Julius-Maximilians-Universität Würzburg Fakultät für Mathematik und Informatik

${\bf Differential geometrie}$

Prof. Pabel

Andreas Rosenberger, Nils Wisiol andreas@rosenberger-home.de, info@nils-wisiol.de

23. April 2012

Inhaltsverzeichnis

0	Grundbegriffe und Bezeichnungen aus der linearen Algebra und analytischen Geometrie	3
	0.1 Strukturen	3
1	Lokale Kurventheorie im euklidischen Raum	6
	1.1 Grundbegriffe der Kurventheorie	6
2	Literaturhinweise	12

O Grundbegriffe und Bezeichnungen aus der linearen Algebra und analytischen Geometrie

Die klassische Differentialgeometrie der Kurven und Flächen benutzt als umgebenden Raum einen n-dimensionalen, orientierten, euklidischen Raum E^n mit zugehörigem euklischem Richtungsvektorraum V^n .

0.1 Strukturen

 V^n ist mit einem Skalarprodukt $(X,Y)\mapsto \langle X,Y\rangle\in\mathbb{R}$ ausgestattet. Damit lassen sich messen:

- \bullet die Länge von Vektoren $X\colon |X| = \sqrt{\langle X, X \rangle}$
- \bullet die Orthogonalität von Vektoren $X,Y\colon X\perp Y\Leftrightarrow \langle X,Y\rangle=0$
- \bullet der Winkel zwischen zwei Vektoren $X,Y\colon\cos\angle(X,Y)=\left\langle\frac{X}{|X|},\frac{Y}{|Y|}\right\rangle$
- der Abstand von Punkten p, q: $d(p, q) = |\overrightarrow{pq}|$
- Flächeninhalte, Volumina, usw.

Ist zusätzlich eine feste Orthonormalbasis $(\mathring{e_1},...\mathring{e_n})$ (definiert durch $\langle \mathring{e_i},\mathring{e_k}\rangle = \delta_{ik}$) ausgezeichnet als positiv orientiert, erhält man eine Orientierung des Raumes und kann alle Basen in positiv und negativ orientierte einteilen.

Standard-Modell: $E^n = V^n = \mathbb{R}^n$, ausgestattet mit dem Standard-Skalarprodukt $\langle X, Y \rangle = \sum_{i=1}^n X^i Y^i$ und der (positiv orientierten) Standardbasis $\mathring{e}_1, ... \mathring{e}_n$) mit $\mathring{e}_i = (0, ..., 1, ..., 0)^T$. Dieses Standardmodell reicht bei uns meist aus: Bezüglich eines kartesischen Koordinatensystems $(0; e_1, ... e_n)$ in einem abstrakten, orientierten euklidschen Raum E^n , bestehend aus

• einem "Ursprung" ("Nullpunkt") $0 \in E^n$

• einer positiv orientierten Orthonormalbasis $(e_1, ... e_n)$ im V^n

kann man jedem Punkt und jedem Vektor eindeutig reelle Koordinaten zuordnen:

- Vektor: $X = \sum_{i=1}^{n} X^{i} e_{i} \in V^{n} \mapsto (X^{1}, ... X^{n}) \in \mathbb{R}^{n}$
- Punkt: $p = 0 + \sum_{i=1}^{n} p^{i} e_{i} \mapsto (p^{1}, ...p^{n}) \in \mathbb{R}^{n}$

Aus einem Skalarprodukt in V^n wird in Koordinaten

$$\langle X, Y \rangle = \left\langle \sum X^i e_i, \sum Y^k e_k \right\rangle = \sum_i \sum_k X^i Y^k \langle e_i, e_k \rangle = \sum_{i=1}^n X^i Y^i$$

das Standard-Skalarprodukt im \mathbb{R}^n . Man ist im Stanard-Modell angelangt. Ein Wechsel des kartesischen Koordinatensystems im E^n induziert im Koordinatenraum \mathbb{R}^n eine Bewegung

$$p \mapsto p' = Dp + t$$

bestehend aus einer eigentlichen orthogonalen Drehmatrix $D \in SO(u, \mathbb{R})$ mit det D = +1 und einem Translationsvektor $t \in \mathbb{R}^n$. In der euklidschen Differentialgeometrie werden Eigenschaften von Objekten (Kurven, Flächen, ...) untersucht, die invariant gegenüber solchen Transformationen sind, also nicht vom gewählten kartesischen Koordinatensystem abhängig sind.

