MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

Análise Multivariada $Y_{n \times p} = (Y_{ii}) \in \Re^{n \times p}$

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

- ✓ Estatísticas descritivas multivariadas, Episóides de Concentração, Boxplot Bivariado
- ✓ Distribuição N_D, Distribuições Amostrais (T² e W_D)

Decomposições: SS_Te Y_{nxp}

 \checkmark N_D(μ_a ; Σ_a): Inferências sobre μ_a (T², MANOVA, ICS, Correções para Múltiplos testes

Técnicas Multivariadas:

- √ 1. Análise de Componentes Principais (CP)
- ✓ 2. Escalonamento Multidimensional (CoP)
- ✓ 3. Análise de Correspondência
- ✓ 4. Análise Fatorial
- ✓ 5. Análise Discriminante (MANOVA)
- ✓ 6. Análise de Agrupamento
- Análise de Correlação Canônica

Análise de Correlação Canônica

Análise de Correlação Canônica Análise Não Supervisionada

		Variáveis								
Unidades Amostrais	Y1	Y2		Yp		Y(p+q)				
/ 1 \	Y ₁₁	Y ₁₂		Y_{1p}		Y _{1(p+q)}				
2	Y ₂₁	Y ₂₂		Y_{2p}		$Y_{2(p+q)}$				
n	Y _{n1}	Y_{n2}		Y_{np}		$Y_{n(p+q)}$				

Objetivo:

Estudar o relacionamento (integração) ENTRE dois "conjuntos de variáveis" (p+q)

ANÁLISE DE "CORRELAÇÃO CANÔNICA"

- ⇒ Obter Variáveis Canônicas (escores, var. latentes, vetores reducionistas) de cada subconjunto das variáveis originais, com máxima correlação entre elas.
- ⇒ Realizar a integração de dois bancos de dados.

Correlação entre Conjuntos de Variáveis Motivação

Morfometria cefálica para os dois primeiros filhos de 25 famílias (Everitt, 2007)

	1° F	ilho	2° Fill	ho
Família	Comprimento	Perímetro	Comprimento	Perímetro
1	191	155	179	145
2	195	149	201	152
3	181	148	185	149
4	183	153	188	149
5	176	144	171	142
6	208	157	192	152
7	189	150	190	149
8	197	159	189	152
9	188	152	197	159
10	192	150	187	151
11	179	158	186	148
12	183	147	174	147
13	174	150	185	152
14	190	159	195	157
15	188	151	187	158
16	163	137	161	130
17	195	155	183	158
18	186	153	173	148
19	181	145	182	146
20	175	140	165	137
21	192	154	185	152
22	174	143	178	147
23	176	139	176	143
24	197	167	200	158
25	190	163	187	150

Como relacionar os irmãos com base em ambas medidas cefálicas?

Como definir uma medida de correlação (escalar) para o caso multidimensional?

Discuta a estrutura dos dados.

Neste caso, tem-se as mesmas variáveis (comprimento e perímetro) são avaliadas em cada nível de um fator de estratificação (1° e 2° filhos). As famílias definem o pareamento ou dependência entre os dois conjuntos.

A análise de CC se estende para situações de dois conjuntos de variáveis diferentes!

Diferentes Medidas de Correlação

Coeficiente de Correlação Linear de Pearson

para Pares de variáveis - Dados de Morfometria Cefálica


```
Correlações (marginais):

C1 P1 C2 P2

C1 1.00 0.73 0.71 0.70

P1 1.00 0.69 0.71

C2 1.00 0.84
```

← Correlação entre as variáveis DENTRO de cada grupo (1° e 2° filho)

← Correlação ENTRE os grupos, para cada par de variável.

Diferentes Medidas de Correlação

Coeficiente de Correlação Múltipla

⇒ É a correlação linear de Pearson entre cada variável de um conjunto e seu preditor linear (função das variáveis do outro conjunto).

$$\rho_{\scriptscriptstyle M} \left[Y_{\scriptscriptstyle C1}, \left(Y_{\scriptscriptstyle C2}, Y_{\scriptscriptstyle P2} \right) \right]$$

$$\rho_{P}\left(Y_{C1}, \hat{Y}_{C1|C2,P2}\right) = 0,738$$

$$Y_{C1} = \beta_{0} + \beta_{1}Y_{C2} + \beta_{2}Y_{P2} + e$$

$$\rho_M \left[Y_{P1}, \left(Y_{C2}, Y_{P2} \right) \right]$$

$$\rho_{P}\left(Y_{P1}, \hat{Y}_{P1|C2,P2}\right) = 0,731$$

$$Y_{P1} = \beta_{0} + \beta_{1}Y_{C2} + \beta_{2}Y_{P2} + e$$

Diferentes Medidas de Correlação

Coeficiente de Correlação Parcial - Útil para Inferência Causal

⇒ Considere a distribuição condicional das variáveis do Filho 2 dado as do Filho 1!

