Algebra

N. Perrin

Düsseldorf Sommersemester 2014

Inhaltsverzeichnis

1	Gru	ppen	5
	1.1	Wiederholung	5
		1.1.1 Gruppen, Untergruppen	5
		1.1.2 Gruppenhomomorphismen	6
		1.1.3 Recht und Links Klassen	7
	1.2	Normalteiler	9
	1.3	Zentrum	3
	1.4	Erzeuger und Zyklische Gruppe	4
	1.5	Ordung eines Elements	6
	1.6	Derivierte Untergruppe	7
	1.7	Semidirekte Produkte	8
	1.8	Operation einer Gruppe auf einer Menge	0
	1.9	Symmetrische Gruppe	5
	1.10	Sylow Sätze	8
	1.11	Auflösbare Gruppen	3
2	Ring	ge 3	6
	2.1	Grundbegriffe	
		2.1.1 Definition	
		2.1.2 Ringhomomorphismus	
		2.1.3 Unterringe und Ideale	
		2.1.4 Quotienten	
		2.1.5 Erzeuger	
		2.1.6 Isomorphiesätze	
		2.1.7 Primideale und maximale Ideale	
		2.1.8 Teilerfremde Ideale	
	2.2	Quotientkörper	
	2.3	Noethersche Ringe	
	2.4	Teilbarkeit	
		2.4.1 Assoziierte, irreduzibel und Primelemente	
		2.4.2 Faktorielle Ringe	
		2.4.3 Satz von Gauß	
	2.5	Anwendung: irreduzible Polynome	
3	Körr	per 6	2
_	•	Grundbegriffe	

4 Inhaltsverzeichnis

	3.2	Algebraische und transzendente Elemente
	3.3	Konstruktionen mit Zirkel und Lineal 6
4 Gal	Galo	ois Theorie 70
	4.1	Zerfallungskörper
	4.2	Normale und separable Erweiterungen
		4.2.1 Normale Erweiterungen
		4.2.2 Separable Erweiterungen
		4.2.3 Galois Theorie
		4.2.4 Algebraischer Abschluß
	4.3	Endliche Körper
		4.3.1 Existenz
		4.3.2 Primitives Element
		4.3.3 Galois Gruppe
	4.4	Sazt vom primitiven Element
	4.5	Einheitswurzeln und Kreisteilungskörper

1 Gruppen

1.1 Wiederholung

1.1.1 Gruppen, Untergruppen

Definition 1.1.1 Eine **Gruppe** ist eine Menge G mit einer Verknüpfung $G \times G \to G$, $(x,y) \mapsto x \cdot y$ so, dass

- 1. Es existiert ein **neutrales Element** e in G mit $e \cdot x = x \cdot e = x$ für alle $x \in G$.
- 2. Die Verknüpfung ist **assoziativ** i.e. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ für alle $x, y, z \in G$.
- 3. jedes $x \in G$ hat ein **inverses Element** $y \in G$ mit $x \cdot y = y \cdot x = e$.

Definition 1.1.2 Eine Gruppe G heißt **kommutativ** oder **abelsch** falls $x \cdot y = y \cdot x$ gilt für alle $x, y \in G$.

Beispiel 1.1.3 1. \mathbb{Z} mit + ist eine Gruppe.

- 2. Sei $n \in \mathbb{Z}$ und $\mathbb{Z}/n\mathbb{Z} = \{\text{Restklassen modulo } n\}$. Dann ist $\mathbb{Z}/n\mathbb{Z}$ mit + eine Gruppe.
- 3. Sei K ein Körper. Dann ist $GL_n(K)$ mit Matrixmultiplikation eine Gruppe.
- 4. S_n die Permutationsgruppe mit \circ der Komposition von Abbildungen als Verknüpfung ist eine Gruppe.

Lemma 1.1.4 Sei G eine Gruppe und seien x, y, z Elemente in G.

- 1. Das neutrale Element e_G ist eindeutig bestimmt.
- 2. Das inverse Element x^{-1} von x ist eindeutig bestimmt.
- 3. $xy = xz \Rightarrow y = z \text{ und } yx = zx \Rightarrow y = z,$
- 4. $(x^{-1})^{-1} = x$.

5.
$$(xy)^{-1} = y^{-1}x^{-1}$$
.

Beweis. Siehe LAI.

Bemerkung 1.1.5 Sei $n \geq 0$ eine ganze Zahl. Aus 5. folgt per Induktion, dass $(x^n)^{-1} = (x^{-1})^n$. Wir schreiben x^{-n} für $(x^n)^{-1} = (x^{-1})^n$ also ist x^n für alle $n \in \mathbb{Z}$ definiert und es gilt $x^n x^m = x^{n+m}$ für alle $n, m \in \mathbb{Z}$.

Lemma 1.1.6 Seien G und G' zwei Gruppen und sei $(a,b) \cdot (a',b') = (aa',bb')$. Dann ist $G \times G'$ mit diesem Produkt eine Gruppe.

Beweis. Übung.

Definition 1.1.7 Seien G und G' zwei Gruppen. Das Produkt $G \times G'$ mit Verknüpfung $(a,b) \cdot (a',b') = (aa',bb')$ heißt **Produkt-Gruppe** von G und G'.

Definition 1.1.8 Sei G eine Gruppe. Eine Teilmenge $H \subset G$ heißt **Untergruppe** von G falls gilt:

- 1. $1 \in H$
- $2. \ x, y \in H \Rightarrow x \cdot y^{-1} \in H.$

Lemma 1.1.9 Eine Untergruppe ist eine Gruppe.

Beweis. Siehe LAI.

Beispiel 1.1.10 1. Sei G eine Gruppe. Dann ist $H = \{e_G\}$ die Trivialuntergruppe eine Untergruppe von G.

- 2. Sei $n \in \mathbb{Z}$. Dann ist $n\mathbb{Z} = \{m \in \mathbb{Z} \mid n \text{ teilt } m\}$ eine Untergruppe von $(\mathbb{Z}, +)$.
- 3. Sei K ein Körper. Dann ist $SL_n(K)$ eine Untergruppe von $GL_n(K)$.

1.1.2 Gruppenhomomorphismen

Definition 1.1.11 Seien G und G' zwei Gruppen. Eine Abbildung $f: G \to G'$ heißt **Gruppenhomomorphismus** falls für alle $x, y \in G$ gilt f(xy) = f(x)f(y).

Beispiel 1.1.12 1. die Abbildung exp : $(\mathbb{R}, +) \to (\mathbb{R}_{>0}, \times)$ ist ein Gruppenhomomorphismus.

2. Sei K ein Körper. Dann ist det : $\mathrm{GL}_n(K) \to (K^{\times}, \times) = (K \setminus \{0\}, \times)$ ein Gruppenhomomorphismus.

Lemma 1.1.13 Sei $f:G\to G'$ ein Gruppenhomomorphismus dann gilt für alle $x\in G$

$$f(e_G) = e_{G'}$$
 und $f(x^{-1}) = f(x)^{-1}$.

Beweis. Siehe LAI.

Definition 1.1.14 Sei $f: G \to G'$ ein Gruppenhomomorphismus, dann heißt die Teilmenge $\text{Ker}(f) = \{x \in G \mid f(x) = e_{G'}\}$ von G der **Kern** von f.

Lemma 1.1.15 Sei $f: G \to G'$ ein Gruppenhomomorphismus. Sei H eine Untergruppe von G und H' eine Untergruppe von G'.

- 1. Dann sind f(H) und $f^{-1}(H')$ Untergruppen von G' und G.
- 2. Für $H' = \{e_{G'}\}$ ist $Ker(f) = f^{-1}(H')$ eine Untergruppe von G.
- 3. Für H = G ist das Bild f(G) von f eine Untergruppe von G'

Beweis. Siehe Übungsblatt 0.

Beispiel 1.1.16 Die Signatur $\varepsilon: S_n \to \{\pm 1\}$ ist ein Gruppenhomomorphismus. Wir Schreiben $A_n = \text{Ker}\varepsilon$ für die **Alternierende Gruppe**. Die Gruppe A_n ist eine Untergruppe von S_n .

Lemma 1.1.17 Sei $f: G \to G'$ ein Gruppenhomomorphismus. Die Abbildung f ist genau dann injektiv, wenn $Ker(f) = \{e_G\}$.

Beweis. Siehe LAI.

Definition 1.1.18 Ein bijektiver Gruppenhomomorphismus $f: G \to G'$ heißt **Isomorphismus** oder **Gruppenisomorphismus**. Wenn G' = G heißt ein Gruppenisomorphismus **Gruppenautomorphismus** oder **Automorphismus**.

Lemma 1.1.19 Sei G eine Gruppe und $g \in G$. Dann ist $\operatorname{Int}_g : G \to G$ definiert durch $\operatorname{Int}_g(h) = ghg^{-1}$ ein Gruppenautomorphismus.

Beweis. Siehe Übungsblatt 0.

Definition 1.1.20 Sei G eine Gruppe und $g \in G$. Dann heißt Int_g innerer Gruppenhomomorphismus oder Konjugation mit g. Gruppenautomorphismen, die nicht dieser From sind heißen äußere Automorphismen.

1.1.3 Recht und Links Klassen

Definition 1.1.21 Sei G eine Gruppe und H eine Untergruppe. Man definiert die Relation \sim durch

$$g' \sim g \Leftrightarrow \exists h \in H \text{ mit } g' = gh.$$

Lemma 1.1.22 Die Relation \sim ist eine Äquivalenzrelation und die Klasse eines Element $g \in G$ ist die Teilmenge $\bar{g} = [g] = gH = \{gh \in G \mid h \in H\}$. Die Äquivalenzklassen heißen **Linksklassen**.

Beweis. Siehe Übungsblatt 0.

Definition 1.1.23 Sei G eine Gruppe und H eine Untergruppe.

1. Die Menge aller Äquivalenzklassen heißt **Quotient von** G **nach** H und ist G/H bezeichnet.

2. Die kanonische Projektion ist die Abbildung $G \to G/H$ definiert durch $g \mapsto \bar{g} = [g] = gH$.

Bemerkung 1.1.24 Analog kann man die Äquivalenzrelation $g' \sim_R g \Leftrightarrow \exists h \in H \text{ mit } g' = hg$ definieren. Die Äquivalenzklassen heißen **Rechtsklassen** $Hg = \{hg \in G \mid h \in H\}$ und die Menge aller Rechtsklassen ist $H \setminus G$. Man kann auch die kanonische Projektion $G \to H \setminus G$ durch $g \mapsto Hg$ definieren.

Satz 1.1.25 Sei G eine Gruppe und H eine Untergruppe von G.

1. Es gilt $gH \cap gH' \neq \emptyset \Rightarrow gH = g'H \text{ (m.a.W. } gH \neq g'H \Rightarrow gH \cap gH' = \emptyset).$

2. Es gilt
$$G = \bigcup_{gH \in G/H} gH$$
.

Beweis. Siehe LAI. Wir geben trozdem einen Beweis.

1. Sei $gh \in gH \cap g'H$. Dann gibt es $h' \in H'$ mit gh = g'h'. Sei $gh'' \in gH$. Dann gilt $gh'' = ghh^{-1}h'' = g'h'h^{-1}h'' \in g'H$ also $gH \subset g'H$. Analog gilt $g'H \subset gH$.

2. Sei $g \in G$. Dann gilt $g \in gH$. Umgekehrt gilt $gH \subset G$.

Korollar 1.1.26 (Satz von Lagrange) Es gilt |G| = |G/H||H|.

Beweis. Die Gruppe G ist die disjunkte Vereinnigung aller gH für $gH = \bar{g} \in G/H$ also gilt

$$|G| = \sum_{\bar{g} \in G/H} |gH|.$$

Aber die Abbildungen $gH \to g'H$ und $g'H \to gH$ definiert durch $a \mapsto g'g^{-1}a$ und $a \mapsto gg'^{-1}a$ sind inverse von einander. Es gilt also |gH| = |g'H| für alle $g, g' \in G$ und insbesondere für $g' = e_G$ gilt |gH| = |H|. Daraus folgt $|G| = \sum_{\bar{g} \in G/H} |gH| = \sum_{\bar{g} \in G/H} |H| = |G/H||H|$.

Definition 1.1.27 Sei G eine Gruppe und H eine Untergruppe von G.

- 1. Die **Ordnung** von G ist |G| die Anzahl aller Elementen in G (die **Mächtigkeit** von G).
- 2. Der **Index** von H in G ist [G:H] = |G/H|.

Korollar 1.1.28 Sie G eine endliche Gruppe und H eine Untergruppe. Dann sind die Ordnung |H| und der Index [G:H] von H Teiler der Ordnung |G| von G.

1.2 Normalteiler

Definition 1.2.1 Sei G eine Gruppe. Eine Untergruppe H von G heißt **Normaltei-**ler falls für alle $g \in G$ gilt $gHg^{-1} \subset H$. Man schreibt $H \triangleleft G$.

Bemerkung 1.2.2 Eine Untergruppe H ist genau dann ein Normalteiler wenn gilt $ghg^{-1} \in H$ für alle $g \in G$ und alle $h \in H$.

Lemma 1.2.3 Jede Untergruppe einer abelschen Gruppe G ist normal.

Beweis. Klar.

Lemma 1.2.4 Eine Untergruppe H ist genau dann Normalteiler, wenn gH = Hg für alle $g \in G$.

Beweis. Siehe Übungsblatt 0.

Beispiel 1.2.5 1. Die triviale Untergruppe $\{e_G\}$ und die Gruppe G sind Normalteiler von G: $\{e_G\} \triangleleft G$ und $G \triangleleft G$.

- $2. n\mathbb{Z} \triangleleft \mathbb{Z}.$
- 3. $SL_n(K) \triangleleft GL_n(K)$ aber $SO_n(K) \not\triangleleft GL_n(K)$.

Lemma 1.2.6 Sei $f: G \to G'$ ein Gruppenhomomorphismus und seien $H \triangleleft G$ und $H' \triangleleft G'$.

- 1. Dann ist $f^{-1}(H') \triangleleft G$. Insbesondere gilt Ker $f \triangleleft G$.
- 2. Falls f sujektiv ist, gilt $f(H) \triangleleft G'$.

Beweis. 1. Sei $g \in G$ und $h \in f^{-1}(H')$. Dann gilt $f(ghg^{-1}) = f(g)f(h)f(g)^{-1} \in H'$ also $ghg^{-1} \in f^{-1}(H')$.

2. Sei $g' \in G'$ und $h' \in f(H)$. Dann gibt es ein $h \in H$ mit h' = f(h). Da f surjektiv ist gibt es ein $g \in G$ mit f(g) = g'. Dann gilt $g'h'g'^{-1} = f(g)f(h)f(g^{-1}) = f(ghg^{-1}) \in f(H)$.

Satz 1.2.7 Sei $H \triangleleft G$. Dann ist die Verknüpfung $G/H \times G/H \to G/H$, $(\bar{g}, \bar{g}') \mapsto \overline{gg'}$ wohl definiert und G/H ist mit dieser Verknüpfung einer Gruppe. Außerdem ist die kanonische Projektion $G \to G/H$ ein Gruppenhomomorphismus.

Beweis. Seien $a, b \in G$ mit $\bar{a} = \bar{g}$ und $\bar{b} = \bar{g}'$. Wir zeigen, dass $\overline{ab} = \overline{gg'}$. Sei $h \in H$ mit a = gh und $h' \in H$ mit b = g'h'. Da g'H = Hg' gibt es $h'' \in H$ mit hg' = gh''. Es gilt

$$\overline{ab} = abH = ghg'h'H = gg'h''h'H = gg'H = \overline{gg'}.$$

Die Verknüpfung ist also wohl definiert.

1 Gruppen

Es gilt $\bar{g}\bar{e}_G = \overline{g}e_{\overline{G}} = \bar{g}$ und analog gilt $\bar{e}_G\bar{g} = \bar{g}$ also gilt $\bar{e}_G = e_{G/H}$. Es gilt $\bar{g}(\bar{g}'\bar{g}'') = \bar{g}g'\bar{g}'' = gg'\bar{g}'' = gg'\bar{g}'' = (\bar{g}\bar{g}')\bar{g}''$. Es gilt $\bar{g}g^{-1} = gg^{-1} = e_{\overline{G}}$ und analog $g^{-1}\bar{g} = e_{\overline{G}}$. Daraus folgt auch, dass die kanonische Projektion ein Guppenhomomorphismus ist.

Definition 1.2.8 Sei H ein Normalteiler von G. Die Gruppe G/N heißt **Quotient-gruppe** von G nach H.

Beispiel 1.2.9 Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ ist die Quotientgruppe von \mathbb{Z} nach $n\mathbb{Z}$.

Satz 1.2.10 Sei $f: G \to G'$ ein Gruppenhomomorphismus, sei H ein Normalteiler von G und sei $p: G \to G/H$ die kanonische Projektion.

1. Es gibt ein eindeutig bestimmter Gruppenhomomorphismus $\bar{f}:G/H\to G'$ so, dass das Diagram

kommutiert, genau dann wenn $H \subset \text{Ker } f$.

Angenommen $H \subset \operatorname{Ker} f$ und sei \bar{f} wie in 1.

- 2. Die Abbildung \bar{f} ist genau dann injektiv, wenn H = Ker f.
- 3. Die Abbildung \bar{f} ist genau dann surjektiv, wenn f surjektiv ist.

Beweis. 1. Sei \bar{f} wie oben und sei $h \in H$. Dann gilt $f(h) = \bar{f} \circ p(h)$. Aber $p(h) = [h] = hH = H = [e_G] = e_{G/H}$. Daraus folgt $f(h) = \bar{f}(e_{G/H}) = e_{G'}$ da \bar{f} ein Gruppenhomomorphismus ist. Es folgt $H \subset \text{Ker } f$.

Umgekehrt sei $H \subset \operatorname{Ker} f$. Sei $g \in G$, wir setzen $\bar{f}([g]) = f(g)$ (die ist die einzige Mögligkeit so, dass das Diagram kommutiert, dies zeigt, dass \bar{f} eindeutig bestimt ist). Sei g' mit [g'] = [g]. Es gibt $h \in H$ mit g' = gh und es gilt $f(g') = f(gh) = f(g)f(h) = f(g)e_{G'} = f(g)$. Also ist die Abbildung \bar{f} wohl definiert. Außerdem gilt $\bar{f}([g][g']) = \bar{f}([gg']) = f(gg') = f(g)f(g') = \bar{f}([g])\bar{f}([g'])$ und \bar{f} ist ein Gruppenhomomorphismus. Darüber hinaus gilt $\bar{f} \circ p(g) = \bar{f}([g]) = f(g)$ und das Diagram ist kommutativ.

2. Sei \bar{f} injektiv. Dann gilt $\operatorname{Ker} \bar{f} = \{e_{G/H}\}$. Sei $g \in \operatorname{Ker} f$. Es gilt $\bar{f}([g]) = e_{G'}$ also $[g] \in \operatorname{Ker} \bar{f}$ und da \bar{f} injetiv ist, gilt $[g] = e_{G/H}$. Es folgt $gH = [g] = e_{G/H} = H$ und $g \in H$. Also $\operatorname{Ker} f \subset H$ und da $H \subset \operatorname{Ker} f$ folgt $H = \operatorname{Ker} f$.

Umgekehrt sei H = Ker f und sei $[g] \in \text{Ker} \bar{f}$. Es gilt $f(g) = \bar{f}([g]) = e_{G'}$ also $g \in \text{Ker} f = H$. Es folgt $[g] = H = e_{G/H}$ und \bar{f} ist injektiv.

3. Sei f surjektiv und sei $g' \in G'$. Dann gibt es $g \in G$ mit f(g) = g'. Es gilt $\bar{f}([g]) = f(g) = g'$ also ist \bar{f} auch surjektiv.

Umgelehrt, sei \bar{f} surjektiv und sei $g' \in G'$. Es gibt $[g] \in G/H$ mit $\bar{f}([g]) = g'$. Daraus folgt $f(g) = \bar{f}([g]) = g'$ und f ist surjektiv.

Korollar 1.2.11 Sei $f: G \to G'$ ein surjektiver Gruppenhomomorphismus. Dann gilt $G/\mathrm{Ker} f \simeq G'$.

Beispiel 1.2.12 1. Es gilt $\operatorname{GL}_n(k)/\operatorname{SL}_n(K) \simeq k^{\times}$ (der Kernel des surjektiven Gruppenhomomorphismus det : $\operatorname{GL}_n(k) \to k^{\times}$ ist $\operatorname{SL}_n(k)$).

- 2. Es gilt $\mathbb{C}^{\times}/S^1 \simeq \mathbb{R}_{>0}$ (der Kernel des surjektiven Gruppenhomomorphismus $|\cdot|$: $\mathbb{C}^{\times} \to \mathbb{R}_{>0}$ ist S^1).
- 3. Es gilt $\mathbb{R}/\mathbb{Z} \simeq S^1$ (der Kernel des surjektiven Gruppenhomomorphismus $r \mapsto e^{2i\pi r}$ ist \mathbb{Z}).
- 4. Es gilt $S_n/A_n \simeq \{\pm 1\}$ (der Kernel des surjektiven Gruppenhomomorphismus $\varepsilon: S_n \to \{\pm 1\}$ ist A_n).

Definition 1.2.13 Ein Diagram $1 \longrightarrow H \xrightarrow{i} G \xrightarrow{f} G' \longrightarrow 1$ heißt **exakte Sequenz**,

- wenn alle Abbildungen Gruppenhomomorphismen sind,
- wenn *i* injektiv ist,
- \bullet wenn f surjektiv ist und
- wenn i(H) = Ker f.

Bemerkung 1.2.14 Falls $1 \longrightarrow H \xrightarrow{i} G \xrightarrow{f} G' \longrightarrow 1$ eine exakte Sequenz ist, gilt $G' \simeq G/H$.

Beispiel 1.2.15 Es gibt (Siehe Übungsblatt 1) eine exakte Sequenz

$$1 \to A_3 \simeq \mathbb{Z}/3\mathbb{Z} \to S_3 \to \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z} \to 1.$$

Definition 1.2.16 Eine Gruppe G heißt **einfach** falls G und $\{e_G\}$ die einzige Normalteiler von G sind.

Beispiel 1.2.17 1. Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ ist genau dann einfach, wenn p eine Primzahl ist (Siehe Übungsblatt 1).

2. Später zeigen wir, dass die Gruppe $A_n = \operatorname{Ker}(\varepsilon: S_n \to \{\pm 1\})$ einfach für $n \geq 5$ ist.

Definition 1.2.18 Sei G eine Gruppe und H eine Untergruppe. Der **Normalisator** $N_G(H)$ von H in G ist

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}.$$

1 Gruppen

Lemma 1.2.19 Sei G eine Gruppe und H eine Untergruppe.

- 1. Der Normalisator $N_G(H)$ ist eine Untergruppe von G.
- 2. Es gilt $H \triangleleft N_G(H)$ (also H ist Normalteiler in $N_G(H)$).

3. Sei K eine Untergruppe von G mit $H \triangleleft K$. Dann gilt $K \subset N_G(H)$ (i.e. $N_G(H)$ ist die größte Untergruppe von G mit $H \triangleleft N_G(H)$).

Beweis. 1. Es gilt $e_GHe_G^{-1}=e_GHe_G=H$ also $e_G\in N_G(H)$. Seien $a,b\in N_G(H)$. Dann gilt $aHa^{-1}=H$ und $bHb^{-1}=H$ also $b^{-1}Hb=H$. Daraus folgt

$$(ab^{-1})H(ab^{-1})^{-1} = ab^{-1}Hba^{-1} = aHa^{-1} = H$$

und $ab^{-1} \in N_G(H)$ und $N_G(H)$ ist eine Untergruppe von G.

- 2. Klar.
- 3. Sei K eine Untergruppe mit $H \triangleleft K$. Sei $k \in K$. Dann gilt $kH^{-1} \subset K$. Da K eine Gruppe ist gilt auch $k^{-1} \in K$ also $k^{-1}Hk \subset H$ und mit Linksmultiplikation mit k und Rechtsmultiplikation mit k^{-1} folgt $H \subset kHk^{-1}$. Daraus folgt $kHk^{-1} = H$ und $k \in N_G(H)$.

Beispiel 1.2.20 Sei $G = S_3$ und sei $H = \{(123) = \text{Id}, (213)\}$ und $A_3 = \{(123) = \text{Id}, (231), (312)\}$. Dann sind H und A_3 Untergruppe von G und es gilt (siehe Übungsblatt 1)

$$N_G(H) = H \text{ und } N_G(A_3) = S_3.$$

Satz 1.2.21 (Erster Isomorphiesatz) Sei G eine Gruppe, $H \triangleleft G$ ein Normalteiler von G und $K \subseteq G$ eine Untergruppe von G.

- 1. Dann gilt HK = KH, $KH \subset G$ ist eine Untergruppe, $H \triangleleft KH$ und $K \cap H \triangleleft K$.
- 2. Die Abbildung $f: K/(K\cap H) \to KH/H$ definiert durch $k(K\cap H) \mapsto kH$ ist ein Isomorphismus also

$$K/(K \cap H) \simeq KH/H$$
.

Beweis. 1. Sei $h \in H$ und $k \in K$. Da H ein Normalteiler ist, gilt $khk^{-1} \in H$ und es folgt $kh \in Hk \subset HK$. Daraus folgt $KH \subset HK$. Analog gilt $k^{-1}hk \in H$ und $hk \in kH \subset KH$. Daraus folgt $HK \subset KH$ und KH = HK.

Da $e_G \in H$ und $e_G \in K$ gilt $e_G \in KH$. Seien $k, k' \in K$ und $h, h' \in H$ so, dass $kh, k'h' \in KH$. Es gilt $kh(k'h')^{-1} = khh'^{-1}k'^{-1} \in KHK = KKH = KH$. Daraus folgt, dass KH eine Untergruppe ist.

Da H ein Normalteiler ist, gilt $gHg^{-1} \subset H$ für alle $g \in G$. Insbesondere für alle $g \in KH$ und es folgt $H \triangleleft KH$.

Sei $g \in H \cap K$ und $k \in K$. Es gilt $kgk^{-1} \in K$ und da H ein Normalteiler ist, gilt auch $kgk^{-1} \in H$. Also $kgk^{-1} \in H \cap K$ und $H \cap K \triangleleft K$.

2. Sei $f: K \to KH/H$ die Abbildung definiert durch f(k) = kH. Seien $k, k' \in K$. Es gilt $f(kk') = kH \cdot k'H = kk'H = f(kk')$ also ist f ein Gruppenhomomorphismus. Seien $k \in K$ und $h \in H$. Dann gilt f(k) = kH = khH und f ist surjektiv. Sei $k \in K \cap H$. Dann gilt $f(k) = kH = H = e_{KH/H}$ also $H \cap K \subset \operatorname{Ker} f$. Sei $k \in K \operatorname{Ker} f$. Dann gilt kH = f(k) = H und $k \in H$ also $k \in K \cap H$. Es folgt $H \cap K = \operatorname{Ker} f$. Nach Korollar 1.2.11 folgt, dass $K/(H \cap K) \simeq KH/H$.

Satz 1.2.22 (Zweiter Isomorphiesatz) Sei G eine Gruppe und seien $H \triangleleft G$ und $K \triangleleft G$ mit $K \subset H$.

- 1. Dann gilt $K \triangleleft H$ und $H/K \triangleleft G/K$.
- 2. Die Abbildung $f: (G/K)/(H/K) \to G/H$ definiert durch $gK \cdot H/K \mapsto gH$ ist ein Isomorphismus also

$$(G/K)/(H/K) \simeq G/H.$$

Beweis. 1. Sei $h \in H \subset G$. Da $K \triangleleft G$ gilt $hKh^{-1} = K$ und $K \triangleleft H$.

Die Teilmenge $H/K \subset G/K$ ist $\pi_K(H)$, wobei $\pi: G \to G/K$ die kanonische Projektion ist. Da $H \triangleleft G$ und π surjektiv folgt, dass $H/K \triangleleft G/K$.

2. Die kanonische Projektion $\pi_H: G \to G/H$ ist ein surjektiver Gruppenhomomorphismus und es gilt $K \subset H = \operatorname{Ker} \pi_H$. Daraus folgt, dass es ein surjektiver Gruppenhomomorphismus $F = \bar{\pi}_H: G/K \to G/H$ gibt mit $\pi_H = \pi_K \circ F$ also $F([g]_K) = [g]_H$.

Wir zeigen, dass $\operatorname{Ker} F = H/K$. Daraus folt, dass es ein Gruppenisomorphismus $\overline{F}: (G/K)/(H/K) \to G/H$ gibt mit $\overline{F}([[g]_K]_{H/K}) = [g]_H$. Sei $[g]_K \in \operatorname{Ker} F$. Dann gilt $[e_G]_H = F([g]_K) = [g]_H$ also $g \in H$ und $[g]_K \in H/K$. Umgekehrt, sei $[g]_K \in H/K$ also $[g]_K = [h]_K$ für ein $h \in H$ i.e. es gibt ein $k \in K$ mit g = hk. Da $K \subset H$ gilt $g \in H$. Daraus folgt $[g]_H = [e_G]_H$ und $F([g]_K) = [g]_H = [e_G]_H$ also $[g]_K \in \operatorname{Ker} F$. Umgekehrt, sei $[g]_K \in \operatorname{Ker} F$. Es gilt $[g]_H = F([g]_K) = [e_G]_H$ also $g \in H$. Daraus folgt $[g]_K \in H/K$.

1.3 Zentrum

Definition 1.3.1 Sei G eine Gruppe.

1. Das Zentrum einer Gruppe G ist die Menge

$$Z(G) = \{ g \in G \mid gh = hg \text{ für alle } h \in G \}.$$

2. Sei $X \subset G$ eine Teilmenge. Der **Zentralisator** von G ist die Teilmenge

$$Z_G(X) = \{ g \in G \mid gx = xg \text{ für alle } x \in X \}.$$

Bemerkung 1.3.2 Es gilt $Z(G) = Z_G(G)$.

Beispiel 1.3.3 1. Sei G eine kommutative Gruppe. Dann gilt Z(G) = G.

2. Sei $G = S_n$. Dann gilt $Z(S_n) = \{ \text{Id} \}$ (Siehe Übungsblatt 2) für $n \geq 3$.

Lemma 1.3.4 Sei G eine Gruppe und $X \subset G$ eine Teilmenge.

- 1. Der Zentralisator $Z_G(X)$ ist eine Untergruppe.
- 2. Das Zentrum Z(G) ist ein Normalteiler von G und $Z_G(X)$ und ist abelsch.
- 3. Es gilt $G/Z(G) \simeq \{\text{innere Automorphismen}\}.$
- 4. Falls G/Z(G) zyklisch ist (siehe Definition 1.4.2 unten), gilt G=Z(G) also G ist abelsch.
- Beweis. 1. Es gilt $e_G x = x e_G$ für alle $x \in G$ also ist $e_G \in Z_G(X)$. Seien $g, h \in Z_G(X)$. Es gilt gx0xg und hx = xh für alle $x \in X$. Daraus folgt $xh^{-1} = h^{-1}x$ für alle $x \in X$ und $xgh^{-1} = gxh^{-1} = gh^{-1}x$ i.e. $gh^{-1} \in Z_G(X)$.
- 2. Nach der Definition gilt $Z(G) \subset Z_G(X)$. Sei $z \in Z(G)$ und $g \in G$. Es gilt $gzg^{-1} = gg^{-1}z = z$ also $gzg^{-1} \in Z(G)$. Daraus folgt, dass Z(G) ein Normalteiler in G und $Z_G(X)$ ist. Seien $z, z' \in Z(G)$. Es gilt zz' = z'z also Z(G) ist abelsch.
- 3. Sei $f: G \to \{\text{innere Automorphismen}\}\$ definiert durch $f(g) = \text{Int}_g$. Diese Abbildung ist surjectiv und es gilt $f(gh) = \text{Int}_{gh} = \text{Int}_{gh} \circ \text{Int}_{h}$ (es gilt $\text{Int}_{g} \circ \text{Int}_{h}(g') = \text{Int}_{g}(hg'h^{-1} = ghg'h^{-1}g^{-1} = (gh)g'(gh)^{-1} = \text{Int}_{gh}(g')$). Die Abbildung ist also ein surjektiver Gruppenhomomorphismus. Sei $g \in \text{Ker}(f)$. Es gilt $\text{Int}_{g} = \text{Id}$ also $\text{Int}_{g}(h) = h$ für alle $h \in G$. Dies ist äquivalent zu $ghg^{-1} = h$ für alle $h \in H$ und auch zu gh = hg für alle $h \in G$. Also Ker(f) = Z(G).
- 4. Seien $g, h \in G$ und sei $\pi : G \to G/Z(G)$ die kanonische projektion. Da G/Z(G) zyklisch ist gibt es ein $a \in G$ mit $G/Z(G) = \langle [a] \rangle$. Insbesondere gibt es $n, m \in \mathbb{Z}$ mit $[g] = [a]^n$ und $[h] = [a^m]$. Es gibt also $z, z' \in Z(G)$ mit $g = a^n z$ und $h = a^m z'$. Daraus folgt $gh = a^n z a^m z' = a^m z' a^n z = hg$ und G ist kommutativ.

1.4 Erzeuger und Zyklische Gruppe

Lemma 1.4.1 Sei *G* eine Gruppe.

- 1. Sei $(H_i)_{i\in I}$ eine Familie von Untergruppen von G. Dann ist $\bigcap_{i\in I} H_i$ eine Untergruppe von G.
- 2. Sei A eine Teilmenge von G. Dann gibt es eine kleinste Untergruppe H mit $A \subset H_{\cdot \square}$

Beweis. 1. Siehe Übungsblatt 1.

2. Sei $(H_i)_i$ die Familie aller Untergruppen von G die A enthalten (diese Familie ist nicht leer da G eine solche Gruppe ist). Dann ist $H = \bigcap_{i \in I} H_i$ die minimale Untergruppe die A enthält

Definition 1.4.2 1. Sei G eine Gruppe und A eine Teilmenge von G. Die kleinste Untergruppe die A enthält heißt **die von** A **erzeugte Untergruppe** und ist $\langle A \rangle$ geschrieben. Falls A nur einelementig ist: $A = \{g\}$ schreibt man $\langle A \rangle = \langle g \rangle$.

- 2. Eine Teilmenge A einer Gruppe G heißt **erzeugend** (man sagt auch A **erzeugt** G) falls $G = \langle A \rangle$.
- 3. Eine Gruppe G heißt **zyklisch** falls es ein Element $g \in G$ gibt mit $G = \langle g \rangle$.

Beispiel 1.4.3 1. Die Gruppe $(\mathbb{Z}, +)$ ist zyklisch und 1 erzeugt \mathbb{Z} .

- 2. Sei $n \in \mathbb{Z}$. Die Gruppe $(\mathbb{Z}/n, +)$ ist zyklisch und $\bar{1}$ erzeugt $\mathbb{Z}/n\mathbb{Z}$.
- 3. Die einfache Transpositionen $(s_i)_{i \in [1,n-1]}$ definiert durch

$$s_i(k) = \begin{cases} k & \text{für } k \not\in \{i, i+1\} \\ i+1 & \text{für } k = i \\ i & \text{für } k = i+1 \end{cases}$$

erzeugen S_n i.e. $S_n = \langle s_i \mid i \in [1, n-1] \rangle$ (Siehe LAII).

Lemma 1.4.4 Sei G eine Gruppe und $g \in G$. Es gilt $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}.$

Beweis. Sei $n \in \mathbb{Z}$. Da $\langle g \rangle$ eine Gruppe ist und enthält g, gilt $g^{-1} \in \langle g \rangle$ und $g^n \in \langle g \rangle$ also $\{g^n \mid n \in \mathbb{Z}\} \subset \langle g \rangle$.

Umgekehrt, seien $n, m \in \mathbb{Z}$. Dann ist $(g^n)(g^m)^{-1} = g^{n-m} \in \{g^n \mid n \in \mathbb{Z}\}$ und $e_G = g^0 \in \{g^n \mid n \in \mathbb{Z}\}$. Daraus folt, dass $\{g^n \mid n \in \mathbb{Z}\}$ eine Untergruppe von G ist und enthält g. Also $\langle g \rangle \subset \{g^n \mid n \in \mathbb{Z}\}$.

Satz 1.4.5 Sei G eine zyklische Gruppe. Dann ist G isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$. \square

Beweis. Sei $g \in G$ so, dass $G = \langle g \rangle$. Sei $f : \mathbb{Z} \to G$ definiert durch $f(n) = g^n$. Dies ist ein Gruppenhomomorphismus und nach dem obigen Lemma folgt $f(\mathbb{Z}) = G$. Falls f injektiv ist, ist f ein Isomorphismus und $G \simeq \mathbb{Z}$. Sonst sei $N = \operatorname{Ker} f$. Dann ist N eine Untergruppe von \mathbb{Z} und es folgt $N = n\mathbb{Z}$ für eine $n \in \mathbb{Z}$ (Siehe Übunsblatt 0 oder im Beweis von Korollar 1.4.7). Es folgt (nach Korollar 1.2.11) $G = \mathbb{Z}/N = \mathbb{Z}/n\mathbb{Z}$.

Korollar 1.4.6 Sei p eine Primzahl und G eine Gruppe mit |G| = p.

- 1. Sei $g \in G$ mit $g \neq e_G$. Dann gilt $G \simeq \langle g \rangle$.
- 2. Es gilt $G \simeq \mathbb{Z}/p\mathbb{Z}$.

1 Gruppen

Beweis. 1. Sei $H = \langle g \rangle$. Dann gilt $e_G, g \in H$ also $|H| \geq 2$. Nach dem Satz von Lagrange gilt |H| teilt p also |H| = p = |G| und H = G.

2. Folgt vom obigen Satz.

Korollar 1.4.7 Jede Untergruppe einer zyklischen Gruppe ist zyklisch.

Beweis. Die Gruppe G ist isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$. Es wurde im Übungsblatt 0 gezeigt, dass die Untergruppen zyklisch sind. Wir geben dennoch einen Beweis.

Angenommen $G = \mathbb{Z}$. Sei H eine Untergruppe von \mathbb{Z} . Falls $H = \{0\}$ sind wir fertig. Sonst ist $H \cap \mathbb{Z}_{>0} \neq \emptyset$. Sei $m = \min\{r \in H \mid r > 0\}$. Sei $n \in H$. Dann gibt es $k \in \mathbb{Z}$ und $r \in [0, m-1]$ mit n = km + r. Da H eine Gruppe ist gilt $r = n - km \in H$ und da m minimal war, gilt r = 0. Daraus folgt $H = m\mathbb{Z}$.

Sei $G = \mathbb{Z}/n\mathbb{Z}$ und sei H eine Untergruppe von G. Sei $\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} = G$ die kanonische Projektion. Dann ist $\pi^{-1}(H)$ eine Untergruppe von \mathbb{Z} also gibt es ein $m \in \mathbb{Z}$ mit $\pi^{-1}(H) = m\mathbb{Z}$. Da die kanonische Projektion surjektiv ist, folgt $H = \pi(\pi^{-1}(H)) = \pi(m\mathbb{Z}) = \{k[m] = [mk] \in \mathbb{Z}/n\mathbb{Z}\}.$

1.5 Ordung eines Elements

Definition 1.5.1 Sei G eine Gruppe und $g \in G$. Die **Ordnung** ord(g) von g ist die Ordung der Gruppe $\langle g \rangle$.