Bemerkung:

In der sogenannten affinen Differentialgeometrie untersucht man Eigenschaften von Objekten, die (in Koordinaten) invariant sind gegenüber beliebigen affinen Transformationen $p \mapsto p' = Ap + t$, A regulär. Man ignoriert dort vollständig die metrische Struktur des \mathbb{R}^n . Der umgebende Raum ist dann ein affiner Punktraum (bei uns nur am Rande betrachtet).

Zum Vektorprodukt (Kreuzprodukt) im orientierten euklidischen \mathbb{R}^n : Zu je n-1 Vektoren $X_1, \ldots, X_{n-1} \in \mathbb{R}^n (n \geq 2)$ gibt es genau einen Vektor $Y \in \mathbb{R}^n$ mit den Eigenschaften

- 1. $Y \perp X_k, (k = 1, ..., n 1)$
- 2. $|Y| = a_{n-1}(X_1, \dots, X_{n-1}) = \sqrt{\det(\langle X_i, X_k \rangle)_{i=k=1,\dots,n-1}}$ = (n-1)-dimensionaler Flächeninhalt des von X_1, \dots, X_{n-1} aufgespannten n-1-dimensionalen Parallelogramms
 - = Wurzel aus der <u>Gramschen</u> Determinanten $G(X_1, \ldots, X_{n-1})$
- 3. $\det(X_1,\ldots,X_{n-1},Y) \geq 0$ (d.h. (X_1,\ldots,X_{n-1},Y) ist positive orientiert)

Bezeichnung: $Y = X_1 \times \cdots \times X_{n-1}$

Eine explizite Formel ist (mit der Standardbasis (e_1, \ldots, e_n) des \mathbb{R}^n):

$$X_{1} \times \dots \times X_{n-1} = \sum_{i=1}^{n} \det(X_{1}, \dots, X_{n-1}, e_{i}) e_{i}$$

$$= \sum_{i=1}^{n} \begin{vmatrix} X_{1}^{1} & \cdots & X_{n-1}^{1} & 0 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \vdots \\ X_{1}^{n} & \cdots & X_{n-1}^{n} & 0 \end{vmatrix} e_{i} = \begin{vmatrix} X_{1}^{1} & \cdots & X_{n-1}^{1} & e_{1} \\ \vdots & & \vdots & \vdots \\ X_{1}^{n} & \cdots & X_{n-1}^{n} & 0 \end{vmatrix}$$

Beispiel:

 $\underline{n=2}$

$$X = \begin{pmatrix} X^1 \\ X^2 \end{pmatrix} \Rightarrow X^x = \begin{vmatrix} X^1 & e_1 \\ X^2 & e_2 \end{vmatrix} = -X^2 e_1 + X^1 e_2 = \begin{pmatrix} -X^2 \\ X^1 \end{pmatrix}$$
$$|X^x| = a_1(X) = |X|$$

Beispiel:

 $\underline{n=3}$:

$$X \times Y = \begin{vmatrix} X^1 & Y^1 & e_1 \\ X^2 & Y^2 & e_2 \\ X^3 & Y^3 & e_3 \end{vmatrix} = (X^2Y^3 - X^3Y^2)e_1 + \dots$$

$$|X \times Y| = a_2(X, Y) = \sqrt{\det \begin{pmatrix} \langle X, X \rangle & \langle X, Y \rangle \\ \langle Y, X \rangle & \langle Y, Y \rangle \end{pmatrix}}$$

Anwendung:

Jedes Orthonormalsystem (e_1, \ldots, e_{n-1}) im \mathbb{R}^n lässt sich durch $e_n := e_1 \times \cdots \times e_{n-1}$ eindeutig zu einer positiv orientierten Orthonormalbasis (e_1, \ldots, e_n) ergänzen.

