IMPLEMENTASI LONG-SHORT TERM MEMORY (LSTM) UNTUK GENERASI FEEDBACK BERBAHASA INDONESIA PADA SISTEM PENILAIAN ESAI

Delvia Lana Semba¹ ¹Teknik Informatika, Sains dan Teknologi, Universitas Muhammadiyah Sukabumi ¹delvialanasemba081@ummi.ac.id

Abstract

Essays are used as evaluation tools that require subjective and in-depth responses from students, highlighting high cognitive abilities and good writing skills. The importance of feedback in identifying aspects that need improvement in student responses has been widely recognized. Automated Essay Scoring (AES) is a system that utilizes machine learning technology to automatically evaluate student essays. Despite research on AES in Indonesian language such as SIMPLE, Automated Bahasa Indonesia Essay Evaluation with Latent Semantic Analysis, and E-learning Automated Essay Scoring System Using Text Similarity Matching Text, the implementation of feedback for Indonesian AES is still incomplete. Providing feedback for each essay can be a time-consuming task, especially when there are many essays to be assessed. This can lead to fatigue for teachers and risk reducing the quality of the feedback provided. Long-Short Term Memory (LSTM) has the potential as a feedback system in Indonesian language. As one type of algorithm in the Recurrent Neural Network (RNN) family, LSTM excels in handling complex sequential data, such as essay texts, and accurately identifying patterns and relationships between words in texts. Therefore, this research aims to implement a feedback system in Indonesian AES using the LSTM algorithm. The implementation of LSTM is then carried out for feedback development with outputs consisting of positive and negative feedback sentences, and AES with outputs ranging from one to four scores. The feedback model is then implemented with AES so that the scores generated by AES affect the type of feedback sentences given.

Keywords: Long-Short Term Memory, Feedback, Feedback Sentences, Automated Essay Scoring

Esai digunakan sebagai alat evaluasi yang memerlukan respon subjektif dan mendalam dari siswa, menyoroti kemampuan kognitif yang tinggi dan keterampilan menulis yang baik. Pentingnya umpan balik dalam mengidentifikasi aspek-aspek yang perlu ditingkatkan dalam jawaban siswa telah diakui secara luas. Automated Essay Scoring (AES) adalah sistem yang menggunakan teknologi machine learning untuk mengevaluasi esai siswa secara otomatis. Meskipun telah ada penelitian tentang AES berbahasa Indonesia seperti SIMPLE, Automated Bahasa Indonesia Essay Evaluation with Latent Semantic Analysis, dan E-learning Automated Essay Scoring System Menggunakan Metode Searching Text Similarity Matching Text, namun implementasi umpan balik untuk AES berbahasa Indonesia masih belum sepenuhnya dilakukan. Memberikan umpan balik terhadap setiap esai bisa menjadi pekerjaan yang memakan waktu, terutama jika terdapat banyak esai yang perlu dinilai. Ini bisa menyebabkan kelelahan bagi pengajar dan berisiko mengurangi kualitas respon yang diberikan. Long-Short Term Memory (LSTM) memiliki potensi sebagai sistem umpan balik dalam bahasa Indonesia. Sebagai salah satu jenis algoritma dalam keluarga Recurrent Neural Network (RNN), LSTM unggul dalam mengatasi struktur data sekuensial yang kompleks, seperti teks esai, dan mampu mengidentifikasi pola serta hubungan antar kata-kata dalam teks secara akurat. Oleh karena itu, penelitian ini bertujuan untuk mengimplementasikan sistem umpan balik pada AES berbahasa Indonesia dengan menggunakan algoritma LSTM. Implementasi LSTM kemudian dilakukan untuk pengembangan umpan balik dengan output berupa kalimat umpan balik berjenis positif dan negatif dan AES dengan output berupa skor dengan range satu hingga empat. Model umpan balik kemudian diimplementasikan dengan AES sehingga skor yang dikeluarkan oleh AES berpengaruh terhadap jenis kalimat umpan balik yang diberikan.

Kata kunci: Long-Short Term Memory, Umpan Balik, Kalimat Umpan Balik, Automated Essay Scoring

©This work is licensed under a Creative Commons Attribution - ShareAlike 4.0 International License

1. Pendahuluan

Esai merupakan cara untuk mengevaluasi siswa yang mengharuskan mereka merespons pertanyaan secara subjektif dan mendalam. Ini menuntut kemampuan kognitif yang tinggi dan keterampilan menulis yang baik. Salah satu bagian penting dari proses pengeriaan esai adalah pemberian umpan balik. Umpan balik dapat memberikan informasi terkait area-area yang perlu ditingkatkan atau diperbaiki dalam jawaban esai yang ditulis [1].

Sebagai hasilnya, esai dianggap sebagai alat evaluasi yang efektif untuk mengukur pemahaman siswa terhadap materi yang dipelajari sebelumnya [2].

Ketika tidak ada umpan balik, siswa mungkin kesulitan menyadari kesalahan atau kelemahan mereka, yang dapat menghambat pemahaman mereka terhadap materi yang dipelajari. Selain itu, umpan balik yang positif juga dapat memotivasi siswa untuk meningkatkan pemahaman mereka [3].

Dalam era kemajuan teknologi yang terus berkembang, telah muncul sistem bernama Automated Essay Scoring (AES). Sistem ini menggunakan teknologi machine learning yang telah dirancang secara khusus untuk mengevaluasi dan menilai esai-esai yang ditulis oleh siswa. AES telah dikembangkan dalam berbagai bahasa, salah satunya adalah dalam bahasa Indonesia yang mana peran umpan balik menjadi perhatian utama dalam pengembangannya [4].

Dalam penelitian sebelumnya, sistem Automated Essay Scoring (AES) dan sistem umpan balik telah dikembangkan dan dievaluasi. Penelitian tersebut berjudul "A Human-Centric AES and Feedback System for the Development of Ethical Reasoning", dengan tujuan membuat AES vang lebih fokus pada manusia dan memberikan umpan balik yang baik kepada mahasiswa dalam kursus online dengan banyak peserta. Penelitian tersebut menggunakan dua jenis umpan balik. Pertama, AES menilai esai mahasiswa dan memberikan skor. Kedua, instruktur memilih esai yang perlu diperbaiki berdasarkan skor AES, lalu memberikan umpan balik kepada mahasiswa. Masalahnya, pemberian umpan balik oleh instruktur atau pengajar untuk setiap esai bisa menjadi pekerjaan yang membutuhkan banyak waktu apalagi jika esai yang diperiksa berjumlah banyak. Hal ini dapat membuat pengajar kelelahan dan mempengaruhi kualitas umpan balik yang diberikan [5].

