Outline of Foundations of Signal Processing

January 18, 2015

Chapter 2

Introduce the basic concepts for signal representation.

- Vector spaces (def'n and properties in #18)
 - Subspace, Span, Linear independence, Dimension (or rank?)
 - Inner product
 - i) distributivity $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - ii) linearity in 1st argument $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
 - iii) Hermitian symmetry $\langle x, y \rangle^* = \langle y, x \rangle$
 - iv) positive definiteness $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ iff x = 0
 - v) linearity in 2nd argument (by ii and iii): $\langle x, \alpha y \rangle = \alpha^* \langle x, y \rangle$
 - Orthogonality (#25)

can be defined for vector vs vector, vector vs set of vectors, vector vs space, space vs space etc.

- Norm see theorems
 - i) positive def: $||x|| \ge 0$, and ||x|| = 0 iff x = 0
 - ii) positive scalability: $||\alpha x|| = |a| ||x||$
 - iii) triangle inequality: $||x+y|| \le ||x|| + ||y||$, with equality if $y = \alpha x$
- Metric
- Standard Spaces
 - Standard inner product spaces inner product must be finite for space to be inner product sp.

*
$$\mathbb{C}^N$$
, $\ell^2(\mathbb{Z})$, $\mathcal{L}^2(\mathbb{R})$, ... (#30)

- Standard normed vector spaces - space must have a finite norm

*
$$\mathbb{C}^N$$
, $\ell^p(\mathbb{Z})$, $\mathcal{L}^p(\mathbb{R})$, ... (# 33)

- Hilbert Spaces
 - Convergence
 - Closed Subspace (#37 and #135)
 - Cauchy Sequence like convergence, but limit value doesn't have to be in defined metric space
 - Complete Space A normed vector sp. V where every Cauchy seq. converges to a vector in V
 - Banach Space A normed vector sp. V where each Cauchy Sequence converges to a v in V
 - Hilbert Space A complete inner product space
 - Linear Operator, $A: H_0 \to H_1$ i) A(x+y) = Ax + Ay, ii) $A(\alpha x) = \alpha(Ax)$
 - Bounded Linear Operator
 - Operator Norm $||A|| = \sup_{||x=1||} ||Ax||$
 - Inverse

- Adjoint operator (see #46 for properties)

$$\langle Ax, y \rangle_{H_0} = \langle x, A^*y \rangle$$
, for every $x \in H_0$ and $y \in H_1$. (1)

- Unitary Operator: A bounded linear operator (BLO) that is invertible and preserves inner products: $\langle Ax, Ay \rangle_{H_1} = \langle x, y \rangle_{H_0} \quad \forall x, y \in H_0.$
 - Theorem: A BLO is unitary iff $A^{-1} = A*$
- Eigenvalues/vectors: $A: H \to H; v$ is eigvector if Av = lv for some $\lambda \in \mathbb{C}$.
- Definite Linear Operator a self-adjoint $(A = A^*)$ operator such that: positive semi-definite: $\langle Ax, x \rangle \geq 0$, positive definite: $\langle Ax, x \rangle > 0$ negative semi-definite: $\langle Ax, x \rangle \leq 0$, negative definite: $\langle Ax, x \rangle < 0$

Approximations

- Best approximation: orthogonal projection
- Projection Theorem (#51): Let S be a closed subspace of a Hilbert sp. H, and let $x \in H$
 - i) Existence: There exists \hat{x} such that $||x \hat{x}|| \le ||x s||$ for all $s \in S$.
 - ii) Orthogonality: $x \hat{x} \perp S$ is necessary and sufficient for determining \hat{x} .
 - iii) Uniqueness: \hat{x} is unique
 - iv) Linearity: $\hat{x} = Px$, where P is a linear operator that depends on S and not on x
 - v) Idempotency: $P(Px) = Px \ \forall x \in S$
 - vi) Self-adjointess: $P = P^*$
- Projection Operator (not necessarily orthogonal, #55)
 - i) A projection operator is a BLO that is idempotent $(P^2 = P)$
 - ii) Orthogonal projection operator is self-adjoint, Oblique projection operator is not self-adjoint
- Theorem: Orthogonal Projection Operator: $\langle x Px, Py \rangle = 0 \ \forall x, y \in H$
- Pseudoinverse (see here for theorem).
- Direct Sum:

A vec. sp. V is a direct sum of subspaces S and T, denoted $V = S \oplus T$, if any non-zero x can be written uniquely as: $x = x_S + x_T$, where $x_S \in S, x_T \in T$

- Decomposition: S and T form a decomposition of V, and x_S, x_T the decomposition of x.
- Orthogonal Random Vectors: RVs x, y are orthogonal when $\mathbb{E}[xy^*] = \mathbf{0}$. (not inner product).

