Comparación de concentraciones de estroncio en cuerpos de agua

Andrea Michelle Luna Vasconcelos – 1950889

22/09/2025

Descripción de los datos

```
estroncio <- read.csv("C:/Repositorio GitHub/Posgrado_Estadistica_2025/Ta</pre>
rea 22_09/Estroncio mg_ml.csv")
library(knitr)
kable(head(estroncio), caption = "Concentración de estroncio (mg/ml) en c
inco cuerpos de agua (n = 6)")
```

Concentración de estroncio (mg/ml) en cinco cuerpos de agua (n = 6)

Muestra	Grayson.s.Pond	Beaver.Lake	Angler.s.Cove	Appletree.Lake	Rock.River	
1	28.2	39.6	46.3	41.0	56.3	
2	33.2	40.8	42.1	44.1	54.1	
3	36.4	37.9	43.5	46.4	59.4	
4	34.6	37.1	48.8	40.2	62.7	
5	29.1	43.6	43.7	38.6	60.0	
6	31.0	42.4	40.1	36.3	57.3	
<pre>library(tidyverse) estroncio_long <- estroncio %>% pivot_longer(cols = -Muestra,</pre>						
<pre>values_to = "Concentracion") estroncio_long\$Cuerpo_agua <- as.factor(estroncio_long\$Cuerpo_agua)</pre>						
<pre>kable(estroncio_long, caption = "Datos reorganizados de concentraciones d</pre>						

Datos reorganizados de concentraciones de estroncio (mg/ml) en cinco cuerpos de agua como factor

e estroncio (mg/ml) en cinco cuerpos de agua como factor")

Muestra	Cuerpo_agua	Concentracion
1	Grayson.s.Pond	28.2
1	Beaver.Lake	39.6
1	Angler.s.Cove	46.3
1	Appletree.Lake	41.0

Muestra	Cuerpo_agua	Concentracion
1	Rock.River	56.3
2	Grayson.s.Pond	33.2
2	Beaver.Lake	40.8
2	Angler.s.Cove	42.1
2	Appletree.Lake	44.1
2	Rock.River	54.1
3	Grayson.s.Pond	36.4
3	Beaver.Lake	37.9
3	Angler.s.Cove	43.5
3	Appletree.Lake	46.4
3	Rock.River	59.4
4	Grayson.s.Pond	34.6
4	Beaver.Lake	37.1
4	Angler.s.Cove	48.8
4	Appletree.Lake	40.2
4	Rock.River	62.7
5	Grayson.s.Pond	29.1
5	Beaver.Lake	43.6
5	Angler.s.Cove	43.7
5	Appletree.Lake	38.6
5	Rock.River	60.0
6	Grayson.s.Pond	31.0
6	Beaver.Lake	42.4
6	Angler.s.Cove	40.1
6	Appletree.Lake	36.3
6	Rock.River	57.3

Medias de concentración de estroncio (mg/ml) por cuerpo de agua

Cuerpo de agua	Media (mg/ml)		
Angler.s.Cove	44.08333		
Appletree.Lake	41.10000		
Beaver.Lake	40.23333		
Grayson.s.Pond	32.08333		
Rock.River	58.30000		

Hipótesis del ANOVA

- **H0:** La media de concentración de estroncio en todos los cuerpos de agua es igual.
- **H1:** Al menos una media de concentración de estroncio es diferente.

Cálculo del ANOVA

```
bartlett.test(estroncio_long$Concentracion ~ estroncio_long$Cuerpo_agua)
##
## Bartlett test of homogeneity of variances
## data: estroncio_long$Concentracion by estroncio_long$Cuerpo_agua
## Bartlett's K-squared = 0.63895, df = 4, p-value = 0.9586
estroncio_long.aov <- aov(estroncio_long$Concentracion ~ estroncio_long$C
uerpo_agua)
summary(estroncio long.aov)
                              Df Sum Sq Mean Sq F value
                                                          Pr(>F)
## estroncio_long$Cuerpo_agua  4 2193.4  548.4  56.16 3.95e-12 ***
## Residuals
                              25 244.1
                                            9.8
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(broom)
anova <- tidy(estroncio_long.aov)</pre>
kable(anova, caption = "Resultados de análisis de varianza (ANOVA de una
vía)")
```

Resultados de análisis de varianza (ANOVA de una vía)

term	df	sumsq	meansq	statistic	p.value
estroncio_long\$Cuerpo_agua	4	2193.442	548.3605	56.15456	0
Residuals	2 5	244.130	9.7652	NA	NA

- H0 = (medias iguales) = se rechaza
- H1 = (al menos una media distinta) = se acepta

