FINAL PROJECT

```
from google.colab import files
uploaded = files.upload()
```


Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving test-Project1.csv to test-Project1.csv

Saving test-Project1.csv to test-Project1.csv

#Importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir import pandas.util.testing as tm

```
#importing datasets
data_train = pd.read_csv('train-Project1.csv')
data_test = pd.read_csv('test-Project1.csv')
data_train.head()
```


	Id	Open Date	City	City Group	Туре	P1	P2	Р3	Р4	P5	P6	P7	P8	P9	P10	Р
0	0	07/17/1999	İstanbul	Big Cities	IL	4	5.0	4.0	4.0	2	2	5	4	5	5	
1	1	02/14/2008	Ankara	Big Cities	FC	4	5.0	4.0	4.0	1	2	5	5	5	5	
2	2	03/09/2013	Diyarbakır	Other	IL	2	4.0	2.0	5.0	2	3	5	5	5	5	
3	3	02/02/2012	Tokat	Other	IL	6	4.5	6.0	6.0	4	4	10	8	10	10	
4	4	05/09/2009	Gaziantep	Other	IL	3	4.0	3.0	4.0	2	2	5	5	5	5	

Visualizing the dataset

```
cities = data_train['City'].unique()
cities.sort()
groups = data_train['City Group'].unique()
types = data_train['Type'].unique()
```

citywisedata = data_train.groupby('City').mean()
citywisedata.head()

	10	P1	Ρ2	Р3	Р4	Р5	Р6
City							
Adana	72.666667	4.000000	5.000000	4.000000	3.000000	1.000000	2.666667
Afyonkarahisar	8.000000	1.000000	1.000000	4.000000	4.000000	1.000000	2.000000
Amasya	110.000000	6.000000	3.000000	6.000000	6.000000	4.000000	4.000000
Ankara	62.105263	3.526316	4.421053	4.078947	4.736842	2.789474	3.947368
Antalya	74.000000	3.000000	3.500000	5.250000	4.375000	2.000000	4.000000

```
#Plotting the mean data against each city
fig, ax = plt.subplots()
fig.set_size_inches(10, 10)
ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
sns.barplot(x = cities, y = citywisedata['revenue'], ax = ax)
```


<matplotlib.axes._subplots.AxesSubplot at 0x7fd4357c47f0>

```
1e6
```

#PLotting the city type against its mean revenue
citytypewisedata = data_train.groupby('City Group').mean()

```
fig, ax = plt.subplots()
fig.set_size_inches(10, 10)
```

sns.barplot(x = groups, y = citytypewisedata['revenue'], ax = ax)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd43560edd8>


```
#Plotting each city group against its mean
citygroupwisedata = data_train.groupby('Type').mean()

fig, ax = plt.subplots()
fig.set_size_inches(10, 10)

sns.barplot(x = types, y = citygroupwisedata['revenue'], ax = ax)
```


<matplotlib.axes._subplots.AxesSubplot at 0x7fd4350d43c8>

cat_col=data_train.select_dtypes(include='object').columns
num_col=data_train.select_dtypes(exclude='object').columns

#Plotting the categorical data against the target values
sns.boxplot(x = 'City Group', y = 'revenue', data = data_train)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd4355c9710>

sns.boxplot(x = 'Type', y = 'revenue', data = data_train)

8

<matplotlib.axes._subplots.AxesSubplot at 0x7fd435039f28>

#Plotting the Numerical data against the Target Variable
pp = sns.pairplot(data=data_train,

