MyMAI_Music Translation

딥러닝을 활용한 Singing Voice Conversion

김유민 박진혁 이소라 정혜인 조민호 최승호

01. Introduction

WHY Singing Voice Conversion?

Tacotron을 이용한 Voice Conversion

TACO-VC: A SINGLE SPEAKER TACOTRON BASED VOICE CO WITH LIMITED DATA

Roee Levy-Leshem, Raja Giryes

School of Electrical Engineering, Tel Aviv University, Tel Aviv,

ABSTRACT

01

This paper introduces Taco-VC, a novel architecture for voice conversion (VC) based on the Tacotron synthesizer, which is a sequence-to-sequence with attention model. The training of multi-sneaker voice conversion systems requires a large amount of

지 X MAVER | L | A | B S | 유민사 가 만지 않고 나머지는 기술이 완성합니다 YG와 비미에 웹스가 함께하는 (오디오북 기부 생태인)

*도구 책과다 가하게 가를 바라며 독립한 외디오북 로 비했어요. 영화한 원자가 증정한 부용했고, 나머자는 비미에 응원한 있다면 제 제 조소리를 처하에서 본 사항하나다고, 세상 하나뿐이 오디오북 이렇게 5로시나면?

책 읽어주는 딥러닝 - 유인나 Ver.

제7회 투빅스 컨퍼런스 - 투빅스랩소디

TOBIG'S Rhapsody

tacotron을 이용한 음성 합성기 제작

다양한 "Speech" Voice Conversion 시도들!

"Singing" Voice Conversion은....?

Q. 내가 듣고 싶은 노래를

<mark>내가 좋아하는 가수</mark>가 불러준다면..?

거미 - You Are My Everything

with 0 0 9 's voice

내가 좋아하는 가수

케이윌 - 내생에 아름다운

with 10cm's voice

Q. 우리는 어떤 데이터가 필요할까?

A. "목소리만 남은" 노래 데이터가 필요하다!

-Original 가수-

-Conversion 가수-

각각 10곡 이상의 **원곡과 Inst.파일** 다운로드

ex) 아이유, 백지영, 거미, 신용재, 10cm, 케이윌 등

① 원곡 파일 & Inst.파일 각각 푸리에 변환

② 원곡과 Inst. 푸리에 변환값의 차이를 이용해 목소리 분리

③ 목소리 분리 값 to .wav 파일 by 역푸리에 변환

cf. What is Fourier Transform? 시간에 대한 신호를 함수를 구성하고 있는 주파수 성분으로 분해하는 작업

HOW we used?

1) 무음값 제거

의미 있는 Feature만 뽑을 수 있도록 필요 없는 부분 제거 ex. 가사가 없는 부분, 간주 부분, 숨쉬는 부분 등

[목소리 분리 후 .wav 파일]

1) 무음값 제거

의미 있는 Feature만 뽑을 수 있도록 필요 없는 부분 제거 ex. 가사가 없는 부분, 간주 부분, 숨쉬는 부분 등

[목소리 분리 후 .wav 파일]

→

2) Notch Filter 적용

- 주파수 상에서 잡음으로 인식되는 Noise 제거
- 극도의 저주파와 고주파는 잡음과 동일함
 - → 특정 범위를 벗어난 주파수는 잡음으로 인식

1) 무음값 제거

의미 있는 Feature만 뽑을 수 있도록 필요 없는 부분 제거 ex. 가사가 없는 부분, 간주 부분, 숨쉬는 부분 등

2) Notch Filter 적용

- 주파수 상에서 잡음으로 인식되는 Noise 제거

- 극도의 저주파와 고주파는 잡음과 동일함

→ 특정 범위를 벗어난 주파수는 잡음으로 인식

3) Noise Reduction

보다 세밀하게 곡 내에서의 잡음 인식 후 제거

케이윌 – 내 생에 아름다운 (원곡)

Before

케이윌 – 내 생에 아름다운 (전처리 후)

After

2. Augmentation

[원본]

[위아래 뒤집기]

[거꾸로 재생]

[거꾸로 재생 + 위아래 뒤집기]

2. Augmentation

Augmentation을 통해 데이터 크기 4배 증강!

[원본]

[거꾸로 재생]

White Noise, Stretch 등의 시도는

음정이 담긴 데이터라는 점에서 저하된 성능을 보임!

[위아래 뒤집기]

[거꾸로 재생 + 위아래 뒤집기]

HOW we used?

