CS 584-04: Machine Learning

Fall 2019 Assignment 1

Question 1 (40 points)

Write a Python program to calculate the density estimator of a histogram. Use the field x in the NormalSample.csv file.

a) (5 points) According to Izenman (1991) method, what is the recommended bin-width for the histogram of x?

Aa) 0.3998667554864774

b) (5 points) What are the minimum and the maximum values of the field x?

Ab) Minimum(x)=26.3 and Maximum(x)=35.4

c) (5 points) Let a be the largest integer less than the minimum value of the field x, and b be the smallest integer greater than the maximum value of the field x. What are the values of a and b?

Ac) a=26 and b=36

d) (5 points) Use h = 0.1, minimum = a and maximum = b. List the coordinates of the density estimator. Paste the histogram drawn using Python or your favorite graphing tools.

Ad)

m	p(m)
26.05	0
26.15	0
26.25	0.00999 001
	0.00999
26.35	001
26.45	0
26.55	0
26.65	0
26.75	0
26.85	0

0	26.95
0	27.05
0.00999 001	27.15
0.00999	
001	27.25
0	27.35
0	27.45
0	27.55
0.01998	
002	27.65
0.01998	
002	27.75

	0.02997
27.85	003
	0.03996
27.95	004
	0.01998
28.05	002
	0.05994
28.15	006
	0.07992
28.25	800
	0.04995
28.35	005
	0.05994
28.45	006

	0.07992			0.36963		0.53946
	008	30		037		054
	0.08991			0.42957		0.33966
28.65	009	30	.35	043	32.05	034
	0.12987			0.51948		0.31968
28.75	013	30	.45	052	32.15	032
	0.12987			0.42957		0.50949
	0.12307			043	32.25	0.50545
	0.09990			0.45954		0.18981
28.95	01	30	.65	046	32.35	019
	0.08991			0.46953		0.27972
29.05	009	30	.75	047	32.45	028
	0.14985			0.39960		0.27972
	0.14985			0.39960		0.27972
29.15	013	30	.65	04	32.33	020
	0.25974			0.36963		0.29970
29.25	026	30	.95	037	32.65	03
	0.22977			0.32967		0.51948
29.35	023			033		052
						0.04070
	0.21978			0.43956	22.05	0.21978
29.45	022	31	.15	044	32.85	022
	0.32967			0.48951		0.18981
29.55	033	31	.25	049	32.95	019
	0.27972			0.48951		0.18981
	0.27372			049		019
					55.55	
	0.18981			0.61938		0.12987
29.75	019	31	.45	062	33.15	013
	0.30969			0.59940		0.28971
29.85	031	31	.55	06	33.25	029
	0.20002			0.50040		0.45004
30.05	0.36963	21	C.E.	0.59940	22.25	0.15984
29.95	037	31	.65	06	33.35	016
	0.30969			0.60939		0.10989
30.05	031	31	.75	061	33.45	011
	0.36963			0.46953		0.10989
30.15	0.30303	31		0.40333	33.55	
30.23					30.03	

	0.06993
33.65	007
	0.12987
33.75	013
	0.05994
33.85	006
	0.02997
33.95	003
	0.02997
34.05	003
	0.04995
34.15	005
	0.07992
34.25	800

	0.02997
34.35	003
	0.04000
	0.01998
34.45	002
	0.01998
34.55	002
34.33	002
	0.00999
34.65	001
	0.04000
	0.01998
34.75	002
	0.00999
34.85	001
34.83	001
34.95	0
35.05	0
33.03	U

0	35.15
0.00999	
001	35.25
0.00999	
001	35.35
0	35.45
0	35.55
0	35.65
0	35.75
0	35.85
0	35.95

e) (5 points) Use h = 0.5, minimum = a and maximum = b. List the coordinates of the density estimator. Paste the histogram drawn using Python or your favorite graphing tools.

Ae)

m	p(m)
	0.00199
26.25	8
26.75	0
	0.00199
27.25	8
	0.01198
27.75	801
	0.03196
28.25	803
	0.06193
28.75	806
	0.11388
29.25	611

	0.17782
29.75	218
	0.23976
30.25	024
	0.25374
30.75	625
	0.28771
31.25	229
	0.34965
31.75	0.54505
31./3	033
	0.32367
32.25	632
	0.27572
32.75	428

	0.15784
33.25	216
	0.07992
	0.07992
33.75	800
	0.03596
34.25	404
	0.01398
34.75	601
	0.00399
35.25	6
35.75	0

Page 4

f) (5 points) Use h = 1, minimum = a and maximum = b. List the coordinates of the density estimator. Paste the histogram drawn using Python or your favorite graphing tools.

Af)

m	p(m)
26.5	0.000999
27.5	0.00699301
28.5	0.04295704
29.5	0.13186813
30.5	0.22277722
31.5	0.28471528
32.5	0.27172827
33.5	0.10789211
34.5	0.02297702
35.5	0.001998

g) (5 points) Use h = 2, minimum = a and maximum = b. List the coordinates of the density estimator. Paste the histogram drawn using Python or your favorite graphing tools.

Ag)

m	p(m)
27	0.003996
29	0.08491508
31	0.24525475
33	0.18031968
35	0.01248751

h) (5 points) Among the four histograms, which one, in your honest opinions, can best provide your insights into the shape and the spread of the distribution of the field x? Please state your arguments.

Ah) I feel that the histogram with the bin-width of 0.5 can provide better insight to the data distribution compared to the others. It doesn't have too many information unlike h=0.1, which has too many data points and is difficult to form ideas from the graph, while h=0.5 gives a simpler view, but not too simple like the h=1 and h=2, so that some sort of assessment can be done from the graph.

Question 2 (20 points)

Use in the NormalSample.csv to generate box-plots for answering the following questions.

a) (5 points) What is the five-number summary of x? What are the values of the 1.5 IQR whiskers?

Aa) median: 31.5

Min: 26.3

Max: 35.4

A: 26

B: 36

q1: 30.4

q2: 32.4

IQR 2.0

W1 27.4

W2 35.4

b) (5 points) What is the five-number summary of x for each category of the group? What are the values of the 1.5 IQR whiskers for each category of the group?

Ab)

N:686	N: 315
-------	--------

Median: 30.0

Min: 29.1 Min: 26.3

Max: 35.4 Max: 32.2

A: 29 A: 26

B: 36 B: 33

q1: 31.4 q1: 29.4

q2: 32.7 q2: 30.6

IQR 1.300000000000043 IQR: 1.20000000000028

W2 34.65000000000006 W2: 32.4000000000000

c) (5 points) Draw a boxplot of x (without the group) using the Python boxplot function. Can you tell if the Python's boxplot has displayed the 1.5 IQR whiskers correctly?

Ac)

Yes, it can be clearly seen that there two outliers, i.e, 26.3, and 27.2.

d) (5 points) Draw a graph where it contains the boxplot of x, the boxplot of x for each category of Group (i.e., three boxplots within the same graph frame). Use the 1.5 IQR whiskers, identify the outliers of x, if any, for the entire data and for each category of the group.

Hint: Consider using the CONCAT function in the PANDA module to append observations.

Ad) The outliers of X are: (26.3, 27.2)

The outliers for X_1 are: (29.1, 29.3, 29.3) and (35.3, 35.4, 34.9, 34.7, 34.8)

The outliers for X_0 are: 27.2, 26.3)

Question 3 (40 points)

The data, FRAUD.csv, contains results of fraud investigations of 5,960 cases. The binary variable FRAUD indicates the result of a fraud investigation: 1 = Fraudulent, 0 = Otherwise. The other interval variables contain information about the cases.

- 1. TOTAL SPEND: Total amount of claims in dollars
- 2. DOCTOR_VISITS: Number of visits to a doctor
- 3. NUM CLAIMS: Number of claims made recently
- 4. MEMBER DURATION: Membership duration in number of months
- 5. OPTOM_PRESC: Number of optical examinations
- 6. NUM_MEMBERS: Number of members covered

You are asked to use the Nearest Neighbors algorithm to predict the likelihood of fraud.

a) (5 points) What percent of investigations are found to be fraudulent? Please give your answer up to 4 decimal places.

Aa) Fraudulent percentage: 19.9497%

b) (5 points) Use the BOXPLOT function to produce horizontal box-plots. For each interval variable, one box-plot for the fraudulent observations, and another box-plot for the non-fraudulent observations. These two box-plots must appear in the same graph for each interval variable.

