Problem 08: Zwykła matematyka

Punkty: 20

Autor: Steve Brailsford, Marietta, Georgia, Stany Zjednoczone

Wprowadzenie

Niezależnie od stopnia zaawansowania grafiki komputerowej zawsze sprowadza się ona do liczb. Silniki graficzne korzystają z dużych tablic liczbowych, nazywanych macierzami, aby śledzić każdy element renderowany na ekranie. Obrót, przesuwanie, przybliżanie i oddalenie obrazu są reprezentowane pewną liczbą operacji matematycznych wykonywanych na macierzy odpowiadającej obrazowi. Jednak operacje macierzowe mogą być bardzo skomplikowane, a warto sprawdzać, czy w pracy nie ma żadnych błędów.

Lockheed Martin Aeronautics stara się opracować system rozszerzonej rzeczywistości (AR), który będzie wsparciem w szkoleniach osób zajmujących się konserwacją produkowanych przez nią samolotów. Jednak zespół pracujący przy nakładkach graficznych napotkał trudności związane z prawidłowym ułożeniem elementów obrazu, gdy użytkownik porusza głową. Planują dołożyć system wykrywania błędów, który pomagałby ustalić, co jest źródłem trudności.

Opis problemu

Specjalista od grafiki komputerowej zaproponował obliczenie normy Frobeniusa dla każdej macierzy stworzonej do użytkowania w systemie AR. Jest to liczba, której można użyć do wskazania, kiedy w danej macierzy wystąpiły zmiany. Oblicza się ją poniższym równaniem:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

...Lub, używając ZNACZNIE prostszych słów, oblicza się ją biorąc wartość bezwzględną każdego elementu macierzy, podnosząc go do potęgi kwadratowej, sumując je razem, a następnie wyciągając pierwiastek kwadratowy tej sumy. Na przykład, rozważmy małą macierz 2x2:

$$A = \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix}$$

Możemy obliczyć normę Frobeniusa biorąc wartość bezwzględną każdego elementu...

$$|3| = 3$$
 $|-2| = 2$ $|4| = 4$ $|5| = 5$

... podnosząc je do kwadratu...

$$3^2 = 9$$
 $2^2 = 4$ $4^2 = 16$ $5^2 = 25$

...następnie sumując wyniki...

$$9 + 4 + 16 + 25 = 54$$

... i wyciągnąć na koniec pierwiastek kwadratowy.

$$||A||_F = \sqrt{54} \approx 7.35$$

Dlaczego ta liczba jest przydatna? Ponieważ oblicza się ją z poszczególnych wartości, każda próba przestawienia liczb w ramach danej macierzy - co dzieje się w przypadku obrotu lub translacji - poskutkuje utworzeniem macierzy z identyczną normą Frobeniusa. Skalowanie wartości w macierzy (co dzieje się w przypadku przybliżania lub oddalania obrazu) da w efekcie inną normę Frobeniusa, która jednak będzie równa pierwotnej, pomnożonej przez daną skalę.

$$A_{R} = \begin{bmatrix} 5 & 4 \\ = 2 & 3 \end{bmatrix}$$

$$\|A_{R}\|_{F} \approx 7.35$$

$$B = A * 4 = \begin{bmatrix} 12 & -8 \\ 16 & 20 \end{bmatrix}$$

$$\|B\|_{F} = \|A\|_{F} * 4 \approx 29.39$$

W związku z tym normy Frobeniusa można użyć do szybkiego ustalenia, czy powstałe błędy wynikają z obrotu macierzy, jej translacji czy też skalowania. Nie da się w ten sposób ustalić dokładnego źródła problemy, ale dowiemy się, gdzie szukać najpierw!

Przykładowe dane wejściowe

Pierwszy wiersz danych wejściowych programu, otrzymanych przez standardowy kanał wejściowy, będzie zawierać dodatnią liczbę całkowitą oznaczającą liczbę przypadków testowych. Każdy przypadek testowy będzie zawierać:

- Wiersz zawierający dwie dodatnie liczby całkowite, M i N, oddzielone spacjami, reprezentujące liczbę rzędów i kolumn danej macierzy. Wartości M i N mieszczą się w przedziale od 1 do 30 włącznie.
- M wierszy, z których każdy zawiera N liczb całkowitych, oddzielonych spacjami, stanowiących elementy macierzy.

Przykładowe dane wyjściowe

W każdym przypadku testowym program musi wyświetlić normę Frobeniusa danej macierzy, zaokrągloną do dwóch miejsc dziesiętnych. Liczba musi zawierać ewentualne zera końcowe (następujące po innych cyfrach).

7.35 7.35

29.39

16.88