2020春数理逻辑期中考试

edited by captchaac

一、判断题

- 1. L公式(p
 ightarrow q)
 ightarrow ((r
 ightarrow p)
 ightarrow (r
 ightarrow q))是永真式
- 2. 后件是永真式的蕴含式是永真式
- 3. 在命题演算中,有效 (正确)的推理都可以转化为永真式
- 4. 项 $f(a,x_1)$ 对公式 $\forall x_1(R_1(b,x_1) \to R_2(x_1,x_2))$ 中的 x_2 自由
- 5. 任何命题公式都有唯一的合取范式和析取范式
- 6. 命题"所有自然数都是整数"不能在L中适当表达,但可以在K中适当表达
- 7. 若 $\Gamma \vDash p$,则每一个 Γ 的模型都满足p

二、命题演算公式直接证明+简化证明

$$\vdash \neg \neg p o p$$

三、谓词演算公式证明

$$dash orall x(p o q) o (orall xp o orall xq)$$

四、写出前束**合取**范式

$$orall x_1 R_1^2(x_1,x_2)
ightarrow orall x_1 orall x_2 R_2^2(x_1,x_2)$$

五、命题逻辑的应用

甲乙丙丁四人参加离散数学考试后, ABC三人猜测考试结果

1. A说: 丙第一, 乙第二

2. B说: 丙第二, 丁第三

3. C说: 甲第二, 丁第四

结果每人都猜对了一半,假设无并列名次,问: 甲乙丙丁的实际名次如何?

六、谓词逻辑的应用

判断下列推理是否有效,并解释。

所有羊都吃草;

所有死羊都不吃草;

所以, 所有死羊都不是羊。

中国科学技术大学 2020 年春季学期数理逻辑期中考试参考答案 2020.5.1

- 一 (21 分) 判断题 (在题号前的括号里打 ✓ 或 ×)
- () 1. L 公式 $(p \rightarrow q) \rightarrow ((r \rightarrow p) \rightarrow (r \rightarrow q))$ 是永真式。

(p	\rightarrow	q)	\rightarrow	((T	-	p)	\rightarrow	(T	\rightarrow	q))
	0	1	0		1		0	1	0		1	ī	0	1	0	
	0	1	0		1		1	0	0		1		1	0	0	
	0	1	1		1		0	1	0		1		0	1	1	
	0	1	1		1		1	0	0		1		1	1	1	
	1	0	0		1		0	1	1		1		0	1	0	
	1	0	0		1		1	1	1		0		1	0	0	
	1	1	1		1		0	1	1		1		0	1	1	
	1	1	1		1		1	1	1		1		1	1	1	

()2. 后件是永真式的蕴含式是永真式。

$$v(q)=1 \Rightarrow v(p \rightarrow q)=1$$

() 3. 在命题演算中,有效(正确)的推理都可以转化为永真式。

数理逻辑期中考试 第1页(共8页)

解: / 命题演算 L 的语法推论和语义推论是一致的,有

 $\vdash p \Leftrightarrow \vDash p$

() 4. 项 $f(a,x_1)$ 对公式 $\forall x_1 (R_1(b,x_1) \to R_2(x_1,x_2))$ 中的 x_2 自由。

解: ×用 $f(a,x_1)$ 代换公式中自由出现的 x_2 后,新公式中 $f(a,x_1)$ 中的 x_1 受 $\forall x_1$ 约束,因此项对公式中的 x_2 不是自由的。

() 5. 任何命题公式都有唯一的合取范式和析取范式。

解: × 显然错误,公式的合取范式或析取范式通常都不是唯一的。

() 6. 命题"所有自然数是整数"不能在 L 中适当表达,但可以在 K 中适当表达。

解: \checkmark 命题演算 L 以简单命题为最小的考察对象,无法对其进行进一步分解,谓词演算 K 深入分析"原子命题"的内部结构并引入量词运算,可以适当表达命题。设 K 中的 $R=R_1^1$,自然数集 N 是 K 的一个解释域, $\overline{R_1^0}$:属于整数集,现考察 K 中原子公式 p:

 $\forall x R_1^1(x)$

在解释域 N 中解释为"所有自然数是整数"。

() 7. 若 $\Gamma \vDash p$,则每一个 Γ 的模型都满足 p。

解: ✓ 由 (P92) 谓词演算 K 中语义推论的定义立刻可知。

解: ✓ ✓ ✓ × × ✓ ✓

二 (20 分) 在命题演算 L 中, 试分别用直接证明(根据定义直接证明)和简化证明的方法证明: $\vdash \neg \neg p \rightarrow p$ 。

