal repeat (LTR)

Preferably the NOI is expressed from a heterologous promoter to which the heterologous gene or sequence is operably linked.

25

Alternatively, the promoter may be an internal promoter.

Preferably the NOI is expressed from an internal promoter.

30 Vectors containing internal promoters have also been widely used to express multiple genes. An internal promoter makes it possible to exploit promoter/enhancer combinations other than those found in the viral LTR for driving gene expression. Multiple internal promoters can be included in a retroviral vector and it has proved

-20-

possible to express at least three different cDNAs each from its own promoter (Overell *et al* 1988 Mol Cell Biol 8: 1803-1808). Internal ribosomal entry site (IRES) elements have also been used to allow translation of multiple coding regions from either a single mRNA or from fusion proteins that can then be expressed from an open reading frame.

5

TISSUE SPECIFIC PROMOTERS

The promoter of the present invention may be constitutively efficient, or may be tissue or temporally restricted in their activity.

10

Preferably the promoter is a constitutive promoter such as CMV.

Preferably the promoters of the present invention are tissue specific.

15

That is, they are capable of driving transcription of a NOI or NOI(s) in one tissue while remaining largely "silent" in other tissue types.

20

The term "tissue specific" means a promoter which is not restricted in activity to a single tissue type but which nevertheless shows selectivity in that they may be active in one group of tissues and less active or silent in another group.

25

The level of expression of an NOI or NOIs under the control of a particular promoter may be modulated by manipulating the promoter region. For example, different domains within a promoter region may possess different gene regulatory activities. The roles of these different regions are typically assessed using vector constructs having different variants of the promoter with specific regions deleted (that is, deletion analysis). This approach may be used to identify, for example, the smallest region capable of conferring tissue specificity or the smallest region conferring hypoxia sensitivity.

30

A number of tissue specific promoters, described above, may be particularly advantageous in practising the present invention. In most instances, these promoters may be isolated as convenient restriction digestion fragments suitable for cloning in a selected vector. Alternatively, promoter fragments may be isolated using the polymerase chain

-21-

reaction. Cloning of the amplified fragments may be facilitated by incorporating restriction sites at the 5' end of the primers.

5 The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and enhancer.

Preferably the ischaemic responsive promoter is a tissue restricted ischaemic responsive promoter.

10 Preferably the tissue restricted ischaemic responsive promoter is a macrophage specific promoter restricted by repression.

Preferably the tissue restricted ischaemic responsive promoter is an endothelium specific promoter.

15 Preferably the regulated retroviral vector of the present invention is an ILRE regulated retroviral vector.

20 Preferably the regulated retroviral vector of the present invention is an ILRE regulated lentiviral vector.

Preferably the regulated retroviral vector of the present invention is an autoregulated hypoxia responsive lentiviral vector.

25 Preferably the regulated retroviral vector of the present invention is regulated by glucose concentration.

For example, the glucose-regulated proteins (grp's) such as grp78 and grp94 are highly conserved proteins known to be induced by glucose deprivation (Attenello and Lee 1984 Science 226 187-190). The grp 78 gene is expressed at low levels in most normal healthy tissues under the influence of basal level promoter elements but has at least two critical "stress inducible regulatory elements" upstream of the TATA element (Attenello 1984 ibid; Gazit *et al* 1995 Cancer Res 55: 1660-1663). Attachment to a truncated 632 base

-22-

pair sequence of the 5' end of the grp78 promoter confers high inducibility to glucose deprivation on reporter genes *in vitro* (Gazit *et al* 1995 *ibid*). Furthermore, this promoter sequence in retroviral vectors was capable of driving a high level expression of a reporter gene in tumour cells in murine fibrosarcomas, particularly in central relatively 5 ischaemic/fibrotic sites (Gazit *et al* 1995 *ibid*).

Preferably the regulated retroviral vector of the present invention is a self-inactivating (SIN) vector.

10 By way of example, self-inactivating retroviral vectors have been constructed by deleting the transcriptional enhancers or the enhancers and promoter in the U3 region of the 3' LTR. After a round of vector reverse transcription and integration, these changes are copied into both the 5' and the 3' LTRs producing a transcriptionally inactive provirus (Yu *et al* 1986 Proc Natl Acad Sci 83: 3194-3198; Dougherty and Temin 1987 Proc Natl
15 Acad Sci 84: 1197-1201; Hawley *et al* 1987 Proc Natl Acad Sci 84: 2406-2410; Yee *et al* 1987 Proc Natl Acad Sci 91: 9564-9568). However, any promoter(s) internal to the LTRs in such vectors will still be transcriptionally active. This strategy has been employed to eliminate effects of the enhancers and promoters in the viral LTRs on transcription from internally placed genes. Such effects include increased transcription (Jolly *et al* 1983
20 Nucleic Acids Res 11: 1855-1872) or suppression of transcription (Emerman and Temin 1984 Cell 39: 449-467). This strategy can also be used to eliminate downstream transcription from the 3' LTR into genomic DNA (Herman and Coffin 1987 Science 236: 845-848). This is of particular concern in human gene therapy where it is of critical importance to prevent the adventitious activation of an endogenous oncogene.

25

RETROVIRAL VECTORS

The regulated retroviral vector of the present invention includes but is not limited to: murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious 30 anaemia virus (EIAV), feline immunodeficiency virus (FIV), caprine encephalitis-arthritis virus (CAEV), mouse mammary tumour virus (MMTV), Rous sarcoma virus (RSV), Fujinami sarcoma virus (FuSV), Moloney murine leukemia virus (Mo-MLV), FBR murine osteosarcoma virus (FBR MSV), Moloney murine sarcoma virus (Mo-MSV),

-23-

Abelson murine leukemia virus (A-MLV), Avian myelocytomatosis virus-29 (MC29), and Avian erythroblastosis virus (AEV).

5 A detailed list of retroviruses may be found in Coffin *et al* ("Retroviruses" 1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763).

Preferred vectors for use in accordance with the present invention are retroviral vectors, such as MLV vectors.

10 Preferably the recombinant retroviral vectors of the present invention are lentiviral vectors, more preferably HIV or EIAV vectors.

LENTIVIRAL VECTORS

15 The lentiviruses can be divided into primate and non-primate groups. Examples of primate lentiviruses include but are not limited to: the human immunodeficiency virus (HIV), the causative agent of human auto-immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV). The non-primate lentiviral group includes the prototype "slow virus" visna/maedi virus (VMV), as well as the related caprine arthritis-20 encephalitis virus (CAEV), equine infectious anaemia virus (EIAV) and the more recently described feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV).

A distinction between the lentivirus family and other types of retroviruses is that 25 lentiviruses have the capability to infect both dividing and non-dividing cells (Lewis *et al* 1992 EMBO. J 11: 3053-3058; Lewis and Emerman 1994 J. Virol. 68: 510-516). In contrast, other retroviruses - such as MLV - are unable to infect non-dividing cells such as those that make up, for example, muscle, brain, lung and liver tissue.

30 Preferred vectors for use in accordance with the present invention are recombinant retroviral vectors, in particular recombinant lentiviral vectors, in particular minimal lentiviral vectors which are disclosed in WO 99/32646 and in WO98/17815.

-24-

VECTOR

As used herein, a "vector" denotes a tool that allows or facilitates the transfer of an entity from one environment to another. In accordance with the present invention, and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a target cell. Optionally, once within the target cell, the vector may then serve to maintain the heterologous DNA within the cell or may act as a unit of DNA replication. Examples of vectors used in recombinant DNA techniques include plasmids, chromosomes, artificial chromosomes or viruses.

OPERABLY LINKED

The term "operably linked" denotes a relationship between a regulatory region (typically a promoter element, but may include an enhancer element) and the coding region of a gene, whereby the transcription of the coding region is under the control of the regulatory region.

DERIVABLE

20

The term "derivable" is used in its normal sense as meaning a nucleotide sequence such as an LTR or a part thereof which need not necessarily be obtained from a vector such as a retroviral vector but instead could be derived therefrom. By way of example, the sequence may be prepared synthetically or by use of recombinant DNA techniques.

25

VECTOR PARTICLES

In the present invention, several terms are used interchangeably. Thus, "virion", "virus", "viral particle", "retroviral particle", "retrovirus", and "vector particle" mean virus and virus-like particles that are capable of introducing a nucleic acid into a cell through a viral-like entry mechanism. Such vector particles can, under certain circumstances, mediate the transfer of NOIs into the cells they infect. A retrovirus is capable of reverse

-25-

transcribing its genetic material into DNA and incorporating this genetic material into a target cell's DNA upon transduction. Such cells are designated herein as "target cells".

A vector particle includes the following components: a retrovirus nucleic acid, which may 5 contain one or more NOIs, a nucleocapsid encapsidating the nucleic acid, the nucleocapsid comprising nucleocapsid protein of a retrovirus, and a membrane surrounding the nucleocapsid.

NUCLEOCAPSID

10

The term "nucleocapsid" refers to at least the group specific viral core proteins (*gag*) and the viral polymerase (*pol*) of a retrovirus genome. These proteins encapsidate the retrovirus-packagable sequences and themselves are further surrounded by a membrane containing an envelope glycoprotein.

15

Preferably a high titre retroviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

CODON OPTIMISATION

20

As used herein, the terms "codon optimised" and "codon optimisation" refer to an improvement in codon usage. By way of example, alterations to the coding sequences for viral components may improve the sequences for codon usage in the mammalian cells or 25 other cells which are to act as the producer cells for retroviral vector particle production. This is referred to as "codon optimisation". Many retroviruses, including HIV and other lentiviruses, use a large number of rare codons and by changing these to correspond to commonly used mammalian codons, increased expression of the packaging components in mammalian producer cells can be achieved. Codon usage tables are known in the art 30 for mammalian cells, as well as for a variety of other organisms.

Preferably a high titre lentiviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

-26-

Preferably a high titre retroviral vector is produced using a modified and/or extended packaging signal.

PACKAGING SIGNAL

5

As used herein, the term "packaging signal" or "packaging sequence" refers to sequences located within the retroviral genome which are required for insertion of the viral RNA into the viral capsid or particle. Several retroviral vectors use the minimal packaging signal (also referred to as the psi sequence) needed for encapsidation of the viral genome.

- 10 By way of example, this minimal packaging signal encompasses bases 212 to 563 of the Mo-MLV genome (Mann et al 1983: Cell 33: 153).

As used herein, the term "extended packaging signal" or "extended packaging sequence" refers to the use of sequences around the psi sequence with further extension into the gag 15 gene. The inclusion of these additional packaging sequences may increase the efficiency of insertion of vector RNA into viral particles.

Preferably a high titre lentiviral vector is produced using a modified packaging signal.

- 20 Preferably the lentiviral construct is a based on an EIAV vector genome where all the accessory genes are removed except Rev.

ACCESSORY GENES

- 25 As used herein, the term "accessory genes" refer to a variety of virally encoded accessory proteins capable of modulating various aspects of retroviral replication and infectivity. These proteins are discussed in Coffin et al (ibid) (Chapters 6 and 7). Examples of accessory proteins in lentiviral vectors include but are not limited to tat, rev, nef, vpr, vpu, vif, vpx. An example of a lentiviral vector useful in the present invention is one which 30 has all of the accessory genes removed except rev.

Preferably the production of lentiviral vector particles is increased by about 10 fold in the presence of EIAV Rev.

-27-

ENV

If the retroviral component includes an *env* nucleotide sequence, then all or part of that sequence can be optionally replaced with all or part of another *env* nucleotide sequence such as, by way of example, the amphotropic Env protein designated 4070A or the influenza haemagglutinin (HA) or the vesicular stomatitis virus G (VSV-G) protein. Replacement of the *env* gene with a heterologous *env* gene is an example of a technique or strategy called pseudotyping. Pseudotyping is not a new phenomenon and examples may be found in WO-A-98/05759, WO-A-98/05754, WO-A-97/17457, WO-A-96/09400, WO-A-91/00047 and Mebatsion *et al* 1997 Cell 90, 841-847.

In one preferred aspect, the retroviral vector of the present invention has been pseudotyped. In this regard, pseudotyping can confer one or more advantages. For example, with the lentiviral vectors, the *env* gene product of the HIV based vectors would restrict these vectors to infecting only cells that express a protein called CD4. But if the *env* gene in these vectors has been substituted with *env* sequences from other RNA viruses, then they may have a broader infectious spectrum (Verma and Somia 1997 Nature 389:239-242). By way of example, workers have pseudotyped an HIV based vector with the glycoprotein from VSV (Verma and Somia 1997 *ibid*).

20

In another alternative, the Env protein may be a modified Env protein such as a mutant or engineered Env protein. Modifications may be made or selected to introduce targeting ability or to reduce toxicity or for another purpose (Valsesia-Wittman *et al* 1996 J Virol 70: 2056-64; Nilson *et al* 1996 Gene Therapy 3: 280-6; Fielding *et al* 1998 Blood 9: 1802 and references cited therein).

TARGET CELL

As used herein the term "target cell" simply refers to a cell which the regulated retroviral vector of the present invention, whether native or targeted, is capable of infecting or transducing.

-28-

The lentiviral vector particle according to the invention will be capable of transducing cells which are slowly-dividing, and which non-lentiviruses such as MLV would not be able to efficiently transduce. Slowly-dividing cells divide once in about every three to four days including certain tumour cells. Although tumours contain rapidly dividing 5 cells, some tumour cells especially those in the centre of the tumour, divide infrequently.

Alternatively the target cell may be a growth-arrested cell capable of undergoing cell division such as a cell in a central portion of a tumour mass or a stem cell such as a haematopoietic stem cell or a CD34-positive cell.

10

As a further alternative, the target cell may be a precursor of a differentiated cell such as a monocyte precursor, a CD33-positive cell, or a myeloid precursor.

15

As a further alternative, the target cell may be a differentiated cell such as a neuron, astrocyte, glial cell, microglial cell, macrophage, monocyte, epithelial cell, endothelial cell, hepatocyte, spermatocyte, spermatid or spermatozoa.

Target cells may be transduced either *in vitro* after isolation from a human individual or may be transduced directly *in vivo*.

20

NOI

In accordance with the present invention, it is possible to manipulate the viral genome or the regulated retroviral vector nucleotide sequence, so that viral genes are replaced or supplemented with one or more NOIs which may be heterologous NOIs.

25

The term "heterologous" refers to a nucleic acid sequence or protein sequence linked to a nucleic acid or protein sequence which it is not naturally linked.

30

With the present invention, the term NOI (i.e. nucleotide sequence of interest) includes any suitable nucleotide sequence, which need not necessarily be a complete naturally occurring DNA sequence. Thus, the DNA sequence can be, for example, a synthetic DNA sequence, a recombinant DNA sequence (i.e. prepared by use of recombinant DNA techniques), a cDNA sequence or a partial genomic DNA sequence, including

-29-

combinations thereof. The DNA sequence need not be a coding region. If it is a coding region, it need not be an entire coding region. In addition, the DNA sequence can be in a sense orientation or in an anti-sense orientation. Preferably, it is in a sense orientation. Preferably, the DNA is or comprises cDNA.

5

The NOI(s) may be any one or more of selection gene(s), marker gene(s) and therapeutic gene(s). As used herein, the term "selection gene" refers to the use of a NOI which encodes a selectable marker which may have an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed.

10

SELECTABLE MARKERS

Many different selectable markers have been used successfully in retroviral vectors. These are reviewed in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: 15 JM Coffin, SM Hughes, HE Varmus pp 444) and include, but are not limited to, the bacterial neomycin (*neo*) and hygromycin phosphotransferase genes which confer resistance to G418 and hygromycin respectively; a mutant mouse dihydrofolate reductase gene which confers resistance to methotrexate; the bacterial *gpt* gene which allows cells to grow in medium containing mycophenolic acid, xanthine and aminopterin; the bacterial *hisD* gene which allows cells to grow in medium without histidine but containing histidinol; the multidrug resistance gene (*mdr*) which confers resistance to a variety of drugs; and the bacterial genes which confer resistance to puromycin or phleomycin. All of these markers are dominant selectable and allow chemical selection of most cells expressing these genes. Other selectable markers are not dominant in that their use must 20 be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of 25 non-dominant selectable markers include the thymidine kinase (*tk*) gene which is used in conjunction with *tk* cell lines.

Particularly preferred markers are blasticidin and neomycin, optionally operably linked to 30 a thymidine kinase coding sequence typically under the transcriptional control of a strong viral promoter such as the SV40 promoter.

-30-

NOIs WITH THERAPEUTIC AND/OR DIAGNOSTIC APPLICATIONS

In accordance with the present invention, suitable NOI sequences include those that are of therapeutic and/or diagnostic application such as, but are not limited to: sequences 5 encoding cytokines, chemokines, hormones, antibodies, engineered immunoglobulin-like molecules, a single chain antibody, fusion proteins, enzymes, immune co-stimulatory molecules, immunomodulatory molecules, anti-sense RNA, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen, a tumour suppressor protein and growth factors, membrane proteins, vasoactive proteins and peptides, anti-10 viral proteins and ribozymes, and derivatives therof (such as with an associated reporter group). When included, such coding sequences may be typically operatively linked to a suitable promoter, which may be a promoter driving expression of a ribozyme(s), or a different promoter or promoters, such as in one or more specific cell types.

15 NOIs FOR TREATING CANCER

Suitable NOIs for use in the invention in the treatment or prophylaxis of cancer include NOIs encoding proteins which: destroy the target cell (for example a ribosomal toxin), act as: tumour suppressors (such as wild-type p53); activators of anti-tumour immune 20 mechanisms (such as cytokines, co-stimulatory molecules and immunoglobulins); inhibitors of angiogenesis; or which provide enhanced drug sensitivity (such as pro-drug activation enzymes); indirectly stimulate destruction of target cell by natural effector cells (for example, strong antigen to stimulate the immune system or convert a precursor substance to a toxic substance which destroys the target cell (for example a prodrug 25 activating enzyme).

PRO-DRUG ACTIVATING ENZYMES

Examples of prodrugs include but are not limited to etoposide phosphate (used with 30 alkaline phosphatase; 5-fluorocytosine (with cytosine deaminase); Doxorubicin-N-p-hydroxyphenoxyacetamide (with Penicillin-V-Amidase); Para-N-bis (2-chloroethyl)aminobenzoyl glutamate (with Carboxypeptidase G2); Cephalosporin nitrogen mustard carbamates (with B-lactamase); SR4233 (with p450 reductase);

-31-

Ganciclovir (with HSV thymidine kinase); mustard pro-drugs with nitroreductase and cyclophosphamide or ifosfamide (with cytochrome p450).

NOIs FOR TREATING HEART DISEASE

5

Suitable NOIs for use in the treatment or prevention of ischaemic heart disease include NOIs encoding plasminogen activators. Suitable NOIs for the treatment or prevention of rheumatoid arthritis or cerebral malaria include genes encoding anti-inflammatory proteins, antibodies directed against tumour necrosis factor (TNF) alpha, and anti-10 adhesion molecules (such as antibody molecules or receptors specific for adhesion molecules).

BYSTANDER EFFECT

15 The expression products encoded by the NOIs may be proteins which are secreted from the cell. Alternatively the NOI expression products are not secreted and are active within the cell. In either event, it is preferred for the NOI expression product to demonstrate a bystander effector or a distant bystander effect; that is the production of the expression product in one cell leading to the killing of additional, related cells, either neighbouring or 20 distant (e.g. metastatic), which possess a common phenotype. Encoded proteins could also destroy bystander tumour cells (for example with secreted antitumour antibody-ribosomal toxin fusion protein), indirectly stimulated destruction of bystander tumour cells (for example cytokines to stimulate the immune system or procoagulant proteins causing local vascular occlusion) or convert a precursor substance to a toxic substance 25 which destroys bystander tumour cells (eg an enzyme which activates a prodrug to a diffusible drug). Also, the delivery of NOI(s) encoding antisense transcripts or ribozymes which interfere with expression of cellular genes for tumour persistence (for example against aberrant *myc* transcripts in Burkitts lymphoma or against *bcr-abl* transcripts in chronic myeloid leukemia. The use of combinations of such NOIs is also envisaged.

30

-32-

CYTOKINES

The NOI or NOIs of the present invention may also comprise one or more cytokine-encoding NOIs. Suitable cytokines and growth factors include but are not limited to:

- 5 ApoE, Apo-SAA, BDNF, Cardiotrophin-1, EGF, ENA-78, Eotaxin, Eotaxin-2, Exodus-2, FGF-acidic, FGF-basic, fibroblast growth factor-10 (Marshall 1998 *Nature Biotechnology* 16: 129).FLT3 ligand (Kimura *et al* (1997), Fractalkine (CX3C), GDNF, G-CSF, GM-CSF, GF- β 1, insulin, IFN- γ , IGF-I, IGF-II, IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (72 a.a.), IL-8 (77 a.a.), IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-10 18 (IGIF), Inhibin α , Inhibin β , IP-10, keratinocyte growth factor-2 (KGF-2), KGF, Leptin, LIF, Lymphotactin, Mullerian inhibitory substance, monocyte colony inhibitory factor, monocyte attractant protein (Marshall 1998 *ibid*), M-CSF, MDC (67 a.a.), MDC (69 a.a.), MCP-1 (MCAF), MCP-2, MCP-3, MCP-4, MDC (67 a.a.), MDC (69 a.a.), MIG, MIP-1 α , MIP-1 β , MIP-3 α , MIP-3 β , MIP-4, myeloid progenitor inhibitor factor-1 (MPIF-1), NAP-2, Neurturin, Nerve growth factor, β -NGF, NT-3, NT-4, Oncostatin M, PDGF-AA, PDGF-AB, PDGF-BB, PF-4, RANTES, SDF1 α , SDF1 β , SCF, SCGF, stem cell factor (SCF), TARC, TGF- α , TGF- β , TGF- β 2, TGF- β 3, tumour necrosis factor (TNF), TNF- α , TNF- β , TNIL-1, TPO, VEGF, GCP-2, GRO/MGSA, GRO- β , GRO- γ , HCC1, 1-309.

20

The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and/or a promoter enhancer as known as "responsive elements" in the present invention.

25 VIRAL DELIVERY SYSTEMS

When the regulated retroviral vector particles are used to transfer NOIs into cells which they transduce, such vector particles also designated "viral delivery systems" or "retroviral delivery systems". Viral vectors, including retroviral vectors, have been used 30 to transfer NOIs efficiently by exploiting the viral transduction process. NOIs cloned into the retroviral genome can be delivered efficiently to cells susceptible to transduction by a retrovirus. Through other genetic manipulations, the replicative capacity of the retroviral

-33-

genome can be destroyed. The vectors introduce new genetic material into a cell but are unable to replicate.

The regulated retroviral vector of the present invention can be delivered by viral or non-viral techniques. Non-viral delivery systems include but are not limited to DNA transfection methods. Here, transfection includes a process using a non-viral vector to deliver a gene to a target mammalian cell.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (Nature Biotechnology 1996 14; 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

Viral delivery systems include but are not limited to adenovirus vector, an adeno-associated viral (AAV) vector, a herpes viral vector, a retroviral vector, a lentiviral vector, or a baculoviral vector. These viral delivery systems may be configured as a split-intron vector. A split intron vector is described in WO 99/15683.

Other examples of vectors include *ex vivo* delivery systems, which include but are not limited to DNA transfection methods such as electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection.

The vector may be a plasmid DNA vector. Alternatively, the vector may be a recombinant viral vector. Suitable recombinant viral vectors include adenovirus vectors, adeno-associated viral (AAV) vectors, Herpes-virus vectors, or retroviral vectors, lentiviral vectors or a combination of adenoviral and lentiviral vectors. In the case of viral vectors, gene delivery is mediated by viral infection of a target cell.

-34-

If the features of adenoviruses are combined with the genetic stability of retro/lentiviruses then essentially the adenovirus can be used to transduce target cells to become transient retroviral producer cells that could stably infect neighbouring cells.

5 PHARMACEUTICAL COMPOSITION

The present invention also provides a pharmaceutical composition for treating an individual by gene therapy, wherein the composition comprises a therapeutically effective amount of a regulated retroviral vector according to the present invention. The 10 pharmaceutical composition may be for human or animal usage. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient.

15 The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase 20 the viral entry into the target site (such as for example a lipid delivery system).

Where appropriate, the pharmaceutical compositions can be administered by any one or more of: minipumps, inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, 25 orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the 30 form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

-35-

DISORDERS

The present invention is believed to have a wide therapeutic applicability - depending on *inter alia* the selection of the one or more NOIs.

5

For example, the present invention may be useful in the treatment of the disorders listed in WO-A-98/05635. For ease of reference, part of that list is now provided: cancer, inflammation or inflammatory disease, dermatological disorders, fever, cardiovascular effects, haemorrhage, coagulation and acute phase response, cachexia, anorexia, acute 10 infection, HIV infection, shock states, graft-versus-host reactions, autoimmune disease, reperfusion injury, meningitis, migraine and aspirin-dependent anti-thrombosis; tumour growth, invasion and spread, angiogenesis, metastases, malignant, ascites and malignant pleural effusion; cerebral ischaemia, ischaemic heart disease, osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, multiple sclerosis, neurodegeneration, Alzheimer's disease, 15 atherosclerosis, stroke, vasculitis, Crohn's disease and ulcerative colitis; periodontitis, gingivitis; psoriasis, atopic dermatitis, chronic ulcers, epidermolysis bullosa; corneal ulceration, retinopathy and surgical wound healing; rhinitis, allergic conjunctivitis, eczema, anaphylaxis; restenosis, congestive heart failure, endometriosis, atherosclerosis or endosclerosis.

20

In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/07859. For ease of reference, part of that list is now provided: cytokine and cell proliferation/differentiation activity; immunosuppressant or immunostimulant activity (e.g. for treating immune deficiency, including infection with 25 human immune deficiency virus; regulation of lymphocyte growth; treating cancer and many autoimmune diseases, and to prevent transplant rejection or induce tumour immunity); regulation of haematopoiesis, e.g. treatment of myeloid or lymphoid diseases; promoting growth of bone, cartilage, tendon, ligament and nerve tissue, e.g. for healing wounds, treatment of burns, ulcers and periodontal disease and neurodegeneration; 30 inhibition or activation of follicle-stimulating hormone (modulation of fertility); chemotactic/chemokinetic activity (e.g. for mobilising specific cell types to sites of injury or infection); haemostatic and thrombolytic activity (e.g. for treating haemophilia and stroke); antiinflammatory activity (for treating e.g. septic shock or Crohn's disease); as

-36-

antimicrobials; modulators of e.g. metabolism or behaviour; as analgesics; treating specific deficiency disorders; in treatment of e.g. psoriasis, in human or veterinary medicine.

- 5 In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/09985. For ease of reference, part of that list is now provided: macrophage inhibitory and/or T cell inhibitory activity and thus, anti-inflammatory activity; anti-immune activity, i.e. inhibitory effects against a cellular and/or humoral immune response, including a response not associated with inflammation;
- 10 inhibit the ability of macrophages and T cells to adhere to extracellular matrix components and fibronectin, as well as up-regulated fas receptor expression in T cells; inhibit unwanted immune reaction and inflammation including arthritis, including rheumatoid arthritis, inflammation associated with hypersensitivity, allergic reactions, asthma, systemic lupus erythematosus, collagen diseases and other autoimmune diseases,
- 15 inflammation associated with atherosclerosis, arteriosclerosis, atherosclerotic heart disease, reperfusion injury, cardiac arrest, myocardial infarction, vascular inflammatory disorders, respiratory distress syndrome or other cardiopulmonary diseases, inflammation associated with peptic ulcer, ulcerative colitis and other diseases of the gastrointestinal tract, hepatic fibrosis, liver cirrhosis or other hepatic diseases, thyroiditis or other glandular diseases, glomerulonephritis or other renal and urologic diseases, otitis or other oto-rhino-laryngological diseases, dermatitis or other dermal diseases, periodontal diseases or other dental diseases, orchitis or epididymo-orchitis, infertility, orchidal trauma or other immune-related testicular diseases, placental dysfunction, placental insufficiency, habitual abortion, eclampsia, pre-eclampsia and other immune and/or
- 20 inflammatory-related gynaecological diseases, posterior uveitis, intermediate uveitis, anterior uveitis, conjunctivitis, chorioretinitis, uveoretinitis, optic neuritis, intraocular inflammation, e.g. retinitis or cystoid macular oedema, sympathetic ophthalmia, scleritis, retinitis pigmentosa, immune and inflammatory components of degenerative fundus disease, inflammatory components of ocular trauma, ocular inflammation caused by
- 25 infection, proliferative vitreo-retinopathies, acute ischaemic optic neuropathy, excessive scarring, e.g. following glaucoma filtration operation, immune and/or inflammation reaction against ocular implants and other immune and inflammatory-related ophthalmic diseases, inflammation associated with autoimmune diseases or conditions or disorders

-37-

where, both in the central nervous system (CNS) or in any other organ, immune and/or inflammation suppression would be beneficial, Parkinson's disease, complication and/or side effects from treatment of Parkinson's disease, AIDS-related dementia complex HIV-related encephalopathy, Devic's disease, Sydenham chorea, Alzheimer's disease and other
5 degenerative diseases, conditions or disorders of the CNS, inflammatory components of stokes, post-polio syndrome, immune and inflammatory components of psychiatric disorders, myelitis, encephalitis, subacute sclerosing pan-encephalitis, encephalomyelitis, acute neuropathy, subacute neuropathy, chronic neuropathy, Guillain-Barre syndrome, Sydenham chora, myasthenia gravis, pseudo-tumour cerebri, Down's Syndrome,
10 Huntington's disease, amyotrophic lateral sclerosis, inflammatory components of CNS compression or CNS trauma or infections of the CNS, inflammatory components of muscular atrophies and dystrophies, and immune and inflammatory related diseases, conditions or disorders of the central and peripheral nervous systems, post-traumatic inflammation, septic shock, infectious diseases, inflammatory complications or side
15 effects of surgery, bone marrow transplantation or other transplantation complications and/or side effects, inflammatory and/or immune complications and side effects of gene therapy, e.g. due to infection with a viral carrier, or inflammation associated with AIDS, to suppress or inhibit a humoral and/or cellular immune response, to treat or ameliorate monocyte or leukocyte proliferative diseases, e.g. leukaemia, by reducing the amount of
20 monocytes or lymphocytes, for the prevention and/or treatment of graft rejection in cases of transplantation of natural or artificial cells, tissue and organs such as cornea, bone marrow, organs, lenses, pacemakers, natural or artificial skin tissue.

INTRODUCTION TO THE EXAMPLES SECTION AND THE FIGURES

25

The present invention will now be described only by way of example in which reference is made to the following Figures:

Figure 1 shows an MLV-based transduction method using a Cre/LoxP system as
30 described by Vanin *et al ibid* (1997);

Figure 2 shows an EIAV-based transduction method using a Cre/Lox system;

-38-

Figure 3 shows an MLV SIN vector construct transduction method with an EIAV/HIV genome insertion using a Cre/Lox system;

5 Figure 4 shows an MLV-based transduction method with HRE 3'LTR using a Cre/Lox P system;

Figure 5 shows an MLV-based transduction method for MLV SIN vector production using a Cre/Lox P system;

10 Figure 6 shows an MLV-based transduction method with integration of a complete second genome construct using a Cre/LoxP system;

Figure 7 shows the basis molecular organisation of an RNA genome and a proviral DNA genome;

15 Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP plasmids;

Figure 9 shows an overall summary of the recombinase method;

20 Figure 10a shows a FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector;

Figure 10b shows FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top slice of the highest expressers was carried out;

25 Figure 11 shows a validation of the method for quantitation of GFP mRNA, relative to β -actin. A titration of the total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable;

30 Figure 12 shows the quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0;

-39-

Figure 13 shows FACS analysis of EV1 clone A:

Figure 13A shows original GFP expression of the clone;

- 5 Figure 13B shows GFP expression 7 days after transfection with Cre recombinase (pBS185). Excision frequency is 64%;

Figure 13C shows recombined clone 4 identified as being negative for GFP:

- 10 Figure 14 shows lacZ expression of transfected cells with and without the addition of the Cre recombinase (pBS185). Figure 14 shows EV1A4 and EV2D4 clones with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be about 12% by computer image analysis;
- 15 Figure 15 shows the structure of pONY8.1Z MLVHyb;

- Figure 16 shows the alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The latter is referred to as pONY8ZA. The sequences aligned are from the NarI site in the leader to the XbaI site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG; and

25 Figure 17 shows a schematic representation of the structure of pONY 8.3G +/- vector genome plasmids.

25

EXAMPLES

EXAMPLE 1

- 30 Vanin *et al* (*ibid*) describe a recombinase system whereby an initial retroviral transduction event introduces retroviral LTRs and expressed gene/s flanked by two recombinase target sites (exemplified by loxP) into a cell line. Stable transduced cell lines are selected by resistance to the antibiotic neomycin and screened for high expression of

-40-

the expressed gene(s) (see Figure 1). Such cell lines (Cell Line 1) contain retroviral insertions in integration sites that support high level expression from the retroviral genome.

- 5 The next step involves the transfection of the relevant recombinase expression construct (exemplified here by Cre recombinase) into the identified high expressing cell line. The expressed gene(s) is/are excised and a single loxP site is retained in the construct (Cell Line 2). In this instance, thymidine kinase gene (tk) is used as a negative selectable marker in combination with the drug, gancyclovir. The final step involves the re-
10 insertion of a therapeutic or marker gene of choice into the single loxP site via a Cre-assisted mechanism. Cell lines are identified that have been successfully recombined (Cell Line 3) and they will produce retroviruses at the same titre as the parental Cell Line 1.

15 **EXAMPLE 2**

Figure 2 and Figure 3 describe the production of EIAV or HIV high titre transduced producer cell lines.

- 20 Figure 2 shows a minimal EIAV genome construct with the 3' U3 sequences replaced by a strong constitutive promoter, CMV. A reporter gene such as blasticidin resistance gene (*bsr*) is flanked by loxP sites. Virus is made in a transient system and is transduced into an EIAV producer cell line and clones identified that maximally express the blast marker gene. A line is chosen (termed Cell Line 1) and the marker gene is excised by a Cre recombinase-assisted excision event, generating Cell Line 2.
25

Construct B comprises two loxP sites which flank an internal expression cassette and also the native EIAV 3' LTR. Therefore, this construct is recombined into the cell line such that the 5' R and U5 sequences are inherited from the packaging cell line, whereas the 3'
30 LTR sequences are wholly derived from the recombined construct. The 3' LTR from Cell Line 2 is present downstream of the functional EIAV genome expression construct. This CMV-R-U5 module is still transcriptionally active but expression is directed away from the EIAV genome.

-41-

Figure 3 shows a further aspect of the invention. Construct C is based on an MLV SIN vector, with a deletion in the 3' U3 sequences. The cassette includes an internal CMV promoter linked to EIAV R and U5 sequences. This is followed by a blasticidin resistance gene (*bsr*) flanked by two loxP sites. Virus is made in a transient transfection system and the genome is transduced into a packaging line. Blast-resistant clones are identified and the highest expressing line is chosen for further analysis. This line is transfected with Cre recombinase and the blast gene is excised. The last step involves the insertion of construct B into the single loxP site. Once again, a complete EIAV 3' LTR is introduced into the producer cell line. This leads to a CMV-driven EIAV genome expression cassette with the EIAV 3' LTR still located at the 3' end of the genome. Transcriptionally quiescent MLV SIN LTRs flanks these EIAV sequences.

EXAMPLE 3

Figure 4 shows an additional aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR in place of the U3 sequences. Virus is made in a transient system and is transduced into a packaging cell line as described previously. The neo and TK genes are excised by the action of Cre recombinase and construct E is recombined into the single loxP target sequence. The modified MLV 3' LTR including the HRE or similarly regulated system is transferred into the packaging cell line by the recombinase mechanism. Therefore, the 5' R and U5 sequences are inherited from the producer cell line whereas the therapeutic and marker gene/s and regulated 3' LTR is inherited from construct E. The final producer cell line is constitutively driven by the 5' CMV promoter and will produce high titre retroviral vectors which are regulated in the transduced target cells. This approach avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

EXAMPLE 4

Figure 5 shows yet another aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR as previously described. The same process is carried

-12-

out as shown in Figure 4 until the final recombination is performed. Construct F contains a deletion in U3 sequences in the 3' LTR and an internal expression cassette comprising a promoter and gene sequences. The final cell line containing the Cre-mediated recombination will be CMV-driven and will constitutively produce high titre MLV SIN vectors. Previously, SIN vectors have not been amenable to production by stable cell line producer technology. Instead they have been prepared using transfection-based transient expression systems.

EXAMPLE 5

10

Figure 6 shows an MLV-based transduction method with integration of complete second genome construct by Cre/LoxP system. In this approach, construct 1 is called TRAP1) is an MLV vector construct containing an internal CMV promoter operably linked to a marker gene (a truncated form of the human low affinity nerve growth factor receptor, called LNGFR). The enhancer elements in the 3' U3 sequence have been excised and replaced by a 34bp loxP site. Virus stocks are prepared in a transient system and the TRAP1 genome is stably transduced into packaging cell lines.

15 The modified 3'U3 sequences, including the lox P sequence, is copied from the 3'LTR position to the 5'LTR, such that there is little 5' promoter activity. Cell lines are screened for high levels of expression of LNGFR protein by fluorescent activated cell sorter (FACS) analysis and clonal lines are derived by standard techniques. A Cre recombinase expression plasmid is transfected into the derived cell line to excise all sequences between the two loxP sites. Next, cells are negatively selected by FACS for absence of 20 LNGFR expression and clonal lines are derived by standard techniques. Construct 2 in this example comprises a complete HIV or EIAV or also MLV retroviral genome, which is flanked by two minimal 34bp loxP recombinase sites. A strong constitutive promoter such as CMV directs transcription of the genome. On transfection of plasmid 2 and Cre 25 expression plasmid, the complete lentivirus vector or MLV vector genome is inserted in the producer cell line. These sequences are flanked to the 5' by a small portion of MLV U3 sequence and a loxP site and to the 3' by the second loxP site, enhancerless-U3 sequences, R and U5 derived from the MLV construct 1.

-43-

Derivation of Plasmid TRAP1 (Figure 6 - Construct 1)

Oligonucleotides VSAT129 and VSAT130 were synthesised which correspond to the
5 minimal 34bp loxP sites and contain a 5' overhang for NheI and a 3' overhang for XbaI.
The sequences 5' to 3' are as follows: VSAT129 (CTAGCATAACTTCGTATA
ATGTATGCTATACGAAGTTATT) (SEQ ID No 49) and VSAT130
(CTAGAATAACTTCGTATAGC ATACATTATACGAAGTTATG) (SEQ ID No 50).
The two oligonucleotides were treated with T4 polynucleotide kinase and were heated to
10 95°C for 5 minutes, before gradual cooling to room temperature. The annealed and
kinased oligos were ligated to a 2,830 bp NheI/XbaI fragment from LTR plasmid (SEQ
ID No 59). Fragments were ligated and correct clones of LTRloxP were identified by
sequence analysis. Plasmid LTRloxP was then digested with NheI and ScaI and a
2.185bp fragment was prepared for following cloning steps.

15 Plasmids TRAP1 and TRAP1G were derived from LTRloxP and the MLV genome
CGCLNGFR (encodes GFP and LNGFR from an internal CMV promoter – see SEQ ID
No 57). However, the GFP gene was excised by EcoRI/BsmI digestion and the 6,796bp
fragment was filled in by T4 DNA polymerase and re-ligated, in order to generate
20 plasmid CXCLNGFR. Plasmid TRAP1 was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP (see SEQ ID No 58) to a 4,426bp NheI/ScaI fragment from
CXCLNGFR. Plasmid TRAP1G was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP to a 5,179bp NheI/ScaI fragment from CGCLNGFR.

25 Derivation of Plasmid pONY8z-lox (Figure 6 - Construct 2)

In this example, the retroviral genome inserted into the loxP site in Figure 6 was based on
the EIAV vector genome, pONY8z (for preparation see pONY8.0Z construction below).
pONY8z was cut with SnaBI and NruI, and the 4358bp fragment purified and self-ligated
30 to form pONY8z-shuttle. This plasmid has unique 5' sites (DraIII and BglII) and unique
3' sites (PvuII and BspLUII). Oligonucleotides encoding the 34bp loxP sites were
inserted with suitable base pair overhangs at the unique 5' DraIII site and then the unique
3' BspLUII, to generate plasmid pONY-8z-shuttleloxP.

