Hierarchical Models - random variance

02424 - Advanced Dataanalysis and Statistical Modelling Assingment 3, Part 2

> Tymoteusz Barcinski - s221937 Soren Skjernaa - s223316

Technical University of Denmark

May 14, 2023

Outline

- Introduction
- 2 First model
- Second model
- Third model
- 5 Proof of the reformulated Theorem 6.7
- 6 Laplace Approximation
- Hierarchical model
- 8 Final Normal model
- Comparison between models

Overview of the experiment

Variable	Туре	Explanation
clo	Clothing insulation level	Positive variable, with higher values
		implying higher insulation.
tOut	Outdoors air temperature	Measured in C ^o
tlnOp	Indoor operating temperature	Measured in C ^o
sex	Sex	Female/male.
subjld	Subject ID	Uniqiue ID for each subject.
time	Time	Time difference since last observation for the subject
		(continues variable, but unit not given).
day	Day	Number of experimentation day for the subject.
subDay	$Subject imes Day \; ID$	Unique ID for each combination of subject and day.

Overview of the experiment

First model - Formulation

$$Y_{i,j,k} = \log(\mathsf{clo}_{i,j,k}) = \mu + \beta (\mathsf{sex}_i) + u_i + \varepsilon_{ijk};$$

$$u_i \sim N (0, \sigma_u^2) \quad \varepsilon_{ijk} \sim (0, \sigma^2)$$

where $Y_{i,j,k}$ is the logarithm of the clothing insulation level for subject i on day j and k refer to the observation number within the day. We have that

$$E[Y_{ijk}] = \mu + \beta(\text{sex}_i);$$

$$Cov[Y_{ijk}, Y_{hlm}] = \begin{cases} \sigma_u^2 + \sigma^2 & \text{for } (i, j) = (h, l) & \text{(subject, obs)} \\ \sigma_u^2 & \text{for } i = h, \quad j \neq l & \text{(subject)} \\ 0 & \text{for } i \neq h \end{cases}$$

Tymoteusz Barcinski - s221937 Soren Skjerna 💎 F

First model - Formulation

We can further write the model in the following form for subject i:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{U} + \varepsilon_i; \quad \mathbf{U} \sim N(0, \sigma_u^2), \quad \varepsilon_i \sim N_{n_i}(0, \sigma^2 I)$$

We can write the model as a multivariate normal distribution

$$\mathbf{Y}_{i} \sim N_{n_{i}} \left(\mathbf{X}_{i} \boldsymbol{\beta}, \sigma_{u}^{2} \mathbf{Z} \mathbf{Z}^{T} + \sigma^{2} \mathbf{I} \right)$$

The model is parametrized by $\theta = (\beta, \sigma_u^2, \sigma^2)$. We can write the log likelihood for the model

$$l(\theta; \mathbf{y}) = \log L(\theta; \mathbf{y}) = \sum_{i=1}^{n} l_i(\theta; \mathbf{y}_i)$$

where n is the number of subjects. We implement the likelihood function and perform the optimisation with respect to the parameters.

- (ロ) (個) (重) (重) (重) の(()

First model - Likelihood implementation

The detailed implementation in R is presented:

```
n = dim(df)[1]
X = cbind(rep(1, n), dfsex_optimization)
p = dim(X)[2]
Z = cbind(rep(1, n))
u_number = dim(Z)[2]
y = log(clo)
obj_1 = function(beta){
  result = 0
  for(subject_i in unique(df$subjld)){
    X_i = X[dfsubjld = subject_i, drop = F]
    n_i = \dim(X_i)[1]
    y_i = y[df$subjld == subject_i]
    y_hat_i = X_i %*% beta[1:p]
    Psi_i = exp(beta[p+1])*diag(u_number)
    Z_i = Z[df\subjld = subject_i, drop = F]
    Sigma_full_i = exp(beta[p+2])*diag(n_i) + Z_i %*%
    Psi_i %*% t(Z_i)
    result = result +
      sum(dmvnorm(y_i, mean = y_hat_i,
      sigma = Sigma_full_i, log = TRUE)
  return(-result)
```

First model - Results

We verify our results with the model estimated by the library Ime4.

	own impl	ementation	In	ne4
	Own impi	ementation	111	HE 4
Parameter	Estimate	Std. Error	Estimate	Std. Error
(Intercept)	-0.584	0.047	-0.584	0.047
sexmale	-0.109	0.067	-0.109	0.067
σ_u^2	0.050	-	0.050	0.224
σ^2	0.035	-	0.035	0.186

Table: Model parameters and their uncertainties for the final model.

