一天,小明在乘坐爸爸的车时,对汽车仪表盘的速度显示器很感兴趣,于是回到家后展开
了研究:
【匀速直线运动】
① 假设一辆车的的运动路程 s 和运动时间 t 的关系为 $s=t$,直接写出该车的速度为
【非匀速直线运动】
① 假设一辆车行驶 $1s$ 后所运动的路程为 $3m$,行驶 $2s$ 后所运动的路程为 $5m$,直接写出该车
在1-2秒的平均速度为
② 若该车在 t_1 时刻所对应的运动路程为 s_1 , t_2 时刻所对应的运动路程为 s_2 ($t_1 < t_2$),则在
$t_1 \sim t_2$ 中的平均速度为(用含 t_1, t_2, s_1, s_2 的式子表示)
【进一步探究】
小明经过上述探究后,想尝试求出在某一时刻的瞬时速度,但代入后发现,无论 $s-t$ 图像如
何,最终结果都为 $\frac{0}{0}$ 。正当他百思不得其解时,突然想到老师曾经讲过的一种思想————
"极限思想"
【极限思想】
假设有一辆小车行驶在公路上,其运动的路程 s 与运动的时间 t 的关系为 $s=t^2$ 。
① 当 $t = 1$ 时, $s =$,当 $t = 2$ 时, $s =$,在 $1 \sim 2$ 秒中的平均速度为
② 当 $t = 1$ 时, $s =$,当 $t = 1.1$ 时, $s =$,在 $1 \sim 1.1$ 秒中的平均速度为
③ 当 $t = 1$ 时, $s =$,当 $t = 1.01$ 时, $s =$,在 $1 \sim 1.01$ 秒中的平均速度为
④ 综合上述数据,当时间间距越来越小时,求出的平均速度会越来越接近一个定值,直接
写出该定值为
⑤ 设时间间距为 Δt ,则用含 Δt 的式子表示该时间间距内的平均速度 \bar{v} 为。化简
该式子后得到 $ar{v}=$,当 Δt 越来越小时, $ar{v}$ 越来越接近一个定值,
直接写出该定值为
⑥ 综上所述, 你得到的结论是