Recall: Eigenproblem for 2×2 Linear Systems of ODEs

$$\frac{\mathsf{d}}{\mathsf{d}t}\vec{x} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \vec{x}$$

$$\det\left(\left[\begin{array}{cc} a-\lambda & b \\ c & d-\lambda \end{array}\right]\right) = 0 \quad \Leftrightarrow \quad \lambda^2 - (a+d)\lambda + ad - bc = 0$$

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2}$$

Three possibilites:

- 1. 2 distinct real eigenvalues/vectors ✓
- 2. A complex conjugate pair of eigenvalues/vectors ✓
- 3. One eigenvalue is repeated, only one eigenvector (To Do)

ex: Find the general solution to
$$\frac{d}{dt}\vec{x} = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \vec{x}$$

$$\det \begin{bmatrix} 1-\lambda & -1 \\ 1 & 3-\lambda \end{bmatrix} = \lambda^2 - 4\lambda + 4 = 0$$
$$(\lambda - 2)^2 = 0$$

 $\lambda = 2 \qquad \mbox{repeated eigenvalue}$ We can find one fundamental solution from the eigenvector \vec{v}

$$(\mathbf{A} - 2\mathbf{I})\vec{v} = \vec{0}$$

Augmented matrix:
$$\begin{bmatrix} -1 & -1 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix}$$

$$v_1+v_2=0$$

so
$$\vec{x}_1(t) = e^{2t} \left[egin{array}{c} 1 \\ -1 \end{array}
ight]$$

$$\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\rightarrow \quad \left[\begin{array}{cc|c} 0 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

$$ec{\mathsf{v}} = \left[egin{array}{c} 1 \ -1 \end{array}
ight]$$

Guess
$$\vec{x}_2(t) = (\vec{w} + t\vec{u}) e^{\lambda t}$$
, where \vec{w} and \vec{u} are constant vectors

Plug guess into ODE:

ODE:
$$\frac{d}{dt}\vec{x}_2 = \mathbf{A}\vec{x}_2$$
$$\frac{d}{dt}\vec{x}_2 = \lambda \vec{w}e^{\lambda t} + \vec{u}e^{\lambda t} + \lambda \vec{u}te^{\lambda t}$$
ODE:
$$\lambda \vec{w} + \vec{u} + \lambda \vec{u}t = \mathbf{A}\vec{w} + t\mathbf{A}\vec{u}$$

group by powers of t

$$\underline{t^1}$$
: $\mathbf{A}\vec{u} = \lambda\vec{u}$ \Rightarrow $\vec{u} =$ the eigenvector

$$\underline{t^0}: \quad \mathbf{A}\vec{w} = 2\vec{w} + \vec{u}$$

 $(\mathbf{A} - \lambda \mathbf{I})\vec{w} = \vec{u} \quad \Rightarrow \quad \vec{w} = \text{a generalized eigenvector}$

ex: Find the general solution to
$$\frac{d}{dt}\vec{x} = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \vec{x}$$

We have
$$ec{x}_1(t) = \mathrm{e}^{2t} \left[egin{array}{c} 1 \\ -1 \end{array}
ight]$$
 and $ec{x}_2(t) = \left(ec{w} + t \left[egin{array}{c} 1 \\ -1 \end{array}
ight]
ight)$

We know

$$(\mathbf{A} - 2\mathbf{I})\vec{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \text{Aug. Matrix: } \begin{bmatrix} -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} -1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \Rightarrow -w_1 - w_2 = 1$$

$$w_2 = -1 - w_1$$

$$\vec{x}_2(t) = e^{2t} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) \qquad \vec{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\vec{x} = c_1 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{2t} \left(\begin{bmatrix} 1 \\ -2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right)$$

Note: Repeated Eigenvalues

The diagonal matrix

$$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

has a repeated eigenvalue $\lambda = a$, with two eigenvectors

$$\vec{v}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{and} \quad \vec{v}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right].$$

Generally, if the char. poly has a factor

$$(\lambda - a)^m = 0$$

then the eigenvalue has algebraic multiplicity m.

If we can find k eignevectors, the geometric multiplicity of λ is k.

Note: Defective Eigenvalues

Generally, if the char. poly has a factor

$$(\lambda - a)^m = 0$$

then the eigenvalue has algebraic multiplicity m.

If we can find k eignevectors, the geometric multiplicity of λ is k.

We say an eigenvalue
$$\lambda$$
 is defective if $k < m$. $\underline{\text{ex}}$: $\lambda = 2$ for $\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$

We can find m - k generalized eigenvectors recursively by solving

$$(\mathbf{A} - \lambda I)\vec{w}_n = \vec{w}_{n-1}$$
 for $n = 1, \dots, m-k$

where \vec{w}_0 is the ordinary eigenvector for λ