COUNTING SORT

SORTING IN LINEAR TIME

- Counting sort
 - No comparisons between elements!
 - But...depends on assumption about the numbers being sorted
 - We assume numbers are in the range 1.. K
 - The algorithm:
 - Input: A[1..N], where $A[j] \in \{1, 2, 3, ..., K\}$
 - Output: B[1..N], sorted
 - Also: Array C[1..K] for auxiliary storage

STEP 1

Find the number of times A[i] appears in A

C[i] = number of times element i appears in A

STEP ?

Find the number of elements $\leq A[i]$,

ALGORITHM

- Start from the last element of A
- Place A[i] at its correct place in the output array
- Decrease C[A[i]] by one

EXAMPLE

EXAMPLE (CONT.)

A 2 5 3 0 2 3 0 3

	1	2	3	4		6		
В	0	0		2		3	3	
	0	1	2	3	4	5		
C	0	2	3	5	7	8		

			3					
В	0	0		2	3	3	3	
'			2			5	_	
		2	2	1	7	0		

	1	2	3	4	5	6	7	8	
В	0	0		2	3	3	3	5	
·	0	1	2	3	4	5			
C	0	2	3	4	7	7			

COUNTING SORT

```
CountingSort(A, B, k)
1
            for I=1 to K
3
                   C[I] = 0;
            for J=1 to N
4
                   C[A[J]] += 1;
5
            for I=2 to K
7
                   C[I] = C[I] + C[I-1];
            for J=N down to 1
8
9
                   B[C[A[J]]] = A[J];
10
                         C[A[J]] -= 1;
```

Work through example: $A = \{4 \ 1 \ 3 \ 4 \ 3\}, K = 4$

Counting sort

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0;
for j \leftarrow 1 to length [A]
    do C[A[j]] \leftarrow C[A[j]] + 1;
for i \leftarrow 2 to k
    do C[i] \leftarrow C[i] + C[i-1];
for j \leftarrow length[A] downto 1
    do begin
         B[C[A[j]]] \leftarrow A[j];
         C[A[j]] \leftarrow C[A[j]] - 1;
     end - for
```

A: 3, 6, 4, 1, 3, 4, 1, 4

C: 2, 0, 2, 3, 0, 1

C: 2, 2, 4, 7, 7, 8

 $A: 3, 6, 4, 1, 3, 4, 1, \hat{4}$

B: , , , , , , 4,

C: 2, 2, 4, 6, 7, 8

 $A: 3, 6, 4, 1, 3, 4, \hat{1}, 4$

B: ,1, , , , 4,

C: 1, 2, 4, 6, 7, 8

 $A: 3, 6, 4, 1, \hat{3}, 4, 1, 4$

B: ,1, ,3, ,4,4,

C: 1, 2, 3, 5, 7, 8

 $A: 3, 6, 4, 1, 3, \hat{4}, 1, 4$

B: ,1, , , 4,4,

C: 1, 2, 4, 5, 7, 8

 $A: 3, 6, 4, \hat{1}, 3, 4, 1, 4$

B: 1,1, 3, 4,4,

C: 0, 2, 3, 5, 7, 8

 $A: 3, 6, \hat{4}, 1, 3, 4, 1, 4$

B: 1,1, 3,4,4,4,

C: 0, 2, 3, 4, 7, 8

 $A: \hat{3}, 6, 4, 1, 3, 4, 1, 4$

B: 1,1,3,3,4,4,4,6

C: 0, 2, 2, 4, 7, 7

 $A: 3, \hat{6}, 4, 1, 3, 4, 1, 4$

B: 1,1, 3,4,4,4,6

C: 0, 2, 3, 4, 7, 7

COUNTING SORT

- Why don't we always use counting sort?
- Because it depends on range K of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, K too large ($2^{32} = 4,294,967,296$)