Problem 1.

(i) Let $x, y \in Tor(M)$ and $r \in R$. We need to show that $rx + y \in Tor(M)$ in order to show that Tor(M) is a submodule of M. Since both $x, y \in Tor(M)$, then there exists nonzero $r_x, r_y \in R$ such that $r_x = 0$ and $r_y = 0$. Now we show that $r_x r_y (rx + y) = 0$:

$$r_x r_y (rx + y) = r_x r_y rx + r_x r_y y$$

$$= r_x r_y rx + r_x (r_y y)$$

$$= r_x r_y rx$$

$$= r_y r(r_x x) = 0$$

And since both r_x and r_y are nonzero therefore $r_x r_y$ is nonzero as well. This proves that $rx + y \in Tor(M)$ and thus Tor(M) is a submodule of M.

(ii) Consider \mathbb{Z}_6 as a \mathbb{Z}_6 module. By definition we have:

$$Tor(\mathbb{Z}_6) = \{2, 3, 4\}$$

Which doesn't even form a group, let alone a submodule of M.

(iii) Let $m \neq 0 \in M$, where M is a R-module. And let $r_1r_2 = 0$ where $r_1, r_2 \in R$ and $r_1, r_2 \neq 0$. If $r_2m = 0$ then we are done since $m \in Tor(M)$. Otherwise consider $(r_1r_2)m = r_1(r_2m) = 0$ Since $r_2m \neq 0$ then $r_2m \in Tor(M)$. This completes the proof.

Problem 2.

Let $x, y \in \bigcup_{k=1}^{\infty} N_k$ and $r \in R$. Therefore there exists $i, j \in \mathbb{N}$ such that $x \in N_i$ and $y \in N_j$. WLOG we can assume $i \leq j$. Since $N_i \subseteq N_j$ therefore we have $x, y \in N_j$. Since N_i is a submodule of M then we have:

$$rx + y \in N_j \subseteq \bigcup_{k=1}^{\infty} N_k$$

 $\implies rx + y \in \bigcup_{k=1}^{\infty} N_k$

Which shows that it is a submodule of M.

Problem 3.

Let M be an R-module, where scalar product is non-trivial. Now consider the $M \times M$ as a R-module. With componentwise addition and multiplication.

$$M_1 = \{(m,0)|m \in M\}$$

 $M_2 = \{(0,m)|m \in M\}$

 M_1 and M_2 are both sub-modules of $M \times M$ since:

$$\forall x, y \in M_1, \forall r \in R : rx + y = r(m_x, 0) + (m_y, 0)$$
$$= (rm_x, 0) + (m_y, 0)$$
$$= (rm_x + m_y, 0) \in M_1$$

Last lines is a direct result of M being a R-module. Now consider $M_1 \cup M_2$. And $x \neq 0 \in M_1$, $y \neq 0 \in M_2$ and $r \in R$ such that $rx \neq 0$:

$$rx + y = r(m_x, 0) + (0, m_y) = (rm_x, m_y)$$

Since both $rm_x \neq 0$ and $m_y \neq 0$, then $(rm_x, m_y) \neq M_1 \cup M_2$. This shows that $M_1 \cup M_2$ is not a sub-module of $M \times M$.

Problem 4.

Again consider $M = \mathbb{Z}_6$ as a \mathbb{Z}_6 -module. And let I = N = M We have $Tor_I(N) = \{2, 3, 4\}$ and $Ann_I(N) = \{0\}$ Thus $Tor_I(N) \neq Ann_I(N)$.

Problem 5.

(a) Let $r \in Ann_{\mathbb{Z}}(M)$. Then for any $(a,b,c) \in M$ we have r(a,b,c) = (0,0,0). Let $a = 1_{\mathbb{Z}_{24}}, b = 1_{\mathbb{Z}_{15}}, c = 1_{\mathbb{Z}_{50}}$. Therfore we have:

$$r(a, b, c) = (r, r, r) = (0, 0, 0)$$

This shows that:

And since for any $r \in 600\mathbb{Z}$ we have:

$$600(a, b, c) = (600a, 600b, 600c) = (0, 0, 0)$$

Which implies $r \in Ann_{\mathbb{Z}}(M)$, then we have $Ann_{\mathbb{Z}}(M) = 600\mathbb{Z}$.