Penelitian lain menggabungkan deep learning ke dalam AES untuk menciptakan sistem penilaian ujian yang efisien. Penelitian ini berjudul "Integrating Deep Learning into An Automated Feedback Generation System for Automated Essay Scoring". Umpan balik dalam penelitian ini dibuat berdasarkan skor esai yang diberikan oleh AES setelah melalui dua tahap pengembangan [6]. Kedua penelitian tersebut telah menerapkan umpan balik pada AES yang mereka kembangkan.

Terdapat penelitian tentang sistem Automated Essay Scoring (AES) dalam bahasa Indonesia. Salah satunya adalah SIMPLE: Sistem Penilai Esei Otomatis Untuk Menilai Ujian Dalam Bahasa Indonesia, yang bertujuan untuk membuat sistem evaluasi jawaban ujian dalam Bahasa Indonesia. Selain itu, ada penelitian lain yang bernama Automated Bahasa Indonesia Evaluation with Latent Semantic Analysis yang mengintegrasikan sistem penilaian otomatis Bahasa Indonesia ke dalam platform e-learning menggunakan metode analisis semantik laten. Penelitian lainnya, vang berjudul E-learning Automated Essay Scoring System Menggunakan Metode Searching Text Similarity Matching Text, mengembangkan platform elearning dengan sistem Automated Essay Scoring dalam Bahasa Indonesia. Namun, dalam sistem penilaian otomatis Bahasa Indonesia tersebut, belum dilakukan pengimplementasian sistem umpan balik.

Natural Language Processing (NLP) merupakan salah satu cabang dari Artificial Intelligence (AI) yang bertujuan untuk mengajarkan komputer dalam memahami teks. NLP memungkinkan komputer untuk membaca teks kemudian memahaminya menghasilkan teks baru [7].

Dalam NLP, salah satu data yang digunakan merupakan data teks. Setiap kata dalam sebuah data teks atau kalimat mengandung banyak makna yang penting, untuk itu, waktu dan urutan kata berperan penting dalam pengembangan kalimat. Salah satu algoritma NLP yang sering digunakan untuk tujuan ini adalah Recurrent Neural Network (RNN) [8]. RNN menggunakan *output* dari *layer* sebelumnya untuk dijadikan *input* pada *layer* selanjutnya [9].

Salah satu dari algoritma RNN adalah Long-Short Term Memory (LSTM). LSTM merupakan jenis jaringan saraf yang sangat baik dalam memproses data berurutan seperti teks. Dalam sebuah penelitian yang berjudul "Integrating Deep Learning into An Automated Feedback Generation System Automated Essay Scoring", LSTM telah terbukti lebih baik daripada jenis jaringan saraf lainnya dalam memprediksi skor esai. Keunggulan LSTM juga terletak pada kemampuannya untuk memahami struktur teks esai dan meningkatkan prediksi skor atribut-esai. Ini sangat penting dalam Automated Essay Scoring (AES) untuk memberikan umpan balik yang baik [10].

Sayangnya, pada sistem penilaian otomatis bahasa Indonesia telah dikembangkan. vang pengimplementasian sistem umpan balik belum dilakukan. Maka, tujuan dari penelitian ini adalah menerapkan sistem umpan balik pada Automated Essay Scoring (AES) dalam bahasa Indonesia menggunakan algoritma Long-Short Term Memory (LSTM).

2. Metode Penelitian

Untuk mencapai tujuan penelitian, diperlukan penggunaan suatu metode. Metode ini membantu merancang langkah-langkah penelitian yang lebih terstruktur dan sistematis, sehingga penelitian menjadi lebih mudah dikelola. Metode juga memastikan peneliti tetap fokus pada jalur yang jelas dan mendapatkan gambaran besar tentang penelitian yang akan dilakukan. Dalam penelitian ini, digunakan metode Sample, Explore, Modify, Model, and Assess (SEMMA), dengan langkah-langkah berikut:

2.1 Pengumpulan Data (Sample)

Penelitian ini menggunakan dua jenis data, yaitu data kumpulan esai dari Kaggle berbentuk Comma Seperated Value (CSV) untuk tahap Automated Scoring System (AES) dan kumpulan kalimat umpan balik yang digenerasi oleh AI Chat-GPT dan Bard untuk tahap pengembangan umpan balik.

P-ISSN: 2089-3353 E-ISSN: 2808-9162

2.2 Deskripsi Data (Explore)

Penelitian ini menggunakan dua jenis dataset. Pertama, untuk mengembangkan Automated Essay Scoring (AES), digunakan dataset kumpulan esai yang sudah memiliki skor terkait untuk setiap esai. Kedua, untuk pengembangan umpan balik, dataset dikumpulkan dan disimpan dalam format file CSV berdasarkan fitur-fitur yang telah ditentukan sebelumnya. Terdapat delapan fitur yang ditetapkan untuk dataset pengembangan umpan balik, yang disesuaikan dengan output yang dihasilkan dari AES.

2.3 Modifikasi Data (*Modify*)

Proses ini menekankan persiapan data melalui pembersihan, transformasi, dan modifikasi agar sesuai untuk pemodelan. Data yang diterapkan pada Automated Essay Scoring (AES) dan pengembangan umpan balik belum optimal, sehingga memerlukan transformasi data untuk digunakan dalam pengembangan model.

2.3.1 Data Preprocessing

Untuk pengembangan AES, data terjemahan awalnya ke Bahasa Indonesia. Setiap kolom dataset kemudian diubah menjadi list, dilakukan stopwords removing, lowercasing, tokenisasi, strippinp, splitting, dan penghapusan karakter non-alphabetic.

Sedangkan untuk pengembangan umpan balik, data diubah menjadi list, kemudian di-tokenisasi. Kalimat umpan balik yang telah di-tokenisasi kemudian diubah menjadi sekuens bilangan bulat. Terakhir, dilakukan padding untuk memastikan setiap sekuens memiliki panjang yang sama.

2.3.2 Feature Engineering

creation adalah proses menambah, menghapus, atau membuat fitur baru pada dataset. Fitur creation diterapkan pada tahap pengembangan AES [11]. Dalam tahap ini, sebuah rubrik penilaian dibuat untuk menentukan output dari AES. Berdasarkan rubrik tersebut, setelah menerjemahkan dataset, hanya fitur esai yang digunakan. Dari fitur esai tersebut, dibuat empat dataset baru dengan fitur yang sesuai dengan rubrik masing-masing.

