Physical layer

- Physical layer is responsible for transmission of a stream of bits
 - Put bits from a machine to a medium
 - Pick bits from the medium give to another machine
- Some issues
 - Medium
 - Line Encoding: representing the digital logic levels using the physical attributes associated with the media.
 - Multiplexing

From signal to packet

Analog Signal

"Digital" Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets

Header/Body

Header/Body

Header/Body

Packet Transmission Sender Receiver

Model of data transmission system

(a) General block diagram

(b) Example

Figure 1.3 Simplified Network Models

Direct Data transmission system

Media

- Wired
 - Twisted Pair
 - Coaxial Cable
 - Fiber Optics
- Wireless
 - Radio
 - Infra red
 - Light
 - ...

- (a) Category 3 UTP.
- (b) Category 5 UTP.

- Cheap, simple
- Widely used
- Weak resistance to noice
- Short Transmission distance

- Need amplification after each 5km in analog transmission
- In digital transmission
 - Need repeater after each 2 km
- Limited speed (100MHz)
- Noice

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

- Using in TV transmission
- For transmission of telephone signal
 - 10,000 calls in the same time
 - Is being replaced by fiber optics
- Linking the computers of the short distance
- LAN 10BaseT, 100BaseT,

. . .

- For digital transmission
 - Repeater should be used after each 1km
 - More repeater is needed for high speed transmission

Optical fiber

- (a) Single core
- (b) Cable with 3 cores

Optical fiber transmission mode

- Used for long distance transmission
- Used for communication in metropolitan networks
- Used for connecting routers of ISP
- Used in backbone part of a LAN

- Advantage in comparison with other cables
 - Large data rate
 - Small and light cable
 - Low attenuation
 - Better isolation from electromagnetic environment
 - Large distance between repeaters (10km)

- Terrestrial microwave
 - Used for metropolitan connection, for cellular network
- Microwave satellite
 - Used in TV, Long distance telephone communication
- Radio broadcast
- Infrared
 - Small scope, low data rate, unable to travel through the wall

- Microwave: 1GHz đến 40GHz
- Radio: 30MHz đến 1GHz
- Infrared: 300GHz đến 200 THz
- Antenna: wireless transceiver

Frequency range of transmission chanels

- Use different discrete signal, different voltage level for representing bit 0 and 1.
- Data transmission should be synchronized between sender and receiver: clock synchronization
- Encoding could be performed by bit or by a group of bit e.g., 4 or 8 bits.
- There are many way to represent 0 and 1 → See data transmission technique.

Topology

- Point-to-point
 - Star
 - Ring
 - Mesh
- Point-to-multipoint
 - Bus
 - Ring
 - Star

Point -to-Point

- Simplex: Data is trasmitted in one direction
- Full Duplex: Data can be transmitted in both directions in the same time
- Half duplex: Data can be transmitted in both directions but one direction at a time.

- Sequent transmission: Transmit 1 bit at a moment (over a signal line)
- Parallel transmission: Trasmit multiple bits in the same time (over multiple signal lines)

- Data terminal equipment (DTE)
 - Have data to transmit but has no feature for transmission
 - Need an additional device for accessing the media
- Data circuit terminating equipment (DCE)
 - Transmit bits on the media
 - Transmit data and control information with DCE through connection the media
- Need a clear interface standard between DTE, DCE

DTE-DCE

(a) Generic interface to transmission medium

(b) Typical configuration

- Mechanism
 - Define the form of the interface, number of pins for assuring the interfaces match together
- Electrics
 - Define the level of voltage to be used
 - Define the length of pulse (frequency)
 - Define enconding method
- Functionalities
 - Functionality of each pins
 - There are 4 groups of pins: data, control, synchronization, ground
- Procedure
 - Lists of events to perform for transmitting data

- Define for serial communication
- Mechanism: ISO 2110
- Electrics: V. 28
- Functionality: V. 24
- Procedure: V. 24

Example: V.24 /EIA-232-E

- Mechanic:
 - 25 or 15 pins
 - Transmission distance 15m
- Electrics
 - Digital data
 - 1=-3v, 0=+3v (NRZ-L)
 - Data rate 20kbps
 - Transmission distance15m

Figure 6.5 Pin Assignments for V.24/EIA-232 (DTE Connector Face)