1 Lokale Kurventheorie im euklidischen Raum

1.1 Grundbegriffe der Kurventheorie

Wir betrachten zunächst (kurzzeitig) rein affingeometrische Begriffe/Invarianten.

Definition:

Ein C^r -Weg oder eine parametrisierte C^r -Kurve $(r \geq 0)$ $[C^r = r$ -mal stetig differenzierbar] im (affinen) \mathbb{R}^n ist eine C^r -Abbildung

$$c: t \in I \subset \mathbb{R} \mapsto c(t) \in \mathbb{R}^n$$

eines offenen Intervalls I in den \mathbb{R}^n .

t heißt Parameter, die Bildmenge $c[I] \subset \mathbb{R}^n$ die Spur des Weges.

Ein C^r -Weg $(n \ge 1)$ heißt <u>regulär</u>, wenn überall der <u>Tangentenvektor</u> $\dot{c}(t) = \frac{\mathrm{d}\,c}{\mathrm{d}\,t}(t) \ne 0$ ist. Nichtreguläre Punkte $c(t_0)$ mit $\dot{c}(t_0) = 0$ heißen Singularitäten.

Kinematische Interpretation:

 $t \mapsto c(t)$ beschreibt die <u>zeit</u>abhängige Bewegung eines Punktes im \mathbb{R}^n . \dot{c} ist die vektorielle Geschwindigkeit (und im euklidischen \mathbb{R}^n $w := |\dot{c}|$ die skalare Geschwindigkeit).

Beispiel:

- 1. <u>Peano-Kurve</u>: Stetiger (\mathcal{C}^0 -)Weg im \mathbb{R}^2 , dessen Spur jeden Punkt eines Gebietes $G \subseteq \mathbb{R}^2$ ausfüllt (nirgends differenzierbar, "unbrauchbar")
- 2. Konstanter Weg: $t \in I \mapsto c(t) = x_0 \in \mathbb{R}^n$ (nirgends regulär, "unbrauchbar")
- 3. Neil'sche Parabel: $c: t \in \mathbb{R} \mapsto c(t) = \begin{pmatrix} t^2 \\ t^3 \end{pmatrix} \in \mathbb{R}^2 \quad (\mathcal{C}^{\infty}\text{-Weg}), \text{ in } c(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ nicht regulär } (\text{"Spitze"}) \ (w(0) = |\dot{c}(0)| = 0, \text{ "man hat Zeit, sich umzudrehen"})$

4. Kreislinie: $c: t \in \mathbb{R} \mapsto c(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \in \mathbb{R}^2$ (∞ -oft durchlaufbar) [Affin gesehen ist das eine Ellipse!]

Aber auch $t \mapsto \tilde{c}(t) = \begin{pmatrix} t \\ \pm \sqrt{1-t^2} \end{pmatrix}$ und $t \mapsto \tilde{\tilde{c}}(t) = \begin{pmatrix} \frac{1}{\cosh t} \\ \tanh t \end{pmatrix}$ sind Parametrisierungen von Kreisstücken.

Wege, die nur mit veränderlicher "Zeitskala" durchlaufen werden, sollen nicht als verschieden angesehen werden.

Definition:

 $I, \tilde{I} \subset \mathbb{R}$ seien offene Intervalle.

