Analisi dei Requisiti

v2.0

7Last

Versioni

Ver.	Data	Redattore	Verificatore _G	Descrizione
2.0	2024-07-03	Antonio Benetazzo	Raul Seganfreddo	Approvazione finale documento
1.2	2024-07-01	Antonio Benetazzo	Raul Seganfreddo	Correzioni Cardin
1.1	2024-06-16	Raul Seganfreddo	Elena Ferro	Aggiornamento proponente _G
1.0	2024-05-24	Antonio Benetazzo	Raul Seganfreddo	Approvazione finale documento
0.9	2024-05-20	Leonardo Baldo	Tiozzo Matteo	Aggiunta requisiti
0.8	2024-05-09	Valerio Occhinegro	Leonardo Baldo	Aggiunta CU isole ecologiche e livello dell'acqua
0.7	2024-05-07	Valerio Occhinegro	Leonardo Baldo	Aggiunta CU colonnine e parcheggi
0.6	2024-05-03	Elena Ferro	Antonio Benetazzo	Aggiunta CU precipitazioni e traffico
0.5	2024-04-30	Elena Ferro	Antonio Benetazzo	Aggiunta CU umidità e qualità del- l'aria
0.4	2024-04-23	Elena Ferro	Antonio Benetazzo	Aggiunta CU dati grezzi e temperatura
0.3	2024-04-15	Davide Malgarise	Valerio Occhinegro	Prima stesura casi d'uso
0.2	2024-04-12	Raul Seganfreddo	Valerio Occhinegro	Aggiunta descrizione del prodotto
0.1	2024-04-08	Davide Malgarise	Valerio Occhinegro	Aggiunta introduzione

Indice

1	Intro	oduzione	12
	1.1	Scopo del documento	12
	1.2	Glossario	12
	1.3	Riferimenti	12
		1.3.1 Normativi	12
		1.3.2 Informativi	12
2	Des	scrizione del prodotto	13
	2.1	Obiettivi del prodotto	13
	2.2	Architettura del prodotto	13
	2.3	Funzionalità del prodotto	14
	2.4	Caratteristiche degli utenti	15
		2.4.1 Conoscenze e competenze	15
		2.4.2 Dispositivi	15
3	Cas	si d'uso	16
	3.1	Introduzione	16
	3.2	Struttura dei casi d'uso	16
	3.3	Attori	16
	3.4	Elenco dei casi d'uso	17
		3.4.1 UC-1: Visualizzazione dashboard	17
		3.4.2 UC-2: Visualizzazione dashboard dati grezzi	18
		3.4.2.1 UC-2.1: Visualizzazione <i>panel</i> con tabella sensori	19
		3.4.2.2 UC-2.2: Visualizzazione mappa interattiva sensori	20
		3.4.2.3 UC-2.3: Visualizzazione <i>panel</i> numero sensori per tipo	21
		3.4.2.4 UC-2.4: Visualizzazione tabella sensori non trasmettenti	22
		3.4.2.5 UC-2.5: Visualizzazione tabella dati grezzi temperatura	23
		3.4.2.6 UC-2.6: Visualizzazione tabella dati grezzi umidità	24
		3.4.2.7 UC-2.7: Visualizzazione tabella dati grezzi traffico	25
		3.4.2.8 UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria .	26
		3.4.2.9 UC-2.9: Visualizzazione tabella dati grezzi precipitazioni	27
		3.4.2.10 UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche	28
		3.4.2.11 UC-2.11: Visualizzazione tabella dati grezzi livello dei fiumi .	29
		3.4.2.12 UC-2.12: Visualizzazione tabella dati grezzi colonnine di ri-	
		carica	30

	3.4.2.13		: Visualizzazione grafico time series dati grezzi com-	31
	3.4.2.14	•	: Visualizzazione grafico time series dati grezzi com-	
	01 11211 1		umidità	32
	3 4 2 15	•	: Visualizzazione grafico time series dati grezzi com-	<u></u>
	01412110		raffico	33
	3 4 2 16		: Visualizzazione grafico time series dati grezzi com-	
	01 112110		qualità dell'aria	34
	3 4 2 17	•	Visualizzazione grafico time series dati grezzi com-	•
	01 112117		orecipitazioni	35
	3 4 2 18	-	: Visualizzazione grafico time series dati grezzi com-	00
	0.4.2.10		sole ecologiche	36
	3 4 2 19		: Visualizzazione grafico time series dati grezzi com-	00
	01-112117		ivello dei fiumi	37
	3 / 2 20		: Visualizzazione grafico time series dati grezzi com-	07
	0.4.2.20		colonnine di ricarica	38
3.4.3	110-3: \/i	•	ione dashboard dati ambientali	39
0.4.0			Visualizzazione sezione temperatura	40
		.4.3.1.1	UC-3.1.1: Visualizzazione grafico time series tempe-	40
	J.	.4.0.1.1	ratura	41
	3	.4.3.1.2	UC-3.1.2: Visualizzazione mappa sensori temperatura	
		.4.3.1.3	UC-3.1.3: Visualizzazione panel temperatura me-	42
	J.	.4.0.1.0	dia nel periodo di tempo selezionato	44
	3	.4.3.1.4	UC-3.1.4: Visualizzazione gauge current year livabi-	44
	J,	.4.5.1.4	lity temperature index	45
	3	.4.3.1.5	UC-3.1.5: Visualizzazione <i>panel</i> temperatura massi-	40
	J,	.4.3.1.3	ma nel periodo di tempo selezionato	46
	3	.4.3.1.6	UC-3.1.6: Visualizzazione <i>panel</i> temperatura mini-	40
	J.	.4.5.1.0	ma nel periodo di tempo selezionato	47
	3 1 3 2	110 3 2	Visualizzazione sezione umidità	48
		.4.3.2.1		49
			UC-3.2.1: Visualizzazione grafico time series umidità	
			UC-3.2.2: Visualizzazione mappa sensori umidità	50
	3.	.4.3.2.3	UC-3.2.3: Visualizzazione <i>panel</i> umidità media nel	5 1
	2	1201	periodo di tempo selezionato	51
	3.	.4.3.2.4	UC-3.2.4: Visualizzazione <i>panel</i> umidità in tempo	ΕO
			reale	52

	3.4.3.2.5	UC-3.2.5: Visualizzazione <i>panel</i> umidità massima	
		nel periodo di tempo selezionato	53
	3.4.3.2.6	UC-3.2.6: Visualizzazione <i>panel</i> umidità minima nel	
		periodo di tempo selezionato	54
3.4.3.3	3 UC-3.3:	Visualizzazione sezione qualità dell'aria	55
	3.4.3.3.1	UC-3.3.1: Visualizzazione grafico time series qualità	
		dell'aria	56
	3.4.3.3.2	UC-3.3.2: Visualizzazione mappa interattiva sensori	
		qualità dell'aria	57
	3.4.3.3.3	UC-3.3.3: Visualizzazione <i>panel</i> qualità dell'aria me-	
		dia nel periodo di tempo selezionato	58
	3.4.3.3.4	UC-3.3.4: Visualizzazione <i>panel</i> qualità dell'aria in	
		tempo reale	59
	3.4.3.3.5	UC-3.3.5: Visualizzazione <i>panel</i> giorno con qualità	
		dell'aria peggiore nel periodo di tempo selezionato	60
	3.4.3.3.6	UC-3.3.6: Visualizzazione <i>panel</i> giorno con qualità	
		dell'aria migliore nel periodo di tempo selezionato	61
3.4.3.4	4 UC-3.4:	Visualizzazione sezione precipitazioni	62
	3.4.3.4.1	UC-3.4.1: Visualizzazione grafico time series quan-	_
		tità precipitazioni nel periodo di tempo selezionato	63
	3.4.3.4.2	UC-3.4.2: Visualizzazione mappa sensori precipita-	
		zioni	64
	3.4.3.4.3	UC-3.4.3: Visualizzazione <i>panel</i> quantità di precipi-	
		tazioni media nel periodo di tempo selezionato	65
	3.4.3.4.4	UC-3.4.4: Visualizzazione <i>panel</i> quantità di precipi-	
		tazioni in tempo reale	66
	3.4.3.4.5	UC-3.4.5: Visualizzazione <i>panel</i> giorno con precipi-	
	01 1101 110	tazioni maggiori nel periodo di tempo selezionato	67
	3.4.3.4.6	UC-3.4.6: Visualizzazione panel giorno con precipi-	0,
	01 1101 110	tazioni minori nel periodo di tempo selezionato	68
3.4.3.5	5 UC-3.5:	Visualizzazione sezione livello dei fiumi	69
	3.4.3.5.1	UC-3.5.1: Visualizzazione grafico time series livello	
		dei fiumi	70
	3.4.3.5.2	UC-3.5.2: Visualizzazione mappa sensori livello dei	. •
		fiumi	71

	3.4.3.5.3	UC-3.5.3: Visualizzazione <i>panel</i> livello dei fiumi me-	
		dio nel periodo di tempo selezionato	72
	3.4.3.5.4	UC-3.5.4: Visualizzazione panel livello dei fiumi in	
		tempo reale	73
3.4.4	UC-4: Visualizza	zione dashboard dati urbani	74
	3.4.4.1 UC-4.1:	Visualizzazione sezione traffico	75
	3.4.4.1.1	UC-4.1.1: Visualizzazione grafico time series traffico	76
	3.4.4.1.2	UC-4.1.2: Visualizzazione mappa sensori traffico	77
	3.4.4.1.3	UC-4.1.3: Visualizzazione panel numero veicoli in	
		tempo reale	78
	3.4.4.1.4	UC-4.1.4: Visualizzazione panel velocità media in	
		tempo reale	79
	3.4.4.2 UC-4.2:	Visualizzazione sezione colonnine di ricarica	80
	3.4.4.2.1	UC-4.2.1: Visualizzazione mappa colonnine di rica-	
		rica con stato	81
	3.4.4.2.2	UC-4.2.2: Visualizzazione grafico a barre tempo di	
		utilizzo colonnine di ricarica	82
	3.4.4.2.3	UC-4.2.3: Visualizzazione grafico a torta percentua-	
		le di colonnine di ricarica utilizzate in tempo reale	83
	3.4.4.2.4	UC-4.2.4: Visualizzazione grafico time series _G char-	
		ging efficiency	84
	3.4.4.2.5	UC-4.2.5: Visualizzazione gauge efficiency rate e	
		dell'utilization rate	85
	3.4.4.2.6	UC-4.2.6: Visualizzazione <i>panel</i> colonnine più/meno	
		efficienti/utilizzate	86
	3.4.4.3 UC-4.3:	Visualizzazione sezione parcheggi	87
	3.4.4.3.1	UC-4.3.1: Visualizzazione mappa parcheggi con sta-	
		to	88
	3.4.4.3.2	UC-4.3.2: Visualizzazione grafico a barre tempo di	
		occupazione parcheggi	89
	3.4.4.3.3	UC-4.3.3: Visualizzazione grafico a torta percentua-	
		le di occupazione dei parcheggi in tempo reale .	90
	3.4.4.4 UC-4.4:	Visualizzazione sezione isole ecologiche	91
	3.4.4.4.1	UC-4.4.1: Visualizzazione <i>panel</i> con riempimento	
		isole ecologiche in tempo reale	93

				3.4.4.4.2	UC-4.4.2: Visualizzazione mappa interattiva isole eco-	-
					logiche	94
				3.4.4.4.3	UC-4.4.3: Visualizzazione grafico time series isole eco-	
					logiche	95
				3.4.4.4.4	UC-4.4.4: Visualizzazione panel ore di saturazione	
					isole ecologiche	96
				3.4.4.4.5	UC-4.4.5: Visualizzazione <i>panel</i> con percentuale	
					media di riempimento al momento dello svuota-	
					mento	97
				3.4.4.4.6	UC-4.4.6: Visualizzazione <i>panel</i> con percentuale	
						98
		3.4.5			zione messaggio assenza di dati	
		3.4.6			ne dati	
					ne dati temperatura	
					ne dati umidità	
					ne dati qualità dell'aria	
					one dati precipitazioni	
					one dati traffico	
					one dati colonnine di ricarica	
					one dati parcheggi	
					one dati isole ecologiche	
					one dati livello dei fiumi	
					zione filtro	
					azione filtro per tipo di sensore	
					cazione filtro per nome del sensore	
					cazione filtro temporale	
					azione notifica superamento soglie	
					zzazione notifica superamento soglia di temperatura	116
		3.4.22			zzazione notifica superamento soglia di riempimento	
					gica	
					zzazione notifica superamento indice 3 EAQI	
		3.4.24	UC-17.	.4: Visuali:	zzazione notifica superamento livello di precipitazioni	119
4	Rea	uisiti				120
	4.1		zione d	li un requi	sito	
	4.2					
		•	~	•		

