Introducción a la programación

Práctica 1: Lógica

29 de marzo de 2023

Ejercicio 4 (práctica 1)

Determinar el valor de verdad de las siguientes proposiciones, cuando el valor de verdad de a, b y c es verdadero, mientras que el de x e y es falso.

- a) $(\neg a \lor b)$ Verdadero
- b) $(c \lor (y \land x) \lor b)$ Verdadero

Ejercicio 1 (práctica 1)

Sean p y q variables proposicionales. ¿Cuáles de las siguientes expresiones son fórmulas bien formadas?

- a) $(p \neg q) \times$
- b) $p \vee q \wedge \text{true } X$ $((p \lor q) \land \text{true})$ $(p \lor (q \land \text{true}))$
- c) $(p \rightarrow \neg p \rightarrow q)$ X $((p \to \neg p) \to q)$ $(p \to (\neg p \to q))$
- d) $\neg(p)$ X
- e) $(p \vee \neg p \wedge q) \times$
- f) (true \wedge true \wedge true) \checkmark
- g) $(\neg p)$ X
- h) $(p \vee \text{false}) \checkmark$
- i) (p=q) X

Ejercicio 6 (práctica 1)

Determinar la relación de fuerza de los siguientes pares de fórmulas:

- a) True, False False $\alpha = (p \wedge q)$ $\beta = (p \lor q)$
- b) $(p \wedge q)$, $(p \vee q)$ $(p \wedge q)$ 0 | 1 | 0 | 1 | 1 1 0 0 1 1 c) True, True True 1 | 1 | 1 | 1 | 1
- $\alpha = (p \wedge q)$ d) $p, (p \wedge q) (p \wedge q)$
- 0 | 1 | 0 | 1 g) p, q Ninguna es más fuerte 0 0 1 0 $1 \mid 1$

1

Ejercicio 7 (práctica 1)

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

```
b)  (p \lor q) \land (p \lor r) 
(\neg p \to (q \land r)) 
(\neg p \to (q \land r)) 
(p \lor (q \land r)) 
\downarrow \text{ Distributiva} 
((p \lor q) \land (p \lor r))
```

Ejercicio 9 (práctica 1)

Sean las variables proposicionales f, e y m con los siguientes significados:

- ▶ $f \equiv$ "es fin de semana"
- $ightharpoonup e \equiv$ "Juan estudia"
- $ightharpoonup m \equiv$ "Juan escucha música"
- Escribir usando lógica proposicional las siguientes oraciones:
 - a) "Si es fin de semana, Juan estudia o escucha música, pero no ambas cosas" $f \longrightarrow ((e \lor m) \land \neg (e \land m))$
 - b) "Si no es fin de semana entonces Juan no estudia" $\neg f \longrightarrow \neg e$
 - c) "Cuando Juan estudia los fines de semana, lo hace escuchando música" $(f \wedge e) \longrightarrow m$

Ejercicio 7 (práctica 1)

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

$$\begin{array}{cccc} \mathbf{f}) & \blacktriangleright & \neg (p \wedge (q \wedge s)) \\ & \blacktriangleright & (s \rightarrow (\neg p \vee \neg q)) \\ & & \neg (p \wedge (q \wedge s)) \\ & & \downarrow \mathsf{De\ Morgan} \\ & & (\neg p \vee \neg (q \wedge s)) \\ & & \downarrow \mathsf{De\ Morgan} \\ & & (\neg p \vee \neg q \vee \neg s) \\ & & \downarrow \mathsf{Conmutativa} \\ & & (\neg s \vee \neg p \vee \neg q) \\ & & \downarrow \mathsf{Reemplazo\ implicación} \\ & & (s \rightarrow (\neg p \vee \neg q)) \\ \end{array}$$

Ejercicio 16 (práctica 1)

Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido

a)
$$(\neg x \lor_L b)$$

g)
$$(\neg c \land_L \neg y)$$

c)
$$\neg (c \lor_L y)$$

