Problema 3.

Data $f(x) = \frac{x+2}{7}\cos(x)$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi equispaziati in $[x_a, x_b] = [0, 6]$ per $n = 1, \ldots, 10$.

Per ogni *n*:

- si calcoli il polinomio di interpolazione di Lagrange $p_n(x)$ interpolante f su (n+1) nodi equispaziati,
- si rappresenti graficamente $p_n(x)$ insieme alla funzione f(x). Per la rappresentazione grafica, si utilizzi un vettore di 200 punti equispaziati in $[x_a, x_b]$,
- si valuti l'errore

$$E_n = ||e_n||_{\infty} = ||f - p_n||_{\infty} = \max_{x \in [x_a, x_b]} |f(x) - p_n(x)|$$

(si valuti $|f(x) - p_n(x)|$ negli stessi punti utilizzati per il grafico)

A ciclo concluso plottare su una seconda figura gli errori E_n in funzione del grado n.

Gli errori

 $f(x) = \frac{x+2}{7}\cos(x)$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [0,6].

Gli errori E_n stanno tendendo a zero quando n cresce. In questo caso l'interpolazione globale di Lagrange su nodi equispaziati fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che sta convergendo alla funzione f(x) quando n cresce.

Problema 4. Data $f(x) = \frac{1}{1+x^2}$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi equispaziati in $[x_a, x_b] = [-5, 5]$ per $n = 1, \ldots, 10$. Ripetere il lavoro svolto nel Problema 3.

 $f(x)=rac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x) = \frac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x)=rac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x) = \frac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

Gli errori

 $f(x) = \frac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

Gli errori E_n NON stanno diminuendo quando n cresce. In questo caso l'interpolazione globale di Lagrange su nodi equispaziati fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che NON sta convergendo alla funzione f(x) quando n cresce.

Problema 5. Data $f(x) = \frac{1}{1+x^2}$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi di Chebyshev-Gauss-Lobatto in $[x_a, x_b] = [-5, 5]$ per $n = 1, \ldots, 10$. Nodi di Chebyshev-Gauss-Lobatto:

$$x_{i} = -\cos\left(\frac{\pi i}{n}\right), \quad i = 0, \dots, n,$$
 in $[-1, 1]$
$$x_{i} = \frac{x_{b} - x_{a}}{2} \left(-\cos\left(\frac{\pi i}{n}\right)\right) + \frac{x_{b} + x_{a}}{2}, \quad i = 0, \dots, n,$$
 in $[x_{a}, x_{b}]$

Ripetere il lavoro svolto nel Problema 3.

Gli errori

$$f(x) = \frac{1}{1+x^2}$$
, $p_n(x)$ su $(n+1)$ nodi di interpolazione CGL in $[-5,5]$.

Gli errori E_n stanno tendendo a zero quando n cresce. L'interpolazione globale di Lagrange su nodi di Chebyshev-Gauss-Lobatto fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che converge alla funzione f(x) quando n cresce.

Osservazioni

Quando si vuole costruire il polinomio di Lagrange p_n con $n \ge 20$, Matlab segnala che la matrice di Vander Monde è mal condizionata.

Lo stesso succede se si usa polyfit.

Esistono algoritmi alternativi, che valutano il polinomio di interpolazione senza costruire la matrice di VanderMonde, un esempio è la formula baricentrica (non è implementata in Matlab, si trova sulla pagina del corso):

```
y1=barycentric(x,y,x1)
(stessa sintassi di interp1).
```