SISTEMI OPERATIVI IIN/IEL/IDT INFORMATICA INDUSTRIALE E SISTEMI OPERATIVI IDI SISTEMI DI ELABORAZIONE P.O.

prova scritta del 29.06.2004

Nome:	Cognome:
	· · · · · · · · · · · · · · · · · · ·

In un sistema sono eseguiti dei processi che spendono una frazione p=0,6 del loro tempo in attesa del completamento di operazioni di I/O. In particolare, durante un determinato periodo di tempo viene richiesta l'esecuzione di 3 processi, i cui parametri caratteristici sono riportati nella seguente tabella:

	T_A	T_{CPU}
P_1	0	2
P_2	4	6
P ₃	8	4

dove T_A indica il tempo di arrivo del processo, mentre T_{CPU} indica il tempo di CPU richiesto per portare a termine l'elaborazione.

Si determini la traccia di esecuzione dei processi sia nel caso di monoprogrammazione che in quello di multiprogrammazione, indicando gli istanti in cui i diversi processi iniziano e terminano. Si ricavino inoltre, per entrambi i casi, il tempo di completamento (o turn-around) T_{TA} dei singoli processi, il tempo di completamento medio e quello complessivo.

Soluzione

1. Monoprogrammazione

Nel caso di monoprogrammazione ogni processo cede la CPU solo al termine della sua esecuzione. Pertanto, tenuto conto che il grado di utilizzo della CPU è sempre $T_{cou} = 1 - 0.6 = 0.4$, la sequenza di esecuzione dei processi è la seguente:

 P_1 va in esecuzione a T = 0 e termina in T = 2/0.4 = 5 P_2 va in esecuzione a T = 5 e termina dopo T = 6/0.4 = 15, in T = 20 P_3 va in esecuzione a T = 20 e termina in T = 4/0.4 = 10, in T = 30

I tempi di turnaround sono:

$$P_1$$
: $T_{TA} = 5 - 0 = 5$
 P_1 : $T_{TA} = 20 - 4 = 16$
 P_1 : $T_{TA} = 30 - 8 = 22$

Il tempo di turnaround medio: $T_{TA} = (5 + 16 + 22) / 3 = 43/3 = 14.3$ Il tempo di completamento complessivo: T = 30

2. Multiprogrammazione

La percentuale di utilizzo della CPU è data da: $T_{cpu} = 1 - p^N$, con N grado di multiprogrammazione e p frazione di tempo spesa dai processi in attesa di operazioni di I/O. La soluzione del problema consiste pertanto nell'applicare la formula nei diversi intervalli temporali.

• Nell'intervallo 0-4 è attivo il solo processo P_1 N=1 p = 0.6 T_{cpu} = 1 - 0.6 = 0.4

In questo intervallo il processo P_1 usa la CPU complessivamente per il tempo: T = 0.4 * 4 = 1.6

All'istante T = 4 la situazione è la seguente:

	T _{cpu} residuo
P_1	0.4
P_2	6

• A partire dall'istante T = 4 sono presenti nel sistema due processi

$$N = 2$$
 $p = 0.6$
 $T_{cpu} = (1 - 0.6^2)/2 = 0.64/2 = 0.32$

Per ogni unità di tempo ogni processo esegue per 0.32. Il processo P_1 termina dopo: T = 0.4/0.32 = 1.25

• Nell'intervallo 5.25 - 8 torna perciò ad essere in esecuzione un solo processo (P_2) .

$$N = 1$$
 $p = 0.6$ $T_{cpu} = 1 - 0.6 = 0.4$

Pertanto in tale intervallo P_2 esegue per: T = (8-5.25) * 0.4 = 2.75 * 0.4 = 1.1

All'istante T = 8 il processo P_2 ha eseguito complessivamente per: 0.4 + 1.1 = 1.5 e la situazione è la seguente:

	T _{cpu} residuo
P_2	4.5
P_3	4

• A partire dall'istante T = 8 sono presenti nel sistema due processi

$$N = 2$$
 $p = 0.6$
 $T_{cpu} = (1 - 0.6^2)/2 = 0.64/2 = 0.32$

II processo P_3 termina dopo: T = 4/0.32 = 12.5

Quindi all'istante T = 8 + 12.5 = 20.5 il grado di multiprogrammazione è nuovamente N=1 ed il processo P_3 termina dopo: T = 0.5/0.4 = 1.25 nell'istante T = 20.5 + 1.25 = 21.75

I tempi di turnaround sono:

 P_1 : $T_{TA} = 5.25 - 0 = 5.25$ P_1 : $T_{TA} = 21.75 - 4 = 17.75$ P_1 : $T_{TA} = 20.5 - 8 = 12.5$

II tempo di turnaround medio: $T_{TA} = (5.25 + 17.75 + 12.5) / 3 = 11.8$ II tempo di completamento complessivo: T = 21.75