$$\begin{split} Y_{1p\times 1}; \quad E\left(Y_{1p\times 1}\right) &= \mu_{1} \quad Cov\left(Y_{1p\times 1}\right) = \Sigma_{11p\times p} \qquad Y_{2q\times 1}; \quad E\left(Y_{2q\times 1}\right) = \mu_{2} \quad Cov\left(Y_{2q\times 1}\right) = \Sigma_{22q\times q} \\ & \left(Y_{1} \atop Y_{2}\right); \quad E\left(Y_{1} \atop Y_{2}\right) = \left(\mu_{1} \atop \mu_{2}\right); \quad Cov\left(Y_{1} \atop Y_{2}\right) = \Sigma_{(p+q)\times(p+q)} = \begin{bmatrix} \Sigma_{11p\times p} & \Sigma_{12p\times q} \\ \Sigma_{21q\times p} & \Sigma_{22q\times q} \end{bmatrix} \\ & \left(E\left(Y_{2}\mid Y_{1}\right) = \mu_{2} - \Sigma_{21}\Sigma_{11}^{-1}\left(Y_{1} - \mu_{1}\right) & \left(Cov\left(Y_{2}\mid Y_{1}\right) = \Sigma_{22.1} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12} \right) \end{split}$$

Correlação entre Y_{2j} e Y_{2k} , eliminando o efeito das variáveis $Y_1 = (Y_{11}, ..., Y_{1q})$:

$$\rho(Y_{2j}, Y_{2k} \mid Y_1) = \frac{\sigma_{jk.1}}{\sqrt{\sigma_{jj.1}} \sqrt{\sigma_{kk.1}}}; \quad \sigma_{jk.1} \text{ \'e a casela jk da matriz } \Sigma_{22.1}$$

Σ-1	C1	P1	C2	P2
C1	1.000	0.425	0.223	0.152
P1		1.000	0.132	0.225
C2			1.000	0.626

A correlação parcial (de pares de variáveis dado as demais) pode ser obtida da matriz $\Sigma_{22,1}$ ou diretamente da matriz de precisão Σ^{-1} .

Outra medida uc correlação: Correlação Canônica - Exemplos

		<u>Variáveis</u>								
Unidades Amostrais	I Y1	Y2		Yp		Y(p+q)				
/ 1	Y ₁₁	Y ₁₂		Y _{1p}		Y _{1(p+q)}				
2	Y ₂₁	Y ₂₂		Y _{2p}		$Y_{2(p+q)}$				
n	I Y _{n1}	Y_{n2}		Y_{np}		$Y_{n(p+q)}$				

- Relacionar variáveis da mãe com variáveis do recém-nascido.
- Relacionar variáveis do sedimento com variáveis da coluna de água de um rio, considerando vários pontos de coleta.
- Relacionar variáveis clínicas com variáveis do genoma de pacientes.
- Relacionar variáveis da folha com variáveis do tronco de plantas.

....

Análise de Correlação Canônica - Motivação

Dados "Iris" do R Medidas do comprimento e largura da pétala e sépala de 50 flores de íris de de três espécies (setosa, versicolor e virginica).

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
100	5.7	2.8	4.1	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica
150	5.9	3.0	5.1	1.8	virginica

Reduzir a dimensionalidade dos dados por obter Escores das variáveis da Sépala mais correlacionados com as variáveis da Pétala.

Correlação Canônica – Exemplos

TABLE 1. Wine tasting data from Abdi and Valentin (2007).

			Expert 1			Expert 2					Expert 3		
Wine	Oak-type	Fruity	Woody	Coffee	Red fruit	Roasted	Vanillin	Woody	Fruity	Butter	Woody		
1	1	1	6	7	2	5	7	6	3	6	7		
2	2	5	3	2	4	4	4	2	4	4	3		
3	2	6	1	1	5	2	1	1	7	1	1		
4	2	7	1	2	7	2	1	2	2	2	2		
5	1	2	5	4	3	5	6	5	2	6	6		
6	1	3	4	4	3	5	4	5	1	7	5		

$$Y_{6\times(3+4+3)} = \begin{pmatrix} Y1_{6\times3} & Y2_{6\times4} & Y3_{6\times3} \end{pmatrix}$$
 Correlação Canônica Múltipla

→ Correlação Canônica entre Dois Grupos de Variáveis (Pares de Bancos de Dados)

$$(Y1_{6\times3} \quad Y2_{6\times4})$$

 $(Y1_{6\times3} \quad Y3_{6\times3})$
 $(Y2_{6\times4} \quad Y3_{6\times3})$

Correlação Canônica – Exemplos

TABLE 1. Male and female views of working wives in eight countries (International Social Survey Programme, 1989)

		Should v	vife stay at home.	? (response pe	rcentage)
	Country D GB US	before first child (1)	after first child (2)	when first child is at school (3)	when all children are at school (4)
Male	D	6.3	78.3	51.4	14.6
	GB	3.0	74.7	15.3	4.0
	US	7.6	61.1	16.2	7.1
	\mathbf{A}	5.1	75.4	45.7	12.2
	H	18.9	58.4	22.1	8.7
	NL	3.0	60.0	17.3	3.6
	I	11.1	49.6	23.6	21.7
	IR	7.0	56.4	33.5	9.2
Female	D	6.1	73.9	47.7	14.5
	GB	2.4	66.6	10.0	1.9
	US	4.0	50.0	10.3	3.8
	Α	2.9	69.4	40.5	7.3
	H	7.2	46.5	14.9	3.4
	NL	1.5	52.2	10.0	2.3
	I	3.8	38.3	12.0	10.0
	IR	5.8	54.6	20.7	5.9

Each value is the percentage of respondents who are in favour of the wife staying at home in the following four periods: (1) before the first child is born; (2) after the birth of the first child; (3) after the first child has gone to school; and (4) after all children are at school. The countries surveyed are: D—Germany, GB—Great Britain, US—United States of America, A—Austria, H—Hungary, NL—Netherlands, I—Italy, IR—Republic of Ireland.

$$Y_{8\times(4+4)} = (Y1_{8\times4} \quad Y2_{8\times4})$$

O pareamento das observações é dado pelo país!