2.0

1.5

0.5

evenue

pp = sns.pairplot(data=data_train,

Preprocessing the dataset

```
0 5 10 15 0
#Creating a flag for each type of restaurant
data_train['Type_IL'] = np.where(data_train['Type'] == 'IL', 1, 0)
data_train['Type_FC'] = np.where(data_train['Type'] == 'FC', 1, 0)
data_train['Type_DT'] = np.where(data_train['Type'] == 'DT', 1, 0)
#Creating a flag for 'Big Cities'
data_train['Big_Cities'] = np.where(data_train['City Group'] == 'Big Cities', 1, 0)
#Converting Open_Date into day count
#Considering the same date the dataset was made available
data_train['Days_Open'] = (pd.to_datetime('2015-03-23') - pd.to_datetime(data_train['Open
#Removing unused columns
data_train = data_train.drop('Type', axis=1)
data_train = data_train.drop('City Group', axis=1)
data_train = data_train.drop('City', axis=1)
data_train = data_train.drop('Open Date', axis=1)
#Adjusting test data as well
data_test['Type_IL'] = np.where(data_test['Type'] == 'IL', 1, 0)
data_test['Type_FC'] = np.where(data_test['Type'] == 'FC', 1, 0)
data_test['Type_DT'] = np.where(data_test['Type'] == 'DT', 1, 0)
data_test['Big_Cities'] = np.where(data_test['City Group'] == 'Big Cities', 1, 0)
data_test['Days_Open'] = (pd.to_datetime('2015-03-23') - pd.to_datetime(data_test['Open Da
data_test = data_test.drop('Type', axis=1)
data_test = data_test.drop('City Group', axis=1)
data_test = data_test.drop('City', axis=1)
data test = data test.drop('Open Date', axis=1)
data_train.head()
```

	Id	P1	P2	Р3	P4	Р5	Р6	Р7	Р8	Р9	P10	P11	P12	P13	P14	P15	P16	P17	F
0	0	4	5.0	4.0	4.0	2	2	5	4	5	5	3	5	5.0	1	2	2	2	
1	1	4	5.0	4.0	4.0	1	2	5	5	5	5	1	5	5.0	0	0	0	0	
2	2	2	4.0	2.0	5.0	2	3	5	5	5	5	2	5	5.0	0	0	0	0	
3	3	6	4.5	6.0	6.0	4	4	10	8	10	10	8	10	7.5	6	4	9	3	
4	4	3	4.0	3.0	4.0	2	2	5	5	5	5	2	5	5.0	2	1	2	1	

Implementing the models

```
X = data_train.drop(['Id', 'revenue'], axis=1)
Y = data_train.revenue
X.shape
```


