Table of Fourier Series Properties:

Fourier Analysis :
$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

Fourier Synthesis :
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

 $(\omega_0 \text{ is the fundamental angular frequency of } x(t) \text{ and } T_0 \text{ is the fundamental period of } x(t))$

For each property, assume $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} c_k$ and $y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} d_k$

Property	Time domain	Fourier domain
Linearity	Ax(t) + By(t)	$Ac_k + Bd_k$
Time Shifting	$x(t-t_0)$	$c_k e^{-jk\omega_0 t_0}$
Frequency Shifting	$x(t)e^{jM\omega_0t}$	c_{k-M}
Conjugation	$x^*(t)$	c_{-k}^*
Time Reversal	x(-t)	c_{-k}
Circular Conv.	$x(t) \circledast y(t)$	$T_0c_kd_k$
Multiplication	x(t)y(t)	$c_k * d_k$
Differentiation	$\frac{d}{dt}x(t)$	$(jk\omega_0)c_k$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\left(\frac{1}{jk\omega_0}\right)c_k$
Conjugate Symmetry for		
Real Signals	x(t) is real	$c_k = c_{-k}^*$
Real and Even Signals	x(t) is real and even	c_k is real and even
Real and Odd Signals	x(t) is real and odd	c_k is purely imaginary and odd
Parseval's Relation for		
Cont. Periodic signals	$\frac{1}{T_0} \int_{T_0} x(t) ^2 dt$	$\sum_{k=-\infty}^{\infty} c_k ^2$

Table of Special Functions:

Function name	Expression	Notes
Sinc function	$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$	Note that there exists an alternative definition for sinc(x)
Rectangle function	$rect(x) = \begin{cases} 0 & if x \ge 1/2 &, x < -1/2 \\ 1 & if -1/2 \le x < 1/2 \end{cases}$	
	$rect(x) = u(x + \frac{1}{2}) - u(x - \frac{1}{2})$	Note that there are alternative definitions with different values for $rect(\pm 1/2)$
Unit triangle function	$\Delta(x) = \begin{cases} 0 & if & x \ge 1/2 \\ 1 - 2 x & if & x < 1/2 \end{cases}$	

Table of Fourier Transform Pairs:

Fourier Transform :
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

Inverse Fourier Transform : $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$.

x(t)	$X(\omega)$	condition
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	a > 0
$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right)$	
$\sin(\omega_0 t)$	$j\pi \left(\delta(\omega+\omega_0)-\delta(\omega-\omega_0)\right)$	
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$	
$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2} \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right) + \frac{j\omega}{\omega_0^2 - \omega^2}$	
$\sin(\omega_0 t)u(t)$	$\frac{\pi}{2j} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right) + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
$\operatorname{rect}\left(\frac{t}{T}\right)$	T sinc $\left(\frac{\omega T}{2}\right)$	
$\frac{W}{\pi}\operatorname{sinc}(Wt)$	$\mathrm{rect}\left(\frac{\omega}{2W}\right)$	
$\Delta\left(\frac{t}{T}\right)$	$\frac{T}{2}\mathrm{sinc}^2\left(\frac{\omega T}{4}\right)$	
$\frac{W}{2\pi}$ sinc ² $\left(\frac{WT}{2}\right)$		
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T_0}$
$e^{-t^2/(2\sigma^2)}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

 $\textbf{Table of Fourier Transform Properties:} \quad \mathrm{For \ each \ property, \ assume}$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$
 and $y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega)$

Property	Time domain	Fourier domain
Linearity	Ax(t) + By(t)	$AX(\omega) + BY(\omega)$
Time Shifting	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Time Scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{\omega}{\alpha}\right)$
Frequency Shifting	$x(t)e^{j\omega_0t}$	$X(\omega-\omega_0)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Time Reversal	x(-t)	$X(-\omega)$
Convolution	x(t) * y(t)	$X(\omega)Y(\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(\omega)*Y(\omega)$
Differentiation	$\frac{d}{dt}x(t)$	$(j\omega)X(\omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\left(\frac{1}{j\omega}\right)X(\omega)$
Conjugate Symmetry for		
Real Signals	x(t) is real	$X(\omega) = X^*(-\omega)$
Real and Even Signals	x(t) is real and even	$X(\omega)$ is real and even
Real and Odd Signals	x(t) is real and odd	$X(\omega)$ is purely imaginary and odd
Parseval's Relation for		
Aperiodic signals	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$

