ƯỚC LƯỢNG ĐỆ QUY TRONG LỚP CÁC MÔ HÌNH BIẾN DẠNG

Định Minh Hải

Giảng viên hướng dẫn ThS. Nguyễn Phát Đạt

Trường Đại học Sư phạm Thành phố Hồ Chí Minh Khoa Toán - Tin học

Ngày 2 tháng 5 năm 2024

Mục lục

- 1 Đặt vấn đề, giới thiệu mô hình và các giả thiết
- Kiến thức chuẩn bị
- 3 Ước lượng các tham số và hàm hồi quy
- 4 Mô tả phương pháp bằng dữ liệu mô phỏng
- Tài liệu tham khảo
- 6 Phu luc

Mục lục

- 1 Đặt vấn đề, giới thiệu mô hình và các giả thiết
- 2 Kiến thức chuẩn bị
- 3 Ước lượng các tham số và hàm hồi quy
- 4 Mô tả phương pháp bằng dữ liệu mô phỏng
- Tài liệu tham khảo
- 6 Phu luc

Xuất phát từ một số nhu cầu:

 Nghiên cứu các hiện tượng xảy ra theo chu kỳ trong tự nhiên (nhiệt độ, lượng mưa hằng năm, ...)

Xuất phát từ một số nhu cầu:

- Nghiên cứu các hiện tượng xảy ra theo chu kỳ trong tự nhiên (nhiệt độ, lượng mưa hằng năm, ...)
- Đo đạc và dự báo các kết quả hiện tượng trong tự nhiên (nhiệt độ hằng ngày, lưu lượng phương tiện qua một tuyến đường, tham khảo [2], ...)

Xuất phát từ một số nhu cầu:

- Nghiên cứu các hiện tượng xảy ra theo chu kỳ trong tự nhiên (nhiệt độ, lượng mưa hằng năm, ...)
- Đo đạc và dự báo các kết quả hiện tượng trong tự nhiên (nhiệt độ hằng ngày, lưu lượng phương tiện qua một tuyến đường, tham khảo [2], ...)
- Xây dựng cở sở dữ liệu phục vụ quá trình ra quyết định (dữ liệu điện tâm đồ của bệnh nhân bị loạn nhịp tim, tham khảo [2], ...)

Xuất phát từ một số nhu cầu:

- Nghiên cứu các hiện tượng xảy ra theo chu kỳ trong tự nhiên (nhiệt độ, lượng mưa hằng năm, ...)
- Đo đạc và dự báo các kết quả hiện tượng trong tự nhiên (nhiệt độ hằng ngày, lưu lượng phương tiện qua một tuyến đường, tham khảo [2], ...)
- Xây dựng cở sở dữ liệu phục vụ quá trình ra quyết định (dữ liệu điện tâm đồ của bệnh nhân bị loạn nhịp tim, tham khảo [2], ...)
- ⇒ Có động cơ mô phỏng các dữ liệu có chu kỳ bằng phương trình toán học.

Dữ liệu tuần hoàn

Hình 1: Tín hiệu điện tim được đo từ tim một người bình thường là dữ liệu tuần hoàn

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

trong đó

• (X_n) là dãy các quan trắc đã biết,

 $^{^1}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

- (X_n) là dãy các quan trắc đã biết,
- (Y_n) là dãy các quan trắc đã biết,

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

- (X_n) là dãy các quan trắc đã biết,
- (Y_n) là dãy các quan trắc đã biết,
- (ε_n) là các sai số ngẫu nhiên chưa biết,

 $^{^1}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

- (X_n) là dãy các quan trắc đã biết,
- (Y_n) là dãy các quan trắc đã biết,
- (ε_n) là các sai số ngẫu nhiên chưa biết,
- h là hàm tuần hoàn và có dạng $h(x) = m + \sum_{k=1}^{p} a_k f(x \theta_k)$ (với f là hàm đặc trưng chưa biết của mô hình, m là trung bình tổng quát, $\theta = (\theta_1, \dots, \theta_p)^T$ và $a = (a_1, \dots, a_p)^T$ lần lượt là véc tơ tham số chuyển đổi và véc tơ tham số co giãn chưa biết).

¹Bercu, B. and Fraysse, P. (2012). *A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.*

Với mọi $n \geq 0$, các mô hình biến dạng theo chu kỳ được định nghĩa như sau 1

$$Y_n = h(X_n) + \varepsilon_n, \tag{1}$$

- (X_n) là dãy các quan trắc đã biết,
- (Y_n) là dãy các quan trắc đã biết,
- (ε_n) là các sai số ngẫu nhiên chưa biết,
- h là hàm tuần hoàn và có dạng $h(x) = m + \sum_{k=1}^{p} a_k f(x \theta_k)$ (với f là hàm đặc trưng chưa biết của mô hình, m là trung bình tổng quát, $\theta = (\theta_1, \dots, \theta_p)^T$ và $a = (a_1, \dots, a_p)^T$ lần lượt là véc tơ tham số chuyển đổi và véc tơ tham số co giãn chưa biết).

¹Bercu, B. and Fraysse, P. (2012). *A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.*

Khóa luận sẽ khảo sát mô hình (1) ứng với với $n\geq 0$, $1\leq j\leq p, 1\leq i\leq n$ và $p\geq 2$. Khi đó, mô hình (1) trở thành

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j}, \qquad (2)$$

Khóa luận sẽ khảo sát mô hình (1) ứng với với $n \ge 0$, $1 \le j \le p, 1 \le i \le n$ và $p \ge 2$. Khi đó, mô hình (1) trở thành

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j}, \qquad (2)$$

trong đó

• nhiễu $(\varepsilon_{i,j})$ là dãy các biến ngẫu nhiên độc lập có trung bình 0, phương sai $\mathbb{E}\left[\varepsilon_{i,j}^2\right]=\sigma_j^2$ và độc lập với (X_i) ,

Khóa luận sẽ khảo sát mô hình (1) ứng với với $n \ge 0$, $1 \le j \le p, 1 \le i \le n$ và $p \ge 2$. Khi đó, mô hình (1) trở thành

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j}, \qquad (2)$$

- nhiễu $(\varepsilon_{i,j})$ là dãy các biến ngẫu nhiên độc lập có trung bình 0, phương sai $\mathbb{E}\left[\varepsilon_{i,j}^2\right]=\sigma_j^2$ và độc lập với (X_i) ,
- (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối,

Khóa luận sẽ khảo sát mô hình (1) ứng với với $n\geq 0$, $1\leq j\leq p, 1\leq i\leq n$ và $p\geq 2$. Khi đó, mô hình (1) trở thành

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j}, \qquad (2)$$

- nhiễu $(\varepsilon_{i,j})$ là dãy các biến ngẫu nhiên độc lập có trung bình 0, phương sai $\mathbb{E}\left[\varepsilon_{i,j}^2\right]=\sigma_j^2$ và độc lập với (X_i) ,
- (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối,
- f là hàm tuần hoàn chưa biết,

Khóa luận sẽ khảo sát mô hình (1) ứng với với $n \ge 0$, $1 \le j \le p, 1 \le i \le n$ và $p \ge 2$. Khi đó, mô hình (1) trở thành

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j}, \qquad (2)$$

- nhiễu $(\varepsilon_{i,j})$ là dãy các biến ngẫu nhiên độc lập có trung bình 0, phương sai $\mathbb{E}\left[\varepsilon_{i,j}^2\right]=\sigma_i^2$ và độc lập với (X_i) ,
- (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối,
- f là hàm tuần hoàn chưa biết,
- a_i, θ_i, v_i là các số thực, với mọi $1 \le j \le p$.

