

[지능형 파일럿 프로젝트]

스마트팩토리 구현 사례

2021. 10. 28

산업인공지능연구센터 김현용

목차

- 회사 소개
- 사례1. 온습도 모니터링 시스템
- 사례2. 자재소요량계획(MRP)
- 사례3. 생산관리 시스템(POP)
- 사례4. 사무자동화(RPA)

[사례1]

온습도 모니터링 시스템

시스템 구성도

No	구분	H/W	S/W	비고
1	microcontroller	Arduino UNO + XBEE shield → Fribee White	IDE(스케치) C언어 프로그래밍	전원 아답터 (7~12V)
2	온습도 센서	DHT-22 / 11	DHT-22 Library	
3	무선통신모듈	XBEE module + XBEE Shield	X-CTU 설정	slave
4	무선통신모듈	XBEE module + Dongle	II .	master
5	Monitoring P/G	PC	MATLAB 프로그래밍	

애로사항 및 효과

- 시스템 개발의 애로사항
 - Zigbee 무선통신의 두절 : 철골, 석고패널 vs 철패널
 - 통신거리의 한계 : Xbee → Xbee Pro → LoRa(Long Range)
 - 센서의 정확도 : **센서의 Calibration (2회/년)** 모듈 개발
 - 통신 두절

USB 단절 : 온습도 데이터 수집 불가

인터넷 불통: 데이터 저장 불가

- 센서수 : 4개 → 13개 (**외기 : 기상청 웹스크레이핑**)

• 개발 효과

- 온습도 기록 공수 절감, '**정확한**' 온습도 데이터 수집
- 온도계 교정비 절감
- 공조기 관리 시스템 발전 > 외기유입 자동개폐기 개발
- 에너지 관리 유도 → **6,000만원/년** 절감
 - : 사무실 시스템 에어컨 관리,
 - : 전기료 = **기본요금(최대전력)**+종량요금 → 최대전력관리장치 도입

[사례2]

자재 소요량 계획(MRP)

The New Way of Life in Production and Inventory Management

계층적 생산계획

Inputs(1) - MPS

- Master Production Schedule(기준생산계획)
 - Time bucket: an interval used to break time into discrete chunks
 - Planning horizon : the span of time the MPS covers.

Period			W	eek		
Item	9	10	11	12	13	14
Finished product A	1,250				850	
Finished product B	470				360	
Subassembly D	270				250	

• 변동성

• 고객사의 발주방식

- 확정주문 : 1~2주

- 예측주문 : 3~4주

- 예고주문 : 5주 이후

- 주문의 수시변동

Inputs(2) - BOM

• Bill of Material(자재명세서)

IOPE 에어쿠션 (아모레퍼시픽)

Lv	Item_code	Mold_code	Item_name	Process	Quantity	Supplier
0	7060861	7060861	Air Cushion Container	Assembly	1 ea	Α
1	SP0224	A150386	Air Cushion Container Upper Case Injection Taping	Taping	1 ea	В
2	SI0758	A150386	Air Cushion Container Upper Case Injection	Injection	1 ea	Sunil
3	4ABS091	-	BF-0670T	Material	11.6 g	M1
3	5MA52	-	KS12003	Additive	0.8 g	M2
1	SI0759	A150385	Air Cushion Container Lower Case Injection	Injection	1 ea	Sunil
2	4ABS091	-	BF-0670T	Material	11.4 g	M1
2	5MA52	-	KS12003	Additive	0.8 g	M2
1	C00128	-	SUS Pin Dia. 1.56 × 8 mm	Purchase	2 ea	C1
1	C00129	-	Circular Mirror	Purchase	1 ea	C2

Inputs(3) - IRF

- Inventory Record File(재고장)
- **lot-sizing rule** (how much to order) focuses on how to balance the production setup, order, and inventory holding cost while satisfying the requirements.
- The simplest Lot-for-lot (LFL, L4L), Fixed order quantity (FOQ) and economic order quantity (EOQ) are widely used.

Item	On hand	Lead time(week)	Safety stock	Scheduled receipts
A	50	2	0	
В	60	2	0	10(5w)
С	40	1	5	
D	200	1	20	100(4w)

MRP system과 Database

MRP system

MPS

MRP calculation(1) - 'Level-by-Level Processing'

- Level-by-Level Processing
 - technique for maximizing processing efficiency
- process all the items on a given level before addressing their components on the next-lower level.

MRP calculation(2) – 'Low Level Coding'

- Low Level Coding
- determine the net requirements for a common-usage item correctly
- when an identical item occurs on multiple level, then it should be 'Lowered' to its lowest level from computational reasons.

MRP calculation(3)

		Period (Week/Day)				1.01	
Item		4	5	6	7	8	9
A Lead Time = 2 On hand = 50 Safety stock = 0 Order Quantity = L4L	총소요량 예정입고량 예상재고량 순소요량 계획주문입고량 계획주문발주량	50	50	50	50	50	1,250 0 1,200 1,200
B Lead Time = 2 On hand = 60 Safety stock = 0 Order Quantity = L4L	Gross requirements Scheduled receipts Projected available Net requirements Planned order receipts Planned order releases	60	10 70	70	70	70	470 0 400 400
C Lead Time = 1 On hand = 40 Safety stock = 5 Order Quantity = 2,000	Gross requirements Scheduled receipts Finished product A B	35	35	35	1,600 435 1,565 2,000	435	435
D Lead Time = 1 On hand = 200 Safety stock = 20 Order Quantity = 5,000	C(1) D(1) D(2) D(2) Net requirements Planned order receipts Planned order releases	100 280	280	4,000 1,280 3,720 5,000	1,200	80	4,810 4,810

MRP의 필요성과 효과

- 필요성 및 효과
 - 기존에는 엑셀 작업 : 2~3명 야근, 철야 → 1명 정시퇴근
 - 사람 의존성 : 고임금 경력자 -> 신입사원
- 효과
 - 데이터의 중요성
 - 고객사의 인식 변화

[사례3]

생산현황 관리시스템 (POP)

POP (Point of Production, 생산관리시스템)

• 시스템 구성도

생산/설비종합효율

사례4. RPA(Robot Process Automation)

- RPA란?
- 사람이 컴퓨터로 하던 정형화되고 반복적인 업무를 프로그램으로 자동화하는 것
- 단순 반복작업을 '열심히' → 'smart'하게 하는 것
- RPA를 위한 파이썬 모듈 → 프로그래머가 아닌 일반인도 가능

분야	파이썬 모듈	비고
Web Scraping, Crawling	requests, BeautifulSoup	
Web browser 자동화	Selenium	
엑셀 자동화	openpyxl, win32com	
이메일 자동화	smtplib, EmailMessage	
보고서 생성 자동화	Jinja2	
모니터 화면제어(키보드,마우스)	pyautogui	
자동화 통합관리	Robot Framework	
데이터 전처리, 분석	numpy, pandas	
작업 스케쥴링(주기적인 실행)	schtasks(윈도우), crontab(리눅스)	
OCR (문자/숫자 인식)	tesseract	
이미지 캡처, 이미지 프로세싱	OpenCV	
GUI	PyQt (Qt designer)	

감사합니다

