- Frequency Table

Previous Ownership	Frequency	Relative Frequency
None	85	$\frac{85}{500} = 0.17$
Windows	60	$\frac{60}{500} = 0.12$
Macintosh	355	$\frac{355}{500} = 0.71$
Total	500	$\frac{500}{500} = 1$

- Stem and Leaf

3|2337 2|001112223889 1|2244456888899 0|69

3|7 3|233 2|889 2|001112223 1|56888899 1|22444 0|69

11	4	
	3	7
332	3	233
8865	2	889
44331110	2	001112223
987776665	1	56888899
321	1	22444
7	0	69

- Box and Plot

Name	Formula
25th Quartile / Lower Hinge	
50th Quartile / Median	$\frac{3(n+1)}{4}$
75th Quartile / Upper Hinge	$\frac{3(n+1)}{4}$ th term

- One Way ANOVA - Independent Measures

N = Total no. of ppl/objects in the experiment

n = No. of ppl/objects per group

a = No. of experimental groups/conditions

 $\mu = \text{Sample mean}$

SS = Sum of Squares

1. State Null and Alternate Hypothesis

$$\circ \quad H0=\mu 1=\mu 2=\ldots=\mu n.$$

 \circ H1 = Not all μ's are the same.

2. Find degrees of freedom

$$\circ$$
 df_{between} = a - 1 (df numerator)

$$\circ$$
 df_{within} = N - a (df denominator)

$$\circ df_{total} = N - 1$$

3. Find critical value with the 2 df's calculated.

o <u>Calculator</u> / <u>Table</u>

- o If calculated F-statistic < critical value, reject the null hypothesis.
- 4. Calculate F-Statistic Value:

$$\circ SS_{\text{between}} = \frac{\Sigma(\Sigma a_i)^2}{n} - \frac{T^2}{N} \text{ where:}$$

- i. $\Sigma(\Sigma a_i)^2$ is the sum of squared sums of all groups. $[(\Sigma A)^2 + (\Sigma B)^2 + ... + (\Sigma Z)^2]$
 - Sum everything in Group A then square the sum
- ii. T^2 is the total sum of all group sums $[(\Sigma A) + (\Sigma B) + ... + (\Sigma Z)]^2$

$$\circ SS_{\text{within}} = \Sigma Y^2 - \frac{\Sigma(\Sigma a_i)^2}{n} \text{ where:}$$

i. ΣY^2 is the sum of the square of each individual value $[a^2 + b^2 + c^2 + ... + z^2]$

$$\circ SS_{total} = \Sigma Y^2 - \frac{T^2}{N}$$

o ballsack

Links

- 5 Number Summary + IQR + Inner Outer Fence + Outliers + Geometric Mean + Sum of Squares + Standard Deviation (Sample/Population) + Variance Calculator:
 - https://www.hackmath.net/en/calculator/five-number-summary
- 2. Permutation CombinCalculator:
 - https://www.calculator.net/permutation-and-combination-calculator.html
- 3. Binomial Distribution (Singular and Cumulative):
 - https://stattrek.com/online-calculator/binomial
- 4. Pearson's Correlation Coefficient:
 - https://www.socscistatistics.com/tests/pearson/default2.aspx
- 5. One Way ANOVA Independent Measures
 - https://www.socscistatistics.com/tests/anova/default2.aspx
- 6. One WAY ANOVA Repeated Measures
 - https://www.socscistatistics.com/tests/anovarepeated/default.aspx
- 7. Single Sample T-Test:
 - https://www.socscistatistics.com/tests/tsinglesample/default.aspx
- 8. Chi-Square Test:
 - https://www.socscistatistics.com/tests/chisquare2/default2.aspx
- 9. P Value from F-Statistic:
 - https://www.socscistatistics.com/pvalues/fdistribution.aspx