Since the variance parameters were estimated in the log domain constructing the Wald confidence interval for them would require taking the transformation into account as the Wald confidence intervals are not invariant to parameter transformations.

Second model - Formulation

$$\begin{aligned} Y_{i,j,k} &= \log(\mathsf{clo}_{i,j,k}) = \mu + \beta \left(\mathsf{sex}_i\right) + u_i + v_{ij} + \varepsilon_{ijk}; \\ u_i &\sim N\left(0, \sigma_u^2\right) \quad v_{ij} \sim N\left(0, \sigma_v^2\right) \quad \varepsilon_{ijk} \sim \left(0, \sigma^2\right) \end{aligned}$$

We have that

$$\operatorname{E}\left[Y_{ijk}\right] = \mu + \beta(\operatorname{sex}_i);$$

$$\operatorname{Cov}\left[Y_{ijk}, Y_{hlm}\right] = \begin{cases} \sigma_u^2 + \sigma_v^2 + \sigma^2 & \text{for } (i, j, k) = (h, l, m) \\ \sigma_u^2 + \sigma_v^2 & \text{for } (i, j) = (h, l), \quad k \neq m \\ \sigma_u^2 & \text{for } i = h, \quad j \neq l \\ 0 & \text{for } i \neq h \end{cases}$$

Second model - Formulation

We can further write the model in the following form for subject i and day j:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_{1,i} \mathbf{U} + \mathbf{Z}_{2,i} \mathbf{V} + \varepsilon_i;$$

$$\mathbf{U} \sim N(0, \sigma_u^2), \quad \mathbf{V} \sim N_{days_i}(0, \sigma_v^2 I), \quad \varepsilon_i \sim N_{n_i}(0, \sigma^2 I)$$

Therefore we can write the model as a multivariate normal distribution

$$\mathbf{Y}_{i} \sim N_{n_{i}} \left(\mathbf{X}_{i} \boldsymbol{\beta}, \sigma_{u}^{2} \mathbf{Z}_{1,i} \mathbf{Z}_{1,i}^{T} + \sigma_{v}^{2} \mathbf{Z}_{2,i} \mathbf{Z}_{2,i}^{T} + \sigma^{2} I \right)$$

The model is parametrized by $\theta = (\beta, \sigma_u^2, \sigma_v^2, \sigma^2)$.

Tymoteusz Barcinski - s221937 Soren Skjerna

Second model - Results

We verify our results with the model estimated by the library Ime4. The comment from the section about model 1 about the Wald confidence intervals for variance parameters still applies.

	own impl	ementation	In	ne4
Parameter	Estimate	Std. Error	Estimate	Std. Error
(Intercept)	-0.583	0.047	-0.583	0.047
sexmale	-0.111	0.067	-0.111	0.067
σ_u^2	0.039	-	0.039	0.197
$\sigma_{\rm v}^2$	0.038	-	0.038	0.195
σ^2	0.0079	-	0.0079	0.089

Table: Model parameters and their uncertainties

Third model - Formulation

$$\begin{aligned} Y_{i,j,k} &= \log(\mathsf{clo}_{i,j,k}) = \mu + \beta \left(\mathsf{sex}_i\right) + u_i + v_{ij} + \varepsilon_{ijk}; \\ u_i &\sim \mathcal{N}\left(0, \sigma_u^2 \alpha(\mathsf{sex}_i)\right) \quad v_{ij} \sim \mathcal{N}\left(0, \sigma_v^2 (\alpha \, \mathsf{sex}_i)\right) \\ \varepsilon_{ijk} &\sim \mathcal{N}\left(0, \sigma^2 \alpha(\mathsf{sex}_i)\right) \end{aligned}$$

