

PATENT
Docket No.: 2283/301

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant :	Leivan DeVeylder et al)	Examiner:
Serial No. :	09/574,735)	C. Collins
Conf. No. :	1507)	Art Unit:
Filed :	May 18, 2000)	1638
For :	CYCLIN-DEPENDENT KINASE INHIBITORS AND USES THEREOF)	
)	

Assistant Commissioner for Patents
Washington, D.C. 20231

STATEMENT UNDER 37 C.F.R. § 1.825(a) AND (b)

Sir:

The undersigned states that the substitute paper and computer readable form (CRF) of the Sequence Listing submitted herewith, are fully supported by the application as filed and include no new matter.

Further, the undersigned states that the information recorded in the CRF, submitted herewith, is identical to the paper copy of the Sequence Listing, also submitted herewith.

Respectfully submitted,

Ann R. Pokalsky
Registration No. 34,697

Dated: June 20, 2001

Nixon Peabody LLP
990 Stewart Avenue
Garden City, New York 11530-4838
Telephone: (516) 832-7572
Facsimile: (516) 832-7555

CERTIFICATE OF MAILING UNDER 37 C.F.R. § 1.8(a)

I certify that the attached correspondence is being deposited on 6/20/01 with the U.S. Postal Service as first class mail under 37 C.F.R. § 1.8 and addressed to:
Assistant Commissioner for Patents, Washington, D.C. 20231.

Maria L. Matos

**NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING
NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES**

Applicant must file the items indicated below within the time period set the Office action to which the Notice is attached to avoid abandonment under 35 U.S.C. § 133 (extensions of time may be obtained under the provisions of 37 CFR 1.136(a)).

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Applicant's attention is directed to the final rulemaking notice published at 55 FR 18230 (May 1, 1990), and 1114 OG 29 (May 15, 1990). If the effective filing date is on or after July 1, 1998, see the final rulemaking notice published at 63 FR 29620 (June 1, 1998) and 1211 OG 82 (June 23, 1998).
2. This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 C.F.R. 1.821(c).
3. A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 C.F.R. 1.821(e).
4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked-up "Raw Sequence Listing."
5. The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).
6. The paper copy of the "Sequence Listing" is not the same as the computer readable form of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).
7. Other: _____

Applicant Must Provide:

- An initial or substitute computer readable form (CRF) copy of the "Sequence Listing".
- An initial or substitute paper copy of the "Sequence Listing", as well as an amendment directing its entry into the specification.
- A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).

For questions regarding compliance to these requirements, please contact:

For Rules Interpretation, call (703) 308-4216

For CRF Submission Help, call (703) 308-4212

PatentIn Software Program Support

Technical Assistance.....703-287-0200

To Purchase PatentIn Software.....703-306-2600

PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR REPLY

SEQUENCE LISTING

De Veylder, Lieven
Beeckman, Tom
Inzé, Dirk
Van Camp, Wim
Krols, Luc

<120> Cyclin-dependent kinase inhibitors and uses thereof

<130> 2283/301

<140> US 09/574,735
<141> 2000-05-18

<160> 48

<170> PatentIn version 3.0

<210> 1
<211> 932
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (86)..(712)

