Задача 1: разложение вектора по базису линейного пространства

Найти базис пересечения подпространств L_1 и L_2 линейного пространства X, натянутых на соответствующие системы векторов $\{x_i\}_{i=1}^p$ и $\{y_j\}_{j=1}^q$ соответственно. Данные:

$$L_1 = \left\langle (1, 2, 3, 1, 1)^{\mathrm{T}}, (1, 0, 1, -2, -2)^{\mathrm{T}}, (2, 0, 1, -1, 0)^{\mathrm{T}}, (0, 1, 1, 0, 0)^{\mathrm{T}} \right\rangle,$$

$$L_2 = \left\langle (1, 2, 0, 0, 2)^{\mathrm{T}}, (0, 1, -2, 3, -3)^{\mathrm{T}}, (-1, 2, 1, 2, 0)^{\mathrm{T}}, (1, 1, -2, 0, 0)^{\mathrm{T}} \right\rangle.$$

Решение:

- 1. Пересечение $L_1 \cap L_2$ подпространств состоит из всех векторов, лежащих как в L_1 , так и в L_2 . Каждое из подпространств можно задать с помощью системы линейных алгебраических уравнений. Тогда векторы из пересечения $L_1 \cap L_2$ удовлетворяют как первой системе уравнений, так и второй. То есть векторы из пересечения удовлетворяют объединённой системе уравнений. Тогда базисом пространства $L_1 \cap L_2$ является фундаментальная система решений этой объединённой системы уравнений.
- 2. Зададим первое подпространство L_1 системой уравнений. Все векторы из L_1

имеют вид
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \\ -2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} + \lambda_4 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

- 3. Мы хотим перейти к иной форме представления подпространства: не в виде линейной комбинации базисных векторов, а в виде однородной системы линейных уравнений. Для этого нам надо связать координаты x_i между собой линейными соотношениями. То есть нужно так связать переменные x_i , чтобы в связывающих их выражениях не было λ_i . Для этого нам нужно последовательно исключать λ_i , что делается прямым ходом Гаусса.
- 4. Запишем в столбцы основной матрицы данные в условии векторы, а в качестве столбца свободных коэффициентов расширенной матрицы возьмём столбец из неизвестных x_i :

$$\begin{pmatrix}
1 & 1 & 2 & 0 & | & x_1 \\
2 & 0 & 0 & 1 & | & x_2 \\
3 & 1 & 1 & 1 & | & x_3 \\
1 & -2 & -1 & 0 & | & x_4 \\
1 & -2 & 0 & 0 & | & x_5
\end{pmatrix}.$$

5. Приведём эту матрицу к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & 2 & 0 & x_1 \\ 0 & -2 & -4 & 1 & x_2 - 2x_1 \\ 0 & 0 & -1 & 0 & x_3 - x_2 - x_1 \\ 0 & 0 & 0 & -3 & 2x_4 + 6x_3 - 8x_1 - 3x_2 \\ 0 & 0 & 0 & 2x_5 + 8x_4 - 16x_1 - 5x_2 \end{pmatrix}.$$

По теореме Кронекера-Капелли, $2x_5 + 8x_4 - 16x_1 - 5x_2 = 0$. То есть L_1 задаётся системой, состоящей из одного этого уравнения.

6. Аналогично, зададим второе подпространство L_2 системой уравнений:

$$\begin{pmatrix} 1 & 0 & -1 & 1 & x_1 \\ 2 & 1 & 2 & 1 & x_2 \\ 0 & -2 & 1 & -2 & x_3 \\ 0 & 3 & 2 & 0 & x_4 \\ 2 & -3 & 0 & 0 & x_5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 & x_1 \\ 0 & 1 & 4 & -1 & x_2 - 2x_1 \\ 0 & 0 & 9 & -4 & x_3 + 2x_2 - 4x_1 \\ 0 & 0 & 0 & 7 & 9x_4 - 26x_1 - 7x_2 \\ 0 & 0 & 0 & 0 & 9x_5 + 38x_1 - x_2 \end{pmatrix}.$$

То есть L_1 задаётся системой, состоящей из уравнения $9x_5 + 38x_1 - x_2 = 0$

7. Составим и решим объединённую систему методом Гаусса.

$$L_1 \cap L_2 : \begin{cases} 2x_5 + 8x_4 - 16x_1 - 5x_2 = 0\\ 9x_5 + 38x_1 - x_2 = 0 \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = a \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 72 \\ 0 \\ 43 \\ 8 \end{pmatrix} + c \begin{pmatrix} 18 \\ 0 \\ 0 \\ 55 \\ -76 \end{pmatrix}$$

- 8. Фундаментальная система решений состоит из векторов $(0,0,1,0,0)^{\mathrm{T}}$, $(0,72,0,43,0)^{\mathrm{T}}$, $(18,-0,0,55,-76)^{\mathrm{T}}$.
- 9. Этот набор векторов и является одним из базисов пространства $L_1 \cap L_2$

 $\underline{\text{Otbet:}}\ (0,0,1,0,0)^{\mathrm{T}},\ (0,72,0,43,0)^{\mathrm{T}},\ (18,-0,0,55,-76)^{\mathrm{T}}.$