拓扑学(I)复习题

Made By \boldsymbol{Gau} \boldsymbol{Syu}

最近更新: 2013年1月6日

Preface

这是 2012 年下半年南开大学数学科学学院研究生课程"拓扑学(I)"的期末复习材料及复习题解答,基于本人和一些同学的笔记、资料和解答整理而成,如有疏漏,还望海涵。

该课程由王向军老师讲授。

目录

Preface		_
第一部分	知识略览及补充	2
1 同伦与基	<mark>s本群</mark>	2
1.1 基本	x <mark>知识</mark>	2
1.2 Van	Kampen 定理及其推论	2
2 同调		2
2.1 简约	5同调群	2
2.2 低维	闺同调群	3
2.3 相对	付同调群	3
2.4 May	yer-Vietoris 序列	4
2.5 映身	付锥的同调序列	4
2.6 粘则	b <mark>胞腔的同调群</mark>	5
2.7 映身	対度	5
第二部分	复习题	6

第一部分 知识略览及补充

1 同伦与基本群

1.1 基本知识

定义 1. 子集 $A \subset X$ 称为 X 的收缩核,如果含入映射 $i: A \longrightarrow X$ 存在左逆 $j: X \longrightarrow A$,即 $j \circ i = \mathrm{id}_A$,如果还有 $i \circ j \simeq \mathrm{id}_X$,则称为形变收缩核,若还有 $i \circ j \simeq_A \mathrm{id}_X$,则称为强形变收缩核。

定义 2. 空间偶的映射 $f: (X,A) \longrightarrow (Y,B)$ 是指映射 $f: X \longrightarrow Y$ 满足 $f(A) \subset B$ 。空间偶的映射的 伦移是指空间偶的映射 f,g 之间的伦移 $F: X \times I \longrightarrow Y$,满足 $F(A \times I) \subset B$ 。

注. 即使 $X \simeq Y, A \simeq B$ 也不一定有 $(X, A) \simeq (Y, B)$ 。例如题目 (27)。

命题 3 (基本群的直积). $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

1.2 Van Kampen 定理及其推论

定理 4 (Van Kampen 定理). 设 U,V 是空间 (X,x_0) 的两个开集,满足 $U \cup V = X,x_0 \in U \cap V$,并且 $U \cap V,U,V$ 都是道路连通的。则

$$\pi_1(X, x_0) \cong \pi_1(U, x_0) * \pi_1(V, x_0)/N$$

其中 N 是 $\pi_1(U,x_0)*\pi_1(V,x_0)$ 中所有 $i_1([\sigma])^{-1}\circ i_2([\sigma])$ 生成的正规子群。这里 i_1,i_2 分别是由含入映射 $U\cap V\hookrightarrow U$ 和 $U\cap V\hookrightarrow V$ 诱导的同态。

推论 5. 若 V 是单连通的,则

$$\pi_1(X, x_0) \cong \pi_1(U, x_0) / \langle \operatorname{Im} i_1 \rangle$$

推论 6. 设 X 道路连通, Cf 是映射 $f: X \longrightarrow Y$ 的映射锥 (定义见后文), 则

$$\pi_1(Cf, x_0) \cong \pi_1(Y)/\langle \operatorname{Im} f_* \rangle$$

推论 7. 设 X 道路连通, $\widetilde{\sigma}$: $(S^1, x_0) \longrightarrow (X, x_0)$ 对应于道路 σ : $I \longrightarrow S^1 \longrightarrow X$, 则空间 $Y = X \cup_{\widetilde{\sigma}} e^2$ 的基本群为 $\pi_1(Y, x_0) = \pi_1(X, x_0)/\langle [\sigma] \rangle$ 。

2 同调

2.1 简约同调群

定义 8. 设 X 是拓扑空间,从 X 到单点集 Pt 唯一的映射诱导同调群的同态 $H_q(X) \longrightarrow H_q(\mathrm{Pt})$,这一同态的核称为 X 的 q 维简约同调群,记作 $\widetilde{H}_q(X)$ 。

由于单点集除 0 维外的各维同调群平凡,故有

命题 9. 若 X 非空,则当 q>0 时, $\widetilde{H}_q(X)=H_q(X)$ 。此外 $H_0(X)\cong\widetilde{H}_0(X)\oplus\mathbb{Z}$ 。

证明. 考虑映射 $f: X \longrightarrow \operatorname{Pt} \operatorname{all} g: \operatorname{Pt} \longrightarrow X$ 所诱导的同态

$$f_*: H_0(X) \longrightarrow H_0(\mathrm{Pt}), \ q_*: H_0(\mathrm{Pt}) \longrightarrow H_0(X)$$

由于 $f\circ g=\mathrm{id}_{\mathrm{Pt}}$,故 $f_*\circ g_*=\mathrm{id}_{H_0(\mathrm{Pt})}$,从而由分裂引理得 $H_0(X)\cong \widetilde{H}_0(X)\oplus H_0(\mathrm{Pt})$ 。

2.2 低维同调群

定理 10 (同调群的直和). 设 $X = \bigcup X_i$ 是 X 的道路连通分支分解,则其同调群有直和分解:

$$H_*(X) = \bigoplus H_*(X_i)$$

证明. 以 Σ_X 记 X 中全体奇异单形之集合,则它可分解为 $\Sigma = \bigcup \Sigma_{X_i}$,因而有直和分解:

$$S_*(X) = \bigoplus S_*(X_i)$$

于是得到所需结论。

命题 11. 拓扑空间 X 是道路连通的,则 $H_0(X) = \mathbb{Z}$ 。

推论 12 (0 维同调群的几何意义). 拓扑空间 X 恰有 n 个道路连通分支, 当且仅当

$$H_0(X) = \underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \uparrow \mathbb{Z}}$$

定理 13 (1 维同调群与基本群的关系). 若 X 是道路连通的拓扑空间, 则 $H_1(X)$ 是 $\pi_1(X,x_0)$ 的交换化。

2.3 相对同调群

注. 相对同调群的简约同调群与之完全一致,而不仅是在 q > 0 时。

定理 14 (相对同调群的长正合列). 设 (X,A) 是空间偶,则下面的同调序列正合:

$$\cdots \longrightarrow H_q(A) \xrightarrow{i_*} H_q(X) \xrightarrow{j_*} H_q(X, A) \xrightarrow{\delta_q} H_{q-1}(A) \longrightarrow \cdots$$
$$\cdots \longrightarrow H_1(X, A) \xrightarrow{\delta_1} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \longrightarrow 0$$

