Midterm Review

Divide & Conquer, Trees, Binary Trees, Heap & Heap Sort

Claim

- 1. Topics that reviewed in this discussion may not be covered in the Exam
- 2. Topics that not reviewed in this discussion may be covered in the Exam

Checklist - Divide & Conquer

- Divide a size n problem into a ($a \ge 1$) sub-problems with size n/b.
- Template of Divide & Conquer
 - Step 1: Divide the problem into sub-problems (Divide)
 - Step 2: Solve each sub-problem (Conquer)
 - Step 3: Combine the results of sub-problems. (Combine)
- The examples you have learned:
 - Merge Sort, Quick Sort
 - Integer Multiplication, Matrix Multiplication

Checklist - Divide & Conquer

Solve Recursive Function: Recursion Tree

- 1. Calculate how many levels.
- 2. Calculate how many recursive calls each level has.
- 3. Calculate how many work does each recursive call has. (Then calculate the total work on each level)
- 4. Calculate how many total work you need to do.

Checklist - Divide & Conquer

Solve Recursive Function: Master theorem

If
$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^d)$$
 for constants $a > 0, b > 1, d \ge 0$, then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Checklist - Tree

Tree Structure

- Root, parent, children.
- Degree: the number of its children.
- Leaf: nodes with degree zero.
- Path: a sequence of nodes: (a_0, a_1, \ldots, a_n)
- Height: the maximum depth of any node. The height of a tree with one node is 0.
- Ancestor, descendant.

Checklist - TreeTree Traversal

- Without specification, traverse from left to right!
- BFS:
 - $\Theta(n)$ runtime and O(n) memory, maximum nodes at a given depth.
 - Queue.
- DFS:
 - $\Theta(n)$ runtime and $\Theta(h)$ memory, h is the height of the tree.
 - Stack or recursion (still stack). (Inverse order)
- Pre-order / Post-order / In-order
 - Given in-order and pre-order, how to get post-order?
 - Recall pre-order: root, left, right; post-order: left, right, root; in-order: left, root, right

Remind

• If we ask you to write the time complexity, you must write the most . However, if the question says $\Theta(n) = O(n)$, that's true.

Checklist - Binary Tree

- Each node has at most 2 children.
- Full binary tree: all the nodes have 0 or 2 children.
- Complete binary tree: filled at each depth from left to right.
 - Recursive definition:
 - The left sub-tree is a complete tree of height h-1 and the right subtree is a perfect tree of height h-2, or
 - The left sub-tree is perfect tree with height h-1 and the right sub-tree is complete tree with height h-1
- No relationship between full and complete binary tree.
- Perfect binary tree: height h with $2^{h+1}-1$ nodes.
- Array storage may not be the best solution.

Checklist - Binary Heap

- Min-Heap: The key of the root is less than or equal to the keys of the sub-trees, and the sub-trees (if any) are also min-heaps. (Recursive definition)
 - There is not relationship between children!
- We will do better in complete binary tree. (Avoid unbalanced binary tree.)
- We may store a complete tree using an array. **E.g.** Starts at index = 1. Then, for index i, its parent is i/2, and its children are 2i and 2i + 1. (If starts at index = 0?)
- Operations: Top, Pop, Push.
 - For push, insert at the back, and compare the value of its parent.
 - For pop, delete the index = 1, and then copy the last entry to the top. Then compare the
 - value of its both children.
 - Access: $\Theta(1)$, pop and push: O(ln(n))

Checklist - Binary Heap Build Heap

- Build heap: Floyd's Method
 - No percolation for the leaf nodes (n/2 nodes)
 - At most n/4 nodes percolate down 1 level
 - At most n/8 nodes percolate down 2 levels
 - At most n/16 nodes percolate down 3 levels
 - •

•
$$1\frac{n}{4} + 2\frac{n}{8} + 3\frac{n}{16} + \dots = \sum_{i=1}^{\log n} i \frac{n}{2^{i+1}} = \frac{n}{2} \sum_{i=1}^{\log n} \frac{i}{2^i} = n = \Theta(n)$$

Checklist - Heap Sort

- Place the objects into a heap (Floyd's Method)
 - O(n)
- Repeatedly popping the top object until the heap is empty
 - O(nlogn)
- Time Complexity:
 - O(nlogn)

Common Mistakes in Homework

HW4

Divide and Conquer Algorithm

不要直接想问题怎么解决,先分成子问题,一般是分2份或者4份;然后假设子问题已经解决了,只需要想如何combine

Common Mistakes in Quiz

- Quiz 4
 - Divide and Conquer Algorithm

Pay more attention to details!

- (3) Use Strassen's algorithm from (2) to come up with a divide-and-conquer algorithm to calculate the matrix multiplication $\mathbf{A} \times \mathbf{B}$ in more efficient than $\Theta(n^3)$ time. Write down your main idea briefly. (4pts)
- 1. If the problem is reduced into n = 1 i.e. k = 0, return the scalar product ab.
- 2. Else we partition A and B, and calculate all multipliers and multiplicands in each P_i. (Divide)
- 3. Recur for each P_i , all seven of which are subproblems of size n/2. (Conquer)
- 4. Compute $(\mathbf{A} \times \mathbf{B})_{ij}$ accordingly using linear combinations of $\mathbf{P_i}$, put them together to form the solution. (Merge)

Good Luck