Information for Final Project

박사과정 김성빈 <u>chengbinjin@inha.edu</u>, 지도교수 김학일 교수 <u>hikim@inha.ac.kr</u> 인하대학교 컴퓨터비전 연구실

Grading Policy

Evaluation									
Mid Exam	Final Exam	Assignments	Class Activity (be present)	Term Project	Quiz	Presentation	Total		
10 %	10 %	10%	5 %	30 %	25 %	10 %	100 %		
2018.10.24	2018.12.05	Every week	Every week	2018.12.12	Every week	Every week			

Note:

- 1. Mid & final exam: lectures (PPT) & coding parts in assignments
- 2. Assignments: assignment 1~3 of the CS231n 2016 http://cs231n.stanford.edu/2016/syllabus.html
- 3. Class activity: attendance check before class
- 4. Term project:
 - (1) license plate detection and recognition; (2) on-road object detection
 - Scores will be evaluated based on the team ranking
 - No open or commercial library is allowed.
- 5. Quiz: will be taken in the beginning of every class to check students' pre-studying the CS231n video
- 6. Presentation: 2 or 3 students every week

Python Numpy Tutorial:

http://cs231n.github.io/python-numpy-tutorial/

Dataset

- I. Parking Dataset
- **II. CCTV Dataset**

License Plate Type

Type	License Plate	License Plate		
1	52가 3108		P1	
2	3942764		P2	
3	바 3108	서울52바3108	P3	
4	설52바 3108	서울52바3108	P4	
5	65 ₁₀	43가6510	P5	
6	무 6662	부산27무6662	P6	

I. Parking Dataset

I. Parking Dataset

• Ground-truths for parking dataset are saved as txt file.

II. CCTV Dataset

II. CCTV Dataset


```
<annotation>
    <folder>01_12131640</folder>
    <filename>00 00030 0000030.png</filename>
    <path>C:\workspace\project\labelImg\Object-Detection\images\01_12131640\00_00030_0000030.png</path>
    <source>
       <database>Unknown</database>
    </source>
    <size>
       <width>1920</width>
       <height>1080</height>
       <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
       <name>P1 102|0284</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <difficult>0</difficult>
       <bndbox>
           <xmin>1412
           <ymin>315
           <xmax>1473
           <ymax>330
       </bndbox>
    </object>
</annotation>
```

 Ground-truths for cctv dataset are saved as xml file that follows PASCAL VOC GT format.

Metrics for Final Project

Final Project

Subject:

License Plate Recognition (LPR)

Deep Learning Platform:

Definition of the Score

$$Score = Score_{park} + Score_{cctv} + 0.1 \times \left(100 - PT_{park}\right) + 0.1 \times \left(100 - PT_{cctv}\right)$$

$$PT = m \sec . / image(average)$$

$$Score_i = Accuracy_{det} + Accuracy_{rec}$$
 $(i = park \ or \ cctv)$

$$Accuracy_{det} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#TP_{det} - \#FP_{det}}{\#GT} \times 100\%$$

$$Accuracy_{rec} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#TP_{rec}}{\#GT} \times 100\%$$

- #TP_{det}: number of true positive for detection
- #FP_{det}: number o false positive for detection
- #TP_{rec}: number of true positive for recognition
- #GT: number of ground-truth
- TP_{det}: IoU >= θ , θ =0.7
- FP_{det} : $IoU < \theta$

Rules

Processing Time

- Insert time check function in the for loop
- Start tic after read frame
- End toc after model forward
- But, if you have preprocess stage, preprocessing time is also included in time tic
 toc

Tensorflow example: python code

```
total_pt = 0.
num_iters = 100
for idx in range(num_iters):
    print('[{}] / [{}]'.format(idx, num_iters))
    tic = time.time()
    preds = model.predict(left_img, right_img)
    toc = time.time() - tic
    total_pt += toc
    print('Predicts: {}'.format(preds))
print('Avg. PT: {} ms.'.format(total_pt / num_iters * 1000))
```

Batch_Size in Test Mode

- Batch_size in training mode can be bigger than 1
- But in test mode batch_size have to 1!

TensorFlow Example

Write Prediction Results in CSV File

- Prediction results should be written in "parking_analysis.csv" or "cctv_analysis.csv" file
- Please refer to the write_csv.py function
 - https://github.com/ChengBinJin/License_plate_recognition
 - There are read_xml.py, write_csv.py, and eval.py function to help you

parcking_analysis.csv:

1	parking\img_gt_1\infty000000.jpg	46고7080	789	473	1132	549
2	parking₩img_gt_1₩000001.jpg	21도3971	929	505	1286	579
3	parking₩img_gt_1₩000002.jpg	16서1179	761	475	1087	558
4	parking₩img_gt_1₩000003.jpg	07부0441	747	474	1073	561
5	parking₩img_gt_1₩000004.jpg	36누4289	722	449	1065	542
6	parking₩img_gt_1₩000005.jpg	35소3169	590	446	924	532
7	parking₩img_gt_1₩000006.jpg	50마3480	607	479	925	552
8	parking₩img_gt_1₩000007.jpg	48보7976	586	516	890	594
9	parking₩img_gt_1₩000008.jpg	29러8820	810	488	1131	557
10	parking₩img_gt_1₩000009.jpg	57出2830	727	500	1061	578

img_file

recognition

Bounding box (x1, y1, x2, y2)

Competition

- Equipment: Use one server in the CVLab. (Room 525, Hi-Tech Building)
 (Use same server to check processing time and run evaluation function to get accuracy on a test set)
- Program should be developed on Ubuntu system not Windows.
- Time: December 6-8 (Thur. to Sat.)
 - > 09:30-11:30, 14:00-17:00, and 20:00-24:00
- Each team has the limited 60 minutes (very strict) to finish all of the process including install necessary libraries and test.
- Each team can try two times for one dataset and select the most good one to record the score.

More information:

https://github.com/ChengBinJin/License_plate_recognition

- I. Parking Dataset:
- II. CCTV Dataset:
- III. CCTV Raw Video:

Thank you for your attention!