General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

104

(NASA-CR-143967) TRACK/TRAIN DYNAMICS TEST REPORT TRANSFER FUNCTION TEST. VOLUME 1: TEST (Martin Marietta Corp.) 130 p HC \$5.75 CSCL 14B N75-33401

Unclas 42660

MARTIN MARIETTA

POST OFFICE BOX 179, DENVER, COLORADO 80201

TR-005-TF

30 May 1975

TRACK/TRAIN DYNAMICS

TEST REPORT

TRANSFER FUNCTION TEST

Volume I

TEXT

TRACK/TRAIN DYNAMICS

TEST REPORT

TRANSFER FUNCTION TEST

Contract NASS-29882

Prepared by:

R. A. Vigil

Staff Engineer Space Systems Dynamics

Approved by:

G/ Morosow

Program Manager

Track/Train Dynamics

P. W. Abbott

Technical Director

Track/Train Dynamics

MARTIN MARIETTA CORPORATION
Denver Division
Denver, Colorado 80201

FOREWORD

This document is submitted in accordance with the requirements for Technical Reports as specified by NASA Contract NAS8-29882.

CONTENTS

																						<u>Page</u>
Title	e Page	·					•				-				•		•		•			i
Forev	word .		• •		•		•			•	•	•	•		•	•		•	•			ii
Conte	ents .				•		•		•		•								•		•	iii,iv
1.0	SCOPI	Ξ			•		•		•		•		•									1
	1.1 1.2	-																				1 1
2.0	APPL]	CABLE	DOCUM	ENTS	3																	1,2
3.0	TRANS	SFER FU	NCTIO	n ti	SI	DE	SCR	IPT	TOI	Ţ	•			•	•							2
	3.2	Test 0 Specim Facili 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Test S 3.4.1 3.4.2 3.4.3 3.4.4	en/Te ty De Hand Fixt Hydr Cont Data ummar Test Inst	st (scripting uring auli rol Acc y rume Sur	Con Lpt Lpt ng ic Sy qui	figion qui Sysste sit dur ati	ura . pme . tem m . on e	nt nt /Re	duc	: : : : : : : :	Cor			: : : :								4
4.0	SUMM	ARY OF	RESUL	TS	•		•		•	•		•	•	•	•	•	•	•	•	•	•	5
5.0	ABBRI	EVIATIO	na an	D A	CRO	NYM	S		•	•	•	•	•	•	•	•		•	•	•	•	6
<u>Figu</u>	res																					
1-:	3	Y-Axis	Test	Co	nfi	.gur	ati	.on	•	•	•	•	•	•	•	•	•	•	•	•	•	7-9
4,	5	X-Axis	Test	Co	nfi	.gur	ati	.on	•	•	٠	•		٠		•	•	•	•	•		10,11
6		Z-Axis	Test	Co	n£i	.gur	ati	.on	•		•	•	•	•	•		•	•	•	•	•	12 ·
7,8	8	Slide	Plate	. As	sen	ь1у	•				•	•	•	•			•	•		•		13,14
9		Statio	nary	Tru	ck	Sup	por	:t.														15

		<u>Page</u>
10	Annin Bypass Control Valve	16
11	Remote Control Console	17
12	Time Data Digital Computer	18
13	100 Channel Tape Recorder System	19
14	Crystal Accelerometer Charge Amplifiers	20
15	Displacement Transducer Signal Conditioning System	21
16	Strain Gage Signal Conditioning System	22
<u>Tables</u>		
I	Track/Train Transfer Function Test Summary	23,24
II	Data Summary	25-43
Appendic	<u>es</u>	
A	Transfer Function Test Requirements Document, Post-Test Update	A1-A14
В	Transfer Function Test Procedure Document, Post-Test Update	B1-B67
Enclosur	<u>es</u>	
Volume I	180° Out of Phase, Runs: 6, 9,	1- 268
Volume I	II Data Book, Y-Axis Tests, Actuators In Phase, Runs: 15, 18, 19 and 20	1- 211
Volume I	V Data Book, X-Axis Test, Actuators 180° Out of Phase, Run 30 and Z-Axis Test, Single Actuator, Run 46	1107
		T- T7/

1.0 SCOPE

- 1.1 <u>Purpose</u> This report presents a description of the transfer function test performed on an open hopper freight car loaded with 80 tons of coal. Also presented are the test data and a post-test update of the requirements document and test procedure. Included in the text is a statement of the test objective, a description of the test configurations, test facilities, test methods, data acquisition/reduction operations and a chronological test summary.
- 1.2 <u>Summary</u> The transfer function test was conducted during the period extending from 12 March through 31 March 1975. Control system evaluation was performed prior to 12 March 1975 and data reduction continued beyond 31 March 1975. The test program was conducted at the Martin Mariatta Corporation Structures Test Facility in Denver, Colorado.

An index to the data for the three test configurations (X, Y and Z-axis tests) is presented in Table I. Also, contained in Table I is the test sequence, run number, test reference and input parameters. Y-axis data are presented in Volumes II and III. Volume IV contains X and Z-axis data. A detailed index to the data is contained in each volume. Appendix A and B contain a post-test update of the requirements document and test procedure. The procedure contains photographs of transducer locations and the test historical log.

The data is currently being compared with analytical model data for model validation.

2.0 APPLICABLE DOCUMENTS

The following documents of exact issue shown, form a part of this document to the extent specified herein. This document shall govern where differences occur in presented material.

- P74-48338-1, "Track-Train Dynamics Analysis and Test Program"
- TS-005-TF, "Track/Train Dynamics, Test Requirements Document, Transfer Function Test," dated 16 May 1975
- TP-005-TF, "Track/Train Dynamics, Test Procedure, Transfer Function Test," dated 16 May 1975
- LAB 1007302, "Track-Dynamic Analysis GVS and Transfer Function Test," Test Fixture Drawings
- 1923-010000, Time Data Operations Manual

LAB 0212205, "Time Data 1923 Sinusoidal Vibration Control System"
1923-5017, "Time/Data Sinusoidal Vibration Control Manual"

3.0 TRANSFER FUNCTION TEST DESCRIPTION

- 3.1 <u>Test Objective</u> The objective of the transfer function test was to obtain data for the validation of the freight car nonlinear elastic model.
- 3.2 Specimen/Test Configurations The test specimen consisted of an L&N RR model M-042-174 80 ton open hopper freight car with ASF-11 trucks. Details concerning the test article general arrangement can be found in Appendix A, Figure 1.

The first test configuration was the fully loaded car containing approximately 162,000 lbs of coal supported on ASF-11 trucks. The wheel/axle sets of the test truck (the same one used for static tests) were supported on slide plate assemblies, two of which were equipped with load cells for measuring vertical forces. These load cells were positioned underneath the wheels where the force input was applied. The wheel/axle assemblies of the other truck were supported on spacer assemblies which brought the car to a level position. Two hydraulic actuators were rigidly coupled to the axles of the test truck for Y-axis testing and actuator forces were reacted by a support fixture rigidly coupled to the test facility floor. A hydraulic power supply was placed in the proximity of the actuators. The freight car and truck assemblies were in a standard operational configuration.

In the second test configuration, the car was supported the same way as the first; however, the actuators were positioned for X-axis testing and were rigidly attached to the front axle of the truck assembly. The slide plate assemblies with the load cells were positioned beneath the wheels with the actuator attachment.

The third configuration involved the use of a single actuator positioned at one side of the middle of the car for Z-axis testing. All other conditions were the same as test configurations 1 and 2. Each of the above test configurations are depicted in Figures 1 through 6 respectively.

3.3 <u>Facilities Description</u> - The tests described in this document were conducted at the Martin Marietta Corporation Structures Laboratory located in Denver, Colorado. All the test equipment used during this test was in current calibration throughout the test program except for 10 charge amplifiers which required an extension beyond 24 March 1975.

- 3.3.1 <u>Handling Equipment</u> Two 100 ton Regent hydraulic jacks and four 50 ton Merrill hydraulic jacks were used to raise the freight car and truck assembly during setup operations. A rented conveyor system was used to unload the coal via the hopper hatches which were opened and closed with the aid of a hydraulic jack.
- 3.3.2 <u>Fixturing</u> The test truck assembly was supported on four MMC slide plates and the actuator forces were reacted by support fixtures as shown in Appendix B, Figure 7.5.
- 3.3.3 Hydraulic System Forces were applied to the wheel axles by two hydraulic Moog actuators for the Y and X axis tests and by a single actuator for the Z axis tests. The deliverable force rating of an actuator is 14,040 pounds-peak with a 3000 psi differential pressure across the actuator piston. The hydraulic power supply pressure was maintained at 3000 psi by a 30 gpm Denison hydraulic pump during testing. An Annin control valve was used as a hydraulic oil safety bypass during Z axis testing to preclude the possibility of damage if motion were abruptly terminated (see Figure 7).
- 3.3.4 Control System The force input to the test specimen was automatically controlled by a Time Data 1923 digital control system with the master gain located in a remote control console. The control system was programmed to control the highest of two forces or a single force within a selectable amplitude window. Manual operation was optionally selectable with the use of an analog oscillator in the remote control console or the synthesizer used with the digital system. Computer instructions and post-test printout were provided by a remote TTY. Input force signals, the drive signal and the servo-valve drive amplifier signals were monitored on a multiplexed scope during testing. Actuator phasing (0° or 180°) was accomplished by reversing the output of one of the valve drive amplifiers. The systems described in this section are shown in Figures 8 and 9.
- 3.3.5 <u>Data Acquisition/Reduction System</u> The data from each run was recorded on a Honeywell magnetic tape recorder system equipped with a Vidar 100 channel FM multiplex system. Signal conditioning was accomplished with the use of charge amplifiers, LVDT balance amplifiers, and bridge balance amplifiers. Standard accelerometers, displacement transducers, and strain gage transducers were used to measure the motion of the test specimen. A block diagram of the control and data acquisition/reduction systems is presented in Appendix B, Figure 7.4. In addition, photographs of these systems are presented in Figures 10 through 13.
- 3.4 Test Summary In order to accomplish the stated objective of the test, it was conducted in accordance with the requirements specified in the test requirements socument (TS-005-TF, Appendix A). A chronological test sequence, along with run numbers, test reference, input parameters, and data reference is presented in Table I. Test modifications were generated by the test control board and were implemented during the course of the test.

- 3.4.1 <u>Test Procedure</u> The performance of each vibration test, identified by run numbers in Table I, was implemented by following the steps described in the test procedure (TP-005-TF, Appendix B). The historical log of daily activities is included with the test procedure.
- 3.4.2 <u>Instrumentation Summary</u> A maximum of 44 measurements were recorded for a given test run as reflected by the data in Volumes II, III and IV. Instrumentation locations are identified in Appendix B, Figures 7.2 and 7.3. Coordinates of displacement transducers are presented in Appendix B, Table 8.0; also presented are photographs of instrumentation locations in Figures 7.2a through 7.2f and 7.3a through 7.3t.
- 3.4.3 <u>Data Summary</u> Selected test data are presented in Volumes II, III and IV in the form of transfer function plots. Also presented is a listing of controlling force and associated frequency interval for the two actuator tests along with a listing of transducer sensitivities. Quick look oscillograph data, computer printout, and magnetic tapes generated during the test are available and are being maintained in data retention files.
- 3.4.4 Detailed Test Description The following test descriptions provide information concerning the performance of each major test sequence. In general, control system limitations were experienced during testing which resulted in premature test run termination (aborts). These aborts were related to fixture resonances, fixture cross coupling and specimen/ actuator interaction. Typically, a test input spectrum and tolerance was entered into the computer program based on hydraulic system limitations. Data from test attempts and manual excitation at discrete frequencies optimized this spectrum which resulted in maximum input force and truck member relative motion. Low level tests preceded maximum input tests to preclude the possibility of over testing the specimen. The above approach produced the desired result below 20 Hz where motion was significant; however, aborts were still experienced above 20 Hz primarily from fixture resonances. These aborts were identified by computer post-test printout messages, i.e. "maximum drive limit exceeded" and "control limit exceeded".

Runs 1 through 5 - Precursor tests at three force levels were conducted in the Y-axis with the actuators 180° out-of-phase. Insufficient motion was observed during these tests and the following configuration changes were made. The actuator reaction fixture was stiffened by boxing in "I" beam sections and adding additional gussetts. The layer of polychor tape was removed from the bearing surface of the slide plates and molydisulfide lubricant was used between the movable plate which contained polychor tape and the bearing plate. Finally, shims were added between the spherical bearing end pins of the actuators and the fixture clevis holes.

Runs 6 through 46 - Force input spectrums were optimized and test runs conducted in the Y, X and Z axes. Tests with the actuators

both in and out of phase were conducted in the Y and X axes. Z axis tests utilized a single actuator. Maximum relative motion of the truck members and the car was achieved while staying within the shaker system capability. Slide plates were inspected and lubricated between the Y and X axes tests. Longitudinal X motion was kept to a safe limit to insure that the specimen would remain on its supports. Low frequency control limits were set to ±8 dB in order to accomplish Z axis testing (runs 44 through 46). Previous test limits were generally a maximum of ±4 dB. Further details concerning each run are delineated in Table I.

4.0 SUMMARY OF RESULTS

The transfer function test of the loaded 80 ton open hopper freight car was successfully completed in accordance with the requirements specified in Appendix A. The transfer function data obtained is currently being compared with analytical data. The results of this comparison will be submitted in a subsequent report. A summary of the test transfer function data is presented in Table II which lists the maximum motion and frequency of selected runs for each measurement.

5.0 ABBREVIATIONS AND ACRONYMS

Btwn. Between

Bol. Bolster

Calib. Calibration

Cap. Capacity

CDC Control Data Corporation

Ch. Channel
Ck. Check

Displ. Displacement

ET Electronic Technician

FS Full Scale

Fwd Forward

L. Left

Lat. Lateral

LVDT Linear Variable Differential Transformer

Meas. Measurement
Mfg. Manufacturer

MMC Martin Marietta Corporation

MSFC Marshall Space Flight Center

MT Mechanical Technician

NASA National Aeronautics and Space Administration

No. Number

O-Graph Oscillograph
Osc. Oscillator

Opp. Opposite

Qty. Quantity
Rel. Relative

Rt. Right

Sens. Sensitivity

S. Fr. Side Frame

SF Safety

S.G. Strain Gage

SW Switch

TCB Test Control Board

TD Technical Director

TE Test Engineer

TTY Teletype Terminal

Typ. Typical

TX, Y, Z Theta X, Y or Z

U-D Unholtz-Dickie Corporation

Vert. Vertical XDCR Transducer

ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY.

