Euler's Method

We know
$$y' = \frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} \approx \frac{y_1 - y_0}{x_1 - x_0}$$

We don't need to know y in order to find its values. If we are given y' = f(x,y) and an initial condition y(X₀)= yo then we can approximate y.

$$y' \approx \frac{y_1 - y_0}{x_1 - x_0} \approx \frac{y_1 - y_0}{h}$$
 where $h = x_1 - x_0$

$$\Rightarrow$$
 $y_1 \approx y_0 + h \cdot y'$

we are given y' = f(x,y)

$$\Rightarrow \boxed{y_1 \approx y_0 + h \cdot f(x_0, y_0)} \qquad \text{From} \quad x_0 \to x_1 \quad (1 \text{ step})$$

ex Display grafically & tabularly

$\int \frac{dy}{dx} = \int y$	g (1)=1	h=1
$y = e^{x}$		

X		y	dy
th(C)	y ₀ = 1	_1
? 1		y = 1 + 1(1)= 2	a
th(, 2		y2 ≈ 2 + 1(2) = 4	4
th (, 3		y3≈4+1(4)= 8	8
		,	

* Smaller step size More Accurate

ex dy = 3x-2y g(0) = k h=1. Find K such that $g(2) \approx 4.5$

$$\begin{array}{c|cccc}
X & y & Jx \\
\hline
0 & K & -2K \\
\hline
1 & K+1\cdot(-2K)=-K & 3+2K \\
2 & -K+1\cdot(3+2K)=3+K \\
3 & \vdots & \vdots & \vdots \\
1 & & & & & & & & \\
3 & & & & & & & & \\
\vdots & & & & & & & & \\
1 & & & & & & & & \\
3 & & & & & & & & \\
\vdots & & & & & & & & \\
1 & & & & & & & & \\
1 & & & & & & & & \\
2 & & & & & & & & \\
3 & & & & & & & & \\
\vdots & & & & & & & \\
1 & & & & & & & & \\
1 & & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & &$$

Protocol:	X	4	$\frac{1}{2}$ = $f(x)$
	X,	Ÿ,	f (x, , y,)
X,+ h	\ = X ₂	y,+y'(x,)·h=y2	$f(x_2, y_2)$
X2+h	= X ₃	y2+y(x2)·h= y3	$f(x^3, \mathbf{d}^3)$
	• •		\ \ \ \ \
X _{jet} th	ν χ _i	y _{i-1} + y(X _{i-1})·h= y _i	$f(x_i, y_i)$

*You will be given an initial condition ex. y(0)=1 and a step size ex. h=1

ex) y'= 1+y, y(0)=1, ax=0.1 Find y, y2, y3?

X	y	yl	
0	l = y0	2	
0.1	+ 2·to = 1.2	1+1.2=	2.2 7 4, = 1,2
0.2	1.2+22.10=1.42	+1H2=2	7 42 = 1.42
0.3	1.42+242·10 = 1.662		_7 y3 = 1.662

To find y: multiply the saw initial step size ax yyi $\frac{ex}{dx} = x + y$ let y = f(x) be the solution to this diff. Eq. with f(1) = 2. Approximate f(3) with 2 steps of equal Size.

X	9	dx dx		
1	2	3		3-1= 1
1	2+(2)(3)= 5	7		2
3		15	\nearrow	f(3) = 12

If we only know:

• the slope of y at any given time (%)

• a Starting point (yin=b)

Thin we can approximate y

Using Euter's method.

Textbook Practice 5-6, 10 (excel)

0.1
$$0+0.(6.1)=0$$
 $51/h (0.1)=0.099$
0.3 $0+(0.0)(61)=0.01$ $2(0.01)+5/h (0.2)=0.218$
1 $0.75/3$

$$\int \alpha^{x} dx = \frac{\alpha^{x}}{\ln|\alpha|} + c$$

$$\frac{ex}{\int 8^{x} dx} = \frac{8^{x}}{\ln(8)} + c$$

$$= \frac{3^{2x}}{2 \ln|3|} + 3x + c$$

