리눅스

순 서 : 제1장 (운영체제의 이해)

• 학 기: 2019학년도 1학기

• 학 과: 가천대학교 컴퓨터공학과 2학년

• 교 수: 박양재

강의소개

- 강의교재
 - ◈ 주교재:사이버캠퍼스에서 강의자료 제공
 - ◆ 부교재: CentOS 리눅스 구축관리 실무, 정우영, 수퍼유저 페도라 리눅스 시스템& 네트워크, 이종원

- 강의방법
 - ◈ 학점 : 3 이론 시수 : 2시간 실습 시수 : 2시간
- ■성적평가
 - ◈ 출석 20% 중간시험30%, 기말시험 30%, 보고서 및 실습 20%

목차

- 1. Software
- 2. 운영체제의 이해
- 3. 운영체제의 역사
- 4. 운영체제의 유형
- 5. 운영체제의 종류
- 6. Unix의 역사
- 7. Unix의 이해
- 8. Linux의 이해
- 9. Linux의 정의
- 10. Linux의 철학
- 11. Linux의 특징
- 12. Windows vs Linux
- 13. Linux Kernel의 이해
- 14. Linux 배포판
- 15. Linux의 미래
- 16. 보고서

1.Software

■Software의 종류 및 개념

- ◈ System software : 컴퓨터의 작동에 필수적인 소프트웨어
 - 운영체제(Operating Syatem), 자판기 작동 프로그램 등
- ◈ Application software : 특정 작업을 수행하기 위한 소프트웨어
 - 주문형 소프트웨어(Custom software) 특정 사용자의 요구에 맞게 제작된 소프트웨어
 - 상용 소프트웨어(Commercial software) 판매를 목적으로 특정 작업에 알맞게 개발된 소프트웨어

1.Software

■ Software의 종류 및 개념

- ◆ Open source : 소프트웨어 설계도에 해당되는 소스코드를 무상으로 공개 하여 누구나 개량하고, 재배포 가능한 소프트웨어.
- ◈ Freeware: 저작권에 관계없이 무료 배포하는 소프트웨어
- ◈ Shareware: 제조사들이 정품 구매를 확대하기 위해 공급하는 샘플로 자유롭게 사용하거나 복사 가능하지만 판권은 공개한 쪽에 있어서 일정기간 사용한 후 대금을 지불하고 정식사용자로 등록해야 하는 소프트웨어. 기간 가증료 후 사용하면 저작권 위반(일부기능 만 제한)
- ▶ Beta version: 테스트버전의 공개버전으로 특정 테스터를 지정하지 않고 많은 사람들이 사용하면서 문제점을 찾아 사용하도록 만들어진 소프트웨 어.일부기능 제한을 두는 경우도 있음.

1.Software

■ Software의 종류 및 개념

- ◆ Alpa version: 알파는 모든 것을 의미, 정품을 선보이전에 프로그램 개발 사 내부에서 미리 평가를 하고 버그를 찾아서 수정하기 위해 시험해 보는 소프트웨어.
- ◆ Trial version: 기업이나 개발자들이 미리 경험해 볼 수 있도록 제작된 배 포버전으로 상업적인 목적에 사용할 수 없다. 일정기간 사용 후 구매하여 사용(일부 기능 만 사용)
- ◆ Bundled Software: 하드웨어를 구입시 패키지의 일부로 함께 판매되는 소프트웨어로 소비자를 유인하는 주요전략으로 사용

■ 운영체제의 개념

- ◈ 컴퓨터는 크게 하드웨어와 소프트웨어로 구분
- ◈ 소프트웨어는 다시 시스템 소프트웨어와 응용 소프트웨어로 구분
- ◆ 운영체제는 컴퓨터를 작동시키고 운영을 도맡아 관리하여 사용자의 응용 프로그램이 효율적으로 실행될 수 있는 환경을 제공하는 기본 소프트웨어
- ◆ 운영체제는 부트스트랩 프로그램에 의해 컴퓨터 내에 최초로 적재 된 후에, 컴퓨터 내의 다른 프로그램들을 관리하는 프로그램
- ◈ 응용프로그램들은 정의되어 있는 응용프로그램 인터페이스(API) 를 통해 서비스를 요청함으로써 운영체제를 이용
- ◆ 사용자들은 명령어와 같은 인터페이스를 통하여 운영체제와 직접 대화