<400> 1
ggcacgagga gaaccacaaa cacgcacaca taacgagtga ttttagagag agatagagat 60
ctggaaagggtg acgtcgtagg agatt atg gcg gcg gtt agg aga aga gaa cga 112
Met Ala Ala Val Arg Arg Arg Glu Arg
1 5
gat gtg gtt gaa gag aat gga gtt acg acg acg acg gtg aaa cga agg 160
Asp Val Val Glu Glu Asn Gly Val Thr Thr Val Lys Arg Arg
10 15 20 25
aag atg gag gag gaa gtg gat tta gtg gaa tct agg ata att ctg tct 208
Lys Met Glu Glu Val Asp Leu Val Glu Ser Arg Ile Ile Leu Ser
30 35 40
ccg tgt gta cag gcg acg aat cgc ggt gga att gtg gcg aga aat tca 256
Pro Cys Val Gln Ala Thr Asn Arg Gly Gly Ile Val Ala Arg Asn Ser
45 50 55
gca gga gcg tcg gag acg agt gtt atg gta cga cgg cga gat tct 304
Ala Gly Ala Ser Glu Thr Ser Val Val Ile Val Arg Arg Arg Asp Ser
60 65 70
cct ccg gtt gaa gaa cag tgt caa atc gaa gaa gat tcg tcg gtt 352
Pro Pro Val Glu Glu Gln Cys Gln Ile Glu Glu Asp Ser Ser Val
75 80 85
tcg tgt tgt tct aca tcg gaa gag aaa tcg aaa cgg aga atc gaa ttt 400
Ser Cys Cys Ser Thr Ser Glu Glu Lys Ser Lys Arg Arg Ile Glu Phe
90 95 100 105

gta gat ctt gag gaa aat aac ggt gac gat cgt gaa aca gaa acg tcg	448
Val Asp Leu Glu Glu Asn Asn Gly Asp Asp Arg Glu Thr Glu Thr Ser	
110 115 120	
tgg att tac gat gat ttg aat aag agt gag gaa tcg atg aac atg gat	496
Trp Ile Tyr Asp Asp Leu Asn Lys Ser Glu Glu Ser Met Asn Met Asp	
125 130 135	
tct tct tcg gtg gct gtt gaa gat gta gag tct cgc cgc agg tta agg	544
Ser Ser Val Ala Val Glu Asp Val Glu Ser Arg Arg Arg Leu Arg	
140 145 150	
aag agt ctc cat gag acg gtg aag gaa gct gag tta gaa gat ttt ttt	592
Lys Ser Leu His Glu Thr Val Lys Glu Ala Glu Leu Glu Asp Phe Phe	
155 160 165	
cag gtg gcg gag aaa gat ctt cgg aat aag ttg ttg gaa tgt tct atg	640
Gln Val Ala Glu Lys Asp Leu Arg Asn Lys Leu Leu Glu Cys Ser Met	
170 175 180 185	
aag tat aac ttc gat ttc gag aaa gat gag cca ctt ggt gga gga aga	688
Lys Tyr Asn Phe Asp Phe Glu Lys Asp Glu Pro Leu Gly Gly Arg	
190 195 200	
tac gag tgg gtt aaa ttg aat cca tgaagaagac gatgatgata atgatgatca	742
Tyr Glu Trp Val Lys Leu Asn Pro	
205	
ttgtttcac caaagtactt attattttc ttctgtaata atcttgctt tgattttct	802
tttaacaaaa tccaaatgta gatatttc tctcgaaataa tcaataacat gtaattcaac	862
ttttgttgt acttccttga ggtaattaat tagattcgtg ttttctcga ttaataaaact	922
ataagtttat	932

<210> 2
<211> 209
<212> PRT
<213> Arabidopsis thaliana

<400> 2

Met Ala Ala Val Arg Arg Arg Glu Arg Asp Val Val Glu Glu Asn Gly	
1 5 10 15	
Val Thr Thr Thr Val Lys Arg Arg Lys Met Glu Glu Val Asp	
20 25 30	
Leu Val Glu Ser Arg Ile Ile Leu Ser Pro Cys Val Gln Ala Thr Asn	
35 40 45	
Arg Gly Gly Ile Val Ala Arg Asn Ser Ala Gly Ala Ser Glu Thr Ser	
50 55 60	
Val Val Ile Val Arg Arg Asp Ser Pro Pro Val Glu Glu Gln Cys	
65 70 75 80	
Gln Ile Glu Glu Glu Asp Ser Ser Val Ser Cys Cys Ser Thr Ser Glu	
85 90 95	
Glu Lys Ser Lys Arg Arg Ile Glu Phe Val Asp Leu Glu Asn Asn	
100 105 110	
Gly Asp Asp Arg Glu Thr Glu Thr Ser Trp Ile Tyr Asp Asp Leu Asn	
115 120 125	
Lys Ser Glu Glu Ser Met Asn Met Asp Ser Ser Ser Val Ala Val Glu	
130 135 140	
Asp Val Glu Ser Arg Arg Leu Arg Lys Ser Leu His Glu Thr Val	
145 150 155 160	
Lys Glu Ala Glu Leu Glu Asp Phe Phe Gln Val Ala Glu Lys Asp Leu	
165 170 175	
Arg Asn Lys Leu Leu Glu Cys Ser Met Lys Tyr Asn Phe Asp Phe Glu	
180 185 190	

Lys Asp Glu Pro Leu Gly Gly Arg Tyr Glu Trp Val Lys Leu Asn
195 200 205
Pro

<210> 3
<211> 875
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (11)..(658)

<400> 3
ggcacgagag aaa tca aag ata act ggc gat atc agc gtc atg gaa gtc 49
Lys Ser Lys Ile Thr Gly Asp Ile Ser Val Met Glu Val
1 5 10
tct aaa gca aca gct cca agt cca ggt gtt cga acc aga gcc gct aaa 97
Ser Lys Ala Thr Ala Pro Ser Pro Gly Val Arg Thr Arg Ala Ala Lys
15 20 25
acc cta gcc ttg aag cgg ctt aat tcc tcc gcc gct gat tca gct cta 145
Thr Leu Ala Leu Lys Arg Leu Asn Ser Ser Ala Ala Asp Ser Ala Leu
30 35 40 45
cct aac gac tct tgc tat ctt cag ctc cgt agc cgc cgt ctc gag 193
Pro Asn Asp Ser Ser Cys Tyr Leu Gln Leu Arg Ser Arg Arg Leu Glu
50 55 60
aaa ccc tct tcg ctg att gaa ccg aaa cag ccg ccg aga gtt cac aga 241
Lys Pro Ser Ser Leu Ile Glu Pro Lys Gln Pro Pro Arg Val His Arg
65 70 75
tcg gga att aaa gag tct ggt tcc agg tct cgc gtt gac tcg gtt aac 289
Ser Gly Ile Lys Glu Ser Gly Ser Arg Ser Arg Val Asp Ser Val Asn
80 85 90
tcg gtt cct gta gct cag agc tct aat gaa gat gaa tgt ttt gac aat 337
Ser Val Pro Val Ala Gln Ser Ser Asn Glu Asp Glu Cys Phe Asp Asn
95 100 105
ttc gtg agt gtc caa gtt tct tgt ggt gaa aac agt ctc ggt ttt gaa 385
Phe Val Ser Val Gln Val Ser Cys Gly Glu Asn Ser Leu Gly Phe Glu
110 115 120 125
tca aga cac agc aca agg gag agc acg cct tgt aac ttt gtt gag gat 433
Ser Arg His Ser Thr Arg Glu Ser Thr Pro Cys Asn Phe Val Glu Asp
130 135 140
atg gag atc atg gtt aca cca ggg tct agc acg agg tcg atg tgc aga 481
Met Glu Ile Met Val Thr Pro Gly Ser Ser Thr Arg Ser Met Cys Arg
145 150 155
gca acc aaa gag tac aca agg gaa caa gat aac gtg atc ccg acc act 529
Ala Thr Lys Glu Tyr Thr Arg Glu Gln Asp Asn Val Ile Pro Thr Thr
160 165 170
agt gaa atg gag gag ttc ttt gca tat gca gag cag cag caa cag agg 577
Ser Glu Met Glu Glu Phe Phe Ala Tyr Ala Glu Gln Gln Gln Gln Arg
175 180 185
cta ttc atg gag aag tac aac ttc gac att gtg aat gat atc ccc ctc 625
Leu Phe Met Glu Lys Tyr Asn Phe Asp Ile Val Asn Asp Ile Pro Leu
190 195 200 205

agc gga cgt tac gaa tgg gtg caa gtc aaa cca tgaagttcaa aaggaaacag	678
Ser Gly Arg Tyr Glu Trp Val Gln Val Lys Pro	
210	215
ctccaaaaga catggtgtga agttagagaa tgtgatggag ttaacagact aaccaaacat	738
cagaaatcggt gtaatcttaa gtaataatgt gtttagagaa caagtttgag agtagcttag	798
ggaccttaaa acctcacacc atttctaata ctaatcttct tcagatgctt agtgaattt	858
tctcatctgt ttcttc	875

