Math 122: Midterm Review

Alexander H. Patel

alexanderpatel@college.harvard.edu September 16, 2017

1. What are all the class equations for the symmetric groups?

$$|D_n|=2n=1+ imes ext{if n is odd, otherwise.} \ |A_4|\cong |T|=12=1+3+4+4 \ |S_4|\cong |O|=24=1+3+6+6+8 \ |A_5|\cong |I|=60=1+12+12+15+20 \ |S_5|=120=1+10+15+20+20+24+30$$

2. Find a composition series of S_3 . The kernel of the sign homomorphism $S_3 \to C_2$ is normal - it is A_3 . $S_2/A_3 = C_2$. $A_3 = \{1, (123), (132)\}$, so A_3 is just C_3 .

If you don't have a homomorphism, then look at the class equation. $S_3 = 1 + 2 + 3$. 1 is the identity, 2 is the three cycles, and 3 is the transpositions.

Normal subgroups contain the identity and the size divides six. So the transpositions and the identity cannot form a normal subgroup because 1 + 4 doesn't divide 6. If their sum divides 6, then it is normal, but you still have to check that it is a subgroup (check closed).

3. Non-abelian group, |G| = 28, all Sylow 2-subgroups are cyclic. Prove this group is unique. $28 - 2^2 \times 7$, the number of 2-subgroups is 1 or 7 and 7-groups is 1. So the 7-subgroup is C_7 , normal in G.

If there is 1 Sylow 2-subgroups (is also normal), then the group is abelian. So there are 7. Choose a generator $C_7 = \langle a \rangle$ and $C_4 = \langle b \rangle$, What is bab^{-1} ? C_7 is normal, so $bab^{-1} = a^k$ for $k \in \{1, 7\}$.

There are 28 elements in form $a^i b^j$, but then it would abelian. So $bab^{-1} \neq a$.

If you have $bab^{-1}a^k$, then $b^2ab^{-1}=b(bab^{-1})b^{-1}=ba^kb^{-1}=(bab^{-1})^k=a^{k^2}$. You continue this process and get $b^4ab^{-4}=a^{k^4}$. b has order 4, so $k^4=1 \mod 7$. The check all 0, 1, 2, 3, 4, 5, 6 by bringing to power of 4 and check mod 7.

The only power it works for is 6, so $bab^{-1}=a^6=a^{-1}\to ba=a^{-1}b$, so this is relation of dihedral group.

4. X is a G-set. Can decompose the elements of X into orbits. For element x, there's the size of the orbit containing x and the size of the stabilizer of x.

Fixed point theorem