ERRATA

MARTIN MARIETTA Test Report TR-005-TF

TRACK/TRAIN DYNAMICS TEST REPORT TRANSFER FUNCTION TEST

Volume I

Text
By: R. A. Vigil
30 May 1975

Volume I: The last paragraph in section 3.2 should refer the reader Page 2 to Figures 1 through 9 instead of 1 through 6.

Volume I: Sections 3.3.3, 3 3.4 and 3.3.5 should refer the reader to Page 3 figures 10, 11 and 12, and 13 through 16 respectively instead of 7, 8 and 9, and 10 through 13.

Volume I: Section 3.4.2 should refer the reader to Appendix B, Table Page 4 8.6 instead of Appendix B, Table 8.0.

TABLE I. TRACK/TRAIN TRANSFER FUNCTION TEST SUMMARY

TEST SEQUI		RUN No.		TES REF	T Erenge	TES	r input spectrum	TE!	ST EQ.(HZ)		SWEEP ().CT/		ACTUA PHASI		TEST DATE		DAT REF	A ERENCE		REI	iarks
	(-Axis Cests	1)	1	1)	Requis. Doc. TS-005-TF Test Procedur TP-005-TF	1	6 dB/Oct 0.5-1.98 Hz, 2000 lbs-pk 1.98-35 Hz	1)	0.5-35		1)	2	1)	80°Ø	1) 3	/12/75	1)	Data	ot Included	1)	Tests Conducted to Normal Completion.
2)		2)	2,3	2)		2)	6 dB/Oct 0.5-1.98 Hz 5000 lbs-pk 1.98-35 Hz	2)			2}		2)		2)		2)		}	2)	Lost Data On Meas. AL3-AL12 During Run No. 2; Tests Conducted to Normal Completion.
3)		3)	4,5	3)		3)	6 dB/Oct 0.5-1.98 Hz, 10,000 lbs-pk 1.98-35 Hz	3)	0.5-21. 0.5-23.		3)		3)		3)	\	3)		4	3)	Runs 465 Aborted @ 21.75623.27 Hz On Max. Drive Limit; Stiffened Fix. Following Run 5.
4)		4)	6	4)		4)	5000 lbs-pk 0.5-50 Hz	4)	0.5-26.	. 15	4)		4)		4) 3	/18/75	4)	Data	In Vol. II	4)	Aborted @ 26.15 Hz On 3 dB Control Limit.
5)	ĺ	5)		5)	1	5)	•	5)	0.5	- 1	5)	1	5)	1	5)	1	5)	Data l	Not Included	5)	Aborted @ 0.5 Hz On Max. Drive Limit.
6)		6)	8	6)		6)	6 dB/Oct 0.5-1.98 Hz, 10,000 1bs-pk 1.98-50 Hz	6)	0.5-2.3	361	6)		6)		6)		6)		1	6)	Aborted @ 2.361 Hz On Max. Drive Limit.
7)		7)	9	7)		7)	6 dB/Oct 0.5-1.98 Hz, 7070 Ths-pk 1.89-50 Hz	7)	0.5-23.	.75	7)		7)		7)	V	7)	Da ta	In Vol. II	a	Aborted @ 23.75 Hz On 3 dB Control Limit.
8)		8)	10	8)		8)	12 dB/Oct 0.5-1.3 Hz, 9000 lbs-pk 1.3-50 Hz	8)	0.5-0.7	704	8)	} }	8)		8) 3	/19/75 	8)	Data 1	Not Included	8)	Aborted @ 0.704 Hz On 3 dB Control Limit.
9)		9)	11,12	9)		9)	4500 lbs-pk 0.5-0.919 Hz, 12 dB/Oct 0.919-1.3 Hz, 9000 lbs-pk 1.3-50 Hz	9)	0.5-1.2 0.5-1.3		9)		9)		9)		9)			9)	Run 11&12 Aborted @ 1.209&1.328 Hz On 3 dB Control Limit.
10)		10)	13	10)		10)	6000 1bs-pk @ 0.5 Hz, Linear Rise to 1.3 Hz, 9000 1bs-pk 1.3-50 Hz		0.5-37.	. 95	10)		10)		10)		10)	Data	in Vol. II	10)	Aborted @ 37.95 Hz On Max. Drive Limit,
11)		11)	14	11)		11)	3010 1bs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 4510 1bs-pk 1.3-50 Hz		0.5-26	.68	11)		11)		11)		11)			11)	Aborted @ 26.68 Hz On 4 dB Control Limit.
12)		12)	15	12)		12)	Same as Run 14	12	0.5-25.	.79	12)		12) ()°Ø	12)	1	12)	Data	In Vol. III	12)	Aborted @ 25.79 Hz On 4 dB Control Limit.
13)		13)	16,17	13)		13)	Same as Run 13	13)	0.5-0.6 0.5-1.2		13)		13)		13)		13)	Data	Not Include:	13)	Run 16&17 Aborted @ 0.633&1.254 Hz On 4 dB Control Limit & Stop Buttom Respectively.
14)		14)	18	14)		14)	4250 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 6370 lbs-pk 1.3-50 Hz		0.5-32.	. 14	14)		14)		14)		14)	Data	In Vol. III	14)	Aborted @ 32.14 Hz On Max. Drive Limit,
15)		15)	19	15)		15)	5350 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 8020 lbs-pk 1.3-50 Hz	15)	0.5-26,	.9	15)		15)		15)		15)			1.5)	Aborted @ 26,9 Hz On Max. Drive Limit.
16)		16)	20,21	16)	j	16)	Same as Run 19	16)	0.5-27. 0.5-27.	. 39& . 34	16)		16)	V	16) 3	/20/75 	16)	Run 20 Vol.	Data In III	16)	Run 20&21 Aborted @ 27.39&27.34 On Max. Drive Limit.
17)		17)	22	17)	1	17)	Same as Run 13	17)	0.5-2.1	104	17)		17)	80°ø	17)		17)	Data 1	Not Included	17)	Aborted @ 2.104 Hz On Mox. Drive Limit.
18)	l i	1B)	23	18)		18)	Same os Run 19	18)	0.5-34.	.93	18)		18)	*	18)	1	18)	Data	In Vol. II	18)	Aborted @ 34.93 Hz On Max. Drive Limit.
19)		19)		19)	l.	1	Same as Run 19		0.5-1.4	-		•	19) (joø − I	19)		1 '		Not Included	1 '	Aborted @ 1.403 Hz On Max. Drive Limit.
20)		20)	25	20)	<u> </u>	20)	Same as Run 18	20)	0.5-7.8	844	20)		20)	<u> </u>	20)	<u> </u>	20)		<u> </u>	20)	Aborted @ 7,844 Hz On Stop Button,
	38	<u>}</u>																			CONTINUED
	HJ 8	3																			
	2	乙																			
	按	E																			
	Ø	, rd	ŀ																		
	,دُ	37	5																		
	1		4																		
	OR POOR OUT	A	は																		
			1,52																		

TABLE I. TRACK/TRAIN TRANSFER FUNCTION TEST SUMMARY (CONTINUED)

EST EQUENCE		wn Io.	TEST REFE	RENCE	TES	ST INPUT SPECTRUM	TES FRE	T Q.(HZ)		RATE HIN)			TEST DATE		DATA REFERENCE		REMARKS		
1) X-Axi Tests		21) 26		Requis. Doc. TS-005-TF Test Procedure TP-005-TF	i	3010 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 4510 lbs-pk 1.3-50 Hz		0.5-50	21) 2		21) 1	80°ø	21) 3	/25/75	21) Data N	ot Included	21) Test Conducted to Normal Completion.		
2)	2	22) 27	22)		22)	0 4760 lbs-pk @ 0.5 Nz,Linear Rise to 1.3 Nz, 7150 lbs-pk 1.3-50 Nz		0.5-1.606	22)		22)		22)		22)		22) Aborted @ 1.606 Hz On Max. Drive Limit.		
)	2	23) 28	23)		23)	4500 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 6750 lbs-pk 1.3-50 Hz		0.5-3.226	23)		23)		23)		23)		23) Aborted @ 3.226 Hz On Max. Drive Limit.		
()	2	(4) 29	24)	1	24)	Same as Run 18	24)	0.5-21.59	24)]	24)		24)	*	24)	<u>.</u>	24) Aborted @ 21.59 Hz On Max, Drive Limit.		
5)	2	.5) 30	25)		25)	4010 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 6010 lbs-pk 1.3-50 Hz		0.5-36.99	25)		25) _1		25) 3	/26/75	25) Data I	n Vol. IV	25) Aborted @ 36.99 Hz On Max. Drive Limit.		
6)	2	26) 31	26)		26)	Same as Run 26	26)	0.5-2.088	26)		26) 0	°ø	26)		26) Data N	ot Included	26) Aborted @ 2.088 Hz On 6 dB Control Limit.		
"	2	27) 32	27)		27)	1 2680 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 4020 lbs-pk 1.3-50 Hz		0.5-2.026	27)		27)		27)		27)		27) Aborted @ 2.026 Hz On 4 dB Control Limit.		
) \	2	8) 33	28)		28)	1691 lbs-pk @ 0.5 Hz,Linear Rise to 1.3 Hz, 2540 lbs-pk 1.3-50 Hz		0.5-25.98	28)		28)		28)		28)		28) Aborted @ 25.98 Hz On 3 dB Control Limit.		
) Z-Axi Tests		29) 34,3	29)		29)	5010 1bs-pk 0.5-50 Hz	29)	0.5 & 0.5-1.244	29)		29) N	/A	29) 3	/28/75 	29)		29) Run 34&35 Aborted @ 0.5&1.244 Hz On Max. Drive Limit & 3 dB Control Limit Respectiv		
)	3	36)	30)		30)	2500 lbs-pk 0.5-3 Hz,12 dB/ Oct 3-4.2 Hz,5000 lbs-pk 4.2-50 Hz	30)	0.5-1.411	30)		30)		30)		30)		30) Aborted @ 1.411 Hz On 3 dB Control Limit.		
)	3	31) 37	31)		31)	1990 lbs-pk 0.5-3 Hz,12 dB/ Oct 3-4.76 Hz,5000 lbs-pk 4.76-50 Hz	31)	0.5-1,425	31)	1	31)		31)	ļ	31)	:	31) Aborted @ 1.425 Hz On 3 dB Control Limit.		
)	3	38-40	32)		32)	500 1bs-pk 0.5-3 Hz,12 dB/ Oct 3-9.49 Hz,5000 1bs-pk 9.49-50 Hz	32)	0.5-0.737, 0.5-4.014& 0.5-3.864			32)		32)		32)		32) Run 38,39840 Aborted @ 0.737,4.014&3.864 H On 3 dB Control Limit. Force Was Zeroed Prior to Run 39 & Force Sansitivity Was Changed Prior to Run 40.		
D	jз	13) 41	33)	ſ	33)	2000 1bs-pk 0.5-50 Hz	33)	0.5-1.318	33)	ļ	33)		33)	-	33)	1	33) Aborted @ 1.318 Hz On 3 DB Control Limit.		
1)	3	42,43	34)	}	34)	1000 lbs-pk 0.5-50 Hz	34)	0.5-0.542& 0.5-0.986	34) -		34)		34)	¥	34)		34) Run 42843 Aborted @ 0.54260.986 Hz On 3 dB Control Limit.		
5)	3	35) 44	35)		35)	2000 lbs-pk 0.5 Hz,Linear Rise to 5 Hz, 3980 lbs-pk 5-50 Hz	35)	0.5-32.26	35)		35)		35) 3	31/75	35)		35) Aborted @ 32.26 Nz On 4 dB Control Limit.		
5)	1	-	36)		36)	3540 lbs-pk 0.5 Hz, Linear Rise to 5 Hz, 5010 lbs-pk 5-50 Hz	36)	0.5-27.29	36)		36)		36)		36)	1	36) Aborted @ 27.29 Hz On 4 dB Control Limit.		
7) 🔻	2	7) 40-2	魯		37)	5010 lbs-pk 0.5-50 Hz	37)	0.5-27.58	37)	<u> </u>	37) 1		37)	*	37) Data I	n Vol. IV	37) Aborted @ 27.58 Hz On 4 dB Control Limit.		

