전자종합설계 보고서

IEEE Code of Ethics

(출처: http://www.ieee.org)

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life throughout the world, and in accepting a personal obligation to our profession, its members and the communities we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

- 1. to accept responsibility in making decisions consistent with the safety, health and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;
- 2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist;
- 3. to be honest and realistic in stating claims or estimates based on available data;
- 4. to reject bribery in all its forms;
- 5. to improve the understanding of technology, its appropriate application, and potential consequences;
- 6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;
- 7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;
- 8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or national origin;
- 9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
- 10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.

위 IEEE 윤리헌장 정신에 입각하여 report를 작성하였음을 서약합니다.

학 부: 전자공학부

제출일: 2018.10.04

과목명: 전자종합설계

교수명: 이교범 교수님

분 반: 목요일

성 명: 이승복 (201420820),

[1] 목표

- 좌표변환을 이용하여 abc상의 좌표계를 d-q축으로 변환해본다.
- 정지좌표계와 회전좌표계의 변환 관계를 이해한다.
- 전류 제어기의 이득 선정 방법에 대해서 숙지한다.
- 지령 전류를 만들어 준 뒤 오차를 관찰하고 그에 따른 d-q축 전압을 확인한다.

[2] 이론

1) 좌표변환

: 3상 교류 전동기의 a, b, c상 변수들을 d, q, n축으로 이루어진 직교 좌표계상의 변수로 변환하는 것

- (1) d축: 통상 전동기의 자속이 발생하는 축, 교류 전동기의 벡터제어에서 기준이 되는 축
- (2) q축: d축과 직각을 이루는 축, 벡터제어에서 토크를 발생하는 전류의 축
- (3) n축: d, q축과 3차원 공간에서 서로 직교하는 축, 전동기에서 손실을 나타냄

변환하는 이유: PI제어기는 직류에 대한 동특성이 우수하기 때문에 d-q축으로 변환해서 쓴다.

<abc축 좌표계의 3상 변수를 정지 좌표계의 d-q축 변수로 변환>

$$f_{d}^{s} = \frac{2f_{a} - f_{b} - f_{c}}{3}, \qquad \quad f_{q}^{s} = \frac{f_{b} - f_{c}}{\sqrt{3}}, \qquad \quad f_{n}^{s} = \frac{f_{a} + f_{b} + f_{c}}{3}$$

<위 수식을 통해 코드로 작성한 좌표 변환>

Ids_out = (2.*la_out - lb_out - lc_out) / 3.;
Iqs_out = (lb_out - lc_out) * INV_SQRT3;

1-1) 직교좌표계의 종류

 ${
m d}$ -q축의 직교 좌표계의 회전 여부에 따라 정지 좌표계와 회전 좌표계로 구분 가능하다. 축의 회전 각속도 w는 임의로 선정이 가능하다.

(1) 정지 좌표계

- 고정자 좌표계라고 부른다.
- 좌표축이 회전하지 않고 정지된 좌표계이다.
- $d^s q^s$ 축으로 표시한다.
- 일반적으로 d^s 축은 a상 권선의 자속 축과 일치시켜 사용한다.

(2) 회전 좌표계

- 좌표축이 어떤 각속도 w로 회전하는 좌표계
- $d^w q^w$ 축으로 표시가능하다.
- 동기 좌표계 : 회전자계에 동기 하여 회전하는 좌표계로서 $d^e q^e$ 축으로 표시한다.

- 회전자 좌표계 : 회전자 속도에 동기 하여 회전하는 좌표계로서 $d^r q^r$ 축으로 표시한다.
- 정지 좌표계의 축과 w의 각속도로 회전하는 회전 좌표계의 축 사이의 각 θ 는 시간에 따라 변한다.

 $\theta = \int_0^t w(\tau) d\tau + \theta(0)$ 식으로 나타낼 수 있고 아래의 사진은 θ에 대해서 코드로 나타낸 것이다.

2) 전류제어기

전류제어기의 동작 원리에 대해 알아보기 위해 d-q축 정지 좌표계에서의 전류제어기를 살펴보도록 한다.

