Übung "Grundbegriffe der Informatik"

11.11.2011 Willkommen zur vierten Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Überblick

Invarianten

Algorithmer

Invarianten 2/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ▶ Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Ist am Ende mehr Zucker im Salzfass oder mehr Salz im Zuckerfass?

Invarianten 3/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Ist am Ende mehr Zucker im Salzfass oder mehr Salz im Zuckerfass?

Und was hat das mit Invarianten zu tun?

Invarianten 4/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Genau so viel Zucker im Salzfass wie Salz im Zuckerfass.

Invarianten 5/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Invariant: (Volumen-)Menge in Salzfass.

Invarianten 6/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Invariant: (Volumen-)Menge in Salzfass.

Invariant: Menge an Salz.

Invarianten 7/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Anfangs gilt: Genau so viel Zucker in Salzfass wie Salz in Zuckerfass.

Invarianten 8/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s

Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Invarianten 9/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s

Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Es gilt immer: $s_z + s_s = z_s + s_s$

Invarianten 10/59

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s

Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Es gilt immer: $s_z + s_s = z_s + s_s$

Also $s_z = z_s$

Invarianten 11/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Invarianten 12/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

$$(3,2,4) \rightarrow (2,1,5) \rightarrow (1,2,4) \rightarrow (2,1,3) \rightarrow (1,2,2) \rightarrow (2,1,1) \rightarrow (1,0,2) \rightarrow (0,1,1) \rightarrow (1,0,0)$$

Invarianten 13/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe?

Invarianten 14/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? Suche Invariante ...

Invarianten 15/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe?

$$(a,b,c) \to (a-1,b-1,c+1)$$

Invarianten 16/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe?

$$(a, b, c) \rightarrow (a - 1, b - 1, c + 1)$$

Alles ändert sich!

Invarianten 17/59

$$(a,b,c) \to (a-1,b-1,c+1)$$
 Wie siehts mit Differenzen aus? $(a-1)-(b-1)=a-b$ $(a-1)-(c+1)=a-c-2$ $(b-1)-(c+1)=b-c-2$

Invarianten 18/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? $(a,b,c) \rightarrow (a-1,b-1,c+1)$

▶ Differenzen modulo 2 bleiben gleich.

Invarianten 19/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? Ende: (0,1,0):

Für nicht vorhandene Kugelfarben gilt $|(x - y)| \mod 2 = 0$ Für vorhandene Kugelfarbe gilt $|(y - x)| \mod 2 = 1$

Invarianten 20/59

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? Also: Farbe mit Anzahl modulo 2 ungleich Anzahl andere Farben modulo 2 bleibt übrig.

Invarianten 21/59

n	div 3	mod 3
0	0	0
1	0	1
2	0	2
3	1	0
1 2 3 4 5 6 7 8	1	1
5	1	2
6	2	0
7	2	1
8	2 2	2
9	3	0

Invarianten 22/59

n	div 2	mod 2
0	0	0
1	0	1
2	1	0
3	1	1
4	2	0
5	2 2	1
6	3	0
7	3	1
1 2 3 4 5 6 7 8 9	4	0
9	4	1

Invarianten 23/59

 $\forall n, m \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n \mod k = m \mod k \Rightarrow |n - m|$ ist durch k teilbar.

 $\rightarrow n$ durch k teilbar bzw. k teilt $n \iff \exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$.

Vergleiche: $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ :$

$$k \cdot (n \operatorname{div} k) + (n \operatorname{mod} k) = n.$$

Invarianten 24/59

k heißt Teiler von n falls gilt: $\exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$. k ist gemeinsamer Teiler von a, b: k teilt a und k teilt b. Jede natürliche Zahl teilt 0.

Invarianten 25/59

k ist größter gemeinsamer Teiler von a, b(ggt(a, b)):

- ▶ k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt $k' \le k$ ODFR
- ▶ k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt k' teilt k.

Invarianten 26/59

Formal für k = ggt(a, b):

- ▶ $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 : ((\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow k' \leq k.$
- ▶ $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 :$ $((\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow \exists m_3 \in \mathbb{N}_0 :$ $m_3 k' = k.$

Invarianten 27/59

а	b	ggt(a,b)
5	5	5
4	4	4
3	3	3
2	2	2
1	1	1
0	0	?

