BAB II

LANDASAN TEORI

2.1 Tinjauan Studi

Sebagai salah satu upaya untuk mengetahui hasil penelitian yang sudah dilaksanakan sebelumnya (*related search*), untuk mengetahui perkembangan ilmu pada bidang penelitian serta untuk memperjelas masalah pada penelitian ini, maka berikut ini adalah penelitian yang memiliki korelasi dengan penelitian yang akan dibahas:

No	Nama Danaliti	Judul Penelitian	Hasil Penelitian	
1	Aldi Putra Aldya	Harversine Formula Untuk Membatasi Jarak Pada Aplikasi Presensi Online (2019)	menghasilkan aplikasi presensi yang memanfaatkan GPS serta rumus harversine untuk dapat membatasi toleransi area presensi, pengukuran jarak dilakukan dengan mengukur garis bujur dan garis lintang, hasil akhir dari penelitian ini adalah aplikasi presensi berbasis GPS yang dapat melakukan pengukuran jarak secara akurat dengan	
2	M. Madhiyono, S. Kosasi, and D. David	Implementasi JWT, Fingerprint, Dan Algoritma Haversine Dalam Aplikasi Presensi Mahasiswa (2021)	metode haversine (ALDYA, 2019) Pada penelitian ini, dihasilkan sebuah sistem presensi yang dapat digunakan oleh dosen dan mahasiswa, dosen menggunakan web dan mahasiswa menggunakan mobile, kedua platform ini dihubungkan dengan koneksi rest API, sedangkan untuk membatasi batasan presensi, digunakan metode pengukuran jarak haversine, aplikasi juga dapat memberikan peringatan jika absensi yang dilakukan mahasiswa sudah mencapai 2 kali dan mengeluarkan mahasiswa dari daftar jika telah mencapai 3 kali absensi(Madhiyono, Kosasi and David, 2021)	
3		Perbandingan metode perhitungan jarak Euclideanm, haversine, dan Manhattan dalam	Penelitian ini berfokus pada komparasi tiga metode pengukuran jarak yang sering dipakai untuk pengambilan presensi, penelitian ini diimplementasikan di lingkungan institute teknologi nasional bandung,	

		peenentuan posisi karyawan (2020)	penelitian ini menghasilkan aplikasi berbasis smartphone menggunakan fitur GPS, dimana metode yang digunakan adalah haversine dan euclidean karena memiliki batas toleransi dengan perhitungan sebenarnya sebesar 0.5 meter(Metode Perhitungan et al., 2020)
4	Rianto, dkk	Implementasi Formula Haversine Dan Komunikasi Data Real-Time Menggunakan Websocket Di Sistem Pengawasan Warga Negara Asing (2019)	Implementasi metode haversine pernah dilakukan pada sistem pengawasan negara asing, pada penelitian ini dihasilkan sebuah system berbasis web dan android yang dihubungkan dengan websoket, penggunaan metode haversine pada penelitian ini kurang tepat, karena pada faktanya untuk mendapatkan lokasi atau Riwayat keberadaan WNA, tidak hanya garis luruh saja, tetapi terdapat rute pada setiap tempat tinggal WNA(Rahmatulloh, 2019)
5	Moch Khrisna Arsita	Rancang bangun aplikasi presensi dengan metode local binary pattern histograms dan geofencing berbasis mobile di universitas dinamika (2021)	Penelitian ini menghasilkan aplikasi berbasis mobile presensi karyawan yang menggunakan modul OpenCV untuk verifikasi wajah dan geofencing untuk membatasi area presensi, dengan menggunakan metode haversine, pengukuran jarak karyawan dengan lokasi yang telah ditentukan bisa berjalan dengan baik sesuai dengan yang diharapkan.(Arsita, 2021)

Table 1. Table state of the art algortima haversine

No	Nama	Judul Penelitian	Hasil Penelitian	
	Peneliti			
1	Joko	Pemanfaatan	sistem presensi yang memanfaatkan	
	Christian dan	Radio Frequency	teknologi RFID atau radio frequency	
	Nasrullah	Identification	identification, untuk proses	
		(Rfid) Untuk	presensinya, cukup dengan	
		Sistem Absensi	menempelkan kartu pada alat <i>RFID</i>	
		Pegawai (2018)	starter kit, setelah membaca data	
			yang ada didalam kartu, maka data	
			tersebut akan dikirimkan kedalam	
			aplikasi yang menggunakan bahasa	