• Bases and Frames

- Basis:
 - $\Phi = \{\phi_k\}_{k \in \mathcal{K}} \subset V$, where \mathcal{K} is finite or countably infinite (FOCI). Φ is a basis for normed V when:
 - i) it is complete in $V: \forall x \in V$, there is sequence $\alpha \in \mathbb{C}^K$ s.t. $x = \sum_{k \in K} \alpha_k \phi_k$
 - ii) for any $x \in V$, α that satisfies above is unique.
- Riesz Basis (#72):

A Basis Φ with stability constraints $\lambda_{\min}, \lambda_{\max}$ s.t. $\lambda_{\min}||x||^2 \leq \sum_{k \in \mathcal{K}} |\alpha_k|^2 \leq \lambda_{\max}||x||^2$

The largest λ_{\min} and smallest λ_{\max} are optimal stability constants.

!!! The stability constants are very useful – the farther they are from optimum, the more a matrix becomes vulnerable to numerical ill-conditioning

- Basis Synthesis Operator Φ and Basis Analysis Operator Φ^* (defined for Riesz Bases #75)

 $\Phi: \ell^2(\mathcal{K}) \to H \text{ with } \Phi\alpha = \sum_{k \in \mathcal{K}} \alpha_k \phi_k$ $\Phi^*: H \to \ell^2(\mathcal{K}) \text{ with } \alpha_k = (\Phi^* x)_k = \langle x, \phi_k \rangle \text{ (the } k^{th} \text{ analysis coefficient)}.$

– Orthonormal Basis: A basis $\Phi = \{\phi_k\}$ s.t. $\langle \phi_i, \phi_k \rangle = \delta_{i-k}$

Are unitary $\Phi\Phi^*=I$ The above implies $\Phi^{-1}=\Phi^*$

- Gram-Schmidt Orthogonalization (recursive algorithm to derive orthonormal basis #84).

- Biorthogonal Pairs of Bases: Bases Φ and $\tilde{\Phi}$ that are biorthogonal, i.e. $\langle \phi_i, \tilde{\phi}_k \rangle \delta_{i-k}$

$$\alpha = \tilde{\Phi}^* x$$

 $x = \alpha \Phi = \Phi \tilde{\Phi}^* x$ (these two due to Theorem 2.44 #88)

$$\tilde{\Phi}^*\Phi = I \text{ on } \ell^2(\mathcal{K})$$

$$\tilde{\Phi}^* = \Phi^{-1}$$

$$\tilde{\lambda}_{\min} = 1/\lambda_{\max}$$

$$\tilde{\lambda}_{\rm max} = 1/\lambda_{\rm min}$$

- Gram Matrix (enables computations w.r.t only 1 basis):

$$G = \Phi^* \Phi$$
, each value $G_{ik} = \langle \phi_k, \phi_i \rangle$
 $\langle x, y \rangle = \beta^* G \alpha$

- Dual basis properties (Theorem 2.46 #94):

```
Let A = (\Phi^*\Phi)^{-1} (inverse Gram matrix).
```

Dual basis vectors ϕ_k can be computed as $\tilde{\phi}_k = \sum_{\ell \in \mathcal{K}} a_{\ell,k} \phi_{\ell}$.

Synthesis operator:
$$\tilde{\Phi} = \Phi A = \Phi(\Phi^*\Phi)^{-1}$$

- Successive Approximation (algo to compute canonical dual basis)
- Frame: A vector set $\{\phi_k\}_{k\in\mathcal{J}}\subset H$ that spans H but is overcomplete (like having more vectors than the rank).

$$\lambda_{\min}||x||^2 \le \sum_{k \in \mathcal{J}} |\langle x, \phi_k \rangle|^2 \le \lambda_{\max}||x||^2$$

- Tight Frame or λ -tight Frame: frame such that $\lambda_{\min} = \lambda_{\max}$. $\Phi\Phi^* = I$

Acc. to Theorem 2.51 (#105), the analysis and synthesis operations of 1-tight frames is analogous to orthonormal basis situation, but expansion is not unique anymore.

- Matrix Representations of Linear Operators:
 - Change of bases

Consider two bases Φ, Ψ such that $x = \Phi \alpha$ and $x = \Psi \beta$

A change of bases operator $C_{\Phi,\Psi}\alpha = (\Psi^{-1}\Phi)\alpha = \Psi^{-1}(\Phi\alpha) = \Psi^{-1}x = \beta$.

We don't want to apply the latter operation from right to left, because we'll move back to original space H which can be complicated. Instead, we want to have a matrix operator $C_{\Phi,\Psi} = (\Psi^{-1}\Phi)$ that will allow the operations to stay within $\ell^2(\mathcal{K})$ See #113.

1 Norm- and Inner Product-related Theorems

The opposite triangle inequality $||v - w|| \ge |||v|| - ||w|||$

Pythagorean theorem $x \perp y$ implies $||x+y||^2 = ||x||^2 + ||y||^2$. Generalize: $\{x_k\}_{k \in \mathcal{K}}$ implies ... (# 29)

Parallelogram law $||x + y||^2 + ||x - y|| = 2(||x||^2 + ||y||^2)$

Hölder's inequality Let $p, q \in [1, \infty]$ satisfy 1/p + 1/q = 1; then, $||xy||_1 \le ||x||_p ||y||_q$ with equal. iff $|x|^p$ and $|y|^q$ are scalar multiples of each other.

Cauchy-Schwarz inequality $|\langle x, y \rangle| \le ||x|| ||y||$ with equality iff $x = \alpha y$. (it's a special case of Hölder's ineq.) Using this, we can compute the angle by any two vectors x,y as $\cos \theta = \langle x, y \rangle / ||x|| ||y||$

Minwosky's inequality for any $p \in [1, \inf)$ (there are equivalents for integrals instead of sums as well, see #139):

$$\left(\sum_{k\in\mathbb{Z}}|x_k+y_k|^p\right)^{1/p} \le \left(\sum_{k\in\mathbb{Z}}|x_k|^p\right)^{1/p} + \left(\sum_{k\in\mathbb{Z}}|y_k|^p\right)^{1/p} \tag{2}$$

2 Projection-related Theorems

Orthogonal proj. via pseudoinverse Let $A: H_0 \to H_1$ be a BLO.

- i) if AA^* invertible, then $B = A^*(AA^*)^{-1}$ is the pseudoinverse of A, and $BA = A^*(AA^*)^{-1}A$ is the orthogonal projection operator onto the range of A^*
- ii) If A^*A is invertible, then $B = (A^*A)^{-1}A^*$ is the *pseudoinverse* of A and $AB = A(A^*A)^{-1}A^*$ is the orthogonal projection operator onto the range of A.

Diect-sum decomposition from Projection Operator (#61):

- i) Let P be a projection op on H. P generates a direct-sum decomposition $H = \mathcal{R}(P) \oplus \mathcal{N}(P)$
- ii) Conversely, if $H = S \oplus T$, then there is P on H s.t. $S = \mathcal{R}(P)$ and $T = \mathcal{N}(P)$

Orthonormal Basis Expansions Let $\Phi = \{\phi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for H. The unique expansion coefficients α_k can be obtained:

$$\alpha_k = \langle x, \phi_k \rangle \tag{3}$$

$$\alpha = \Phi^* x \tag{4}$$

Synthesis:

$$x = \sum_{k \in \mathcal{K}} \langle x, \phi_k \rangle \phi_k$$

$$= \Phi \alpha = \Phi \Phi^* x$$
(5)

$$= \Phi \alpha = \Phi \Phi^* x \tag{6}$$

Parseval Equalities

For orthonormal bases (#77) and 1-tight frames (#105): $||x||^2 = ||\alpha||^2$ (more generally $\langle x, y \rangle = \langle \alpha, \beta \rangle$) For biorthogonal pair of bases (#89): $||x||^2 = \langle \tilde{\alpha}, \alpha \rangle$ (more generally $\langle x, y \rangle = \langle \tilde{\alpha}, \beta \rangle$)

Orthogonal projection onto a subspace Let $\{\phi_k\}_{k\in\mathcal{I}}$. Then, $P_{\mathcal{I}} = \Phi_{\mathcal{I}}\Phi_{\mathcal{I}}^*x$ is the orthogonal projection of x onto the (subspace) $S_{\mathcal{I}} = \overline{\operatorname{span}}(\{\phi_k\}_{k \in \mathcal{I}})$

Orthogonal projection onto a subspace Analogous to above, only that $P_{\mathcal{I}} = \Phi_{\mathcal{I}} \tilde{\Phi}_{\mathcal{I}}^* x$ Bessel's Inequality $||x||^2 \ge ||\Phi_{\mathcal{I}}^* x||^2$ (definitions above).

Quiz

- 1. What is a Unitary Operator?
- 2. What is a Direct Sum?
- 3. What is a finite-energy function?
- 4. Order the following spaces from largest to smallest: Banach, Hilbert, Inner Product, Normed
- 5. Which matrices are called Hermitian?
- 6. What is the infinity norm or uniform norm or supremum norm or Chebyshev norm?
- 7. What is a tight frame? [options?]
- 8. What is the difference between a frame and a basis?
- 9. Group the synonyms among these four terms: cross product, inner product, scalar product, dot product.