(137, 42)

```
#implementing ols regressor and plotting its summary
import statsmodels.api as sm
X_{temp} = X
X_temp = np.append(arr = np.ones((137,1)).astype(int), values = X, axis = 1)
X_temp = X_temp.astype(np.float64)
regressor_OLS = sm.OLS(Y, X_temp).fit()
regressor_OLS.summary()
```



```
1.294e+05 3.91e+05 0.331 0.742 -6.47e+05 9.06e+05
           2.867e+05 2.68e+05 1.071 0.287 -2.45e+05 8.18e+05
       x6
           -1.127e+04 2.85e+05 -0.040 0.969 -5.77e+05 5.54e+05
           -1.203e+06 5.38e+05 -2.236 0.028 -2.27e+06 -1.35e+05
       8x
           1.488e+06 1.06e+06 1.400 0.165 -6.22e+05 3.6e+06
      x10 -6.402e+04 1.67e+06 -0.038 0.970 -3.38e+06 3.25e+06
      x11 -3.063e+05 3.07e+05 -0.999 0.320 -9.15e+05 3.02e+05
      x12 -3.13e+05 6.88e+05 -0.455 0.650 -1.68e+06 1.05e+06
      x13 -5.434e+05 1.57e+06 -0.347 0.729 -3.65e+06 2.57e+06
      x14 -1.194e+05 3.52e+05 -0.339 0.736 -8.19e+05 5.8e+05
      x15 -2.158e+05 4.94e+05 -0.436 0.664 -1.2e+06 7.66e+05
      x16 -4.039e+05 5.58e+05 -0.724 0.471 -1.51e+06 7.04e+05
      x17 2.054e+05 3.71e+05 0.553 0.582 -5.32e+05 9.43e+05
      x18 3.361e+05 4.15e+05 0.811 0.420 -4.87e+05 1.16e+06
      x19 -8.985e+04 1.45e+05 -0.620 0.536 -3.77e+05 1.98e+05
      x20 -3.053e+05 1.82e+05 -1.680 0.096 -6.66e+05 5.55e+04
      x21 1.497e+05 2.6e+05 0.576 0.566 -3.66e+05 6.65e+05
      x22 -2.983e+05 2.72e+05 -1.095 0.276 -8.39e+05 2.42e+05
      x23 1.523e+05 1.33e+05 1.149 0.254 -1.11e+05 4.16e+05
      x24 5.087e+05 5.69e+05 0.895 0.373 -6.2e+05 1.64e+06
      x25 3.712e+05 5.49e+05 0.676 0.500 -7.18e+05 1.46e+06
      x26 -1.071e+06 6.13e+05 -1.748 0.084 -2.29e+06 1.46e+05
      x27 9.661e+04 2.28e+05 0.423 0.673 -3.57e+05 5.5e+05
      x28 4.75e+05 3.2e+05 1.484 0.141 -1.6e+05 1.11e+06
      x29 -1.054e+05 3.42e+05 -0.308 0.759 -7.85e+05 5.74e+05
      x30 6.346e+04 1.7e+05 0.373 0.710 -2.74e+05 4.01e+05
      x31 1.609e+05 2.73e+05 0.590 0.557 -3.81e+05 7.02e+05
      x32 -3.3e+05
                     2.66e+05 -1.241 0.218 -8.58e+05 1.98e+05
#Implementing Multiple Regression
from sklearn.linear model import LinearRegression
from sklearn import metrics
regressor = LinearRegression()
regressor.fit(X, Y)
test_predicted_mreg = pd.DataFrame()
test_predicted_mreg['Id'] = data_test.Id
test predicted mreg['Prediction'] = regressor.predict(data test.drop('Id', axis=1))
test_predicted_mreg.head()
9
         Id
               Prediction
      0
          0 4.669238e+06
      1
          1 2.741557e+06
      2
          2 1.815584e+06
      3
          3 5.312600e+06
```

4

4 5.493380e+06

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor accuracy = LinearRegression()
regressor_accuracy.fit(X_train, y_train)
y pred = regressor accuracy.predict(X test)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean squared error(y test, y pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2_score(y_test, y_pred))
     Mean Absolute Error: 3004513.8682692987
     Mean Squared Error: 19196941411388.652
     Root Mean Squared Error: 4381431.434062235
     R squared score: -0.8044963011047319
#Implementing Logistic Regression
from sklearn.linear model import LogisticRegression
reg = LogisticRegression()
reg.fit(X, Y)
test_predicted_lreg = pd.DataFrame()
test_predicted_lreg['Id'] = data_test.Id
test_predicted_lreg['Prediction'] = reg.predict(data_test.drop('Id', axis=1))
test_predicted_lreg.head()
     /usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_logistic.py:940: Convers
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE MSG)
         Id Prediction
              4888774.0
      0
          0
      1
          1
              4067566.0
      2
          2
              3426169.0
      3
          3
              5017319.0
      4
          4
              3752885.0
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor accuracy = LogisticRegression()
regressor_accuracy.fit(X_train, y_train)
y pred = regressor accuracy.predict(X test)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
```

```
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2_score(y_test, y_pred))
```


Mean Absolute Error: 2065004.2142857143 Mean Squared Error: 13982633811870.072 Root Mean Squared Error: 3739336.012164469 R squared score: -0.31435578473208037

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_logistic.py:940: Converg

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

```
#Implementing Support Vector Machines
from sklearn.svm import SVC
classifier = SVC(kernel='rbf', random_state = 1)
classifier.fit(X, Y)

test_predicted_svm = pd.DataFrame()
test_predicted_svm['Id'] = data_test.Id
test_predicted_svm['Prediction'] = classifier.predict(data_test.drop('Id', axis=1))
test_predicted_svm.head()
```


Id Prediction 0 0 5461700.0 1 1 2344689.0 2 2 1904842.0

3 3 2371202.0

4 4 1619683.0

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor_accuracy = SVC(kernel='rbf', random_state = 1)
regressor_accuracy.fit(X_train, y_train)

y_pred = regressor_accuracy.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2 score(y test, y pred))
```