(b) If $(a, b, c) \in Ann_M(2\mathbb{Z})$ then we have:

$$2 \in 2\mathbb{Z} : 2(a, b, c) = (2a, 2b, 2c) = (0, 0, 0)$$

$$\implies a \in \{0, 12\} \cong \mathbb{Z}_2$$

$$b \in \{0\} \cong \mathbb{Z}_1$$

$$c \in \{0, 25\} \cong \mathbb{Z}_2$$

This shows that $Ann_M(2\mathbb{Z}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. It is easy to see that for any $2i \in 2\mathbb{Z}$ it works.

Problem 6.

Let $\varphi \in Hom_{\mathbb{Z}}(\mathbb{Z}_{30}, \mathbb{Z}_{21})$. Then φ is a group homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{21} . Let r be the generator of \mathbb{Z}_{30} having order 30. Then it must mapped to an element with order s where $s \mid 30$. And since $s \mid 21$ then we can only have s = 1, 3. If s = 3, there are only two elements with order 3 in \mathbb{Z}_{21} , namely 7 and 14. Also since $R = \mathbb{Z}$ then if φ is a homomorphism we have:

$$\varphi(rm) = \varphi(m + \dots + m) = r\varphi(m)$$

Thus φ is also a module homomorphism. Therefore any module homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{21} is uniquely identified with $\varphi(1)$. And we have only 3 such homomorphism:

$$\varphi(1) = 7 \implies \varphi(m) = 7m \pmod{21}$$

$$\varphi(1) = 14 \implies \varphi(m) = 14m \pmod{21}$$

$$\varphi(1) = 0 \implies \varphi(m) = m \pmod{21}$$

Which form a group of order 3, \mathbb{Z}_3 .

Now since any \mathbb{Z} -module homomorphism is uniquely identifined with $\varphi(1)$, and we have:

$$\left. \begin{array}{l} Ord_{\mathbb{Z}_n}(\varphi(1)) \mid n \\ Ord_{\mathbb{Z}_n}(\varphi(1)) \mid Ord_{\mathbb{Z}_m}(1) = m \end{array} \right\} \implies Ord_{\mathbb{Z}_n}(\varphi(1)) \mid (n, m)$$

We only need to show that homomorphisms that map 1 to a members with order r in \mathbb{Z}_n where $r \mid (n,m)$ form the group $\mathbb{Z}_{(m,n)}$. Let $\sigma \in Hom_{\mathbb{Z}}(\mathbb{Z}_m,\mathbb{Z}_n)$, where $\sigma(1) = s$ and Ord(s) = (m,n). Now it is easy to see that $\sigma^r(1) = \sigma^{r-1}(s) = \cdots = s^r$. This shows that $Ord(\sigma) = Ord(s) = (m,n)$. On the otherhand the number of elements in \mathbb{Z}_n such as s where $Ord_{\mathbb{Z}_n}(s) \mid (n,m)$ is exactly (m,n). This proves that σ generates the whole group and thus we have:

$$Hom_{\mathbb{Z}}(\mathbb{Z}_m,\mathbb{Z}_n) \cong \mathbb{Z}_{(m,n)}$$

Problem 7.

First we show that eM and (1-e)M is submodule of M:

$$x, y \in M \implies ex, ey \in eM, r \in R$$

 $r(ex) + ey = rex + ey = erx + ey = e(rx + y) \in eM$

Note that we used re = er and also that since M is module then $rx + y \in M$. Similarly for (1 - e)M we have:

$$r((1-e)x) + (1-e)y = rx - rex + y - ey$$

= $rx + y - (erx - ey)$
= $rx + y - e(rx - y) \in (1-e)M$

It is obvious that since both eM and (1-e)M are R module, so is $eM \oplus (1-e)M$. It remains to show an isomorphism:

$$\varphi: M \to eM \oplus (1-e)M$$

$$m \mapsto (em, (1-e)m)$$

$$\varphi(m+m') = (e(m+m'), (1-e)(m+m'))$$

$$= (em, (1-e)m) + (em', (1-e)m')$$

$$= \varphi(m) + \varphi(m').$$

$$\varphi(rm) = (erm, (1-e)rm)$$

$$= (rem, (r-re)m)$$

$$= (rem, r(1-e)m)$$

$$= r(em, (1-e)m) = r\varphi(m).$$

This shows that φ is a homomorphism. Now to show that it is an isomorphism we have to show that it is both surjective and injective. Suppose $em+(1-e)m' \in eM \oplus (1-e)M$. For any $m, m' \in M$ we know $em+(1-e)m' \in M$. Thus we have:

$$\varphi(em + (1 - e)m') = (e(em + (1 - e)m'), (1 - e)(em + (1 - e)m'))$$
$$= ((e^2m + (e - e^2)m'), (e - e^2)m + (1 - 2e + e^2)m')$$

