Recognition	3	1	0	Theory
9 1 1				chniques commonly used in pattern heory, statistics, and optimization
theory to tackle a wide spectrus	1	U		neory, statistics, and optimization

Linear Algebra, Probability

CS407: Pattern

S. No.	Course Outcomes (CO)
CO1	Learn various data pre-processing techniques.
CO2	Understand feature selection methodologies.
CO3	Apply different learning approaches in pattern recognition
CO4	Implement performance evaluation of models.

S. No	Contents	Contact Hours
UNIT 1	Pattern recognition fundamentals: Basic concepts of pattern recognition, fundamental problems in pattern recognition system, design concepts and methodologies, example of automatic pattern recognition systems, a simple automatic pattern recognition model.	8

UNIT 2 Di	ayesian decision theory: Minimum-error-rate classification, Classifiers, iscriminant functions, Decision surfaces, Normal density and Discriminant unctions, Discrete features, Missing and noisy features.	8
UNIT 3 Lil Ba	Maximum-likelihood and Bayesian parameter estimation:Maximum-ikelihood estimation: Gaussian case, Maximum a Posteriori estimation, ayesian estimation: Gaussian case, Problems of dimensionality, bimensionality reduction: Principle component analysis.	8
UNIT 4 lea	on-parametric techniques for density estimation: Parzen-window nethod, K-Nearest Neighbour method, Fuzzy classifications. Unsupervised arning and Clustering: k-mean clustering, fuzzy k-mean clustering, similarity neasures, criterion functions for clustering, hierarchical clustering.	8
UNIT 5 op	eural Network Classifiers: Single and Multilayer Perceptron, Feedforward perations and classifications, network learning, training protocols,Back ropagation Learning, Bayes discriminants and neural networks.	8
UNIT 6 alg	tochastic Methods: Stochastic search, Boltzmann factor, simulated annealing gorithm, deterministic simulated annealing, Boltzmann learning. volutionary Methods: Genetic algorithms, genetic programming, particle warm optimization.	8
	Total	48