IBM Employee Attrition Prediction

June 17, 2021

1 IBM Employee Attrition Prediction

1.1 Description

IBM is an American MNC operating in around 170 countries with major business vertical as computing, software, and hardware. Attrition is a major risk to service-providing organizations where trained and experienced people are the assets of the company. The organization would like to identify the factors which influence the attrition of employees.

1.2 Data Dictionary

- Age: Age of employee
- Attrition: Employee attrition status
- Department: Department of work
- DistanceFromHome
- Education: 1-Below College; 2- College; 3-Bachelor; 4-Master; 5-Doctor;
- EducationField
- EnvironmentSatisfaction: 1-Low; 2-Medium; 3-High; 4-Very High;
- JobSatisfaction: 1-Low; 2-Medium; 3-High; 4-Very High;
- MaritalStatus
- MonthlyIncome
- NumCompaniesWorked: Number of companies worked prior to IBM
- WorkLifeBalance: 1-Bad; 2-Good; 3-Better; 4-Best;
- YearsAtCompany: Current years of service in IBM

2 Import Libraries

```
[10]: import numpy as np
  import pandas as pd
  import tensorflow as tf
  import matplotlib.pyplot as plt
  %matplotlib inline
  from patsy import dmatrices
  import sklearn
  import seaborn as sns
```

3 Import attrition dataset

```
[3]: dataframe=pd.read_csv("C:/Users/Anushree/Downloads/1576148666_ibmattritiondata/
→IBM Attrition Data.csv")
```

4 Exploratory data analysis

```
[4]: dataframe.head()
[4]:
        Age Attrition
                                    Department DistanceFromHome
                                                                  Education \
     0
         41
                                         Sales
                  Yes
                                                                1
     1
         49
                   No Research & Development
                                                                8
                                                                            1
     2
         37
                  Yes Research & Development
                                                                2
                                                                            2
     3
         33
                       Research & Development
                                                                3
                                                                            4
     4
         27
                       Research & Development
                                                                2
                                                                            1
       EducationField EnvironmentSatisfaction
                                                  JobSatisfaction MaritalStatus
     O Life Sciences
                                              2
                                                                4
                                                                          Single
     1 Life Sciences
                                              3
                                                                2
                                                                         Married
     2
                                              4
                                                                3
                Other
                                                                          Single
                                              4
     3 Life Sciences
                                                                3
                                                                         Married
     4
                                               1
                                                                2
                                                                         Married
              Medical
        MonthlyIncome
                       NumCompaniesWorked WorkLifeBalance YearsAtCompany
     0
                 5993
                                                           3
                                                                           10
     1
                 5130
                                         1
     2
                 2090
                                         6
                                                           3
                                                                            0
     3
                 2909
                                         1
                                                           3
                                                                            8
     4
                 3468
                                         9
                                                           3
                                                                            2
[4]: names = dataframe.columns.values
     print(names)
    ['Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education'
     'EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction'
     'MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance'
     'YearsAtCompany']
```

5 Age distribution of Employees

```
[9]: # histogram for age
plt.figure(figsize=(10,8))
dataframe['Age'].hist(bins=70)
plt.title("Age distribution of Employees")
plt.xlabel("Age")
plt.ylabel("# of Employees")
```


6 Attrition of Employees by Age

```
[6]: # explore data for Attrition by Age
plt.figure(figsize=(14,10))
plt.scatter(dataframe.Attrition,dataframe.Age, alpha=.55)
plt.title("Attrition by Age ")
plt.ylabel("Age")
plt.grid(b=True, which='major',axis='y')
plt.show()
```


7 Analysis of Left Employees

```
[7]: # explore data for Left employees breakdown
plt.figure(figsize=(8,6))
dataframe.Attrition.value_counts().plot(kind='barh',color='blue',alpha=.65)
plt.title("Attrition breakdown")
plt.show()
```


8 Distribution of employees by the education field

```
[8]: # explore data for Education Field distribution
plt.figure(figsize=(10,8))
dataframe.EducationField.value_counts().plot(kind='barh',color='g',alpha=.65)
plt.title("Education Field Distribution")
plt.show()
```


9 Marital Status of Employees

```
[9]: # explore data for Marital Status
plt.figure(figsize=(8,6))
dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.5)
plt.show()
```


