In [1]: import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler import numpy as np

In [2]: data = pd.read_csv('HomeC.csv', low_memory=False) data.head()

Out[2]:

	time	use [kW]	gen [kW]	House overall [kW]	Dishwasher [kW]	Furnace 1 [kW]	Furnace 2 [kW]	Home office [kW]	Fridg [kW
0	1451624400	0.932833	0.003483	0.932833	0.000033	0.020700	0.061917	0.442633	0.12415
1	1451624401	0.934333	0.003467	0.934333	0.000000	0.020717	0.063817	0.444067	0.12400
2	1451624402	0.931817	0.003467	0.931817	0.000017	0.020700	0.062317	0.446067	0.12353
3	1451624403	1.022050	0.003483	1.022050	0.000017	0.106900	0.068517	0.446583	0.12313
4	1451624404	1.139400	0.003467	1.139400	0.000133	0.236933	0.063983	0.446533	0.12285

5 rows × 32 columns

```
In [3]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 503911 entries, 0 to 503910
Data columns (total 32 columns):

#	Column	•	ll Count	Dtype
0	time	503911	non-null	object
1	use [kW]	503910	non-null	float64
2	gen [kW]	503910	non-null	float64
3	House overall [kW]	503910	non-null	float64
4	Dishwasher [kW]	503910	non-null	float64
5	Furnace 1 [kW]	503910	non-null	float64
6	Furnace 2 [kW]	503910	non-null	float64
7	Home office [kW]	503910	non-null	float64
8	Fridge [kW]	503910	non-null	float64
9	Wine cellar [kW]	503910	non-null	float64
10	Garage door [kW]	503910	non-null	float64
11	Kitchen 12 [kW]	503910	non-null	float64
12	Kitchen 14 [kW]	503910	non-null	float64
13	Kitchen 38 [kW]	503910	non-null	float64
14	Barn [kW]	503910	non-null	float64
15	Well [kW]	503910	non-null	float64
16	Microwave [kW]	503910	non-null	float64
17	Living room [kW]	503910	non-null	float64
18	Solar [kW]	503910	non-null	float64
19	temperature	503910	non-null	float64
20	icon	503910	non-null	object
21	humidity	503910	non-null	float64
22	visibility	503910	non-null	float64
23	summary	503910	non-null	object
24	apparentTemperature	503910	non-null	float64
25	pressure	503910	non-null	float64
26	windSpeed	503910	non-null	float64
27	cloudCover	503910	non-null	object
28	windBearing	503910	non-null	float64
29	precipIntensity	503910	non-null	float64
30	dewPoint	503910	non-null	float64
31	precipProbability	503910	non-null	float64
dtvne	es: float64(28), obje	c+(4)		

dtypes: float64(28), object(4)

memory usage: 123.0+ MB

In [4]: data.tail()

Out[4]:

	time	use [kW]	gen [kW]	House overall [kW]	Dishwasher [kW]	Furnace 1 [kW]	Furnace 2 [kW]	Home office [kW]	
503906	1452128306	1.599333	0.003233	1.599333	0.000050	0.104017	0.625033	0.041750	0.
503907	1452128307	1.924267	0.003217	1.924267	0.000033	0.422383	0.637733	0.042033	0.
503908	1452128308	1.978200	0.003217	1.978200	0.000050	0.495667	0.620367	0.042100	0.
503909	1452128309	1.990950	0.003233	1.990950	0.000050	0.494700	0.634133	0.042100	0.
503910	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

5 rows × 32 columns

In [5]: data=data[:-1]
 data.tail()

Out[5]:

		time	use [kW]	gen [kW]	House overall [kW]	Dishwasher [kW]	Furnace 1 [kW]	Furnace 2 [kW]	Home office [kW]	- × C
5	03905	1452128305	1.601233	0.003183	1.601233	0.000050	0.085267	0.642417	0.041783	0.
5	03906	1452128306	1.599333	0.003233	1.599333	0.000050	0.104017	0.625033	0.041750	0.
5	03907	1452128307	1.924267	0.003217	1.924267	0.000033	0.422383	0.637733	0.042033	0.
5	03908	1452128308	1.978200	0.003217	1.978200	0.000050	0.495667	0.620367	0.042100	0.
5	03909	1452128309	1.990950	0.003233	1.990950	0.000050	0.494700	0.634133	0.042100	0.

5 rows × 32 columns

In [6]: #given that the time is in UNIX format, Let's check
 time_index = pd.date_range('2016-01-01 05:00', periods=len(data), freq='min')
 time_index = pd.DatetimeIndex(time_index)
 data = data.set_index(time_index)

