CORRENTE ELETTRICA

Fondamenti di Fisica Corso di Laurea in Informatica A.A. 2021/22

- Dott. Francesco Scattarella
- Università di Bari
- Email: francesco.scattarella@uniba.it
- Ufficio: Dipartimento IA di Fisica, 234- tel. 080 544 2369

CORRENTE ELETTRICA

Applicando una d.d.p. ai capi di un filo conduttore si produce un flusso ordinato di particelle cariche, cioè una corrente elettrica.

Per convenzione, il verso della corrente è quello opposto al moto delle cariche negative (elettroni), che si dirigono <u>dal</u> potenziale minore a quello maggiore.

Corrente elettrica

- Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo dt
- Si definisce la corrente elettrica come rapporto:

$$i = \frac{dq}{dt}$$

- La corrente elettrica è una grandezza scalare
- Carica complessiva che attraversa la sezione A nel tempo t:

$$q = \int_{0}^{t} dq = \int_{0}^{t} i(t)dt$$

Corrente elettrica nei conduttori

- In un conduttore in equilibrio elettrostatico le cariche di conduzione si muovono in maniera disordinata per effetto dell'agitazione termica (gli elettroni di conduzione nei metalli hanno una velocità media dell'ordine di 10⁶m/s)
 - I portatori di carica si muovono in modo casuale, il flusso netto di carica attraverso una sezione qualsiasi è nullo
- Per avere una corrente elettrica stazionaria è necessario che ci sia un flusso netto di carica attraverso una sezione di un conduttore
 - Tale flusso netto di carica può essere mantenuto applicando un campo elettrico all'interno del conduttore
 - I portatori di carica si muovono lungo le linee del campo elettrico, dando luogo ad una corrente

VERSO CORRENTE ELETTRICA

Convenzionalmente la corrente è data dal flusso di cariche positive sospinte dal campo elettrico

Dove
J è la densità di corrente $J = \frac{i}{A}$ E è il campo elettrico v_d è la velocità di deriva dei portatori di carica positivi

Generatori

• Per mantenere una corrente in un conduttore occorre utilizzare un generatore, che mantiene una d.d.p. costante tra i suoi morsetti

• La d.d.p. ai capi dei morsetti produce un campo elettrico nella spira conduttrice, che causa il movimento delle cariche all'interno della spira, e quindi la corrente

f.e.m
$$\varepsilon = \frac{dL}{dq}$$

• L'energia necessaria per mantenere in moto i portatori di carica nel conduttore viene fornita dal generatore (in genere a spese della sua energia chimica). Si parla di Forza Elettromotrice (f.e.m.)

Resistenza

- Applicando la stessa d.d.p. ai capi di diversi conduttori ne risultano correnti diverse
- Si definisce la resistenza di un conduttore come rapporto tra la d.d.p. applicata ai suoi capi e la corrente che lo attraversa

$$R = V/i$$

- La resistenza rappresenta quindi la tendenza del conduttore ad opporsi al flusso delle cariche che lo attraversano
- La resistenza in generale varia con la d.d.p. applicata
- Esiste una classe di conduttori (conduttori ohmici) per i quali la resistenza non dipende dalla d.d.p. applicata
 - in un conduttore ohmico la corrente che fluisce nel conduttore è proporzionale alla d.d.p. applicata (legge di Ohm)

Resistenza e resistività

Si definisce resistività di un materiale, la quantità:

$$oldsymbol{
ho} = rac{E}{J}$$

La resistività è legata al materiale e in generale dipende dalla temperatura (essa aumenta con l'aumentare della temperatura)

La resistenza R è invece una proprietà legata sia al materiale che alla geometria del corpo. Si ha infatti che:

$$R =
ho rac{L}{A}$$

Resistenze nei circuiti: legge di Ohm

Simbolo circuitale della resistenza:

Per i conduttori ohmici vale Legge di Ohm:

$$V_A - V_B = Ri$$
 \Longrightarrow $i = \frac{V_A - V_B}{R}$

$$i = \frac{V_A - V_B}{R}$$

La corrente che scorre attraverso un dispositivo è sempre direttamente proporzionale alla d.d.p. applicata al dispositivo stesso.

Unità di misura

- L'intensità di corrente i è una grandezza fondamentale
 - Nel SI la corrente si misura in Ampere (A)
- La densità di corrente J è una grandezza derivata
 - Nel SI la corrente si misura in A/m²

- La resistenza R è invece una grandezza derivata
 - \blacksquare Nel SI la resistenza si misura in ohm (Ω)
- La resistività ρ è una grandezza derivata
 - Nel SI la resistività si misura in Ω •m

Forza elettromotrice f.e.m.