10 Statistical analysis of data

10]:	datafr	dataframe.describe()							
0]:		Age I)istanceFromHome	Education	Environ	mentSatisfaction	\		
	count	1470.000000	1470.000000	1470.000000		1470.000000			
	mean	36.923810	9.192517	2.912925		2.721769			
	std	9.135373	8.106864	1.024165		1.093082			
	min	18.000000	1.000000	1.000000		1.000000			
	25%	30.000000	2.000000	2.000000		2.000000			
	50%	36.000000	7.000000	3.000000		3.000000			
	75%	43.000000	14.000000	4.000000		4.000000			
	max	60.000000	29.000000	5.000000		4.000000			
		JobSatisfactio	on MonthlyIncome	NumCompanie	sWorked	WorkLifeBalance	\		
	count	1470.00000	1470.000000	1470	.000000	1470.000000			
	mean	2.72857	1 6502.931293	2	.693197	2.761224			
	std	1.10284	4707.956783	2	.498009	0.706476			

```
1.000000
                                 1009.000000
                                                         0.000000
                                                                          1.000000
      min
      25%
                    2.000000
                                 2911.000000
                                                         1.000000
                                                                          2.000000
      50%
                    3.000000
                                 4919.000000
                                                         2.000000
                                                                          3.000000
      75%
                    4.000000
                                 8379.000000
                                                         4.000000
                                                                          3.000000
                    4.000000
                                19999.000000
                                                         9.000000
                                                                          4.000000
      max
             YearsAtCompany
                1470.000000
      count
                   7.008163
      mean
      std
                   6.126525
     min
                   0.000000
      25%
                   3.000000
      50%
                   5.000000
      75%
                   9.000000
                  40.000000
      max
[11]: dataframe.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1470 entries, 0 to 1469
     Data columns (total 13 columns):
     Age
                                 1470 non-null int64
     Attrition
                                 1470 non-null object
                                 1470 non-null object
     Department
                                 1470 non-null int64
     DistanceFromHome
     Education
                                 1470 non-null int64
     EducationField
                                 1470 non-null object
                                 1470 non-null int64
     EnvironmentSatisfaction
     JobSatisfaction
                                 1470 non-null int64
     MaritalStatus
                                 1470 non-null object
     MonthlyIncome
                                 1470 non-null int64
     NumCompaniesWorked
                                 1470 non-null int64
     WorkLifeBalance
                                 1470 non-null int64
                                 1470 non-null int64
     YearsAtCompany
     dtypes: int64(9), object(4)
     memory usage: 149.4+ KB
[11]: dataframe.columns
[11]: Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
             'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
             'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
             'WorkLifeBalance', 'YearsAtCompany'],
            dtype='object')
```

[13]: dataframe.std()

```
[13]: Age
                                     9.135373
      DistanceFromHome
                                     8.106864
      Education
                                     1.024165
      EnvironmentSatisfaction
                                     1.093082
      JobSatisfaction
                                     1.102846
      MonthlyIncome
                                  4707.956783
      NumCompaniesWorked
                                     2.498009
      WorkLifeBalance
                                     0.706476
      YearsAtCompany
                                     6.126525
      dtype: float64
[12]: dataframe['Attrition'].value_counts()
[12]: No
             1233
              237
      Name: Attrition, dtype: int64
[15]: dataframe['Attrition'].dtypes
[15]: dtype('0')
          Encoding of Categorical data
[13]: dataframe['Attrition'].replace('Yes',1, inplace=True)
      dataframe['Attrition'].replace('No',0, inplace=True)
[14]: dataframe.head(10)
[14]:
              Attrition
                                      Department
                                                 DistanceFromHome
                                                                     Education
         Age
          41
      0
                                           Sales
          49
                                                                  8
      1
                      O Research & Development
                                                                             1
                                                                  2
      2
          37
                      1 Research & Development
                                                                             2
      3
          33
                         Research & Development
                                                                  3
                                                                             4
                                                                  2
          27
                        Research & Development
                                                                             1
      5
          32
                      O Research & Development
                                                                  2
                                                                             2
                                                                             3
      6
          59
                      O Research & Development
                                                                  3
      7
          30
                      O Research & Development
                                                                 24
                                                                             1
      8
          38
                         Research & Development
                                                                 23
                                                                             3
          36
                         Research & Development
                                                                 27
                                                                             3
        EducationField EnvironmentSatisfaction
                                                  JobSatisfaction MaritalStatus
      O Life Sciences
                                                                 4
                                                                          Single
      1 Life Sciences
                                               3
                                                                         Married
                                                                 2
      2
                 Other
                                               4
                                                                 3
                                                                          Single
                                                                         Married
      3 Life Sciences
                                               4
                                                                 3
               Medical
                                                                 2
      4
                                               1
                                                                         Married
      5 Life Sciences
                                               4
                                                                 4
                                                                          Single
```