Gráfica de distribución

```
library(ggplot2)
ggplot(estroncio_long, aes(x = Cuerpo_agua, y = Concentracion, fill = Cue
rpo_agua)) +
  geom_violin(trim = FALSE, alpha = 0.5) +
  geom_boxplot(width = 0.1, fill = "white", outlier.shape = NA) +
 geom jitter(width = 0.1, size = 2, alpha = 0.7) +
  labs(
   title = "Concentraciones de estroncio en cuerpos de agua",
   x = "Cuerpo de agua",
   y = "Concentración (mg/ml)",
   fill = "Cuerpos de agua",
    caption = "Figura 1. Concentraciones de estroncio en cinco cuerpos de
agua"
  ) +
 theme minimal() +
 theme(plot.title = element_text(hjust = 0.5),
        plot.caption = element_text(hjust = 0.5))
```

Concentraciones de estroncio en cuerpos de agua

Figura 1. Concentraciones de estroncio en cinco cuerpos de agua

Prueba LSD

```
LSD <- sqrt((2*9.8)/6) * qt(0.975, 25)
LSD
## [1] 3.722394
```

Comparación por pares con LSD:

```
resultados <- data.frame(</pre>
  Comparacion = c(
    "Grayson's Pond vs Beaver Lake",
    "Grayson's Pond vs Angler's Cove",
    "Grayson's Pond vs Appletree Lake",
    "Grayson's Pond vs Rock River",
    "Beaver Lake vs Angler's Cove",
    "Beaver Lake vs Appletree Lake",
    "Beaver Lake vs Rock River",
    "Angler's Cove vs Appletree Lake",
    "Angler's Cove vs Rock River",
    "Appletree Lake vs Rock River"
  ),
  Diferencia = c(-8.15, -12.00, -9.017, -26.217, -3.85, -0.867, -18.067,
2.983, -14.217, -17.2),
  Significancia = c("Significativa", "Significativa", "Significativa", "S
ignificativa",
                    "Significativa", "No significativa", "Significativa",
                    "No significativa", "Significativa", "Significativa")
kable(resultados, caption = "Resultados LSD de comparación entre pares de
medias",
      col.names = c("Pares de medias", "Diferencia (mg/ml)", "Resultado L
SD"))
```

Resultados LSD de comparación entre pares de medias

Pares de medias	Diferencia (mg/ml)	Resultado LSD
Grayson's Pond vs Beaver Lake	-8.150	Significativa
Grayson's Pond vs Angler's Cove	-12.000	Significativa
Grayson's Pond vs Appletree Lake	-9.017	Significativa
Grayson's Pond vs Rock River	-26.217	Significativa
Beaver Lake vs Angler's Cove	-3.850	Significativa
Beaver Lake vs Appletree Lake	-0.867	No significativa
Beaver Lake vs Rock River	-18.067	Significativa
Angler's Cove vs Appletree Lake	2.983	No significativa
Angler's Cove vs Rock River	-14.217	Significativa
Appletree Lake vs Rock River	-17.200	Significativa

Prueba Tukey HSD

```
PTukey \leftarrow sqrt(9.8/6) * qtukey(0.95, nmeans = 5, df = 25)
PTukey
## [1] 5.308078
TukeyHSD(estroncio_long.aov)
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = estroncio_long$Concentracion ~ estroncio_long$Cuerp
o_agua)
##
## $`estroncio long$Cuerpo agua`
##
                                        diff
                                                    lwr
                                                               upr
                                                                       p a
dj
## Appletree.Lake-Angler.s.Cove
                                  -2.9833333
                                              -8.281979 2.315312 0.47911
00
## Beaver.Lake-Angler.s.Cove
                                  -3.8500000 -9.148645 1.448645 0.23762
## Grayson.s.Pond-Angler.s.Cove -12.0000000 -17.298645 -6.701355 0.00000
53
## Rock.River-Angler.s.Cove
                                  14.2166667
                                               8.918021 19.515312 0.00000
03
## Beaver.Lake-Appletree.Lake
                                  -0.8666667 -6.165312 4.431979 0.98848
03
## Grayson.s.Pond-Appletree.Lake -9.0166667 -14.315312 -3.718021 0.00033
39
## Rock.River-Appletree.Lake
                                  17.2000000 11.901355 22.498645 0.00000
00
                                  -8.1500000 -13.448645 -2.851355 0.00112
## Grayson.s.Pond-Beaver.Lake
93
## Rock.River-Beaver.Lake
                                  18.0666667 12.768021 23.365312 0.00000
00
## Rock.River-Grayson.s.Pond
                                  26.2166667 20.918021 31.515312 0.00000
```

Tabla de comparaciones con Tukey:

```
resultadosHSD <- data.frame(
   Comparacion = c(
    "Grayson's Pond vs Beaver Lake",
    "Grayson's Pond vs Angler's Cove",
    "Grayson's Pond vs Appletree Lake",
    "Grayson's Pond vs Rock River",
    "Beaver Lake vs Angler's Cove",
    "Beaver Lake vs Appletree Lake",
    "Beaver Lake vs Rock River",
    "Angler's Cove vs Appletree Lake",</pre>
```