We have that

$$\mathrm{E}\left[Y_{ijk}\right] = \mu + \beta(\mathsf{sex}_i);$$

$$\mathsf{Cov}\left[Y_{ijk}, Y_{hlm}\right] = \begin{cases} (\sigma_u^2 + \sigma_v^2 + \sigma^2)\alpha(\mathsf{sex}_i) & \text{for } (i, j, k) = (h, l, m) \\ (\sigma_u^2 + \sigma_v^2)\alpha(\mathsf{sex}_i) & \text{for } (i, j) = (h, l), \quad k \neq m \\ \sigma_u^2\alpha(\mathsf{sex}_i) & \text{for } i = h, \quad j \neq l \\ 0 & \text{for } i \neq h \end{cases}$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Third model - Formulation

We can further write the model in the following form:

$$\begin{aligned} \mathbf{Y}_i &= \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_{1,i} \mathbf{U} + \mathbf{Z}_{2,i} \mathbf{V} + \varepsilon_i; \\ \mathbf{U} &\sim \textit{N}(0, \sigma_u^2 \alpha(\text{sex}_i)), \quad \mathbf{V} \sim \textit{N}_{\textit{days}_i}(0, \sigma_v^2 \alpha(\text{sex}_i)I), \\ \varepsilon_i &\sim \textit{N}_{\textit{n}_i}(0, \sigma^2 \alpha(\text{sex}_i)I) \end{aligned}$$

Therefore we can write the model as a multivariate normal distribution

$$\mathbf{Y}_{i} \sim N_{n_{i}}\left(\mathbf{X}_{i}\boldsymbol{\beta}, \left(\sigma_{u}^{2}\mathbf{Z}_{1,i}\mathbf{Z}_{1,i}^{T} + \sigma_{v}^{2}\mathbf{Z}_{2,i}\mathbf{Z}_{2,i}^{T} + \sigma^{2}\boldsymbol{I}\right)\alpha(\operatorname{sex}_{i})\right)$$

The model is parametrized by $\theta = (\beta, \sigma_u^2, \sigma_v^2, \sigma^2, \alpha)$.

Here α gives the weight for the variance for males, i.e. if $\tilde{\sigma^2}_{female}$ is the estimated variance parameter for females then the corresponding variance parameter for males is given by $\tilde{\sigma^2}_{male} = \alpha \tilde{\sigma^2}_{female}$.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Third model - Results

Par.	Estimate	Std. Error	Estimate	Std. Error
	log domain	log domain		
μ	-	-	-0.5833	0.0797
β	-	-	-0.1117	0.0830
$\begin{array}{c c} \sigma_u^2 \\ \sigma_v^2 \end{array}$	-2.4366	0.3886	0.0874	-
σ_{v}^{2}	-1.680	0.1775	0.186	-
σ^2	-4.365	0.0696	0.0127	-
α	-2.499	0.1049	0.0821	-

Table: Model parameters and their uncertainties

Theorem formulation

Given

$$Y_i \mid \gamma_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{\gamma_i}\right); \quad \gamma_i \sim \mathsf{Gamma}(1, \lambda); \quad E[\gamma_i] = 1 \quad \mathit{Var}[\gamma_i] = \frac{1}{\lambda}$$

We want to show that the marginal distribution of Y_i is

$$f_{Y_i} \sim \frac{1}{\sigma} f_0\left(\frac{y-\mu}{\sigma}; 2\lambda\right)$$

where f_0 is the pdf of a student t-distributed random variable with 2λ degrees of freedom.

15 / 37

Tymoteusz Barcinski - s221937 Soren Skjerna Hierarchical Models - random variance May 14, 2023

Gamma distribution

Canonical parametrization of the Gamma distribution is

$$Y \sim G(\alpha, \beta); \quad E[Y] = \alpha \beta \quad Var[Y] = \alpha \beta^2$$

Reparametrizion in a way such that the expected value is the mean value parameter $\mu_{\rm G}$ and the variation is characterized by the precision parameter λ as it is done on page 96.

$$\alpha = \lambda \quad \beta = \frac{\mu_{\mathsf{G}}}{\lambda}$$

We obtain the following density function after reparametrization.

$$f_{\gamma_i}(\gamma_i, \alpha, \beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \gamma_i^{\alpha - 1} \exp\left(-\frac{\gamma_i}{\beta}\right) = \frac{\lambda^{\lambda}}{\mu_{\mathsf{G}}^{\lambda} \Gamma(\lambda)} \gamma_i^{\lambda - 1} \exp\left(-\frac{\gamma_i \lambda}{\mu_{\mathsf{G}}}\right)$$