```
In [7]: data.head()
```

```
Out[7]:
```

	time	use [kW]	gen [kW]	House overall [kW]	Dishwasher [kW]	Furnace 1 [kW]	Furnace 2 [kW]	Home office [kW]	
2016-01- 01 05:00:00	1451624400	0.932833	0.003483	0.932833	0.000033	0.020700	0.061917	0.442633	(
2016-01- 01 05:01:00	1451624401	0.934333	0.003467	0.934333	0.000000	0.020717	0.063817	0.444067	(
2016-01- 01 05:02:00	1451624402	0.931817	0.003467	0.931817	0.000017	0.020700	0.062317	0.446067	(
2016-01- 01 05:03:00	1451624403	1.022050	0.003483	1.022050	0.000017	0.106900	0.068517	0.446583	(
2016-01- 01 05:04:00	1451624404	1.139400	0.003467	1.139400	0.000133	0.236933	0.063983	0.446533	(

5 rows × 32 columns

```
In [8]: | data.columns
```

```
Out[8]: Index(['time', 'use [kW]', 'gen [kW]', 'House overall [kW]', 'Dishwasher [k
         W]',
                  'Furnace 1 [kW]', 'Furnace 2 [kW]', 'Home office [kW]', 'Fridge [kW]',
                  'Wine cellar [kW]', 'Garage door [kW]', 'Kitchen 12 [kW]',
                 'Kitchen 14 [kW]', 'Kitchen 38 [kW]', 'Barn [kW]', 'Well [kW]', 'Microwave [kW]', 'Living room [kW]', 'Solar [kW]', 'temperature',
                  'icon', 'humidity', 'visibility', 'summary', 'apparentTemperature',
                  'pressure', 'windSpeed', 'cloudCover', 'windBearing', 'precipIntensit
         у',
                  'dewPoint', 'precipProbability'],
                dtype='object')
```

```
In [9]: data.columns = [col.replace(' [kW]', '') for col in data.columns]
        data.columns
```

```
Out[9]: Index(['time', 'use', 'gen', 'House overall', 'Dishwasher', 'Furnace 1',
                'Furnace 2', 'Home office', 'Fridge', 'Wine cellar', 'Garage door',
               'Kitchen 12', 'Kitchen 14', 'Kitchen 38', 'Barn', 'Well', 'Microwave',
               'Living room', 'Solar', 'temperature', 'icon', 'humidity', 'visibilit
               'summary', 'apparentTemperature', 'pressure', 'windSpeed', 'cloudCove
                'windBearing', 'precipIntensity', 'dewPoint', 'precipProbability'],
              dtype='object')
```

Out[10]:

	time	use	gen	House overall	Dishwasher	Home office	Fridge	Win cella
2016-01- 01 05:00:00	1451624400	0.932833	0.003483	0.932833	0.000033	0.442633	0.124150	0.00698
2016-01- 01 05:01:00	1451624401	0.934333	0.003467	0.934333	0.000000	0.444067	0.124000	0.00698
2016-01- 01 05:02:00	1451624402	0.931817	0.003467	0.931817	0.000017	0.446067	0.123533	0.00698
2016-01- 01 05:03:00	1451624403	1.022050	0.003483	1.022050	0.000017	0.446583	0.123133	0.00698
2016-01- 01 05:04:00	1451624404	1.139400	0.003467	1.139400	0.000133	0.446533	0.122850	0.0068