Greenacre, M (2003). SVD of matched matrices.

Notação

A matriz de dados multivariados está particionada em Dois Conjuntos de Variáveis:

$$Y_{n\times(p+q)} = \begin{pmatrix} Y_{1n\times p} & Y_{2n\times q} \end{pmatrix}; \quad Y_{i\cdot(p+q)\times 1} \overset{iid}{\sim} \begin{pmatrix} \mu_{(p+q)\times 1}; \Sigma_{(p+q)\times(p+q)} \end{pmatrix}$$

$$Y_{i\cdot(p+q)\times 1} = \begin{bmatrix} Y_{1i\cdot p\times 1} \\ Y_{2i\cdot q\times 1} \end{bmatrix} \overset{iid}{\sim} \begin{pmatrix} \mu_{(p+q)\times 1}; \Sigma_{(p+q)\times(p+q)} \end{pmatrix} \overset{iid}{\sim} \begin{pmatrix} \mu_{(p+q)\times 1}; \Sigma_{(p+q)\times(p+q)} \end{pmatrix}$$

$$E(Y_{1i\cdot p\times 1}) = \mu_{1} \quad Cov(Y_{1i\cdot p\times 1}) = \Sigma_{11\cdot p\times p}$$

$$E(Y_{2i\cdot q\times 1}) = \mu_{2} \quad Cov(Y_{2i\cdot q\times 1}) = \Sigma_{22\cdot q\times q}$$

$$Cov(Y_{1i\cdot p\times 1}, Y_{2i\cdot q\times 1}) = \Sigma_{12\cdot p\times q} = \Sigma'_{21\cdot q\times p} \overset{\text{Mede a covariância entre os dois conjuntos de variáveis}}{\Sigma_{21\cdot q\times p}}$$

$$E(Y_{i}) = \mu_{(p+q)\times 1} = \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} \qquad Cov(Y_{i}) = \Sigma_{(p+q)\times(p+q)} = \begin{bmatrix} \Sigma_{11\cdot p\times p} & \Sigma_{12\cdot p\times q} \\ \Sigma_{21\cdot q\times p} & \Sigma_{22\cdot q\times q} \end{bmatrix}$$

Partição da matriz de covariância!

Análise de Correlação Canônica

Notação

		Variáveis							
Unidades Amostrais		Y1	Y2		Yp		Y(p+q)		
/ 1		Y ₁₁	Y ₁₂		Y_{1p}		Y _{1(p+q)}		
2		Y ₂₁	Y ₂₂		Y_{2p}		$Y_{2(p+q)}$		
\ n /		Y _{n1}	Y _{n2}		Y_{np}		$Y_{n(p+q)}$		

$$\mu_{1p imes 1}$$
 $\Sigma_{11p imes p}$ $\mu_{2 \ q imes 1}$ $\Sigma_{22 \ q imes q}$

$$\boldsymbol{\Sigma}_{(p+q)\times(p+q)} = \begin{pmatrix} \boldsymbol{\Sigma}_{11\,p\times p} & \boldsymbol{\Sigma}_{12\,p\times q} \\ \boldsymbol{\Sigma}_{21\,q\times p} & \boldsymbol{\Sigma}_{22\,q\times q} \end{pmatrix} \quad \text{Matriz de covariância para as (p+q) variáveis}$$

mede a covariância entre os dois conjuntos de variáveis

Como Resumir "Correlações" entre Dois Conjuntos de Variáveis?

		Y ₁			Y ₂	
/Indiv	Y ₁₁	•••	Y _{1p}	(Y ₂₁)	•••	Y _{2g}
1	Y ₁₁₁		Y _{1p1}	Y ₂₁₁		Y _{2p1}
2	Y ₁₁₂		Y _{1p2}	Y ₂₁₂		Y_{2p2}
			•••	•••		
$\frac{\sqrt{n}}{\sqrt{n}}$	Y _{11n}	•••	Y _{1pn}	Y _{21n}	•••	Y _{2pn}

Obter combinações lineares de cada conjunto!

$$U_{i} = a' Y_{1i}$$

$$a_{1}Y_{11i} + a_{2}Y_{12i} + ... + a_{p}Y_{1pi}$$

$$U_{i} = a' Y_{1i}$$

$$V_{i} = b' Y_{2i}$$

$$a_{1}Y_{11i} + a_{2}Y_{12i} + ... + a_{p}Y_{1pi}$$

$$b_{1}Y_{21i} + b_{2}Y_{22i} + ... + b_{q}Y_{2qi}$$

$$Var(U_i) = a' \Sigma_{11} a$$

$$Var(V_i) = b' \Sigma_{22} b$$

$$Cov(U,V) = a' \Sigma_{12} b$$

 $Cov(U,V) = a' \Sigma_{12} b$ Tal que: U e V tenham correlação máxima!

