1



## **Coordinate Geometry Exercises**



## G V V Sharma\*

## **CONTENTS**

1 Conics 1

**2 QR Decomposition** 12

**3 Singular Value Decomposition** 16

Abstract—This book provides some exercises related to coordinate geometry. The content and exercises are based on NCERT textbooks from Class 6-12.

## 1 Conics

1.1. Find the area of the region enclosed between the two circles:  $\mathbf{x}^T \mathbf{x} = 4$  and  $\left\| \mathbf{x} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\| = 2$ . **Solution:** General equation of circle is

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.1.1}$$

Taking equation of the first circle to be,

$$\|\mathbf{x}\|^2 + 2\mathbf{u}_1^T\mathbf{x} + f_1 = 0$$
 (1.1.2)

$$\mathbf{x}^T \mathbf{x} - 4 = 0 \tag{1.1.3}$$

$$\mathbf{u_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.1.4}$$

$$f_1 = -4 (1.1.5)$$

$$\mathbf{O_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.1.6}$$

Taking equation of the second circle to be,

$$\left\|\mathbf{x} - \begin{pmatrix} 2\\0 \end{pmatrix}\right\|^2 = 2^2 \tag{1.1.7}$$

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u_2}^T \mathbf{x} = 0 \tag{1.1.8}$$

$$\mathbf{u_2} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.1.9}$$

$$f_2 = 0 (1.1.10)$$

$$\mathbf{O_2} = \begin{pmatrix} 2\\0 \end{pmatrix} \tag{1.1.11}$$

Now, Subtracting equation (1.1.8) from (1.1.3) We get,

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{u_2}^T \mathbf{x} + f_1 - \mathbf{x}^T \mathbf{x} = 0$$
 (1.1.12)

$$2\mathbf{u}^T\mathbf{x} = -4 \tag{1.1.13}$$

$$\begin{pmatrix} -4 & 0 \end{pmatrix} \mathbf{x} = -4 \tag{1.1.14}$$

<sup>\*</sup>The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Which can be written as:-

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 1 \tag{1.1.15}$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.1.16}$$

$$\mathbf{x} = \mathbf{q} + \lambda \mathbf{m} \tag{1.1.17}$$

$$\mathbf{q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.1.18}$$

$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.1.19}$$

Substituting (1.1.17) in (1.1.2)

$$\|\mathbf{x}\|^{2} + 2\mathbf{u}_{1}^{T}\mathbf{x} + f_{1} = 0$$

$$(1.1.20)$$

$$\|\mathbf{q} + \lambda\mathbf{m}\|^{2} + f_{1} = 0$$

$$(1.1.21)$$

$$(\mathbf{q} + \lambda\mathbf{m})^{T}(\mathbf{q} + \lambda\mathbf{m}) + f_{1} = 0$$

$$(1.1.22)$$

$$\mathbf{q}^{T}(\mathbf{q} + \lambda\mathbf{m}) + \lambda\mathbf{m}^{T}(\mathbf{q} + \lambda\mathbf{m}) + f_{1} = 0$$

$$\|\mathbf{q}\|^2 + \lambda \mathbf{q}^T \mathbf{m} + \lambda \mathbf{m}^T \mathbf{q} + \lambda^2 \|\mathbf{m}\|^2 + f_1 = 0$$
(1.1.24)

$$\|\mathbf{q}\|^2 + 2\lambda \mathbf{q}^T \mathbf{m} + \lambda^2 \|\mathbf{m}\|^2 + f_1 = 0$$
(1.1.25)

$$\lambda(\lambda \|\mathbf{m}\|^2 + 2\mathbf{q}^T\mathbf{m}) = -f_1 - \|\mathbf{q}\|^2$$
(1.1.26)

$$\lambda^2 ||\mathbf{m}||^2 = -f_1 - ||\mathbf{q}||^2$$
(1.1.27)

$$\lambda^2 = \frac{-f_1 - \|\mathbf{q}\|^2}{\|\mathbf{m}\|^2}$$
(1.1.28)

$$\lambda^2 = 3$$

$$\lambda = +\sqrt{3}, -\sqrt{3}$$
 (1.1.30)

Substituting the value of  $\lambda$  in(1.1.17)

$$\mathbf{x} = \mathbf{q} + \lambda \mathbf{m} \tag{1.1.31}$$

$$\mathbf{A} = \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{1.1.32}$$

$$\mathbf{B} = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{1.1.33}$$

Now finding the direction vector  $\mathbf{m}_{O_1A}$ ,  $\mathbf{m}_{O_1B}$ ,  $\mathbf{m}_{O_2A}$  and  $\mathbf{m}_{O_2B}$ .

$$\mathbf{m}_{O_1A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} -1 \\ -\sqrt{3} \end{pmatrix} \tag{1.1.34}$$

$$\mathbf{m}_{O_1B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} = \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix} \tag{1.1.35}$$

$$\mathbf{m}_{O_2A} = \begin{pmatrix} 2\\0 \end{pmatrix} - \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} = \begin{pmatrix} 1\\-\sqrt{3} \end{pmatrix} \tag{1.1.36}$$

$$\mathbf{m}_{O_2B} = \begin{pmatrix} 2\\0 \end{pmatrix} - \begin{pmatrix} 1\\-\sqrt{3} \end{pmatrix} = \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{1.1.37}$$

Now finding the angle  $\angle O_1AB$ .

$$\mathbf{m}_{O_{1}A}^{T}\mathbf{m}_{O_{1}B} = \|\mathbf{m}_{O_{1}A}\| \|\mathbf{m}_{O_{1}B}\| \cos \theta_{1}$$
 (1.1.38)

$$\frac{\mathbf{m}_{O_{1}A}^{T}\mathbf{m}_{O_{1}B}}{\left\|\mathbf{m}_{O_{1}A}\right\|\left\|\mathbf{m}_{O_{1}B}\right\|} = \cos\theta_{1} \quad (1.1.39)$$

$$\frac{-2}{4} = \cos \theta_1 \quad (1.1.40)$$

$$\frac{-1}{2} = \cos \theta_1 \quad (1.1.41)$$

$$\theta_1 = 120^{\circ}$$
 (1.1.42)

Now finding the angle  $\angle O_2AB$ .

$$\mathbf{m}_{O_{2}A}^{T}\mathbf{m}_{O_{2}B} = \|\mathbf{m}_{O_{2}A}\| \|\mathbf{m}_{O_{2}B}\| \cos \theta_{2}$$
 (1.1.43)

$$\frac{\mathbf{m}_{O_{2}A}^{T}\mathbf{m}_{O_{2}B}}{\left\|\mathbf{m}_{O_{2}A}\right\|\left\|\mathbf{m}_{O_{2}B}\right\|} = \cos\theta_{2} \quad (1.1.44)$$

$$\frac{-2}{4} = \cos \theta_2 \quad (1.1.45)$$

$$\frac{-1}{2} = \cos \theta_2 \quad (1.1.46)$$

$$\theta_2 = 120^{\circ}$$
 (1.1.47)

Finding area of  $O_1AB$  and  $O_2AB$ .

$$A_{O_1AB} = \frac{\theta_1}{360}r^2 - \frac{1}{2}2\sqrt{3} \tag{1.1.48}$$

$$=\frac{120}{360}4\pi - \frac{1}{2}2\sqrt{3} \tag{1.1.49}$$

$$A_{O_2AB} = \frac{\pi\theta_2}{360}r^2 - \frac{1}{2}2\sqrt{3}$$
 (1.1.50)

$$=\frac{120}{360}4\pi - \frac{1}{2}2\sqrt{3} \tag{1.1.51}$$

Area of O<sub>1</sub>AO<sub>2</sub>B

$$A_{O_1 A O_2 B} = \frac{120}{360} 4\pi - \frac{1}{2} 2\sqrt{3} + \frac{120}{360} 4\pi - \frac{1}{2} 2\sqrt{3}$$

$$= \frac{8\pi}{3} - 2\sqrt{3}$$
(1.1.52)



Fig. 1.1: Figure depicting intersection points of circle

1.2. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point  $\binom{2}{3}$ .

