

Elizabeth City State University Nurturing ECSU Research Talent (N.E.R.T.) 2002-2003 Annual Report

Funding Information N00014-98-1-0749 N00014-99-1-0990

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

Dr. Linda Hayden, Principal Investigator Box 672 ECSU Elizabeth City, NC 27909 (252) 335-3696 voice (252) 335-3790 fax lhayden@umfort.cs.ecsu.edu http://nia.ecsu.edu/onr/onr.html

20030710 039

NEPORT DOC	OMB No. 0704-0188		
Public reporting burden for this collection of information gathering and maintaining the data needed and complete of information, including suggestions for reducing the busties 1204, Arlington, VA 22202-4302 and to the Office	rden to Washington Headquarters Service	secon. Send comments regard	Operations and Browns 1995 the aspect of the collection
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE A	ND DATES COVERED
	June 25, 2003	Performance	e (Technical)
4. TITLE AND SUBTITLE OF REPORT			5. FUNDING NUMBERS
Nurturing ECSU Researc	h Talent Technica	1 Report	NOOO14-98-1-0749
6. AUTHOR(S)			
Dr. Linda Hayden	A		
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT
Elizabeth City State 1704 Weeksville Road,	University Box 672		NUMBER:
Elizabeth City, NC 27	909	10 10	
9. SPONSORING/MONITORING AGENCY NA	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER:
. Office Of Naval Res	search		NEFORT NOMBER:
11. SUPPLEMENTARY NOTES:			
		•	
2a. DISTRIBUTION AVAILABILITY STATEM	IENT		12b. DISTRIBUTION CODE
unlimited			
3. ABSTRACT (Maximum 200 words)			
Report contains 2002 activities.	- 2003 research a	bstracts and	highlights of training
en e			
		:	
ş,	\$ 5	1	

14. SUBJECT TERMS

20. LIMITATION OF ABSTRACT

15. NUMBER OF PAGES:

16. PRICE CODE

Nurturing ECSU Research Talent Elizabeth City State University

This program, entitled "Nurturing ECSU Research Talent" focuses on undergraduate education and undergraduate research experiences. Nurturing these young researchers is a primary concern. Highest priority is given to providing them with the guidance and skills to insure their entrance and success in graduate school. Further, each student learns the fundamentals of scientific research, in a team setting, under the guidance of a faculty mentor. Program activities are as follows:

1. Student development activities

- a) Recruitment of high ability minority students;
- b) Providing a precollege/summer experience for recruited students;
- c) Providing research experiences;
- d) Providing a mentor, graduate school counseling and GRE preparation;
- e) Providing funds for student travel.
- f) Providing financial support for students in the form of research scholarships;

2. Infrastructure activities

- a) Enhancement of current computer graphics and operating systems courses;
- b) Development of a new course in computer visualization;
- c) Establishing a visiting lecture series in computer science;
- d) Providing UNIX network management support;
- e) Acquisition of computer equipment appropriate to support of research training.

Ninety-seven students have participated in the Nurturing ECSU Research Talent Program. Of those 97 students, 13 are current students, 23 did not complete the program, 61 graduated and 45 entered graduate school. The percent of graduates going on to graduate school is 74%. The program has provided student travel funds, support for faculty research, and over one million dollars in scholarships.

In addition to producing students who go on to graduate studies in mathematics and science, the ONR Nurturing ECSU Research Talent Program has made tremendous impact on the research capability and collaborations in Northeastern North Carolina. ONR NERT Funds have been leveraged with support from NOAA, NASA, NC Fisheries and other State resources to develop the Center of Excellence in Remote Sensing Education and Research (CERSER). CERSER provides support facilities and training resources for ECSU faculty and students who are involved in DoD, NASA and NOAA research and projects. Within the CERSER remote sensing laboratory, faculty and students work to develop innovative and relevant research collaborations focused on coastal, ocean, wetlands, and space research. Both the CERSER Remote Sensing Laboratory and the CERSER Research Vessel are used in support of both research and training activities. Some of the research and training project are listed below.

Research Project Title	Principal Investigators	Funding
Coastal Ocean Observations: AVHRR SST Data Correlated with the Presence of Sea Turtles	Dr. L. Hayden	ONR
Conservation and Biology of Protected Species Using Remote Sensing Capabilities at ECSU	Dr. L. Hayden and Dr. W. Porter	NOAA
The CoastWatch Data Validation Study	Dr. L. Hayden and Dr. C. Sun	NOAA
Undergraduate Research Experience in Ocean, Marine & Space Science	Dr. L. Hayden	ONR
You Be The Scientist With Satellite Imagery	Dr. L. Hayden	NASA
Mathematics of The Great Dismal Swamp	Dr. L. Hayden	NASA
A Geographic Study of Marine Life in the Local Waters in Northeast North Carolina	Dr. W. Porter	ONR
Crystal Growth in a Microgravity Environment	Dr. H. Banerice	NASA
ARCVEW/GIS Software as a Tool for Evaluating Coastal Populations	Dr. William Porter	ONR
Remote Sensing Classification and Time Change Analysis of the Wetlands of the Albemarle Sound	Dr. F. San Juan	NOAA
Water Quality and Biological Monitoring of Northern Albemarie Sound	Dr. K. M. Fischer	SeaGrant
Pasquotank Water Quality Project	Dr. M. Powers	Dept of Ed
Seasonal Changes in Phytoplankton Concentration in the Albemarle Sound Using the Sea WE'S Smallite Images	Dr. F. San Juan	NOAA
Network Resources and Training Site	Dr. L. Hayden	NASA
Center of Excellence in Remote Sensing Education and Research	Dr. L. Hayden	ONRANASA

ONR Funding Information

1993 STATISTICS

1002				ENTERING GRAD
Major CHEMISTRY COMPUTER SCI MATHEMATICS PHYSICS TOTALS	ALL ECSU STUDENTS FR SO JR SR NA 5 7 4 NA 48 30 18 NA 9 19 11 NA 0 0 3 NA 62 46 36	ONR STUDENTS FR SO JR SR NA 3 0 1 NA 4 6 9* NA 4 1 2 NA 0 0 0 NA 11 7 12	GRADUATES ALL ONR 0 0 15 3 8 1 0 0 23 4	SCHOOL ALL ONR 0 0 3 2 0 0 0 0 3 2

1994 STATISTICS

1994	* 3	,		ENTERING GRAD
	ALL ECSU STUDENTS	ONR STUDENTS	GRADUATES	SCHOOL
<u>Major</u>	FR SO JR SR	FR SO JR SR	ALL ONR	ALL ONR
CHEMISTRY	NA 8 3 9	NA 1 0 1	2 0	0 0
COMPUTER SCI	NA 51 20 3	NA 0 1 5	11 5	5 5
MATHEMATICS	NA 12 11 19	NA 0 1 4	6 0	1 0
PHYSICS	NA 6 0 6	NA 3 0 0	L O	l 1 0
TOTALS	NA 77 34 37	NA 4 2 10	20 5	6 5

1995 STATISTICS

1995	Ī	·											T	ENTER		RAD	
. "	ı	ALL	ECSU	STUD	ENTS		ON	R STU	IDEN			DUATES		SCH			`
Major	1	FR	SO	JR_	SR		FR.	SO	JR	SR	ALL	ONR	}.	ALL	ONR		}
CHEMISTRY		4	3	9	6		0	0	0	0	3	0	1	2	, 0		ĺ
COMPUTER SCI		42	28	21	31		5	1	6	5 *	22	7	- 1	4	4	٠. '	ĺ
MATHEMATICS		11	16	25	12		4	.0	0	0	18	0	. J	0	0		1
PHYSICS	Ì	0	o	7	0		0	0	2	0	0	0	-	0	0		
TOTALS		57	47	62	49	1 1	9	_1_	8	5	33	7		6	4		

1996 STATISTICS

1996	İ			'ENTERING GRAD
3	ALL ECSU STUDENTS	ONR STUDENTS	GRADUATES	SCHOOL
Major	FR SO JR SR	FR SO JR SR	ALL ONR	ALL ONR
CHEMISTRY	NA 5 3 3	NA 0 0 0	4 0	0 0
COMPUTER SCL	NA 39 29 25	NA 4 -1 3	18 4	3 3
MATHEMATICS	NA 5 13 18	NA 1 2 2	1 23 1	1 1
PHYSICS	NA 1 0 1	NA 0 0 0	1 0]. 0 0
TOTALS	NA 50 45 47	NA 5 3 5	36 5	4 4

1997 STATISTICS

1997	ALL ECSU STUDENTS	ONR STUDENTS	GRADUATES	ENTERING GRAD SCHOOL
Major	FR SO IR SR	FR SO JR SR	ALL ONR	ALL ONR
CHEMISTRY	3 3 6 4	0 0 0 0	4 2	2 0
COMPUTER SCI	63 30 39 29	5 2 3 5	29 4	4 4
I MATHEMATICS	5 7 10 15	0 1 2 3	14 0	0 0
PHYSICS	深刻。 1 1 3/2 1 3/2 1 2	0 0 1 0	0	0 0
TOTALS	72 41 56 51	5 3 6 8	48 6	6 4

1998 STATISTICS

1998	ALL ECSU STUDENTS	ONR STUDENTS	GRADUATES SCHOOL
Major CHEMISTRY	FR SO JR SR	FR SO JR SR	ALL ONR 3 0 0 0
COMPUTER SCI	56 35 34 33 7 5 7 1	6 4 3 4	15 4 3 3
MATHEMATICS PHYSICS TOTALS	1 0 1 1 65 43 48 48	0 0 0 2	1 1 1 1 1 25 6 5 5

1999 STATISTICS

1999				ENTERING GRAD
1	ALL ECSU STUDENTS	ONR STUDENTS	GRADUATES	SCHOOL
Major	FR SO JR SR	FR SO JR SR	ALL ONR	ALL_ONR
CHEMISTRY	0 2 2 7	0.000.	4 0	[
COMPUTER SCI	66 47 28 39	6 4 4 5	12 5	5 5
MATHEMATICS	2 5 6 21	0 0 1 1	4 2	2 1
PHYSICS	3 * 0 0 0 · ·	1 0 0 0	0 . 0	0 0
TCTALS	71 54 36 67	7 4 5 6	20 7	8 6

2000 STATISTICS

2000	ALL	ecsu	STUDI	ENTS	ONE	STU	DENTS		GRA	DUATE	S		ERIN HOO	G GRA	D	
Major	FR	SO	JR.	SR	FR_	SO	JR S	8	ALL	ONR		ALI	_01	XR		i
CHEMISTRY	1	1	1	7	0	0	0 (}	3	0	-		0)	F 1	ĺ
COMPUTER SCI	7.1	43	41	37	7	5	3 2		28	2			2 2		٠.	į
MATHEMATICS	17	3	2	11	3	0	0	1 - 7	7	l			3: 1			I
PHYSICS	1	3	0	0	0	2	0 1		3	- 10 N				}		i
TOTALS	89	50	44	55	- 10	7	3 3	4	38	3			5 3	}		1

2901 STATISTICS

2901	ALLE	CSU STUDENTS	ONR STU	DENTS GR	ADUATES	ENTERING GRAD SCHOOL	
Major	FR	SO IR SR	FR SO	IR SR AL	LONR	ALL_ONR	į
CHEMISTRY COMPUTER S	3 34 34 34	1 2 3 50 41 25	2 4	3 2 25	2	2 2	- 1
MATHEMATIC		8 3 4	0 3	1 0 14	0	0 0	
PHYSICS	1 45	60 48 32	4 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2 2	i

NOTE:

Five ONR program students (all CS majors) delayed their entrance into graduate school by one year or more. They are not included in the annual statistics. Information on non-ONR students who delayed entrance into graduate school is not available.

Total Number of ECSU STEM Students vs. ONR Students Going on to Graduate School

By Year	Number ECSU students Going On to Graduate School	Number of ONR Students Going On to Graduate Scho
1993-94		2
1994-95	.	5
1995-96	6	4
1996-97	The Control of the Co	4
1997-98	6	4
1998-99	14 (vi) 1 (5) (1) (1) (1)	5
1999-00	8	
2000-01	6	3
2001-02		2
2002-03	5	5
Total # Students	51	40
Delayed Grad School Admits	unknown	5
% of ONR Students 0.7843	% Non-ONR students 0.2157	

NOTE: ONR students made up 78.43% of the SMET students going on to graduate school from ECSU 1993-2003

Five ECSU Students delayed graduate school admission by at least one year.

Data on delayed admission for non-ONR students is not available

ONR Nurturing ECSU Research Talent Program

Dr. Linda B. Hayden Principal Investigator Mathematics and CS Dept Box 672 ECSU 1704 Weeksville Rd. Elizabeth City, NC 27909

(252) 335-3696 voice (252) 335-3790 fax

ONR Funding Information N00014-94-1-1089 N00014-11-0529 N00014-01-1-1070 N00014-94-1-0948

N00014-99-1-0990 N00014-97-1-0650

NERTS

Nurturing ECSU Research Talent

ONR - Nurturing ECSU Research Talent Program focuses on increasing the number of minority students pursuing careers in science, mathematics or engineering through:

- Undergraduate Research Experience
- Graduate School Preparation
- Contact with outside Scientist and Researchers
- Academic Year Research Training and Mentoring by Faculty Mentors
- + Travel to Appropriate Undergraduate Research Forums

NERTS

Nurturing ECSU Research Talent

The Office of Naval Research-Nurturing ECSU Research Talent program involves undergraduate SMET majors in academic year team research academic year team research

- Mestings began in early September and are held every Tuesday and Thursday, 5-6 P
- Meetings start with a 20-30 minute announcement period during which time students learn about internehip opportunities, hear program announcements, give isom reports discuss travel logistics and goals of the program.
- Students then meet with faculty mentors or attend training on tools used for research
- Students spend 20 hours/week in the undergraduate research computer laboratory completing task sheet requirements and research assignments.
- researchers from government and industry.
- An internship Roundtable is held each fall featuring reports on student summ research experiences.
- The closing program is held on two nights in early April.
- During the closing program, students make oral presentations of their research training activities.
- All research teams are also required to complete written reports and to maintain a team.

2002-2003 Academic Year Activities

- Posters on the Hill
- Final Reports
- Expanding Opportunities Conference
- . Dr. J. Earls, Excellence Without Excuses
- Black Creativity 2003
- FOCUS 2003 Atlanta, Georgia
- + 2002 Internship Round Table
- + Visiting Lecture Dr. William Mackey
- NRTS Awards Banquet
- . SOARS 2002
- Summer 2002 Internships
- National Technical Association 2002

2002-2003 Academic Year Research Teams

- Globe
 Environmental Data Collection
 http://de.easu.act/com/02-03/research/globe/index.fetm
- Multimedia
 Construction of the CERSER.ECSU.EDU website
 http://dx.ecsu.edu/or/02-03/nesershmultimedia/index.html
- Networking Implementing local and global site polices for the UMFORT and Cerser networks
- Remote Sensing
 Processing and Decryption of HRPT and SeaWifs Data
 HRPT and SeaWifs Data
 HRPT and SeaWifs Data
 HRPT and SeaWifs Data
- Unix Software Tools For Signal Processing Support

Graduate Schools Attended by ONR Alumni

- 1 Old Dominion University
- 1 American University
- 1 California State University
- 1 City University of New York
- 4 East Carolina University
- 1 Fayetteville State University
- 14 Hampton University
- 7 Howard University
- 2 John Hopkins University
- 8 North Carolina A & T State University
- 3 North Carolina State University
- 2 Norfolk State University
- 2 Old Dominion University
- 1 Ohio State University
- 1 University of Maryland College Park

URE OMS

The objective of the Undergraduate Research Experience in Ocean and Marine Science (URE OMS) program is to promote the professional development for minority undergraduate students through their participation in ocean and marine science research.

The program consists of at least ten undergraduate students. Each student is assigned to a specific research team, where he/she works closely with a scientist of faculty mentor. In addition, seminars, distinguished lectures, and social functions are organized to facilitate interaction. The project is conducted for eight weeks each summer, with online mentoring and follow-up during the academic

URE OMS 2003 Research Teams

- Bottlenose Dolphin Occurrence and Activity on the VA/NC Coastline and its relation to Sea Surface Temperature Mentor: Mr. Kevin Foss
- Science, Settlement, and Remote Sensing; locating the Remains of the "Lost Colony" ntor: Dr. Dwayne Williams & Mr. Fred Willard
- Correlation of CoastWatch AVHRR SST data with the Presence of Whales off the Eastern Coast Memtors: Dr. Mohamed Mohamed & Dr. Kevin Chu
- Fish Stock Assessment/NOAA/Jackson State University Mentor: Dr. Paulinus Chigibu (oponsored by NOAA and OMFI)

For More Information on the ONR Nurturing ECSU Research Talent Program:

http://nia.ecsu.edu/onr/onr.html

Satellite Imagery April 8, 2003

Mrs. Sharon Brown
CERSER Lab/Program Manager
Dixon Hall, Elizabeth City State University
252-335-3992
sbrown@umfort.cs.ecsn.edu
Ms. Keisha Harrison

Karitsa Williams http://nia.ecsu.edu/sp/0203/karitsa2002/index.htm

klh64@hotmail.com

Anthony Anderson http://nia.ecsu.edu/sp/0203/aanderson2002/index.htm

Willie Brown, Jr. http://nia.ecsu.edu/sp/0203/wbrown2002/index.htm

Eric Jones, Jr.) http://nia.ecsu.edu/sp/0203/eiones2003/index.htm

Team Page http://www.nia.ecsu.edu

Abstract

The remote sensing field has seen an increase in the availability of data. There has been an increase in the satellites that have been launched and those scheduled to launch. With the increased availability of data and advancements, satellites data providers are able to supply researches with the data needed to conduct new and innovative projects.

Sea Space, based in California, has designed TeraScan, a system for reception and processing of satellite data. During July 2002 a TeraScan system was installed on the campus, of Elizabeth City State University. Its capabilities include receiving and processing HRPT and SWCRPT data from polar-orbiting satellites NOAA and Orbview-

The Remote Sensing Research Team for 2003 learned how to process HRPT data from the NOAA satellites and decrypt and process SeaWiFS data from the Orbview-2 satellite. The team also learned how to process the data for sea surface temperature. This project will lay the foundation for future projects by providing the necessary experience and training with the TeraScan data and software.

Review of Literature

Sea Surface Temperature Observations from Satellite-Training Module 8 http://henry.pha.ihu.edu/ssip/asat_int/ocean.html

By using satellites to observe the oceans we can study the characteristic of the oceans, and we can also look at large areas of the ocean so they can be studied and monitored at a better time scale. SST is a very useful data set that is in relation to remote sensing. SST can be used in many ways to help scientist observe ocean circulation and locate major ocean currents. SST can also help scientists observe changes in ocean temperatures, detections of the formation of sea ice, and lastly it can be used to help locate living resources that are associated with specific thermal features in the oceans (1).

Oceans are important because they take part in the heat exchange system. Oceans that are located near the equator absorb heat from the sun, which makes the warm ocean currents flow to the poles. This is called ocean circulation and it is driven by the wind. In the Northern Hemisphere the flow of the current is clockwise, while in the Southern Hemisphere the flow is counterclockwise. These circulation patterns are known as gyres (Hemisphere the flow is counterclockwise. These circulation patterns are known as gyres

The article goes on to talk about oceanfronts, which are boundaries between water masses of a different density. There are two types of fronts: thermal (temperature) fronts and haline (salinity) fronts. Both of these fronts exist in the ocean. The differences between these two are that the thermal front is a zone with a horizontal temperature gradient, while a haline front has a horizontal salinity gradient. Oceanfronts can spread over large volumes of ocean water. Using satellites, you can detect ocean thermal fronts in the

surface layers of the ocean. Because of the difference in temperature image enhancement techniques are used to highlight the ranges of temperature of the ocean surface.

With satellite images, everything you see is not true because satellites are five hundred miles up into space and they move at speeds of 20,000 mph. The image may not be exactly in the right spot because of the speed of satellites. In order for one to know if the image is correct, one must first look at the image very carefully. Sometimes the alignment of the lines may be wrong, but as mentioned earlier, if one looks closely at the image coastlines, clouds, ocean, or land may come into view.

Deep red area in the images represent hot temperatures and the land area, the clouds are usually bluish-purple, and the oceans tend to be green and yellow. The colors may clange for other sea surface temperature images. Because the satellites are so high up in space they cannot see through the clouds, but they see the temperature of the cloud and not the earth below it. Clouds are so high into the sky that their temperature is cooler than the beneath them (10). So by knowing this one can look at images and see the areas where the clouds are located.

Remote Sensing for Public Health-" Surveillance and Response"

This article by Nancy G. Maynard discusses the rise of environment-related public health problems over recent years and the steps that are being taken to better monitor areas where these problems begin and where they reside. Remote sensing is now playing a major part in the monitoring of these problems. A few examples include how the use of near-real-time climate data and satellite imagery will assist NASA scientists to better track climate patterns associated with these disease outbreaks. This technology is currently being used to monitor fift Valley fever in Africa (8). In Baltimore, scientists are using remote sensing technology to study the rapidly increasing cases of asthma in Baltimore, MD. The data is integrated using what is known as geographic information systems of GIS to determine possible relationships to the occurrence of asthma.

Most remotely sensed data used in public health studies has been acquired by such passive remote sensing systems NASA's Land stat Multispectral Scanner (MSS), Thematic Mapper ^{1M}, and NOAA's Advanced Very High Resolution Radiometer (AVFIRR). Remote sensing is used to study other environmental factors important to health issues such as air and water quality, thermal extreme, ultraviolet radiation, and oceanic harmful algal blooms (8).

A Change in the Weather- "How NASA is Leading a Revolution in Weather Measurements".

This article written by Stephen P. Sanford and William L. Smith discusses the effects that weather has on almost every aspect of our lives. It first explained the importance of being able to accurately predict day- to-day weather conditions and patterns to enable us to adjust our daily activities accordingly (9). Weather affects all types of business from commercial transportation to power plants and this article explains why.

The article then tells the reader about the properties of weather. The study of weather, known as meteorology, involves the study of the relationship between atmospheric temperature, pressure and humidity. It discusses the various devices used to study these properties such as ground stations, radars, balloons, and national satellite systems, both in low Earth orbit and geostationary orbit around 36,000 kilometers above Earth. Funding for these come from various organizations such as the National Oceanic and Atmospheric Administration or NOAA and of course NASA (9).

The New Millennium Program or NMP is a recent NASA program that is designed to prove new component and system technologies. The primary instrument to be used is known as GIFTS or Geostationary Imaging Fourier Transform Spectrometer. This technology will provide unprecedented accuracy in the study of weather. However this technology is not projected to be fully operational until 2012.

Introduction

This TerraScan 3.0 system was a system designed by Sea Space for the reception and processing of HRPT and SWCRPT data provided by the use of NOAA and Orbview-2 satellites. It is an integrated system of hardware and software that can also receive automated data from meteorological and environmental satellites for displaying and manipulating data, archiving and process of data, creating or modifying images, or dispersing products according to user specifications (11).

The 2002-2003 satellite imagery research team processed HRPT and SeaWiFS data and also learned how to copy files from a file server to a local machine using a LINIX computer, and how to create a new shelf and how to add data to that shelf so that we could look at the images that we processed.

HRPT and SeaWiFS are the two types of data that we processed and decrypted during our research using the TeraScan system. High Resolution Picture Transmission is recognized as HRPT and is a system that receives data from different satellities and spacecraft instrument. It also produces different images resolution from different digital signals (7). This signal allows satellites to transmit different signals in special receiver to be decoded, to produce images. Mational Oceanic and Atmospheric Administration (NOAA and Sea Star) digital signal are usually producing about 1.7GHz at a resolution of 1.1 km per pixel (6). The 1.1 km resolution provides different spectral through visible bands and infrared bands. These bands can include about two visible bands and three infrared, which can be mixed together to provide color to images for detail. To be successful in receiving images through HRPT you are required to have the proper equipment. A satellite dish is needed so that you can receive data from images in space, a HRPT Receiver, and Universal Serial Bus Port. The satellite dish is connected to the preamplifier that is used to feed power to the cable from the receiver. The computer channel section from the satellites controls this receiver. Then the data is transmitted the images from the satellite using the Universal Serial Bus (USB) port will show (6).

The other data type is SeaWiFS and it is a color-sensitive optical sensor used to observe color variations in the Earth's oceans. SeaWiFS is used to provide uninterrupted data on the bio-optical properties of the oceans (2). The SeaWiFS project is NASA's first group effort to obtain both scientific and commercial data from the same satellite. SeaWiFS' is mainly used for the sensing of color variations in the Earth's oceans. The color variations are display phytoplankton, reminding sediments, and the presence of dissolved organic material. Phytoplankton is single-celled ocean plants that contain chlorophyll for photosynthesis (Sea-viewing Wide Field of view Sensor) (4). Chlorophyll stands out from the blue ocean water, as a result SeaWiFS can observe the phytoplankton concentrations of the ocean. SeaWiFS are essential to scientist when determining contributions of phytoplankton to aid the reduction of, showing pollutants, harmful bacteria. Commercial fishermen use the results to help locate large populations of fish

SST or sea surface temperature is the last method or procedure that we researched on how it is calculated. We used a function called nitpix, which uses a lookup table in TeraScan for each of the satellites (11). Several lookup methods can be used, but the most commonly used method is what we used and it is called the multi-channel method.

