Xception: Deep Learning with Depthwise Separable Convolutions

Introduction

Francois Chollet, Google, Inc.

Jordan Kevin Buwa Mbouobda

African Master's in Machine Intelligence

August 28, 2025

1 / 23

Jordan Buwa AMMI Xception August 28, 2025

Overview

- 1 Introduction
- 2 Inception model
- 3 Architecture overview
 - Entry flow
 - Middle Flow
 - Exit Flow

7 Conclusion

- 4 Separable convolution
- 5 Training and evaluation
- 6 Comparison with Inception

2/23

Jordan Buwa AMMI Xception August 28, 2025

Introduction
O

Introduction

Introduction and Motivation

Introduction

Convolutional layers in CNNs typically learn spatial and cross-channel correlations **jointly**, leading to:

- High computational cost
- Large number of parameters

Inception modules improved efficiency by:

- Using 1 × 1 convolutions for channel mixing
- \blacksquare Followed by 3 \times 3 or 5 \times 5 convolutions for spatial filtering

Xception takes this idea to the extreme:

- Depthwise convolution: spatial filtering per channel
- Pointwise convolution: mixes channel-wise information
- Fully decouples spatial and cross-channel learning

Result: A simpler, more efficient architecture that outperforms Inception V3 with similar parameter count.

Jordan Buwa AMMI Xception August 28, 2025

4/23

Inception model

Jordan Buwa AMMI Xception August 28, 2025 5/23

Inception vs. Depthwise Separable Conv

Introduction

- Inception: Partial separation of concerns.
- Depthwise Separable Convolution:
 - 1 Depthwise convolution: spatial filtering, per channel.
 - Pointwise (1x1) convolution: cross-channel mixing.
- Xception = Extreme version of Inception.

Figure: Inception V3 (source)

6/23

Jordan Buwa AMMI Xception August 28, 2025

Architecture overview

Entry Flow

Entry flow

- Processes raw input and reduces spatial dimensions while increasing depth.
- Two standard Conv2D layers:
 - Followed by ReLU and BatchNorm
- Three modules, each containing:
 - Two or three SeparableConv2D layers
 - Residual shortcut (with 1 × 1 Conv if needed)
 - MaxPooling2D for downsampling

Jordan Buwa AMMI Xception August 28, 2025 8 / 23

Middle Flow

- Core feature extractor, repeated 8 times
- Each module:
 - Three SeparableConv2D layers
 - Each followed by ReLU and BatchNorm
 - Ends with a residual connection
- No change in feature map size or depth
- Acts as a deep tower for high-level feature extraction

Jordan Buwa AMMI Xception August 28, 2025 9 / 23

Exit Flow

- Final transformation before classification
- Two SeparableConv2D layers + BatchNorm + ReLU
- Residual connection (may include 1 x 1 Conv)
- Final SeparableConv2D, followed by:
 - Global Average PoolingFully-connected or logistic regression layer
- For ImageNet: Softmax over 1000 classes

Figure: Xception Architecture (source)

Jordan Buwa AMMI Xception August 28, 2025 10 / 23

Separable convolution

Jordan Buwa AMMI Xception August 28, 2025 11 / 23

Depthwise Separable Convolution

Introduction

- Depthwise: One filter per input channel.
- Pointwise: 1x1 convolution combines channels.
- Much fewer parameters than regular Conv2D.

Standard Conv: $D_k \cdot D_k \cdot M \cdot N$ Separable Conv: $D_k \cdot D_k \cdot M + M \cdot N$

Figure: Depthwise separable convolution (source)

Jordan Buwa AMMI Xception August 28, 2025 12 / 23

Non-linearity Effects

- ReLU/ELU between depthwise and pointwise layers were tested.
- Result: Omitting the non-linearity improves performance.
- Explanation: Non-linearity may harm shallow (1-channel) intermediate spaces.

Figure: Effect of non-linearity

Jordan Buwa AMMI Xception August 28, 2025 13 / 23

Training and evaluation

Jordan Buwa AMMI Xception August 28, 2025 14 / 23

Introduction Inception model Architecture overview Separable convolution OO OOO Conduction OOO Conduction OOO OOO Conduction OOO OOO Conduction OOO OOO Conduction OOO OOO OOO

Dataset

Datasets: CIFAR-10 Overview

- **Dataset:** 60,000 color images of size $32 \times 32 \times 3$ (RGB).
- Classes: 10 categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship. truck).
- **Split:** 45,000 training images, 5,000 validation images and 10,000 test images.
- Use: Standard benchmark for image classification, data augmentation, and deep learning methods.

Training setup:

Adam, GradScaler for dynamic gradient scaling

CIFAR-10 Preprocessing Overview

■ Training set:

Introduction

- Resize to 320 \times 320, then random crop 299 \times 299
- Random horizontal flip (p=0.5) for augmentation
- Convert to tensor, scale to [0, 1]
- Normalize using ImageNet stats: $\mu = (0.485, 0.456, 0.406), \quad \sigma = (0.229, 0.224, 0.225)$

Validation / Test sets:

- Resize to 299 × 299 and center crop
- Tensor conversion + same normalization
- Split: 45k train, 5k val, 10k test
- Batch size: 128 (DataLoader with shuffle for train, fixed order for val/test)

Jordan Buwa AMMI Xception August 28, 2025 16 / 23

Comparison with Inception

Jordan Buwa AMMI Xception August 28, 2025 17 / 23

Performance Comparison

Introduction

- Model Size: Inception V3 is slightly larger with 24.3M parameters compared to Xception's 20.8M, which is about 17% more.
- Accuracy: Inception V3 achieves an accuracy of 85.44%, outperforming Xception's 84.87%. This is a gain of +0.57% with a 17% increase in parameters.
- Efficiency (Accuracy per million parameters):
 - Inception V3 $\rightarrow \frac{85.44}{24.3} \approx 3.52\%$ per million parameters
 - Xception $\rightarrow \frac{84.87}{20.8} \approx 4.08\%$ per million parameters

Xception is more parameter-efficient, but Inception V3 provides higher absolute performance.

	Model/performances	Parameters	Accuracy	Running time (s)
	Inception V3	24, 371, 444	85.44%	1902.98
	Xception	20, 825, 402	84.87%	3116.90

Table: Performance Comparison

The difference in running time simply comes from the fact that Inception induloaded using pytorch API.

Jordan Buwa AMMI Xception August 28, 2025 18 / 23

Training curves

Figure: Training Xception

Figure: Training Inception V3

 Jordan Buwa
 AMMI
 Xception
 August 28, 2025
 19 / 23

Training curves

Introduction

Figure: Inception V3 vs Xception

Figure: Xception with different activations

Conclusion

Conclusion

Introduction

- Xception is a simple, scalable CNN architecture.
- Replaces Inception modules with depthwise separable convolutions.
- Outperforms Inception V3 on both ImageNet and JFT at equal parameter cost.
- Easy to implement and tune with modern frameworks.

The implementation can be found here.

The full article can be found here.

Jordan Buwa AMMI Xception August 28, 2025 22 / 23

Djeredjef!

Jordan Buwa AMMI Xception August 28, 2025 23 / 23