# Bioinformática Trabajo Práctico Final

# Agenda

- Introducción
  - Síndrome de Charcot Marie Tooth
  - Gen GJB1
  - La proteína GJB1
- Procesamiento
  - Tooling
  - Secuenciamiento de mRNA
  - BLASTp, MAS y árbol filogenético
  - Comprobación de los resultados
  - Conclusiones



### Síndrome de Charcot - Marie - Tooth

- Descrita en 1888
  - Jean-Martin Charcot
  - Pierre Marie
  - Howard Henry Tooth
- Neuropatía motora y sensorial hereditaria







# Síndrome de Charcot - Marie - Tooth

| Tipo  | Nombre                | Genes                                 |
|-------|-----------------------|---------------------------------------|
| CMT1  | Desmielinizante       | PMP22 MPZ LITAF EGR2, NEFL            |
| CMT2  | Axonal                | KIF1B MFN2 LMNA GARS NEFL y otros     |
| CMT3  | Dejerine-Sottas       | MPZ, EGR2, PMP22 y PRX                |
| CMT4  | Espinal               | GDAP SBF1 SBF2 PRX FIG4 y otros       |
| CMT5  | Piramidal             | 4q34.3–q35.2                          |
| CMT6  | Con atrofia óptica    | MFN2                                  |
| CMTDI | Dominancia Incompleta | 10q24.1–q25.1 DNM2 YARS MPZ INF2 GNB4 |
| CMTRI | Recesivo Incompleto   | GDAP1 KARS                            |
| CMTX  | Ligada al sexo        | GJB1 CMTX2 CMTX3 NAMSD PRPS1 PDK3     |

### Gen GJB1

- Codifica la proteína GJB1
- Otros nombres
  - CMTX
  - CMTX1
  - CX32
- Se encuentra en Xq13.1

#### Gen GJB1

- 10% de las mutaciones son patogénicas y probablemente patogénicas
- Incluyen
  - Mutación sin sentido, con cambios de sentido y doble cambio de sentido
  - Borrado de aminoácidos
  - Cambio de marco de lectura
  - Inserciones o borrados

#### Proteína GJB1

- Proteína Transmembranal
- Se suele encontrar en:
  - Hígado
  - Riñones
  - Páncreas
  - Sistema Nervioso
- Se produce en las células de Schwann
- Facilita la transmisión de nutrientes, iones y moléculas



# Tooling

# Software

- Perl 5.18 + CPAN + BioPerl 1.16
- O Bash
- NCBI BLAST+ 2.2.28
- EMBOSS 6.6.0.0

# Tooling

# Web

- ensembl.org
- CLUSTAL OMEGA <a href="http://www.ebi.ac.uk/Tools/msa/clustalo/">http://www.ebi.ac.uk/Tools/msa/clustalo/</a>
- O HomoloGene
- OlinVar
- O dbSNP

### Secuenciamiento de mRNA

- Descarga de la secuencia en formato GenBank del Gen
- 2. Uso de BioPerl::SeqIO para traducir los reading frames
- 3. Uso del tamaño del reading frame para buscar el más probable

# BLASTp+, MAS y árbol filogenético

- 1. Uso de BioPerl::RemoteBlast
  - a. Se debían buscar uno a uno los matches
- 2. Uso de BioPerl::StandAloneBlastPlus
  - a. Más directo, output derecho a archivo
- 3. Uso de bash e instalación local de BLAST+
  - Porque BioPerl no instala apropiadamente
    StandAloneBlastPlus y BLASTp de NCBI estaba
    caído

### BLASTp+, MAS y árbol filogenético

1. Se intentó con el algoritmo MUSCLE usando el ejemplo de

http://www.bioinfopoint.com/index.php/code/3-multiple-sequence-alignment-with-bioperland-muscle

- 2. Se intentó con herramientas on-line
  - a. Galaxy (MUSCLE)
  - b. NCBI (COBALT)
  - c. EBI (CLUSTAL)

# BLASTp+, MAS y árbol filogenético



### Comprobación de Resultados

- Instalación de EMBOSS local y script de BASH
- 2. Instalación de base PROSITE en EMBOSS
- 3. *getorf* para obtener el ORF
  - a. filtrando por secuencias con más de 600 nucleótidos
- 4 patmatmotifs para obtener la proteína