命题 15 (相对同调群的长正合列的自然性). 若 $f:(X,A) \longrightarrow (Y,B)$ 是空间偶的映射,则下图交换:

$$\cdots \longrightarrow H_q(A) \longrightarrow H_q(X) \longrightarrow H_q(X,A) \longrightarrow H_{q-1}(A) \longrightarrow \cdots$$

$$f_* \downarrow \qquad \qquad f_* \downarrow \qquad \qquad f_*$$

定理 16 (切除定理). 设 (X,A) 是一个空间偶,若子集 $U\subset A$ 满足 $\overline{U}\subset \operatorname{Int} A$,则含入映射 $i\colon (X\backslash U,A\backslash U)\longrightarrow (X,A)$ 诱导相对同调群的同构

$$i_*: H_*(X \setminus U, A \setminus U) \longrightarrow H_*(X, A)$$

推论 17. 设 $V \subset U \subset A$, 其中 $\overline{V} \subset \operatorname{Int} A$, 且 $(X \setminus U, A \setminus U)$ 是 $(X \setminus V, A \setminus V)$ 的形变收缩核,则

$$H_*(X\backslash U, A\backslash U) \xrightarrow{i_*} H_*(X\backslash V, A\backslash V) \xrightarrow{j_*} H_*(X, A)$$

是同构。

2.4 Mayer-Vietoris 序列

定义 18. 称 (X, A, B) 为正合三元组,如果 $A \cup B = X$,且

$$i_*: H_*(A, A \cap B) \longrightarrow H_*(X, B), \ j_*: H_*(B, A \cap B) \longrightarrow H_*(X, A)$$

都是切除同构。

定理 19 (Mayer-Vietoris 序列). 若 (X, A, B) 是正合三元组,则有同调群的长正合列:

$$\cdots \longrightarrow H_q(A \cap B) \xrightarrow{(i_1, i_2)} H_q(A) \oplus H_q(B) \xrightarrow{j_1 - j_2} H_q(X) \xrightarrow{\delta} H_{q-1}(A \cap B) \longrightarrow \cdots$$
$$\cdots \longrightarrow H_1(X) \xrightarrow{\delta} H_0(A \cap B) \xrightarrow{(i_1, i_2)} H_0(A) \oplus H_0(B) \xrightarrow{j_1 - j_2} H_0(X) \longrightarrow 0$$

命题 20 (Mayer-Vietoris 序列的自然性). 若 $f:(X,A,B) \longrightarrow (Y,C,D)$ 是正合三元组的映射,即 $f(A) \subset C, f(B) \subset D$,则下图交换:

2.5 映射锥的同调序列

定义 21. 映射 $f: X \longrightarrow Y$ 的映射锥形Cf 定义如下:

$$Cf \stackrel{\text{def}}{=} Y \cup_f CX = Y \sqcup CX / \sim$$

其中的等价关系是 $f(x) \sim (x,0)$ 。

此外再定义:

$$C_{-}f \stackrel{\text{def}}{=} Y \cup_{f} (X \times [0, \frac{1}{2}])$$
$$C_{+}f \stackrel{\text{def}}{=} X \times [\frac{1}{2}]/(X \times \{1\})$$

命题 **22.** $(Cf, C_{-}f, C_{+}f)$ 是正合三元组。

证明. 由切除定理推论易得。

定理 23 (映射锥的同调序列). 设 $f: X \longrightarrow Y$ 是拓扑空间的映射,则有同调群的长正合列: 1

$$\cdots \longrightarrow \widetilde{H}_q(X) \xrightarrow{f_*} \widetilde{H}_q(Y) \xrightarrow{i_*} \widetilde{H}_q(Cf) \xrightarrow{\delta} \widetilde{H}_{q-1}(X) \longrightarrow \cdots$$

其中 i_* 是从 Y 到 Cf 的嵌入映射诱导的同态。

证明. 由 Mayer-Vietoris 序列即得。

推论 24. 设 $A \subset X$, 则有同调群的长正合列:

$$\cdots \longrightarrow \widetilde{H}_q(A) \xrightarrow{f_*} \widetilde{H}_q(X) \xrightarrow{i_*} \widetilde{H}_q(X \cup CA) \xrightarrow{\delta} \widetilde{H}_{q-1}(A) \longrightarrow \cdots$$

¹用简约同调群只是为了写得少一点。

证明. 取 f 为含入映射 $A \hookrightarrow X$ 即可。

命题 25 (映射锥的同调序列的自然性). 若有拓扑空间映射的交换图

$$\begin{array}{c} X \stackrel{f}{\longrightarrow} Y \\ \downarrow^g & \downarrow^h \\ X' \stackrel{f'}{\longrightarrow} Y' \end{array}$$

则下图交换:

$$\cdots \longrightarrow \widetilde{H}_{q}(X) \longrightarrow \widetilde{H}_{q}(Y) \longrightarrow \widetilde{H}_{q}(Cf) \longrightarrow \widetilde{H}_{q-1}(X) \longrightarrow \cdots$$

$$g_{*} \downarrow \qquad \qquad h_{*} \downarrow \qquad \qquad C_{*} \downarrow \qquad \qquad g_{*} \downarrow$$

$$\cdots \longrightarrow \widetilde{H}_{q}(X') \longrightarrow \widetilde{H}_{q}(Y') \longrightarrow \widetilde{H}_{q}(Cf') \longrightarrow \widetilde{H}_{q-1}(X) \longrightarrow \cdots$$

2.6 粘贴胞腔的同调群

定理 26. 设 n 维胞腔 D^n 通过映射 f 粘贴到拓扑空间 X 上,即 $D^n \supset S^{n-1} \stackrel{f}{\longrightarrow} X$,则

- 1) $\widetilde{H}_q(X \cup_f D^n) \cong \widetilde{H}_q(X)$, 如果 $q \neq n, n-1$ 。
- 2) 有如下正合列:

$$0 \longrightarrow \widetilde{H}_n(X) \xrightarrow{i_*} \widetilde{H}_n(X \cup_f D^n) \xrightarrow{\delta} \widetilde{H}_{n-1}(S^{n-1}) \xrightarrow{f_*} \widetilde{H}_{n-1}(X) \xrightarrow{i_*} \widetilde{H}_{n-1}(X \cup_f D^n) \longrightarrow 0$$

证明. 由于 $CS^{n-1} \cong D^n$,故 $X \cup_f D^n = Cf$,然后用映射锥的同调序列即得。

2.7 映射度

定义 27. 对于映射 $f: S^n \longrightarrow S^n$, 由于 $H_n(S^n) = \mathbb{Z}$, 设 [a] 是其生成元,则存在 $k \in \mathbb{Z}$ 使 $f_*([a]) = k[a] \in H_n(S^n)$ 。k 称为 f 的映射度,记作 $\deg f = k$ 。

命题 28. 1) 若 $c: S^n \longrightarrow S^n$ 是常值映射,则 $\deg c = 0$ 。

- 2) 若 $f \simeq g \colon S^n \longrightarrow S^n$, 则 $\deg f = \deg g$;
- 3) 若 $f, q: S^n \longrightarrow S^n$ 是两个映射,则 $\deg q \circ f = \deg q \cdot \deg f$;
- 4) 若 $f: S^n \longrightarrow S^n$ 是同伦等价, 则 $\deg f = \pm 1$ 。