	4.2.1 Codifica dei requisifi
	4.2.2 Fonti dei requisiti
	4.2.3 Importanza dei requisiti
4.3	Requisiti funzionali
4.4	Requisiti qualitativi
4.5	Requisiti di vincolo
4.6	Requisiti prestazionali
4.7	Tracciamento
	4.7.1 Requisito - Fonte
	4.7.2 Caso d'uso - Requisito
4.8	Riepilogo
Elend	co delle tabelle
1	Requisiti funzionali
2	Requisiti qualitativi
3	Requisiti di vincolo
4	Requisiti prestazionali
5	Tracciamento requisito - fonte
6	Tracciamento caso d'uso - requisito
7	Riepilogo
Elend	co delle figure
1	Architettura del prodotto 14
2	UC-1: Visualizzazione dashboard $_{\mathbb{G}}$
3	UC-2: Visualizzazione dashboard $_{\rm G}$ dei dati grezzi
4	UC-2.1: Visualizzazione panel $_{\mathbb{G}}$ con tabella sensori
5	UC-2.2: Visualizzazione mappa interattiva sensori
6	UC-2.3: Visualizzazione <i>panel</i> _⊖ numero sensori per tipo
7	UC-2.4: Visualizzazione tabella sensori che non trasmettono da più di 1 giorno 22
8	UC-2.5: Visualizzazione tabella dati grezzi temperatura 23
9	UC-2.6: Visualizzazione tabella dati grezzi umidità 24
10	UC-2.7: Visualizzazione tabella dati grezzi traffico
11	UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria
12	UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

13	UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche	28
14	UC-2.11: Visualizzazione tabella dati grezzi livello dei fiumi	29
15	UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica	30
16	UC-2.13: Visualizzazione grafico time series _G dati grezzi complessivi tempe-	
	ratura	31
17	UC-2.14: Visualizzazione grafico time series _G dati grezzi complessivi umidità	32
18	UC-2.15: Visualizzazione grafico time series _G dati grezzi complessivi traffico	33
19	UC-2.16: Visualizzazione grafico time series _⊖ dati grezzi complessivi qualità	
	dell'aria	34
20	UC-2.17: Visualizzazione grafico time series _G dati grezzi complessivi precipi-	
	tazioni	35
21	UC-2.18: Visualizzazione grafico time series _G dati grezzi complessivi isole	
	ecologiche	36
22	UC-2.19: Visualizzazione grafico time series _G dati grezzi complessivi livello	
	dei fiumi	37
23	UC-2.20: Visualizzazione grafico time series _G dati grezzi complessivi colon-	
	nine di ricarica	38
24	UC-3: Visualizzazione dashboard $_{\mbox{\scriptsize G}}$ dei dati ambientali	39
25	UC-3.1: Visualizzazione sezione temperatura	40
26	UC-3.1.1: Visualizzazione grafico time series $_{\mbox{\scriptsize G}}$ per temperatura	41
27	UC-3.1.2: Visualizzazione mappa interattiva sensori temperatura	42
28	UC-3.1.3: Visualizzazione $panel_{\mathbb{G}}$ temperatura media nel periodo di tempo	
	selezionato	44
29	UC-3.1.4: Visualizzazione $panel_{\mathbb{G}}$ temperatura in tempo reale	45
30	UC-3.1.5: Visualizzazione $panel_{\mathbb{G}}$ temperatura massima	46
31	UC-3.1.6: Visualizzazione $panel_{\mathbb{G}}$ temperatura minima	47
32	UC-3.2: Visualizzazione sezione umidità	48
33	UC-3.2.1: Visualizzazione grafico time series $_{\mathbb{G}}$ umidità	49
34	UC-3.2.2: Visualizzazione mappa interattiva sensori umidità	50
35	UC-3.2.3: Visualizzazione $panel_{\mathbb{G}}$ umidità media nel periodo di tempo se-	
	lezionato	51
36	UC-3.2.4: Visualizzazione $panel_{\mathbb{G}}$ umidità in tempo reale	52
37	UC-3.2.5: Visualizzazione $panel_{\mathbb{G}}$ umidità massima	53
38	UC-3.2.6: Visualizzazione $panel_{\mathbb{G}}$ umidità minima	54
39	UC-3.3: Visualizzazione dashboard $_{\mathbb{G}}$ qualità dell'aria	55
40	UC-3.3.1: Visualizzazione grafico time series _G qualità dell'aria	56

41	UC-3.3.2: Visualizzazione mappa interattiva sensori qualità dell'aria	57
42	UC-3.3.3: Visualizzazione $panel_{\mathbb{G}}$ qualità dell'aria media nel periodo di	
	tempo selezionato	58
43	UC-3.3.4: Visualizzazione $panel_{\mathbb{G}}$ qualità dell'aria in tempo reale	59
44	UC-3.3.5: Visualizzazione $panel_{\mathbb{G}}$ giorno con qualità dell'aria peggiore nel	
	periodo di tempo selezionato	60
45	UC-3.3.6: Visualizzazione $panel_{\mathbb{G}}$ giorno con qualità dell'aria peggiore nel	
	periodo di tempo selezionato	61
46	UC-3.4: Visualizzazione sezione precipitazioni	62
47	UC-3.4.1: Visualizzazione grafico time series $_{\mbox{\scriptsize G}}$ precipitazioni	63
48	UC-3.4.2: Visualizzazione mappa interattiva sensori precipitazioni	64
49	UC-3.4.3: Visualizzazione $panel_{\mathbb{G}}$ quantità di precipitazioni media nel pe-	
	riodo di tempo selezionato	65
50	UC-3.4.4: Visualizzazione $panel_{\mathbb{G}}$ quantità di precipitazioni in tempo reale	66
51	UC-3.4.5: Visualizzazione $panel_{\mathbb{G}}$ giorno con precipitazioni maggiori nel	
	periodo di tempo selezionato	67
52	UC-3.4.6: Visualizzazione $panel_{\mathbb{G}}$ giorno con precipitazioni minori nel perio-	
	do di tempo selezionato	68
53	UC-3.5: Visualizzazione sezione livello dei fiumi	69
54	UC-3.5.1, Visualizzazione grafico time series $_{\mbox{\scriptsize G}}$ livello dei fiumi	70
55	UC-3.5.2: Visualizzazione mappa interattiva sensori livello dei fiumi	71
56	UC-3.5.3: Visualizzazione $panel_{\mathbb{G}}$ livello dei fiumi medio nel periodo di tem-	
	po selezionato	72
57	UC-3.5.4: Visualizzazione $panel_{\mathbb{G}}$ livello dei fiumi in tempo reale	73
58	UC-4: Visualizzazione dashboard $_{\mathbb{G}}$ dei dati urbani	74
59	UC-4.1: Visualizzazione sezione traffico	75
60	UC-4.1.1: Visualizzazione grafico time series $_{\mathbb{G}}$ traffico	76
61	UC-4.1.2: Visualizzazione mappa interattiva sensori traffico	77
62	UC-4.1.3: Visualizzazione $panel_{\mathbb{G}}$ numero di veicoli in tempo reale	78
63	UC-4.1.4: Visualizzazione $panel_{\mathbb{G}}$ velocità media in tempo reale	79
64	UC-4.2: Visualizzazione sezione colonnine di ricarica	80
65	UC-4.2.1: Visualizzazione mappa interattiva sensori colonnine di ricarica	81
66	UC-4.2.2: Visualizzazione grafico a barre tempo di utilizzo colonnine di ri-	
	carica	82
67	UC-4.2.3: Visualizzazione grafico a torta percentuale di colonnine di ricari-	
	ca utilizzate in tempo reale	83

68	UC-4.2.4: Visualizzazione grafico fime series _G charging efficiency	84
69	UC-4.2.5: Visualizzazione gauge efficiency rate e dell'utilization rate	85
70	UC-4.2.6: Visualizzazione <i>panel</i> colonnine più/meno efficienti/utilizzate	86
71	UC-4.3: Visualizzazione dashboard $_{\mathbb{G}}$ parcheggi	87
72	UC-4.3.1: Visualizzazione mappa parcheggi con stato	88
73	UC-4.3.2: Visualizzazione grafico a barre tempo di occupazione parcheggi	89
74	UC-4.3.3: Visualizzazione grafico a torta percentuale di occupazione dei	
	parcheggi in tempo reale	90
75	UC-4.4: Visualizzazione sezione isole ecologiche	91
76	UC-4.4.1: Visualizzazione $panel_{\mathbb{G}}$ riempimento isole ecologiche in tempo	
	reale	93
77	UC-4.4.2: Visualizzazione mappa interattiva sensori isole ecologiche	94
78	UC-4.4.3: Visualizzazione grafico time series $_{\text{G}}$ isole ecologiche	95
79	UC-4.4.4: Visualizzazione panel $_{\mbox{\scriptsize G}}$ ore di saturazione isole ecologiche	96
80	UC-4.4.5: Visualizzazione panel $_{\mbox{\scriptsize G}}$ percentuale media di riempimento al mo-	
	mento dello svuotamento	97
81	UC-4.4.6: Visualizzazione $panel_{\mathbb{G}}$ percentuale tempo trascorso per livello	
	di riempimento	98
82	UC-5: Visualizzazione messaggio assenza di dati	OC
83	UC-6: Trasmissione dati	01
84	UC-7: Trasmissione dati temperatura	02
85	UC-8: Trasmissione dati umidità	03
86	UC-9: Trasmissione dati qualità dell'aria	04
87	UC-10: Trasmissione dati precipitazioni	05
88	UC-11: Trasmissione dati traffico	06
89	UC-12: Trasmissione dati colonnine di ricarica	07
90	UC-13: Trasmissione dati parcheggi	30
91	UC-14: Trasmissione dati isole ecologiche	09
92	UC-15: Trasmissione dati livello dei fiumi	10
93	UC-7: Applicazione filtro	
94	UC-16.1: Applicazione filtro per tipo di sensore ₆	12
95	UC-16.2: Applicazione filtro per nome del sensore ₆	13
96	UC-16.3: Applicazione filtro temporale	14
97	UC-17: Visualizzazione notifica superamento soglie	15
98	UC-17.1: Visualizzazione notifica superamento soglie di temperatura 1	16

99	UC-17.2: Visualizzazione notifica superamento soglia di riempimento dell'i-	
	sola ecologica	117
100	UC-17.3: Visualizzazione notifica superamento indice 3 EAQI $_{\mbox{\scriptsize G}}$	118
101	UC-17.4: Visualizzazione notifica superamento livello di precipitazioni	119

1 Introduzione

1.1 Scopo del documento

Questo documento ha lo scopo di illustrare i casi d'uso e i requisiti del capitolato $_{\rm G}$ proposto da *Sync Lab S.r.l.*, a seguito di un'analisi da parte del gruppo e di un confronto tenuto con l'azienda.

Vengono presentate le funzionalità che il progetto dovrà offrire, suddivise in requisiti obbligatori, desiderabili e opzionali, in accordo con le richieste della proponente_G.

1.2 Glossario

Per evitare qualsiasi ambiguità o malinteso sui termini utilizzati nel seguente documento, è stato aggiunto un glossario_G, contenente le definizioni necessarie. È possibile individuare ogni termine presente nel glossario_G grazie ad uno stile specifico:

- ad ogni parola presente sarà aggiunta una "G" al pedice;
- verrà fornito il link al glossario_G online (v.1.0) per ciascuna parola.

1.3 Riferimenti

1.3.1 Normativi

- Capitolato_G d'appalto C6: SyncCity_G A smart city_G monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf
- Regolamento di progetto didattico

https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf

• Norme di Progetto_G v2.0:

https://7last.github.io/docs/rtb/documentazione-interna/norme-di-progetto

1.3.2 Informativi

• Glossario_G v2.0

https://7last.github.io/docs/pb/documentazione-interna/glossario

2 Descrizione del prodotto

2.1 Obiettivi del prodotto

L'obiettivo del prodotto è quello di sviluppare una piattaforma di monitoraggio per una città intelligente che consenta alle autorità locali di avere una visione d'insieme delle condizioni della città, permettendo loro di prendere decisioni informate e tempestive riguardo ad eventuali interventi e ottimizzazioni dei servizi da effettuare.

2.2 Architettura del prodotto

Il prodotto è costituito da 4 componenti principali.

Simulatore

Rappresenta la sorgente di dati. In uno scenario reale, i dati sono raccolti da migliaia di sensori installati nelle varie città. La proponente_G richiede che i dati siano i più realistici possibili, non escludendo la possibilità di inserire rilevazioni provenienti da sensori reali. Abbiamo scelto di utilizzare Python_G come linguaggio di programmazione per la simulazione dei dati in quanto è uno strumento molto flessibile che rende disponibili numerose librerie per la manipolazione dei dati.

Piattaforma di streaming

Svolge la funzione di broker $_{\rm G}$ per disaccoppiare lo stream di informazioni provenienti dai simulatori dei sensori. Si occupa di ricevere i dati provenienti dal simulatore e di inviarli ai vari consumatori. In questo caso, il consumatore principale è il database di cui al punto successivo. A tal fine, abbiamo deciso di utilizzare Redpanda $_{\rm G}$ come piattaforma di streaming, in quanto, sulla base dell'analisi eseguita, risulta avere prestazioni migliori rispetto ad Apache Kafka $_{\rm G}$ mantenendo la compatibilità con le sue API.

Stream processing

Abbiamo utilizzato Apache Flink che è un sistema di elaborazione di flussi distribuito e scalabile che consente l'analisi e l'elaborazione di grandi volumi di dati in tempo reale. È particolarmente adatto per applicazioni che richiedono un basso tempo di latenza e un'elevata velocità di elaborazione.

Database

Necessario per la persistenza dei dati raccolti. Per questo scopo abbiamo scelto di adottare ClickHouse_G, un database colonnare in grado di effettuare query analitiche complesse su grandi volumi di dati in modo molto efficiente.

Dashboard_G

Permette di visualizzare in tempo reale i dati raccolti. Questo componente rappresenta l'interfaccia utente del prodotto. Abbiamo scelto di utilizzare Grafana_G come strumento per la creazione di questa in quanto offre una vasta gamma di dashboard_G interattive e dinamiche.

Figura 1: Architettura del prodotto

2.3 Funzionalità del prodotto

Una volta che il sistema sarà funzionante, esso potrà:

- raccogliere e memorizzare i dati provenienti dalle diverse tipologie di sensori;
- visualizzare i dati raccolti in tempo reale attraverso una dashboard_G, offrendo la
 possibilità di applicare filtri di diversa tipologia e fornendo una panoramica delle
 condizioni della città (tra le informazioni visualizzate ci saranno una mappa con la
 posizione dei sensori e alcuni grafici che mostrano gli andamenti delle misurazioni);
- calcolare un Key Performance Index (KPI_G) della città, rappresentativo della qualità dei servizi forniti, basato sulle ultime rilevazioni dei sensori;

 notificare automaticamente le autorità locali in caso di superamento di soglie critiche da parte dei sensori.

2.4 Caratteristiche degli utenti

Si prevede che i principali utenti saranno le autorità locali responsabili $_{\rm G}$ del monitoraggio dello stato di salute, sicurezza ed efficienza della città. Gli utenti interagiranno con il sistema esclusivamente attraverso la dashboard $_{\rm G}$.

2.4.1 Conoscenze e competenze

Si presume che tali utenti siano in grado di comprendere i dati visualizzati nella dashboard $_{\mathbb{G}}$ e filtrare le informazioni per ottenere una visione d'insieme della situazione.

2.4.2 Dispositivi

Per accedere alla piattaforma gli utenti potranno utilizzare indifferentemente un dispositivo mobile, un computer o un tablet.

3 Casi d'uso

3.1 Introduzione

In questa sezione del documento vengono analizzati nel dettaglio i casi d'uso individuati in fase di analisi del capitolato_G e durante i colloqui con il proponente_G.

3.2 Struttura dei casi d'uso

In tutto il documento faremo riferimento ai casi d'uso utilizzando la sigla UC seguita dal rispettivo codice nella forma

UC-[identificativo_caso_principale].[identificativo_sotto_caso]

il quale permette di utilizzarlo come riferimento in questo e in altri documenti. Per ciascun caso d'uso vengono definiti i seguenti elementi:

- attore principale, entità primariamente coinvolta nel caso d'uso;
- **precondizioni**, le condizioni che devono essere verificate prima che il caso d'uso possa essere eseguito;
- **postcondizioni**, le condizioni che devono essere verificate al termine dell'esecuzione del caso:
- **scenario principale**, la sequenza di passi che descrive il comportamento del sistema durante l'esecuzione del caso d'uso;
- user story_G: una descrizione testuale del caso d'uso.

3.3 Attori

I seguenti attori sono coinvolti nei casi d'uso:

- autorità locali, possono accedere al sistema per visualizzare i dati di monitoraggio della Smart City_G;
- **sensori**, sorgente di dati con un determinato dominio di interesse che effettua misurazioni e trasmette i dati al sistema.

3.4 Elenco dei casi d'uso

3.4.1 UC-1: Visualizzazione dashboard

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G con i dati relativi ai sensori presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma.
 - 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G con i dati relativi ai sensori per poter monitorare la loro posizione e i dati trasmessi.

Figura 2: UC-1: Visualizzazione dashboard_G

3.4.2 UC-2: Visualizzazione dashboard dati grezzi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G dei dati grezzi con i dati relativi ai sensori presenti nella città, mostrando il panel_G con la tabella di tutti i sensori collegati al sistema, la mappa interattiva popolata con dei marker, il panel con il conteggio totale di sensori per tipologia, la tabella dei sensori che non trasmettono da più di un giorno e, per ciascuna tipologia di sensore (temperatura, umidità, traffico, qualità dell'aria, precipitazioni, isole ecologiche, livello dei fiumi e colonnine di ricarica) una tabella con i dati grezzi trasmessi e un grafico time series.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati grezzi con i dati relativi ai sensori presenti nella città, potendo vedere il panel_G con la tabella di tutti i sensori collegati al sistema, la mappa interattiva popolata con dei marker, il panel con il conteggio totale di sensori per tipologia, la tabella dei sensori che non trasmettono da più di un giorno e, per ciascuna tipologia di sensore (temperatura, umidità, traffico, qualità dell'aria, precipitazioni, isole ecologiche, livello dei fiumi e colonnine di ricarica) una tabella con i dati grezzi trasmessi e un grafico time series.

Figura 3: UC-2: Visualizzazione dashboard_G dei dati grezzi

3.4.2.1 UC-2.1: Visualizzazione panel con tabella sensori

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza il *panel*_G contenente una tabella di tutti i sensori collegati al sistema, in cui sono presenti l'identificativo del sensore_G, il tipo di sensore_G e la data dell'ultima trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un panel_G contenente una tabella di tutti i sensori collegati al sistema. I dati che devono essere presenti nella tabella sono: identificativo del sensore_G, tipo di sensore_G e data dell'ultima trasmissione. Questi mi consentiranno di avere una visione d'insieme dei sensori presenti.

Figura 4: UC-2.1: Visualizzazione panel_G con tabella sensori

3.4.2.2 UC-2.2: Visualizzazione mappa interattiva sensori

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente una mappa interattiva popolata con dei marker. Ogni marker consente di visualizzare l'identificativo del sensore_G e le sue coordinate geografiche.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori e contenenti il
 loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori nel
 territorio ed eventualmente di intervenire nel caso in cui siano presenti zone non
 coperte.

Figura 5: UC-2.2: Visualizzazione mappa interattiva sensori

3.4.2.3 UC-2.3: Visualizzazione panel numero sensori per tipo

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente il conteggio totale di sensori presenti nel sistema, suddivisi per tipologia.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- **User story**_G: come autorità locale, desidero visualizzare il conteggio totale dei sensori presenti nel sistema, suddivisi per tipologia, per poter valutare l'eventuale necessità di aggiungerne altri.

Figura 6: UC-2.3: Visualizzazione panel_G numero sensori per tipo

3.4.2.4 UC-2.4: Visualizzazione tabella sensori non trasmettenti

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i sensori che non trasmettono da più di un giorno. Ciascuna riga contiene il nome del sensore_G, il tipo di sensore_G e la data dell'ultima trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i sensori che non trasmettono da più di un giorno, contenente il nome del sensore_G, il tipo di sensore_G e la data dell'ultima trasmissione, in modo da poter intervenire e ripristinare il corretto funzionamento.

Figura 7: UC-2.4: Visualizzazione tabella sensori che non trasmettono da più di 1 giorno

3.4.2.5 UC-2.5: Visualizzazione tabella dati grezzi temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di temperatura. Ciascuna riga contiene il nome del sensore_G, il valore della temperatura in gradi Celsius e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di temperatura in gradi Celsius, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 8: UC-2.5: Visualizzazione tabella dati grezzi temperatura

3.4.2.6 UC-2.6: Visualizzazione tabella dati grezzi umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di umidità. Ciascuna riga contiene il nome del sensore_G, il valore dell'umidità in percentuale e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di umidità in percentuale, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 9: UC-2.6: Visualizzazione tabella dati grezzi umidità

3.4.2.7 UC-2.7: Visualizzazione tabella dati grezzi traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di traffico. Ciascuna riga contiene il nome del sensore, il numero di veicoli transitati, la loro velocità media espressa in km/h e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- **User story**_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni del numero di veicoli transitati e della velocità media espressa in km/h, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 10: UC-2.7: Visualizzazione tabella dati grezzi traffico

3.4.2.8 UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di qualità dell'aria. Ciascuna riga contiene il nome del sensore_{Θ}, il valore in $\mu g/m^3$ di PM10, PM2.5, NO₂, O₃, SO₂ e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di PM10, PM2.5, NO₂, O₃, SO₂, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 11: UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

3.4.2.9 UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di precipitazioni. Ciascuna riga contiene il nome del sensore_G, il valore in mm di precipitazioni e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di precipitazioni in mm, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 12: UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

3.4.2.10 UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di isole ecologiche. Ciascuna riga contiene il nome del sensore_G, il valore in percentuale di riempimento e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di riempimento in percentuale delle isole ecologiche, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 13: UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

3.4.2.11 UC-2.11: Visualizzazione tabella dati grezzi livello dei fiumi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di livello dei fiumi. Ciascuna riga contiene il nome del sensore_G, il valore in mm del livello dei fiumi e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni del livello dei fiumi in cm, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 14: UC-2.11: Visualizzazione tabella dati grezzi livello dei fiumi

3.4.2.12 UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di colonnine di ricarica. Ciascuna riga contiene il nome del sensore_G, il valore in kW della potenza erogata, il tempo rimanente alla ricarica e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni della potenza erogata in kW, il tempo rimanente alla ricarica, il nome del sensore_G e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 15: UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

3.4.2.13 UC-2.13: Visualizzazione grafico time series dati grezzi complessivi temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi di temperatura trasmessi da tutti i sensori presenti nella città, mostrando sul-l'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni di temperatura in gradi Celsius.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboarde dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente i dati grezzi trasmessi da tutti i sensori di temperatura presenti nella
 città, espressi in gradi Celsius, in modo da poterli confrontare tra loro e analizzare
 in modo più dettagliato.