Các giả thiết sau sẽ được sử dụng trong mô hình trên ²

 $^{^2}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Các giả thiết sau sẽ được sử dụng trong mô hình trên 2

 (\mathcal{H}_1) Các quan trắc (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối với hàm mật độ xác suất g, dương trên giá [-1/2;1/2]. Hơn nữa, g liên tục trên \mathbb{R} , khả vi cấp 2 và đạo hàm bị chặn.

 $^{^2}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Các giả thiết sau sẽ được sử dụng trong mô hình trên 2

 (\mathcal{H}_1) Các quan trắc (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối với hàm mật độ xác suất g, dương trên giá [-1/2;1/2]. Hơn nữa, g liên tục trên \mathbb{R} , khả vi cấp 2 và đạo hàm bị chặn.

Trong suốt khóa luận, giả sử rằng ta đã biết hàm mật độ xác suất g.

 $^{^2}$ Bercu, B. and Fraysse, P. (2012). *A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.*

Các giả thiết sau sẽ được sử dụng trong mô hình trên 2

 (\mathcal{H}_1) Các quan trắc (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối với hàm mật độ xác suất g, dương trên giá [-1/2;1/2]. Hơn nữa, g liên tục trên \mathbb{R} , khả vi cấp 2 và đạo hàm bị chặn.

Trong suốt khóa luận, giả sử rằng ta đã biết hàm mật độ xác suất g.

 (\mathcal{H}_2) f là hàm đối xứng, bị chặn, tuần hoàn với chu kỳ 1 .

 $^{^2}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Các giả thiết sau sẽ được sử dụng trong mô hình trên 2

 (\mathcal{H}_1) Các quan trắc (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối với hàm mật độ xác suất g, dương trên giá [-1/2;1/2]. Hơn nữa, g liên tục trên \mathbb{R} , khả vi cấp 2 và đạo hàm bị chặn.

Trong suốt khóa luận, giả sử rằng ta đã biết hàm mật độ xác suất g.

 (\mathcal{H}_2) f là hàm đối xứng, bị chặn, tuần hoàn với chu kỳ 1. Ta có thể tìm được hai bộ ba vector tham số (a, θ, v) và (a^*, θ^*, v^*) thỏa mãn

c hall bo ba vector tham so (a, θ, v) va (a^*, θ^*, v^*) thoa man

$$a_{j}f(x-\theta_{j})+v_{j}=a_{j}^{*}f^{*}(x-\theta_{j}^{*})+v_{j}^{*}.$$
 (3)

 $^{^2}$ Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Các giả thiết sau sẽ được sử dụng trong mô hình trên 2

 (\mathcal{H}_1) Các quan trắc (X_i) là dãy các biến ngẫu nhiên độc lập, cùng phân phối với hàm mật độ xác suất g, dương trên giá [-1/2;1/2]. Hơn nữa, g liên tục trên \mathbb{R} , khả vi cấp 2 và đạo hàm bị chặn.

Trong suốt khóa luận, giả sử rằng ta đã biết hàm mật độ xác suất g.

 (\mathcal{H}_2) f là hàm đối xứng, bị chặn, tuần hoàn với chu kỳ 1. Ta có thể tìm được hai bộ ba vector tham số (a, θ, v) và (a^*, θ^*, v^*) thỏa mãn

$$a_{j}f(x-\theta_{j})+v_{j}=a_{j}^{*}f^{*}(x-\theta_{j}^{*})+v_{j}^{*}.$$
 (3)

Tác giả Philippe Fraysse đề xuất thêm các giả thiết sau:

$$(\mathcal{H}_3) \int_{-1/2}^{1/2} f(x) dx = 0,$$

(
$$\mathcal{H}_4$$
) $a_1=1, heta_1=0$ và $\max_{1\leq j\leq p}| heta_j|<rac{1}{4}.$

²Bercu, B. and Fraysse, P. (2012). *A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.*

Mục lục

- 1 Đặt vấn đề, giới thiệu mô hình và các giả thiết
- 2 Kiến thức chuẩn bị
- ③ Ước lượng các tham số và hàm hồi quy
- 4 Mô tả phương pháp bằng dữ liệu mô phỏng
- Tài liệu tham khảo
- 6 Phu luc

$Martingale^3$

Dịnh nghĩa 2.1.2. Định nghĩa martingale

Giả sử rằng $X=(X_n)$ là dãy các biến ngẫu nhiên khả tích và tương thích với bộ lọc \mathbb{F} . Với mọi n,X được gọi là:

³Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Martingale³

Dinh nghĩa 2.1.2. Định nghĩa martingale

Giả sử rằng $X = (X_n)$ là dãy các biến ngẫu nhiên khả tích và tương thích với bộ lọc \mathbb{F} . Với mọi n, X được gọi là:

Martingale n\u00e9u

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n \text{ h.c.c.}$$
 (4)

 $^{^3}$ Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

$Martingale^3$

Dinh nghĩa 2.1.2. Định nghĩa martingale

Giả sử rằng $X=(X_n)$ là dãy các biến ngẫu nhiên khả tích và tương thích với bộ lọc \mathbb{F} . Với mọi n,X được gọi là:

Martingale nêu

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n \text{ h.c.c.}$$
 (4)

Martingale dưới nếu

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \ge X_n \text{ h.c.c.}$$
 (5)

 $^{^3}$ Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Martingale³

Dịnh nghĩa 2.1.2. Định nghĩa martingale

Giả sử rằng $X=(X_n)$ là dãy các biến ngẫu nhiên khả tích và tương thích với bộ lọc \mathbb{F} . Với mọi n,X được gọi là:

Martingale n\u00e9u

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n \text{ h.c.c.}$$
 (4)

Martingale dưới nếu

$$\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_n\right]\geq X_n \text{ h.c.c }. \tag{5}$$

Martingale trên nếu

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \le X_n \text{ h.c.c.}$$
 (6)

³Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Biến phân bình phương dự báo được⁴

Định nghĩa 2.1.3. Định nghĩa biến phân bình phương dự báo được cho martingale

Biến phân bình phương (hoặc đặc trưng bình phương) dự báo được gắn liền với martingale (X_n) với $\langle X \rangle_0 = 0$ và với moi n > 1, được định nghĩa

⁴Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Biến phân bình phương dự báo được⁴

Định nghĩa 2.1.3. Định nghĩa biến phân bình phương dự báo được cho martingale

Biến phân bình phương (hoặc đặc trưng bình phương) dự báo được gắn liền với martingale (X_n) với $\langle X \rangle_0 = 0$ và với mọi $n \geq 1$, được định nghĩa

$$\langle X \rangle_n = \sum_{k=1}^n \mathbb{E}\left[(\Delta X_k)^2 \mid \mathcal{F}_{k-1} \right],$$
 (7)

⁴Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Biến phân bình phương dự báo được⁴

Định nghĩa 2.1.3. Định nghĩa biến phân bình phương dự báo được cho martingale

Biến phân bình phương (hoặc đặc trưng bình phương) dự báo được gắn liền với martingale (X_n) với $\langle X \rangle_0 = 0$ và với moi n > 1, được định nghĩa

$$\langle X \rangle_n = \sum_{k=1}^n \mathbb{E}\left[(\Delta X_k)^2 \mid \mathcal{F}_{k-1} \right],$$
 (7)

trong đó $\Delta X_k = X_k - X_{k-1}$.

