Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 6 Reactor Energy Removal

Topics to Be Covered

- Power Distributions
- Peaking Factors
- Fuel-Pin Heat Transfer
- Nuclear Limits in Design
- Peak Centerline Temperature
- Peak Clad Temperature
- Departure From Nucleate Boiling
- Control Rod Impacts

FIGURE 10-1

Boiling-water reactor steam cycle schematic diagram. (Courtesy of General Electric Company.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 10-2

Boiling-water reactor vessel. (Courtesy of the General Electric Company.)

BWR Core Lattice

Four-Bundle Fuel Module

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

Fuel assembly for a representative boiling-water reactor. (Adapted courtesy of General Electric Company.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Torus suppression chamber

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fig. 11.3 Light bulb and torus containment for a BWR.

Fig. 11.4 A recent form of BWR containment. (Courtesy General Electric Company.)

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

PWR Fuel Assembly

ROD CLUSTER CONTROL

TOP NOZZLE

CONTROL ROD

BULGE JOINTS-

GRID SPRING

BATTON 110771 C

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Control Rod -

-FUEL ROD

THIMBLE TUBE

MIXING VANES

DASHPOT REGION

-DIMPLE

THIMBLE SCREW

Pressurized-water reactor vessel. (Courtesy of Westinghouse Electric Corporation.)

Typical Four-Loop Reactor Core

Cross Section (193 Fuel

Parameters

Total heat output	~3250-3411 MWT
Heat generated in fuel	97.4%
Nominal system pressure	2250 psia
Total coolant flow rate	~138.4 x 10 ⁶ lb/hr
Coolant Temperature	
Nominal inlet	557.5°F
Average rise in vessel	61.0°F
Outlet from vessel	618.5°F
Equivalent core diameter	11.06 ft
Core length, between fuel ends	12.0 ft
Fuel weight, uranium (first core)	86,270 kg
Number of fuel assemblies	193

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

TABLE 1-2
Characteristics of the Fuel Cores of Six Reference Reactor Types†

Component	Boiling-water reactor [BWR]	Pressure-tube Graphite reactor [PTGR]	Pressurized-water reactor [PWR]	Pressurized-heavy- water reactor [PHWR]	High-temperature gas-cooled reactor [HTGR] [‡]	Liquid-metal fast-breeder reactor [LMFBR]
Fuel particle(s)						
Geometry	Short, cylindrical pellet	Short, cylindrical pellet	Short, cylindrical pellet	Short, cylindrical pellet	Multiply coated microspheres	Short, cylindrical pellet
Chemical form	UO ₂	UO ₂	UO ₂	UÔ ₂	UC/ThC	Mixed oxides UO2 and PuO2
Fissile	2-4 wt % ²³⁵ U	1.8-2.4 wt % ²³⁵ U	2-4 wt % ²³⁵ U	Natural uranium	20=93*wt % ²³⁵ U microsphere	10-20 wt % Pu
Fertile	²³⁸ U	²³⁸ U	²³⁸ U	²³⁸ U	Th microsphere	²³⁸ U in depleted U
Fuel pins	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in long Zr-alloy cladding tubes	Pellet stacks in short Zr-alloy cladding tubes	Microsphere mixture in short graphite fuel stick	Pellet stacks in medium- length stainless steel cladding tubes
Fuel assembly	8 × 8 square array of fuel pins	_	16 × 16 or 17 × 17 square array of fuel pins	37-pin concentric-	Hexagonal graphite block with stacked fuel sticks	Hexagonal array of 271 fuel pins
Reactor core§					Stavened tool Stiens	
Axis	Vertical	Vertical	Vertical	Horizontal	Vertical	Vertical
Number of fuel assemblies along axis	1	2	1	12	8	1
Number of fuel assemblies in radial arra	748 ^a y	1661	193-241	380	493	364 driver, 233 blanket

[†] More detailed data and references are contained in App. IV.

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

[‡]The HTGR fuel geometry is different from that of the other reactors, leading to some slightly awkward classifications.

[§] All of the cores approximate right circular cylinders. Fuel assemblies are loaded and/or stacked lengthwise parallel to the axis of the cylinder.