Lemma 1.5.2 Es gilt $\{k \in \mathbb{Z}_{\geq 0} \mid g^k = e_G\} = \operatorname{ord}(g)\mathbb{Z} \text{ (wir setzen } \infty\mathbb{Z} = \{0\}\text{)}.$

Beweis. Nach Satz 1.4.5 ist die Gruppe $\langle g \rangle$ isomorph zu \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$.

Im ersten Fall gilt $\operatorname{ord}(g) = \infty$ und im zweiten Fall gilt $\operatorname{ord}(g) = n$. Außerdem ist die Abbildung $\mathbb{Z} \to \langle g \rangle$ bzw. $\mathbb{Z}/n\mathbb{Z} \to \langle g \rangle$ definiert durch $k \mapsto g^k$ bzw. $[k] \mapsto g^k$ ein Isomorphismus.

Im ersten Fall gilt $\{k \in \mathbb{Z}_{\geq 0} \mid g^k = e_G\} = \{0\}$. Im zweiten Fall gilt $\{k \in \mathbb{Z} \mid g^k = e_G\} = \{k \in \mathbb{Z} \mid [k] = 0 \in \mathbb{Z}/n\mathbb{Z}\} = n\mathbb{Z}$.

Lemma 1.5.3 Sei G eine Gruppe und $g \in G$ mit $\operatorname{ord}(g) = n < \infty$. Dann gilt

$$\operatorname{ord}(g^m) = \frac{n}{\operatorname{ggT}(m, n)}$$

für alle $m \in \mathbb{Z}$.

Beweis. Seien $d = \operatorname{ggT}(m, n)$, $m' = \frac{m}{d} \in \mathbb{Z}$ und $n' = \frac{n}{d} \in \mathbb{Z}$. Sei $s = \operatorname{ord}(g^m)$. Es gilt $g^{ms} = (g^m)^s = e_G$. Also gibt es $k \in \mathbb{Z}$ mit ms = kn. Es folgt m's = n'k. Da $\operatorname{ggT}(m', n') = 1$ folgt n'|s.

Es gilt $(g^m)^{n'} = g^{mn'} = g^{m'dn'} = g^{m'n} = (g^n)^{m'} = e_G$. Daraus folgt s|n'. Insgesamt folgt s=n'.

Korollar 1.5.4 Die erzeugende Elemente von $\mathbb{Z}/n\mathbb{Z}$ sind die Klassen $[m] \in \mathbb{Z}/n\mathbb{Z}$ mit ggT(m,n)=1.

Beweis. Sei $[m] \in \mathbb{Z}/n\mathbb{Z}$ mit $\mathbb{Z}/n\mathbb{Z} = \langle [m] \rangle$. Dann gilt [m] = m[1] und ord([1]) = n. Daraus folgt ord(m) = n/ggT(m, n).

Die Klasse [m] ist aber genau dann erzeugend, wenn $\operatorname{ord}([m]) = n$ also $n/\operatorname{ggT}(m,n) = n$ i.e. $\operatorname{ggT}(m,n) = 1$.

Beispiel 1.5.5 Die erzeugende Klassen in $\mathbb{Z}/4\mathbb{Z}$ sind [1] und [3].

Korollar 1.5.6 Sei $n \in \mathbb{Z}$. Die Gruppe $\mathbb{Z}/n\mathbb{Z}$ hat für jedes m|n genau eine Untergruppe der Ordnung m: die Gruppe

$$m\mathbb{Z}/n\mathbb{Z} = \{ [km] \in \mathbb{Z} \mid k \in \mathbb{Z} \}.$$

Beweis. Dies wurde im Übungsblatt 0 bewiesen. Wir geben dennoch einen Beweis. Sei H eine Untergruppe von $\mathbb{Z}/n\mathbb{Z}$ und sei $d=\min\{k\in\mathbb{Z}_{>0}\mid [k]\in H\}$. Da $[0]=[n]\in H$ gilt $0< d\leq n$. Sei $[k]\in H$. Wir schreiben k=da+b mit $a,b\in\mathbb{Z}$ und $b\in[0,d-1]$. Es gilt $[k],[d]\in H$ also $[b]=[k]-a[d]\in H$. Da d minimal ist, folgt b=0 und $k\in d\mathbb{Z}$. Es folgt $H=d\mathbb{Z}/n\mathbb{Z}=\{[kd]\in\mathbb{Z}/n\mathbb{Z}\mid k\in\mathbb{Z}\}=\langle [d]\rangle$. Außerdem gilt $\operatorname{ord}([d])=\frac{n}{\operatorname{ggT}(n,d)}=\frac{n}{d}:=m$.

1.6 Derivierte Untergruppe

Definition 1.6.1 Sei G eine Gruppe, seien $g, h \in G$ und seien $H, K \subset G$ Untergruppen.

- 1. Der **Kommutator** von g und h ist $[g,h] = ghg^{-1}h^{-1}$.
- 2. **Der Kommutator** [H, K] von H und K ist die Gruppe $[H, K] = \langle [h, k] \mid h \in H \text{ und } k \in K \rangle$.
- 3. **Die derivierte Gruppe** D(G) von G ist die Gruppe D(G) = [G, G] (manchmal wird D(G) auch (G, G) bezeichnet).

Lemma 1.6.2 Sei G eine Gruppe.

- 1. $D(G) = \{[g_1, h_1] \cdots [g_n, h_n] \mid n \in \mathbb{Z}_{\geq 0} \text{ und } g_i, h_i \in G\}.$
- 2. D(G) ist eine Normalteiler in G.
- 3. G/D(G) ist abelsch.
- 4. Sei $N \triangleleft G$ mit G/N abelsch. Dann gilt $D(G) \subset N$. Also ist D(G) die kleinste Untergruppe so, dass G/D(G) abelsch ist.

1 Gruppen

Beweis. 1. Sei $H = \{[g_1, h_1] \cdots [g_n, h_n] \mid n \in \mathbb{Z}_{\geq 0} \text{ und } g_i, h_i \in G\}$. Es gilt $H \subset D(G)$. Wir zeigen, dass H eine Untergruppe ist. Alle Produkte von Elementen aus H sind noch in H. Es gilt $[g, h]^{-1} = [h, g]$ also ist das Inverses jedes Element aus H noch in H und H ist eine Untergruppe. Daraus folgt $D(G) \subset H$ da D(G) die kleinste Untergruppe die alle Kommutatoren enthält ist.

- 2. Seien $g, h, k \in G$. Es gilt $k[g, h]k^{-1} = [kgk^{-1}, khk^{-1}]$. Daraus folgt $k[g, h]k^{-1} \in D(G)$ und nach 1. $kD(G)k^{-1} \subset D(G)$.
- 3. Seien $g,h \in G$. Dann gilt $[ghg^{-1}h^{-1}] = e$ in G/D(G) also [g][h] = [h][g] und G/D(G) ist abelsch.
- 4. Seien $g, h \in G$. Es gilt $[ghg^{-1}h^{-1}]_N = [g]_N[h]_N[g]_N^{-1}[h]_N^{-1} = [e_G]_N$ da G/N abelsch ist. Daraus folgt $ghg^{-1}h^{-1} \in N$ und $D(G) \subset N$.

1.7 Semidirekte Produkte

Lemma 1.7.1 Seien N und H zwei Gruppen und sei $\Phi: H \to \operatorname{Aut}(N), h \mapsto \Phi_h$ ein Gruppen homomorphismus (wobei $\operatorname{Aut}(N)$ die Gruppe aller Automorphismen von N ist).

Sei $N \times H := N \times_{\Phi} H := (N \times H, \star)$ mit

$$(n,h) \star (n',h') = (n\Phi_h(n'),hh').$$

Dann ist $N \rtimes H$ eine Gruppe mit neutralem Element (e_N, e_H) und Inverse $(n, h)^{-1} = (\Phi_{h^{-1}}(n^{-1}), h^{-1}).$

Beweis. Es gilt $(e_N, e_H) \star (n, h) = (e_N \Phi_{e_H}(n), e_H h) = (\text{Id}_N(n), h) = (n, h) \text{ und } (n, h) \star (e_N, e_H) = (n\Phi_h(e_N), he_H) = (n, h).$

Es gilt $(n,h) \star (\Phi_{h^{-1}}(n^{-1}),h^{-1}) = (n\Phi_h(\Phi_{h^{-1}}(n^{-1})),hh^{-1}) = (n\Phi_{hh^{-1}}(n^{-1}),e_H) = (n\operatorname{Id}_N(n^{-1}),e_H) = (nn^{-1},e_H) = (e_N,e_H)$. Es gilt auch $(\Phi_{h^{-1}}(n^{-1}),h^{-1}) \star (n,h) = (\Phi_{h^{-1}}(n^{-1})\Phi_{h^{-1}}(n),h^{-1}h) = (\Phi_{h^{-1}}(n^{-1}n),e_H) = (\Phi_{h^{-1}}(e_G),e_H) = (e_N,e_H)$.

Es gilt

$$\begin{array}{ll} (n,h)\star ((n',h')\star (n'',h'')) &= (n,h)\star (n'\Phi_{h'}(n''),h'h'') \\ &= (n\Phi_h(n'\Phi_{h'}(n'')),hh'h'') \\ &= (n\Phi_h(n')\Phi_{hh'}(n''),hh'h'') \\ &= (n\Phi_h(n'),hh')\star (n'',h'') \\ &= ((n,h)\star (n',h'))\star (n'',h'') \end{array}$$

Daraus folgt, dass $N \rtimes H$ eine Gruppe ist.

Definition 1.7.2 Seien N und H zwei Gruppen und sei $\Phi: H \to \operatorname{Aut}(N), h \mapsto \Phi_h$ ein Gruppen homomorphismus. Das heißt die Gruppe $N \rtimes H := N \rtimes_{\Phi} H := (N \rtimes H, \star)$ mit Produkt $(n,h) \star (n',h') = (n\Phi_h(n'),hh')$ semidirektes Produkt von N und H bzg. Φ .

Beispiel 1.7.3 Sei $\Phi: H \to \operatorname{Aut}(N)$ definiert durch $\Phi_h = \operatorname{Id}_N$ für alle $h \in H$. Dann gilt

$$(n,h) \star (n',h') = (n\Phi_h(n'),hh') = (n\mathrm{Id}_N(n'),hh') = (nn',hh')$$

und das semidirekte Produkt ist die Produktgruppe.

Lemma 1.7.4 Sei $G = N \times H$ und seien $N' = \{(n, e_H) \mid n \in N\}$ und $H' = \{(e_N, h) \mid h \in H\}$.

- 1. Dann ist H' eine Untergruppe von G und $N' \triangleleft G$.
- 2. Es gibt isomorphismen $N \simeq N'$ und $H \simeq H'$ definiert durch $n \mapsto (n, e_H)$ und $h \mapsto (e_N, h)$.

3. Es gilt
$$N' \cap H' = \{e_G\}$$
 und $G = N'H'$.

Beweis. 1. Die Abbildung $\pi: G \to H$ definiert durch $\pi(h)$ ist ein Gruppenhomomorphismus und Ker $\pi = N'$ also $N' \triangleleft G$. Es gilt $e_G \in H'$ und $(e_N, h) \star (e_N, h') = (e_N, hh')$ also H' ist eine Untergruppe von G.

- 2. Man überprüft leicht, dass diese Abbildungen injektive Gruppenhomomorphismen sind. Per Defnition sind diese Abbildungen surjektiv.
- 3. Es gilt $N' \cap H' = \{(e_n, e_H)\} = \{e_G\}$ und $(n, h) = (n, e_H) \star (e_N, h)$ also G = N'H'.

Satz 1.7.5 Sei G eine Gruppe, H eine Untergruppe und $N \triangleleft G$.

1. Falls gilt $N \cap H = \{e_G\}$ und G = NH. Dann ist für $\Phi : H \to \operatorname{Aut}(N)$ definiert durch $\Phi_h(n) = hnh^{-1}$ die Abbildung

$$f: N \times_{\Phi} H \to G, (n,h) \mapsto nh$$

ein Isomorphismus.

2. Falls zusätzlich gilt $H \triangleleft G$, so wird der Isomorphismus zu $f: N \times H \rightarrow G$.

Beweis. 1. Es gilt

$$f((n,h) \star (n',h')) = f(n\Phi_h(n'),hh') = nhn'h^{-1}hh' = nhn'h' = f(n,h)f(n',h').$$

Daraus folgt, dass f ein Gruppenhomomorphismus ist. Da G=N ist diese Abbildung surjektiv. Sei $(n,h) \in \operatorname{Ker} f$. Es gilt $nh=e_G$ also $n=h^{-1}$ und $n \in N \cap H$ also $n=e_G$. Daraus folgt $h=e_G$ und f ist injektiv also ein Isomorphismus.

2. Seien $h \in H$ und $n \in N$. Es gilt $N \ni n^{-1}(hnh^{-1}) = (n^{-1}hn)h^{-1} \in H$ also $n^{-1}hnh^{-1} = e_G$. Es folgt hn = nh und $\Phi_h(n) = n$ und $N \rtimes H = N \times H$.

Beispiel 1.7.6 1. Sei c=(231), sei s=(213) und seien $N=A_3=\{\mathrm{Id},c,c^2\}$ und $H=\{\mathrm{Id},s\}$. Da A_3 ein Normalteiler ist, sind $\mathrm{Int}_s:A_3\to A_3$ und $\mathrm{Int}_{\mathrm{Id}}:A_3\to A_3$ Gruppenautomorphismen und die Abbildung $\Phi:H\to\mathrm{Aut}(A_3),\,\Phi_h=\mathrm{Int}_h$ ist ein Gruppenhomomorphismus.

Dank dem obigen Satz zeigt man, dass die Abbildung

$$A_3 \rtimes H \to S_3, (n,h) \mapsto nh$$

ein Gruppenisomorphismus ist.

- 2. Algemeiner gilt $S_n \simeq A_n \rtimes \{\pm 1\}$.
- 2. Diedergruppe. Sei R_n ein regelmäßiges Polygon. Zum Beispiel $R_n = \{e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1]\}.$

Sei D_{2n} die Gruppe aller Isometrie die R_n erhalten. Man zeigt, dass D_{2n} genau 2n elemente hat. Sei O das Zentrum von R_n und seien D_1, \dots, D_n die Geraden die durch O und eine Ecke laufen oder die durch O und die Mitte einer Kante laufen. Sei R die Drehung um O von $\frac{2\pi}{n}$ und seien S_1, \dots, S_n die Spiegelungen an den Geraden D_1, \dots, D_n . Dann gilt

$$D_{2n} = \{ \mathrm{Id}, R, \cdots, R^n, S_1, \cdots, S_n \}.$$

Die Gruppe D_{2n} enthält $N = \{ \mathrm{Id}, R, \dots, R^n \}$ und man überprüft leicht, dass $N \triangleleft D_{2n}$. Sei $H = \{ \mathrm{Id}, S_1 \}$. Dann ist H eine Untergruppe von G. Dank dem obigen Satz zeigt man, dass die Abbildung

$$N \rtimes H \to G, (n,h) \mapsto nh$$

ein Gruppenisomorphismus ist.

1.8 Operation einer Gruppe auf einer Menge

Definition 1.8.1 Sei G eine Gruppe und X eine Menge. Eine **Operation von** G auf X ist eine Abbildung $G \times X \to X$, $(g, x) \mapsto g \cdot x$ mit den Eigenschaften:

1. Für alle $x \in X$ gilt $e_G \cdot x = x$.

2. Für alle $g, h \in G$ und alle $x \in X$ gilt $(gh) \cdot x = g \cdot (h \cdot x)$.

Beispiel 1.8.2 1. Die triviale Operation $G \times X \to X$ definiert durch $g \cdot x = x$ für alle $g \in G$ und $x \in X$.

- 2. Die **Linkstranslation** $G \times G \to G$ definiert durch $g \cdot h = gh$ (hier ist X = G).
- 2. Die Linkstranslation auf einem Quotient $G \times G/H \to G/H$ definiert durch $g \cdot [g']_H = [gh]_H$ (hier ist X = G/H wobei H eine Untergruppe ist).
- 3. Die Konjugation $G \times G \to G$ definiert durch $g \cdot h = ghg^{-1}$ (hier ist X = G).
- 4. $S_n \times [1, n] \to [1, n]$ definiert durch $\sigma \cdot i = \sigma(i)$.
- 4. $GL_n(K) \times K^n \to K^n$ definiert durch $A \cdot v = Av$.

Lemma 1.8.3 Sei $G \times X \to X$, $(g, x) \mapsto g \cdot x$ eine Operation.

1. Dann ist die Abbildung $\Phi(g): X \to X$ definiert durch $\Phi(g)(x) = g \cdot x$ eine Bijektion von X und die Abbildung

$$\Phi: G \to \mathrm{Bij}(X)$$

definiert durch $q \mapsto \Phi(q)$ ein Gruppenhomomorphismus.

2. Umgekehrt, sei $\Phi: G \to \operatorname{Bij}(X)$ ein Gruppenhomomorphismus. Dann ist $G \times X \to X$ definiert durch $(g, x) \mapsto g \cdot x = \Phi(g)(x)$ eine Operation.

Beweis. 1. Wir zeigen, dass $\Phi(gh) = \Phi(g) \circ \Phi(h)$. Es gilt

$$\Phi(qh)(x) = (qh) \cdot x = q \cdot (h \cdot x) = \Phi(q)(h \cdot x) = \Phi(q)(\Phi(h)(x)) = (\Phi(q) \circ \Phi(h))(x).$$

Daraus folgt, dass $\Phi(g) \circ \Phi(g^{-1}) = \operatorname{Id}_X = \Phi(g^{-1}) \circ \Phi(g)$ also ist $\Phi(g)$ bijektiv mit $\Phi(g)^{-1} = \Phi(g^{-1})$ und Φ ist ein Gruppenhomomorphismus.

2. Es gilt
$$e_G \cdot x = \Phi(e_G)(x) = \operatorname{Id}_X(x) = x$$
 und $g \cdot (h \cdot x) = \Phi(g)(\Phi(h)(x)) = (\Phi(g) \circ \Phi(h))(x) = \Phi(gh)(x) = (gh) \cdot x$.

Definition 1.8.4 Sei $G \times X \to X$, $(g, x) \mapsto g \cdot x$ eine Operation von G auf X.

- 1. Die Operation heißt **transitiv**, falls es für alle $x, y \in X$ ein $g \in G$ gibt mit $g \cdot x = y$.
- 2. Eine Operation heißt **treu** falls $(g \cdot x = x \text{ für alle } x \in X) \Rightarrow (g = e_G)$.
- 3. Sei $x \in X$. Die Menge $G \cdot x = \{g \cdot x \in X \mid g \in G \text{ heißt } \mathbf{Orbit} \text{ oder } \mathbf{Bahn} \text{ von } x \in X.$

Man schreibt $X/G = \{G \cdot x | x \in X\}$ für die Menge aler Bahnen. Diese Menge heisst Quotient von X nach G.

4. Ein $x \in X$ heißt **Fixpunkt** falls $g \cdot x = x$ für alle $g \in G$. Die Menge aller Fixpunkte ist X^G geschrieben.

- 5. Für $x \in X$ heißt $G_x = \{g \in G \mid g \cdot x = x\}$ der **Stabilisator von** x.
- 6. Allgemeiner heißt für $Y \subset X$ eine Teilmenge $G_Y = \{g \in G \mid g \cdot Y = Y\}$ der Stabilisator von Y.

Bemerkung 1.8.5 Die Operation $G \times X \to X$ ist genau dann treu, wenn der Gruppenhomomorphismus $\Phi: G \to \text{Bij}(X)$ (siehe Lemma 1.8.3) injektiv ist.

Beispiel 1.8.6 1. Sei $G \times G \to G$ die Linkstranslation. Dann ist die Operation transitiv und treu. Daraus folgt

Satz 1.8.7 (Satz von Cayley) Sei G eine Gruppe der Ordnung n. Dann ist G eine Untergruppe von S_n .

Beweis. Sei $L: G \to \text{Bij}(G) \simeq S_n$ definiert durch $g \mapsto (L_g: G \to G, h \mapsto gh)$. Wir zeigen, dass L injektiv ist also dass die Operation treu ist. Sei $g \in \text{Ker } L$. Es gilt $L_g = \text{Id}_G$ also $L_g(h) = h$ für alle $h \in G$. Daraus folgt gh = h und $g = e_G$.

- 2. Sei $G \times G/H \to G/H$ die Linkstranslation auf dem Quotient G/H. Dann ist die Operation transitiv und G_{e_G} der Stabilisator des neutrales Elements ist H.
- 3. Sei $G \times G \to G$ die Konjugation. Sei $h \subset G$. Dann ist der Stabilisator von h der Zentralisator von h:

$$G_h = \{g \in G \mid ghg^{-1} = h\} = \{g \in G \mid gh = hg\} = Z_G(h).$$

4. Sei $X = \{H \subset G \mid H \text{ ist eine Untergruppe}\}$. Dann ist $G \times X \to X$ definiert durch $g \cdot H = gHg^{-1}$ eine Operation. Es gilt

$$G_H = \{g \in G \mid g \cdot H = H\} = \{g \in G \mid gHg^{-1} = H\} = N_G(H).$$

Es gilt auch

$$X^G = \{ H \in X \mid gHg^{-1} = H \text{ für alle } g \in G \} = \{ H \in X \mid H \triangleleft G \}.$$

Definition 1.8.8 Sei $G \times X \to X$ eine Operation. Wir definieren auf X die Relation $x \sim y \Leftrightarrow y \in G \cdot x$.

Proposition 1.8.9 Sei $G \times X \to X$ eine Operation.

- 1. Die Relation $x \sim y$ ist eine Äquivalenzrelation.
- 2. Die Äquivalenzklassen sind die Bahnen.
- 3. Sei $x \in X$. Die Abbildung $G/G_x \to G \cdot x$ definiert durch $[g] \mapsto g \cdot x$ ist wohl definiert und bijektiv.

Beweis. 1. Es gilt $x = e_G \cdot x$ also $x \sim x$ und \sim ist reflexiv.

Seien $x, y \in X$ mit $x \sim y$. Dann gilt $y \in G \cdot x$ also gibt es ein $g \in G$ mit $y = g \cdot x$. Dann gilt $x = g^{-1} \cdot y$ und $x \in G \cdot y$ also $y \sim x$ und \sim ist symmetrisch.

Seien $x, y, z \in X$ mit $x \sim y$ und $y \sim z$. Dann gibt es $g, g' \in G$ mit $y = g \cdot x$ und $z = g' \cdot y$. Daraus folgt $z = g'g \cdot x$ und $x \sim z$ also \sim ist transitiv.

- 2. Sei $x \in X$. Die Äquivalenzklasse von x is $\{y \in X \mid x \sim y\} = \{y \in X \mid y \in G \cdot x\} = G \cdot x$.
- 3. Seien $g, g' \in G$ mit [g] = [g']. Dann gibt es ein $h \in G_x$ mit g' = gh. Daraus folgt $g' \cdot x = (gh) \cdot x = g \cdot (h \cdot x) = g \cdot x$ und die Abbildung ist wohl definiert. Per Definition einer Bahn ist diese Abbildung surjektiv. Seien $g, g' \in G$ mit $g \cdot x = g' \cdot x$. Dann gilt $x = (g^{-1}g') \cdot x$ und $g^{-1}g' = h \in G_x$. Daraus folgt g' = gh und [g] = [g']. Die Abbildung ist injektiv.

Korollar 1.8.10 (Bahnformel) Sei $G \times X \to X$ eine Operation mit G endlich. Es gilt

$$|G \cdot x| = [G : G_x] = \frac{|G|}{|G_x|}.$$

Beweis. Nach 3. im obigen Proposition gilt $|G/G_x| = |G \cdot x|$. Nach dem Satz von Lagrange gilt $|G/G_x| = |G \cdot G_x| = |G|/|G_x|$.

Satz 1.8.11 (Bahngleichung) Sei $G \times X \to X$ eine Operation mit X endlich. Dann gilt

$$|X| = \sum_{[x] \in X/G} |G \cdot x| = \sum_{[x] \in X/G} [G : G_x].$$

Beweis. Da die Bahnen die Äquivalenzklassen einer Äquivalenzrelation sind gilt

$$X = \coprod_{[x] \in X/G} G \cdot x.$$

Daraus folgt die Behauptung.

Korollar 1.8.12 Sei G eine endliche Gruppe und H eine Untergruppe. Der kleinste Primteiler von |H| sei großer gleich [G:H]. Dann ist $H \triangleleft G$

Beweis. Sei p der kleinste Primteiler von |H| und sei X=G/H. Sei $H\times X\to X$ die Linksoperation: $h\cdot gH=hgH$. Sei $x\in X$. Nach der Bahnformel ist $|H\cdot x|$ ein Teiler von |H| also $|H\cdot x|=1$ oder $|H\cdot x|\geq p$. Nach der Bahngleichung gilt

$$p \ge [G:H] = |X| = \sum_{[x] \in X/H} |G \cdot x|.$$

Sei $x = [e_G] \in X$. Dann ist x ein Fixpunkt $|H \cdot x| = |\{x\}| = 1$. Daraus folgt

$$p-1 \ge \sum_{[x] \in X/H, \ x \ne [e_G]} |G \cdot x|.$$

Da $|G \cdot x| = 1$ oder $|G \cdot x| \ge p$ muss $|G \cdot x| = 1$ für alle $x \in X$ gelten. Also für alle $[g] \in G/H$ gilt [hg] = [g] für alle $h \in G$ i.e. $g^{-1}hg \in H$ für alle $g \in G$ und $h \in H$ i.e. $H \triangleleft G$.

Beispiel 1.8.13 1. Wenn [G:H] der kleinste Primteiler von |G| ist, ist die Bedingung erfüllt.

2. Insbesondere wenn [G:H]=2 ist die Bedigung erfüllt und $H \triangleleft G$.

Definition 1.8.14 Sei p eine Primzahl. Eine endliche Gruppe G heißt p-Gruppe falls $|G| = p^k$ eine Potenz von p ist.

Korollar 1.8.15 Sei G eine p-Gruppe. Dann gilt |Z(G)| > 1.

Beweis. Sei $|G|=p^k$. Sei X=G und $G\times X\to X$ die Konjugation. Es gilt $X^G=Z(G)$: sei $z\in Z(G)$. Dann gilt $g\cdot z=gzg^{-1}=z$. Umgekehrt, sei $z\in X^G$. Dann gilt $g\cdot z=z$ für alle $g\in G$ also $gzg^{-1}=z$ für alle $g\in G$ i.e. gz=zg für alle $g\in G$. Insbesondere gilt

$$z \in Z(G) \Leftrightarrow |G \cdot x| = 1.$$

Nach der Bahnformel folgt

$$z \in Z(G) \Leftrightarrow p \mid |G \cdot x|.$$

Nach der Bahngleichung gilt

$$p^k = |X| = \sum_{[x] \in X/H} |G \cdot x| = \sum_{[x] \in X/G, \ x \in Z(G)} |G \cdot x| + \sum_{[x] \in X/G, \ x \notin Z(G)} |G \cdot x|$$

also $p^k = |Z(G)| + \sum_{[x] \in X/G, \ x \notin Z(G)} |G \cdot x|$. Alle Terme in der Zweite Summe sind durch p teilbar also muss |Z(G)| durch p teilbar sein. Daraus folgt |Z(G)| > 1.

Satz 1.8.16 Sei p eine Primzahl und sei G eine Gruppe der Ordnung p^2 . Dann gilt $G \simeq \mathbb{Z}/p^2\mathbb{Z}$ oder $G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Beweis. Fall 1: Es gebe $g \in G$ mit $\operatorname{ord}(g) = p^2$. Dann gilt $\mathbb{Z}/p^2\mathbb{Z} \simeq \langle g \rangle = G$.

Fall 2: Für alle $g \in G$ mit $g \neq e_G$ gilt $\operatorname{ord}(g) = p$. Sei $g \in G \setminus \{e_G\}$. Dann gilt $|\langle g \rangle| = p$ also es gibt $h \in G \setminus \langle g \rangle$. Sei $N = \langle g \rangle$ und $H = \langle h \rangle$. Dann p = |N| = |H| der kleinste Primteiler von |N| und |H| ist und $p \geq p = [G:N] = [G:H]$ gilt nach Korollar 1.8.12: $N \triangleleft G$ und $H \triangleleft G$. Der Durchschnitt $H \cap N$ ist eine echte Untergruppe von H da $h \in H \setminus N$. Also gilt $|H \cap N||p$ und $|H \cap N| < p$. Daraus folgt $|N \cap H| = 1$ und $N \cap H = \{e_G\}$. Da N und H normal sind gilt $\langle N, H \rangle = NH = HN$. Dies ist eine Untergruppe von G die $N \cup \{h\}$ enthält also $|NH| \geq p + 1$ und |NH| teilt p^2 . Daraus folgt $|NH| = p^2$ und |NH| = G. Nach dem Satz 1.7.5 folgt |S| = p0.

Bemerkung 1.8.17 Für Gruppen G der Ordnung $|G| = p^3$ ist die Klassifikation schon schwierieger: siehe Übungblatt 3 für den Fall $|G| = 8 = 2^3$. Die Gruppen der Ordnung 8 sind isomorph zu

$$\mathbb{Z}/8\mathbb{Z}$$
, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, D_8 , \mathbb{H} .

1.9 Symmetrische Gruppe

Definition 1.9.1 1. Ein Element $\sigma \in S_n$ heißt r-**Zykel** falls es paarweise verschiedene Elemente $x_1, \dots, x_r \in [1, n]$ mit

$$\sigma(x_k) = x_{k+1}$$
 für alle $k \in [1, r-1]$,
 $\sigma(x_r) = x_1$ und
 $\sigma(x) = x$ für alle $x \in [1, n] \setminus \{x_1, \dots, x_r\}$.

- 2. Die Menge $\operatorname{Supp}(\sigma) = \{x_1, \dots, x_r\}$ heißt **Träger des Zykels**. Die Zahl r ist die **Länge des Zykels**. Wir schreiben $[x_1, \dots, x_r]$ für den Zykel der Länge r mit Träger $\{x_1, \dots, x_r\}$.
- 3. Zwei Zykel σ, σ' heißen **fremd** falls $\operatorname{Supp}(\sigma) \cap \operatorname{Supp}(\sigma') = \emptyset$.

Bemerkung 1.9.2 Eine Transposition ist ein 2-Zykel.

Satz 1.9.3 1. Fremde Zykeln kommutieren.

2. Jedes $\gamma \in S_n$ ist ein Produkt fremder Zykel. Diese sind eindeutig bis auf Reihenfolge.

Beweis. 1. Seien σ, σ' fremde Zykel und sei $x \in [1, n]$. Es gilt

$$\sigma(\sigma'(x)) = \left\{ \begin{array}{ll} x & \text{für } x \not\in \operatorname{Supp}(\sigma) \cup \operatorname{Supp}(\sigma') \\ \sigma(x) & \text{für } x \in \operatorname{Supp}(\sigma) \setminus \operatorname{Supp}(\sigma') \\ \sigma'(x) & \text{für } x \not\in \operatorname{Supp}(\sigma') \setminus \operatorname{Supp}(\sigma) \end{array} \right\} = \sigma'(\sigma(x)).$$

2. Sei $H = \langle \gamma \rangle$ die von γ erzeugte Untergruppe. Wir lassen H operieren auf [1, n] durch $\gamma^n \cdot x = \gamma^n(x)$. Seien B eine Bahn, sei r = |B| und sei $x_1 \in B$. Es gilt

$$B = \{x_1, x_2 = \gamma(x_1), \cdots, x_r = \gamma^{r-1}(x_1)\}.$$

Sei $\sigma_B = [x_1, \cdots, x_r]$. Es gilt

$$\gamma = \prod_{B \in [1,n]/H} \sigma_B.$$

Umgekehrt zerlegt jede Faktorisierung $\gamma = \prod_k \sigma_k$ die Menge X in Bahnen gegeben durch die Träger von σ_k . Diese Bahnen und also die Zerlegung ist bis auf Reihenfolge eindeutig bestimmt.

Beispiel 1.9.4 Sei $\gamma = (36451872) \in S_8$. Die Bahnen von γ sind $\{1, 2, 4, 5\}, \{2, 6, 8\}$ und $\{7\}$. Es gilt also

$$\gamma = [1345][268][7] = [1345][268].$$

Korollar 1.9.5 Sei $\gamma = \sigma_1 \cdots \sigma_k$ die Zerlegung von γ als Produkt fremder Zykel und sei $r_i = \operatorname{ord}(\sigma_i)$. Dann gilt $\operatorname{ord}(\gamma = \operatorname{kgV}(r_1, \cdots, r_k))$.

Beweis. Seo $d = \text{kgV}(r_1, \dots, r_k)$. Es gilt $\gamma^d = \sigma_1^d \dots \sigma_k^d = \text{Id also ord}(\gamma)|d$. Umgekehrt für a mit $\gamma^a = \text{Id gilt Id} = \gamma^a = \sigma_1^a \dots \sigma_k^a$ und da die Träger dijunkt sind gilt $\mathfrak{g}_i^a = \text{Id für alle } i \in [1, k]$ also $r_i|a$. Daraus folgt $\text{kgV}(r_1, \dots, r_k)|a$.

Lemma 1.9.6 (Konjugationsprinzip) Sei $\sigma = [x_1, \dots, x_r]$ ein r-Zykel und sei $\gamma \in S_n$. Dann gilt

$$\gamma\sigma\gamma^{-1} = [\gamma(x_1), \cdots, \gamma(x_r)].$$

Beweis. Siehe Übungsblatt 4.

Korollar 1.9.7 Sei $n \ge 0$. Es gilt $S_n = \langle [1, 2], [1, 2, \dots, n] \rangle$.

Beweis. Sei $H = \langle [1,2], [1,2,\cdots,n] \rangle$. Sei $\sigma = [1,2,\cdots,n]$. Es gilt $H \ni \sigma^k[1,2]\sigma^{-k} = [\sigma^k(1),\sigma^k(2)] = [k+1,k+2]$. Da die einfache Transpositionen [i,i+1] die Gruppe S_n erzeugen, gilt $H = S_n$.

Definition 1.9.8 Sei $k \geq 0$. Eine Operation $G \times X \to X$ heißt k-transitiv falls für $x_1, \dots x_k \in X$ paarweise verschiedene Elemente und $y_1, \dots y_k \in X$ paarweise verschiedene Elemente es ein $g \in G$ gibt mit

$$g \cdot x_i = y_i$$
 für alle $i \in [1, k]$.

Beispiel 1.9.9 Sei $S_n \times [1, n] \to [1, n]$ die Operation $\gamma \cdot x = \gamma(x)$. Dann ist diese Operation *n*-transitiv.

Lemma 1.9.10 Sei $A_n \times [1, n] \to [1, n]$ die Operation gegeben durch $\gamma \cdot x = \gamma(x)$. Dann ist diese Operation (n-2)-transitiv.

Beweis. Seien $x_1, \dots, x_{n-2} \in [1, n]$ paarweise verschieden und $y_1, \dots, y_{n-2} \in [1, n]$ paarweise verschieden. Seien $x_{n-1}, x_n, y_{n-1}, y_n$ so, dass

$$\{x_1, \cdots, x_n\} = [1, n] = \{y_1, \cdots, y_n\}.$$

Da S_n n-transitiv operiert gibt es $\gamma \in S_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, n]$. Fall $\gamma \in A_n$ sind wir fertig. Sonst, sei $\gamma' = \gamma \circ [x_{n-1}, x_n]$. Dann gilt $\gamma' \in A_n$ und $\gamma(x_i) = y_i$ für alle $i \in [1, n-2]$.

mente es ein $g \in G$ gibt mit

$$g \cdot x_i = y_i$$
 für alle $i \in [1, k]$.

Satz 1.9.11 1. In S_n sind alle r-Zykel sind konjugiert.

- 2. Für $n \geq 5$ sind alle 3-Zykel konjugiert in A_n .
- 3. Jedes Element in A_n ist ein Produkt gerader Anzahl von Transpositionen.
- 4. Ein r-Zyklus ist genau dann in A_n , wenn r ungerade ist.
- 5. Die Menge aller 3-Zykel erzeugt A_n .

Beweis. 1. Seien $\sigma = [x_1, \dots, x_r]$ und $\sigma' = [y_1, \dots, y_r]$ zwei r-Zykel. Da S_n n-transitiv operiert, gibt es $\gamma \in S_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, r]$. Daraus folgt $\gamma \sigma \gamma^{-1} = \sigma'$.

- 2. Sei $\sigma = [x_1, x_2, x_3]$ und $\sigma' = [y_1, y_2, y_3]$. Da $n \geq 5$ gilt $n 2 \geq 3$. Da A_n n 2-transitiv operiert gibt es $\gamma \in A_n$ mit $\gamma(x_i) = y_i$ für alle $i \in [1, 3]$. Daraus folgt $\gamma \sigma \gamma^{-1} = \sigma'$.
- 3. Jede Permutation ist ein Produkt von Transpositionen und per Definition von A_n sind Element in A_n Produkt gerader Anzahl von Transpositionen.
- 4. Sei $\sigma = [x_1, \dots, x_r]$. Es gilt $\sigma = [x_1, x_2][x_2, x_3] \dots [x_{r-1}, x_r]$ also ist σ ein Produkt von r-1 Transpositionen und es gilt $\varepsilon(\sigma) = (-1)^r$.
- 4. Sei $[x_1, x_2][x_3, x_4]$ oder $[x_1, x_2][x_2, x_3]$ ein Produkt von 2 Transpositionen mit x_1 , x_2 , x_3 , x_4 paarweise verschieden. Es gilt

$$[x_1, x_2][x_3, x_4] = [x_1, x_3, x_2][x_1, x_3, x_4]$$
 und $[x_1, x_2][x_2, x_3] = [x_1, x_2, x_3]$

und daraus folgt, dass alle Element in A_n Produkte von 3-Zykel sind.

Korollar 1.9.12 Sei $n \geq 2$.

- 1. Es gilt $D(S_n) = A_n$.
- 2. Es gilt

$$D(A_n) = \begin{cases} \{ \text{Id} \} & \text{für } n = 2, 3 \\ V_4 & \text{für } n = 4 \\ A_n & \text{für } n \ge 5 \end{cases}$$

wobei $V_4 = \{ \text{Id}, [12][34], [13][24], [14][23] \}.$

Beweis. 1. Da $S_n/A_n \simeq \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z}$ abelsch ist, gilt $D(S_n) \subset A_n$ (Lemma 1.6.2). Für n=2 gilt $A_n=\{\mathrm{Id}\}$ also $A_n\subset D(S_n)$. Für $n\geq 3$ gilt

$$[a, b, c] = [b, c][a, b][b, c][a, b] = [b, c][a, b][b, c]^{-1}[a, b]^{-1} = [[b, c], [a, b]] \in D(S_n).$$

Da A_n von den 3-Zykeln erzeugt ist, gilt $A_n \subset D(S_n)$.