Selanjutnya adalah feature extraction. Feature extraction adalah proses mengekstraksi fitur dari dataset yang digunakan tanpa melakukan perubahan pada dataset aslinya [11]. Dalam pengembangan AES, langkah ekstraksi fitur menggunakan Word2vec juga dilakukan untuk melatih model.

2.4 Pemodelan Data (Model)

Pada tahap pemodelan, secara umum proses AES dan pengembangan umpan balik terbagi menjadi dua tahap, vaitu tahap pembelajaran fitur dan pengembangan, dengan rincian sebagai berikut:

2.4.1 Automated Essay Scoring (AES)

Pada tahap pembelajaran fitur, metode word embedding, word2vec, digunakan pada data input. Kemudian, model dengan dua lapisan LSTM diterapkan untuk memproses data input dan sekuensial. Regularisasi *dropout* juga diterapkan untuk mencegah overfitting, diikuti oleh penggunaan lapisan Dense untuk menghasilkan skor akhir dengan aktivasi ReLu. Tahap-tahap tersebut digambarkan menggunakan flowchart pada Gambar 2.1 sebagai berikut:

Gambar 2.1 Flow Chart Model Automated Essay Scoring (AES)

2.4.2 Pengembangan Umpan Balik

Untuk pengembangan model umpan balik, digunakan lapisan Embedding dan LSTM untuk memproses serta mengekstraksi informasi dari kalimat input. Input Layer digunakan untuk menerima data input, dan Dense Layer digunakan untuk menghasilkan kalimat feedback yang sesuai dengan konteks kalimat input dengan aktivasi Softmax. Seperti digambarkan pada Gambar 2.2 seperti sebagai berikut:

Gambar 2.2 Flow Chart Model Pengembangan Umpan Balik

2.5 Evaluasi Data (Assess)

Setelah model dibangun, evaluasi dilakukan menggunakan metrik BLEU untuk kalimat umpan balik. Evaluasi dilakukan dengan menghitung kesamaan persentase *n-gram* antara kalimat umpan balik yang dihasilkan oleh model dengan kalimat umpan balik dari dataset yang digunakan.

3. Hasil dan Pembahasan

3.1 Pengumpulan Data (Sample)

Data yang digunakan dalam penelitian ini terbagi menjadi dua bagian, yaitu dataset untuk Automated Scoring Essay (AES) dan dataset untuk pengembangan umpan balik. Untuk AES, data yang digunakan berasal dari The William and Flora Hewlett Foundation (Hewlett), yang merupakan dataset yang mendukung Automated Student Assessment Prize (ASAP).

Untuk pengembangan umpan balik, data yang dimanfaatkan adalah sekumpulan kalimat umpan balik yang diperoleh dari berbagai sumber di internet.

3.2 Deskripsi Data (Explore)

3.2.1 Automated Essay Scoring (AES)

Data yang dipakai dalam proses pengembangan AES terdiri dari sekumpulan jawaban esai yang telah dievaluasi oleh pakar, dengan rata-rata panjang antara 150 hingga 550 kata. Setiap respons esai dikelompokkan ke dalam empat jenis esai, seperti dideskripsikan pada Tabel 3.1 berikut:

Tabel 3.1 Tipe Esai

Tipe Esai	Deskripsi
Persuasive (Persuasif)	Tipe esai persuasive atau persuasif merupakan jenis esai yang ditulis untuk meyakinkan pembaca terhadap pandangan atau pendapat penulis.
Narrative (Naratif)	Tipe esai ini merupakan jenis esai yang ditulis untuk menceritakan sesuatu, seperti pengalaman penulis.
Ekspository (Ekspositori)	Tipe ekpositori merupakan jenis esai yang ditulis guna menjelaskan, menguraikan atau memberikan informasi tentang suatu topik.
Source Dependent Response	Tipe ini merupakan jenis esai yang ditulis sebagai respon terhadap teks sumber yang diberikan.

Dataset ini memiliki sepuluh kolom atau atribut dengan penjelasan seperti pada Tabel 3.2 berikut:

Tabel 3.2 Deskripsi Dataset

Fitur	Deskripsi	Fitur
essay_id	Indentifikasi unik untuk setiap datset	essay_id
essay_set	Nama set esai	essay_set

essay rater1_domain1	Esai Penila oleh h rater pertan	uman-	essay rater1_domain1
rater2_domain1			rater2_domain1
rater3_domain1			rater3_domain1
rater2_domain2	Penila oleh ¬huma rater k	ın-	rater2_domain2
rater2_domain2			rater2_domain2
domain1_score	Skor esai	akhir	domain1_score
domain2_score			domain2_score

Hanya satu atribut dari kesepuluh atribut dataset yang dipertimbangkan, yaitu atribut esai. Atribut ini kemudian digunakan untuk membentuk dataset baru sesuai dengan standar penilaian yang telah ditentukan. Standar penilaian tersebut dideskripsikan pada Tabel 3.3 untuk analisis konten, Tabel 3.4 untuk struktur dan organisasi, Tabel 3.5 untuk kesalahan ejaan serta Tabel 3.6 untuk kesalahan ejaan.

Tabel 3.3 Rubrik Analisis Konten

Jumlah Ka Benda (Noun	uu Biioi	Jumlah Benda (Nou	Kata
>= 0	1	>= 0	
> 68	2	> 68	
> 115	3	> 115	

Tabel 3.4 Rubrik Struktur dan Organisasi

Jumlah (Word)	Kata	Skor	Jumlah Kata (Word)	ì
>= 0		1	>= 0	
>= 83		2	>= 83	
>= 140		3	>= 140	

Tabel 3.5 Rubrik Kesalahan Ejaan

Jumlah Spelling Error	Skor	Jumlah Spelling Error
>= 0	4	>= 0
>= 7	3	>= 7
>= 13	2	>= 13

Tabel 3.6 Rubrik Relevansi dengan Konten

Skor	Content	Skor Akhir	Skor Content
Releva	ınce		Relevance
<= 3		1	<= 3
<= 6		2	<= 6
<= 9		3	<= 9

Batasan angka untuk setiap rentang skor ditentukan dengan menghitung nilai minimum dan maksimum dari setiap objek yang dinilai. Sebagai contoh, untuk rubrik analisis konten, dilakukan perhitungan nilai minimum dan maksimum untuk noun_count.

Noun Limit	
<pre>max_noun_count = df['noun_count'].max() min_noun_count = df['noun_count'].min()</pre>	

Berdasarkan nilai minimum dan maksimum tersebut, batasan jumlah kata benda atau noun untuk setiap skor ditentukan secara manual.