第二部分 复习题

题目 1 试举例说明空间可以是连通的但不是道路连通的。

证明. 在 \mathbb{R}^2 中考虑 $A = \{(x, \sin \frac{1}{x}) \mid x \in (0, 1]\}, B = \{(0, y) \mid -1 \leq y \leq 1\}$,则 $\overline{A} = A \cup B$ 。显然 A 是连通的,于是连通集的闭包也是连通的,故 $A \cup B$ 是连通的。但它不是道路连通的:否则若存在道路连接 $(1, \sin 1)$ 和 B 上某点,则取该道路与 B 的第一个交点 (0, a) 为端点做成一条道路 $f, f(0) = (0, a), f(1) = (1, \sin 1)$,然而取 $t_n = \frac{1}{n\pi + \frac{\pi}{2}}$,则 $t_n \to 0$ 但 $f(t_n) = (t_n, (-1)^n)$ 不收敛,与 f 连续矛盾。

题目 2 记 SO(n) 为所有行列式等于 1 的 n 阶正交矩阵构成的拓扑空间。试证明 SO(n) 是 道路连通的。

证明. 对任何 $A \in SO(n)$, 存在 $v \in O(n)$ 使得 $A = v\Lambda v^T$, 其中 Λ 是标准型:

$$\begin{pmatrix} I_{n-2k} & & & \\ & M_1 & & \\ & & \ddots & \\ & & & M_k \end{pmatrix}$$

其中 $M_i = \begin{pmatrix} \cos \theta_i & \sin \theta_i \\ -\sin \theta_i & \cos \theta_i \end{pmatrix}, \theta_i \in [0, 2\pi), i = 1, 2, \cdots, k$ 。 于是可构做 SO(n) 上的道路 σ 为

$$\sigma(t) = v \begin{pmatrix} I_{n-2k} & & & \\ & M_1(t) & & \\ & & \ddots & \\ & & & M_k(t) \end{pmatrix} v^T$$

其中 $M_i(t) = \begin{pmatrix} \cos \theta_i t & \sin \theta_i t \\ -\sin \theta_i t & \cos \theta_i t \end{pmatrix}, i = 1, 2, \dots, k$ 。

则由于 $M_i(0) = I_2, M_i(1) = M_i, i = 1, 2, \cdots, k$,所以 $\sigma(0) = I_n, \sigma(1) = A$,即 σ 是连接 I_n 和 A 的道路。从而对 SO(n) 中任何两点 A, B,设其各自连接 I 的道路为 σ_A, σ_B ,则连接 A, B 的道路 σ 为:

$$\sigma(t) = \begin{cases} \sigma_A(1 - 2t) & t \in [0, \frac{1}{2}] \\ \sigma_B(2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}$$

题目 3 证明:实直线 \mathbb{R} 不与 2 维平面 \mathbb{R}^2 同胚。

证明. 若存在同胚映射

 $f \colon \mathbb{R} \longrightarrow \mathbb{R}^2, g \colon \mathbb{R}^2 \longrightarrow \mathbb{R}, g \circ f = \mathrm{id}_{\mathbb{R}}, f \circ g = \mathrm{id}_{\mathbb{R}^2}$

并且 $f(0) = x_0$,则考虑 $X = \mathbb{R} \setminus \{0\}$ 和 $Y = \mathbb{R}^2 \setminus \{x_0\}$ 以及映射:

$$f|_X: X \longrightarrow Y, g|_Y: Y \longrightarrow X$$

显然 $g|_Y \circ f|_X = \mathrm{id}_X$, $f|_X \circ g|_Y = \mathrm{id}_Y$, 于是 X 与 Y 同胚。然而 X 不连通,而 Y 是相交道路连通集的并故而连通。由于连通性是拓扑不变性,故矛盾。故 \mathbb{R} 与 \mathbb{R}^2 不同胚。

题目 4 试证明: 3 维实射影空间 $\mathbb{R}P^3$ 与 SO(3) 是同胚的。

证明. 首先

$$SO(3) = \frac{\{(v,\theta) \mid v \in S^2, \theta \in [0,\pi]\}}{(v,\pi) \sim (-v,\pi), (u,0) \sim (v,0)}$$

考虑 $X = D^3 / \sim'$, 这里的等价关系是粘合 D^3 的表面 S^2 上的对径点。显然有同胚

$$SO(3) \stackrel{\cong}{\longleftrightarrow} X$$
 $(v,\theta) \longleftrightarrow (v,\frac{\theta}{\pi})$

而 $X \cong \mathbb{R}\mathbf{P}^3$ 。故 $\mathbb{R}\mathbf{P}^3 \cong SO(3)$ 。

题目 5 证明: n+1 维欧式空间 \mathbb{R}^{n+1} 中挖去一个点 $\mathbb{R}^{n+1}\setminus\{0\}$ 与球面 S^n 同伦等价。证明. 构做映射

$$f \colon \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow S^n \qquad g \colon S^n \longrightarrow \mathbb{R}^{n+1} \setminus \{0\}$$
$$x \longmapsto \frac{x}{||x||} \qquad x \longmapsto x$$

由于 $x \neq 0$,故映射是连续的。进一步有

$$f \circ g(x) = f(x) = \frac{x}{||x||} = x$$

 $g \circ f(x) = g(\frac{x}{||x||}) = \frac{x}{||x||}$

所以 $f \circ g = \mathrm{id}_{S^n}$ 。

构做伦移 $H: (\mathbb{R}^{n+1} \setminus \{0\}) \times I \longrightarrow \mathbb{R}^{n+1} \setminus \{0\}$ 如下

$$H(x,t) = tx + (1-t)\frac{x}{||x||}$$

则

$$H(x,0) = \frac{x}{||x||} = g \circ f(x)$$

$$H(x,1) = x = \mathrm{id}_{\mathbb{R}^{n+1} \setminus \{0\}}$$

所以 $g \circ f \simeq \mathrm{id}_{\mathbb{R}^{n+1} \setminus \{0\}}$ 。 于是 $\mathbb{R}^{n+1} \setminus \{0\} \simeq S^n$ 。

题目 6 记 S^n 为 n 维标准球面。如果映射 $f: S^n \longrightarrow S^n$ 满足: 对任何 $x \in S^n, f(x) \neq x$ 。证明: f 同伦于对径映射 $\beta: S^n \longrightarrow S^n$ 。对任何 $x \in S^n, \beta(x) = -x$ 。

证明. 构做伦移 $H: S^n \times I \longrightarrow S^n$ 如下

$$H(x,t) = \frac{(1-t)f(x) + t\beta(x)}{||(1-t)f(x) + t\beta(x)||}$$

注意到 $||(1-t)f(x)+t\beta(x)||=0$ 当且仅当 (1-t)f(x)=tx 而由于 ||f(x)||=||x||=1,这就要求 1-t=t 即 $t=\frac{1}{2}$ 。然而此时分母为 $\frac{1}{2}||f(x)-x||$,由条件又有 $f(x)\neq x$,故分母总不为零,此伦移定义良好。因为

$$H(x,0) = f(x), H(x,1) = \beta(x)$$

所以 $f \simeq \beta$ 。

题目 7 记 $\mathrm{GL}_n(\mathbb{R})$ 为所有 n 阶实可逆矩阵组成的 $\mathbb{R}^{n\times n}$ 的子空间。证明: $\mathrm{GL}_n(\mathbb{R})$ 不是道路连通的。

