Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability

Feb 25th, 2021 Presented By: Priya Patel

COVID-19 and Air Quality

- COVID-19 has resulted in wide scale changes in human behavior
- This has, in turn, has impacted traffic emissions.

How much of the reduction in NO2 is due to

COVID-19 vs. seasonal impacts?

Methods

Atmospheric NO2 behaviour

Sentinel-5P

Tropospheric NO2 from TROPOMI

Wind Data

Method 0 - The "Control" Method

Before COVID-19: Jan 1, 2020 - Feb 29, 2020

After COVID-19: March 15, 2020 - April 30, 2020

% Reduction = NO2 (Before COVID-19) – NO2 (After COVID-19)

Method 1: Same timeframe between 2019 and 2020

2019 period: March 15, 2019 - April 30, 2019

2020 period: March 15, 2020 – April 30, 2020

% Reduction = NO2 (2019 period) – NO2 (2020 period)

Method 2

Step 1

$$f_{sun-angle_n} = \frac{0.75 + 0.25 * cos \left[2\pi \frac{n+11}{365} \right]}{0.75 + 0.25 * cos \left[2\pi \frac{n_d+11}{365} \right]}$$

Step 3

$$\widehat{NO_2}_{n,i} = \frac{NO_2_{n,i}}{f_{total_{n,i}}}$$

Step 2

$$J_{total_{n,i}} = [f_{sun-angle}]_n [f_{day-of-week}]_n [f_{wind-speed}]_{n,i} [f_{wind-dir}]_{n,i}$$

Method 3

19 precautions in place

Results:

Impact of Meteorological Variables

Impact of Sun Angle

Impact of Wind Speed

Impact of Wind Direction

Results for Methods 0 - 3

Comparison of results for each method

	Reference case Method 0	Account for sun- angle only Method 1	Account for sun-angle & meteorology			
			Method 2	Method 3		
	∆ between		Using ERA5			
	months		analogs to account	Using GEM-		
100	2020 only	Δ between years	for meteorology	MACH to infer		
	(Jan-Feb vs.	2019 vs. 2020	2019 vs. 2020	NO2, 2020 only	Mean of	Median of
City Name	Mar 15 - Apr 30)	(Mar 15 - Apr 30)	(Mar 15 - Apr 30)	(Mar 15 - Apr 30)	Methods 1-3	Methods 1-3
San Jose	65.2%	43.4%	40.7%	43.5%	42.5%	43.4%
Los Angeles	66.1%	32.6%	32.5%	38.6%	34.6%	32.6%
Toronto	60.4%	31.0%	17.0%	42.0%	30.0%	31.0%
Philadelphia	50.3%	36.6%	30.7%	22.1%	29.8%	30.7%
Denver	25.8%	29.2%	23.4%	39.1%	30.6%	29.2%
Atlanta	39.6%	35.2%	27.4%	20.2%	27.6%	27.4%
Detroit	35.5%	29.9%	22.8%	15.6%	22.8%	22.8%
Boston	40.3%	22.8%	23.5%	17.8%	21.4%	22.8%
Washington DC	42.9%	31.4%	21.2%	6.7%	19.8%	21.2%
Montreal	12.5%	3.3%	20.9%	30.2%	18.1%	20.9%
New York City	32.7%	20.2%	20.0%	17.9%	19.4%	20.0%
New Orleans	41.7%	13.5%	19.6%	22.5%	18.5%	19.6%
Las Vegas	66.7%	9.5%	18.4%	42.0%	23.3%	18.4%
Houston	38.9%	26.3%	15.6%	1.9%	14.6%	15.6%
Chicago	31.0%	23.6%	14.9%	3.5%	14.0%	14.9%
Phoenix	43.9%	12.8%	14.8%	35.4%	21.0%	14.8%
Austin	34.3%	14.5%	9.4%	16.1%	13.3%	14.5%
Dallas	41.9%	11.9%	3.6%	16.7%	10.7%	11.9%
Miami	27.9%	16.1%	-1.6%	11.0%	8.5%	11.0%
Minneapolis	0.1%	14.3%	9.2%	8.1%	10.5%	9.2%
Mean of each method	39.9%	22.9%	19.2%	22.5%	21.6%	21.6%

Method 1: Comparison between 2019 and 2020

Figure 2. TROPOMI NO₂ differences between 2019 & 2020, using March 15 – April 30, 2020 as the post-COVID-19 period. Plots are showing (a) the absolute difference and (b) the ratio between years.

Method 2

Figure 3. Trends in TROPOMI NO₂ since January 1 in 2019 and 2020 after accounting for meteorological variability and sun angle. The thick lines represent the 28-day rolling median value (50^{th} percentile) in a $0.4^{\circ} \times 0.4^{\circ}$ box centered on the city center for the largest cities (New York City, Los Angeles, Chicago, Toronto, Houston) and $0.2^{\circ} \times 0.2^{\circ}$ box in all other cities. The thin lines represent the fractional coverage (0-1) in the coincident spatiotemporal domain.

Method 3

Figure 4. Trends in TROPOMI NO₂ since January 1, 2020. The actual observed columns are shown in black, while the "expected" columns - using GEM-MACH to infer NO₂ in the absence of lockdowns – is shown in blue. The lines represent the 28-day rolling median value (50th percentile) in a $0.4^{\circ} \times 0.4^{\circ}$ box centered on the city center for the largest cities (New York City, Los Angeles, Chicago, Toronto, Houston) and $0.2^{\circ} \times 0.2^{\circ}$ box in all other cities.

Sources of Error

- TROPOMI underestimates NO2
- Clear-sky bias

Questions?

Vehicle Emission Inventory for the Canada's Air Pollutant Emissions Inventory Report 2020

ON-ROAD VEHICLES			
Description	On-road Vehicles include: Heavy-duty diesel vehicles, Heavy-duty gasoline trucks, Light-duty diesel trucks, Light-duty diesel vehicles, Light-duty gasoline trucks, Light-duty gasoline vehicles, Propane and natural gas vehicles, Motorcycles, and Tire Wear & Brake Lining.		
General Inventory Method	Pollutant(s) Estimated: TPM, PM ₁₀ , PM _{2.5} , SO _x , NO _x , VOCs, CO, NH ₃ , Pb, Cd, Hg, dioxins/furans, B(a)p, B(b)f, B(k)f, I(cd)p		
	Vehicle-specific activity (vehicle kilometres travelled) is multiplied by pollutant-specific emission factors in the MOVES model (version MOVES2014 was used for this submission).		
	Refuelling VOC emissions are included in under Service Stations.		
Activity Data	Data on the vehicle fleet (counts), defined by fuel type, model-year and gross vehicle weight rating, originate from DesRosiers Automotive Consultants (DAC 2014) and R. L. Polk & Co. (Polk & Co. 2013) for light- and heavy-duty vehicles, respectively. Motorcycle populations originate from the publication <i>Road Motor Vehicle, Trailer and Snowmobile Registration (registrations)</i> (Statistics Canada j, k). The <i>Annual Industry Statistics</i> report (MMIC 2013) is used to estimate the age distribution of motorcycles by model year which is applied to motorcycle populations obtained from Statistics Canada. The actual activity level is vehicle kilometres travelled (VKT). To arrive at estimates of VKT, vehicle counts are multiplied by mileage accumulation rates from Stewart-Brown Associates (Stewart-Brown 2012).		
Emission Factors (EF)	Emission factors for on-road vehicles are embedded in the MOVES model. More information on MOVES is available online at www.epa.gov/otaq/models/moves/, in the U.S. EPA user guides (U.S. EPA 2012b, 2014b) and in U.S. EPA technical guidance document (U.S. EPA 2010b).		