Graph Theory - Lecture 7 Planar Graphs

Chintan Kr Mandal
Department of Computer Science and Engineering
Jadavpur University, India

1 Basics

Case Study (GAS-WATER-ELECTRICITY PROBLEM);

Three sworn enemies **A-B-C** want to share Gas(G), Water(W) and Electicity(E). To avoid confrontions, the paths of the supplies should not be crossed.

Figure 1: Gas-Water-Electricity Problem

Let G(V, E) be a graph and let S be any surface (e.g. plane, sphere).

Let $P = \{p_1, p_2, \dots, p_{|V(G)|}\}$ be a set of |V(G)|-distinct points of \mathbf{S} , p_i corresponding to $v_i \in V(G)$. If $e_i = v_j v_k$, draw an arc, \mathbf{J}_i on \mathbf{S} from p_i to p_k such that \mathbf{J}_i does not pass through any other p_i . Then $P \cup \{J_1, J_2, \dots, J_m\}$ is called a *drawing* of $\mathbf{G}(\mathbf{V}, \mathbf{E})$ on \mathbf{S} or a diagram representing $\mathbf{G}(\mathbf{V}, \mathbf{E})$ on \mathbf{S} .

Befinition 1.1. A drawing of a graph $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is a function defined on $V(G) \bigcup E(G)$ that assigns each vertex v_i a point $f(v_i)$ in a plane and assigns each edge with endpoints v_i, v_j a polygonal $f(v_i)f(v_j)$ -curve; the images of the vertices being distinct.

A point in $f(e_{ij}) \cap f(e_{kl})$ that is not a common-point is called a crossing

Sefinition 1.2. A graph G(V, E) is planar if it has a drawing without crossings.

Such a drawing is a **planar embedding** of G(V, E). A *plane graph* is particular planar embedding of planar graph.

A curve is closed if its first and last points are same. It is simple if it has no repeated points except first and last points.

Definition 1.3. A **open set** in the plane is a set $U \subset \mathbb{R}^2$ such that for every $p_i \in U$, all points within some small distance from p_i blong to U.

Figure 2: Planar representation of G(V, E), where # represents the regions

Vefinition 1.4. A region is an open set U that contains a polygonal $v_i v_j$ -curve for every pair $v_i, v_j \in U$.

pefinition 1.5. The face (f) of a plane graph are the maximal regions of the plane that contain no other point used in the embedding.

- A plane representation of a graph divides the plane into regions also called windows, faces and meshes.
- ✓ A region is characterised by the set of edges (or the set of vertices) forming its boundary.
- A region is not defined in a non-planar graph, or even in a planar graph nor embedded in a plane.
- A **region** is a property of the specific plane representation of a graph and not of an abstract graph
 - A finite plane graph, G(V, E) has <u>one unbounded face</u> (also called outer face).
- The faces are pairwise disjoint.
- Points $p_i, p_j \in \mathbb{R}^2$ lying in no edge of $\mathbf{G}(\mathbf{V}, \mathbf{E})$ are in the same face iff there is a polygonal $p_i p_j$ -curve that crosses no edge.

Euler's Theorem

Euler's Theorem gives the relation between the number of vertices |V(G)|, number of edges |E(G)|, the number of faces of the planar graph, |F(G)| and the number of components, K

Theorem 2.1. If a graph G(V, E) is a planar graph with |V(G)| vertices, |E(G)| edges, |F(G)| faces and K components, then

$$|V(G)| - |E(G)| + |F(G)| = K + 1$$
(1)

Theorem 2.2. In a connected planar graph with with |V(G)| vertices, |E(G)| edges, |F(G)| faces

$$|V(G)| - |E(G)| + |F(G)| = 2$$
 (2)

Froof 1 of Theorem 2.2. Without loss of generality, assume that the planar graph is simple. Since, any simple planar graph can have a plane representation such that each edge is a straight line, any planar graph can be drawn such that each region is a polygon (a polygon net). Let the polygon net representing the given graph consists of |F(G)| regions. Let k_p be the number of p-sided regions. Since, each edge is on the boundary of exactly two regions,

$$3k_3 + 4k_4 + 5k_5 + \ldots + rk_r = 2|E(G)| \tag{3}$$

where k_r is the number of polygons with r edges. Also,

$$k_3 + k_4 + k_5 + \ldots + k_r = |F(G)|$$
 (4)

The sum of all angles subtended at each vertex in the polygon net is

$$2|V(G)|\pi\tag{5}$$

Now, the sum of all interior angles of a p-sided polygon is $\pi(p-2)$ and the sum of the exterior angles is $\pi(p+2)$.

