Project Module in Econometrics & Statistics

JProf. Dominik Liebl 2018-09-28

Contents

P	refac	\mathbf{e}	5				
1	Intr	ntroduction to R					
	1.1	Short Glossary	7				
	1.2	First Steps	7				
	1.3	Further Data Objects	10				
	1.4	Simple Regression Analysis using R	11				
	1.5	Programming and Simulating using R					
	1.6	Simulation (Hands on)	16				
	1.7	R-packages					
	1.8	Tidyverse					
2	Sta	tistical Hypothesis Testing	31				
	2.1	Hypotheses and Test-Statistics	31				
	2.2	Significance Level, Size and P-values	32				
	2.3	The power function					
	2.4	Asymptotic Null Distributions	35				
	2.5	Multiple comparisons					
3	R-I	ab. The Gauss-Test	39				

4 CONTENTS

Preface

This is the script for the project module in econometrics & statistics.

General Topic: Regression analysis and beyond

Description: This project module covers modern methods in statistics and econometrics with a focus on regression analysis. Participants have the opportunity to choose among a set of specific projects. Topics suggested by the participants are generally appreciated, but will be assessed with respect to their practical feasibility. All projects should have a theoretical part describing the model and the estimation procedures, a Monte-Carlo simulation study, and an application to real data. Depending on the actual number of participants, it might be that the project work has to be carried out as a group task rather than as an individual task. The first five to six weeks consist of lectures (4h per week). Participation is strongly recommended and active participation is desirable. After the lecture series, the groups will have regular meetings with the supervisor.

Grading: Each student will be evaluated on the basis of a presentation (Scheduled for begin/mid of January) and a seminar paper (Deadline: end of February).

6 CONTENTS

Chapter 1

Introduction to R

This tutorial aims to serve as an introduction to the software package R. Other very good and much more exhaustive tutorials and useful reference-cards can be found at the following links:

- Reference card for R commands (always useful)
- Matlab/R reference card (for those who are more familiar with Matlab)
- The official Introduction to R (very detailed)
- And many more at www.r-project.org (see "Documents")
- An interactive introduction can be done online at: www.datacamp.com
- An excellent book project which covers also advanced issues such as "writing performant code" and "package development": adv-r.had.co.nz

Why R?

- R is **free** of charge from: www.r-project.org
- The celebrated IDE **RStudio** for R is also **free** of charge: www.rstudio.com
- R is equipped with one of the most flexible and powerful graphics routines available anywhere. For instance, check out this repository on Clean Graphs or this: R graph catalog.
- The S language (R is a dialect of S) is the de-facto standard for statistical science. Reading the statistical literature, you will find that examples and even pseudo-code are often written in R-compatible syntax.

1.1 Short Glossary

Lets start the tutorial with a (very) short glossary:

- Console: The thing with the ">" sign at the beginning.
- Script file: An ordinary text file with suffix ".R". For instance, yourFavoritFileName.R.
- Working directory: The file-directory you are working in. Useful commands: with getwd() you get the location of your current working directory and setwd() allows you to set a new location for it.
- Workspace: This is a hidden file (stored in the working directory), where all objects you use (e.g., data, matrices, vectors, variables, functions, etc.) are stored. Useful commands: ls() shows all elements in our current workspace and rm(list=ls()) deletes all elements in our current workspace.

1.2 First Steps

A good idea is to use a script file such as **yourFavoritFileName.R** in order to store your R commands. You can send single lines or marked regions of your R-code to the console by pressing the keys **STRG+ENTER**.

To begin with baby steps, do some simple computations:

```
2+2 # and all the others: *,/,-,^2,^3,...
```

[1] 4

Note: Everything that is written after the #-sign is ignored by R, which is very useful to comment your code.

The assignment operator will be your most often used tool. Here an example to create a scalar variable:

```
x <- 4
x
```

```
## [1] 4
```

```
4 -> x # possible but unusual x
```

[1] 4

Note: The R community loves the <- assignment operator, which is a very unusual syntax. Alternatively, you can use the = operator.

