UNIVERSIDAD DE COSTA RICA

ESCUELA DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA Y CIENCIAS ACTUARIALES DISTRIBUCIÓN DE PÉRDIDAS

Acá se pone un buen título

Bitácora I

Realizado por

Maria José Corea

Cassandra Ramírez

Daniel Ulate

Índice general

_	Bitácora I		
	1.	Integrantes	2
		Primera aproximación	
		Replanteo	
		Argumentación	
		Sobre la base de datos	
Bi	bliog	grafía	7

Capítulo 1

Bitácora I

1. Integrantes

- María José Corea Chinchilla B82352
- Cassandra Paola Ramirez B76199
- Daniel Gustavo Ulate Montero B67212

2. Primera aproximación

Resulta trascendente para las sociedades modernas entender la importancia de prevenir los incendios, dado el alto costo económico y social que estos conllevan cada año. Una gran parte de las pérdidas generadas en incendios, ocurren en un pequeño número de eventos de mayor magnitud, por lo que un reto para los diferentes cuerpos de bomberos, y los gobernantes es tratar de establecer las condiciones adecuadas para limitar o contener los eventos más catastróficos.

Un enfoque primordial que puede tomar la investigación es delimitar de forma adecuada las condiciones que puedan aumentar el riesgo de incendio en primer lugar, por lo que se debe tratar de predecir posibles incendios y su gravedad, intentando identificar patrones en su ocurrencia, particularmente sobre lo que hace que un incendio se convierta en uno con altas pérdidas.

Varias investigaciones en el pasado han intentado responder esta pregunta sobre qué puede determinar la severidad de un siniestro de este estilo, en términos forestales Juan Torres (Torres-Rojo, Juan M., 2021) desarrolla un índice de ocurrencia de incendios forestales en superficies extensas, denominado superficie en riesgo de incendio (SeR). Este autor realiza distintos modelos y señala que un problema para ello es que las colas de estas distribuciones tienden a ser muy pesadas.

Otros estudios como el de David C. Shpilberg (David C. Shpilberg, 1977) presentan un resumen de trabajos en el area de modelaje de la distribución en probabilidad de pérdidas en incendio, e incluso lo presenta como un proceso estocástico. Este papel compara las pérdidas con distintos tipos de distribuciones, lo que puede servir a forma de guía en el modelaje en el presente proyecto. Con base en lo anterior se plantea la siguiente pregunta de investigación.

¿Cómo delimitar y definir las variables que provocan una severidad extraordinaria en un siniestro de incendio?

3. Replanteo

- Estableciendo una temporalidad definida por meses, ¿en qué periodos del mes y del año ocurren los incidentes con mayor valor de pérdida?
- ¿Se puede delimitar la severidad de un incidente en términos más generales como tamaño, intensidad y duración en lugar de pérdidas? Y qué correlación se podría establecer con ambas delimitaciones.
- ¿Se puede encontrar una distribución que se ajuste a los datos encontrados para modelar de manera óptima los eventos extremos (outliers) mediante su frecuencia y severidad?
- ¿Cuál es la importancia en términos económicos y humanos de cuantificar la distribución adecuada de las pérdidas en los incendios?

