	1		Claims
	2		
	3	1.	Piezoelectric actuator having
	4	-	a piezoelectric element (2; 21) for actuating a mechanical component with
	5		a pulling or pushing force, and a compensating element (3; 22), wherein
	6		the piezoelectric element (2) and the compensating element (3; 22)
	7		basically have the same temperature expansion coefficients, and wherein
	8	-	the compensating element (3; 22) is mechanically coupled to the
	9	6 .7	piezoelectric element (2; 21) in such a fashion that the temperature-
	10	Chy.	induced expansions of the piezoelectric element (2; 21) and the
	11	7	compensating element (3; 22) cancel each other out in the effective
	12	V	direction in such a fashion that the actuating element remains in its
	13		position.
	14		
	15	2.	Piezoelectric actuator according to claim 1, characterized in that
Ð	16	-	a heat transfer compound (12) is located between the piezoelectric
	17		element (2; 21) and the compensating element (3; 22).
	18		
	19	3.	Piezoelectric actuator according to claim 1 or 2, characterized in that
	20	-	the piezoelectric element (2; 21) is supported on one end on a fixed
	21		support plate (9), which fixed support plate (9) bears against the housing
	22		(7) for the piezoelectric actuator (1; 20) via a spring (10) and which is
	23		connected at the other end to a pretensioning spring (6; 23) via a pressing
	24		plate (11; 24), which pretensioning spring (6; 23), in turn, is held against
	25	ı	the fixed support plate (9) with its other end, and that
	26	-	the compensating element (3; 22) basically lies parallel to the piezoelectric
	27		element (2; 21) and is also held against the fixed support plate (9) with
	28	}	one end and solidly abuts the housing (7) with the other end.
	29)	
	30	4.	Piezoelectric actuator according to claim 3, characterized in that