And now a more interesting object - a **vector**:

```
y \leftarrow c(2,7,4,1)
y
```

```
## [1] 2 7 4 1
```

The command ls() shows the total content of your current workspace, and the command rm(list=ls()) deletes all elements of your current workspace:

```
ls()
```

```
## [1] "x" "y"
rm(list=ls())
ls()
```

character(0)

Note: RStudio's **Environment** pane also lists all the elements in your current workspace. That is, the command ls() becomes a bit obsolete when working with RStudio.

Let's try how we can compute with vectors and scalars in R.

```
x \leftarrow 4

y \leftarrow c(2,7,4,1)

x*y # each element in the vector, y, is multiplied by the scalar, x.
```

```
## [1] 8 28 16 4
y*y # this is a term by term product of the elements in y
```

```
## [1] 4 49 16 1
```

Performing vector multiplications as you might expect from your last math-course, e.g., an outer product: $y y^{\top}$:

```
y %*% t(y)
```

```
## [,1] [,2] [,3] [,4]
## [1,] 4 14 8 2
```

1.2. FIRST STEPS 9

```
## [2,] 14 49 28 7
## [3,] 8 28 16 4
## [4,] 2 7 4 1
```

Or an inner product $y^{\top}y$:

```
t(y) %*% y
```

```
## [,1]
## [1,] 70
```

Note: Sometimes, R's treatment of vectors can be annoying. The product y %*% y is treated as the product t(y) %*% y.

The term-by-term execution as in the above example, y*y, is actually a central strength of R. We can conduct many operations **vector-wisely**:

```
## [1] 4 49 16 1
log(y)
## [1] 0.6931472 1.9459101 1.3862944 0.0000000
exp(y)
## [1] 7.389056 1096.633158 54.598150 2.718282
y-mean(y)
## [1] -1.5 3.5 0.5 -2.5
```

```
(y-mean(y))/sd(y) # standardization
```

```
## [1] -0.5669467 1.3228757 0.1889822 -0.9449112
```

This is a central characteristic of so called matrix based languages like R (or Matlab). Other programming languages often have to use **loops** instead:

```
N <- length(y)
1:N

y.sq <- numeric(N)
y.sq

for(i in 1:N){
    y.sq[i] <- y[i]^2
    if(i == N){
        print(y.sq)
    }
}</pre>
```

The for()-loop is the most common loop. But there is also a while()-loop and a repeat()-loop. However, loops in R can be rather slow, therefore, try to avoid them!

Useful commands to produce **sequences** of numbers:

```
1:10

-10:10

?seq # Help for the seq()-function

seq(from=1, to=100, by=7)
```

Using the sequence command 1:16, we can go for our first matrix:

```
?matrix
A <- matrix(data=1:16, nrow=4, ncol=4)
        [,1] [,2] [,3] [,4]
## [1,]
            1
                 5
                      9
                           13
## [2,]
           2
                 6
                     10
                           14
## [3,]
            3
                 7
                           15
                     11
                     12
## [4,]
                           16
A <- matrix(1:16, 4, 4)
```

Note that a matrix has always two **dimensions**, but a vector has only one dimension:

```
dim(A)  # Dimension of matrix A?

## [1] 4 4
dim(y)  # dim() does not operate on vectors.

## NULL
length(y) # Length of vector y?
```

[1] 4

Lets play a bit with the matrix A and the vector y. As we have seen in the loop above, the []-operator selects elements of vectors and matrices:

```
A[,1]
A[4,4]
y[c(1,4)]
```

This can be done on a more **logical** basis, too. For example, if you want to know which elements in the first column of matrix A are strictly greater than 2:

```
A[,1][A[,1]>2]

## [1] 3 4

# Note that this give you a boolean vector:
A[,1]>2

## [1] FALSE FALSE TRUE TRUE

# And you can use it in a non-sense relation, too:
y[A[,1]>2]
```

[1] 4 1

Note: Logical operations return so-called **boolean** objects, i.e., either a TRUE or a FALSE. For instance, if we ask R whether 1>2 we get the answer FALSE.