Ab)

- c) (10 points) Orthonormalize interval variables and use the resulting variables for the nearest neighbor analysis. Use only the dimensions whose corresponding eigenvalues are greater than one.
 - i. (5 points) How many dimensions are used?
 - ii. (5 points) Please provide the transformation matrix? You must provide proof that the resulting variables are actually orthonormal.

Ac) i. 6 dimensions

ii. Transformation Matrix

[[-6.49862374e-08 0.00000000e+00 0.00000000e+00 -0.00000000e+00 0.00000000e+00 -0.00000000e+00]
[0.00000000e+00 -2.94741983e-04 0.00000000e+00 0.00000000e+00 -0.00000000e+00 -0.00000000e+00]
[-0.00000000e+00 0.00000000e+00 -7.68683456e-04 0.00000000e+00 -0.00000000e+00 -0.00000000e+00]
[0.00000000e+00 -0.00000000e+00 0.00000000e+00 5.78327741e-05 -0.00000000e+00 -0.00000000e+00]
[0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -2.39238772e-07 -0.00000000e+00]
[0.00000000e+00 0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00]

If, the transpose of the Transformed_matrix multiplied by the transformed matrix gives an Identity matrix then the matrix is orthonormal.

i.e,

IMat = trans m.transpose().dot(trans m)

IMat = Transpose(Transformed_matrix)*Transformed_matrix:

IMat =

- d) (10 points) Use the NearestNeighbors module to execute the Nearest Neighbors algorithm using exactly <u>five</u> neighbors and the resulting variables you have chosen in c). The KNeighborsClassifier module has a score function.
 - i. (5 points) Run the score function, provide the function return value
 - ii. (5 points) Explain the meaning of the score function return value.

Ad) i: 0.8825503355704698

Ii: The score gives the accuracy of the predicted data.

- e) (5 points) For the observation which has these input variable values: TOTAL_SPEND = 7500, DOCTOR_VISITS = 15, NUM_CLAIMS = 3, MEMBER_DURATION = 127, OPTOM_PRESC = 2, and NUM_MEMBERS = 2, find its **five** neighbors. Please list their input variable values and the target values. Reminder: transform the input observation using the results in c) before finding the neighbors.
- Ae) The neighbors are: [[588 1199 2264 1246 3809]]

The distances are:

[[1.64636127e-10 3.78641748e-04 5.36680515e-04 7.69632938e-04 8.81391774e-04]]

CASE_ID 589
FRAUD 1
TOTAL_SPEND 7500
DOCTOR_VISITS 15
NUM_CLAIMS 3
MEMBER_DURATION 127
OPTOM_PRESC 2
NUM_MEMBERS 2

1200 CASE_ID **FRAUD** 1 TOTAL_SPEND 10000 DOCTOR_VISITS 16 **NUM_CLAIMS** MEMBER_DURATION 124 **OPTOM PRESC** 2 **NUM_MEMBERS** 1 CASE_ID 2265 **FRAUD** 1 TOTAL_SPEND 13800 DOCTOR_VISITS **15** NUM_CLAIMS 3 MEMBER_DURATION 121 OPTOM_PRESC 1 **NUM_MEMBERS** 1 CASE_ID 1247 **FRAUD** 1 TOTAL_SPEND 10200 DOCTOR_VISITS 13 3 **NUM CLAIMS** MEMBER_DURATION 119 2 **OPTOM PRESC NUM_MEMBERS** 3 CASE_ID 3810 **FRAUD** 1 TOTAL_SPEND 20000 **DOCTOR VISITS** 16 NUM_CLAIMS 3 MEMBER_DURATION 124 0 OPTOM_PRESC

NUM_MEMBERS

f) (5 points) Follow-up with e), what is the predicted probability of fraudulent (i.e., FRAUD = 1)? If your predicted probability is greater than or equal to your answer in a), then the observation will be classified as fraudulent. Otherwise, non-fraudulent. Based on this criterion, will this observation be misclassified?

2

Af) The predicted probability is 100% and since it is greater than the fraudulent percentage i.e., 19.9497%, it will be classified as fraudulent. Based on this criterion, the observation is not misclassified.