2. Für n=2,3 ist A_n abelsch also gilt $D(A_n)=\{\mathrm{Id}\}$. Für n=4 gilt $V_4 \triangleleft A_4$ (Siehe Übungsblatt 3) und $A_4/V_4 \simeq \mathbb{Z}/3\mathbb{Z}$ ist abelsch. Nach Lemma 1.6.2 gilt $D(A_4) \subset V_4$. Umgekehrt gilt für $a,b,c,d\in[1,4]$ paarweise verschieden:

$$[a,b][c,d] = [a,b,c][a,b,d][a,c,b][a,d,b] = [a,b,c][a,b,d][a,b,c]^{-1}[a,b,d]^{-1} = [[a,b,c],[a,b,d]] \in D(A_4).$$

Daraus folgt $V_4 \subset D(A_4)$.

Sei $n \geq 5$, seien $a, b, c \in [1, n]$ paarweise verschieden und seien $x, y \in [1, n] \setminus \{a, b, c\}$. Es gilt

$$[a, b, c] = [a, b, x][a, c, y][a, x, b][a, y, c]$$

= $[a, b, x][a, c, y][a, b, x]^{-1}[a, c, y]^{-1} = [[a, b, x], [a, c, y]] \in D(A_n).$

Es folgt $A_n \subset D(A_n)$ und da $D(A_n) \subset A_n$ ist die Behauptung bewiesen.

Man kann eingentlich das folgende Resultat zeigen (Siehe Übungsblatt 4 für den Fall n = 5).

Theorem 1.9.13 Die Gruppe A_n ist einfach für $n \geq 5$.

1.10 Sylow Sätze

Definition 1.10.1 Sei G eine Gruppe und sei p ein Primteiler von |G| so, dass

$$|G| = p^{\alpha} m$$
 wobei $p \not | m$.

Eine Untergruppe von G der Ordnung p^{α} heißt p-Sylowuntergruppe.

Bemerkung 1.10.2 Sei G ine Gruppe und p eine Primzahl. Eine Untergruppe H ist genau dann eine p-Sylowuntergruppe, wenn H eine p-Gruppe ist und [G:H] und p teilerfremd sind.

Beispiel 1.10.3 Sei p eine Primzahl, sei $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ und sei $G = \mathrm{GL}_n(\mathbb{F}_p)$. Es gilt

$$|G| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}) = p^{\frac{n(n-1)}{2}}(p^n - 1)(p^{n-1} - 1) \cdots (p-1).$$

Um es zu zeigen, zählen wir die Basen von \mathbb{F}_p^n ab. In \mathbb{F}_p^n gibt es p^n Elemente. Eine Basis ist der Form (v_1, \cdots, v_n) . Der erste Basisvektor v_1 kann beliebig in $\mathbb{F}_p^n \setminus \{0\}$ gewählt werden also p^n-1 Möglichkeiten. Der zweite Basisvektor v_2 kann beliebig in $\mathbb{F}_p^n \setminus \langle v_1 \rangle$ gewählt werden also p^n-p Möglichkeiten. Nach Induktion kann v_{k+1} kann beliebig in $\mathbb{F}_p^n \setminus \langle v_1, \cdots, v_k \rangle$ gewählt werden also p^n-p^k Möglichkeiten.

Sei H die Untergruppe von G, welche von oberen Dreieckmatrizen mit 1 auf der Diagonal besteht. Dann gilt

$$|H| = p^{\frac{n(n-1)}{2}}$$

und H ist eine Sylowuntergruppe von G.

Lemma 1.10.4 Sei G eine Gruppe mit $|G| = n = p^{\alpha}m$ mit $p \not \mid m$. Sei H eine Untergruppe von G und sei S eine p-Sylowuntergruppe von G. Dann gibt es ein $g \in G$ so, dass $gSg^{-1} \cap H$ eine p-Sylowuntergruppe von H ist. Insbesondere hat H auch eine p-Sylowuntergruppe.

Beweis. Sei X = G/S. Sei $G \times X \to X$ die Linkstranslation auf dem Quotient X = G/S definiert durch $g \cdot [g'] = [gg']$. Der Stabilisator von [g] = gS ist gSg^{-1} (Siehe Übungsblatt 4).

Per Einschränkung Operiert H auf X durch $H \times X \to X$ mit $h \cdot [g'] = [hg']$. Der Stabilisator $H_{[g]}$ von [g] = gS ist $gSg^{-1} \cap H$ (Siehe Übungsblatt 4).

Die Gruppen $gSg^{-1} \cap H$ sind p-Gruppen, da $|gSg^{-1} \cap H|$ die Ordnung $|S| = p^{\alpha}$ teilt. Wir zeigen, dass es ein g gibt so, dass $|H/(gSg^{-1} \cap H)| = [H: gSg^{-1} \cap H]$ und p teilerfremd sind.

Falls es nicht der Fall ist gilt nach der Bahnformel $|H \cdot [g]| = |H|/|H_{[g]}| = |H/(gSg^{-1} \cap H)| = [H : gSg^{-1} \cap H]$ und teilt p die Zahl $|H \cdot x|$ für alle $x = [g] \in X$. Nach der Bahngleichung

$$m = |G/S| = |X| = \sum_{[x] \in X/H} |H \cdot x|$$

würde m durch p teilbar sein. Ein Widerspruch.

Satz 1.10.5 (Erster Sylowsatz) Sei G eine Gruppe und p ein Primteiler von |G|. Dann hat G mindestens eine p-Sylowuntergruppe.

Beweis. Sei G eine Gruppe und p ein Primteiler von n = |G|. Nach dem Satz von Cayley ist G isomorph zu einer Untergruppe von S_n . Die Gruppe S_n ist aber eine Untergruppe von $GL_n(K)$ für jeden Körper K dank der Abbildung

$$\sigma \mapsto P_{\sigma}$$

wobei P_{σ} die Permutationsmatrix ist: $P_{\sigma} = (a_{i,j})_{i,j \in [1,n]}$ mit $a_{i,j} = \delta_{\sigma(i),j}$. Also für $K = \mathbb{F}_p$ ist G eine Untergruppe von $GL_n(\mathbb{F}_p)$. Da $GL_n(\mathbb{F}_p)$ eine p-Sylowuntergruppe hat, hat G auch eine p-Sylowuntergruppe nach dem obigen Lemma.

Korollar 1.10.6 (Satz von Cauchy) Sei G eine Gruppe und p ein Primteiler von p. Dann gibt es ein Element der Ordnung p.

Beweis. Sei $|G| = p^{\alpha}m$ mit $p \not\mid m$ und sei S eine p-Sylowuntergruppe von G. Sei $g \in S \setminus \{e_G\}$. Dann gilt $\operatorname{ord}(g) \neq 0$ und $\operatorname{ord}(g)|p^{\alpha}$ also $\operatorname{ord}(g) = p^k$ für $k \geq 1$. Dann gilt $\operatorname{ord}(g^{p^{k-1}}) = \frac{p^k}{\operatorname{ggT}(p^k,p^{k-1})} = \frac{p^k}{p^{k-1}} = p$.

Korollar 1.10.7 Eine Gruppe G ist genau dann eine p-Gruppe, wenn $\operatorname{ord}(g)$ eine Potenz von p ist für jedes $g \in G$.

Beweis. Sei G eine p-Gruppe. Nach dem Satz von Lagrange ist die Ordnung jedes Element einen Teiler von |G| also eine Potenz von p.

Umgekehrt, sei G eine Gruppe die keine p-Gruppe ist. Dann gibt es einen Primteiler q von |G| mit $p \neq q$ und G hat ein Element der Ordnung q.

Korollar 1.10.8 Sei p eine Primzal und G eine Untergruppe von S_p so, dass p ein Teiler von |G| ist und G eine Transposition enthält. Dann gilt $G = S_p$.

Beweis. Es gilt $|S_p| = p! = pm$ mit $p \not| m$. Da p die Ordnung |G| teilt gilt |G| = pm' mit $p \not| m'$. Sei $\sigma \in G$ der Ordnung p. Wir zeigen, dass σ ein p-Zykel ist. Sei $\sigma = c_1 \cdots c_k$ die Zerlegung von σ in Produkt von r-Zykeln mit disjunkten Träger. Es gilt $\operatorname{ord}(\sigma) = \operatorname{kgV}(\operatorname{ord}(c_1), \cdots, \operatorname{ord}(c_k))$ nach Korollar 1.9.5. Insberonde muss p die Ordnung $\operatorname{ord}(c_i)$ für ein i teilen. Für so ein i gilt $\operatorname{ord}(c_i) = p$ und c_i ist ein p-Zykel. Also enthält G eine Transposition τ und ein p-Zykel σ' .

Sei $\tau = [a, b]$. Es gibt ein $\gamma \in S_n$ so, dass $\gamma \tau \gamma^{-1} = [1, 2]$ (wähle γ mit $\gamma(a) = 1$ und $\gamma(b) = 2$). Es genügt zu zeigen, dass $G' = \gamma G \gamma^{-1} = S_n$ und es gilt $\gamma G \gamma^{-1} \ni [1, 2], \sigma = \gamma \sigma' \gamma^{-1}$ wobei σ ein p-Zykel ist. Da σ ein p-Zykel ist gibt es ein k mit $\sigma^k(1) = 2$. Außerdem gilt $\sigma^k \in \langle \sigma \rangle \setminus \{\text{Id}\}$ also $1 < \operatorname{ord}(\sigma^k)|\operatorname{ord}(\sigma) = p$. Es gilt also $\operatorname{ord}(\sigma^k) = p$ und $\sigma^k = [1, 2, x_3, \cdots, x_p]$. Sei $\delta \in S_n$ mit $\delta(1) = 1, \delta(2) = 2$ und $\delta(x_i) = i$ für alle $i \ge 3$. Dann gilt $\delta[1, 2]\delta^{-1} = [1, 2]$ und $\delta\sigma^k\delta^{-1} = [1, 2, \cdots, p]$. Die Gruppe $G'' = \delta G'\delta^{-1}$ enthält [1, 2] und $[1, 2, \cdots, p]$ also nach Korollar 1.9.7 gilt $G'' = S_p$. Daraus folgt $G' = S_p$ und $G = S_p$.

Korollar 1.10.9 Seien p und q Primzahlen und G eine Gruppe der Ordnung $|G| = p^k q^l$ mit $k, l \ge 1$ so, dass $q > p^k$. Dann gilt $G \simeq K_q \rtimes K_p$ wobei K_p und K_q beliebege p- und q-Sylowuntergruppen sind.

Beweis. Nach Korollar 1.8.12 gilt $K_q \triangleleft G$. Sei $H = K_p \cap K_q$. Dann ist |H| ein Teiler von $p^k = |K_p|$ und $q^l = |K_q|$ also |H| = 1 und $K_q \cap K_p = \{e_G\}$. Daraus folgt, dass die Abbildung $K_q \times K_p \to G$, $(a,b) \mapsto ab$ injektiv ist. Da $|K_p \times K_q| = p^k q^l = |G|$, folgt, dass diese Abbildung eine Bijektion ist also $G = K_q K_p$. Nach dem Satz 1.7.5 folgt $G \simeq K_q \rtimes K_p$.

Satz 1.10.10 (Zweiter Sylowsatz) Sei p eine Primzahl und G eine Gruppe der Ordnung $|G| = p^{\alpha}m$ mit $p \not|m$.

1. Sei H eine Untergruppe von G die eine p-Gruppe ist. Dann gibt es S eine p-Sylowuntergruppe von G mit $H \subset S$.

Sei k die Anzahl aller p-Sylowuntergruppen

- 2. Alle p-Sylowuntergruppe sind zueinander konjuguiert.
- 3. Es gilt k||G|.
- 4. Es gilt $k \equiv 1 \pmod{p}$ (also k teilt m).

Korollar 1.10.11 (Vom Satz 1.10.10.2) Sei G eine Gruppe und S ein p-Sylow-untergruppe. Dann gilt

$$S \triangleleft G \Leftrightarrow S$$
 ist der einzige p-Sylowuntergruppe von $G \Leftrightarrow k = 1$.

Beweis. Die letze äquivalenz ist klar da k die Anzahl von p-Sylowuntergruppen ist.

- (⇒). Sei S eine p-Sylowuntergruppe mit $S \triangleleft G$. Sei T eine weitere p-Sylowuntergruppe. Nach Satz 1.10.10.2 gibt es ein $g \in G$ mit $gSg^{-1} = T$. Da aber $S \triangleleft G$, folgt $S = gSg^{-1} = T$.
- (⇐). Sei S eine p-Sylowuntergruppe und sei $g \in G$. Dann ist gSg^{-1} auch eine p-Sylowuntergruppe. Daraus folgt nach Annahme, dass $gSg^{-1} = S$ und $S \triangleleft G$.

Beispiel 1.10.12 Sei G eine Gruppe der Ordnung 255. Dann ist G nicht einfach. Tatsächlich gilt $255 = 3 \times 5 \times 17$. Sei p = 17. Es gilt $|G| = p^{\alpha}m$ mit $\alpha = 1$ und $m = 3 \times 5 = 15$. Sei k die Anzahl von p-Sylowuntergruppen. Es gilt $k \equiv 1 \pmod{p}$ und k|m. Die Teiler von 15 sind 1, 3, 5 und 15. Da 3, 5, $15 \not\equiv 1 \pmod{p}$ gilt k = 1. Also ist K_{17} die einzige 17-Sylowuntergruppe und also ein Normalteiler. Es folgt, dass G nicht einfach ist.

Beweis vom Satz 1.10.10. Wir zeigen 1. und 2. Sei H eine Untergruppe von G die eine p-Gruppe ist und sei S eine p-Sylowuntergruppe. Nach Lemma 1.10.4 gibt es ein $g \in G$ so, dass $gSg^{-1} \cap H$ eine p-Sylowuntergruppe von H ist. Da H eine p-Gruppe ist, ist eine p-Sylowuntergruppe die ganze Gruppe also $gSg^{-1} \cap H = H$ i.e. $H \subset gSg^{-1}$. Die Untergruppe gSg^{-1} hat Ordnung $|S| = p^{\alpha}$ und ist also eine p-Sylowuntergruppe. Daraus folgt 1.

Falls H eine pSylowuntergruppe ist gilt $H \subset gSg^{-1}$ und $|H| = p^{\alpha} = |gSg^{-1}|$ und es folgt $H = gSg^{-1}$. Dies zeigt 2.

- 3. Wir betrachten $X = \{p\text{-Sylowuntergruppen}\}$ und die Operation $G \times X \to X$ definiert durch $g \cdot S = gSg^{-1}$. Nach 2. ist diese Operation Transitiv also gilt $G \cdot S = X$. Nach der Bahnformel folgt, dass $k = |X| = |G \cdot S|$ ein teiler von |G| ist.
- 4. Sei S eine p-Sylowuntergruppe. Wir betrachten die Einschränkungen der obigen Operation auf S i.e. $S \times X \to X$ definiert durch $s \cdot T = sTs^{-1}$. Sei $S \cdot T$ eine Bahn dieser Operation. Nach der Bahnformel teilt $|S \cdot T|$ die Ordnung |S| also gilt

$$|S \cdot T| = \begin{cases} 1 & \text{für } S \cdot T = \{T\} \text{ i.e. } T \text{ Fixpunkt oder} \\ pa & \text{für ein } a \in \mathbb{N}. \end{cases}$$

Sei also X^S die Fixpunkte. Es gilt nach der Bahngleichung:

$$|X| = \sum_{[x] \in X/S} |S \cdot x| = \sum_{x \in X^S} |S \cdot x| + \sum_{[x] \in X/S, x \notin X^S} |S \cdot x| = |X^S| + pb.$$

Also gilt $k = |X| \equiv |X^S| \pmod{p}$. Es genügt zu zeigen, dass $X^S = \{S\}$ also $|X^S| = 1$. Sei $T \in X^S$. Also ist T eine p-Sylowuntergruppe mit $sTs^{-1} = T$ für alle $s \in S$. Sei

 $H = \langle S, T \rangle$. Dann sind S und T p-Sylowuntergruppe von H (beide sind schon p-Sylowuntergruppe von G). Außerdem gilt $T \subset N_H(T)$ und weil $sTs^{-1} = T$ für alle $s \in S$ gilt auch $S \subset N_H(T)$. Also gilt $H = \langle S, T \rangle \subset N_H(T)$. Daraus folgt $H = N_H(T)$ i.e. $T \triangleleft H$. Nach Korollar 1.10.11 hat H genau eine p-Sylowuntergruppe. Es folgt S = T.

Korollar 1.10.13 (Primärzerlegung abelscher Gruppen) Sei G eine endliche abelsche Gruppe. Dann ist für jeder Primteiler p von G die p-Sylowuntergruppe K_p von G eindeutig durch

$$K_p = \{g \in G \mid \operatorname{ord}(g) \text{ ist Potenz von } p\}$$

gegeben und es gilt

$$G = \prod_{p \text{ Primteiler von } |G|} K_p.$$

Beweis. Sei K_p eine p-Sylowuntergruppe. Da G abelsch ist K_p ein Normalteiler also ist K_p die einzige p-Sylowuntergruppe. Da $|K_p|$ eine Potenz von p ist gilt $K_p \subset \{g \in G \mid \operatorname{ord}(g) \text{ ist Potenz von } p\}$. Umgekehrt, sei $g \in G$ so, dass $\operatorname{ord}(g)$ eine Potenz von p ist. Dann ist $\langle g \rangle$ eine p-Gruppe und also in einer p-Sylowuntergruppe enthalten. Es folgt $g \in K_p$ da K_p die einzige p-Sylowuntergruppe ist.

Seien p_1, \dots, p_k die Primteiler von |G| und sei $f: \prod_{i=1}^k K_{p_i} \to G$ definiert durch $f(x_1, \dots, x_k) = x_1 \dots x_k$. Da G kommutativ ist ist f ein Gruppenhomomorphismus. Sei $(x_1, \dots, x_k) \in \text{Ker } f$. Dann gilt $x_1 x_2 \dots x_k = e_G$. Sei $\text{ord}(x_i) = p_i^{\alpha_i}$. Es folgt

$$e_G = (x_1 \cdots x_k)^{p_2^{\alpha_2} \cdots p_k^{\alpha_k}} = x_1^{p_2^{\alpha_2} \cdots p_k^{\alpha_k}}.$$

Da ggT $(p_1^{\alpha_1}, p_2^{\alpha_2} \cdots p_k^{\alpha_k}) = 1$ gibt es $a, b \in \mathbb{Z}$ mit $ap_1^{\alpha_1} + bp_2^{\alpha_2} \cdots p_k^{\alpha_k} = 1$. Es folgt

$$x_1 = x_1^{ap_1^{\alpha_1} + bp_2^{\alpha_2} \dots p_k^{\alpha_k}} = e_G.$$

Analog gilt $x_i = e_G$ für alle i und f ist injektiv. Sei

$$|G| = p_1^{\beta_1} \cdots p_k^{\beta_k}.$$

Es gilt $|K_{p_i}| = p_i^{\beta_i}$ und $|\prod_{i=1}^k K_{p_i}| = |G|$. Daraus folgt, dass f bijektiv ist also ein Isomorphismus.

Beispiel 1.10.14 Sei G eine abelsche Gruppe der Ordnung $|G| = p_1 \cdots p_k$. Dann gilt

$$G \simeq \mathbb{Z}/p_1\mathbb{Z} \times \cdots \mathbb{Z}/p_k\mathbb{Z}.$$

Man kann sogar zeigen:

Theorem 1.10.15 Sei G eine endliche abelsche Gruppe. Dann gibt es Zahlen $a_1, \dots, a_k \in \mathbb{N}$ mit

$$G \simeq \mathbb{Z}/a_1\mathbb{Z} \times \cdots \times \mathbb{Z}/a_k\mathbb{Z}.$$

1.11 Auflösbare Gruppen

Definition 1.11.1 Sei G eine Gruppe. Die k-te derivierte Untergruppe $D^k(G)$ ist definiert per Induktion durch

$$D^{0}(G) = G, \ D^{1}(G) = D(G) \text{ und } D^{k+1}(G) = D(D^{k}(G)).$$

Beispiel 1.11.2 1. Für $n \ge 5$ gilt $D^0(S_n) = S_n$, $D^1(S_n) = D(S_n) = A_n$, $D^2(S_n) = D(D(S_n)) = D(A_n) = A_n$ und per Induktion $D^k(S_n) = A_n$ für alle $k \ge 1$.

2. Für
$$n = 4$$
 gilt $D^0(S_4) = S_4$, $D^1(S_4) = A_4$, $D^2(S_4) = D(A_4) = V_4$, $D^3(S_4) = D(V_4) = \{\text{Id}\}$ und $D^k(S_4) = \{\text{Id}\}$ für alle $k \ge 3$.

Bemerkung 1.11.3 Sei G eine Gruppe. Es gilt

$$G = D^{0}(G) \triangleright D^{1}(G) \triangleright \cdots \triangleright D^{k}(G) \triangleright D^{k+1}(G) \triangleright \cdots$$

und $D^k(G)/D^{k+1}(G)$ ist abelsch.

Definition 1.11.4 Eine Gruppe G heißt **auflösbar** wenn es eine Folge von Untergruppen $(G_i)_{i \in [1,m]}$ gibt mit

- $G_0 = G \text{ und } G_m = \{e_G\},\$
- $G_{i+1} \triangleleft G_i$ und
- G_i/G_{i+1} ist abelsch.

Beispiel 1.11.5 1. Sei G abelsch, dann ist G auflösbar mit $G_1 = \{e_G\} \triangleleft G_1 = G$.

2. Die Gruppen S_n und A_n sind für $n \leq 4$ auflösbar mit den Folgen

$$\{\mathrm{Id}\}=A_1=S_1,\ \{\mathrm{Id}\}=A_2\triangleleft S_2,\ \{\mathrm{Id}\}\triangleleft A_3\triangleleft S_3\ \mathrm{und}\ \{\mathrm{Id}\}\triangleleft V_4\triangleleft A_4\triangleleft S_4.$$

Satz 1.11.6 Eine Gruppe G ist genau dann auflösbar, wenn es ein m gibt mit $D^m(G) = \{e_G\}.$

Beweis. (\Leftarrow). Sei $G_i = D^i(G)$. Dann ist G_i eine Folge von Untergruppen, die die Definition der Auflösbarkeit erfüllt.

(⇒). Sei $(G_i)_{i \in [1,m]}$ eine Folge von Untergruppen mit $G_0 = G$, $G_r = \{e_G\}$, $G_{i+1} \triangleleft G_i$ und G_i/G_{i+1} ist abelsch. Wir zeigen, dass $D^i(G) \subset G_i$ per Induktion nach i. Daraus folgt, dass $D^m(G) \subset G_m = \{e_G\}$ also $D^m(G) = \{e_G\}$.

Es gilt $D^0(G) = G = G_0$. Angenommen gilt $D^i(G) \subset G_i$. Da G_i/G_{i+1} abelsch ist gilt $D(G_i) \subset G_{i+1}$. Daraus folgt

$$D^{i+1}(G) = D(D^i(G)) \subset D(G_i) \subset G_{i+1}.$$

Korollar 1.11.7 Die Gruppen S_n und A_n sind für $n \geq 5$ nicht auflösbar.

Beweis. Es gilt
$$D^k(S_n) = D^k(A_n) = A_n$$
 für $k \ge 2$ und $n \ge 5$.

Satz 1.11.8 Sei $f: G \to G'$ ein Gruppenhomomorphismus und sei H eine Untergruppe von G.

- 1. Es gilt f(D(H)) = D(f(H)).
- 2. Es gilt $f(D^k(G)) \subset D^k(G')$ für alle k.
- 3. Falls f surjektiv ist, gilt $f(D^k(G)) = D^k(G')$ für alle k.

Beweis. 1. Folgt aus f([a,b]) = [f(a), f(b)].

2. Per Induktion nach k. Es gilt $f(D^0(G)) = f(G) \subset G' = D^0(G')$. Angenommen gilt $f(D^k(G)) \subset D^k(G')$. Dann gilt nach 1. $f(D^{k+1}(G)) = f(D(D^k(G))) = D(f(D^k(G))) \subset D(D^k(G')) = D^{k+1}(G)$.

3. Per Induktion nach k. Es gilt $f(D^0(G)) = f(G) = G' = D^0(G')$. Angenommen gilt $f(D^k(G)) = D^k(G')$. Dann gilt nach 1. $f(D^{k+1}(G)) = f(D(D^k(G))) = D(f(D^k(G))) = D(D^k(G')) = D^{k+1}(G)$.

Korollar 1.11.9 Sei G eine Gruppe, H eine Untergruppe und N ein Normalteiler.

- 1. Falls G auflösbar ist gilt H, N und G/N sind auflösbar.
- 2. Die Gruppe G ist genau dann auflösbar, wenn N und G/N auflösbar sind.

Beweis. 1. Sei m mit $D^m(G) = \{e_G\}$. Es gilt $D^m(H) \subset D^m(G)$ also ist H auflösbar. Das gleiche gilt für N. Nach dem obigen Satz mit $f: G \to G/N$ die kanonische Projektion gilt $f(D^m(G)) = D^m(G/N)$ also $D^m(G/N) = \{e_{G/N}\}$.

- 2. (\Rightarrow) . Folgt aus 1.
- (⇐). Seien m und r mit $D^m(N) = \{e_G\}$ und $D^r(G/N) = \{e_{G/N}\}$. Sei $f: G \to G/N$ die kanonische Projektion. Nach dem obigen Satz gilt $f(D^r(G)) = D^r(G/N) = \{e_{G/N}\}$. Also gilt $D^r(G) \subset \text{Ker} f = N$. Daraus folgt $D^{m+r}(G) = D^m(D^r(G)) \subset D^m(N) = \{e_G\}$.

Korollar 1.11.10 Seien G_1, \dots, G_r , H und N Gruppen.

- 1. Das Produkt $G_1 \times \cdots \times G_r$ ist genau dann auflösbar, wenn G_i für alle $i \in [1, r]$ auflösbar ist.
- 2. Das semidirekte Produkt $N \rtimes H$ ist genau dann auflösbar, wenn N und H auflösbar sind.

Beweis. Siehe Übungsblatt 5.

Korollar 1.11.11 Jede p-Gruppe ist auflösbar.

Beweis. Siehe Übungsblatt 5.

Satz 1.11.12 Sei G endlich auflösbar. Jede Folge von Untergruppen $(G_i)_{i \in [1,r]}$ mit $G_0 = G$, $G_r = \{e_G\}$, $G_{i+1} \triangleleft G_i$ und G_i/G_{i+1} abelsch lässt sich verfeinern in einer Folge von Untergruppen $(G'_i)_{i \in [1,r]}$ mit

- $G'_0 = G \text{ und } G'_r = \{e_G\},$
- $G'_{i+1} \triangleleft G'_i$ und
- $G'_i/G'_{i+1} \simeq \mathbb{Z}/p_i\mathbb{Z}$ für eine Primzahl p_i .

Beweis. Sei $(G_i)_{i \in [1,r]}$ eine Folge die sich nicht verfeinern lässt aber mit ein k so, dass G_k/G_{k+1} nicht von Primzahlordnung. Sei p ein Primteiler von G_k/G_{k+1} und $x \in G_k/G_{k+1}$ ein Element der Ordnung p ist (Satz von Cauchy). Dann gilt $\{e\} \subsetneq \langle x \rangle \subsetneq G_k/G_{k+1}$. Da G_k/G_{k+1} abelsch ist gilt $\langle x \rangle \triangleleft G_k/G_{k+1}$. Sei $\pi: G_k \to G_k/G_{k+1}$ die kanonische Projektion und $H = \pi^{-1}(\langle x \rangle)$. Es gilt $G_{k+1} \subsetneq H \subsetneq G_k$ und $G_{k+1} \triangleleft H \triangleleft G_k$. Ein Widerspruch zur nicht Verfeinbarkeit.

 $\textbf{Beispiel 1.11.13} \ \text{Es gilt } S_4 \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} A_4 \overset{\mathbb{Z}/3\mathbb{Z}}{\triangleright} V_4 \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} \left\{ \text{Id}, [12][34] \right\} \overset{\mathbb{Z}/2\mathbb{Z}}{\triangleright} \left\{ \text{Id} \right\}.$

2 Ringe

2.1 Grundbegriffe

2.1.1 Definition

Definition 2.1.1 1. Ein **Ring** ist eine Menge R mit zwei Verknüpfungen $+: R \times R \to R$, $(a,b) \mapsto a+b$ und $\times: R \times R \to R$, $(a,b) \mapsto ab$ so, dass

- (R, +) ist eine kommutative Gruppe mit 0_R als neutrales Element,
- (ab)c = a(bc) für alle $a, b, c \in R$,
- a(b+c) = ab + ac und ba + ca = (b+c)a für alle $a, b, c \in R$,
- es gibt ein $1_R \in R$ mit $a \cdot 1_R = 1_R \cdot a = a$ für alle $a \in R$.
- 2. Falls \times kommutativ ist *i.e.* ab = ba für alle $a, b \in R$ heißt R kommutativer Ring.

Bemerkung 2.1.2 Sei R ein Ring.

- 1. Falls $1_R = 0_R$ gilt $R = \{0_R\}$. In diesem Fall heißt R der **Nullring**.
- 2. Für alle $a, b \in R$ gilt
 - $\bullet \ 0_R \cdot a = a \cdot 0_R = 0_R$
 - (-a)(-b) = ab

Beispiel 2.1.3 1. $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ und $(\mathbb{C}, +, \times)$ sind Ringe.

- 2. $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ in ein Ring.
- 3. Sei K ein Körper. $(M_n(K), +, \times)$ ist ein Ring, wobei + bzw. \times Matrixaddition bzw. Matrixmultiplikation sind.
- 4. Für $x \in \mathbb{C}$, sei $x \mapsto \bar{x}$ die komplexe Konjugation. Die Menge der Quaternionen

$$\mathbf{H} = \left\{ \left(\begin{array}{cc} x & y \\ -\bar{y} & \bar{x} \end{array} \right) \in M_2(\mathbb{C}) \mid x, y \in \mathbb{C} \right\}$$

mit Matrixaddition und Matrixmultiplikation ist ein nicht kommutativer Ring.

Definition 2.1.4 Seien R und R' zwei Ringe. Das Produkt $R \times R'$ mit (a, a') + (b, b') = (a+b, a'+b') und (a, a')(b, b') = (ab, a'b') ist ein Ring und heißt **Produktring** von R und R'.

Definition 2.1.5 Sei R ein Ring.

1. Ein Element $a \in R$ heißt **Einheit** oder **invertierbar** falls es ein $b \in R$ gibt mit $ab = ba = 1_R$. Mann schreibt R^{\times} für die Menge aller Einheiten:

$$R^{\times} = \{ a \in R \mid a \text{ is eine Einheit} \}.$$

2. Ein Element $a \in R$ heißt **Nullteiler** falls es ein $b \in R \setminus \{0_R\}$ gibt mit $ab = 0_R$ oder $ba = 0_R$.

Bemerkung 2.1.6 Sei R ein Ring.

- 1. Die Menge (R^{\times}, \times) ist eine Gruppe. Insbesondere ist für $a \in R^{\times}$ das Element $b \in R$ mit $ab = ba = 1_R$ ein Element in R^{\times} und ist eindeutig bestimmt. Wir schreiben $b = a^{-1}$.
- 2. Es gilt $R^{\times} \subset R \setminus \{\text{Nullteiler}\}$: sei $b \in R$ mit $ab = 0_R$ oder $ba = 0_R$. Es gilt $0_R = a^{-1}ab = b$ oder $0_R = baa^{-1} = b$.

Definition 2.1.7 Sei R ein Ring.

- 1. R heißt Nullteilerfrei falls $(a \in R \text{ Nullteiler} \Rightarrow a = 0)$.
- 2. R heißt Intergritätring falls $R \neq \{0_R\}$, R kommtativ und Nullteilerfrei ist.
- 3. R heißt Schiefkörper falls $R^{\times} = R \setminus \{0_R\}$.
- 4. R heißt Körper falls R ein kommutativer Schiefkörper ist.

Beispiel 2.1.8 1. Der Ring \mathbb{Z} ist ein Integritätsring.

- 2. Der Ring $R = \mathbb{Z}/4\mathbb{Z}$ ist kein Integritätsring: Es gilt $[2] \neq 0_R$ aber $[2][2] = [4] = 0_R$.
- 3. Der Ring **H** ist ein nicht kommutativer Schiefkörper.

Bemerkung 2.1.9 Sei R ein nullteilerfreier Ring und S ein Unterring. Dann ist S nullteilerfrei.

Definition 2.1.10 Sei R ein Ring.

1. Der **Polynomring zu** R ist

$$R[X] = \{ \sum_{k=0}^{\infty} r_k X^k \mid r_k \neq 0 \text{ nur für endlich viele } k \}$$

mit

$$\left(\sum_{k=0}^{\infty} r_k X^k\right) + \left(\sum_{k=0}^{\infty} r'_k X^k\right) = \sum_{k=0}^{\infty} (r_k + r'_k) X^k$$

und

$$\left(\sum_{k=0}^{\infty} r_k X^k\right) \times \left(\sum_{k=0}^{\infty} r'_k X^k\right) = \sum_{k=0}^{\infty} \left(\sum_{a+b=k} r_a r'_b\right) X^k.$$

2. Per Induktion definiert man den **Polynomring mit** n **Unbekannten zu** R als

$$R[X_1, \cdots, X_n] = (R[X_1, \cdots, X_{n-1}])[X_n].$$

Bemerkung 2.1.11 Sei R ein Ring.

- 1. Sei P ein Polynom in R[X]. Dann definiert P eine polynomiale Abbildung f_P : $R \to R$ durch $f_P(r) = P(r)$.
- 2. Man sollte aber Polynome und polynomiale Abbildungen nicht verwechseln. Zum Beispiel für $R = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ sind die Polynome P = 0 und $Q = X + X^2$ verschieden aber die Abbildungen die sie definieren sind $f_P : \mathbb{F}_2 \to \mathbb{F}_2$ und $f_Q : \mathbb{F}_2 \to \mathbb{F}_2$ und es gilt $f_P(x) = 0 = f_Q(x)$ für alle $x \in \mathbb{F}_2$ also $f_P = f_Q$.

Lemma 2.1.12 Sei R ein nullteilerfreier Ring. Dann ist R[X] nullteilerfrei.

Beweis. Seien $P, Q \in R[X] \setminus \{0\}$. Wir schreiben $P = \sum_{k=0}^{n} r_k X^k$ und $m = \sum_{k=0}^{m} s_k X^k$ mit $r_n \neq 0 \neq s_m$. Es gilt

$$PQ = \sum_{k=0}^{nm} \left(\sum_{a+b=k} r_a s_b \right) X^k = \sum_{k=0}^{nm} t_k X^k.$$

Insbesondere gilt $t_{nm} = r_n s_m$. Da R nulteilerfrei ist gilt $t_{nm} \neq 0$ also $PQ \neq 0$.

2.1.2 Ringhomomorphismus

Definition 2.1.13 Ein **Ringhomomorphismus** ist eine Abbildung $f: R \to R'$, wobei R und R' ringe sind so, dass für alle $a, b \in R$ gilt

$$f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) \text{ und } f(1_R) = 1_{R'}.$$

Lemma 2.1.14 Sei $f: R \to R'$ ein Ringhomomorphismus.

- 1. Dann gilt $f(R^{\times}) \subset R^{\prime \times}$.
- 2. Die induzierte Abbildung $f: R^{\times} \to R'^{\times}$ ist ein Gruppenhomomorphismus.

Beweis. Übung. ■

2.1.3 Unterringe und Ideale

Definition 2.1.15 Sei R ein Ring.

- 1. Eine Untergruppe $R' \subset R$ heißt **Unterring** falls
 - $1_R \in R'$ und
 - $ab \in R'$ für alle $a, b \in R'$.
- 2. Eine Untergruppe $I \subset R$ heißt **Ideal** falls $ab, ba \in I$ für alle $a \in I$ und alle $b \in R$.

Lemma 2.1.16 Sei R ein Ring und I ein Ideal. Dann gilt

$$I = R \Leftrightarrow 1_R \in I$$
.

Beweis. Übung.

Beispiel 2.1.17 1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbf{H}$ sind Unterringe.

- 2. Sei R ein Ring. Die Menge $\{0_R\}$ ist ein Ideal und heißt **Nullideal**.
- 3. Sei R ein kommutativer Ring und $r \in R$. Dann ist $(r) = rR = \{ra \in R \mid a \in R\}$ ein Ideal.
- 4. Zum Beispiel ist $n\mathbb{Z} \subset \mathbb{Z}$ ein Ideal. Alle Ideale in \mathbb{Z} sind dieser Form (schon alle Untergruppen sind dieser Form!).
- 5. Sei K ein Körper und R = K[X]. Dann sind alle Ideale I in R der Form I = (P) für ein $P \in K[X]$ (Siehe LAII Übungsblatt 8 Übung 1).

Lemma 2.1.18 Sei $f: R \to R'$ ein Ringhomomorphismus, seien $S \subset R$ und $S' \subset R'$ Unterringe und $I \subset R$ und $I' \subset R'$ Ideale.

- 1. Dann sind f(S) und $f^{-1}(S')$ Unterringe von R' und R. Insbesondere ist Imf ein Unterring.
- 2. 1. Dann ist $f^{-1}(I')$ ein Ideal von R. Insbesondere ist Kerf ein Ideal.
- 3. Falls f surjektiv ist, ist f(I) ein Ideal in R'.

Beweis. Bilder und Urbilder von Untergruppen sind Untergruppen.

1. Es gilt $1_R \in S$ also $1_{R'} = f(1_R) \in f(S)$. Seien $f(a), f(b) \in f(S)$ mit $a, b \in S$. Dann gilt $ab \in S$ und $f(a)f(b) = f(ab) \in f(S)$.

Es gilt $f(1_R) = 1_{R'} \in S'$ also $1_R \in f^{-1}(S')$. Seien $a, b \in f^{-1}(S')$ also $f(a), f(b) \in S'$. Dann gilt $f(ab) = f(a)f(b) \in S'$ also $ab \in f^{-1}(S')$.

- 2. Sei $a \in f^{-1}(I')$ und $b \in R$. Dann gilt $f(a) \in I'$ und $f(ab) = f(a)f(b) \in I'$ und $f(ba) = f(b)f(a) \in I'$.
- 3. Sei $f(a) \in f(I)$ mit $a \in I$ und sei $b' \in R'$. Da f surjektiv ist, gibt es ein $b \in R$ mit f(b) = b'. Es folgt $ab, ba \in I$ und $f(a)f(b) = f(ab) \in f(I)$ und $f(b)f(a) = f(ba) \in f(I)$.

2.1.4 Quotienten

Sei R ein Ring und I ein Ideal. Dann ist (R/I, +) eine Gruppe und die kanonische Projektion $\pi: R \to R/I$ ist ein Gruppenhomomorphismus.

Lemma 2.1.19 Sei R ein Ring und I ein Ideal.

- 1. Dann ist die Verknüpfung $\times : R/I \times R/I \to R/I$, ([a], [b] \mapsto [ab] wohl definiert.
- 2. $(R/I, +, \times)$ ist ein Ring und die kanonische Projektion $\pi: R \to R/I$ ist ein Ringhomomorphismus.