- 운영체제의 구조
 - ◈ 컴퓨터를 기동할 때 제일 먼저 올려(load)지는 프로그램이며 그 핵심부(kernel)는 주기억 영역에 상주
 - ◈ 운영체제 구조

■ 운영체제의 기능

- ◈ 메모리 관리: 주메모리의 하나인 램(RAM)의 사용을 제어하는 것으로 응용 프로그램이 담길 메모리의 위치를 결정한다.
- ◈ 입·출력 관리: 데이터의 흐름을 관리하는 것인데, 이 기능으로 인해 응용 프로그램과 디스크 드라이브, 모니터, 프린터 등의 주변기기와의 데이터 교환을 편리하게 해 준다.
- 파일 및 데이터관리: 파일의 생성과 소멸, 파일의 열기와 닫기 등과 같은 파일을 유지하고 관리하는 기능을 담당한다.
- ◆ 프로세스 관리: 프로세서의 생성,제거, 프로세스 간의 메시지 전달, 프로세스 시작과 정지 등의 작업을 담당
- ◈ 기억장치 관리: 복수의 프로그램으로 공통적으로 사용되는 기억영역의 사용 상황을 관리하며, 각 사용자 프로그램으로부터의 요구에 따라 기억 장소를 할당한다.
- ◆ 자원 관리: 컴퓨터의 여러 자원(각종 드라이브, 모뎀, 프린터 등)이 효율적으로 사용되도록 조정하고 관리해 준다.
- ◆ 스케줄링(Scheduling):사용자로부터 요청 받은 여러 개의 작업 중 먼저 해 야 할 작업순서를 결정해 효율적으로 작업을 할 수 있도록 해준다.

■ 운영체제의 목적과 구성

- ◈ 운영체제가 가져야 할 조건
 - ➤ 처리능력(Throughput)의 향상
 - ▶ 응답시간(Turnaround Time)의 단축
 - ➤ 사용가능성(Availability)의 향상
 - ➤ 신뢰도(Reliability)향상

◈ 운영체제 구분

- ▶ 운영체제는 제어프로그램과 처리프로그램으로 구성
- ▶ 제어프로그램은 감시프로그램, 작업관리 프로그램, 데이터관리 프로 그램으로 구성
- ▶ 처리프로그램은 언어번역 프로그램, 서비스 프로그램으로 구성

3.운영체제의 역사

연도	특징	주요내용
1940년대	운영체제 없음	기계어
1950년대	일괄처리 시스템	단일흐름일괄처리 작업간의 전이문제 중시 오류복구 처리
1960년대	다중 프로그래밍 시분할 시스템 실시간 처리 시스템	가상기억장치 고급언어로 운영체제 작성 데이터 통신 지원용 운영체제
1970년대	범용 시스템 개념 도입 다중 모드 시스템	일괄처리, 시분할처리, 다중모 드(실시간 처리, 다중처리를 한 시스템에서 모두 제공)
1980년대	마이크로컴퓨터 운영체제 사용자에게 친절한 시스템 개념	가상기억장치 통신망 서비스 운영체제 데이터베이스 중요 인식
1990년대 이후	분산 처리 개념 네트워크 개념 개인용 컴퓨터 소규모 서버	소규모 서버 보안과 인증의 강화 에이전트(Αγεντ)프로그램의 활성화

4.운영체제의 유형

- 다중교환(Multi-switching)
 - ◈ 다수 작업이 동시에 수행되나 포그라운드 프로그램만 동작하는 형태
- 단일작업(Single-tasking)
 - ◈ 컴퓨터가 한 번에 하나의 작업만 처리하는 형태
- 다중 작업(Multi-tasking)
 - ◈ 한 사용자가 여러 개의 작업을 동시에 수행
- 다중 사용자(Multi-user)
 - ◈ 단일 프로세스 시스템에서 여러 사용자의 프로그램이 실행되는 것.
- 대화형 처리(Interactive Processing)
 - ◆ 사용자가 단말기에서 대화형으로 작업을 처리하는 것으로 시분할 처리 기능이 필요
- 일괄처리(Batch Procesing)
 - ◈ 여러 개의 작업을 묶어 한꺼번에 처리하는 것으로 작업 효율이 높다.
- 실시간 처리(Real Time processing)
 - ◆ 작업의 처리가 지연 없이 즉각적으로 처리되는 것으로 신속한 반응을 요구