4. Argumentación

- ¿Cómo delimitar y definir las variables que provocan una severidad extraordinaria en un siniestro de incendio?
 - Intuitivamente se podría definir el origen del fuego, así como su duración, como variables queinfluyen más fuertemente en la severidad del incendio, sin embargo, pueden existir factores menos corrientes y más fáciles de atender para disminuir el costo del incidente, esto permitirá otorgar herramientas para la atención de desastres y reducir las pérdidas.
- Estableciendo una temporalidad definida por meses, ¿en qué periodos del mes y del año ocurren los incidentes con mayor valor de pérdida?
 - Las fiestas de fin de año se caracterizan por los fuegos artificiales y el clásico árbol navideño, muchos de los siniestros ocurren por cortos circuitos o accidentes con pólvora, por lo que es una época de alto riesgo para incendios, en general se pueden obtener resultado sesgados para fechas festivas si se desean estudiar otras variables. Con el objetivo de estudiar la distribución de la severidad y tratar de minimizar las pérdidas, se pretende realizar un estudio que contextualice de manera temporal los incendios.
- ¿Se puede delimitar la severidad de un incidente en términos más generales como tamaño, intensidad y duración en lugar de pérdidas? Y qué correlación se podría establecer con ambas delimitaciones.
- Existen diversas medidas de pérdidas en el caso de los incendios forestales, generalmente asociados al área de impacto y biodiversidad afectada, de hecho Torres-Rojo, Juan M. (2021) menciona superficie máxima en riesgo de incendio (SeR), análogo al VaR, entre otras variables relacionadas al riesgo de un terreno, por lo que es posible estimar distribuciones de probabilidad en cuanto a susceptibilidad a incendios en áreas urbanas, el mayor obstáculo es encontrar los elementos análogos que permitan establecer los parámetros y aplicarlo en términos generales. Lo anterior permitiría establecer mediante el modelo zonas de mayor riesgo para preparar planes de contingencia para mitigar las pérdidas.
- ¿Se puede encontrar una distribución que se ajuste a los datos encontrados para modelar de manera óptima los eventos extremos (outliers) mediante su frecuencia y severidad?
 - En términos de modelaje es posible intentar ajustar cada distribución que existe con cada parámetro permitido y muy probablemente se encuentre uno que funcione a la perfección, sin embargo, dados los costos computacionales y limitaciones informativas es una opción inviable, por lo que apoyándose de la distribución empírica de los datos se puede intentar ajustar a distribuciones conocidas, y tratar de medir el peso de las colas con su probabilidad para cuantificar

los llamados outliers, esto pretende aportar mediciones más precisas a los eventos de mayor pérdida con el fin de preparar mejor los planes contingentes.

¿Cuál es la importancia en términos económicos y humanos de cuantificar la distribución adecuada de las pérdidas en los incendios?

Un siniestro de tipo incendio puede ocurrir en cualquier momento y lugar, el objetivo de una aseguradora es cuantificar las pérdidas de sus clientes e indemnizar, esto es un reto importante considerando la variabilidad de cada siniestro y los compromisos financieron preexistentes de la entidad, por lo que se debe de preparar para esos eventos. Utilizando la frecuencia, así como la pérdida esperada, es posible predecir cuánto capital se debe provisionar para no comprometer las finanzas de la aseguradora.

Sobre la base de datos

La base seleccionada fue obtenida de la página oficial de la ciudad de Toronto, y corresponde a información de los siniestros de tipo incendio.

Este conjunto de datos proporciona información similar a la que se le envía al Jefe de Bomberos de Ontario en relación a los incidentes en los cuales el departamento de bomberos de Toronto intervino, con bastantes detalles.

Por motivos de privacidad, no se proporciona información personal, ni la dirección exacta, sino un aproximado del sitio de ocurrencia. Se menciona también que algunos incidentes han sido excluidos conforme a las exenciones bajo la Sección 8 de la Ley Municipal de Libertad de Información y Protección de la Privacidad (MFIPPA).

Se define a la población de estudio como el conjunto de todos los siniestros de tipo incendio cuantificados por el cuerpo de bomberos en el cuál hubo una correcta cuantificación de los datos. La muestra consta de 15.627 observaciones en la ciudad de Toronto, Canadá. Con una unidad estadística definida por cada incendio, su pérdida y otras variables de interés de manera individual.

La base de datos es de formato 'tabla' y se actualiza de manera anual. Su última actualización se dio en agosto 29 de 2022. Fue publicada por la sección de servicios administrativos de la unidad de bomberos, y posee 17.536 observaciones con 42 variables. Para efectos de la investigación y entendiendo que la variable fundamental es la que cuantifica la pérdida estimada, se recortan las observaciones que no cuentan con este valor, dando la cantidad de observaciones mencionada en el párrafo anterior (15.627).

En la siguiente tabla se describe la totalidad de variables de la base.