6	Medical		3	1	Married
7	Life Sciences		4	3	Divorced
8	Life Sciences		4	3	Single
9	Medical		3	3	Married
	${\tt MonthlyIncome}$	NumCompaniesWorked	${\tt WorkLifeBalance}$	YearsAt	Company
0	5993	8	1		6
1	5130	1	3		10
2	2090	6	3		0
3	2909	1	3		8
4	3468	9	3		2
5	3068	0	2		7
6	2670	4	2		1
7	2693	1	3		1
8	9526	0	3		9
9	5237	6	2		7

12 Data Preprocessing

```
[15]: # building up a logistic regression model
      X = dataframe.drop(['Attrition'],axis=1)
      X.head()
      Y = dataframe['Attrition']
      Y.head()
[15]: 0
           1
      1
      2
           1
      3
           0
      Name: Attrition, dtype: int64
[17]: dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
      dataframe['EducationField'].replace('Medical',2, inplace=True)
      dataframe['EducationField'].replace('Marketing', 3, inplace=True)
      dataframe['EducationField'].replace('Other',4, inplace=True)
      dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
      dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
[18]: dataframe['EducationField'].value_counts()
[18]: 1
           606
      2
           464
      3
           159
      5
           132
            82
```

```
6
            27
      Name: EducationField, dtype: int64
[19]: dataframe['Department'].value_counts()
[19]: Research & Development
                                961
      Sales
                                 446
      Human Resources
                                  63
      Name: Department, dtype: int64
[20]: dataframe['Department'].replace('Research & Development',1, inplace=True)
      dataframe['Department'].replace('Sales',2, inplace=True)
      dataframe['Department'].replace('Human Resources', 3, inplace=True)
[21]: dataframe['Department'].value_counts()
[21]: 1
           961
           446
      3
            63
      Name: Department, dtype: int64
[22]: dataframe['MaritalStatus'].value_counts()
[22]: Married
                  673
                  470
      Single
      Divorced
                  327
      Name: MaritalStatus, dtype: int64
[23]: dataframe['MaritalStatus'].replace('Married',1, inplace=True)
      dataframe['MaritalStatus'].replace('Single',2, inplace=True)
      dataframe['MaritalStatus'].replace('Divorced',3, inplace=True)
[24]: dataframe['MaritalStatus'].value_counts()
[24]: 1
           673
      2
           470
           327
      Name: MaritalStatus, dtype: int64
[25]: x=dataframe.select_dtypes(include=['int64'])
      x.dtypes
[25]: Age
                                  int64
      Attrition
                                  int64
      Department
                                  int64
      DistanceFromHome
                                  int64
      Education
                                  int64
      EducationField
                                  int64
```

```
EnvironmentSatisfaction
                                  int64
      JobSatisfaction
                                  int64
      MaritalStatus
                                  int64
      MonthlyIncome
                                  int64
      NumCompaniesWorked
                                 int64
      WorkLifeBalance
                                 int64
      YearsAtCompany
                                 int64
      dtype: object
[26]: x.columns
[26]: Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
             'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
             'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
             'WorkLifeBalance', 'YearsAtCompany'],
            dtype='object')
[27]: y=dataframe['Attrition']
[28]: y.head()
[28]: 0
           1
      1
           0
      2
           1
      3
           0
      4
           0
      Name: Attrition, dtype: int64
[29]: | y, x = dmatrices('Attrition ~ Age + Department + \
                        DistanceFromHome + Education + EducationField +

    YearsAtCompany',
                        dataframe, return_type="dataframe")
      print (x.columns)
     Index(['Intercept', 'Age', 'Department', 'DistanceFromHome', 'Education',
            'EducationField', 'YearsAtCompany'],
           dtype='object')
[30]: y = np.ravel(y)
          Model Building
     13
[31]: from sklearn.linear_model import LogisticRegression
```

model = LogisticRegression()
model = model.fit(x, y)

```
# check the accuracy on the training set
   model.score(x, y)
  C:\Users\Anushree\Anaconda3\envs\tf_training\lib\site-
  packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver
  will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
   FutureWarning)
[31]: 0.8408163265306122
[33]: y.mean()
[33]: 0.16122448979591836
[34]: X_train, X_test, y_train, y_test=sklearn.model_selection.train_test_split(x,y,_
   →test_size=0.3, random_state=0)
   model2=LogisticRegression()
   model2.fit(X_train, y_train)
  C:\Users\Anushree\Anaconda3\envs\tf_training\lib\site-
  packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver
  will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
   FutureWarning)
[34]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
        intercept_scaling=1, max_iter=100, multi_class='warn',
        n_jobs=None, penalty='12', random_state=None, solver='warn',
        tol=0.0001, verbose=0, warm_start=False)
  14 Prediction on test data
[35]: predicted= model2.predict(X_test)
   print (predicted)
```

```
0. 0. 0. 0. 0. 0. 0. 0. 0.1
[36]: probs = model2.predict_proba(X_test)
   print (probs)
   [[0.86257761 0.13742239]
    [0.80710189 0.19289811]
    [0.7429987 0.2570013]
    [0.83583504 0.16416496]
    [0.73307035 0.26692965]
    [0.78942615 0.21057385]
    [0.85718191 0.14281809]
    [0.85697723 0.14302277]
    [0.96732187 0.03267813]
    [0.93781765 0.06218235]
    [0.95112889 0.04887111]
    [0.83140356 0.16859644]
    [0.86069144 0.13930856]
    Γ0.863881
           0.136119 ]
    [0.88818146 0.11181854]
    [0.88851235 0.11148765]
    [0.88418532 0.11581468]
    [0.78102191 0.21897809]
```