1.3 Further Data Objects

Besides classical data objects such as scalars, vectors, and matrices there are three further data objects in R:

1. The array: As a matrix but with more dimensions. Here is an example of a $2 \times 2 \times 2$ -dimensional array:

```
myFirst.Array <- array(c(1:8), dim=c(2,2,2)) # Take a look at it!</pre>
```

2. The **list**: In **lists** you can organize different kinds of data. E.g., consider the following example:

A very useful function to find specific values and entries within lists is the str()-function:

```
## List of 3
```

```
## List of 3

## $ Some_Numbers: num [1:8] 66 76 55 12 4 66 8 99

## $ Animals : chr [1:3] "Rabbit" "Cat" "Elefant"

## $ My_Series : int [1:30] 30 29 28 27 26 25 24 23 22 21 ...
```

3. The data frame: A data.frame is a list-object but with some more formal restrictions (e.g., equal number of rows for all columns). As indicated by its name, a data.frame-object is designed to store data:

```
myFirst.Dataframe <- data.frame("Credit_Default" = c(0,0,1,0,1,1),

"Age" = c(35,41,55,36,44,26),

"Loan_in_1000_EUR" = c(55,65,23,12,98,76))

# Take a look at it!
```

1.4 Simple Regression Analysis using R

Alright, let's do some statistics with real data. You can download the data HERE. Save it on your computer, at a place where you can find it, and give the path (e.g. "C:\textbackslash path\textbackslash auto.data.csv", which references to the data, to the file-argument of the function read.csv():

```
# ATTENTION! YOU HAVE TO CHANGE "\" TO "/":
auto.data <- read.csv(file="C:/your_path/autodata.txt", header=TRUE)
head(auto.data)</pre>
```

If you have problems to read the data into R, go on with these commands. (For this you need a working internet connection!):

```
# install.packages("readr")
library("readr")
auto.data <- suppressMessages(read_csv(file = "https://cdn.rawgit.com/lidom/Teaching_Repo/bc692b56/auto
# head(auto.data)</pre>
```

You can select specific variables of the auto.data using the \$-operator:

```
gasolin.consumption <- auto.data$MPG.city
car.weight <- auto.data$Weight
## Take a look at the first elements of these vectors:
head(cbind(gasolin.consumption,car.weight))</pre>
```

```
##
        gasolin.consumption car.weight
## [1,]
                           25
                                     2705
## [2,]
                                     3560
                           18
## [3,]
                           20
                                     3375
## [4,]
                           19
                                     3405
                           22
                                     3640
## [5,]
```

```
## [6,] 22 2880
```

This is how you can produce your first plot:

Buy Light-Weight Cars!

As a first step, we might assume a simple kind of linear relationship between the variables gasolin.consumption and car.weight. Let us assume that the data was generated by the following simple regression model:

$$y_i = \alpha + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n$$

where y_i denotes the gasoline-consumption, x_i the weight of car i, and ε_i is a mean zero constant variance noise term. (This is clearly a non-sense model!)

The command lm() computes the estimates of this linear regression model. The command (in fact it's a method) summary() computes further quantities of general interest from the object that was returned from the lm() function.

```
lm.result
            <- lm(gasolin.consumption~car.weight)
            <- summary(lm.result)
lm.summary
lm.summary
##
## Call:
  lm(formula = gasolin.consumption ~ car.weight)
##
  Residuals:
##
##
                1Q
                    Median
                                 3Q
                                        Max
                            1.1855 13.8278
  -6.7946 -1.9711 0.0249
##
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 47.048353
                            1.679912
                                       28.01
                                                <2e-16 ***
## car.weight -0.008032
                            0.000537
                                     -14.96
                                               <2e-16 ***
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.038 on 91 degrees of freedom
## Multiple R-squared: 0.7109, Adjusted R-squared: 0.7077
## F-statistic: 223.8 on 1 and 91 DF, p-value: < 2.2e-16</pre>
```

