

Course Number and Name: EGG 101 Section Name - Intro Engineering: Math &

Applications

Term Dates: Section Start Date - Section End Date

Meeting Location: Section Meeting Building Section Meeting Room

Meeting Days & Times: Section Meeting Days; Section Start Time - Section End Time

Lecture/Lab Hours: 3.00 Lecture Hours and 3.00 Lab Hours

Credits: 4.00

Course Description: This course is an application-based introduction to engineering and advanced mathematics topics through experiential, hands-on engineering labs. This course includes a laboratory section that has experiments and activities specifically designed to facilitate knowledge acquisition of course subject matter. Activities include algebraic manipulation of equations, trigonometry, vectors, sinusoids, matrices, differentiation and integration. Engineering applications are reinforced through extensive problem-solving by using math in context. MATLAB, an engineering analysis software, will be introduced and supported in lab applications. Laboratory emphasizes the use and understanding of basic instrumentation and measurement techniques and applications used. Students must register for the lab component of this course.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- Discuss and apply the technical aspects of chosen engineering field and schooling requirements.
- 2. Identify, analyze and evaluate issues in engineering and technical information and demonstrate proficiency through the presentation of appropriate combination of words, symbols, tables and graphs.

- 3. Build a strong foundation for advanced physics and engineering courses by identifying the various elements of a mathematical or statistical model and applying model to a real-world problem.
- 4. Interpret and draw conclusions from graphical, tabular, and other numerical or statistical representations of data research and summarize and justify analyses of mathematical/statistical models and problems.
- 5. Use computer applications and computer based programming and simulation software to enhance the laboratory experience (ie MATLAB, Simulink)

Course Materials

MATLAB Programming for Engineers - Included in Cengage Unlimited

ISBN: 978-0-357-03039-4

Authors: Stephen J. Chapman **Publisher:** Cengage Learning

Publication Date: 2020

Edition: 6th

Course Requirements

- Lectures: Attend lectures, take notes, and participate in class discussions. Lectures
 will introduce key concepts, demonstrate problem-solving techniques, and answer
 student questions.
- Homework (assigned weekly): Regular problem sets will consist of questions applying the covered concepts.
- Quizzes: Short in-class quizzes will assess understanding of recently covered material and identify areas needing improvement.
- Labs: Participate in hands-on experiments that apply the theoretical concepts to real-world situations. Labs will involve data collection, analysis, and report writing.
- Midterm Exam: A comprehensive exam covering the first half of the semester material.
- Final Project: Students will choose a research topic related to the course, conduct research, and present their findings in a written report and a poster presentation.

Evaluation Methods

Participation 10%

Homework/assignments 10%

Midterm Exams: 35%

Poster presentation 20%

Final Exam 25%

Grading

Letter Grade	Percentage
А	90-100
B+	87-89
В	80-86
C+	77-79
С	70-76
D+	67-69
D	60-66
F	< 60

Class Schedule

Week	Unit/Content	Lecture Learning Activities	Laboratory F
1	Introduction to Engineering	Evaluation and Selection of	Introduction to Lat
	– Majors and Collegiate	Scientific/Engineering Trade	MATLAB
	Requirements	Non Fiction Book	Estimation and
	Application of Algebra in	Resume Writing	Reasonableness
	Engineering	Lecture, Discussion	– Fermi Questions
	– Linear, Quadratic Equations	Practice Homework Problems	figures, measuren
			Assigned Reading
			Martian, Weir

Week	Unit/Content	Lecture Learning Activities	Laboratory F
2	Trigonometry	Lecture, Discussion	Lab #1: Applicatio
	- One-Link Planar Robot, Two-	Practice Homework Problems	in Engineering: Th
	Link Planar Robots		Circuit
3	2-D Vectors in Engineering	Lecture, Discussion	Lab #2: Trigonom
	Complex Numbers in	Practice Homework Problems	Relationships in C
	Engineering		Link Planar Robot
4	Engineering Ethics	Discussion Boards	Matlab Supplemei
		- TED Talks, Engineering	Instruction #1
		Disasters	
		- Review of Proper Methodology	
		to write a Book Review for	
		selected trade text	
		Resume Review	
5	Sinusoids and Harmonic	Lecture, Discussion	Lab #3: Measuren
	Signals in Engineering	Practice Homework Problems	Analysis of Harmc
6	Systems of Equations and	Lecture, Discussion	Lab #4: Systems (
	Matrices in Engineering	Practice Homework Problems	in Engineering: Th
			Circuit
7	Introduction to Derivatives in	Exam 1	Matlab Suppleme
	Engineering, Dynamics		Instruction #2
8	Applications of Derivatives in	Lecture, Discussion	Lab #5: Derivative
	Electric Circuits	Practice Homework Problems	Engineering: Velo
			Acceleration in Fre
9	Applications of Derivatives in	Lecture, Discussion	Matlab Suppleme
	Mechanics of Materials	Practice Homework Problems	Instruction #3
			The Martian movie
			assignment comp
10	Introduction to Integrals in	Lecture, Discussion	Lab #6: Integrals i
	Engineering, Applications of	Practice Homework Problems	Engineering: Worl
	Integrals in Statics		Energy in a Sprinç
11	Applications of Integrals in	Lecture, Discussion	Matlab Supplemei
	Dynamics	Practice Homework Problems	Instruction #4