证明. 构做映射

$$f: \operatorname{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$A \longmapsto \det A$$

则由于 f 的值域 $\operatorname{Im} f = (-\infty, 0) \cup (0, +\infty)$ 是不连通的,故 $\operatorname{GL}_n(\mathbb{R})$ 不连通,从而不道路连通。 \square

题目 8 记 SO(2) 为行列式等于 1 的 2 阶正交矩阵构成的拓扑空间, $\mathbb{R}\mathbf{P}^2$ 为 2 维实射影平面。求 $SO(2) \times \mathbb{R}\mathbf{P}^2$ 的基本群 $\pi_1(SO(2) \times \mathbb{R}\mathbf{P}^2, x_0)$ 。

证明. 注意到 $\forall A \in SO(2)$, A 可以写成 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, 故有同胚

$$SO(2) \longleftrightarrow S^{1}$$

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \longleftrightarrow (\cos \theta, \sin \theta)$$

于是 $\pi_1(SO(2), x_0) = \mathbb{Z}$ 。

而 $\mathbb{R}\mathbf{P}^2$ 可看成赤道 S^1 通过映射 2 粘合上半球面粘合对径点这个拓扑空间(同胚于 e^2),其中

$$2\colon I \longrightarrow S^1 \longrightarrow S^1/\sim \cong S^1$$

代表 $\pi_1(S^1, x_0) \cong \mathbb{Z}$ 中的 2,从而 $\mathbb{R}\mathbf{P}^2 = S^1 \cup_2 e^2$,所以由 Van Kampen 定理的推论7得

$$\pi_1(\mathbb{R}\mathbf{P}^2, x_0) \cong \pi_1(S^1, x_0)/\langle 2 \rangle = \mathbb{Z}/2$$

所以由定理3, $\pi_1(SO(2) \times \mathbb{R}\mathbf{P}^2, x_0) \cong \mathbb{Z} \times \mathbb{Z}/2$ 。

题目 9 求: 在环面 $T = S^1 \times S^1$ 中挖去一个三角形所得空间 X 的基本群 $\pi_1(X, x_0)$ 。

证明. 考虑空间 $T' = I \times I / \sim$,其中等价关系定义为 $(x,0) \sim (x,1), (0,y) \sim (1,y)$,易知 $T \cong T'$ 。记 $\partial T' = \{[x,y] \in X \mid xy = 0\}$ 为 T' 的边界,则由于 $\partial (I \times I)$ 是 $I \times I$ 中挖去一个三角形所得空间 Y 的形变收缩核,故 $\partial T'$ 是 T' 挖去一个三角形所得空间 X' 的形变收缩核。由于 $\partial T' \cong S^1 \vee S^1$,故 $\pi_1(X,x_0) \cong \pi_1(X',x_0) \cong \pi_1(\partial T',x_0) \cong \pi_1(S^1 \vee S^1,x_0) = F(a,b)$ 。

题目 10 试构做拓扑空间 X 使 $\mathbb{R}\mathbf{P}^2 \times X$ 的基本群为 $\pi_1(\mathbb{R}\mathbf{P}^2 \times X, x_0) = \mathbb{Z}/6$ 。

证明. 由于题目(8)中已求得 $\pi_1(\mathbb{R}\mathbf{P}^2, x_0) \cong \mathbb{Z}/2$,又由于 $\mathbb{Z}/6 \cong \mathbb{Z}/2 \times \mathbb{Z}/3$,故只须构做 X 使得 $\pi_1(X, x_0) = \mathbb{Z}/3$ 。

为此考虑 $\tilde{\sigma}$: $(S^1, x_0) \longrightarrow (S^1, x_0)$ 如下(这里将 S^1 视为复平面上的单位圆周 $\{e^{2\pi ti} \mid t \in [0, 1)\}$):

$$\widetilde{\sigma}(e^{2\pi ti}) = e^{6\pi ti}$$

则道路 $\sigma: I \longrightarrow S^1 \longrightarrow S^1$ 是绕圆周 3 圈,即 $\pi_1(S^1, x_0)$ 中的 3,于是令 $X = S^1 \cup_{\widetilde{\sigma}} e^2$,则 $\pi_1(X, x_0) \cong \pi_1(S^1, x_0)/\langle 3 \rangle = \mathbb{Z}/3$ 。

题目 11 试构做拓扑空间 X 使其基本群 $\pi_1(X,x_0) = \mathbb{Z}/12$ 。

证明. 考虑 $\tilde{\sigma}$: $(S^1, x_0) \longrightarrow (S^1, x_0)$ 如下:

$$\widetilde{\sigma}(e^{2\pi ti}) = e^{24\pi ti}$$

则道路 $\sigma: I \longrightarrow S^1 \longrightarrow S^1$ 是绕圆周 12 圈,即 $\pi_1(S^1, x_0)$ 中的 12,于是令 $X = S^1 \cup_{\widetilde{\sigma}} e^2$,则 $\pi_1(X, x_0) \cong \pi_1(S^1, x_0)/\langle 12 \rangle = \mathbb{Z}/12$ 。

题目 12 设 n>1。证明: n 维欧式空间 \mathbb{R}^n 不与 n+1 维欧式空间 \mathbb{R}^{n+1} 同胚。

证明. 反之,若 $\mathbb{R}^n \cong \mathbb{R}^{n+1}$,并记同胚映射为 f,则与题目(3)同样的讨论可知 $\mathbb{R}^n \setminus \{x_0\} \cong \mathbb{R}^{n+1} \setminus \{f(x_0)\}$,所以 $H_*(\mathbb{R}^n \setminus \{x_0\}) \cong H_*(\mathbb{R}^{n+1} \setminus \{f(x_0)\})$ 。然而 $\mathbb{R}^n \setminus \{x_0\} \cong S^{n-1}$, $\mathbb{R}^{n+1} \setminus \{f(x_0)\} \cong S^n$,故 $H_n(\mathbb{R}^n \setminus \{x_0\}) = 0$,但 $H_n(\mathbb{R}^{n+1} \setminus \{f(x_0)\}) = \mathbb{Z}$,故矛盾,所以 $\mathbb{R}^n \ncong \mathbb{R}^{n+1}$ 。

题目 13 证明: SO(3) 不与 $S^1 \vee S^1$ 同胚。

证明. 由题目(4), $SO(3) \cong \mathbb{R}\mathbf{P}^3$, 所以 $\pi_1(SO(3), x_0) \cong \pi_1(\mathbb{R}\mathbf{P}^3, x_0)$

下面计算 $\mathbb{R}\mathbf{P}^3$ 的基本群:

由于 $\mathbb{R}\mathbf{P}^3 \cong \mathbb{R}\mathbf{P}^2 \cup_p e^3$, 其中 $p: S^2 \longrightarrow S^2 / \sim \cong \mathbb{R}\mathbf{P}^2$ 是粘合对径点映射, 故

$$\pi_1(\mathbb{R}\mathbf{P}^3, x_0) \cong \pi_1(\mathbb{R}\mathbf{P}^2, x_0) / \langle \operatorname{Im} p_* \rangle = \mathbb{Z}/2$$

可见然而 $\pi_1(S^1 \vee S^1, x_0) = F(a, b) \neq \mathbb{Z}/2$, 故 SO(3) 不与 $S^1 \vee S^1$ 同胚。

题目 14 求 n 维球面与 m 维球面一点和 $S^n \vee S^m$ 的各维同调群。

证明. $(S^n \vee S^m, S^n, S^m)$ 是正合三元组,故有 Mayer-Vietoris 序列:

$$\cdots \longrightarrow \widetilde{H}_q(\operatorname{Pt}) \stackrel{(i_1, i_2)}{\longrightarrow} \widetilde{H}_q(S^n) \oplus \widetilde{H}_q(S^m) \stackrel{j_1 - j_2}{\longrightarrow} \widetilde{H}_q(S^n \vee S^m) \stackrel{\delta}{\longrightarrow} \widetilde{H}_{q-1}(\operatorname{Pt}) \longrightarrow \cdots$$

由于 $\widetilde{H}_q(\mathrm{Pt})=0$, 故 $\widetilde{H}_q(S^n\vee S^m)\cong\widetilde{H}_q(S^n)\oplus\widetilde{H}_q(S^m)$ 。利用命题9回到通常的同调群有

$$H_q(S^n \vee S^m) = \delta_q^n \mathbb{Z} \oplus \delta_q^m \mathbb{Z} \oplus \delta_q^0 \mathbb{Z}$$

题目 15 求两个射影空间 $\mathbb{R}\mathbf{P}^3$ 的一点和 $\mathbb{R}\mathbf{P}^3 \vee \mathbb{R}\mathbf{P}^3$ 的各维同调群。

证明. $(\mathbb{R}\mathbf{P}^3 \vee \mathbb{R}\mathbf{P}^3, \mathbb{R}\mathbf{P}^3, \mathbb{R}\mathbf{P}^3)$ 是正合三元组,故有 Mayer-Vietoris 序列:

$$\cdots \longrightarrow \widetilde{H}_q(\operatorname{Pt}) \stackrel{(i_1,i_2)}{\longrightarrow} \widetilde{H}_q(\mathbb{R}\mathbf{P}^3) \oplus \widetilde{H}_q(\mathbb{R}\mathbf{P}^3) \stackrel{j_1-j_2}{\longrightarrow} \widetilde{H}_q(\mathbb{R}\mathbf{P}^3 \vee \mathbb{R}\mathbf{P}^3) \stackrel{\delta}{\longrightarrow} \widetilde{H}_{q-1}(\operatorname{Pt}) \longrightarrow \cdots$$

由于 $\widetilde{H}_q(\mathrm{Pt}) = 0$,故 $\widetilde{H}_q(\mathbb{R}\mathbf{P}^3 \vee \mathbb{R}\mathbf{P}^3) \cong \widetilde{H}_q(\mathbb{R}\mathbf{P}^3) \oplus \widetilde{H}_q(\mathbb{R}\mathbf{P}^3)$ 。 从题目(16)求得 $\widetilde{H}_q(\mathbb{R}\mathbf{P}^3)$ 。利用命题9回到通常的同调群有

$$H_q(\mathbb{R}\mathbf{P}^3 \vee \mathbb{R}\mathbf{P}^3) = \begin{cases} \mathbb{Z} & q = 0 \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 & q = 1 \\ \mathbb{Z} \oplus \mathbb{Z} & q = 3 \\ 0 & q \neq 0, 1, 3 \end{cases}$$

题目 16 求 SO(3) 的各维同调群。

证明. 由于 $SO(3) \cong \mathbb{R}P^3$,故只须计算 $\mathbb{R}P^3$ 的同调群。

首先, $\mathbb{R}\mathbf{P}^1 \cong S^1$,于是 $\widetilde{H}_q(\mathbb{R}\mathbf{P}^1) = 0, (q \neq 1), \widetilde{H}_1(\mathbb{R}\mathbf{P}^1) = \mathbb{Z}$ 。

注意到 $\mathbb{R}\mathbf{P}^2 \cong \mathbb{R}\mathbf{P}^1 \cup_f D^2$, 故由定理26得到正合列:

$$0 \longrightarrow \widetilde{H}_2(\mathbb{R}\mathbf{P}^2) \stackrel{\delta}{\longrightarrow} \widetilde{H}_1(S^1) \stackrel{f_*}{\longrightarrow} \widetilde{H}_1(\mathbb{R}\mathbf{P}^1) \stackrel{i_*}{\longrightarrow} \widetilde{H}_1(\mathbb{R}\mathbf{P}^2) \longrightarrow 0$$

注意到 f 诱导的基本群映射将 S^1 中的单位闭路映到 $\pi_1(\mathbb{R}\mathbf{P}^1,x_0)$ 中的 2,于是 f_* 是单射。由上面的正合列可知:

$$\widetilde{H}_2(\mathbb{R}\mathbf{P}^2) \cong \operatorname{Im} \delta = \ker f_* = 0$$

$$\ker i_* = \operatorname{Im} f_* = 2\mathbb{Z}$$

$$\widetilde{H}_1(\mathbb{R}\mathbf{P}^2) = \operatorname{Im} i_* \cong \widetilde{H}_1(\mathbb{R}\mathbf{P}^1) / \ker i_* = \mathbb{Z}/2$$

所以

$$\widetilde{H}_q(\mathbb{R}\mathbf{P}^2) = \begin{cases} \mathbb{Z}/2 & q = 1\\ 0 & q \neq 1 \end{cases}$$

由于 $\mathbb{R}\mathbf{P}^3 \cong \mathbb{R}\mathbf{P}^2 \cup_f D^3$, 故如法炮制得到正合列:

$$0 \longrightarrow \widetilde{H}_3(\mathbb{R}\mathbf{P}^3) \stackrel{\delta}{\longrightarrow} \widetilde{H}_2(S^2) \stackrel{f_*}{\longrightarrow} \widetilde{H}_2(\mathbb{R}\mathbf{P}^2) \stackrel{i_*}{\longrightarrow} \widetilde{H}_2(\mathbb{R}\mathbf{P}^3) \longrightarrow 0$$

由于 $\widetilde{H}_2(\mathbb{R}\mathbf{P}^2) = 0$,故 $\widetilde{H}_3(\mathbb{R}\mathbf{P}^3) = \widetilde{H}_2(S^2) = \mathbb{Z}$ 且又由 $\widetilde{H}_1(S^2) = 0$ 得到 $\widetilde{H}_2(\mathbb{R}\mathbf{P}^3) = 0$ 。其余维数则有 $\widetilde{H}_a(\mathbb{R}\mathbf{P}^3) \cong H_a(\mathbb{R}\mathbf{P}^2)$ 。利用命题9回到通常的同调群有

$$H_q(\mathbb{R}\mathbf{P}^3) = \begin{cases} \mathbb{Z}/2 & q = 1\\ \mathbb{Z} & q = 0, 3\\ 0 & q \neq 0, 1, 3 \end{cases}$$

