Report for Assignment 1

Half Space classifier implemented using LP solver

I implemented Half Space classifier implemented using LP solver on dataset "Prostate_Cancer.csv" which I downloaded from Kaggle.com. Here from the given 8 features, our task is to find binary diagnosis_result "M" or B".

Here, I first wrote all calculation steps for implementation of Half Space Classifier using LP solver package. I used LP solver package scipy.optimize.linprog here.

Important steps are,

- After loading the dataset, we perform normalization on entries of dataset.
- Then we used train_test_split from sklearn.model_selection to split features and target in train and test variables.
- Solving the LP problem for optimizing a zero vector we get out desired hyper plane satisfying all constrains. The hyper plane is [0.1967045 0.11209043 0.15793781 0.17877359 0.12363595 0.1022126, 0.10620831 0.17060734]
- Then we compute our prediction vector.
- And then we calculate Accuracy of our written program.
- Then, we also computed accuracy using LogisticRegression Package from sklearn.

The results are given below,

Train Size : Test Size	Accuracy from program written from scratch	Accuracy from LogisticRegression Package from sklearn
90:10	.9	1.0
80:20	.8	.8
70:30	.73333	.8

Half Space classifier implemented using Perceptron Algorithm

I tried implemented Half Space classifier implemented using Perceptron Algorithm on same dataset "Prostate_Cancer.csv" which I downloaded from Kaggle.com. Here from the given 8 features, our task is to find binary diagnosis_result "M" or B".

Then I tried write all calculation steps for implementation of Half Space Classifier using perceptron algorithm.

Then I used Perceptron package from sklearn to compare it with my written program accuracy rate.

Using the package, I got accuracy,

- . Important steps are,
 - After loading the dataset, we perform normalization on entries of dataset.
 - Then we used train_test_split from sklearn.model_selection to split features and target in train and test variables.
 - In Perceptron class we define fit function (where we performed perceptron algorithm), predict function.

The results are given below,

Train Size : Test Size	Accuracy from program written from scratch	Accuracy from Perceptron Package from sklearn
90:10	.6	.9
80 : 20	.5	.85
70:30	.4	.63333

Logistic Regression Classifier

I implemented Logistic Regression Classifier on dataset

"heart_failure_clinical_records_dataset.csv" which I downloaded from Kaggle.com. Here from the given 12 features, our task is to find binary DEATH_EVENT 1 or 0.

Here, I first wrote all calculation steps for Logistic Regression Classifier using Gradient Descent Method and implemented on the dataset. Then I checked my result with Logistic Regression Package from sklearn.

Steps are,

- After loading the dataset, we perform normalization on entries of dataset.
- Then we used train_test_split from sklearn.model_selection to split features and target in train and test variables.
- Then we defined the sigmoid function 1/(1+np.exp(-z)).
- Then we wrote the required foreward_backward_propagation, update, prediction and main logistic_regression function where we used gradient descent method.

The results are given below,

Train Size : Test Size	Accuracy from program written from scratch		Accuracy from LogisticRegres from sklearn	
	Train	Test Accuracy	Test	Train
	Accuracy	(%)	Accuracy (%)	Accuracy (%)
90 : 10	.85502	.8	.73333	.84758
80 : 20	.841004	.75	.71667	.85774
70 : 30	.86124	.75556	.73333	.86603

The above table shows that accuracy from program written from scratch is very close to Accuracy from LogisticRegression Package from sklearn.