In the Theorem we have $\mu_{\mathsf{G}}=1$, hence we obtain

$$f_{\gamma_i}(\gamma_i, \lambda) = f_{\gamma_i}(\gamma_i, \mu_{\mathsf{G}} = 1, \lambda) = \frac{\lambda^{\lambda}}{\Gamma(\lambda)} \gamma_i^{\lambda - 1} \exp(-\gamma_i \lambda)$$

4□ > 4團 > 4 ≣ > 4 ≣ > ■ 900

Normal and t-student distributions

The conditional density of $Y_i|\gamma_i$ is the normal distribution

$$f_{Y|\gamma_i}(y;\gamma_i) = \frac{\sqrt{\gamma_i}}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\gamma_i}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right)$$

The density of the student t distribution with 2λ degrees of freedom is

$$f_0(y) = rac{\Gamma\left(rac{2\lambda+1}{2}
ight)}{\sqrt{2\lambda\pi}\Gamma\left(\lambda
ight)}\left(1+rac{y^2}{2\lambda}
ight)^{-(2\lambda+1)/2}$$

Tymoteusz Barcinski - s221937 Soren Skjerna Hierarchical Models - random variance May 14, 2023 17 / 37

Derivation

Consider

$$\begin{split} f_{Y_i}(y) &= \int_0^\infty f_{Y_i|\gamma_i}(y_i;\gamma_i) f_{\gamma_i}(\gamma_i,\lambda) d\gamma_i \\ &= \int_0^\infty \frac{\sqrt{\gamma_i}}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\gamma_i}{2} \left(\frac{y-\mu}{\sigma}\right)^2\right) \frac{\lambda^\lambda}{\Gamma(\lambda)} \gamma_i^{\lambda-1} \exp\left(-\gamma_i\lambda\right) d\gamma_i \\ &= \frac{\lambda^\lambda}{\sigma\sqrt{2\pi}\Gamma(\lambda)} \int_0^\infty \gamma_i^{(\lambda+\frac{1}{2})-1} \exp\left(-\gamma_i \left(\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2 + \lambda\right)\right) d\gamma_i \end{split}$$

The integrand is seen as the kernel of a Gamma distribution:

G $\left(\alpha = \lambda + \frac{1}{2}, \beta = 1/\left(\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2 + \lambda\right)\right)$. Therefore we need to adjust the integrating constant to obtain the true distribution which will integrate to 1.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Derivation

After doing so we obtain the following:

$$f_{Y_i}(y) = \frac{1}{\sqrt{2\pi}\sigma} \frac{\lambda^{\lambda}}{\Gamma(\lambda)} \frac{\Gamma\left(\lambda + \frac{1}{2}\right)}{\left(\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2 + \lambda\right)^{\lambda + \frac{1}{2}}}$$

Thus substituting $t = \frac{y - \mu}{\sigma}$ and $v = 2\lambda$ we get

$$f_{Y_i}(y) = \frac{1}{\sigma} \frac{\sigma\left(\frac{\nu+1}{2}\right)}{\sqrt{2\pi}\Gamma(\nu/2)} \lambda^{-\frac{1}{2}} \lambda^{\lambda+\frac{1}{2}} \left(\frac{t^2+\nu}{2}\right)^{-\frac{\nu+1}{2}}$$

$$= \frac{1}{\sigma} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

$$= \frac{1}{\sigma} f_0\left(\frac{y-\mu}{\sigma}; 2\lambda\right)$$

which was to be proven.

Laplace Approximation in 4 steps

1) The likelihood of the General Mixed Effect model is

$$L_M(\boldsymbol{\theta}, \boldsymbol{y}) = \int_{\mathbb{R}^q} L(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{y}) d\boldsymbol{u}$$

2) Quadratic approximation of the log-likelihood is

$$\ell(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{y}) \approx \ell(\boldsymbol{\theta}, \hat{\boldsymbol{u}}_{\boldsymbol{\theta}}, \boldsymbol{y}) - \frac{1}{2} (\boldsymbol{u} - \hat{\boldsymbol{u}}_{\boldsymbol{\theta}})^{\mathsf{T}} \left(-\ell_{uu}^{"}(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{y}) \big|_{\boldsymbol{u} = \hat{\boldsymbol{u}}_{\boldsymbol{\theta}}} \right) (\boldsymbol{u} - \hat{\boldsymbol{u}}_{\boldsymbol{\theta}})$$