Zwei Wege $c: I \to \mathbb{R}^n, \tilde{c}: \tilde{I} \to \mathbb{R}^n$ heißen $\underline{C^r}$ -äquivalent $(r \ge 0)$, wenn ein orientierungstreuer (d.h. monoton wachsender) C^r -Diffiomorphismus $\Phi: I \to \tilde{I}$ existiert, mit

$$\underline{c} = \underline{\tilde{c}} \circ \underline{\Phi}, \text{ d.h. } \forall_t c(t) = \underline{\tilde{c}}(\underline{\Phi}(t))$$

Bemerkung:

- 0. ΦC^r -Diffeomorphismus $\Leftrightarrow \Phi$ bijektiv und Φ und Φ^{-1} C^r -differenzierbar. [Bsp.: $\Phi: t \in \mathbb{R} \to t^3 \in \mathbb{R}$ ist kein C^1 -Diffeomorphismus]

 Bei C^r -Diffeomorphismus ist stets $\dot{\Phi}(t) \neq 0$ (falls $r \geq 1$)
- 1. Φ ist (für $r \geq 1$) genau dann orientierungstreu, wenn überall $\dot{\Phi}(t) > 0$ ist.
- 2. Äquivalente Wege besitzen (für $r \ge 1$) das gleiche Regularitätsverhalten.

$$\dot{c}(t) = \dot{\tilde{c}}(\Phi(t)) \cdot \underbrace{\dot{\Phi}(t)}_{>0}$$

3. Die Äquivalenz von Wegen ist wirklich eine Äquivalenzrelation (reflexiv, symmetrisch, transitiv)

Definition:

Eine (orientierte, reguläre) $\underline{\mathcal{C}^r}$ -Kurve $(r \geq 1)$ im (affinen) \mathbb{R}^n ist eine Äquivalenzklasse [c] von regulären \mathcal{C}^r -Wegen $c: I \subset \mathbb{R} \to \mathbb{R}^n$. Ein Repräsentant heißt eine (zulässige) <u>Parametrisierungen</u> der \mathcal{C}^r -Kurve, eine die Äquivalenz vermittelnde Abbildung Φ eine (zulässige) <u>Parametertransformation</u>.

Beispiel:

Die "Kreis"-Darstellungen

$$t \mapsto c(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \in \mathbb{R}^2, \left(|t| < \frac{\pi}{2} \right)$$

und

$$\tilde{t} \mapsto \tilde{c}(\tilde{t}) = \begin{pmatrix} \frac{1}{\cosh \tilde{t}} \\ \tanh \tilde{t} \end{pmatrix} \in \mathbb{R}^2 (\tilde{t} \in \mathbb{R})$$

sind \mathcal{C}^{∞} -äquivalente Parametertransformationen:

$$\Phi(t) = \operatorname{Artanh} \sin t = \tilde{t}$$

mit

$$\dot{\Phi}(t) = \frac{\cos t}{1 - \sin^2 t} = \frac{1}{\cos t} > 0$$

Bemerkung:

Nicht jedes 1-dimensionale "Gebilde" im \mathbb{R}^n (z.B. eine vollständige Kreislinie) lässt sich global und injektiv als Bild eines offenen Intervalls darstellen.

Objekte, die sich nur lokal so parametrisieren lassen, heißen (1-dimensionale) differenzierbare Mannigfaltigkeiten. Für lokale Untersuchungen ist eine solche Erweiterung der Kurvenbegriffs nicht nötig.

Die bisher eingeführten Begriffe sind offensichtlich affin-invariant. Aber im Folgenden sind auch nur Eigenschaften von <u>Kurven</u> von Interesse, also Eigenschaften, die nicht von der Parametrisierung abhängen.

Hier ein Beispiel aus der rein affinen Differentialgeometrie.

