Law of Large Numbers

Zhizhou Liu (刘之洲)

October 29, 2023

0.1 Equivalent Sequences, Technique of Truncation

Definition 0.1 (equivalent sequences). Two sequences of r.v.s $\{X_n\}$ and $\{Y_n\}$ are said to be equivalent if

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty.$$

Remark 0.1.1 (easy consequences when equivalence). With Borel-Cantelli Lemma, it is immediate that $P(X_n \neq Y_n, i.o.) = 0$, i.e. $X_n = Y_n$ ultimately a.s. Therefore

- (i) $\sum_{n=1}^{\infty} (X_n Y_n)$ converges a.s. Hence $\sum_{n=1}^{\infty} X_n$ behaves in the same way as $\sum_{n=1}^{\infty} Y_n$ a.s.
- (ii) $\frac{1}{a_n} \sum_{n=1}^{\infty} (X_n Y_n) \to 0$ a.s. if $a_n \to \infty$. Hence $\frac{1}{a_n} \sum_{n=1}^{\infty} X_n = \frac{1}{a_n} \sum_{n=1}^{\infty} Y_n$ a.s.
- (iii) By (ii), if $\frac{1}{a_n} \sum_{n=1}^{\infty} X_n$ converges in probability so does $\frac{1}{a_n} \sum_{n=1}^{\infty} Y_n$ and to the same value.

Example 0.1.2. For a given sequence $\{X_n\}$, it is equivalent to its truncated sequence provided that $\{X_n\}$ is identically distributed and $E|X_1| < \infty$. Indeed, $E|X_1| < \infty$ iff

$$\sum_{n=1}^{\infty} P(|X_1| > n) = \sum_{n=1}^{\infty} P(|X_n| > n) < \infty.$$

Therefore $\{Y_n\}$ defined by $Y_n \stackrel{\text{def}}{=} X_n \mathbf{1}_{|X_n| \leq n}$ and $\{X_n\}$ are equivalent since $\{X_n \neq Y_n\} = \mathrm{P}(|X_n| > n)$.

Hence, due to Remark 0.1.1, \bar{X}_n and \bar{Y}_n converge or diverge at the same time to the same value.

1 Weak Law of Large Numbers

Theorem 1.1 (WLLN, i.i.d. case). Let $\{X_i\}$ be pairwise independent and identically distributed r.v.s with $E|X_1| < \infty$ and $E|X_1| = \mu$. Then $\bar{X}_n \to \mu$ in probability.

Proof. Using the construction in Example 0.1.2, it suffices to show $\bar{Y}_n \to \mu$ in probability. By Markov inequality, it is enough to show (a) $\to \bar{Y}_n \to \mu$ and (b) $\to \bar{Y}_n \to 0$. See the proof of SLLN, Theorem 2.2. Alternatively, we may use another level of truncation to finish the proof [1, Note 4, Theorem 7.2.1].

2 Strong Law of Large Numbers

2.1 SLLN for Independent Sequences, First Look

Theorem 2.1 (variance criterion, Kolmogorov). Let X_1, X_2, \ldots be independent r.v.s with finite first and second moments, i.e., $E|X_k| < \infty$ and $E|X_k|^2 < \infty$. If $\sum_{k=1}^{\infty} \operatorname{Var} X_k < \infty$, then $\sum_{k=1}^{\infty} (X_k - EX_k)$ converges a.s.

Remark 2.1.1. Equivalently speaking, the theorem says that, for independent sequence, convergence of L^2 series $\sum_{n=1}^{\infty} \|X_k - \mathbf{E} X_k\|_2^2$ implies convergence of series $\sum_{n=1}^{\infty} (X_k - \mathbf{E} X_k)$ a.s.

Remark 2.1.2. As $\operatorname{Var} X_k \leq \operatorname{E} |X_k|^2$, the condition $\sum_{k=1}^{\infty} \operatorname{E} |X_k|^2 < \infty$ is of course enough.

Proof. Assume $E X_k \equiv 0$ WLOG. Write $S_n = \sum_{k=1}^n X_k$. Then

- S_n converges a.s. iff
- S_n is Cauchy a.s. iff
- for any $\epsilon > 0$, $\lim_{M \to \infty} P\left(\bigcup_{n,m>M} \{|S_n S_m| > \epsilon\}\right) = 0$.