Figura 16: UC-2.13: Visualizzazione grafico time series $_{\mathbb{G}}$ dati grezzi complessivi temperatura

3.4.2.14 UC-2.14: Visualizzazione grafico time series dati grezzi complessivi umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi di umidità trasmessi da tutti i sensori presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni di umidità in percentuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di umidità presenti nella città, espressi in percentuale, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 17: UC-2.14: Visualizzazione grafico time series_G dati grezzi complessivi umidità

3.4.2.15 UC-2.15: Visualizzazione grafico time series dati grezzi complessivi traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi di traffico trasmessi da tutti i sensori presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni del numero di veicoli transitati.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente i dati grezzi del numero di veicoli transitati rilevati dai sensori di traffico.

Figura 18: UC-2.15: Visualizzazione grafico time series_⊖ dati grezzi complessivi traffico

3.4.2.16 UC-2.16: Visualizzazione grafico time series dati grezzi complessivi qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di qualità dell'aria presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni dei valori di PM10, PM2.5, NO₂, O₃ e SO₂.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard₆ dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni di PM10, PM2.5, NO₂, O₃, SO₂ rilevatate dai sensori di qualità dell'aria, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 19: UC-2.16: Visualizzazione grafico time series $_{\rm G}$ dati grezzi complessivi qualità dell'aria

3.4.2.17 UC-2.17: Visualizzazione grafico time series dati grezzi complessivi precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di precipitazioni presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni delle precipitazioni espresse in millimetri.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard₆ dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni in millimetri rilevate dai sensori di precipitazioni presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più
 dettagliato.

Figura 20: UC-2.17: Visualizzazione grafico time series_G dati grezzi complessivi precipitazioni

3.4.2.18 UC-2.18: Visualizzazione grafico time series dati grezzi complessivi isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di isole ecologiche presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni del riempimento in percentuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente lo storico delle misurazioni del riempimento in percentuale dei sensori di isole, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 21: UC-2.18: Visualizzazione grafico time series $_{\mbox{\scriptsize G}}$ dati grezzi complessivi isole ecologiche

3.4.2.19 UC-2.19: Visualizzazione grafico time series dati grezzi complessivi livello dei fiumi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di livello dei fiumi presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni del livello dei fiumi in metri.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard₆ dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni in metri di acqua rilevate dai sensori di livello dei fiumi
 presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo
 più dettagliato.

Figura 22: UC-2.19: Visualizzazione grafico time series $_{\odot}$ dati grezzi complessivi livello dei fiumi

3.4.2.20 UC-2.20: Visualizzazione grafico time series dati grezzi complessivi colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series_G contenente i dati grezzi trasmessi da tutti i sensori di colonnine di ricarica presenti nella città, mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori delle misurazioni della potenza erogata in kWh.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard₆ dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni in kWh della potenza erogata e il tempo rimanente alla
 ricarica rilevati dalle colonnine di ricarica.

Figura 23: UC-2.20: Visualizzazione grafico time series_G dati grezzi complessivi colonnine di ricarica

3.4.3 UC-3: Visualizzazione dashboard dati ambientali

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G contenente le sezioni relative ai sensori ambientali presenti nella città ovvero temperatura, umidità, precipitazioni, livello dei fiumi e qualità dell'aria.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati ambientali, la quale mi consente di visualizzare le sezioni relative ai sensori ambientali presenti nella città, ovvero temperatura, umidità, precipitazioni, livello dei fiumi e qualità dell'aria.

Figura 24: UC-3: Visualizzazione dashboard_G dei dati ambientali

3.4.3.1 UC-3.1: Visualizzazione sezione temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la sezione relativa ai sensori di temperatura presenti nella città, la quale contiene un grafico time series con le misurazioni storiche della temperatura, una mappa dei sensori di temperatura collegati al sistema, dei panel che mostrano la temperatura media, massima e minima nel periodo di tempo selezionato e quella attuale e un panel con il valore di current year livability temperature index medio nell'anno in corso.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una sezione relativa ai sensori di temperatura presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche della temperatura, una mappa dei sensori di temperatura collegati al sistema, dei panel che mostrano la temperatura media, massima e minima nel periodo di tempo selezionato e quella attuale e un panel con il valore di current year livability temperature index medio nell'anno in corso.

Figura 25: UC-3.1: Visualizzazione sezione temperatura

3.4.3.1.1 UC-3.1.1: Visualizzazione grafico time series temperatura

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche della temperatura effettiva e percepita, ciascuna aggregata per 5 minuti.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche della temperatura effettiva e percepita per poterne monitorare l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 26: UC-3.1.1: Visualizzazione grafico time series_G per temperatura

3.4.3.1.2 UC-3.1.2: Visualizzazione mappa sensori temperatura

Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza una mappa interattiva popolata con dei marker contenenti l'identificativo e le coordinate geografiche dei sensori di temperatura, mostrando sia la temperatura misurata che quella percepita misurate in gradi Celsius.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\ominus}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori di temperatura e contenenti il loro identificativo, mostrando anche la temperatura misurata e quella percepita misurate in gradi Celsius. Essa mi consentirà di visualizzare la distribuzione dei sensori di temperatura nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 27: UC-3.1.2: Visualizzazione mappa interattiva sensori temperatura

3.4.3.1.3 UC-3.1.3: Visualizzazione *panel* temperatura media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente la temperatura media nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare la temperatura media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 28: UC-3.1.3: Visualizzazione $panel_{\mathbb{G}}$ temperatura media nel periodo di tempo selezionato

3.4.3.1.4 UC-3.1.4: Visualizzazione gauge current year livability temperature index

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori di temperatura.
- **Postcondizioni**: l'autorità locale visualizza un gauge contenente il valore di *current year livability temperature index* (CYLTI) nell'anno in corso, che rappresenta quanto sia confortevole la temperatura per l'essere umano.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\ominus}$ relativa ai sensori di temperatura.
- **User story**_G: come autorità locale desidero poter visualizzare il valore di *current* year livability temperature index nell'anno in corso.

Figura 29: UC-3.1.4: Visualizzazione panel_G temperatura in tempo reale

3.4.3.1.5 UC-3.1.5: Visualizzazione *panel* temperatura massima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la temperatura massima nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare la temperatura massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 30: UC-3.1.5: Visualizzazione panel_G temperatura massima

3.4.3.1.6 UC-3.1.6: Visualizzazione *panel* temperatura minima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la temperatura minima nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare la temperatura minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 31: UC-3.1.6: Visualizzazione panel_G temperatura minima

3.4.3.2 UC-3.2: Visualizzazione sezione umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori ambientali presenti nella città, la quale contiene un grafico time series con le misurazioni storiche dell'umidità, una mappa dei sensori di umidità collegati al sistema, dei panel che mostrano l'umidità media, massima e minima nel periodo di tempo selezionato e quella attuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di umidità presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche dell'umidità, una mappa dei sensori di umidità collegati al sistema, dei panel che mostrano l'umidità media, massima e minima nel periodo di tempo selezionato e quella attuale.

Figura 32: UC-3.2: Visualizzazione sezione umidità

3.4.3.2.1 UC-3.2.1: Visualizzazione grafico time series umidità

Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di umidità aggregate per 5 minuti.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche di umidità per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 33: UC-3.2.1: Visualizzazione grafico time series_G umidità

3.4.3.2.2 UC-3.2.2: Visualizzazione mappa sensori umidità

Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori di umidità.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di umidità nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 34: UC-3.2.2: Visualizzazione mappa interattiva sensori umidità

3.4.3.2.3 UC-3.2.3: Visualizzazione *panel* umidità media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente l'umidità media nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 35: UC-3.2.3: Visualizzazione $panel_{\mathbb{G}}$ umidità media nel periodo di tempo selezionato

3.4.3.2.4 UC-3.2.4: Visualizzazione panel umidità in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente l'umidità in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 36: UC-3.2.4: Visualizzazione panel_G umidità in tempo reale

3.4.3.2.5 UC-3.2.5: Visualizzazione *panel* umidità massima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente l'umidità massima nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 37: UC-3.2.5: Visualizzazione panel_G umidità massima

3.4.3.2.6 UC-3.2.6: Visualizzazione *panel* umidità minima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente l'umidità minima nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 38: UC-3.2.6: Visualizzazione panel_G umidità minima

3.4.3.3 UC-3.3: Visualizzazione sezione qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori ambientali presenti nella città, la quale contiene un grafico time series con le misurazioni storiche della qualità dell'aria, una mappa dei sensori di qualità dell'aria collegati al sistema, dei panel che mostrano la qualità dell'aria media, peggiore e migliore nel periodo di tempo selezionato e quella attuale.

- 1. l'autorità locale accede alla piattaforma;
- il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori ambientali presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche della qualità dell'aria, una mappa dei sensori di qualità dell'aria collegati al sistema, dei panel che mostrano la qualità dell'aria media, peggiore e migliore nel periodo di tempo selezionato e quella attuale.

Figura 39: UC-3.3: Visualizzazione dashboard_G qualità dell'aria

3.4.3.3.1 UC-3.3.1: Visualizzazione grafico time series qualità dell'aria

• Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di qualità dell'aria aggregate per 5 minuti.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche di qualità dell'aria per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 40: UC-3.3.1: Visualizzazione grafico time series_G qualità dell'aria

3.4.3.3.2 UC-3.3.2: Visualizzazione mappa interattiva sensori qualità dell'aria

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza una mappa interattiva popolata con dei marker contenenti l'identificativo e le coordinate geografiche dei sensori della qualità dell'aria.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori della qualità dell'aria.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori della qualità dell'aria e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori della qualità dell'aria nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 41: UC-3.3.2: Visualizzazione mappa interattiva sensori qualità dell'aria

3.4.3.3.3 UC-3.3.3: Visualizzazione *panel* qualità dell'aria media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente qualità dell'aria media nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare della qualità dell'aria media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 42: UC-3.3.3: Visualizzazione $panel_{\mathbb{G}}$ qualità dell'aria media nel periodo di tempo selezionato

3.4.3.3.4 UC-3.3.4: Visualizzazione panel qualità dell'aria in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente qualità dell'aria in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare della qualità dell'aria in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 43: UC-3.3.4: Visualizzazione panel_G qualità dell'aria in tempo reale

3.4.3.3.5 UC-3.3.5: Visualizzazione *panel* giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 44: UC-3.3.5: Visualizzazione $panel_{G}$ giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.3.3.6 UC-3.3.6: Visualizzazione *panel* giorno con qualità dell'aria migliore nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 45: UC-3.3.6: Visualizzazione $panel_{G}$ giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.3.4 UC-3.4: Visualizzazione sezione precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori ambientali presenti nella città, la quale contiene un grafico time series con le misurazioni storiche delle precipitazioni, una mappa dei sensori di precipitazioni collegati al sistema, dei panel che mostrano le precipitazioni medie, minime e massime nel periodo di tempo selezionato e quelle attuali.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori ambientali presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche delle precipitazioni, una mappa dei sensori di precipitazioni collegati al sistema, dei panel che mostrano le precipitazioni medie, minime e massime nel periodo di tempo selezionato e quelle attuali.