-44-

Plasmid pONY8z-loxP was made as follows. Plasmid pONY-8z-shuttleloxP was digested with BsrG I and NspV, and the 3670bp fragment was purified as the vector fragment. The insert for ligation to this fragment was derived from pONY8z by partial 5 digestion with BsrGI (two sites) followed by digestion with NspV. A 7,328bp fragment was purified and ligated to the 3670bp fragment described above.

The Cre recombinase plasmid as used in this system is pBS185 (Gibco).

10 **EXAMPLE 6**

We constructed an MLV self-inactivating (SIN) vector called pTrap2 (see SEQ ID No 56) by replacing the 3' U3 NheI-XbaI fragment with a 34-bp loxP sequence. The vector transcribes the marker gene GFP from an internal CMV promoter. Trap2 vector was used 15 to transduce EIAV packaging cell lines EV1 and EV2. The EV cell lines are based on human TE671 cells and express EIAV gag/pol proteins and VSV-G envelope, regulated by a temperature-sensitive switch. High expressing clones of transduced EV1 and EV2 cells were identified by FACS analysis for GFP. Individual clones expressing high levels 20 of GFP were then selected. The GFP expression cassette was excised following transient transfection with a Cre recombinase expression plasmid. The derived cell line, EV-loxP, contains a single loxP site and minimal sequences derived from the MLV construct pTrap2. An EIAV genome was engineered to contain loxP sites flanking the entire vector genome.

25 This genome construct and Cre recombinase were co-transfected into EV-loxP. Stable cell lines expressing lacZ were selected by FACS and cell lines were cloned by limiting dilution. Therefore, we have introduced an entire EIAV genome expression cassette into a single loxP site. This site was previously identified by MLV transduction as highly permissive for transgene expression. A 5' CMV promoter transcribes the lentiviral 30 genome in the producer cell line but the expression site was originally identified by MLV transduction. This method is adaptable to the generation of transduced producer cell lines for other lentiviral vector systems.

-45-

Materials and Methods

Vector construction: Plasmid pTrap2 was made as follows: A plasmid containing a single MLV LTR plasmid (LTRplasmid – SEQ ID No 59) was digested with *Nhe*I and 5 *Xba*I and a 34 bp minimal loxP site was introduced with relevant sticky ends. This insertion step removes the MLV U3 enhancer elements which lie within the excised *Nhe*I-*Xba*I fragment. The LTR-loxP plasmid was linearised by digestion with *Nhe*I and was ligated to a 6.8kb *Nhe*I fragment from the MLV construct CZCG (See SEQ ID No 55). This construct expresses lacZ from the 5' U3 promoter and GFP from an internal CMV 10 promoter. The resulting pTrap2 construct is shown in Figure 8.

The EIAV genome construct pONY8.0Z and pONY8.1Z were prepared as follows:

pONY8.0Z construction

15 pONY8.0Z was derived from pONY4.0Z (see WO 99/32646) by introducing mutations which 1) prevented expression of TAT by an 83nt deletion in the exon 2 of tat) prevented S2 ORF expression by a 51nt deletion 3) prevented REV expression by deletion of a single base within exon 1 of rev and 4) prevented expression of the N-terminal portion of 20 gag by insertion of T in ATG start codons, thereby changing the sequence to ATTG from ATG. With respect to the wild type EIAV sequence Acc. No. U01866 these correspond to deletion of nt 5234-5316 inclusive, nt 5346-5396 inclusive and nt 5538. The insertion of T residues was after nt 526 and 543.

25 pONY8.1Z construction

pONY8.1Z was obtained directly from pONY8.0Z by digestion with SalI and partial digestion with SapI. Following restriction the overhanging termini of the DNA were made blunt ended by treatment with T4 DNA polymerase. The resulting DNA was then 30 religated. This manipulation results in a deletion of sequence between the LacZ reporter gene and just upstream of the 3'PPT. The 3' border of the deletion is nt 7895 with respect to wild type EIAV, Acc. No. U01866. Thus pONY8.1Z does not contain sequences corresponding to the EIAV RREs.

-46-

Plasmid pONY8z was linearised by *Bg*II, and a single loxP site was cloned into *Bg*II, immediately upstream of the 5' CMV promoter, to produce pONY8z-loxP. Plasmids pONY3.2iresHYG and pHCMV-VSVG were used in the derivation of cell lines EV1 and
5 EV2. The plasmid pONY3.2iresHYG was constructed as follows:

pONY3.2IREShyg

pONY3.IREShyg was derived from pONY3.2. pONY3.2 is a derivative of pONY3.1 in
10 which expression of TAT and S2 are ablated by an 83nt deletion in the exon 2 of tat a
51nt deletion in S2 ORF. With respect to the wild type EIAV sequence Acc. No. U01866
these correspond to deletion of nt 5234-5316 inclusive and nt 5346-5396 inclusive. This
fragment was introduced into the expression vector pHORSE IRES hgy which was made
as follows. pHORSE (see WO 99/32646) was cut with SnaBI and NotI which excises a
15 fragment running from the CMV promoter through EIAV gag/pol and introduced into
pIRES1hgy (Clontech) digested with the same enzymes. This plasmid was then cut with
Sse8387I and BstEII and then ligated with the Sse8387I to BstEII fragment from
pONY3.2. The sequence of the plasmid is set out in SEQ ID No 51.

20 **Virus Production**

Transient MLV vector preparations pseudotyped with RD114 cat endogenous envelope
were made as described previously (Soneoka et al., 1995). EIAV vector was harvested
from confluent monolayers following 3 days induction of VSV-G expression at 32°C.
25 MLV vector preparations were titred in triplicate on HT1080 fibrosarcoma cells. EIAV
vector preparations were titred by GFP and lacZ on D17 dog osteosarcoma cells.

Flow cytometry of b-galactosidase and GFP activity:

30 1.5x10⁵ cells from a 12-well plate were analysed for lacZ expression using the
FluoReporter lacZ Flow Cytometry kit (Molecular Probes). GFP expression was also
directly assessed using the FACSCalibur flow cytometer (Beckton Dickinson).

Transfection methods

-47-

Calcium phosphate transfections were carried out using the Protection kit (Promega) according to manufacturer's instructions.

5 **Results**

Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP, plasmids used in this study.

10 **Introduction of Trap2 genome into EV1 and EV2**

An overall summary of the process described here is given in Figure 9. Trap2 MLV vector was made in a transient system with the amphotropic 4070A envelope. It gave a GFP titre of 1.7×10^6 T.U. per ml. Trap2 vector however also gave a lacZ titre of 9.4×10^5 T.U. per ml. This shows that replacement of the *NheI-XbaI* fragment from the MLV U3 region with loxP does not completely inactivate the MLV U3 promoter. Therefore Trap2, as constructed, is a partial SIN vector.

EV1 and EV2 cells were transduced with Trap2 vector at a multiplicity of infection (MOI) of 0.3. This was done to insert single copies of the MLV genome into the packaging lines.

Derivation of high expressers of GFP marker gene

25 Transduced EV1 and EV2 cells were analysed by FACS (see Figure 10) and the top 5% of GFP expressing cells were sorted and expanded. Clonal lines were derived by limiting dilution and four clones of EV1 and EV2 were chosen by visual inspection.

A quantitative TaqMan RT-PCR reaction was established in order to identify which of the 30 four clones of EV1 and EV2 were the highest expressors of GFP mRNA. Total RNA was analysed by RT-PCR for GFP and β -actin. Quantitation was calculated by direct comparison of the Ct values (Cycle threshold). This was possible as it was proved that the two individual RT-PCR reactions are of similar efficiency (see Figure 11). By identifying an

-48-

optimal chromosomal location for GFP transgene expression. we can ensure that the inserted loxP site will be highly permissive for expression of an inserted lentiviral genome construct.

5 Figure 5 shows the n-fold difference in GFP : β-actin ratio for clones EV1 A to D and EV2 A to D. All ratios are defined relative to a calibrator sample, defined as a ratio of 1.0. The calibrator sample used was RNA from EV2 cells transduced with Trap2 at an MOI of 0.3.

10 This identified the best expressing lines as:

- EV1 clone A - GFP : β-actin ratio is 22.8
- EV2 clone D - GFP : β-actin ratio is 18.6

These two lines were carried forward for further study.

15

Excision of internal expression cassette by Cre recombinase

20 The process of retroviral integration copies the loxP-containing modified 3' U3 to the 5' position. Therefore, one can excise the majority of the MLV Trap2 integration by the action of Cre recombinase. This will leave a single modified LTR, suitable for lentiviral genome integration.

EV1 clone A and EV2 clone D were transfected by the Cre expression plasmid pBS185 (Life Technologies). After one week, the cells were analysed for GFP by FACS (see 25 Figure 13) to determine the excision frequency. This was measured at 20-70% in all lines.

Recombined clones were identified by limit dilute cloning cells and checking by microscope and FACS for loss of GFP expression.

30

Insertion of EIAV genome into loxP site

-49-

Plasmid pONY8x-loxP and pBS185 were co-transfected using Fugene into EV1 clone A (excised) and EV2 clone D (excised). A control transfection of pONY8z-loxP in the absence of pBS185 was also carried out.

- 5 Figure 14 shows lacZ expression of transfected cells with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be ~12% by computer image analysis.

We analysed cells for lacZ expression by FACS using the FluoReporter lacZ Flow Cytometry kit. The top 5% of lacZ positive cells were sorted by FACS and clones were derived by limiting dilution. In total, 12 clones of EV1/A/pONY8z-loxP were derived and 13 clones of EV2/D/pONY8z-loxP.

EXAMPLE 7

15

Construction of EIAV vectors with LTR driven open reading frames

The EIAV vector configurations described previously utilise a single promoter - transgene cassette located internally in the vector. For example in pONY8Z the promoter-transgene cassette is CMV-LacZ. However for some uses it would be advantageous to have the option of expressing a gene from the 5'LTR promoter as well. For example a marker gene such as green fluorescent protein (GFP), a resistance marker such as neomycin phosphotransferase (neo) or another protein or a biologically active entity such as a ribozyme. Previous experiments have shown that the EIAV LTR is weakly active in human cells in the absence of EIAV tat. However the transcriptional activity of the LTR can be increased by replacement of the EIAV U3 region with the MLV U3 region or the CMV promoter. This is achieved by introducing these alterations in the 3'LTRs of the vector plasmids. As a result of the replicative strategy of retroviruses the modified 3'LTR becomes positioned at the 5'end of the integrated vector and can thus drive expression of a gene placed downstream of the gag region. To ensure optimal levels of expression there should preferably be no ATG start codons prior to the start codon of the gene to be expressed. In pONY8Z the ATG start codon of gag and the next ATG downstream were mutated to ATTG in order to ablate expression of the

-50-

aminoterminal portion of gag present in the vectors, however there are 7 other ATG codons further downstream of these, within gag, from which translation might be initiated.

- 5 Described below are the replacement of the U3 region of EIAV with MLV or CMV promoters and the mutation of ATG codons in the gag region

Replacement of the EIAV U3 region with MLV U3 or CMV promoters

- 10 The MLV U3 region was introduced into pONY8Z vector by replacement of the 3'LTR with a synthetic MLV/EIAV LTR made by the overlapping PCR technique, using the following primers and templates.

The EIAV PPT/U3 sequence was amplified from pONY8.1Z using primers:

- 15 KM001: CAAAGCATGCCTGCAGGAATTCG (SEQ ID No 1)

and

KM003:

- 20 GCCAACCTACAGGTGGGTCTTCATTATAAAACCCCTCATAAAAACCCAC
AG (SEQ ID No 2)

to give the following product:

- 25 CAAAGCATGCCTGCAGGAATTCGATATCAAGCTTATCGATACCGTCGAATTG
GAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCTCAGTATGTTAG
AAAAACAAGGGGGAACTGTGGGTTTTATGAGGGGTTTATAATGAAAGA
CCCCACCTGTAGGTTGGC (SEQ ID No 3)

- 30 The MLV U3 region was amplified from pHIT111 (Soneoka et al., (1995) Nucleic Acids Res. 23, 628-633) using KM004:

-51-

CTGTGGGTTTTATGAGGGTTTATAATGAAAGACCCACCTGTAGGTTG

GC (SEQ ID No 4)

and

5 KM005:

GAAGGGACTCAGACCGCAGAATCTGAGTCCCCCGAGTGAGGGTTGTGG

CTCT (SEQ ID No 5) to give the following product:

- 10 CTGTGGGTTTTATGAGGGTTTATAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCT
TAAGTAACGCCATTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAACGTCAGATC
AAGGTCAGGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCTGTGTAAGCAGTT
CCTGCCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCT
GTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCCCAGATGCGGTCCAGC
15 CCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGACCTGAAATGACCC
TGTGCCTTATTGAACCAATCAGTCGCTTCTGCTTGTTCGCGCGCTTCTGCTCCCCG
AGCTCAATAAAAGAGCCCACAACCCCTCACTGGGGGGCACTCAGATTCTGCGGTCTGAGTCC
CTTC (SEQ ID No 6)
- 20 The MLV U3/EIAV R/U5 was amplified from pONY8.1Z using primers

KM002: GAGCGCAGCGAGTCAGTGAGCGAG (SEQ ID No 7) and

KM006:

- 25 AGAGCCCACAACCCCTCACTGGGGGGCACTCAGATTCTGCGGTCTGAGTCCCTCTGCTG
CTTC (SEQ ID No 8)

to give the following product:

- 30 AGAGCCCACAACCCCTCACTGGGGGGCACTCAGATTCTGCGGTCTGAGTCCCTCTGCTG
GGCTGAAAAGGCCTTGTAAATAATATAATTCTACTCAGTCCCTGTCTAGTTGTCTGTT
CGAGATCCTACAGAGCTCATGCCCTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTG
TTATCCGCTACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGTGC
35 CTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGGAAAC

-52-

CTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGGCGGTTTGCCTATTGGG
CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC (SEQ ID No 9)

The PCR products described above were purified and then used as templates in new PCR reactions to link them together to obtain a 992bp product. The final product contains two SapI sites which flank the hybrid LTR. These allow introduction of the PCR product into the corresponding SapI sites present in the pONY8Z or pONY8.1Z vector plasmid, thereby creating pONY8Z MLVHyb and pONY8.1 MLVHyb. The sequence of the hybrid LTR in these plasmids was confirmed by sequencing. The titres obtained from the vectors in transient transfection assays are shown in Table 1. The titres were very similar to the titres from the parental construct pONY8Z and pONY8.1Z indicating that replacement of the EIAV U3 region with that of MLV had little or no detrimental effect on the infectious cycle of the vectors.

15 **Table 1. Titres obtained from MLV hybrid LTR vector plasmids**

vector plasmid	#titre (l.f.u./ml)
pONY8Z	3×10^5
pONY8Z MLVHyb	1×10^5
pONY8.1Z	6×10^4
pONY8.1Z MLVHyb	2×10^4

Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid shown and pRV67 (VSV-G expression plasmid), and pONY3.1 (EIAV gag/pol expression plasmid).

The structure of pONY8.1Z MLVHyb is shown in Figure 15 and the sequence of this plasmid is shown as SEQ ID No 10.

25 The EIAV promoter was also replaced by the human cytomegalovirus (CMV) promoter using a similar strategy. The primers and templates were the same except that KM003 was replaced by KM008:

-53-

GGCCATCGTCCTCCCCACTCCTGCAGTTATAAAACCCCTCATAAAAACCCA
CAG (SEQ ID No 11)

KM004 was replaced by KM009:

5

CTGTGGGTTTTATGAGGGGTTTATAAACTGCAGGAGTGGGGAGGCACGA
TGGCC (SEQ ID No 12)

KM005 was replaced by KM010:

10

GAAGGGACTCAGACCGCAGAATCTGAGTGCCCCGGTCACTAAACGAGCTCTG
CTTATATAGACC (SEQ ID No 13) and

KM006 was replaced by KM011:

15

GGTCTATAAGCAGAGCTCGTTAGTGAACCGGGCACTCAGATTCTGCG
GTCTGAGTCCCTTC (SEQ ID No 14)

The template for the PCR reaction with primers KM009 and KM010 was pONY2.1LacZ.
20 This plasmid contains a single CMV promoter. The combined PCR product of 1319 bp
was digested with SapI and introduced into the pONY8Z or pONY8.1Z backbone as
described above for pONY8Z MLVHyb.

Mutation of remaining ATG codons in the gag of pONY8Z to ATTG

25

The alignment of the sequence of the leader and gag region present in vectors pONY4Z
(an earlier generation EIAV vector), pONY8Z and a derivative of pONY8Z in which the
7 remaining ATG codons are mutated to ATTG is shown in Figure 16. These mutations
were created by PCR mutagenesis as follows. The template for the PCR reactions was
30 pONY8Z and the primers were:

F1: CGAGATCCTACAGTTGGCGCCCGAACAG (SEQ ID No 15);

-54-

R1:GAGTTACAATCTTCCAGCAATGGAATGACAATCCCTCAGCTGCCAGTCCTT
TTCTTTACAAAGTTGGTATCAATGAAATAAGTCTACTAGACTTAGC (SEQ ID
No 16);

5 F2:TTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGGACAAGAAAGAGA
GGCCTTGAAAGAACATTGGTGGCAATTCTGCTGTAAAGATTG (SEQ ID No
17);

10 R2:CAATATTCGCTCTTAGGAGCTGGAATGATGCCTTCCAATCTACTACAAT
TATTAATCTGGAGGCCAATCTTACAGCAGAAATTGCCACCAATG (SEQ ID
No 18);

R3:CCACTAGTTCTAGAGATATTCTCAGAGGGCTCAGACTGCTTTATTAGC
AGTCTTCTTCAATATTCGCTCTAGGAGC (SEQ ID No 19)

15 In the first stage of construction two PCR reactions were set up with primer pairs F1/R1 and F2/R2, respectively. These were purified and then used in a second 'overlapping' reaction in which primers F1 and R3 were added after 10 cycles. This procedure results in a 552bp PCR product (SEQ ID No 20):

20 CGAGATCCTACAGTTGGCGCCCGAACAGGGACCTGAGAGGGGCGCAGACCCCTACCTGTTGAA
CCTGGCTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTTCTGGAGGTGT
TCCTGGCCAGAACACAGGGAGGACAGGTAAGATTGGAGACCCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACTGTAAT
25 TGGCGCTAAGTCTAGTAGACTTATTCATTGATACCAACTTGTAAAAGAAAAGGACTGGCA
GCTGAGGGATTGTCATTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGGACAAGAAAGA
GAGGCCTTGAAGAACATTGGTGGCAATTCTGCTGTAAAGATTGGCCTCCAGATTAATA
ATTGTAGTAGATTGGAAAGGCATCATTCCAGCTCCTAAGAGCGAAATATTGAAAGAAGACTG
CTAATAAAAGCAGTCTGAGCCCTCTGAAGAATATCTCTAGAACTAGTGG

30 This was digested with *NarI* and *XbaI* and ligated into pONY8Z, pONY8Z MLVHyb and pONY8Z CMVHyb, which had been prepared for ligation by digestion with the same enzymes. These plasmids were designated pONY8ZA or pONY8ZA MLVHyb and pONY8ZA CMVHyb. The sequence for pONY8ZA CMVHyb is provided in SEQ ID No 52. These plasmids have a unique *XbaI* site into which can be inserted genes such as

-55-

GFP or neomycin phosphotransferase or other biologically active entity. This use of the site is demonstrated for GFP. The GFP ORF was obtained from pEGFP-1 (Clontech) by digestion with SmaI and XbaI, and then the ends filled in by treatment with T4 DNA polymerase. This fragment was then ligated into pONY8ZA or pONY8ZA MLVHyb and 5 pONY8ZA CMVHyb prepared for ligation by digestion with XbaI and subsequent filling in with T4DNA polymerase. The resulting vector plasmids were called pONY8GZA or pONY8GZA MLVHyb and pONY8GZA CMVHyb. Other genes can be inserted at this site by manipulations apparent to those skilled in the art.

10 **Creation of EIAV vector genomes containing loxP sites in their LTR's**

The time taken to construct producer cell lines for EIAV vectors would be greatly reduced if it was possible to 1) locate and 2) reutilise a site in the host cell chromosome which was particularly favourable for high levels of transcription of the vector genome. 15 In outline, this can be achieved by engineering loxP sites in the 3'LTR of EIAV vectors, transduction of the packaging cell line with vectors which carry loxP and hybrid LTRs, selection of cells which express the highest levels of vector genome and exchange of the test EIAV vector genome for the vector genome of choice using the cre/loxP recombination system.

20

The proposed scheme was evaluated using a derivative of pONY8GZA CMVHyb in which a loxP site was introduced into the PstI site between the EIAV sequences (required for efficient integration) and the CMV promoter in the 3'LTR. After transduction the integrated vector will thus have a loxP-CMV cassette located in the 5'LTR and 3'LTR's 25 and therefore full length transcripts of the vector genome will be driven by the CMV promoter, which is a powerful promoter. pONY8GZA CMVHyb contains many PstI sites hence it was modified to allow insertion of the loxP site by digestion with XbaI and NheI and religation to create the subclone, pONY CMVHyb. This plasmid has a unique PstI site in the hybrid LTR. The loxP site was inserted into this site using two complimentary 30 oligonucleotides which when annealed formed PstI-compatible termini. These were termed loxP POS

-56-

PSTI [GATAAAC TTCTGTATAATGTATGCTATACGAAGTTATCTGCA] (SEQ ID No 21)] and

loxA loxP NEG PstI [GATAACTTCGTATAGCATACATTACGAAGTTATCTGCA]
5 (SEQ ID No 22)

The sequence and orientation of the loxP site was confirmed by DNA sequencing and the plasmid called pONY CMVHyb loxP. The central part of the vector genome was then reintroduced into this subclone by transfer of the NotI-BstEII fragment from pONY8GZA 10 CMVHyb into pONY CMVHyb cut the same way. The resulting vector was termed pONY8GZA CMVHyb loxP.

Two routes for construction of a producer cell line are available using pONY8GZA CMVHyb loxP. The plasmid can be introduced into a packaging cell line by transfection 15 or vector particles can be made using the 293T and these used to transduce the packaging cell line. Since the vector is derived from EIAV, rather than MLV, it is able to transduce non-dividing cells or slowly dividing cells. In this situation it has been hypothesised that integrations occur at chromosomal sites that are constitutively open; that is, are likely to be sites at which high levels of transcription will be maintained for extended periods. 20 This may be important for the long term usefulness of the producer cell line and thus represents an advantage of strategy using transduction.

Producer cell lines were made by transfection or transduction of a TE671-derived cell line (EV11E) which has stably integrated copies of VSV-G and the synthetic EIAV gag/pol 25 under the control of CMV promoters. Prior to transfection with pONY8GZA CMVHyb loxP it was linearised by digestion with AhdI. Seven days following transfection or transduction cells expressing the highest levels of GFP were selected by FACS and then cloned by limiting dilution. A number of clones were analysed for levels of full length vector RNA using Taqman technology based assays in order to confirm the hypothesis 30 that the highest level of GFP expression correlates with the highest levels of vector RNA.

The cell line which expressed the highest level of RNA was then tested for production of transducing vector particles 5 days after changing the temperature of incubation from 37C

-57-

to 32°C. At 32°C, VSV-G expression is induced however maximal levels of VSV-G are only obtained after 5 days at the permissive temperature (see WO 00/52188). The cell line producing the highest titre, EV11E CMV loxP was selected for further work.

- 5 In order to exchange the vector genome with for another EIAV vector genome with a more suitable configuration for use in the clinical setting EV11EloxP cells were transfected with cre recombinase expression plasmid, pBS185 (Gibco), which results in excision of the EIAV vector between the loxP sites. This leaves a loxP-CMV promoter R-U5 sequence in the cells. Cells from which the EIAV vector genome had been excised
10 were selected on the basis of low levels of GFP expression by FACS and assumed to be clonal on the basis of the clonality of EV11E CMV loxP. These were termed EV11EloxPΔ and used as targets for new EIAV vector genomes.

15 **Construction of EIAV vector genomes with downstream REV expression cassettes and flanking loxP sites**

The production of vector particles from minimal EIAV vectors (those which do not express EIAV REV or any other EIAV proteins) is increased by about 10-fold in the presence of EIAV REV in our 293T transient production system when the codon-
20 optimised EIAV gag/pol expression construct is used to drive production of vector particles as set out in Table 2. This may be improved nuclear to cytoplasmic transport of the vector genome in the presence of REV protein. Packaging/producer cell lines for EIAV vectors may be engineered to express Rev protein. One approach would be to engineer cells to express EIAV REV from an independently transfected expression
25 cassette. However, the cassette and the vector genome may be subject to differential regulation, for example by methylation or chromosome remodelling. Such an effect may limit the useful life of such cell lines.

30 Table 2. Effect of REV expression on titres obtained from REV-expressing [REV+] and non-expressing [REV-] vectors

vector plasmid	gag/pol	expression	#titre
----------------	---------	------------	--------

-58-

	plasmids	(l.f.u./ml)
pONY4Z [REV+]	pONY3.1	2.0±0.4 x 10 ⁶
pONY4Z [REV+]	pE SYN GP	0.9±0.2 x 10 ⁶
pONY8Z [REV-]	pONY3.1	1.5±0.2 x 10 ⁶
pONY8Z [REV-]	pE SYN GP	1.9±0.6 x 10 ⁵

* Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid and gag/pol expression plasmid shown and pRV67 (VSV-G expression plasmid) (See WO 00/52188).

5

REV+ and REV- reflect the rev expression status of the vectors. REV+ reflects vectors which express the REV protein. REV- reflects expression vectors which do not express the REV protein.

10 pESYNGP

The gag/pol expression plasmid shown in Figure called called pESYNGP was constructed as follows: The codon-optimised EIAV gag/pol ORF was synthesised by Operon Technologies Inc., Alameda and supplied in a proprietary plasmid backbone, GeneOp. 15 The complete fragment synthesised included sequences flanking the EIAV gag/pol ORF: tctaga**GAATTGCCACCATG**- EIAV gag/pol- **UGAACCCGGGgcggccgc** (SEQ ID No 44). The ATG start and UGA stop codons are shown in bold. XbaI and NotI sites are in lower case. These were used to transfer the gag/pol ORF from GeneOp into pCIneo (Promega) using the NheI and NotI sites in the latter.

20

pESDSYNGP

An alternative expression plasmid for expression of the synthetic EIAV gag/pol could 25 also be used. It is called pESDSYNGP and its construction is described as follows: ESDSYNGP was made from pESYNGP by exchange of the 306bp EcoRI-NheI fragment, from just upstream of the start codon for gag/pol to approximately 300 base pairs inside

-59-

the gag/pol ORF with a 308bp EcoRI-NheI fragment derived by digestion of a PCR made using pESYNGP as template and using the following primers: SD FOR [GGCTAGAGAATTCCAGGTAAAGATGGCGATCCCCTCACCTGG] (SEQ ID No 60) and SD REV [TTGGGTACTCCTCGCTAGGTT] (SEQ ID No 61). This manipulation replaces the Kozak consensus sequence upstream of the ATG in pESYNGP with the splice donor found in EIAV. The sequence between the EcoRI site and the ATG of gag/pol is thus CAGGTAAG (SEQ ID No 62).

10 The sequences for pESYNGP (SEQ ID No 53) and pESDSYNGP (SEQ ID No 54) are provided.

15 Packaging/Producer cells may be engineered by physically linking the genome and EIAV REV expression cassettes. In this way stable transfectants may be generated which contain the vector genome and the EIAV REV expression cassette in the same chromatin environment. This manipulation may ensure that the relative levels of transcription of the vector genome and the REV expression cassette are maintained leading to an increased duration of vector production from the producer cells.

20 Previous work has suggested that optimisation of the level of REV may be required with respect to the level of vector genome (see WO 98/17815). We have examined the levels of vector production in a transient system in which several different promoters are used to drive REV expression in order to determine which vector genome-rev expression cassette is optimal for use in constructing producer cell lines. The highest titres were obtained with FB29 and PGK promoters driving REV expression.

25

The following describes the construction of EIAV vector genomes plasmids in which there is a downstream expression cassette for synthetic EIAV REV protein. The promoters tested were FB29, PGK, TK, CMV, SV40 and RSV. In addition the loxP sites were engineered into the vector plasmid backbone in such a way that the genome and 30 introduced promoter-REV expression plasmid was flanked. In this way, the complete vector-REV cassette can be recombined into loxP sites in the target cell.

-60-

The complete construction of the FB29 and PGK containing plasmids is described here. The REV expression construct was inserted in the both orientations with respect to the EIAV vector genome. Plasmids in which the FB29 or PGK promoters drive REV expression are being utilised for construction of stable producer cell lines.

5

Construction of plasmids

In the first step of construction an SfiI site was inserted downstream of the EIAV vector sequence. This site is the insertion site for the promoter REV cassettes. The construction

10 was made as follows. pONY8Z was digested with EheI and NruI, the ends were blunted by treatment with T4 DNA polymerase and religated. The resulting plasmid, pONY8Z delta, is thus deleted with respect to the leader, gag, reporter cassette and most of the Rev/RRE regions.

15 pONY8Z delta was mutated to contain loxP sites inserted in the DraII site immediately to the 5' of the CMV promoter and in the BspLU11I site to the 3' of the vector genome. The loxP sites were inserted using complementary nucleotide pairs which when annealed had overhanging termini suitable for cloning into these sites and were inserted in two steps of cloning. The oligonucleotides for insertion into the DraIII site were

20

VSAT 158: [GTGATAACTTCGTATAATGTATGCTACGAAGTTATCACTAC]
(SEQ ID No 23)

and

25

VSAT 155 [GTGATAACTTCGTATAGCATAACATTACGAAGTTACCGTA]
(SEQ ID No 24)

For the BspLU11I they were:

30 VSAT 156 [CATGTATAACTTCGTATAATGTATGCTACGAAGTTATA] (SEQ ID
No 25) and

-61-

VSAT 157 [CATGTATAACTTCGTATAGCATACATTATACGAAGTTATA] (SEQ ID
No 26)

Plasmids were selected in which the orientation of the loxP at both sites were the same
5 and the same as the EIAV vector genome. The modified plasmid was called pONY8Z
delta 2xloxP.

pONY8Z delta 2xloxP has a unique PvuII site downstream of the deleted EIAV vector
genome into which annealed complementary oligonucleotides encoding SfiI sites were
10 inserted. The oligonucleotides were:

SFI SRFPOS [AGTAGGCCGCCTCGGCCGCCGGCATCA] (SEQ ID No 27) and

SFI SRF NEG [TGATGCCCGGGCGGCCGAGGCAGGCCTACT] (SEQ ID No 28)

15 Clones which had the SfiI – SrfI sites in either orientation were selected for further work.
These were called pONY8Z delta SfiI FOR and REV.

Amplification and cloning of FB29 and PGK promoters

20

The FB29 promoter was amplified from pRDF (Cosset FL, et al. *J Virol* 1995
Dec;69(12):7430-6) using primers:

FB29 POS [TAGCCGAGATCTCAAATTGCTTAGCCTGATAGCC] (SEQ ID No
29) and

25 FB29 NEG [TGCCTAGCTAGCCTCCGGTGGTGGGTCGGTG] (SEQ ID No 30)
which introduce

5'BglII and 3'NheI sites.

The PGK promoter was amplified from pPE327 using primers

PGK POS [AGCAGTAGATCTGGCGTTGGGGTTGCGCCTTT] (SEQ ID No 31) and

30 PGK NEG [CGTCATGCTAGCCTGGGGAGAGAGGTCGGTG] (SEQ ID No 32)

-62-

The PGK promoter sequence obtained from this plasmid was the same as the sequence of GenBank Acc. No. M11958 except that it has a single mutation: nucleotide 347 of M11958 is changed from G to A. The TK promoter and intron was amplified from pRL-TK (Promega) with:

- 5 TK POS [TACGGAAGATCTAAATGAGTCTTCGGACCT] (SEQ ID No 33) and
TK NEG [CTCAACGCTAGCGTACTCTAGCCTTAAGAGCTG] (SEQ ID No 34)

The RSV promoter was amplified from pREP7 (Invitrogen) with

- 10 RSV POS [TACCAGAGATCTCTAGAGTCGACCAATTCTCATG] (SEQ ID No 35)
and

RSV NEG [CATCGAGCTAGCAGCTTGGAGGTGCACACCAATG] (SEQ ID No 36)
and

- 15 The SV40 promoter was amplified from pCIneo (Promega) with:
SV40 POS [GATGGTAGATCTGCGCAGCACCATGGCCTGAA] (SEQ ID No 37) and

- 20 SV40 NEG [CTCGAAGCTAGCAGCTTTGCAAAAGCCTAGGC] (SEQ ID No 38)

The PCR fragments were digested with BglII and NheI and ligated into pSL1180 (Pharmacia) which had been prepared by digestion using the same enzymes. Following transformation into E.coli DNA was prepared and the sequence of the promoters checked
25 by DNA sequencing. Clones in which the correct promoter sequence was present were used for further work and were called pSL1180-FB29, pSL1180-PGK, pSL1180-RSV, pSL1180-SV40, pSL1180-TK.

In the next step the promoter fragments were positioned to drive transcription of synthetic
30 EIAV REV in pE syn REV. pE syn REV is a pCIneo based plasmid (Promega) which was made by introducing the EcoRI to SalI fragment from the synthetic EIAV REV plasmid into the polylinker region of the plasmid using the same sites. The synthetic

-63-

EIAV REV plasmid made by Operon contains a codon-optimised EIAV REV open reading frame flanked by EcoRI and SalI. The sequence of this fragment is shown as SEQ ID No 39.

- 5 Prior to replacement of the CMV promoter in pE syn REV it was modified as follows. The SV40 neo region was deleted by digestion with KpnI and BamHI, the ends blunted by treatment with T4 DNA polymerase and then religated. The plasmid was termed pE syn REV delta. Next SfiI sites were introduced into both the BglII site which is just 5' of the CMV promoter and DraIII site downstream of the polyA signal.

10

The oligonucleotides used for this were as follows:

SFI FOR BglII POS [GATCGGCCGCCTCGGCCA] (SEQ ID No 40) and

15 SFI FOR BglII NEG [GATCTGGCCGAGGCGGCC] (SEQ ID No 41)and

SFI FOR DRA POS [GGCCGCCCTCGGCCGT] (SEQ ID No 42) and

SFI FOR DRA NEG [GGCCGAGGCGGCCTAC] (SEQ ID No 43)

20

Clones in which the SfiI was located 5' of the BglII site were selected were used for further work. The plasmid obtained after this two step manipulation was termed pE syn REV delta 2xSfiI. It has the following features: 5'SfiI sites – BglII site - CMV promoter and intron – NheI site – E syn REV - polyA site – 3'SfiI site. Hence the CMV promoter can be excised by digestion with BglII and NheI and replaced with the promoter of choice obtained from the pSL1180 series of clones by digestion with the same enzymes. Construction details are included from this point for only the constructs which contained FB29 and PGK promoters, however a similar scheme was used for the other promoters, except that a partial SfiI digestion was required for transfer of the SV40-REV cassette.

25

Promoter fragment were obtained from pSL1180 – FB29 and pSL1180 – PGK by digestion with BglII and NheI and ligated into pE syn REV delta 2xSfiI digested with the

-64-

same enzymes. The resulting plasmids were called FB29 E SYN REV and PGK E SYN REV.

In the next stage the internal regions of pONY8G, pONY8.1G SIN MIN and pONY4G
5 were obtained by digestion with SgfI (which has unique site in the CMV promoter driving
the EIAV vector genome) and MunI (which cuts in the 3'LTR) and ligated in to pONY8Z
delta SfiI FOR and REV prepared for ligation by digestion with the same enzymes. The
resulting plasmids were called pONY8G SfiI FOR and REV, pONY8.1G SIN MIN SfiI
FOR and REV and pONY4G SfiI FOR and REV.

10

In the final stage the promoter-REV cassettes were moved from FB29 E SYN REV and
PGK E SYN REV into pONY8G SfiI FOR and REV, pONY8.1G SIN MIN SfiI FOR and
REV and pONY4G SfiI FOR. This manipulation was achieved as follows. FB29 E syn
REV, PGK E syn REV, and the vector plasmids described immediately above were
15 digested with SfiI and ligations set up with appropriate fragments. The promoter-REV
cassettes were orientated in the same or opposite orientations with respect to the EIAV
vector genome in the 'FOR' and 'REV' plasmids. The resulting plasmids were called
pONY8.3G FB29 + or - and pONY8.3G PGK+ and -. A schematic structure of the
pONY 8.3 +/- plasmids is shown in Figure 17.

20

The performance of these constructs was tested in relation to pONY8G in 293T transient
production assays and the results are shown in Table 3.

25

The sequence of the *EcoRI* to *Sall* fragment representing the codon-optimised EIAV
REV open reading frame obtained from the plasmid synthesised by Operon (SEQ
ID No 39)

30

EcoRI and *Sall* sites are in bold. The ATG start and UGA termination codons are underlined

GAATTGCCACCAATGGCTGAGAGCAAGGAGGCCAGGGATCAAGAGATG

-65-

ACCTCAAGGAA
 GAGAGCAAAGAGGGAGAAGCGCCGCAACGACTGGTGGAAGATCGACCCA
 AAGGCCCTG
 GAGGGGGACCAGTGGTGCCCGTGCTGAGACAGTCCCTGCCCGAGGAGAAGATTCT
 5 AGC
 CAGACCTGCATGCCAGAACGACACCTCGGCCCCGGTCCCACCCAGCACACACCCCTCC
 AGA
 AGGGATAAGGTGGATTAGGGGCCAGATTGCAAGCCGAGGTCTCCAAGAAAGGCTG
 GAA
 10 TGGAGAATTAGGGCGTGCAACAAGCCGCTAAAGAGCTGGAGAGGTGAATCGCGG
 CATC
 TGGAGGGAGCTCTACTTCCCGAGGACCAGAGGGCGATTCTCCGCATGGGAGGC
 TAC
 CAGAGGGACAAGAAAGGCTGTGGGCGAGCAGAGCAGCCCCCGCTTGAGGCC
 15 CGGA
 GACTCCAAAAGACGCCGAAACACCTGTGAAGTCGAC

Table 3

- 20 Titres obtained from a representative experiment in which the vector-REV constructs were tested by transient 293T production assay. The vector constructs were cotransfected with pE synGP, the synthetic EIAV gag/pol expression plasmid, and pRV67, VSV-G expression plasmid. Titres were measured in D17 cells.

<u>Plasmid</u>	Titre (g.f.u./ml)
pONY8G SfiI FOR	1.6×10^4
#pONY8G SfiI FOR	5.2×10^5
PLUS pE syn REV	
pONY8.3G FB29 +	8.8×10^3
pONY8.3G FB29 -	7.8×10^3
pONY8.3G PGK +	1.2×10^6
pONY8.3G PGK -	1.2×10^6
pONY8G	9.4×10^3

-66-

Titre was assessed on D17 cells and is expressed as green fluorescent protein cell units/ml (g.f.u./ml). Transfections were carried out with pE syn GP KOZAK and pRV67 as described previously.

- 5 * pONY8G SfI FOR is identical to the pONY8.3 derivatives except that there is no promoter-REV expression cassette is inserted in the SfI site

pE syn REV plasmid was also included in this transfection

- 10 pONY8G is a standard EIAV vector genome used for comparative purposes

pONY8.3G FB29 – is shown as SEQ ID No 45

pONY8.3G FB29 + is shown as SEQ ID No 46

- 15 pONY8.3GPGK – is shown as SEQ ID No 47

pONY8.3G PGK + is shown as SEQ ID No 48.

SUMMARY

20

Thus, in summation, the present invention provides high titer regulated retroviral vectors. These regulated retroviral vectors include lentivectors, HRE-regulated vectors and functional SIN vectors which can be produced at high titres from derived producer cell lines.

25

The present invention also provides a method other than retroviral transduction for the transfer of a regulated retroviral vector into a derived producer cell line. This method comprises a recombinase assisted method which allows for the production of high titer regulated retroviral vectors.

