Test II Review

Open Ended Questions

Problem 1

List the assumptions for the following hypothesis tests. Then write the equation defining the corresponding test statistic and degrees of freedom (if applicable):

- One-proportion z-test.
- Two-proportions z-test.
- χ^2 -test for goodness of fit

- χ^2 -test for independence
- \bullet Regression t-test
- Correlation t-test

Problem 2

Describe the the following concepts in the context of linear least squares regression. Don't just give formulas. Also give intuitive explanations

- Least squares criterion.
- Extrapolation.
- Correlation

- SST, SSR, SSE and r^2 .
- The four conditions for performing inference with linear least squares regression.

Math Problems

For the following problems, indicate the degrees of freedom along with your test statistic and p-value (if applicable).

Problem 3

A coin was tossed and an eight-sided die (a "d8") was cast 80 times each. The coin and the die may be biased. The frequency tables are as follows:

	coin		
result	Heads	Tails	
freq.	54	26	

	d8							
result	1	2	3	4	5	6	7	8
freq.	9	8	12	8	15	6	13	9

- a) Use a one-proportion z-test to test the hypothesis that the coin is biased at the 10% sig. level. Assume that the conditions for performing such a test are satisfied. (Ans. $z = \pm 3.13$, p value=0.001745, reject).
- b) Use a χ^2 goodness-of-fit test to check the hypothesis that the die is biased at the 10% sig. level. Assume that the conditions for performing such a test are satisfied. (Ans. $\chi^2 = 6.4$ (df=7), p value = 0.4939, fail to reject).
- c) Redo part a) with a χ^2 goodness-of-fit test. (Ans. $\chi^2=9.8$ (df=1), same p-value. Note that $(\pm 3.13)^2=9.8$)

Problem 4

A study was conducting among PC gamers to determine if there is a relationship between the operating system (Linux, Windows) that they use and the brand of the GPU (AMD, Intel, Nvidia) that they use. The frequency table is as follows:

		Operating System		
		Linux	Windows	
	AMD	38	182	
GPU Vendor	Intel	34	108	
	Nvidia	95	268	

- a) Conduct a χ^2 independence test to determine if there is any relationship between the type of operating system and the type of GPU used by PC gamers at the 10% significance level. Assume that the conditions for conducting such a test holds. (Ans. $\chi^2 = 6.20$ (df=2), p-value=0.04505, reject the null)
- b) It is widely perceived that AMD GPU's traditionally perform worse on Linux than on Windows. Conduct a two-proportion z-test to determine if AMD GPU's are less popular with Linux users than with Windows users at the 10% significance level. Assume that the conditions for conducting such a test holds. (Ans. $z=\pm 2.43$, p-value=.0075, reject the null)
- c) What problems might arise with testing multiple hypotheses with one dataset?

Problem 5

The following data contains paired observations of two numerical random variables x and y.

\boldsymbol{x}	32	28	18	25	36
y	27	35	23	44	30

- a) Calculate S_{xx} , S_{xy} , and S_{yy} . (Ans. $S_{xx} = 118.8$, $S_{xy} = 17.8$, $S_{yy} = 262.8$)
- b) Calculate the coefficients b_0 and b_1 for the linear least-squares regression $\hat{y} = b_0 + b_1 x$ as well as the corresponding value for r^2 . (Ans. r^2 =0.00639, b_0 =29.18, b_1 =0.09428)
- c) Assume the conditions for performing inference for linear regression. Conduct a regression t-test to test the hypothesis that $\beta_1 \neq 0$ against the null hypothesis that $\beta_1 = 0$ (Ans. t = 0.139, p-value=.8983, fail to reject the nul).
- d) Conduct a correlation t-test to test the hypothesis that $\rho \neq 0$ against the null hypothesis $\rho = 0$ (Ans. t = 0.139, p value = 89.83%, fail to reject the null).
- e) Can this linear regression be used to predict the value of y from the value of x?

Problem 6

Summary statistics for paired observations of two numerical random variables x and y are given below:

	\boldsymbol{x}	y
sample size	40	40
mean	120	200
stdev	32	50
correlation	0.85	

(Note: you may have to use the formulas $S_{xx} = (n-1)s_x^2$ and $S_{yy} = (n-1)s_y^2$ as discussed in class)

- a) Write the sample linear regression $\hat{y} = b_0 + b_1 x$ satisfying the least-squares criterion and the corresponding value for r^2 . (Ans. $\hat{y} = 40.63 + 1.328x$, $r^2 = 0.7225$)
- b) Use the above regression to extrapolate a predicted value for y given the particular value for the predictor variable $x_P = 105$. And provide a 90% prediction interval for this value. Assume that the conditions for performing such a hypothesis test are satisfied. (Ans. 180.08 ± 45.67)
- c) What is the least-squares criterion?
- d) In doing part b, you may have calculated that $s_e = 26.68$. As discussed in class, this is an estimator of the population standard deviation of y conditioned on x. But this is much lower than the sample standard deviation of y, which is $s_y = 50$. Why are they so different? Shouldn't they be the same?