





The **Do-Operator** (do(X = x)) represents an **intervention**: it forces the variable X to take the value x, **breaking its natural causes**.



## The Do-Operator allows to test out counter factuals:

- For this historical figure, what if they had received a classical education instead of a religious one? What if it had been a man instead of a woman?
- For this manuscript, what if it had been printed with a movable type press rather than hand-copied?
- For this region, what if the dominant language in the 13th century had been Cech instead
  of German? What if Přemysl Otakar II had kicked Rudolf of Habsburg's butt?

## To understand the do-Operator:

- In simulate\_data(), a causal graph with a confounder is simulated.
- In estimate\_adjusted\_model(data) we control the confounder by regression.
- In predict\_do\_intervention() we use the regressed values, to produce input-data (as if the confounder was fixed). We are now able to predict the effect of education on income, as if there was no confounder.



Do-Operator notation:  $P(a_i|do(B=b_i), \beta, \gamma, c_i)$ 

 $b_i = controlled \ variable$   $\beta, \gamma = other \ variables$  $c_i = treatment \ variable$ 



- The do-Operator can simulate a world, where a confounder has no influence on the data.
- We can also simulate and then compare two different worlds: One, where something happens and one where it does not (ATE).
- We can simulate two versions of an individual (ITE).
- We can average impact of a treatment on those that are treated (ATT)
  - · Run doOperator.py.
  - · Explain the visualization.
  - In your own words: What is the do-Operator doing?







- File causalLearn.py simulates a collider graph with Nodes Q,P,R,S and stores information in a pandas data frame (a table).
- The PC-algorithm is applied using significance test, to find depended nodes
- It calculates the resulting graph.







- Start with a fully connected undirected graph (between all observed variables)
- 2. Remove edges for unconditional independence (i.e., if two variables are marginally independent)
- 3. Remove more edges using conditional independence
  - 1. For each pair A–B, check all subsets C of adjacent variables
  - 2. If A  $\perp\!\!\!\perp$  B | C, remove the edge between A and R
- 4. Orient v-structures (colliders):
  - If A–B–C, and A and C are not connected, and A is **not** independent of C given B → then orient as A → B ← C
- 5. Propagate orientation using Meek's rules
  - 1. For example: avoid cycles, prevent new colliders, etc.



- Run causalLearn.py.
- Identify nodes of the "real" graph in the resulting graph.
- Imagine running PC-algorithm on real world data. What could be the benefits?