Question number	Scheme		Marks	S
1.	$(2+3x)^6 = 2^6 + 6.2^5 \times 3x + {6 \choose 2} 2^4 (3x)^2$ >1 term	correct	M1	
	$= 64, +576x, +2160x^2$		B1 A1 A	.1
			(4 mar	
2.	$r = \sqrt{(8-3)^2 + (-8-4)^2}$, = 13 Method for	$r \text{ or } r^2$	M1 A1	
		t their r	M1 A1ft	
			(4 mar	rks)
3. (a)	(x = 2.5) $y = 4.077$ $(x = 3)$ $y = 5.292$		B1 B1	(2)
(b)	$A \approx \frac{1}{2} \times \frac{1}{2} [1.414 + 5.292 + 2(2.092 + 3.000 + 5.292)]$ For	or $\frac{1}{2} \times \frac{1}{2}$	B1	
	ft their y	values	M1 A1ft	
	= 6.261 = 6.26 (2 d.p.)		A1	(4)
			(6 mar	rks)
4.	$3(1-\cos^2 x) = 1 + \cos x$ Use of s^2	$+c^2=1$	M1	
	$0 = 3\cos^2 x + \cos x - 2$	$\cos x$	M1	
	$0 = (3\cos x - 2)(\cos x + 1)$ Attempt t	to solve	M1	
	$\cos x = \frac{2}{3} \text{or} -1$	Both	A1	
	$\cos x = \frac{2}{3}$ gives $x = 48^{\circ}$, 312°		B1, B1ft	
	$\cos x = -1 \text{ gives } x = 180^{\circ}$		B1	
			(7 mar	rks)
5. (a)	Arc length = $r\theta = 8 \times 0.9 = 7.2$ M1 for use	e of $r\theta$	M1	
	Perimeter = $16 + r\theta = 23.2$ (mm)		A1	(2)
(b)	Area of triangle = $\frac{1}{2}.8^2.\sin(0.9) = 25.066$		M1	
	Area of sector $= \frac{1}{2}.8^2.(0.9) = 28.8$		M1	
	Area of segment = $28.8 - 25.066 = 3.7(33)$		A1ft	
	Area of badge = triangle – segment, = 21.3 (mm ²)		M1, A1	(5)
			(7 mai	rks)

Ques	stion nber	Scheme		Marks
6.	(a)	$15000 \times (0.8)^2 = 9600 (*)$	M1 for \times by 0.8	M1 A1 cso (2)
	(b)	$15000 \times (0.8)^n < 500$	Suitable equation or inequality	M1
		$n\log(0.8) < \log(\frac{1}{30})$	Take logs	M1
		n > 15.(24)	n = is OK	A1
		So machine is replaced in 2015		A1 (4)
	(c)	$a = 1000, r = 1.05, n = 16$ (≥ 2 correct))	M1
		$S_{16} = \frac{1000(1.05^{16} - 1)}{1.05 - 1}$		M1 A1
		= 23 657.49 = £23 700 or £23 660 or £23657		A1 (4)
				(10 marks)
7.	(a)	f(-1) = -1 - 1 + 10 - 8	f(+1) or $f(-1)$	M1
		= 0 so $(x + 1)$ is a factor	= 0 and comment	A1 (2)
	(b)	$x^3 - x^2 = 2(5x + 4)$	Out of logs	M1
		i.e. $x^3 - x^2 - 10x - 8 = 0$ (*)	A1 cso (4)	M1
		i.e. $x^3 - x^2 - 10x - 8 = 0$ (*) x = -1, -2, 4		A2(1, 0) (4)
		$\log_2 x^2 + \log_2(x-1) = 1 + \log_2(5x+4)$	Use of $\log x^n$	M1
		$\log_2\left(\frac{x^2(x-1)}{5x+4}\right) = 1$	Use of $\log a + \log b$	M1
	(d)	x = 4, since $x < 0$ is not valid in logs		B1, B1 (2)
				(12 marks)

Ques num		Scheme		Marks	
8.	(a)	$x^2 - 3x + 8 = x + 5$	Line = curve	M1	
		$x^{2} - 4x + 3 = 0$ $0 = (x - 3)(x - 1)$	3TQ = 0	M1	
		0 = (x-3)(x-1)	Solving	M1	
		A is (1, 6); B is (3, 8)		A1; A1 (5)	
	(b)	$\int (x^2 - 3x + 8) \mathrm{d}x = \left[\frac{x^3}{3} - \frac{3x^2}{2} + 8x \right]$	Integration	M1 A2(1,0)	
		Area below curve = $(9 - \frac{27}{2} + 24) - (\frac{1}{3} - \frac{3}{2} + 8) = 12\frac{2}{3}$	Use of Limits	M1	
		Trapezium = $\frac{1}{2} \times 2 \times (6+8) = 14$		B1	
		Area = Trapezium – Integral, = $14-12\frac{2}{3}=1\frac{1}{3}$		M1, A1 (7)	
				(12 marks)	
ALT	(b)	$-x^2 + 4x - 3$	Line – curve	M1	
		$\int (-x^2 + 4x - 3) \mathrm{d}x = \left[-\frac{x^3}{3} + 2x^2 - 3x \right]$	Integration	M1 A2(1,0)	
		Area = $\int_{1}^{3} () dx = (-9 + 18 - 9) - (-\frac{1}{3} + 2 - 3)$	Use of limits	M1	
		$=1\frac{1}{3}$		A2 (7)	

Question number	Scheme		Marks	
9. (a)	$A = \frac{1}{2}(x+1)(4-x)^2 \sin 30^\circ$	Use of $\frac{1}{2}ab\sin C$	M1	
	$= \frac{1}{4}(x+1)(16-8x+x^2)$	Attempt to multiply out.	M1	
	$= \frac{1}{4}(x^3 - 7x^2 + 8x + 16) (*)$		A1 cso	(3)
(b)	$\frac{dA}{dx} = \frac{1}{4} (3x^2 - 14x + 8)$	Ignore the $\frac{1}{4}$	M1 A1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \Rightarrow (3x - 2)(x - 4) = 0$		M1	
	So $x = \frac{2}{3}$ or 4	At least $x = \frac{2}{3}$ or	A1	
	e.g. $\frac{d^2 A}{dx^2} = \frac{1}{4} (6x - 14)$, when $x = \frac{2}{3}$ it is < 0, so maximum	m Any full method	M1	
	So $x = \frac{2}{3}$ gives maximum area (*)	Full accuracy	A1	(6)
(c)	Maximum area = $\frac{1}{4} \left(\frac{5}{3}\right) \left(\frac{10}{3}\right)^2 = 4.6$ or 4.63 or 4.630		B1	(1)
(d)	Cosine rule: $QR^2 = (\frac{5}{3})^2 + (\frac{10}{3})^4 - 2 \times \frac{5}{3} \times (\frac{10}{3})^2 \cos 30^\circ$	M1 for QR or QR^2	M1 A1	
	= 94.159			
	QR = 9.7 or 9.70 or 9.704		A1	(3)
			(13 marks)	