The procedures and methods on how to calculate SST as well as creating data shelves to process the HRPT and SeaWiFS images will be further discussed.

Procedures

Below are the following procedures used to process the HRPT and SEAWIFS data:

How to copy files from file server to local machine

In this step it will allow you to copy files from the server to local machine. This will also allow you to obtain images from the main server.

- 1. Log on as xtuser
- 2. Open 2 file managers
- 3. In one file manager go to directory /usr2/DATA/whole_pass/hrpt.
- 4. In the second file manager go to /seaspace
- Select file you want from the file server, copy it and paste to the file manager in step #3.

Creating a New Shelf

- Open TeraVision
- Select Open Data Shelf from the File menu.

The Data Library dialog box will appear.

- 3. Click on the Edit Data Library button.
- The Data Library Editor dialog box will appear. See Notes for an illustration of this dialog box and a description of some of its controls.
- 4. Click on the Private button (if not already selected), and then click on New on the left side of the dialog box to create a new private shelf, available only to the current user.
- The Choose Shelf Location dialog box will appear.
- In the Directory text field, type /usr2/DATA/whole_pass/hrpt. Then press the return key. (See the NOTES for an alternate method for specifying the shelf neth.)
- 5. Click on the Accept button.
- The Shelf Name prompt box will appear, prompting you to type a name for the new shelf.
- In the text field of the prompt box, type "shelf name" for the shelf you are creating.
- You can use the letters, numbers, and spaces, as well as hyphens and dashes for a shelf name.
- . Click on the Accept button to add the new shelf to the library.
- The dialog box will close and you will be returned to the Data Library Editor.
- The name of the new shelf will be included in the Shelves list.
- Continue with this exercise to add data types to the new shelf.

Adding a Data Type to the Shelf

In this portion of the task, you will organize the data on the new shelf into data types. This will allow you to add images to the data, in addition to customizing your data shelf to focus on certain images.

 In the Data Library Editor, select the shelf for which you want to create data types (if it is not already selected) and then click on New on the right side of the dialog box.

- To name the data type: Type awhrr in the Data Type Name text field on the left side of the dialog box.
- In the Comment text field, enter an optional description for the data type that will be displayed in the Data Library dialog box when you select a data type.
- f. To select the datasets to be included in the data type: Leave the Files text field as is.

The * is a special wildcard character. It matches 0 or more characters. An asterisk with no other characters will display all datasets in the directory pointed to by the shelf.

- 5. To display all the variables for the selected datasets: Click on Show All.
- Click on Accept to add this data type to the shelf and return to the Data Library Editor.

The awhrr data type will be listed in the Data Library Editor dialog box.

You can now add more data types if you want

 When you are done adding data types, click on the Done button of the Data Library Editor. This dialog box will close and you will return to the Data Library dialog box.

- Select your shelf you just created from the Library Shelf options drawer.
- Select one or more datasets from the awarr data type to load them in to the TeraVision window.
- 10. Look at the image(s).

Picture 1 is an example of the TeraVision procedure. Image 2 is a raw image in a data shelf. Image 3 is an example of an image with contour lines in data shelf.

RETREIVING/DECRYPTING SEAWIFS

Seawifs data is a broadcast as sworpt, which is the encrypted version of seawifs. ECSU has an authorized delayed-mode seawifs license which can decrypt the data two weeks or more after the data is required. Below are the following steps for retrieving the scawifs data from tape and processing hem into a whole pass image.

- Use TeraCapCon to look at cataloged data. Find the pass number and the tape label for the pass that you are interested in decrypting.
- Look at the satellite schedule and make sure that you won't be using the tape
 drive right after one of these passes finishes. If you are using the drive when the
 system tries to automatically archive, you will experience problems.
- Eject the tape currently in the drive by pressing the eject button on the drive.
 Never push the eject button when the light on the drive is flashing. Then put the tape with the data that you are interested in into the tape drive.
- [xtuser@Elizabeth xtuser2]\$ archive operation : char(9)? rewind dev_name : char(25)? [/dev/st0]

noaa-16 hrpt 2002/07/16 19:00:45 0 4464 noaa-15 hrpt 2002/07/15 13:06:14 0 4149 orbview-2 swcrpt 2002/07/16 18:30:05 0 pass satel telem date time orbit scans label [xtuser@Elizabeth xtuser2]\$ archive dev_name : char(255) ? [/dev/st0] catalog pass : char(3)? [no] : char(3) ? [no] operation : char(9) ? list printout

4 TEST_001 9 TEST_001 3006 TEST_001

TEST 001 noas-12 hrpt 2002/07/16 20:47:55 0 4198

[xtuser@Elizabeth xtuser2]\$ archive operation : char(9)? rewind ø.

: char(255) ? [/dev/st0] dev_name

: char(255) ? [/dev/st0] operation : char(9)? posit dev name

[xtuser@Elizabeth xtuser2]\$ archive

pass satel telem date time orbit scans label ? [1] 3 position

orbview-2 swcrpt 2002/07/16 18:30:05 0 3006 TEST_001

[xtuser@Elizabeth xtuser2]\$ archive

dev_name : char(255) ? [/dev/st0] operation : char(9)? restore

? 15 (NOTE: This is the pass on the passdisk that you will pass number :int write to.)

(NOTE: Collect all data before going to step 9. Make sure you rewind tape each ime. Rewind and swap tape before proceeding to step 9.

[xtuser @Elizabth ogp]\$ ogpdecrypt /usr2/raw/PASS15 /usr2/raw/PASS15 (NOTE: PASS## uses the ## from step 8.)

NOTE: This is the directory that you will put the processed image into.) 10. [xtuser@Elizabeth ogp]\$ cd /usr2/xtuser2/seawifs

11. [xtuser@Elizabth xtuser2]\$ seawifsin output file(s): char(255)? [.]

: char(7)? [swhrpt] format

: int (16)? [2] 15 (NOTE :Same pass# as from step8.) on_pass_disk : char(3)? [yes] pass number

: int (8) ? [12345678] channels

: char(3) ? [yes] fix missing

: char(3)? [no] : char(3) ? [yes] yte output calibrate

lelta_sample delta line

Initials sensor tilt found to be +20 (AFT), satellite pitch set to -20. Sensor tilt value changed from AFT to MOVING at line 3039. pass participation 15: orbview-2 2002/02/16 18:30: 05.498 ./02.02197.1830: Actual size is 3141 lines by 1285 samples Sensor tilt value changed MOVING to AFT at line 3040. /o2.02197.1830: Missing lines 2923 – 3014 ./02.02197.1830: Missing lines 2915 - 2918 ./02.02197.1830: Missing lines3040 - 3139 ./02.02197.1830: Missing lines 41- 41 ./02.02197.1830: Missing lines 58- 58 ./02,02197.1830; Missing lines 21-21 : char(15)? [00:00:00] 7 [1285] 7 [6000] (NOTE: Write down file name.) ./02.02197.1830: Missing lines /o2.02197.1830: Creating ... ij Ħ Ħ num samples start sample use master num lines start time

command relating to the type output image. As a team we have work exclusively with sea picture to be manipulated in Tera Vision afterwards (11). Below is an example of how the images that are going to be process, so they are copied to a folder on the local machines Processing HRPT data requires a stable operating system, as a result UNIX is primarily used to process HRPT make the data available for users. The user must first choose the Move decrypted pass from current location to: /usr2/DATA/whole_pass/swhrpt hard drive Within Linux, open a console to process a particular image followed by the surface temperature (SST). The function "nitpix" is used to convert the image to .sst (NOTE: See step # 10 file can be decrypted in: /usr2/xtuser2/seawifs or (NOTE: This is how to pull up files in Tera Vision) /usr2/DATA/whole_pass/swhrpt) function will be expressed.

? TeraScan-image.avhrr TeraScan-image.sst Nitpix.coef: Looking for coefficients for mc noan-14 day 01 10 char (255) char (2) 펺 뎔 <u>real</u> 뎚 5 Ch3 minus ch4 Min sun reflect Min_ch4_temp Cos sat zen in/out files Sst method Base temp Temp_step Ch4 delta Ch2_delta Ch2 max

Nitpix.coef: mc nosa-14 D 1.321321 2.242342 0.983729 0.000000 -0.093482

Characters that are in bold are required to enhance the image. TeraVision can be run when the command launch pad is typed in the same console. In the data shelf editor select from which you want to create a data type, then click "new" on the right side of the dialog box. The application will ask for a name that will be used to represent the data type. In the data library editor select the data type, by clicking accept the data set will be added. Upon completion when done is clicked you will return to the data library editor and select the correct image. The image appears on the screen to be analyzed. Below is a sea surface temperature image:

Photo Appendix

Below is a HRPT image that were processed from NOAA satellites:

Conclusions

The TeraScan 3.0 system helped the Satellite Imagery team to copy the files needed to create data shelves so that HRPT and SeaWiFS data could be processed successfully. This allowed us to look at the raw images that were processed or received by the TeraScan system and manipulate them so that we could clearly view the images and be able to point out North Eastern North Carolina and the Hampton Roads area? boundaries. We also gained a lot of knowledge on how to use the LINIX machine so that our images could be brought up for viewing.

Future Research

The Remote Sensing team will follow up our research with an extensive look at NDVI. Normalized Difference Vegetation Index is used to show fluctuation patterns and vegetation degradation. This data is essential to farmers because the images reveal plant growth within a given area.

Acknowledgements

We would like to give our sincerest thanks to out mentor Mrs. Sharon Brown and her assistant Ms. Keisha Harris and also the principal investigator Dr. Linda Hayden.

References

- Conway, Eric D.1997. Training Module 8: Sea Surface Temperature Observations from Satellite. John Hopkins University Press. Baltimore.http://henry.pha.jhu.edu/ssip/asat_int/ocean.html
- [2] Courtney, Dave.SeaWiFS.

http://www.ae.utexas.edu/courses/ase389/midterm/courtney/seawifs.html#back

- Enterprises, Grove. Shortwave Magazine: PW Publishing Ltd. Radio today: RSGB.
 Publications Monitoring Times", http://www.time-step.com/HRPT/HRPT.html
- [4] Feldman, Gene C. An Overview of SeaWiFS and the Sea star Spacecraft. http://seawifs.gsfc.nasa.gov/SEAWIFS/SEASTAR/SPACECRAFT.html
- [5] Jettsen, John R. 2000. Remote Sensing of the Environment An Earth Resource Perspective.
- Jump, Mike. Remote Imaging in West Sussex. http://www.weathersatellite.info/hrpt.html

- Satellite, Data, and Information Service National Climatic Data Center Climate Kidwell, B., Katherine and Polar R., Daniel "U.S. Department of Commerce National Oceanic and Atmospheric Administration National Environmental http://www2.ncdc.noaa.gov/docs/klm/htm1/c4/sec4-1.htm. Services Division Satellite Services Branch". Ε
- Maynard, Nancy G. 2002. Remote Sensing for Public Health. <u>@</u>
- Sanford, Stephen P, and Smith, William. 2002. A Change in the Weather- How NASA is Leading a Revolution in Weather Measurements. <u>@</u>
- The coolroom org. 2002. How to Read Sea Surface Temperature Images.
- TeraScan Software Training Guide. 2001. Sea Space Corporation. http://192.150.113.168/home_basic/polarsata_sensors_tables.html

1502 Emerald Lake Circle Apt 201 Elizabeth City, NC 27909 Sharon Brown (252)335-9157

WORK HISTORY

Project Manager, ADNET Systems, INC, Elizabeth City, NC 2002-present

Leading technical and training projects that involve the successful management of team composed of IT professionals and students. Assist in directing administrative activities, such as manpower and resource planning. Performs complex evaluations of existing procedure, techniques, models, and/or systems related to management problems that require a report and recommended solutions. Provides daily supervision and direction to staff.

1998-2002

Sr. Information Security Analyst, Total System Services, Inc. Columbus, GA
Develop, train and manage a Designated Security Officer's Program and security awareness program for
the company. Provide on-call security support for TSYS tandem authorization systems and mainframe
systems. Provide technical support on all Information Security Department's security programs and requirements to formulate a project plan. Perform analyses and issue resolutions of business and project processes. Develop and maintain several audit reviews for TSYS. Analyze business and/or technical requirements.

Assist in teaching the following courses: Introduction to Computers, Data Structures, Artificial Intelligence, Computer Communications, and Operating Systems. Trained individuals how to use the computer and the Internet, and on different types of computer software such as Microsoft Office and Graduate Teaching Assistant/Trainer; Elizabeth City State University, Elizabeth City, NC Aldus PageMaker. 1997-1998

Graduate Teaching Assistant, Hampton University, Hampton, VA Assist with grading computer programs and running a two-hour lab for Computer Science I Programming Classes. Also taught Introduction to Computers. 1995-1997

installing user accounts and maintaining the integrity of the file system. Upgrading the operating system Duties include networking and maintaining the Sun Sparc Network of computers, installing software, System Network Administrator, ONR/NSA Computer Lab, Elizabeth City State University when necessary and doing weekly system backups. 1992-1995

EDUCATION

1995- present

Hampton University, Hampton, Vinginia Masters of Science in Computer Science, GPA 3.567 Expected Graduation Date: Thesis pending

Bachelor of Science Degree in Computer Science, May 1995, GPA 3.367 Elizabeth City State University, Elizabeth City, North Carolina 1991-1995

COMPUTER SKILLS

- Computer applications include: Microsoft Office, Corel WordPerfect, HyperCard, Aldus PageMaker, Microsoft Works, Rapport, Framemaker, Authorware, Adobe PhotoDeluxe, Oracle
 - Computer systems/hardware include: Unix, NT, System 7, Macintosh (all models), NeXt, Sun Sparc

Membership, Honors and Awards

- Member of IEEE Society
- Company Power of One award for Total System Services, Inc Cum Laude Graduate from Elizabeth City State University

4029 Cedar Lane Apt. A Portemouth, VA 23703

(757) 484-6582 kgwillieme@mail.ecsu.edu

Williams Karitsa

To obtain all the necessary skills to pursue degrees leading to a master's degree in the area of computer science. **Objective**

ECSU Elizabeth City, N. C. September 2002- Present

Experience

Member of the Remote Sensing team.

Analyzed weather patterns for the summer of 2002 using the TeraScan 3.0 system.

Worked on research projects dealing with sea surface temperature.

Elizabeth City State University, Elizabeth City, N. C

2002-Present

Education

- Majoring in Computer Science with a concentration in Applied

Enrolled in NASA/ONR NERT program. Mathematics.

I. C. Norcom High School 1998-2002

Portsmouth, VA

Enrolled in Magnet program.

Graduated with honors and Cum Laude.

Technical Skills

HARDWARE: Gateway PC and Machintosh PC.

SOFTWARE: Microsoft Word, Excel, Power Point, Access, C++, Internet Explorer, TI-83 Plus calculator.

Honors & Awards

MEAMPS Summer Bridges Program Completion- June 2002

Honor Roll- Fall 2002

Office of the Naval Research Scholarship Award

-Fourth Expanding Opportunities Conference-Tallahassee, FL (FAMU) -Student Presenter -12th Arnual SOARS Conference-Raleigh, N.C;Nov. 8, 2002

Conferences

Memberships

Secretary- Freshman Class 2002-2003 ONR Research Student

Lady Viking Tennis Team

REFERENCES AVAILABLE UPON REQUEST

BROWN, WILLIE L.

School Phone: (252) 331-7135 P.O. Box 252; 301 North Garysburg, NC 27831 Home: (252) 536-4386

OBJECTIVE: It is my goal to obtain enormous experience in the field of computer science.

EDUCATION:

2002-present

Elizabeth City State University

Elizabeth, NC

Major: Computer Science

Concentration: Airway Science

NASA Program

Southeast Halifax

2001-2002

Scotland, NC

High School Diploma

Graduated with Honors

Beta Club

Member of the Senior Beta club Graduated in the top 25 Gaston, NC

1998-2001

Northampton County High School

EMPLOYMENT:

Jackson, NC

Minister of Music

1996-present

Roanoke Chapel Baptist Church

Outreach Program

Project Uplift

Summer of 2002

Jackson, NC

Tutor English Studies(Roanoke Chapel Baptist Church)

Tutor Mathematical Techniques

Academic Tutor

INTERESTS: Playing Musical Instruments, Composing music, Arranging Music, Web Page Designing, Tutoring Academically Challenged Students, Community Service Projects

REFERENCES:

Available upon request

Anthony Anderson 1042 Davis Road Elizabeth City, NC 27909

Goal:

As a computer science major, my goals and expectations very high. Everyday I strive to learn everything possible about computers; as a result I will be attending graduate school after college while applying for internships during the summer.

Education:

- 1998-2000 Northeastern High School
- 2000-2002 Pasquotank County High School
 - High School Diploma

Courses:

- Keyboarding
- Computer Application
- Business and Electronics
 Computer Engineering Technology

Hobbies:

 I enjoy music whether playing or listening. I can play three different musical instruments, to express jazz, concert, and classical music. In addition to music, I enjoy working with audio/video electronics fo cars, homes, and production studios.

Skills:

Over the past ten years I have gained a great deal of knowledge about computer software and hardware. I have experience with the most common Microsoft Windows packages which include Windows XP, 2000, 98SE, 95, and 3.11. I have used software such as, Cool Edit, Flash, Swish, Misual Basic, Microsoft Studio C++, Office 2002, Coral 6, Money 2003. I know all the internal parts of a pc and I am able to rebuild and service computers.

Conferences

- 4th Expanding Opportunities Conference (Tallahassee, Florida)

Awards

Poster Presentation at Florida A&M University

Unix System Administration

Gathering Software Tools For Signal Processing Support

UNIX Team 2002 -2003

Mentors: Mr. Benjamin James, Math and Computer Science Department, Lester Hall room 215, <u>bJames@adelphia.net</u>

Dr. Linda Hayden - Math and Computer Science Department, Lester Hall room 115, 252-335-3696, http://nia.ecsu.edu/nrts/lhayden/haydenresume.html

Team Members:

Ramatoulie Bah – http://nia.ecsu.edu/sp/0203/toah2002/home.html
Linwood Creekmore – http://nia.ecsu.edu/sp/0203/forekmore2002/home.html
Torroon Creekmore – http://nia.ecsu.edu/sp/0203/vdavis2002/frame 2002.html
Vincent Davis – http://nia.ecsu.edu/sp/0203/vdavis2002/frame 2002.html
Demertus Rorie – http://nia.ecsu.edu/sp/0203/dtorie2002/home.html
Eunice Smith – http://nia.ecsu.edu/sp/0203/ssmith2002/Ms_Smith%27s%20Web.htm

URL of Team Homepage - http://nia.ecsu.edu/onr/02-03/research/unix/frame_unix.html

Ahstrad

The Unix System Administration Team had two objectives for this research project. The Unix machines in room 115 were struck by lightning over the summer. The team with the help of Joey Gale and collaboration with the Networking Team learned about the problems and how repairs to the Unix machines were made. Two identified problems were that the motherboards were severely damage, and misconfiguration of the system

The second objective was to initiate computer and software support for the Center of Excellence for Remote Sensing Education and Research (CERSER) Project. This will be done by using Wavelets, the concept of signal processing, and other transformation methods, Artificial Intelligence, C language and Java Libraries, and Parallel Virtual Machine (PVM), to link the team's SGI workstation into.

Troubleshooting

As was stated in the abstract, during the summer of 2002, the SGFs in room 115 were down due to severe weather impact, and part of our project for the academic year 2002 2003 was to go through all the machines and determined their problems and get them working again.

Some of the possibilities we considered were reloading the operating system, and get the root password so that we can access the system administration, and play around with the commands. We also listed memory errors, bugs, and disk write errors as possible causes of the system panic. After collaborating with Joey Gale for some time, the problem which was separated into two parts: software and hardware was solved by a SGI technician responsible for the software part of it together with Joey, and the hardware part of it was solved the networking team by changing the motherboards, network cards, and finally upgrading the Operating System.

Steps in solving: Hardware part of it

- The Networking Team changed the motherboards of the machines and reloaded the Operating System. This was one big step in solving the problem
 - ii) Network Cards were faulty and new ones were put in and configured.
 iii) During the course of the configuration, the host files were incorrectly
- During the course of the configuration, the host files were incorrectly configured, but after accessing the root and changing the permissions, the machines were in good working condition.

Digital Signal Processing (sound processing capability)

What is DSP? DSP, or Digital Signal Processing, as the term suggests, is the processing signal here means an electrical signal carried by a wire or telephone line, or perhaps by a things. Historically the origins of signal processing are in electrical engineering, and a radio wave. More generally, however, a signal is a stream of information representing of signals by digital means. A signal in this context can mean a number of different anything from stock prices to data from a remote-sensing satellite.

integrated electronic circuit (IC) device called an analog-to-digital converter or ADC. This generates a digital output in the form of a binary number whose value represents the In many cases, the signal is initially in the form of an analog electrical voltage or current, produced, for example, by a microphone or some other type of transducer. An analog signal must be converted into digital (discreet) form before DSP techniques can be applied. An analog electrical voltage signal, for example, can be digitized using an electrical voltage input to the device.

signal from a transducer may well be contaminated with unwanted electrical "noise". The Processing the signal using a filter circuit can remove or at least reduce the unwanted part strongly affected by "mains pickup" due to electrical interference from the mains supply. of the signal. Increasingly nowadays the filtering of signals to improve signal quality or Signals commonly need to be processed in a variety of ways. For example, the output voltage changes due to the activity of the heart and other muscles. The signal is often electrodes attached to a patient's chest when an ECG is taken measure tiny electrical to extract important information is done by DSP techniques rather than by analog

rapidly compute their signal along a frequency spectrum. Their signal frequencies will be all taking place in real-time operations in order to determine the exact location of whales within the ocean, and hypothesize their expected routes. This will be accomplished by migrations of whales within our oceans. This information will be beneficial to the Navy, as they will be able to perform numerous combat strategies and missile tests without the destruction of our marine life. The team will simply process the output signal into sound simply monitoring the different frequencies by which whales use to communicate, and later compared to previous recorded whale frequencies to distinguish the actual signal The Unix Team will be using the DSP technology in order to record and monitor the frequencies from unwanted noise and pickup.

important application of DSP is in signal compression and decompression. In our case for example, the signal recorded on the hard drive is in a compressed form (to increase storage capacity) and must be decompressed for the recorded signal to be reproduced. computers, video recorders, CD players, hard disc drive controllers and modems. An DSP technology is currently used in such devices as mobile phones, multimedia

Although the mathematical theory underlying DSP techniques such as Fast Fourier and Hilbert Transforms, digital filter design and signal compression can be fairly complex,

Software part of it:

Ethernet problem

The main problem of concern here was manual network configuration for the Ethernet network interface, and the goals were to:

- Configure the Ethernet network interface
 - Configure network interface
 - Configure netmask address
- Configure broadcast address
 - Configure network card
- Setup network card

.

The networking team reached one of the goals which was configuring the Ethernet network, and the SGI technician did the rest After all the major problems were solved, there were some minor ones. When a user logs in to his or her account, there was no desktop due to permissions on server. This was solved by adding r-w (read and write) permissions.

Procedure for manually configuring the network interface

the netmask of the network, and IP address of default gateway of dynamic routing is not Information that were needed in order to fix the problem were availability of IP address, available on network.

- New network cards put in and configured
- Desktop unavailable in user accounts due to permissions on server (solved by adding read-write permission)
 - Host files configured incorrectly
 - IP address for umfort added

they were going to do with it, and provide them with the necessary software and filter the by using Fourier Transformers and signal processing, and what the Unix team was going The second part of the project was to process incoming data for the remote sensing team to do for them was find out what form their data was coming in (raw or digital), what data. But after talking to them, we learned that they had it all done, so we had to shift plans: support signal processing.

assigned to execute on many hosts or on a single host. Another feature of PVM is Message Passing. This feature allows tasks to communicate explicitly by sending and receiving messages through the virtual machine. Dynamic Task Group is an additional feature, it permits task to create, join or leave a group at any time. With the Fault Tolerance feature in PVM, virtual machines automatically detect faults, or when a computer is no longer computing correctly and accurately, and adjusts the virtual machine to correct the problem.

The UNIX Team's objective was to obtain the software needed to install the PVM software onto the ONR Lab's SGI workstation, which are Unix machines. In order to accomplish this goal the PVM source code, libraries, documentation, and other software were needed. The UNIX Team has collected various forms of PVIM related data and has documented its usages. We have composed a list of different websites that are related to PVM and also documented whom it will be most useful for. We have also found PVM tutorials and other documentations that will be useful to not only the Unix team, but also others wishing to learn more about PVM and the installation process.

In addition to finding the documentation we have also found the software needed to install PVM onto the Unix computers. We have downloaded the PVM source code and a PVM C++ Library to a specified ONR SGI workstation Unix computer. This software and the additional data collected will allow the UNIX Team to eventually install and execute PVM onto the Unix machines. The PVM software that has been downloaded onto the Unix machine is now accessible to anyone seeking PVM information. The Unix team members are continuing its efforts to install the PVM software and develop its SGI workstations into a parallel virtual machine.

