посуда лабораторная стеклянная

ШЛИФЫ КОНИЧЕСКИЕ ВЗАИМОЗАМЕНЯЕМЫЕ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1. РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Республика Беларусь Республика Кыргызстан Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Украина	Белстандарт Кыргызстандарт Молдовастандарт Госстандарт России Таджикстандарт Туркменглавгосинспекция Госстандарт Украины		

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 8682—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95
- 4 B3AMEH ΓΟCT 8682-70

© ИПК Издательство стандартов, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен на территории Российской Федерации в качестве официального издания без разрешения Госстандарта России

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Посуда лабораторная стеклянная

ШЛИФЫ КОНИЧЕСКИЕ ВЗАИМОЗАМЕНЯЕМЫЕ

Laboratory glassware. Interchangeable conical ground vjoints

ГОС<u>Т</u> 8682—93

(MCO 383-76)

ОКП 43 2500

Дата введения 01.01.95

0. ВВЕДЕНИЕ

Настоящий стандарт распространяется на конические стеклянные шлифы и обеспечивает взаимозаменяемость между ними независимо от места их изготовления.

Для достижения взаимозаменяемости необходимо, чтобы каждое из следующих требований было выполнено, включая соответствующие допуски:

а) конусность; ..

b) наибольший диаметр шлифа;

с) длина пришлифованного участка;

d) чистота обработки поверхности.

Номинальные размеры, указанные ниже, выбраны из рядов соединений, широко использующихся во многих странах; ряд наибольших диаметров шлифов представляет собой наиболее приемлемое приближение к R 40/3 рядам номеров (5, 7 . . . , 100), установленных ГОСТ 8032.

С практической точки зрения, в связи с трудностью измерения отшлифованных участков обработанных соединений, желательно применять систему калибров для проверки основных размеров.

Определение этих размеров в соответствии с разд. 6 является существенной частью настоящего стандарта, но система калибров, приведенная в приложении А, признанная на практике вполне удовлетворительной, не является единственной для применения в этом случае.

Испытание на герметичность, приведенное в приложении В, обычно применяют при испытании шлифов, его включение в настоящий стандарт не исключает применения других испытаний, которые могут быть более приемлемыми для особых целей.

Особое внимание уделяют методу пневматической жалибровки.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт определяет основные геометрические требования к взаимозаменяемости в отношении четырех рядов конических стеклянных шлифов лабораторного применения.

Требования настоящего стандарта являются обязательными.

2. ССЫЛКА

ГОСТ 2789 «Шероховатость поверхности. Параметры, характеристики и обозначения».

3. КОНУСНОСТЬ

Конус шлифов должен быть таким, чтобы приращение диаметра соответствовало десяти приращениям осевой длины с допуском $\pm 0,006$ на приращение диаметра, т. е. конус $(1,00\pm0,006)/10$.

Примечание. Современное производство в основном использует более жесткие допуски, чем указанные выше, но из-за отсутствия экспериментальных данных, невозможно уменьшить установленную величину.

4. НАИБОЛЬШИЙ ДИАМЕТР ШЛИФА

Наибольший диаметр шлифа выбирают из ряда: 5,0; 7,5; 10,0; 12,5; 14,5; 18,8; 21,5; 24,0; 29,2; 34,5; 40,0; 45,0; 50,0; 60,0; 71,0; 85,0; 100,0 мм.

5. ДЛИНА ПРИШЛИФОВАННОГО УЧАСТКА

Длину пришлифованного участка (l) в миллиметрах рассчитывают по формуле

$$l = KV \overline{d}$$

где K — константа (постоянная величина); d — наибольший диаметр шлифа, мм. Вычисленную длину округляют до целого числа.

Четыре ряда шлифов, внесенных в табл. 1, получены при пользовании значений 2, 4, 6, 8 константы К.

Ряд K_6 является предпочтительным.