30

In one broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the

-67-

vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

5

In another broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system and a retroviral vector producton system which incorporates a REV protein production system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

-68-

CLAIMS

1. A method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:
 - 5 introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the
 - 10 construct is introduced into the provirus.
2. A method according to claim 1 wherein the construct further comprises at least one nucleotide sequence of interest (NOI) between the 5' recombinase recognition sequence and the LTR, which NOI is operably linked to a transcriptional regulatory
- 15 sequence.
3. A method according to claim 1 or claim 2 wherein the construct further comprises a 5'LTR and/or a packaging signal.
- 20 4. A method according to any one of claims 1 to 3 wherein the LTR is a heterologous regulatable LTR.
5. A method according to claim 4 wherein the regulatable LTR comprises an ischaemic like response element (ILRE).
- 25 6. A method according to any one of claims 1 to 3 wherein the LTR is inactive.
7. A method according to any one of the preceding claims wherein the provirus comprises an NOI encoding a selectable marker, which NOI is flanked by recombinase
- 30 recognition sites
8. A method according to any one of the preceding claims wherein the provirus comprises an internal 5' LTR upstream of the recombinase site or the 5' recombinase site

-69-

where there is more than one site.

9. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR is inactive.

5

10. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR and/or the U3 region of the second internal 5'LTR comprises a heterologous promoter.

10 11. A method according to any one of the preceding claims wherein the provirus comprises two recombinase recognition sites and as a preliminary step, the recombinase is expressed in a host cell such that the nucleotide sequence present between the two sites is excised.

15 12. A method according to any one of the preceding claims wherein the producer cell is a high titre producer cell.

13. A method according to any one of the preceding claims wherein the provirus is a lentivirus.

20

14. A method according to claim 13 wherein the lentivirus is HIV or EIAV.

15. A method according to any one of claims 2-14 wherein the provirus further comprises a second NOI.

25

16. A producer cell obtainable by the method of any one of claims 1 to 15.

17. An infectious retroviral particle obtainable from the producer cell of claim 16.

30 18. A derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR;

-70-

wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the producer cell.

19. A producer cell according to claim 18 wherein the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.
5
20. A producer cell according to claim 18 or claim 19 wherein the first vector comprises a retroviral vector wherein the retroviral vector comprises a first NOI flanked by recombinase recognition sequences.
10
21. A producer cell according to claim 19 or claim 20 wherein the retroviral vector further comprises an internal LTR located upstream of the first NOI and downstream of a packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.
15
22. A producer cell according to any one of claims 18 to 21 wherein the third 3'LTR is transcriptionally quiescent.
20
23. A producer cell according to claim 22 wherein the third 3' LTR comprises a deletion in the U3 sequence.
24. A producer cell according to any one of claims 18 to 23 wherein the first NOI is a selectable marker.
25
25. A producer cell according to claim 19 wherein the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence.
30
26. A producer cell according to 25 wherein the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

-71-

27. A producer cell according to claim 25 or claim 26 wherein the second NOI comprises a coding sequence operably linked to a promoter.
28. A producer cell according to claim 27 wherein the second NOI comprises a discistronic construct.
29. A producer cell according to claim 28 wherein the discistronic construct comprises a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.
- 10 30. A method for producing a high titre regulatable retroviral vector, the method comprising the steps of:
- (i) providing a derived producer cell comprising integrated into its genome a first vector;
- 15 (ii) introducing a second vector into the derived producer cell using a recombinase assisted method;
- wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; 20 and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.
31. A method according to claim 30 wherein the third 3' LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.
- 25
32. A method for introducing a second regulatable 3'LTR into a derived producer cell wherein the method comprises a recombinase assisted method.
33. A method according to claim 32 wherein the recombinase assisted method is a 30 Cre/lox recombinase method.

-72-

34. A process for preparing a regulated retroviral vector as defined in claim 17 comprising performing the method according to any one of claims 30 to 33 and preparing a quantity of the regulated retroviral vector.
- 5 35. A regulated retroviral vector produced by the process according to claim 34.
36. A regulated retroviral vector according to claim 35 wherein the retroviral vector is capable of transducing a target site.
- 10 37. A regulated retroviral vector according to claim 36 wherein the retroviral vector is produced in sufficient amounts to effectively transduce a target site.
38. A regulated retroviral vector according to claim 36 or claim 37 wherein the target site is a cell.
- 15 39. A cell transduced with a regulated retroviral vector according to claim 38.
40. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a pharmaceutical composition to deliver an NOI to a target site.
- 20 41. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a medicament for diagnostic and/or therapeutic and/or medical applications.
- 25 42. Use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.
43. A derived stable producer cell capable of expressing regulated retroviral vectors according to claims 35 to 38.
- 30 44. A derived stable producer cell according to claim 43 wherein the regulated retroviral vector is a high titre regulated retroviral vector.

-73-

49. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
is a heterologous regulatable LTR.

50. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
5 is transcriptionally quiescent.

51. A method and/or a producer cell substantially as described herein and with
reference to the accompanying Figures.

10

15

20

25

30

35

40

45

50

FIG. 1

MLV-based transduction using Cre/loxP system as previously described

FIG. 2

EIAV-based transduction Cre/loxP system

3 / 16

FIG. 3

MLV SIN vector approach, with EIAV components in blue

FIG. 4

MLV-based transduction with HRE 3' LTR using Cre/loxP system

5 / 16

FIG. 5

MLV-based transduction for SIN vector production using Cre/loxP system

6 / 16

FIG. 6

MLV SIN-vector based transduction system. This general approach can be used with EIAV, HIV or MLV genomes

7 / 16

FIG. 7

8 / 16

FIG. 8

FIG. 9

9 / 16

FIG. 10a

FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector

FIG. 10b

FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top-slice of the highest expressers was carried out

10 / 16

FIG. 11

Validation of the $\Delta\Delta Ct$ method for quantitation of GFP mRNA, relative to β -actin. A titration of total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y-axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable.

FIG. 12

Quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0.

11 / 16

FIG. 13

A) Original GFP expression of the clone.

B) GFP expression 7 days after transfection with Cre recombinase (pBS185). Excision frequency is 64%

C) Recombined clone 4 was identified as being negative for GFP

12 / 16

EV1 A4 cre/pONY8Z

EV2 D4 cre/pONY8Z

EV1 A4 pONY8Z

EV2 D4 pONY8Z

FIG. 14

13 / 16

FIG. 15

FIG. 16

Alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The later is referred to as pONY8ZA. The sequence aligned are from the Nari site in the leader to the XbaI site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG.

4Z 1 *cgc*ccgaacagggacc*t*gagaggggcgcagacc*t*acctgttgaacc*t*gg

8Z 1 *cgc*ccgaacagggacc*t*gagaggggcgcagacc*t*acctgttgaacc*t*gg

mutated 8Z 1 *cgc*ccgaacagggacc*t*gagaggggcgcagacc*t*acctgttgaacc*t*gg

4Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

8Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

mutated 8Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

4Z 101 *ggagg*tg*tcc*tggccagaacacaggaggacaggtaag.at-*gggagaccc*

8Z 101 *ggagg*tg*tcc*tggccagaacacaggaggacaggtaag.att*gggagaccc*

mutated 8Z 101 *ggagg*tg*tcc*tggccagaacacaggaggacaggtaag.att*gggagaccc*

4Z 150 ttgacat-*ggagcaaggcgctcaagaagttagagaagg*tgacggtaaca

8Z 151 ttgacattggagcaaggcgctcaagaagttagagaaggtgacggtaaca

mutated 8Z 151 ttgacattggagcaaggcgctcaagaagttagagaaggtgacggtaaca

4Z 199 *gggtctcagaaattaactactgttaactgttaatggcgctaa*gtctag*t*

8Z 201 *gggtctcagaaattaactactgttaactgttaatggcgctaa*gtctag*t*

mutated 8Z 201 *gggtctcagaaattaactactgttaactgttaatggcgctaa*gtctag*t*

4Z 249 agacttatttcatt-gataccaactttgtaaaagaaaaggactggcagctg

8Z 251 agacttatttcatt-gataccaactttgtaaaagaaaaggactggcagctg

mutated 8Z 251 agacttatttcattgataccaacitgtaaaagaaaaggactggcagctg

15 / 16

4Z	298	aggat-gtcattccattgttggaaagat-gtaactcagacgcgtcagga
8Z	300	aggat-gtcattccattgttggaaagat-gtaactcagacgcgtcagga
mutated 8Z	301	aggattgtcattccattgttggaaagattgttaactcagacgcgtcagga
4Z	346	caagaaagagaggcctttgaaagaacat-ggtggcaatttctgcgttaa
8Z	348	caagaaagagaggcctttgaaagaacat-ggtggcaatttctgcgttaa
mutated 8Z	351	caagaaagagaggcctttgaaagaacattggggcaatttctgcgttaa
4Z	395	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
8Z	397	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
mutated 8Z	401	agattgggcctccagattaataattgttagatggaaaggcatcattc
4Z	442	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
8Z	444	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
mutated 8Z	451	cagtcctaagagcgaaatatgtaaaagaagactgctaataaaaagcagt
4Z	491	ctgagccctctgaagaatatct
8Z	493	ctgagccctctgaagaatatct
mutated 8Z	501	ctgagccctctgaagaatatct

FIG. 16 CONT'D

16 / 16

FIG. 17
Schematic representation of the structure of pONY 8.3G +/- vector genome plasmids

SEQUENCE LISTING PART OF THE DESCRIPTION

pONY8.1Z MLVHyb (SEQ ID NO 10)

5 AGATCTTGAATAATAAAATGTGTGTTGTCGGAAATACCGCTTTGAGATTCTGTCGCCGACTAAATTCAATGTCGCGCG
 ATAGTGGTGTATCCCGATAGAGATGGCGATATTGAAAAATTGATATTGAAAATATGGCATATTGAAAATGTCGC
 CGATGTGAGTTCTGTAACTGATATCCCAATTTCAAAAGTGATTTGGCATAACGGATACTGGCGATAGCG
 TTATATCGTTACGGGGATGGCGATAGACGACTTTGGTGAATTGGCGATTCTGTGTGCGAAATATCCGAGTTCGA
 TATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGGCGACATCAAGCTGGCACATGGCAATGCAATCGATC
 10 TATACATTGAATCAATATTGCCATTAGCCATATTATTCAATTGGTATATAGCATAAAATCAATATTGGCTATTGCCATT
 GCATACGTTGTATCCATATCGTAATATGTACATTATATTGGCTCATGTCAAACATTACGCCATGTTGACATTGATT
 GACTAGTTATTAAATAGTAATCAATTACGGGGTATTAGTCATAGCCATATATGGAGTCCCGTTACATAACTACGG
 TAAATGGCCCGCCTGGCTGACCCAAACGACCCCCCCCATTGACGTCAATAATGACGTATGTCATAGTAACGCC
 AATAGGGACTTCCATTGACGTCAATTGGTGGAGTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGATCAT
 15 ATGCCAAGTCCGGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTTACGG
 ACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCGGTTTGGCAGTACACCAATGGG
 CGTOGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATTGGAGTTGGCAGCAACAAA
 ATCAACGGGACTTCCAAATGCGTAACAACGCGATGCCCGCCCGTTGACGCAAATGGCGGTAGGCGTACCG
 TGGAGGTCTATAAGCAGAGCTGTTAGTGAACGGGCACTCAGATTCTGGTCTGAGTCCCTCTGCTGGC
 20 GAAAAGGCCCTTGTAAATAAAATAATTCTACTCAGTCCCTGTCAGTTGTCTAGTTGTCTGAGATCCTACAGTGGCGC
 CCGAACAGGGACCTGAGAGGGCGCAGACCCATTGTTGAACCTGGCTGATCGTAGGATCCCCGGGACAGCAGAGGA
 GAACCTACAGAACTCTCGAGGTGTTCTGGCCAGAACACAGGAGGACAGGTAAAGATTGGAGACCCCTTGACATT
 GGAGCAAGGCGCTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGTAACTGTAATTGGG
 CCCTAAGTCTAGACTTATTCATGATACCAACTTGTAAAGAAAAGACTGGCAGCTGAGGGATGTCATTCCATT
 25 GCTGGAAGATGTAACTCAGACGCTGTCAAGGACAAGAAAGAGAGGCCCTTGAAGAACATGGGGCAATTCTGCTGT
 AAAGATGGGCCTCCAGATTAATAATGTAAGTGAACGGCATCATTCCAGCTCAAAGAGCGAAATATGAAAAGAA
 GACTGCTAAATAAAAGCAGTCTGAGCCCTCTGAAGAATATCTCTAGAAACTAGTGGATCCCCGGCTGAGGAGTGGG
 GAGGCACGATGCCGTTGGCGAGGGCGATCCGCCATTAGCCATATTATTGTTATATAGCATAAAATCAATA
 TTGGCTATTGCCATTGACACGTTGATCCATATCATAATATGTACATTATATTGGCTCATGTCAAACATTACGCCAT
 30 GTTGACATTGATTATTGACTAGTTATTAGTAATCAATTACGGGGTATTAGTCATAGCCATATATGGAGTTCCG
 GTTACATAACTACGGTAATAGGACTTCCATTGACGTCAATTGGTGGAGTTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTACGCCCTTATTGACGTCAATTGCGTAAATGGCCCGCTGGCATTATGCCAG
 TACATGACCTTATGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCGGTTTG
 35 GCAGTACATCAATGGCGTGGATAGCGTTTACTACGGGGATTCCAAGTCTCCACCCATTGACGTCAATTGGAGT
 TTGGTTGGCACCAAAATCAACGGGACTTCCAAAATGCGTAACAACACTCCCGCCATTGACGCAAATGGCGGTAGGC
 ATGTACGGTGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACGCTT
 TGACCTCCATAAGAACACCGGACCGATCCAGCCTCCGCCCGCCAAAGCTCAGCTGCTGAGGATCTGCCGATCCGG
 GGAATTCCCCAGTCTCAGGATCCACCATGGGGATCCCGTGTGTTACACGCTGACTGGAAAACCCCTGGCGTTAC
 40 CCAACTTAATGCCCTTGACGACATCCCCCTTCCGACGCTGGTAAAGCGAAGAGGCCGACCGAAGCGGTGCGGAAAGCTGGCT
 CAACAGTTGCGCAGCCTGAATGGCAATGGCGTTGCTGGTTCCGGCACCAGAAGCGGTGCGGAAAGCTGGCT
 GAGTGCAGTCTCTGAGGGCGATACTGTCGTCGTTCCCTCAAACGCGAGATGCACGGTACGATGCCCATCTACA
 CCAACGTAACCTATCCATTACGGTCAATCCGCCGTTGTTCCACGGAGAATCCGACGGGTTGTTACTCGTCACATT
 AATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCAATTATTTGATGGCGTAACTGGCGTTATCTGTT
 45 GCAACGGGCGTGGTCGTTACGGCCAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGG
 AGAAAACGCCCTCGCGTGTGGCTGCTGGAGTGACGGCAGTTATCTGAAAGATCAGGATATGCGGAGTGA
 CGGATTTCAGCCCGCTGACTGGAGGTGAAGTTCAAGATGTGCGGCGAGTGGCTGACTACCTACGGGAAACAGTT
 TTTATGGCAGGGTGAACCCAGGTGCCAGCGCACCAGCCTTCGGCGGTGAAATTATCGATGAGCGTGGTGTAT

GCCGATCGCGTCACACTACGTCTGAACGTGAAAACCCGAAACTGTGGAGGCCGAATTCCGAATCTTATCGTGC
 TGGTTGAACCTGACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGTTCCGCGAGGTGCGGATTGA
 AAATGGTCTGCTGCTGCTGAAACGGCAAGCCGTTGCTGATTGAGGCCTAACCGTCACGAGCATCATCTGCGATGGT
 CAGGTATGGATGAGCAGACGATGGTCAGGATATCTGCTGATGAAGCAGAACAACTTTAACGCCGTCGCGTGTTCG
 5 ATTATCGAACCATCCGCTGTTACACGCTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAAC
 CCACGGCATGGTGCCAATGAATCGTCTGACCGATGATCCCGCTGGCTACCGCGATGAGCGAACCGTAACCGGAAT
 GGTGCAGCGCGATCGTAATCACCAGCTGATCATCTGGTCGCTGGGAATGAATCAGGCCACGGCGTAAATCACGA
 CGCGCTGTATCGCTGGATCAAATCTGCGATCCTCCGCCGGTGCAGTATGAAGGCGCGGAGCCGACACCACGGC
 ACCGATATTATTGCCCAGTGTACGCGCGTGGATGAAGACCAGCCCTCCCGCTGCGAAATGGTCCATCAAAA
 10 AATGGCTTCGCTACCTGGAGAGACGCCGCCGCTGATCCTTTCGAAATACGCCACCGATGGTAACAGTCTGGCG
 TTTCGCTAAATACTGGCAGCGTTTCGTCAGTATCCCCTTACAGGGCGGCTCGTCTGGACTGGTGGATCAGTCGC
 TGATTAATATGATGAAAACGGCAACCCGTTGCGTCCGACCGCAGCGCATCCAGCGCTGACCGAAGCAAAACACCAGC
 CTGATGACGGTCTGGTCTTGGCAGCCGACGCCAGCGCATCCAGCGCTGACCGAAGCAAAACACCAGCAGCTTTC
 CAGTCCGTTATCCGGCAAAACATGAACTGACCGCAATACCTGTCGCTCATAGCGATAACGAGCTCTGCACT
 15 GGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGTAAACAGTGA
 TTGAACTGCCCTGAACTACCGCAGCCGAGAGCGCCGGCAACTCTGGCTCACAGTACCGTAGTGCACCGAACCG
 CGCATGGTCAGAAGCCGGCACATCAGCGCTGGCAGCAGTGGCTCTGGCGAAACCTCAGTGTGACUCCCG
 CCCGCTCCACGCCATCCCGATCTGACCAACAGCGAAATGGATTTGCTAGCAGCTGGTAATAAGCGTTGGCAATT
 TAACCGCCAGTCAGGCTTCTTACAGATGTGGATTGGCATAAAAAAAACTGCTGACGCCGTCGGCGATCAGTC
 20 ACCCGTGCACCCGCTGGATAACGACATTGGCTAAGTGAAGCAGCCGATTGACCCCTAACGCCCTGGTCGAACGCTGG
 AAGGCGCGGGCATTACCGGCCGAAGCAGCGTTGCAGTGCACGGCAGATAACACTGCTGATGCGGTGCTGATT
 ACGACCGCTACCGCTGGCAGCATCAGGGAAACCTTATTAACGCCGAAACCTACCGGATTGATGGTAGTGGTC
 AAATGGCATTACCGTTGATGTTGAAGTGGAGCCGATAACCCGATCCGGCGGATTGGCTGAACTGCCAGCTGG
 GCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAACTATCCGACCCCTTACTGCCGCTGTTT
 25 GACCGCTGGGATCTGCCATTGTCAGACATGTATAACCCGTAAGTCTTCCGAGCGAAAACGGCTGCCGCGGACGC
 CGGAATTGAATTATGCCACACCAAGTGGCGGGCAGTCCAGTCAACATCAGCCCTACAGTCAACAGCAACTGAT
 GGAAACCCAGCCATGCCATCTGCTGACGCCGAAGAAGGCACATGGCTGAATATGACGGTTCCATATGGGATTGG
 TGGCAGCAGCTCTGGAGCCGTCAGTATCGCGGAATTCCAGCTGAGGCCGCTCGTACCAATTACAGTGGCTG
 TGTCAAAAATAATAACCGGGCAGGGGGATCCCGAGATCCGGCTGTGGAATGTGTCAGTTAGGGTGTGAAAG
 30 TCCCCAGGCTCCCAAGCAGGAGAAAGTGCACAGCTGCTGCCGGCTAGGGCCAGATGGCTGAGGAACTGATACCG
 TTGGAAGAGCTTAAATCTGGCACATCTCATGTATCAATGCCCTAGTATGTTAGAAAACAGGGGGAACTGTTGG
 GTTTTATGAGGGTTTATAATGAAAGACCCACCTGAGGTTGCAAGCTAGCTTAAGTAACCCATTGGCAAGG
 CATGGAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGTCAGGAACAGATGAAACAGCTGAATATGGCCA
 AACAGGATATCTGTTGTAAGCAGTTCTGCCGGCTCAGGGCAAGAACAGATGGCTGAGCTGAATATGGGCAAAC
 35 AGGATATCTGTTGTAAGCAGTTCTGCCGGCTCAGGGCAAGAACAGATGGCTCCAGATGCGGTCAGCCCTCAGC
 AGTTCTAGAGAACCATCAGATGTTCCAGGGGCCAAGGACCTGAAATGACCCCTGTCCTTATTTGAACTAACCAA
 TCAGTTGCTCTCGCTTCTGTCGCGCTCTGCTCCCGAGCTCAATAAAAGGCCACAACCCCTACTGGGGGG
 CACTCAGATTCTGCCGCTGAGTCCCTCTGCTGGCTGAAAAGGCCCTTGTAAATAATATAATTCTACTCAGTC
 CTGCTCTAGTTGTCGAGATCTACAGAGCTCATGCCCTGGCTAATCATGGTCAGTGTCTGTGAA
 40 ATTGTTATCCGCTCACAAATTCCACACAAACATACGAGCCGAAGCATAAGTGTAAAGCCTGGGTOCCTAATGAGTGA
 GCTAACTCACATTAATTGCGTTGCGCTACTGCCCTTCCAGCGGGAAACCTGTCGTCAGCTGCATTAATGAATCG
 GCCAACGCCGGGAGAGGCCGTTGCGTATTGGCGCTTCCGCTCGCTACTGACTCGCTGCCGCTGGCT
 CGGCTGCCGAGCCGCTACGCTACTCAAGGCCGTAATACGGTTACCCACAGAACAGGATAACGCCAGGAAAG
 AACATGTGAGCAGAACAGGAAACGCCGAGAACAGGCTAAAGGCCGTTGCTGCCGTTTCCATAGGCTCCGC
 45 CCCCTGACGAGCATCACAAAAATCCACGCTCAAGTCAGAGGTGGCGAACCCGACAGGACTATAAGATACCAGCG
 TTCCCCCTGGAAGCTCCCTGCGCTCTCTGTCGCGCTACCGCTGACCGATACCTGTCGCCCTTCTCCCTCG
 GGAAGCGTGGCGCTTCTCATAGCTACGCTGAGGTATCTAGTTGCGTGTAGGCTGCTCCAGCTGGCTG
 GCACGAAACCCCGTCAAGCCGACCCGCTGCCCTTATCCGTAACCTACGCTTGTGAGTCCAAACCCGTAAGACAGC
 TTATGCCACTGGCAGCAGCCACTGGTAACAGGATTACCGAGCGAGGTATGAGGCGGTGCTACAGAGTTCTGAAAGT

GGTGCCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
 AGTTGGTAGCTCTGATCCGGCAACAAACACCACCGCTGGTAGCGGTGTTTTTGTGCAAGCAGCAGATTACGCC
 AGAAAAAAAAGGATCTCAAGAACGATCTTGTATCTTCTACGGGTCTGACGCTCAGTGGAACGAAACGTTAAG
 GGATTTGGTCACTGAGATTATCAAAGGATCTCACCTAGATCCTTAAATTAAAAGTAAAGTTTAATCAATCTAA
 5 AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAAGGACCTATCTCAGCGATCTGTCTATTG
 TTCATCCATAGTTGCCTGACTCCCCGTGCTGAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCA
 ATGATACCGCGAGACCCACGCTACCGGCTCCAGATTATCAGCAATAAACCAGCCAGCCGAAGGGCCAGCGCAGA
 AGTGGTCTGCAACTTTATCCGCTCCATCCAGTCTATTAAATTGTCGGGGAGCTAGAGTAAGTAGTTCCAGTTAA
 TAGTTGCGAACGTTGTOCCATTGCTACAGGCATCGGGTGTACGCTCGTGTGGTATGGCTTCAATTAGCTCC
 10 GTTCCCACAGATCAAGCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTTCGGTUCCTCGATCGTT
 GTCAGAAGTAAGTGGCCGAGTGTATCACTCATGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCCGT
 AAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAAATAGTGTATGGCGACCGAGTTGCTTGG
 CGGGCTCAATACGGGATAATACCGGCCACATAGCAGAACCTTAAAGTGTCTCATCTGGAAAACGTTCTCGGGCG
 15 AAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGCACCCAACTGATCTCAGCACTT
 TTACTTTCACAGCGTTCTGGTGAGCAAAAACAGGAAGGCAAATGCCCAAAAAGGGAATAAGGGCAACACGGA
 AATGTTGAATACTCATCTCCTTTCAATTATTGAGCATTATCAGGTTATTGTCATGAGCGGATACATAT
 TTGAATGTATTAGAAAATAAACAAATAGGGTTCCGGCACATTCCCCGAAAAGTGCACCTAAATTGTAAGCGTT
 AATATTTGTTAAAATTCGGCTAAATTGTTAAATCAGCTCATTTTAAACCAATAGGGCAATCGGAAAATCCC
 TTATAAATCAAAGAACGAGATAGCCGAGATAGGGTTAGTGTGTCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
 20 GACTCCAACGTCAAAGGGCGAAAACCGTCTATCAGGGCAGTGGCCACTACGTGAACCATCACCCTAATCAAGTTT
 TGGGTCGAGGTGCCGAAAGCACTAAATCGAACCCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGGAAAGCCAA
 CCTGGCTTATCGAAATTAAATACGACTCACTATAGGGAGACCGG

pONY8.3G FB29 – (SEQ ID No 45)

25 AGATCTTGAATAATAAAATGTGTGTTGTCGAAATACGCGTTTGAGATTCTGTCGCC
 GACTAAATTCACTGTCGCCGATAGTGGTGTATCGCGATAGAGATGGCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCACAAAGTGAATTGGCATACGCGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACCTGGCGATTCTGTGTC
 GCAAATATCGCAGTTCGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAATCAATTGGCC
 ATTAGCCATATTATTGTTATAGCATAAATCAATTGGCTATTGCCATTGCA
 TACGTTGATCCATATCGTATATGTACATTATATTGGCTCATGCCAACATTACGCC
 ATGTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGGTCATTAGTTCA
 TAGCCCATATATGGAGTCCCGTTACATAACTTACGGTAAATGGCCCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAAT
 AGGACTTCCATTGACGTCAATGGGGAGTATTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCCCCCCTATTGACGTCAATGACGGTAAATGCC
 CGCCCTGGCATTATGCCAAGTACATGACCTTACGGGACTTCTACTTGGCAGTACATCTA
 CGTATTAGTCATCGTATTACCATGGTATGGGTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGAGTT
 GTTTGGCACCATAACACGGGACTTCCAAAATGTCGTAACAACTGCGATCGCCGCC
 CCGTTGACGCAATGGCGGTAGGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGAACCGGGCACTCAGATTCTCGGTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTTGTAATAAAATATAATTCTACTCAGTCCCTGTCTAGTTGTCTGTCAGATC
 CTACAGTTGGGCCCGAACAGGGACCTGAGAGGGCGCAGACCCCTACCTGTAACCTGG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTT

CTGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCCCTTGACATTGGAGCAAGGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACACTGGTAACGT
AATTGGCGCTAAGTCTAGTAGACTTATTTCATGATACCAACTTTGTAAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACCTCAGACGCTCTCAGGACAA
GAAAGAGAGGCCCTTGAAAGAACATGGTGGCAATTCTGCTGTAAAGATGGGCCTCCAG
ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTAAGAGCAAATATGAAAAG
AAGACTGCTAATAAAAGCAGTCTGAGGCCCTCTGAGAAATATCTCTAGAAACTAGTGGATC
CCCCGGGCTGAGGAGTGGGGAGGCACGATGGCCCTTGGTCAGGGCGATCCGGCCAT
TAGCCATATTTCATTGTTATAGCATAAATCATATTGGCTATTGGCAATTGCATA
CGTTGTATCCATATCATAATATGTACATTATGGCTCATGTCACATTACCCCAT
GTTGACATTGATTATTGACTAGTTATTAAAGTAATCAATTACGGGTCTTACGTTCTA
GCCCATATATGGAGTTCCCGGTTACATAACTTACGGTAAATGGCCGCTGGCTGACCGC
CCAACGACCCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAG
GGACTTCCATTGACGTCAATGGTGGAGTATTTACGGTAAACTGCCACTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTTATTGACGTCAATGACGGTAAATGGCCCG
CCTGGCATTATGCCAGTACATGACCTTATGGACTTCTACTGGCAGTACATCTACG
TATTAGTCATCGCTTATTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGGAT
ACCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTAAATGGGAGTTGT
TTTGGCACCAAAATCAACGGGACTTCCAAGTGTGTAACAACCTGGCCATTGACGC
AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATCGCTGGAGACCCATCCACGCTGTTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGGCCCAAGCTTGGGATCCACCGTCGCCACCATGGTGAGCAA
GGCGAGGAGCTGTTCACCGGGGTGGTGGCCATCTGGTCAGCTGACGGGACGTAAA
CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCACCGCAAGCTGCCCCTGGCCACCCCTCGTGACCAC
CCTGACCTACGGCGTGCAGTCTCAGCGTACCCGACCATGAAGCAGCACGACTT
CTTCAGTCCGCATGCCGAAGGCTACGTCCAGGAGCGCACCACATCTCAAGGACGA
CGGCAACTACAAGACCCCGCCGAGGTGAAGTTGAGGGCGACACCTGGTAAACCGCAT
CGAGCTGAAGGGCATGACTTCAGGAGGACGGCAACATCTGGGCAAAAGCTGGACTA
CAACTACAACAGCCACAACGTCTATATCATGGCCACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCAACTACCA
GCAGAACACCCCCATCGGGCACGGCCCGTGTGCTGCCCACAACCAACTCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGGATCACATGGCCTGCTGGAGTT
CGTGACCGCCCGGGATCACTCTCGCATGGACGAGCTGTACAAGTAAAGCGGCCGCGA
CTCTAGAGTCACCTGCAGGAGTCAAGCTCAGCTGCTGAGGGGGGCCGTACCCA
GCTTTGTTCCCTTATGTGAGGTTAATTGCGGGAGTATTATCAATAAGCAC
AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCTCCAAAAAATTTGTTTT
ACAAAAATCCCTGGTAACATGATTGAGGGACCTACTAGGGTGTGGAAGGGTATG
GTGCACTAGTAGTTAATGAGGAAAGGAATAATTGCTGTACCATTAACCAAGGACTA
AGTTACTAATAAAACCAAATTGAGTATTGTTGAGGAAGCAAGACCCAACTACCATGTC
AGCTGTGTTCCGTACCTCAATATTGTTATAAGGTTGATATGAATCCAGGGGAATC
TCAACCCCTTACCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAACATGAAGGAAGCAAGGAC
CAAGAACCTGAAAGAAGAACATCTAAGAAGAAAAAGAAGAACATGACTGGGAAAAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAATACTGGGTGTGAG
GACTCCACAGCAACATTATAGGGTGGCGATAGGGGGAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGTTCTCCGGGTGTAGACCATTCAAAATT
ACTTCAGTTATGAGACCAATAGAACATGCTATGGATAATAACTGCTACATTATTAG
AAGCTTAAACCAATATAACTGCTATAAAATAACAAAACAGAATTAGAACATGGAAAGTT

AGTAAAGACTTCTGGCATACTCCTTACCTATTCTCTGAAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGAGCCGCTACTGC
TATTGCTGCTAGCGCTACTATGTCTTGTGCTCTAAGTGGCTAACAAAATAATGGA
AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAATAGA
ACGCCAAATAAAGATATTATGCTATGATTCTCAACACATGCAGATGTCACACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGATGTTAGAAAGAACACA
TGTATTTGTACTGGTACCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
TCATGGAGCCAGGAACAATTGGCACATCCATGATAACATTCAATACACCAGATAGTAT
AGCTCAATTGAAAAGACCTTGGAGTCATATTGAAATTGATTCTGGATTGGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTGTTACTAACCTCTCGCC
TAAGATCCTCAGGGCCCTCTGGAGGTGACCAAGTGGCAGGGCTCCGGCAGTCGTTA
CCTGAAGAAAAAATTCCATACAAACATGCATCGCAGAAGACACCTGGGACAGGCCA
ACACAAACATACACCTAGCAGCGTGACCGGTGGATCAGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGAATGGAGAATCAGAGGAGTACAACAGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAAAGACCAAGGGGAGAT
TTCTCAGCCTGGGGCGGCTACACGAGCACAAGAACGGCTGGGGGAAACAATCCTCA
CCAAGGGCCTTAGACCTGGAGATTGAGAAGGAAACATTATGACTGTTGCAT
TAAAGCCAAGAAGGAACCTCGTATCCCTGCTGGATTCCCTTATGGCTATTG
GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
AATAAGGATTGTTAGAGGCTAAATTGATATTGAAATAATCAGAAAAATGCTTGA
TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCTCAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGTTTATGAGGGTTTATAATGATTATAAGAGT
AAAAAGAAAAGTGTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTTGTGACCGAGTCCCCATTGGTACCGCGTT
AACTCCTGTTTACAGTATATAAGTGTGTTGTTCTGCTGAAATTGTTATCCGCTCACAATTCCACACAAACATA
CGAGCCGGAAACATAAGTAAAGCCTGGGTGCTAATGAGTGGACTAACATCATTAA
ATTGCGTTGCGCTACTGCCGCTTCCAGTCGGAAACCTGTCGTGCCAGTGTGCCCC
GGCGGCCGAGGCCCTACGTGAACCATACCCAAATCAAGTTTGCCTGGTCAAGGTC
CGTAAAGCTTAAATCGAACCTAAAGGGAGCCCCGATTAGAGCTTGACGGGGAAAG
CCGGCGAACGTGGCGAGAAAGGAAGGAAGAACCGAAAGGAGCGGGCTAGGGCGCTG
GCAAGTGTAGCGGTACCGCTCGCGTAACCACCCACACCGCCCGCTTAATGCGCCGCTA
CAGGGCGCGTCATTGCCATTCAAGCTCGCAACTGTTGGAAAGGGCGATGGTGC
CCTCTCGCTTACGCCAGCGGGATCGATCCTTATCGGATTTCACACATTGAGAG
GTTTACTTGCTTAAAAAACCTCCCACATCTCCCCCTGAAACCTGAAACATAAAATGAAT
GCAATTGTTGTTAACTGTTATGAGCTTATAATGGTTACAAATAAGCAATAGC
ATCACAAATTTCACAAATAAGCATTCTTCACTGCTTCTAGTTGTTGCTC
CTCATCAATGTATCTTATCATGTCGCTCGAACGCTTAACCCACTAAAGGGAAGCGGC
CGCCCGGGTGCACCTCACAGGTGTTGCCGCTTGGAGTCTCGGGCCTCAAGACG
CGGGGGCTGCTGCTGCCACAGCCTTCTGTCGCTGCTGAGCTCCAGATGCCGATTCA
GAGAAATGCCCTCTGGCTCGCGGAAGTAGAGCTCCAGATGCCGATTCA
TCTCCAGCTTTAGCGGTTGTCAGGCCCTAATTCTCCATTCCAGGCCCTTCTGG
AGGACCTCGGCTGAAAATCTGGCCCTAATCCACCTATCCCTCTGGAGGGTGTG
TGGTGGGACCGGGGCCGAGGTGTTCTGCGATGCAAGGCTGGTAGGAATCTCTCC
TCGGGAGGGACTGTCAGCACCGGCCACACTGGTCCCCCTCAGGGGGCTTGTGG
TCGATCTCCACCACTCGTTGCCGCTTCTCTTGTCTCTCCCTGAGGTTCATC

TCTTGATCCCTGGCCTCCTGCTCTCAGCCATGGTGGCGAATTCTCGAGGCAGGCCCTCCC
GGTGGTGGGTCGGTGGTCCCTGGCAGGGTCTCCAGATCCCGACGAGCCCCAAATGA
AAGACCCCCGAGACGGGTAGTCAATCACTCTGAGGAGACCCCTCCAAGGAACAGCGAGAC
CACGAGTCGGATGCAACACAAGAGGATTATTGGATAACCGGTACCCGGCGACTCAG
TCTATCGGAGGACTGGCGCGCCGAGTGAGGGTTGTGAGCTTTATAGAGCTCGGAA
GCAGAAGCGCGCGAACAGAAGCGAGAACGAGGCTGATTGGTAATTCAAATAAGGCACAG
GGTCATTTCAAGGCTTGGGGAGCCTGGAAACATCTGATGGCTTAAGAAACTGCTGA
GGGGTGGGCCATATCTGGGACCATCTGTTCTGGCCCCGGGCGGGCGAACCGCGGT
GACCATCTGTTCTGGCCCCGGGCGGGCGAACATGCTCACCCAGATATCCTGTTG
GCCCAACGTTAGCTGTTCTGTAACCCCCCTGATCTGAACCTCTATTCTGGTTT
GGTATTTTCATGCGCTTGCAAAATGGCGTTACTGCGGCTATCAGGCTAAGCAATTGAG
ATCTGGCGAGGGCGCTACTCTGCAATTAGAATCGCAACCGCGGGGAGAGGCGGT
TTGCGTATTGGCGCTCTCCGCTTCCCGTCACTGACTCGCTCGCTCGTCGTTGG
CTGCGCGAGCGGTATCAGCTACTCAAAGCGGTAAACGGTTATCCACAGAACAGG
GATAACGCAAGGAAAGAACATGTATAACTCGTATAATGTATGCTATACGAAGTTACAT
GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCGCGTTGCTGGCGTTTT
CCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCCGACAGGACTATAAAGATACCAGCGTTCCCGTGGAAAGCTCCCTCGTGCCTC
TCCTGTTCCGACCCCTGCCGTTACCGGATACCTGTCGCGCTTCTCCCTCGGAAGCGT
GGCGCTTCTCATAGCTACGCTGAGGTATCTCAGTTCGGTGTAGGTCGTTGCTCCAA
GCTGGGCTGTGACGAACCCCCCGTTCAAGCCGACCGCTGCCCTTATCCCGTAACTA
TCGCTTGAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
CAGGATTAGCAGAGCGAGGTATGAGCGGTCTACAGAGTTCTGAAGTGGTGGCTAA
CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT
CGGAAAAAGAGTGGTAGCTTGTGACCGCAAACAAACCCCGCTGGTAGCGGTGGTT
TTTGTGGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGATCCTTGT
CTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACACGTTAAGGGATTGGTCA
GAGATTATCAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATC
AACTAAAGTATATGACTAAACCTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC
ACCTATCTCAGCGATCTGCTATTCGTTATCCATAGTTGCTGACTCCCCGTCGTGTA
GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCATGAACTACCGCGAGA
CCACGCTCACCGCTCCAGATTATCAGCAATAAACAGCCAGCCAGCGGAAGGGCGAGCG
CAGAAGTGGCTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGC
TAGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTTGCTGCTACAGGCT
CGTGGTGTACGCTCGTGGTATGGCTTCACTCAGCTCCGTTCCAAAGATCAAG
GCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTCGGTCCCTCGGAT
CGTTGTCAGAAGTAAGTGGCCAGTGTATCACTCATGGTTATGGCAGCAGTCATAA
TTCTTACTGTCATGCCATCCGTAAGATGCTTTCTGTAAGTGGTACTGGTAGTACTCAACCAA
GTCATTCTGAGAATAGTGTATGCCGACCGAGTTGCTTGGCCGGCTCAATACGGGA
TAATACCGGCCACATAGCAGAACTTTAAAGTGTCTCATATTGAAAACGTTCTCGGG
GCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTGTAAACCCACTCGTGC
ACCCAACGTACTTCAGCATCTTACTTCAACCGCTTCTGGGTGAGCAAAACAGG
AAGGCAAAATGCCGAAAAAGGAATAAGGGGACACGGAAATGTTGAATACTCAACT
CTTCTTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATACAT
ATTGAATGTATTAGAAAATAACAAATAGGGTCCGCGCACATTCCCCGAAAAGT
GCCACCTAAATTGTAAGCGTTAATATTGTTAAAATCGCGTTAAATTGTTAAATC
AGCTCATTTTAACCAATAGGCCAAATCGCAAAATCCCTATAAAATCAAAGAATAG
ACCGAGATAGGGTTAGTGTGTTCCAGTTGGAACAGAGTCCACTATTAAAGAACGTG
GACTCCAACGTCAAAGGGCGAAAACCGTATCAGGGGATGGCCACTACGTGATAAC

