Holonomy of branched projective structures

Thomas Le Fils (IMJ-PRG, Sorbonne Université), thomas.le-fils@imj-prg.fr

Projective structures

Let Σ be a connected oriented compact surface of genus $g \ge 0$ without boundary.

Branched projective structure: atlas of charts $(\varphi_{\alpha}, U_{\alpha})_{\alpha}$ into \mathbb{CP}^1 , with transition maps that are Möbius transformations: $\mathrm{PSL}_2(\mathbb{C}) = \{\frac{az+b}{cz+d}\}$. Branched charts:

$$U_{\alpha} \subset \Sigma \xrightarrow{\varphi_{\alpha}} V_{\alpha} \subset \mathbb{CP}^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D(0,1) \xrightarrow{z \mapsto z^{n}} D(0,1).$$

Transition maps:

$$\forall \alpha, \beta \exists h \in PSL_2(\mathbb{C}) \varphi_{\alpha} = h \circ \varphi_{\beta}.$$

The space of projective structures $\mathcal{BP}(\Sigma)$ is naturally stratified: we may fix the number of branch points and their orders.

$$\mathcal{BP}(\Sigma) = \bigcup_{k \geqslant 0} \bigcup_{n_i \geqslant 1} \mathcal{P}(n_1, \dots, n_k).$$

Statement of the theorem

We give a list of conditions that a representation must satisfy to be the holonomy of a projective structure with fixed branch points, [LF21] for more information on these conditions and notations.

Theorem. A representation $\rho: \pi_1(\Sigma) \to \mathrm{PSL}_2(\mathbb{C})$ is the holonomy of a projective structure in $\mathcal{P}(n_1,\ldots,n_k)$ if and only if it satisfies the 6 conditions below.

Condition 1. $\sum_i n_i$ is even if and only if ρ lifts to $SL_2(\mathbb{C})$.

Condition 2. If ρ is elementary then $\sum_i n_i \ge 2g - 2$ with strict inequality if ρ is conjugated into PSU(2).

Condition 3. If ρ has finite image of order n, then

$$n(2-2g+\sum_{i}n_{i}) \ge 2\max_{i}(n_{i}+1).$$

Condition 4. If $\sum_i n_i = 2g - 2$ and ρ is Euclidean, then $\operatorname{Vol}(\rho) > 0$.

Condition 5. If $\sum_i n_i = 2g - 2$ and $\rho : \pi_1(\Sigma) \to \mathrm{Aff}(\mathbb{C})$ is such that $|\mathrm{Li} \circ \rho(\pi_1(\Sigma))| = n < \infty$ and that $\Lambda = \{z_0 \in \mathbb{C} \mid z + z_0 \in \rho(\pi_1(\Sigma))\}$ is a lattice in \mathbb{C} , then

$$n\text{Vol}(\rho) \ge \max_{i} (n_i + 1)\text{Vol}(\mathbb{C}/\Lambda).$$

Condition 6. If g = 2 and ρ is dihedral and $\rho \in \text{Hol}(\mathcal{P}(2))$, then ρ is affine.

An example

A surface obtained by gluing the sides of a polygon with translations is called a *translation surface*.

Figure 1: Genus 2 translation surface.

Let $\mathcal{H}(n_1,...,n_k)$ be the subset of $\mathcal{P}(n_1,...,n_k)$ consisting of translation surfaces.

Ideas of the proof

Our goal is to geometrize ρ : find a projective structure with fixed branch data and holonomy ρ .

Step 1: Mapping class group action

The group Homeo⁺(Σ) acts on $\mathcal{P}(n_1,...,n_k)$ and modifies the holonomy by precomposing it with the element it induces in $\operatorname{Out}^+(\pi_1(\Sigma))$. Hence ρ is geometric if and only if every representation in its orbit under $\operatorname{Mod}(\Sigma) \simeq \operatorname{Out}^+(\pi_1\Sigma)$ is. Therefore we want to describe the orbits $\operatorname{Mod}(\Sigma) \cdot \rho$ and find special representives of those that are easier to geometrize. For example in [GKM00] the authors show that a non-elementary ρ admits a pants decomposition such that the restriction of ρ to each pair pants in an isomorphism onto a Schottky group. However there is a gap in this proof and the representations that do not admit such a decomposition are classified in [LF19]. In particular in [LF21] we describe the orbits of representations with finite image.

