

EMBEDDED SYSTEM DESIGN AND THE INTERNET OF THINGS

PAT PANNUTO

UNIVERSITY OF MICHIGAN
INTERNET OF THINGS RESEARCH PROGRAM
AUGUST 11, STANFORD UNIVERSITY

Pat Pannuto Prabal Dutta

3rd Year Ph.D. Student, University of Michigan

BSE Computer Engineering, University of Michigan

Research:

- Embedded systems, wireless technology, next-generation computing technologies
- "Last Inch" Problem

Assistant Professor, University of Michigan

Ph.D. in CS from Berkeley, 2009

Research:

Networked embedded systems with applications to health, energy, and the environment

Regrets he cannot be here

Hosting a DARPA ISAT workshop

eMbedded

Gateway

Cloud

eMbedded

Opo

Goal:

Explore methods to enable high spatiotemporal human interaction tracking

Result:

Novel ultrasonic wakeup circuit enables ~2 s granularity with ~5 cm accuracy for 1 week on a 40 mAh battery

eMbedded

-50

100

150

Harmonia

Goal:

Rapid, high accuracy, **indoor** RF TDoA localization

Track micro-quadcopters in real time

Approach:

UWB accuracy using NB frontends via impulses (TX) and band-stitching (RX)

eMbedded

Monjolo Family

Original Hypothesis:

Estimate appliance energy use from side-channel emissions

Result:

Practical, battery-free* energy-harvesting sensors

eMbedded

Monjolo Family

Original Hypothesis:

Estimate appliance energy use from side-channel emissions

Result:

Practical, battery-free* energy-harvesting sensors

"A necessary evil" Gateway

"A necessary evil"

That may be evolving into an interesting area of research

Gateway

Gen 1: Rpi + CC2520

Gen 2: BeagleBone Black + 2 x CC2520 + CC2591

"A necessary evil"

That may be evolving into an interesting area of research

Gateway

Bluetooth Low Energy

Smartphone as a gateway

Gen 2: BeagleBone Black + 2 x CC2520 + CC2591

Never say "No"

 Collect and store all data, figure out what to do with it later

Optimize for real-time / streaming

 Easy to archive a stream to more traditional DB for analysis

Leverage "Web Scale"

- Enough technology exists to build highly scalable infrastructure quickly
- MongoDB + RabbitMQ + SocketIO

Cloud

The Gateway Problem

The (mostly) universal gateway worked for WiFi, why not us?

A Trillion Sensors is a Trillion

Batteries

Industrial Internet of Things

2000

2011

15

2020

The lifetime of a disposable IoT device is defined by the energy it ships with (or can harvest)

Thus, we need something more energy-efficient than 802.11 But what?

Self-Organizing (Sohrabi '99), LEACH '00, Adaptive Rate Control (Woo '01), S-MAC '02, WiseMAC '04, B-MAC '04, Adaptive LPL '07, RI-MAC '08, A-MAC '10, GLOSSY '11, LPB '12, Chaos '13, [To Appear: EkhoNet '14]...

ZigBee, 802.15.4e, CTP

Best choice is system / application dependent

- +Wakeup ("LPP", Musaloiu-E. et al., IPSN' 08)
- +Discovery ("Disco", Dutta et al., Sensys' 08)
- +Unicast ("RI-MAC", Sun et al., Sensys' 08)
- +Broadcast ("ADB", Sun et al., Sensys' 09)
- +Pollcast ("Pollcast", Demirbas et al., INFOCOM' 08)
- +Anycast ("Backcast", Dutta et al., HotNets' 08)

Bluetooth Low Energy – A MAC convergence for non-mesh applications

BLE doesn't mesh, but many applications don't need mesh – especially [primarily] collection-based ones

BLE as a backhaul for Personal Area Networks

This is in commercial technology now

Apps are emerging to provide other services as well

Can this network reliably provide other, more demanding applications (e.g. firmware updates? + different class of trust for this application)

BLE as a backhaul for general sensor networks "Reverse Data Muling"

Can smartphones + BLE act as a semi-universal gateway?

Are there security concerns with auto-connecting to arbitrary Bluetooth devices?

How does an embedded device trust arbitrary phones?

Who pays for the data? Can this run as a carrier service? [Micropayments?]