Ta ký hiệu

$$\langle X \rangle_{\infty} = \lim_{n \to \infty} \langle X \rangle_n. \tag{8}$$

⁴Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Định lý giới hạn trung tâm

Định lý 2.1.4. Định lý giới hạn trung tâm cho martingale

Cho (X_n) là một martingale bình phương khả tích và (a_n) là dãy các số thực dương tăng đến vô cùng. Giả sử rằng:

Định lý giới hạn trung tâm

Định lý 2.1.4. Định lý giới hạn trung tâm cho martingale

Cho (X_n) là một martingale bình phương khả tích và (a_n) là dãy các số thực dương tăng đến vô cùng. Giả sử rằng:

• Tồn tại một giới hạn tất định l>0 sao cho

$$\frac{\langle X \rangle_n}{a_n} \xrightarrow{\mathcal{P}} I. \tag{10}$$

Định lý giới hạn trung tâm

Định lý 2.1.4. Định lý giới hạn trung tâm cho martingale

Cho (X_n) là một martingale bình phương khả tích và (a_n) là dãy các số thực dương tăng đến vô cùng. Giả sử rằng:

• Tồn tại một giới hạn tất định l>0 sao cho

$$\frac{\langle X \rangle_n}{a_n} \xrightarrow{\mathcal{P}} I. \tag{10}$$

• Điều kiện Lindeberg Với mọi $\varepsilon>0$,

$$\frac{1}{a_n} \sum_{k=1}^n \mathbb{E}\left[\left| \Delta X_k \right|^2 \mathbb{I}_{\left\{ \left| \Delta X_k \right| \ge \varepsilon \sqrt{a_n} \right\}} \mid \mathcal{F}_{k-1} \right] \xrightarrow{\mathcal{P}} 0. \tag{11}$$

Định lý giới hạn trung tâm(tt)

$$\frac{1}{\sqrt{a_n}}X_n \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, I). \tag{12}$$

Hơn nữa, khi l > 0,

$$\sqrt{a_n} \left(\frac{X_n}{\langle X \rangle_n} \right) \stackrel{\mathcal{L}}{\to} \mathcal{N} \left(0, I^{-1} \right). \tag{13}$$

Luật mạnh số lớn⁵

Định lý 2.1.5. Luật mạnh số lớn cho martingale

Cho (X_n) là một martingale bình phương khả tích và ký hiệu $\langle X \rangle_{\infty} = \lim_{n \to \infty} \langle X \rangle_n$.

• Nếu $\langle X \rangle_{\infty} = \infty$, ta được $\lim_{n \to \infty} \frac{X_n}{\langle X \rangle_n} = 0$ hầu chắc chắn. Hơn nữa, với mọi $\gamma > 0$, ta có

$$X_n/\langle X \rangle_n = o\left(\left(\left(\ln\langle X \rangle_n\right)^{1+\gamma}/\langle X \rangle_n\right)^{1/2}\right)$$
 (14)

⁵Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Luật mạnh số lớn⁵

Định lý 2.1.5. Luật mạnh số lớn cho martingale

Cho (X_n) là một martingale bình phương khả tích và ký hiệu $\langle X \rangle_{\infty} = \lim_{n \to \infty} \langle X \rangle_n$.

• Nếu $\langle X \rangle_{\infty} = \infty$, ta được $\lim_{n \to \infty} \frac{X_n}{\langle X \rangle_n} = 0$ hầu chắc chắn. Hơn nữa, với moi $\gamma > 0$, ta có

$$X_n/\langle X \rangle_n = o\left(\left(\left(\ln\langle X \rangle_n\right)^{1+\gamma}/\langle X \rangle_n\right)^{1/2}\right)$$
 (14)

• Nếu $\langle X \rangle_{\infty} < \infty$ thì (X_n) hội tụ hầu chắc chắn đến biến ngẫu nhiên bình phương khả tích X_{∞} .

⁵Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Ước lượng Robbins-Monro⁶

Cho (γ_n) là dãy giảm các số thực dương thỏa mãn

$$\sum_{n=1}^{+\infty} \gamma_n = +\infty \text{ và } \sum_{n=1}^{+\infty} \gamma_n^2 < +\infty.$$
 (18)

Uớc lượng Robbins-Monro⁶

Cho (γ_n) là dãy giảm các số thực dương thỏa mãn

$$\sum_{n=1}^{+\infty} \gamma_n = +\infty \text{ và } \sum_{n=1}^{+\infty} \gamma_n^2 < +\infty.$$
 (18)

Ước lượng Robbins-Monro được xác định bởi

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \gamma_{n+1} (T_{n+1} - f(\theta)),$$
 (19)

⁶Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.

Ước lượng Robbins-Monro⁶

Cho (γ_n) là dãy giảm các số thực dương thỏa mãn

$$\sum_{n=1}^{+\infty} \gamma_n = +\infty \text{ và } \sum_{n=1}^{+\infty} \gamma_n^2 < +\infty.$$
 (18)

Ước lượng Robbins-Monro được xác định bởi

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \gamma_{n+1} (T_{n+1} - f(\theta)), \qquad (19)$$

trong đó $f(\theta)$ đã biết và T_{n+1} là biến ngẫu nhiên thỏa mãn

$$\mathbb{E}\left[T_{n+1}\mid\mathcal{F}_n\right]=f\left(\hat{\theta}_n\right).$$

Giả sử rằng f là hàm giảm. Khi đó

$$\lim_{n \to \infty} \hat{\theta}_n = \theta \text{ h.c.c.}$$
 (27)

⁶Bercu, B. and Fraysse, P. (2012). *A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.*

Ước lượng Robbins-Monro⁶

Cho (γ_n) là dãy giảm các số thực dương thỏa mãn

$$\sum_{n=1}^{+\infty}\gamma_n=+\infty$$
 và $\sum_{n=1}^{+\infty}\gamma_n^2<+\infty.$

(18)

(19)

(27)

(28)

