- 1. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) i; b) 1; c) 4i; d) 0; e) -2 + i; f) 2i.

Soluție. Ridicând la pătrat și folosind proprietatea $i^2 = -1$, obținem $(1+i)^2 = 1 + 2i + i^2 = 2i$.

- 2. Să se determine valoarea parametrului real m pentru care x=2 este soluție a ecuației $x^3+mx^2-2=0$. (5 pct.)
 - a) 1; b) $\frac{1}{2}$; c) 3; d) $\frac{3}{4}$; e) $\frac{5}{2}$; f) $-\frac{3}{2}$.

Soluție. Înlocuind soluția x=2 în ecuație, obținem: $8+4m-2=0 \Leftrightarrow 4m=-6 \Leftrightarrow m=-3/2$.

- 3. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f(x) = \begin{cases} x + 2m, & x \leq 0 \\ m^2x + 4, & x > 0 \end{cases}$ să fie continuă pe \mathbb{R} . (5 pct.)
 - a) m = 2; b) m = 0; c) m = -2; d) m = 1; e) $m \in \mathbb{R}$; f) m = -3

Soluţie. Avem $f_s(0) = \lim_{x \to 0} (x+2m) = 2m$, $f(0) = x+2m|_{x=0} = 2m$, $f_d(0) = \lim_{x \to 0} (m^2x+4) = 4$. Funcţia f este continuă în x=0 dacă şi numai dacă $f_s(0) = f(0) = f_d(0)$, deci $2m=4 \Leftrightarrow m=2$. Cum f este continuă pe $\mathbb{R} \setminus \{0\}$, fiind compunere de funcţii polinomiale continue, rezultă că f este continuă pe \mathbb{R} dacă şi numai dacă m=2.

- 4. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{x-1}{x}$. Să se calculeze f'(2). (5 pct.)
 - a) $\frac{1}{8}$; b) $-\frac{1}{2}$; c) $\frac{1}{4}$; d) $\frac{2}{3}$; e) 0; f) 2.

Soluţie. Derivând, avem $f'(x) = (\frac{x-1}{x})' = (1 - \frac{1}{x})' = -(-\frac{1}{x^2}) = \frac{1}{x^2}$, deci $f'(2) = \frac{1}{4}$.

- 5. Soluția ecuației $\sqrt[3]{x-1} = -1$ este: (5 pct.)
 - a) -3; b) 0; c) 3; d) -1; e) Ecuația nu are soluții; f) 1.

Soluție. Ridicând la puterea a treia, rezultă $(x-1)=(-1)^3 \Leftrightarrow x-1=-1 \Leftrightarrow x=0$.

- 6. Fie ecuația $x^2 mx + 1 = 0$, $m \in \mathbb{R}$. Să se determine valorile lui m pentru care ecuația are două soluții reale și distincte. (5 pct.)
 - a) \emptyset ; b) $(-\infty, -2) \cup (2, \infty)$; c) $(0, \infty)$; d) \mathbb{R} ; e) $(-\infty, 0)$; f) $(-\infty, -1) \cup (2, \infty)$.

Soluție. Condiția $\Delta > 0$ se rescrie $(-m)^2 - 4 \cdot 1 > 0 \Leftrightarrow m^2 - 4 > 0 \Leftrightarrow m \in (-\infty, -2) \cup (2, \infty)$.

- 7. Multimea soluțiilor ecuației $x^2 5x + 4 = 0$ este: (5 pct.)
 - a) \emptyset ; b) $\{-1, 1\}$; c) $\{1, 4\}$; d) $\{0, -3\}$; e) $\{-1, 4\}$; f) $\{0, 3\}$.

Soluție. Rădăcinile ecuației de gradul doi sunt $x_{1,2} = \frac{5 \pm \sqrt{25 - 4 \cdot 4}}{2} = \frac{5 \pm 3}{2} \in \{1,4\}.$

- 8. Soluția ecuației $2^{x+1} = 16$ este: (5 pct.)
 - a) 3; b) 2; c) 0; d) -2; e) -1; f) 1.

Soluție. Ecuația se rescrie $2^{x+1} = 2^4$, deci $x + 1 = 4 \Leftrightarrow x = 3$.

- 9. Valoarea determinantului $\begin{vmatrix} 2 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}$ este: (5 pct.)
 - a) 4; b) -6; c) -2; d) 0; e) 2; f) 5.

Soluție. Dezvoltând după linia a doua a determinantului, obținem: $-2 \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -2 \cdot (2+1) = -6$.

10. Să se determine funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax + b$ astfel încât f(0) = 1, f(1) = 0. (5 pct.)

a)
$$x^2 + 4x + 5$$
; b) $x^2 - 1$; c) $x^2 + 1$; d) $x^2 - 2x + 1$; e) $x^2 + x + 1$; f) $x^2 - 3x$.

Soluție. Impunând cele două condiții, rezultă:

$$\left\{\begin{array}{ll} f(0)=1\\ f(1)=0 \end{array} \right. \Leftrightarrow \left\{\begin{array}{ll} 0^2+a\cdot 0+b=1\\ 1^2+a\cdot 1+b=0 \end{array} \right. \Leftrightarrow \left\{\begin{array}{ll} b=1\\ a+b=-1 \end{array} \right. \Leftrightarrow \left\{\begin{array}{ll} a=-2\\ b=1 \end{array} \right. \Rightarrow f(x)=x^2-2x+1.$$

11. Să se rezolve inecuația x + 2 < 4 - x. (5 pct.)

a)
$$x \in (0,1) \cup (1,\infty)$$
; b) $x \in (0,\infty)$; c) $x \in (-\infty,1)$; d) $x \in (-1,1)$; e) $x \in (1,\infty)$; f) \emptyset .

Soluţie. Regrupând termenii, avem $2x < 2 \Leftrightarrow x < 1 \Leftrightarrow x \in (-\infty, 1)$.

12. Valoarea integralei $\int_{0}^{1} (6x^2 + 2x) dx$ este: (5 pct.)

a)
$$\frac{1}{2}$$
; b) -2 ; c) 0; d) $\frac{1}{2}$; e) 3; f) 4.

Soluție. Integrăm,
$$\int_0^1 (6x^2 + 2x) dx = \left(6 \frac{x^3}{3} + 2 \frac{x^2}{2}\right) \Big|_0^1 = \left(2x^3 + x^2\right) \Big|_0^1 = (2+1) - (0+0) = 3.$$

13. Câte puncte de extrem local are funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 3x^2$? (5 pct.)

Soluție. Derivata funcției f este $f'(x) = 3x^2 - 6x$. Anularea acesteia conduce la ecuația 3x(x-2) = 0, care are două rădăcini. Tabelul de variație al funcției f este următorul

deci f admite $dou\check{a}$ puncte de extrem local: punctul de maxim (0,0) şi punctul de minim (2,-4).

14. Fie $l = \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$. Atunci: (5 pct.)

a)
$$l = 1$$
; b) $l = 5$; c) $l = 0$; d) $l = 3$; e) $l = 2$; f) $l = -1$.

Soluție. Simplificând fracția prin x-1, limita se rescrie $l=\lim_{x\to 1}(x+2)=3$.

15. Să se calculeze $x + \frac{2}{x}$ pentru $x = -\frac{1}{2}$. (5 pct.)

a)
$$\frac{5}{2}$$
; b) 3; c) $-\frac{7}{2}$; d) 4; e) $\frac{9}{2}$; f) $-\frac{9}{2}$.

Soluţie. Se obţine $-\frac{1}{2} + \frac{2}{-1/2} = -\frac{1}{2} - 4 = -\frac{9}{2}$.

16. Fie sistemul de ecuații $\begin{cases} mx + y = 1 \\ 4x - 2y = -1 \end{cases}$, $m \in \mathbb{R}$. Pentru ce valori ale lui m sistemul are soluție unică?

a)
$$m \in \mathbb{R}$$
; b) $m \in (-\infty, -2]$; c) $m \in (-3, 3)$; d) $m \in [-5, 5]$; e) $m \in \mathbb{R} \setminus \{-2\}$; f) $m \in (-3, 1)$.

Soluție. Condiția de neanulare a determinantului format din coeficienții necunoscutelor, conduce la $\begin{vmatrix} m & 1 \\ 4 & -2 \end{vmatrix} \neq 0 \Leftrightarrow -2m-4 = 0 \Leftrightarrow m \neq -2 \Leftrightarrow m \in \mathbb{R} \setminus \{-2\}.$

17. Să se scrie în ordine crescătoare numerele $\sqrt{2}$, $\sqrt{3}$, $\frac{\pi}{2}$. (5 pct.)

a)
$$\sqrt{2}, \frac{\pi}{2}, \sqrt{3};$$
 b) $\sqrt{3}, \sqrt{2}, \frac{\pi}{2};$ c) $\frac{\pi}{2}, \sqrt{3}, \sqrt{2};$ d) $\sqrt{3}, \frac{\pi}{2}, \sqrt{2};$ e) $\frac{\pi}{2}, \sqrt{2}, \sqrt{3};$ f) $\sqrt{2}, \sqrt{3}, \frac{\pi}{2}.$

Soluție. Aproximând, obținem $\sqrt{2} \sim 1,41 < 1,5 < \pi \sim \frac{3,14}{2} = 1.57 < 1,7 < \sqrt{3} \sim 1,71$, deci $\sqrt{2} < \pi/2 < \sqrt{7}$.

- 18. Fie polinomul $P(X) = X^3 3X^2 + 2X$ cu rădăcinile x_1, x_2, x_3 . Să se calculeze $E = x_1^2 + x_2^2 + x_3^2$. (5 pct.)
 - a) E = 1; b) E = -2; c) E = 3; d) E = 5; e) E = 0; f) E = -4.

Soluţie. Avem $E=(x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_3x_1)$. Din relaţiile Viète, avem $x_1+x_2+x_3=3$ şi $x_1x_2+x_2x_3+x_3x_1=2$, deci $E=3^2-2\cdot 2=5$. Altfel. Deoarece suma coeficienţilor polinomului se anulează, o rădăcină a acestuia este $x_1=1$. Împărţind prin x-1, se obţine câtul x^2-2x , ale cărui rădăcini sunt $x_2=0$, $x_3=2$, deci $x_3=2$ 0.