数学建模算法与应用

第16章 目标规划

线性规划只能解决一组线性约束条件下,一个目标的最大或最小值的问题。在实际决策中,衡量方案优劣要考虑多个目标,这些目标中,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,线性规划则无能为力。

美国经济学家查恩斯(A. Charnes)和库柏(W. W. Cooper)在 1961年出版的《管理模型及线性规划的工业应用》一书中,首先提出目标规划(Goal Programming)。目标规划的求解思路有两种。

(1) 加权系数法

为每一目标赋一个权系数,把多目标模型转化成单一目标的模型。但困难是要确定合理的权系数,以反映不同目标之间的重要程度。

(2) 优先等级法

将各目标按其重要程度不同的优先等级,转化为单目标模型。

在目标规划中不提最优解的概念,只提满意解的概念,即寻求能够照顾到各个目标,并使决策者感到满意的解,由决策者来确定选取哪一个解,但满意解的数目太多而难以将其一一求出。

- 16.1 目标规划的数学模型
- 16.1.1 目标规划的概念

为了具体说明目标规划与线性规划在处理问题方法上的区别,先通过例子来介绍目标规划的有关概念及数学模型。

例 16.1 某工厂生产 I, II 两种产品,已知有关数据见表 16.1,试求获利最大的生产方案。

表 16.1 生产数据表

	I	II	拥有量
原材料 kg	2	1	11
设 备 hr	1	2	10
利润 万元/件	8	10	

解 这是一个单目标的规划问题。设生产产品 I, I 的量分别为 x_1,x_2 时获利z最大,建立如下线性规划模型

$$\max \quad z = 8x_1 + 10x_2,$$

$$\begin{cases} 2x_1 + x_2 \le 11, \\ x_1 + 2x_2 \le 10, \\ x_1, x_2 \ge 0. \end{cases}$$

最优决策方案为 $x_1^* = 4$, $x_2^* = 3$, $z^* = 62$ 万元。

但实际上工厂在作决策方案时,要考虑市场等一系 列其它条件。如

- (1)根据市场信息,产品 I 的销售量有下降的趋势, 故考虑产品 I 的产量不大于产品 II。
- (2)超过计划供应的原材料,需要高价采购,这 就使成本增加。
 - (3) 应尽可能充分利用设备,但不希望加班。
 - (4) 应尽可能达到并超过计划利润指标 56 万元。

这样在考虑产品决策时,便为多目标决策问题。 目标规划方法是解决这类决策问题的方法之一。下面 引入与建立目标规划数学模型有关的概念。

1. 正、负偏差变量

设 f_i ($i=1,\cdots,l$) 为第i个目标函数,它的正偏差变量 $d_i^+ = \max\{f_i - d_i^0,0\}$ 表示决策值超过目标值的部分,负偏差变量 $d_i^- = -\min\{f_i - d_i^0,0\}$ 表示决策值未达到目标值的部分,这里 d_i^0 表示 f_i 的目标值。因决策值不可能既超过目标值同时又未达到目标值,即恒有 $d_i^+ \times d_i^- = 0$ 。

2. 绝对(刚性)约束和目标约束

绝对约束是指必须严格满足的等式约束和不等式 约束, 如线性规划问题的所有约束条件, 不能满足这些 约束条件的解称为非可行解,所以它们是硬约束。目标 约束是目标规划特有的,可把约束右端项看作要追求的 目标值。在达到此目标值时允许发生正或负偏差,因此 在这些约束中加入正、负偏差变量,它们是软约束。线 性规划问题的目标函数,在给定目标值和加入正、负偏 差变量后可变换为目标约束。也可根据问题的需要将绝 对约束变换为目标约束。

如: 例 16.1 的目标函数 $z = 8x_1 + 10x_2$ 可变换为目标约束 $8x_1 + 10x_2 + d_1^- - d_1^+ = 56$ 。绝对约束 $2x_1 + x_2 \le 11$ 可变换为目标约束 $2x_1 + x_2 + d_2^- - d_2^+ = 11$ 。

3. 优先因子(优先等级)与权系数

一个规划问题常常有若干个目标。但决策者在要 求达到这些目标时,是有主次或轻重缓急的。凡要求 第一位达到的目标赋于优先因子 P_1 ,次位的目标赋于 优先因子 $P_1,\dots,$ 并规定 $P_k >> P_{k+1},k=1,2,\dots,q$ 。表示 P_k 比 P_{k+1} 有更大的优先权。以此类推,若要区别具有相 同优先因子的两个目标的差别,这时可分别赋于它们 不同的权系数w,,,这些都由决策者按具体情况而定

4. 目标规划的目标函数

目标规划的目标函数(准则函数)是按各目标约束的正、负偏差变量和赋于相应的优先因子而构造的。当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值。因此目标规划的目标函数只能是所有偏差变量的加权和。其基本形式有三种。

(1) 第*i*个目标要求恰好达到目标值,即正、负偏差变量都要尽可能地小,这时

min
$$w_i^- d_i^- + w_i^+ d_i^+$$
.

