注意到, a_2,b_1 都是非零元(否则将与 $x,y \in S^*$ 矛盾)。从而由于F 是域,有 $a_2b_1 \neq 0$,而 $a_1b_2,a_2b_1 \in T$ 。所以有 $a_1b_2(a_2b_1)^{-1} \in S$ 。同样由于F 是域,所以有 $a_1b_2(a_2b_1)^{-1} \neq 0$,从而 $a_1b_2(a_2b_1)^{-1} \in S^*$ 。

这就证明了S是子域。

最后,设 S_1 是任意包含 T 的子域。则对所有 $a,b \in T \subseteq S_1, b \neq 0$,由于 $b \in S_1^*$,而 S_1^* 是群,所以 $b^{-1} \in S_1^* \subseteq S_1$,从而有 $ab^{-1} \in S_1$,由 a,b 的任意性知, $S \subseteq S_1$ 。

18.14

证明: 记这唯一的右单位元为 a, 下面证明它也是左单位元, 从而是乘法单位元。

反设 a 不是左单位元,则存在 $b \in R$,使得 $ab \neq b$ 。从而有 $a + ab - b \neq a$ (否则,由消去律就有 ab - b = 0, ab = b,矛盾)。记 c = a + ab - b,则对任意 $x \in R$,有:

从而 $c \neq a$ 也是右单位元,与 a 是唯一的右单位元矛盾。这就证明了对所有的 $b \in R$,有 ab = b。所以 $a \not\in R$ 的左单位元,从而是单位元。

18.15

证明: $(1) \Rightarrow (2)$ 。反设 u 是可逆的, 即, u 存在左逆元 a_l 。则对 u 的任意右逆元 a_r 、 a'_r , 有:

$$a_r = a_l u a_r$$

$$= a_l$$

$$= a_l u a'_r$$

$$= a'_r$$

$$(a_l u = 1)$$

$$(u a'_r = 1)$$

$$(a_l u = 1)$$

从而u只有一个右逆元。矛盾。

 $(2) \Rightarrow (3)$ 。由于 u 有右逆元 a_r ,但 u 不可逆,所以 $a_r u \neq 1$,即有 $a_r u - 1 \neq 0$ 。同时, u 显然不等于 0 (否则就有 $ua_r = 0a_r = 0 \neq 1$,矛盾)。但

$$u(a_r u - 1) = ua_r u - u$$
 (分配律)
= $u - u$ (分配律)
= 0

所以u是左零因子。

 $(3)\Rightarrow (1)$ 。由于 u 是左零因子,所以存在 $b_r\neq 0$,使 $ub_r=0$ 。设 a_r 是 u 的一个右逆元,则: $u(a_r+b_r)=ua_r+ub_r \tag{分配律}$

$$=1 (ua_r = 1, ub_r = 0)$$

从而 $a_r + b_r$ 也是 u 的一个右逆元。由于 $b_r \neq 0$,所以 $a_r + b_r \neq a_r$,从而 u 有多于一个右逆元。

18.16

证明:设 $a \in R$ 是一个幂零元。令 k 为使 $a^k = 0$ 的最小正整数。若 $a \neq 0$,则必有 $k \geq 2$ (否则就有 k = 1, $a = a^1 = 0$,矛盾)。从而由 k 的最小性知, $a^1 \neq 0$, $a^{k-1} \neq 0$,而 $a^k = a^1 a^{k-1} = 0$,从而 a 和 a^{k-1} 是零因子。这与 a 是整环矛盾。

18.17 首先证明第 24 题结论: