Semestrální projekt ITO - 2013

Autor: Martin Kačmarčík (xkacma03) Fakulta informačních technologií Vysoké učení technické v Brně

První příklad:

Stanovte napeti UR7 a proud IR7. Pouzijte metodu postupneho zjednodusovani obvodu.

U = 105 V, R1 = 420 Ω , R2 = 980 Ω , R3 = 330 Ω , R4 = 280 Ω , R5 = 310 Ω , R6 = 710 Ω , R7 = 240 Ω , R8 = 200 Ω

Upraveni obvodu, kdy z trojuhelniku dostanu hvezdu.

$$\begin{split} R_{\text{A}} &= R_{\text{1}}{}^{*}R_{\text{2}} \, / \, (R_{\text{1}} + R_{\text{2}} + R_{\text{3}}) = 237.9191 \,\, \Omega \\ R_{\text{B}} &= R_{\text{1}}{}^{*}R_{\text{3}} \, / \, (R_{\text{1}} + R_{\text{2}} + R_{\text{3}}) = 80.1156 \,\, \Omega \\ R_{\text{C}} &= R_{\text{2}}{}^{*}R_{\text{3}} \, / \, (R_{\text{1}} + R_{\text{2}} + R_{\text{3}}) = 186.9364 \,\, \Omega \\ \textit{Dale postupuju klasicky.} \\ R_{\text{B4}} &= R_{\text{B}} + R_{\text{4}} = 360.1156 \,\, \Omega \end{split}$$

$$R_{C5} = R_C + R_5 = 496.9364 \Omega$$

$$\begin{split} R_{B4C5} &= (R_{B4} * R_{C5})/(R_{B4} + R_{C5}) = 208.8024 \ \Omega \\ R_{AB4C5} &= R_A + R_{B4C5} = 446.7215 \ \Omega \\ R_{67} &= R_6 * R_7 \ / \ (R_6 + R_7) = 179.3684 \ \Omega \\ R_{678} &= R_{67} * R_8 \ / \ (R_{67} + R_8) = 94.5616 \ \Omega \\ R_{AB4C5678} &= R_{AB4C5} + R_{678} = 541.2831 \ \Omega \end{split}$$

$$I = U/R = 105/541.2831 = 0.194 A$$

Nyni jsem nasel proud protekajici prvnim tranzistorem tzn R_A . Dale budu zpetne a postupne dosazovat, dokud se nedostanu az k proudu I_7 .

$$\begin{aligned} & \mathsf{U_{R678}} = \mathsf{R_{678}} * \; \mathsf{I} = 18.345 \; \mathsf{V} \\ & \mathsf{I_{R67}} = \mathsf{U_{R678}} / \; \mathsf{R_{67}} = 0.1023 \; \mathsf{A} \\ & \mathsf{U_{R67}} = \mathsf{I_{R67}} * \; \mathsf{R_{67}} = 18.3494 \; \mathsf{V} \\ & \mathsf{I_{7}} = \mathsf{U_{R67}} / \; \mathsf{R_{7}} = 0.0765 \; \mathsf{A} \end{aligned}$$

VYSLEDEK: $I_7 = 0.0765 A$

Druhý příklad:

Stanovte napeti UR5 a proud IR5. Pouzijte metodu Theveninovy věty.

U = 130 V, R1 = 350 Ω, R2 = 600 Ω, R3 = 195 Ω, R4 = 320 Ω, R5 = 280 Ω

Vytvorim si nahradni zapojeni. Dale se snazim ziskat R_i zjednoduseny obvod.