ARTIFICIAL INTELLIGENCE (A I)

In researching signal processing and software that can support it, one topic of vast and complex history originated. The topic of artificial intelligence and what it is exactly. Artificial intelligence is "the scientific understanding of the mechanisms underlying thought and intelligent behavior and their embodiment in machines," as defined by the American Association for Artificial Intelligence (1) on their website. The intellectual roots of Al, and the concept of intelligent machines, may be found in Greek mythology. Intelligent artifacts appear in literature since then, with real (and fraudulent) mechanical devices actually demonstrated to behave with some degree of intelligence.

After modern computers became available, following World War II, it has become possible to create programs that perform difficult intellectual tasks. From these programs, general tools are constructed which have applications in a wide variety of everyday problems. The individual who is credited with creating the "modern" concept of artificial intelligence is Alan Mathison Turing. In 1924, Turing published a paper proving that mathematics would always contain statements that could neither be proven nor refuted. As part of his argument, he envisioned a machine that could compute any number. This machine, which included a control unit and a memory, could perform several basic

the numerical operations required to implement these techniques are in fact very simple, consisting mainly of operations that could be done on a cheap four-function calculator. The architecture of a DSP chip is designed to carry out such operations incredibly fast, processing up to tens of millions of samples per second, to provide real-time performance: that is, the ability to process a signal "live" as it is sampled and then output the processed signal, for example to a loudspeaker or video display.

Parallel Virtual Machine (PVM)

PVM (Parallel Virtual Machine) is a software package that allows a collection of Unix workstations or Windows computers or both to be hooked together by a network and used cooperatively for parallel computation. It is the most popular software package used to combine networked computers. Using parallel processing increases the number of operations that a computer can execute. Supercomputers are a parallel virtual machine's equivalent; both perform the same task. However, a parallel virtual machine is a series of host computers virtually linked together through communications and software and a supercomputer physically links numerous microprocessors and memory banks together to make them perform as one. If you don't have a supercomputer, you link host computers machine or make them act like a supercomputer, thereby creating a parallel virtual machine or a single computer.

Parallel virtual machines are used to increase a machine's time complexity or how fast operations are executed. PVM helps speed up data processing by using several computers to perform one task. The limiting factor or speed limit on how fast operations are executed is the speed of light in the medium used to transmit electrical signals in the computer. Electrical signals representing the data or machine instructions must move from memory to the microprocessor's registers and back. This movement requires a finite amount of time.

To increase time complexity, multiple computers are used to execute one operation. Using parallel processing helps solve large computational problems quickly by increasing the computer's time complexity or clock cycle time. In addition to helping solve large problems, parallel processing also helps decrease the amount of revenue spent on memory because PVM uses the power and memory of many computers instead of one. Sites around the world are using PVM to solve important scientific, industrial, and medical problems. However these are not the only usages of PVM, it is also used as an educational tool to teach parallel programming.

Many features in the PVM software package help increase it's effectiveness. The Resource Management feature adds or deletes hosts from a virtual machine. The PVM resource manager provides handler functions to redirect the PVM calls to different machines when a host is deleted. The smallest unit of parallelism in PVM is a task. The Process Control feature spawns or kills tasks dynamically. Multiple tasks may be

Horstmann). Yet, Java has been used to find Fast Fourier Transform, Chirp Z-Transform, and applied to many other mathematical and scientific formulas also.

sounds by whales and other marine life that may be near military operations and various Center of Excellence for Remote Sensing Education and Research (CERSER) Project. software support in image processing. The audio we are referring to might consists of We would like to aid in evaluating audio data because the CERSER project has great One of our long-term objectives is to develop computer and software support for the places that could cause them harm.

accomplished and innovative programmers are working on improving the process. When solving higher performance scientific calculations, the advanced features and libraries of the language must be used. For this reason, we researched java libraries and websites Signal processing can be analyzed and displayed using java coding. This has been that may be useful in our endeavor.

"The Colt Distribution" is the set of java libraries that we downloaded to one of the Unix machines. It consists of several source libraries for high performance scientific and computations, Gamma functions, Beta functions, and probability distributions are technical computing. The libraries included tools useful for basic and advanced mathematics, statistics and other types of computing. Intensive linear algebraic examples of problems that can be solved using the saved libraries

Here is a listing of several websites that may be useful references.

Digital Signal Processing

http://www.dsptutor.freeuk.com/

This page contains java applets which may be useful to our project and a tutorial on digital signal processing

Fourier Synthesis

http://www.nst.ing.tu-bs.de/schaukasten/fourier/en_idx.html

Contains mathematics of Fourier synthesis; contains link to java code which displays the applet on the page

avanumerics

http://math.nist.gov/javanumerics/

Information on numerical computing in Java; contains several related links

Iava Digital Signal Processing (J-DSP) editor

http://www.eas.asu.edu/-midle/idsp/idsp/idsp_iaq.html
- This website may be very useful because it is an Internet-based signal processing laboratory designed to provide students with hands-on learning

Java Programming Resources

http://www.apl.ihu.edu/~hall/java/#Free-Java-Programming-Tools

inscribed with a 0 or 1. Computation begins with the machine, in a given 'state', scanning computers. Now, the question of what a "Turing Machine" arises. A Turing machine is actions: reading, writing or erasing symbols on a tape, and advancing or rewinding the a square. It erases what it finds there, prints a 0 or 1, moves to an adjacent square, and an abstract representation of a computing device. It consists of a read/write head that scans a one-dimensional or bi-directional tape divided into squares, each of which is goes into a new state. Basically, he envisioned a Modern Computing Device, or a tape (2). This simple "Turing machine" served as the model for all later digital

Knowledge & Reasoning, Learning from Experience, Planning, Epistemology, Ontology popularity and numerous advances were made in research. This research constituted the Intelligence, Search, Pattern Recognition, Representation, Inference, Common Sense the span of years after World War II, the concept of Artificial intelligence gained distinguishing of the different types of Artificial Intelligence: Logical Artificial Heuristics, and Genetic Programming (3).

possibly planning. The logical and planning artificial intelligence branches would handle the goals of the signal-processing project and map out specific ways to accomplish those data (3). Therefore, using Artificial Intelligence would prove beneficial for a number of processing, a combination of the branches must be used. Most likely, the branches that would be used would be Logical Artificial Intelligence, Pattern Recognition, search and independently create solutions to the problem with the input of general information (3). processing, the pattern recognition would decipher the relevant data from the irrelevant reasons in a Signal Processing Project. It would not only save money but also time. Next would be the Pattern Recognition and its importance is obvious. With Signal information over a given period of time, the Artificial Intelligence Program would In the case of selecting the proper types of Artificial Intelligence to support signal goals. For example, if the goal of the Project were to attain a certain amount of

Libraries (Java)

lava is a programming language created during the 1990s whose original purpose was to The only requirement to run Java on any machine is hat the Java virtual machine is on the computer; this can be easily loaded at no cost to Today, Java is becoming popular because it is less expensive to support than program consumer devices. However, it became a flourishing way to write Internet other programming applications.

calculations. One must have a compiler on his/her machine in order to run a program in Other programming languages, such as C, C++, and Fortran are often used for scientific C, C++ and some other programming languages. "The same Java program will run, without change, on Windows, UNIX, Linux, or the Macintosh" (Big Java, Cay

IRIX Release 6.5 32 KB 32 KB Secondary Instruction-Data Cache: 1 MB Operating System: Instruction Cache: Main Memory: Data Cache:

1 225MHz MIPS R10000(IP32) 0800 6905 AE07 Kia.cs.ecsu.edu 08:00:69:05:AE 0.32.4.42 Workstation Name: Ethernet Address: Serial Number: IP Address: Model:

Processor with MIPS R10010 128 MB 32 KB 32 KB FPU Instruction Cache: Main Memory: Data Cache:

IRIX Release 6.6

Secondary Instruction-Data Cache: 1 MB

Operating System:

1 300MHz MIPS R1200(IP32) Ujamaa.cs.ecsu.edu 0800 0910 02E6 08:00:69:10:021E6 10.32.4.44 ୪ Workstation Name: Ethernet Address: Serial Number: IP Address: Model:

Processor with MIPS R12010 256 MB 32 KB 32 KB Secondary Instruction-Data Cache: 1 MB Instruction Cache: Main Memory: Data Cache:

Dissi.cs.ecsu.edu 0800 6905 BE85 08:00:69:05:0E 10.32.4.42 Workstation Name: Ethernet Address: Serial Number: IP Address: Model

Integral Ethernet: ec0, version 2

IRIX Release 6.5

Operating System:

Network:

Processor with MIPS R1201 FPU Main Memory:

1 300MHz MIPS R12000(IP32)

- This page contains links to various java resources for users on various levels

Java Resources for Science and Engineering

http://www.npac.syr.edu/projects/tutorials/JavaCSE/

This page contains resources related directly to using java for computations

Java as a Scientific Language, part 1
http://www.developer.com/java/ent/article.php/631151
This article discusses how java is useful for scientific purposes

Reasons why one would use Java for computational methods

http://archive.devx.com/upload/free/features/javapro/2002/03mar02/jt0302/jt0302-1.asp Java Pro Magazine - Javatecture

Joel Feldman's Java Server

http://www.math.ubc.ca/~feldman/java.html

This page has links to several applets of scientific calculations, java tutorials, and many other very useful sites.

The Colt Distribution

http://hoschek.home.cem.ch/hoschek/colt/index.htm

"Open Source Libraries for High Performance Scientific and Technical Computing in Java"; this site should be very useful in our project The DSP Design Performance Code Segments, Tutorials, and Papers Page http://www.nauticom.net/www/idtaft/papers.htm This page has java code for solving several calculations, including Fast Fourier Transform and the Chirp Z-Transform.

Zoran Budimlić

http://www.cs.rice.edu/~zoran/

- This is the web page of someone that I can use as a reference; see his paper on "Optimizing Java: Theory and Practice"

UNIX CONFIGURATION

Kuumba.cs.ecsu.edu Workstation Name:

0800 6910 0466 10.32.4.45 Serial Number: IP Address:

08:00:69:10:04:66 Ethernet Address:

1 300MHz MIPS R12000(IP32)

Processor with MIPS R12010 FPU

5

Quality Management, Manufacturing Resource Planning II, Theory of Constraints, and background includes teaching and implementing management concepts such as Total preparing industrial organizations for ISO 9000 registration efforts.

Education and Military Service:

1973 BS, Aerospace Engineering 1978 ME, Civil Engineering U.S. Coast Guard Reserve: U.S. Naval Reserve:

6 months active/12 years reserve duty North Carolina State University Old Dominion University 20 years reserve duty Commander

Experience:

Current Rank:

Instructor, 10 hours per week. Supervisor: Dr. Georgia Lawrence. Taught courses in college algebra and mentored a student research group turning a collection of Silicon Aug 2002 - Present: Elizabeth City State University, Elizabeth City, NC, Math Graphics workstations into a virtual parallel computer.

482-7000. Developed and programmed new capability for TEE-LOK's roof truss design Engineering Programmer, 40 hours per week. Supervisor: Mr. Dave Largent, 252program. Specifically, developed a module to generate wind loads in compliance with Mar 2001 - Dec 2001: TEE-LOK, Inc., Soundside Drive, Edenton, NC 27932, ASCE 7-98 building design code.

Virginia Beach VA 23462, Logistics Manager, 40 hour per week. Supervisor: Mr. Gary Richard, 757-490-1626. Responsible for all logistics analysis for the USN Jet Apr 2000 - Mar 2001: Support Systems Associates, Inc., Pembroke 4, Suite 517, Engine Test Initiative, the Navy's new digital jet engine testing equipment. Also responsible for all computer hardware and software support in the office.

ARSC Facility in Elizabeth City, NC. Responsible for advising all redesign teams on ISO Office products. Also served as senior advisor on all computer related issues, including 9000 issues to ensure that all efforts would be directly applicable towards an ISO 9000 Blvd., Elizabeth City, NC 27909, 40 hours per week. Supervisor: Mr. Stan Walz, registration effort. Developed an automated document control system using Microsoft Oct 1998 - Jan 2000: Aviation Engineer, Soza & Company, LTD., 905 Halstead 252-338-2511. Assigned to the Business Redesign Project at the U.S. Coast Guard software and hardware, for the Elizabeth City staff.

Halstead Blvd., Elizabeth City, NC 27909, Approximately 70 hours per week. Served Aug 1998 - Oct 1998: Car Sales/Financial Manager Trainee, Perry Toyota, 1002 as salesman to gain experience in the car sales business prior to being trained as a

Sep 1996 - Aug 1998: Self-employed Consultant: Approximately 5 hours per week. financial manager.

the employees to use the equipment. Additional computer related work included writing computerizing their operations. Advised the companies on buying computers and trained Performed consulting work for several small companies. These companies included construction companies and building supply companies. Much of the work was specific application software for invoices, job cost estimating, and bid proposals.

路面 88 Secondary instruction-Data Cache: 1 MB Instruction Cache: Data Cache:

IRIX Release 6.5 Operating System: Integral Ethernet: ec0, version 2

Future Work

The team just has just started building the foundation of knowledge that will be needed to Each individual area: Digital Signal Processing, Artificial Intelligence, Parallel Virtual would extend CERCERS's capability in processing and filtering their data and signals. support CERSERS's data and imaging capabilities. The team would like to continue Machine, and Java libraries, should be researched further. Parallel Virtual Machine developing sound processing capability that could be used to monitor whales. This needs to be installed and run on the Unix machines to gain experience in solving problems on a parallel machine.

Future researchers need to start programming with the Java libraries to gain experience to exercised to continue building the knowledge base. The same needs to be done for AL The techniques of DSP need to be studied and understood so that only the techniques useful are investigated further. DSP software needs to be located, downloaded, and support the signal processing. In all cases, free software supporting all areas of our project needs to be downloaded to provide experience and new ideas.

Benjamin Burnham James, III

Elizabeth City, NC 27909-3266 E-mail: bjames@adelphia.net 113 Hunter's Trail West 252-335-2247 (home)

mathematical problems arising in the design and analysis of aerospace systems including multidisciplinary and multilevel design optimization, finite element analysis, testing and aviation logistics support and industrial facilities such as Naval Aviation Depots. His Mr. James has over 25 years of experience in computer programming and solving the maintenance engineering. He also has extensive experience in the management of

Benjamin B. James List of Publications

A Multidisciplinary Approach to Optimization of Controlled Space Structures: Third Air Force/NASA Symposium on Recent Developments in Multidisciplinary Analysis and Optimization Sept. 1990.

Multidisciplinary Optimization of Controlled Space Structures with Global Sensitivity Equations: NASA TP 3130, Nov. 1991. Multidisciplinary Optimization of a Controlled Space Structure using 150 Design Variables: AIAA Paper No. 92-4734, Fourth AIAAAUSAF/NASA/DAI Symposium on Multidisciplinary Analysis and Optimization, Sept. 1992. Also published as NASA CR 4502, Feb. 1993.

Linda Bailey Hayden, PhD

email: Ihayden@umfort.cs.ecsu.edu Box 672 ECSU 1704 Weeksville Rd. Mathematics and CS Dept. Elizabeth City, NC 27909 (252) 335-3696 vox (252) 335-3790 fax

EDUCATION

- NSF-UFE, ADVANCED COMPUTER NETWORKS 1998, Michigan State Univ.
- COMPUTATIONAL SCIENCE 1993-94, NC Supercomputer Center, Triangle Park, NC NSF-UFE,
 - NSF-UFE, PARALLEL PROCESSING 1992-93, Colgate University, Hamilton, NY.
- NSF-UFE, COMPUTER GRAPHICS 1990 & 1993, University of Georgia, Atlanta, GNSF-UFE, SOFTWARE ENGINEERING 1990, University of Georgia, Atlanta, GAPH.D MATHEMATICS/EDUGATION 1988, American Univ., Washington, DC.
 - M.S. COMPUTER SCIENCE 1983 Old Dominion University, Norfolk, VA.
- M.A. MATHEMATICS/EDUCATION 1972 University of Cincinnati, Cincinnati, Ohio.
 - B.S. MATHEMATICS/PHYSICS 1970 Virginia State University, Petersburg, VA.

TEACHING EXPERIENCE

- DIRECTOR, Center of Excellence in Remote Sensing Education and Research, ECSU, 2002
- Elizabeth City State University PROFESSOR OF COMPUTER SCIENCE (tenured), 1989-present,
- ASSOCIATE PROFESSOR OF COMPUTER SCIENCE, 1988-89, Univ. of the District of Columbia. VISITING PROFESSOR OF COMPUTER SCIENCE, 1985-88, American Univ., Washington, DC. ASSISTANT PROFESSOR OF COMPUTER SCIENCE, 1980-85, Elizabeth City State University.

 - ASSISTANT PROFESSOR OF MATHEMATICS, 1979-80, Nortolk State University, Nortolk, VA. VISITING PROFESSOR OF MATHEMATICS, 1976-78, University of Kentucky, Lexington, KY. INSTRUCTOR OF MATHEMATICS, 1972-76, Kentucky State University, Frankfort, KY.

PROFESSIONAL ACTIVITIES

IEEE Geoscience & Remote Sensing Society Education Committee 2002 - present

7

Management consulting to a construction firm included developing schedules, managing Change Orders and representing the firm during preliminary pre-bid meetings and safety

were researching methods to use nonlinear computation fluid dynamics (CFD) to enhance Business Innovative Research (SBIR) grant from the U.S. Air Force entitled "Exploiting included performing research to take advantage of the newest parallel computers such as aeroelasticity analysis and design. Also coordinated the efforts of subcontractors who the abilities of the ASTROS system. Computational work was performed on the Maui Oct 1995 - Sep 1996: Maui Analysis and Synthesis Technologies, Inc. (DiagSoft, capabilities of the automated aircraft design software system, ASTROS. The duties Parallelism to Enhance the ASTROS Multidisciplinary Design System." This grant inc.), 5615 Scotts Valley Drive, Suite 140, Scotts Valley, CA 95066. Principal the IBM SP/2 and parallel computational algorithms in the fields of structural and Investigator, 40 hours per week. Served as the Principal Investigator on a Small determined ways in which parallel computers and algorithms could increase the High Performance Computing Center's IBM SP/2.

Communications Project (HPCCP) in the design, development and implementation of a Framework for Interdisciplinary Design Optimization (FIDO). Performed integration of structural, aerodynamics, propulsion and performance analyses into a single system to Jan 1995 - Oct 1995: Computer Sciences Corporation, 3217 N. Armistead Ave., Hampton, VA 23666-1379. Computer Scientist, 40 hours per week. Provided engineering support to the NASA/LaRC High. Speed Parallel Computing and perform optimal design of high speed transports.

support to the NASA/LaRC High Speed Parallel Computing and Communications Project Drive, Hampton, Va 23666. Staff Engineer, 40 hours per week. Provided engineering system combining structural and control system analyses to perform optimal design of integrated, multidisciplinary design program for space platforms. Developed a single NASA/LaRC Structures Directorate, Interdisciplinary Research Office and Controlsaerodynamics, propulsion and performance analyses into a single system to perform Oct 1989 - Dec 1994: Lockheed Engineering and Sciences Company, Research Interdisciplinary Design Optimization (FIDO). Performed integration of structural, Structures Interaction Office in the design, development, and implementation of an (HPCCP) in the design, development and implementation of a Framework for optimal design of high speed transports. Provided engineering support to the orbiting vehicles.

Military Experience:

for the U.S. Navy and T-56 engines for the U.S. Air Force. In addition to overseeing the routine overhaul and repair of the mentioned aircraft, was responsible for the emergency Portuguese Air Force for the repair and overhaul of C-130, C-2, CT-39 and P-3 aircraft Operation Desert Storm: Served as Officer-in-Charge of the Naval European Repair and Rework Activity Representative, Alverca, PO. Administered a contract with the repair of the same.

Consultant on Program Evaluation for the UDC Navy Pre-college Program, 1988

PROFESSIONAL PRESENTATIONS

- Hayden, L. Mathematics of The Great Dismal Swamp Product Development for NASA's Educational Product Review, Coalition for Earth Science Education Seventh Annual Meeting, Goddard Space Flight Center, Jan 10-13, 2002
- Hayden, L. Sashun A. Remote Sensing Middle School Intervention Program-YBTS, Coalition for Earth Science Education Seventh Annual Meeting, Goddard Space Flight Center, Jan 10-13, 2002
 - Hayden, L., You Be The Scientist With Satellite Imagery, IEEE Geoscience and Remote Sensing
- IGARSS 2001 Conference Proceedings, Sydney, Australia, July 2001
 Hayden, L., Celebration of Women in Mathematics for High Middle School Girls, Science House at NCSU Conference on K-12 Outreach from University Science Departments. Feb 7-9, 2001
- Hayden, L. Seshun, A., Goes Satellite Data GOES to School, NASA's MU-SPIN 10th Annual Users Conference, Atlanta, GA Sept. 2000
- Geoscience and Remote Sensing IGARSS 2000 Conference Proceedings, Honolulu, Hawaii, July Hayden, L, Powers, M., The Great Dismal Swamp Earth System Science Academy, IEEE
- Proceedings of the National Science Teachers Association Conference, St. Louis, MO, March 21-Seshun, A., Steele, K., Hayden, L., The Kaleidoscope of Numbers in Satelitie Infrared Imagery, 24, 2001
 - Hayden, L. Atalla, S., introductory Physics CBT Training Model for the University of Cairo, CBT
 - Hayden, L, Saunders, S., Ethernet vs. ATM: Timing Study of Search and Sort Algorithms, The Authoring Meeting, Cairo, Egypt, June 1999

National McNair Journal Fall 1996, p 19

- Hayden, L., Association of Computer and information Sciences/Engineering Departments at
- Minority Institutions Conference July 24-28, 1996 Mayaguez, Puerto Rico Hayden, L., Seaton, J., Brooks, S. *Integration of the Internet into the Secondary School Curriculum*, Guilding Gifted Talent in Science and Technology, Oct. 25-26, 1996, Norfolk State Univ. Norfolk,
- Hayden, L., Seaton, J. Implementation of the ATLAS program for Secondary School Connectivity within the ECSU-NHTS, 6th Annual NASA MU-SPIN Conference, Sept. 18-24, 1996, El Paso, TX
 - Hayden, L., Department of Transportation STEP Program Internship Report, ITS Consortiums Intern and Educational Development Meeting Sept. 20, 1995 Hampton, VA
- Hayden, L. AND Coleman, Intervention Programs for High Ability Minority Students, NASA-HBCU Hayden, L., Using Research to Teach Technology to Undergraduates, NC Academy of Science Conference, 1995
- Hayden, L., Symposium Evaluation of the Saturday Academy Program located at The University of Space Science and Engineering Research Forum, 1988
- Hayden, L. and Coleman, W., Successfully Keeping Minority Students in the Math/Science Pipeline the District of Columbia Campus, on Intervention Programs Aimed at Increasing Minority Participation in Mathematics Based Fields, 1988
- Hayden, L., "Evaluating intervention Programs" Science, Mathematics, Aeronautics, Research and Fechnology Interface Group of the National Leadership Roundtable Conference (SMART), 1989 TRIO Programs Annual Conference, 1989
 - Hayden, L., Mathematics Association of America, Maryland/DC/Virginia Fall meeting, 1988
- MEMBERSHIP
- IEEE Geoscience and Remote Sensing Society
- Association of Computing Machinery (ACM)
- ACM Significant Interest Group in Computer Science Education (SIGCSE)

- IEEE Geoscience & Remote Sensing Society Data Archival and Distribution Committee 2002-
- Expanding Opportunities in Oceanic, Environmental and Atmospheric Science Steering Committee Educator of the Year Award, National Technical Association 75 Anniversary Conference, Atlanta,
- Board member, Association of Departments Of Computer/Information Sciences and Engineering at
 - Mentor, Harvard Society of Black Scientist and Engineers, Harvard University Cambridge, MA, Minority Institutions (ADMI)
 - IEEE Geoscience and Remote Sensing Society Minority Travel Program Selection Committee SEA Education Association Diversity Workshop Participant, Summer 2002
 - Featured in Black Creativity 2000 Exhibit at The Chicago Museum of Science and Industry
 - Principal Investigator, NASA-Network Resources and Training Site, 1995-present
- Principal Investigator, ONR- Nurturing ECSU Research Talent Programs, 1991-present Principal Investigator, NASA-Mathematics of The Great Dismal Swamp Project, 1999-present Principal Investigator, NASA-You Be The Scientist With Satellite Imagery Project, 1999-present Principal Investigator, ONR-Cosan/Marine Science Undergraduate Research Experience, 2001.
- NAFEO High Tech Expo Chair of Undergraduate Research Poster Session 1997-present
- Ronald McNair Undergraduate Research Program, Coordinator of Research, 1996-1998 IEEE-ASEE Fellow, NASA's Langiey Research Center, Hampton, VA 1996
 - Computer Science Councilor, National Council on Undergraduate Research, 1995-98
 - Proposal Reviewer, NASA, PACE/MSET Program, 1996
- Evaluation Chairperson, ACM/SIGCSE'96 Conference 50th Anniv. of the "Firing of the Eniac" Computer Visualization Session Chair, ACM/SIGCSE 1994, Phoenix, AZ
- Proposal Reviewer, American Association of University Women Dissertation and Post-Doctorial
 - Referee, Papers submitted to the 1993, 1994 ACM/SIGCSE conference Proposals, Washington, DC 1993, 1994
- Jublished Interview, "A Winning Formula", <u>American Magazine</u>, Wirder 1994, p.15-20.
 - Published Interview, "Success is in the Numbers", Black Issues in Higher Education,
 - May 19, 1994, p. 40-43
- Presenter, "Mentoring Minority Students Majoring in Mathematics and Science", 9th International Conference on Technology and Education Paris, France, 1992

 - Proposal Reviewer, NSF-Instrumentation and Laboratory Improvement Program, 1991 Poster Session Chair, ACM/SIGCSE, 1991 Conference, San Antonio, TX.
- Proposal Reviewer, NSF-Undergraduate Curriculum and Course Development Program, 1991
 Textbook Reviewer, Introduction to Computer Science: Programming Problem Solving and Data Structures NanceNaps authors, West Publishers, 2nd Ed. 1991 ISBN 0-314-54007-5
- Author of A Successful Intervention Program for High Ability Minority Students, School Science and Mathematics Journal, April 1990
 - Author of TRIGONOMETRY, a workbook used by the University of North Carolina at Chapel Hill, Office of Extension
 - Author of INTEGER ARITHMETIC, a BASIC language based computerized drill and practice
- Author of INTRODUCTION TO ALGEBRA, an IDAF based computerized tutorial package (developed under a MISIP grant)
 - 1986 Summer CS Fellow with the Department of the Army, AMC, Alexandria, VA
- 1985 Summer CS Fellow with the Department of the Army, ATSC TRADDOC, Fort Eustls, VA
 - 1984 Summer CS Fellow with the Central Intelligence Agency, OTS, Langley, VA
 - Recipient, North Carolina State Board of Governors Faculty Study Award, 1982
- Recipient, Graduate & Professional Opportunities Program Fellowship, 1985 & 1986
 - Recipient, Patricia Robert Harris Graduate Fellowship, 1987 & 1988

- Elizabeth City State University, August 1999-present
 - Majors: Computer Science and Physics
- Concentration: Scientific
 - GPA: 3.78
- Expected Graduation Date: May 2003

EXPERIENCES

- Oscillations in Liquids: Comparison of Theory and Experiment" under the mentorship of Summer 2002, North Carolina State University, Did research on "Quartz Crystal
- · Summer of 2001, Center for NASA and Research and Training at South Carolina State University (Undergraduate Research in Astrophysics), and my research topic was Clustering of Galaxies" under the mentorship of Dr. Smith.
- Spring 2001, ONR/NRTS Program at ECSU, "Tunneling of Matter Wave Through a Delta Function Type of Barrier", under the mentorship of Dr. Choudhury.
- Spring 2000, ONR/NRTS Program at ECSU, "The Motion of a Harmonic Oscillator Under the
 - Influence of a Derivative Type of Delta Fores".

