

Alternating Inertial and Overrelaxed Algorithms for Distributed Generalized Nash Equilibrium Seeking in Multi-Player Games

Author: Zhangcheng Feng, Wenying Xu and Jinde Cao

Southeast University

ICCM 2022 2022.7.30.

OUTLINE

Background and Motivation

Main Results

Conclusions and related works

Background —— Example: Smart Grid

Smart grid

➤ Economic Dispatch (ED)

$$\max_{P_i} \quad \operatorname{Profits}_i(P_i)$$

$$s.t. \quad \sum_{i} P_{i} = Total \ Demand$$

➤ Demand-Side Management

Background — Other Examples

Ad-hoc wireless communication network

Competitive economy, environmental pollution control......

Motivating Features of Partial-Information

- Interdependence among decision makers
 - Access decision information of opponents
- Large-scale networks (thousands of decision makers)
 - Locality of information

Power outages

Traffic jam

OUTLINE

Background and Motivation

Main Results

Conclusions and related works

Main Results —— Game Theoretic-Setup

- N agents (decision makers)
- Each agent i has decision variable (strategy) x_i

$$oldsymbol{x}:=egin{pmatrix} x_1 \ dots \ x_N \end{pmatrix}$$
 ("all"); \qquad $(orall i)$ $oldsymbol{x}_{-i}:=egin{pmatrix} dots \ x_{i-1} \ x_{i+1} \ dots \end{pmatrix}$ ("others")

Each agent i has its individual objective:

$$\min_{x_i} \ J_i(x_i, oldsymbol{x}_{-i}) \longleftarrow$$
 Cost function $s.t. \ x_i \in \mathrm{constraints}_i(oldsymbol{x}_{-i})$

• "Game": = { inter-dependent optimization problems }

Generalized Nash Equilibrium Problem

• Game:

Generalized Nash equilibrium (GNE):

$$egin{aligned} oldsymbol{x}^* = egin{pmatrix} oldsymbol{x}_1^* \ dots \ oldsymbol{x}_N^* \end{pmatrix} \in egin{pmatrix} \operatorname{argmin} P_1(oldsymbol{x}_{-1}^*) \ dots \ \operatorname{argmin} P_N(oldsymbol{x}_{-N}^*) \end{pmatrix}$$

Lagrangian Method —— Decouple Constraints

Lagrangian functions:

$$L_i(oldsymbol{x}_i, oldsymbol{x}_{-i}; oldsymbol{\lambda}_i) \!=\! J_i(oldsymbol{x}_i, oldsymbol{x}_{-i}) \!+\! oldsymbol{\lambda}_i^ op\! (Aoldsymbol{x} - b\,)$$

KKT conditions:

• variational GNE (v-GNE) — $\lambda_1 = \lambda_2 = \cdots = \lambda$

$$\begin{cases} \nabla_{x_i} L_i(\boldsymbol{x}_i, \boldsymbol{x}_{-i}; \boldsymbol{\lambda}_i) = 0 \\ A\boldsymbol{x} - b \leq 0 \\ \boldsymbol{\lambda}_i^\top (A\boldsymbol{x} - b) = 0 \\ \boldsymbol{\lambda}_i \geq 0 \end{cases} \quad \text{operator theory} \quad \begin{cases} \boldsymbol{0} \in F(\boldsymbol{x}) + A^\top \boldsymbol{\lambda} + N_\Omega(\boldsymbol{x}) \\ \boldsymbol{0} \in -(A\boldsymbol{x} - b) + N_{\geq 0}(\boldsymbol{\lambda}) \end{cases}$$

$$\begin{cases} \mathbf{0} \in F(\mathbf{x}) + A^{\top} \boldsymbol{\lambda} + N_{\Omega}(\mathbf{x}) \\ \mathbf{0} \in -(A\mathbf{x} - b) + N_{\geq 0}(\boldsymbol{\lambda}) \end{cases}$$

