وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 07 Cascode Amplifiers

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

$$v_{bs} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \Box Bulk effect: $g_m \to g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- ☐ Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D V _{out} V _{out,sc} V _x R _S i _{out,sc}	R _D , V _{out} j _{out,sc} V _{in}	iout,sc V _x V _{in} V _{out} R _s iout,sc
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Cascode

$$\Box$$
 CS + CG

Cascode as a Single Stage

☐ Transconductance is always related to the input device (VCCS)

$$G_m \approx -g_{m1}$$

Same Gm of CS

$$R_{out} \approx r_{o2}[1 + (g_{m2} + g_{mb2})r_{o1}]$$

$$\approx r_{o2}(g_{m2} + g_{mb2})r_{o1}$$

Rout significantly boosted

lacktriangle Assume all g_m and r_o are equal and neglect body effect

$$A_{v} = -(g_{m}r_{o})^{2}$$

Cascode as CS + CG

CS:
$$\frac{v_x}{v_{in}} = -g_{m1}(r_{o1}//\infty)$$

$$CG: \ \frac{v_o}{v_x} = (g_{m2} + g_{mb2})r_{o2}$$

$$A_v = \frac{v_x}{v_{in}} \cdot \frac{v_{out}}{v_x}$$
$$\approx -g_{m1} r_{o1} (g_{m2} + g_{mb2}) r_{o2}$$

lacktriangled Assume all g_m and r_o are equal and neglect body effect

$$A_{v} = -(g_{m}r_{o})^{2}$$

Q: Double Cascode

 $oldsymbol{\square}$ Find the voltage gain. Assume all g_m and r_o are equal and neglect body effect.

What if R_D is small?

- Is this cascode useful?
 - No for gain, but yes for BW

Cascode Load

- ☐ If you want to keep the large Rout, you must use cascode load
- Assume all g_m and r_o are equal and neglect body effect

$$A_v = -\frac{(g_m r_o)^2}{2}$$

 \Box Output swing $\approx V_{DD} - 4V_{ov}$

Cascode Large Signal Analysis

Cascode bias voltage

$$V_B \ge V_{TH2} + V_{ov2} + V_{ov1}$$

Input and output ranges are coupled oppositely (max vs min)

$$\begin{aligned} V_{in,max} &= V_{TH1} + V_{DS1} \\ V_{out,min} &= V_{ov2} + V_{DS1} = V_{ov2} + V_{in,max} - V_{TH1} \end{aligned}$$

Telescopic vs Folded Cascode

- Telescopic: CS + CG (both NMOS or both PMOS)
 - Both CS and CG use same bias current
- Folded: CS + CG (NMOS-PMOS combination)
 - The small signal current is folded up or down
 - Extra bias current is needed
 - Rout is lower (due to IDC)
 - Why is it useful?

Folded Cascode

Input and output ranges are NOT coupled oppositely

$$\begin{aligned} V_{in,min} &= -|V_{TH1}| + V_{ISS} \\ V_{out,min} &= V_{ov2} + V_{ISS} = V_{ov2} + V_{in,min} + |V_{TH1}| \end{aligned}$$

More on this point when we study OTAs

Q: Rout of Folded Cascode

☐ Assume all transistors have same gm and ro, and neglect body effect. Calculate Rout.

Folded Cascode With Cascode Load

Calculate Av = GmRout. Assume all transistors have same gm and ro, and neglect body effect. Assume I1 is implemented using a single NMOS.

Gain Boosting: Super Transistor

- \square Assume $A_1 \gg 1$
- $\Box g_{m,super} = A_1 g_m$
- $\Box r_{o,super} = r_o$

Gain Boosting: Super Transistor

$$\Box G_m \approx \frac{g_{m,super}}{1 + g_{m,super}R_S} \approx \frac{A_1 g_m}{1 + A_1 g_m R_S} \approx \frac{1}{R_S}$$

$$\Box R_{out} = r_o(1 + g_{m,super}R_S) = r_o(1 + A_1g_mR_S)$$

Super Cascode

- ☐ A.k.a. regulated cascode or gain boosted cascode
- \Box $G_m \approx g_{m1}$
- $\square R_{out} = r_{o2}(1 + g_{m2,super}r_{o1}) = r_{o2}(1 + A_1g_{m2}r_{o1})$
- $\Box A_v \approx A_1(g_{m1}r_{o1})(g_{m2}r_{o2})$
- ☐ Gain is boosted while preserving headroom
- But more power and noise

Super Cascode Implementation

- NMOS CS
 - Headroom limitation
 - $V_P = V_{TH} + V_{ov3}$ instead of V_{ov1}

Thank you!

Cascode vs Longer Device

- ☐ Assuming same bias current and headroom requirement
- ☐ For single device
 - Double V_{ov} means 4 times L can be used $(I_D \propto (W/L)V_{ov}^2)$
 - $r_o = 1/\lambda I_D$ multiplied by 4, but g_m divided by 2 ($g_m = 2I_D/V_{ov}$)
 - Overall gain increases by a factor of 2
- For cascode
 - Rout multiplied by $g_m r_o$, and gm unchanged
 - Overall gain increases by a factor of $g_m r_o$
 - But we need extra bias voltage

Poor Man's Cascode

☐ Can we eliminate the extra bias voltage?

$$V_{DS2} = V_{GS2} - V_{GS1} = V_{ov2} - V_{ov1} < V_{ov2}$$

M2 ALWAYS in triode \rightarrow Not a cascode, just twice the length

But what if $V_{T2} > V_{T1}$ (devices with different threshold voltages)? $V_{DS2} = V_{GS2} - V_{GS1} = (V_{ov2} - V_{ov1}) + (V_{T2} - V_{T1}) > V_{ov2}$ M2 in saturation if: $(V_{T2} - V_{T1}) > V_{ov1}$

Gain Boosting Implementation

- NMOS CS (a): headroom limitation
 - $V_P = V_{TH} + V_{ov3}$ instead of V_{ov1}
- ☐ PMOS CS (b): M3 will be in triode
 - $V_G V_P > V_{TH}$
- ☐ Folded cascode (c): M4 provide level shift