- (2) 第i个目标要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小,这时min $w_i^+ d_i^+$.
- (3) 第*i*个目标要求超过目标值,即超过量不限,但 必须是负偏差变量要尽可能地小,这时

min $w_i^- d_i^-$.

对每一个具体目标规划问题,可根据决策者的要求和赋于各目标的优先因子来构造目标函数,以下用例子说明。

例 16.2 例 16.1 的决策者在原材料供应受严格限制的基础上考虑,首先是产品 II 的产量不低于产品 I 的产量;其次是充分利用设备有效合时,不加班;再次是利润额不小于 56 元。求决策方案。

解 按决策者所要求的,分别赋于这三个目标的优先因子为 P_1, P_2, P_3 。这问题的数学模型是

$$\min P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-, \\
2x_1 + x_2 \le 11, \\
x_1 - x_2 + d_1^- - d_1^+ = 0, \\
x_1 + 2x_2 + d_2^- - d_2^+ = 10, \\
8x_1 + 10x_2 + d_3^- - d_3^+ = 56, \\
x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3.$$

16.1.2 目标规划的一般数学模型

设 x_i ($j=1,2,\dots,n$) 是目标规划的决策变量,共 有m个约束是刚性约束,可能是等式约束,也可能是不 等式约束。设有1个柔性目标约束,其目标约束的偏差 为 d_i^+, d_i^- ($i = 1, 2, \dots, l$)。设有 个优先级别,分别为 P_1, P_2, \dots, P_q 。在同一个优先级 P_k 中,有不同的权重,分 别记为 $w_{ki}^+, w_{ki}^- (i = 1, 2, \dots, l)$ 。因此目标规划模型的一般 数学表达式为

16.1.2 目标规划的一般数学模型

min
$$z = \sum_{k=1}^{q} P_k \left(\sum_{i=1}^{l} w_{ki}^- d_i^- + w_{ki}^+ d_i^+ \right)$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{t}, & t = 1, \dots, m, \\ \sum_{j=1}^{n} c_{ij} x_{j} + d_{i}^{-} - d_{i}^{+} = d_{i}^{0}, & i = 1, 2, \dots, l, \\ x_{j} \geq 0, & j = 1, 2, \dots, n, \\ d_{i}^{-}, d_{i}^{+} \geq 0, & i = 1, 2, \dots, l. \end{cases}$$

建立目标规划的数学模型时,需要确定目标值、 优先等级、权系数等,它们都具有一定的主观性和模 糊性,可以用专家评定法给以量化。

16.2 求解目标规划的序贯算法

序贯算法是求解目标规划的一种早期算法,其 核心是根据优先级的先后次序,将目标规划问题分 解成一系列的单目标规划问题,然后再依次求解。 下面介绍求解目标规划的序贯算法。对于 $k=1,2,\dots,q$,求解单目标规划

min
$$z = \sum_{i=1}^{l} (w_{ki}^{-} d_{i}^{-} + w_{ki}^{+} d_{i}^{+}),$$
 (16.1)

s.t.
$$\sum_{j=1}^{n} a_{tj} x_{j} \le (=, \ge) b_{t}, \quad t = 1, \dots, m$$
, (16.2)

$$\sum_{j=1}^{n} c_{ij} x_{j} + d_{i}^{-} - d_{i}^{+} = d_{i}^{0}, \quad i = 1, 2, \dots, l, \quad (16.3)$$

$$\sum_{i=1}^{l} (w_{si}^{-}d_{i}^{-} + w_{si}^{+}d_{i}^{+}) \leq z_{s}^{*},$$

$$s = 1, 2, \dots, k-1,$$
 (16.4)

$$x_{j} \ge 0, \quad j = 1, 2, \dots, n,$$
 (16.5)

$$d_i^-, d_i^+ \ge 0, \quad i = 1, 2, \dots, l.$$
 (16.6)

