Velocimetry for exoplanets detection

Velocimetry

$$K \approx \left(\frac{2\pi G}{PM_*^2}\right)^{\frac{1}{3}} \frac{M_{\text{planet}} \sin i}{\sqrt{1 - e^2}}$$

Observation

Observation

Observation

SERVAL

$$\chi^2 = \sum_{n,i}^{\text{Flux error}} w_{n,i} [f_{n,i} - p(\lambda_{n,i}, a) \cdot F(\lambda'(\lambda_{n,i}, v_n), b)]^2$$
Obs flux polynomial/vertical template/shift

Time, orders, pixels

SERVAL

SERVAL

$$\chi^2 = \sum_{n,i}^{\text{Flux error}} w_{n,i} [f_{n,i} - p(\lambda_{n,i}, a) \cdot F(\lambda'(\lambda_{n,i}, v_n), b)]^2$$
Obs flux polynomial/vertical template/shift

Time, orders, pixels

Intensity Mapping

Optical Surveys

$$\sigma_{noise} = \frac{T_{sys}}{\sqrt{\Delta \nu \Delta T}}$$

$$\sigma_{noise} = \frac{T_{sys}}{\sqrt{\Delta \nu \Delta T}}$$

NCP surveys

$$\sigma_{noise} = \frac{T_{sys}}{\sqrt{\Delta \nu \Delta T}}$$

NCP surveys

Redundancy

Observed Frequency (MHz)

$$\sigma_{noise} = \frac{T_{sys}}{\sqrt{\Delta \nu \Delta T}}$$

Redund

Method

Method

Results - Python maps

 $mean(ker1) > background + n \times \sigma_{bg}$

Detection efficiency

False detection rate

Results - Python maps

Reconstructed fluxes

Results - JSkyMap maps

HI clumps + Instruments noise

HI clumps + Instruments noise + Foregrounds. Results after subtraction,

Results - JSkyMap maps

We can detect with an efficiency of 70 % clumps with S/N=1.5 in 42 days per declination.

This corresponds to six months of total exposure

Forecast arXiv:2205.06086

HI clumps + Instruments noise + Foregrounds. Results after subtraction.

Thank you