(1) d-q축 정지 좌표계에서의 전류제어기

그림 2-9. 3상 계통 부하

계통 연계 전류 제어는 부하가 계통이므로 역기전력을 포함하는 전압 방정식이 모델링이 되어야 한다. 이러한 역기전력을 갖는 3상부하는 [그림 2-9]와 같이 일반 화 할 수 있으며, 아래 식으로 나타낼 수 있다.

$$\begin{split} v_a &= Ri_a + L\frac{di_a}{dt} + e_a & \rightarrow & v_d^s = Ri_d^s + L\frac{di_d^s}{dt} + e_d^s \\ v_a &= Ri_a + L\frac{di_a}{dt} + e_a & \rightarrow & v_q^s = Ri_q^s + L\frac{di_q^s}{dt} + e_q^s \\ v_a &= Ri_a + L\frac{di_a}{dt} + e_a & & \\ \end{split}$$

-> d-q축 좌표계의 전압 방정식으로의 변환.

VdeRefFbInts += KiCur * IdeErr*T_samp; VdeRef = KpdCur * IdeErr + VdeRefFbIntg;//PI 전류제어기 출력

YqeRefFbIntg += KiCur * IqeErr*T_samp; VqeRef = KpqCur * IqeErr + VqeRefFbIntg;//PI 전류제어기 출력

VdsRef = VdeRef * cos(Theta) - VgeRef * sin(Theta); VqsRef = VdeRef * sin(Theta) + VqeRef * cos(Theta);

전류 지령은 정지 좌표계의 d-q축 전류 $i_d^{s^*}$, $i_q^{s^*}$ 로 주어지며, 실제 3상 부하 전류 i_a , i_b , i_c 는 좌표 변환을 통해 d-q축 전류 i_d^s , i_q^s 로 변환되어 피드백 된다. 비례 적분 전류 제어기에서는 전류 오차를 감소시키기 위해 필요로 하는 d -q축 정지 좌표계의 지령 전압 $v_d^{s^*}$, $v_q^{s^*}$ 를 생성하게 되고 이 과정을 코드로 작성하면 위의 사진과 같다. $v_d^{s^*}$, $v_q^{s^*}$ 는 다시 좌표 변환을 통해 3상 지령 전압 v_a^* , v_b^* , v_c^* 로 변환된다. 이 지령 전압을 PWM 인버터에서 삼각 반송파와 변조하여 출력 전압을 발생하고 3상 부하에 인가함으로써 지령 전류를 추정하게 된다.

$$\begin{array}{c|c} I_a^* & + \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{array} \begin{array}{c|c} K_{pc} + \frac{K_{ic}}{s} & V_a^* = V_a \\ \hline & \\ \hline \end{array} \begin{array}{c|c} 1 & I_a \\ \hline \\ L_a s + R_a \end{array}$$

좌표 변환을 통해 얻어진 회전 좌표계의 전류는 각각의 지령과의 오차를 계산하여 비례 적분 제어기를 통하여 전압 지령을 생성한다. 위 블록도에 따라 출력 전압과 전류 오차의 관계를 살펴보면 아래 식과 같다.

$$V_a=K_{pc}(1+rac{1}{T_cs})(I_a^*-I_a)$$
 . 여기서 $rac{1}{T_c}$ 는 $rac{K_{ic}}{K_{pc}}$ 로 비례 적분제어기의 절점 주파수이다.

Open-Loop Transfer function을 살펴보면
$$G_c^o(s) = K_{pc} \frac{s + K_{ic}/K_{pc}}{s} \frac{1/L_a}{s + R_o/L_o}$$
이다.

즉 Zero가 $-K_{ic}/K_{pc}$ 이고 Pole이 $-R_a/L_a$ 인 시스템이다. 이 시스템에서 Pole-Zero Cancellation 기법을 이용해서 전동기 자체의 특성을 제거하고 제어기 이득으로만 전류 제어기의 특성을 결정짓는다. 이 경우

Open-Loop Transfer function은 $G_c^o(s)=rac{1}{L_a}$ 가 되고 이 전달함수는 system type이 1이므로 최종값

정리로부터 오차가 0이 됨을 알 수 있다. 이득이 0[dB]를 통과하는 주파수인 교차각 주파수를 구해보면

정리로부터 오차가 0이 됨을 알 수 있다. 이득이 이dB)를 통과하는 주파수인 교차각 주파수를 구해보면
$$|G_c^o(jw_{cc})| = |\frac{1}{L_a}| = 1, w_{cc} = \frac{K_{pc}}{L_a}$$
이다. Open Loop의 주파수 응답인 w_{cc} 는 Closed Loop의 주파수 $\frac{L_a}{K_{pc}}jw_{cc}$

응답의 차단주파수와 동일하기 때문에 이 주파수는 전류 제어기의 주파수 대역폭과 같다.

