Predicting the Survival of Patients with Heart Failure

STOR 565 Final Project

Presenter: Yi Cui, Yiran Li, Zipei Zhu

Division of Work

- Yi Cui
 - Preprocessing; basic code for EDA, PCA, clustering, logistic regression, and LASSO.
- Yiran Li
 - Coding and analysis for PCA, kNN, logistic regression, and LASSO.
- Zipei Zhu
 - Final revision for code and analysis; decision trees and SVM (in the report)

1. Motivation

2. Data Descriptions and EDA

3. Model Selection and Further Analysis

4. Future Directions

Why this dataset? (Heart Failure Clinical Records Dataset*)

- A helpful data set for doing survival analysis on the patients with heart failure
 - Ahmad et al. (2017)
 - Survival analysis of heart failure patients: a case study
 - Chicco and Jurman (2020)
 - Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone

Overview

- Contains the medical records of 299 patients collected from April-December 2015 in Pakistan
- 13 real-valued features characterizing the clinical, body, and lifestyle information for each patient (i.e., age, sex, some medical test results, etc.)
- Some binary features include anemia, high blood pressure, diabetes, sex, and smoking
- 96 dead patients and 203 survived patients

1. Motivation

2. Data Descriptions and EDA

3. Model Selection and Further Analysis

4. Future Directions

Data Descriptions

Table 1. Data Descriptions (unscaled)

Feature	Explanation	Measurement	Range
Age	Age of the patient	Years	$[40, \dots, 95]$
Anaemia	Decrease of red blood cells or hemoglobin	Boolean	0,1
High blood pressure	If a patient has hypertension	Boolean	0,1
Creatinine phosphokinase	Level of the CPK enzyme in the blood	mcg/L	$[23, \ldots, 7861]$
Diabetes	if the patient has diabetes	Boolean	0,1
Ejection fraction	Percentage of blood leaving	Percentage	$[14, \dots, 80]$
	the heart at each contraction		
Sex	Woman or man	Binary	0,1
Platelets	Platelets in the blood	kiloplatelets /mL	$[25.01, \ldots, 850.00]$
Serum creatinine	Level of creatinine in the blood	mg/dL	$[0.50, \ldots, 9.40]$
Serum sodium	Level of sodium in the blood	mEq/L	$[114, \dots, 148]$
Smoking	If the patient smokes	Boolean	0,1
Time	Follow-up period	Days	$[4,\ldots,285]$
(target) death event	If the patient died during the follow-up period	Boolean	0,1

Data Descriptions

Table 2. Some Selected Binary Features

	Full sample		Dead patients		Survived patients	
Category feature	#	%	#	%	#	%
Anaemia (0: false)	170	56.86	50	52.08	120	59.11
Anaemia (1: true)	129	43.14	46	47.92	3	40.89
High blood pressure (0: false)	194	64.88	57	59.38	137	67.49
High blood pressure (1: true)	105	35.12	39	40.62	66	32.51
Diabetes (0: false)	174	58.19	56	58.33	118	58.13
Diabetes (1: true)	125	41.81	40	41.67	85	41.87
Sex (0: woman)	105	35.12	34	35.42	71	34.98
Sex (1: man)	194	64.88	62	64.58	132	65.02
Smoking (0: false)	203	67.89	66	68.75	137	67.49
Smoking (1: true)	96	32.11	30	31.25	66	32.51

Unimportant binary factor/feature

Data Descriptions

Not normal, skewness > 0

Eyeballing the data:

• Does higher level of serum creatinine in the blood indicates higher probability of death? Pattern