Vypocet U

Postupuji z prava do leva.

$$R_{34} = R_3 + R_4 = 515 \Omega$$

 $R_{234} = R_2 * R_{34} / (R_2 + R_{34}) = 277.13 \Omega$
 $R_{1234} = R_1 + R_{234} = 627.13 \Omega$

$$I_1 = U/R_{1234} = 0.2073 \text{ A}$$
 $U_{R1} = R_1 * I_1 = 72.555 \text{ V}$
 $U_{R2} = U - U_{R1} = 57.45 \text{ V}$
 $I_2 = U_{R2} / R_2 = 0.0958 \text{ A}$
 $I_3 = I_1 - I_2 = 0.1116 \text{ A}$
 $U_{R4} = R_4 * I_3 = U_1 = 35.712 \text{ V}$

Vypocet R₁

Postupuji z leva do prava.

$$\begin{split} R_{12} &= R_1 * R_2 / (R_1 + R_2) = 221.0526 \,\Omega \\ R_{123} &= R_{12} + R_3 = 416.0526 \,\Omega \\ R_{1234} &= R_1 = R_{123} * R_4 / (R_{123} + R_4) = 180.8795 \,\Omega \end{split}$$

Nyni mam obvod s U_1 R_1 a R_5

$$I_5 = U_1 / (R_1 + R_5) = 0.0775 A$$

 $U_{R5} = I_5 * R_5 = 21.6862 V$

Vysledek: I_5 = 0.0775 A , U_{R5} = 21.6862 V

Třetí příklad:

Stanovte napětí UR4 a proud IR4. Použijte metodu uzlových napětí.

U = 130 V, I1 = 95 A, I2 = 0.5 A, R1 = 470 Ω , R2 = 390 Ω , R3 = 580 Ω , R4 =280 Ω , R5 = 205 Ω

Uzel A:
$$I_{R1} = I_{R2} + I_{R4}$$

Uzel B: $I_{R4} = I_{R5} + I_{2}$
Uzel C: $I_{R5} + I_{2} = I_{R3} + I_{1}$

A:
$$(U - U_A)/R_1 = U_A/R_2 + (U_A - U_B)/R_4$$

B: $(U_A - U_B)/R_4 = (U_B - U_C)/R_5 + I_2$

C:
$$(U_B - U_C)/R_5 + I_2 = U_C/R_3 + I_1$$
 $(130 - U_A)/470 = U_A/390 + (U_A - U_B)/280$
 $(U_A - U_B)/280 = (U_B - U_C)/205 + 0.5$
 $(U_B - U_C)/205 + 0.5 = U_C/580 + 95$
 $1092(130 - U_A) = 1316 U_A + 1833(U_A - U_B)$
 $41(U_A - U_B) = 56(U_B - U_C) + 5740$
 $116(U_B - U_C) + 11890 = 41U_C + 2259100$
 $1092(130 - U_A) = 1316 U_A + 1833(U_A - U_B)$
 $41U_A - 41 U_B = 56 U_B - 56 U_C + 5740$
 $116U_B - 116 U_C + 11890 = 41 U_C + 2259100$
 $141960 = 4241 U_A - 1833 U_B$
 $-5740 = -41U_A + 97U_B - 56U_C$
 $-2247210 = -116U_B + 157 U_C$
 $U_C = (116U_B - 2247210)/157$
 $141960 = 4241 U_A - 1833 U_B$
 $-5740 = -41U_A + 97U_B - 56 (116U_B - 2247210)/157$
 $U_A = (141960 + 1833U_B)/4241$
 $-5740 = -41 ((141560 + 1833U_B)/4241) + 97U_B - 56*(116U_B - 2247210)/157$
 $U_B = -21262.4571 V$
 $U_A = -9156.32 V$

Vysledek: I_{R4} = 48.2362 A , U_{R4} = 12106.136 V

 $I_{R4} = (U_A - U_B)/R_4 = 48.2362 A$ $U_{R4} = I_{R4} * R_4 = 12106.136 V$

Čtvrtý příklad:

Stanovte napětí UR4 a proud IR4. Použijte metodu uzlových napětí.

Pro napájecí napětí platí: $u = U \cdot \sin(2\pi f t)$. Ve vztahu pro napětí na kondenzátoru C_1 : $u_{C_1} = U_{C_1} \cdot \sin(2\pi f t + \varphi_{C_1})$ určete $|U_{C_1}|$ a φ_{C_1} . Použijte metodu zjednodušování obvodu.

