오개념 때려잡기 <상대론>

1.로렌츠 변환

1.역사(읽어 보세요)

1860년대 맥스웰 방정식

이 식은 고전적인 갈릴레이 변환에 의해서 대칭적이지 않음

합리적인 생각:맥스웰 방정식이 틀렸다->갈릴레이 변환에 대해 대칭이도록 수정한 형태의 전자기 방정식을 만들었으나, 실험 결과 설명 x

따라서 갈릴레이 변환이 틀렸다는 것을 이끌어냄

로렌츠가 맥스웰 방정식을 보존시키는 변환을 찾음:로렌츠 변환

이때쯤의 많은 학자들이 전반적으로 상대론에 달려들었던 듯

->이 전반적인 내용에 물리적인 의미를 부여한 것이 아인슈타인

대칭:특정한 변환에 의해서 변하지 않는 것 ex)벡터는 회전 변환에 대칭

2.로렌츠 변환

역사적으로 로렌츠 변환이 상대론보다 먼저이기 때문에, 로렌츠 변환을 먼저 나타냄

1-ex1)로렌츠 변환 연습문제

0.8c의 속력으로 달리던 기차가 승강대에 있던 관찰자를 통과하는데 $5\mu s$ 가 걸렸다.

- (1) 기차의 좌표계에서 잰 시간 간격은?
- (2)기차에 있는 관찰자가 잰 기차의 길이는?
- (3) 승강장에 있는 관찰자가 잰 기차의 길이는?

3.로렌츠 변환의 불변량

 $c^2 t'^2 - x'^2$ 을 로렌츠 변환을 이용해 계산해 보자

회전변환과의 유사성...?-첨부에 들어 있음/시간축에 I곱하면 거리가 됨

2.길이 수축과 시간 팽창, 속도 덧셈

1.상대론 기초

두 가지 공리

1.

2.

역사: 빛의 속도가 불변임이 처음 알려짐->갈릴레이 변환을 사용하면 관성계의 상대성을 깰 수 있었음:마이 켈슨-몰리의 실험->로렌츠 변환을 통해서 관성계의 상대성이 깨지지 않음

사건:시공간상의 한 점 여기서 시간은 그 좌표계 내에서의 절대적인 값을 사용

2.시간 팽창의 유도

시간:

고유 시간:

증명

3.길이 수축의 유도	
길이:	
고유 길이:	
증명:	

4.길이는 왜 수축되고 시간은 왜 팽창되는가? 길이는 물체에서 정의됨, 시간은 시공간 상의 점에서 정의됨 시공간 상의 점에서 정의되는 공간 성분의 차이를 거리라고 하면 거리는 팽창되지만 거리와 길이는 동일하지 않음

5.로렌츠 변환을 이용한 유도

6.로렌츠 속도덧셈

$$\beta = \frac{\beta_B - \beta_A}{1 - \beta_B \beta_A}$$

증명:

3.민코프스키 도표와 세계선

1.민코프스키 도표 그리기 민코프스키 도표:사건들을 좌표평면에 나타낸 것

세계선:물체가 시공간상에 남기는 궤적, 정지한 물체도 궤적이 있다(시간적으로 정지한 물체가 없음)

로렌츠 변환으로 t'=0, x'=0인 자취를 찾아서 이를 x'축, ct'축 으로 두자 밫의 세계선은 "모든 좌표계에서 기울기 1" by 로렌츠 속도덧셈

좌표계를 바꾸면, 로렌츠 역변환에 의해서 변하게 된다.

참고:로렌츠 속도덧셈이 복소 탄젠트 덧셈인 이유 속도덧셈==x축 기울기 덧셈==탄젠트 덧셈

2.민코프스키 도표에 눈금 넣기

길이 수축/시간 팽창을 이용할 수도 있지만, 그렇게는 하고 싶지 않다.

그냥 로렌츠 불변량을 이용한 것이 가장 좋다.

3-ex1)민코프스키 도표로 시간팽창 유도

3-ex2)민코프스키 도표로 길이수축 유도

3-ex3)민코프스키 도표로 아까 그 문제 다시 풀기

- 0.8c의 속력으로 달리던 기차가 승강대에 있던 관찰자를 통과하는데 5μs가 걸렸다.
- (1) 기차의 좌표계에서 잰 시간 간격은?
- (2)기차에 있는 관찰자가 잰 기차의 길이는?
- (3) 승강장에 있는 관찰자가 잰 기차의 길이는?

로렌츠 불변량을 이용해 눈금을 넣음으로서, 민코프스키 그림이 로렌츠 변환을 그대로 반영하도록 디자인 하는 것을 완료했다. 이제 마음대로 쓰면 된다.

4.4벡터와 상대론적 역학

1.4벡터의 도입과 사건을 나타내는 4벡터

벡터의 정의:직교변환(특징:길이를 보존)되는 값 $(ex)^{r}$ 은 회전과 대칭변환의 규칙을 따름)

로렌츠 변환을 잘 바꿔 보면(참고에 있음) 직교변환 형태가 됨

위치를 나타내는 성분 3개짜리 벡터에 ct를 끼워 놓은 것도 벡터로 정의 가능-로렌츠 변환되기 때문

 $(\overrightarrow{r},ct) = (x,y,z,ct)$

벡터의 크기는 직교변환에 대해서 불변

로렌츠 불변량이 4-벡터의 크기이다.

2.속도 4벡터

로 정의함

이 벡터는 로렌츠 변환을 만족시킨다.