Beweis. 1. Seien $a', b' \in R$ mit [a'] = [a] und [b'] = [b]. Es gibt $c, d \in I$ mit a' = a + c und b' = b + d. Dann gilt a'b' = ab + ad + cb + cd und da $ad, cb, cd \in I$ gilt [a'b'] = [ab].

2. Übung. ■

Definition 2.1.20 Sei R ein Ring und I ein Ideal. Dann heißt R/I mit [a] + [b] = [a + b] und [a][b] = [ab] der **Quotientring**.

Bemerkung 2.1.21 Sei R ein Ring und I ein Ideal. Dann gilt $I = \text{Ker}\pi$, wobei $\pi: R \to R/I$ die kanonische Projektion. Also ist jeder Ideal der Kern eines Ringhomomorphismus.

Satz 2.1.22 Sei $f:R\to R'$ ein Ringhomomorphismus, sei I ein Ideal von R und sei $\pi:R\to R/I$ die kanonische Projektion.

1. Es gibt ein eindeutig bestimmter Ringhomomorphismus $\bar{f}:R/I\to R'$ so, dass das Diagram

kommutiert, genau dann wenn $I \subset \operatorname{Ker} f$.

Angenommen $I \subset \operatorname{Ker} f$ und sei \bar{f} wie in 1.

- 2. Die Abbildung \bar{f} ist genau dann injektiv, wenn I = Ker f.
- 3. Die Abbildung \bar{f} ist genau dann surjektiv, wenn f surjektiv ist.

Beweis. 1. Nach Satz 1.2.10.1 existiert ein eindeutig bestimmter Gruppenhomomorphismus \bar{f} wie oben genau dann, wenn $I \subset \operatorname{Ker} f$. Wir zeigen, dass \bar{f} ein Ringhomomorphismus ist. Es gilt $\bar{f}([1_{R/I}]) = \bar{f}(\pi(1_R)) = f(1_R) = 1_{R'}$. Seien $a, b \in R$. Es gilt $\bar{f}([a][b]) = \bar{f}([ab]) = \bar{f}(\pi(ab)) = f(ab) = f(ab) = f(ab) = f(ab)$.

- 2. Folgt aus Satz 1.2.10.2.
- 3. Folgt aus Satz 1.2.10.3.

Korollar 2.1.23 Sei $f: R \to R'$ ein surjektiver Ringhomomorphismus. Dann gilt $R/\operatorname{Ker} f \simeq R'$.

Beispiel 2.1.24 Es gilt $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$.

2.1.5 Erzeuger

Lemma 2.1.25 Sei R ein Ring. Sei $(R_a)_{a\in A}$ ein Familie von Unterringe und sei $(I_a)_{a\in A}$ eine Familie von Ideale. Seien I und J zwei Ideale.

- 1. Dann ist $\bigcap_{a \in A} R_a$ ein Unterring
- 2. Dann sind $\bigcap_{a \in A} I_a$, $I + J = \{a + b \in R \mid a \in I, b \in J\}$ Ideale.
- 3. Sei $A \subset R$ eine Teilmenge. Dann gibt es ein kleinster Unterring S mit $A \subset S$.
- 4. Sei $A\subset R$ eine Teilmenge. Dann gibt es ein kleinstes Ideal I mit $A\subset I$. \square Beweis. 1+2 Übung.
- 3 + 4. Der kleinste Unterring bzw. das kleinste Ideal sind

$$\bigcap_{S\supset A,\ S\ \text{Unterring}} S\ \text{und}\ \bigcap_{I\supset A,\ I\ \text{Ideal}} I.$$

Definition 2.1.26 Sei R ein Ring, A eine Teilmenge in R, S ein Unterring und I, J Ideale in R.

1. Der kleinste Unterring die S und A enthält heißt der von S und A erzeugte Unterring.

Man schreibt S[A] für den von S und A erzeugten Unterring.

2. Das kleinste Ideal die A enthält heißt das von A erzeugte Ideal.

Man schreibt (A) für das von A erzeugte Ideal. Falls $A = \{a\}$ schreibt man (A) = (a). Ein solches Ideal heißt **Hauptideal**.

- 2. Die Summe von I und J ist das Ideal $I+J=\{a+b\in R \mid a\in I, b\in J\}.$
- 3. Das Produktideal von I und J ist $IJ = (ab \mid a \in I, b \in J)$ i.e. das von Produkte ab mit $a \in I$ und $b \in J$ erzeugte Ideal.

Beispiel 2.1.27 1. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ ist der von $\sqrt{2}$ erzeugte Unterring von \mathbb{R} .

2. Allgemeiner gilt für R kommutativ, $S \subset R$ Unterring und $r \in R$:

$$S[r] = \{ P(r) \in R \mid P \in S[X] \}.$$

3. Sei R ein kommutativer Ring und $r \in R$. Dann gilt $(r) = \{ra \in R \mid a \in R\}$.

Bemerkung 2.1.28 Es gilt $IJ \subset I \cap J$.

42 Ringe

2.1.6 Isomorphiesätze

Satz 2.1.29 (Erster Isomorphiesatz) Sei R ein Ring und seien I, J Ideale.

- 1. Dann ist I ein Ideal in I + J und $I \cap J$ ist ein Ideal in J.
- 2. Die Abbildung $J/(I\cap J)\to (I+J)/I$, $[a]_{I\cap J}\mapsto [a]_I$ ist wohl definiert und ein Gruppenisomorphimus.

Beweis. 1. Klar.

2. Folgt aus dem ersten Isomorphiesatz für Gruppen.

Satz 2.1.30 (Zweiter Isomorphiesatz) Sei R ein Ring und I ein Ideal. Sei $J \supset I$ eine Untergruppe.

- 1. Dann ist J genau dann ein Ideal in R, wenn J/I ein Ideal in R/I ist.
- 2. Die Abbildung $(R/I)/(J/I) \to R/J$, $[[a]_I]_{J/I} \mapsto [a]_J$ ist wohl definiert und ein Ringisomorphimus.

Beweis. 1. Sei J ein Ideal und seien $[a] \in J/I$ und $[b] \in R/I$. Dann gilt $[a][b] = [ab] \in J/I$ und $[b][a] = [ba] \in J/I$ da $ab, ba \in J$.

Umgekehrt sei J/I ein Ideal. Seien $a \in J$ und $b \in R$. Dann gilt $[ab] = [a][b] \in J/I$ und $[ba] = [b][a] \in J/I$ also $ab, ba \in J$.

2. Aus dem zweiten Isomorphiesatz für Gruppen folgt, dass die Abbildung wohl definiert ist und ein Gruppenisomorphismus. Aber per Definition des Produkts ist diese Abbildung ein Ringhomomorphismus.

Korollar 2.1.31 Sei R ein Ring und I ein Ideal in R und $\pi: R \to R/I$ die kanonische Projektion. Dann ist die Abbildung

$$\{\ J\ \mathrm{Ideal\ von}\ R\mid J\supset I\} \to \{\ \bar{J}\ \mathrm{Ideal\ von}\ R/I\ \},\ J\mapsto \pi(J)=J/I$$

bijektiv und es gilt $R/J \simeq (R/I)/\pi(J) = (R/I)/(J/I)$.

Beweis. Die Umkehrabbildung ist $\bar{J} \mapsto \pi^{-1}(\bar{J})$.

2.1.7 Primideale und maximale Ideale

Lemma 2.1.32 Sei R ein kommutativer Ring. Es gilt

R Körper \Leftrightarrow die einzige Ideale in R sind R und 0.

Beweis. (\Rightarrow). Sei I ein Ideal mit $I \neq 0$. Sei $a \in I$ mit $a \neq$. Dann ist a invertierbar und es gilt $1_R = a^{-1}a \in I$ also I = R.

(⇐). Sei $a \in R$ mit $a \neq 0$ und sei I = (a). Dann gilt $I \neq 0$ also I = R und $1_R \in I$. Es gibt also ein $r \in R$ mit $ra = ar = 1_R$ also a ist invertierbar.

Lemma 2.1.33 Sei $f: K \to R$ ein Ringhomomorphismus mit K ein Körper und $R \neq 0$. Dann ist f injektiv.

Beweis. Der Kern Kerf ist ein Ideal. und $f(1_K) = 1_R \neq 0_R$ also gilt Ker $f \neq K$. Da K ein Körper ist hat K nur zwei Ideale: K und K

Definition 2.1.34 Sei R ein Ring und I ein Ideal.

1. Das Ideal I heiß **Primideal**, wenn $I \neq R$ und für $a, b \in R$ gilt

$$(ab \in I) \Rightarrow (a \in I \text{ oder } b \in I).$$

1. Das Ideal I heiß **maximal**, wenn $I \neq R$ und für J ein Ideal gilt

$$(I \subset J) \Rightarrow (J = I \text{ oder } J = R).$$

Beispiel 2.1.35 Sei $R = \mathbb{Z}$. Dann ist $n\mathbb{Z}$ genau dann ein Primideal, wenn n = 0 oder n eine Primzahl ist.

Lemma 2.1.36 Sei R ein kommutativer Ring und I ein Ideal.

- 1. Das Ideal I ist genau dann ein Primideal, wenn A/I ein Integritätsring ist.
- 2. Das Ideal I ist genau dann maximal, wenn A/I ein Körper ist.

Beweis. Das Ideal ist genau dann echt $(I \neq R)$, wenn $R/I \neq 0$.

1. Sei I Primideal und seien $[a], [b] \in R/I$ mit [a][b] = [0]. Es gilt [ab] = [0] also $ab \in I$. Da I Primideal ist, gilt $a \in I$ oder $b \in I$ also [a] = [0] oder [b] = [0].

Umgekehrt, sei R/I Integritätsring und seien $a, b \in R$ mit $ab \in I$. Dann gilt [a][b] = [ab] = [0] also [a] = [0] oder [b] = [0]. Daraus folgt $a \in I$ oder $b \in I$.

2. Sei $\pi:R\to R/I$ die kanonische Projektion. Sei I maximal und sei \bar{J} ein Ideal in R/I. Dann ist $\pi^{-1}(\bar{J})$ ein Ideal in R mit $I\subset\pi^{-1}(\bar{J})$. Da I maximal ist, folgt $\pi^{-1}(\bar{J})=I$ oder $\pi^{-1}(\bar{J})=R$. Es folgt $\bar{J}=\pi(\pi^{-1}(\bar{J}))=I/I=([0])$ oder $\bar{J}=R/I$. Nach dem Lemma 2.1.32 folgt, dass R/I ein Körper ist.

Umgekehrt, sei R/I ein Körper und sei J ein Ideal mit $I \subset J$. Dann ist $\pi(J)$ ein Ideal in R/I also nach Lemma 2.1.32 gilt $\pi(J) = ([0])$ oder $\pi(J) = R/I$. Daraus folgt $J = \pi^{-1}(\pi(J)) = I$ oder J = R und I ist maximal.

Beispiel 2.1.37 Sei $R = \mathbb{Z}[X]$. Dann ist (X) ein Primideal aber nicht maximal: es gilt $\mathbb{Z}[X]/(X) = \mathbb{Z}$ Integritätsring aber kein Körper. Das Ideal $(X,2) \supset (X)$ ist maximal: $\mathbb{Z}[X]/(X,2) \simeq \mathbb{Z}/(2) = \mathbb{F}_2$ ist ein Körper. Das Ideal (X^2) ist kein Primideal.

Korollar 2.1.38 Ein maximales Ideal ist ein Primideal.

Beweis. Ein Körper ist immer ein Integritätsring.

Beispiel 2.1.39 1. Das Ideal $I = (X^2 + 1)$ ist ein Primideal und sogar ein maximales Ideal in $\mathbb{R}[X]$: es gilt $\mathbb{R}[X]/(X^2 + 1) \simeq \mathbb{C}$ aber kein Primideal in $\mathbb{C}[X]$: es gilt $X - i \notin I$, $X + i \notin I$ aber $(X - i)(X + i) = X^2 + 1 \in I$.

2. Sei $x \in \mathbb{R}^n$, sei $R = C^0(\mathbb{R}^n, \mathbb{R})$ und $\mathfrak{M}_x = \{f \in R \mid f(x) = 0\}$. Dann gilt $R/\mathfrak{M}_x \simeq \mathbb{R}$ und \mathfrak{M}_x ist ein maximales Ideal in R.

Bemerkung 2.1.40 Aus dem Auswahl-Axiom kann man Zeigen

Satz 2.1.41 (Satz von Krull) Sei R ein Ring und I ein Ideal mit $I \neq R$. Dann gibt est ein maximales Ideal \mathfrak{M} mit $I \subset \mathfrak{M}$.

Lemma 2.1.42 Sei $f: R \to R'$ ein Ringhomomorphismus zwischen zwei kommutativen Ringe und sei I' ein Ideal in R'.

1. Es gilt (I' Primideal) \Rightarrow ($f^{-1}(I')$ Primideal).

Sei f surjektiv

- 2. Es gilt (I' Primideal) \Leftrightarrow ($f^{-1}(I')$ Primideal).
- 3. Es gilt (I' maximales Ideal) \Leftrightarrow (I' maximales Ideal).

Beweis. 1. Seien $a, b \in R$ mit $ab \in f^{-1}(I')$. Es gilt $f(a)f(b) = f(ab) \in I'$ also $f(a) \in I'$ oder $f(b) \in I'$. Daraus folgt $a \in f^{-1}(I')$ oder $b \in f^{-1}(I')$.

Da f surjektiv ist gilt $R' \simeq R/\mathrm{Ker} f$ und nach identifizierung von R' mit $R/\mathrm{Ker} f$ ist die Abbildung $f: R \to R'$ mit der kanonischen Projektion $\pi: R \to R/\mathrm{Ker} f$ identifiziert.

2 und 3. Sei I' ein Ideal in $R' = R/\mathrm{Ker}f$. Sei $I = \pi^{-1}(I')$. Es gilt $I \supset J$ und $I/J = \pi(I) = I'$. Nach dem zwieten Isomorphiesatz gilt

$$R/I \simeq (R/J)/(I/J) = R'/I'$$
.

Insbesondere ist R/I genau dann Integritätsring bzw. Körper, wenn R'/I' Integritätsring bzw. Körper ist.

Beispiel 2.1.43 1. Sei $f: \mathbb{R}[X] \to \mathbb{C}[X]$ und $I = (X^2 + 1) \subset \mathbb{C}[X]$. Dann gilt $f^{-1}(I) = (X^2 + 1) \subset \mathbb{R}[X]$ und $f^{-1}(I)$ ist ein Primideal und maximal aber I ist nicht maximal und kein Primideal.

2. Sei $f: \mathbb{Z} \to \mathbb{Q}$ die enthaltung. Sei $I = (0) \subset \mathbb{Q}$. Dann gilt $f^{-1}(I) = (0) \subset \mathbb{Z}$. Das Ideal I ist ein Primideal in \mathbb{Q} und sogar maximal aber $f^{-1}(I)$ ist ein Primideal aber nicht maximal.

2.1.8 Teilerfremde Ideale

In diesem Abschnitt ist R ein kommutativer Ring.

Definition 2.1.44 Zwei Elemente $a, b \in R$ heißen teilerfremd falls

$$(c \mid a \text{ und } c \mid b \Rightarrow c \in R^{\times}) \text{ für alle } c \in R.$$

Beispiel 2.1.45 1. Seien $n, m \in \mathbb{Z}$. Dann sind n und m genau dann teilerfremd, wenn ggT(n, m) = 1.

2. Sei K ein Körper und R = K[X,Y]. Dann sind X und Y teilerfremd: sei P mit P|X und P|Y. Dann gilt $P = \lambda$ oder $P = \lambda X$ für $\lambda \in K^{\times}$ und $P = \lambda$ oder $P = \lambda Y$ für $\lambda \in K^{\times}$. Es folgt $P = \lambda \in K^{\times} \subset R^{\times}$.

Definition 2.1.46 Sei R ein Ring. Zwei Ideale I und J heißen **teilerfremd** falls I+J=R.

Beispiel 2.1.47 1. Sei $R = \mathbb{Z}$, $I = n\mathbb{Z} = (n)$ und $J = m\mathbb{Z} = (m)$. Dann sind I und J genau dann teilerfremd, wenn n und m teilerfremd sind.

2. Sei K ein Körper und R = K[X,Y]. Seien I = (X) und J = (Y). Dann sind I und J nicht teilerfremd: es gilt I + J = (X) + (Y). Sei $P \in I + J$. Dann gibt es Polynome $S, T \in R$ mit P = XR + YT. Daraus folgt P(0,0) = 0. Insbesondere gilt $1 \notin I + J$ und $I + J \neq R$.

Lemma 2.1.48 Sei R ein kommutativer Ring. Seien $a, b \in R$ und I = (a), J = (b).

1. Es gilt: (I und I sind teilerfremd) \Rightarrow (a und b sind teilerfremd).

Sei R ein Hauptidealring i.e. alle Ideale I' sind der Form I' = (a') für ein $a' \in R$.

2. Es gilt: (I und I sind teilerfremd) \Leftrightarrow (a und b sind teilerfremd).

Beweis. 1. Es gilt (a) + (b) = I + J = R. Es gibt also $x, y \in R$ mit 1 = ax + by. Sei $c \in R$ mit $c \mid a$ und $c \mid b$. Es gibt also $\alpha, \beta \in R$ mit $a = c\alpha$ und $b = c\beta$. Daraus folgt

$$1 = ax + by = c\alpha x + c\beta y = c(\alpha x + \beta y)$$

und c ist invertierbar.

2. (\Rightarrow) folgt aus 1. (\Leftarrow). Da R ein Hauptidealring ist gibt es ein $c \in R$ mit (a) + (b) = I + J = (c). Es genügt zu zeigen, dass $c \in R^{\times}$ gilt: daraus folgt (c) = R. Es gilt $a \in (a) + (b) = (c)$ also gibt es ein $\alpha \in R$ mit $a = c\alpha$ i.e. c|a. Analog gilt c|b. Da a und b teilerfremd sind folgt $c \in R^{\times}$.

Satz 2.1.49 (Chinesischer Restsatz) Sei R ein kommutativer Ring und I_1, \dots, I_n paarweise teilerfremde Ideale. Dann ist die Abbildung

$$R/\bigcap_k I_k \to \prod_k R/I_k, \ [a] \mapsto ([a]_{R/I_1}, \cdots, [a]_{R/I_n}).$$

wohl definiert und ein Isomorphismus.

Beweis. Die Abbildung $f': R \to \prod_k R/I_k$, $a \mapsto ([a]_{R/I_1}, \cdots, [a]_{R/I_n})$ ist wohl definiert. Die obige Abbildung f wird wohl definiert sei sobald $\bigcap_k I_k \subset \operatorname{Ker} f'$. Sei $a \in \bigcap_k I_k$. Dann gilt $a \in I_k$ für alle k. Daraus folgt $[a]_{R/I_k} = [0]_{R/I_k}$ und $a \in \operatorname{Ker} f'$.

Wir zeigen Ker $f' = \bigcap_k I_k$. Sei $a \in \text{Ker} f'$. Dann gilt $[a]_{R/I_k} = [0]_{R/I_k}$ für alle k also gilt $a \in I_k$ für alle k und es folgt $a \in \bigcap_k I_k$. Daraus folgt, dass f injektiv ist.

Es bleibt zu zeigen, dass f surjektiv ist. Es genügt jetzt zu zeigen, dass f' surjektiv ist. Sei $j \in [1,n]$. Wir zeigen zuerst, dass I_j und $\bigcap_{k \neq j} I_k$ teilerfremd sind. Für $k \neq j$ sind I_j und I_k teilerfremd also $I_j + I_k = R$ und es gibt $a_{j,k} \in I_j$ und $b_k \in I_k$ mit $1 = a_{j,k} + b_k$ Daraus folgt

$$1 = \prod_{k \neq j} (a_{j,k} + b_k) = c_j + \prod_{k \neq j} b_k$$

wobei $c_j \in I_j$. Da $b_k \in I_k$ gilt $\prod_{k \neq j} b_k \in I_k$ für alle $k \neq j$ also $\prod_{k \neq j} b_k \in \bigcap_{k \neq j} I_k$. Daraus folgt $1 \in I_j + \bigcap_{k \neq j} I_k$ und $R = I_j + \bigcap_{k \neq j} I_k$. Sei $d_j = \prod_{k \neq j} b_k$. Es gilt $c_j + d_j = 1$, $c_j \in I_j$ und $d_j \in \bigcap_{k \neq j} I_k$.

Sei $\pi_j: R \to R/I_j$ die kanonische Projektion. Es gilt $\pi_j(c_j) = [c_j]_{R/I_j} = [0]_{R/I_j}$ da $c_j \in I_j$. Es gilt $\pi_j(d_j) = \pi_j(1 - c_j) = \pi_j(1) = [1]_{R/I_j}$. Und es gilt $\pi_j(d_\ell) = [d_\ell]_{R/I_j} = [0]_{R/I_j}$ für $\ell \neq j$ da $d_\ell \in \bigcap_{k \neq \ell} I_k$ und $j \in \{k \mid k \neq \ell\}$.

Sei $([a_1]_{R/I_1}, \cdots, [a_n]_{R/I_n}) \in \prod_k R/I_k$ und sei

$$a = \sum_{\ell=1}^{n} d_{\ell} a_{\ell}.$$

Es gilt

$$\pi_j(a) = \sum_{\ell=1}^n \pi_j(d_\ell) \pi_j(a_\ell) = [a_j]_{R/I_j}.$$

Daraus folgt $f(a) = ([a_1]_{R/I_1}, \dots, [a_n]_{R/I_n})$ und f ist surjektiv.

Korollar 2.1.50 Seien $n, m \in \mathbb{Z}$ teilerfremd. Es gilt

$$\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}.$$

Beweis. Da n und m teilerfremd sind, gilt $n\mathbb{Z} \cap m\mathbb{Z} = mn\mathbb{Z}$.

Lemma 2.1.51 Sei $n \in \mathbb{Z}$. Dann gilt

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ [m] \in \mathbb{Z}/n\mathbb{Z} \mid m \text{ und } n \text{ sind teilerfremd} \}.$$

Beweis. Siehe Übungsblatt 6.

Definition 2.1.52 Die Eulersche φ -Funktion ist die Abbildung $\varphi: \mathbb{Z}_{>0} \to \mathbb{N}$ definiert durch

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}| = |\{[m] \in \mathbb{Z}/n\mathbb{Z} \mid m \text{ und } n \text{ sind teilerfremd}\}|.$$

Bemerkung 2.1.53 Es gilt $\varphi(1) = 1$ und $\varphi(p) = p - 1$ für p ein Primzahl.

Lemma 2.1.54 Sei
$$p$$
 ein Primzahl und $\alpha \in \mathbb{N}_{>0}$. Es gilt $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

Beweis. Ein Element $m \in [1, p^{\alpha}]$ is genau dann teilerfremd mit p^{α} , wenn p kein Teiler von m ist. Die Elemente in $[1, p^{\alpha}]$ die durch p teilbar sind, sind die Elemente pk mit $k \in [1, p^{\alpha-1}]$. Es sind also genau $p^{\alpha-1}$ Elemente die durch p teilbar sind und $p^{\alpha} - p^{\alpha-1}$ Elemente die durch p nicht teilbar sind.

Lemma 2.1.55 Seien
$$R_1, \dots, R_n$$
 Ringe. Es gilt $(\prod_k R_k)^{\times} = \prod_k (R_k^{\times})$.

Korollar 2.1.56 Sei $n \in \mathbb{Z}$ und $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ die Primzahlzerlegung. Es gilt

$$\varphi(n) = \prod_{i=1}^{r} (p_i^{\alpha_i} - p_i^{\alpha_1 - 1}) = n \cdot \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right).$$

Beweis. Da die Zahlen $p_i^{\alpha_i}$ paarweise teilerfremd sind, sind die Ideale $p_i^{\alpha_i}\mathbb{Z}$ paarweise teilerfremd und es gilt

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\cap_i p_i^{\alpha_i}\mathbb{Z} \simeq \prod_i \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}.$$

Nach dem obigen Lemma gilt

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}| = |(\prod_{i} \mathbb{Z}/p_{i}^{\alpha_{i}}\mathbb{Z})^{\times}| = \prod_{i} |(\mathbb{Z}/p_{i}^{\alpha_{i}}\mathbb{Z})^{\times}| = \prod_{i} \varphi(p_{i}^{\alpha_{i}}).$$

Nach Lemma 2.1.54 folgt die Aussage.

Satz 2.1.57 Sei $n \in \mathbb{Z}$. Dann ist die Abbildung

$$\Phi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$$

definiert durch $a \mapsto \Phi_a$, wobei $\Phi_a : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $x \mapsto ax$ ist ein Gruppenisomorphismus.

2.2 Quotientkörper

In diesem Abschnitt ist R ein Integritätsring.

Definition 2.2.1 Sei \sim die Relation auf $R \times (R \setminus \{0\})$ definiert durch

$$(a,b) \simeq (c,d) \Leftrightarrow ad = bc.$$

Lemma 2.2.2 Die Relation \sim ist eine Äquivalenzrelation.

Beweis. Es gilt ab = ba also $(a, b) \sim (a, b)$. Seien $(a, b) \sim (c, d)$. Es gilt ad = bc also cb = da und es folgt $(c, d) \sim (a, b)$. Seien $(a, b) \sim (c, d) \sim (e, f)$. Es gilt ad = bc und cf = de. Daraus folgt adf = bcf = bde. Da $d \neq 0$ und R Integritätsring folgt af = be also $(a, b) \sim (e, f)$.

Definition 2.2.3 Sei Frac $(R) = (R \times (R \setminus \{0\})) / \sim$ die Menge aller Äquivalenzklassen für \sim . Wir Schreiben $\frac{a}{h}$ für die Äquivalenzklasse [(a,b)] von (a,b).

Satz 2.2.4 Sei R ein Integritätsring.

- 1. Die Menge Frac(R) mit $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ und $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ ist ein Körper.
- 2. Die Abbildung $R \to \operatorname{Frac}(R), \ a \mapsto \frac{a}{1}$ is ein injektiver Ringhomomorphimus. \square

Beweis. 1. Zuerst zeigen wir , dass die Addition und die Multiplikation wohl definiert sind. Sei $\frac{a}{b} = \frac{a'}{b'}$ und $\frac{c}{d} = \frac{c'}{d'}$. Dann gilt $\frac{ac}{bd} = \frac{acb'd'}{bdb'd'} = \frac{ba'c'd}{bdb'd'} = \frac{a'c'}{b'd'}$. Analog ist die Addition wohl definiert.

Da das Produkt in R assoziativ und kommutativ ist ist das Produkt in $\operatorname{Frac}(R)$ auch kommutativ und assoziativ. Da R ein kommutativer Ring folgt, dass + kommutativ ist. Man überprüft leicht, dass $\frac{0}{1}$ ein neutrales Element für + ist und es gilt $\frac{a}{b} + \frac{-a}{b} = \frac{0}{b} = \frac{0}{1}$ also ist $(\operatorname{Frac}(R), +)$ eine kommutative Gruppe. Distributivitätsgesetzt überprüft man leicht. Es gilt $\frac{1}{1} \cdot \frac{a}{b} = \frac{a}{b}$ also ist $\frac{1}{1}$ ein neutrales Element für die Multiplikation.

Sei $\frac{a}{b} \neq \frac{0}{1}$. Dann gilt $a \neq 0$ also ist $\frac{b}{a}$ wohl definiert. Es gilt $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ab} = \frac{1}{1}$. Also ist Frac(R) ein Körper.

2. Es gilt $\frac{ab}{1} = \frac{a}{1} \cdot \frac{b}{1}$ also ist die Abbildung ein Ringhomomorphismus. Sei $\frac{a}{1}$ im Kernel. Es gilt $\frac{a}{1} = \frac{0}{1}$ und es folgt a = 0.

2.3 Noethersche Ringe

In diesem Abschnitt arbeiten wir mit kommutative Ringe.

Definition 2.3.1 Sei R ein kommutativer Ring und I ein Ideal.

- 1. I heißt **endlich erzeugt** falls es endlich viele Elemente $a_1, \dots, a_n \in R$ gibt mit $I = (a_1, \dots, a_n)$.
- 2. Ein Ring heißt noetherscher Ring falls alle Ideale endlich erzeugt sind.

Beispiel 2.3.2 1. Ein Hauptidealring ist ein notherscher Ring (alle Ideale sind von einem Element erzeugt).

2. Insesondere sind \mathbb{Z} und K[X] mit K ein Körper noethersche Ringe.

Satz 2.3.3 Sei R ein kommutativer Ring. Die folgende Aussagen sind äquivalent:

- 1. R ist ein noetherscher Ring.
- 2. Jede aufsteigende Kette $I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots$ von Ideale ist stationär *i.e.* es gibt ein $N \in \mathbb{N}$ mit $I_n = I_N$ für alle $n \geq N$.
- 3. Jede (nicht leere) Familie $(I_{\lambda})_{{\lambda}\in\Lambda}$ von Ideale hat ein maximales Element.

Beweis. $(1. \Rightarrow 2.)$ Sei $I = \bigcup_n I_n$. Dann ist I ein Ideal: seien $a, b \in I$, dann gibt es n, m mit $a \in I_n$ und $b \in I_m$. Ohne Einschränkung können wir annehmen $n \leq m$. Also $a \in I_n \subset I_m$ und $a + b \in I_m \subset I$. Sei jetzt $c \in R$. Dann gilt $ac \in I_n$ also $ac \in I$.

Da R noethersch ist gibt es Elemente $a_1, \dots, a_k \in R$ mit $I = (a_1, \dots, a_k)$. Per Definition von I gibt es Zahlen n_i mit $a_i \in I_{n_i}$ für jedes i. Sei $N = \max_i \{n_i\}$. Dann gilt $a_i \in I_{n_i} \subset I_N$ für jedes i. Daraus folgt $I = (a_1, \dots, a_k) \subset I_N$ und also $I = I_N$. Es folgt $I_n \subset I = I_N$ für alle n und $I_n = I_N$ für alle $n \geq N$.

- $(2. \Rightarrow 3.)$ Angenommen habe die Familie $(I_{\lambda})_{\lambda \in \Lambda}$ kein maximales Element. Wir konstruiren per Induktion nach n ein nicht stationäre aufsteigende Kette von Ideale. Sei $I_1 := I_{\lambda_1}$ ein Elemente in der Familie. Da I_1 nicht maximal ist gibt es ein $\lambda_2 \in \Lambda$ mit $I_1 \subsetneq I_2 := I_{\lambda_2}$. Sei die Kette $I_1 \subsetneq \cdots \subsetneq I_n$ konstruiert. Da I_n kein maximales Element ist gibt es ein $\lambda_{n+1} \in \Lambda$ mit $I_n \subsetneq I_{n+1} := I_{\lambda_{n+1}}$.
- $(3. \Rightarrow 1.)$ Sei I ein Ideal und $E = \{J \text{ endlich erzeugtes Ideal mit } J \subset I\}$. Da $(0) \subset E$ ist E eine nicht leere Familie von Ideale und hat also ein maximales Element J. Falls $J \subsetneq I$ gibt es ein $a \in I$ mit $a \not\in J$. Dann ist J + (a) endlich erzeugt und es gilt $J \subsetneq J + (a) \subset I$. Ein Widerspruch zur Maximalität.

Beispiel 2.3.4 3. Der Ring $R = \mathbb{R}[x_1, \dots, X_n, \dots]$ mit unendlich viele Unbekannten ist nicht noethersch: es gibt eine nicht stationäre unendliche aufsteigende Kette von Ideale: $(0) \subsetneq (X_1) \subsetneq (X_1, X_2) \subsetneq \dots \subsetneq (X_1, \dots, X_n) \subsetneq \dots$

Theorem 2.3.5 Sei R ein noetherscher Ring. Dann ist R[X] auch noethersch.

Korollar 2.3.6 Sei R ein noetherscher Ring. Dann ist $R[X_1, \dots, X_n]$ auch noethersch.

2.4 Teilbarkeit

In diesem Abschnitt arbeiten wir mit kommutative Ringe.

2.4.1 Assoziierte, irreduzibel und Primelemente

Definition 2.4.1 Sei R ein kommutativer Ring und seien $a, b \in R$. Das Element a **teilt** b oder ist **ein Teiler von** b (oder b ist von a teilbar) falls es ein $c \in R$ gibt mit b = ac. Man schreibt a|b.

Bemerkung 2.4.2 Sei R ein kommutativer Ring und $a, b \in R$.

- 1. Es gilt $a|b \Leftrightarrow (b) \subset (a)$.
- 2. Sei a invertierbar und $b \in R$, dann gilt $(b) \subset R = (a)$ also a|b.

Definition 2.4.3 Sei R ein kommutativer Ring. Man definiert die Relation R auf R durch

$$a\mathcal{R}b \Leftrightarrow a|b \text{ und } b|a \Leftrightarrow (a) = (b).$$

Bemerkung 2.4.4 Aus der Definition folgt, dass \mathcal{R} eine Äquivalenzrelation ist.

Lemma 2.4.5 Sei R ein Integritätsring und $a, b \in R$. Es gilt

$$a\mathcal{R}b \iff (\exists u \in R^{\times} \text{ mit } a = ub).$$

Beweis. Falls a = ub mit $u \in R^{\times}$ gilt b|a und $b = u^{-1}a$ also a|b und $a\mathcal{R}b$. Umgekehrt, sei $a\mathcal{R}b$. Dann gibt es $c, d \in R$ mit a = bc und b = ad. Daraus folgt ab = abcd also ab(1-cd) = 0. Falls a = 0 folgt b = ad = 0 und es gilt $a = 0 = 1 \cdot 0 = 1 \cdot b$. Anlog für b = 0. Wir können also annehmen, dass $a \neq 0$ und $b \neq 0$. Da R ein Intergritätsring ist folgt von ab(1-cd) = 0, dass cd = 1 und c und d sind invertierbar. Die Aussage folgt.

Ab jetzt ist R ein Integritätsring.

Definition 2.4.6 Elemente $a, b \in R$ heißen assoziiert falls $a\mathcal{R}b$.

Satz 2.4.7 Sei HI(R) die Menge aller Hauptideale in R. Die Abbildung

$$R/\mathcal{R} \to HI(R), \ a \mapsto (a)$$

ist eine Bijektion.

Beweis. Übung.

Definition 2.4.8 Sei $a \in R$ mit $a \neq 0$ und $a \notin R^{\times}$.

1. Dann heißt a **Primelement** falls gilt

$$(a|bc \Leftrightarrow a|b \text{ oder } a|c) \text{ für alle } b, c \in R.$$

2. Dann heißt a irreduzibel falls gilt

$$(a = bc \Rightarrow b \in R^{\times} \text{ oder } c \in R^{\times}) \text{ für alle } b, c \in R.$$

3. Falls a nicht irreduzibel ist heisst a **reduzibel**.

Beispiel 2.4.9 Für $R = \mathbb{Z}$ sind die irreduzibel und die Primelemente die Primzahlen.

Satz 2.4.10 Sei $a \in R$ mit $a \neq 0$ und $a \notin R^{\times}$.

- 1. Es gilt a Primelemente \Rightarrow a irreduzibel.
- 2. Es gilt a Primelement \Leftrightarrow (a) Primideal.
- 3. Es gilt a irreduzibel \Leftrightarrow (für alle $b \in R \setminus R^{\times}$ gilt $(a) \subset (b) \Rightarrow (a) = (b)$) i.e. (a) ist maximal unter allen Hauptidealen.

Beweis. 1. Seien $b, c \in R$ mit a = bc. Da a ein Primelement ist gilt a|b oder a|c. Ohne Beschränkung können wir annehmen, dass a|b. Da a = bc gilt b|a also $a\mathcal{R}b$ und es gibt ein $u \in R^{\times}$ mit a = bu. Es folgt bc = a = bu und da R ein Integritätsring ist folgt $c = u \in R^{\times}$.

- 2. Per Definition.
- 3. (\Rightarrow). Sei $a \in R$ irreduzibel und $b \in R \setminus R^{\times}$. Angenommen $(a) \subset (b)$, dann gilt b|a und es gibt ein $c \in R$ mit a = bc. Da a irreduzibel ist, folgt $c \in R^{\times}$. Also $a\mathcal{R}b$ und (a) = (b).
- (⇐). Sei $a \in R$ und seien $b, c \in R$ mit a = bc und $b \notin R^{\times}$. Es gilt b|a also $(a) \subset (b)$ und nach Annahme gilt (a) = (b). Daraus folgt $a\mathcal{R}b$ also es gibt ein $u \in R^{\times}$ mit a = bu. Es folgt bc = a = bu und da R ein Integritätsring ist folgt $c = u \in R^{\times}$.

Beispiel 2.4.11 Sei $R = \mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$. Dann ist $3 \in R$ irreduzibel aber kein Primelement. Seien $x, y \in R$ mit xy = 3. Wir schreiben $x = a + bi\sqrt{5}$ und $y = c + di\sqrt{5}$. Sei $x \mapsto \bar{x}$ die komplexe Konjugation. Es gilt

$$9 = 3 \times \bar{3} = xy\bar{x}\bar{y} = x\bar{x}y\bar{y} = (a^2 + 5b^2)(c^2 + 5d^2).$$

52 Ringe

Es folgt $a^2 + 5b^2 \in \{1, 3, 9\}$. Die einzige möglichkeiten für x und y sind also

$a^2 + 5b^2$	1	3	9
x	±1	keine Lösung	± 3 $\pm (2 + i\sqrt{5})$
$c^2 + 5d^2$	9	3	$\frac{\pm(2-i\sqrt{5})}{1}$
y		keine Lösung	±1.

Insbesondere gilt $x \in R^{\times}$ oder $y \in R^{\times}$ also 3 ist irreduzibel. Analog kann man auch zeigen, dass $2 + i\sqrt{5}$ und $2 - i\sqrt{5}$ irreduzibel sind.

Es gilt aber $3|9 = (2+i\sqrt{5})(2-i\sqrt{5})$ und 3 teilt weder $2+i\sqrt{5}$ nor $2-i\sqrt{5}$: es gilt

$$\frac{2+i\sqrt{5}}{3} = \frac{2}{3} + \frac{1}{3}i\sqrt{5} \notin R \text{ und } \frac{2-i\sqrt{5}}{3} = \frac{2}{3} - \frac{1}{3}i\sqrt{5} \notin R.$$

Daraus folgt, dass 3 kein Primelement ist.

Definition 2.4.12 Sei R ein Intergritätsring.

- 1. Ein Ideal I heißt **Hauptideal** falls es ein $a \in R$ gibt mit I = (a).
- 2. Der Ring R heißt **Hauptidealring** falls alle Ideale in R Hauptideale sind.

Satz 2.4.13 Sei R ein Hauptidealring und $a \in R$ mit $a \neq 0$ und $a \notin R^{\times}$. Dann gilt $(a \text{ Primelement}) \Leftrightarrow (a \text{ irreduzibel}) \Leftrightarrow ((a) \text{ Primideal}) \Leftrightarrow ((a) \text{ maximales Ideal}).$

Beweis. (a Primelement) \Rightarrow (a irreduzibel) folgt aus Satz 2.4.10.1.

