LECTURE 4

September 18, 2023

Recall if (X, \mathcal{T}) be a topological space. Let $\mathcal{F} \subset \mathcal{T}$ is called a *subbasis* if

$$\mathcal{B}(\mathcal{F}) = \left\{ \bigcap_{i=1}^{n} V_i : n \in \mathbb{N}, V_1, V_2, ..., V_n \in \mathcal{F} \right\}$$

is a basis for \mathcal{T} .

Example 0.1. In \mathbb{R} with the usual topology

$$\mathcal{F} = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}$$

is a subbasis for \mathcal{T} . [Listen back to the lecture later...]

1. Creating Topologies

Theorem 1.1. Let X be a nonempty set, \mathcal{W} be a collection of subsets of X, then define

$$\mathcal{T} = \left\{ \bigcup_{i \in I}^{n} V_i : (V_i)_{i \in I} \text{ is an arbitrary collection of members} \right\} \cup \{X, \emptyset\}$$

The following are equivalent:

- (1) \mathcal{T} is a topology on X and $\mathcal{W} \cup \{X\}$ is a basis for \mathcal{T}
- (2) For every $A, B \in \mathcal{W}$, and $x \in A \cap B$ there exists a $C \in \mathcal{W}$ with $x \in C$ and $C \subset A \cap B$. In particular, if \mathcal{F} is any collection of subsets of X then the collection

$$\mathcal{B}(\mathcal{F}) = \left\{ \bigcap_{i=1}^{n} A_i : n \in \mathbb{N}, A_1, A_2, ..., A_n \in \mathcal{F} \right\} \cup \{X\}$$

is a basis for the topology

$$\mathcal{T}(\mathcal{F}) = \left\{ \bigcup_{i \in I}^{n} V_i : (V_i)_{i \in I} \text{ is an arbitrary collection of members of } \mathcal{B}(\mathcal{F}) \right\} \cup \{X, \emptyset\}$$

called the topology generated by \mathcal{F} .

PROOF. We will prove $(1) \Rightarrow (2)$: Take $A, B \in \mathcal{W}$ and $x \in A \cap B$. Since \mathcal{T} is a topology and $\mathcal{W} \subset \mathcal{T}$, we have that $A, B \in \mathcal{T}$, $A \cap B \in \mathcal{T}$ as well. Since $\mathcal{W} \cup \{X\}$ is a basis, there exists some $C \in \mathcal{W} \cup \{X\}$ such that $x \in C$ and $C \subset A \cap B$. We claim that $C \in \mathcal{W}$.

Next we will prove $(2) \Rightarrow (1)$: We first show that $\emptyset, X \in \mathcal{T}$, which is obvious by definition. Let $(U_i)_{i \in I}$ be an arbitrary collection of members of \mathcal{T} , then $\bigcup_{i \in I} U_i \in \mathcal{T}$. If $U, V \in \mathcal{T}$, we need to show that $U \cap V \in \mathcal{T}$. If $U = \emptyset$ or $V = \emptyset$, then $U \cap V = \emptyset$, and if U = X or V = X, trivial as well. Without loss of generality, there exists collections $(U_i)_{i \in I}$ and $(V_j)_{j \in J}$ of members of \mathcal{W} such that $U = \bigcup_{i \in I} U_i$ and $V = \bigcup_{j \in J} V_j$. Take $x \in U \cap V$. We will find $O_x \in \mathcal{W}$ such that $x \in O_x$ and $O_x \subset U \cap V$. If we find this, we will find that $U \cap V = \bigcup_{x \in U \cap V} O_x \in \mathcal{T}$. Since $x \in U$, then there exists an $i_x \in I$ such that $x \in U_{i_x} \in \mathcal{W}$, and since $x \in V$, then there exists an $j_x \in J$ such that $x \in V_{j_x} \in \mathcal{W}$. Thus, since $x \in U_{i_x} \cap V_{j_x}$. By (2), there exists an $O_x \in \mathcal{W}$ such that $x \in O_x \in \mathcal{W}$ and $O_x \subset U_{i_x} \cap V_{j_x} \subset U \cap V$.

