Third generation amperometric biosensors

Challenges of extracting electrical signal/current from biological system

•Several enzymes in nature capable to follow **direct electron transfer (DET)** via the active site of the enzyme.

INSPIRATION FROM NATURE

CoQH₂ or ubiquinol, and an oxidized form, CoQ or ubiquinone.

Electron transfer rate (K_{et}): ~ 10^{13} s⁻¹.

Edge to edge distance for haem-haem electron transfer system 25 to 35 A°

ADVANTAGES OF DET BASED APPROACH FOR BIOSENSORS

- (a) More accurate mimics of energy transfer processes to biological systems thus offering high specific currents and biosensor sensitivity
- (b) Higher operational stability of the device (no issue such as, mediator leaching).
- (c) Suitable in open environment/body integrated system (as no toxic mediators are used)
- DET occurs through the enzyme's ability to act as a 'molecular transducer' that converts the chemical signal directly to an electrical one.

- 3rd Generation bioelectrode (biosensors) utilizes thin film of protein to evaluate the process of DET.
- It utilizes control orientation of enzyme/protein on electrode surface

Determination of Direct electron transfer rate ($K_{et\ or}K_s$) in protein film: Technique: Protein film voltammetry

Scan rate (9) (V/s) (The rate of change of potential with time) is applied and voltamogram recorded

Potein film volmetry (PFV) provides information:

- ✓ reversible or quasi-reversible process,
- ✓ surface coverage area (Г) of the biocatalyst,
- \checkmark Electron transfer rate constant (k_s) , and
- ✓ number of electrons transferred in the reaction (*n*)

Review: Goswami & group Biosensors and Bioelectronics 24 (8), 2313-2322 (2009)

Laviron equation

$$E_{pa} = E^{0'} + \frac{2.3RT}{(1-\alpha)nF\log\vartheta}$$

$$E_{pc} = E^{0'} - \frac{2.3RT}{\alpha n F \log \vartheta}$$

 $E^{0\prime}$ is the formal potential,

υ is the scan rate,

n and α are the charge transfer number and the charge transfer coefficient, respectively, when $0.5 < \alpha < 1$, in general n = 1.

$$\log k_s = \alpha \log(1-\alpha) + (1-\alpha)\log\alpha - \frac{\log RT}{nF\vartheta} - \alpha(1-\alpha)\frac{nF\Delta E_p}{2.3RT} \quad \text{(When } \Delta E_p > 200 \text{ mV)}$$

$$k_s = \frac{\alpha n F \vartheta}{RT}$$
 When $\Delta E_p < 200 \text{ mV}$

R is the thermodynamic constant (R = 8.314 JK⁻¹ mol⁻¹), F is the Faraday constant ($F = 96,500 \text{ C mol}^{-1}$), T is the temperature in Kelvin,

The surface concentration of the adsorbed electroctive species C* (mol.cm⁻²) on the bioelectrode, can be calculated using *Brown-Anson model* from a plot of peak current (I_p) vs scan rate (v):

$$I_p = n^2 F^2 C^* A v / 4RT$$

where *A* is the area of the electrode, n, is the no. of electron transferred, F, is the Faraday constant (96,584 C/mol), v is the scan rate. Denominators: R is gas constant [8.314 J/(mol K)], and T is absolute temperature (298 K).

Key features involved in developing for 3G-bioelectrode:

- ☐ Stability of biocatalyst
- \square Facilitating electron transfer (k_{et})
- ☐ Improve selectivity
- ☐ Improve substrate diffusion (porosity) and kinetics

Immobilization methods of enzymes on electrodes

Advanced materials

- ☐ Materials that are utilized in high-technology applications.
- → metals, ceramics, polymers, nano, nanoengineered and smart materials

Smart materials:

- Respond to stimuli (temperature, stress, pH, magnetic field, electrical field, etc).
- Eample: piezoelectric materials, smart gels etc.

Polymer:

Redox polymer: e.g. Osmium polymers (fast electron transfer rates and tunable redox potential) *Conducting polymers*: polyaniline (PANI), polypyrrole (PPy), poly(ethylenimine) (PEI), etc.

Non-conducting polymers: Silk, Chitosan, PDMS, sol-gel materials etc.

Molecularly imprinted polymers

Composite materials: e.g. Buckypaper (MWCNTs) compressed into a laminated sheet with porosity, conductivity, high surface area and low resistivity, allow the development of cheap, light weight, disposable and flexible EFCs.

Materials for 3G bioelectrodes

Electron mobility at RT, >15000 cm²·V⁻¹·s⁻¹.

Geim & Novoselov Nature Mat. (2007)

Ag/Au/Cu/Fe NPs

Biomaterials

SWCN: 10^2 to 10^6 S/cm MWCNT: 10^3 to 10^5 S/cm https://en.wikipedia.org

 $MXenes(Ti_3C_2T_x)$, 6500 Scm⁻¹.

Thungon, Goswami* et al *ACS Applied Optical Materials* 2, 414-422 (2024) Review: Kaushik, Thungon, Goswami*, *ACS Biomaterials Science & Engineering* 6, 4337-4355 (2020)

Cholesterol oxidase based 3G bioelectrode

Molecular mass: ~60 kDa Monomeric flavoprotein

 k_{et} : 0.35 s⁻¹

Response Characteristics	AuE/dithiol/AuNPs/MUA/ChOx
Linear range	0.04 to 0.22 mM
Sensitivity	9.02 μA/mM
Detection Limit	34.6 μM
Calibration equation	Current (μA) = 0.009*Chol (μM) + 2.9164 (R² = 0.9972)
Km	308.90 μA/mM

AuE/dithiol/AuNPs/MUA/ChOx

AuE/MUA/ChOx

Schematic overview on application areas, analytes, enzymes, and the architecture of 3rd generation amperometric biosensors. SAM, self-assembled monolayer; PNE, porous nanostructured electrodes.

The following reaction occurs at the enzyme in all three biosensors:

Substrate(2H) + FAD-oxidase → Product + FADH₂-oxidase

(a) biocatalyst FADH₂-oxidase + O₂ FAD-oxidase + H₂O₂ electrode
$$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-$$