

Simulink, Arduino and Raspberry Pl

litani@mathworks.com

Arduino Uno

Digital Pins 0-13

USB port

Microcontroller ATmega328P

Power

Analog Pins 0-5

DFRobot Romeo BLE 1.0

- Same bootloader and microcontroller as Arduino UNO
- Changes: BLE, pins, connexions

Raspberry PI Model 3 B+

- Processor: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet (maximum throughput 300 Mbps)
- HDMI
- 4 USB 2.0 ports (mouse, keyboard, webcam, etc...)
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input

Arduino Uno vs Raspberry PI

	Raspberry Pi 3 Model B+	Carte Arduino Uno
RAM	1 Gb	2 ko
Processor	1.4 Ghz 64 bits	16 Mhz
Network	Ethernet + WIFI 2.4 et 5 Ghz	non
Storage	2 à 128 Go par micro SD	32 ko
USB	4	1 to program
os	Linux distributions (Raspian)	No
Others	Audio and Video	No

Code generation

Automatic code generation

Use of Simulink Support for low cost hardware

Same workflow for all targets

Your mission: track a green object

Control the servo motor with the Romeo board to rotate a web cam

1- Deploy on the Romeo
And control the servo motor

2- Monitore&Tune on the Rapberry PI and tests the tracking algorithm 3- Combine both boards, create your own control depending on the object position

Arduino and the Servo motor

>> Servo_control

Préparation de la communication avec la carte Romeo BLE V1.0

Etapes à suivre:

- 1- Dans Hardware Settings, vérifier le port COM et le Baud Rate du Serial port properties qui doit être égal à 57600
- 2- Faites un Build, Deploy& Start

COM4 57600

8,none,1

Servo Control Sweep Data COM4

1- Deploy on the Romeo

And control the servo motor

Raspberry PI web cam

1- Simulation

>> Track_green_simulation_eleve

2- Test sur la carte

>> Track_green_eleve

Suivre un objet

2- Monitore&Tune on the Rapberry PI and tests the tracking algorithm

Track a green object

3- Combine both boards, create your own control depending on the object position

>> Track_green_arduino_eleve