证明. 计算 $H_1(\mathbb{R}\mathbf{P}^3)$ 时也可由题目(13)以及 1 维同调群是基本群的交换化得到。

题目 17 试利用基本群证明 SO(2) 不与 SO(3) 同胚。

证明. 因为 $SO(2) \cong S^1$,故 $\pi_1(SO(2), x_0) \cong \pi_1(S^1, x_0) = \mathbb{Z}$ 。而由题目(13), $\pi_1(SO(3), x_0) = \mathbb{Z}/2$ 。 所以 $\pi_1(SO(2), x_0) \ncong \pi_1(SO(3), x_0)$,故 SO(2) 不与 SO(3) 同胚。

题目 18 设 $A, B \in \mathbb{R}$ 维球面 S^n 的两个道路连通的开集, $n > 1, A \cup B = S^n$ 。试利用 0 维同调群证明: $A \cap B$ 是道路连通的。

证明. (S^n, A, B) 是正合三元组,故有 Mayer-Vietoris 序列:

$$\cdots \longrightarrow \widetilde{H}_1(S^n) \stackrel{\delta}{\longrightarrow} \widetilde{H}_0(A \cap B) \stackrel{(i_1, i_2)}{\longrightarrow} \widetilde{H}_0(A) \oplus \widetilde{H}_0(B) \stackrel{j_1 - j_2}{\longrightarrow} \widetilde{H}_0(S^n) \longrightarrow 0$$

由于 n > 1,故 $\widetilde{H}_1(S^n) = 0$;由于 A, B, S^n 道路连通,故 $\widetilde{H}_0(A) = \widetilde{H}_0(B) = \widetilde{H}_0(S^n) = 0$ 。从而 $\widetilde{H}_0(A \cap B) = 0$,即 $H_0(A \cap B) = \mathbb{Z}$,由 0 维同调群的几何意义, $A \cap B$ 道路连通。

题目 19 证明:任何连续映射 $f: D^n \longrightarrow D^n$ 都有不动点,即存在 $x_0 \in D^n$ 使 $f(x_0) = x_0$ 。 其中 $D^n = \{(x_1, x_2, \dots, x_n) \mid \sum x_i^2 \leq 1\}$ 为 n 维圆盘。

证明. 若不然, 可构造 $q: D^n \longrightarrow S^{n-1}$ 如下:

$$g(x) \stackrel{\text{def}}{=} \frac{x - f(x)}{||x - f(x)||}$$

则 $g_0 = g|_{S^{n-1}}$ 满足 $g_0(x) \neq -x$ (若不然,有 $x_0 \in S^{n-1}$ 使 $g_0(x_0) = -x_0$,则 $f(x_0) = x_0(1+||x_0-f(x_0)||)$,但左边点的范数不大于 1 而右边则大于 1,矛盾。),由题目(22),它同伦于恒等映射 $\mathrm{id}_{S^{n-1}}$ 。由于 $g_0 = g \circ i$ 其中 $i \colon S^{n-1} \longrightarrow D^n$ 是零伦的,故 g_0 是零伦的,从而 $\mathrm{id}_{S^{n-1}}$ 是零伦的,于是其所诱导的自同构 $\mathrm{id}_* \colon H_{n-1}(S^{n-1}) \longrightarrow H_{n-1}(S^{n-1})$ 与常值映射所诱导的平凡同态相同。而 $H_{n-1}(S^{n-1}) \cong \mathbb{Z}$,故其自同构不可能平凡,故矛盾,从而映射 $f \colon D^n \longrightarrow D^n$ 有不动点。

证明. 若不然,可构造 $g\colon D^n\longrightarrow S^{n-1}$ 为把 x 映到射线 $\overrightarrow{f(x),x}$ 与 S^{n-1} 之交点,则 $g\circ i=\mathrm{id}_{S^{n-1}}$ 其中 $i\colon S^{n-1}\longrightarrow D^n$ 是含入映射。于是它们诱导出同调群的同态 $g_*\circ i_*=\mathrm{id}_{H_q(S^{n-1})}$ 。

$$H_q(S^{n-1}) \xrightarrow{i_*} H_q(D^n) \xrightarrow{g_*} H_q(S^{n-1})$$

然而当 q=n-1 时, $H_{n-1}(S^{n-1})\cong \mathbb{Z}, H_{n-1}(D^n)\cong 0$,其复合不可能是恒等,矛盾。故映射 $f\colon D^n\longrightarrow D^n$ 有不动点。

题目 20 记 T 为空间中的三角形,

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1, x, y, z \geqslant 0\}$$

- a) 证明: 任何映射 $f: T \longrightarrow T$ 都有不动点。
- b) 设 A 是一个 3×3 矩阵,其所有元素都是正数。证明: A 有一个正的特征值 λ_0 ,且属于 λ_0 的特征向量的坐标全非负。
- **证明.** a) 同上题。或者利用同胚 $g: D^2 \longrightarrow T$,得到 D^2 上的映射 $g^{-1} \circ f \circ g$,由于它有不动点 x_0 ,故 f 有不动点 $g(x_0)$ 。

b) 定义 $f: T \longrightarrow T$ 为复合 $p \circ A$ 在 T 上的限制。其中

$$p(x, y, z) \stackrel{\text{def}}{=} \frac{1}{x + y + z} (x, y, z), \ \forall (x, y, z) \in \mathbb{R}^3_+$$

这里 \mathbb{R}^3_+ 表示 $\{(x,y,z) \in \mathbb{R}^3 \mid x,y,z \ge 0, (x,y,z) \ne 0\}$ 。

则 $p(A(T)) \subset T$ 且在 T 是连续的,故由 a), f 有不动点 α ,即

$$\alpha = f(\alpha) = \lambda_0 A(\alpha)$$

其中 λ_0 是 $A(\alpha)$ 的坐标和。由定义显然有 α 各坐标非负且不全为零,由于 A 的所有元素都是正数,故 $A(\alpha)$ 各坐标非负且不全为零,从而 $\lambda_0 > 0$ 。这样就找到了 A 的一个正的特征值 λ_0 且属于 λ_0 的特征向量 α 的坐标全非负。

题目 21 设映射 $f: S^n \longrightarrow S^n$ 同伦于常值映射。证明 f 有不动点 x_0 使 $f(x_0) = x_0$ 。

证明. 若不然,由题目(6),f 必同伦于对径映射,从而由题目(30)知 $\deg f = (-1)^{n+1}$ 。然而,由f 同伦于常值映射得 $\deg f = 0$,矛盾。

题目 22 设映射 $f: S^n \longrightarrow S^n$ 同伦于常值映射。证明: 在 S^n 中存在 x_0 使 $f(x_0) = -x_0$ 。

证明, 若不然, 构做伦移 $H: S^n \times I \longrightarrow S^n$ 如下

$$H(x,t) = \frac{(1-t)f(x) + tx}{||(1-t)f(x) + tx||}$$

注意到 ||(1-t)f(x)+tx||=0 当且仅当 (1-t)f(x)=-tx 而由于 ||f(x)||=||x||=1,这就要求 1-t=t 即 $t=\frac{1}{2}$ 。然而此时分母为 $\frac{1}{2}||f(x)+x||$,由假设又有 $f(x)\neq -x$,故分母总不为零,此伦移定义良好。因为

$$H(x,0) = f(x), H(x,1) = x$$

所以 $f \simeq \mathrm{id}_{S^n}$,于是 $\deg f = 1$ 。但由条件 f 同伦于常值映射,故 $\deg f = 0$,矛盾,故在 S^n 中存在 x_0 使 $f(x_0) = -x_0$ 。

题目 23 设 $U \subset \mathbb{R}^m$ 和 $V \subset \mathbb{R}^n$ 分别是 \mathbb{R}^m 和 \mathbb{R}^n 的开子集。试证明:如果 U 与 V 同胚,则 m=n。

证明. 设同胚映射为 $f: U \longrightarrow V$ 。

令 $x_0 \in U$,则显然 $\mathbb{R}^m \setminus \overline{U}$ ⊂ Int $\mathbb{R}^m \setminus \{x_0\}$,故由切除定理知

$$l_*: H_q(U, U \setminus \{x_0\}) \longrightarrow H_q(\mathbb{R}^m, \mathbb{R}^m \setminus \{x_0\})$$

是同构。

对空间偶 $(\mathbb{R}^m, \mathbb{R}^m \setminus \{x_0\})$ 有相对同调群的长正合列:

$$\cdots \longrightarrow \widetilde{H}_q(\mathbb{R}^m) \xrightarrow{j_*} \widetilde{H}_q(\mathbb{R}^m, \mathbb{R}^m \setminus \{x_0\}) \xrightarrow{\delta} \widetilde{H}_{q-1}(\mathbb{R}^m \setminus \{x_0\}) \xrightarrow{i_*} \widetilde{H}_{q-1}(\mathbb{R}^m) \longrightarrow \cdots$$

其中 $\widetilde{H}_q(\mathbb{R}^m) = 0$ 。由于 $\mathbb{R}^m \setminus \{x_0\} \cong S^{m-1}$,故 $\widetilde{H}_q(\mathbb{R}^m \setminus \{x_0\}) \cong \delta_q^{m-1}\mathbb{Z}$ 。于是

$$\begin{cases} \widetilde{H}_q(\mathbb{R}^m,\mathbb{R}^m\backslash\{x_0\}) \cong \widetilde{H}_{q-1}(\mathbb{R}^m\backslash\{x_0\}) \cong \delta_{q-1}^{m-1}\mathbb{Z} & q>0\\ \widetilde{H}_0(\mathbb{R}^m,\mathbb{R}^m\backslash\{x_0\}) = 0 \end{cases}$$

利用命题9回到通常的同调群,并注意到相对同调群的简约同调群与之完全一致,得

$$H_q(\mathbb{R}^m, \mathbb{R}^m \setminus \{x_0\}) = \begin{cases} \delta_{q-1}^{m-1} \mathbb{Z} & q > 0\\ 0 & q = 0 \end{cases}$$
 (1)

对 $V \subset \mathbb{R}^n$ 作类似讨论可得

$$H_q(\mathbb{R}^n, \mathbb{R}^n \setminus \{f(x_0)\}) = \begin{cases} \delta_{q-1}^{n-1} \mathbb{Z} & q > 0\\ 0 & q = 0 \end{cases}$$
 (2)

由于 f 是空间偶同胚 $(U, U \setminus \{x_0\}) \longrightarrow (V, V \setminus \{f(x_0)\})$,故

$$H_q(\mathbb{R}^m, \mathbb{R}^m \setminus \{x_0\}) \cong H_q(\mathbb{R}^n, \mathbb{R}^n \setminus \{f(x_0)\})$$

比较 (1) 和 (2) 即得 m=n。

题目 24 设 X 是一个道路连通的拓扑空间,记 ΣX 为 X 的双角锥(在 $X \times I$ 中分别粘合 $X \times \{0\}$ 和 $X \times \{1\}$ 成一个点所得的空间)。证明:对于 q > 0, $H_q(X) \cong H_{q+1}(\Sigma X)$ 。

证明. 考虑映射 $f: X \longrightarrow Pt$,易知 $Cf = \Sigma X$,于是由定理23得到同调群的长正合列:

$$\cdots \longrightarrow H_{q+1}(\operatorname{Pt}) \xrightarrow{i_*} H_{q+1}(\Sigma X) \xrightarrow{\delta} H_q(X) \xrightarrow{f_*} H_q(\operatorname{Pt}) \longrightarrow \cdots$$

当 q>0 时,由于 $H_q(Pt)=0$,故得正合列:

$$0 \longrightarrow H_{q+1}(\Sigma X) \stackrel{\delta}{\longrightarrow} H_q(X) \longrightarrow 0$$

于是 $H_q(X) \cong H_{q+1}(\Sigma X)$ 。

题目 25 求环面 $T = S^1 \times S^1$ 的各维同调群。

证明. 由于 $T = S^1 \vee S^1 \cup_f D^2$,其中 f 是粘合映射,则由定理26得 $\widetilde{H}_q(T) \cong \widetilde{H}_q(S^1 \vee S^1) = 0$ (当 $q \neq 1, 2$ 时)。而且有正合列:

$$0 \longrightarrow \widetilde{H}_2(S^1 \vee S^1) \longrightarrow \widetilde{H}_2(T) \longrightarrow \widetilde{H}_1(S^1) \xrightarrow{f_*} \widetilde{H}_1(S^1 \vee S^1) \longrightarrow \widetilde{H}_1(T) \longrightarrow 0$$

下面计算 f_* 。为此先计算由 f 诱导的基本群同态 f_π : $\pi_1(S^1, x_0) \longrightarrow \pi_1(S^1 \vee S^1, x_0)$ 。考虑 S^1 上的单位闭路 σ ,粘合映射将其映到 $aba^{-1}b^{-1}$ 其中 a, b, a^{-1}, b^{-1} 分别是 $S^1 \vee S^1$ 中的两个圆周的单位闭路及其反向,所以 f_π 恰将 $\pi_1(S^1, x_0)$ 的生成元映到 $\pi_1(S^1 \vee S^1, x_0)$ 的换位子群的生成元。由于 H_1 是基本群的交换化(定理13),故 f_* 是零映射。

又由于 $\widetilde{H}_2(S^1 \vee S^1) = 0$,故有正合列:

$$0 \longrightarrow \widetilde{H}_2(T) \longrightarrow \widetilde{H}_1(S^1) \longrightarrow 0, \quad 0 \longrightarrow \widetilde{H}_1(S^1 \vee S^1) \longrightarrow \widetilde{H}_1(T) \longrightarrow 0$$

所以 $\widetilde{H}_2(T)\cong\widetilde{H}_1(S^1)=\mathbb{Z}, \widetilde{H}_1(T)=\widetilde{H}_1(S^1\vee S^1)=\mathbb{Z}\oplus\mathbb{Z}.$ 由于 T 是道路连通的,故 $H_0(T)=\mathbb{Z}.$ 总结:

$$H_q(T) = egin{cases} \mathbb{Z} \oplus \mathbb{Z} & q = 1 \\ \mathbb{Z} & q = 0, 2 \\ 0 & q > 2 \end{cases}$$

