

CLAIMS

What is claimed is:

1 1. A system for reassembling asynchronous transfer mode (ATM) data in
2 real time, comprising:

3 a circular buffer for storing ATM data, the ATM data comprising information
4 divided into cells; and

5 a plurality of parallel processing elements configured to analyze the ATM cells
6 and determine a cell type, wherein ATM adaptation layer (AAL) 2 cells and AAL 5
7 cells are reassembled in real-time.

1 2. The system of claim 1, wherein the circular buffer communicates with
2 the plurality of processing elements simultaneously.

1 3. The system of claim 2, further comprising a fragmentation table
2 configured to receive and store data fragments associated with an ATM cell.

1 4. The system of claim 3, further comprising a buffer manager configured
2 to accumulate the data fragments and assemble the data fragments into a frame.

1 5. The system of claim 4, further comprising a statistics memory
2 configured to store statistics associated with the cells.

1 6. The system of claim 5, wherein the statistics are chosen from an idle
2 cell, an unassigned cell, an operation and maintenance (OAM) cell, an AAL 2 cell, an
3 AAL 5 cell, a header error correction (HEC) error cell, a frame count, a byte count,
4 congestion information, AAL5 CRC error count, and resource management (RM) cell
5 count.

1 7. The system of claim 6, wherein the statistics are gathered for each unique
2 VPI/VCI cell stream.

1 8. The device of claim 7, wherein the statistics are periodically provided to
2 a processor for display.

1 9. A method for reassembling asynchronous transfer mode (ATM) data in
2 real time, comprising:

3 providing ATM data to a circular buffer, the ATM data comprising information
4 divided into cells;

5 storing the ATM data in the circular buffer;

6 analyzing the ATM cells to determine a cell type, wherein ATM adaptation
7 layer (AAL) 2 cells and AAL 5 cells are reassembled in real-time.

1 10. The method of claim 9, further comprising simultaneously
2 communicating between the circular buffer and the plurality of processing elements.

1 11. The system of claim 10, further comprising receiving and storing data
2 fragments associated with an ATM cell in a fragmentation table.

1 12. The method of claim 11, further comprising:
2 accumulating the data fragments in a buffer manager; and
3 assembling the data fragments into a frame.

1 13. The method of claim 12, further comprising storing statistics associated
2 with the cells in a statistics memory.

1 14. The method of claim 13, wherein the statistics are chosen from an idle
2 cell, an unassigned cell, an operation and maintenance (OAM) cell, an AAL 2 cell, an
3 AAL 5 cell, a header error correction (HEC) error cell, a frame count, a byte count,
4 congestion information, AAL5 CRC error count, and resource management (RM) cell
5 count.

1 15. The method of claim 14, wherein the statistics are gathered for each
2 unique VPI/VCI cell stream.

1 16. The method of claim 15, further comprising periodically providing the
2 statistics to a processor for display.

1 17. A computer readable medium having a program for reassembling
2 asynchronous transfer mode (ATM) data in real time, comprising:

3 logic for providing ATM data to a circular buffer, the ATM data comprising
4 information divided into cells;

5 logic for storing the ATM data in the circular buffer;

6 logic for analyzing the ATM cells to determine a cell type, wherein ATM
7 adaptation layer (AAL) 2 cells and AAL 5 cells are reassembled in real-time.

1 18. The program of claim 17, further comprising logic for simultaneously
2 communicating between the circular buffer and the plurality of processing elements.

1 19. The program of claim 18, further comprising logic for receiving and
2 storing data fragments associated with an ATM cell in a fragmentation table.

1 20. The program of claim 19, further comprising:

2 logic for accumulating the data fragments in a buffer manager; and
3 logic for assembling the data fragments into a frame.

1 21. The program of claim 20, further comprising storing statistics associated
2 with the cells in a statistics memory.

1 22. The program of claim 21, wherein the statistics are chosen from an idle
2 cell, an unassigned cell, an operation and maintenance (OAM) cell, an AAL 2 cell, an
3 AAL 5 cell, a header error correction (HEC) error cell, a frame count, a byte count,
4 congestion information, AAL5 CRC error count, and resource management (RM) cell
5 count.

1 23. The program of claim 22, wherein the statistics are gathered for each
2 unique VPI/VCI cell stream.

1 24. The program of claim 23, further comprising logic for periodically
2 providing the statistics to a processor for display.