Ước lượng Robbins-Monro được xác định bởi

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \gamma_{n+1} \left(T_{n+1} - f(\theta) \right),$$

trong đó $f(\theta)$ đã biết và T_{n+1} là biến ngẫu nhiên thỏa mãn

$$\mathbb{E}\left[T_{n+1}\mid\mathcal{F}_n\right]=f\left(\hat{\theta}_n\right).$$

Giả sử rằng f là hàm giảm. Khi đó

$$\lim_{n\to\infty}\hat{\theta}_n=\theta \text{ h.c.c }.$$

Hơn nữa, khi $-2f'(\theta)>1$, ta có tính tiệm cận chuẩn

$$\sqrt{n}\left(\hat{ heta}_n- heta
ight)\stackrel{\mathcal{L}}{\longrightarrow}\mathcal{N}\left(0,\xi^2(heta)
ight).$$

⁶Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in

Hàm hạt nhân và ước lượng Nadaraya-Watson⁷

Định nghĩa 2.1.9

Cho (X_n) là dãy các biến ngẫu nhiên độc lập, cùng phân phối và hàm mật độ f chưa biết. Cho K là hàm đối xứng, dương, bị chặn và có giá compact sao cho

$$\int_{\mathbb{R}} K(x)dx = 1 \text{ và } \int_{\mathbb{R}} K^2(x)dx = v^2$$
 (29)

thì ta gọi K là hàm hạt nhân.

⁷Noda, K. (2007). Estimation of a Regression Function by The Parzen kernel-type Density Estimatiors, Ann Inst Statist Math, 221-234.

Hàm hạt nhân và ước lượng Nadaraya-Watson⁸

Hàm hạt nhân sử dụng chính trong khóa luận là hàm hạt nhân đều

$$K_a(x) = \frac{1}{2a} I_{\{|x| \le a\}}$$

Hàm hạt nhân và ước lượng Nadaraya-Watson

Ước lượng đệ quy Nadaraya-Watson của hàm f được xác định bởi

$$\widehat{f}_n(x) = \frac{\sum_{k=1}^n W_k(x) Y_k}{\sum_{k=1}^n W_k(x)}$$
(30)

Hàm hạt nhân và ước lượng Nadaraya-Watson

Ước lượng đệ quy Nadaraya-Watson của hàm f được xác định bởi

$$\widehat{f}_n(x) = \frac{\sum_{k=1}^n W_k(x) Y_k}{\sum_{k=1}^n W_k(x)}$$
(30)

trong đó

$$W_k(x) = \frac{1}{h_k} K\left(\frac{X_k - x}{h_k}\right) \tag{31}$$

Hàm hạt nhân và ước lượng Nadaraya-Watson

Ước lượng đệ quy Nadaraya-Watson của hàm f được xác định bởi

$$\widehat{f}_n(x) = \frac{\sum_{k=1}^n W_k(x) Y_k}{\sum_{k=1}^n W_k(x)}$$
(30)

trong đó

$$W_k(x) = \frac{1}{h_k} K\left(\frac{X_k - x}{h_k}\right) \tag{31}$$

Băng tần (h_n) là dãy các số thực dương, h_n giảm dần về 0 và nh_n tiến ra vô cùng. Với $0 < \alpha < 1$, ta thường dùng $h_n = 1/n^{\alpha}$.

Hàm hạt nhân và ước lượng Nadaraya-Watson⁹

Định lý 2.1.10. Định lý về sự hội tụ của ước lượng đệ quy

Với mọi $x \in \mathbb{R}$, nếu $\widehat{f_n}(x)$ là ước lượng đệ quy Nadaraya-Watson của hàm f thì

$$\lim_{n \to \infty} \widehat{f}_n(x) = f(x) \text{ h.c.c.}$$
 (32)

Hàm hạt nhân và ước lượng Nadaraya-Watson⁹

Định lý 2.1.10. Định lý về sự hội tụ của ước lượng đệ quy

Với mọi $x \in \mathbb{R}$, nếu $\widehat{f_n}(x)$ là ước lượng đệ quy Nadaraya-Watson của hàm f thì

$$\lim_{n \to \infty} \widehat{f}_n(x) = f(x) \text{ h.c.c.}$$
 (32)

Định lý 2.1.11. Định lý về tính tiệm cận chuẩn của ước lượng đệ quy

Giả sử rằng (ε_n) có mô-men hữu hạn, bậc lớn hơn 2. Với mọi $x\in\mathbb{R}$, nếu $\frac{1}{5}<\alpha<1$ thì

$$\sqrt{nh_n}\left(\widehat{f_n}(x) - f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2 v^2}{(1+\alpha)g(x)}\right). \tag{33}$$

⁹Noda, K. (2007). Estimation of a Regression Function by The Parzen kernel-type Density Estimatiors, Ann Inst Statist Math, 221-234.

Mục lục

- 1 Đặt vấn đề, giới thiệu mô hình và các giả thiết
- 2 Kiến thức chuẩn bị
- 3 Ước lượng các tham số và hàm hồi quy
- 4 Mô tả phương pháp bằng dữ liệu mô phỏng
- Tài liệu tham khảo
- 6 Phu luc

Với $1 \leq j \leq p$, một ước lượng vững \widehat{v}_n của v được xác định bởi

$$\widehat{v}_{n,j} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i,j}}{g(X_i)}.$$
(34)

Định lý 3.1.1 Định lý sự hội tụ ước lượng tham số chiều cao \widehat{v}_n

Giả sử rằng (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn, ta có:

• \hat{v}_n hội tụ hầu chắc chắn về v

$$\lim_{n\to\infty} \widehat{v}_n = v \text{ h.c.c.}$$
 (35)

Định lý 3.1.1 Định lý sự hội tụ ước lượng tham số chiều cao \widehat{v}_n

Giả sử rằng (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn, ta có:

• \hat{v}_n hội tụ hầu chắc chắn về v

$$\lim_{n \to \infty} \widehat{v}_n = v \text{ h.c.c.}$$
 (35)

Tính tiệm cận chuẩn

$$\sqrt{n}(\widehat{v}_n - v) \xrightarrow{\mathcal{L}} \mathcal{N}_p\left(0, \operatorname{Cov}\left(\frac{Y}{g(X)}\right)\right)$$
(36)

Định lý 3.1.1 Định lý sự hội tụ ước lượng tham số chiều cao \widehat{v}_n

Giả sử rằng (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn, ta có:

• \hat{v}_n hội tụ hầu chắc chắn về v

$$\lim_{n\to\infty} \widehat{v}_n = v \text{ h.c.c.}$$
 (35)

Tính tiệm cận chuẩn

$$\sqrt{n}(\widehat{v}_n - v) \xrightarrow{\mathcal{L}} \mathcal{N}_p\left(0, \operatorname{Cov}\left(\frac{Y}{g(X)}\right)\right)$$
(36)

Luật mạnh dạng toàn phương như sau

$$\lim_{n \to \infty} \frac{1}{\log(n)} \sum_{i=1}^{n} (\widehat{v}_i - v) (\widehat{v}_i - v)^T = \operatorname{Cov} \left(\frac{Y}{g(X)} \right) \text{ h.c.c.}$$
 (37)

