Apontes Robotica Industrial &

Tema 3 (Parte 3) & Crnematria descripted del robot

TEORÍA

Consensation differential (definition) & Velocidid Uncal langular = Matriz Jacobiana · Coordenadas articulares => $\dot{x} = J \cdot \dot{q}$ $\dot{q}_{1} = J_{1} \cdot \dot{q}_{2} = J_{2} \cdot \dot{q}_{3} = J_{2} \cdot \dot{q}_{4} = J_{2} \cdot \dot{q}_{5} = J_{2} \cdot \dot{q}_{5} = J_{2} \cdot \dot{q}_{5} = J_{3} \cdot \dot{q}_{5} = J_{4} \cdot \dot{q}_{5} = J_{5} \cdot \dot{q}_{5} =$

Matriz Jacobrana geometrica:
$$\begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \\ W_{z} \end{bmatrix} = J \cdot \begin{bmatrix} q'_{1} \\ V_{y} \\ V_{z} \\ W_{z} \end{bmatrix} = \begin{bmatrix} J_{v} \\ J_{w} \end{bmatrix} \begin{bmatrix} q'_{1} \\ V_{1} \\ V_{2} \end{bmatrix} \Rightarrow \Omega = \hat{\Omega} \cdot \Omega T = \begin{bmatrix} \Omega & -\omega_{z} & \omega_{y} \\ \omega_{z} & \Omega & -\omega_{x} \\ -\omega_{y} & \omega_{x} & \Omega \end{bmatrix}$$

Stryularidades : | J(q, q2, ..., qn) = 0

EJEMPLOS

① Calcula la matriz Jacobana para el robot de 2 Godos De Libertud detindo por la siguente tabla de prometro D-H, considerdo sole la porció (x,y)

(sin la crentució) det elemento terminal. Atendo i determina las singulardades de debo statema.

i	9;	di	o.;	di
1	9. = 0.	0	1	0
2	92 = 02	0	1	0

$$\bullet A_{i} = \begin{pmatrix} \bullet \cup s & (q_{i}) & -s \cup s & (q_{i}) & 0 & 0 \\ \bullet \cup s \cup s & (q_{i}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \bullet \cup s & (q_{i}) & -s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s & (q_{i}) & \cos & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s & (q_{i}) & \cos & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & \cos & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & 0 & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s & (q_{i}) & (q_{i}) \\ \bullet \cup s \cup s \cup s \\ \bullet \cup s \cup$$

$${}^{1}\text{A}_{2} = \begin{pmatrix} \cos\left(q_{2}\right) & -\sin\left(q_{2}\right) & 0 & 0 \\ \sin\left(q_{2}\right) & \cos\left(q_{2}\right) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos\left(q_{2}\right) & -\sin\left(q_{2}\right) & 0 & \cos\left(q_{2}\right) \\ \sin\left(q_{2}\right) & \cos\left(q_{2}\right) & 0 & \cos\left(q_{2}\right) \\ \cos\left(q_{2}\right) & \cos\left(q_{2}\right) & 0 & \cos\left(q_{2}\right) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A_{1} \cdot A_{2} = \begin{pmatrix} \cos{(q_{1} + q_{2})} & -\cos{(q_{1})} \cos{(q_{2})} & \cos{(q_{1})} \cos{(q_{2})} & \cos{(q_{1})} + \cos{(q_{1} + q_{2})} \\ \sin{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} & \cos{(q_{1} + q_{2})} \\ \cos{(q_{1} + q_{2})} & \cos$$

$$J(q_1,q_2) = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} \\ \frac{\partial y}{\partial q_1} & \frac{\partial x}{\partial q_2} \end{bmatrix} = \begin{bmatrix} -\sin(q_1+q_2) - \sin(q_1) & -\sin(q_1+q_2) \\ \cos(q_1+q_2) + \cos(q_1) & \cos(q_1+q_2) \end{bmatrix}$$

| J(q, q2) = - cos (q, + q2) (- sen (q, + q2) - sen (q,)) + sen (q, + q2) (cos (q, + q2) + cos (q,)) = 0 => sen (q2) = 0 => q2 = 0, π