Figura 46: UC-3.4: Visualizzazione sezione precipitazioni

3.4.3.4.1 UC-3.4.1: Visualizzazione grafico time series quantità precipitazioni nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali
- **Postcondizioni**: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di precipitazioni aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche di precipitazioni per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 47: UC-3.4.1: Visualizzazione grafico time series_G precipitazioni

3.4.3.4.2 UC-3.4.2: Visualizzazione mappa sensori precipitazioni

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori di precipitazioni.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori di precipitazioni e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di precipitazioni nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 48: UC-3.4.2: Visualizzazione mappa interattiva sensori precipitazioni

3.4.3.4.3 UC-3.4.3: Visualizzazione *panel* quantità di precipitazioni media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente di quantità di precipitazioni media nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare di quantità di precipitazioni media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 49: UC-3.4.3: Visualizzazione $panel_{\mathbb{G}}$ quantità di precipitazioni media nel periodo di tempo selezionato

3.4.3.4.4 UC-3.4.4: Visualizzazione panel quantità di precipitazioni in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente di quantità di precipitazioni in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare di quantità di precipitazioni in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 50: UC-3.4.4: Visualizzazione panel_G quantità di precipitazioni in tempo reale

3.4.3.4.5 UC-3.4.5: Visualizzazione *panel* giorno con precipitazioni maggiori nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori ambientali.
- **User story**_©: come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 51: UC-3.4.5: Visualizzazione $panel_{\mathbb{G}}$ giorno con precipitazioni maggiori nel periodo di tempo selezionato

3.4.3.4.6 UC-3.4.6: Visualizzazione *panel* giorno con precipitazioni minori nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 52: UC-3.4.6: Visualizzazione $panel_{\mathbb{G}}$ giorno con precipitazioni minori nel periodo di tempo selezionato

3.4.3.5 UC-3.5: Visualizzazione sezione livello dei fiumi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori ambientali presenti nella città, la quale contiene un grafico time series con le misurazioni storiche del livello dei fiumi, una mappa dei sensori di livello dei fiumi collegati al sistema, dei panel che mostrano il livello dei fiumi medio, minimo e massimo nel periodo di tempo selezionato e quello attuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori ambientali presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche del livello dei fiumi, una mappa dei sensori di livello dei fiumi collegati al sistema, dei panel che mostrano il livello dei fiumi medio, minimo e massimo nel periodo di tempo selezionato e quello attuale.

Figura 53: UC-3.5: Visualizzazione sezione livello dei fiumi

3.4.3.5.1 UC-3.5.1: Visualizzazione grafico time series livello dei fiumi

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche del livello dei fiumi aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche del livello dei fiumi per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 54: UC-3.5.1, Visualizzazione grafico time series_G livello dei fiumi

3.4.3.5.2 UC-3.5.2: Visualizzazione mappa sensori livello dei fiumi

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza una mappa interattiva popolata con dei marker contenenti l'identificativo e le coordinate geografiche dei sensori del livello dei fiumi.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori ambientali.
- **User story**_©: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori del livello dei fiumi e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del livello dei fiumi nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 55: UC-3.5.2: Visualizzazione mappa interattiva sensori livello dei fiumi

3.4.3.5.3 UC-3.5.3: Visualizzazione *panel* livello dei fiumi medio nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente del livello dei fiumi medio nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare del livello dei fiumi medio nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 56: UC-3.5.3: Visualizzazione $panel_{\mathbb{G}}$ livello dei fiumi medio nel periodo di tempo selezionato

3.4.3.5.4 UC-3.5.4: Visualizzazione panel livello dei fiumi in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il livello dei fiumi in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il livello dei fiumi in tempo reale in modo da poterne monitorare l'andamento e poterlo facilmente confrontare con i dati storici.

Figura 57: UC-3.5.4: Visualizzazione panel_G livello dei fiumi in tempo reale

3.4.4 UC-4: Visualizzazione dashboard dati urbani

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard_G contenente le sezioni relative ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati ambientali contenente le sezioni relative ai sensori urbani presenti nella città, la quale mi consente di monitorare la situazione urbanistica.

Figura 58: UC-4: Visualizzazione dashboard_G dei dati urbani

3.4.4.1 UC-4.1: Visualizzazione sezione traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori urbani presenti nella città, la quale contiene un grafico time series con le misurazioni storiche del traffico, una mappa dei sensori di traffico collegati al sistema, un panel che mostra il numero dei veicoli in tempo reale, un panel che mostra la velocità media in tempo reale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori urbani presenti nella città, la quale conterrà un grafico time series con le misurazioni storiche del traffico, una mappa dei sensori di traffico collegati al sistema, un panel che mostra il numero dei veicoli in tempo reale, un panel che mostra la velocità media in tempo reale.

Figura 59: UC-4.1: Visualizzazione sezione traffico

3.4.4.1.1 UC-4.1.1: Visualizzazione grafico time series traffico

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_© relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di traffico aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - I'autorità locale seleziona la visualizzazione della dashboard_⊙ relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche di traffico per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie o congestioni.

Figura 60: UC-4.1.1: Visualizzazione grafico time series_G traffico

3.4.4.1.2 UC-4.1.2: Visualizzazione mappa sensori traffico

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori del traffico.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- I'autorità locale seleziona la visualizzazione della dashboard_⊕ relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del traffico e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del traffico nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 61: UC-4.1.2: Visualizzazione mappa interattiva sensori traffico

3.4.4.1.3 UC-4.1.3: Visualizzazione panel numero veicoli in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente il numero di veicoli in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare del numero di veicoli in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 62: UC-4.1.3: Visualizzazione panel_G numero di veicoli in tempo reale

3.4.4.1.4 UC-4.1.4: Visualizzazione panel velocità media in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente la velocità media in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - I'autorità locale seleziona la visualizzazione della dashboard_⊙ relativa ai sensori urbani.
- **User story**_©: come autorità locale desidero poter visualizzare della velocità media in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 63: UC-4.1.4: Visualizzazione panel_G velocità media in tempo reale

3.4.4.2 UC-4.2: Visualizzazione sezione colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_© relativa ai sensori urbani presenti nella città, la quale contiene una mappa dei sensori di colonnine di ricarica collegati al sistema, un grafico a barre rappresentante il tempo di utilizzo di ciascuna colonnina nel tempo selezionato, un grafico a torta con la percentuale di colonnine occupate in tempo reale, un grafico time series con i valori storici della charging efficiency, due gauge con la percentuale di efficienza e utilizzo media nel periodo di tempo selezionato e un panel che mostra le colonnine più e meno efficienti e più e meno utilizzate.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\ominus}$ relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori urbani presenti nella città, la quale conterrà una mappa dei sensori di colonnine di ricarica, un grafico a barre col tempo di utilizzo nel tempo selezionato, un grafico a torta con la percentuale di colonnine occupate in tempo reale, un grafico time series con i valori storici dell'efficienza delle colonnine, due gauge con la percentuale di efficienza e utilizzo media nel periodo di tempo selezionato e un panel che mostra le colonnine più e meno efficienti e più e meno utilizzate.

Figura 64: UC-4.2: Visualizzazione sezione colonnine di ricarica

3.4.4.2.1 UC-4.2.1: Visualizzazione mappa colonnine di ricarica con stato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* rappresentanti la posizione delle colonnine di ricarica.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - I'autorità locale seleziona la visualizzazione della dashboard_⊙ relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica
 contenenti il loro identificativo e lo stato di funzionamento. Essa mi consentirà di visualizzare la distribuzione delle colonnine di ricarica nel territorio ed eventualmente
 intervenire nel caso in cui vi siano dei guasti.

Figura 65: UC-4.2.1: Visualizzazione mappa interattiva sensori colonnine di ricarica

3.4.4.2.2 UC-4.2.2: Visualizzazione grafico a barre tempo di utilizzo colonnine di ricarica

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico a barre contenente il tempo totale di utilizzo di ciascuna colonnina di ricarica nel tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un *panel*_G contenente il tempo totale di utilizzo di ciascuna colonnina di ricarica nel tempo selezionato

Figura 66: UC-4.2.2: Visualizzazione grafico a barre tempo di utilizzo colonnine di ricarica

3.4.4.2.3 UC-4.2.3: Visualizzazione grafico a torta percentuale di colonnine di ricarica utilizzate in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico a torta contenente la percentuale di colonnine di ricarica utilizzate in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico a torta contenente la percentuale di colonnine di ricarica utilizzate in tempo reale.

Figura 67: UC-4.2.3: Visualizzazione grafico a torta percentuale di colonnine di ricarica utilizzate in tempo reale

3.4.4.2.4 UC-4.2.4: Visualizzazione grafico time series_G charging efficiency

• Attore principale: autorità locale.

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente i valori storici della charging efficiency delle colonnine di ricarica mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori dell'efficiency rate e dell'utilization rate espressi in percentuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G contenente i valori storici della charging efficiency delle colonnine di ricarica mostrando sull'asse delle ascisse i timestamp delle misurazioni e su quello delle ordinate i valori dell'efficiency rate e dell'utilization rate espressi in percentuale.

Figura 68: UC-4.2.4: Visualizzazione grafico time series_G charging efficiency

3.4.4.2.5 UC-4.2.5: Visualizzazione gauge efficiency rate e dell'utilization rate

• Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza due gauge contenenti i valori di *efficiency rate* e *utilization rate* medie nel periodo di tempo selezionato, espressi in percentuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare due gauge contenenti i valori di *efficiency rate* e *utilization rate* medie nel periodo di tempo selezionato, espressi in percentuale, per poter monitorare l'efficienza e l'utilizzo delle colonnine di ricarica e poter facilmente confrontare i dati con quelli storici.

Figura 69: UC-4.2.5: Visualizzazione gauge efficiency rate e dell'utilization rate

3.4.4.2.6 UC-4.2.6: Visualizzazione panel colonnine più/meno efficienti/utilizzate

• Attore principale: autorità locale.

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel* contenente le colonnine di ricarica più e meno efficienti e più e meno utilizzate nel periodo di tempo selezionato, mostrando il nome di ciascun sensore e i valori di efficienza e utilizzo espressi in percentuale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare un panel contenente le colonnine di ricarica più e meno efficienti e più e meno utilizzate nel periodo di tempo selezionato, mostrando il nome di ciascun sensore e i valori di efficienza e utilizzo espressi in percentuale, per poter facilmente individuare le colonnine con maggiore affluenza e intervenire per migliorarne l'efficienza e l'utilizzo.

Figura 70: UC-4.2.6: Visualizzazione panel colonnine più/meno efficienti/utilizzate

3.4.4.3 UC-4.3: Visualizzazione sezione parcheggi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori urbani presenti nella città, la quale contiene una mappa dei sensori di parcheggi collegati al sistema, un grafico a barre rappresentante il tempo totale di occupazione di ciascun parcheggio nel tempo selezionato e un grafico a torta con la percentuale di parcheggi occupati in tempo reale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori urbani presenti nella città, la quale conterrà una mappa dei sensori di parcheggi collegati al sistema, un grafico a barre rappresentante il tempo totale di occupazione di ciascun parcheggio nel tempo selezionato e un grafico a torta con la percentuale di parcheggi occupati in tempo reale.

Figura 71: UC-4.3: Visualizzazione dashboard_G parcheggi

3.4.4.3.1 UC-4.3.1: Visualizzazione mappa parcheggi con stato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei parcheggi.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi contenenti
 il loro identificativo e lo stato di occupazione. Essa mi consentirà di visualizzare la
 distribuzione dei parcheggi nel territorio ed eventualmente intervenire nel caso in
 cui vi siano dei guasti.

Figura 72: UC-4.3.1: Visualizzazione mappa parcheggi con stato

3.4.4.3.2 UC-4.3.2: Visualizzazione grafico a barre tempo di occupazione parcheggi

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico a barre contenente il tempo totale di occupazione di ciascun parcheggio nel tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- **User story** $_{\mathbb{G}}$: come autorità locale desidero poter visualizzare un $panel_{\mathbb{G}}$ contenente il tempo totale di occupazione di ciascun parcheggio nel tempo selezionato

Figura 73: UC-4.3.2: Visualizzazione grafico a barre tempo di occupazione parcheggi

3.4.4.3.3 UC-4.3.3: Visualizzazione grafico a torta percentuale di occupazione dei parcheggi in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico a torta contenente la percentuale di parcheggi occupati in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico a torta contenente la percentuale di parcheggi occupati in tempo reale.