解:直接证明 证明. (L1) $\neg \neg p \rightarrow ((\neg \neg p \rightarrow \neg \neg p) \rightarrow \neg \neg p)$ (1) $(\neg \neg p \rightarrow ((\neg \neg p \rightarrow \neg \neg p) \rightarrow \neg \neg p))$ (L2) $\rightarrow ((\neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p)) \rightarrow (\neg \neg p \rightarrow \neg \neg p))$ (1), (2), MP $(\neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p)) \rightarrow (\neg \neg p \rightarrow \neg \neg p)$ (3) (L1) $\neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p)$ (4) (3), (4), MP (5) $\neg\neg p \rightarrow \neg\neg p$ (L1) $\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)$ (6) (L3) $(\neg\neg\neg\neg p \rightarrow \neg\neg p) \rightarrow (\neg p \rightarrow \neg\neg\neg p)$ (7) $((\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p))$ (8) (L1) $\rightarrow (\neg \neg p \rightarrow ((\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p)))$ (7), (8), MP $\neg \neg p \rightarrow ((\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p))$ (9) $(10) \quad (\neg \neg p \rightarrow ((\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p)))$ $\rightarrow \big((\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p))$ (L2) $\rightarrow (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)))$ (11) $(\neg \neg p \rightarrow (\neg \neg \neg p \rightarrow \neg \neg p))$ (9), (10), MP $\rightarrow (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p))$ (6), (11), MP (12) $\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)$ (L3)(13) $(\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)$ $(14) \quad ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p))$ (L1) $\rightarrow (\neg \neg p \rightarrow ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)))$ (13), (14), MP $(15) \neg \neg p \rightarrow ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p))$ $(16) \quad (\neg \neg p \rightarrow ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)))$ $\rightarrow ((\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg \neg p \rightarrow p)))$ (L2)(15), (16), MP $(17) \quad (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg \neg p \rightarrow p))$ (12), (17), MP (18) $\neg \neg p \rightarrow (\neg \neg p \rightarrow p)$ $(19) \quad (\neg \neg p \rightarrow (\neg \neg p \rightarrow p)) \rightarrow ((\neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg \neg p \rightarrow p))$ (L2)

(20) ($\neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)$	(18), (19), MP		
(21) -	$a \rightarrow p \rightarrow p$	(5), (20), MP		
简化证	明			
	由演绎定理,只用证 $\{\neg\neg p\} \vdash p$ 。 p 从 $\{\neg\neg p\}$ 的一个证明:			
(1)	$\neg \neg p$	假定		
(2)	$\neg \neg p \to (\neg \neg \neg \neg p \to \neg \neg p)$	(L1)		
(3)	$\neg\neg\neg\neg p \rightarrow \neg\neg p$	(1), (2), MP		
(4)	$(\neg\neg\neg\neg p\to\neg\neg p)\to (\neg p\to\neg\neg\neg p)$	(L3)		
(5)	$\neg p \rightarrow \neg \neg \neg p$	(3), (4), MP		
(6)	$(\neg p \to \neg \neg \neg p) \to (\neg \neg p \to p)$	(L3)		
(7)	$\neg \neg p \rightarrow p$	(5), (6), MP		
(8)	p	(1), (7), MP		

 \equiv (15 分) 在谓词演算中证明 $\models \forall x(p \rightarrow q) \rightarrow (\forall xp \rightarrow \forall xq)$ 。

解: (练习 20 1-3°)

证明. 反证, 假设 $\not\vdash \forall x(p \to q) \to (\forall xp \to \forall xq)$, 则存在 K 的解释域 M 和 $\varphi \in \Phi_M$, 使得

$$\left|\forall\,x\,(p\rightarrow q)\rightarrow\left(\forall\,x\,p\rightarrow\forall\,x\,q\right)\right|\left(\varphi\right)=0$$

即有 $|\forall x (p \rightarrow q)| (\varphi) = 1$ 且 $|\forall x p \rightarrow \forall x q| (\varphi) = 0$,进而有 $|\forall x p| (\varphi) = 1$ 且 $|\forall x q| (\varphi) = 0$ 。

由 $|\forall x q| (\varphi) = 0$ 可知,存在 φ 的 x 变通 φ' 使得 $|q| (\varphi') = 0$,同时由 $|\forall x p| (\varphi) = 1$ 可知,有 $|p| (\varphi') = 1$ 。由 $|\forall x (p \to q)| (\varphi) = 1$ 可知, $|p \to q| (\varphi') = 1$,这与 $|p| (\varphi') = 1$ 且 $|q| (\varphi') = 0$ 矛盾!因此假设不成立,原语义推论得证。

