# Metody numeryczne

Piotr Krzyżanowski

https://www.mimuw.edu.pl/~przykry/mn 2023/01/26, 14:58:41

# Układy równań liniowych

# Spis treści

Układy równań liniowych

Arytmetyka zmiennopozycyjna

Uwarunkowanie zadania. Numeryczna poprawność algorytmu

Liniowe zadanie najmniejszych kwadratów

Metody iteracyjne dla układów równań liniowych

Zagadnienie własne

Interpolacja wielomianowa

Splajny

Aproksymacja

Aproksymacja średniokwadratowa

Aproksymacja jednostajna

Równania nieliniowe

Całkowanie

Szybka transformacja Fouriera (FFT)

1

# Układy równań liniowych

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N &= b_2 \\ \vdots \\ a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N &= b_N \end{cases}$$

Macierzowo możemy zapisać ten układ w zwartej postaci

$$Ax = b$$
,

gdzie

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}.$$

# Tak, to GAL!

Ax = b

Układ ma dokładnie jedno rozwiązanie  $\iff$  spełniony jest którykolwiek z warunków:

- $det(A) \neq 0$
- jedynym rozwiązaniem Ax = 0 jest x = 0
- $\ker(A) = \{0\}$
- A nie ma zerowej wartości własnej
- A jest nieosobliwa

3

# Łatwe układy równań: z macierzą diagonalną

 $\begin{cases} a_{11}x_1 & = b_1 \\ a_{22}x_2 & = b_2 \\ \vdots & \vdots \\ a_{NN}x_N & = b_N \end{cases}$ 

Trywialne!...

$$x_i = b_i/a_{ii}, \qquad i = 1, \dots N,$$

Koszt:  $\mathcal{O}(N)$  flopów.

#### Praca domowa

Powtórzyć sobie podstawowe wiadomości z GALu:

- macierze i wektory
- mnożenie macierzy przez macierz i przez wektor
- macierz odwrotna
- wartości własne i wektory własne macierzy
- rząd macierzy, macierz pełnego rzędu
- ortogonalność wektorów

# Koszt algorytmów numerycznych

- obliczeniowy
- pamięciowy

# Koszt obliczeniowy algorytmów numerycznych

Tradycyjnie, jest to liczba wykonanych operacji arytmetycznych:

## Czym jest flop?

FLOP = FLoating point OPeration

Tradycyjnie, przyjmujemy, że wszystkie operacje  $(+, -, \times, \div)$  kosztują tyle samo: 1 flop. Tradycyjnie, nie uwzględniamy kosztu obsługi pętli i innych instrukcji sterujących, ani kosztu dostępu do pamięci. Zwykle przyjmujemy, że  $\sqrt{\phantom{a}}$  też

kosztuje 1 flop.

Dzisiaj żadne z tych założeń nie jest prawdziwe na typowym komputerze!

Niemniej w zdecydowanej większości przypadków ten model daje dobry wgląd w *jakościowe* zachowanie się algorytmu w rzeczywistości.

7

# Łatwe układy równań: z macierzą trójkątną

$$\begin{cases} a_{11}x_1 & = b_1 \\ a_{21}x_1 + a_{22}x_2 & = b_2 \\ a_{21}x_1 + a_{22}x_2 + a_{33}x_3 & = b_3 \\ & \vdots \\ a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N & = b_N \end{cases}$$

Macierz układu jest dolna trójkątna

$$A = \begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & & \ddots & \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}$$

8

# Łatwe układy równań: z macierzą trójkątną

Rozwiązanie metodą podstawienia w przód:

$$a_{11}x_{1} = b_{1} \implies$$

$$x_{1} = \frac{1}{a_{11}}b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} = b_{2} \implies$$

$$x_{2} = \frac{1}{a_{22}}(b_{2} - a_{12}x_{1})$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{33}x_{3} = b_{3} \implies$$

$$x_{3} = \frac{1}{a_{33}}(b_{3} - a_{13}x_{1} - a_{23}x_{2})$$

$$\vdots$$

$$a_{k1}x_{1} + a_{k2}x_{2} + a_{k3}x_{3} + \dots + a_{kk}x_{k} = b_{k} \implies$$

$$x_{k} = \frac{1}{a_{kk}}(b_{k} - a_{1k}x_{1} - a_{2k}x_{2} - \dots - a_{k-1,k}x_{k-1})$$

# Łatwe układy równań: z macierzą trójkątną

**Algorytm 1** Podstawienie w przód. Rozwiązywanie układu Ax = b z macierzą dolną trójkątną

$$x_1 = b_1/a_{11}$$
  
for  $i = 2: N$   
 $x_i = \frac{1}{a_{ii}}(b_i - \sum_{j=1}^{i-1} a_{ij}x_j)$   
end  
return  $(x_1, \dots, x_N)$ 

Koszt tego algorytmu jest rzędu  $\mathcal{O}(N^2)$  flopów.

# Łatwe układy równań: z macierzą trójkątną

Analogicznie, kosztem  $\mathcal{O}(N^2)$  flopów rozwiązujemy układ z macierzą górną trójkątną:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ & a_{22} & \dots & a_{2N} \\ & & \ddots & \vdots \\ & & & a_{NN} \end{bmatrix},$$

metodą podstawienia w tył.

11

# A co zrobić w przypadku ogólnym?

Jak rozwiązać

$$Ax = b$$
,

gdy A — macierz nieosobliwa.

## Zły pomysł

Wzory Cramera ???

Koszt zaporowy: obliczenie det(A) z rozwinięcia Laplace'a kosztuje przynajmniej N! flopów.

Sa też inne powody, by tego nie robić.

## Łatwe układy równań: z macierzą ortogonalną

## Definicja (Macierz ortogonalna)

Macierz  $Q \in \mathbb{R}^{N \times N}$  nazywamy ortogonalną, jeśli

$$Q^TQ=I$$
.

Inaczej: kolumny macierzy Q są wzajemnie prostopadłe i ich norma euklidesowa jest równa 1.

#### Wniosek

$$Q^{-1} = Q^T,$$

zatem rozwiązaniem układu

$$Qx = b$$

jest

$$x = Q^{-1}b.$$

Koszt:  $\mathcal{O}(N^2)$  flopów.

## A co zrobić w przypadku ogólnym?

Jak rozwiązać

$$Ax = b$$
,

gdy A — macierz nieosobliwa.

# Kolejny zły pomysł

Obliczyć  $A^{-1}$ , a następnie  $x = A^{-1}b$  ???

## Pierwsze przykazanie numeryka

Nie będziesz odwracać macierzy swojej nadaremno!

# A co zrobić w przypadku ogólnym?

Jak rozwiązać

$$Ax = b$$
,

gdy A — macierz nieosobliwa.

Gdyby

$$A = X \cdot Y \cdot Z$$

gdzie X, Y, Z — "łatwe" do rozwiązania, na przykład:

- diagonalne (koszt:  $\mathcal{O}(N)$ )
- trójkątne (koszt:  $\mathcal{O}(N^2)$ )
- ortogonalne (koszt:  $\mathcal{O}(N^2)$ )

to

$$A \cdot x = b \iff X \cdot Y \cdot Z \cdot x = b$$

15

# Ważne rozkłady macierzy

• rozkład LU: iloczyn macierzy trójkątnych *L* i *U*:

$$A = LU$$
 lub  $PA = LU$ 

(P — macierz permutacji)

• rozkład QR: iloczyn macierzy ortogonalnej Q i trójkątnej R:

$$A = QR$$

Jak je wyznaczać? Ile to kosztuje?

# A co zrobić w przypadku ogólnym?

$$A \cdot x = b \iff X \cdot Y \cdot Z \cdot x = b.$$

$$Ax = b \iff X \underbrace{Y \underbrace{Zx}}_{=:y} = b.$$

Algorytm:

- 1. Znaleźć rozkład A = XYZ
- 2. Rozwiązać układ  $Xz = b \pmod{N^2}$
- 3. Rozwiązać układ  $Yy = z \pmod{N^2}$
- 4. Rozwiązać układ  $Zx = y \pmod{N^2}$

Łączny koszt: koszt rozkładu  $+\mathcal{O}(N^2)$ .

16

# Rozkład LU (bez wyboru)

Na początek rozważamy algorytm bez wyboru elementu głównego (bez osiowania).

$$A = IU$$

Podzielmy macierze na bloki:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ & U_{22} \end{bmatrix}$$

gdzie bloki (1,1) są rozmiaru  $k \times k$ .

- $U_{ii}$  górne trójkątne
- $L_{ii}$  dolne trójkątne (z jedynkami na diagonali  $\implies$  jednoznaczność)

# Rozkład LU bez wyboru — wyprowadzenie

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ & U_{22} \end{bmatrix}$$

Po wymnożeniu

$$A_{11} = L_{11}U_{11}$$
  $A_{12} = L_{11}U_{12}$   
 $A_{21} = L_{21}U_{11}$   $A_{22} = L_{21}U_{12} + L_{22}U_{22}$ 

skąd dostajemy algorytm rekurencyjny:

- 1. Wyznacz (rekurencyjnie) rozkład  $A_{11} = L_{11}U_{11}$
- 2.  $U_{12} = L_{11}^{-1} A_{12}$  (tzn. rozwiąż układ z macierzą trójkątną)
- 3.  $L_{21} = A_{21} U_{11}^{-1}$  (tzn. rozwiąż układ z macierzą trójkątną)
- 4. Aktualizuj  $\tilde{A}_{22} = A_{22} L_{21}U_{12}$
- 5. Wyznacz (rekurencyjnie) rozkład  $\tilde{A}_{22} = L_{22}U_{22}$

19

#### Koszt rozkładu LU

Dwa interesujące przypadki:

- k = 1, tzn. macierz  $A_{11}$  jest skalarem
- $k = \lceil N/2 \rceil$ , tzn. dzielimy A na ćwiartki

Inny interesujący przypadek:

- Dzielimy A na  $B \times B$  bloków "równego" rozmiaru  $\approx N/B$  (wcześniejszy przypadek to B=2)
- Nie będziemy go tu rozważać.

## Dygresja: blokowy rozkład LU

Jeśli  $A_{11}$  — nieosobliwa, to

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I \\ L_{21} & I \end{bmatrix} \begin{bmatrix} A_{11} \\ & S \end{bmatrix} \begin{bmatrix} I & U_{12} \\ & I \end{bmatrix}$$

gdzie

$$S = A_{22} - A_{21}A_{11}^{-1}A_{12}$$

— uzupełnienie Schura oraz

$$L_{21} = A_{21}A_{11}^{-1}, \qquad U_{12} = A_{11}^{-1}A_{12}.$$

Klasyczny algorytm rozkładu LU: k = 1

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ & U_{22} \end{bmatrix}$$

- 1. Wyznacz (rekurencyjnie) rozkład  $A_{11} = L_{11}U_{11}$
- 2.  $U_{12} = L_{11}^{-1} A_{12}$  (tzn. rozwiąż układ z macierzą trójkątną)
- 3.  $L_{21}=A_{21}U_{11}^{-1}$  (tzn. rozwiąż układ z macierzą trójkątną)
- 4. Aktualizuj  $\tilde{A}_{22} = A_{22} L_{21}U_{12}$
- 5. Wyznacz (rekurencyjnie) rozkład  $\tilde{A}_{22} = L_{22}U_{22}$

 $k=1 \implies A_{11}=a_{11}$  (liczba)  $\implies l_{11}=1 \implies$  pierwsze wywołanie rekurencji jest zbędne!

# Klasyczny algorytm rozkładu LU (bez wyboru)



- 1.  $u_{11} = a_{11}$
- 2.  $u_{12} = a_{12}$
- 3.  $l_{21} = a_{21}u_{11}^{-1}$  (mnożenie wektora  $a_{21}$  przez liczbę  $u_{11}^{-1}$ )
- 4. Aktualizuj  $A_{22} = A_{22} l_{21}u_{12}^{T}$  (tzn. o macierz rzędu 1)
- 5. Wyznacz rozkład  $A_{22} = L_{22}U_{22}$  to już nie musi być rekurencja: wystarczy pętla!

Rozkład możemy wykonać *w miejscu*, zapisując *U* w górnym trójkącie *A*, a *L* (bez jedynek) — w dolnym trójkącie *A*.

23

# Klasyczny algorytm rozkładu LU (bez wyboru): ograniczenia

Algorytm GE nie zawsze zadziała, np.:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

W pierwszym kroku dzielimy przez  $a_{11} = 0...$ 

#### Twierdzenie

Jeśli wszystkie minory główne macierzy A są niezerowe, to GE jest wykonalna, tzn. na diagonali macierzy U nie pojawiają się zera.

Jak uniknąć dzielenia przez zero? Przez wybór elementu głównego (osiowanie).

# Klasyczny algorytm rozkładu LU (bez wyboru): implementacja

```
Rozkład wykonujemy w miejscu, nadpisując A czynnikami L i U:
```

```
for k=1:N-1

for i=k+1:N

a_{ik}=a_{ik}/a_{kk} (wyznaczenie k-tej kolumny L)

end

for i=k+1:N

for j=k+1:N

a_{ij}=a_{ij}-a_{ik}a_{kj} (aktualizacja \tilde{A}_{22})

end

end

end
```

To nic innego jak poczciwa eliminacja Gaussa! Stąd inna nazwa: GE.

24

# Klasyczny algorytm rozkładu LU (z częściowym wyborem)

Rozkład wykonujemy w miejscu, nadpisując A czynnikami L i U:

```
for k=1:N-1

Znajdź wiersz p\geqslant k t.że |a_{pk}|=\max\{|a_{ik}|:k\leqslant i\leqslant N\}

Zamień wiersze p i k

for i=k+1:N

a_{ik}=a_{ik}/a_{kk} (wyznaczenie k-tej kolumny L)

end

for i=k+1:N

for j=k+1:N

a_{ij}=a_{ij}-a_{ik}a_{kj} (aktualizacja \tilde{A}_{22})

end

end

end
```

# Klasyczny algorytm rozkładu LU (z częściowym wyborem)

- Zawsze wykonalny (w arytmetyce dokładnej), gdy A jest nieosobliwa
- Daje się zinterpretować jako

$$PA = LU$$
.

gdzie P — macierz permutacji

- Istnieją inne strategie
  - częściowy wybór w wierszu: AP = LU
  - wybór pełny (w całej  $\tilde{A}_{22}^{(k)}$ ):  $P_1AP_2 = LU$

27

29

## Podsumowanie: rozwiązanie układu Ax = b metodą GEPP

$$Ax = b$$

1. GEPP — kosztem  $\mathcal{O}(N^3)$  — daje nam rozkład:

$$PA = LU$$

Zatem

$$PAx = LUx = Pb$$

i stąd dalszy ciąg algorytmu:

- 2.  $\tilde{b} = Pb$  (permutacja wektora b)
- 3. Rozwiąż  $Ly = \tilde{b}$  (koszt  $\mathcal{O}(N^2)$ )
- 4. Rozwiąż Ux = y (koszt  $\mathcal{O}(N^2)$ )

Koszt całkowity:  $\mathcal{O}(N^3)$  (zdominowany przez rozkład PA = LU)

## Klasyczny algorytm rozkładu LU: koszt

$$\begin{bmatrix} a_{11} & a_{12}^T \\ a_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} & L_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12}^T \\ & U_{22} \end{bmatrix}$$

- 1.  $l_{21}=a_{21}u_{11}^{-1}$  (mnożenie wektora  $a_{21}$  przez liczbę  $u_{11}^{-1}$ ) Koszt:  $\mathcal{O}(N)$
- 2. Aktualizuj  $A_{22} = A_{22} I_{21} u_{12}^T$  (tzn. o macierz rzędu 1) Koszt:  $\mathcal{O}(N^2)$
- 3. Wyznacz rozkład  $A_{22} = L_{22}U_{22}$

Zatem koszt w zależności od N:

$$T(N) = \mathcal{O}(N) + \mathcal{O}(N^2) + T(N-1) = \ldots = \mathcal{O}(N^3).$$

# Kacik porad

## Jak czytać wzory?

Napisy typu  $A^{-1}Y$  należy czytać jako "rozwiąż równanie AX = Y"

#### Jak rozwiązywać problemy numeryczne?

Warto je sprowadzać sekwencji prostszych zadań, które już umiemy (tanio) rozwiązać!

# Arytmetyka zmiennopozycyjna

# Zapis liczby rzeczywistej

$$x = (-1)^{s} \cdot \mathbf{m} \cdot \beta^{e}$$

 $m \longrightarrow \text{mantysa (odpowiada za precyzję)}, 0 \leqslant m < \beta$ 

 $e \longrightarrow \operatorname{cecha}$  (odpowiada za wielkość),  $e \in \mathbb{Z}$ 

 $\beta \longrightarrow \text{podstawa (jaki system liczbowy wybieramy)}$ 

 $s \longrightarrow \mathsf{znak}, \ s \in \{0,1\}$ 

# Zapis inżynierski liczb rzeczywistych

$$6.63 \cdot 10^{-34}$$

6.63 → "mantysa" (odpowiada za precyzję)

-34 → cecha (odpowiada za wielkość)

10 → podstawa (jaki system liczbowy wybieramy)

31

# Liczby maszynowe

Standardowo  $\beta = 2$ .

Możemy przeznaczyć jedynie skończoną liczbę bitów na zapis m i e.

$$x = (-1)^{s} \cdot m \cdot 2^{e}$$

 $m = (f_0.f_1f_2...f_{p-1})_2, f_i \in \{0,1\}$  cyfry binarne (razem p bitów)

e integer t. że

$$(1 - e_{\sf max}) \leqslant e \leqslant e_{\sf max}$$

 $\beta = 2$ 

s (1 bit)

## Liczby maszynowe (znormalizowane) w pamięci komputera

Normalizacja:  $f_0 = 1$ , czyli  $1 \le m < 2$ .

$$x = (-1)^s \cdot (1 \cdot f_1 f_2 \dots f_{p-1})_2 \cdot 2^e$$

przechowujemy jako



Dzięki temu m.in.  $e + e_{\text{max}} \geqslant 0$ .

#### 34

## Przykład: 6-bitowa arytmetyka zmiennopozycyjna ii

Oto wszystkie (dodatnie, znormalizowane) liczby maszynowe:

# Przykład: 6-bitowa arytmetyka zmiennopozycyjna i

 $\beta = 2$ ,

p = 3,

 $e_{\mathsf{max}} = 3.$ 

Liczby znormalizowane:

$$x = (-1)^s \cdot (1.f_1f_2)_2 \cdot 2^e, \qquad e \in \{-2, \dots, 3\}.$$

Możliwe wartości mantysy to

$$(1.00)_2 = 1,$$
  $(1.01)_2 = 1.25,$   $(1.10)_2 = 1.5,$   $(1.11)_2 = 1.75.$ 

35

# Przykład: 6-bitowa arytmetyka zmiennopozycyjna iii



## Przykład: 6-bitowa arytmetyka zmiennopozycyjna iv

Liczby subnormalne:

$$x = (-1)^s \cdot (0.f_1f_2)_2 \cdot 2^{-2}.$$

Oto wszystkie (dodatnie) subnormalne liczby maszynowe:

0.0625, 0.125, 0.1875.



# Liczby maszynowe w/g standardu IEEE 754

 $Licz by \ \ "zwyczajne" \ , \ znormalizowane$ 

$$x = (-1)^s \cdot (1.f_1f_2 \dots f_{p-1})_2 \cdot 2^e$$
:

Liczby o specjalnym znaczeniu:

- (plus i minus) zero  $x = (-1)^s \cdot 0$ 
  - s 0 0 ... 0 0 0 ... 0
- (plus i minus) nieskończoność  $x=(-1)^s\cdot\infty$ 
  - s
     1
     1
     ...
     1
     0
     0
     ...
     0
- not a number x = NaN
  - s 1 1 ... 1 coś niezerowego
- liczby subnormalne  $x = (-1)^s \cdot \underbrace{(0.f_1 f_2 \dots f_{p-1})} \cdot 2^{1-e_{\text{max}}}$

|     |   | ≠0    |       |       |  |           |
|-----|---|-------|-------|-------|--|-----------|
| s 0 | 0 | <br>0 | $f_1$ | $f_2$ |  | $f_{p-1}$ |

40

## Liczby maszynowe w/g standardu IEEE 754

| Nazwa            | binary16            | binary32             | binary64              | binary128              |                      |
|------------------|---------------------|----------------------|-----------------------|------------------------|----------------------|
| "Precyzja"       | poł.                | poj.                 | podw.                 | poczw.                 | rozsz.               |
| Język C          |                     | float                | double                |                        | long double          |
| Rozmiar          | 16                  | 32                   | 64                    | 128                    | 80                   |
| р                | 11                  | 24                   | 53                    | 113                    | 64                   |
| e <sub>max</sub> | 15                  | 127                  | 1023                  | 16383                  | 16383                |
| $\nu = 2^{-p}$   | $4.9 \cdot 10^{-4}$ | $6.0 \cdot 10^{-8}$  | $1.1\cdot 10^{-16}$   | $9.6 \cdot 10^{-35}$   | $5.4 \cdot 10^{-20}$ |
| realmax          | $6.6 \cdot 10^4$    | $3.4 \cdot 10^{38}$  | $1.8 \cdot 10^{308}$  | $1.2 \cdot 10^{4932}$  |                      |
| realmin          | $6.1\cdot 10^{-5}$  | $1.2 \cdot 10^{-38}$ | $2.2 \cdot 10^{-308}$ | $3.4 \cdot 10^{-4932}$ |                      |
| submin           | $6.0 \cdot 10^{-8}$ | $1.4 \cdot 10^{-45}$ | $4.9 \cdot 10^{-324}$ | $6.7 \cdot 10^{-4966}$ |                      |

39

## Reprezentacja liczb rzeczywistych

Niech  $x \in \mathbb{R}$ . Jeśli x nie jest liczbą maszynową, to jak ją reprezentować?

fl(x) — reprezentacja x w arytmetyce zmiennopozycyjnej

IEEE 754 gwarantuje 4 możliwe tryby zaokrąglania x do liczby maszynowej:

RN do najbliższej (domyślnie)

RD w dół, tzn. w stronę  $-\infty$ 

RU w górę, tzn. w stronę  $+\infty$ 

RZ w stronę zera, tzn.

$$RZ(x) = \begin{cases} RD(x) & \text{gdy } x \geqslant 0 \\ RU(x) & \text{gdy } x \leqslant 0 \end{cases}$$



# Precyzja arytmetyki

Jeśli  $|x| \in [\text{realmin}, \text{realmax}], \text{ to}$ 

$$\frac{|x - RN(x)|}{|x|} \leqslant \frac{1}{2^p} =: \nu \quad \longleftarrow \text{precyzja arytmetyki}$$

Czyli wtedy błąd względny reprezentacji x przez RN(x) nigdy nie przekracza  $\nu$ .

