16'h00_00	16'h 00_01	 	16'h 00_FE	16'h 00_FF
16'h 01_00	16'h 01_01	 	16'h 01_FE	16'h 01_FF
16'hFE_00	16'hFE_01	 	16'h FF_FE	16'h FE_FF
16'hFF_00	16'hFF_01	 	16'h FF_FE	16'h FF_FF

RAM_address(256*256)

How to control RAM_A:

- 1) Set a counter from 16'h0000 to 16'hFFFF
- 2) Choose a satisfying state to do (RAM_A + 16'h1)
- 3) When counting to 16'hFFFF, FSM should jump to FINAL state

14'b0000000_0000000	•••	14'b0000000_1111111
14'b1111111_0000000	•••	14'b1111111_1111111

ROM_address(128*128)

How to control ROM _A:

- 1) Derive from RAM_A directly
- 2) Combinational
- 3)Find the relationship between RAM_address and ROM_address

Hint: In RAM_address, the first 8 bits control Y-address, and the last 8 bits control X-address; in ROM_address the first 7 bits control Y-address, and the last 7 bits control X-address.