Lesson 12: Functions and Relations

CC attribute: College Algebra by C. Stitz and J. Zeager.

Objective: Define a relation and a function; determine if a relation is a function.

Students will be able to:

- Apply the Vertical Line Test to a graph to determine whether a relation represents a function.
- Determine whether a relation given as either a set, an equation, or a table of points represents a function.

Prerequisite Knowledge:

- Graph a set or table of points on the coordinate plane.
- Isolate a variable in an equation.

Lesson:

A relation R is a set of points in the xy-plane. A relation in which each x-coordinate is paired with exactly one y-coordinate is said to describe y as a **function** of x. Relations which represent functions of x will often be denoted by f, or f(x), rather than R. The set of all x-coordinates of the points in a function f is called the **domain** of f, and the set of all y-coordinates of the points in f is called the **range** of f.

One major test that is used to determine whether or not a graph of a relation represents y as a function of x is known as the Vertical Line Test. We will now state the Vertical Line Test as a mathematical theorem and then demonstrate its use.

Vertical Line Test: A set of points in the xy-plane represents y as a function of x if and only if no two points lie on the same vertical line.

Alternatively stated, if a graph is known to represent y as a function of x, then there can be no vertical line that intersects the graph in more than one point. Conversely, if a known graph has the property that no vertical line intersects it in more than one point, then the given graph represents y as a function of x.

When we are presented with an equation, instead of a graph, we can still determine whether or not the equation for our relation represents y as a function of x by solving the equation for y and carefully considering the result. When solving for y, the existence of the \pm in our solution will cause our corresponding graph to fail the VLT.

I - Motivating Example(s):

Example: Use the Vertical Line Test to determine whether each of the following graphs represent y as a function of x.

Graph (a) above fails the VLT, since any vertical line drawn in the right half-plane (where x > 0) intersects the relation at two points. Graph (b) passes the VLT, since no vertical line intersects the graph at more than one point.

Example: Determine whether the following equation represents y as a function of x.

$$x^2 + y^2 = 9$$

Solve the equation for y.

$$x^{2} + y^{2} = 9$$
 Solve for y

$$-x^{2}$$
 Subtract x^{2}

$$y^{2} = 9 - x^{2}$$
 Introduce a square root include a \pm on right side $y = \pm \sqrt{9 - x^{2}}$ $y = 0$ is not a function of x

Due to the \pm , we can conclude that the equation does *not* represent y as a function of x.

II - Demo/Discussion Problems:

Determine whether each of the following relations represent y as a function of x. Use Desmos to sketch a graph of each relation.

- 1. $\{(1,1), (2,-3), (2,0), (0,3), (-2,1/2)\}$ 4. $x = y^2$ 2. $\{(x,y) \mid x > 3 \text{ and } y \le 2\}$ 5. $y = x^2$

3. $x^2 = 1 - y^2$

6. y = 3 - 2x

III - Practice Problems:

Determine if the following relations represent y as a function of x by making a table of values and graphing. Explain your reasoning. Use Desmos to confirm your results.

1. $x = y^3$

3. xy = 1

5. $x = (y-3)^2$

2. y = x

- 4. $y = (x-3)^2$
- 6. y < 2x 5

Circle the letter of each graph/table below that represents y as a function of x.

 \mathbf{E}

x	y
3	-3
2	-2
1	-1
0	0
1	1
2	2
3	3

F

\boldsymbol{x}	y
-3	3
-2	2
-1	1
0	0
1	1
2	2
3	3

G

$$\begin{array}{c|cccc} x & y \\ \hline -3 & 0 \\ -2 & 0 \\ -1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ \end{array}$$

Н

x	y
3	8
2	4
1	2
0	1
-1	1/2
-2	1/4
-3	1/8