

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :		(11) Internationale Veröffentlichungsnumme	er: WO 99/52938
C07K 14/00	A2	(43) Internationales	
			Oktober 1999 (21.10.99)

PCT/EP99/02463 (21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum: 13. April 1999 (13.04.99)

(30) Prioritätsdaten:

198 16 196.4	14. April 1998 (14.04.98)	DE
198 25 585.3	9. Juni 1998 (09.06.98)	DE
198 28 097.1	24. Juni 1998 (24.06.98)	DE
198 31 637.2	15. Juli 1998 (15.07.98)	DE
198 31 639.9	15. Juli 1998 (15.07.98)	DE
198 31 638.0	15. Juli 1998 (15.07.98)	DE
198 43 279.8	22. September 1998 (22.09.98)	DE

(71)(72) Anmelder und Erfinder: HASSAN, Jomaa [DE/DE]; Breslauer Strasse 24, D-35398 Giessen (DE).

(74) Anwalt: PANTEN, Kirsten; Patentanwälte Reichel, Parkstrasse 13, D-60322 Frankfurt am Main (DE).

(81) Bestimmungsstaaten: AU, BR, CA, CN, CZ, HU, ID, IL, IS, JP, KR, MX, NO, NZ, PL, SG, SK, TR, US, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: METHOD FOR IDENTIFYING CHEMICAL ACTIVE AGENTS AND ACTIVE AGENTS FOR INHIBITING THE 1-DESOXY-D-XYLULOSE-5-PHOSPHATE BIOSYNTHETIC PATHWAY
- (54) Bezeichnung: VERFAHREN ZUR IDENTIFIZIERUNG CHEMISCHER WIRKSTOFFE UND WIRKSTOFFE ZUR HEMMUNG DES 1-DESOXY-D-XYLULOSE-5-PHOSPHAT-BIOSYNTHESEWEGS

(57) Abstract

The invention relates to a method for identifying chemical active agents which are suitable for treating infectious diseases caused by single- or multi-celled parasites. According to the method, proteins which form part of the 1-desoxy-d-xylulose-5-phosphate metabolic pathway or derivatives thereof which act in the same way are brought into contact with the active agents being tested for their effectiveness against parasites and those active agents which inhibit the proteins or their derivatives are selected. The invention also relates to the active agents which are identified and to their use for producing medicaments for treating parasitic infections.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Auffinden von chemischen Wirkstoffen, die zur Therapie von Infektionskrankheiten geeignet sind, die durch ein- oder mehrzellige Parasiten hervorgerufen werden. Bei diesem Verfahren werden Proteine, die am 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweg beteiligt sind, oder deren gleichwirkende Derivate mit den auf ihre Wirksamkeit gegenüber Parasiten zu untersuchenden Wirkstoffen in Berührung gebracht und die Wirkstoffe, die die Proteine oder deren Derivate inhibieren, ausgewählt. Die Erfindung betrifft ferner die aufgefundenen Wirkstoffe zur Herstellung von Arzneimitteln gegen parasitäre Infektionen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	ΙT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zur Identifizierung chemischer Wirkstoffe und Wirkstoffe zur Hemmung des 1-Desoxy-D-xylulose-5-Phosphat-Biosynthesewegs

Die Erfindung betrifft ein Verfahren zur Identifikation von Wirkstoffen, die zur Behandlung von parasitären Erkrankungen verursacht durch ein- oder mehrzellige Parasiten geeignet sind. Anwendungsgebiete der Erfindung sind die Medizin und die pharmazeutische Industrie. Weiter betrifft die Erfindung Proteine, sowie Teilstücke von Proteinen, ferner DNA-Sequenzen, die diese Proteine bzw. Teilstücke dieser Proteine kodieren, die Verwendung dieser DNA-Sequenzen, dieser Proteine oder ihrer Teilstücke zur Identifizierung von Stoffen mit Wirkung gegen ein- oder mehrzellige Parasiten, sowie die auf diesem Weg identifizierten Wirkstoffe und deren Verwendung zur Herstellung von Arzneimitteln.

Der Begriff Parasiten beinhaltet einzellige Parasiten und mehrzellige Parasiten einschließlich Helminthen und Anthropoden. Diese verursachen Infektionserkrankungen bei Mensch und Tier. Im Sinne dieser Erfindung ist die streng wissenschaftliche Definition von Parasiten anzuwenden, d.h. unter einzelligen Parasiten sind Protozoen zu verstehen.

Es existiert bereits eine Vielzahl von Mitteln gegen parasitäre Erkrankungen. Die vorhandenen Mittel werden durch

die sich rasch entwickelnden Resistenzen gegen diese Mittel bereits unbrauchbar für die Therapie von Mensch und Tier. So sind bereits viele Regionen von Malariaparasiten befallen, die gegen Standard-Medikamente wie Chloroquin resistent sind. Auch sind Berichte über Resistenz-Entwicklung gegen Standard-Mittel (Praziquantel) zur Behandlung der Bilharziose bekannt. Diese Resistenzentwicklungen und andere Faktoren haben dazu geführt, daß Malaria und Bilharziose bereits zu den häufigsten Erkrankungen in den Tropen gezählt werden. Geschätzte 300-500 Millionen Menschen sind an Malaria erkrankt. 2-2,5 Millionen Menschen sterben im Jahr an Malaria. Weiter sind neue Medikamente wie Mefloquin sehr teuer in der Herstellung und sehr nebenwirkungsreich. Es besteht daher ein großer Bedarf an Arzneimitteln zur Therapie von Mensch und Tier.

Es gab in der Vergangenheit viele Ansätze zur Entwicklung von Chemotherapeutika gegen Parasiten, insbesondere gegen Krankheitserreger der Malaria und der Bilharziose. Einer dieser Ansatze befaßt sich mit der Inhibition der sogenannten Isoprenoidbiosynthese. Isoprenoide sind Moleküle, die aus einzelnen Isopreneinheiten (Isopentenyldiphosphat) gebildet werden, und wichtige Funktionen in der Zelle übernehmen. Hierzu gehören Sterole, Ubichinone und andere Moleküle, die für den Haushalt der Parasiten wichtig sind. Die Vorgehensweise basierte hierbei auf einem Modell, das in Pilzen und in Säugerzellen etabliert wurde. In Pilzen und in Säugerzellen entsteht die Untereinheit Isopentenyldiphosphat auf der Basis der Kondensation von drei Molekülen Acetyl-CoA zu HMG-CoA. HMG-CoA wird dann von der HMG-CoA-Reduktase zu Mevalonat umgewandelt, welches dann mit Mevalonat-Phosphat als Zwischenstufe zu Isopentenyldiphosphat umgewandelt wird (siehe Figur 7). Inhibitoren der HMG-

CoA-Reduktase wie zum Beispiel Lovastatin, Simvastatin und Pravastatin wurden zur Inhibition des Wachstums der Parasiten verwendet. Bei Malaria gelang es zwar, unter Anwendung sehr hoher Dosen Lovastatin und Simvastatin eine in vitro Inhibition zu erreichen, jedoch mißlang die Inhibition in vivo. Die Behandlung Schistosoma-infizierter Mäuse mit Lovastatin führte zu einer Inhibition der Eiablage dieser Würmer, jedoch mußten sehr hohe Konzentrationen an Lovastatin aufgewendet werden, um einen Teil der Würmer in vivo zu töten.

Es wurde nun überraschend gefunden, daß Parasiten, insbesondere Plasmodien und Trypanosomen (Verursacher der Malaria und der Schlafkrankheit) zumindest einen weiteren Stoffwechselweg zur Synthese von Isoprenoiden besitzen. Dieser Stoffwechselweg beruht auf einer Kondensation von Glycerinaldehyd-3-Phosphat und Pyruvat zu 1-Desoxy-Dxylulose-5-Phosphat (DOXP). DOXP wird dann umgewandelt zu 2-C-Methyl-D-erythrose-4-Phosphat, das dann mit 2-C-Methylerythrithol-4-Phosphat als Zwischenstufe zu Isopentenyldiphosphat umgewandelt wird. An diesem Stoffwechselweg sind unter anderem die Enzyme DOXP-Synthase und DOXP-Reduktoisomerase beteiligt (Siehe Figur 7). Dieser Stoffwechselweg war bisher nur in Pflanzen, in Algen und in einigen Bakterien beschrieben worden (Sprenger et al. PNAS, 94 (1997) 12857-62 und Kuzuyama et al. Tetrahedron Letters 39 (1998) 4509-12).

Die Inhibition des oben beschriebenen DOXP-Stoffwechselwegs, insbesondere der Enzyme DOXP-Synthase und DOXP-Reduktoisomerase durch die dem Fachmann bekannten Techniken eignet sich zur Vorbeugung und Behandlung von Infektionen, verursacht durch ein- und mehrzellige Parasiten bei Mensch

und Tier. Da dieser Stoffwechselweg nicht im Menschen vorhanden ist, eignet er sich hervorragend als Ziel für eine gezielte Chemotherapie von Parasiten. Insbesondere eignen sich die Enzyme Desoxyxylulose-5-Phosphat-Synthase und Desoxyxylulose-5-Phosphat-Reduktoisomerase als Ziel für eine Chemotherapie. Besonders nebenwirkungsarm und geeignet zeigte sich die Inhibition des Enzyms Desoxyxylulose-5-Phosphat-Reduktoisomerase von Malaria, da der Mensch weder über Substrate und deren Vorstufen noch über das Produkt des Enzyms noch über das Enzym selbst verfügt.

Die vorliegende Erfindung betrifft Verfahren zum Auffinden von Wirkstoffen, die den DOXP-Stoffwechselweg hemmen, und diese Wirkstoffe zur Herstellung von Arzneimitteln für die Therapie und Prophylaxe von Infektionskrankheiten verursacht durch ein- oder mehrzellige Parasiten.

Die Aufgabe der Erfindung ist es, ein neues Verfahren zur Identifikation von Wirkstoffen zur Therapie von parasitären Erkrankungen bei Mensch und Tier bereitzustellen. Eine weitere Aufgabe besteht darin, ein Verfahren zur Auffindung eines Medikamentes zu entwickeln, das selektiv den Erreger abtötet und nebenwirkungsarm ist.

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 realisiert. Die Erfindungsverfahren und ermittelten Wirkstoffe sind dadurch gekennzeichnet, daß

- die Isoprenoidbiosynthese im sogenannten 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweg gehemmt wird.

Alle beschriebenen Stoffwechselwege sind nicht in Mensch und Tier vorhanden, sondern nur in Pflanzen, Algen, manchen

Eubakterien und in Parasiten, wie zum Beispiel Malariaparasiten; daher zeichnet sich diese Therapie-Strategie als sehr nebenwirkungsarm aus.

Die vorliegende Erfindung betrifft weiterhin Enzyme, die an diesem Stoffwechselweg beteiligt sind, sowie Teilstücke dieser Enzyme. Diese Enzyme sind zur Durchführung des erfindungsgemäßen Verfahrens zur Identifikation von Wirkstoffen geeignete Proteine. Die vorliegende Erfindung betrifft weiter DNA-Sequenzen, die diese Enzyme kodieren, bzw. Teilstücke dieser Enzyme.

Die vorliegende Erfindung betrifft ein Verfahren und Antikörper zur Identifizierung der Enzyme oder ihrer Teilstücke sowie die Herstellung der Enzyme oder ihrer Teilstücke über rekombinante Technologie.

Die Erfindung betrifft weiter die Verwendung dieser Enzyme oder ihrer Teilstücke, oder die Verwendung der DNA-Sequenzen, die diese Enzyme kodieren, bzw. Teilstücke dieser Enzyme zur Identifizierung von Stoffen mit Wirkung gegen ein- oder mehrzellige Erreger.

Die Erfindung betrifft weiter Wirkstoffe, die mit Hilfe der erfindungsgemäßen Enzyme aufgefunden werden.

Im folgenden wird die Erfindung anhand der beiliegenden Zeichnungen genauer beschrieben.

Es zeigen:

Fig. la die Nukleotid-Sequenz des Gens, das das Protein 1-Desoxy-D-xylulose-5-Phosphat-Reduktoisomerase aus Plasmodium falciparum codiert,

Fig. 1b die Nukleotid-Sequenz des Gens, das die 1-Desoxy-Dxylulose-5-Phosphat-Synthase aus Plasmodium falciparum co-

Fig. 2a die Nukleotid-Sequenz des Gens, die 1-Desoxy-Dxylulose-5-Phosphat-Reduktoisomerase aus Plasmodium falciparum codiert und die entsprechende Aminosäure-Sequenz Fig. 2b die Nukleotid-Sequenz des Gens, die 1-Desoxy-Dxylulose-5-Phosphat-Synthase aus Plasmodium falciparum codiert und die entsprechende Aminosäure-Sequenz, Fig. 3a die Aminosäure-Sequenz des Proteins 1-Desoxy-Dxylulose-5-Phosphat-Reduktoisomerase aus Plasmodium falciparum,

Fig. 3b die Aminosäure-Sequenz des Proteins 1-Desoxy-Dxylulose-5-Phosphat-Synthase aus dem Parasiten Plasmodium falciparum,

Fig 4a einen Ausschnitt aus der Nukleotid-Sequenz nach Fig.

Fig. 4b einen Ausschnitt aus der Nukleotid-Sequenz mit der entsprechenden Aminosäuresequenz nach Fig. 2b,

Fig. 4c einen Ausschnitt aus der Aminosäure-Sequenz nach Fig. 3b,

Fig.5 In-vivo-Daten für die Parasitämie-Werte nach 4-tägiger Therapie mit jeweils drei Dosen der Stoffe:

Formyl, das 3-(N-Formyl-N-hydroxylamino)-propylphosphonsäure-mononatriumsalz entspricht, und

Acetyl, das 3-(N-Acetyl-N-hydroxylamino)-propyl-

phosphonsäure-mononatriumsalz entspricht,

Fig. 6a die Inhibition des Wachstums von P. falciparum nach Zugabe von 3-(N-Formyl-N-hydroxylamino)-propylphosphonsaure-mononatriumsalz (offene Kreise) und 3-(N-Acetyl-N-hydroxylamino)-propyl-phosphonsäuremononatriumsalz (geschlossene Kreise) für den Stamm HB3,

Fig. 6b die Inhibition des Wachstums von P. falciparum nach Zugabe von 3-(N-Formyl-N-hydroxylamino)-propyl-phosphonsäure-mononatriumsalz (offene Kreise) und 3-(N-Acetyl-N-hydroxylamino)-propyl-phosphonsäure-mononatriumsalz (geschlossene Kreise) für den Stamm A2, und Fig. 6c die Inhibition des Wachstums von P. falciparum nach Zugabe von 3-(N-Formyl-N-hydroxylamino)-propyl-phosphonsäure-mononatriumsalz (offene Kreise) und 3-(N-Acetyl-N-hydroxylamino)-propyl-phosphonsäure-mononatriumsalz (geschlossene Kreise) für den Stamm Dd2, und

Fig. 7 den klassischen Acetat/-Mevalonat-Biosyntheseweg im Vergleich zum alternativen DOX-P-Biosyntheseweg.

Mittels genetischer Verfahren wurden die kodierenden Gene der Enzyme DOXP-Synthase, und DOXP-Reduktoisomerase nachgewiesen (Figuren 1a, 1b, 2a, 2b). Nach Anreicherung durch die Polymerase-Ketten-Reaktion aus dem Genom von P. falciparum wurden diese Gene in bakteriellen Plasmiden kloniert und ihre Nukleotidsequenz bestimmt. Die Sequenzdaten zeigten eine hohe Homologie dieser Gene mit den entsprechenden Genen aus Algen, Pflanzen und Bakterien. Die sehr hohen Homologien zeigten, daß die drei Gene die Enzyme DOXP-Synthase und DOXP-Reduktoisomerase von P. falciparum codieren.