Columna Descripcion X id Identificador único del suceso Area de origen con código y descripción Area_of_Origin Building_Status Código con el estado del edificio y descripción Business_Impact Código con el impacto al negocio y descripción Civilian_Casualties Civiles víctimas en la escena Count_of_Persons_Rescued Cantidad de personas rescatadas Est_Dollar_Loss Pérdida estimada en dólares Est_Number_Of_Persons_Displaced Número estimado de personas desplazadas

Cuadro 1.1: Descripción completa de la base

Cuadro 1.1: Descripción completa de la base (Continuación)

Columna	Descripcion
Exposures	Número de incendios de exposición
1	asociados con este incendio
Ext_agent_app_or_defer_time	Marca de tiempo del agente que se aplicó
	por primera vez o decisión de diferir
Extent_Of_Fire	Cógigo de extensión del fuego y descripción
Final_Incident_Type	Tipo de incidente final
Fire_Alarm_System_Impact_on_Evacuation	Código de impacto del sistema de alarma
<u>-</u>	contra incendios y descripción
Fire_Alarm_System_Operation	Código de operación del sistema de alarma
<u>-</u>	contra incendios y descripción
Fire_Alarm_System_Presence	Código de presencia del sistema de alarma
The_rmaneyoum_rreserve	contra incendios y descripción
Fire_Under_Control_Time	Marca de tiempo del fuego bajo control
Ignition_Source	Código sobre la fuente del incendio y
ignition_source	desperipción
Incident_Number	Número de incidente de acuerdo al sistema
meident_ivanibei	de bomberos de Toronto (TFS)
Incident_Station_Area	Area de la estación de ocurrencia según TFS
Incident_Ward	Lugar donde ocurrió el incidente
Initial_CAD_Event_Type	Tipo de evento que dio origen
Intersection	Intersección mayor o menor más cercana en
mersection	el barrio del incidente
Last TEC Unit Class Time	
Last_TFS_Unit_Clear_Time	Marca de tiempo de la última unidad en el incidente
Latitude	Latitud de la intersección más cercana al
Latitude	incidente
Lavel Of Origin	
Level_Of_Origin	Nivel de origen
Longitude	Longitud de la intersección más cercana al incidente
Matarial First Israitad	
Material_First_Ignited	Código del material donde inició y
Mathad Of Fine Control	descripción
Method_Of_Fire_Control	Código del método de control del fuego y
Ni mala mana di mana mala mana mala mana mala mana mala mana mala mana mala mana man	descripción
Number_of_responding_apparatus	Número de aparatos del TFS que atendió la
NIl	emergencia
Number_of_responding_personnel	Número de personal del TFS que atendió la
Descite Course	emergencia
Possible_Cause	Código de la posible causa y descripción
Property_Use	Código de la propiedad y descripción
Sk_Alarm_at_Fire_Origin	Código de la alarma de incendios en el lugar
	y descripción
Smoke_Alarm_Failure	Código de fallo en la alarma de incendios y
0 1 m	descripción
Smoke_Type	Código del tipo de detector de humo y
	descripción
Smoke_Alarm_Impact_on_Evacuation	Código de impacto de la alarma contra
	incendios en la evacuación y descripción
Smoke_Spread	Código de expansión del humo y descripción

Cuadro 1.1: Descripción completa de la base (Continuación)

Columna	Descripcion
Sprinkler_System_Operation	Código de funcionamiento de sistema de
	rociadores y descripción
Sprinkler_System_Presence	Código de presencia de sistema de
	rociadores y descripción
Status_of_Fire_On_Arrival	Código de estado del incendio a la llegada y
	descripción
TFS_Alarm_Time	Marca de tiempo cuando el TFS fue
	notificado
TFS_Arrival_Time	Marca de tiempo cuando el TFS llegó a la
	escena
TFS_Firefighter_Casualties	Cantidad de víctimas en el cuerpo de
	bomberos

Fuente: Elaboración propia

Objetivo General:

Comercio exterior de nuevo

α

Objetivos Específicos:

•

• (empty citation)

Bibliografía

David C. Shpilberg (mar. de 1977). "The Probability Distribution of Fire Loss Amount". En: *The Journal of Risk and Insurance* 44(1), págs. 103-115.

Torres-Rojo, Juan M. (jun. de 2021). "Índice para la estimación de ocurrencia de incendios forestales en superficies extensas". En: *Revista Chapingo serie ciencias forestales y del ambiente* 26(3), págs. 433-449.