```
In [11]: | data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 503910 entries, 2016-01-01 05:00:00 to 2016-12-16 03:29:00
         Freq: T
         Data columns (total 27 columns):
          #
              Column
                                   Non-Null Count
                                                    Dtype
              _ _ _ _ _ _
                                   -----
                                                    ----
          0
              time
                                   503910 non-null object
          1
                                   503910 non-null
                                                    float64
              use
                                                   float64
          2
              gen
                                   503910 non-null
                                   503910 non-null float64
          3
              House overall
          4
              Dishwasher
                                   503910 non-null float64
          5
              Home office
                                   503910 non-null float64
          6
              Fridge
                                   503910 non-null float64
          7
              Wine cellar
                                   503910 non-null float64
          8
              Garage door
                                   503910 non-null float64
          9
              Barn
                                   503910 non-null float64
          10 Well
                                   503910 non-null float64
          11 Microwave
                                   503910 non-null float64
                                   503910 non-null float64
          12 Living room
          13
              Solar
                                   503910 non-null float64
          14 temperature
                                   503910 non-null float64
          15 humidity
                                   503910 non-null float64
          16 visibility
                                   503910 non-null float64
          17
                                   503910 non-null float64
              apparentTemperature
          18
              pressure
                                   503910 non-null float64
          19 windSpeed
                                   503910 non-null float64
          20 cloudCover
                                   503910 non-null object
                                   503910 non-null float64
          21 windBearing
          22 precipIntensity
                                   503910 non-null float64
          23 dewPoint
                                   503910 non-null float64
          24 precipProbability
                                   503910 non-null float64
          25
              Furnace
                                   503910 non-null
                                                    float64
          26 Kitchen
                                   503910 non-null
                                                   float64
         dtypes: float64(25), object(2)
         memory usage: 107.6+ MB
In [12]: data['cloudCover'].unique()
Out[12]: array(['cloudCover', '0.75', '0', '1', '0.31', '0.44', '0.13', '0.19',
                '0.25', '0.16', '0.21', '0.15', '0.14', '0.27', '0.28', '0.17',
                '0.05', '0.1', '0.26', '0.29', '0.11', '0.09', '0.12', '0.06',
                               '0.04', '0.35', '0.22', '0.23', '0.54', '0.39',
                        '0.08',
                '0.02',
                '0.03', '0.07', '0.76', '0.62', '0.18', '0.79', '0.48', '0.24',
                '0.57', '0.41', '0.78', '0.2', '0.77', '0.46', '0.55', '0.01',
```

'0.51', '0.47', '0.5', '0.4', '0.3', '0.43', '0.33', '0.6', '0.68', '0.66', '0.45', '0.34', '0.52', '0.67', '0.49', '0.37', '0.36',

'0.72', '0.73', '0.71', '0.64', '0.59'], dtype=object)

'0.38', '0.42', '0.53', '0.63', '0.32', '0.56', '0.58',

'0.61',

```
In [13]: data['cloudCover'].replace(['cloudCover'], method='bfill', inplace=True)
         data['cloudCover'] = data['cloudCover'].astype('float')
In [14]: | data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 503910 entries, 2016-01-01 05:00:00 to 2016-12-16 03:29:00
         Freq: T
         Data columns (total 27 columns):
              Column
                                   Non-Null Count
                                                   Dtype
              -----
                                   _____
                                                    ----
         ---
              time
                                   503910 non-null object
          0
          1
                                   503910 non-null float64
              use
          2
              gen
                                   503910 non-null float64
          3
              House overall
                                   503910 non-null float64
          4
              Dishwasher
                                   503910 non-null float64
          5
                                  503910 non-null float64
              Home office
                                   503910 non-null float64
          6
              Fridge
          7
              Wine cellar
                                  503910 non-null float64
          8
              Garage door
                                   503910 non-null float64
          9
              Barn
                                   503910 non-null float64
          10 Well
                                   503910 non-null float64
                                   503910 non-null float64
          11 Microwave
          12 Living room
                                   503910 non-null float64
          13 Solar
                                  503910 non-null float64
          14 temperature
                                   503910 non-null float64
          15 humidity
                                   503910 non-null float64
                                   503910 non-null float64
          16 visibility
          17
              apparentTemperature 503910 non-null float64
          18 pressure
                                   503910 non-null float64
          19 windSpeed
                                   503910 non-null float64
                                   503910 non-null float64
          20 cloudCover
          21 windBearing
                                   503910 non-null float64
          22 precipIntensity
                                   503910 non-null float64
          23 dewPoint
                                   503910 non-null float64
          24 precipProbability
                                   503910 non-null float64
          25 Furnace
                                   503910 non-null float64
          26 Kitchen
                                   503910 non-null float64
         dtypes: float64(26), object(1)
         memory usage: 107.6+ MB
In [15]: energy_data = data.filter(items=[ 'gen', 'House overall', 'Dishwasher', 'Furna
                                              'Wine cellar', 'Garage door', 'Kitchen',
                                              'Microwave', 'Living room', 'Solar'])
         sensor_data = data.filter(items=['temperature',
                                               'humidity', 'visibility', 'apparentTempe
                                               'windSpeed', 'windBearing', 'dewPoint'])
```

```
In [16]: fig = plt.subplots(figsize=(12, 10))
    corr = energy_data.corr()
    sns.heatmap(corr[corr>0.9], vmax=1, vmin=0, center=0.5)
    plt.show()
```


In [17]: energy_data.drop(['Solar'], axis=1, inplace=True)

In [18]: energy_data.head()

Out[18]:

	gen	House overall	Dishwasher	Furnace	Home office	Fridge	Wine cellar	Garage door	Ki
2016-01- 01 05:00:00	0.003483	0.932833	0.000033	0.082617	0.442633	0.124150	0.006983	0.013083	0.00
2016-01- 01 05:01:00	0.003467	0.934333	0.000000	0.084533	0.444067	0.124000	0.006983	0.013117	0.00
2016-01- 01 05:02:00	0.003467	0.931817	0.000017	0.083017	0.446067	0.123533	0.006983	0.013083	0.00
2016-01- 01 05:03:00	0.003483	1.022050	0.000017	0.175417	0.446583	0.123133	0.006983	0.013000	0.00
2016-01- 01 05:04:00	0.003467	1.139400	0.000133	0.300917	0.446533	0.122850	0.006850	0.012783	0.00


```
In [19]: fig = plt.subplots(figsize=(12, 10))
    corr = sensor_data.corr()
    sns.heatmap(corr[corr>0.9], vmax=1, vmin=0, center=0.5)
    plt.show()
```


In [20]: sensor_data.drop(['apparentTemperature'], axis=1, inplace=True)

In [21]: sensor_data.head()

Out[21]:

	temperature	humidity	visibility	pressure	windSpeed	windBearing	dewPoint
2016-01-01 05:00:00	36.14	0.62	10.0	1016.91	9.18	282.0	24.4
2016-01-01 05:01:00	36.14	0.62	10.0	1016.91	9.18	282.0	24.4
2016-01-01 05:02:00	36.14	0.62	10.0	1016.91	9.18	282.0	24.4
2016-01-01 05:03:00	36.14	0.62	10.0	1016.91	9.18	282.0	24.4
2016-01-01 05:04:00	36.14	0.62	10.0	1016.91	9.18	282.0	24.4

```
In [22]: energy_per_day = energy_data.resample('D').sum()
    plt.figure(figsize=(20,10))
    plt.title("Overall energy consumption per day")
    sns.lineplot(data = energy_per_day.filter(items=[ 'Dishwasher', 'Home office',
    #'Dishwasher', 'Furnace', 'Home office', 'Fridge','Wine cellar', 'Garage door'
```

Out[22]: <Axes: title={'center': 'Overall energy consumption per day'}>


```
In [23]: energy_per_day = energy_data.resample('D').sum()
    plt.figure(figsize=(20,10))
    plt.title("Overall energy consumption per day")
    sns.lineplot(data = energy_per_day.filter(items=[ 'Barn', 'Well', 'Garage door
    #'Dishwasher', 'Furnace', 'Home office', 'Fridge', 'Wine cellar', 'Garage door'
```

Out[23]: <Axes: title={'center': 'Overall energy consumption per day'}>

Out[24]: <Axes: >


```
In [25]: energy_per_day = energy_data.resample('D').sum()
    sensor_per_day = sensor_data.resample('D').sum()
    sns.regplot(x=energy_per_day['House overall'], y= sensor_per_day['temperature'
```

Out[25]: <Axes: xlabel='House overall', ylabel='temperature'>


```
In [27]: sns.regplot(x=energy_per_day['Fridge'], y= sensor_per_day['temperature'])
```

Out[27]: <Axes: xlabel='Fridge', ylabel='temperature'>


```
In [28]: sns.regplot(x=energy_per_day['Furnace'], y= sensor_per_day['temperature'])
```

Out[28]: <Axes: xlabel='Furnace', ylabel='temperature'>


```
In [29]: combined_data = pd.concat([energy_data, sensor_data], axis=1)
```

In [30]: | combined data.dropna(inplace=True)

```
In [31]: X = combined_data.drop('House overall', axis=1) # Features
y = combined_data['House overall'] # Target variable

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randometric randometri
```

```
In [32]: # Standardize the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

```
In [33]: # Linear Regression Model
    model_lr = LinearRegression()
    model_lr.fit(X_train_scaled, y_train)
```

Out[33]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [34]: y_pred_lr = model_lr.predict(X_test_scaled)
```

```
In [35]: mse_lr = mean_squared_error(y_test, y_pred_lr)
```

```
In [36]: feature_importance_lr = np.abs(model_lr.coef_)
    feature_names = X.columns