Với mọi $t \in \mathbb{R}^p$, ta đặt hàm bổ trợ ϕ có dạng

$$\phi(t) = \mathbb{E}\left[D(X, t) \begin{pmatrix} a_1 f(X - \theta_1) \\ \vdots \\ a_p f(X - \theta_p) \end{pmatrix}\right]$$
(38)

$$D(X,t) = \frac{1}{g(X)} \operatorname{diag} \left(\sin \left(2\pi (X - t_1) \right), \dots, \sin \left(2\pi (X - t_p) \right) \right)$$
(39)

Với mọi $t \in \mathbb{R}^p$, ta đặt hàm bổ trợ ϕ có dạng

$$\phi(t) = \mathbb{E}\left[D(X, t) \begin{pmatrix} a_1 f(X - \theta_1) \\ \vdots \\ a_p f(X - \theta_p) \end{pmatrix}\right]$$
(38)

$$D(X,t) = \frac{1}{g(X)} \operatorname{diag} \left(\sin \left(2\pi \left(X - t_1 \right) \right), \dots, \sin \left(2\pi \left(X - t_p \right) \right) \right) \tag{39}$$

Ta định nghĩa phép chiếu của $x\in\mathbb{R}$ trên $\mathcal{K}=[-1/4;1/4]$ như sau

$$\pi_{K}(x) = \begin{cases} x \text{ n\'eu } |x| \le 1/4\\ 1/4 \text{ n\'eu } x \ge 1/4\\ -1/4 \text{ n\'eu } x \le -1/4 \end{cases}$$

Với mọi $t \in \mathbb{R}^p$, ta đặt hàm bổ trợ ϕ có dạng

$$\phi(t) = \mathbb{E}\left[D(X, t) \begin{pmatrix} a_1 f(X - \theta_1) \\ \vdots \\ a_p f(X - \theta_p) \end{pmatrix}\right]$$

$$(38)$$

$$D(X,t) = \frac{1}{g(X)} \operatorname{diag} \left(\sin \left(2\pi \left(X - t_1 \right) \right), \dots, \sin \left(2\pi \left(X - t_p \right) \right) \right)$$
 (39)

Ta định nghĩa phép chiếu của $x\in\mathbb{R}$ trên $\mathcal{K}=[-1/4;1/4]$ như sau

$$\pi_K(x) = \begin{cases} x \text{ n\'eu } |x| \le 1/4\\ 1/4 \text{ n\'eu } x \ge 1/4\\ -1/4 \text{ n\'eu } x < -1/4 \end{cases}$$

Cho (γ_n) là dãy giảm các số thực dương thỏa mãn

$$\sum_{n=1}^{+\infty} \gamma_n = +\infty \text{ và } \sum_{n=1}^{+\infty} \gamma_n^2 < +\infty$$
 (40)

Với mọi $1 \leq j \leq p$, ta ước lượng $heta_j$ thông qua dãy $\left(\widehat{ heta}_{n,j}
ight)$ với

$$\widehat{\theta}_{n+1,j} = \pi_K \left(\widehat{\theta}_{n,j} + \gamma_{n+1} \operatorname{sign} \left(a_j f_1 \right) T_{n+1,j} \right)$$
(41)

trong đó, giá trị ban đầu $\widehat{ heta}_0 \in K^p$ và vector ngẫu nhiên T_{n+1} được xác định bởi

$$T_{n+1} = D\left(X_{n+1}, \widehat{\theta}_n\right) Y_{n+1} \tag{42}$$

Với mọi $1 \leq j \leq p$, ta ước lượng θ_j thông qua dãy $\left(\widehat{\theta}_{n,j}\right)$ với

$$\widehat{\theta}_{n+1,j} = \pi_K \left(\widehat{\theta}_{n,j} + \gamma_{n+1} \operatorname{sign} \left(a_j f_1 \right) T_{n+1,j} \right)$$
(41)

trong đó, giá trị ban đầu $\widehat{ heta}_0 \in K^p$ và vector ngẫu nhiên T_{n+1} được xác định bởi

$$T_{n+1} = D\left(X_{n+1}, \widehat{\theta}_n\right) Y_{n+1} \tag{42}$$

và f_1 là hệ số Fourier đầu tiên của f

$$f_1 = \int_{-1/2}^{1/2} \cos(2\pi x) f(x) dx$$

Định lý 3.2.1. Định lý về sự hội tụ hầu chắc chắn của $\widehat{\theta}_n$

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn.

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta \text{ h.c.c}$$

Hơn nữa, khi $| heta_j| < 1/4$ thì số lần mà biến ngẫu nhiên

$$\widehat{\theta}_{n,j} + \gamma_{n+1} \operatorname{sign}\left(a_j f_1\right) \mathcal{T}_{n+1,j}$$
 nằm ngoài K là hữu hạn (hầu chắc chắn).

Định lý 3.2.2. Đinh lý về tính tiệm cận chuẩn của ước lượng $\widehat{ heta}_n$

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn. Ta cũng giả định rằng mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn và $4\pi \, |f_1| \, \min_{1 \leq j \leq p} |a_j| > 1$. Khi đó, ta có tính tiệm cận chuẩn

$$\sqrt{n}\left(\widehat{\theta}_n - \theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, \Sigma(\theta)) \tag{43}$$

Định lý 3.2.2. Đinh lý về tính tiệm cận chuẩn của ước lượng $\widehat{\theta}_n$

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn. Ta cũng giả định rằng mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn và $4\pi \, |f_1| \, {\rm min}_{1 \leq j \leq \rho} \, |a_j| > 1$. Khi đó, ta có tính tiệm cận chuẩn

$$\sqrt{n}\left(\widehat{\theta}_n - \theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, \Sigma(\theta)) \tag{43}$$

trong đó với mọi $t \in \mathbb{R}^p$, ta gọi hàm bố trợ φ ,

$$\varphi(t) = E\left[V(t)V(t)^{T}\right] \tag{44}$$

và $V(t) = \operatorname{diag}\left(\operatorname{sign}\left(a_1 f_1\right), \dots, \operatorname{sign}\left(a_p f_1\right)\right) D(X, t) Y$. Khi $4\pi |f_1| \min_{1 \le j \le p} |a_j| > 1$, với mọi $1 \le k, l \le p$ thì

$$\Sigma(\theta)_{k,l} = \frac{\varphi(\theta)_{k,l}}{2\pi (|a_k| + |a_l|)|f_1| - 1}$$
(45)

Định lý 3.2.3. Luật loga-lặp và luật mạnh dạng toàn phương của ước lượng $\widehat{ heta}_n$