4.운영체제의 유형

- 가상기계(Virtual Machine)
 - ◈ 실제 한대의 컴퓨터 시스템을 여러 사용자가 동시에 사용 할 수 있도록 하기 위해 컴퓨터시스템을 여러 대의 작은 컴퓨터 시스템이 있는 것 처 럼 분할하여 만드는 것.
- 분산처리(Distributed Processing)
 - ◈ 통신망으로 여러 시스템을 연결하고 작업을 나누어 처리하는 시스템.(고속의 통신선, 고신뢰도 마이크로프로세서 필요)
- 병렬처리(Parallel Processing)
 - ◈ 여러 개의 프로세서로 입출력이나 연산 등의 작업을 동시에 처리

5.운영체제의 종류

- 운영체제 개발자
 - ◈ 컴퓨터 제조, 판매 회사 또는 제3자
- 개인용 컴퓨터(PC) 용 OS
 - ◆ MS사에서 개발한 MS-DOS, 윈도 3.1, 윈도 98, 윈도 NT, 윈도 XP 윈도우7, 8
 - ◈ IBM사가 개발한 OS/2
 - ◈ 애플사가 개발한 매킨토시 OS(Mac OS)
- 워크스테이션 용 OS
 - **◈ AT&T**사가 개발한 유닉스(UNIX) 등이 있음

5.운영체제의 종류

■ UNIX 운영체제의 발전과정

6.Unix 의 역사

- 1960년대 UNIX 의 탄생
 - ◆ Multics OS AT&T Bell Labs 가 GE, MIT 그리고 MAC와 공동으로 개발
 ▶ 멀티태스킹이 가능하였으나 속도 문제 등으로 69년 개발 중단
 - ◆ UNIX OS 벨 연구소의 켄 톰슨(Ken Thompson) 은 PDP-7에 소프트웨어적 인 환경과 화일시스템을 어셈블리어로 구현
 - ➤ 최초의 UNIX
- 1970년대 UNIX 의 발전
 - ◆ C 언어 탄생 1971년 벨 연구소의 데니스 리치(Dennis Ritchie)가 고안. 기계 어 코드 생성, 자료형 선언, 그리고 자료 구조의 선언 등을 허용
 - ◆ UNIX 1973년 C 로 다시 쓰여짐
 - ▶ 최소한의 코드를 제외하면 전체 시스템을 다른 환경으로 쉽게 이식 가능
 - ◈ UNIX BSD 1977년 버클리 대학에서 네트웍 기능을 보강한 UNIX BSD 발표
- 1980년대 UNIX의 보급
 - ◈ UNIX System V 1983년 AT&T에서 개발. 1984년 System V Release 2, 1986년 Release 3 개발
 - ◈ UNIX BSD 1983년 버클리 BSD 4.2 개발, 1984년 BSD 4.3
 - ◈ XENIX 1983년 MS사와 산타 크루즈 오퍼레시션이 PC용 유닉스로 개발.
 - ➤ BASIC, COBOL, FORTRAN, Pascal등의 프로그래밍 언어도 사용 가능

6.Unix의 역사

■ 90년대 이후

- ◈ 많은 유닉스 버전 발표
 - ➤ UNIX System V AT&T 버전으로는 Release 4.0까지 발표
 - ➤ Sun(SunOS Solaris), 애플, IBM에서도 자사 UNIX 발표
 - ➤ FreeBSD 가 PC용으로 포팅
- ◈ 유닉스 표준화 그룹 활동
 - ➤ AT&T, IBM등의 기업들을 중심으로 UI(Unic international)그룹 과 OSF(Open Software Foundation)그룹으로 나뉘어짐