The gateway problem is a fundamental problem

Low-power IoT devices require low-power networks

Which by their nature have limited range

Something (gateway) must bridge a low-power network

- It is part of the architecture for good reason
- But it is burdensome in practice to deploy

One Potential Plus

Gateway as a privacy-preserving bottleneck

The Gateway Problem Nest Google Gets It

Working Wi-Fi connection: 802.11 - 2.4 GHz
Wireless Interconnect: 802.15.4 - 2.4 GHz

Motivation for burdening the gateway node: Masking less-performant, lessreliable low-power networks

The Internet

- High bandwidth
- Reasonably low latency
- Reliable

Energy-Harvesting

- Short Transmissions
 - Minimal bandwidth
- Non-deterministic latency
- Highly Unreliable
- Possibly Unidirectional

Low Power Networking **Powered Devices**

Less bandwidth

Low Power Networking Battery-backed

- Less bandwidth
- Higher latency
- Unreliable

Motivation for burdening the gateway node: Centralizing computation to minimize costs

A Case Study: The risks of relying on the gateway to be anything more than a gateway

Hue authentication: App to base station

Hue authentication: Base station to bulb

Bulbs and base station ship pre-configured with shared secrets

Hue Security, OR end-to-end violation by example

Does this architecture guarantee that all commands

NOKE

🕡 🕲 S

lights

Kitchen Extended color light Bedroom 1 Extended color light Bedroom 2

Living room

Ground Floor

GROUPS

Any Hue bulb will trust any Hue base station

ZigBee Light Link Security Overview

- Since ZLL does not use a coordinator and hence a trust centre security mechanism cannot be used
- Instead, ZLL utilizes network level security and so both sides must exchange a network key
- The touchlink initiator is responsible for generating the key and passes it to the target during touchlinking
- To ensure the key is not sent in the clear, it is first encrypted with a ZLL master key
- The ZLL master key is assigned once a device has successfully completed ZLL certification

\$2012 DgDee Allerts, All righter secreed.

One master key shared by all Hue base stations

Two-level trust:
Who's trusted now and who to trust

Bulbs and base station ship pre-configured with TWO shared secrets

The importance of understanding a threat model (and why what came before actually wasn't so bad)

And then usability demanded an extension that makes it worse

ArsTechnica, 5 Nov 2013:

Authenticate via immutable 6-digit bulb serial number

Off-the-shelf ~40 ms per authentication attempt (due to slow web server)

One-time cost to brute force:

Just over a week

Lee Hutchinson

Embedded Device Design Small things without buttons

500,000 Belkin WeMo users could be hacked; CERT issues advisory

IOActive researchers uncovered numerous vulnerabilities in all Belkin WeMo home automotation devices that put over half a million WeMo users at risk of being hacked, but when CERT tried to contact Belkin, Belkin chose not to respond at all.

NetworkWorld | Teb 16, 2011 2:40 PM

developer

edition

RELATED

Beikin fixes WeMo accurity holes, updates firmware and app

Eavesdropping made easy: Remote spying with WeNo Baby and an iPhone

Bizarre gadgets at CES 2014 that monitor your every move

Why now?

Why are so many IoT devices being built? What opened the floodgates?

Google Ngram Viewer 33

The smartphone is an embedded system and a micro-PC

Very mature toolchains for embedded ARM cores

Driving down size, cost, and energy of peripheral sensors

Wait, why do we need IoT if there are smartphones everywhere?

A reminder: Energy is king

Life Expectancy: 40 mAh

Moore's Law Computing power in embedded

Low power 32-bit microcontrollers becoming reality

Moore's Law and Memory SRAM hasn't followed the same trend

SRAM ceiling

MSP430

Atmel SAM4L

0.125-66 kB

32-64 kB

ST Micro STM32L

NXP LPC1xxx

4-80 kB

1-36 kB

Why has embedded memory size not followed the rest of computing?

Q: Servers have terabytes of RAM, why is embedded memory following a slower trajectory?

A1: Demand. Lower-performance cores restricted the scope of embedded applications, limiting demand for RAM.

A2: Cost/Area. Don't expect to improve on 6T / bit.

Ultra-low power cells are even more demanding, e.g. 11T / bit.

A3: Energy. SRAM contributes to static power of minimum (useful) power state

Some cautious SRAM Predictions

It won't get much bigger in the short term.

Power-State Partitioned SRAM?

Provides larger working set for applications, while enabling a minimum useful low power state

The rise of FRAM.