Remark 1.2. Let X be a nonempty set and $\mathcal{F}\subset\mathcal{P}(X)$ such that $\bigcup\mathcal{F}=X$. Then

$$\mathcal{B}(\mathcal{F}) = \left\{ \bigcap_{i=1}^{n} U_i : n \in \mathbb{N}, U_1, U_2, ..., U_n \in \mathcal{F} \right\}$$

is a basis for the topology

$$\mathcal{T}(\mathcal{F}) = \left\{ \bigcup_{i \in I} U_i : (U_i)_{i \in I} \text{ is a collection of members of } \mathcal{B}(\mathcal{F}) \right\} \cup \{\emptyset\}$$

Recall that if $\mathcal{F} \subset \mathcal{P}(X)$, then $\mathcal{T}(\mathcal{F})$ is called the topology generated by \mathcal{F} . If $| \mathcal{F} = X$, then \mathcal{F} is a subbasis for a topology.

EXAMPLE 1.3. Let \mathcal{B} be the following collection of subsets of \mathbb{R} :

$$\mathcal{B} = \{ [a, b) : a < b \in \mathbb{R} \}$$

The topology generated by \mathcal{B} is called the *lower limit topology of* \mathbb{R} , denoted by \mathcal{T}_{ℓ} . Sometimes $(\mathbb{R}, \mathcal{T}_{\ell})$ is called the Sorgenfrey Line.

EXERCISE 1.4. (1) Show that $(\mathbb{R}, \mathcal{T}_{\ell})$ is Hausdorff.

- (2) Show that $\mathcal{B} = \{[a, b) : a < b \in \mathbb{R}\}$ is a basis for \mathcal{T}_{ℓ} .
- (3) If \mathcal{T} is the usual topology on \mathbb{R} , then $\mathcal{T} \subset \mathcal{T}_{\ell}$.

REMARK 1.5. If X is a nonempty set and $\mathcal{F}_1 \subset \mathcal{F}_2$, then $\mathcal{T}(\mathcal{F})_1 \subset \mathcal{T}(\mathcal{F})_2$.

PROPOSITION 1.6. Let X be a nonempty set and let $\mathcal{F} \subset \mathcal{P}(X)$. Then

$$\mathcal{T}(\mathcal{F}) = \bigcap \{ \mathcal{T} : \mathcal{T} \text{ is a topology of } X, \mathcal{F} \subset \mathcal{T} \}$$

Thus, $\mathcal{T}(\mathcal{F})$ is the smallest topology on X containing \mathcal{F} .

Proof. Denote

$$\mathcal{T} = \{ \mathcal{T} : \mathcal{T} \text{ is a topology on } X \text{ and } \mathcal{F} \subset \mathcal{T} \} \neq \emptyset$$

since $\mathcal{T} = \mathcal{P}(X)$ is a topology and $\mathcal{F} \subset \mathcal{T}$, and so $\mathcal{T} \in \mathcal{F}$. Next, denote

$$\mathscr{S} = \bigcap \mathscr{T} = \{ A \subset X : \text{for all } \mathcal{T} \in \mathscr{T}, A \in \mathcal{T} \}$$

Then \mathscr{S} is a topology and $\mathcal{F} \subset \mathscr{S}$. We show that $\mathscr{S} \subset \mathcal{T}(\mathcal{F})$ which is true because $\mathcal{T}(\mathcal{F}) \in \mathscr{T}$.

Secondly, we show that $\mathcal{T}(\mathcal{F}) \subset \mathscr{S}$. Since $\mathcal{F} \cup X$ is a subbasis of $\mathcal{T}(\mathcal{F})$, we get that every member of $\mathcal{T}(\mathcal{F})$ is produced by taking finite intersections and then arbitrary unions of members of $\mathcal{F} \subset \mathscr{S}$, thus it is also a member of \mathscr{S} .