3) Inner optimization is

$$\hat{\pmb{u}}_{\pmb{\theta}} = \underset{\pmb{u}}{\operatorname{argmax}} L(\pmb{\theta}, \pmb{u}, \pmb{y})$$

4) After simplifications the Laplace approximation emerges

$$\ell_{M,LA}(\boldsymbol{\theta}, \boldsymbol{y}) \approx \ell\left(\boldsymbol{\theta}, \hat{\boldsymbol{u}}_{\boldsymbol{\theta}}, \boldsymbol{y}\right) - \frac{1}{2}\log\left(\det\left(-\left.\ell_{uu}''(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{y})\right|_{\boldsymbol{u} = \hat{\boldsymbol{u}}_{\boldsymbol{\theta}}}\right)\right) + \frac{q}{2}\log(2\pi)$$

Hierarchical model - Formulation

$$\begin{aligned} Y_{i,j,k}|u_i, v_{ij}, \gamma_i &\sim \textit{N}\left(\mu + \beta\left(\text{sex}_i\right) + u_i + v_{ij}, \, \sigma^2\alpha(\text{sex}_i)/\gamma_i\right) \\ u_i|\gamma_i &\sim \textit{N}\left(0, \sigma_u^2\alpha(\text{sex}_i)/\gamma_i\right) \\ v_{ij}|\gamma_i &\sim \textit{N}\left(0, \sigma_v^2\alpha(\text{sex}_i)/\gamma_i\right) \\ \gamma_i &\sim \textit{G}\left(1, \lambda\right) \end{aligned}$$

We have that

$$\operatorname{E}\left[Y_{ijk}|\gamma_{i}\right] = \mu + \beta(\operatorname{sex}_{i});$$

$$\operatorname{Cov}\left[Y_{ijk}|\gamma_{i}, Y_{hlm}|\gamma_{h}\right] = \begin{cases} (\sigma_{u}^{2} + \sigma_{v}^{2} + \sigma^{2})\alpha(\operatorname{sex}_{i})\gamma_{i}^{-1} & (i, j, k) = (h, l, m) \\ (\sigma_{u}^{2} + \sigma_{v}^{2})\alpha(\operatorname{sex}_{i})\gamma_{i}^{-1} & (i, j) = (h, l) \\ \sigma_{u}^{2}\alpha(\operatorname{sex}_{i})\gamma_{i}^{-1} & i = h, \quad j \neq l \\ 0 & i \neq h \end{cases}$$

Hierarchical model - Formulation

We can further write the model in the following form:

$$\begin{aligned} \mathbf{Y}_{i} &= \mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{1,i}\mathbf{U} + \mathbf{Z}_{2,i}\mathbf{V} + \varepsilon_{i}; \\ \mathbf{U}|\gamma_{i} &\sim N(0, \sigma_{u}^{2}\alpha(\text{sex}_{i})\gamma_{i}^{-1}), \\ \mathbf{V}|\gamma_{i} &\sim N_{days_{i}}(0, \sigma_{v}^{2}\alpha(\text{sex}_{i})\gamma_{i}^{-1}I), \\ \varepsilon_{i}|\gamma_{i} &\sim N_{n_{i}}(0, \sigma^{2}\alpha(\text{sex}_{i})\gamma_{i}^{-1}I) \end{aligned}$$

Therefore we can write the model as a multivariate normal distribution

$$\begin{aligned} \mathbf{Y}_{i}|\gamma_{i} \sim \textit{N}_{n_{i}}\left(\mathbf{X}_{i}\boldsymbol{\beta},\left(\sigma_{u}^{2}\mathbf{Z}_{1,i}\mathbf{Z}_{1,i}^{T} + \sigma_{v}^{2}\mathbf{Z}_{2,i}\mathbf{Z}_{2,i}^{T} + \sigma^{2}\boldsymbol{I}\right)\alpha(\text{sex}_{i})\gamma_{i}^{-1}\right) \\ \gamma_{i} \sim \textit{G}(1,\lambda) \end{aligned}$$

Tymoteusz Barcinski - s221937 Soren Skjerna

Hierarchical model - Formulation

Theorem 6.7 generalizes to the multivariate setting as changing the proof to account for the dispersion matrix Σ in the multivariate setting is straightforward.