Obter U de Y1 e V de Y2, tal que, a correlação entre U e V seja máxima

$$U_{i} = a' Y_{1i}$$

$$V_{i} = b' Y_{2i}$$

$$Var(U_{i}) = a' \Sigma_{11} a$$

$$Cov(U_{i}, V_{i}) = a' \Sigma_{12} b$$

$$Var(V_{i}) = b' \Sigma_{22} b$$

Obter vetores $\mathbf{a} \in \Re^p$ e $\mathbf{b} \in \Re^q$, tal que (independentemente, de i):

$$Corr(U,V) = \frac{Cov(U,V)}{\sqrt{Var(U)}\sqrt{Var(V)}} = \frac{a'\; \Sigma_{12}\; b}{\sqrt{a'\; \Sigma_{11}\; a}\, \sqrt{b'\; \Sigma_{22}\; b}} \quad \text{seja máxima}.$$

- \Rightarrow Encontrar o primeiro par de combinações lineares, U_1 e V_1 , padronizadas (variâncias unitárias), que maximizam a correlação canônica definida acima.
- \Rightarrow Caso seja de interesse, encontrar um segundo par de variáveis padronizadas, U_2 e V_2 , com correlação canônica máxima e que não sejam correlacionadas com o primeiro par \Rightarrow e assim por diante até m=min(n,p,q)

$$\max_{a,b} Corr(U,V) = \max_{a,b} \frac{a' \Sigma_{12} b}{\sqrt{a' \Sigma_{11} a} \sqrt{b' \Sigma_{22} b}}$$

$$\Rightarrow \max_{a \in \mathbb{R}^p} \frac{a' \, \Sigma_{12} \Sigma_{22}^{-1} \, \Sigma_{21} a}{a' \Sigma_{11} a}$$

equivale a maximizar:
$$\Rightarrow \max_{a \in \Re^p} \frac{a' \, \Sigma_{12} \Sigma_{22}^{-1} \, \Sigma_{21} a}{a' \Sigma_{11} a} \qquad \Rightarrow \max_{b \in \Re^q} \frac{b' \, \Sigma_{21} \Sigma_{11}^{-1} \, \Sigma_{12} b}{b' \Sigma_{22} b}$$

Solução: O $\max_{a,b} Corr(U,V) = \rho_{c1}$ é atingido pelo primeiro par de

combinações lineares, dado por (Mardia, 1979):

$$U_1 = e_1' \sum_{11}^{-1/2} Y_1$$
 $V_1 = f_1' \sum_{22}^{-1/2} Y_2$ b_1'

Os escores U e V são projeções dos dados que compartilham os mesmos autovalores. O vetores "a" e "b" contêm as cargas atribuídas às variáveis na variável canônica.

$$\max_{a,b} Corr(U,V) = \rho_{c1} \implies egin{aligned} U_1 &= a_1' Y_1 = e_1' \ \Sigma_{11}^{-1/2} \ Y_1 \ V_1 &= b_1' Y_2 = f_1' \ \Sigma_{22}^{-1/2} \ Y_2 \end{aligned}$$

O k-ésimo par de variáveis canônicas (U_k e V_k, com k≤min(n,p,q)) representam as combinações lineares de cada conjunto de variáveis, com máxima correlação e independente das demais:

$$U_{k} = e_{k}' \; \varSigma_{11}^{-1/2} \; Y_{1}, \qquad V_{k} = f_{k}' \; \varSigma_{22}^{-1/2} \; Y_{2}; \qquad Corr(U_{k}, V_{k}) = \rho_{ck}^{conficiente} \; \text{definition}$$

$$\mathfrak{R}^{(p+q)} \to \mathfrak{R}^{(m+m)}; m \le \min(n, p, q)$$

Critério de redução de dimensionalidade com o compromisso de maximizar a correlação entre os conjuntos de dados.

Solução: $\max_{a,b} Corr(U_1,V_1) = \rho_{c1}$ é atingido pelo primeiro par de variáveis canônicas, dado por

$$U_1 = a_1' Y_1 = e_1' \Sigma_{11}^{-1/2} Y_1$$
 $V_1 = b_1' Y_2 = f_1' \Sigma_{22}^{-1/2} Y_2$

- $\Rightarrow \lambda_1$ e e_1 são o maior autovalor e seu autovetor de $\sum_{11}^{-1/2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1/2} \sum_{12} \sum_{21}^{-1/2} \sum_{12}^{-1/2} \sum_{21} \sum_{11}^{-1/2} \sum_{12}^{-1/2} \sum$
- $\Rightarrow \lambda_1$ e f_1 são o maior autovalor e seu autovetor de $\Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2}$

As demais variáveis canônicas $(U_2, V_2), ..., (U_k, V_k), ..., (U_m, V_m)$ satisfazem:

$$Var(U_k) = Var(V_k) = 1$$

$$Cov(U_k, U_l) = Corr(U_k, U_l) = 0 \quad k \neq l$$

$$Cov(V_k, V_l) = Corr(V_k, V_l) = 0 \quad k \neq l$$

$$Cov(U_k, V_l) = Corr(U_k, V_l) = 0 \quad k \neq l$$

$$\Rightarrow Cov(U,V) = \begin{pmatrix} I_m & \Lambda^{1/2} \\ \Lambda^{1/2} & I_m \end{pmatrix};$$

$$\Lambda^{1/2} = \left(\sqrt{\lambda_j} = \rho_{cj}\right)$$

Considere as variáveis, Y1 e Y2, padronizadas:

$$Y_{i} = \begin{bmatrix} Y_{1i(p \times 1)} \\ Y_{2i(q \times 1)} \end{bmatrix} \implies Y_{i(p+q) \times 1}^{*} = \begin{bmatrix} Y_{1i(p \times 1)}^{*} \\ Y_{2iq \times 1}^{*} \end{bmatrix} = \begin{bmatrix} Y_{1ji}^{*} & = (Y_{1ji} - \mu_{1j}) / \sigma_{1j} \\ Y_{2ki}^{*} & = (Y_{2ki} - \mu_{2k}) / \sigma_{2k} \end{bmatrix} \quad i = 1, ..., n \quad j = 1, ..., q$$