erum_creatinine	serum_sodium *	sex ÷	smoking	time	DEATH_EVENT	serum_creatinine	serum_sodium *	sex ÷	smoking	time	DEATH_EVENT
9.40	133	1	1	10	1	1.00	140	1	0	206	
9.00	137	0	0	196	1	1,00	136	0	0	210	
6.80	146	0	0	43	1	1.00	142	1	1	214	
6.10	131	1		107	0	1.00	133	1	0	215	
	0.333					1.00	139	1	0	215	
5.80	134	1	0	26	1	1.00	142	1	1	216	
5.00	130	0	0	207	0	1.00	139	1	0	230	
4.40	133	1	0	41	1	1.00	138	1	0	233	
4.00	131	1	1	10	1	1.00	140	0	0	237	
3.80	128	1	1	250	0	1.00	132	1	0	244	
3,70	134	1	0	96	1	1.00	137	1	1	245	
	7,793.0	100				1.00	137	1	0	247	
3.50	134	1	0	30	1	1.00	132	0	0	250	
3.50	136	1	1	187	0	1.00	140	1	1	258	
3.40	145	1	0	105	0	0.90	140	1	1	10	
3.20	138	0	0	94	0	0.90	140	1	0	14	
3.00	132	1	0	28	1	0.90	140	1	1	20	
3.00	142	0	0	30	1	0.90	130	1	0	38	
	(201302	8559				0.90	139	1	1	71	
2,90	127	1		64	1	0.90	140	0	0	74	
2.70	116	0	0	8	1	0.90	138	1	0	88	

What is the correlation between some features and death?

1. Motivation

2. Data Descriptions and EDA

3. Model Selection and Further Analysis

4. Further Directions

Model Selection and Further Analysis: Principal Component Analysis (PCA)

Model Selection and Further Analysis (PCA)

- PC1's variance percentage is only 18.2%
- 7 principal components are required to explain at least 80% of the variation in the data

It doesn't seem like PCA has done a good job in reducing the dimensionality of the data

Model Selection and Further Analysis (PCA)

- O dead
- survived

Hardly no PCs appear to be helpful for separating the data

Model Selection and Further Analysis (PCA)

- O dead
- survived

- After controlling for PC2, PC3 and PC4, dead patients in red seem to have lower PC1 than the patients survived.

Model Selection and Further Analysis: K Nearest Neighbor (kNN)

Model Selection and Further Analysis (kNN)

Model Selection and Further Analysis: Logistic Regression (baseline)

Model Selection and Further Analysis (Logistic Regression)

- Remove the variable "time"
- Focus on the clinical features and discover something meaningful about them

Feature	Explanation	Measurement	Range
Age	Age of the patient	Years	$[40, \dots, 95]$
Anaemia	Decrease of red blood cells or hemoglobin	Boolean	0,1
High blood pressure	If a patient has hypertension	Boolean	0,1
Creatinine phosphokinase	Level of the CPK enzyme in the blood	mcg/L	$[23, \ldots, 7861]$
Diabetes	if the patient has diabetes	Boolean	0,1
Ejection fraction	Percentage of blood leaving	Percentage	$[14, \dots, 80]$
15 (4 ₹040 20 40 0 4 4 5 € 0 0 0 6 6 5 0 4 5 0 0 0 6 6 5 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	the heart at each contraction	U-m40409-0530mm (190 7 0.18	
Sex	Woman or man	Binary	0,1
Platelets	Platelets in the blood	kiloplatelets /mL	$[25.01, \ldots, 850.00]$
Serum creatinine	Level of creatinine in the blood	mg/dL	$[0.50, \dots, 9.40]$
Serum sodium	Level of sodium in the blood	mEq/L	$[114, \dots, 148]$
Smoking	If the patient smokes	Boolean	0,1
Time	Follow-up period	Days	[4,,285]
(target) death event	If the patient died during the follow-up period	Boolean	0,1

Model Selection and Further Analysis (Logistic Regression)

Build the model and take a look at their coefficients:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.3138	0.4156	-3.161	0.001571	**
age	0.7793	0.1738	4.483	7.35e-06	***
creatinine_phosphokinase	0.2742	0.1457	1.883	0.059737	•
ejection_fraction	-0.7917	0.2017	-3.925	8.66e-05	***
platelets	-0.1777	0.1800	-0.987	0.323733	
serum_creatinine	0.6334	0.1816	3.487	0.000488	***
serum_sodium	-0.1703	0.1677	-1.015	0.309962	
anaemia	0.1921	0.3451	0.557	0.577737	
diabetes	0.4117	0.3377	1.219	0.222784	
high_blood_pressure	0.6124	0.3449	1.776	0.075806	•
sex	-0.2085	0.3933	-0.530	0.596071	
smoking	-0.2581	0.4002	-0.645	0.519031	