Noun Limit	
	<pre>df['noun_count'].max() df['noun_count'].min()</pre>

pengelompokan secara manual tersebut kemudian diimplementasikan dan diperiksa.

```
Score Assigner
        score_assigner(count, criteria):
if count > criteria[3]:
   def
              return 4
        elif count > criteria[2]: return 3
        elif count > criteria[1]:
return 2
        elif count >= criteria[0]:
    return 1
           return 0
```

Hal ini dilakukan untuk memastikan dataset yang dibagi untuk setiap range skor seimbang. Berikut contoh jumlah pembagian dataset untuk range skor rubrik analisi konten dengan objek yang dinilai adalah kata kerja. Hasil akhir dataset tersebut dapat dilihat pada Tabel 3.7 untuk analisis konten, Tabel 3.8 untuk struktur dan organisasi, Tabel 3.9 untuk kesalahaan ejaan dan Tabel 3.10 untuk fitur relevansi dengan konten.

Tabel 3.7 Fitur Analisis Konten

Fitur	Deskripsi	Fitur
id_esai	Identifikasi untuk setiap esai	id_esai
esai	Esai	esai
clean_essay	Esai yang telah dibersihkan	clean_essay

Tabel 3.8 Fitur Struktur dan Organisasi

Fitur	Deskripsi	Fitur
id_esai	Identifikasi untuk setiap esai	id_esai
esai	Esai	esai
clean_essay	Esai yang telah dibersihkan	clean_essay

Tabel 3.9 Fitur Kesalahan Ejaan

Fitur	Deskripsi	Fitur
id_esai	Identifikasi untuk setiap esai	id_esai
esai	Esai	esai

clean_essay	Esai yang telah	clean_essay
	dibersihkan	

Tabel 3.10 Fitur Relevansi dengan Konten

Fitur	Deskripsi	Fitur
id_esai	Identifikasi untuk setiap esai	id_esai
essay	Esai	essay
clean_essay	Esai yang telah dibersihkan	clean_essay

3.2.2 Pengembangan Umpan Balik

Kalimat umpan balik yang terkumpul sesuai dengan output dari model Automated Essay Scoring (AES), mencakup penilaian terhadap rubrik analisis konten, struktur dan organisasi, kesalahan ejaan, dan relevansi konten. Pada Tabel 3.11 berikut adalah atribut-atribut yang digunakan dalam pengembangan model umpan balik.

Tabel 3.11 Fitur Dataset Pengembangan Umpan Balik

Fitur	Deskripsi	Jumlah
sao_pos	Kalimat umpan positif untuk rubrik Struktur dan Organisasi	120
sao_neg	Kalimat umpan negatif untuk rubrik Struktur dan Organisasi	120
ca_pos	Kalimat umpan positif untuk rubrik Analisis Konten	120
ca_neg	Kalimat umpan negatif untuk rubrik Analisis Konten	120
gas_pos	Kalimat umpan positif untuk rubrik Kesalahan Ejaan	120
gas_neg	Kalimat umpan negatif untuk rubrik Kesalahan Ejaan	120
cor_pos	Kalimat umpan positif untuk rubrik Relevansi dengan Konten	120
cor_neg	Kalimat umpan negatif untuk rubrik Relevansi dengan Konten	120

Total jumlah kalimat umpan balik dalam dataset yang dipakai untuk pengembangan model ini mencapai 960 kalimat.

3.3 Modifikasi Data (Modify)

3.3.1 Automated Essay Scoring (AES)

Dataset yang diperoleh berisi esai dalam Bahasa Inggris, sehingga memerlukan terjemahan ke dalam Bahasa Indonesia. Proses terjemahan dilakukan secara otomatis menggunakan kode mengimplementasikan library EasyGoogleTranslate.

EasyGoo	gleTranslate	
from	easygoogletranslate	import
EasyGoog	leTranslate	

Terjemahan hasilnya kemudian disimpan dalam format Comma Separated Value (CSV). Dari dataset yang Volume 14 No. 1 | April 2024: 101-113

telah diterjemahkan, dibuat empat dataset baru sesuai dengan prosedur sebelumnya. Adapun contoh hasil terjemahan tersebut terlihat pada Tabel 3.12 berikut:

Tabel 3.12 Terjemahan Dataset

Bahasa Inggris	Bahasa Indonesia
Dear local newspaper, I think effects computers have on people are great learning skills/affects because they give us time to chat with friends/new people, helps us learn about the	Surat kabar lokal yang terhormat, menurut saya pengaruh komputer terhadap manusia adalah keterampilan/pengaruh belajar yang hebat karena komputer memberi kita waktu untuk ngobrol dengan teman/orang baru, membantu kita belajar tentang
	tentang

Tahap selanjutnya merupakan persiapan data. Pada tahap persiapan data, dilakukan penambahan *id* dan pembersihan data. Proses pembersihan data mencakup *lowercasing*, penghapusan tanda baca atau *punctuation*, dan tokenisasi.

Menggunakan *dataset* yang telah diterjemahkan dan diproses, kemudian dibuat empat *dataset* baru yakni *dataset* untuk analisis konten, struktur dan organisasi, kesalahan ejaan, dan relevansi dengan konten.

Dataset untuk analisis konten mengalami perulangan pada setiap kata menggunakan library nltk. Dalam setiap perulangan, kata-kata diperiksa untuk menemukan kata benda, dan jumlahnya kemudian dikelompokkan berdasarkan rubrik yang telah ditetapkan sebelumnya untuk menentukan skornya.

```
Content Analysis
```

```
def count_pos_tags(essay, pos_tag):
    words = [word for sentence in essay for
word in sentence]
    pos_tags = nltk.pos_tag(words)
    return sum(1 for _, pos in pos_tags if
pos.startswith(pos_tag))
    df['noun_count'] =
df['clean_essay'].apply(lambda essay:
count_pos_tags(essay.split(), 'N'))
```

Rubrik struktur dan organisasi mengukur total kata dalam setiap esai berdasarkan tokenisasi dari fitur *clean_essay*. Skor ditetapkan berdasarkan total kata tersebut sesuai dengan rubrik yang telah ditetapkan sebelumnya.

```
Structure and Organization
```

Penyusunan dataset untuk mendeteksi Kesalahan Ejaan memanfaatkan library symspell. Proses dimulai dengan inisialisasi dan penerapan library symspell untuk setiap kata dalam fitur clean_essay. Selanjutnya, kesalahan ejaan dihitung dengan membandingkan kata dalam clean_essay dengan kamus yang disediakan sebagai

referensi. Jumlah kesalahan ejaan kemudian dinilai berdasarkan rubrik yang telah ditetapkan sebelumnya.