위에서 구한 식으로부터 비례이득을 구할 수 있고 또 $\dfrac{1}{T_c} = \dfrac{K_{ic}}{K_{ro}} = \dfrac{R_a}{L_c}$ 관계로부터 적분이득을 구할 수 있다.

<비례 이득: $K_{\!p\!c}=L_aw_{\!c\!c}$, 적분이득: $K_{\!i\!c}=R_aw_{\!c\!c}$ > 이를 코드로 구현하면 다음과 같다.

KpdCur = L * WccCur;//d축 전류 제어기 비례이득 KpqCur = L ★ WccCur; //q축 전류 제어기 비례이득 KiCur = R * WccCur; //전류 제어기 적분이득

- ■대역폭을 크게 하면 전류 제어기의 속응성을 좋게 하나 전류 센서 신호의 잡음에 대하여 민감하게 되어 시스템이 불안정하게 될 수 있다.
- ■비례 이득의 크기는 응답 시간과 지연시간을 결정하는데 이 값이 커질수록 응답이 빠르게 된다.
- ■적분 이득은 정상 상태 오차를 감소시키는 속도를 결정한다.
- 그러나 이러한 이득들이 커지면 응답 특성이 진동하여 시스템이 불안정해질 수 있기 때문에 적절한 값을 선정해야 한다.

[3] 시뮬레이션 분석

R, L, 대역폭, Wcc 100~10000, 지령 변경해보고 THD, FFT도 분석해보기, 스위칭 주파수 올려서 전류파형 좋아졌나 도 보기

어떤 조건으로, 뭘 분석했는지 (소자 값, 전류, 전압 크기 등) 자세히, 실험 결과 분석 자세히

초기 설정값에서 각 부분이 미치는 영향에 대해 알아보기 위해 하나씩 변경해주면서 시뮬레이션을 실행했다.

<초기 설정 값>

R=10 Ω , L= 0.001H, w_{cc} =1000, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

<초기 설정 값과 같음>

R=10 Ω , L= 0.001H, w_{cc} =1000, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 약 10의 크기를 갖는다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖다가 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌는 반면 실제 전류는 지령 전류를 천천히 따라가서 최종적으로 10의 크기를 갖는다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0에 가까운 값을 보였다. 파형을 보면 전류가 노이즈가 섞인 것처럼 흔들리는 걸 볼 수 있는데 이는 과도상태에 의해서 발생하는 일시적인 오버슈트 때문이다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 회전좌표계에서 d축은 항상 크기가 0이었고, q축은 t가 0.2s 이하에서는 50의 크기를 갖다가 0.2s이후에서는 100의 크기를 가졌다. 정지 좌표계의 d-q축은 회전좌표계의 역변환을 통해서 나타내었고 그 결과 0.2s 이전에서는 크기가 50, 0.2s이후에서는 크기가 100을 갖는 두 개의 사인파가 나옴을 확인할 수 있었다.
- 5) Theta는 Visual studio를 통해 작성된 코드대로 동작했으며 이때의 주파수는 60Hz로 설정해 주었다. 크기가 π 이상이면 2π 를 빼주고 값이 $-\pi$ 이하이면 2π 를 더해주는 방식으로 코드를 작성하였다.
- 위 결과에 대한 FFT와 THD에 대해서 분석을 해봤다.

<R값 변경>

R=30 Ω , L= 0.001H, w_{ac} =1000, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 이전 시뮬레이션과 같이 약 5의 크기를 가지고 있었다. 하지만 0.2s 이후 약 10의 크기를 갖긴 하지만 이 전과 달리 전류 파형의 두께가 얇아졌고 매끄러운 곡선이 나오지 않았다.
- 2) t가 0.2 이하일 때 실제 전류는 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌는 반면 실제 전류는 지령 전류를 따라가지 못하고 약 8 정도의 크기를 갖는다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0.2s 이전까지는 0에 가까운 값을 보였다. 하지만 0.2s 이후 지령전류를 따라가지 않고 peak-peak 크기가 8인 진폭을 가졌다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 y축이 너무 커졌기 때문에 0.2s 근처에서는 0에 가까운 전압을 보였고 0.2s 이후로는 q축의 회전 좌표계 전압이 끊임없이 증가하였다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 저항을 바꾸면 전류제어기의 적분 이득이 바뀌게 되고 바뀐 전류제어기의 적분 이득은 회전좌표계의 d-q축 전압 지령을 바꾸게 된다. R을 증가시켜서 전류제어기의 적분 이득이 커졌기 때문에 응답 특성이 진동하여 시스템이 불안정 해졌다. 0.2s 이전까지는 3상전류가 정상적이고, d-q축 전류도 지령을 잘 따라왔기 때문에 이 문제의 원인을 0.2s 이후 너무 큰 q축의 전류 지령 때문이라고 생각했다. 따라서 저항은 그대로 두고 0.2s 이후 q축의 전류 지령을 10이 아닌 7로 바꿔준 뒤 다시 시뮬레이션을 진행해봤다.

그 결과 예상했던 대로 시뮬레이션이 정상적으로 동작하였다. 저항을 30Ω 으로 증가시켜 주었기 때문에 회전좌 표계와 정지좌표계의 크기가 200으로 늘어난 것을 확인할 수 있다. 이때의 FFT는 아래와 같다.

이때의 THD는 아래와 같다.

THD	
Fundamental Frequer	cy 1.0000000e+001 HZ
ia_out	8.4810247e+002
ib_out	4.9536705e+002
ic_out	1.1431937e+003
lqe_Out	2.4782509e+005
lqeRef	1.2546481e+016
lde_Out	5.4018342e+002
VdeRef	2.0036164e+003
VdsRef	8.3979371e+002
VqeRef	3.3948463e+004
VqsRef	5.9710074e+002

<L값 변경>

R=10 Ω , L= 0.05H, w_{cc} =1000, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 10의 크기를 갖는다. L값을 증가 시켜줬을 때 이 전에 비해서 전류 파형이 깔끔하게 나오는 것을 확인했다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌는 반면 실제 전류는 약간의 시간이 지난 다음에야 지령 전류를 따라간다. 이 전 파형들과 달리 지령을 따라가는 부분에서 노이 즈가 많이 없어졌다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0.2s 이전까지는 지령과 완벽하게 일치하다가 0.2s근처에서 overshoot이 발생하였다. 하지만 얼마 지나지 않아 다시 지령전류를 완벽하게 따라가는 모습을 보였다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 L값이 기존 값에 비해 50배 커졌기 때문에 0.2s이후 회전좌표계와 정지좌표계의 크기가 약 200으로 늘어난 것을 확인할 수 있다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 인덕터를 바꾸면 전류제어기의 비례 이득이 바뀌게 되고 바뀐 전류제어기의 비례 이득은 회전좌표계의 d-q축 전압 지령을 바꾸게 된다. L을 증가시키면 전류제어기의 비례 이득이 커지고 이 때문에 응답, 지연 시간이 바뀌게 된다. 실제 시간을 측정해보니 1번 시뮬레이션의 경우 q축 전류가 지령전류를 따라가는데 2.04s이 걸렸고 지금 시뮬레이션은 2.07s가 걸렸다. 원래 비례 이득이 커지면 응답시간이 빨라지지만 이 시뮬레이션의 경우는 오히려 조금 느려졌다. 하지만 그 시간은 많이 차이가 나지 않았고 전류 파형이 이 전에 비해서 깨끗해졌음을 인덕터 크기 증가를 통해 알 수 있었다.

