EE5137: Stochastic Processes (Spring 2021) Events and the Bernoulli Process

Vincent Y. F. Tan

January 15, 2021

1 Events

Let Ω be the sample space. A σ -algebra on Ω is a collection \mathfrak{F} of subsets of Ω satisfying

- 1. $\Omega \in \mathfrak{F}$;
- 2. For any countable collection $\{A_i\}_{i=1}^{\infty}$ such that $A_i \in \mathfrak{F}$ for all $i \in \mathbb{N} = \{1, 2, \ldots\}$,

$$\bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}.\tag{1}$$

3. For any $A \in \mathfrak{F}$, $A^{c} := \Omega \setminus A \in \mathfrak{F}$.

Each $A \in \mathfrak{F}$ is called an *event*. The condition in the second point says that σ -algebras are *closed under countable unions*. The condition in the third point says that σ -algebras are *closed under complementation*. The pair (Ω, \mathfrak{F}) , in which \mathfrak{F} is a σ -algebra on Ω , is called a *measurable space*.

2 Random variables

Given a measurable space (Ω, \mathfrak{F}) , a random variable (more precisely a measurable function) is a function $X : \Omega \to \mathbb{R}$ such that the set

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathfrak{F}, \quad \forall x \in \mathbb{R}.$$
 (2)

Hence, it makes sense to define the cumulative distribution function

$$F_X(x) := \Pr(\{\omega \in \Omega : X(\omega) < x\}),\tag{3}$$

which is often more succinctly written as $\Pr(X \leq x)$.

Does it makes sense to write $\Pr(X = x)$, which presumably means $\Pr(\{\omega \in \Omega : X(\omega) = x\})$? It suffices to prove that the set $\{\omega \in \Omega : X(\omega) = x\} \in \mathfrak{F}$, i.e., it is an event. To this end, define

$$A_n := \{ \omega \in \Omega : X(\omega) \le x - 1/n \}, \quad \forall n \in \mathbb{N}.$$
 (4)

Note that each A_n is indeed an event because X is a random variable and $x - 1/n \in \mathbb{R}$ for all n. Convince yourself now that

$$A := \bigcup_{n=1}^{\infty} A_n = \{ \omega \in \Omega : X(\omega) < x \}.$$
 (5)

Because σ -algebras are closed under countable unions, $A \in \mathfrak{F}$. Now, $\{\omega \in \Omega : X(\omega) \leq x\} \in \mathfrak{F}$ because X is a random variable and $x \in \mathbb{R}$. So its complement

$$B := \{ \omega \in \Omega : X(\omega) > x \} \in \mathfrak{F}. \tag{6}$$

Clearly,

$$\{\omega \in \Omega : X(\omega) = x\} = \Omega \setminus (A \cup B). \tag{7}$$

Since $A \cup B \in \mathfrak{F}$, so is its complement $\Omega \setminus (A \cup B)$ which means that $\{\omega \in \Omega : X(\omega) = x\} \in \mathfrak{F}$, so we can measure its probability and so Pr(X = x) is legitimate.

What we have concluded is that all sets of the form

$$\begin{split} \{\omega \in \Omega : X(\omega) \leq x\}, &\quad \{\omega \in \Omega : X(\omega) < x\}, \\ \{\omega \in \Omega : X(\omega) \geq x\}, &\quad \{\omega \in \Omega : X(\omega) > x\}, \\ \{\omega \in \Omega : X(\omega) = x\} \end{split}$$

are legitimate events.

3 Some Notes on the Bernoulli Process

Recall that the Bernoulli process can be defined in terms of an i.i.d. sequence of Bernoulli random variables $\{Z_i\}_{i=1}^{\infty}$ in which $p=\Pr(Z_1=1)$. To this process, we can define several other stochastic processes, such as the cumulative sum (aggregate number of arrivals) $S_n = \sum_{i=1}^n Z_i$. The time of the k-th arrival is Y_k and the interarrival times can be expressed as $X_1 = Y_1$ and $X_k = Y_k - Y_{k-1}$ for $k \geq 2$. In other words, $Y_k = \sum_{j=1}^k X_j$.

It is clear that X_1 is a Geometric random variable with parameter p, i.e.,

$$p_{X_1}(k) = \Pr(X_1 = k) = (1 - p)^{k-1}p, \quad k = 1, 2, 3, \dots$$
 (8)

We show that X_2 is independent of X_1 and X_2 is also a Geometric random variable with parameter p. Consider $Pr(X_1 = k, X_2 = l)$. The event therein refers to the event that the first interarrival time is k and the second is l. Thus, equivalently, this means that there are exactly two arrivals in the first k+l times slots, exactly at times k and k + l respectively. Thus,

$$\Pr(X_1 = k, X_2 = l) = \underbrace{(1-p)^{k-1}p}_{k-1 \text{ failures and 1 success at } k} \times \underbrace{(1-p)^{l-1}p}_{l-1 \text{ failures and 1 success at } k+l}$$

$$(9)$$

Thus,

$$\Pr(X_2 = l \mid X_1 = k) = \frac{\Pr(X_1 = k, X_2 = l)}{\Pr(X_1 = k)} = \frac{(1 - p)^{k-1} p (1 - p)^{l-1} p}{(1 - p)^{k-1} p} = (1 - p)^{l-1} p, \tag{10}$$

which is independent of k. Thus

$$\Pr(X_2 = l \mid X_1 = k) = \Pr(X_2 = l) = (1 - p)^{l-1}p,$$
(11)

which shows that X_1 is independent of X_2 and follows a Geometric distribution with parameter p as desired.