 $(a \text{ Primelement}) \Leftrightarrow ((a) \text{ Primideal}) \text{ folgt aus Satz } 2.4.10.2.$

 $((a) \text{ maximales Ideal}) \Rightarrow ((a) \text{ Primideal}) \text{ folgt aus Korollar 2.1.38}.$

Da R ein Hauptidealring ist folgt aus folgt aus Satz 2.4.10.3: (a irreduzibel) \Leftrightarrow ((a) maximales Ideal).

Die folgende Implikationen haben wir gezeigt:

$$(a \text{ Primelement}) \Longrightarrow (a \text{ irreduzibel})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Es folgt, dass alle Aussagen äquivalent sind.

2.4.2 Faktorielle Ringe

In diesem Abschnitt ist R ein Integritätsring.

Definition 2.4.14 Sei R ein Integritätsring und $a \in R$.

- 1. Eine **Primzerlegung von** a is eine Sequenz $p_1, \dots, p_r \in R$ mit p_i Primelement für alle i und $a\mathcal{R}p_1 \dots p_r$.
- 2. Eine **Zerlegung von** a **in irreduziblen Elementen** is eine Sequenz $p_1, \dots, p_r \in R$ mit p_i irreduzibel für alle i und $a\mathcal{R}p_1 \dots p_r$.

Beispiel 2.4.15 In $R = \mathbb{Z}$ ist die Primzerlegung eine Zerlegung in irreduziblen Elementen.

Lemma 2.4.16 Sei R ein Integritätsring. Sei $a\mathcal{R}p_1\cdots p_r$ eine Primzerlegungen und $a\mathcal{R}q_1\cdots q_s$ eine Zerlegungen in irrediziblen Elementen. Dann gilt r=s und $p_i\mathcal{R}q_i$ modulo Umnummerierung.

Beweis. Per Induktion nach r+s. Für r+s=0 ist die Aussage klar. Die Behauptung sei wahr für r+s-1. Es gilt $p_1\mathcal{R}q_1\cdots q_s$. Da p_1 eine Primzahl ist folgt, dass es ein $i\in [1,s]$ gibt mit $p_1|q_i$. Sei $b\in R$ mit $q_i=p_1b$. Da q_i irreduzibel ist, folgt $p_1\in R^\times$ oder $b\in R^\times$. Da p_1 Primelement ist $p_1\not\in R^\times$ also $b\in R^\times$ und $p_1\mathcal{R}q_i$. Es folgt $p_2\cdots p_r\mathcal{R}\prod_{k\neq i}q_k$ und die Behauptung folgt nach Induktionsannahme.

Korollar 2.4.17 Jede Primzerlegung ist bis auf Reihenfolge eindeutig bestimmt.

Beispiel 2.4.18 In $R = \mathbb{Z}[i\sqrt{5}]$ sind

$$3 \times 3 = 9 = (2 + i\sqrt{5})(2 - i\sqrt{5})$$

zwei Zerlegungen in irreduziblen Elementen. Es gilt aber 3 $\Re 2+i\sqrt{5}$ und 3 $\Re 2-i\sqrt{5}$.

Definition 2.4.19 Ein Integritätsring R heißt **faktoriell** falls gilt

- (E) (**Existenz**) Jedes $a \in R \setminus \{0\}$ hat eine Zerlegung in irreduziblen Elemente;
- (U) (Einzigkeit = Uniqueness) Diese Zerlegung ist bis auf Reihenfolge eindeutig.

Die Haupteigenschaft hier ist (U): zum Beispiel erfüllt $\mathbb{Z}[i\sqrt{5}]$ die Eigenschaft (E) aber nicht (U).

Satz 2.4.20 Sei R ein noetherscher Integritätsring. Dann gilt (E).

Beweis. Wir betrachten die folgende Familie von Ideale:

 $A = \{(a) \text{ Hauptideal } | a \neq 0 \text{ und } a \text{ hat keine Zerlegung in irreduziblen Elementen} \}.$

Insbesondere für $(a) \in A$ gilt $a \notin R^{\times}$ und a ist nicht irreduzibel. Angenommen (E) sei falsch. Dann ist A nicht leer. Da R noethersch ist gibt es ein maximales Element $(a) \in A$. Da a nicht irreduzibel ist gibt es $b, c \in R \setminus R^{\times}$ mit a = bc. Es gilt also $(a) \subsetneq (b)$ und $(a) \subsetneq (c)$. Aber da (a) maximal war gilt $(b), (c) \notin A$. Es gibt also Zerlegungen in irreduziblen Elementen $b\mathcal{R}p_1 \cdots p_r$ und $c\mathcal{R}q_1 \cdots q_s$. Daraus folgt $a\mathcal{R}p_1 \cdots p_r q_1 \cdots q_s$ und a hat auch eine Zerlegung in irreduziblen Elementen. Ein Widerspruch zu $(a) \in A$.

Satz 2.4.21 Sei R ein Integritätsring mit (E). Die folgende Aussagen sind äquivalent:

- 1. R ist faktoriell;
- 2. (**Lemma von Euklid**) Es gilt (a Primelement) \Leftrightarrow (a irreduzibel).
- 3. (Satz von Gauß) Es gilt $(a|bc \text{ und } a \text{ und } b \text{ sind teilerfremd}) \Rightarrow (a \text{ teilt } c)$. \Box

Beweis. $(2 \Rightarrow 1)$. Folgt vom Lemma 2.4.16.

 $(3\Rightarrow 2)$. Sei a irreduzibel und seien $b,c\in R$ mit a|bc. Falls a|b sind wir fertig. Andernfalls sei d mit d|a und d|b. Da a irreduzibel folgt $d\in R^{\times}$ oder $d\mathcal{R}a$. Im lezten Fall folgt a|b ein Widerspruch also $d\in R^{\times}$ und a und b sind teilerfremd. Nach Annahme gilt a|c.

 $(1 \Rightarrow 3)$. Seien $a, b, c \in R$ mit a|bc und a und b teilerfremd. Sei $d \in R$ mit ad = bc und seien $a\mathcal{R}p_1 \cdots p_r$, $b\mathcal{R}q_1 \cdots q_s$, $c\mathcal{R}n_1 \cdots n_t$ und $d\mathcal{R}m_1 \cdots m_u$ die Zerlegungen von a, b, c, d in irreduziblen Elementen. Es gilt

$$p_1 \cdots p_r m_1 \cdots m_u \mathcal{R} q_1 \cdots q_s n_1 \cdots n_t$$
.

Da dies zwei Zerlegungen in irreduziblen Elementen sind folgt: für jedes p_i gibt es ein j mit $p_i \mathcal{R} q_j$ oder ein k mit $p_i \mathcal{R} n_k$. Da a und b teilerfremd sind kommt der erste Fall nicht vor. Modulo Umnummerierung können wir annehmen $p_1 \mathcal{R} n_1$. Wir können also durch p_1 teilen. Es gilt

$$p_2 \cdots p_r m_1 \cdots m_u \mathcal{R} q_1 \cdots q_s n_2 \cdots n_t$$
.

Analog gibt es für p_2 ein j mit $p_2 = q_j$ oder $p_2 = n_k$ und da a und b teilerfremd sind kommer der erste Fall nicht vor. Nach Umnummerierung gilt $p_2 \mathcal{R} n_2$. Per Induktion folgt $t \geq r$ und $p_i \mathcal{R} n_i$ für alle i. Daraus folgt $a = p_1 \cdots p_r \mathcal{R} n_1 \cdots n_r | n_1 \cdots n_t$ und a | c.

Korollar 2.4.22 Ein Hauptidealring ist faktoriell.

Beweis. Sei R ein Hauptidealring. Dann ist R noethersch also (E) gilt. Dann gilt auch das Lemma von Euklid (Satz 2.4.13) und (U) gilt.

Satz 2.4.23 Sei R ein Integritätsring. Die folgende Aussagen sind äquivalent:

- 1. R ist faktoriell;
- 2. Jedes $a \in R \setminus \{0\}$ hat eine Primzerlegung.

Beweis. $(2 \Rightarrow 1)$. Eine Primzerlegung ist eine Zerlegung in irreduziblen Elementen also folgt (E). Nach Lemma 2.4.16 folgt (U).

 $(1 \Rightarrow 2)$. Nach dem obigen Satz gilt (a irreduzibel) \Leftrightarrow (a Primelement). Die Aussage 2. folgt jetzt nach (E).

Definition 2.4.24 Sei R ein faktorieller Ring und seien $a, b \in R$. Seien

$$a\mathcal{R}p_1^{\alpha_1}\cdots p_r^{\alpha_r}$$
 und $b\mathcal{R}p_1^{\beta_1}\cdots p_r^{\beta_r}$

die Primzerlegungen von a und b.

1. Der größter gemeinsame Teiler von a und b ist

$$ggT(a,b) = p_1^{\min(\alpha_1,\beta_1)} \cdots p_r^{\min(\alpha_r,\beta_r)}.$$

Der ggT ist nur modulo invertierbare Elementen wohl definiert.

1. Das kleinste gemeinsame Viefache von a und b ist

$$kgV(a,b) = p_1^{\max(\alpha_1,\beta_1)} \cdots p_r^{\max(\alpha_r,\beta_r)}.$$

Das kgV ist nur modulo invertierbare Elementen wohl definiert.

Bemerkung 2.4.25 Sei R faktoriell und seien $a, b \in R$. Die Elemente a, b sind genau dann teilerfremd, wenn ggT(a, b) = 1.

Lemma 2.4.26 Sei R ein Hauptidealring (also faktoriell). Seien $a_1, \dots, a_n \in R$.

- 1. Es gilt $(a_1) + \cdots + (a_n) = (a_1, \cdots, a_n) = (ggT(a_1, \cdots, a_n)).$
- 2. Es gilt $(a_1) \cap \cdots \cap (a_n) = (\text{kgV}(a_1, \cdots, a_n)).$

3. Es gilt
$$(a_1)\cdots(a_n)=(a_1\cdots a_n)$$
.

Beweis. Sei $a_i \mathcal{R} p_1^{\alpha_{i,1}} \cdots p_r^{\alpha_{i,r}}$ die Primzerlegung und seien $\beta_k = \max_i(\alpha_{i,k})$ und $\gamma_k = \min_i(\alpha_{i,k})$. Es gilt $\operatorname{kgV}(a_1, \cdots, a_n) = p_1^{\beta_1} \cdots p_r^{\beta_r}$ und $\operatorname{ggT}(a_1, \cdots, a_n) = p_1^{\gamma_1} \cdots p_r^{\gamma_r}$.

1. Die Gleichung $(a_1) + \cdots + (a_n) = (a_1, \cdots, a_n)$ gilt in jedem kommutativen Ring: sei $a \in (a_1) + \cdots + (a_n)$. Dann gibt es $x_1, \cdots x_n \in R$ mit $a = \sum_i x_i a_i \in (a_1, \cdots, a_n)$.

Umgekehrt, es gilt $a_i \in (a_1) + \cdots + (a_n)$ für jedes $i \in [1, n]$. Daraus folgt $(a_1, \dots, a_n) \subset (a_1) + \cdots + (a_n)$.

Sei $a \in R$ mit $(a) = (a_1, \dots, a_n)$. Dann gilt $a_i \in (a)$ für jedes i. Daraus folgt $a|a_i$ für jedes i. Sei $a\mathcal{R}p_1^{\delta_1} \cdots p_r^{\delta_r}$ die Primzerlegung von a. Es folgt $\delta_k \leq \min_i(\alpha_{i,k}) = \gamma_k$. Sei $b = p_1^{\gamma_1} \cdots p_r^{\gamma_r}$. Es gilt a|b und $b|a_i$ für jedes i. Es gilt aber auch $a = \sum_i x_i a_i$ also b|a. Daraus folgt $a\mathcal{R}b$ und a = b.

- 2. Sei $a \in R$ mit $(a) = (a_1) \cap \cdots \cap (a_n)$ und sei $b = p_1^{\beta_1} \cdots p_r^{\beta_r}$. Es gilt $a_i | b$ für jedes i also $b \in (a_1) \cap \cdots (a_n) = (a)$. Daraus folgt a | b. Sei $a \mathcal{R} p_1^{\delta_1} \cdots p_r^{\delta_r}$ die Primzerlegung von a. Es gilt $\delta_k \leq \beta_k$. Es gilt auch $a \in (a_i)$ also $a_i | a$ für jedes i. Daraus folgt $\delta_k \geq \alpha_{i,k}$ für jedes k und $\delta_k = \beta_k$ also a = b.
- 3. Sei $a \in R$ mit $(a) = (a_1) \cdots (a_n)$ und sei $b = a_1 \cdots a_n$. Es gilt $b \in (a_1) \cdots (a_n) = (a)$ also a|b. Es gilt auch $a \in (a_1) \cdots (a_n)$ also a is eine Summe von Elementen der Form $x_1a_1 \cdots x_na_n = bx_1 \cdots x_n$. Daraus folgt b|a und $a\mathcal{R}b$ also (a) = (b).

2.4.3 Satz von Gauß

Sei R ein faktorieller Ring.

Lemma 2.4.27 Es gilt $(R[X] \text{ Hauptidealring } \Leftrightarrow R \text{ K\"{o}rper}).$

Beweis. Siehe Übungsblatt 8.

Beispiel 2.4.28 Sei $R = \mathbb{Z}$. Der Ring $R[X] = \mathbb{Z}[X]$ ist kein Haupidealring da I = (X, 2) kein Hauptideal ist: Sei $P \in \mathbb{Z}[X]$ mit I = (P). Es folgt $2 \in (P)$ also P|2 und $P = \pm 2$. Aber es folgt auch P|X. Ein Widerspruch.

Definition 2.4.29 Sei $P = a_0 + \cdots + a_n X^n \in R[X]$ mit $p \neq 0$.

- 1. Der **Inhalt** von P ist $c(P) = ggT(a_0, \dots, a_n)$. Der Inhalt ist nur bis auf einem Element von R^{\times} definiert.
- 2. Das Polynom P heißt **primitiv** falls $c(P) = ggT(a_0, \dots, a_n) = 1$.

Bemerkung 2.4.30 1. Sei $P \in R[X]$ mit $p \neq 0$. Das Element P ist genau dann primitiv, wenn es kein Primelement $p \in R$ gibt mit p|P.

2. Sei $P = a_0 + \cdots + a_n X^n$ primitiv und $a \in R$ dann gilt

$$c(aP) = ggT(aa_0, \dots, aa_n) = aggT(a_0, \dots, a_n) = a.$$

Lemma 2.4.31 (Lemma von Gauß) Seien $P, Q \in R[X]$. Dann gilt

$$c(PQ) \mathcal{R} c(P)c(Q)$$
 i.a.W $c(PQ) = c(P)c(Q)$ (modulo R^{\times}).

Beweis. Erster Fall: c(P) = c(Q) = 1. Wir zeigen c(PQ) = 1. Sei $p \in R$ ein Primelement mit p|PQ. Wir arbeiten in R' = R/(p)[X] = R[X]/(p). Da p ein Primelement ist, ist (p) ein Primideal in R also ist R/(p) ein Integritätsring. Daraus folgt, dass R' = R/(p)[X] ein Integritätsring ist. Da p|PQ gilt [PQ] = [0] in R'. Es folgt [P] = [0] oder [Q] = [0] in R'. Es folgt [P] = [0] oder [Q] = [0] in [P] oder [P] ode

Im allgemein: sei a = c(P) und b = c(Q). Sei $P' = \frac{1}{a}P \in R[X]$ und $Q' = \frac{1}{b}Q \in R[X]$. Es gilt c(P') = c(Q') = 1. Daraus folgt c(P'Q') = 1 Es gilt also $c(PQ) = c(aP'bQ') = c(abP'Q') = ab \ c(P'Q') = ab = c(P)c(Q)$.

Satz 2.4.32 Sei R faktoriell und $K = \operatorname{Frac}(R)$. Es gilt

 $(P \in R[X] \setminus R \text{ irreduzibel}) \Leftrightarrow (P \text{ ist primitiv in } R[X] \text{ und irreduzibel in } K[X]).$

Beweis. (\Leftarrow). Sei $P = a_0 + \cdots + a_n X^n \in R[X]$ primitiv mit P irreduzibel in K[X]. Seien $Q, S \in R[X]$ mit P = QS. Da P irreduzibel in K[X] folgt $Q \in K[X]^{\times}$ oder $S \in K[X]^{\times}$. Aber es gilt $(K[X])^{\times} = K^{\times}$ also $Q \in R[X] \cap K = R$ oder $S \in R[X] \cap K = R$. Also ist Q oder ist S ein teiler von $ggT(a_0, \cdots, a_n) = 1$ i.e. $Q \in R^{\times}$ oder $S \in R^{\times}$.

(⇒). Falls es ein Primelement $p \in R$ gibt mit p|P, gilt P = pQ mit $\deg(Q) > 0$ also $Q \notin (R[X])^{\times}$ und $p \notin R^{\times} = (R[X])^{\times}$. Also ist P nicht irreduzibel. Widerspruch. Daraus folgt P primitiv.

Seien $Q, S \in K[X]$ mit P = QS. Wir schreiben $Q = \sum_k \frac{q_k}{r_k} X^k$ und $S = \sum_k \frac{s_k}{t_k} X^k$ mit maximalen gekürzten Brüchen $\frac{q_k}{r_k}$ und $\frac{s_k}{t_k}$. Seien

$$a = ggT(q_k), b = kgV(r_k) \text{ und } c = ggT(s_k) d = kgV(t_k).$$

Es gilt $Q' = \frac{a}{b}Q \in R[X]$ und $S' = \frac{c}{d}S \in R[X]$ und beide Polynome sind primitiv in R[X]. Es gilt also

$$bd = c(bdP) = c(bdQS) = c(acQ'S') = c(aQ'cS') \mathcal{R} \ c(aQ')c(cS') = ac.$$

Es folgt $\frac{a}{b}\frac{c}{d} = u \in R^{\times}$ und P = uQ'S'. Da P irreduzibel ist folgt $Q' \in (R[X])^{\times}$ oder $S' \in (R[X])^{\times}$ also $Q = \frac{a}{b}Q' \in (K[X])^{\times}$ oder $S = \frac{c}{d}S' \in (K[X])^{\times}$

Bemerkung 2.4.33 Für $p \in R$ gilt

p irreduzibel in $R[X] \Leftrightarrow p$ irreduzibel in R.

Satz 2.4.34 (Satz von Gauß) Sei R faktoriell. Dann ist R[X] faktoriell.

Beweis. Wir zeigen (E) für R[X]. Sei $K = \operatorname{Frac}(R)$. Da K[X] noethersch ist (K[X] ist ein Hauptidealring) ist (E) in K[X] wahr.

Sei $P \in R[X]$ und sei a = c(P). Es gilt P = aP' mit c(P') = 1. Das Element a lässt sich als Produkt von irreduziblen darstellen $a = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ mit p_i irreduzibel in

R. Da (E) für K[X] wahr ist gibt es irreduzible Polynome $P_1, \dots, P_s \in K[X]$ mit $P' = P_1^{\beta_1} \cdots P_r^{\beta_s}$. Seien $a_i, b_i \in R$ mit

$$P_i = \frac{a_i}{b_i} P_i'$$
 wobei $P_i' \in R[X]$ mit $c(P_i) = 1$.

Da P_i irreduzibel ist ist auch P'_i irreduzibel in K[X] und also in R[X] (nach dem obigen Satz). Es gilt also

$$P = aP' = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \frac{a_1^{\beta_1} \cdots a_s^{\beta_s}}{b_1^{\beta_1} \cdots b_s^{\beta_s}} (P_1')^{\beta_1} \cdots (P_s')^{\beta_s}.$$

Es folgt

$$b_1^{\beta_1}\cdots b_s^{\beta_s}P=aa_1^{\beta_1}\cdots a_s^{\beta_s}(P_1')^{\beta_1}\cdots (P_s')^{\beta_s}$$

und

$$ab_1^{\beta_1} \cdots b_s^{\beta_s} = c(b_1^{\beta_1} \cdots b_s^{\beta_s} P) \mathcal{R} a a_1^{\beta_1} \cdots a_s^{\beta_s} c(P_1')^{\beta_1} \cdots c(P_s')^{\beta_s} = a a_1^{\beta_1} \cdots a_s^{\beta_s}.$$

Daraus folgt $\frac{a_1^{\beta_1} \cdots a_s^{\beta_s}}{b_s^{\beta_1} \cdots b_s^{\beta_s}} = u \in \mathbb{R}^{\times}$ und

$$P = up_1^{\alpha_1} \cdots p_r^{\alpha_r} (P_1')^{\beta_1} \cdots (P_s')^{\beta_s}.$$

Dies zeigt (E).

Um (U) zu zeigen, genügt es zu zeigen: $P \in R[X]$ irreduzibel $\Rightarrow P$ Prielement *i.e.* (P) Primideal.

Fall 1: $P = p \in R$. Dann gilt R[X]/(P) = R[X]/(p) = (R/(p))[X]. Da p irreduzibel ist und R faktoriell ist (p) Primideal i nR. Es folgt R/(p) ist ein Integritätsring und R/(p)[X] ist ein Integritätsring.

Fall 2: $P \in R[X] \setminus R$. Wir haben ein injektiver Ringhomomorphismus $R \to K$, $a \mapsto \frac{a}{1}$. Damit erhalten wir ein injektiver Ringhomomorphismus $R[X] \to K[X]$ definiert durch $P = \sum_k a_k X^k \mapsto \sum_k \frac{a_k}{1} X^k$. Dank Komposition mit der kanonischen Projektion $K[X] \to K[X]/(P)$ haben wir ein Ringhomomorphismus

$$f: A[X] \to K[X]/(P).$$

Wir zeigen, dass $\operatorname{Ker} f = (P) \subset R[X]$. Daraus wird folgen, dass es ein injektiver Ringhomomorphismus

$$A[X]/(P) \to K[X]/(P)$$

gibt. In diesem Fall ist A[X]/(P) ein Unterring von K[X]/(P) und da P irreduzibel in K[X] ist, ist K[X]/(P) ein Integritätsring also R[X]/(P) auch.

Wir zeigen $\operatorname{Ker} f = (P) \subset R[X]$. Sei $Q \in (P) \subset R[X]$ i.e. Q = PS mit $S \in R[X]$. Dann gilt $S \in K[X]$ und $Q \in (P) \subset K[X]$ also f(Q) = [0]. Umgekehrt, sei $Q \in \operatorname{Ker} f$. Es gilt f(Q) = [0] also $f(Q) \in (P) \subset K[X]$. Es gibt also $S \in K[X]$ mit Q = PS.

Seien $a, b \in R$ mit $S = \frac{a}{b}S'$ und $S' \in R[X]$ und c(S') = 1. Sei c = c(Q) und $Q' \in R[X]$ primitiv mit Q = cQ'. Es gilt

$$cbQ' = aPS'.$$

Daraus folgt cb = c(cbQ') = c(aPS') \mathcal{R} ac(P)c(S') = a. Daraus folgt, dass es ein $u \in R^{\times}$ gibt mit ubc = a also $\frac{a}{b} = uc \in R$. Es folgt $S \in R[X]$ und $Q \in (P) \subset R[X]$.

2.5 Anwendung: irreduzible Polynome

Sei R ein Integritätsring und sei $K = \operatorname{Frac}(R)$.

Lemma 2.5.1 Sei $P \in K[X]$ irreduzibel. Dann ist K[X]/(P) ein Körper.

Beweis. Das Polynom ist ein Primelement (da K[X] faktoriell ist). Daraus folgt, dass K[X]/(P) ein Integritätsring ist. Sei $[Q] \neq [0]$ in K[X]/(P). Die Abbildung $K[X]/(P) \to K[X]/(P)$, $[S] \mapsto [Q][S]$ ist also injektiv. Aber K[X]/(P) ist auch ein endlich dimensionaler K-Vektorraum und diese Abbildung ist K-linear also ein Isomorphismus. Es folgt, dass diese Abbildung surjektiv ist. Es gibt also ein $[S] \in K[X]/(P)$ mit [Q][S] = [1] i.e. [Q] ist invertierbar.

Es ist also wichtig Irreduzibilitätskriterien für $P \in K[X]$ zu haben.

Satz 2.5.2 (Irreduzibilitätskriterium von Eisenstein) Seien R faktoriell, $P = a_n X^n + \cdots + a_0 \in R[X] \setminus R$ und $p \in R$ ein Primelement mit

- 1. $p \nmid a_n$
- 2. $p|a_k$ für $k \in [0, n-1]$ und
- 3. $p^2 \not| a_0$.

Dann ist P irreduzibel in K[X]. Falls P primitiv ist ist P irreduzibel in R[X].

Beweis. Der zweite Teil folgt aus dem Satz 2.4.32.

Ohne Einschränkung können wir annehmen, dass P primitiv ist. Nach dem Satz 2.4.32 genügt es zu zeigen, dass P irreduzibel in R[X]. Seien $Q, S \in R[X]$ mit P = QS und $0 < q = \deg Q, s = \deg S < n$. Wir schreiben $Q = \sum_{k=1}^q b_k X^k$ und $S = \sum_{k=1}^s c_k X^k$. Da p ein Primelement ist ist R/(p) ein Integritätsring und R/(p)[X] ist auch ein Integritätsring. Sei $L = \operatorname{Frac}(R/(p))$. In L[X] gilt

$$[a_n]X^n = [P] = [Q][R] = ([b_q]X^q + \dots + [b_0])([c_r]X^r + \dots + [c_0]).$$

Es folgt $[b_q][c_s] = [a_n] \neq 0$ also $[b_q] \neq 0$ und $[c_s] \neq 0$. Die Polynome [Q], [S] sind beide nicht konstant. Aber L[X] ist faktoriell also ist nach der obigen Gleichung X der einzige Primteiler von [Q] und [S]. Es folgt, dass X teilt [Q] und [S] und also $[b_0] = 0$ und $[c_0] = 0$. Daraus folgt $p|b_0$ und $p|c_0$ also $p^2|b_0c_0 = a_0$. Ein Widerspruch.

Beispiel 2.5.3 1. Sei $R = \mathbb{Z}$. Das Polynom $P = X^4 - 6$ ist irreduzibel in $\mathbb{Z}[X]$: Eisenstein mit p = 2 oder p = 3.

2. Allgemeiner sei $d \in \mathbb{Z}$ so, dass d hat ein Primteiler p mit Vielfachkeit 1. Dann ist $X^n - d$ irreduzibel für alle $n \in \mathbb{N}$: Eisenstein mit p.

3. Sei K ein Körper und R = K[X,Y]. Dann ist $P = Y^2 - X(X-1)(X-\lambda)$ für $\lambda \in K \setminus \{0,1\}$ irreduzibel: Eisenstein mit R = K[X] und p = X.

Definition 2.5.4 Sei $n \in \mathbb{N}$. Das n-te Kreisteilungspolynom ist

$$\Phi_n = \prod_{\substack{\text{ggT}(k,n)=1\\k=1}}^{n} (X - e^{\frac{2ik\pi}{n}}).$$

Korollar 2.5.5 Sei $p \in \mathbb{Z}$ eine Primzahl.

- 1. Es gilt $\Phi_p = X^{p-1} + \dots + X + 1$.
- 2. Das Polynom Φ_p ist irreduzibel in $\mathbb{Z}[X]$.

Beweis. 1. In $\mathbb{Q}[X]$ gilt

$$\Phi_p = \prod_{\substack{\text{ggT}(k,p)=1\\k-1}}^p (X - e^{\frac{2ik\pi}{n}}) = \prod_{k=1}^{p-1} (X - e^{\frac{2ik\pi}{n}}) = \frac{X^p - 1}{X - 1}.$$

Daraus folgt die Aussage.

- 2. Sei Y = X 1 und sei $P(Y) = \Phi_p(X) = \Phi_p(Y + 1)$. Wir zeigen zuerst (P irreduzibel $\Leftrightarrow \Phi_p$ irreduzibel).
- (⇒). Seien Q, S mit $\Phi_p = QS$. Dann gilt $P(Y) = \Phi_p(Y+1) = Q(Y+1)S(Y+1)$. Seien Q'(Y) = Q(Y+1) und S'(Y) = S(Y+1). Es gilt P = Q'S' also Q' ist invertierbar oder S' ist invertierbar. Es folgt Q ist invertierbar oder S ist invertierbar. Also Φ_p ist irreduzibel.

 (\Leftarrow) . Analog.

Es genügt zu zeigen, dass P irreduzibel ist. Es gilt

$$P(Y) = \Phi_p(Y+1) = \frac{(Y+1)^p - 1}{(Y+1) - 1} = Y^{p-1} + \binom{p}{p-1} Y^{p-2} + \dots + \binom{p}{1}.$$

Es gilt $p | \binom{p}{k}$ für 0 < k < p und $p^2 \not | p = \binom{p}{1}$. Nach Eisenstein folgt, dass P irreduzibel ist.

Satz 2.5.6 (Reduktionsverfahren) Seien R faktoriell, $P = a_n X^n + \cdots + a_0 \in R[X] \setminus R$ und I ein Primideal in R mit $a_n \notin I$. Sei $K = \operatorname{Frac}(R)$.

Dann gilt ([P] irreduzibel in $(R/I)[X] \Rightarrow P$ irreduzibel in K[X]).

Beweis. Ohne Einschränkung können wir annehmen, dass P primitiv ist. Wir zeigen, dass P irreduzibel in R[X] ist. Seien $Q, S \in R[X]$ mit P = QS. Es gilt [P] = [Q][S] und da [P] irreduzibel ist folgt [Q] invertierbar oder [R] invertierbar. Insbesondere gilt $\deg([Q]) = 0$ oder $\deg([S]) = 0$. Da $\deg([Q]) \leq \deg Q$ und $\deg([S]) \leq \deg S$, folgt $\deg(P) \geq \deg P - \deg(Q) = \deg(S) \geq \deg([S]) = \deg([P]) - \deg([Q]) = \deg([P]) = \deg(P)$ oder $\deg(P) \geq \deg P - \deg(S) = \deg(Q) \geq \deg([Q]) = \deg([P]) - \deg([S]) = \deg([P]) = \deg(P)$. In beide Fälle haben wir überall gleichungen und $\deg(Q) = 0$ oder $\deg(S) = 0$. Es folgt Q invertierbar oder S invertierbar.

Bemerkung 2.5.7 Das Polynom ist nicht unbedingt irreduzibel in R[X]: Für $R = \mathbb{Z}[X]$, I = (3) und P = 2X gilt [P] = [X] irreduzibel also P = 2X ist irreduzibel in $\mathbb{Q}[X]$ aber nicht in $\mathbb{Z}[X]$. Die Primzerlegung von P ist $P = 2 \cdot X$.

Beispiel 2.5.8 Sei $P = X^3 + 462X^2 + 2433X - 67691 \in \mathbb{Z}[X]$. Dann ist P irreduzibel: Sei I = (2). Es gilt $[P] = X^3 + X + 1 \in \mathbb{F}_2[X]$. Dieses Polynom ist irreduzibel da es keine Nullstelle in \mathbb{F}_2 gibt.

3 Körper

3.1 Grundbegriffe

Definition 3.1.1 1. Sei R ein Integritätsring und $f: \mathbb{Z} \to R$, $n \mapsto n \cdot 1_K$ und sei $\operatorname{Ker} f = (p)$. Die Zahl p heißt **Charakteristik von** R.

2. Das Bild Im f von f ist ein Integritätsunterring von R und heißt **Primring von** R.

Bemerkung 3.1.2 Sei R ein Integritätsring und $p = \operatorname{char}(R)$. Da $\mathbb{Z}/p\mathbb{Z} = \mathbb{Z}/\operatorname{Ker} f \simeq \operatorname{Im} f$ ein Integritätsring ist muss (p) ein Primideal sein. Also p = 0 oder p ist eine Primzahl. Es gilt

Primring von
$$R = \begin{cases} \mathbb{Z} & \text{falls } \operatorname{char}(R) = 0 \\ \mathbb{Z}/p\mathbb{Z} & \text{falls } \operatorname{char}(R) = p. \end{cases}$$

Definition 3.1.3 1. Ein Körper ist ein kommutativer Ring K mit $K^* = K \setminus \{0\}$.

- 2. Seien K, L zwei Körper. Eine Abbildung $\varphi : K \to L$ heißt **Körperhomomorphismus**. falls es ein Ringhomomorphismus ist.
- 2. Sei K ein Körper. Ein Teilkörper k von K ist ein Unterring von K so, dass $(x \in k \setminus \{0\} \Rightarrow x^{-1} \in k)$.
- 3. **Der Primkörper** P_K eines Körpers K ist

$$P_K = \bigcap_{k \subset K \text{ Teilk\"orper}} k.$$

Lemma 3.1.4 Sei K ein Körper. Es gilt

$$P_K = \begin{cases} \mathbb{Q} & \text{falls char}(R) = 0\\ \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} & \text{falls char}(R) = p. \end{cases}$$

Beweis. Sei $k \subset K$ ein Teilkörper. Es gilt $1_K \in k$ und also $\mathrm{Im} f \subset k$. Seien $a,b \in \mathrm{Im} f \subset k$ mit $b \neq 0$. Dann ist $\frac{a}{b} \in k$. Es folgt $\mathrm{Frac}(\mathrm{Im} f) \subset k$. Daraus folgt die Aussage.

Lemma 3.1.5 Sei $\varphi:K\to L$ ein Körperhomomorphismus. Dann ist φ injektiv. \square

Beweis. Folgt aus Lemma 2.1.33.

Lemma 3.1.6 Sei $K \subset L$ ein Teilkörper. Dann ist L ein K-Vektorraum.

Beweis. Die Addition ist die übliche Addition in L. Die Skalarmultiplikation von $a \in K$ mit $x \in L$ ist dank dem Produkt $ax \in L$ in L defniert. Die Eigenschaften eines Vektorraums folgen aus den Eigenschaften des Körpes L.

Definition 3.1.7 Sei *K* ein Körper.

- 1. Ein Körperhomomorphismus $K \subset L$ heißt Körpererweiterung von K.
- 2. Der **Grad** der Körpererweiterung $K \subset L$ ist $[L:K] = \dim_K L$.
- 3. Die Körpererweiterung $K \subset L$ heißt **endlich** falls $[L:K] < \infty$.
- 4. Ein Körper L' heißt **Zwischenkörper** der Erweiterung $K \subset L$ falls $K \subset L' \subset L$. falls

Beispiel 3.1.8 1. $\mathbb{R} \subset \mathbb{C}$ ist von Grad 2: $[\mathbb{C} : \mathbb{R}] = 2$.

2. Man zeigt, dass die Erweiterung $\mathbb{Q} \subset \mathbb{R}$ nicht endlich ist.

Bemerkung 3.1.9 Sei $K \subset L$ eine Erweiterung mit K und L endlich. Dann gilt

$$|L| = |K|^n$$
, wobei $n = [L:K]$.

Satz 3.1.10 (Gradformel) Seien $K \subset L \subset M$ Erweiterungen, sei $(e_i)_{i \in I}$ eine Basis von L als K-Vektorraum und sei $(f_j)_{j \in J}$ eine Basis von M als L-Vektorraum.

Dann ist $(e_i f_j)_{i \in I}$ eine Basis von M als K-Vektorraum.

Beweis. Wir zeigen, dass $(e_i f_j)_{i \in I}$ linear unabhängig ist. Seien Skalare $(\lambda_{i,j})_{i \in I}$ mit

$$\sum_{i \in I, j \in I} \lambda_{i,j} e_i f_j = 0.$$

Es gilt

$$\sum_{j \in J} \left(\sum_{i \in I} \lambda_{i,j} e_i \right) f_j = 0.$$

Da $(f_j)_{j\in J}$ linear unabhängig ist gilt

$$\sum_{i \in I} \lambda_{i,j} e_i = 0$$

für alle $j \in J$. Da $(e_i)_{i \in I}$ linear unabhängig ist gilt $\lambda_{i,j} = 0$ für alle i und alle j.

64 3 Körper

Wir zeigen, dass $(e_i f_j)_{i \in I}$ ein EZS ist. Sei $m \in M$. Es gibt Skalare $\mu_j \in L$ mit

$$x = \sum_{j} \mu_j f_j.$$

Es gibt auch Skalare $\lambda_{i,j}$ mit

$$\mu_j = \sum_i \lambda_{i,j} e_i.$$

Es folgt

$$x = \sum_{i,j} \lambda_{i,j} e_i f_j$$

und die Aussage folgt.

Korollar 3.1.11 Seien $K \subset L \subset M$ Erweiterungen. Es gilt

$$[M:K] = [M:L][L:K].$$

Korollar 3.1.12 Seien $K \subset L$ eine Erweiterung so, dass [L:K] eine Primzahl ist. Dann hat $K \subset L$ keine Zwischenkörper.

3.2 Algebraische und transzendente Elemente

Definition 3.2.1 Sei K ein Körper.

- 1. Der Ring K[X] ist ein Integritätsring. Der Quotientkörper Frac(K[X]) dieses Ringes heißt **der rationale Funktionkörper** und ist K(X) bezeichnet.
- 2. Die Elementen in K(X) heißen rationale Funktionen und sind der Form

$$\frac{P}{Q}$$

wobei $P \in K[X]$ und $Q \in K[X] \setminus \{0\}$.

Bemerkung 3.2.2 Es gilt $[K(X):K]=\infty$.

Lemma 3.2.3 Sei $K \subset L$ eine Erweiterung, sei $(K_i)_{i \in I}$ eine Familie von Teilkörpern von L und sei $A \subset L$ eine Teilmenge.

- 1. Dann ist $\bigcap_{i \in I} K_i$ ein Teilkörper von L.
- 2. Es gibt ein minimaler Teilkörper K(A) von L der A und K enthält.
- 3. Für $A = \{x_1, \dots, x_n\}$ gilt

$$K(A) = \left\{ \frac{P(x_1, \dots, x_n)}{Q(x_1, \dots, x_n)} \mid P, Q \in K[X_1, \dots, X_n] \right\}.$$

Beweis. 1. Übung.

2. Es gilt

$$K(A) = \bigcap_{\substack{K' \subset L \text{Unterk\"orper} \\ K \cup A \subset K'}} K'.$$

3. Übung.

Definition 3.2.4 Sei $K \subset L$ eine Erweiterung und sei $A \subset L$ eine Teilmenge.

- 1. Der Körper K(A) heißt der von A über K erzeugte Teilkörper von L.
- Für $A = \{a\}$ Schreiben wir K(A) = K(a).
- 2. Die Erweiterung $K \subset L$ heißt **einfach** falls es ein $a \in L$ gibt mit L = K(a).
- 3. Für $a \in L$ heißt [K(a) : K] der Grad von a über K

Definition 3.2.5 Sei $K \subset L$ eine Erweiterung und $a \in L$.

- 1. Das Element a heißt algebraisch über K, falls es ein $P \in K[X] \setminus \{0\}$ gibt P(a) = 0.
- 2. Falls a nicht algebraisch ist heißt a transzendent.

Beispiel 3.2.6 1. $i = \sqrt{-1} \in \mathbb{C}$ ist algebraisch über \mathbb{R} und \mathbb{Q} .

- 2. $\sqrt{2}$ ist algebraisch über \mathbb{Q} .
- 3. $X \in K(X)$ ist transzendent über K.
- 4. Man zeigt, dass e und π transzendent über \mathbb{Q} sind (aber nicht über \mathbb{R}).

