Generated on 2024-10-28 10:11:09 by gEcon version 1.2.1 (2023-01-18) Model name: RSW_RP_ONEOBJ_ENDO_COMMITMENT

1 OPTIMALMP

1.1 Optimisation problem

$$\max_{piH_{t}, yiH_{t}, piL_{t}, yL_{t}} U_{t} = -0.25 \left(pitH - pitCB + piH_{t} \right)^{2} - 0.25 \left(-pitCB + pitL + piL_{t} \right)^{2} + \beta \mathbf{E}_{t} \left[U_{t+1} \right] - 0.25 \lambda y{H_{t}}^{2} - 0.25 \lambda y{L_{t}}^{2}$$
 (1.1) s.t.:
$$piH_{t-1} = \log \det p_{t-1} + \beta piH_{t} + \kappa yH_{t-1} + \beta \left(-piH_{t} + piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) \left(\lambda_{t}^{\text{OPTIMALMP}^{1}} \right)$$
 (1.2)
$$piL_{t-1} = \log \det p_{t-1} + \beta piL_{t} + \kappa yL_{t-1} + \beta \left(piH_{t} - piL_{t} \right) \left(1 - pLss + \tau \left(-pitCB + piL_{t} \right)^{2} \right) \left(\lambda_{t}^{\text{OPTIMALMP}^{2}} \right)$$
 (1.3)

1.2 First order conditions

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_t - \beta \text{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] + \lambda_t^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(- \textit{pitCB} + \textit{piH}_t \right)^2 \right) - 2\beta \tau \left(- \textit{pitCB} + \textit{piH}_t \right) \left(- \textit{pitH}_t + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piH}_t \right)^2 \right) \\ - 0.5 \lambda \textit{yH}_t + \beta \kappa \text{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \quad (\textit{yH}_t)$$

$$(1.5)$$

$$0.5 \textit{pitCB} - 0.5 \textit{pitL} - 0.5 \textit{pitL}_t - \beta \text{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] + \lambda_t^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) + 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(\textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 0.5 \lambda \textit{yL}_t + \beta \kappa \text{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \quad (\textit{yL}_t)$$

$$(1.6)$$

$$(1.6)$$

2 EXOG

2.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{2.1}$$

3 Equilibrium relationships (after reduction)

$$-\operatorname{dispi}_{t} + e^{\epsilon_{t}^{\pi} + \phi \log \operatorname{dispi}_{t-1}} = 0 \tag{3.1}$$

$$-0.5\lambda y H_t + \beta \kappa \mathcal{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \tag{3.2}$$

$$-0.5\lambda y L_t + \beta \kappa E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \tag{3.3}$$

$$-piH_{t-1} + \log e^{t}qpi_{t-1} + \beta piH_t + \kappa yH_{t-1} + \beta \left(-piH_t + piL_t\right) \left(1 - pHss - \tau \left(-pitCB + piH_t\right)^2\right) = 0$$
(3.4)

$$-piL_{t-1} + \log etapi_{t-1} + \beta piL_t + \kappa yL_{t-1} + \beta \left(piH_t - piL_t\right) \left(1 - pLss + \tau \left(-pitCB + piL_t\right)^2\right) = 0$$

$$(3.5)$$

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_t - \beta \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] + \lambda_t^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(- \textit{pitCB} + \textit{piH}_t \right)^2 \right) - 2\beta \tau \left(- \textit{pitCB} + \textit{piH}_t \right) \left(- \textit{pitH}_t + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piH}_t \right)^2 \right) \\ - 0.5 \textit{pitCB} - 0.5 \textit{pitL} - 0.5 \textit{pitL}_t - \beta \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] + \lambda_t^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) + 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(\textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \right) \\ - 2\beta \tau \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \left(- \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(- \textit{pitCB} + \textit{piL}_t \right)$$

$$(3.7)$$

$$U_{t} + 0.25 \left(pitH - pitCB + piH_{t} \right)^{2} + 0.25 \left(-pitCB + pitL + piL_{t} \right)^{2} - \beta E_{t} \left[U_{t+1} \right] + 0.25 \lambda y H_{t}^{2} + 0.25 \lambda y L_{t}^{2} = 0 \tag{3.8}$$

4 Steady state relationships (after reduction)

$$-dqi_{ss} + e^{\phi \log dqi_{ss}} = 0 \tag{4.1}$$

$$-0.5\lambda y H_{ss} + \beta \kappa \lambda_{ss}^{\text{OPTIMALMP}^{1}} = 0 \tag{4.2}$$

$$-0.5\lambda y L_{\rm ss} + \beta \kappa \lambda_{\rm ss}^{\rm OPTIMALMP^2} = 0 \tag{4.3}$$

$$-piH_{ss} + \log \cot p_{ss} + \beta piH_{ss} + \kappa yH_{ss} + \beta \left(-piH_{ss} + piL_{ss}\right) \left(1 - pHss - \tau \left(-piHCB + piH_{ss}\right)^{2}\right) = 0$$

$$(4.4)$$

$$-piL_{ss} + \log \cot pi_{ss} + \beta piL_{ss} + \kappa yL_{ss} + \beta \left(piH_{ss} - piL_{ss}\right) \left(1 - pLss + \tau \left(-pitCB + piL_{ss}\right)^{2}\right) = 0$$

$$(4.5)$$

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_{\text{ss}} - \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} + \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right) \left(-\textit{pitH}_{\text{ss}} + \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right) \left(-\textit{pitH}_{\text{ss}} + \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} + \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right)$$

$$U_{\rm ss} + 0.25 \left(pitH - pitCB + piH_{\rm ss} \right)^2 + 0.25 \left(-pitCB + pitL + piL_{\rm ss} \right)^2 - \beta U_{\rm ss} + 0.25 \lambda y H_{\rm ss}^2 + 0.25 \lambda y L_{\rm ss}^2 = 0 \tag{4.8}$$