	-				TABLE	II. DA							
Meas.	1	Units					lun	No.	6				
No.	- -		1.0 HZ	1.25 HZ	1.75 HZ	5.88 HZ							
FL1/OS	-j -	lbs	4101	4590	4101	3906	E	+ 00					
FL2	1		5078	5175	4882	4199							
FL2/FL	1	1bs/1b	1.25	1.05	1.2	0.95							
FV2	_		<u> </u>	1.09	0.49	0.6							
FV3	1		<u> </u>	0.6	0.67	0.6		,					
DV1	_	in/lb	ļ <u></u>	1.3	1.5	0.7	E	- 06					
DV2	1			1.0	0.7	0.7							
DV3	1	_		6.7	1.3	2.0							
DV4	1			6.7	2.3	1.0							
AV1		G/1b		2.7		14.7							
AV3	_		<u> </u>	ļ									
AV5	_		<u> </u>	16.7	ļ	6.0						<u></u>	
AL1	1		ļ			13.3							
AL7	1					13.3							
AL5						123.3							
AL8		<u> </u>				73.3							
DL1		in/lb		3.3	3.7	3,3							
DL2				5.0	3.3	4.0							
DL3	1			0.3	0.3	1.8							
DL4			<u> </u>	0.3	0.5	0.3							
DL5				0.8	0.5	0.8							
DL6				0.3	0.3	0.5							
DL7			<u> </u>	5.3	6.7	3.0							
DL8			2.3		3.7	3.0							
DL9			3.3	<u> </u>	4.8	3.0							
DL10			1.0		1.3	0.8							
DL11			2.7	<u> </u>	3.3	3.0							
DL12			1.3		2.2	1.5		<u> </u>					
DL13	Ш		1.3		1.3	1.5							
DL14			3.7		5.0	3.3							
DL15			3.3		5.0	2.7							
DL16			10.0		12.7	10.3							
DL17		1	9.0		9.3	8.7		V					
			1										
	٦										}		

TABLE II. DATA SUMMARY

Meas.	77	Run No. 9											
No.	Ų	ILCS	1.4 HZ	2.1 HZ	2.1 HZ 2.3 HZ		3.3 HZ	3.7 HZ	4.6 HZ	5.2 HZ	.2 HZ		
FL1/OSC		bs	4,394	5,371	5,859	6,347	7,324	7,324	6,347	6,347	E +	- 00	
FL2		V	4,882	6,347	7,324	7,324	6,347	5,371	5,859	6,347			
FL2/FL1	11	s/lb	1.04	1.22	1.15	1.2	.92	.8	.9	.9			
FV2							0.49	0.49					
FV3		4	1.12							0.65		ļ	
DV1	iı	1/1b			1.7			1.2			E -	06	
DV2					0.5			0.8			<u> </u>	<u> </u>	
DV3	L		2.2	1.3			1.2			2.7	<u> </u>	<u> </u>	
DV4		4	2.5	0.8			1.7			2.2	<u> </u>		
AV3		3/1b				11.3			<u> </u>	<u> </u>	<u> </u>		}
AV5	_				<u> </u>	8.0		ļ	-			 	
AL3		<u> </u>				4.3	4.7	<u> </u>			_	<u> </u>	
AL6		1	33.3	53.3	66.7	66.7	46.7	43.3	80.0	66.7		ļ	
AL11			33.3	40.0	66.7	53.3	20.0	46.7	53.3	66.7	<u> </u>	ļ	
AL4			26.7	33.3	46.7	53.3	46.7	33.3	53.3	<u> </u>		ļ	
AL5	_		73.3	66.7		66.7		93.3	80.0	146.7	<u> </u>		
AL8			40.0	73.3	73.3	66.7	66.7	66.7	60.0	80.0	<u> </u>	<u> </u>	
AL9					60.0	86.7	93.3	<u> </u>	106.7	86.7	<u> </u>	<u> </u>	
AL10	L		16.7	13.3		36.7	30.0	33.3	<u> </u>	<u> </u>	<u> </u>		
AL12	L	₹	40.0		40.0	50.0	40.0	53.3	60.0	53.3	_	<u> </u>	
DL1	li	n/1b			ļ	28.0			11.3				
DL2			<u> </u>			31.7			11.7				<u> </u>
DL3			<u> </u>			12.3			4.3		1_	<u> </u>	
DL4		<u> </u>		<u> </u>	1.7	1.7			<u> </u>	0.7	↓	ļ	
DL5			<u> </u>			0.7		1.3	<u> </u>			<u> </u>	<u> </u>
DL6	<u> </u>				1.3	1.0			ļ	<u> </u>	<u> </u>	1_	
DL7	L			<u> </u>		<u> </u>		0.7				<u> · </u>	
DL8			2.0	5.3	5.3	5.0	5.0	4.7	4.3	3.0	\perp		<u> </u>
DL9	L	1	1.7	6.3	7.3	6.7	6.7	5.7	5.0	5.0			
DL10				3.3	4.3	4.7	4.3	3.3	3.0	2.3	1_		<u> </u>
DL11			2.0	5.0	5.3	5.0	5.0	4.3	4.0	3.0	_	<u> </u>	
DL12				2.3		<u> </u>		2.0				<u> </u>	
DL13					2.0		<u> </u>						
DL14				7.3	7.3	6.7				4.7			1
DL15	T			6.0	5.3	5.7				4.0			
DL16	T			17,7	19.0		17.3		14.7				
DL17 V	T	A		21.6			20.3		17.7			¥	

TABLE II. DATA SUMMARY

MEAS.				RUN NO. 13													
NO.			1.28 Hz	2.08 Hz	2.72 Hz	3.2 Hz	4.8 Hz	5.76Hz	6.4 Hz	6.72Hz							
FL1/OSC		1bs	6,152	5,859	5,664	7,812	6,836	7,324	6,250	8,007	E+	00					
FL2	L	<u> </u>	5,859	7,031	8,007	6,836	5,859	5,468	4,687	5,664							
FL2/FL1		1bs/1b	1.03 1.26		1.24	0.8	0.82	0.7	0.7	0.6							
FV2			8.0			0.53	<u> </u>		0.53								
FV3		*	0.73								5						
DV3		in/1b	2.7			ļ 	1.3				E-	06					
DV4	1		3.0			1.0	1.0						 				
AV1		G/1b					9.3	12.7		14.7							
AV2	L					2.0		6.0		10.0							
AV3						6.7			<u> </u>	7.3							
AV4	1					3.3	10.0	13.3	ļ <u></u>	14.0							
AV5	1			· ·		3.3		6.7	<u> </u>	6.7							
AV6	1					6.7			<u> </u>	<u> </u>							
AL1						9.3		12.0		9.3							
AL2	1					2.7		8.7	ļ	16.0	<u> </u>						
AL3	1				<u> </u>	3.3					<u> </u>		,				
AL6	1					<u> </u>		66.7	<u> </u>	<u> </u>	<u> </u>						
AL7						8.0		13.3	ļ	13.3	<u> </u>						
AL11		<u> </u>		40.0	46.7							4					
ΔΡ	ļ	psi/lb	0.21	0.21	0.2	0.21	0.21	0.12	0.16	0.23	E-I	-00					
AL4		G/1b		33.3	53.3		46.7	53.3	53.3		E-	06					
AL8				46.7	53.3		<u> </u>	<u> </u>	80.0	<u> </u>							
AL9			<u> </u>	<u> </u>	53.3	ļ. 				<u> </u>							
AL10		4			46.7		<u> </u>		<u> </u>		<u> </u>						
DL1		in/1b			36.7	<u> </u>	<u> </u>					<u> </u>					
DL2					40.0			1		<u> </u>	 _	<u> </u>					
DL3					15.7	<u> </u>					_	<u> </u>					
DL4]			1.0					1.2	<u> </u>							
DL5					1.3		1.3	1.0	1.3		<u> </u> _						
DL6				1.0							_						
DL7								0.5									
DL8					5.0												
DL9	1				6.7												
DL10					4.0												
DL11					5.3												
DL12					1.7												
DL13		-			2.0							V					

TABLE II. 28
DATA SUMMARY

ġ.

and the second of the second o

A STATE OF THE PROPERTY OF THE

MEAS.					,	·· ·		RUN NO	13	-			
NO.	UNJ	ITS	1.28	Hz	2.08 Hz	2.72 Hz	3.2 Hz	4.8 Hz	5.76Hz	6.4 Hz	6.72Hz		
DL14/FL	<u> 1</u> 1.1				5.0			2.7				E-06	
DL15					4.7				2.3				
DL16						22.7							
DL17 🔻		•				21.0						*	
								·				<u> </u>	
	<u> </u>												
									<u> </u>				
							ļ	ļ	<u> </u>				
	_				<u> </u>	<u> </u>	ļ	ļ			<u> </u>		
	<u> </u>							<u> </u>	 			ļ	
	<u> </u>				ļ <u>.</u>		<u> </u>			<u> </u>			
ļ	<u> </u>				<u> </u>			<u> </u>					
	<u> </u>		<u> </u>								ļ		
						ļ	<u> </u>					ļ <u>.</u>	
	<u> </u>		<u> </u>			<u> </u>	<u> </u>				<u> </u>		
			<u> </u>		ļ		ļ						
		<u>. </u>			ļ		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	_		<u> </u>		<u> </u>		<u> </u>		<u> </u>	ļ			
	↓_		ļ		<u> </u>		ļ				<u> </u>	ļ	<u> </u>
			<u> </u>						ļ			 	<u> </u>
	<u> </u>		<u> </u>					<u> </u>	ļ		<u> </u>	 	
	-		-		ļ		 	<u> </u>	 	ļ	 	 	
	_	-			 		<u> </u>	<u> </u>	 	 	 	 -	-
	_				<u> </u>		ļ	 	<u> </u>	 	 	<u> </u>	
-	_		-		 		-	 	 	 	 	 	
	1_		<u> </u>		ļ		·		 	 	-		
	4	_ 	 -		<u> </u>	 	<u> </u>	 	 	 	 	<u> </u>	
			<u> </u>			ļ	<u> </u>	 	<u> </u>	ļ. <u></u>	 	ļ	<u> </u>
	1	<u> </u>	-		<u> </u>			 	 	 			
	1					-	<u> </u>	 	 	-	 		
	1						 		ļ	<u> </u>	<u> </u>	<u> </u>	
ļ	_ _		-			-		ļ	ļ	 	<u> </u>		
	_ _			<u>-</u>		<u> </u>		<u> </u>	ļ	1			
1	1		1		ł	1	1	_				1	

TABLE II DATA SUMMARY

ſ	MEZA C	1	- 1	[INDLE	TT DATA	SUMMARY RUN N	O. 14					
1	MEAS. NO.		UNITS	1.25 Hz	2.12 Hz	2.75 Hz	3.25 Hz		5.75 Hz	6.38 Hz	6.75 Hz			
Ī	FL1/OS	С	1bs	·	4,394	3,906	3,906		4,394	3,418	4,394	E+(00	
	FL2	1	A	4,394	4,882	4,394	4,394	3,906	4,394	3,906	4,394			
F		1	lbs/lb		1.1	1.1	1.2	1.0	0.95	1.2	1.26			
Ţ	FV2			0.8			0.6			0.7	0.8			
	FV3			0.9			1.0	1.0					7	
	DV3		in/lb	2.0				.07			.07	E-(06	
	DV4		<u> </u>	2.7			0.3	.07			.07			
	AV1		G/1b		<u> </u>			3.3	3.3	6.0	4.0			
	AV2_						0.7	·	0.7		0.7			
	AV3						2.7				3.3			
	AV4				ļ		0.7	4.0	4.0		8.7			
ļ	AV5			<u> </u>		1	0.7		0.7	 _	3.3			
	AV6			ļ	ļ	<u> </u>	2.0	<u> </u>	<u> </u>	ļ				
	AL1	_		 	<u> </u>	<u> </u>	2.7	<u> </u>	5.3	<u> </u>	6.7			
	AL2			<u> </u>	<u> </u>		0.7		1.3		4.0			
	AL3			<u> </u>	<u> </u>	<u> </u>	1.3			<u> </u>	<u> </u>			
	AL6	_			<u> </u>	<u> </u>	<u> </u>		13.3		ļ			
	AL7	_		<u> </u>	<u> </u>		2.7	ļ	3.3		6.0	<u> </u>		
	AL11	L		3.3	6.7		<u> </u>	<u> </u>	<u> </u>	20.0	23.3			
	ΔΡ	_	psi/1b	0.25	0.27	0.27	0.27	0.23	0.23	0.27	0.28	E-+	00	
	AL4	_	· G/1b		6.7	6.7	 	13.3	13.3	20.0	 	E-	06	
	AL5	L		13.3	<u> </u>			13.3		20.0	20.0	 	-	
	AL8	L		13.3	20.0	ļ	ļ	13.3	 	26.7	23.3	-		
	AL9			6.7	6.7	6.7	6.7	<u> </u>		<u> </u>	20.0	ـ		
	AL10			ļ		6.7	<u> </u>	<u> </u>	 	<u> </u>	_	 -		
	DL1	L	in/1b	 	6.7	6.7	 	 	 	 	-	-		
	DL2	_	- -	<u> </u>	0.5	1.0	 	 	<u> </u>	<u> </u>	-	┼-		
	DL3	-		 	0.2	0.3	<u> </u>	ļ		<u> </u>	-	 		
	DL4	1	- -	 	0.3	 	0.7	 		0.3		-	 	
	DL5	\vdash		 		0.3	 	0.3	0.7	0.3	<u> </u>	 	-	
	DL6	1		 	0.3	ļ ·	 -	0.3	 	 -	 	1-	 	
	DL7	L	_ _	<u> </u>	<u> </u>	<u> </u>	 	 	0.7	 	 	 	-	
	DL8	L	1	 	0.8	0.67	<u> </u>	-		 _	 	╂-		
	DL9	1		 	<u> </u>	1.0	 	<u> </u>	 	1.7	 	╂	 	<u> </u>
	DL10	1		<u> </u>	 	0.2	 	 	 	 	 	-	-	
	DL11	1			 	1.0	 		 	 	1.0	-	-	
	DL12 \	Ø	₩			0.2	1	<u> </u>	<u>l</u>	<u> </u>	1		V	L

TABLE II. DATA SUMMARY

				171111111111111111111111111111111111111		A SUMMAR RUN NO	0. 14			······································	
MEAS. NO.	UNITS	1.25Hz	2.12Hz	2.75 Hz	3.25Hz	4.75 Hz			6.75Hz		·
DL19FL				0.3			· · · · · · · · · · · · · · · · · · ·	0.7		E-06	
DL14/FI	1		0.67			0.2			0.8		
DL15			0.7			0.2	0.3		0.7		
DL16				2.8				5.0			
DL17	_ 🔻			2.3				4.3			
					L		<u> </u>				
			 								
				ļ. <u></u>							
	 			 							
 	 	 									
	 	 		 				 			
		<u> </u>		 		<u> </u>		 		<u> </u>	
	 			 			-	 			
		 		 		 		 			
		 			 	 		 		<u> </u>	
 	 		 			 				 	
								<u> </u>	<u> </u>	 	
		 						 			
	1										
								<u> </u>		<u> </u>	
				ļ <u></u>		<u> </u>		<u> </u>			<u> </u>
	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>		 	ļ	<u> </u>	ļ
	<u> </u>	 		ļ		<u> </u>					
	ļ	<u> </u>		ļ	 	<u> </u>		 			ļ
		 	 		ļ	 		 -			<u> </u>
-	 	 	ļ	 	 	<u> </u>	 	 		 	ļ
	1	 			<u> </u>	 	ļ	 			ļ
	 	 	<u> </u>	 		<u> </u>	ļ	 			
	 	 	<u> </u>	 	 	 	 		 	 	
	 	 	 	 	 	 		 	 		