P-ISSN: 2089-3353

E-ISSN: 2808-9162

Dalam kriteria penilaian terakhir, skor akhir dihitung menggunakan rumus berikut:

$$\frac{x+y+z}{3} \tag{4.1}$$

Keterangan:

```
x = structure_and_organization_final_score
y = content_analysis_final_score
z = grammar_and_language_final_score
```

3.3.2 Pengembangan Umpan Balik

Setiap atribut dalam dataset pengembangan umpan balik diubah menjadi daftar string.

Proses selanjutnya tokenisasi diterapkan pada dataset yang telah diubah menjadi *list*. Ini dimulai dengan menginisialisasi tokenizer dan kemudian melakukan tokenisasi pada setiap kata dalam dataset.

Tokenisasi

```
def tokenize_feedback(corpus):
   tokenizer = Tokenizer()
   tokenizer.fit_on_texts(corpus)
   total_words = len(tokenizer.word_index) +
1
   return tokenizer, total_words
```

Fitur yang telah ditokenisasi kemudian diubah menjadi urutan angka atau vektor untuk memungkinkan pemrosesan oleh model.

```
Training Sequences
```

```
def training_sequences(corpus,
tokenized_corpus, input_sequences):
    for line in corpus:
        token_list =
tokenized_corpus.texts_to_sequences([line])[0]
    for i in range(1, len(token_list)):
        n_gram_sequence = token_list[:i+1]
```

input_sequences

P-ISSN: 2089-3353 Volume 14 No. 1 | April 2024: 101-113 E-ISSN: 2808-9162

input_sequences.append(n_gram_sequence)

Selanjutnya, urutan input akan digunakan sebagai masukan model.

```
Process Sequence Data
def process_sequence_data(input_sequences,
total_words):
        max\_sequence\_len = max([len(x) for x in
input_sequences])
    input_sequences
np.array(pad_sequences(input_sequences,
maxlen=max_sequence_len, padding='pre'))
        xs = input_sequences[:, :-1]
        labels = input_sequences[:, -1]
ys
tf.keras.utils.to_categorical(labels,
num_classes=total_words)
        return
                             ys,
                                      max_sequence_len,
```

Pada Tabel 3.13 berikut adalah hasil output dari fungsi tersebut.

Tabel 3.13 Output Process Sequence Data

Output	Deskripsi	Fungsi
xs	Input sequence tanpa elemen terakhir	Model dikembangkan untuk memprediksi setiap kata selanjutnya, sehingga input sequences tidak memiliki elemen terakhir agar model dapat memprediksinya
ys	One-hot encoded label	Digunakan sebagai label output untuk hasil latihan.
max_sequence _len	Panjang maksimum input sequences	Menentukan input sequences yang dihasilkan saat pelatihan.

Pertama. dilakukan proses reshaping dengan menentukan ukuran minimum dari semua input xs. Ukuran minimum tersebut adalah sebesar 1318.

Reshape	
min_size = xs_ca_pos.shape[0], xs_sao_pos.shape[0], xs_ca_neg.shape[0], xs_cor_neg.shape[0])	min(xs_ca_neg.shape[0], xs_sao_neg.shape[0], xs_gas_pos.shape[0], xs_cor_pos.shape[0],

Setelah itu, dilakukan sampling acak dengan panjang sampel yang sama dengan min_size yang telah ditetapkan sebelumnya. Tujuannya adalah untuk menjaga keseimbangan antara fitur positif dan negatif.

```
Reshape
```

```
indices_to_keep_ca_pos
np.random.choice(xs_ca_pos.shape[0],
size=min_size, replace=False)
  indices_to_keep_ca_neg
np.random.choice(xs_ca_neg.shape[0],
size=min_size, replace=False)
```

3.4 Pemodelan (Model)

3.4.1 Automated Essay Scoring (AES)

Pemodelan **AES** dilakukan dengan untuk menggunakan fungsi sequential dari library Keras.

```
Automated Essay Scoring
   def get_model()
model = Sequential()
model.add(LSTM(300,
recurrent_dropout=0.4, in
return_sequences=True))
                                                  dropout=0.4,
                                   input_shape=(1, 300),
         model.add(LSTM(64,
recurrent_dropout=0.4))
         model.add(Dropout(0.5))
         model add(Dense(4, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='rmsprop', metrics=['mae'])
    model.summary()
         return model
```

Adapun fungsi dari setiap layer dan parameternya dituliskan pada Tabel 3.14 berikut:

Tabel 3.14 AES Model

Layer	Parameter	Deskripsi
LSTM 1	unit	Menangkap pola dalam data. Unit yang digunakan berjumlah 300.
	dropout	Untuk menghindari overfitting. Nilai dropout yang digunakan adalah 0.4
	recurrent_dr opout	Untuk menghindari pola pada hubungan temporal antar unit yang terlalu kompleks. Nilai recurrent dropout yang digunakan adalah 0.4
	input_shape	Menentukan ukuran masukan. Input shape yang digunakan adalah (1, 300)
	return_sequ ences	Mengembalikan setiap output sequences. Return sequences yang digunakan adalah True. Apabila return sequences yang digunakan adalah False,

