Lecture 1 Unconstrained Optimization

- Definitions
- Necessary first/second order optimality condition variational approach
- Sufficient optimality condition
- Existence of optimal solutions
- Quadratic minimization characterization/existence of optimal solutions
- Convexity

Definitions

 $\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in \mathbb{R}^n \end{array}$

- local minimum x^* : $\exists \epsilon > 0$ s.t. $f(x) \ge f(x^*)$, for all $||x x^*|| \le \epsilon$.
- Strict local minimum: $\exists \epsilon > 0$ s.t. $f(x) > f(x^*)$, for all $||x x^*|| \le \epsilon$, $x \ne x^*$.
- Global minimum: $f(x) \ge f(x^*)$ for all $x \in \mathbb{R}^n$.
- Strict global min: $f(x) > f(x^*)$, for all $x \neq x^*$.
- Geometrically ...

Checkable Conditions for Local Min

• Given a point x, how do we know if it is a (strict) local/global min of a (twice) continuously differentiable function f?

Need easily checkable necessary optimality conditions – variational approach

$$\nabla f(\boldsymbol{x}^*) = \mathbf{0}, \quad \nabla^2 f(\boldsymbol{x}^*) \succeq \mathbf{0}.$$
 (1)

• One dimensional case: suppose x^* is a local min of a differentiable function $f:\mathbb{R}\mapsto\mathbb{R}$

$$0 \le \lim_{x^r \downarrow x^*} \frac{f(x^r) - f(x^*)}{x^r - x^*} = f'(x^*) = \lim_{x^r \uparrow x^*} \frac{f(x^r) - f(x^*)}{x^r - x^*} \le 0$$

$$0 \le \lim_{x^r \to x^*} \frac{f(x^r) - f(x^*) - f'(x^*)(x^r - x^*)}{(x^r - x^*)^2} = \frac{1}{2} f''(x^*)$$

• For higher dimensions: fix any $\mathbf{d} \in \mathbb{R}^n$. Consider the one dimensional function $g(\alpha) = f(\mathbf{x}^* + \alpha \mathbf{d})$, which is minimized at $\alpha = 0$

$$\implies g'(0) = \nabla f(\mathbf{x}^*)'\mathbf{d} = 0, \quad g''(0) = \mathbf{d}'\nabla^2 f(\mathbf{x}^*)\mathbf{d} \ge 0, \quad \forall \ \mathbf{d} \in \mathbb{R}^n.$$

implying (1).

- Example: $f(x) = |x|^3$, x^3 , $-|x|^3$. Check the necessary conditions at x = 0. Plot f.
- Sufficient condition for local optimality:

$$\nabla f(\boldsymbol{x}^*) = \mathbf{0}, \quad \nabla^2 f(\boldsymbol{x}^*) \succ \mathbf{0}.$$
 (2)

since

$$f(\mathbf{x}) - f(\mathbf{x}^*) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)'\nabla^2 f(\mathbf{x}^* + \alpha(\mathbf{x} - \mathbf{x}^*))(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad 0 \le \alpha \le 1.$$

Why Optimality Conditions are Important?

- Optimality conditions are useful because:
 - * they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
 - * they indicate when a point is not optimal (necessary conditions)
 - * they help narrow down the list of potential solution candidates
- Furthermore they
 - ★ guide in the design of algorithms, since lack of optimality
 ★ indication of improvement

Use of Optimality Conditions

minimize
$$f(\mathbf{y}) = e^{y_1} + e^{y_2} + \dots + e^{y_n}$$

subject to $y_1 + y_2 + \dots + y_n = s$.

• First we eliminate y_n by substituting $y_n = s - y_1 - y_2 - \cdots - y_{n-1}$ in the objective function. The new objective function is

$$g(\mathbf{y}) = e^{y_1} + e^{y_2} + \dots + e^{y_{n-1}} + e^{s-y_1-y_2-\dots-y_{n-1}}$$

• The first order optimality condition $\nabla g(y^*) = 0$ implies, for i = 1, 2, ..., n - 1,

$$\frac{\partial g}{\partial y_i} = e^{y_i^*} - e^{s - y_1^* - y_2^* - \dots - y_{n-1}^*} = 0, \text{ or } y_i^* = s - y_1^* - y_2^* - \dots - y_{n-1}^*.$$

with the minimum $f^* = ne^{s/n}$. The 2nd order sufficient condition holds, so

$$e^{y_1} + e^{y_2} + \dots + e^{y_n} \ge ne^{(y_1 + y_2 + \dots + y_n)/n}$$
.

• Using $x = e^y$, we obtain the well-known arithmetic-geometric inequality.

Use of Optimality Conditions

• **Example:** find the local/global mins of $f(x) = x^2 - x^4$.

$$\begin{split} \nabla f(x) &= f'(x) = 2x - 4x^3 = 0 \\ \Rightarrow \quad x = 0, \ x = \pm \frac{\sqrt{2}}{2} \quad \text{candidates} \\ f''(x) &= 2 - 12x^2 \\ \Rightarrow \quad f''(0) &= 2 > 0, \quad f''\left(\pm \frac{\sqrt{2}}{2}\right) = 2 - 12 \times \frac{1}{2} < 0. \\ \Rightarrow \quad x = 0 \text{ is a strict local min; } \pm \frac{\sqrt{2}}{2} \text{ are strict local max.} \end{split}$$

Given there is a unique local min x = 0, can we then conclude that x = 0 is also the unique global min?

