Real Analysis DR. PAUL L. BAILEY

Homework 4 Friday, September 14, 2018 Name:

Due Tuesday, September 18, 2018. Write solutions neatly on 8.5×11 printer paper. Stable this sheet to the front of your solutions.

Problem 1. (Dominance Theorem)

Let (s_n) and (t_n) be convergent sequences of real numbers such that $s_n \leq t_n$ for all $n \in \mathbb{N}$. Show that

Proof. Let $S = \lim s_n$ and $T = \lim t_n$, and suppose bwoc that S > T.

Let $N_1 \in \mathbb{N}$ be so large that $n \geq N$ implies $|s_n - S| < \frac{S - T}{2}$ for all $n \geq N_1$. Let $N_2 \in \mathbb{N}$ be so large that $n \geq N$ implies $|t_n - T| < \frac{S - T}{2}$ for all $n \geq N_2$.

Let $N = \max\{N_1, N_2\}$. Note that $s_N > \frac{S+T}{2}$. To see this, write $|s_N - S| < \frac{S-T}{2}$. Then $-\frac{S-T}{2} < s_N - S < \frac{S-T}{2}$. Add S to the first inequality to get $\frac{S+T}{2} = S - \frac{S-T}{2} < s_N$. Similarly, $t_N < \frac{S+T}{2}$.

Now we have $t_N < \frac{S+T}{2} < s_N$, contradicting the premise.

Problem 2. (Squeeze Theorem)

Let (a_n) , (b_n) , and (c_n) be sequences of real numbers such that $a_n \leq b_n \leq c_n$. Suppose that (a_n) and (c_n) both converge to $L \in \mathbb{R}$. Show that (b_n) converges to L.

Solution. Let $\epsilon > 0$.

Let N_1 be so large that $n \geq N_1$ implies $|a_n - L| < \epsilon$.

Let N_2 be so large that $n \geq N_2$ implies $|c_n - L| < \epsilon$.

Let $N = \max\{N_1, N_2\}.$

Then, for $n \geq N$, we have $-\epsilon < a_n - L < \epsilon$, so $L - \epsilon < a_n < L + \epsilon$. Similarly, $L - \epsilon < c_n < L + \epsilon$. Thus

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$
.

From this, $|b_n - L| < \epsilon$.

Problem 3 (Ross 9.5). Consider the recursively defined sequence given by $t_1 = 1$ and $t_{n+1} = \frac{t_n^2 + 2}{2t}$. Assume that (t_n) converges, and find the limit.

Solution. Let $L = \lim_{n \to \infty} t_n$. It is clear that $\lim_{n \to \infty} a_{n+1} = L$. Taking the limit of both sides of the recursive equation gives

$$L = \lim \frac{t_n^2 + 2}{2t_n} = \frac{(\lim t_n)^2 + 2}{2\lim t_n};$$

the latter equal sign follows from the rules for the arithmetic of sequences which we have previously proven.

This gives the equation $L = \frac{L^2 + 1}{L}$, which we solve to L to obtain $L = \sqrt{2}$.

Problem 4 (Ross 9.15). Let a be a positive real number. Explain why $\lim_{n\to\infty}\frac{a^n}{n!}=0$.

Proof. Let $\epsilon > 0$. By the Archimedean Principle, there exists $M \in \mathbb{N}$ such that M > a. Let $B = \frac{a^M}{M!}$. Let $N \in \mathbb{N}$ be so large that $N > \frac{aB}{\epsilon}$. In this case, we have $\frac{a}{N} < \frac{\epsilon}{B}$. Then, for $n \geq N$, we have

$$\left| \frac{a^n}{n!} \right| = B\left(\frac{a}{M+1} \cdots \frac{a}{n} \right) \le B\left(\frac{a}{M+1} \cdots \frac{a}{N} \right) < B\frac{a}{N} = B\frac{\epsilon}{B} < \epsilon.$$

Problem 5 (Challenge). Let (s_n) be a sequence of real numbers which converges to $s \in \mathbb{R}$. Let

$$\sigma_n = \frac{s_1 + \dots + s_n}{n}.$$

Show that (σ_n) converges to s.

Solution. Let $\tau_n = \sigma_n - s$. It suffices to show that (τ_n) converges to zero. Note that

$$\tau_n = \frac{1}{n} \sum_{i=1}^n s_i - \frac{ns}{n} = \frac{1}{n} \sum_{i=1}^n (s_i - s).$$

Let $N_0 \in \mathbb{N}$ be so large that $|s_n - s| < \frac{\epsilon}{2}$ for all $n > N_0$. Let $M = \sum_{i=1}^N |s_i - s|$. Then for $n > N_0$, we have

$$\begin{split} |\tau_n| &\leq \frac{M}{n} + \frac{1}{n} \sum_{i=N_0+1}^n |s_n - s| & \text{by Δ-inequality} \\ &< \frac{M}{n} + \frac{1}{n} (n - N_0) \frac{\epsilon}{2} & \text{summing $n - N_0$ small numbers} \\ &< \frac{M}{n} + \frac{\epsilon}{2} & \text{since } \frac{n - N_0}{n} \leq 1. \end{split}$$

Now select $N \in \mathbb{N}$ with $N > N_0$ which is so large that $\frac{M}{n} < \frac{\epsilon}{2}$. Then for n > N, we have $|\tau_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. This shows that $|\tau_n| \to 0$ as $n \to \infty$. Thus $\lim \tau_n = 0$.