Of course, we want to have a possibility to access all the quantities computed so far, e.g., in order to plot the results. This can be done as following:

```
## Accessing the computed quantities
names(lm.summary) ## Alternatively: str(lm.summary)
    [1] "call"
                         "terms"
                                          "residuals"
##
                                                            "coefficients"
    [5] "aliased"
                                          "df"
                                                            "r.squared"
                         "sigma"
    [9] "adj.r.squared" "fstatistic"
                                           "cov.unscaled"
alpha <- lm.summary$coefficients[1]</pre>
beta <- lm.summary$coefficients[2]</pre>
## Plot all:
plot(y=gasolin.consumption, x=car.weight,
     xlab="Car-Weight (US-Pounds)",
     ylab="Consumption (Miles/Gallon)",
     main="Buy light-weight Cars!")
abline(a=alpha,
       b=beta, col="red")
```

Buy light-weight Cars!

1.5 Programming and Simulating using R

Let's write our own (very simple) R-function for estimating linear regression models. In order to be able to validate our function, we start with **simulating data** (for which we then *know* all parameters). Simulating data is like being the "Data-God": For instance, we generate realizations of the error term ε_i , i.e., something which we **never** observe in real data.

Let us consider the following multiple regression model:

$$y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \varepsilon_i, \quad i = 1, \dots, n,$$

where ε_i is a heteroscedastic error term

$$\varepsilon_i \sim N(0, \sigma_i^2), \quad \sigma_i = x_{3i},$$

and where for all i = 1, ..., n = 50:

- $x_{2i} \sim N(10, 1.5^2)$
- x_{3i} comes from a t-distribution with 5 degrees of freedom and non-centrality parameter 2

```
set.seed(109) # Sets the "seed" of the random number generators:
n <- 50  # Number of observations

## Generate two explanatory variables plus an intercept-variable:
X.1 <- rep(1, n)  # Intercept
X.2 <- rnorm(n, mean=10, sd=1.5) # Draw realizations form a normal distr.
X.3 <- rt(n, df=5, ncp=2)  # Draw realizations form a t-distr.
X <- cbind(X.1, X.2, X.3)  # Save as a Nx3-dimensional data matrix.</pre>
```

OK, we have regressors, i.e., data that we also have in real data sets.

Now we define the elements of the β -vector. Be aware of the difference: In real data sets we do not know the true β -vector, but try to estimate it. However, when simulating data, we determine (as "Data-Gods") the true β -vector and can compare our estimate $\hat{\beta}$ with the true β :

```
## Define the slope-coefficients
beta.vec <- c(1,-5,5)</pre>
```

We still need to simulate realizations of the dependent variable y_i . Remember that $y_i = \beta_1 x_{1i} + \beta_1 x_{2i} + \beta_3 x_{3i} + \varepsilon_i$. That is, we only need realizations from the error terms ε_i in order to compute the realizations from y_i . This is how you can simulate realizations from the heteroscedastic error terms ε_i :

```
## Generate realizations from the heteroscadastic error term
eps <- (X.3)*rnorm(n, mean=0, sd=1)</pre>
```

Take a look at the heteroscedasticity in the error term:

```
plot(y=eps, x=X.3,
    main="Realizations of the \nHeteroscedastic Error Term")
```

Realizations of the Heteroscedastic Error Term

With the (pseudo-random) realizations from ε_i , we can finally generate realizations from the dependent variable y_i :

```
## Dependent variable:
y <- X %*% beta.vec + eps</pre>
```

Let's take a look at the data:

```
mydata <- data.frame("Y"=y, "X.1"=X.1, "X.2"=X.2, "X.3"=X.3)
pairs(mydata[,-2]) # The '-2' removes the intercept variable "X.1"</pre>
```