其最优目标值为 z_k^* , 当k = 1时,约束(16.4)为空约束。当k = q时, z_q^* 所对应的解 x^* 为目标规划的解。

注: 也可能求解到 $k = k^* < q$ 时,解集就为空集,说明第 k^* 个目标是无法实现的。

例 16.3 某企业生产甲、乙两种产品,需要用到 A,B,C 三种设备,关于产品的赢利与使用设备的工时及 限制如表 16.2 所示。问该企业应如何安排生产,才能 达到下列目标。

- (1) 力求使利润指标不低于 1500 元;
- (2) 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2;
 - (3) 设备A为贵重设备,严格禁止超时使用;
- (4)设备C可以适当加班,但要控制;设备B既要求充分利用,又尽可能不加班。在重要性上,设备B是设备C的 3 倍。建立相应的目标规划模型并求解。

表 16.2 企业生产的有关数据

	甲	Z	设备的生
			产能力(h)
A(h/件)	2	2	12
_B (h/件)	4	0	16
c (h/件)	0	5	15
嬴利 (元/件)	200	300	

解 设备A是刚性约束,其余是柔性约束。首先, 最重要的指标是企业的利润,因此,将它的优先级列 为第一级;其次,甲、乙两种产品的产量保持1:2的 比例,列为第二级;再次,设备C,B的工作时间要有 所控制,列为第三级。在第三级中,设备B的重要性 是设备C的三倍,因此,它们的权重不一样,设备B前 的系数是设备C前系数的 3 倍。

设生产甲乙两种产品的件数分别为 x_1,x_2 ,相应的目标规划模型为(序贯算法 lingo 程序略)

$$\min z = P_1 d_1^- + P_2 (d_2^+ + d_2^-) + P_3 (3d_3^+ + 3d_3^- + d_4^+)$$

$$\begin{cases} 2x_1 + 2x_2 \le 12, \\ 200x_1 + 300x_2 + d_1^- - d_1^+ = 1500, \\ 2x_1 - x_2 + d_2^- - d_2^+ = 0, \\ 4x_1 + d_3^- - d_3^+ = 16, \\ 5x_2 + d_4^- - d_4^+ = 15, \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3, 4. \end{cases}$$

目标函数的最优值为29,即第三级偏差为29。 分析计算结果, $x_1 = 2$, $x_2 = 4$, $d_1^+ = 100$,因此,目标规划的最优解为 $x^* = [2,4]$,最优利润为1600。 例 16.4 (续例 16.3) 按照序贯算法,编写求解例 16.3 的通用 Lingo 程序。

16.3 多标规划的Matlab解法

多目标规划可以归结为

深規划可以归结为
$$\min_{x,y} \gamma$$
,
 $F(x) - weight \cdot \gamma \leq goal$,
 $A \cdot x \leq b$,
 $Aeq \cdot x = beq$,
 $c(x) \leq 0$,
 $ceq(x) = 0$,
 $lb \leq x \leq ub$.

其中x,weight,goal,b,beq,lb和ub是向量,A和Aeq是矩阵;c(x),ceq(x)和F(x)是向量函数,他们可以是非线性函数。F(x)是所考虑的目标函数,goal是欲达到的目标,多目标规划的 Matlab 函数 fgoalattain 的用法为

[x,fval]= fgoalattain('fun',x₀,goal,weight)
[x,fval]= fgoalattain('fun',x₀,goal,weight,A,b)
[x,fval]=

fgoalattain('fun',x₀,goal,weight,A,b,Aeq,beq)

[x,fval]=

fgoalattain('fun',x₀,goal,weight,A,b,Aeq,beq,lb,ub, nonlcon)

其中 fun 是用 M 文件定义的目标向量函数, x_0 是初值,weight 是权重。A,b 定义不等式约束 $A \cdot x \le b$,Aeq,beq 定义等式约束 $Aeq \cdot x = beq$,nonlcon 是用 M 文件定义的非线性约束 $c(x) \le 0$,ceq(x) = 0。返回值 fval 是目标向量函数的值。

要完整掌握其用法,请用 doc fgoalattain 或 type fgoalattain 查询相关的帮助。

例 16.5 求解多目标线性规划问题

$$\max Z_1 = 100x_1 + 90x_2 + 80x_3 + 70x_4,$$

$$\min Z_2 = 3x_2 + 2x_4,$$

$$\int x_1 + x_2 \ge 30,$$

$$\begin{cases} x_1 + x_2 \ge 30, \\ x_3 + x_4 \ge 30, \\ 3x_1 + 2x_3 \le 120, \\ 3x_2 + 2x_4 \le 48, \\ x_i \ge 0, \quad i = 1, \dots, 4. \end{cases}$$

