Aula 6 – Mineração de Dados Classificação - Parte 1

Profa. Elaine Faria
UFU

Agradecimentos

Este material é baseado

- No livro Tan et al, 2006
- Nos slides do prof. Andre C. P. L. F. Carvalho
- No livro Facelli et al, 2011

Agradecimentos

- Ao professor André C. P. L. F. Carvalho que gentilmente cedeu seus slides
- Ao professor Tan que disponibilizou vários slides do seu livro

Abordagens de Aprendizado

Dados

Atributo meta, alvo ou rótulo

Dados - Diagnóstico de uma doença

- Atribuir objetos a uma dentre várias categorias pré-definidas
- Ex.:
 - Classificação de letras e números
 - Reconhecimento de faces
 - Análise de crédito
 - Diagnóstico médico

- Definição
 - Dado um conjunto de treinamento
 - Em que cada exemplo possui um conjunto de atributos
 - Um deles o rótulo ou classe
 - Encontrar um modelo para o atributo classe como uma função dos valores de entrada
 - Função alvo ou modelo de classificação
 - Assume valores em um conjunto discreto

- Supor a tarefa de aprender a classificar carros em duas classes
 - Carro esporte (+)
 - Carro passeio (-)
- Dados de entrada:
 - Características de um carro
 - Preço (x_{i1}) e cilindrada (x_{i2})

- Dados exemplos de treinamento, encontrar um modelo
 - Modelagem descritiva
 - O que representa um carro de passeio?
 - Modelagem preditiva
 - Qual a classe de um novo carro?

x₁: preço

x2: cilindrada

$$D = \{X_i, c(X_i)\}_{i=1}^{N}$$

 Com os exemplos anteriores, a seguinte hipótese pode ser induzida:

> Se $(p_1 \le \text{preço} \le p_2)$ AND $(e_1 \le \text{cilindrada} \le e_2)$ Então carro de passeio

- Para valores adequados de p₁, p₂, e₁ e e₂
- Assume que pode ser representada por um retângulo no espaço preço X cilindrada

Entendo melhor a tarefa de classificação

Classificação Binária

- Mais comum
 - Dados podem pertencer a uma dentre 2 classes
 - Classe positiva
 - Classe negativa

Classificação Avançada

- Classificação com uma única classe
 - Detecção de Novidades
- Classificação Multiclasses
- Classificação Hierárquica
- Classificação Multi-rótulo

Técnicas de classificação

- Exemplos de técnicas de classificação
 - K-vizinhos mais próximos
 - Árvores de Decisão
 - Métodos basedos em regras
 - Redes Neurais
 - Naive Bayes
 - Máquinas de Vetores de Suporte (SVM)

K-vizinhos mais próximos (K-NN)

- É um dos algoritmo mais simples de aprendizado de máquina
- Classifica um novo objeto com base nos exemplos próximos a ele
- É um algoritmo preguiçoso (*lazy*), pois não aprende um modelo
- Pode ser usado tanto em classificação quanto regressão

K-vizinhos mais próximos (K-NN)

Aprendizado baseado em instância

Classifica de acordo com distância aos

vizinhos

Simples

Armazenamento de dados (não há modelo explícito)

K-vizinhos mais próximos (K-NN)

Requer

- Um conjunto de instâncias rotuladas
- Medida de proximidade para calcular a distância/similaridade entre um par de instâncias. Ex: distância Euclidiana
- O valor de k, o número de vizinhos mais próximos
- Um método para usar o rótulo das classes dos k vizinhos mais próximos e determinar a classe da nova instância (ex: voto da maioria)

Para cada novo exemplo

Definir a classe dos k exemplos

mais próximos

Classificar exemplo na classe

majoritária de seus vizinhos

- Quantos vizinhos?
 - K muito grande
 - Vizinhos podem ser muito diferentes
 - Predição tendenciosa para classe majoritária
 - Custo computacional mais elevado
 - K muito pequeno
 - Não usa informação suficiente
 - Previsão pode ser instável
 - Distâncias podem ser ponderadas

- Medida de distância
 - KNN tem o desempenho afetado pela medida de distância
 - No caso da Euclidiana, supõe-se atributos numéricos
 - A escala do atributo pode afetar os resultados

