Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 7

ID: 952091294 Term: Spring 2025

Due Date: 21^{st} May, 2025

Problem 19.3.18

If R is an integrally closed domain with quotient field \mathbb{F} , and $f,g\in\mathbb{F}[x]$ are monic with $fg\in\mathbb{R}[x]$, then $f,g\in R[x]$.

Solution: Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F} . Suppose f and g can be written as

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i), \quad g(x) = \prod_{j=1}^{m} (x - \beta_j)$$

in $\overline{\mathbb{F}}$. The roots $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ satisfies the monic polynomial $fg \in R[x]$, so they are integral over R in \overline{F} . Moreover, the coefficients of f and g can be written as symmetric polynomials of these roots, and the integral elements over R in \overline{F} form a subring, so all the coefficients of f and g are integral over R. Both $f, g \in \mathbb{F}[x]$, so f, g have coefficients in \mathbb{F} and are integral over R, since R is integrally closed in \mathbb{F} , this implies $f, g \in R[x]$.

Problem 19.4.8

Show that the conclusion of the Incomparability theorem fails for the ring extension $\mathbb{F}[x] \subseteq \mathbb{F}[x,y]$.

Solution: Consider the ideal (x) and (x, y) in $\mathbb{F}[x, y]$. Note that $\mathbb{F}[x, y]/(x) = \mathbb{F}[y]$ and $\mathbb{F}[x, y]/(x, y) = \mathbb{F}[x, y]$ are domains, so (x, y) and (x) are prime ideals. We know that

$$(x)=(x)\cap \mathbb{F}[x]=(x,y)\cap \mathbb{F}[x]$$

and $(x) \subseteq (x,y)$. But $y \in (x,y)$ and $y \notin (x,y)$. So (x) and (x,y) are different prime ideals.

Problem 19.4.13

True or false? Let $A \supseteq R$ be an integral ring extension. If every non-zero prime ideal of R is a maximal ideal, then every non-zero prime ideal of A is also maximal.

Solution: This is false. Let $R = \mathbb{Z}$ and $A = \mathbb{Z}[x]/(x^2)$. Note that $\mathbb{Z}[x]/(x^2) = \mathbb{Z} \oplus \mathbb{Z}x$ with $x \cdot x = 0$. This implies that A is finitely generated as an R-module, so $R \hookrightarrow A$ is an integral extension. We know $R = \mathbb{Z}$ is a PID, so every non-zero prime ideal in R is maximal. On the other hand, consider two ideals (x) and (x, 2) in A, we have $A/(x) = \mathbb{Z}$ is a domain and $A/(x, 2) = \mathbb{Z}/2$ is a field. So (x) is a prime ideal and (x, 2) is a maximal ideal with $(x) \subseteq (x, 2)$.

Problem 19.4.15

Consider the ring extension $\mathbb{Z} \subset \mathbb{Z}[\sqrt{5}]$.

- (1) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (5) of \mathbb{Z} .
- (2) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (3) of \mathbb{Z} .
- (3) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (2) of \mathbb{Z} .

Solution: Let $R = \mathbb{Z}[\sqrt{5}]$ and $p \subseteq R$ is a prime ideal.

- (1) Suppose $p \cap \mathbb{Z} = (5)$. This means $5 \in p$. We know that the radical $\sqrt{(5)} = (\sqrt{5})$ is a prime ideal in R containing 5. Note that $R/(5) = \mathbb{Z}/5$ is a field. This implies that $(\sqrt{5}) \subseteq R$ is the only prime ideal lying over $(5) \subseteq \mathbb{Z}$.
- (2) Suppose $p \cap \mathbb{Z} = (3)$. This means $3 \in p$. Note that

$$R/(3) \cong \mathbb{Z}[\sqrt{5}]/(3)$$

$$\cong \mathbb{F}_3[\sqrt{5}]$$

$$\cong \mathbb{F}_3[x]/(x^2 - 5)$$

$$\cong \mathbb{F}_3[x]/(x^2 + 1)$$

It is easy to check that none of 0, 1, 2 are not roots of $x^2 + 1$ in \mathbb{F}_3 . So $x^2 + 1$ is irreducible in \mathbb{F}_3 and R/(3) is isomorphic to the degree 2 extension of \mathbb{F}_3 , which is still a field. This proves that $(3) \subseteq R$ is a maximal ideal and the only prime ideal over $(3) \subseteq \mathbb{Z}$.