求 得 $x_1 = 32.3845$, $x_2 = 0$, $x_3 = 11.4232$, $x_4 = 18.5768$, 对应的第一个目标函数 $Z_1 = 4538.3$, 第二个目标函数 $Z_2 = 37.2$ (程序略)。

注:可能每次运行结果都不一样,不过差异不大。

16.4 目标规划模型的实例

前面介绍了目标规划的求解方法,这里再介绍几个目标规划模型的例子,帮助我们进一步了解目标规划模型的建立和求解过程。

例16.6 某计算机公司生产三种型号的笔记本 电脑A,B,C。这三种笔记本电脑需要在复杂的装配 线上生产, 生产1台A,B,C型号的笔记本电脑分别需 要5,8,12(h)。公司装配线正常的生产时间是每 月1700h。公司营业部门估计A,B,C三种笔记本电脑 的利润分别是每台1000,1440,2520(元),而公司 预测这个月生产的笔记本电脑能够全部售出。公司 经理考虑以下目标

第一目标: 充分利用正常的生产能力,避免开工不足;

第二目标: 优先满足老客户的需求,A,B,C三种型号的电脑分别为50,50,80(台),同时根据三种电脑的纯利润分配不同的权因子;

第三目标:限制装配线加班时间,最好不要超过200h;

第四目标: 满足各种型号电脑的销售目标, *A*, *B*, *C* 型号分别为100, 120, 100(台), 再根据三种电脑的纯利润分配不同的权因子;

第五目标: 装配线的加班时间尽可能少。

请列出相应的目标规划模型,并用LINGO软件求解。

解首先建立目标约束。

(1) 装配线正常生产

设生产A,B,C型号的电脑为 x_1 , x_2 , x_3 (合), d_1^- 为装配线正常生产时间未利用数, d_1^+ 为装配线加班时间,希望装配线正常生产,避免开工不足,因此装配线目标约束为

$$\begin{cases}
\min \{d_1^-\}, \\
5x_1 + 8x_2 + 12x_3 + d_1^- - d_1^+ = 1700.
\end{cases}$$

(2) 销售目标

优先满足老客户的需求,并根据三种电脑的纯利润分配不同的权因子,A,B,C三种型号的电脑每小时的利润是 $\frac{1000}{5}$, $\frac{1440}{8}$, $\frac{2520}{12}$,因此,老客户的销售目标约束为

$$\begin{cases} \min \left\{ 20d_{2}^{-} + 18d_{3}^{-} + 21d_{4}^{-} \right\}, \\ x_{1} + d_{2}^{-} - d_{2}^{+} = 50, \\ x_{2} + d_{3}^{-} - d_{3}^{+} = 50, \\ x_{3} + d_{4}^{-} - d_{4}^{+} = 80. \end{cases}$$

再考虑一般销售。类似上面的讨论,得到

$$\begin{cases} \min \left\{ 20d_{5}^{-} + 18d_{6}^{-} + 21d_{7}^{-} \right\}, \\ x_{1} + d_{5}^{-} - d_{5}^{+} = 100, \\ x_{2} + d_{6}^{-} - d_{6}^{+} = 120, \\ x_{3} + d_{7}^{-} - d_{7}^{+} = 100. \end{cases}$$

(3) 加班限制

首先是限制装配线加班时间,不允许超过200h, 因此得到

$$\begin{cases} \min\{d_8^+\}, \\ 5x_1 + 8x_2 + 12x_3 + d_8^- - d_8^+ = 1900. \end{cases}$$

其次装配线的加班时间尽可能少,即

$$\begin{cases}
\min \{d_1^+\}, \\
5x_1 + 8x_2 + 12x_3 + d_1^- - d_1^+ = 1700.
\end{cases}$$