1 Obber la Jacobiana analitica y geométrica del robot SCARA.

$$J_{\infty} = \begin{bmatrix} -\left(l_{3} sen \left(q_{1} + q_{2} \right) \left(2 sen \left(q_{1}\right)\right) & -l_{3} sen \left(q_{1} + q_{2}\right) & 0 & 0 \\ l_{3} ces \left(q_{1} + q_{2}\right) + l_{2} ces \left(q_{1}\right) & l_{3} ces \left(q_{1} + q_{2}\right) & 0 & 0 \\ l & l & l & 0 & l \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{T}_{V} = \begin{bmatrix} -(l_{3} scn (q_{1} + q_{2}) + l_{3} scn (q_{1})) & -l_{3} scn (q_{1} + q_{2}) & 0 & 0 \\ l_{3} ccn (q_{1} + q_{2}) + l_{2} ccs (q_{1}) & l_{3} ccn (q_{1} + q_{2}) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Área de Tecnología Electrónica

EJERCICIOS DEL TEMA 3 - PARTE 3

Cinemática diferencial del robot

Ejercicio 1. Obtén la representación gráfica del robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg.

- a) Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal.
- b) Estudia las posibles configuraciones singulares del robot.

i	θί	di	ai	αį
1	0	q ₁	0	0
2	q ₂	0	0	-90
3	0	q ₃	0	0

Ejercicio 2. Obtén la representación gráfica del robot SCARA definido por la siguiente tabla de parámetros de Denavit-Hartenberg.

a) Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal.

i	θί	di	ai	αί
1	q ₁	lı	l ₂	0
2	q ₂	0	l ₃	0
3	0	q ₃	0	0
4	Q4	- 14	0	180

Ejercicio 3. Se dispone de un robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg:

i	e _i	di	a _i	αi
1	q ₁	0	0	-90
2	0	q ₂	0	90
3	0	q ₃	0	0

Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal. Estudia las posibles configuraciones singulares del robot.

Área de Tecnología Electrónica

Ejercicio 4. Se dispone de un robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg:

i	θi	di	ai	αί
1	q ₁	0	0	0
2	-90	q ₂	0	-90
3	0	Q ₃	0	0

Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal. Estudia las posibles configuraciones singulares del robot.

EJERCICIOS

$$^{\circ}A_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 0 \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos{(-q_{0}^{\circ})} & -\sin{(-q_{0}^{\circ})} & 0 \\ 0 & \sin{(-q_{0}^{\circ})} & \cos{(-q_{0}^{\circ})} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos{(q_{2})} & 0 & -\sin{(q_{2})} & 0 \\ \sin{(q_{2})} & 0 & \cos{(q_{2})} & 0 \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & \cos{(q_{2})} & 0 \\ 0 & \sin{(-q_{0}^{\circ})} & \cos{(-q_{0}^{\circ})} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{C}A_{1} {}^{1}A_{2} {}^{2}A_{3} = \begin{pmatrix} \cos{(q_{2})} & 0 & -\sin{(q_{2})} & -\sin{(q_{2})} q_{3} \\ -\sin{(q_{2})} & 0 & \cos{(q_{2})} & \cos{(q_{2})} q_{3} \\ 0 & -1 & 0 & q_{1} \\ 0 & 0 & 0 & q_{2} \end{pmatrix} \quad \begin{array}{c} x = -\sin{(q_{2})} q_{3} \\ y = \cos{(q_{2})} q_{3} \\ z = q_{1} \end{pmatrix}$$

$$\mathcal{J} = \begin{pmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\ \frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3} \end{pmatrix} = \begin{pmatrix} 0 & \cos(q_2)q_3 & -\sin(q_2) \\ 0 & -\sin(q_2)q_3 & \cos(q_2) \\ 1 & 0 & 0 \end{pmatrix}$$