[0.79870103 0.20129897] [0.88654952 0.11345048] [0.70201258 0.29798742] [0.94684452 0.05315548] [0.86687518 0.13312482] [0.84389943 0.15610057] [0.60328043 0.39671957] [0.8112161 0.1887839] [0.91914771 0.08085229] [0.93333047 0.06666953] [0.67850927 0.32149073] [0.87080099 0.12919901] [0.87277322 0.12722678] [0.77054173 0.22945827] [0.86434352 0.13565648] [0.95829505 0.04170495] [0.84589968 0.15410032] [0.86642435 0.13357565] [0.90489195 0.09510805] [0.68640634 0.31359366] [0.90762923 0.09237077]

- [0.80686978 0.19313022]
- [0.91626105 0.08373895]
- [0.82434807 0.17565193]
- [0.93702713 0.06297287]
- [0.93419719 0.06580281]
- [0.89317815 0.10682185]
- [0.85163342 0.14836658]
- [0.78599372 0.21400628]
- [0.84591285 0.15408715]
- [0.66035418 0.33964582]
- [0.75985595 0.24014405]
- [0.92971879 0.07028121]
- [0.79073149 0.20926851]
- [0.86251514 0.13748486]
- [0.86028777 0.13971223]
- [0.87176033 0.12823967]
- _
- [0.79087814 0.20912186]
- [0.87589802 0.12410198]
- [0.84351786 0.15648214]
- $[0.72814826\ 0.27185174]$
- [0.83401865 0.16598135]
- [0.90193848 0.09806152]
- [0.70822548 0.29177452]
- [0.92855494 0.07144506]
- [0.84184113 0.15815887]
- [0.79759143 0.20240857]
- [0.86955841 0.13044159]
- [0.91690233 0.08309767]
- [0.84801457 0.15198543]
- [0.89284306 0.10715694]
- [0.63214954 0.36785046]
- [0.93929587 0.06070413]
- [0.72436084 0.27563916]
- [0.85581742 0.14418258]
- [0.84210919 0.15789081]
- [0.77522163 0.22477837]
- [0.71561254 0.28438746]
- [0.93625216 0.06374784]
- [0.95759882 0.04240118]
- [0.79115941 0.20884059]
- [0.89387487 0.10612513]
- [0.9143774 0.0856226]
- [0.79373481 0.20626519]
- [0.78032498 0.21967502]
- [0.79647769 0.20352231]
- [0.83618218 0.16381782]
- [0.71431018 0.28568982]
- [0.97808679 0.02191321]

- [0.94675994 0.05324006]
- [0.88520539 0.11479461]
- [0.79405267 0.20594733]
- [0.61481071 0.38518929]
- [0.81886235 0.18113765]
- [0.74684358 0.25315642]
- [0.86722821 0.13277179]
- [0.86992409 0.13007591]
- [0.81789428 0.18210572]
- [0.71822509 0.28177491]
- [0.60023923 0.39976077]
- [0.83836485 0.16163515]
- [0.88216124 0.11783876]
- [0.74418148 0.25581852]
- [0.76564261 0.23435739]
- [0.98067742 0.01932258]
- [0.91939455 0.08060545]
- [0.77415323 0.22584677]
- [0.92564103 0.07435897]
- [0.88199097 0.11800903]
- [0.74514347 0.25485653]
- [0.90673063 0.09326937]
- [0.78928203 0.21071797]
- [0.80971647 0.19028353]
- [0.93515971 0.06484029]
- [- -------
- [0.93924676 0.06075324] [0.79462059 0.20537941]
- [0.81215385 0.18784615]
- -
- [0.91649218 0.08350782] [0.90265873 0.09734127]
- [0.84731114 0.15268886]
- [0.95376317 0.04623683]
- [0.91222675 0.08777325]
- 5- -----
- [0.86028682 0.13971318] [0.85822982 0.14177018]
- [0.87448572 0.12551428]
- [0.75985594 0.24014406]
- [0.92296733 0.07703267]
- [0.96914997 0.03085003]
- [0.94407447 0.05592553]
- [0.81720383 0.18279617]
- [0.88066242 0.11933758]
- [0.77639891 0.22360109]
- [0.97128842 0.02871158]
- [0.88831439 0.11168561]
- [0.78631482 0.21368518]
- [0.81840678 0.18159322]
- [0.94987331 0.05012669]