		1 1 211	
		maka layer tidak akan	Adapun hasil dari model AES adalah sebagai berikut:
		mengembalikan	Hasil dari model AES tersebut berupa skor dengan
		output sequences.	range skor satu hingga empat. Input untuk model AES
LSTM 2	unit	Menangkap pola	berupa teks esai seperti pada Tabel 3.15 berikut:
		dalam data. Unit yang digunakan	T. 1. 2.15 G
		berjumlah 64.	Tabel 3.15 Sample Input Essay
	recurrent_dr opout	Untuk menghindari	Input Essay
	opout	pola pada	Surat kabar lokal yang terhormat, Saya memahami bahwa orang- orang sedang mencoba untuk memutuskan apakah menggunakan
		hubungan temporal antar	komputer adalah hal yang baik atau buruk, dan saya pikir ini akan
		unit yang terlalu	membantu mereka mengambil keputusan. ()
		kompleks. Nilai recurrent dropout	Ware the second of the second of AEC second of
		yang digunakan	Kemudian <i>output</i> dari model AES tersebut mengeluarkan empat <i>output</i> , masing-masing satu untuk
_		adalah 0.4	setiap rubrik penilaian dengan range skor satu sampai
Dropout	-	Untuk menghindari	empat. Berikut merupakan <i>output</i> dari model AES
		overfitting. Nilai	menggunakan sample input esai yang diberikan
		dropout yang digunakan	sebelumnya yang dituliskan pada Tabel 3.16 berikut.
Dense	neuron	adalah 0.5 Menghasilkan	Tabel 3.16 Sample Output AES
Dense	neuron	output. Jumlah	Fitur Deskripsi Fitur
		neuron yang digunakan	Dimension 1 Struktur dan 1.6722069
		adalah 4	Score Organisasi Dimension 2 Analisis 1.6536046
	activation	Mengaktivasi neuron. Aktivasi	Score Konten
		yang digunakan	Dimension 3 Kesalahan 3.8370764 Score Ejaan
		merupakan ReLu. ReLu	Dimension 4 Relevansi 2.6249323
		digunakan	Score dengan Konten
		karena aktivasi relu	Konten
		menghasilkan	
		output yang linear.	3.4.2 Pengembangan Umpan Balik
Compile	loss	Mengevaluasi model. Loss	Lapisan pertama dalam model pengembangan umpan
		yang digunakan	balik adalah lapisan embedding. Argumennya
		merupakan Mean	mencakup jumlah kata maksimum dari setiap <i>dataset</i> ,
		Squared Error (MSE). Semakin	yang ditentukan dengan menggunakan fungsi <i>max</i> . Ini menentukan ukuran matriks lapisan <i>embedding</i> .
		kecil nilai MSE,	Jumlah dimensi untuk merepresentasikan setiap kata
		maka semakin baik model.	adalah 64. Argumen terakhir menentukan panjang data
	optimizer	Menyesuaikan	input, yang setara dengan maksimum dari panjang
		bobot dan bias. Optimizer yang	sekuens dataset analisis konten dikurangi satu.
		digunakan	Embodding Layen
		merupakan PMSprop	Embedding Layer =
		RMSprop. RMSprop	Embedding(max(total_words_content_analysis_ne
		digunakan karena	g,
		berdasarkan	total_words_content_analysis_pos,
		percobaan, RMSprop	total_words_structure_and_organization_neg,
		menghasilkan	total_words_structure_and_organization_pos,
	metrics	nilai yang baik. Mengevaluasi	total_words_grammar_and_language_pos,
		model. Loss yang digunakan	total_words_grammar_and_language_neg,
		merupakan Mean	total_words_content_relevance_neg,
		Absolute Error (MAE). Semakin	total_words_content_relevance_pos), 64,
		kecil nilai MAE, maka semakin	<pre>input_length=max_sequence_len_ca_neg-1)</pre>
		baik model.	

 $Author: \textbf{Delvia Lana Semba}^{1)}$ 108

Lapisan kedua adalah *Bidirectional Layer* dengan 20 unit. Unit digunakan untuk mempelajari pola dalam proses pelatihan.

Bidirectional LSTM Layer

lstm_layer = Bidirectional(LSTM(20))

Layer berikutnya adalah Input Layer untuk menentukan bentuk masukan dari setiap dataset yang akan digunakan oleh model, dengan bentuk masukan sepanjang maksimum dari setiap sekuens dataset.

Input Layer input_ca_neg
Input(shape=(max_sequence_len_ca_neg-1,)) Input(shape=(max_sequence_len_ca_pos-1,)) input_sao_neg
Input(shape=(max_sequence_len_sao_neg-1,)) input_sao_pos Input(shape=(max_sequence_len_sao_pos-1,)) input_gas_neg Input(shape=(max_sequence_len_gas_neg-1,)) input_gas_pos Input(shape=(max_sequence_len_gas_pos-1,)) input_cor_neg Input(shape=(max_sequence_len_cor_neg-1,)) input_cor_pos Input(shape=(max_sequence_len_cor_pos-1,))

Setelah penginisialisasian lapisan embedding, lapisan embedding tersebut digunakan dengan menggunakan bentuk masukan yang telah ditentukan sebelumnya sebagai parameter. Implementasi lapisan embedding kemudian disimpan dalam variabel masing-masing.

Embedding Layer Implemented embedding_ca_neg embedding_layer(input_ca_neg) embedding_ca_pos embedding_layer(input_ca_pos) embedding_sao_neg embedding_layer(input_sao_neg) embedding_sao_pos embedding_layer(input_sao_pos) embedding_gas_neg embedding_layer(input_gas_neg) embedding_gas_pos embedding_layer(input_gas_pos)

Layer Bidirectional diterapkan pada lapisan embedding dari setiap dataset.

Bidirectional LSTM Layer Implemented	
<pre>lstm_output_ca_neg lstm_layer(embedding_ca_neg)</pre>	=
<pre>lstm_output_ca_pos lstm_layer(embedding_ca_pos)</pre>	=
<pre>lstm_output_sao_neg lstm_layer(embedding_sao_neg)</pre>	=
<pre>lstm_output_sao_pos lstm_layer(embedding_sao_pos)</pre>	=
<pre>lstm_output_gas_neg lstm_layer(embedding_gas_neg)</pre>	=
<pre>lstm_output_gas_pos lstm_layer(embedding_gas_pos)</pre>	=
<pre>lstm_output_cor_neg lstm_layer(embedding_cor_neg)</pre>	=
<pre>lstm_output_cor_pos lstm_layer(embedding_cor_pos)</pre>	=

Setelah itu dilakukan penerapan Dense layer sebagai lapisan output dengan jumlah unit yang sama dengan total kata dalam setiap dataset. Fungsi aktivasi yang digunakan adalah softmax. Layer ini terhubung dengan output dari Bidirectional LSTM Layer sebagai input.

```
Dense Layer
dense_ca_neg
Dense(total_words_content_analysis_neg,
activation='softmax',
name='output_neg')(lstm_output_ca_neg)
dense_ca_pos
Dense(total_words_content_analysis_pos,
activation='softmax',
name='output_pos')(lstm_output_ca_pos)
lstm_output_cor_pos
lstm_layer(embedding_cor_pos)
                                                              =
dense_sao_neg
Dense(total_words_structure_and_organization_
neg,
                                  activation='softmax'
name='output_sao_neg')(lstm_output_sao_neg)
dense_sao_pos
Dense(total_words_structure_and_organization_
                                  activation='softmax
name='output_sao_pos')(lstm_output_sao_pos)
dense_gas_neg
Dense(total_words_grammar_and_language_neg, activation='softmax', name='output_gas_neg')(lstm_output_gas_neg)
dense_gas_pos
Dense(total_words_grammar_and_language_pos,
activation='softmax',
name='output_gas_pos')(lstm_output_gas_pos)
```

Volume 14 No. 1 | April 2024: 101-113

dense_cor_neg
Dense(total_words_content_relevance_neg,
activation='softmax',
name='output_cor_neg')(lstm_output_cor_neg)

dense_cor_pos
Dense(total_words_content_relevance_pos,
activation='softmax',
name='output_cor_pos')(lstm_output_cor_pos)

Kemudian, *Model layer* disiapkan untuk menghubungkan *input* dan *output* dari model.

