■ Chapter 2: Polynomials – Easy Notes + Step-by-Step Guide

◆ 1. Types of Polynomials Based on Degree

Degree	Name of Polynomial	Example
1	Linear	2x+32x + 32x+3
2	Quadratic	x2-3x+2x^2 - 3x + 2x2-3x+2
3	Cubic	x3-4xx^3 - 4xx3-4x

2. What are Zeroes of a Polynomial?

 \leftarrow A zero of a polynomial p(x)p(x)p(x) is a number kkk such that p(k)=0p(k)=0

Example:

If $p(x)=x^2-3x-4p(x) = x^2-3x-4p(x)=x^2-3x-4$, then p(4)=0p(4)=0 and p(-1)=0p(-1)=0

✓ So, -1 and 4 are zeroes of the polynomial.

3. Geometrical Meaning of Zeroes

• Linear polynomial (degree 1):

Graph is a **straight line**

f It cuts x-axis at 1 point → 1 zero

• Quadratic polynomial (degree 2):

Graph is a **parabola**

- f It can cut the x-axis at:
- o **2 points** → 2 zeroes
- 1 point (touches) → 1 zero
- No point (never touches) → No real zero
- Cubic polynomial (degree 3):

Graph can cut the x-axis at up to 3 points

So, can have up to 3 zeroes

4. Finding Zeroes from a Graph

- Just look at x-axis intersections of the graph.
- The x-coordinates where the graph cuts the x-axis are the zeroes.

Example from Graph:

If a curve cuts the x-axis at x = -2, x = 0, and x = 3, then the zeroes are: -2, 0, 3

♦ 5. Relationship Between Zeroes and Coefficients

For **Quadratic Polynomial**:

Let the polynomial be ax2+bx+cax^2 + bx + cax2+bx+c If zeroes are α alpha α and β beta β , then:

Relationship	Formula
Sum	α+β=-ba\alpha + \beta = -\frac{b}{a} α+β=-ab
Product	α·β=ca\alpha \cdot \beta = \frac{c}{a} α·β=ac

Example:

Polynomial: $x2+7x+10x^2 + 7x + 10x2+7x+10$ Factorized: (x+2)(x+5)(x+2)(x+5)(x+2)

Zeroes: -2, -5

✓ Sum = -2 + (-5) = -7 = -b/a

✓ Product = (-2) × (-5) = 10 = c/a

For **Cubic Polynomial** ax3+bx2+cx+dax^3 + bx^2 + cx + dax3+bx2+cx+d:

Let zeroes be α,β,γ alpha, \beta, \gamma α,β,γ

Relationship	Formula
Sum	α+β+y=-ba\alpha + \beta + \gamma = - \frac{b}{a}α+β+y=-ab
Sum of pairs	αβ+βγ+γα=ca\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}αβ+βγ+γα=ac
Product	αβy=-da\alpha \beta \gamma = -\frac{d}{a} αβy=-ad

♦ 6. How to Form a Polynomial Given Zeroes

Use formula:

For zeroes $\alpha \alpha \beta \beta \beta$:

Polynomial=x2-(α + β)x+ α β \text{Polynomial} = x^2 - (\alpha + \beta)x + \alpha\betaPolynomial=x2-(α + β)x+ α β

Example:

Given zeroes: 2 and 3

Polynomial: x2-5x+6x^2 - 5x + 6x2-5x+6

Frequently Asked Exam Questions

Type of Question	Chapter Portion
Find zeroes of quadratic polynomial and verify	Relationship formulas
Form a quadratic polynomial with given zeroes	Using sum/product
Number of zeroes from a graph	Graph-based questions
Prove sum and product of zeroes match coefficients	Coefficient formulas
Explain meaning of zeroes geometrically (1, 2, none)	Graphical meaning