Sicne $e^2 = e$:

$$= (em, (1-e)m')$$

This gives us that φ is surjective. For injective suppose $m, m' \in M$ where $m \neq m'$:

$$\varphi(m) = \varphi(m')$$

$$\Rightarrow (em, (1 - e)m) = (em', (1 - e)m')$$

$$\Rightarrow em = em', (1 - e)m = (1 - e)m'$$

$$\Rightarrow e(m - m') = 0, (1 - e)(m - m') = 0$$

$$\Rightarrow e(m - m') + (1 - e)(m - m') = 0$$

$$\Rightarrow m - m' = 0 \Rightarrow m = m'$$

Which is a contradiction. This gives us that φ is bijective as well. Therefore φ is an isomorphism and thus we have:

$$M \cong eM \oplus (1 - e)M$$

Problem 8.

(i) Suppose that R/I is free module with basis $E \subseteq R/I$ and I is non-trivial. Let $r+I \in E$. And let $s_1, s_2 \in I$ such that $s_1 \neq s_2$ and $s_1r+I=s_2r+I$. This always exists since I is non-trivial. Since $r+I \in E$ then we must have: $s_1(r+I) \neq s_2(r+I)$. But we have:

$$s_1(r+I) = s_1r + I = s_2r + I = s_2(r+I)$$

Which is a contradiction. Thus R/I is not a free module.

(ii) (\Leftarrow) If I is a principal ideal of R then we have $I = \langle a \rangle$ for some $a \in R$. Since I is an ideal of R then it's also a submodule of R. We show that $\{a\}$ is a basis for I over R. Any element in I is of the form ra for some $r \in R$. We have to show that this is unique. Since $\{a\}$ is linearly independent. Suppose there exists some $r_1 \neq r_2 \in R$ such that $r_1a = r_2a$:

$$r_1 a = r_2 a \implies a r_1 = a r_2 \implies a (r_1 - r_2) = 0$$

And since R is a integral domain then either a = 0 or $r_1 = r_2$. And since a = 0 makes a trivial ideal I then we have $r_1 = r_2$. Therefore I is a free module over R.

 (\Rightarrow) If I is a free module over R with basis E. If E has more than 1 element such a and b, then we have:

$$ba + (-a)b \in R$$

Since R is integral domain then we have: ba - ab = 0. And since $a, b \in E$ then they are linearly independent. Which means that b = -a = 0. Which is a contradiction supposing a and b are different elements in E. This shows that E has exactly 1 element a. And each element in I can be expressed as ra for some $r \in R$. This shows that $I = \langle a \rangle$. And thus I is a principal ideal of R.

Problem 9.

We prove that it is a module homomorphism. Consider φ :

$$\varphi: Hom_R(M_1 \times M_2, N) \to Hom_R(M_1, N) \times Hom_R(M_2, N)$$
$$\sigma(-, -) \mapsto \left(\sigma(-, 0), \sigma(0, -)\right)$$

It is obvious that both $\sigma(-,0)$ and $\sigma(0,-)$ are homomorphism. It remains to show that φ is a homomorphism:

$$\varphi(\sigma + \delta)(a, b) = ((\sigma + \delta)(a, 0), (\sigma + \delta)(0, b))$$

$$= (\sigma(a, 0) + \delta(a, 0), \sigma(0, b) + \delta(0, b))$$

$$= (\sigma(a, 0), \sigma(0, b)) + (\delta(a, 0), \delta(0, b))$$

$$= \varphi(\sigma)(a, b) + \varphi(\delta)(a, b)$$

Also

$$\varphi(r\sigma)(a,b) = (r\sigma(a,0), r\sigma(0,b))$$
$$= r(\sigma(a,0), \sigma(0,b))$$
$$= r\varphi(\sigma)(a,b)$$

Thus φ is homomorphism. To show that it is an isomorphism we show that φ has an inverse.

$$\psi: Hom_R(M_1, N) \times Hom_R(M_2, N) \to Hom_R(M_1 \times M_2, N)$$

 $(\sigma, \delta) \mapsto \pi$

Where $\pi(a,b) = (\sigma(a),\delta(b))$. It is obvious that $\varphi^{-1} = \psi$. First we have to show that π is a homomorphism.

$$\pi((a_1, b_1) + (a_2, b_2)) = \pi(a_1 + a_2, b_1 + b_2)$$

$$= (\sigma(a_1 + a_2), \delta(b_1 + b_2))$$

$$= (\sigma(a_1) + \sigma(a_2), \delta(b_1) + \delta(b_2))$$

$$= (\sigma(a_1), \delta(b_1)) + (\sigma(a_2), \delta(b_2))$$

$$= \pi(a_1, b_1) + \pi(a_2, b_2).$$

$$\pi(r(a_1, b_1)) = \pi((ra_1, rb_1))$$

$$= (\sigma(ra_1), \delta(rb_1))$$

$$= (r\sigma(a_1), r\delta(b_1))$$

$$= r(\sigma(a_1), \delta(b_1))$$

$$= r\pi(a_1, b_1).$$

This shows that π is a homomorphism. Now to show that ψ is homomorphism.

$$\psi((\sigma_1, \delta_1) + (\sigma_2, \delta_2))(a, b) = \psi(\sigma_1 + \sigma_2, \delta_1 + \delta_2)(a, b)
= ((\sigma_1 + \sigma_2)(a), (\delta_1 + \delta_2)(b))
= (\sigma_1(a) + \sigma_2(a), \delta_1(b) + \delta_2(b))
= (\sigma_1(a), \delta_1(b)) + (\sigma_2(a), \delta_2(b))
= \psi(\sigma_1, \delta_1)(a, b) + \psi(\sigma_2, \delta_2)(a, b)$$

Also:

$$\psi(r(\sigma, \delta))(a, b) = \psi(r\sigma, r\delta)(a, b)$$

$$= (r\sigma(a), r\delta(b))$$

$$= r(\sigma(a), \delta(b))$$

$$= r\psi(\sigma, \delta)(a, b)$$

This shows that ψ is a homomorphism. And since it is the inverse of φ , therefore φ is an module isomorphism. Thus we have:

$$Hom_R(M_1 \times M_2, N) \cong_R Hom_R(M_1, N) \times Hom_R(M_2, N)$$

The second part is really similar and quite long.

Problem 10.

(i) Let $\psi_1(a_1, a_2, \dots) = (a_1, 0, a_2, 0, \dots)$, and $\psi_2(a_1, a_2, \dots) = (0, a_1, 0, a_2, \dots)$. Now we have:

$$\varphi_1 \psi_1(a_1, a_2, a_3, \dots) = \varphi_1(a_1, 0, a_2, 0, \dots) = (a_1, a_2, a_3, \dots)$$

 $\implies \varphi_1 \circ \psi_1 = 1$

Similarly $\varphi_2\psi_2=1$. And also:

$$\varphi_2 \psi_1(a_1, a_2, \dots) = \varphi_2(a_1, 0, a_2, \dots) = (0, 0, 0, \dots)$$

 $\implies \varphi_2 \circ \psi_1 = 0$

And similarly we $\varphi_1\psi_2=0$. And also:

$$(\psi_1 \varphi_1 + \psi_2 \varphi_2)(a_0, a_1, a_2, \dots) = \psi_1(a_0, a_2, a_4, \dots) + \psi_2(a_1, a_3, a_5, \dots)$$
$$= (a_0, 0, a_2, 0, a_4, \dots) + (0, a_1, 0, a_3, 0, \dots)$$
$$= (a_0, a_1, a_2, \dots)$$

Thus we have $\psi_1\varphi_1 + \psi_2\varphi_2 = 1$. With this we can generate any element in R. Consider $\sigma \in R$:

$$\sigma = \sigma(\psi_1 \varphi_1 + \psi_2 \varphi_2) = (\sigma \psi_1) \varphi_1 + (\sigma \psi_2) \varphi_2$$

To show that this representation is unique suppose that $\sigma_1\varphi_1 + \sigma_2\varphi_2 = \delta_1\varphi_1 + \delta_2\varphi_2$, then we have:

$$\sigma_1 \varphi_1 \psi_1 + \sigma_2 \varphi_2 \psi_1 = \delta_1 \varphi_1 \psi_1 + \delta_2 \varphi_2 \psi_1$$

$$\implies \sigma_1(1)\sigma_2(0) = \delta_1(1) = \delta_2(0) \implies \sigma_1 = \delta_1$$

Similarly with ψ_2 we can conclude that $\sigma_2 = \delta_2$. Which proves the uniqueness of representation. And since for $0\varphi_1 + 0\varphi_2 = 0$, the uniqueness of representation shows that if for some $\sigma_1, \sigma_2 \in R$ we have $\sigma_1\varphi_1 + \sigma_2\varphi_2 = 0$ then $\sigma_1 = \sigma_2 = 0$. Which proves that φ_1 and φ_2 are linearly independent. This proves that $\{\varphi_1, \varphi_2\}$ is a basis for R.

(ii) Let us define a homomorphism from $R \times R$ to R:

$$\phi: R \times R \to R$$
$$(f, g) \mapsto f\varphi_1 + g\varphi_2$$

Since φ_1, φ_2 form a basis, thus ϕ is both injective and surjective. Checking the homomorphism is easy:

$$\phi((f_1, g_1) + (f_2, g_2)) = \phi(f_1 + f_2, g_1 + g_2)$$

$$= (f_1 + f_2)\varphi_1 + (g_1 + g_2)\varphi_2$$

$$= f_1\varphi_1 + g_1\varphi_2 + f_2\varphi_1 + g_2\varphi_2$$

$$= \phi(f_1, g_1) + \phi(f_2, g_2)$$

Therefore ϕ is a homomorphism. This proves that $R \times R \cong R$. And by induction we can see that $R^n \cong R$.

Problem 11.

Problem 12.

Problem 13.

- (i) (\Rightarrow) Suppose that M is irreducible. We know by definition $M \neq 0$. Taking some nonzero $m \in M$, we see that Rm is a nonzero submodule of M, and so Rm = M. This proves that M is generated by any nonzero element.
 - (\Leftarrow) Suppose M is a cyclic R-module with generator $a \neq 0$. Then if $I \subseteq R$ is an ideal of R, then $Ia \subseteq Ra = M$ is a proper submodule of M. I think for this statement to hold, we need to have that M is cyclic if for any element $m \in M$, we have M = Rm. Then see that for some submodule $N \subseteq M$, take $b \in N$, then $M = Rb \subseteq N$. Which shows that N = M, and thus M is irreducible.

For all irreducible \mathbb{Z} -modules we have all $\mathbb{Z}/p\mathbb{Z}$ as \mathbb{Z} -modules. Which is easy to see that they are irreducible since they are all cylic and don't have any subgroup.

- (ii) Take R = Z[x, y]. It is easy to see that R is a cyclic R-submodule, since its generated with 1. And we know that $\langle x, y \rangle$ is an ideal of R which can't be generated with only 1 element. Thus is not cyclic.
- (iii) Let N be a submodule of M, a cyclic R-module generated with $a \neq 0$. Then $N = (r_i a)_{i \in J}$ for some index set J. Now suppose $i, j \in J$ and $r \in R$, since N is a submodule, then we have that $r_i a + r r_j a = (r_i + r r_j) a \in N$. Therefore $r_i + r r_j = r_k$ for some $k \in J$. Which is describing and ideal of R. Now if we have some $r_i a = 0$ and $r_j a = 0$, then it is easy to see that for any $r \in R$, $r r_i a + r_j a = 0$. which implies that $(r r_i + r_j) a = 0$. Therefore all coefficients of a such that their product is a0, form another ideal. This proves that we can write a1 for some a2 for some a3.

Problem 14.

