Homework11nd&12nd

七

· 2.

0

差
$$G$$
是 u 个顶点 $arepsilon$ 条边的简单图,证明 $\chi(G) \geq rac{
u^2}{
u^2 - 2arepsilon}$

- 不妨记 $k=\chi(G)$
- 假设某种正常k-顶点着色方案为 $V(G)=S_1\cup S_2\cup\cdots\cup S_k$,且 $S_i\cap S_j=\emptyset$, $1\leq i,j\leq k$ 且 $i\neq j$
- ullet 记 $n_i=|S_i|$, $1\leq i\leq k$,则有 $u=\sum_{i=1}^k n_i$
- 则

$$arepsilon \leq rac{1}{2} \sum_{i=1}^k n_i (
u - n_i) = rac{1}{2} \left(
u^2 - \sum_{i=1}^k n_i^2
ight) \leq rac{1}{2} \left[
u^2 - rac{1}{k} \left(\sum_{i=1}^k n_i
ight)^2
ight] = rac{
u^2}{2} \left(1 - rac{1}{k}
ight)$$

■ 即有 $\chi(G)=k\geq rac{
u^2}{
u^2-2arepsilon}$

· 4.

0

设的度数序列为
$$d_1,d_2,\cdots,d_
u$$
,且 $d_1\geq d_2\geq\cdots\geq d_
u$,则 $\chi(G)\leq \max_i\min\{d_i+1,i\}$

- 设度数序列对应的顶点序列为 $v_1, v_2, \cdots, v_{\nu}$ 依次染色
- 不妨设 $\min\{d_i+1,i\}$ 最大值最先在p处取到
- ullet 若 $d_p+1< p$,则显然有p>1和 $d_p+1\leq p-1$ 、 $d_p+1\leq d_{p-1}+1$,即 $\min\{d_p+1,p\}\leq \min\{d_{p-1},p-1\}$,矛盾
- ullet 若 $d_p+1\geq p$,则将前p个点分别染色为 $1,2,\cdots,p$,对于剩余的任意一点 $v_j(p< j\leq
 u)$,由于 $\min\{d_j+1,j\}\leq p$,故有 $d_j< p$
- 则可为 v_j 染一种不同于其邻点的颜色,且包含于p种颜色中,此即为一种正常p一顶点着色方案
- 故 $\chi(G) \leq \max_i \min\{d_i + 1, i\}$

· 6.

0

通用:
$$\chi(G) + \chi(G^C) \leq \nu + 1$$

- ullet 数学归纳法证明命题 $\chi(G)+\chi(G^C)\leq
 u+1$
- 当 $\nu = 0$ 时,命题成立
- ullet 若当 $u(\geq 0)$ 时命题成立,在u阶图G中增加一个点u,并将其与点集 $S=\{v_1,v_2,\cdots,v_k\}$ 中所有点相连,其中 $0\leq k\leq
 u$, $v_k\in V(G)$,得到u+1阶图G'
- 若S包含了所有的 $\chi(G)$ 种颜色,则u只能染成新的颜色,即 $\chi(G')=\chi(G)+1$,且 $\deg_G(u)=k\geq \chi(G)$

- 对于 G'^C ,若V(G)-S也包含了所有的 $\chi(G')$ 种颜色,则 $\chi(G'^C)=\chi(G^C)+1$,且 $\deg_{G^C}(u)=\nu-k\geq \chi'(G)$
- 若上述两个假设同时成立,则 $\nu=\deg_G(u)+\deg_{G^C}(u)\geq \chi(G)+\chi(G^C)$,此时有 $\chi(G')+\chi({G'}^C)\leq \nu+2$,命题成立
- lack 若上述假设不同时成立,则 $\chi(G')+\chi(G'^C)\leq \chi(G)+\chi(G^C)+1\leq
 u+2$,命题成立
- 综上, $\chi(G) + \chi(G^C) \leq \nu + 1$

· 8.

