SEQUENCE LISTING

	KATO, Kaneyoshi MORI, Masaaki SUZUKI, Nobuhiro SHIMOMURA, Yukio TAKEKAWA, Shiro CHOH, Nobuo	
<120>	MCH Antagonists	
<130>	2651 US0P	
<140>	10/088,768	
	2002-03-20	
	PCT/JP00/06376	RECEIVED
<151>	2000-09-19	HEULIVE
	JP 11-266278	OCT 0 3 2002
<151>	1999-09-20	000010000
<150>	JP 2000-221055	TECH CENTER 1600/2900
<151>	2000-07-17	, ICON OF
<160>	16	•
<170>	PatentIn version 3.0	•
<210>		
<211>		•
<212>	DNA artificial	
<213>	artificiai	
<220>		
<223>	primer	
<400>		
gtcgac	atgg atctgcaaac ctcgttgctg tg	32
<210>	2	
<211>	32	
<212>		
<213>	artificial	
<220>		
<223>	primer	
<400>	2	
actagt	tcag gtgcctttgc tttctgtcct ct	32
<210>	3	
<211>	353	
<212>		
<213>	rat	

<400> 3 ______ Met Asp Leu Gln Thr Ser Leu Leu Ser Thr Gly Pro Asn Ala Ser Asn Ile Ser Asp Gly Gln Asp Asn Leu Thr Leu Pro Gly Ser Pro Pro Arg 25 Thr Gly Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly 40 Thr Ile Cys Leu Leu Gly Ile Val Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile 70 Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly 105 Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe 115 Thr Ser Thr Tyr Ile Leu Thr Ala Met Thr Ile Asp Arg Tyr Leu Ala 135 Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala 145 150 155 160 Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 170 165 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val 185 Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 200 195 Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 215 Thr Ala Ala Tyr Val Lys Ile Leu Gln Arg Met Thr Ser Ser Val Ala 230 235 Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 245 250

Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr 265

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 280

285

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 290 295 300

Cys_Leu_Asn Pro-Phe Val Tyr Tle Val Leu Cys Glu Thr Phe Arg Lys 305 310 315 320

Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Thr 325 330 335

Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly 340 345 350

Thr

<210> 4 <211> 1074 <212> DNA <213> rat

<400> 60 qtcqacatqq atctqcaaac ctcqttqctq tccactggcc ccaatgccag caacatctcc gatggccagg ataatctcac attgccgggg tcacctcctc gcacagggag tgtctcctac 120 atcaacatca ttatgccttc cgtgtttggt accatctgtc tcctgggcat cgtgggaaac 180 tccacqqtca tctttgctgt ggtgaagaag tccaagctac actggtgcag caacgtcccc 240 qacatettea teateaacet etetgtggtg gatetgetet teetgetggg catgeettte 300 atgatecace ageteatggg gaacggegte tggcactttg gggaaaccat gtgcaccete 360 atcacagoca tggacgocaa cagtcagtto actagoacot acatootgac tgccatgaco 420 attgaccgct acttggccac cgtccacccc atctcctcca ccaagttccg gaagccctcc 480 540 atgqccaccc tgqtgatctg cctcctgtgg gcgctctcct tcatcagtat cacccctgtg 600 tggctctacg ccaqqctcat tcccttccca gggggtgctg tgggctgtgg catccgcctg 660 ccaaacccqq acactqacct ctactqqttc actctqtacc agtttttcct ggcctttgcc cttccgtttg tggtcattac cgccgcatac gtgaaaatac tacagcgcat gacgtcttcg 720 780 qtqqcccaq cctcccaacq cagcatccgg cttcggacaa agagggtgac ccgcacggcc attgccatct gtctggtctt ctttgtgtgc tgggcaccct actatgtgct gcagctgacc 840 cagctgtcca tcagccgccc gaccctcacg tttgtctact tgtacaacgc ggccatcagc 900 960 ttgggctatg ctaacagctg cctgaacccc tttgtgtaca tagtgctctg tgagaccttt 1020 cgaaaacgct tggtgttgtc agtgaagcct gcagcccagg ggcagctccg cacggtcagc 1074 aacqctcaqa cagctgatga ggagaggaca gaaagcaaag gcacctgaac tagt

