Durée 1h30

Examen de Mécanique Rationnelle

Exercice 01: (5 pts)

Soient deux forces \vec{F}_1 et \vec{F}_2 faisant chacune respectivement un angle de 25° et 35° avec la résultante \vec{R} qui a une valeur de 400 N. Déterminer les modules des deux forces ?

التمرين 1:

$$N$$
 400 التي قيمتها \vec{R} ، تصنع كل منهما زاوية 25 درجة و 35 درجة على التوالي مع المحصلة \vec{R} التي قيمتها

Exercice 02: (7 pts)

Localisez le centre de gravité de la surface composée suivante :

Exercice 03: (8 pts)

Un arc en treillis repose en $\bf B$ sur une articulation fixe et en $\bf A$ sur un rouleau dont le plan d'appui fait un angle de 30° avec 1'horizontale. Le poids propre de l'arc est $\bf P=100KN$. La résultante horizontale $\bf F$ des forces de pression du vent égale à 20 KN, et appliquée à 4 m audessus du point $\bf B$. Déterminer les réactions aux appuis $\bf A$ et $\bf B$?

التمرين 3: ليكن القوس المجمّع الموضح في الشكل ، يرتكز عند B على مسند ثابت وعند A على مسند متحرك والذي يصنع زاوية B درجة مع المستوى الأفقي. الوزن الذاتي للقوس هو P = 100KN القوة F لضغط الرياح تساوي A 20، ويتم تطبيقها على ارتفاع 4 أمتار فوق النقطة B.

- احسب ردود الافعال في المساند A و B ?

Correction d'Examen de Mécanique Rationnelle

Exercice 1: (5 pts)

Utilisons la règle des sinus :

$$\frac{BC}{\sin 25^{\circ}} = \frac{AB}{\sin 35^{\circ}} = \frac{AC}{\sin \alpha}$$

$$\alpha = 180^{\circ} - (25^{\circ} + 35^{\circ}) = 120^{\circ}$$

or nous avons: $AB = F_1$, $BC = F_2$ et AC = R

D'où : $F_2 = R \frac{\sin 25^{\circ}}{\sin 120^{\circ}} = 195N$ et $F_1 = R \frac{\sin 35^{\circ}}{\sin 120^{\circ}} = 265N$ Exercice 1 : (7 pts)

Localisez le centre de gravité de la surface composée suivante :

	Surface composante	A, mm²	x, mm	<i>y</i> , mm .	<i>xA</i> , mm³	ÿA, mm³
	Rectangle Triangle Demi-cercle Cercle	$(120)(80) = 9.6 \times 10^{3}$ $\frac{1}{2}(120)(60) = 3.6 \times 10^{3}$ $\frac{1}{2}\pi(60)^{2} = 5.655 \times 10^{3}$ $-\pi(40)^{2} = -5.027 \times 10^{3}$		40 -20 105,46 80	$+576 \times 10^{3}$ $+144 \times 10^{3}$ $+339,3 \times 10^{3}$ $-301,6 \times 10^{3}$	$+384 \times 10^{3}$ -72×10^{3} $+596,4 \times 10^{3}$ $-402,2 \times 10^{3}$
		$\Sigma A = 13,828 \times 10^3$			$\Sigma \bar{x}A = +757, 7 \times 10^3$	$\Sigma \overline{y}A = +506, 2 \times 10^3$

b) Position du centre géométrique En substituant les valeurs tirées du tableau dans les équations définissant le centre géométrique de la surface composée, on obtient

 $\overline{Y}\Sigma A = \Sigma \overline{y}A$: $\overline{Y}(13,828 \times 10^3 \text{ mm}^2) = 506,2 \times 10^3 \text{ mm}^3$

Exercice 3: (8 pts)

Pour la détermination des réactions R_A, R_{Bx} et R_{By}, on écrit la projection des éléments du torseur nul des forces extérieurs en B, où :

$$\sum_{i=1}^{n} \vec{F}_{ix} = \vec{0}, \quad \sum_{i=1}^{n} \vec{F}_{iy} = \vec{0}, \quad \sum_{i=1}^{n} \vec{M}_{B}(\vec{F}_{i}) = \vec{0}$$

$$\sum_{i=1}^{n} \vec{F}_{ix} = \vec{0} \iff R_{A} \sin 30^{\circ} - R_{Bx} - F = 0$$
 (1)

$$\sum_{i=1}^{n} \vec{F}_{iy} = \vec{0} \iff R_{A} \cos 30^{\circ} + R_{By} - P = 0$$
 (2)

$$\sum_{i=1}^{n} \vec{M}_{B}(\vec{F}_{i}) = \vec{0} \Leftrightarrow -R_{A} \cos 30^{\circ} x \cdot 20 + Px \cdot 10 + Fx \cdot 4 = 0$$
 (3)

La résolution des trois équations donne :

$$R_A = 62.4 \text{ KN}, R_{Bx} = -11.18 \text{ KN}, R_{By} = 46 \text{ KN}$$