Gruppe:	Moez Rjiba	Bellal Sharif
Mtrk.nr.:	S837903	S910459

ÜBUNG: ORTSKURVEN

ellung der Ergebnisse1
messene Bauelemente
nutzte Formeln1
Reihenschaltung R - L2
Reihenschaltung R – C ₁ 3
Reihenschaltung R – L – C_1
Reihenschaltung (R – L – C ₁) C ₂ 5
nerische Kontrolle6
nittlung der Resonanzfrequenzen für Schaltung c und d6
ntrollrechnungen zu mit * gekennzeichneten Messpunkten7

Darstellung der Ergebnisse

Gemäß Übungsblatt wurden im Labor vier Reihenschaltungen mit dem Oszilloskop untersucht, und erforderlich Messwerte protokolliert. Erforderliche Berechnungen und Diagramme sind in Excel erstellt.

Gemessene Bauelemente

$$R = 100 \Omega$$
 $L = 9 \text{ mH}$ $C_1 = 230 \text{ nF}$ $C_2 = 66 \text{ nF}$

Genutzte Formeln

$$1F = 1\frac{C}{V} = 1 \frac{A^2 * s^4}{kg * m^2} = 1\frac{s}{\Omega}$$

$$1H = 1\frac{Vs}{A} = 1\Omega s$$

$$-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$\omega = 2\pi * f$$

$$f_0 = \frac{1}{\sqrt{(LC) * 2\pi}}$$

a) Reihenschaltung R - L

Messwerte und Diagramm $Z(\omega)$

Realteil <u>Z</u>	104,2	105,3	104,1	107,0	103,2	105,2
Komplexteil <u>Z</u>	29,9	56,0	115,6	171,1	231,7	288,9

Realteil <u>Y</u>	8,866	7,401	4,302	2,627	1,604	1,112
Komplexteil <u>Y</u>	2,542	3,935	4,778	4,204	3,602	3,056

b) Reihenschaltung R – C₁

Messwerte und Diagramm $Z(\omega)$

Realteil <u>Z</u>	125,4	112,4	109,1	108,8	104,6	103,7
(omplexteil <u>Z</u>	-344,6	-231,6	-174,5	-139,3	-70,5	-33,7
50 60	70 80	90	100 110	0 120	130 14	150
(ω) Ζ			6			
-50			5			
Imaginärteil Z(w)						
<u></u> -150			•	4		
-200			•	3		
				• 2		
-250						
-300						
-350					1	
-400						

Realteil <u>Y</u>	8,866	7,401	4,302	2,627	1,604	1,112
Komplexteil <u>Y</u>	2,542	3,935	4,778	4,204	3,602	3,056

c) Reihenschaltung R - L - C₁

Messwerte und Diagramm $Z(\omega)$

Realteil <u>Z</u>	112,4	114,4	112,8	111,3	112,8	121,75	126,3	146,9
Komplexteil <u>Z</u>	-637,7	-234,6	-60,0	0	144,3	334,5	506,5	833,4

Realteil <u>Y</u>	0,268	1,679	6,912	8,987	3,361	0,961	0,463	0,205
Komplexteil <u>Y</u>	1,521	3,443	3,675	0	-4,302	-2,640	-1,859	-1,164

d) Reihenschaltung (R – L – C1) || C2

Messwerte und Diagramm $Z(\omega)$

Realteil <u>Z</u>	73,1	89,0	81,6	95,1	114,6	158,0	208,3	408,2
Komplexteil <u>Z</u>	-695,1	-504,7	-201,9	-69,1	0	84,0	130,1	235,7
Realteil <u>Z</u>	610,7	852,7	895,9	856,3	598,5	385,5	104,4	9,4
Komplexteil <u>Z</u>	222,3	0	-190,4	-346,0	-578,0	-571,6	-418,6	-134,7

Realteil <u>Y</u>	0,268	1,679	6,912	8,987	3,361	0,961	0,463	0,205
Komplexteil <u>Y</u>	1,521	3,443	3,675	0	-4,302	-2,640	-1,859	-1,164

Rechnerische Kontrolle

Ermittlung der Resonanzfrequenzen für Schaltung c und d

$$\omega = 2\pi f \Rightarrow f_0 = \frac{1}{2\pi\sqrt{(LC)}}$$

$$f_r = \frac{1}{\sqrt{9mH * 230nF}} : 2\pi \approx 3498,1 \text{ Hz}$$

Messwert: 3514 Hz

(d)

Gerne zeigen wir auch das ausführliche, handschriftliche Aufarbeiten, der hier verkürzten Herleitung.

