공갈빵

효율적 교내 시설 활용을 위한 교내 시설 인원혼잡도 분석

2조 이기연 | 권진한 | 김택현 | 김민호 | 임채원 | 허유진

목표

AWS의 Rekognition 서비스를 사용하여 특정공간의 인원 혼잡도를 분석한다.

분석한 데이터를 iOS Application의 형태로 사용자에게 제공한다.

프로젝트 개요

마이페이지

메인화면

장소리스트

데이터 출력

ARCHITECTURE

USER SCENARIO

프로젝트 진행 현황_BACK_END(DATA)

FrameWork

- AWS Rekognition
- **-** \$3

허유진

- AWS Rekognition 사용
- 추출데이터 저장환경 구축

임채원

- USER Scenario 작성
- 추출데이터 저장 방식 고려

프로젝트 진행 현황_BACK_END(SERVER)

FrameWork

- AWS EC2, Lambda
- RDS, API Gateway

권진한

- AWS EC2 서버 구축
- RDS instance 생성
- Lambda trigger에 API Gateway 추가

김민호

- RDS와 API Gateway 연결
- DB는 mySQL을 사용하며 python환경으로 구축

프로젝트 진행 현황_FRONT_END(IOS)

FrameWork

- Xcode SwiftUI
- Adobe XD

김택현

- 각 요소별 View 구성
- APP 전반적 개발에 기여

이기연

- 필요기능을 구현할 View 편성
- UX에 따른 UI 디자인

개발계획서 변동사항

기존사항

- (1) 교내 시설을 실시간으로 영상데이터를 수집하여 서버에서 인원 혼잡도 분석을 진행한다.
- (2) Python 라이브러리를 활용한 인물인식 알고리 즘을 직접 구현한다.
- (3) 데이터 베이스 구조 >> 테이블: 회원정보, 장소의 인원수데이터
- (4) 인원 수치 데이터 제공

변동사항

- (1) 기간을 정하여 일정시간마다 사진데이터를 수집하여 진행. (수집이 끝난 장소는 단말기 철수)
 + 서비스 제공 이후 수집될 선호시간대별 인원수 데이 터를 통한 머신러닝 진행예정
- (2) AWS Rekognition 서비스를 통한 인원수 측정.
- (3) 데이터 베이스 구조 >> 테이블: 장소정보, 회원정보
- (4) 혼잡도 유형으로 데이터 제공

혼잡: 15명 이상

보통: 7명 이상 14명 이하여유: 0명 이상 6명 이하

예상문제점 및 대책

문제 발생 가능 변수

- (1) 선호장소의 선호 요일, 시간 별 인원수 데이터량
 - >> 데이터량이 많지않아서 머신러닝 모델의 신뢰도 문제.
 - >> 대책: 특정 장소마다 제한되어 있는 회원정보이며 수집된 데이터는 신뢰도가 높은 데이터이다.
- (2) **DB** 구조설계에 대한 오류
 - >> 대책: 수정이 용이할 수 있는 구조로 형성
- (2) **AWS** 서비스 과금
 - >> AWS 서비스 사용이 익숙하지 않은 관계로 한 순간의 실수로 과금이 될 수 있다.
 - >> 대책: 무료티어 서비스에 대한 정보를 숙지하고, 자신의 가입정보를 수시로 확인한다.

개발 일정

	5/2	5/9	5/16	5/23	5/30	6/6	6/13	6/20
사진데이터 수집	동아리 방 대상 데이터 수집	동아리 방 대상 데이터 수집	동아리 방 대상 데이터 수집	동아리 방 대상 데이터 수집	동아리 방 대상 데이터 수집			
AWS Rekognition (인원수데이터 추출)		수집 데이터를 토대로 수치 데이터 추출	수집 데이터를 토대로 수치 데이터 추출	수집 데이터를 토대로 수치 데이터 추출	수집 데이터를 토대로 수치 데이터 추출	수집 데이터를 토대로 수치 데이터 추출		
추출데이터 DB 저장			추출 데이터 가공 및 저장	추출 데이터 가공 및 저장	추출 데이터 가공 및 저장	추출 데이터 가공 및 저장		
DB 테이블 구조 생성		회원정보 및 장소정보 테이 블			회원정보 테이블의 방문 선호 시간 데이터 수집			
iOS APP	View 작업 마무리	View 전환 작업	APP의 구성 완료	데이터베이스 연동	버그 및 오류 수정			
머신러닝을 통한 공간 내 인원 수 예측					선호하는 방문 시간대마다 인원수 데이터를 학습데이터로 하여 해당 요일 및 시간대 별 혼잡도 분석 후 예측모델 생성			
발표 준비					개발 현황 파악 오류 현황 파악	이슈와 해결방 안을 위주로 내용 정리	발표자료 작성	최종발표