Invarianten 28/59

```
\forall n \in \mathbb{N}_+ : ggt(0, n) = ggt(n, 0) = n.

ggt(0, 0) undefiniert nach Definition 1.

ggt(0, 0) = 0 nach Definition 2.
```

Invarianten 29/59

Überblick

Invarianten

Algorithmen

30/59

```
x \leftarrow n
y \leftarrow 0
z \leftarrow 0
e \leftarrow 1
v \leftarrow 1
for i \leftarrow 0 to \lceil \log_2 n \rceil do
       y \leftarrow y + e \cdot x \mod 2
       z \leftarrow z + v \cdot x \mod 2
       x \leftarrow x \operatorname{div} 2
        e \leftarrow 2 \cdot e
        v \leftarrow -v
od
```

Anfang:	n	0	0	1	1
	X	у	Z	е	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v

Wiederhole $1 + \lceil \log_2 n \rceil$ mal.

Algorithmen 32/59

Anfang:	n	0	0	1	1
	X	у	Z	e	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \bmod 2)$	2 <i>e</i>	-v
		, ,	, ,		

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 33/59

Anfang:	n	0	0	1	1
	X	у	Z	e	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 34/59

Anfang:	n	0	0	1	1
	X	У	Z	e	V
\rightarrow	x div 2	$y + e(x \bmod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
luis a Fr	E	0	0	1	1
Init. $n=5$:	5	U	U	1	1
1. Iter.	2	1	1	2	-1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 35/59

Anfang:	n	0	0	1	1
	X	У	Z	е	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1
2. Iter.	1	1	1	4	1
3. Iter.	0	5	2	8	-1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 36/59

Anfang:	n	0	0	1	1
	X	у	Z	e	V
\rightarrow	x div 2	$y + e(x \bmod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1
2. Iter.	1	1	1	4	1
3. Iter.	0	5	2	8	-1
4. Iter.	0	5	2	16	1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 37/59

n = 9:					
Anfangsbelegung:		0	0	1	1
Nach 1. Schleife	4	1	1	2	-1
Nach 2. Schleife	2	1	1	4	1
Nach 3. Schleife	1	1	1	8	-1
Nach 4. Schleife	0	9	0	16	1
Nach 5. Schleife	0	9	0	32	-1

Algorithmen 38/59

n = 16:					
Anfangsbelegung:	16	0	0	1	1
Nach 1. Schleife	8	0	0	2	-1
Nach 2. Schleife	4	0	0	4	1
Nach 3. Schleife	2	0	0	8	-1
Nach 4. Schleife	1	0	0	16	1
Nach 5. Schleife	0	16	1	32	-1
Nach 6. Schleife	0	16	1	64	1

Algorithmen 39/59

n = 21:					
Anfangsbelegung:	21	0	0	1	1
Nach 1. Schleife	10	1	1	2	-1
Nach 2. Schleife	5	1	1	4	1
Nach 3. Schleife	2	5	2	8	-1
Nach 4. Schleife	1	5	2	16	1
Nach 5. Schleife	0	21	3	32	-1
Nach 6. Schleife	0	21	3	64	1

Algorithmen 40/59

Was fällt auf?

- \blacktriangleright
- .

Was fällt auf?

- ▶ Am Ende gilt y = n.

Was fällt auf?

- Am Ende gilt y = n.
- x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.

Algorithmen 43/59

Was fällt auf?

- ▶ Am Ende gilt y = n.
- x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.
- ▶ Schleifeninvariante 1: $x \cdot e + y = n$.

	X	у	Z	е	f
Anfangsbelegung:	21	0	0	1	1
Nach 1. Schleife	10	1	1	2	-1
Nach 2. Schleife	5	1	1	4	1
Nach 3. Schleife	2	5	2	8	-1
Nach 4. Schleife	1	5	2	16	1
Nach 5. Schleife	0	21	3	32	-1
Nach 6. Schleife	0	21	3	64	1

Algorithmen 44/59

Was fällt auf?

Was fällt auf?

y mod 3= z mod 3

Was fällt auf?

- $y \mod 3 = z \mod 3$
- Schleifeninvariante 2: y z ist durch 3 teilbar.

Algorithmen 47/59

Skizze Beweis Schleifeninvariante 2: $y + e(x \mod 2) - (z + v(x \mod 2)) = y - z + (x \mod 2)(e - v)$

Algorithmen 48/59

Skizze Beweis Schleifeninvariante 2: $y + e(x \mod 2) - (z + v(x \mod 2)) = y - z + (x \mod 2)(e - v)$ Schön wäre, wenn e - v immer durch 3 teilbar ist.