Global min does not exist. Plot.

Existence of Optimal Solution

• Example:

$$\inf_{x \in \mathbb{R}} e^{-|x|} = ?$$

is the infimum attained?

• **Bolzano-Weierstrass Theorem**: every continuous function f attains its infimum over compact set X. That is, there exists an $x^* \in X$ such that $f(x^*) = \inf_{x \in X} f(x)$.

Consequently, if the level set

$$f(x) \le f(x^0)$$

of continuous function f is compact for some $oldsymbol{x}^0$, then the global min of

minimize
$$f(oldsymbol{x})$$
 subject to $oldsymbol{x} \in \mathbb{R}^n$

is attained. Check the level sets of $e^{-|x|}$.

• Another sufficient condition (coercivity): $f(x) \to \infty$ as $|x| \to \infty$.

Unconstrained Quadratic Optimization

minimize
$$rac{1}{2}m{x}'m{Q}m{x}+m{b}'m{x}$$
 subject to $m{x}\in\mathbb{R}^n$

Necessary condition for optimality:

$$\nabla f(\boldsymbol{x}) = \boldsymbol{Q}\boldsymbol{x} + \boldsymbol{b} = \boldsymbol{0}, \quad \nabla^2 f(\boldsymbol{x}) = \boldsymbol{Q} \succeq \boldsymbol{0}.$$
 (3)

- What if the linear system Qx + b = 0 is infeasible? What if $Q \not\succeq 0$?
- Sufficient condition requires $Q \succ 0$.
- Claim: the necessary condition (3) is also sufficient; any local optimal solution is also globally optimal.

A 2-dimensional Example

minimize
$$f(x,y) = \frac{1}{2}(\alpha x^2 + \beta y^2) - x$$
 subject to
$$(x,y) \in \mathbb{R}^2$$

- $\alpha > 0$, $\beta > 0$ (strongly convex): $(1/\alpha, 0)$ is the unique global minimum.
- $\alpha = 0$ (convex): There is no global minimum
- $\alpha > 0, \ \beta = 0$ (convex): $\{(1/\alpha, \xi) \mid \xi \in \mathbb{R}\}$ is the set of global minima
- $\alpha > 0$, $\beta < 0$ or $\alpha < 0$ (non-convex case): There is no global minimum
- Plot the level sets of all four cases

Linear Least Squares

 $\begin{array}{ll} \text{minimize} & \frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{c}\|^2 \\ \text{subject to} & \boldsymbol{x}\in\mathbb{R}^n \end{array}$

- A may be fat (under-determined), tall (over-determined), or rank-deficient.
- Note that Q = A'A, b = A'c.
- Necessary & sufficient optimality condition:

$$A'Ax^* - A'c = 0$$

which always has a solution.

 Linear least squares problem may have unbounded levels, but always admits a solution.

Role of Convexity

Suppose $f: \mathbb{R}^n \mapsto \mathbb{R}$ satisfies

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}), \quad \forall \ \alpha \in [0, 1], \ \boldsymbol{x}, \ \boldsymbol{y}.$$

then f is called a convex function. [or -f is called a concave function.]

- A set X is convex iff ι_X (the indicator function) is convex.
- If f is continuously differentiable, f is (strongly) convex iff

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})'(\boldsymbol{y} - \boldsymbol{x}) + \sigma \|\boldsymbol{y} - \boldsymbol{x}\|^2$$

(and $\sigma > 0$). If f is twice continuously differentiable, then

$$f$$
 is (strongly) convex $\iff \nabla^2 f(x) \succeq \mathbf{0}(\succ \mathbf{0})$ for all x .

- Examples of convex functions: a'x + b, e^x , $-\ln x$, x^2 , $\frac{1}{2}x'Qx + b'x$, $Q \succeq 0$.
- For convex differentiable f, each local min is also a global min (why?), so the necessary and sufficient optimality condition is

$$\nabla f(\boldsymbol{x}) = 0.$$

Claim: the set of minimizers of f is a convex set.

Applications of Convex Functions

The arithmetic-geometric inequality

$$(x_1 x_2 \cdots x_n)^{1/n} \le \frac{1}{n} (x_1 + x_2 + \cdots + x_n), \quad \forall \ x_i \ge 0$$

can be derived from the convexity of $-\ln x$ function.

First, the convexity of f is equivalent to

$$f(\alpha_1 \boldsymbol{x}^1 + \alpha_2 \boldsymbol{x}^2 + \dots + \alpha_r \boldsymbol{x}^r) \leq \sum_{i=1}^r \alpha_i f(\boldsymbol{x}^i), \quad \forall \ \boldsymbol{x}^i \text{ and } \alpha_i \geq 0, \ \sum_{i=1}^r \alpha_i = 1.$$

• Thus, the convexity of $f(x) = -\ln x$ implies

$$-\ln\left(\frac{1}{n}x_1 + \frac{1}{n}x_2 + \dots + \frac{1}{n}x_n\right) \le -\frac{1}{n}\sum_{i=1}^n \ln x_i.$$

implying the arithmetic-geometric inequality.