- [0.95894743 0.04105257]
- [0.73447703 0.26552297]
- [0.93444274 0.06555726]
- [0.73813794 0.26186206]
- [0.82247975 0.17752025]
- [0.82289185 0.17710815]
- [0.89920393 0.10079607]
- [0.78516352 0.21483648]
- [0.89653967 0.10346033]
- [0.91537087 0.08462913]
- [0.92820436 0.07179564]
- [0.96589553 0.03410447]
- [0.94419804 0.05580196]
- [0.93024429 0.06975571]
- [0.66112588 0.33887412]
- [0.84095505 0.15904495]
- [0.82603046 0.17396954]
- [0.80610059 0.19389941]
- [0.96191568 0.03808432]
- [0.93671599 0.06328401]
- [0.94770351 0.05229649]
- [0.97376472 0.02623528]
- [0.79369198 0.20630802]
- [0.87741394 0.12258606]
- [0.85956848 0.14043152]
- [0.95216215 0.04783785]
- [0.93160388 0.06839612]
- [0.75495757 0.24504243]
- [0.74998837 0.25001163]
- [0.95590644 0.04409356]
- [0.86936376 0.13063624]
- [0.81422948 0.18577052]
- [0.76650749 0.23349251]
- [0.80183602 0.19816398]
- [0.92798469 0.07201531]
- [0.91054713 0.08945287]
- [0.94603047 0.05396953]
- [0.93400754 0.06599246]
- [0.69063333 0.30936667]
- [0.93091068 0.06908932]
- [0.74159667 0.25840333]
- [0.78516386 0.21483614]
- [0.93229165 0.06770835]
- $[0.80621879\ 0.19378121]$
- [0.85290079 0.14709921]
- [0.66903659 0.33096341]
- [0.9042279 0.0957721]
- [0.91210155 0.08789845]

- [0.87547616 0.12452384]
- [0.93020588 0.06979412]
- [0.66879074 0.33120926]
- [0.89374371 0.10625629]
- [0.86196532 0.13803468]
- [0.78749466 0.21250534]
- [0.53185454 0.46814546]
- [0.73337673 0.26662327]
- [0.70603668 0.29396332]
- [0.85434454 0.14565546]
- [0.869108 0.130892]
- [0.75104191 0.24895809]
- [0.89891506 0.10108494]
- [0.79281444 0.20718556]
- [0.90787555 0.09212445]
- [0.77348776 0.22651224]
- [0.88287113 0.11712887]
- [0.85302465 0.14697535]
- [0.8195964 0.1804036]
- [0.74239392 0.25760608]
- [0.86238441 0.13761559]
- [0.77748616 0.22251384]
- [0.76912758 0.23087242]
- [0.70312730 0.23007242]
- [0.7938589 0.2061411]
- [0.92209228 0.07790772]
- [0.74615104 0.25384896]
- [0.87485382 0.12514618]
- [0.85477514 0.14522486]
- [0.77450251 0.22549749] [0.87362727 0.12637273]
- [0.67359458 0.32640542]
- -
- [0.93698936 0.06301064]
- $[0.82461956\ 0.17538044]$
- [0.95188386 0.04811614]
- [0.83450941 0.16549059]
- [0.81117757 0.18882243]
- [0.80629478 0.19370522]
- [0.87690301 0.12309699]
- [0.6663069 0.3336931]
- [0.59350144 0.40649856]
- [0.98983468 0.01016532]
- [0.70381235 0.29618765]
- [0.91693005 0.08306995]
- [0.92230104 0.07769896]
- [0.71009303 0.28990697]
- [0.62307399 0.37692601]
- [0.76273323 0.23726677]
- [0.95379074 0.04620926]

