Name: - S. Neda Angum Regno: - 192311071 Subcode: - CSA0672

calculate the no-of wage to achieve a sum of 15 when rolling brus six-sided dice provide a detailed step-by-step solution. No. of solutions.

This becomes

using Inclusion & Exculsion principle.

$$(\frac{14}{3}) = \frac{14 \times 13 \times 12}{3 \times 2 \times 1} = 364$$

$$\begin{pmatrix} 5+4-1 \\ 4-1 \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$$

$$\frac{8}{5}$$
 $\left(\frac{8}{3}\right) = \frac{8\times 7\times 6^3}{3\times 2\times 1} = 56$

since any of four variables = 4 x 56 = 224.

The no. of valid solutions au: 364-224=140,

Two assembly their have station times as follows line & [2110,114] Transfer times blu lines our lines to line 2[71415] from line & to line 1: [9,2,8]. calculate the minimum time to amemble

Given lines are

a product

llru 1: [4,5,3,2], line2: [2,10,1,4]

		2	3	4
Finj	4	9	12	14_
Fath		12	13	14

		0	3	4	
4	1	14	-14	1	
1.	38	2	2	2	

Given keys {10,20,30,40} with access probabilities {0.1,0.2,0.4, 0.33 y suspectively construct the optimal binary search true. Calculate the total cost of the tree

Griven Keys \$10,20,30,404

Probabilities \$0.1,0.2,0.4,0.34

$$\frac{j-1=0}{1-q=0} \begin{vmatrix} j-1=1 \\ 1-0=1 \end{vmatrix} = \frac{j-1=2}{2-0=2} (0.12)$$

$$2-2=0 \begin{vmatrix} 2-1=1 \\ 2-0=2 \end{vmatrix} = \frac{3-1=2}{3-1=2} (0.12)$$

$$3-3=0 \begin{vmatrix} 3-2=1 \\ 4-2=2 \end{vmatrix} = \frac{3-1=2}{4-2=2} (2.14)$$

1-1-3	j-1=4
3-0=3	4-0=4

	10	1	2	13	14
- 0	0	0-1	0.4	1-103	1-73
!		0	0.2	[£]	1.0
2				.0.4	[3]
3				0	0.3
4		100			0

You have a knapsack with a capacity to units. There are 4

1 tero1 : Wei = 10, Val = 60

items: wei= 30, val=120

item4: wei=40, val=200

weight	value
	60
20	100
30	120
40	200
	30

w/v		10			40	50
0	0				0	0
1			60	60	60	60
		60		160	160	160
3		60	100	100	180	220
4	0	60	100	120	200	260

Determine the maximum value that can be obtained using the of knapsack moblem approach show the steps of the binal solv.

Given the following directed graph with Yestias, A, B, C, D, C, D,

A>BC | rightantow BA >B with weight 1

A>CA) right allow CA>C with weight 4

B->CB | right autow CB -> C with weight 2

B-XB) " DB->C " " 6

c-> 01/1 00-> 0 " " 3

use the Bellman tood algorithm to find the shortest rath from verter AAA to all other vertices show the steps of the binal distances

Determine the probability of rolling fine dice such that the sum is exactly 20. Include a combinational approach to arrive at the solution.

the solution.

$$6^n = 6^s = 7776$$
 $2_1 + 2_1 + 2_3 + 2_4 + 2_5 = 20$ where $1 \le 2_i \le 6$
 $y_i = 2_1 - 1$ for $i = 1, 2, 3, 4, 15$
 $y_1 + 1 + y_2 + 1 + y_3 + 1 + y_4 + 1 + y_5 + 1 = 20$
 $y_1 + y_2 + y_3 + y_4 + y_5 + 5 = 20$
 $y_1 + y_2 + y_3 + y_4 + y_5 = 15$

where $a \le y_4 = 5$

Rsy stars & bars'

 $\binom{15 + 5 - 1}{5 - 1} = \binom{19}{4}$

$$9'+9_2+9_3+9_4+9_5=9$$

 $(9+5-1)=(13)=>\frac{13\times12\times11\times10}{9\times3\times2\times1}=715$

5×713=3575 If two variables y;, y; ≥ 6 let y'=y-6 4 y'=y-6

$$91+92+93+94+95=3$$

 $(3+5-1)=(3)$
 $(3)=7\times6\times5\times9$
 $(3)=7\times6\times5\times9$
 $(3)\times35=10\times35=350$

using inclusion-Exculsion principle 3876-3575+350=651

(8) Fox there assembly lines with station times line 1: [7,9,3,4], line 2 [8,5,6,4], line 3: [3,6,7,2] and transfer time 6/w lines given; deturnine the optimal scheduling and the total minimum assembly time

Consider Keys & 15,25,35,45,553 + 80.05 \$ 0.15, 0.4, 0.25, 0.154 Determine the structure of the optimal bimary search true & computer

the Expected cost

Green 215, 125, 35, 45,55 4 80.05) 0.15,0.4,0.25,0.153

j-1=0	3-1=1	J-1=2
1-1-0	1-0=1	2-0=2 (0,2)
2-20	2-1=1	3-1=2 (113)
3-3-0	3-2=1	4-2=2 (2)4)
4-450	4-2-1	u

1	0	d	2	2		
-0	0	0.05	0.25	D- 853	135	h 80
1		0		0.70	1.20	1.80
2			0	0.4		[34]
3	-			0	0-25	0.55[4]
4	-				0	0.15
5	1					0
		-	-			

(15) 1 ×0.05	(23) 1×0.15
(25) 2×0.15	(F) 2×0-05
0.30	0.10
0.35	0.25

35 140.4 (35) 240. (35) 0.51	25

4-1=3

$$\frac{3-i=3}{3-0=3}$$

5-2=3 cost (1,i) = min { cost(i, K-1) + cost(Kij) } + two

$$cost(0,3) = min s cost(0,0) + cost(1/3)$$

$$t=1,2/3$$

$$cost(0,1) + cost(1/3)$$

$$min \int 0+0.70 \int 0.055 \int 0.055$$

(1) Some the fractional knapsack problem for a knapsack with a Corpacity of 60 units 4 the following elimi II W=20 V=100 W=30 V=120 Calculate the maximum value that can be achieved & describe the fractions of items taken. Item W val 20 30 40 50 60 10 20 100 0 30 120 100 100 100 100 100 120 120 220 220 60 10 0 0 100 120 180 220 280 001 10 0 (12) Consider a directed graph with 5 vertices V, 1 V2, V31 V4, V5 V1, V2, V3, V4, 4, V1, V2, V3, V4) V5 & the following edges with weights V, -> V2V, right allow V2V, -> v2 with w-3 V1->V3V, W-8 V2->V3V2 W-2 Bellman ford algorithm. V, -> V2 3 V2->V3-8 V2 -> V3 2 V3 -> V4 1 Duitalise Vu -> V-7 Vu V5

00 00

0

00

00

	1				
10	V V	1 V2 V3	Vu V5 (2	102580	
	P -		V ₂ V _U	P - V1 V2 V2 V4	
(3)	V V	1 V2 V3	4 5	W V V V V V V V V V V V V V V V V V V V	
	P -		2 V3 V4	P - V, V2 V3 V4	
	Patt				
	V1-V3		V1-V2-V3	0/PV1->V2->V3->V4->V5	
	V1-V5		V1-V2-V3-V4 V1-V2-V5-V4-V5		to

Given two eight-sided dice, compute the number of ways to acheine a sum of 10. Then Extend these to three dice & find the new norof ways to get the same sum. We need to count the pairs (2,4) such that 2+4=10 when 1≤x; 4≤8

(x,y) = (2,8)

(1,4)= (3,7)

(2,4) = (416)

(x,y)= (5,5)

(2,4)= (6,4)

(x,y)= (7,3)

(214) = (8,2)

1. 7=1

y+2=9: (1,1,8), (1,2,7), (1,3,6), (1,4,5), (1,5,4), (1,6,3)

2. X=2

y+2=8:(2,117),(2,2,6),(2,3,5),(2,4,4),(2,5,3),(2,6,2),3:2=3 (2,7,1)

y+2=7: (3,1,6), (3,2,5),(3,3,4),(3,4,3),(3,5,2),(3,6,1).

 $4 \cdot x = 4 \cdot 1$ y + z = 6(4)(5), (4)(2)(4), (4)(3)(3), (4)(4)(2), (4)(5)(1) $5 \cdot x = 5$ y + z = 5 (5)(4), (5)(2)(3) (5)(3)(2), (5)(4)(1). $6 \cdot x = 6$ y + z = 4 (6)(1,3), (6)(2)(2), (6)(3)(1) $7 \cdot x = 7$ $y + z = 3 \cdot (7)(1,2), (7)(2)(1)$ $8 \cdot x = 8$ $y + z = 8 \cdot (8)(1,1)$. Sum = $87 \cdot 7 \cdot 7 \cdot 6 + 5 + 4 + 3 + 2 + 1 = 36$ The no-q ways to a sum of (0) = 36%.

(14) Given statione times for 4 [5,6,9], l2 [8,5,6] & l3 [6,7,8] & transfer limes blue times (3,4], (4,5] 4 (5,6), calculate the minimum time required to complete the modulate arrending.

Fi[j]=min{(fi(j-1)+aij),(f2(j-1)+(t2,j-1)+aij),(f3(j-1)+(t3)j-1+ai

(18) Given keeps {15,15,25,35,45,55} with access probabilities \$0.1,0.05,0.2,0.25,0.3,0.13 use up to bind obst show the steps to your calculation & the resulting cost

cost
$$(3,16)$$
 = nin Scost $(3,3)$ + anst $(4,16)$ | $(4,0)$ | $(4$

(6) Extend the following distance matrix to 7 cities & solve the 15p

A: [0,12,10,19,08,16]

B: [12,0,21,11,15,16]

C:[10,21,0/13/5,7]

D: [19,11,13,0,18,8]

E:[8,15,5,18,0,14]

F:[16,10,7,8,14,0]

Given a knapsack capacity of to units & the following items (7) II: W= 25, V-80 Iz: W = 35 / V=90 I3: W = U5, V=120 I4. W=30, v=70 use de to some o/1 Konapraek restlem 35 45 Him val 30 70 W 1120 /150 Fos a graph A->BA, W-1 A>CA, W-4 B->CB/W-3 B-> DB/W-2 B>EB, W-2 D→BD, W-D->CD/W-5 E->DE, w-3 Wx Bellman ford algorithm. B C D OVIA B C D E (3)

	path	dutance	whostert
	A	0	A
1	B	-1	A-B
1	C	ч	A >c /
1	D	3	A-JE-DP
L	Ē	1 1	A>B>C/

Knapsaele 0/1 50 units

$$T_{2}$$
, $W = 10$, $V = 50$
 T_{2} , $W = 20$, $V = 70$
 T_{3} , $W = 30$, $V = 90$
 T_{4} , $W = 25$, $V = 60$
 T_{4} , $W = 25$, $V = 40$

_	1		1		25	15	50
W/v	0	10	20	30	2>		0
1	-		0	0	0	0	0
0	0	0	-	0	50	50	50
1	0	50	20	80		-	70
2	0	50	70	20	70	70	10
,	0	50	70	90	90	90	160
3		50	120	90	90	90	160
4	0	30	70		90	90	160
5	0	20	か	90	10	1	-

using 5 cities

A: [0)14,4,10,20]

B: [14,0,7,8,7]

C: [417,0,12,6]

D: 10,8,12,0,15]

E:[20,7,6,15,0].

(21) Bellman ford.