Hence it suffices to show the last statement. This can be proved by Kolmogorov's maximal inequality through observing either

- $\bigcap_{M>0} \bigcup_{n,m>M} \{ |S_n S_m| > \epsilon \} = \bigcap_{M>0} \bigcup_{k=1}^{\infty} \{ |S_{M+k} S_M| > \epsilon \}$ or
- $\bigcup_{n,m>M} \{ |S_n S_m| > \epsilon \} \subseteq [\bigcup_{n>M} \{ |S_n S_M| > \epsilon/2 \}] \cup [\bigcup_{m>M} \{ |S_m S_M| > \epsilon/2 \}].$

The remaining part of proof is easy.

With the help of Kronecker's Lemma, we have the following corollary.

Corollary 2.1.3 (Kolmogorov's SLLN). Let X_1, X_2, \cdots be independent r.v.s, each with finite mean and variance, and let $\{a_n\}$ be an increasing sequence of positive real numbers with $a_n \uparrow \infty$. If $\sum_{n=1}^{\infty} \frac{\operatorname{Var} X_n}{a_n^2} < \infty$, then

$$\frac{1}{a_n} \sum_{k=1}^n (X_k - \operatorname{E} X_k) \to 0 \quad a.s.$$

Remark 2.1.4. There are two special cases of Kolmogorov's SLLN.

- (i) If $\{X_n\}$ are independent r.v.s, each with finite mean m and finite variance σ^2 , then $\frac{1}{n} \sum_{k=1}^n X_k \to m$ a.s.
- (ii) If $\{X_n\}$ are independent and the fourth central moments are uniformly bounded, i.e. $E|X_n-E|X_n|^4 < M$ for some M > 0. Then $\frac{1}{a_n} \sum_{k=1}^n (X_k E|X_k) \to 0$ a.s. For by the Cauchy-Schwarz inequality,

$$Var X_n = E[(X_n - E X_n)^2 \cdot 1] \le (E |X_n - E X_n|^4)^{1/2} \le M^{1/2}.$$

Then Kolmogorov's SLLN applies with $a_n = n$.

2.2 SLLN for i.i.d. Sequences

Theorem 2.2 (SLLN, i.i.d. case). If $\{X_n\}$ be i.i.d. random variables. Then

- (i) If $E|X_1| < \infty$, then $\frac{1}{n} \sum_{k=1}^n X_k \to E X_1$ a.s.
- (ii) If $E|X_1| = \infty$, then $\limsup_n \frac{|S_n|}{n} = \infty$ a.s.
- *Proof.* (i) Assume $E|X_1| < \infty$. Let $Y_n = X_n \mathbf{1}_{|X_n| \le n}$. From Example 0.1.2, $\{Y_n\}$ and $\{X_n\}$ are equivalent. It suffices to show
 - (a) $\frac{1}{n} \sum_{k=1}^{n} E Y_k \to E X_1$ and
 - (b) $\frac{1}{n} \sum_{k=1}^{n} (Y_k E Y_k) \to 0$ a.s.

since these would imply $\frac{1}{n}\sum_{k=1}^{n}Y_k \to \operatorname{E} X_1$ a.s. which in turn implies $\frac{1}{n}\sum_{k=1}^{n}X_k \to \operatorname{E} X_1$ a.s. Part (a) is immediate as $\operatorname{E} Y_n = \operatorname{E} X_1 \mathbf{1}_{|X_1| \le n} \to \operatorname{E} X_1$ by DCT. For part (b), it is enough to check $\sum_{n=1}^{\infty} \frac{\operatorname{E} |Y_n|^2}{n^2} < \infty$ by variance criterion. Now

$$\sum_{n=1}^{\infty} \frac{E |Y_n|^2}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} E X_n^2 \mathbf{1}_{\{|X_n| \le n\}}$$

$$= \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{n^2} E |X_1|^2 \mathbf{1}_{\{k-1 < |X_1| \le k\}}$$

$$= \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{1}{n^2} E X_1^2 I_{\{k-1 < |X_1| \le k\}}$$

$$= \sum_{k=1}^{\infty} \left[E \left(X_1^2 I_{\{k-1 < |X_1| \le k\}} \right) \left(\sum_{n=k}^{\infty} \frac{1}{n^2} \right) \right]$$

$$\leq \sum_{k=1}^{\infty} \left[k E \left(|X_1| I_{\{k-1 < |X_1| \le k\}} \right) \left(\frac{C}{k} \right) \right]$$

$$\leq C E |X_1| < \infty,$$

where we used the elementary estimate $\sum_{n=k}^{\infty} \frac{1}{n^2} \leq C/k$ for some C>0 and all $k\geq 1$.