<210> 4
<211> 216
<212> PRT
<213> Arabidopsis thaliana

<400> 4
Lys Ser Lys Ile Thr Gly Asp Ile Ser Val Met Glu Val Ser Lys Ala
1 5 10 15
Thr Ala Pro Ser Pro Gly Val Arg Thr Arg Ala Ala Lys Thr Leu Ala
20 25 30
Leu Lys Arg Leu Asn Ser Ser Ala Ala Asp Ser Ala Leu Pro Asn Asp
35 40 45
Ser Ser Cys Tyr Leu Gln Leu Arg Ser Arg Arg Leu Glu Lys Pro Ser
50 55 60
Ser Leu Ile Glu Pro Lys Gln Pro Pro Arg Val His Arg Ser Gly Ile
65 70 75 80
Lys Glu Ser Gly Ser Arg Ser Arg Val Asp Ser Val Asn Ser Val Pro
85 90 95
Val Ala Gln Ser Ser Asn Glu Asp Glu Cys Phe Asp Asn Phe Val Ser
100 105 110
Val Gln Val Ser Cys Gly Glu Asn Ser Leu Gly Phe Glu Ser Arg His
115 120 125
Ser Thr Arg Glu Ser Thr Pro Cys Asn Phe Val Glu Asp Met Glu Ile
130 135 140
Met Val Thr Pro Gly Ser Ser Thr Arg Ser Met Cys Arg Ala Thr Lys
145 150 155 160
Glu Tyr Thr Arg Glu Gln Asp Asn Val Ile Pro Thr Thr Ser Glu Met
165 170 175
Glu Glu Phe Phe Ala Tyr Ala Glu Gln Gln Gln Arg Leu Phe Met
180 185 190
Glu Lys Tyr Asn Phe Asp Ile Val Asn Asp Ile Pro Leu Ser Gly Arg
195 200 205
Tyr Glu Trp Val Gln Val Lys Pro
210 215

<210> 5
<211> 1193
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (92)..(763)

<400> 5
aaaccactct tcaaataaaa cactttctta cataagattc ctctgtttt ctgtgtgctt 60
cttcaaatcc ttccccctgtt tttcaacttc a atg ggg aag tac atg aag aaa 112

