Rappels et compléments mathématiques

I. Champ scalaire et champ vectoriel

I.1 Champ scalaire

Un champ scalaire est une fonction à plusieurs variables qui, à chaque point M de l'espace fait correspondre un scalaire f(x,y,z).

Exemple : champ des températures

- Surface de niveau

Une surface de niveau est une surface où la fonction scalaire à la même valeur.

I.2 Champ vectoriel

Un champ vectoriel est une fonction vectorielle à plusieurs variables qui à chaque point M de l'espace fait correspondre un vecteur $\vec{V}(M) = x \ \vec{i} + y \ \vec{j} + z \ \vec{k}$ <u>Exemple</u>: Le champ des vitesses des points d'un corps animé d'un mouvement de rotation.

- Ligne de champ : Une ligne de champ est une courbe tangente au champ vectoriel.
- Tube de champ : C'est un ensemble des lignes de champ s'appuyant sur une courbe fermée.
- Champ uniforme : C'est un champ où tout les vecteurs ont le même module, même direction et même sens.

Exemple : Champ de pesanteur (ligne de champ des droites parallèles).

- Champ radial: C'est un champ dans lequel les vecteurs passent par un point fixe O. Dans ce cas les lignes de champ sont des droites passant par O.

II. Opérateurs

II.1 Opérateur nabla $\vec{\nabla}$

Définition : L'opérateur nabla est un opérateur de dérivation. Son expression en

coordonnées cartésiennes est donné par :
$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$
,

II.1.2 Application

On peut appliquer l'opérateur $\vec{\nabla}$ soit à un scalaire soit à un vecteur.

- Scalaire : $\vec{\nabla} f = \overrightarrow{\text{grad}} f$, appelé gradient de f c'est un vecteur :

En coordonnées cartésiennes : $\vec{\nabla} f = \overrightarrow{grad} \, f = \frac{\partial f}{\partial x} \, \vec{i} + \frac{\partial f}{\partial y} \, \vec{j} + \frac{\partial f}{\partial z} \, \vec{k}$,

on a aussi : $df = \overrightarrow{grad} f \cdot \overrightarrow{dl}$

- Vecteur : On obtient soit un scalaire soit un vecteur

• $\vec{\nabla}.\vec{V}=\operatorname{div}\vec{V}$, appelé divergence de \vec{V} , c'est un scalaire.

En coordonnées cartésiennes : $\vec{\nabla}.\vec{V} = div \, \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$,

• $\vec{\nabla} \wedge \vec{V} = \overrightarrow{rot} \ \vec{V}$, appelé rotationnel de \vec{V} , c'est un vecteur.

En coordonnées cartésiennes $\vec{\nabla} \wedge \vec{V} = (\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial V_z})\vec{i} - (\frac{\partial V_z}{\partial V_x} - \frac{\partial V_x}{\partial z})\vec{j} + (\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial V_y})\vec{k}$

III. Intégration

III.1 Circulation d'un vecteur sur une courbe C

Par définition, la circulation le long d'une courbe C est l'intégrale curviligne :

$$C(\vec{E}) = \int_{AB} \vec{E}.d\vec{l} = \int_{AB} E.dl.\cos\theta$$

 $\underline{\text{Exemple d'application}}: \text{Travail d'une force}: \ W_{\scriptscriptstyle A->B}(\vec{F}) = \int\limits_{\scriptscriptstyle AB} \vec{F}.\, d\vec{1}$

III.2 Flux d'un vecteur à travers une surface

Considérons un élément de surface dS traversé par un champ $\bar{\mathtt{E}}$. Par définition le flux élémentaire est donné par :

$$d\phi = \vec{E}. \ d\vec{S} = \vec{E}. \ \vec{n}dS$$

A travers la surface entière S :

$$\phi(\vec{E}) = \iint_{S} \vec{E} \cdot d\vec{S} = \iint_{S} E \cdot dS \cdot \cos \alpha$$

Remarque: Orientation d'une surface

- Si la surface S est fermée, elle est orientée de l'intérieur vers l'extérieur.
- Si la surface est non fermée et s'appuie sur une courbe C fermée : On choisit un sens positif sur C ; par la règle du tire-bouchon, on définit le sens positif de la normale à la surface S.

III.3 Angle solide

Par définition, l'angle solide $d\Omega$ sous lequel, depuis le point O, on voit la surface dS est donnée par : $d\Omega = \frac{\vec{u}.d\vec{S}}{r^2} = \frac{\vec{u}.\vec{n}\,dS}{r^2} = \frac{dS.\cos\theta}{r^2}$

IV Théorèmes fondamentaux

IV.1 Théorème de Stokes

Soit une courbe fermée C et une surface S s'appuyant sur C. On montre que :

$$\oint_{\text{C fermée}} \vec{E} . d\vec{l} = \iint_{S} \overrightarrow{\text{rot}} \vec{E} . d\vec{S}$$

IV.2 Théorème de Green-Ostrogradsky

Une surface fermée S quelconque délimite un volume V. On montre que :

$$\iint_{S \text{ fermée}} \vec{E} . d\vec{S} = \iiint_{V} div \vec{E} . dv$$