BOĞAZİÇİ UNIVERSITY

DEPARTMENT OF INDUSTRIAL ENGINEERING

SPRING 2024 - 2025

IE 203 OPERATIONS RESEARCH II

Instructor : İ. Kuban Altınel Office/Phone : M4034, Ext. 6407

Office Hours : M 13:00 – 15:00 W 14:00 – 16:00

Teaching Assistant : Burak Nur Erdem Office : Assistants office, 4th floor

Office Hours : TBA

Grading

Quizzes : 10% per quiz (2 quizzes, no makeup)

Midterm : 35% Closed book.

Makeup : Together with final makeup for students with a provable important excuse.

Final : 45%, Closed book.

Makeup : Only registered students will be given a makeup exam if he/she is absent at

the final with an officially accepted excuse.

Course Objectives : By the completion of the course, the students will be able to formulate

mixed-integer linear programming problems, formulate nonlinear optimization problems, apply linearization techniques, solve nonlinear optimization problems using analytical and/or numerical methods, formulate problems as dynamic programming problems, understand and analyze stochastic processes, use stochastic analysis to make optimal

decisions under uncertainty

Textbook: There is no textbook.

References: 1. Operations research: application and algorithms, W.L. Winston, 2004

2. Operations Research, An Introduction, H. Taha, 2007

3. Nonlinear Programming: Theory and Algorithms, M.S. Bazaraa, H. D. Sherali, and C. M. Shetty, 2006

4. Introduction to Probability Models, S. Ross, 2003

THEY ARE ALL AVAILABLE ON RESERVE AT THE LIBRARY.

IE 203 TENTATIVE PLAN

1. INTEGER LINEAR PROGRAMMING

Modeling examples, Convex sets, Branch-and-bound method, Valid inequalities, Cutting plane algorithm.

2. NONLINEAR PROGRAMMING

Modeling examples, Convex functions, Gradient, Hessian, Eigenvalues and eigenvectors, Positive definiteness, Unconstrained and constrained nonlinear optimization.

3. DETERMINISTIC DYNAMIC PROGRAMMING

Shortest path problem, Resource allocation problems, Equipment replacement problem.

4. STOCHASTIC PROCESSES

Markov chains, Exponential distribution, Poisson process, Queuing theory

IE 203 TENTATIVE PROGRAM

WEEK	MONTH	DAY	TENTATIVE DAILY OUTLINE
1	February	10M	Integer Programming: modeling and examples
		11T	"
2		17M	Convexity: convex sets
		18T	Integer Programming: branch-and-bound method
3		24M	"
		25T	Integer Programming: valid inequalities
4	March	03M	Integer Programming: cutting plane method
		04T	"
		06Th	QUIZ I
5		10M	Nonlinear Programming: modeling and examples
		11T	"
6		17M	Convexity: convex functions
		18T	Nonlinear Programming: one dimensional minimization
7		24M	Nonlinear Programming: unconstrained minimization
		25T	"
8		31M	HOLIDAY
	April	01T	HOLIDAY
9		07M	Nonlinear Programming: constrained minimization
		08T	" (MIDTERM)
10		14M	Deterministic dynamic programming
		15T	"
11		21M	Markov chains
		22T	"
12		28M	SPRING BREAK
		29T	SPRING BREAK
13	May	05M	Exponential distribution and Poisson process
		06T	n .
		08Th	QUIZ II
14		12M	Queuing theory
		13T	"