Тренировочная работа в формате ОГЭ по МАТЕМАТИКЕ

9 КЛАСС

Дат	а: 2023 г.
В	вариант №:
Выполнена: ФИО	

Инструкция по выполнению работы

Работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 7 и 13 запишите в виде одной цифры, которая соответствует номеру правильного ответа. Для остальных заданий части 1 ответом является число или последовательность цифр. Если получилась обыкновенная дробь, ответ запишите в виде десятичной. Решения заданий части 2 и ответы к ним запишите на отдельном листе бумаги. Задания можно выполнять в любом порядке. Текст задания переписывать не надо, необходимо только указать его номер. Сначала выполняйте задания части 1. Начать советуем с тех заданий, которые вызывают у вас меньше затруднений, затем переходите к другим заданиям. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если у вас останется время, вы сможете вернуться к пропущенным заданиям. При выполнении части 1 все необходимые вычисления, преобразования выполняйте в черновике. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Если задание содержит рисунок, то на нём непосредственно в тексте работы можно выполнять необходимые вам построения. Рекомендуем внимательно читать условие и проводить проверку полученного ответа. При выполнении работы вы можете воспользоваться справочными материалами, выданными вместе с вариантом КИМ, и линейкой. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. После завершения работы проверьте, чтобы ответ на каждое задание был записан под правильным номером.

Желаем успеха!

В треугольнике ABC угол C равен 90° , AB = 10, $BC = \sqrt{19}$. Найдите $\cos A$.

Ответ: 0.9

2 Впишите правильный ответ.

Даны векторы \overrightarrow{a} (25; 0) и \overrightarrow{b} (1; -5). Найдите длину вектора \overrightarrow{a} - 4 \overrightarrow{b} .

Ответ: 11`veca`(4-1

Выберите один или несколько правильных ответов. Какие три из перечисленных регионов России имеют наибольшую среднюю плотность населения? Запишите в таблицу цифры, под которыми указаны эти регионы. 1) Магаданская область 2) Ставропольский край 3) Мурманская область 4) Республика Татарстан 5) Ямало-Ненецкий автономный округ 6) Челябинская область

Ответ: :

4-5 Впишите правильный ответ.

На олимпиаде по математике 550 участников разместили в четырёх аудиториях. В первых трёх удалось разместить по 110 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Ответ: 0.4

6 Впишите правильный ответ.

Найдите корень уравнения $\left(\frac{1}{7}\right)^{x+4} = 49$.

Ответ: :

7 Впишите правильный ответ.

Найдите значение выражения $\frac{2 \sin 136^{\circ}}{\sin 68^{\circ} \cdot \sin 22^{\circ}}$

Ответ: 4

8 Впишите правильный ответ.

На рисунке изображён график функции y = f(x). На оси абсцисс отмечено девять точек: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$. Найдите количество отмеченных точек, в которых производная функции f(x) отрицательна.

Ответ: 4	4
----------	---

9 Впишите правильный ответ.

При адиабатическом процессе для идеального газа выполняется закон $pV^k=6,4\cdot 10^6~{\rm Ha\cdot m^5}$, где p — давление в газе в паскалях, V — объём

газа (в м³), $k = \frac{5}{3}$. Найдите, какой объём V (в м³) будет занимать газ при давлении p, равном $2 \cdot 10^5$ Па.

Ответ: 8

10 Впишите правильный ответ.

Призёрами городской олимпиады по математике стали 6 учеников, что составило 5% от числа участников. Сколько человек участвовало в олимпиаде?

Ответ: 120

11 Впишите правильный ответ.

На рисунке изображён график функции вида $f(x) = \log_a x$. Найдите значение f(8).

Ответ: -3

12 Впишите правильный ответ.

Найдите точку минимума функции $y = x^2 - 28x + 96 \cdot \ln x + 31$.

Ответ: 8

13 Дайте развернутый ответ.

а) Решите уравнение $\frac{9^{\sin 2x} - 3^{2\sqrt{2}\sin x}}{\sqrt{11 \sin x}} = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{7\pi}{2}; 5\pi \right\rceil$.

Ответ: Находим ОДЗ:Для знаменателя принимаем условие, что он больше 0, так как он под корнем и так как на корень делить нельзя. Тогда sinx больше 0 в I и II четверти, то есть 11sinx > $0 \Rightarrow 2\pi k$ < x < $x + 2\pi k$, $k \in Z$ Тогда получается знаменатель равен $09\sin 2x - 32\sqrt{2}\sin x = 09\sin 2x - 322\sin x = 09^{\sin 2x} - 3^{2}\sin 2x = 2\sin x \cos x$ $34\sin x \cdot \cos x - 32\sqrt{2}\sin x = 034\sin x \cdot \cos x - 322\sin x = 03^{4}\sin x \cdot \cos x - 32\sin x =$

Дайте развернутый ответ.

Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.

- а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
- б) Вычислите длину стороны BC и радиус данной окружности, если $\angle A = 30^{\circ}$, $B_1C_1 = 5$ и площадь треугольника AB_1C_1 в пять раз меньше площади четырёхугольника BCB_1C_1 .