写出目标规划的数学模型(lingo程序略)

min
$$z = P_1 d_1^- + P_2 (20d_2^- + 18d_3^- + 21d_4^-) + P_3 d_8^+$$

 $+ P_4 (20d_5^- + 18d_6^- + 21d_7^-) + P_5 d_1^+,$

s.t.
$$5x_1 + 8x_2 + 12x_3 + d_1^- - d_1^+ = 1700$$
,

$$x_1 + d_2^- - d_2^+ = 50,$$

$$x_2 + d_3^- - d_3^+ = 50,$$

$$x_3 + d_4^- - d_4^+ = 80,$$

$$x_1 + d_5^- - d_5^+ = 100,$$

$$x_2 + d_6^- - d_6^+ = 120,$$

$$x_3 + d_7^- - d_7^+ = 100,$$

$$5x_1 + 8x_2 + 12x_3 + d_8^- - d_8^+ = 1900,$$

$$x_1, x_2, d_i^-, d_i^+ \geq 0, i = 1, 2, \dots, 8.$$

经5次计算得到 $x_1 = 100$, $x_2 = 55$, $x_3 = 80$ 。装配线生产时间为1900h,满足装配线加班不超过200h的要求。能够满足老客户的需求,但未能达到销售目标。销售总利润为

100×1000+55×1440+80×2520=380800 (元)

例16.7 已知三个工厂生产的产品供应给四个客户,各工厂生产量、用户需求量及从各工厂到用户的单位产品的运输费用如表16.3所示,其中总生产量小于总需求量。

表16.3 运输费用和供需数据表

	用户1	用户 2	用户3	用户 4	生产
					量
工厂1	5	2	6	7	300
工厂2	3	5	4	6	200
工厂3	4	5	2	3	400
需求量	200	100	450	250	

- (1) 求总运费最小的运输问题的调度方案。
- (2)上级部门经研究后,制定了新调配方案的8项目标,并规定了重要性的次序。

第一目标:用户4为重要部门,需求量必须全部满足;

第二目标: 供应用户1的产品中, 工厂3的产品不少于

100个单位;

第三目标:每个用户的满足率不低于80%;

第四目标: 应尽量满足各用户的需求;

第五目标: 新方案的总运费不超过原运输问题的调度方案的10%;

第六目标: 因道路限制,工厂2到用户4的路线应尽量避免运输任务;

第七目标:用户1和用户3的满足率应尽量保持平衡;

第八目标:力求减少总运费。

请列出相应的目标规划模型,并用 Lingo 程序求解。

解 设 c_{ij} 表示从工厂i(i=1,2,3)到用户 j(j=1,2,3,4)的单位产品的运输费用, a_{j} 表示第j个用户的需求量, b_{i} 表示第i个工厂的生产量。 该题中总生产量小于总需求量。

(1) 求解原运输问题

设 x_{ij} 为工厂i(i = 1,2,3)调配给用户j(j = 1,2,3,4)的运量,建立如下的总运费最小的线性规划模型

$$\min \sum_{i=1}^3 \sum_{j=1}^4 c_{ij} x_{ij}$$

s.t.
$$\begin{cases} \sum_{j=1}^{4} x_{ij} = b_i, & i = 1, 2, 3, \\ \sum_{j=1}^{3} x_{ij} \le a_j, & j = 1, 2, 3, 4. \end{cases}$$

求得总运费是2950元,运输方案如表16.4所示(程序略)。

表16.4 运输方案表

	用户1	用户2	用户3	用户4	生产
					量
工厂1		100	200		300
工厂2	200				200
工厂3			250	150	400
需求量	200	100	450	250	

(2)按照目标重要性的等级列出目标规划的约束和目标函数

仍设 x_{ij} 为工厂i(i=1,2,3)调配给用户j(j=1,2,3,4)的运量。

i) 由于总生产量小于总需求量,产量约束应严格满足,即

$$\sum_{j=1}^{4} x_{ij} = b_i, \quad i = 1, 2, 3.$$

ii) 供应用户1的产品中,工厂3的产品不少于100个单位,即

$$x_{31} + d_1^- - d_1^+ = 100.$$

iii) 需求约束。各用户的满足率不低于80%,即

$$x_{11} + x_{21} + x_{31} + d_2^- - d_2^+ = 160$$
,
 $x_{12} + x_{22} + x_{32} + d_3^- - d_3^+ = 80$,
 $x_{13} + x_{23} + x_{33} + d_4^- - d_4^+ = 360$,
 $x_{14} + x_{24} + x_{34} + d_5^- - d_5^+ = 200$,

应尽量满足各用户的需求,即

$$x_{11} + x_{21} + x_{31} + d_6^- - d_6^+ = 200$$
,
 $x_{12} + x_{22} + x_{32} + d_7^- - d_7^+ = 100$,
 $x_{13} + x_{23} + x_{33} + d_8^- - d_8^+ = 450$,
 $x_{14} + x_{24} + x_{34} + d_9^- - d_9^+ = 250$.