⇒ As variáveis canônicas (dos dados padronizados) são da forma:

$$U_{k}^{*} = a_{k}^{*} 'Y_{1}^{*} = e_{k}^{*'} R_{11}^{-1/2} Y_{1}^{*}$$

$$V_{k}^{*} = b_{k}^{*'}Y_{2}^{*} = f_{k}^{*'} R_{22}^{-1/2} Y_{2}^{*}$$

$$Corr(U_{k}^{*}, V_{k}^{*}) = \frac{a_{k}^{*'} \rho_{12} b_{k}^{*}}{\sqrt{a_{k}^{*'} \rho_{11} a_{k}^{*}} \sqrt{b_{k}^{*'} \rho_{22} b_{k}^{*}}} = \rho_{ck}$$

$$\rho_{ck} = \sqrt{\lambda_{k}} = \sqrt{\lambda_{k}^{*}}$$

As correlações canônicas

 $\Rightarrow \lambda_k^*$, e_k^* : k-ésimo autovalor e autovetor de $R_{11}^{-1/2}R_{12}R_{22}^{-1}R_{21}R_{11}^{-1/2}$ são invariantes por padronização dos dados!

 \Rightarrow λ_k^* , f_k^* : k-ésimo autovalor e autovetor de $R_{22}^{-1/2}R_{21}R_{11}^{-1}R_{12}R_{22}^{-1/2}$

Relação entre as Variáveis Canônicas obtidas das Variáveis Originais

e das Variáveis Padronizadas

Variáveis Originais

$$Y_{(p+q) imes 1} = egin{bmatrix} Y_{1p imes 1} \ Y_{2q imes 1} \end{bmatrix}$$

$$U_k = a'_k Y_1 = e'_k \Sigma_{11}^{-1/2} Y_1$$

$$V_k = b_k' Y_2 = f_k' \Sigma_{22}^{-1/2} Y_2$$

Variáveis Padronizadas

$$Y_{i \ (p+q) imes 1}^* = egin{bmatrix} Y_{1i \ p imes 1}^* \ Y_{2iq imes 1}^* \end{bmatrix} = egin{bmatrix} D_{11}^{-1/2} \left(Y_{1i} - \mu_1
ight) \ D_{22}^{-1/2} \left(Y_{2i} - \mu_2
ight) \end{bmatrix}$$

$$U_k^* = a_k^* 'Y_1^* = e_k^* ' R_{11}^{-1/2} Y_1^*$$

$$V_k^* = b_k^* Y_2^* = f_k^* R_{22}^{-1/2} Y_2^*$$

$$a'_{k}Y_{1} = a'_{k}(Y_{1} - \mu_{1}) = a_{k1}(Y_{11} - \mu_{11}) + \dots + a_{kp}(Y_{1p} - \mu_{1p})$$

$$= a_{k1}\sqrt{\sigma_{11}} \frac{(Y_{11} - \mu_{11})}{\sqrt{\sigma_{11}}} + \dots + a_{kp}\sqrt{\sigma_{pp}} \frac{(Y_{1p} - \mu_{1p})}{\sqrt{\sigma_{pp}}}$$

$$= a^{*}_{k1}Y^{*}_{11} + \dots + a^{*}_{kp}Y^{*}_{11} = a^{*}_{k} Y^{*}_{11}$$

$$\Rightarrow b^{*}_{k} = a^{*}_{k}D^{1/2}_{11}$$

$$\Rightarrow b^{*}_{k} = b^{*}_{k}D^{1/2}_{22}$$

$$Y_{(p+q)\times 1} = \begin{bmatrix} Y_{1p\times 1} \\ Y_{2q\times 1} \end{bmatrix} \Rightarrow Y_{i\ (p+q)\times 1}^* = \begin{bmatrix} Y_{1i\ p\times 1} \\ Y_{2iq\times 1}^* \end{bmatrix} = \begin{bmatrix} D_{11}^{-1/2} (Y_{1i} - \mu_1) \\ D_{22}^{-1/2} (Y_{2i} - \mu_2) \end{bmatrix}$$

$$U_k = a_k' Y_1$$

$$V_k = b_k' Y_2$$

$$V_k^* = b_k'' Y_2^* = b_k' D_{22}^{1/2} Y_2^*$$

$$\rho_{c}\left(U_{k}^{*},V_{k}^{*}\right) = \frac{a_{k}^{*'}R_{12}b_{k}^{*}}{\sqrt{a_{k}^{*'}R_{11}a_{k}^{*}}\sqrt{b_{k}^{*'}R_{22}b_{k}^{*}}} = a_{k}^{*'}R_{12}b_{k}^{*} = a_{k}^{'}D_{11}^{1/2}Corr\left(Y_{1}^{*},Y_{2}^{*}\right)D_{22}^{1/2}b_{k}$$

$$= a_{k}^{'}D_{11}^{1/2}Corr\left(D_{11}^{-1/2}(Y_{1}-\mu_{1}),D_{22}^{-1/2}(Y_{2}-\mu_{2})\right)D_{22}^{1/2}b_{k}$$

$$= a_{k}^{'}Corr\left((Y_{1}-\mu_{1}),(Y_{2}-\mu_{2})\right)b_{k} = a_{k}^{'}Corr\left(Y_{1},Y_{2}\right)b_{k}^{*} = \rho_{c}\left(U_{k},V_{k}\right)$$

$$= a_{k}^{'}Corr\left((Y_{1}-\mu_{1}),(Y_{2}-\mu_{2})\right)b_{k} = a_{k}^{'}Corr\left(Y_{1},Y_{2}\right)b_{k}^{*} = \rho_{c}\left(U_{k},V_{k}\right)$$