$< w_{cc}$ 값 크게 변경>

 $R=10\Omega$, L= 0.001H, $w_{\infty}=10000$, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 10의 크기를 갖는다. 스위칭 주파수에 따른 변화는 그 전과 비교해봤을 때 커 보이지 않았다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌게 되고 실제 전류도 이 전 시뮬레이션들과는 다르게 매우 빠르게 지령전류를 따라가는 것을 확인할 수 있었다. 0.2s 부분에서 전류가 약간 튀긴 했지만 지령을 따라가는 속도는 2.007s로 매우 빨랐다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0에 가까운 값을 보였다. 파형을 보면 전류 가 노이즈가 섞인 것처럼 흔들리는 걸 볼 수 있는데 이는 과도상태에 의해서 발생하는 일시적인 오버슈트 때문이다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 회전좌표계에서 d축은 항상 크기가 0이었고, q축은 t가 0.2s 이하에서는 50의 크기를 갖다가 0.2s이후에서는 100의 크기를 가졌다. 정지 좌표계의 d-q축은 회전좌표계의 역변환을 통해서 나타내었고 그 결과 0.2s 이전에서는 크기가 50, 0.2s이후에서는 크기가 100을 갖는 두 개의 사인파가 나옴을 확인할 수 있었다. 이는 1번 시뮬레이션과 크게 다른 부분이 없었다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 대역폭을 크게 하면 전류 제어기의 속응성을 좋게 할 수 있으나 전류 센서 신호의 잡음에 민감하게 되어 시스템이 불안정해질 수 있다. q축 지령 전류를 다른 시뮬레이션보다 더 빨리 따라감을 확인할 수 있었다.

$< w_{cc}$ 값 작게 변경>

R=10 Ω , L= 0.001H, w_{cc} =100, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 10의 크기를 갖는다. 주파수대역이 10000인 시뮬레이션4에 비해서 주파수대역이 100인 현재 시뮬레이션은 3상 전류가 5의 크기에서 10의 크기로 변하는데 그 사이의 변화가 보일정도로 느리게 변했다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌게 된다. 실제 전류는 주파수 대역이 낮아짐에 따라 좀 더 느리게 지령전류를 따라갔다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0에 가까운 값을 보였다. 파형을 보면 전류가 노이즈가 섞인 것처럼 흔들리는 걸 볼 수 있는데 이는 과도상태에 의해서 발생하는 일시적인 오버슈트 때문이다.
- 4) 주파수 대역이 낮아지면서 1, 4번 시뮬레이션에 비해 전압이 천천히 변함을 그래프를 통해 확인할 수 있다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 대역폭을 작게 하면 전류 제어기의 속응성이 나빠진다. 때문에 원하는 시간에 값을 신속히 변경해주고 싶을 때는 대역폭을 늘려야 한다.

이때의 FFT는 아래와 같다. 0.12 0.08 100 80 60 40 20 Шини Frequency (Hz) 이때의 THD는 아래와 같다. Fundamental Frequency 1.0000000e+001 HZ 1.6539497e+003 ia_out 2.0744138e+003 ib_out ic_out 9.0937727e+002 lqe_Out 2.9598093e+005 IqeRef 8.0784020e+015 lde_Out 9.5317757e+002 VdeRef 8.9391122e+003 1.6639892e+003 VdsRef VqeRef 1.8490901e+005 VqsRef 1.1858026e+003

<스위칭 주파수 값 변경>

R=10 Ω , L= 0.001H, w_{ac} =100, 스위칭 주파수 : 100kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 0, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 10의 크기를 갖는다. 스위칭 주파수를 10배 늘려주자 전류 파형이 이 전보다 얇고 깨끗해짐을 확인할 수 있었다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌고 실제 전류는 약간의 노이즈를 가진 채 지령전류를 따라간다.
- 3) d축 지령 전류는 시간에 관계없이 0을 주었다. 그 결과 실제 전류는 0에 가까운 값을 보였다. 파형을 보면 전류가 노이즈가 섞인 것처럼 흔들리는 걸 볼 수 있는데 이는 과도상태에 의해서 발생하는 일시적인 오버슈트 때문이다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 회전좌표계에서 d축은 항상 크기가 0이었고, q축은 t가 0.2s 이하에서는 50의 크기를 갖다가 0.2s이후에서는 100의 크기를 가졌다. 정지 좌표계의 d-q축은 회전좌표계의 역변환을 통해서 나타내었고 그 결과 0.2s 이전에서는 크기가 50, 0.2s이후에서는 크기가 100을 갖는 두 개의 사인파가 나옴을 확인할 수 있었다. 이는 1번 시뮬레이션과 크게 다른 부분이 없었다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 스위칭 주파수를 빠르게 변화시키면 그 전에 비해 3상 전류의 파형의 두께가 얇고 깨끗해짐을 확인할수 있었다. 또 q축 전류 지령과 실제 전류를 확인해보면 너무 스위칭이 자주 일어나기 때문에 생기는 노이즈를 관찰할 수 있었다.

이때의 FFT는 아래와 같다.

이때의 THD는 아래와 같다.

THD

Fundamental Frequency	1.0000000e+001 HZ
ia_out	8.1600475e+002
ib_out	4.1975006e+002
ic_out	8.7232578e+002
lqe_Out	3.1729721e+004
lqeRef	1.3063916e+016
lde_Out	3.7702130e+002
VdeRef	1.9657253e+002
VdsRef	3.5145176e+003
VqeRef	3.9129570e+003
VqsRef	4.4718701e+002

<d축 지령 전류 변경>

R=10 Ω , L= 0.001H, w_{α} =100, 스위칭 주파수 : 10kHz,

t<0.2 일 때 d축 전류지령 = 0, q축 전류 지령 = 5

그 외의 시간에서 d축 전류지령 = 10, q축 전류 지령 = 10

시뮬레이션 결과 파형은 총 다섯 가지를 보았고 각각 아래 번호에 맞춰 분석을 해봤다.

- 1) 3상전류, 2) q축 전류 지령과 실제 전류, 3) d축 전류 지령과 실제 전류,
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압, 5) Theta이다.
- 1) t가 0.2 이하일 때 3상전류는 약 5의 크기를 가지고 있다가 0.2s 이후 약 14의 크기를 갖는다. d축 전류의 지령 이 0이었을 때는 q축의 전류 지령만 있었기 때문에 0.2s 이후에 3상전류가 q축 지령의 값과 같은 10의 크기를 가졌지만, 이제는 d축 지령도 포함되어 있기 때문에 전보다 더 큰 값을 갖게 되었다.
- 2) t가 0.2 이하일 때 지령에 맞게 5의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌고 실제 전류는 약간의 노이즈를 가진 채 지령전류를 따라간다.
- 3) t가 0.2 이하일 때 실제 전류는 지령에 맞게 0의 크기를 갖는다. 0.2s 이후 지령 전류는 10의 크기로 바로 바뀌고 실제 전류는 약간의 노이즈를 가진 채 지령전류를 따라간다.
- 4) 회전 좌표계와 정지 좌표계에 대한 각각의 d-q축 지령 전압을 살펴본 결과 회전좌표계에서 t가 0.2s 이하에서 q축은 50, d축은 0의 크기를 갖다가 0.2s이후에서는 q축은 100, d축은 94의 크기를 가졌다. 정지 좌표계의 d-q축은 회전좌표계의 역변환을 통해서 나타내었고 그 결과 0.2s 이전에서는 크기가 약 50, 0.2s이후에서는 크기가 약 140을 갖는 두 개의 사인파가 나옴을 확인할 수 있었다.
- 5) Theta는 이 전 시뮬레이션과 변함없는 파형을 보였다.

분석 결과: 전류 지령을 q축만 주었을 때는 3상전류의 경우 오직 q축의 지령 값만 따라갔다. 하지만 d축도 같이 지령을 주기 시작하면서 q축 지령만 줬을 때 보다 더 큰 값으로 3상전류가 생기는 것을 확인할 수 있었다. 마찬가지로 전압도 이전에 비해 d축 지령의 영향으로 크기가 커진 것을 확인할 수 있었다.

[4] 고찰

이번 실험의 목표는 좌표변환을 이용하여 abc상의 좌표계를 d-q축으로 변환하는 방법, 정지좌표계와 회전좌표계의 변환 관계 그리고 전류 제어기의 이득 선정 방법에 대해 이해하는 것이었다. d-q축 변환을 하는 이유는 우리가 자주 이용하는 PI제어기의 경우 직류에 대한 동특성이 우수하기 때문에 abc상을 d-q축으로 변환하여 이용하기 때문이다. 이번 시뮬레이션을 통해 abc상을 d-q축 정지 좌표계로 변환한 뒤 정지 좌표계의 축과 w의 각속도로 회전하는 회전 좌표계의 축 사이의 각 θ 를 이용해서 회전 좌표계로 변환할 수 있었다.

시뮬레이션을 진행 하면서 결과파형에 영향을 줄 수 있는 요소들을 하나씩 바꿔보았다. 먼저 R값을 10Ω 에서 30Ω 으로 변화시켰을 때 예상하지 못한 결과가 나왔다. t=0.2s 이하에서는 3상전류가 정상적이고, d-q축 전류도 지령을 잘 따라왔으나 0.2s 이후 지령 값을 따라가지 못했다. 이 문제의 원인을 0.2s 이후 너무 큰 q축의 전류 지령 때문이라고 생각했다. 따라서 저항은 그대로 두고 0.2s 이후 q축의 전류 지령을 10이 아닌 7로 바꿔준 뒤 다시 시뮬레이션을 진행해봤다. 그 결과 예상했던 대로 시뮬레이션이 정상적으로 동작하였다. 저항을 30Ω 으로 증가시켜 주었기 때문에 t=0.2s이후 회전좌표계와 정지좌표계의 크기가 100에서 200으로 늘어난 것을 확인할 수 있었다.

L값을 1mH에서 50mH로 바꾸게 되면 전류제어기의 비례 이득이 바뀌게 되고 바뀐 전류제어기의 비례 이득은 회전 좌표계의 d-q축 전압 지령을 바꾸게 된다. L을 증가시키면 전류제어기의 비례 이득이 커지고 이 때문에 응답, 지연 시간이 바뀌게 된다. 원래 비례 이득이 커지면 응답시간이 빨라지지만 인덕터를 증가시켰을 때가 오히려 그 전에 비해조금 느려졌다. 하지만 그 시간은 크게 차이 나지 않았고 전류 파형이 이 전에 비해서 깨끗해졌음을 인덕터 크기 증가를 통해 알 수 있었다.

대역폭을 기존 1000에서 10000으로 크게 변경해 주었을 때 q축 지령 전류를 다른 시뮬레이션보다 더 빨리 따라감을 확인할 수 있었다. 대역폭의 증가는 전류 제어기의 속응성을 좋게 할 수 있으나 전류 센서 신호의 잡음에 민감하게 되어 시스템이 불안정해질 수 있다.

반대로 대역폭을 100으로 낮게 변경해 주었을 때는 전류 제어기의 속응성이 나빠졌다. 원하는 값에 다다르는데 까지 시간이 더 걸리는 것을 결과 파형을 통해 확인할 수 있었다.

스위칭 주파수를 기존 10kHz에서 100kHz로 변경해 주었을 때 그 전에 비해 3상 전류의 파형의 두께가 얇고 깨끗해짐을 확인할 수 있었다. 또 q축 전류 지령과 실제 전류를 확인해보면 너무 스위칭이 자주 일어나기 때문에 생기는 노이즈를 관찰할 수 있었다.

이 전 시뮬레이션들은 d축 전류는 0으로 고정 한 채 q축 전류의 변화에 의한 결과만 살펴보았기 때문에 이번에는 d축 전류에도 지령을 같이 준 뒤 파형 변화를 살펴보았다. 전류 지령을 q축만 주었을 때는 3상전류의 경우 오직 q축의 지령 값만 따라갔다. 하지만 d축도 같이 지령을 주기 시작하면서 q축 지령만 줬을 때 보다 더 큰 값으로 3상전류가 생기는 것을 확인할 수 있었다. 마찬가지로 전압도 이전에 비해 d축 지령의 영향으로 크기가 커진 것을 확인할 수 있었다.

이번 시뮬레이션을 통해 전류제어를 하는데 있어서 각 요소가 어떤 영향을 주는지에 대해 살펴볼 수 있었다. 모든 값들이 무조건적으로 크다고 좋은 것이 아님을 확인할 수 있었고 전류제어기를 잘 설계하기 위해서는 적절한 값을 선택하는 것이 중요하다는 사실을 이번 기회를 통해 느낄 수 있었다.

[5] 참고문헌

- 전자종합설계 강의노트
- 김상훈, 『모터제어 DC, AC, BLDC』, 복두 출판사(2014),P312