			 	 	 	 	 	<u> </u>	 	<u> </u>	
L	<u> </u>		<u> </u>				1	1]	1	

4、1、1、1000年,1915年,1915年,1916年

TABLE II. 31 DATA SUMMARY

MEAS.						RUN NO	0. 23			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
NO.	UNITS	1.28 Hz	1.76Hz	2.08 Hz	2.4 Hz	3.84 Hz	4.96 Hz					
FL1/OSC	lbs	5,664	6,836	7,226	8,593	9,179	9,960	E+0	0			
FL2	V	6,836		6,445	7,812		8,007					
	lbs/lb	1.1	1.1	1.15	1.0	0.75	0.8					
FV2		.61										
FV3	V						0.8	-				
DV1	in/lb		0.7			0.7		E-0	6			
DV2		1.0										
DV3		2.3				2.3	2.3					
DV4	4	2.7				2.0	2.3					
AV1	G/1b						13.3					
AV2							6.7					
AV3						6.7				·		
AV4							26.7					
AV5					2.0		6.0			 		
AV6						7.3				 		
. AL1					5.3		13.3				<u> </u>	
AL2							9.3				<u> </u>	
AI.3						4.0	<u> </u>		<u></u>			
AI_6					53.3							
AL7					6.0		14.7					
AL11					53.3			1				
ΔΡ	psi/lb	0.26	0.26	0.27	0.24	0.2	0.19	E+(00			
AL4	G/1b				53.3	<u> </u>	46.7	E-()6			
AL5				46.7			113.3					
AL8			73.3	66.7	60		<u> </u>					
AL9			53.3	60			86.7					
AL10					93.3	<u> </u>						
AL12	A				86.7			1_			<u> </u>	
DL1	in/lb				50			<u> </u>		<u> </u>		
DL2					60			<u> </u>			<u> </u>	<u></u>
DL3					46						1	
DL4							0.7	1_			1	
DL5				1.7		1.3						
DL6				1.0			1.0					
DL-7					1.0	!						
DL8				5.0								
DL9				7.0					¥			

32
TABLE II. DATA SUMMARY

MEAS.						RUN NO	23				
NO.	UNITS	1.28 Hz	1.76Hz	2.0 Hz	2.4 Hz	3.84 Hz	4.96 Hz				
DL10/FL	in/lb			5.0				E-06			
DL11				4.7							
DL12						2.0					
DL13				2.0							
DL14		3.3	3.3	2.7			3.3				
DL15		3.0	2.7	2.7			3.0				
DL16				17.3							
DL17 V	A			19.7				¥			
					-						
	1										
		1	 								
	<u> </u>				<u> </u>					*	
			<u> </u>	<u> </u>	1						
	1										
	1										<u></u>
1	 										\ <u></u>
							1		<u> </u>	1	1
	1			1	1	1	<u> </u>			*	! <u></u>
		entranciin (MA)	and the region of the second	· Desire de la companya del companya del companya de la companya d	·		1				<u> </u>
		g 💌 go 1945 ngawago ili ngabba 🙉 🖦	ga popular na oblika napada kito			<u> </u>		1			1
9	1	•	II		3	NT .	Ni .	T	18	 	lä .

ſ	MEAS.	7	***************************************		<u></u>	<u> </u>		<u></u>	RUN N	0. 15					
	NO.		UNIT		1.25 Hz	1.5 Hz	2.0 Hz	2.5 Hz			3.75 Hz	5.25 Hz	7.25 Hz		
	FL1/0S	sd	1bs		4,882		3,711		4,882		4,882		2,441	E+0	0
	FL2		4		4,687	4,297	3,906	4,882	4,687	4,199	5,664	3,711	2,441		
	FL2/FL	.1	lbs/	1b	1.0	1.08	1.0	0.92	0.92	0.98	0.98	1.12	1.05		
	FV2					1.2	1.2		0.69	0.65		0.61	1.51		
	FV3	_	Ÿ			1.47	1.44		0.73	0.77		0.85	1.89		
ļ	DV1		in/1	.b_	1.0			1.0						E-()6
	DV2				7.0				2.2	2.2					
	DV3				8.8					3.7	3.7	7.0	4.0		
	DV4		A	_	9.8			ļ	ļ	4.0	4.0	7.5	8.2		
	AV1	_	G/1b	_			5.3	-				53.3	56.0		
	AV2		_				8.7			<u> </u>		22.7			
	AV3	_					ļ	! 	17.3			<u> </u>			
	AV4						5.3				17.3	53.3	46.7		
	AV5						15.3		·		ļ	52.0	56.0		
	AV6							<u> </u>	18.0						
	AL1				<u></u>		20.0	20.0	20.0	<u> </u>		46.7	33.3		
)	AL2						6.7	6.7	6.7			37.3	71.3		
	AL3								8.7		ļ	6.7	10.7		
	AL6						<u> </u>		<u> </u>					-	
	AL7		<u> </u>				16.7	16.7	16.7	<u> </u>		50.0	50.0		
	ΔΡ		psi/	/1ъ	0.24	0.25	0.23	0.22	0.24	0.23	0.25	0.26	0.23	B#	
	AL4		G/11)	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>		E	06
	AL5						16.7	16.7	16.7	ļ <u>.</u>	ļ	46.7	43.3		
	AL8				<u> </u>		<u> </u>		16.7			ļ	29.7		<u> </u>
	AL9		4		<u> </u>		13.3	13.3	13.3	ļ	<u> </u>	42.0	30.0	ļ	
	DL1		in/	1b			1.0	ļ	ļ	ļ	ļ	ļ			
	DL2	_			<u></u>		0.7	<u> </u>	ļ	 		ļ	•	<u> </u>	
	DL3	Ļ				ļ	0.7	ļ	<u> </u>	ļ				<u> </u>	<u> </u>
	DL4	-			<u> </u>	ļ <u>-</u> .		1.0	ļ					<u> </u>	
	DL5	_						1.0						<u> </u>	<u> </u>
	DL6	L						0.7		<u> </u>			}	ļ	
	DL7				<u> </u>	<u> </u>	<u> </u>	0.7	<u> </u>	ļ		.	<u></u>	<u> </u>	
	DL8	<u> </u>					0.3	0.3	<u> </u>				ļ	ļ	<u> </u>
4	DL14	L			1.2	<u> </u>	<u> </u>	2.0	 		<u> </u>			ļ	
1	DL15	_	_		2.2		<u> </u>	1.8	 			<u> </u>		<u> </u>	
	DL16	L				0.5		0.8	ļ				<u> </u>	<u> </u>	an, wygan yrpa
	DL17	*	A			0.5	<u></u>	0.7	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

TABLE II. DATA SUMMARY

ſ	Meas					TABLE		Run No					<u>. </u>	
	No.		Units	1.12 HZ	1.44 HZ	1.60 HZ	1.92 HZ	2.4 HZ	2.88 HZ	3.2 HZ	3.68 HZ	5.28 HZ		
ļ	L1/0	sc	lbs	4,882		7,812	6,836		4,882				E 4	- 00
г	7L2		Ţ,	5,078		7,421	5,371				4,882		_	<u> </u>
ď		Ll	1bs/1b	·		3				1.06	1.02	1.03		
t	7V2			1.89	1.05									
	?V3		•	3.0	1.73								V	,
	DVI		in/lb	12.7					9.5		8.7		E -	06
	DV2			30.8					9.3	9.7		9.0		
	DV3			14.7	15.3					9.7				
	DV4		V	16.2	16.7					11.0				
ļ	4V1		G/1b	8.0										
Ì	AV2				11.3		11.3				<u> </u>			
	AV3			<u> </u>	<u></u>		20.0		21.3					
	AV4				10.7									
	AV5				12.0			<u> </u>				<u> </u>		
	AV6	L						22.7		26.7				
	AL1						33.3							
,	AL2						10.7				ļ <u>.</u>			
Ì	AL 3			ļ	<u> </u>	ļ	10.7				ļ			
	AL6	<u> </u>		<u> </u>	<u> </u>	ļ	3.3	- <u>-</u>		<u> </u>	ļ <u>.</u>	ļ	ļ	
	AL7	Ļ		ļ <u>.</u>	<u> </u>	<u> </u>	26.7				ļ	<u> </u>		
	<u>AL 11</u>	Ļ			ļ	ļ	2.7				<u> </u>			Ž
	ΔΡ	Ļ	psi/lb	0.27	0.23	0.18	0.2	0.2	0.21	0.23	0.18	0.23		+ 00
	AL4	_	G/1b				6.7		<u> </u>		ļ	<u> </u>	E	- 06
	AL5	<u> </u>			23.3	ļ	23.3						ļ <u>.</u>	
i	AL8	Ļ				ļ <u>.</u>			40.0		<u> </u>	<u> </u>		
	AL9	╀-	—	<u> </u>	26.7	<u> </u>	<u> </u>		<u> </u>	<u> </u>	 	 	ļ	
	AL10	ļ_	 		2.7					ļ	ļ		 	
	AL12	╁	4	<u> </u>	2.0		ļ <u>.</u>		ļ <u></u>	ļ		<u> </u>		ļ
	DL1	_	in/lb	 	1.7	<u> </u>				1.0	 	 	<u> </u>	<u> </u>
	DL2	1		-	2.0	 	<u> </u>	 	 	1.0]		<u> </u>
	DL3	-	-	-	1.5	<u> </u>	<u> </u>		<u> </u>	0.8	 	<u> </u>	<u> </u>	
	DL4	-	 	 	 	<u> </u>	6.0			<u> </u>	 		 	
	DL5	1			_		6.0		<u> </u>		 	<u> </u>	-	
1	DL6	+	 			 	3.3	<u> </u>		ļ	2.3	ļ <u> </u>	 	-
	DL7	-		 	<u> </u>	 	3.3	<u>,</u>	<u> </u>	<u> </u>	2.3	-	-	-
	DL8	-	 	<u> </u>	<u> </u>	1.3	 			ļ		<u> </u>	_	 -
	DL9	Ů	4	1	1.2	1	1	i	L	<u> </u>	1	I	1	V

35
TABLE II. DATA SUMMARY

<u></u>				TABLE		TA SUMMA			··		
Meas.	Units					un No. 1					
No.		1.12 HZ	1.44 HZ		1.92 HZ	2.88 HZ	3.2 HZ	5.28 HZ			
DL10/EL1	in/1b			0.7					E - 06		
DL11			1.0								
DL12				0.7							
DL13				1.0			0.8				
DL14		15.0			20.3	14.7		8.3			
DL15		13.3			17.5	12.3		7.3			
DL16			4.0								
DL17			3.7						₩		
		 					ļ				
		<u> </u>									
					 						
	<u></u>							 			
								<u> </u>			
	<u> </u>	 		-				 			
					 			1			
			<u> </u>		1			1			
					 			<u> </u>	 		
	 		 -		 -			·			
	 		 	 	 	 		-	 		
	 	 	 	 		 	 	 	 	 	
 	 	 	 			-			 	 	
	 	 	 	 	 	 -	 	 	 	 	
	 		 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	ļ	
ļ	 	 	 	 	 	ļ	 	 			<u> </u>
	 	ļ	ļ	 -	 	 		 	 		ļ
1	1	l	}	l	1	1	l]		<u> </u>	<u> </u>

MEAS.	!		<u></u>	 		RUN N	0.19					
NO.	UNITS	0.75 Hz	1.0 Hz	1.25 Hz	1.5 Hz	1.75 Hz	2.0 Hz	2.25 Hz	2.5 Hz	2.75 Hz		
FL1/OSC	·lbs	3,515	4,687	7,519	8,983	8,983	9,277	7,617	9,374	11,132	E+(00
FL2	\	3,906	5,371	6,836	9,081	9,179	8,788	7,128	9,081	11,132		
FL2/FL1	1bs/1b	1.13	1.15	.98	1.08	1.0	1.2	.91	.93	.98		
FV2		1.81		1.33			0.77	0.8		0.75		
FV3	<u> </u>	1.16		0.88		<u> </u>	0.53	0.53	ļ	0.53	*	
DV1	<u>in/lb</u>		17.7	18.8			ļ	21.7	<u> </u>		E-(06
DV2			36.7					36.7				
DV3		18.7	21.7				16.0	ļ <u></u>		ļ		
DV4	4	21.3	25.0	ļ <u>.</u>		<u> </u>	19.7	 				
AV1	G/1b		<u> </u>	11.3				<u> </u>	<u> </u>			
AV2			ļ	14.7	<u> </u>	<u></u>	16.0	ļ				
AV3				ļ <u>-</u>		24.0	<u> </u>	25.0	<u> </u>	<u> </u>		
AV4			ļ	12.7		<u> </u>		35.3	<u> </u>			
AV5	1			11.3	<u> </u>	<u> </u>	<u> </u>	22.0	<u> </u>			
AV6						<u> </u>	21.3	24.0		<u> </u>		
AL1	1_1_			<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
AL2		6.7	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		
AI.3	<u> </u>				ļ	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>		
AL6						<u> </u>	<u> </u>	<u> </u>	ļ	ļ. <u> </u>		
AL.7			<u> </u>		28.0	<u> </u>	<u> </u>	<u> </u>	<u> </u>		4	
ΔΡ	psi/1	0.23	0.18	0.26	0.22	0.14	0.21	0.18	0.23	0.21	E+	00
AL4	G/1b	13.3	<u> </u>	7.3		<u> </u>	7.3	<u> </u>	<u> </u>	 -	E-	06
AL5				26.7		<u> </u>	-	<u> </u>	43.3	<u> </u>		
AL8	<u> </u>		38.7		26.7	<u> </u>	ļ	<u> </u>		<u> </u>		
AL9	V			25.3			<u> </u>		43.3		1	
DL1	in/1b	3.3	3.0	<u> </u>	3.3		 				1-1	
DL2		3.0	<u> </u>		3.7	<u> </u>			. 	<u> </u>	1 1	
DL3				2.2	2.2	<u> </u>	1.7		1.2	0.83	_	
DL4			2.5	 			8.7		ļ	<u> </u>	1 1	
DL5			2.0	<u> </u>	·		9.0		<u> </u>	ļ		
DL6		0.7	 			<u> </u>	9.5	<u> </u>	 	6.2		
DL7		1.0		<u> </u>	<u> </u>	 	9.8		<u> </u>	6.3		·
DL8	1_1_	.7	<u> </u>	2.0		<u> </u>	<u> </u>			<u> </u>		
DL9				2.3	<u> </u>	<u> </u>	 		<u> </u>			
DL10						2.2	<u> </u>			 		
DL11				1.5			 	<u> </u>		<u> </u>		
DL12	4			0.8			<u> </u>		j	j	1	Ì

