Feuille d'exercice n° 01 : Fonctions usuelles

1)
$$\sin(x) \leqslant x$$

2)
$$\ln(1+x) \leqslant x$$

3)
$$\exp(x) \ge 1 + x$$

Exercice 2 () Factoriser les expressions suivantes, puis déterminer le tableau de signes de chacune.

1)
$$f(x) = x^3 - 2x^2 - 11x + 12$$

3)
$$\varphi(x) = x + 8 - \frac{16}{x - 7}$$

2)
$$g(x) = x \ln(x) - x - 2 \ln(x) + 2$$

4)
$$\psi(x) = xe^x + 3e^x - 2x - 6$$

Exercice 3 () Dériver et dresser les tableaux de variations des fonctions suivantes.

1)
$$f: x \mapsto x^2 e^x$$

3)
$$\varphi: x \mapsto \ln|x|$$

$$2) \ g: x \mapsto \frac{x}{\ln(x) - 1}$$

4)
$$\psi: x \mapsto 3 \ln |x-2| + 2 \ln |x+3|$$

Exercice 4 ()

1) Montrer que la somme de deux applications croissantes est croissante.

2) La somme de deux applications monotones est-elle nécessairement monotone?

3) Le produit de deux applications croissantes est-il nécessairement une application croissante?

Exercice 5 (\bigcirc) Déterminer le domaine de définition, de $g \circ f$ dans chaque cas.

1)
$$f: x \mapsto 1 + \frac{3}{x-5}$$
 et $g = \sqrt{.}$

3)
$$f: x \mapsto x + 3\ln(x) \text{ et } g = \exp$$
.

2)
$$f = \cos \operatorname{et} g : x \mapsto \frac{1}{x}$$

4)
$$f = \sin \operatorname{et} g = \ln$$
.

Exercice 6 Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante tandis que $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

1

Exercice 7 Résoudre dans \mathbb{R}^2 le système $\begin{cases} 2^{3x+2y} = 5 \\ 4^{2x} = 2^{2y+3} \end{cases} .$

Exercice 8 Résoudre l'équation $\ln \frac{x+3}{4} = \frac{1}{2}(\ln x + \ln 3)$.

Exercice 9 (Tracer les courbes représentatives des fonctions suivantes.

1)
$$f: x \mapsto \sin(\operatorname{Arcsin} x)$$

2)
$$g: x \mapsto \operatorname{Arcsin}(\sin x)$$

Exercice 10 () Simplifier les expressions suivantes.

- 1) $\operatorname{Arcsin}\left(-\frac{\sqrt{3}}{2}\right)$ 3) $\operatorname{Arccos}\left(\cos\left(-\frac{2\pi}{3}\right)\right)$ 5) $\operatorname{Arctan}\left(\tan\frac{3\pi}{4}\right)$ 7) $\sin\left(\operatorname{Arccos}x\right)$
- 2) Arccos $\left(\cos\frac{2\pi}{3}\right)$ 4) Arccos $\left(\cos 4\pi\right)$ 6) $\tan\left(\operatorname{Arcsin} x\right)$
- 8) $\cos(\arctan x)$

Exercice 11 ($^{\sim}$) Démontrer les inégalités suivantes.

- 1) Pour tout $a \in]0,1[$, Arcsin $a < \frac{a}{\sqrt{1-a^2}}$.
- 2) Pour tout $a \in \mathbb{R}_+^*$, Arctan $a > \frac{a}{1+a^2}$.

Exercice 12

- 1) Soit $x \in [0, \pi/8[$. Exprimer $\tan(4x)$ en fonction de $\tan(x)$.
- 2) En déduire la formule de Machin : $\frac{\pi}{4} = 4 \operatorname{Arctan} \frac{1}{5} \operatorname{Arctan} \frac{1}{239}$.

Remarque : John Machin a pu calculer 100 décimales de π à la main en 1706 grâce à cette relation.

Exercice 13

Figure 1 – La statue

Une statue de hauteur s est placée sur un piédestal de hauteur p. À quelle distance du pied de la statue un observateur (dont la taille est supposée négligeable) doit-il se placer pour la voir sous un angle maximal (i.e. pour avoir θ maximal, avec les notations de la figure 1)?

Exercice 14 (\mathfrak{I}) Sur quelle partie de \mathbb{R} est définie l'équation $\operatorname{Arccos} x = \operatorname{Arcsin}(1-x)$? La résoudre.

On définit les deux fonctions f et g par $f: x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right)$ et $g: x \mapsto$ Exercice 15 $\operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right).$

- 1) Déterminer leurs ensembles de définition.
- 2) Calculer, lorsque cela est possible, leurs dérivées.
- 3) Que peut-on en déduire concernant f(x) et g(x)? Donner le maximum de précisions.
- 4) Tracer les courbes représentatives de f et de g (sur un même schéma).

Exercice 16 (**(A)**) Calculer $\arctan \frac{1}{2} + Arctan \frac{1}{5} + Arctan \frac{1}{8}$.

Exercice 17 (Résoudre : Arcsin $2x = Arcsin x + Arcsin (x\sqrt{2})$.

Exercice 18 Soit la fonction $f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$. $x \longmapsto \ln \left(\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right)$

Montrer que f est bien définie et que l'on a les relations suivantes, pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

1)
$$\operatorname{th}\left(\frac{f(x)}{2}\right) = \operatorname{tan}\left(\frac{x}{2}\right)$$

3)
$$\operatorname{ch}(f(x)) = \frac{1}{\cos(x)}$$

$$2) \ \operatorname{th}(f(x)) = \sin(x)$$

4)
$$sh(f(x)) = tan(x)$$
.

Exercice 19 Soit $(a, b) \in \mathbb{R}^2$. Résoudre l'équation $a \operatorname{ch} x + b \operatorname{sh} x = 0$.