Equation (5) is the total sum of all interior angles of |F(G)| - 1 finite regions plus the sum of the exterior angles of the polygon defining the infinite regions. This sum is

Equating equations (5), (6), we get

$$2\pi[|E(G)| - |F(G)| + 2] = 2\pi|V(G)| \tag{7}$$

so that |F(G)| = |E(G)| - |V(G)| - 2

Definition 2.1 (Region of a Planar Graph). Let ϕ be a region of a planar graph G(V, E). We define the degree of ϕ , denoted by $d(\phi)$, as the number of edges of the boundary of ϕ .

Proof 2 of Theorem 2.2. We use *induction* on the number of edges of the planar graph, |E(G)|.

If |E(G)| = 0, then $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is K_1 , a complete graph with 1 vertex and 1 region. So, |V(G)| - |E(G)| + |F(G)| = 1 - 0 + 1 = 2, and the result is TRUE.

If |E(G)| = 1, then the number of vertices in $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is either *one* or *two*, the first possibility occurring ehen the edge is a *loop*. These two possibilities give rise respectively to two regions and one region.

Therefore,

$$|V(G)| - |E(G)| + |F(G)| = \begin{cases} 1 - 1 + 2 \text{ in the loop case} \\ 2 - 1 + 1 \text{ in the non-loop case} \end{cases}$$

Thus, |V(G)| - |E(G)| + |F(G)| = 2 is TRUE.

Assume that the result is true for all connected planar graphs with fewer than |E(G)| edges. Let $\mathbf{G}(\mathbf{V}, \mathbf{E})$ have |E(G)| edges.

Figure 3: Possibilities for one or two regions

Case 1: Suppose G(V, E) is a tree. Then |E(G)| = |V(G)| - 1 and |F(G)| = 1, because a planar representation of a tree has one region. Thus, |V(G)| - |E(G)| + |F(G)| = |V(G)| - (|V(G)| - 1) + 1 = 2, and the result holds.

Case 2: Suppose G(V, E) is not a *tree*. Then G(V, E) has cycles. Let C(G) be a cycle in G(V, E). Let $e \in C(G)$ be an edge of of the cycle C(G). The graph G(V, E) - e has one edge less than the graph G(V, E). Also the number of vertices in V(G - e) and G(V, E) are same. Since, removing e coalesces two, regions in G(V, E) into one in G(V, E) - e, therefore G(V, E) - e has one region less that in G(V, E).

Thus, by induction hypothesis in $\mathbf{G}(\mathbf{V}, \mathbf{E}) - e$, we have |V(G)| - (E(G) - 1) + (F(G) - 1) = 2, so that |V(G)| - |E(G)| + |F(G)| = 2

Hence, the result.

3 Upper Bound for the Edges of a Simple Planar Graph

Theorem 3.1. Let graph G(V, E) be a simple planar graph with |V(G)| vertices and |E(G)| edges. where $|V(G)| \geq 3$. Then $|E(G)| \leq 3|V(G)| -6$

Proof First, assume that the planar graph $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is connected.

If $|\mathbf{V}(\mathbf{G})| = 3$, then since $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is simple. therefore $\mathbf{G}(\mathbf{V}, \mathbf{E})$ has at most three edges. Thus, $|\mathbf{E}(\mathbf{G})| \leq 3$, i.e. $|\mathbf{E}(\mathbf{G})| \leq 3 \times 3 - 6$, and the result is TRUE.

Now, let $|\mathbf{V}(\mathbf{G})| = 4$.

First, let $\mathbf{G}(\mathbf{V}, \mathbf{E})$ be a tree so that $|\mathbf{E}(\mathbf{G})| = |\mathbf{V}(\mathbf{G})| - 1$. Since, $|\mathbf{V}(\mathbf{G})| \ge 4$, obviously we have $|\mathbf{V}(\mathbf{G})| - 1 \le 3|\mathbf{V}(\mathbf{G})| - 6$.

