EECE5698 Networked XR Systems

Lecture Outline for Today

- Progressive Streaming of XR Content
- Network Problem
- Compression Support
- Streaming Protocols
- Homework3 Discussion

Networking Problem

Fundamental Problems

- ☐Limited Bandwidth
- □ Variability in Bandwidth

Adaptive Video Streaming

Solution

Adaptive Streaming: Recap

Adaptive Bitrate (ABR) Algorithms

- □ Bandwidth Efficient
- ☐ Slow Reaction -> Poor QoE
 - ☐ BOLA, Pensieve

- Bandwidth Inefficient
- ☐ Fast Reaction -> Better QoE
 - □ BOLA-FS

- Key Issue: Lack of proper compression support
 - Once you make a download decision difficult to make adjustments to it, that is needed in case of variable networking conditions

Solution: Layered coding or compression

Layered Compression

☐ A well-suited technique for streaming variable network conditions

Layered Compression

A well-suited technique for streaming variable network conditions

Original (MS-SSIM=1)

 $Code(c_0 \oplus c_1 \oplus c_2)$

Layered Compression

- In H.26x world also called scalable video coding (SVC)
- Three forms of SVC
 - Quality Scalability
 - Spatial Scalability
 - Temporal Scalability

Layered Compression – Quality Scalability

- Special case of spatial scalability but equal resolutions are used.
- Scalability is achieved using different quantization parameters in each layer.
 - E.g., decreasing quantization along the layers

Layered Compression – Spatial Scalability

- Motion-compensated prediction and intra prediction in each spatial layer - Resolution
- Inter layer prediction

Layered Compression – Temporal Scalability

 As the name suggests, different layers have different frames temporally

Layered Compression - SVC

 Computationally very expensive – Inter layer motion compensation

Layered Compression - SVC

Bandwidth overhead

Increases proportionately as we increase the number of layers

Recall Autoencoder based video compression

Layered codes transmitted over network

Iterative Decoding is Slow
 Need real-time
 decoding for playback

Single-shot Decoder

- 2. Compute Resource Contention
 - ☐Need to scale well with other applications

Code Not 2. Compute Resource Available Contention Pad ☐ Need to scale well zeros with other applications **Decoder** Decoder Multiple Exits q_2 q_3 q_H Exits: 1

92 PSNR (dB) Exit Depth 3 2 2. Compute Resource Contention ☐ Need to scale well with other 4 28 applications 9 No of Layers Code Not Available zeros Multiple Exits

Layered Streaming Protocol

☐ Traditional ABR Algorithms

Network history Buffer occupancy Download qualities

Bitrate/quality of next chunk

□ Layered

Network history
Buffer occupancy
Download qualities
Compute history
Decoded qualities

Enhance or fresh download? How many layers?

Layered Streaming Protocol

Enhance closer to buffer tail or head?

Layered Streaming Protocol

Learning based download decision

Layered Point Clouds

Progressively add or remove points

Layered Meshes

Progressive meshes

Summary of the Lecture

- Variable network problem for streaming
- Problems with traditional streaming
- Layered compression
- Streaming protocols