Forstærkerteknik og fejlberegning

Mathias Balling

Last updated: February 1, 2024

Contents

1	$\operatorname{Lin}\epsilon$	Linear Time Invariant Systems		
	1.1	Time-Domain models	2	
	1.2	Examples	2	

1 Linear Time Invariant Systems

Linear Map

The map $f: R^n - > R^m$ is said to be linear if for any $x, y \in R^n$ and $\alpha \in R$, the following conditions hold

$$f(x+y) = f(x) + f(y)$$
 Super position $f(ax) = \alpha f(x)$ Homogeneity

The function has to go through (0,0) in 2D for it to be linear due to homogeneity.

Time-Invariant System

and any delay $\tau \epsilon R$ the following relation holds:

$$y(t-\tau) = \sigma(t, u(t-\tau))$$

for all times $t \in \mathbb{R}$, where y denotes the output signal of the system.

The importance is that the system does not change its behavior due to time. This can be seen as a canon firing at 8am it will not fire different compared to if you do the same at 5pm.

1.1 Time-Domain models

Two types of linear time-domain models.

Continous-time state space models (based on differential equations)

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

- x = state
- \bullet u = input
- \bullet y = output
- A = system matrix
- \bullet B = input matrix
- \bullet C = output matrix
- D = Direct feedtrhough matrix

Discrete-time state space models (based on difference equations)

$$x_{k+1} = \Phi x_k + \Gamma u_k$$

$$y_k = Cx_k + Du_k$$

1.2 Examples