-1.1 EXERCISES

-1.1.1 Problems

- -1.1. Write the following sets explicitly:
 - (i) $\{x \in \mathbb{N} \mid 1 < x \le 7\}$
 - (ii) $\{x \in \mathbb{Z} \mid x < 5\}$
 - (iii) $\left\{ x \in \mathbb{R} \mid x^2 = -1 \right\}$
 - (iv) $\{x \in \mathbb{N} \land x \in \mathbb{Q}\}$
 - (v) $\{x \in \mathbb{R} \mid x^2 3x 4 = 0\}$
 - (vi) $\{x \in \mathbb{R} \mid x < 5 \land x \ge 2\}$
- -1.2. Determine the relation between the sets:
 - (i) $A = \{1, 2, 3\}, B = \{1, 2\}$
 - (ii) $A = \emptyset$, $B = \{2, -5, \pi\}$
 - (iii) $A = \mathbb{Z}$, $B = \{\pm x \mid x \in \mathbb{N} \cup \{0\}\}\$
 - (iv) $A = \{\pi, e, \sqrt{2}\}, B = \mathbb{Q}$
- -1.3. Write all elements in $S^2 \times W$, where $S = \{\alpha, \beta, \gamma\}$ and $W = \{x, y, z\}$. Find a condition that guarantees $S^2 \times W = W \times S^2$.
- -1.4. How many different injective functions $f: \{1,2\} \rightarrow \{1,2\}$ exist? How many injective functions $f: \{1,2,3\} \rightarrow \{1,2,3\}$ exist? How many inject functions $f: \{1,2,...,n\} \rightarrow \{1,2,...,n\}$ exist for a given $n \in \mathbb{N}$?
- -1.5. For each of the real functions below, find a set on which it is surjective (use a graphing calculator if you are not familiar with the shape of a function):

$$x^{2}$$
, $x^{3} - 5$, $e^{-x^{2}/2}$, $\sin(x)$, $\sin(x) + \cos(x)$, xe^{x} .

- -1.6. Given two sets A, B such that |B| = |A| 1, can a bijective function $f: A \to B$ exist? Explain your answer.
- -1.7. MORE EXERCISES TO BE WRITTEN...

-1.1.2 Solutions

- -1.1. For each of the sets we first write how to read the notation in words, followed by its explicit form:
 - (i) Any **natural number** such that it is bigger than 1 and smaller or equal to 7. These are of course the numbers

$$\{2,3,4,5,6,7\}.$$

(ii) Any **integer** such that it is smaller than 5. These are the numbers

$${4,3,2,1,0,-1,-2,-3,\ldots}.$$

- (iii) Any **real number** x such that $x^2 = -1$. Since for any $x \in \mathbb{R}$, $x^2 \ge 0$ there is no such real number x whose square equals -1. Therefore this definition describes the empty set, i.e. \emptyset .
- (iv) Any **natural number** that is also a rational number. Since any natural number is also a rational number (e.g. $4 = \frac{4}{1} = \frac{8}{2}$, etc.) the definition actually simply describes the set of natural numbers, \mathbb{N} . This fact can also be written as

$$\mathbb{N} \cap \mathbb{Q} = \mathbb{N}$$
.

(v) Any **real number** such that it solves the equation $x^2 - 3x - 4 = 0$. The solutions can be found using the quadratic formula:

$$\frac{3 \pm \sqrt{3^2 + 4 \cdot 4}}{2} = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} = 4, -1.$$

Therefore the set described by the definition is simply

$$\{4, -1\}.$$

(vi) Any **real number** that is smaller than 5 **and** is bigger than or equal to 2. This definition describes the half-open interval

- -1.2. Relations between sets:
 - (i) All the elements in the set B are also in the set A (1, 2), but there's an element in A which is not in B (namely 3). Therefore, B is a subset of A:

$$B \subset A$$
.

(ii) The empty set is a subset of any set (and a proper subset of any set except itself), therefore

$$A \subset B$$
.

(iii) The set B is defined as all the natural numbers, their negatives and zero. This is exactly the definition of the integers \mathbb{Z} , which set A in this case. Therefore

$$A = B$$
.

(iv) All of the elements in *A* are irrational numbers. The set *B* is the set of **rational numbers**, and therefore the sets are disjoined:

$$A \cap B = \emptyset$$
.

-1.3. S^2 is a Cartesian product of S with itself:

$$S^2 = \{(\alpha,\alpha), (\alpha,\beta), (\alpha,\gamma), (\beta,\alpha), (\beta,\beta), (\beta,\gamma), (\gamma,\alpha), (\gamma,\beta), (\gamma,\gamma)\}.$$

Therefore, to form the Cartesian product $S^2 \times W$ we simply take each of the elements is S^2 and add to it an element from W:

$$S^{2} \times W = \{(\alpha, \alpha, x), (\alpha, \beta, x), (\alpha, \gamma, x), (\beta, \alpha, x), (\beta, \beta, x), (\beta, \gamma, x), (\gamma, \alpha, x), (\gamma, \beta, x), (\gamma, \gamma, x) \\ (\alpha, \alpha, y), (\alpha, \beta, y), (\alpha, \gamma, y), (\beta, \alpha, y), (\beta, \beta, y), (\beta, \gamma, y), (\gamma, \alpha, y), (\gamma, \beta, y), (\gamma, \gamma, y) \\ (\alpha, \alpha, z), (\alpha, \beta, z), (\alpha, \gamma, z), (\beta, \alpha, z), (\beta, \beta, z), (\beta, \gamma, z), (\gamma, \alpha, z), (\gamma, \beta, z), (\gamma, \gamma, z)\}.$$

Note that the number of elements in S is 3, and so the number of elements in S^2 is $3 \times 3 = 9$. The number of elements in W is also 3, and so the number of elements in $S^2 \times W$ is $9 \times 3 = 27$.

The Cartesian product $W \times S^2$ has the same structure as $S^2 \times W$, except that the elements from W (x,y,z) are now on the left (remember that in tuples the order matters):

$$S^{2} \times W = \{(x,\alpha,\alpha),(x,\alpha,\beta),(x,\alpha,\gamma),(x,\beta,\alpha),(x,\beta,\beta),(x,\beta,\gamma),(x,\gamma,\alpha),(x,\gamma,\beta),(x,\gamma,\gamma)\}$$

$$(y,\alpha,\alpha),(y,\alpha,\beta),(y,\alpha,\gamma),(y,\beta,\alpha),(y,\beta,\beta),(y,\beta,\gamma),(y,\gamma,\alpha),(y,\gamma,\beta),(y,\gamma,\gamma)$$

$$(z,\alpha,\alpha),(z,\alpha,\beta),(z,\alpha,\gamma),(z,\beta,\alpha),(z,\beta,\beta),(z,\beta,\gamma),(z,\gamma,\alpha),(z,\gamma,\beta),(z,\gamma,\gamma)\}.$$