Now, let $\mathbf{G}(\mathbf{V}, \mathbf{E})$ be not a tree. Then, $\mathbf{G}(\mathbf{V}, \mathbf{E})$ has cycles. Clearly, there is a cycle in $\mathbf{G}(\mathbf{V}, \mathbf{E})$, all of whose edges lie on the boundary of the exterior region of $\mathbf{G}(\mathbf{V}, \mathbf{E})$. Then, since $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is simple, we have $d(\phi) \geq 3$, for each region ϕ of $\mathbf{G}(\mathbf{V}, \mathbf{E})$. Let

$$b = \sum_{\phi \in F(G)} d(\phi)$$

, where F(G) denotes the set of all regions of G(V, E).

Since, each region has at least three edges on its boundary, therfore we have $b \geq 3|F(G)|$, where |F(G)| is the number of regions of $\mathbf{G}(\mathbf{V}, \mathbf{E})$. However, when we sum to get b, each edge of $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is counted either once or twice (twice when it occurs as a boundary edge for two regions).

Therefore, $b \le 2|\mathbf{V}(\mathbf{G})|$, so that $3|F(G)| \le b \le 2|\mathbf{V}(\mathbf{G})|$. In particular, we have $3|F(G)| \le 2|\mathbf{E}(\mathbf{G})|$.

Vising Euler's formula, $|\mathbf{V}(\mathbf{G})| - |\mathbf{E}(\mathbf{G})| + |F(G)|$, we get $|\mathbf{E}(\mathbf{G})| \le 3|\mathbf{V}(\mathbf{G})| - 6$.

Let graph $\mathbf{G}(\mathbf{V}, \mathbf{E})$ be not connected and let G_1, G_2, \ldots, G_t be its connected components. For each $i, 1 \leq i \leq t$, let $|V(G_i)|$ and $|E(G_i)|$ denote the number of vertices and edges in G_i . Since each G_i is a planar simple graph, by the above argument, we have $|E(G_i)| \leq 3|V(G_i)| - 6$, for each $i, 1 \leq i \leq t$.

Also,
$$|\mathbf{V}(\mathbf{G})| = \sum_{i=1}^{t} |V(G_i)|$$
 and $|\mathbf{E}(\mathbf{G})| = \sum_{i=1}^{t} |E(G_i)|$.

Hence,

$$|\mathbf{E}(\mathbf{G})| = \sum_{i=1}^{t} |V(G_i)| \le \sum_{i=1}^{t} (3|V(G_i)| - 6) = 3\sum_{i=1}^{t} |V(G_i)| - 6t \le 3|V(G)| - 6$$

4 Existence of a vertex of degree less than six in a simple planar graph

Theorem 4.1. If graph G(V, E) is a simple planar graph, then G(V, E) has a vertex v of degree less than 6

Proof. If G(V, E) has only one vertex, the this vertex has degree zero. If G(V, E) has only two vertices, then both vertices have degree at most one.

Let $|V(G)| \ge 3$. Assume degree of every vertex in G(V, E) is at least six.

Then,
$$\sum_{v \in V(G)} d(v) \ge 6|\mathbf{V}(\mathbf{G})|$$

We know,
$$\sum_{v \in V(G)} d(v) \ge 2|\mathbf{E}(\mathbf{G})|$$

Thus, $2|\mathbf{E}(\mathbf{G})| \ge 6|\mathbf{V}(\mathbf{G})|$, so that $|\mathbf{E}(\mathbf{G})| \ge 3|\mathbf{V}(\mathbf{G})|$.

But, this is not possible, because by Theorem 3.1, we have $|\mathbf{E}(\mathbf{G})| \leq 3|\mathbf{V}(\mathbf{G})| - 6$. Thus, we get a contradiction. Hence, $\mathbf{G}(\mathbf{V}, \mathbf{E})$ has at least one vertex of degree less than 6.

Corollary 4.2. K_5 is non-planar.

Proof. Here, $|\mathbf{V}(\mathbf{G})| = 5$ and $|\mathbf{E}(\mathbf{G})| = 10$.

So, $3|\mathbf{V}(\mathbf{G})| - 6 = 15 - 6 = 9$.

Thus, $|\mathbf{E}(\mathbf{G})| > 3|\mathbf{V}(\mathbf{G})| - 6$.

Therefore, K_5 is non-planar.