b)
$$|J| = \begin{vmatrix} 0 & \cos(q_2)q_3 & -\sin(q_2) \\ 0 & -\sin(q_2)q_3 & \cos(q_2) \\ 1 & 0 & 0 \end{vmatrix} = \cos^2(q_2)q_3 - \sin^2(q_2)q_3 = q_3(\cos^2(q_2) - \sin^2(q_2)) = -q_3 = 0$$

$$c_{A_1} = \begin{pmatrix} c_{co}(q_1) & -s_{co}(q_1) & 0 & 0 \\ s_{co}(q_1) & -s_{co}(q_1) & 0 & 0 \\ s_{co}(q_1) & c_{co}(q_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_{co}(q_1) & -s_{co}(q_1) & 0 \\ s_{co}(q_1) & -s_{co}(q_1) & 0 \\ s_{co}(q_1) & c_{co}(q_1) & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} c_{co}(q_1) & -s_{co}(q_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} c_{co}(q_2) & -s_{co}(q_2) & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 0 \\ \cos{(q_{2})} & \cos{(q_{2})} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & (3\cos{(q_{2})}) \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2$$

$${}^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$3A_{4} = \begin{pmatrix} \cos(94) & -\sin(94) & 0 & 0 \\ \sin(94) & \cos(94) & 0 & 0 \\ \cos(194) & \cos(94) & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -(4) \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(180^{\circ}) & -\sin(180^{\circ}) & 0 \\ 0 & \cos(180^{\circ}) & \cos(190^{\circ}) & 0 \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) & \cos(190^{\circ}) \\ 0 & \cos(190^{\circ})$$

$$T = {}^{6}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} = \begin{pmatrix} \cos{\left(q_{1} + q_{2} + q_{4}\right)} & \sec{\left(q_{1} + q_{2} + q_{4}\right)} & 0 & (3\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1}\right)}) \\ \sec{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & 0 & (3\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1}\right)}) \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1}\right)}) \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1}\right)}) \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1} + q_{2}\right)}) \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2}\right)} + (2\cos{\left(q_{1} + q_{2}\right)}) \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} + q_{2} + q_{4}\right)} \\ \cos{\left(q_{1} + q_{2} + q_{4}\right)} & -\cos{\left(q_{1} +$$

$$J = \begin{pmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\ \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3} \end{pmatrix} = \begin{pmatrix} -\left(l_3 \sin(q_1 + q_2) + l_2 \sin(q_1)\right) & -l_3 \sin(q_1 + q_2) & 0 \\ l_3 \cos(q_1 + q_2) + l_2 \cos(q_1) & l_3 \cos(q_1 + q_2) & 0 \end{pmatrix}$$

$$|3| = \begin{pmatrix} -(l_3 \sin(q_1 + q_2) + l_2 \sin(q_1)) & -(3 \sin(q_1 + q_2) & 0 \\ l_3 \cos(q_1 + q_2) + l_2 \cos(q_1) & l_3 \cos(q_1 + q_2) & 0 \end{pmatrix} = l_2 \left(-\sin(q_1) \cos(q_1 + q_2) + \cos(q_1) \sin(q_1 + q_2) \right) = 0 \Rightarrow 0$$

$$|3| = \begin{pmatrix} -(l_3 \sin(q_1 + q_2) + l_2 \sin(q_1)) & -(3 \sin(q_1 + q_2) & 0 \\ l_3 \cos(q_1 + q_2) + l_2 \cos(q_1) & -(3 \sin(q_1 + q_2) & 0 \\ 0 & 0 & 0 \end{pmatrix} = l_2 \left(-\sin(q_1) \cos(q_1 + q_2) + \cos(q_1) \sin(q_1 + q_2) + \cos(q_1 + q_2) \right) = 0 \Rightarrow 0$$

$$|3| = \begin{pmatrix} -(l_3 \sin(q_1 + q_2) + l_2 \sin(q_1)) & -(3 \sin(q_1 + q_2) & 0 \\ 0 & 0 & 0 \end{pmatrix} = l_2 \left(-\sin(q_1) \cos(q_1 + q_2) + \cos(q_1$$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$c_{A_{1}} = \begin{pmatrix} c_{00}(q_{1}) & -son(q_{1}) & 0 & 0 \\ sen(q_{1}) & cos(q_{1}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cos(-q_{0}^{*}) & -sen(-q_{0}^{*}) & 0 \\ 0 & sen(-q_{0}^{*}) & cos(-q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cos(q_{1}) & 0 & -sen(q_{1}) & 0 \\ sen(q_{1}) & 0 & cos(q_{1}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $2A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$
$c_{A_{1}} = \begin{pmatrix} c_{cc}(q_{1}) & -son(q_{1}) & 0 & 0 \\ sen(q_{1}) & cos(q_{1}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & cos(q_{1}) & 0 & -son(q_{1}) & 0 \\ 0 & sen(-q_{0}^{*}) & cos(-q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cos(q_{1}) & 0 & -son(q_{1}) & 0 \\ sen(q_{1}) & 0 & cos(q_{1}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $1A_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $2A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$
$c_{A_{1}} = \begin{pmatrix} c_{cc}(q_{1}) & -son(q_{1}) & 0 & 0 \\ sen(q_{1}) & cos(q_{1}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & cos(q_{1}) & 0 & -son(q_{1}) & 0 \\ 0 & sen(-q_{0}^{*}) & cos(-q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cos(q_{1}) & 0 & -son(q_{1}) & 0 \\ sen(q_{1}) & 0 & cos(q_{1}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $1A_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $2A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$
$cA_{1} = \begin{pmatrix} cas(q_{1}) & -son(q_{1}) & 0 & 0 \\ sen(q_{1}) & cus(q_{1}) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cas(q_{1}) & 0 & -scn(q_{1}) & 0 \\ 0 & cus(q_{0}) & -scn(q_{0}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cas(q_{1}) & 0 & -scn(q_{1}) & 0 \\ sen(q_{1}) & 0 & cas(q_{1}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
$cA_{1} = \begin{pmatrix} cas(q_{1}) & -son(q_{1}) & 0 & 0 \\ sen(q_{1}) & cus(q_{1}) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cas(q_{1}) & 0 & -scn(q_{1}) & 0 \\ 0 & cus(q_{0}) & -scn(q_{0}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cas(q_{1}) & 0 & -scn(q_{1}) & 0 \\ sen(q_{1}) & 0 & cas(q_{1}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
${}^{1}A_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \omega_{0}(q_{0}^{*}) & -\omega_{0}(q_{0}^{*}) & 0 \\ 0 & s_{N}(q_{0}^{*}) & \omega_{0}(q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & q_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ ${}^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$
${}^{1}A_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \omega_{0}(q_{0}^{*}) & -\omega_{0}(q_{0}^{*}) & 0 \\ 0 & s_{N}(q_{0}^{*}) & \omega_{0}(q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & q_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ ${}^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$
${}^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 93 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
${}^{2}A_{3} = \begin{pmatrix} {}^{1} & {}^{\circ} & {}^{\circ} & {}^{\circ} & {}^{\circ} \\ {}^{\circ} & {}^{1} & {}^{\circ} & {}^{\circ} & {}^{\circ} \\ {}^{\circ} & {}^{\circ} & {}^{1} & {}^{\circ} {}^{3} \\ {}^{\circ} & {}^{\circ} & {}^{\circ} & {}^{1} \end{pmatrix}$
${}^{2}A_{3} = \begin{pmatrix} {}^{1} & {}^{\circ} & {}^{\circ} & {}^{\circ} & {}^{\circ} \\ {}^{\circ} & {}^{1} & {}^{\circ} & {}^{\circ} & {}^{\circ} \\ {}^{\circ} & {}^{\circ} & {}^{1} & {}^{\circ} {}^{3} \\ {}^{\circ} & {}^{\circ} & {}^{\circ} & {}^{1} \end{pmatrix}$
$\begin{cases} \cos(q_1) - \sin(q_1) & 0 - \sin(q_1) q_2 \\ \cos(q_1) & 0 \end{cases} = - \sin(q_1) q_2$
$\tau = c_A \cdot (a \cdot 2a) = c_A(a) =$
1 - M 12 13 - 205 (41)
(0 0 0 1 / 2 = 93
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$J = \left \frac{d_1}{d_1} - \frac{\partial_1}{\partial x} - \frac{\partial_1}{\partial x} \right = \left -\sin(q_1) q_2 - \cos(q_1) \right 0$
$J = \begin{pmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\ \frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3} \end{pmatrix} = \begin{pmatrix} -\cos(q_1)q_2 & -\sin(q_1) & 0 \\ -\sin(q_1)q_2 & \cos(q_1) & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$ 3 = \begin{pmatrix} -\cos(q_1)q_2 & -\sin(q_1) & 0 \\ -\sin(q_1)q_2 & \cos(q_1) & 0 \end{pmatrix} = -\cos^2(q_1)q_2 - \left(\sin^2(q_1)q_2\right) = -q_2\left(\cos^2(q_1) + \sin^2(q_1)\right) = -q_2 = 0$
i 6: d: 0: d:
1 91 0 0 0 0 1 1 22 93
$\frac{1}{2} -90^{\circ} -90^$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$CA_{1} = \begin{pmatrix} cus(q_{1}) & -sen(q_{1}) & O & O \\ sen(q_{1}) & cus(q_{1}) & O & O \\ O & O & I & O \\ O & O & O & I \end{pmatrix}$
$A_1 = \begin{cases} sc_1(q_1) & co_2(q_1) & 0 \\ 0 & 0 & 1 \end{cases}$
10001
(cos(-90°) -scr(-90°) 0 0/ /1 0 0 0/ /1 0 0 0/ /0 0 1 0/
$ A_2 = \begin{pmatrix} \cos(-90^\circ) & -\sin(-90^\circ) & 0 & 0 \\ \sin(-90^\circ) & \cos(-90^\circ) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $
(0001/10001/10001/
10000
$^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 93 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
$T = {}^{\circ}A_{1} {}^{i}A_{2} {}^{2}A_{3} = \begin{pmatrix} so(q_{1}) & 0 & cos(q_{1}) & q_{3} \\ -cos(q_{1}) & 0 & son(q_{1}) & q_{3} \\ 0 & -1 & 0 & q_{2} \end{pmatrix} \begin{cases} y = son(q_{1}) & q_{3} \\ y = son(q_{1}) & q_{3} \\ y = q_{2} \end{cases}$
0 0 0 92 / 2 = 92
1 a a a a
$J = \begin{pmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \end{pmatrix} = \begin{pmatrix} -\sin(q_1)q_3 & 0 & \cos(q_1) \\ \cos(q_1)q_3 & 0 & \sin(q_1) \\ \cos(q_1)q_3 & 0 & \sin(q_1) \end{pmatrix}$
$J = \left \begin{array}{ccc} \delta_1 & \delta_1 & \delta_2 \end{array} \right = \left \cos(q_1) q_3 & 0 & \sin(q_1) \right $
891 692 693
\(\frac{\da_1}{\daga_2} \frac{\daga_2}{\daga_3} \)
/-sor(9,193 0 cos(9,)) = (0,10,0,10) = (os(9,)) = cos(9,)) = cos(9,)93 + ser2(9,)93 =
$ 3 = \begin{pmatrix} -\sin(q_1)q_3 & 0 & \cos(q_1) \\ \cos(q_1)q_3 & 0 & \sin(q_1) \\ 0 & \sin(q_1)q_3 \\ \end{pmatrix} = \cos(q_1)q_3 \cos(q_1) - (\sin(q_1)q_3 \sin(q_1)) = \cos^2(q_1)q_3 + \sin^2(q_1)q_3 = \cos^2(q_1)q_3 + \sin^2(q_1)q_3 + \cos^2(q_1)q_3 + \cos^2(q_1)q_1 + \cos^2(q_1$

= 93 (cos 2 (q,) + sex 2 (q,)) = 93 = 0