Model Input

모델 구조 - Feature Extraction

Audio Analysis

- 1 F0
 - 근음(뿌리근소리음)
 - 소리를 들었을 때 사람이 인지하는 음의 뿌리가 되는 주파수

- Spectral Envelope
 - Spectrum을 역푸리에 변환한 Cepstrum 중 저주파 부분

- 3 Aperiodicity Energy
 - 주파수의 극소값과 극대값을 연결한 curve 간의 ratio
 - Envelope 이외 진동하는 진폭의 정보

모델 구조 - Feature Extraction

Audio Analysis

04

Fourier Transform

X축: Time(시간)

Y축: Amplitude(진폭)

Fourier Transform

FFT

1.75 1.50 1.25

90 1.00

0.75

0.50

0.25

0.00

4 6 8 10 12 14

X축: Time(시간) Y축: Amplitude(진폭) X축: Frequency(주파수) Y축: Magnitude(주파수의 세기)

모델 구조 - Feature Extraction

Q. What is Spectral Envelope?

04

Q. What is Spectral Envelope?

O. GAN(Generative Adversarial Network) - Background

<pix2pix>

Input

Output

Ground Truth

Input

Ground Truth

L

O. GAN(Generative Adversarial Network)

: Generator와 Discriminator 사이의 경쟁적 학습을 이용한 Network

Generator 진짜 지폐와 최대한 비슷한 위조지폐를 만들자!

Discriminator

위조지폐와 진짜 지폐를 잘 구별해내자!

O. GAN(Generative Adversarial Network) - Loss Function

: Generator와 Discriminator 사이의 경쟁적 학습을 이용한 Network

[Discriminator]

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

진짜 데이터 x를 넣었을 때의 값 G가 만든 가짜 데이터 G(z)를 넣었을 때의 값

[Generator]

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

O. GAN(Generative Adversarial Network) - Loss Function

: Generator와 Discriminator 사이의 경쟁적 학습을 이용한 Network

$$\min_{\underline{G}} \max_{\underline{D}} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

진짜 데이터 x를 넣었을 때의 값 G가 만든 가짜 데이터 G(z)를 넣었을 때의 값

---- : 진짜 데이터를 넣으면 큰 값, 가짜 데이터를 넣으면 작은 값을 출력하도록 Discriminator를 학습시키자!

---- : D(G(z))를 극대화하는 G, 즉 Discriminator를 속이는 Generator를 학습시키자!

1. CycleGAN(Cycle Generative Adversarial Network)

: 각각 2개의 Generator와 Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

1. CycleGAN(Cycle Generative Adversarial Network) Cycle:Consistency Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

04

1. CycleGAN(Cycle Generative Adversarial Network)

: 각각 2개의 Generator와 Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

1. CycleGAN(Cycle Generative Adversarial Network) – Loss Function

: 각각 2개의 Generator와 Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

$$\mathcal{L}_{full} = \mathcal{L}_{adv}(G_{X \to Y}, D_Y) + \mathcal{L}_{adv}(G_{Y \to X}, D_X) + \lambda_{cyc} \mathcal{L}_{cyc}(G_{X \to Y}, G_{Y \to X}) + \mathcal{L}_{id}(G_{X \to Y}, G_{Y \to X})$$

$$\mathcal{L}_{adv}(G_{X \to Y}, D_Y) = \mathbb{E}_{y \sim P_{Data}(y)} \left[\log D_Y(y) \right] + \mathbb{E}_{x \sim P_{Data}(x)} \left[\log (1 - D_Y(G_{X \to Y}(x))) \right]$$

GAN Loss: GAN의 Generator와 Discriminator를 적대적으로 학습하기 위한 Loss이다. Generator는 X 도메인에서 Y 도메인과 비슷한 데이터를 생성하고, Discriminator는 진짜 Y도메인 데이터인지 판별하며 학습한다.

1. CycleGAN(Cycle Generative Adversarial Network) – Loss Function

: 각각 2개의 Generator와 Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

$$\mathcal{L}_{full} = \mathcal{L}_{adv}(G_{X \to Y}, D_Y) + \mathcal{L}_{adv}(G_{Y \to X}, D_X) + \lambda_{cyc} \mathcal{L}_{cyc}(G_{X \to Y}, G_{Y \to X}) + \mathcal{L}_{id}(G_{X \to Y}, G_{Y \to X})$$

$$\mathcal{L}_{cyc}(G_{X \to Y}, G_{Y \to X}) = \mathbb{E}_{x \sim P_{Data}(x)} [\|G_{Y \to X}(G_{X \to Y}(x)) - x\|_1] + \mathbb{E}_{y \sim P_{Data}(y)} [\|G_{X \to Y}(G_{Y \to X}(y)) - y\|_1]$$

Cycle Consistency Loss: Generator에 의해 생성된 가짜 데이터를 다시 반대 도메인으로 생성한 데이터와 기존 원본 데이터의 Loss이다.