Nach Expression in heterologen Systemen wurden die Enzyme als rekombinante Proteine gereinigt und für Aktivitätsstudien in zellfreien Systemen eingesetzt. Die Aktivität der DOXP-Synthase wurde durch Umsetzung von Glycerinaldehyd-3-Phosphat und Pyruvat zu 1-Desoxy-D-xylulose-5-Phosphat gemessen. Die Aktivität der DOXP-Reduktoisomerase wurde durch Umsetzung von 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-

D-erythritol-4-Phosphat in Gegenwart von NADPH gemessen. Die Messung der Veränderung der NADPH-Konzentration erfolgt über eine Parametervariation. Dieses Verfahren ist dem Fachmann bekannt.

Die Enzyme können über die sie codierende DNA-Sequenz (Figuren 1a, 1b, 2a, 2b) und die davon abgeleitete Aminosäuresequenz (Figuren 3a und 3b) definiert werden. Die Enzyme der einzelnen Parasiten können sich jedoch von Parasit zu Parasit unterscheiden. Solche Variationen der Aminosäuren sind in der Regel Aminosäureaustausche. Es kann sich aber auch um Deletionen, Insertionen und Additionen von Aminosäuren zur Gesamtsequenz handeln. Die erfindungsgemäßen Enzyme können – sowohl im Umfang und Art abhängig von der Zelle und Zelltyp, in dem sie exprimiert werden – glycosyliert der nicht glycosyliert sein.

Die erfindungsgemäßen Enzyme oder Teilstücke dieser Enzyme werden durch Expression der erfindungsgemäßen DNA in geeigneten Expressionssystemen, beispielsweise in Bakterien, insbesondere in E. coli, als prokaryontisches Expressionssystem oder in einem eukaryontischen Expressionssystem, insbesondere COS-Zellen oder Dictyostelium discoideum, hergestellt.

Mit Hilfe der erfindungsgemßen Nukleinsäuresequenz ist es möglich, im Genom von beliebigen Parasiten die kodierenden Gene oder deren Varianten zu suchen, diese zu identifizieren und die gewünschten kodierenden Gene für die Enzyme zu isolieren. Derartige Verfahren und die hierfür geeigneten Screening-Methoden sind dem Fachmann bekannt.

Durch die Anwendung der rekombinanten Technologie ist es möglich, eine Vielzahl von Varianten von Enzymen oder Teilstücke von Enzymen herzustellen. Derartige Derivate können beispielsweise in einzelnen oder mehreren Aminosäuren durch Substitution, Deletion oder Addition modifiziert sein. Die Derivatisierung kann beispielsweise über site directed mutagenesis (ortsspezifische Mutagenese) erfolgen. Derartige Variationen sind für einen Fachmann ohne weiteres durchführbar. Es muß lediglich sichergestellt sein, daß die charakteristischen Eigenschaften der Enzyme erhalten bleiben. Ein weiterer Gegenstand dieser Erfindung sind deshalb die Enzyme, die am DOXP-Stoffwechselweg beteiligt sind, insbesondere DOXP-Synthase und DOXP-Reduktoisomerase, die

- a) das Produkt einer prokaryontischen oder eukaryontischen Expression einer exogenen DNA sind,
- b) codiert werden von einer Sequenz in Figuren 1a, 1b, 2a und 2b
- c) codiert werden von DNA-Sequenzen, die mit den in Figuren 1a, 1b, 2a und 2b gezeigten DNA-Sequenzen oder Fragmenten dieser DNA-Sequenzen (siehe z.B. Figuren 4a und 4b) im DNA-Bereich, der das reife Protein kodiert, hybridisieren, oder
- d) codiert werden von DNA-Sequenzen, die ohne die Degeneration des genetischen Codes mit den in b) bis c) definierten Sequenzen hybridisieren würden und ein Polypeptid mit derselben Aminosäuresequenz kodieren.

Bevorzugt sind Enzyme, welche von den Nukleotiden aus Figuren 1a, 1b, 2a und 2b oder von DNA-Sequenzen, die aufgrund der Degeneration des genetischen Codes ein Polypeptid mit derselben Aminosäuresequenz codieren würden, codiert werden.

Die beiden erfindungsgemäßen Enzyme (Sequenz in Figuren 3a und 3b) können als neue Prototypen von spezifischen Proteinen ein- und mehrzelliger Parasiten, insbesondere der einzelligen Parasiten angesehen werden.

Ein Gegenstand dieser Erfindung sind Nukleinsäuresequenzen, welche die Enzyme kodieren und ausgewählt sind aus der Gruppe

- a) der in den Figuren 1a, 1b, 2a, und 2b gezeigten DNA-Sequenzen oder deren komplementäre Sequenzen,
- b) Nukleinsäuresequenzen, die mit einer der Sequenzen von a) hybridisieren,
- c) Nukleinsäuresequenzen, die ohne die Degeneration des genetischen Codes mit einer der in a) oder b) genannten Sequenzen hybridisieren würden.

Ein weiterer Gegenstand der Erfindung sind Enzyme aus beliebigen Parasiten, welche im wesentlichen Pyruvat und Glyceraldehyd-3-Phosphat zu 1-Desoxy-D-xylulose-5-Phosphat kondensieren (DOXP-Synthase) und 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-D-erythritol-4-Phosphat umsetzen (DOXP-Reduktoisomerase). Diese den Enzymen aus Malaria-Parasiten analogen Enzyme können dadurch erhalten werden, daß mit einer Hybridisierungsprobe, die Enzyme aus Malaria-Parasiten codierende Sequenzen enthält, eine cDNA-Bibliothek oder genomische Bibliothek des entsprechenden Parasiten nach dem Fachmann geläufigen Methoden gescreent wird oder über den Sequenzvergleich der DNA und Proteinsequenz für Enzyme von Malaria-Parasiten mit anderen Parasiten-Enzymen.

Mit Hilfe der Nukleinsäuren können erfindungsgemäße Enzyme in reproduzierbarer Weise in großen Mengen gewonnen werden. Zur Expression in prokaryontischen und eukaryontischen Organismen wird die Nukleinsäure nach dem Fachmann geläufigen Verfahren in geeignete Expressionsvektoren integriert. Vorzugsweise enthält ein solcher Expressionsvektor einen regulierbaren/induzierbaren Promotor. Zur Expression werden diese rekombinanten Vektoren dann nach bekannten Verfahren in geeignete Wirtszellen eingeführt und die transformierten, transfizierten bzw. transduzierten Wirtszellen unter Bedingungen kultiviert, die eine Expression des heterologen Gens ermöglichen. Als Wirtszellen eignen sich prokaryontische Zellen, wie z.B. E. coli, und eukaryontische Zellen, insbesondere Hefen (z.B. Saccharomyces cervisiae, Schizosaccharomyces pombe, Pichia pastoris), Insektenzellen (z.B. Zellinien von Drosophila melanogaster wie S2-Zellen, Spodoptera frugiperda, Trichoplusia ni), Wirbeltierzellinien, vor allem Teratokarzinoma-Zellinien wie CHO- oder COS-Zellen, und pflanzliche Zellinien.

Die erfindungsgemäßen Enzyme können auch in transgenen Pflanzen und Tieren (z.B. Mäuse, Schafe, Ziegen, Schweine, Meerschweinchen) exprimiert werden. Das Expressionssystem ist dabei vorteilhafterweise durch dem Fachmann bekannte Techniken so zu gestalten, daß die produzierten Enzyme mit der Milch der Tiere ausgeschieden werden bzw. aus leicht zu gewinnenden Pflanzenteilen (Früchten, Blättern, Blüten, Sproß- und Wurzelteilen) erhalten werden können.

Als Expressionsvektoren für Wirbeltierzellinien eignen sich besonders Systeme, die von Papillomaviren (z.B. SV40), Retroviren, Sindbisviren, Cytomegaloviren und Vacciniaviren abgeleitet sind. Für Insektenzellen eignet sich besonders

das Baculovirus-System, für Pflanzenzellen Systeme auf der Basis des Ti-Plasmids von Agrobacterium tumefaciens und der Beschuß der Zellen mit Nukleinsäure überzogenen Partikeln.

Von besonderer Bedeutung ist die Expression der erfindungsgemäßen Enzyme in Schleimpilzen wie Dictyostelium discoideum, Polysphondylium pallidum und Physarum polycephalum, da ihre Zellen kostengünstig in großen Mengen auf einfachen Medien kultiviert werden können. Die Verwendung von Dictyostelium discoideum bietet den weiteren Vorteil, daß dieser Organismus ähnliche Codone für die jeweiligen Aminosäuren benutzt wie Plasmodium falciparum und dadurch eine besonders effektive Produktion der erfindungsgemäßen Enzyme erreicht wird. Außerdem sind induzierbare Promotoren (z.B. durch Nahrungsmangel) für Expressionsvektoren für Dictyostelium discoideum bekannt. Dadurch kann die Ausbeute an rekombinantem Enzym weiter gesteigert werden.

Für die Expression der erfindungsgemäßen Enzyme eignen sich besonders solche Wirtszellen und Organismen, die keine intrinsischen Enzyme besitzen, die Pyruvat und Glyceraldehyd-3-Phosphat zu 1-Desoxy-D-xylulose-5-Phosphat kondensieren (DOXP-Synthase) und 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-D-erythritol-4-Phosphat umsetzen (DOXP-Reduktoisomerase). Dies trifft für Archaebacterien, Tiere, Pilze, Schleimpilze und einige Eubakterien zu. Durch das Fehlen dieser intrinsischen Enzymaktivitäten wird die Detektion und Aufreinigung der rekombinanten Enzyme wesentlich erleichtert. Auch wird es erst dadurch möglich, mit geringem Aufwand die Aktivität und insbesondere die Hemmung der Aktivität der erfindungsgemäßen rekombinanten Enzyme durch verschiedenen Chemikalien und Pharmaka in Rohextrakten aus den Wirtszellen zu messen.

Die Expression der erfindungsgemäßen Enzyme erfolgt vorteilhafterweise dann in eukaryontischen Zellen, wenn posttranslatorische Modifikationen und eine native Faltung der Polypeptidkette erreicht werden soll. Außerdem wird in Abhängigkeit vom Expressionssystem bei der Expression genomischer DNA-Sequenzen erreicht, daß Introns durch Spleißen der DNA beseitigt und die Enzyme in der für die Parasiten charakteristischen Polypeptidsequenz produziert werden. Introns codierende Sequenzen können auch durch rekombinante DNA-Technologie aus den zu exprimierenden DNA-Sequenzen beseitigt oder experimentell eingefügt werden.

Die Isolierung des Proteins kann aus der Wirtszelle oder dem Kulturüberstand der Wirtszelle nach dem Fachmann bekannten Verfahren erfolgen. Es kann auch eine in vitro Reaktivierung der Enzyme erforderlich sein.

Zur Erleichterung der Aufreinigung können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit verschiedenen Peptidketten exprimiert werden. Dazu eigenen sich besonders Oligo-Histidin-Sequenzen und Sequenzen, die von der Glutathion-S-Transferase, Thioredoxin oder Calmodulin-bindenden Peptiden abgeleitet sind. Fusionen mit Thioredoxin-abgeleiteten Sequenzen eignen sich besonders für prokaryontische Expression, da dadurch die Löslichkeit der rekombinanten Enzyme erhöht wird.

Weiterhin können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit solchen, dem Fachmann bekannten, Peptidketten exprimiert werden, daß die rekombinanten Enzyme in das extrazelluläre Milieu oder in bestimmte Kompartimente der Wirtszellen transportiert wer-

den. Dadurch kann sowohl die Aufreinigung, als auch die Untersuchung der biologischen Aktivität der Enzyme erleichtert werden.

Bei der Expression der erfindungsgemäßen Enzyme kann es sich als zweckmäßig erweisen, einzelne Codone zu verändern. Dabei ist der gezielte Austausch von Basen in der kodierenden Region auch sinnvoll, wenn die genutzten Codone in den Parasiten abweichend sind von der Codonnutzung im heterologen Expressionssystem, um eine optimale Synthese des Proteins zu gewährleisten. Zudem sind oft Deletionen von nicht-translatierten 5'bzw. 3'-Abschnitten sinnvoll, beispielsweise wenn mehrere destabilisierende Sequenzmotive ATTTA im 3'-Bereich der DNA vorliegen. Dann sollten diese bei der bevorzugen Expression in Eukaryonten deletiert werden. Veränderungen dieser Art sind Deletionen, Additionen oder Austausch von Basen und ebenfalls Gegenstand der vorliegenden Erfindung.

Weiterhin können die erfindungsgemäßen Enzyme unter standardisierten Bedingungen durch dem Fachmann bekannte Techniken durch in vitro-Translation gewonnen werden. Dafür geeignete Systeme sind Kaninchen-Reticulozyten- und Weizenkeim- Extrakte. Auch kann in vitro transskribierte mRNA in Xenopus-Oocyten translatiert werden.

Durch chemische Synthese können Oligo- und Polypeptide hergestellt werden, deren Sequenzen aus der Peptidsequenz der erfindungsgemäßen Enzyme abgeleitet sind. Bei geeigneter Wahl der Sequenzen besitzen derartige Peptide Eigenschaften, die für die vollständigen erfindungsgemäßen Enzyme charakteristisch sind. Derartige Peptide können in großen Mengen hergestellt werden und eignen sich besonders für

Studien über die Kinetik der Enzymaktivität, die Regulation der Enzymaktivität, die dreidimensionale Struktur der Enzyme, die Hemmung der Enzymaktivität durch verschiedene. Chemikalien und Pharmaka und die Bindungsgeometrie und Bindungsaffinität verschiedener Liganden.

Vorzugsweise wird zur rekombinanten Herstellung der erfindungsgemäßen Enzyme eine DNA mit den Nukleotiden aus den in den Figuren 1a, 1b, 2a und 2b dargestellten Sequenzen oder ein Fragment gemäß den Figuren 4a und 4b verwendet.

Ein weiterer Gegenstand der Erfindung sind Verfahren zur Gewinnung der Enzyme, die beteiligt sind am DOXP-Stoffwechselweg, insbesondere die Enzyme DOXP-Synthase und DOXP-Reduktoisomerase durch Isolierung aus den Parasiten. Die Isolierung der Enzyme erfolgt aus Parasiten-Extrakten über chromatographisch, elektrophoretische und andere dem Fachmann bekannte Verfahren. Die Enzyme werden mittels Messung der jeweiligen enzymatischen Aktivität oder Reaktivität mit entsprechenden Antikörpern ermittelt.

Der Nachweis von transformierten, transfizierten bzw. transduzierten Wirtszellen, welche die Enzyme rekombinant produzieren, sowie die Aufreinigung des Proteins erfolgen vorzugsweise über Antikörper, die an diese Enzyme binden. Derartige Antikörper sind mit Hilfe der erfindungsgemäßen Enzyme oder Teile der Enzyme als Antigen oder Immunogen in einfacher Weise nach bekannten Verfahren erhältlich.

Mit den erfindungsgemäßen Antikörpern gegen die Proteine können beispielsweise durch Western-Blotting-Analysen homologe bzw. kreuzreagierende Proteine anderer Parasiten detektiert werden.

Ein weiterer Gegenstand dieser Erfindung sind Methoden zur Bestimmung der enzymatische Aktivität der DOXP-Enzyme, insbesondere der Enzyme DOXP-Synthase und DOXP-Reduktoisomerase. Dies kann nach den bekannten Anleitungen bestimmt werden (Sprenger et al. PNAS, 94 (1997) 12857-62 und Kuzuyama et al. Tetrahedron Letters 39 (1998) 4509-12). Hierbei wird die Kondensation von Pyruvat und Glyceraldehyd-3-Phosphat zu 1-Desoxy-D-xylulose-5-Phosphat (DOXP-Synthase) und die Umwandlung von 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-D-erythritol-4-Phosphat (DOXP-Reduktoisomerase) detektiert. Ein weiterer Gegenstand dieser Erfindung ist die Verwendung diese Meßverfahren zur Ermittlung von Stoffen, die die Aktivität der jeweiligen Enzyme inhibieren.

Durch die Anwendung der rekombinanten Technologie ist es möglich, eine Vielzahl von Varianten von Enzymen oder Teilstücken von Enzymen herzustellen. Derartige Derivate können beispielsweise modifiziert sein in einzelnen oder mehreren Aminosäuren durch Substitution, Deletion oder Addition. Die Derivatisierung kann beispielsweise über site directed mutagenesis (ortsspezifische Mutagenese) erfolgen. Derartige Variationen sind für einen Fachmann ohne weiteres durchführbar. Es muß lediglich sichergestellt sein, daß die charakteristischen Eigenschaften der Enzyme erhalten bleiben.

Mit Hilfe der erfindungsgemäßen Enzyme und ihrer Homologen können neue spezifische Wirkstoffe gegen Parasiten gefunden werden.

Insbesondere können die oben beschriebenen Detektions-Methoden in geeigneten Testkits zum Screening auf antipara-

Methoden, die dem Fachmann bekannt sind und sich zum Screening von Naturstoffen aus Flora und Fauna, aus Pflanzen, Algen, Bakterien oder Tieren eignen, und deren Derivate, chemischen Bibliotheken, auch Bibliotheken, die mittels dem Fachmann bekannter Techniken, einschließlich der kombinatorischen Chemie erstellt wurden (Pindur et al. Pharmazie in unserer Zeit 26 (1997) 24-30; Broach et al. Nature 384 (1997) 14-6; Lack et al. Chimia 50 (1996) 445-7; Czarnik und Ellmann Accounts of chemical research 29 (1996); Chemical and engineerings News 74 (1996) 28-73; Lorin et al. Chemical reviews 96 (1996) 555-600; Weber et al. Nachrichten aus Chemie, Technik und Laboratorium 42 (1994) 698-702).

Die vorliegende Erfindung betrifft auch die Verwendung von Proteinen oder Teilstücken dieser Proteine, hierzu gehören Proteine oder Teilstücke von Proteinen mit oder auch ohne enzymatischer Aktivität in dem Fachmann bekannten Techniken zur Ermittlung von Strukturen des Proteins, insbesondere die Charakterisierung der Bindungsstellen, die sich für die Entwicklung von Mitteln mit inhibierender Wirkung auf die enzymatische Aktivität eignen.

Wirkstoffe die mit Hilfe der erfindungsgemäßen Proteine aufgefunden werden, sind für die Medizin und der Tiermedizin von hohem Interesse.

Die Wirkstoffe, die mit Hilfe der erfindungsgemäßen Proteine gefunden werden, eignen sich bei günstiger Warmblütertoxizität zur Bekämpfung von pathogenen Parasiten, die bei
Menschen und in der Tierhaltung und Tierzucht bei Nutz-,
Zucht-, Zoo-, Labor-, Versuchs- und Hobbytieren vorkommen.

Sie sind dabei gegen alle oder einzelne Entwicklungsstadien der Schädlinge, sowie gegen resistente und normal sensible Parasiten wirksam. Durch die Bekämpfung der Parasiten sollen Krankheiten, Todesfälle und Leistungsminderungen (z.B. bei der Produktion von Fleisch, Milch, Wolle, Häuten, Eiern usw.) vermindert werden, so daß der Einsatz der Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Unter Verwendung dieser erfindungsgemäßen Verfahren einschließlich der etablierten Assays (Ansätze) konnte gezeigt werden, daß die Aktivität der DOXP-Reduktoisomerase durch 3-(N-acetyl-N-hydroxyamino)propylphosphonat und derivative 3-(N-formyl-N-hydroxyamino)propylphosphonat (fosmidomycin) gehemmt wird. Beide Substanzen stammen aus einer chemischen Library von Acylhydroxylaminoalkylphosphonsäurederivaten. Diese Verbindungsgruppe wurde in der Vergangenheit als herbizid und als bakterizid beschrieben (US 4693742, DE2733658). Hier zeigte sich die Effizienz des Systems für das Auffinden von antiparasitären Wirkstoffen. Die Ergebnisse aus den Enzymassays konnten auch in der Malariakultur (siehe Beispiele) und im Tierversuch (siehe Beispiele) bestätigt werden. Die mittels dieser Enzymassays ermittelten Inhibitoren konnten das Wachstum von Malariaparasiten in vitro und in vivo hemmen. Eine Behandlung der Tiere über einem Zeitraum von 8 Tagen zeigte eine Heilung der Tiere. Hier zeigte die Acetylform eine dreifach höhere Wirksamkeit als die Formylform. Dieses Ergebnis ist sehr überraschend, da wesentlich höhere (bis zu 1000x) Konzentrationen 3-(Nacetyl-N-hydroxyamino)propylphosphonat benötigt werden, um das Bakterienwachstum zu hemmen.

Damit sind das erfindungsgemäße Verfahren zur Identifizie-

rung von Wirkstoffen und die erfindungsgemäßen Wirkstoffe zur therapeutischen und prophylaktischen Behandlung von Infektionen bei Mensch und Tier geeignet, die durch Parasiten, Pilze oder Viren hervorgerufen werden. Die Verbindungen sind als Prophylaxe gegen sowie zur Behandlung von Infektionen, hervorgerufen durch Erreger der Malaria und der Schlafkrankheit sowie der Chagas-Krankheit, der Toxoplasmose, der Amöbenruhr, der Leishmaniosen, der Trichomoniasis, der Pneumozystose, der Balantidiose, der Kryptosporidiose, der Sarkozystose, der Akanthamöbose, der Naeglerose, der Kokzidiose, der Giardiose und der Lambliose geeignet.

Die erfindungsgemäßen Verfahren und erfindungsgemäßen Wirkstoffe eignen sich besonders zur Behandlung der Malaria, der Schlafkrankheit und der Leishmaniosen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Inhibition des Stoffwechselwegs von Bakterien, und von Pflanzen. Damit eignen sich Substanzen, die erfindungsgemäß als Inhibitoren des DOXP-Stoffwechselweges identifiziert werden, auch zur Anwendung als Herbizide und zur Anwendung bei der Behandlung von bakteriellen Infektionen bei Mensch und Tier.

Zu den für eine Behandlung geeigneten Nutz- und Zuchttieren gehören Säugetiere, wie z.B. Rinder, Pferde, Schafe, Schweine, Ziegen, Kamele, Wasserbüffel, Esel, Kaninchen, Salz- und Süßwasserfische, wie z.B. Forellen, Karpfen und Aale. Zu den geeigneten Labor- und Versuchstieren gehören Mäuse, Ratten, Meerschweinchen, Goldhamster, Hunde, Katzen und Schweine. Zu den geeigneten Hobbytieren gehören Hunde und Katzen. Die Anwendung kann sowohl prophylaktisch als auch therapeutisch erfolgen. Die Anwendung der Wirkstoffe

erfolgt direkt oder in Form von geeigneten, dem Fachmann bekannten Zubereitungen wie enteral, parenteral, dermal oder nasal.

Die erfindungsgemäßen Wirkstoffe können in Kombination mit allen dem Fachmann bekannten Antiinfektiva verwendet werden. Hierzu gehören Substanzen, die antibakterielle, antiparasitäre, antivirale oder fungizide Wirkungen haben. Hierzu gehören Antiinfektiva, die in der Roten Liste und in der Fachliteratur (Allgemeine und spezielle Pharmakologie und Toxikololgie von Forth et al. BI-Wissenschaftsverlag, Mannheim 1998; Antibiotikatherapie von Simon und Stille, Schattauer-Verlag, Stuttgart 1993) aufgeführt sind.

Da einige Parasiten sowohl über dem MevalonatStoffwechselweg, als auch über dem DOXP-Stoffwechselweg
verfügen, betrifft die Erfindung weiter die Kombination von
Inhibitoren des DOXP-Stoffwechselweges mit Mitteln, die den
Fettstoffwechselweg inhibieren, einschließlich Inhibitoren
der Synthese oder der Aufnahme von Lipiden, insbesondere
Inhibitoren des Mevalonat-Stoffwechselweges. Hier seien
insbesondere die Inhibitoren der Ezyme HMG-COA-Synthase und
Inhibitoren der HMG-CoA-Reduktase genannt. Zu den Inhibitoren der HMG-CoA-Reduktase zählen insbesondere Lovastatin
und Derivate, Mevastatin und Derivate, Compactin und Derivate, Simvastatin und Derivate, Pravastatin und Derivate,
Atorvastatin und Derivate, Fluvastatin und Derivate und Cerivastatin und Derivate.

Beispiel 1

Expressionsklonierung des die DOXP-Reductoisomerase codierenden Gens von P. falciparum.

Die Klonierung des die DOX-Reductoisomerase von P. falciparum codierenden Gens erfolgte durch PCR-Amplifikation der entsprechenden Sequenzen von genomischer DNA als Matrize. Zur Gewinnung von genomischer DNA wurde der P. falciparum-Stamm HB3 nach der Kerzentopf-Methode kultiviert (Tranger und Jensen (1976), Science 193, 673-675). Als Kulturmedium wurde RPMI 1640 (mit HEPES und L-Glutamin, Gibco) mit 10 % humanem Serum, 0.3 µg / ml Gentamycin und 0.1 mM Hypoxanthin supplementiert und mit humanen Erythrozyten ein Hämatokrit von 5 % eingestellt. Für die Präparation der DNA wurden 15 Kulturschalen mit je 35 ml Kulturvolumen bei ca. 4 % Parasitämie verwendet. Die infizierten Erythrozyten wurden durch Zentrifugation geerntet und zweimal in Trager-Puffer (57 mM NaCl, 58 mM KCl, 1 mM NaH₂PO₄, 7 mM K_2 HPO₄, 11 mM NaHCO3, 14 mM Glucose) gewaschen. Die Parasiten wurden aus den Erythrozyten freigesetzt, indem das Zellsediment mit einem 10fachen Volumen 1 Siger Saponinlösung in Trager-Puffer für 5 min auf Eis lysiert wurde (modifiziert nach Kilejian (1979), Proc. Natl. Acad. Sci. USA 76, 4650-4653). Die freien Parasiten wurden zweimal durch Zentrifugation (10 min, 10.000 rpm, 4 °C) mit einer Lösung von 1 % BSA in Trager-Puffer gewaschen. Die DNA-Präparation aus den gewonnenen freien Parasiten erfolgte nach Standardprotokollen. Zunächst wurden die Parasiten mit Proteinase K verdaut. Dann wurde der Ansatz viermal mit Phenol / Chloroform extrahiert, die DNA-Lösung über Nacht gegen TE dialysiert und anschließend mit Isopropanol präzipitiert.

Für die PCR-Amplifikation wurden folgende Primer verwendet:

PfYAEMfor 5'-CTGAATTTCATATTACAAAATTAATAGATG-3'

PfYAEMrev 5'-GTACTATGAAGAATTATGTTTGTTGTATAT-3'.

Für die PCR-Reaktion wurde folgender Ansatz verwendet:

3 µl 10 x PCR-Puffer

2,4 µl 25 mM MgSO₄

2,4 µl 2,5 mM dNTP

2 μl Matrizen-DNA (0,2 μg / ml)

2 μl Primer 1 (7,5 μM)

2 μl Primer 2 (7,5 μM)

0.2 μ l Taq-Polymerase (5 U / μ l)

16 µl H₂O

Die Amplifikation erfolgte mit folgendem Profil:

3 Zyklen: 96°C 1 min

48°C 1 min

72°C 3 min

32 Zyklen: 95 °C 40 sec

48°C 1 min

72°C 3 min

Nach dem letzten Zyklus wurde der Ansatz zur vollständigen Verlängerung aller Produkte noch 10 min bei 72°C inkubiert. Das PCR-Produkt von 4 derartigen Ansätzen wurde vereinigt und über ein 0.7 %iges Agarosegel gereinigt. Die Elution der DNA aus dem Agaroseblöckchen erfolgte mit dem "Kit for DNA extraction" (Millipore, Kat. Nr. S667). Die eluierte DNA wurde mit Ethanol präzipitiert und in 10 μ l μ 0 aufgenommen. Anschließend wurde das PCR-Produkt nach den Vorschriften des Herstellers mit dem TA-cloning kit (Invitrogen) kloniert. Dabei wurden 20 mg insert-DNA für einen Ligationsansatz verwendet. Bakterienkolonien, die das ge-

wünschte rekombinante Plasmid trugen, wurden durch analytische Plasmidpräparation und EcoR I- Verdau der Plasmide identifiziert. Die klonierten PCR-Produkte wurden dann unter Verwendung von Standard- Forward- und Reverse-Primern sequenziert; die Sequenzen wurden mit der Technik des Primer Walkings vervollständigt.

Für die Expression in COS-7- Zellen wurde ein PCR-Produkt, das in der entsprechenden Orientierung im pCR2.1-Vektor vorlag, in den Expressionsvektor pBK-CMV (Stratagene) umkloniert. Die Umklonierung erfolgte dabei über die Schnittstellen der Restriktionsenzyme Not I und BamH I, die im Polylinker beider Vektoren vorkommen. Für die Transfektion der COS-7-Zellen wurde der Expressionsvektor mit dem PCR-Produkt als Insert über Anionenaustausch-Chromatographie (Qiagen) im präparativen Maßstab hergestellt.

Alle für die Klonierung verwendeten Methoden sind ausführlich beschrieben in J. Sambrook, E.F. Fritsch, T. Maniatis (1989), Molecular cloning: a laboratory manual, 2nd edition, Cold Spring Habor Laboratory Press, Cold Spring Habor, USA.

Die COS-7-Zellen wurden in DMEM-Medium mit 10 % FCS unter Standardbedingungen kultiviert. Pro Zellkulturflasche wurden 30 ml Kulturmedium berechnet. Für die Transfektion wurden Zellen bei ca. 50 % Konfluenz verwendet, die am Vortag frisch gesplittet worden waren. Als Transfektionsreagenz wurde DOTAP (Boehringer) verwendet. 40 µl DNA-Lösung (0,5 µg / ml) wurden mit 110 µl 20 mM HEPES (pH 7,4) gemischt. Außerdem wurden 100 µl DOTAP mit 230 µl 20 mM HEPES (pH 7,4) in einem Polystyrol-Reaktionsgefäß gemischt. Dann wurde die DNA-Lösung zu der DOTAP-Lösung zupipettiert und 15 min bei Raumtemperatur inkubiert. Anschließend wurde der Ansatz mit 20 ml Kulturmedium gemischt und das Medium der COS-7-Zellen durch dieses Gemisch ersetzt. Am folgenden Tag

wurden die Zellen mit frischem Medium in neue Zellkulturflachen transferriert. Nach weiterer 48stündiger Inkubation
wurden die transfizierten COS-7-Zellen geerntet. Dazu wurden die Zellen abgeschabt und dreimal durch Zentrifugation
in Assay-Puffer (100 mM TrisHCl (pH 7,5), 1 mM MnCl₂) gewaschen. Die Zellen wurden in einem minimalen Volumen Assay-Puffer resuspendiert und durch dreimaliges Einfrieren
(in flüssigem Stickstoff) und Auftauen aufgeschlossen.
Zellfragmente wurden in einem 1.5 ml Reaktionsgefäß abzentifugiert (13 000 rpm, 10 min, 4 °C) und der Überstand direkt für die Messung der Enzymaktivität oder zur Aufreinigung des Enzyms verwendet.

Beispiel 2

Reinigung der rekombinanten DOXP-Reductoisomerase von P. falciparum

Zur genaueren Charakterisierung wurde die in COS-7-Zellen exprimierte rekombinante DOXP-Reductoisomerase von *P. falciparum* zur weitgehenden Homogenität aufgereinigt. Die Reinigung erfolgte über einen affinitätschromatographischen und einen gelpermeationschromatographischen Schritt.

