ตัวอย่างการคำนวณ \mathbf{w} สำหรับ logistic regression (2-class) ด้วย gradient descent

Data =	\mathbf{x}_1	\mathbf{x}_2	У
	0	1	1
	1	0	1
	-1	0	0
	1	-1	0

กำหนดให้
$$\mathbf{w} = egin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

กำหนด epoch=3

กำหนด $\alpha=5$

จากข้อมูล Data เราสามารถเขียน X,\mathbf{y} และ X_b ได้ดังต่อไปนี้

epoch = 1

คำนวณ **z**

$$\mathbf{z} = \left[\begin{array}{c} \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \end{array} \right]$$

คำนวณ $\hat{\mathbf{y}}$

$$\hat{\mathbf{y}} = \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

คำนวณ **w**

$$\mathbf{w} = \begin{bmatrix} & & \\ & & \end{bmatrix} - \begin{bmatrix} & & \\ & & \end{bmatrix}$$

epoch = 2

คำนวณ **z**

$$\mathbf{z} = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

คำนวณ $\hat{\mathbf{y}}$

$$\hat{\mathbf{y}} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

คำนวณ **w**

$$\mathbf{w} = \begin{bmatrix} & \\ & \end{bmatrix} - \begin{bmatrix} & \\ & \end{bmatrix}$$
$$= \begin{bmatrix} & \\ & \end{bmatrix}$$

epoch = 3

คำนวณ **z**

คำนวณ $\hat{\mathbf{y}}$

$$\hat{\mathbf{y}} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

คำนวณ w

$$\mathbf{w} = \begin{bmatrix} & & \\ & & \end{bmatrix} - \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} - \begin{bmatrix} & & \\ & & \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} & & \\ & & \end{bmatrix}$$

ดังนั้น เราจะได้ $w_0=\dots,w_1=\dots$ และ $w_2=\dots$ ซึ่งสามารถเขียนเป็น model ของ logistic regression สำหรับข้อมูลชุดนี้ได้ดังนี้

 $z = \dots z$

 $\hat{y} = \dots$