Lemma 3.2.7 Sei $K \subset L$ eine Erweiterung und $a \in L^{\times}$.

- 1. Die Abbildung $\operatorname{ev}_a:K[X]\to L,\,P\mapsto P(a)$ ist ein Ringhomomorphismus.
- 2. Es gilt (ev_a injektiv) \Leftrightarrow (a transzendent).

In diesem fall gilt $K[X] \simeq \operatorname{Im}(\operatorname{ev}_a) = K[a] \subsetneq K(a) \simeq K(X)$.

3. Sei $(P) = \text{Ker}(ev_a)$. Dann ist (P) ein Primideal. Es gilt

 $((P) \text{ maximal}) \Leftrightarrow (P \text{ irreduzibel}) \Leftrightarrow (a \text{ algebraisch}).$

In diesem Fall gilt $K(a) = K[a] = \operatorname{Im}(\operatorname{ev}_a)$ und $[K(a) : K] = \operatorname{deg} P$.

66 3 Körper

Beweis. 1. Übung.

2. Die erste Aussage folgt aus der Definition. Da ev_a injektiv ist, gilt $\operatorname{Im}(\operatorname{ev}_a) \simeq K[X]$. Da $P(a) \neq 0$ für $P \neq 0$ haben wir ein Körperhomomorphismus $K(X) \to K(a) \subset L$ definiert durch $\frac{P}{Q} \mapsto \frac{P(a)}{Q(a)}$. Diese Abbildung ist injektiv (als Körperhomomorphismus) und surjektiv nach dem obigen Lemma. Daraus folgt $K[a] \simeq K[X] \subsetneq K(X) = K(a)$.

3. Der Quotient K[X]/(P) ist ein Unterring von L also ist ein Integritätsring. Daraus folgt, dass (P) ein Primideal ist. Da K[X] ein Hauptidealring ist, folgt die erste Äquivalenz aus dem Satz 2.4.13. Falls P irreduzibel ist gilt $P \neq 0$ und nach der Definition ist a algebraisch. Umgekehrt falls a algebraisch ist ist $(P) = \text{Ker}(\text{ev}_a)$ nicht trivial und ein Primideal. Die Aussage folgt aus dem Satz 2.4.13.

Wenn a algebraisch ist ist $K[a] = \operatorname{Im}(\operatorname{ev}_a) \simeq K[X]/(P)$ ein Körper (da (P) maximal ist). Aber es gilt $K[a] \subset K(a)$ und da K(a) der von a über K erzeugte Körper ist folgt K[a] = K(a). Daraus folgt die letzte Aussage.

Definition 3.2.8 Sei $K \subset L$ eine Erweiterung und $a \in L$ algebraisch. **Das minimal Polynom** von a über K ist das normierte Polynom χ_a so, dass $\operatorname{Ker}(\operatorname{ev}_a) = (\chi_a)$.

Bemerkung 3.2.9 Sei $K \subset L$ eine Erweiterung und $a \in L$ algebraisch.

- 1. Das Polynom χ_a is irreduzibel: Das Ideal Ker(ev_a) = (χ_a) ist ein Primideal also ist χ_a irreduzibel.
- 2. Es gilt deg $\chi_a = [K(a) : K]$.
- 3. Für $Q \in K[X]$ mit Q(a) = 0 gilt $\chi_a | Q$.

Beispiel 3.2.10 Die Zahlen $\sqrt{2}$, $i = \sqrt{-1}$, $\sqrt[3]{2}$ sind algebraisch. Es gilt

$$\chi_{\sqrt{2}} = X^2 - 2$$
, $\chi_{\sqrt{-1}} = X^2 + 1$ und $\chi_{\sqrt[3]{2}} = X^3 - 2$.

Satz 3.2.11 Sei $K \subset L$ eine Erweiterung und $a \in L$. Die folgende Aussagen sind äquivalent:

- 1. a is algebraisch,
- 2. K[a] = K(a),
- 3. $[K(a):K] < \infty$.

Beweis. $(1. \Leftrightarrow 2.)$ Folgt aus dem obigen Lemma.

 $(1. \Rightarrow 3.)$ Folgt aus dem obigen Lemma: Es gilt $\chi_a \neq 0$ und $[K(a):K] = \deg(\chi_a) < \infty$.

 $(3. \Rightarrow 1.)$ Folgt aus dem obigen Lemma: Für a transcendent gilt $K(a) \simeq K(X)$ und also $[K(a):K] = \infty$.

Lemma 3.2.12 Sei $K \subset L$ eine Erweiterung und $a \in L$. Es gilt $[K(a):K] | [L:K]_{\square}$

Beweis. Wir haben Erweiterungen $K \subset K(a) \subset L$. Nach der Gradformel gilt [L:K] = [L:K(a)][K(a):K].

Definition 3.2.13 Eine Erweiterung $K \subset L$ heißt **algebraisch** falls jedes $a \in L$ algebraisch über K ist. Ansonsten heißt $K \subset L$ transzendent.

Lemma 3.2.14 Sei $K \subset L$ ein endliche Erweiterung. Dann ist $K \subset L$ algebraisch.

Beweis. Sei $a \in L$. Es gilt [L:K] = [L:K(a)][K(a):K]. Insbesondere gilt $[K(a):K] < \infty$ und a ist algebraisch.

Satz 3.2.15 Sei $K \subset L$ eine Erweiterung. Sei

$$M = \{a \in L \mid a \text{ ist algebraisch ""uber K"}\}.$$

Dann ist M ein Zwischenkörper.

Beweis. Seien $a, b \in M$. Sei K(a, b) der von a, b erzeugte Teilkörper. Es gilt K(a, b) = (K(a))(b) und da b algebraisch über K ist, ist b auch algebraisch über K(a). Es folgt $[K(a,b):K(a)] = [(K(a))(b):K(a)] < \infty$. Daraus folgt [K(a,b):K] = [K(a,b):K(a)] = [K(a,b):K(a)] weil a algebraisch über K ist. Also ist K(a,b) endlich über K und alle Elemente in K(a,b) sind algebraisch über K i.e. $K(a,b) \subset M$. Es folgt $-a \in M$, $a+b \in M$, $ab \in M$ und $a^{-1} \in M$. Also M ist ein Teilkörper von L.

Definition 3.2.16 Sei $K \subset L$ eine Erweiterung. Dann heiß

$$\overline{K} = M = \{a \in L \mid a \text{ ist algebraisch ""uber K"} \}$$

der algebraische Abschluß von K in L.

Beispiel 3.2.17 1. Nicht alle algebraische Erweiterungen sind endlich. Sei $K = \mathbb{Q}$, sei $K_n = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p_n})$ wobei p_n die n-te Primzahl ist und sei

$$L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \cdots, \sqrt{p_n}, \cdots).$$

Dann gilt

$$K = K_0 \subsetneq K_1 \subsetneq K_2 \cdots \subsetneq K_n \subsetneq \cdots \subsetneq L.$$

Sei $M = \{a \in L \mid a \text{ ist algebraisch "über K"}\}$. Dann gilt $\sqrt{p_n} \in M$ für alle n also M = L, weil M ein Körper ist. Es folgt, dass L algebraisch "über K ist. Aber $[L:K] = \infty$.

2. Sei $K = \mathbb{Q}$ und $L = \mathbb{C}$. Dann ist

$$\overline{\mathbb{Q}} = M = \{ z \in \mathbb{C} \mid z \text{ ist algebraisch ""über" } \mathbb{Q} \ \}$$

algebraisch über \mathbb{Q} aber nicht endlich (es gilt $\sqrt{p} \in \overline{\mathbb{Q}}$ für alle Primzahl \mathbb{Q}). Es gilt auch $\overline{\mathbb{Q}} \subsetneq \mathbb{C}$, z.B. sind π und e nicht algebraisch (Anderer Beweis: $\overline{\mathbb{Q}}$ ist die Menge aller Nullstellen von Polynomen $P \in \mathbb{Q}[X]$. Da es nur endlich viele Nullstellen gibt und da $\mathbb{Q}[X]$ abzählbar ist, ist auch $\overline{\mathbb{Q}}$ abzählbar und also $\overline{\mathbb{Q}} \subsetneq \mathbb{C}$).

68 3 Körper

Satz 3.2.18 Sei $K \subset L$ eine Erweiterung. Dann sind die folgende Aussagen äquivalent:

- 1. Die Erweiterung $K \subset L$ ist endlich.
- 2. Es gibt algebraische Elemente $a_1, \dots, a_n \in L$ mit $L = K(a_1, \dots, a_n)$.

Beweis. $(1. \Leftrightarrow 2.)$ Sei (a_1, \dots, a_n) eine Basis von L über K. Dann sind a_1, \dots, a_n algebraisch und $L = K(a_1, \dots, a_n)$.

 $(2. \Leftrightarrow 1.)$ Per Induktion nach n. Für n = 1 gilt $[L : K] = [K(a_1) : K] < \infty$, weil a_1 ist algebraisch.

Angenommen $[K(a_1, \dots, a_{n-1}) : K] < \infty$. Da a_n algebraisch über K ist, ist a_n algebraisch über $K(a_1, \dots, a_{n-1})$. Es folgt

$$[L:K] = [K(a_1, \dots, a_{n-1})(a_n) : K(a_1, \dots, a_{n-1})][K(a_1, \dots, a_{n-1}) : K] < \infty.$$

Satz 3.2.19 Seien $K \subset L$ und $L \subset M$ algebraische Erweiterungen. Dann ist $K \subset M$ algebraisch.

Beweis. Sei $a \in M$. Da a algebraisch über L ist gibt est $P \in L[X]$ mit P(a) = 0. Wir schreiben $P = X^n + b_{n-1}X^{n-1} + \cdots + b_0$ mit $b_i \in L$. Sei $K' = K(b_0, \dots, b_{n-1})$. Da $K \subset L$ algebraisch ist ist $K \subset K'$ auch algebraisch und es gilt also $[K' : K] < \infty$. Es gilt also

$$[K'(a):K] = [K'(a):K'][K':K] < \infty$$

und K'(a) ist algebraisch über K also ist auch a algebraisch über K.

Definition 3.2.20 Ein Körper K heißt algebraisch abgeschlossen falls jedes Polynom $P \in K[X]$ mit deg $P \ge 1$ eine Nullstelle hat.

Satz 3.2.21 Sei K ein Körper. Die folgende Aussagen sind äquivalent:

- 1. Der Körper K ist algebraisch abgeschlossen.
- 2. Jedes Polynom $P \in K[X]$ mit deg $P \ge 1$ ist Produkt von Polynome von Grad 1.
- 3. Die irreduzible Elemente in K[X] sind assoziiert zu einem Element der Form X-a für $a\in K$
- 4. Für jede algebraische Erweiterung $K \subset L$ gilt K = L.

Beweis. $(1. \Rightarrow 2.)$ Sei $P \in K[X]$ mit $\deg P \geq 1$. Per Induktion nach $\deg P$. Für $\deg P = 1$ ist die Aussage klar. Für $\deg P > 1$: sei a eine Nullstelle von P. Dann gilt P = (X - a)Q für ein $Q \in K[X]$ mit $\deg Q = \deg P - 1$. Per Induktion ist Q ein Produkt von Polynome von Grad 1 und die Aussage folgt.

 $(2. \Rightarrow 3.)$ Sei P irreduzibel. Dann gilt deg $P \ge 1$: Elemente von Grad 0 sind invertierbar oder Null. Dann ist P produkt von Polynome von Grad 1. Da P irreduzibel ist gibt es nur ein Faktor. Es folgt deg P = 1.

 $(3. \Rightarrow 4.)$ Sei $K \subset L$ eine algebraisch Erweiterung und sei $a \in L$. Dann ist $\chi_a \in K[X]$ irreduzibel und normiert. Es ist also von Grad 1 und normiert. Da a eine Nullstelle von χ_a ist gilt $\chi_a = X - a$. Aber $\chi_a \in K[X]$ also $a \in K$.

 $(4.\Rightarrow 1.)$ Sei $P\in K[X]$ mit $\deg P\geq 1.$ Sei Q ein normiertes irreduzible Polynom mit Q|P und $\deg Q\geq 1.$ Es genügt zu zeigen, dass Q eine Nullstelle hat. Da Q irreduzibel ist ist (Q) ein maximales Ideal. Also ist L=K[X]/(Q) ein Körper. Es gilt $K\subset L$ und $[L:K]=\deg Q<\infty.$ Also ist die Erweiterung $K\subset L$ algebraisch und es gilt K=L. Es folgt $\deg Q=[L:K]=1$ und Q=X-a für ein $a\in K.$ Also ist $a\in K$ eine Nullstelle von Q.

Satz 3.2.22 (Gauß-d'Alembertscher Fundamentalsatz der Algebra)

Der Körper \mathbb{C} ist algebraisch abgeschlossen.

Beweis. Sei $P \in \mathbb{C}[X] \setminus \mathbb{C}$. Angenommen P hätte keine Nullstelle. Dann wäre $f(z) = \frac{1}{P(z)}$ eine ganze holomorphe Funktion über z mit $\lim_{|z| \to \infty} f(z) = 0$. Nach dem Satz von Liouville muss f konstant sein. Ein Widerspruch da P nicht konstant ist.

3.3 Konstruktionen mit Zirkel und Lineal

In diesem Abschnitt werden wir drei Probleme von den alten griechischen Mathematikern Pythagoras und Euklid lösen:

- die Verdopplung des Würferls,
- die Quadratur des Kreises und
- das Dreiteilen von Winkeln.

Definition 3.3.1 Sei M eine Teilmenge der euklidischen Ebene E mit mindestens 2 Elemente.

- 1. Wir betrachten die folgende Menge GK(M) von Geraden und Kreisen:
 - die Geraden (P,Q) durch zwei Punkte P,Q aus M,
 - die Kreise C mit Mittelpunkt $P \in M$ durch einen Punkt $Q \in M$ und

70 3 Körper

• die Kreise C mit Mittelpunkt $P \in M$ und Radius den Abstand zwischen Q und S, wobei $Q, S \in M$.

- 2. Die Menge aller Punkte die dank Punkte aus M in einem Schritt konstruierbar sind ist die Teilmenge $\operatorname{Konst}_1(M)$ aus E aller Punkte die im Schnitt von zwei verschiedenen Elementen aus $\operatorname{GK}(M)$ enthalten sind.
- 3. Die Menge $\operatorname{Konst}_n(M)$ aller Punkte die dank Punkte aus M in n Schritt konstruierbar sind ist per Induktion wie folgt definiert
 - $Konst_0(M) = M$,
 - $\operatorname{Konst}_{n+1}(M) = \operatorname{Konst}_1(\operatorname{Konst}_n(M)).$
- 4. Die Menge Konst(M) aller Punkte die dank Punkte aus M konstruierbar sind ist

$$\operatorname{Konst}(M) = \bigcup_{n=0}^{\infty} \operatorname{Konst}_n(M).$$

Seien P_0 und P_1 zwei Punkte in der euklidischen Ebene E (ohne Einschränkung $P_0 = 0$ und $P_1 = 1$). Das Hauptproblem der Konstruktionen mit Zirkel und Lineal ist die folgende Frage:

welche Punkte P der Ebene sind dank P_0 und P_1 konstruierbar?

In anderen Wörter wollen wir die Menge

$$W = Konst(\{(0,0);(1,0)\})$$

bestimmen.

Definition 3.3.2 1. Eine komplexe Zahl $z \in \mathbb{C}$ heißt **konstruierbar**, falls z ein konstruierbares Punkt in der Ebene E darstellt $(i.e.\ z \in W)$.

- 2. Eine reelle Zahl $x \in \mathbb{R}$ heißt konstruierbar falls (x, 0) eine konstruierbare komplexe Zahl ist. Sei $W_{\mathbb{R}}$ die Menge aller Konstruierbare reelle Zahlen.
- **Lemma 3.3.3** 1. Gegeben P,Q zwei Punkte in W. Dann ist die Mittelsenkrechte G der Punkte P und Q konstruierbar.
- 2. Gegeben P, Q, R drei Punkte in W. Dann kann man dank Zirkel und Lineal die Gerade G, die parallel zur Gerade (P, Q) ist und durch R geht konstruieren.
- 3. Sei G eine Konstruierbare Gerade und $P \in G$ ein konstruierbarer Punkt. Dann ist die Gerade G', die Senkrecht zu G ist und durch P geht konstruierbar.

Beweis. 1. Sei C der Kreis mit Mittelpunkt P der durch Q geht und C' der Kreis mit Mittelpunkt Q der durch P geht. Seien $\{R,S\} = C \cap C'$. Dann gilt G = (RS).

- 2. Sei C der Kreis mit Mittelpunkt P und Radius den Abstand zwischen Q und R und C der Kreis mit Mittelpunkt R und Radius den Abstand zwischen Q und P. Dann gilt $C \cap C' = \{S, S'\}$ so, dass PQRS und PRQS' Parallelogramme sind. Es gilt G = (RS).
- 3. Sei C der Kreis mit Mittelpunkt P und Radius 1 und seien $\{Q,R\}=C\cap G$. Dann ist G' die Mittelsenkrechte der Punkte Q und R.

Korollar 3.3.4 In der komplexen Ebene E sind die horizontale Achse H und die vertikale Achse V konstruierbar.

Lemma 3.3.5 Sei $z = x + iy \in \mathbb{C}$. Dann gilt

$$z \in W \Leftrightarrow x, y \in W_{\mathbb{R}}.$$

Beweis. (\Rightarrow) Sei $z = x + iy \in W$. Sei G die Gerade, die parallel zur vertikalen Achse ist und durch z geht. Dann ist (x,0) der Schnittpunkt von G mit der horizontalen Achse H und $x \in W_{\mathbb{R}}$. Sei G' die Gerade, die parallel zur horizontalen Achse ist und durch z geht. Dann ist (0,y) der Schnittpunkt von G' mit der vertikalen Achse V. Sei G der Kreis mit Mittelpunkten (0,0), der durch (0,y) geht. Dann gilt $H \cap C = \{(-y,0),(y,0).$

(\Leftarrow) Seien $x, y \in W_{\mathbb{R}}$. Dann gilt $(x, 0), (y, 0) \in W$. Wie oben folgt $(0, y) \in W$. Sei G die Gerade die Senkrecht zu H ist und durch (x, 0) geht und sei G' die Gerade die Senkrecht zu V ist und durch (0, y) geht. Dann gilt $z = G \cap G'$.

Bemerkung 3.3.6 Wenn man die Menge W charakterisieren möchtet, genügt es also die Menge $W_{\mathbb{R}}$ zu charakterisieren.

Korollar 3.3.7 Es gilt

$$W_{\mathbb{R}} = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} \text{ mit } x + iy \in W\} \text{ und } W = \{x + iy \in \mathbb{C} \mid x, y \in W_{\mathbb{R}}\}.$$

Satz 3.3.8 Es gilt $\mathbb{Q} \subset W_{\mathbb{R}} \subset \mathbb{R}$ und $W_{\mathbb{R}}$ ist ein Körper.

Beweis. Wir zeigen, dass $W_{\mathbb{R}}$ ein Körper ist. Daraus folgt die Behauptung $\mathbb{Q} \subset W$. Seien $x, y \in W_{\mathbb{R}}$. Dann sind (x, 0), (y, 0), (0, x) und (0, y) in W.

Sei C der Kreis mit Mittelpunkt (x,0) und Radius |y|. Dann gilt $\{(x-y,0),(x+y,0)\}=C\cap H$. Daraus folgt $x-y\in W_{\mathbb{R}}$ und $(W_{\mathbb{R}},+)$ ist eine Gruppe.

Sei G die Gerade, die parallel zur Gerade ((0,y),(x,0)) ist und durch (0,1) geht. Dann Dann gilt $(\frac{x}{y},0)=G\cap H$ und $\frac{x}{y}\in W_{\mathbb{R}}$. Es folgt, dass W_R ein Körper ist.

72 3 Körper

Korollar 3.3.9 Sei $z \mapsto \bar{z}$ die komplexe konjugation.

- 1. Es gilt $\overline{W} = W$.
- 2. Es gilt $\mathbb{Q} \subset W \subset \mathbb{C}$ und W ist ein Körper.

Beweis. 1. Sei $z=x+iy\in W$. Dann gilt $x,y\in W_{\mathbb{R}}$ also $x,-y\in W_{\mathbb{R}}$ und also $x-iy\in W$.

2. Es gilt $\mathbb{Q} \subset W_{\mathbb{R}} \subset W$. Seien z = x + iy und z' = x' + iy' in W. Dann gilt $x, y, x', y' \in W_{\mathbb{R}}$. Insbesondere gilt

$$-x' \in W_{\mathbb{R}}, \ -y' \in W_{\mathbb{R}}, \ \frac{xx' + yy'}{x^2 + y^2} \in W_{\mathbb{R}} \text{ und } \frac{xy' - x'y}{x^2 + y^2} \in W_{\mathbb{R}}.$$

Daraus folgt $z - z' = (x - x') + i(y - y') \in W$ und

$$\frac{z'}{z} = \frac{xx' + yy'}{x^2 + y^2} + i\frac{xy' - x'y}{x^2 + y^2} \in W.$$

Es folgt, dass W ein Körper ist.

Lemma 3.3.10 Sei $x \in W_{\mathbb{R}}$ mit x > 0. Dann gilt $\sqrt{x} \in W_{\mathbb{R}}$.

Beweis. Seien $a = \frac{x-1}{2}$ und $b = \frac{x+1}{2}$. Dann gilt $a, b \in W_{\mathbb{R}}$. Es gilt auch $b^2 - a^2 = (b-a)(b+a) = 1 \cdot x = x$.

Sei G die Gerade die Senkrecht zur horizontalen Achse ist und durch (a,0) geht. Sei C der Kreis mit Mittelpunkt (0,0) und Radius b. Sei z ein Punkt im Schnitt $C \cap G$. Nach dem Satz von Pythagoras ist der Abstand zwischen z und (a,0) gleich $\sqrt{b^2 - a^2} = \sqrt{x}$.

Korollar 3.3.11 Sei $z \in W$. Dann gilt $\sqrt{z} \in W$.

Beweis. Wir schreiben $z = \varrho e^{i\theta}$. Es gilt $\sqrt{z} = \pm \sqrt{\varrho} e^{i\frac{\theta}{2}}$. Es genügt also zu zeigen, dass $\sqrt{\varrho} \in W$ und $\pm e^{i\frac{\theta}{2}} \in W$.

Wir schreiben z = x + iy. Es gilt $x, y \in W_{\mathbb{R}}$ also $\varrho^2 = x^2 + y^2 \in W_{\mathbb{R}}$ und aus dem obigen Lemma folgt $\varrho \in W_{\mathbb{R}} \subset W$ und $\sqrt{\varrho} \in W_{\mathbb{R}} \subset W$. Daraus folgt $e^{i\theta} = \frac{z}{\varrho} \in W$.

Sei C der Kreis mit Mittelpunkt (0,0) und Radius 1 und sei G die Mittelsenkrechte der Punkte (1,0) und $e^{i\theta}$. Dann gilt $\{\pm e^{i\frac{\theta}{2}}\}=G\cap C\subset W$.

Lemma 3.3.12 Sei $K \subset W_{\mathbb{R}}$ ein Teilkörper und sei

$$M = K(i) = \{a + ib \in \mathbb{C} \mid a, b \in K\}$$

die Menge aller Punkte in der Ebene mit koordinaten in K.

- 1. Sei $z \in \mathbb{C}$ mit $[M(z):M] \leq 2$. Dann gilt $z \in W$.
- 2. Sei $z = x + iy \in \text{Konst}_1(M)$. Dann gilt $M(z) : M] \leq 2$ und $[K(x,y) : K] \leq 2$.

Beweis. 1. Sei $z \in \mathbb{C}$ mit $[M(z):M] \leq 2$. Für [M(z):M]=1 ist die Aussage klar. Für [M(z):M]=2 gibt es ein Polynom $P \in M[X]$ mit P(z)=0 und deg P=2. Nach der pq-Formel genügt es zu zeigen, dass für $z' \in M$ gilt $\sqrt{z'} \in W$. Dies folgt aus dem obigen Korollar.

2. Seien G und G' zwei Geraden aus GK(M) die sich in einem Punkt schneiden. Es gilt $G=(z_1z_2)$ mit $z_1=x_1+iy_1\in M$ und $z_2=x_2+iy_2\in M$ und es gilt $G'=(z_1'z_2')$ mit $z_1'=x_1'+iy_1'\in M$ und $z_2'=x_2'+iy_2'\in M$. Dann sind die Punkte in G der form $(z_1-z_2)t+z_2$ mit $t\in R$. Die Punkte in G' sind der form der form $(z_1'-z_2')t'+z_2'$ mit $t'\in R$. Sei $z=G\cap G'$. Es gilt $z=(z_1-z_2)t+z_2=(z_1'-z_2')t'+z_2'$. Es folgt

$$\begin{cases} t(x_1 - x_2) - t'(x_1' - x_2') = x_2' - x_2 \\ t(y_1 - x_2) - t'(y_1' - y_2') = y_2' - y_2 \end{cases}$$

Dies ist ein lineares System und hat eine Lösung (da sich G und G' in einem Punkt schneiden. Diese Lösung ist im Körper K enthalten da alle x_i , x_i' , y_i und y_i' in d K enthalten sind. Es folgt $z \in M$ und $x, y \in K$.

Sei G eine Gerade aus GK(M) und C ein Kreis aus GK(M). Es gilt $G=(z_1z_2)$ mit $z_1=x_1+iy_1\in M$. Dann sind die Punkte in G der form $z=(z_1-z_2)t+z_2$ mit $t\in \mathbb{R}$. Ein Punkt $z\in C$ erfüllt eine Gleichung der Form $|z-z_0|^2=r^2$, wobei $z_0=a+ib\in M$ und $a,b,r\in K$. Dies liefert eine Quadratische Gleichung für t:

$$(t(x_1 - x_2) - a)^2 + (t(y_1 - y_2) - b)^2 = r^2.$$

Es folgt, dass $[M(t):M] \le 2$ und [K(t):K] = 2. Da $z \in M(t)$, folgt $M(z):M] \le 2$. Da $x,y \in K(t)$ folgt $[K(x,y):K] \le 2$.

Seien C und C' zwei Kreise aus GK(M). Ein Punkt $z=x+iy\in C$ erfüllt eine Gleichung der Form $|z-z_0|^2=r^2$, wobei $z_0=a+ib\in M$ und $a,b,r\in K$. Ein Punkt $z=x+iy\in C'$ erfüllt eine Gleichung der Form $|z-z_0'|^2=R^2$, wobei $z_0=c+id\in M$ und $c,d,R\in K$. Die Differenz der Gleichungen ist ein Gleichung in x,y von Grad 1:

$$2x(a-c) + 2y(b-d) + c^2 + d^2 - a^2 - b^2 = R^2 - r^2.$$

Dies ist die Gleichung einer Gerade $G \in GK(M)$. Es gilt also $C \cap C' = G \cap C$ und die Aussage folgt aus dem obigen Fall.

Satz 3.3.13 Sei $z \in \mathbb{C}$. Dann sind die folgende Aussagen äquivalent:

- 1. $z \in W$.
- 2. Es gibt eine folge von Körpererweiterungen $\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_n \subset \mathbb{C}$ mit $[K_{i+1}:K_i]=2$ und $z\in K_n$.

74 3 Körper

Beweis. $(1. \Rightarrow 2.)$ Sei $z_1 = x_1 + iy_1, \cdots, z_n x_n + iy_n = z$ eine Folge von Punkten so, dass $z_{j+1} \in \operatorname{Konst}_1(\{0,1,z_1,\cdots,z_j\})$. Sei $K_j = \mathbb{Q}(x_1,y_1,\cdots,x_j,y_j)$ und $M_j = K_j(i)$ für $j \in [1,n]$. Dann gilt $z_1,\cdots,z_j \in M_j$ und $[M_{j+1}:M_j] \leq 2$ nach Punkt 2 des obigen Lemmas. Daraus folgt die Behauptung.

 $(2. \Rightarrow 1.)$ Folgt nach Induktion aus dem Punkt 1 des obigen Lemmas.

Korollar 3.3.14 (Wantzel) Sei $z \in W$. Dann ist z algebraisch über \mathbb{Q} und es gilt $[\mathbb{Q}(z):\mathbb{Q}]=2^k$ für ein $k\in\mathbb{N}$.

Beweis. Für eine folge von Körpererweiterungen $\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_n \subset \mathbb{C}$ mit $[K_{i+1}:K_i]=2$ und $z\in K_n$ gilt (per Induktion nach n) $[K_n:\mathbb{Q}]=2^n$. Da $z\in K_n$ gilt $\mathbb{Q}(z)\subset K_n$ und $[\mathbb{Q}(z):\mathbb{Q}]$ ist ein Teiler von 2^n .

Korollar 3.3.15 Das Delische Problem der Würfelverdopplung (Konstruktion von $\sqrt[3]{2}$) ist nicht möglich.

Beweis. Es gilt
$$\sqrt[3]{2} \notin W$$
, weil $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$.

Theorem 3.3.16 (Lindemann) Die Zahl
$$\pi$$
 ist transzendent über \mathbb{Q} .

Korollar 3.3.17 Die Quadratur des Kreises (Konstruktion von π) ist nicht möglich.

Korollar 3.3.18 Das Dreiteilen von Winkeln (Konstruktion von $e^{i\frac{\theta}{3}}$ aus $\mathbb{Q}(e^{i\theta})$) ist nicht für alle Winkel möglich.

Beweis. Sei $\theta = \frac{\pi}{3}$. Dann gilt $e^{i\theta} = \frac{1+i\sqrt{3}}{2}$. Da $i \in W$ und $\sqrt{3} \in W$ (es gilt $[\mathbb{Q}(\sqrt{3}:\mathbb{Q}]=2)$ gilt $e^{i\theta} \in W$. Falls $e^{i\frac{\theta}{3}}$ aus $\mathbb{Q}(e^{i\theta})$ konstruierbar ist gilt $e^{i\frac{\theta}{3}} \in W$ und also $\cos \frac{\pi}{9} \in W$. Es folgt $[\mathbb{Q}(\cos \frac{\pi}{9}):\mathbb{Q}]=2^k$ für ein k.

Dank der Formel $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, gilt aber für $x = \cos \frac{\pi}{9}$:

$$8x^3 - 6x - 1 = 0.$$

Dieses Polynom ist primitiv über \mathbb{Z} . Es hat auch keine Nullstelle: sei $y \in \mathbb{Z}$ eine Nullstelle. Dann gilt $y(8y^2-6)=1$ und $y \in \mathbb{Z}^{\times}$ also $y=\pm 1$. Aber $8(1)^3-6(1)-1=1$ und $8(-1)^3-6(-1)-1=-3$. Ein Widerspruch. Es folgt, dass dieses Polynom irreduzibel über \mathbb{Z} ist und also auch über \mathbb{Q} . Daraus folgt $[\mathbb{Q}(\cos\frac{\pi}{9}):\mathbb{Q}]=3$ und $\cos\frac{\pi}{9} \notin W$.

Konstruirbare regelmäßige n-Ecke.

Lemma 3.3.19 Seien $m, a \in \mathbb{N}$ mit $a, m \ge 2$ so, dass $p = a^m + 1$ eine Primzahl ist. Dann gilt $m = 2^n$ für ein $n \in \mathbb{N}$ und a ist gerade.

Beweis. Falls m keine Potenz von 2 ist, dann hat m ein ungeraden Primteiler p und es gilt m = qr. Daraus folgt

$$a^{m} + 1 = a^{qr} - (-1)^{q} = (a^{r})^{q} - (-1)^{q} = (a^{r} + 1)((a^{r})^{q-1} - (a^{r})^{q-2} + \dots + 1).$$

Dies folgt aus der Formel $X^q - Y^q = (X - Y)(X^{q-1} + X^{q-2}Y + \cdots + Y^{q-1})$. Also ist $a^r + 1$ ein Teiler von $a^m + 1$. Da $a^m + 1$ eine Primzahl ist, muss $a^r + 1 = 1$ oder $a^r + 1 = a^m + 1$ gelten. Es folgt a = 0 oder r = m. Ein Widerspruch. Daraus folgt, dass es ein $n \in \mathbb{N}$ gibt mit $m = 2^n$.

Außerdem gilt $a^m+1\geq 3$ also muss a^m+1 ungerade sein. Es folgt, dass a gerade sein muss.

Definition 3.3.20 Die Zahlen der Form $2^{2^n} + 1$ heißen **Fermat-Zahlen**.

Beispiel 3.3.21 1. (Fermat). Für n=0, 1, 2, 3, 4 sind die Zahlen 3, 5, 17, 257 und 65537 Fermat-Primzahlen.

2. (Euler). Für n = 5 ist die Zahl $2^{2^5} + 1 = 4$ 294 967 297 keine Primzahl: Es gilt

$$2^{16} = 65536 = 641 \times 102 + 154 \equiv 154 \pmod{641}$$
 also

$$2^{32} = (2^{16})^2 \equiv 154^2 = 23716 = 641 \times 36 + 640 \equiv -1 \pmod{641}$$
. Es folgt
$$2^{2^5} + 1 = 2^{32} + 1 \equiv 0 \pmod{641}$$
.

3. Es ist nicht bekannt, ob es weitere Fermat-Primzahlen gibt...

Satz 3.3.22 (Gauß, Wantzel) Falls das regelmäßiges n-Eck konstruierbar ist (i.e. $e^{\frac{2i\pi}{n}} \in W$), dann wird n nur von 2 und Fermat-Primzahlen geteilt.

Beweis. Falls das regelmäßiges n-Eck konstruierbar ist, ist für p ein Teiler von n das regelmäßiges p-Eck auch konstruierbar. Aber für p eine Primzahl ist $\Phi_p = X^{p-1} + \cdots + 1$ irreduzibel und $\Phi_p(e^{\frac{2i\pi}{p}}) = 0$. Es folgt $\chi_{e^{\frac{2i\pi}{p}}} = \Phi_p$ und $[\mathbb{Q}(e^{\frac{2i\pi}{p}}):\mathbb{Q}] = p-1$. Da $e^{\frac{2i\pi}{p}} \in W$ gilt $p-1=2^m$ für ein m also $2^m+1=p$ ist eine Primzahl. Aus dem obigen Lemma folgt p=2 (für m=0) oder $p=2^{2^n}+1$ für ein n.

Bemerkung 3.3.23 Man zeigt, dass das regelmäßiges n-Eck genau dann konstruierbar ist, wenn $n=2^m p_1 \cdots p_r$, wobei p_1, \cdots, p_r verschiedene Fermat-Primzahlen sind.

4.1 Zerfallungskörper

Definition 4.1.1 Sei $K \subset L$ eine Erweiterung. Die Galois-Gruppe der Erweiterung ist

$$Gal(L/K) = \{ f \in Aut(L) \mid f|_K = Id_K \}.$$

Beispiel 4.1.2 1. Es gilt $Gal(\mathbb{C}/\mathbb{R}) = \{Id_{\mathbb{C}}, \sigma\}$, wobei σ die komplexe Konjugation ist.

2. Sei $P_K \subset K$ der Primkörper. Dann gilt $f|_{P_K} = \mathrm{Id}_{P_K}$ für $f \in \mathrm{Aut}(K)$ Also $\mathrm{Gal}(K/P_K) = \mathrm{Aut}(K)$.

Satz 4.1.3 Sei $f: K \to K'$ ein Körperisomorphismus.

1. Dann ist $F: K[X] \to K'[X]$ definiert durch $F(a_nX^n + \cdots + a_0) = f(a_n)X^n + \cdots + f(a_0)$ ein Ringisomorphismus.

Seien $K \subset L$ und $K' \subset L'$ Körpererweiterungen und sei $a \in L$.

- 2. Sei $\widehat{f}:K(a)\to L'$ eine Fortsetzung von f. Dann ist $\widehat{f}(a)$ eine Nullstelle a' von dem irreduziblen Polynom $F(\chi_a)$.
- 3. Sei a' eine Nullstelle von $F(\chi_a)$. Dann gibt es genau eine Fortsetzung $\widehat{f}:K(a)\to L'$ von f mit $\widehat{f}(a)=a'$. Der Körperhomomorphismus \widehat{f} ist ein Isomorphismus

$$\widehat{f}: K(a) \simeq K'(a').$$

Beweis. 1. Übung.

- 2. Wir schreiben $\chi_a = X^n + b_{n-1}X^{n-1} + \cdots + b_0$. Es gilt $0 = \widehat{f}(0) = \widehat{f}(\chi_a(a)) = \widehat{f}(a^n + b_{n-1}a^{n-1} + \cdots + b_0) = \widehat{f}(a)^n + f(b_{n-1})\widehat{f}(a)^{n-1} + \cdots + f(b_0) = F(\chi_a)(\widehat{f}(a))$. Es folgt, dass $a' = \widehat{f}(a)$ eine Nullstelle von $F(\chi_a)$ ist. Da F ein Isomorphimus ist und χ_a irreduzibel ist, folgt, dass $F(\chi_a)$ auch irreduzibel ist.
- 3. Wir zeigen, dass die Fortsetzung \widehat{f} eindeutig ist: Es gilt $K(a) \simeq K[X]/(\chi_a)$, wobei $a \leftrightarrow [X]$. Also ist ein Element in K(a) der Form [Q] für $Q = b_n X^n + \cdots + b_0 \in K[X]$ i. e. der Form $b_n a^n + \cdots + b_0$. Dann gilt $\widehat{f}([Q]) = \widehat{f}(b_n)\widehat{f}(a)^n + \cdots + \widehat{f}(b_0) = f(b_n)\widehat{f}(a)^n + \cdots + f(b_0) = f(b_n)(a')^n + \cdots + f(b_0)$ und \widehat{f} ist eindeutig bestimmt.

Wir zeigen, dass es eine Forsetzung gibt. Sei $f': K[X] \to L$ der Ringhomomorphismus definiert durch $f'(P) = f'(b_n X^n + \dots + b_0) = f(b_n)(a')^n + \dots + f(b_0) = F(P)(a)$. Da $F(\chi_a)(a') = 0$, gilt $f'(\chi_a) = F(\chi_a)(a') = 0$ also $(\chi_a) \subset \text{Ker } f'$. Daraus folgt, dass es ein Ringhomomorphismus $\widehat{f}: K[X]/(\chi_a) \to L$ definiert durch $\widehat{f}|_K = f$ und $\widehat{f}([X]) = a'$ gibt. Da $K(a) \simeq K[X]/(\chi_a)$ folgt, dass \widehat{f} existiert.

Es gilt $\mathrm{Im}\widehat{f}=K'(a')$: Von f(K)=K' folgt $K'\subset\mathrm{Im}\widehat{f}$ und da $\widehat{f}(a)=a'$ folgt $K'(a')\subset\mathrm{Im}\widehat{f}$. Umgekehrt gilt für $Q\in K[X]$ die Gleichung $\widehat{f}([Q])=f'(Q)=F(Q)(a')\in K'(a')$, weil $F(Q)\in K'[X]$. Es folgt $\mathrm{Im}\widehat{f}\subset K'(a')$. Die Abbildung \widehat{f} ist also ein surjektiver Körperhomomorphismus $\widehat{f}:K(a)\to K'(a')$. Es ist also auch injektiv und ein Isomorphismus.