L'energia necessaria per mantenere in moto i portatori di carica nel conduttore viene fornita dal generatore (in genere a spese della sua energia chimica come nelle batterie). Si parla di Forza Elettromotrice (f.e.m.)

f.e.m
$$\varepsilon = \frac{dL}{dq}$$

La forza elettromotrice, compiendo lavoro sulle cariche, mantiene stazionaria la corrente attraverso R, che altrimenti ridurrebbe la corrente: si parla di caduta di tensione (o di potenziale).

- Generatore ideale: si assume che non abbia resistenza interna
- Generatore reale: oppone una resistenza interna al movimento di carica (come una comune batteria)

Circuiti elettrici a maglia singola: calcolo della corrente

- Se si passa attraverso una resistenza nel verso della corrente, la variazione di potenziale è –Ri (caduta di tensione)
- Se si passa attraverso un generatore di f.e.m (ideale) nel verso della corrente la variazione di potenziale è +ε

Metodo del potenziale

- In una maglia, partendo da un punto qualsiasi a potenziale V_0 e percorrendo il circuito nel verso della corrente si ha :
 - $V_0 + \varepsilon Ri = V_0 \implies \varepsilon = Ri$

Potenza nei circuiti elettrici

- Nel tempo dt una carica dq = i dt si sposta dal polo positivo a quello negativo del generatore
- Lavoro compiuto dal generatore sulla carica dq:

$$dL = dU = dq \cdot V = idt \cdot V$$

Potenza dissipata:

$$P = \frac{dL}{dt} = Vi \left(= Ri^2 = \frac{V^2}{R} \right)$$

La potenza è dissipata per effetto del passaggio delle cariche attraverso la resistenza sotto forma di calore (effetto Joule)

Resistenze in serie

- Il collegamento in serie si realizza concatenando le resistenze
- Le resistenze collegate in serie sono attraversate dalla stessa corrente

$$\xrightarrow{i}_{A} \bigvee_{B}^{R_{1}} \bigvee_{C}^{R_{2}}$$

Legge di Ohm per
$$R_1$$
: $V_A - V_B = R_1 i$

Legge di Ohm per
$$R_2$$
: $V_B - V_C = R_2 i$

$$V_A - V_C = (R_1 + R_2)i$$

Resistenza equivalente: $R_{eq} = R_1 + R_2$

Per N resistenze in serie la resistenza equivalente è data da:

$$\pmb{R}_{eq} = \pmb{R}_1 + \pmb{R}_2 + \ldots + \pmb{R}_N$$

Resistenze in parallelo

Il collegamento in parallelo si realizza collegando tutte le resistenze alla stessa d.d.p.

Legge di Ohm per R_1 : $i_1 = \frac{V_A - V_B}{R}$

$$i_1 = \frac{V_A - V_B}{R_1}$$

Legge di Ohm per R₂:

$$i_2 = \frac{V_A - V_B}{R_2}$$

$$i = i_1 + i_2 = (V_A - V_B) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Resistenze in parallelo

Il collegamento in parallelo si realizza collegando tutte le resistenze alla stessa d.d.p.

$$i = i_1 + i_2 = (V_A - V_B) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Resistenza equivalente:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \Leftrightarrow R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Per N resistenze in parallelo:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Circuiti a più maglie

Rete elettrica lineare = sono circuiti con geometrie più complicate, che non possono essere ridotti ad un unico resistore soltanto con operazioni di serie o parallelo.

Leggi di Kirchoff

Legge dei nodi: la somma delle correnti che entrano in un nodo è uguale alla somma delle correnti che escono dal nodo stesso

$$\sum_{j} i_{in,j} = \sum_{k} i_{out,k}$$

Leggi di Kirchoff

Legge delle maglie: la somma algebrica delle d.d.p. lungo una maglia è nulla

Leggi di Kirchoff

- Legge dei nodi: la somma delle correnti che entrano in un nodo N è uguale alla somma delle correnti che escono dal nodo stesso
- Legge delle maglie: la somma algebrica delle d.d.p. lungo una maglia è nulla

Sommando le cadute di tensione lungo il tratto ABCDEA:

$$-R_{1}i_{1}-\varepsilon_{1}-R_{2}i_{2}-R_{3}i_{3}+\varepsilon_{2}-R_{4}i_{4}-R_{5}i_{5}=0$$

Circuito RC: carica e scarica di un condensatore (cenni)

Circuito RC:

Circuito elettrico in cui sono presenti una resistenza ed un capacità (circuito aperto).

Supponiamo che siano collegate in serie.

Carica di un condensatore

Si dimostra che l'andamento del processo di carica del condensatore è pari a :

$$q = C\varepsilon(1-e^{-t/RC}) \rightarrow I = \varepsilon/R \ (e^{-t/RC})$$

$$V_C = q/C = \varepsilon (1 - e^{-t/RC})$$

 $RC = \tau costante di tempo$

Scarica di un condensatore

Si dimostra che l'andamento del processo di carica del condensatore è pari a :

$$q = q_0 e^{-t/RC} \rightarrow I = -(q_{0/RC}) (e^{-t/RC})$$