<210> <211> <212> <213>	5 262 RNA rat				<u>-</u>		- -
<400> gcgaauı	1999 1999	uaccgggccc	ccccucgagg	ucgacgguau	cgauaagcuu	gauaucgaau	60
uccugca	agcc	cgggggaucc	gcccacuagu	ucaggugccu	uugcuuucug	uccucuccuc	120
aucagcı	ıguc	ugagcguugc	ugaccgugcg	gagcugcccc	ugggcugcag	gcuucacuga	180
caacac	caag	cguuuucgaa	aggucucaca	gagcacuaug	uacacaaagg	gguucaggca	240
gcuguua	agca	uagcccaagc	ug				262
<210><211><211><212><213>	6 18 DNA art:	ificial					
<220> <223>	pri	mer					
<400> caacago	6 etge	ctcaaccc					18
<210><211><211><212><213><223>							
<400> cctggtg	7 gatc	tgcctcct					18
<210><211><211><212><213>							
<400> taggtga	8 atgt	cagtgggagc	catgaagaag	ggagtgggga	gggcagttgg	gcttggaggc	60
ggcagc	ggct	gccaggctac	ggaggaagac	ccccttccca	actgcggggc	ttgcgctccg	120
ggacaag	ggtg	gcaggcgctg	gaggctgccg	cagcctgcgt	gggtggaggg	gagctcagct	180
cggttgt	ggg	agcaggcgac	cggcactggc	tggatggacc	tggaagcctc	gctgctgccc	240
actooto	ccca	acqccaqcaa	cacctctgat	ggccccgata	acctcacttc	ggcaggatca	300

cctcctcgca c	eggggagcat	ctcctacatc	aacatcatca	tgccttcggt	gttcggcacc	360
-atctgcctcc t	gggcatcat	cgggaactcc	acggtcatct	tcgcggtcgt	gaagaagtcc	420
aagctgcact g	ggtgcaacaa	cgtccccgac	atcttcatca	tcaacctctc	ggtagtagat	480
ctcctctttc t	cctgggcat	gcccttcatg	atccaccagc	tcatgggcaa	tggggtgtgg	540
cactttgggg a	agaccatgtg	caccctcatc	acggccatgg	atgccaatag	tcagttcacc	600
agcacctaca t	cctgaccgc	catggccatt	gaccgctacc	tggccactgt	ccaccccatc	660
tcttccacga a	agttccggaa	gccctctgtg	gccaccctgg	tgatctgcct	cctgtgggcc	720
ctctccttca t	cagcatcac	ccctgtgtgg	ctgtatgcca	gactcatccc	cttcccagga	780
ggtgcagtgg g	gctgcggcat	acgcctgccc	aacccagaca	ctgacctcta	ctggttcacc	840
ctgtaccagt t	tttcctggc	ctttgccctg	ccttttgtgg	tcatcacage	cgcatacgtg	900
aggatcctgc a	agcgcatgac	gtcctcagtg	gccccgcct	cccagcgcag	catccggctg	960
cggacaaaga g	gggtgacccg	cacagccatc	gccatctgtc	tggtcttctt	tgtgtgctgg	1020
gcaccctact a	atgtgctaca	gctgacccag	ttgtccatca	gccgcccgac	cctcaccttt	1080
gtctacttat a	acaatgcggc	catcagcttg	ggctatgcca	acagctgcct	caaccccttt	1140
gtgtacatcg t	gctctgtga	gacgttccgc	aaacgcttgg	tcctgtcggt	gaagcctgca	1200
gcccaggggc a	agcttcgcgc	tgtcagcaac	gctcagacgg	ctgacgagga	gaggacagaa	1260
agcaaaggca c	cctga					1275

<210> 9

<211> 422

<212> PRT

<213> human

<400> 9

Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu 1 5 10 15

Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn 20 25 30

Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro 35 40 45

Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 50 55 60

Thr Gly Thr Gly Trp Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 65 70 75 80

Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser 120 115 Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn 135 Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu 145 Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly 170 Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 185 Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile 200 195 Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg 215 Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser 225 Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu 280 Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met 295 Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr 320 315 305 310 Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val 330 325 Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser 345 Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu 355 Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys 370 375 380

```
385 - 395
Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg
Thr Glu Ser Lys Gly Thr
           420
<210> 10
<211> 31
<212> DNA
<213> artificial
<220>
<223> primer
<400> 10
                                                                 31
gtcgacatgg acctggaagc ctcgctgctg c
<210> 11
<211> 31
<212> DNA
<213> artificial
<220>
<223> primer
<400> 11
                                                                 31
actagttcag gtgcctttgc tttctgtcct c
<210> 12
<211> 33
<212> DNA
<213> artificial
<220>
<223> primer
<400> 12
                                                                 33
agtcgacatg tcagtgggag ccatgaagaa ggg
<210> 13
<211> 33
<212> DNA
<213> artificial
<220>
<223> primer
<400> 13
                                                                 33
aactagttca ggtgcctttg ctttctgtcc tct
```

Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln

<210> <211> -1074- - - - - -<213> human <400> 14 60 gtcgacatgg acctggaagc ctcgctgctg cccactggtc ccaacgccag caacacctct 120 gatggccccg ataacctcac ttcggcagga tcacctcctc gcacggggag catctcctac atcaacatca tcatgccttc ggtgttcggc accatctgcc tcctgggcat catcgggaac 180 240 tccacggtca tcttcgcggt cgtgaagaag tccaagctgc actggtgcaa caacgtcccc gacatettea teateaacet eteggtagta gateteetet tteteetggg catgecette 300 atgatecace ageteatggg caatggggtg tggcaetttg gggagaceat gtgcaecete 360 atcacggcca tggatgccaa tagtcagttc accagcacct acatcctgac cgccatggcc 420 480 attgaccgct acctggccac tgtccacccc atctcttcca cgaagttccg gaagccctct gtggccaccc tggtgatctg cctcctgtgg gccctctcct tcatcagcat cacccctgtg 540 600 tggctgtatg ccagactcat ccccttccca ggaggtgcag tgggctgcgg catacgcctg 660 cccaacccag acactgacct ctactggttc accetgtacc agtttttcct ggcctttgcc etgeettttg tggteateae ageegeatae gtgaggatee tgeagegeat gaegteetea 720 gtggcccccg cctcccagcg cagcatccgg ctgcggacaa agagggtgac ccgcacagcc 780 ategecatet gtetggtett etttgtgtge tgggeaceet actatgtget acagetgace 840 cagttgtcca tcagccgccc gaccctcacc tttgtctact tatacaatgc ggccatcagc 900 ttgggctatg ccaacagctg cctcaacccc tttgtgtaca tcgtgctctg tgagacgttc 960 cgcaaacgct tggtcctgtc ggtgaagcct gcagcccagg ggcagcttcg cgctgtcagc 1020 1074 aacgctcaga cggctgacga ggagaggaca gaaagcaaag gcacctgaac tagt <210> 15 1283 <211> <212> DNA <213> human <400> 15 agtcgacatg tcagtgggag ccatgaagaa gggagtgggg agggcagttg ggcttggagg 60 120 cggcagcggc tgccaggcta cggaggaaga cccccttccc aactgcgggg cttgcgctcc 180 qqqacaaqqt ggcaggcgct ggaggctgcc gcagcctgcg tgggtggagg ggagctcagc teggttgtgg gageaggega eeggeactgg etggatggae etggaageet egetgetgee 240

cactggtccc a	acgccagca	acacctctga	tggccccgat	aacctcactt	cggcaggatc	300
acctcctcgc a	acggggagca	tctcctacat	caacatcatc	atgccttcgg	tgttcggcac	360
catctgcctc c	ctgggcatca	tcgggaactc	cacggtcatc	ttcgcggtcg	tgaagaagtc	420
caagctgcac t	ggtgcaaca	acgtccccga	catcttcatc	atcaacctct	cggtagtaga	480
tctcctcttt c	etcctgggca	tgcccttcat	gatccaccag	ctcatgggca	atggggtgtg	540
gcactttggg g	gagaccatgt	gcaccctcat	cacggccatg	gatgccaata	gtcagttcac	600
cagcacctac a	atcctgaccg	ccatggccat	tgaccgctac	ctggccactg	tccaccccat	660
ctcttccacg a	agttccgga	agccctctgt	ggccaccctg	gtgatctgcc	tcctgtgggc	720
cctctccttc a	atcagcatca	cccctgtgtg	gctgtatgcc	agactcatcc	ccttcccagg	780
aggtgcagtg g	ggctgcggca	tacgcctgcc	caacccagac	actgacctct	actggttcac	840
cctgtaccag t	ttttcctgg	cctttgccct	gccttttgtg	gtcatcacag	ccgcatacgt	900
gaggatcctg o	cagcgcatga	cgtcctcagt	ggcccccgcc	tcccagcgca	gcatccggct	960
gcggacaaag a	agggtgaccc	gcacagccat	cgccatctgt	ctggtcttct	ttgtgtgctg	1020
ggcaccctac t	atgtgctac	agctgaccca	gttgtccatc	agccgcccga	ccctcacctt	1080
tgtctactta t	acaatgcgg	ccatcagctt	gggctatgcc	aacagctgcc	tcaacccctt	1140
tgtgtacatc g	gtgctctgtg	agacgttccg	caaacgcttg	gtcctgtcgg	tgaagcctgc	1200
agcccagggg cagcttcgc		ctgtcagcaa	cgctcagacg	gctgacgagg	agaggacaga	1260
aagcaaaggc a	acctgaacta	gtt				1283
<210> 16 <211> 420 <212> RNA <213> human	1					
<400> 16 caaaagcugg a	agcuccaccg	cgguggcggc	cgcucuagcc	cacuaguuca	ggugccuuug	60
						120

<400> 16
caaaagcugg agcuccaccg cgguggcggc cgcucuagcc cacuaguuca ggugccuuug 60
cuuucugucc ucuccucguc agccgucuga gcguugcuga cagcgcgaag cugccccugg 120
gcugcaggcu ucaccgacag gaccaagcgu uugcggaacg ucucacagag cacgauguac 180
acaaaggggu ugaggcagcu guuggcauag cccaagcuga uggccgcauu guauaaguag 240
acaaagguga gggucgggcg gcugauggac aacuggguca gcuguagcac auaguagggu 300
gcccagcaca caaagaagac cagacagaug gcgauggcug ugcgggucac ccucuuuguc 360
cgcagccgga ugcugcgcug ggaggcggg gccacugagg acgucaugcg cugcaggauc 420