REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-01-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for re

the data needed, and completing and reviewing the reducing this burden, to Washington Headquarters S Management and Budget, Paperwork Reduction Proj		f, 1215 Jeffe f	iffice of
AGENCY USE ONLY (Leave blank)	2. REPORT DATE May 7,2001	3. REPORT TYPE AND DATES COVERED Final, 3/15/98-3/14/01	
4. TITLE AND SUBTITLE The Growth of Nanostructu and Phenomelogical Theor	5. FUNDING NUMBERS F49620-98-1-0366		
6. AUTHOR(S) Dr. Horia Metiu			
7. PERFORMING ORGANIZATION NAME Department of Chemistry University of California Santa Barbara, CA 93106	8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY AFOSR/NL 110 Duncan Avenue, Room I Bolling AFB, DC 20332-805	10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STA Distribution unlimited, ap		AIR FÖRCE OFF CE OF SCIENTIFIC RESEARCH (AFOSR) NÖTICE OF TRATSMITTAL DTIC. THIS TECHNICAL REPORT HAS BEEN REVIE VED AND IS APPROVED FOR PUBLIC RELEASE LÄW AFR 190-12. DISTRIBUTION IS UNLIMITED.	
temperature. We have de	termined by simulations how isoled new methods to study how an	epitaxy changes after deposition, if we change lated islands on a solid surface move or shrink ensemble of islands evolves when heated or what understanding of basic phenomena taking plane.	hen
14. SUBJECT TERMS		15. NUMBER OF PAGES	
nano-structures, composit	e films, phenomenological theory	y.	

17. SECURITY CLASSIFICATION OF REPORT

UNCLASSIFIED

SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

16. PRICE CODE

Final Report, Grant F 49620-98-1-0366 "The Growth of Nanostructures and Composite Films on Solids: Simulations and Phenomenological Theory"

The resources provided by this grant were used for theoretical research in several areas. We performed simulations of a number of phenomena taking place in the early stages of film growth by epitaxy. We have provided a complete description of how the islands formed on the surface during deposition, move[3], evaporate[9], and change shape[4]. We developed a method to simulate coarsening of these islands on a very long time and space scale[5,7]. We proposed and documented by simulations[8,10] that nucleation and growth can be controlled by imposing a periodic strain on the substrate, which will lead to the formation of a periodic array of islands of equal size. To achieve this kind of control has been one of the main goals of nano-science. It has been observed that islands grown on a surface prefer a specific size. We have shown[1] that this may happen because the island size fits a natural length of the electronic wave-function.

In the second part of the grant's duration, we switched to studying various catalytic systems. We have shown that surface strain modifies very substantially the adsorption isotherm[11] and this may explain why ultrasound passing through a catalyst changes its activity. Our current work examines the electronic properties of the γ-alumina[13] (which is the support of choice in most catalysts). This is the first calculation on this very demanding system. We have also determined how Pd atoms migrate on γ-alumina surface[14]. The adsorption of a metal on the surface of another metal, can modify its properties and we looked[16] at how the capacity of adsorbing CO is modified when Fe, Cu, or Ni islands are adsorbed on Ag. We were prompted to do this by very elegant single-molecule experiments by Wilson Ho, whose conclusions are confirmed by our calculations. Finally, we developed a new method for deriving potential expressions from *ab initio* energy calculations[2], proposed a new numerical method for performing quantum dynamics[15], developed an algorithm for solving Maxwell equations and used it to examine how the electromagnetic field under an STM tip is enhanced[12], and wrote a review article of our work on rate theory in quantum systems.

References

 $\gamma_{k} = \gamma_{k} \cdot \gamma$

- 1. K-J. Jin, G. D. Mahan, H. Metiu, and Z. Zhang, Phys. Rev. Lett. 80, 1026-1027 (1998)
- 2. D. E. Makarov and H. Metiu, J. Chem. Phys. 108, 590-598 (1998)
- 3. A. Bogicevic, S. Liu, J. Jacobsen, B. Lundqvist, and H. Metiu, *Phys. Rev. B15 57*, R9459-R9462 (1998)
- 4. S. Liu and H. Metiu, Surface Sci. 405, L497-L502 (1998)
- H. Metiu, T. R. Mattsson, and G. Mills, in *Mechanisms and Principles of Epitaxial Growth in Metallic Systems*, L. T. Wille, C. P. Burmester, K. Terakura, and G. Comsa, eds.,
 Materials Research Society Proc. 528 (1998), pp. 133-143
- 6. H. Metiu, in Classical and Quantum Dynamics in Condensed Phase Simulations, B. J. Berne, G. Ciccoti, and D. F. Coker, Editors, World Scientific (1998), pp. 781-803
- 7. T. R. Mattsson, G. Mills, and H. Metiu, J. Chem. Phys. 110, 12 151-12 160 (1999)
- 8. T. R. Mattsson and H. Metiu, Appl. Phys. Lett. 75, 926-928 (1999)
- 9. G. Mills, T. R. Mattsson, L. Møllnitz, and H. Metiu, J. Chem. Phys. 111, 8639 (1999)
- 10. T. R. Mattsson and H. Metiu, J. Chem. Phys. 113, 10323-10332 (2000)
- 11. M. W. Wu and H. Metiu, J. Chem. Phys. 113, 1177-1183 (2000)
- 12. R. E. Larsen and H. Metiu, J. Chem. Phys., scheduled for March 22, 2001, issue
- Vacancy distributions in bulk and at the (001) surface of γ-alumina, A. Vijay, G. Mills and
 H. Metiu, in preparation
- The mobility of Pd atoms on the (001) surface of γ-alumina, A. Vijay, G. Mills and H.
 Metiu, in preparation
- 15. A new method for computing the time propagator, the Green function and the spectral density operators in quantum dynamics, in preparation
- CO adsorption on small Fe, Cu, and Ni islands supported on Ag(110), G. Mills and H.
 Metiu, in preparation