Beispiel:

Satz 1.1.1:

 $t\mapsto c(t)$ sei Parameterdarstellung einer \mathcal{C}^r -Kurve im (affinen) \mathbb{R}^n mit $r\geq n$. Dann sind die Ableitungsvektoren

$$c_p := \frac{\mathrm{d}^p c}{\mathrm{d} t^p} (p = 1, \dots, n)$$

nicht invariant gegenüber Parametertransformationen, jedoch die (punktualen, orientierten) Schmieg-

räume (oskulierende Räume, "osculating spaces")

$$S_n(t) := c(t) + \langle \langle c_1(t), \dots, c_n(t) \rangle \rangle$$

Spezialfälle:

Tangente $S_1(t) = c(t) + \langle \langle \dot{c}(t) \rangle \rangle$

Schmiegebene $S_2(t)c(t) + \langle \langle \dot{c}(t), \ddot{c}(t) \rangle \rangle$

Beweis (von Satz 1.1.1):

Aus $c = \tilde{c} \circ \Phi$ folgt nach der Kettenregel

$$\begin{split} \dot{c} &= \dot{\Phi} \left(\dot{\tilde{c}} \circ \Phi \right) \\ \ddot{c} &= \dot{\Phi}^2 \left(\ddot{\tilde{c}} \circ \Phi \right) + Q_2^1 \left(\dot{\Phi}, \ddot{\Phi} \right) \cdot \dot{\tilde{c}}(t) \end{split}$$

allgemein

$$c_p = \dot{\Phi}^p(\tilde{c}_p \circ \Phi) + \sum_{k=1}^{p-1} \underbrace{Q_p^k \left(\dot{\Phi}, \ddot{\Phi}\right)}_{\text{,Kettenregelpolynome"}} (\tilde{c}_k \circ \Phi)$$

Also hat man die Transformationsformel

$$\begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix} = \begin{pmatrix} \dot{\Phi} & 0 & \cdots & 0 \\ Q_2^1 & \dot{\Phi}^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ Q_p^1 & \cdots & Q_p^k & \dot{\Phi}^p \end{pmatrix} \begin{pmatrix} \tilde{c}_1 \circ \Phi \\ \vdots \\ \vdots \\ \tilde{c}_p \circ \Phi \end{pmatrix}$$

mit einer regulären Transformationsmatrix positiver Determinante.

Das zeigt

$$\langle \langle c_1, \dots, c_p \rangle \rangle = \langle \langle \tilde{c}_1 \circ \Phi, \dots, \tilde{c}_p \circ \Phi \rangle \rangle$$

und die weiteren Behauptungen.

Bemerkung:

Die Regularitätsforderung $\dot{c}(t) \neq 0$ bedeutet, dass in jedem Punkt die Tangenten als 1-dimensionale Unterräume existieren.

Die Schmiegräume kann man dazu benutzen, um festzustellen, ob eine Kurve in einem echten affinen Teilraum $U_p \subset \mathbb{R}^n$ liegt, in einer Geraden, einer Ebene usw. (affin-invariant!) Zunächst gilt offensichtlich

$$S_1(t) \subseteq S_2(t) \subseteq \cdots \subseteq S_n(t) \le p$$

Satz 1.1.2:

a) Liegt eine C^{p+1} -Kurve in einem p-dimensionalen affinen Unterraum des \mathbb{R}^n $(1 \le +p \le n-1)$, so ist

$$\forall_t \dim S_{p+1}(t) < p+1$$

d.h. der (p+1)-te Schmiegraum degeneriert.

b) Gilt umgekehrt

$$\forall_t \dim S_{p+1}(t) = \dim S_p(t) \stackrel{!}{=} p$$

so liegt die Kurve in einem p-dimensionalen, aber keinem niedriger dimensionalen affinen Unterraum.

Anwendung:

1. Eine C^2 -Kurve [c] im \mathbb{R}^n verläuft genau dann geradlinig, wenn $\forall_t (\dot{c}(t), \ddot{c}(t))$ linear abhängig ist.

$$[, \Rightarrow$$
" nach a), $, \Leftarrow$ " nach b), da $[c]$ regulär

Definition:

Ein (regulärer) Kurvenpunkt c(t) heißt Wendepunkt (WP, inflection point), falls $(\dot{c}(t), \ddot{c}(t))$ linear abhängig ist.

