Regresión Clásica Versus Regresión Bayesiana

July 12, 2020

Suponemos una cantidad n de pares de observaciones (Y, X) en base a las que queremos analizar a Y como función de X.

El **Enfoque Clásico** postula **parámetros fijos** y target Y aleatoria para el modelo:

$$Y \sim N(\alpha + \beta X, \sigma)$$

donde

 α, β, σ son parámetros fijos y desconocidos

El enfoque consigue estimaciones (realizaciones) de los estimadores

$$\begin{split} \hat{\alpha}(Y,X) \sim N(\alpha, \propto \frac{\sigma}{\sqrt{n}}) \\ \hat{\beta}(Y,X) \sim N(\beta, \propto \frac{\sigma}{S_X \sqrt{n}}) \\ \frac{\hat{\sigma}(Y,X)}{\sigma} \sim \chi_{n-2}^2 \end{split}$$

que son variables aleatorias con distribución inducida por la distribución de la target Y(si n es chico) o por el Teorema Central del Límite (si n es grande). De este enfoque se desprenden:

- Estimaciones puntuales (realización del estimador)
- Intervalos de confianza (basado en la distribución del estadístico)
- Test de hipótesis y p-valor (basados en la distribución del estadístico)

Ventaja del enfoque: Pocos supuestos. Incluso la normalidad se puede eliminar y todo sigue valiendo, si n es razonablemente grande.

Contra del enfoque: La información que se obtiene del paramétro es escasa e indirecta. Por ejemplo, para calcular el p-valor del parametro β debemos suponer un valor poblacional igual a 0 y computar la probabilidad (usando la distribución del estimador, bajo la hipótesis de $\beta=0$) de observar una realización tanto o más extrema que la observada.

El **Enfoque Bayesiano** propone **parámetros aleatorios** para el mismo modelo:

```
Y \sim N(\alpha + \beta x, \sigma) donde \alpha \sim N(0, \tau_{\alpha}) \text{ con prior (arbitrariamente) normal} \beta \sim N(0, \tau_{\beta}) \text{ con prior (arbitrariamente) normal} \sigma \sim Exp(\lambda) \text{ con prior (arbitrariamente) exponencial} \tau_{\alpha} es fijo y propuesto por el investigador \tau_{\beta} es fijo y propuesto por el investigador \lambda es fijo y propuesto por el investigador
```

Este enfoque consigue distribuciones a posteriori de los parámetros cuyas distribuciones son inducidas por la distribución de Y y por las distribuciones a priori de los parámetros. Las distribuciones a posteriori son:

```
\alpha \mid Y, X, \tau_{\alpha} \sim P_{\alpha} la posterior de \alpha

\beta \mid Y, X, \tau_{\beta} \sim P_{\beta} la posterior de \beta

\sigma \mid Y, X, \lambda \sim P_{\sigma} la posterior de \sigma
```

De este enfoque se desprenden:

- Estimaciones puntuales (basado en la distribución a posteriori)
- Intervalos de credibilidad (basado en la distribución a posteriori)

Contra del enfoque: Mochos supuestos y muy fuertes.

Ventaja del enfoque: La información que se obtiene del paramétro es muy rica. Por ejemplo, la posterior del parámetro β brinda una medida directa de la certeza de los posibles valores de β , condicional a las observaciones.

Ejemplo

Veamos, mediante un ejemplo práctico, una comparación de ambos enfoques. Tratamos de entender la relación entre el perímetro cefálico (target Y) de bebes nacidos con bajo peso (headcirc) y la edad gestacional (X=gestage). Datos publicados en Leviton, Fenton, Kuban, y Pagano [1991], tratados en el libro de Pagano et al. [2000].

En nuestro modelo:

```
\begin{split} Y \sim N(\alpha + \beta x, \sigma) \\ \text{donde} \\ \alpha \sim N(0, \tau_{\alpha} = 100) \text{ con prior (arbitrariamente) normal} \\ \beta \sim N(0, \tau_{\beta} = 100) \text{ con prior (arbitrariamente) normal} \\ \sigma \sim Exp(\lambda = 0.1) \text{ con prior (arbitrariamente) exponencial} \end{split}
```


Figure 1: Perímetro Cefálico vs. Edad Gestacional

La Distribución a Posteriori en Regresión Bayesiana

En resumen, en nuestro ejemplo, la distribución a posteriori queda:

$$posterior(\alpha, \beta, \sigma \mid Y, X) \propto L(Y, X, \alpha, \beta, \sigma) * p(\alpha) * p(\beta) * p(\sigma)$$

La Magia: Monte Carlo Markov Chain

El Algoritmo Metrópolis

Veamos con un ejemplo sencillo el principio fundamental sobre el que se basa la aplicación moderna de la inferencia bayesiana, la estimación numérica de la distribución a posteriori.

Modelo de Posición

Dada una muestra $(Y_1 = 2, Y_2 = 3, Y_3 = 4)$, sea

$$Y \sim N(\alpha, \sigma = 1)$$

donde

 $\alpha \sim N(0,1)$ con prior (arbitrariamente) normal

L a posterior es

$$posterior(\alpha) \propto L(Y, \alpha) * p(\alpha) = \prod_i \phi(Y_i - \alpha, 1) * \phi(\alpha, 1)$$

En este caso particular, como la normal (likelihood) es conjugada de la normal (prior), se puede calcular analíticamente la distribución:

$$posterior(\alpha) = N(\frac{n\overline{Y}}{1+n}, \sqrt{\frac{1}{1+n}})$$

El Algoritmo Metrópolis

- 1. Genero un α_0 aleatorio inicial
- 2. Sea $\alpha_{viejo} = \alpha_0$
- 3. Genero un nuevo $\alpha_{nuevo} \sim normal(\alpha_{viejo})$ aleatorio centrado en α_{viejo}
- 4. Calculo $r = \frac{posterior(\alpha_{nuevo})}{posterior(\alpha_{viejo})} = \frac{\prod_{i} \phi(Y_i \alpha_{nuevo}, 1) * \phi(\alpha_{nuevo}, 1)}{\prod_{i} \phi(Y_i \alpha_{viejo}, 1) * \phi(\alpha_{viejo}, 1)}$
- 5. Genero $u \sim U(0,1)$
- 6. Si u < r entonces $\alpha_{nuevo} = \alpha_{viejo}$ y guardo α_{nuevo}
- 7. Vuelovo a 3 hasta alcanzar la cantidad deseada de muestras

Este es un algoritmo (tipo aceptación/rechazo) de Monte Carlo (basado en la generación de números pseudo aleatorios) Markov Chain de grado 1 (cada nyuevo alfa sólo depende del anterior) en el que la distribución de la sucesión de alfas converge a la distribución a posteriori deseada.

El algoritmo sólo requiere contar con una función **proporcional** a la distribución a posteriori que sea **numéricamente evaluale**.