ONDAZ 1. A compound having the formula:

wherein R represents H or a member selected from the group consisting of -CH-R1; wherein R1 represents a member selected

from the group consisting of H, $\phi_1 - c_7$ straight or branched alkyl, CCl₃, CBr₃, CI₃, (CH₃)₂NCH₂-, -CHO, (O-CH₂-,

 \bigcirc -CH=CH-, \bigcirc , \bigcirc N, or \bigcirc R3, wherein R3 represents

a member selected from the group consisting of -OH, halogen, -OCH₂, -COOCH₂, -NO₂ or -OCOCH₂; wherein X is -O-, -S-,

or -N-; and wherein R, represents a member selected from the group consisting of $\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$ OH or $\begin{array}{c} 0 \\ -C \\ -R_4 \end{array}$, wherein R_4 is a member selected from the group consisting of - R wherein R_3 is defined as above, ON, CH_{A}

the residue of any naturally occurring protein amino acid, the residue of any N- substituted amino acid, wherein said substituent is any amino acid protective group cleavable via hydrogenolysis or hydrolysis or the residue of an N,N-C,-C,dialkyl or C_4 - C_7 cycloalkylamino acid, or wherein R_4 is a member selected from the group consisting of -(CH2) COH, -CH2OCH2COH, -(CH2) DCOCH3, -(CH2) D-C-OC2H5, or -(CH2) D-C-N wherein \underline{n} represents an integer of from 1-5 and R_{5} and R_{6} which may be the same or different represent C,-C, alkyl or together form a heterocyclic ring with the N atom to which they are attached, or wherein R4 is a member selected from the group consisting of imidazolyl, -O-C1-C8 alkyl, -O-benzyl, -O-phenyl, and -O-(CH₂)_nN+R₅, wherein \underline{n} , R₅ and R₆ are defined

20

as above; with the proviso that R in both occurrences cannot represent H simultaneously; or the pharmaceutically acceptable acid addition or basic salts, C e alkylhalide quaternary salts or N-oxide thereof

- The compound of claim 1:
 3-Hydroxymethyldiphenylhydantoin.
- The compound of claim 1:
 3-N.N-Dimethylglycyloxymethyldiphenylhydantoin.
- The compound of claim 1:
 3-N,N-Dimethylglycyloxymethyldiphenylhydantoin methanesulfdnate.
- 5. The compound of claim 1:

 3-N,N-Dimethylglycyloxymethyldiphenylhydantoin salicylate
- 6. The compound of claim 1:
 3-Glutaryloxymethyldiphenylhydantoin.
- 7. The compound of claim 1:

 3-Succinyloxymethyldiphenylhydantoin.
- 8. A pharmaceutical composition comprising an effective anticonvulsant anticipleptic or antiarrythmic amount of a compound having the formula:

wherein R represents H or a member selected from the group consisting of -CH-R1; wherein R1 represents a member selected X-R2

from the group consisting of H, C₁-C₇ straight or branched alkyl, CCl₃, CBr₃, Cl₃, Cl₃, CCl₃, CCH₂-, -CHO, CO-CH₂-,

$$\bigcirc$$
CH=CH-, \bigcirc N, or \bigcirc R3, wherein R3 represents

a member selected from the group consisting of -OH, halogen, -OCH3, -COOCH3, -NO2 or -OCOCH3; wherein X is -O-, -S-,

 R_1 or -N-; and wherein R_2 represents a member selected

10

15

from the group __nsisting of __P_OH or __P_A_, wherein R_4 is a member selected from the group consisting of __P_3 wherein R_3 is defined as above, __N, __ON \rightarrow O

the residue of any naturally occurring protein amino acid, the residue of any N- substituted amino acid, wherein said substituent is any amino acid protective group cleavable via hydrogenolysis or hydrolysis or the residue of an N,N-C1-C5-dialkyl or C4-C7 cycloalkylamino acid, or wherein R4 is a member selected from the group consisting of -(CH2)_nCOH, -CH2OCH2COH, -(CH2)_nCOCH3, -(CH2)_n-C-OC2H5, or -(CH2)_n-C-N_R^5, wherein n represents an integer of from 1-5 and R5 and R6 which may be the same or different represent C1-C5 alkyl or together form a heterocyclic tring with the N atom to which they are attached, or wherein R4 is a member selected from the group consisting of imidazolwl, -O-C1-C8 alkyl, -O-benzyl, -O-phenyl, and -O-(CH2)_n^R, wherein n, R5 and R6 are defined

as above; with the proviso that R in both occurrences cannot represent H simultaneously; or the pharmaceutically acceptable acid addition or basic salts, C₁-C₄ alkylhalide quaternary salts or N-oxide thereof in combination with a pharmaceutically acceptable inert carrier.