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn. Hơn nữa, giả định rằng các mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn, đồng thời $4\pi \, |f_1| \min_{1 < j < p} |a_j| > 1$. Với mọi $W \in \mathbb{R}^p$, ta có luật loga-lặp

$$\limsup_{n \to \infty} \left(\frac{n}{2 \log(\log(n))} \right)^{1/2} W^{T} \left(\widehat{\theta}_{n} - \theta \right) \\
= - \liminf_{n \to \infty} \left(\frac{n}{2 \log(\log(n))} \right)^{1/2} W^{T} \left(\widehat{\theta}_{n} - \theta \right) \\
= \sqrt{W^{T} \Sigma(\theta) W} \text{ h.c.c.}$$
(46)

Định lý 3.2.3. Luật loga-lặp và luật mạnh dạng toàn phương của ước lượng $\widehat{\theta}_n$

Đặc biệt

$$\limsup_{n \to \infty} \left(\frac{n}{2 \log(\log(n))} \right)^{1/2} \left(\widehat{\theta}_n - \theta \right) \left(\widehat{\theta}_n - \theta \right)^T = \Sigma(\theta) \text{ h.c.c.}$$
 (47)

Định lý 3.2.3. Luật loga-lặp và luật mạnh dạng toàn phương của ước lượng $\widehat{ heta}_n$

Đặc biệt

$$\limsup_{n \to \infty} \left(\frac{n}{2 \log(\log(n))} \right)^{1/2} \left(\widehat{\theta}_n - \theta \right) \left(\widehat{\theta}_n - \theta \right)^T = \Sigma(\theta) \text{ h.c.c.}$$
 (47)

Hơn nữa, ta cũng có luật mạnh dạng toàn phương

$$\lim_{n \to \infty} \frac{1}{\log(n)} \sum_{i=1}^{n} \left(\widehat{\theta}_{i} - \theta \right) \left(\widehat{\theta}_{i} - \theta \right)^{T} = \Sigma(\theta) \text{ h.c.c.}$$
 (48)

Với mọi $n \ge 1$ và $1 \le j \le p$, gọi

$$\widehat{a}_{n,j} = \frac{1}{nf_1} \sum_{i=1}^{n} \frac{\cos\left(2\pi \left(X_i - \widehat{\theta}_{i-1,j}\right)\right)}{g\left(X_i\right)} Y_{i,j}$$

$$\tag{49}$$

Với mọi $n \geq 1$ và $1 \leq j \leq p$, gọi

$$\widehat{a}_{n,j} = \frac{1}{nf_1} \sum_{i=1}^{n} \frac{\cos\left(2\pi \left(X_i - \widehat{\theta}_{i-1,j}\right)\right)}{g\left(X_i\right)} Y_{i,j}$$
(49)

$$\tilde{a}_{n,j} = \frac{1}{n\hat{f}_{1,n}} \sum_{i=1}^{n} \frac{\cos\left(2\pi\left(X_{i} - \widehat{\theta}_{i-1,j}\right)\right)}{g\left(X_{i}\right)} Y_{i,j}$$
(50)

Với mọi $n \geq 1$ và $1 \leq j \leq p$, gọi

$$\widehat{a}_{n,j} = \frac{1}{nf_1} \sum_{i=1}^{n} \frac{\cos\left(2\pi\left(X_i - \widehat{\theta}_{i-1,j}\right)\right)}{g\left(X_i\right)} Y_{i,j}$$
(49)

$$\tilde{a}_{n,j} = \frac{1}{n\hat{f}_{1,n}} \sum_{i=1}^{n} \frac{\cos\left(2\pi\left(X_{i} - \hat{\theta}_{i-1,j}\right)\right)}{g\left(X_{i}\right)} Y_{i,j}$$
(50)

trong đó

$$\widehat{f}_{1,n} = \frac{1}{n} \sum_{i=1}^{n} \frac{\cos(2\pi X_i)}{g(X_i)} Y_{i,1}$$

Với I_p là ma trận đơn vị cấp p,e_1 là vector Euclid thứ nhất của \mathbb{R}^p và M_p là ma trận vuông sao cho

$$M_p = I_p - ae_1^T (51)$$

Định lý 3.3.1. Định lý về sự hội tụ của ước lượng tham số co giãn \widehat{a}_n

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn. Khi đó:

 \widehat{a}_n và \widetilde{a}_n hội tụ hầu chắc chắn về a

$$\lim_{n \to \infty} \widehat{a}_n = a \text{ h.c.c và } \lim_{n \to \infty} \widetilde{a}_n = a \text{ h.c.c }.$$
 (52)

Định lý 3.3.1. Định lý về sự hội tụ của ước lượng tham số co giãn \widehat{a}_n

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_4) được thỏa mãn. Khi đó:

 $\mathbf{0} \quad \widehat{a}_n \text{ và } \widetilde{a}_n \text{ hội tụ hầu chắc chắn về } a$

$$\lim_{n \to \infty} \widehat{a}_n = a \text{ h.c.c và } \lim_{n \to \infty} \widetilde{a}_n = a \text{ h.c.c }.$$
 (52)

2 Tính tiệm cận chuẩn

$$\sqrt{n}(\widehat{a}_n - a) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, \Gamma(a)) \quad \text{và} \quad \sqrt{n}(\widetilde{a}_n - a) \xrightarrow{\mathcal{L}} \mathcal{N}_p(0, M_p\Gamma(a)M_p^T)$$
(53)

trong đó $\Gamma(a)$ là ma trận hiệp phương sai

$$\Gamma(a) = \frac{1}{f_*^2} \operatorname{Cov}(C(X, \theta)Y) \tag{54}$$

Ta cũng có luật mạnh dạng toàn phương

$$\lim_{n\to\infty} \frac{1}{\log(n)} \sum_{i=1}^{n} (\widehat{a}_i - a) (\widehat{a}_i - a)^T = \Gamma(a) \text{ h.c.c}, \qquad (55)$$

Ước lượng tham số co giãn a

Ta cũng có luật mạnh dạng toàn phương

$$\lim_{n\to\infty} \frac{1}{\log(n)} \sum_{i=1}^{n} (\widehat{a}_i - a) (\widehat{a}_i - a)^T = \Gamma(a) \text{ h.c.c}, \qquad (55)$$

$$\lim_{n\to\infty} \frac{1}{\log(n)} \sum_{i=1}^{n} (\tilde{a}_i - a) (\tilde{a} - a)^T = M_p \Gamma(a) M_p^T \text{ h.c.c.}$$
 (56)

Ta thêm giả thiết (\mathcal{H}_5) : Hàm hồi quy f có tính Lipschitz và $f_1 = \int_{-1/2}^{1/2} \cos(2\pi x) f(x) dx$ đã biết trước.

Ta sử dụng ước lượng Nadaraya - Watson có trọng số $\omega_j(x)$ như sau

$$\widehat{f}_n(x) = \sum_{j=1}^{p} \omega_j(x) \widehat{f}_{n,j}(x)$$
(57)

Ta thêm giả thiết (\mathcal{H}_5) : Hàm hồi quy f có tính Lipschitz và $f_1=\int_{-1/2}^{1/2}\cos(2\pi x)f(x)dx$ đã biết trước.

