

Introdução

Duas estruturas de controladores muito utilizadas são:

- Controladores em Avanço de Fase
- Controladores em Atraso de Fase

E ainda, a combinação de ambos gerando os controladores em avanço-atraso de fase.

Controladores em Avanço e em Atraso

Seja a configuração de controle em série;

Ambos os controladores tem a mesma estrutura:

$$C(s) = K \frac{s+b}{s+\alpha b} \quad \alpha, b > 0$$

Considerando $s=\sigma+j\omega$, a fase do controlador pode ser escrita como:

$$\angle C(s) = \angle(\sigma + j\omega + b) - \angle(\sigma + j\omega + \alpha b)$$

$$= tg^{-1} \left(\frac{\omega}{\sigma + b} \right) - tg^{-1} \left(\frac{\omega}{\sigma + \alpha b} \right)$$

Controladores em Avanço e em Atraso

Observe que, para

$$\alpha > 1 \implies \angle C(s) > 0$$

Ou seja, a introdução do controlador gera um aumento na fase do ramo direto do sistema.

Este controlador é chamado "em avanço de fase" ou simplesmente **CONTROLADOR EM AVANÇO**.

Controladores em Avanço e em Atraso

Para

$$0 \le \alpha < 1 \implies \angle C(s) < 0$$

Ou seja, a introdução do controlador gera uma redução na fase do ramo direto do sistema.

Este controlador é chamado "em atraso de fase" ou simplesmente CONTROLADOR EM ATRASO.

Uso dos Controladores

Controlador em Avanço

Geralmente utilizado para melhorar a <u>resposta transitória</u> do sistema. Seu comportamento se aproxima de uma ação Proporcional-Derivativa (PD).

Controlador em Atraso

Geralmente utilizado para melhorar a resposta do sistema em regime permanente. Seu comportamento se aproxima de uma ação Proporcional-Integral (PI).

Uso dos Controladores

O controlador PD (forma real)

$$C(s) = K_P \left(1 + \frac{NT_D s}{T_D s + N} \right) \quad 3 \le N \le 10$$

pode ser reescrito como

$$C(s) = K \frac{s+b}{s+\alpha b}$$

sendo
$$\alpha = N + 1$$
, $b = \frac{N}{\alpha T_D}$ e $K = \alpha K_P$

Ou seja, o controlador PD é um caso particular do controlador em avanço.

Uso dos Controladores

Seja um controlador em atraso. Fazendo α =0 tem-se:

$$C(s) = K \frac{s+b}{s}$$

ou seja, um controlador do tipo PI:

$$C(s) = Kp\left(\frac{s + 1/T_I}{s}\right)$$

com

$$b = \frac{1}{T_I}$$
 e $K = K_P$

Assim, pode se dizer que controlador PI é um caso particular do controlador em atraso.

Controladores em Avanço

Considerações sobre o controlador:

- A adição do zero desloca o Lugar das Raízes para a esquerda, melhorando a estabilidade do sistema e, potencialmente a velocidade da resposta.
- A adição do polo tenderia a ter um efeito contrário. Entretanto, se o polo for posicionado apropriadamente seu efeito não deve afetar significativamente a melhora obtida pela introdução do zero.
- O polo deve ser alocado relativamente distante do zero (4 a 5 vezes). Porém, não deve ser alocado muito distante para evitar efeito indesejado de ruído.

Problema Proposto

Seja um sistema de controle com realimentação unitária cuja F.T.M.A. é dada por:

$$G(s) = \frac{2}{s(s+1)(s+5)}$$

Projetar um controlador de modo a atender as seguintes especificações:

- Sobressinal menor do que 5%
- Tempo de acomodação menor do que 5 segundos
- Reduzir o erro de regime permanente à entrada rampa

Resposta do Sistema com C(s)=1

A função de transferência de malha fechada será:

$$T(s) = \frac{2}{s^3 + 6s^2 + 5s + 2} \implies \begin{cases} p_{1,2} = -0.452 \pm j0.434 \\ p_3 = -5.1 \end{cases}$$

Aproximando pelos polos dominantes:

$$\omega_n = 0.6265$$
 \to $M_P = 3.8\%$ $\xi = 0.7217$ \to $t_S = 8.9$

Valores de simulação: $M_P = 3.8\%$ $t_S = 9.6$

Resposta do sistema com C(s)=1

O erro de regime permanente será:

$$Kv = \lim_{s \to 0} sG(s) = \frac{2}{5} \implies Kv = 0,4$$

$$e_{\infty} = \frac{1}{Kv} = 2,5$$

Região Desejada para Malha Fechada

$$M_P < 5\% \implies \xi > 0.69 (\theta < 46^\circ)$$

 $t_s < 5seg \implies \sigma > 0.8$

Possíveis Soluções:

- Controlador Proporcional
- Controlador PD
- Controlador em Avanço

Controlador Proporcional

Seja C(s) um controlador proporcional.

Em malha fechada

$$T(s) = \frac{2K_P}{s(s^2 + 6s + 5) + 2K_P}$$

O polinômio característico é dado por

$$1 + K_P \frac{2}{s(s^2 + 6s + 5)} = 0$$

Controlador Proporcional

Controlador Proporcional

Como pode ser observado no gráfico é impossível atender às especificações com um controlador proporcional.

Projetos 1, 2 e 3 - PD Misto Ideal

$$T(s) = \frac{2K_P}{s(s+1)(s+5) + 2T_D s + 2K_P}$$

O erro de regime permanente será dado por:

$$Kv = \frac{2K_P}{5 + 2T_D} \implies e_{\infty} = \frac{5 + 2T_D}{2K_P}$$

Metodologia

Usar o gráfico de <u>contorno das raízes</u> para definir faixas de valores para K_P e T_D que garantam as especificações de desempenho.

1º etapa: Para K_P=0,

$$\Delta(s) = s(s+1)(s+5) + 2T_D s$$

e o L.R será traçado para

$$1 + T_D \frac{2s}{s(s+1)(s+5)} = 0$$

2ª etapa: Variação de K_P para valores fixos de T_D.

$$T_D = 1 \rightarrow 1 + K_P \frac{2}{s^3 + 6s^2 + 7s} = 0$$

$$T_D = 2 \rightarrow 1 + K_P \frac{2}{s^3 + 6s^2 + 9s} = 0$$

A partir do gráfico de contorno das raízes obtém-se os valores de K_p que permitem alocar os polos de malha fechada na região desejada:

$$T_{D} = 1$$
 for a da região
 $T_{D} = 2$ 1,9 < K_{P} < 3,3
 $T_{D} = 3$ 2,7 < K_{P} < 4,8
 $T_{D} = 4$ 3,5 < K_{P} < 6,3
 $T_{D} = 5$ 4,3 < K_{P} < 7,7
 $T_{D} = 6$ 5,1 < K_{P} < 7,4
 $T_{D} = 7$ for a da região

$$T_1:$$

$$\begin{cases} T_D = 2 \\ K_P = 3 \end{cases} \Rightarrow \begin{cases} M_P = 2.5\% \\ t_S = 4.98 \end{cases} \Rightarrow e_\infty = 1.5$$

$$T_{2}: \begin{cases} T_{D} = 3 \\ K_{P} = 4 \end{cases} \Rightarrow \begin{cases} M_{P} = 1\% \\ t_{S} = 2,99 \end{cases} \Rightarrow e_{\infty} = 1,375$$

$$T_{3}: \begin{cases} T_{D} = 4 \\ K_{P} = 5 \end{cases} \Rightarrow \begin{cases} M_{P} = 0\% \\ t_{S} = 3,06 \end{cases} \Rightarrow e_{\infty} = 1,3$$

$$T_3:$$

$$\begin{cases} T_D = 4 \\ K_P = 5 \end{cases} \Rightarrow \begin{cases} M_P = 0\% \\ t_S = 3,06 \end{cases} \Rightarrow e_\infty = 1,3$$

Metodologia: fixar Kp e variar Td

Em malha fechada

$$T(s) = \frac{2K_P}{s(s+1)(s+5) + 2T_D s + 2K_P}$$

O polinômio característico pode ser escrito como:

$$1 + T_D \frac{2s}{s^3 + 6s^2 + 5s + 2K_P} = 0$$

Pergunta:

Como escolher de Kp?

Através do lugar das raízes (usando Matlab) é possível avaliar e definir uma faixa de valores de K_p para atender ambas as especificações de desempenho (Mp<5% e ts<5seg).

Obs.: dependendo da escolha de Kp os polos de malha aberta variam.

 $0 < K_p \le 0.56$: polos reais

 $0.56 < K_P < 15$: polos complexos no SPE

 $K_P > 15$: polos complexos no SPD

 $(K_p=15 \text{ polos sobre o eixo } j\omega)$

Portanto, para $0 < K_P < 0.56$ as especificações nunca serão atendidas.

Para ambos os casos as especificações nunca serão atendidas.

Portanto, para atender ambas as especificações o valor de K_P deve ser escolhido na faixa $1,4 < K_P < 8$.

Dentro desta faixa existem três configurações possíveis de Lugar das Raízes:

LR1: $1.4 < K_P < 4$ (duas ramificações)

LR2: $K_p = 4$ (uma ramificação, raiz tripla)

LR3: $4 < K_p < 8$ (sem ramificação)

Projeto 2 – PD Misto Ideal (Varia T_D)

Escolhido K_P=5, os valores de T_D são determinados pela interseção do LR com a região desejada.

Projeto 2 – PD Misto Ideal (Varia T_D)

Os valores de T_D que levam os polos de malha fechada para dentro da região desejada são:

$$Mp < 5\% \rightarrow 3,14 < T_D < 6,37$$

 $t_s < 5 \rightarrow 2,16 < T_D < 5,83$

Assim, para atender a ambas as especificações:

$$3,14 < T_D < 5,83$$

Projeto 2 – PD Misto Ideal

O erro de regime permanente será dado por

$$e_{\infty} = \frac{5 + 2T_D}{10}$$
 3,14 < T_D < 5,83

Portanto, quanto menor T_D menor será o erro.

$$T_{1}: \begin{cases} T_{D} = 3.5 \\ K_{P} = 5 \end{cases} \Rightarrow \begin{cases} M_{P} = 1.5\% \\ t_{S} = 2.5 \end{cases} \Rightarrow e_{\infty} = 1,20$$

$$T_{2}: \begin{cases} T_{D} = 5.5 \\ K_{P} = 5 \end{cases} \Rightarrow \begin{cases} M_{P} = 0\% \\ t_{S} = 4.97 \end{cases} \Rightarrow e_{\infty} = 1,60$$

Projeto 3 – PD Misto Ideal

Metodologia: fixar Kp e variar Td (idem anterior)

$$K_P = 4 \implies 2.5 < T_D < 4.6$$
 $e_{\infty} = \frac{5 + 2T_D}{8}$

$$T_1: \begin{cases} T_D = 3 \\ K_P = 4 \end{cases} \Rightarrow \begin{cases} M_P = 1\% \\ t_S = 3 \end{cases} \Rightarrow e_\infty = 1,25$$

$$T_2: \begin{cases} T_D = 4 \\ K_P = 4 \end{cases} \Rightarrow \begin{cases} M_P = 0\% \\ t_S = 4,6 \end{cases} \Rightarrow e_\infty = 1,625$$

Compara Projetos – PD Misto Ideal

Projeto	Parâmetros	M _P	t _s	$e_{\scriptscriptstyle{\infty}}$
1	$T_D=2 e K_P=3$	2,5%	4,98	1,50
	$T_D = 3 e K_P = 4$	1,0%	2,99	1,38
	$T_D = 4 e K_P = 5$	0,0%	3,06	1,30
2	T_{D} =3,5 e K_{P} =5	1,5%	2,50	1,20
	$T_{D} = 5,5 \text{ e } K_{P} = 5$	0,0%	4,97	1,60
3	$T_D = 3 e K_P = 4$	1,0%	2,99	1,25
	$T_D=4 e K_P=4$	0,0%	4,60	1,63

Projeto 1 – Contorno das Raízes

Projeto 2 - Fixa Kp=5, varia Td

Projeto 3 - Fixa Kp=4, varia Td

Compara Projetos – PD Misto Ideal

Projeto	Parâmetros	M _P	t _s	$e_{\scriptscriptstyle{\infty}}$
1	T _D =4 e K _P =5	0,0%	3,06	1,30
2	T _D =3,5 e K _P =5	1,5%	2,50	1,20
3	$T_D = 3.0 \text{ e K}_P = 4$	1,0%	2,99	1,25

Projeto 4 – PD Série Ideal

Em malha fechada tem-se:

$$T(s) = \frac{2K_P(1 + T_D s)}{s(s+1)(s+5) + 2K_P(1 + T_D s)}$$

$$\Delta(s) = s^{3} + 6s^{2} + (5 + 2T_{D}K_{P})s + 2K_{P}$$

$$\downarrow \downarrow$$

$$1 + T_{D} \frac{2K_{P}s}{s^{3} + 6s^{2} + 5s + 10} = 0$$

Metodologia: fixar K_P e variar T_D

Fixando Kp=5 (do projeto anterior):

$$1 + T_D \frac{10s}{s^3 + 6s^2 + 5s + 10} = 0$$

$$Kp = 5 \implies 0.628 < T_D < 1.16$$

Neste caso, o erro de regime permanente é independente de T_D :

$$e_{\infty} = \frac{5}{2Kp} = 0.5$$

Observa-se que, para valores pequenos de T_D, a especificação não será atendida:

$$T_D = 0.65 \implies T_1(s) = \frac{10(1+0.65s)}{s^3 + 6s^2 + 11.5s + 10}$$

 $p_{1,2} = -1.22 \pm j1.15 \quad p_3 = -3.56 \quad z = -1.54$

A presença do zero próximo aos polos dominantes gera o aumento excessivo do sobressinal.

Aumentando o valor de T_D, ocorre uma troca na dominância dos polos.

$$T_D = 1.15 \implies T_2(s) = \frac{10(1+1.15s)}{s^3 + 6s^2 + 16.5s + 10}$$

 $p_1 = -0.815 \quad p_{2.3} = -2.59 \pm j2.36 \quad z = -0.87$

Em particular, para $T_D=1$, ocorre um cancelamento polo/zero.

$$T_D = 1 \implies T_3(s) = \frac{10}{s^2 + 5s + 10}$$

$$p_{1,2} = -2.5 \pm j1.94 \Rightarrow \begin{cases} M_p = 1.73\% \\ t_s = 1.16 \end{cases}$$

Compara Projetos – PD Misto x PD Série

Projeto	Parâmetros	M_{P}	t _s	$e_{\scriptscriptstyle{\infty}}$
Misto	T _D =3,5 e K _P =5	1,50%	2,51	1,20
Série	$T_D=1 e K_P=5$	1,73%	1,16	0,50

Cancelamento Polo/Zero

O cancelamento Polo/Zero (planta/controlador) pode ser utilizado para a redução de modelos e, consequentemente, a simplificação de projeto de controladores.

Entretanto, algumas condições devem ser observadas para a realização do cancelamento.

É sempre possível cancelar polos estáveis (malha aberta) que estejam dentro da região desejada para a alocação dos polos dominantes de malha fechada.

Portanto, polos instáveis ou fora da região desejada não devem ser cancelados. Porque?????

Cancelamento Polo/Zero

Porque não cancelar polos instáveis de malha aberta?

- a) Se existir uma perturbação entre o controlador e a planta, a saída do sistema poderá ser levada à instabilidade uma vez que o polo instável da planta ainda existirá.
- b) Se existir algum erro de modelagem, o cancelamento não ocorrerá e o polo instável continuará existindo, podendo levar o sistema à instabilidade em malha fechada.

Cancelamento Polo/Zero

Porque cancelar apenas polos na região desejada?

Se o cancelamento não for perfeito (por erros de modelagem) o polo não cancelado ainda continuará existindo, porém estará dentro da região desejada.

Controlador em Avanço

Seja o controlador em avanço:

$$C(s) = K \frac{s+b}{s+\alpha b} \qquad b > 0$$

$$\alpha > 1$$

A adição deste controlador aumenta a ordem do sistema aumentando assim a complexidade do projeto.

Além disso, o controlador adiciona um zero à malha direta o que pode gerar um aumento no sobressinal.

Neste caso, o cancelamento polo/zero, se possível, será conveniente.

Controlador em Avanço

Exemplo em estudo:

$$G(s) = \frac{2}{s(s+1)(s+5)} \qquad C(s) = K \frac{s+b}{s+\alpha b}$$

O cancelamento polo/ zero pode ser utilizado? Se sim, qual polo cancelar?

Controlador em Avanço

Dentro da região desejada existem dois polos que poderiam ser cancelados.

A melhor escolha é cancelar o polo em -1, por ser o mais lento.

Considerando o cancelamento polo/zero (b=1):

$$C(s) = K \frac{s+1}{s+\alpha}$$

Metodologia: fixar K e variar α (usando cancelamento)

Neste caso,

e

$$C(s)G(s) = \frac{K(s+1)}{s+\alpha} \frac{2}{s(s+1)(s+5)} = \frac{2K}{s(s+\alpha)(s+5)}$$

Definindo K = 5 (dos projetos anteriores)

$$T(s) = \frac{10}{s(s+\alpha)(s+5)+10}$$

$$\Delta(s) = s^3 + (\alpha + 5)s^2 + 5\alpha s + 10$$

A partir da interseção do LR traçado para

$$1 + \alpha \frac{s(s+5)}{s^3 + 5s^2 + 10} = 0$$

com a região desejada, serão definidos os limites do parâmetro α .

Especificação de sobressinal: $\alpha > 2,47$

Especificação de tempo de acomodação: $2,13 < \alpha < 3,77$

Portanto, para atender ambas as especificações:

$$2,47 < \alpha < 3,77$$

Para a especificação de erro de regime permanente:

$$Kv = \lim_{s \to 0} s \frac{2K}{s(s+\alpha)(s+5)} = \frac{10}{5\alpha}$$

ou seja,

$$e_{\infty} = \frac{5\alpha}{2K} = \frac{5\alpha}{10}$$

Assim, quanto menor o valor de α menor será o erro de regime permanente.

Para diferentes escolhas de α tem-se:

$$T_1: \quad \alpha = 2.5 \quad \Rightarrow \quad \begin{cases} M_P = 3.8\% \\ t_S = 4.6 \end{cases} \Rightarrow e_\infty = 1.25$$

$$T_2: \quad \alpha = 3.0 \quad \Rightarrow \quad \begin{cases} M_P = 0.3\% \\ t_S = 3.58 \end{cases} \quad \Rightarrow e_\infty = 1.5$$

$$T_3: \quad \alpha = 3.5 \quad \Rightarrow \quad \begin{cases} M_P = 0\% \\ t_S = 4.94 \end{cases} \Rightarrow e_\infty = 1.75$$

Metodologia: fixar α e variar K (usando cancelamento)

Sendo

$$\Delta(s) = s^3 + (\alpha + 5)s^2 + 5\alpha s + 2K$$

o LR deverá ser traçado para

$$1+K\frac{2}{s(s+\alpha)(s+5)}=0$$

Como definir o valor de α ?