이해를 돕기 위한 유도

우선, 정지한 물체의 속도 4벡터는 시간 축 방향으로 (c,0)으로 둘 수 있다(이의 상수배여도 상수로 나누는 방법을 통해 이처럼 만들 수 있다.)

그리고 좌표계를 바꾸게 되면, 속도 4벡터의 x,t방향 성분은 다음과 같이 변화한다.

이 값은 민코스프키 도표를 따르도록 설계되었으니 로렌츠 변환을 만족시킨다. 3.민코스프키 도표를 이용해서 상대론적 에너지 찾기

속도 4벡터에 질량을 곱한 것을 운동량 4벡터라고 정의하자

 $\overrightarrow{P}=(\gamma m \overrightarrow{v}, \gamma m c)$ 이 운동량 4벡터의 시간성분은 무엇일까? 감마의 미분법

운동량 4벡터의 미분법

4.속도와 에너지의 불변량

사건을 나타내는 4벡터에서 로렌츠 불변량이 정의되는 것처럼, 운동량을 나타내는 4벡터에서 로렌츠 변환에 대해 불변인 로렌츠 불변량을 정의할 수 있다. 불변량이 질량을 나타낸다.

이는 계에 대해서도 적용할 수 있고, 충돌 문제로 이어진다.

5.충돌 문제 푸는 법

충돌 전과 후에 에너지(스칼라)와 운동량(벡터)의 합은 동일하다. 충돌 전의 계와 충돌 후의 계에서 로렌츠 불변량은 "각각" 동일하다 4-ex1)최소 에너지 문제

고에너지 양성자가 서로 충돌하는 경우, 두 개의 양성자와 몇 개의 전하를 띈 파이온을 만들어낼 수 있다. Lab frame에서 총 에너지 E의 양성자가 정지한 양성자와 충돌하는 경우를 생각하자. 이때 다음 반응을 일으킬 수 있는 최소 에너지 EO를 구하라 $p+p->p+p+\pi$ (단, 양성자의 질량 m_p , 파이온의 질량 m_π , 광속 c이다)

5.참고:로렌츠 변환행렬은 복소각만큼 회전시키는 회전행렬이다.

$$\begin{bmatrix} 1 \ 0 \\ 0 \ i \end{bmatrix} \begin{bmatrix} x' \\ ct' \end{bmatrix} = \begin{bmatrix} 1 \ 0 \\ 0 \ i \end{bmatrix} \begin{bmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{bmatrix} \begin{bmatrix} x \\ ct \end{bmatrix}$$

시간축에 i배하는 행렬을 곱했다

$$\begin{bmatrix} 1 \ 0 \\ 0 \ i \end{bmatrix} \begin{bmatrix} x' \\ ct' \end{bmatrix} = \begin{bmatrix} 1 \ 0 \\ 0 \ i \end{bmatrix} \begin{bmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{bmatrix} \begin{bmatrix} 1 \ 0 \\ 0 \ i \end{bmatrix} \begin{bmatrix} 1 \ 0 \\ ct \end{bmatrix} \begin{bmatrix} x \\ ct \end{bmatrix}$$

중앙에 시간 축을 I배하는 행렬과 그것의 역행렬을 곱했다

$$\begin{bmatrix} x' \\ ict' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 - i \end{bmatrix} \begin{bmatrix} x \\ ict \end{bmatrix}$$

가운데에 있는 행렬이 바로 새로 변환된 로렌츠 변환

$$\begin{bmatrix} x' \\ ict' \end{bmatrix} = \begin{bmatrix} \gamma & i\gamma\beta \\ -i\gamma\beta & \gamma \end{bmatrix} \begin{bmatrix} x \\ ict \end{bmatrix}$$
$$\begin{bmatrix} x' \\ ict' \end{bmatrix} = \begin{bmatrix} \gamma & -\gamma\frac{\beta}{i} \\ \gamma\frac{\beta}{i} & \gamma \end{bmatrix} \begin{bmatrix} x \\ ict \end{bmatrix}$$
$$\begin{bmatrix} x' \\ ict' \end{bmatrix} = \begin{bmatrix} \gamma & -\gamma\beta' \\ \gamma\beta' & \gamma \end{bmatrix} \begin{bmatrix} x \\ ict \end{bmatrix}$$

시간축에 i를 곱하는 대신 그 실수값들의 관계를 유지하도록 변환한 것이 위의 값이다.

$$[\gamma \gamma \beta'] \begin{bmatrix} -\gamma \beta' \\ \gamma \end{bmatrix} = 0$$
$$\sqrt{\gamma^2 + \gamma^2 \beta'^2} = 1$$

두 열벡터가 서로 수직이고, 각각의 크기가 1이므로 이 행렬은 직교행렬이고, 로렌츠변환은 이제 직교변환으로 그 형태가 바뀌었다.

x, ict는 회전변환이 복소각으로 바뀐 것을 빼면, 모든 유클리드 기하적인 성질을 만족할 것으로 알수 있고, 따라서 로렌츠 속도합성 공식에 대한 증명을 완료할 수 있다.

6.참고:로렌츠 변환을 이용하지 않은 민코프스키 도표 그리기

좌표계의 시간축//그 좌표계에서 봤을 때 정지한 물체의 세계선 속도 v로 움직이는 물체의 세계선:기울기 인 직선//속도 v로 움직이는 좌표계의 시간축 빛의 세계선은 "모든 좌표계"에서 기울기 1로 표현:광속불변원리 또는 로렌츠 속도덧셈 기울기 1:시간 축과 공간 축의 대칭의 중심이 된다.

따라서, 속도 v로 움직이는 좌표계의 공간축은 기울기가 β 이다.