1. Write the series

$$\sum_{n=2}^{\infty} (n+2)(n+1)a_n(x-x_0)^{n-2}$$

as a series whose generic term involves $(x-x_0)^n$ rather than $(x-x_0)^{n-2}$

2. Determine the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n2^n}$$

3. Find a series solution of the equation

$$y(x)'' + y(x) = 0, \quad -\infty < x < \infty$$

Follow the steps to receive partial credit

1. Find
$$y'', y', y$$
 for the power series of the form $\sum_{n=0}^{\infty} a_n x^n$

2. Express the sum of the two power series as one

4. Find a power series solution for Airy's equation

$$y'' - xy = 0$$

5. Find a solution for Airy's equation in powers of
$$x-1$$

$$2x^2y'' + 3xy' - y = 0, \quad x > 0$$

7. Solve

$$x^2y'' + 5xy' + 4y = 0, \quad x > 0$$