TTCGTATAATGTATGCTATACGAAGTTACTACGTGAAACCATTACCCCTAATCAAGTTT
 TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGAACCTAAAGGGAGCCCCCGATTAG
 AGCTTGACGGGAAAGCCAACCTGGCTTATCGAAATTAAACGACTCACTATAGGGAGAC
 CGGC

pONY8.3G FB29 + (SEQ ID No 46)

AGATCTTGAATAAATAAAATGTGTGTTGTCGAATAACGGCTTTGAGATTCTGCGCC
 GACTAAATTATGTCGCCGATAGTGGTTTATCGCCGATAGAGATGGCATTGGAA
 AAATTGATATTGAAAAATATGCCATATTGAAATGTGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCAAAAGTATTTGGCATACGCGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTTGGCATTCTGTGTC
 GCAAATATCGAGTTCGATATAGGTACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAATCAATATTGCC
 ATTAGCCATATTATTCAATTGGTATATAGCATAAATCAATATTGGCTATTGCCATTGCA
 TACGTTGATCCATATCGTAATATGTACATTATATTGGCTATGCCAACATTACGCC
 ATGTTGACATTGATTATTGACTAGTTATTAGTAATCAATTACGGGCTATTAGTTCA
 TAGCCCATAATGGAGTCCCGCTTACATAACTTACGGTAAATGCCCGCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCGGCCCTATTGACGTCAATGACGGTAAATGCC
 CGCCTGGCATTATGCCAGTACATGACCTTACGGACTTCCACTTGGCAGTACATCTA
 CGTATTAGTCATCGTATTACCATGGTATGCCGTTGGCAGTACACCAATGCCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTT
 GTTTGGCACAAAATCAACGGACTTCCAAAATGCGTAACAATGCGATGCCCGCC
 CCGTGACGCAAATGGCGTAGCGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGACCGGGCACTCAGATTCTGCCGCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTTGTAATAAATATAATTCTACTCAGTCCCTGCTCTAGTTGCTGTTGAGATC
 CTACAGTGGCGCCGAACAGGGACTGAGAGGGCGCAGACCTTACCTGTTGAAACCTG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTC
 CTGCCAGAACACAGGAGGACAGGTAAAGATTGGAGACCTTACCTGTTGAGCAAGGCG
 CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGCTCAGAAATTAAACTACTGGTAACTGT
 AATTGGCGCTAAGTCTAGTAGACTTATTCTGATACCAACTTGTAAAAGAAAAGGAC
 TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACTCAGACGCTGTCAGGACAA
 GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGCTGTAAGATGGCCTCCAG
 ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTGAAGAATATCTAGAAACTACTGGATC
 CCCCCGGCTGCAGGAGTGGGAGGCACGATGCCGTTGGCTGAGGCGGATCCGGCCAT
 TAGCCATATTATTCAATTGGTATATAGCATAAATCAATATTGGCTATTGCCATTGCA
 CGTTGTATCCATATCATAATATGTACATTATATTGGCTATGCCAACATTACGCCAT
 GTTGACATTGATTATTGACTAGTTATTAGTAATCAATTACGGGCTTATTAGTCATA
 GCCCATATATGGAGTCCCGCTTACATAACTTACGGTAAATGCCCGCTGGCTGACCGC
 CCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAG
 GGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
 ATCAAGTGTATCATATGCCAAGTACGCCCCATTGACGTCAATGACGGTAAATGCCCG
 CCTGGCATTATGCCAGTACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACG
 TATTAGTCATCGTATTACCATGGTATGCCGTTGGCAGTACATCAATGGCGTGGAT
 AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTGT
 TTTGGCACAAAATCAACGGGACTTCCAAAATGCGTAACAACGCCCGCCATTGACCC

AAATGGCGGTAGGCATGTACGGTGGGAGGTCTATAAGCAGAGCTGTTAGTGAACC
GTCAGATCGCCTGGAGACGCCATCCACGCTTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGCCCCAAGCTTGTGGGATCCACCGTCGACCGTGGACCGAACGAA
GGCGAGGAGCTGTTACCGGGTGGTCCCACCTGTCGAGCTGGACCGCACGTAAA
CGGCCACAAGTTCA CGGTGTCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCACCGCAAGCTGCCGTGCCCTGGCCCACCTCGTGACCAAC
CCTGACCTACGGCGTCA GTGTTAGCCGCTACCCGACCACATGAAGCAGCACGACTT
CTTCAGTCCGCCATGCCGAGGTGAGTTGAGGGCGACACCTGGTAACCGCAT
CGGCAACTACAAGACCCGCGCCGAGGTGAGTTGAGGGCGACACCTGGTAACCGCAT
CGAGCTGAAGGGCATCGACTCAAGGAGGACGGCAACATCCTGGGACAAGCTGGAGTA
CAACTACAACAGCCACAAGCTTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACCTACCA
GCAGAACACCCCCATCGCGACGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGCTCTGGAGTT
CGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGGA
CTCTAGAGTCGACCTGCAAGGATGCAAGCTTCA GCTGCTGAGGGGGGGCCGGTACCCA
GCTTTGTTCCCTTAGTGGGTTAATTGCGCGGAAGTATTACTAACTAAGCAC
AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCCTCCAAAAAATTGTTTT
ACAAAATCCCTGGTAACATGATTGGAGGGACCTACTAGGGTGTGGAGGGTGATG
GTGCACTAGTAGTTAATGATGAAGGAAAGGGATAATTGCTGTACCTAACCAAGGACTA
AGTTACTAATAAAACCAATTGAGTATTGTTGAGGAAGCAAGACCCAACTACCAATTGTC
AGCTGTGTTCTGACCTCAATATTGTTATAAGGTTGATATGAATCCCAGGGGAATC
TCAACCCCTATTACCCAAACAGTCAGAAAATCTAAGTGTAGGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAACATGAAGGAAGAGAC
CAAGAACATGAAAGAAGAACATCTAAAGAAGAAAAAGAACAGAACATGACTGGTGGAAA
TAGGTATGTTCTGTTATGCTTACCGAGGAACACTGGAGGAACACTTGGTGTATGAAG
GA CCCCACAGCAACATTATAGGGTTGGCGATAGGGGGAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGCTTCCCGGGGTGTAGACCATTCAA
ACTCAGTTATGAGACCAATAGAACATGCTATGGATAATAACTGCTACATTATTAG
AAGCTTAACCAATATACTGCTCTATAAAATAACAAAACAGAACATTAGAAACATGAAAGTT
AGTAAAGACTCTGGCATAACTCCTTACCTATTCTCTGAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTGGTATAAGTCAATAGTGGCAGCTATTGAGCCCTACTGC
TATTGCTGCTAGCGCTACTATGTCTTATGCTCTAAGTGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGAGGTAGAAAATGACTCTAAATGGTATGGATTAAATAGA
ACGACAAATAAAGATATTATGCTATGATTCTCAAACACATGCAGATGTTCAACTGTT
AAAGGAAAGACAAACAGGTAGAGGAGACATTAAATTGATGTATAGAAAGAACACA
TGTATTTGTCATACTGGTCATCCCTGGAAATATGTCATGGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAAATGGAAGATTAAATCAAGAGACTAACACTAC
TCATGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATACACAGAGTAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGATTCTGGATTGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTTGTTACTAACCTCTCGCC
TAAGATCCTCAGGGCCCTCTGGAGGTGACCACTGGTGCAGGGTCTCCGGCAGTCGTTA
CCTGAAGAAAAAATTCCATCACAAACATGCATCGCGAGAACACCTGGGACCAGGCCA
ACACAAACATACACCTAGCAGCGTACCGGTGGATCAGGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGAATGGAGAACTAGAGGAGTACAACAGCGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAACAGCAAAAGGGAGAT
TTCTCAGCCTGGGGCGCTATCAACGAGCACAAGAACGGCTCTGGGGGAACAAATCCTCA
CCAAGGGTCTTAGACCTGGAGATTCAAGCGAAGCGAAGGAGAACATTATGACTGTTGCA
TAAAGCCCAAGAAGGAACCTCGCTATCCCTGCTGTGGATTCCCTATGGCTATTG

GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
AATAAGGATTGTATTAGAGGCTTAAATTGATATTGAATAATCAGAAAAATGCTTGA
TTATATTGGAAGAGCTTAAATCTGGCACATCTCATGTATCAATGCCTCAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGGTTTTATGAGGGTTTATAAAATGATTATAAGAGT
AAAAAGAAAGTTGCTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTGTGACGCCAGTTCCCATTGGTGACGCCGTT
AACTTCCTGTTTACAGTATATAAGTGTGTTGATTCGACAATTGGGACTCAGATTCT
GCGGCTGAGTCCCTCTCTGCTGGGCTGAAAAGGCCCTGTAATAAAATAATTCTCTA
CTCAGTCCCTGTCTCTAGTTGCTGTTGAGATCCTACAGAGCTCATGCCTTGGCGTAA
TCATGGTCATAGCTGTTCTGTGAAATTGTTATCCGCTACAATTCCACACAAACATA
CGAGCCGGAAAGCATAAGTGTAAAGCCTGGGTGCTTAATGAGTGAGCTAACTCACATT
ATTGCGTTGCGCTACTGCCGCTTCCACTCGGGAAACCTGTGTCGCCAGACTAGGCCG
CCTCGGCCAGATCTCAAATTGTTAGCCTGATAGCCGAGTAACGCCATTGCGCAAGGCA
TGGAAAAATACCAACCAAGAATAGAGAAGTTAGATCAAGGGGGTACAGAAAACAG
CTAACGTTGGGCCAACAGGATATCTGCGGTGAGCAGTTCGGCCGGCCGGGGCCAA
GAACAGATGGTCACCGCGGTTGCCCGGGGGGGCCAAGAACAGATGGTCCCCAGAT
ATGGCCAACCCCTAGCAGTTCTTAAGACCCATCAGATGTTCCAGGCTCCCCAAGGA
CCTGAAATGACCCCTGTGCCATTGAAATTACCAATCAGCTOCTTCGCTTCTGTT
GCCGCTTCTGCTCCGAGCTCTATAAAAGAGCTCACAAACCCCTACTCGGCCGCCAG
TCCTCCGATAGACTGAGTCGCCGGTACCGTGATCCAATAATCCTTGTGTTGC
ATCCGACTCGTGGTCTCGCTGTTCTGGAGGGTCTCTCAGAGTGTGACTACCCGT
CTCGGGGTCTTCATTGGGGCTCGCCGGATCTGGAGACCCCTGCCAGGGACCAC
CGACCCACCAACGGGAGGCTAGCCTCGAGAATTGCCACCATGGTGAGAGCAAGGAGG
CAGGGATCAAGAGATGAACCTCAAGGAAGAGAGCAAAGAGGAGAACGCCGCAACGACTG
GTGGAAGATCGACCCACAAGGCCCCCTGGAGGGGGACCAGTGGTGCCCGTGTGAGACA
GTCCCTGCCGAGGAGAAGATTCTAGCCAGACCTGATGCCAGAACACCTCGGCC
CGGTCCCACCCAGCACACACCCCTCAGAAGGGATAGGTGATTAGGGGCCAGATTGCA
AGCCGAGGTCTCCAAGAAAGGCTGGAATGGAGAATTAGGGCGTGCAACAAGCCGCTAA
AGAGCTGGGAGAGGTGAATCGGGCATCTGGAGGGAGCTACTTCCCGGAGGACAGAG
GGGCATTTCTCCGATGGGAGGCTACAGAGGGACAAGAAAGGCTGTGGGGGAGCA
GAGCAGCCCCCGCGTCTGAGGCCGGAGACTCCAAAAGACGCCAAACACCTGTGAAG
TCGACCCGGCGGCCGCTCCCTTAGTGAGGGTTATGCTCGAGCAGACATGATAAGA
TACATTGATGAGTTGGACAAACACAACAGAATGCACTGAAATTGCTTATTGTT
GAAATTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAACAAAGTTAAC
AACACAATTGCAATTCTTATGTTGAGGTTCAAGGGGGAGATGTGGGAGGTTTAA
AGCAAGTAAACCTCTACAAATGTGTTAAATCCGATAAGGATCGATCCGGCTGGCGTA
ATAGCGAAGAGGCCCGCACCGATCGCCCTCCAAACAGTTGCGCAGCCTGAATGGCGAAT
GGACGCCCTGTAGCGCGCATTAGCGCGGGTGTGGTGGTACGCGCAGCGTGAC
CGCTACACTGCCAGGCCCTAGCGCCGCTCTTGTGTTCTCCCTTCTCG
CACGTTGCCGGCTTCCCGTCAAGCTCTAAATCGGGGCTCCCTTAGGGTCCGATT
TAGAGCTTACGGCACCTGACCGAAAAAAACTGATTTGGGTGATGGTCACGTAGGCC
GCCCTGCCGCCGGCATACTGCATTAGAACCGCAACGCCGGGGAGAGGCCG
TTGCGTATTGGCGCTTCCGCTTCCGCTACTGACTCGCTGCCGCTGGTGTG
CTGCCGGAGCGGTATGCTCACTCAAAGCGGTAAACCGTTATCCACAGAACAGG
GATAACGCAGGAAAGAACATGTATAACTCGTATAATGTATGCTACGAAGTTACAT
GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAGGCCGTTGCTGGGTTT
CCATAGGCTCCGCCCTGACGAGCATACAAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCCGACAGGACTATAAGATACCAAGCGTTCCCTGGAAAGCTCCCTCGCGCTC
TCCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCGCCCTTCTCCCTCGGGAAAGCGT

GGCGCTTCTCATAGCTACCGCTGAGGTATCTCAGTCGGTGTAGGTGTTCCAA
 GCTGGGCTGTGCACGAACCCCCCGTCAGCCGACCGCTGCCCTATCCGTAACTA
 TCGTCTTGAGTCAAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
 CAGGATTAGCAGAGCGAGGTATGAGGGCTGCTACAGAGTTCTGAAGTGGTGGCTAA
 CTACGGCTACACTAGAAGGCAGTATTGGTATCTGGCTCTGCTGAAGCCAGTTACCTT
 CGGAAAAAGAGTTGGTAGCTCTGATCCGCAAACAAACCACCGCTGGTAGGGTGGTTT
 TTTGTTGCAAGCAGCAGATTACGGCAGAAAAAAAAGGATCTCAAGAAGATCCTTGTAT
 CTTCCTACGGGCTGACGCCAGTGGAACGAAAACACGTTAAGGGATTTGGTCA
 GAGATTATCAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATC
 AATCTAAAGTATAATGAGTAAACTGGTCACTGAGCTTACCAATGTTAATCAGTGAGGC
 ACCTATCTCAGCGATCTGTCTATTCGTCATCCATAGTGCCTGACTCCCCGTCGTGA
 GATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCCTGAATGATACCGCGAGA
 CCCACGCTCACGGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCAGGGAGCG
 CAGAAGTGGCCTGCAACTTATCCGCTCCATCCAGCTATTAAATTGTTGCCATTGCTACAGGCAT
 TAGAGTAAGTAGTTGCCAGTTAATAGTTGCGCAACGTTGCTACAGGCAT
 CGTGGTGTACGCTCGTCTGGTATGGCTTACAGCTCCGGTCCCAACGATCAAG
 GCGAGTTACATGATCCCCATGTTGCGCAAAAAAGCGGTTAGCTCTTCCGGTCTCCGAT
 CGTGTCAAGTAAGTGGCCAGTGTATCACTCATGGTTATGGCAGCACTGATAAA
 TTCTCTACTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAA
 GTCATTCTGAGAATAGTGTATGCGCGACCGAGTTGCTTGGCCGGTCAATACGGGA
 TAATACCGGCCACATAGCAGAACTTAAAGTGCTCATCATTGAAAACGTTCTCGGG
 GCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGTGC
 ACCCAACTGATCTCAGCATTTCAGTTCACCAGCGTTCTGGGTGAGCAAAAACAGG
 AAGCAAAATGCCGCAAAAAGGGATAAGGGCGACACGGAAAATGTTGAATACTCATACT
 CTTCTTTCAATATTATGAGCATTATCAGGGTTATTGTCTCATGAGCGATAACAT
 ATTTGAATGTATTAGAAAATAACAAATAGGGTTCGGCGACATTCCCGAAAAGT
 GCCACCTAAATTGTAAGCGTTAATATTGTTAAAATTGCGTTAAATTGTTAAATC
 AGCTCATTAAACCAATAGGCCAAATCGGAAATCCCTTATAATCAAAGAATAG
 ACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAACAGAGTCCACTATTAAAGAACGTG
 GACTCCAACGTCAAAGGGCAAAACCGTCTATCAGGGCGATGCCCACTACGTGATAAC
 TTCGTATAATGTATGCTATACGAAGTTACTACGTGAACCATCACCTAATCAAGTT
 TTTGGGTCGAGGTGCCGAAAGCAACTGGTTATCGAAATTAAATACGACTCACTATAGGGAGAC
 CGGC

pONY8.3GPGK – (SEQ ID No 47)

AGATCTGAATAATAAAATGTGTGTTGCCGAAATACCGTTTGAGATTCTGTCGCC
 GACTAAATTCTGCGCGATAGTGGTTTATGCCGATAGAGATGGCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCAAAAGTATTGGGATACCGGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGCAGCTTGGTGAATTGGCGATTCTGTGTC
 GCAAATATCGCAGTTCGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAATCAATATTGCC
 ATTAGCCATATTCTGTTATAGCATAAAATCAATTGGCTATTGGCATTGCA
 TACGTTGATCCATATCGAATATGACATTATGGCTCATGTCAACATTACCGCC
 ATGTTGACATTGATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTCA
 TAGCCCATATGGAGTTCCCGTTACATAACTACGGTAATGGCCGCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAAT

AGGGACTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCACTTGGCAGT
ACATCAAGTGTATCATATGCCAAGTCCGGCCCCCTATTGACGTCAATGACGGTAAATGCC
CGCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCCTACTTGGCACTACATCTA
CGTATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACACCAATGGCGTGG
ATAGCGGTTGACTCACGGGGATTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTT
GTTTGGCACCAAAATCAACGGGACTTCAAATGCGTAACAACGTGCATGCCCGCC
CCGGTACGCAAATGGCGTGGCGTACGGTGGAGGTCTATAAAGCAGAGCTCGT
TTAGTGAACCGGGCACTCAGATTCTGCCGCTGAGTCCCTCTCTGCTGGCTGAAAAGG
CTTTGTAAATAATATAATTCTACTCAGTCCCTGCTCTAGTTGTCTGTCAGATC
CTACAGTTGGCCCGAACAGGGACCTGAGAGGGGCCAGACCCCTACCTGTTGAAACCTGG
CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTT
CTGCCCAAGAACACAGGAGGACAGGTAAGATTGGGAGACCCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACGT
AATTGGCGCTAAGTCTAGTAGACTTATTCATGATACCAACTTTGAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACTCAGACGCTGTCAGGACAA
GAAAGAGAGGCCTTGAAGAACATGGGGCAATTCTGCTGAAAGATGGCCTCCAG
ATTAATAATGTAAGATGAAAGGCATCATTCCAGCTCTAAGAGCGAAATATGAAAAG
AAGACTGCTAATAAAAGCAGTCTGAGCCCTCTGAAAGAATATCTAGAAACTAGTGGATC
CCCCGGGCTGAGGAGTGGGAGGCACGATGGCCCTTGGTCAGGCGGATCCGGCCAT
TAGCCATATTATTCAATTGTTATAGCATAAAATCAATATTGGCTATTGGCATTGCA
CGTTGTATCCATATCATAATATGTACATTATATTGGCTCATGTCACATTACCGCCAT
GTTGACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTC
GCCCATATATGGAGTTCCCGGTTACATAACTTACGGTAAATGGCCCTGGCTGACCC
CCAACGACCCCCCGCCATTGACGTCAATAATGACGTATGTCCTAGTAACGCCAATAG
GGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCC
CCTGGCATTATGCCAGTACATGACCTTATGGACTTCCTACTTGGCAGTACATCTACG
TATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACATCAATGGCGTGGAT
AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGT
TTGGCACCAAAATCAACGGGACTTCCAAGATGCTCAACAACTCCGCCATTGACGC
AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATGCCCTGGAGACGCCATCCACGGCTGTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGGCCAAGCTTGGGATCCACGGCTGCCACCATGGTGGAGCAA
GGCGGAGGAGCTTCAACGGGGTGGCCATCTGGTCAGCTGGACGGGACGTAA
CGGCCACAAGTTAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCAACCGCAAGCTGCCGTGCCCTGGCCACCTCGTGCAC
CCTGACCTACGGCGTGCAGTCTCAGCGCTACCCGACCATGAAGCAGCAGCAGACTT
CTTCAGTCCGCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTTCAAGGACGA
CGGCAACTACAAGACCCGGCCGAGGTGAAGTTCAGGGCGACACCCCTGGTAACCGCAT
CGAGCTGAAGGGCATGACTTCAAGGAGGACGGCAACATCCTGGGACAAGCTGGAGTA
CAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCCACAACATCGAGGAGCGCAGCGTGCAGCTCGCCGACCAACTAC
GCAGAACACCCCCATGGCGACGGCCCCGTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGCTGCTGGAGTT
CGTACCGCCCCGGGATCACTCTGCCATGGACCGAGCTGTACAAGTAAACGGCGCGA
CTCTAGAGTCGACCTGCAGGCATGCAAGCTTACGCTGCTGAGGGGGGCCGGTACCCA
GCTTTGTTCCCTTACTGAGGGTTAATTGCGCGGAAGTATTATCAACTAAAGCAC
AAAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCCTCCAAAAAATTGTTT
ACAAAAATCCCTGGTAAACATGATTGAAAGGGACCTACTAGGGTGTGGAAAGGGTGTG

GTCCAGTAGTAGTTAATGATGAAGGAAAGGGATAATTGCTGTACCATTAACCAGGACTA
ACTTACTAATAAAACCAATTGAGTATTCTGCAGGAAGCAAGACCCAACCTACCATTC
AGCTGTGTTCTGACCTCAATATTGTTAAGGTTGATATGAATCCCAGGGGAAATC
TCAACCCCTATTACCCAACAGTCAGAAAAATCTAAGTGTAGGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACAGCATGCCAGAACATCGAAGGAAGCAAGAGAC
CAAGAATGAACCTGAAAGAAGAACATCTAAGAAGAAAAAGAAGAACATGACTGGTGAAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAACACTTGGTGTATGAAG
GACTCCCACAGCAACATTATAGGGTTGGCGATAGGGGGAAAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGGTCCCTCCGGGTGTAGACCATTCAAATT
ACTTCAGTTATGAGACCAATAAGCATGCATATGGATAATAACTGCTACATTATTAG
AAGCTTAACCAATAACTGCTCTATAAATAACAAAACAGAACATTAGAACATGGAAGTT
AGTAAGACTCTGGCATAACTCCTTACCTATTCTCTGAAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGTAGCCGCTACTGC
TATTGCTGCTAGCGCTACTATGCTTATGCTCTAACTGAGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGGAGTAGAAAATAGTACTCTAAATGGTATGGATTAAATAGA
ACGACAAATAAAGATATTATGCTATGATTCTCAAACACATGCAGATGTTCACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTTAATTAAATTGGATGTATAGAAAGAACACA
TGTATTTGTCATACTGGTCATCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
TCATGGAGGCCAGGAACAATTGGCACAATCCATGATAACATTCAATAACACCAGATAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGGAATTGGATTCCCTGGATTGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTGTTACTAACCTCTCGCC
TAAGATCCTCAGGGCCCTCTGGAAAGGTGACCGAGTGGTCAGGGTCTCCGGCAGTC
CCTGAAGAAAAAATTCCATCACAAACATGCATCGCGAGAACACCTGGGACCAGGCCA
ACACAACATACACCTAGCAGCGTGACCCGTGGATCAGGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGAATGGAGAACATCAGGGAGTACAACAGCGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAACAGGAAAGACCAAGGGGAGAT
TTCTCAGCCTGGGCGGCTATCAACGAGCACAGAACCGCTCTGGGGGAACAATCCTCA
CCAAGGGTCTTAGACCTGGAGATTGAGCGAACATTTATGACTGTTGAT
TAAAGCCAAGAAGGAACCTCGCTATCCCTGCTGGATTCCCTATGGTATTITG
GGGACTAGTAATTATAGTAGGAGCGCATACCGAGCTATGGATTACGTGGACTCGCTGTTAT
ATAAAGGATTGTTATTAGAGGCTTAAATTGATATTGAAATAATCAGAAAATGCTG
TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCCTAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGTTTTATGAGGGTTTATAAATGATTATAAGAGT
AAAAAGAAAAGTTGCTGATGCCCTCATACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTGTGACCGAGTCCCCATTGGTACCGT
AACTCCCTGTTTACAGTATATAAGTGTGTTGATTCTGACAATTGGCACTCAGATTCT
GCGGCTGAGTCCCTCTGCTGGCTGAAAAGGCCCTTGTAATAAATATAATTCTCTA
CTCAGTCCCTGCTCTAGTTGTTGAGATCCTACAGAGCTCATGCCCTGGCGTAA
TCATGGTCATAGCTGTTCTGTGAAATTGTTACCGCTCACAAATTCCACACAACATA
CGAGCCGGAAAGCATAAAAGTGTAAAGCCTGGGGGCGCTAATGAGTGAGCTAACACATT
ATTGGCTTGGCGTCACTGCCGCTTCCAGTCGGGAAACCTGTGTCGCCAGTGATGCCG
GGCGGCCGAGGGCGGCTACGTGAACCATCACCCAAATCAAGTTTGCCTCGAGGTGC
CGTAAAGCTAAATCGGAACCCCTAAAGGGAGCCCCGATTTAGAGCTGACGGGGAAAG
CCGGCGAACGTGGCGAGAAAGGAAGGGAAAGAACCGAACAGGAGCGGGCGCTAGGGCGCTG
GCAAGTGTAGCGGTACGCTCGCGTAACCACCAACCCGCCCGCTTAATGCCCGCTA
CAGGGCGCGTCCATTGCCATTAGGCTGCCACTGTTGGGAAAGGGGATCGGTGCGGG
CCTCTCGCTATTACGCCAGCCGGATCGATCCTTATCGGATTACACATTGTAGAG
GTTTACTTGCTTAAAAACCTCCCACATCTCCCCCTGAACCTGAAACATAAAATGAAT

GCATTGTTGTTAACITGTTATTGAGCTTATAATGGTACAAATAAAGCAATAGC
ATCACAAATTCACAAATAAGCATTTTCACTGCATTCTAGTTGGTTGTCCAAA
CTCATCAATGTATCTTATCATGCTCGAAGCATTAAACCTCACTAAAGGGAAAGCGGC
CGCCCGGGTCGACTTCACAGGTGTTGGCGCTCTTGGAGTCTCCGGGCTCAAGACG
CGGGGGCTGCTGCTGCCACAGCCTTCTGTGCCCTGGTAGCCTCCCCATGCG
GAGAAATCGCCCCCTGGTCCTCGCGAAGTAGAGCTCCCTCAAGATGCCGCGATTCA
TCTCCCAGCTTTAGCGGCTGTTGACGCCCTAATTCTCATTCCAGCCTTCTTGG
AGGACCTCGGCTGCAAATCTGGCCCTAATCCACCTATCCCTCTGGAGGGTGTGC
TGGTGGGACCGGGCGAGGTGTTCTGGCGATGCAGGTCTGGCTAGGAATCTCTCC
TCGGCAGGGACTGCTCACACGCCACCAGTGGCCCTCCAGGGGGCTTGTGGG
TCGATCTCCACCAGTCGTTGGCGCTCTCCCTTGTCTCTCCAGGTTAGGTCATC
TCTTGATCCCTGGCCTCTGCTCTCACCCATGGTGGCGAATTCTGAGGCTAGCCTGGG
GAGAGAGGTGGTATTGCAACAGGAGCCACTGCCAGTGCCTCCGGAGGGCT
TGCAGAAATCGGAACACCGCGGGCAGGAACAGGGCCACACTACCGCCCCACACCCCG
CCTCCCGACCCCGCTTCCCGCCGCTGCTCTCGGGCGGCCGCTGAGCAGCCGCTAT
TGGCACAGCCATCGCGGTCGGCGCGTCCATTGCTCCCTGGCGTGTCCGCTGCGA
GGGTACTAGTGAGACGTGGCTTGTACGTCGGCACGCCGAACCGCAAGG
AACCTTCCGACTTAGGGCGGAGCAGGAAGCGTCCGGGGGGGACAAGGGTAGCGG
CGAAGATCCGGGTACGCTGCAACGGACGTGAAGAATGTGCGAGACCCAGGGCTGC
CGCTGCGTTCCCGAACACGCCAGAGCAGCCGCTCCCTGGCAAACCCAGGGCTGC
CTTGGAAAAGGCAGAACCCCAACCCAGATCTGGCGAGGCGGCCACTCTGCAATTAG
AATCGGCCAACCGCGGGGAGAGGGCTTGTATTGGCGCTTCCGCTTCCGCT
CACTGACTCGCTCGCTCGTCGTCGTCGGCTCGGCCAGCGGTATCAGCTACTCAAAGG
GGTAATACGGTTATCCACAGAATCAGGGATAACGCCAGGAAAGAACATGTATAACTCGT
ATAATGTATGCTATACGAAGTTATACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACC
GTAAAAAGGCCGCTTGTGGCTTTCATAGGCTCCGCCCCCTGACGAGCATCACA
AAAATCGACGCTCAAGTCAGAGGTGGCAAACCCGACAGGACTATAAGATAACCGGCT
TTCCCGCTTGTGGCTTCTCGGAAAGCGTGGCTTCTCATAGCTCACGCTGTAGGTATC
TGTCGCCTTCTCCCTCGGAAAGCGTGGCTTCTCATAGCTCACGCTGTAGGTATC
TCAGTTGGTGTAGGTGTTGCTCAAGCTGGCTTCTCATAGCTCACGCTGTAGGTATC
CCGACCGCTGCCCTATCGGTAACTATCGTCTGAGTCCAACCCGGTAAGACACGACT
TATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGGGAGGTATGAGGGTG
CTACAGAGTTCTGAAGTGGCTTAACACTACGGCTACACTAGAAGGACAGTATTGGTA
TCTGCGCTCTGCTGAAGCCAGTTACCTCGGAAAAGAGTTGGTAGCTTGTATCCGCA
AACAAACCAACCGCTGGTAGCGTGGTTTTGTITGCAAGCAGCAGATTACGCGCAGAA
AAAAAGGATCTAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAAACG
AAAACTCACGTTAAGGGATTTGGTATGAGATTATCAAAGGATCTCACCTAGATCC
TTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTCTG
ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCAGTGTCTATTGTTCT
CCATAGTTGCCGACTCCCCGCTGTAGATAACTACGATACGGGAGGGCTACCATCTG
GCCCGAGTGTGCAATGATACCGCGAGACCCACGCTCACGGGCTCAGATTATCAGCAA
TAAACCAGCCAGCCGAAGGGCGAGCGCAGAAGTGGCTCTGCAACTTTATCCGCTCCA
TCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGC
GCAACGTTGCCATTGCTACAGGCATCGTGGTGCACGCTCGTCTGGTATGGCTT
CATTCACTCCGGTCCCAACGATCAAGCGAGTTACATGATCCCCATGGTGC
AAGCGGTTAGCTCTCGTCTCGATCGTTGTCAGAAGTAAGTTGGCCGAGTGT
CACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCTGAGAATAGTGT
TTTCTGTACTGGTGAATCAACCAAGTCATTCTGAGAATAGTGT
GTTGCTCTGCCGGCGTCAATACGGATAATACCGGCCACATAGCAGAACTTTAAAAG

TGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACCTCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTCGATGTAACCCACTCGTCACCCAACTGATCTTCAGCATCTTTACTTTCA
CCAGCGTTCTGGGTGAGAAAAACAGGAAGGCAAAATGCCGAAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATTGAAGCATTATC
AGGGTTATTGTCATGAGCGGATACATATTGAATGTATTAGAAAAATAAACAAATAG
GGGTTCCCGCGCACATTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTGTT
AAAATTCCCGTTAAATTGGTAAATCAGCTCATTTTAACCAATAGGCCGAAATCGG
CAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTG
GAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTA
TCAGGGCGATGCCCACTACGTATAACTCGTATAATGTATGCTATACGAAGTTATCAC
TACGTGAACCACCATCACCCTAATCAAGTTTTGGGGTCGAGGTGCCGAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTTAGAGCTTGACGGGAAAGCCAACCTGGCTTATCG
AAATTAAATACGACTCACTATAGGGAGACCGGC

pONY8.3G PGK + (SEQ ID No 48)

AGATCTTGAATAAATAAAATGTGTGTTGCCAAATACCGGTTTGAGATTCTGTGCC
 GACTAAATTATGTCGCGCGATAGTGGTGTATGCCGATAGAGATGGCGATATTGGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCACAAAGTGTATTTGGCATACCGGATATCTGGCAGACCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTTGGCATTCTGTGTC
 GCAAATATCGCAGTCGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGCACATGCCAATGCAATATCGATCTACATTGAATCAATTGGCC
 ATTAGCCATATTATTGTTATAGGCATAATCAATATTGGCTATTGGCATTGCA
 TACGGTGTATCCATATCGTAATATGTACATTATATTGGCTATGTCAACATTACCGCC
 ATGTTGACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTCA
 TAGCCCATAATGGAGTTCCCGTTACATAACTACGGTAATGGCCCGCTGGCTGACC
 GCCAACGACCCCCGCCATTGACGTAAATGACGTATGTTCCCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCCCCCCTATTGACGTCAATGACGGTAATGGCC
 CGCCTGGCATTATGCCAAGTACATGACCTTACGGGACTTCCACTTGGCAGTACATCTA
 CGTATTAGTCATCGCTATTACCATGGTGTGCGGTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTTCAGTCCACCCATTGACGTCAATGGAGTT
 GTTTGGCACC AAAATCAACGGGACTTCCAAAATGCGTAACAACGCCATGCCGCG
 CCGTTGACGCAAATGGCGGTAGGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGAACCGGGCACTCAGATTCTGCCGTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTGTAAATAAATATAATTCTACTCAGTCCCTGCTTAGTTGCTGTTGAGATC
 CTACAGTTGGCGCCCGAACAGGGACCTGAGAGGGGCCAGACCCACCTGTTGAAACCTGG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACCTACAGAAGTCTGGAGGTGTT
 CTGGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCCCTTGACATTGGAGCAAGGCG
 CTCAGAAAGTTAGAGAAGGTGACGGTACAAGGTCTCAGAAATTAACTACTCGTAACG
 AATTGGCGCTAAGTCTAGTAGACTTATTGATACCAACTTGTAAAAGAAAAGGAC
 TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACCTACAGACGCTGTCAGGACAA
 GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGCTGAAAGATGGCCTCCAG
 ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTAAGAGCGAAATATGAAAAG
 AAGACTGCTAATAAAAGCAGTCTGAGCCCTCTGAAAGAATATCTAGAAACTAGGATC
 CCCGGGCTGCAGGAGTGGGAGGCACGATGCCGTTGGCGAGGGGGATCCGGCCAT
 TAGCCATATTATTGTTATAGCATAAAATCAATTGGCTATTGGCATTGCA
 CGTTGTATCCATATCATAATTGACATTATATTGGCTATGTCCAACATTACCGCCAT
 GTTGACATTGATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTCATA
 GCCCATATATGGAGTCCCGCCTACATAACTTACGGTAAATGCCCGCTGGCTGACCGC
 CCAACGACCCCCCCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAG
 GGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
 ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAATGGCCCG
 CCTGGCATTATGCCAGTACATGACCTTATGGACTTCCACTTGGCAGTACATCTACG
 TATTAGTCATCGCTATTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGTGGAT
 AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTGT
 TTGGCACC AAAATCAACGGGACTTCCAAAATGCGTAACAACCTGGCCATTGACGC
 AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
 GTCAGATGCCCTGGAGACGCCATCCACCGCTGTTGACCTCATAGAAGACACCGGGACC
 GATCCAGCCTCCCGGCCAACGCTTGGGATCCACGGTCCGGCACCATGGTGGAGCAA
 GGGCGAGGAGCTGTTCACCGGGGTGGTGCCTGAGCTGGAGGGGAGGCCACCTACGGC
 CGGCCACAAGTTCAGCGTGTCCCGCAGGGCAGGGGAGGCCACCTACGGCAGCTGAC

CCTGAAGTTCATCTGCACCACCGGCAAGCTGCCGTCCCTGGCCCACCCCTGTGACCAC
 CCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCGACCACATGAAGCAGCACGACTT
 CTTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTCAAGGACGA
 CGGCACACTACAAGACCCGCGCGAGGTGAAGTTCAGGGCGACACCCCTGGTAACCCGAT
 CGAGCTGAAGGGCATCGACTTCAGGAGGACGGCAACATCTGGGGACAAGCTGGAGTA
 CAACTACAACAGGCCACAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGT
 GAACCTCAAGATCCGCCACACATCGAGGAGGGCACCGTCACTCGCCGACCACATCCA
 GCAGAACACCCCCATCGCGACGGGCCCCGTGCTGCTGCCGACAACCACACTGAGCAC
 CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCTGGAGTT
 CGTGAACGCCGCCGGATCCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCA
 CTCTAGAUTCGACCTGCAGGCATGCAAGCTTCAGCTGCTCGAGGGGGGGCCCGTACCCA
 GCTTTTGTCCCTTAGTGAGGTTATTGCGGGAAAGTATTATCACTAATCAAGCAC
 AAGTAATAACATGAGAAACTTTACTACAGCAAGCACAATCTCCAAAAAATTTGTTTT
 ACAAAAATCCCTGGTAACATGATTGAGGGACCTACTAGGGTCTGTGGAAGGGTGTG
 GTGCAGTAGTGTAAATGATGAAGGAAAGGAATAATTGCTGTACCATTAACCAGGACTA
 AGTTACTAATAAAACCAATTGAGTATTGCTGCAGGAAGCAAGACCCAACTACCTGTC
 AGCTGTGTTCTGACCTCAATATTGTTATAAGGTTGATATGAATCCCAGGGGAATC
 TCAACCCCTATTACCCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
 CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCGAAGGAAGCAAGAGAC
 CAAGAATGAACCTGAAAGAAGAACATCTAAAGAAGAAAAAGAACAAATGACTGGGAAAA
 TAGGTATGTTCTGTTATGCTTAGCAGGAACACTTGAGGAATACTTGTGTTATGAAG
 GACTCCCACAGCAACATTATATAGGGTGGCGATAGGGGAAAGATTAACCGGATCTG
 GCCAATCAAATGCTATAGAAATGCTGGGTTCTCCCGGGGTGTAGACCATTCAAATT
 ACTTCAGTTAGAGACCAATAGAACGATGCTATGGATAATAATACTGCTACATTATTAG
 AAGCTTAACCAATATAACTGCTCTATAAAACAAAACAGAACATTAGAACATGGAAGTT
 AGTAAAGACTCTGGCTAACTCCTTACCTATTCTGTGAAGCTAACACTGGACTAAT
 TAGACATAAGAGAGATTGTTAGTAAAGTCAATAGTGGCAGCTATTGTAGCCGCTACTGC
 TATTGCTGCTAGCGCTACTATGTCTTATGCTAATGAGGTTAACAAAATAATGGA
 AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAAGA
 ACGACAAATAAAGATATTATGCTATGTTCTCAACACATGCGAGATGTTCAACTGTT
 AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGAGTATAGAACAGAACACA
 TGTATTGTCATACTGGCATCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
 ACAATGGGATGACTGGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
 TCATGGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATAACACCAGATAGTAT
 AGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGATTCTGGATTGGAGC
 TTCCATTATAAAATATAGTGTGTTGCTTATTGTTACTAACCTCTCGCC
 TAAGATCCTCAGGGCCCTCTGGAGGTGACCGAGTGGTGCAGGGCTCCGGCAGTCGTTA
 CCTGAAGAAAAAATCCATCACAAACATGCTCGCGAGAACAGACACCTGGGACCAGGCCA
 ACACAACATACACCTAGCAGGCGTACCGGTGAGTCAGGGAGTACAACAGGCGGCAAAGAGCTG
 GTACTCCAGGAACGACTGGAATGGAGAACATGAGGAGTACAACAGGCGGCAAAGAGCTG
 GGTGAAGTCATCGAGGCTTGGAGAGAGCTATATTCCGAGAACAGGAGAACAGGAGAT
 TTCTCAGCCTGGGCGGCTATCAACGAGCACAAGAACGGCTCTGGGGGAAACAATCTCA
 CCAAGGGCCTTAGACCTGGAGATTGAGGAGAACATTTATGACTGTTGCTATT
 TAAAGCCCAGAAGGAACCTCGCTATCCCTGCTGGATTCCCTTATGCTATT
 GGGACTAGTAATTATAGGAGCGATAGCAGGCTATGGATTACGTTGACTCGCTGTTAT
 AATAAGGATTGTTAGAGGCTAAATTGATATTGAAATAATCAGAAAAATGCTTGA
 TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCTCAGTGTGTTA
 GAAAAACAAGGGGGAACTGTGGGGTTTATGAGGGGTTTATAATGATTATAAGAGT
 AAAAGAAAGTTGCTGATGCTCTCATAACCTGTATAACCCAAAGGACTAGCTCATGTTG