Таблица 11

Ряды шлифов MM

		Длина пришлифованной зоны / для рядов	ідов	
Наибольший диаметр шлифа	K ₂	K4	K ₆	K ₈
5,0 7,0 10,0 12,5 114,5 118,8 21,5 24,0 29,2 34,5 40,0 45,0 50,0 60,0 85,0	8* 9	9 1i1 13 1!4 15 17 19 20 22 23 — — —	113 116 119 21 23 26 28 29 32 35 35 38 40 42 46 51 55 60	18 22 25 28 30 35 37 39 43 47 — — — — —

^{*} Размеры для шлифов, используемых для потребностей народного зяйства.

6. ДОПУСКИ НА ДИАМЕТР И ДЛИНУ

Диаметр и длина пришлифованной зоны должны быть такими, чтобы при наложении ее на плоскость размерной формы, показанной на черт. 1, верхние и нижние границы пришлифованной поверхности совпадали с участками высоты h_1 и h_2 , соответственно; значения d, l, h_1 и h_2 для каждого отдельного соединения берут табл. 2. В особых случаях пришлифованная поверхность может превышать эти значения при условии, что длина l всегда входит в эту пришлифован-

Система калибров для определения соответствия шлифов данным пределам приведена в приложении А.

ную часть.

Черт.

Размеры и допуски (см. разд. 6 и черт. 1)

MM

иналь- диа- фа			Ряд <i>К</i>	2	Ряд <i>K</i> ₄	Ряд <i>К</i> ₆	Ряд <i>K</i> 8
Номиналь ный диа- метр шлифа	d	l'a	/ ₁ **	h **	$ l^* h_1^{**} h_2^{**} $	$l^* \begin{vmatrix} h_1^{**} \\ h_2^{**} \end{vmatrix}$	<i>i*</i> $ h_1^{**} h_2^{**}$
5,00 7,5 10,00 12,5 114,5 18,8 21,5 24,0 29,2 34,5 40,0 45,0 50,0 60,0 71,0 85,0 100,0	$5,1\pm0,008$ $7,6\pm0,008$ $10,1\pm0,008$ $10,1\pm0,008$ $12,6\pm0,010$ $14,6\pm0,010$ $18,9\pm0,015$ $21,6\pm0,015$ $24,1\pm0,015$ $29,3\pm0,015$ $34,6\pm0,015$ $40,1\pm0,015$ $45,1\pm0,015$ $50,1\pm0,015$ $71,1\pm0,020$ $85,1\pm0,020$ $100,0\pm0,020$	7*** 8 9 10 10 10 10 11 2 12*** 13***		2.0*** 2.0° 2.0° 2.0° 2.0° 2.5° 2.5 2.5*** 2.5***	8 2 2 10 2 2 112 2 2 2 13 2 2 2 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 2 2 15 2 2 18 2 2 20 2 2 22 2 2 25 2 2 27 2 2 28 2 2 31 2 2 34 2 2 39 2 2 41 2 3 45 2 3 50 2 3 54 2 3	17 2,5 2,0 21 2,5 2,0 24 2,5 2,0 27 2,5 2,0 34 2,5 2,0 36 2,5 2,0 40 2,5 3,5 43 2,5 3,5

^{*} Допуск на t — в пределах ± 0.015 мм.

7. ОКОНЧАТЕЛЬНАЯ ОБРАБОТКА ПОВЕРХНОСТИ

Параметр шероховатости Ra по ГОСТ 2789 шлифованной поверхности не должен превышать 1 мкм и предпочтительно должен быть менее чем 0,5 мкм.

8. ОБОЗНАЧЕНИЕ

Для удобства при ссылках на шлифы, отвечающие требованиям настоящего стандарта не герметичность, рекомендуется пользоваться обозначением, состоящим из следующих размеров, выраженных в миллиметрах:

наибольший диаметр шлифа: 7,5; 12,5; 14,5; 18,8; 21,5; 29,2; 34,5; округляют до 7; 12; 14; 19; 21; 29; 34 соответственно, и значение

^{**} Допуск на h_1 и h_2 — в пределах ± 0.010 мм.
*** Размеры для калибров, используемых для потребностей народного хо

пришлифованного участка отделяют наклонной или горизонтальной чертой.

