Санкт-Петербургский политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе

Дисциплина: Телекоммуникационные технологии **Тема**: Сигналы телекоммуникационных. Преобразование Фурье. Корреляция систем

Выполнил студент гр. 33501/2 Преподаватель

Вахаев И.Н. Богач Н.В.

0 Содержание

1	Цел	ь работы	2
2	Пос	становка задачи	2
3	Teo	рия	2
	3.1	Сигналы	2
	3.2	Преобразования Фурье	3
	3.3	Свойства преобразования Фурье	4
	3.4	Корреляция сигналов	6
4	Ход	ц работы	6
	4.1	Моделирование синусоидального сигнала	6
		4.1.1 Получение непрерывного сигнала	6
		4.1.2 Получение дискретного сигнала	8
		4.1.3 Получение спектра дискретного сигнала	9
	4.2	Моделирование прямоугольного сигнала	11
		4.2.1 Получение дискретного сигнала	11
		4.2.2 Получение спектра дискретного сигнала	12
5	Kop	реляция	14
	5.1	Сравнение алгоритмов прямой и быстрой корреляции	14
6	Вы	воды	14

1 Цель работы

Познакомиться со средствами генерации и визуализации простых сигналов. Получить представление о спектрах теллекомуникационных сигналов.

2 Постановка задачи

- В командном окне MATLAB и в среде Simulink промоделировать синусоидальный и прямоугольный сигналы с различными параметрами. Получить их спектры. Вывести на график.
- Для сигналов, построенных в лабораторной работе №1, выполните расчет преобразования Фурье. Перечислите свойства преобразования Фурье.
- С помощью функции корреляции найдите позицию синхропосылки [101] в сигнале [0001010111000010]. Получите пакет данных, если известно, что его длина составляет 8 бит без учета синхропосылки. Вычислите корреляцию прямым методом, воспользуйтесь алгоритмом быстрой корреляции, сравните время работы обоих алгоритмов.
- Быстрая корреляция

3 Теория

3.1 Сигналы

Простой сигнал – это одиночный импульс или последовательность импульсов.

Все одиночные радиоимпульсы с произвольной формой огибающей, их последовательности, т.е. «пачки» радиоимпульсов, не имеющих глубокой фазовой или частотной модуляции (манипуляции), относятся к классу простых сигналов.

Классификация сигналов:

- 1. По физической природе носителя информации:
 - электрические
 - электромагнитные
 - оптические
 - акустические

- и другие
- 2. По способу задания сигнала:
 - регулярный/детерминированные, заданные аналитической функцией
 - нерегулярные/случайные, принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.
- 3. В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:
 - непрерывные (аналоговые), описываемые непрерывной функцией
 - дискретные, описываемые функцией отсчётов, взятых в определённые моменты времени;
 - квантованные по уровню;
 - дискретные сигналы, квантованные по уровню (цифровые).

3.2 Преобразования Фурье

Преобразования Фурье осуществляется с помощью ряда Фурье и с помощью интеграла Фурье, причём первый применяется когда функция периодическая, а второй когда она апериодична.

Любая ограниченная, периодическая функция, имеющая конечное число экстремумов на протяжении периода, может быть представлена в виде ряда Фурье:

$$\varphi_p(t) = \sum_{k=-\infty}^{\infty} C_k e^{j2\pi k f_1 t}$$
(3.1)

где $f_1 = 1/T_1; T_1$ - период функции $\varphi_p(t); C_k$ - постоянные коэффициенты. Коэффициенты находятся по следующей формуле:

$$C_k = \frac{1}{T_1} \int_{t_0}^{t_0 + T_1} \varphi_p(t) e^{-j\pi k f_1 t} dt$$
 (3.2)

Значение выражения не зависит от t_0 . Как правило, берется $t_0=0$ или $t_0=-T_1/2$.

Приведенные формулы можно записать в виде одного выражения:

$$\varphi_p(t) = \sum_{k=-\infty}^{\infty} \left[\frac{1}{T_1} \int_{t_0}^{t_0 + T_1} \varphi_p(t) e^{-j\pi k f_1 t} dt \right] e^{j2\pi k f_1 t}$$
(3.3)

Ряд Фурье справедлив для периодических сигналов, однако на его основе можно вывести соотношения и для непериодических сигналов. В этом случае период $T_1 \to \infty$, в связи с этим частота $f_1 \to 0$ и обозначается как df, kf_1 является текущим значением частоты f, а сумма меняется на интеграл. В результате получается выражение:

$$\varphi_p(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \varphi_p(t) e^{-j2\pi f t} dt \right] e^{j2\pi f t} df.$$
 (3.4)

Это выражение называется интегралом Фурье и объединяет прямое преобразование Фурье:

$$\Phi(f) = \int_{-\infty}^{\infty} \varphi_p(t)e^{-j2\pi ft}dt \tag{3.5}$$

с обратным преобразованием Фурье:

$$\varphi(t) = \int_{-\infty}^{\infty} \Phi(f)e^{j2\pi ft}dt. \tag{3.6}$$

Приведенные преобразования существуют только для функций с ограниченной энергией:

$$\int_{-\infty}^{\infty} |\varphi(t)|^2 dt \neq \infty \tag{3.7}$$

В большинстве случаев термин преобразование Фурье обозначает именно интеграл Фурье. Преобразование Фурье сигнала ещё называют спектром сигнала.

3.3 Свойства преобразования Фурье

Преобразование Фурье имеет следующие свойства:

• Смещение функций.

При смещении функции на t_0 ее Преобразование Фурье умножается на $e^{j2\pi ft_0}$

• Суммирование функций.

Преобразование Фурье – линейное преобразование. Отсюда следует:

$$\sum_{i=1}^{n} \alpha_i \varphi_i(t) \leftrightarrow \sum_{i=1}^{n} \alpha_i \Phi_i(f)$$
 (3.8)

где α_i постоянный коэффициент.

$$\varphi(t - t_0) \leftrightarrow e^{-j2\pi f t_0} \Phi(f).$$
 (3.9)

• Свертывание функций.

Преобразование Фурье свертки двух функций равно произведению Преобразований Фурье этих функций:

• Перемножение функций.

Преобразование Фурье произведения двух функции равно свертке Преобразований Фурье этих функций:

$$\varphi_1(t)\varphi_2(t) \leftrightarrow \Phi_1(f) * \Phi_2(f).$$
 (3.10)

• Изменение масштаба аргумента функции.

При домножении аргумента функции t на постоянный коэффициент α , Преобразование Фурье функции имеет вид $\frac{1}{|\alpha|}\Phi(\frac{f}{\alpha})$:

$$\varphi(\alpha t) \leftrightarrow \frac{1}{\alpha} \Phi\left(\frac{f}{\alpha}\right)$$
(3.11)

$$\varphi_1(t) * \varphi_2(t) \leftrightarrow \Phi_1(f)\Phi_2(f).$$
 (3.12)

• Обратимость преобразования.

Преобразование обратимо с точность до знака аргумента.

$$\varphi(t) \leftarrow \Phi(f) \tag{3.13}$$

$$\Phi(t) \leftrightarrow \varphi(-f), \Phi(-t) \leftrightarrow \varphi(f)$$
(3.14)

• Дифференцирование функции.

При дифференцировании функции ее $\Pi\Phi$ домножается на $j2\pi f$:

$$\frac{d[\varphi(t)]}{dt} \leftrightarrow j2\pi f\Phi(f) \tag{3.15}$$

• Интегрирование функции.

При интегрировании функции ее Преобразование Фурье делится на $j2\pi f$:

$$\int_{-\infty}^{t} \varphi(t')dt' \leftrightarrow \frac{1}{j2\pi f}\Phi(f) \tag{3.16}$$

3.4 Корреляция сигналов

Корреляция является методом анализа сигналов.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, когда большие значения одного сигнала связаны с большими значениями другого сигнала (положительная корреляция), или малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

Чтобы найти посылку в сигнале зачастую используется алгоритм взаимной корреляции, где N- длинна всех х и у. Для этого сдвигается один вектор относительно другого, при этом каждый раз находя значение корреляции. Там, где значение корреляции будет максимальным, будет находиться искомая посылка:

$$R = \frac{1}{N} \sum_{i=1}^{N} x_i * y_i \tag{3.17}$$

Алгоритм быстрой корреляции выглядит следующим образом:

$$R = \frac{1}{N} F_d^{-1} [X's * Y] \tag{3.18}$$

4 Ход работы

4.1 Моделирование синусоидального сигнала

4.1.1 Получение непрерывного сигнала

После открытия Matlab запускаем Simulink, иконку которого можно увидеть на верхней панели стартового окна

Рис. 4.1: Выбор ячейки Simulink.

Был выбран шаблон Blank Model для начала необходимой работы в Simulink

Рис. 4.2: Выбор шаблона в начальном окне Simulink.

Затем была открыта вкладка Library Browser, в которой мы нашли следующие элементы: Sine Wave, Scope.

Рис. 4.3: Поиск необходимых элементов в библиотеке.

Получили следующую схему:

Рис. 4.4: Схема, необходимая для симуляции синусоидального сигнала.

В дальнейшем нам понадобится добавить ещё один элемент - Spectrum Analyzer.

Назначение элементов:

- Sine Wave для задания синусоидального сигнал с амплитудой 1 и частотой 1 rad/sec
- Scope для принятия и визуализации полученного сигнала
- Spectrum Analyzer для получения спектра сигнала

После запуска симуляции получим синусоидальный сигнал в окне Scope:

Рис. 4.5: Синусоидальный сигнал.