- [0.88139107 0.11860893]
- [0.85805507 0.14194493]
- [0.92153445 0.07846555]
- [0.87986341 0.12013659]
- [0.80455714 0.19544286]
- [0.8045461 0.1954539]
- [0.91400939 0.08599061]
- [0.71996681 0.28003319]
- [0.9459133 0.0540867]
- [0.90887304 0.09112696]
- [0.73122211 0.26877789]
- [0.98139747 0.01860253]
- [0.85440507 0.14559493]
- [0.89904525 0.10095475]
- [0.82348836 0.17651164]
- [0.83289134 0.16710866]
- [0.88059965 0.11940035]
- [0.87965985 0.12034015]
- [0.87516106 0.12483894]
- [0.8154612 0.1845388]
- [0.88085227 0.11914773]
- [0.61440015 0.38559985]
- [0.88813952 0.11186048]
- [0.89579477 0.10420523]
- [0.85493829 0.14506171]
- [0.98316036 0.01683964] [0.7717054 0.2282946]
- [0.62163203 0.37836797]
- [0.82648597 0.17351403]
- [0.84082886 0.15917114]
- [0.84770539 0.15229461]
- [0.84996276 0.15003724]
- [0.7568283 0.2431717]
- [0.86135648 0.13864352]
- [0.90742097 0.09257903]
- [0.84653325 0.15346675]
- [0.81068432 0.18931568] [0.74291535 0.25708465]
- [0.87004234 0.12995766]
- [0.83937674 0.16062326]
- [0.86204616 0.13795384]
- [0.66559201 0.33440799]
- [0.90809363 0.09190637]
- [0.87063167 0.12936833]
- [0.92591545 0.07408455]
- [0.84519617 0.15480383]
- [0.89988333 0.10011667]
- [0.91377645 0.08622355]

- [0.79655167 0.20344833]
- [0.63617514 0.36382486]
- [0.8451662 0.1548338]
- [0.75229555 0.24770445]
- [0.85439954 0.14560046]
- [0.99258502 0.00741498]
- [0.85979235 0.14020765]
- [0.88042046 0.11957954]
- [0.82752509 0.17247491]
- [0.93110919 0.06889081]
- [0.87320755 0.12679245]
- [0.88685479 0.11314521]
- [0.83757498 0.16242502]
- [0.86470667 0.13529333]
- [0.86456218 0.13543782]
- [0.89956239 0.10043761]
- [0.78624587 0.21375413]
- [0.79354081 0.20645919]
- [0.88436844 0.11563156]
- [0.6517352 0.3482648]
- [0.94078665 0.05921335]
- [0.8998614 0.1001386]
- [0.72416846 0.27583154]
- [0.68855828 0.31144172]
- [0.87401796 0.12598204]
- [0.86388337 0.13611663]
- [0.97515719 0.02484281]
- [0.86301941 0.13698059]
- [0.54429973 0.45570027]
- [0.91312117 0.08687883]
- [0.74864711 0.25135289]
- [0.86865164 0.13134836]
- [0.88768464 0.11231536]
- [0.87825968 0.12174032]
- [0.85578493 0.14421507]
- [0.77096345 0.22903655]
- [0.80608869 0.19391131] [0.85164484 0.14835516]
- [0.7748914 0.2251086]
- [0.70330443 0.29669557]
- [0.88920999 0.11079001]
- [0.48805675 0.51194325]
- [0.92443534 0.07556466]
- [0.75730317 0.24269683]
- [0.67532223 0.32467777]
- [0.91267187 0.08732813]
- [0.94004403 0.05995597]
- [0.88105134 0.11894866]

- [0.88500438 0.11499562]
- [0.95620493 0.04379507]
- [0.90018491 0.09981509]
- [0.94913267 0.05086733]
- [0.83164948 0.16835052]
- [0.87828332 0.12171668]
- [0.81856033 0.18143967]
- [0.81510872 0.18489128]
- [0.95165724 0.04834276]
- [0.86885777 0.13114223]
- [0.90404843 0.09595157]
- [0.83568878 0.16431122]
- [0.84565343 0.15434657]
- [0.79355796 0.20644204]
- [0.81574488 0.18425512]
- [0.81449702 0.18550298]
- [0.83624028 0.16375972]
- [0.00024020 0.10070372]
- [0.91389238 0.08610762]
- [0.91564837 0.08435163] [0.68306915 0.31693085]
- [0.99086383 0.00913617]
- [0.76974325 0.23025675]
- [0.79740377 0.20259623]
- [0.72822071 0.27177929]
- [0.67182682 0.32817318]
- [0.79710573 0.20289427]
- [0.84931231 0.15068769]
- [0.86433739 0.13566261]
- [0.85920637 0.14079363]
- [0.84420225 0.15579775]
- [0.82853445 0.17146555]
- [0.92215641 0.07784359]
- [0.82960704 0.17039296]
- [0.97700212 0.02299788]
- [0.90454177 0.09545823]
- [0.92773082 0.07226918]
- [0.84754954 0.15245046]
- [0.76612754 0.23387246]
- [0.94894713 0.05105287]
- [0.94800941 0.05199059]
- [0.75328457 0.24671543]
- [0.87742303 0.12257697]
- [0.80519574 0.19480426]
- [0.93916181 0.06083819]
- [0.85990185 0.14009815]
- [0.75971578 0.24028422]
- [0.90848727 0.09151273]
- [0.7529481 0.2470519]