Once we have data, we can compute the OLS estimate of the true β vector. Remember the formula:

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y$$

In R-Code this is: $(X^{\top}X)^{-1} = \mathsf{solve}(\mathsf{t}(\mathsf{X}) \ \%*\% \ \mathsf{X})$, i.e.:

```
## Computation of the beta-Vector:
beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y
beta.hat
            [,1]
## X.1 -2.735042
## X.2 -4.685719
## X.3 5.091811
Well done. Using the above lines of code we can easily program our own myOLSFun() function!
myOLSFun <- function(y, x, add.intercept=FALSE){</pre>
  ## Number of Observations:
            <- length(y)
  ## Add an intercept to x:
  if(add.intercept){
    Intercept <- rep(1, n)</pre>
              <- cbind(Intercept, x)
  }
  ## Estimation of the slope-parameters:
  beta.hat.vec <- solve(t(x) %*% x) %*% t(x) %*% y
  ## Return the result:
  return(beta.hat.vec)
## Run the function:
myOLSFun(y=y, x=X)
##
            [,1]
## X.1 -2.735042
## X.2 -4.685719
## X.3 5.091811
```

Can you extend the function for the computation of the covariance matrix of the slope-estimates, several measures of fits $(R^2, adj.-R^2, etc.)$, t-tests, ...?

1.6 Simulation (Hands on)

```
X.1 \leftarrow rep(1, n)
X.2 <- rnorm(n, mean=10, sd=1.5)
                                    # Draw realizations form a normal distr.
X.3 \leftarrow rt(n, df=5, ncp=2)
                                 # Draw realizations form a t-distr.
X <- cbind(X.1, X.2, X.3) # Save as a Nx3-dimensional matrix.
## Setup a progressbar
#pb <- txtProgressBar(min = 0, max = B, style = 3)</pre>
for(rpt in 1:B){
 eps <- (X.3)*rnorm(n, mean=0, sd=1) # heteroscadastic error term
  y <- X %*% beta.vec + eps
                                 # Dependent variable
 ## Estimation
 beta.hat <- myOLSFun(y=y,x=X)</pre>
  ## Save results
 beta.2.sim[rpt] <- beta.hat[2]</pre>
 beta.3.sim[rpt] <- beta.hat[3]</pre>
 ## Progress bar
  #setTxtProgressBar(pb, rpt)
}
#close(pb)# Close progressbar
## Plot results
par(mfrow=c(1,2))
plot(density(beta.2.sim), bw="SJ", main=expression(hat(beta)[2]))
## Warning in plot.window(...): "bw" ist kein Grafikparameter
## Warning in plot.xy(xy, type, ...): "bw" ist kein Grafikparameter
## Warning in axis(side = side, at = at, labels = labels, ...): "bw" ist kein
## Grafikparameter
## Warning in axis(side = side, at = at, labels = labels, ...): "bw" ist kein
## Grafikparameter
## Warning in box(...): "bw" ist kein Grafikparameter
## Warning in title(...): "bw" ist kein Grafikparameter
abline(v=beta.vec[2], col="red", lwd=2)
##
plot(density(beta.3.sim), bw="SJ", main=expression(hat(beta)[3]))
## Warning in plot.window(...): "bw" ist kein Grafikparameter
## Warning in plot.xy(xy, type, ...): "bw" ist kein Grafikparameter
## Warning in axis(side = side, at = at, labels = labels, ...): "bw" ist kein
## Grafikparameter
## Warning in axis(side = side, at = at, labels = labels, ...): "bw" ist kein
## Grafikparameter
## Warning in box(...): "bw" ist kein Grafikparameter
## Warning in title(...): "bw" ist kein Grafikparameter
abline(v=beta.vec[3], col="red", lwd=2)
```


1.7 R-packages

One of the best features in R are its contributed packages. The list of all packages on CRAN is impressive! Take a look at it $\rm HERE$

For instance, nice plots can be produced using the R-package is ggplot2. You can find an intro do this package HERE.

```
# install.packages("ggplot2")
library("ggplot2")

qplot(Sepal.Length, Petal.Length, data = iris, color = Species)
```

1.8. TIDYVERSE

Of course, ggplot2 concerns "only" plotting, but you'll find R-packages for almost any statistical method out there.

