Overfitting and Structural Risk Minimization

Dániel Csaba

Topics in Computational Economics New York University

April 15, 2016

Introduction

Setting of the Problem

One of the central issues in finite sample statistical inference is overfitting

scikit-learn package offers remedies

- regularization
- penalty term
- tuning parameter ...

Objective: try and look at these in a common framework

Statistical Learning Problem

Objective: prediction

- learn functional dependence from finite observations

Stable environment – probabilistic relationship

$$(y, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^d$$

 $P(y, \mathbf{x}) = P(y \mid \mathbf{x}) \cdot P(\mathbf{x})$

IID observations

$$\mathcal{D}_n := \{(y_i, \mathbf{x}_i)\}_{i=1}^n$$

- independent each observation yields maximum information
- identically distributed learning is possible

Loss and Target

Provide a function, $f: X \mapsto Y$, which predicts y "well" as a function of \mathbf{x}

Define what we mean by "well"

- some form of discrepancy—loss: $L(y, f(\mathbf{x}))$ —in expectation

$$R(f) := \int_{VY} L(y, f(\mathbf{x})) dP(y, \mathbf{x})$$

These define the target

$$f_0 := \arg \inf_{f \in \mathcal{F}} R(f)$$

Empirical Risk Minimization Principle

Issue: the true distribution P is unknown

Analogue estimation

- use empirical distribution and minimize empirical risk

$$\hat{f}_n := \arg \min_{f \in \mathcal{F}} R_{emp}(f; n)$$

$$= \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathbf{x}_i))$$

Minimizing over all functions in \mathcal{F} would not make sense

Instead, choose a hypothesis space $\mathcal{H} \subseteq \mathcal{F}$

Target and Hypothesis Space

The form of the loss function defines a feature of the distribution

- regression conditional mean (squared), median (absolute)
- classification logistic (cross entropy)
- density MLE (-log(density))

Choice of hypothesis space, $\mathcal{H} \subseteq \mathcal{F}$, the class within which one approximates the target

- linear
- polynomial
- parametric derived from theoretical model

Estimation- and Approximation Error

Tension while choosing \mathcal{H}

Decomposing the risk – denote $f_{\mathcal{H}} := \arg \min_{f \in \mathcal{H}} R(f)$

$$R(\hat{f}_n) - R(f_0) = \underbrace{R(\hat{f}_n) - R(f_{\mathcal{H}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{H}}) - R(f_{\mathcal{F}})}_{\text{approximation error}}$$

Estimation error

- random quantity
- noise the estimator picks up

Approximation error

- deterministic quantity
- distance between \mathcal{H} and target

Overfitting and Noise

Overfitting: pick the hypothesis with lower epirical risk and ultimately get higher true risk

Too much attention payed to a given realization of the sample

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{H}})$ is a random quantity

Stochastic noise

- observations from the target are coming with noise
- higher level implies that the esimator is picking up more noise

Deterministic noise

- difference between $f_{\mathcal{H}}$ and $f_{\mathcal{F}}$ acts like noise
- unfortunately increasing ${\mathcal H}$ does not only affect the deterministc noise

Consistency and No Free Lunch

We can estimate
$$\hat{f}_n := \arg\min_{f \in \mathcal{H}} R_{emp}(f; n)$$

We are interested in
$$R_{emp}(\hat{f}_n; n) \simeq R(\hat{f}_n)$$

Conditions for two-sided uniform convergence (VC 1968, 1971)

$$\lim_{n \to \infty} P\Big\{ \sup_{f \in \mathcal{H}} \big| R(f) - R_{emp}(f; n) \big| > \epsilon \Big\} = 0 \quad \forall \epsilon > 0.$$

No free lunch (Devroye et al 1996)

- Any algorithm, in any finite sample can be arbitrarily far from the true risk for some distributions.

Capacity and Non-asymptotic Bounds

Capacity measure of the set $\{L(y, f(\mathbf{x})), f \in \mathcal{H}\}$ plays key role – $C_{\mathcal{H}}$

Bounds on estimation error

 $\forall f \in \mathcal{H}$ with probability at least $1 - \delta$ we have that

$$|R(f) - R_{emp}(f; n)| \le \Omega(C_{\mathcal{H}}, n, \delta)$$

Bound gets

- tighter as n increases, δ decreases
- looser as capacity $C_{\mathcal{H}}$ increases

Structural Risk Minimization

The bound on the risk consists of two terms

$$R(\hat{f}_n^{\mathcal{H}}) = R_{emp}(\hat{f}_n^{\mathcal{H}}) + (R(\hat{f}_n^{\mathcal{H}}) - R_{emp}(\hat{f}_n^{\mathcal{H}}))$$
$$R(\hat{f}_n) \le R_{emp}(\hat{f}_n) + \Omega(C_{\mathcal{H}}, n)$$

Empirical risk – monotone decreasing in \mathcal{H}

Confidence interval – increasing in the capacity of ${\mathcal H}$

Objective is to optimally trade-off in-sample error and reliability of that error

Structural Risk Minimization

Capacity has to be a control variable

Define a structure on $\{L(y, f(\mathbf{x})), f \in \mathcal{F}\}$

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \subseteq \mathcal{H}_k \subseteq \cdots \quad (\cup_i \mathcal{H}_i = \mathcal{F})$$

such that the corresponding capacities are finite and satisfy

$$C_{\mathcal{H}_1} \le C_{\mathcal{H}_2} \le \dots \le C_{\mathcal{H}_k} \le \dots$$

THe SRM principle chooses \mathcal{H}_k and corresponding \hat{f}_n^k according to

$$\min_{k} \left\{ R_{emp}(\hat{f}_{n}^{k}) + \Omega(C_{\mathcal{H}_{k}}, n) \right\}$$

Model Selection in Practice

In practice the bounds are rarely tight and other methods are used to select the model

Heuristically, the sturcture often takes the form

$$(\mathcal{F}, \lambda_1) \subseteq (\mathcal{F}, \lambda_2) \subseteq \cdots \subseteq (\mathcal{F}, \lambda_k) \subseteq \cdots$$

Think of $\mathcal{H}_k = \{ f \in \mathcal{F} : \ \Omega(f) \le A_k \}$

Then, one implements the SRM principle as

$$\min_{f \in \mathcal{F}} R_{emp}(f) + \lambda_k \Omega(f)$$

To choose the tuning parameter, λ_k^* , use validation, cross-validation

