

A Physics-based Approach to Removing Shadows and Shading in Real Time

Bruce A. Maxwell, Casey A. Smith, Richard M. Friedhoff 22 May 2018

What is Possible?

How Do We Remove the Shadows?

- We labeled a zillion images
- We trained a really big convolutional network with a million parameters

Physics

11 operations per pixel

A Better Signal

A powerful strategy for simplifying computer vision

- Use physics to create an illumination independent signal
- Use simpler classifiers to accomplish the recognition tasks
- Use less computational power and achieve more robust performance

Illumination as a Confounding Signal

Looking for paint on the road

- Intensity is not discriminative
- Color is not discriminative
- Shape is not discriminative

Using Standard Images to Understand the World

A Better Visual Signal

Training set has to sample geometry x reflectance x illumination

Bi-illuminant Scene Model

- Light
- Surfaces
- Geometry
- Reflected light
- Sensor (linear)

Tandent Log Space Chromaticity

$$\log I = \log R + \log(A + \gamma D)$$

Reflectance term
Constant for a material

Illumination term
Constant shape for an A, D pair

Illumination Spectral Direction [ISD]

Chromaticity Plane

Standard Chromaticity v. Log Space Chromaticity

Original Image

Standard Chromaticity

Standard Chromaticity v. Log Space Chromaticity

Tandent Log Space Chromaticity

Standard Chromaticity

Identifying the Illumination Spectral Direction

Goal: identify a shadow boundary and stable measurements of lit and shadowed pixels on road surfaces within a ROI

- Down-sample and compute stable pixels
- 2. Identify potential lit and shadowed pixels
- 3. Dilate the lit and shadow masks
- 4. Find proposed ISDs
- 5. Identify the dominant ISD
- 6. Return the ISD and its confidence

More Examples of ISD detection

500 fps on an NVidia Jetson

Confidence is 0.999

Confidence is 0.119

Confidence is 0.0

Overall Process

Original Image → ISD — Tandent Log Space Chromaticity

Potential Output: Road Vision

Tandent Log Space Chromaticity

Road Vision

Potential Output: Road Vision

Original Image

Road Vision

Real Time Illumination Invariant Imaging

Other Possible Outputs

Original Image

Color Rob Wission

Greyscale and Color Road Vision

Shadow Edges and Material Edges

Is This Useful?

- Illumination is a confounding signal in many applications with no relevance to the problem
- Illumination can be an arbitrary signal and mimic features of the problem of interest
- Hypothesis: removing illumination first makes it easier for ML to solve the problem

Evaluation

Training set: 304 labeled images from 62 video sequences

- Different times of day, varying cloud/sun conditions
- Three camera sensors
- Four lenses,
- Three cities
- Four seasons

2 Different Classifiers, 5 Combinations Classify as white paint or asphalt

Qualitative Results: Random Forest

Trained/Run on Original Images

Random Forest Precision/Recall Plot

CNN Precision/Recall Plot

Random Forest on Images with No Shadows

CNN on Images with No Shadows

Why?

Illumination mimics the signal of interest

- Intensity Patterns
- Spectral Patterns
- Spatial Patterns

Value of a Physics-Based Approach

Value of a Physics-Based Approach

Diverse Applications

Find Out More

tandent.com

Log Space Chromaticity: https://ieeexplore.ieee.org/document/4587491/?tp=&arnumber=4587491

Video Sequences

https://vimeo.com/256140601/e72e927f93 https://vimeo.com/257804616/c73f4e5642 https://vimeo.com/256141155/b07d502d65 https://vimeo.com/256141223/85b320a60c https://vimeo.com/257804979/cdd4308664

Contact Us!

Richard Friedhoff

rfriedhoff@tandent.com

Bruce Maxwell

bmaxwell@tandent.com

Casey Smith

csmith@tandent.com

Road Vision in Action

Different Problems

Snow

Heavy Rain

Night Driving

Thank You