Ta sử dụng ước lượng Nadaraya - Watson có trọng số $\omega_j(x)$ như sau

$$\widehat{f}_n(x) = \sum_{j=1}^p \omega_j(x) \widehat{f}_{n,j}(x)$$
(57)

trong đó, với mọi $1 \leq j \leq p$

$$\omega_j(x) = \omega_j(-x); \omega_j(x) \ge 0 \text{ và } \sum_{i=1}^p \omega_j(x) = 1$$
 (58)

$$\widehat{f}_{n,j}(x) = \frac{1}{\widehat{a}_{n,j}} \frac{\sum_{k=1}^{n} (W_{k,j}(x) + W_{k,j}(-x)) (Y_{k,j} - \widehat{v}_{k-1,j})}{\sum_{k=1}^{n} (W_{k,j}(x) + W_{k,j}(-x))}$$
(59)

Ta thêm giả thiết (\mathcal{H}_5) : Hàm hồi quy f có tính Lipschitz và $f_1 = \int_{-1/2}^{1/2} \cos(2\pi x) f(x) dx$ đã biết trước.

Ta sử dụng ước lượng Nadaraya - Watson có trọng số $\omega_j(x)$ như sau

$$\widehat{f}_n(x) = \sum_{i=1}^p \omega_j(x) \widehat{f}_{n,j}(x)$$
(57)

trong đó, với mọi $1 \leq j \leq p$

$$\omega_j(x) = \omega_j(-x); \omega_j(x) \ge 0 \text{ và } \sum_{j=1}^{\nu} \omega_j(x) = 1$$
 (58)

$$\widehat{f}_{n,j}(x) = \frac{1}{\widehat{a}_{n,j}} \frac{\sum_{k=1}^{n} (W_{k,j}(x) + W_{k,j}(-x)) (Y_{k,j} - \widehat{v}_{k-1,j})}{\sum_{k=1}^{n} (W_{k,j}(x) + W_{k,j}(-x))}$$
(59)

với

$$W_{n,j}(x) = \frac{1}{h_n} K\left(\frac{X_n - \widehat{\theta}_{n-1,j} - x}{h_n}\right)$$
 (60)

Định lý 3.4.1

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_5) được thỏa mãn. Hơn nữa, giả định rằng các mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn. Khi đó, với mọi

$$x \in [-1/2; 1/2]$$
, ta có

$$\lim_{n\to\infty} \widehat{f}_n(x) = f(x) \text{ h.c.c.}$$
 (61)

Định lý 3.4.2

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_5) được thỏa mãn. Ta cũng giả định rằng mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn. Lúc đó, nếu băng tần (h_n) thỏa mãn $h_n=1/n^\alpha$ (với $\alpha>1/3$) và $x\in[-1/2;1/2]$ thì ta có tính tiệm cận chuẩn theo từng diểm như sau

Với x ≠ 0

$$\sqrt{nh_n}\left(\widehat{f}_n(x) - f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\nu^2}{1+\alpha} \sum_{j=1}^p \frac{\sigma_j^2 \omega_j^2(x)}{a_j^2 \left(g\left(\theta_j + x\right) + g\left(\theta_j - x\right)\right)}\right)$$
(62)

Định lý 3.4.2

Giả sử rằng các giả thiết từ (\mathcal{H}_1) đến (\mathcal{H}_5) được thỏa mãn. Ta cũng giả định rằng mô-men bậc lớn hơn 2 của $(\varepsilon_{i,j})$ hữu hạn. Lúc đó, nếu băng tần (h_n) thỏa mãn $h_n=1/n^\alpha$ (với $\alpha>1/3$) và $x\in[-1/2;1/2]$ thì ta có tính tiệm cận chuẩn theo từng diểm như sau

Với x ≠ 0

$$\sqrt{nh_n}\left(\widehat{f}_n(x) - f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\nu^2}{1+\alpha} \sum_{j=1}^p \frac{\sigma_j^2 \omega_j^2(x)}{a_j^2 \left(g\left(\theta_j + x\right) + g\left(\theta_j - x\right)\right)}\right)$$
(62)

• Với x = 0

$$\sqrt{nh_n}\left(\widehat{f}_n(0) - f(0)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\nu^2}{1+\alpha} \sum_{i=1}^p \frac{\sigma_j^2 \omega_j^2(0)}{a_j^2 g\left(\theta_j\right)}\right)$$
(63)

Mục lục

- 1 Đặt vấn đề, giới thiệu mô hình và các giả thiết
- 2 Kiến thức chuẩn bị
- 3 Ước lượng các tham số và hàm hồi quy
- 4 Mô tả phương pháp bằng dữ liệu mô phỏng
- Tài liệu tham khảo
- 6 Phu luc

Mô hình có dạng

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j},$$

Mô hình có dạng

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j},$$

trong đó $1 \le j \le p$ và $1 \le i \le n$ với p = 5 và n = 2000. Ta chọn các tham số

$$v = (0, 1/3, -1, 2, -9/10)^{T},$$

$$\theta = (0, 1/5, -1/20, -1/7, 1/6)^{T},$$

$$a = (1, -4, 3, -5/2, 2)^{T}.$$

Mô hình có dạng

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j},$$

trong đó $1 \le j \le p$ và $1 \le i \le n$ với p = 5 và n = 2000. Ta chọn các tham số

$$v = (0, 1/3, -1, 2, -9/10)^T,$$

$$\theta = (0, 1/5, -1/20, -1/7, 1/6)^T,$$

$$a = (1, -4, 3, -5/2, 2)^T.$$

Các sai số (ε_{ij}) là dãy các biến ngẫu nhiên độc lập, cùng phân phối chuẩn $\mathcal{N}(0,1)$.

Mô hình có dạng

$$Y_{i,j} = a_j f(X_i - \theta_j) + v_j + \varepsilon_{i,j},$$

trong đó $1 \le j \le p$ và $1 \le i \le n$ với p = 5 và n = 2000. Ta chọn các tham số

$$v = (0, 1/3, -1, 2, -9/10)^{T},$$

$$\theta = (0, 1/5, -1/20, -1/7, 1/6)^{T},$$

$$a = (1, -4, 3, -5/2, 2)^{T}.$$

Các sai số (ε_{ij}) là dãy các biến ngẫu nhiên độc lập, cùng phân phối chuẩn $\mathcal{N}(0,1)$.

Các biến ngẫu nhiên (X_i) có phân phối đều trên [-1/2;1/2] và hàm hồi quy f xác định với mọi $x\in[-1/2;1/2]$, được cho bởi

$$f(x) = \sum_{k=1}^{p} \cos(2k\pi x),$$
 (64)

với $f_1 = 1/2$.