2. Eine wendepunktfreie \mathcal{C}^3 -Kurve [c] im \mathbb{R}^n verläuft genau dann <u>in einer Ebene</u>, wenn $\forall_t (\dot{c}(t), \ddot{c}(t), \ddot{c}(t))$ linear abhängig ist.

Definition:

Ein Nicht-Wendepunkt $\dot{c}(t)$ heißt "Henkelpunkt" (handle point), wenn $(\dot{c}(t), \ddot{c}(t), \ddot{c}(t))$ linear abhängig ist.

Beweis (von Satz 1.1.2):

a)

$$\forall_{t} \quad c(t) = p_{0} + \sum_{k=1}^{p} \lambda_{k}(t) \cdot a_{k} \in U_{p} = p_{0} + \langle \langle a_{1}, \dots, a_{p} \rangle \rangle \Rightarrow$$

$$\forall_{t} \quad \forall_{t} \quad c_{l}(t) = c^{(l)}(t) = \sum_{k=1}^{p} \lambda_{k}^{(l)}(t) \cdot a_{k} \in \langle \langle a_{1}, \dots, a_{p} \rangle \rangle \Rightarrow$$

$$\forall_{t} \quad \dim S_{p+1}(t) \leq p < p$$

b) Nach Voraussetzung ist $(c_1, \ldots, c_p)(t)$ linear unabhängig, aber $c_1, \ldots, c_{p+1}(t)$ linear abhängig.

Es existieren also Funktionen $t \mapsto \lambda_0(t), \dots, \lambda_{p_1}(t)$ mit

$$c_{p+1} = \sum_{k=1}^{p} \lambda_{k-1} c_k \text{ bzw. } (\dot{c})^{(p)} = \sum_{k=0}^{p-1} \lambda_k (\dot{c})^k$$
 (*)

Die Funktionen sind stetig auf I, denn (*) kann nach $\lambda_0, \ldots, \lambda_{p-1}$ aufgelöst werden (Inhomogenes lineares Gleichungssystem mit vollrangiger Koeffizientenmatrix, da c_1, \ldots, c_p linear unabhängig; Einträge und "rechte Seite" stetig).

Die Koeffizientenfunktionen $t\mapsto \dot{c}^i(t)\,(i=1,\ldots,n)$ genügen also der linearen Differentialgleichung p-ter Ordnung

$$y^{(p)} = \sum_{k=0}^{p-1} \lambda_k y^{(k)}$$

mit stetigen Koeffizienten. für sie existiert ein Fundamentalsystem $y_1, \dots y_p : I \to \mathbb{R}$, so dass für jede Lösung gilt

$$y(t) = \sum_{k=1}^{p} a_k y_k(t)$$

also auch

$$\dot{c}^i(t) = \sum_{k=1}^p a_k^i y_k(t)$$

und damit

$$\dot{c}(t) = \sum_{k=1}^{p} y_k(t) a_k$$

mit konstanten Vektoren $a_1, \ldots, a_p \in \mathbb{R}^n$.

Integration liefert $\forall_{t \in I}$

$$c(t) = c(t_0) + \sum_{k=1}^{p} \left(\int_{t_0}^{t} y_k(\tau) d\tau \right) a_k \in c(t_0) + \langle \langle a_1, \dots, a_p \rangle \rangle =: U_p$$

Es ist schließlich

$$\underline{\dim U_p = p}$$

denn aus dim $U_p = k < p$ folgt nach a), dass dim $S_{k+1} < k+1$, also auch dim $S_p < p$ im Widerspruch zur Voraussetzung.

2 Literaturhinweise

Kühnel: Differentialgeometrie: Kurven, Flächen, Mannigfaltigkeiten