Proposition. Suppose $g \ge 2$. Let G be a finite subgroup of $PSL_2(\mathbb{C})$.

$$|\operatorname{Mod}(\Sigma)\backslash\{\pi_1(\Sigma)\twoheadrightarrow G\}/G| = \begin{cases} 1 & \text{if } G = \mathbb{Z}/n\mathbb{Z}, D_{2n+1} \\ 2 & \text{if } G = D_{2n}, \mathcal{A}_4, \mathcal{B}_4, \mathcal{A}_5 \end{cases}.$$

Developing map and holonomy Step 2

The analytic continuation of a chart leads to the *developing map* dev : $\widetilde{\Sigma} \to \mathbb{CP}^1$ that satisfies:

$$\forall z \in \widetilde{\Sigma} \ \forall \gamma \in \pi_1(\Sigma) \ \exists ! \rho(\gamma) \in \mathrm{PSL}_2(\mathbb{C}),$$

$$\operatorname{dev}(\gamma \cdot z) = \rho(\gamma) \cdot \operatorname{dev}(z).$$

We thus define the *holonomy* $\pi_1(\Sigma) \to \mathrm{PSL}_2(\mathbb{C})$. Another choice of chart conjugates the holonomy, thus there is a well-defined map

 $\operatorname{Hol}: \mathcal{BP}(\Sigma) \to \operatorname{Hom}(\pi_1(\Sigma), \operatorname{PSL}_2(\mathbb{C}))/\operatorname{PSL}_2(\mathbb{C}).$

Step 2: Constructions

The study of the mapping class group action reduces the problem to geometrizing a small number of representations. *Example*: The datum of a projective structure with cyclic holonomy of order *n* amounts to the datum of a structure modeled on the pyramid with *n* sides. We cut and glue pyramids along segments to produce a genus *g* surface with desired branch data and cyclic holonomy.

Statement of the problem

A celebrated theorem of Gallo, Kapovich and Marden in [GKM00] characterizes the holonomies of unbranched projective structures.

Gallo Kapovich Marden. A homomorphism $\pi_1(\Sigma) \to \mathrm{PSL}_2(\mathbb{C})$ is the holonomy of a unbranched projective structure if and only if it is non-elementary and lifts to $\mathrm{SL}_2(\mathbb{C})$.

Problem. Characterize the holonomies of projective structures with fixed branch data. In other words describe $Hol(\mathcal{P}(n_1,...,n_k))$.

A particular case

As part of the proof of our main result, we characterize the holonomies, also called period maps, of translation surfaces with fixed branched points in [LF20].

Theorem. A representation $\chi : \pi_1(\Sigma) \to \mathbb{C}$ is the period map of a translation surface in $\mathcal{H}(n_1, ..., n_k)$ if and only if:

- $Vol(\chi) > 0$
- $\operatorname{Vol}(\chi) \ge (\max_i n_i + 1) \operatorname{Vol}(\mathbb{C}/\Lambda)$ if $\Lambda = \chi(\pi_1(\Sigma))$ is a lattice in \mathbb{C} .

Reference

[GKM00] Daniel Gallo, Michael Kapovich, and Albert Marden. The monodromy of groups of Schwarzian equations on closed Riemann surfaces. *Ann. of Math. (2)*, 151(2):625-704, 2000

[LF21] Thomas Le Fils. Holonomy of complex projective structures on surfaces with prescribed branch data. *arXiv Preprint*.

[LF20] Thomas Le Fils. Periods of abelian differentials with prescribed singularities, to appear in *Int. Math. Res. Not. IMRN*.

[LF19] Thomas Le Fils. Pentagon representations and complex projective structures on closed surfaces, to appear in *Ann. Inst. Fourier*.