Mean Absolute Error: 2357957.785714286 Mean Squared Error: 9352554362343.428 Root Mean Squared Error: 3058194.624667212

R squared score: 0.12086777830568829

```
#Implementing Ridge and Lasso Model
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn import metrics

#Lasso Regression
model = Lasso(alpha=5.5)
model.fit(X, Y)

test_predicted = pd.DataFrame()
test_predicted['Id'] = data_test.Id
test_predicted['Prediction'] = model.predict(data_test.drop('Id', axis=1))
test_predicted.head()
```

8

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordinate_descent.py:47
positive)

```
Id Prediction

0      0      4.669774e+06

1      1      2.740680e+06

2      2      1.815398e+06

3      3      5.311360e+06

4      4      5.492584e+06
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor_accuracy = Lasso(alpha=5.5)
regressor_accuracy.fit(X_train, y_train)

y_pred = regressor_accuracy.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2_score(y_test, y_pred))
```

Mean Absolute Error: 3004980.5481886053
Mean Squared Error: 19201868342792.414
Root Mean Squared Error: 4381993.649332734
R squared score: -0.8049594285010895
/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_coordinate_descent.py:47
positive)

```
#Ridge Regression
model = Ridge(alpha=330)
model.fit(X, Y)

test_predicted_ridge = pd.DataFrame()
```

test predicted ridge['Id'] = data test.Id test_predicted_ridge['Prediction'] = model.predict(data test.drop('Id', axis=1)) test predicted ridge.head()


```
Ιd
              Prediction
      0
         0 4.229698e+06
         1 3.822859e+06
      1
      2
         2 3.636879e+06
      3
         3 3.882530e+06
         4 3.957615e+06
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor_accuracy = Ridge(alpha=330)
regressor_accuracy.fit(X_train, y_train)
y_pred = regressor_accuracy.predict(X_test)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
```

Mean Absolute Error: 1930832.797409726 Mean Squared Error: 10032310013899.816 Root Mean Squared Error: 3167382.202055795 R squared score: 0.05697132039594843

print('R squared score:', metrics.r2_score(y_test, y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

#Random Forest Regression Implementation from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(n_estimators=150) model.fit(X, Y)

test predicted forest = pd.DataFrame() test_predicted_forest['Id'] = data_test.Id test predicted forest['Prediction'] = model.predict(data test.drop('Id', axis=1)) test predicted forest.head()

	Id	Prediction
0	0	3.991361e+06
1	1	3.421446e+06
2	2	3.575349e+06
3	3	3.433682e+06
4	4	4.420646e+06

```
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor accuracy = RandomForestRegressor(n estimators=150)
regressor_accuracy.fit(X_train, y_train)
y_pred = regressor_accuracy.predict(X_test)
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2_score(y_test, y_pred))
Mean Absolute Error: 1563027.243333333
     Mean Squared Error: 9914139832189.248
     Root Mean Squared Error: 3148672.7096014996
     R squared score: 0.06807921780668336
#Decision tree Regression Model
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state = 0)
regressor.fit(X, Y)
test_predicted_tree = pd.DataFrame()
test_predicted_tree['Id'] = data_test.Id
test_predicted_tree['Prediction'] = model.predict(data_test.drop('Id', axis=1))
test_predicted_tree.head()
         Ιd
              Prediction
         0 3.991361e+06
      0
      1
         1 3.421446e+06
      2
         2 3.575349e+06
      3
         3 3.433682e+06
         4 4.420646e+06
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor_accuracy = DecisionTreeRegressor(random_state = 0)
regressor_accuracy.fit(X_train, y_train)
y_pred = regressor_accuracy.predict(X_test)
print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R squared score:', metrics.r2_score(y_test, y_pred))
```


Mean Absolute Error: 1917038.7142857143 Mean Squared Error: 10582062293044.715 Root Mean Squared Error: 3253008.1913583796

D ------ 0 00F30F0C0043403F34