7.Unix의 이해

■ Unix 의 특징

- ◈ 뛰어난 통신기능
- ◈ 복수사용자와 다중처리의 지원
- ◈ 뛰어난 호환성
- ◈ 뛰어난 유연성
- ◈ 대화형 시스템
- ◈ 셸 프로그래밍
- ◈ 계층적 파일 시스템
- ◈ 다양한 소프트웨어 개발 도구

7.Unix의 이해

■ 유닉스의 구조

- ◈ 커널 : 파일 관리, CPU 스케줄링, 메모리 관리, 입출력 서비스 등
- ◆ 셀(Shell): 명령어 번역기, UNIX 커널과 사용자 사이의 인터페이 스를 제공함 (Bourne Shell, C Shell, Korn Shell)
- ◈ 유틸리티: 사용자의 편의를 위해 준비된 시스템 프로그램

8.Linux의 이해

- 리눅스의 탄생
 - ◈ 유닉스를 PC 버전으로 개발하려 노력 (80년대)
 - ▶ 마이크로소프트사의 제닉스(Xenix)
 - ▶ 앤드류 타넨바움의 미닉스(Minix)
 - ◆ 1991년 헬싱키 대학생이었던 리누스 토발즈(Linus Torvalds) 에 의해 최초 리눅스 커널 개발
 - ▶ 개인용 PC 에서 멀티태스킹 구현을 위해 UNIX와 유사하게 구현
 - 인터넷 상에 그 소스코드를 공개함으로써 수많은 프로그래머들이 새로운 기능 보강에 참여
 - ▶ 현재 POSIX 표준 지원
 - POSIX(Portable Operating System Interface for UniX 포식스): 휴대하여 Unix·Windows NT 등 OS를 쓰는 어떤 휴대용 기종과도 호환되게 만든 OS)

9.Linux의 정의

■ 리눅스 정의

- ◆ Linux는 UNIX 와 유사함
 - ▶ UNIX의 많은 장점을 가짐
- ◈ 리눅스는 프로세스 스케줄링, 가상 메모리, 파일 관리, 장치 입/출력 등의 기본 서비스를 제공하는 운영체제 커널의 일부분
- ◈ 현재 다양한 임베디드 시스템, PC, 고성능 워크스테이션 등 많은 용 도로 사용되는 인기 있는 운영체제
 - ▶ 인텔 호환 컴퓨터와 매킨토시, SUN, DEC, IBM 등의 시스템에서 동작하며,
 - ➤ 진정한 다중처리, 가상 메모리, 공유 라이브러리, 요구 메모리 적재, 뛰어난 메모리 관리 시스템, 그리고 강력한 TCP/IP 네트워킹을 지원하며,
 - ▶ 기존의 UNIX에 상응하는 강력한 운영체제로 평가받음

10.Linux의 철학

■ 리눅스 철학

- ◈ 오픈 소스(Open Source) 소프트웨어
 - ➤ 80년대 초중반 리차드 스톨만(Richard Stallman) 에 의해 설립된 자유소프트 웨어 재단(FSF, Free Software Foundation) 의 GNU(GNU's Not Unix)소프트 웨어에서 본격적으로 논의되기 시작
 - 어느 누구라도 프로그램의 소스를 구할 수 있고 사용할 수 있으며, 여기에 자신이 원하는 기능을 추가하여 다른 사람에게 배포할 수 있는 소프트웨어를 의미
 - ▶ 리눅스는 GNU GPL(General Public License)을 따르며 소스 코드 또한 자유롭게 배포 가능

■ GNU 소프트웨어 프로젝트

- ◆ FSF 의 후원 하에서 유닉스에서 누구나 쉽게 사용할 수 있는 자유(free) 소 프트웨어를 개발할 목적으로 1984 년에 시작
- **ONU GPL**
 - GPL 라이센스를 따르는 소프트웨어는 누구에게나 소스코드를 공개하여야 하며 누구나 자유롭게 소스코드를 수정하거나 배포할 수 있는 권리를 가지도록 허용
 - ▶ 단순히 무료/공짜의 의미가 아니라 사용의 자유라는 의미
 - ➢ GPL 라이센스를 가지는 소프트웨어는 일부분이라도 절대 판매용 상업 소프트 웨어에 포함될 수 없음