1. CycleGAN(Cycle Generative Adversarial Network) – Loss Function

: 각각 2개의 Generator와 Discriminator를 이용해 전체적인 형태를 유지하면서 스타일만 변형해주는 GAN

$$\mathcal{L}_{full} = \mathcal{L}_{adv}(G_{X \to Y}, D_Y) + \mathcal{L}_{adv}(G_{Y \to X}, D_X) + \lambda_{cyc} \mathcal{L}_{cyc}(G_{X \to Y}, G_{Y \to X}) + \mathcal{L}_{id}(G_{X \to Y}, G_{Y \to X})$$

$$\mathcal{L}_{id}(G_{X \to Y}, G_{Y \to X}) = \mathbb{E}_{y \sim P_{Data}(y)} [\|G_{X \to Y}(y) - y\|_1] + \mathbb{E}_{x \sim P_{Data}(x)} [\|G_{Y \to X}(x) - x\|_1]$$

Identity Loss: 진짜 Y 도메인의 데이터가 Y 도메인 Discriminator에 들어왔을 때의 Mapping Function. 이 과정에서 Y 도메인의 특징을 유지하도록 만들어 X 도메인의 형태를 깊게 학습할 수 있도록 한다!

2. CycleGAN + BEGAN(Boundary Equilibrium Generative Adversarial Network)

: CycleGAN과 동일한 구조에서 D가 AutoEncoder를 가지며 Equilibrium을 통해 G와 D의 평형을 유지하는 GAN

2. CycleGAN + BEGAN(Boundary Equilibrium Generative Adversarial Network)

: CycleGAN과 동일한 구조에서 D가 AutoEncoder를 가지며 Equilibrium을 통해 D와 G의 평형을 유지하는 GAN

WHY BEGAN?

- G Generator
- Equilibrium을 통해 G와 D의 성능을 비슷한 정도로 학습시킬 수 있다.
 - D가 AE 구조를 가지면서 Loss 분포를 수치로 비교할 수 있다.
 - Pitch Accuracy와 Gender Transfer에서 향상된 성능을 보인다.
 - CycleGAN보다 깔끔한 음질의 오디오를 보여준다.

3. Full Architecture

05. Conclusion

Final Result & Discussion

1. 결과 시연: 거미 - You are My Everything(아이유 Ver.)

1. 결과 시연: 케이윌 - 내 생에 아름다운(10cm Ver.)

2. 한계점

Singing Style(창법) Conversion은 불가능, Singing Voice Conversion만 가능 😊

2. 한계점

Hyper-parameter Tuning ⊗

n_frames

frame_period

epoch

cycle_gamma

데이터 변경 & 하이퍼 파라미터 튜닝을 시도했지만 가시적인 변화는 보지 못 함

3. 개선 방향

- WaveNet AutoEncoder를 적용한 시도

Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders

Domain confusion network C

Speaker Embedding V1

Autoregressive Feed

Reconstruction of the state of the sta

ck*¹ Adam Roberts¹ Sander Dieleman² Douglas Eck¹ Simonyan² Mohammad Norouzi¹

found effect on the course of music and culture in the past half century (Punk, 2014).

In this paper, we outline a data-driven approach to audio synthesis. Rather than specifying a specific arrangement of oscillators or an algorithm for sample

audio synthesis. Rather than specifying a specific arrangement of oscillators or an algorithm for sample playback, such as in FM Synthesis or Granular Synthesis (Chowning, 1973; Xenakis, 1971), we show that it is possible to generate new types of expressive and real-

perhaps because of them, synthesizers have had a pro-

istic instrument counds with a named natural mode

김유민 투빅스 11기 서울시립대학교 영어영문학과 16학번

이소라 투빅스 11기 덕성여자대학교 정보통계학과 15학번

정혜인 투빅스 11기 숙명여자대학교 컴퓨터과학전공 17학번

박진혁 투빅스 12기 성균관대학교 전기전자공학부 15학번

조민호 투빅스 12기 서강대학교 철학과 14학번

최승호 투빅스 12기 국민대학교 소프트웨어학부 14학번

감사합니다◎

김유민 박진혁 이소라 정혜인 조민호 최승호