Lineární obal a lineární podprostor

Odpřednesenou látku naleznete v kapitolách 1.5 a 1.6 skript *Abstraktní a konkrétní lineární algebra*.

Minulá přednáška

- Definice lineárního prostoru (nad obecným tělesem).
- 2 Lineární kombinace.

Dnešní přednáška

- 1 Lineární obal množiny vektorů.
- 2 Lineární podprostor lineárního prostoru.

Připomenutí

V lineárním prostoru můžeme zjednodušovat zápisy:

- Píšeme: $-\vec{x}$ místo $(-1) \cdot \vec{x}$. Jde o opačný vektor k vektoru \vec{x} (dokázáno minule).
- ② Píšeme: $\vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_{n-1} + \vec{x}_n$ místo $(\dots(\vec{x}_1 + \vec{x}_2) + \cdots + \vec{x}_{n-1}) + \vec{x}_n$. Důvod: asociativita sčítání vektorů.

Lineární kombinace seznamu $(\vec{x}_1,\ldots,\vec{x}_n)$ s koeficienty a_1,\ldots,a_n z tělesa $\mathbb F$ je vektor $\sum_{i=1}^n a_i \cdot \vec{x}_i$.

Lineární kombinace prázdného seznamu () je nulový vektor.

Konečné a nekonečné množiny

Připomenutí: a množina přirozených čísel $\mathbb{N} = \{0, 1, 2, \dots\}$.

• Množina M je konečná, když má přesně n prvků, kde n je nějaké přirozené číslo.

To znamená: M je konečná, když buď $M=\emptyset$ (množina M má 0 prvků), nebo

 $M = \{x_1, \dots, x_n\}$, kde $n \ge 1$ je přirozené číslo (v tom případě má množina M n prvků).

Množina M je nekonečná, když není konečná.

Například \mathbb{N} , \mathbb{Q} , \mathbb{R} , \mathbb{C} jsou nekonečné množiny. Množina $\mathbb{R}[x]$ je nekonečná.

^aDůležité: v této přednášce nula je přirozené číslo.

Definice (lineární obal množiny vektorů)

Ať M je jakákoli množina vektorů lineárního prostoru L. Lineární obal množiny vektorů M je množina span(M), definovaná takto:

$$\vec{x} \in \operatorname{span}(M)$$
 právě tehdy, když^a $\vec{x} = \sum_{i=1}^{n} a_i \cdot \vec{x_i}$

pro nějaké $n \geq 0$, nějaká $a_1, \ldots, a_n \in \mathbb{F}$ a nějaká $\vec{x}_1, \ldots, \vec{x}_n \in M$.

Ujasnění si definice span(M)

 $\vec{x} \in \operatorname{span}(M)$ právě tehdy, když existuje nějaký seznam S vektorů z množiny M tak, že \vec{x} je roven nějaké lineární kombinaci seznamu S.

To jest: span(M) je množina všech možných lineárních kombinací, které lze z M utvořit.

^aPozor: prázdná lineární kombinace je rovna vektoru \vec{o} .

Příklady (viz minulé přednášky)

v \mathbb{R}^2 je span $(\{a_1\})$ přímka procházející počátkem se směrem (a_1) .

v \mathbb{R}^3 je span $(\{\mathbf{a}_1, \mathbf{a}_2\})$ rovina procházející počátkem se směrem $(\mathbf{a}_1, \mathbf{a}_2)$.

Pozor: pro $a_2 \longleftrightarrow a_1$

v \mathbb{R}^3 , lineární obal span($\{a_1, a_2\}$) není rovina! Jde opět o přímku. Jak poznat o co jde? Uvidíme příště.^a

^aToto téma se zove lineární závislost a lineární nezávislost.

Uzávěrové vlastnosti lineárního obalu

- **1** Je-li $M \subseteq N$, potom span $(M) \subseteq \text{span}(N)$.
- 2 Pro vš. M platí: $M \subseteq \text{span}(M)$.
- **1** Pro vš. M platí: span(span(M)) \subseteq span(M).

Důkaz.

Přednáška.

Vysvětlení uzávěrových vlastností (slogan)

Lineárními kombinacemi tvoříme "rovné kusy" lineárního prostoru (viz minulou přednášku).

Množina span(M) je tedy "zabalení" množiny M tak, aby výsledkem byl "co nejmenší rovný kus", který obsahuje M.

Definice (lineární podprostor)

Ať W je podmnožina lineárního prostoru L. Řekneme, že W je lineární podprostor lineárního prostoru L, když platí span $(W) \subseteq W$.

Slogan pro lineární podprostor

Podprostor je "dobrá" podmnožina prostoru. Žádnou lineární kombinací nelze z lineárního podprostoru "utéct".

