Chapitre 7 : droites du plan

Seconde 11

1 Équations des droites du plan

Donner une équation d'un ensemble de points dans le plan, c'est donner une relation entre les abscisses x et les ordonnées y des points de cet ensemble.

Par exemple, la courbe représentative d'une fonction f définie sur $\mathbb R$ est l'ensemble des points dont les coordonnées sont de la forme . On dit alors qu'une équation de la courbe représentative de la fonction est y=f(x).

1.1 Les droites représentatives de fonctions affines

Proposition 1 Soit m, p deux nombres réels, la droite \mathcal{D} est la représentation graphique d'une fonction affine f(x) = mx + p, alors elle admet pour équation .

Remarque : si la droite \mathcal{D} représente une fonction affine f(x) = mx + p alors elle n'est pas verticale.

Définition 1 *On appelle, comme pour les fonctions affines, m le*

et p

Proposition 2 $M(x_M; y_M)$ appartient à la droite \mathcal{D} d'équation y = mx + p si, et seulement si,

Exemple : Soit \mathcal{D} d'équation $y = \frac{5}{2}x + 1$. Les points $A(1; \frac{7}{2})$, $B(3; \frac{17}{2})$, C(-2; -6) appartiennentils à la droite \mathcal{D} ?

Théorème 1 Soit \mathcal{D} une droite d'équation y = mx + p et $A(x_A; y_A)$, $B(x_B; y_B)$ deux points distincts de \mathcal{D} . Alors $m = \frac{y_B - y_A}{x_B - x_A}$.

Exemple 1 : Soit A(3;5), B(1;2). On admet que (AB) a une équation de la forme y = mx + p. Déterminer les coefficients m et p sans tracer la droite.

Mais les courbes représentatives des fonctions affines ne sont pas les seules droites du plan.

1.2 Le cas des droites verticales

Remarque : La courbe représentative d'une fonction affine ne peut pas être une En effet, . .

Théorème 2 Les droites parallèles à l'axe des ordonnées (droites verticales) ont une équation de la forme x = c où c est une constante réelle.

Remarque: Il s'agit de tous les points du plan ayant le nombre *c* comme

Exemple : Quelle est l'équation de la droite verticale passant par le point A(3, -5)?

Nous avons vu qu'il existe au moins deux cas possibles pour les droites du plan : elles peuvent être verticales, représenter une fonction affine. D'autres cas sont ils envisageables?

1.3 Il n'y a pas d'autre cas possible

Théorème 3 Soit \mathcal{D} une droite du plan. Alors elle admet soit une équation y = mx + p (c'est la représentation d'une fonction affine), soit une équation de la forme x = c (cas d'une droite verticale).

Démonstration : Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts de \mathcal{D} . Un point M(x; y) appartient à (AB) si et seulement si les vecteurs

On calcule les coordonnées \overrightarrow{AM} $\left(\right)$, \overrightarrow{BM} $\left(\right)$

La condition de colinéarité se réécrit :

Deux cas sont alors possibles:

1. $x_B=x_A$ et donc $x_B-x_A=0$ (et dans ce cas $y_B\neq y_A$ car donc la condition de colinéarité nous donne $(y_B-y_A)(x-x_A)=0$ soit encore $x-x_A=0$ soit encore

$$x = x_A$$
.

2. $x_B \neq x_A$ donc $x_B - x_A \neq 0$ et donc la condition de colinéarité se réécrit :

$$\frac{(y_B - y_A)}{(x_B - x_A)}(x - x_A) = y - y_A$$

soit en développant et en ajoutant y_A de chaque côté de l'égalité :

$$y = \frac{(y_B - y_A)}{(x_B - x_A)} x - \frac{(y_B - y_A)}{(x_B - x_A)} x_A + y_A.$$

On a donc bien démontré que la droite a soit une équation de la forme x = c ou y = mx + p. On retrouve au passage la formule du Théorème 1 concernant m.

2 Vecteur directeur d'une droite du plan

Définition 2 Soit \mathcal{D} une droite, A, B deux points distincts de \mathcal{D} . Alors \overrightarrow{AB} s'appelle un vecteur directeur de \mathcal{D} .

Remarque : Il existe vecteurs directeurs de \mathcal{D} .

Exemple : Soit la droite passant par les points A(3;2), B(4;-1). Alors un vecteur directeur est donné par : .

3 Position relatives de deux droites

Ici on va s'intéresser aux positions relatives des droites. On sait depuis longtemps que deux droites distinctes du plan sont soit :

3.1 les différents cas possibles

Équation de ${\cal D}$	x = c	y = mx + p		
Équation de \mathcal{D}'	x = c'	x = c'	y = m'x + p'	
Positions relatives	\mathcal{D} et \mathcal{D}' sont	\mathcal{D} et \mathcal{D}' sont	m = m'	$m \neq m'$
de \mathcal{D} et \mathcal{D}'	parallèles	sécantes	\mathcal{D} et \mathcal{D}' sont	\mathcal{D} et \mathcal{D}' sont
			parallèles	sécantes
Représentation		$ \begin{array}{c c} I & D & D' \\ \hline P & c' \\ \hline O & I \\ \hline \end{array} $		

Exemple d'application :

Dire si les paires de droites suivantes sont sécantes ou parallèles :

1.
$$d: y = 2x + 2, d': y = 3x + 1,$$

2.
$$d: y = 2x + 2, d': y = 2x + 1,$$

3.
$$d: y = -x + 2$$
, $d': y = x + 1$,

4.
$$d: x = 3, d': y = 3x + 1,$$

5.
$$d: x = 3, d': x = 1$$
.

3.2 Point d'intersection de deux droites sécantes

Proposition 3 Soit d et d' deux droites distinctes et sécantes. Leur point d' intersection A(x;y) est tel que x et y vérifient les équations des deux droites.

Exemple 1 : Soit d d'équation y = 3x + 4, d' d'équation $x = \frac{3}{2}$. On veut calculer les coordonnées de leur point d'intersection :

Exemple 2 : Soit d d'équation y = -3x + 4, d' d'équation $y = \frac{1}{3}x - 1$. On veut calculer les coordonnées de leur point d'intersection :