- Os coeficientes canônicos das variáveis padronizadas podem ser obtidos diretamente dos coeficientes (cargas) das variáveis originais
- O coeficiente de correlação canônico das variáveis originais e das variáveis padronizadas é o mesmo (invariante por padronização dos dados)

Morfometria cefálica para os dois primeiros filhos de 25 famílias

	1° Fill	าด	2° F	ilho
Família	Comprimento	Perímetro	Comprimento	Perímetro
1	191	155	179	145
2	195	149	201	152
3	181	148	185	149
4	183	153	188	149
5	176	144	171	142
6	208	157	192	152
7	189	150	190	149
8	197	159	189	152
9	188	152	197	159
10	192	150	187	151
11	179	158	186	148
12	183	147	174	147
13	174	150	185	152
14	190	159	195	157
15	188	151	187	158
16	163	137	161	130
17	195	155	183	158
18	186	153	173	148
19	181	145	182	146
20	175	140	165	137
21	192	154	185	152
22	174	143	178	147
23	176	139	176	143
24	197	167	200	158
25	190	163	187	150
Média	185,72	151,12	183,84	149,24
Var.	95,29	54,36	100,81	45,02

Obtenha as variáveis canônicas das variáveis padronizadas.

Interprete os resultados.

Morfometria cefálica para os dois primeiros filhos de 25 famílias Considere a análise de Correlação Canônica das Variáveis Padronizadas:

$$R_{11} = \begin{bmatrix} 1 & 0.73456 \\ 0.73456 & 1 \end{bmatrix}$$
 $R_{22} = \begin{bmatrix} 1 & 0.83925 \\ 0.83925 & 1 \end{bmatrix}$

Autovalores: 0,6218 0,0029
$$\Rightarrow \hat{\rho}_{c1}^* = \sqrt{0,6218} = 0,7886$$
 $\hat{\rho}_{c2}^* = 0,0539$

Coeficientes das
$$\begin{cases} A_{2\times 2}^* = \begin{pmatrix} a_1^* & a_2^* \end{pmatrix} & a_1^* = \begin{pmatrix} 0,552 \\ 0,522 \end{pmatrix} & a_2^* = \begin{pmatrix} 1,367 \\ -1,378 \end{pmatrix} \end{cases}$$
 Variáveis canônicas:
$$\begin{cases} B_{2\times 2}^* = \begin{pmatrix} b_1^* & b_2^* \end{pmatrix} & b_1^* = \begin{pmatrix} 0,505 \\ 0,538 \end{pmatrix} & b_2^* = \begin{pmatrix} 1,767 \\ -1,757 \end{pmatrix}$$

$$B_{2\times2}^* = \begin{pmatrix} b_1^* & b_2^* \end{pmatrix} \qquad b_1^* = \begin{pmatrix} 0,505 \\ 0,538 \end{pmatrix} \qquad b_2^* = \begin{pmatrix} 1,767 \\ -1,757 \end{pmatrix}$$

Morfometria cefálica para os dois primeiros filhos de 25 famílias

Se somente a primeira variável canônica (das variáveis padronizadas) é usada, temos:

$$U_1^* = 0,552 Y^*_{C_-C_-1} + 0,522 Y^*_{P_-C_-1}$$
 $V_1^* = 0,505 Y^*_{C_-C_-2} + 0,538 Y^*_{P_-C_-2}$

Estas são responsáveis pela maior correlação (r=0,79) entre as variáveis cefálicas dos dois primeiros filhos das famílias estudadas. As variáveis individuais contribuem com "pesos" muito próximos.

A segunda variável canônica explica muito pouco (r=0,05) da correlação entre as variáveis dos dois primeiros filhos, sendo definida por:

$$U_{2}^{*} = 1,367 Y_{C_C_1}^{*} - 1,378 Y_{P_C_1}^{*}$$
 $V_{2}^{*} = 1,767 Y_{C_C_2}^{*} - 1,757 Y_{P_C_2}^{*}$

Morfometria cefálica para os dois primeiros filhos de 25 famílias

Análise de Correlação Canônica das Variáveis Padronizadas:

$$U_{1}^{*} = 0,552 Y^{*}_{C_C_1} + 0,522 Y^{*}_{P_C_1}$$

$$V_{1}^{*} = 0,505 Y^{*}_{C_C_2} + 0,538 Y^{*}_{P_C_2}$$

$$\hat{\rho}_{1}^{*} = Corr(U_{1}^{*}, V_{1}^{*}) = 0,79$$
Análise de Correlação Canônica das Variáveis Originais:

$$\Rightarrow a_{1} = a_{1}^{*\prime} D_{11}^{-1/2} = (0,552 \quad 0,522) \begin{pmatrix} 1/\sqrt{95,29} & 0 \\ 0 & 1/\sqrt{54,36} \end{pmatrix} = (0,057 \quad 0,071)$$