Week	Unit/Content	Lecture Learning Activities	Laboratory F
12	Applications of Integrals in	Exam 2	Lab #7: Differentia
	Electric Circuits		in Engineering: Th
			Bucket
13	Introduction to Differential	Lecture, Discussion	Lab #8: Differentia
	Equations – The Leaking	Practice Homework Problems	in Engineering: Sr
	Bucket, Differential Equations	Book Review Due	Vibration
	in Mechanical Systems		
14	Applications of Differential	Lecture, Discussion	Poster Presentation
	Equations – Electrical	Practice Homework Problems	
	Systems		
15		Final Exam	

Experiential Learning

Students must complete an experiential learning activity that connects course content to career applications. This activity may be a content specific assignment or practical skill that is applied within a course assignment. This assignment supports the general education learning outcomes of scientific/critical thinking and quantitative reasoning; oral and written communication; and information literacy/technological competency.

Academic Policies

See College Catalog for more information: http://onlinecatalog.ucc.edu/index.php

Americans with Disabilities Act (ADA)

UCNJ Union College of Union County, NJ offers reasonable accommodations and/or services to persons with disabilities. Any student who has a documented disability and wishes to self-identify should contact the Director of Universal Accessibility Services and Veterans Affairs at (908) 709-7164, or email accessibility@ucc.edu. Accommodations are individualized and in accordance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1992. In order to receive accommodations, students must be registered with Disability Support Services. Students should register with the office as soon as possible. Accommodations are not official until the Faculty Accommodations Alert Form(s) are issued from the student to his/her instructor(s).

Family Educational Rights and Privacy Act (FERPA)

The FERPA Statement can be found at https://www.ucc.edu/admissions/the-family-education-rights-and-privacy-act/.

Equal Opportunity Statement

UCNJ Union College of Union County, NJ does not discriminate and prohibits discrimination, as required by state and/or federal law, in all programs and activities, including employment and access to its career and technical programs.

UCNJ Union College of Union County, NJ Mission Statement

Transforming Our Community. . . One Student at a Time

Suggested Teaching Methodologies

- 1. Lectures: question and answer sessions will provide interactivity between students and instructor.
- 2. Class Discussions: students will actively participate in discussions and critiques. (e.g Book Review, The Martian)
- 3. Homework
- 4. Reading Assignments: students will engage and review topics related to project requirements.
- 5. Speaking Assignments: students will present research individually or in groups using current technology to support the presentation (e.g., PowerPoint presentation, Scientific Poster Presentation)
- 6. Exams: Intended to assess student understanding of reading assignments, mathematical concepts and programming language.
- 7. Laboratory Assignments: hands on physics

Mapping Course Learning Outcomes to Learning Activities and Evaluation Methods

Course Learning Outcomes	Learning Activities	Evaluation Metho
---------------------------------	---------------------	------------------

(CLOs)		
Build a strong foundation for advanced physics and engineering courses by identifying the various elements of a mathematical or statistical model and applying model to a real-world problem.	LectureHomework/AssignmentLaboratory Assignments	 Graded Assignn Discussion Presentation of Projects Exams Graded Labs
Interpret and draw conclusions from graphical, tabular, and other numerical or statistical representations of data research and summarize and justify analyses of mathematical/statistical models and problems.		
Use computer applications and computer-based programming and simulation software to enhance the laboratory experience (ie MATLAB, Simulink)		
Discuss and apply the technical aspects of chosen engineering field and schooling requirements. Discuss and Apply the technical aspects of chosen engineering field and schooling requirements.	 Discussion Board Entry Book Review Information Literacy Project Resume "The Martian Project" 	 Graded Assignn Presentation of Projects Scientific Poster Presentation

Please note: all programs must integrate in one or more courses, discipline-specific course learning outcomes that reflect the College learning outcomes of scientific/critical thinking and quantitative reasoning, oral/written communication, and information literacy.

Visit https://app.teachinghow2s.com/library/science-technology-engineering-math-stem to access evidence-based-teaching techniques for this course.