Dalej zawsze przyjmujemy fl(x) = RN(x).

$$fl(x) = x \cdot (1 + \epsilon), \qquad |\epsilon| \leq \nu.$$

42

# Przykłady

Zakładamy działania w podwójnej precyzji.

- overflow:  $10^{308} \times 100 = Inf = 1/0$
- underflow:  $10^{-308} \div 10^{28} = 0$
- gradual underflow:  $10^{-308} \div 100 \approx 10^{-310}$  (I. subnormalna)
- 0/0 = NaN
- $\bullet \ Inf Inf = NaN$
- przy okazji: (NaN == NaN) = False
- $0^0 = ?$

# **D**ziałania arytmetyczne: $\square \in \{+, -, \times, \div, \sqrt{\ }, \mathit{FMA}\}$

Jeśli a, b są liczbami maszynowymi, to  $a \square b$ 

• może przekroczyć zakres (overflow):

$$fl(a \square b) = Inf$$

• może być zbyt bliski zera (underflow):

$$fl(a \square b) = 0$$
 ...lub l.subnormalna

• może nie mieć sensu:

$$fl(a \square b) = NaN$$

• w przeciwnym przypadku,

$$fl(a \square b) = fl(a \square b)$$

Zatem poza skrajnościami,

$$f(a \square b) = (a \square b) \cdot (1 + \epsilon), \qquad |\epsilon| \leq \nu.$$

Dziwaczności

- działania nie są łączne (w przeciwieństwie do dokładnej arytmetyki)
- nie musi być  $1+x == 1 \implies x==0$

# **Epsilon maszynowy**

Odległość  $\epsilon_{\rm mach}$  liczby 1 od następnej liczby maszynowej. Zatem  $\mathit{fl}(1+\epsilon_{\rm mach})>1$ , ale już  $\mathit{fl}(1+\epsilon_{\rm mach}/2)=1$ .

- ullet wynikiem x-x+1 może być 1 ale też może być 0
- ryzykowne jest sprawdzanie x == y
- uwaga na optymalizujące kompilatory i obliczenia równoległe!

# Przesąd

#### Fałsz!

Najważniejszym problemem w obliczeniach zmiennopozycyjnych jest kumulacja błędów zaokrągleń.

#### Prawda:

Kumulacja błędów ma znaczenie. Ale większym problemem może być drastyczne wzmocnienie wcześniejszego (nawet minimalnego) błędu.

46

## Redukcja cyfr przy odejmowaniu ii

Stąd błąd względny wyniku

$$\frac{|s-\tilde{s}|}{|s|} = \frac{|(\epsilon_x + \delta) \cdot x + (\epsilon_y + \delta) \cdot y|}{|s|} \\
\leqslant \frac{(|\epsilon_x| + |\delta|) \cdot |x| + (|\epsilon_y| + |\delta|) \cdot |y|}{|s|} \leqslant 2\frac{|x| + |y|}{|x+y|}\nu.$$

Zatem

• gdy x,y są tego samego znaku, to

$$\frac{|s-\tilde{s}|}{|s|} \leqslant 2\nu \qquad \text{(wysoka precyzja wyniku!)}$$

## Redukcja cyfr przy odejmowaniu i

Wynik nawet jednego działania może być obarczony katastrofalnym błędem:

Dane:  $x, y \in \mathbb{R}$ . Obliczyć: s = x + y.

Zamiast x, y dysponujemy ich reprezentacjami:

$$\tilde{x} = fl(x), \qquad \tilde{y} = fl(y).$$

Zatem obliczona wartość wyniku,  $\tilde{s}$ , spełnia  $(|\delta|, |\epsilon_x|, |\epsilon_y| \leq \nu)$ 

$$\tilde{s} = fl(\tilde{x} + \tilde{y}) = (\tilde{x} + \tilde{y}) \cdot (1 + \delta)$$

$$= (x \cdot (1 + \epsilon_x) + y \cdot (1 + \epsilon_y)) \cdot (1 + \delta)$$

$$\approx \underbrace{x + y}_{=s} + (\epsilon_x + \delta) \cdot x + (\epsilon_y + \delta) \cdot y$$

47

# Redukcja cyfr przy odejmowaniu iii

• gdy  $x \approx -y$ , to  $\frac{|s - \tilde{s}|}{|s|} \approx \infty$ 

(żadna cyfra znacząca wyniku może nie być dokładna!)

## Wsparcie standardu IEEE 754 w językach programowania

- Bywa różnie.
- Wiele zależy od producenta konkretnego kompilatora.
- Nawet standardy nie są w pełni zgodne, np. C11 lub C++14 nie w pełni uwzględniają IEEE 754-2008.
- Niektóre opcje optymalizacji kodu wyłączają zgodność z IEEE 754. To może być jak zabawa z brzytwą.

50

52

## Pare słów o działaniach arytmetycznych na x86-64

- instrukcje **SSE/AVX**: nowoczesne, zalecane, wektorowe (128/256/512 bitów), binary32/binary64
- instrukcje x87: przestarzałe, ale jest też 80-bit i np. funkcje trygonometryczne
- unikać innych wyników niż znormalizowane (np. NaN, Inf, subnormal) — spowolnienie
- są instrukcje zwracające mniej dokładne wyniki ÷, √ itp., ale znacznie szybsze

(Skylake+AVX:  $1/\sqrt{x}$  prawie  $8\times$  szybciej, gdy dokładność tylko 11 bitów zamiast 24)

#### Poza standardem IEEE 754

#### bfloat16:

- Używany w dedykowanych procesorach dla uczenia maszynowego, m.in. Google TPU, Intel AI (w planach).
- Coś pośredniego między binary16 a binary32, ale tylko na 16 bitach.

| Nazwa              | binary16            | binary32             | bfloat16             |
|--------------------|---------------------|----------------------|----------------------|
| Rozmiar            | ,                   |                      | 16                   |
| p                  | 11                  | 24                   | 8                    |
| e <sub>max</sub>   | 15                  | 127                  | 127                  |
| $=$ $\nu = 2^{-p}$ | $4.9 \cdot 10^{-4}$ | $6.0 \cdot 10^{-8}$  | $3.9 \cdot 10^{-3}$  |
| realmax            | $6.6 \cdot 10^{4}$  | $3.4 \cdot 10^{38}$  | $3.4 \cdot 10^{38}$  |
| realmin            | $6.1 \cdot 10^{-5}$ | $1.2 \cdot 10^{-38}$ | $1.2 \cdot 10^{-38}$ |
| submin             | $6.0 \cdot 10^{-8}$ | $1.4 \cdot 10^{-45}$ | ?                    |

# Parę słów o działaniach arytmetycznych na x86-64 ii

| Działanie       | Instrukcja | Latency | Throughput | Latency | Throughput |
|-----------------|------------|---------|------------|---------|------------|
| x + y           | ADD        | 4       | 0.5        | 4       | 0.5        |
| $x \cdot y$     | MUL        | 4       | 0.5        | 4       | 0.5        |
| $x \cdot y + z$ | FMA        | _       | _          | 4       | 0.5        |
| x/y             | DIV        | 11/14   | 3/4        | 11/14   | 5/8        |
| 1/x             | RCP        | 4/?     | 1/?        | 4/?     | 1/?        |
| $\sqrt{X}$      | SQRT       | 13/18   | 3/6        | 12/18   | 6/12       |
| $1/\sqrt{x}$    | RSQRT      | 4/?     | 1/?        | 4/?     | 1/?        |

**Tabela 1:** Intel Skylake, 2019. Liczba cykli zegara dla wykonania (jednej — *Latency*, kolejnej — *Throughput*) instrukcji na liczbach single/double. Lewa strona: instrukcje 128-bit (SSE,SSE2) (single: xxxPS, double: xxxPD). Prawa strona: instrukcje AVX 256-bit (single: VxxxPS, double: VxxxPD).

Maksymalnie:  $\underbrace{2}_{\text{potoki}} \times \underbrace{2}_{\text{wyniki/cykl}} \times \underbrace{2}_{\text{flopy}} \times \underbrace{4}_{\text{wrej. AVX}} = 32 \text{ (double) flopów/cykl}$ 

Zegar 3.0 GHz  $\rightarrow$  32 · 3 · 10<sup>9</sup>  $\approx$  100 Gflop/s (/rdzeń).

Teoretycznie.

# Parę słów o działaniach arytmetycznych na x86-64 iii

Więcej informacji:

- Intel® 64 and IA-32 Architectures Software Developer's Manual Vol 1: Basic Architecture
- Intel® 64 and IA-32 Architectures Optimization Reference Manual

Uwarunkowanie zadania. Numeryczna poprawność algorytmu

54

#### Zadanie obliczeniowe

## Problem (zadanie obliczeniowe)

Dane jest  $P: D \to W$  oraz x. Wyznaczyć y = P(x).

Często (choć nie zawsze) D i W są podzbiorami przestrzeni skończonego wymiaru.

Przykłady:

- Oblicz  $y = \cos(x^2)$
- Dla danego  $x \in \mathbb{R}^N$ , oblicz  $y = A \cdot x$
- Dla danych  $A \in \mathbb{R}^{N \times N}$  oraz  $b \in \mathbb{R}^N$ , wyznacz  $y \in \mathbb{R}^N$  t.że  $A \cdot y = b$ . Zauważmy, że A może być poza dziedziną P
- Dla danej funkcji ciągłej f znajdź wielomian p stopnia co najwyżej n, który najlepiej ją przybliża w sensie  $\|\cdot\|_{[a,b]}$ .

# Wrażliwość

Chcemy obliczyć

$$y = P(x)$$
.

Z oczywistych powodów, zamiast x dysponujemy  $\tilde{x}$ .

Co można powiedzieć o

$$P(\tilde{x}) - P(x)$$
 ?

$$C = ?$$

# Błąd bezwzględny i względny

 $\|\tilde{x} - x\| \leftarrow \text{blad bezwzgledny}$ 

$$\frac{\|\tilde{x} - x\|}{\|x\|} \qquad \leftarrow \text{błąd względny} \quad (x \neq 0)$$

57

59

#### Uwarunkowanie

Gdy P różniczkowalna w x, to

$$cond_{abs}(P, x) = ||P'(x)||.$$

Analogicznie możemy pytać o wrażliwość dla błędu względnego  $(x \neq 0, P(x) \neq 0)$ :

$$\mathsf{cond}_{\mathsf{rel}}(P,x,\epsilon) := \sup_{\frac{\|\Delta\|}{\|x\|} \leqslant \epsilon} \frac{\frac{\|P(x+\Delta) - P(x)\|}{\|P(x)\|}}{\frac{\|\Delta\|}{\|x\|}} = \mathsf{cond}_{\mathsf{abs}}(P,x,\epsilon\|x\|) \frac{\|x\|}{\|P(x)\|},$$

również punktowo

$$\operatorname{\mathsf{cond}}_{\mathsf{rel}}(P,x) := \lim_{\epsilon \to 0^+} \operatorname{\mathsf{cond}}_{\mathsf{rel}}(P,x,\epsilon)$$

Gdy P różniczkowalna w x, to

$$cond_{rel}(P, x) = ||P'(x)|| \frac{||x||}{||P(x)||}$$

Uwarunkowanie

Wskaźnik uwarunkowania (bezwzględny): współczynnik wzmocnienia błędu (bezwzględnego) na poziomie  $\epsilon$ :

$$\operatorname{\mathsf{cond}}_{\mathsf{abs}}(P,x,\epsilon) := \sup_{\|\Delta\| \leqslant \epsilon} \frac{\|P(x+\Delta) - P(x)\|}{\|\Delta\|}$$

Faktycznie, wtedy

$$||P(\tilde{x}) - P(x)|| \le \operatorname{cond}_{\mathsf{abs}}(P, x, \epsilon) \cdot ||\tilde{x} - x|| \qquad \mathsf{dla} \ ||\tilde{x} - x|| \le \epsilon.$$

Idealizacja: punktowy wskaźnik uwarunkowania

$$\mathsf{cond}_{\mathsf{abs}}(P,x) := \lim_{\epsilon \to 0^+} \mathsf{cond}_{\mathsf{abs}}(P,x,\epsilon) = \lim_{\epsilon \to 0^+} \sup_{\|\Delta\| \leqslant \epsilon} \frac{\|P(x+\Delta) - P(x)\|}{\|\Delta\|}$$

58

# Uwarunkowanie

Zatem dla  $\tilde{x} \approx x$ , mamy w przybliżeniu

• 
$$||P(\tilde{x}) - P(x)|| \lesssim \operatorname{cond}_{abs}(P, x) ||\tilde{x} - x||$$

• 
$$\frac{\|P(\tilde{x}) - P(x)\|}{\|P(x)\|} \lesssim \operatorname{cond}_{\operatorname{rel}}(P, x) \frac{\|\tilde{x} - x\|}{\|x\|}$$

Terminologia:

- Zadanie dobrze uwarunkowane: cond(P, x) jest nieduże
- Zadanie źle uwarunkowane: cond(P, x) jest bardzo duże

Zła wiadomość: zdarzają się zadania, których uwarunkowanie może być *patologicznie* duże, np.  $cond(P, x) = 10^{23}$ .

# Uwarunkowanie układu równań liniowych

Rozwiązać układ równań:

$$Ay = b$$
.

Jak wygląda zadanie obliczeniowe?

$$P: \underbrace{S \times \mathbb{R}^N}_{=D} \to \mathbb{R}^N, \qquad P(A, b) = A^{-1}b$$

gdzie  $S = \{A \in \mathbb{R}^{N \times N} : A \text{ jest nieosobliwa}\}.$ 

Zaburzenie danych:

$$\frac{\|\tilde{A} - A\|}{\|A\|} \leqslant \epsilon, \qquad \frac{\|\tilde{b} - b\|}{\|b\|} \leqslant \epsilon.$$

Pytanie:

$$\frac{\|\tilde{y} - y\|}{\|y\|} \leqslant C \cdot \epsilon, \qquad C = ?$$

# Normy macierzowe. $A \in \mathbb{R}^{N \times M}$

# Definicja (Norma macierzy indukowana normą wektorową)

$$||A|| := \max_{\|x\| \neq 0} \frac{||Ax||}{\|x\|} = \max_{\|x\| = 1} ||Ax|| = \max_{\|x\| \leqslant 1} ||Ax||$$

Ozn.:  $||A||_p := \max_{||x||_p=1} ||Ax||_p$ .

#### **Twierdzenie**

- $||Ax|| \le ||A|| \cdot ||x||$
- $||AB|| \le ||A|| \cdot ||B||$
- ||*I*|| = 1
- $||A||_1 = \max_i \sum_i |a_{ii}|$  (stąd nazwa: norma kolumnowa)
- $||A||_{\infty} = \max_{i} \sum_{i} |a_{ii}|$  (stąd nazwa: norma wierszowa)
- $||A||_2 = \max\{\sqrt{\mu} : \mu \text{ jest w.w}\}. A^T A\}$  (stad nazwa: norma spektralna)

# Normy wektorowe. $x \in \mathbb{R}^N$

$$||x||_{1} = \sum_{i=1}^{N} |x_{i}|,$$

$$||x||_{2} = \sqrt{\sum_{i=1}^{N} |x_{i}|^{2}},$$

$$||x||_{\infty} \leq ||x||_{1} \leq N||x||_{\infty},$$

$$||x||_{\infty} = \left(\sum_{i=1}^{N} |x_{i}|^{p}\right)^{1/p},$$

$$||x||_{\infty} = \max_{i=1,\dots,N} |x_{i}|,$$

$$||x||_{\infty} = \max_{i=1,\dots,N} |x_{i}|,$$







62

# Uwarunkowanie układu równań liniowych

## Oznaczmy

$$cond(A) := ||A|| \cdot ||A^{-1}||.$$

#### Twierdzenie

Jeśli  $\epsilon$  cond(A)  $\leq 1/2$ , to

$$\frac{\|\tilde{y} - y\|}{\|y\|} \leqslant 4 \operatorname{cond}(A) \cdot \epsilon.$$

Zła wiadomość: macierze mogą być patologicznie źle uwarunkowane, cond(A)  $\gg 1$ .

## Uwarunkowanie układu równań liniowych — dowód

Ay = b  $(A + \Delta)\tilde{y} = b + \delta$ 

stąd

 $(A + \Delta)(\tilde{y} - y) = \delta - \Delta y,$ 

więc

$$\tilde{y} - y = (A + \Delta)^{-1} (\delta - \Delta y).$$

Zatem

$$\|\tilde{y} - y\| = \|(A + \Delta)^{-1}(\delta - \Delta y)\| \le \|(A + \Delta)^{-1}\|\|\delta - \Delta y\|.$$

65

## Uwarunkowanie układu równań liniowych — dowód

$$\|\tilde{y} - y\| \leq \|(A + \Delta)^{-1}\| \|\delta - \Delta y\|$$

$$\leq \|(A + \Delta)^{-1}\| (\|\delta\| + \|\Delta\| \|y\|)$$

$$\leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta\|} (\|\delta\| + \|\Delta\| \|y\|)$$

$$\leq \frac{\|A^{-1}\|}{1 - \epsilon \|A\| \|A^{-1}\|} (\epsilon \cdot \underbrace{\|b\|}_{\leq \|A\| \|y\|} + \epsilon \cdot \|A\| \|y\|)$$

$$= \underbrace{\|Ay\|}_{\leq \|A\| \|A^{-1}\|}$$

$$\leq \frac{2\|A\| \|A^{-1}\|}{1 - \frac{1}{2}} \epsilon \cdot \|y\| = 4 \operatorname{cond}(A)\epsilon \|y\|.$$

#### Uwarunkowanie układu równań liniowych — dowód

#### Lemat

Jeśli  $\|\Delta\| < 1$ , to  $I + \Delta$  nieosobliwa oraz

$$\frac{1}{1+\|\Delta\|} \le \|(I+\Delta)^{-1}\| \le \frac{1}{1-\|\Delta\|}$$

Na mocy lematu, jeśli A odwracalna i  $\|A^{-1}\| \|\Delta\| < 1$ , to  $(A+\Delta)^{-1}$  istnieje oraz

$$\|(A+\Delta)^{-1}\| \leqslant \frac{\|A^{-1}\|}{1-\|A^{-1}\|\|\Delta\|}$$

6

## Algorytm

## Problem (zadanie obliczeniowe)

Dane jest  $P: D \to W$  oraz x. Wyznaczyć y = P(x).

#### Definicja (algorytm dla zadania obliczeniowego)

Niech  $X \subset D$ . Przekształcenie  $A: X \to W$ , którego wartość można określić jako sekwencję operacji elementarnych, nazywamy algorytmem rozwiązywania zadania P w klasie X.

- Typowo algorytm będzie skończoną sekwencją operacji.
- Nieuniknione:
  - błąd reprezentacji w fl: informacji i wyniku
  - realizacja wszystkich działań w fl

# Algorytm numerycznie poprawny

Chcielibyśmy, aby to co obliczyliśmy w fl za pomocą algorytmu:

miało sensowny związek z tym, co chcemy obliczyć: P(x).

$$y = P(x), \qquad \tilde{y} = f(A(f(x))) = P(\tilde{x}),$$

gdzie



# Algorytm numerycznie poprawny ii

#### Wniosek

Algorytm NP daje wynik, którego błąd można oszacować na podstawie własności zadania obliczeniowego:

$$\frac{\|\tilde{y} - y\|}{\|y\|} = \frac{\|P(\tilde{x}) - P(x)\|}{\|P(x)\|} \lesssim \operatorname{cond}_{\mathsf{rel}}(P, x) \frac{\|\tilde{x} - x\|}{\|x\|}$$
$$\leqslant K \cdot \operatorname{cond}_{\mathsf{rel}}(P, x) \cdot \nu.$$

## Błąd algorytmu NP

- jest na poziomie nieuniknionego błędu związanego z reprezentacją danych.
- będzie mały dla zadań dobrze uwarunkowanych
- może być duży dla zadań źle uwarunkowanych

## Algorytm numerycznie poprawny i

$$y = P(x), \qquad \tilde{y} = f(A(f(x))) = P(\tilde{x}).$$

#### Definicja (algorytm numerycznie poprawny)

Dla każdego  $x \in X$  wynik algorytmu A zrealizowanego w fl fl(A(fl(x))) jest dokładnym rozwiązaniem zadania dla danych x zaburzonych na poziomie błędu reprezentacji.

70

# Przykład: suma dwóch liczb

Zadanie obliczeniowe:  $P(x_1, x_2) = x_1 + x_2$ , gdzie  $x_1, x_2 \in \mathbb{R}$ .

Algorytm:  $A(x_1, x_2) = x_1 + x_2$ .

Czy jest NP?

$$fl(A(fl(x)) = fl(x_1(1 + \epsilon_1) + x_2(1 + \epsilon_2)) =$$
...gdzieś to już widzieliśmy...
$$= x_1 \underbrace{(1 + \epsilon_1)(1 + \delta)}_{=1+E_1} + x_2 \underbrace{(1 + \epsilon_2)(1 + \delta)}_{=1+E_2}$$

$$= x_1(1 + E_1) + x_2(1 + E_2) =: \tilde{x_1} + \tilde{x_2}$$

Przy czym

$$|E_i| \leq |\epsilon_i| + |\delta| \leq 2 \cdot \nu.$$

# Przykład: suma dwóch liczb

Mamy więc

$$fl(A(fl(x)) = P(\tilde{x})$$

oraz

$$\|\tilde{x} - x\|_1 = \sum |\tilde{x}_i - x_i| = \sum |E_i x_i| \le 2\nu \sum |x_i| = 2\nu \|x\|_1.$$

A więc jest NP! Dlaczego więc występuje redukcja cyfr?

73

# Numeryczna poprawność niektórych algorytmów

Zakładamy, że wszystkie dane, wyniki pośrednie i końcowe są liczbami maszynowymi znormalizowanymi.

- $+, \times, \div, \sqrt{}$ , FMA jeśli spełniają IEEE 754 to są NP
- std algorytm rozw. układu z macierzą trójkątną Ux = b jest NP: obliczony wynik  $\tilde{x}$  spełnia  $(U + \Delta)\tilde{x} = b$ , gdzie  $|\Delta_{ii}|/|u_{ii}| \leq N \cdot \nu$ .

## Przykład: suma dwóch liczb

Zbadajmy uwarunkowanie zadania  $P(x_1, x_2) = x_1 + x_2$ .

$$P'(x_1, x_2) = [1, 1]$$
  $\Longrightarrow$   $||P'(x)||_1 = 1.$ 

$$\operatorname{cond}_{\operatorname{rel}}(P,x) = \|P'(x)\|_1 \frac{\|x\|_1}{\|P(x)\|_1} = \frac{|x_1| + |x_2|}{|x_1 + x_2|}.$$

Zadanie sumy jest

- dobrze uwarunkowanie, gdy  $x_1, x_2$  tego samego znaku,
- źle uwarunkowane, gdy  $x_1 \approx -x_2$ .

To złe uwarunkowanie jest przyczyną zjawiska redukcji cyfr przy odejmowaniu!

74

# Numeryczna "poprawność" (?) GEPP

#### Twierdzenie

Wynik  $\tilde{x}$  obliczony GEPP dla układu Ax = b spełnia  $(A + \Delta)\tilde{x} = b$ ,

$$\|\Delta\|_{\infty}/\|A\|_{\infty} \leqslant KN^{3}\rho_{N}\nu,$$

$$gdzie \ \rho_{N} = \max_{i,j,k} |a_{ij}^{(k)}| / \max_{i,j} |a_{ij}|.$$

Dowód jest dość żmudny — pomijamy.

Niestety,

$$\rho_N \leqslant 2^{N-1}$$
 (osiągane).

Dla wielu macierzy jest *znacznie lepiej*, dlatego mówimy, że GEPP jest "*praktycznie*" NP.

# Numeryczne kryterium "numerycznej poprawności"

Rozważmy układ równań Ax = b. Niech  $\tilde{x}$  — wynik obliczony w fl jakimś algorytmem. Czy jest prawdą, że

$$(A + \Delta)\tilde{x} = b + \delta,$$
 przy czym  $\frac{\|\Delta\|}{\|A\|}, \frac{\|\delta\|}{\|b\|} \le \epsilon$ ?

#### **Twierdzenie**

Jeśli

$$\frac{\|b - A\tilde{x}\|}{\|A\| \|\tilde{x}\| + \|b\|} \leqslant \epsilon,$$

to istnieją  $\Delta$ ,  $\delta$  t. że

$$(A+\Delta)\widetilde{x}=b+\delta$$
 oraz  $\frac{\|\Delta\|}{\|A\|}, \frac{\|\delta\|}{\|b\|} \leqslant \epsilon.$ 

77

# Kiedy złożenie dwóch algorytmów NP jest NP?

$$x \mapsto P(x) = y \mapsto Q(y) = z$$
 (zadanie)  
 $x \mapsto A(x) = \tilde{y} \mapsto B(\tilde{y}) = \tilde{z}$  (algorytm, już w fl)

Przy czym

- $\tilde{v} = P(\tilde{x}), \|\tilde{x} x\| \le K\nu \|x\|$ , bo A jest NP
- $\tilde{z} = Q(\hat{y}), \|\hat{y} \tilde{y}\| \leqslant K\nu \|\tilde{y}\|$ , bo B jest NP

Definiując  $\hat{x} = P^{-1}(\hat{y})$  mamy

$$\tilde{z} = Q(\hat{y}) = Q(P(\hat{x})) = Q \circ P(\hat{x}).$$

Wystarczy sprawdzić, czy

$$\frac{\|\hat{x} - x\|}{\|x\|} \leqslant \hat{K}\nu?$$

## Czy złożenie dwóch algorytmów NP jest NP?

Zadanie:  $x\mapsto P(x)=y\mapsto Q(y)=z,$  tzn.  $z=Q\circ P(x).$  Załóżmy, że

- zadanie P rozwiązujemy algorytmem A, który jest NP w całej dziedzinie
- zadanie *Q* rozwiązujemy algorytmem *B*, który jest NP w całej dziedzinie
- istnieje  $P^{-1}$

Czy algorytm  $B \circ A$  też jest NP? Niekoniecznie.

78

# Kiedy złożenie dwóch algorytmów NP jest NP?

$$x \mapsto P(x) = y \mapsto Q(y) = z$$
  
 $x \mapsto A(x) = \tilde{y} \mapsto B(\tilde{y}) = \tilde{z} = Q(P(\hat{x}))$ 

Nietrudno policzyć, że

$$\|\hat{x} - x\| \lesssim K(1 + \operatorname{cond}_{\mathsf{rel}}(P^{-1}, \tilde{y})) \cdot \nu \cdot \|x\|.$$

Zatem  $B \circ A$  jest NP, o ile  $P^{-1}$  jest dobrze uwarunkowane!

# Liniowe zadanie najmniejszych kwadratów

#### Przekształcenie Householdera

$$||Hx||_2 = ||x||_2 \quad \forall x$$
 (izometria)

Rzeczywiście:  $||Hx||_2^2 = (Hx)^T (Hx) = x^T \underbrace{H^T H}_{t} x = x^T x = ||x||_2^2$ .

- Reprezentacja H: wystarczy pamiętać wektor v (i kwadrat normy,  $||v||_2^2$ ). Jeśli zrobisz to źle, pamięć rośnie do  $N^2$ !
- Koszt wyznaczania y = Hx:

$$Hx = (I - 2\frac{vv^T}{v^Tv})x = x - \frac{2}{\|v\|_2^2}(v^Tx) \cdot v.$$

Czyli  $\mathcal{O}(4N)$ . Jeśli zrobisz to źle, koszt rośnie do  $\mathcal{O}(N^2)$ !

#### Przekształcenie Householdera

$$H = I - 2 \frac{vv^T}{v^T v}$$

Inaczej:  $H = I - \gamma v v^T$ , gdzie  $\gamma = 2/\|v\|_2^2$ . (Umowa:  $v = 0 \implies H = I$ )

Własności:

$$H = H^T$$
 (symetria)

Rzeczywiście:

$$H^{T} = (I - \gamma vv^{T})^{T} = I^{T} - \gamma \underbrace{(vv^{T})^{T}}_{(v^{T})^{T}v^{T}} = I - \gamma vv^{T} = H.$$

$$H^T H = I$$
 (ortogonalność)

Rzeczywiście:

$$H^TH = HH = (I - \gamma vv^T)(I - \gamma vv^T) = I - 2\gamma vv^T + \gamma^2 v \underbrace{v^T v}_{=2/\gamma} v^T = I.$$

81

#### Przekształcenie Householdera

Dla zadanego  $b \in \mathbb{R}^N$ , szukamy  $v \in \mathbb{R}^N$  takiego, by

$$\mathit{Hb} = \alpha \cdot e_1 = egin{bmatrix} lpha \ 0 \ dots \ 0 \end{bmatrix}$$

Skoro  $||Hb||_2 = ||b||_2$ , to  $\alpha = \pm ||b||_2$ .

$$Hb = b - 2 \frac{vv^T}{v^Tv} b = b - 2 \frac{v^Tb}{v^Tv} v,$$

czyli

$$\beta v = b - \alpha e_1.$$

Stąd (dlaczego?)  $v = b - \alpha e_1 = b + \operatorname{sign}(b_1) ||b||_2 e_1$ .

Koszt:  $\mathcal{O}(N)$ .

# Rozkład QR macierzy

Zakładamy, że  $A \in \mathbb{R}^{M \times N}$ ,  $M \geqslant N$ .

Rozkład wąski:

$$A = \hat{Q}\hat{R}$$

gdzie  $\hat{Q} \in \mathbb{R}^{M \times N}$  ortogonalna  $\hat{Q}^T \hat{Q} = I$  oraz  $\hat{R} \in \mathbb{R}^{N \times N}$  — górna trójkątna.

Rozkład pełny:

$$A = \begin{bmatrix} \hat{Q} & \tilde{Q} \end{bmatrix} \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix} = QR$$

oraz  $Q \in \mathbb{R}^{M \times M}$ ,  $Q^T Q = I$ , natomiast  $R \in \mathbb{R}^{M \times N}$  — górna "trójkatna".

Jeśli rank(A) = N i ma rozkład QR jak powyżej, to macierz  $\hat{R}$  musi być nieosobliwa.

# Rozkład QR macierzy: algorytm rekurencyjny ( $p \approx N/2$ )

$$QR = A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad A_{11} \in \mathbb{R}^{p \times p}, \qquad p \approx N/2.$$

**Algorytm 2** A = QR metodą Householdera (wersja rekurencyjna)

if p = 1 then

**return** Q := H m. Householdera t.że  $H \cdot \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} r_{11} \\ 0 \end{bmatrix} =: R$ 

end if

Rozłóż 
$$Q_1R_1=\begin{bmatrix}A_{11}\\A_{21}\end{bmatrix}$$
 (rekurencja)

$$\begin{bmatrix} R_{12} \\ A_{22} \end{bmatrix} := Q_1^{\mathsf{T}} \begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$$

Rozłóż  $Q_{22}R_{22} = \vec{A}_{22}$  (rekurencja)

return 
$$Q = Q_1 \begin{bmatrix} I & & \\ & Q_{22} \end{bmatrix}$$
,  $R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}$ 

Uwaga: czynników  $Q_i$  nie wymnażamy!

## Rozkład QR macierzy: istnienie i algorytm

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad A_{11} \in \mathbb{R}^{p \times p}.$$

Niech

$$Q_1 R_1 = Q_1 \begin{bmatrix} \hat{R}_{11} \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

Zatem

$$Q_1^T A = \begin{bmatrix} \hat{R}_{11} & R_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}$$

Niech dalej

$$Q_{22}R_{22} = \tilde{A}_{22},$$

Wtedy ostatecznie

$$A = \underbrace{Q_1 Q_2}_{Q} \underbrace{\begin{bmatrix} \hat{R}_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}}_{P} \qquad \text{gdzie } Q_2 = \begin{bmatrix} I & \\ & Q_{22} \end{bmatrix}.$$

# QR iteracyjnie metodą Householdera (p = 1)

**Algorytm 3** A = QR metodą Householdera (wersja z iteracją)

$$\begin{aligned} & \text{for } k = 1: N \\ & \text{Podziel } A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{bmatrix}, \qquad a_{11} \in \mathbb{R}. \\ & Q_k := \text{m. Householdera t.że } H \cdot \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} r_{kk} \\ 0 \end{bmatrix}; \\ & \begin{bmatrix} r_{12} \\ A_{22} \end{bmatrix} := Q_k^T \begin{bmatrix} a_{12} \\ A_{22} \end{bmatrix} \\ & A := A_{22} \end{aligned}$$

end

86

return 
$$Q = Q_1 \begin{bmatrix} 1 & & \\ & Q_2 \end{bmatrix} \cdots \begin{bmatrix} I_{k-1} & & \\ & Q_k \end{bmatrix} \cdots$$
,  $R = \begin{bmatrix} r_{11} & r_{12} \\ 0 & \ddots \end{bmatrix}$ 

# Koszt rozkładu QR (iteracyjnie metodą Householdera)

$$T(M, N) = \underbrace{K_1 \cdot M}_{\text{wyzn. } H} + \underbrace{4 \cdot M \cdot (N-1)}_{\text{obl. } H \cdot \begin{bmatrix} a_{12} \\ A_{22} \end{bmatrix}} + \underbrace{T(M-1, N-1)}_{\text{pozost. kroki}}$$

Zatem sumarycznie

$$T(M,N) = 4 \sum_{k=1}^{N} (N-k)(M-k+1) + K_1 \sum_{k=1}^{N} (M-k+1) \approx 2MN^2 - \frac{2}{3}N^3$$

(z pominięciem wyrazów rzędu niższego niż 3.)

88

90

## Dygresja: jak używać wyniku

W wyniku dostajemy nie A = QR, ale

$$A = \underbrace{Q_1 \cdot Q_2 \cdots Q_N}_{=Q} \cdot R, \qquad Q_i \in \mathbb{R}^{M \times M}.$$

Jak obliczać wyrażenia postaci

$$X = Q \cdot B$$
?

Źle:

$$Q = Q_1 \cdot Q_2 \cdots Q_N ???$$

$$X = Q \cdot B$$

Dobrze:

$$X = B$$
  
for  $i = N:-1:1$   
 $X = Q_i \cdot X$   
end

...dodatkowo wykorzystując postać  $Q_i$ !

# Numeryczna poprawność algorytmu rozkładu QR (iteracyjnie metoda Householdera)

#### Twierdzenie

Niech  $\tilde{R}$  będzie macierzą trójkątną wyznaczoną w fl algorytmem rozkładu QR (iteracyjnie, z metodą Householdera). Istnieje ortogonalna  $Q = H_1 \cdots H_N$  taka, że

$$A + \Delta = Q \begin{bmatrix} ilde{R} \ 0 \end{bmatrix}, \qquad ext{oraz } \|\Delta_j\|_2 \leqslant K \cdot ext{MN} \|a_j\|_2 \cdot 
u,$$

przy czym  $H_k$  — macierz Householdera wyznaczona dokładnie dla podmacierzy obliczonej w fl na k-tym kroku algorytmu.

Dowód pomijamy.

# Liniowe zadanie najmniejszych kwadratów

#### Problem (LZNK)

Niech  $A \in \mathbb{R}^{M \times N}$ ,  $M \geqslant N$  oraz rank(A) = N i niech  $b \in \mathbb{R}^M$ . Znaleźć  $x \in \mathbb{R}^N$  taki, że

$$||b - Ax||_2 \rightarrow \min!$$

tzn.

$$||b - Ax||_2 \leqslant ||b - Ay||_2 \qquad \forall y$$

# Rozwiązywanie LZNK przez rozkład QR

Jeśli znamy rozkład QR macierzy A pełnego rzędu,

$$A = QR = \begin{bmatrix} \hat{Q} & \tilde{Q} \end{bmatrix} \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$$

zadanie staje się banalne:

$$\begin{split} \|b - Ax\|_{2}^{2} &= \|b - QRx\|_{2}^{2} = \|Q(Q^{T}b - Rx)\|_{2}^{2} \\ &= \|Q^{T}b - Rx\|_{2}^{2} = \|\begin{bmatrix} \hat{Q}^{T} \\ \tilde{Q}^{T} \end{bmatrix}b - \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}x\|_{2}^{2} \\ \|\begin{bmatrix} \hat{Q}^{T}b - \hat{R}x \\ \tilde{Q}^{T}b \end{bmatrix}\|_{2}^{2} &= \underbrace{\|\hat{Q}^{T}b - \hat{R}x\|_{2}^{2}}_{\text{naimnieisze, gdy } \hat{R}x = \hat{Q}^{T}b} + \|\tilde{Q}^{T}b\|_{2}^{2} \end{split}$$

## Algorytm 4 Rozwiązywanie LZNK

| Wyznacz rozkład QR macierzy A   | $\triangleright$ koszt: $\mathcal{O}(MN^2)$              |
|---------------------------------|----------------------------------------------------------|
| Oblicz $\hat{b} := \hat{Q}^T b$ | ⊳ koszt: $\mathcal{O}(MN)$                               |
| Rozwiąż $\hat{R}x=\hat{b}$      | $\triangleright$ koszt: $\mathcal{O}(N^2)$ <sub>92</sub> |
| return x                        |                                                          |

# Liniowe zadanie najmniejszych kwadratów — układ normalny

Skoro

$$x = \hat{R}^{-1} \hat{Q}^T b,$$

to mnożąc przez (nieosobliwą)  $\hat{R}^T\hat{R}$  mamy

$$\hat{R}^T \hat{R} \times = \hat{R}^T \hat{Q}^T b = \begin{bmatrix} \hat{R}^T & 0 \end{bmatrix} \begin{bmatrix} \hat{Q}^T \\ \tilde{Q}^T \end{bmatrix} b = R^T Q^T b = A^T b.$$

Z drugiej strony,  $\hat{R}^T\hat{R} = \hat{R}^T\underbrace{\hat{Q}^T\hat{Q}}_{I}\hat{R} = A^TA$ , więc ostatecznie x jest rozwiązaniem **układu równań normalnych** 

$$A^T A x = A^T b$$

## Dygresja: układ równań liniowych przez rozkład QR

Jeśli A — kwadratowa nieosobliwa,

$$A = QR$$

- Q ortogonalna,  $Q^TQ = I$
- R górna trójkątna

Układ równań:

$$Ax = b$$
  $\Longrightarrow$   $Q\underbrace{Rx}_{=:v} = b,$ 

skąd algorytm:

- 1.  $y = Q^T b$  (koszt:  $\mathcal{O}(N^2)$ )
- 2. Rozwiąż układ z macierzą trójkątną Rx = y. (koszt:  $\mathcal{O}(N^2)$ )

Ale rozkład QR wymaga ok. 2 razy więcej flopów niż rozkład LU.

93

# Liniowe zadanie najmniejszych kwadratów — układ normalny

$$A^T A x = A^T b$$
.

Własności  $A^T A$ :

- mała  $(N \times N)$
- symetryczna
- dodatnio określona (bo A jest pełnego rzędu),

Stąd alternatywny algorytm rozwiązania LZNK:

Oblicz 
$$B = A^T A$$
 (koszt  $MN^2$ )

Wyznacz rozkład Cholesky'ego  $B = LL^T$  (koszt  $\mathcal{O}(N^3)$ )

Rozwiąż układ  $LL^Tx = A^Tb$  (koszt  $\mathcal{O}(MN)$ )

Jest ok. dwa razy taniej, ale ten sposób może mieć gorsze własności numeryczne (od metody wykorzystującej rozkł. QR macierzy A)

#### Rozkład SVD

## Twierdzenie (rozkład w/g wartości szczególnych)

Niech  $A \in \mathbb{R}^{M \times N}$ ,  $M \geqslant N$ . Istnieje rozkład

$$A = U\Sigma V^T$$
:

- $U \in \mathbb{R}^{M \times N}$  ortogonalna,  $U^T U = I$
- $V \in \mathbb{R}^{N \times N}$  ortogonalna,  $V^T V = I$
- $\Sigma \in \mathbb{R}^{N \times N}$  diagonalna,  $\Sigma = diag(\sigma_1, \dots, \sigma_N)$ ,  $\sigma_1 \geqslant \dots \geqslant \sigma_N \geqslant 0$ .

Gdy M < N, rozkład SVD definiujemy dla macierzy  $A^T$ . Kolumny U, V: lewe/prawe wektory szczególne.  $\sigma_i$ : wartości szczególne.

96

98

# Rozkład SVD — własności

#### Twierdzenie

- 1. Wartości własne  $A^TA$  są równe  $\sigma_1^2, \ldots, \sigma_N^2$
- 2. Jeśli  $\sigma_1 \geqslant \cdots \geqslant \sigma_r > \sigma_{r+1} = \ldots = \sigma_N = 0$ , to rząd A jest równy r.
- 3.  $A = \sum_{i=1}^{N} \sigma_i u_i v_i^T$ , gdzie  $u_i$ ,  $v_i$  kolumny U, V.
- 4. **Tw. Eckarta–Younga**<sup>1</sup> Macierz rzędu  $\leq k \leq N$  najbliższa A w normie  $\|\cdot\|_2$  lub  $\|\cdot\|_F$  to  $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ .

*Dowód:* Na tablicy. □

#### Rozkład SVD

- $A = U\Sigma V^T$  rozkład wąski
- $A = \underbrace{\begin{bmatrix} U & \tilde{U} \end{bmatrix}}_{\text{ortog. } M \times M} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$  rozkład pełny

Rozkład SVD jest kosztowny.

- Jest trudniejszy od zadania własnego, które jest trudniejsze od układu równań liniowych
- Wymaga procesu iteracyjnego, który dopiero w granicy jest zbieżny do rozwiązania
- W praktyce, ze względu na ograniczenie precyzji wyniku w fl, wykonuje się skończoną liczbę iteracji.
   Koszt ≈ O(MN²) + O(N³) (stałe kilkakrotnie większe niż dla rozkładu QR)

97

#### Rozkład SVD — zastosowania

- Wyznaczenie rzędu macierzy
- PCA, używane w uczeniu maszynowym
- Rozwiązanie LZNK, gdy A jest pełnego rzędu<sup>2</sup>: Skoro x spełnia

to 
$$A^T A = (V \Sigma \underbrace{U^T)(U}_{I} \Sigma V^T) = V \Sigma^2 V^T$$
, wiec

$$A^{T}Ax = A^{T}b \iff V\Sigma^{2}V^{T}x = V\Sigma U^{T}b \iff V^{T}x = \Sigma^{-1}U^{T}b \iff x = V\Sigma^{-1}U^{T}b$$

( $\Sigma$  nieosobliwa, bo rank(A) = N.)

Rozwiązanie LZNK, gdy A nie jest pełnego rzędu: o tym za

<sup>&</sup>lt;sup>1</sup>A naprawde Schmidta–Mirsky'ego.

#### Uwarunkowanie LZNK

#### **Twierdzenie**

Niech  $A \in \mathbb{R}^{M \times N}$ ,  $M \geqslant N$  oraz rank(A) = N i niech  $b \in \mathbb{R}^M$ .

$$\underbrace{\|b - Ax\|_2 \to \min!}_{\text{zad. dokladne}} \underbrace{\|(b + \delta) - (A + \Delta)x\|_2 \to \min!}_{\text{zad. zaburzone}}$$

Niech  $\epsilon = \max\{\frac{\|\Delta\|_2}{\|A\|_2}, \frac{\|\delta\|_2}{\|b\|_2}\}$ ,  $\operatorname{cond}_2(A)\epsilon < 1$ . Wtedy zadanie zaburzone ma dokładnie jedno rozwiązanie  $\tilde{x}$  oraz

$$\frac{\|\tilde{x} - x\|_{2}}{\|x\|_{2}} \leqslant \epsilon \underbrace{\left(2\frac{\mathsf{cond}_{2}(A)}{\mathsf{cos}\,\theta} + \mathsf{tg}\,\theta \cdot \mathsf{cond}_{2}^{2}(A)\right)}_{=:\mathsf{cond}_{LZNK}(A,b)} + \mathcal{O}(\epsilon^{2}),$$

$$gdzie \sin \theta = \frac{\|b - Ax\|_2}{\|b\|_2}, \operatorname{cond}_2(A) := \frac{\max \sigma_i}{\min \sigma_i}.$$

100

## Nieregularne liniowe zadanie najmniejszych kwadratów

## Problem (nieregularne LZNK)

 $A \in \mathbb{R}^{M \times N}$ ,  $M \geqslant N$ , ale rank(A) < N.

Szukamy  $x \in \mathbb{R}^N$  t.że

$$||b - Ax||_2 \rightarrow \min!$$

Skoro  $ker(A) \neq 0$ , to rozwiązanie nieregularnego LZNK nie jest jednoznaczne:

x minimalizuje  $||b - Ax||_2 \implies x + z$ , gdzie  $z \in \ker(A)$ , też minimalizuje...

#### **Uwarunkowanie LZNK**

$$\operatorname{cond}_{LZNK}(A, b) = 2 \frac{\operatorname{cond}_2(A)}{\operatorname{cos} \theta} + \operatorname{tg} \theta \cdot \operatorname{cond}_2^2(A)$$

gdzie 
$$\sin \theta = \frac{\|b - Ax\|_2}{\|b\|_2}$$
,  $\operatorname{cond}_2(A) := \frac{\max \sigma_i}{\min \sigma_i}$ .

- **przypadek typowy**:  $\sin \theta \approx 0$  (mała reszta)  $\implies \operatorname{cond}_{LZNK}(A, b) \approx \operatorname{cond}_2(A)$
- $\sin \theta \approx 1$  (duża reszta i  $x \approx 0$ )  $\implies$   $\operatorname{cond}_{LZNK}(A,b) \gg 1$
- pozostałe:  $\implies$  cond<sub>LZNK</sub> $(A, b) \approx \text{cond}_2^2(A)$

Zauważmy, że  $cond_2(A^TA) = cond_2^2(A)$  — jeszcze jeden powód by r-ń normalnych używać z rozwagą.

101

# Nieregularne LZNK — rozwiązanie przez SVD

Niech 
$$A = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$
, przy czym  $U = \begin{bmatrix} u_1 & \dots & u_M \end{bmatrix}$ ,  $V = \begin{bmatrix} v_1 & \dots & v_N \end{bmatrix}$ . Mamy

$$||b - Ax||_2^2 = ||b - U\Sigma V^T x||_2^2 = ||U(U^T b - \Sigma V^T x)||_2^2$$

$$= \|U^T b - \sum \underbrace{V^T x}_{=:y}\|_2^2 = \|\begin{bmatrix} u_1^T b \\ \vdots \\ u_r^T b \\ \vdots \\ u_M^T b \end{bmatrix} - \begin{bmatrix} \sigma_1 y_1 \\ \vdots \\ \sigma_r y_r \\ 0 \\ \vdots \end{bmatrix}\|_2^2$$

$$= \sum_{i=1}^r (\sigma_i y_i - u_i^T b)^2 + \sum_{i=r+1}^M (u_i^T b)^2$$

# Nieregularne LZNK — rozwiązanie przez SVD

$$||b - Ax||_2^2 = \sum_{i=1}^r (\sigma_i y_i - u_i^T b)^2 + \sum_{i=r+1}^M (u_i^T b)^2$$

Czyli x = Vy minimalizuje resztę wtw gdy

$$y_i = \frac{u_i^T b}{\sigma_i}, \quad i = 1, \dots, r.$$
 (pozostałe  $y_i$  — dowolne)

#### Wniosek

Rozwiązanie  $x^*$  o najmniejszej normie, nieregularnego LZNK  $\|b - Ax\|_2 \to \min!$  (gdzie rank(A) = r) jest jednoznacznie określone i dane wzorem  $x^* = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i$ .

**Dwd:** Rzeczywiście,  $||x^*||_2 = ||Vy||_2 = ||y||_2$ . A przecież  $||y||_2$  jest minimalna, bo wybieramy  $y_{r+1} = \ldots = y_M = 0$ .

104

# Metody oparte na rozszczepieniu macierzy

Niech A = M - Z, przy czym M — nieosobliwa.

$$Ax^* = b \iff (M-Z)x^* = b \iff Mx^* = b + Zx^* \iff x^* = M^{-1}(b + Zx^*).$$

Rozwiązanie  $x^*$  spełnia więc

$$x^* = \underbrace{B}_{M^{-1}Z} \cdot x^* + \underbrace{c}_{M^{-1}b}$$

Możemy więc spróbować użyć iteracji prostej:

$$x_{k+1} = Bx_k + c.$$

Jak dobrać M, by

- $x_k \rightarrow x^*$  niezależnie od  $x_0$
- krok iteracji był niedrogi?

# Metody iteracyjne dla układów równań liniowych

# Zbieżność metod rozszczepienia

Niech  $x^* = Bx^* + c$ .

## Twierdzenie (o zbieżności metody rozszczepienia)

Ciąg

$$x_{k+1} = Bx_k + c$$

jest zbieżny do  $x^*$  dla każdego  $x_0 \iff \rho(B) < 1$ ,

gdzie

$$\rho(B) = \max\{|\lambda| : \lambda \text{ jest w.wł } B\}$$

to promień spektralny macierzy B.

# Zbieżność metod rozszczepienia

## Twierdzenie (o liniowej zbieżności metody rozszczepienia)

Jeśli ||B|| < 1, to ciąg  $x_{k+1} = Bx_k + c$  jest zbieżny do  $x^*$  dla każdego  $x_0$  oraz

$$||x_{k+1} - x^*|| \le ||B|| \cdot ||x_k - x^*||.$$

Dowód:

$$x_{k+1} - x^* = (Bx_k + c) - (Bx^* + c) = B(x_k - x^*),$$

skad

$$||x_{k+1} - x^*|| = ||B(x_k - x^*)|| \le ||B|| ||x_k - x^*||.$$

Przez indukcję,

$$||x_k - x^*|| \le ||B||^k ||x_0 - x^*|| \to 0.$$

# Przykłady metod opartych na rozszczepieniu

Niech A = L + D + U, D = diag(A), L (odp. U) — dolna (odp. górna) trójkątna z zerową diagonalą.

$$x_{k+1} = x_k + M^{-1}(b - Ax_k)$$

• Metoda Jacobiego:

$$M = D$$
,

• Metoda Gaussa-Seidela:

$$M = D + L$$

• Metoda SOR:

$$M = \frac{1}{\omega}D + L.$$

W niektórych przypadkach znamy optymalne  $\omega.$ 

Są to metody **algebraiczne**: wymagają dostępu do elementów macierzy.

## Zbieżność metod rozszczepienia

#### Wniosek (metody oparte na rozszczepieniu)

Niech A = M - Z oraz A, M — nieosobliwe.  $Ax^* = b$ .

• Jeśli  $\rho(M^{-1}Z) < 1$ , to metoda iteracyjna

$$Mx_{k+1} = Zx_k + b$$

jest zbieżna do  $x^*$  z każdego  $x_0$ .

• Jeśli dodatkowo  $\gamma := \|M^{-1}Z\| < 1$ , to dodatkowo

$$||x_{k+1} - x^*|| \le \gamma \cdot ||x_k - x^*||.$$

108

# Metoda Jacobiego

$$x_{k+1} = x_k + D^{-1}(b - Ax_k)$$

#### Twierdzenie

Jeśli A jest diagonalnie dominująca,

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}| \qquad \forall i = 1, \dots, N,$$

to m. Jacobiego jest zbieżna do  $x^*$  dla każdego  $x_0$ .

Dowód: Wyraz (i,j) macierzy  $M^{-1}Z$  wynosi 0 dla i=j oraz  $-a_{ii}/a_{ii}$  dla  $i\neq j$ , więc

$$||M^{-1}Z||_{\infty} = \max_{i} \sum_{i \neq i} |a_{ij}|/|a_{ii}| < 1.$$

# Metody projekcji

W naszych metodach,

$$x_{k+1} = x_k + \delta_k.$$

Jak wybierać  $\delta_k$ ? Idealna poprawka,  $\delta_k^*$ , spełniałaby:

$$A\delta_k^* = r_k \implies x_{k+1} = x^*$$

Wyznaczmy *przybliżoną* poprawkę idealną:  $\delta_k = V_k a_k$ , gdzie  $V_k, U_k \in \mathbb{R}^{N \times r}$  max. rzędu t. że  $a_k \in \mathbb{R}^r$  spełnia

$$\underbrace{U_k^T A V_k}_{r \times r} a_k = U_k^T r_k.$$

111

## Metody projekcji — przykłady

Metoda najmniejszego residuum

$$V_k = r_k, \qquad U_k = AV_k = Ar_k.$$

$$a_k = \frac{r_k^T A^T r_k}{r_k^T A^T A r_k},$$
  
$$x_{k+1} = x_k + a_k r_k.$$

#### Twierdzenie

Załóżmy, że macierz  $A_{\text{sym}} = (A + A^T)/2$  jest dodatnio określona i oznaczmy  $\mu = \lambda_{\min}(A_{\text{sym}}) > 0$ . Wtedy

$$||r_{k+1}||_2 \leqslant \left(1 - \frac{\mu^2}{||A||_2^2}\right)^{1/2} ||r_k||_2.$$

## Metody projekcji — przykłady

Metoda najszybszego spadku dla  $A = A^T > 0$ :

$$U_k = V_k = r_k \implies a_k = \frac{r_k^T r_k}{r_k^T A r_k}$$

$$x_{k+1} = x_k + a_k r_k$$

#### Twierdzenie (o zbieżności metody najszybszego spadku)

Jeśli 
$$A = A^T > 0$$
, to

$$||x^* - x_{k+1}||_A \leqslant \frac{\kappa - 1}{\kappa + 1} ||x^* - x_k||_A,$$

gdzie 
$$\kappa = \text{cond}_2(A) = \lambda_{\text{max}}(A)/\lambda_{\text{min}}(A), \|x\|_A^2 := x^T A x.$$

112

# Metody przestrzeni Kryłowa

Niech  $r_k = b - Ax_k$ .

Zdefiniujmy **przestrzeń Kryłowa**  $K_k = lin\{r_0, Ar_0, \dots, A^{k-1}r_0\}$ . Oczywiście,

$$K_0 \subseteq K_1 \subseteq \ldots \subseteq K_k \subseteq K_{k+1} \subseteq \ldots \subseteq \mathbb{R}^N$$
.

Definiujemy  $x_k$  jako rozwiązanie zadania minimalizacji

$$||x - x^*|| = \min!$$
 albo  $||b - Ax|| = \min!$ 

dla  $x \in x_0 + K_k$ .

Wybór normy i minimalizowanej wielkości determinuje konkretną metodę iteracyjną (są też inne m. Kryłowa).

Będą to metody **operatorowe**: wystarczy dostęp do procedury obliczania  $y := A \cdot x$ .

# Metoda CG (gradientów sprzeżonych)

Dla  $A = A^{T} > 0$ . Iteracja  $x_k$  zdefiniowana przez  $||x - x^*||_A = \min!$ , tzn.

$$||x_k - x^*||_A \le ||x - x^*||_A \quad \forall x \in x_0 + K_k.$$

Jest to LZNK: Gdy kolumny  $V_k$  stanowią bazę  $K_k$ , to  $x_k = x_0 + V_k a i$ 

$$||x_k - x^*||_A^2 = ||A^{1/2}(x_k - x^*)||_2^2 = ||A^{1/2}(V_k a + x_0 - x^*)||_2^2$$

Układ normalny to  $V_k^T A V_k a = V_k^T A (x^* - x_0) = V_k^T r_0$ . Można go bardzo tanio rozwiązywać. (Jeśli zrobisz to źle, koszt k-tej iteracji wyniesie  $\mathcal{O}(N \cdot k^2)$  flopów plus  $N \times k$  pamieci.)

115

#### Metoda CG — zbieżność

## Twierdzenie (o zbieżności CG jako metody iteracyjnej)

Po k iteracjach metody CG,

$$||x_k - x^*||_A \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k ||x_0 - x^*||_A,$$

gdzie  $\kappa = \text{cond}_2(A) = \lambda_{\text{max}}(A)/\lambda_{\text{min}}(A)$ .

## Metody przestrzeni Kryłowa

Zostały uznane za jedno z 10 najważniejszych osiągnięć algorytmicznych XX wieku.

## Metoda CG — implementacia

Wyprowadzenie tego algorytmu jest nietrywialne.

$$\begin{split} r &= b - Ax; \\ \rho_0 &= \|r\|_2^2, \ \beta = 0, \ k = 1 \\ \textbf{while not stop do} \\ p &= r + \beta p \\ \textbf{w} &= Ap \\ \alpha &= \rho_{k-1}/p^T w \\ x &= x + \alpha p \\ r &= r - \alpha w \\ \rho_k &= \|r\|_2^2; \ \beta = \rho_k/\rho_{k-1} \\ k &= k + 1 \end{split}$$

end while

Kosz jednej iteracji: SPMV(A, x) + $\mathcal{O}(N)$ . Pamięć:  $\mathcal{O}(N)$ .  $=2 \cdot nnz(A)$ 

#### Metoda GMRES

Iteracja  $x_k$  zdefiniowana przez  $||r||_2 = \min!$ , tzn.

$$||r_k||_2 = ||b - Ax_k||_2 \le ||b - Ax||_2 \quad \forall x \in x_0 + K_k.$$

Inteligentnie zaimplementowana m. GMRES ma koszt k-tej iteracji

- $\mathcal{O}(N \cdot k)$  flopów (trzeba rozwiązywać LZNK, aczkolwiek dość tanie)
- $\mathcal{O}(N \cdot k)$  pamieci (trzeba pamietać baze p-ni Kryłowa)

# Ściskanie macierzy

$$A \cdot x = b$$

## Przykry fakt

Szybkość zbieżności m. iteracyjnych zależy od własności spektralnych A, np. CG zależy od  $\operatorname{cond}_2(A) = \lambda_{\max}(A)/\lambda_{\min}(A)$ .

**Pomysł:** Zadanie równoważne (*M* nieosobliwa):

$$\underbrace{\mathit{MA}}_{\text{nowa macierz}} \cdot x = \mathit{Mb}$$

nowa macierz może mieć znacznie lepsze własności!

119

# Sposoby reprezentacji macierzy rzadkich

Najbardziej popularne formaty:

- współrzędnych
- CSR/CSC

# Ściskanie macierzy

Wymagania:

- MA ma korzystniejsze własności spektralne z punktu używanej metody iteracyjnej,
- *M* jest łatwa w "konstrukcji",
- *M* jest tania w mnożeniu przez wektor.

Kilka nietrafionych wyborów:

- $M = A^{-1}$  ??
- M = 1 ??

Lepsze wybory (" $M \approx A^{-1}$ , ale tania"):

- jeden (kilka?) kroków prostej metody iteracyjnej
- niepełny rozkład LU, itp.
- najlepiej: dobrać specjalnie do konkretnego zadania!

120

# Format współrzędnych

Macierz A rozmiaru  $N \times M$ , licząca nnz(A) niezerowych elementów.

- V tablica typu double,
- I, J tablice typu int;

Wszystkie o długości nnz(A), przy czym zachodzi

$$A_{I[k],J[k]} = V[k], \qquad k = 0,..., nnz(A) - 1,$$



# Formaty CSR/CSC

Zajmiemy się **CSC** = **Compressed Sparse Column**.

Analogicznie działa CSR = Compressed Sparse Row.

- V tablica typu **double**, kolejne el-ty A kolumnami
- I tablica typu **int**, długości nnz(A)
- P tablica typu **int**, długości M+1



P[0]=0, P[M]=nnz(A).

$$A_{I[k], j} = V[k], \qquad k = P[j-1], \dots, P[j] - 1.$$

123

## Zagadnienie własne — zadania obliczeniowe

#### **Problem**

Znaleźć  $v \in \mathbb{C}^N$  oraz  $\lambda \in \mathbb{C}$  t. że

$$Av = \lambda v, \qquad ||v|| = 1.$$

W praktyce często spotyka się następujące wersje tego zadania:

- znaleźć największą/najmniejszą (co do modułu) wartość własną (i ew. odp. wektor własny)
- znaleźć wartość własną bliską zadanej liczbie (i ew. odp. wektor własny)
- znaleźć wszystkie wartości własne (i ew. odp. wektory własne)

# Zagadnienie własne

# Przypomnienie z GAL-u

• Każda macierz  $A \in \mathbb{R}^{N \times N}$ , symetryczna ma rozkład

$$A = Q \Lambda Q^T$$

gdzie  $Q \in \mathbb{R}^{N \times N}$  — macierz ortogonalna,  $Q^T Q = I$ ,

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_N \end{bmatrix}$$

 $\lambda_i \in \mathbb{R}$  — wartości własne A. Kolumny Q — wektory własne A.

## Metoda potęgowa

#### **Problem**

Zakładamy, że  $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_N|$ . Wyznaczyć parę własną  $(\lambda_1, \nu_1)$ .

Wybieramy (losowy?)  $x_0$ .

while not stop do

$$x_{k+1} = Ax_k$$

$$x_{k+1} = x_{k+1} / ||x_{k+1}||$$

$$k = k + 1$$

end while

Ta metoda legła u podstaw PageRank. To, że  $\lambda=1$  jest jedyną dominującą w.wł., wynika z tw. Perrona.

126

# Iloraz Rayleigh

#### **Problem**

Mając przybliżony wektor własny v, jak dobrać dla niego  $\lambda$ ?

Zminimalizować resztę,

$$||Av - \lambda v||_2 \rightarrow \min!$$

To jest LZNK, a rozwiązaniem jest

$$\lambda = \frac{x^H A x}{x^H x} \qquad \text{(iloraz Rayleigh)}$$

*Dowód:* Na tablicy. □

## Metoda potęgowa

Pomijając normowanie, mamy:

$$x_k = A \cdot x_{k-1} = A^2 \cdot x_{k-2} = \ldots = A^k \cdot x_0.$$

#### Twierdzenie

Jeśli  $x_0^T v_1 \neq 0$ , to  $x_k$  dąży do kierunku  $v_1$ , gdy  $k \to \infty$ .

*Dowód:* Tylko dla przypadku, gdy istnieje baza ortogonalna złożona z wektorów własnych A. Zatem  $x_0 = \sum_i \alpha_i v_i, \ \alpha_1 \neq 0$  oraz

$$x_k = A^k x_0 = \sum_i \lambda_i^k \alpha_i v_i = \lambda_1^k (\alpha_1 v_1 + \sum_{i>1} \underbrace{\left(\frac{\lambda_i}{\lambda_1}\right)^k}_{\downarrow 0} \alpha_i v_i).$$

Gdy  $|\lambda_2|/|\lambda_1| \approx 1$ , zbieżność może być wolna.  $\square$ 

**Błąd zaokrągleń pomaga**: nawet jeśli  $x_0^T v_1 = 0$ , to wskutek fl składowa  $v_1$  ma szansę się pojawić w trakcie obliczeń.