Pseudo-gradient mapping:

$$F(oldsymbol{x})\!:=\!egin{pmatrix}
abla_{x_1}J_1(oldsymbol{x}_1,oldsymbol{x}_{-1}) \ dots \
abla_{x_N}J_N(oldsymbol{x}_N,oldsymbol{x}_{-N}) \end{pmatrix}$$

Main Results —— Assumptions

Assumptions:

- $J_i(\cdot, \mathbf{x}_i)$ continuous differentiable, convex
- Ω_i non-empty, compact and convex
- $\Omega \cap \{x: Ax \leq b\}$ non-empty, Slater's constraint qualification
- F Lipschitz continuous, strongly monotone

$$\langle x - y, F(x) - F(y) \rangle \ge \mu \| x - y \|^2 (\mu > 0)$$

Partial-Decision Information Setup I

Problem:

Agent i does not know $\mathbf{x}_{-i} \Rightarrow \text{ cannot compute } J_i(\mathbf{x}_i, \mathbf{x}_{-i}) \text{ and } \nabla_{\mathbf{x}_i} J_i(\mathbf{x}_i, \mathbf{x}_{-i})$

Solution:

Agent i estimates x_{-i}

 $\succ x_i^j$:= estimation by agent i of x_j ($x_j \rightarrow x_1^j, \cdots, x_N^j$)

$$\triangleright x_i^i := x_i$$

 $\triangleright x_i^{-i}$:= estimation by agent i of x_{-i}

3 2 10 11 20 12 13 14 17 16 15

Fig. 2. Communication graph among all firms, where an edge from i to j means that firm i and j can exchange information.

Graph properties:

Agents exchange decision and estimation variables with neighbors on a undirected, connected graph

Partial-Decision Information Setup II

Pseudo-gradient mapping (PGM):

Extended PGM (EPGM):

$$F(oldsymbol{x})\!:=\!egin{pmatrix}
abla_{x_1}J_1(oldsymbol{x}_1,oldsymbol{x}_{-1}) \ dots \
abla_{x_N}J_N(oldsymbol{x}_N,oldsymbol{x}_{-N}) \end{pmatrix}$$

$$oldsymbol{F}(oldsymbol{x})\!:=\!egin{pmatrix}
abla_{x_1}J_1(oldsymbol{x}_1,oldsymbol{x}_1^{-1}) \ dots \
abla_{x_N}J_N(oldsymbol{x}_N,oldsymbol{x}_N^{-N}) \end{pmatrix}$$

Property and assumption:

- $ightharpoonup F(\mathbf{1}_N \otimes \mathbf{x}) = F(\mathbf{x})$ (all estimates equal)
- \triangleright EPGM F(x) is Lipschitz continuous, not monotone

Contribution:

- ➤ Operator splitting + inertia\overrelaxation idea
- ➤ Convergent rate & computation consumption

- Mild assumption
- Numerical simulation

Distributed Alternating Inertial v-GNE Seeking

• Algorithm 1: (P=projection operator, $W=[w_{ij}] \in R^{N \times N}$ —weighted adjacency matrix)

$$\begin{split} x_{i,k+1} &= P_{\Omega_i}(\tilde{x}_{i,k} - \gamma_i(\nabla_{x_i}J_i(\tilde{x}_{i,k}, \tilde{\mathbf{x}}_{i,k}^{-i}) + A_i^T \tilde{\lambda}_{i,k} + c\sum_{j \in \mathcal{N}_i} w_{ij}(\tilde{x}_{i,k} - \tilde{\mathbf{x}}_{j,k}^{i}))) \\ \mathbf{x}_{i,k+1}^{-i} &= \tilde{\mathbf{x}}_{i,k}^{-i} - \gamma_i c\sum_{j \in \mathcal{N}_i} w_{ij}(\tilde{\mathbf{x}}_{i,k}^{-i} - \tilde{\mathbf{x}}_{j,k}^{-i}) \\ z_{i,k+1} &= \tilde{z}_{i,k} + \xi_i \sum_{j \in \mathcal{N}_i} w_{ij}(\tilde{\lambda}_{i,k} - \tilde{\lambda}_{j,k}) \\ \lambda_{i,k+1} &= P_{\mathbf{R}_+^m}(\tilde{\lambda}_{i,k} + \kappa_i(A_i(2x_{i,k+1} - \tilde{x}_{i,k}) - b_i \\ &- \sum_{j \in \mathcal{N}_i} w_{ij}(2(z_{i,k+1} - z_{j,k+1}) - (\tilde{z}_{i,k} - \tilde{z}_{j,k})) - \sum_{j \in \mathcal{N}_i} w_{ij}(\tilde{\lambda}_{i,k} - \tilde{\lambda}_{j,k}))) \end{split}$$