Dữ liệu mô phỏng

Hình 2: Dữ liệu mô phỏng

(a) Tham số chiều cao v

(a) Tham số chiều cao v

(b) Tham số chuyển θ

(a) Tham số chiều cao v

(b) Tham số chuyển θ

(c) Tham số co giãn a

Hình 3: Ước lượng các tham số v, θ và a (thứ tự từ trái sang, từ trên xuống)

Khoảng tin cậy của các tham số

Với n=2000 và lpha=5%, khoảng tin cậy của $v_2, heta_1$ lần lượt là

$$I_n(v_2) = [0.243044; 0.2920085], I_n(\theta_1) = [0.008646117; 0.0228825],$$

(a) Khoảng tin cậy của v_2

Khoảng tin cậy của các tham số

Với n=2000 và lpha=5%, khoảng tin cậy của \emph{v}_2, θ_1 lần lượt là

$$I_n(v_2) = [0.243044; 0.2920085], I_n(\theta_1) = [0.008646117; 0.0228825],$$

(a) Khoảng tin cậy của v_2

(b) Khoảng tin cậy của θ_1

Hình 4: Khoảng tin cậy của v_2, θ_1 (thứ tự từ trái sang phải)

Khoảng tin cậy của các tham số

Với n=2000 và $\alpha=5\%$, khoảng tin cậy của a_1 là

$$I_n(a_1) = [0.8567415; 1.005915]$$

.

Hình 5: Khoảng tin cậy của a1

Chọn lpha cho băng tần (h_n) và ước lượng hàm hồi quy

Ta chọn K là hàm hạt nhân đều trên [-1;1]. Hơn nữa, với mọi $1\leq j\leq p$, ta chọn $\omega_j(x)=1/p$.

Hình 6: Hàm f được ước lượng bởi \widehat{f}_n với $\alpha_1 = 9/10$.

Chọn α cho băng tần (h_n) và ước lượng hàm hồi quy

(a) Hàm f được ước lượng bởi $\widehat{f_n}$ với $\alpha_2=6/10$.

Chọn α cho băng tần (h_n) và ước lượng hàm hồi quy

(a) Hàm f được ước lượng bởi $\widehat{f_n}$ với $\alpha_2=6/10$.

(b) Hàm f được ước lượng bởi $\widehat{f_n}$ với $\alpha_3=8/10$.

Hình 7: Ước lượng cho f bằng \widehat{f}_n , trường hợp α_2, α_3 (thứ tự từ trái sang phải)

Tài liệu tham khảo I

- [1] Fraysse, P. (2014). Recursive Estimation in a Class of Models of Deformation, Journal of Statistical Planning and Inference, 132-158.
- [2] Bercu, B. and Fraysse, P. (2012). A Robbins-Monro Procedure for Estimation in Semiparametric Regression Models.
- [3] Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.
- [4] Bercu, B. (2014). Asymptotic Results for Martingales with Statistical applications.
- [5] Kushner, H.J and Yin, G.G (2003). Stochastic Approximation and Recursive Algorithms and Applications. Applications of Mathematics(New York), Springer.
- [6] Bruce M. Brown (1971). Martingale Central Limit Theorems.
- [7] Chaabane, F. and Maaouia, F. (2000). *Théorèmes Limites Avec Poids Pour Les Martingales Vectorielles*, ESAIM PS, 4, 137–189.

Tài liệu tham khảo II

- [8] Tiến, N.D. (2001). *Các mô hình xác suất và ứng dụng. Phần III, giải tích ngẫu nhiên*, NXB Đại học Quốc gia Hà Nội, 44-47.
- [9] Pelletier, M. (1998). On The Almost Sure Asymtotic Behavior of Stochastic algorithms.
- [10] Pelletier, M. (1998). Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Annals of Appli. Proba. 8, 1, 10-44.
- [11] Trần Minh Phương, Nguyễn Thành Nhân (2022), *Giải tích số và ứng dụng* (phần cơ bản), NXB Đại học Sư phạm TPHCM.
- [12] Noda, K. (2007). Estimation of a Regression Function by The Parzen kernel-type Density Estimatiors, Ann Inst Statist Math, 221-234.
- [13] Schuster, E.F. (1972). Joint Asymptotic Distribution of The Esimated Regression Function at a Finite Number of distinct Points, 84-88.

Vector martingale¹⁰

Dịnh nghĩa 2.1.6. Khái niệm vector martingale bình phương khả tích

Trên không gian xác suất $(\Omega, \mathcal{A}, \mathbb{P})$ và $\mathbb{F} = (\mathcal{F}_n)$ là một bộ lọc. Giả sử $M = (M_n)$ là một dãy các vector ngẫu nhiên có giá trị trong \mathbb{R}^d và tương thích với bộ lọc \mathbb{F} .

M là một martingale bình phương khả tích nếu đối với mọi n

$$\mathbb{E}\left[\left\|M_{n}\right\|^{2}\right] < \infty \text{ và } \mathbb{E}\left[M_{n+1} - M_{n} \mid \mathcal{F}_{n}\right] = 0 \tag{15}$$

• Biến phân bình phương dự báo được của M là một dãy ngẫu nhiên $\langle M \rangle = (\langle M \rangle_n)$ các ma trận đối xứng, nửa xác định dương cỡ $d \times d$ được định nghĩa bằng cách đặt $\langle M \rangle_0 = 0$ và

$$\langle M \rangle_{n} - \langle M \rangle_{n-1} = \mathbb{E} \left[(M_{n} - M_{n-1}) (M_{n} - M_{n-1})^{\top} \mid \mathcal{F}_{n-1} \right]$$
$$= \mathbb{E} \left[M_{n} M_{n}^{\top} \mid \mathcal{F}_{n-1} \right] - M_{n-1} M_{n-1}^{\top}. \tag{16}$$

¹⁰ Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.

Định lý giới hạn trung tâm cho vector martingale thực¹¹

Định lý 2.1.7 Định lý giới hạn trung tâm cho vector martingale thực

Cho M là một vector martingale bình phương khả tích thực, đáp ứng bộ lọc $\mathbb{F} = (\mathcal{F}_n)$, có biến phân bình phương dự báo được ký hiệu bởi $\langle M \rangle$. Giả sử rằng, với một dãy xác định, thực (a_n) tăng đến $+\infty$, có thêm hai giả định sau:

- $a_n^{-1}\langle M\rangle_n \xrightarrow{\mathrm{P}} \Gamma$.
- ullet Diều kiện Lindeberg được thỏa mãn; nói cách khác, đối với mọi arepsilon>0,

$$a_n^{-1} \sum_{k=1}^n \mathbb{E}\left[\|M_k - M_{k-1}\|^2 \, \mathbf{1}_{\left(\|M_k - M_{k-1}\| \geq \varepsilon a_n^{1/2}\right)} \mid \mathcal{F}_{k-1} \right] \xrightarrow{\mathcal{P}} 0. \tag{17}$$

Khi đó

- $a_n^{-1}M_n \xrightarrow{\text{a.s.}} 0 \text{ và } a_n^{-1/2}M_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,\Gamma).$
- Nếu Γ là khả nghịch thì: $a_n^{1/2} \langle M \rangle_n^{-1} M_n \xrightarrow{\mathcal{L}} \mathcal{N} (0, \Gamma^{-1})$.

¹¹Duflo, M. (1997). Random Iterative Models. Applications of Mathematics(New York), Springer, Berlin.