Corollary 4.3. $K_{3,3}$ is non-planar

Proof. Since, K-3,3 is bipartite, it contains no odd-cycles., and so cycle of length **three** exists. It follows that every region of a plane drawing of $K_{3,3}$ if its exists, has at least **four** boundary edges. We have, thus, $d(\phi) \geq 4$. for each region ϕ of $\mathbf{G}(\mathbf{V}, \mathbf{E})$.

Let $b = \sum_{\phi \in F(G)} d(\phi)$, where F(G) denotes the set of all regions of $\mathbf{G}(\mathbf{V}, \mathbf{E})$. Since, each region

has at least **four edges** on its boundary, we have $b \ge 4|F(G)|$.

Now, when we sum up to get b, each edge of $\mathbf{G}(\mathbf{V}, \mathbf{E})$ is counted either once or twice, and so, $b \leq 2|\mathbf{E}(\mathbf{G})|$. Thus, $4|F(G)| \leq b \leq 2|\mathbf{E}(\mathbf{G})|$, so that $2|F(G)| \leq |\mathbf{E}(\mathbf{G})|$.

For, $K_{3,3}$, we have $|\mathbf{E}(\mathbf{G})| = 9$, and so $2|F(G)| \le 9$ giving $|F(G)| \le \frac{9}{2}$. But, by Euler's formula, $|F(G)| = |\mathbf{E}(\mathbf{G})| - |\mathbf{V}(\mathbf{G})| + 2 = 9 - 6 + 2 = 5$, a contradiction.

Hence, $K_{3,3}$ is non-planar.

5 Kuratowski's Graphs

Definition 5.1. The complete graphs K_5 and $K_{3,3}$ are non-planar graphs, which are referred to as Kuratowski's Graphs.

Observations

1. Both are regular

2. Both are non-planar

8. K_5 is a non-planar complete graph with the smallest number of vertices and $K_{3,3}$ is the non-planar bipartite graph with smallest number of edges

The following result is used in proving Kuratowski's theorem.

Theorem 5.1.

 \mathscr{N} If $\mathbf{G}(\mathbf{V}, \mathbf{E})$ |e contains a subdivision of K_5 , then $\mathbf{G}(\mathbf{V}, \mathbf{E})$ contains a subdivision of K_5 or $K_{3,3}$.

 \mathscr{L} . If G(V, E) |e contains a subdivision of $K_{3,3}$, then G(V, E) contains a subdivision of $K_{3,3}$.

Proof. Let $\mathbf{G}(\mathbf{V}, \mathbf{E})' = \mathbf{G}(\mathbf{V}, \mathbf{E})$ | e be a graph obtained by contracting the edge $e = v_x v_y$ of $\mathbf{G}(\mathbf{V}, \mathbf{E})$. Let v_w be the vertex of $\mathbf{G}(\mathbf{V}, \mathbf{E})'$ obtained by contracting $e = v_x v_y$.

Figure 4:

1. Let $\mathbf{G}(\mathbf{V}, \mathbf{E})$ | e contains a subdivision of K_5 , say H(V, E). If v_w is not a branch vertex of H(V, E), then $\mathbf{G}(\mathbf{V}, \mathbf{E})$ also contains a subdivision of K_5 , obtained by expanding v_w back into the edge $v_x v_y$, if necessary (Figure 4).

Assume v_w is a branch vertex (inner vertex of a tree) of H(V, E) and each of v_x, v_y is incident in $\mathbf{G}(\mathbf{V}, \mathbf{E})$ to two of the four edges incident to v_w in H(V, E). Let u_1 and u_2 be the branch vertices of H(V, E) that are at the other ends of the paths leaving v_w on edges incident to v_x in $\mathbf{G}(\mathbf{V}, \mathbf{E})$. Let v_1, v_2 be the branch vertices of H(V, E) that are at the other ends of the paths leaving v_w on edges incident to v_y in $\mathbf{G}(\mathbf{V}, \mathbf{E})$ (Figure 5)

By deleting the $u_1 - u_2$ path and $v_1 - v_2$ path from H(V, E), we obtain a subdivision of $K_{3,3}$ in $\mathbf{G}(\mathbf{V}, \mathbf{E})$, in which v_y, u_1, u_2 are branch vertices for one partite set, and v_x, v_1, v_2 are branch vertices of the other.

Figure 5: