Exercices

Exercice 1

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi[$ par $\begin{cases} f(x) = -1 & \text{si } x \in [-\pi, 0[\\ f(x) = 1 & \text{si } x \in [0, \pi[\\ \end{bmatrix}) \end{cases}$

- 1. Déterminer les coefficients de Fourier a_n et b_n associés à f et écrire la série de Fourier associée à f.
- 2. En déduire $\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)}.$
- 3. En utilisant l'égalité de Parseval, déterminer $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$.
- 4. En déduire $\sum_{p=1}^{+\infty} \frac{1}{p^2}.$

Exercice 2

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi]$ par f(x) = |x|.

- 1. Déterminer les coefficients de Fourier $a_n(f)$ et $b_n(f)$ associés à f.
- 2. Déterminer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}.$
- 3. En déduire $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 4. En utilisant le théorème de Parseval, déterminer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}$.
- 5. En déduire $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.