iv)新方案的总运费不超过原方案的10%(原运输方案的运费为2950元),即

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + d_{10}^{-} - d_{10}^{+} = 3245.$$

- v) 工厂2到用户4的路线应尽量避免运输任务,即 $x_{24} + d_{11}^- d_{11}^+ = 0$.
- vi) 用户1和用户3的满足率应尽量保持平衡,即

$$(x_{11} + x_{21} + x_{31}) - \frac{200}{450}(x_{13} + x_{23} + x_{33}) + d_{12}^{-} - d_{12}^{+} = 0.$$

vii) 力求总运费最少,即

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + d_{13}^{-} - d_{13}^{+} = 2950.$$

此外

$$x_{ij} \ge 0$$
, $i = 1,2,3$, $j = 1,2,3,4$, $d_k^+, d_k^- \ge 0$, $k = 1,\dots,13$.

目标函数为

经8次运算,得到最终的计算结果,见表16.5。总运费为3360元,高于原运费410元,超过原方案10%的上限115元(程序略)。

表16.5 调运方案数据表

	用户1	用户2	用户3	用户4	生产量
工厂1		100		200	300
工厂2	90		110		200
工厂3	100		250	50	400
实际运量	190	100	360	250	
需求量	200	100	450	250	

下面给出目标规划的另外一种解法,把所有的目标偏差加权求和。

例16.8 (续例16.7) 某公司从三个仓库向四个用户提供某种产品。仓库与用户所在地的供需量及单位运价见表16.6。

表16.6供需量及单位运价表

	B_1	B_2	B_3	B_4	生产量(件)
A_1	5	2	6	7	300
$oldsymbol{A_2}$	3	5	4	6	200
A_3	4	5	2	3	400
需求量	200	100	450	250	
(件)					

公司有关部门根据供求关系和经营条件,确定了下列目标

 P_1 : 完全满足用户 B_4 的需要;

 P_2 : A_3 向 B_1 提供的产品数量不少于100件;

 P_3 :每个用户的供应量不少于其需求的80%;

 P_4 : 从仓库 A_1 到用户 B_2 之间的公路正在大修,运货量应尽量少;

 P_5 : 平衡用户 B_1 和 B_2 的供货满意水平;

 P_6 : 力求总运费最省;

试求满意的调运方案。

解 这是具有6个优先级目标的运输问题。设 x_{ij} 为从仓库 A_i 到用户 B_j 的运输量(i=1,2,3; j=1,2,3,4), d_k^-,d_k^+ 为第k个目标约束中,未达到规定目标的负偏差和超过目标的正偏差。 a_j (j=1,2,3,4)是用户 B_j 的需求量, b_i (i=1,2,3)是仓库 A_i 的供应量,约束条件有以下几种

i) 供应约束 (硬约束)

$$\sum_{j=1}^{4} x_{ij} \leq b_i, \quad i = 1, 2, 3.$$

ii) 需求约束。由于产品供不应求,向各用户的实际供应量不可能超过需求量,所以需求正偏差没有意义,约束为

$$\sum_{i=1}^{3} x_{ij} + d_{j}^{-} = a_{j}, \quad j = 1, 2, 3, 4.$$

iii) A_3 向 B_1 的供货约束

$$x_{31} + d_5^- - d_5^+ = 100.$$

iv) 至少满足用户需求80%的约束:

$$\sum_{i=1}^{3} x_{ij} + d_{5+j}^{-} - d_{5+j}^{+} = 0.8a_{j}, \quad j = 1, 2, 3, 4.$$

v) A_1 到 B_2 的运货量尽量少,也就是运货量尽可能为零。显然,负偏差没有意义,故有

$$x_{12} - d_{10}^+ = 0.$$

vi) 平衡用户 B_1 和 B_4 的满意水平,也就是供应率要相同。约束条件为

$$\sum_{i=1}^{3} x_{i1} - \frac{200}{450} \sum_{i=1}^{3} x_{i3} + d_{11}^{-} - d_{11}^{+} = 0.$$

vii) 运费尽量少,即尽量等于零,负偏差没有意义。 所以

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} - d_{12}^{+} = 0.$$

目标函数为

min
$$z = P_1 d_4^- + P_2 d_5^- + P_3 (d_6^- + d_7^- + d_8^- + d_9^-) + P_4 d_{10}^+$$

 $+ P_5 (d_{11}^- + d_{11}^+) + P_6 d_{12}^+$

目标函数的值为 3570, 观察 d1, d2 的值可以看出最小运费为 3570元 (程序略)。