

High Throughput, Low latency and Reliable Remote File Access

Hiroki Ohtsuji and Osamu Tatebe
University of Tsukuba, Japan
/ JST CREST

Motivation and Background

- Data-intensive computing is a one of the most important issue in many areas
- Storage systems for Exa-byte (10¹⁸)

Need a fast and reliable remote file access system

Motivation and Background(cont'd)

- Data sharing
 - Distributed file system
 - Clients access the data via Network
- Bottlenecks
 - Wide-area network
 - Long latency
 - Storage cluster
 - Overhead of network
- Fault tolerance
 - Suggestion: Congestion avoidance

Remote file access with RDMA

• Latency of Ethernet is at least 50 microseconds

- Overhead of software
- Protocol
- Memory copy

- Flash memory based storage devices
 - 25μs latency (e.g. Fusion-io ioDrive), (HDD=5ms)
 - Network becomes a bottleneck of the system

Usage of Infiniband

- IP over IB
 - Use the IP Protocol stack of operating systems
 - Pros
 - Can use as a network adapter
 - Cons
 - Inefficient
- SDP (Socket Direct Protocol)
 - Pros
 - Easy to use
 - Specify the LD_PRELOAD
 - Cons
 - Performance
- RDMA (Verbs API)
 - Pros
 - Low-latency
 - Cons
 - No compatibility with socket APIs

Structure of OFED

OFED: Drive and libraries for Infiniband

Remote file access with RDMA

Architecture

Infiniband FDR (54.3Gbps)
Storage: Fusion-io ioDrive

Low overhead remote file access with Verbs API

Preliminary Evaluation: Throughput

 A client accesses the file on the file server via Infiniband w/ Verbs API

Preliminary Evaluation of IOPS

Stride access from 2KB-64KB (seek 1MB)

Congestion avoidance by using redundant data

- Concentration of access
 - There are hotspots (files) on the storage node
- Redundant data
 - Fault tolerance
 - Can be use to avoid congestion

Redundant data

Basic structure

- RAID: connected with SCSI / SATA
- →connected with network

Performance deterioration

Performance deterioration(cont'd)

Congestion avoidance

Performance evaluation

Compare the cases

Related work

- Stephen C. Simms et al, Wide Area Filesystem
 Performance using Lustre on the TeraGrid, 2007.
- Wu, J., Wyckoff, P. and Panda, D.: PVFS over InfiniBand: Design and Performance Evaluation
- Erasure Coding in Windows Azure Storage, USENIX ATC '12
 - Shorten the latency by using redundant data
- HDFS RAID

Conclusion and Future work

- Remote file access with Infiniband RDMA
- Congestion avoidance
- Future work
 - How to detect the congestion
 - Writing of data(in progress)
 - w/o performance degradation

