

# המחלקה להנדסת תעשייה וניהול מתמטיקה דיסקרטית - סמסטר א' תשס"ז

פתרון מבחן מועד ב׳

19 במרץ 2007

משך המבחן – 180 דקות. מותרים לשימוש כל חומרי עזר כתובים, ומחשבון.

## :1 שאלה

$$\{(x,y)\}\setminus (B\times A)=\varnothing$$
 אז  $y\not\in A$  וכן  $x\in B$  אם (3%) א.

$$y \in A$$
 וכן  $x \in B$  אז  $\{(x,y)\}\setminus (B\times A)=\emptyset$  ב. (3%) אם

$$x \notin B$$
 אז  $y \notin A$  וכן  $\{(x,y)\} \notin P(B \times A)$  ... ג. (3%) אם

$$|P(A)| = 8$$
 אז  $|B| = 4$  וכן  $|B \times A| = 12$  אם (3%) ד.

#### :2 שאלה

$$R = egin{pmatrix} \{2\} & \{3\} & \{2\} & \{3\} & \{2\} \\ \{2\} & \{3\} & \{3\} & \{2,3\} & \{2,3\} \end{pmatrix}$$
 כך:  $P(A \setminus B)$  מעל  $B = \{1,4\}$  ותהא  $A = \{1,2,3\}$  מעל  $A = \{1,2,3\}$ 

## :2.1 שאלה

$$|I_{P(A\setminus B)}\setminus R|=2$$
 (3%) . א

.ב. 
$$I_{P(A \setminus B)} \cup R$$
 (3%) ב.

$$R$$
 אנטיסימטרית.  $R$  (3%) ג.

ד. (3%) אטרנזיטיבית 
$$R$$

 $P(A \setminus B)$  בצורה הבאה: בהמשך לנתוני ההתחלה, נגדיר רלציה T מעל

$$(C,D) \in T \Leftrightarrow |P(C)| - |P(D)| \neq 1$$

$$|T| = 12$$
 (3%) .x

$$T \cup R = T$$
 (3%) ...

ג. (3%) רלצית שקילות (
$$R \setminus T$$
) ג.

ד. 
$$(R \cup T)$$
 (3%) ד.

### שאלה 3:

- $3^6-2^6$  שווה  $(2+y)^6$  בפיתוח של y בפיתוח עם החזקות שווה עם הביטויים עם א. (4%). א.
- ב. (4%). בכל הקצאת 400 סטודנטים ל-133 עמדות מחשב, בהכרח קיימת עמדת מחשב אחת שבה יהיו לפחות 4 סטודנטים.

$$\sum_{i=0}^{54} 2 \binom{111}{2i} = 2^{111} - 222 \quad (4\%) \qquad . \lambda$$

ד. (4%) מספר השלמים החיוביים הקטנים וזרים ל-361 שווה למספר השלמים החיוביים הקטנים וזרים ל-722.

## :4 שאלה

 $A \cup C \oplus (B \cup C) = A \oplus B$  : הוכח או הפרך את הטענה (14%)

אם הטענה נכונה, הוכח אותה ע"י שימוש במושג השייכות של איברים (לא ע"י אלגברה של קבוצות ולא בדיאגראמות ון). אם הטענה לא נכונה, הבא דוגמא נגדית.

### תשובה:

: נבנה דוגמא נגדית

$$(A \cup C) \oplus (B \cup C) = \emptyset \neq \{1,3\} = A \oplus B$$
 לכך  $A = \{1,2\}$   $B = \{2,3\}$   $C = \{1,3\}$ 

## :5 שאלה

 $x_1+x_2+x_3+x_4=25$  - א. (7%) מצא באופן קומבינטורי את מספר הפתרונות בשלמים של המשוואה -  $[2i \le x_i \le 5i \quad , i=1,2,3,4]$  המקיימים:  $[2i \le x_i \le 5i \quad , i=1,2,3,4]$ 

$$D(4,5)-D(4,1)=\binom{8}{5}-\binom{4}{1}=52$$
 תשובה:

 $x_1+x_2+x_3+x_4=25$  - מצא באופן קומבינטורי את מספר הפתרונות בשלמים של המשוואה - (9%) מצא באופן קומבינטורי (המקיימים:  $\left[-i \leq x_i \leq 5i \right]$  ניתן להשאיר את התשובה כביטוי קומבינטורי.