Zur Herstellung einer geeigneten Affinitätschromatographie-Säule wurden zunächst Antikörper gegen die DOXP-Reductoisomerase von *P. falciparum* hergestellt. Dazu wurden aus der von der DNA-Sequenz abgeleiteten Aminosäurensequenz solche Abschnitte ausgewählt, für die eine besonders hohe antigene Wirkung vorausgesagt werden konnte. Entsprechende Peptide wurden synthetisiert und für die Immunisierung von Kaninchen eingesetzt. Die Qualität der erhaltenen Antiseren wurde sowohl anhand ihrer Reaktivität mit den synthetischen

Peptiden, als auch durch Western blot-Analysen bestätigt. Für die Western blot-Analysen (BM Western Blotting Kit, Boehringer) wurden Extrakte aus *P. falciparum* und rekombinanten COS-Zellen verwendet.

Zur Herstellung der Affinitätchromatographie-Säule wurde das Antiserum zur Beseitigung niedermolekularer Amine gegen PBS dialysiert. Die Antikörper wurden dann an Protein A-Sepharose gebunden und durch Cross-linking mit DMP kovalent gekoppelt (IgG Orientation Kit, Pierce). Der Proteinextrakt wurde wie in Beispiel 1 beschrieben aus 55 Zellkulturflachen mit transfizierten COS-7-Zellen gewonnen und auf die mit Assay-Puffer äquilibrierte Säule geladen. Nach exzessivem Waschen mit Assay-Puffer wurde die Säule mit Elutions-Puffer (100 mM GlycinHCl (pH 2,8), 0.4 % CHAPS) eluiert. Das Eluat wurde sofort mit 1 M TrisHCl (pH 7,5) neutralisiert. Die Hauptfraktionen wurden durch Westen blot-Analyse identifiziert. Dazu wurden für die Detektion biotinylierte Antikörper verwendet, um eine Störung durch von der Säule in geringer Menge eluierte Antikörper zu vermeiden. Die Hauptfraktionen wurden vereinigt, gegen Assay-Puffer dialysiert und durch Ultrafiltration (30 kDa, Amicon) konzentriert. Die weitere Reinigung erfolgte durch Gelpermeationschromatogrphie (Superdex 200, Pharmacia) mit Assay-Puffer als Start- und Elutions-Puffer. Die Hauptfraktionen wurden wie oben beschrieben identifiziert, vereinigt und konzentriert, mit 20 % Glygerin versetzt und bei -70°C eingefroren. Durch SDS-PAGE (12 % Acrylamid) unter reduzierenden Bedingungen und Silberfärbung (Gelcode Colour Silver Stain Kit, Pierce) wurde die gereinigte DOXP-Reductoisomerase von P. falciparum als einheitliche Bande bei 54 kDa dargestellt.

Beispiel 3

Bestimmung der Aktivität des gereinigten Enzyms und Screening nach Inhibitoren

Die DOXP-Reductoisomerase-Aktivität des gereinigten Enzyms wurde in einem in vitro-Versuchssystem bestätigt. Für einen typischen Versuchsansatz wurden100 µl Assay-Puffer mit 0,3 mM NADPH, 0,3 mM DOXP und 10 µg rekombinantem Enzym verwendet. Die Reaktion wurde durch die Zugabe von DOXP zum kompletten Ansatz gestartet. Die Oxidation von NADPH wurde photometrisch bei 340 nm in Mikroquarzküvetten bei 37°C verfolgt. Dieses Versuchssystem wurde verwendet, um die Inhibition der rekombinanten DOXP-Reductoisomerase von P. falciparum durch verschiedene Substanzen zu zeigen. Nach Zugabe von 1 μ M 3-(N-Formyl-N-hydroxylamino)-propylphosphonsäure-mononatriumsalz und und 1 μM 3-(N-Acetyl-Nhydroxylamino)-propyl-phosphonsäure-mononatriumsalz zum Reaktionsansatz war keine Veränderung der Absorption bei 340 nm zu beobachten. Unter diesen Bedingungen wurde die DOXP-Reductoisomerase von P. falciparum vollständig inhibiert.

Beispiel 4

Test der Wirksamkeit der Substanzen gegen Malaria in vivo

Die verschiedenen Derivate wurden nach dem modifizierten Peters' Test getestet. Die Substanzen wurden dabei in einem Viertel der halblethalen Dosis (LD50) appliziert. Bei dem Versuchsansatz wurden zehn Mäuse mit Plasmodium vinckeii, dem Erreger der Mäusemalaria, infiziert. Nach Bestätigung der Infektion durch Blutuntersuchung erfolgte die Behandlung in vier Mäusen. Als Kontrolle dienten sechs Mäuse, die nicht behandelt wurden. Die Behandlung mit 1-1000 mg/kg/d ,

3-(N-Formyl-N-Hydroxylamino)-

propylphosphonsäuremononatriumsalz über 3 Tage führte zu einer Abtötung der Parasiten im Blut der Mäuse. Die behandelte Gruppe war bereits nach einem Tag frei von lebenden Parasiten. Die Kontrollmäuse mußten am Tag 5 nach Infektion bei einer Parasitämie von > 80% getötet werden. Die behandelten Mäuse waren auch 8 Wochen nach Behandlungsende immer noch frei von Parasiten. Weitere Experimente zeigten eine Wirksamkeit von 50 mg/kg/d 3-(N-Formyl-N-hydroxylamino) - propyl-phosphonsäure-mononatriumsalz in Mäusen mit einer Parasitämie von 80%. Auch diese Mäuse waren nach 1 Tag frei von lebenden Parasiten. Die weiteren Ergebnisse für 3-(N-Formyl-N-hydroxylamino) - propyl-phosphonsäure-mononatriumsalz und 3-(N-Acetyl-N-hydroxylamino) - propyl-phosphonsäure-mononatriumsalz sind in Figur 5 dargestellt.

Beispiel 5

Schutzwirkung vor Malaria beim Versuch mit infizierten Mäusen

Die Wirksamkeit der Verbindungen in vivo gegenüber Malaria wurde unter Heranziehen von 20 bis 25 g schweren männlichen Mäusen (BALB/c-Stamm) getestet. Einen Tag vor der Infektion wurden vier Mäuse intraperitoneal mit 50 mg/kg 3-(N-Formyl-N-hydroxylamino)-propylphosphonsäure-mononatriumsalz behandelt. Die Mäuse wurden dann mit Plasmodium vinckeii infiziert. Mäuse, die nicht mit der Substanz vorbehandelt wurden, dienten als Kontrolle. Es konnte in den behandelten Mäusen keine Infektion nachgewiesen wurden, während die Kontrollmäuse nach 5 Tagen mit einer Parasitämie über 80% getötet werden. Die behandelten Mäuse waren auch 8 Wochen nach der Infektion frei von Parasiten.

Beispiel 6

In vitro Inhibition des Wachstums von Malaria Parasiten Zum Prinzip der IC50-Bestimmung (die Konzentration, bei der die Vitalität der Parasiten um die Hälfte reduziert wird)

Zur Bestimmung der IC50-Werte werden die Malariaparasiten zunächst für einen vollständigen 48-Stunden-Zyklus in Gegenwart von Inhibitoren kultiviert, in den anschließenden 24 Stunden wurde die Überlebensrate durch [3H]-Hypoxanthin-Einbau gemessen. Auf einer Mikrotiterplatte wird eine Verdünnungsreihe von 3-(N-Formyl-N-hydroxylamino)propylphosphonsäuremononatriumsalz in 10-fach konzentrierten 20-µl-Aliquots vorgelegt. Dann werden zu jedem Well 180 μl Parasitensuspension in Kulturmedium zugefügt. Es werden asynchrone Kulturen mit ca. 0,4% Parasitämie und 2 % Hämatokrit verwendet. Anschließend werden die Mikrotiterplatten für 48 h inkubiert. Dann werden zu jedem Well 30 μl [3H]-Hypoxanthin zugefügt. Nach 24-stündiger Inkubation wurden die Zellen geerntet und die inkorporierte Radioaktivität wurde gemessen. In den Figuren 6a, 6b und 6c sind die Ergebnisse mit den Stämmen HB3, A2 und Dd2 mit bekannten Resistenzen gegen andere Malaria-Medikamente dargestellt. In beiden Stämmen ergibt sich ein IC-50-Wert von unter 0,5 µM. Die Resistenzen dieser Stämme sind:

Plasmodium falciparum HB3 (Honduras) ist gegen Pyrimethamin resistent.

Plasmodium falciparum Dd2 (Indochina) ist gegen Cloroquin, Chinin, Pyrimethamin, Cycloguanil und Sulfadoxin resistent. Plasmodium falciparum A2 (Gambia) ist gegen Chloroquin und Cycloguanil resitent.

Es wurden keine Kreuzresistenzen mit Anti-Malaria-Mitteln gefunden.

Patentansprüche

- 1. Verfahren zum Auffinden von chemischen Wirkstoffen, die zur Therapie von Infektionskrankheiten, hervorgerufen durch ein- oder mehrzellige Parasiten geeignet sind, dadurch gekennzeichnet, daß man Proteine, die am 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweg beteiligt sind, oder deren gleichwirkende Derivate mit den auf ihre Wirksamkeit gegenüber Parasiten zu untersuchenden Wirkstoffen in Berührung bringt und die Wirkstoffe, die die Proteine oder deren Derivate inhibieren, auswählt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Proteine an mindestens einem der folgenden Schritte a)-i),
 - a) Umsetzung von Glycerinaldehyd und Pyruvat zu 1-Desoxy-D-xylulose,
 - b) Umsetzung von Glycerinaldehyd-3-Phosphat und Pyruvat
 - zu Isopentenyldiphosphat,
 - c) Bildung von 1-Desoxy-D-xylulose-5-Phosphat,
 - d) Umsetzung von Glycerinaldehyd-3-Phosphat und Pyruvat
 - zu 1-Desoxy-D-xylulose-5-Phosphat,
 - e) Umsetzung von 1-Desoxy-D-xylulose-5-Phosphat
 - f) Bildung von 2-C-Methyl-D-erythritol-4-Phosphat,
 - g) Umsetzung von 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-D-erythritol-4-Phosphat,
 - h) Umsetzung von 2-C-Methyl-D-erythritol-4-Phosphat,
 - i) Umsetzung von 2-C-Methyl-D-erythritol-4-Phosphat zu Isopentenyldiphosphat beteiligt sind.

3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Wirkstoff die Produktion der beteiligten Enzyme oder der beteiligten Co-Faktoren, insbesondere den Umsatz des Enzyms 1-Desoxy-D-xylulose-5Phosphat-Synthase oder 1-Desoxy-D-xylulose-5-PhosphatReduktoisomerase hemmt, oder
den Abbau der beteiligten Enzyme oder beteiligten CoFaktoren fördert.

- 4. Protein mit oder ohne 1-Desoxy-D-xylulose-5-Phosphat-Synthase Aktivität, welches am 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweg beteiligt ist und a) codiert wird von der in Figur 1b und 2b gezeigten DNA-Sequenz oder b) codiert wird von DNA-Sequenzen, die mit den in Figur 1b oder 2b gezeigten DNA-Sequenzen oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der für das reife Protein codiert, hybridisieren.
- 5. Protein mit oder ohne 1-Desoxy-D-xylulose-5-PhosphatReduktoisomerase Aktivität, das am 1-Desoxy-D-xylulose5-Phosphat-Stoffwechselweges beteiligt ist, dadurch gekennzeichnet, daß es a) codiert wird von der in Figur la
 und 2a gezeigten DNA-Sequenz oder b) codiert wird von
 DNA-Sequenzen, die mit den in Figur la oder 2a gezeigten
 DNA-Sequenzen oder Fragmenten dieser DNA-Sequenzen im
 DNA-Bereich, der für das reife Protein codiert hybridisieren.
- 6. Protein nach den Ansprüchen 4 oder 5 und weitere Proteine, die am 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweges beteiligt sind, dadurch gekennzeichnet, daß sie aus den Kulturüberständen von Parasiten oder aus den aufgeschlossenen Parasiten durch Aufreini-

gung über chromatographische und elektrophoretische Techniken erhältlich sind.

- 7. Protein nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß es a) das Produkt einer prokaryontischen oder eukaryontischen Expression einer exogenen DNA ist, b) codiert wird von den Sequenzen 1a, 1b, 2a oder 2b oder codiert wird von DNA-Sequenzen, die mit den in den Figuren 1a, 1b, 2a oder 2b gezeigten DNA-Sequenzen oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der das reife Protein codiert, hybridisieren, oder c) codiert wird von DNA-Sequenzen, die ohne Degeneration des genetischen Codes mit den in b) definierten Sequenzen hybridisieren würden und für ein Polypeptid mit entsprechender Aminosäuresequenz codieren.
 - 8. Protein gemäß einem der vorangehenden Ansprüche 4 bis 7, dadurch gekennzeichnet, daß es aus den Aminosäuren der Sequenzen 2a, 2b, 3a oder 3b besteht.
 - 9. Protein nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß das Protein 1-Desoxy-D-xylulose-5-Phosphat-Synthase oder 1-Desoxy-D-xylulose-5-Phosphat-Redukto-isomerase ist.
 - 10. Nukleinsäure, welche ein Protein gemäß einem der Ansprüche 4 bis 9 codiert, dadurch gekennzeichnet, daß sie ausgewählt ist aus der Gruppe a) der in den Figuren 1a, 1b, 2a, 2b gezeigten DNA-Sequenzen oder der komplementären DNA-Sequenzen, b) Nukleinsäuresequenzen, die mit der Sequenz von a) hybridisieren, c) Nukleinsäuresequenzen, die ohne die Degeneration des genetischen Codes mit ei-

ner der in a) oder b) genannten Sequenzen hybridisieren würden.

- 11. DNA, dadurch gekennzeichnet, daß sie eine Sequenz aufweist, ausgewählt aus der Gruppe, die aus der in Figur la gezeigten Sequenz, der in Figur 1b gezeigten Sequenz, der in Figur 2a gezeigten Sequenz und der in Figur 2b gezeigten Sequenz besteht.
- 12. Rekombinanter Expressionsvektor, der DNA enthält, die ein Protein nach den Ansprüchen 4 bis 9 codiert und in einem transformierten Mikroorganismus oder einem transformierten eukaryontischen Zelle, oder in einem Tier oder eine Pflanze die proteincodierende DNA exprimiert.
- 13. Wirtszelle, insbesondere prokaryontische Wirtszelle, eukaryontische Wirtszelle, Tiere und Pflanzen, welche mit einer DNA, die ein Protein nach den Ansprüchen 4 bis 9 codiert, transfiziert ist und das genannte Protein produzieren kann.
- 14. Wirtszelle nach Anspruch 13, die E. coli oder eine Säugerzellinie ist.
- 15. Verwendung von DNA, die für ein Protein nach den Ansprüchen 4 bis 9 codiert, zur Transfektion eines prokaryontischen oder eukaryontischen Organismus.
- 16. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Protein aus Parasiten oder aus Kulturüberständen von Parasiten-Kulturen über chromatographische und elektrophoretische Techniken gewonnen wird.

17. Verfahren nach einem der Ansprüche 1 bis 3 und 16, dadurch gekennzeichnet, daß das Protein durch Expression der DNA, die ein Protein nach einem der Ansprüche 4 bis 9 codiert, in einer geeigneten Wirtszelle und Isolierung des Proteins aus der Wirtszelle oder aus dem Kulturüberstand der Wirtszelle rekombinant hergestellt wird.

- 18. Verwendung eines Proteins aus dem 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweg gemäß einem der Ansprüche 4 bis 8 als Antigen oder Immunogen zur Herstellung von Antikörpern, die an dieses Protein binden.
- 19. Antikörper gegen ein Protein aus dem 1-Desoxy-Dxylulose-5-Phosphat-Stoffwechselweg gemäß einem der Ansprüche 4 bis 9, erhältlich durch in-vitroImmunisierungstechniken oder durch Immunisierung eines
 Tieres mit einem Protein gemäß einem der vorangehenden
 Ansprüchen und Gewinnung der Antikörper aus dem Serum
 oder aus den Milzzellen der immunisierten Tiere.
- 20. Verwendung eines Proteins gemäß einem der Ansprüche 4 bis 9 zur Identifizierung von antiparasitär wirkenden Stoffen.
- 21. Verwendung eines Antikörpers gemäß Anspruch 19 zur Identifizierung eines antiparasitär wirkenden Stoffes.
- 22. Verfahren zum Nachweis von Nukleinsäuren, welche ein Protein gemäß einem der Ansprüche 4 bis 9 codieren, dadurch gekennzeichnet, daß die zu untersuchende Probe mit einer Nukleinsäuresonde inkubiert wird, welche aus der Gruppe ausgewählt ist, die aus a) der in den Figuren la

und 1b gezeigten DNA-Sequenzen oder der dazu komplementären Sequenz, b) Nukleinsäuren, die mit einer der Sequenzen von a) hybridisieren bestehen, die Nukleinsäuresonde mit der Nukleinsäure der Probe inkubiert wird und die Hybridisierung ggf. über einen weiteren Bindepartner von Nukleinsäuresonde nachgewiesen wird.

- 23. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß die nachzuweisende Nukleinsäure vor dem Nachweis amplifiziert wird.
- 24. Testsysteme unter Verwendung eines Proteins gemäß einem der vorangehenden Ansprüchen zur Identifizierung eines antiparasitär wirkenden Stoffes.
- 25. Wirkstoff zur Herstellung eines Arzneimittels zur Behandlung von Infektionskrankheiten verursacht durch einoder mehrzellige Parasiten, dadurch gekennzeichnet, daß er unter Verwendung eine Testsystems nach Anspruch 24 identifiziert wird.
- 26. Wirkstoff zur Herstellung eines Herbizids oder eines Arzneimittels zur Behandlung von Infektionskrankheiten verursacht durch Bakterien, dadurch gekennzeichnet, daß er unter Verwendung eine Testsystems nach Anspruch 24 identifiziert wird.
- 27. Wirkstoff zur Herstellung eines Arzneimittels zur Behandlung von Infektionskrankheiten verursacht durch einoder mehrzellige Parasiten, dadurch gekennzeichnet, daß er die Enzyme oder Co-Faktoren des 1-Desoxy-D-xylulose-5-Phosphat-Stoffwechselweges hemmt.

28. Wirkstoff nach Anspruch 25 oder 27, dadurch gekennzeichnet, daß er mindestens einen der folgenden Schritte a)-i),

- a) Umsetzung von Glycerinaldehyd und Pyruvat zu 1-Desoxy-D-xylulose,
- b) Umsetzung von Glycerinldehyd-3-Phosphat und Pyruvat
- zu Isopentenyldiphosphat,
- c) Bildung von 1-Desoxy-D-xylulose-5-Phosphat,
- d) Umsetzung von Glycerinldehyd-3-Phosphat und Pyruvat
- zu 1-Desoxy-D-xylulose-5-Phosphat,
- e) Umsetzung von 1-Desoxy-D-xylulose-5-Phosphat
- f) Bildung von 2-C-Methyl-D-erythritol-4-Phosphat,
- g) Umsetzung von 1-Desoxy-D-xylulose-5-Phosphat zu 2-C-Methyl-D-erythritol-4-Phosphat,
- h) Umsetzung von 2-C-Methyl-D-erythritol-4-Phosphat,
- i) Umsetzung von 2-C-Methyl-D-erythritol-4-Phosphat zu Isopentenyldiphosphat hemmt.
- 29. Wirkstoff nach Anspruch 25, 27 oder 28, dadurch gekennzeichnet, daß der Wirkstoff die Produktion der beteiligten Enzyme oder der beteiligten Co-Faktoren, insbesondere den Umsatz des Enzyms 1-Desoxy-D-xylulose-5-Phosphat-Synthase oder 1-Desoxy-D-xylulose-5-Phosphat-Reduktoisomerase hemmt, oder den Abbau der beteiligten Enzyme oder beteiligten Co-Faktoren fördert.
- 30. Wirkstoff nach einem der Ansprüche 25 bis 27, dadurch gekennzeichnet, daß der Wirkstoff 3-(N-acetyl-N-hydroxyamino)-propylphosphonat oder 3-(N-formyl-N-hydroxyamino)propyl-phosphonat ist.

31. Verwendung eines Wirkstoffs nach Anspruch 25, 27 bis 30 zur Herstellung eines Arzneimittels zur Behandlung von Infektionskrankheiten verursacht durch ein- oder mehrzellige Parasiten, insbesondere von Malaria, der Schlafkrankheit und der Leishmaniosen.

- 32. Verwendung nach Anspruch 31, dadurch gekennzeichnet, daß das Arzneimittel ferner einen oder mehrere Bestandteile der Gruppe aufweist, die aus Hemmern der Fettstoffwechselwege, der Cholesterinsynthese, der Cholesterinaufnahme besteht.
- 33. Verwendung nach Anspruch 32, dadurch gekennzeichnet, daß der Hemmer der Fettstoffwechselwege ein HMG-CoA-Reduktase-Hemmer oder ein HMG-CoA-Synthase-Hemmer, insbesondere Lovastatin, Mevastatin, Compactin, Simvastatin, Pravastatin, Atorvastatin, Fluvastatin und Cerivastatin, ist.

ATGAAGAAATATATTTATATATATTTTTTTCTTCATCACAAT AACTATTAATGATTTAGTAATAATAATACATCAAAATGTGTTTCCATTG AAAGAAGAAAAATAACGCATATATAAATTATGGTATAGGATATAATGGA CCAGATAATAAAATAACAAAGAGTAGAAGATGTAAAAGAATAAAGTTATG CAAAAAGGATTTAATAGATATTGGTGCAATAAAGAAACCAATTAATGTAG CAATTTTTGGAAGTACTGGTAGTATAGGTACGAATGCTTTAAATATAATA AGGGAGTGTAATAAAATTGAAAATGTTTTTAATGTTAAAGCATTGTATGT GAATAAGAGTGTGAATGAATTATATGAACAAGCTAGAGAATTTTTACCAG AATATTTGTGTATACATGATAAAAGTGTATATGAAGAATTAAAAGAACTG GTAAAAATATAAAAGATTATAAACCTATAATATTGTGTGGTGATGAAGG GATGAAGAAATATGTAGTAGTAATAGTATAGATAAAATAGTTATTGGTA TTGATTCTTTCAAGGATTATATTCTACTATGTATGCAATTATGAATAAT AAAATAGTTGCGTTAGCTAATAAAGAATCCATTGTCTCTGCTGGTTTCTT TTTAAAGAAATTATTAAATATTCATAAAAATGCAAAGATAATACCTGTTG ATTCAGAACATAGTGCTATATTTCAATGTTTAGATAATAATAAGGTATTA AATATTTTTATGTTCATCTGGAGGTCCATTTCAAAATTTAACTATGGACG AATTAAAAATGTAACATCAGAAAATGCTTTAAAGCATCCTAAATGGAAA ATGGGTAAGAAATAACTATAGATTCTGCAACTATGATGAATAAAGGTTT AGAGGTTATAGAAACCCATTTTTTATTTGATGTAGATTATAATGATATAG AAGTTATAGTACATAAAGAATGCATTATACATTCTTGTGTTGAATTTATA GACAAATCAGTAATAAGTCAAATGTATTATCCAGATATGCAAATACCCAT ATTATATTCTTTAACATGGCCTGATAGAATAAAAACAAATTTAAAACCTT TAGATTTGGCTCAGGTTTCAACTCTTACATTTCATAAACCTTCTTTAGAA CATTTCCCGTGTATTAAATTAGCTTATCAAGCAGGTATAAAAGGAAACTT TTATCCAACTGTACTAAATGCGTCAAATGAAATAGCTAACAACTTATTTT TGAATAATAATATTTTTGATATTTCCTCTATAATATCGCAAGTT CTTGAATCTTTCAATTCTCAAAAGGTTTCGGAAAATAGTGAAGATTTAAT GAAGCAAATTCTACAAATACATTCTTGGGCCAAAGATAAAGCTACCGATA TATACAACAAACATAATTCTTCATAG

FIG. 1a

TATGAATCATAATATTCTAAATTTACCTTCCGTTTTTGCTCGATCTT CTCATTTTCGTTTCAGCTTTTATCAATGATTTTTAATTATGTGTTTTTTTA TTAAATGGCATGAATAAAAATCAAATAAAAACAGAAAAATTTATAT AAAGAAATTGAATAGGTTGTCAAGGAAAAATTCGTTATGTAGTTCTAAAA ATAAAATAGCATGCTTGTTCGATATAGGAAATGATGATAATAGAAATACG ACATATGGCTATAATGTGAATGTTAAAAATGATGATATTAATTCCTTACT AAAAAATAATTATAGTAATAAATTGTACATGGATAAGAGGAAAAATATTA ATAATGTAATTAGTACTAATAAAATATCTGGGTCCATTTCAAATATTTGT AGTAGAAATCAAAAAGAAAATGAACAAAAAAGAAATAAACAAAGATGTTT AACTCAATGTCACACTTATAATATGTCACATGAACAGGACAAACTAGCTA CTTTTACTGTAAAGAAAAAAATTGTCATTTCTGCATAAGGCCTATAAAA AAAAAATTGCACTTTTCAAAATTATAGTTTAAAAAGAAAATCTAATCGT GATTCACATAAATTGTTTTCTGGAGAATTTGACGATTATACAAATAATAA TGCTTTATATGAATCCGAAAAAAAAGAATACATTACACTAAATAATA TTATGATAATTATGGTGGAGATAATAATAATCCATGTAATAATAATAATG ACAAATATGATATAGGAAAATATTTCAAACAGATTAATACCTTTATTAAT ATTGATGAATATAAAACTATATATGGTGATGAAATATATAAAGAAATATA TGAACTATATGTAGAAAGAAATATTCCTGAATATTATGAACGAAAATATT TTTCAGAAGATATTAAAAAGAGTGTCCTATTTGATATAGATAAATATAAT TTATATTAATAATATAGATAATACATATTATAAAAAAAGAAAATATTTTAA CCATCAGATTTAAAAAAGTTAAAAAAAACAATATTTACCTTTATTAGCACA TGAATTAAAAATATTTTTTTTTTTTTTTTTTTATTGTAAATATAACAGGAGGTCATT TTTCCTCTGTTTTAAGCTCTTTAGAAATTCAATTATTATTATTGTATATT TTTAATCAACCATATGATAATGTTATATATGATATAGGACATCAAGCATA TGTACATAAGATATTGACCGGAAGAAAACTATTATTTCTATCATTAAGAA ATAAAAAGGTATTAGTGGATTCCTAAATATTTTTGAAAGTATTTATGAT AAATTTGGGGCTGGTCACAGTTCCACTTCATTAAGTGCTATACAAGGATA TTATGAAGCCGAGTGGCAAGTGAAGAATAAAGAAAAATATGGAAATGGAG ATATAGAAATAAGTGATAACGCAAATGTCACGAATAATGAAAGGATATTT CAAAAAGGAATACACAATGATAATAATATTAACAATAATATTAATAATAA TAATTATATCAATCCTTCAGATGTGGTAGGAAGAGAAAATACGAATGTAC CAAATGTACGAAATGATAACCATAACGTGGATAAAGTACACATTGCTATT ATAGGAGATGGTTTAACAGGTGGAATGGCATTAGAAGCGTTAAATTA TATTTCATTCTTGAATTCTAAAATTTTAATTATTATAATGATAACGGAC AAGTTTCTTTACCAACAAATGCCGTAAGTATATCAGGTAATAGACCTATA GGTTCTATATCAGATCATTTACATTATTTTGTTTCTAATATAGAAGCAAA TGCTGGTGATAATAAATTATCGAAAAATGCAAAAGAGAATAACATTTTTG

GAGCTCTTTAAAGTATTAAATATATAAAAGAAAATAAATTAAAAAGAGC TACTGTTCTTCATGTACGTACAAAAAAATCGAATGATTTTATAAATTCAA AGAGTCCAATAAGTATATTGCACTCTATAAAGAAAAATGAGATTTTCCCT TTCGATACCACTATATTAAATGGAAATATTCATAAGGAGAACAAGATAGA AGAAGAGAAAAATGTGTCTTCATCTACAAAGTATGATGTAAATAATAAGA ATAATAAAATAATGATAATAGTGAAATTATAAAATATGAAGATATGTTT AAAGAAAGATAGAAATATAATATTCCTATCTCCCGCTATGTTAGGAGGAT CAGGATTGGTTAAAATTAGTGAGCGTTATCCAAATAATGTATATGATGTA GGTATAGCAGAACAACATTCTGTAACTTTCGCAGCAGCTATGGCAATGAA TAAGAAATTAAAAATACAATTATGTATATATTCGACCTTTTTACAAAGAG CATATGATCAAATTATACATGATCTTAATTTACAAAATATACCTTTAAAG GTTATAATTGGAAGAAGTGGATTAGTAGGAGAGGATGGGGCAACACATCA AGGTATATATGATTTATCTTATCTTGGGACACTTAACAATGCATATATAA TATCTCCAAGTAATCAAGTTGATTTGAAAAGAGCTCTTAGGTTTGCTTAT TTAGATAAGGACCATTCTGTGTATATACGTATACCCAGAATGAACATATT AAGTGATAAGTACATGAAAGGATATTTGAACATTCATATGAAAAATGAGA GCAAAAATATCGATGTAAACGTGGATATAAACGATGATGTAGATAAATAT AGTGAAGAATATATGGACGATGATAATTTTATAAAATCGTTTATTGGAAA ATCTAGAATTATTAAAATGGATAATGAAAATAATAATACAAATGAACATT AACATGGGTAGTATGCTTTTTAATGTAATTAATGCTATAAAAGAAATTGA AAAAGAACAATATATTTCACATAATTATTCTTTTTCAATTGTTGATATGA TATTTTTAAATCCTTTAGATAAAAATATGATAGATCATGTAATAAAACAA **AATAAACATCAATATTTAATTACTTATGAAGATAATACTATAGGTGGTTT** TTCTACACATTTCAATAATTATTTAATAGAAAATAATTATATTACAAAAC ATAACTTATATGTTCATAATATTTATTTATCTAATGAGCCAATTGAACAT GCATCTTTTAAGGATCAACAAGAAGTCGTCAAAATGGATAAATGTAGTCT TGTCAATAGAATTAAAAATTATCTTAAAAATAATCCTACATGATGTAAGA TAAATATATATTTCTAAAATTATTTTTTTTTTTATACTTTAATGTGTACAA TTTAATTGTTATTTTTGTATAT