The extended Theorem 6.7 tells us that the marginal distribution for Y_i is

$$Y_i \sim t_{n_i} \left(\mathbf{X}_i \boldsymbol{\beta}, \left(\sigma_u^2 \mathbf{Z}_{1,i} \mathbf{Z}_{1,i}^T + \sigma_v^2 \mathbf{Z}_{2,i} \mathbf{Z}_{2,i}^T + \sigma^2 I \right) \alpha(\operatorname{sex}_i), 2\lambda \right)$$

where t_{n_i} is the multivariate t-distribution with mean, scale and degrees of freedom as specified.

We write the likelihood and parametrize the model by

$$\boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{v}^{2}, \sigma^{2}, \alpha, \lambda)$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

Hierarchical model - C++ TMB file

We estimate the model with TMB because it estimates the random effects. The likelihood function in C++ is presented:

```
for (int i=0; i < nsubjects; i++){
    f == dnorm(u[i], mean_random_subject,
               sqrt(exp(sigma2_u_log)*exp(alpha*sex[index])/
               gamma[i]), true);
for (int j=0; j < ndays; j++){
    i = subjectId_day_factor_gamma[i];
    f = dnorm(v[j], mean_random_day,
               sqrt(exp(sigma2_v_log)*exp(alpha*sex[index])/
               gamma[i]), true);
for (int i=0; i < nsubjects; i++){
    f —= dgamma(gamma[i], exp(lambda),(1/exp(lambda)),true);
for (int index = 0; index < nobs; index++){
i = subjectId_factor[index];
 = subjectId_day_factor[index];
f = dnorm(y[index], (beta[0] + beta[1]*sex[index]
           + u[i] + v[j]),
           sqrt(exp(sigma2_log) *exp(alpha * sex[index]) /
           gamma[i]), true);
```

Hierarchical model - Results

The parameter estimates for the TMB are slightly different than for the regular optimization which is explained by the fact that TMB uses the Laplace approximation which introduces some level of approximation.

	marginal	t-student				
	log	regular	log	std.error log	regular	std.error
μ	-	-0.475	-	-	-0.484	0.043
β	-	-0.199	-	-	-0.189	0.053
$\begin{array}{c c} \sigma_u^2 \\ \sigma_v^2 \\ \sigma^2 \end{array}$	-3.846	0.0214	-4.035	0.409	0.018	-
$\sigma_{\rm v}^2$	-3.845	0.0214	-4.246	0.304	0.014	-
σ^2	-8.8047	0.00015	-8.741	0.333	0.00015	-
α	-0.7178	0.4878	-0.762	0.335	0.467	-
λ	-0.984	0.3738	-0.959	0.172	0.383	-

Table: Model parameters and their uncertainties

Final Normal model - Formulation

$$\begin{aligned} Y_{i,j,k}|u_{i},v_{ij},\gamma_{i} &\sim N\left(\mu+\beta\left(\text{sex}_{i}\right)+u_{i}+v_{ij},\sigma^{2}\alpha\left(\text{sex}_{i}\right)e^{-\gamma_{i}}\right) \\ u_{i}\mid\gamma_{i} &\sim N\left(0,\sigma_{u}^{2}\alpha\left(\text{sex}_{i}\right)e^{-\gamma_{i}}\right) \\ v_{ij}\mid\gamma_{i} &\sim N\left(0,\sigma_{v}^{2}\alpha\left(\text{sex}_{i}\right)e^{-\gamma_{i}}\right) \\ \gamma_{i} &\sim N\left(0,\sigma_{G}^{2}\right) \end{aligned}$$

We have that

$$\operatorname{E}\left[Y_{ijk}|\gamma_{i}\right] = \mu + \beta(\operatorname{sex}_{i}); \tag{1}$$

$$\operatorname{Cov}\left[Y_{ijk}|\gamma_{i}, Y_{hlm}|\gamma_{h}\right] = \begin{cases} (\sigma_{u}^{2} + \sigma_{v}^{2} + \sigma^{2})\alpha(\operatorname{sex}_{i})e^{-\gamma_{i}} & (i, j, k) = (h, l, m) \\ (\sigma_{u}^{2} + \sigma_{v}^{2})\alpha(\operatorname{sex}_{i})e^{-\gamma_{i}} & (i, j) = (h, l), \\ \sigma_{u}^{2}\alpha(\operatorname{sex}_{i})e^{-\gamma_{i}} & i = h, \quad j \neq l \\ 0 & i \neq h \end{cases}$$

