Assignment 1 Solutions

1. Prove with induction that $\forall n > 0 \forall w \in \{a, b\}^* : n_a(w^n) = n \cdot n_a(w)$.

Proof. Note that the recursive definition of w^n is as follows: $w^0 = \epsilon$ and $w^{n+1} = w \cdot w^n$.

Prove by induction on n. Base case: n = 0. Then $w^n = w^0 = \epsilon$ (recursive definition base case) and $n_a(w) = n_a(\epsilon) = 0$. So $n_a(w^n) = 0 = 0 \cdot n_a(w)$, as needed.

Inductive hypothesis: assume there exists a $k \geq 0$ such that $n_a(w^k) = k \cdot n_a(w)$.

Now prove for n=k+1 that $n_a(w^{k+1})=(k+1)\cdot n_a(w)$. The recursive definition (recursive case) tells us $w^{k+1}=w\cdot w^k$, so $n_a(w^{k+1})=n_a(w\cdot w^k)=n_a(w)+n_a(w^k)$. Inductive case tells us that $n_a(w^k)=k\cdot n_a(w)$ so $n_a(w)+n_a(w^k)=n_a(w)+k\cdot n_a(w)=(k+1)\cdot n_a(w)$ as needed. \square

2. Prove that for any language $L \subseteq \Sigma^*$ that $(L^r)^r = L$. Hint: recall languages are sets, so this question relates to set equality.

Proof. First, note that $|L^r| \leq |L|$. (In fact they are equal but that would require a proof that $w \neq y \Rightarrow w^r \neq y^r$ to show, whereas the \leq relationship follows immediately from the definition of $L^r = \{w^r : w \in L\}$.) This means further that $|(L^r)^r| \leq |L^r|$ by applying this again and thus that $|(L^r)^r| \leq |L|$.

Thus, we need only show that $\forall x \in L : x \in (L^r)^r$ to prove equality. Let $x \in L$ be an arbitrary element. By definition of L^r , $x \in L \Rightarrow x^r \in L^r$. If we make $x' = x^r$ and $L' = L^r$ it is by definition that $x' \in L' \Rightarrow (x')^r \in (L')^r$, which is the same as $(x^r)^r \in (L^r)^r$, as needed. (Note this last step with the prime is only to help show how the defintion applies again, it would not be necessary for the proof.)

3. Prove $(\forall i \in \mathbb{N} : w^i = \epsilon) \Leftrightarrow w = \epsilon$.

Proof. First prove $(\forall i \geq 0 : w^i = \epsilon) \Rightarrow w = \epsilon$. This is vacuously true: if $w^i = \epsilon$ and 1 is a valid choice for i then $w = w^1 = \epsilon$.

Now prove $w = \epsilon \Rightarrow \forall i \geq 0 : w^i = \epsilon$. Base cases: i = 0 then $w^0 = \epsilon$ by definition. i = 1 then $w = \epsilon$ by assumption. Inductive hypothesis: assume that there exists an n such that $w^n = \epsilon$. Inductive step: prove that $w^{n+1} = \epsilon$. By definition $w^{n+1} = ww^n = \epsilon w^n = \epsilon \epsilon = \epsilon$ as needed. \square

4. Let L, L' languages over Σ^* with $0 < |L| \le |L'| < n$ for some $n \in \mathbb{N}$. Prove formally using the definition of concatenation that $|L'| \le |L \cdot L'| \le |L| \cdot |L'|$. You may use the following lemma without proof: if w, x, y are words and $x \ne y$ then $wx \ne wy$.

Proof. First let's do the upper bound. By definition of concatenation, $L \cdot L' = \{x \cdot y : x \in L \land y \in L'\}$. This means that if $w \in L \cdot L'$ then w = xy with $x \in L$ and $y \in L'$. There are then |L| choices for x and |L'| choices for y, yielding a total of $|L| \cdot |L'|$ possible choices for w, giving the upper bound on the set.

Now let's do the lower bound. We know that both sets are finite and non-empty, so let $w \in L$ be an arbitrary word in L. By definition of concatenation, we have that $\{w\} \cdot L' \subseteq L \cdot L'$. For any two $x, y \in L$ with $x \neq y$, we have that $wx \neq wy$, and so $|\{w\} \cdot L'| = |\{wx : x \in L'\}| = |L'|$. Therefore, there are at least |L'| unique elements in $L \cdot L'$.

5. Prove that $\forall L \subseteq \{0\}^* \Rightarrow L = L^r$.

Proof. First we prove a lemma: if $w \in \{0\}^* \Rightarrow w = w^r$. If $w \in \{0\}$ then $w^r \in \{0\}$ as well. Let $w = 0^i$ and $w^r = 0^j$ be the general form of words in the unary alphabet. But $|w| = |w^r| \Rightarrow i = j$. Thus $0^i = 0^j \Rightarrow w = w^r$.

Now consider $L^r = \{w^r : w \in L\}.$

But $w = w^r$ so $\{w^r : w \in L\} = \{w : w \in L\} = L$.