Center.

- April 2000 June 2000, Trainer in basic Computer skills at the River City Community
- June 2000- July 2000, Worked with the MSEN Pre-college program at Elizabeth City State University

COMPUTER SKILLS

- Microsoft Office
 - HIME

 - Java
- Page making XIND

CONFERENCES

- NAFEO 2000 02/15/00, Washington DC
- 10th Annual SOARS(Siezing Opportunities for Advancing Research Scholars)) Conference- 12/01/00, Winston-Salem State University, Winston Salem, NC
- National Technical Association 73th Annual Conference-09/27-29/01, Atlanta, GA 11th Annual SOARS Conference-11/09/01, North Carolina Central University,
- Sigma Xi Student Research Symposium 11/10/01, Raleigh, NC Durham, NC
- National Technical Association 74th Annual Conference 09/26/02, Las Vegas, ND

ACTIVITIES

- ACM Significant Interest Group in Computer Graphics (SIGGRAPH)
 - Kappa Mu Epsilon Mathematics Honor Society Beta Kappa Chi Scientific Honor Society

 - Alpha Kappa Alpha Sorority, Inc.
 - Portsmouth Chapter of The LINKS Inc.

RESEARCH ACTIVITIES—FUNDED

- Principal Investigator, Office of Naval Research-AVHRR-SST Coastal Observations 2001-2003, \$1,295,000
- Principal Investigator, Office of Naval Research-Nurturing ECSU Research Talent Program, 1993-Principal Investigator, ONR Undergraduate Research Experience in Ocean/Marine Science, 2001-2003, \$2,516,000
 - Principal Investigator, NASA-Network Resources and Training Site, 1995-2004, \$3,700,000 2004, \$250,000
 - Principal Investigator, NASA Earth Science Education Office-Math of the Great Dismal Swamp,
- Principal Investigator, NASA Earth Science Education Office- Satellite Imagery in EC/EZ K-12, 1999-02, \$285,000
 - Principal Investigator, NASA Earth Science Education Office- Earth Science On-Line Courses, 1999-02, \$40,000
- Principal Investigator, National Security Office CBT-Authoring in UNIX DOS and Networks, 1992-Co-Principal Investigator, Dept of Transportation-Expanding Skills & Interest in Transportation 1993-95, \$80,000
 - Principal Investigator, Office of Naval Research Instrumentation for Educational Use 1995-96. 95, \$165,900
- Principal Investigator, Office of Naval Research Home Institution Support, 1990-94, \$123,400 Principal Investigator, National Security Office, On-Line Manual Research Project, 1991-93,
- Co-Principal Investigator, Egyptian CBT-Authoring with the University of Cairo, 1997-98, \$50,000 Principal Investigator, Association of Women in Mathematics-High School Math Day 1994-01,
- ACM/SIGGRAPH Educators Grant, 1991 and 1994, \$2,000

Ms Ramatoulie Bah

Campus Box 672, Elizabeth City, NC 27909 bah@umfort.cs.ecsu.edu toulie 99@yahoo.com Phone (252)331-8708 Fax (252)335-3790

OBJECTIVE. Pursue MS in Materials Science research, and eventually Medical Physics.

EDUCATION

Education August 2000-present Elizabeth City State University Elizabeth City, NC

- Physics major/Mathematics Minor Freshman GPA=3.215
 - Graduation expected May 2004

Aug. 1996-June 2000 Northeastern High School Elizabeth City, NC

College Preparation

- Graduation Date=June 2000 GPA=2.8

Awards received

- Incentive Scholarship
- Center for Materials Research Scholarship
- ONR/NASA Research Program Scholarship
 - 2002 SOARS Research Award

Work experience

Sept 2002-Present - Student Government Association (Corresponding Secretary)

Serve as Executive Assistant To President Damiyon Sledge

- May 2001-Present Wright Brothers National Memorial Inform visitors on History of the site and also collect fees.
- August 2000-May 2001 Elizabeth City State University Tutor
- Assist Students with schoolwork and basic principles learned in class.
 - April 98-May 2000 Kmart Department Stores

Assist Customers with merchandise selection and handling

Extracurricular activities

- ECSU University Choir First Tenor
 - Freshman Student Chief Justice
- Essence of Praise Gospel Choir (Tenor)
 - Society of Physics Students
- National Technical Association
- Student Government Association

VINCENT AUGUSTUS DAVIS, JR.

CITY, NC 27909 IS@YAHOO.COM ECSU CAMPUS BOX 214 - 1704 WEEKSVILLE ROAD - ELIZABETH CITY CAMPUS: 252-314-8803 - CELL: 757-537-4421 - EHAIL: VI_DANIS@ THEY/Inla resu.,edu/sp/0203/vdave2002/frame_2002.htm

CTIVE

Undergraduate Physics Researcher at Elizabeth City State University 1999 to present.

- President. Society of Physics Students -ECSU chapter
- Alpha Chi Honor Society
- Math and Computer Science Club
- Concerned Black Awareness Club
- Library Club

MEMBERSHIPS

- National Technical Association
- Optical Society of America
- American Physical Society
- NSBPS- National Society of Black Physics Students
 - HEE

HONORS

- National Dean's List ('00,'01,'02)
- All-American Scholar, 2000 2001
- Office of Naval Research Scholars Award, April '00,01,02
- Office of Naval Research NERT Program Award, November '01, '02
 - Recepient the Chancellor's Emblem Award, April '00, '02
- Excellence in Physics Award -presented at ECSU Honor's Convocation, April 18th
- ATOM (Accentuating Technical Opportunities For Minorities) Project Academic Achievements Award,
 - April 19th 2001
- Rochelle Cleaners Excellence in Physics Award April 18th, 2002
- Who's Who Among Students in American Universities & Colleges, 2001-2002

REFERENCES

Furnished upon request

Linwood Creekmore, III

Mobile Phone (252)267-0815 E-mail: Icreekmore@mail.ecsu.edu Phone (252) 337-6112

linwood_c@hotmail.com

Elizabeth City, NC 27909 4014 Timmerman Drive

Objective
To gain more knowledge in the field of physics and mathematics.

12

CAREER OBJECTIVE:

To obtain a summer internship or position that will provide practical experience in mathematics and computer programming.

EDUCATION:

Elizabeth City State University

- Candidate for Bachelor of Science in Applied Mathematics (exp May 2004)
 - Minor: Computer Science
- G.P.A.: 3.7/4.00 (As of Fall 2003)

Campus Box 549
1704 Weeksville Rd.
Elizabeth City, NC 27909
edsmith@mail.ecsu.edu

203 Bonney Terrace Portsmouth, VA 23704 smylie_1999@yahoo.com

RELEVANT COURSES:

Calculus & Analytical Geometry II, Computer Science II, Linear Algebra, University Physics I, Assembly Language, Modern Programming (JAVA)

WORK EXPERIENCE:

9/2001 to 5/2002 Elizabeth City State University, Elizabeth City, NC

 Served as a peer tutor in the following mathematics courses: College Algebra, Pre-Calculus, Calculus I.

6/2002 to 8/2002

ş.r

Purdue University, West Lafayette, IN

- RISE Scholar. Conducted a project charged with altering and building web
 pages for the Electrical and Computer Engineering Graduate Program.
 - Worked on team to build a thermoelectric cooling system.

5/2001 to 8/2001 Fermi National Accelerator Laboratory, Batavia, IL

 Summer Intern. Expanded a Perl program to improve a web page for a research experiment at Fermilab.

6/2000 to 8/2000 Coastal Training Technologies, Inc., VA Beach, VA

 Summer intern as "Multimedia Producer". Contributed to the production of CD-ROM courses produced by Clarity Multimedia department of Coastal Training Technologies.

AWARDS & HONORS:

23

7

o obtain a position with opportunities to grow and develop in the field of Astrophysics.

:DUCATION

UGUST 1999 - PRESENT Elizabeth City State University; Elizabeth City, NC
Candidate for the Bachelors of Science in Physics
Cumulative GPA: 3,338 (As of Spring 2002)
LC. Norcom High School; Portsmouth, VA
Gradudated Cum Laude;
Cumulative GPA: 3,552
Cumulative GPA: 3,552

NTERNSHIP/RESEARCH EXPERIENCE

IAY 28, 2002 - AUGUST 2, 2002

NASA Goddard Space Flight Center; Greenbelt, MD

Summer Intern, Summer Institute in Engineering & Computer Applications (STECA) Program

• Conducted a research project entitled "National Renewable Energy Laboratory," Research: Department of Physical Sciences

• Conducting research on project entitled "National Renewable Energy Laboratory (NREL) at ECSU.

University of Arizona; Tucson, AZ

Summer Intern, Indegraduate Research Program in Astrophysics (URPA)

• Conducted research project entitled, "An Amateur Search For Near-Earth Asteroids."

South Capolina State University; Orangeburg, SC

South Capolina State University; Orangeburg, SC

South Capolina State University; Elizabeth City, NC

Summer Intern, Undegraduate Research Inspect in Astrophysics (URIA)

• Conducted research project entitled, "Investigations of A Toy Model of Dark Matter Clustering."

IJCUST 1999 - State University; Elizabeth City, NC

Summer Research project entitled, "Investigations of A Toy Model of Surface of Navial Research Project entitled."

• Conducted research project entitled, "Investigations of A Toy Model of Surface of Navial Research project entitled."

• Conducted research project entitled, "Investigations of A Toy Model of Surface of Navial Research project entitled."

• Conducted research project entitled. "Investigations of A Toy Model of Surface of Navial Research project entitled."

• Conducted research project entitled. "Investigations of A Toy Model of Surface of Navial Research projects that were on the basis of Physics.

CONFERENCES ATTENDED

lational Technical Association 76th Annual Conference eptember 24 - 27, 2002; Las Vegas, NV (Presentation Made) cous 2002

anary 13 - 18, 2002; Georgia Institute of Technology - Atlanta, GA igna XI 2001 Student Research Symposium lovember 10, 2011; Releigh, NC inchinal Association 75th Annual Conference eptember 27 - 29, 2001; Aldeida 75th Annual Conference eptember 27 - 29, 2001; Aldeida GA (Presentation Made)

IEMBERSHIPS

ounding Secretary - ECSU/National Society of Black Engineers lee President - Society of Physics Students Association seasarcher - ONR-NAS Research Program lational Technical Association CSU Honors Program Ipha Chi Honor Society REFERENCES AVAILABLE UPON REQUEST

Eunice D. Smith

- Computer trouble-shooting
 - Programming Using C++

HONORS/AWARDS: Chancellor's List

EXTRACURRICULAR ACTIVITIES: INROADS

Office of Naval Research Program (ONR/NASA Program)

REFERNCES: Available Upon Request

Chancellor's List

Researchers Consortium, Minority Access, Inc Scholarship program ONR/NASA Research Scholarship Program

EXTRACURRICULAR ACTIVITIES:
Math and Computer Science Club
National Technical Association
University Choir

References Available upon Request

DEMETRUS RORIE

Elizabeth City, NC 27909 Campus Box 285 1704 Weeksville Rd. Campus Address

dmrorie@mail.ecsu.edu Permanent Address 608 Cuthbertson St. Monroe, NC 28110 (704) 283-5061

OBJECTIVE:

intern

(252) 331-8222

To gain work experience while working at a company as an

EDUCATION:

B.S., Computer Science: Minor Concentration: Scientific Elizabeth City, NC Expected Date of Graduation: May 2006: GPA 4.0/4.0

EXPERIENCE:

Target, Matthews, NC Jun. 2001-Present Receptionist

Responsible for the fitting room area

Schedule interviews and meetings for the Human Resource Manager Answer the telephones and make store announcements

Hardee's, Monroe, NC Jun. 2000-Dec. 2000

Operated the register

Assisted guest

Monitored the dining room area

TECHNICAL SKILLS:

Operate PC and Macintosh computers

Fundamental Programming

Use Access, Excel, Word, PowerPoint

ጸ

83

[2002 – 2003 Multimedia Research Team เก็กลกcement of the ©ERSER Website

 Training, Description Calendar of Events Training Photos CERSER Cages Needed
CERSER Calendar of Calendar of •Lectures NOAA Pages Needed LINKS Research Projects SATELLITE Site Map

Welson Veale

CERSER Improvement: Storyboarding and Navigation

2002-2002

• Easier To Use

• Export to: Dreamweaver

3.7

- Web graphics application
 Edit both vector and bitmap graphics
 Generates JavaScript to create pop-up menus

Polygon Slice tool (K) Slice Tool (Rectangular) • Slice Tool (Polygon)

 Select Add Pop-up Menu Scraff Down To Pop-up Menu Creating Pop-Ups Click on Modify in Fireworks.

Pop-Up Menuring in Browser

_

Copying Images on the Macintosh

- Hold down the mouse on a picture to see the submenu
- Select "Copy Image"

Photoshop Image Resizing

- To Resize the image: Go to Image>Image>Image
- Note: Do not make the image any larger in size (dimensions) than needed

Large Dimensions = Large File Size

nage Resizing

Photoshop Save for Web

- Menu bar: File > Save for Web
- Setting options, along with Color Table and Image Size tabs
- Select a format
 (GIF, JPEG, PNG-8 or PNG-24).

Versatility for interactivity and sound

Quick development time

Need to connect multiple software

applications

y Authorware

Authorware

- Creates applications and web-based tutorials
 - Simulations incorporating audio and video
 - Drag-and-drop interface
 - Templates and wizards
- Distribution the web. Local Area: Networks or GD-ROMS
- Frack student results

Display Icons Displays text and graphics on the screen Reference to the screen that the scre

Executes the program from the beginning

E COMPANION SERVICE SE

11 1 111

- Extraot data subsets

• Queries

Starting a Query

Creates Recordsets
 Options for creating

Design.View

queries

- Hirez - 999x851, no compression (TIFF or JPEG format)

The last fields of the database provide different

wiewing resolutions for the user

्रैन्स Lowrez – 400x34र्थे। 72 dp। – Mědřez – 995x851, 72 dp।

ccess Image Link Data

The 2002-03 GLOBE Team Webpage 5/14/03 1:33 PM

Home
Abstract
Team
Members
Team Mentor
GLOBE
Protocols

The 2002-2003 GLOBE Research Team

Team Mentor
GLOBE
Protocols

City State University by the Office of Naval Research Scholarship
Program. This site provides information about research being conducted during the 2002-2003 academic school year involving the following

Related Links:
The GLOBE

Welcome to website for the 2002-2003 GLOBE Program Research Team, housed in the Department of Math and Computer Science at Elizabeth
City State University by the Office of Naval Research Scholarship
Program. This site provides information about research being conducted during the 2002-2003 academic school year involving the following environmental protocols: atomspheric investigation, hydrology investigation, soil investigation, and land cover/biology investigation.

Related Links:
The GLOBE
Website
NASA Website
NIA Website
ECSU Website

The goal of our research is to collect environmental data from three sites the research team have established on the campus of Elizabeth City State University, create mathematical models to represent our collected data, and design a report in both written and electronic form that highlights our collected data from a quantitative and quantitative prospective.

In addition, the GLOBE Program Research team, under the mentorship of Ervin Howard, participate in GLOBE training workshops to educate preservice and in-service teachers about the various GLOBE Protocols. Further, we also have established workshops to school age children where an array of experienments are performed from each of the GLOBE Protocols.

An Investigation of GLOBE Protocols

Presented by the 2002-2003 GLOBE Research Team at Elizabeth City State University on April 8, 2003

Team Mentor: Mr. Ervin Howard Team Members: Dana Brown, Shawneque Reid, and Carl Seward Team Homepage: http://nia.ecsu.edu/onr/02-03/research/globe/index.html

An Investigation into GLOBE Protocols

Contact Information Sheet

Team Mentor: Mr. Ervin Howard
Instructor, Department of Math and Computer Science
Elizabeth City State University
Lester Hall Room 110
Phone: 252-335-3696

252-335-3790

Fax:

Team Member:

Junior Mathematics Major – Dept. of Math and Computer Science
Elizabeth City State University
E-mail:

Mebpage:

http://nia.ecsu.edu/sp/dbrown/begin.html

Team Member: Shawneque L. Reid
Junior Mathematics Major – Dept. of Math and Computer Science
Elizabeth City State University
E-mail: streid@mail.ecsu.edu
Webpage: http://nia.ecsu.edu/sp/sreid/frame.html

Team Member: Carl W. Seward
Junior Mathematics Major – Dept. of Math and Computer Science
Blizabeth City State University
Cwseward@mail.ecsu.edu
Webpage: http://nia.ecsu.edu/sp/0203/cseward2002/home.html

bstract:

The 2002-2003 GLOBE Research Team at Blizabeth City State University during the academic year established and monitored three environmental sites on the campus of Elizabeth City State University. The purpose of the establishment and the monitoring of these sites were to collect data that was analyzed using various graphing methods. These methods include: line graphs, stem-and-leaf graphical displays, and box-and-whicker graphical displays. These methods allowed the researches to show the frequency and distribution of data values. From our findings, we were able to produce a report that reflects the qualitative and quantitative information gathered during the research period.

Specifically, the environmental sites established investigated targeted ecological concentrations that have been identified as Global Learning and Observations to Benefit the Environment (GLOBE) protocols. There protocols are: atmospheric investigation, hydrology investigation, and soil investigation. In addition to collecting and analyzing data, the researchers conducted field experiments to further understand a particular GLOBE protocol.

Each protocol requires that specific information be extracted from the respective environmental site. For atmospheric investigations, we recorded air temperature, minimum temperature, and maximum temperature from an instrument shelter, which is considered the environmental site. With hydrology investigations, the researchers collected water temperatures from a creek located on the campus of Elizabeth City State University to evaluate the water temperature, in addition to performing water analysis testing. Finally, soil investigations consisted of measuring soil temperatures.

Further, through the consorted efforts of the researchers, all of whom are mathematics majors with an interest in education, the student researchers learned how to turn scientific information into a lesson that can be learned by secondary and undergraduate mathematics/mathematics education students, by way of expressing data in a graphical context.

Introduction

GLOBE, or Global Learning and Observations to Benefit the Environment, is a hands-on international environmental science and educational program. Through the GLOBE program, teachers, students, and scientist communicate with each other in a consorted effort to learn more about the environment that we live by using data and observations collected by students.

There are three primary goals of the GLOBE program as a whole. The first goal is to enhance the environmental awareness of individuals throughout the world; to contribute to the scientific understanding of the Earth; and to help students reach higher levels of achievement in science and in mathematics.

With the GLOBE program, students from five years of age, to high school and college students conduct a continuing program of scientifically meaningful environmental measurements. Students at some schools that support this program have their reading transmitted to a central data processing facility via the internet, and collaborate with scientists and other GLOBE students in using the data for education and research.

Further, the measurements taken by the GLOBE students serve two important purposes. The first purpose is that scientists actually use the data acquired by students in their research programs and to improve our understanding of the global environment. The second purpose is that students get not only get to learn how to conduct a scientifically rigorous program of Earth observations, but also learn to use their own measurements, together with data from other resources, as a key part of their study of environmental science.

In our research, we focused on three of the GLOBE protocols. These protocols are: soil investigation, atmospheric investigation, and hydrology investigation. We carried these investigations out though the establishment of three environmental sites on the campus of Elizabeth City State University. The purpose of the establishment and the monitoring of the sites were to collect data that was analyzed using various graphing methods. These methods include: dot plot graphical displays, stem-and-leaf graphical displays, and boxand-whitcher graphical displays to apow frequency and distribution of data values. From our findings, we were able to produce a report that reflects the qualitative and quantitative information gathered during the research period.

. Soil Investigation

..1 Soil

Soils are a thin layer, called the pedosphere, on top of most of Earth's land surfaces. This thin layer is a precious natural resource. Soils so deeply affect every other part of the ecosystem that they are often called the great integrator. Soils hold nutrients and water

for plants and animals. Water is filtered and cleansed as it flows through soils. Soils affect the chemistry of the water and the amount of water that returns to the atmosphere to form rain. The foods we eat and most of the materials we use for paper, buildings, and clothing are dependent on soils. Understanding soil is important for knowing where to build our houses, roads, buildings, and playgrounds as well.

Characteristics of Soil

Soil is a mixture of rotting plants, animals, rock, and minerals from the bedrock below; however, it is composed of three main ingredients: minerals of different sizes; organic materials from the remains of dead plants and animals; and open space that can be filled with water and air. A good soil for growing most plants should have about 45% minerals (with a mixture of sand, silt and clay), 5% organic matter, 25% air, and 25% water. The gaps between the decaying materials are filled with air and water along the vast numbers of bacteria fungi and tiny plants. Soil is more prevalent in regions of high moisture and high temperatures than in cold, dry regions as the increased moisture contributes to erosion and increased temperature contributes to a more rapid breakdown of organic material. When organic material breaks down, it forms a soil that is rich in their elements. This soil is called "humus" - a dark tarry substance that is very fertile for plant growth. Humus is a jellylike substance that is composed of decaying organic material. It is vital to soil fertility.

One of the most important characteristics of any soil is how much water it contains. Either in the form of a vapor or a liquid, water occupies about one-fourth of the volume of a productive soil. If the soil gets too dry, and is not covered by vegetation, it blows away in the wind. Yet if there is too much water, the ground becomes soggy and cannot sustain many crops or, for that matter, the foundations of buildings. The rate at which water flows into or infiltrates the surface determines how much water will runoff during a resistorm. Dry, porous soils can absorb large amounts of rain and protect us from flash floods. Soil that is nearly saturated with water or slow to take up water can heighten the likelihood of flooding.

3 Soil Temperature

Soil temperature changes more slowly than that of the atmosphere. In many temperate regions the surface soil freezes in winter, but below a certain depth, the ground never freezes and the temperature is almost constant throughout the year. The temperature and moisture of the soil near the surface affect the atmosphere as heat and water vapor are exchanged between the land surface and the air. These affects are smaller than those of oceans, seas, and large lakes, but at times they significantly influence the weather. Soil temperature acts much the same way to influence all living organisms.

Both the temperature and moisture of the soil near the surface affect the atmosphere as heat and water vapor are exchanged between the land surface and the air. These affects are smaller than those of oceans, seas, and large lakes, but at times they significantly influence the weather. Hurricanes have been found to intensify instead of losing strength when they pass over ground that is already saturated with water.

Meteorologists have found that their forecasts are sometimes improved if they factor soil conditions into their calculations. How surface soil temperature and moisture respond to changes in the atmosphere depends upon the characteristics of the surface of the soil and those of the underlying soil profile.

(Picture of Soil Thermomter)

Atmospheric Investigation

1.1 Atmosphere: The Big Picture and Its Importance

What is the atmosphere, why is it important for scientists and students to conduct investigations into the atmosphere, and how does GLOBE tie into all of this? Further, how can we use the data from the scientific investigations from GLOBE to produce mathematical analysis that school-age children can understand? These four very interesting questions are what we will address our research of atmospheric investigations for the GLOBLE research project at Elizabeth City State University.

To answer our first question, Earth's atmosphere is a thin layer of gases composed of about 78% nitrogen, 21% oxygen, and 1% other gases, where these gases are argon, water vapor, carbon dioxide, and ozone. In addition, there are also solid and liquid particles called aerosols suspended in this layer of gases. The atmosphere is also held to the planet by gravity (or the gravitational force) with the result that atmospheric pressure and density decreases with height about Earth's surface.

The next question we want to answer is why is it important for scientists and students to study and conduct investigations into the atmosphere? It is important to understand and conduct investigations into the atmosphere because of the many things to which the atmosphere makes contributions. We as human beings live on land, however we live, move, and breathe in the atmosphere. The atmosphere gives us oxygen we breathe and carries off the carbon dioxide we exhale. The atmosphere is responsible for filtering out most harmful forms of sunlight and traps outgoing heat from the Earth's surface. The atmosphere is also responsible for transporting energy from the equator to the poles, making the whole planer more liveable. Additionally, the atmosphere brings the moisture evaporated from lakes and oceans to dry lands so that we have water to drink and to sustain our agriculture. So indeed, this thin layer that surrounds us is endowed with great responsibility, and we as curious people want to know more about how the atmosphere effects our environment.

This leads us to point why both scientists and students are working together through the GLOBE program to study and conduct these important investigations into the atmosphere. It is often implied that scientists know what is happening in all parts of the world, but this is far from true. There are many regions where scientists have only the most generalized information and understanding of environmental factors such as air temperature and precipitation. Even in regions where there seems to be an abundance of

data, scientists still do not know for example how much precipitation and temperature vary over relatively short distances. Is the differences of precipitation and temperature great over relatively short distances, or is the difference nominal? Without investigations conducted by students and scientists, we simply just would not know! It is true that official weather monitoring stations, such as the National Weather Service stations in Morehead City, North Carolina and Wakefield, Virginia, have contributed a tremendous amount of data for a century or more in some locations, while at the same time, satellite technology, such as GPS or Global Positioning Satellite devices, has given us pictures of large areas every 30 minutes, and global images at least twice daily for at least a decade. However, despite all of these wonderful efforts, there are still gaps in coverage. Further, the atmosphere varies significantly within these gaps, and that is how GLOBE engages students in environmental studies such as atmospheric investigations, from even as early as elementary school, to college students at Elizabeth City State University! Additionally, scientists who study weather, climate, phenology, ecology, biology, hydrology, and soil study these readings taken.

Weather and Climate

Before moving forward, when talking about the atmosphere, most people think about weather and climate, but it is important to make clear or refresh the distinction between weather and climate. Many persons feel that both weather and climate are synonymous, but this is not true. By weather, we mean what is happening in the atmosphere today, tomorrow, or even next week. On a day-to-day basis, we want to know many things about the weather we will encounter. For example, we may want to know the air fremperature and whether it will rain so we can decide what type of clothes we will wear for the day; whether we will need to take an umbrella with us outside, or if we need to put on sunsorcent to protect ourselves from the sun's ultraviolet rays on a sumny day. All of these things fall within the realm of what we call weather.

By climate, we mean weather averages, variability, and extremes over time. Persons also want information about the atmosphere on a long-term basis. For example, farmers need to know if their crops will get enough rain during a planting season. Ski resorts need to know if enough snow will fall. Even insurance companies are interested in the atmosphere on a long-term basis; insurance underwriters for areas struck by hurricanes would like to know how many hurricanes to expect in a given year and how strong they will be when they make landfall. In fact, many people are interested in what will the weather be like not only today, but also next week, next month, next year, and even in ten years. All of these things fall within the realm of what we call climate.

Меаѕитіпд Махітит, Міпітит, and Ситепt Temperature

In our research with respect to the atmospheric investigation, we decided to study maximum, minimum, and current air temperature. These measurements were taken from an instrument shelter that was previously established on the campus of Elizabeth City State University by a GLOBE research team during the summer of 2002. The objective of this investigation was to measure maximum and minimum air temperature, and also

the current air temperature during a certain time every day. From this investigation, we learned how to read the maximum, minimum, and current air temperatures using a U-shaped thermometer, and understand the diurnal temperature variations.

We have already discussed before how important the atmosphere is to Earth, but how does maximum, minimum, and current temperatures factor into the atmosphere with tespect to weather and climate? In regards to weather, have you ever noticed that the daily weather forecasts are not always correct? This is partly because scientists are still trying to learn more about how our atmosphere works. Measurements of air temperature, are important to help scientists better understand our atmosphere from day to day. This understanding will enable meteorologists and others to accurately predict the weather for the next day, or even the next seven days! These measurements are also important in understanding precipitation, whether precipitation falls as rain, sleet, snow, or freezing rain depends on the air temperature.

When we are talking about climate, questions can be asked like, "Is this an unusually warm year?" or "Is Earth getting warmer as some scientists have predicted?" To answer these and other questions about Earth's climate, measurements are needed of daily maximum and minimum air temperature, month by month, year by year. This data is used to formulate longitudinal studies of the Earth's climate

In addition to weather and climate however, we also know that many of the chemical reactions that take place between trace gases in the atmosphere are affected by temperature. For example, in several of the reactions involved in the formation of ozone, the rate of reaction depends on temperature. Further, the presence of water vapor, water droplets, and ice crystals also plays a role in the chemistry of the atmosphere, all of these relating back to temperatures.

3.4 Method of Acquiring Atmospheric Data

To acquire our data, we used a liquid-filed thermometer, which we placed in the instrument shelter on the campus of Elizabeth City State University. The liquid-filled maximum and minimum thermometer is a U-shaped tube with two indicators the current air temperature and shows the maximum and minimum temperatures that have occurred for a particular day.

On the maximum side, the temperature scale is such that temperature increases as you go from bottom to top, as is true with regular household thermometers many persons have in their homes. On the minimum side however, the scale shows temperature decreasing as you go from bottom to top. Most of the liquid in the thermometer is in the bulb, which is at the top of the minimum side. As the temperature increases, the expansion of the liquid in the bulb pushes the mercury down on the minimum side and up on the maximum side. The indicator at the top of the mercury column on the maximum side of the thermometer is pushed upward. When the temperature drops, the column of mercury moves in the opposite direction, but the indicator on the maximum side remains in place, indicating the highest temperature reached. As the temperature decreases, the mercury column rises on the minimum side of the thermometer until it reaches the indicator pin on the minimum side. Then, if the temperature continues to decrease, it pushes this indicator upward. When the temperature again increases, the indicator on the minimum side remains in place to indicate the lowest temperature reached.

3.5 Methods of Expressing Data (Data Analysis)

3.5.1 Producing Mathematical Analysis

To conclude our research with respect to atmospheric investigations, we ask the question, "How can we use data from these scientific investigations to produce mathematical analysis for school-age children?" The National Council of Teachers of Mathematics (NCTM) Principles and Standards for School Mathematics (2000) indicate that the elementary school curriculum from pre-kindergarten through grade 8 should include the study of data analysis so that students can formulate questions that can be addressed with data and collect, organize, and display relevant data to answer these questions. In this research, we used three relatively simple methods to display our data quantitatively in a way that students could gain information. These methods, all types of graphs, include: stem-and-leaf plots, and box-and-whisker (all of these are familiar to persons not in elementary or middles grades education as statistical graphs).

3.5.2 Stem-and-Leaf Plots

Another common form of data display is the stem-and-leaf plot. This is very similar to the dot plot because it shows the actual data values, but it is usually shown in a vertical rather than horizontal format, more like a frequency chart.

To make a stem-and-leaf plot, we being by locating the extremes in the data set and finding the range for the data. Then we separate each data value into its tens digit and its unit digit. The tens digit serves as the stem and the unit digits serves as the leaf. The stems are written to the left of a vertical line in either descending or ascending order. Each of these stems has several leaves, or related units, associated with it. Filling then in with the appropriate stem to the right of the vertical bar results in an unordered stem-and-leaf plot. If the leaves for a stem are ordered from smallest to largest, the resulting ordered stem-and-leaf plot. It is also interesting to note that an ordered stem-and-leaf plot for the six data sets we have presented earlier, representative of the data we collected over the year.

Stem-and-Leaf of Current Air Temperature for Fall 2002

1 797465657990752974900 2 128124261	0	924	
2 128124261	1	797465657990752974900	
	2	128124261	

Stem-and-Leaf of Minimum Air Temperature for Fall 2002 0 -5-6-10000000111234555566999

0 1	-5-6-10000000111234555566999 2224557
,	

Stem-and-Leaf of Maximum Air Temperature for Fall 2002

<u>.</u>	1366678899
2	00000011122344455677
3	

Stem-and-Leaf of Current Air Terrperature for Winter 2003

0	334444444444444444444444444444444444444
1	55667777888899
2	0

Stem-and-Leaf of Minimum Air Temperature for Winter 2003

	2222233333333334444444444444556
,	13333333334
	22223333
99	7

Stem-and-Leaf Maximum Air Temperature for Winter 2003

166	

5556666777788	000000000000000000000000000000000000000	01111111111111111122256	
_	, ,	7	

Stem-and-Leaf of Current Air Temperature for Spring 2003

0	
I	777888888999
2	

Stem-and-Leaf of Minimum Air Temperature for Spring 2003

3334444444557

Stem-and-Leaf of Maximum Air Temperature for Spring 2003

1	999
. 2	112455666677

3.5.3 Box-and-Whisker Plot

A box-and-whisker plot is a graphic presentation of data using five measures: the median, the first quartile, the third quartile, and the smallest and largest values in the data set between the lower and the upper inner fences. This type of plot can help visualize the center, the spread, and the skewness of a data set. It also helps detect outliers.

To make a box-and-whisker plot, we first rank the data in increasing order and calculate the values of the median, the first quartile, the third quartile, and the interquartile.range. To find the median, take the middle value and divide by two (2). If you have an even set of values, take the center two values, add, then divide by two (2). To find the first quartile, divide the set into two even groups, and take the middle term of each group, and divide by (2). If you set of data is even, then take the middle two values, add, and divide divide by (2). The interquartile range is found by subtracting the first quartile from the third quartile.

Next, we have to find the points that are 1.5 X IQR below Q1 and 1.5 X IQR above Q3. These two points will, respectively, produce the lower and upper inner fences. Then we will determine the smallest and the largest values in the given data set within the two inner fences. Following that, we draw a horizontal line and make the scale of the line such that it represents all of our values in the data set. Above the horizontal line, draw a box with its left side at the position of the first quartile and the right side at the position of the third quartile. Inside of this box, draw a vertical line at the position of the median.

The next, and final step of drawing a box-and-whisker plot is to draw two lines, joining the points of the smallest and the largest values within the two inner fences to the box. The two lines that join the box to these two values are called whiskers. A value that falls outside the two inner fences is shown by an asterisk and is called an outlier. Below, we

have displayed the current air temperature box-and-whisker plots for each semester sample data.

Hydrology Investigation

1 Hydrology: A Deeper Lo ok At Water

The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based education and science program. It trains teachers to help students improve their achievement in science and math. GLOBE gives students experience in the use of computer and network technology and improves student understanding of science because it involves them in performing real science - taking measurements, analyzing data, and participating in research in collaboration with scientists. GLOBE does this by investigating four protocols in the environment. One of these protocols is Hydrology. But what is Hydrology? Why should scientist and students conduct investigations to study this protocol? Also, how can a mathematical analysis of the investigation be produced?

Hydrology is the science that treats the waters of the earth, their occurrence, circulation and distribution, their chemical and physical properties, and their reaction with the environment including their relation to living things. The study of hydrology is also concerned with the ways in which water is stored and transferred over, on, and under the Earth's surface. This study is also known as the hydrologic process or water cycle. In this cycle, water from the Earth evaporates due to the sun's heat. As the water is evaporated, it is cooled in the air. This forms clouds. When the water wpor in the air gets too heavy, it returns to the earth as precipitation and the process begins again. This process is what greatly affects our weather. It gives us precipitation, humidity, and cloud cover just to name a few things. In the Hydrology investigation, GLOBE investigates water in its liquid form.

In it's liquid form water makes up about seventy percent of the Earth's surface. Although most of the Earth is water, not all of this water is consumable. Water has to go through many chemical reactions to be purified and safe enough for drinking. This is because it's hard to find pure water on Earth that is safe for consumption and the water left carries many natural and human-introduced impurities. These impurities become dissolved or suspended in water and flects the quality of the water. This is why scientist and students conduct investigations on water. Testing water helps scientist and students to develop a better understanding of our local land and water resources. This knowledge can help them make more intelligent decisions about how themselves and others use, manage, and enjoy these resources. Also, by testing water they can assess the extent to which human activities are affecting the quality of water, thus affecting how people will be able to use it in the future.

.2 Indicators in a Hydrology Investigation

When conducting a Hydrology Investigation, GLOBE measures several key indicators of water quality. They are transparency, water temperature, dissolved oxygen, pH, electrical conductivity, salinity, ankalinity, and nitrate. Each is listed below and brief description follows telling what it is and why it is important for someone conducting a Hydrology investigation to know.

4.2.1 Transparency

This indicator deals with the clarity of water. It is the degree to which light penetrates into water. This is important because the less turbid water is the easier light can pass

through. This light helps in the growth of plant life and also affects the temperature of water. Transparency is measured with a Secchi disk or tubidity tube. Most natural waters have a transparency ranging from 1 meter to a few meters whereas water around coral reefs can have a transparency of up to 30-40 meters.

4.2.2 Dissolved Oxygen

This indicator is a natural impurity in water. Dissolved oxygen analysis measures the amount of gaseous oxygen (O₂) dissolved in an aqueous solution. Oxygen gets into water by diffusion from the surrounding air, by aeration (rapid movement), and as a waste product of photosynthesis. Oxygen is a necessary element to all forms of life. A good level of dissolved oxygen is essential for aquatic life. Total dissolved gas concentrations in water should not exceed 110 percent. Concentrations above this level can be harmful via equatic life. Fish in waters containing excessive dissolved gases may suffer from "gas bubble dissease", however, this is a very rare occurrence. Adequate dissolved oxygen is necessary for good water quality. As dissolved oxygen levels in water drop below 5.0 mg/l, aquatic life is put under stress. The lower the concentration of dissolved oxygen, the greater the stress. Oxygen levels that remain below 1-2 mg/l for a few hours can result in large fish kills.

4.2.3 pH

pH is a measure of the acidic or basic nature of a solution. The pH of water influences most of its chemical processes. Pure water (has no impurities and no contact with air) has a pH of 7. Water with impurities that does have a pH of 7 has an equal balance of acid and base. The pH of water has a strong influence on what can live in it. A pH range of 6.0 to 9.0 appears to provide protection for the life of freshwater fish and bottom dwelling invertebrates.

4.2.4 Electrical Conductivity

Electrical conductivity estimates the amount of total dissolved salts, or the total amount of dissolved ions in the water. It is how well water passes electrical current. The more impurities in the water the greater its electrical conductivity because the impurities increase the total amount of dissolved ions in the water. Safe levels of electrical conductivity would be at 1500-1800 microSiemens/cm. Levels above these reading could damage sensitive crops. In homes, readings below 750 microSiemens/cm would be considered safe.

4.2.5 Salinity

Salinity is a measure of the salt content in water and it is measured in part per thousand (ppt). The average salinity of Earth's oceans is 35 ppt. Salt content affects the types of organism found there. Thus, fresh waters and saline waters are inhabited by different types of organisms.

4.2.6 Alkalinity

This indicator is the measure of water's resistance to the lowering of pH when acids are added to the water. If alkalinity gets to low, an influx of acids coming into the water from a big rainfall or snowmelt could consume all the alkalinity and thus drop the pH. This could cause stress or harm to aquatic life in the water

4.2.7 Nitrate

It is the most highly oxidized form and usually the most abundant form of combined inorganic nitrogen in water. If there is an excess of nitrate, algae and plants life increases. This can adversely affect aquatic life and also affect the taste and odor of drinking water. Most natural waters have nitrate levels of 1mg/L nitrate nitrogen, but can be found in concentrations as high as 10mg/L nitrate nitrogen in some areas.

4.2.8 Water Temperature

This indicator is determined by the amount of solar energy absorbed by the water and the surrounding soil and air. We measure water temperature to understand the patterns of change over the year because the temperature of a body of water strongly influences the diversity of its aquatic life. High water temperatures stress aquatic ecosystems by reducing the ability of water to hold essential dissolved gasses like oxygen.

During the GLOBE team's hydrology investigation, the main indicator studied was water temperature. The data that was collected by water temperature was used to create the mathematical analysis that was produced by the 2002-2003 GLOBE team.

4.3 Acquiring the Data

In getting the data needed GLOBE has guidelines that those conducting the investigation should adhere to. By following these guidelines, errors in the data are reduced and a constant is set for all those who participate in the program. The collection of water temperature has a three part guideline. This guideline consists of selecting a site, calibration of the measurement instrument, and the process by which to measure water temperature.

4.3.1 The Site

The site the GLOBE team chose in recording water temperature was the creek adjacent to Griffin Hall on the campus of ECSU. This was a model site because it had seldom disturbance from outside life and it was convenient for all the students on the team to access.

4.3.2 Calibration

To record water temperature a standard thermometer is used. This thermometer is filled with liquid mercury and has an indicator that measures in degrees Celsius. To calibrate this instrument the thermometer is placed in ice water and remains there until it reads 0 degrees Celsius. When this temperature is reached, it lets one know that the thermometer is working correctly and it is ready for use. Calibration should be done prior to the first use of the instrument and every 3 months to maintain accuracy of recordings.

4.3.3 How to Measure Water Temperature

- Tie one end of a piece of string securely to the end of the thermometer and the other end to a rubber band. Slip the rubber band around the wrist so that the thermometer is not lost if it is accidentally dropped in the water.
- Hold the end of the thermometer (opposite the bulb) and shake it several times to remove any air in the enclosed liquid. Note the temperature reading.
- Immerse the thermometer to a depth of 10 cm in the sample water for three to five minutes.

 Raise the thermometer only as much as is necessary to read the
- Raise the thermometer only as much as is necessary to read the temperature. Quickly note the temperature reading. If the air temperature is significantly different from the water temperature or it is a windy day, the thermometer reading may change rapidly after it is removed from the water; try to take the reading while the bulb of the thermometer is still in the water. Lower the thermometer for another minute or until it stabilizes. Read it again. If the temperature is unchanged, proceed to Step 5.
 - Record this temperature along with the date and time on the Hydrology Investigation Data Work Sheet.

 Take the average of the temperatures measured by the student groups. If all measured values are within 1.00 C of the average,

submit the average value to the GLOBE Student Data Server.

4.4 Data Analysis of the Hydrology Protocol

Otherwise, repeat

GLOBE highly encourages students to utilize GLOBE data to help answer questions about how the environment around them works. Through investigation projects, students do science that helps them to feam the importance of creating hypotheses, analyze data, draw conclusions, and report their results. During the GLOBE team's investigation, data water temperature was collected over several months. From this data one can se how water temperature varies from week to week, month to month, or season to season. Utilizing Microsoft Excel, graphs showing this information were produced. By looking at these graphs, students can formulate questions about water temperature or they can look to these graphs and answer questions about water temperature. This process fulfills

one of the Principles and Standards for School Mathematics (2000) as given by The National Council of Teachers of Mathematics (NCTM) for children Pre-K to 8th grade. The following are graphs produced by the investigation done by the GLOBE team on water temperature.

A line-graph shows trends in data at equal intervals. We have presented four graphs show the separate seasonal temperatures and the last graph is a combination.

5/4/03 E0/8Z/t

different months. The month of December is not included because the university was The diagram above is a multi-bar graph. A bar graph illustrates comparisons among items. A multi-bar-graph uses multiple data series, producing separate bars at each interval. The previous bar graph shows the water temperature on the same day of closed during this time and no data was collected.

DECEMBER	1 0333	0 2345688	FEBRUARY	1 00000111123	0 666677888888899999			
NOVEMBER	1 233355555556677778	0	JANUARY	* -	0 001222334455	MARCH	1 122223333333444445555	* 0

APRIL

-	0
334667	*

A stem and leaf diagram provides a visual summary of data. This diagram provides a partial sorting of the data and allows you to detect the distributional pattern of it as well. The stem and leaf charts that are shown above show the distributional pattern, or frequency, of the water temperatures collected in

5. Conclusion

Upon the completion of our research, we realized that soil, atmosphere and hydrology play important roles in our daily lives. That is why it is very important to study these three protocols. We also noticed that as the atmospheric temperature changed, the soil and hydrology temperature changed with it. So, the atmospheric temperature depicts the hydrology and soil temperatures.

Wetworking Peam

AbstractMembersLinks

Paula Harrell

Danielle Graves

Golar Newby

Rodney Stewart

to prevent unauthorized user access and disk quota restrictions. Second, the migration of 2000 Network Infrastructure will allow the 2003 Network team to effectively site manage effectively administer the existing ONR and Cerser networks. First, the implementation will allow end-users to access its shared resources with a shorter wait state. Third, using of local security policies using Microsoft and Solaris Management Console will be used The Elizabeth City State University Office of Naval Research 2002 - 2003 Networking leam will implement local and global site polices that will allow the Network Team to existing wireless LAN data throughput will be analyzed for data degradation within the located in the Cerser Lab of Dixon Hall and the development of shell scripts to control the existing NIA Web server from an Indy platform to a Silicon Graphics O2 platform Macintosh LAB. Fourth, load balancing the TeraScan file server, Seaserver, which is the removal of monitoring, and trouble shooting in a Unix, Macintosh, and Windows packet analysis administrator tools to conduct a post-implementation review of the the Mathematics and Computer Science Office of Naval Research Lab.

Site Management requires the Networking team to collect data from two different physical locations in one domain. Both Lester and Dixon Hall consist of 20 to 30 nodes in the Cerser and Office of Naval Research Lab. Each node may be a dual or single boot workstation or server running UNIX, Mandrake 9.0 and Windows 2000, and/or Macintosh x as the operating system. To keep track of open and/or closed projects, each team member maintains a Trouble Ticket Log file on the cesu.edu LAN. Monitoring both sites is conducted by observing each node system's use and performance. To collect system data, the Network Team used one utility, called task Manager, which runs on a windows 2000 platform to display general system performance that can be recorded into a log file for future analysis.

The Networking Team

Mentors:

Chris Edwards - http://nia.ecsu.edu/om/01_02_school_year/networking/cedwards.html Kuchumbi Hayden - http://nia.ecsu.edu/om/01_02_school_year/networking/ku.html

Researchers:

Paula Harrell - http://nia.ecsu.edu/sp/0203/pharrell2002/juniorpage.html
Danielle Graves - http://nia.ecsu.edu/sp/0203/dgraves2002/index.html
Golar Newby - http://nia.ecsu.edu/sp/0203/gnewby2002/homepage.html
Rodney Stewart - http://nia.ecsu.edu/sp/0203/rstewart2002/prowebsite.htm

The 2002-2003 Networking Team goal was to develop and implement a site management work plan throughout the Office of Naval Research labs on the campus of Elizabeth City State University. In today's society, technology advancements have allowed end-users to become more aware and knowledgeable about the different aspects of computer systems. Thus allowing the end-user to take advantage of their capabilities and perform illegal operations that can be harmful to the network and its data. In order to manage our labs from network vulnerabilities, we felt the need to develop and enhance our system of monitoring and securing our networks.

Site Management

Site management involves monitoring and traffic analysis of different data the systems in a network environment. Two types of networks are local area network (LAN) and a wide area network (WAN). A LAN deals with a connection between one or more computers that are within the same location. An example of a LAN is the computers that are in the Macintosh and UNIX lab in Lester Hall. A WAN deals with a group or cluster of computers that are not necessarily in the same location, but are apart of the same community. An example of a WAN would be the comection between the Macintosh and Unix labs in Lester Hall with the computers in the CERSER lab in Dixon Hall. Although the computers are not in the same buildings, they are still able to communicate with each other and they all are a part of the Elizabeth City State University network.

Types of Networks

LAN and WAN networks are controlled and monitored by either a LAN or WAN engineer. LAN engineers are responsible for centralized computing which involves systems that are in the same location. WAN engineers are responsible for decentralized computing, which involves systems that are not in the same location but are physically connected to the same network. Regardless of the type of network, full duplex transmissions are always taking lace. Full duplex transmissions are simply exchanges of information between two systems at the same time. For example, students who are enrolled in distance learning courses communicate periodically with his or her instructor via internet and exchange information such as homework, tests, and instruction.