			Java dalam pengembanganya, namun terdapat beberapa kelemahan didalam presensi jenis ini, diantaranya adalah aplikasi tidak bisa melakukan validasi identitas asli dari pemilik kartu, jadi kemungkinan 'titp absen' masih bisa dilakukan, selain itu, karena sistem ini mengguanakan jenis konektivitas <i>client-server</i> , maka jika terjadi putusnya koneksi pada computer, akan melumpuhkan sistem presensi ini(Christian and Nasrullah, 2018)
2	Supriatna dkk	Aplikasi Presensi Pegawai Memanfaatkan Teknologi Fingerprint dan Global Positioning System (GPS) Pada Android (2020)	penelitian ini menghasilkan sebuah apliaksi mobile yang bisa digunakan untuk melakukan presensi, dengan adanya aplikasi ini, diharapkan para pegawai dan perusahaan dimudahkan
3	Ely Mulyadi dkk	Penerapan Sistem Presensi Mobile Dengan Menggunakan Sensor Gps (Klinik Pratama X Di Jember) (2020)	Penelitian ini menghasilkan sebuah aplikasi presensi mobile yang dapat berjalan baik khusunya pada bidang kesehatan di salah satu klinik di Jember. Aplikasi ini dapat menangani dengan baik sistem shifting yang ada pada klinik tersebut, namun kecepatan respon aplikasi masih dibawah rata-rata dan perlu dilakukan pengujian lebih lanjut untuk menangani masalah ini. (Mulyadi, Trihariprasetya and Wiryawan, 2020)
4	A. Husain, A. H. A. Prastian, and A. Ramadhan	Perancangan Sistem Absensi Online Menggunakan Android Guna Mempercepat	penelitian ini bertujuan untuk memudahkan presensi karyawan yang ada di lingkungan perusahaan, aplikasi yang dihasilkan adalah aplikasi berbasis android yang dapat bekerja secara efektif di lingkungan

		Proses Kehadiran	perusahaan, sistem presensi ini	
		Karyawan Pada	menggunakan jaringan WLAN	
		PT. Sintech sehingga mempercepat pr		
		Berkah Abadi presensi. Kekurangan sistem p		
		(2017) ini adalah apabila terjadi kerusakar		
		pada smartphone karyawan, maka		
			harus ada laporan secara tertulis	
			sesuai dengan ketentuan pada	
			perusahaan, selain itu, karena	
			menggunakan WLAN, apabila terjadi	
			kerusakan pada WLAN maka sistem	
			presensi tidak dapat	
		digunakan.(Husain, Prastian and		
			Ramadhan, 2017)	
5	Megi	Rancang Bangun	Dalam penelitian ini dihasilkan	
	pratama dan	Aplikasi Presensi	aplikasi presensi berbasiskan android	
	Vera Irma	Dengan Global	yang menggunakan bantuan GPS	
	Delianti	Positioning	yang telah tersemata di dalam ponsel	
		System(GPS)	android, aplikasi ini dapat berjalan	
		Berbasis	dengan baik dan membantu karyawan	
		Android(Studi	dalam melakukan presensi di	
		Kasus:	lingkungan perusahaan, aplikasi ini	
		PT.Perkebunan	juga menyematkan fitur lock gps	
		Nusantara VI Unit	yang berfungsi untuk memastikan	
		Usaha Kayu Aryo)	pegawai berada disekitar perusahaan	
		(2021)	jika akan melakukan	
		(2021)	presensi.(Pratama and Delianti, 2021)	
			presensi.(1 ratama and Denami, 2021)	

Table 2. table penelitian presensi dengan GPS

2.2 Tinjauan Teori

Menutut KBBI, aplikasi adalah program komputer atau perangkat lunak yang didesain untuk dapat melakukan tugas tertentu(*Hasil Pencarian - KBBI Daring*, no date a), sedangkan presensi adalah kehadiran (*Hasil Pencarian - KBBI Daring*, no date b), jadi dapat diambil konklusi, jika aplikasi presensi adalah program atau perangkat lunak yang dibangun untuk kebutuhan presensi atau kehadiran pada suatu instansi. Aplikasi presensi akan dikembangkan pada platform android, karena android sekarang merupakan raja dari *smartphone*, selain itu di android programmer bisa membuat aplikasi mereka sendiri karena android juga menyediakan sistem pengembangan terbuka atau *open source*(Haris Suryaningtias, Ayu Dusea Widya Dara and Swanjaya, 2021)

