Ejercicios Teoría Cuántica de Campos. Capítulo 14

Autor del curso: Javier García

Problemas resueltos por: Roger Balsach

3 de abril de 2019

En el capítulo 14 de la serie hemos visto que la función de Green para el operador $\left(\frac{d^2}{dx^2}-1\right)$ es

$$G(x, x') = -\frac{1}{2}e^{-|x-x'|} \tag{1}$$

Queremos encontrar entonces la solución a la ecuación diferencial

$$\left(\frac{d^2}{dx^2} - 1\right)f(x) = f''(x) - f(x) = x^2$$
 (2)

Tenemos que calcular entonces la integral

$$f(x) = \int_{-\infty}^{\infty} G(x, x')g(x')dx' = -\frac{1}{2} \int_{-\infty}^{\infty} y^2 e^{-|x-y|}dy$$
 (3)

Separemos la integral en función de si x > y o x < y

$$-\frac{1}{2} \int_{-\infty}^{x} y^{2} e^{y-x} dy - \frac{1}{2} \int_{x}^{\infty} y^{2} e^{x-y} dy$$
 (4)

Usando integración por partes

$$\int f(y)g'(y)dy = f(y)g(y) - \int f'(y)g(y)dy$$
 (5)

Usaré el método DI para hacer las integrales, el método consiste en hacer una tabla, en la primera columna alternamos los signos + y, en la segunda columna derivamos la función f(x) y en la tercera columna integramos la función g(x), ver tabla 1.

	D	I_1	I_2
+	y^2	e^{y-x}	e^{x-y}
_	2y	e^{y-x}	$-e^{x-y}$
+	2	e^{y-x}	e^{x-y}
_	0	e^{y-x}	$-e^{x-y}$

Tabla 1: En la primera columna intercalamos + y -, en la segunda derivamos la función y^2 y en la tercera integramos la función $e^{-|x-y|}$.

El resultado de la primera integral es ir a la tabla, multiplicar la primera fila de D por la segunda de I_1 , la segunda fila de D por la tercera de I_1 y finalmente sumar o restar en función de lo que indique la primera columna:

$$\left[+y^{2}e^{y-x} - 2ye^{y-x} + 2e^{y-x} \right]_{-\infty}^{x} = x^{2} - 2x + 2$$
 (6)

Mientras que la segunda

$$\left[+y^{2} \left(-e^{x-y} \right) - 2ye^{x-y} + 2\left(-e^{x-y} \right) \right]_{x}^{\infty} = x^{2} + 2x + 2 \tag{7}$$

La solución final es, por lo tanto, segun (4)

$$f(x) = -\frac{1}{2} \left[x^2 - 2x + 2 + x^2 + 2x + 2 \right] = -x^2 - 2 \tag{8}$$

Comprobemos que en efecto es una solución:

$$f'(x) = -2x,$$
 $f''(x) = -2 \Longrightarrow f''(x) - f(x) = -2 + x^2 + 2 = x^2$ (9)

En efecto esta función cumple la ecuación que queriamos.