

Master's thesis in Applied Computer Science

CoolingGen

A parametric 3D-modeling software for turbine blade cooling geometries using NURBS

June 20, 2022

Institute for Numerical and Applied Mathematics at the Georg-August-University Göttingen

Institute for Propulsion Technology at the German Aerospace Center in Göttingen

Bachelor's and master's theses at the Center for Computational Sciences at the Georg-August-University Göttingen

> Julian Lüken julian.lueken@dlr.de

Georg-August-University Göttingen Institute of Computer Science

★ +49 (551) 39-172000

FAX +49 (551) 39-14403

 ${\boxtimes} \quad {\tt office@cs.uni-goettingen.de} \\$

www.informatik.uni-goettingen.de

I hereby declare that this thesis has been written by myself and no other resources than those mentioned have been used.
2tiker
Göttingen, June 20, 2022

Contents

1	Introduction			
	1.1	Motivation	1	
	1.2	Bézier Curves and Surfaces	1	
		1.2.1 Definition	1	
		1.2.2 De Casteljau's Algorithm	1	
		1.2.3 Properties	1	
2	Noi	a-Uniform Rational B-Splines	2	
	2.1	Definition	2	
		2.1.1 NURBS Curve	2	
		2.1.2 NURBS Surface	2	
	2.2	De Boor's Algorithm	2	
	2.3	Properties	2	
	2.4	Common Methods on NURBS Objects	2	
3	Cooling Geometries			
	3.1	Chambers	3	
	3.2	Turnarounds	3	
	3.3	Slots	3	
	3.4	Film Cooling Holes	3	
	3.5	Impingement Inserts	3	
4	Ope	en CASCADE	4	
5	Discussion			
	5.1	Grid-Searching With CoolingGen	5	
	5.2	Things Desired	5	

Introduction

1.1 Motivation

$$a^2 + b^2 = c^2$$

- 1.2 Bézier Curves and Surfaces
- 1.2.1 Definition
- 1.2.2 De Casteljau's Algorithm
- 1.2.3 Properties

Non-Uniform Rational B-Splines

- 2.1 Definition
- 2.1.1 NURBS Curve
- 2.1.2 NURBS Surface
- 2.2 De Boor's Algorithm
- 2.3 Properties
- 2.4 Common Methods on NURBS Objects

Cooling Geometries

- 3.1 Chambers
- 3.2 Turnarounds
- 3.3 Slots
- 3.4 Film Cooling Holes
- 3.5 Impingement Inserts

Open CASCADE

Discussion

- 5.1 Grid-Searching With CoolingGen
- 5.2 Things Desired