2. Elementary Concepts of Topology

DEFINITION 2.1. Let (X, \mathcal{T}) be a topological space.

- (1) A subset U of X is called open if $U \in \mathcal{T}$.
- (2) A subset F of X is called *closed* if its complement is open, i.e. $X \setminus F$ is open.

Example 2.2. In \mathbb{R} with the usual topology,

- (1) (0,1) is an open set.
- (2) [0,1] is an closed set because $\mathbb{R} \setminus [0,1] = (-\infty,0) \cup (1,\infty)$ which is open.
- (3) The set \mathbb{R} is open and closed, or, a *clopen* set.
- (4) The set \mathbb{Q} is neither open or closed.

EXERCISE 2.3. In $(\mathbb{R}, \mathcal{T}_{\ell})$, for $a, b \in \mathbb{R}$ with a < b, then [a, b) is a clopen set.

PROPOSITION 2.4. Let (X, \mathcal{T}) be a topological space. The following hold:

- (1) The sets \emptyset and X are closed.
- (2) If F and G are closed, then $F \cap G$ are closed.
- (3) If $(F_i)_{i\in I}$ is an arbitrary collection of closed subsets of X, then $\bigcap_{i\in I} F_i$ is closed.

PROOF. This is an immediate application of definition of a topology and De Morgan's Law. $\hfill\Box$

PROPOSITION 2.5. If (X, \mathcal{T}) is Hausdorff, then for every $x_0 \in X$, $\{x_0\}$ is closed.

PROOF. We show that $X \setminus \{x_0\}$ is open. Take $x \in X \setminus \{x_0\}$, i.e. $x \neq x_0$. By Hausdorff, there exists a U, V open and disjoint such that $x \in U$ and $x_0 \in V$. In particular, $x \in U \subset X \setminus \{x_0\}$, therefore, $X \setminus \{x_0\}$ is open. \square

DEFINITION 2.6. Let (X, \mathcal{T}) be a topological space and let $A \subset X$. An $x_0 \in X$ is called a

- (1) isolated point of A if $x_0 \in A$ and there exists a $U \in \mathcal{T}$ containing x_0 such that $U \cap A = \{x_0\}$.
- (2) limit point of A if every $U \in \mathcal{T}$ containing x_0 intersects A, i.e. $U \cap A \neq \emptyset$.
- (3) cluster point of A if it is a limit point of $A \setminus \{x_0\}$.

EXAMPLE 2.7. In \mathbb{R} , for $A = (0,1] \cup \{2\}$, 2 is an isolated point and a limit point of A, but not a cluster point of A and any $x \in [0,1]$ is a limit point and cluster point of A, but not an isolated point of A. Note that x = 0 is a limit and cluster point of A, despite not being in A.

PROPOSITION 2.8. Let (X, \mathcal{T}) be a Hausdorff topological space, $A \subset X$ and $x \in X$.

- (1) x is an isolated point of A if and only if $a \in A$ and there exists $U \in \mathcal{T}$ containing x such that $U \cap A$ is finite.
- (2) x is a cluster point of A if and only if every for every $U \in \mathcal{T}$ containing $x, U \cap A$ is infinite.

PROOF. If x is an isolated point of A, then $x \in A$ and there exists $U \in \mathcal{T}$ containing x such that $U \cap A = \{x\}$ which is finite. If on the other hand, $x \in A$, and there exists $U \in \mathcal{T}$ containing x such that $U \cap A = \{x_1, x_2, ..., x_n\}$, where $x_1, x_2, ..., x_n$ are finitely many points. As $x \in U \cap A$ we may assume without loss in generality, that $x_1 = x$. Because \mathcal{T} is Hausdorff, there are pairs of disjoint open sets U_i and V_i with $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \in U_i$ and $1 \le i \le n$ such that $1 \le n$ such