Amendments to the Claims:

- 1. (Cancelled)
- 2. (Currently amended) The process according to claim 1, A process for production of a product compound having a structure according to Formulae IA and/or IB:

B
$$C = R^1$$
 $C = R^1$
 $C = R^1$
 $C = R^2$
 $C = R^3$
 $C = R^3$
 $C = R^3$
 $C = R^3$
 $C = R^3$

wherein

n is 0 or 1;

R¹ is hydrogen or hydroxy;

R² is hydrogen;

or, when n is 0, R¹ and R² taken together form a second bond between the carbon atoms bearing R¹ and R², provided that when n is 1, R¹ and R² are each hydrogen;

R³ is -COOH or -COOR⁴;

R⁴ is an alkyl moiety;

A, B, and D are the substituents of their rings, each of which may be different or the same, and are selected from the group consisting of hydrogen, halogens, alkyl, hydroxy, and alkoxy,

said process comprising:

incubating a starting compound having a structure according to Formulae IIA and/or IIB:

$$\begin{array}{c|c}
B \\
C \\
R^{1} \\
\hline
(O)_{n} \\
R^{2} \\
\hline
(CH_{2})_{3} \\
\hline
(CH_{2})_{3} \\
\hline
(CH_{3}) \\
(CH_{3}) \\
\hline
(CH_{3}) \\
(C$$

$$\begin{array}{c|c}
R^1 \\
\hline
(O)_n \\
R^2 \\
\hline
(CH_2)_3 - CH - CH_3 \\
\hline
(CH_3)^*
\end{array}$$
(IIB)

wherein R^{3*} is -CH₃ and R^{1} , R^{2} , A, B, and D are defined above, in the presence of a microorganism under conditions effective to produce the product compound, wherein the microorganism is *Stemphylium consortiale*.

3.-32. (Cancelled)