TABLE IV-1
Typical Characteristics for Six Reference Power Reactor Types (Continued)

Reference design	BWR	PWR(B&W)	PWR(CE)	PWR(W)	PWR(F)	PWR(V)	PTGR	PHWR	HTGR	LMFBR
Core					200000000000000000000000000000000000000			William Street		
(continued)										
No. of										
assemblies										
Axial	1	1	1	1	1	1	2	12	8	1
Radial	748	241	241	193	205	151	1661	380	493	364 [C] 233 [BR]
Assembly										200 (200)
pitch, mm	152	218	207				250	286	361	179
Active fuel								(2000)	2012	27420
height, m	3.81	3.63	3.81	3.66	4.267	3.56	7	5.94	6.30	1.0 [C] 1.6 [C+BA]
Equivalent										THE TEXT
diameter, m	4.70	3.82	3.81	3.37	3.37	3.16	12	6.29	8.41	3.66
Total fuel								U.a.	0.41	5.00
weight, tU	156 UO ₂	125 UO ₂	117 UO ₂	101 UO ₂	125 UO ₂	80 UO ₂	204 UO ₂	98.4 UO ₂	1.72 U 37.5 Th	32 MO ₂
Performance									37.3 In	
Equilibrium										
burnup,										
MWD/T	27,500	33,000	34,400	27,500	35,000	25,000- 41,000	18,500	7,500	95,000	100,000
Average						11,000				
assembly	1 13									
residence,										
full-power										
days								470	1,170	

Reference design	BWR	PWR(B&W)	PWR(CE)	PWR(W)	PWR(F)	PWR(V)	PTGR	PHWR	HTGR	LMFBR
Fuel [§]									(9-9)	
Particles Geometry	Cylindrical pellet	Cylindrical pellet	Cylindrical pellet	Coated microspheres 400-800	Cylindrical pellet					
Dimensions, mm	10.4 D × 10.4 H	8.2 D × 9.5 H	8.3 D × 9.9 H	8.2 D × 13.5 H		7.55 D	ĸ	12.2 D × 16.4 H	μm D	7.0 D
Chemical form Enrichment	UO ₂	UO ₂	UO ₂	UC/ThO ₂	PuO ₂ /UO ₂					
initial core, wt% ²³⁵ U	1.71 (ave)	2.79 (ave)	1.92/2.78	2.1/2.6/3.1	1.8/2.4/3.1	3.3-4.4	1.1-2.4	0.711	93	15-18 Pu
Enrichment, reload, wt%								0.711	93	
235U	2.81 (ave)		3.3	442		4.0		0.711 23NU	Th	Depl. U
Fertile	238U	2.18 U	238U	^{2,38} U		(0.7)			(1-10)	(9-8)
Pins	(9-7)	(9-7)	(9-7)	(9-7)	(9-7)	(9-7)	Pellet stack	Pellet stack	Cylindrical	Pellet stack
Geometry	Pellet stack in clad tube	in clad tube	in clad tube		in clad tube 8.5 D ×					
Dimensions,				0.5.0.14		9.1 D ×	13.5 D ×	13.1 D ×	15.7 D ×	2.7 m H
mm	1.27 D × 4.1 m H	9.6 D × 4 m H	9.7 D × 4.1 m H	9.5 D × 4 m H		3.55 m H	3.64 m H	490 L	62 L	[C] 15.8 D × 1.95 m H
Clad material	Zircaloy-2	Zircaloy-4	Zircaloy-4	Zircaloy-4	Zirealoy-4		Zr-Nb alloy	Zircaloy-4	Graphite	[BR] Stainless steel
Clad thickness,							55			0.7
mm	0.813	0.6	0.64	0.57	0.57	0.65	0.9	0.42	_	0.7
Assembly	(1-6)	(10-11)	(1-7)	(10-11)	(10-11)		(1-8)	(1-9)	(1-10/11-8)	(1-11/12-7)
Geometry	8 × 8- Square array	17 × 17- Square array	16 × 16- Square array	17 × 17- Square array	17 × 17- Square array	Hexagonal array	Concentric circles	Concentric circles	Hexagonal graphite block	Hexagonal
Pin pitch,	16.2	12.7	12.9	12.6	1.26	1.28		14.6		9.7 [C]/ 17.0 [BR] [†]
No. pin	**	200	256	200		331	18	37	132 [SA]/	271 [C]/
No. fuel pins	64	289 264	256 236	289 264	274	317	10	31.	76 [CA]#	
Outer dimensions,	6			200	2027		-00	102 0	260 5	172 F
mm	139	217	203	214	215		<80	102 D × 495 L	360 F × 793 H	173 F
Channel Total weight	Yes	. No	No	No	No	Yes	No	No	No	Yes
kg	273	652								
Core	(10-4)	(9-11)	(9-11)	(9-11)	(9-11)			(11-2)	(11-7)	500000 EV
Axis	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Horizontal	Vertical	Vertical

See foonotes on page 717. Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Power Density

TABLE 7-1
Power Densities for the Reference Reactors and Other Systems

	Power density (kW/liter)					
System	Core average	Fuel average [†]	Fuel maximum [†]			
Fossil-fuel plant	10					
Aircraft turbine	45					
Rocket	20,000	 .	<u>-</u>			
HTGR	8.4	44	125			
PTGR	4.0	54	104			
CANDU	12	110	190			
BWR .	56	56	180			
PWR ·	95–105	95-105	190-210			
LMFBR	280	280	420			

[†]Includes interspersed-coolant volume for systems with fuel-pin lattices; includes only fuel sticks for HTGR.