1º Para ser um controlador em avanço: $\alpha > 1$ 2º Quanto maior o valor de α mais à esquerda (dentro da região, estará o ponto de ramificação).

Fixando α =4, o LR será traçado para

$$1 + K \frac{2}{s(s+4)(s+5)} = 0$$

e interseção deste com a região desejada definirá os limites do parâmetro K.

Especificação de sobressinal: 0 < K < 10,8

Especificação de tempo de acomodação: $5,4 < \alpha < 30,2$

Portanto, para atender ambas as especificações:

Para a especificação de erro de regime permanente:

$$Kv = \lim_{s \to 0} s \frac{2K}{s(s+4)(s+5)} = \frac{K}{10}$$

ou seja,

$$e_{\infty} = \frac{10}{K}$$

Assim, quanto maior o valor de K menor será o erro de regime permanente.

Para diferentes escolhas de K tem-se:

$$T_1: K=6 \Rightarrow \begin{cases} M_P = 0\% \\ t_S = 4.78 \end{cases} \Rightarrow e_\infty = 1.67$$

$$T_2: K=8 \Rightarrow \begin{cases} M_P = 0.3\% \\ t_S = 2.95 \end{cases} \Rightarrow e_\infty = 1.25$$

$$T_3: K=10 \Rightarrow \begin{cases} M_P = 2,76\% \\ t_S = 3,4 \end{cases} \Rightarrow e_\infty = 1,0$$

Metodologia: definir uma posição exata para os polos dominantes de MF.

A partir das especificações:

$$M_P < 5\% \implies \xi > 0.69 (\theta < 46^\circ)$$

 $t_s < 5seg \implies \sigma > 0.8$

define-se a posição desejada para os polos dominantes de MF:

$$\xi > 0.69 \implies \xi \equiv 0.8$$

 $\sigma > 0.8 \implies \sigma \equiv 1$

$$s_d = \sigma \pm j\omega_d = -1 \pm j0,75$$

Para os polos desejados pertencerem ao LR, ou seja, serem polos de malha fechada do sistema, é necessário satisfazer a condição de fase para s=sd:

$$\angle C(s_d)G(s_d) = 180^{\circ}(2q+1)$$

ou

$$\angle C(s_d) = 180^{\circ}(2q+1) - \angle G(s_d) \approx 64^{\circ}$$

Portanto, a contribuição de fase do controlador em avanço será de 64°.

Usando o mesmo cancelamento polo/zero mostrado anteriormente, ou seja, b=1, tem-se

$$C(s) = K \frac{s+1}{s+\alpha}$$

Da condição de fase

$$\angle C(s_d) = \angle (s_d + 1) - \angle (s_d + \alpha)$$
$$= 90^\circ - tg^{-1} \left(\frac{0.75}{-1 + \alpha} \right) = 64^\circ$$

Resolvendo a equação

$$\alpha = 2,54$$

O ganho K é determinado pela condição de módulo

$$K = \frac{1}{\left| C(s_d) G(s_d) \right|}$$

sendo

$$C(s)G(s) = \frac{2}{s(s+5)(s+2,54)}$$

Resolvendo a equação

$$K = 4,36$$

Portanto,

$$C(s) = 4,36 \frac{s+1}{s+2,54}$$

O erro de regime permanente será

$$e_{\infty} = \frac{5\alpha}{2K} = 1,45$$

Verificação

$$C(s)G(s) = \frac{4,36 \times 2}{s(s+2,54)(s+5)}$$

$$T(s) = \frac{8,72}{s(s+2,54)(s+5)+8,72} \Rightarrow \begin{cases} M_P = 1,45\% \\ t_S = 3,2 \end{cases}$$

$$p_{1,2} = -1 \pm j0,752$$
 $p_3 = -5,53$

Metodologia: idem anterior, sem usar cancelamento.

Mantidos os mesmos polos desejados de malha fechada

$$s_d = -1 \pm j0,75$$

a contribuição de fase do controlador também será mantida em 64°. Assim,

$$\angle C(s_d) = \angle (s_d + b) - \angle (s_d + \alpha b) = 64^\circ$$

Como obter os parâmetros b e α ?

- Solução gráfica (Ogata) usando relação de ângulos
- Solução numérica
- Definir o valor de α

Para α = 5, tem-se

$$\angle C(s_d) = \angle (s_d + b) - \angle (s_d + 5b) = 64^{\circ}$$
$$= tg^{-1} \left(\frac{0.75}{b - 1}\right) - tg^{-1} \left(\frac{0.75}{5b - 1}\right) = 64^{\circ}$$

Aplicando a relação

$$tg^{-1}(A) - tg^{-1}(B) = tg^{-1}\left(\frac{A - B}{1 + AB}\right)$$

com

$$A = \frac{0.75}{b-1}$$
 e $B = \frac{0.75}{5b-1}$

chega-se a

$$b = 1,24$$

Portanto

$$C(s) = 12,73 \frac{s+1,24}{s+6,12}$$

O erro de regime permanente será

$$e_{\infty} = \frac{5\alpha}{2K} = 0.982$$

Verificação

$$C(s)G(s) = \frac{12,73 \times 2 \times (s+1,24)}{s(s+1)(s+5)(s+6,2)}$$

$$T(s) = \frac{25,46(s+1,24)}{s^4 + 12,2s^3 + 42,2s^2 + 56,46s + 31,57} \Rightarrow \begin{cases} M_P = 4,15\% \\ t_S = 4,5 \end{cases}$$

$$p_{1,2} = -1 \pm j0,746$$
 $p_3 = -2,68$ $p_4 = -7,5$

Compara Projetos – Avanço

Projetos	Parâmetros	M _P	t _s	$e_{\scriptscriptstyle{\infty}}$
5	α=3 e K=5	0,3%	3,58	1,50
6	α=4 e K=8	0,3%	2,95	1,25
7	α=2,54 e K=4,36	1,5%	3,20	1,45
8	α=5 e K=12,73	4,2%	4,50	0,98

Projeto por Alocação direta de polos

Definida a posição desejada para os polos dominantes de malha fechada compara-se o polinômio característico associado com o polinômio do sistema com controlador.

Observações:

- dependendo da ordem do sistema a solução do problema pode não ser trivial.
- o método define a posição dos polos sem levar em consideração os zeros do sistema.

Projeto por Alocação direta de polos

Projeto 9 - PD série Ideal

Neste caso,

$$C(s)G(s) = \frac{2K_P(1+T_D s)}{s(s+1)(s+5)}$$

e

$$\Delta(s) = s(s+1)(s+5) + 2K_P(1+T_D s)$$
$$= s^3 + 6s^2 + (5+2K_P T_D)s + 2K_P$$

Alocação Direta - PD Série Ideal

Usando os mesmos polos desejados de malha fechada definidos anteriormente obtém-se o polinômio desejado para malha fechada.

$$s_d = -1 \pm j0,75 \rightarrow s^2 + 2s + 1,5625$$

Como o sistema é de 3ª ordem, existirá um polo adicional. Assim, o polinômio desejado para malha fechada torna-se:

$$\Delta(s) = (s^2 + 2s + 1,5625)(s + p_3)$$

$$= s^3 + (2 + p_3)s^2 + (1,5625 + 2p_3)s + 1,5625p_3$$

Alocação Direta - PD Série Ideal

Igualando os polinômios

$$2K_P = 1,5625p_3$$
 $K_P = 3,125$
 $5 + 2K_PT_D = 1,5625 + 2p_3$ \Rightarrow $T_D = 0,73$
 $6 = 2 + p_3$ $p_3 = 4$