$$\tag{2}$$

Final Normal model - Formulation

We can further write the model in the following form:

$$\begin{split} \mathbf{Y}_i &= \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_{1,i} \mathbf{U} + \mathbf{Z}_{2,i} \mathbf{V} + \varepsilon_i; \\ \mathbf{U} | \gamma_i &\sim \textit{N}(0, \sigma_u^2 \alpha(\text{sex}_i) e^{-\gamma_i}), \quad \mathbf{V} | \gamma_i \sim \textit{N}_{\textit{days}_i}(0, \sigma_v^2 \alpha(\text{sex}_i) e^{-\gamma_i} I), \\ \varepsilon_i | \gamma_i &\sim \textit{N}_{\textit{n}_i}(0, \sigma^2 \alpha(\text{sex}_i) e^{-\gamma_i} I) \end{split}$$

Therefore we can write the model as a multivariate normal distribution

$$\begin{aligned} \mathbf{Y}_{i}|\gamma_{i} \sim \mathcal{N}_{n_{i}}\left(\mathbf{X}_{i}\boldsymbol{\beta},\left(\sigma_{u}^{2}\mathbf{Z}_{1,i}\mathbf{Z}_{1,i}^{T} + \sigma_{v}^{2}\mathbf{Z}_{2,i}\mathbf{Z}_{2,i}^{T} + \sigma^{2}\boldsymbol{I}\right)\alpha(\operatorname{sex}_{i})e^{-\gamma_{i}}\right) \\ \gamma_{i} \sim \mathcal{N}(0,\sigma_{G}^{2}) \end{aligned}$$

The model is parametrized by $\theta = (\beta, \sigma_u^2, \sigma_v^2, \sigma^2, \alpha, \sigma_G^2)$.

- 4 日 b 4 個 b 4 恵 b 4 恵 b - 恵 - 釣 Q C

Final Normal model - Likelihood implementation

The likelihood function in C++ is presented:

```
for (int i=0; i < nsubjects; i++){
    f -= dnorm(u[i], mean_random_subject,
               sqrt(exp(sigma2_u_log)*exp(alpha*sex[index])*
               exp(-gamma[i])), true);
for (int j=0; j < ndays; j++){
    i = subjectId_day_factor_gamma[j];
    f == dnorm(v[i], mean_random_day,
               sqrt(exp(sigma2_v_log)*exp(alpha*sex[index])*
               exp(-gamma[i])), true);
for (int i=0; i < nsubjects; i++){
    f — dnorm(gamma[i], mean_random_gamma,
    sqrt(exp(sigma2_G_log)), true);
for (int index = 0; index < nobs; index ++){
    i = subjectId_factor[index];
   j = subjectId_day_factor[index];
    f = dnorm(y[index], (beta[0] + beta[1]*sex[index] +
                    u[i] + v[j]),
               sqrt(exp(sigma2_log)*exp(alpha*sex[index])*
               exp(-gamma[i])), true);
```

Final Normal model - Results

Par.	log	Std. Error log	regular	Std. Error
μ	-	-	-0.4906	0.0407
β	-	-	-0.1810	0.0533
α	-1.1344	0.3545	0.3216	-
$\sigma_u^2 \\ \sigma_v^2$	-2.2760	0.4717	0.1027	-
σ_{v}^{2}	-2.5828	0.3761	0.0756	-
σ_G^2	1.5996	0.2225	4.9512	-
σ^2	-6.8391	0.3755	0.0011	-

Table: Model parameters and their uncertainties

Comparisons - Likelihoods, AICs

We see that the models with random effect in the dispersion for distribution of the dependent variable are significantly better than other models.

Model	log-likelihood	n params	AIC
First	134.7031	4	-261.4063
Second	541.9209	5	-1073.842
Third	769.2759	6	-1526.552
Hierarchical marginal	1216.219	7	-2418.438
Hierarchical TMB	1212.806	7	-2411.612
Final Normal	1204.501	7	-2395.003
T 11 C 1 C 111			

Table: Comparison of likelihood and AIC between estimated models

Comparisons - Variances

Hierarchical TMB model, Final normal model, Third TMB model

Figure: Plots of variance and log variance

Comparisons - Residuals

Hierarchical TMB model, Final normal model, Third TMB model

Figure: Plots of residuals and standardized residuals

Comparisons - QQplots

The following QQ plots indicate that the standardised residuals for models with random effects in the variance regression do not have heavy tails.

