

Cover Operator (C)

$$C(X \to Y) = \{X \cup Z \to V | Z, V \subseteq Y \land Z \cap V = \emptyset \land V \neq \emptyset\}.$$

Id	Transaction
T_1	{abcde}
T_2	{abcdef}
T_3	{abcdehi}
T_4	{abe}
T_5	{bcdehi}

#	rule r' in $C(r)$	sup(r')	conf(r')
1.	r: { <i>b</i> }→{ <i>de</i> }	4	80%
2.	$\{b\} \rightarrow \{d\}$	4	80%
3.	$\{b\} \rightarrow \{e\}$	5	100%
4.	$\{bd\} \rightarrow \{e\}$	4	100%
5.	$\{be\} \rightarrow \{d\}$	4	80%

WARSAW UNIVERSITY OF TECHNOLOGY
DEVELOPMENT PROGRAMME

Properties of Cover Operator...

- If $r \in C(r)$, then $sup(r) \ge sup(r) \& conf(r) \ge conf(r)$.
- $X \rightarrow Z \setminus X \in C(X \rightarrow Z \setminus Y)$ if and only if $Z \subseteq Z \& X \supseteq X$.
- If $r \in C(r')$ & $r' \in C(r'')$, then $r \in C(r'')$.

#	rule r' in $C(r)$	sup(r')	conf(r')
1.	r: {b}→{de}	4	80%
2.	$\{b\} \rightarrow \{d\}$	4	80%
3.	$\{b\} \rightarrow \{e\}$	5	100%
4.	$\{bd\} \rightarrow \{e\}$	4	100%
5.	$\{be\} \rightarrow \{d\}$	4	80%

8

WARSAW UNIVERSITY OF TECHNOLOGY DEVELOPMENT PROGRAMME

Properties of Cover Operator

• $C(X \rightarrow Y) = 3^m - 2^m$, where m = |Y|.

#	rule r' in $C(r)$	gr my(12)	a and w)
#	Tule r III C(r)	sup(r')	conf(r')
1.	r: { <i>b</i> }→{ <i>de</i> }	4	80%
2.	$\{b\} \rightarrow \{d\}$	4	80%
3.	$\{b\} \rightarrow \{e\}$	5	100%
4.	$\{bd\} \rightarrow \{e\}$	4	100%
5.	$\{be\} \rightarrow \{d\}$	4	80%

$$|C(\{b\} \rightarrow \{de\})| = 3^2 - 2^2 = 5.$$

WARSAW UNIVERSITY OF TECHNOLO
DEVELOPMENT PROGRAMME

Closure-Closure Rule Inference (CCI)

- $sup(X \rightarrow Y \backslash X) = sup(\gamma(Y))$.
- $conf(X \rightarrow Y \backslash X) = sup(\gamma(Y)) / sup(\gamma(X))$.
- $(X \rightarrow Y \backslash X) \in AR$ if $(\gamma(X) \rightarrow \gamma(Y) \backslash \gamma(X)) \in AR$.
- Property (closure determination):
 Let X be an itemset. Closure γ(X) is equal to the smallest (wrt. set inclusion) closed itemset containing X.

10

Representative Rules (RR, C)

 Representative rules (RR) are those strong association rules that are not covered by other strong association rules:

$$RR = \{r \in AR \mid \neg \exists r' \in AR (r' \neq r \land r \in C(r'))\}.$$

WARSAW UNIVERSITY OF TECHNOLOGY DEVELOPMENT PROGRAMME

Properties of (RR, C)

- If $X \rightarrow Z \setminus X \in RR$, then $X \in FG$ and $Z \in FC$.
- If $r \in RR$, then $C(r) \subseteq AR$.
- $\forall r \in AR \exists r' \in RR \text{ such that } r \in C(r')$.
- $AR = \bigcup_{r \in RR} C(r)$.
- Conclusion: (*RR*, *C*) is sound and lossless representation of *AR*, though, in general, it is not informative.

 Minimal non-redundant rules (MNH) are those strong association rules each of which is not covered by another strong association rule with the same support and confidence:

MNR =
$$\{r \in AR \mid \neg \exists r' \in AR \ (r' \neq r \land r \in C(r') \land sup(r') = sup(r) \land conf(r') = conf(r))\}.$$

Properties of (MNR, C)

- $MNR = \{X \rightarrow Y \mid Y \in FC \land X \in FG \land X \subset Y \land conf(X \rightarrow Y \mid X) > minConf\}.$
- If $r \in MNR$, then $C(r) \subseteq AR$.
- $\forall r \in AR \exists r' \in MNR \text{ such that } r \in C(r').$
- $AR = \bigcup_{r \in MNR} C(r)$.
- Conclusion: (MNR, C) is sound, lossless and informative representation of AR.