1->21, W=4

1->31, W=5

2-> 32, W=-2

3 > 143, W=3

4->24, W=-10

1->2-4

1-33-5

2-33-3

4->2=-10

TV	1	2	3	4
d	0	00	00	0
1 P	-	-	-	-

And the Expected value of the sum of the outcomes when solling the four sided dice show your calculations. Se reasoning

-> sum - 3

way (1+v+1)

$$3um$$

$$4 = \frac{3}{64} (1+1+2,1+2+1,2+1+1)$$

$$0 = 10/64 \left(1+2+3, 1+3+2, 2+1+3, 2+2+2, 2+3+1, 3+1+2, 3+2+1, 1+4+1, 2+2+2, 2+3+1 \right)$$

 $= |3 \times 1/64| + (u \times \frac{3}{64}) + (s \times \frac{6}{64}) + (6 \times \frac{10}{64}) + (7 \times \frac{12}{64}) + (8 \times \frac{12}{64}) + (9 \times \frac{10}{64}) + (10 \times \frac{6}{64}) + (11 \times \frac{3}{64}) + (12 \times \frac{1}{64})$

$$= \frac{3}{64} + \frac{12}{64} + \frac{30}{64} + \frac{60}{64} + \frac{84}{64} + \frac{96}{64} + \frac{90}{64} + \frac{60}{64} + \frac{33}{64} + \frac{12}{64}$$

$$=\frac{4.80}{64}=7.5$$

The sum of the outcomes when solling there four-sided due is 75 calculate the minimum time for modulet assembly for two assembly lines where line 1=[6,7,4,5] & l2:[8,9,3,2] with transfer times b/w lines[4,5,6] from 4 to l2, [6,5,4] from l2 to l4

23

3 17	1 22
>	1 22
7 20	22
	7 20

(24)

-	1	2	3	4
21	1	1	1	11
12	2	.2	2	2

Keys {10,20,30} have probabilities {0.2,0.5,0.34. construct the optimal binary search tree, a calculate the total search cost Additionally compare this with a suboptimal BST structure & analyse the difference in cost

Given kys {10,20,304 probabilities {0-2,0.5,0-34

$$\frac{j-i=0}{1-1=0} \begin{vmatrix} j-i=1 \\ 1-o=1 \end{vmatrix} = \frac{j-i=2}{2-o=(0,2)2}$$

$$\frac{2-2=0}{2-3=0} \begin{vmatrix} 2-l=1 \\ 3-2=1 \end{vmatrix} = \frac{3-1=2}{3-1=2(1,3)}.$$

	0	11	2	3
0	0	0.2	0.53	1-153
-		0	0-5	1.1[2]
-	-		0	0.3
3	1	-	1	0
13			-	-

$$\frac{J-1=3}{3-0=3(0,3)}$$

-1=3

cost (1, j) = min { cost (1, k-1) + cost (kis) } + wi $cost(0,3) = min \begin{cases} cost(0,0) + cost(1,3) \\ cost(0,1) + cost(2,3) \\ cost(0,2) + cost(3,3) \end{cases} + 1.0 = min \begin{cases} 0+1.1 \\ 0.2+0.3 \\ 0.0+6 \end{cases} + 1.0$

$$= \min \left\{ \begin{array}{l} 0+1.1 \\ 0.2+0.3 \\ 0.01+6 \end{array} \right\} + 1.0$$

$$= \left\{ \begin{array}{l} 2.1 \\ 1.5 \\ 1.1 \end{array} \right\}$$

ed di

deal

lies)

Roll Six-six-sided dice Determine the no. of ways to get sum of 18, ensuing that all all (25) 18, ensuing that atleast one die shows a 6.

The no of ways to get sum of 18.

Idal nord possibilities. 4656

>18 (1 die will shows 18; which is not possible with 6-sided)

>17+1 (1 die shows 17)

>16+2 (1 du will shows 16)

7 16+1+1 (1 die will shows 16, but not possible with a 6-sided die and 2 dies show 1)

The total ways to get a sum 18 is 34

The no. of ways to get a sum of 18 without any 6s

Then we should soll only 1,2,3,445. then there are 10 poutitions.

Total ways - ways without 68 34-10

i. There are st way to get sum of 18.

Given line 1 [10)12, 11], line 2 [9114/13] & transfer times &w lines [6,5], calculate the menimum assembly time, considering a reduction in one of the transfer times by 2 units. Deturnère et e optimal schedule.