2.2.1 Android

Androd adalah sistem operasi yang dibuat untuk telepon genggam yang bersifat terbuka (*open source*) serta berbasiskan linux(RAHAYU, 2016), android juga memiliki sifat sumber kode terbuka atau *open source* yang akan

memudahkan para *developer* untuk mengembangkan aplikasi di platform android(Hartati *et al.*, 2017)(Haris Suryaningtias, Ayu Dusea Widya Dara and Swanjaya, 2021)

2.2.2 Presensi

Menurut kamus besar bahasa Indonesia atau KBBI, presensi adalah kehadiran seseorang pada suatu tempat (*Hasil Pencarian - KBBI Daring*, no date b), dan dalam hal insi presensi pegawai balai desa warureja merupakan data kehadiran yang dapat dilakukan rekapitulasi menggunakan sistem yang tersedia. Perkembangan sistem presensi dimulai ketika banyak terjadi kejanggalan pada proses presensi, sistem presensi yang sebelumnya dilakukan secara manual dengan melakukan tanda tangan pada buku kehadiran, sekarang dapat digantikan dengan berbagai macam teknologi seperti aplikasi presensi berbasis Android(Madhiyono, Kosasi and David, 2021)

2.2.3 Geocoder

Merupakan bagian dari LBS atau *location based service* yang dapat diakses menggunakan koneksi internet pada perangkat mobile, geocoder mendapatkan lokasi user secara *realtime* dengan mengubah letak kordinat latitude dan longitude menjadi sebuah alamat yang dapat dipahami oleh manusia, dengan menggunakan layanan geocoder, posisi user dapat diketahui dan dilakukan tracking `lokasi secara *realtime*.(Qois and Jumaryadi, 2021)

2.2.4 Algoritma Haversine

Haversine adalah metode pengukuran jarak antara dua titik di bumi berdasarkan panjang garis lurus dengan menghilangkan faktor bentuk bumi yang agak lonjong(*Elipsoidal Factor*)(Madhiyono, Kosasi and David, 2021)(Metode Perhitungan *et al.*, 2020). Rumus haversine adalah sebagai berikut:

Gambar 1. Hukum Haversine

$$\Delta long = (long2 + long1) \cdot \cos\left(\frac{lat1 + lat2}{2}\right) = cos\alpha \cdot \cos b - \sin a \cdot \sin b$$

$$\Delta lat = (lat2 - lat1)$$

$$a = sin2\left(\frac{\Delta lat}{2}\right) = \cos(lat1) \cdot \cos(lat2) \cdot sin2\left(\frac{\Delta long}{2}\right)$$

$$d = \sqrt{(a)} \cdot R$$

Keterangan:

- R = Radius Bumi (6371 Km)
- d = Jarak (Km)
- $\Delta long = Besaran perubahan latitude (Km)$
- $\Delta lat = \text{Besaran perubahan } longitude \text{ (Km)}$

Sedangkan perhitungan jarak ketika melakukan presensi, akan digunakan algortima haversine, penggunaan algoritma haversine Dairakudakan untuk mendapatkan hasil yang akurat ketika melakukan perhitungan jarak presensi, algoritma ini menjadi algoritma paling mumpuni dalam rentang kecepatan pemrosesan, ketepatan aplikasi, akurasi dan perbandingan kinerja secara keseluruhan jika dikomparasi dengan algortima Euclidean dan Manhattan (Metode Perhitungan *et al.*, 2020).Berikut ini adalah data yang menunjukkan kinerja keseluruhan algortima haversine, Manhattan dan Euclidean untuk diimplantasikan dalam pembuatan aplikasi presensi berbasis andorid di kantor Balai Desa Warureja Kabupaten Tegal.

Table 3. Perbandingan hasil perhitungan jarak

		_	-	I
No.	Manual	Euclidean	Manhattan	Haversine
1	25m	25,46m	30,84m	25,42m
2	25m	25,65m	30,95m	25,61m
3	17m	17,66m	21,71m	17,63m
4	29m	29,19m	35,18m	29,14m
5	26m	27,11m	33,29m	27,07m
6	18m	18,58m	22,49m	18,55m
7	30m	30,81m	37,18m	30,76m
8	41m	41,24m	51,32m	41,17m
9	41m	41,19m	51,65m	41,12m
10	42m	42,41m	52,77m	42,33m
11	10m	10,02m	12,25m	10m
12	20m	20,06m	24,27m	20,03m
13	30m	30,08m	36,51m	30,03m
14	40m	39,86m	47,76m	39,8m
15	45m	45,04m	54,1m	44,97m
16	27m	27,53m	34,96m	27,48m
17	37m	37,48m	46,53m	37,42m
18	18m	18,67m	21,71m	18,52m
19	16m	16,45m	20,37m	16,43m
20	18m	18,49m	22,49m	18,47m
Rata-	-Rata Selisih	0,41m	6,67m	0,37m

Tabel 4 diatas adalah table penelitian keakuratan setiap metode dengan menggunakan cara manual menggunakan tali ukur sepanjang satu meter dan akan dikomparasikan dengan perhitungan dari aplikasi. Dari data yang terdapat di table 4, dapat diambil konsklusi jika metode pengukuran jarak haversine memperoleh rerata selisih 0,37 Meter dan merupakan metode pengukuran jarak dengan jumlah selisih terkecil diantara metode pengukuran jarak yang lain.

Gambar 2. Grafik ketepatan keputusan tiap metode

Pada gambar nomor 3 merupakan data hasil perhitungan terhadap data dengan jumlah enam puluh data dengan akurasi ketepatan keputusan haversine sebesar 90%.

Gambar 3.Grafik toleransi pada tiap metode

Gambar nomor 4 dapat memberikan perspektif awal tentang metode pengukuran jarak pada setiap metode yang dilakukan pengujian, metode pengukuran haversine memperoleh akurasi paling tinggi diantara metode pengukuran yang lain, yaitu sebesar 98.66 % dan rerata selisih jarak yang dihasilkan sebanyak 0,37 Meter(Metode Perhitungan *et al.*, 2020).

Metode Perhitungan	Waktu Pemrosesan (100 data)	Tingkat Keakurasian	Ketepatan Aplikasi
Euclidean	0,000504029	98,51%	83,33%
Manhattan	0,00034045	75,98%	66,67%
Haversine	0,000455141	98,66%	90,00%
			,

Table 4. Perbandingan kinerja pada tiap metode

Pada tabel nomor 4, dapat dinyatakan metode perhitungan yang menghasilkan jarak terkecil jika dibandingkan dengan cara perhitungan manual adalah metode haversine dengan perolehan akurasi sebesar 98.66% (Metode Perhitungan *et al.*, 2020).

2.2.5 GPS (Global Positioning System)

GPS merupakan sebuah sistem yang digunakan untuk menentukan titik lokasi dipermukaan bumi dengan bantuan satelit, jumlah satelit yang digunakan dalam menentukan lokasi berjumlah 24 satelit yang akan bertugas untuk mengirimkan sinyal dan akan ditangkap oleh alat penerimaan sinyal untuk menentukan letak koordinat, kecepatan, arah dan waktu(*Queue | PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI - ADOC.PUB*, no date)

Pada mulanya bernama NAVSTAR GPS atau Navigation Satellite Timing and Ranging Global Posistioning System, pada saat GPS hanya digunakan oleh angkatan bersenjata atau militer yang kemudian digunakan oleh sipil (Queue | PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI - ADOC.PUB, no date)

2.2.6 Firebase

Adalah layanan API atau Application Programming Interface berbasiskan penyimpanan database yang disediakan oleh google dan dapat diintegrasikan dengan berbagai macam platform, seperti android, ios, web, unity dan c++, fitur yang tersemat didalam firebase diantaranya adalah realtime database, authentication, storage, Firestore database, hosting, functions dan machines learning(Payara and Tanone, 2018)

2.2.7 Kotlin

Kotlin adalah bahasa pemrograman modern yang berjalan diatas JVM atau *java virtual machine* serta menggunakan *compiler* LLVM yang membuat kotlin dapat diintegrasikan dengan bahasa pemrograman java, beberapa keunggulan kotlin adalah *open source*, sintaks yang ringkas, lebih ringan daripada java, lebih aman dari kesalahan atau *error* dan kotlin telah terintegrasi dengan android studio.(*Apa Itu Kotlin? Kenapa Kita Harus Mempelajari Kotlin? - Dicoding Blog*, no date)