Reasoning with (MNR, C)

Let *r* be a rule to be evaluated and **R** be a subset of rules in **MNR** that cover *r*.

- If r is not covered by any rule in MNR (that is, if R = Ø), then r ∉ AR.
- If r is covered by at least one rule in MNR (that is, if $\mathbf{R} \neq \emptyset$), then $r \in \mathbf{AR}$ and
 - $-\sup(r) = \max\{\sup(r')| \ r' \in \mathbf{R}\};$
 - $-conf(r) = \max\{conf(r')| \ r' \in \mathbf{R}\}.$

20

Example: Reasoning with (MNR, C)...

Let MNR = { {ac} \rightarrow {bde} [3, 1], {ad} \rightarrow {bce} [3, 1], $\varnothing \rightarrow$ {bcde} [4, 4/5], {c} \rightarrow {bde} [4, 1], {d} \rightarrow {bce} [4, 1], $\varnothing \rightarrow$ {abe} [4, 4/5], {a} \rightarrow {be} [4, 1], $\varnothing \rightarrow$ {be} [5, 1]}.

Task: $r: \{ab\} \rightarrow \{e\} \in AR$?

Solution: r is covered by the following two rules in **MNR**: $\{a\} \rightarrow \{be\}$ [4, 1], $\varnothing \rightarrow \{abe\}$ [4, 4/5]. Hence, $r \in \mathbf{AR}$ and sup(r) = 4 and conf(r) = 1.

21

Example: Reasoning with (MNR, C)

Let MNR = { {ac} \rightarrow {bde} [3, 1], {ad} \rightarrow {bce} [3, 1], $\varnothing \rightarrow$ {bcde} [4, 4/5], {c} \rightarrow {bde} [4, 1], {d} \rightarrow {bce} [4, 1], $\varnothing \rightarrow$ {abe} [4, 4/5], {a} \rightarrow {be} [4, 1], $\varnothing \rightarrow$ {be} [5, 1]}.

Task: $r: \{b\} \rightarrow \{f\} \in AR$?

Solution: *r* is not covered by any rule in **MNR**.

Hence, $r \neq AR$.

22

WASSAW UNIVERSITY OF TICHNOLOGY RR Versus MNR $RR = \{r \in AR \mid \neg \exists r' \in AR \ (r' \neq r \land r \in C(r')\}.$ $MNR = \{r \in AR \mid \neg \exists r' \in AR \ (r' \neq r \land r \in C(r')\}.$ $\land sup(r') = sup(r) \land conf(r') = conf(r))\}.$ $RR = \{r \in AR \mid \forall r' \in AR \ (r' = r \lor r \notin C(r')\}.$ $MNR = \{r \in AR \mid \forall r' \in AR \ (r' = r \lor r \notin C(r')\}.$ $\lor sup(r') \neq sup(r) \lor conf(r') \neq conf(r))\}.$

RR versus MNR

- *RR* ⊂ *MNR*.
- $RR = \{r \in MNR \mid \neg \exists r' \in MNR \ (r' \neq r \land r \in C(r'))\}.$

4 *RR*s:

 $\{ac\}$ → $\{bde\}$ [3, 1] $\{ad\}$ → $\{bce\}$ [3, 1] \varnothing → $\{bcde\}$ [4, 4/5] \varnothing → $\{abe\}$ [4, 4/5] $\{ac\}$ → $\{bde\}$ [3, 1] $\{ad\}$ → $\{bce\}$ [3, 1] \varnothing → $\{bcde\}$ [4, 4/5] $\{c\}$ → $\{bde\}$ [4, 1] $\{d\}$ → $\{bce\}$ [4, 1] \varnothing → $\{abe\}$ [4, 4/5] $\{a\}$ → $\{be\}$ [4, 1] \varnothing → $\{be\}$ [5, 1]

8 MNRs:

References...

- Marzena Kryszkiewicz: Representative Association Rules and Minimum Condition Maximum Consequence Association Rules.
 PKDD 1998: 361-369
- Marzena Kryszkiewicz: Closed Set Based Discovery of Representative Association Rules. <u>IDA 2001</u>: 350-359
- Marzena Kryszkiewicz: Concise
 Representations of Frequent Patterns and
 Association Rules, Warsaw: Publishing House
 of Warsaw University of Technology (2002)

References

- Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, Lotfi Lakhal: Mining Minimal Nonredundant Association Rules Using Frequent Closed Itemsets. <u>Computational Logic 2000</u>: 972-986
- Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal: Closed Set Based Discovery of Small Covers for Association Rules. <u>Proc.</u> <u>15èmes Journées Bases de Données Avancées</u>, <u>BDA 1999</u>: 361-381