Solutions to Sec 1.2 Pre-lab Questions

The mark of each question is 1.

1. A-1, A-2 In Section 1.1.1.3 we obtained an equation (1.1.26) that described the dynamic behavior of the load shaft speed as a function of the motor input voltage. Starting from this equation, find the transfer function $\frac{\Omega_t(s)}{V_m(s)}$.

Answer 1.2.1

Outcome Solution

A-1 Taking the Laplace transform of the equations and assuming $\omega_l(0^-)=0$ gives

$$J_{eq} s\Omega_l(s) + B_{eq,v} \Omega_l(s) = A_m V_m(s)$$
(Ans.1.2.1)

A-2 Solving for $\Omega_l(s)/V_m(s)$ gives the plant transfer function

$$\frac{\Omega_l(s)}{V_m(s)} = \frac{A_m}{J_{eq}s + B_{eq,v}} \tag{Ans.1.2.2} \label{eq:local_local_local}$$

2. A-1, A-2 Express the steady-state gain (K) and the time constant (τ) of the process model (Equation (1.1.1)) in terms of the J_{eq} , $B_{eq,v}$, and A_m parameters.

Answer 1.2.2

Outcome Solution

A-1 We need to match the coefficients of the transfer function found in (Ans.1.2.2) to the coefficients of the transfer function in equation 1.1.1.

A-2 The time constant parameter is

$$\tau = \frac{J_{eq}}{B_{eq,v}} \tag{Ans.1.2.3}$$

and the steady-state gain is

$$K = \frac{A_m}{B_{eq,v}} \tag{Ans.1.2.4}$$

9. A-1, A-2 Referring to Section 1.1.2.1, find the expression representing the time constant τ of the frequency response model given in Equation 1.1.31. Begin by evaluating the magnitude of the transfer function at the cutoff frequency ω_c .

Answer 1.2.9

Outcome Solution

A-1 By definition, the DC gain drops 3 dB (or $\frac{1}{\sqrt{2}}$) at this frequency. Therefore,

$$|G_{wl,v}(w_c)| = \frac{1}{2} |G_{wk,v}(0)| \sqrt{2}$$
 (Ans.1.2.20)

A-2 Applying this to the SRV02 frequency response magnitude in 1.1.31 above gives:

$$\frac{1}{2} \left| G_{wl,v}(0) \right| \sqrt{2} = \frac{G_{wl,v}(0)}{\sqrt{1 + \tau_{e,f}^2 \, \omega_c^2}} \tag{Ans.1.2.21}$$

We can then solve for the time constant as:

$$\tau_{e,f} = \frac{1}{|\omega_c|} \tag{Ans.1.2.22}$$

10. A-2, A-3 Referring to Section 1.1.2.2, find the steady-state gain of the step response and compare it with Equation 1.1.34. **Hint:** The the steady-state value of the load shaft speed can be defined as $\omega_{l,ss} = \lim_{t \to \infty} \omega_l(t)$.

Answer 1.2.10

Outcome Solution

A-2 Using the definition of the steady-state value of the load shaft

$$\omega_{l,ss} = \lim_{t \to \infty} \omega_l(t)$$
 (Ans.1.2.23)

The limit of the servo step response given in (1.1.40) is

$$\omega_{l,ss} = K A_v + \omega_l(t_0) \tag{Ans.1.2.24}$$

and the steady-state gain is

$$K = \frac{\omega_{l,ss} - \omega_l(t_0)}{A_v}$$
 (Ans.1.2.25)

A-3 This is consistent with the $\Delta y/\Delta u$ relationship in Equation 1.1.34.

11. A-2, A-3 Evaluate the step response given in equation 1.1.40 at $t=t_0+\tau$ and compare it with Equation

Answer 1.2.11

Outcome Solution

A-2 Substituting $t = t_0 + \tau$ in equation 1.1.40 gives the load shaft rate

$$\omega_l(t_0 + \tau) = K A_v \left(1 - e^{-1}\right) + \omega_l(t_0)$$
 (Ans.1.2.26)

A-3 This is consistent with the $y(t_1)$ expression in equation 1.1.34.