0

业是一个圈上加一个新顶点,把圈上的每个顶点都和新顶点之间连一条边,求*ν*阶轮的边色数

- 设 ν 阶轮图G, $\nu > 4$
- ullet 则 $\Delta(G)=
 u-1$, $\chi'(G)=
 u-1$,着色方案如下

· <u>14.</u>

С

 $% = \frac{1}{2}$ 有名教师 x_1, x_2, x_3, x_4 给五个班级 y_1, y_2, y_3, y_4, y_5 上课,某天的教学要求如下:

- 最少课时即为 $\chi'(G)=\Delta(G)=4$
- (人) 不增加课时数的情况下,试排出一个使用教室最少的课表
- $lacksymbol{\blacksquare}$ 最少需要 $\left[rac{arepsilon(G)}{\gamma'(G)}
 ight]=4$ 间教室

· 16.

i明:若一个平面图的平面嵌入是Euler图,则它的对偶图是二分图

- 若G是Euler图,则其中所有顶点度数均为偶数
- $lacksymbol{\blacksquare}$ 则对于G中点v在 G^* 中对应的面 f_v 有 $\deg_{G^*}(f_v)=\deg_G(v)$
- lacktriangle 由于两偶圈通过消除重合边缘而连接得到的也是偶圈,故 G^* 中无奇圈,即为二分图
- · <u>17.</u>

 \mathscr{C} 是 $u(\geq 4)$ 阶极大平面图的平面嵌入,证明:G的对偶图 G^* 是2-边连通的3次正则图

- $\forall f \in F(G)$,有 $\deg_G(f)=3$
- ullet 故面f对应的点 v_f 满足 $\deg_{G^*}(v_f)=3$,且 G^* 显然是2-边连通的

八

· 1.

4多少种方式把 K_5 定向成竞赛图

 $ullet 2^{arepsilon(K_5)} = 2^{10} = 1024$

· 2.

何) 证明: $\delta^-=0$

- ullet 若没有有向圈的有向图D满足 $\delta^- \geq 1$,即 $orall v \in V(D)$ 有 $\deg^-(v) \geq 1$
- 则任取一点 v_0 ,记 $S = \{v_0\}$ 。
- ullet 由于 $\deg^-(v_0) \geq 1$,则可找到其外邻顶点 v_1 且 $v_1
 ot\in S$
- ullet 令 $S=S\cup\{v_1\}$,并找到 v_1 的外邻顶点 v_2 且 $v_2
 ot\in S$
- 以此类推,由于D有限,故对于某点 v_k ,无法找到其不在S中的外邻顶点
- 而 $deg^-(v_k) \geq 1$,故 v_k 有外邻顶点在S内,即有有向圈,与题设矛盾
- 故 $\delta^-=0$

近:存在D的一个顶点序列 $v_1,v_2,\cdots,v_
u$,使得对于任给 $i(1\leq i\leq
u)$,D的每条以 v_i 为终点 的有向边在 $\{v_1, v_2, \cdots, v_{i-1}\}$ 中都有它的起点

■ 由于D无有向圈,则有拓扑排序,而且刚好符合要求

· 3.

证明:任给无向图G,G都有一个定向图D,使得对于所有 $v \in V(G)$,都有 $\left|\deg^+(v) - \deg^-(v)\right| \leq 1$ 成立

- 仅需考虑G连通
- 若G中无奇度顶点,则G为Euler图。找到G的一条Euler回路并按回路走向给每条边定向,即有 $\deg^+(v) = \deg^-(v)$, $\forall v \in V(G)$
- 若G中有奇度顶点 v_1,v_2,\cdots,v_k (k必为偶数),增加一点 v_0 并与所有奇度顶点连一条边,得到图 G'
- ullet 则G'为Euler图,找到其一条Euler回路并定向,此时 $\deg^{+'}(v)=\deg^{-'}(v)$, $orall v\in V(G')$
- 删去增加的k条边对应的有向边后有 $|\deg^+(v) \deg^-(v)| < 1$, $\forall v \in V(G)$