- CLI와 GUI 환경 제공
 - ◆ CLI(Command Line Interface)환경
 - ➤ Console 모드, 시스템 리소스 적게 소모, 빠른처리 속도 제공
 - ◈ GUI(Graphical User Interface)환경
 - ▶ 지관적이고 편리한 사용방법 제공, XFree86 프로젝트의 성과로 네트워크 기반 X윈도우 사용, 느린처리 속도

■ 리눅스 장점

- ◈ 멀티태스킹(Multitasking) 및 멀티유저(Multiuser) 시스템
- ◈ 강력한 네트워킹 기능
 - ➤ TCP/IP, IPX/SPX, Appletalk, SLIP, PPP 등의 여러 네트워킹 프로토콜 및 네트워킹 서비스 제공
 - ➤ BSD(Berkeley Software Distribution)소켓 등을 통한 프로그래밍 가능
- ◈ 유닉스 표준과 호환
 - ▶ 유닉스 시스템의 표준 인터페이스를 정의한 POSIX 표준과 호환
 - ▶ Sys V 와 BSD 와 상당 부분 소스 수준에서 호환
- ◈ 편리한 사용 환경
 - ▶ 전통적인 텍스트 쉘 환경 사용 가능
 - 가상 터미널, 작업 제어, 입출력 전환, 쉘 스크립트 등을 통하여 여러 가지 작업을 동시에 수행
 - ▶ 그래픽 사용자 인터페이스 환경 사용 가능 GNOME, KDE 등
 - 그래픽 메뉴와 고급 윈도우 위젯을 통하여 다양한 프로그램을 창으로 띄워 실행하 거나 사용자 입력을 처리

■ 리눅스 장점

- ◈ 멀티플랫폼(Multi-platform) 지원
 - ➤ LILO(Linux Loader) 또는 GRUB(Grand Unified Bootloader) 과 같은 멀티부 팅프로그램 지원
 - ▶ 인텔 IA-32, alpha, sparc, PowerPC, ARM. MIPS 등의 여러 하드웨어 플랫폼 에서 동작
- ◈ 다양한 파일 시스템 지원
 - ▶ 기본 사용 ext2/3, FAT, NTFS, CD-ROM에서 사용하는 ISO 9660, 조일렛 (Joilet), NFS 등
- ◈ 다양한 프로세스/쓰레드 간 통신 지원
 - ▶ 시그널, 파이프, 세마포어, 메시지큐, 공유메모리, 뮤텍스, 조건변수, 읽기-쓰기 락 등 지원
- ◈ 효율적인 하드웨어 자원 관리
 - ▶ 가상 메모리, 페이징 등 지원
 - ▶ 광범위한 주변 장치 지원

■ 리눅스 단점

- ◈ 공개 운영체제이기 때문에 문제점 발생시 보상받을 수 없음
- ◈ 공개 운영체제이기 때문에 보안에 취약할 것이라는 선입관
- ◈ 한글입출력의 어려움
- ◈ 사용자에게 편리한 통합 개발 환경 및 응용프로그램 부족
- **Linux has only POSIX soft real-time priority based schedulers**
 - > FIFO, Round-Robin

12. Windows vs Linux

분야	특징
시스템 환경	리눅스는 저 사양 시스템에서도 효율적으로 자동한다.
설치방법	윈도우가 GUI 기반으로 설치하기가 쉽다
멀티부팅	리눅스가 제공하는 LILO는 매우 다양한 멀티 부팅을 제공한다.
PnP 기능	리눅스는 완벽한 PnP 기능이 제공되고 있지 않으며 별도의 하드웨어 지식을 필요로 한다.
한글지원	윈도우는 한글 입력시스템IME(Input Method Editor)를 운영체제에서 지원한다.
파티션 설정과 파일 시스템	윈도우는 NTFS,FAT 등 제한적이나 리눅스는 모든 다른 파일 시스템을 지원한 다.
GUI	윈도우 GUI는 사용자들이 매우 쉽게 사용할 수 있으며, 리눅스는 X 윈도우를 바탕으로 보다 강력한 기능을 제공한다.
각종 드라이버지원	윈도우는 비디오, 네트워크, 사운드에 대한 지원율이 높고 리눅스는 지원되지 않는 드라이버도 있다.
응용프로그램	대부분의 상용 응용 프로그램은 윈도우 기반으로 작동되며 현재에는 리눅스용 응용프로그램이 많이 등장하고 있다. 또한 윈도우 용 제품을 리눅스에서 실행시킬 수 있는 유틸리티도 있다.
네트워크 및 서버	리눅스 다양한 서버와 네트워킹 지원이 강력하다
개발도구	리눅스는 GNU의 강력한 컴파일러인 gcc를 무료로 사용할 수 있고 윈도우는 MSDN을 통해 개발자들을 지원하고 있다.
기술/서비스지원	리눅스는 윈도우에 비해 신속한 서비스가 미흡한 실정이다. 그러나 상용 배포판을 구한 사용자는 신속한 서비스가 가능하다.
가격	리눅스는 GPL에 의거 무료로 사용할 수 있다.

