Marks Of Pcm

- a). Sort the students in Ascending order of their Physics marks.
- b). Once this is done, sort the students having same marks in Physics in the descending order of their Chemistry marks.
- c). Once this is also done, sort the students having same marks in Physics and Chemistry in the ascending order of their Maths marks.

	٥	١	2	3	4	5
Phy	50	40	20	50	90	40
chem	45	55	80	५ ४	80	\$ 5
math	47	59	Go	60	75	51

	P	C	~
2 .	20	8 0	60
5.	40	53	s
1.	40	5 \$	59
3.	50	48	60
٥٠	50	45	47
ч.	90	80	a .c

public static RC ? int Phyj int chem; int math; public int componeto (RC other) { if (this. phy != 0. phy) { return this phy-o.phy; - ascending else ij (this. chem ! = o. chem) ? return - (this chem- o. chem); -> descending else ? return this math - o math; -> ascending 3

Search A 2d Matrix

matrix has the following properties:

- a). Integers in each row are sorted from left to right.
- b). The first integer of each row is greater than the last integer of the previous row.
 - (i) find potential row, using binary search. → log N
 - (ii) now find ele in potential row using binary search. -> log M

	O)	2	3	4
0	7	15	20	22	30
)	35	۲ <i>۵</i>	५९	५१	52
2	68	64	(7	72	શ્ક
	90	100	120	હિ	150

		O)	2	3	4
J o	٥	7	15	20	22	30
	١	35	чь	५९	५१	SZ
W	2	60`	64	(7	72	શ્ક
ካ ,՝	3	90	100	120	હિઠ	150

cle = 125

240. Search a 2D Matrix II

Write an efficient algorithm that searches for a target value in an $m \times n$ integer matrix. The matrix has the following properties:

- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.

				טיי
10	20	30	Ч٥	So
15	32	35	42	55
20	38	56	60	70
<i>3</i> 0	५४	61	65	80

Find Pivot Index

173656

sum = 28

658. Find K Closest Elements

Given a **sorted** integer array arr, two integers k and x, return the k closest integers to x in the array. The result should also be sorted in ascending order.

An integer a is closer to x than an integer b if:

$$|a - x| == |b - x|$$
 and a < b

$$\alpha=2$$
 $b=3$

X = 2

Maximize Sum Of Arr[i]*i Of An Array

- 1. Given an array arr of N integers.
- 2. Your task is to write a program to find the maximum value of sum of arr[i]*i, where i = 0,1,2,...,n-1.
- 3. You are allowed to rearrange the elements of the array.

total possibilities: 5!

Sortal array is the best possibility

a b c d

configurations -> n

So = 0a+ 1b+ 2c+3d