Given line 1 [10,12,11] and l2 [9,14113] time dw lines [6,5]

in one of the toans fee times by 2 unite [4,6

$\frac{3-i=3}{2}$ $\frac{3-1=4}{10-0=(0,1)}$ $\frac{3-1=4}{5}$	1=5	(0)	2).		43			7
1 2 3 5		1	2	1 3	4			
ATT 10 22 33	4	1	1	1	-			
F(D) 9 23 36	12	2	2	12				
			15	Hal	50.210	0.05,	0.4,0	25,
For keys §8,12,16,20,244 with a	iccens 1	lord	pabili +tre	win	g th	e dyn	amie	
0.11 I fromere the optiment bu	11			17	ecust 1	row		
programming approach compute to changing one of the probabilities	the no	ects	the	tree	Struck	1000	+	
changing one of the party	1		0	1	20.2[7]	3	4 [3]	5
Given Keys § 8,12,16,20,249		0	0	0.2	0.31	0.80	1.20	
probabilities &0.2,0.05,0.4,0.25,0	9.13	1		0	0.05	(3) out	-	
9-1-0 j-1=1 1-1=2		2			0	0.4	0.9	1,2
1-1=0 1-0=1 2-0=2(012)		3				0	0.25	0.45
3-3=0 $3-1=1$ $3-1=2$ (1,3) $1-2=2$ (2,14)		4					0	0.1
4-4=0 4-3=1 5-3=2 (3,5)		-				1		
$(0/2)$ $(12)1\times0.05$. 1	5				_		0
(0/2) (0/2) (0/2) (12) 1 x 0.05	(113))	70.0			(16)1	x0.4	
(2)2×005 (8)2×0·2	(عرا ×	0.05		/	7		
0.2+0.01 0.05+0.11		/	(P) 5x1	P.0	(2) 21	K0-05		
0.21 0.45	0.0	2 +	0 . 8			10.01		
(214) min		0 > 8	35		0.	mer 1		
(8/4) (6) 1×0.41 (20) 1×0.25	(315)	1×1	0.25		m.	(24)	1xD·1
		6	20				7	
50 2×0.92 (10) 5×0.1			(2	W) 2×0	.1	20	2×0.	25
0.4 +0.5	130	0.0				0-1-1		
0.9	11 18		5+0	12		0-1-		
min		J	min			0.	0	
			The state of the s					

$$\frac{3-i=3}{3-0=3} (0;3) \qquad \frac{3-i=4}{4-0=(0;4)} \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=3}{3-0=3} (0;3) \qquad \frac{3-i=4}{4-0=(0;4)} \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=3}{5-0=3} (0;3) \qquad \frac{3-i=4}{4-0=5} \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=3}{5-0=3} (0;3) \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=3}{5-0=3} (0;3) \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=3}{5-0=5} (0;5) \qquad \frac{3-i=5}{5-0=5} (0;5)$$

$$\frac{3-i=5}{5-0=5} (0;5) \qquad \frac{3-i=5}{5-0=5} (0;5$$

mun
$$50 \pm 0.9$$

 0.05 ± 0.25
 0.01 ± 0.1
 0.05 ± 0.05
 0.01 ± 0.1
 1 ± 0
 0.05 ± 0.05
 0.01 ± 0.1
 1 ± 0
 0.01 ± 0.1
 0.01

Solve the TSP for 4 cities using simulated annealing with the following distance matrix.

A-B-C-D-A-20

You have a knowpeack with capacity of 50 units that are 4 I tome with following weights & values.

W=10 V=60

I2 W=20 V=100

I3 W=30 V=120

Iy w= 40 V=200

Deturine the mass value by using knapsack

elumine	. the	majo los		-		-
I W.	0	10	20	30	40	50
K	0	0	0	0	0	0
0		1	60	60	60	60
	0	60	100	160	160	160
2	0	60	100	120	180	180
3	0	60		-	200	260
4	0	60	100	120		manim

200 is maximum v