Energy Removal

- Heat Balance in a reactor
 - Power Equation function of neutron flux
- Impact of Power Distribution on ability to remove heat and maintain temperature limits
 - Material and Fuel limitations

Diffusion Theory Flux

TABLE 4-2
Diffusion Theory Fluxes and Bucklings for Bare Critical Systems of Uniform Composition

Geometry	Dimensions	Normalized flux $\frac{\Phi(r)}{\Phi(0)}$	Geometric buckling B_g^1
Sphere	Radius R	$\frac{1}{r} \sin \left(\frac{\pi r}{R} \right)$	$\left(\frac{\pi}{R}\right)^2$
Finite cylinder	Radius R, height H (centered about $z = 0$ and extending to $z = \pm H/2$)	$J_0\left(\frac{2.405r}{R}\right)\cos\left(\frac{\pi z}{H}\right)$	$\left(\frac{2.405}{R}\right)^{3} + \left(\frac{\pi}{H}\right)^{3}$
Infinite cylinder	Radius R	$J_{\bullet}\left(\frac{2.405r}{R}\right)$	$\left(\frac{2.405}{R}\right)^2$
Rectangular parallelepiped [cubold] †	$A \times B \times C$ (centered about $x = y = x = 0$ and extending to $x = \pm A/2$, etc.)	$\cos\left(\frac{\pi x}{A}\right) \cos\left(\frac{\pi y}{B}\right) \cos\left(\frac{\pi z}{C}\right)$	$\left(\frac{\pi}{A}\right)^2 + \left(\frac{\pi}{B}\right)^2 + \left(\frac{\pi}{C}\right)^2$
Infinite slab	Thickness A (centered about $x = 0$ and extending to $x = \pm A/2$)	$\cos\left(\frac{\pi x}{A}\right)$	$\left(\frac{\pi}{A}\right)^{2}$

[†]The term cuboid—a synonym for rectangular parallelepiped used in the KENO Monte Carlo code—is commonly employed in the field of nuclear criticality safety (and may catch on elsewhere).

Flux Shapes

Power Peaking Factors

TABLE 7-2
Power Peaking Factors for Reactors of Various
Geometric Shapes

	Peaking factor			
Geometry	Total	Constituents		
Sphere, bare	3.29			
Infinite şlab, bare	1.57			
Cuboid, bare	3.87	x = 1.57		
•		y = 1.57		
	-	z = 1.57		
Infinite cylinder, bare	2.32			
Cylinder, bare	3.64	r = 2.32		
		z = 1.57		
Cylinder, fully reflected	2.03	r = 1.50		
		z = 1.35		
Cylinder, fully reflected,	1.62	r = 1.20		
enrichment-zoned radially		Z = 1.35		

[†]A cuboid is a rectangular parallelepiped (see note on Table 4-2).

Power Distributions

190 Basic Theory

Power distributions for one- and two-batch fuel-management patterns in a bare-slab geometry.

Fuel assembly for a representative pressurized-water reactor. (Adapted courtesy of Combustic Engineering, Inc.)

Fuel Pin Cross Section

FIGURE 7-3
Cross section of a representative fuel pin (not drawn to scale).

FIGURE 7-4

Representative temperature profile for a PWR fuel pin. (Adapted from J. C Introduction to Nuclear Power, Hemisphere Publishing, New York, 1987.)

Heat Removal Governing Processes

- Fuel Pin Power Production
 - Conductive heat transfer
 - Fourier Law of Heat Conduction
 - Poisson's Equation
- Clad Heat Transfer
 - Poisson's Equation but no heat source
- Clad to Coolant
 - Newton's law of cooling
 - Convective Heat Transfer
- Gap to Clad
 - Convective
 - Conductive heat transfer coefficient hgap

Nuclear Limits

- Hot spot factor
 - Peak power in pin
 - Prevent Fuel Melting
- Hot Channel Factor
 - Assure heat removal from pin
 - Minimum Departure from Nucleate Boiling Ratio
- Design Considerations
 - Limits on Power
 - Materials

RELATIVE TEMPERATURE (Twaff - TB)

FIGURE 7-6
Heat flux versus surface temperature for a heated pin in a pool of water at saturation temperature.

Axial Peaking

196 Basic Theory

FIGURE 7-5

Axial temperature for the coolant (T_{cool}), the clad (T_{clad}), and fuel pellet center line (T_c) based or cosine flux distribution.

FIGURE 7-8 Characteristic relationship between the core average (q'), average channel $(q')_{ave ch}$, hot channel $(q')_{box ch}$, and critical q'_c linear heat rates along the core axis of a PWR.

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Prof. Andrew C. Kadak, 2008 Page 25

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 7-9
Effect of control-rod group insertion on PWR power shape axially for the core as a whole.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Control Rod Insertion

Homework Assignment

Homework: Problems 7.2,5,6,8

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.