- [0.94361137 0.05638863]
- [0.91817801 0.08182199]
- [0.90585801 0.09414199]
- [0.77143638 0.22856362]
- [0.92392657 0.07607343]
- [0.80755229 0.19244771]
- [0.9013237 0.0986763]
- [0.87830849 0.12169151]
- 5- -----
- [0.8068256 0.1931744]
- [0.83483933 0.16516067]
- [0.53939525 0.46060475]
- [0.95106284 0.04893716]
- [0.73235519 0.26764481]
- [0.892211 0.107789]
- [0.80131021 0.19868979]
- [0.87926632 0.12073368]
- [0.96835844 0.03164156]
- [0.81435024 0.18564976]
- [0.8595391 0.1404609]
- [0.59090241 0.40909759]
- [0.82620318 0.17379682]
- [0.92520542 0.07479458]
- [0.81774745 0.18225255]
- [0.92599818 0.07400182]
- [0.89198781 0.10801219]
- [0.70041077 0.29958923]
- [0.82018762 0.17981238]
- [0.96584774 0.03415226]
- [0.87007757 0.12992243]
- [0.8985835 0.1014165]
- [0.89010322 0.10989678]
- [0.81133218 0.18866782]
- [0.85998392 0.14001608]
- [0.83705922 0.16294078]
- [0.83833325 0.16166675]
- [0.82480592 0.17519408]
- [0.94132438 0.05867562]
- [0.83011466 0.16988534]
- $[0.77419827 \ 0.22580173]$
- [0.69208833 0.30791167]
- [0.86186596 0.13813404]
- [0.82653322 0.17346678]
- [0.84351252 0.15648748]
- $[0.87151308 \ 0.12848692]$
- [0.89317815 0.10682185]
- [0.82864779 0.17135221]
- [0.7290552 0.2709448]
- [0.9473871 0.0526129]

```
[0.96100837 0.03899163]
[0.9049959 0.0950041]
[0.88585723 0.11414277]
[0.84839464 0.15160536]
[0.78874009 0.21125991]
[0.67361889 0.32638111]
[0.93357031 0.06642969]
[0.65079394 0.34920606]
[0.74503232 0.25496768]
[0.9420944 0.0579056]
[0.78550077 0.21449923]
[0.90782391 0.09217609]
[0.81479395 0.18520605]
[0.89162714 0.10837286]
[0.85619491 0.14380509]
[0.67747664 0.32252336]
[0.93182493 0.06817507]
[0.89944427 0.10055573]]
```

15 Model Evaluation

```
[40]: from sklearn import metrics
      print ("Accuracy=",metrics.accuracy_score(y_test, predicted))
      print ("ROC=",metrics.roc_auc_score(y_test, probs[:, 1]))
     Accuracy= 0.8435374149659864
     ROC= 0.6500577589526376
[41]: print("Confusion Matrix")
      print (metrics.confusion_matrix(y_test, predicted))
      print("Classification Report")
      print (metrics.classification_report(y_test, predicted))
     Confusion Matrix
     [[371
             0]
      [ 69
             1]]
     Classification Report
                   precision
                              recall f1-score
                                                    support
              0.0
                        0.84
                                   1.00
                                             0.91
                                                        371
              1.0
                        1.00
                                  0.01
                                             0.03
                                                         70
                        0.84
                                  0.84
                                                        441
        micro avg
                                             0.84
        macro avg
                        0.92
                                  0.51
                                             0.47
                                                        441
     weighted avg
                                  0.84
                                             0.77
                                                        441
                        0.87
```

[42]: print (X_train)