■ 커널(Kernel)

- ◈ 커널은 운영체제의 핵심으로 운영체제의 모든 기능을 가지고 있다. 운영체제는 하드웨어 플랫폼에 포함되어 있는 모든 하드웨어 구성 요소에 적용하면서 컴퓨터시스템에서 실행되는 모든 응용 프로그 램의 구동환경을 제공한다.
 - ▶ 컴퓨터와 사용자 사이에 존재하면서 둘 사이를 연결해 주는 역할

◈ 커널의 세부기능

- ➤ 프로세스 관리(Process Management)
- ➤ 메모리 관리(Memory Management)
- ➤ 파일 시스템 관리(File System Management)
- ➢ 장치 관리(Device Management)
- ➤ 네트워크 관리(Network Management)

■ 커널(Kernel)의 구조

- ◈ Application Program : User mode에서 동작되는 프로그램
- ◆ System Call Interface : 응용 프로그램에게 커널의 서비스를 제공하는 인 터페이스
- ◈ Kernel: 프로세스 관리, 메모리 관리, IPC, 파일시스템, 네트워킹, 디바이 스드라이버 등
- ◈ Hardware : CPU, RAM, HDD, FDD, nic, 기타 주변장치 등

■ 사용자 모드(User mode)와 커널모드(Kernel mode)

◈커널모드

- ▶ 커널 모드에서 프로그램들은 직접적인 하드웨어 요청이나 중요한 시 스템 요청할 때 사용하는 모드.
- ▶ 사용자가 직접적으로 하드웨어 장치를 사용한다면 큰 문제가 발생할수 있는데 이것을 방지하기 위해서 커널모드로 프로그램이 실행되면서 하드웨어 제어를 커널에서만 할 수 있도록 한 것.
- ▶ 사용자가 어느 한 프로그램을 실행하면 사용자 모드에서 실행되다가 그 프로그램이 하드웨어 장치를 사용해야 할 경우 사용자 모드에서 실 행되고 있던 프로그램이 커널 모드로 제어권이 넘어가서 하드웨어 장 치를 사용하게 된다. 하드웨어 장치를 다 사용하게 되면 다시 프로그 램은 사용자 모드로 제어권을 넘겨주어 나머지 프로그램을 실행하게 된다.

- 사용자 모드(User mode)와 커널모드(Kernel mode)
 - ◈ 리눅스 커널에서 프로그램 수행도

■ 리눅스 커널의 특징

- ◈ 모노리식(monolithic) 커널
 - 운영체제의 모든 기능이 하나의 주소공간에서 한 프로그램으로 수행되는 커널
 - ➤ 참고) 마이크로커널 운영체제의 여러 기능이 분산되어 각각 독립된 프로세스로 동작. 예) Windows NT/XP

◈ 커널 모듈 지원

- ▶ 커널 모듈 커널의 다른 부분과 독립적으로 컴파일되고, 적재되고, 제거될 수 있는 커널 코드의 일부분
- ▶ 모노리식 커널이 복잡해질수록 크기가 커지는 단점 해결
- ▶ 필요한 모듈만 커널에 포함되므로 크기,성능 향상

