Week 3: Heuristic Search

COMP90054 – Al Planning for Autonomy

Key concepts

- Heuristic Functions and their properties and relations
- Heuristic search algorithms
- State-space model and size of the problem

Heuristic function $\frac{1}{5}$

h(s) estimates the distance from the current state **s** to the <u>closest</u> goal state

 $h^*(s)$ is a **perfect heuristic**, the optimal cost from the current state to the goal state

Heuristic function's properties

4 properties:

Safe: if a solution exists from state s, then $h(s) < \infty$

- Goal-aware: All goal states have a heuristic h = 0
- **Admissible**: never over-estimate the cost

- **Consistent**: the cost diff between the parent and the child heuristics is never larger than the actual cost

Admissible: for all $s \in S$, $h(s) \le h^*(s)$

Which Heuristics are admissible?

h1, h2, h3

Consistent: the cost diff between the parent and the child heuristics is never larger than the actual cost

k(s1) - k(s2) = 5

 $h(s) - h(s') \leq c(s,s')$ parent child true cost

Which heuristics are consistent?

h1, h2

Dominate relation ~ how many nodes that you can expand.

h1 dominates h2 if

- both heuristics are admissible
- $h2 \le h1 \le h^*$ for all s in S

Does any of the heuristic dominate any other?

h2 dominates h3
(1) All admissible

(2) he is the perject heuristic

—) he 7 hy

(1)

(2)

Heuristic search algorithms

Search node: n = <s, f(n), g(n), parent n> f(n) is a priority value for node in the priority queue

DS: priority queue

- Uniform-cost search (Dijkstra): f(n) = g(n)
- Greedy best-first search: f(n) = h(s)
- A^* : f(n) = h(s) + g(n)
- $WA^*: f(n) = W^*h(s) + g(n)$

Search node: $n = \langle s, f(n), g(n) \rangle$ parent n > f(n) = h(s)

Greedy best-first search

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n3 = <s4, 0="" 1,="" 5,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n4 = <s6, 2,="" 3="" 4,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n5 = <s7, 0,="" 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

g(s1) = 6

Solution: s1 -> s4 -> s6 -> s7

Problem 1: Task 2
$$\frac{1(h)}{\text{Search node: } n = \langle s, f(n), g(n) \rangle}$$

A*

Search node: $n = \langle s, f(n), g(n), parent n \rangle$ f(n) = h(s) + g(n)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n3 = <s4, 0="" 1,="" 6,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n4 = <s6, 2,="" 3="" 6,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n5 = <s7, 5="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

WA* (W = 2)

		7	W=2		
	Searc	bla	ode: n = <s,< td=""><td>f(</td><td>(n), g(n), parent n></td></s,<>	f((n), g(n), parent n>
1	f(n) =	W	* h(s) + g(n)		

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 12,="" none=""></s1,>	
2	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n3 = <s4, 0="" 1,="" 11,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n4 = <s6, 10,="" 2,="" 3=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n5 = <s7, 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

Heuristic algorithms

Which is the path returned as solution? (using h2 and A* as example)

Is this the optimal plan? Has the algorithm proved this? (using h2 and A* as example)

Yes. h2 is both admissible and consistent

Note about A* optimality

A* will return an optimal solution:

- If using A* with re-opening (lecture slides) and heuristic function is admissible
- If using A* without re-opening (original algo) and heuristic function is both admissible and consistent

```
A* (with duplicate detection and re-opening)
open := new priority queue ordered by assending g(state(\sigma)) + h(state(\sigma))
open.insert(make-root-node(init()))
closed := \emptyset
best-g := \emptyset/* maps states to numbers */
while not open.empty():
       \sigma := open.pop-min()
       if state(\sigma) \notin closed or g(\sigma) < best-g(state(\sigma)):
         /* re-open if better g note that all \sigma' with same state but worse g
             are behind \sigma in open, and will be skipped when their turn comes */
          closed := closed \cup \{state(\sigma)\}\
          best-g(state(\sigma)) := g(\sigma)
          if is-goal(state(\sigma)): return extract-solution(\sigma)
          for each (a, s') \in \operatorname{succ}(\operatorname{state}(\sigma)):
              \sigma' := \mathsf{make-node}(\sigma, a, s')
              if h(state(\sigma')) < \infty: open.insert(\sigma')
return unsolvable
```

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

Formulate a state-based search problem to find a tour to all the desired points

State space model: $P = \langle s_0, S, S_G, A, f, c \rangle$ a state = <current coordinate, a set of remaining coordinates>

(1)

(x,y) **3**4

Initial state $s_0 = \langle (0,0), G \rangle \{ (0,0) \} = \langle \text{current coordinate} \rangle$ a set of visited coordinates f

Goal state $S_G = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$

State $S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G \}$

Action A(<(x,y), V'>) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$ $\land |dx| + |dy| = 1$ $\land x + dx, y + dy \in \{0, ..., m-1\}\}$ _(I)

 $\int \mathbb{I}_{m \times m}$

(61 5 1mxm)

Transition $f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$

Cost c(a, s) = 1

Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

Formulate a state-based search problem to find a tour to all the desired points

State space model: a state = <current coordinate, a set of visited coordinates> $P = \langle s_0, S, S_G, A, f, c \rangle$

Initial state
$$s_0 = \langle (0,0), \{(0,0)\} \rangle$$

Goal state
$$S_G = \{ \langle (x, y), V \rangle \mid x, y \in \{0, ..., m-1\} \land G \subseteq V \}$$

State
$$S = \{ \langle (x, y), V \rangle | x, y \in \{0, ..., m-1\} \land V \subseteq \{(x', y') | x', y' \in \{0, ..., m-1\} \} \}$$

Action A(
$$<(x,y), V>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0, ..., m-1\}\}$

Transition
$$f(<(x,y), V >, (dx, dy)) = <(x + dx, y + dy), V \cup \{(x + dx, y + dy)\} >$$

$$\mathsf{Cost}\;\mathsf{c}(a,s)=\mathbf{1}$$

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the branching factor of the search?

4 (branching factor = max number of child nodes)

(x,y)		91
	92	

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the size of the state space in terms of m and G?

If using V' (a set of remaining coordinates), then $m^2 \times 2^{|G|}$

If using V (a set of visited coordinates), then $m^2 \times 2^{|m \times m|}$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G \}$$

State
$$S = \{ \langle (x,y), V \rangle | x, y \in \{0, ..., m-1\} \land V \subseteq \{(x',y') | x', y' \in \{0, ..., m-1\} \} \}$$

$$\rightarrow \{q_1, q_2, \dots, m-1\} \}$$