## Transformacje spektrum

Jeśli pary własne A to  $(\lambda_i, v_i)$ , to wtedy

| Macierz          | wart. wł.                   | wekt. wł. | zastrz.               |
|------------------|-----------------------------|-----------|-----------------------|
| Α                | $\lambda_i$                 | Vi        |                       |
| $A - \mu I$      | $\lambda_i - \mu$           | Vi        |                       |
| $A^{-1}$         | $\frac{1}{\lambda_i}$       | Vi        | A nieosobl.           |
| $(A-\mu I)^{-1}$ | $\frac{1}{\lambda_i - \mu}$ | Vi        | $A - \mu I$ nieosobl. |
| D ( / N .        |                             |           |                       |

Dowód: Na tablicy. □

## Odwrotna metoda potęgowa

#### **Problem**

Zakładamy, że  $|\lambda_1| \geqslant |\lambda_2| \geqslant \ldots \geqslant |\lambda_{N-1}| > |\lambda_N| > 0$ . Wyznaczyć parę własną  $(\lambda_N, v_N)$ .

Wartości własne  $A^{-1}$ :

$$\frac{1}{|\lambda_N|} > \frac{1}{|\lambda_{N-1}|} \geqslant \ldots \geqslant \frac{1}{|\lambda_1|}.$$

Metoda potęgowa dla  $A^{-1}$ , czyli **odwrotna metoda potęgowa**:

Wyznacz rozkład, np. PA = LU

while not stop do

Rozwiąż  $LUx_{k+1} = Px_k$ 

$$x_{k+1} = x_{k+1} / ||x_{k+1}||$$

k = k + 1

end while

Jeśli zrobisz to źle, koszt jednej iteracji rośnie N-krotnie.

130

132

#### RQI

Zbieżność odwrotnej metody potęgowej z przesunięciem można przyspieszyć.

Zamiast:

"Poprawiamy"  $\mu$ :

Odwrotna metoda potęgowa

(ze stałym przesunięciem)

Wybieramy  $x_0$ .

while not stop do

Rozwiąż  $(A - \mu I)x_{k+1} = x_k$ 

 $x_{k+1} = x_{k+1} / ||x_{k+1}||$ 

k = k + 1

end while

 $\lambda^* = x_k^H A x_k$ 

Metoda RQI

Wybieramy  $x_0$ .  $\lambda_0 = \mu$ 

while not stop do

Rozw.  $(A - \frac{\lambda_k I}{\lambda_k I}) x_{k+1} = x_k$ 

 $x_{k+1} = x_{k+1} / ||x_{k+1}||$ 

 $\lambda_{k+1} = x_{k+1}^H A x_{k+1}$ 

k = k + 1

end while

RQI = Rayleigh Quotient Iteration

Kłopot: nie mamy gwarancji, że zbiegniemy do najbliższej  $\mu$ .

## Wyznaczanie wartości własnej najbliższej zadanej liczbie

#### **Problem**

Dla zadanej liczby  $\mu$  szukamy w. własnej  $\lambda^*$  takiej, że  $|\lambda^* - \mu| \leqslant |\lambda_i - \mu|$  dla każdego i.

Wartości własne  $(A-\mu)^{-1}$ :  $\frac{1}{|\lambda_i-\mu|}$ .

Metoda potęgowa dla  $(A - \mu I)^{-1}$ , czyli **odwrotna metoda potęgowa z przesunięciem**:

Wyznacz rozkład, np.  $P(A - \mu I) = LU$ 

while not stop do

Rozwiąż  $LUx_{k+1} = Px_k$ 

$$x_{k+1} = x_{k+1} / ||x_{k+1}||$$

$$k = k + 1$$

end while

$$\lambda^* = x_k^H A x_k$$

$$\triangleright x_k^H x_k = 1$$

Jeśli zrobisz to źle, koszt jednej iteracji rośnie N-krotnie.

## Pełne zagadnienie własne

#### **Problem**

Znaleźć wszystkie wartości własne (i ew. wektory własne) A.

Co do zasady, **nie należy** tego robić przez wyznaczenie, a potem znalezienie miejsc zerowych *wielomianu charakterystycznego* Warto wcześniej sprowadzić *A* do prostszej postaci.

• Można skonstruować sekwencję przekształceń ortog.  $Q_i$ , które kosztem  $\mathcal{O}(N^3)$  sprowadzą A do postaci **Hessenberga**:

$$Q_{N-1} \cdots Q_1 A Q_1^T \cdots Q_{N-1}^T = egin{bmatrix} * & * & * & * & \cdots & * \ * & * & * & * & \cdots & * \ * & * & * & * & \cdots & * \ & * & * & * & \cdots & * \ & \ddots & \ddots & \ddots & \vdots \ & & \ddots & \ddots & \ddots & * \ & & & * & * & * \end{bmatrix}$$

 Gdy A = A<sup>T</sup>, postać Hessenberga jest trójdiagonalna (i symetryczna).

## Metoda dziel i rządź

Pełne zadanie własne dla macierzy **symetrycznej**  $A = Q\Lambda Q^T$  Zakładamy, że A już została sprowadzona do postaci trójdiagonalnej.

$$A = \begin{bmatrix} a_1 & b_1 \\ b_1 & a_2 & \ddots \\ & \ddots & \ddots & b_{N-1} \\ & & b_{N-1} & a_N \end{bmatrix} = \begin{bmatrix} T_1 \\ & T_2 \end{bmatrix} + b_m u u^T,$$

gdzie  $T_1$ ,  $T_2$  trójdiagonalne i symetryczne,  $m \approx N/2$ .

$$u = e_m + e_{m+1} = [0, \cdots, 0, 1, 1, 0, \cdots]^T$$

 $b_m u u^T$  ma tylko cztery niezerowe elementy, każdy równy  $b_m$ .

134

# Deflacja

#### Stwierdzenie

Jeśli

$$A = \begin{bmatrix} T_{11} & T_{12} \\ & T_{22} \end{bmatrix}$$

 $i T_{11}, T_{22}$  są kwadratowe, to

$$\sigma(A) = \sigma(T_{11}) \cup \sigma(T_{22}).$$

Często  $T_{22}$  jest rozmiaru  $1 \times 1$ .

*Dowód:*  $det(A - \lambda I) = det(T_{11} - \lambda I) det(T_{22} - \lambda I)$ .  $\square$ 

#### Wniosek

Jeśli znamy wartości własne  $T_{22}$ , wystarczy znaleźć wartości własne  $T_{11}$ .

# Metoda dziel i rządź (idea)

$$A = \begin{bmatrix} T_1 & \\ & T_2 \end{bmatrix} + b_m u u^T$$

**Dziel**: załóżmy, że już rozwiązaliśmy zadanie dla  $T_i$ :

 $Q_i^T T_i Q_i = D_i$ , i = 1, 2. Rządź: Wtedy

$$\begin{bmatrix} Q_1 & & \\ & Q_2 \end{bmatrix}^T \left( \begin{bmatrix} T_1 & & \\ & T_2 \end{bmatrix} + b_m u u^T \right) \begin{bmatrix} Q_1 & & \\ & Q_2 \end{bmatrix} = \underbrace{\begin{bmatrix} D_1 & & \\ & D_2 \end{bmatrix}}_{=D_1 \text{ diagonality}} + b_m v v^T.$$

Jeśli  $\lambda \notin \sigma(D)$ , to wartości własne  $\lambda$  macierzy  $D + b_m v v^T$  spełniają równanie

$$f(\lambda) \equiv 1 + b_m \sum_{j=1}^N \frac{v_j^2}{d_j - \lambda} = 0.$$

Ostateczny koszt:  $O(N^3)$  z małą stałą.

135

# Metoda QR — algorytm bazowy

Pełne zadanie własne dla macierzy niesymetrycznej

$$A_1 = A;$$
  
for  $k = 1: stop$   
wykonaj rozkład  $A_k = Q_k R_k;$   
 $A_{k+1} = R_k \cdot Q_k;$   
end

Zachodzi 
$$\sigma(A_k) = \sigma(A)$$
, bo  $A_{k+1} = \underbrace{R_k}_{=Q_k^T A_k} \cdot Q_k = Q_k^T A_k Q_k$ .

#### Twierdzenie (O zbieżności bazowej metody QR)

Niech wartości własne  $A \in R^{N \times N}$  spełniają  $|\lambda_1| > \ldots > |\lambda_N| > 0$  oraz macierz  $T = [v_1, \ldots, v_N]$  o kolumnach  $v_i$  złożonych z kolejnych wektorów własnych A ma taką własność, że  $T^{-1}$  ma rozkład LU,  $T^{-1} = LU$ .

Wtedy w metodzie QR ciąg macierzy  $Q_k$  jest zbieżny do macierzy diagonalnej, a ciąg  $A_k$  ma podciąg zbieżny do macierzy trójkątnej, której elementy diagonalne  $u_{ii}$  są równe  $\lambda_i$  dla  $i=1,\ldots,N$ .

138

140

## Wrażliwość wartości własnych

#### Twierdzenie (Bauera-Fikego)

Jeśli A jest diagonalizowalna,  $X^{-1}AX = D = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$  i  $\mu$  jest wartością własną  $A + \Delta$ , to

$$\min_{i} |\mu - \lambda_{i}| \leqslant \operatorname{cond}_{2}(X) \|\Delta\|_{2}.$$

*Dowód:* Na tablicy. □

#### Wniosek

Jeśli  $A = A^T$ , to w sytuacji powyżej  $\min_i |\mu - \lambda_i| \leq ||\Delta||_2$ .

#### Twierdzenie (Weyla)

Jeśli 
$$A=A^T$$
 i  $\Delta=\Delta^T$  oraz  $\lambda_1\geqslant \cdots \geqslant \lambda_N-w.w!~A, \qquad \tilde{\lambda}_1\geqslant \cdots \geqslant \tilde{\lambda}_N-w.w!~A+\Delta, \ to$   $|\lambda_i-\tilde{\lambda}_i|\leqslant \|\Delta\|_2.$ 

## Metoda QR z przesunięciem (idea)

 $A_1 = A;$  **for** k = 1: stopwybierz *sprytne* przesunięcie  $\sigma_k$ wykonaj rozkład  $A_k - \sigma_k I = Q_k R_k;$   $A_{k+1} = R_k \cdot Q_k + \sigma_k I;$ **end** 

Najprostsza strategia<sup>3</sup>:  $\sigma_k = a_{nn}$ , a potem deflacja.

Koszt wyznaczenia wszystkich wektorów i wartości własnych jest rzędu  $O(N^3)$  ze stałą równą około 30.

AFAIK nie jest znana "doskonała strategia", gwarantująca zbieżność dla każdej macierzy.

139

## Lokalizacja wartości własnych

#### Stwierdzenie

Jeśli  $\lambda$  — w. własna macierzy A, to

$$|\lambda| \leq ||A||,$$

gdzie ||A|| — norma indukowana przez normę wektorową.

#### Twierdzenie (Gerszgorina, o kołach)

Jeśli  $\lambda$  — w. własna macierzy A, to

$$\lambda \in \bigcup_{i=1}^{N} K_i$$

gdzie

$$K_i = \{z \in \mathbb{C} : |z - a_{ii}| \leqslant \sum_{j \neq i} |a_{ij}|\}.$$

<sup>&</sup>lt;sup>3</sup>Nie zawsze skuteczna; są lepsze.

## Interpolacja wielomianowa

#### Bazy wielomianowe — przykłady

$$p(x) = \sum_{i=0}^{N} \alpha_i \phi_i(x).$$

- "naturalna":  $\phi_i(x) = x^i$ ;
- Newtona:

$$\phi_0(x) = 1, \qquad \phi_i(x) = \prod_{j < i} (x - x_j),$$

gdzie  $x_0, \ldots, x_{N-1}$  — zadane punkty;

• Lagrange'a:

$$I_i(x) = \prod_{i \neq i} \frac{x - x_j}{x_i - x_j}$$

gdzie  $x_0, \ldots, x_N$  — zadane i różne punkty;

• Są też inne użyteczne bazy, o nich — innym razem

Odpowiednią dać rzeczy bazę!...

#### Bazy wielomianowe

Wielomian stopnia co najwyżej N:

$$p(x) = \sum_{i=0}^{N} a_i x^i.$$

- wszystkie wielomiany stopnia  $\leq N$  tworzy przestrzeń liniową wymiaru N+1, oznaczmy ją  $P_N$ .
- jeśli  $\phi_0, \dots, \phi_N$  są bazą p-ni  $P_N$ , to każdy  $p \in P_N$  daje się zapisać

$$p(x) = \sum_{i=0}^{N} \alpha_i \phi_i(x).$$

142

#### Obliczanie wartości wielomianu

Algorytm zależy od wyboru bazy!

W bazie Newtona (i naturalnej też):

Algorytm 5 (Hornera) Obliczanie wartości wielomianu w bazie Newtona  $w = p(x) = a_0 + a_1(x - x_0) + \ldots + a_N(x - x_0) \cdots (x - x_{N-1})$  $w = a_N;$ 

for k = N - 1 downto: 0  $w = w \cdot (x - x_k) + a_k$ :

end

return w

Koszt:  $\mathcal{O}(N)$ 

.

#### Obliczanie wartości wielomianu

#### W bazie Lagrange'a:

$$p(x) = \sum_{i=0}^{N} a_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

Jeśli robisz to źle, koszt będzie kwadratowy...

#### Postać barycentryczna:

$$p(x) = \sum_{i=0}^{N} a_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j} = \begin{cases} a_i & \text{gdy } x = x_i, \\ \phi_{N+1}(x) \cdot \sum_{i=0}^{N} \frac{a_i}{x - x_i} \beta_i, \end{cases}$$

gdzie

$$\phi_{N+1}(x) = \prod_{i=0}^{N} (x - x_i), \qquad \beta_i = \prod_{j \neq i} \frac{1}{x_i - x_j}$$

Współczynniki  $\beta_i$  obliczamy w fazie precomputingu.

Bonus: dla niektórych ważnych typów węzłów można to zrobić całkiem tanio.

#### Interpolacia wielomianowa

## Problem (interpolacja Lagrange'a)

Dla zadanych (parami różnych) węzłów interpolacji  $x_0, \ldots, x_N$  i wartości  $f(x_0), \ldots, f(x_N)$  znaleźć wielomian  $p \in P_N$  taki, że

$$p(x_i) = f(x_i), \qquad i = 0, \ldots, N$$



146

## Interpolacja Lagrange'a

#### Twierdzenie

Zadanie interpolacji Lagrange'a ma jednoznaczne rozwiązanie.

*Dowód:* Niech 
$$p(\cdot) = \sum_{j=0}^{N} c_j \varphi_j(\cdot)$$
, gdzie  $P_N = \lim \{ \varphi_0, \varphi_1, \dots, \varphi_n \}.$ 

Z warunków interpolacji,

$$p(x_i) = \sum_{j=0}^{N} c_j \varphi_j(x_i) = f(x_i), \qquad 0 \leqslant i \leqslant N.$$

Jest to układ N+1 równań liniowych z N+1 niewiadomymi  $c_j$ . Ma on jednoznaczne rozwiązanie wtw wektor zerowy jest jedynym rozwiązaniem układu jednorodnego.

Ale jedyny wielomian st  $\leqslant$  N, który zeruje się w N+1 punktach, musi być zerowy.  $\square$ 

## Wyznaczenie WIL

W bazie naturalnej, tzn.  $w(x) = \sum_i a_i \cdot x^i$  ????

$$\begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^N \\
1 & x_1 & x_1^2 & \cdots & x_1^N \\
\vdots & \vdots & & \vdots & \\
1 & x_N & x_N^2 & \cdots & x_N^N
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_N
\end{bmatrix} = \begin{bmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_N)
\end{bmatrix}$$

macierz Vandermonde'

- ullet gęsta, niesymetryczna, N imes N
- koszt GEPP:  $\mathcal{O}(N^3)$
- patologicznie źle uwarunkowana

W innej bazie będzie łatwiej!

## Wyznaczenie WIL

W bazie Newtona, tzn.

$$p(x) = \sum_{i} b_i \cdot (x - x_0) \cdots (x - x_{i-1})$$

#### Definicja (Różnice dzielone)

$$f(t_0,t_1,\ldots,t_s)=\frac{f(t_1,t_2,\ldots,t_s)-f(t_0,t_1,\ldots,t_{s-1})}{t_s-t_0}.$$

#### Twierdzenie (O różnicach dzielonych)

Jeśli p jest WIL w bazie Newtona j.w., to

$$b_i = f(x_0, x_1, \ldots, x_i), \quad 0 \leqslant i \leqslant N.$$

149

## Wyznaczenie WIL w bazie Lagrange'a

$$p(x) = \sum_{i=0}^{N} a_i \underbrace{\prod_{j \neq i} \frac{x - x_j}{x_i - x_j}}_{=l_i(x)}$$

Rozwiązaniem ZIL jest

$$p(x) = \sum_{i=0}^{N} f(x_i) \cdot l_i(x).$$

Koszt "zerowy", ale pamiętajmy o koszcie obliczenia wartości p: alg. barycentr. wymaga precomputingu o koszcie  $\mathcal{O}(N^2)$ .

#### Twierdzenie (Highama)

Niech  $x_i$ ,  $f(x_i)$ , x będą I. maszynowymi. Obliczona alg. barycentr. w fl wartość  $\tilde{p}(x)$  jest dokładną wartością WIL dla  $\tilde{f}(x_i) = f(x_i) \cdot (1 + \delta_i)$ , gdzie  $|\delta_i| \lesssim 5(N+1)\nu$ .

#### Algorytm różnic dzielonych wyznaczania WIL

Tabelkę wypełniamy kolejnymi kolumnami.

Odpowiadający algorytm można wykonać *in situ*, kosztem  $\mathcal{O}(N^2)$  flopów.

150

## Błąd interpolacji Lagrange'a

#### Twierdzenie (Postać błędu interpolacji)

Niech p będzie WIL dla f w punktach  $x_0, \ldots, x_N$ .

• Dla dowolnego  $\bar{x} \in \mathbb{R}$ 

$$f(\bar{x}) - p(\bar{x}) = f(x_0, x_1, \dots, x_N, \bar{x}) \cdot \phi_{N+1}(\bar{x}).$$
 (1)

• Ponadto, jeśli  $f \in C^{(N+1)}[a,b]$ , gdzie [a,b] zawiera  $x_0, \ldots, x_N, \bar{x}$ , to istnieje  $\xi = \xi(\bar{x}) \in (a,b)$  t. że

$$f(\bar{x}) - p(\bar{x}) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \cdot \phi_{N+1}(\bar{x}).$$

$$\phi_{N+1}(x) = (x - x_0) \cdots (x - x_N).$$

#### **Uwarunkowanie ZIL**

Jak odporne jest ZIL na zaburzenie wartości w węzłach? Niech

- $p_f$  WIL dla f,
- $p_{\tilde{f}}$  WIL dla  $\tilde{f}$ ,

oba oparte na tych samych węzłach  $x_0, \ldots, x_N$ .

#### Twierdzenie (uwarunkowanie ZIL)

Jeśli 
$$|f(x_i) - \tilde{f}(x_i)| \le \epsilon |f(x_i)|$$
 dla  $i = 0, ..., N$ , to dla dowolnego  $x$ 

$$\frac{|p_f(x) - p_{\tilde{f}}(x)|}{|p_f(x)|} \leqslant \operatorname{cond}_{rel}(x, f) \cdot \epsilon,$$

gdzie

$$\mathsf{cond}_{rel}(x,f) = \frac{\sum_{j=0}^{N} |I_j(x)| \cdot |f(x_j)|}{|p_f(x)|} \geqslant 1.$$

 $\max_{x \in [a,b]} \sum_{j=0}^{N} |I_j(x)| \leftarrow \text{stała Lebesgue'a dla } x_0, \dots, x_N \text{ na } [a,b].$  153

## Interpolacja Hermite'a w bazie Newtona

Baza Newtona uwzględniająca krotność węzłów:

$$\phi_{0}(x) = 1$$

$$\phi_{1}(x) = (x - x_{0}), \ \phi_{2}(x) = (x - x_{0})^{2}, \dots, \ \phi_{m_{0}}(x) = (x - x_{0})^{m_{0}},$$

$$\phi_{m_{0}+1}(x) = (x - x_{0})^{m_{0}}(x - x_{1}), \dots, \ \phi_{m_{0}+m_{1}}(x) = (x - x_{0})^{m_{0}}(x - x_{1})^{m_{1}},$$

$$\vdots$$

$$\phi_{N+1}(x) = (x - x_{0})^{m_{0}}(x - x_{1})^{m_{1}} \dots (x - x_{n})^{m_{n}}$$

#### Twierdzenie

WIH jest postaci  $p(x) = \sum_{k=0}^{N} f(x_0, \dots, x_k) \phi_k(x)$ , gdzie

$$f(t_0,\ldots,t_k) = \begin{cases} \frac{f^{(k)}(x_0)}{k!} & \text{gdy } t_0 = \ldots = t_k, \\ \frac{f(t_1,\ldots,t_k) - f(t_0,\ldots,t_{k-1})}{t_k - t_0} & \text{w p.p.} \end{cases}$$

#### Interpolacja wielomianowa: uogólnienie

#### Problem (interpolacja Hermite'a)

Dla zadanych (parami różnych) węzłów interpolacji  $x_0, \ldots, x_n$  i odp. wartości pochodnych f, znaleźć wielomian  $p \in P_N$  taki, że

$$p^{(k)}(x_i) = f^{(k)}(x_i)$$
 dla  $k = 0 \dots m_i - 1, i = 0 \dots n,$ 

przy czym  $N+1=m_0+\ldots+m_n$ .

"Węzeł x; ma krotność m;"

#### Twierdzenie

ZIH ma jednoznaczne rozwiązanie.

154

## Błąd interpolacji Hermite'a

#### Twierdzenie (Postać błędu interpolacji)

Niech p będzie WIH dla f w punktach  $x_0, \ldots, x_n$  o łącznej krotności N+1. Jeśli  $f \in C^{(N+1)}[a,b]$ , gdzie [a,b] zawiera  $x_0, \ldots, x_n, \bar{x}$ , to istnieje  $\xi = \xi(\bar{x}) \in (a,b)$  t. że

$$f(\bar{x}) - p(\bar{x}) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \cdot \phi_{N+1}(\bar{x}).$$

$$\phi_{N+1}(x) = (x - x_0)^{m_0} \cdots (x - x_N)^{m_n}.$$

## **Splajny**

#### Sposoby reprezentacji splajnów

- W postaci PP (*piecewise polynomial*): nieco nadmiarowa, ale prosta koncepcyjnie
- W bazie tej przestrzeni (więc minimalna)
  - w bazie obciętych wielomianów (przydatna głównie w teorii)
  - w B-bazie (wykorzystywana w praktyce)

## Splajn, czyli funkcja sklejana

Niech  $a = x_0 < x_1 < \cdots < x_n = b$ .

#### Definicja

 $s:[a,b]\to\mathbb{R}$  jest splajnem stopnia k opartym na węzłach  $\{x_j\}$ , jeśli spełnione są następujące dwa warunki:

- (i) s jest wielomianem stopnia co najwyżej k na każdym z przedziałów  $[x_{i-1}, x_i]$ ,
- (ii)  $s \in C^{k-1}[a, b]$ .

 $C^k[a,b] := \{f : [a,b] \to \mathbb{R} \mid f \text{ ma przynajmniej } k \text{ pochodnych ciągłych na } [a,b] \}.$ 

#### Stwierdzenie

Niech  $S_k$  — przestrzeń liniowa splajnów stopnia k opartych na (ustalonych) węzłach  $x_i$ .

157

$$\dim \mathcal{S}_k = n + k$$
.

#### Reprezentacja PP

- Na każdym odcinku  $[x_i, x_{i+1})$  splajn  $s \in \mathcal{S}_k$  to po prostu wielomian, więc...
- ...zadajemy go przez współczynniki a<sub>i0</sub>,..., a<sub>ik</sub> rozwinięcia w (jakiejś z góry ustalonej) bazie wielomianowej:
  - Standardowo, w bazie Newtona z wielokrotnym węzłem  $x_i$ , czyli  $1, (x x_i), \dots, (x x_i)^k$
  - Możliwe są inne opcje: np. splajn kubiczny w bazie wielomianów bazowych Hermite'a

$$p_{00}(x_i) = \mathbf{1}, \quad p'_{00}(x_i) = 0, \quad p_{00}(x_{i+1}) = 0, \quad p_{00}(x_{i+1}) = 0,$$
  
 $p_{10}(x_i) = 0, \quad p'_{10}(x_i) = \mathbf{1}, \quad p_{10}(x_{i+1}) = 0, \quad p'_{10}(x_{i+1}) = 0,$   
 $p_{01}(x_i) = 0, \quad p'_{01}(x_i) = 0, \quad p_{01}(x_{i+1}) = \mathbf{1}, \quad p'_{01}(x_{i+1}) = 0,$ 

$$p_{01}(x_i) = 0, \quad p_{01}(x_i) = 0, \quad p_{01}(x_{i+1}) = 1, \quad p_{01}(x_{i+1}) = 0$$

$$p_{11}(x_i) = 0$$
,  $p'_{11}(x_i) = 0$ ,  $p_{11}(x_{i+1}) = 0$ ,  $p'_{11}(x_{i+1}) = 1$ .

#### Interpolacja splajnowa

Dla uproszczenia przyjmujemy, że węzłami interpolacji są węzły  $\{x_i\}$ , na których opiera się splajn. Ograniczamy się do k nieparzystego, k=2m+1.

#### **Problem**

Znaleźć  $s \in \mathcal{S}_k$  taki, że

$$s(x_i) = f(x_i), \qquad i = 0, \ldots, n.$$

160

## Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

Węzły:  $a = x_0 < \ldots < x_n = b$ . Dla uproszczenia zapisu oznaczmy  $h_i = x_{i+1} - x_i$ .

Splajn  $s \in S_3$  na odcinku  $[x_i, x_{i+1}]$  jest postaci:

$$s_i(x) := s(x)|_{[x_i, x_{i+1}]} = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, \qquad i = 0, \dots, n-1$$

Warunki interpolacji:

$$s(x_i) = y_i, \qquad i = 0, \ldots, n.$$

Naturalne warunki brzegowe:

$$s''(a)=0=s''(b).$$

#### Interpolacja splajnowa — warunki brzegowe

Uzupełnienie warunków interpolacji o dowolny z poniższych zestawów 2*m* warunków prowadzi do *jednoznacznego* zagadnienia:

• Hermitowskie warunki brzegowe:

$$s^{(r)}(a) = f^{(r)}(a), \quad s^{(r)}(b) = f^{(r)}(b), \qquad r = 1, \dots, m$$

• Naturalne warunki brzegowe:

$$s^{(r)}(a) = 0 = s^{(r)}(b), \qquad r = m + 1, \dots, 2m.$$

• Periodyczne warunki brzegowe<sup>4</sup>:

$$s^{(r)}(a) = s^{(r)}(b), \qquad r = 1, \dots, 2m.$$

161

## Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, i = 0, ..., n - 1$$
  

$$s_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2$$
  

$$s_i''(x) = 2c_i + 6d_i(x - x_i)$$

**Krok 1** Z warunków interpolacji  $s_i(x_i) = y_i$  wynika natychmiast, że

$$a_i = y_i$$
  $i = 0, \ldots n-1$ .

Krok 2 Z ciągłości drugiej pochodnej w wewnętrznych węzłach

$$s_i''(x_{i+1}) = s_{i+1}''(x_{i+1}) \implies 2c_i + 6d_i \ h_i = 2c_{i+1}, \qquad i = 0, \dots, n-2,$$

i z warunku brzegowego  $2c_i + 6d_i h_i = 0$  dla i = n - 1 zatem

$$d_i = \frac{c_{i+1} - c_i}{3h_i}, \qquad i = 0, \ldots, n-1 \quad \text{(przyjmując } c_n := 0\text{)}.$$

<sup>&</sup>lt;sup>4</sup>Zakładamy  $f^{(r)}(a) = f^{(r)}(b)$  dla r = 0, ..., m.

# Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

$$s(x)_{|_{[x_i,x_{i+1}]}} = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Krok 3 Z warunków ciągłości samej funkcji s dostajemy

$$s_i(x_{i+1}) = s_{i+1}(x_{i+1}) \implies y_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_{i+1}$$

skąd, uwzględniając wyznaczone przed chwilą  $d_i$ ,

$$b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3}(c_{i+1} + 2c_i)$$
  $i = 0, ..., n-2.$ 

164

## Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

$$\frac{h_i}{h_i + h_{i+1}} c_i + 2 c_{i+1} + \frac{h_{i+1}}{h_i + h_{i+1}} c_{i+2} = 3f[x_i, x_{i+1}, x_{i+2}] \qquad i = 0, \dots, n-2.$$

Mamy więc n-1 równań na współczynniki  $c_0, \ldots, c_n$ , ale

$$s''(x_0) = 0 = s''(x_n) \implies c_0 = c_n = 0.$$

Krok 6 Wykorzystując ostatni warunek interpolacji

$$s(x_n) = y_n$$

otrzymujemy równanie (na  $b_{n-1}$ ):

$$y_{n-1} + b_{n-1} h_{n-1} + c_{n-1} h_{n-1}^2 + d_{n-1} h_{n-1}^3 = y_n.$$

## Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  

$$s_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2$$
  

$$s_i''(x) = 2c_i + 6d_i(x - x_i)$$

Krok 4 W końcu, z warunków ciągłości pochodnej

$$s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1}) \implies b_{i} + 2c_{i} h_{i} + 3d_{i} h_{i}^{2} = b_{i+1}$$

skąd, po przekształceniach,

$$\frac{y_{i+1}-y_i}{h_i}-\frac{h_i}{3}(c_{i+1}+2c_i)+2c_i\ h_i+3\frac{c_{i+1}-c_i}{3h_i}h_i^2=\frac{y_{i+2}-y_{i+1}}{h_{i+1}}-\frac{h_{i+1}}{3}(c_{i+2}+2c_{i+1})$$

i ostatecznie układ równań na współczynniki  $c_0, \ldots, c_{n-1}, c_n$ :

$$\frac{h_i}{h_i + h_{i+1}} c_i + 2 c_{i+1} + \frac{h_{i+1}}{h_i + h_{i+1}} c_{i+2} = 3f[x_i, x_{i+1}, x_{i+2}] \qquad i = 0, \dots, n-2.$$

# Konstrukcja naturalnego interpolacyjnego splajnu kubicznego w reprezentacji PP

$$\frac{h_i}{h_i + h_{i+1}} c_i + 2 c_{i+1} + \frac{h_{i+1}}{h_i + h_{i+1}} c_{i+2} = 3f[x_i, x_{i+1}, x_{i+2}] \qquad i = 0, \dots, n-2.$$

Ostatecznie zadanie sprowadza się do zamkniętego układu równań na współczynniki  $c_1, \ldots, c_{n-1}$ , z macierzą

$$T = \begin{bmatrix} 2 & \omega_0 & & & \\ \gamma_1 & \ddots & \ddots & & \\ & \ddots & \ddots & & \\ & & \gamma_{n-1} & 2 \end{bmatrix}, \qquad \gamma_i := \frac{h_i}{h_i + h_{i+1}}, \quad \omega_i := \frac{h_{i+1}}{h_i + h_{i+1}}.$$
(2)

Jest to macierz diagonalnie dominująca, więc nieosobliwa. Trójdiagonalna  $\implies$  możemy ją rozwiązać kosztem  $\mathcal{O}(n)$  167 eliminacją Gaussa bez osiowania.

## Własność ekstremalna splajnów

#### Twierdzenie (Holladay)

Niech będą dane wartości  $f(x_i)$  w węzłach  $a = x_0 < ... < x_n = b$ . Naturalny, interpolacyjny splajn kubiczny minimalizuje wartość

$$\int_a^b \left(v''(x)\right)^2 dx$$

wśród wszystkich funkcji  $v \in C^2[a,b]$  interpolujących f w tych węzłach.

Dowód: Na ćwiczeniach. □

168

#### B-baza splajnów liniowych

Dla  $S_1$  opartych na węzłach  $x_0 < \ldots < x_n$ , B-baza to  $B^1_{-1}, \ldots, B^1_{n-1}.$ 

Tych funkcji jest n+1.



#### Reprezentacja splajnu w B-bazie

Określamy następujące funkcje  $B_i^k$ :

$$B_i^0(x) = \begin{cases} 1 & \text{dla } x \in [x_i, x_{i+1}) \\ 0 & \text{w p.p.} \end{cases}$$
$$B_i^k(x) = V_i^k(x) \cdot B_i^{k-1}(x) + (1 - V_{i+1}^k(x)) \cdot B_{i+1}^{k-1}(x)$$

gdzie

$$V_i^k(x) = \frac{x - x_i}{x_{i+k} - x_i}.$$

Okazuje się, że

$$\mathcal{S}_k = \lim \{ \underbrace{B_{-k}^k, B_{-k+1}^k, \dots, B_{0}^k, \dots, B_{n-1}^k}_{k \text{ funkcji}} \}$$

zatem  $s \in \mathcal{S}_k$  jest jednoznacznie zadany przez współczynniki  $c_i$ :

$$s(x) = \sum_{i=-k}^{n-1} c_i^k B_i^k(x).$$
 169

## B-baza splajnów kubicznych

Dla  $S_3$  opartych na węzłach  $x_0 < \ldots < x_n$ , B-baza to  $B_{-3}^3, \ldots, B_{n-1}^3$ . Tych funkcji jest n+3.



## Własności B-bazy

• Ograniczony nośnik:  $B_i^k(x)$  zeruje<sup>5</sup> się poza  $(x_i, x_{i+k+1})$ .

• **Dodatniość:**  $B_i^k(x) > 0 \text{ w } (x_i, x_{i+k+1}).$ 

• Rozkład jedności:  $\sum_{i=-\infty}^{+\infty} B_i^k(x) = 1$ .

172

## Algorytm de Boora obliczania wartości splajnu zadanego w Bbazie

$$s(x) = \sum_{i=j-k}^{j} c_i^k B_i^k(x)$$

oraz

$$B_i^k(x) = V_i^k(x) \cdot B_i^{k-1}(x) + (1 - V_{i+1}^k(x)) \cdot B_{i+1}^{k-1}(x).$$

Zatem

$$s(x) = \sum_{i=j-k}^{j} c_i^k B_i^k = \sum_{i=j-k}^{j} c_i^k \left( V_i^k \cdot B_i^{k-1} + (1 - V_{i+1}^k) \cdot B_{i+1}^{k-1} \right)$$
$$= \sum_{i=i-k}^{j} c_i^k V_i^k \cdot B_i^{k-1} + \sum_{i=j-k}^{j} c_i^k (1 - V_{i+1}^k) \cdot B_{i+1}^{k-1}.$$

## Algorytm de Boora obliczania wartości splajnu zadanego w Bbazie

#### **Problem**

Splajn  $s \in S_k$  oparty na węzłach  $a = x_0 < \ldots < x_N = b$  jest zadany przez współczynniki rozwinięcia w B-bazie:

$$s(x) = \sum_{i=-k}^{N-1} c_i B_i^k(x).$$

Obliczyć s(x) w zadanym  $x \in [a, b]$ .

Niech  $x \in [x_i, x_{i+1}]$ . Obserwacja:

• W punkcie x niezerowe są tylko funkcje  $B_{i-k}^k, \ldots, B_i^k$ , więc

$$s(x) = \sum_{i=j-k}^{j} c_i^k B_i^k(x).$$

• Wartości funkcji  $B_i^k(x)$  są zadane rekurencyjnie.

## Algorytm de Boora obliczania wartości splajnu zadanego w Bbazie

$$s(x) = \sum_{i=j-k}^{j} c_i^k V_i^k \cdot B_i^{k-1} + \sum_{i=j-k}^{j} c_i^k (1 - V_{i+1}^k) \cdot B_{i+1}^{k-1}.$$

Zmieniając indeksowanie w ostatniej sumie

$$s(x) = \sum_{i=j-k}^{j} c_i^k V_i^k \cdot B_i^{k-1} + \sum_{i=j-k+1}^{j+1} c_{i-1}^k (1 - V_i^k) \cdot B_i^{k-1}$$

$$= \underbrace{c_{j-k}^k V_{j-k}^k \cdot B_{j-k}^{k-1}}_{=0} + \sum_{i=j-(k-1)}^{j} \underbrace{\left(c_i^k V_i + c_{i-1}^k (1 - V_{i-1}^k)\right)}_{=:c^{k-1}} \cdot B_i^{k-1} + \underbrace{c_j^k (1 - V_{j+1}^k) \cdot B_i^{k-1}}_{=0}$$

gdyż wśród funkcji bazowych stopnia k-1, jedyne niezerowe nośniki w  $[x_j, x_{j+1}]$  mają  $B_i^{k-1}, B_{i-1}^{k-1}, \dots, B_{i-(k-1)}^{k-1}$ .

<sup>&</sup>lt;sup>5</sup>Dla k = 0 jest nieco inaczej.

## Algorytm de Boora obliczania wartości splajnu zadanego w Bbazie

Dostajemy więc zależność rekurencyjną

$$s(x) = \sum_{i=j-k}^{j} c_i^k B_i^k = \sum_{i=j-k+1}^{j} c_i^{k-1} B_i^{k-1},$$

gdzie

$$c_i^{k-1} = c_i^k V_i + c_{i-1}^k (1 - V_{i-1}^k), \qquad i = j - k + 1, \dots, j.$$

Iterując ten pomysł, należy wyznaczyć kolejne kolumny tabelki

$$egin{array}{c|cccc} c_{j}^{k} & c_{j}^{k-1} & \cdots & \cdots & c_{j}^{0} \\ c_{j-1}^{k} & c_{j-1}^{k-1} & & \ddots & & & \\ \vdots & \vdots & c_{j-k+2}^{k-2} & & & & & \\ \vdots & c_{j-k}^{k-1} & & & & & & \\ \end{array}$$

Wartość splajnu to  $s(x) = c_i^0$ . Koszt:  $\mathcal{O}(k^2)$ .

#### Błąd interpolacji naturalnym splajnem kubicznym

Węzły równoodległe:  $x_i = a + i \cdot h$ , gdzie h = (b - a)/n.

#### Twierdzenie

Niech s będzie naturalnym kubicznym splajnem interpolacyjnym dla  $f \in C^4[a, b]$  Istnieje stała c niezależna od h i n taka, że

$$||f-s||_{\infty} \leqslant c \cdot h^2 \cdot ||f^{(4)}||_{\infty}.$$

 $||g||_{\infty} := \sup_{x \in [a,b]} |g(x)|.$ 

#### Wykorzystanie B-bazy

- Wyznaczenie splajnu interpolacyjnego w B-bazie: macierz pasmowa
- Pochodna, całka ze splajnu w B-bazie: uogólnienie algorytmu de Boore'a.

177

## Błąd interpolacji hermitowskim splajnem kubicznym

Węzły równoodległe:  $x_i = a + i \cdot h$ , gdzie h = (b - a)/n.

#### Twierdzenie

176

178

Niech s będzie kubicznym splajnem interpolacyjnym dla  $f \in C^4[a, b]$ , z hermitowskimi warunkami brzegowymi:

$$s'(a) = f'(a), \qquad s'(b) = f'(b).$$

Istnieją stałe  $c_r$  niezależne od h i n takie, że

$$||f^{(r)} - s^{(r)}||_{\infty} \le c_r \cdot h^{4-r} \cdot ||f^{(4)}||_{\infty}, \qquad r = 0, 1, 2, 3.$$

W szczególności,

$$||f-s||_{\infty} \leqslant \frac{5}{384} \cdot h^4 \cdot ||f^{(4)}||_{\infty}.$$

$$||g||_{\infty} := \sup_{x \in [a,b]} |g(x)|.$$

## **Aproksymacja**

## Zadanie najlepszej aproksymacji

#### Twierdzenie (o istnieniu ENA)

Niech F bedzie przestrzenią liniową i niech  $V \subset F$  — podprzestrzeń skończonego wymiaru. Dla każdego  $f \in F$  istnieje  $v^* \in V$  taki, że

$$||f - v^*|| \le ||f - v|| \quad \forall v \in V.$$

181

## Zadanie najlepszej aproksymacji

#### **Problem**

Niech F bedzie przestrzenią liniową i niech  $V \subset F$  — podprzestrzeń skończonego wymiaru. Dla danego  $f \in F$  znaleźć  $v^* \in V$  taki, że

$$||f - v^*|| \le ||f - v|| \quad \forall v \in V.$$

Będziemy mówić, że  $v^*$  jest ENA dla f.

180

## Aproksymacja średniokwadratowa

## Przypomnienie: zadanie najlepszej aproksymacji

#### **Problem**

Niech F bedzie przestrzenią liniową i niech  $V \subset F$  podprzestrzeń skończonego wymiaru. Dla danego  $f \in F$  znaleźć  $v^* \in V$  taki, że

$$||f - v^*|| \le ||f - v|| \quad \forall v \in V.$$

182

184

## Zadanie najlepszej aproksymacji średniokwadratowej wielomianami

#### **Problem**

Dla zadanej funkcji  $f \in C[a, b]$  znaleźć wielomian  $p^* \in P_N$  taki, żе

$$||f-p^*||_2 \rightarrow \min!$$

(to znaczy:  $||f - p^*||_2 \le ||f - p||_2$  dla każdego  $p \in P_N$ ).

Jak wiemy z ogólnego twierdzenia o istnieniu ENA, taki  $p^*$  istnieje.

## Zadanie najlepszej aproksymacji średniokwadratowej wielomianami

#### **Problem**

Niech F bedzie przestrzenią liniową i niech  $V \subset F$  podprzestrzeń skończonego wymiaru. Dla danego  $f \in F$  znaleźć  $v^* \in V$  taki, że

$$||f - v^*|| \le ||f - v|| \quad \forall v \in V.$$

- F = C[a, b] przestrzeń funkcji ciągłych,
- $V = P_N$  przestrzeń wielomianów stopnia co najwyżej N,
- $||f||_{2,\rho} = \left(\int_a^b |f(x)|^2 \rho(x) dx\right)^{1/2}$ ,  $\rho$  — nieujemna funkcja wagowa, zerująca się co najwyżej w skończonej liczbie punktów.

183

## Zadanie najlepszej aproksymacji w przestrzeni z iloczynem skalarnym

#### Twierdzenie (charakteryzacja ENA w p-ni unitarnej)

Niech F będzie przestrzenią liniową z iloczynem skalarnym  $(\cdot,\cdot)$ , z normą indukowaną

$$||f|| := (f, f)^{1/2}.$$

Niech  $V \subset F$  będzie sk.wym. podp-nią liniową w F. Wtedy  $v^* \in V$  jest ENA dla  $f \in F$  wtedy i tylko wtedy, gdy

$$(f - v^*, v) = 0 \quad \forall v \in V.$$

Na przykład,

$$(f,g) := \int_a^b f(x) g(x) \rho(x) dx$$

jest iloczynem skalarnym w F = C[a, b].

## Zadanie najlepszej aproksymacji w przestrzeni z iloczynem skalarnym

#### Wniosek (algorytm wyznaczenia ENA w p-ni unitarnej)

Niech F — unitarna oraz  $V = \text{lin}\{\phi_1, \dots, \phi_N\} \subset F$ .  $v^* = \sum_i a_i \phi_i$  jest ENA dla  $f \in F$  wtedy i tylko wtedy, gdy współczynniki  $a_i$  są rozwiązaniem układu równań

$$\underbrace{ \begin{bmatrix} (\phi_1, \phi_1) & \cdots & (\phi_1, \phi_N) \\ \vdots & & \vdots \\ (\phi_N, \phi_1) & \cdots & (\phi_N, \phi_N) \end{bmatrix} }_{\text{macierz Grama}} \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} \begin{bmatrix} (f, \phi_1) \\ \vdots \\ (f, \phi_N) \end{bmatrix} .$$

186

#### Wielomiany ortogonalne

#### Definicja (wielomiany ortogonalne)

Wielomiany  $p_0, p_1, \ldots$  tworzą układ wielomianów ortogonalnych, jeśli

- $p_k$  jest stopnia k dla k = 0, 1, ...
- $(p_i, p_j) = 0$  dla  $i \neq j$ .

## Zadanie najlepszej aproksymacji w przestrzeni z iloczynem skalarnym

#### Wniosek (algorytm wyznaczenia ENA w bazie ortogonalnej)

Jeśli baza  $V = lin\{\phi_1, \ldots, \phi_N\}$  jest ortogonalna,

$$(\phi_i, \phi_i) = 0$$
 dla  $i \neq j$ ,

to współczynniki a; są rozwiązaniem diagonalnego układu równań

$$egin{bmatrix} (\phi_1,\phi_1) & & & & \\ & \ddots & & \\ & & (\phi_N,\phi_N) \end{bmatrix} egin{bmatrix} a_1 \ dots \ a_N \end{bmatrix} egin{bmatrix} (f,\phi_1) \ dots \ (f,\phi_N) \end{bmatrix},$$

zatem wówczas

$$v^* = \sum_{i} \frac{(f, \phi_i)}{(\phi_i, \phi_i)} \, \phi_i$$

jest ENA dla  $f \in F$ .

187

Warto więc, jeśli to możliwe, korzystać z bazy ortogonalnej!

## Wielomiany ortogonalne: formuła trójczłonowa

#### Twierdzenie

Wielomiany ortogonalne postaci  $x^k + ...niższe$  potęgi... spełniają zależności:

$$p_0(x) = 1, \quad p_{-1}(x) = 0$$
  
 $p_k(x) = (x - \alpha_k)p_{k-1}(x) - \beta_k p_{k-2}(x), \qquad k = 1, 2, \dots$ 

gdzie

$$\alpha_k = \frac{(xp_{k-1}, p_{k-1})}{\|p_{k-1}\|^2}, \qquad \beta_k = \frac{(xp_{k-1}, p_{k-2})}{\|p_{k-2}\|^2}.$$

#### Wniosek

Algorytm Clenshaw'a obliczania kosztem  $\mathcal{O}(N)$  wartości wielomianu zadanego w bazie ortogonalnej: na ćwiczeniach.

## Wielomiany ortogonalne: przykłady

• Wielomiany Legendre'a:  $(f,g) := \int_{-1}^{+1} f(x) g(x) dx$ :

$$L_k(x) = \frac{2k-1}{k} x L_{k-1}(x) - \frac{k-1}{k} L_{k-2}(x), \qquad ||L_k||^2 = \frac{2}{2k+1}, \qquad k = 1, 2, \dots$$

• Wielomiany Czebyszewa:  $(f,g) := \int_{-1}^{+1} f(x) g(x) \rho(x) dx$ ,  $\rho(x) = 1/\sqrt{1-x^2}$ :

$$T_k(x) = 2 x T_{k-1}(x) - T_{k-2}(x), \qquad ||T_k||^2 = \frac{\pi}{2}, \qquad k = 1, 2, \dots$$

• Wielomiany Hermite'a:  $(f,g) := \int_{-\infty}^{+\infty} f(x) g(x) \rho(x) dx$ ,  $\rho(x) = e^{-x^2}$ :

$$H_k(x) = 2 \times H_{k-1}(x) - 2(k-1) H_{k-2}(x), \qquad ||H_k||^2 = \sqrt{\pi} 2^k k!, \qquad k = 1, 2, \dots$$

## Aproksymacja jednostajna

190

## Zadanie najlepszej aproksymacji jednostajnej wielomianami

- F = C[a, b] przestrzeń funkcji ciągłych,
- $V = P_N$  przestrzeń wielomianów stopnia co najwyżej N,
- $\bullet \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|.$

#### **Problem**

Dla zadanej funkcji  $f \in C[a,b]$  znaleźć wielomian  $p^* \in P_N$  taki, że

$$||f - p^*||_{\infty} \rightarrow \min!$$

(to znaczy:  $||f - p^*||_{\infty} \le ||f - p||_{\infty}$  dla każdego  $p \in P_N$ ).

Jak wiemy z ogólnego twierdzenia o istnieniu ENA, taki  $p^*$  istnieje.

#### **Alternans**

#### Twierdzenie (o alternansie)

Dla zadanej  $f \in C[a, b]$  istnieje dokładnie jeden  $p^* \in P_N$  będący ENA dla f w sensie normy supremum. Co więcej,

 $p^* \in P_N$  jest ENA dla  $f \iff$  dla  $f \mid p^*$  istnieje alternans.

#### Definicja (alternans)

Niech  $p^* \in P_N$ . Zbiór N+2 punktów  $a \leqslant \xi_0 < \xi_1 \ldots < \xi_{N+1} \leqslant b$  takich, że  $e=f-p^*$  spełnia

- $|e(\xi_i)| = ||e||_{\infty}$  dla i = 0, ..., N + 1,
- $e(\xi_i) = -e(\xi_{i+1}) \text{ dla } i = 0, ..., N,$

nazywamy **alternansem** dla f i  $p^*$ .

## Zbieżność najlepszej aproksymacji jednostajnej

## Twierdzenie (Jacksona)

Niech r będzie ustalone takie, że  $f \in C^r[-1,1]$  oraz

$$\exists M_r > 0 \qquad |f^{(r)}(x) - f^{(r)}(y)| \leq M_r |x - y| \qquad \forall x, y \in [-1, 1].$$

Jeśli  $p^* \in P_N$  jest ENA dla f i N > r, to

$$||f-p^*||_{\infty} \leqslant c_r \frac{M_r}{N^{r+1}},$$

gdzie  $c_r > 0$  nie zależy od f.

#### Wyznaczenie ENA jednostajnej

- W ogólnym przypadku jest to zadanie trudne (nieliniowe)
- Algorytm Remeza wyznaczania ENA: iteracyjne poprawianie alternansu. W granicy dostajemy alternans i wielomian optymalny.

(Tak, to znaczy, że liczba iteracji  $\to \infty$ )

Pomysł: zastąpić ENA czymś niewiele gorszym, ale za to znacznie tańszym do wyznaczenia.

193

## Aproksymacja jednostajna a interpolacja wielomianowa

Przypomnienie:

#### Twierdzenie (Postać błędu interpolacji)

Niech p będzie WIL dla  $f \in C^{(N+1)}[a,b]$  w punktach  $x_0, \ldots, x_N$  w [a,b]. Dla  $x \in [a,b]$  istnieje  $\xi \in (a,b)$  t.  $\dot{z}e$ 

$$f(x) - p(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \cdot \underbrace{(x-x_0)\cdots(x-x_N)}_{=:\phi_{N+1}(x)},$$

#### Wniosek

$$||f-p||_{\infty} \leqslant \frac{||f^{(N+1)}||_{\infty}}{(N+1)!} \cdot ||\phi_{N+1}||_{\infty}.$$

Pytanie: jak dobrać węzły interpolacji, by zminimalizować w/w oszacowanie?

## Węzły Czebyszewa

Niech [a, b] = [-1, 1]. Szukamy  $x_0, \dots x_N$  t. że

$$\|\phi_{N+1}\|_{\infty} \to \min!$$

czyli

$$\max_{x \in [-1,1]} |\phi_{N+1}(x)| \to \min!$$

czyli

$$\max_{x \in [-1,1]} |(x-x_0)\cdots(x-x_N)| \to \min!$$

Okazuje się, że rozwiązaniem tego zadania są miejsca zerowe wielomianu Czebyszewa  $T_{N+1}$ ,

$$x_i = \cos\left(\frac{2i+1}{2N+2}\pi\right), \qquad i = 0, \dots N.$$

## Wielomiany Czebyszewa

#### Formuła trójczłonowa

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x),$$
  
 $T_0(x) = 1, T_1(x) = x.$ 

$$T_0(x) = 1$$
 $T_1(x) = x$ 
 $T_2(x) = 2x^2 - 1$ 
 $T_3(x) = 4x^3 - 3x$ 
 $T_4(x) = 8x^4 - 8x^2 + 1$ 
 $\vdots$ 
 $T_n(x) = 2^{n-1}x^n + \dots \text{niższe potęgi} \dots$ 

## Węzły Czebyszewa

#### Wniosek

$$\max_{x \in [-1,1]} |(x-x_0) \cdots (x-x_N)| \to \min!$$

wtedy i tylko wtedy, gdy  $\{x_i\}$  — miejsca zerowe  $T_{N+1}$ . Są to węzły Czebyszewa.

#### **Twierdzenie**

Jeśli p jest WIL dla  $f \in C^{N+1}[-1,1]$  opartym na węzłach Czebyszewa, to

$$||f-p||_{\infty} \leqslant \frac{||f^{(N+1)}||_{\infty}}{2^{N}(N+1)!}.$$

- Węzły Czebyszewa: miejsca zerowe wielomianu Czebyszewa  $T_{N+1}$
- Węzły Czebyszewa–Lobatto: ekstrema wielomianu Czebyszewa  $_{199}$   $T_{\it N}$  na [-1,1]

## Wielomiany Czebyszewa — własności

- Dla  $x \in [-1, 1]$ ,  $T_n(x) = \cos n\theta$ , gdzie  $x = \cos \theta$ .
- (Ortogonalność) Jeśli  $i \neq j$ , to

$$\int_{-1}^{1} T_i(x) \cdot T_j(x) \frac{1}{\sqrt{1-x^2}} dx = 0.$$

• Wszystkie miejsca zerowe  $T_n$  są jednokrotne i w [-1,1]:

$$T_n(x_i) = 0 \iff x_i = \cos\left(\frac{2i-1}{2n}\pi\right), \qquad i = 1, \ldots, n.$$

•  $|T_n(x)| \leq 1$  dla  $x \in [-1, 1]$  oraz

$$T_n(y_j) = (-1)^j \iff y_j = \cos\left(\frac{j}{n}\pi\right), \qquad j = 0, \ldots, n.$$

• (własność minimaksu) Wśród wszystkich wielomianów postaci

$$x^n + \dots$$
 niższe potęgi . . . ,

najmniejszą normę  $\|\cdot\|_{\infty}$  na [-1,1] ma wielomian  $\frac{T_n}{2^{n-1}}$ .

198

#### Aproksymacja jednostajna a interpolacja wielomianowa

#### Twierdzenie

Niech  $f \in C[a, b]$  oraz

- $p^* \in P_N$  będzie ENA dla f w normie supremum na [a, b]
- $p \in P_N$  będzie WIL dla f, opartym na  $a \le x_0 < \cdots < x_N \le b$

Wtedy

$$\|f - p^*\|_{\infty} \le \|f - p\|_{\infty} \le (1 + \Lambda_N) \cdot \|f - p^*\|_{\infty},$$

gdzie  $\Lambda_N = \|\lambda_N\|_{\infty}$  (stała Lebesgue'a), gdzie

$$\lambda_N(x) := \sum_{i=0}^N |I_i(x)| \leftarrow I_i$$
: funkcje bazy Lagrange'a.

## Stała Lebesgue'a

 $\Lambda_N = \|\lambda_N\|_{\infty}$  (stała Lebesgue'a).

#### Twierdzenie

• Dla dowolnego układu węzłów w [-1,1],

$$\Lambda_N\geqslant rac{2}{\pi}\ln(N+1)+0.5215\ldots$$

• Dla węzłów równoodległych w [-1,1],

$$\Lambda_N > \frac{2^{N-2}}{N^2}.$$

• Dla węzłów Czebyszewa–Lobatto w [-1,1],

$$\Lambda_{\mathcal{N}} \leqslant rac{2}{\pi} \ln(\mathcal{N}+1) + 1.$$

## Równania nieliniowe

## Interpolacja w węzłach Czebyszewa jest prawie optymalna

#### Wniosek

Jeśli

- $p^* \in P_N$  jest ENA dla f w normie supremum na [a, b]
- $p \in P_N$  jest WIL dla f, opartym na (przeskalowanych) węzłach Czebyszewa–Lobatto w [a, b],

to

201

$$||f-p||_{\infty} \leqslant C_N \cdot ||f-p^*||_{\infty},$$

gdzie  $C_N < 3$  dla  $N \le 20$ ;  $C_N < 10$  dla  $N \le 10^6$ .

#### Równania nieliniowe

#### Problem (równanie skalarne)

Dana jest  $f: \mathbb{R} \supset (a,b) \to \mathbb{R}$ . Znaleźć  $x \in (a,b)$  taki, że

$$f(x) = 0.$$

## Problem (układ równań nieliniowych)

Dana jest  $f: \mathbb{R}^N \supset D \to \mathbb{R}^N$ , gdzie D jest otwarty i niepusty. Znaleźć  $x \in D$  taki, że

$$f(x)=0.$$

Źródła kłopotów:

- rozwiązanie może nie istnieć
- rozwiązań może być wiele (czy chcemy znaleźć wszystkie?)
- f może być zadana przez czarną skrzynkę (oracle)
- N może być duże, f może być kosztowna

#### Uwarunkowanie zadania wyznaczania miejsca zerowego

#### **Problem**

Mamy

$$f(x^*)=0, \qquad \widetilde{f}(\widetilde{x^*})=0,$$

przy czym  $\|f - \widetilde{f}\|_{\infty} \leqslant \epsilon$ . Jak można oszacować  $\|x^* - \widetilde{x^*}\|$ ?

**Przypomnienie** (Zadanie obliczenia x = P(y))

Gdy P różniczkowalna w y, to

$$\mathsf{cond}_{\mathit{abs}}(P,y) = \|P'(y)\| \; \mathsf{oraz} \; \|x - \tilde{x}\| \lesssim \mathsf{cond}_{\mathit{abs}}(P,y) \cdot \|y - \tilde{y}\|.$$

U nas  $x^* = f^{-1}(0) =: P(0)$ . Jeśli f jest klasy  $C^1$  w otoczeniu  $x^*$  oraz  $f'(x^*)$  jest nieosobliwa, to  $P'(0) = [f'(x^*)]^{-1}$ , zatem

$$\|x^* - \widetilde{x^*}\| \lesssim \underbrace{\|[f'(x^*)]^{-1}\|}_{\operatorname{cond}(f^{-1},0)} \cdot \epsilon.$$

204

#### Metoda bisekcji — szybkość zbieżności

#### **Twierdzenie**

 $f \in C[a, b]$  taka, że  $f(a) \cdot f(b) < 0$ .

Oznaczmy  $[a_n, b_n]$  — przedział lokalizujący zero w n-tej iteracji. Wtedv

$$|b_n - a_n| = \frac{1}{2}|b_{n-1} - a_{n-1}| = \frac{1}{2^n}|b - a|.$$

Ponadto  $x_n = \frac{1}{2}(a_n + b_n)$  spełnia

$$|x_n-x^*|\leqslant \frac{1}{2}|b_n-a_n|.$$

#### Wniosek

Aby  $|x_n - x^*| \le \epsilon$ , wystarczy, że  $n + 1 \ge \log_2\left(\frac{|b - a|}{\epsilon}\right)$ .

#### Metoda bisekcji (dla równania skalarnego)

```
Niech f \in C[a, b] taka, że f(a) \cdot f(b) < 0. (Więc na pewno ma
miejsce zerowe w (a, b)
 x = (a + b)/2
 while |b-a|>\epsilon do
     if f(x) == 0 then return x

    b trafiliśmy!

     end if
     if sign f(x) \neq \text{sign } f(a) then
         b = x
                                  else
         a = x

⊳ rozwiązanie w prawej połówce

     end if
     x = (a + b)/2
  end while
  return x
```

#### Szybkość zbieżności metody iteracyjnej

Ciag  $x_n \to x^* \in \mathbb{R}^N$ :

• jest zbieżny z rzędem (co najmniej) p > 1, jeśli

$$\exists C \geqslant 0 \quad ||x_{n+1} - x^*|| \leqslant C||x_n - x^*||^p \qquad \forall n = 0, 1, \dots$$

(p=2: zbieżność kwadratowa, p=3: zbieżność sześcienna/kubiczna)

• jest zbieżny (co najmniej) liniowo, jeśli

$$\exists \gamma \in [0,1) \quad ||x_{n+1} - x^*|| \le \gamma ||x_n - x^*|| \qquad \forall n = 0,1,\dots$$

• jest r-zbieżny z rzędem p (odp. liniowo), jeśli

$$||x_n - x^*|| \leqslant r_n$$

dla pewnego ciągu  $r_n$  zbieżnego z rzędem p (odp. liniowo) do zera.

## Szybkość zbieżności metody iteracyjnej

#### Wniosek

Metoda bisekcji jest zbieżna r-liniowo z ilorazem  $\frac{1}{2}$ .

Przykład (Jak wyglądają różne rodzaje zbieżności)

Startujemy z  $||x_0 - x^*|| = 0.5$  i...

|                           | Iteracja (n) |                   |                   |                   |                   |
|---------------------------|--------------|-------------------|-------------------|-------------------|-------------------|
| Szybkość                  | 1            | 2                 | 3                 | 4                 | 5                 |
| liniowa $\gamma = 1/2$    | 0.25         | 0.13              | 0.06              | 0.03              | 0.02              |
| liniowa $\gamma=$ 0.9     |              | 0.41              |                   | 0.33              | 0.30              |
| kwadratowa $^6$ ( $p=2$ ) |              |                   |                   |                   |                   |
| kubiczna $^6$ ( $p=3$ )   | 0.13         | $2 \cdot 10^{-3}$ | $7 \cdot 10^{-9}$ | $4\cdot 10^{-25}$ | $7\cdot 10^{-74}$ |

<sup>&</sup>lt;sup>6</sup>Przyjmując, że  $||x_{n+1} - x^*|| = ||x_n - x^*||^p$ 

208

## Metoda Banacha (iteracja prosta)

#### Twierdzenie (Banacha, o kontrakcji)

*Niech*  $\Phi: D \rightarrow D$  *będzie* **kontrakcją**:

$$\exists L \in [0,1) \quad \|\Phi(x) - \Phi(y)\| \leqslant L \|x - y\| \qquad \forall x, y \in D,$$

gdzie  $D \subset \mathbb{R}^N$  — domknięty, niepusty. Wtedy

- istnieje dokładnie jeden punkt stały  $\Phi$ ,  $x^* = \Phi(x^*)$ ;
- iteracja Banacha

$$x_{n+1} = \Phi(x_n)$$

jest zbieżna liniowo do  $x^*$  z dowolnego  $x_0 \in D$ :

$$||x_{n+1}-x^*|| \leq L||x_n-x^*||.$$

#### Zadanie punktu stałego

#### **Problem**

Niech  $\Phi: \mathbb{R}^N \supset D \to \mathbb{R}^N$ . Znaleźć  $x^* \in D$  taki, że

$$x^* = \Phi(x^*).$$

 $x^*$  to punkt stały  $\Phi$ .