Escolha inapropriada da medida de distância

Exemplo

Para documentos, cosseno é melhor do que Euclidiana

- Aspectos positivos
 - O treinamento é simples (armazenar objetos)
 - Constrói aproximações locais da função objetivo diferentes para cada novo dado
 - É aplicável mesmo em problemas complexos
 - Naturalmente incremental

Aspectos negativos

- Por ser *lazy* não obtém uma representação compacta dos dados
 - Não se tem um modelo dos dados
- Classificar um objeto significa calcular a distância dele a todos os objetos de treinamento
- É afetado pela presença de atributos redudantes e irrelevantes
 - Como todo algoritmo baseado em distância
- Problemas em alta dimensionalidade

Entendendo a questão da dimensionalidade

- Considere 100 pontos com distribuição uniforme
 - em um quadrado cujo lado mede 1
 - em um cubo cujo lado mede 1
 -
 - calculando a distância média entre pontos temos:

Num. Dimensões	Distância Média
2	0,494
3	0,647
4	0,772
5	0,875
10	1,280

Aumento da Distância; Densidade diminui; Conjunto de Dados esparso

Árvore de Decisão

- Utiliza uma estratégia de dividir-paraconquistar
 - Um problema complexo é decomposto em subproblemas mais simples
 - Recursivamente a mesma estratégia é aplicada a cada sub-problema
- A capacidade de discriminação de uma árvore vem da
 - Divisão do espaço definido pelos atributos em subespaços
 - A cada sub-espaço é associada uma classe

Árvore de Decisão

- Representação
 - Cada nó interno testa um atributo (nó de divisão)
 - Contém um teste condicional baseado nos valores do atributo. Ex: idade > 18
 - Cada ramo (aresta) corresponde a um valor do atributo
 - Cada folha representa uma classe
 - Rotulado como uma função
 - Considera-se os valores da variável alvo dos exemplos que chegam no nó folha
 - Ex: função moda
 - Nó raiz: não tem aresta de entrada, só de saída

Árvore de Decisão - Exemplo

Atributos (nó de divisão) Refund Marital Taxable Cheat **Status** Income Yes Single 125K No Refund No Married 100K No Yes No 3 No Single 70K No Yes Married 120K No 4 NO **MarSt** Yes No Divorced 95K Single, Dixorced No Married 60K No 6 TaxInc NO No Yes Divorced 220K < 80K > 80K No 85K Yes Single 8 No Married 75K No NO YES 90K Yes 10 No Single

Modelo: Árvore de Decisão

Retirado de: Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006

Árvore de Decisão - Exemplo

				Cr
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Pode existir mais de uma árvore que se adequa aos dados

Tarefa de classificação usando árvores de decisão

Test Set

Retirado de: Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006

Aplicação do Modelos aos Dados

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Aplicação do Modelo aos Dados

Aplicação do Modelo aos Dados

Aplicação do Modelo aos Dados

Aplicação do Modelo aos Dados

Dado de Teste

Aplicação do Modelo aos Dados

Dado de Teste

Árvore de Decisão

- Idéia base para construção:
 - Escolher um atributo
 - Estender a árvore adicionando um ramo para cada valor do atributo
 - Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido)
 - 4. Para cada folha
 - Se todos os exemplos são da mesma classe, associar essa classe à folha
 - 2. Senão repetir os passos 1 a 4

Hunt's Algorithm

Retirado de: Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006

Algoritmo: Árvore de Decisão

```
Entrada: Um conjunto de treinamento D
Saída: Árvore de Decisão
/* Função GeraÁrvore(D) */
se criterio parada(D) = Verdadeiro então
   Retorna: um nó folha rotulado com a constante que
   minimiza a função perda;
fim
Escolha o atributo que maximiza o criterio de divisão em D;
para cada partição dos exemplos D; baseado nos valores do
              atributo escolhido faca
       Induz uma subárvore \acute{A}rvore_{i} = Gera\acute{A}rvore(\mathbf{D_{i}})
fim
Retorna: Árvore contendo um nó de decisão baseado no
atributo escolhido e descendentes Arvore;
```

Retirado de: Facelli, Kati et al. Inteligência Artificial: Uma abordagem de Aprendizado de Máquina, LTC, 2011

Indução da árvore

- Estratégia Gulosa
 - Dividir os registros baseando-se em um atributo teste que otimiza um certo critério
- Questões
 - Determinar como dividir os registros
 - Como escolher o atributo de teste
 - Como determinar a melhor divisão?
 - Determinar quando parar a divisão

