| Course:     | Calculus and Analytical Geometry | Course Code: | MT 119    |
|-------------|----------------------------------|--------------|-----------|
| Program:    | BS(CS), BS(DS), BS(SE)           | Semester:    | Fall 2020 |
| Duration:   | 3 hours                          | Total Marks: | 80        |
| Paper Date: | 16-02-2021                       | Weight       | 50%       |
| Section:    | All                              | Page(s):     | 02        |
| Exam:       | Final Exam                       | Roll No:     | 7         |

Instruction/Notes: Attempt all questions. Programable calculator are not allowed.

#### Question # 1: CLO-3 [6+4]

(a). For what value of a and b is

$$f(x) = \begin{cases} ax + 2b & , & x \le 0, \\ x^2 + 3a - b & , & 0 < x \le 2, \\ 3x - 5 & , & x > 2 \end{cases}$$
y x?

continuous at every x?

(b). Evaluate the indeterminate power  $\lim_{x\to\infty} (1+2x)^{1/(2\ln x)}$ .

#### **Question # 2: CLO-4 [10]**

A 13-ft ladder is leaning against a house when its base starts to slide away. By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft/sec.

i) How fast is the top of the ladder sliding down the wall then?

- ii) At what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
- iii) At what rate is the angle u between the ladder and the ground changing then?

### **Question #3: CLO-5 [15]**

Let

$$y=4x^3-x^4,$$

- 1. Find the derivatives y' and y''.
- 2. Find the critical points of y = f(x), if any, and identify the function's behavior at each one.
- 3. Find where the curve is increasing and where it is decreasing.
- 4. Find the points of inflection, if any, and determine the concavity of the curve.
- 5. Sketch the general graph of the curve.



### Question # 4: CLO-6 [5+5]

- a. Find the area of shaded region bounded by the curves y = x, y = 1 and  $y = \frac{x^2}{4}$  for  $x \in [0, 2]$ .
- b. Find  $\frac{dy}{dx}$ , if  $y = \int_{secx}^{2} \frac{1}{t^2+1} dt$ .



# Question # 5: CLO-6 [10+5]

- (a). Find the volume of the solid generated by revolving the region bounded by the curves  $y = x^2$ , y = 2 x, x = 0, for  $x \ge 0$  about the y axis.
- (b). Find the length of the curve given below

$$y = (\frac{3}{4})x^{4/3} - (\frac{3}{8})x^{2/3} + 5$$
, where  $x \in [1, 8]$ .

# Question # 6: CLO-7 [5+5]

- a. Find the value of p for which integral  $\int_1^2 \frac{1}{x(\ln x)^p} dt$  converges.
- b. Is the area under the curve  $y = \frac{\ln x}{x^2}$  from x = 1 to  $x = \infty$  is finite? If so, what is its value?

### Question # 7: CLO-7 [5+5]

- a. Find the vector projection of u = 4i + 6j + 3k onto v = 2i j 2k and the scalar component of u in the direction of v.
- b. Find the distance from the point (1, 0, -1) to the plane -4x + y + z = 4.

## (Good luck)

$$\frac{1}{2} = \frac{1}{4} \qquad \frac{1}{4} = \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} = \frac{1}{4} \qquad \frac{1}$$