データ構造とアルゴリズム第6週

掛下 哲郎

kake@is.saga-u.ac.jp

前回のまとめ

- ヒープ (heap)
 - 最大値を取り出す
 - 挿入・取り出しともに O(log n). 「木」を利用
- 二分探索木(Binary Search Tree)
 - 木が平衡していれば探索, 挿入, 削除ともにO(log n)
 - ・ 最悪の場合はO(n)
 - □ どのようにして平衡条件を維持するか?

講義スケジュール

週	講義計画
1-2	導入
3	探索問題
4-5	基本的なデータ構造
6	動的探索問題とデータ構造
7	アルゴリズム演習(第1回)
8-9	データの整列
10-11	グラフアルゴリズム
12	文字列照合のアルゴリズム
13	アルゴリズム演習(第2回)
14	アルゴリズムの設計手法
15	計算困難な問題への対応

これまで

- さまざまなデータ構造
 - ▫配列
 - 連結リスト
 - □ ハッシュ表
 - 二分探索木
 - □ キュー, スタック, ヒープ
- それぞれについて、探索、挿入、削除の手間を考察

今日の内容

動的探索問題とデータ構造

- 探索対象のデータが、動的に変化
- 挿入や削除が頻繁に行われる状況

動的データ構造

- 2分探索木
- 動的ハッシュ表
- 平衡2分探索木(2色木)

場面設定

- DBプログラムを設計・開発する
 - □ 1億エントリのデータを想定
 - n = 100,000,000
 - □ データの追加, 削除が 頻繁に行われる

正しく動くのはもちろん、高速性が要求される

まず、データ構造を検討しよう

配列を使えばどうか?

- 配列(順序なし)
 - □ 探索:O(n)
 - □ 挿入: O(1)
 - □ 削除:O(n)
- 配列(順序あり)
 - □ 探索:O(log n)
 - □ 挿入:O(n)
 - □ 削除:O(n)

10億命令/秒 のコンピュータ O(n) → 0.1秒 O(log n) → 0.00000027秒

O(n)なら、10ジョブ/秒で システムがパンク

動的ハッシュ法

データの追加・削除が行われる 場合のハッシュ法の拡張

- データxの格納位置を、関数hash(x)で求める
 - □ m:ハッシュ表Sのサイズ(データ数nの1.5~2倍)
 - □ x:格納したいデータ
 - □ i = hash(x):0~m-1の整数を返す関数
- データ挿入:S[i] にデータxを格納
 - 異なるxで同じiになったとき ⇒ 次の位置から空きを探して 格納
- データ探索: hash[x]の位置から順次探索
- データ削除:データを探索して削除
 - 問題: データの削除を行うとき、ハッシュ表から該当データを削除するだけで問題ないか?

「削除跡」の問題

- データ: { 1, 4, 14, 32, 37}
- hash(x) = x % 10

削除後のハッシュ表では、14の探索に失敗!

「削除跡」の問題 一対策

• 最初からの「空き」と、削除後の「空き」を区別

探索時:「削」は「空き」とみなさない 挿入時:「削」は「空き」とみなす

アニメーション教材 講義HP・第6週 ⇒ 削除痕を 考慮した動的ハッシュ法

X 効 成

参考:chaining 方式(分離連鎖法)

- データ: { 1, 4, 14, 32, 37}
- hash(x) = x % 10

アニメーション教材 講義HP・第6週 ⇒ 分離連鎖法 を用いた動的ハッシュ法

探索、挿入、削除はバランスよく

- 3つの操作が、バランスよく効率良くならないか?
- 配列
 - 。 高速化には「順序」を維持 → ずらす → O(n)の壁
 - □データ数が固定
- 一次元リスト
 - ポインタを先頭から辿る必要がある → O(n)の壁
- 二分探索木
 - □ 平均的にO(log n)で探索, 挿入, 削除ができる
 - □ 木構造のバランスが崩れると、最悪O(n)

木構造のバランスが崩れないように工夫

2分探索木

• 2分探索木

平衡2分探索木

- バランスを維持する仕組みを備えた二分探索木
 - バランスが崩れそうになると、補正をかける
 - · AVL木
 - 2色木
- ・基本的には
 - □ まず, 2分探索木と同様に挿入や削除を行う
 - □「バランスの崩れ具合」をチェックし、必要なら簡単な 変形操作を行ってバランスを微調整する
 - •1重回転,2重回転

AVL木

以下の平衡条件を満たす2分探索木

AVL木の平衡条件

- 1. 2つの子をもつ各節点において、左部分木の高さと右部分木の高さが高々1しか異ならない。
- 2. 1つの子しか持たない各節点において、その子は 葉である。

AVL・・・発明者のイニシャル Adel'son-Vel'skii と Landis

2色木(Red-Black Tree, 赤黒木)

- 2色木平衡条件を満たす2分探索木
 - 探索アルゴリズムは、二分探索木 と同じ

• 赤・黒の2色で色づけ

• 説明の都合上

子ポインタがNULL のとき、そこには 空の葉が存在する と考える。

2色木平衡条件

が続かない

黒節点だけ見れば平衡木

(RB0) どの内部節点も 2つの子を持つ

(RB1) 各節点は、赤ま たは黒のいずれかの 色

(RB2) (空の)葉はす べて黒

(RB3) 赤節点の子は、 「両方とも黒

(RB4) 根から葉までの ・ どの経路も、同じ数 の黒の節点を含む

2色木の高さ

- n個のデータを含む2色木の高さはO(log n)
 - □ 根から葉までの経路に含まれる黒節点の節点数をhとおく。
 - どの経路でも同じ(RB4)
 - □ 根から葉までの経路に含まれる節点数はh以上2h以下。
 - ・赤節点の子は黒 (RB3) → |赤節点|≦|黒節点|
 - $^{\circ} 2^{h-1} 1 \leq n \leq 2^{2h-1} 1$
 - → 大ざっぱに計算

$$(\log n) / 2 \le h \le \log n$$

 $(\log n) \le 2h \le 2 \log n$

2色木へのデータ挿入(基本手順)