- 9. The composition of claim 8, wherein said compound is: 3-Hydroxymethyldiphenylhydantoin.
- The composition of claim 8, wherein said compound is: 3-N,N-Dimethyldlycyloxymethyldliphenylhydantoin.
- The composition of claim 8, wherein said compound is:
 3-N,N-Dimethylglycyloxymethyldiphenylhydantoin methanesulfonate.
- The composition of claim 8, wherein said compound is:
 3-N,N-Dimethylglycyloxymethyldiphenylhydantoin sailcylate.
- 13. The composition of claim 8, wherein said compound: 3-Glutarylogymethyldiphenylhydantoin.
- 14. The composition of claim 8, wherein said compound: 3-Succinylexymethyldiphenylhydantoin.

25

20

10

15

30

15. A me, od for alleviating cardia ...rythmias or convulsions in a warm-blooded animal which comprises administering thereto, an effective antiarrythmic or anticonvulsant amount of a compound having the formula:

wherein R represents H or a member selected from the group consisting of $-CH-R_1$; wherein R represents a member selected $X-R_2$

from the group consisting of $H \subset C_1-C_7$ straight or branched alkyl, CCl_3 , CBr_3 , Cl_3 , Cl_3 , CH_3) $_2NCH_2-$, $_2NCH_2-$,

CH=CH-, N, or OR, wherein R3 represents

a member selected from the group consisting of -OH, halogen, -OCH₃, -COOCH₃, -NO₂ Or -OCCH₃; wherein X is -O-, -S-,

or $-\stackrel{R_1}{N}$, and wherein R_2 represents a member selected from the group consisting of $-\stackrel{R_1}{N}$ -OH or $-\stackrel{R_2}{C}$ -R₄, wherein R_4 is a member selected from the group consisting of $-\stackrel{R_3}{N}$ 3 wherein R_3 is defined as above, $-\stackrel{N}{N}$, $-\stackrel{N}{N}$ 0 $+\stackrel{N}{N}$ 0

the residue of any naturally occurring protein amino acid, the residue of any N-substituted amino acid, wherein said substituent is any amino acid protective group cleavable via hydrogenolysis or hydrolysis or the residue of an N,N-C₁-C₅-dialkyl or C₄-C₇ cycloalkylamino acid, or wherein R₄ is a member selected from the group consisting of -(CH₂) nOH, -CH₂OCH₂COH, -(CH₂) nCOH₃, -(CH₂) n-C-OC₂H₅, or -(CH₂) n-C-N R₅, wherein n represents an integer of from 1-5 and R₅ and R₆ which may be the same or different represent C₁-C₅ alkyl or together form a heterocyclic ring with the N atom to which they are attached, or wherein R₄ is a member selected from the group consisting of imidazolyl, -O-C₁-C₈ alkyl, -O-benzyl,

10

-O-phenyl, and \sim -(CH₂) $_{n}$ N $_{R_{6}}$, wherein \underline{n} /x₅ and R₆ are defined

as above; with the proviso that R in both occurrences cannot represent H simultaneously; or the pharmaceutically acceptable acid addition or basic salts, C₁-C₄ a kylhalide quaternary salts or N-oxide thereof.

- 16. The method of claim 15, wherein said compound is:
 3-Hydroxymethyldiphenylhydantoin.
- 17. The method of claim 15, wherein said compound is:
 3-00,N-Dimethylqlycyloxymethyldiphenylhydantoin.
- 18. The method of claim 15, wherein said compound is:

 3-N, N-Dimethylglycylox methyldiphenylhydantoin methanesulfonate
- 19. The method of claim 13, wherein said compound is:
 3-N,N-Dimethylglycyloxymethyldiphenylhydantoin salicylate.
- The method of claim 15, wherein said compound:
 3-Glutaryloxymethyl iphenylhydantoin.
- The method of claim 15, wherein said compound:
 3-Succinyloxymethyldiphenylhydantoin.
- 22. The method of claim 15, wherein said compound is administered in combination with a pharmaceutically acceptable inert carrier.
 - 23. The intermediate compound:

10

15

20

25

wherein R₁ represents a member selected from the group consisting of H, C₁-C₇ straight or branched alkyl, CCl₃, CBr₃, CI₃, (CH₃) 2NCH₂-, -CHO, O-CH₂-, CH=CH-, N, or R₃; wherein R₃ represents a

member selected from the group consisting of -OH, halogen,

-OCH3, -COOCH3, -NO2 or -OCOCH3; wherein X is -O-, -S-,

or $-N_1$, and wherein R_2 represents a member selected from the group consisting of $-R_4$, wherein R_4 is a member selected from the group consisting of $-R_3$ wherein R_3 is defined as above, N_1 , N_2 , N_3 , N_4 N_5

the residue of any naturally occurring protein amino acid, the residue of any N- substituted amino acid, wherein said substituent is any amino acid protective group cleavable via hydrogenolysis or hydrolysis or the residue of an N,N-C₁-C₅-dialkyl or C₄-C₇ cycloalkylamino acid, or wherein R₄ is a member selected from the group consisting of -(CH₂) COH, -(CH₂) COH,

defined as above.