Zadanie 98. (Hierarchia arytmetyczna). Niech $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie pewną ustaloną obliczalną bijekcją. Oznaczmy klasę zbiorów rekurencyjnych jako Σ_0 . Dla danego Σ_i niech $\Pi_i = \{A \subseteq \mathbb{N} \mid \mathbb{N} \setminus A \in \Sigma_i\}$, zaś $A \in \Sigma_{i+1}$, jeśli istnieje $B \in \Pi_i$ takie że $A = \{n \in \mathbb{N} \mid \exists m f(n,m) \in B\}$. Niech L będzie zbiorem numerów tych niepustych funkcji rekurencyjnych, których dziedzina jest skończona. Jakie jest najmniejsze i dla którego zachodzi $L \in \Sigma_i$?

Rozwiązanie. Odpowiedź to 2. Pokażemy, że:

- 1. $L \in \Sigma_2$,
- 2. $L \notin \Sigma_1$.

Intuicja z: https://www.wikiwand.com/en/Tarski-Kuratowski_algorithm.

1. Niech B będzie zbiorem takich f(n, f(m, k)), że n jest numerem funkcji rekurencyjnej, której największym elementem dziedziny jest m i $\phi_n(m)$ zwraca wynik w k krokach.

Pokażemy, że $B \in \Pi_1$. Π_1 to rodzina zbiorów co-r.e. Pokażemy, że $B \leq_{rek} \overline{K}$. Niech $r: \mathbb{N} \to \mathbb{N}$ będzie redukcją, która dla x = f(n, f(m, k)) (znamy je, bo f jest bijekcją) zwraca numer takiego programu:

- 1: wczytaj _
- 2: uruchom k kroków $\phi_n(m)$
- 3: jeżeli nie otrzymano wyniku, zwróć 1
- 4: inteligentnie uruchom $\phi_n(i)$ dla każdego i > m, jeżeli coś zwrócił to zwróć 1

Dowód. Pokażemy, że $x \in B \iff r(x) \in \overline{K}$.

- 1. Dla $x = f(n, f(m, k)) \in B$:
 - $\phi_n(m)$ zwróci wynik,
 - $\phi_n(i)$ nic nie zwróci dla każdego i > m,
 - program się zapętli,
 - $r(x) \in \overline{K}$.
- 2. Dla $x = f(n, f(m, k)) \notin B$ mamy 2 możliwości:
 - (a) $\phi_n(m)$ nie zwróci wyniku i program zwróci 1,
 - (b) ϕ_n zwróci wynik dla m oraz dla jakiegoś i>m i program zwróci 1.

W obu przypadkach $r(x) \notin \overline{K}$.

2. Σ_1 to rodzina zbiorów r.e. Pokażemy, że $\overline{K} \leqslant_{rek} L$. Niech $r \colon \mathbb{N} \to \mathbb{N}$ będzie redukcją, która dla n zwraca numer takiego programu:

```
1: wczytaj m
2: jeżeli m=1, zwróć 1
3: uruchom \phi_n(n)
4: zwróć 1
```

 $Dow \acute{o}d.$ Pokażemy, że $n \in \overline{K} \iff r(n) \in L.$

- 1. Dla $n \in \overline{K}$:
 - $\phi_n(n)$ nie zatrzyma się nigdy,
 - $\phi_{r(n)}$ dla 1 zwróci 1 a dla innych argumentów się zapętli,
 - dziedzina $\phi_{r(n)}$ to $\{1\}$,
 - $r(n) \in L$.
- 2. Dla $n \notin \overline{K}$:
 - $\phi_n(n)$ zwróci wynik,
 - \bullet dla każdego argumentu $\phi_{r(n)}$ zwróci 1,
 - dziedzina $\phi_{r(n)}$ to \mathbb{N} ,
 - $r(n) \notin L$.