

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EE531 (Laboratório de Eletrônica Básica I)

Profs. Cândido e Gustavo (baseado no roteiro elaborado pelo Prof. Fabiano Fruett)

Data da realização do experimento:	/	Turma:
------------------------------------	---	--------

Experimento IV - Transistor MOS

1 Objetivo:

Determinação experimental das curvas características de um transistor MOS. Emprego do Transistor MOS como amplificador e como inversor lógico.

2 Componentes:

1 CI 4007 (3 pares CMOS)

1 Resistor de cada valor: 100Ω , $10 k\Omega$

3 Parte Experimental:

- 3.1 **Curva** $V_{DS} \times I_{D}$. A partir da montagem na Figura 1, preencha a Tabela 1 anexa. Gere V_{DS} e V_{DD} utilizando a fonte de tensão DC, no modo independente. Use dois multímetros, um como amperímetro para medir I_D e outro como voltímetro para medir V_{DS} . Trace as curvas $V_{DS} \times I_D$ do transistor NMOS, parametrizadas por V_{GS} . Indique no gráfico as regiões de operação (triodo e saturação). OBS: Os transistores que não estiverem sendo usados devem ter o dreno conectado à fonte (1, 2), (4, 5), (9, 11, 12) e (13, 14).
- 3.2 **Curva** $V_{\text{GS}} \times I_{\text{D}}$. Faça a alteração no circuito conforme mostrado na Figura 2. Para $V_{\text{GS}} > V_{\text{t}}$, em qual região de operação o MOSFET está operando? Variando V_{DD} , preencha a Tabela 2 anexa. Use dois multímetros, um como amperímetro para medir I_{D} e outro como voltímetro para medir V_{GS} . Trace a curva $V_{\text{GS}} \times I_{\text{D}}$.
- Considerando que, na saturação, $\sqrt{I_D} = \sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}} (V_{GS} V_t)$, use os dados da Tabela 2 para fazer o ajuste da reta $V_{GS} \times \sqrt{I_D}$ pelo método dos mínimos quadrados e, assim, determinar os valores de $\mu_n C_{ox} \frac{W}{L}$ e V_t .
- 3.4 A partir dos parâmetros determinados em 3.3, compare as curvas experimentais $V_{\rm DS}$ \times $I_{\rm D}$ levantadas em 3.1 ($V_{\rm GS}$ = 1, 2, 4 e 8 V) com as curvas teóricas do MOSFET.

Figura 1: $V_{\rm DS} \times I_{\rm D}$

Figura 2: $V_{GS} \times I_{D}$

4 Aplicações analógicas:

4.1 Monte o circuito amplificador mostrado na Figura 3. Aplique um sinal de entrada senoidal de 60mVpp e freqüência de 1 kHz. Monitorando $v_{\rm IN}$ e $v_{\rm OUT}$ no osciloscópio, varie o offset $V_{\rm IN}$ da entrada até observar um ganho de -10 para o amplificador. Salve a curva e registre o valor ajustado para $V_{\rm IN}$. Compare o valor ajustado para $V_{\rm IN}$ com o valor teórico para um ganho de -10. (Para calcular $V_{\rm IN}$ teórico, use os valores de $\mu_n C_{ox} \frac{W}{L}$ e $V_{\rm t}$ determinados no item 3.3.)

Figura 3: Amplificador

Figura 4: Inversor lógico

5 Aplicações digitais:

- 5.1 A Figura 4 mostra o esquema elétrico de um inversor lógico. Aplique na entrada um sinal senoidal com as seguintes características: $V_{\rm pp}$ =5 V, $V_{\rm offset}$ =2.5 V e freqüência=100 Hz. Utilize o modo de operação XY do osciloscópio para obter a característica de transferência deste inversor. Salve a curva. Explique o princípio de funcionamento do circuito.
- 5.2 Aplique agora na entrada uma forma de onda quadrada com as mesmas características anteriores: V_{pp} =5 V, V_{offset} =2.5 V e freqüência=100 Hz. Retire o osciloscópio do modo XY e visualize a entrada e saída em função do tempo. Escolha uma frequência que possibilite medir os tempos de subida, de descida e de atraso da saída. Meça os tempos e conclua. Os tempos de subida e descida devem ser medidos com recursos automáticos do osciloscópio; o atraso deve ser medido com o cursor. Salve uma tela para cada medição. O que esses tempos todos têm a ver com a freqüência máxima de operação do inversor?

Tabela 1

$V_{GS} = 1 \text{ V}$		$V_{GS} = 2 V$		$V_{GS} = 4 V$		$V_{GS} = 8 V$	
$V_{DS}(V)$	I _D (mA)	$V_{DS}(V)$	$I_{D}(mA)$	$V_{DS}(V)$	I _D (mA)	$V_{DS}(V)$	I _D (mA)
0,1		0,3		0,6		1,5	
0,2		0,6		1,2		3,0	
0,3		0,9		1,8		4,5	
0,4		1,2		2,4		6,0	
0,5		1,5		3,0		7,5	
1,0		2,0		3,6		8,0	
2,0		3,0		4,0		9,0	
3,0		4,0		5,0		10,0	
4,0		5,0		6,0		-	-
5,0		6,0		7,0		-	-
6,0		7,0		8,0		-	-
7,0		8,0		9,0		-	-
8,0		9,0		10,0		-	-
9,0		10,0		-	-	-	-
10,0		-	-	-	-	-	-

Tabela 2

V _{GS} (V)	I _D (mA)
1,0	
2,0	
3,0	
4,0	
5,0	
6,0	
7,0	
8,0	
9,0	
10,0	