TABLE II. 37 DATA SUMMARY

Total Control

MEAS.						RUN N	0. 19				
NO.	UNITS	0.75 Hz	1.0 Hz	1.25 Hz	1.5 Hz	1.75 Hz	2.0 Hz	2.25 Hz	2.5 Hz	2.75 Hz	
DL13/FL	l in/lb			0.7				0.8			E-06
DL14			20.0				44.3				
DL15			18.3				41.7				
DL16					6.0		6.7				
DL17	A				5.8		5.7				*
											·, .
								<u> </u>			
	<u> </u>			<u> </u>					[
		ļ									<u> </u>
							<u></u>		<u> </u>		
_	<u> </u>	<u> </u>		<u></u>		 	<u> </u>				
			· ·			 	ļ				
	 					<u> </u>		<u> </u>		 	
	 		 	<u></u>	<u> </u>	<u>. </u>		 	<u> </u>	-	
	ļ			ļ	 	 		 	<u> </u>	ļ	
	<u> </u>		 -			<u> </u>			<u> </u>		
<u></u>		<u> </u>		 			-	 			
	<u> </u>	 		<u> </u>	 	<u> </u>					
				<u> </u>							
-		1			<u> </u>		<u> </u>	 			
	<u> </u>		 	 -	 			1		1	
 			 	<u> </u>	 	<u> </u>	 	 	├──-	 	
 		<u> </u>	<u> </u>		-	<u> </u>	 	 	 	 	<u> </u>
	 				 		-	 	<u> </u>		
	<u> </u>	 	 			 	 	 			
	 	-	<u> </u>	<u> </u>	 -	 	 		 		
	1	-	<u> </u>	1	 		ļ	1	 	 	
		 				<u> </u>		<u> </u>	1		
	1										
				1		1	 				
		1		†	 	†	 			1	<u> </u>
	†			1		1	 	-	1		
	 	1			1		 			1	
	1				1				1		
					<u> </u>						
				1		<u> </u>					

TABLE II. 38 DATA SUMMARY

ſ		<u> </u>		·					RUN NO	19			. · · · · · · · · · · · · · · · · · · ·	
	MEAS		UNITS	2 25 Ha	3 5 Hg	3.75 Hz				1		1		
` ŀ	FL1/0	}	lbs	8,398	10,644		E+	<u></u>						
- 6	FL2		IDS		9,277	9,570		-						
ì		—	lbs/lb	9,570 .97	.95	.94								
- 1	FV2		105/10	•9/	ככ	1.0								
t			V	<u> </u>		0.64								
Ī	FV3		G/1b			46.0		06			-			
ı	AVI		G/ 15		19.3	21.3	<u> </u>	00						
1	AV2	\vdash			18.0	21.3							-	
- 1	AV/													
- 1	AV4				40.0 18.7									
ļ	AV5 AV6	H		17.3	70.1	16.7	<u>"</u>	 						
		H		11.3	26.7	10./								
į	AL1	-		 	36.7 26.7								<u> </u>	
	AL2	1-		10.0	20./			-						
	AL3	+		10.0	5.3			 						
	AL6		-		22.0									
ı.	AL7 AP			0.26	0.18	0.2		-00						
		+-	psi/1b		0.10	0.2		06						
	AL4 DL4	\vdash	G/1b	8.7		7.1	F.	1		<u> </u>				-
		+-	in/1b	 		6.8	<u> </u>	-						
	DL5 DL6	╁		6.0		5.0	\vdash	-						<u></u>
	DL7	╁		5.8		5.3		 - -						
		V		3.0	1.0	7.3	-	 	,				· · · · · · · · · · · · · · · · · · ·	
	חרס	¥_	<u> </u>		1.0	 		Ψ	<u> </u>			<u></u>		
			i				├							
	 						-						<u> </u>	
	<u> </u>			 	<u> </u>	<u> </u>	-							
	-		 				 				 -			
		···•	 	<u> </u>			┼─	<u></u> -			 -		<u> </u>	
	<u> </u>				<u> </u>	1					 			
				ļ	<u> </u>	 	├─	·····	<u> </u>					
				 			-					<u> </u>		
			 -		 	 	-					[ļ ——	
				<u> </u>	 	ļ	1-			<u> </u>			 -	<u> </u>
	<u> </u>			<u> </u>	 	-	 -	<u> </u>		<u> </u>	1			
				<u> </u>	 	 	-		 -			 	 	
			 	 	}	 -	_	 ,		<u> </u>				
				<u> </u>	<u> </u>						1			

TABLE II. 39 DATA SUMMARY

MEAS.	1	TOTAL					RUN NO	. 20					
NO.		UNITS	0.75 Hz	1.0 Hz	1.25 Hz	1.5 Hz	1.75 Hz	2.0 Hz	2.25 Hz	2.5 Hz	2.75 Hz		
FL1/0S	c	1bs	3,711	4,590	5,859	7,421	9,960	10,448	7,519	7,031	9,960	E+	00_
FL2		Y	4,687	5,859	8,203	7,714	10,546	9,765	5,859	7,031	9,765		
FL2/FL	1	lbs/lbs	1.25	1.1	1.2	1.0	1.0	0.95	0.85	0.95	0.95		
FV2			1.57		1.63					0.93			
FV3		4	2.93		2.64					1.47			
DV1	_]	in/lb		24.7]				25.3	26.7		E-	06
DV2	_			36				26.7	<u> </u>	27.3	28_		
DV3			15.3		22.5			10.3		10	ļ		
DV4	_		17.3		26.3			12.3		13			
AV1		G/1b	10		13.3						43.3		
AV2				ļ	16.7	ļ					20		
AV3	_			·	16.7			23.3	<u> </u>	<u> </u>	ļ		
AV4			16.7		16.7			26.7	ļ	36.7	<u> </u>		
AV5					16.7		<u>.</u>	16.7	ļ	20	23.3		
AV6				<u> </u>	20					26.7			
AL1			16.7		40		36.7	36.7	30	<u> </u>	40		
AL2			6.7				10	10			23.3		
AL3							10	<u> </u>	13.3	ļ 	<u> </u>		-
AL6				6.7	6.7								
AL7		†	16.7				36.7	<u></u>		<u> </u>	<u> </u>		
ΔΡ		psi/lb	0.29	0.23	0.24	0.22	0.21	0.22	0.22	0.23	0.22	E-I	-00
AL4		G/1b	10	10		10			6.7			E-	06
AL5			33.3		· · · · · · · · · · · · · · · · · · ·	33.3	<u> </u>	<u> </u>	ļ <u>.</u>	ļ	43.3		<u> </u>
AL8			16.7			13.3	<u> </u>	<u> </u>	13.3	<u> </u>	<u> </u>	<u> </u>	<u> </u>
AL9		V		53.3		40		<u> </u>	56.7				
DL1		in/1b	1.7			2.0	ļ	.ļ	<u> </u>	ļ	ļ	ļ	
DL2			1.3			2.3				ļ	<u> </u>	<u> </u>	
DL3	_				2.0		<u> </u>	<u> </u>		1.0	1.0		ļ
DL4			2.2			7.0	7.5	<u> </u>	<u> </u>	<u> </u>	8.3		
DL5	L		1.7	<u> </u>	ļ	7.5	7.5	<u> </u>	<u> </u>	<u> </u>	8.0	<u> </u>	
DL6	L		1.0			8.3	8.0	ļ	<u> </u>		7.7	ļ	
DL7	L		1.0		<u> </u>	8.7	8.7			<u> </u>	7.5	<u> </u>	<u> </u>
DL8	L				2.2	ļ			<u> </u>			<u> </u>	<u> </u>
DL9	L				2.3		1					<u> </u>	<u> </u>
DL10	L				2.3		1.7						<u> </u>
DL11					2.0		ļ			ļ		ļ	
DL12	•	4	0.7			0.7				1	0.7		Ý

TABLE II. DATA SUMMARY

MEAS.	IBIT DO	RUN NO. 20									
NO.	UNLTS	0.75 Hz	1.0 Hz	1.25 Hz	1.5 Hz	1.75 Hz	2.0 Hz	2.25 Hz	2.5 Hz	2.75 Hz	··-
L13/FL	l in/lbs	.7		.7				1.4		.7	E-06
)L14			25		39.7			41.7			
DL15			24		36.7			37.3	37.7	,	
DL16				8.3	8.3						_
DL17	4	<u> </u>		7	5.83			·			<u> </u>
		, , , , , , , , , , , , , , , , , , , ,			·						
						,	,				
		ļ				·					
										-	
								,			•
											-
								-			
			-					1			
						 		- 			
							İ		1		
		1									
-	1		1		 			1	1		
			 	1	1	 		†	1	1	
			 	 		1	 				
<u> </u>	 			 							
	 	-	1	 							
<u></u> .	 		 	 	1	1	 	-			

ſ	NG 40		,,					RUN NO	·····	——————————————————————————————————————	·		
, [MEAS NO.		UNITS	3.25 Hz	3.5 Hz	3.75 Hz			 -			1	
Ţ	FL1/0			9,179	9,570		E+00						
- 1			A	7,812									
Г		7.7	1bs/1b		1.1	0.8	V						
ı	DV1		in/1b	15	_ 	10.7	E-06					- <u></u>	
ſ	DV2	П	1, 1.5		17.7		1						
1	DV3			6.7		-							
•	DV4		¥	7.0									
1	AVl		G/1b	43.3						<u>-</u>			
- 1	AV3			20	 								
- 1	AV4	П		40	<u> </u>								
1	AV5	П		20									
	AL2			23.3									
	AL3			10									
	AL6			10									
	AL7		*	56.7			¥						
	ΔΡ		psi/lb		0.2	0.18	E+00						
ļ	AL4		G/1b		10		E-06						
- F	DL4	in/1b			6.0								
	DL5				6.7						<u> </u>		
	DL6			6.3									
	DL7	L		6.7									
	DL8			0.8									
	DL9	L		1.3									
	DL10	L		1.0									
	DL12	Ÿ_	<u> </u>	0.7			<u> </u>						
			<u> </u>	<u> </u>	<u> </u>							 	
	! 					<u> </u>						<u>.</u>	
	<u> </u>				<u> </u>								
	ļ			<u> </u>	<u> </u>		<u> </u>					-	
	ļ 		ļ	_									
					<u> </u>	<u> </u>	ļ						
			<u> </u>	 									
,	<u></u>					 	<u> </u>						
1	, ,		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>					
				<u> </u>	 -	<u> </u>	<u> </u>						
					<u> </u>						<u> </u>		
	1		1	1	}	1		1			1		i

42
TABLE II DATA SUMMARY

		7	·			· · · · · · · · · · · · · · · · · · ·						
	MEAS.	.	RUN 30									
	NO.	UNITS	1.78HZ									
支少!	FL3/050	lbs	6,054	E+00				-				
į	FL4/05	1	5,566	E+00								
	FL4/FI	.1bs/1b		E+00							-	
	FV2	lbs/lbs	B	E+00								
	FV4	lbs/lbs		_E-+00								
	AL6	G/1b	40,0	E-06	,			_				
	AL11	G/1b	43.3	E-06								
	7 b	psi/lb	0.21	£γ√Û								
	AL4_	G/1b	66.6	I								
	AL5	G/1b	20.0	E-06								
	AL8	G/1b	50.0	E-06								
	AL9	G/1b	33.3	E-06								
	AL10	G/1b	33.3	E-06								
	AL12	G/1b	33.3	E-06			<u>.</u>					
	DL1	in/1b	15.0	E-06								
. 1	DL2	in/lb	16.6	E-06								
	DL3 V	in/1b	6.3	E-06								
V1		_	<u> </u>									
			ļ						-			
	ļ											
		_	,									
	ļ <u>-</u>	- 	<u> </u>							-		
	<u></u>											
		 									:	
										-		
	 			<u> </u>							•	
	ļ	<u> </u>										
			-				<u>-</u>			_		
	-		ļ									
		-										
	-		 			<u> </u>						
7 .				<u> </u>								
4	1		-	 								
			 	<u> </u>		<u> </u>						
		_		 							<u> </u>	
	1	í	į	1)	<u>l</u>					,	i

											
MEAS.	UNITS			<u> </u>	RUN	46	·····		1		
	-}	1.0 HZ									
FV1/OS	ł .	12,792	1								
1	7 1bs/1bs	i									
FV4	4	3.66	i					<u></u>			
DV1	in/1b		E-06	<u> </u>					·		<u> </u>
DV2	- 	36,3									
DV3	 	17.5	 	<u> </u>	<u>.</u>						
DV4	*	18.5									
AV1	<u>G/1b</u>	8.0									
AV2		8.0									
AV3	- 	8.0	<u> </u>								
AV4	 	8.3	 	-							
AV5		8.7	 	<u> </u>							
AV6		8.7									
AL1		5.7									ļ
AL2		6.3	-								
AI.3		5.7							.,:		
AL7	- ♥	2.3									
DL3	in/1b	1.3	 				-				
DL4		1.3			<u> </u>						
DL5		1.3	<u> </u>							ļ	
DL6		0.7		<u> </u>				<u></u> -		<u> </u>	
DL7		0.7									
DL9		0.5		· ·							<u> </u>
DL12		0.3			<u> </u>					ļ	<u> </u>
DL14		21.8					<u></u>				
DL15	y	21.0	4							ļ	
		<u> </u>		•			·			•	
							<u> </u>				
											<u> </u>
											<u></u>
	1										
		1									
						1				[

APPENDIX A

TRANSFER FUNCTION TEST REQUIREMENTS DOCUMENT POST-TEST UPDATE*

*NOTE: paragraphs denoted with an "R" have been revised from the initial document release.

TRACK/TRAIN DYNAMICS

TEST REQUIREMENTS DOCUMENT

TRANSFER FUNCTION TEST

Contract NAS8-29882

Prepared by:

R. A. Vigil Staff Engineer Space Systems Dynamics

Approved by:

P. W. Abbott

Technical Director Track/Train Dynamics

G. Morosow Program Manager Track/Train Dynamics

MARTIN MARIETTA CORPORATION
Denver Division
Denver, Colorado 80201

FOREWORD

This document is submitted in accordance with the requirements of NASA Contract NAS8-29882.

