

<u>Unit 2 Nonlinear Classification,</u> <u>Linear regression, Collaborative</u>

<u>Course</u> > <u>Filtering (2 weeks)</u>

> Homework 3 > 2. Feature Vectors Transformation

2. Feature Vectors Transformation

Note: The problems on this page appeared as ungraded earlier in Homework 1. They are graded here.

Consider a sequence of n-dimensional data points, $x^{(1)}, x^{(2)}, \ldots$, and a sequence of m-dimensional feature vectors, $z^{(1)}, z^{(2)}, \ldots$, extracted from the x's by a linear transformation, $z^{(i)} = Ax^{(i)}$. If m is much smaller than n, you might expect that it would be easier to learn in the lower dimensional feature space than in the original data space.

2. (a)

1.0/1 point (graded)

Suppose n=6, m=2, z_1 is the average of the elements of x, and z_2 is the average of the first three elements of x minus the average of fourth through sixth elements of x. Determine A.

Note: Enter A in a list format: $[[A_{11},\ldots,A_{16}],[A_{21},\ldots,A_{26}]]$

[[1/6,1/6,1/6,1/6,1/6,1/6]

✓ Answer: [[1/6,1/6,1/6,1/6,1/6], [1/3,1/3,1/3,-1/3,-1/3,-1/3]]

Solution:

• A = [[1/6, 1/6, 1/6, 1/6, 1/6, 1/6], [1/3, 1/3, 1/3, -1/3, -1/3, -1/3]]

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

2. (b)

1.0/1 point (graded)

Using the same relationship between z and x as defined above, suppose $h\left(z\right)=sign\left(\theta_z\cdot z\right)$ is a classifier for the feature vectors, and $h\left(x\right)=sign\left(\theta_x\cdot x\right)$ is a classifier for the original data vectors. Given a θ_z that produces good classifications of the feature vectors, determine a θ_x that will identically classify the associated x's.

Note: Use trans(...) for transpose operations, and assume A is a fixed matrix (enter this as A).

Note: Expects θ_x (an $[n \times 1]$ vector), not θ_x^{\top} .

 $heta_x = || ext{trans(A)*theta_z}|| hilde{ullet}$

✓ Answer: trans(A)*theta_z

Solution:

From above, we have the relationship that z=Ax. Therefore $\theta_z\cdot z=\theta_z\cdot Ax=\theta_z^\top Ax=(A^\top\theta_z)\cdot x$. So take $\theta_x=A^\top\theta_z$ and we have the same classifier.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

2. (c)

1/1 point (graded)

Given the same classifiers as in (b), if there is a θ_x that produces good classifications of the data vectors, will there **always** be a θ_z that will identically classify the associated z's? θ_z identically classify the associated θ_z is θ_z that will identically classify the associated θ_z is θ_z in θ_z that will identically classify the associated θ_z is θ_z in θ_z in

Note: A is a fixed matrix.

Yes

No

Solution:

No. Here we provide a formal condition when there will be a θ_z that will identically classify the associated z's. Formally, suppose we are given a θ_x that correctly classifies the points in data space of dimension m < n. We are looking for θ_z such that $\theta_x^T x = \theta_z^T A x$ for all x. Finding such θ_z is equivalent to solving the overdetermined linear system $A^T \theta_z = \theta_x$, which can be done only if the system is consistent, i.e. if it has solution. This will happen if and only if θ_x is in the span of the columns of A^T . 这三句话一个意思,也就是如果这个system无解,那么就没有

In that case, by looking at the equivalent system $AA^T heta_z=A heta_x$ we can identify two cases:

- 1. A has linearly independent rows. In this case AA^T is invertible, so there is a unique solution given by $heta_z=\left(AA^T\right)^{-1}A heta_x$.
- 2. A has linearly dependent rows. In this case, the system is indeterminate and has an infinite number of solutions.

不一定always,如果A可逆

The matrix $(AA^T)^{-1}A$ of part (i) is known as the Moore-Penrose pseudo-inverse of A^T , and it is denoted by $(A^T)^{\dagger}$.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

2. (d)

1/1 point (graded

Given the same classifiers as in (b), if there is a θ_x that produces good classifications of the data vectors, will there **always** be a θ_z that will identically classify the associated z's?

Note: Now assume that you can change the $m \times n$ matrix A.

Solution:

We now have flexibility in both A and θ_z . We want to find A, θ_z such that $A^\top \theta_z = \theta_x$. We can achieve this by simply setting $\theta_z = 1$, the first row of A to be θ_x , and the remaining rows to be 0:

$$A^ op heta_z = egin{bmatrix} | & | & | \ heta_x & 0 \ | & | \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} = heta_x$$

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

2. e

2/2 points (graded)

O Yes	
● No ✔	
O Depends	
ow about on unseen data?	
O Yes	
O No	
● Depends ✓	
The accuracy in <i>z</i> -space is always bounded by the <i>x</i> space, as we can always construct a classifier classifier in <i>z</i> space. Without any assumption, the unseen data can be arbitrary. Hence, we can always construct a dat produced in <i>z</i> space. We can do the same thing to the classifier produced in <i>x</i> space as well. Submit You have used 1 of 1 attempt	
 The accuracy in z-space is always bounded by the x space, as we can always construct a classifier classifier in z space. Without any assumption, the unseen data can be arbitrary. Hence, we can always construct a dat produced in z space. We can do the same thing to the classifier produced in x space as well. 如果x的噪音大,说不定z的会更好,因为不需要generalization 	
 The accuracy in z-space is always bounded by the x space, as we can always construct a classifier classifier in z space. Without any assumption, the unseen data can be arbitrary. Hence, we can always construct a dat produced in z space. We can do the same thing to the classifier produced in x space as well. 如果x的噪音大,说不定z的会更好,因为不需要generalization Submit You have used 1 of 1 attempt	