$$\alpha_{k} = 0 \text{ when } k \text{ is even, } \alpha_{k} = \alpha \text{ when } k \text{ is odd.}$$

$$\tilde{x}_{i,k} = x_{i,k} + \alpha_{k}(x_{i,k} - x_{i,k-1})$$

$$\tilde{\mathbf{x}}_{i,k}^{-i} = \mathbf{x}_{i,k}^{-i} + \alpha_{k}(\mathbf{x}_{i,k}^{-i} - \mathbf{x}_{i,k-1}^{-i})$$

$$\tilde{z}_{i,k} = z_{i,k} + \alpha_{k}(z_{i,k} - z_{i,k-1})$$

$$\tilde{\lambda}_{i,k} = \lambda_{i,k} + \alpha_{k}(\lambda_{i,k} - \lambda_{i,k-1})$$

- 1. Alternating inertial step
- 2. Local strategy x_i update (projected-pseudo-gradient)
- 3. Local estimation \boldsymbol{x}_i^{-i} update
- 4. Local auxiliary variable z_i update
- 5. Dual variable λ_i update

^[1] Pavel L. Distributed GNE seeking under partial-decision information over networks via a doubly-augmented operator splitting approach[J]. IEEE Transactions on Automatic Control, 2019, 65(4): 1584-1597.

^[2] Iutzeler F, Hendrickx J M. A generic online acceleration scheme for optimization algorithms via relaxation and inertia[J]. Optimization Methods and Software, 2019, 34(2): 383-405.

Distributed Alternating Overrelaxed v-GNE Seeking

Algorithm 2:

$$\begin{split} \tilde{x}_{i,k} &= P_{\Omega_i}(x_{i,k} - \tau_i(\nabla_{x_i}J_i(x_{i,k}, \mathbf{x}_{i,k}^{-i}) + A_i^{\top}\lambda_{i,k} + c\sum_{j\in\mathcal{N}_i}w_{ij}(x_{i,k} - \mathbf{x}_{j,k}^{i}))) \\ \tilde{\mathbf{x}}_{i,k}^{-i} &= \mathbf{x}_{i,k}^{-i} - \tau_i c\sum_{j\in\mathcal{N}_i}w_{ij}(\mathbf{x}_{i,k}^{-i} - \mathbf{x}_{j,k}^{-i}) \\ \tilde{z}_{i,k} &= z_{i,k} + \nu_i\sum_{j\in\mathcal{N}_i}w_{ij}(\lambda_{i,k} - \lambda_{j,k}) \\ \tilde{\lambda}_{i,k} &= P_{\mathbf{R}_+^m}(\lambda_{i,k} + \sigma_i(A_i(2\tilde{x}_{i,k} - x_{i,k}) - b_i \\ &- \sum_{j\in\mathcal{N}_i}w_{ij}(2(\tilde{z}_{i,k} - \tilde{z}_{j,k}) - (z_{i,k} - z_{j,k})) - \sum_{j\in\mathcal{N}_i}w_{ij}(\lambda_{i,k} - \lambda_{j,k}))) \end{split}$$

$$egin{aligned} au_k = &1 \; \textit{when} \; k \; \textit{is even}, \; au_k = & au \; \textit{when} \; k \; \textit{is odd}. \\ x_{i,k+1} &= & ilde{x}_{i,k} + (au_k - 1)(ilde{x}_{i,k} - x_{i,k}) \\ \mathbf{x}_{i,k+1}^{-i} &= & ilde{\mathbf{x}}_{i,k}^{-i} + (au_k - 1)(ilde{\mathbf{x}}_{i,k}^{-i} - \mathbf{x}_{i,k}^{-i}) \\ z_{i,k+1} &= & ilde{z}_{i,k} + (au_k - 1)(ilde{z}_{i,k} - z_{i,k}) \\ \lambda_{i,k+1} &= & ilde{\lambda}_{i,k} + (au_k - 1)(ilde{\lambda}_{i,k} - \lambda_{i,k}) \end{aligned}$$