CONTENTS

			<u>Page</u>
Fore	word .		A3
Cont	ents .		A4,A5
1.0	INTRO	ODUCTION	A6
	1.1	Test Objectives	A6
2.0	DESCI	RIPTION OF TEST ARTICLE	A6
	2.1	Test Configuration	A6
3.0	TEST	LOCATION AND FACILITY DEFINITION	A6
4.0	RESPO	ONSIBILITIES AND SUPPORT REQUIREMENTS	A7
	4.1	Environmental Laboratory	A7
	4.2	Structures Laboratory	A7
	4.3	Dynamics	A7
	4.4	Safety	A7
5.0	TEST	REQUIREMENTS	A7
	5.1	Test Description	A7
		5.1.1 Lateral Tests	A8
		5.1.2 Vertical Tests	A8
	5.2	Instrumentation and Data Acquisition	A8
	5.3	Data Reduction	A8
6.0	RESU	LTS	A9
	6.1	Test Data Report	A9
	6.2	Data Retention	Δ9

CONTENTS (continued)

		<u>Page</u>
Figures		
1	Test Article General Configuration	A10
2	Test Setup and Configuration	A11
3	Car Instrumentation Locations and Measurement Numbers	A12
4	Truck Instrumentation Locations and Measurement Numbers	A13
<u>Tables</u>		
I	Test Measurement Summary	A14

1.0 INTRODUCTION

This document defines the detailed requirements for conducting sinusoidal vibration tests on an 80 ton open hopper railroad freight car. The test program consists of obtaining transfer function data from vertical and lateral excitation of the test article for comparison with analytical data.

1.1 <u>Test Objective</u> - The objective of the transfer function test is to obtain data for the validation of the freight car nonlinear elastic model.

2.0 DESCRIPTION OF TEST ARTICLE

The test article is an L&N RR model M-042-174 freight car with ASF 11 trucks. Details concerning the test article general arrangement can be found in Figure 1.

2.1 <u>Test Configuration</u> - The test specimen will be loaded with 80 ton of coal. One truck assembly will be supported by four individual lateral slide plates at each wheel location which will be coupled to the test floor through load cells or spacers as required. The other truck assembly will be supported such that the entire assembly is parallel with the facility floor. This test setup is illustrated in Figure 2.

3.0 TEST LOCATION AND FACILITY DEFINITION

The test will be conducted in the structural Laboratory Low Bay area

of the General Purpose Laboratory. Test support equipment will be located in the enclosure near the test setup to afford this equipment maximum protection. The necessary utilities to accommodate the test support equipment will be furnished by the test facility.

4.0 RESPONSIBILITIES AND SUPPORT REQUIREMENTS

- 4.1 Environmental Laboratory (0434) Provide two hydraulic shaker systems, instrumentation, data acquisition/reduction equipment, test procedure, data report and post-test procedure update.
- 4.2 <u>Structures Laboratory (0436)</u> Provide facility, hydraulic pump and plumbing, shaker supports, truck support and slide plates, wheel load cells, shaker load cells and attachment and displacement transducers and installation.
- 4.3 <u>Dynamics (0433)</u> Provide pre-test analysis, test requirements document, post-test requirements document update, final test report, and analytical model validation.
 - 4.4 Safety Insure personnel safety.

5.0 TEST REQUIREMENTS

5.1 <u>Test Description</u> - Lateral excitation will be applied to the test specimen simultaneously by two 10,000 force-pound hydraulic actuators. Input force levels will be automatically controlled by peak selection between each actuator. Vertical excitation will be applied using a single actuator. Sinewave sweep tests will be conducted from

- R 0.5 to 50 Hz at 2 octave/minute and at three peak force levels, 2000, 5000 and 10,000 pounds respectively. The above force levels will be limited by actuator maximum displacement and force capability (max. displ. 2" d.a., max. force approx. 10,000 pounds-peak).
- R 5.1.1 <u>Lateral Tests</u> Excitation will be applied separately in the (Y) direction at the axles of each wheel set and in the (X) direction at the forward axle of one truck as shown in Figure 2. Tests will be conducted with the actuators both in phase and 180° out of phase for the (Y) and (X) direction tests. During these tests, vertical wheel forces will be measured at wheel positions 1 and 2 for (Y) and 1 and 3 for (X) direction tests as shown in Figure 4.
- R 5.1.2 <u>Vertical Tests</u> Excitation will be applied vertically at the freight car side frame in the middle of the car body as shown in Figure 2. Tests will be conducted while monitoring vertical wheel forces at wheel positions 1 and 3, respectively (see Figure 4).
- R 5.2 <u>Instrumentation and Data Acquisition</u> Instrumentation locations and measurement numbers are illustrated in Figures 3 and 4 and listed in Table I. The total number of transducers which will be recorded on magnetic tape are as follows:

Force Gages (Load Cells) 4

Accelerometers 18

Displacement Transducers 21
Differential Pressure 1

In addition, movie camera coverage of truck/car motions will be required.

5.3 <u>Data Reduction</u> - Data reduction will consist of obtaining transfer function plots as required using the input force at one actuator position as a reference. Selected oscillograph data will also be required.

R

6.0 RESULTS

- R 6.1 <u>Test Data Report</u> A test data report will be issued 30 days after the completion of the data reduction. This report shall include, but not be limited to, the following:
 - a. Transfer Function Plots,
 - b. Photographs of the test setup and instrumentation locations,
 - c. Movies of car/truck motions,
 - d. Test log,
 - e. Instrumentation Log Sheets (calibrations, channel and trace identification, etc.).
 - 6.2 <u>Data Retention</u> All quick look data, tapes and logs will be retained for 18 months after test completion.

FIGURE 1. TEST ARTICLE GENERAL CONFIGURATION

A proper

NOTES: DL1,2&3 ARE RELATIVE DISPL. OF BOLSTER WRT CAR, ALSO DV3 & DV4.
DL4 THROUGH DL11 ARE RELATIVE DISPL. OF SIDE FRAMES WRT AXLE.
DV1, DV2, DL12 & DL13 ARE RELATIVE DISPL. OF BOLSTER WRT SIDE FRAMES,
ALSO DL14 & DL15.
DL16 & DL17 ARE RELATIVE DISPL. OF SIDE FRAMES WRT WHEELS 1 & 3
RESPECTIVELY.

R FIGURE 4. TRUCK INSTRUMENTATION LOCATIONS
AND MEASUREMENT NUMBERS

MEAS. NO.	TRANSDUCER LOCATION	PURPOSE OF MEASUREMENT	SENS. AXIS
AV1 AV2 AV3 AV4	Car Left Side, Fwd. End , Middle , Aft End Car Right Side, Fwd. End	To Meas. Car Vert. (Z) & Roll (TX) Acceleration	Z
AV5 AV6	, Middle , Aft End	V	4
AL1 AL2	, Fwd. End , Middle	To Meas. Car Lateral (Y) Accelerations	Y
AL3 AL4 AL5	, Aft End Axle, Opposite Wheel 1	To Meas., Axle, (X) & (TZ) Accel.	X -Y
AL6 AL7	Bolster, Left Side	To Meas., Bol., (X) & (TZ) Accel. , (Y) Accel. To Meas. Axle, (X) & (TZ) Accel.	Х -Y Х
AL8 AL9 AL10	Axle, Opposite Wheel 2 Axle, Opposite Wheel 3	, (Y) Accel. , (X) & (TZ) Accel.	-Y X
AL11 AL12	Bolster, Right Side Axle, Opposite Wheel 4	To Meas. Bol., (X) & (TZ) Accel. To Meas. Axle, (X) & (TZ) Accel.	-
DV1 DV2	Btwn. Bol. & Side Frame L. Side Rt. Side Btwn. Bol. & Car Left Side	To Meas. Rel. Displ. (Z)&(TX) of Bolster WRT Side Frame To Meas. Rel. Displ. (Z) &	Z
DV3 DV4 DL1	Rt. Side Btwn. Bol. & Car Left Side	(TX) of Bol. WRT Car To Meas. Rel. Displ. (X) & (TZ)	X
DL2 DL3	Rt. Side Center	of Bol. WRT Car To Meas. Rel. Displ. (Y) of Bol. WRT Car	X Y
DL4 DL5	Btwn. S. Fr. & Axle, Wheel 1	To Meas. Rel. Displ. (Y) of Side Frame WRT Axle	
DL6 DL7 DL8	3 4 1	To Meas. Rel. Displ. (X) of	X
DL9 DL10	2 3	Side Frame WRT Axle	
DL11 DL12 DL13	Btwn. Bol. & Side Fr. L. Side Rt. Side	To Meas. Rel. Displ. (X) & (TZ) of Bol. WRT Side Frame	
DL14 DL15	L. Side Rt. Side	To Meas. Rel. Displ. (Y) of Bol. WRT Side Frame	Y
FV1 FV2 FV3	Btwn. Actuator & Car L. Side Btwn. Wheel 1 & Facility Floor	To Meas. Vert. (2) Input Force To Meas. Vert. Force @ Wh. 1	Z
FV4 FL1	Btwn. Actuator & Axle, Opp. Wh. 1	To Meas. Lat. (Y) Input Force	Y
FL2 FL3 FL4	2 1 3	(X)	Y Y Y
DL16 DL17	Btwn. S. Fr. & Wheel 1 Wheel 3	To Meas. Rel. Displ. (Y) & (TZ) o S. Fr. WRT Wheel	
ΔΡ	Actuator No. 2	To Meas. Diff. Press. Across Act.	

APPENDIX B

TRANSFER FUNCTION TEST PROCEDURE DOCUMENT POST-TEST UPDATE*

*NOTE: paragraphs denoted with an "R" have been revised from the initial document release.

TRACK/TRAIN DYNAMICS
TEST PROCEDURE
TRANSFER FUNCTION TEST

Contract NASS-29882

Prepared by:

R. A. Vigil Staff Engineer

Space Systems Dynamics

Approved by:

P. W. Abbott

Technical Director

The levith

Track/Train Dynamics

G. Morosow

Frogram Manager

Track/Train Dynamics

J. T) Osmanski Section Chief

Test Data & Environmental Labs

R. L. Lyon Unit Head

Structures Laboratory

MARTIN MARIETTA CORPORATION
Denver Division
Denver, Colorado 80201

FOREWORD

This document is submitted in accordance with the requirements of NASA Contract NAS8-29882.

CONTENTS

			Page
			<u> 1985</u>
Title	e Page	e	B2
Foret	ord .		В3
Conte	ents .		B4,B5
1.0	SCOPI	E	В6
	1.1	Objective	B6
	1.2	Summary	В6
2.0	TEST	CONFIGURATION	В6
3.0	SUPPO	ORT REQUIREMENTS	В6
	3.1	Handling Equipment	В6
	3.2	Test Equipment	В6
	3.3	Reference Documents	B6,B7
	3.4		B7
4.0	SPEC	IAL CONSIDERATIONS	B B 7
	4.1	Cautions and Warnings	В7
	4.2	Test Discrepancies	B7
	4.3	Safety	B7,B8
	4.4		B8
	4.5	Test Personnel	B8
		Test Log	B8
		Test Data	B8
		Test Control Board	B8
5.0	OPER	ATIONS	В9
2	5.1	Preparations	
	5.2	Detailed Operations	B9,
		Post-Test Review	B9,B10
	5.4	Post-Test Disassembly	B10 B11
6.0	ABBR	EVIATIONS AND ACRONYMS	B12,B13
7.0	et cu	RES	,
7.0		Test Setup and Configuration	
	7.1 7.2	Car Instrumentation Locations and Measurement	B14
	7.3	Numbers	B15-B21
	1.3		Da
	7 <i>1</i> .	Numbers	B22-B42
	1.4		71.0
	7 =	Block Diagram	B43
	1.3	LEST PIXENTES	RAA_RS2

CONTENTS (continued)

8.0	TABL	TABLES											
	8.1	Handling Equipment	B53										
	8.2	Test Equipment	B54										
		Test Measurement Summary											
	8.4	Instrumentation Setup Sheet	B56-B58										
	8.5	Test Historical Log	B59-B66										
	8.6	Transfer Function-Deflection Coordinates	B67										

1.0 SCOPE

This procedure provides the necessary information and detailed operations required to conduct the transfer function vibration test on an 80 ton open hopper freight car.

- 1.1 <u>Objective</u> The objective of the transfer function test is to obtain data for the validation of the freight car nonlinear elastic model.
- 1.2 <u>Summary</u> The test configuration, handling, test facilities, test operations, and data acquisition/reduction activities necessary to meet the conditions of the test requirements document (TS-005-TF) are delineated herein.

2.0 TEST CONFIGURATION

The test article will be setup as illustrated in Figure 7.1.

3.0 SUPPORT REQUIREMENTS

- 3.1 <u>Handling Equipment</u> The support equipment necessary to move the freight car, shakers, and coal is listed in Table 8.1.
- 3.2 <u>Test Equipment</u> The support equipment necessary to conduct the test is listed in Table 8.2.

3.3 Reference Documents -

- 3.3.1 P74-48338-1, "Track-Train Dynamics Analysis and Test
 Program," Update
- 3.3.2 TS-005-TF, "Track/Train Dynamics Test Requirements

 Document, Transfer Function Test"
- 3.3.3 LAB 1007302, "Track-Dynamic Analysis GVS and Transfer Function Test"

- 3.3.4 LAB 0212205, Sinewave Vibration Control Standard
 Operating Procedure
- 3.3.5 1923-5017, Time/Data Sinusoidal Vibration Control
 Manual

3.4 Facility Requirements -

- 3.4.1 115 VAC, 60 Hz, 1 Ø
- 3.4.2 440 VAC, 60 Hz, 3 Ø
- 3.4.3 Hydraulic Power Supply

4.0 SPECIAL CONSIDERATIONS

- 4.1 <u>Cautions and Warnings</u> The description appearing within a <u>CAUTION</u> or <u>WARNING</u> precedes the information that it is intended to emphasize. A <u>CAUTION</u> is used to prevent personnel from damaging equipment. A <u>WARNING</u> is used to prevent test personnel from endangering their safety or that of others. Each step of this procedure shall be read completely before proceeding with the action.
- 4.2 <u>Test Discrepancies</u> A test discrepancy shall be logged and reported when test performance and/or revilts are affected.
- 4.3 <u>Safety</u> MMC supervision are directly responsible for the safety of all personnel, safe working conditions and the implementation of all safety requirements applicable to this procedure.
 - 4.3.1 All test team members are responsible for adhering to normal safety standards and procedures. They are also responsible for advising of any unsafe acts or conditions observed during preparation for or during conduct of this procedure.

- 4.3.2 Personnel safety will be notified 24 hours prior to the official test start date. This test is classified as having non-destructive potential.
- 4.4 <u>Procedure Changes</u> All changes to this procedure will be documented and added to a post-test procedure update.