Figura 74: UC-4.3.3: Visualizzazione grafico a torta percentuale di occupazione dei parcheggi in tempo reale

3.4.4.4 UC-4.4: Visualizzazione sezione isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G relativa ai sensori urbani presenti nella città, la quale contiene una mappa dei sensori delle isole ecologiche collegati al sistema, un grafico time series con le misurazioni storiche di riempimento, un gauge con il tempo trascorso con un riempimento totale nel periodo di tempo selezionato, un gauge indicante il valore medio di discharge efficiency index nel periodo di tempo selezionato e un grafico a barre con la percentuale di tempo trascorso in un determinato livello di riempimento.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori urbani presenti nella città, la quale conterrà una mappa dei sensori delle isole ecologiche collegati al sistema, un grafico time series con le misurazioni storiche di riempimento, un gauge con il tempo trascorso con un riempimento totale nel periodo di tempo selezionato, un gauge indicante il valore medio di discharge efficiency index nel periodo di tempo selezionato e un grafico a barre con la percentuale di tempo trascorso in un determinato livello di riempimento.

Figura 75: UC-4.4: Visualizzazione sezione isole ecologiche

3.4.4.4.1 UC-4.4.1: Visualizzazione *panel* con riempimento isole ecologiche in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il riempimento in percentuale delle isole ecologiche in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare il riempimento in percentuale delle isole ecologiche in tempo reale in modo da poterne monitorare l'andamento ed eventualmente intervenire per svuotarle.

Figura 76: UC-4.4.1: Visualizzazione panel_G riempimento isole ecologiche in tempo reale

3.4.4.4.2 UC-4.4.2: Visualizzazione mappa interattiva isole ecologiche

Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori delle isole ecologiche.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori delle isole ecologiche contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione delle isole ecologiche nel territorio.

Figura 77: UC-4.4.2: Visualizzazione mappa interattiva sensori isole ecologiche

3.4.4.4.3 UC-4.4.3: Visualizzazione grafico time series isole ecologiche

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di riempimento e svuotamento di isole ecologiche.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard $_{\odot}$ relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche di isole ecologiche per poter monitorare gli svuotamenti e i riempimenti nel tempo.

Figura 78: UC-4.4.3: Visualizzazione grafico time series_G isole ecologiche

3.4.4.4.4 UC-4.4.4: Visualizzazione panel ore di saturazione isole ecologiche

Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un panel_G contenente il conteggio delle ore di saturazione delle isole ecologiche, ovvero il numero di ore in cui le isole ecologiche sono rimaste piene al 100% prima di essere svuotate.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare il conteggio delle ore di saturazione delle isole ecologiche in modo da poter monitorare quanto efficienti sono gli svuotamenti e poter intervenire per migliorare il servizio.

Figura 79: UC-4.4.4: Visualizzazione panel_G ore di saturazione isole ecologiche

3.4.4.4.5 UC-4.4.5: Visualizzazione *panel* con percentuale media di riempimento al momento dello svuotamento

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento, che rappresenta l'efficienza del servizio di svuotamento.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento in modo da poter monitorare l'efficienza del servizio di svuotamento e poter intervenire per migliorare il servizio.

Figura 80: UC-4.4.5: Visualizzazione panel $_{\mathbb{G}}$ percentuale media di riempimento al momento dello svuotamento

3.4.4.4.6 UC-4.4.6: Visualizzazione *panel* con percentuale tempo trascorso per livello di riempimento

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard_G relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la percentuale di tempo trascorso in ciascuno dei seguenti livelli:
 - Basso (0-50%)
 - Medio (50-80%)
 - Alto (80-100%)
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - l'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare la percentuale di tempo trascorso in ciascuno dei livelli di riempimento delle isole ecologiche, in modo da poter monitorare l'andamento del riempimento e poter intervenire per migliorare il servizio.

Figura 81: UC-4.4.6: Visualizzazione $panel_{\mathbb{G}}$ percentuale tempo trascorso per livello di riempimento

3.4.5 UC-5: Visualizzazione messaggio assenza di dati

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **Postcondizioni**: l'autorità locale visualizza un messaggio che notifica l'assenza di dati.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. il sistema non trova dati relativi ai sensori;
 - 4. il sistema mostra un messaggio che notifica l'assenza di dati.
- User story_G: come autorità locale desidero poter visualizzare un messaggio che notifica l'assenza di dati relativi ai sensori in modo da poter essere informato in caso di malfunzionamento.

Figura 82: UC-5: Visualizzazione messaggio assenza di dati

3.4.6 UC-6: Trasmissione dati

• Attore principale: sensore_G.

• **Precondizioni**: il sensore_G è attivo e collegato al sistema.

• **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.

- 1. il sensore_G effettua una misurazione;
- 2. il sensore_G formatta i dati da inviare al sistema, includendo le misurazioni, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. il sensore_G invia i dati al sistema.
- User story_G: come sensore_G, desidero poter inviare al sistema le rilevazioni effettuate.

Figura 83: UC-6: Trasmissione dati

3.4.7 UC-7: Trasmissione dati temperatura

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione di temperatura;
 - 2. il sensore_G formatta i dati da inviare al sistema, includendo la temperatura in gradi Celsius, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni della temperatura.

Figura 84: UC-7: Trasmissione dati temperatura

3.4.8 UC-8: Trasmissione dati umidità

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione dell'umidità;
 - il sensore_G formatta i dati da inviare al sistema, includendo all'umidità in percentuale, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- User story_G: come sensore_G, desidero poter inviare al sistema le rilevazioni dell'umidità.

Figura 85: UC-8: Trasmissione dati umidità

3.4.9 UC-9: Trasmissione dati qualità dell'aria

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione della quantità di precipitazioni;
 - 2. il sensore_G formatta i dati da inviare al sistema, includendo le misurazioni degli agenti inquinanti PM10, PM2.5, NO₂, O₃, SO₂ in $\mu g/m^3$, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni della qualità dell'aria.

Figura 86: UC-9: Trasmissione dati qualità dell'aria

3.4.10 UC-10: Trasmissione dati precipitazioni

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione della quantità di precipitazioni;
 - 2. il sensore_G formatta i dati da inviare al sistema, includendo la misurazione in mm delle precipitazioni, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni della quantità di precipitazioni.

Figura 87: UC-10: Trasmissione dati precipitazioni

3.4.11 UC-11: Trasmissione dati traffico

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione del traffico;
 - 2. il sensore_G formatta i dati da inviare al sistema, includendo il numero di veicoli transitati, la loro velocità media, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni sui dati del traffico.

Figura 88: UC-11: Trasmissione dati traffico

3.4.12 UC-12: Trasmissione dati colonnine di ricarica

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.

- 1. il sensore $_{\ominus}$ effettua una misurazione dello stato e l'occupazione delle colonnine di ricarica;
- 2. il sensore_G formatta i dati da inviare al sistema, includendo la potenza erogata in kW, il tempo rimanente alla fine della ricarica, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni sullo stato e l'occupazione delle colonnine di ricarica.

Figura 89: UC-12: Trasmissione dati colonnine di ricarica

3.4.13 UC-13: Trasmissione dati parcheggi

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.

- 1. il sensore $_{\mathbb{G}}$ effettua una misurazione dello stato di riempimento del parcheggio;
- 2. il sensore_G formatta i dati da inviare al sistema, includendo lo stato di occupazione del parcheggio, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni sull'occupazione dei parcheggi.

Figura 90: UC-13: Trasmissione dati parcheggi

3.4.14 UC-14: Trasmissione dati isole ecologiche

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.

• Scenario principale:

- 1. il sensore $_{\ominus}$ effettua una misurazione dello stato di riempimento delle isole ecologiche;
- 2. il sensore_G formatta i dati da inviare al sistema, includendo la percentuale di riempimento, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni sullo stato di riempimento delle isole ecologiche.

Figura 91: UC-14: Trasmissione dati isole ecologiche

3.4.15 UC-15: Trasmissione dati livello dei fiumi

- Attore principale: sensore_G.
- **Precondizioni**: il sensore_G è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore_G effettua una misurazione del livello dei fiumi;
 - 2. il sensore_G formatta i dati da inviare al sistema, includendo il livello dei fiumi in cm, l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. il sensore_G invia i dati al sistema.
- **User story**_G: come sensore_G, desidero poter inviare al sistema le rilevazioni sul livello dei fiumi.

Figura 92: UC-15: Trasmissione dati livello dei fiumi

3.4.16 UC-16: Applicazione filtro

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato i dati interrogando il database;
- 3. l'autorità locale visualizza una dashboard_G.
- **Postcondizioni**: l'autorità locale applica un filtro ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Scenario principale:

- 1. l'autorità locale visualizza una dashboard_G;
- 2. l'autorità locale seleziona uno dei filtri disponibili.
- User story_G: come autorità locale desidero poter applicare dei filtri ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 93: UC-7: Applicazione filtro

3.4.17 UC-16.1: Applicazione filtro per tipo di sensore

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. il sistema ha caricato i dati interrogando il database;
 - 3. l'autorità locale visualizza una dashboard_G.
- **Postcondizioni**: l'autorità locale applica un filtro per il tipo di sensore_G ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.
- Scenario principale:
 - 1. l'autorità locale visualizza una dashboard_G;
 - 2. l'autorità locale seleziona il tipo di sensore_G di cui vuole visualizzare i dati.
- User story_G: come autorità locale desidero poter applicare un filtro per il tipo di sensore_G ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 94: UC-16.1: Applicazione filtro per tipo di sensore

3.4.18 UC-16.2: Applicazione filtro per nome del sensore

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato i dati interrogando il database;
 - 3. l'autorità locale visualizza una dashboard_G.
- **Postcondizioni**: l'autorità locale applica un filtro per il nome del sensore_G ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.
- Scenario principale:
 - 1. l'autorità locale visualizza una dashboard_G;
 - 2. l'autorità locale seleziona il nome del sensore_G di cui vuole visualizzare i dati.
- User story_G: come autorità locale desidero poter applicare un filtro per il nome del sensore_G ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 95: UC-16.2: Applicazione filtro per nome del sensore_G

3.4.19 UC-16.3: Applicazione filtro temporale

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. il sistema ha caricato i dati interrogando il database;
- 3. l'autorità locale visualizza una dashboard_G.
- **Postcondizioni**: l'autorità locale applica un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

• Scenario principale:

- 1. l'autorità locale visualizza una dashboard_G;
- 2. l'autorità locale seleziona il periodo di tempo di cui vuole visualizzare i dati.
- **User story**_G: come autorità locale desidero poter applicare un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 96: UC-16.3: Applicazione filtro temporale

3.4.20 UC-17: Visualizzazione notifica superamento soglie

• Attore principale: autorità locale.

• Precondizioni: nessuna

• **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento delle soglie.

• Scenario principale:

- 1. si verificano delle condizioni che portano al superamento di soglie prestabilite per uno dei sensori.
- **User story**_©: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie in modo da poter intervenire tempestivamente in caso di criticità.

Figura 97: UC-17: Visualizzazione notifica superamento soglie

3.4.21 UC-17.1: Visualizzazione notifica superamento soglia di temperatura

• Attore principale: autorità locale.

• Precondizioni: nessuna

- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento della soglia di temperatura.
- Scenario principale:
 - 1. la temperatura rilevata supera i 40°C per più di 30 minuti;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie di temperatura in modo da poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 98: UC-17.1: Visualizzazione notifica superamento soglie di temperatura

3.4.22 UC-17.2: Visualizzazione notifica superamento soglia di riempimento dell'isola ecologica

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento della soglia di riempimento dell'isola ecologica.
- Scenario principale:
 - 1. l'isola ecologica rimane piena al 100% per più di 24 ore;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_©: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie di riempimento dell'isola ecologica in modo da poter intervenire per svuotarla.

Figura 99: UC-17.2: Visualizzazione notifica superamento soglia di riempimento dell'isola ecologica

3.4.23 UC-17.3: Visualizzazione notifica superamento indice 3 EAQI

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento dell'indice 3 EAQI_G.
- Scenario principale:
 - 1. I'indice EAQIG supera il valore 3;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_©: come autorità locale desidero poter visualizzare delle notifiche relative al superamento dell'indice 3 EAQl_© per poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 100: UC-17.3: Visualizzazione notifica superamento indice 3 EAQI_G

3.4.24 UC-17.4: Visualizzazione notifica superamento livello di precipitazioni

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento di 10mm di precipitazioni in un'ora.
- Scenario principale:
 - 1. il livello di precipitazioni supera i 10mm in un'ora;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento del livello di precipitazioni per poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 101: UC-17.4: Visualizzazione notifica superamento livello di precipitazioni

4 Requisiti

4.1 Definizione di un requisito

Per ciascun requisito vengono fornite le seguenti informazioni:

- codice identificativo del requisito, meglio specificato nella sezione 4.2.1;
- descrizione del requisito;
- fonte, ovvero la provenienza del requisito, meglio specificata nella sezione 4.2.2;
- **importanza** del requisito, meglio specificata nella sezione 4.2.3.