- 1. Local strategy x_i update (projected-pseudo-gradient)
- 2. Local estimation \boldsymbol{x}_i^{-i} update
- 3. Local auxiliary variable z_i update
- 4. Dual variable λ_i update
- 5. Alternating overrelaxed step -

^[1] Pavel L. Distributed GNE seeking under partial-decision information over networks via a doubly-augmented operator splitting approach[J]. IEEE Transactions on Automatic Control, 2019, 65(4): 1584-1597.

^[2] lutzeler F, Hendrickx J M. A generic online acceleration scheme for optimization algorithms via relaxation and inertia[J]. Optimization Methods and Software, 2019, 34(2): 383-405.

Sketch of Convergence Analysis

$$\omega_k = \operatorname{col}\left(oldsymbol{x}_k, oldsymbol{z}_k, oldsymbol{\lambda}_k
ight)$$

Algorithm 1:

$$\left\{egin{array}{l} \omega_{k+1}\!=\!T(\omega_k), & ext{if k is even} \ \omega_{k+1}\!=\!T(\omega_k\!+\!lpha(\omega_k\!-\!\omega_{k-1}\!)), & ext{if k is odd} \end{array}
ight.$$

Algorithm 2:

$$\left\{egin{aligned} \omega_{k+1} = T\left(\omega_{k}
ight), & \textit{if k is even} \ \omega_{k+1} = T\left(\omega_{k}
ight) + (au - 1)\left(T\left(\omega_{k}
ight) - \omega_{k}
ight), & \textit{if k is odd} \end{aligned}
ight.$$

^[1] Pavel L. Distributed GNE seeking under partial-decision information over networks via a doubly-augmented operator splitting approach[J]. IEEE Transactions on Automatic Control, 2019, 65(4): 1584-1597.

^[2] Bauschke H H, Combettes P L. Convex analysis and monotone operator theory in Hilbert spaces[M]. New York: Springer, 2011.

Numerical Simulation I

• Nash-Gournot game —— 20 firms participate in 7 markets' competition

Numerical Simulation II

Figure 4. The trajectories of local decisions $x_{i,k}$ of firms 1, 6, 10 and 11 by Algorithms 1 and 2, respectively.

Numerical Simulation III

Figure 5. The trajectories of the estimate variable \mathbf{x}_{j}^{1} from firms 1–6 generated by Algorithm 1 (left); and the trajectories of the estimate variable \mathbf{x}_{j}^{3} from firm 1–6 generated by Algorithm 2 (right).

Numerical Simulation IV —— Comparison

Figure 6. Relative error $||x_k - x^*||^2 / ||x^*||^2$ generated by ([21], [Algorithm 1]), Algorithms 1 and 2.

Figure 7. Relative error $||x_k - x^*||^2 / ||x^*||^2$ generated by Algorithm 1 and ([25], [Alg. 3]).

OUTLINE

Background and Motivation

Main Results

Conclusions and related works

Conclusion

Distributed projected-gradient algorithms with alternating inertia/overrelaxed

- >guarantee the convergence to the v-GNE under mild assumptions
- > fast convergence rate and low computation cost
- >faster than proximal-point algorithm

Operator splitting technique is key to analysis of convergence

Related Works

- Time-varying topology
 - directed, disconnected (Q-strongly-connected)
 - weighted matrix is not doubly stochastic

- Dynamic game
 - time-varying objective function
 - imperfect feedback zero-order algorithms
- Applications

Thank you for your attention!