Especificando a condição de teste

- Depende do tipo do atributo
 - Nominal
 - Ordinal
 - Contínuo

- Depende do número de modos de dividir
 - 2 divisões
 - Mais que 2 divisões

Especificando a condição de teste

Divisão com múltiplas opções

Divisão binária

Retirado de: Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006

Especificando a condição de teste

Determinando a melhor divisão

- Guiada por uma medida de "goodness of split"
 - Indica quão bem um atributo discrimina as classes
 - Usada para selecionar o atributo que maximiza essa medida
 - Para cada teste possível, o sistema considera o subconjunto dos dados obtidos

Determinando a melhor divisão

- Proposta gulosa:
 - Nós com distribuição de classe homogênea são prefereidos
- Medida de impureza de um nó:

C0: 5

C1: 5

Não-homogêneo,

Alto nível de impureza

C0: 9

C1: 1

Homogêneo,

Baixo nível de impureza

Medidas de Impureza de um nó

Îndice de Gini

Gini
$$Index = 1 - \sum_{i=0}^{c-1} p_i(t)^2$$
 Where $p_i(t)$ is the frequency of class i at node t , and c is the total number of classes

Entropia

$$Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2 p_i(t)$$

Erro de classificação

Classification error =
$$1 - \max[p_i(t)]$$

Determinando a melhor divisão

- Calcule a medida de impureza (P) antes da divisão
- Calcule a medida de impureza (M) depois da divisão
 - Calcule a medida de impureza de cada nó filho
 - •M é a impureza ponderada dos nós filhos
- 3. Escolha o atributo que produz o maior ganho

Ganho = P - M

ou equivalentemente, a menor medida de impureza após a divisão (M)

Árvores de Decisão

<u>Arvore de Decisão - Exemplo</u>

Aparência

1	rparencia	remperatura	Humaaae	Ventoo	Jugo			
Ì	Sol	Quente	Alta	Falso	Não			
	Sol	Quente	Alta	Verdade	Não			
	Encoberto	Quente	Alta	Falso	Sim			
	Chuvoso	Agradável	Alta	Falso	Sim			
	Chuvoso	Frio	Normal	Falso	Sim			
	Chuvoso	Frio	Normal	Verdade	Não			
	Encoberto	Frio	Normal	Verdade	Sim			
	Sol	Agradável	Alta	Falso	Não			
	Sol	Frio	Normal	Falso	Sim	Aparência		
	Chuvoso	Agradável	Normal	Falso	Sim	(Temperatura)		
	Sol	Agradável	Normal	Verdade	Sim	Sol Chuvoso Quente Fri	io	
	Encoberto	Agradável	Alta	Verdade	Sim	Encoberto Agradavel	\	
	Encoberto	Quente	Normal	Falso	Sim	Sim Sim Sim Sim	Sim	
	Chuvoso	Agradável	Alta	Verdade	Não	ei sim	50000000	
8		<u>. </u>				Sim Sim	Sim	
						Nao Nao	Sim	
						Nao Nao	Não	
						Não Não Não		
						Não		
						Vento		
						Humidade Vento		
						Falso Verdadeiro		
						Alta Normal Paiso Verdadeiro		
						Sim Sim		
						Sim Sim Sim		
						Sim Sim Sim		
						Sim Sim		
						Nao Sim Sim		
						Nao Sim Sim Nao		
						Não Sim Não Não		
	Retirado do material profa. Sandra de Amo - disciplina: Mineração de Dados - FACOM - UFU							
	1 3							

Árvore de Decisão - Exemplo

Se escolhemos o atributo Aparência:

Info(Nó) =
$$\frac{5}{14}$$
 entropia(Folha 1) + $\frac{4}{14}$ entropia(Folha 2) + $\frac{5}{14}$ entropia(Folha 3) entropia(Folha 1) = $\frac{2}{5} \log_2 \frac{2}{5} + \frac{3}{5} \log_2 \frac{3}{5} = 0.971$ entropia(Folha 2) = $\frac{4}{4} \log_2 \frac{5}{5} + \frac{0}{4} \log_2 \frac{0}{4} = 0$ entropia(Folha 3) = $\frac{3}{5} \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5} = 0.971$ Logo, Info(Nó) = $\frac{5}{14} 0.971 + \frac{4}{14} 0 + \frac{5}{14} 0.971 = 0.693$

Retirado do material profa. Sandra de Amo - disciplina: Mineração de Dados - FACOM - UFU