Komplexer Leitwert der Schaltung R – L – C1 || C2

$$Y = \frac{R}{(R^2 + (\omega L - \frac{1}{\omega C_1}))} - j \frac{(\omega L - \frac{1}{\omega C_1})}{R^2 + (\omega L - \frac{1}{\omega C_1})^2} + j\omega C_2$$

Bei $Im\{Y(\omega_0)\}=0$ erhalten wir, Analog der Thomsonschen Schwingungsgleichung die gesuchten Resonanzfrequenzen f_{r1} und f_{r2} .

$$0 = \omega C_2 - \frac{\left(\omega L - \frac{1}{\omega C_1}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C_1}\right)^2} \Leftrightarrow 0 = \omega^4 + \omega^2 \left(\frac{R^2}{L^2} - \frac{2}{LC_1} - \frac{1}{LC_2}\right) + \frac{C_2 + C_1}{L^{2C_1 2C_2}}$$

Wir substituieren $\omega^2 = x$

$$0 = x^{2} + x * \left(\frac{R^{2}}{L^{2}} - \frac{2}{LC_{1}} - \frac{1}{LC_{2}}\right) + \frac{C_{2} + C_{1}}{L^{2}C_{1}^{2}C_{2}}$$

Wir ersetzen $\frac{R^2}{L^2} - \frac{2}{LC_1} - \frac{1}{LC_2}$ durch p.

$$\Rightarrow p = \frac{R^2}{L^2} - \frac{2}{LC_1} - \frac{1}{LC_2}$$

Und $\frac{C_2+C_1}{L^2C_1^2C_2}$ durch q.

$$\Rightarrow q = \frac{C_2 + C_1}{L^2 C_1^2 C_2}$$

Man kann nun die **pq** Formel anwenden.

$$\omega_{1,2}^2 = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Nach Rücksubstitution und Auflösung nach $f_{1,2}$ erhalten wir für

$$f_{r1} = \frac{\sqrt{-\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}}}{2\pi} = 3637,3 Hz$$

Messwert:

3658 *Hz*

$$f_{r2} = \frac{\sqrt{-\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}}}{2\pi} = 7124,6 Hz$$

Messswert: 7026 Hz

Kontrollrechnungen zu mit * gekennzeichneten Messpunkten.

a2

$$f = 1000 \, Hz$$

$$\underline{Z} = R + j\omega L$$

$$\omega = 2\pi f = 2\pi * 1000 = 6283, 2\frac{1}{s}$$

$$\underline{Z} = 100 \, \Omega + \left(j * 6283, 19\frac{1}{s} * 0,009 \, H\right) = (100 + j56,55)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 56,55^2)} = 114,88 \, \Omega$$

$$Y = \frac{1}{Z} = 0,0087046 \, S = 8,70 \, mS$$

Messwerte:

119,29 Ω

8,38 mS

a5

$$f = 4000 \, Hz$$

$$\underline{Z} = R + j\omega L$$

$$\omega = 2\pi f = 2\pi * 4000 = 25133 \frac{1}{s}$$

$$\underline{Z} = 100 \, \Omega + \left(j * 25133 \frac{1}{s} * 0,009H\right) = (100 + j226,19)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 226,19^2)} = 247,31 \, \Omega$$

$$Y = \frac{1}{Z} = 0,0040434 \, S = 4,04 \, mS$$

$$Messwerte: 253,65 \, \Omega \qquad 3,94 \, mS$$

$$\frac{Z}{Z} = R + \frac{1}{(j\omega C)}$$

$$\omega = 2\pi f = 2\pi * 3000 = 18850 \frac{1}{s}$$

$$\underline{Z} = 100 \Omega + \frac{1}{(j * 18850 \frac{1}{s} * 230 * 10^{-9}F)} = (100 - j230,66)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 230,66^2)} = 251,40 \Omega$$