	Met	Gly	Lys	Tyr	Met	Lys	Lys	
	1				5			
ctc aaa tcc aaa tca gaa tct cct tca ccc aat tca aca cca aca cca								160
Leu Lys Ser Lys Ser Glu Ser Pro Ser Pro Asn Ser Thr Pro Thr Pro								
10	15				20			
tca cca tca cca tca cca aca cca atc acc acc aat tca cca cca cca								208
Ser Pro Ser Pro Ser Pro Thr Pro Ile Thr Thr Asn Ser Pro Pro Pro								
25	30				35			
aca aca ccc aat tcc tct gat ggt gtt cga act cgt gct aga acc cta								256
Thr Thr Pro Asn Ser Ser Asp Gly Val Arg Thr Arg Ala Arg Thr Leu								
40	45				50			55
gct ttg gag aat tcc aac aat cag aat cag aat ctt tct gtt tct tct								304
Ala Leu Glu Asn Ser Asn Asn Gln Asn Gln Asn Leu Ser Val Ser Ser								
60	65				70			
gat tct tac ctt cag ctg agg aac cgt cgc ctt aag aga ccc cta att								352
Asp Ser Tyr Leu Gln Leu Arg Asn Arg Arg Leu Lys Arg Pro Leu Ile								
75	80				85			
agg caa cat tcc gct aag agg aat aag ggg cat gat gga aac cct aaa								400
Arg Gln His Ser Ala Lys Arg Asn Lys Gly His Asp Gly Asn Pro Lys								
90	95				100			
tcc cca att ggg gat tca att gct gaa gag aaa act gtt cag aag agt								448
Ser Pro Ile Gly Asp Ser Ile Ala Glu Glu Lys Thr Val Gln Lys Ser								
105	110				115			
cct gag cct gaa aat gct gaa ttc aag gag aat gct gag gat act gag								496
Pro Glu Pro Glu Asn Ala Glu Phe Lys Glu Asn Ala Glu Asp Thr Glu								
120	125				130			135
aga agc gct agg gaa act aca ccc gtc cat ttg ata atg cga gca gac								544
Arg Ser Ala Arg Glu Thr Thr Pro Val His Leu Ile Met Arg Ala Asp								
140	145				150			
gtt ctc agg cct cct agg cca att acc agg cgt act ttt cca act gaa								592
Val Leu Arg Pro Pro Arg Pro Ile Thr Arg Arg Thr Phe Pro Thr Glu								
155	160				165			
gct aat ccc aaa acg gag cag cca act atc cca att tca cgc gaa ttt								640
Ala Asn Pro Lys Thr Glu Gln Pro Thr Ile Pro Ile Ser Arg Glu Phe								
170	175				180			
gag gaa ttc tgt gct aaa cat gaa gcc gag cag caa agg gag ttc atg								688
Glu Glu Phe Cys Ala Lys His Glu Ala Glu Gln Gln Arg Glu Phe Met								
185	190				195			
gag aag tac aac ttt gat cct gtg aca gag cag cca ctc cca ggg cgt								736
Glu Lys Tyr Asn Phe Asp Pro Val Thr Glu Gln Pro Leu Pro Gly Arg								
200	205				210			215
tac gaa tgg gaa aaa gtg tcg ccc tag aaggcaggct agtattaagt								783
Tyr Glu Trp Glu Lys Val Ser Pro								
220								
gttccatcaa tacatcttta aagttagcagc agggtagaa ttttgtaaaa agggtggtgg								843
tgctatttcc attttccatc actttctatt tacttgtaaa gaaagttaga ctttcaacat								903
atgttagacta atgatctgta actttacaga ggtgttgatt acacaacaat acaaagtcc								963
tttgtctagca gatcattaaa gaagggtttg agggataaag ggtctctagt tgttagggtt								1023
agggtataaa atcaaagttag ggtatgtaag agaggttttcaagaatttc cttttgttct								1083
tgtgtttac tcttgttttgc tctatacttg tactcatgga acttcaacaa actcttaaga								1143
aataaaagaac cagatctccc tcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa								1193

<210> 6
<211> 223
<212> PRT
<213> Arabidopsis thaliana

<400> 6
Met Gly Lys Tyr Met Lys Lys Leu Lys Ser Lys Ser Glu Ser Pro Ser
1 5 10 15
Pro Asn Ser Thr Pro Thr Pro Ser Pro Ser Pro Ser Pro Thr Pro Ile
20 25 30
Thr Thr Asn Ser Pro Pro Pro Thr Thr Pro Asn Ser Ser Asp Gly Val
35 40 45
Arg Thr Arg Ala Arg Thr Leu Ala Leu Glu Asn Ser Asn Asn Gln Asn
50 55 60
Gln Asn Leu Ser Val Ser Asp Ser Tyr Leu Gln Leu Arg Asn Arg
65 70 75 80
Arg Leu Lys Arg Pro Leu Ile Arg Gln His Ser Ala Lys Arg Asn Lys
85 90 95
Gly His Asp Gly Asn Pro Lys Ser Pro Ile Gly Asp Ser Ile Ala Glu
100 105 110
Glu Lys Thr Val Gln Lys Ser Pro Glu Pro Glu Asn Ala Glu Phe Lys
115 120 125
Glu Asn Ala Glu Asp Thr Glu Arg Ser Ala Arg Glu Thr Thr Pro Val
130 135 140
His Leu Ile Met Arg Ala Asp Val Leu Arg Pro Pro Arg Pro Ile Thr
145 150 155 160
Arg Arg Thr Phe Pro Thr Glu Ala Asn Pro Lys Thr Glu Gln Pro Thr
165 170 175
Ile Pro Ile Ser Arg Glu Phe Glu Glu Phe Cys Ala Lys His Glu Ala
180 185 190
Glu Gln Gln Arg Glu Phe Met Glu Lys Tyr Asn Phe Asp Pro Val Thr
195 200 205
Glu Gln Pro Leu Pro Gly Arg Tyr Glu Trp Glu Lys Val Ser Pro
210 215 220