4.1.2 Получение дискретного сигнала

Чтобы получить из непрерывного сигнала дискретный, нам необходимо изменить для элемента Sine Wave параметр $Sine\ type\ c\ Time\ based$ на $Sample\ based$. Установим $Samples\ per\ period$ на 250π , а $Sample\ time$ на 0.01.

Рис. 4.6: Параметры синусоидального сигнала.

После запуска симуляции мы получим необходимый нам синусоидальный дискретный сигнал

Рис. 4.7: Дискретный синусоидальный сигнал.

4.1.3 Получение спектра дискретного сигнала

Для получения спектра дискретного сигнала добавим на схему элемент Spectrum Analyzer.

Рис. 4.8: Схема для получения спектра.

Также для получения спектра дискретного сигнала установим $Sample\ time$ на 0.01 и $Simulation\ stop\ time$ на 20.

Запустив симуляцию, получим следующий результат:

Рис. 4.9: Спектрального представление синусоидального дискретного сигнала.

Изменим амплитуду входного сигнала с 1 до 10. Снова промодулируем сигнал.

Рис. 4.10: Спектрального представление синусоидального дискретного сигнала.

Изменим $Samples\ per\ period$ на значение 50π

Рис. 4.11: Спектрального представление синусоидального дискретного сигнала.

На рисунках 4.9, 4.10, 4.11 показано, что при изменение периода обратно пропорционально изменяется частота спектра, а при изменение амплитуды сигнала линейно изменяется амплитуда спектра.

4.2 Моделирование прямоугольного сигнала

4.2.1 Получение дискретного сигнала

На рисунке 4.12 представлена схема для исследования прямоугольного дискретного сигнала.

Рис. 4.12: Схема для исследования прямоугольного дискретного сигнала.

На рисунке ?? заданы параметры для Pulse Generator.

Рис. 4.13: Схема для исследования прямоугольного дискретного сигнала.

После моделирования на рисунке 4.7 были получены результаты (окно Scope).

Рис. 4.14: Схема для исследования прямоугольного дискретного сигнала.

В окне симуляции видим смоделированный прямоугольный сигнал.

4.2.2 Получение спектра дискретного сигнала

На рисунке 4.12 изображена схема, предназначенная для получения спектра дискретного сигнала.

Результаты симуляции изображены на рисунке 4.15.

Рис. 4.15: Схема для исследования прямоугольного дискретного сигнала.

Необходимо изменить параметры сигнала, чтобы узнать как будет изменяться спектр.

Изменим период сигнала с 50 на 30.

Рис. 4.16: Схема для исследования прямоугольного дискретного сигнала.

Изменим длину импульса с 25 на 5.

Рис. 4.17: Схема для исследования прямоугольного дискретного сигнала.

Были получены спектры дискретных прямоугольных сигналов с различными параметрами.

5 Корреляция

5.1 Сравнение алгоритмов прямой и быстрой корреляции

В приведённом ниже коде сравниваются алгоритмы прямой и быстрой корреляции. Необходимо найти синхропосылку [101] в сигнале [0001010111000010].

```
 \begin{array}{l} x = \ [0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0]; \\ y = \ [1\ 0\ 1]; \\ tic \\ for \ i = 1:length(xx) \\ R(i) = sum(xx\ .*\ circshift(yy,\ i-1,\ 2))\ /\ length(xx); \\ end \\ toc \\ tic \\ xx = \ fft(xx); \\ yy = \ fft(yy); \\ xx = \ conj(xx); \\ BR = \ ifft(xx\ .*\ yy)/length(xx); \\ toc \end{array}
```

Рис. 5.1: Код алгоритмов прямой и быстрой корреляции в MatLab.

Из результатов работы программы выяснили, что посылка в сигнале находится дважды. Это показали оба алгоритма.

Время выполнения прямой и быстрой корреляции 0.272ms и 0.103ms соответственно. Алгоритм быстрой корреляции нашёл посылки в сигнале значительно быстрее, чем в алгоритме прямой корреляции.

6 Выводы

Сигналы используются для передачи информации. Они бывают дискретные и непрерывные, периодические и непериодические, конечные и бесконечные. Дискретный сигнал имеет периодический спектр, периодический сигнал имеет дискретный спектр, а сигнал, который ограничен во времени имеет бесконечный спектр. В ходе работы была проведено моделирование различных непрерывных и дискретных сигналов, для дискретных был получен спектр сигнала. Сигналы были смоделированы при помощи средств среды Simulink.

Корреляционный анализ дает возможность установить в сигналах наличие связи. Методы корреляции применяются при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов. Преобразования Фурье в телекоммуникационных технологиях применяются для обработки изображений и звука, для модуляции и демодуляции данных при фильтрации сигналов и передаче по различным каналам связи.