Security

In an article in the September 2002 edition of "Microsoft Certified Professional Magazine" entitled "You Got Hacked! Now What?," Chad Todd states that you should "Always assume a hacker has given himself or herself permissions to everything." Taking this statement into consideration, we felt the need to take extra steps to ensure the security of our computers and our network. Doing so, new security policies were set up on the computers and our network. Doing so, new security policies were set up on the computers to alert users that "UNAUTHORIZED USERS WILL BE EXPELLED." as well as to modify local user policies. Figure 1.1 shows the steps that were taken to enable the prompt to be displayed when users attempt to log on. Also, to help provide a better sense of security, forms were developed for users to request administrator issued accounts and help if there is a problem with his or her system. Figures 1.2 and 1.3 show the "Account Request Form,"

The 2002-2003 Networking Team 3

Figure 1.1

Disaster Recovery

In order to be better prepared in the case of a disaster such as fire, water damage, or data loss, we wanted to improve our current back-up system, which is a tape back-up unit that is on-site. Unfortunately, we were not able to work on this but do plan to implement it in our future plans for future networking teams. Our proposal is to have an off-site location as well as an on-site location to house our back-up storage data.

ONRA/NRTS/JEERSER		Office of Naval Research/ Network Research and Training Site
(There is a 3~	luest.)	TROUBLE TICKET LOG FORM
Account ype: User Mail Other (Specify) Computer Laboratory Of Requested Account:		Please print out and send completed form to: Office of Naval Research
Identification information		c/o Mr. Joey Gale ECSU Campus Box
Name: (First) (Middle) (Last)		1704 Weeksvile Rd. Elizabeth City, NC 27909
		Client Information:
Status: Student Intern Faculty/Staff Ott Current Email:	Other	Date:
Reason For Account Request:		Last Name: First Name:
(Please indicate the reason account is needed and who is sponsoring the activity.)		Phone Number:
		Department:
		Equipment Information:
		What is the type of the machine that is encountering diffic
Accounts will be created based on information provided An email or	, , , , , , , , , , , , , , , , , , ,	☐ Macintosh
written confirmation of the created account will be provided. Please change your password once you have logged into the system and do not allow	nge Now	What platform/operating system is currently being used?
others to gain unauthorized access to any system. Failure to follow university policies and procedures will result in termination of account. Misuse of computer systems will result in termination of account. If there	llow unt. nere	OSX
are any questions please ask before signing this form.	\$	☐ Other (please specify)
Requester's Signature Date		Problem:
	~ .	
Sponsor's Signature Date		
Figure 1.2		

work Research and Training Site OUBLE TICKET LOG FORM Office of Naval Research/

Date:
Last Name: First Name:
Phone Number:
Department:
Equipment Information:
What is the type of the machine that is encountering difficulties?
What platform/operating system is currently being used? Windows (please specify the version)
C Unix
☐ Other (please specify)
Problem:

The 2002-2003 Networking Team 6

The 2002-2003 Networking Team 5

Figure 1.3

UNIX Management

The Networking Team (2002-2003) analyzed two different file servers to determine if a hardware and/or software upgrade is required. The file servers examined were the NIA Web server and the SeaSpace file server.

The Network Team migrated the existing NIA Web server from an Indy SGI platform to a SGI O2 platform. The decision to migrate was based on the following findings: 1, the existing INDY operating system version 6.2 is no longer supported by SGI; 2, the software patches were out of date; and 3, SGI is currently supporting operating system version 6.7 because the source code is more reliable and stable.

Fast Track Server 2.01 is a web server application that runs on a Unix platform. The decision to upgrade from Fast Track to Apache was based on the following findings:

1, Fast Track did not support the development of customized encrypted shell scripts; 2, unsecured open TCP ports, such as, FTP and telnet; and 3, SGI does not recommend using Fast Track Server 2.01 on a production server because program can easily be hacked. It forces you to waste megabytes of system memory to run an unnecessary user interface.

The 2002-2003 Networking Team 7

Apache was developed in the early 1995, and it is based on code and ideas found in earlier HTIP servers. Apache is currently the most widely used Internet web server program. Apache is supported on a variety of platforms such as: Unix, Linux, and Windows.

Apache have made some modifications to extend its flexibility and power. Performance enhancements include more efficient handling of Hypertext Transfer Protocol (HTTP) requests, improved protection against process loading, and better error recovery. These improvements have reduced CPU load balances up to three times (see Figure 1). That directly translates to better performance for your server.

FastTrack Server 2.01 is no longer supported. This server was an entry-level web server. Since 1997, there has been very little customer interest (and no pilots or deployments) on FastTrack Server 2.01. It is not well developed. Most of all, it does not guarantee quality assurance.

Features on Apache include: Virtual Subhosting, a dynamic apache module support, Java Servlets, ASP, WAP, Web Server Pages, CGI. Virtual Subhosting allows you to support multiple domain names that each resolve to their own unique subdirectory. The Apache Module is designed for adding web server features that grant web administrators and developers tremendous power and flexibility. A wide variety of

Apache modules have been created supporting all kinds of exciting web server features.

Java Servlets technology provides Web developers with a simple, consistent mechanism for extending the functionality of a Web server.

JavaServer Pages (JSPs) have dynamic scripting capability that works in tandem with HTML code, separating the page logic from the static elements—the actual design and display of the page. Active Server Pages (ASP) is an open, compile—free application environment in which you can combine Hypertext Markup Language (HTML), scripts, and component calls to create dynamic and powerful Web-based business solutions. Wireless Application Protocol (WAP) is a protocol that allows wireless devices access to information and services over the Internet

The next project the network team analyzed was the SeaSpace server. The SeaSpace server was examined using the df-k command to determine the existing amount of free space available, which was 20 gigabytes of data which is equal to 20,971,520 bytes. The Network team also discovered that the server contained two-20 gigabyte hard drives instead of one 40 gigabyte hard drive. On one hard drive 10 gigabytes of data were allocated to operating system and system programs located on the root partition and the other 10 gigabytes of disk space consisted of raw data located on the root partition and the other 10 gigabytes of disk space consisted of raw data located on the following findings: 1, the /seaspace shared folder should be moved to the second hard drive which has 20 gigabytes of unallocated disk space; and 2, the existing SeaSpace server will need a larger hard drive to store the large amounts of raw data transferred from the TeraScan server. To help manage the stored raw data, the Network Team will add the following crontab entry "0 1 * 1-12 7 mm -f /seaspace" to delete raw data every Sunday. The list of commands you schedule *cron* to run is stored in a cron table, or *crontab*. Using your own

The 2002-2003 Networking Team 9

crontab, you can schedule your server to run a certain command at a predetermined date and time.

The format of a cron table entry includes five time fields followed by a command. Commands are executed when the time specified by the date fields matches the current time. The five time fields are as follows:

Allowed Values	-	0-59	0-23	1-31	1-12, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,		Nov, Dec	0-7, Sun, Mon, Tue, Wed, Thu, Fri, Sat (0 and 7 are	"Sm")	wildcard
Field	1	Minute	Hour	Date	Month	Oct		Day of Week		*

Furthermore, until a larger hard drive is purchased and an automated cron job has been issued to run once a week on Sunday at 1 am, the network team will continue to manually deletes the raw data to prevent the hard drive from filling up.

CERSER Management

- My first task was to create user files for each of my teammates onto the server machine located in room 113B. These files will give my teammates and me administrative privileges to read and write on the server platform.
- My next task was a group demonstration. We were instructed on bow to display a warming message for in-advised users on the Windows 2000 machines. Our mentor, Mr. Christopher Edwards, directed on the steps that we needed to take to complete this task.
- My next task was a group project. We were to view the Seascrver network, located in Dixon Hall, and devise a solution to the depletion of their memory space. Suggestions were to write shell scripts that will monitor and remove unused data from the system. For future references, the data can be stored on external memory tapes.

3

Used by Elizabeth City State University and other authorized users. Dr. Hayden's main office is in Lester Hall, but the CERSER lab is in Dixon Hall, across the campus. My group felt that it would not be feasible for Dr. Hayden to move to and from Lester and Dixon Hall she to view the CERSER lab. With this in mind, my latest task was to setup a network with the O2 machines and the CERSER my latest task was to setup a network with the O2 machines and the CERSER machines to give Lester Hall the capabilities of receiving raw satellite data from

The 2002-2003 Networking Team 11

the CERSER machines. Data would be sent from the satellite to the antenna on Dixon Hall. The information is gathered and placed into a shared network folder. Lester Hall's O2 machines will be able to gain access into this folder. Danielle will go more into permissions.

I began by installing a newer version of the system management software for the O2 UNIX machines. This will provide a more user-friendly system, with better and faster choice options. Next, I was to view the DHCP address number of each machine. Mr. Kachumbi Hayden instructed me to change these numbers from dynamic to static. He, also, told me to place the new address numbers into the system jot files of each machine. This will allow each machine to have the DHCP addresses of each machine in its memory. Dr. Powell's graduate students, at The University of Missouri, developed a program to view and manipulate raw multi satellite data. His students are using their program for their research thesis. This program was installed onto the O2 machine. The program will collect the data sets from the shared CERSER network folder and place them into an image spreadsheet. During a test run, I was able to view sea surface gauge data of rainfall over the ocean. The spreadsheet contained multiple frames of data, which I could manipulate.

With this new setup, Dr. Hayden will no longer have to visit Dixon Hall to see the incoming data. She can now use Lester Hall's labs as a network to Dixon Hall. Future plans on this project would be the possible installation of the program onto

the Window platform personal computers, and possibly the Macintosh G3 computers.

Site management (LAN Administrator)

Segment Managed: Lester Hall SGIs

Analysis and update of videoconference system

processor giving far greater possibilities than older models that where more limited in the entium III processor is the advance imaging and efficient streaming of audio/video data across an established Internet connection. Seventy new instructions are incorporated into Processing Unit) of the computer and helps to drive the computers actions once directed architecture into its chip. Some of the features are Dynamic Execution performance, a shaped motherboard and housing unit. The Pentium III processor is the CPU (Central by the users input. The Pentium III integrates many of the best attributes of P6 micro-The Intel Team Station 384 Videoconference System is comprised of a tower Systems, 2003). An advantage of implementing the Videoconference System with a amount of instructions they were able to understand and code. Some of the technical multi-transaction system bus and Intel MX media-enhancement technology (G.C. specifications of the Pentium III processor are:

- Core speeds of up to 1 GHz 133 MHz and 100 MHz system bus design
 - Internet Streaming SIMD Extensions
- Incorporated 256 Kb Error Correcting Code cache
 - Intel MMX media-enhancement technology
 - Dual Independent Bus (DIB)
- Intel® processor serial number
 - Non-Blocking L1 cache
- Memory cache ability ranging from 4Gb to 64Gb
- Dual processor capable
- Data integrity and reliability

Also included in the Videoconference System is 256Mb, of physical memory. This memory available for an operating system is important in the management of resources. amount of memory was the ideal for the operation of the Pentium III processor. The With a Videoconference System there are many different applications that will be running in the foreground as well as in the background. As noted by Edmead and (G.C. Systems, 2003)

The 2002-2003 Networking Team 14

Hinsberg (1998) "When an application is executed, the application is loaded into memory and allocated a certain amount of physical address space." For every execution of an application, memory is reserved for portions of the program to be loaded into memory. The entire program is not loaded because it would be too big to load, but by loading portions of an application's instruction into memory the Pentium III processor is able to load the instructions quickly. Once a set of instructions has been, executed new instructions are loaded in place of the older ones. The job of loading and unloading these types of instructions is left to the operating system.

The appropriate operating system for the Intel Pentium III Team Station 384

Version 5.0 Videoconferencing System is the Windows NT Version 4.0.1381. According to modern standards, the Windows NT Version 4 is obsolete and several upgrades to the operating system have been made. One of the upgrades and main reasons for using the Windows NT operating system for a networked system is for security and memory handling capabilities. In a Videoconference System security is another vital aspect. The security of the system helps to prevent anyone from just turning on the computer and making video calls. The system requires that someone logon to the system before any application can be accessed or modified. The Windows NT operating system also provides help in advance networking procedures. The administrative tools can regulate the amount of access individuals can have applications or if certain users can even access a program. Through administrative tools an administrator can have the ability to optimize the computer system environment to meet the needs of a particular network.

The network can play a major role in the performance of a Videoconference System. There are several different types of network environments and each one has its advantages and disadvantages. One type of network design is ring topology. Figure 1 is

The 2002-2003 Networking Team 15

based on graph found in a discrete mathematics book by K. Rosen (1999) and is an example of how a possible ring network might be shaped. Ring topology's advantage is network stability, meaning if a node (computer system) was to become unavailable for usage another path could be utilized for making a connection. The disadvantage of the ring topology is using this type of connection requires a longer transmission time for network nodes that are farther away from the server or destination node. Another disadvantage to this type of topology is that if several nodes were to become unable to transmit a connection signal then operational nodes may be unable to communicate with any other working node on the network system.

(Figure 1)

Another type of topology that will have an effect on the capability of the Videoconference System is the star topology. This kind of network mapping is more common in systems with routers. Figure 2 is modeled after Tanenbaum's (1996) graphs and shows the star topology with just one server and several different nodes. The advantage of this type of topology is the amount of connection time required to transmit data to a destination. The star topology requires little time to transmit information

because the connections are more direct. A disadvantage to this type of system is that there is only one connection for a system to connect with the server. If the connection path were to be disrupted then there would not be any redundancy for another connection path.

(Figure 2)

Another type of network connection topology that could have great affect on the quality of a Videoconference System is a tree topology. As the name suggest the tree topology resembles a tree in shape. The advantage of a tree topology is the ease in which trouble-shooting procedures can be conducted. With a tree topology a troubled section can be easily found because all other network nodes will be unavailable that branch from the source of trouble. The disadvantage is that if one node becomes disconnected several key nodes may also be affected and there is no redundancy in the network to recover. Figure 3 is an example of a tree graph based on an illustration (Raus, 2000).

The 2002-2003 Networking Team 17

One of the last types of topologies that will be discussed in this paper is the full mesh. Network environments that have similar features as a ring topology and star topology are classified as full mesh. The full mesh graph takes the best from both types of network topologies and combines them so the systems can have fully connected systems. The great advantage of having a fully connected network environment is that the system is able to recover very well from a node going down. Another advantage is that multiple paths can allow for much more efficient network paths. Figure 4 is an example of the full mesh topology that was based on interpretation from G. Hart-Davis and L. Lee (2000).

(Figure 4)

The advantages and disadvantages of each network environment topology cam help to utilize the capabilities of a Videoconference System. Using the incorrect type of network can cause the system to greatly affect other nodes on a network causing major delays to critical nodes such as mail servers, wireless servers, web servers, firewalls, and other different types of nodes. The Intel Pentium III Team Station 384 Version 5.0 Videoconferencing System is on its own connection system, but resembles the star connection in that the system connects almost directly to the Internet backbone of Elizabeth City State University. The connections look similar to figure 5, but keep in mind that no routers, switches and hubs have been included.

(Figure 5)

The 2002-2003 Networking Team 19

Chapter IV. The configuring and analysis of the Videoconference System

many frequent asked question and their corresponding answers. Also a search of the files to take affect, locking all application so that no unauthorized usage may occur. Through Videoconference System's software. Upon starting the system the security features start Understanding how the Videoconference System's hardware interacts with the configuration of the system. Once a correct login is achieved the next step is to identify being offered in technical support plans available from Intel, but the website did offer installed revealed a manual in Printable Document Form, which proved to be useful in installed or any online guides. The online search revealed that the system is no longer Videoconferencing System. The next step is looking for the any manuals that may be the exact name and version of the software that was installed on the system. Results network is just a portion of the complex puzzle involved with the evaluation of the throughout the beginning of the paper as well as some understanding of the Intel system. Configuring the system requires understanding those topics mentioned showed that the system is an Intel Pentium III Team Station 384 Version 5.0 special permission, the administrative privileges where granted to permit the trouble shooting problems that arose.

Upon executing the Intel software for the system, it was shown that system was indeed configured to use an Integrated Services Digital Network (ISDN) connection. ISDN is defined as "a standard for world-wide digital communications network originally designed to replace all current systems with a completely digital, synchronous, full duplex transmission system." ("Dictionary of Networking", 2000). The obvious advantage of using ISDN is the rate of throughput, or rate at which the- date can be sent divided by time. For one ISDN connection, a throughput of 0.128 Mega bits per second ("Data Rate

The 2002-2003 Networking Team 21

supplying audio. With the two previous ISDN connections occupied with outputting data, unexpected advantage of the system is that for every one ISDN line provided, two regular of having three possible ISDN connection lines is that one connection can be completely System was configured and equipped to handle three lines at one time. The implications service to students. If an additional fee was paid to receive a one eight hundred number supply three numbers to a user the cost can be several thousand dollars every year. The nodem connections could be made. In a sense a lab on campus could provide Internet Standards", 2003), can be generated within optimal conditions. The Videoconference Videoconference system is only used a few times a year. Figure 6 is the configuration conferences or presenting in another state. The ISDN connection seems to have a far the third line can be solely responsible for taking input from another user. Another disadvantage of using the ISDN connections on the campus of Elizabeth City State University is the addition cost of the connections. In order for an ISDN provider to superior advantage in the configuration setup over a regular RJ45 connection. The dedicated to supplying video, while another can be completely dedicated towards cost over several years can add up. The financial cost becomes an issue when the then the lab could provide Internet services to faculty and students that were at window of the ISDN connection as provided by the system.

(Figure 6)

In retrospect to ISDN connection, the Videoconference System allows for another form of connection called RJ45 or T1. The RJ45 connection allows for a throughput of 1.544 Mega bits per second ("Data Rate Standards", 2003). ISDN only has a throughput of 0.128 Mega bits per second in comparison. The RJ45 connection can transport much more information at one time than ISDN, but the Videoconference System only allows for one of these connections at a time. The result is that the information will be transmitted and received on the same connection resulting in possible loss of some data or possible delay. A tremendous advantage that a RJ45 connection provides is that the campus already has the connection installed in most buildings. Since the RJ45 connection is provided be the university there would be no cost to the end user. For many of those reasons the connection configuration of choice will be RJ45. It is note worthy to mention that none of the situations mentioned above in the paper include forms of jitter, or noise

The 2002-2003 Networking Team 23

that could be introduced through other network devices such as routers, switches, bridges and hubs.

first developed by the Defense Advanced Research Projects Agency (DARPA) in the late 1970s. The set of TCP/IP protocols encompasses media access, packet transport, session programmed their own Internet protocols for just their particular applications. After a few "Transmission Control Protocol / Internet Protocol is a set of communications protocols Now that the selected connection type has been selected the next option to set is to TCP/IP. There have been several advances to the protocol since its initial release, but packet, three is the source address of the packet, a hop counter for measuring amount of Research Project Agency (DARPA) developed and released what is commonly referred piece of information is broken down into specific packets. Each packet is tagged with a identification number of the packet being sent, two being the destination address of the usually. Each time the packet hops to a router and leaves the counter is decremented by the connection protocol. There are two common types of protocols, TCP/IP and UDP. the principals of the protocol are the same. The way that TCP/IP protocols works is a years a common trend among these protocols was noticed and the Defense Advanced header file. The header file serves many different purposes; one being it includes the ravel the packet is doing, and other various flags / warnings. The importance of the measuring the amount of hops a packet under goes is so that the system does not get transmission and reception of data. TCP/IP started when application programmers number of 24 hops to reach its destination, which is well over the number required Networking, 2000"). TCP/IP is one of the most common application protocols for clogged with lost packets of information. Each packet of information has a default communications, file transfer, e-mail, and terminal emulation" ("Dictionary of

one, until the number reaches zero. When zero is reached the packet is dropped and considered lost. The advantage of using TCP/IP is that if a packet was lost in a transmission process a recovery could be made. TCP/IP uses a packet confirmation system to ensure that the packets all arrive. If a packet was to be dropped or lost the destination computer could tell based on the received identification numbers, what packet / packets were lost and ask the source computer to retransmit the requested packets of information. Once all packets have reached the destination computer the system performs a putting together of the packets. An example of TCP/IP is a common every day puzzle. If student1 had the puzzle put together in one classroom, but wanted to give the puzzle to student2 in another classroom using a messenger, the messenger would take the one numbered piece from student1 and give it to student2. Student2 could look at the number and see exactly how the piece would fit. Once the messenger returned and confirmed that student2 did receive the piece then student1 could proceed to send other pieces until the pieture of the puzzle was clear.

In contrast to TCP/IP is the User Datagram Protocol (UDP). UDP is defined as "The connectionless, transport-level protocol used in the TCP/IP suite of protocols, usually bundled with IP-layer software. UDP does not add overhead, as does connection-oriented TCP, UDP is often used with SNMP (Simple Network Management Protocol) applications" ("Dictionary of Networking", 2000). In other words UDP does not involve all of the confirmation procedures that are required for TCP/IP. UDP packets are similar to TCP/IP packets in that there is an identification number for the packets. UDP header files also include a hop counter, source address, destination address and other flag options. UDP works by simply making a connection to the destination computer and then sends data through the connection. The destination computer just receives the information

The 2002-2003 Networking Team 25

and tries to make the information fit together. The major advantage of this type of protocol is that transmission times are very fast because there are fewer overheads in the transmission process. There are several disadvantages to this type of protocol. One disadvantage is that if a packet were to be lost there would be no way of recovering the lost of that packet. In the case of a packet being lost the source computer would need to retransmit the information completely over again and hope that no other packets would be lost again.

With the Videoconference System there are advantages from both protocol modes. With TCP/P the Videoconference System could securely transmit documents to other destination systems without the worry of corrupted data because of the lost of a single packet. On the other hand the increase in transmission speed for the video is an added bonus for using the UDP protocol. The video feed for the system does not need to worry about a lost packet because it would just be viewed as a brief break in the picture and the audio would just sound like a skip in speech. On the other hand continued breaks in video and audio could diminish the interactive feel of the Videoconference System. Taking all of the factors into consideration the logical choice for the system would be TCP/IP. The configuration of TCP/IP would allow the system to interact much better than the UDP protocol.

The next configuration that is needed for the system is setting the Internet Protocol address. Currently, most of the computers in Dixon Hall are set for Dynamic Host Configuration Protocol (DHCP). DHCP is "a system based on net-work interface card addresses that is used to allocate IP addresses and other configuration information automatically for net-worked systems" ("Dictionary of Networking", 2000). DHCP is useful to for system administrators. DHCP allows an administrator to collect a pool of

useable IP address and randomly assign them to machines that request them. For example system administrator, that system administrator would be challenged managing all of the configuration, however there is a draw back to this type of assignment. If there was a lost spell death for users trying to access the website because the IP address would not be the if there was an office building with over 300 individual computer systems and only one connection in and let the computer pick from a list of available IP addresses. This saves access it. This affect directly correlates with the Videoconference System because the IP would be assigned to the system. In the instance of a web server with DHCP, that could 300 hundred systems which would cause a huge delay in connectivity for that end user. same. When someone tries to open the website they could be directed to anyone of the The end affect is that the website would produce an error message for anyone trying to previously stored on their system. Instead when the computer boots up a new address address is what is dialed. Imagine if someone wanted to call you, but the number has the system administrator the time of going to each system and manually setting the of power over night then it is possible that no one would have the same IP address IP addresses for each system. With DHCP the administrator just needs to plug the changed and there is no forwarding number given.

Assigning a static IP address easily solves the problem of a random IP address. Static IP addressing is common for servers and key systems. A static IP address is one that will always be assigned to that particular machine until otherwise instructed. The static IP address for the Videoconference System is 10.24.4.34. Figure 7 is an example of the routing table used to retrieve the Videoconference System's random IP address and Figure 8 is the application window used to program the static IP address of the system.

The 2002-2003 Networking Team 27

(Figure 7)

(Figure 8)

The system is now ready to be tested in a video call. For the purposes of testing the Videoconference System a Veo Digital Web Camera was implemented on a Windows ME operating system. The computer that will operate the Veo Digital Web Camera is a Hewitt Packard Pavilion N5470 with an AMD 4 Athlon processor. The purpose of the Veo Digital Web Camera is to confirm whether the Videoconference System is

transmitting and receiving correctly, not to compare speed of transmission. Figure 9 is an example of how the initial startup screen is displayed once the application is loaded.

(Figure 9)

The initial startup screen gives the systems current phone number / IP address.

The startup screen also allows the user to place a video call, preload documents, and make a telephone call. In order to place a call the user needs to know the address of the system that he/she will be calling. The user also needs to have the system configured to automatically answer incoming calls or the system will just ring to alert someone that a phone call has been made to the system. With the automatic answering service, the system can be left on if another user, in a different location, would like to test there Videoconference System while a user is not present. The preload document option gives the user a chance to load any documents that may be used during the videoconference before the conference starts. This saves a great deal of time when there are many

The 2002-2003 Networking Team 29:

documents that will be used or when the end user has a slower connection. Preloading documents can also help to give the conference a goal to strive towards. Often time people want to speak at the same time and that will greatly influence the noise that one would hear because it will literally sound as if everyone is speaking at the same time and then there is the added background noise that is add from others not participating in the conference. Preloading documents can eliminate many of the questions that may be asked, by providing an outline of the conference.

