

Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive MT

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, Noah A. Smith Paul G. Allen School of CSE, University of Washington Facebook Al

Non-autoregressive MT (NAR) is a recent fast alternative to AR MT.

- Non-autoregressive MT (NAR) is a recent fast alternative to AR MT.
- Parallel generation underperforms yet outpaces left-to-right generation on a GPU.

- Non-autoregressive MT (NAR) is a recent fast alternative to AR MT.
- Parallel generation underperforms yet outpaces left-to-right generation on a GPU.
- Reexamines the speed-accuracy tradeoff.

- Non-autoregressive MT (NAR) is a recent fast alternative to AR MT.
- Parallel generation underperforms yet outpaces left-to-right generation on a GPU.
- Reexamines the speed-accuracy tradeoff.
 - Suboptimal Layer Allocation
 - Insufficient Speed Measurement
 - Lack of Knowledge Distillation for AR Baselines

- MT's generation quality improved in the past 10 years, but can we make it faster?
- Speed is important!
 - Need for massive amount of translation
 - Google translates 100B+ words a day
 - EU translates 1M pages every year

- MT's generation quality improved in the past 10 years, but can we make it faster?
- Speed is important!
 - Some applications particularly need fast translation
 - Simultaneous Translation
 - Conversations

- Many techniques to speed up NMT
 - Vocabulary Reduction (<u>Shi&Knight 2017</u>), Lightweight Attention (<u>Zhang et al., 2018</u>, <u>Peng et al. 2021</u>), Eager Translation (<u>Press et al., 2018</u>)...

- Many techniques to speed up NMT
 - Vocabulary Reduction (<u>Shi&Knight 2017</u>), Lightweight Attention (<u>Zhang et al., 2018</u>, <u>Peng et al. 2021</u>), Eager Translation (<u>Press et al., 2018</u>)...
- Non-autoregressive MT (NAR, <u>Gu et al., 2018</u>)
 - Parallel Computation in Word Generation

Why can NAR be faster?

Generation

$$P(\mathbf{Y}) \quad \mathbf{Y} = y_1, y_2, \cdots, y_T$$

• Typically given **X** = source language (MT), text (text2speech) etc

Why can NAR be faster?

Generation

 $P(\mathbf{Y}) \quad \mathbf{Y} = y_1, y_2, \cdots, y_T$

Autoregressive

$$P(\mathbf{Y}) = \prod_{i=1}^{T} P(y_i | \mathbf{Y}_{< i})$$

Why can NAR be faster?

- Generation
- Autoregressive

Non-autoregressive

$$P(\mathbf{Y}) \quad \mathbf{Y} = y_1, y_2, \cdots, y_T$$

$$P(\mathbf{Y}) = \prod_{i=1}^{T} P(y_i | \mathbf{Y}_{< i})$$

$$P(\mathbf{Y}) = \prod_{i=1}^{T} P(y_i)$$

Why NAR?

Speed Overhead in Autoregressive Generation.

https://deepmind.com/blog/article/high-fidelity-speech-synthesis-wavenet

Why NAR?

• Speed up **Generation** by Parallelism.

Speed-Accuracy Tradeoff in NAR

- Multimodality (Gu et al. 2018)
 - Language is highly multimodal. Can't mix two sentences (modes).
 - You're welcome <-> My pleasure

- Iterative Methods
 - Lee et al., 2018; Ghazvininejad et al., 2019; Gu et al. 2019; Kasai et al. 2020...

- Iterative Methods
 - Lee et al., 2018; Ghazvininejad et al., 2019; Gu et al. 2019; Kasai et al. 2020...
- Light Autoregressive
 - Kaiser et al. 2018; Stern et al. 2018, 2019; Sun et al. 2019

- Iterative Methods
 - Lee et al., 2018; Ghazvininejad et al., 2019; Gu et al. 2019; Kasai et al. 2020...
- Light Autoregressive
 - Kaiser et al. 2018; Stern et al. 2018, 2019; Sun et al. 2019
- Latent Variables
 - Ma et al. 2019; Shu et al. 2020

- Iterative Methods
 - Lee et al., 2018; Ghazvininejad et al., 2019; Gu et al. 2019; Kasai et al. 2020...
- Light Autoregressive
 - Kaiser et al. 2018; Stern et al. 2018, 2019; Sun et al. 2019
- Latent Variables
 - Ma et al. 2019; Shu et al. 2020

NAR MT is strictly better now?