<210> 7
<211> 25
<212> DNA

<213> Artificial sequence: probe or primer

<400> 7
cgagatctga attcatggat cagta

25

<210> 8
<211> 26
<212> DNA
<213> Artificial sequence: probe or primer

<400> 8
cgagatctga attcctaagg catgcc

26

<210> 9
<211> 29
<212> DNA
<213> Artificial sequence: probe or primer

<400> 9	ggaatccat gggcgccgt taggagaag	29
<210> 10		
<211> 27		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 10	ggcggatccc gtcttcttca tggattc	27
<210> 11		
<211> 29		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 11	ggcgaatcca tggaaagtctc taaaggcaac	29
<210> 12		
<211> 30		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 12	ggcggatcct tttgaacttc atggtttgac	30
<210> 13		
<211> 26		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 13	cggctcgagg agaaccacaa acacgc	26
<210> 14		
<211> 27		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 14	cggaaactagt taattacctc aaggaag	27
<210> 15		
<211> 26		
<212> DNA		
<213> Artificial sequence: probe or primer		
<400> 15	gatcccgggc gatatcagcg tcatacg	26

<210> 16	
<211> 25	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 16	
gatcccggtt tagtctgtta actcc	25
<210> 17	
<211> 24	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 17	
gcagctacgg agccggagaa ttgt	24
<210> 18	
<211> 27	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 18	
tctccttctc gaaatcgaaa ttgtact	27
<210> 19	
<211> 26	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 19	
cggctcgagg agaaccacaa acacgc	26
<210> 20	
<211> 27	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 20	
cggaaactagt taattacctc aaggaag	27
<210> 21	
<211> 26	
<212> DNA	
<213> Artificial sequence: probe or primer	
<400> 21	
gatcccggtt gatatcagcg tcatgg	26

<210> 22
<211> 25
<212> DNA
<213> Artificial sequence: probe or primer

<400> 22
gatcccggt tagtctgtta actcc 25

<210> 23
<211> 69
<212> DNA
<213> Artificial sequence: probe or primer

<400> 23
cccgctcgag atggtgagaa aatatagaaa agctaaagga tttgtagaag ctggagttc 60
gtcaacgta 69