Tvrzení

- span(M) je vždy lineární podprostor. Jde o nejmenší podprostor, který obsahuje množinu M.
- ② Množina M je lineární podprostor právě tehdy, když span(M) = M.

Důkaz.

Přednáška.

Tvrzení

Ať L je lineární prostor. Podmnožina $W\subseteq L$ je lineárním podprostorem prostoru L právě tehdy, když platí:

- \vec{o} je prvkem W (uzavřenost W na nulový vektor).
- ② $\vec{x} + \vec{y}$ je prvkem W, pro každé $\vec{x}, \vec{y} \in W$ (uzavřenost W na součet vektorů).
- ③ $a \cdot \vec{x}$ je prvkem W, pro každé $a \in \mathbb{F}$ a každé $\vec{x} \in W$ (uzavřenost W na skalární násobek).

Důkaz.

Přednáška.

Další slogan pro lineární podprostor

Lineární podprostor vždy obsahuje nulový vektor a "vydrží" operace součtu a skalárního násobku.

Důležité

Ať W je lineární podprostor lineárního prostoru L. Potom množina W sama o sobě je lineárním prostorem, pokud sčítání vektorů ve W a násobení vektoru skalárem ve W definujeme stejně jako v prostoru L.

Obrácené tvrzení ale neplatí: například $W=\{inom{x}{1}\mid x\in\mathbb{R}\}$ není lineárním podprostorem \mathbb{R}^2 . Ale množina W spolu s operacemi

$$\begin{pmatrix} x \\ 1 \end{pmatrix} \oplus \begin{pmatrix} x' \\ 1 \end{pmatrix} = \begin{pmatrix} x + x' \\ 1 \end{pmatrix} \quad a \odot \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} a \cdot x \\ 1 \end{pmatrix}$$

tvoří lineární prostor nad \mathbb{R} .

Příklady

- Každý lineární prostor je sám svým podprostorem.
- 2 Množina $\{\vec{o}\}$ je vždy lineárním podprostorem.^a

2
$$W_2=\{\begin{pmatrix} x\\y\\z \end{pmatrix}\in\mathbb{R}^3\mid z=1\}$$
 není lineárním podprostorem \mathbb{R}^3 .
Pozor! Na množině W_2 lze definovat strukturu lineárního

prostoru (cvičení).

^aTomuto podprostoru říkáme triviální podprostor.

Příklady (pokrač.)

- ① Označme jako $\mathbb{R}^{\leq 3}[x]$ množinu všech reálných polynomů stupně maximálně 3 a jako $\mathbb{R}^{\leq 136}[x]$ množinu všech reálných polynomů stupně maximálně 136. Potom $\mathbb{R}^{\leq 3}[x]$ je lineární podprostor lineárního prostoru $\mathbb{R}^{\leq 136}[x]$.
 - Obecněji: Ať \mathbb{F} je těleso. Označme jako $\mathbb{F}^{\leq n}[x]$ množinu všech polynomů nad \mathbb{F} stupně maximálně $n,\ n\geq 0$. Jakmile $n\leq m$, je $\mathbb{F}^{\leq n}[x]$ lineární podprostor lineárního prostoru $\mathbb{F}^{\leq m}[x]$.
- **1** Pro každé $n \ge 0$ je $\mathbb{F}^{\le n}[x]$ lineární podprostor lineárního prostoru $\mathbb{F}[x]$.

Vlastnosti lineárních podprostorů

Ať L je lineární prostor.

- Průnik libovolného systému $\{W_i \mid i \in I\}$ podprostorů prostoru L je lineárním podprostorem prostoru L.
- ② Sjednocení systému $\{W_i \mid i \in I\}$ lineárních podprostorů prostoru L obecně lineárním podprostorem prostoru L není.

Důkaz.

Přednáška.

Definice (spojení lineárních podprostorů)

Ať $\{W_i \mid i \in I\}$ je systém lineárních podprostorů prostoru L. Lineárnímu podprostoru span $(\bigcup_{i \in I} W_i)$ prostoru L říkáme spojení podprostorů W_i , $i \in I$, a značíme jej

$$\bigvee_{i\in I}W_i$$

^aV případě dvou podprostorů používáme i značení $W_1 \vee W_2$.

Klasifikace lineárních podprostorů prostoru \mathbb{R}^3

Všechny podprostory \mathbb{R}^3 jsou buď

Jednoprvková množina obsahující pouze počátek.

nebo

Každá přímka procházející počátkem.

nebo

Saždá rovina procházející počátkem.

nebo

• Celá množina \mathbb{R}^3 .

Důkaz.

V každém z uvedených bodů je lineární podprostor prostoru \mathbb{R}^3 . To, že žádné jiné lineární podprostory prostoru \mathbb{R}^3 neexistují, ukážeme později.

^aBudeme k tomu potřebovat pojem dimense.