After several tests of the system the implementation of the TCP/IP connection resulted in a successful evaluation of the video and audio capabilities of the system. The system was able to communicate successfully with the Veo Digital Web Camera. The Intel Pentium III Team Station 384 Version 5.0 Videoconferencing System was able to display the video feed that was coming from the Veo Digital Web Camera and there was little delay as a result from the connection change. The following resulting figures were generated from the cameras. Figure 10 is the Veo Digital Web Camera and figure 11 is from the Videoconference System.

(Figure 10)

(Figure 11)

Elizabeth City State University

ELIZABETH CITY, NORTH CAROLINA

MICKEY L. BURNIM, CHANCELLOR

Honors Convocation

Thursday, April 17, 2003
2:00 o'clock in the afternoon
The Floyd L Robinson Auditorium
Fine Arts Complex

Elizabeth City State University is a constituent institution of

Honors Convocation Program

PRELLIDE	"Legende"	Henryk Wieniawski
Dr. P	enny Kwiatkowski, <i>Violin</i> and Dr. Dangsur	n Song-Lee, <i>Piano</i>
	PROGRAM	
Dr. Car	rolyn Mahoney, Vice Chancellor fo	r Academic Affairs
	- Presiding -	
		ECSU ROTC
INVOCATION		The Reverend Dr. John Luton Department of Language, Literature & Communication
	The University Choir Professor Billy C. Hines, <i>Condu</i>	
INTRODUCTION OF SPEAKER		Mr. Don Morring Sophomore, Honors Program
•		
PRESENTATION OF AWARDS		Dr. Bonita Ewers Associate Vice Chancellor For Academic Affairs
		Dr. Carol Calloway Jones Director, Honors Program
		Miss Joy McGhee Junior, Honors Program
	•	Dr. Mickey L. Burnim
ANNOUNCEMENTS		Miss Jamica Ashley
THE RETIRING OF THE COLORS	S	Miss Jamica Ashley Sophomore, Honors Program ECSU ROTC Fritz Kreisler
POSTLUDE	"Liebeslied"	Fritz Kreisler
Dr. 1	Penny Kwiatkowski, <i>Violin</i> and Dr. Dangsu	
	Special Honor	
CHANCELLOR'S DISTINGUISHED EMBLEM AWARDS Scholars' Blazers		
Natasha C Vincent D		Amy Morgan

RECIPIENTS OF AWARDS

The Honors Program Certificates of Merit 2001 - 2002

Catina Alston
Branden Anderson
Vicky Arrington
Jamica Ashley
Shannon Autry
Bernard Bailey, Jr. V
Jessica Barrier
Kimberly Bond
Tameka Braswell
Asani Brewton
Tamarah Bridges
Gregory Burgess
Ryan Caruso

Carla Chambers
Carinthia Cherry
Gamaliel Cherry
Alvita Clark
Tabitha Clemons
Natasha Coley
Darius Cooper
Julius Council
Charlie Cuffee
Vincent Davis, Jr.
Norma DeVita
Marcos Fabio

Crystal Foust Sharon Gorgani Danielle Graves John Griffith, Jr. Alicia Harrell Danielle Harrigan Rhonda Holmes Shinika Johnson Tracie Johnson Pamela Jones Casey Keys Clayton Knight

Damion Lewis
Roy Martin
Melvin Mattocks
Vivian McDaniels
Joy McGhee
Carrie Miller
Kevin Moore
Amy Morgan
Don Morring, Jr.
Joy Myers
Golar Newby
Tierra Porter

Jennifer Prayer Jessica Prayer Jessica Prayer Jennifer Pride Elizabeth Rascoe Donna Richards Keith Richardson Cleantha Samuel Tiffany Shearn Janice Silver Damiyon Sledge Beshelya Smith Eunice Smith

Zenika Spence RaShawn Spencer Keisha Stephenson DeTra Stith Kymber Taylor Laysha Taylor LaQuisha Tisdal Andrew Vinson, Jr. 4 Nicole Walker Christopher Warden Jamal Willis Takia Winrow

HONORS PROGRAM DARIN L. COLE AWARD	Joy McGhee
THE HONORS PROGRAM GREEK CUP	Delta Theta Chapter
•	Alpha Kappa Alpha Sorority, Inc.
ART	
Achievement Award	Natasha Wynn
Merit Award	Melody Lynch
BIOLOGY	
Clarence E. Biggs Award	Patrice Boyce
Curtis D. Turnage Award	Vivian McDaniels
Herman G. Čooke Research Excellence Award	Don Morring, Ir.
Freshman Certificates of Merit	Amanda Beavers, Tarhata Newby
Sophomore Certificate of Merit	
Evans-Patterson Science Award	Vincent Davis, Jr. 1
BUSINESS AND ECONOMICS	
Outstanding Graduating Senior Award	Nails Pibaria
Gateway Bank/Richard Whiting Outstanding Junior Award	Demetra Cilmore
Gateway Bank/Richard Whiting Most Improved Student Award	
RBC Centura Bank Outstanding Business Administration Award	
First Citizens Bank Outstanding Accounting Major Award	
CHEMISTRY AND PHYSICS	
Rochelle Cleaners Excellence in Chemistry/Physics Award	Vincent Paris In
Certificates of Academic Excellence	mataulia Rah Linwood Crahkmara III
Certificates of Academic ExcellenceRa Torreon Creekmore, Vincent	Disvis Ir Marcoc Fabio Kevin Moore
Society of Physics Students (SPS) Award - Sophomore	Marcos Fabio.
Society of Physics Students (SPS) Award - Junior	
Society of Physics Students (SPS) Award - Senior	Vincent Davis Ir
Society of Physics Stduents (SPS) Award - Outstanding Achievment in	PhysicsRamatoulie Bah
	Torreon Creekmore, Vincent Davis, Jr.
EDUCATION AND PROCHOLOGY	
Charles A. Bryant Scholarship	Coul Course
Claude W. & Lois W. Green Scholarship	
Academic Achievement in Elementary Education	
Academic Achievement in Lientendary Education	Barbara Beck, Michelle Pennington
Academic Excellence in Middle Grades Education	Cristy Rinder
Psychology New Student of the Year	
Psychology Sophomore of the Year	Iov Myers
Psychology Junior of the Year	Kimberly Green
Psychology Senior of the Year	Kathleen Stadler
Psychology Student of the Year	Teresa Watkins
Teacher Education Academic Achievement Award	Cristy Binder, Roberta Branch
	eland, Rose Figura, Kimberly Maggette
Penelope Pugh, Angela Rou	ntree, Kristen Waters, Lauren Woolard
EDUCATIONAL TALENT SEARCH	
Academic Excellence Award	Tarhata Newhy
Exemplary Service Awards	Shavla Brooks
	Krystal Harris, Tracie Johnson Tahquetta Jones, Elizabeth Rascoe
GENERAL STUDIES	
General Studies Academic Achievement Award	La/Varis Poolo
	La valis roole
GEOLOGICAL, ENVIRONMENTAL AND MARINE SCIENCES	
Geology Academic Excellence Award - Freshman	Lindsey Hayes
Geology Academic Excellence Award - Sophomore	Asani Brewton
Geology Academic Excellence Award - Senior	Patty Rennert
Marine Environmental Science Academic Excellence Award - Junior	
Marine Environmental Science Academic Excellence Award - Senior	Cleantha Samuel
INCENTIVE SCHOLARSHIP PROGRAM	
Outstanding Freshman Incentive Scholar	Heather Copeland
Outstanding Sophomore Incentive Scholar	
	G, y

Outstanding Junior Incentive Scholar	
Outstanding Junior Incentive ScholarOutstanding Senior Incentive Scholar	Natasha Coley
LANGUAGE, LITERATURE & COMMUNICATION	
Graduating Senior Award	Antonio Barrow
E. M. Spellman Award	Antonio Barrow
·	/
MATHEMATICS & COMPUTER SCIENCE	
ONR Research Award of Excellence	
ONR Research Program Awards	Millia Cilabriat Danastrius Domas Karitas Milliamsk
Office of New J. Proceeds Calculation Accords	Willie Gilchrist, Demetrius Rome, Karitsa Williams Shayla Brooks, Dana Brown, Shayla Brooks, Dana Brown, Danielle Graves, Javon Griffin, Paula Harrell, Golar Newby
Office of Naval Research Scholars Awards	Daniella Creves Javon Criffin Baula Harkell, Color Nauby
Vincent Davis, Jr., i	Danielle Graves, Javon Grillin, Faula Harrell, Goldrinewby
Carl Seward	, Eunice Smith, Rodney Steward, Nelson Veale, Jeff Wood
J. L. Houston Mathematical Sciences Award	Darius Cooper
Omiori Locus Computer Science Award	Darius Cooper
MILITARY SCIENCE	
Academic Sophomore Achievement Award	
Academic Junior Achievement Award	
Academic Senior Achievement Award	Donna Richards
MUSIC	
Music Department Award	Branden Anderson, Jennifer Futrell
Edna Davis Award	Dale Pendleton
Charles Penrose Award for Woodwind	Andrae Banks
Florence Folks Lassiter Scholarship	Dale Pendleton
	•
RONALD E. McNAIR POSTBACCALAUREATE ACHIEVEMENT PRO	GRAM
Eagle AwardChallenger Awards	Carl Seward
Challenger Awards	Shayla Brooks, Tanya Chesson
	vincent Davis, jr., Fatina Smith, Chaquella vvorthington
Excellence Without Excuse Award	Natasna Coley
SOCIAL SCIENCES	
Academic Excellence in Criminal Justice	Sharon Creef
Academic Excellence in Sociology	
Academic Excellence in History	
Academic Excellence in Political Science	Jerry Lane, Jr.
Social Work Highest GPA Award / Transfer	Natasha Coley Jennifer Clagg
Social Work Achievement Awards	Jennifer Clagg, Natasha Coley
Social Work Achievement Awards	Elaine Fleetwood, Krystal Harris, Carrie Iseghohi
	Pamela Jones, Davona Mitchell, Chaquella Worthington
	Turrela jories, Burona Pricerein, Chaquella Profumigion
STUDENT AFFAIRS DIVISION	
Davis Cup	Complex Residence Apartments
	Accepting - Crystal Foust, Vincent Davis, Jr.
Honda Campus All-Star Challenge Team	Donald Cartwright, Kimberly Hoggard
Commuter Student-of-the-Year	Clayton Knight, Shannon Penn, Khory Perry
Commuter Student-of-the-Year	virginia Taimadge
STUDENT SUPPORT SERVICES PROGRAM AWARD	Terrunda Taylor
TECHNOLOGY	District the second
Technology Faculty Award - Freshman-Industrial Techonology Technology Faculty Award - Freshman-Aviation Science	Donaid Tinsley
Technology Faculty Award - Freshman-Aviation Science	Jones Pohoim Using
Technology Faculty Award - Sopnomore-Industrial Technology	logyRaheim Helms yyIoshua Sawyer, Micheala Williams
	ologySteven Gordin
recimology raculty senior Award - industrial recime	nobydeven dorum

Elizabeth City State University is committed to equality of educational opportunity and does not discriminate against applicants, students, or employees based on race, color, national origin, religion, gender, age, or disability.

CLUBS AND ORGANIZATIONAL AWARDS

The Alpha Kappa Alpha Sorority, Incorporated Scholarship	
Delta Theta Chapter	Carl Seward
The Alpha Kappa Alpha Sorority, Incorporated Scholarship	
Zeta Kappa Omega Chapter	Crystal Davis
The Delta Sigma Theta Sorority, Incorporated Scholarship	·
Elizabeth City Alumnae Chapter	Tina Noriega
Class of 1967 Scholarship	
	Tamika Groves

WHO'S WHO

Catina Alston
Branden Anderson
Patrice Boyce
Natasha Coley
Joseph Cochran
Linwood Creekmore, III
Vincent Davis, Jr.
Norma DeVita
Demetra Gilmore
Javon Griffin

Tamika Groves
George Jerman, Jr.
Courtnay Jordan
Jerry Lane, Jr.
Jason Mitchell
Golar Newby
Jonathan Owens
Tanyetta Pittman
Neils Ribeiro
Keith Richardson

Cleantha Samuel
Carl Seward
Kristen Snead
DeTra Stith
LaQuisha Tisdal
Deborah Vines
Monica Vrablic
Kevin Wade
Tracey Ward

Chancellor's Distinguished Emblem Award Spring Semester 2001-2002

Rebecca Armstrong Melissa Austin Shannon Autry

Ramatoulie Bah *v* Jessica Barrier

Keiomi Berry

Tonya Brinkley Naighani Broughton

Eri**&**Byrum

William Chappell Carinthia Cherry

Catreina Cherry
Gamaliel Cherry

Tabitha Clemons

Natasha Coley

Vincent Davis, Jr.

Crystal Foust

Gregory Gilbert Sharon Gorgani

Jean Griffin

Kristel Hedgepeth

Rebecca Hoeppner

Sherri Horner Tiffany Jones

Crystal Jordan

Monique Joyner

Billie Malatesta Heather Malone

Vivian McDaniels

Barbara McDermott

Joy McGhee Carrie Miller Amy Morgan

Don Morring, Jr.

Michael On

Devine Overton

Crystal Owens

Inger Parker

Tierra Porter
Joshua Quidley

Latonya Raynor

Donna Richards

Cleantha Samuel
Sharonne Sawyer

Jenny Scott

Kristi Shank

Crystal Simpson
Beshelya Smith

Casey Maderazo

Kacey Smith

Zenika Spence

Risha Stallings

Kristin Suchy

Virginia Talmadge

Laysha Taylor

Tia Thorne

Kevin Wade

Tanya Warde

Lasindra Webb

Davina White

Delia Wiggins

Rukiya Williams

Chaquella Worthington

Elaine Yarborough

Chancellor's Distinguished Emblem Award Fall Semester 2002-2003

Enoch Alexander
Branden Anderson
Chrystal Anderson
Vicky Arrington
Jamica Ashley
Shannon Autry
Ramatoulie Bah
Joanelle Baptiste
Antonio Barrow
Amanda Beavers
Amy Benton
Naiyhani Broughton
LaraeShontee Butcher

Amanda Beavers
Amy Benton
Naiyhani Brought
LaraeShontee But
Anna Cahoon
Ryan Caruso
Jameson Clark
Natasha Coley
Ava Cooper
Darius Cooper
Ebony Copeland

Norma Devita
Dashaun Dorsey
Lisa Duke
Marcos Fabio
Crystal Foust
Sharon Gorgani
Danielle Graves
Kimberly Green
Javon Griffin
Katherine Harrell
Sheena Harrell
Lindsey Hayes
Bonnie Higgins

Heather Copeland

Javon Griffin
Katherine Harrel
Sheena Harrell
Lindsey Hayes
Bonnie Higgins
Leslie Holden
Jean Jackson
Clayton Knight
Betty Liles
Nikki Luton
Dreama Lyons

Billie Malatesta **Heather Malone** Joy McGhee Lauren Meads Carrie Miller Jasheen Mizelle **Amy Morgan** Don Morring, Jr. Tarhata Newby Jonathan Owens Tierra Porter Jennifer Prayer Jessica Prayer Joshua Quidley Michelle Ragland **Neils Ribeiro** Yvonne Ribeiro-Yemofio Keith Richardson

Demetrus Rorie 🗸

Jenny Scott
Carl Seward
Eunice Smith
Sandra Sneed
Shontel Spruill
Lisa Spry
Tracy Staton
Louise Steiner
DeTra Stith
Timothy Summers
Terrunda Taylor
Tia Thorne
Donald Tinsley
Chukwuemeka Ugo

Cleantha Samuel

Chukwuemeka Ugochukwu Jennifer Vanhorn Kristen Waters Jeffrey Wood Natasha Wynn

Honors Spring Semester 2001-2002

Chancellor's List: 3.75 to 4.0 Average

Dixie B. Armstrong
Rebecca D. Armstrong
Theresa Ly. Atwood
Melissa R. Austin
Jason R. Baccus .
Ramatoulie Bah //
Deanne M. Bailey
Joanelle J. Baptiste
Jessica A. Barrier
Barbara J. Beck
Kelomi N. Berry
Leigh A. Bierman
Cristy S. Binder
Roberta D. Branch
Tara D. Brinkley
Tonya Brinkley
Tonya Brinkley
Tonya Brinkley
Lesile A. Brothers
Nalyhani C. Broughton
Clinton D. Burdick
Mary L. Bynum
Eric M. Byrum
Rysum J. Carruso
William H. Chappell
Carinthia A. Cherry
Catrelina D. Cherry
Gamailel R. Cherry
Jenniger L. Clagg
Tabitha C. Clemons

Betty Cobb
Natasha S. Coley
Joynell T. Collins
D'Andra H. Compher
Darlus Cooper
Sharon S. Creef
Vincent A. Davis
Sharon S. Creef
Vincent A. Davis
Lisa C. Duke
Autum P. Edwards
Alica K. Evans
Amber L. Everett
Romona G. Ferebee
Marquita L. Figgs
Kimberly D. Fisher
Crystal R. Foust
James W. Fox
Christi Froelich
Jennifer A. Futrell
Gregory J. Gilbert
Sharon L. Goehring
Steven D. Gordin
Sharon Gorgani
Dean J. Gough
Shkia J. Grant
Dave L. Gray
Jarvis Kevin Gray
Makitta M. Gregory

Jean Griffin
Patricia E. Griggs
Linda W. Grimes
Victoria G. Hall
Gall M. Harris
Kristei L. Hedgepeth
Thomas B. Heggle, IV
Marcia P. Hobbs
Rebecca L. Hoeppner
Lakesha Holley
Sherri G. Horner
Cynthia E. Howington
Stephanie Humphries
Egony M. Hunter
David W. Jackson
Debora L. Jackson
Jean L. Jackson
Jean L. Johnson
Gloria L. Johnson
Gloria L. Johnson
Tiffany L. Jones
Crystal L. Jordan
Monique S. Joyner
Clayton Knight
Robert D. Lee
Gary H. Littleton
Rikki R. Luton

William B. Luton
Carla N. Malne
Bille Jo Anne Malatesta
Heather A. Malone
Brenda D. Markham
Stacy D. Marriner
Elizabeth A. Martins
Grant E. Masson
Kendra C. McClees
Vivlan J. McDaniels
Barbara Dale McDermott
Joy L. McGhee
Lisa F. Meads
Carrie E. Miller
Gina R. Miller
Miriam N. Mojarro-Guintero
Helen W. Moore
Amy O. Morgan
Don M. Morring, Jr.
Darryl H. Napler
Madeline S. Nunley
Michael V. On
Devine D. Overton
Frances L. Overton
Crystal D. Owens
Inger L. Parker
Mary A. Parker

Phillip W. Patrick
Richard F. Petersen
Tierra M. Porter
Kristy M. Poyner
Kristy M. Raynor
Donna M. Richards
Selma Riddick
Cleantha D. Samuel
Emma L. Sawyer
Sharonne T. Sawyer
Sharonne T. Sawyer
Sarah E. Scaff
Jenny Marie Scott
Kristi Shank
Crystal D. Simpson
Olga H. Simpson
Olga H. Simpson
Delshelya D. Smith
Kacey L. Smi

Julia G. Todd
Melinda R. Vaughn
Kevin J. Wade
Kristie Walker
Kristopher K. Wallace
Ru-Hsuan S. Wang
Tanya R. Ward
Teresa B. Ward
Teresa B. Ward
Teresa L. Watkins
Cynthia S. Watts
Rena L. Webb
Dawn S. Weeks
Davina L. White
Delia W. Wiggins
Kia M. Williams
Ruklya S. Williams
Joseph C. Willis
Jeffrey A. Wood
Craig L. Woodward
Lauren C. Woolard
Chaquella S. Worthington
Natasha D. Yancey
Elaine V. Yarborough

Vice-Chancellor's List: 3.50 to 3.74 Average

Kirby M. Aiston Branden G. Anderson Chrystal L. Anderson Jamica Ashley Joseph Ausby, Jr. Connie P. Balduf Antonio D. Barrow George W. Basnett, Jr. Susanne D. Blevins Larry A. Blunt Asani D. Brewton Rhonda J. Britton Carmen A. Brown Erica D. Burnell Brandon L. Burris Athena Chasteen Angela R. Cohoon Mark P. Copeland

Tina B. Craddock Brian W. Damron Dedrick M. Danlels Christopher M. Davidson Kindred D. Davis Shantel N. Davis Norma J. Devita Dorothy O. Dowlning Lauren M. Elfring Philip J. English Tamekia M. Evins Marcos J. Fablo Crystal L. Forbes Wille J. Gilchrist Demetra J. Gilmore Jamila C. Godfrey Danielle C. Graves Kimberly Green

Sharon R. Griffin Shavonne L. Harcum Jerry W. Harreli Krystal M. Harris Kristal J. Holley Rhonda L. Holmes Lacey A. House Tacle L. Johnson Amber B. Jones Sharon E. King Tiffanie E. King Chimur S. Knight Teresa H. Inight Brandy B. Lassiter Betty P. Liles Tamara T. Little Dreama A. Lyons Casev Maderazo

Courtney E. Markham Kimberly D. McPherson Michelle A. Melvin Stephanie R. Miller Davona T. Mitchell Swany C. Mojarro Audrey A. Moore Joy A. Myers Liea R. Newbern Shanna A. Nixon Amy F. Owens Flora M. Parker Christopher R. Patterson Shani S. Peebles Michelle S. Pennington Lorl H. Perry Jason L. Potter Jennifer L. Prayer

Neils F. Ribeiro Angel R. Richardson Keith O. Richardson Ray E. Seler Jenelle B. Simpson Ginger H. Skinner Jason C. Small Fatina M. Smith Katrina A. Smith Kendra C. Smith Melissa M. Smith Leeka C. Sock Quintina C. Speller Lachelle W. Spence Kathleen M. Stadler Rodney I. Stewart v Tiothy C. Summers Chiquita L. Sutton

Khalilah R. Taylor Rebecca R. Thompson Laguisha A. Tisdai Khima L. Toxey Simone N. Uter Quincina Uzzell Jennifer F. Vanhorn Shamelka T. Vick Timothy J. Walter Stephanie L. White Latoyla S. White-Balley Chantee Wilkins Penda R. Wilkins Michaela R. Williams Anita L. Ogoman Ricky T. Wooten Natasha L. Wynn Melanie M. Young

Honor List: 3.00 to 3.49 Average

Reba F. Ackiss
Gregory E. Ackles, Jr.
Saidah K. Adkins
Hope A. Albritton
Enoch M. Alexander
Kristopher S. Alexander
April D. Allen
Catina R. Alston
Tanya M. Arellano-Chesson
Octabia T. Armond
Tanelsha S. Armstrong
Adrienne L. Arrington
Vicky I. Arrington
Bernard W. Bailey, Jr.
Ray E. Baker
Katrisha L. Barner
Le'Comfort A. Barnes
Mariel C. Barnes
Angela T. Barrington
Hilda S. Barrow
Shanique L. Beale
LaKesha S. Beamon
Lexsene Beasley
Holly L. Benton
Lesley A. Berhardt
Antonio D. Bess
Millon Blackshear
Jennifer L. Blackwell
Coza B. Blunt
Enouch D. Bond
Kimberly W. Bond
LaVar D. Bond
Cedric D. Booth
Charles P. Bowe
Kina S. Bowe
Patrice M. Boyce
Mario T. Bradley
Keyainte M. Bradshaw
Victor A. Branch
Joshua W. Brickhouse
Tamara M. Bridges
Joplin D. Brock
Arny A. Brothers
Cartrell K. Brown
Kipley E. Brown
Tiffany N. Bryce
Gregory C. Burgess
LaraeShontee A. Butcher
Erica L. Butts

Heather D. Caffee
Michelle M. Carver
Shamika L. Cash
Carla S. Chaenbers
Jessica S. Chao
Tameka N. Cherry
Mandy L. Clapp
Alvita C. Clark
Lacoyia O. Cobb
Jeffrey W. Coffeld
Damlan A. Conyers
Ebony M. Copeland
Amber D. Corbell
McKeith L. Cordell
Candace D. Cosgrove
Quentona F. Cothran
Dicle M. Couch
Julius L. Council
Monique G. Cowell
Torreon N. Creekmore V.
Charlle W. Cuffee
Kerry-Ann L. Cummings
Barbara M. Davis
Patricia A. Davis
Shequita C. Davis
Anissa Deltoro
Monisha L. Downing
Carla C. Eason
Alexander L. Edwards
Kimberly T. Edwards
Kimberly T. Edwards
Kimberly T. Edwards
Kimberly T. Edwards
Latoya S. Eley
Shaleka L. Eley
Vershawn L. Eiey
Latisha J. Ferguson
Margle C. Ferrell
David L. Flanders
Elaine Fleetwood
Justin A. Ford
Tasha S. Ford
Latisha M. Freerman
Jennifer W. Fueston
Temekla Gilliam
Osvaldo E. Gonzalez
George K. Gordon
Wyconda D. Grray
Trina L. Gregory
Khaliah D. Grifffin
Lina J. Griffin

Joshua B. Harrell
Paula R. Harrell
Paula R. Harrell
Heather D. Harrington
Lauren E. Harrie
Schquetta L. Hawkins
Tommie E. Hedgepeth, Jr.
Rahim M. Helms
Bonnie N. Higgins
Kimberly T. Hill
Kenya N. Hinton
Kimberly R. Hockeday
karen J. Hoffman
Lesile L. Holden
Antoninetteinolley
Lorraine M. Holley
Calvin R. Hudgins
Marquiche O. Hughes
Cory A. Hunt
Calvin M. Hurdle
Sonya J. Ingram
Carrie L. iseghohl
Leverne Jackosn
Teresa L. James
Katrina E. Jeffers
Rita O. Jennings
Devin B. Jerman
George M. Jerman, Jr.
Brexton R. Jernigan
Steve A. Jernigan
Steve A. Jernigan
Steve A. Jernigan
Steve A. Jennigan
Steve A.