Figure: QQplots of standardized residuals for different models

Comparisons - $\gamma_i | Y_i$

Based on the plot in the bottom right corner we see that in the linear domain, the random effects have a clear linear relationship indicating that the model's hierarchical and final normal are not that different.

Comparisons - Parameters

We have $a \in \{\lambda, \sigma_G^2\}$. We note that $\gamma_i \sim \mathsf{G}(1, \lambda)$; $Var(\gamma_i) = \frac{1}{\lambda} = 2.611$.

	Hierarchical TMB				F	inal norn	nal TMB	
	log	sd log	regular	sd	log	sd log	regular	sd
μ	-	-	-0.484	0.04	-	-	-0.490	0.04
β	-	-	-0.189	0.05	_	-	-0.181	0.05
α	-0.762	0.335	0.467	-	-1.134	0.355	0.322	-
σ_{μ}^2	-4.035	0.409	0.018	-	-2.276	0.472	0.103	-
$\begin{array}{c c} \sigma_u^2 \\ \sigma_v^2 \end{array}$	-4.246	0.304	0.014	-	-2.583	0.376	0.076	-
a	-0.959	0.172	0.383	-	1.5996	0.223	4.951	-
σ^2	-8.741	0.333	0.00015	-	-6.839	0.376	0.0011	-

Table: Comparison of parameters between models

Derivation of $\gamma_i | Y_i$ in hierarchical model

Consider

$$f_{\gamma_i|Y_i=y_i} = \frac{f_{Y_i=y_i|\gamma_i}f_{\gamma_i}}{f_{Y_i=y_i}} = \frac{\text{(Multivariate normal)} \cdot \text{(gamma)}}{\text{multivarite t-student}}$$

$$Y_i|\gamma_i \sim N\left(\mu, \frac{\sigma^2}{\gamma_i}I\right); \quad \gamma_i \sim G(1,\lambda)$$

Consider

$$f_{Y_i = y_i | \gamma_i} f_{\gamma_i} = \exp\left(-\frac{1}{2}(y_i - \mu)^T \Sigma^{-1}(y_i - \mu)\right) \frac{1}{\sqrt{(2\pi)^k \det(\Sigma)}}$$
$$\frac{\lambda^{\lambda}}{\Gamma(\lambda)} \gamma_i^{\lambda - 1} \exp\left(-\gamma_i \lambda\right)$$

Note that

$$\Sigma^{-1} = \left(\frac{\sigma^2}{\gamma}I\right)^{-1} = \frac{\gamma}{\sigma^2}I; \quad \det(\Sigma) = \det\left(\frac{\sigma^2}{\gamma}I\right) = \left(\frac{\sigma^2}{\gamma}\right)^k \det(I) = \frac{\sigma^{2k}}{\gamma^k}$$

Derivation of $\gamma_i | Y_i$ in hierarchical model

Hence

$$f_{Y_{i}=y_{i}|\gamma_{i}}f_{\gamma_{i}} = \exp\left(-\frac{1}{2}||y_{i}-\mu||_{2}^{2}\frac{\gamma_{i}}{\sigma^{2}}\right)(2\pi)^{\frac{-k}{2}}\frac{\gamma_{i}^{k/2}}{\sigma^{k}}\frac{\lambda^{\lambda}}{\Gamma(\lambda)}\gamma_{i}^{\lambda-1}\exp\left(-\gamma_{i}\lambda\right) = (2\pi)^{\frac{-k}{2}}\frac{\lambda^{\lambda}}{\Gamma(\lambda)}\gamma_{i}^{(\lambda+\frac{k}{2})-1}\exp\left(-\gamma_{i}\left(\frac{1}{2\sigma^{2}}||y_{i}-\mu||_{2}^{2}+\lambda\right)\right)$$

We see the kernel of a Gamma distribution. Thus

$$\gamma_i | Y_i \sim G\left(\alpha = \lambda + \frac{k}{2}, \beta = 1 / \left(\frac{||y_i - \mu||_2^2}{2\sigma^2} + \lambda\right)\right)$$

where the constants in front cancel out with the multivariate t-student distribution in the denominator.