$$Y = \frac{1}{Z} = 0,0039777S = 3,97 mS$$

Messwerte: $257,73 \Omega$ 3,88 mS

$$\omega = 2\pi * 10000 = 62832 \frac{1}{s}$$

$$\underline{Z} = 100 \Omega + \frac{1}{(j * 62832 \frac{1}{s} * 230 * 10^{-9} F)} = (100 - j69,20)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 69,20)} = 121,61 \Omega$$

$$Y = \frac{1}{Z} = 0,0082232 S = 8,22 mS$$

Messwerte: $126,16 \Omega$ 7,93 mS

$$f = 2000 \, Hz$$

$$\omega = 2\pi * 2000 = 12566 \frac{1}{s}$$

$$\underline{Z} = 100 \, \Omega + \frac{1}{(j * 12566 \frac{1}{s} * 230 * 10^{-9} F)} + (j * 12566 \frac{1}{s} * 0,009 H) = (100 - j232,89)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 232,89^2)} = 253,45\Omega$$

$$Y = \frac{1}{Z} = 0,0039455 \, S = 3,94 \, mS$$

$$Messwerte: \quad 261,06 \, \Omega \qquad 3,83 \, mS$$

$$f = 7500 \, Hz$$

$$\omega = 2\pi * 7500 = 47124 \frac{1}{s}$$

$$\underline{Z} = 100 \Omega + \frac{1}{(j * 47124 \frac{1}{s} * 230 * 10^{-9}F)} + (j * 47124 \frac{1}{s} * 0,009 H) = (100 - j331,85)\Omega$$

$$Z = |\underline{Z}| = \sqrt{(100^2 + 331,85^2)} = 346,59 \Omega$$

$$Y = \frac{1}{Z} = 0,0028852 S = 3,94 mS$$

Messwerte: $355,97 \Omega$ 2,81 mS

d3

$$f = 2000 \, Hz$$

$$\frac{Y}{R+j\left(\omega L - \frac{1}{\omega C_1}\right)} + j\omega C_2$$

$$\omega = 2\pi * 2000 = 12566 \frac{1}{s}$$

$$\frac{Y}{100 \Omega + j(12566 \frac{1}{s} * 0,009 H - \frac{1}{12566 \frac{1}{s} * 230 * 10^{-9}F})} + j12566 \frac{1}{s} * 66 * 10^{-9}F$$

$$= (0,0043877 - j0,0041330)S$$

$$Y = |\underline{Y}| = \sqrt{(0,0043877^2 + 0,0041330^2)} = 0,0060277 S = 6,02 mS$$

$$Z = \frac{1}{Y} = 165,9 \Omega$$

Messwerte: $217,77 \Omega$ 4,59 mS

$$f = 6000 \, Hz$$

$$\underline{Y} = \frac{1}{R+j\left(\omega L - \frac{1}{\omega C_1}\right)} + j\omega C_2$$

$$\omega = 2\pi * 6000 = 37699 \frac{1}{s}$$

$$\underline{Y} = \frac{1}{1000 \Omega + j(37699 \frac{1}{s} * 0,009 H - \frac{1}{37699 \frac{1}{s} * 230 * 10^{-9} F})} + j37699 \frac{1}{s} * 66 * 10^{-9} F$$

$$= (0,00079924 - j0,00022361)S$$

$$Y = |\underline{Y}| = \sqrt{(0,00079924^2 + 0,00022361^2)} = 0,00082993 S = 0,82 mS$$

$$Z = \frac{1}{Y} = 1204,92 \Omega$$

Messwerte: $471,34 \Omega$ 2,12 mS

$$f = 8500 \, Hz$$

$$\underline{Y} = \frac{1}{R+j\left(\omega L - \frac{1}{\omega C_1}\right)} + j\omega C_2$$

$$\omega = 2\pi * 8500 = 53407 \frac{1}{s}$$

$$\underline{Y} = \frac{1}{100 \, \Omega + j(53407 \frac{1}{s} * 0,009 \, H - \frac{1}{53407 \frac{1}{s} * 230 * 10^{-9}F})} + j53407 \frac{1}{s} * 66 * 10^{-9}F$$

$$= (0,00041487 - j0,0015307)S$$

$$Y = |\underline{Y}| = \sqrt{(0,00041487^2 + 0,0015307^2)} = 0,0015859 \, S = 1,58 \, mS$$

$$Z = \frac{1}{Y} = 630,54 \, \Omega$$

$$Messwerte: \quad 135,06 \, \Omega \qquad 7,40 \, mS$$