Model			
model	=	Model(inputs=	:[input_ca_neg,
input_	ca_pos,	input_sao_neg,	input_sao_pos,
	gas_neg,	input_gas_pos,	<pre>input_cor_neg,</pre>
input_	cor_pos],		=[dense_ca_neg,
	ca_pos,	dense_sao_neg,	dense_sao_pos,
	gas_neg,	dense_gas_pos,	dense_cor_neg,
dense_	cor_pos])	l	

Setelah pengembangan model, langkah selanjutnya adalah melakukan kompilasi model. Ini melibatkan penggunaan *categorical crossentropy* sebagai *loss function*, *adam* sebagai *optimizer*, dan *accuracy* sebagai *metrics*.

Compile

model.compile(loss='categorical_crossentropy'
, optimizer='adam', metrics=['accuracy'])

Proses terakhir adalah pelatihan model, yang dilakukan dengan menggunakan fitur dan label dari setiap dataset sebagai argumen, dengan jumlah epoch sebanyak 500 dan verbose yang diatur ke 1.

```
Fit
history
               model.fit([xs_ca_neg,
                                            xs_ca_pos,
xs_sao_neg,
                     xs_sao_pos,
                                           xs_gas_neg,
                     xs_cor_neg,
                                          xs_cor_pos],
xs_gas_pos,
                /s_ca_pos, ys_sao_neg,
ys_gas_pos,
epochs=500, verbose=1)
[ys_ca_neg,
                                           ys_sao_pos
ys_gas_neg
                                            s_cor_neg,
vs cor posl.
```

Hasil akurasi dari pemodelan sistem umpan balik adalah sebagai berikut.

P-ISSN: 2089-3353

E-ISSN: 2808-9162

Gambar 3.1 Accuracy Model Umpan Balik

Hasil akurasi lebih jelasnya dapat dilihat pada Tabel 3.17 berikut.

Tabel 3.17 Accuracy Model Umpan Balik

Feedback	Accuracy
sao_pos	87.41%
sao_neg	89.53%
ca_pos	94.69%
ca_neg	95.90%
gas_pos	89.00%
gas_neg	88.62%
cor_pos	90.82%
cor_neg	86.72%

Adapun *loss* untuk pemodelan sistem umpan balik adalah sebagai berikut.

Gambar 3.2 Loss Model Umpan Balik

Output dari model pengembangan umpan balik merupakan sebuah kalimat umpan balik positif atau negatif untuk setiap rubrik. Pada Tabel 3.18 berikut merupakan contoh umpan balik yang dikembangkan oleh model untuk rubrik konten analisis.

Tabel 3.18 Sample Kalimat Umpan Balik Analisis Konten

Rubrik	Kalimat Umpan Balik		
Konten Analisis Positif	Esaimu memiliki kesimpulan yang relevan dan menarik serta memancing pembaca untuk berpikir kritis dan dan		

Konten Analisis Negatif	kejelasan esaimu sumber mempertimbangkan sudut pandang Esaimu perlu lebih didukung oleh bukti bukti yang lebih memadai dan relevan untuk mendukung klaim klaim yang diajukan klaim klaim sebelumnya	2.6249323	COR Positif	Esaimu memberikan perspektif yang unik menjadikannya relevan dan menarik bagi pembaca dan meyakinkan dijelaskan lebih kritis relevan isu isu topik topik
----------------------------	---	-----------	-------------	--

3.4.3 Implementasi

Sistem umpan balik diintegrasikan ke dalam Automated Essay Scoring (AES) yang sudah kembangkan. AES akan memberikan hasil berupa penilaian nilai untuk setiap kriteria, dan kemudian pernyataan menggunakan kondisional dengan keterangan seperti pada Tabel 3.19 berikut.

Tabel 3.19 Keterangan Umpan Balik dan Skor Akhir

Rubrik	Skor ≥ 2	Skor < 2
Konten Analisis	Positif	Negatif
Struktur dan Organisasi	Positif	Negatif
Kesalahan Ejaan	Negatif	Positif
Relevansi dengan Konten	Positif	Negatif

Hasil dari penerapan model AES dengan model umpan balik menggunakan input esai yang sama seperti yang tercantum dalam Tabel 3.15. Dalam konteks ini, skor dan umpan balik yang dihasilkan berdasarkan input esai tersebut dapat dilihat pada Tabel 3.20.

Tabel 3.20 Sample Implementasi AES dan Sistem Umpan Balik

Skor	Jenis Umpan Balik	Kalimat Umpan Balik
1.6722069	SAO Negatif	Esaimu perlu memiliki alur yang lebih jelas dan logis sehingga pembaca dapat mengikuti argumen atau analisis inti lebih baik memerlukan dan
1.6536046	CA Negatif	Esaimu perlu lebih berbobot dan memberikan kontribusi yang signifikan terhadap bidang ilmu yang dibahas dengan menyajikan analisis yang lebih mendalam
3.8370764	GAS Negatif	Esaimu perlu menggunakan kata kata kata yang repetitif memengaruhi pemahaman yang mengganggu sepenuhnya sepenuhnya terstruktur digunakan ambigu lebih mudah beberapa

3.5 Evaluasi (Assess)

Evaluasi untuk kalimat umpan balik dilakukan menggunakan metrik BLEU, yang dijalankan dengan kode sebagai berikut.

```
BLEU
for x in range(len(references)):
    results = bleu.compute(
        predictions=predictions,
        references=lists[x],
        max_order=1
    )
    bleu_score = results['bleu']
    total_bleu_score += bleu_score
    precision_score = results['precisions'][0]
    total_precision_score += precision_score
    bp_score = results['brevity_penalty']
    total_bp_score += bp_score
```

Hasil evaluasi menunjukkan hasil seperti pada Tabel 3.21 berikut:

Tabel 3.21 Evaluasi BLEU Score

Rubrik	Precision	Brevity Penalty	BLEU Score
Konten Analisis Positif	0.14	0.5	0.06
Konten Analisis Negatif	0.21	0.56	0.11
Sturktur dan Organisasi Positif	0.22	0.61	0.13
Sturktur dan Organisasi Negatif	0.13	0.69	0.07
Kesalahan Ejaan Positif	0.22	0.62	0.13

Volume 14 No. 1 | April 2024: 101-113 E-ISSN: 2808-9162

Kesalahan Ejaan Negatif	0.21	0.59	0.11
Relevansi dengan Konten Positif	0.20	0.72	0.14
Relevansi dengan Konten Negatif	0.15	0.62	0.09

Penilaian evaluasi untuk skor BLEU dianggap cukup baik apabila skor BLEU yang dihasilkan lebih dari atau sama dengan 0.3. Namun, hasil penelitian menunjukkan bahwa skor BLEU dari kalimat umpan balik yang dihasilkan oleh sistem masih di bawah 0.3. Oleh karena itu, dapat disimpulkan bahwa kalimat umpan balik yang dihasilkan oleh model belum cukup baik dan belum sebaik umpan balik yang diberikan oleh manusia.