1.8 Tidyverse

The tidyverse package is a collection of packages that lets you import, manipulate, explore, visualise and model data in a harmonised and consistent way which helps you to be more productive.

Installing the tidyverse package:

```
install.packages("tidyverse")
```

To use the tidyverse package load it using the library() function:

```
library(tidyverse)
```

Chick Weight Data

R comes with many datasets installed. We will use the ChickWeight dataset to learn about the tidyverse. The help system gives a basic summary of the experiment from which the data was collect:

"The body weights of the chicks were measured at birth and every second day thereafter until day 20. They were also measured on day 21. There were four groups of chicks on different protein diets."

You can get more information, including references by typing:

```
help("ChickWeight")
```

The Data: There are 578 observations (rows) and 4 variables:

- Chick unique ID for each chick.
- Diet one of four protein diets.
- Time number of days since birth.
- weight body weight of chick in grams.

Note: weight has a lower case w (recall R is case sensitive).

Store the data locally:

```
ChickWeight %>%
  select(Chick, Diet, Time, weight) %>%
  arrange(Chick, Diet, Time) %>%
  write_csv("ChickWeight.csv")
```

First we will import the data from a file called ChickWeight.csv using the read_csv() function from the readr package (part of the tidyverse). The first thing to do, outside of R, is to open the file ChickWeight.csv to check what it contains and that it makes sense. Now we can import the data as follows:

```
CW <- read_csv("ChickWeight.csv")

## Parsed with column specification:
## cols(
## Chick = col_integer(),
## Diet = col_integer(),
## Time = col_integer(),
## weight = col_integer()</pre>
## weight = col_integer()
```

If all goes well then the data is now stored in an R object called CW. If you get the following error message then you need to change the working directory to where the data is stored.

```
Error: 'ChickWeight.csv' does not exist in current working directory ...
```

Changing the working directory: In RStudio you can use the menu bar ("Session - Set Working Directory - Choose Directory..."). Alternatively, you can use the function setwd().

Looking at the Dataset: To look at the data type just type the object (dataset) name:

CW

```
## # A tibble: 578 x 4
##
      Chick Diet Time weight
##
      <int> <int> <int>
                          <int>
##
         18
                       0
                              39
    1
                 1
                       2
##
   2
         18
                 1
                              35
##
         16
                       0
                              41
   3
                 1
##
    4
         16
                 1
                       2
                              45
   5
                       4
##
         16
                              49
                 1
##
   6
         16
                 1
                       6
                              51
   7
                       8
##
         16
                 1
                              57
##
    8
         16
                 1
                      10
                              51
   9
##
         16
                 1
                      12
                              54
## 10
         15
                 1
                              41
## # ... with 568 more rows
```

1.8. TIDYVERSE 21

If there are too many variables then not all them may be printed. To overcome this issue we can use the glimpse() function which makes it possible to see every column in your dataset (called a "data frame" in R speak).

```
glimpse(CW)
```

The function View() allows for a spread-sheet type of view on the data:

```
View(CW)
```

1.8.1 Tidyverse: Plotting Basics

To **visualise** the chick weight data, we will use the **ggplot2** package (part of the **tidyverse**). Our interest is in seeing how the *weight changes over time for the chicks by diet*. For the moment don't worry too much about the details just try to build your own understanding and logic. To learn more try different things even if you get an error messages.