4.2 Tipologie di requisiti

I requisiti possono essere di quattro tipologie:

- funzionali, descrivono le funzionalità del sistema;
- qualitativi, descrivono le qualità che il sistema deve avere;
- di vincolo, descrivono i vincoli a cui il sistema deve sottostare.
- prestazionali, descrivono le prestazioni che il sistema deve avere.

4.2.1 Codifica dei requisiti

I requisiti sono codificati nel seguente modo:

R[Tipologia]-[Codice]

dove [Codice] è un numero progressivo che identifica univocamente il requisito e [Ti-pologia] è una lettera che identifica la tipologia del requisito:

- F: requisito funzionale;
- Q: requisito qualitativo;
- V: requisito di vincolo;
- P: requisito prestazionale.

4.2.2 Fonti dei requisiti

I requisiti provengono dalle fonti meglio specificate di seguito.

Capitolato_G

Requisiti individuati a seguito dell'analisi dello stesso;

Interno

Requisiti individuati durante le riunioni interne e da coloro che hanno il ruolo di analista_©;

Esterno

Requisiti individuati in seguito agli incontri tenuti con la proponente_G;

Piano di Qualifica_G

Requisiti necessari per adeguare il prodotto agli standard di qualità definiti nel documento *Piano di Qualifica*_G;

Norme di Progetto_G

Requisiti necessari per adeguare il prodotto alle norme stabilite nel documento *Norme* di *Progetto*_G;

4.2.3 Importanza dei requisiti

I requisiti possono avere tre livelli di importanza:

- **Obbligatorio**, requisito irrinunciabile per il committente_G;
- **Desiderabile**, requisito non strettamente necessario, ma che porta valore aggiunto al prodotto;
- Opzionale, requisito relativo a funzionalità aggiuntive.

4.3 Requisiti funzionali

Codice	Importanza	Fonte	Descrizione
			La parte <i>IoT</i> dovrà essere simulata
RF-1	Obbligatorio	Capitolato _G	attraverso tool di generazione di
IXI - I	Obbligations	Capilolalog	dati casuali che tuttavia siano
			verosimili.
			Il sistema dovrà permettere la
RF-2	Obbligatorio	Capitolato _G	visualizzazione dei dati in tempo
			reale.
RF-3	Obbligatorio	Capitolato _G	Il sistema dovrà permettere la
111 0		Сарпогатод	visualizzazione dei dati storici.
			L'utente deve poter accedere
RF-4	Obbligatorio	Capitolato _G	all'applicativo senza bisogno di
			autenticazione.
			L'utente dovrà poter visualizzare su
RF-5	Obbligatorio	Capitolato _G	una mappa la posizione
			geografica dei sensori.
			I tipi di dati che il sistema dovrà
			visualizzare sono: temperatura,
			umidità, qualità dell'aria,
RF-6	Obbligatorio	Capitolato _G	precipitazioni, traffico, stato delle
IXI -O			colonnine di ricarica, stato di
			occupazione dei parcheggi, stato
			di riempimento delle isole
			ecologiche e livello di acqua.
RF-7	Obbligatorio	Capitolato _G	I dati dovranno essere salvati su un
IXI -7	Obbligation	Сарпоіаю	database OLAP.
RF-8	Obbligatorio	Capitolato _G	I sensori di temperatura rilevano i
IXI -O	Obbligations	Capilolalog	dati in gradi Celsius
RF-9	Obbligatorio	Capitolatos	l sensori di umidità rilevano la
1\1 - 7	Obbligatorio	Capitolato _G	percentuale di umidità nell'aria.
			I sensori livello acqua rilevano il
RF-10	Obbligatorio	Capitolato _G	livello di acqua nella zona di
			installazione

Codice	Importanza	Fonte	Descrizione
			l dati provenienti dai sensori
DE 11	Obbligatoria	Canitalata	dovranno contenere i seguenti
RF-11	Obbligatorio	Capitolato _G	dati: id sensore _G , data, ora e
			valore.
			Sviluppo di componenti quali
DE 10	Obbligatorio	Capitalata	widget _⊖ e grafici per la
RF-12	Obbligatorio	Capitolato _G	visualizzazione dei dati nelle
			dashboard _G .
			Il sistema deve permettere di
RF-13	Obbligatorio	Intorno	visualizzare una dashboard _⊖
KF-13	Obbligatorio	Interno	generale con tutti i dati dei
			sensori.
			Il sistema deve permettere di
RF-14	Obbligatorio	Intorno	visualizzare una dashboard _⊖
RF-14	Obbligatorio	Interno	contenente tutti i dati dei sensori
			che monitorano l'ambiente.
			Il sistema deve permettere di
DE 16	Obbligatoria	Intorno	visualizzare una dashboard _G
RF-15	Obbligatorio	Interno	contenente tutti i dati dei sensori
			che monitorano gli aspetti urbani.
			Il sistema deve permettere di
RF-16	Obbligatorio	Interno	visualizzare una sezione specifica
			per ciascuna categoria di sensori.
			Nella dashboard _G dei dati grezzi
			dovranno essere presenti: una
			mappa interattiva, un widget _G
			con il conteggio totale dei sensori
			divisi per tipo, una tabella
RF-17	Obbligatorio	Interno	contente tutti i sensori e la data in
			cui essi hanno trasmesso l'ultima
			volta. Inoltre verranno mostrate
			delle tabelle con i dati filtrabili
			suddivisi per sensore _G e un grafico
			time series _G con tutti i dati grezzi.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard _G dei dati
			ambientali dovranno essere
			presenti delle sezioni contenenti i
RF-18	Obbligatorio	Interno	panel _G relativi ai sensori di
			temperatura, umidità,
			precipitazioni, livello dei fiumi e
			qualità dell'aria.
			Nella dashboard _G dei dati legati
			agli aspetti urbani dovranno
			essere presenti delle sezioni
RF-19	Obbligatorio	Interno	contenenti i panel _G relativi ai
			sensori di parcheggio, traffico,
			isole ecologiche e colonnine di
			ricarica.
	Obbligatorio	Interno	Nella sezione della temperatura
			dovranno essere visualizzati: un
			grafico time series _G , una mappa
RF-20			interattiva, la temperatura media,
IXI ZO			minima e massima di un certo
			periodo di tempo, la temperatura
			in tempo reale e la temperatura
			media per settimana e mese.
			Nella sezione dell'umidità
			dovranno essere visualizzati: un
			grafico time series _G , una mappa
RF-21	Obbligatorio	Interno	interattiva, l'umidità media,
			minima e massima di un certo
			periodo di tempo e l'umidità in
			tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nella sezione della qualità
			dell'aria dovranno essere
			visualizzati: un grafico time series _G ,
			una mappa interattiva, la qualità
RF-22	Obbligatorio	Interno	media dell'aria in un certo
			periodo e in tempo reale, i giorni
			con la qualità dell'aria migliore e
			peggiore in un certo periodo di
			tempo.
			Nella sezione delle precipitazioni
			dovranno essere visualizzati: un
			grafico time series $_{\mathbb{G}}$, una mappa
	Obbligatorio	Interno	interattiva, la quantità media di
RF-23			precipitazioni in un certo periodo
			e in tempo reale, i giorni con la
			quantità di precipitazioni
			maggiore e minore in un certo
			periodo di tempo.
			Nella sezione del livello di acqua
			dovranno essere visualizzati: un
RF-24	Obbligatorio	Interno	grafico time series _G , una mappa
			interattiva, il livello medio di
			acqua in un certo periodo e in
			tempo reale.
			Nella sezione delle isole
			ecologiche dovranno essere
			visualizzati: una mappa interattiva
RF-25	Obbligatorio	Interno	con il rispettivo stato di
			riempimento e il conteggio di isole
			ecologiche suddivise per stato di
			riempimento in tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nella sezione dei parcheggi
			dovranno essere visualizzati: una
			mappa interattiva con il rispettivo
RF-26	Obbligatorio	Interno	stato di occupazione e il
			conteggio di parcheggi suddivisi
			per stato di occupazione in
			tempo reale.
			Nella sezione delle colonnine di
			ricarica dovranno essere
RF-27	Obbligatorio	Interno	visualizzati: una mappa interattiva
10.7	Obbligation	II II C II IO	contenente anche lo stato e il
			numero di colonnine di ricarica
			suddivise per stato in tempo reale.
	Obbligatorio	Interno	Nella sezione del traffico dovranno
			essere visualizzati: un grafico time
			series _G , il numero di veicoli e la
RF-28			velocità media in tempo reale, il
			calcolo dell'ora di punta sulla
			base del numero di veicoli e
			velocità media.
			Nel caso in cui non ci siano dati
RF-29	Obbligatorio	Interno	visualizzabili, il sistema deve
			notificare l'utente mostrando un
			opportuno messaggio.
			l sensori di qualità dell'aria inviano
RF-30	Obbligatorio	Interno	i seguenti dati: PM10, PM2.5, NO2,
			CO , $O3$, $SO2$ in $\mu g/m^3$.
RF-31	Obbligatorio	Interno	I sensori di precipitazioni inviano la
101	Obbligatorio	ii ii Cii iO	quantità di pioggia caduta in mm.
			l sensori di traffico inviano il
RF-32	Obbligatorio	Interno	numero di veicoli rilevati e la
			velocità in km/h.

Codice	Importanza	Fonte	Descrizione
			Le colonnine di ricarica inviano lo
			stato di occupazione e il tempo
RF-33	Obbligatorio	Interno	mancante alla fine della ricarica
KI-JJ	Obbligatorio	IIIIeIIIO	(se occupate) o il tempo passato
			dalla fine dell'ultima ricarica (se
			libere).
			I sensori di parcheggio inviano lo
			stato di occupazione del
RF-34	Obbligatorio	Interno	parcheggio (1 se occupato, 0 se
			libero) e il timestamp dell'ultimo
			cambiamento di stato.
			Le isole ecologiche inviano lo
RF-35	Obbligatorio	Interno	stato di riempimento come
			percentuale.
RF-36	Obbligatorio	Intorno	I sensori di livello di acqua inviano
KF-30	Obbligatorio	Interno	il livello di acqua in cm.
			Il sistema deve permettere di
RF-37	Obbligatorio	Esterno	filtrare i dati visualizzati in base a
			un intervallo di tempo.
			Il sistema deve permettere di
RF-38	Obbligatorio	Esterno	filtrare i dati visualizzati in base al
			sensore _G che li ha generati.
RF-39	Desiderabile	Esterno	Devono essere messe in relazione
IKI-09	Desiderabile	ESIGITIO	più sorgenti di dati.
			Nei grafici time series _G i dati
RF-40	Desiderabile	Esterno	devono essere aggregati
KF-40	Desiderabile	ESIGITIO	calcolando la media di 5 minuti,
			in modo da risultare più leggibili.
RF-41	Obbligatorio	Capitolato	Deve essere implementato
1817-41	Oppligation	Capitolato _G	almeno un simulatore di dati.
DE 40	Docidorabilo	Capitolato _G	Devono essere implementati più
RF-42	Desiderabile		simulatori di dati.
RF-43	Obbligatoria	Capitolato _⊖	I simulatori devono produrre dei
1717-40	Obbligatorio		dati verosimili.