5 Parameter settings

 \sim

$$\beta = 0.99 \tag{5.1}$$

$$\kappa = 0.2465 \tag{5.2}$$

$$\lambda = 0.04106 \tag{5.3}$$

$$\phi = 0.95 \tag{5.4}$$

$$ptH = 2 (5.5)$$

$$pitCB = 2 (5.6)$$

$$pitL = 4 (5.7)$$

$$pHss = 0.99 \tag{5.8}$$

$$pLss = 0.99$$
 (5.9)

$$\sigma = 1 \tag{5.10}$$

$$\tau = 0.001 \tag{5.11}$$

$$\theta = 6 \tag{5.12}$$

6 Steady-state values

	Steady-state value
etapi	1
$\lambda^{ ext{OPTIMALMP}^1}$	0.004
$\lambda^{ m OPTIMALMP^2}$	-0.0243
$pi\!H$	-0.0014
piL	-1.9979
$y\!H$	0.048
yL	-0.2894
U	-0.0885

7 The solution of the 1st order perturbation

Matrix P

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \text{etapi} \\ piH \\ piL \\ yH \\ yL \\ \end{array} \begin{pmatrix} 1 \\ 0 \\ 0 \\ -82.1797 \\ -13.9222 \\ \end{pmatrix}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\mathrm{OPTIMALMP^1}} \\ \lambda^{\mathrm{OPTIMALMP^2}} \begin{pmatrix} -81.0505 \\ -14.4476 \\ -3.8182 \end{pmatrix} \end{array}$$

8 Model statistics

8.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$\lambda^{ ext{OPTIMALMP}^1}$	0.004	11.186	125.126	Y
$\lambda^{ m OPTIMALMP^2}$	-0.0243	1.9061	3.6331	Y
$pi\!H$	-0.0014	3.5273	12.4415	Y
$p\!i\!L$	-1.9979	0	0	Y
$y\!H$	0.048	10.9038	118.8936	Y
yL	-0.2894	1.8217	3.3185	Y
U	-0.0885	0.4978	0.2478	Y

8.2 Correlation matrix

	etapi	$\lambda^{ ext{OPTIMALMP}^1}$	$\lambda^{ m OPTIMALMP^2}$	piH	$y\!H$	yL	U
etapi	1	-0.998	-1	-0.677	-1	-1	-1
$\lambda^{ ext{OPTIMALMP}^1}$		1	0.999	0.719	0.999	0.999	0.998
$\lambda^{ m OPTIMALMP^2}$			1	0.686	1	1	1
piH				1	0.691	0.68	0.677
$y\!H$					1	1	1
yL						1	1
U							1

8.3 Cross correlations with the reference variable (pH)

	$\sigma[\cdot]$ rel. to $\sigma[piH]$	piH_{t-5}	piH_{t-4}	piH_{t-3}	pH_{t-2}	pH_{t-1}	piH_t	piH_{t+1}	piH_{t+2}	piH_{t+3}	piH_t
$etapi_t$	0.037	-0.211	-0.403	-0.625	-0.848	-0.973	-0.677	-0.429	-0.226	-0.064	0.06
$\lambda_t^{ ext{OPTIMALMP}^1}$	3.171	0.199	0.394	0.619	0.848	0.985	0.719	0.471	0.26	0.089	-0.0
$\lambda_t^{ ext{OPTIMALMP}^2}$	0.54	0.208	0.401	0.624	0.849	0.976	0.686	0.438	0.234	0.07	-0.0
$pi\!H_t$	1	0.005	0.161	0.357	0.587	0.829	1	0.829	0.587	0.357	0.16
$y\!H_t$	3.091	0.207	0.4	0.624	0.849	0.977	0.691	0.443	0.237	0.072	-0.0
yL_t	0.516	0.21	0.403	0.625	0.849	0.974	0.68	0.432	0.228	0.066	-0.0
U_t	0.141	0.211	0.403	0.625	0.848	0.973	0.677	0.429	0.226	0.064	-0.0

8.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
$\lambda^{ ext{OPTIMALMP}^1}$	0.747	0.505	0.296	0.125	-0.01
$\lambda^{ m OPTIMALMP^2}$	0.721	0.479	0.277	0.113	-0.015
$pi\!H$	0.829	0.587	0.357	0.161	0.005
$y\!H$	0.724	0.482	0.279	0.115	-0.014
yL	0.716	0.474	0.273	0.111	-0.016
U	0.713	0.471	0.271	0.11	-0.016

9 Impulse response functions

Figure 1: Impulse responses $(p\!i\!H,p\!i\!L,y\!H,y\!L)$ to ϵ^π shock