4.5 Test Personnel

<u>Code</u>	<u>Description</u>	<u>Quantity</u>
TD	Technical Director	1
TE	Test Engineer	1
MT,	Mechanical Technician	1
ET	Electronic Technician	1
SF	Safety	1

- 4.6 <u>Test Log</u> A test log shall be maintained during the test and shall contain information for a complete historical chronological description of test activities.
 - 4.6.1 Instrumentation setup sheets shall be maintained and form part of the test log.
- 4.7 <u>Test Data</u> Provision shall be made to retain all test data for a period of 18 months after the test completion.
- 4.8 <u>Test Control Board</u> A test control board (TCB) shall periodically monitor test activities and shall consist of the following personnel:

<u>Name</u>	<u>Title</u>	<u>Function</u>
G. Morosow	Project Manager (MMC)	Chairman
P. Abbott	Technical Director (MMC)	Member
J. Macpherson	Technical Representative (NASA/MSFC)	Member

STEP NO.	RESPONS- IBILITY	CK	ACTION	REMARKS
5.0			OPERATIONS	
5.1			<u>Preparations</u>	
5.1.1	MT		Position the freight car in the facility per drawing LAB 1007302.	
5.1.2	MT		Install hydraulic power supply near actuator test positions.	
5.1.3	MT,ET		Install aft truck support, forward slide plates and load cell/spacer assemblies per LAB 1007302. Locate load cells under wheel 1 and 2 per Figure 7.3 and measure static load.	Wh. 1 - 25,939 Wh. 2 - 25,755
5.1.4	MT		Install actuator support fixture per LAB 1007302.	
5.1.5	MT		Install actuators for (Y) direction tests per Figure 7.1.	
5.1.6	ET		Install instrumentation in the locations identified by Figures 7.2, 7.3 and Table 8.3. Record data in Table 8.4.	
5.1.7	ET/MT		Setup actuator system and data acquisition/reduction equipment as shown in Figure 7.1.	
5.1.8	ET/MT		Connect and route all interconnecting cables and plumbing per Figure 7.4.	
5.1.9	ET		Verify data acquisition equipment operation, tap check transducers, record full scale calibrations and log information in Table 8.4.	
5.1.10	ET		Load sine control program in computer and verify operation per Time/Data manual.	
5.2			Detailed Operations	
5.2.1	TE/et al		Perform a 2000 1b-pk sinewave sweep from 0.5 to 50 Hz controlling FL1 and FL2 per LAB 0212205 and record all data channels.	Control Abort Tol. <u>+</u> 3dB

R

	STEP NO.	RESPONS- IBILITY	CK	ACTION	REMARKS
R	5.2.2	TE/et al		Perform a 5000 lb-pk sine sweep from 0.5 to 50 Hz controlling FL1 and FL2 per LAB 0212205 and record data.	Limit Actuator Displ. to <u>+</u> 2" D.A. & Vel. to 8.3 "/sec.
R	5.2.3	TE/et al		Perform a 10,000 lb-pk sine sweep from 0.5 to 50 Hz controlling FL1 and FL2 per LAB 0212205 and record data. Also, take movies of car/truck motion.	Limit Actuator Displ. to ±2" D.A. & Vel. to 8.3 "/sec.
R	5.2.4	TE		Load transfer function program and plot selected data per TD.	
R	5.2.5	TE/et al		Load sine program and repeat steps 5.2.1 through 5.2.4 with the actuators in phase.	
	5.2.6	MT		Photograph test setup and actuator/ transducer locations.	
	5.2.7	MT		Install actuators for (X) direction tests and vertical load cells per Figures 7.1 and 7.3.	
R	5.2.8	TE/et al		Repeat steps 5.2.1 through 5.2.6, except control measurements FL3 & FL4.	
	5.2.9	MT		Photograph new actuator locations	
	5.2.10	MI		Install a single actuator for (Z) direction tests per Figure 7.1.	
R	5.2.11	TE/et al		Load sine program and perform steps 5.2.1 through 5.2.4, except control measurement FV1.	
	5,2,12	MT		Photograph actuator location.	
	5.2.13	ET		Complete data reduction per TD.	
	5.3			Post-Test Review	
	5.3.1	тсв		Perform post-test review to verify test objectives & terminate test.	

STEP NO.	RESPONS- IBILITY	CK	ACTION	REMARKS
5.4			Post-Test Disassembly	
5.4.1	MT/ET		Remove all instrumentation, actuators and fixturing.	
5.4.2	MT		Unload coal	
5.4.3	TE		Prepare data package containing logs, setup sheets, photographs and data.	
·				
	<u> </u>			
	1			
				·
	·			

6.0 ABBREVIATION AND ACRONYMS

Calib.

Calibration

Cap.

Capacity

CDC

Control Data Corporation

Ch.

Channel

Ck.

Check

CO

Coincidence Component

 \mathbf{ET}

Electronic Technician

FS

Full Scale

Meas.

Measurement

Mfg.

Manufacturer

MMC

Martin Marietta Corporation

MSFC

Marshall Space Flight Center

MT

Mechanical Technician

NASA

National Aeronautics and Space Administration

No.

Number

0-Graph

Oscillograph

Osc.

Oscillator

Qty.

Quantity

QUAD

Quadrature Component

Sens.

Sensitivity

SF

Safety

SW

Switch

ţ

TCB

Test Control Board

ΤD

Technical Director

TE Test Engineer

TTY Teletype Terminal

Typ. Typical

U-D Unholtz-Dickie Corporation

XDCR Transducer

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

NOTES: DL1,2&3 ARE RELATIVE DISPL. OF BOLSTER WRT CAR, ALSO DV3 & DV4
DL4 THROUGH DL11 ARE RELATIVE DISPL. OF SIDE FRAMES WRT AXLE
DV1, DV2, DL12 & DL13 ARE RELATIVE DISPL. OF BOLSTER WRT SIDE FRAMES,
ALSO DL14 & DL15
DL16 & DL17 ARE RELATIVE DISPL. OF SIDE FRAMES WRT WHEELS 1 & 3

DL16 & DL17 ARE RELATIVE DISPL. OF SIDE FRAMES WRT WHEELS 1 & 3 RESPECTIVELY.

FIGURE 7.3 TRUCK INSTRUMENTATION LOCATIONS
AND MEASUREMENT NUMBERS

ORIGINAL PAGE IN

FIGURE 7.4 TEST INSTRUMENTATION & CONTROL SYSTEM BLOCK DIAGRAM

B53 Table 8:1 HANDLING EQUIPMENT R TTEM MFG/MODEL NO. DESCRIPTION QTY. NO. Facility Crane (20,000 lb. Cap.) 1 P&H 1 Facility Handling Slings and Harnesses 2 . MMC As. Req'd Hydraulic Jacks (100 Ton) Regent 3 2 2 Coal Conveyor System P&D Coal Trucks 2 5 Hydraulic Jack (50 Ton) Merrill 6

		B54 R Table 8.2 TEST EQUIPMENT		
	ITEM NO.	DESCRIPTION	MFG./MODEL NO.	QTY.
.	1	Computer (Shaker Control & Data Analysis)	Time Data/1923	1
	2	Shaker Gain Control & Monitor Console	MMC	1
	3	Servo Amplifier	MMC	1
	4	Hydraulic Actuator	Moog	2
	5	Hydraulic Power Supply	Dennison	1
	6	Actuator Support, Slide Plates & Truck Support Assemblies	MMC/LAB 1007302	1
	7	Automatic Bypass Valve	Annin	. 1
	8	Accelerometer	U-D/75 D 21	2
	9	Accelerometer	Columbia/302-2	8
	10	Accelerometer	Statham/A5a-2.0 5.0,10.0-350	8
4.7	11	Displacement Transducers	SS-107 G.L.Coll SS-105	ins 21
	12	Load Cell	Strain sent Universal	6
	13	Force Gage	MMC	2
	14	Charge Amplifier	Kistler/505M111	10
	15	Bridge Amplifier	Dana	34
	16	Summing Amplifier	Dana	2
	17	Tape Recorder (FM/FM)	Honeywe11	1
	18	Multiplexer	Vidar	11. 1 . (*)
	19	De-Mux	Vidar	1
	20	Cable (100 foot mini-noise)	Microdot	10
	21	Equipment Interconnecting & Power Cables		As Req'd
	22:	Hydraulic Plumbing		As Req'd

	MEAS. NO.	TRANSDUCER LOCATION	PURPOSE OF MEASUREMENT	SENS. AXIS
	AV1 AV2 AV3 AV4	Car Left Side, Fwd. End , Middle , Aft End Car Right Side, Fwd. End	To Meas. Car Vert. (Z) & Roll (TX) Acceleration	Z
	AV5 AV6 AL1 AL2	, Middle , Aft End , Fwd. End , Middle	To Meas. Car Lateral (Y) Accelerations	Y Y
	AL3 AL4 AL5 AL6	, Aft End Axle, Opposite Wheel 1 Bolster, Left Side	To Meas., Axle, (X) & (TZ) Accel. , (Y) Accel. To Meas., Bol., (X) & (TZ) Accel.	-X
-	AL7 AL8 AL9 AL10	Axle, Opposite Wheel 2 Axle, Opposite Wheel 3	To Meas. Axle, (X) & (TZ) Accel. (Y) Accel. (Y) Accel. (X) & (TZ) Accel.	-Y X -Y X
	AL11 AL12	Bolster, Right Side Axle, Opposite Wheel 4	To Meas. Bol., (X) & (TZ) Accel. To Meas. Axle, (X) & (TZ) Accel.	Z
	DV1 DV2 DV3 DV4 DL1 DL2 DL3	Btwn. Bol. & Side Frame L. Side Rt. Side Btwn. Bol. & Car Left Side Rt. Side Btwn. Bol. & Car Left Side Rt. Side Rt. Side Center	To Meas. Rel. Displ. (Z)&(TX) of Bolster WRT Side Frame To Meas. Rel. Displ. (Z) & (TX) of Bol. WRT Car To Meas. Rel. Displ. (X) & (TZ) of Bol. WRT Car To Meas. Rel. Displ. (Y) of Bol. WRT Car	
•	DL4 DL5 DL6 DL7 DL8 DL9	Btwn. S. Fr. & Axle, Wheel 1 2 3 4 1 2	To Meas. Rel. Displ. (Y) of Side Frame WRT Axle To Meas. Rel. Displ. (X) of Side Frame WRT Axle	¥.
	DL10 DL11 DL12 DL13 DL14 DL15	Btwn. Bol. & Side Fr. L. Side Rt. Side L. Side Rt. Side	To Meas. Rel. Displ. (X) & (TZ) of Bol. WRT Side Frame To Meas. Rel. Displ. (Y) of Bol. WRT Side Frame	¥
	FV1 FV2 FV3 FV4	Btwn. Actuator & Car L. Side Btwn. Wheel 1 & Facility Floor 2 3	To Meas. Vert. (Z) Input Force To Meas. Vert. Force @ Wh. 1 2 3	Z
	FL1 FL2 FL3 FL4	Btwn. Actuator & Axle, Opp. Wh. 1	To Meas. Lat. (Y) Input Force (X)	X
	DL16 DL17 AP	Btwn. S. Fr. & Wheel 1 Wheel 3 Actuator No. 2	To Meas. Rel. Displ. (Y) & (TZ) of S. Fr. WRT Wheel To meas. Diff. Press. Across Act.	<u> </u>
	<u> α ε</u>	TAC FOOT TIO . T		

		K	•							<u>,</u>		
MEAS. NO.	XDUCR. MODEL NO.	XDUCR SENS.	SIG. COND. CH. NO.	TAPE CH. NO.	TAI FS CALJ	3	XDUCR s/n	CABLE NO.			•	
10.	110 9											
AV1	A5a-5-350	9.86mv/g	M1-3	2/14	1 g	/v	7083	AV1				
AV2		9.66mv/g	M1-5	2/15			7077	AV2			·	
AV3		9.5 mv/g	M1-6	2/16			6467	AV3				
AV4	•	9.54mv/g	M1-7	2/17			7079	AV4				
AV5	A5a-2-350	23.9mv/g	M1-8	2/18			6587	AV5				
AV6	•	26,4mv/g	M1-9	2/19			4703	AV6			: '	
AL1	A5a-5-350	9.2 mv/g	M1-10	3/24			7081	AL1				
AL2	A5a-10-35		M1-11	3/25			5732	AL2				
AL3	302-2	64.2mv/g	CA-1	3/26	_		3138	93/97			-	
AL4		77.8mv/g	GA-2	4/34			3248	178				
AL5		62 mv/g	CA-3	4/35			3136	177				<u> </u>
AL6		55.9mv/g	CA-4	3/27			3137	174				
AL7		81.7mv/g	CA-5	3/28			3249	179				
AL8		82.3mv/g	CA-6	4/36			3251	176				
AL9		63.2mv/g	CA-7	4/37			3135	119				
AL10	 	61 mv/g	CA-8	4/38			3139	91				
AL11	75D21	79.38mv/g	CA-9	3/29			421	92	<u> </u>			
AL12	75D21	81.37mv/s	CA-10	4/39	\ \ \	<u> </u>	423	171				
												•
ema ema	1											

MEAS.	XDUCR. MODEL NO.	XDUC SENS		SIG. COND. CH. NO.	TAPE]	APE FS	xducr. s/n	CABLE NO.			
				Vi <u>dar/M-Ca</u>					 -			
DV1	SS-105	0.5 ir	n/V	1/3-1	1/6	0.5	in/V	9692	1	ļ	ļ	
DV2	SS-107			2/3-2	1/7			19774	2		 <u> </u>	<u> </u>
D V 3	SS-105			3/3-3	1/8			19647	3	ļ	<u> </u>	
DV4	SS-107			4/3-4	1/9			19775	4			
DL1	SS-107			5/3-5	6/44			19639	5		 	
DL2	SS-107			6/3-6	6/45			19641	6			
DL3	SS-105			7/3-7	6/46			7850	7			
DL4	SS-107			8/3-8	6/47			19643	8			
DL5	SS-107			9/3-9	6/48			19771	9			
DL6	SS-107			10/3-10	6/49			19642	11			
DL7	SS-107			11/3-11	6/50			19772	10			1
DL8	SS-107			12/3-12	7/54			19648	12			
DL9	CS-107	1 1		13/3-13	7/55			19646	1.3		<u> </u>	
DL10	SS 107	1		14/3-14	7/56			19773	14			
DL11	SS-107			15/3-15	7/57			19640	15			
DL12	SS-107	1		16/4-1	8/64	1	1	19776	16			
DL13	SS-105	1		17/4-2	8/65	 		9304	17			
DL14	SS-107		<u></u>	18/4-3	8/66		1	19645	18			
DL15	SS-105			19/4-4	8/67		1	7847	19			
DL16	SS-105	1		20/4-5	8/68	1	1	7843				
DL17	SS-105		7	21/4-6	8/69	7	+	9305	_			