$$\Rightarrow b_{1} = b_{1}^{*\prime} D_{22}^{-1/2} = (0,505 \quad 0,538) \begin{pmatrix} 1/\sqrt{100,81} & 0 \\ 0 & 1/\sqrt{45,02} \end{pmatrix} = (0,050 \quad 0,080)$$

$$U_{1} = [0,057] Y_{C_{-}C_{-}1} + [0,071] Y_{P_{-}C_{-}1}$$

$$V_{1} = [0,050] Y_{C_{-}C_{-}2} + [0,080] Y_{P_{-}C_{-}2}$$

$$\hat{\rho}_{1} = Corr(U_{1}, V_{1}) = 0,79$$

V	ariáveis	originais		V	ariáveis	padroniz	zadas		Variáveis	canônica	ıs
Y_CC1	Y_PC1	Y_CC2	Y_PC2	Y.*CC1	Y*PC1	Y <u>*</u> CC2	Y <u>*</u> PC2	U*1	V*1	U1	V1
191	155	179	145	0,541	0,526	-0,482	-0,632	0,573	-0,583	21,892	20,550
195	149	201	152	0,951	-0,288	1,709	0,411	0,375	1,084	21,694	22,210
181	148	185	149	-0,484	-0,423	0,116	-0,036	-0,488	0,039	20,825	21,170
183	153	188	149	-0,279	0,255	0,414	-0,036	-0,021	0,190	21,294	21,320
176	144	171	142	-0,996	-0,966	-1,279	-1,079	-1,054	-1,226	20,256	19,910
208	157	192	152	2,282	0,798	0,813	0,411	1,676	0,632	23,003	21,760
189	150	190	149	0,336	-0,152	0,614	-0,036	0,106	0,291	21,423	21,420
197	159	189	152	1,156	1,069	0,514	0,411	1,196	0,481	22,518	21,610
188	152	197	159	0,234	0,119	1,311	1,455	0,191	1,444	21,508	22,570
192	150	187	151	0,643	-0,152	0,315	0,262	0,276	0,300	21,594	21,430
179	158	186	148	-0,688	0,933	0,215	-0,185	0,107	0,009	21,421	21,140
183	147	174	147	-0,279	-0,559	-0,980	-0,334	-0,446	-0,675	20,868	20,460
174	150	185	152	-1,201	-0,152	0,116	0,411	-0,742	0,280	20,568	21,410
190	159	195	157	0,438	1,069	1,112	1,156	0,800	1,184	22,119	22,310
188	151	187	158	0,234	-0,016	0,315	1,306	0,120	0,861	21,437	21,990
163	137	161	130	-2,327	-1,915	-2,275	-2,867	-2,284	-2,691	19,018	18,450
195	155	183	158	0,951	0,526	-0,084	1,306	0,799	0,660	22,120	21,790
186	153	173	148	0,029	0,255	-1,080	-0,185	0,149	-0,645	21,465	20,490
181	145	182	146	-0,484	-0,830	-0,183	-0,483	-0,700	-0,352	20,612	20,780
175	140	165	137	-1,098	-1,508	-1,876	-1,824	-1,393	-1,929	19,915	19,210
192	154	185	152	0,643	0,391	0,116	0,411	0,559	0,280	21,878	21,410
174	143	178	147	-1,201	-1,101	-0,582	-0,334	-1,238	-0,473	20,071	20,660
176	139	176	143	-0,996	-1,644	-0,781	-0,930	-1,408	-0,895	19,901	20,240
197	167	200	158	1,156	2,154	1,610	1,306	1,762	1,515	23,086	22,640
190	163	187	150	0,438	1,611	0,315	0,113	1,083	0,220	22,403	21,350
				1				<u></u>	;	<u> </u>	_

 $r(U^*1,V^*1) = 0.789$ r(U1,V1) = 0.789

Há interesse em calcular as correlações entre as variáveis canônicas e cada uma das variáveis originais (ou padronizadas) ⇒ calcular as correspondentes correlações de Pearson

Morfometria cefálica para os dois primeiros filhos de 25 famílias

Interpretação das variáveis canônicas das variáveis padronizadas

Cargas:
$$A^* = \begin{pmatrix} 0.552 & 0.522 \\ 1.367 & -1.378 \end{pmatrix}$$

$$B^* = \begin{pmatrix} 0,505 & 0,538 \\ 1,767 & -1,757 \end{pmatrix}'$$

Correlações:

$$Corr(U_1^*, Y_{11}^*) = 0.935$$
 $Corr(U_1^*, Y_{12}^*) = 0.927$ $Corr(U_1^*, Y_{21}^*) = 0.754$ $Corr(U_1^*, Y_{22}^*) = 0.758$ $Corr(U_2^*, Y_{11}^*) = 0.354$ $Corr(U_2^*, Y_{12}^*) = -0.373$ $Corr(U_2^*, Y_{21}^*) = 0.016$ $Corr(U_2^*, Y_{22}^*) = -0.014$

$$Corr(V_1^*, Y_{11}^*) = 0,737$$
 $Corr(V_1^*, Y_{12}^*) = 0,731$ $Corr(V_1^*, Y_{21}^*) = 0,956$ $Corr(V_1^*, Y_{22}^*) = 0,961$ $Corr(V_2^*, Y_{11}^*) = 0,019$ $Corr(V_2^*, Y_{12}^*) = 0,0191$ $Corr(V_2^*, Y_{21}^*) = 0,292$ $Corr(V_2^*, Y_{22}^*) = -0,274$

Note que o primeiro par de variáveis canônicas, (U*₁,V*₁), tem as maiores correlações com as correspondentes variáveis padronizadas.