Resultados Tukey HSD de comparación entre pares de medias

Pares de medias	Diferencia (mg/ml)	Resultado Tukey HSD		
Grayson's Pond vs Beaver Lake	-8.150	Significativa		
Grayson's Pond vs Angler's Cove	-12.000	Significativa		
Grayson's Pond vs Appletree Lake	-9.017	Significativa		
Grayson's Pond vs Rock River	-26.217	Significativa		
Beaver Lake vs Angler's Cove	-3.850	No significativa		
Beaver Lake vs Appletree Lake	-0.867	No significativa		
Beaver Lake vs Rock River	-18.067	Significativa		
Angler's Cove vs Appletree Lake	2.983	No significativa		
Angler's Cove vs Rock River	-14.217	Significativa		
Appletree Lake vs Rock River	-17.200	Significativa		
<pre>plot(TukeyHSD(estroncio_long.aov), las = 1, cex.axis = 0.8)</pre>				

95% family-wise confidence level

Differences in mean levels of estroncio_long\$Cuerpo_agua

Comparación LSD vs Tukey HSD

```
comparaciones <- c(</pre>
     "Grayson's Pond vs Beaver Lake",
     "Grayson's Pond vs Angler's Cove",
     "Grayson's Pond vs Appletree Lake",
     "Grayson's Pond vs Rock River",
     "Beaver Lake vs Angler's Cove",
     "Beaver Lake vs Appletree Lake",
     "Beaver Lake vs Rock River",
     "Angler's Cove vs Appletree Lake",
     "Angler's Cove vs Rock River",
     "Appletree Lake vs Rock River"
diferencias <- c(-8.15, -12.00, -9.017, -26.217, -3.85, -0.867, -18.067,
2.983, -14.217, -17.2)
resultado_LSD <- c("Significativa", "Significativa", "Significativa",
gnificativa",
                                                   "Significativa", "No significativa", "Significativa",
                                                  "No significativa", "Significativa", "Significativa")
resultado Tukey <- c("Significativa", "Significativa", "Significativa", "
Significativa",
                                                        "No significativa", "No significativa", "Significati
va",
                                                        "No significativa", "Significativa", "Significativa"
)
resultadosComparados <- data.frame(</pre>
     `Pares de medias` = comparaciones,
     `Diferencia (mg/ml)` = diferencias,
     `Resultado LSD` = resultado_LSD,
     `Resultado Tukey HSD` = resultado_Tukey
kable(resultadosComparados,
                caption = "Comparación de resultados LSD vs Tukey HSD entre pares d
e medias",
               col.names = c("Pares de medias", "Diferencia (mg/ml)", "Resultado L
SD", "Resultado Tukey HSD"))
```

Comparación de resultados LSD vs Tukey HSD entre pares de medias

	Diferencia		
Pares de medias	(mg/ml)	Resultado LSD	Resultado Tukey HSD
Grayson's Pond vs Beaver Lake	-8.150	Significativa	Significativa
Grayson's Pond vs Angler's Cove	-12.000	Significativa	Significativa
Grayson's Pond vs Appletree Lake	-9.017	Significativa	Significativa
Grayson's Pond vs Rock River	-26.217	Significativa	Significativa
Beaver Lake vs Angler's Cove	-3.850	Significativa	No significativa
Beaver Lake vs Appletree Lake	-0.867	No significativa	No significativa
Beaver Lake vs Rock River	-18.067	Significativa	Significativa
Angler's Cove vs Appletree Lake	2.983	No significativa	No significativa
Angler's Cove vs Rock River	-14.217	Significativa	Significativa
Appletree Lake vs Rock River	-17.200	Significativa	Significativa

Interpretación ambiental

¿Qué cuerpo de agua presenta las concentraciones más altas?

• Grayson's Pond y Beaver Lake.

¿Qué sitios no difieren entre sí?

- Según LSD: Beaver Lake vs Appletree Lake y Angler's Cove vs Appletree Lake.
- Según Tukey HSD: los mismos de LSD, más Beaver Lake vs Angler's Cove.

¿Qué implicaciones podrían tener estas diferencias en la calidad del agua?

 Las diferencias en las concentraciones de estroncio entre cuerpos de agua indican una variabilidad en la calidad. Los sitios con valores más altos podrían estar expuestos a contaminación local o condiciones específicas, lo que representa un riesgo potencial para la fauna y flora local. Asimismo, estas diferencias pueden tener implicaciones en el uso humano del agua (consumo, riego o recreación), por lo que los sitios con mayores concentraciones requieren mayor monitoreo y gestión ambiental.