• Some of these recent works claim NAR outspaces AR with equivalent accuracy.

NAR MT is strictly better now?

- Some of these recent works claim NAR outspeeds AR with equivalent accuracy.
- Wait, we're being unfair to AR!
 - Speed Measurements
 - Layer Allocation
 - Knowledge Distillation

Reevaluating NAR

Speed Measure

- S1 (Most NAR Works)
 - 1 sentence (utterance) at a time
 - Instantaneous Translation, Simultaneous Translation,...

Speed Measure

- S1 (Most NAR Works)
 - 1 sentence (utterance) at a time
 - Instantaneous Translation, Simultaneous Translation,...

Smax

- Maximum Batch Size
- Translate Wikipedia, EU Documents, ...

Speed Measure

- Translation Services related to Smax
 - Batched Translation for Large Web Text
 - Amazon, Google Cloud etc

Knowledge Distillation

- Mitigates Multimodality (<u>Gu et al. 2018</u>).
 - Almost all NAR models need KD.
 - AR MT output is less diverse than human (<u>Shen et al. 2019</u>).

Knowledge Distillation

- Mitigates Multimodality (<u>Gu et al. 2018</u>)
 - IWSLT EN-DE Validation

Distillation		Decoder Inputs			Fine-tuning			20,710,000
b=1	b=4	+uniform	+fertility	+PosAtt	$+\mathcal{L}_{\mathrm{KD}}$	$+\mathcal{L}_{\mathrm{BP}}$	$+\mathcal{L}_{RL}$	BLEU
				✓	Î			$ \approx 2$
		✓		✓				16.51
			✓	√				18.87

Knowledge Distillation

- Mitigates Multimodality (<u>Gu et al. 2018</u>)
 - IWSLT EN-DE Validation

Distil b=1	lation $b=4$	Decoder Inputs +uniform +fertility		+PosAtt	Fine-tuning $+\mathcal{L}_{KD} + \mathcal{L}_{BP} + \mathcal{L}_{RL}$			BLEU
				√				≈ 2
		✓		1				16.51
		38 1 1 1 1	✓	✓				18.87
√		√		√			1	20.72
	\	✓		√				21.12
1			✓					24.02
1			√	√				25.20

This work applies KD to AR baselines as well.

Layer Allocation

- Equal depths in the encoder and decoder are typically assumed.
- They have different accuracy and speed implications.

Layer Allocation

- Equal depths in the encoder and decoder are typically assumed.
- They have different accuracy and speed implications.
- Experiments with varying depths.
- Deep-Shallow speeds up AR MT with accuracy retained.
 - AR's speed disadvantage is overestimated.

Implications on Speed

 Speed up S1 with a shallow decoder. Increasing the encoder depth only causes a mild slowdown.

	Full Model		
		$\mathcal{O}(EN^2 + 1 \cdot N^2)$	
Time Complex.	$\mathcal{O}(EN + DN^2)$	$\mathcal{O}(EN+N^2)$	$\mathcal{O}(EN + DTN)$

Implications on Speed

- Speed up S1 with a shallow decoder. Increasing the encoder depth only causes a mild slowdown.
- With large batches, the increased total operation in NAR can slow down Smax.

	Full Model			
AR E-D	AR <i>E</i> -1	NAR E-D		
Total Operations $\mathcal{O}(EN^2 + DN^2)$		$\mathcal{O}(EN^2 + DTN^2)$		
Time Complex. $\mathcal{O}(EN + DN^2)$	$\mathcal{O}(EN+N^2)$	$\mathcal{O}(EN + DTN)$		

Experiments

Setups: Benchmarks

- Follow prior NAR works (Ghazvininejad et al., 2019; Kasai et al., 2020)
- BPE subwords

	Train Pairs	Teacher Transformer	Model
WMT 2016 EN-DE	4.5M	Large	Base
WMT 2016 EN-RO	610K	Base	Base
WMT 2017 EN-ZH	20M	Large	Base
WMT 2014 EN-FR	36M	Large	Base

Speed-Accuracy Tradeoff S1

- E-D: # encoder-# decoder
- Speedups wrt AR 6-6 Baseline
- AR 6-6 > CMLM, DisCo but slow in S1.
- AR 6-1: S1 speedup but loss in BLEU.
- AR 12-1: a balanced middle ground.

Speed-Accuracy Tradeoff S1

- Speedups wrt AR 6-6 Baseline
- NAR 12-1 models generally suffer in BLEU
- Deep-Shallow not Effective for NAR

Speed-Accuracy Tradeoff S1 More Langs.

Speed-Accuracy Tradeoff Smax

- NAR models suffer in large batch inference
- Consistent with Total Operations Analysis

Speed-Accuracy Tradeoff Smax More Langs.

High-resource MT

Model			WMT17 EN→ZH			WMT14 EN→FR		
	$oldsymbol{T}$	E- D	BLEU	S_1	Smax	BLEU	S_1	Smax
CMLM	4	6-6	33.58	3.5×	0.2×	40.21	3.8×	0.2×
CMLM	10	6-6	34.24	1.5×	$0.1 \times$	40.55	1.7×	$0.1 \times$
DisCo		6-6	34.63	$2.5 \times$	$0.2 \times$	40.60	3.6×	$0.2 \times$
AR Deep-	Shallo	w 12-1	34.71	$2.7 \times$	1.7×	42.04	2.8×	1.9×
AR		6-6	35.06	1.0×	1.0×	41.98	1.0×	1.0×
Dist. Teac	her	6-6	35.01	·—	_	42.03	_	1

Compare with More NAR Works

	EN-DE (BLEU)	Avg Iterative Steps
Levenshtein Transformer	27.3	>7
SMART	27.0	10
<u>Imputer</u>	28.0	4 (12-layer NN Only)
AR 6-6	28.3	N
AR Deep-Shallow (12-1)	28.3	N

Compare AR and NAR

S1 Speed Constraint

S1 Speed Constraint

- WMT EN-DE Test
- Maximize Decoder Depth in the budget
 - E.g., DisCo 12-9

S1 Speed Constraint

- WMT EN-DE Test
- Maximize Decoder Depth in the budget
 - E.g., DisCo 12-9
- Accuracy still far from AR
 12-1 under the same S1
 Budget

Total Layers Constraint

- WMT EN-DE Test
- E+D=12

Total Layers Constraint

- WMT EN-DE Test
- E+D=12
- AR: Stable
- NAR: decoders can't be too shallow

Hypothesis: diverging word order btw the source and the target

- Hypothesis: diverging word order btw the source and the target
- Test: Reorder input English sentences to have monotonic alignment.
 Does it help?

Source: I like school -> I school like

• Applied fast align (<u>Dyer et al., 2013</u>) to WMT16 EN-DE Test

Model	E- D	Orig.
$\overline{\text{CMLM}, T = 10}$	6-6	27.4
CMLM, $T = 10$	12-1	26.3
DisCo	6-6	27.4
DisCo	12-1	26.8
AR	6-6	28.3
AR Deep-Shallow	12-1	28.3

• Applied fast align (<u>Dyer et al., 2013</u>) to WMT16 EN-DE Test

Model	E- D	Orig.	Reorder	Δ	
CMLM, $T = 10$	6-6	27.4	31.7	4.3	
CMLM, $T = 10$	12-1	26.3	31.0	4.7	
DisCo	6-6	27.4	31.0	3.6	
DisCo	12-1	26.8	31.6	4.8	
AR	6-6	28.3	32.6	4.3	
AR Deep-Shallow	12-1	28.3	32.6	4.3	

Conclusion and Future Prospects

Conclusion

 AR's speed-accuracy balance improves with deep-shallow configurations.

Conclusion

- AR's speed-accuracy balance improves with deep-shallow configurations.
- Future work in NAR should consider layer allocation, knowledge distillation, and speed measurement.

Conclusion

- AR's speed-accuracy balance improves with deep-shallow configurations.
- Future work in NAR should consider layer allocation, knowledge distillation, and speed measurement.
- Deep-shallow configurations for other seq2seq tasks? Seq2seq pretraining like <u>T5</u> or <u>BART</u>?

Future Prospects of Fast, Accurate MT

- Should we still work on NAR?
 - Many other MT optimization methods

Future Prospects of Fast, Accurate MT

- Should we still work on NAR?
 - Heat Wall (<u>Etiemble. 2018</u>)
 - Parallelism is the future

Future Prospects of Fast, Accurate MT

- NAR Transformer Applications beyond MT
 - Speech/Image Generation (Parallel WaveNet, GANs)
 - Image Recognition (<u>DETR</u>)

Thank you!

https://github.com/jungokasai/deep-shallow