4. Kesimpulan

Berdasarkan penelitian yang dilakukan, algoritmya Long-Short Term Memory (LSTM) telah berhasil diimplementasikan sebagai sistem umpan balik untuk Automated Essay Scoring (AES) berbahasa Indonesia.

Implementsi algoritma LSTM untuk AES berbahasa Indonesia menggunakan 960 dataset. Pemodelan dilakukan dengan menggunakan layer LSTM, categorical crossentropy sebagai loss function, adam sebagai optimizer, metrics accuracy dan 500 epochs. Output dari model sistem umpan balik berupa kalimat umpan balik.

Untuk model AES, pemodelan dilakukan dengan menggunakan 12934 dataset, layer LSTM dengan masing-masing layer menggunakan 300 dan 64 neuron, mean squared error sebagai losss function, rmsprop sebagai optimizer, dan metrics mae. Output dari model AES merupakan skor dengan rentang nilai satu hingga empat.

Model AES kemudian diimplementasikan dengan model pengembangan umpan balik. Sehingga, nilai yang dihasilkan model AES menentukan umpan balik yang diberikan. Dengan keterangan seperti pada Tabel 4.1 berikut:

Tabel 4.1 Keterangan Umpan Balik dan Skor Akhir

Rubrik	Skor >= 2	Skor < 2
Konten Analisis	Positif	Negatif
Struktur dan Organisasi	Positif	Negatif
Kesalahan Ejaan	Negatif	Positif
Relevansi dengan Konten	Positif	Negatif

Terakhir, hasil evaluasi untuk setiap *sample* kalimat umpan balik yang dikembangkan model memperlihatkan hasil seperti pada Tabel 4.2 berikut:

P-ISSN: 2089-3353

Tabel 4.2 Evaluasi BLEU Score

Rubrik	Precision	Brevity Penalty	BLEU Score
Konten Analisis Positif	0.14	0.5	0.06
Konten Analisis Negatif	0.21	0.56	0.11
Sturktur dan Organisasi Positif	0.22	0.61	0.13
Sturktur dan Organisasi Negatif	0.13	0.69	0.07
Kesalahan Ejaan Positif	0.22	0.62	0.13
Kesalahan Ejaan Negatif	0.21	0.59	0.11
Relevansi dengan Konten Positif	0.20	0.72	0.14
Relevansi dengan Konten Negatif	0.15	0.62	0.09

Berdasarkan hasil evaluasi, skor BLEU untuk setiap kalimat umpan balik bernilai kurang dari 0.3. BLEU skor dianggap cukup baik jika nilai yang diperoleh adalah sama dengan atau lebih dari 0.3.

Oleh karena itu dapat disimpulkan bahwa sistem umpan balik telah berhasil diimplementasikan ke AES berbahasa Indonesia menggunakan algoritma *Long-Short Term Memory* (LSTM) namun, kalimat umpan balik yang dihasilkan belum cukup baik.

Daftar Rujukan

- A. Amalia, D. Gunawan, Y. Fithri, and I. Aulia, "Automated Bahasa Indonesia essay evaluation with latent semantic analysis," in *Journal of Physics: Conference Series*, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1742-6596/1235/1/012100.
- [2] F. Rahutomo et al., "Open Problems in Indonesian Automatic Essay Scoring System," *International Journal of Engineering* & Technology, pp. 156–160, 2018, doi: 10.17632/6gp8m72s9p.1.
- [3] V. V. Ramalingam, A. Pandian, P. Chetry, and H. Nigam, "Automated Essay Grading using Machine Learning Algorithm," in *Journal of Physics: Conference Series*, Institute of Physics Publishing, Apr. 2018. doi: 10.1088/1742-6596/1000/1/012030.
- [4] R. A. Rajagede, "Improving Automatic Essay Scoring for Indonesian Language using Simpler Model and Richer

Volume 14 No. 1 | April 2024: 101-113

Feature," *Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control*, pp. 11–18, Feb. 2021, doi: 10.22219/kinetik.v6i1.1196.

- [5] A. V. Y. Lee, A. C. Luco, and S. C. Tan, "A Human-Centric Automated Essay Scoring and Feedback System for the Development of Ethical Reasoning," *Educational Technology* and Society, vol. 26, no. 1, pp. 147–159, 2023, doi: 10.30191/ETS.202301_26(1).0011.
- [6] C. Lu and M. Cutumisu, "Integrating Deep Learning into An Automated Feedback Generation System for Automated Essay Scoring," 2021. [Online]. Available: https://educationaldatamining.org/edm2021/
- [7] P. Philip and S. Minhas, "A Brief Survey on Natural Language Processing Based Text Generation and Evaluation Techniques," VFAST Transactions on Software Engineering, vol. 10, 2022.
- [8] S. Santhanam, "Context based Text-generation using LSTM networks," Apr. 2020, [Online]. Available: http://arxiv.org/abs/2005.00048

P-ISSN: 2089-3353

E-ISSN: 2808-9162

- [9] A. Biswal, "Power of Recurrent Neural Networks (RNN): Revolutionizing AI." Accessed: Apr. 12, 2024. [Online]. Available: https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
- [10] M. A. Hussein, H. A. Hassan, and M. Nassef, "A Trait-based Deep Learning Automated Essay Scoring System with Adaptive Feedback," 2020. [Online]. Available: www.ijacsa.thesai.org
- [11] H. Patel, "What is Feature Engineering Importance, Tools and Techniques for Machine Learning." Accessed: Apr. 14, 2024. [Online]. Available: https://towardsdatascience.com/what-is-feature-engineering-importance-tools-and-techniques-for-machine-learning-2080b0269f10