Assim,

$$T(s) = \frac{6,25(1+0,73s)}{s^3 + 6s^2 + 9,2625s + 6,25}$$

$$e_{\infty} = \frac{5}{2K} = 0.8$$

$$z = -1,37$$

$$p_{1,2} = -1 \pm j0,75$$

$$p_3 = -4$$

Alocação Direta – PD Série Ideal

Projeto por Alocação direta de polos

Projeto 10 - PD Misto Ideal

Neste caso,

$$T(s) = \frac{2K_P}{s(s+1)(s+5) + 2T_D s + 2K_P}$$

ou

$$\Delta(s) = s^3 + 6s^2 + (5 + 2T_D)s + 2K_P$$

Alocação Direta - PD Misto Ideal

Igualando os polinômios

$$2K_P = 1,5625p_3$$
 $K_P = 3,125$
 $5 + 2T_D = 1,5625 + 2p_3$ \Rightarrow $T_D = 2,28$
 $6 = 2 + p_3$ $p_3 = 4$

Assim,

$$T(s) = \frac{6,25}{s^3 + 6s^2 + 9,2625s + 6,25}$$

$$e_{\infty} = \frac{5 + 2T_D}{2K_P} = 1,53$$

Alocação Direta - PD Misto Ideal

Igualando os polinômios

$$2K_P = 1,5625p_3$$
 $K_P = 3,125$
 $5 + 2T_D = 1,5625 + 2p_3$ \Rightarrow $T_D = 2,28$
 $6 = 2 + p_3$ $p_3 = 4$

Assim,

$$T(s) = \frac{6,25}{s^3 + 6s^2 + 9,2625s + 6,25}$$

$$e_{\infty} = \frac{5 + 2T_D}{2K_P} = 1,53$$

Alocação Direta – PD Misto Ideal

Alocação Direta - Avanço (cancelamento)

Projeto 11 - Controlador em Avanço

Usando o cancelamento

$$C(s) = \frac{K(s+1)}{s+\alpha}$$

e

$$C(s)G(s) = \frac{2K}{s(s+5)(s+\alpha)}$$

Alocação Direta – Avanço (cancelamento)

Em malha fechada

$$\Delta(s) = s^3 + (5 + \alpha)s^2 + 5\alpha s + 2K$$

Igualando os polinômios

$$2K = 1,5625p_3$$
 $K = 4,3132$
 $5\alpha = 1,5625 + 2p_3$ $\Rightarrow \alpha = 2,5208$
 $5 + \alpha = 2 + p_3$ $p_3 = 5,5208$

Alocação Direta - Avanço (cancelamento)

$$T(s) = \frac{8,63}{s^3 + 7,52s^2 + 12,6s + 8,63} \qquad p_{1,2} = -1 \pm j0,75$$
$$p_3 = -5,55$$

$$e_{\infty} = \frac{5\alpha}{2K} = 1,46$$

Alocação Direta – Avanço (cancelamento)

Problema sugerido – Projeto 12

Fazer o projeto por alocação direta, para um controlador em avanço, sem o cancelamento polo/zero.

Compara Projetos – Alocação Direta

Projetos	Parâmetros	M _P	t _s	$e_{\scriptscriptstyle{\infty}}$
Projeto 9 PD Serie	$K_P = 3,125 \text{ e } T_D = 0,73$	3,8%	4,2	0,8
Projeto 10 PD Misto	K _P =3,125 e T _D =2,28	1,4%	3,3	1,53
Projeto 11 Avanço	α=2,52 e K=4,31	1,5%	3,25	1,46

Compara Projetos – Lugar das Raízes x Alocação Dieta

Projeto	Parâmetros	M _P	t _s	$e_{\scriptscriptstyle{\infty}}$
PD Misto (LR)	T_{D} =3,5 e K_{P} =5	1,5%	2,50	1,20
PD Misto (AD)	$T_D = 2,28 \text{ e } K_P = 3,125$	1,4%	3,30	1,53
Avanço (LR)	α=4 e K=8	0,3%	2,95	1,25
Avanço (AD)	α=2,52 e K=4,31	1,5%	3,25	1,46

