Canonical automata via distributive law homomorphisms

Stefan Zetzsche ¹ Gerco von Heerdt ¹ Alexandra Silva ^{1,3}
Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

³Cornell University

September 3, 2021

Ohttps://arxiv.org/abs/2104.13421

Minimal DFA

Up to isomorphism, the unique size-minimal DFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

Minimal NFA

Two non-isomorphic¹ size-minimal NFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

Is there a canonical NFA for \mathcal{L} ?

¹Arnold, Dicky, and Nivat 1992.

Minimal NFA

Is there a subclass $C \subseteq NFA$, such that any regular language \mathcal{L} admits a canonical acceptor $c(\mathcal{L}) \in C$ size-minimal in C?

Example: The canonical RFSA

A NFA accepting $\mathcal{L} \subseteq A^*$ is RFSA, if every state accepts a residual $u^{-1}\mathcal{L} = \{v \in A^* \mid uv \in \mathcal{L}\}$ for some $u \in A^*$.

The canonical RFSA for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ prime residual of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

Theorem (2)

The canonical RFSA for \mathcal{L} is size-minimal among RFSA for \mathcal{L} .

²Denis, Lemay, and Terlutte 2002.

Example: The canonical RFSA

How does one come up with this definition? Why does it work?

$NFA \rightarrow DFA$ (in CSL)

The classical powerset construction converts a NFA into an equivalent DFA.

 $^{^{3}\}varepsilon^{\sharp}(U)=\bigvee_{u\in U}\varepsilon(u),\quad \delta_{a}^{\sharp}(U)=\bigcup_{u\in U}\delta_{a}(u)$

DFA (in CSL) \rightarrow NFA

Consider the reverse to the powerset construction.

$$\langle E, D \rangle : X \to 2 \times X^A$$

$$\downarrow^4 \qquad \qquad 2, X \in \mathsf{CSL}$$

$$\langle \varepsilon, \delta \rangle : Y \to 2 \times \mathcal{P}(Y)^A$$

Possible? Maybe, choose Y as a generator for X? Can we find a size-minimal generator Y?

 $^{^4}$ Constraint: $\langle D, E \rangle \sim \langle \delta^{\sharp}, \varepsilon^{\sharp} \rangle$

T-DFA $\rightarrow T$ -NFA

Generalises to other algebraic theories T:

$$X \to B \times X^A$$

$$\downarrow \qquad \qquad B, X \in Alg(T)$$
 $Y \to B \times T(Y)^A$

Allows the construction of canonical (minimal) automata:

- canonical RFSA⁵ (T=CSL, B=2)
- canonical nominal RFSA⁶ (T=Nominal CSL, B=2)
- minimal xor automaton⁷ ($T=\mathbb{Z}_2$ -VSP, B=2)

⁵Denis, Lemay, and Terlutte 2002.

⁶Moerman and Sammartino 2020.

⁷Vuillemin and Gama 2010.

Example: The átomaton

Previous approach is not general enough to capture e.g. the átomaton⁸, which intertwines CABA and CSL.

The <u>átomaton</u> for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ atom of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

⁸Brzozowski and Tamm 2014.

S-DFA $\rightarrow T$ -NFA

Need a situation parametric in two theories S, T:

$$X o B imes X^A$$

$$\downarrow \qquad \qquad B, X \in \mathsf{Alg}(S)$$
 $Y o B imes T(Y)^A$

Rough idea:

- átomaton (S = CABA, T = CSL, B = 2)
- distromaton 9 (S = CDL, T = CSL, B = 2)
- ...

⁹Myers et al. 2015.

Contributions

- Categorical framework for the derivation of canonical automata
- Strictly improve expressivity of previous work
- Cover categories different from set, e.g. nominal sets
- Discover a new canonical acceptor by relating mod-2 vector spaces with CABAs
- Present sufficient conditions for the existence of minimal acceptors
- Subsume and establish new minimality results

Overview

Formally, we make the following generalisations:

CSL	$TX o X \in Alg(T)$
DFA	$X o FX \in Coalg(F)$
CSL-DFA	$TX o X o FX \in Bialg(\lambda)$
CSL-NFA	$T^2Y o TY o FTY \in Bialg(\lambda)$

Generators

A generator¹⁰ for a T-algebra $\langle X, h \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y and a pair of morphisms

where $i^{\sharp} := h \circ Ti : TY \to X$ is the unique extension of $i : Y \to X$ to a T-algebra homomorphism¹¹.

If in addition $d \circ i^{\sharp} = \mathrm{id}_{TY}$, we speak of a basis.

¹⁰Arbib and Manes 1975.

¹¹For instance, every *T*-algebra $\langle X, h \rangle$ is generated by $\langle X, \mathrm{id}_X, \eta_X \rangle$.

Generators

 $\langle Y,i,d \rangle$ is a generator for an algebra $\langle X,h \rangle$ over the powerset monad iff for all $x \in X$

$$x = \bigvee_{y \in d(x)}^{h} i(y).$$

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the free mod-2 vector-space monad iff for all $x \in X$

$$x = \bigoplus_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

Generators

Let $\langle X,h,k\rangle$ be a λ -bialgebra and $\langle Y,i,d\rangle$ a generator for the T-algebra $\langle X,h\rangle$.

Lemma

The morphism $h \circ Ti : TY \to X$ is a λ -bialgebra homomorphism

$$h \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \rightarrow \langle X, h, k \rangle.$$

Example: The canonical RFSA

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CSL-structured DFA (X, h, k) for \mathcal{L} ;
- (c) The canonical RFSA $\langle J(\langle X, h \rangle), Fd \circ k \circ i \rangle$ for \mathcal{L} .

Distributive law homomorphisms

A distributive law homomorphism¹² $\alpha: \lambda^S \to \lambda^T$ between $\lambda^S: SF \Rightarrow FS$ and $\lambda^T: TF \Rightarrow FT$ consists of a natural transformation $\alpha: T \Rightarrow S$ satisfying:

Lemma $(^{13})$

Then $\alpha\langle X, h, k \rangle := \langle X, h \circ \alpha_X, k \rangle$ and $\alpha(f) := f$ defines a functor $\alpha : \mathsf{Bialg}(\lambda^S) \to \mathsf{Bialg}(\lambda^T)$.

¹²Watanabe 2002; Power and Watanabe 2002.

¹³Klin and Nachyla 2015; Bonsangue et al. 2013.

Example: The átomaton

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CABA-structured DFA $\langle X, h, k \rangle$ for \mathcal{L} ;
- (c) The átomaton $\langle \operatorname{At}(\langle X,h\rangle), Fd\circ k\circ i\rangle$ for $\mathcal{L}.$

The minimal xor-CABA automaton

"The minimal xor-CABA automaton is to the minimal xor automaton what the átomaton is to the canonical RFSA":

Minimality

We establish minimality among the following subclasses of $\mathcal Y$ accepting $\mathcal L\colon$

Lemma

canonical RFSA	$\overline{obs(\mathcal{Y})}^{CSL} \subseteq \overline{Der(\mathcal{L})}^{CSL}$
minimal xor	all
átomaton	$\overline{obs(\mathcal{Y})}^{CSL} = \overline{obs(\mathcal{Y})}^{CABA}$
distromaton	$\overline{obs(\mathcal{Y})}^{CSL} = \overline{obs(\mathcal{Y})}^{CDL}$
minimal xor-CABA	$\overline{obs(\mathcal{Y})}^{\mathbb{Z}_2-Vect} = \overline{obs(\mathcal{Y})}^CABA$

Future work

Some ideas for future work:

- Cover the canonical probabilistic RFSA¹⁴ and canonical alternating RFSA¹⁵;
- Utilise distributive laws between two different categories (e.g. automata product);
- Generalise Brzozowski¹⁶ inspired double reversal characterisations.

¹⁴Esposito et al. 2002.

¹⁵Berndt et al. 2017.

¹⁶Brzozowski 1962.

The end

Thanks for listening!

¹⁶https://arxiv.org/abs/2104.13421