UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÂTICA E ESTATÂSTICA DEPARTAMENTO DE ESTATÂSTICA MAT02219 - PROBABILIDADE E ESTATÂSTICA

ÃREA 2

FORMULÃRIO

Probabilidades

TÃ © cnicas de contagem

• Permuta $\tilde{\mathbf{A}}$ § $\tilde{\mathbf{A}}\mu es: P_n = n!$.

• Arranjos: $A_n^x = \frac{n!}{(n-x)!}$.

• CombinaçÃ $\mu es: C_n^x = \frac{n!}{x!(n-x)!}$.

Figure 1: Opera \tilde{A} § $\tilde{A}\mu esentre eventos a leat <math>\tilde{A}^3 rios$.

$Rela \tilde{A} \S \tilde{A} \mu esent reevent os$

• Sejam A e B dois eventos em um espa \tilde{A} §o amostral Ω . Valem as seguintes rela \tilde{A} § \tilde{A} μ esentreconjuntos : $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ e $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

CÃ; lculo de probabilidades

- Regra da $adi\tilde{A}$ § \tilde{A} £o de probabilidades: sejam A e B eventos em Ω , $ent\tilde{A}$ £o $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$.
- Sejam A e B dois eventos em um espa \tilde{A} §o amostral Ω . A probabilidade condicional de B dado que o evento A ocorreu \tilde{A} \bigcirc definida como $\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$, desde que $\Pr(A) > 0$.
 - Regra da multiplica $\tilde{A} \S \tilde{A} \pounds$ o: $\Pr(A \cap B) = \Pr(B|A) \Pr(A)$.
 - Regra da probabilidade total: consideremos A um evento qualquer referente a Ω , e B_1, B_2, \ldots, B_k uma parti \tilde{A} § \tilde{A} £ o de Ω , ent \tilde{A} £ o $\Pr(A) = \Pr(A|B_1)\Pr(B_1) + \Pr(A|B_2)\Pr(B_2) + \ldots + \Pr(A|B_k)\Pr(B_k)$.
 - Teorema de Bayes: seja B_1, B_2, \ldots, B_k uma parti \tilde{A} § \tilde{A} £ o do espa \tilde{A} §o amostral Ω e seja A um evento associado a Ω , poderemos escrever

$$\Pr(B_i|A) = \frac{\Pr(A|B_i)\Pr(B_i)}{\Pr(A|B_1)\Pr(B_1) + \Pr(A|B_2)\Pr(B_2) + \ldots + \Pr(A|B_k)\Pr(B_k)}, i = 1, 2, \ldots, k.$$

VariÃ; veis aleatà 3 rias

• $Seja \ X \ uma \ vari\tilde{\mathbf{A}}$; vel aleat $\tilde{\mathbf{A}}^3 ria(v.a.) discreta(\mathbf{X} assume valore sem \{\mathbf{x}_1, x_2, \ldots\})$, ent $\tilde{\mathbf{A}}$ £o o valor esperado (m $\tilde{\mathbf{A}}$ $\tilde{\mathbf{C}}$)dia) e a vari $\tilde{\mathbf{A}}$ ¢ncia de X, s $\tilde{\mathbf{A}}$ £o, respectivamente:

$$\mu = E[X] = \sum_{j=1}^{\infty} x_j p(x_j)$$
 e $\sigma^2 = Var[X] = E[(X - \mu)^2] = \sum_{j=1}^{\infty} (x_j - \mu)^2 p(x_j) = E[X^2] - \mu^2$,

em que $p(x_j) = \Pr(X = x_j)$ $\tilde{\mathbf{A}}$ a fun $\tilde{\mathbf{A}}$ $\tilde{\mathbf{S}}$ $\tilde{\mathbf{A}}$ to de probabilidade de X e $\mathbb{E}[X^2] = \sum_{j=1}^{\infty} x_j^2 p(x_j)$.

- ★ Se X assumir apenas um número finito de valores, as expressÃ μ esacimatornam $seE[\mathbf{X}] = \sum_{j=1}^{n} x_j p(x_j)$, $Var[X] = \sum_{j=1}^{n} (x_j \mu)^2 p(x_j)$ e $E[X^2] = \sum_{j=1}^{n} x_j^2 p(x_j)$.
- Seja X uma vari $\tilde{\mathbf{A}}$ įvel aleat $\tilde{\mathbf{A}}^3ria, ent\tilde{A}\pounds o\mathbf{F}(\mathbf{x}) = \Pr(X \leq x) \; \tilde{\mathbf{A}}$ © a fun $\tilde{\mathbf{A}}$ § $\tilde{\mathbf{A}}$ £o de distribui $\tilde{\mathbf{A}}$ § $\tilde{\mathbf{A}}$ £o acumulada (fda) de X.

$$\bigstar$$
 $F(x) = \sum_{j: x_j \le x} p(x_j)$, se X $\tilde{\mathbf{A}}$ $\textcircled{\mathbf{C}}$ v.a. discreta.

 $oldsymbol{Distribui} ilde{oldsymbol{A}} ilde{oldsymbol{A}} \mu es deprobabilidade$

Na Tabela 1 considere:

- $C_n^x = \binom{n}{x} = \frac{n!}{x!(n-x)!}$ \tilde{A} \tilde{C} o $n\tilde{A}^{\varrho}$ mero de subconjuntos de x elementos diferentes de um conjunto de n elementos diferentes.
- Para a distribui \tilde{A} § \tilde{A} £ o Bernoulli e Binomial, π representa a probabilidade de sucesso ($\{X=1\}$).

Table 1: Distribuição de probabilidade, mÃ(Ĉ)dia e variância.

	1 /		
Distribui \tilde{A} § \tilde{A} £o de X	$\Pr(X=x)$	$\mathrm{E}\left[X\right]$	$\operatorname{Var}\left[X\right]$
${f Vari} {f ilde A}$ į veis aleat ${f ilde A}^3 rias discretas$			
Bernoulli (π)	$\pi^x (1 - \pi)^{1 - x}, x = 0, 1.$	π	$\pi(1-\pi)$
$\operatorname{Binomial}(n,\pi)$	$\binom{n}{x}\pi^x(1-\pi)^{n-x}, x=0,\ldots,n.$	$n\pi$	$n\pi(1-\pi)$
Hipergeométrica (n, N, N_1)	1 V	$n\frac{N_1}{N}$	$n\frac{N_1}{N}\frac{N_2}{N}\left(\frac{N-n}{N-1}\right)$
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, \dots$	λ	λ