CTAGGCAACTAAACCGAATAACCGCATTGTGACGGAGTCCCCATTGGTACCGGTT
 AACTTCCTGTTTACAGTATATAAGTCTGTATTCTGACAATTGGCACTCAGATTCT
 GCGGTCTGAGTCCTCTCTGGGCTGAAAAGGCCCTTGTAATAAAATAATTCTA
 CTCAGTCCCTGTCCTAGTTGTCTGAGATCCTACAGAGCTATGCCCTGGCTAA
 TCATGGTCATAGCTGTTCTGTGAAATTGTTACCGCTCACAAATTCCACACACATA
 CGAGCCGAAGCATAAAAGTCTAAAGCCTGGGTGCCTAATGAGTGAGCTAACTCACATTA
 ATTGCCTGCGCTACTCCCCCTTCCAGTCGGAAACCTGTCGTGCCAGAGTAGGCCG
 CCTCGGCCAGATCTGGGTTGGGTTGCCCTTCCAAGGCAGCCCTGGGTTGCCAG
 GGACGCCGCTGCTGGCGTGGTCCGGAAACGCAAGCGGCCGACCCTGGGTCTCG
 ACATTCTCACGTCGTTCCAGCGTACCCGGATCTCGCCGCTACCCCTGTGGGCCCC
 CCGCGACGCTTCTGCTCCGCCCTAAGTCGGAAAGGTTCTGCGGTTCGCCGCTGC
 CGGACGTGACAACGGAAGCCGACGTCTACTAGTACCCCTCGCAGACGGACAGGCCAG
 GGAGCAATGGCAGCGCCGCCACCGCATGGCTGTGCCAATAGCGGCTGCTCAGCGGG
 CGCGCCGAGAGCAGCGGCCGGAGGGCGGTGCGGGAGGCGGGGTGTGGGCGGTAGTG
 TGGGCCCCTGTTCTGCCCCGGCTGGTGGCATTCTGCAAGCCTCCGAGCGCACGTC
 GCAGTCGGCTCCCTGTTGACCGAATACCGACCTCTCCCAAGGCTAGCCTGAGAAT
 TCGCCACCATGGCTGAGAGCAAGGAGGCAGGGTCAAGAGATGACCTAAGGAAGAGA
 GCAAAGAGGAGAAGCGCCGCAACGACTGGTGAAGATGACCCACAAGGCCCCCTGGAGG
 GGGACCACTGGTGGCCCGTGTGAGACAGTCCCTGCCGAGGAGAAGATTCTAGCCAGA
 CCTGCATGCCAGAAGACACCTGGCCCCGGTCCCACCCAGCACACACCCCTCAGAAGGG
 ATAGGTGGATTAGGGCCAGATTTGCAAGCCGAGGTCTCCAAGAAAGGCTGGAATGGA
 GAATTAGGGGCGTGCACAAGCCGCTAAAGAGCTGGAGAGGTGAATCGCCGATCTGGA
 GGGAGCTACTTCCCGAGGACAGAGGGCGATTCTCCGATGGGAGGCTACCAGA
 GGGCACAAGAAAGGCTGTGGGCGAGCAGAGCAGCCCCCGCTTGAGGCCCCGGAGACT
 CCAAAAGACGCCGAAACACCTGTGAAGTCGACCCGGCGGCCCTCCCTTAGTGAGG
 GTTAATGCTTCGAGCAGACATGATAAGATACATTGATGAGTTGGACAAACCAACTAG
 AATGCACTGAAAAAAATGCTTATTGTAAGGATTTGTGATGCTATTGCTTATTGTAAC
 CATTATAAGCTCCAATAAAACAAGTTAACACAACAATTGATTCTATTGTTAGGT
 TCAGGGGGAGATGTGGGAGGTTTAAAGCAAGTAAACCTCTACAAATGTGGTAAAT
 CCGATAAGGATCGATCCGGCTGGCTAACCGAAGAGGCCGACCGATGCCCTTCC
 CAACAGTGCAGCCGTAATGGCAATGGACGCCCTGTAGCGCGCATTAGCGCG
 CGGGTGTGGTGGTACCGCAGCGTACACTGCCAGGCCCTAGCGCCGCTC
 CTTCGCTTCTCCCTCTGCCACGTTGCCGGCTTCCCGTCAAGCTCTAA
 ATCGGGGGCTCCCTTAGGGTCCGATTAGGCTTACGGCACCTCGACCGCAAAAAAC
 TTGATTTGGGTGATGGTACGTTAGGCCCTGGCCGGCATCACTGCATTAAATG
 AATCGGCCAACCGCGGGGAGAGGCCGTTGCGTATTGGCGCTCTCCGCTTCCGCT
 CACTGACTCGCTCGCTCGTGGCTCGGGCTGCCGAGCGGTATAGCTCACTCAAAGGC
 GGTAATACGGTTATCCACAGAATCAGGGATAACCGAGGAAAGAACATGTATAACTCGT
 ATAATGATGCTATACGAAGTTACATGAGCAAAGGCCAGCAAAAGGCCAGGAACC
 GTAAAAAGGCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCTGACGAGCATCACA
 AAAATCGACGCTCAAGTCAGAGGTGGCAGACAGGACTATAAAAGATACCGGGCT
 TTCCCCCTGGAAAGCTCCCTGCCCTCCTGTTCCGACCCCTGCCGCTTACCGGATACC
 TGTCGCCCTTCTCCCTGCCAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATC
 TCAGTTCGGTGAGGTGCTGCCCTCAAGCTGGCTGTGTCAGCAACCCCCGGTAC
 CCGACCGCTGCCCTATCCGTAACATCGTCTTGAGTCCAACCCGGTAAGACACGACT
 TATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGCGGT
 CTACAGAGTTCTGAAGTGGTGGCTAATACGGCTACACTAGAAGGACAGTATTGTA
 TCTGCCCTGCTGTAAGCCAGTTACCTCGAAAAAGAGTTGTAGCTCTGATCCGGCA
 AACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAACCAGCAGATTACGCGCAGAA

AAAAAGGATCTAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAACG
AAAACTCACGTTAAGGGATTTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCC
TTTAAATTAAAATGAAGTTTAAATCATTCTAAAGTATATGACTAAACTTGGTCTG
ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTCGTTCAT
CCATAGTTGCTGACTCCCCGTCGTAGATAACTACGATACGGGAGGGCTTACCATCTG
GCCCGAGTGTGCAATGATAACCGCGAGACCCACGCTACCCGCTCCAGATTTATCAGCAA
TAAACCAGCCAGCCGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGCTCCA
TCCAGTCTATTAAATTGTTGCCATTGCTACAGGCATCGTGGTACCGCTCGTGGTATGGCTT
GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTACCGCTCGTGGTATGGCTT
CATTAGCTCCGGTCCCAACGATCAAGGGAGTTACATGATCCCCATGTTGCAAAA
AAGCGGTTAGCTCCCGGTCCGATCGTGTCAAGAGTAAGTGGCCGAGTGTAT
CACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCACTGCCATCCGTAAGATGCT
TTCTGTGACTGGTAGTACTCAACCAAGTCATTGAGAATAGTGTATGCCGACCGA
GTTGCTTTGCCCGGTCAATACGGGATAATACCGGCCACATAGCAGAACTTAAAG
TGCTCATCATTGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTACGATCTTACTTCA
CCACCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTTCAATTATTGAAGCATTATC
AGGTTATTGTCATGAGCGGATACATATTGAATGTTAGAAAATAACAAATAG
GGGTTCCCGCACATTCCCGAAAAGTGCACCTAAATTGTAAGCGTTAATTGTT
AAAATTCCGTTAAATTGTTAAATCAGCTATTGTTAACCATAAGGCCAAATCGG
CAAAATCCCTATAAAATCAAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTG
GAACAAGAGTCCACTATTAAAGAACGTTGACTCCAACGTCAAAGGGCGAAAACCGTCA
TCAGGGCGATGCCCACTACGTGATAACTCGTATAATGTATGCTATACGAAGTTATCAC
TACGTGAACCATCACCTAATCAAGTTTTGGGTCGAGGTGCCGTAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGAAAGCCAACCTGGTTATCG
AAATTAATACGACTCACTATAGGGAGACCGGC

SEQ ID No 51

pONY3.2IREShyg

AGATCTCCGATCCCCATGGTCGACTCTCAGTACAATCTGCTCTGCGAGCAAGTTA
 5 AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTGCGTGAAGTGCAGAAGAAAATT
 TAAGCTACALAAAGGCAAGGCTTGACCGACAATTGCAATGAAGAATCTGCTTAGGGTAGG
 CGTTTGCCTGCTTCGCGATGTACGGGCAGATATAACGCGTTGACATTGATTATTGACT
 AGTTATAATAGTAATCAATTACGGGCTATTAGTCATAGCCCATAATGGAGTTCCGC
 GTTACATAACTTACGGTAAATGGCCCGCTGGCTACCCCAACGACCCCCCCCCATTG
 10 ACCTACAATGACGTATGGCCATAGAACGCCAATAGGGACTTCCATTGACGTCAA
 TGGTGGACTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCA
 AGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTAC
 ATGACCTTATGGGACTTTCTACTTGGCAGTACATCACTACGTTAGTCATCGCTATTACC
 ATGGTGATGGCTTTGGCAGTACACCCAATGGCGTGGATAGGGTTGACTACGGGGA
 TTACCAACTCTCACCCATTGACGTCAATGGAGTTGTTTGGCACCAAAATCAACGG
 15 GACTTCCAAAATGCTGAAACACTCGCATGCCGGCGCTGGACGCAAATGGCGTA
 GGCCTGTACGGTGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCACTA
 GAAGCTTATTGGCGTAGTTACAGTTAAATTGCTAACGCAGTCAGTGCTTCTGACA
 CAACAGTCTCGAACTTAAGCTGCAAGTACTCTTAAGGTAGCCTGAGAAGTTGGTGC
 TGAGGCAGTGGGAGGTAAGTATCACAGGTTAACAGACAGGTTAAAGGAGACCAATAGAAA
 20 CTGGCTTGCGAGACAGAGAAGACTCTGGCTTCTGATAGGCACCTATTGGCTTACT
 GACATCCACTTGCCTTCTCCACAGGTGTCACCTCCAGTTCAATTACAGCTTAA
 GGCTAGAGTACTTAATACGACTCACTATAGGCTAGCCTGAGGTGACGGTATGCCGA
 ACAGGGACCTGAGAGGGGCCAGACCCACCTGTTGAAACCTGGCTGATCGTAGGATCCC
 25 GGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTTCTGGCCAGAACACAGGA
 GGACAGGTAAGATGGGAGACCCCTTGACATGGAGCAAGGGCTCAAGAAGTTAGAGAAGG
 TGACGGTACAAGGGTCTCAGAAAATTAACACTGTTAAGTGTAACTGGCAGTCAGGGATGTCA
 TAGACTTATTCTCATGATAACCAACTTGTAAAGAAAAGACTGGCAGTCAGGGATGTCA
 TTCCATTGCTGAAAGATGTAACTCAGACGCTGTCAAGGACAAGAAAGAGAGGCCCTTGA
 30 GAACATGGTGGGCAATTCTGCTGAAAGATGGGCTCCAGATTAAATGTAAGTAGATG
 GAAAGGCATCATTCCAGCTCTAAGAGGAAATATGAAAAGAAGACTGCTAAATAAAAGC
 AGTCTGAGCCCTGAGAAATATCCAATCATGATAGATGGGCTGAAACAGAAAATTTA
 GACCTCAACACTAGAGGATAACTACTTGGGATATTACAGTAGACTGACTCTGAAGAAA
 TAAATGAAGCTAGTCAAACCTTATTGGGATATTACAGTAGACTGACTCTGAAGAAA
 35 TGAATGCATTGGATGTGGTACCTGGCAGGCAGGACAAAAGCAGATATTACTTGATG
 CAATTGATAAGATAGCAGATGATTGGGATAATAGACATCCATTACCGAATGCTCCACTGG
 TGGCACCACCACAAGGGCTATCCCAGACAGCAAGGTTATTAGAGGTTAGGAGTAC
 CTAGAGAAAGACAGATGGAGGCTCTTGATCAGTTAGGAGACATATAGACAATGG
 TAATAGAAGCCATGTCAGAAGGCATCAAAGTGTGATGTTGGAAAACCTAAAGCTAAAATA
 TTAGGCAAGGGAGCTAGGAACCTTACCCAGAATTGTAGACAGACTATTATCCAATAA
 40 AAAGTCAGGGACATCCACAAAGAGATTCAAATCTGACTGATACACTGACTATTGAG
 ACGCAAATGAGGAATGTAGAAATGCTATGAGACATTAAAGACAGAGGAGTACATTAGAAG
 AGAAAATGTATGCTGAGAGACATTGAACTACAAACAAAAGATGATGTTATTGGCAA
 AAGCACTTCAGACTGCTTGCGGGCCATTAAAGGTGGAGGCTGAAAGGAGGGCCAC
 TAAAGGCAGCACAACATGTTATAACTGTGGGAAGCCAGGACATTATCTAGTCATGTA
 GAGCACCTAAAGTGTGTTAAATGTAACAGCCTGACATTCTCAAAGCAATGCA
 45 GTGTTCCAAAAAACGGGAAGCAAGGGGCTCAAGGGAGGCCAGAAAACAAACTTCCGA
 TACAACAGAAGAGTCAGCACAACAAACTGTTGACAGAGACTCCTCAGACTCAAATC
 TGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAAGGAGAAGGATCAAGTAG
 AGGATCTAACCTGGCAGCTTGTGGGAGTAACATAATCTAGAGAAAAGGCCTACTAC
 50 AATAGTATTAAATAATGATACTCCCTTAATGTTAAAGGGAGAAAATCAAGGGAC
 AGTGTGACTACTGCACATTATAATAGGTTAAAGGGAGAAAATCAAGGGAC
 GGAATAATAGGAGTGGGAGGAATGTGAAACATTCTACGCCGTGACTATAAGAA
 AAAGGGTAGACACATTAAGACAAGAATGCTAGTGGCAGATATTCCAGTGA
 55 ACTGAGATATTCTCAGGACTTAGGTGCAAATGGTTGGCAGCAGCTCTCAAAGGAAAT
 AAAATTAGAAAAATAGAGTTAAAGAGGGCACAATGGGGCAAAAATCCCAATGGCC
 ACTACAAAGGAGAAAATAGAAGGGGCCAAGAGAGATGTCAGACTATTGCA
 AAAATATCAGAAGCTAGTGCACATAATCCTTATAATCAGGAGATGTTA
 GAGGTCTGGCAATGGGGTTATTACAAGATCTGAGAGAATTAACAAAACAGTACAAGT
 AGGAACGGAAATATCCAGAGGATTGCCACCCGGAGGATTAATTAAATGTA
 60 GACTGTATTAGATATTGGAGATGCAATTCACTACCTGAGATCCAGAGGTTAGACC
 ATATACAGCTTCACTATTCCCTCATTAAATCATCAAGAAGCAGATAAAAGATATGTGTG
 GAAATGTTTACACAAAGGATTGTTGAGCCCATATATATCAGAAAACATTACAGGA
 AATTTCACACCTTTAGGAAAGATATCTGAACTACAATTGATCAATATGGATGA

TTTTTCATGGGAAGTAATGGTTCAAAAAACACACAAAGGTTAATCATAGAATTAAAG
 GGCATCTACTGGAAAAGGGTTTGAGACACCAGATGATAATTACAAGAAGTGCCACC
 TTATAGCTGUCTAGGTTATCAACTTGTCTGAAAATTGAAAGTACAAAAATGCAATT
 AGACATGGTAAAGAACATCCACCCCTTAATGATGTGCAAAAATTATGGGAATATAACATG
 5 GATGAGCTCAGGGATCCCAGGGTTGACAGTAAAACACATTGCACTACTAAGGGATG
 TTAGAGTTGAAATCAAAAAGTAATTGAGCGGAAGGGCACAAAAAGAGTTAGAAGAAA
 TAATGAGAAGATTAAAATGCTCAAGGGTTACAATTATAATCCAGAAGAGAAATGTT
 ATGTGAGGTTGAAATTACAAAAATTATGAGGCAACTTATGTTATAAAACAATCACAAGG
 AATCCTATGGCAGGTAAAAGATTATGAGGCTAATAAGGGATGGTCAACAGTAAAAAA
 10 TTTAATGTTATTGTCACATGTCACAGAAAAGTATTACTAGAGTAGGAAAATGTC
 AACGTTAAAGGTACCATTTACCAAAGAGCAAGTAATGTGGGAATGCAAAAAGGATGTTA
 TTATCTGGTCCCAGAAAATAGTATACACATCAACTAGTCTATGATGATTGGAGAAT
 GAATTGGTAGAAGAACCTACATCAGGAATAACATATACTGATGGGGAAAACAAA
 15 TGGAGAAGGAATAGCAGCTTATGTCACAGTAATGGAGAAGTAAACAGAAAAGGTTAGG
 ACCTGTCACTCATCAAGTTCGAAAGAATGCAATACAAATGGCATTAGAGGATACCAAG
 AGATAACAAAGTAAATATAGTAACGTATGTTATTGTTGAAAAAATATTACAGAAGG
 ATTAGGTTAGAAGGACCAAAAGTCCTGGCTATAATACAAAATATACGAGAAA
 20 AGAGATAGTTATTGTCACCTGGTACCTGGTACACAAAGGGATATGGTAATCAATTGGC
 AGATGAAGCCGCAAAAATAAAAGAAGAAATCATGCTAGCATACCAAGGCACACAAATTAA
 AGAGAAAAGAGATGAAGATGCAAGGGTTGACTTATGTTCTTATGACATCATGATACC
 TGATCTGACACAAAATCATACCCACAGATGTAAGGAAATTCAAGTTCCTCTAATAGCTT
 25 TGGATGGGTCACTGGGAAATCATCAATGGCAACACAGGGTTATTAAATTATGGAGGAAAT
 AATTGATGAAGGATATACAGGAGAAAATACAAGTGTATGTTACTAATATTGGAAGGAAATGAA
 TATTAATTAATAGAGGGCAAAAATTGTCACAAATTAAATTACTACAGCATCACTCAAA
 30 TTCCAGACAGCCTGGGATGAAAATAAAATATCTCAGAGAGGGATAAAGGATTGGAG
 TACAGGAGTATTCTGGGTAGAAAATATTCAAGGAACCAAGATGAAACATGAGAATTGGCA
 TACATCACCAGAAGATATTGCAAGAAAATTAAAGATACCAATTGACTGTAGCAAAACAGAT
 AACTCAAGAATGTCCTCATTGCACTAACGAGATCAGGACCTGCAGGTTGTCTAG
 ATCTCCTAATCATGGCAGGCAGATTGCACACATTGGACAATAAGATAATTGACTT
 35 TGAGAGTCAAACTCAGGATACATACATGCTACATTATTGTCAAAAGAAAATGCTTATG
 TACTTCATTGGCTATTAGAATGGCAAGATTGTTTACCAAAGTCCTACACACAGA
 TAACGGCACTAATTGTCAGGACATTGTAATTGTTGAGATTCTAAAGATAGC
 ACATACCAAGGAATACCATATCATCCAGAAAGTCAGGTATTGAGAAGGGCAAAATAG
 GACCTGAAAGAGAAGATTCAAAGTCATAGAGAACACTCAACACTGGAGGGCAGCTT
 40 ACAACTTGTCTCATTACTGTAACAAAGGGAGGGAAACTATGGGAGGAGACAGACCCATG
 GGAAGTATTATCACTAACAGCACAAGTAATCATGAGAAAATTCTACAGCAAGC
 ACAATCTCaaaaAAATTGTTTACAAAATCCTGGTAACTGATTGAGAAGGGACC
 TACTAGGGTGTGGAGGGTGTGGTCACTGAGTTAATGATGAAGGAAAGGGAAAT
 AATTGCTGTACCATTAACCAAGGACTAAGTTACTAATAAAACCAATTGAGTATTGTC
 45 GGAAGCAAGACCCAACCTACCATGTCAGCTGTTCTGACCTCAATATTGTTATAAG
 GTTGTATGATGAATCCCAGGGGAATCTCACCCCTTATTACCAACAGTCAGAAAAAATCTA
 AGTGTGAGGAAACACAATGTTAACCTTATTGTTATAATGACAGTAAGAACAGCA
 TGGCAGAACATGCAAGAACAGAGAACAGAAAGAACCTGAAAGAATCTAAAGAAG
 AAAAGAAGAAATGACTGGGAAAATAGTATGTTCTGTTATGCTAGCAGGAAC
 50 CTGGAGGAATACTTGTGCTATGAAAGGACTCCCACAGCAACATTATAGGGTTGG
 CGATAGGGGAAGATTAACCGGATCTGCGCAATCAAATGCTATAGAATGCTGGGGTTCT
 TCCCCGGTGTAGACCATTCAAAATTACTTCAGTTGAGACCAATAGAACATGCGATA
 TGATAATAATACTGCTACATTAGAAGCTTAACCAATATAACTGCTCTAAATAA
 CAAAACAGAATTAGAACATGGAGATTGTAAGACTTCTGGCATAACTCTTACCTA
 55 TTCTCTGAAGCTAACACTGGACTAATTAGACATAAGAGAGATTGGTATAAGTCAAT
 AGTGGCAGCTATTGTAACCGCTACTGCTATTGCTGCTAGCGCTACTATGTTATGTTG
 TCTAATGAGGTTAACAAAATATGGAGTACAAAATCATACTTTGAGGTAGAAAATAG
 TACTCTAAATGTTGATGTTAATAGAACGACAAAATAGATAATTATGCTATGATTCT
 TCAAAACACATGCGATGTTAACATGTTAAGGAAAGACAAACAGGTAGAGGAGACATTAA
 60 TTTAATTGGATGTTATAGAACACATGTTAACATGTTAAGGAAAGACAAACAGGTAGAGGAGACATTAA
 GTCATGGGACATTAAATGAGTCACACAAATGGGATGACTGGGTAAGCAAAATGGAAGA
 TTTAAATCAAGAGATACTAACACTCATGGAGCCAGGAACAATTGGCACAATCCAT
 GATAACATTCAATACACCAGATAGTATAGCTAACATTGAAAGACCTTGGAGTCATA
 TGAAATTGGATTCTCGGATTGGGAGCTTCCATTATAAAATATAGTGTGTTTGTCT
 65 TATTATTTGTTACTAACCTTCCGCTAACCTGTAAGAAAAAATTCCATCACAAACATGCGATC
 TGGTGCAGGGCTCTCCGGCAGTCGTTACCTGTAAGAAAAAATTCCATCACAAACATGCGATC
 GCGAGAAGACACCTGGGACCAGGCCAACACAACATACACCTAGCAGGCGTACCGGG
 ATCAGGGGACAAATACTACAAGCAGAAGTACTCCAGGAACGACTGGAAATGGAGAAC
 GGAGTACAACAGCGGCCAACAGAGCTGGGTGAAGTCATCGAGGCAATTGGAGAGGCTA
 70 TATTCGGAGAACAGGACAAAGGGAGATTCTCAGGCTGGGGCTTACACGGCACA
 GAACGGCTCTGGGGGAACAAATCTCACCACAGGGTCTTAGACCTGGAGATTGAGGCG
 AGGAGGAAACATTATGACTGTTGATTAAAGCCCAAGGAAACTCTCGCTATCCCTG
 CTGTGGATTCTCTATTGCTATTGGTCAAGCTTACTGGCGAAGCCGCTTGGAAATAAGGCG
 CGCCCCCTCTCCCTCCCCCCCCCTAACGTTACTGGCGAAGCCGCTTGGAAATAAGGCG
 TGTTGTTGTTCTATATGTTGTTTCCACCATATTGCGCTTTGGCAATGTGAGGGGCC
 CGAAACCTGCCCTGCTTCTGCAAGGAGCATTCTAGGGGTCTTACCTGGAGATTGAGGCG
 GGAATGCAAGGCTGTTGAAATGCTGTAAGGAAGGAGCTTCTCTGGAAAGCTTCTG
 CAAACAACTGCTGTAGCGACCCCTTGCAAGGAGCGGAAACCCCCCACCTGGCGACAGG
 CTCTGGGCCAAAAGCCACGTGTATAAGATAACACTGCAAAAGGGGGACAACCCAGTGC

CACGTTGTAGTTGGATAGTTGTGAAAGAGTCAAATGGCTCTCTCAAGCGTAGTCAC
 AAGGGGCTGAAGGATGCCAGAAGGTACCCATTGATGGAAATCTGATCTGGGCTCG
 GTGCACATGCTTACATGTGTTAGTCGAGGTTAAAAAGCTCTAGGCCCCCGAACAC
 GGGGACGTGGTTTCTTGTAAAAACACGATGATAAGCTTGCCACAACCCGTACCAAAAG
 5 ATGGATAGATCCGAAAGCCTGAACCTCACCCGACGCTCTGAGAAGTTCTGATCGAA
 AAGTCGACAGCGTCTCGAACCTGATCGCAGCTCTCGGAGGGAAAGAATCTGCTTTC
 AGCTCGATGTAGGAGGGCGTGGATATGCTCTGCGGGTAATAGTCGCGCGATGGTTTC
 TACAAAGATCGTTATCGGACTTGCATCGCCGCGCTCCGATTCCGAAAGTG
 CTTGACATTGGGAATTCAAGCGAGAGCCTGACCTATTGCATCTCCGCCGTGCACAGGGT
 10 GTCACGTTGCAAGACCTGCCGAAACCGAACTGCCGCTGTTCTGAGCCGGTCCGGAG
 GCCATGGATCGATCGCTGCCGCGATCTAGCCACACGAGCGGGTCCGGCCATTGGA
 CCCGAAGGAATCGGTCAATACACTACATGGCGTATTTCATATCGCGATTGCTGATCCC
 CATGCTATCATCTGGCAAAACTGTGATGGACGACACCGTCACTGGCTCCGTCGGCAGGCT
 CTCGATGAGCTGATGTTGGGCCGAGGACTGCCCGAAGTCCCGCACCTCTGACCGG
 15 GATTCCGCTCCAACAATGCTCTGACGGACATGGCCGATAACAGCGGTCACTGACTGG
 AGCGAGGCATGTTGGGGATTCCAATACGAGGTCGCCAACATCTCTGGAGGGCC
 TGGTTGGCTTGTATGGAGCAGACGCGCTACTTCGAGCGGAGGCATCCGGAOCTTOCA
 GGATCGCCGCGCTCGGGGTATATGCTCCGATTGGCTTGCACCAACTTATCAGAGC
 TTGGTGCAGGCAATTTCGATGTCAGCTGGCCAGGGTCAATGCGACGCAATCGTC
 20 CGATCGGAGCGGGACTGTCGGCGTACACAAATGCCCGCAGAAGCGGGCGTCTGG
 ACCGATGGCTGTTAGAAGTACTCGCGATAGTGGAAACCGACGCCAACACTCGTCCG
 AGGGCAAAGGAATAGAGTAGATGCCGACCGAACAGAGCTGATTTGAGAACGCCACAGC
 CAGCAACTCGCGCAGGCTAGCAAGGCAATGCGAGAGAACGCCCTACGCTTGGTGGCA
 CAGTCTCGTCCACAGTCCACTGCTGGCTGGCTGGCGAGGGCCGGTCCAG
 25 TGATTTCAGGCCCTGGATTTGGCTGGCCAGATTGGAGATGCCGCGCTGGCTGCCGATTGGTGC
 CGGGTGATCTGACTGATCCCGAGATTGGAGATGCCGCGCTGGCTGCCGATTGGTGC
 AGATCTAGAGCTCGCTGATCAGCTCGACTGTCCTAGTTGCCAGGCATCTGTT
 GCCCCCTCCCCCGTGCCTCTGACCTGGTAAGGTGCCACTCCACTGCTCTTCTAAT
 AAAATGAGGAATTGCATCGCATTGTCAGTAGGTGTCATTCTATTCTGGGGGTTGGG
 30 TGGGCGAGGACAGCAAGGGGGAGGATGGGAAGACAATAGCAGGCATGCTGGGATGCC
 TGGCTCTATGGCTTGAGGGGAAAAGAACCCAGCTGGGCTGAGTCATTCTAGTTG
 GGTTTGTCCAACACTCATCAATGTTATCATGTCGTTACCGTCGACCTAGCTAG
 AGCTTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTGTTATCGCCTACAATT
 CCACACAACATACGAGCCGAAGCATAAAGTAAAGCTGGGTGCTAAATGAGTGAGC
 35 TAACTCACATTAATTGCGTTGCGTCACTGCCGCTTCCAGTCCGGAAACCTGCTG
 CAGCTGCTTAAATGAATGCCAACCGCCGGAGGGCTGGCTTGGCTATTGGCGCTCT
 TCCGCTTCTCGCTACTGCTGCGCTCGCTGGCTGGCGAGCGGTATCA
 GCTCACTCAAAGCGGTAATACGGTTATCCACAGAACATAGGGGATAACGCAAGGAAC
 ATGTGAGCAAAGGCCAGAAAAGGCCAGGAACCGTAAAAGGCCGCTGGCTGGCGTT
 40 TTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATGACGCTCAAGTCAGAGGTGG
 CGAAACCCGACAGGACTATAAGATACCAGCGTTCCCGATACCTGCGCTTCTCCCTCGTGC
 TCTCTGTTCCGACCCCTGCCCTTACCGGATACCTGCGCTTCTCCCTCGGAAGC
 GTGGCGCTTCTCAATGCTCACGCTGAGGTATCTAGTCGCTGAGGTGCTTCGCTC
 AAGCTGGCGTGTGACGAACCCCGCTCAGCCGACCGCTGCCCTATCCGTAAC
 45 TATCGTCTTGAAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGT
 AACAGGATTAGCAGAGCGAGGTATGAGCGGTCTACAGAGTTCTGAAGTGGTGGC
 AACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTAC
 TTCCGGTTTAAAGAGTTGCTGCTTGTGACGGTACCTGGCTTGGCTTGGCTGGT
 50 ATCTTTCTACGGGCTGACGCTCACTGGCAACGAAAACAGCTTAAAGGATCTAAGAAGATCTT
 ATGAGATTATCAAAAAGGATCTCACCTAGATCTTAAATTAAAATGAAGTTTTAAA
 TCAATCTAAAGTATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAAATCAGTGAG
 GCACCTATCTCAGCGATCTGCTATTCTGTCATCCATAGTGGCTGACTCCCCGTCG
 TAGATAACTACGATACGGAGGGCTTACCATCTGGCCCCAGTCTGCAATGATACCGCGA
 55 GACCCACGCTACCGGCTCCAGATTACGCAATTAACCCAGCGGGAAAGGGCCGAG
 CGCAGAAGTGGCTCTGCAACTTATCCGCTCCATCCAGTCTTAAATTGTTGCCG
 GCTAGAGTAAGTAGTCCCGAGTTAATAGTTGCCAACGTTGGCTTGGCTACAGGC
 ATCGTGGTGTACGCTCGTCTGGTATGGCTTACCTGCTGGCTTCCCAACGATCA
 AGGCAGGTTACATGATCCCCCATGTTGCAAAAAAGCGGTTAGCTCTTGGCTCTCCG
 60 ATCGTGGTCAAGGAAGTAACTTACCGCTGAGTGTATCTGCTGACTGGTGAAGTACTCAACC
 AATTCTCTTACTGTCATGCCATCCGTAAGATGCTTCTGTGACTGGTGAAGTACTCAACC
 AAGTCATTCTGAGAATAGTGTATGCCGACCGAGTGTCTTGGCCGGCTCAATACGG
 GATAATACCCGCCACATAGCAGAACTTAAAAGTGTCTCATCTGGAAAACGTTCTCG
 GGGCAAAACCTCAAGGATCTTACCGCTGAGTACCTGAGTCAACCCACTCGT
 65 GCAACCAACTGATCTCACCATCTTACTTACCCAGCGTTGGCTGGGTGACCAAAACA
 CGAAGGCAAAATGCCGCAAAAAGGAAATAAGGGCGACACGGAAATGTTGAATACTCATA
 CTCTCTTCAATTATTGAGCATTATCAGGGTATTGTCATGAGCGGATAC
 ATATTGAATGATTAGAAAATAACAAATAGGGGTTCCGCGCACATTCGGGAAAA
 GTGCCACCTGACGTCGACGGATCGG
 70 pONY8ZA CMVHyb (SEQ ID No 52)

AGATCTTGAATAATAAAATGTGTTGTCGAAATACCGGTTTGAGATTCTGCGCC

GACTAAATTATGTCGCCGATAGTGGTGTATCGCCGATAGAGATGCCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCAAAAGTATTGTTGGGCATACCGATATCTGGCAGTAGCGCT
 TATATCGTTACGGGGATGCCGATAGACGACTTTGGTACTTGGCATTCTGTGTC
 5 GCAAATATCGCAGTTCGATATAGGTACAGACAGGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGGCAATGCATATCGATCTATACATTGAATCAATTGGCC
 ATTGCCCATTATTCATTGTTATAGCATAAATCAATTGGCTATGGCATTGCA
 TACGTTGATCCATATCGAATATGTACATTATATTGGCTATGCCAACATTACCGCC
 ATGTTGACATTGATTATGACTAGTTATAATAGTAATCAATTACGGGTCTTGTCA
 10 TAGCCCATTATGGAGTTCGCGTTACATAACTTACCGTAAATGCCGCCCTGGCTGACC
 GCCCAACGCCCGCCATTGACGTCATAATGACGTATGTCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCATAATGGTGGAGTTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGATCATATGCCAAGTCCGCCCTATTGACGTCATGACGGTAAATGCC
 CGCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCTACTGGCAGTACATCTA
 15 CGTATTAGTCAGCTATTACATGGTATGCCGTTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGGAGTTT
 GTTTGGCACAAAATCAACGGGACTTCCAATGGTGTAAACAACGTCATGCCG
 CCCTGAGCCTGGGGCTAGGGCTGAGCTGGGAGGTCTATATAAGCAGAGCTGT
 TTAGTGAACCGGGCACTCAGATTCTGGCTTGACTGCTCTCTGCTGGCTGAAAAGG
 20 CCTTGATAATAATATAATTCTACTCAGTCCCTGCTCTAGTTGCTGTCAGATC
 CTACAGTGGCCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTCACCGTGG
 CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACCTACAGAATCTCTGGAGGTT
 CTGCCAGAACACAGGAGGACAGGTAAGTGGGAGACCCCTTGCACATTGGAGCAAGGG
 CTCAGAAGTTAGAGAAGGTCAGGTAACAGGTTCTCAGAAAATTAACACTGTAACGT
 25 AATTGGCGCTAAGTCTAGTAGACTTATTCTATTGATACCAACTTGTAAAAGAAAAGGA
 CTGGCAGCTGAGGGATTGTCATTCCATTGTAAGGTTGTAACCTACAGCCTGTCAGGA
 CAAGAAAAGAGAGGCCCTTGAAGAACATTGGTGGCAATTCTGCTGAAAGATTGGGCC
 TCCAGATTAAATTGTAAGTAGATTGGAAAGGCATCATTCCAGCTCTAAGAGC
 30 TTGAAAAGAACACTGCTAATAAAAAGACTCTGAGCCCTGAAAGAATATCTAGAAC
 ACTGGGATCCCCGGGCTGCAAGGAGTGGGAGGACGATGGCCCTTGGCTGAGGCGAT
 CGGCCATTAGCATATTATTCTATTGTTATAGCATAAAATCAATTGGCTATTGGC
 ATTGCACTACGTTGATCCATATCATAATTGTAATTATTGGCTCATGTCACATT
 ACCCCATGTTGACATTGATTGACTAGTTATAATAGTAATCAATTACCGGGCTATT
 35 AGTTCATAGCCATATATGGAGTCCCGCTACATAACTTACGGTAATGGCTTGGCAGTACATCAATGG
 CTGACCGCCAAACGCCCGCCATTGACGTCATAATGACGTATGTCATAGTAAC
 GCAAATAGGGACTTCCATTGACGTCATAATGGTGGAGTTACGGTAAACTGCCACTT
 GGCAGTACATCAAGTGATCATGCCAAGTACCCCTTATTGACGTCATGACGGTAA
 ATGCCCGCCTGGCATTATGCCAGTACATGACCTTATGGACTTCTACTGGCAGTA
 CATCTACGTTAGTCAGCTATTACCATGGTATGCCGTTTGGCAGTACATCAATGG
 40 GCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGG
 GAGTTGGTTGGCACC AAAATCAACGGGACTTCCAATGGGAAATGTCGTAACAACTCCGCC
 ATTGACGCAAATGGCGGTAGGCATGACGGTGGAGGTCTATATAAGCAGAGCTCGTT
 AGTGAACCGTCAGATGCCCTGGAGACGCCATCCACGCTGTTTACCTCCATAGAAC
 45 CCCGGACCGATCCAGCCTCCGGCCCAAGCTCAGCTGCTGAGGATCTGGGATCC
 GGGAAATCCCCAGTCAGGATCCACCATGGGGATCCCTGAGCACATCCCCCTTCC
 TGCGTAATAGCGAAGAGGCCGACCGATGCCCTTCCCAACAGTTGCGCAGCCTGAAT
 GGGGAATGGCGCTTGGCTGTGGCTTCCGGACCGAGCGGTGGGAAAGCTGGTGGAG
 50 TGGCATCTCTGAGGCCACTCTGCTGCTCCCTCAAACAGTGGCAGATGCAAGGTTAC
 GATGCGCCATCTACACCAACGTAACCTATCCATTACGGTCATCCGGCTTGTCCC
 ACGGAGAATCCGACGGTTACTCGCTCACATTAAATGTTGATGAAAGCTGGTACAG
 GAAGGCCAGACCGAATTATTTGATGGGTAACCTGGGCTGAGTGTGGTCAAC
 GGGCCTGGCTGGCTGGTACGCCAGGAGCAGTGGCTGCTGAGTGGCTGGAGTACGG
 55 TTTTACGCCGGAGAAAACCGCCTCGCGGTGATGGTGTGCGTGGAGTACGG
 TATCTGGAAAGTACGGATATGTGGGATGAGCGCATTTCGCTTAAATGATGATT
 CATAAAACCGACTACACAAATACGCAATTCCATTGTTCCACTCGCTTAAATGATGATT
 AGCCGCGCTGTACTGGAGGCTGAAGTTACGATGTCGGCGAGTTGCGTACTACCTACGG
 GTAACAGTTCTTATGGCAGGTGAAACCGCAGGTGCGCTGAGGCCACCCG
 60 GGTGAAATTATCGATGAGCGTGGTGTATGCCGATGCCGTCACACTACGCTGAACGTC
 GAAACCCGAAACTGTGGAGGCCGAAATCCGAAATCTCTATCGTGCCTGGTTGACT
 CACACCGCCGACGGCACGCTGATTGAAGCAGAACGCTGCCATGTCGGTTCC
 CGATTGAAAATGGTCTGCTGCTGTAACGGCAAGCCGTTGCTGATTGAGGCGTTAAC
 CGTCACGAGCATCATCCTCTGCATGGTCAAGTCAGGATGAGCAGACGATGGTGCAGG
 65 ATCCCTGCTGATGAAAGCAGAACAACTTAAACGCCGTCGCTGAGTGGCTGAGT
 CCCTGCTGGTACACGCTGCGACCCGCTACGCCCTGATGTTGTTGAGTGAAG
 GAAACCCGACGGCATGGTCCATTGATGACGCTGAGGATGATCCGCTGGCTACCG
 ATGAGCGAACCGTAACCCGAATGGTCAAGCGCAGGCGATCGTAATACCC
 TGTCAGCTGGGAAATGAATCAGGCCACGGCGCTAACGACGCGCTGATCGCTGG
 70 AACATCTGTCGATCCTTCCGCCGGTCAAGTATGAAGGCGGGAGCCGACACCACGG
 ACCGATATTATTCGCCGATGTCAGCGCGCTGGATGAAGGACAGCCCTTCC
 CGGAAATGGTCCATCAAAATGGTTCTGCTACCTGGAGAGACGCCGCTGATC
 TCGGAATACGCCACCGCAGGGTAAAGCTTGGCTGCTGGACTGGCTGGATCG
 TTGCTGAGTACCCGTTACAGGGGGCTTCTGGACTGGCTGGATCGCTG
 ATAAATATGATGAAAACGCCAACCCGTTGCGCTAACGGCGTGGATTTGG
 GATACG

CCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTCGGCACCGCACGCCCATCCA
 GCGCTGACGGAAGCAAAACACCAGCAGCAGTTTCCAGTTCCGTTATCCGGCAAACC
 ATCGAAGTGACCAGCGAATACTGTTCCGTATAGCGATAACCGAGCTCCCTGCACTGGATG
 GTGGCGCTGGATGGTAAGCCGCTGCGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAA
 5 GTTAACAGTTGATTGAACTGCTGAACTACCGCAGCGGAGACGCCGGGCAACTCTGG
 CTCACAGTAGCGCTAGTGCAACCGAACCGCATGGTCAGAACGCCGACATCAGC
 GCCTGGCAGCAGTGGCGTCTGGCGAAAACCTCACTGTGACGCTCCCGCCGCTCCCAC
 GCCATCCCGCAGTGCACCACAGCGAAATGGATTTTCATCGAGCTGGTAATAAGCGT
 TGGCAATTAAACCGCCAGTCAGGCTTCTTCACAGATGTTGGATGGCGATAAAAAACAA
 10 CTGCTGACGCCGCTGCGCATCGTTACCCCGTGCACCGCTGGATAACGACATTGGCGTA
 AGTGAAGGCCGACCGCATTGACCCCTAACCGCTGGTGAACGCCGAGGGCGGGCCAT
 TACCAAGGCCGAAAGCAGCGTTGTCAGTGACGGCAGATACCTGCTGATGCGGTGCTG
 ATTACGACCGCTACGGCGTGGCAGCATCAGGGAAAACCTTATTATCAGCCGAAAACC
 TACCGGATTGATGGTAGTGGCAAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGAT
 15 ACACCGCATCCGGCGCGATTGGCTGAACGCCGCTGGTACTGCCAGCTGGCGAGCTAGCAGGCCGGTA
 AACTGGCTGGATTAGGGCCCAAGAAAACATATCCCGACCCGCTTACTGCCGCGTGGT
 GACCGCTGGATCTGGCATTGTCAGACATGTATACCCCGTACGTCCTCCGAGCGAAAAC
 GGTCGCGCTGGCGACCGCGAATTGAAATTGGCCACACCACTGGCCGGCGACTTC
 CAGTTCAACATCAGCGCTACAGTCACAGCAACTGATGAAACCCAGCCATGCCATCTG
 20 CTGCAACCGGAAAGAAGGCACATGGCTGAATATCGACGGTTCCATATGGGATTGGTGGC
 GACCACTCTGGAGCCCGTCAGTATCGCGGAATTCCAGCTGACGCCGGTGCCTACCAT
 TACCAAGTGGTCTGGTGTAAAATAATAACCGGGCACGGGGATCCOCAGATCCGG
 CTGTTGAATCTGTGTCAGTAGGGTGTGGAAAGTCCCCAGGCTCCAGCAGGGAGT
 ATGCAAAAGCATGCTGAGGAATTGATGATAAGCTTATGAGTATTGGCAGGAAGCAAGAC
 25 GGGGCGCGTACCCAGCTTTGTCCTTACTGAGGGTTAATTGCGCGGGAAAGTATTA
 TCACTAATCAACCAACAAGTAATAACATGAGAAAACCTTTACTACAGCAAGCACATCCTCCA
 AAAAATTTGTTTACAAAATCCCTGGTAACATGATTGGAAAGGGACCTACTAGGGTGC
 TGTTGAAGGGTGTGGTCACTGAGTAGTTAATGATGAAAGGAAGGAATAATTGCTGTAC
 CATTAAACAGGAACTAAGTTAAACCAAAATTGAGTATTGGCAGGAAGCAAGAC
 30 CCAACTACATTGTCAGCTGTTCTGACCTCAATATTGTTATAAGGTTGATATGA
 ATCCCAAGGGGAATCTCAACCCCTATTACCCAAACACTCAGAAAAATCTAAGTGTGAGGAG
 AACACAATGTTCAACCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCG
 AAGGAAGCAAGAGACCAAGAATGAACCTGAAGAAGAACATCTAAGAACAGAAAAGAAC
 ATGACTGGTGGAAAATAGGTATGTTCTGTTATGCTTAGCAGGAACTACTGGAGGAATAC
 35 TTGGTGTATGAGGACTCCACAGAACACATTATAGGGTTGGCGATAGGGGGAA
 GATTAACCGATCTGGCAATCAAATGCTATAGATGTTGGGGCTTCTCCGGGGTGTAA
 GACCAATTCAAAATTACTTCAGTTATGAGACCAATAGAACCATGCTATGGATAATAATA
 CTGCTACATTATTAGAAGCTTAACCAATATAACTGCTCTATAAAATAACAAACAGAAATT
 AGAAACATGGAAGTTAGTAAGACTTCTGGCATAACTCCTTACCTTCTCTGAAGC
 40 TAACACTGGACTTAATAGACATAAGAGAGATTGGTATAAGTCAATAGTGGCAGCTAT
 TGTCGGCTACTGCTATTGGCTAGCGCTACTATGTTATGTCCTAACTGAGGT
 TAACAAAATAATGGAAGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGG
 TATGGATTAAATAGAAGCACAATAAAGATATTATGCTATGATTCTCAAACACATGC
 AGATGTTCAACTGTTAAAGGAAAGACAACAGGTAGAGGGACATTAAATTGAGGATG
 45 TATAGAAAAGAACACATGTATTGGCATCTGGTCACTCCCTGGAAATGTCATGGGGACA
 TTAAATAGTCAACACAATGGGATGCTGGTAAGCAAAATGGAAGATTAAATCAAGA
 GATACTAATCACCTCATGGAGCCAGAACATTGGCACAATCCATGATAAACATTCAA
 TACACAGATAGTATAGCTAATTGGAAAAGACCTTGGAGTCATATTGGAAATTGGAT
 TCCTGGATTGGAGCTTCAATTAAATATAGTGTGTTTGCTTATTATTGTT
 50 ACTAACCTCTCGCTTAAGATCCTCAGGGCCCTCTGGAAGGTGACCAACTGGTCAGGGTC
 CTCCGGCAGTCGTTACCTGAAGAAAAAATTCCATCACAAACATGCTCGAGAACAC
 CTGGGACAGGCCAACACAACATACACCTAGCAGCGTACCCGGTGGATCAGGGGACAA
 ATACTACAAGCAGAACAGTCTCCAGGAACGACTGGGAATGGAGAACATGAGGAGTACAACAG
 GCGGCCAAAGAGCTGGGTGAAGTCATCGAGGCAATTGGAGAGAGCTATATTGAGAA
 55 GACCAAGGGGAGATTCTCAGCCTGGCGGCTATCAACGAGCACAGAACAGCTGG
 GGGGAACAATCCTCACCAGGGTCTTAGACCTGGAGATTGAGCGAACAGGAAACAT
 TTATGACTGGCTATTAAAGGCCAAGAAGGAACTCTGCTATCCCTGCTGGATTTC
 CTTATGGCTATTGGCTTAATAAAGGATTGTTAGAGGCTTAATTGAGGTTTATA
 60 CAGAAAAATGCTTATTGGAGGCTTAATTGAGGCTTAATTGAGGTTTATA
 GCCTCAGTATGTTAGAAAAACAAGGGGGAACTGTGGGGTTTATGAGGGGTTTATA
 AACTGCAGGAGTGGGGAGGCACGATGCCGTTGGCTAGGGGAGATCCGCCATTAGCC
 ATATTATTCAATTGGTTATAGCATAAAATCAATTGGCTATTGGCTATGTCACATGTTG
 TATTCATATCATAATTAGTACATTATGGCTATTGGCTCATGTCACATTAGGCTATTG
 65 CATTGATTATTGACTTAAATAGTAAATCAATTACGGGCTATTAGTTCATAGGCCA
 TATATGGAGTCCGCTTACATAACTTACGGTAAATGGCCGCTGGTACCCGGCCAAAC
 GACCCCGCCCATGACGTCATAATGACGTATGTCCTAGTAAACGCCAACAGGGACT
 TTCCATTGACGTCATGGGAGTATTACGGTAAACTGCCCACCTGGCACTACATCAA
 GTGTATCATGCCAAGTACGCCCTATTGACGTCATGACGGTAAATGGCCGCTGG
 CATTATGCCAGTACATGCCATTGGACTTTCCTACTTGGCAGTACATCAATTGGC
 GTCATGCGCTATTACCATGGTATGCCATTGGCAGTACATCAATTGGCCTGGTACCG
 70 TTGACTACGGGATTTCAGTCAGGCTTACAGTCATAAGTCAACTCCGCCATTGACG
 CACCAAAATCAACGGACTTCACAAATGCGTAACAACACTCCGCCATTGACGCAAATG
 GCGCGTAGGCATGTACGGTGGAGGTATATAAGCAGAGCTCGTTAGTGAACCGGGCA

CTCAGATTCTGGGTCTGAGTCCCTTCTGCTGGGTGAAAAGGCCCTTGTAATAAATA
TAATTCTACTCATGCCCTGCTCTAGTTGTCAGATCTACAGAGCTCATGC
CTTGGCGTAATCATGCTCATACGTTCCCTGTGTGAAATTGTTATCCGCTACAATTCC
ACACAACATACGAGCCGGAGCATAAAAGTGTAAAGCCTGGGTGCTAATGAAGTGAGCTA
5 ACTCACATTAATTGCGTGCCTCACTGCCGCTTCCAGTCGGGAAACCTGTCGTGCCA
GCTGCATTAATGAAATCGGCCAACCGCGGGGAGAGGGCGTTTGGTATTGGCGCTCTTC
CGCTCCCTCGCTACTGACTCGCTCGCTCGGTGCTGGCGAGCGGTATCAGC
TCACTCAAAGGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACAT
GTGAGAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCGCGTGTGCGTTTT
10 CCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCCGACAGGACTATAAAGATACCAGGCGTTCCCGGAAAGCTCCCTCGTGCCTC
TCCTGTCGACCGCTTACCGGATACCTGTCGCCCTTCTCCCTCGGAAGCGT
GGCGCTTCTCATAGCTACGCTAGGTATCTCAGTTGGTGTAGGTGCTTCGCTCAA
GCTGGGCTGTGTCAGCAACCCCCCGTTCAGCCGACCGCTGCCCTATCCGTAACTA
15 TCGTCTTGAGTCAACCGGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
CAGGATTAGCAGAGCAGGGTATGTAGGGCGTGTACAGAGTTCTGAAGTGGTGGCCTAA
CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT
CGGAAAAAGACTGCTAGCTCTGATCCGGCAAAACAAACCCGGTGTAGGGTGGTTT
TTTGTGTCAGCAGCAGGATACCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGAT
20 CTTTCTACGGGCTGACGCTCACTGGAACAAAACCTACGTTAAGGGATTTGGTAT
GAGATTATCAAAAGGATCTCACCTAGATCCTTTAAATTAAAAATGAAGTTAAATC
AATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC
ACCTATCTCAGCGATCTGCTATTGCTCATCCATAGTTGCTGACTCCCCGCTGTAA
GATAACTACGATACGGGAGGCTTACCATCTGGCCCCAGTGTGCAATGATACCGCGAGA
25 CCCACGCTCACGGCTCCAGATTATCAGCAATAAACAGCCAGGGGAAGGGCGAGCG
CAGAAGTGGTCTGCAACTTATCGCCTCATCCAGCTATTAAATTGGCGGGGAAGC
TAGAGTAAGTAGTCGCCAGTTAATAGTTGGCGAACGTTGCTGCAATTGCTACAGGCAT
CGTGGTGTACGCTCGTGTGTTGGTATGGCTTATTAGCTCCGTTCCAAACGATCAAG
GGAGTTACATGATCCCCCATGTTGTGCAAAAAGCGGTTAGCTCTGGTCTCCCGAT
30 CGTTGTCAGAAGTAAGTGGCCGACTGTTATCACTCATGGTTATGGCAGCACTGCATAA
TTCTTACTGTCATGCCATCGTAAGATGCTTCTGTGACTGGTGTACTCAACCAA
GTCATTCTGAGAAAGTGTATGCGCGACCGAGTTGCTCTTGCCCCGGTCAATACGGGA
TAATACCGCCGACATAGCAGAACCTTAAAGTGTCTCATATTGAAAACGTTCTCGGG
GGAAAAACTCTAAGGATCTACCGCTTGTGAGATCCAGTTGATGTAACCAACTCGTGC
35 ACCCAACTGATCTCAGCATCTTACTTCACCACCGTTCTGGGTGAGGCAAAACAGG
AAGGAAAATGCGCAAAAAGGAAATAAGGGCAACACGGAAATGTTGAATACTCATACT
CTCCCTTTCAATATTAGGAGCTTATCAGGGTATTGCTCATGAGGGATAACAT
ATTGAATGTATTAGAAAATAACAAATAGGGGTCGGCGCACATTCCCAGAAAGT
GCCACCTAAATTGTAAGCGTAATATTGTTAAAATTGCGTTAAATTGTTAAATC
40 AGCTCATTTTAACCAATAGGCCGAAATCGGCAAATCCCTTATAAATCAAAGAATAG
ACCGAGATAGGGTTGAGTTGTTCCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
GACTCCACGTCAAGGGCGAAAACCGCTATCAGGGCGATGGCCCACTACGTTGAAACCA
TCACCTAAATCAAGTTGGGTGAGGTGCGTAAAGCAGTAAATCGGAACCTAAA
GGGAGCCCCGATTAGAGCTTGACGGGAAAGCCAACCTGGTTATCGAAATTAACG
45 ACTCACTATAAGG

5

PEsynGP (SEQ ID No 53)

TCAATATTGGCCATTAGCCATATTATTGATTGGTTATATAGCATAAAATCAATATTGGCTA
 TTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTCATGTCC
 10 AATATGACCGCCATGTTGGCATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGG
 GTCATTAGTTCATAGCCCATATATGGAGTCCCGGTTACATAACTTACCGTAAATGGCCC
 GCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCAT
 AGTAACGCCAATAGGGACTTTCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGC
 CCATTGGCAGTACATCAAGTGTATCATATGCCAAGTCCCCCCCTATTGACGTCAATGA
 15 CGGTAATGGCCGCCCTGGCATTATGCCAGTACATGACCTTACGGGACTTTCTACTTG
 GCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGTGCGGTTTGGCAGTACAC
 CAATGGGCGTGGATAGCGGTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGT
 CAATGGGAGTTTGTGACCAAAATCAACGGGACTTCCAAGTGTGTAACAACGT
 CGATCGCCGCCCGTGTGACGCAAATGGGCGTAGGGTGTACGGTGGGAGGTCTATATA
 20 AGCAGAGCTCGTTAGTGAACCGTCAGATCACTAGAAAGCTTATTGCGGTAGTTTATCAC
 AGTTAAATTGCTAACGCAGTCAGTGTCTCTGACACAAACAGTCTCGAACTTAAGCTGCAGT
 GACTCTCTAACGGTAGCCTTGACAGAAGTGGTGTGAGGGACTGGCAGGTAAAGTATCAA
 GGTTACAAGACAGGTTAACGGAGACCAATAGAAACTGGGCTTGTGAGACAGAGAAGACT
 CTTGCGTTCTGATAGGCACCTATTGGTCTTACTGACATCCACTTGGCTTCTCCAC
 25 AGGTGTCCACTCCCAGTTCAATTACAGCTCTAACGGCTAGAGTACTTAATACGACTCACT
 ATAGGCTAGAGAACCGCCACCATGGGCATCCCCCTCACCTGGTCAAAGGCCCTGAAGAA
 ACTGGAAAAAGTCACCGGTCAGGGTAGCCAAAAGCTTACACAGGCCATTGCAACTGGGC
 ATTGTCCTCTGGTGGATTTTCCACGACACTAATTGTTAAGGAGAAAGATTGGCAACT
 CAGAGACGTATCCCCCTTGGAGGACGTGACCCAAACATTGTCAGGGCAGGAGCGCGA
 30 AGCTTTCGAGCGCACCTGGGGCCATCAGCGCAGTCAAATGGGCTGCAAATCAACAA
 CGTGGTGTGACGGTAAAGCTAGCTTCAACTGCTCCGCGCTAAGTACGAGAACCGC
 CAACAAGAAAACATCCGAAACCTAGCGAGGAGTACCCAAATTATGATCGACGGGCCGCAA
 TAGGAACCTCCGCCCCTGACTCCCAGGGGCTATACCACCTGGGTCAACACCATCCAGAC
 AAACGGACTTTGAACGAAGCCTCCAGAACCTGTCGGCATCTGTCTGTGACTGCAC
 35 CTCGAAGAAATGAATGCTTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAGAT
 CCTGCTCGATGCCATTGACAAGATCGCCACGACTGGGATAATGCCACCCCTGCCAAA
 CGCCCCCTCTGGTGGCTCCCCACAGGGGCTATCCCTATGACCGCTAGGTTATTAGGG
 ACTGGGGGTCCCCCGGAACGCCAGATGGAGGCCAGATTGACCAATTAGGCAGACCTA
 CAGACAGTGGATCATCGAAGCCATGAGCGAGGGATTAAAGTCATGATCGGAAAGGCCAA
 40 GGCACAGAACATCAGGAGGGGCAAGGAACCATACCCCTGAGTTGTGCGACAGGCTCT
 GTCCCAGATTAAATCCGAAAGGCCACCCCTCAGGAGATCTCAAGTTTGTGACAGACACACT
 GACTATCCAAAATGCAAATGAAGAGTGCAGAAAACGCCATGAGGCCAGCTCAGACCTGAAGA
 TACCCCTGGAGGAGAAAATGTCACCATGTCGGACATTGGCAGTACCAAGCAAAGATGAT
 GCTGCTCGGAAAGGCTCTGCAACCCGCTGGTGTCTCATTCAAAGGAGGAGCACTGAA
 45 GGGAGGTCCATTGAAAGCTGCACAAACATGTTATAATTGAGGCAAGCCAGGACATTATC
 TAGTCATGTAGAGCACCTAAAGTCTGTTAAATGTAACAGCCTGGACATTCTCAAA
 GCAATGCGAGAAGTGTCAAAAAACGGGAAGCAAGGGGCTCAAGGGAGGCCAGAAACA
 AACTTTCCCAGTACAACAGAACAGACTCAGCACAACAAATCTGTTGACAAAGAGACTCCTCA
 GACTAAAATCTGACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAAGGAGAA
 50 GGATCAAGTAGAGGATCTCACCTGGACAGTTGTGGGAGTAACATACAATCTCGAGAAG
 AGGCCCACTACCACATCGCTCTGATCAATGACACCCCTCTTAATGTGCTGCTGGACACCGGA
 GCCGACACCAAGCGTCTCACTACTGCTCACTATAACAGACTGAAATACAGAGGAAGGAA
 TACCAGGGCACAGGCATCATGGCGTTGGAGGCAACGTGAAACCTTCCACTCCTGTC
 ACCATCAAAAAGAAGGGGAGACACATTAAACCGAGATGCTGGTGTGCGGACATCCCCGTC
 55 ACCATCCTGGCAGAGACATTCTCCAGGACCTGGCGCTAAACTCGTGTGGACAAACTG
 TCTAAGGAAATCAAGTCCGCAAGATCGAGCTGAAAGAGGGCACAATGGGTCCAAAATC
 CCCAGTGGCCCTGACCAAAAGAGAACAGGCTTGTGAGGGCCTAAGGAAATCGTGCAGGCCCTG
 CTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCCCTACACAGCCCCATCTT

GTGATTAAGAAAAGGAGCGGCAAATGGAGACTCCTGCAGGACCTGAGGAACCTAACAAAG
 ACGTCCAGGTGGAACTGAGATCTCGCGACTGCCTCACCCGGCGGCTGATTAAA
 5 TCGAAGCACATGACAGTCCTGACATTGGAGACGCTTATTTACCATCCCCCTGATCCT
 GAATTGCCCCCTATACTGCTTTACCATCCCCAGCATCAATCACCAAGGAGCCGATAAA
 CGCTATGTGGAAGTGCTCCCCAGGGATTGTGCTTAGCCCCACATTACAGAAG
 ACACTTCAAGAGATCCTCAACCTTCCGAAAGAGATAACCCAGAGGTTCAACTCTACCAAA
 TATATGGACGACCTGTTATGGGGCCAACGGGCTAAGAAGCAGCACAAGGAACCTAC
 ATCGAACTGAGGGCAATCCTCCTGGAGAAAGGCTTCAGACACCCGACGACAAGCTGAA
 10 GAAGTTCTCCATATAGCTGGCTGGCTACCAGCTTGCCCTGAAAAGTGGAAAGTCCAG
 AAGATGCAGTTGGATATGGTCAAGAACCCAAACACTGAACGACGTCCAGAAGCTCATGGGC
 AATATTACCTGGATGAGCTCCGGAATCCCTGGCTTACCGTTAACAGACATTGCCGCAACT
 ACAAAAGGATGCGCTGGAGTTAACCCAGAAGGTCATTGGACAGAGGAAGCTCAGAAGGAA
 CTGGAGGAGAATAATGAAAAGATTAGAATGCTCAAGGGCTTCAAAACTACATCCC
 15 GAGAAGAAATGTTGCGAGGTGCGAAATCACTAAGAACACTAGCAAGCCACCTATGTCATCAA
 CAGTCCCAAGGCATCTTGCGGCCAAAGGAAATCATGAGGCAACAAAGGCTGGTCC
 ACCGTTAAAATCTGATGCTCCTGCTCAGCACGTGCCACCGACTATCACCCGCGTC
 GCGAAGTCCCCCACCTCAAAGTCCCTCACTAAGGAGCAGGTGATGTGGAGATGCAA
 AAAGGCTGGTACTACTCTGGCTTCCGAGATCGTCTACACCCACCAAGTGGTCACGAC
 20 GACTGGAGAATGAAGCTTGTGAGGAGCCACTAGCGGAATTACAATCTATACCGACGGC
 GGAAAGCAAAACGGAGAGGGAAATCGCTGCATACGTACATCTAACGGCCGACCAAGCAA
 AAGAGGCTCGGCCCTGCACTCACCAAGGTGGCTGAGAGGATGGCTATCCAGATGGCC
 GAGGACACTAGAGACAAGCAGGTGAAACATTGACTGACAGCTACTACTGCTGGAAAAAC
 ATCACAGAGGGCTTGGCCTGGAGGGACCCCAGTCTCCCTGGTGGCCTATCATCC
 25 AGAATATCCGCAAAAGGAAATTGTCTATTCGCTGGTGGACACAAAGGAATTACGGC
 AACCAACTCGCCGATGAAGCCGCAAATTAAAGAGGAATCATGCTGCTTACCCAGGGC
 ACACAGATTAAGGAGAAGAGAGACGAGGACGCTGGTTGACCTGTGTCACAGAC
 ATCATGATTCCCGTTAGCGACACAAAGATCATTCAACCGATGTCAGATCCAGGTGCCA
 CCCAATTCAATTGGTGGGTGACCGGAAAGTCCAGCATGGTAAAGCAGGGTCTTCTGATT
 AACGGGGGAATCATTGATGAAGGATAACCCGGCAGAATCCAGGTGATCTGCACAAATATC
 30 GCGAAAAGCAATTAAAGCTTATCGAAGGGGAGAAGTTCGCTCAACTCATCCTCCAG
 CACACAGCAATTCAAGACAACCTGGGAGAAAAGATTAGCCAGAGAGGTGACAAG
 GGCTCGGCAGCACAGGTGTTCTGGTGGAGAACATCCAGGAAGCACAGGACGAGCAC
 GAGAATTGGCACACCTCCCTAAGATTGGCCGCAATTACAAGATCCCAGTACTG
 GCTAAGCAGATCACACAGGAATGCCCAACTGCACCAAACAAGGTTCTGGCCCCGCC
 35 TGCGTGATGAGGTCCCCAATCACTGGCAGGCAGATTGCACCCACCTGACAACAAAATT
 ATCCTGACCTTCGTGGAGAGCAATTCCGCTACATCCACGCAACACTCTCTCCAAGGAA
 AATGCATTGTGACCTCCCTGCAATTCTGGATGGCCAGGCTTTCTCTCCAAAATCC
 CTGCACACCGACAACGGCACCAACTTGTGGCTGACCTGTGATCTGCAAGTTC
 CTGAAAATGCCAACCAACTGGCATTCCCTATCACCTGAAAGCAGGGCATTGCGAG
 40 AGGGCCAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACAATACAGACATTG
 GAGGCCGCACCTCAGCTGCCCTTATCACCTGCAACAAAGGAAGGAGAACATGGCGGC
 CAGACCCCCCTGGGAGGTCTTCACTAACCAAGGCCAGGTGATCTGAAAGCTGCTC
 TTGCAAGGCCAGTCTCCAAAAGTTCTGCTTTATAAGATCCCCGGTGAACGACGAC
 TGAAAGGTCCTACAAGAGTTTGTGAAAGGAGACGGCGCAGTTGTGGTGAACGATGAG
 45 GGCAGGGGATCATCGCTGTGCCCTGACACGCCAACAGCTCTCATCAAGCAA
 ACCGGGGGGCGCTTCAAGGTTATGCTGAGGTTAATGCTCGAGCAGACATGATAAGATA
 CATTGATGAGTTGGACAAACCAACTAGAATGCACTGAAAGGTTATTTGTGA
 AATTGTGATGCTATTGCTTATTGTAACCAATTAAAGCTGCAATAAAACAAGTTAACAA
 CAACAATTGCAATTCAATTGTTAGGTTAGGGGAGATGTGGAGGTTTTAAAG
 50 CAAGTAAAACCTCTACAAATGTGTTAAATCCGATAAGGATCGATCCGGCTGGCGTAAT
 AGCGAAGAGGCCGACCGATGCCCTTCCAAACAGTTGCGCAGCCTGATGGCAATGG
 ACGGCCCTGTAGCGGGCATTAGCGCCCTAGCGCCGCTCTTGCCTTCTCCCTTCTCG
 CTACACTGCCAGCGCCCTAGCGCCGCTCTTGCCTTCTCCCTTCTCG
 55 CGTCGCCGGCTTCCCCGTCAAGCTCTAAATCGGGGCTCCCTTGGGTTCCGATTTA
 GAGCTTACGGCACCTCGACCGCAAAAAACTTGATTGGGTGATGGTACGCTAGTGGC
 CATCGCCCTGATAGACGGTTTTCGCCCTTGACGTTGAGTCCACGTTCTTAAATAGT
 GACTCTGTTCCAAACTGGAACAAACACTCAACCCCTATCTCGGTCTATTCTTGTATT
 AAGGGATTTGCCGATTCGCCCTATTGGTAAAGGAGCTGATTTAACAAATTTA
 60 ACGCAATTAAACAAATTTAACCGTACATTGCTTACATTGCTTACGCGGATCGCG
 TAACCTGAAAGAGGAACCTGGGAGTCCAGGCTCCAGGCTCCAGCAGGAGAAGTATG
 ATGTGTCAGTTAGGGTGTGAAAGTCCAGGCTCCAGCAGGAGAAGTCCAGGCA
 GCATGCACTCAATTAGTCAGCAACCGAGGTGTTGAAAGTCCAGGCTCCAGCAGGCA
 GAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCGCCCTA
 65 CCATCCGCCCTAACTCCGCCAGTTCCGCCATTCTCCGCCCATGGCTGACTAATT
 TTTTATTGAGAGGCCAGGCCCTGGCTGAGCTATTCCAGAAGTAGTGAG

GAGGCTTTTGAGGCCTAGGTTTGCAAAAGCTGATTCTCTGACACAACAGTCT
 CGAACTTAAGGTAGAGCACCATGATTGAAACAAGATGGATTGACCCAGGTTCTCGGC
 CGCTGGTGGAGAGGCTATTCCGCTATGACTCGGCACAACAGACAATCGGCTGCTCTGA
 TGCCGCCGTTCGGCTGTCAGCCAGGGGCCGGTTCTTTGTCAGAACCGACCT
 5 GTCCGGTCCCTGAATGAACTGCAGGACGAGGAGCGCGGCTATCGTGGCTGGCCACGAC
 GGGCGTCCCTGGCAGCTGTGCTCACGTTGTCAGTGAAGCGGGAAAGGGACTGGCTGCT
 ATTGGCGAAGTGCCTGGGAGGATCTCTGTATCTCACCTGCTCCTGCCGAGAAAGT
 ATCCATCATGGCTATGCAATGCCGGCTGACAGCTTGTACCGGCTACCTGCCATT
 CGACCACCAAGCGAACATCGCATCGAGCGAGCACGTAACCGGATGGAAGCGGCTTGT
 10 CGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGCCAGCCAACTGTTGCCAG
 GCTCAAGGCCGCATGCCGACGGCAGGATCTCGTGTGACCCATGGCGATGCCCTGCTT
 GCCGAATATCATGGTGGAAATGGCCGCTTCTGGATTATCGACTGAGTGGCCGGCTGG
 TGTGGCGGACCGCTACAGGACATAGCCTGGCTACCCGTATATTGCTGAAGAGCTGG
 CGCGAATGGCTGACCCCTCCCTCGTACGGTACGGTACCCGCTCCGATTGCCAGCG
 15 CATCGCCTCTATCGCCTCTTGACGAGTCTCTGAGCGGGACTCTGGGTTCAAATG
 ACCGACCAAGCGACGCCAACCTGCCATACGATGCCGAATAAAATATCTTATTTTCA
 ATTACATCTGTGTGGTTTTTGTTGAATCGATAGCGATAAGGAATCCGCTATGGT
 CACTCTCAGTACAATCTGCTGTGACGGCTCTGCTGCCGGCATCGCTTACAGACAAGCTGT
 20 ACCCGCTGACCGCCCTGACGGCTCTGCTGCCGGCATCGCTTACAGACAAGCTGT
 GACCGTCTCCGGAGCTGCATGTGTCAGAGGTTTACCCGCATCACCGAAACCGCGAG
 ACGAAAGGGCTCGTACCGCTATTTTAAGGTTAATGTCATGATAATAATGGTTTCA
 TTAGACGTCAAGTGGCCTTCCGGGAAATGTGCGCGAACCCCTATTGTTTATT
 CTAAATACATTCAAATATGATCCGCTCATGAGACAATAACCGTATAATGCTTCATA
 ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTTATTCCCTTTT
 25 TCGGGCATTTGCCCTCTGTTTGTCTCACCGAGAACGCTGGTGAAGTAAAAGATGCT
 TGAAGATCAGTGGTGCACGAGTGGTACATCGAACTGGATCTCAACACGGTAAGAT
 CCTTGAGAGTTTCCGGCGAACGCTTCCAATGATGAGCACTTAAAGTTCTGCT
 ATGTGGCGCGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGGTGCCGATACA
 CTATTCTCAGAATGACTGGTGAAGTACTCACAGTCACAGAAAAGCATCTACGGATGG
 30 CATGACAGTAAGAGAAATTGCACTGCTGCCATACCGAGAACGCTGGTGAAGTAAAAGATGCT
 CTTACTCTGACAACGATCGAGGAGCGAACGGAGCTAACCGCTTTTGCAACAACATGG
 GGATCATGAACTCGCCTGTACGGTGGGAAACGGAGCTGAATGAAGCCATACCAACGA
 CGAGCGTACACACAGATGCCGTAGCAATGCCAACACGGTCAACTATTAAACTGG
 CGAAGACTTACTCTAGCTCCGGCAACAAATTATAGACTGGATGGAGGGCGATAAGT
 35 TGCAGGACCACTCTGCCCTGGCCCTCCGGCTGGTTATTGCTGATAAAATCTGG
 AGCCGGTAGCGTGGGCTCGGGTATCATTGCACTGGGCAAGATGGTAAGCCCTC
 CCGTATCGTAGTTATCTACAGACGGGAGTCAGGCAACTATGGATGAAACGAAATAGACA
 GATGCTGAGATAAGGTGCCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTC
 ATATATACTTAAAGGATCTAGGTGAAGAT
 40 CCTTTTGATAATCTCATGACAAAATCCCTAACGTGAGTTTCTGTTCACTGAGCGTC
 AGACCCCGTAGAAAGATCAAAGGATCTTCTGAGATCTTCTGAGCTGGCTGTAATCTG
 CTGCTGCAACAAAAACCAACCGCTACCGAGGCTCAGCAGAGCCAGATACCAAAATCTGCT
 ACCAACTCTTCCGAAAGTAACTGGCTTACAGCAAGAAGTCTGTCAGCACCGCTACACCT
 TCTAGTGTAGCCGTAGTTAGGCCACACTCAAGAAGTCTGTCAGCACCGCTTACCGG
 45 CGCTCTGCTAATCTGTACCGTAGGCTGCTGCCAGTGGCGATAAGTCGTCTTACCGG
 GTTGGACTCAAGACGATAGTTACCGGATAAGGGCAGCGGGCTGAACGGGGGTT
 GTGACACAGCCCCAGCTGGAGCGAACGACCTACACCGAAGTGGATCCGGTAAGCGG
 GCTATGAGAAAGCGCCACGCCGTTCCGAAGGGAGAAAGCCGACAGGTATCCGGTAAGCGG
 CAGGGTGGAAACAGGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
 50 TAGTCTGTGGGTTTGGCCACCTGACTTGAGCGTCGATTTGTTGATGCTCGTCAGG
 GGGCGGAGCCTATGGAAAAACGCCAGCAACCGGGCTTTACGGTCTGGCCTT
 CTGGCCTTGTGTCACATGGCTCGACAGATCT

PESDSYNGP (SEQ ID No 54)

55 TCAATATTGGCCATTAGCCATATTATTGTTATAGCATAAAATCAATAATTGGCTA
 TTGGCCATTGCACTGTTATCTATATCATATAATGTCATTATATTGGCTCATGTCC
 AAATGACCCCATGTTGGCATTGATTATGACTAGTTATAATAGTAATCAATTACGG
 GTCATTAGTCATGCCATATATGGAGTCCGCGTACATAACTACGGTAATGGCCC
 GCCTGGCTGACGCCAACGACCCCGCCATTGACGTCATAATGACGTATGTTCC
 60 AGTAACGCCAATAGGGACTTCCATTGACGTCATAAGGGGAGTATTACGGTAAACTGC
 CCACTGGCAGTACATCAAGTGTATCATATGCCAACGTCGCCCTATTGACGTCATGA
 CGTAAATGCCGCCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCTACTTG
 GCAGTACATCTACGTATTAGTCATGCTATTACCATGGTGTGCGGTTGGCACTACAC
 CAATGGCGTGGTAGCGGTTGACTCACGGGATTCCAAGTCTCACCCCCATTGACGT

CAA TGGGAGTTGTTGGCACCAAATCAACGGACTTCCAAAATGTCGTAAACAACCTG
 CGATCGCCCCCCCCGTGACGAAATGGCGTAGGCCTGACGGTGGGAGGTCTATA
 AGCAGAGCTCGTTAGTGACCGTCAGATCACTAGAAGCTTATTGCGTAGTTATCAC
 AGTAAATTGCTAACGCACTGAGTCAGTCTCTGACACAACAGTCTGAACCTAACGTCAGT
 5 GACTCTTAAGGTAGCCTGCAGAAGTGGCTGTAGGGACTGGCAGGTAAAGTATCAA
 GTTACAAGACAGGTTAAGGAGACCAATAGAAAATCTGGCTGTGAGACAGAGAAGACT
 CTTGCGTTCTGTAGGGACCTATTGGCTTACTGACATCCACTTGCTTCTCCAC
 AGGTGTCACCTCCAGTTCATTACAGCTTAAGGCTAGAGTACTTAATACGACTCAGT
 ATAGGCTAGAGAATTCCAGGTAAGATGGCGATCCCTCACCTGGTCAAAGCCCTGAG
 10 AAACCTGGAAAAAGTCACCGTCAGGGTAGCCAAAAGCTTACCAACAGGCAATTGCAACTGG
 GCATTGTCCCTGGTGGATCTTCCACGACACTAATTTCGTTAAGGAGAAAGATTGGCAA
 CTCAGAGACGTGATCCCCCTCTGGAGGACGTGACCCAAACATTGTCTGGCAGGAGCGC
 GAAGCTTCGAGCGACCTGGTGGCCATCAGCGACTAAAATGGGCTGCAAATCAAC
 AACGTGGTGAACGGTAAAGCTAGCTTCAACTGCTCCAGGGCTATACCACCTGGTCAACACCATCCAG
 15 GCCAACAAAGAAACAATCCGAACTTACGGAGGAGTACCCAAATTATGATGACGGGCCCGC
 AATAGGAACCTCCGCCACTGACTCCCAGGGCTATACCACCTGGTCAACACCATCCAG
 ACAAACGGACCTTGAACGAGCCTCCAGAACCTGTCGGCATCTGTCTGGACTGC
 ACCTCCGAAGAAATGAATGCTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAG
 ATCTGCTCGATGCCATTGACAAGATCGCCACGACTGGATAATGCCACCCCTGCCA
 20 AACGCCCCCTCTGGTGGCTCCCCCACAGGGGCTATCCCTATGACCGTAGGTTATTAGG
 GGACTGGGGGTGCCCCCGCAACGCCAGATGGAGCCAGCATTGACCAATTAGGAGACCC
 TACAGACAGTGGATCATCGAAGCCATGAGCGAGGGATTAAAGTCATGATGCGAAGGCC
 AAGGCACAGAACATCAGGCAAGGGGCAAGGAACCATACCCCTGAGTTGTCGACAGGCTT
 CTGCCCAGATTAATCCGAAAGGCCACCCCTCAGGAGATCTCAAGTCTTGACAGACACA
 25 CTGACTATCCAAAATGCAAATGAAGAGTCAGAACGCACTGAGGCACCTCAGACCTGAA
 GATAACCTGGAGGAGAAAATGACCGATGTCGCGACATTGGCACTACCAAGCAAAAGATG
 ATGCTGCTGCCAACGGCTCTGCAAACCGGCCCTGGCTGGCCATTCAAAGGAGGAGGACTG
 AAGGGAGGTCCATTGAAAGCTGCACAAACATGTTATAATTGTTGAGGAAAGCCAGGACATTAA
 TCTAGTCATGTAGAGCACCTAAAGTCGTTTAAATGTAACAGCCTGGACATTCTCA
 30 AACCAATGCGAAGTGTCCAAAAGGGAAAGCAAGGGCTCAAGGGAGGGCCCAGAAA
 CAAACTTCCCAGATACAACAGAACAGTCAGCACAACAAATCTGTTACAAGAGACTCCT
 CAGACTCAAATCTGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAGGAG
 AAGGATCAAGTAGAGGATCTCACCTGGACAGTTGAGGACTACATCACAACTCGAGA
 AGAGGCCACCATCGTCTGATCAATGACACCCCTTAAATGTCGCTGGACACCCG
 35 GAGCCGACACCAGCGTCTCACTACTGTCACTATAACAGACTGAAATACAGAGGAAGGA
 AATACCAGGGCACAGGCATCATGGCGTTGGAGGCAACGTCGAAACCTTTCACTCCTG
 TCACCATCAAAAGAACGGGAGACACATTAAACCAAGAACATGCTGGCGACATCCCCG
 TCACCATCCTGGCAGAGACATTCTCAGGACCTGGCGCTAAACTCGTCTGGCACAAAC
 TGCTCAAGGAATCAAGTCCGCAAGATCGAGCTGAAAGAGGGACAATGGTCCAAA
 40 TCCCCCAGTGGCCCTGACCAAGAGAGCTGAGGGCGCTAAGGAAATCGTCAGCGCC
 TGCTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCCCTAACACAGCCCCATCT
 TTGTGATTAAGAAAAGGAGCGGAAATGGAGACTCCTCGCAGGACCTGAGGGAAACTCAACA
 AGACCGTCCAGGTGGAACTGAGATCTCTCGCGACTGCTCACCCCCGGGCGCTGATTAA
 45 AATGCAAGCACATGACAGTCCTTGACATTGGAGACGCTTACCATCCCCCTCGATC
 CTGAATTTCGCCCCCTATACTGCTTTACCATCCCCAGCATCAATCACCAGGAGCCGATA
 AACGCTATGTTGAGGACTCTCCAAACCTTCCGAAAGGATTGTGTTAGCCCTACATTACCA
 AGACACTTCAAGAGATCTCCAAACCTTCCGAAAGGATACCCAGGGTTCAACTCTACC
 AATATATGGACGACCTGTTCATGGGTCCAACGGGTCTAAGAACGAGCACAGGAACCTCA
 50 TCATCGAACTGAGGGCAATCTCTGGAGAAAGGCTTCAGAGACACCCGACGACAAGCTGC
 AAGAAGTCTCCATATACTGGCTGGCTACCAAGCTTGCCTGAAAATGGAAAGTCC
 AGAAGATGCGAGTTGGATATGGTCAAGAACCCAAACTGACGACGTCCAGAACGTCATGG
 GCAATATTACCTGGATGAGCTCCGAAATCCCTGGCTTACCGTTAAGCACATTGCCCAA
 CTACAAAAGGATGCCCTGGAGTTGACCGAGAACGGTATTGGACAGAGGAAGCTCAGAAGG
 AACTGGAGGAGAATAATGAAAAGATTAAGAACATGTCAGGGCTCCAATACTACAATCCCG
 55 AAGAAGAAATGTTGCGAGGTGCAATCAACTAACGAAACTACGAAAGGCCACCTATGTCATCA
 AACAGTCCCAAGGCATTTGTTGGCGGAAAGAAAATCATGAAAGGCCAACAAAGGCTGGT
 CCACCGTTAAAATCTGATGCTCTGCTCCAGCAGCTGCCACCGAGTCTATCCCCCG
 TCGGCAAGTGGCCACCTTCAAGGTTCTTACTAACGGAGCAGGTGATGTTGGAGATGC
 AAAAGGCTGGTACTACTGGCTTCCCGAGATCGTCTACACCCACCAAGTGGTGCACG
 60 AGCACTGGAGAATGAAGCTTGTGAGGGAGGGAAATCGCTGCATACGTCACATCTAACGGCCACCAAGC
 GCGGAAGGAAAGCAAAACGGAGGGAAATCGCTGCATACGTCACATCTAACGGCCACCAAGC
 AAAAGGAGGCTGGCCCTGTCACTACCAGGTGGCTGAGAGGATGGCTATCCAGATGGCCC
 TTGAGGACACTAGAGACAAGCAGGTGAACATTGTGACTGACAGCTACTACTGCTGGAAA
 ACATCACAGAGGGCCTGGCCTGGAGGGACCCAGTCTCCCTGGTGGCCATCATCCAGA
 65 ATATCCGCAAAAGGAAATTGCTATTGCTGGGCTGGACACAAAGGAAATTACAG
 GCAACCAACTCGCCGATGAAGCCCAAAATTAAAGAGGAAATCATGCTTGCCCTACCAGG