	Intercept	Age	Department	DistanceFromHome	Education \
338	1.0	30.0	2.0	5.0	3.0
363	1.0	33.0	2.0	5.0	3.0
759	1.0	45.0	3.0	24.0	4.0
793	1.0	28.0	1.0	15.0	2.0
581	1.0	30.0	1.0	1.0	3.0
320	1.0	27.0	2.0	2.0	3.0
452	1.0	45.0	2.0	2.0	3.0
195	1.0	37.0	1.0	21.0	3.0
776	1.0	20.0	2.0	9.0	3.0
1295	1.0	41.0	2.0	4.0	1.0
70	1.0	59.0	2.0	1.0	1.0
1135	1.0	46.0	2.0	1.0	4.0
1011	1.0	36.0	2.0	3.0	4.0
10	1.0	35.0	1.0	16.0	3.0
1265	1.0	33.0	1.0	4.0	3.0
1270	1.0	34.0	2.0	3.0	2.0
1257	1.0	31.0	2.0	16.0	4.0
271	1.0	47.0	1.0	29.0	4.0
858	1.0	53.0	1.0	7.0	2.0
790	1.0	33.0	1.0	5.0	3.0
1290	1.0	34.0	1.0	9.0	4.0
915	1.0	21.0	1.0	10.0	2.0
64	1.0	36.0	1.0	8.0	3.0
959	1.0	40.0	1.0	2.0	3.0
1274	1.0	31.0	2.0	29.0	4.0
1394	1.0	32.0	1.0	5.0	4.0
1109	1.0	30.0	2.0	29.0	4.0
416	1.0	38.0	1.0	2.0	2.0
1234	1.0	47.0	2.0	2.0	4.0
687	1.0	36.0	1.0	2.0	4.0
 1445	1.0	41.0	1.0	 28.0	4.0
1201	1.0	23.0	1.0	8.0	1.0
99	1.0	44.0	1.0	23.0	3.0
850	1.0	32.0	2.0	2.0	1.0
448	1.0	40.0	1.0	6.0	3.0
755	1.0	45.0	2.0	11.0	2.0
976	1.0	56.0	1.0	23.0	3.0
115	1.0	37.0	2.0	3.0	3.0
777	1.0	21.0	1.0	10.0	3.0
72	1.0	31.0	1.0	1.0	4.0
845	1.0	40.0	1.0	26.0	2.0
537	1.0	27.0	1.0	10.0	2.0
849	1.0	43.0	2.0	9.0	3.0
174	1.0	45.0	2.0	4.0	2.0
	1.0	10.0	2.0	1.0	2.0

87	1.0	51.0	1.0	9.0	4.0
551	1.0	39.0	3.0	3.0	3.0
705	1.0	39.0	2.0	2.0	5.0
314	1.0	39.0	1.0	10.0	1.0
1420	1.0	41.0	1.0	1.0	3.0
600	1.0	32.0	1.0	4.0	3.0
1094	1.0	40.0	2.0	9.0	2.0
599	1.0	36.0	3.0	13.0	3.0
277	1.0	38.0	2.0	7.0	2.0
1033	1.0	31.0	1.0	1.0	5.0
1383	1.0	36.0	1.0	9.0	4.0
763	1.0	34.0	2.0	10.0	4.0
835	1.0	35.0	3.0	8.0	4.0
1216	1.0	43.0	2.0	2.0	3.0
559	1.0	38.0	1.0	2.0	5.0
684	1.0	40.0	2.0	10.0	4.0

	EducationField	YearsAtCompany
338	3.0	10.0
363	3.0	1.0
759	2.0	6.0
793	1.0	4.0
581	1.0	2.0
320	1.0	5.0
452	4.0	8.0
195	1.0	8.0
776	3.0	2.0
1295	3.0	22.0
70	1.0	4.0
1135	1.0	26.0
1011	3.0	5.0
10	2.0	5.0
1265	5.0	9.0
1270	1.0	2.0
1257	3.0	1.0
271	1.0	10.0
858	2.0	7.0
790	1.0	3.0
1290	1.0	7.0
915	1.0	2.0
64	5.0	17.0
959	1.0	9.0
1274	3.0	12.0
1394	1.0	1.0
1109	5.0	4.0
416	1.0	1.0
1234	3.0	1.0
687	2.0	11.0

•••	•••	•••
1445	1.0	20.0
1201	2.0	5.0
99	2.0	3.0
850	1.0	1.0
448	1.0	20.0
755	1.0	9.0
976	1.0	19.0
115	1.0	5.0
777	1.0	1.0
72	2.0	1.0
845	2.0	1.0
537	1.0	9.0
849	3.0	4.0
174	1.0	5.0
87	1.0	4.0
551	6.0	8.0
705	1.0	8.0
314	2.0	21.0
1420	1.0	5.0
600	1.0	14.0
1094	2.0	8.0
599	6.0	5.0
277	2.0	8.0
1033	1.0	10.0
1383	1.0	5.0
763	1.0	1.0
835	5.0	5.0
1216	2.0	10.0
559	2.0	1.0
684	3.0	1.0

[1029 rows x 7 columns]

```
[43]: #add random values to KK according to the parameters mentioned above to check → the proabily of attrition of the employee kk=[[1.0, 23.0, 1.0, 500.0, 3.0, 24.0, 1.0]] print(model.predict_proba(kk))
```

[[7.14144701e-07 9.99999286e-01]]

16 Conclusion

We have created a Logistic Regression model for the prediction of Employees Attrition. Our model can predict the Attrition of the employee with the accuracy of 84%. We should perform feature engineering on the data and try other classification models such as Random Forest,SVM,KNN and DT to acheive better accuracy.