- (i) Let $r_1, r_2 \in (M_1 : M_2)$ and $r \in R$ and $m \in M_2$. Then an element of $(rr_1 r_2)M_2$ is of the form $(rr_1 r_2)m$. Since $r_1m \in M_1$ and $r_2m \in M_1$. And also since $r_1m \in M_1$, then $rr_1m \in M_1$. And therefore $(rr_1 r_2)m \in M_1$. This shows that $rr_1 r_2 \in (M_1 : M_2)$, Which shows that it is an ideal of R.
 - Since for any $r \in (M_1 : M_2)$ and any $m_1 \in M_1$ and $m_2 \in M_2$ we have that $r(m_1 + m_2) + M_1 = M_1$, then we have $(M_1 : M_2) \subseteq Ann(\frac{M_1 + M_2}{M_1})$. Now take $r \in Ann(\frac{M_1 + M_2}{M_1})$. Then we have that for any $m_2 \in M$ and $0 \in M_1$, we have that $r(0 + m_2) + M_1 = M_1$, which implies that $rm_2 \in M_1$. Which shows that $r \in (M_1 : M_2)$. This shows that $(M_1 : M_2) = Ann(\frac{M_1 + M_2}{M_1})$.
- (ii) To show that $I \subseteq (I : J)$, let $r \in I$, and $j \in J$, we have:

$$rj=jr\in I$$

This proves that $I \subseteq (I:j)$.

As for the isomorphism we describe two homomorphisms that are inverse of each other:

$$\phi: \frac{\left(I:j\right)}{I} \to Hom_R(\frac{R}{J}, \frac{R}{I})$$
$$k+I \mapsto \varphi_k$$

Where

$$\varphi_k: \frac{R}{J} \to \frac{R}{I}$$
$$r+J \mapsto kr+I$$

And also

$$\psi: Hom_R(\frac{R}{J}, \frac{R}{I}) \to \frac{\left(I:J\right)}{I}$$

$$\varphi \mapsto \varphi(1)$$

It is easy to see that $\phi \circ \psi = 1 = \psi \circ \phi$. Thus this is an isomorphism.

Problem 15.

(i) Suppose \mathbb{Q} is finitelely generated, by $\{\frac{a_1}{b_1}, \ldots, \frac{a_m}{b_m}\}$. Then for any element in $q \in \mathbb{Q}$ there exists $r_1, r_2, \ldots, r_m \in \mathbb{Z}$ such that $r_1 \frac{a_1}{b_1} + \ldots r_m \frac{a_m}{b_m} = q$. It is easy to see that if q is of the form $\frac{r}{s}$ where s is some number such that $(s, b_i) = 1$ for any $1 \le i \le m$, then it is not possible. Thus \mathbb{Q} is not finitelely generated.

If \mathbb{Q} is a free \mathbb{Z} -module then it has a basis (inifite) $\{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots\}$. But it is easy to see that $a_2b_1\frac{a_1}{b_1}+(-a_1)b_2\frac{a_2}{b_2}=0$, and since $a_2b_1\neq 0$ and $-a_1b_2\neq 0$ then it is not a basis, and thus \mathbb{Q} is not free.

(ii) Suppose rm = 0. And let $\{a_1, a_2, \dots\}$ be a basis for M (It can be finite as well). Thus there exists $r_1, r_2, \dots, r_n \in R$, where $m = r_1 a_1 + \dots + r_n a_n$. Thus we have:

$$rm = rr_1 a_1 + \dots rr_n a_n = 0$$

Since a_1, \ldots, a_n are in basis, then all $rr_i = 0$ for all i. If r = 0 then we are done. Otherwise for all i, $rr_i = 0$, and since R doesn't have any zero-divisors, then $r_i = 0$ for all i. This means that m = 0.

Problem 16.

Problem 17.

Problem 18.

(i) Let $\phi: I \cap J \to I \oplus J$, where $\phi(i) = (i, -i)$. And $\psi: I \oplus J \to I + J$, where $\psi(i, j) = i + j$. Then it is easy to see that ϕ is 1-1 and ψ is onto. And also $Im(\phi) = ker(\psi)$ since we have:

$$(i,j) \in Ker(\psi) \implies \psi(i,j) = i+j = 0 \implies j = -i \implies (i,j) = (i,-i) = \phi(i)$$

$$i \in Im(\phi) \implies \phi(i) = (i,-i) \implies \psi(i,-i) = 0 \implies (i,-i) \in Ker(\psi)$$

Thus the sequence is exact.

(ii)