Difference Equations

2.1.1 Compound Interest

- 2.1.2 Loan Repayment
- 2.1.3 Gambler's Ruin
- 2.2.2 Exponential Population Growth
- 2.2.3 Average Lifespan
- 2.2.★ Rabbit Populations
- 2.2.4 Nonlinear Population Models

2.1.1 Compound Interest

We put a certain amount of money in a savings bank account with an annual interest rate of p%, and compounded at regular periods of α (in years).

2.1.1 Compound Interest

We put a certain amount of money in a savings bank account with an annual interest rate of p%, and compounded at regular periods of α (in years).

If the interest is compounded monthly, what is α ? What is α if the interest is compounded every 3 months?

Let S_k = amount of money in the bank account after k periods

- 2 Find an equation relating S_{k+1} and S_k .
- 3 Calculate S_1, S_2, S_3 in terms of S_0 .
- 4 Can you find a pattern for S_k ?

2.1.1 Compound Interest

The annual rate is p%, but the interest is compounded.

- If the interest was compounded annually, how much money should there be after one year?
- 6 After 1 year with a monthly compounded interest, is there more or less money than the one found for 5?
- If each period is α long (in years), how many periods are there in a year?
- B How much money is there after one year?
- The effective interest rate $p_{\rm eff}$ % is the annual rate that gives the same amount of money at the end of the year as if it was compounded in periods of α at the rate p%.
- \bigcirc What is $p_{\text{eff}}\%$?