## **Solution:**

Equation of the circle with radius r and centre(h,k) is given by,

$$x^T x + 2u^T x + f = 0 (1.2.1)$$

where,

$$f = \mathbf{u}^T \mathbf{u} - r^2 \tag{1.2.2}$$

The radius and centre are respectively given by,

$$r = 5 \tag{1.2.3}$$

$$\mathbf{c} = -u = k\mathbf{e} \tag{1.2.4}$$

Where,

$$\mathbf{e} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.2.5}$$

$$\mathbf{x_1} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{1.2.6}$$

From the given data, we modify equation 1.2.1

as,

$$\mathbf{x_1}^T \mathbf{x_1} + 2(-k \quad 0)\begin{pmatrix} -k \\ 0 \end{pmatrix} + f = 0$$
 (1.2.7)

$$\|\mathbf{x_1}\|^2 + 2(k^2) + f = 0$$
 (1.2.8)

$$2k^2 + f = -\|\mathbf{x_1}\|^2 \quad (1.2.9)$$

Substituting  $\mathbf{u}$  in equation 1.2.2, we get,

$$f = \begin{pmatrix} -k & 0 \end{pmatrix} \begin{pmatrix} -k \\ 0 \end{pmatrix} - r^2 \tag{1.2.10}$$

$$f = (k^2) - r^2 (1.2.11)$$

$$k^2 - f = r^2 (1.2.12)$$

From equations 1.2.9 and 1.2.12,

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} -\|\mathbf{x_1}\|^2 \\ r^2 \end{pmatrix} \tag{1.2.13}$$

Here  $\|x_1\|$  is given by,

$$\|\mathbf{x_1}\| = \sqrt{2^2 + 3^2} \tag{1.2.14}$$

$$\|\mathbf{x_1}\| = \sqrt{13} \tag{1.2.15}$$

Substituting equation 1.2.6,1.2.3 in equation 1.2.13 we get,

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} -13 \\ 25 \end{pmatrix}$$
 (1.2.16)

The augumented matrix of 1.2.16 is given by,

$$\begin{pmatrix} 2 & 1 & | & -13 \\ 1 & -1 & | & 25 \end{pmatrix} \tag{1.2.17}$$

By using row reduction technique, we get,

$$\begin{pmatrix} 2 & 1 & | & -13 \\ 1 & -1 & | & 25 \end{pmatrix} \longrightarrow \begin{pmatrix} R_2 \leftrightarrow R_1 \\ 2 & 1 & | & -13 \end{pmatrix}$$

$$(1.2.18)$$

$$\begin{pmatrix} 1 & -1 & 25 \\ 2 & 1 & -13 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 25 \\ 0 & 3 & -63 \end{pmatrix}$$
(1.2.19)

$$\begin{pmatrix} 1 & -1 & 25 \\ 0 & 3 & -63 \end{pmatrix} \xrightarrow{R_2 = \frac{R_2}{3}} \begin{pmatrix} 1 & -1 & 25 \\ 0 & 1 & -21 \end{pmatrix}$$
(1.2.20)

$$\begin{pmatrix} 1 & -1 & | & 25 \\ 0 & 1 & | & -21 \end{pmatrix} \xrightarrow{R_1 = R_1 + R_2} \begin{pmatrix} 1 & 0 & | & 4 \\ 0 & 1 & | & -21 \end{pmatrix}$$
(1.2.21)

Equation 1.2.16 can we rewritten as,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k^2 \\ f \end{pmatrix} = \begin{pmatrix} 4 \\ -21 \end{pmatrix} \tag{1.2.22}$$

Expanding the above equation 1.2.22 we get,

$$k^2 = 4 (1.2.23)$$

$$k = \pm 2$$
 (1.2.24)

$$f = -21 \tag{1.2.25}$$

To get the centre substitute equation 1.2.24 in equation 1.2.4 To verify the above results we plot the circle with centre  $\mathbf{c}$  as  $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ ,



Fig. 1: Circle of radius 5 centre lies on x-axis and passing through the point(2,3)

qFrom the above figure 1 it is clear that circle with centre  $\mathbf{c} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$  passes through the point  $\mathbf{x_1}$  Desired equation of circle is given by,

$$c = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.2.26}$$

$$f = -21 (1.2.27)$$

- 1.3. Find the equation of the circle passing through  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$  and making intercepts a and b on the coordinate axes.
- 1.4. Find the equation of a circle with centre  $\binom{2}{2}$  and passes through the point  $\binom{4}{5}$ .

**Solution:** he general equation of a circle is

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.4.1}$$

If 
$$r$$
 is radius,  $f = \mathbf{u}^T \mathbf{u} - r^2$  (1.4.2)

center 
$$\mathbf{c} = -\mathbf{u}$$
 (1.4.3)

Given centre is  $\binom{2}{2}$ 

$$\implies \mathbf{c} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \tag{1.4.4}$$

$$\implies \mathbf{u} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \tag{1.4.5}$$

Equation (1.4.1) becomes

$$\mathbf{x}^T \mathbf{x} + \begin{pmatrix} -4 & -4 \end{pmatrix} \mathbf{x} + f = 0 \tag{1.4.6}$$

This passes through point  $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ 

Substituting  $\mathbf{x} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$  in (1.4.6)

$$(4 5)$$
 $\binom{4}{5}$  +  $(-4 -4)$  $\binom{4}{5}$  +  $f = 0$  (1.4.7)

$$\implies f = -5 \quad (1.4.8)$$

Also, radius can be determined as follows

$$f = \mathbf{u}^T \mathbf{u} - r^2 \tag{1.4.9}$$

$$\implies -5 = \begin{pmatrix} -2 & -2 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} - r^2 \qquad (1.4.10)$$

$$\implies -5 = 8 - r^2$$
 (1.4.11)

$$\implies r = \sqrt{13}$$
 (1.4.12)

The equation of required circle is

$$\mathbf{x}^T \mathbf{x} + (-4 \quad -4) \mathbf{x} - 5 = 0$$
 (1.4.13)

See Fig. 1

- 1.5. Find the locus of all the unit vectors in the xy-plane.
- 1.6. Find the points on the curve  $\mathbf{x}^T \mathbf{x} 2 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} 3 = 0$  at which the tangents are parallel to the x-axis.
- 1.7. Find the area of the region in the first quadrant enclosed by x-axis, line  $(1 \sqrt{3})x = 0$  and the circle  $x^Tx = 4$ .

**Solution:** The equation of a circle can be expressed as,

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{c}^T \mathbf{x} + f = 0 \tag{1.7.1}$$



Fig. 1: plot showing the circle



Fig. 4: Region enclosed by x-axis, line and circle

where  $\mathbf{c}$  is the center.

Comparing equation (1.7.1) with the circle equation given,

$$\mathbf{x}^T \mathbf{x} = 4 \tag{1.7.2}$$

$$\implies \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad f = -4 \tag{1.7.3}$$

$$r = \sqrt{\mathbf{c}^T \mathbf{c} - f} = \sqrt{4} \tag{1.7.4}$$

$$r = \sqrt{\mathbf{c}^T \mathbf{c} - f} = \sqrt{4} \tag{1.7.4}$$

$$\implies \boxed{r=2} \tag{1.7.5}$$

From equation (1.7.5), the point at which circle touches x-axis is  $\binom{2}{0}$ .

The direction vector of x-axis is  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ .

The direction vector of the given line  $(1 - \sqrt{3})\mathbf{x} = 0 \text{ is } \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}.$ 

The angle that the line makes with the x-axis is given by,

$$\cos \theta = \frac{\left(\sqrt{3} \quad 1\right) \begin{pmatrix} 1\\0 \end{pmatrix}}{\left\| \begin{pmatrix} \sqrt{3} \quad 1 \end{pmatrix} \right\| \left\| \begin{pmatrix} 1 \quad 0 \end{pmatrix} \right\|} = \frac{\sqrt{3}}{2} \quad (1.7.6)$$

$$\implies \boxed{\theta = 30^{\circ}} \quad (1.7.7)$$

Using equation (1.7.5) and (1.7.7), the area of the sector is obtained as,

$$\implies \left[ \frac{\theta}{360^{\circ}} \pi r^2 = \frac{30^{\circ}}{360^{\circ}} \pi (2)^2 = \frac{\pi}{3} \right]$$
 (1.7.8)

To find points **A** and **B**,

The parametric form of x-axis is,

$$\mathbf{B} = \mathbf{q} + \lambda \mathbf{m} \tag{1.7.9}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.7.10}$$

From the intersection of circle and line, the value of  $\lambda$  can be found by,

$$\lambda^2 = \frac{-f_1 - ||\mathbf{q}||^2}{||\mathbf{m}||^2}$$
 (1.7.11)

$$=\frac{4-0}{1}=4\tag{1.7.12}$$

$$\implies \lambda = \pm 2 \tag{1.7.13}$$

Sub equation (1.7.13) in (1.7.10),

$$\mathbf{B} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \tag{1.7.14}$$

As given in question as first quadrant,

$$\Longrightarrow \boxed{\mathbf{B} = \begin{pmatrix} 2\\0 \end{pmatrix}} \tag{1.7.15}$$

