Limites et continuité

Continuité et prolongement par continuité

1èr cas:

Si $\lim_{x \to a} f(x)$ existe et $a \in D_f$.

Alors $\lim_{x\to a} f(x) = f(a)$, f est continue en a.

2èm cas:

Si $\lim_{x o a} f(x) = l$ existe et $a
ot \in D_f$.

Dans ce cas on peut prolonger f par continuité.

Prolongement par continuité

$$ilde{f}:D_f\cup\{a\}\longrightarrow \mathbb{R}; x\longmapsto egin{cases} f(x) ext{ si }x\in D_f\ l= ilde{f}(a) ext{ si }x=a \end{cases}$$

- ullet f continue en $a \Leftrightarrow \lim_{x o a^+} f(x) = \lim_{x o a^-} f(x) = f(a)$
- Toute somme, combinaison linéaire, produit, quotient (avec dénominateur non nul), de fonctions continues est une fonction continue.

Tableau de limites

Addition

$\lim(f) =$	l	l	l	$+\infty$	$-\infty$	$+\infty$
$\lim(g) =$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim(f+g)=$	l+l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I

Produit

$\lim(f) =$	l	l eq 0	$+\infty$ ou $-\infty$	0
$\lim(g) =$	l'	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$	$+\infty$ ou $-\infty$
$\lim(f imes g)=$	l imes l'	$+\infty$ ou $-\infty$ reglè de signes	$+\infty$ ou $-\infty$ reglè de signes	F.I

Quotient

$\lim(f) =$	l	l	$+\infty$ ou $-\infty$	$l' \neq 0$ ou $+\infty$ ou $-\infty$	0	+∞ ou
$\lim(g) =$	l' eq 0	$+\infty$ ou $-\infty$	l' eq 0	0	0	+∞ ou
$\lim(\frac{f}{g}) =$	$\frac{l}{l'}$	0	$+\infty$ ou $-\infty$ reglè de signes	$+\infty$ ou $-\infty$ reglè de signes	F.I	F.I

Fonctions continues sur un intervalle

Théorème des valeurs intermédiaires

Soit f une fonction continue et f(a) < f(b) $\forall y \in]f(a), f(b)[, \exists c \in]a, b[ext{ tel que } y = f(c).$

Corollaire du TVI

Soit f, une fonction continue strictement monotone sur un intervalle I. Alors f est bijective de I sur J=f(I).

Théorème des bornes atteintes

Une fonction continue sur un segment [a,b] est bornée et atteint ses bornes. f([a,b])=[m,M] où $m=\inf_{[a,b]}f$ et $M=\sup_{[a,b]}f$

Soit f une application continue sur I:

• f réalise une bijection sur I.

ullet f^{-1} est continue, strictement monotone et de même sens sur f(I)=J.