

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	(дата, подпись преподавателя)
Студент	Работа выполнена	(дата, подпись преподавателя)
Преподаватель	Отчет принят	(дата, подпись преподавателя)
	•	(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 74В

Определение электроемкостей отдельных конденсаторов		

1. Запишите цель проводимого эксперимента:
2. Дайте определение параметра «электроемкость конденсатора» и запишите формулу д него.
3. От чего зависит емкость плоского конденсатора? Запишите соответствующую формул
— — — — — — — — — — — — — — — — — — —
4. Как подсчитать емкость батарей из двух конденсаторов при их последовательном параллельном соединении? Запишите формулы.
5. Запишите формулу, с помощью которой подсчитывается емкость конденсатора в эт работе. Расшифруйте наименование всех величин, входящих в формулу.
6. Какова роль поляризованного реле в данной схеме измерений?

8. На рис. 2 показаны схемы одиночного, последовательного и параллельного подключения двух конденсаторов (1-4), а внизу — способы их подключения на лабораторном стенде (А-Г). Найдите соответствия между рисунками 1-4 и А-Г и соедините их линиями.

Рис. 1

Рис. 2. Схемы подключения конденсаторов

9. Заполните таблицу измерений в лаборатории.

Таблица 1. Результаты экспериментов и расчетов

Разность потенциалов U = _____ В Частота реле f = _____ Гц

Конденсаторы в	цепи	C_1	C_2	C'	<i>C''</i>
3	№	I_1	I_2	I'	$I^{\prime\prime}$
	1				
Измеряемая сила	2				
тока, мкА	3				
	4				
	5				
Среднее знач	ение				
Среднее знач силы тока $\langle I_i \rangle$,	мкА				

Подпись преподавателя	Дата
-----------------------	------

Обработка результатов измерений

- 1. Рассчитайте средние арифметические значения силы тока $\langle I_i \rangle$ для каждой схемы включения конденсаторов в цепь и внесите данные в таблицу 1.
- 2. Рассчитайте значения электроемкостей первого C_1 и второго C_2 конденсаторов, а также электроемкости последовательно C' и параллельно C'' подключенных конденсаторов по формуле ниже:

$$C_i = \frac{\langle I_i \rangle}{Uf}.$$

$$C_1 =$$

$$C_2 =$$

$$C' =$$

$$C^{\prime\prime} =$$

3. Рассчитайте теоретические значения последовательно $C_{\rm T}'$ и параллельно $C_{\rm T}''$ подключенных конденсаторов, пользуясь ранее найденными значениями C_1 и C_2 :

$$\frac{1}{C_{\rm T}'} = \frac{1}{C_1} + \frac{1}{C_2} =$$

$$C_{\mathrm{T}}' =$$

$$C_{\mathrm{T}}^{\prime\prime} = C_1 + C_2 =$$

Вычисление ошибок измерений

- 1. Для одиночных конденсаторов с электроемкостями C_1 и C_2 вычислите абсолютные ошибки измерений. Для этого:
 - 1.1. Рассчитайте случайные значения ошибки измерения силы тока $\Delta I_{\text{сл}i}$ для выполненных N=5 измерений (при доверительной вероятности 0,95):

для
$$C_1$$
 $\Delta I_{\text{сл1}} = lpha \sqrt{rac{\sum_{i=1}^N (I_i - \langle I_1 \rangle)^2}{N(N-1)}} =$

для
$$C_2$$
 $\Delta I_{\text{сл2}} = lpha \sqrt{rac{\sum_{i=1}^N (I_i - \langle I_2 \rangle)^2}{N(N-1)}} =$

1.2. Определите величины приборных ошибок микроамперметра $\Delta I_{\rm np}$ и вольтметра $\Delta U_{\rm np}$ с учетом их классов точности:

$$\Delta I_{\rm np} =$$

$$\Delta U_{\rm np} =$$

1.3. Определите величины абсолютных ошибок измерения силы тока для двух конденсаторов, округлив их значения до первой значащей цифры в большую сторону:

для
$$C_1$$
 $\Delta I_1 = \sqrt{\Delta I_{\mathtt{c} \pi 1}{}^2 + \Delta I_{\mathtt{np}}{}^2} =$

для
$$C_2$$
 $\Delta I_2 = \sqrt{\Delta {I_{\text{сл2}}}^2 + \Delta {I_{\text{пр}}}^2} =$

1.4. Рассчитайте относительные ошибки измерений электроемкостей δC_1 и δC_2 по формулам (ошибку Δf принять равной 2,5 Γ ц):

5

$$\delta C_1 = \frac{\Delta I_1}{\langle I_1 \rangle} + \frac{\Delta U}{U} + \frac{\Delta f}{f} =$$

$$\delta C_2 = \frac{\Delta I_2}{\langle I_2 \rangle} + \frac{\Delta U}{U} + \frac{\Delta f}{f} =$$

1.5. Вычислите абсолютные ошибки измерений электроемкостей C_1 и C_2 :

$$\Delta C_1 = C_1 \cdot \delta C_1 =$$

$$\Delta C_2 = C_2 \cdot \delta C_2 =$$

2. Оцените расхождение результатов определения электроемкости батарей из последовательно и параллельно соединенных конденсаторов по формулам:

$$\eta' = \frac{|C' - C'_{\mathrm{T}}|}{C'_{\mathrm{T}}} \cdot 100\% =$$

$$\eta^{\prime\prime} = \frac{|C^{\prime\prime} - C_{\rm T}^{\prime\prime}|}{C_{\rm T}^{\prime\prime}} \cdot 100\% =$$

Окончательные результаты

1. Запишите окончательные результаты измерений электроемкостей C_1 и C_2 в виде: измеряемая величина = измеренное значение \pm абсолютная ошибка измерений

$$C_1 =$$

$$C_2 =$$

2. Запишите значения экспериментальные и теоретические значения электроемкостей батарей из последовательно и параллельно соединенных конденсаторов и расхождение этих результатов:

$$C' =$$

$$C_{\mathrm{T}}' =$$

$$n' =$$

$$C^{\prime\prime} =$$

$$C_{\mathrm{T}}^{\prime\prime}=$$

$$\eta^{\prime\prime} =$$

Подпись студента

Дата _____