Accuracy: 0.6833333

Model Selection and Further Analysis: Sparse Linear Regression - the LASSO

Model Selection and Further Analysis (LASSO)

- Remove the variable "time"
- Build the model, select the best lambda using cross-validation (best lambda = 0.0288)

Model Selection and Further Analysis (LASSO)

Use the best lambda to estimate the coefficients

12 x 1 sparse Matrix of	class "dgCMatrix"
	s0
(Intercept)	0.31742208
age	0.08009002
creatinine_phosphokinase	0.00614508
ejection_fraction	-0.09596062
platelets	3.€3
serum_creatinine	0.09028105
serum_sodium	-0.02537043
anaemia	•
diabetes	
high_blood_pressure	0.01038856
sex	•
smoking	•

Results from logistic regression:

Coefficients:						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-1.3138	0.4156	-3.161	0.001571	**	
age	0.7793	0.1738	4.483	7.35e-06	***	
creatinine_phosphokinase	0.2742	0.1457	1.883	0.059737		
ejection_fraction	-0.7917	0.2017	-3.925	8.66e-05	***	
platelets	-0.1777	0.1800	-0.987	0.323733		
serum_creatinine	0.6334	0.1816	3.487	0.000488	***	
serum_sodium	-0.1703	0.1677	-1.015	0.309962		
anaemia	0.1921	0.3451	0.557	0.577737		
diabetes	0.4117	0.3377	1.219	0.222784		
high_blood_pressure	0.6124	0.3449	1.776	0.075806		
sex	-0.2085	0.3933	-0.530	0.596071		
smoking	-0.2581	0.4002	-0.645	0.519031		

The associated test error: 0.1905741

Model Selection and Further Analysis:
Decision Trees

Decision Trees

- The usefulness of decision trees
 - Recall pros: **a white box model**, simple to understand and interpret, able to validate the results from other methods; Cons: larger variance in results (e.g., the tree structure may change a lot when there is just a small change in data)
- Results#1: fit a classification tree on the whole data set

- There are **six variables** actually used as **internal nodes** in the tree: serum_creatinine, ejection_fraction, age, serum_sodium, creatinine_phosphokinase, and sex.
- Overall, the **training error rate** is **17.73%**. This relatively small deviance indicates a tree that provides a good fit to the training data.

Decision Trees

• The structure of the tree:

- We can see the most important feature is serum_creatinine (+) since the first branch differentiates
 the level of serum creatine in the patient's blood using a threshold of 0.407. Plus, this feature is used
 once again in the following internal nodes.
- The other most important feature seems to be **ejection_fraction (-)**, which is used three times in the following internal nodes.

Decision Trees

- Results#2: Cross validation
 - To properly evaluate the tree, we must estimate the test error besides the training error
 - Split the data into a training set (80% of all samples) and a test set (20%)
 - This approach leads to correct predictions for around 75% of the data points in the test data test.
 - o (11+34)/(11+34+7+8) = 0.75

```
## death.test
## tree.predict 1 0
## 1 11 8
## 0 7 34
```

Introduction
 Data Descriptions

3. Model Selection and Further Analysis

4. Further Directions

Some Takeaways and Future Directions

Results

- a. Since our data is not very highly dimensional, unsupervised methods such as PCA and clustering do not yield good results, as expected.
- b. Both EDA and our baseline model (i.e., the logistic regression) show that the level of serum creatinine in the patient's blood (**serum_creatinine**) and the the speed of bloodstream through the heart (**ejection_fraction**) are two most important predictors along with the age.
- c. Other methods such as LASSO and decision trees yield **similar results** to the logistic regression model. LASSO successfully reduces the variables to six, while the decision tree also shows good performance and indicates the importance of the two features above.

Future directions?

- a. Try bagging, random forests, and boosting on the decision tree
 - To see if we can boost the performance of our model (at the expense of less interpretability)
- d. Try SVM to see if this method could result in better predictive accuracy
 - SVM is relatively newer than the other learning methods (e.g., decision trees)

Thank you!

Yi Cui, Yiran Li, Zipei Zhu

yicui@unc.edu

yiran1@live.unc.edu

zipei zhu@kenan-flagler.unc.edu