Algorithmen 49/59

Schleifeninvariante:

- $\triangleright x \cdot e + y = n \land$
- e v ist durch 3 teilbar \wedge
- y z ist durch 3 teilbar.

$$\begin{array}{l} x \leftarrow n \\ y \leftarrow 0 \\ z \leftarrow 0 \\ e \leftarrow 1 \\ v \leftarrow 1 \\ \textbf{for} \quad i \leftarrow 0 \quad \textbf{to} \quad \lceil \log_2 n \rceil \quad \textbf{do} \\ y \leftarrow y + e \cdot x \quad \textbf{mod} \; 2 \\ z \leftarrow z + v \cdot x \quad \textbf{mod} \; 2 \\ x \leftarrow x \quad \textbf{div} \; 2 \\ e \leftarrow 2 \cdot e \\ v \leftarrow -v \\ \textbf{od} \end{array}$$

- ► Aussage *S_i*: Aussage der Schleifeninvariante gilt zu **Beginn** des *i*-ten Schleifendurchlaufs.
- ► Aussage *R_i*: Aussage der Schleifeninvariante gilt am **Ende** des *i*-ten Schleifendurchlaufs.

Algorithmen 52/59

- ► Aussage *S_i*: Aussage der Schleifeninvariante gilt zu **Beginn** des *i*-ten Schleifendurchlaufs.
- ► Aussage *R_i*: Aussage der Schleifeninvariante gilt am **Ende** des *i*-ten Schleifendurchlaufs.
- ▶ Wenn es i + 1-ten Schleifendurchlauf gibt, gilt $R_i = S_{i+1}$.

Algorithmen 53/59

Vorgehen:

- ightharpoonup Zeige S_0 .
- ▶ Zeige für zulässige $i: S_i \Rightarrow R_i$.

Algorithmen 54/59

Vorgehen:

- ightharpoonup Zeige S_0 .
- ▶ Zeige für zulässige $i: S_i \Rightarrow R_i$.

Dazu: Belegung der Variable V zu Anfang des i-ten Schleifendurchlaufs: V_i , am Ende des i-ten Schleifendurchlaufs: V_{i+1} .

Algorithmen 55/59

SI 1:
$$x_i \cdot e_i + y_i = n$$

- ► IA: i = 0: $x_0 \cdot e_0 + y_0 = n \cdot 1 + 0 = n$. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow x_i \cdot e_i + y_i = n.$
- ▶ IS: Es ist zu zeigen, dass dann auch $x_{i+1} \cdot e_{i+1} + y_{i+1} = n$: $x_{i+1} \cdot e_{i+1} + y_{i+1} =$ $(x_i \operatorname{div} 2) \cdot (e_i \cdot 2) + (y_i + e_i \cdot x_i \operatorname{mod} 2)$ $= y_i + e_i((x_i \operatorname{div} 2) \cdot 2 + x_i \operatorname{mod} 2) = y_i + e_i x_i \stackrel{IV}{=} n$

SI 2: $e_i - v_i$ ist durch 3 teilbar.

- ► IA: i = 0: $e_0 v_0 = 1 1 = 0$ ist durch 3 teilbar. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow e_i - v_i$ ist durch 3 teilbar.
- ▶ IS: Es ist zu zeigen, dass dann auch $e_{i+1} v_{i+1}$ durch 3 teilbar ist:

$$e_{i+1} - v_{i+1} = 2 \cdot e_i - (-v_i) = 2 \cdot e_i + v_i = 2(e_i - v_i) + 3v_i$$
. Nach IV ist $e_i - v_i$ durch 3 teilbar, und damit auch $2(e_i - v_i) + 3v_i$.

Algorithmen 57/59

SI 3: $y_i - z_i$ ist durch 3 teilbar.

- ► IA: i = 0: $y_0 z_0 = 0 0 = 0$ ist durch 3 teilbar. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow y_i - z_i$ ist durch 3 teilbar.
- ▶ IS: Es ist zu zeigen, dass dann auch $y_{i+1} z_{i+1}$ durch 3 teilbar ist:

$$y_{i+1} - z_{i+1} = y_i + e_i(x_i \text{ mod } 2) - (z_i + v_i(x_i \text{ mod } 2)) = (y_i - z_i) + (e_i - v_i)(x_i \text{ mod } 2)$$

Nach IV beziehungsweise SI 2 sind beide Summanden durch 3 teilbar, also auch $y_{i+1} - z_{i+1}$.

Das wars für heute...

Themen für das vierte Übungsblatt:

- ► Algorithmen
- Schleifeninvarianten

Schönes Wochenende!

Algorithmen 59/59