<210> 24
<211> 30
<212> DNA
<213> Artificial sequence: probe or primer

<400> 24
ggacttagttc actctaactt tacccattcg 30

<210> 25
<211> 32
<212> DNA
<213> Artificial sequence: probe or primer

<400> 25
gatcatctta agcatcatcg tcttcttcat gg 32

<210> 26
<211> 19
<212> DNA
<213> Artificial sequence: probe or primer

<400> 26
taggagcata tggcggcgg 19

<210> 27
<211> 20
<212> DNA
<213> Artificial sequence: probe or primer

<400> 27
atatcagcgc catggaagtc 20

<210> 28
<211> 27

<212> DNA
<213> Artificial sequence: probe or primer

<400> 28
ggagctggat ccttttggaa ttcatgg

27

<210> 29
<211> 19
<212> DNA
<213> Artificial sequence: probe or primer

<400> 29
taggaggcata tggcgccgg

19

<210> 30
<211> 23
<212> DNA
<213> Artificial sequence: probe or primer

<400> 30
atcatcaaat tcttcatgga ttc

23

<210> 31
<211> 20
<212> DNA
<213> Artificial sequence: probe or primer

<400> 31
atatcagcgc catggaagtc

20

<210> 32
<211> 27
<212> DNA
<213> Artificial sequence: probe or primer

<400> 32
ggagctggat ccttttggaa ttcatgg

27

<210> 33
<211> 11
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at position 5 may be Asp or Glu
<220>
<221> misc_feature
<223> Xaa at any of positions 6, 7 or 8 may be any amino acid

<400> 33

Val Arg Arg Arg Xaa Xaa Xaa Xaa Val Glu Glu
1 5 10

<210> 34
<211> 8
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at positions 2 and 3 may be any amino acid

<400> 34
Phe Xaa Xaa Lys Tyr Asn Phe Asp
1 5

<210> 35
<211> 8
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at position 1 may be Pro or Leu
<220>
<221> misc_feature
<223> Xaa at position 3 may be any amino acid

<400> 35
Xaa Leu Xaa Gly Arg Tyr Glu Trp
1 5

<210> 36
<211> 10
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at any of positions 2, 7, 8 or 9 may be any amino acid
<220>
<221> misc_feature
<223> Xaa at position 4 may be Asp or Glu

<400> 36
Glu Xaa Glu Xaa Phe Phe Xaa Xaa Xaa Glu
1 5 10

<210> 37
<211> 8
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at position 2 may be any amino acid

<400> 37
Tyr Xaa Gln Leu Arg Ser Arg Arg
1 5

<210> 38
<211> 9
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at position 5 may be Met or Ile
<220>
<221> misc_feature
<223> Xaa at positions 6 and 9 may be Lys or Arg
<220>
<221> misc_feature
<223> Xaa at position 8 may be any amino acid

<400> 38
Met Gly Lys Tyr Xaa Xaa Lys Xaa Xaa
1 5

<210> 39
<211> 8
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<223> Xaa at position 2 may be any amino acid

<400> 39
Ser Xaa Gly Val Arg Thr Arg Ala
1 5

<210> 40
<211> 222
<212> PRT
<213> Arabidopsis thaliana

<400> 40
Met Gly Lys Tyr Met Lys Lys Ser Lys Ile Thr Gly Asp Ile Ser Val
1 5 10 15
Met Glu Val Ser Lys Ala Thr Ala Pro Ser Pro Gly Val Arg Thr Arg
20 25 30
Ala Ala Lys Thr Leu Ala Leu Lys Arg Leu Asn Ser Ser Ala Ala Asp
35 40 45
Ser Ala Leu Pro Asn Asp Ser Ser Cys Tyr Leu Gln Leu Arg Ser Arg
50 55 60

Arg Leu Glu Lys Pro Ser Ser Leu Ile Glu Pro Lys Gln Pro Pro Arg
65 70 75 80
Val His Arg Ser Gly Ile Lys Glu Ser Gly Ser Arg Ser Arg Val Asp
85 90 95
Ser Val Asn Ser Val Pro Val Ala Gln Ser Ser Asn Glu Asp Glu Cys
100 105 110
Phe Asp Asn Phe Val Ser Val Gln Val Ser Cys Gly Glu Asn Ser Leu
115 120 125
Gly Phe Glu Ser Arg His Ser Thr Arg Glu Ser Thr Pro Cys Asn Phe
130 135 140
Val Glu Asp Met Glu Ile Met Val Thr Pro Gly Ser Ser Thr Arg Ser
145 150 155 160
Met Cys Arg Ala Thr Lys Glu Tyr Thr Arg Glu Gln Asp Asn Val Ile
165 170 175
Pro Thr Thr Ser Glu Met Glu Glu Phe Phe Ala Tyr Ala Glu Gln Gln
180 185 190
Gln Gln Arg Leu Phe Met Glu Lys Tyr Asn Phe Asp Ile Val Asn Asp
195 200 205
Ile Pro Leu Ser Gly Arg Tyr Glu Trp Val Gln Val Lys Pro
210 215 220