- 리눅스 커널 버전
 - ◈ 안정버전 (Stable Version)
 - ▶ 두번째 마이너 번호 짝수
 - ◈ 개발버전(Beta Version, Development Version)
 - ▶ 두번째 마이너 번호 홀수
 - ◈ 리눅스 커널 버전 예

kernel 2.6.34 : 첫번째 메이저 번호 – 획기적인 변화 시 변동

:두전째 마이너번호-안정버전, 개발버전

:세번째 번호:패치횟수

▶ 최신 리눅스버전 모니터링 하기

http://www.kernel.org/kdist/finger_banner

(현재 Stable 최신버전은 5.0.1)

■ 커널 버전 및 기능 추가사항

연도	커널버젼	특성
1991.8	0.0.1	소스형태로 운영체제의 모습을 만듦, 아직 발표하지 않음
1991.10 ~12	0.0.2 ~ 0.11	최초 공식 버젼인 0.0.2 는 심각한 버그들이 발견되었으며 유닉스와 같은 커널의 모습을 갖춘 것은 0.11 버젼임
1992.1~4	0.12~0.96	인터넷과 전세계 커널 개발팀에 의해 집중적으로 보완/개발
1994.4	1.0	모든 버그들이 수정되고 보안되어 최초의 안정된 커널버젼
1996.6	2.0	많은 기능이 추가되었음
1999.2	2.4	현재까지 쓰고 있는 커널의 기본 버젼으로 많은 진보가 이루어졌음
2003.12	2.6	커널 버젼은 2.6.8에 이르고 있음
2011.6	3.0	기술적인 진보 보다는 커널 20년 기념
2013	3.9	지속적인 개선

■ 해외 배포판의 종류

커널은 같으나 GUI, 패키지 매니지먼트 등이 다르며 수업에서는 Fedora가 아닌 CentOS7(RHEL, RedHat Enterprise Linux)을 사용(레드햇 계열)

- ◈ 레드햇 페도라(RedHat Fedora)-http://www.redhat.com
 - ▶ 공식적으로 레드햇 사의 후원을 받고, 다양한 공동체가 개발에 참여
 - ▶ 오픈 소스 진영의 개발 방식을 따르므로, 누구나 복사하고, 재배포 가능
 - 많은 리눅스 프로그래머들의 개발 참여 유도, RPM사용

RedHat Package Manager

- ◈ 테비안 (Debian)-http://www.debian.org
 - 데비안 프로젝트에 의해서 발전 : 다양한 개발자들이 참여
 - 패키지에 문제점이 발견되면 몇 일 후에 바로 수정 패키지가 만들어져 보급됨
- ◈ 젠투 리눅스(Gentoo Linux)-http://www.gentoo.org
 - ▶ 소스 기반 배포판
- ◈ 우분투 리눅스(Ubuntu Linux)-http://www.ubunto.com
 - ▶ 데비안 GNU/리눅스에 기반한 데스크탑 리눅스 배포판
 - 수많은 사용자가 참여하는 커뮤니티와 마이크로소프트 윈도우즈와 유사한 환경이 장점

- 영문 배포판의 종류
 - **♦ S.u.S.E: http://www.suse.com**
 - **♦** Mandrake: http://linux-mandrake.com
 - **♦ Slackware : http://www.slackware.com**

■ 한글 배포판의 종류

- ◈ 한컴 리눅스
 - ▶ 한컴리눅스 사에서 공급하였으나 현재는 개발 중단
 - ▶ 편리한 데스크탑 환경과 패키지 관리 기능과 안정성, 보안성이 뛰어남
 - ➤ HWP 와 호환되는 오피스 환경 제공
- ◈ 아시아눅스-http://www.asianux.com
 - ▶ 홍기리눅스(중국), 미라클리눅스(일본), 한글과컴퓨터(한국)가 협력 개발
 - ▶ 아시아 지역의 리눅스 표준 운영체제를 개발하여 배포하는 것을 목적
 - ▶ 한중일 각 국가의 소프트웨어 환경에 최적화되어 있고, 서로의 우수 분야 기술을 집약하여 기술을 지원하고 보안 및 패치 파일 업데이트도 부분적으로 협력하며 안정적인 서비스를 제공할 수 있다는 장점
- ◈ 눅스원-http://www.linuxone.co.kr
 - ▶ 리눅스원에서 출시한 리눅스의 엔터프라이즈급 버전
 - 서버 최적화 기능과 관리를 실현하고 암호화 및 보안을 강화
 - ▶ 눅스원 마루는 기업 전산환경에 적합하도록 개발, 웹 관리 시스템 제공