Ответ: a) Заметим, что ∠AB1C1+∠C1B1C=180° ∠AB1C1+∠C1B1C=180° ∠AB 1C 1+∠C 1B 1C = 180°Четырехугольник ВСВ1С1 вписан в окружность, отсюда: ∠C1BC=∠C1B1C=180° ∠C1BC=∠C1B1C=180° ∠C 1BC=∠C 1B 1C=180° Значит, ∠AB1C1=∠C1BC=∠ABC∠AB1C1=∠C1BC=∠ABC∠AB 1C 1=∠C 1BC=∠ABC.Следовательно, треугольники АВСАВСАВС и АВ1С1АВ1С1АВ 1С 1 подобны.б) Пусть коэффициент подобия треугольников ABCABCABC и AB1C1AB1C1AB 1C 1 равен kkk. Тогда имеем: Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.SABC:SAB1C1=S+5SS=k2SABC:SAB1C1=S+5SS=k2S (ABC): S (AB 1C 1) = (S+5S)/S= $k^2k = \sqrt{6k} = sqrt6И3$ подобия получаемBC= $\sqrt{6B1C1} = 5\sqrt{6BC} = 6B1C1 = 56BC = sqrt6B 1C 1 = 6B1C1 = 6B1C1$ 5sqrt6Пусть AB1=xAB1=xAB 1=x, тогда AB=x√6AB=x6AB=xsqrt6По теореме косинусов для $\triangle ABB1\triangle ABB1\triangle ABB$ 1:B1B2=AB21+AB2-2AB1·cosAB1B2=AB12+AB2-2AB1·cosAB 1B^2 = $2 \cdot x \cdot x6\cos 30 = 7x2 - x218B$ $1B^2 = x^2 + (x \cdot x6\cos 30 = 7x^2 - x^2 + x^2 +$ x^2 sqrt18BB1= $x\sqrt{7}$ -3 $\sqrt{2}$ BB1=x7-32BB 1 = xsqrt(7-3sqrt2)По теореме синусов для $\triangle ABB1\triangle ABB1\triangle ABB$ 1: $ABsin_{\triangle}AB1B=BB1sin_{\triangle}AABsin_{\triangle}AB1B=BB1sin_{\triangle}A(AB)/(sin_{\triangle}AB$ 1B) = (BB 1)/(sin∠A)sinAB1B=ABsin∠ABB1sinAB1B=ABsin∠ABB1sinAB 1B =(AB sin∠A)/(BB 1)Ho sin∠AB1B= sin∠BB1Csin∠AB1B= sin∠BB1Csin∠AB 1B = sin∠BB 1C, поскольку синусы смежных углов равны. Получаем $sinBB1C=ABsin \angle ABB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1C=ABsin \angle ABB1=x6\cdot 12x7-32sinBB\ 1C=(ABSin \angle ABB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1C=ABsin \angle ABB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinBB1=x\sqrt{6}\cdot 12x\sqrt{7}-3\sqrt{2}sinB1=x\sqrt{6}\cdot 12x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}\cdot 12x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x\sqrt{6}-x$ $\sin \angle A$)/(BB 1)=(xsqrt6*1/2)/(xsqrt(7-3sqrt2))sinBB1C= $\sqrt{62(7-3\sqrt{2})}$ sinBB1C=62(7-32)sinBB1C= (sqrt6)/(2(7-3sqrt2))Тогда радиус окружности, описанной около треугольника $BB1C:2R=BCsin \angle BB1C2R=BCsin \angle BB1C2R =$ $(BC)/(\sin \angle BB + 1C)R = BC\sin \angle BB + 1C : 2 = 5\sqrt{6} \cdot 2\sqrt{7} - 3\sqrt{2}2 \cdot \sqrt{6} = 5\sqrt{7} - 3\sqrt{2}R = BC\sin \angle BB + 1C : 2 = 56 \cdot 27 - 322 \cdot 6 = 57 - 322$ 32R =(BC)/(sin∠BB 1C) : 2= (5sqrt6 * 2 sqrt (7-3sqrt2))/(2*sqrt6)=5sqrt(7-3sqrt2)Ответ:б)

15 Дайте развернутый ответ.

Решите неравенство $\log_{49}(x+4) + \log_{(x^2+8x+16)}\sqrt{7} \le -\frac{3}{4}$.

 $5\sqrt{6565}$ sqrt6; $5\sqrt{7}-3\sqrt{257}-325$ sqrt(7-3sqrt2)

Otbet: $x \in \langle -4, -277] \cup [\sqrt{77} -4, -3\rangle x \in \langle -4, -277] \cup [77 -4, -3\rangle x \in \langle -4, -27/7] \cup [sqrt7/7 -4, -3\rangle x \in \langle -4, -27/7 -4, -3\rangle x \in \langle$

16 Дайте развернутый ответ.

В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S — **целое** число. Условия его возврата таковы:

- каждый январь долг увеличивается на 30 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2016	Июль 2017	Июль 2018	Июль 2019
Долг	S	0,6S	0,25S	0

	(в млн рублей)							
	Найдите наибольшее значение S , при котором каждая из выплат будет меньше 5 млн рублей.							
	Ответ: :							
18	Дайте развернутый ответ.							
	Найдите все значения a , при которых уравнение							
	$(x + \ln(x + a))^2 = (x - \ln(x + a))^2$							
	имеет единственное решение на отрезке [0; 1].							
	Otbet: :							
19	Дайте развернутый ответ.							
	По кругу расставлено N различных натуральных чисел, каждое из которых не превосходит 365. Сумма любых четырёх идущих подряд чисел делится на 4, а сумма любых трёх идущих подряд чисел нечётна.							
	любых четырех идущих подряд чисел делится на 4 , а сумма любых трех идущих подряд чисел нечетна. а) Может ли N быть равным 200?							
	б) Может ли <i>N</i> быть равным 109?							
	в) Найдите наибольшее значение N.							
	Otbet: :							