Diodo Semicondutor

Com inúmeras funções e aplicações, o diodo é formado simplesmente pela união de um material tipo "p" com um material tipo "n".

Figura 10: Diodo semicondutor. Fonte: Boylestad (2013)

Sem Polarização Aplicada

No instante em que os dois materiais são formados, os elétrons e as lacunas na região da junção se combinam, resultando em uma falta de portadores livres na região próxima à junção.

Figura 11: Diodo semicondutor sem polarização.

Fonte: Boylestad (2013)

Sem polarização não há circulação de corrente e nenhum efeito acontece no componente.

Condição de Polarização Reversa

O número de íons positivos descoberto na região de depleção do material do tipo "n" aumentará devido ao grande número de elétrons livres atraídos para o potencial positivo da tensão aplicada. De forma análoga, o número de íons negativos descoberto aumentará no material do tipo "p".

Figura 12: Diodo semicondutor com polarização reversa. **Fonte: Boylestad (2013)**

A corrente existente sob condição de polarização reversa é chamada de corrente de saturação reversa e representada por I_S . Raramente apresenta um valor maior que alguns microamperes e, praticamente, não se altera com o aumento da tensão reversa.

Condição de Polarização Direta

A aplicação de um potencial de polarização direta V_D "força" os elétrons no material do tipo "n" e as lacunas no material do tipo "p" a se recombinarem com os íons próximos à fronteira de junção e a reduzirem a largura da região de depleção.

Figura 13: Diodo semicondutor com polarização direta. **Fonte: Boylestad (2013)**

A corrente de saturação reversa não se altera nessa condição, uma vez que, a condução dos minoritários está liga as impurezas do material.

Agora os elétrons veem a região de depleção reduzida e sofrem uma forte atração para o potêncial positivo da fonte.

Condição de Polarização Direta

Figura 14: Diodo semicondutor com polarização direta. Fonte: Boylestad (2013)

Através da física de estado sólido é possível provar que (equação de Shockley):

$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right) \tag{13}$$

- I_D é a corrente direta;
- I_S é a corrente de saturação;
- V_D é a tensão de polarização direta;
- n é o fator de idealidade (\approx 1 e 2);
- V_T é a tensão térmica, dada por:

$$V_T = \frac{kT_K}{q} \tag{14}$$

- * k é a constante de Boltzman $(1,38\cdot 10^{-23} \text{J/K});$
- * T_K é a temperatura em Kelvin;
- * q é a magnitude da carga eletrônica $(1,6 \cdot 10^{19} \text{C})$.

Condição de Polarização Direta

Figura 15: Curva característica do diodo semicondutor de silício. Fonte: Boylestad (2013)

Diodo Semicondutor

Ideal Vs Simplificado

Ideal Vs Simplificado

Figura 16: Características ideais versus características reais de semicondutores. Fonte: Boylestad (2013)

Circuitos Equivalentes do Diodo

Circuito equivalente ideal.

Figura 17: Diodo ideal e suas características. Fonte: Boylestad (2013)

Circuito equivalente simplificado.

Figura 18: Modelo simplificado para o diodo de silício. **Fonte: Boylestad (2013)**

Exemplo 1: Para os circuitos abaixo, determine:

- (a) O diodo está conduzindo?
- (b) Qual o valor da corrente e tensão no diodo?

 Considerando o modelo ideal do diodo.

Figura 19: Circuito com diodo. Fonte: Sedra (2015)

Exemplo 1: Para os circuitos abaixo, determine:

- (a) O diodo está conduzindo?
- (b) Qual o valor da corrente e tensão no diodo?

 Considerando o modelo simplificado do diodo.

Figura 19: Circuito com diodo. Fonte: Sedra (2015)

Diodo Semicondutor

Outros Métodos de Análise

Método Gráfico

Figura 20: Circuito com diodo. Fonte: Sedra (2015)

Figura 21: Gráfico genérico. Fonte: Sedra (2015)

Pela Equação de Shockley

Figura 22: Circuito com diodo. Fonte: Sedra (2015)

A relação direta entre a corrente e tensão no diodo para um determinado ponto de operação é dada por

$$I_{D1} = I_S e^{\frac{V_{D1}}{nV_T}}. (15)$$

Para um segundo ponto de operação definida por

$$I_{D2} = I_S e^{\frac{V_{D2}}{nV_T}}. (16)$$

Combinando as duas equações

$$\frac{I_{D2}}{I_{D1}} = e^{\frac{V_{D2} - V_{D1}}{nV_T}},\tag{17}$$

reescrevendo,

$$V_2 - V_1 = n V_T \ln \frac{I_2}{I_1}, \tag{18}$$

ou
$$V_{D2} - V_{D1} = 2.3nV_T \log \frac{I_{D2}}{I_{D1}}. \tag{19}$$

Exemplo 2: Para o circuito mostrado na figura abaixo, o diodo conduz 10 mA sujeito a uma tensão 0,7 V e 100 mA a 0,8 V. Determine a tensão direta no diodo se a corrente no circuito é igual a 50 mA.

Figura 23: Circuito com diodo. Fonte: Sedra (2015)

Exemplo 3: Para o circuito mostrado na figura abaixo, o diodo conduz $10\,\text{mA}$ sujeito a uma tensão $0.7\,\text{V}$ e $100\,\text{mA}$ a $0.8\,\text{V}$. Sabendo que $V_{DD}=10\,\text{V}$ e $R=1\,\text{k}\Omega$, determine a tensão e a corrente no diodo.

Figura 24: Circuito com diodo. Fonte: Sedra (2015)

Exemplo 4: Projete o circuito para fornecer uma tensão de saída de 2,3 V. Suponha que os diodos disponíveis apresentam uma queda de tensão de 0,7 V com uma corrente de 10 mA e 0,8 V com uma corrente de 100 mA.

Figura 25: Circuito com vários diodos. Fonte: Sedra (2015)

Exemplo 5: Projete o circuito para fornecer uma tensão de saída de 2,0 V. Suponha que os diodos disponíveis apresentam uma queda de tensão de 0,7 V com uma corrente de 10 mA e 0,8 V com uma corrente de 100 mA.

Figura 25: Circuito com vários diodos. Fonte: Sedra (2015)

Exemplo 6: Determine as correntes I_{R1} e I_{R2} .

Figura 26: Circuitos com diodos em paralelo. Fonte: Boylestad (2013)

Exemplo 7: Determine as correntes I_1 , I_2 e I_{D2} . Considere o modelo simplificado.

Figura 27: Circuitos com diodos em paralelo. Fonte: Boylestad (2013)

Exemplo 8: Determine o valor máximo e mínimo da tensão V_o considerando que a tensão de entrada E pode variar entre $\pm 5\,\mathrm{V}$.

Figura 28: Circuitos com diodos em paralelo. Fonte: Boylestad (2013)

Exemplo 9: Determine as correntes I_{D1} e I_{D2} . Considere o modelo simplificado.

Figura 29: Circuitos com diodos em paralelo. Fonte: Boylestad (2013)