Similarly, to find point A, The parametric form

of line is,

$$\mathbf{A} = \mathbf{q} + \lambda \mathbf{m} \tag{1.7.16}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \tag{1.7.17}$$

$$\lambda^2 = \frac{-f_1 - ||\mathbf{q}||^2}{||\mathbf{m}||^2}$$
 (1.7.18)

$$=\frac{4-0}{4}=1\tag{1.7.19}$$

$$\implies \lambda = \pm 1$$
 (1.7.20)

$$\mathbf{A} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} -\sqrt{3} \\ -1 \end{pmatrix} \tag{1.7.21}$$

$$\implies \boxed{\mathbf{A} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}} \tag{1.7.22}$$

- 1.8. Find the area lying in the first quadrant and bounded by the circle  $\mathbf{x}^T\mathbf{x} = 4$  and the lines x = 0 and x = 2.
- 1.9. Find the area of the circle  $4\mathbf{x}^T\mathbf{x} = 9$ .
- 1.10. Find the area bounded by curves  $\|\mathbf{x} \begin{pmatrix} 1 \\ 0 \end{pmatrix}\| = 1$  and  $\|\mathbf{x}\| = 1$
- 1.11. Find the smaller area enclosed by the circle  $\mathbf{x}^T \mathbf{x} = 4$  and the line  $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{x} = 2$ .
- 1.12. Find the slope of the tangent to the curve  $y = \frac{x-1}{x-2}$ ,  $x \ne 2$  at x = 10.

## **Solution:**

$$y = \frac{x - 1}{x - 2} \tag{1.12.1}$$

Equation (1.12.1) can be expressed as

$$y(x-2) = x - 1 \tag{1.12.2}$$

$$yx - 2y - x + 1 = 0 ag{1.12.3}$$

From above we can say,

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{1.12.4}$$

$$\mathbf{u} = \begin{pmatrix} -\frac{1}{2} & -1 \end{pmatrix} \tag{1.12.5}$$

$$f = 1$$
 (1.12.6)

Now,

$$|V| = \begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{vmatrix} < 0,$$
 (1.12.7)

(1.12.1) is the equation of a hyperbola. To verify that this we will find the characteristic

equation of V.

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda & \frac{1}{2} \\ \frac{1}{2} & \lambda \end{vmatrix} = 0 \tag{1.12.8}$$

$$\implies \lambda^2 - 2\lambda + \frac{3}{4} = 0 \tag{1.12.9}$$

The eigenvalues are the roots of (1.12.9) given by

$$\lambda_1 = \frac{1}{2}, \lambda_2 = -\frac{1}{2} \tag{1.12.10}$$

The eigenvector  $\mathbf{p}$  is defined as

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{1.12.11}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \,\mathbf{p} = 0 \tag{1.12.12}$$

where  $\lambda$  is the eigenvalue. For  $\lambda_1 = \frac{1}{2}$ ,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} - R_{1}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$(1.12.13)$$

$$\implies \mathbf{p}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$(1.12.14)$$

Now, $\lambda$  is the eigenvalue. For  $\lambda_2 = -\frac{1}{2}$ ,

$$(\lambda_{2}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} + R_{1}} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$(1.12.15)$$

$$\implies \mathbf{p}_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(1.12.16)$$

From Equations,

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad :: \mathbf{P}^{-1} = \mathbf{P}^{T}$$
(1.12.17)

or, 
$$\mathbf{D} = \mathbf{P}^T \mathbf{V} \mathbf{P}$$
 (1.12.18)

We can say that

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad (1.12.19)$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \tag{1.12.20}$$

 $\mathbf{v} \cdot \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f > 0$ , there isn't a need to swap

axes. In hyperbola,

$$\mathbf{c} = -\mathbf{V}^{-}1\mathbf{u} \tag{1.12.21}$$

$$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} \\ \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} \end{cases}$$
 (1.12.22)

From above equations we can say that,

$$\mathbf{c} = \begin{pmatrix} -2\\ -1 \end{pmatrix} \tag{1.12.23}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{2}$$
 (1.12.24)

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \sqrt{2}$$
 (1.12.25)

with the standard hyperbola equation becoming

$$\frac{x^2}{2} - \frac{y^2}{2} = 1, (1.12.26)$$

Let us assume slope to be l,now finding the direction vector and normal vector of the tangent with slope l.

$$\mathbf{m} = \begin{pmatrix} 1 \\ l \end{pmatrix} \tag{1.12.27}$$

$$\mathbf{n} = \begin{pmatrix} l \\ -1 \end{pmatrix} \tag{1.12.28}$$

Now considering the equations to find point of contact

$$\mathbf{q} = \mathbf{V}^{-1} \left( \kappa \mathbf{n} - \mathbf{u} \right) \tag{1.12.29}$$

$$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (1.12.30)

By using (1.12.30)

$$\kappa = \sqrt{-\frac{1}{4I}} \tag{1.12.31}$$

Now substituting this  $\kappa$  in (1.12.29)

$$\mathbf{q} = \begin{pmatrix} -2\sqrt{-\frac{1}{4l}} + 2\\ 2\sqrt{\frac{-l}{4}} + 1 \end{pmatrix}$$
 (1.12.32)

We know that x=10.

$$-2\sqrt{-\frac{1}{4l}} + 2 = 10\tag{1.12.33}$$

$$-2\sqrt{-\frac{1}{4l}} = 8\tag{1.12.34}$$

$$\sqrt{-\frac{1}{4l}} = 4 \tag{1.12.35}$$

$$-\frac{1}{4l} = 16\tag{1.12.36}$$

$$l = -\frac{1}{64} \tag{1.12.37}$$

The slope of the tangent to the curve  $y = \frac{x-1}{x-2}$ ,  $x \neq 2$  at x = 10 is  $\frac{1}{64}$ . So, from the above we can say that  $\kappa = 4, -4$  and from equation (1.12.27) and (1.12.28) direction and normal vectors will come out to be

$$\mathbf{m} = \begin{pmatrix} 1 \\ -\frac{1}{64} \end{pmatrix} \tag{1.12.38}$$

$$\mathbf{n} = \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} \tag{1.12.39}$$

Now using equation (1.12.29)

$$\mathbf{q}_1 = \mathbf{V}^{-1} \left( \kappa_1 \mathbf{n} - \mathbf{u} \right) \qquad (1.12.40)$$

$$\mathbf{q}_1 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \left( -4 \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix} \right) \tag{1.12.41}$$

$$\mathbf{q}_1 = \begin{pmatrix} 10\\ \frac{9}{8} \end{pmatrix} \qquad (1.12.42)$$

$$\mathbf{q}_2 = \mathbf{V}^{-1} \left( \kappa_2 \mathbf{n} - \mathbf{u} \right) \qquad (1.12.43)$$

$$\mathbf{q}_2 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \left( 4 \begin{pmatrix} -\frac{1}{64} \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix} \right) \tag{1.12.44}$$

$$\mathbf{q}_2 = \begin{pmatrix} -6\\ \frac{7}{8} \end{pmatrix} \qquad (1.12.45)$$

(1.12.31) 1.13. Find a point on the curve  $y = (x-2)^2$  at which the tangent is parallel to the chord joining the points  $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ .

**Solution:**  $y = (x - 2)^2$  can be written as,

$$x^2 - 4x - y + 4 = 0 (1.13.1)$$



Fig. 5: Tangent 2 shows the tangent

From (1.13.1),

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \mathbf{u} = \begin{pmatrix} -2 \\ -\frac{1}{2} \end{pmatrix}; f = 4 \qquad (1.13.2)$$
$$|V| = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 \qquad (1.13.3)$$

(1.13.3) implies that the curve is a parabola. Now, finding the eigen values corresponding to the  $\mathbf{V}$ ,

$$\begin{vmatrix} V - \lambda I | = 0 \\ 1 - \lambda & 0 \\ 0 & -\lambda \end{vmatrix} = 0$$

$$\implies \lambda = 0, 1 \qquad (1.13.4)$$

Calculating the eigenvectors corresponding to  $\lambda = 0, 1$  respectively,

$$\mathbf{V}\mathbf{x} = \lambda \mathbf{x}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} = 0; \implies \mathbf{p}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad (1.13.5)$$

$$\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} = 0; \implies \mathbf{p}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad (1.13.6)$$

By Eigen decomposition on V,

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{T}$$
where,  $\mathbf{P} = \begin{pmatrix} \mathbf{p}_{1} & \mathbf{p}_{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  (1.13.7)
$$\mathbf{D} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.13.8)

To find the vertex of the parabola,

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p}_1^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_1 - \mathbf{u} \end{pmatrix}$$
 (1.13.9)

where, 
$$\eta = \mathbf{u}^T \mathbf{p}_1 = -\frac{1}{2}$$
 (1.13.10)

Substituting values from (1.13.2), (1.13.5) and (1.13.10) in (1.13.9),

$$\begin{pmatrix} -2 & -1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix}$$
 (1.13.11)

Removing last row and representing (1.13.11) as augmented matrix and then converting the matrix to echelon form,

$$\begin{pmatrix}
-2 & -1 & -4 \\
1 & 0 & 2
\end{pmatrix} \stackrel{R_1 \leftarrow \frac{R_1}{-2}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & 2 \\
1 & 0 & 2
\end{pmatrix} \stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \\
\begin{pmatrix}
1 & \frac{1}{2} & 2 \\
0 & -\frac{1}{2} & 0
\end{pmatrix} \stackrel{R_2 \leftarrow (-2R_2)}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & 2 \\
0 & 1 & 0
\end{pmatrix} \stackrel{R_1 \leftarrow R_1 - \frac{R_2}{2}}{\longleftrightarrow} \\
\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 0
\end{pmatrix} (1.13.12)$$

From (1.13.12) it can be observed that,

$$\mathbf{c} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{1.13.13}$$

Direction vector of the chord joining A(4,4) and B(2,0) can be calculated as,

$$\mathbf{m} = \mathbf{A} - \mathbf{B} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\implies \mathbf{m} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{1.13.14}$$

We know that,

$$\mathbf{m}^T \mathbf{n} = 0; \implies \mathbf{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 (1.13.15)

To find the point of contact  $\mathbf{q}$ , which is intersection point for normal of the chord AB and also tangent of the curve,

$$\begin{pmatrix} \mathbf{u}^T + \kappa \mathbf{n}^T \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
 (1.13.16)

where, 
$$\kappa = \frac{\mathbf{p_1}^T \mathbf{u}}{\mathbf{p_1}^T \mathbf{n}} = \frac{1}{2}$$
 (1.13.17)

Substituting the values from (1.13.2),(1.13.15)

and (1.13.17) in (1.13.16),

$$\begin{pmatrix} -1 & 1\\ 1 & 0\\ 0 & 0 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4\\ 3\\ 0 \end{pmatrix}$$
 (1.13.18)

Removing last row and representing (1.13.18) as augmented matrix and then converting the matrix to echelon form,

$$\begin{pmatrix} -1 & -1 & -4 \\ 1 & 0 & 3 \end{pmatrix} \stackrel{R_1 \leftarrow (-R_1)}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 4 \\ 1 & 0 & 3 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow}$$

$$\begin{pmatrix} 1 & 1 & 4 \\ 0 & -1 & -1 \end{pmatrix} \stackrel{R_2 \leftarrow (-R_2)}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow}$$

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \end{pmatrix} \qquad (1.13.19)$$

From (1.13.19), it can be observed,

$$\mathbf{q} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1.13.20}$$

which is the required point of contact



Fig. 6: Parabola with AB as chord, a tangent parallel to the chord

1.14. Find the equation of all lines having slope -1 that are tangents to the curve  $\frac{1}{x-1}$ ,  $x \ne 1$  **Solution:** The given curve

$$y = \frac{1}{x - 1} \tag{1.14.1}$$

can be expressed as

$$xy - y - 1 = 0 (1.14.2)$$

Hence, we have

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{u} = \frac{1}{2} \begin{pmatrix} 0 \\ -1 \end{pmatrix}, f = -1 \quad (1.14.3)$$

Since |V| < 0, the equation (1.14.2) represents hyperbola. To find the values of  $\lambda_1$  and  $\lambda_2$ , consider the characteristic equation,

$$\begin{vmatrix} \lambda \mathbf{I} - \mathbf{V} | = 0 & (1.14.4) \\ \Rightarrow \begin{vmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} - \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} | = 0 & (1.14.5) \\ \Rightarrow \begin{vmatrix} \lambda & \frac{-1}{2} \\ \frac{-1}{2} & \lambda \end{vmatrix} = 0 & (1.14.6) \\ \Rightarrow \lambda_1 = \frac{1}{2}, \lambda_2 = \frac{-1}{2}$$

In addition, given the slope -1, the direction and normal vectors are given by

$$\mathbf{m} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (1.14.8)  
$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (1.14.9)

The parameters of hyperbola are as follows:

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u}$$

$$= -\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{2} \\ \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \sqrt{2} \end{cases}$$

$$(1.14.12)$$

$$(1.14.13)$$

which represents the standard hyperbola equation,

$$\frac{x^2}{2} - \frac{x^2}{2} = 1\tag{1.14.14}$$

The points of contact are given by

$$K = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}} = \pm \frac{1}{2}$$
 (1.14.15)

$$\mathbf{q} = \mathbf{V}^{-1}(k\mathbf{n} - \mathbf{u}) \tag{1.14.16}$$

$$\mathbf{q_1} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{-1}{2} \end{pmatrix} \end{bmatrix} \tag{1.14.17}$$

$$= \begin{pmatrix} 2\\1 \end{pmatrix} \tag{1.14.18}$$

$$\mathbf{q_2} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \begin{bmatrix} -1 \\ \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{-1}{2} \end{pmatrix} \end{bmatrix}$$
 (1.14.19)

$$= \begin{pmatrix} 0 \\ -1 \end{pmatrix} \tag{1.14.20}$$

... The tangents are given by

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{pmatrix} = 0 \tag{1.14.21}$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{pmatrix} = 0 \tag{1.14.22}$$

The desired equations of all lines having slope -1 that are tangents to the curve  $\frac{1}{x-1}$ ,  $x \ne 1$  are given by

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 3 \tag{1.14.23}$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = -1 \tag{1.14.24}$$

The above results are verified in the following figure.



Fig. 7: The standard and actual hyperbola.

1.15. Find the equation of all lines having slope -2 which are tangents to the curve  $\frac{1}{x-3}$ ,  $x \ne 3$ .

Solution: Given the curve,

$$y = \frac{1}{x - 3} \tag{1.15.1}$$

$$\implies xy - 3y - 1 = 0 \tag{1.15.2}$$

From (1.15.2) we get,

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{u} = \frac{-3}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f = -1 \quad (1.15.3)$$

Now,

(1.15.1) is equation of hyperbola. Now,

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda & \frac{-1}{2} \\ \frac{-1}{2} & \lambda \end{vmatrix} = 0 \tag{1.15.5}$$

$$\implies \lambda^2 - \frac{1}{4} = 0 \tag{1.15.6}$$

Thus the eigen values are,

$$\lambda_1 = \frac{1}{2}, \lambda_2 = \frac{-1}{2} \tag{1.15.7}$$

The eigen vector  $\mathbf{p}$  is given by,

$$(\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{1.15.8}$$

For  $\lambda_1 = \frac{1}{2}$ ,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} + R_{1}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

$$(1.15.9)$$

$$\implies \mathbf{p}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(1.15.10)$$

Similarly for  $\lambda_2$ ,

$$(\lambda_{2}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{-1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{-1}{2} \end{pmatrix} \stackrel{R_{2} \leftarrow R_{-}R_{1}}{\stackrel{R_{1} \leftarrow 2R_{1}}{\stackrel{R_{1} \leftarrow 2R_{1}}{\stackrel{R_{1} \leftarrow 2R_{1}}{\stackrel{R_{2} \leftarrow R_{-}R_{1}}{\stackrel{R_{2} \leftarrow R_{1}}{\stackrel{R_{2} \leftarrow R_{1}}{\stackrel{R_{2}}{\stackrel{R_{2} \leftarrow R_{1}}{\stackrel{R_{2} \leftarrow R_{1}}{\stackrel{R_$$

Now,

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad (1.15.13)$$

$$\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{-1}{2} \end{pmatrix} \tag{1.15.14}$$

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 1 \qquad (1.15.15)$$

:  $\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 1 > 0$ , there is no need to swap the axes. The hyperbola parameters are,

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.15.16}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{2}$$
 (1.15.17)

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_1}} = \sqrt{2}$$
 (1.15.18)

with the standard hyperbola becoming,

$$\frac{x^2}{2} - \frac{y^2}{2} = 1 \tag{1.15.19}$$

The direction and normal vectors of the tangent with slope -2 are given as,

$$\mathbf{m} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{1.15.20}$$

Now considering the equations to find the point of contact,

$$\mathbf{q} = \mathbf{V}^{-1}(k\mathbf{n} - \mathbf{u}) \tag{1.15.21}$$

$$k = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (1.15.22)

Thus,

$$\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n} = 8 \tag{1.15.23}$$

$$k = \pm \frac{1}{2\sqrt{2}} \tag{1.15.24}$$

$$\mathbf{q_1} = \begin{pmatrix} \frac{1+3\sqrt{2}}{\sqrt{2}} \\ \sqrt{2} \end{pmatrix} \tag{1.15.25}$$

$$\mathbf{q_2} = \begin{pmatrix} \frac{-1+3\sqrt{2}}{\sqrt{2}} \\ -\sqrt{2} \end{pmatrix} \tag{1.1}$$

The desired tangents are,

$$\begin{pmatrix} 2 & 1 \end{pmatrix} \left\{ \mathbf{x} - \begin{pmatrix} \frac{1+3\sqrt{2}}{\sqrt{2}} \\ \sqrt{2} \end{pmatrix} \right\} = 0 \qquad (1.15.27)$$

$$\implies$$
  $(2 \ 1)\mathbf{x} = 6 + 2\sqrt{2}$  (1.15.28)

$$(2 \quad 1) \left\{ \mathbf{x} - \begin{pmatrix} \frac{-1+3\sqrt{2}}{\sqrt{2}} \\ -\sqrt{2} \end{pmatrix} \right\} = 0$$
 (1.15.29)

$$\implies (2 \quad 1)\mathbf{x} = 6 - 2\sqrt{2} \tag{1.15.30}$$

Below figure corresponds to the tangents on the hyperbola, represented by (1.15.28) and (1.15.30) each having slope of -2.



Fig. 8: Tangents to the hyperbola

- 1.16. Find points on the curve  $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{16} \end{pmatrix} \mathbf{x} = 1$  at which tangents are
  - a) parallel to x-axis
  - b) parallel to y-axis.
- 1.17. Find the equations of the tangent and normal to the given curves at the indicated points:  $y = x^2$  at  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ .
- 1.18. Find the equation of the tangent line to the curve  $y = x^2 2x + 7$ 
  - a) parallel to the line (2 -1)x = -9
  - b) perpendicular to the line  $(-15 \ 5) \mathbf{x} = 13$ .
- (1.15.26) 1.19. Find the equation of the tangent to the curve  $y = \sqrt{3x-2}$  which is parallel to the line  $(4 \ 2)\mathbf{x} + 5 = 0$ .
  - 1.20. Find the point at which the line  $(-1 1)\mathbf{x} = 1$  is a tangent to the curve  $y^2 = 4x$ .
  - 1.21. The line  $(-m \ 1)\mathbf{x} = 1$  is a tangent to the curve  $y^2 = 4x$ . Find the value of m.

- 1.22. Find the normal at the point  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$  on the curve  $2y + x^2 = 3$
- 1.23. Find the normal to the curve  $x^2 = 4y$  passing through  $\binom{1}{2}$
- 1.24. Find the area of the region bounded by the curve  $y^2 = x$  and the lines x = 1, x = 4 and the x-axis in the first quadrant.
- 1.25. Find the area of the region bounded by  $v^2$  = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
- 1.26. Find the area of the region bounded by  $x^2 =$ 4y, y = 2, y = 4 and the y-axis in the first quadrant.
- 1.27. Find the area of the region bounded by the 1.46. Find the area of the region
- ellipse  $\mathbf{x}^T \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{9} \end{pmatrix} \mathbf{x} = 1$  \quad \{(x, y) : y^2 \leq 4x, 4\mathbf{x}^T \mathbf{x} = 9\}\)
  1.28. Find the area of the region bounded by the 1.47. Find the area of the circle  $\mathbf{x}^T \mathbf{x} = 16$  exterior to ellipse  $\mathbf{x}^T \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{9} \end{pmatrix} \mathbf{x} = 1$  the parabola  $y^2 = 6$ .
- into two equal parts by the line x = a, find the value of a.
- 1.30. Find the area of the region bounded by the parabola  $y = x^2$  and y = |x|.
- 1.31. Find the area bounded by the curve  $x^2 = 4y$ and the line (1 -1)x = -2.
- 1.32. Find the area of the region bounded by the curve  $y^2 = 4x$  and the line x = 3.
- 1.33. Find the area of the region bounded by the curve  $y^2 = x$ , y-axis and the line y = 3.
- 1.34. Find the area of the region bounded by the two parabolas  $y = x^2, y^2 = x$ .
- 1.35. Find the area lying above x-axis and included between the circle  $\mathbf{x}^T \mathbf{x} - 8 \begin{pmatrix} 1 & 0 \end{pmatrix} = 0$  and inside of the parabola  $y^2 = 4x$ .
- 1.36. AOBA is the part of the ellipse  $\mathbf{x}^T \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} =$ 36 in the first quadrant such that  $\overrightarrow{OA} = 2$  and OB = 6. Find the area between the arc AB and the chord AB.
- 1.37. Find the area lying between the curves  $y^2 = 4x$ and y = 2x.
- 1.38. Find the area of the region bounded by the curves  $y = x^2 + 2$ , y = x, x = 0 and x = 3.
- 1.39. Find the area under  $y = x^2$ , x = 1, x = 2 and
- 1.40. Find the area between  $y = x^2$  and y = x.
- 1.41. Find the area of the region lying in the first

- quadrant and bounded by  $y = 4x^2, x = 0, y = 1$ and y = 4.
- 1.42. Find the area enclosed by the parabola 4y = $3x^2$  and the line  $(-3 \ 2)x = 12$ .
- 1.43. Find the area of the smaller region bounded by the ellipse  $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \mathbf{x} = 1$  and the line
- $(\frac{1}{a} \quad \frac{1}{b})\mathbf{x} = 1$ 1.44. Find the area of the region enclosed by the parabola  $x^2 = y$ , the line  $(-1 \quad 1)\mathbf{x} = 2$  and the
- 1.45. Find the area bounded by the curves

$$\{(x,y): y > x^2, y = |x|\}$$
 (1.45.1)

$$\{(x,y): y^2 \le 4x, 4\mathbf{x}^T\mathbf{x} = 9\}$$
 (1.46.1)

## 2 QR Decomposition

**Solution:** Let

$$\alpha = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{2.1.1}$$

$$\beta = \begin{pmatrix} -1\\3 \end{pmatrix} \tag{2.1.2}$$

We can express these as

$$\alpha = k_1 \mathbf{u}_1 \tag{2.1.3}$$

$$\beta = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 \tag{2.1.4}$$

where

$$k_1 = ||\alpha|| \tag{2.1.5}$$

$$\mathbf{u}_1 = \frac{\alpha}{k_1} \tag{2.1.6}$$

$$r_1 = \frac{\mathbf{u}_1^T \boldsymbol{\beta}}{\left\|\mathbf{u}_1\right\|^2} \tag{2.1.7}$$

$$\mathbf{u}_2 = \frac{\beta - r_1 \mathbf{u}_1}{\|\beta - r_1 \mathbf{u}_1\|} \tag{2.1.8}$$

$$k_2 = \mathbf{u}_2^T \boldsymbol{\beta} \tag{2.1.9}$$

From (2.1.3) and (2.1.4),

$$(\alpha \quad \beta) = (\mathbf{u}_1 \quad \mathbf{u}_2) \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix}$$

$$(\alpha \quad \beta) = \mathbf{QR}$$

$$(2.1.10) \quad (2.1.2) \quad (2.1.11) \quad (2.14. \quad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

From above we can see that **R** is an upper 2.15. Find QR decomposition of  $\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix}$  triangular matrix and

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.1.12}$$

Now by using equations (2.1.5) to (2.1.9)

$$k_1 = \sqrt{5} (2.1.13)$$

$$\mathbf{u}_1 = \sqrt{\frac{1}{5}} \begin{pmatrix} 1\\2 \end{pmatrix}, \qquad (2.1.14)$$

$$r_1 = \sqrt{5} \tag{2.1.15}$$

$$\mathbf{u}_2 = \sqrt{\frac{1}{5}} \begin{pmatrix} -2\\1 \end{pmatrix} \tag{2.1.16}$$

$$k_2 = \sqrt{5} \tag{2.1.17}$$

Thus obtained QR decomposition is

$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & \sqrt{5} \\ 0 & \sqrt{5} \end{pmatrix} \quad (2.1.18)$$

$$2.2.$$
  $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ 

$$2.3.$$
  $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ 

2.4. 
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$$

$$2.5.$$
  $\begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}$ 

$$2.6.$$
  $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ 

$$2.7. \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$$

$$2.8. \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}$$

$$2.9. \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix}$$

$$2.10.$$
  $\begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix}$ 

$$2.11.$$
  $\begin{pmatrix} 2 & -6 \\ 1 & -2 \end{pmatrix}$ 

$$2.12. \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$$

**Solution:** Let **a** and **b** be the column vectors of the given matrix.

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \tag{2.15.1}$$

$$\mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \tag{2.15.2}$$

The column vectors can be expressed as follows,

$$\mathbf{a} = k_1 \mathbf{u}_1 \tag{2.15.3}$$

$$\mathbf{b} = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 \tag{2.15.4}$$

Here,

$$k_1 = \|\mathbf{a}\| \tag{2.15.5}$$

$$\mathbf{u}_1 = \frac{\mathbf{a}}{k_1} \tag{2.15.6}$$

$$r_1 = \frac{\mathbf{u}_1^T \mathbf{b}}{\|\mathbf{u}_1\|^2} \tag{2.15.7}$$

$$\mathbf{u}_2 = \frac{\mathbf{b} - r_1 \mathbf{u}_1}{\|\mathbf{b} - r_1 \mathbf{u}_1\|} \tag{2.15.8}$$

$$k_2 = \mathbf{u}_2^T \mathbf{b} \tag{2.15.9}$$

The (2.15.3) and (2.15.4) can be written as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix}$$
 (2.15.10)

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \mathbf{Q}\mathbf{R} \tag{2.15.11}$$

Now, R is an upper triangular matrix and also,

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.15.12}$$

Now using equations (2.15.5) to (2.15.9) we

get,

$$k_1 = \sqrt{2^2 + 3^2} = \sqrt{13}$$
 (2.15.13)

$$\mathbf{u}_1 = \frac{1}{\sqrt{13}} \binom{2}{3} \tag{2.15.14}$$

$$r_1 = \left(\frac{2}{\sqrt{13}} \quad \frac{3}{\sqrt{13}}\right) \begin{pmatrix} 3\\ -4 \end{pmatrix} = -\frac{6}{\sqrt{13}}$$
 (2.15.15)

$$\mathbf{u}_2 = \frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{2.15.16}$$

$$k_2 = \left(\frac{3}{\sqrt{13}} - \frac{2}{\sqrt{13}}\right) \begin{pmatrix} 3\\ -4 \end{pmatrix} = \frac{17}{\sqrt{13}}$$
 (2.15.17)

Thus putting the values from (2.15.13) to (2.15.17) in (2.15.11) we obtain QR decomposition,

$$\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} \sqrt{13} & -\frac{6}{\sqrt{13}} \\ 0 & \frac{17}{\sqrt{13}} \end{pmatrix}$$
(2.15.18)

# 2.16. Find the QR decomposition of $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$

## **Solution:**

Let  $c_1$  and  $c_2$  be the column vectors of the given matrix.

$$\mathbf{c_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{2.16.1}$$

$$\mathbf{c_2} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \tag{2.16.2}$$

The column vectors can be represented as,

$$\mathbf{c_1} = k_1 \mathbf{u}_1 \tag{2.16.3}$$

$$\mathbf{c_2} = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 \tag{2.16.4}$$

where,

$$k_1 = \|\mathbf{c_1}\| \tag{2.16.5}$$

$$\mathbf{u_1} = \frac{\mathbf{c_1}}{k_1} \tag{2.16.6}$$

$$r_1 = \frac{\mathbf{u}_1^T \mathbf{c}_2}{\|\mathbf{u}_1\|^2} \tag{2.16.7}$$

$$\mathbf{u}_2 = \frac{\mathbf{c}_2 - r_1 \mathbf{u}_1}{\|\mathbf{c}_2 - r_1 \mathbf{u}_1\|}$$
 (2.16.8)

$$k_2 = \mathbf{u_2}^T \mathbf{c_2} \tag{2.16.9}$$

From (2.16.3) and (2.16.4),

$$\begin{pmatrix} \mathbf{c_1} & \mathbf{c_2} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix} \qquad (2.16.10)$$

$$\begin{pmatrix} \mathbf{c_1} & \mathbf{c_2} \end{pmatrix} = \mathbf{Q}\mathbf{R} \tag{2.16.11}$$

Where  $\mathbf{R}$  is an upper triangular matrix and

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.16.12}$$

Using equations (2.16.5) to (2.16.9) we get,

$$k_1 = \sqrt{3^2 + 1^2} = \sqrt{10}$$
 (2.16.13)

$$\mathbf{u_1} = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix}$$
 (2.16.14)

$$r_1 = \left(\frac{3}{\sqrt{10}} \quad \frac{1}{\sqrt{10}}\right) \begin{pmatrix} 2\\4 \end{pmatrix} = \sqrt{10}$$
 (2.16.15)

$$\mathbf{u_2} = \begin{pmatrix} \frac{-1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{pmatrix} \tag{2.16.16}$$

$$k_2 = \left(\frac{-1}{\sqrt{10}} \quad \frac{3}{\sqrt{10}}\right) \begin{pmatrix} 2\\4 \end{pmatrix} = \sqrt{10}$$
 (2.16.17)

Now putting the values from (2.16.13) to (2.16.17), we obtain the QR decomposition of given matrix,

$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \sqrt{10} \\ 0 & \sqrt{10} \end{pmatrix} (2.16.18)$$

(2.16.2) 2.17. Find QR decomposition of  $\begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix}$ 

**Solution:** The QR decomposition of a matrix is a decomposition of the matrix into an orthogonal matrix and an upper triangular matrix. A QR decomposition of a real square matrix A is a decomposition of A as

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \tag{2.17.1}$$

where  $\mathbf{Q}$  is an orthogonal matrix and  $\mathbf{R}$  is an upper triangular matrix Given

$$\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix} \tag{2.17.2}$$

Let **a** and **b** be the column vectors of the given matrix

$$\mathbf{a} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{2.17.3}$$

$$\mathbf{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{2.17.4}$$

The above column vectors (2.17.3) ,(2.17.4) can be expressed as ,

$$\mathbf{a} = t_1 \mathbf{u}_1 \tag{2.17.5}$$

$$\mathbf{b} = s_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 \tag{2.17.6}$$

Where,

$$t_1 = ||\mathbf{a}|| \tag{2.17.7}$$

$$\mathbf{u}_1 = \frac{\mathbf{a}}{t_1} \tag{2.17.8}$$

$$s_1 = \frac{\mathbf{u}_1^T \mathbf{b}}{\|\mathbf{u}_1\|^2} \tag{2.17.9}$$

$$\mathbf{u}_2 = \frac{\mathbf{b} - s_1 \mathbf{u}_1}{\|\mathbf{b} - s_1 \mathbf{u}_1\|} \tag{2.17.10}$$

$$t_2 = \mathbf{u}_2^T \mathbf{b} \tag{2.17.11}$$

The (2.17.5) and (2.17.6) can be written as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} t_1 & s_1 \\ 0 & t_2 \end{pmatrix} \tag{2.17.12}$$

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \mathbf{Q}\mathbf{R} \tag{2.17.13}$$

Here,  $\mathbf{R}$  is an upper triangular matrix and  $\mathbf{Q}$  is an orthogonal matrix such that

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \tag{2.17.14}$$

Now using equations from (2.17.7) to (2.17.11) we get,

$$t_1 = \sqrt{4^2 + 5^2} = \sqrt{41} \tag{2.17.15}$$

$$\mathbf{u}_1 = \frac{1}{\sqrt{41}} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{2.17.16}$$

$$s_1 = \left(\frac{4}{\sqrt{41}} \quad \frac{5}{\sqrt{41}}\right) \begin{pmatrix} 3\\ -2 \end{pmatrix} = \frac{2}{\sqrt{41}}$$
 (2.17.17)

$$\mathbf{u}_2 = \frac{1}{\sqrt{41}} \begin{pmatrix} 5\\ -4 \end{pmatrix} \tag{2.17.18}$$

$$t_2 = \left(\frac{5}{\sqrt{41}} \quad \frac{-4}{\sqrt{41}}\right) \begin{pmatrix} 3\\ -2 \end{pmatrix} = \frac{23}{\sqrt{41}}$$
 (2.17.19)

Substituting the values from (2.17.15) to (2.17.19) in (2.17.13) we obtain QR decomposition as,

$$\begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} \frac{4}{\sqrt{41}} & \frac{5}{\sqrt{41}} \\ \frac{5}{\sqrt{41}} & \frac{-4}{\sqrt{41}} \end{pmatrix} \begin{pmatrix} \sqrt{41} & \frac{2}{\sqrt{41}} \\ 0 & \frac{23}{\sqrt{41}} \end{pmatrix} (2.17.20)$$

2.18. Perform the QR decomposition of matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \tag{2.18.1}$$

## **Solution:**

If  $\alpha$  and  $\beta$  are the columns of a (2×2) matrix **A**,

then A can be decomposed as

$$A = QR (2.18.2)$$

where, 
$$\mathbf{U} = (\mathbf{u_1} \ \mathbf{u_2}), (2.18.3)$$

uppertriangular matrix 
$$\mathbf{R} = \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix}$$
 (2.18.4)

$$k_1 = \|\alpha\|, \mathbf{u_1} = \frac{\alpha}{k_1}$$
 (2.18.5)

$$r_1 = \frac{{\bf u_1}^T \boldsymbol{\beta}}{\|{\bf u_1}\|^2}$$
 (2.18.6)

$$\mathbf{u_2} = \frac{\beta - r_1 \mathbf{u_1}}{\|\beta - r_1 \mathbf{u_1}\|}, k_2 = \mathbf{u_2}^T \beta \quad (2.18.7)$$

$$\alpha = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
(2.18.8)

From, (2.18.5), 
$$k_1 = ||\alpha|| = \sqrt{10}$$
 (2.18.9)

and 
$$\mathbf{u_1} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
(2.18.10)

From (2.18.6), 
$$r_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{5}{\sqrt{10}}$$
 (2.18.11)

$$\beta - r_1 \mathbf{u_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \frac{5}{\sqrt{10}} \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \qquad (2.18.12)$$

$$= \begin{pmatrix} \frac{3}{2} \\ \frac{-1}{2} \end{pmatrix} \qquad (2.18.13)$$

From (2.18.7), 
$$\mathbf{u_2} = \frac{\begin{pmatrix} \frac{3}{2} \\ \frac{-1}{2} \end{pmatrix}}{\sqrt{\frac{9}{4} + \frac{1}{4}}}$$
 (2.18.14)

$$\implies \mathbf{u_2} = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{-1}{\sqrt{10}} \end{pmatrix}, \quad (2.18.15)$$

$$k_2 = \left(\frac{3}{\sqrt{10}} \quad \frac{-1}{\sqrt{10}}\right) \begin{pmatrix} 2\\1 \end{pmatrix} = \frac{5}{\sqrt{10}}$$
 (2.18.16)

Note that,

$$\mathbf{Q}^{T}\mathbf{Q} = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}$$
(2.18.17)

The matrix A can now be rewritten using (2.18.2) as

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \frac{5}{\sqrt{10}} \\ 0 & \frac{5}{\sqrt{10}} \end{pmatrix} (2.18.18)$$

Find the QR decomposition of the given matrix.

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \tag{2.19.1}$$

**Solution:** QR decomposition of a square matrix is given by,

$$\mathbf{A} = \mathbf{QR} \tag{2.19.2}$$

where  $\mathbf{Q}$  is an orthogonal matrix and  $\mathbf{R}$  is an upper triangular matrix.

Given matrix,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \tag{2.19.3}$$

The column vectors of the matrix is given by,

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \tag{2.19.4}$$

Equation (2.19.3) can be written in form of (2.19.4) as,

$$\begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{pmatrix} \begin{pmatrix} u_1 & u_3 \\ 0 & u_2 \end{pmatrix} = \mathbf{Q}\mathbf{R} \quad (2.19.5)$$

where,

$$u_1 = ||\mathbf{a}|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$
 (2.19.6)

$$\mathbf{q_1} = \frac{\mathbf{a}}{u_1} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \tag{2.19.7}$$

$$u_3 = \frac{\mathbf{q_1}^T \mathbf{b}}{\|\mathbf{q_1}\|^2} = \left(\frac{1}{\sqrt{5}} \quad \frac{2}{\sqrt{5}}\right) \begin{pmatrix} 2\\ -2 \end{pmatrix} = \frac{-2}{\sqrt{5}} \quad (2.19.8)$$

$$\mathbf{q_2} = \frac{\mathbf{b} - u_3 \mathbf{q_1}}{\|\mathbf{b} - u_3 \mathbf{q_1}\|} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix}$$
(2.19.9)

$$u_2 = \mathbf{q_2}^T \mathbf{b} = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 2\\ -2 \end{pmatrix} = \frac{6}{\sqrt{5}}$$
(2.19.10)

Substituting equation (2.19.6) to (2.19.10) in (2.19.5),

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & -\frac{2}{\sqrt{5}} \\ 0 & \frac{6}{\sqrt{5}} \end{pmatrix} (2.19.11)$$

The QR decomposition is,

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & -\frac{2}{\sqrt{5}} \\ 0 & \frac{6}{\sqrt{5}} \end{pmatrix} (2.19.12)$$

## 3 SINGULAR VALUE DECOMPOSITION

3.1. Find the shortest distance between the lines

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \tag{3.1.1}$$

$$\mathbf{x} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\-5\\2 \end{pmatrix} \tag{3.1.2}$$

#### **Solution:**

The lines will intersect if

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$$
 (3.1.3)

$$\begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 (3.1.4)

$$\mathbf{M}\mathbf{x} = \mathbf{b} \qquad (3.1.5)$$

Since the rank of augmented matrix will be 3. We can say that lines do not intersect.

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^T \tag{3.1.6}$$

Where the columns of V are the eigenvectors of  $A^TA$ , the columns of U are the eigenvectors of  $AA^T$  and S is diagonal matrix of singular value of eigenvalues of  $A^TA$ .

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} 6 & 13 \\ 13 & 38 \end{pmatrix} \tag{3.1.7}$$

$$\mathbf{M}\mathbf{M}^{T} = \begin{pmatrix} 13 & -17 & 8 \\ -17 & 26 & -11 \\ 8 & -11 & 5 \end{pmatrix}$$
 (3.1.8)

Calculating eigen value of  $\mathbf{M}^T \mathbf{M}$ .

$$\begin{vmatrix} 6 - \lambda & 13 \\ 13 & 38 - \lambda \end{vmatrix} \lambda^2 - 44\lambda + 59 = 0 \quad (3.1.9)$$

$$\lambda_2 = -5\sqrt{17} + 22, \lambda_1 = 5\sqrt{17} + 22$$
 (3.1.10)

Eigen vectors of  $\mathbf{M}\mathbf{M}^T$ .

$$\begin{vmatrix} 13 - \lambda & -17 & 8 \\ 17 & 26 - \lambda & -11 \\ 8 & -11 & 5 - \lambda \end{vmatrix} - \lambda^3 + 44\lambda^2 - 59\lambda = 0$$

$$\lambda_4 = -5\sqrt{17} + 22, \lambda_3 = 5\sqrt{17} + 22, \lambda_5 = 0,$$
(3.1.12)

Hence, The eigenvectors will be

$$\mathbf{u}_{2} = \begin{pmatrix} \frac{\sqrt{17}+12}{5} \\ \frac{3\sqrt{17}+1}{5} \\ 1 \end{pmatrix} \mathbf{u}_{1} = \begin{pmatrix} \frac{-\sqrt{17}+12}{5} \\ \frac{-3\sqrt{17}+1}{5} \\ 1 \end{pmatrix} \mathbf{u}_{3} = \begin{pmatrix} \frac{-3}{7} \\ \frac{1}{7} \\ 1 \end{pmatrix}$$
(3.1.13)