LaQuanda P. Leary
Dwayne A. Leonard
Lindsay C. Lewis
Timothy M. Lewis
Kendrick A. Lynch
Melody Lynch
Lakelsha S. Mallory
Mark A. Martin
Roy P. Martin, IV.
Autry B. Mattison
Melvin L. Mattocks
Danielle McCalin
Amanda L. McDonald
Terri L. McKean
Marcus R. McPhatter
Maurice A. McPhatter
Maurice A. McPhatter
Lauren A. Meads
Clayton N. Mercer
Teri R. Mercer
Jennifer L. Midgett
Antonio N. Milliken
Lakisha N. Millis
Jason A. Mitchell
Stephanie Y. Mitchell

Amanda R. Ralph
Elizabeth T. Rascoe J
Domaine D. Reels
Shandreka G. Reid
Shawneque L. Reid
Patty L. Rennert
Yvonne Ribeiro-Yemofio
Bobby S. Richardson
La Toya N. Richardson
Hope M. Riddick
Montrayl D. Riddick
Montrayl D. Riddick
Montrayl D. Riddick
Ashby M. Roane
Benekla N. Robbinso
Chanta' R. Robinson
Kendra Jo Roche
Chrishanda A. Rodgers
Katrevia R. Rodgers
Katrevia R. Rodgers
Ratrevia R. Rodgers
France D. Seliers
Erick M. Stampe
Tiffany K. Shearn
Justin D. Shore
Travis A. Shoulars
Sophia L. Sibert
Nicky M. Silver
Guernardo Simmons
Nekeshia G. Simmons
Elizabeth A. Elmpson
Shica T. Simpson
Eunice D. Smith
Tyreka Smith
Sandra M. Sneed
Lori S. Speller
Mary L. Spivey
Antwain L. Spratley
Travis J. Sprulli
Kimberly D. Stanley
Travis J. Sprulli
Kimberly D. Stanley
Trava B. Sutton
Barbara B. Sutton
Barbara B. Sutton
Barbara B. Sutton
Kent C. Sustin
Latoyal S. Swindell
Anthony D. Taylor
Olivia G. Taylor

Patricia A. Taylor Elaina R. Terry Tenisha M. Tillery Monica L. Tillety Monica L. Tillety Jeremy P. Todd Tony D. Tollver Bethany M. Tucker Denald R. Turner, Jr. John D. Twine DeAsia M. Tyler Kasandra L. Umphlett Aaron M. Underdue Tilffany Valentin Lanny L. Vickrey Deborah A. Vines Andrew L. Vinson, Jr. Monica J. Vrabilic Wendy M. Wallace Darius D. Walston Free L. Walston, Jr. Holly H. Wang Raquita M. Washington Emilio J. Waters Jentry R. Web Sharonda M. Wells Kendra D. Whidbee Anicka F. White Rachel E. Wh

Honors Fall Semester 2002-2003

Chancellor's List: 3.75 to 4.0 Average

Enoch M. Alexander Helen C. Amos Chrystal L. Anderson Dixie B. Armstrong Tammy L. Armstrong Vicky I. Arrington Jamica Ashley Shannon D. Autry Jason R. Baccus Famatoulie Bah Joanelle J. Baptiste Antonio D. Barrow Armanda F. Beavers Barbara J. Beck Amy L. Benton Ann B. Benton Michael S. Benton Cristy S. Binder Sherri D. Blount Benjamin D. Blystone Roberta D. Branch Mary A. Bray Michele W. Brickhouse Teresa B. Bridgers Tara D. Brinkley Nalyhani C. Broughton Megan A. Bunch LaraeShontee A. Butcher

Anna J. Cahoon
Robin L. Calloway
Ryan J. Caruso
Jennifer L. Clagg
Jameson G. Clark
Betty Cobb
Lacoyla O. Cobb
Jospeh D. Cochran
Angela R. Cohoon
D'Andra H. Compher
Ava B. Cooper
Ebony M. Copeland
Heather D. Copeland
Heather D. Copeland
Tina B. Craddock
Sharon S. Creef
Terl A. Doleskl
Dashaun M. Dorsey
Shannon A. Doyle
Lisa C. Duke
Don S. Etherldge
Amber L. Everett
Marcella Ference
James W. Fox
Christi Froelich
Alliaon A. Galovic
Valerie C. Garland
Anthony N. Gilbird

Jamila C. Godfrey Sharon L. Goehring / Danielle C. Graves David L. Gray Kimberly Green Cindy E. Griffin / Javon Griffin / Shavonne L. Harcum Carisa J. Harreil Jerry W. Harreil Sheena M. Harreil Sheena M. Harris Shari J. Harris Shari J. Harris Lindsey Hayes Bonnie N. Higgina Kimberly B. Hoggard Leslie L. Holden Lakesha Holley Kerry A. Hughes Stephanie Humphries Jean L. Jackson Amber D. Johnson Cassandra J. Jones brenda P. Jordan Kendra L. Keith Sharon E. King Clayton Knight

Teresa H. Knight
Robert D. Lee
Damion O. Lewis
Betty P. Liles
Nikki R. Luton
Dreama A. Lyons
Katrina L. Macklin
Casey Maderazo
Marcia P. Majett
Billie Jo Anne Malatesta
Lakeisha S. Mailory
Heather A. Malone
Elizabeth A. Martins
Joy L. McGhee
Lauren A. Meads
Kenneth R. Mihalyov
Carrie E. Miller
Jason A. Mitchell
Jasheen D. Mizelle
Don M. Morring, Jr.
Darryl H. Napier
Tarhata N. Newby
Paul M. Overmann
Jonathan M. Owens
Mary A. Parker
Sharon W. Peavy
Milchelle S. Pennington
Lori H. Perry

Tiffany M. Perry
Karen A. Petersen
Tierra M. Porter
Jennifer L. Prayer
Penelope A. Pugh
Joshua D. Quidley
Michelle A. Ragland
Amanda R. Raiph
Neils F. Ribeiro
Yvonne Ribeiro-Yemoflo
Katrevia R. Rodgers
Demetrus M. Rorie
Angela F. Rountree
Cleantha D. Samuel
Jill M. Sarmie
Emma L. Sawyer
Joshua J. Sawyer
Joshua J. Sawyer
Sarah E. Scaff
Jenny M. Scott
Carl W. Seward
Eunice D. Smith
Sandra M. Sneed
Pamela A. Spruill
Lisa L. Spry
Kathleen M. Stadler
Tracy L. Staton
Louise A. Steiner

Timothy C. Summers
Elizabeth A. Sykora
Patricia A. Taylor
Susan R. Taylor
Terrunda T. Taylor
Keisha Y. Thomas
Tia N. Thorne
Donald Tinsley
Chukwuemeka Ugochukwu
Simone N. Uter
Kristen VanHorne
Jennifer F. Vanhorn
Melinda R. Vaughn
Deborah A. Walsh
Alberta N. Wandell
Kristen M. Waters
Rena L. Wear
Joseph G. Webb
Meleen D. Webb
Wendy E. White
Kenya L. Whittington
Doretha W. Woods
Craig L. Woodward
Lauren C. Woolard
Natash L. Wynn
Paulline A. Younger

Vice-Chancellor's List: 3.50 to 3.74 Average

Hope A. Albritton
LaToya R. Allen
Patrick A. Ball
Edgar T. Barrow
Hilda S. Barrow
Shanique L. Beale
Hilbert L. Beasley
Kimberty N. Bedgood
Teresa R. Blount
Candida L. Bond
Shella M. Brady
Carmen A. Brown
Alton Bunch
Charlta M. Burden
Erica D. Burnell
Charisma D. Canly
Latanya M. Carr
Carla S. Chambers
Alvita C. Clark

Mark P. Copeland Brian W. Damron Dedrick M. Daniels Iliana T. Daniels Crystal D. Davis Paulique M. Duson Carla C. Eason Latoya S. Eley Danielle A. Farris Jessica E. Fields Lisa J. Finch Crystal L. Forbes Justin A. Ford Shawn J. Gary Jeddiah U. Gist Dawn S. Graham Shkia J. Grant Johna B. Graffith, Jr. Takeyla N. Hall Joshua B. Harrell Schquetta L. Hawkins Kristel L. Hedgepeth Andrea M. Hill James N. Hill Lacey A. House Calvin M. Hurdle Shinika S. Johnson Nina S. Jones Monique S. Joyner Valez M. Kendrick Chimur S. Knight Jerry T. Lane, Jr. Erin E. Leary Debra A. Luke Ashley K. McCleary Kendra C. McCleary Kendra C. McCleary Kendra C. McClees Jeffifer L. Midgett Neille V. Mitchell Audrey A. Moore Kichelle N. Niles Shanna A. Nixon
Allison M. Ownbey
Reggle L. Parker
Steven A. Parker
Philip W. Patrick
Renee D. Pendleton
Shalonda L. Poole
Jennifer M. Powers
Maureen C. Pulley
Robin L. Reese
Jennifer R. Reinholz
Cherle N. Richards
Marceller R. Riddick
Novella B. Riddick
Kendra Jo Roche
Suzette B. Rodgers
Ashiee F. Rose
Jennifer A. Rountree
Jamon Rouse
Shawnell D. Scott
Glovette O. Shannon

Alicia S. Simpson
Regina E. Simpson
Alisha M. Smith
Fatina M. Smith
Melisaa M. Smith
Michael D. Stallings
Raymond S. Stallings
Quinnesha N. Staton
Rodney I. Stewart
Frandon M. Strausser
Kristin E. Suchy
Shameka S. Sutton
Michelle C. Swain
Virginia A. Talmadege
Raymond Tann
Toby G. Tate
Irene S. Teleky
Maceo J. Thomas
Marquita Thompson
John D. Twine
Kasandra L. Umphlett

Monica J. Vrabilc Kevin J. Wade Michael L. Webb, II Sharonda M. Welle Rashonda D. Wester Annette C. Whidbee Rachel E. White Sherron D. White Angela T. White-Davis Sarah M. Whitehurst Kimberly Whitmire Della W. Wiggins Billy Williams, Jr. Cylla D. Williams Adreene L. Wilson Nancy A. Wilson Connie C. Winslow Melanie M. Young

Honor List: 3.00 to 3.49 Average

Reba F. Acklss
Kristopher S. Alexander
Kiana N. Allen
Latesha M. Allen
Catina R. Alston
Kirby M. Alston
Anthony M. Anderson
Justin E. Anderson
Lizette S. Armstrong
Edna M. Arnesen
Akilah Arrington
Terek R. Askew
Joseph Ausby, Jr.
Ann L. Baker
Kelly L. Banks
Katia P. Barber
Mariel C. Barnes
Angels T. Barrington
George W. Basnett, Jr.
Ginjah A. Battiste
Lesiey A. Bernhardt
Jennifer L. Blackwell
Susanne D. Blevins
Larry A. Blunt
LeVar D. Bono
Kina S. Bowe
Patrice M. Boyce
Asani D. Brewton
Tonya Brinkley
Joplin D. Brock
Shayla R. Brooks
Jeanette Brothers
Dana V. Brown
Kipley E. Brown
Randy Brown
Willie L. Brown
Amanda L. Bruce
Tamario D. Bryant
Allson El. Buck
Clinton D. Burdick
Brandon L. Burris
Erica L. Butts
Latoya D. Bynum
Grace V. Carter
Sharika Y. Carter
Sharika Y. Carter
Sharika J. Caerry
Tameka N. Cherry

Mandy L. Clapp
Tory A. Clark
Kendra M. Cobb
Willie E. Cofleid
Argyle J. Collins
Faleisha L. Cooper
Mark S. Cooper, II
Nicholas G. Cooper
Candace D. Cosgrove
Quentona F. Cothran
Julius L. Council
J. Linwood Creekmorev
Kenneth A. Creighton
Kerry-Ann L. Cummings
Chelsey N. Daniels
Brookes Davis
Joseph W. Davis
Sondrea L. Davis
Sondrea L. Davis
Sondrea L. Davis
Onorbisha L. Downing
Monisha L. Edwards
Stacey R. Edwards
Caccheaus R. Eley
Shaneka A. Ellis
Darius D. Eure
Garre'Le'Kelth Evans
Edita M. Ewell
Devona M. Falson
Corey L. Faitz
Courtney D. Farmer
Leann K. Ferrell
Marguita L. Figgs
Cijl D. Finch
Johnnie L. Finch, Jr.
Portia R. Fore
Susan M. Fortenberry
Anka W. Freeman
Johnny M. Fuller, Jr.
Shelley D. Garriss
Jameson D. Gibbs
Temekia Gilliam
Demetra J. Gilmore
Gwendolyn F. Glasper
Amanda P. Godfrey
Tiffarie L. Goffigan
Gracie D. Goss
Stephanie A. Goss
Jonelle L. Graham

Jarvis K. Gray
Wyconda D. Gray
Susan E. Green
Makitta M. Gregory
Melvona J. Griffin
Sharon R. Griffin
Tina J. Griffin
Juanita D. Grimes
Tamika R. Groves
Patricia J. Halsey
Catherine M. Harrell
Paula R. Harrigh
Javont's J. Halsey
Catherine M. Harris
Lauren E. Harris
Tiffany M. Harris
Lonnel R. Harris
Lonnel R. Harris
Tomnie E. Hedgepeth, Jr.
Rahim M. Heims
Jerquitta C. Hicks
Heather R. Higgins
Tiffany S. Hill
Kimberly R. Hockaday
Kavona T. Holley
Tinitra J. Holley
Keisha M. Holloman
Shamecka N. Hopkins
Marlea P. Jackson
Jacklyn C. James
Teresa L. James
Tijan F. Jarra
Katrina E. Jeffers
George M. Jerman, Jr.
Latanya S. Johnson
Jesse G. Jones
Ulessia L. Jones
Wendy R. Jones
Bridget A. Jordan
Wyatt R. Jordan
Wyatt R. Jordan
Sean M. Kaldah
William E. Kearney
Brandye S. Kellog
Tre'ona S. Kelby
Andreae R. Kersey
Stephanle R. Kudyba
Brook R. Lane

Alyssa C. Lanler
April W. layton
Alsha R. Lewis
Lindsay C. Lewis
Latisha L. Lofton
Marquita L. Lovick
Melody Lynch
Elizabeth D. Lyons
Kelly A. Mahaffey
Carla N. Malne
William M. Marsfield
Brenda D. Markham
Mark A. Martin
Jennifer Y. Mason
Autry B. Mattison
Kendell S. McClain
Kenneth P. McCoy
Shayia L. McDuffle
Marcus R. McPhatter
Nicolas T. Meadows
Michelle A. Melvin
Teri R. Mercer
Stephanie R. Miller
Davon M. Mitchell
Davona T. Mitchell
Davona T. Mitchell
Amber C. Moore
Antinony M. Moore
Dexter R. Moore
Kevin E. Moore
Stephanie R. Miller
Joy A. Myers
Jamie L. Nash
Nickesha M. Neal
Tina M. Noriega
Christopher X. Oliver
Veronica S. Ormond
Robert L. Overton
Nichole C. Paige
Catherine Z. Papoulogiou
Shanyell M. Parker
Torlano A. Parker
Marques D. Prks
Malsha Parrieh
Shannon E. Penn
David G. Pernie
Lyda R. Perry
Larissa G. Person
Tanyetta M. Pittman
Lar'Varis Poole
Kristy M. Poyner
Cedric T. Pratt

Serena C. Price
Jennifer B. Pride
William B. Privott
Candace Ransom
Krystal Ransom
Krystal Ransom
Krystal Ransom
Krystal Ransom
Hope M. Richardson
Hope M. Richardson
Hope M. Richardson
Hope M. Richardson
Hope M. Riddick
Kristie L. Riddick
Ronnie R. Riddick
Ronnie R. Riddick
Ristie W. Rose
Sieronda M. Rountree
Kristina L. Sanchez
Tanya L. Sanchez
Tanya L. Sanchez
Tanya L. Sanchez
Travis A. Shoulars
Jennifer Silverwood
Sirena Silmmons
Tiyon L. Simmons
Tiyon L. Simmons
Tiyon L. Simpson
Marquita S. Marquita
Marquita S. Marquita
Marquita S. Marquita
Marqu

Anna L. Sutton
Barbara B. Sutton
Tiffany E. Sutton
Marlan R. Sykes
Anthony D. Taylor
Teyona L. Taylor
Londrea R. Thomas
Wendell O. Thomas
Wendell O. Thomas
Wendell O. Thompson
Evelyn T. Thombon
Jeremy P. Todd
tony D. Tollver
Carleesha R. Tucker
Urica A. Twine
Shaina L. Tyler
Esther A. Upton
Quincina Uzeall
Velsen D. Veste
Valenta J. Wade
Shar Torna D. Walker
Darlus D. Weston
Mona M. Walton
Ru-Hsuan S. Wang
Lisa N. Ward
Sharneka N. Ward
Sharneka N. Ward
Sharneka N. Ward
Sharneka N. Ward
Horna S. Wesson
Donald L. Whidbee
Brian A. White
Taylitha L. Wilkins
Davld G. Williams
Lavonda N. Whitt
Tablitha L. Wilkins
Davld G. Williams
Ta D. Williams
Tia D.

Page 1 Page 2

U OMK Program

Georgia Tech Focus 2003

FOCUS is designed to give prospective African American graduate students and faculty an opportunity to receive an overview of the academic programs at Georgia Tech and participate in the Dr. Martin L. King, Jr. celebrations. Focus 2003 also provided financial alternatives and assisted in the overall decision-making process for selecting a graduate school.

Some of the featured speakers were:

Calvin Mackie
Co-founder of Channel Zer0

Dixie Garr, vice president, Customer Success Engineering, Cisco Systems, Inc.

Marian Wright Edelman Founder/Pres. of Children's Defense Fund (CDF)

ECSU CINZ Pingiam

Georgia Tech Focus 2003

MATERIAL ASSOCIATION OF THE

ECSU at the NTA 2002 Conference 5/18/03 2:01 PM

Conference Luncheons

National Technical Association ECSU ONR NERT ECSU Office of Naval Research

"Planning and Program for the New Millineum - Technically and Educationally Focused' was the theme for of the conference which was attended by minorities from the engineering, science, architecture, and technology fields."

Quotes:

"Power tends to corrupt"

"A day on and a day off"

"The mind should be able to pass judgement in events"

"Education is power"

- Ramatoulie Bah ONR Research Student

September 24-27, 2002

This years National Technical Association Conference was held in Las Vegas, NV at the Excalibur Hotel. Attending from Elizabeth City State University were Dr. Linda Hayden, Ramatoulie Bah, Shayla Brooks, Vincent Davis, and Carl Seward.

Some of the speakers were:

- "Blacks in Management" by Dr. Darryl Tukufu, President and CEO of the Tukufu Group Inc., and Director of The Urban League – Nashville, TN.
- "Title" by Dr. Woodrow Whitlow, Jr., Director, Research and Technology NASA Glenn Research Center. Cleveland, Ohio
- "The Cost of Success" by Dr. and Mrs. Dexter/Philomena Johnson

"The Undergraduate category had 3 winners, 1st place went to Carl Seward of Elizabeth City State University, 2nd place went to Meagan Wright of Clark Atlanta University, and 3rd place went to Vincent Davis of Elizabeth City State University. There were also several Honorable Mentions in the Undergraduate Category."

-Shayla Brooks ONR Research Student

2002-2003 Office of Naval Research Final Research Reports April 8 & 10, 2003

Page 1 Page 2

TEAM PAGES
Globe

Multimedia

Remote Sensing

Networking

Unix

ONR NERTS ONR NIA On the 8th and 10th of April, 2002, Office of Naval Research students presented their final reports for the 2002-2003 research year. The areas of research this year included Globe, Multimedia, Remote Sensing, Networking and Unix.

Reports and research conducted for each team can be found at the links to the left.

Globe Research Team

Mentor: Mr. Ervin Howard

Team Members: Dana Brown Elizabeth Rascoe Shawneque Reid Carl Seward

Networking Research Team

Mentors: Mr. Chris Edwards, Mr. Kuchumbi Hayden

Team Members: Danielle Graves Paula Harrell Golar Newby Rodney Stewart

Multimedia Research Team

Mentor: Mr. Jeff Wood

Team Members: Shayla Brooks Willie Gilchrist, II Nelson Veales 2002-2003 ONR Final Reports 5/18/03 2:02 PM

Remote Sensing Research Team

Mentors: Mrs. Sharon Brown, Ms. Keisha Harrison, Mr. Jonathan Williams

Team Members: Karitsa Williams Willie Brown, Jr. Jovan Griffin Jerry Johnson Anthony Anderson

UNIX Research Team

Mentor: Mr. Benjamin James

Team Members:
Demetrus Rorie
Eunice Smith
Vincent Davis
Torreon Creekmore
Linwood Creekmore
Ramatoulie Bah

Visiting Lecture - Dr. William Mackey 5/18/03 2:03 PM

DR. WILLIAM MAGKEY Visiting Leture - Collegium Series

African Dance and the Development of a Mathematics of Dance

Dr. William K. Mackey of Cheyney University and a NASA NAFP Fellow presented "African Dance and the Development of a Mathematics of Dance" on Thursday, November 21st in Lester Hall on the campus of ECSU. His lecture was sponsored by ECSU's Computational Science - Scientific Visualization Center and the School of Math, Science and Technology as part of the Visiting Lecture - Colloquium Series.

Dr. Mackey spoke of what brought him to the study of this subject and how he combined his love of dance with his love of math. His view of the intricate parts of dance and how we can tie them to mathematics was enlightening to all present.

ECSU NIA CSSV Math, Sci, & Tech

Inclusion Innovation Investment

Fourth Expanding Opportunities Conference in Atmospheric and Oceanic Sciences

March 30- April 1, 2003 Florida A&M University Tallahassee, Florida

NOAA

Florida A&M University

Department of Commerce

ECSU

NTA

A conference to:

- Build institutional capacity
- Sustain partnerships between the public and private sectors
- Exchange scientific information

Conference Photos | Poster Session | Tallahassee Area

Representatives from Elizabeth City State attended the Fourth Expanding Opportunities Conference in Atmospheric and Ocean Sciences on March 30- April 1 at Florida A&M University in Tallahassee, Florida. This conference was sponsored by NOAA, the Department of Commerce and Florida A&M University. This conference has a goal of expanding academic training and employment opportunities for students who have an interest in science and who are attending minority serving institutions. The conference consisted of several panel sessions, poster sessions, oral presentations and speakers from various institutions. Dr. Linda Hayden, Principal Investigator for the CERSER research project, represented ECSU on the board for Expanding Opportunities II: New Directions in Graduate Education.

2003 Posters on the Hill 5/14/03 1:52 PM

Posters on the Hill

The mission of the Council on Undergraduate Research is to support and promote high-quality undergraduate student-faculty collaborative research and scholarship.

The Council on Undergraduate Research (CUR) and its affiliated colleges, universities, and individuals share a focus on providing undergraduate research opportunities for faculty and students at predominantly undergraduate institutions.

Several representatives from Elizabeth City State University made poster presentations during this years "Posters on the Hill" event at the capitol in Raleigh, North Carolina. They were accompanied by Dr. Mickey L. Burnim, Chancellor and Dr. Carolyn Mahoney, Vice Chancellor for Academic Affairs. Students representing ECSU were Carl Seward, Golar Newby, Danielle Graves, Nelson Veales, and Linwood Creekmore. More information regarding their presentations can be found at the 2002 Summer Internships page.

ECSU Students with UNC President, Molly Corbett Broad

Student researcher Danielle Graves explains her research to Dr. Burnim

Dr. Mahoney and Dr. Burnim with student researcher Linwood Creekmore

Dr. Burnim and Dr. Mahoney with student researcher Golar Newby

Student researcher Carl Seward
Research Title: Working on A Toroidal Large Hadron Collider Apparatus
<u>Transition Radiation Tracker (ATLAS TRT) Experiment</u>
Poster in .jpg format

UNC

ECSU CUR 2003 Posters on the Hill 5/14/03 1:52 PM

Student researcher Nelson Veales
Research Title: Forward Finite Difference Modeling of Seismic Wave
Propagation
Poster in .jpg format

Student researcher Danielle Graves
Research Title:

The Analysis of Fuel Optimal Periodic Trajectories
Poster in .jpg format

Student researcher Golar Newby
Research Title:
Quality of Service Networking Utilizing Protective Preferential Treatment
over a Gigabit Ethernet Environment

Student researcher Linwood Creekmore
Research Title: CdSe Semiconductor Nanomaterial Synthesis and
Nonlinear Optical Spectroscopy for Optical Power Limiting Applications
Poster in .jpg format