GCACACAGATTAAAGGAGAAGAGAGACGAGGACGCTGGCTTGCACCTGTGTGCCATACG
 ACATCATGATTCCCGTTACGCACACAAGATCATTCAACCGATGTCAGATCAGGTGC
 CACCAATTCAATTGGTGGGTGACCGGAAAGTCCAGCATGGCTAACGAGGGCTTCTGA
 TTAACGGGGAAATCATTGATGAAGGATACACCGCGAAATCCAGGTGATCTGCACAAATA
 5 TCGCAAAGCAATATTAAGCTTATCGAAGGCAGAAGTTCGCTCAACTCATCATCCTCC
 AGCACACAGCAATTCAAGACACCTTGGGACGAAAACAAGATTAGCCAGAGAGGTGACA
 AGGGCTCGGAGCACAGGTGTTCTGGGTGAGAACATCCAGGAAGCACAGGACGAGC
 ACGAGAATTGGCACACCTCCCCTAACAGATTTGGCCCGAACATCAAGATCCCACGTACTG
 10 TGGCTAAGCAGATCACACAGGAATGCCCAACTGCACCAAACAAGGTTCTGGCCCCGCC
 GCTGCGTGTAGAGGTCCTCCAATCACTGGCAGGCAGATTGCACCCACCTCGACAAACAAAA
 TTATCCTGACCTTCGTGGAGAGCAATTCCGGCTACATCCACGCAACACTCCTCTCCAAGG
 AAAATGCATTGTGACCTCCCTCGCAATTCTGGAATGGGCCAGGCTGTTCTCTCCAAAAT
 CCCTGCACACCGACAACGGCACCACACTTGTGGCTGAACCTGTGGTGAATCTGCTGAAGT
 15 TCCTGAAAATCGCCACACCAACTGCACCTCCATCACCCCTAACAGGAGGCCATTGTGCG
 AGAGGGCAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACAATAACAGACAT
 TGGAGGCGCACTTCAGCTGCCCTATCACCTGCAACAAAGGAAGAGAAAAGCATGGCG
 GCCAGACCCCCCTGGAGGTCTCATCACTAACAGGCCAGGTATCCATGAAAAGCTGC
 TCTGAGCAGGGCCAGTCTCCAAAAGATTCTGCTTTATAAGATCCCAGGCTGAGCAGC
 ACTGGAAAGGTCTACAAGAGTTTGAGGAGAGACGGCGCAGGTGTGGTGAACGATG
 20 AGGGCAAGGGGATCATCGCTGTGCCCTGACACGACCAAGCTCTCATCAAGCCAAACT
 GAACCCGGGGGGGGGGCTCCCTTAGTGGAGGTTATGCTCGAGCAGACATGATAAGA
 TACATTGATGAGTTGGACAAACACAACAGTAAATGCACTGAAATGCTTATTTGT
 GAAATTGTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAAACAGTTAAC
 AACACAATTGCAATTCAATTATGTTAGGTTAGGGGAGATGTGGAGGTTTTAA
 25 AGCAAGTAAAACCTCTACAAATGTGGAAAATCCATAAGGATCGATCCGGCTGGCGTA
 ATAGCGAAGAGGCCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAAT
 GGACGCGCCCTGTAGCGCGCATTAGCGCGGGGTGTTACGCGCAGCGTGAC
 CGCTACACTTGCCAGCGCCCTAGCGCCGCTCTTCGCTTCTCCCTTCTCGC
 CACGTTGCCGGCTTCCCGTCAAGCTCTAAATCGGGGGCTCCCTAGGGTCCGATT
 30 TAGAGCTTACGGCACCTCGACCGCAAAAAACTTGATTTGGGTGATGGTTACGTAGTGG
 GCCATGCCCTGATAGACGGTTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAG
 TGGACTCTGTTCCAAACTGGAACAAACACTAACCCCTATCTCGGTCTATTCTTTGATT
 ATAAGGGATTTCGGCATTCCGGCTATTGGTAAAAAAAGTGGTATTAAACAAATATT
 TAACGGCAATTAAACAAAATTAAACGTTACAATTCCGCTGATGCGGTATTCTCC
 35 TTACGCATCTGCGGTATTCAACCCGATACCGGATCTGCGCAGCACCATGGCCTGA
 AATAACCTCTGAAAGAGGAACCTGGTAGGTACCTCTGAGGGCGGAAAGAACAGCTGTG
 GAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCAGGCTCCCAGCAGGAGAAGTATGCA
 AAGCATGCACTCAATTAGTCAGCAACCAGGTGTTAGGAAAGTCCCAGGCTCCCAGCAGG
 CAGAAGTATGCAAAGCATGCACTCAATTAGTCAGCAACCAGTCCGCCCTAACTCC
 40 GCCCATCCCCCCCCCTAACCTCCGCCAGTCCGCCATTCTCGCCCATGGCTGACTAAT
 TTTTTTATTATGCAGAGGCCAGGCCCTCGGCCCTGAGCTATTCTGACACAACAGT
 AGGAGGCTTTTGAGGCCCTAGGCTTTGCAAAAAGCTTATTCTGACACAACAGT
 CTCGAACCTAAGGCTAGAGCCACCATGATTGAAAGATGGATTGACCGCAGGTTCTCC
 45 GCCGTTGGTGGAGAGGCTATTCCGCTATGACTGGCACAACAGACAATCGCTGCT
 GATGCCGCGGTGTTCCGGCTGTCAGCCGAGGGGCGCCGGCTTGTGTTGTCAGGAC
 CTGTCCGGTCCCTGAATGAACTGCAAGGACGGCAGCGGGCTATCGTGGCTGGCCACG
 ACAGGGCGTTCTGCGCAGCTGCTGACGGTACTGAAAGGGGAGGACTGGCT
 50 CTATTGGGCGAAGTGGGGGGCGAGGATCTCTGTCATCTCACCTGCTGCTGGCGAGAAA
 GTATCCATCATGGCTGTCATGGCGCTGCAATGGCGGGCTGACAGCTTGTGATCCGGCTACCTGCCA
 TTCGACCAACAGCAACATCGCATCGAGGGAGCACGTAACGTTGAGGATGGAAAGCCGGCTT
 GTCGATCAGGATGATCTGGACGAAGAGCATAGGGGCTCGGCCAGCGAACTGTTGCC
 AGGCTCAAGGCCGATGCCGACGGGAGGATCTGCTGTCAGGATCTGGCT
 55 TTGCGAATATCATGGTGGAAAATGGCCGCTTCTGGATTCTGACTGTGGCCGGCTG
 GGTGTGGCGACCGCTATCAGGACATAGCCTGGTACCCGTGATATTGCTGAAGAGCTT
 GGGCGGAATGGGCTGACCGCTTCTCGTGTGTTACGGTATGCCGCTCCGATTGCAAG
 CGCATGCCCTCTATGCCCTCTGACGAGTTCTGAGCGGGACTCTGGGGTTGAA
 TGACCGACCAAGCGACGCCAACCTGCCATACGATGGCGCAATAAAATATCTTTATT
 60 TCATTACATCTGTTGTTGGTTGGTGTGATCGATAAGCGATAAGGATCCGGTATGG
 TGCACTCTCAGTACAATCTGCTGATGCCGATAGTTAACGCCAGCCCCGACACCCGCCA
 ACACCCGCTGACGCCCTGACGGGTTGCTGCTCCGGCATCCGTTACAGACAGACAAGCT
 GTGACCGTCTCGGGAGGCTGATGTCAGAGGTTTACCGTACACCGAAGACCGCG
 AGACGAAAGGGCCTGATACGCCATTGGTTAATGTCATGATAATAATGGTT
 TCTTAGACGTCAGGTGGCACTTTCGGGAAATGTGCGCGAACCCCTATTGTTATT
 TTCTAAATACATTCAAATATGATCCGCTCATGAGACATAACCCGATATAATGCTCAA
 65 TAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTTGCTGCCCTTATTCCCTT
 TTGCGGCAATTGCGCTTCTGTTGCTCACCCAGAACGCTGGTAAAGTAAAGAT

GCTGAAGATCAGTGGTGCACGAGTGGTTACATCGAACACTGGATCTCAACAGCGGTAA
 ATCCCTGAGACTTCGCCCGAAGAACGTTTCCAATGATGAGCACTTTAAAGTTCTG
 CTATGTGGCGCGTATTATCCCCTATTGACGCCGGCAAGAGCAACTCGGTGCCGCATA
 CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTTACGGAT
 5 GGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCAGTGAACACTGCGGCC
 AACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTGCAACAACATG
 GGGGATCATGTAACTCCGCTTGTGCTGGGAAACCGGAGCTGAATGAAAGCCATACCAAAC
 GACGAGCGTACACCAACGATGCCGTAGCAATGGCAACAAACGTTGCCAAACTATTAAC
 GGCAGACTACTTACTCTAGCTTCCCCGCAACAAATTAAAGACTGGATGGAGGCGGATAAA
 10 GTTGCAAGGACCACTCTCGCCTCGGCCCTTCCGGCTGGCTGGTTATTGCTGATAAAATCT
 GGAGCCGGTGAACGCTGGGCTCGCGGTATCATTGCACTGGGGCCAGATGTAAGCCC
 TCCCGTATCGTAGTTATCTACACGACGGGAGTCAGGCAACTATGGATGAAACGAAATAGA
 CAGATCGCTGAGATAGGTGCCACTGATTAAGCATTGTAACGTCAGACCAAGTTAC
 TCATATATACTTAGATTGATTTAAACTCATTTAAATTAAAGGATCTAGGTGAAG
 15 ATCTTTTATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCACTGAGCG
 TCAGACCCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTTCTGCGCGTAATC
 TGCTGTTGAAACAAAAAACACCGCTACCAAGCGGTGGTTGTTGCCGGATCAAGAG
 CTACCAACTCTTTCCGAAGGTAACGGCTTACGAGAGCGCAGATACCAAATACTGTC
 CTTCTAGTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGTAGCACCGCCTACATAC
 20 CTCGCTCTGCTAACCTGTTACCAAGTGGCTGCTGCACTGGCGATAAGTCGTGCTTAC
 GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAACGGGGGGT
 TCGTGCACACAGCCCAGCTGGAGCGAACGACCTACACCGAAGTGGAGATACCTACAGCGT
 GAGCTATGAGAAAGCGCACGCTTCCGAAGGGAGAAAGCCGGACAGGTATCCGTAAGC
 GGCAGGGTCGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
 25 TATAGTCTGTCGGTTTCGCCACCTGACTTGTAGCGTCAAGTTGTGATGCTCGTCA
 GGGGGCGGAGCCTATGAAAAACGCCAGCAACGCCGGCTTTACGGTTCTGCCCTT
 TGCTGCCCTTGCTCACATGGCTCGACAGATCT

MLV construct CZCG (SEQ ID No 55)

30 GTTACCTCTGCTCTGCAAGAACCTTAACGTGGATGGCCGGAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTTCACCTGGCCCGATGGA
 CACCCAGACCAGGTCCCTACATCGTGACCTGGGAAGCCTGGCTTTGACCCCCCTCCC
 TGGGTCAAGCCCTTGTACACCTAACGCTCCGCTCTCCATCCGCCCCGTCT
 CTCCCCCTTGAACCTCCTCGTCAACGGCTCGATCCTCCCTTATCCAGCCCTCACT
 35 CCTCTCTAGGCGCCGGATTGTTAACCGAGAGGCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTGCGTACTGGAAAACCTGGCTTACC
 CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAAGAGGCC
 CGCACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATGGCAATGGCGCTTGCCTGG
 TTTCCGGCACAGAAGCGGTGGCAAAGCTGGCTGGAGTGCATCTCTGAGGCCGAT
 40 ACTGTCGTCGCCCCCTAAACTGGCAGATGCACTGGTACCGATGCGCCATCTACACCAAC
 GTAACCTATCCCATTACGGTCAATCCGCCGTTGTTCCACGGAGATCCGACGGTTGT
 TACTCGCTCACATTAAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGCGCAATTATT
 TTTGATGGCGTTAACCGCGTTTGCCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 CAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 45 CGCCCTCGCGGTGATGGTGCCTGGAGTACGGCAGTTATCTGGAAGATCAGGATATG
 TGGCGGATGAGCGGCATTTCCTGACGTCTCGTGTGCAAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGTTAAATGATGATTGATTCAGCCGCGCTGTACTGGAGGCT
 GAAGTTCAGATGTGCGCGAGTTGCGTGAACCTACGGGTAACAGTTCTTTATGGCAG
 GGTGAAACGCAGGTCGCCAGCGGCACCGCGCTTCCGGCGGTGAAATTATCGATGAGCGT
 50 GGTGGTTATGCCGATCGCTCACACTACGTCTGAACGTGAAAACCGAAACTGTGGAGC
 GCCGAAATCCGAATCTCATCGTGCCTGGTTGAACCTGACACCGCCGACGGCACGCTG
 ATTGAAAGCAGAACGCTGCGATGTCGGTTCCCGGAGGTGCGGATTGAAAATGGCTGCTG
 CTGCTGAACGGCAAGCCGTTGCTGATTGAGGGCTTAACCGTCACGAGCATCCTCTG
 CATGGTCAGGTCAATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAGCAGAAC
 55 AACCTTAACGCCGTGCCGTTCGCATTATCCGAACCATCCGCTGTGGTACACGCTGTG
 GACCGCTACGCCGTGATGTTGGGATGAAAGCCAATATTGAAACCCACGGCATGGCCA
 ATGAATCGTCTGACCGATGATCCGCGCTGGTACCGCGATGAGCGAACGCGTAACGC
 ATGGTGCAGCGCAGTCGAATACCCGAGTGTGATCATCTGGTCGCTGGGAAATGAATCA
 GCCACGGCGTAATCACGACGCGCTGATCGTGGATCAAATCTGTCGATCCTCCCGC

CCGGTGCAGTATGAAGGGCGGAGCCGACACCACGGCCACCGATATTTCGCCGATG
 TACCGCGCGTGGATGAAGACCAGCCTTCCCGCTGCGCAAATGTCATCAAAAAA
 TGGCTTCGTAACCTGGAGAGACGCCCGCTGATCCTTGCATAACGCCACCGATG
 GTAACAGTCTGGCGTTTCGCTAAATACTGGCAGGGTTTCGTCAGTATCCCCTTA
 5 CAGGGCGGCTTCGCTGGACTGGTGGATCAGTCGCTGATTAATATGATGAAAACGGC
 AACCGTGGTCGGCTTACGGCGGTGATTTGGCGATACGCCAACGATCGCCAGTTCTGT
 ATGAACGGTCTGGTCTTGCCGACCGCACGCCCATCCAGCGTGCAGGAAGCAAAACAC
 CAGCAGCAGTTTCAGTCCGTTATCCGGCAAACCATCGAAGTGACCAGCGAATAAC
 CTGTTCCGTCATAGCGATAACGAGCTCTGCACTGGATGGTGGCGCTGGATGGTAAGCCG
 10 CTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGTAAACAGTTGATTGAACTG
 CCTGAACCTACCGCAGCCGGAGAGCGCCGGCACTCTGGCTCACAGTACGCGTAGTGCA
 CGAACCGCAGCGCATGGTCAGAAGCCGGCACATCAGGCCCTGGCAGCAGTGGCGTCTG
 GCGAAAACCTCAGTGTGACGCTCCCGCCGCTCCACGCCATCCGCATCTGACCAAC
 AGCGAAATGGATTTGCATCGAGCTGGTAATAAGCTGGCAATTAAACGCCAGTC
 15 GGCTTCTTCACAGATGTTGAGTGGCGATAAAAAACAACTGCTGACGCCGCTGCCGAT
 CAGTTACCCCGTGCACCGCTGGATAACGACATTGGCTAAGTGAAGCGACCCGATTGAC
 CCTAACGCGCTGGTCGAACGCTGGAAGGCGGGGCCATTACCGCGAAGCAGCGTTG
 TTGCACTGCACGGCAGATAACACTTGGTGTGCGGTGCTGATTACGACCGCTACGCCG
 CAGCATCAGGGAAAACCTTATTTACGCCGAAAACCTACCGGATTGATGGTAGTGGT
 20 CAAATGGCGATTACCGTTGATGTTGAGTGGCGAGCGATAACCCGATCCGGCGCGATT
 GGCGTGAACGCGCTGGCGAGGTAGCAGAGCGGGTAACCTGGCTCGGATTAGGGCCG
 CAAGAAAACATACCCGACCGCCTACTGCCCTGTTTGACCGCTGGGATCTGCCATTG
 TCAGACATGATAACCCCGTACGTCTCCGAGCGAAAACGGTCTGCCGCTGCCG
 GAATTGAATTATGCCACACCAAGTGGCGCGGGACTTCCAGTTCAACATCAGCCGCTAC
 25 AGTCAACAGCAACTGATGAAACCGCCATGCCATCTGTCACGCCAGAAGAAGGCACA
 TGGCTGAATATGACGGTTCCATATGGGATGGTGGCGACGACTCTGGAGGCCGTCA
 GTATCGCGGAATTCCAGCTGAGGCCGGTGCCTACCATACCAAGTTGGTCTGGTCAA
 AAATAATAATAACCGGGCAGGGGGATCCGAGATCCGGCTGGAATGTGTCA
 GGGTGGAAAGTCCCAGGCTCCAGCAGGGAGAAGTATGCAAAGCATGCCCTGCAGGA
 30 GTGGGGAGGCACGATGGCGCTTGGTCAGGGCGATCCGGCATTAGCCATATTATCA
 TTGGTTATATAGCATAAAATCAATATTGGCTATTGGCATTGCAACGTTGATTCATATC
 ATAATATGTACATTATGGCTATGTCACATTACGCCATTGACATTGATTAT
 TGACTAGTTATAATAGTAATCAATTACGGGTCAATTGTCATAGCCATATATGGAGT
 TCCCGCTTACATAACTACGGTAATGGCCGCTGGTCACCGCCCAACGACCCCCGCC
 35 CATGACGTCAATAATGACGTATGGCTTCCATAGTACGCCAATAGGACTTCCATTGAC
 GTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATA
 TGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCTGGCATTATGCC
 AGTACATGACCTTATGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGCTA
 TTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCAC
 40 GGGGATTTCAAGTCTCCACCCATTGACGTCAATGGAGTTGGCACCAGAAC
 AACGGGACTTCCAAAATGTCGTAACAACCTCCGCCATTGACGAAATGGCGGTAGGC
 ATGTACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGG
 GACGCCATCCACGCTGTTGACCTCATAGAAGACACCCGGACCGATCCAGCCTCCGCG
 GCCCAAGCTGGTGGGATCCACGGCTGCCACCATGGTGGAGCAAGGGCGAGGAGCTGTT
 45 CACCGGGGTGGTGCCATCCTGGCGAGCTGGACGGCAGCTAACGGCAGTAAACGGCACAAGTCA
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAAGTTCATCTG
 CACCACCGCAAGCTGCCGTGCCCTGGCCACCCCTGTCACCCCTGACCTACGGCGT
 GCAGTGCTTCAGCCGCTACCCGACCATGAAGCAGCACGACTCTTCAAGTCCG
 GCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCAAGGACGACGGCAACTACAAGAC
 50 CGCGCCGAGGTGAAGTCGAGGGCGACACCTGGTGAACCGCATCGAGCTGAAGGGCAT
 CGACTTCAAGGAGGACGCCAACATCCTGGGGACAAGCTGGAGTACAACACTACAACGCCA
 CAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCG
 CCACAAACATCGAGGACGCCAGCGTGCAGCTGCCGACCACTACCAGCAGAACCCCCAT
 CGGGGACGGCCCGTGTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCCCTGAG
 55 CAAAGACCCCAACGAGAAGCGCGATCACATGGCTCTGCTGGAGTTGTGACCCGCCGG
 GATCACTCTCGGCATGGACGAGCTGACAGTAAAGCGGCCGACTCTAGATCATAATC
 AGCCATACCACTTGTAGAGGTTTACTTGTGTTAAAAAACCTCCACACCTCCCCCTG
 AACCTGAAACATAAAATGAATGCAATTGTTGTTAACATCGATAAAATAAGATT
 ATTAGTCTCCAGAAAAGGGGGAAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGC
 60 TTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTCA

ATCAAGGT CAGGAACAGATGGAACAGCTGAATATGGGCCAACAGGATATCTGTGGTAAG
 CAGTCCCTGCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGGCCAACAG
 GATATCTGTGGTAAGCAGTTCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCAGAT
 GCGGCCAGCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCCCAAGGA
 5 CCTGAAATGACCTGTGCCTATTGAACTAACCAATCAGTTGCTTCGCTCTGTTC
 GCGCGCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTGGGGCGCCAG
 TCCTCCGATTGACTGAGTCGCCGGTACCCGTATCCAATAAACCCCTTGCACTTGC
 ATCCGACTTGTGGTCTCGCTGTTCCCTGGGAGGGTCTCCTGTAGTGATTGACTACCCGT
 CAGGGGGGCTTTCATTTGGGGCTCGTCCGGATGGGAGACCCCTGCCAGGGACCA
 10 CCGACCCACCACCGGGAGGTAAAGCTGCCAGCAACTTATCTGTCTGATTGTCTA
 GTGTCTATGACTGATTATGCGCTGCGTGGTACTAGTAGCTAACTAGCTCTGTATC
 TGGGGGACCCGGTGGGAACTGACGAGTTCGAAACACCCGGCCAACCCCTGGGAGAGGA
 ATTCTCATGTTGACAGCTTATCATCGATAAGCTTTGCAAAAGCTAGGCCTCCAAA
 AAGCCTCTCACTACTCTGGAATAGCTCAGAGGCCAGGGCCCTGGCCTTGCACTAA
 15 ATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGGAACTGGGGAGTTAGGGC
 GGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGTTGC
 ATACTTCTGCCGCTGCTGGGGAGCCTGGGACTTTCCACACCTGGTTGCTGACTAATTGAGA
 TGCACTGCTTGCACTACTCTGCCGCTGGGAGCCTGGGACTTTCCACACCTAACTGA
 CACACATTCCACAGCCGATCCTCACGCCGGACGCATCGGCCGGCATCACCGCGCC
 20 ACAGGTGCGGTTGCTGGCCCTATATGCCGACATCACCGATGGGGAGATGGGCTCGC
 CACTTCGGGCTCATGAGCGCTTGTTCGGCGTGGTATGGTGGCAGGGCCCGTGGCCGG
 GGACTGTTGGGCGCCATCTCCTTGCACTGCACCATTCCTGCCGGCGGTGCTCAACGGC
 CTCAACCTACTACTGGGCTGCTTCTAATGCAGGAGTCGCATAAGGGAGAGCGTCAACCG
 ATGCCCTGAGAGCCTCAACCCAGTCAGCTCCTCCGGTGGCGCGGGCATGACTATC
 25 GTGCCGCACTTATGACTGTCTTCTATCATGCAACTCGTAGGACAGGTGCCGGCAGCG
 CTCTGGGTCACTTTCGGCGAGGACCGCTTCTGCTGGAGCGCAGCGATGATCGGCTGTG
 CTTGCGGTATTCGGAATCTGCACGCCCTCGCTCAAGCCTCGTCACTGGTCCC GCCACC
 AACGTTTGGCAGAAGCAGGCCATTATGCCGGCATGGCGGCGACCGCTGGCTAC
 GTCTTGCTGGGTTGCCACGCGAGGCTGGATGGCTTCCCTTCCCTTATGATTCTCGCT
 30 TCCGGCGGATCgggatGCCGTTGCAGGCCATGCTGTCCAGGCAGGTAGATGACGAC
 CATCAGGGACAGCTCAAGGATCGCTCGCGCTCTTACAGCCTAACCTCGATCACTGGA
 CCGCTGATGTCACGGGATTATGCCGCTCGCGAGCACATGGAACGGGTTGGCATGG
 ATTGTAAGGCCGCCCTATACCTGTCTGCCCTCCCGCTGGTGCCTGGTGCATGGAGC
 CGGGCCACCTGACCTGAATGGAAGGCCGGCCACCTCGCTAACGGATTACCAACTCAA
 35 GAATTGGAGCCAATCAATTCTGCCGAGAACGTGAATGCGAACCAACCCCTGGCAGA
 ACATATCCATCGCTCCGCATCTCAGCAGCCGACGCCGCATCTGGCAGCGTTG
 GGTCCTGGCACGGGTGCGCATGATGCTGCTCTGCTGGTGGAGGACCCGGCTAGGCTGG
 GGGTTGCCTACTGGTAGCAGAATGAATCAGCAGACGGCAACGTGAAGCGACT
 GCTGCTGCAAAACGTCGACCTGAGCAACACATGAATGGTCTCGGTTCCGTGTT
 40 CGTAAAGTCTGGAACCGGGAAAGTCAGGCCCTGCACCATATGTCGGATCTGCATCG
 CAGGATGCTGCTGGCTACCCCTGGAACACCTACATCTGATTAACCGAAGCGCTGGCATT
 GACCCCTGAGTGAATTCTCTGGTCCCGCGCATCCATACCGCCAGTTGTTACCCCTCAC
 AACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGATCTGAGCATCCTCTC
 GTTCACTCGGTATCATTACCCCATGAACAGAAATTCCCTTACACGGAGGCATCAAGT
 45 GACCAAAACAGGAAAAAACCGCCCTAACATGCCGCTTATCAGAACGCCAGACATTAAC
 GCTCTGGAGAAAACCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTAATCGCT
 TCACGACCACCGTGTAGGAGCTTACCGCAGCTGCCCTCGCGTTGGTGTGACGGTGA
 AACCTCTGACACATGCAGCTCCGGAGACGGTACAGCTTGTCTGTAAGCGGATGCCGG
 GAGCAGACAAGCCGTCAGGGCGCGTCAGCGGGTGTGGGGGTGTCGGGGCGCAGCCAT
 50 GACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACATGCGCAGAGCAG
 ATTGTACTGAGAGTGCACCATATGCCGTGAAATACCGCACAGATGCGTAAGGAGAAAA
 TACCGCATCAGCGCTTCCGCTCCTCGCTACTGACTCGCTCGCTCGTCTGG
 CTGCGCGAGCGGTATCAGCTACTCAAAGGCCGTAATACGGTTATCCACAGAACAGGG
 GATAACGCAGGAAAGAACATGTGAGCAGAACAGGCCAGCAAAAGGCCAGGAACCGTAAAAG
 55 GCCCGTTGCTGGCTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGA
 CGCTCAAGTCAGGGTGGCAGAACCCGACAGGACTATAAAGATACCGAGCGTTCCCG
 GGAAGCTCCCTCGTGCCTCTCCGTTCCGACCCCTGCCGCTTACCGGATACCTGTCCG
 TTCTCCCTCGGGAAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGTTG
 GTGTAGGTGCTCGCTCCAAGCTGGCTGTGCACTGACGAAACCCCGTTAGCCGACCG
 60 TGCGCCTATCCGTAACATCGTCTGAGTCCAACCCGGTAAGACACGACTTATCGCCA

CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAG
 TTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGCAGATTTGGTATCTGCCT
 CTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGGCAAAACAAACC
 ACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCCAGAAAAAAAGGA
 5 TCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACCTCA
 CGTTAAGGGATTTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTTAAAT
 TAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTAGCTGACAGTTAC
 CAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTCGTTCATCCATAGTT
 10 GCCTGACTCCCCGTGCTGAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGT
 GCTGCAATGATACCGCGAGACCCACGCTACCCGCTCCAGATTATCAGCAATAACCAAG
 CCAGCCGGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGCTCCATCCAGTCT
 ATTAATTGTTGCCGGAAAGCTAGAGTAAGTAGTCTGCCAGTTAATAGTTGCGCAACGTT
 GTGCCATTGCTGCAGGCATCGTGGTGTACGCTCGTCGTTGGTAGGCTTCATTGAGC
 15 TCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGCAAAAAGCGGTT
 AGCTCCTCGGTCTCCGATCGTGTGTCAGAAGTAAGTGGCCGAGTGTATCACTC
 ATGGTTATGCCAGCACTGCATAATTCTTACTGTCATGCCATCCGTAAGATGCTTTCT
 GTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGGCGGACCGAGTTGC
 TCTTGCCTGGCGTCAATACGGATAATACCGCGCACATAGCAGAACCTTAAAGTGCTC
 ATCATTGAAAAGCTTCTCGGGGGCAAACCTCTCAAGGATCTTACCGCTGTTGAGATCC
 20 AGTTGATGTAACCCACTCGTCACCCAACTGATCTTCAGCATCTTACTTACCCAGC
 GTTTCTGGGTGAGCAAAAACAGGAAGGCAAATGCCGAAAAAGGAAATAAGGGCGACA
 CGGAAATGTTGAATACTCATACTCTCCTTTCAATATTATTGAGCATTATCAGGGT
 TATTGTCATGAGCGGATACATATTGAGTATTAGAAAATAACAAATAGGGTT
 CCGCGCACATTCCCCGAAAAGTGCCACCTGACGCTAAGAACCAATTATCATGACA
 25 TTAACCTATAAAATAGGCGTATCACGAGGCCCTTCGTCGCGGTTGGTAGGAC
 GTGAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT
 GCCGGGAGCAGACAAGCCGTCAGGGCGCGTACGGGGTTGGCGGGTGTGCGGGCTGG
 CTAACTATGCGGATCAGAGCAGATTGACTGAGAGTGCACCATATGACGCTCTCCCT
 TATGCGACTCTGCATTAGGAAGCAGCCCAGTAGTAGGTTAGGGCCGTTGAGCACCGCCG
 30 CCGCAAGGAATGGTGCATGCAAGGAGATGGGCCAACAGTCCCCCGGCCACGGGGCTG
 CCACCATACCCACGCCAAAACAGCGCTCATGAGCCGAAAGTGGCGAGCCGATCTTCCC
 CATCGGTATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTAGGCCG
 CCACGATGCGTCCGGCTAGAGGATCTGGCTAGCGATGACCTGCTGATTGGTAGCTGA
 CCATTCCGGGGTGCAGAACGGCTTACCAAGAAAACCTAGAAGGTTGCTCCAACAAACCG
 35 ACTCTGACGGCAGTTACGAGAGAGATGATAGGCTCTGTTCAAGTAAAGCCAGATGCTACA
 CAATTAGGCTGTACATATTGTCGTTAGAACCGGGCTACAATTAAATACATAACCTTATGT
 ATCATACACATACGATTAGGTGACACTATAGAATAACAGCTGAAAGATCTCCAGCTTG
 GGCTGCAGGTGCACTAGAGTCCGTTACATAACTTACGGTAAATGGCCGCTGGCTGA
 CCGCCCAACGACCCCCCCCATTGACGTCAATTAGACGTATGTTCCCATAGTAACGCCA
 40 ATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCA
 GTACATCAAGTGTATCATATGCCAAGTACGCCCTATGACGTCAATGACGGTAAATGG
 CCCGCCTGGCATTATGCCAGTACATGACCTATGGGACTTCCACTTGGCAGTACATCAATGGGAGT
 TACGTATTAGTCATCGTATTACCATGGTAGCGGTTGGCAGTACATCAATGGGAGT
 GGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGT
 45 TTGTTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGAACAACCGCCCTGGCT
 ACGCAAATGGCGGTAGGCGTAGGGCTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTG
 ACCCGGCCAGTCTCCGATAGACTGCGTCGCCGGTACCCGTTCCCTGGGAGGGCTCCTGAGTGA
 CTTGCTGTTGCATCCGAACTCGGGTCTCGCTGTTGGAGGGTCTGAGTGA
 TTGACTACCCACGACGGGGCTTTCATTGGGGCTCGTCCGGGATTGGAGACCCCTG
 50 CCCAGGGACCACCGACCCACCACCGGGAGGTAAGCTGGCAGCAACTTATCTGTCTGT
 CCGATTGTCAGTGTCTATGTTGATGTTACGCGCTCGTCTGTAAGTTAGCTAACT
 AGCTCTGTATCTGGCGACCCGTGGAACTGACGAGTTCTGAAACACCCGGCCGCAACC
 CTGGGAGACGTCCCAGGGACTTTGGGGCCCTTTGTTGGCCCGACCTGAGGAAGGGAGT
 CGATGTGGAATCCGACCCCGTCAAGGATATGTTGCTGAGGAGACGAGAACCTAAAAC
 55 AGTTCCCGCCTCCGTCGAATTGTCGTTGGAACCGAAGCCGCGCTTGT
 TGCTGCAGCGCTGCAGCATCGTTCTGTTGCTGACTGTTCTGTATTG
 CTGAAAATTAGGGCCAGACTGTTACCACTCCCTTAAGTTGACCTAGGTCACTGGAAAG
 ATGTCGAGCGGATCGCTACAACCAAGTCGGTAGATGTCAAGAAGAGACGTTGG

GTTACCTCTGCTCTGCAGAATGGCCAACCTTAACGTGGATGGCCGAGACGGCACC
 TTTAACCGAGACCTCATACCCCAGGTTAAGATCAAGGTCTTTCACCTGGCCGCATGGA
 CACCCAGACCAGGTCCCCATACATCGTACCTGGAAAGGCTGGCTTGACCCCCCTCCC
 5 TGGGTCAGGCCCTTGTACACCCATAAGCCTCCGCCTCTCCCTCCATCCGCCGTCT
 CTCCCCCTTGAACCTCCTCGTGCACCCCGCCTCGATCCTCCCTTATCCAGCCCTCACT
 CCTTCTCTAGGCGCCGAAATTGTTAACTCGAGAGGCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTGACTGGAAAACCTGGCGTTACCG
 10 CAACTTAATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCC
 CGCACCGATGCCCTTCCAACAGTGGCGAGCCTGAATGGCGAATGGCGCTTGCGCTGG
 TTTCCGGCACAGAACGGTGGCAAAGCTGGCTGGAGTGCAGTCTCCTGAGGCCGAT
 ACTGTCGTCGCCCCCAAACGGCAGATGCACGGTTACGATGCCCATCTACACCAAC
 GTAACCTATCCCATTACGGTCAATCCGCCGTTGTTCCACGGAGAACCGACGGGTTGT
 TACTCGCTCACATTTAATGTTGAAAGCTGGCTACAGGAAGGCCAGACCGAATTATT
 15 TTTGATGGCGTTAATCGCGTTCATCTGTGGTCAACGGGCGCTGGGTCGGTACGGC
 CAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 CGCCTCGCGGTGATGGTGCCTGGAGTGCAGGCAAGTATCTGGAGATCAGGATATG
 TGGCGGATGAGCGGCATTTCCTGACGTCCTGCTGCATAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGCTTAATGATGATTTCAGCCGCGCTGACTGGAGGCT
 20 GAAGTTCAGATGTGCGCGAGTTCGGTGAACCTACGGTAACAGTTCTTATGGCAG
 GGTGAAACGCAGGTCGCCAGCGGCACCGCCCTTCGGCGGTGAAATTATCGATGAGCGT
 GGTGGTTATGCCATCGCGTACACTACGTCTGAACGTCGAAACCGAAACTGTGGAGC
 GCCGAAATCCGAATCTCTATCGCGGTGGTGAACTGCACACGCCGACGGCACGCTG
 ATTGAAGCAGAACGCTCGGATGTCGGTTCCCGGAGGTGCGGATTGAAAATGGCTGCTG
 25 CTGCTGAACGCAAGCCGTTGCTGATTGAGGCGTTACCGTCACGAGCATCATCCTCTG
 CATGGTCAGGTCAATGGATGAGCAGACGATGGTGCAGGATATCTGCTGATGAAGCAGAAC
 AACCTTAACGCCGTGCGTGTGCAATTACCGAACATCCGCTGTTGCTACACGCTGTG
 GACCGCTACGCCGTGATGTGGTGGATGAAGCCAATTGAAAACCCACGGCATGGGCCA
 ATGAATCGCTGACCGATGATCCGCGCTGGTACCGCGATGAGCGAACGGCTAACCGCA
 30 ATGGTGCAGCGCAGTCGAATACCCGAGTGTGATCATCTGGTCGCTGGGAATGAATCA
 GCCCACGGCGTAATCACGACGCGCTGATCGCTGGATCAAATCTGCGATCCTCCCG
 CCGTGCAGTATGAAGGGCGGAGCCGACACACGGCACCGATATTATTCGCCGATG
 TAGCGCGCGTGGATGAAGACCAGCCCTCCCGCTGTGCCGAAATGGTCCATCAAAAAA
 TGGCTTCGCTACCTGGAGAGACGCCCGCTGATCCTTGCAGAACGCCCACGCGATG
 35 GGTAAACAGTCCTGGCGTTTCGCTAAATACTGGCAGGCGTTGCTCAGTATCCCCTTA
 CAGGGCGGCTCGTCTGGACTGGGATGAGTCAGTCGCTGATTAATATGATGAAAACGGC
 AACCCGTTGGCTGGCTACGGCGGTGATTTGGCGATACGCCAACGATGCCAGTTCTGT
 ATGAACGGTCTGGTCTTGGCAGCCGACGCCGATCCAGCGCTGACGGAAGCAAAACAC
 CAGCAGCAGTTTCCAGTCCGTTATCCGGCAAACCATCGAAGTGACCAGCGAACATC
 40 CTGTCGGTCATAGCGATAACGAGCTCTGCACGGATGGTGGCGCTGGATGGTAAGCCG
 CTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAAGGTAACAGTTGATTGAACTG
 CCTGAACCTACCGCAGCGGGAGAGGCCGGCAACTCTGGCTCACAGTACGCGTAGTGAA
 CGCAACCGCAGCCGATGGTCAGAACGGCTCCCGCGTCCCACGCCATCCCGCATCTGACC
 GCGGAAAACCTCAGTGTGACGCTGGGATGGCGATGGCAATTACCGCCAGTGGCGTCTG
 45 AGCCAAATGGATTTTCAGATGTTGATGGGATGGCGATAACGACATGGCTGAAAGGCAATT
 GGCTTTCTTCACAGATGTTGATGGGATGGCGATAACGACATGGCTGAAAGGCAACGCG
 CAGTCACCCGTGACCGCTGGGATAACGACATGGCTGAAAGGCGGGGCAATTACCGCCAGT
 CCTAACGCCCTGGGTCGAACGCTGGGAGGGGGGGGATTCACCGGGCAAGCAGCGTTG
 TTGCACTGACGGCAGATAACACTGGCTGATGGCTGCTGATTACCGCTCACCGCTGG
 50 CAGCATCAGGGAAAACCTTATTTACGCCGAAACCGTACGGGATGGTGGTAGTGGT
 CAAATGGCGATTACCGTTGATGGTAAGTGGCGAGCGATAACCGCATTCCGGCGGATT
 GGCGTGAACGCGCTGGCGCAGGTTAGCAGAGCGGGTAAACTGGCTGGATTAGGGCCG
 CAAGAAAACCTACCCGACCGCCCTACTGCCGCTGTTTGACCGCTGGGATCTGCCATTG
 TCAGACATGTATACCCGTAACGCTTCCCGAGCGAAAACGGTCTGGCTGCCGAGCGC
 55 GAATTGAATTATGGCCCACACCAGTGGCGCGACTTCAGTCAGTCACATCAGCCGCTAC
 AGTCAACAGCAACTGATGGAAACCGCCATGCCATCTGCTGACGCCAGAAGAAGGCACA
 TGGCTGAATATCGACGGTTCCATATGGGATTGGTGGCGACGACTCTGGAGGCCGTCA
 GTATGGCGGAATTCCAGCTGAGCGCCGGTGCCTACCATACCGAGTGGCTGGTCA
 AAATAATAATAACCGGGCAGGGGGATCCGAGATCCGGCTGTGGAATGTGTCA
 60 GGGTGTGGAAAGTCCCCAGGCTCCAGCAGCGAGCGAGATGCAAAGCATGCCGTGAGGA