#### תשובה:

: מספר הפתרונות של הבעיה הנ"ל שווה למספר הפתרונות של הבעיה  $x_1+x_2+x_3+x_4=35$  המקיימים: . הדרך המפורטת בשימוש עם הכלה והפרדה:  $[0 \le x_i \le 6i \quad ,i=1,2,3,4]$ 

נגדיר את 4 הקבוצות הבאות

 $x_i \geq 6i+1$  קבוצת כל הפתרונות בהם -  $A_i$ 

$$(S_1$$
-ביסכמים ב- $\begin{vmatrix} 4 \\ 1 \end{vmatrix}$ )  $|A_i| = D(4,35-6i-1)$   $i=1...4$ 

נסכמים , 
$$S_2$$
 -ם נסכמים  $\left|A_i \cap A_j\right| = D \left(4,24-6i-6j-2\right)$   $i,j=1...4$   $i < j$ 

.( 
$$A_3 \cap A_4 = A_2 \cap A_4 = \emptyset$$

אין פתרונות שנמצאים בשלוש קבוצות או יותר.

בנוסף |U| = D(4,35) , ובסהייכ נרצה לחשב את

$$\left| \overline{A}_{1} \cap \overline{A}_{2} \cap \overline{A}_{3} \cap \overline{A}_{4} \right| = \left| U \right| - S_{1} + S_{2} - S_{3} + S_{4} = D(4,35) - \left[ D(4,28) + D(4,22) + D(4,16) + D(4,10) \right] + \left[ D(4,15) + D(4,9) + 2D(4,3) \right]$$

#### שאלה 6:

א. (10%) נניח שלרשותכם מספר בלתי מוגבל של מטבעות עם 3 ערכים (1  $\square$ , 5  $\square$ , 10  $\square$ . עבור כל אחד מערכי המטבע, כל המטבעות זהים. מטבעות עם ערך שונה, כמובן שונים. מצא יחס רקורסיה למספר הסידורים של שורה ששוויה  $\square$  שורה ששוויה של כל תנאי ההתחלה הנחוצים (יהיה לכך משקל חשוב בציון).

#### פתרון:

נסתכל על המטבע האחרון בשורה – זה יכול להיות 1  $\square$ , 5  $\square$ , 10  $\square$ . בכל מקרה זה משאיר לבנות את יתרת הערכה על המטבע האחרון בשורה f(n-10), f(n-5), f(n-1) שבחרויות, ובסהייכ השורה שערכה יהיה f(n)=f(n-1)+f(n-5)+f(n-10).

$$f(1)=1$$
  $f(2)=1$   $f(3)=1$   $f(4)=1$   $f(5)=2$   $f(6)=3$  עשר תנאי ההתחלה  $f(7)=4$   $f(8)=5$   $f(9)=6$   $f(10)=9$ 

תשובה: נהפוך את יחס הרקורסיה הנייל ליחס לינארי סטנדרטי:

$$\begin{vmatrix}
a_n = 4a_{n-1} - 15 \\
a_{n-1} = 4a_{n-2} - 15
\end{vmatrix} \Rightarrow \begin{vmatrix}
a_n - 4a_{n-1} = -15 \\
a_{n-1} - 4a_{n-2} = -15
\end{vmatrix} \Rightarrow a_n - 4a_{n-1} = a_{n-1} - 4a_{n-2} \Rightarrow a_n = 5a_{n-1} - 4a_{n-2}$$

 $a_1 = 3a_0 + 5 = 3 \cdot \left(-6\right) + 20 = 2$  (הנאי התחלה שני תנאי שני (כי נחוצים שני תנאי התחלה בצורה ידנית (כי נחוצים שני הנאי התחלה)

כעת נפתור את יחס הרקורסיה הלינארי בדרך הסטנדרטית:

$$lpha^n=5lpha^{n-1}-4lpha^{n-2}\Rightarrowlpha^2-5lpha+4=0\Rightarrowlpha_1=4,$$
  $lpha_2=1\Rightarrowlpha_n=Alpha_1^n+Blpha_2^n$  : המשוואה האופיינית

$$egin{align*} a_0 &= Alpha_1^0 + Blpha_2^0 \ a_1 &= Alpha_1^1 + Blpha_2^1 \ \end{array} > egin{align*} a_0 &= 11 = A + B \ a_1 &= 29 = A \cdot 4 + B \cdot 1 \ \end{array} > egin{align*} A &= 6 \ B &= 5 \ \end{array} > \Rightarrow a_n = 6 \cdot 4^n + 5 \ :$$
נציב תנאי ההתחלה: