Types of Bonding

Fig. 8.3

C Metallic bonding

Ionic Bonding: Lewis Structures

No electrons are shared in an ionic bond. The ions are held together only through electrostatic attractions. To show ionic bonding in a Lewis structure, simply show the structures of the ions (and their formation) e.g. MgCl₂

Ionic Bonding

• Ionic compounds (which we describe in *formula units*, not molecules!) generally exist in crystals. The nature of the attraction explains some physical properties, such as brittleness:

and conductivity:

Metallic Bonding

Metallic bonding is based on a "sea" of delocalized electrons moving around the (very localized) nuclei:

Since the nuclei are freely sharing electrons, this bonding explains the conductivity and ductility of metals.

Covalent Bonding

In covalent bonds, electrons (two per bond) are shared between two atoms:

Figure 8.13

The continuum of bonding

Describing Covalent Bonds

Lewis structures: F₂: Bond order: Bond length: Bond energy:

Draw the Lewis structure for N₂.
What is the bond order of this molecule?

Electronegativity & Bond Polarity

Covalent bonds where the electrons are not perfectly evenly shared are called **polar bonds** and have a **dipole**.

We can show this with arrows, or with a small delta +/-, meaning 'partial charge':

The ability of an atom to draw electrons towards itself in a covalent bond is **electronegativity**.

Electronegativties on the Pauling scale

What kind of bond will it be?

Though the actual bonding behaviour is a continuum, we have some helpful cutoffs:

- A difference in electronegativity > 1.7 is (usually) ionic.
- A difference < 0.4 is (usually) nonpolar.
- In between are polar covalent bonds.

PROPERTY	METAL ATOM	NONMETAL ATOM
Atomic size	Larger	Smaller
Z _{eff}	Lower	Higher
IE	Lower	Higher
EA	Less negative	More negative

Which bond is most polar?

- 1. C-O
- 2. C-Cl
- 3. C-F
- 4. C-H
- 5. C-N