- 한글 배포판의 종류
 - ◈ 와우 리눅스-http://www.wowlinux.com
 - ◈ 한글 데비안 http://www.debian-kr.org
 - http://www.kldp.org- kldp.net (ক্রএ) বাদ্বর্ন সমন্যর্
 - ▶ 한국 리눅스 개발자 프로젝트 포럼, 커뮤니티 에 적합하도록 개발, 웹 관리 시스템 제공

15.Linux의 미래

■ 리눅스 업체 현황

- ◈ 현재 리눅스는 전 세계적인 정부들의 지원을 받고 있다. MS사 및 몇몇 기업들의 소프트웨어 산업의 독점을 막기 위해서 공개 소프 트웨어를 지원하고 있다.
- ◆ 아시아 리눅스 프로젝트 진행 중 (http://www.asianux.com)에서 아 시아 전역에서 엔터프라이즈 리눅스의 표준으로 공인 운영체제 개 발 중
- ◈ IBM, HP 등 서버업체들도 리눅스 운영체제 지원을 늘리고 있음
- ◈ 서버서버시장 중심에서 데스크탑, 노트북, PDA 시장으로 빠르게 확산
- ◈소규모 리눅스 업체들이 적극적인 사업 진출을 위해 전략적 제휴 나 합병에 가담
- ◈ 벤처기업들이 인터넷 서버 시장에 진출
- ◆ 유닉스나 NT 서버에 주력했던 중대형 컴퓨터 업체의 리눅스 대중 화를 위한 지원이 증가

15.Linux의 미래

■ 리눅스 응용분야

- ◈ 임베디드 리눅스
 - ➤ 주로 군사, 산업용, 반도체 제조장비 등에 쓰였던 임베디드 리눅스가 최근에는 PDA, Smartphone, 셋톱박스, 터미널 서버 등의 여러 IT분야 로 확대
 - ▶ 장점 : 오픈소스, 다양한 플랫폼 지원(X86, m68k, Alpha, PPC, ARM)
 - ▶ 분야: IA(Industry Automation)-PDA, 웹폰, 스마트폰, NC, STB
- ◈ 데스크탑 리눅스
 - ➤ Intel, AMD 기반 하드웨어 지원
 - ▶ 오피스, 멀티미디어 등의 응용 프로그램의 개발
- ◈ 서버 리눅스
 - 서버시장의 50%이상 점유
 - ➤ Thin server: 네트워크 기반의 단일 핵심기능만 제공하는 서버로 웹서버, 메일서버, 프린트서버, 캐싱서버, 보안서버로 사용

15.Linux의 미래

- 리눅스 응용분야
 - Clustering Technology & Super Computing
 - ▶ 수백 대의 리눅스 서버를 클러스터링 하면 가격대비 성능비가 탁월하고 유닉스시스템으로 이식하는 것도 용이하다. 주로 멀티미디어, 생명공학, 전산유체역학, 데이터웨어 하우스, CRM등 대용량 데이터처리가 필요한 부분에 적용

16.보고서

- 다음 용어의 원어와 개념을 조사하세요.
 - 1. 소프트웨어의 종류 및 개념
 - 2.운영체제의 기능
 - 3.운영체제의 목적
 - 4.디스크 파티션의 개념과 종류
 - 5.서버용 운영체제와 클라이언트용 운영체제를 비교
 - 6.유닉스 시스템에서 Kernel과 Shell의 기능
 - 7. Desktop 환경이란 무엇이며 리눅스 데스크탑 환경인 GNOME와 KDE를 비교 설명
 - 8. 리눅스에서의 파티션의 종류 및 장치명
 - 9. 리눅스의 부트로더인 GRUB와 LILO의 기능
 - 10. Open GPL이란
 - 11. Open Source Software란

- 1 PPT 내용 넣으면 X
- 2 요약하기
- 3 정해진 시간, 출처 명확히