Pozn: Pomocný "směr šipky napájecího zdroje platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$."

U = 50 V, R1 = 190 Ω, R2 = 180 Ω, R3 = 220 Ω, L1 = 0.42 H, L2 = 0.27, C1 = 120 * 10^{-6} F C2 = 205 * 10^{-6} F, f = 90 Hz, ω = $2\pi f$ = 565.4867 rad/s

Na začátku vypočítám impedance Z.

$$Z_{1} = R_{1}$$

$$Z_{2} = R_{2} - j*(1/\omega*C_{1})$$

$$Z_{3} = R_{3} + j \omega L_{2}$$

$$Z_{4} = -j(1/\omega*C_{2})$$

$$Z_{5} = j\omega L_{1}$$

$$Z_1 = 190 \Omega$$

 $Z_2 = 180 - j^*$

 $Z_2 = 180 - j*14.7366 \Omega$

 $Z_3 = 220 + j*152.6814 \Omega$

 $Z_4 = -j5.6263 \Omega$

 $Z_5 = j*237.5044 \Omega$

$$Z_{34} = Z_3 * Z_4 / (Z_3 + Z_4) = 0.2367 - j8.7813$$

 $Z_{234} = Z_{34} * Z_2 / (Z_{34} + Z_2) = 0.6541 - j8.7038$
 $Z_{12345} = Z_1 + Z_{234} + Z_5 = 190.6541 + j228.8006$

Nyní máme Z ekvivalentní.

I = U / Zekv. = 0.1075 - j0.129

$$U_{Z234} = I * Z_{234} = -1.0523 - j1.0198$$

$$I_{z2} = U_{z234} / Z_2 = -0.0053 - j0.0061$$

$$U_{C1} = -j * (1/\omega * C_1) * I_{Z2} = -0.0899 + j0.0787$$

 $|U_{C1}|$ = velikost vektoru urceneho realnou a imaginarni casti napeti na C1 = $\sqrt{(0.0899)^2}$ + $(0.0787)^2$) = 0.1194 V

 ϕ_{c1} = arctan(imag/real) = arctan(0.0787/-0.0899) = -41.22°

Vysledek: $|U_{c1}| = 0.1194 \text{ V}$, $\phi_{c1} = -41.22^{\circ}$

Pátý příklad:

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí na cívce L_2 : $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné "směry šipek napájecích zdrojů platí pro speciální časový okamžik ($t=\frac{\pi}{2\omega}$)."

U1 = 20 V, U2 = 35V, R1 = 120 Ω , R2 = 100 Ω , R3 = 170 Ω , L1 = 0.17 H, L2 = 0.08 H, C1 = 150 * 10⁻⁶ F, C2 = 90 * 10⁻⁶ F, F = 65 Hz

Jako prvni si zvolim směry svých virtuálních proudů $\rm I_A \ I_B \ a \ I_C.$

$$I_{A}: I_{A}(R_{1} + R_{2} + jXL_{2} + jXL_{1} - jXC_{1}) - I_{B}(R_{2} + jXL_{1}) - I_{C}^{*}jXL_{2} = 0$$

$$I_{B}: -I_{A}(R_{2} + jXL_{1}) + I_{B}^{*}(R_{2} + jXL_{1} - jXC_{2}) + I_{C}^{*}jXC_{2} = u_{1}$$

$$I_{C}: -I_{A}^{*}jXL_{2} + I_{B}^{*}jXC_{2} + I_{C}(R_{3} + jXL_{2} - jXC_{2}) = u_{2}$$

Nyni dosadim hodnoty do vzorecku vyse a ziskam 3 rovnice o trech neznamych.

$$\begin{split} I_A: I_A(120 + 100 + j32.6726 + j69.4292 - j16.3236) - I_B(100 + j69.4292) - I_C^*j32.6726 &= 0 \\ I_B: -I_A & (100 + j69.4292) + I_B & (100 + j69.4292 - j27.206) + I_C^* & j27.206 &= 20 \\ I_C: -I_A^* & j32.6726 + I_B^*j27.206 + I_C(170 + j32.6726 - j27.206) &= 35 \end{split}$$