- 1. とりあえず挿入
 - 通常の2分探索木に対するデータ挿入と同じアル ゴリズムを用いてデータを挿入
- 2. データ挿入後の二色木がRBO~RB4を満たすならば, 挿入操作終了
- 3. 平衡条件を満たさないならば調整
 - 2色木平衡条件を満たすように、木を変形する

ステップ1:とりあえず挿入

通常の2分探索木への 挿入方法で、とりあえず データを入れる。

場合1:黒節点の下に挿入

場合2:赤節点の下に挿入

ステップ2:黒節点の下へ挿入した場合

黒節点の下へ挿入した場合は、補正の必要なし (平衡条件を満たす)。

挿入した節点は赤とする

ステップ2:赤節点の下へ挿入した場合

赤節点の下へ挿入した場合は、補正の必要あり (平衡条件を満たさない)

バランスを保つための変形 1重回転

ステップ2:必要なら調整(パターン2)

• 例の場合・・・

ステップ2:必要なら調整(パターン2)

• 一般の場合(赤節点の下への挿入)

赤節点の下への挿入

場合1:親の兄弟も赤

親節点の兄弟が赤

(黒を降ろす)

赤節点の下への挿入

場合2:親の兄弟は黒

ステップ2:必要なら調整(パターン2)

X < U < W

- xを黒にすると部分木Aの高さが1つ増える. ⇒ RB4に違反
- xを赤にすると赤節点同士が 親子になる. ⇒ RB3に違反

RB3, RB4ともにOK

ステップ2:必要なら調整(パターン2)

U < X < W

- xを黒にすると部分木B, Cの高さ が1つ増える. ⇒ RB4に違反
- xを赤にすると赤節点同士が親子になる. ⇒ RB3に違反
- ※左右対称なものも同様

2色木への挿入アルゴリズムの場合分け

- 黒節点の下に挿入
 - 補正の必要無し. *挿入完了*.
- 赤節点の下に挿入
 - □ 補正の必要あり.
 - ・親節点の兄弟が赤
 - ・色の変更. 必要ならさらに遡る
 - ・親節点の兄弟が黒
 - ・(a)パターン → 1重回転
 - ・(b)パターン → 2重回転

2色木からのデータ削除:基本方針

- 1. とりあえず削除
 - 通常の2分探索木に対するデータ削除と同じアルゴリズムを用いてデータを削除
- 2. データ削除後の二色木がRBO~RB4を満たすならば, 削除操作終了
- 3. 平衡条件を満たさないならば調整
 - 2色木平衡条件を満たすように、木を変形する

33

2色木からのデータ削除3つの場合

演習問題場合1~3の例を埋めよ

場合1:節点xの2つの子が 共に空の葉

例: 4, 17, 59, 34, 87

場合2:節点xの一方の子 のみが空の葉

例:71

場合3:節点xの2つの子が 共に空の葉でない

例: 57, 22, 80, 14

2色木からのデータ削除:場合2節点xの一方の子のみが空の葉

例:71を削除.

- 1.71を削除する.
- 子で71を置き換える。
 子節点の色は赤
- 3. 節点の色を黒に変更.

2色木からのデータ削除:場合3

節点xの2つの子が共に空の葉でない

例:57を削除.

- 1.57を削除する.
- 2.57の直前キーを求める.
- 3. 直前キーを削除したい 節点に移動.
- 4. 直前キーを削除直前キーの右の子は空⇒ 場合1か場合2を適用

2色木からのデータ削除:場合1

節点xの2つの子が共に空の葉

場合1-1

• 節点xが赤節点

場合1-2

• 節点xが黒節点

例:59を削除.

場合1-1は簡単 ⇒ 調整は不要

2色木からのデータ削除:場合1 節点xの2つの子が共に空の葉

場合1-2

• 節点xが黒節点

例:87を削除.

- 1.87を削除
- 2. 1重回転する.

本日のまとめ

- 動的探索問題とデータ構造
 - 探索対象のデータが、動的に変化
 - 挿入や削除が頻繁に行われる状況
- 動的ハッシュ
- 2分探索木
 - 探索, 挿入, 削除 ⇒ 平均O(log n), 最悪O(n)
 - データ挿入, 削除の順序によっては効率低下
- 平衡2分探索木(2色木)
 - □とりあえず挿入・削除
 - □ 必要ならば平衡条件を保持するように調整
 - □ 探索, 挿入, 削除が平均・最悪ともO(log n)

ただし、アルゴ リズムは複雑

確認テスト(第6回)

- 1. 削除痕を考慮した動的ハッシュ方式のアルゴリズム(データの探索,登録,削除)
- 2. 分離連鎖法を用いた動的ハッシュ方式のアルゴリズム(データの探索,登録,削除)
- 3. 二色木に対するデータ挿入とデータ削除

次回はPC演習

ノートPCを忘れないように