FIG.1b Teil 2

atgaagaaatatatttatatattttttttttcttcatcacaataactattaatgatttagta M K K Y I Y I Y F F F I T I T I N D L ataaataatacatcaaaatgtgtttccattgaaagaagaaaaaataacgcatatataaat I'N N T S K C V S I E R R K N N A Y I N tatqqtataqqatataatggaccagataataaaaataacaaagagtagaagatgtaaaaga I G Y N G P D N K I T K S R R C K R ataaagttatgcaaaaaggatttaatagatattggtgcaataaagaaaccaattaatgta K L C K K D L I D I G A I K K P I N V gcaattttttggaagtactggtagtataggtacgaatgctttaaatataataagggagtgt F G S T G S I G T N A L N I I R E C I E N V F N V K A L Y V N K S V N E ttatatgaacaagctagagaatttttaccagaatatttgtgtatacatgataaaagtgta LYEQAREFLPEYLCIHDKSV tatgaagaattaaaagaactggtaaaaaatataaaagattataaacctataatattgtgt ELKELVKNIKDYKPIILC ggtgatgaagggatgaaagaaatatgtagtagtaatagtatagataaaatagttattqqt G D E G M K E I C S S N S I D K I V I G I D S F Q G L Y S T M Y A I M N N K I V gcgttagctaataaagaatccattgtctctgctggtttctttttaaagaaattattaaat ALANKESIVSAGFFLKKLLN attcataaaaatgcaaagataatacctgttgattcagaacatagtgctatatttcaatgt IHKNAKIIPVDSEHSAIFQC ttagataataataaggtattaaaaacaaaatgtttacaagacaatttttctaaaattaac LDNNKVLKTKCLQDNFSK aatataaataaaatatttttatgttcatctggaggtccatttcaaaatttaactatggac INKIFLCSSGGPFQNL**TM**D gaattaaaaaatgtaacatcagaaaatgctttaaaqcatcctaaatggaaaatgggtaaq ELKNVTSENALKHPKWKMGK aaaataactatagattctgcaactatgatgaataaaggtttagaggttatagaaacccat TIDSATMMNKGLEVIE tttttatttgatgtagattataatgatatagaagttatagtacataaagaatgcattata LFDVDYNDIEVIVHKEC cattcttgtgttgaatttatagacaaatcagtaataagtcaaatgtattatccagatatg S C V E F I D K S V I S Q M Y Y P D M caaatacccatattatattctttaacatggcctgatagaataaaaacaaatttaaaacct Q I P I L Y S L T W P D R I K T N L K P ttagatttggctcaggtttcaactcttacatttcataaaccttctttagaacatttcccg LDLAQVSTLTFHKPSLEH tgtattaaattagcttatcaagcaggtataaaaggaaacttttatccaactgtactaaat I K L A Y Q A G I K G N F Y P T V L N gcgtcaaatgaaatagctaacaacttatttttgaataataaaattaaatattttgatatt A S N E I A N N L F L N N K I K Y F D tcctctataatatcgcaagttcttgaatctttcaattctcaaaaggtttcggaaaatagt I I S Q V L E S F N S Q K V S E gaagatttaatgaagcaaattctacaaatacattcttgggccaaagataaagctaccgat E D L M K Q I L Q I H S W A K D K A T D atatacaacaaacataattcttcatag YNKHNS S

FIG. 2a

tcgatcttctcattttcgtttcagcttttatcaatgatttttaattatgtgttttttaag MIFNYVFFK NFVPVVLYILLIIYINLNGM aataataaaaatcaaataaaacagaaaaatttatataaagaaattgaataggttgtca N N K N Q I K T E K I Y I K K L N R L S aggaaaaattcgttatgtagttctaaaaataaaatagcatgcttgttcgatataggaaat R K N S L C S S K N K I A C L F D I G N gatgataatagaaatacgacatatggctataatgtgaatgttaaaaatgatgatattaat D D N R N T T Y G Y N V N V K N D D tccttactaaaaaataattatagtaataaattgtacatggataagaggaaaaatattaat LLKNNYSNKLYMDKRKNIN aatgtaattagtactaataaaatatctgggtccatttcaaatatttgtagtagaaatcaa V I S T N K I S G S I S N I C S R N Q aaagaaaatgaacaaaaaaaaaaaaaaaaaaaaaagatgtttaactcaatgtcacacttataat KENEQKRNKQRCLTQCHTYN atgtcacatgaacaggacaaactagctaatgataataataggaataataaaaagaatttt S H E Q D K L A N D N N R N N K K N LLFINYFNLKRMKNSLLN gacaatttcttttactgtaaagaaaaaaattgtcatttctgcataaggcctataaaaaa NFFYCKEKKLSFLHKAYKK aaaaattgcacttttcaaaattatagtttaaaaagaaaatctaatcgtgattcacataaa K N C T F Q N Y S L K R K S N R D S H K ttgttttctggagaatttgacgattatacaaataataatgctttatatgaatccgaaaaa F S G E F D D Y T N N N A L Y E S E K E Y I T L N N N N K N N N N N D N D N N D Y N N N S C N N L G E R tccaatcattatgataattatggtggagataataataatccatgtaataataatgac N H Y D N Y G G D N N N P C N N N N D aaatatgatataggaaaatatttcaaacagattaatacctttattaatattgatgaatat K Y D I G K Y F K Q I N T F I N I D E TIYGDEIYKEIYELYVER attcctgaatattatgaacgaaaatatttttcagaagatattaaaaagagtgtcctattt PEYYERKYFSEDIKKSVL gatatagataaatataatgatgtcgaatttgaaaaagctataaaagaagaatttataaat I D K Y N D V E F E K A I K E E F aatggagtttatattaataatatagataatacatattataaaaaaagaaaatattttaata NGVYINNIDNTYYKKE N I MKKILHYFPLLKLINNPSDL aaaaagttaaaaaaacaatatttacctttattagcacatgaattaaaaatattttattt K K L K K Q Y L P L L A H E L K I F L F tttattgtaaatataacaggaggtcatttttcctctgttttaagctctttagaaattcaa I V N I T G G H F S S V L S S L E

ttattattattgtatatttttaatcaaccatatgataatgttatatatgatataggacat LLLLYIFNQPYDNVIYDIGH caagcatatgtacataagatattgaccggaagaaaactattatttctatcattaagaaat QAYVHKILTGRKLLFLSLRN aaaaaaggtattagtggattcctaaatatttttgaaagtatttatgataaatttggggct K K G I S G F L N I F E S I Y D K F G A ggtcacagttccacttcattaagtgctatacaaggatattatgaagccgagtggcaagtg G H S S T S L S A I Q G Y Y E A E W Q V aagaataaagaaaatatggaaatggagatatagaaataagtgataacgcaaatgtcacg K E K Y G N G D I E I S D N A N V T aataatgaaaggatatttcaaaaaggaatacacaatgataataatattaacaataatatt ERIFQKGIHNDNNINNNI aataataattatatcaatccttcagatgtggtaggaagagaaaatacgaatgtacca N N Y I N P S D V V G R E N T N V P aatgtacgaaatgataaccataacgtggataaagtacacattgctattataggagatggt N V R N D N H N V D K V H I A I I G ggtttaacaggtggaatggcattagaagcgttaaattatatttcattcttqaattctaaa G L T G G M A L E A L N Y I S F L N S K attttaattattataatgataacggacaagtttctttaccaacaaatgccgtaagtata I L I I Y N D N G Q V S L P T N A V S I tcaggtaatagacctataggttctatatcagatcatttacattattttgtttctaatata SGNRPIGSISDHLHYFVSNI gaagcaaatgctggtgataataaattatcgaaaaatgcaaaagagaataacatttttgaa E A N A G D N K L S K N A K E N N I LNYDYIGVVNGNNTEELFK V L N N I K E N K L K R A T V L H V R T aaaaaatcgaatgattttataaattcaaagagtccaataagtatattgcactctataaag K K S N D F I N S K S P I S I L H S I K aaaaatgagattttccctttcgataccactatattaaatggaaatattcataaggagaac KNEIFPFDTTILNGN IHKEN aagatagaagaagaaaaatgtgtcttcatctacaaagtatgatgtaaataataagaat K I E E E K N V S S S T K Y D V N N K N aataaaaataatgataatagtgaaattataaaatatgaagatatgttttcaaaagagacg. K N N D N S E I I K Y E D M F S K E T FTDIYTNEMLKYLKKDRN ttcctatctcccgctatgttaggaggatcaggattggttaaaattagtgagcgttatcca S P A M L G G S G L V K I S E R Y P aataatgtatatgatgtaggtatagcagaacaacattctgtaactttcgcagcagctatg N N V Y D V G I A E Q H S V T F A A A M gcaatgaataagaaattaaaaatacaattatgtatatattcgacctttttacaaagaqca AMNKKLKIQLCIYSTFLQRA tatgatcaaattatacatgatcttaatttacaaaatatacctttaaaggttataattgga Y D Q I I H D L N L Q N I P L K V I I G

FIG.2b Teil 2

agaagtggattagtaggaggatggggcaacacatcaaggtatatatgatttatcttat R S G L V G E D G A T H Q G I Y D L S Y cttgggacacttaacaatgcatatataatatctccaagtaatcaagttgatttgaaaaga LGTLNNAYIISPSNQVDLKR gctcttaggtttgcttatttagataaggaccattctgtgtatatacgtatacccagaatg A L R F A Y L D K D H S V Y I R I P R M aacatattaagtgataagtacatgaaaggatatttgaacattcatatgaaaaatgagagc NILSDKYMKGYLNIHMKNES aaaaatatcgatgtaaacgtggatataaacgatgatgtagataaatataqtqaaqaatat K N I D V N V D I N D D V D K Y S E E Y atggacgatgataattttataaaatcgtttattggaaaatctagaattattaaaatggat M D D D N F I K S F I G K S R I I K M D aatgaaaataatacaaatgaacattattcaagcagaggagatacacagacaaaaaa N E N N N T N E H Y S S R G D T Q T K K K K V C I F N M G S M L F N V I N A I K gaaattgaaaaagaacaatatatttcacataattattctttttcaattqttqatatqata EIEKEQYISHNYSFSIVDMI tttttaaatcctttagataaaaatatgatagatcatgtaataaaacaaaaataaacatcaa F L N P L D K N M I D H V I K Q N K H Q tatttaattacttatgaagataatactataggtggtttttctacacatttcaataattat YLITYEDNTIGGFSTHFNNY LIENNYITKHNLYVHNIYLS aatgagccaattgaacatgcatcttttaaggatcaacaagaagtcgtcaaaaatggataaa N E P I E H A S F K D Q Q E V V K M D K tgtagtcttgtcaatagaattaaaaattatcttaaaaataatcctacatgatgtaagata C S L V N R I K N Y L K N N P T -

FIG.2b Teil 3

MKKYIYIYFFFITITINDLVINNTSKCVSIERRKNNAYINY
GIGYNGPDNKITKSRRCKRIKLCKKDLIDIGAIKKPINVAIFGSTGSIGTNALNIIRECN
KIENVFNVKALYVNKSVNELYEQAREFLPEYLCIHDKSVYEELKELVKNIKDYKPIILCG
DEGMKEICSSNSIDKIVIGIDSFQGLYSTMYAIMNNKIVALANKESIVSAGFFLKKLLNI
HKNAKIIPVDSEHSAIFQCLDNNKVLKTKCLQDNFSKINNINKIFLCSSGGPFQNLTMDE
LKNVTSENALKHPKWKMGKKITIDSATMMNKGLEVIETHFLFDVDYNDIEVIVHKECIIH
SCVEFIDKSVISQMYYPDMQIPILYSLTWPDRIKTNLKPLDLAQVSTLTFHKPSLEHFPC
IKLAYQAGIKGNFYPTVLNASNEIANNLFLNNKIKYFDISSIISQVLESFNSQKVSENSE
DLMKQILQIHSWAKDKATDIYNKHNSS

FIG.3a

MIFNYVFFK

NFVPVVLYILLIIYINLNGMNNKNQIKTEKIYIKKLNRLSRKNSLCSSKNKIACLFDIGN DDNRNTTYGYNVNVKNDDINSLLKNNYSNKLYMDKRKNINNVISTNKISGSISNICSRNO KENEOKRNKORCLTOCHTYNMSHEQDKLANDNNRNNKKNFNLLFINYFNLKRMKNSLLNK DNFFYCKEKKLSFLHKAYKKNCTFONYSLKRKSNRDSHKLFSGEFDDYTNNNALYESEK KEYITLNNNNKNNNNKNNDNKNNDNNDYNNNNSCNNLGERSNHYDNYGGDNNNPCNNNND KYDIGKYFKQINTFINIDEYKTIYGDEIYKEIYELYVERNIPEYYERKYFSEDIKKSVLF DIDKYNDVEFEKAIKEEFINNGVYINNIDNTYYKKENILIMKKILHYFPLLKLINNPSDL KKLKKOYLPLLAHELKIFLFFIVNITGGHFSSVLSSLEIOLLLLYIFNOPYDNVIYDIGH OAYVHKILTGRKLLFLSLRNKKGISGFLNIFESIYDKFGAGHSSTSLSAIQGYYEAEWQV KNKEKYGNGDIEISDNANVTNNERIFQKGIHNDNNINNNINNNNYINPSDVVGRENTNVP NVRNDNHNVDKVHIAIIGDGGLTGGMALEALNYISFLNSKILIIYNDNGOVSLPTNAVSI SGNRPIGSISDHLHYFVSNIEANAGDNKLSKNAKENNIFENLNYDYIGVVNGNNTEELFK VLNNIKENKLKRATVLHVRTKKSNDFINSKSPISILHSIKKNEIFPFDTTILNGNIHKEN KIEEEKNVSSSTKYDVNNKNNKNNDNSEIIKYEDMFSKETFTDIYTNEMLKYLKKDRNII FLSPAMLGGSGLVKISERYPNNVYDVGIAEQHSVTFAAAMAMNKKLKIQLCIYSTFLQRA YDOIIHDLNLQNIPLKVIIGRSGLVGEDGATHQGIYDLSYLGTLNNAYIISPSNQVDLKR ALRFAYLDKDHSVYIRIPRMNILSDKYMKGYLNIHMKNESKNIDVNVDINDDVDKYSEEY MDDDNFIKSFIGKSRIIKMDNENNNTNEHYSSRGDTOTKKKKVCIFNMGSMLFNVINAIK EIEKEQYISHNYSFSIVDMIFLNPLDKNMIDHVIKQNKHQYLITYEDNTIGGFSTHFNNY LIENNYITKHNLYVHNIYLSNEPIEHASFKDQQEVVKMDKCSLVNRIKNYLKNNPT

FIG.3b

1	GATGAAATAT	ATAAAGAAAT	ATATGAACTA	TATGTAGAAA	GAAATATTCC
51	TGAATATTAT	GAACGAAAAT	ATTTTTCAGA	AGATATTAAA	AAGAGTGTCC
101	TATTTGATAT	AGATAAATAT	AATGATGTCG	AATTTGAAAA	AGCTATAAAA
151	GAAGAATTTA	TAAATAATGG	AGTTTATATT	AATAATATAG	ATAATACATA
201	TTATAAAAAA	GAAAATATTT	TAATAATGAA	AAAGATATTA	CATTATTTCC
251	CATTATTAAA	ATTAATTAAT	AATCCATCAG	ATTTAAAAAA	GTTAAAAAAA
301	CAATATTTAC	CTTTATTAGC	ACATGAATTA	AAAATATTTT	TATTTTTTAT
351	TGTAAATATA	ACAGGAGGTC	ATTTTTCCTC	TGTTTTAAGC	TCTTTAGAAA
401	TTCAATTATT	ATTATTGTAT	ATTTTTAATC	AACCATATGA	TAATGTTATA
451	TATGATATAG	GACATCAAGC	ATATGTACAT	AAGATATTGA	CCGGAAGAAA
501	ACTATTATTT	CTATCATTAA	GAAATAAAAA	AGGTATTAGT	GGATTCCTAA
551	ATATTTTTGA	AAGTATTTAT	GATAAATTTG	GGGCTGGTCA	CAGTTCCACT
601	TCATTAAGTG	CTATACAAGG	ATATTATGAA	GCCGAGTGGC	AAGTGAAGAA
651	TAAAGAAAAA	TATGGAAATG	GAGATATAGA	AATAAGTGAT	AACGCAAATG
701	TCACGAATAA	TGAAAGGATA	TTTCAAAAAG	GAATACACAA	TGATAATAAT
751	ATTAACAATA	ATATTAATAA	TAATAATTAT	ATCAATCCTT	CAGATGTGGT
801	AGGAAGAGAA	AATACGAATG	TACCAAATGT	ACGAAATGAT	AACCATAACG
851	TGGATAAAGT	ACACATTGCT	ATTATAGGAG	ATGGTGGTTT	AACAGGTGGA
901	ATGGCATTAG	AAGCGTTAAA	TTATATTTCA	TTCTTGAATT	CTAAAATTTT
951	AATTATTTAT	AATGATAACG	GACAAGTTTC	TTTACCAACA	AATGCCGTAA
1001	GTATATCAGG	TAATAGACCT	ATAGGTTCTA	TATCAGATCA	TTTACATTAT
1051	TTTGTTTCTA	ATATAGAAGC	AAATGCTGGT	GATAATAAAT	TATCGAAAAA
1101	TGCAAAAGAG	AATAACATTT	TTGAAAATTT	GAATTATGAT	TATATTGGTG
1151	TTGTGAATGG	TAATAATACA	GAAGAGCTCT	TTAAAGTATT	AAATAATATA
1201	AAAGAAAATA	AATTAAAAAG	AGCTACTGTT	CTTCATGTAC	GTACAAAAAA
1251	ATCGAATGAT	TTTATAAATT	CAAAGAGTCC	AATAAGTATA	TTGCACTCTA
1301	TAAAGAAAAA	TGAGATTTTC	CCGTTCGATA	CCACTATATT	AAATGGAAAT
1351	ATTCATAAGG	AGAACAAGAT	AGAAGAAGAG	AAAAATGTGT	CTTCATCTAC
1401	AAAGTATGAT	GTAAATAATA	AGAATAATAA	AAATAATGAT	AATAGTGAAA
1451	ттатаааата	TGAAGATATG	TTTTCAAAAG	AGACGTTCAC	AGATATATAT