Normalising the eigenvectors

$$l_1 = \sqrt{\left(\frac{12 - \sqrt{17}}{5}\right)^2 + \left(\frac{1 - 3\sqrt{17}}{5}\right)^2 + 1^2}$$

$$\mathbf{u}_{1} = \begin{pmatrix} \frac{-\sqrt{17}+12}{\sqrt{340-30\sqrt{17}}} \\ \frac{-3\sqrt{17}+1}{\sqrt{340-30\sqrt{17}}} \\ \frac{5}{\sqrt{340-30\sqrt{17}}} \end{pmatrix}$$
(3.1.15)

$$l_2 = \sqrt{\left(\frac{\sqrt{17} + 12}{5}\right)^2 + \left(\frac{3\sqrt{17} + 1}{5}\right)^2 + 1^2}$$

$$\mathbf{u}_{2} = \frac{5}{\sqrt{340 + 30\sqrt{7}}} \begin{pmatrix} \frac{\sqrt{17} + 12}{5} \\ \frac{\sqrt{3}\sqrt{17} + 12}{5} \\ 1 \end{pmatrix}$$
(3.1.18)

$$\mathbf{u}_{2} = \begin{pmatrix} \frac{\sqrt{17+12}}{\sqrt{340+30\sqrt{17}}} \\ \frac{3\sqrt{17+1}}{\sqrt{340+30\sqrt{17}}} \\ \frac{5}{\sqrt{340+30\sqrt{17}}} \end{pmatrix}$$
(3.1.19)

$$l_3 = \sqrt{\left(\frac{-3}{7}\right)^2 + \left(\frac{1}{7}\right)^2 + 1^2}$$
 (3.1.20)

$$\mathbf{u}_3 = \frac{7}{\sqrt{59}} \left( \frac{-3}{7} \right) \tag{3.1.21}$$

$$\mathbf{u}_{3} = \begin{pmatrix} \frac{-3}{\sqrt{59}} \\ \frac{1}{\sqrt{59}} \\ \frac{7}{\sqrt{59}} \\ \frac{7}{\sqrt{59}} \end{pmatrix}$$
 (3.1.22)

$$\mathbf{U} = \begin{pmatrix} \frac{-\sqrt{17}+12}{\sqrt{340-30\sqrt{17}}} & \frac{\sqrt{17}+12}{\sqrt{340+30\sqrt{17}}} & \frac{-3}{\sqrt{59}} \\ \frac{-3\sqrt{17}+1}{\sqrt{340-30\sqrt{17}}} & \frac{3\sqrt{17}+1}{\sqrt{340+30\sqrt{17}}} & \frac{1}{\sqrt{59}} \\ \frac{5}{\sqrt{340-30\sqrt{17}}} & \frac{5}{\sqrt{340+30\sqrt{17}}} & \frac{7}{\sqrt{59}} \end{pmatrix}$$
(3.1.23)

Now,

$$\mathbf{S} = \begin{pmatrix} \sqrt{5\sqrt{17} + 22} & 0 \\ 0 & \sqrt{-5\sqrt{17} + 22} \\ 0 & 0 \end{pmatrix}$$
(3.1.24)

Now, 
$$\mathbf{V} = \mathbf{M}^T \frac{\mathbf{u_i}}{\sqrt{\lambda_i}}$$

$$\mathbf{u}_{1} = \begin{pmatrix} \frac{-\sqrt{17}+12}{\sqrt{340-30\sqrt{17}}} \\ \frac{-3\sqrt{17}+1}{\sqrt{340-30\sqrt{17}}} \\ \frac{5}{\sqrt{340-30\sqrt{17}}} \end{pmatrix}$$

$$(3.1.15)$$

$$(3.1.16)$$

$$\mathbf{V} = \begin{pmatrix} \frac{\sqrt{17}+28}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \end{pmatrix}$$

$$(3.1.24)$$

$$\mathbf{V} = \begin{pmatrix} \frac{\sqrt{17}+28}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340+30\sqrt{17}}\sqrt{-5\sqrt{17}+22}} \end{pmatrix}$$

$$(3.1.25)$$

So, from equation (3.1.6)

$$\begin{pmatrix} 2 & 3 \\ -1 & -5 \\ 1 & 2 \end{pmatrix} =$$

$$(3.1.26)$$

$$\begin{pmatrix} \frac{-\sqrt{17}+12}{\sqrt{340-30\sqrt{17}}} & \frac{\sqrt{17}+12}{\sqrt{340+30\sqrt{17}}} & \frac{-3}{\sqrt{59}} \\ \frac{-3\sqrt{17}+1}{\sqrt{340-30\sqrt{17}}} & \frac{3\sqrt{17}+1}{\sqrt{340+30\sqrt{17}}} & \frac{1}{\sqrt{59}} \\ \frac{5}{\sqrt{340-30\sqrt{17}}} & \frac{7}{\sqrt{59}} & \frac{7}{\sqrt{59}} \end{pmatrix}$$

$$(3.1.27)$$

$$\begin{pmatrix} \sqrt{5\sqrt{17}+22} & 0 \\ 0 & \sqrt{-5\sqrt{17}+22} \\ 0 & 0 \end{pmatrix}$$

$$(3.1.28)$$

$$\begin{pmatrix} \frac{\sqrt{17}+28}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} & \frac{-\sqrt{17}+28}{\sqrt{340+30\sqrt{17}}\sqrt{-5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} & \frac{-12\sqrt{17}+41}{\sqrt{340+30\sqrt{17}}\sqrt{-5\sqrt{17}+22}} \end{pmatrix}^{T}$$

$$(3.1.29)$$

Now, Finding Moore-Penrose Pseudo inverse of S

$$\mathbf{S}_{+} = \begin{pmatrix} \frac{1}{\sqrt{5\sqrt{17}+22}} & 0 & 0\\ 0 & \frac{1}{\sqrt{-5\sqrt{17}+22}} & 0 \end{pmatrix} \quad (3.1.30)$$

We,know that,  $\mathbf{x} = \mathbf{V}(\mathbf{S}_{+}(\mathbf{U}^{T}\mathbf{b}))$ 

$$\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{-\sqrt{17}+7}{\sqrt{340-30\sqrt{17}}} \\ \frac{-\sqrt{17}+7}{\sqrt{340+0\sqrt{17}}} \\ \frac{-10}{\sqrt{59}} \end{pmatrix}$$

$$(3.1.31)$$

$$\mathbf{S}_{+}(\mathbf{U}^{T}\mathbf{b}) = \begin{pmatrix} \frac{-\sqrt{17}+7}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{-\sqrt{17}+7}{\sqrt{340+30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+28}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{12\sqrt{17}+41}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \end{pmatrix}$$

$$(3.1.32)$$

$$\mathbf{x} = \begin{pmatrix} \frac{\sqrt{17}+28}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{-12\sqrt{17}+41}{\sqrt{340+30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{-12\sqrt{17}+41}{\sqrt{340+30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \end{pmatrix}$$

$$(3.1.33)$$

$$\begin{pmatrix} \frac{-\sqrt{17}+7}{\sqrt{340-30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{\sqrt{17}+7}{\sqrt{340+30\sqrt{17}}\sqrt{5\sqrt{17}+22}} \\ \frac{\sqrt{17}+7}{\sqrt{340+30\sqrt{17}}\sqrt{-5\sqrt{17}+22}} \end{pmatrix}$$

$$(3.1.34)$$

$$\mathbf{x} = \begin{pmatrix} \frac{2507500}{(4930-1040\sqrt{17})(4930+1040\sqrt{17})} \\ \frac{(4930-1040\sqrt{17})(4930+1040\sqrt{17})}{(4930-1040\sqrt{17})(4930+1040\sqrt{17})} \end{pmatrix}$$

$$(3.1.35)$$

Simplifying the values of  $x_1$  and  $x_2$ 

$$x_2 = \frac{-702100}{(4930 - 1040\sqrt{17})(4930 + 1040\sqrt{17})}$$

$$= \frac{-702100}{591700}$$

$$(3.1.36)$$

$$= \frac{-702100}{591700}$$

$$(3.1.37)$$

$$= -\frac{7}{59}$$

$$(3.1.38)$$

$$x_1 = \frac{2507500}{(4930 - 1040\sqrt{17})(4930 + 1040\sqrt{17})}$$

$$= \frac{2507500}{591700}$$

$$= \frac{25}{59}$$

$$= (3.1.41)$$

Now, Verifying the values using

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \mathbf{M}^T \mathbf{b} \tag{3.1.42}$$

Solving R.H.S

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.1.43}$$

Now using equation (3.1.7) in (3.1.43)

$$\begin{pmatrix} 6 & 13 \\ 13 & 38 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.1.44}$$

Solving the augmented matrix.

$$\begin{pmatrix} 6 & 13 & 1 \\ 13 & 38 & 1 \end{pmatrix} \xrightarrow{R_2 - \frac{13}{6}R_1} \begin{pmatrix} 6 & 13 & 1 \\ 0 & \frac{59}{6} & -\frac{7}{6} \end{pmatrix}$$
 (3.1.45)  
$$\frac{59}{6}x_2 = -\frac{7}{6}$$
 (3.1.46)  
$$6x_1 + 13x_2 = 1$$
 (3.1.47)

$$x_1 = \frac{25}{59}, x_2 = -\frac{7}{59}$$
 (3.1.48)  
 $\mathbf{x} = \begin{pmatrix} \frac{25}{59} \\ -\frac{7}{59} \end{pmatrix}$  (3.1.49)