Codice	Importanza	Fonte	Descrizione
			Per ciascuna tipologia di sensore _G
RF-44	Obbligatorio	Capitolato _G	dev'essere sviluppata almeno una
			sezione.
			Deve essere implementata una
			funzionalità di previsione di dati
RF-45	Opzionale	Capitolato _⊖	futuri della temperature,
			basandosi sui dati dell'anno e
			della settimana precedente.
			Deve esistere una dashboard _G per
RF-46	 Desiderabile	Capitolato _G	la visualizzazione della posizione
KI -40	Desiderabile	Capitolatog	geografica dei sensori su una
			mappa.
			Deve essere presente un sistema
RF-47	Opzionale	Capitolato _G	di notifiche che allerti l'utente nel
III 47	Opzioriale	Capilolalog	caso in cui la temperatura superi i
			40°C per più di 30 minuti.
			Deve essere presente un sistema
RF-48	Opzionale	Interno	di notifiche che allerti l'utente se
10 40	Opzioriale	IIIIeIIIO	un'isola ecologica rimane al 100%
			di riempimento per più di 24 ore.
			Deve essere presente un sistema
RF-49	Opzionale	Interno	di notifiche che allerti l'utente se
10 17	0021011010		la qualità dell'aria supera l'indice
			3 dell'EAQI _G .
			Deve essere presente un sistema
RF-50	Opzionale	Interno	di notifiche che allerti l'utente se
55	002.01.010		la quantità di precipitazioni supera
			i 10mm in un'ora.
			Deve essere implementato il
RF-51	Opzionale	Esterno	calcolo dell'indice di qualità
			dell'aria EAQI _G .

Codice	Importanza	Fonte	Descrizione
			Deve essere implementato il
			calcolo dell'indice di temperatura
RF-52	Opzionale	Esterno	percepita Heat Index _G ,
			combinando i dati provenienti dai
			sensori di temperatura e umidità.
			Devono essere combinati i dati
	Opzionale	Esterno	provenienti dalle colonnine di
			ricarica e dai parcheggi per
RF-53			calcolare quanti parcheggi sono
100	Opzioriale	LSIGITIO	stati utilizzati da veicoli elettrici e
			se il parcheggio ha fruttato
			abbastanza per coprire i costi di
			installazione.
			Il sistema deve permettere di
RF-54	Obbligatorio	Esterno	filtrare i dati visualizzati in base al
			tipo di sensore _G che li ha prodotti.

Tabella 1: Requisiti funzionali

4.4 Requisiti qualitativi

Codice	Importanza	Fonte	Descrizione
			Sviluppo di test che dimostrino il
		Capitolato _G ,	corretto funzionamento dei servizi
RQ-55	Obbligatorio	Piano di	e delle funzionalità previste. Viene
		Qualifica _⊖	richiesta una copertura dell'80%
			corredata di report.
			Il progetto deve essere corredato
		Capitolato $_{\mathbb{G}}$,	di documentazione riguardo
RQ-56	Obbligatorio	Piano di	scelte implementative e
		Qualifica _G	progettuali effettuate e relative
			motivazioni.
	Obbligatorio	Capitolato _G ,	Il progetto deve essere corredato
RQ-57		Piano di	di documentazione riguardo
KG 07		Qualifica _G	problemi aperti e eventuali
		Quamoug	soluzioni proposte da esplorare.
		Capitolato _G ,	Tutte le componenti del sistema
RQ-58	Obbligatorio	Piano di	devono essere testate con <i>test</i>
		Qualifica _G	end-to-end _G .
			Il sistema sarà corredato di un
RQ-59	Obbligatorio	Interno	Manuale Utente che spieghi le
NG 07		11101110	funzionalità del sistema e come
			utilizzarle.
			Il sistema sarà corredato di un
RQ-60	Obbligatorio	Interno	documento di Specifica Tecnica
1.00			che spieghi le scelte progettuali
			effettuate.

Tabella 2: Requisiti qualitativi

4.5 Requisiti di vincolo

Codice	Importanza	Fonte	Descrizione
			Il simulatore di dati deve
RV-61	Obbligatorio	Capitolato €	pubblicare messaggi in una
			piattaforma di data streaming.
RV-62	Obbligatorio	Interno	La piattaforma di <i>data streaming</i>
IK V-02	Obbligatorio	lillelilo	utilizzata è <i>Redpanda</i> _G .
			I dati pubblicati nella piattaforma
RV-63	Obbligatorio	Capitolato _G	di <i>data streaming</i> devono essere
			salvati in un database OLAP.
			I dati devono poter essere
			visualizzati dall'utente finale in
RV-64	Obbligatorio	Capitolato _G	delle <i>dashboard</i> _G , sviluppate con
			un tool apposito, ad esempio
			Grafana _⊜ .
			l dati pubblicati nei <i>topic</i> di
RV-65	Opzionale	Esterno	Redpanda _⊖ sono serializzati in
			formato <u>Confluent Avro</u> .
			Il sistema deve essere sviluppato
RV-66	Obbligatorio	Esterno	con Docker _G Compose _G ,
16.00	Obbligatorio	Esterno	utilizzando la versione 3.8 della
			specifica.
			Il sistema deve poter essere
			usufruito dalle versioni più recenti
			dei browser web più diffusi. Al
RV-67	Obbligatoria	Capitalata	momento della stesura del
	Obbligatorio	Capitolato _G	presente documento, le versioni
			supportate sono: Google Chrome
			v124, Safari v17.4, Microsoft Edge
			v123, Firefox v125.

RV-68	Obbligatorio	Interno	Il sistema deve poter funzionare su sistema operativo <i>Linux</i> , con CPU a 64 bit, almeno 4GB di RAM e una delle seguenti distribuzioni e versioni minime: <i>Ubuntu</i> 22.04,
			Debian 12, Fedora 38, Red Hat Enterprise Linux 8.
			Il sistema deve poter funzionare su
			sistema operativo <i>Windows</i> con
RV-69	Obbligatorio	Interno	versione 10 o 11, CPU a 64 bit,
			almeno 4GB di RAM e la
			funzionalità WSL2 abilitata.
			Il sistema deve poter funzionare su
			sistema operativo <i>MacOs</i> con
RV-70	Obbligatorio	Interno	versione 12 o superiore, CPU <i>Intel</i>
			o <i>Apple Silicon</i> a 64bit e almeno
			4GB di RAM.

Tabella 3: Requisiti di vincolo

4.6 Requisiti prestazionali

Codice	Importanza	Fonte	Descrizione
RP-71	Obbligatorio	Interno	Il sistema deve garantire che la
			visualizzazione dei dati in tempo
			reale avvenga entro 5 secondi
			dalla ricezione dei dati.

Tabella 4: Requisiti prestazionali

4.7 Tracciamento

4.7.1 Requisito - Fonte

Requisito	Fonte		
RF-1	Capitolato _G		
RF-2	Capitolato _G		
RF-3	Capitolato _G		
RF-4	Capitolato _©		
RF-5	Capitolato _G		
RF-6	Capitolato _G		
RF-7	Capitolato _⊜		
RF-8	Capitolato _⊖		
RF-9	Capitolato _G		
RF-10	Capitolato _⊖		
RF-11	Capitolato _G		
RF-12	Capitolato _G		
RF-13	Interno		
RF-14	Interno		
RF-15	Interno		
RF-16	Interno		
RF-17	Interno		
RF-18	Interno		
RF-19	Interno		
RF-20	Interno		
RF-21	Interno		
RF-22	Interno		
RF-23	Interno		
RF-24	Interno		
RF-25	Interno		
RF-26	Interno		
RF-27	Interno		
RF-28	Interno		
RF-29	Interno		
RF-30	Interno		

Requisito	Fonte		
RF-31	Interno		
RF-32	Interno		
RF-33	Interno		
RF-34	Interno		
RF-35	Interno		
RF-36	Interno		
RF-37	Esterno		
RF-38	Esterno		
RF-39	Esterno		
RF-40	Esterno		
RF-41	Capitolato _G		
RF-42	Capitolato _G		
RF-43	Capitolato _G		
RF-44	Capitolato _G		
RF-45	Capitolato _G		
RF-46	Capitolato _G		
RF-47	Capitolato _G		
RF-48	Interno		
RF-49	Interno		
RF-50	Interno		
RF-51	Esterno		
RF-52	Esterno		
RF-53	Esterno		
RF-54	Esterno		
RQ-55	Capitolato _G , Piano di Qualifica _G		
RQ-56	Capitolato _G , Piano di Qualifica _G		
RQ-57	Capitolato _G , Piano di Qualifica _G		
RQ-58	Capitolato _G , Piano di Qualifica _G		
RQ-59	Interno		
RQ-60	Interno		
RV-61	Capitolato _G		
RV-62	Interno		
RV-63	Capitolato _G		
RV-64	Capitolato _G		

Requisito	Fonte		
RV-65	Esterno		
RV-66	Esterno		
RV-67	Capitolato _G		
RV-68	Interno		
RV-69	Interno		
RV-70	Interno		
RP-71	Interno		

Tabella 5: Tracciamento requisito - fonte

4.7.2 Caso d'uso - Requisito

Caso d'uso	Requisito
UC-1	RF-13
UC-2	RF-15
UC-2.1	RF-15
UC-2.2	RF-15
UC-2.3	RF-15
UC-2.4	RF-15
UC-2.5	RF-15
UC-2.6	RF-15
UC-2.7	RF-15
UC-2.8	RF-15
UC-2.9	RF-15
UC-2.10	RF-15
UC-2.11	RF-15
UC-2.12	RF-15
UC-2.13	RF-15
UC-2.14	RF-15
UC-2.15	RF-15
UC-2.16	RF-15
UC-2.17	RF-15
UC-2.18	RF-15
UC-2.19	RF-15

Caso d'uso	Requisito		
UC-2.20	RF-15		
UC-3	RF-16		
UC-3.1	RF-16		
UC-3.2	RF-16		
UC-3.3	RF-16		
UC-3.4	RF-16		
UC-3.5	RF-16		
UC-3.6	RF-16		
UC-4	RF-17		
UC-4.1	RF-17		
UC-4.2	RF-17		
UC-4.3	RF-17		
UC-4.4	RF-17		
UC-4.5	RF-17		
UC-4.6	RF-17		
UC-5	RF-18		
UC-5.1	RF-18		
UC-5.2	RF-18		
UC-5.3	RF-18		
UC-5.4	RF-18		
UC-5.5	RF-18		
UC-5.6	RF-18		
UC-6	RF-19		
UC-6.1	RF-19		
UC-6.2	RF-19		
UC-6.3	RF-19		
UC-6.4	RF-19		
UC-6.5	RF-19		
UC-6.6	RF-19		
UC-7	RF-20		
UC-7.1	RF-20		
UC-7.2	RF-20		
UC-7.3	RF-20		
UC-7.4	RF-20		

Caso d'uso	Requisito		
UC-7.5	RF-20		
UC-8	RF-21		
UC-8.1	RF-21		
UC-8.2	RF-21		
UC-9	RF-22		
UC-9.1	RF-22		
UC-9.2	RF-22		
UC-10	RF-23		
UC-10.1	RF-23		
UC-10.2	RF-23		
UC-10.3	RF-23		
UC-10.4	RF-23		
UC-10.5	RF-23		
UC-10.6	RF-23		
UC-11	RF-24		
UC-11.1	RF-24		
UC-11.2	RF-24		
UC-11.3	RF-24		
UC-11.4	RF-24		
UC-12	RF-25		
UC-13	RF-11		
UC-13.1	RF-8		
UC-13.2	RF-9		
UC-13.3	RF-26		
UC-13.4	RF-27		
UC-13.5	RF-28		
UC-13.6	RF-29		
UC-13.7	RF-30		
UC-13.8	RF-31		
UC-13.9	RF-32		
UC-14	RF-33,RF-34,RF-50		
UC-14.1	RF-50		
UC-14.2	RF-33		
UC-14.3	RF-34		

Caso d'uso	Requisito		
UC-15	RF-43,RF-44,RF-45,RF-46		
UC-15.1	RF-43		
UC-15.2	RF-44		

Tabella 6: Tracciamento caso d'uso - requisito

4.8 Riepilogo

Tipologia	Obbligatorio	Desiderabile	Opzionale	Totale
Funzionali	38	4	8	50
Qualitativi	6	0	0	6
Di vincolo	9	0	1	10
Prestazionali	1	0	0	1

Tabella 7: Riepilogo