Table of Laplace Transform Pairs:

$$\begin{array}{lll} \mbox{Bilateral Laplace Transform} & : & X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} \; dt \\ \mbox{Unilateral Laplace Transform} & : & X(s) = \int_{0}^{\infty} x(t) e^{-st} \; dt \\ \mbox{Inverse Laplace Transform} & : & x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} \; ds \; . \end{array}$$

x(t)	X(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{at}u(t)$	$\frac{1}{s-a}$
$te^{at}u(t)$	$\frac{1}{(s-a)^2}$
$t^n e^{at} u(t)$	$\frac{n!}{(s-a)^{n+1}}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2 + b^2}$
$e^{-at}\cos(bt)u(t)$	$\frac{s^2 + b^2}{s + a}$ $\frac{(s+a)^2 + b^2}{(s+a)^2 + b^2}$
$e^{-at}\sin(bt)u(t)$	$\frac{b}{(s+a)^2 + b^2}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(s+a)^2 + b^2}{\frac{(r\cos(\theta))s + (ar\cos(\theta) - br\sin(\theta))}{s^2 + 2as + (a^2 + b^2)}}$
$re^{-at}\cos(bt+\theta)u(t)$	$rac{s^2 + 2as + (a^2 + b^2)}{s + a - jb} + rac{0.5re^{-j heta}}{s + a + jb}$
$re^{-at}\cos(bt + \theta)u(t)$, $r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}$	$ \begin{array}{c} s+a-\jmath b & s+a+\jmath b \\ \hline \frac{As+B}{s^2+2as+c} \end{array} $
$\theta = \tan^{-1}\left(\frac{Aa - B}{A\sqrt{c - a^2}}\right)$, $b = \sqrt{c - a^2}$	$s^2 + 2as + c$
$e^{-at} \left[A\cos(bt) + \frac{B-Aa}{b}\sin(bt) \right] u(t)$, $b = \sqrt{c-a^2}$	$\frac{As+B}{s^2+2as+c}$

$\textbf{Table of Laplace Transform Properties:} \quad \text{For each property, assume} \\$

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
 and $y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$

Property	Time domain	Laplace domain
Linearity	Ax(t) + By(t)	AX(s) + BY(s)
Time Shifting	$x(t-t_0)$	$X(s)e^{-st_0}$
Time Scaling	$x(\alpha t) , \alpha \ge 0$	$\frac{1}{\alpha}X\left(\frac{s}{\alpha}\right)$
Frequency Shifting	$x(t)e^{s_0t}$	$X(s-s_0)$
Time Reversal	x(-t)	X(-s)
Convolution	x(t) * y(t)	X(s)Y(s)
Multiplication	x(t)y(t)	$\frac{1}{2\pi j}X(s) * Y(s)$
Differentiation	$\frac{d}{dt}x(t)$	$sX(s) - x(0^-)$
	$\frac{d^2}{dt^2}x(t)$	$s^2X(s) - sx(0^-) - \dot{x}(0^-)$
	$\frac{d^3}{dt^3}x(t)$	$s^3X(s) - s^2x(0^-) - s\dot{x}(0^-) - \ddot{x}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\tau) d\tau$	$\left(\frac{1}{s}\right)X(s)$
	$\int_{-\infty}^{t} x(\tau) d\tau$	$\left(\frac{1}{s}\right)X(s) + \frac{1}{s}\int_{-\infty}^{0^{-}}x(t)dt$
Frequency Differentiation	-tx(t)	$\frac{dX(s)}{ds}$
Frequency Integration	$\frac{x(t)}{t}$	$\int_{s}^{\infty} X(z)dz$
Initial value	$x(0^+)$	$\lim_{s o \infty} sX(s)$
Final value	$x(\infty)$	$\lim_{s\to 0} sX(s)$ (if poles of $sX(s)$ are in left-hand plane)