题目 26 令 $A = \{x_0, -x_0\}$ 为球面 S^n 中两个点, n > 1。求 (S^n, A) 的各维相对同调群 $H_q(S^n, A)$ 。

证明. 对空间偶 (S^n, A) 有相对同调群的长正合列:

$$\cdots \longrightarrow \widetilde{H}_q(A) \xrightarrow{i_*} \widetilde{H}_q(S^n) \xrightarrow{j_*} \widetilde{H}_q(S^n, A) \xrightarrow{\delta} \widetilde{H}_{q-1}(A) \longrightarrow \cdots$$

其中当 q>0 时, $\widetilde{H}_q(A)=0$ 。故得当 q>1 时

$$\widetilde{H}_q(S^n, A) \cong \widetilde{H}_q(S^n) = \delta_q^n \mathbb{Z}$$

当 $q \leq 1$ 时则有

$$\cdots \longrightarrow \widetilde{H}_1(S^n) \xrightarrow{j_*} \widetilde{H}_1(S^n, A) \xrightarrow{\delta} \widetilde{H}_0(A) \xrightarrow{i_*} \widetilde{H}_0(S^n) \xrightarrow{j_*} \widetilde{H}_0(S^n, A) \longrightarrow 0$$

由于 n > 1,故 $\widetilde{H}_1(S^n) = 0$, $\widetilde{H}_0(S^n) = 0$,所以

$$\widetilde{H}_1(S^n, A) \cong \widetilde{H}_0(A) = \mathbb{Z}, \ \widetilde{H}_0(S^n, A) = 0$$

利用命题9回到通常的同调群,并注意到相对同调群的简约同调群与之完全一致,得

$$H_q(S^n, A) = \begin{cases} \mathbb{Z} & q = 1, n \\ 0 & q \neq 1, n \end{cases}$$

题目 27 记 M 为 $M\ddot{o}bius$ 带,它的边界是 S^1 。求 (M,S^1) 的各维相对同调群 $H_q(M,S^1)$ 。证明. 对空间偶 (M,S^1) 有相对同调群的长正合列:

$$\cdots \longrightarrow \widetilde{H}_q(S^1) \xrightarrow{i_*} \widetilde{H}_q(M) \xrightarrow{j_*} \widetilde{H}_q(M, S^1) \xrightarrow{\delta} \widetilde{H}_{q-1}(S^1) \longrightarrow \cdots$$

其中当 $q \neq 1$ 时 $\widetilde{H}_q(S^1) = 0$ 。由于 M 通过收缩映射 $r \colon M \longrightarrow S^1$ 同伦等价于其赤道 S^1 ,故 $\widetilde{H}_q(M) \cong \widetilde{H}_q(S^1)$ 。从而当 $q \neq 1, 2$ 时 $\widetilde{H}_q(M, S^1) \cong \widetilde{H}_q(M)$ 。

现只需考虑:

$$0 \longrightarrow \widetilde{H}_2(M, S^1) \xrightarrow{\delta} \widetilde{H}_1(S^1) \xrightarrow{i_*} \widetilde{H}_1(M) \xrightarrow{j_*} \widetilde{H}_1(M, S^1) \longrightarrow 0$$

考虑 S^1 里的单位闭路的同调类,它通过 i_* 映到 M 的边界,而该边界通过 r_* 映到 M 的赤道上的 2 倍闭路,从而 $\ker i_*=0, \operatorname{Im} i_*=2\mathbb{Z}$ 。于是

$$\widetilde{H}_2(M, S^1) \cong \ker i_* = 0, \ \widetilde{H}_1(M, S^1) \cong \widetilde{H}_1(M) / \operatorname{Im} i_* = \mathbb{Z}/2$$

利用命题9回到通常的同调群,并注意到相对同调群的简约同调群与之完全一致,得

$$H_q(M, S^1) = \begin{cases} \mathbb{Z}/2 & q = 1\\ 0 & q \neq 1 \end{cases}$$

题目 28 记 $S^1 = \{e^{it} \mid t \in [-\pi, \pi]\}$ 为复平面上的单位圆。映射 $f: S^1 \longrightarrow S^1$ 定义为:对任何 $e^{it} \in S^1$, $f(e^{it}) = e^{-it}$ 。证明: f 的映射度为 -1, 即:

$$f = -1: H_1(S^1) \cong \mathbb{Z} \longrightarrow H_1(S^1)$$

证明. 考察 S^1 中单位闭路 σ ,由于 $f\circ\sigma(t)=e^{-2\pi it}$ 是 σ 的反向道路,故 $f_*[\sigma]=-[\sigma]$ 。而 $[\sigma]$ 是 $H_1(S^1)$ 的生成元,故 $\deg f=-1$ 。

题目 29 利用 (24) 题结论证明: 如果 $f: S^n \longrightarrow S^n$ 的映射度为 k, 则

$$\Sigma f \colon \Sigma S^n = S^{n+1} \longrightarrow \Sigma S^n$$

的映射度也为 k, 其中对 $[x,t] \in \Sigma S^n = S^n \times I / \sim, \Sigma f([x,t]) = [f(x),t]$ 。

证明. 对于 q > 0 的情况,由映射锥的同调序列的自然性(命题25),得下图交换:

$$\begin{split} \widetilde{H}_{q+1}(\Sigma X) & \stackrel{\Sigma_*}{\longleftarrow} \widetilde{H}_q(X) \\ & \underset{(\Sigma f)_*}{(\Sigma f)_*} \bigg| \qquad \qquad \Big| f_* \\ & \widetilde{H}_{q+1}(\Sigma Y) & \stackrel{\Sigma_*}{\longleftarrow} \widetilde{H}_q(Y) \end{split}$$

于是 $\Sigma_* \circ f_* = (\Sigma f)_* \circ \Sigma_*$ 。 设 $\deg f = k, \deg \Sigma f = d$,则 $\forall [a] \in \widetilde{H}_q(X)$,有

$$\Sigma_*(f_*([a])) = \Sigma_*(k[a]) = k\Sigma_*[a]$$
$$(\Sigma f)_*(\Sigma_*([a])) = d\Sigma_*[a]$$

从而 k = d,即 $\deg f = \deg \Sigma f$ 。

题目 30 证明:对径映射 $\beta: S^n \longrightarrow S^n$ 的映射度为 $(-1)^{n+1}$ 。

证明. 我们先证明一个引理:

定义镜面反射 $\gamma^n: S^n \longrightarrow S^n$ 为 $\gamma^n(x_0, x_1, \cdots, x_n) = (-x_0, x_1, \cdots, x_n)$, 则 $\deg \gamma^n = -1$ 。

用归纳法,首先在题目(28)中已证明对 $\gamma^1 \colon S^1 \longrightarrow S^1$ 结论成立。若对 S^n 结论成立,则由题目(29)及 $\Sigma S^n = S^{n+1}$,得到 $\deg r^{n+1} = \deg r^n = -1$ 。

对径映射是
$$n+1$$
 次镜面反射 $S^n \longrightarrow S^n$ 的复合。