Eigenvalues and Applications

Eigenvalues and Applications

Quadratic Forms

Basic

Diagonalizing Quadratic Forms

Classifying Quadratic Forms

Quadratic Forms

Basic

Def. Quadratic Form

In General, a **quadratic form** in the variables $x_{1:n}$ is an expression of the form:

$$q(\mathbf{x}) = q(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} x_i x_j$$
 (5)

Matrix Representation for Quadratic Form

Define $a_{i,i}=b_{i,i}$ and $a_{i,j}=(b_{i,j}+b_{ji})/2,\ i\neq j$, we have

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} \tag{1}$$

where A is a symmetric matrix.

Homogeneous: All terms in this equation(or function, etc.) have the same exponential degree.

From Text Book

The term *form* means homogeneous polynomial; that is, $q(a\mathbf{x}) = a^k q(\mathbf{x})$.

Th. For $\mathbf{x} \in \mathbb{R}^n$, let $q(\mathbf{x})$ denote the quadratic form that:

$$q(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} x_i x_j.$$
 (2)

Let $A = (a_{i,j})$ be the $(n \times n)$ matrix defined by

$$a_{i,j} = (b_{i,j} + b_{j,i})/2 (3)$$

The matrix A is symmetric and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Moreover, there is no other **symmetric** matrix B s.t. $\mathbf{x}^T B \mathbf{x} = q(\mathbf{x})$.

Note. But there exists many **nonsymmetric** matrix B s.t. $\mathbf{x}^T B \mathbf{x} = q(\mathbf{x})$.

Diagonalizing Quadratic Forms

For many applications, it is useful top have the even simpler representation described in this subsection. Because a real symmetric matrix can be diagonalized with an orthogonal matrix. That is, there is a square matrix Q s.t.

- 1. $Q^{T}Q = I$.
- 2. $Q^T A Q = D$, where D is diagonal.
- 3. The diagonal entries of D are the eigenvalues of A.

If we make the substitution $\mathbf{x} = Q\mathbf{y}$, we have:

$$egin{aligned} q(\mathbf{x}) &= q(Q\mathbf{y}) \ &= (Q\mathbf{y})^T A(Q\mathbf{y}) \ &= \mathbf{y}^T Q^T A Q\mathbf{y} \ &= \mathbf{y}^T D \mathbf{y} \ &= \sum_{i=1}^n \lambda_i y_i^2 \end{aligned}$$

Classifying Quadratic Forms

We can think of a quadratic form as a function from R^n to R. Specifically, if $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ where A is a real symmetric matrix, then we can define a real-valued function with domain R^n where

$$y = q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} \tag{4}$$

The quadratic form is classified as:

- 1. **Positive Definite**: if $q(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \theta$.
- 2. **Positive Semidefinite**: if $q(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \theta$.
- 3. **Negative Definite**: if $q(\mathbf{x}) < 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \theta$.
- 4. Negative Semidefinite: if $q(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \theta$.
- 5. **Indefinite**: if $q(\mathbf{x})$ assumes both positive and negative values.

Th. Let $q(\mathbf{x})$ be a quadratic form with representation $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is a symmetric $(n \times n)$ matrix. Let the eigenvalues of A be $\lambda_1, \lambda_2, \ldots, \lambda_n$. The quadratic form is:

- 1. Positive definite $\Leftrightarrow \forall i, \ \lambda_i > 0$.
- 2. Positive semidefinite \Leftrightarrow \forall\ i,\ \lambda_{i} \geq 0.
- 3. Negative definite \Leftrightarrow \forall\ i,\ \lambda_{i}<0.
- 4. Negative semidefinite $\Leftrightarrow \forall i, \lambda_i \leq 0$.
- 5. Indefinite $\Leftrightarrow A$ has both positive and negative eigenvalues.