A whirlwind introduction

to bounded linear operators on Hilbert spaces

MATH491: Mathematics Dissertation

Luke Mader

Lancaster University

Why are we here?

1. From vector spaces to Hilbert spaces.

2. Some types of linear operators.

3. The spectral theorem for compact self-adjoint linear operators.

It all starts with vector spaces

Our fundamental building block at the foundation of everything is a $complex\ vector\ space\ V$.

We allow our vector spaces to be *infinite-dimensional*: there exists no finite basis for V.

MATH220 introduced the inner product,

$$\langle \cdot, \cdot \rangle : V \to \mathbb{C}.$$

and the norm induced by the inner product:

$$\lVert \cdot \rVert \coloneqq \sqrt{\langle \cdot, \cdot \rangle}$$

The norm represents distance...

For all vectors x and y, the value of

$$d(x,y) \coloneqq \|x - y\|$$

can be thought of representing the distance between them!

We say that the *norm induces a metric* on V.

...so we can define the convergence of vectors

Convergence of vectors

For some vector space V with a norm $\|\cdot\|$, we say that a sequence of vectors (x_n) in V converges to $x \in V$ if

$$||x_n - x|| \to 0$$
 as $n \to \infty$.

Cauchy sequences in vector spaces

In $\mathbb R$ and $\mathbb C$, all Cauchy sequences converge.

Is this true in any vector space?

Cauchy sequences in vector spaces

In $\mathbb R$ and $\mathbb C$, all Cauchy sequences converge.

Is this true in any vector space?

No!

Hilbert Spaces

This motivates the definition of a Hilbert space:

Hilbert Space

A *Hilbert space* is a vector space \mathcal{H} equipped such that we have

- Some inner product, $\langle \cdot, \cdot \rangle$,
- The norm induced by the inner product, $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$,
- Every Cauchy sequence converges (completeness).

Examples of Hilbert Spaces

- Any finite-dimensional vector space with an inner product is a Hilbert space when equipped with the norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
- Let ℓ^2 be the vector space of *complex square-summable sequences*:

$$\ell^2 = \left\{ (x_j) : \text{complex sequences } (x_j) \text{ with } \sum_{j=1}^\infty \lvert x_j \rvert^2 < \infty
ight\}.$$

The following inner product

$$\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}$$

makes ℓ^2 into a Hilbert space when equipped with the norm

$$\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}.$$

Operators

We'll be interested in studying a specific type of linear map on \mathcal{H} .

Bounded operator

An *operator* is a linear map $T: \mathcal{H} \to \mathcal{H}$: for all $x, y \in \mathcal{H}$ and $\mu, \lambda \in \mathbb{C}$,

$$T(\mu x + \lambda y) = \mu T(x) + \lambda T(y).$$

We say that T is *bounded* if there exists some M>0 such that for every $x\in\mathcal{H}$,

$$||T(x)|| \leq M||x||.$$

Boundedness \iff continuity

Boundedness is equivalent to continuity

An operator $T: \mathcal{H} \to \mathcal{H}$ is bounded if and only if T is continuous.

Finite Hilbert Spaces mean bounded operators

If $\mathcal H$ is finite-dimensional then every operator $\mathcal T:\mathcal H\to\mathcal H$ is bounded.

Adjoints and their existence

Adjoints

For any operator $T: \mathcal{H} \to \mathcal{H}$, we say that $T^*: \mathcal{H} \to \mathcal{H}$ is its *adjoint* if for all $x, y \in \mathcal{H}$,

$$\langle x, T(y) \rangle = \langle T^*(x), y \rangle.$$

T is self-adjoint if $T = T^*$.

Adjoints always exist uniquely

If $T: \mathcal{H} \to \mathcal{H}$ is an operator, then there exists a unique adjoint T^* .

Examples of an adjoint

- The *identity map* and the *zero map* are self-adjoint.
- For any *bounded* operator $T: \mathcal{H} \to \mathcal{H}$, the following are self-adjoint:
 - T*T,
 - T*T.
- The right-shift operator $R:\ell^2 \to \ell^2$,

$$R(x)=(0,x_1,x_2,\cdots)$$

has the *left-shift operator* as its adjoint: $L:\ell^2 \to \ell^2$,

$$L(y)=(y_2,y_3,y_4,\cdots)$$

.

Compact Operators

Compact Operator

An operator $T: \mathcal{H} \to \mathcal{H}$ is *compact* if

For any bounded sequence (x_j) in \mathcal{H} ,

 $(T(x_j))$ has a convergent subsequence.

Compact operators are bounded

If $T: \mathcal{H} \to \mathcal{H}$ is compact, then it is bounded.

The set of compact operators is a subspace of the set of bounded operators.

Compactness and adjoints

 $T: \mathcal{H} \to \mathcal{H}$ being compact is equivalent to T^* being compact.

Example of a compact operator

For any Hilbert space \mathcal{H} , then for all $x \in \mathcal{H}$, there exist *orthogonal* vectors $y, z \in \mathcal{H}$ with

$$x = y + z$$
.

Let $P: \mathcal{H} \to \mathcal{H}$ be the *orthogonal projection*

$$P(x) = y$$
.

Then,

- P is self-adjoint,
- P is compact if and only if H is finite-dimensional.

Matrix Diagonalisation

From MATH220, we know that real symmetric matrices $(X^T = X)$ can be diagonalised:

Spectral Theorem for Real Symmetric Matrices

Let $X \in \mathrm{M}_n(\mathbb{R})$ be a matrix. Then:

- X has an orthonormal basis $\iff X$ is symmetric.
- If X has an orthonormal basis, let P be the matrix whose columns form an orthonormal basis of X and D be the diagonal matrix of eigenvalues in the same order as P. Then,

$$X = PDP^T$$
.

Can this be generalised to our operators?

The Spectral Theorem

The Spectral Theorem for Compact Self-Adjoint Operators

Suppose $T: \mathcal{H} \to \mathcal{H}$ is a *compact* and *self-adjoint* operator. Then,

- \mathcal{H} has an orthonormal basis (v_n) of eigenvectors of T.
- For $n \in \mathbb{N}$ or $n = \infty$,

$$T(x) = \sum_{j=1}^{n} \lambda_j \langle x, v_j \rangle v_j,$$

where λ_i is the eigenvalue of the eigenvector v_i .

If $n = \infty$, then $\lambda_j \to 0$ as $j \to \infty$.

Any questions?

Thanks for listening!

¡presentation:0¿