# Visualize feature importance
plt.figure(figsize=(12, 6))
plt.barh(feature_names, feature_importance_lr)
plt.xlabel('Feature Importance')
plt.ylabel('Features')
plt.title('Linear Regression - Feature Importance')
plt.show()
```



```
In [37]: from sklearn.ensemble import RandomForestRegressor
    from sklearn.svm import SVR
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.neural_network import MLPRegressor
    from sklearn.metrics import r2_score
```

```
In [ ]: # Random Forest Regressor
model_rf = RandomForestRegressor(n_estimators=100, random_state=42)
model_rf.fit(X_train_scaled, y_train)
y_pred_rf = model_rf.predict(X_test_scaled)
r2_rf = r2_score(y_test, y_pred_rf)
print(f"Random Forest R-squared: {r2_rf}")
```

Random Forest R-squared: 0.9721649392555222

```
In [ ]: # Support Vector Regressor
    model_svr = SVR()
    model_svr.fit(X_train_scaled, y_train)
    y_pred_svr = model_svr.predict(X_test_scaled)
    r2_svr = r2_score(y_test, y_pred_svr)
    print(f"SVR R-squared: {r2_svr}")
```

```
In [38]: # K-Nearest Neighbors Regressor
    model_knn = KNeighborsRegressor()
    model_knn.fit(X_train_scaled, y_train)
    y_pred_knn = model_knn.predict(X_test_scaled)
    r2_knn = r2_score(y_test, y_pred_knn)
    print(f"K-Nearest Neighbors R-squared: {r2_knn}")
```

K-Nearest Neighbors R-squared: 0.9157151225896871


```
In [40]: # Multi-layer Perceptron (Feedforward Neural Network)
    from keras.models import Sequential
    from keras.layers import Dense

model_fnn = Sequential()
    model_fnn.add(Dense(128, input_dim=X_train_scaled.shape[1], activation='relu')
    model_fnn.add(Dense(64, activation='relu'))
    model_fnn.add(Dense(1)) # Output Layer with Linear activation

model_fnn.compile(optimizer='adam', loss='mean_squared_error')
    model_fnn.fit(X_train_scaled, y_train, epochs=20, batch_size=32, verbose=1)

y_pred_fnn = model_fnn.predict(X_test_scaled)
    r2_fnn = r2_score(y_test, y_pred_fnn)
    print(f"FNN R-squared: {r2_fnn}")
```


_	1 4/00							
	och 1/20 2598/12598	[======]	_	43s	3ms/step	_	loss:	0.1629
	och 2/20	-			•			
		[======]	_	28s	2ms/step	_	loss:	0.1133
	och 3/20	-			•			
		[=======]	_	29s	2ms/step	_	loss:	0.0980
	och 4/20				, ,			
		[=======]	_	28s	2ms/step	_	loss:	0.0904
	och 5/20				, ,			
		[=======]	_	29s	2ms/step	_	loss:	0.0860
	och 6/20							
		[=======]	_	30s	2ms/step	_	loss:	0.0813
	och 7/20							
		[=======]	_	29s	2ms/step	_	loss:	0.0792
	och 8/20				•			
		[======]	_	30s	2ms/step	_	loss:	0.0768
	och 9/20				-, _F			
		[=======]	_	28s	2ms/step	_	loss:	0.0745
	och 10/20	-						
		[======]	_	31s	2ms/step	_	loss:	0.0731
	och 11/20	-			, ,			
		[======]	_	32s	3ms/step	_	loss:	0.0713
	och 12/20	-			•			
12	2598/12598	[======]	-	28s	2ms/step	-	loss:	0.0699
	och 13/20	-						
12	2598/12598	[=======]	-	30s	2ms/step	-	loss:	0.0691
Εŗ	och 14/20							
12	2598/12598	[=======]	-	31s	2ms/step	-	loss:	0.0677
Εp	och 15/20							
12	2598/12598	[=======]	-	28s	2ms/step	_	loss:	0.0668
	och 16/20							
12	2598/12598	[======]	-	30s	2ms/step	-	loss:	0.0659
	och 17/20							
12	2598/12598	[======]	-	31s	2ms/step	-	loss:	0.0655
Εŗ	och 18/20							
12	2598/12598	[======]	-	36s	3ms/step	-	loss:	0.0644
	och 19/20							
12	2598/12598	[======]	-	31s	2ms/step	-	loss:	0.0639
	och 20/20							
		[======]				-	loss:	0.0631
] -	5	s 1ms	s/step			
F١	N R-square	ed: 0.94086830717272						