Árvore de Decisão - Exemplo

- Se escolhemos o atributo Temperatura:
 - $Info(N\acute{o}) = \frac{4}{14} entropia(Folha 1) + \frac{6}{14} entropia(Folha 2) + \frac{4}{14} entropia(Folha 3) = 0.911$
- Se escolhemos o atributo Humidade:

Info(Nó) =
$$\frac{7}{14}$$
 entropia(Folha 1) + $\frac{7}{14}$ entropia(Folha 2) = 0.788 item Se escolhemos o atributo Humidade:

$$Info(N\acute{o}) = \frac{8}{14} entropia(Folha 1) + \frac{6}{14} entropia(Folha 2) = 0.892$$

Árvore de Decisão - Exemplo

Info-pré =
$$\frac{9}{14}log_2\frac{9}{14} + \frac{5}{14}log_2\frac{5}{14} = 0.940$$
.
ganho(Aparência) = $0.940 - 0.693 = 0.247$
ganho(Temperatura) = $0.940 - 0.911 = 0.029$
ganho(Humidade) = $0.940 - 0.788 = 0.152$
ganho(Vento) = $0.940 - 0.892 = 0.020$

Aparência deve ser o atributo a ser usado neste caso!

Determinando a melhor divisão

- Como fazer a divisão para atributos contínuos?
 - Ex: Temperatura nro real
- A estratégia usual pesquisa por uma partição binária do conjunto de treinamento
 - Conjunto dos exemplos em que o atributo é <= valor
 - Conjunto dos exemplos em que o atributo é >= valor
 - Ex: Temperatura = 70,5

Como obter o valor (ponto de corte)?

Determinando a melhor divisão

- Como fazer a divisão para atributos contínuos?
 - Ordenar os valores do atributo contínuo
 - O ponto médio entre dois valores consecutivos é um possível ponto de corte e é avaliado pela função mérito
 - O possível ponto de corte que maximiza a função mérito é escolhido

Poda de árvores

- É um importante passo da construção de árvores
 - Principalmente em domínios ruidosos
- Dados ruidosos levam a dois problemas
 - Estatísticas calculadas nos nós mais profundos da árvore têm baixos níveis de importância devido ao pequeno nro de exemplos que chegam nesse nós
 - Superajustamento ao treinamento
 - A árvore induzida tente a ser grande e difícil de compreender
- Podar uma árvore
 - Trocar nós profundos por folhas

Poda de árvores

- Podar quase sempre causa classificação incorreta de alguns exemplos do conjunto de treinamento
- A vantagem da poda aparece ao se classificar novos exemplos, não usados no treinamento
 - Erros de generalização menores
- Métodos de poda
 - Pré-poda: param a construção quando algum critério é satisfeito
 - Pós-poda: constrõem a árvore e podam posteriormente

Árvores de Decisão - Problemas

- O conjunto de treinamento pode n\u00e3o possuir valores para alguns atributos
 - Árvores de decisão podem ser usadas mesmo na presença de valores desconhecidos
- Estratégias
 - Trocar o valor não conhecido pelo mais comum para o atributo
 - Considerar o valor desconhecido com um outro valor possível do atributo (um ramo da árvore para o desconhecido)
 - Estratégias mais complexas usadas no C4.5 e CART

Árvores de Decisão

Vantagens

- Não assumem nenhuma distribuição para os dados
- Relativamente baratas de construir
 - Complexidade linear no nro de instâncias
- Extremamente rápido na classificação de registros desconhecidos
- Fácil de interpretar para árvores de pequeno porte
- Robusto para ruído
- Pode lidar facilmente com atributos redundantes
- Pode lidar facilmente com atributos irrelevantes

Árvores de Decisão

Desvantagens

- Cada limite de decisão envolve apenas um único atributo
- Na presença de valores ausentes, os algoritmos devem empregar algum mecanismo para lidar com eles
- A presença de atributos contínuos é uma dificuldade
- Instabilidade
 - Pequenas variações no conjunto de treinamento podem produzir grandes variações na árvore.

Referências

- Katti, F.; Lorena, A. C.; Gama, J.; Carvalho, A. C. P. L. F. Inteligência Artificial: Uma abordagem de Aprendizado de Máquina, LTC, 2011
- Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006
- Material do curso de Mineração de Dados da profa.
 Sandra de Amo FACOM-UFU