Bemerkung 4.1.4 Die Anzahl der verschiedenen Fortsetzungen $\widehat{f}: K(a) \to L'$ von einem Körper Isomorphismus $f: K \to K'$ ist die Anzahl von Nullstellen von F(P) in K' und also immer kleiner gleich $\deg(P)$.

Korollar 4.1.5 Sei $K \subset L$ eine Erweiterung und seien $a, a' \in K$ mit $\chi_a = \chi_{a'}$.

- 1. Dann gibt es genau ein Isomorphismus $\widehat{f}: K(a) \to K(a')$ mit $\widehat{f}|_K = \mathrm{Id}_K$ und $\widehat{f}(a) = a'$.
- 2. Alle Einbettungen $\widehat{f}: K(a) \to L$ mit $\widehat{f}|_{K} = \mathrm{Id}_{K}$ haben diese From.
- 3. Insbesondere gilt

$$|Gal(K(a)/K)| = |\{Nullstellen von \chi_a \text{ in } K(a) \}.$$

Beispiel 4.1.6 1. Das Polynom $X^2 - 2 \in \mathbb{Q}[X]$ ist das Minimalpolynom von $\pm \sqrt{2}$ also gilt $|\operatorname{Gal}(\mathbb{Q}(\sqrt{2}):\mathbb{Q})| = 2$. Die Elemente in $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}):\mathbb{Q})$ sind $\widehat{f} = \operatorname{Id}_{\mathbb{Q}(\sqrt{2})}$ und $\widehat{f}:\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ definiert durch

$$\widehat{f}(a+b\sqrt{2}) = a - b\sqrt{2}.$$

2. Sei $d \in \mathbb{Z}$ so, dass d kein Quadrat ist. Dann ist das Polynom $X^2 - d \in \mathbb{Q}[X]$ das Minimalpolynom von $\pm \sqrt{d}$ also gilt $|\operatorname{Gal}(\mathbb{Q}(\sqrt{d}):\mathbb{Q})| = 2$. Die Elemente in $\operatorname{Gal}(\mathbb{Q}(\sqrt{d}):\mathbb{Q})$ sind $\widehat{f} = \operatorname{Id}_{\mathbb{Q}(\sqrt{d})}$ und $\widehat{f} : \mathbb{Q}(\sqrt{d}) \to \mathbb{Q}(\sqrt{d})$ definiert durch

$$\widehat{f}(a+b\sqrt{d}) = a - b\sqrt{d}.$$

3. Das Gleiche gilt für $i=\sqrt{-1}$ über \mathbb{R} : Das Polynom $X^2+1\in\mathbb{R}[X]$ ist das Minimalpolynom von $\pm i=\pm\sqrt{-1}$ also gilt $|\mathrm{Gal}(\mathbb{C}:\mathbb{R})|=|\mathrm{Gal}(\mathbb{R}(i):\mathbb{R})|=2$. Die Elemente in $\mathrm{Gal}(\mathbb{C}:\mathbb{R})$ sind $\widehat{f}=\mathrm{Id}_{\mathbb{C}}$ und $\widehat{f}:\mathbb{C}\to\mathbb{C}$ definiert durch

$$\widehat{f}(a+bi) = a - bi.$$

4. Das Polynom $P = X^3 - 2 \in \mathbb{Q}[X]$ ist das Minimalpolynom von $\sqrt[3]{2}$ aber $\mathbb{Q}(\sqrt[3]{2})$ enthält keine weitere Nullstelle von P (die weitere Nullstellen sind $\sqrt[3]{2}e^{\frac{2i\pi}{3}}$ und $\sqrt[3]{2}e^{-\frac{2i\pi}{3}}$). Es gilt also $|\mathrm{Gal}(\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q})| = 1$. Das einzige Element ist $\widehat{f} = \mathrm{Id}_{\mathbb{Q}(\sqrt[3]{2})}$.

5. Sei p eine Primzahl. Das Polynom $\Phi_p = X^{p-1} + \cdots + X + 1 \in \mathbb{Q}[X]$ ist das Minimalpolynom von $e^{\frac{2i\pi}{p}}$ und $\mathbb{Q}(e^{\frac{2i\pi}{p}})$ enthält alle weitere Nullstellen von Φ_p : die Zahlen $e^{\frac{2ik\pi}{p}}$ für $k \in [1, p-1]$. Es gilt also $|\mathrm{Gal}(\mathbb{Q}(e^{\frac{2i\pi}{p}})| = p-1$. Die Elemente sind gegeben durch

 $\widehat{f}(e^{\frac{2i\pi}{p}})=e^{\frac{2ik\pi}{p}}$ für $k\in[1,p-1]$.

Definition 4.1.7 Sei K ein Körper und $P \in K[X] \setminus K$ mit $\deg(P) = n$ ein Polynom.

Ein Zerfallungskörper von P ist eine Erweiterung $K \subset L$ so, dass

- (a) Alle Nullstellen a_1, \dots, a_n von P sind in L (*i.e.* P zerfällt in lineare Faktoren $\lambda \prod_{i=1}^n (X a_i)$ in L[X]) und
- (b) $L = K(a_1, \dots, a_n)$ (i.e. ist die kleinste Erweiterung die (a) erfüllt).

Bemerkung 4.1.8 Sei L ein Zerfallungskörper von P über K. Dann gilt $L = K(a_1, \dots, a_n)$, wobei a_1, \dots, a_n die Nullstellen von P sind. Insbesondere sind a_1, \dots, a_n algebraisch über K und aus dem Satz 3.2.18 folgt

$$[L:K]<\infty$$

also ist ein Zerfallungskörper eine endliche Erweiterung.

Lemma 4.1.9 Seien K ein Körper, $P \in K[X] \setminus K$ und L ein Zerfallungskörper von P. Sei $M = \{\text{Nullstellen von } P \text{ in } L\}.$

Dann ist die Abbildung $\iota: \mathrm{Gal}(L/K) \to \mathrm{Bij}(M)$ definiert durch $\widehat{f} \mapsto \widehat{f}|_M$ ein injektiver Gruppenhomomorphismus.

Beweis. Nach dem obigen Korollar gilt $\widehat{f}(a) \in M$ für $a \in M$ also ist die Abbildung ι wohl definiert und ein Gruppenhomomorphismus. Sei $\widehat{f} \in \text{Ker}\iota$. Es gilt $\widehat{f}|_{M} = \text{Id}_{M}$. Sei $M = \{a_{1}, \dots, a_{n}\}$. Es gilt per Definition eines Zerfallungskörper $L = K(a_{1}, \dots, a_{n})$. Da $\widehat{f}|_{K} = \text{Id}_{K}$ und $\widehat{f}(a_{i}) = a_{i}$ für alle i folgt $\widehat{f} = \text{Id}_{L}$ und ι ist injektiv.

Bemerkung 4.1.10 Sei L ein Zerfallungskörper. Es gilt also $|\operatorname{Gal}(L/K)| < \infty$.

Satz 4.1.11 Sei $f: K \to K'$ ein Körperisomorphismus und $F: K[X] \to K'[X]$ der induzierte Ringisomorphismus. Sei $P \in K[X] \setminus K$ und seien L und L' Zerfallungskörper von P und P' = F(P).

Sei a eine Nullstelle von P und a' eine Nullstelle von $F(\chi_a)$. Dann existiert ein (nicht unbedingt eindeutiger) Isomorphismus $\widehat{f}: L \to L'$ mit $\widehat{f}|_K = f$, $\widehat{f}(a) = a'$ und

 $\widehat{f}(\{\text{Nullstellen von } P \text{ in } L\}) = \{\text{Nullstellen von } P' \text{ in } L'\}.$

Beweis. Per Induktion nach $n = |\{a \in L \setminus K \mid P(a) = 0\}.$

Für n = 0 gilt $P(X) = \lambda \prod_i (X - a_i)$ und $P' = f(\lambda) \prod_i (X - f(a_i))$. Also $\chi_{a_i} = X - a_i$ und $F(\chi_{a_i}) = X - f(a_i)$ und auch L = K und L' = K'. Dann ist $\widehat{f} = f$ ein Isomorphismus, der die Behauptung erfüllt.

Die Behauptung sei wahr für Polynome mit weniger als n Nullstellen in $L \setminus K$. Nach Satz 4.1.3 gibt es ein Isomorphismus $\widehat{f}': K(a) \simeq K'(a')$ mit $\widehat{f}'|_K = f$ und $\widehat{f}'(a) = a'$. Dann hat P höchstens n-1 Nullstellen in $L \setminus K(a)$. Nach Induktion gibt es ein Isomorphismus $\widehat{f}: L \to L'$ mit $\widehat{f}|_{K(a)} = \widehat{f}'$ und

$$\widehat{f}(\{\text{Nullstellen von } P \text{ in } L\}) = \{\text{Nullstellen von } P' \text{ in } L'\}.$$

Der Isomorphismus \widehat{f} erfüllt die Behauptung.

Korollar 4.1.12 Sei $P \in K[X]$ und L ein Zerfallungskörper von P. Dann operiert Gal(L/K) transitiv auf der Nullstellenmenge jedes irreduziblen Teilers von P.

Korollar 4.1.13 Sei $P \in K[X]$ irreduzibel und L ein Zerfallungskörper von P. Dann operiert Gal(L/K) transitiv auf der Nullstellenmenge von P.

Insbesondere sei m die Anzahl der Nullstellen von P. Dann m teilt |Gal(L/K)| und |Gal(L/K)| teilt m!.

Beweis. Da Gal(L/K) transitiv auf {Nullstellen von P} operiert folgt von der Bahnformel, dass m = |eine Bahn| teilt |Gal(L/K)|.

Nach Lemma 4.1.9 ist |Gal(L/K)| eine Untergruppe von Bij({Nullstellen von P}). Nach Lagrange-Satz folgt, dass |Gal(L/K)| die Zahl m! teilt.

Satz 4.1.14 Sei $P \in K[X] \setminus K$.

- 1. Dann hat P ein Zerfallungskörper L.
- 2. Alle Zerfallungskörper von P sind isomorph: Für je zwei Zerfallungskörper L und L' von P gibt es ein Isomorphismus $\widehat{f}:L\to L'$ mit $\widehat{f}|_K=\mathrm{Id}_K$ und

$$\widehat{f}(\{\text{Nullstellen von } P \text{ in } L\}) = \{\text{Nullstellen von } P \text{ in } L'\}.$$

Der Isomorphismus \widehat{f} induziert dank $\varphi \mapsto \widehat{f} \varphi \widehat{f}^{-1}$ ein Isomorphismus

$$\operatorname{Gal}(L/K) \to \operatorname{Gal}(L'/K).$$

Beweis. 1. Per Induktion nach deg P. Für deg P=1 gilt L=K und die Aussage ist klar. Sei Q ein irreduzibler Teiler von P und M=K[X]/(Q). Dann ist M ein Körper mit $[M:K]=\deg Q$ so, dass für a=[X] gilt M=K(a) und P(a)=0. Wir schreiben P(X)=R(X)(X-a) mit $R\in K(a)[X]$. Es gilt deg $R=\deg P-1$ und nach Induktionsannahme gibt es ein Zerfallungskörper L von R. Über L zerfällt R in Produkt von lineare Faktoren. Daraus folgt, dass P auch in Produkt von linear Faktoren über L zerfällt. Seien a_2,\cdots,a_m die Nullstellen von R. Wir setzen $a_1=a$. Dann sind a_1,\cdots,a_m die Nullstellen von P. Es gilt $L=K(a)(a_2,\cdots,a_m)=K(a_1,\cdots,a_m)$ also ist L ein Zerfallungskörper von P über K.

2. Die erste Aussage folgt aus dem Satz 4.1.11. Die Umkehrabbildung von $\varphi \mapsto \widehat{f}\varphi\widehat{f}^{-1}$ ist $\psi \mapsto \widehat{f}^{-1}\psi\widehat{f}$

Definition 4.1.15 Sei $P \in K[X]$.

- 1. **Der Zerfallungskörper von** P **über** K ist bis auf Isomorphie eindeutig bestimmt und ist $D_K(P)$ bezeichnet.
- 2. Die Gruppe $Gal(D_K(P)/K)$ ist auch bis auf Isomorphie eindeutig bestimmt. Wir schreiben $Gal(P) = Gal(D_K(P)/K)$. Diese Gruppe heißt **die Galois-Gruppe von** P.

Beispiel 4.1.16 1. Sei $P = X^3 - 2 \in \mathbb{Q}[X]$. Dann gilt

$$D_{\mathbb{Q}}(P) = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}e^{\frac{2i\pi}{3}}, \sqrt[3]{2}e^{-\frac{2i\pi}{3}}) = \mathbb{Q}(\sqrt[3]{2}, e^{\frac{2i\pi}{3}}).$$

2. 1. Sei $P = X^4 - 2 \in \mathbb{Q}[X]$. Dann gilt

$$D_{\mathbb{Q}}(P) = \mathbb{Q}(\pm \sqrt[4]{2}, \pm i\sqrt[4]{2}) = \mathbb{Q}(\sqrt[4]{2}, i).$$

4.2 Normale und separable Erweiterungen

4.2.1 Normale Erweiterungen

Definition 4.2.1 Eine Erweiterung $K \subset L$ heißt **normal**, falls jedes irreduzible Polynom aus K[X], das in L eine Nullstelle hat, in Linearfaktoren über K zerfällt.

Beispiel 4.2.2 1. Die Erweiterung $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$ ist nicht normal, weil $P(X) = X^3 - 2 \in \mathbb{Q}[X]$ eine Nullstelle in $\mathbb{Q}(\sqrt[3]{2})$ hat aber zerfällt in lineare Faktoren nicht.

2. Die Erweiterung $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}e^{\frac{2i\pi}{3}})$ ist nicht normal, weil $P(X) = X^3 - 2 \in \mathbb{Q}[X]$ eine Nullstelle in $\mathbb{Q}(\sqrt[3]{2}e^{\frac{2i\pi}{3}})$ hat aber zerfällt in lineare Faktoren nicht.

3. Es gilt $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2}e^{\frac{2i\pi}{3}}) \subset \mathbb{Q}(\sqrt[3]{2}, e^{\frac{2i\pi}{3}})$ und die Abbildung $\widehat{f} : \mathbb{Q}(\sqrt[3]{2}, e^{\frac{2i\pi}{3}}) \to \mathbb{Q}(\sqrt[3]{2}, e^{\frac{2i\pi}{3}})$

mit $\widehat{f}(\sqrt[3]{2}) = \sqrt[3]{2}e^{\frac{2i\pi}{3}}$ ist ein Isomorphismus und bildet $\mathbb{Q}(\sqrt[3]{2})$ auf $\mathbb{Q}(\sqrt[3]{2}e^{\frac{2i\pi}{3}})$

Satz 4.2.3 Sei $K \subset L$ eine endliche Erweiterung. Die folgende Aussagen sind äquivalent:

- 1. Die Erweiterung $K \subset L$ ist normal.
- 2. Es gilt $L = D_K(P)$ für ein $P \in K[X]$.
- 3. Für alle Erweiterungen $L \subset M$ und Körperhomomorphismen $\widehat{f}: L \to M$ mit $\widehat{f}|_K = \operatorname{Id}_K \operatorname{gilt} \widehat{f}(L) = L$.

Beweis. $(1. \Rightarrow 2.)$ Es gibt algebraische Elemente a_1, \dots, a_n mit $L = K(a_1, \dots, a_n)$. Sei $P = \prod_i \chi_{a_i}$. Wir zeigen, dass $L = D_K(P)$. Es gilt $D_K(P) = K(\{\text{Nullstellen von } P\})$. Da alle a_i Nullstellen von P sind folgt $L \subset D_K(P)$.

Sei a eine Nullstelle von P. Dann gibt es ein i so, dass a eine Nullstelle von χ_{a_i} ist. Da χ_{a_i} die Nullstelle a_i in L besitzt und $K \subset L$ ist normal, zerfällt χ_{a_i} in Linearfaktoren über L. Insbesondere gilt $a \in L$ und $D_K(P) = K(\{\text{Nullstellen von } P) \subset L$.

 $(2. \Rightarrow 3.)$ Sei $P \in K[X]$ so, dass $L = D_K(P)$. Es gilt $L = K(\{\text{Nullstellen von } P)$ Sei $L \subset M$ eine Erweiterung und $\widehat{f}: L \to M$ mit $\widehat{f}|_K = \text{Id}_K$. Sei a eine Nullstelle von P. Es gilt $P(\widehat{f}(a)) = \widehat{f}(P(a)) = 0$ also ist $\widehat{f}(a)$ eine Nullstelle von P und es folgt $\widehat{f}(a) \subset L$. Da $L = K(\{\text{Nullstellen von } P)$ folgt $\widehat{f}(L) \subset L$. Da $\widehat{f}: L \to L$ injektiv ist und $[L:K] < \infty$ folgt $\widehat{f}(L) = L$.

 $(3. \Rightarrow 1.)$ Sei $P \in K[X]$ irreduzibel so, dass P eine Nullstelle $a \in L$ hat. Seien $a_1, \dots, a_n \in L$ so, dass $L = K(a, a_1, \dots, a_n)$. Wir setzen $Q = P\chi_{a_1} \dots \chi_{a_n}$ und $M = D_K(Q)$. Es gilt $L \subset M$. Seien $x_0 = a, x_1, \dots, x_m$ die Wurzeln von P. Es gilt $x_0 = a, x_1, \dots, x_m \in M$. Nach Satz 4.1.11 gibt es für jedes $i \in [1, m]$ ein Körperisomorphismus $\widehat{f}: M \to M$ mit $\widehat{f}|_K = \mathrm{Id}_K$ und $\widehat{f}(a) = x_i$. Daraus folgt $x_i = \widehat{f}(a) \in L$ und alle Wurzeln von P sind in L enthalten.

Definition 4.2.4 Sei $K \subset L$ eine Erweiterung. Eine **normale Hülle** zu L über K ist eine normale Erweiterung $K \subset M$ so, dass kein Zwischenkörper $L \subset M' \subset M$ normal über K ist.

Korollar 4.2.5 Jede Endliche Erweiterung hat eine normale Hülle.

Beweis. Es gibt algebraische Elemente $a_1, \dots, a_n \in L$ so, dass $L = K(a_1, \dots, a_n)$. Sei $P = \chi_{a_1} \dots \chi_{a_n}$ und $M = D_K(P)$. Dann ist M normal über K.

Sei M' ein Zwischenkörper mit $K \subset L \subset M' \subset M$ mit M' normal über K. Für alle i hat χ_{a_i} die Nullstelle $a_i \in L \subset M'$. Da M' normal über K ist sind alle Nullstellen von χ_{a_i} für alle i in M' enthalten. Insbesondere sind alle Nullstellen von P in M' enthalten. Da M, über K, von den Nullstellen von P erzeugt ist gilt $M \subset M'$ und also M = M'.

4.2.2 Separable Erweiterungen

Definition 4.2.6 Sei K ein Körper, sei $P \in K[X]$ und sei $K \subset L$ eine Erweiterung.

- 1. Die Vielfachkeit einer Nullstelle a von P ist die maximale Potenz $n \in \mathbb{N}$, für die $(X-a)^n|P$.
- 2. Eine Nullstelle a von P heißt **einfach** falls die Vielfachkeit von a gleich 1 ist.
- 3. Das Polynom P heißt **separabel**, falls jeder irreduzibler Teiler Q von P in seinem Zerfallungskörper nur einfache Nullstellen hat.

Ansonsten heißt P inseparabel.

- 4. Der Körper K heißt **perfekt** (oder **vollkommen**) falls jedes $P \in K[X]$ separabel ist.
- 5. Ein Element $a \in L$ heißt **separabel** über K, falls $\chi_a \in K[X]$ separabel ist.
- 6. Die Erweiterung $K \subset L$ heißt **separabel**, wenn jedes $a \in L$ separabel über K ist.
- 7. Die Ableitung von $P = a_n X^n + \cdots + a_0$ ist $P' = na_n X^{n-1} + \cdots + a_1$.

Beispiel 4.2.7 Sei $K = \mathbb{F}_2(Y)$ und $P = X^2 - Y \in K[X]$. Dann ist P irreduzibel und \sqrt{Y} ist eine Nullstelle von P. Es gilt

$$P(X) = X^2 - Y = X^2 - (\sqrt{Y})^2 = (X - \sqrt{Y})^2$$

also ist P inseparabel. In diesem Fall gilt auch P' = 2X = 0.

Satz 4.2.8 Sei $P \in K[X]$ und $L = D_K(P)$.

1. Es gilt

 $\{a \in L \mid a \text{ mehrfache Nullstelle von } P\} = \{a \in L \mid a \text{ Nullstelle von } ggT(P, P')\}.$

2. Sei P irreduzibel. Dann gilt $(P \text{ ist inseparabel}) \Leftrightarrow (P' = 0)$.

Beweis. 1. Sei a eine mehrfache Nullstelle. Dann gilt $P(X) = (X-a)^2 Q(X)$. Daraus folgt $P' = 2(X-a)Q + (X-a)^2 Q'$ und also ist X-a ein Teiler von P und P'. Daraus folgt, dass X-a ein Teiler von ggT(P,P') ist und a ist eine Nullstelle von ggT(P,P').

Umgekehrt, sei a eine einfache Nullstelle von P. Dann gilt P(X) = (X - a)Q(X) mit $Q(a) \neq 0$. Daraus folgt, P'(X) = Q(X) + (X - a)Q'(X) und $P'(a) = Q(a) \neq 0$. Also ist X - a kein Teiler von P' und also kein Teiler von ggT(P, P') und a ist nicht eine Nullstelle von ggT(P, P').

2. Sei P irreduzibel und $Q = \operatorname{ggT}(P, P')$. Da Q ein Teiler von P ist gilt: $Q \in K[X]^{\times}$ oder $Q = \lambda P$ für ein $\lambda \in K$. Im ersten Fall hat $\operatorname{ggT}(P, P')$ keine Nullstelle. Im zweiten

Fall gilt P' = 0 (sonst gilt $\deg P' \le \deg P - 1$ und $\deg(P) = \deg(\operatorname{ggT}(P, P')) \le \deg P - 1$ ein Widerspruch).

Das Polynom P ist genau dann inseparabel, wenn P eine mehrfache Nullstelle a hat. Dies ist nach 1. äquivalent zu ggT(P, P')(a) = 0 i.e. P' = 0.

Korollar 4.2.9 Sei K mit char(K) = 0. Dann ist K perfekt.

Beweis. Für $P \in K[X]$ irreduzibel gilt $P' \neq 0$.

4.2.3 Galois Theorie

Definition 4.2.10 Sei L ein Körper und G eine Untergruppe von Aut(L). Der **Fix-**körper von G in L ist

$$L^G = \{ a \in L \mid f(a) = a \text{ für alle } f \in G \}.$$

Lemma 4.2.11 Sei L ein Körper und G eine Untergruppe von $\operatorname{Aut}(L)$. Dann ist L^G ein Teilkörper von L.

Beweis. Seien
$$a, b \in L^G$$
 mit $b \neq 0$. Es gilt $f(a - b) = f(a) - f(b) = a - b$ und $f\left(\frac{a}{b}\right) = \frac{f(a)}{f(b)} = \frac{a}{b}$.

Definition 4.2.12 Eine Körper Erweiterung heißt **Galois**, wenn es eine endliche Untergruppe $G \subset \operatorname{Aut}(L)$ gibt mit $K = L^G$.

Beispiel 4.2.13 1. Die Erweiterung $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})$ ist Galois: Es gilt

$$\mathbb{Q} = \mathbb{Q}(\sqrt{2})^{\mathrm{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})}.$$

2. Die Erweiterung $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$ ist nicht Galois: Es gilt

$$\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})) = \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{\operatorname{Id}_{\mathbb{Q}(\sqrt[3]{2})}\}$$

also gilt für jede Untergruppe $G \subset \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ die Gleichung

$$\mathbb{Q}(\sqrt[3]{2})^G = \mathbb{Q}(\sqrt[3]{2}).$$

Die Hauptsätze der Galois Theorie sind die folgende zwei Sätze.

Satz 4.2.14 (Charakterisierung von Galois Erweiterungen) Sei $K \subset L$ eine Erweiterung. Die folgende Aussagen sind äquivalent:

- 1. Die Erweiterung $K \subset L$ ist Galois.
- 2. Es gilt $[L:K] = |\operatorname{Gal}(L/K)| < \infty$.

3. Die Erweiterung $K \subset L$ ist endlich, normal und separabel.

4. Es gilt
$$L = D_K(P)$$
 für $P \in K[X]$ separabel.

Satz 4.2.15 (Hauptsatz der Galois Theorie) Sei $K \subset L$ eine Galois Erweiterung. Sei $G = \operatorname{Gal}(L/K)$. Sei

$$\mathcal{Z}_{L/K} = \{ \text{Zwischenk\"orper } M \colon K \subset M \subset L \}$$

die Menge aller Zwischenkörper und sei

$$\mathcal{U}_G = \{H \text{ Untergruppe von } G\}$$

die Menge aller Untergruppen von G.

Seien $\Phi: \mathcal{U}_G \to \mathcal{Z}_{L/K}$ und $\Psi: \mathcal{Z}_{L/K} \to \mathcal{U}_G$ die Abbildungen definiert durch

$$\Phi(H) = L^H \text{ und } \Psi(M) = \text{Gal}(L/M).$$

- 1. Dann sind Φ und Ψ bijektiv und inverse zueinander.
- 2. Für alle $M \in \mathcal{Z}_{L/K}$ ist die Erweiterung $M \subset L$ Galois und es gilt

$$[L:M] = |Gal(L/M)| = |\Psi(M)|.$$

3. Sei $M \in \mathcal{Z}_{L/K}$. Es gilt

$$(K \subset M \text{ Galois}) \Leftrightarrow (\Psi(M) = \text{Gal}(L/M) \triangleleft \text{Gal}(L/K) = G).$$

In diesem Fall induziert die Einschränkungsabbildung einen surjektiven Gruppenhomomorphismus $G \to \operatorname{Gal}(M/K), \ f \mapsto f|_M$ mit Kern $\operatorname{Gal}(L/M)$. Insbesondere gilt

$$\operatorname{Gal}(M/K) \simeq \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M).$$

Beispiel 4.2.16 Sei $K = \mathbb{Q}$ und $L = D_K(P)$ mit $P = X^3 - 2$. Wir setzen $j = e^{\frac{2i\pi}{3}}$. Seien

$$z_1 = \sqrt[3]{2}$$
, $z_2 = j\sqrt[3]{2}$ und $z_3 = j^2\sqrt[3]{2}$

die Nullstellen von P. Es gilt

$$L = \mathbb{Q}(z_1, z_2, z_3) = \mathbb{Q}(\sqrt[3]{2}, j).$$

Da P separabel ist, ist die Erweiterung $K \subset L$ Galois. Wir haben die folgende Zwischenkörper:

$$\mathbb{Q}(z_1)$$
, $\mathbb{Q}(z_2)$, $\mathbb{Q}(z_3)$ und $\mathbb{Q}(j)$.

Da P das Minimalpolynom von z_1, z_2, z_3 ist gilt $[\mathbb{Q}(z_i) : \mathbb{Q}] = 3$ für alle i und 3|[L:K]. Da $\Phi_2 = X^2 + X + 1$ das Minimalpolynom von j ist gilt $[\mathbb{Q}(j) : \mathbb{Q}] = 2$

und 2|[L:K]. Daraus folgt $6|[L:K] = \operatorname{Gal}(L/K)$. Aber nach Lemma 4.1.9 ist $\operatorname{Gal}(L/K)$ eine Untergruppe von $\operatorname{Bij}(\{z_1, z_2, z_3\}) \simeq S_3$. Daraus folgt $\operatorname{Gal}(L/K) \simeq S_3$ und [L:K] = 6.

Die Gruppe S_3 hat genau 6 Untergrupen H:

$$\{\mathrm{Id}\}, \{\mathrm{Id}, [12]\}, \{\mathrm{Id}, [13]\}, \{\mathrm{Id}, [23]\}, A_3 = \{\mathrm{Id}, [123], [132]\} \text{ und } S_3.$$

Die Zwischen Erweiterungen $M = \Phi(H)$ sind

$$L$$
, $\mathbb{Q}(z_3)$, $\mathbb{Q}(z_2)$, $\mathbb{Q}(z_1)$, $\mathbb{Q}(j)$ und K .

Die Zwischenkörper $\mathbb{Q}(z_3)$, $\mathbb{Q}(z_2)$, $\mathbb{Q}(z_1)$ sind nicht Galois über \mathbb{Q} aber $\mathbb{Q}(j)$ is Galois über \mathbb{Q} .

Zur Vorbereitung des Beweis beweisen wir Hilfsätze.

Bemerkung 4.2.17 Seien L und L' Körper. Dann ist Abb(L, L') die Menge aller Abbildungen $f: L \to L'$ ein L'-Vektorraum dank

$$(f+f')(a) = f(a) + f'(a)$$
 und $(\lambda f)(a) = \lambda f(a)$

für alle $a \in L$, $\lambda \in L'$ und $f, f' \in Abb(L, L')$.

Lemma 4.2.18 Seien $f_1, \dots, f_n : L \to L'$ paarweise verschiedene Körperhomomorphismen. Dann ist (f_1, \dots, f_n) ein linear unabhängiges System in Abb(L, L').

Beweis. Angenommen (f_1, \dots, f_n) sei linear abhängig. Sei $(f_{i_1}, \dots, f_{i_r})$ ein minimales linear abhängiges System. Modulo Umnummerirung können wir annehmen, dass (f_1, \dots, f_r) ein minimales linear abhängiges System ist. Da f_1 injektiv ist also $f_1 \neq 0$ gilt $r \geq 2$. Es gibt also Skalare $\lambda_1, \dots, \lambda_r \in (L')^{\times}$ mit

$$\sum_{i=1}^{r} \lambda_i f_i = 0.$$

Sei $a \in L$ mit $f_1(a) \neq f_2(a)$. Für alle $x \in L$ gilt

$$\sum_{i=2}^{r} \lambda_{i}(f_{i}(a) - f_{1}(a))f_{i}(x) = \sum_{i=1}^{r} \lambda_{i}(f_{i}(a) - f_{1}(a))f_{i}(x)$$

$$= \sum_{i=1}^{r} \lambda_{i}f_{i}(a)f_{i}(x) - f_{1}(a)\sum_{i=1}^{r} \lambda_{i}f_{i}(x)$$

$$= \sum_{i=1}^{r} \lambda_{i}f_{i}(ax) - f_{1}(a)\left(\sum_{i=1}^{r} \lambda_{i}f_{i}\right)(x)$$

$$= \left(\sum_{i=1}^{r} \lambda_{i}f_{i}\right)(ax) - 0 = 0.$$

Es folgt

$$\sum_{i=2}^{r} \lambda_i (f_i(a) - f_1(a)) f_i = 0$$

ein Widerspruch zur Minimalität.

Lemma 4.2.19 Seien $f_1, \dots, f_n : L \to L'$ paarweise verschiedene Körperhomomorphismen. Sei

$$K = \{a \in L \mid f_1(a) = \dots = f_n(a)\}.$$

Dann ist K ein Teilkörper von L und es gilt $[L:K] \ge n$.

Beweis. Seien $a, b \in K$ mit $b \neq 0$. Es gilt $f_i(a - b) = f_i(a) - f_i(b) = f_j(a) - f_j(b) = f_j(a - b)$ und $f_i\left(\frac{a}{b}\right) = \frac{f_i(a)}{f_i(b)} = \frac{f_j(a)}{f_j(b)} = f_j\left(\frac{a}{b}\right)$. Daraus folgt, dass K ein Teilkörper von L ist.

Sei a_1, \dots, a_m eine Basis von L über K mit m < n. Das System mit Variablen x_1, \dots, x_n :

$$\begin{cases} \sum_{i=1}^{n} x_i f_i(a_1) = 0 \\ \vdots \\ \sum_{i=1}^{n} x_i f_i(a_k) = 0 \\ \vdots \\ \sum_{i=1}^{n} x_i f_i(a_m) = 0 \end{cases}$$

hat eine nicht triviale Lösung $(x_1, \dots, x_n) \in (L')^n$ (eine Lösung ist ein Vektor im Kern der Matrix $(f_i(a_i)) \in M_{m,n}(L')$ und da m < n ist der Kern nicht Null).

Für $a \in L$ gibt es Skalare λ_k mit $a = \sum_{K=1}^m \lambda_k a_k$. Da $\lambda_k \in K$ gilt $f_1(\lambda_k) = \cdots = f_n(\lambda_k)$. Wir setzen $\Lambda_k = f_1(\lambda_k) = \cdots = f_n(\lambda_k)$. Es folgt

$$\left(\sum_{i=1}^{n} x_i f_i\right)(a) = \sum_{i=1}^{n} \sum_{k=1}^{m} x_i f_i(\lambda_k) f_i(a_k) = \sum_{k=1}^{m} \Lambda_k \left(\sum_{i=1}^{n} x_i f_i(a_k)\right) = 0.$$

Daraus folgt $\sum_{i} x_i f_i = 0$. Ein Widerspruch zum obigen Lemma.

Definition 4.2.20 Sei L ein Körper und G eine endliche Untergruppe von $\operatorname{Aut}(L)$. Die G-Spur von L ist die Abbildung $\operatorname{Tr}_G: L \to L$ definiert durch

$$\operatorname{Tr}_G(a) = \sum_{f \in G} f(a).$$

Lemma 4.2.21 Sei L ein Körper und G eine endliche Untergruppe von $\operatorname{Aut}(L)$. Dann ist Tr_G eine L^G lineare Abbildung und es gilt $\operatorname{Im}\operatorname{Tr}_G=\operatorname{Tr}_G(L)=L^G$.

Beweis. Sei $a \in L$ und $\lambda \in L^G$. Es gilt

$$\operatorname{Tr}_G(\lambda a) = \sum_{f \in G} f(\lambda a) = \sum_{f \in G} f(\lambda) f(a) = \sum_{f \in G} \lambda f(a) = \lambda \sum_{f \in G} f(a) = \lambda \operatorname{Tr}_G(a).$$

Sei $\in L$ und $g \in G$. Es gilt

$$g(\operatorname{Tr}_G(a)) = g \sum_{f \in G} f(a) = \sum_{f \in G} gf(a) = \sum_{g \in G} gf(a) = \operatorname{Tr}_G(a)$$

also $L^G \subset \operatorname{Im}\operatorname{Tr}_G = \operatorname{Tr}_G(L)$. Da die Familie $(f)_{f \in G}$ linear unabhängig ist gilt $\operatorname{Tr}_G \neq 0$. Die Abbildung $\operatorname{Tr}_G : L \to L^G$ ist L^G -linear und nicht null. Da $\dim_{L^G} L^G = 1$ folgt, dass $\operatorname{Tr}_G(L) = \operatorname{Im}\operatorname{Tr}_G = L^G$.

Lemma 4.2.22 Sei L ein Körper und G eine endliche Untergruppe von $\operatorname{Aut}(L)$. Sei $K=L^G$. Es gilt

$$[L:K] = |G|.$$

Beweis. Sei $G = \{f_1, \cdot, f_n\}$. Es gilt $K \subset M = \{a \in L \mid f_1(a) = \cdots = f_n(a)\}$. Nach Lemma 4.2.19 gilt $[L:M] \geq n$. Daraus folgt $[L:K] \geq [L:M] \geq n$.

Sei (a_1, \dots, a_m) mit m > n ein System von Elementen in L. Wir zeigen, dass (a_1, \dots, a_m) linear abhängig über K ist. Das System mit Variablen x_1, \dots, x_m :

$$\begin{cases} \sum_{i=1}^{m} x_i f_1^{-1}(a_i) = 0 \\ \vdots \\ \sum_{i=1}^{m} x_i f_k^{-1}(a_i) = 0 \\ \vdots \\ \sum_{i=1}^{m} x_i f_n^{-1}(a_i) = 0 \end{cases}$$

hat eine nicht triviale Lösung $(x_1, \dots, x_m) \in L^m$ (eine Lösung ist ein Vektor im Kern der Matrix $(f_i^{-1}(a_j)) \in M_{n,m}(L)$ und da m > n ist der Kern nicht Null). Sei $i_0 \in [1, m]$ mit $x_{i_0} \neq 0$ und sei $c \in L$ mit $\operatorname{Tr}_G(c) \neq 0$. Für alle $k \in [1, n]$ gilt

$$\sum_{i=1}^{m} f_k^{-1}(a_i) \frac{cx_i}{x_{i_0}} = 0 \text{ also } \sum_{i=1}^{m} a_i f_k \left(\frac{cx_i}{x_{i_0}}\right) = 0.$$

Wir summieren über k. Es folgt

$$0 = \sum_{k=1}^{n} \sum_{i=1}^{m} a_i f_k \left(\frac{cx_i}{x_{i_0}} \right) = \sum_{i=1}^{m} \sum_{k=1}^{n} a_i f_k \left(\frac{cx_i}{x_{i_0}} \right) = \sum_{i=1}^{m} a_i \operatorname{Tr}_G \left(\frac{cx_i}{x_{i_0}} \right).$$

Da $\operatorname{Tr}_G\left(\frac{cx_i}{x_{i_0}}\right) \in L^G = K$ und $\operatorname{Tr}_G\left(\frac{cx_{i_0}}{x_{i_0}}\right) = \operatorname{Tr}_G(c) \neq 0$ ist das System (a_1, \dots, a_m) linear abhängig über K.

Lemma 4.2.23 Sei L ein Körper und G eine endliche Untergruppe von $\operatorname{Aut}(L)$. Sei $K=L^G$. Es gilt

$$Gal(L/K) = G.$$

Insbesondere für $K \subset L$ Galois gilt $K = L^{\operatorname{Gal}(L/K)}$.

Beweis. Sei $f \in G$. Dann gilt $f \in \operatorname{Aut}(L)$ und f(a) = a für $a \in K = L^G$. Es folgt $f \in \operatorname{Gal}(L/K)$. Also $G \subset \operatorname{Gal}(L/K)$.

Sei $a \in L^{\operatorname{Gal}(L/K)}$ und $f \in G$. Da $f \in \operatorname{Gal}(L/K)$ gilt f(a) = a und $a \in L^G$. Es gilt also $K \subset K^{\operatorname{Gal}(L/K)} \subset L^G = K$ und $L^{\operatorname{Gal}(L/K)} = K = L^G$. Nach dem obigen Lemma gilt $|\operatorname{Gal}(L/K)| = [L:K] = |G|$. Daraus folgt die Aussage.

Für $K \subset L$ Galois gibt es $G \subset \operatorname{Aut}(L)$ endlich mit $K = L^G$ und es folgt $G = \operatorname{Gal}(L/K)$ also $K = L^{\operatorname{Gal}(L/K)}$.

Beweis vom Satz 4.2.14. $(1. \Rightarrow 2.)$ Folgt aus Lemma 4.2.22 und Lemma 4.2.23.

