

Neuroevolution and hyperparameter optimization for deep neural networks

Alberto TONDA, Team EKINOCS, UMR 518 MIA-PS

Outline

- Defining a network topology
- Classical approach
- Reframing as an optimization problem
- Evolutionary algorithms
- Neuroevolution (NEAT, HyperNEAT, ...)
- Hyperparameter optimization

Defining a network topology

- Using a (deep) neural network for a task
- Lots of (hyper-)parameters to decide:
 - Number of layers
 - Number of neurons/units per layer
 - Type of layers (Convolutional, MaxPooling, ...)
 - Activation function (tanh, ReLu, Leaky ReLu, ...)
 - Optimizer (ADAM, Adagrad, RMSprop, ...)
 - Parameters (!) of the optimizer (learning rate, ...)

Classical approach

- Read literature and copy a topology used for similar task
- If it does not work, change it a bit until it works
- Experiments take time, so limited amount of attempts

O RLY?

The Practical Developer

@ThePracticalDev

> Reframing as an optimization problem

- Search space: all possible combinations of hyperparameters
- Objective: maximize performance on the task

- Obvious issues:
 - Search space is Vast (cannot be explored exhaustively)
 - Search space is mixed integer/categorical/floating point
 - Search space is (very likely) not convex

> Reframing as an optimization problem

- Neural Architecture Search (NAS)
 - Gradient descent
 - Reinforcement learning
 - Bayesian optimization
 - Focus mostly on hyperparameter values (NOT TOPOLOGY)

- References
 - Elsken et al., Neural Architecture Search: A Survey, 2019

> Evolutionary algorithms

- Evolutionary algorithms (EAs) can work well in this situation!
 - Better than random
 - Usable when other techniques fail (exact, gradient-based, ...)
 - Can deal with extremely complex (mixed) search spaces
- What EAs do, in a nutshell:
 - Stochastic exploration of the search space
 - Biased towards areas with better values of cost function
 - To get values of cost function, they evaluate candidate solutions

Neuroevolution

- Basic idea: optimize network topology (and possibly weights)
 - Considerable amount of works since mid-1990s
 - Risto Miikkulainen (Finnish-American, U. of Texas)
 - Group at University of Coimbra (Portugal)
- Research sped up considerably after 2012-2016
- Better utils were available for deep learning

- Technique designed to address issues in neuroevolution
- Initial generation of random solutions
 - Too random, might not have input/output connections
 - Long-term impact on network sizes
- Solution: start from a minimal, uniform network size
 - Inputs directly connected to outputs
 - Genetic operators always add nodes/connections

- Genotype representation
 - List of all nodes
 - List of all connections and weights (some disabled)

- Mutations
 - Perturbation of a connection weight
 - Enable/disable a connection
 - Add nodes, add connections
 - Innovation number used to align different genomes

- Mutations
 - Perturbation of a connection weight
 - Enable/disable a connection
 - Add nodes, add connections
 - Innovation number used to align different genomes
 - Same structural change,
 same innovation number

- Cross-over
 - Matched genes
 - Disjointed genes
 - Excess genes

- Issue: larger topologies optimize slower than smaller ones
- Larger candidate solutions strive to survive
- Solution: speciation (niching)
 - Divide population in sub-populations of similar topologies
 - Topologies are only in competition within sub-population
 - Sub-populations are organized by a distance that takes into account matching, disjoint, and excess genes

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W} \qquad f'_i = \frac{f_i}{\sum_{j=1}^n \operatorname{sh}(\delta(i,j))}$$

- In the original 2002 paper, tested on toy benchmarks
 - XOR, Pole balancing, Double pole balancing with/out velocity
 - Results are better than other neuro-evolution approaches

- In the original 2002 paper, tested on toy benchmarks
 - XOR, Pole balancing, Double pole balancing with/out velocity
 - Results are better than other neuro-evolution approaches

		Method	Evaluations	Generations	No. Nets
DPV -		Ev. Programming	307,200	150	2048
	J	Conventional NE	80,000	800	100
		SANE	12,600	63	200
		ESP	3,800	19	200
		NEAT	3,600	24	150

DPNV

Method	Evaluations	Generaliza	tion	No. Nets
CE	840,000		300	16,384
ESP	169,466		289	1,000
NEAT	33,184		286	1,000

- Scaling to large networks (1M+ parameters) is an issue
 - In nature, massive structures are compactly encoded in DNA
 - Evolution often uses repetition through reuse
 - Change genotype encoding, more indirect encoding?
- Stanley et al., A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks, 2009

- Compositional Pattern-Producing Networks (CPPN)
 - Consider a *n* x *n* grid of nodes (substrate)
 - CPPN(x_1, y_1, x_2, y_2) = w gives weight between nodes (x_1, y_1) (x_2, y_2)

- Compositional Pattern-Producing Networks (CPPN)
 - Consider a *n x n* grid of nodes (substrate)
 - CPPN(x_1, y_1, x_2, y_2) = w gives weight between nodes (x_1, y_1) (x_2, y_2)

- Substrate can potentially be in *d* dimensions
- «Hypercube» comes from there
- CPPNs are evolved using NEAT
- CPPNs create ANN connections if output exceeds a threshold

> Evolving deep neural networks

- 2012-2016: Deep learning enters the scene
 - New algorithms to quickly and effectively optimize weights
 - Easy-to-use implementations in C++/Python
 - EAs can now focus on just optimizing hyperparameters/topology
- Lots of similar ideas
 - Jung and Reggia, Evolutionary Design of Neural Network Architectures Using a Descriptive Encoding Language, 2006 (!)
 - Miikkulainen et al., Evolving Deep Neural Networks, 2017
 - Assunção et al., DENSER: Deep Evolutionary Network Structured Representation, 2019

> Evolving deep neural networks

- Miikkaulinen et al., Evolving Deep Neural Networks, 2017
 - It's basically NEAT, but each element in the genome is a *layer*, not a *node*
 - Each layer has its own (hyper-) parameters (binary/integers/float)
 - Weights of the network are optimized using classic Stochastic-Gradient-Descent-based techniques

Node Hyperparameter	Range
Number of Filters	[32, 256]
Dropout Rate	[0, 0.7]
Initial Weight Scaling	[0, 2.0]
Kernel Size	{1,3}
Max Pooling	$\{True, False\}$
Global Hyperparameter	Range
Learning Rate	[0.0001, 0.1]
Momentum	[0.68, 0.99]
Hue Shift	[0, 45]
Saturation/Value Shift	[0, 0.5]
Saturation/Value Scale	[0, 0.5]
Cropped Image Size	[26, 32]
Spatial Scaling	[0, 0.3]
Random Horizontal Flips	$\{True, False\}$
Variance Normalization	$\{True, False\}$
Nesterov Accelerated Gradient	$\{True, False\}$

> Evolving deep neural networks

- This time, Miikkulainen is serious
 - CIFAR-10 (7.3% error, 92.7% accuracy)
 - Language modeling benchmark, LSTM, PTB dataset (5% error)
 - Image captioning, MSCOCO (better than hand-designed)

Model	BLEU-4	CIDEr	METEOR
DNGO [41]	26.7	_	_
Baseline [47]	27.7	85.5	23.7
Evolved	29.1	88.0	23.8

Table 3: The evolved network improves over the handdesigned baseline when trained on MSCOCO alone.

> DENSER

- Assunção et al., DENSER: Deep Evolutionary Network Structured Representation, 2019
 - NEAT-like structure for high-level genome, each gene a layer
 - Grammar-based approach for description of each layer


```
<features> ::= < convolution>
                           | <pooling>
       <convolution> ::= layer:conv [num-filters,int,1,32,256]
                          [filter-shape,int,1,1,5] [stride,int,1,1,3]
                           <padding> <activation> <bias>
                           <batch-normalisation> < merge-input>
<batch-normalisation> ::= batch-normalisation:True
                           batch-normalisation:False
       <merge-input> ::= merge-input:True
                           merge-input:False
           <pooling> ::= <pool-type> [kernel-size,int,1,1,5]
                           [stride,int,1,1,3] < padding >
         <pool-type> ::= layer:pool-avg
                           layer:pool-max
          <padding> ::= padding:same
                           padding:valid
      <classification> ::= <fully-connected>
   <fully-connected> ::= layer:fc <activation>
                          [num-units,int,1,128,2048] < bias >
         <activation> ::= act:linear
                           act:relu
                           act:sigmoid
              <br/>
<br/>bias> ::= bias:True
                           | bias:False
          <softmax> ::= layer:fc act:softmax num-units:10 bias:True
          learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]
```


> DENSER

- Mutations for the high-level and grammatical genome
 - Add layer, replicate layer, remove layer (high-level)
 - Grammatical mutation, integer/float mutation
- Results are the best among automatic methods (in 2019)
 - 99.65% (99.70%) accuracy for MNIST
 - 94.23% (94.70%) accuracy for Fashion-MNIST (same topology)
 - 73.32% (74.94%) accuracy for CIFAR-100 (same topology)
- Even better with an ensemble of the best two candidates
 - 99.70%, 95.26%, and 78.75% respectively

> Lamarckian neuroevolution

> Lamarckian neuroevolution

- Lamarck was wrong, his ideas are usable
- Lamarckian evolutionary algorithms
 - In classic EAs, offspring inherits part of genome
 - In Lamarckian EAs, also inherits values obtained from local optimization/training
 - Neuroevolution: values of the weights

> Lamarckian neuroevolution

- EXAMM algorithm (Rochester Institute of Technology, US)
 - Ororbia et al., Investigating Recurrent Neural Network Memory Structures using Neuro-Evolution, 2019
 - Lyu et al., Neuroevolution of recurrent neural networks for time series forecasting of coal-fired power plant operating parameters, 2021
- Evolving Recurrent Neural Networks (RNN) for time series
 - Evolutionary exploration of augmenting memory models (EXAMM)
 - Several different units (LSTM, GRU, MGU, ...)
 - Networks train for a few epochs, transmit weights to offspring

Neuroevolution

- But does it REALLY work?
 - In other words, is it competitive with human design?
 - There is some evidence that yes, it does work
- HUMIES 2022 (Human-Competitive Awards)
 - https://human-competitive.org/
 - Miikkulainen et al., Evaluating Medical Aesthetics Treatments through Evolved Age-Estimation Models, GECCO 2021
 - Better results than human-designed neural network, Silver Medal

THANK YOU FOR YOUR TIME!

QUESTIONS?

