Übungen Funktionale Programmierung (in Clojure) Serie 5

1. Summation

Berechnen Sie die Summe $\sum_{i=1}^{n} i$

- (a) durch Rekursion
- (b) durch Endrekursion
- (c) und noch ganz anders ohne Schleife

2. Euklidischer Algorithmus

Programmieren Sie eine Funktion ($gcd\ n\ m$), die mit dem Euklidischen Algorithmus den größten gemeinsamen Teiler ($greatest\ common\ divisor$) der natürlichen Zahlen n und m berechnet.

3. Fibonacci-Zahlen

Die Fibonacci¹-Zahlen sind definiert durch

$$fib(n) = \left\{ \begin{array}{ll} 0 & \text{falls } n=0 \\ 1 & \text{falls } n=1 \\ fib(n-1) + fib(n-2) & \text{sonst} \end{array} \right.$$

- (a) Setzen Sie diese Definition in eine rekursive Funktion um, die fib(n) berechnet.
- (b) Programmieren Sie eine endrekursive Variante nach folgender Idee. Initialisiere a = 1, b = 0.

Wiederhole gleichzeitig die Transformationen (a = a + b, b = a) n-mal.

(c) Zusatzaufgabe: In welcher europäischen Stadt gibt es ein Museum, dessen Fassade die Fibonacci-Folge ziert?

4. Primzahltest

Schreiben Sie eine Funktion prime?, die für eine positive Zahl n testet, ob sie eine Primzahl ist.

Testen Sie Ihre Funktion mit 99991 und 99993.

5. Pascalsches Dreieck

Das Pascalsche Dreieck

hat an seinen Rändern den Wert 1, im Inneren ergibt sich der Wert durch die Summe der beiden Werte darüber.

 $^{^{1}}$ Leonardo da Pisa, genannt Fibonacci, etwa 1180 - 1241

- (a) Schreiben Sie eine rekursive Funktion (pascal row index), die die Pascalsche Zahl in der Zeile row und Position index berechnet. (Zählung der Zeilen und Positionen beginnt mit 1.)
- (b) Kann man auch eine endrekursive Variante schreiben? Versuchen Sie es.