Morfometria cefálica para os dois primeiros filhos de 25 famílias

$$Y_{25\times(2+2)}^* = \begin{pmatrix} Y_{1_{25\times2}}^* & Y_{2_{25\times2}}^* \end{pmatrix} \rightarrow \begin{pmatrix} U_{25\times2}^* & V_{25\times2}^* \end{pmatrix}$$

Correlação (Y1*,U*)

 U^*_1 U^*_2 C1 0.9352877 -0.3538884 P1 0.9271512 0.3746875

Correlação (Y2*,U*)

 U^*_1 U^*_2 C2 0.7539771 -0.01572908 P2 0.7582663 0.01474027

Correlação (Y1*,V*)

 V_{1}^{*} V_{2}^{*} C1 0.7374817 -0.01901786 P1 0.7310660 0.02013559

Correlação (Y2*,V*)

V*₁ V*₂
C2 0.9562074 -0.2926900
P2 0.9616470 0.2742901

As primeiras variáveis canônicas, U*₁ e V*₁, têm as maiores correlações com as variáveis padronizadas.

As correlações são invariantes por padronização!

Propriedades das Variáveis Canônicas (*min(n,p,q)*)

- Variâncias Unitárias: $Var(U_k) = Var(V_k) = 1$
- ▶ Não Correlacionadas (Entre pares): $Corr(U_k, U_l) = Corr(V_k, V_l) = Corr(U_k, V_l) = 0$
 - Correlação Máxima (Dentro do par): $Corr(U_k, V_k) = \rho_{ck} = \sqrt{\lambda_k}$
- Correlação entre as Variáveis Canônicas e as Variáveis Originais: $(A_{p \times m}; B_{q \times m})$

$$U_{i\,m\times 1} = A'Y_{1i} \begin{bmatrix} Corr(U;Y_1) = A'\Sigma_{11}D_{11}^{-1/2} = A^{*'}R_{11} = Corr(U^*,Y_1^*) & \text{Na prática, calcular a corr}(U;Y_2) = A'\Sigma_{12}D_{22}^{-1/2} = A^{*'}R_{12} = Corr(U^*,Y_2^*) & \text{Correlação de Pearson} \\ Corr(V;Y_1) = B'\Sigma_{21}D_{11}^{-1/2} = B^{*'}R_{21} = Corr(V^*,Y_1^*) & \text{Corr}(V;Y_2) = B'\Sigma_{22}D_{22}^{-1/2} = B^{*'}R_{22} = Corr(V^*,Y_2^*) \end{bmatrix}$$

CCA: Dados dos Filhos padronizados Representação dos escores canônicos

CCA: Dados dos Filhos padronizados Representação das cargas e dos escores canônicos

Correlação (Y1*,U*)

U*₁ U*₂ C1 0.9352877 -0.3538884 P1 0.9271512 0.3746875

Correlação (Y2*,U*)

U*₁ U*₂
C2 0.7539771 -0.01572908
P2 0.7582663 0.01474027

Correlações dos escores, U*₁ e U*₂, com as variáveis Escores (na dimensão 1 e 2) dos indivíduos para o primeiro grupo de variáveis (Filho 1)

Correlação Canônica Obtenção de Escores para a Integração de Bancos de Dados

 U_1 e V_1 são escores, obtidos da redução de dimensionalidade dos dados $Y_{nx(p+q)}$. É o par de variáveis latentes, de cada conjunto de dados, com maior correlação. Gráfico U_1 x V_1 pode ser usado para representar o padrão de dispersão das observações nesta redução de dimensionalidade!

Análise de Correlação Canônica e Integração de Bancos de Dados:

Integração de Bancos de Dados

Dados: mesmas variáveis (Var1 e Var2) avaliadas sob as condições X e Y

Alternativa 1: Integração pela Média (obter a média de cada variável)

Alternativa 2: Integração pela Diferença (obter a diferença entre X e Y em cada var) Alternativa 3: obter as variáveis canônicas U1 eV1 (Correlação canônica).

Diferentes critérios podem ser usados na Integração de BD!

Redução de Dimensionalidade

Componente Principal *m≤(n,"p") m≤(n,"q")*

Correlação Canônica *m≤min(n,p,q)*

$$U_1 = a_1'Y_1 = e_1' \sum_{11}^{-1/2} Y_1 = e_1' P_1 A^{-1/2} P_1' Y_1$$

$$CP \text{ de } Y_1$$

$$Spectral \text{ de } \Sigma_{11}$$

Redução de Dimensionalidade

Diferentes alternativas de análise para obter os vetores reducionistas de um conjunto de dados multivariados

Análises Multivariadas

- **Dados Quantitativos**
- Dados Categóricos

An Correspond.

N-Integração de Bancos de Dados

N-Integração entre múltiplos níveis de informação avaliados nas mesmas unidades amostrais!

P-Integração entre múltiplos níveis de informação avaliados nas mesmas variáveis (metanálise)!

X: Matriz(es) de Dados

Y: Resposta de interesse (em geral, Classes)

⇒ Multiomics (R)

Análises Generalizadas

Análises Multivariadas

- Dados Quantitativos
- Dados Categóricos

PLS (Partial Least Square)

PLS para múltiplas respostas

ACC_AD