本题也可通过谓词演算 K 的可靠性做出证明

证明. 先证明 $\vdash \forall x(p \to q) \to (\forall xp \to \forall xq)$, 由演绎定理, 只用证 $\{\forall x(p \to q), \forall xp\} \vdash \forall xq$, 其中除了 x 外不使用其他 Gen 变元, 且 x 是不在 $\forall x(p \to q)$ 或 $\forall xp$ 中自由出现的。下面是 $\forall xq$ 从 $\{\forall x(p \to q), \forall xp\}$ 的一个证明:

(1)	$\forall x p$	假定
(2)	$\forall x p \to p$	(K4)
(3)	p	(1), (2), MP
(4)	$\forallx(p\to q)$	假定
(5)	$\forallx(p\to q)\to(p\to q)$	K4

(6)
$$p \rightarrow q$$
 (4), (5), MP
(7) q (3), (6), MP

(8)
$$\forall x q$$
 (7), Gen

因此

$$\vdash \forall \, x \, (p \to q) \to (\forall \, x \, p \to \forall \, x \, q)$$

得证, 由 K 的可靠性可知

$$\vDash \forall x (p \to q) \to (\forall x p \to \forall x q)$$

四 (13分) 求与下列公式等价的前束合取范式,并给出求解过程:

$$\forall x_1 R_1^2(x_1, x_2) \rightarrow \forall x_1 \forall x_2 R_2^2(x_1, x_2)$$

解:适当改变公式中的约束变元得到以下等价的公式 p1:

$$p_1 = \forall x_1 R_1^2(x_1, x_2) \rightarrow \forall x_3 \forall x_2 R_2^2(x_3, x_2)$$

从 p1 出发, 反复利用 P77 命题 2-2° 和 2-3°, 得到以下的等价公式:

$$p_2 = \forall x_3 \ (\forall x_1 R_1^2(x_1, x_2) \to \forall x_2 R_2^2(x_3, x_2))$$

$$p_3 = \forall x_3 \forall x_2 \ (\forall x_1 R_1^2(x_1, x_2) \rightarrow R_2^2(x_3, x_2))$$

 $p_4 = \forall x_3 \forall x_2 \exists x_1 \ (R_1^2(x_1, x_2) \rightarrow R_2^2(x_3, x_2))$
 $p_5 = \forall x_3 \forall x_2 \exists x_1 \ (\neg R_1^2(x_1, x_2) \lor R_2^2(x_3, x_2))$

p₅ 即所求(注意到量词后的部分是只有一个析取支的合取范式)。 以下公式也是与原公式等价的前束合取范式:

$$\begin{split} p_6 &= \forall \, x_2 \, \forall \, x_3 \, \exists \, x_1 \, \left(\neg \, R_1^2(x_1, \, x_2) \, \lor \, R_2^2(x_3, \, x_2) \right) \\ p_7 &= \exists \, x_1 \, \forall \, x_3 \, \forall \, x_2 \, \left(\neg \, R_1^2(x_1, \, x_2) \, \lor \, R_2^2(x_3, \, x_2) \right) \\ p_8 &= \exists \, x_1 \, \forall \, x_2 \, \forall \, x_3 \, \left(\neg \, R_1^2(x_1, \, x_2) \, \lor \, R_2^2(x_3, \, x_2) \right) \end{split}$$

同时从 p_4 出发,以 $R_1^2(x_1,x_2)$ 和 $R_2^2(x_3,x_2)$ 为原子命题变元,由命题演算公式中 $x_1\to x_2$ 的等值主合取范式及代换定理可得原公式还等价于

$$\begin{split} p_9 = &\forall \, x_3 \, \forall \, x_2 \, \exists \, x_1 \, \Big(\big(\neg \, R_1^2(x_1, \, x_2) \, \lor \neg \, R_2^2(x_3, \, x_2) \big) \\ & \wedge \, \Big(R_1^2(x_1, \, x_2) \, \lor \neg \, R_2^2(x_3, \, x_2) \big) \, \wedge \, \Big(R_1^2(x_1, \, x_2) \, \lor \, R_2^2(x_3, \, x_2) \big) \Big) \end{split}$$

五 (16分) 甲、乙、丙、丁四人参加离散数学考试后,A、B、C 三人猜测考试结果。A 说:"丙第一,乙第二",B说:"丙第二,丁第三",C说:"甲第二,丁第四"。结果每 人都猜对了一半,假设无并列名次,问甲、乙、丙、丁的实际名次如何?

解:用 x_i , $i=1,2,\cdots$,6分别表示"甲第二"、"乙第二"、"丙第一"、"丙第二"、"丁第三"、"丁第四",题设条件可形式化为

$$\big\{x_3 \nleftrightarrow x_2, \ x_4 \nleftrightarrow x_5, \ x_1 \nleftrightarrow x_6, \ \neg(x_1 \land x_2 \land x_4), \ \neg(x_3 \land x_4), \ \neg(x_5 \land x_6)\big\}$$

解如下的真值方程组(1)~(8)

(1)
$$v_3 \leftrightarrow v_2 = 1$$

(2) $v_4 \leftrightarrow v_5 = 1$
(3) $v_1 \leftrightarrow v_6 = 1$
(4) $\neg (v_1 \land v_2) = 1$

数理逻辑期中考试 第6页(共8页)

(5)	$\neg (v_1 \wedge v_4) = 1$
(6)	$\neg \left(v_2 \wedge v_4 \right) = 1$
(7)	$\neg \left(v_3 \wedge v_4\right) = 1$
(8)	$\neg (v_5 \land v_6) = 1$

试取 $v_2 = 1$,由(1)、(4)及(6)可知, $v_3 = 0$, $v_1 = 0$, $v_4 = 0$,分别代入(2)及(3)可知, $v_5 = 1$, $v_6 = 1$,代入(8)得

(9)
$$\neg (v_5 \land v_6) = 0$$

(8)与(9)矛盾。改取 $v_2=0$,由(1)可知, $v_3=1$,代入(7)可知 $v_4=0$,代入(2)可知 $v_5=1$,代入(8)可知 $v_6=0$,代入(3)可知 $v_1=1$,分别代入(4)、(5)、(6)均成立。得到方程组(1)~(8)的一个解 (1,0,1,01,0),这说明"甲是第二"、"乙不是第二"、"丙是第一"、"丙不是第二"、"丁是第三"、"丁不是第四",即甲、乙、丙、丁的实际名次为丙第一、甲第二、丁第三、乙第四。

六 (15分) 下述推理是否有效? 为什么?

所有羊都吃草; 所有死羊都不吃草; 所以,所有死羊都不是羊。

解: 推理有效。在解释域

M: 所有生物个体 R_1 : 羊 (的集合)

R: 死羊 (的集合)

R3: 吃草(生物的集合)

上, 题述推理可以形式化为

 $\left\{\forall x \left(R_1^1(x) \to R_3^1(x)\right), \ \forall x \left(R_2^1(x) \to \neg R_3^1(x)\right)\right\} \vdash \forall x \left(R_2^1(x) \to \neg R_1^1(x)\right)$

以下公式从 $\{ \forall x (R_1^1(x) \to R_3^1(x)), \forall x (R_2^1(x) \to \neg R_3^1(x)) \}$ 可证

(1) $\forall x \left(R_1^1(x) \rightarrow R_3^1(x)\right)$

假定

(2)
$$\forall x \left(R_1^1(x) \to R_3^1(x)\right) \to \left(R_1^1(x) \to R_3^1(x)\right)$$
 (K4)
(3) $R_1^1(x) \to R_3^1(x)$ (1), (2), MP
(4) $\left(R_1^1(x) \to R_3^1(x)\right) \to \left(\neg R_3^1(x) \to \neg R_1^1(x)\right)$ 换位律
(5) $\neg R_3^1(x) \to \neg R_1^1(x)$ (3), (4), MP
(6) $\forall x \left(R_2^1(x) \to \neg R_3^1(x)\right)$ 假定
(7) $\forall x \left(R_2^1(x) \to \neg R_3^1(x)\right) \to \left(R_1^1(x) \to \neg R_3^1(x)\right)$ (K4)
(8) $R_2^1(x) \to \neg R_3^1(x)$ (6), (7), MP
(9) $R_2^1(x) \to \neg R_1^1(x)$ (5), (8), HS
(10) $\forall x \left(R_2^1(x) \to \neg R_1^1(x)\right)$ (9), Gen

证明中除了x没有使用其他 Gen 变元。由K的可靠性,有

$$\left\{\forall x\left(R_1^1(x)\to R_3^1(x)\right),\ \forall x\left(R_2^1(x)\to \neg R_3^1(x)\right)\right\}\vDash \forall x\left(R_2^1(x)\to \neg R_1^1(x)\right)$$

因此推理是有效的。