(ii) Assume $E|X_1| = \infty$. Then for all A > 0, $E\frac{|X_1|}{A} < \infty$ iff $\sum_{n=1}^{\infty} P(|X_n| > An) = \infty$. By Borel-Cantelli Lemma (or equivalently, Borel 0-1 law), $|X_n| > An$ infinitely often a.s. This would lead to $|S_n/n| > A/2$ infinitely often a.s. since

$$|S_n| + |S_{n-1}| \ge |S_n - S_{n-1}| = |X_n| > An$$

implies $|S_n/n| > A/2$ or $|S_{n-1}/(n-1)| > A/2$. Hence $\limsup_n \frac{|S_n|}{n} = \infty$ a.s.

2.3 SLLN for Independent Sequences, Second Look

Consider $\{X_n\}$ with $E[X_n] \equiv m$. To conclude $\frac{1}{n} \sum_{k=1}^n X_k \to m$ a.s.,

• for SLLN for independent sequences, we may need $\operatorname{Var} X_k = \sigma^2$, as pointed out by Remark 2.1.4;

• for SLLN for i.i.d. sequences, we need "identically distributed" and without further conditions on moments.

Is there exists a sharper SLLN theorem for independent sequences but without second-order condition?

In this subsection, we can reduce the second-order condition to 1 + p condition, for any p > 0, which is very close to the first-order condition.

Technique: Kolmogorov's three series

Theorem 2.3 (Kolmogorov's three series). Let X_1, X_2, \ldots be independent r.v.s. Let $Y_n \stackrel{def}{=} X_n \mathbf{1}_{|X_n| \leq A}$.

Then $\sum_{n=1}^{\infty} X_k < \infty$ a.s. iff for some A > 0, the following three series converge:

- (a) $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty,$
- (b) $\sum_{n=1}^{\infty} E Y_n < \infty$ and
- (c) $\sum_{n=1}^{\infty} \operatorname{Var} Y_n < \infty$.

Proof. We just present the proof of sufficiency, as we only need this part. For the second part, see [1, Note 4, Theorem 8.2.5, p. 135].

Condition (a) implies $\{Y_n\}$ and $\{X_n\}$ are equivalent. The variance criterion (c) for Y_n implies $\sum_{n=1}^{\infty} (Y_n - \mathbf{E} Y_n) < \infty$ a.s. Hence $\sum_{n=1}^{\infty} Y_n$ converges a.s. by condition (b), which in turn implies $\sum_{n=1}^{\infty} X_n$ converges a.s.

Generalization of Variance Criterion

Theorem 2.4 (generalized SLLN for independent sequences). Let $\{X_n\}$ are independent r.v.s and $0 < a_n \uparrow \infty$. Assume that

$$\sum_{n=1}^{\infty} \frac{\mathrm{E}|X_n|^r}{a_n^r} < \infty, \quad 1 \le r \le 2.$$

Then we have $\frac{1}{a_n} \sum_{k=1}^n (X_k - \operatorname{E} X_k) \to 0$ a.s.

 ${\it Proof.}$ Check the conditions in Kolmogorov's three series Theorem and apply Kronecker's Lemma.

Remark 2.4.1. As a special case, let $1 \le r \le 2$ assume $\mathbb{E}|X_n|^r \equiv m_r < \infty$ and $\mathbb{E}X_n \equiv \mu$. Then $\sum_{n=1}^{\infty} \frac{\mathbb{E}|X_n|^r}{a_n^r} < \infty$ iff $\sum_{n=1}^{\infty} \frac{1}{a_n^r} < \infty$. If a_n is of the form n^x , then the series converges iff $a_n = n^{(1+p)/r}$ for some p > 0. Apply this theorem,

$$\frac{1}{n^{(1+p)/r}} \sum_{k=1}^{n} (X_k - E X_k) \to 0 \quad a.s.$$

Equivalently, $\frac{1}{n} \sum_{k=1}^{n} X_k - \mu = o(n^{\frac{1+p}{r}-1})$. As $n^{\frac{1+p}{r}-1} \to n^{\frac{1}{r}-1}$,

- when r > 1, the convergence rate can be n to the negative power as $\frac{1}{r} 1 < 0$;
- when r = 1, the convergence rate can only be n to a positive power.

Hence the existence of $E|X_k|^r \equiv m_r$ would guarantee the convergence of $\frac{1}{n} \sum_{k=1}^n X_k$ to μ a.s. Remark 2.4.2. There are also theorems for 0 < r < 1 and r > 2, see [1, Corollary 8.3.3, Assignment 2.5], respectively. Their proofs are all based on Kolmogorov's three series theorem.

References

[1] Zhu Ke. Research Methods in Statistics, Lecture Notes. The University of Hong Kong, not published, 2023.