Dále jsem použil matici a determinanty. Vzhledem k velice nepříjemnému přepisování z papíru do počítače tyto operace vynechám. Reálně jsem potřeboval spočítat pouze proudy I_A a I_C proto I_B spocitan neni (práce nav

$$I_A = 0.1777 + j0.0587 A$$

 $I_C = 0.1925 - j0.0243 A$

$$I_2 = I_A - I_C = -0.0148 + j0.083 A$$

Dale muzu spocitat $U_{L2} = I_{L2} * L_2 = -2,7117 - j0,4846 V$ $|U_{L1}| = velikost vektoru urceneho realnou a imaginarni casti napeti na <math>L_2 = \sqrt{((2,7117)^2 + (0,4846)^2)} = 2,7546 V$

 φ_{11} = arctan(imag/real) = arctan(-0,4846/-2,7117) = 10.13°

Vysledek: $|U_{L1}| = 2.7546 \text{ V}$, $\phi_{L1} = 10.13^{\circ}$

Šestý příklad:

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C = f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

R = 40
$$\Omega$$
, C = 50 F, $u_c(0)$ = 9V \rightarrow počáteční podmínka

$$U_{c} + U_{R} = 0$$

$$U_{R} = R * I$$

$$U_{c} + R*I = 0 \rightarrow i = -U_{c}/R$$

$$u'_{c} = 1/C * i_{c} \rightarrow AXIOM$$

$$u'_{c} = 1/C * -u_{c}/R = 1/50 * (-u_{c}/40) //*200$$

$$200u'_{c} + u_{c} = 0$$

$$200 \lambda + 1 = 0$$

$$\lambda = -1/200$$

$$u_{c}(t) = c(t) * e^{\lambda t}$$

$$u_{c}(t) = c(t) * e^{-1/200 * t}$$

$$u'_{c}(t) = c'(t) * e^{-1/200 * t} + c(t) * e^{-1/200 * t} * (-1/200)$$

$$200c'(t) * e^{-1/200 * t} - c(t) * e^{-1/200 * t} + c(t) * e^{-1/200 * t} = 0$$
 //ty 2 posledni cleny se odectou $200c'(t) * e^{-1/200 * t} = 0$

Protoze e nikdy nemuze byt rovno nule, vime, ze c'(t) = 0. A kdy je derivace rovna nule? V pripade, ze se jedna o konstantu.

$$\rightarrow$$
 c'(t) = 0 \rightarrow c(t) = K

$$u_{c}(t) = K * e^{-1/200 * t} \rightarrow u_{c}(0) = 9$$

9 = K * 1
K = 9

Zaver:
$$u_c(t) = 9 * e^{-1/200 * t}$$

Kontrola reseni:

$$u_c(t) = 9 * e^{-1/200 * t}$$

 $u'_c(t) = 9 * e^{-1/200 * t} * (-1/200)$

$$200u_{c}^{\prime} + u_{c} = 0$$

 $200*(9*e^{-1/200*t}*(-1/200)) + (9*e^{-1/200*t}) = 0$ //ty dvoustovky se vykrati a diky zlomku v prvnim clenu se stane prvni clen zapornym tzn se odectou a vyjde:

$$0 = 0$$

Kontrola provedena uspesne.

TABULKA S VYSLEDKY:

Číslo úlohy	Varianta	Výsledek / Výsledky
1	D	I ₇ = 0.0765 A
2	F	I ₅ = 0.0775 A , U _{R5} = 21.6862 V
3	Н	I _{R4} = 48.2362 A , U _{R4} = 12106.136 V
4	D	$ U_{c1} = 0.1194 \text{ V}, \phi_{c1} = -41.22^{\circ}$
5	F	$ U_{L1} = 2.7546 \text{ V}, \phi_{L1} = 10.13^{\circ}$
6	Н	$u_c(t) = 9 * e^{-1/200 * t}$