Лабораторная работа №7

Итерационные циклические вычислительные процессы с управлением по функции.

2. Цель лабораторной работы:

Изучить итерационные циклические вычислительные процессы с управлением по функции.

3. Используемое оборудование:

ПК, среда программирования Lazarus.

Задача 1

4. Постановка задачи:

Вычислить 2 в степени n и при этом определить первое значениестепени, при котором результат будет превышать значение 1000.

5. Математическая модель:

2ⁿ>1000

6.Блок схема:

7. Список идентификаторов:

РМЯ	Смысл	Тип
n	Степень	integer
i	Параметр цикла	integer

k	Первое значение, где	integer
	2 ⁿ >1000	
res	Результат	real

8. Код программы:

```
program zadanie1 1;
var
n,i,k:integer;
res:real;
begin
writeln('Vvedite n');
readln(n);
res:=exp(n*In(2));
k:=1;
i:=0;
repeat
k:=k*2;
i:=i+1;
until k>1000;
writeln('Resultat = ',res:0:0);
writeln('Stepenprikotoromresultat>1000 = ',i);
readIn()
end.
program zadanie1_2;
var
n,i,k:integer;
res:real;
begin
writeln('Vvedite n');
readIn(n);
res:=exp(n*ln(2));
k:=1;
i:=0;
while k<1000 do begin
k:=2*k;
i:=i+1;
end;
writeIn('Resultat = ',res:0:0);
writeln('Pervoeznachenie n, prikotoromresultat> 1000 = ',i);
readIn();
end.
```

9. Результаты выполненной работы:

```
Uvedite n
12
Resultat = 4096
Pervoeznachenie n, prikotoromresultat> 1000 = 10
```

10. Анализ результатов вычисления:

Для решения этой задачи, Мы написали две программы: с циклом с постусловием, циклом с предусловием. Они отличаются тем, что условие для выхода из цикла, проверяются по-разному: в цикле с постусловием после выполнения цикла, в цикле с предусловием, до выполнения цикла.

Задача 2

4. Постановка задачи:

С клавиатуры вводится трехзначное число, считается сумма его цифр. Если сумма цифр числа больше 10, то вводится следующее трехзначное число, если сумма меньше, либо равна 10 — программа завершается.

5. Математическая модель:

Разобьём введённое число на разряды. Сложим значения разрядов.

6.Блок схема:

7. Список идентификаторов:

Имя	Смысл	Тип
n	Вводимое число	integer
sum	Сумма цифр числа	integer

8. Код программы:

```
program zadanie2;
var
n,sum:integer;
begin
repeat
writeln('Vveditetrehznachnoechislo n');
readln(n);
sum:=(n div 100)+(n div 10 mod 10)+(n mod 10);
writeln('Summa cifr = ',sum);
until sum <= 10;</pre>
```

readIn; end.

9. Результат выполненной работы:

```
■ C\Users\Users\Users\Users\Upers\text{project.exe}

Vvedite trehznachnoe chislo n
555
Summa cifr = 15
Vvedite trehznachnoe chislo n
444
Summa cifr = 12
Vvedite trehznachnoe chislo n
333
Summa cifr = 9
```

10. Анализ результатов вычисления:

В цикле с постусловием repeat ... until, цикл будет повторяться до тех пор, пока не будет выполнено условие, указанное в until. Программа не определяет, какое число вы ввели – трехзначное или нет, т.е. программу можно дополнить.

Задача З

4. Постановка задачи:

Решить нелинейное уравнение методом Ньютона.

$$3^{x-1} - 4 - x = 0$$
 на отрезке от -10 до 10 с точностью 10^{-6}

5. Математическая модель:

Корнем уравнения называется такое значение x, при котором функция f(x) = 0.

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

6.Блок схема:

7. Список идентификаторов:

Имя	Смысл	Тип
е	Точность	real
a	Разница между «крайними»	real
	значениями	
x0	Текущее х	real
xn	Следующее х	real
yr	Уравнение	real
pr	Производная от уравнения	real

8. Код программы:

```
program zadanie3;
var e,xn,x0,a:real;
function yr(y:real):real;
begin
yr:=exp((y-1)*ln(3))-4-y;
function pr(c:real):real;
begin
pr:=ln(3)*exp((c-1)*ln(3))-1;
begin
e:=0.000001;
x0:=0;
repeat
xn:=x0-yr(x0)/pr(x0);
a:=abs(xn-x0);
x0:=xn;
until a<=e;
writeln(xn:1:6);
readIn();
end.
```

9. Результат выполненной работы:

10. Анализ результатов вычисления:

Для решения уравнения мы написали программу, в которую входят 2 функции и цикл с постусловием. Уравнение решается согласно математической модели методом Ньютона.

11. Вывод:

MELIASVUMAN ATENSTINOUULIS HAVAMUECUME PERMACAMTEATERIS TROUGCES C VERSPROUGEMENTO	
Мы изучили итерационные циклические вычислительные процессы с управлением по функции.	