 $(2. \Rightarrow 1.)$ Es gilt $K \subset L^{\operatorname{Gal}(L/K)} \subset L$ und nach Lemma 4.2.22 und per Annahme gilt $[L:L^{\operatorname{Gal}(L/K)}] = |\operatorname{Gal}(L/K)| = [L:K]$. Daraus folgt $K = L^{\operatorname{Gal}(L/K)}$ und $K \subset L$ Galois.

 $(1. \Rightarrow 3.)$ Sei G eine endliche Untergruppe von $\operatorname{Aut}(L)$ mit $K = L^G$. Es gilt $[L:K] = |G| < \infty$ nach Lemma 4.2.22 also ist die Erweiterung endlich. Sei $a \in L$ und $\chi_a \in K[X]$ das Minimalpolynom von a über K. Sei $G \cdot a = \{f(a) \in L | f \in G\}$. Wir zeigen

$$\chi_a = \prod_{b \in G \cdot a} (X - b).$$

Es folgt, dass alle Nullstellen von χ_a einfach sind und in L enthalten sind. Daraus folgt, dass $K \subset L$ normal und separabel ist.

Sei $P = \prod_{b \in G \cdot a} (X - b)$. Sei $f \in G$ und $F : L[X] \to L[X]$ definiert durch $f(a_n X^n + \cdots + a_0) = f(a_n) X^n + \cdots + f(a_0)$. Es filgt

$$F(P) = F(\prod_{b \in G \cdot a} (X - b)) = \prod_{b \in G \cdot a} (X - f(b)) = \prod_{b \in G \cdot a} (X - b).$$

Daraus folgt $P \in K[X]$. Da P(a) = 0 gilt $\chi_a|P$. Sei $b \in G \cdot a$. Da gilt b = f(a) für ein $f \in G$. Es gilt $\chi_a(b) = \chi_a(f(a)) = f((\chi_a)(a)) = 0$. Also sind alle $g \in G \cdot a$ Nullstellen von χ_a und es folgt $P|\chi_a$. Daraus folgt $P = \chi_a$.

 $(3. \Rightarrow 4.)$ Nach Satz 4.2.3 gilt $L = D_K(P)$ für ein $P \in K[X]$. Da $K \subset L$ separabel ist, ist P separabel.

 $(4. \Rightarrow 1.)$ Sei $P \in K[X]$ separabel und $L = D_K(P)$. Sei $G = \operatorname{Gal}(L/K)$. Nach Lemma 4.1.9 gilt $G \subset \operatorname{Bij}(\{\operatorname{Nullstellen von } P\})$ also $|G| \leq (\deg P)!$. Wir zeigen, dass die Erweiterung $K \subset L$ Galois ist nach Induktion über $N = |\{\operatorname{Nullstellen von } P \text{ in } L \setminus K\}|$.

Für N=0 gilt $K=L=L^G$ und die Aussage ist klar.

Für $N \geq 1$, sei $a \in L \setminus K$ eine Nullstele von P. Dann gilt auch $L = D_{K(a)}(P)$ und nach Induktionsvoraussetzung ist $K(a) \subset L$ Galois. Sei also H eine endliche Untergruppe von $\operatorname{Aut}(L)$ mit $K(a) = L^H$. Es gilt $H \subset \operatorname{Gal}(L/K) = G$. Sei $\chi_a \in K[X]$ das Minimalpolynom von a über K. Es gilt $\chi_a|P$. Sei $n = \deg \chi_a$ und $a_1 = a, a_2, \cdots, a_n \in L$ die Nullstellen von χ_a . Da P separabel ist sind diese Nullstellen paarweise verschieden. Nach Satz 4.1.11 gibt es für jedes $k \in [1, n]$ ein $f_k \in G$ mit $f_k(a) = a_k$. Sei $b \in L^G \subset L^H = K(a)$. Dann ist b der Form b = Q(a) für ein $Q \in K[X]$. Dank der Restdivision mit χ_a gilt $Q = \chi_a R + S$ mit $\deg S < n$ und $b = Q(a) = \chi_a(a)R(a) + S(a) = S(a)$. Sei $T(X) = S(X) - b \in K^G[X]$. Es gilt

$$0 = f_k(S(a) - b) = f_k(T(a)) = T(f_k(a)) = T(a_k).$$

Daraus folgt, dass T mindenstens $n > \deg T$ Nullstellen hat. Es folgt T = 0 also S(X) = b und da $S \in K[X]$ folgt $b \in K$. Daraus folgt $L^G \subset K$. Die enthaltung $K \subset L^G$ ist klar also $K = L^G$.

Lemma 4.2.24 Sei $K \subset L$ eine Galois erweiterung und M ein Zwischenkörper. Dann ist $M \subset L$ Galois.

Beweis. Sei $G=\operatorname{Gal}(L/K)$ und $H=\operatorname{Gal}(L/M)$. Wir zeigen $M=L^H$. Es gilt $M\subset L^H$. Umgekehrt, seien $\{\operatorname{Id}_L=f_1,\cdots,f_r\}\subset G$ ein Repräsentantensystem des Quotients G/H i.e. mit $\{[f_1],\cdots,[f_r]\}\subset G/H$.

Die Einschränkungen $f_1|_M, \dots, f_r|_M$ sind paarweise verschieden: falls $f_i|_M = f_j|_L$ gilt folgt $f_i \circ f_j^{-1} \in H$ also $[f_i] = [f_j]$ und i = j.

Sei $a \in M$ mit $a = f_1(a) = \cdots = f_r(a)$. Wir zeigen $a \in L^G = K$. Sei $f \in G$ und $[f] \in G/H$ die Klasse von f im Quotient. Dann gibt es ein i mit $[f] = [f_i]$. Daraus folgt, dass es ein $h \in H$ gibt mit $f = f_i h$. Da h(a) = a, folgt $f(a) = f_i h(a) = f_i(a) = a$. Also $a \in L^G = K$. Daraus folgt

$$K = L^G \subset \{a \in M \mid f_1(a) = \dots = f_r(a)\} \subset K$$

und beide Menge sind gleich. Nach Lemma 4.2.19 und Lemma 4.2.22 folgt

$$\begin{split} |G| &= [L:K] = [L:L^H][L^H:M][M:K] \\ &= |H|[L^H:M][M:K] \geq |H|[L^H:M]r = |H|[L^H:M]|G/H| = |G|[L^H:M]. \end{split}$$

Daraus folgt $[L^H:M]=1$ und $M=L^H$.

Lemma 4.2.25 (Konjugationsprinzip) Seien $K \subset M \subset L$ Erweiterungen und sei $f \in \operatorname{Gal}(L/K)$. Dann gilt

$$Gal(L/f(M)) = fGal(L/M)f^{-1}.$$

Beweis. Sei $g \in \operatorname{Gal}(L/M)$. Dann gilt $fgf^{-1} \in \operatorname{Aut}(L)$ und für $b = f(a) \in f(M)$ gilt $fgf^{-1}(b) = fgf^{-1}f(a) = fg(a) = f(a)$ also $fgf^{-1} \in \operatorname{Gal}(L/f(M))$. Daraus folgt $f\operatorname{Gal}(L/M)f^{-1} \subset \operatorname{Gal}(L/f(M))$. Es folgt auch $f^{-1}\operatorname{Gal}(L/f(M))f \subset \operatorname{Gal}(L/f^{-1}f(M)) = \operatorname{Gal}(L/f(M))$ und also $\operatorname{Gal}(L/f(M)) \subset f\operatorname{Gal}(L/M)f^{-1}$. Daraus folgt die Aussage.

Lemma 4.2.26 Sei $K \subset L$ Galois und $K \subset M \subset L$ so, dass für alle $f \in Gal(L/K)$ gilt f(M) = M. Dann ist

$$\operatorname{res}:\operatorname{Gal}(L/K)\to\operatorname{Gal}(M/K)$$

definert durch $\operatorname{res}(f) = f|_M$ ein surjektiver Gruppenhomomorphismus mit $\operatorname{Ker}(\operatorname{res}) = \operatorname{Gal}(L/M)$ und $K \subset M$ ist Galois.

Beweis. Die Abbildung ist ein Gruppenhomomorphismus (Übung). Es gilt

$$\operatorname{Ker}(\operatorname{res}) = \{ f \in \operatorname{Gal}(L/K) \mid f|_M = \operatorname{Id}_M \} = \operatorname{Gal}(L/M).$$

Sei $G=\operatorname{Im}(\operatorname{res})$ das Bild von res. Es gilt $M^G=M^{\operatorname{Gal}(L/K)}$. Da $K\subset L$ Galois ist, gilt $K\subset M^G=M^{\operatorname{Gal}(L/K)}\subset L^{\operatorname{Gal}(L/K)}=K$ nach Lemma 4.2.23. Daraus folgt $M^G=K$ und nach Lemma 4.2.23 folgt $G=\operatorname{Gal}(M/K)$.

Lemma 4.2.27 Seien $K \subset M \subset L$ Erweiterungen mit $K \subset L$ Galois. Dann sind äquivalent:

- 1. Die Erweiterung $K \subset M$ ist Galois.
- 2. Für alle $f \in Gal(L/K)$ gilt f(M) = M.
- 3. $Gal(L/M) \triangleleft Gal(L/K)$.

Beweis. $(1. \Rightarrow 2.)$ Nach Lemma 4.2.19, Lemma 4.2.22 und Lemma 4.2.23 gilt

$$|Gal(M/K)| \le |\{f|_M : M \to L \mid f \in Gal(L/K)\} \le [M : K] = |Gal(M/K)|.$$

Also gilt die Gleichung überall und jedes $f|_M$ für $f \in Gal(L/K)$ liegt bereits in Gal(M/K) also f(M) = M.

- $(2. \Rightarrow 1.)$ Folgt aus Lemma 4.2.26
- $(2. \Rightarrow 3.)$ Folgt aus Lemma 4.2.26: Gal(L/M) ist der Kern von res.
- $(3. \Rightarrow 2.)$ Sei $f \in \operatorname{Gal}(L/K)$. Da $f(M) \subset L$ und $M \subset L$ Galois sind (nach Lemma 4.2.24) gilt $M = L^{\operatorname{Gal}(L/M)}$ und $f(M) = L^{\operatorname{Gal}(L/f(M))}$ (nach Lemma 4.2.23). Nach Lemma 4.2.25 gilt $\operatorname{Gal}(L/f(M)) = f\operatorname{Gal}(L/M)f^{-1} = \operatorname{Gal}(L/M)$ nach Annahme. Es folgt f(M) = M.

Beweis vom Satz 4.2.15. 1. Sei $K \subset L$ eine Galois Erweiterung. Sei M ein Zwischenkörper und H eine Untergruppe von $G = \operatorname{Gal}(L/K)$. Nach Lemma 4.2.23 gilt

$$\Psi(\Phi(H)) = \Psi(L^H) = \operatorname{Gal}(L/L^H) = H.$$

Es gilt

$$\Phi(\Psi(M)) = \Phi(\operatorname{Gal}(L/M)) = L^{\operatorname{Gal}(L/M)}.$$

Nach Lemma 4.2.24 ist $M \subset L$ Galois und nach Lemma 4.2.23 folgt $M = L^{Gal(L/M)}$.

- 2.Die erste AUssage folgt aus Lemma 4.2.24 und die Gleichung aus Lemma 4.2.22.
- 3. Die erste Aussage folgt aus Lemma 4.2.27 und die letzte Aussage aus Lemma 4.2.26.

Satz 4.2.28 Seien $K \subset L$ und $L \subset M$ Galois Erweiterungen. Dann ist $K \subset M$ Galois.

Beweis. Sei $G = \operatorname{Gal}(M/K)$, $N = \operatorname{Gal}(M/L)$ und $H = \operatorname{Gal}(L/K)$. Dann gilt $K = L^H$ und $L = M^N$. Wir zeigen $K = M^G$. Die Enthaltung $K \subset M^G$ ist klar. Sei $x \in M^G$. Da $N \subset G$ folgt $x \in M^G \subset M^N$ also $x \in L$. Sei jetzt $f \in \operatorname{Gal}(L/K)$. Da $L \subset M$ normal ist, gibt es nach Satz 4.1.11 ein $g \in \operatorname{Gal}(M/K)$ mit $g|_L = f$. Es folgt f(x) = g(x) = x und also $x \in L^H = K$.

4.2.4 Algebraischer Abschluß

Definition 4.2.29 Sei K ein Körper. Ein **algebraischer Abschluß** von K ist eine Erweiterung $K \subset \overline{K}$ mit

- $K \subset \overline{K}$ ist algebraisch
- \overline{K} ist algebraisch abgeschlossen.

Beispiel 4.2.30 1. Ein algebraischer Abschluß von $\mathbb C$ ist $\mathbb C$.

- 2. Ein algebraischer Abschluß von \mathbb{R} ist \mathbb{C} .
- 3. Ein algebraischer Abschluß von Q ist

$$\overline{\mathbb{Q}} = \{ z \in \mathbb{C} \mid z \text{ ist algebraisch ""über } \mathbb{Q} \}.$$

4. Der Körper $\mathbb C$ ist kein algebraischer Abschluß von $\mathbb Q$, weil die Erweiterung $\mathbb Q \subset \mathbb C$ nicht algebraisch ist.

Theorem 4.2.31 (Steinitz) Jeder Körper hat einen algebraischen Abschluß. □

4.3 Endliche Körper

4.3.1 Existenz

Lemma 4.3.1 Sei R ein kommutativer Ring mit $\operatorname{char}(R) = p > 0$. Für $n \in \mathbb{N}_{>0}$, sei $q = p^n$.

- 1. Dann ist die Abbildung $\operatorname{Fr}_R: R \to R$ definiert durch $\operatorname{Fr}_R(x) = x^p$ ein Ringhomomorphismus.
- 2. Dann ist die Abbildung $\operatorname{Fr}_{R,q}:R\to R$ definiert durch $\operatorname{Fr}_R(x)=x^q$ ein Ringhomomorphismus. \Box

Beweis. 1. Es gilt $\operatorname{Fr}_R(x+y)=(x+y)^p=\sum_{k=0}^p\binom{p}{k}x^ky^{p-k}$. Aber $p|\binom{p}{k}$ für alle $k\in[1,p-1]$. Daraus folgt $\operatorname{Fr}_R(x+y)=x^p+y^p=\operatorname{Fr}_R(x)+\operatorname{Fr}_R(y)$. Es filgt $\operatorname{Fr}_R(xy)=(xy)^p=x^py^p=\operatorname{Fr}_R(x)\operatorname{Fr}_R(y)$.

2. Es gilt
$$\operatorname{Fr}_{q,R}(x) = x^q = x^{p^n} = (x^p)^n = \operatorname{Fr}_R^n(x)$$
. Die Aussage folgt aus 1.

Definition 4.3.2 Sei R ein kommutativer Ring mit char(R) = p > 0. Die Abbildung $\operatorname{Fr}_R : R \to R$ definiert durch $\operatorname{Fr}_R(x) = x^p$ heißt **Frobenius-Homomorphismus**.

Lemma 4.3.3 Sei K ein endlicher Körper mit char(K) = p.

1. Dann ist Fr_K ein Automorphismus.

2. Falls
$$K = \mathbb{F}_p$$
 gilt $\operatorname{Fr}_K = \operatorname{Id}_K$.

Beweis. 1. Die Abbildung Fr_K ist ein Körperhomomorphismus also ist injektiv. DaK endlich ist ist Fr_K bijektiv.

2. Sei $x \in \mathbb{F}_p$. Falls x = 0 gilt $\operatorname{Fr}_K(x) = \operatorname{Fr}_K(0) = 0 = x$. Sei also $x \in \mathbb{F}_p^{\times}$. Es gilt $\mathbb{F}_p^{\times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$ also ist die Gruppe $(\mathbb{F}_p^{\times}, \cdot)$ der Ordnung p-1. Es folgt, dass $x^{p-1} = 1$ und also $\operatorname{Fr}_K(x) = x^p = x$.

Lemma 4.3.4 Seien $K \subset L$ zwei endlicher Körper und seien q = |K| und q' = [L].

- 1. Dann gilt $[L:K] = n < \infty$ und $q' = q^n$.
- 2. Insbesondere für $p = \operatorname{char}(K)$ gilt $q = |K| = p^m$ für ein $m \in \mathbb{N}_{>0}$.

Beweis. 1. Da L endlich ist ist L ein endlicher Vektorraum über K. Sei n = [L : K]. Es gilt $L \simeq K^n$. Daraus folgt die Aussage.

2. Es gilt
$$\mathbb{F}_p = P_K \subset K$$
. Sei $m = [K : \mathbb{F}_p]$. Die Aussage folgt aus 1.

Satz 4.3.5 Sei p eine Primzahl und $n \in \mathbb{N}_{>0}$. Sei $q = p^n$.

Dann gibt es modulo isomorphismus genau ein Körper K mit q Elemente: der Zerfallungskörper von $X^q - X$ über \mathbb{F}_p .

Beweis. Wir zeigen, dass es ein Körper mit q Elemente gibt. Sei $K = D_{\mathbb{F}_p}(X^q - X)$ der Zerfallungskörper von $X^q - X$ über F_p . Es gilt $\mathbb{F}_p \subset K$ also $\operatorname{char}(K) = p$. Sei

$$M = \{x \in K \mid x^q - x = 0\}.$$

Wir zeigen, dass M ein Körper ist: Seien $x, y \in M$. Dann gilt $(x-y)^q = \operatorname{Fr}_{K,q}(x-y) = \operatorname{Fr}_{K,q}(x) - \operatorname{Fr}_{K,q}(y) = x^q - y^q = x - y$ also $x-y \in M$. Es gilt auch $(xy^{-1})^q = x^q(y^q)^{-1} = xy^{-1}$ also $xy^{-1} \in M$.

Außerdem gilt für $P(X) = X^q - X$: $\frac{dP}{dX}(X) = qX^{q-1} - 1 = -1$ da char(K) = p|q. Es folgt ggT $(P, \frac{dP}{dX}) = 1$ und die Nullstellen von P sind von Vielfachkeit 1. Es sind also genau q solche Nullstellen. Daraus folgt |M| = q.

Wir zeigen jetzt die Eindeutigkeit. Sei M ein Körper mit q Elemente. Sei $x \in M^{\times}$. Da $|M^{\times}| = q - 1$ gilt $x^{q-1} = 1$ und also $x^q - x = 0$. Für $x = 0 \in M$ gilt auch $x^q - x = 0$. Es gilt also $x^q - x = 0$ für alle $x \in M$ und $M = D_{\mathbb{F}_p}(X^q - X)$.

Definition 4.3.6 Für p eine Primzahl, $n \in \mathbb{N}$ und $q = p^n$ schreiben wir \mathbb{F}_q für den Körper mit q Elemente.

4.3.2 Primitives Element

Satz 4.3.7 Sei p eine Primzahl und $q = p^n$. Es gibt einen Gruppenisomorphismus

$$(\mathbb{F}_q^{\times}, \times) \simeq (\mathbb{Z}/(q-1)\mathbb{Z}, +).$$

Insbesondere ist \mathbb{F}_q^{\times} eine Zyklische Gruppe.

Beweis. Die Gruppe \mathbb{F}_q^{\times} ist kommutativ. Sei $m = \max\{\operatorname{ord}(g) \mid g \in \mathbb{F}_q^{\times}\}$ und sei

$$H = \{ x \in \mathbb{F}_q^{\times} \mid \operatorname{ord}(x) | m \}.$$

Dann ist H eine Untergruppe von \mathbb{F}_q^{\times} : für $x, y \in H$ gilt $(xy^{-1})^m = x^m (y^m)^{-1} = 1$ also $\operatorname{ord}(xy^{-1}|m)$. Sei $h \in H$ mit $\operatorname{ord}(h) = m$. Dann gilt $\langle h \rangle \subset H$ und $|\langle h \rangle| = \operatorname{ord}(h) = m$. Umgekehrt gilt $x^m = 1$ für alle $x \in H$ also gilt $H \subset \{\text{Nullstellen von } X^m - 1\}$ und $|H| \leq m$. Daraus folgt $H = \langle h \rangle$.

Wir Zeigen, dass H = G. Angenommen $H \subsetneq G$. Sei $g \in G \setminus H$. Dann gilt $r = \operatorname{ord}(g) / m$. Sei $d = \operatorname{ggT}(r, m)$ und $s = \frac{r}{d}$. Dann gilt $\operatorname{ggT}(s, m) = 1$ und $\operatorname{ord}(g^d) = s$. Wir zeigen, dass $\operatorname{ord}(g^d h) > m$. Ein Widerspruch zur Minimalität von m.

Sei $a \in \mathbb{N}$ mit $(g^d h)^a = 1$. Dann gilt $(g^d)^a = (h^{-1})^a$ also $\operatorname{ord}((g^d)^a)|\operatorname{ord}(g^d) = s$ und $\operatorname{ord}((g^d)^a) = \operatorname{ord}((h^{-1})^a)|\operatorname{ord}(h) = m$. Daraus folgt, dass beide Ordnungen gleich 1 sind und $(g^d)^a = 1 = h^a$. Insbesondere gilt $s = \operatorname{ord}(g^d)|a$ und $m = \operatorname{ord}(h)|a$. Daraus folgt sm|a und $\operatorname{ord}(q^d h) = sm > m$.

Bemerkung 4.3.8 Der obige Beweis gilt auch für K ein beliebiger Körper und $G \subset K^{\times}$ eine endliche Untergruppe: jede endliche Untergruppe G von K^{\times} ist zyklisch.

Korollar 4.3.9 (Satz vom primitiven Element) Sei $K \subset L$ eine Erweiterung mit K und L endlich. Sei $\xi \in L^{\times}$ ein Erzeuger dieser Gruppe.

- 1. Dann gilt $L = K(\xi)$.
- 2. Sei χ_{ξ} das Minimalpolynom von ξ über K. Es gilt deg $\chi_{\xi} = [L : K]$.

Beweis. 1. Da $\xi \in L$ gilt $K(\xi) \subset L$. Umgekehrt, da ξ ein Erzeuger von L^{\times} ist gilt $L^{\times} \subset K(\xi)$. Daraus folgt $L \subset K(\xi)$.

2. Folgt direkt aus 1.

4.3.3 Galois Gruppe

Satz 4.3.10 Sei p eine Primzahl, $n \in \mathbb{N}$ und $q = p^n$. Sei $m \in \mathbb{N}$.

- 1. Die Erweiterung $\mathbb{F}_q \subset \mathbb{F}_{q^m}$ ist Galois.
- 2. Die Gruppe $Gal(\mathbb{F}_{q^m}/\mathbb{F}_q)$ is zyklisch und hat $Fr_{\mathbb{F}_{q^m},q}$ als Erzeuger:

$$\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) = \langle \operatorname{Fr}_{\mathbb{F}_{q^m},q} \rangle \simeq \mathbb{Z}/m\mathbb{Z}.$$

Beweis. 1. Nach Satz 4.3.5 gilt $\mathbb{F}_{q^m} = \mathbb{F}_{p^{mn}} = D_{\mathbb{F}_p}(X^{p^{mn}} - X)$ also ist $\mathbb{F}_p \subset \mathbb{F}_{q^m}$ normal. Da für $P = X^{p^{mn}} - X$ gilt $P' = -1 \neq 0$, gilt P ist separabel und $\mathbb{F}_p \subset \mathbb{F}_{q^m}$ ist separabel also Galois. Insbesondere gilt $|\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)| = [\mathbb{F}_{q^m} : \mathbb{F}_q] = m$.

2. Sei $x \in \mathbb{F}_q^{\times}$. Da $|\mathbb{F}_q^{\times}| = q - 1$, folgt $x^{q-1} = 1$. Für alle $x \in \mathbb{F}_q$ gilt also $x^q = x$. Daraus folgt $\mathrm{Fr}_{\mathbb{F}_q^m,q}(x) = x$. Da $\mathrm{Fr}_{\mathbb{F}_{q^m},q} \in \mathrm{Aut}(\mathbb{F}_{q^m})$ folgt $\mathrm{Fr}_{\mathbb{F}_{q^m},q} \in \mathrm{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$. Sei $d = \mathrm{ord}(\mathrm{Fr}_{\mathbb{F}_{q^m},q})$ die Ordnung von $\mathrm{Fr}_{\mathbb{F}_{q^m},q}$. Es gilt $d \leq m$. Für alle $x \in \mathbb{F}_{q^m}$ gilt auch:

$$x = \operatorname{Fr}_{\mathbb{F}_{q^m}, q}^q(x) = x^{q^d}.$$

Also hat das Polynom $X^{q^d} - X$ mindestens $|\mathbb{F}_{q^m}| = q^m$ Nullstellen. Daraus folgt $d \geq m$ und also d = m. Da $|\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)| = [\mathbb{F}_{q^m} : \mathbb{F}_q] = m$, folgt die Aussage.

4.4 Sazt vom primitiven Element

Satz 4.4.1 Sei $K \subset L$ eine endliche und separable Erweiterung.

- 1. Es gibt eine Erweiterung $L \subset M$ so, dass die Erweiterung $K \subset M$ Galois ist.
- 2. Die Erweiterung $K \subset L$ hat nur endlich viele Zwischenkörper.

Beweis. 1. Seien a_1, \dots, a_n ßnL mit $L = K(a_1, \dots, a_n)$. Sei $P = \chi_{a_1} \dots \chi_{a_n}$, wobei χ_{a_i} das Minimalpolynom von a_i über K ist. Dann ist P separabel über K, weil alle a_i separabel über K sind. Sei $M = D_K(P)$. Die Erweiterung $K \subset M$ ist Galois.

2. Die Zwischenkörper $K \subset L' \subset M$ sind in bijektion mit den Untergruppen von $\operatorname{Gal}(M/K)$. Da es nur endlich viele soche Untergruppen gibt, gibt es endlich viele Zwischenkörper $K \subset L' \subset M$. Insbesondere gibt es endlich viele Zwischenkörper $K \subset L' \subset L$.

Satz 4.4.2 (Satz vom primitiven Element) Sei $K \subset L$ eine endliche und separable Erweiterung. Dann gibt es ein $\xi \in L$ mit $L = K(\xi)$.

Beweis. Für L endlich folgt die Aussage aus Korollar 4.3.9. Sei also K unendlich. Sei n minimal mit $L = K(a_1, \dots, a_n)$. Angenommen $n \geq 2$. Für jedes $t \in K$ ist $K(a_1 + ta_2)$ ein Zwischenkörper. Da es nur endlich viele Zwischekörper $K \subset M \subset L$ gibt und da K unendlich ist, gibt es $t, s \in K$ mit $t \neq s$ und $K(a_1 + ta_2) = K(a_1 + sa_2)$. Daraus folgt, dass

$$a_1 = \frac{s(a_1 + ta_2) - t(a_1 + sa_2)}{s - t} \in K(a_1 + ta_2) = K(a_1 + sa_2)$$

$$a_2 = \frac{(a_1 + ta_2) - (a_1 + sa_2)}{t - s} \in K(a_1 + ta_2) = K(a_1 + sa_2).$$

Daraus folgt $K(a_1+ta_2)=K(a_1,a_2)$ und $L=K(a_1,\cdots,a_n)=K(a_1+ta_2,a_3,\cdots,a_n)$. Widerspruch zur Minimalität von n.

4.5 Einheitswurzeln und Kreisteilungskörper

Definition 4.5.1 Sei K ein Körper und $n \in \mathbb{N}$.

- 1. **Die Gruppe der** *n*-ten Einheitswurzeln $E_n(K)$ von K ist die Gruppe der Nullstellen von $X^n 1$ in $K_n = D_K(X^n 1)$.
- 2. Der Körper $K_n = D_K(X^n 1)$ heißt Kreisteilungskörper.

Beispiel 4.5.2 1. Für $K = \mathbb{C}$ gilt $E_n(\mathbb{C}) = \{e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1]\}.$

2. Für $q=p^n$ und $K=\mathbb{F}_q$ gilt $E_{q-1}(\mathbb{F}_p)=\mathbb{F}_q.$

Lemma 4.5.3 Sei $n \in \mathbb{N}$ und p eine Primzahl.

1. Falls $\operatorname{char}(K) / n$, gilt $|E_n(K)| = n$. In dem Fall gibt es ein Gruppenisomorphismus

$$E_n(K) \simeq \mathbb{Z}/n\mathbb{Z}$$
.

2. Falls char(K) = p und n = pm gilt $E_n(K) = E_m(K)$ und $K_n = K_m$.

Beweis. 1. Sei $P = X^n - 1$. Es gilt $E_n(K) = \{x \in D_K(P) \mid P(x) = 0\}$. Insbesondere gilt $|E_n(K)| \le n$. Falls $\operatorname{char}(K) = p / n$, gilt $P' \ne 0$ und P ist separabel. Das Polynom P hat also n paarweise verschiedene Nullstellen und $|E_n(K)| = n$.

Nach der Bemerkung 4.3.8 ist die endliche Gruppe $E_n(K)$ zyzlisch.

2. Es gilt
$$X^n - 1 = (X^m)^p - 1 = (X^m - 1)^p$$
. Daraus folgt $E_n(K) = E_m(K)$ und $K_n = K_m$.

Lemma 4.5.4 Sei $n \in \mathbb{N}$ und d ein Teiler von n.

1. Es gilt $K_d \subset K_n$.

2. Die Erweiterung $K \subset K_n$ ist Galois.

Beweis. 1. Sei m mit n = dm. Es gilt

$$X^{n} - 1 = ((X^{d})^{m} - 1) = (X^{d} - 1)(X^{d(m-1)} + X^{d(m-2)} + \dots + X^{d} + 1).$$

Daraus folgt $E_d(K) \subset E_n(K)$ und $K_d \subset K_n$.

2. Nach dem obigen Lemma können wir ohne Einschränkung annehmen, dass gilt ggT(n, char(K)) = 1. Dann ist $P = X^n - 1$ separabel und $K_n = D_K(P)$ is Galois.

Sei $n \in \mathbb{N}$ und K ein Körper mit ggT(n, char(K)) = 1.

Definition 4.5.5 Die Menge der primitiven Einheitswurzeln ist

$$PE_n(K) = \{ \zeta \in E_n(K) \mid \operatorname{ord}(\zeta) = n \}.$$

Bemerkung 4.5.6 Sei $n \in \mathbb{N}$ und K ein Körper.

1. Es gilt $E_n(K) \simeq \mathbb{Z}/n\mathbb{Z}$. Mit dieser Identifikation gilt $PE_n(K) = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Insbesondere gilt

$$|PE_n(K)| = \varphi(n),$$

wobei $\varphi(n)$ die Eulersche φ -Funktion ist.

2. Es gilt

$$E_n(K) = \coprod_{d|n} PE_n(K).$$

Definition 4.5.7 Das *n*-te Kreisteilungspolynom über K ist

$$\Phi_{n,K} = \prod_{\zeta \in PE_n(K)} (X - \zeta) \in K_n(X).$$

Lemma 4.5.8 Sei $n \in \mathbb{N}$.

1. Es gilt $\deg \Phi_{n,K} = \varphi(n)$ und

$$X^n - 1 = \prod_{d|n} \Phi_{d,K}.$$

2. Es gilt

$$n = \sum_{d|n} \varphi(d).$$

Beweis. 1. Die Aussagen folgen aus der obigen Bemerkung.

2. Folgt aus 1:
$$n = \deg(X^n - 1) = \deg(\prod_{d|n} \Phi_{d,K}) = \sum_{d|n} \varphi(d)$$
.

Beispiel 4.5.9 Für p eine Primzahl mit ggT(p, char(K)) = 1 gilt

$$\Phi_{p,K}(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + \dots + X + 1.$$

Satz 4.5.10 Sei $\zeta \in PE_n(K)$. Es gilt $K_n = K(\zeta)$.

Beweis. Da $\operatorname{ggT}(n, \operatorname{char}(K)) = 1$ gilt $|E_n(K)| = n$ und $|\{\zeta^k | k \in \mathbb{Z}\}| = \operatorname{ord}(\zeta) = n$. Daraus folgt $E_n(K) = \{\zeta^k | k \in \mathbb{Z}\}$ und $K_n = K(\zeta)$.

Lemma 4.5.11 Sei R ein Ring und K ein Körper mit $R \subset K$. Seien $P, Q \in R[X]$ mit Leitkoeffizient 1 und mit P = QT, wobei $T \in K[X]$.

Dann gilt $T \in R[X]$ und T hat Leitkoeffizient 1.

Beweis. Wir schreiben dank der Restdivision P = QS + U mit $S, U \in R[X]$ und deg $U < \deg Q$. In K[X] gilt QT = P = QS + R also R = Q(T - S). Mit deg $U < \deg Q$ folgt $T = S \in R[X]$. Es gilt auch Leitkoeffizient von P = Leitkoeffizient von Q. Leitkoeffizient von T.

Lemma 4.5.12 Sei R der Primring von K also

$$R = \begin{cases} \mathbb{Z} & \text{für char } K = 0, \\ \mathbb{F}_p & \text{für char } K = p. \end{cases}$$

Dann gilt $\Phi_{n,K} \in R[X]$.

Beweis. Per Induktion über n. Für n=1 ist die Aussage klar: $Phi_1(X)=X-1$. Die Behauptung sei wahr für alle $\Phi_{m,K}$ mit m< n. Dann ist $X^n-1=\Phi_{n,K}Q$ mit $Q=\prod d|n,d< n\Phi_{d,K}\in R[X]$. Aus dem obigen Lemma folgt $\Phi_{n,K}\in R[X]$ und $\Phi_{n,K}$ hat Leitkoeffizient 1.

Lemma 4.5.13 Es gilt $\operatorname{Gal}(K_n/K) \subset (\mathbb{Z}/n\mathbb{Z})^{\times} \simeq \mathbb{Z}/\varphi(n)\mathbb{Z}$, insbesondere ist diese Gruppe abelsch.

Beweis. Sei $\zeta \in PE_n(K)$. Jedes $f \in \operatorname{Gal}(K_n/K)$ permutiert die Nullstellen von $\Phi_{n,K}$. Daraus folgt, dass es ein $m_f \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ gibt mit $f(\zeta) = zeta^{m_f}$. Wir betrachten die Abbildung $F : \operatorname{Gal}(K_n/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ definiert durch $F(f) = m_f$. Dies ist ein Gruppenhomomorphismus: Für $f, g \in \operatorname{Gal}(K_n/K)$ gilt $f(\zeta) = \zeta^{m_f}$ und $g(\zeta) = \zeta^{m_g}$ also $(f \circ g)(\zeta) = f(\zeta^{m_g}) = f(\zeta)^{m_g} = (\zeta^{m_f})^{m_g} = \zeta_{m_f m_g}$. Daraus folgt F(fg) = F(f)F(g). Es genügt zu zeigen, dass F injektiv ist. Sei $f \in \operatorname{Ker}(F)$ also F(f) = 1. Dann gilt $f(\zeta) = \zeta$. Da $K_n = K(\zeta)$ folgt $f = \operatorname{Id}_{K_n}$.

Index

$D^k(G), 33$	Grad eines Elements über einem Kör-
G-Spur, 86	per, 65
ggT(a,b), 55	Gruppe, 5
kgV(a,b), 55	einfach, 11
k-te derivierte Untergruppe, 33	$\operatorname{Gruppenhomomorphismus}, 6$
<i>p</i> -Gruppe, 24	${\bf Gruppe nautom or phismus, 7}$
äußere Automorphismen, 7	$\operatorname{Gruppenisomorphismus}, 7$
	innerer, 7
abelsch, 5	$\operatorname{Kern}, 7$
algebraisch, 65	Konjugation mit $g, 7$
algebraisch abgeschlossen, 68	Gslois-Gruppe, 76
algebraische Abchluß, 67	
Alternierende Gruppe, 7	Hauptideal, 52
assoziativ, 5	Ideal, 39
assoziierte Elemente, 50	endlich erzeugt, 49
auflösbar, 33	erzeugtes Ideal, 41
Automorphismus, 7	Hauptideal, 41
	Nullideal, 39
Bahn, 21	Produktideal, 41
	Summe, 41
Charakteristik, 62	teilerfremd, 45
Deniziante Cruppo 17	Inhalt, 56
Derivierte Gruppe, 17	inseparabel, 82
Die Gruppe der n -ten Einheitswurzeln,	inverses Element, 5
95	invertierbares Element, 37
erzeugte Untergruppe, 15	irreduzibles Element, 51
Eulersche Funktion, 47	Isomorphismus, 7
exakte Sequenz, 11	isomorphismus, 7
exacte pequenz, 11	Körper, 37, 62
Fermat-Zahl, 75	erzeugter Teilkörper, 65
Fixkörper, 83	Körperhomomorphismus, 62
Fixpunkt, 21	Primkörper, 62
Frobenius-Homomorphismus, 91	Körpererweiterung, 63
	algebraisch, 67
Galois-Erweiterung, 83	einfach, 65
Galois-Gruppe	endlich, 63
eines Polynoms, 80	Grad, 63

INDEX 99

${ m transzendent}, 67$	Produkt-Gruppe, 6
Zwischenkörper, 63	0.477
kanonische Projektion, 8	Quotient G/H , 8
kommutativ, 5	Quotient $H\backslash G$, 8
Kommutator, 17	Quotient einer Menge
Kommutator Untergruppe, 17	nach einer Gruppe, 21
konstruierbare komplexe Zahl, 70	Quotient gruppe, 10
konstruierbare reele Zahl, 70	Quotientring, 40
Kreisteilungskörper, 95	rationale Funktion, 64
Kreisteilungspolynom, 60, 96	rationaler Funktionskörper, 64
01 0 , ,	Rechtsklassen, 8
Linksklassen, 7	reduzibles Element, 51
3.50.1.4.1.4.0	Ring, 36
Mächtigkeit, 8	Einheit, 37
maximal Ideal, 43	,
minimal Polynom, 66	erzeugter Unterring, 41
, 1 171 , 7	faktoriell, 53
neutrales Element, 5	Hauptidealring, 52
normale Hülle, 81	Integritätsring, 37
Normalisator, 11	kommutativ, 36
Normalteiler, 9	noetherscher Ring, 49
Nullstelle	Nullring, 36
einfach, 82	Nullteiler, 37
Vielfachkeit, 82	$\frac{\text{Nullteilerfrei}}{2}$
0 1 20	Produkt, 37
Operation, 20	Schiefkörper, 37
k-transitiv, 26	Semidirektes Produkt, 18
Konjugation, 21	
Linkstranslation, 21	separabel, 82
transitiv, 21	Stabilisator, 22
treu, 21	Sylowuntergruppe, 28
Triviale Operation, 21	Teiler, 50
Orbit, 21	transzendent, 65
Ordnung, 8	Trivialeuntergruppe, 6
Ordnung eines Elements, 16	
perfekt, 82	Untergruppe, 6
-	$\mathrm{Index},8$
Polynomring, 37	Unterring, 39
Polynomring mit n Unbekannten, 38	7 . 1' . 19
Primelement, 51	Zentralisator, 13
Primideal, 43	Zentrum, 13
primitiv, 56	Zerfallungskörper, 78
primitive Einheitswurzel, 96	Zerlegung in irreduziblen, 53
Primring, 62	Zykel, 25
Primzerlegung, 53	fremd, 25

100 INDEX

```
\begin{array}{c} {\rm L\ddot{a}nge,~25} \\ {\rm Tr\ddot{a}ger,~25} \\ {\rm zyklische~Gruppe,15} \end{array}
```