MEAS.	XDUCR. MODEL NO.	XDUCR. SENS.	SIG. COND. CH. NO.	TAPE CH. NO.	TAPE FS CALIB.	XDUCR. S/N	CABLE NO.		•	
*FV1	MMC	15k #/V	1-1	1/1	15k #/V	F1	7			
	Universal		2-4	1/4	20k #/V	671,672 673 665,666	1,2,3			
FV3	Olliversar	200 11 0	2-8	1/5		665,666	4,5,6			
FV4		6	2-8	1/5		665,666	4,5,6	<u>.</u>		
			20			667				
*FL]	ммс	15k #/V	1-1	1/1	15k #/V	F1	7			
*FL2			1-2	1/2		F2	8	 <u> </u>		
*FL3			1-1	1/1		F1	7			<u> </u>
*FL4		₩	1-2	1/2	<u> </u>	F2	8			
ΔΡ	Moog	3500psi/V	1-12	3/30	3500psi/	Actuator 2				
*osc.	Rockland	.651V		1/3	.6517		-			
VOLCE				14				 		
* These	measureme	nts were :	edundant:	on						
each t	tape track	of each N	Mix Group							
				. Land						

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO.	TEST DESCRIPTION	REMARKS
			Y-Axis Tests	
	2/6/75		Test setup and system checkout	
	2/7/75		Moved wheel no. 1, 0.035" D.A. @ 0.5 Hz. Moved fixture opposite wheel no. 1, 0.050" D.A.	10,000 lbs-pk/actuator
	2/10/75		Lifted train and setup slide plates with one layer of tape. The tape was cut to eliminate cold flow ridges. Molydisulfide lubricant used.	
	2/11/75		Continued system checkout. Moved wheel no. 1 - 0.25	4,000 lbs-pk/actuator
	2/12/75		Continued computer closed loop operation. System not compatible with low frequency 0.5 Hz requirement.	Had low freq. and amp control prob.
	2/13/75		DC coupled computer and completed setup and closed loop operation.	
			Conducted sweeps with computer in test control loop. Raised freight car load off of wheel slide plate assemblies. Test discontinued pending instrumentation support.	2,000 lbs-pk/actuator 1-30 Hz. Single actuator control
	3/5/75		Instrumentation setup and checkout	Added DL16 and DL17
	3/6/75			
	3/7/75			
	3/10/75			
	3/11/75			

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO .	TEST DESCRIPTION	REMARKS
			<u>Y-Axis Tests</u>	
1245	3/12/75	1	Sinewave Sweep: 0.5-35 Hz Test Level: 1995 lbs-pk, 6 db/oct below 1.98 Hz Actuator Phase: 180° Ø	Normal completion
1315		2	Sinewave Sweep (SS): 0.5-35 Hz Test Level (TL): 5010 1bs-pk, 6 db/oct below 1.98 Hz Actuator Phase (AP): 180° Ø	Normal completion accels. AL3-AL12 in cal. position
1400		3	Repeat Run 2	Normal completion
1415		4	SS: 0.5-35 Hz TL: 10,000 lbs-pk, 6 db/oct below 1.98 Hz AP: 180° Ø	Aborted @ 21.75 Hz
1450		5	Repeat Run 4	Aborted @ 23.27 Hz; reduced data on 0-graphs
	3/13/75 & 3/14/75		Evaluated slide plate motion. Stiffened actuator fixture. Shimmed actuator rod ends.	
1515	3/18/75	6	SS: 0.5-50 Hz TL: 5000 lbs-pk AP: 180° Ø	Aborted @ 26.15 Hz
1530		7	SS: 0.5-50 Hz TL: 10,000 1bs-pk AP: 180° Ø	Aborted @ 0.5 Hz
1545		8	SS: 0.5-50 Hz TL: 10,000 lbs-pk, 6 db/oct below 1.98 Hz AP: 180° Ø	Aborted @ 2.361 Hz

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO.	TEST DESCRIPTION	REMARKS
			<u>Y-Axis Tests</u>	
1600	3/18/75	9	SS: 0.5-50 Hz TL: 7079.5 lbs-pk, 6 db/oct below 1.98 Hz AP: 180° Ø	Aborted @ 23.75 Hz
1000	3/19/75	10	Established max. force within actuator limits, i.e., 2" D.A., 8 "/sec, and 14,000 lbs-pk.	
			SS: 0.5-50 Hz TL: 9000 1b-pk, 12 db/oct below 1.3 Hz AP: 180° Ø	Aborted @ 0.704 Hz
1005		11	SS: 0.5-50 Hz TL: 9000 lbs-pk, 12 db/oct below 1.3 Hz, 4495 lb-pk below 0.919 Hz AP: 180° Ø	Aborted @ 1.209 Hz
1015		12	Repeat Run 11 with 5 db tol. window.	Aborted @ 1.328 Hz
1245		13	SS: 0.5-50 Hz TL: 9000 lb-pk, linear below 1.3 Hz to 6000 lb-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 37.95 Hz
1300		14	SS: 0.5-50 Hz TL: 4510.9 lb-pk, linear roll-off from 1.3 Hz to 3007.1 lb-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 26.68 Hz; attempted to use dither on side frames prior to this test
1325		15	SS: 0.5-50 Hz TL: 4510.9 lb-pk, linear roll-off from 1.3 Hz to 3007.1 lb-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 25.79 Hz
1335		16	Repeat Run 13 except AP = 0°	Aborted @ 0.633 Hz

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO.	TEST DESCRIPTION	REMARKS
			<u>Y-Axis Tests</u>	
1345	3/19/75 I	17	Repeat Run 16 with 6 db tol. window.	Aborted @ 1.254 Hz
1400		18	SS: 0.5-50 Hz TL: 6371.5 1bs-pk, linear roll-off from 1.3 Hz to 4247.7 1b-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 32.14 Hz
1410		19	SS: 0.5-50 Hz TL: 8021.3 lbs-pk, linear roll-off from 1.3 Hz to 5347.5 lbs-pk @ 0.5 Hz AP: 00 Ø	Aborted @ 26.9 Hz
950	3/20/75	20	SS: 0.5-50 Hz TL: 8021.3 lbs-pk, linear roll-off from 1.3 Hz to 5347.5 lbs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 27.39 Hz; reduced AP gain by a factor of 2 for this test and subs; movies taken.
1010		21	Repeat of Run No. 20; AP = 0° Ø	Aborted @ 27.34 Hz
1030		22	Repeat of Run No. 13; AP = 180° Ø; 9000 lbs	Aborted @ 2.104 Hz
1050		23	SS: 0.5-50 Hz TL: 8021.3 lbs-pk, linear roll-off from 1.3 Hz to 5347.5 lbs-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 34.93 Hz
1105		24	Repeat of Run No. 20; $AP = 0^{\circ} \emptyset$	Aborted @ 1.403 Hz
1120		25	SS: 0.5-50 Hz TL: 6370 lbs-pk, linear roll-off from 1.3 Hz to 4250 lbs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 7.844 Hz; abort initiated; ran manual levels @ 1.3 & 1.8 Hz @ 10K lbs & 12K lbs to demonstrate motion

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO.	TEST DESCRIPTION	REMARKS
			Y-Axis Tests	
1120	3/20/75	25	Repeat of Run 20; $AP = 0^{\circ} \emptyset$; Test abort initiated 20 Hz	Data not recorded; demonstration test
1322		 	SS: 0.5-50 Hz TL: 7140 1bs-pk, linear roll-off from 1.3 Hz to 4770 1bs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 22.04 Hz; data not recorded; abort ini- tiated; demonstration test
1345	3/25/75	26	X-Axis Tests SS: 0.5-50 Hz TL: 4510 lbs-pk, linear roll-off from 1.2 Hz to 3050 lbs-pk @ 0.5 Hz AP: 180° Ø	During manual operation FL3 was found to be intermittant & traced to a shorted wire. Normal completion
1437		27	SS: 0.5-50 Hz TL: 7150 lbs-pk, linear roll-off from 1.3 Hz to 4760 lbs-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 1.606 Hz
1445		28	SS: 0.5-50 Hz TL: 6750 lbs-pk, linear roll-off from 1.3 Hz to 4500 lbs-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 3.226 Hz
1505		29	SS: 0.5-50 Hz TL: 6360 lbs-pk, linear roll-off from 1.3 Hz to 4250 lbs-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 21.59 Hz
1000	3/26/75	30	SS: 0.5-50 Hz TL: 6010 lbs-pk linear roll-off below 1.3 Hz to 4010 lbs-pk @ 0.5 Hz AP: 180° Ø	Aborted @ 36.99 Hz; FL3 = 272 mvrms; FL4 = 290 mvrms; Levels below clip

Table 8.5 TEST HISTORICAL LOG

			·	
TIME	DATE	RUN NO.	. TEST DESCRIPTION	REMARKS
1020	3/26/75	31	X-Axis Tests SS: 0.5-50 Hz TL: 4510 lbs-pk, linear roll-off below 1.3 Hz to 3010 lbs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 2.088 Hz
1030		32	SS: 0.5-50 Hz TL: 4020 lbs-pk, linear roll-off below 1.3 Hz to 2680 lbs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 2.026 Hz
1100		33	SS: 0.5-50 Hz TL: 2540 lbs-pk, linear roll-off below 1.3 Hz to 1691 lbs-pk @ 0.5 Hz AP: 0° Ø	Aborted @ 25.98 Hz
			Z-Axis Tests	
1030	3/28/75	34	SS: 0.5-50 Hz TL: 5010 1b-pk	Aborted @ 0.5 Hz; abort initiated 1923 was AC coupled
1045		35	Repeat of Run 34	Aborted @ 1.244 Hz
1250		36	SS: 0.5-50 Hz TL: 5000 lb-pk, 12 db/oct below 4.2 Hz to 3 Hz, 2500 lb-pk below 3 Hz	Aborted @ 1.411 Hz
1300		37	SS: 0.5-50 Hz TL: 5000 lb-pk, 12 db/oct below 4.76 Hz to 3 Hz, 1990 lb-pk below 3 Hz	Aborted @ 1.425 Hz
1310		38	SS: 0.5-50 Hz TL: 5000 lb-pk, 12 db/oct below 9.49 Hz, 500 lb-pk below 3 Hz	Aborted @ 0.737 Hz
			1	í

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO.	TEST DESCRIPTION	REMARKS
			Z-Axis Tests	
1315	3/28/75	39	Repeat of Run 38; zeroed force	Aborted @ 4.014 Hz
1400		40	Repeat of Run 39; changed force sensitivity to . 7500 1b/V	Aborted @ 3.864 Hz
1440		41	SS: 0.5-50 Hz TL: 1995 1b-pk Changed force sensitivity to 4000 1b/V	Aborted @ 1.318 Hz
1450		42	Repeat of Run 41 @ 1000 1b-pk	Aborted @ 0.542 Hz
1500		43	Repeat of Run 42, 1000 1b-pk	Aborted @ 0.986 Hz
1515	*		Repeat of Run 43; test not recorded	Aborted @ 0.644 Hz
1000	3/31/75	44	SS: 0.5-50 Hz TL: 3980 lbs-pk, linear roll-off from 5 Hz to 1999 lbs-pk @ 0.5 Hz Changed force sens. to 15,000 lb/V	Aborted @ 32.26 Hz
1015		45	SS: 0.5-50 Hz TL: 5010 1bs-pk, linear roll-off from 5 Hz to 3540 lbs-pk @ 0.5 Hz	Aborted @ 27.29 Hz
1045		46	SS: 0.5-50 Hz TL: 5010 1bs-pk	Aborted @ 27.58 Hz
·············	4/1/75		Movies taken for Z and X axis tests. Constant voltage input	
	4/2/75 4/3/75		Completed data reduction on Run 20 and Run 46	
	4/4/75		Started data reduction on Run 23	

Table 8.5 TEST HISTORICAL LOG

TIME	DATE	RUN NO .	. TEST DESCRIPTION	REMARKS
			Post-Test	
	4/7/75	·	Began disassembly of test setup. Completed data reduction of Run 23. Started data reduction on Run 6	
	4/8/75	<u></u>	Completed data reduction of Run 6. Started data reduction of Run 9. Finished test disassembly-instrumentation	
	4/10/75		Completed data reduction of Run 9. Started data reduction of Run 13	
	4/11/75		Completed data reduction on Run 13 60 Hz fold-over problem Started data reduction of Run 14	
	4/14/75		Completed data reduction on Run 14. Started data reduction on Run 15	
	4/15/75		Completed data reduction on Run 15. Started data r c- tion on Run 18	
	4/16/75	-	Completed data reduction on Run 18. Started data reduction on Run 19	-
····	4/17/75		Completed data reduction on Run 19. Started O-graph data reduction on 20 and 23	
	4/18/75		Completed 0-graph data reduction on Runs 20 and 23	
	5/19/75		Started unloading coal .	
	5/22/75		Completed unloading coal	

TABLE 8.6

TRANSFER FUNCTION-DEFLECTION COORDINATES

Meas.			_
No.	<u>X</u>	<u>¥</u>	<u>Z</u>
DV1	0.	-48 3/4	-
DV2	0.	48 3/4	-
DV3	0.	-30 3/8	-
DV4	0.	30 3/8	-
DL1	-	-30.0	13 5/8
DL2	-	30 3/8	13 3/8
DL3	12 7/8	-	4 5/8
DL4	34.0	-	13 5/8
DL5	-34.0	~	13 5/8
DL6	34.0	-	13 5/8
DL7	-34.0	-	13 5/8
DL8	-	-32 1/2	0.
DL9	-	-32 11/16	0.
DL10	-	32 1/4	0.
DL11	-	32 11/16	0.
DL12	-	-41 3/8	7 1/2
DL13	-	41 5/8	7 3/8
DL14		0.	14 5/8
DL15	**	0.	13 7/8
DL16	62 3/4	-	0.0
DL17	61 5/8	-	3/8

NOTE: FOR (0,0,0) SEE FIGURE 7.3