(3) Suppose $p \cap \mathbb{Z} = (2)$. This means $2 \in p$ and $(\sqrt{5} + 1)(\sqrt{5} - 1) = 4 \in p$. Because p is prime, so $\sqrt{5} + 1 \in p$. Note that $R/(2, \sqrt{5} + 1) = \mathbb{Z}/2$ is a field, so $(2, \sqrt{5} + 1) \subseteq R$ is maximal and the only prime ideal lying over $(2) \subseteq \mathbb{Z}$.

Problem 20.1.5

If the ring R is noetherian, then so is the ring $R[[x_1,\ldots,x_n]]$ of formal power series.

Solution: Note that $R[[x_1, \ldots, x_n]] = R[[x_1, \ldots, x_{n-1}]][[x_n]]$. We only need to prove the case n = 1, the rest can be done by repeating the same proof.

Suppose the ring R is noetherian and $I \subset R[[x]]$ is a proper ideal. Let $f \in R[[x]]$ have non-zero constant term, then f is invertible in R, so such f cannot in I. For any $i \geq 1$, we define the following subsets in R. $a \in J_i$ if and only if there exists an element $f = ax^i + a_{i+1}x^{i+1} + \cdots \in I$.

$$J_i = \{ a_i \in R \mid \exists f_{a_i} = a_i x^i + a_{i+1} x^{i+1} + \dots \in I \}$$

Here i is the order of the element f. J_i is an ideal in R. Indeed, if $a_i, b_i \in J_i$, then the coefficient of the lowest term of $f_{a_i} + f_{b_i}$ is $a_i + b_i$ and has degree i, so $a_i + b_i \in J_i$. For any $r \in R$, if $f_{a_i} \in I$, then $rf_{a_i} \in I$ because I is an ideal, so $ra_i \in J_i$. This proves that $J_i \subseteq R$ is an ideal. Moreover, $J_i \subseteq J_{i+1}$ because if $a \in J_i$, then $f_a \in I$ and $xf_a \in I$. This proves that $a \in J_{i+1}$. We obtain an ascending chain of ideals

$$J_1 \subseteq J_2 \subseteq J_3 \subseteq \cdots J_n \subseteq \cdots R$$

This chain must stabilize as R is noetherian. Suppose $J_n = J_{n+1} = \cdots$. Let $S_i = \{a_{i,k}\}_{1 \leq k \leq s_i}$ be the generating set of J_i . This set is finite for every i because R is noetherian. We need to show that the set

$$K = \{ f_{a_{i,k}} \in R[[x]] \mid a_{i,k} \in S_i, 1 \le k \le s_i, 1 \le i \le n \}$$

generates I. It is easy to see that $K \subseteq I$.

Conversely, let $f \in I$ and the coefficients of degree *i*th term is a_i , we need to show that f can be generated from elements in K. Without loss of generality, we may assume ord (f) = 1. Define $f_1 = f$ and we have ord $f_1 = 1$. There exists $\{r_{1,k}\}_{1 \le k \le s_1}$ such that $a_1 = \sum_{k=1}^{s_1} r_{1,k} a_{1,k}$, thus we know that

ord
$$(f - \sum_{k=1}^{s_1} r_{1,k} f_{a_{1,k}}) \ge 2.$$

Define $f_2 := f_1 - \sum_{k=1}^{s_1} r_{1,k} f_{a_{1,k}}$ and we have ord $f_2 = 2$. We can define this continuously

$$f_i = f_{i-1} - \sum_{k=1}^{s_{i-1}} r_{i-1,k} f_{a_{i,k}}$$

for all $i \leq n+1$. For $i \geq n+2$, suppose we have already defined f_{i-1} with ord $(f_{i-1}) \geq i-1$, suppose the coefficient of (i-1)th term in f_{i-1} is $a_{i-1} \in J_{i-1}$, we know that $J_{i-1} = J_n$, there exists $\{r_{i-1,k}\}_{1\leq k\leq s_n}$ such that $a_{i-1} = \sum_{k=1}^{s_n} r_{i-1,k} a_{n,k}$, this implies that

$$f_{i-1} - \sum_{k=1}^{s_n} r_{i-1,k} x^{i-1-n} f_{a_{n,k}}$$

has order $\geq i$. Define an element

$$p_k = \sum_{i=n+2}^{\infty} r_{i,k} x^{i-1-n} \in R[[x]].$$

Then by definition, $f_{n+1} - \sum_{k=1}^{s_n} p_k f_{a_{n,k}}$ has no degree $\geq n+2$ term, thus equal to 0. This proves that f can be written as a finite sum of elements from K with coefficients in R[[x]], since at every step, we only remove finite sum of elements. This proves that I is finitely generated, so R[[x]] is noetherian.