1501	ACAAATGAAA	TGTTAAAATA	TTTAAAGAAA	GATAGAAATA	TAATATTCCT
1551	ATCTCCCGCT	ATGTTAGGAG	GATCAGGATT	GGTTAAAATT	AGTGAGCGTT
1601	ATCCAAATAA	TGTATATGAT	GTAGGTATAG	CAGAACAACA	TTCTGTAACT
1651	TTCGCAGCAG	CTATGGCAAT	GAATAAGAAA	TTAAAAATAC	AATTATGTAT
1701	ATATTCGACC	TTTTTACAAA	GAGCATATGA	TCAAATTATA	CATGATCTTA
1751	ATTTACAAAA	TATACCTTTA	AAGGTTATAA	TTGGAAGAAG	TGGATTAGTA
1801	GGAGAGGATG	GGGCAACACA	TCAAGGTATA	TATGATTTAT	CTTATCTTGG
1851	GACACTTAAC	AATGCATATA	TAATATCTCC	AAGTAATCAA	GTTGATTTGA
1901	AAAGAGCTCT	TAGGTTTGCT	TATTTAGATA	AGGACCATTC	TGTGTATATA
1951	CGTATACCCA	GAATGAACAT	ATTAAGTGAT	AAGTACATGA	AAGGATATTT
2001	GAACATTCAT	ATGAAAAATG	AGAGCAAAAA	TATCGATGTA	AACGTGGATA
2051	TAAACGATGA	TGTAGATAAA	TATAGTGAAG	AATATATGGA	CGATGATAAT
2101	TTTATAAAAT	CGTTTATTGG	AAAATCTAGA	ATTATTAAAA	TGGATAATGA
2151	АААТААТААТ	ACAAATGAAC	ATTATTCAAG	CAGAGGAGAT	ACACAGACAA
2201	АААААААА	AGTTTGTATC	TTTAACATGG	GTAGTATGCT	TTTTAATGTA
2251	ATTAATGCTA	TAAAAGAAAT	TGAAAAAGAA	CAATATATTT	CACATAATTA
2301	TTCTTTTTCA	ATTGTTGATA	TGATATTTT	AAATCCTTTA	GATAAAAATA
2351	TGATA				

FIG. 4a Teil 2

C N 1	ייר א		10	ממיד	カ ← カ	7\ 7\ m :	י מיחח	m~ n ·	3		m.c.m.					50			
D	E.	AAI.	AIA. Y	K	aga E	MAII I	Y Y	TGAZ E	ACTA L										TTAI
ט	-	_	1	IX		1	1	Ŀ	Ŀ	1	V	Ε	R	N	Ι	P	E	Y	Y
			70						90	n						110			
GA	ACG	AAA	ATA'	TTT'	TTC.	AGA	AGA'	TAT:			GAG'	TGT	CCT.	ТТА	TGA		AGA'	TAA	ATAT
E	R	K		F	S	E	D	I	K		S	v	L	F	D	I	D	ĸ	Y
																	_		-
			30						15							170			
AA.	rga'	rg T	CGAZ	TTP	TGA	AAA	AGC!	TAT	AAA	AGA.	AGA	ATT'	TAT	AAA	TAA	TGG	AGT'	TTA'	TATT
N	D	V	E	F	Ε	K	Α	I	K	E	E	F	I	N	N	G	V	Y	I
		_	90						210							230			
																			ATTA
N	N	I	D	N	Т	Y	Y	K	K	E	N	I	L	I	М	K	K	I	L
		2	50						27	_						~~~			
CN	יתיחיו	_		ለ ጥጥ :	ייייי א	7 7 7 7 7	, mm mm :	ת א תוי	270		n.a.a.	, m.c.			* * *	2.90	- mm		AAAA
H	Y	F		L	L	K	L	I			P					K K	5112 L	AAA. K	
**	•	-	-	_		11		1	IN	IA	F	3	U	1	K	Д	ъ	Λ.	K
		3	10						330	1						350			
CAZ	'ATA			TTT	ATT	AGC	ACA:	rga/			מדמב	יידים	יייין:	ጉ ጥ	ጉጥፕ		гста	מממ	TATA
Q		L		L	L	A	Н	E		K		F	L		F		v	N.	T
_									-		_	_	_	_	_	_	•	•••	-
			70						390							410			
						CTC	rgt:	TTT?	AAG	CTC			'TAA	TCA	TTA	'ATTA	TTA	TTA	GTAT
T	G	G	H	F	S	S	V	L	S	S	L	Ε	I	Q	L	L	${f L}$	r	Y
										_									
200			30						450							470			
	rrr F																		ACAT
1	r	N	Q	P	1	D	N	V	T	Y	D	Ţ	G	н	Q	Α	Y	V	Н
		4	90						510	٦						530			
AAC	ידעב			-GG	AAG	נעעע	ነርጥን	ייייים ע			ል ጥር ፣	ייייי א	מממ	מממ	ממיד		۸۵۵۰	ייזימיו	TAGT
K	I	L		G	R	K		L	F		S		R	N	K		G	I	S
									_	_	_	_		•			•	_	_
		5	50						570	0		•				590			
GG	TTA	CCT	AAA.	rat'	TTT'	TGA	AAG:	TAT:	TAT	rga'	TAA	TTA	rgg	GGC	TGG	TCA	CAG'	TTC	CACT
G	F	L	N	Ι	F	E	S	Ι	Y	D	K	F	G	Α	G	Н	S	S	T
			10						630							650			
																			AAAA
S	L	S	A	Ι	Q	G	Y	Y	E	A	E	W	Q	V	K	N	K	E	K
		٠.	7.0						60	^						770			
יאים	rcc:		70 rcc:	ימאמ	ידי איד	א כ א ז	ייית ת	אאכי	691 יכאי			יתתת	m_m	C 7 C	~ 7 7	710	יים אי	7 7 C	GATA
	G				I		I				A					N			
-	•	14	0		_		_	5	ט	14	А	TA	٧	1	1.4	14	12	K	-
		7	30						75	0						770			
TT	rca.			TAA	ACA	CAA!	rga'	TAA'	raa'	ГАТ	TAA	CAA	TAA	TAT	TAA		TAA	TAA	TTAT
																N			Y
			90						81							830			
																		AAA	TGAT
I	N	Ρ	S	D	V	V	G	R	Ε	N	T	N	V	P	N	V	R	N	D
		_							~ -	_									
7. 7.		_	50		m ~ ~	7 Cm	n ~ n :	~ x ~	87	-	m = -			m c c	m.c	890			
																			TGGI G
IV	n	IN	v	U	Λ.	V	п		А	1	- 1	(-	1)	l v	(7	1.	.1.	1.	(-

		_	10						93							950			
AT	GGC	TTA	AGA	AGC	GTT	AAA!	TA?	rat	TTC	TTA	CTT	GAA'	TTC	TAA	AAT'	TTT	AAT'	TAT'	TAT
М	Α	L	E	A	L	N	Y	I	S	F	L	N	S	K	I	L	I	I	Y
																			_
		9	70						996	n					10	010			
ΔΔ	TGAT	ממח	CGG	ACA	ייד:) מ	ישתי	י ייי	٥.			TCC	CCT	מממ	ייי מיי			יתתיד	TRAC	ACCT
N	D	N		0		S				N		V			S				
TA	D	14	G	Q	٧	3	ъ		1	IN	A	V	5	Τ.	3	G	N	R	P
										_									
		10							105							070			
AT.	AGG:	rtc'	TAT	ATC.	AGA'	rca?	TTT	ACA	TTA	TTT	TGT	TTC	TAA	TAT	AGA	AGC	AAA'	TGC'	TGGT
I	G	S	I	S	D	Н	L	Н			V	s	N	I	E				G
				_	_		_	••	-	-	•	_	••	-	_	••	•••	**	•
		10	00							^									
									111	_						130			
			ATT			AAA'	rgcz	AAA	AGA	GAA	TAA	CAT'	TTT'	TGA	AAA'	TTT(GAA'	TTA'	IGAT
D	N	K	L	S	K	N	Α	K	E	N	N	I	F	E	N	L	N	Y	D
																			_
		11	50						1170	n					1	190			
ימידי	ייי אייי			т С т	ית תי	mc	יי א אר	ת תיד			202	~~m/		m n n					
																			TATA
Y	Ι	G	V	V	N	G	N	N	T	Ε	Ε	L	F	K	V	L	N	N	I
		12	10						123	0					1:	250			
AA	AGAZ	יממב	TAA	יייי ב	מממ	AAGZ	احدر	רמכ	יידיטיי	יי יי	מית	ጥር ጥ		ጥልሮ	בבב	מממ	ል ጥር	יממם	TGAT
ĸ	E	N	K	L	K		Α.		V			V							
11	-	LA	K	ъ	K	I.	A	1	V	ш	п	V	R	T	K	K	S	N	D
									-										
		12	_						129							310			
TT	TAT	'AAA	TTC	AAA	GAG'	TCC#	ATA	AAG	TAT	TTA	GCA	CTC	TAT.	AAA	GAA	'AAA	TGA	GAT	TTTC
F	T	N	S.			Ρ			Ι					K	K		E	T	F
_	_			••	_	-	-	_	-	_	••	٥	-	**		.,	_	-	L
		13	20							_					-				
									135							370			
CC		CGA'	TAC	CAC'	TAT		AA.	rgg	AAA'	TAT	TCA	TAA	GGA	GAA	CAA	GAT.	AGA	AGA.	AGAG
Ρ	F	D	Т	T	I	L	N	G	N	Ι	H	K	Ε	N	K	I	E	E	E
						•													
		13	90						141	Λ					1	430			
73.73	7 , 7, 7, 7			mmc	7 m ~ 1	D N C 7		~~~		_				~ n n					TGAT
K	N	V	S	S	S	T	K	Y	D	V	N	N	K	N	N	K	N	N	D
		14.	50						147	0					1	490			
ΔΔ	TAC	rca:	יידע	ידמיד	מממ	י מידי מ	ים מבטיו	מסמ			աաշ	מממ	מממ	GAC			מסמ	ጥልጥ	ATAT
N	S	E		I															
14	5	E.	Τ	1	K	ĭ	Ε	D	М	r	S	K	E	T	F	T	D	Ι	Y
		15	10						153	0					1	550			
AC.	AAA	rga.	TAA	GTT.	AAA	ATA	TTT	AAA	GAA	AGA	TAG	AAA	TAT	AAT	ATT	CCT.	ATC	TCC	CGCT
Т	N	E	М	L	K	Y	L	К		D	R	N	I	I	F	L	s	P	A
•	14	_	1.7		11	1	ш	11	1	ט	K	1.4	1	_	E	1.0	3	F	A
										_					_				
		15							159							610			
ΑT	GTT	AGG.	AGG.	ATC.	AGG.	ATTO	GGT'	TAA	TAA	TAG	TGA	GCG'	TTA	TCC	AAA	TAA	TGT	ATA	TGAT
									I										
••	_	•	_	_	•	_	•		_	5	_	11	_	-	.,		•	-	ט
		3.0	20						1.65	_						c= 0			
		16							165							670			
																			GAAA
V	G	I	Α	E	Q	Н	S.	V	T	F	Α	Α	Α	M	Α	M	N	K	K
		16	۹n i						171	Λ					1	730			
d) III	71 71 71 °			7 mm	7 m~	m z	י יייות	mma				3~-	n n ~					,	m » ~ -
																			TATA
L	K	I	Q	L	С	Ι	Y	S	T	F	L	Q	R	Α	Y	D	Q	I	I
		17	50						177	0					1	790	ı		
CA	ጥርልነ			արարա	ACA	ימממ	ייעקיד	מרר			سىي	ייע מידי	יי ע ע	ייויים				יייים	AGTA
п	ט	_	14	L	Q	1.4	T	2	1.	Ľ.	٧	7	T	G	7	3	G	Ţ	V
		18							183							850			
GG	AGA	GGA	TGG	GGC	AAC	ACA'	TCA	AGG	TAT	ATA	TGA	TTT	ATC	TTA	TCT	TGG	GAC	ACT	TAAC
																			N

1870 1890 1910 **AATGCATATATATATCTCCAAGTAATCAAGTTGATTTGAAAAGAGCTCTTAGGTTTGCT** NAYIISPSNQVDLKRALRFA 1930 1950 TATTTAGATAAGGACCATTCTGTGTATATACGTATACCCAGAATGAACATATTAAGTGAT Y L D K D H S V Y I R I P R M N I L S D 2010 AAGTACATGAAAGGATATTTGAACATTCATATGAAAAATGAGAGCAAAAATATCGATGTA K Y M K G Y L N I H M K N E S K N I D V 2070 AACGTGGATATAAACGATGATGTAGATAAATATAGTGAAGAATATATGGACGATGATAAT N V D I N D D V D K Y S E E Y M D D D N 2110 2130 TTTATAAAATCGTTTATTGGAAAATCTAGAATTATTAAAATGGATAATGAAAATAATAAT FIKSFIGKSRIIKM DNENN 2190 TNEHYSSRGDTQTKKKKVCI 2230 2250 TTTAACATGGGTAGTATGCTTTTTAATGTAATTAATGCTATAAAAGAAATTGAAAAAGAA F N M G S M L F N V I N A I K E I E K E 2310 2330 CAATATTTCACATAATTATTCTTTTTCAATTGTTGATATGATATTTTTAAATCCTTTA Q Y I S H N Y S F S I V D M I F L N P L 2350 GATAAAAATATGATA DKNMI

FIG.4b Teil 3

1 DEIYKEIYEL YVERNIPEYY ERKYFSEDIK KSVLFDIDKY NDVEFEKAIK 51 EEFINNGVYI NNIDNTYYKK ENILIMKKIL HYFPLLKLIN NPSDLKKLKK 101 QYLPLLAHEL KIFLFFIVNI TGGHFSSVLS SLEIQLLLLY IFNQPYDNVI 151 YDIGHQAYVH KILTGRKLLF LSLRNKKGIS GFLNIFESIY DKFGAGHSST 201 SLSAIQGYYE AEWQVKNKEK YGNGDIEISD NANVTNNERI FQKGIHNDNN 251 INNNINNNY INPSDVVGRE NTNVPNVRND NHNVDKVHIA IIGDGGLTGG 301 MALEALNYIS FLNSKILIIY NDNGQVSLPT NAVSISGNRP IGSISDHLHY 351 FVSNIEANAG DNKLSKNAKE NNIFENLNYD YIGVVNGNNT EELFKVLNNI 401 KENKLKRATV LHVRTKKSND FINSKSPISI LHSIKKNEIF PFDTTILNGN 451 IHKENKIEEE KNVSSSTKYD VNNKNNKNND NSEIIKYEDM FSKETFTDIY 501 TNEMLKYLKK DRNIIFLSPA MLGGSGLVKI SERYPNNVYD VGIAEQHSVT 551 FAAAMAMNKK LKIQLCIYST FLQRAYDQII HDLNLQNIPL KVIIGRSGLV 601 GEDGATHQGI YDLSYLGTLN NAYIISPSNO VDLKRALRFA YLDKDHSVYI 651 RIPRMNILSD KYMKGYLNIH MKNESKNIDV NVDINDDVDK YSEEYMDDDN 701 FIKSFIGKSR IIKMDNENNN TNEHYSSRGD TQTKKKKVCI FNMGSMLFNV 751 INAIKEIEKE QYISHNYSFS IVDMIFLNPL DKNMI

FIG. 4c

Desig	Parasitemie [%]								
Dosis [mg/kg]	Formyl	Acetyl							
300	0.0	0.0							
30	0.0	0.0							
10	0.0	0.0							
5	0.06 ± 0.17	0.0							
2	11.7 ± 16.5	0.86 ± 0.44							
Kontrolle	65.9 ± 19.1	65.9 ± 19.1							

Fig. 5

Fig. 6a

Fig. 6b

Fig. 6c

Klassischer Acetat/ Mevalonat-Pathway

HMG-CoA

HOOC

Mevalonat-5-diphosphat

höhere Pflanzen (Cytoplasmen), Tiere, Pilze; Eubakterien

Alternativer DOX-P Pathway

1-Deoxyxylulose-5-P (DOX-P)

DOXP-Reduktoisomerase

2-C-Methylerythose-4-phosphat

2-C-Methylerythritol-4-phosphat

höhere Pflanzen (Plastide), Grünalgen, viele Eubakterien

Sequenzprotokoll

Anzahl der Sequenzen: 2

(1) ANGABEN ZU SEQUENZ ID NR: 1
Plasmodium falciparum 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase(dxr)gen

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 1467 BASENPAARE
- (B) ART: Nukleotidsequenz
- (C) STAMM: HB3
- (ii) ART DES MOLEKÜLS: DNA
- (iv) URSPRÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Plasmodium falsiparum
- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: mRNA
- (B) LAGE:1...1467

GEN=dxr

PRODUKT=1-Desoxy-D-xylulose-5-phosphatreduktoisomerase

- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: Gen
- (B) LAGE:1...1467 GEN=dxr
- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE:1...1467

GEN=dxr

FUNKTION: bei der Isopentenyldiphosphatbiosynthese beteiligt

Startcodon: 1

PRODUKT=1-Desoxy-D-xylulose-5-phosphatreduktoisomerase

PROTEIN: 488 Aminosäuren

ORGANISMUS: Plasmodium falciparum; (Apicomplexa)

STAMM: HB3

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO:1

						ACA Thr		48
						TCC Ser		96
						TAT Tyr 45		144
						ATA Ile		192
 						CCA Pro		240
						GCT Ala		288
						GTT Val		336
						GCT Ala 125		384
						TAT Tyr		432
						ATA Ile		480
						AGT Ser		528
						TCT Ser		576

THIS PAGE RLANK HISPTON

GCA Ala	ATT Ile	ATG Met 195	AAT Asn	AAT Asn	AAA Lys	ATA Ile	GTT Val 200	GCG Ala	TTA Leu	GCT Ala	AAT Asn	AAA Lys 205	GAA Glu	TCC Ser	ATT Ile	624
					TTT Phe											672
					GTT Val 230											720
					GTA Val											768
					ATA Ile											816
					ACT Thr											864
					CCT Pro											912
					ATG Met 310											960
					GAT Asp											1008
					TCT Ser										ATA Ile	1056
					CCA Pro											1104
					ATA Ile											1152
	Val				ACA Thr 390						Leu					1200

							TTT Phe		1248
							TTT Phe 430		1296
 	 						CAA Gln		1344
							GAT Asp		1392
							GCT Ala		1440
 	 	 AAT Asn	 	TAG					1467

- (2) ANGABEN ZU SEQUENZ ID NR: 2
 Plasmodium Falciparum 1-Desoxy-D-Xylulose-5-phosphatsynthase(dxs)gen
- (iii) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 3872 BASENPAARE
- (B) ART: Nukleotidsequenz
- (C) STAMM: HB3
- (iv) ART DES MOLEKÜLS: DNA
- (v) URSPRÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Plasmodium falsiparum
- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: mRNA
 GEN=dxs
 PRODUKT=1-Desoxy-D-xylulose-5-phosphatsynthase
- (ix) MERKMAL

(A)	NAME	/SCHL	SSEL	: Ger	1										
	LAGE				•								•		
\ -,	GEN=														
(ix)	ME	RKMAL													
(A)	NAME	/SCHL	SSEL	: CDS	5										
	GEN=	dxs													
	FUNK	TION:	bei d	der 1	Sope	enter	nyldi	phos	sphat	bios	ynth	ese	bete	eiligt	
	Star	tcodo	1: 1												
	PROD	UKT=1	Deso	xy-D-	-xylı	lose	e-5 - p	phosp	ohats	ynth	nase				
	PROT	EIN:	.205 2	Amino	säui	cen									
			ORGAN	IISMU	S: F	lasm	odiu	m fa	lcip	arum	ı; (A	pico	mple	exa)	
			STAMM	1: HE	3										
(xi)	SEQU:	ENZBES	CHRE	IBUNG	S: SE	EQ II	ONO:	2							
GGTA	ATATA	C GTA	'AATA'	ra t <i>i</i>	TATA	ATA	r ATI	CTTA	ACGT	ATGI	TATC	ATT I	ratg <i>i</i>	AATCAT	60
AATA	ATATT	C TAA	ATTTA	CC TI	rccgi	TTTT	r GCT	CGAT	CTT	CTC	ATTT	rcg 1	rttc <i>i</i>	AGCTTT	120
TATC				sn Ty					s As					TT GTT al Val 15	170
CTA	TAC A	TT CT	CTT	ATA	ATA	TAT	ATT	AAC	тта	аат	GGC	7 TT C			
Leu	Tyr I	10 10	_	T1 -	Ile	ጥህን					000	MIG	AAT	AAT	218
		те те		Tre		ıyı	Ile						Asn		218
		те ге	Leu 20	ire		ıyı	Ile	Asn 25							218
AAA	ААТ С		20			_		25	Leu	Asn	Gly	Met	Asn 30	Asn	218 266
	AAT C Asn G	AA ATZ ln Ile	20 A AAA e Lys	ACA	GAA	AAA	ATT Ile	25 TAT	Leu ATA	Asn AAG	Gly AAA	Met TTG Leu	Asn 30 AAT	Asn AGG	
		AA AT	20 A AAA e Lys	ACA	GAA	AAA	ATT	25 TAT	Leu ATA	Asn AAG	Gly AAA	Met TTG	Asn 30 AAT	Asn AGG	
Lys	Asn G TCA A	AA ATI ln Ile 3	20 A AAA Lys o	ACA Thr	GAA Glu TTA	AAA Lys TGT	ATT Ile 40 AGT	25 TAT Tyr	Leu ATA Ile	Asn AAG Lys AAT	Gly AAA Lys AAA	Met TTG Leu 45	Asn 30 AAT Asn GCA	Asn AGG Arg	
Lys	Asn G TCA A Ser A	AA ATI ln Ile 3: GG AAI rg Ly:	20 A AAA Lys o	ACA Thr	GAA Glu TTA	AAA Lys TGT Cys	ATT Ile 40 AGT	25 TAT Tyr	Leu ATA Ile	Asn AAG Lys AAT	AAA Lys AAA Lys	Met TTG Leu 45	Asn 30 AAT Asn GCA	Asn AGG Arg	266
Lys	Asn G TCA A Ser A	AA ATI ln Ile 3	20 A AAA Lys o	ACA Thr	GAA Glu TTA	AAA Lys TGT	ATT Ile 40 AGT	25 TAT Tyr	Leu ATA Ile	Asn AAG Lys AAT	Gly AAA Lys AAA	Met TTG Leu 45	Asn 30 AAT Asn GCA	Asn AGG Arg	266
TTG Leu	Asn G TCA A Ser A TTC G	AA ATZ ln Ilo 3. GG AAZ rg Ly: 50	20 A AAA B Lys B AAT B ASN A GGA	ACA Thr TCG Ser	GAA Glu TTA Leu GAT	AAA Lys TGT Cys 55	ATT Ile 40 AGT Ser	25 TAT Tyr TCT Ser	ATA Ile AAA Lys	ASN AAG Lys AAT ASN	AAA Lys AAA Lys 60	TTG Leu 45 ATA Ile	Asn 30 AAT Asn GCA Ala	Asn AGG Arg TGC Cys	266
TTG Leu	Asn G TCA A Ser A TTC G Phe A	AA ATZ ln Ilo 3. GG AAZ rg Ly: 50	20 A AAA B Lys B AAT B ASN A GGA	ACA Thr TCG Ser	GAA Glu TTA Leu GAT Asp	AAA Lys TGT Cys 55	ATT Ile 40 AGT Ser	25 TAT Tyr TCT Ser	ATA Ile AAA Lys	AAG Lys AAT Asn ACG Thr	AAA Lys AAA Lys 60	TTG Leu 45 ATA Ile	Asn 30 AAT Asn GCA Ala	Asn AGG Arg TGC Cys	266 314
TTG Leu	Asn G TCA A Ser A TTC G	AA ATZ ln Ilo 3. GG AAZ rg Ly: 50	20 A AAA B Lys B AAT B ASN A GGA	ACA Thr TCG Ser	GAA Glu TTA Leu GAT	AAA Lys TGT Cys 55	ATT Ile 40 AGT Ser	25 TAT Tyr TCT Ser	ATA Ile AAA Lys	ASN AAG Lys AAT ASN	AAA Lys AAA Lys 60	TTG Leu 45 ATA Ile	Asn 30 AAT Asn GCA Ala	Asn AGG Arg TGC Cys	266 314
TTG Leu TTG Leu	TCA A Ser A TTC G Phe A 65	AA ATZ ln Ilo 3. GG AAZ rg Ly: 50 AT ATZ sp Ilo	20 A AAA Lys A AAT A ASn A GGA GGA Gly T AAA	ACA Thr TCG Ser AAT Asn	GAA Glu TTA Leu GAT Asp 70	AAA Lys TGT Cys 55 GAT Asp	ATT Ile 40 AGT Ser AAT Asn	25 TAT Tyr TCT Ser AGA Arg	ATA Ile AAA Lys AAT Asn TCC	AAG Lys AAT Asn ACG Thr 75	AAA Lys AAA Lys 60 ACA Thr	Met TTG Leu 45 ATA Ile TAT Tyr	Asn 30 AAT Asn GCA Ala GGC Gly	Asn AGG Arg TGC Cys TAT Tyr	266 314
TTG Leu TTG Leu	Asn G TCA A Ser A TTC G Phe A 65	AA ATZ ln Ilo 3. GG AAZ rg Ly: 50 AT ATZ sp Ilo	20 A AAA Lys A AAT A ASn A GGA GGA Gly T AAA	ACA Thr TCG Ser AAT Asn	GAA Glu TTA Leu GAT Asp 70	AAA Lys TGT Cys 55 GAT Asp	ATT Ile 40 AGT Ser AAT Asn	25 TAT Tyr TCT Ser AGA Arg	ATA Ile AAA Lys AAT Asn TCC	AAG Lys AAT Asn ACG Thr 75	AAA Lys AAA Lys 60 ACA Thr	Met TTG Leu 45 ATA Ile TAT Tyr	Asn 30 AAT Asn GCA Ala GGC Gly	Asn AGG Arg TGC Cys TAT Tyr	266 314 362
TTG Leu TTG Leu AAT Asn 80	TCA A Ser A TTC G Phe A 65	AA ATI ln Ili 3. GG AAI rg Ly: 50 AT ATI sp Ili AT GT	20 A AAA Lys A AAT A AGA GGA GGA Lys Lys	ACA Thr TCG Ser AAT Asn AAT	GAA Glu TTA Leu GAT Asp 70 GAT Asp	AAA Lys TGT Cys 55 GAT Asp	ATT Ile 40 AGT Ser AAT Asn ATT Ile	25 TAT Tyr TCT Ser AGA Arg	ATA Ile AAA Lys AAT Asn TCC Ser 90	Asn AAG Lys AAT Asn ACG Thr 75 TTA Leu	AAA Lys AAA Lys 60 ACA Thr	TTG Leu 45 ATA Ile TAT Tyr	Asn 30 AAT Asn GCA Ala GGC Gly AAT Asn	Asn AGG Arg TGC Cys TAT Tyr AAT Asn 95	266 314 362

			TCT Ser						506
			CAA Gln						554
			ATG Met 150						602
			AAA Lys						650
			ATG Met				Lys		698
			AAA Lys						746
			TTT Phe						794
			TTG Leu 230						842
			GAA Glu						890
			AAT Asn						938
			AAT Asn						986
			GAT Asp					CCA Pro	1034
			AAA Lys 310						1082

							GGT Gly	1130
							ATT Ile 350	1178
							AGT Ser	1226
							GCT Ala	1274
							GAT Asp	1322
							TTA Leu	1370
							AAA Lys 430	1418
							ATA Ile	1466
							GTT Val	1514
							CAA Gln	1562
		Ile					CAT His	1610
							AAA Lys 510	1658
							AAA Lys	1706

		AGT Ser							1754
		CAA Gln							1802
		GAT Asp							1850
		CAC His 580							1898
		AAT Asn							1946
		CGA Arg							1994
		GAT Asp							2042
		TCA Ser							2090
		GTT Val 660						GGT Gly	2138
		GGT Gly							2186
		AAT Asn							2234
		TTT Phe							2282
		ACA Thr							2330

	***	, , , , , , ,	<i>)</i> 50										-	C I/LI)	
GAA Glu	AAT Asn	AAA Lys	TTA Leu	AAA Lys 740	AGA Arg	GCT Ala	ACT Thr	GTT Val	CTT Leu 745	CAT His	GTA Val	CGT Arg	ACA Thr	AAA Lys 750	AAA Lys	2378
													TTG Leu 765			2426
													TTA Leu			2474
													GTG Val			2522
													AAT Asn			2570
													ACG Thr			2618
													GAT Asp 845			2666
													TTG Leu		AAA Lys	2714
													ATA Ile		GAA Glu	2762
													AAG Lys			2810
													GCA Ala			2858
				Asp									AAG Lys 925		ATA Ile	2906
			Ser										His		GGT Gly	2954

•														
ATA TA Ile Ty 94	r Asp													3002
TCT CC Ser Pr 960														3050
TTA GA Leu As														3098
TTA AG Leu Se						Gly					His			3146
GAG AG Glu Se		Asn			Val					Asn				3194
AAA TA Lys Ty 102	r Ser			Tyr					Asn					3242
ATT GG Ile Gl 1040			Arg					Asp					Asn	3290
AAT GA Asn Gl		Tyr					Asp					Lys		3338
GTT TG Val Cy	s Ile		Asn			Ser					Val			3386
ATA AA		Ile			Glu					His				3434
TCA AT Ser Il 110	e Val			Ile					Leu					3482
GAT CA Asp Hi 1120			Lys					Gln					Tyr	3530
GAT AA		Ile					Thr					Tyr		3578

	ATT ACA AAA CAT AAC TTA TAT GTT CAT AAT ATT TAT Ile Thr Lys His Asn Leu Tyr Val His Asn Ile Tyr 1160	3 6 26
	CCA ATT GAA CAT GCA TCT TTT AAG GAT CAA CAA GAA Pro Ile Glu His Ala Ser Phe Lys Asp Gln Gln Glu 1175	3674
	GAT AAA TGT AGT CTT GTC AAT AGA ATT AAA AAT TAT Asp Lys Cys Ser Leu Val Asn Arg Ile Lys Asn Tyr 1190 1195	3722
CTT AAA AAT AAT Leu Lys Asn Asn 1200	CCT ACA TGA TGTAAGATAA ATATATATTT CTAAAATTAT Pro Thr - 1205	3773
TTTTTTTTTA TACT	TTAATG TGTACAATAA AATATATATC TAAATATATT TTATTTGT	AC 3833
GCTTTTTTTT TTTT	TTTTTT AATTGTTATT TTTGTATAT	3872