Replace "core" partition above with zero static power.

e.g. TI's Wolverine

What does all of this mean for security? Cryptography is computationally hard...

Cryptographic systems are designed with hardware acceleration in mind

Sometimes you really need a Cup Holder.

Atmel SAM4L AES-128 coprocessor – 11 cycles / block

But how to actually USE it?

- 1. Ensure clock mask includes HSBMASK
- 2. Configure mode / other settings
 - 1. §18.4.1-2 "Basic Programming and Operation": 2 pages / 1200 words
- 3. DMA + Sleepwalking
 - 1. Another dozen pages...

We solve these kind of problems with "drivers"

Things are not so elegantly encapsulated in embedded systems

First-generation solved by **Phil Levis**

TinyOS 2.0 abstracts resource management and peripheral power states

Good enough for then, don't handle now

- "Sleepwalking"
- Multi-clock options / decisions

Open-problem in OS design

Reasoning about performance at odds with security

18.4.5 Security Features

18.4.5.1 Hardware Countermeasures Against Differential Power Analysis Attacks

AESA features four types of hardware countermeasures that are useful for protecting data against differential power analysis attacks:

- Type 1: Randomly add one cycle to data processing
- Type 2: Randomly add one cycle to data processing (other version)
- Type 3: Add a random number of clock cycles to data processing, subject to a maximum of 11 clock cycles for key size of 128 bits
- Type 4: Add random spurious power consumption during data processing

By default, all countermeasures are enabled. One or more of the countermeasures can be disabled by programming the Countermeasure Type (CTYPE) field in the MODE register.

The countermeasures use random numbers generated by a deterministic random number generator embedded in AESA. The seed for the random number generator is written to the DRNGSEED register. Note that access to the DRNGSEED register is by 32-bit words only (i.e., no halfword or byte access). Note also that a new seed must be written after a change in the key size.

Note that enabling countermeasures reduces AESA's throughput. In short, the throughput is highest with all the countermeasures disabled. On the other hand, with all of the countermeasures enabled, the best protection is achieved but the throughput is worst.

Coprocessors can mean crypto libraries are *less portable*

Existing software crypto libraries provide a good interface

Q1: Does HW interface always match the "standard" SW interface?

Q2: What accelerators are available?

Q2.1: How do app developers say,

"I want 'enough', 'efficient' security"

Q2.2: How to build heterogeneous networks with efficient crypto in the face of heterogeneous chips and co-processors?

A partial answer is provided by existing protocols

Bluetooth Low Energy use AES-128-CCM for most operations

And AES-128-CCM accelerators are available on every Bluetooth chip

Master Key exchange is host-side and can change protocol

This is an interoperability trade-off

Security vs Energy tradeoff. BLE requires out-of-band initial pairing to secure against eavesdroppers

Association Models

Not a good property for using smartphones

equivalent of Numeric Comparison. Each of these association nodels is similar to Secure Simple Pairing with the following exception; Just Works and Passkey Entry do not provide any passive eavesdropping protection. This is because Secure Simple Pairing uses Elliptic Curve Diffie-Hellman and Bluetooth Smart (low energy) does not. The use of each association model is based on the I/O capabilities of the devices in a similar manner as Secure Simple Pairing.

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

lab11.eecs.umich.edu

Hardware Takeaways

Energy is king.

Dictates system lifetime

Computational power has come to embedded MCUs, but

Application complexity limited by limited SRAM

Hardware support can enable energy-efficient complex tasks

Perhaps a sweet spot between ASIC and FPGAs {David Brooks}

THE PROBE INCOMPATIBILITY MESS

Probes use hardware acknowledgements

Probes do not use hardware acknowledgements

Probes include only receiver-specific data

Probes include sender-specific data too

Probes include contention windows

Probes do not include contention windows

50

Cultural help: We like data too much for our own good

We can see devices turn on / off

Lose sight of the fact that humans are turning them on and off

Privacy implications

What should a system like this look like?

Monjolo in action

http://inductor.eecs.umich.edu/pathouse.html

Augmenting smartphones to add "missing" sensors

Geiger Counter

EKG Monitor

Thermometer

CO Sensor

Soil Moisture

Lab11 at Michigan: (Some of) What we do

eMbedded

Energy-Harvesting
Embedded Systems
Built in the last 365 days
(credit: Brad Campbell)

Lab11 at Michigan: (Some of) What we do

eMbedded

Embedded Systems Built in the last 365 days