<210> 41
<211> 327
<212> PRT
<213> Arabidopsis thaliana

<400> 41
Met Gly Lys Tyr Ile Arg Lys Ser Lys Ile Asp Gly Ala Gly Ala Gly
1 5 10 15
Ala Gly Gly Gly Gly Gly Gly Gly Gly Glu Ser Ser Ile Ala
20 25 30
Leu Met Asp Val Val Ser Pro Ser Ser Ser Ser Ser Leu Gly Val Leu
35 40 45
Thr Arg Ala Lys Ser Leu Ala Leu Gln Gln Gln Gln Arg Cys Leu
50 55 60
Leu Gln Lys Pro Ser Ser Pro Ser Ser Leu Pro Pro Thr Ser Ala Ser
65 70 75 80
Pro Asn Pro Pro Ser Lys Gln Lys Met Lys Lys Gln Gln Gln Met
85 90 95
Asn Asp Cys Gly Ser Tyr Leu Gln Leu Arg Ser Arg Arg Leu Gln Lys
100 105 110
Lys Pro Pro Ile Val Val Ile Arg Ser Thr Lys Arg Arg Lys Gln Gln
115 120 125
Arg Arg Asn Glu Thr Cys Gly Arg Asn Pro Asn Pro Arg Ser Asn Leu
130 135 140
Asp Ser Ile Arg Gly Asp Gly Ser Arg Ser Asp Ser Val Ser Glu Ser
145 150 155 160
Val Val Phe Gly Lys Asp Lys Asp Leu Ile Ser Glu Ile Asn Lys Asp
165 170 175
Pro Thr Phe Gly Gln Asn Phe Phe Asp Leu Glu Glu His Thr Gln
180 185 190
Ser Phe Asn Arg Thr Thr Arg Glu Ser Thr Pro Cys Ser Leu Ile Arg
195 200 205
Arg Pro Glu Ile Met Thr Thr Pro Gly Ser Ser Thr Lys Leu Asn Ile
210 215 220

Cys Val Ser Glu Ser Asn Gln Arg Glu Asp Ser Leu Ser Arg Ser His
225 230 235 240
Arg Arg Arg Pro Thr Thr Pro Glu Met Asp Glu Phe Phe Ser Gly Ala
245 250 255
Glu Glu Glu Gln Gln Lys Gln Phe Ile Glu Lys Tyr Val Phe Pro Arg
260 265 270
Phe Ile Cys Ser Val Leu Leu Val Met Ser Phe Gln Phe Val Leu Phe
275 280 285
Phe Ser Phe Gly Leu Val Ser Leu Met Val Ser Val Asn Ser Phe Phe
290 295 300
Arg Tyr Asn Phe Asp Pro Val Asn Glu Gln Pro Leu Pro Gly Arg Phe
305 310 315 320
Glu Trp Thr Lys Val Asp Asp
325

<210> 42
<211> 22
<212> DNA
<213> Artificial sequence: probe or primer

<400> 42
agaccatggc ggccgttagg ag 22

<210> 43
<211> 12
<212> PRT
<213> Tag.100 epitope

<400> 43
Glu Glu Thr Ala Arg Phe Gln Pro Gly Tyr Arg Ser
1 5 10

<210> 44
<211> 10
<212> PRT
<213> c-myc epitope

<400> 44
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
1 5 10

<210> 45
<211> 7
<212> PRT
<213> FLAG-epitope

<400> 45
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 46
<211> 9

<212> PRT

<213> HA-epitope

<400> 46

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 47

<211> 12

<212> PRT

<213> protein C epitope

<400> 47

Glu Asp Gln Val Asp Pro Arg Leu Ile Asp Gly Lys
1 5 10

<210> 48

<211> 11

<212> PRT

<213> VSV epitope

<400> 48

Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly Lys
1 5 10