To zadanie zawsze jest równoważne jakiemuś zadaniu wyznaczania zera funkcji, np. dla

$$f(x) = x - \Phi(x).$$

209

## Szybkość zbieżności metody Banacha

#### Twierdzenie (maszynka do rzędu)

Załóżmy, że iteracja  $x_{n+1} = \Phi(x_n)$  jest zbieżna do  $x^* = \Phi(x^*) \in \text{int } D$ , przy czym  $\Phi \in C^p(D)$ ,  $p \geqslant 1$ , oraz

$$\Phi'(x^*) = \ldots = \Phi^{(p-1)}(x^*) = 0.$$

Jeśli  $x_0$  jest dostatecznie blisko  $x^*$  to

$$\exists C \ \|x_{n+1} - x^*\| \leqslant C \|x_n - x^*\|^p.$$

## Szybkość zbieżności metody Banacha — dowód

Dowód:  $\underbrace{x_{n+1}-x^*}_{=e_{n+1}}=\Phi(x_n)-x^*=\underbrace{\Phi(x_n)}_{=\Phi(x^*+e_n)}-\Phi(x^*)$ . Na mocy

wzoru Taylora (o ile  $e_n$  jest dostatecznie małe)

$$\Phi(x^* + e_n) = \Phi(x^*) + \sum_{k=1}^{p-1} \frac{1}{k!} \underbrace{\Phi^{(k)}(x^*)}_{=0} e_n^k + \frac{1}{p!} \Phi^{(p)}(x^*) e_n^p + R(x^*, e_n),$$

gdzie  $\frac{\|R(x^*,e_n)\|}{\|e_n\|^p} \to 0$  dla  $e_n \to 0$ . Zatem jeśli  $\|e_0\|$  jest dostatecznie mała, to

$$||e_{n+1}|| \leq \frac{1}{p!} ||\Phi^{(p)}(x^*)|| ||e_n||^p + C ||e_n||^p.$$

Co więcej, dla  $n \to \infty$ ,

$$\frac{\|e_{n+1}\|}{\|e_n\|^p} \to \frac{1}{p!} \|\Phi^{(p)}(x^*)\|.$$

212

#### Metoda Newtona — wersja skalarna

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

## Twierdzenie (o lokalnej zbieżności m. Newtona — wersja uproszczona<sup>8</sup>)

Niech  $f:(a,b)\to\mathbb{R}$  i niech  $x^*\in(a,b)$  będzie jej miejscem zerowym:  $f(x^*)=0$ . Jeśli

- $f \in C^2(a,b)$
- $f'(x^*) \neq 0$ ,

to dla x<sub>0</sub> dost. blisko x\* metoda Newtona jest zbieżna oraz

$$\exists C |x_{n+1} - x^*| \leq C|x_n - x^*|^2 \qquad n = 0, 1, \dots$$

#### Metoda Newtona

$$x_{n+1} = x_n - [f'(x_n)]^{-1} f(x_n)$$

#### Twierdzenie (ogólne, o lokalnej zbieżności m. Newtona)

Niech  $f: D \to \mathbb{R}^N$  oraz  $D \subset \mathbb{R}^N$  otwarty i niepusty. Niech  $x^* \in D$  będzie<sup>7</sup> miejscem zerowym,  $f(x^*) = 0$ . Jeśli

• f jest różniczkowalna w D oraz

$$\exists L \quad ||f'(x) - f'(y)|| \leqslant L ||x - y|| \qquad \forall x, y \in D,$$

•  $f'(x^*)$  jest nieosobliwa,

to dla x<sub>0</sub> dost. blisko x\* metoda Newtona jest zbieżna oraz

$$\exists C \ \|x_{n+1} - x^*\| \leqslant C \|x_n - x^*\|^2 \qquad n = 0, 1, \dots$$

213

## Modyfikacje m. Newtona dla r-nia skalarnego: bez pochodnych

Idea: zamiast metody stycznych (Newtona):  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$  użyć metody przybliżonej

$$x_{n+1} = x_n - \frac{f(x_n)}{g_n},$$
 gdzie  $g_n \approx f'(x_n).$ 

• Metoda siecznych (nie wymaga dodatk. obl. f, r-zbieżność rzędu  $(1+\sqrt{5})/2\approx 1.618)$ 

$$g_n = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

• Metoda Steffensena (wymaga 1 dodatk. obl. f), zb. rzędu 2)

$$g_n = \frac{f(x_n + f(x_n)) - f(x_n)}{f(x_n)}$$

• Metoda z ilorazem różnicowym (1 dod. obl. f, zb. liniowa)

$$g_n = \frac{f(x_n + h) - f(x_n)}{h}.$$

<sup>&</sup>lt;sup>8</sup>Ma mocniejsze założenia, ale łatwiej się dowodzi.

 $<sup>^{7}</sup>$ Zakładamy więc, że takie  $x^{*}$  istnieje.

#### Implementacja wielowymiarowej metody Newtona

Metoda Newtona:

$$x_{n+1} = x_n - s$$
,

wymaga obliczenia poprawki,

$$s = [f'(x_n)]^{-1} f(x_n).$$

Aby wyznaczyć poprawkę należy więc **rozwiązać układ równań** z macierzą  $N \times N$ ,

$$f'(x_n) \cdot s = f(x_n).$$

216

218

#### Przybliżona metoda Newtona

Rozwiązywanie układu równań w każdym kroku kosztuje.

$$x_{n+1} = x_n - [f'(x_n)]^{-1} f(x_n)$$

Dlaczego by nie wykorzystać metody iteracyjnej do rozwiązywania układu  $f'(x_n)s = f(x_n)$ ?

$$x_{n+1}=x_n-s,$$

gdzie s spełnia residualne kryterium stopu

$$||f'(x_n)s - f(x_n)|| \le \eta_n ||f(x_n)||.$$

 $\eta_n$  proporcjonalne do  $||f(x_n)||$  pozwala zachować kwadratowy rząd (lokalnej) zbieżności.

#### Uproszczona metoda Newtona

Rozwiązywanie układu równań w każdym kroku kosztuje.

$$x_{n+1} = x_n - [f'(x_n)]^{-1} f(x_n)$$

Uproszczenie:

$$x_{n+1} = x_n - [f'(x_0)]^{-1} f(x_n)$$

Teraz wystarczy tylko raz wyznaczyć rozkład macierzy.

Metoda będzie jednak (lokalnie) zbieżna tylko liniowo.

## Metoda z przybliżoną pochodną

Uogólnienie metody z ilorazem różnicowym dla r-nia skalarnego.

$$x_{n+1} = x_n - [G_n]^{-1} f(x_n),$$

gdzie  $G_n = [g_1, \dots, g_N]$  i każdą kolumnę przybliżamy ilorazem różnicowym:

$$g_i = \frac{1}{h_n}(f(x_n + h_n e_i) - f(x_n))$$

 $e_i$  — i-ty wektor jednostkowy.

 $h_n$  proporcjonalne do  $||f(x_n)||$  pozwala zachować kwadratowy rząd (lokalnej) zbieżności.

Uwaga na dobór  $h_n$ :

- za duże kiepskie przybliżenie pochodnej
- za małe problemy z redukcją cyfr przy odejmowaniu

#### Skalarne równania wielomianowe

#### **Problem**

Znaleźć  $x \in \mathbb{C}$  takie, że

$$p(x) := a_N x^N + \dots a_1 x + a_0 = 0,$$

gdzie  $a_i \in \mathbb{R}$  (lub  $\mathbb{C}$ ) są zadane.

**Dla wszystkich pierwiastków** jedną z opcji jest wyznaczenie wszystkich wartości własnych macierzy stowarzyszonej:

$$C = \begin{bmatrix} -\frac{a_{N-1}}{a_N} & -\frac{a_{N-2}}{a_N} & \cdots & -\frac{a_0}{a_N} \\ 1 & & & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix}$$

Zachodzi bowiem:  $\{\lambda \in \mathbb{C} : \lambda \text{ jest w. wł } C\} = \{x \in \mathbb{C} : p(x) = 0\}.$ 

220

221

## **Kwadratury**

#### **Problem**

Dla  $f: \mathbb{R}^d \supset D \to \mathbb{R}$  przybliżyć wartość całki

$$I(f) = \int_D f(x) \rho(x) dx$$
 ( $\rho$  to zadana waga)

za pomocą kwadratury Q(f),

$$Q(f) = \sum_{i=0}^{n} A_i f(x_i).$$

Chodzi nam o wyznaczenie współczynników kwadratury  $A_i$  oraz węzłów kwadratury  $x_i \in D$  takich, by  $Q(f) \approx I(f)$  możliwie dobrze w pewnej klasie funkcji,  $f \in F$ .

#### **Całkowanie**

## Kwadratury jednowymiarowe

Na wykładzie będziemy zajmować się wyłącznie całkami na odcinku:

#### **Problem**

Dla  $f:[a,b] \to \mathbb{R}$  przybliżyć wartość

$$I(f) = \int_{a}^{b} f(x) \, \rho(x) \, dx$$

za pomocą kwadratury Q(f),

$$Q(f) = \sum_{i=0}^{n} A_i f(x_i).$$

#### Kwadratury — zamiana zmiennych

Całkę  $I(f) = \int_a^b f(x) dx$  można sprowadzić do całki na zadanym odcinku. Np. dla [0,1]:

$$[a, b] \ni x = a + t \cdot (b - a) \text{ dla } t \in [0, 1]$$

i wtedy

$$I(f) = \int_0^1 f(a+t\cdot(b-a))\cdot(b-a) dt = (b-a)\int_0^1 g(t) dt$$

 $gdzie g(t) = f(a + t \cdot (b - a)).$ 

Kwadratura  $\sum_i A_i g(t_i)$  dla  $\int_0^1 g(t) dt$  rzędu r daje kwadraturę tego samego rzędu dla  $\int_a^b f(x) dx$  z wagami  $(b-a) \cdot A_i$  i węzłami  $x_i = a + t_i \cdot (b-a)$ .

223

#### **Kwadratury Newtona-Cotesa**

To kwadratury interpolacyjne oparte na węzłach równoodległych, np.:

prostokątów

$$Q^{P}(f) = (b-a) \cdot f\left(\frac{a+b}{2}\right)$$

trapezów

$$Q^{T}(f) = \frac{b-a}{2} \cdot (f(a) + f(b))$$

• parabol (Simpsona)

$$Q^{S}(f) = \frac{b-a}{6} \cdot \left( f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

#### Kwadratury interpolacyjne

ldea: funkcję f przybliżyć wielomianem interpolacyjnym p, a całkę z f — całką z p.

Niech  $x_0, \ldots, x_n$  węzły interpolacji Lagrange'a oraz

$$p(x) = \sum_{i=0}^{n} f(x_i) \underbrace{J_i(x)}_{\text{baza Lagrange'a}}$$
 . Wtedy

$$I(f) \approx Q(f) := \int_{a}^{b} p(x) = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) \, l_{i}(x) = \sum_{i=0}^{n} \left( \underbrace{\int_{a}^{b} l_{i}(x) \, dx}_{=:A_{i}} \right) \cdot f(x_{i})$$

 $A_i$  — wyznaczamy raz na zawsze (nie zależą od f) w precomputingu: umiemy obliczać całki z wielomianów.

Nie wszystkie kwadratury są interpolacyjne.

224

#### Błąd kwadratur interpolacyjnych

#### Twierdzenie

Jeśli  $f \in C^{n+1}[a,b]$ , a Q jest kwadraturą interpolacyjną opartą na węzłach  $x_0, \ldots, x_n \in [a,b]$ , to

$$|I(f)-Q(f)| \leqslant \frac{\|f^{(n+1)}\|}{(n+1)!}|b-a|^{n+2}.$$

## Błąd prostych kwadratur

#### Twierdzenie

• (dla kwadratury prostokątów) jeśli  $f \in C^2[a,b]$ , to

$$I(f)-Q^P(f)=rac{(b-a)^3}{24}\,f^{''}(\xi), \qquad ext{dla pewnego } \xi\in[a,b],$$

• (dla kwadratury trapezów) jeśli  $f \in C^2[a,b]$ , to

$$I(f)-Q^{\mathsf{T}}(f)=-rac{(b-\mathsf{a})^3}{12}\,f^{''}(\xi), \qquad ext{dla pewnego } \xi\in[\mathsf{a},\mathsf{b}],$$

• (dla kwadratury Simpsona) jeśli  $f \in C^4[a, b]$ , to

$$I(f) - Q^{S}(f) = -\frac{(b-a)^{5}}{2880} f^{(4)}(\xi),$$
 dla pewnego  $\xi \in [a,b].$ 

227

## **Kwadratury Gaussa**

#### **Twierdzenie**

Rząd kwadratury interpolacyjnej opartej na n węzłach nie przekracza 2n. Realizuje go kwadratura Gaussa, oparta na zerach n-tego wielomianu ortogonalnego w  $L_p^2(a,b)$ .

#### Twierdzenie

Jeśli  $f \in C^{2n}[a,b]$ , a Q jest kwadraturą Gaussa opartą na n węzłach, to

$$\int_{a}^{b} f(x) \cdot \rho(x) \, dx - Q(f) = \|\phi_{n}\|_{\rho}^{2} \cdot \frac{f^{(2n)}(\xi)}{(2n)!}$$

gdzie  $\phi_n(x)$  — wielomian bazowy Newtona oparty na węzłach kwadratury,  $\xi \in [a, b]$ .

#### Kwadratury maksymalnego rzędu

#### Definicja

Kwadratura Q dla całki

$$I(f) = \int_{a}^{b} f(x) \cdot \rho(x) dx$$
 ( $\rho$  to funkcja wagowa)

jest rzędu (co najmniej) r, jeśli

$$I(p) = Q(p) \quad \forall p \in P_{r-1}.$$

Jest rzędu r, gdy jest co najmniej rzędu r, ale już nie r+1.

#### Wniosek

Każda kwadratura interpolacyjna oparta na n węzłach jest co najmniej rzędu n.

#### Problem

Jaki jest maksymalny rząd kwadratury? Jaka to kwadratura?

228

#### Kwadratury złożone

Obserwacja:

$$\int_{a}^{b} f(x) dx = \sum_{j=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

gdzie  $a = x_0 < x_1 < \cdots < x_N = b$ , zatem wystarczy aproksymować tylko całki na (krótszych) odcinkach  $[x_i, x_{i+1}]$ :

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx Q_{[x_i,x_{i+1}]}(f) \quad \Longrightarrow \quad \int_a^b f(x) dx \approx \sum_{j=0}^{N-1} Q_{[x_i,x_{i+1}]}(f).$$

## Kwadratury złożone: przykłady

Zakładamy jednorodny podział [a, b] węzłami  $x_i = a + i \cdot h$ , gdzie h = (b - a)/N.

prostokątów

$$\int_a^b f(x) dx \approx Q_N^P(f) = h \sum_{i=0}^{N-1} f\left(\frac{x_i + x_{i+1}}{2}\right)$$

trapezów

$$\int_{a}^{b} f(x) dx \approx Q_{N}^{T}(f) = \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{N-1} f(x_{i}) + f(b) \right)$$

Simpsona

$$\int_{a}^{b} f(x) dx \approx Q_{N}^{S}(f) = \frac{h}{6} \left( f(a) + 2 \sum_{i=1}^{N-1} f(x_{i}) + f(b) + 4 \sum_{i=0}^{N-1} f\left(\frac{x_{i} + x_{i+1}}{2}\right) \right)$$
231

#### Podwyższanie rzędu aproksymacji. Kwadratury Romberga

Oznaczmy  $R_0(f,h):=Q_N^T(f)$ . Okazuje się, że dla  $f\in C^{2m}[a,b]$  istnieją stałe  $\alpha_i$  t. że

$$I(f) - R_0(f, h) = \alpha_2 h^2 + \alpha_4 h^4 + \ldots + \alpha_{2m-2} h^{2m-2} + \mathcal{O}(h^{2m}).$$

Zatem też dla  $q \in (0,1)$ 

$$I(f)-R_0(f,qh) = \alpha_2 q^2 h^2 + \alpha_4 q^4 h^4 + \ldots + \alpha_{2m-2} q^{2m-2} h^{2m-2} + \mathcal{O}(h^{2m})$$

Stąd

$$R_1(f) = \frac{1}{1 - q^2} \left( R_0(f, qh) - q^2 R_0(f, h) \right)$$

ma wyższy rząd błędu:

$$I(f) - R_1(f, h) = \tilde{\alpha}_4 h^4 + \ldots + \tilde{\alpha}_{2m-2} h^{2m-2} + \mathcal{O}(h^{2m}).$$

#### Błąd kwadratur złożonych

Szacuje się przez sumę błędów lokalnych:

$$|I(f) - Q_N(f)| \leqslant \sum_i |I_{[x_i, x_{i+1}]}(f) - Q_{[x_i, x_{i+1}]}(f)|.$$

Jeśli więc błędy lokalne są rzędu  $h^{r+1}$ , to błąd kwadratury będzie rzędu  $h^r$ . Ponadto na przykład:

#### Twierdzenie

Jeśli  $f \in C^2[a,b]$ , to dla złożonej kwadratury trapezów

$$I(f)-Q_N^{\mathcal{T}}(f)=-rac{h^2}{12}\left|b-a
ight|f^{''}(\xi)$$
 dla pewnego  $\xi\in[a,b].$ 

232

## Podwyższanie rzędu aproksymacji. Kwadratury Romberga

Iterując ten pomysł definiujemy, oznaczając  $R_j^k = R_j\left(f, \frac{h}{2^k}\right)$ ,

$$R_j^k = \frac{1}{4^j - 1} \left( 4^j R_{j-1}^{k+1} - R_{j-1}^k \right), \qquad \leftarrow \text{ kwadratury Romberga.}$$

$$\begin{bmatrix} R_0^0 & & & & & \\ R_0^1 & R_1^0 & & & & \\ R_0^2 & R_1^1 & R_2^0 & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ R_0^m & R_1^{m-1} & & R_m^0 \end{bmatrix}$$

 $R_0^k$  — kw. trapezów,  $R_1^k$  — kw. Simpsona

#### Twierdzenie

233

Jeśli  $f \in C^{2m}[a,b]$ , to dla  $j \leqslant m$  błąd kwadratury  $R_i^0$  spełnia

$$I(f) - R_i^0 = \mathcal{O}(h^{2j+2}).$$

# Szybka transformacja Fouriera (FFT)

## Szybka transformacja Fouriera (FFT)

$$\omega_N = e^{-2i\pi/N}$$

$$F_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \cdots & \omega_{N}^{2(N-1)} \\ & & & \cdots & & \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \cdots & \omega_{N}^{(N-1)^{2}} \end{bmatrix}$$

- Koszt mnożenia przez  $F_N$  obniżymy z  $\mathcal{O}(N^2)$  do  $\mathcal{O}(N \log_2 N)$
- Koszt rozwiązywania układu z F<sub>N</sub> też obniżymy do O(N log<sub>2</sub> N)

przez wykorzystanie metody dziel i rządź.

#### Stwierdzenie

$$\omega_N^N = 1$$
.

#### Dyskretna transformacja Fouriera (DFT)

Oznaczając  $\omega_N = e^{-2i\pi/N}$ 

$$c_k = \sum_{j=0}^{N-1} f_j \cdot e^{-ikj \cdot 2\pi/N} = \sum_{j=0}^{N-1} f_j \cdot \omega_N^{kj}, \qquad k = 0, \dots, N-1.$$

Macierzowo:

$$c = F_N \cdot f$$

gdzie

$$F_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \cdots & \omega_{N}^{2(N-1)} \\ & & & \cdots & \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \cdots & \omega_{N}^{(N-1)^{2}} \end{bmatrix}, \quad f = \begin{bmatrix} f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{N-1} \end{bmatrix}, \quad c = \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{N-1} \end{bmatrix}$$

Nawet jeślibyśmy wyznaczyli  $F_N$  w preprocessingu, koszt zwykłego mnożenia przez  $F_N$  byłby  $\mathcal{O}(N^2)$ .

#### Algorytm FFT

 $\omega_N = e^{-2i\pi/N}$ . Mamy obliczyć  $c_j = \sum_{k=0}^{N-1} f_k \cdot \omega_N^{kj}$  dla  $j = 0, \dots, N-1$ .

Dla 
$$\alpha = 0, \ldots, m-1$$
,

$$c_{\alpha} = \Phi_{\alpha} + \omega_{N}^{\alpha} \Psi_{\alpha},$$
$$c_{\alpha+m} = \Phi_{\alpha} - \omega_{N}^{\alpha} \Psi_{\alpha}.$$

gdzie

$$\Phi_{\alpha} = \sum_{k=0}^{m-1} f_{2k} \omega_m^{k\alpha}, \qquad \Psi_{\alpha} = \sum_{k=0}^{m-1} f_{2k+1} \omega_m^{k\alpha}$$

Czyli  $c = F_N f$  obliczamy rekurencyjnie!

Koszt:

236

$$K(N) = 2K(N/2) + \mathcal{O}(N),$$

zatem na mocy TRU

$$K(N) = \mathcal{O}(N \log_2 N).$$

#### DFT — własności

#### **Twierdzenie**

- $F_N = F_N^T$
- $\frac{1}{N}F_N^HF_N=I$ ;  $F_N^{-1}=\frac{1}{N}\bar{F_N}$ ;  $\frac{1}{\sqrt{N}}F_N$  jest unitarna
- $\bar{F_N} = T_N F_N = F_N T_N$
- $\bullet \ F_N^{-1}y = \frac{1}{N}\bar{F_N}y = \frac{1}{N}\overline{F_N\bar{y}}$

## Metody numeryczne!

#### FFT — zastosowania

- obliczanie DFT, DST i DCT różnej maści
- obliczanie cyklicznego splotu dwóch wektorów:

$$z_k = \sum_{j=0}^{N-1} u_j v_{k-j}, \qquad k = 0, \dots N-1,$$

- mnożenie wielomianów wysokiego stopnia
- ....

238

239

## Specyfika metod numerycznych

Przedmiot interdyscyplinarny, na pograniczu

- matematyki teoretycznej (analiza algorytmów dla zadań ciągłych)
- informatyki teoretycznej (analiza algorytmów dla zadań dyskretnych)
- matematyki stosowanej (konstrukcja metod dla konkretnego modelu)
- informatyki praktycznej (implementacja algorytmów, dopasowanie do architektury)
- ma też swoją własną specyfikę (np. arytmetyka fl)

## Ciekawe wykłady z numeryki na MIM UW

#### Wykłady obieralne dostępne dla Informatyki w stałej ofercie:

- Analiza numeryczna
- Aproksymacja i złożoność
- Grafika komputerowa
- Obliczenia naukowe
- Numeryczne równania różniczkowe
- Metody obliczeniowe w finansach

Do tego wykłady monograficzne i seminaria monograficzne z numeryki.

## Ciekawe prace magisterskie z numeryki na MIM UW

- Seminarium magisterskie dostępne dla informatyki i matematyki
- Prace magisterskie o charakterze
  - implementacyjnym
  - teoretycznym (analitycznym)

## Informacje:

241

https://www.mimuw.edu.pl/~przykry/mnmgr