GTGGGGAGGCACGATGGCGCTTGGTCAGGGCGATCGGCCATTAGCCATATTATTCA
 TTGGTTATATAGCATAAATCAATATTGGCTATTGGCCATTGCATACGTTGTATCCATATC
 ATAATATGTACATTTATGGCTCATGTCCAACATTACGCCATGGACATTGATTAT
 5 TGACTAGTTATTAATAGTAATCAATTACGGGTCAATTAGTCATAGCCATATATGGAGT
 TCCGCGTTACATAACTTACGGTAAATGGCCCGCTGGCTGACCGCCAAACGACCCCCGCC
 CATTGACGTCAATAATGACGTATTTCCCATAGTAACGCCAATAGGGACTTCCATTGAC
 GTCAATGGGTGGAGTATTTACGGTAAACTGCCACTGGCAGTACATCAAGTGTATCATA
 10 TGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCC
 AGTACATGACCTATGGGACTTCCCTACTTGGCAGTACATCACGTATTAGTCATCGCTA
 TTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGGATAGGGTTTGACTCAC
 GGGGATTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTGGCACCAAAATC
 AACGGGACTTCAAATGCGTAACAACCTGCCATTGACGCAAATGGCGTAGGC
 ATGTACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGA
 GACGCCATCCACGCTGTTTGACCTCATAGAACGACACC GGACCCGATCCAGCCTCCGCG
 15 GCCCCAAGCTTGGGATCCACCGTCGCCACCATGGTAGGCAAGGGGAGGAGCTGTT
 CACCGGGGTGGTGGCCATCCTGGTCGAGCTGGACGGCGACGTAACGCCACAAGTTCAAG
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAAGTTCATCTG
 CACCACGGCAAGCTGCCGTGCCCTGGCCACCCCTCGTAGGACCCCTGACCTACGGCGT
 GCAGTGCTCAGCCGCTACCCGACCACATGAAGCAGCACGACTTCTCAAGTCCGCCAT
 20 GCCCGAAGGCTACGTCAGGGAGCGCACCACCTCTCAAGGACGACGGAACTACAAGAC
 CCGCGCCGAGGTGAAGTTGAGGGGAGACACCCCTGGTAGACCGCATCGAGCTGAAGGGCAT
 CGACTTCAAGGAGGAGCGCAACATCCTGGGGACAAGCTGGAGTACAACACTACAACAGCCA
 CAACGTCTATATCATGGCGACAAGCAGAACGACCGCATCAAGGTGAACCTCAAGATCCG
 CCACAAACATCGAGGACGGCAGCGTCAAGCTGCCGACCACTACCGCAGAACCCCCAT
 25 CGGGCACGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCCCTGAG
 CAAAGACCCCAACGAGAACGCGATCACATGGCCTGCTGGAGTTGCTGACCGCCGCCGG
 GATCACTCTCGCATGGACGAGCTGACAAGTAAAGCGGCCGACTCTAGATCATATACT
 AGCCATACCACATTGTAGAGGTTTACTTGCTTAAAAAACCTCCACACCTCCCCCTG
 AACCTGAAACATAAAATGAATGCAATTGTTGTTAACATCGATAAAAATAAGATTT
 30 ATTAGTCTCCAGAAAAAGGGGGATGAAAGACCCCACCTGTAGGTTGGCAAGCTAGC
 ATAACCTCGATAATGTATGCTATACGAAAGTTATTCTAGAGAACCATCAGATGTTCCAG
 GGTGCCCAAGGACCTGAAATGACCTGCTTATTGAACTAACCAATCAGTTCGCTT
 CTCGCTTCTGTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCA
 CTCGGGGCGCCAGTCCCGATTGACTGAGTCGCCCCGGTACCCGTGATCCAATAAAC
 35 CTCTGCACTTCGATCCGACTTGTGGTCTCGCTGTTGGAGGGTCTCTGAGTG
 ATTGACTACCCGTAGCGGGGTCTTCATTGGGGCTCGTCCGGATCGGGAGACCC
 TGCCCAAGGGACCACCGACCCACCAACGGGAGGTAAGCTGGCTGCCCTCGCGTTTGG
 ATGACGGTGAAAACCTCTGACACATGCACTGCCGGAGACGGTCACAGCTGTGTAAG
 CGGATGCCGGGAGCAGAACACGGCTCAGGGCCGTAGCGGGTGTGGCGGGTGTGCGGG
 40 GCGCAGCCATGACCCAGTCACGTAGCGATAGCGAGGTGTTACTGGCTTAACATGCGC
 ATCAGAGCAGATTGACTGAGAGTGCACCATATGCGGTGAAATACCGCACAGATGCGT
 AAGGAGAAAATACCGCATAGCGCTTCCGCTCCTCGTCACTGACTCGCTCGCCTC
 GGTGTTGGCTGCGCGAGCGGTATCAGCTCAACTCAAAGCGGTAAATACGGTTATCCAC
 AGAACATCAGGGGATAACCGCAGGAAAAGAACATGTGAGCAAAGGCCAGCAAAGGCCAGGAA
 45 CCGTAAAAGGCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCTGACGAGCATCA
 CAAAAATCGACGCTCAAGTCAGAGTGGCGAAACCCGACAGGACTATAAGATACCG
 GTTTCCCCCTGGAAGCTCCCTCGTGGCTCTCTGTTCCGACCCCTGCCCTTACCGGATA
 CCTGTCGCCCTTCTCCCTGGGAAGCGTGGCGCTTCTCATAGCTACGCTGAGGTA
 TCTCAGTTGGTAGGTCGTTGCTCCAGCTGGCTGTGACGAAACCCCCCGTTCA
 50 GCCGACCGCTGCCATTACCGTAACTATGCTTGTAGGCTCAACCCGGTAAGACACGA
 CTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCGAGAGCGAGGTATGAGGCG
 TGCTACAGAGTTCTGAAAGTGGGGCTAATACGGCTACACTAGAAGGACAGTATTTGG
 TATCTGCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTCTGATCCGG
 CAAACAAACCCCGCTGGTAGCGGGTTTTGTTGCAAGCAGCAGATTACCGCAG
 55 AAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGCTCAGGGAA
 CGAAAAACTCACGTTAAGGGATTGGTCACTGAGATTATCAAAAGGATCTCACCTAGAT
 CCTTTAAATTAAAATGAAGTTAAATCACTAAAGTATATGAGTAAACTTGGTC
 TGACAGTTACCAATGCTTAATCAGTGGAGGACCTATCTCAGCGATCTGCTATTGTT
 ATCCATAGTTGCCCTGACTCCCCGTGTTAGATAACTACGGATAACGGAGGGCTTACCATC
 60 TGGCCCCAGTGTGCAATGATAACCGCGAGACCCACGCTCACCGGCTCAGATTATCAGC

AATAAACCCAGCCAGCGGAAGGGCCGAGCGCAGAAGTGGCTCTGCAACTTTATCCGCCTC
 CATCCAGTCTATTAAATTGTCGCCAGGAAAGCTAGAGTAAGTAGTCGCCAGTTAATAGTT
 GCGCAACGTTGTGCCATTGCTGCAGGCATCGTGGTGCACGCTCGTGTGGTATGGC
 TTCATTCACTCGCTCCGGTCCCCAACGATCAAGGCAGTTACATGATCCCCCATGTTGTGCA
 5 AAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTGTCAAGAAGTAAGTTGGCCAGTGTT
 ATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCACTGCCATCCGTAAGATG
 CTTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGACC
 GAGTTGCTCTGCCGGCGTCAACACGGATAATACCGGCCACATAGCAGAACCTTAAA
 AGTGCTCATCATTGGAAAACGTTCTGGGGCGAAAACCTCAAGGATCTTACCGCTGTT
 10 GAGATCCAGTTGATTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTACTTT
 CACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGGAAATAAG
 GCGCACCGAAATGTTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTAA
 TCAGGGTTATTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAAT
 AGGGTTCCCGCACATTCCCCGAAAGTGCCACCTGACGTCAAGAAACCATTATTAT
 15 CATGACATTAACCTATAAAATAGCGTATCACGAGGCCCTTCGCTTCAAGAATTCA
 ACCAGATCACCGAAAACGTCCCTCAAATGTGCCCCCTCACACTCCAAATTGCGGGC
 TTCTGCCTCTTAGACCACTCTACCCATTCCCCACACTCACCGGAGCCAAGCCGCGGCC
 CTTCGTTCTTGCTTGAAGACCCCACCCGTAGGTGGCAAGCTAGCGATGACCTG
 CTGATTGGTCGCTGACCATTCCGGGTGCGGAACGGCGTACAGAAACTCAGAAGGT
 20 TCGTCCAACCAAACCGACTCTGACGGCAGTTACGAGAGAGATGATAGGTCTGCTTCAG
 TAAGCCAGATGCTACACAATTAGGCTTGTACATATTGTCGTTAGAACGCGGCTACA
 ATACATAACCTTATGTATCATACACATACGATTAGGTGACACTATAGAATAAGCTGG
 AAGATCTTCAGCTTGGGCTGAGGTGACTCTAGAGTCGTTACATAACTACGGTAAA
 TGCCCCGCGCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGT
 25 TCCCATAGTAACGCCAATAGGACATTCCATTGACGTCAATGGGTGGAGTATTACGGTA
 AACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGT
 CAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTATGGACTTCC
 TACTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCGGTTTGGCA
 GTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAAGTCTCACCCAT
 30 TGACGTCAATGGAGTTTGGCACCAAAATCAACGGGACTTCCAAAATGCGTAA
 GAACTCCGCCCAATTGACGCAAATGGCGGTAGCGTGTACGGTGGGAGGTCTATATAAG
 CAGAGCTGTTAGTGAACCGCGCCAGTCTTCGATAGACTGCGTCGCCGGGTACCCGT
 ATTCCCAATAAAAGCTTGTCTGCTTGTACATCGTGGTCTCGCTGTTCTGGAG
 GGTCCTCTGAGTGAATTGACTACCCACGACGGGGCTTCAATTGGGGCTCGTCCGG
 35 GATTGGAGACCCCTGCCAGGGACCAACGCCACCCACCGGGAGGTAAAGCTGGCAGCA
 ACTTATCTGTCGTCGCCATTGCTAGTGTCTATGTTGATGTTATGCGCTGCGTCTG
 TACTAGTTAGCTAACTAGCTCTGTATCTGGGGACCCGTGGAACTGACGAGTTCTGA
 ACACCCGGCCGCAACCCCTGGAGACGTCCACGGGACTTGGGGCCGTTTGTGGCCCG
 ACTGAGGAAGGGAGTCGATGGAATCCGACCCCGTCAGGATATGTTGCTGGTAGGA
 40 GACGAGAACCTAAACAGTCCCGCTCCGCTGAAATTGCTTGGTTGGAACCGA
 AGCCCGCGCTTGTCTGCTGCGCAGCGCTGCAGCATCGTCTGTGTTCTGACT
 GTGTTCTGTTGCTGAAATTAGGGCAGACTGTACCAACTCCCTTAAGTTGACC
 TTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACACCAGTCGGTAGATGTCAGAAC
 AGACGTTGG
 45 PCGCLNGFR (SEQ ID No 57)

GTTACCTTCTGCTCTGCAAGATGCCAACCTTAACGTCGGATGCCGAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTCACTGCCGATGGA
 50 CACCCAGACCAAGGCTCCCTACATCGTGCACCTGGAAAGCCTGGCTTGTGACCCCCCTCCC
 TGGGTCAAGCCCTTGTACACCCCTAACGCTCCGCTCTTCCCTCATCCGCCCCGTCT
 CTCCCCCTTGAACCTCTCGTGCACCCGCTCGATCTCCCTTATCCAGCCCTCACT
 CCTTCTCTAGGCGCCGAAATCGTTAATCGAGGATCCACCGGTGCCACCATGGTGAGC
 AAGGGCGAGGAGCTGTTACCGGGGTGGTGCCATCCTGGTCGAGCTGGACGGCAGCTA
 55 AACGGCCACAAGTTCAGCGTGTCCGGCAGGGCGAGGGGAGCTACGGCAAGCTG
 ACCCTGAAGTTCATCTGCACCAACCGCAAGCTGCCGTGCCCTGGCCACCCCTCGTGC
 ACCCTGACCTACGGCGTGCAGTGCTCAGCCGCTACCCGACCACATGAAGCAGCACGAC
 TTCTTCAGTCGCTCATGCCGAAGGCTACGTCCAGGAGCGCACCACCTCTCAAGGAC
 GACGGCAACTACAAGACCCCGCAGGTGAAGTTGAGGGCGACCCCTGGTGAACCGC
 60 ATCGAGCTGAAGGGATCGACTTCAGGAGGACGGCAACATCCTGGGCACAAGCTGGAG

TACAACATACAACAGCCACAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAG
 GTGAACCTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCAACTAC
 CAGCAGAACACCCCCATCGCGACGGCCCCGTGCTGCTGCCGACAACCAACTACGTGAGC
 ACCCAGTCCGCCCTGAGCAAAGACCCAAACGAGAAGCGGATCACATGGTCCTGCTGGAG
 5 TTCGTGACCGCCGCCGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCCT
 AGGGGTCTTCCCCCTCGCAAAGGAATGCAAGGTCTGTTGAATGCGTAAGGAAGCA
 GTTCTCTGGAAGCTTCTTGAAGACAAACAGTCTGAGCTACCGGAGTTCTACCGGAGTGAA
 AACCCCCCCTCGGCACAGGTGCCTCTGCCAAAAGCCACCGAGTTGGTCACTGC
 10 TGCCTGAGGCTGGACGACCTCGCGAGTTCTACCGGAGTGAAATCCGTCGGCATCCAG
 GAAACCAGCAGCGGCTATCCGCGATCCATGCCCGAACAGCAGGAGTGGGGAGGCACG
 ATGGCGCTTGGTCAGGGCGATCCGCCATTAGCCATATTATTGATTGGTTATATAGC
 ATAAATCAATATTGGCTATTGCCATTGACATACGTTGATCCATATCATAATATGTACAT
 TTATATTGGCTCATGTCCAACATTACCGCCATTGACATTGATTGACTAGTTATT
 ATAGTAATCAATTACGGGTCTTAGTCTAGCCCATAATGGAGTTCCGCGTACATA
 15 ACTTACGGTAAATGGCCGCCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAAT
 AATGACGTATGTCCTAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGA
 GTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC
 CCCTATTGACGTCAATGACGGTAAATGGCCGCCCTGGCATTATGCCAGTACATGACCTT
 ATGGGACTTCTACTTGGCAGTACATCTACGTTAGTCATCGTATTACCATGGTGT
 20 GCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAG
 TCTCCACCCCATTGACGTCAATGGGAGTTTGTGACGCCAAATCAACGGGACTTCC
 AAAATGTCGTAACAACCTCCGCCATTGACGCAAATGGGGGTAGGCATGTACGGTGGGA
 GGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACG
 CTGTTTGACCTCCATAGAAGACACGGGACCGATCCAGCCTCCGCCGCCAACGTTAC
 25 CATGGGGCAGGTGCCACCGGCCGCGCATGGACGGGCCGCGCTGCTGTTGCTGCT
 TCTGGGGGTGTCCTTGAGGTGCAAGGAGGCATGCCACAGGCCGCTGTACACACAG
 CGGTGAGTGTGCAAAAGCTGCAACCTGGCGAGGGTGTGGCCAGGCCGCTGTGGAGCCA
 CCAGACCGTGTGAGCCTGCCGGACAGCGTGACGTTCTCCGACGTGGTGAACGCGAC
 CGAGCCGTGCAAGCCGTGACCGAGTGCAGGGCTCCAGAGCATGTCGGCGCCGTGCGT
 30 GGAGGCCGACGCCGTGCGCCTACGGCTACTACCAGGATGAGACGACTGG
 GCGCTGCGAGGCGTGCCTGCGAGGGCTGGGCCCTGTGGTCTCTGCCAGGA
 CAAGCAGAACACCGTGTGCGAGGAGTGCCCGACGGCACGTATCCGACGAGGCCAACCA
 CGTGGACCCGTGCTGCCCTGCAACCGTGTGCGAGGACACCGAGGCCAGCTCCGCGAGTG
 CACACGCTGGCCGACGCCGAGTGCAGGGAGATCCCTGGCGTTGGATTACACGGTCCAC
 35 ACCCCCCAGAGGGCTGGACAGCACGCCAACGACCCAGGAGGCCCTGAGGCACCTCCAGA
 ACAAGACCTCATAGCCAGCACGGTGGCAGGTGTTGACCATAGTGTGGCAGCTCCCA
 GCCCGTGGTACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCTGGC
 TGCTGTGGTTGGCCCTGTGGCTACATAGCCTCAAGAGGTGAAAGCTGCTGAGT
 CGACTCTAGAGGATCCCCAACATCGATAAAAAGATTTATTAGTCAGAAAAAA
 40 GGGGGGAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCTTAAGTAAACGCCATTG
 CAAGGCATGAAAAAATACATAACTGAGAATAGAGAAGTTCAAGATCAAGGTGAGGAGA
 TGGAACAGCTGAATATGGCCAAACAGGATATCTGTGGTAAGCAGTCCCTGCCGGCTC
 AGGGCCAAGAACAGATGGAACAGCTGAATATGGCCAAACAGGATATCTGTGGTAAGCAG
 TTCCCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCCGTCAGGCCCTCAGCA
 45 GTTTCTAGAGAACATCAGATGTTCCAGGGTGCCTGCCAACAGGACCTGAAATGACCTGTG
 CTTATTGAACTAACCATCAGTTGCTCTCGCTCTGCTGAGTGCAGTCCGACTTGTGGTCTCG
 AGCTCAATAAAAGAGCCCACAACCCCTCACTGGGGGCCAGTCCGACTTGTGGTCTCG
 CGCCCGGGTACCGTGTATCCAATAACCCCTTGCAAGTCCGACTTGTGGTCTCG
 CTGTTCCCTGGAGGGTCTCCTCTGAGTGAATGACTACCGTCAGGGGGGTCTTCATT
 50 TGGGGGCTCGTCCGGGATCGGAGACCCCTGCCAGGGACCCACGCCACCGAGGAG
 GTAAGCTGGCTGCCCTCGCGTTGGTGTAGCGGTGAAACCTCTGACACATGCCAGCT
 CCCGGAGACGGTCACAGCTGTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAAGGG
 CGCGTCAGGGGTGTGGCGGGTGTGGGGCGCAGCCATGACCCAGTCACGTAGCGATAG
 CGGAGTGTATACTGGCTTAACATAGCGGCATCAGAGCAGATTGACTGAGAGTGCACCAT
 55 ATGCGGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCCCTTCC
 GCTTCCCTCGCTCACTGACTCGCTCGCCTGGCTGGCTGCCGAGCGGGTATCAGCT
 CACTCAAAGCGGTAAACGGTTATCCACAGAAATCAGGGGATAACCGCAGGAAAGAACATG
 TGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAGGCCGCTGCTGGCGTTTC
 CATAGGCTCCGCCCCCTGACGAGCATCACAAAATGACGCTCAAGTCAGGGTGGCGA
 60 AACCCGACAGGACTATAAGATACCGCGTTCCCCCTGGAAGCTCCCTCGTCGCT

CCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCGCCCTTCTCCCTCGGGAAAGCGTG
 GCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTCGGTAGGTCGTCGCTCCAAG
 CTGGGCTGTGCAAGAACCCCCCGTTCAGCCGACCGCTGCGCCTTATCCGTAACATAT
 CGTCTTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAAC
 5 AGGATTAGCAGAGCAGGATGTAGGGCTGCTACAGAGTTCTGAAGTGGTGGCCTAAC
 TAGGGCTACACTAGAAGGACAGTTGGTATCTGCCTGCTGAAGCCAGTTACCTTC
 GGAAAAAGAGTTGGTAGCTCTTGATCCGGAAACAAACCACCGCTGGTAGCGGGGTTTT
 TTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATC
 10 TTTCTACGGGCTTGACGCTCAGTGGAACGAAAACACGTTAAGGGATTTGGTATG
 AGATTATCAAAAAGGATCTCACCTAGATCCTTTAAATTAAAATGAAGTTAAATCA
 ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA
 CCTATCTCAGCGATCTGTCTATTCTGTCATCCATAGTTGCCTGACTCCCCGTCGTGAG
 ATAACATACGATAACGGGAGGGCTTACCATCTGGCCCAGTGCATGCAATGATACCGCGAGAC
 15 CCACGCTCACCGGCTCCAGATTATCAGCAATAACCAAGCCAGCCAGCGGAAGGGCCGAGCGC
 AGAAGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGCT
 AGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTTGCTGCCATTGCTGCAGGCATC
 GTGGTGTCAAGCTCGTGTGTTGGTATGGCTTCATTAGCTCCGGTCTCCAAACGATCAAGG
 CGAGTTACATGATCCCCATGTTGTGCAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATC
 GTTGTAGAAGTAAGTTGGCCGAGTGTATCACTCATGTTATGGCAGCACTGCATAAT
 20 TCTCTTACTGTCACTGCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAG
 TCATTCTGAGAAATAGTGTATGCGCGACCGAGTTGCTCTGCCGGCTCAATACGGGAT
 AATACCGGCCACATAGCAGAACTTTAAAGTGTCTCATCATTGGAAAACGTTCTCGGGG
 CGAAAACCTCTAAGGATCTTACCGCTGTGAGATCCAGTGCATGTAACCCACTCGTCA
 CCCAACTGATCTCAGCATTTTACTTACCCAGCGTTCTGGGTGAGCAAAACAGGA
 25 AGGCAAAATGCCGAAAAAAAGGAATAAGGGCGACACGAAAATGTTGAATACTCATACTC
 TTCTCTTCAATATTATTGAAGCATTATCAGGGTTATGTCATGAGCGGATACATA
 TTGAAATGTTAGAAAATAACAAATAGGGGTTCCGGCACATTCCCGAAAAGTG
 CCACCTGACGCTAAGAAACCATTATTATCAGACATTAACCTATAAAATAGGCGTATC
 ACGAGGCCCTTCGTCGCGTTGGTGTGACGGTGGAAAACCTCTGACACATGCAG
 30 CTCCCGAGACGGTACAGTTGCTGTAAGCGGATGCCGGAGCAGACAAGCCGTCAG
 GGCCTCAGGGGTGTTGGCGGTGCGGGCTGGCTTAACCTATGCCGATCAGAGCAG
 ATTGTACTGAGAGTGACCATATGGACATATTGCTTAAACGCGCTACAATTAAAC
 ATAACCTTATGTATCATACACATACGATTAGGTGACACTATAGAAACTCGACTTAGAGT
 CCGTTACATAACTTACGTAATGCCGCTGGCTGACGCCAACGACCCCCGCCAT
 35 TGACGTCAATAATGACGTATGTTCCATAGTAAACGCCATTGGACTTCCATTGACGTC
 AATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGC
 CAAGTACGCCCTATTGACGTCATGACGGTAAATGCCGCTGGCATTATGCCAGT
 ACATGACCTTATGGACTTCCCTACTGGCAGTACATCTACGTTAGTCACTCGCTATTA
 CCATGGTGTGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGTTGACTCACGG
 40 GATTTCGAAGTCTCCACCCATTGACGTCAATGGAGTTGTTTGCACCAAAATCAAC
 GGGACTTCCAAAATGTCGTAACAACCTCCGCCATTGACGCAAATGGCGGTAGCGTG
 TACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGCGCAGTCTCCGATAG
 ACTGCGTCGCCGGTACCGTATTCCAAATAAAAGCCTCTGCTGGTGTGACTACCACGACGGGGTC
 TGTTCTCGTCTTGGGAGGGCTGCCAGCAACTTATCTGTTGCTGCGATTGCTAGTGTCTATGTT
 45 TTCAATTGGGGCTGCCCTGCTGAGTACTAGTTAGCTAATGCTGTTGCTGCGATTGCTAGTGTCTATGTT
 CCGGGAGGTAAAGCTGCCAGCAACTTATCTGTTGCTGCGATTGCTAGTGTCTATGTT
 TGATGTTATGCCCTGCGTGTACTAGTTAGCTAATGCTGTTGCTGCGATTGCTAGTGTCTATGTT
 TGTTGGAACGTGAGTTCTGAACACCCGGCGAACCTGGAGACGTCCCAGGGACTT
 TGGGGGCCGTTTGTGGCCCGACTGAGGAAGGGAGTCGATGTGGAATCCGACCCCCGTC
 50 AGGATATGTTCTGGTAGGAGACGAGAACCTAAACAGTCCGCCCTCCGCTGAAATT
 TTTGCTTCGGTTGGAACCGAACGCCGCGCTTGTCTGCTGAGCGCTGAGCATCGT
 TCTGTTGCTCTGACTGTGTTCTGATTGCTGAAATAGGGCCAGACTGT
 TACCACTCCCTTAAGTTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAA
 CCAGTCGGTAGATGTCAGAAGAGACGTTGG
 55

PLTRioxP (SEQ ID No 58)

60 GCTAGCATAACTTCGTATAATGTTGCTATACGAAAGTTATTCTAGAGAACCATCAGATGT
 TTCCAGGGTGCCCAAGGACCTGAAATGACCCCTGTGCCTTATTGAACTAACCAATCAGT

TCGCTTCTCGCTCTGTTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAAC
 CCCTCACTCGGGCGCCAGTCCTCCATTGACTGAGTCGCCGGGTACCCGTATCCAA
 TAAACCTCTTGCACTCGACTTGTGGTCTCGCTGTTCTGGGAGGGTCTCCTC
 TGAGTGATTGACTACCCGTCAAGCGGGGGCTTCATTGGGGCTGTCCGGGATCGGGA
 5 GACCCCTGCCAGGGACCACCGACCCACCCAGGGAGGTAAAGCTGGCTGCCTCGCGTT
 TCGGTATGACGGTAAAAACCTCTGACACATGCACTCCGGAGACGGTCACAGCTTGT
 TGTAAGCGGATGCCGGAGCAGACAAGCCGTCAAGGGCGCTCAGCGGTGTTGGCGGG
 GTCGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTA
 10 TGCGGCATCAGAGCAGATTGACTGAGAGTGCAACCATATGCGGTGTTGAAATACCGCACAG
 ATGCGTAAGGAGAAAATACCGCATCAGGCCTTCCGCTCTCCGCTCTCGCTCACTGACTCGCT
 GCGCTCGTCGGCTCGGCTGCCGAGCGGTATCAGCTCACTCAAAGCGGTAAACCGTT
 ATCCACAGAATCAGGGATAACGCAAGGAAAGAACATGTGAGCAAAGGCCAGCAAAGGC
 CAGAACCGTAAAAGGCCGCTGCTGGCTTTCCATAGGCTCCGCCCCCTGACGA
 GCATCACAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAGATA
 15 CCAGCGTTCCCCCTGGAAGCTCCCTCGTCGCTCTCCGACCCCTGCCGTTAC
 CGGATAACCTGTCGCCCTTCTCCCTCGGAAAGCGTGGCGCTTCTCATAGCTCACGCTG
 TAGGTATCTCAGTCGGTAGGTCTCGCTCCAAGCTGGCTGTGTCACGAACCCCC
 CGTCAGCCGACCGCTGCCCTATCCGTAACTATCGCTTGAGTCCAACCCGGTAAG
 ACACGACTTATGCCACTGGCAGCAGCCACTGTAACAGGATTAGCAGAGCGAGGTATGT
 20 AGGGCGTCTACAGAGTTGAAGTGGCTAACTACGGCTACACTAGAACAG
 ATTGGTATCTCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTG
 ATCCGGAAACAAACACCAGCCTGGTAGCGGTGTTTTGTTGCAAGCAGCAGATTAC
 GCGCAGAAAAAAAGGATCTAAGAAGATCCTTGATTTCTACGGGTCTGACGCTCA
 GTGGAACGAAAACCTACGTTAAGGGATTTGGCATGAGATTATCAAAGGATCTCAC
 25 CTAGATCCTTTAAATTAAAAATGAAGTTTAAATCAATCTAAAGTATATGAGTAAAC
 TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATT
 TCGTTCATCCATAGTGCCTGACTCCCCGCTGTAGATAACTACGATAACGGAGGGCTT
 ACCATCTGGCCCCAGTGTGCAATGATAACCGCAGACCCACGCTCACCGCTCCAGATT
 ATCAGCAATAAACCAGCCAGCCGGAGGGCCGAGCGCAGAAGTGGCTCTGCAACTTATC
 30 CGCCTCCATCAGTCTATTAAATTGTCGGGAAAGCTAGAGTAAGTAGTTGCCCAGTTAA
 TAGTTGCGCAACGTTGTCGCACTGGCTGAGGATCTGCTGAGGCTACGCTCGTTGG
 TATGGCTTCATTCAGCTCGGTTCCAACGATCAAGGCAGTTACATGATCCCCATGTT
 GTGCAAAAAGCGGTTAGCTCCTCGGTCTCGATCGTTGTCAGAAGTAAGTTGGCCGC
 AGTTTACACTCATGGTTATGGCAGCACTGCAATAATTCTTACTGTCATGCCATCCGT
 35 AAGATGCTTCTGTGACTGGTAGACTCAACCAAGTCATTCTGAGAATAGTGTATGCG
 GCGACCGAGTTGCTCTTGGCCGGCGTCAACACGGATAATACCGGCCACATAGCAGAAC
 TTTAAAAGTGCATCATGGAAAAGCTTCTCGGGCGAAAACCTCAAGGATCTTAC
 GCTGTTGAGATCCAGTTGATGTAACCCACTCGTCACCAACTGATCTCAGCATCTT
 TACTTCACCAAGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGAAAAAGGG
 40 AATAAGGGCGACACGGAAATGTTGAATACTCATACTCTCCCTTTCAATATTATTGAAG
 CATTATCAGGGTTATTGTCATGAGCGGATACATATTGAATGTTAGAAAAATAA
 ACAAAATAGGGTTCCGCGCACATTCCCGAAAAGTGCACCTGACGTCTAAGAAACCAT
 TATTATCATGACATTAACCTATAAAAATAGCGTATCAGGAGCCCTTCGTCTCAAGA
 ATTCAACGAGTACCGAAAAGTGTCTCCAAATGTTGCCCCCTCACACTCCAAATTC
 45 GCGGGCTCTGCCTCTAGACCACTTACCCATTCCCCACACTCACCGGAGCCAAAGCC
 GCGGCCCTCCGTTCTGAAAGACCCACCGTAGGTGGCAA

LTR plasmid (SEQ ID No 59)

GCTAGCTTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAA
 50 GTTCAGATCAAGGTCAAGGAACAGATGGAACAGACTGAATATGGCCAAACAGGGATATCTGT
 GGTAAAGCAGTTCTGCCCGGCTCAGGGCAAGAACAGATGGAACAGACTGAATATGGCC
 AACACGGATATCTGTTGAAAGCAGTTCTGCCCGGCTCAGGGCAAGAACAGATGGTCC
 CCAGATGCGGTCCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCT
 CAAGGACCTGAAATGACCCGTGCTTATTGAACTAACCAATCAGTTGCTTCTCGCTT
 55 CTGTTGCGCGCTCTGCTCCCGAGCTCAATAAAAGAGCCCACAAACCCCTACTCGGGG
 CGCCAGTCCTCGATTGACTGAGTCGCCGGTACCCGTGTATCCAATAACCCCTTGC
 AGTTGCATCCGACTTGTGGTCTGCTGTTCTGGGAGGGTCTCTGAGTGATTGACT
 ACCCGTCAGCGGGGTCTTCATTGGGGCTCGTCCGGGATCGGGAGACCCCTGCCAG
 GGACCACCGACCCACCAACCGGAGGTAAGCTGGCTGCCTCGCGCTTGGTAGGTGACGG

TGAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGC
CGGGAGCAGACAAGCCCGTCAGGGCGCTCAGCGGGTGTGGCGGGTGTGGGGCGCAGC
CATGACCCAGTCACGTAGCGATAGCGGAGGTATACTGGCTTAACTATGCCGCATCAGAG
CAGATTGTACTGAGAGTCACCATATGCCGTGAAATACCGCACAGATGCGTAAGGAGA
5 AAATACCGCATTAGGCCTCTCCGCTTCCGCTCACTGACTCGCTGCCTCGTCGTT
CGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCAGGTTACGGTTATCCACAGAACG
GGGGATAACGCAGGAAGAACATGTGAGCAGGAAAGGCAGGAAACCGTAAA
AAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAT
10 CGACGCTCAAGTCAGAGGTGGCGAACCCGACAGGACTATAAGATACCAGGCCTTCCC
CTTGGAAAGCTCCCTCGCGCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCC
GCCTTCTCCCTCGGGAAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGT
TCGGTGTAGGTGTTCGCTCCAAGCTGGGCTGTGTGACGGAAACCCCCCGTCAAGCCGAC
CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCG
CCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCCTGCTACA
15 GAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGC
GCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTTGTGATCCGGCAAACAA
ACCACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAA
GGATCTCAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAACGAAAC
TCACGTTAAGGGATTTGGTCAAGGATTATCAAAAGGATCTCACCTAGATCTTTA
20 AATAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGT
TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTCTGTTATCCATA
GTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGAGGGCTTACCATCTGGCCCC
AGTGTGCAATGATACCGCAGACCCACGCTCACCGCTCCAGATTATCAGCAATAAC
CAGCCAGCCGGAAGGGCGAGCGCAGAAGTGGCTTGCAACTTTATCCGCTCCATCCAG
25 TCTATTAAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGCAAC
GTTGTTGCCATTGTCGAGGCATCGTGTGTCACGCTCGTGTGTTATGGCTTCATTC
AGCTCCGGTCCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAAAAAGCG
GTTAGCTCCTCGGTCCCGATCGTGTGCAAGAGTAAGTTGGCCGAGTGTATCACTC
ATGGTTATGGCAGCACTGCATAATTCTCTACTGTGATGCCATCCGTAAGATGCTTTCT
30 GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGACCGAGTTGC
TCTTGCCCGCGTCAACACGGATAATACCGGCCACATAGCAGAACTTTAAAGTGCTC
ATCATTGGAAAACGTTCTCGGGCGAAAACCTCTCAAGGATCTACCGCTGTTGAGATCC
AGTTGATGTAACCCACTCGTCACCCAACTGATCTCAGCATCTTACTTACCCAGC
GTTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGAATAAGGGCACA
35 CGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATTGAAGCATTATCAGGGT
TATTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAACAAATAGGGGTT
CCGCGCACATTCCCCGAAAAGTGCCACCTGACGTCAAGAAACCATTATTATCATGACA
TTAACCTATAAAATAGCGTATCACGAGGCCCTTCGCTTCAAGAATTCAACCCAGAT
CACCAGAAAATGTCCTCCTAACACTGTCACACTCCAAATTGCCGGCTTCCG
40 TCTTAGACCACTCATCCATTCCCCACACTCACCGGAGCCAAAGCCGCGGCCCTCCGT
TTCTTGCTTTGAAAGACCCACCGTAGGTGGCAA

INTERNATIONAL SEARCH REPORT

Final Application No
PCT/GB 00/03837

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/867 C12N15/90 C12N5/10 C12N7/01 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VANIN E. F. ET AL.: "Development of high-titer retroviral producer cell lines by using Cre-mediated recombination." JOURNAL OF VIROLOGY, vol. 71, no. 10, 1997, pages 7820-7826, XP002161355 ISSN: 0022-538X cited in the application the whole document --- -/-	1-51

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search	Date of mailing of the International search report
26 February 2001	13/03/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Mandl, B

INTERNATIONAL SEARCH REPORT

PCT/GB 00/03837	Application No
-----------------	----------------

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KARREMAN S. ET AL.: "ON THE USE OF DOUBLE FLP RECOGNITION TARGETS (FRTS) IN THE LTR OF RETROVIRUSES FOR THE CONSTRUCTION OF HIGH PRODUCER CELL LINES" NUCLEIC ACIDS RESEARCH, vol. 24, no. 9, 1 May 1996 (1996-05-01), pages 1616-1624, XP000616161 ISSN: 0305-1048 cited in the application the whole document -----	1-51
A	IWAKUMA T. ET AL.: "SELF-INACTIVATING LENITVIRAL VECTORS WITH U3 AND U5 MODIFICATIONS" VIROLOGY, vol. 261, no. 1, 15 August 1999 (1999-08-15), pages 120-132, XP000882897 ISSN: 0042-6822 the whole document -----	1-51
A	BOAST K. ET AL.: "CHARACTERIZATION OF PHYSIOLOGICALLY REGULATED VECTORS OF THE TREATMENT OF ISCHEMIC DISEASE" HUMAN GENE THERAPY, vol. 10, no. 13, 1 September 1999 (1999-09-01), pages 2197-2208, XP000876772 ISSN: 1043-0342 the whole document -----	1-51

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

Continuation of Box I.2

Claims Nos.: 45-48

Said claims 45-48 could not be searched because they were not present in the application.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.