Пример: 19/26 или $\frac{19}{26}$

Пример условного обозначения шлифа конического (КШ) диаметром 18,8 мм и высотой 9 мм для потребностей народного хозяйства:

Шлиф КШ 19/9 ГОСТ 8682—93

СИСТЕМА КАЛИБРОВ ДЛЯ ДИАМЕТРА И ДЛИНЫ конических шлифов

Предлагаемые калибры изготовляют из закаленной стали или другого соответствующего материала. Калибрами для муфт являются конические пробки со ступенькой на каждом конце, а калибрами для кернов служат конические кольца со ступенькой на каждом конце (см. черт. 2 и 3).

Калибры для муфт

Черт. 2

Калибры для кернов

Черт. 3

Конический полуугол каждого калибра равен 2°51′45"±15'' (синус соответст-

вующего угла равен 0,04994 ± 0,00007).

Для каждого размера керна или муфты требуется отдельный калибр. Размеры калибров даны в табл. 2 настоящего стандарта. Когда муфта или керн подогнан под соответствующий калибр, они должны находиться в таком положении, чтобы верхние и нижние концы пришлифованного участка полностью лежали в пределах ступенек с высотой h_1 и h_2 соответственно.

В особых случаях пришлифованная поверхность может превышать внешний предел ступеньки на меньшем конце при условии, что она тоже доходит

внутреннего предела ступеньки на большом конце.

ПРИЛОЖЕНИЕ В Обязательное

ИСПЫТАНИЕ НА ГЕРМЕТИЧНОСТЬ КОНИЧЕСКИХ ШЛИФОВ

Испытание на герметичность проводят на сухих шлифах, наблюдая за скоростью повышения давления в предварительно разреженной системе, связанной с атмосферой через дающее утечку соединение.

Принципиальная схема установки общей емкостью системы приблизительно

1,5 л показана на черт. 4.

Установка для испытания конических шлифов на герметичность

І—резиновая пробка;
 2—испытываемый шлиф;
 3—резиновая пробка или трубка по размеру испытываемого соединения;
 4—шкала с диапазоном измерения давления приблизительно от 350 до 760 мм рт. ст. (45—100 кПа),
 с ценой деления 1 мм (0.133 кПа);
 5—ртутная U-образная манометрическая трубка

Важно, чтобы все соединения в испытательной установке не давали утечки, и сама установка была проверена перед присоединением к испытуемому соединению. Утечка, обнаруженная во время проверки, должна быть незначительна

по сравнению с утечкой, наблюдаемой во время испытания.

Степень чистоты пришлифованной поверхности — важный фактор, влияющий на скорость утечки. Составные элементы сначала протирают тканью, пропитанной соответствующим растворителем, например циклогексаном, затем опускают в этот растворитель и сушат. Частички, прилипшие к поверхности, удаляют щеткой из верблюжьего волоса.

Затем составные элементы помещают по очереди в установку, в разрежен-

ную систему, в вертикальном положении.

На соединение влияет только атмосферное давление. При показании ртутного манометра выше 380 мм (50, 54 кПа) запорный кран закрывают и через 1 мин снимают показания шкалы. Через 5 мин показания шкалы снимают повторно.

После уравнивания внутреннего и внешнего давлений составной элемент по-

ворачивают по оси на 90° и испытание затем повторяют.

Примечание. При испытании кернов и муфт, отвечающих этим геометрическим требованиям при условиях, указанных выше, увеличение давления в системе в течение 5 мин не превышает 10 мм рт. ст. (1,33 кПа) при общей емкости 1,5 л. При общих емкостях, отличных от 1,5 л, соответствующее максимальное повышение давления обратно пропорционально емкости.

информационные данные

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылк	Номер пункта	
ГОСТ 2789—73 ГОСТ 8032—84	Разд. 2,7 Разд. 0	

Редактор Л. Д. Курочкина
Технический редактор Л. А. Кузнецова
Корректор В. И. Варенцова

Сдано в наб. 12.05,95 Подп. в печ. 28.06.95 Усл. печ. л. 0,70 Усл. кр.-отт. 0,70. Уч.-изд. л. 0,57 Тираж 605 экз. С 2546