Let's plot the weight data (vertical axis) over time (horizontal axis).

```
# An empty plot (the plot on the left)
ggplot(CW, aes(Time, weight))
# With data (the plot on the right)
ggplot(CW, aes(Time, weight)) + geom_point()
```


Add colour for Diet. The graph above does not differentiate between the diets. Let's use a different colour for each diet.

```
# Adding colour for diet
ggplot(CW,aes(Time,weight,colour=factor(Diet))) +
  geom_point()
```


It is difficult to conclude anything from this graph as the points are printed on top of one another (with diet 1 underneath and diet 4 at the top).

Factor Variables: Before we continue, we have to make an important change to the CW dataset by making Diet and Time factor variables. This means that R will treat them as categorical variables (see the <fct> variables below) instead of continuous variables. It will simplify our coding. The next section will explain the mutate() function.

```
CW <- mutate(CW, Diet = factor(Diet))
CW <- mutate(CW, Time = factor(Time))
glimpse(CW)</pre>
```

The facet_wrap() function: To plot each diet separately in a grid using facet_wrap():

```
# Adding jitter to the points
ggplot(CW, aes(Time, weight, colour=Diet)) +
  geom_point() +
  facet_wrap(~Diet) +
  theme(legend.position = "bottom")
```

1.8. TIDYVERSE 23

Interpretation: Diet 4 has the least variability but we can't really say anything about the mean effect of each diet although diet 3 seems to have the highest.

Next we will plot the mean changes over time for each diet using the stat_summary() function:

Interpretation: We can see that diet 3 has the highest mean weight gains by the end of the experiment. However, we don't have any information about the variation (uncertainty) in the data.

To see variation between the different diets we use <code>geom_boxplot</code> to plot a box-whisker plot. A note of caution is that the number of chicks per diet is relatively low to produce this plot.

```
ggplot(CW, aes(Time, weight, colour=Diet)) +
facet_wrap(~Diet) +
geom_boxplot() +
```

```
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet")
```

Chick Weight over Time by Diet

Interpretation: Diet 3 seems to have the highest "average" weight gain but it has more variation than diet 4 which is consistent with our findings so far.

Let's finish with a plot that you might include in a publication.

1.8. TIDYVERSE 25

1.8.2 Tidyverse: Data Wrangling Basics

In this section we will learn how to wrangle (manipulate) datasets using the tidyverse package. Let's start with the mutate(), select(), rename(), filter() and arrange() functions.

mutate(): Adds a new variable (column) or modifies an existing one. We already used this above to create factor variables.

```
# Added a column
CWm1 <- mutate(CW, weightKg = weight/1000)
CWm1
## # A tibble: 578 x 5
##
     Chick Diet Time weight weightKg
     <int> <fct> <fct> <int>
                                   <dbl>
## 1
        18 1
                  0
                            39
                                   0.039
## 2
        18 1
                  2
                            35
                                  0.035
## 3
        16 1
                 0
                            41
                                  0.041
## # ... with 575 more rows
# Modify an existing column
CWm2 <- mutate(CW, Diet = str_c("Diet ", Diet))</pre>
CWm2
## # A tibble: 578 x 4
##
     Chick Diet
                  Time weight
     <int> <chr> <fct>
        18 Diet 1 0
                             39
## 1
```

 \mid (or).

```
## 2
        18 Diet 1 2
                              35
## 3
        16 Diet 1 0
                              41
## # ... with 575 more rows
select(): Keeps, drops or reorders variables.
# Drop the weight variable from CWm1 using minus
select(CWm1, -weight)
## # A tibble: 578 x 4
##
     Chick Diet Time weightKg
     <int> <fct> <fct>
                            <dbl>
## 1
                            0.039
        18 1
                  0
## 2
        18 1
                  2
                            0.035
## 3
        16 1
                  0
                            0.041
## # ... with 575 more rows
# Keep variables Time, Diet and weightKq
select(CWm1, Chick, Time, Diet, weightKg)
## # A tibble: 578 x 4
     Chick Time Diet weightKg
##
##
     <int> <fct> <fct>
                            <dbl>
## 1
        18 0
                  1
                            0.039
## 2
        18 2
                            0.035
## 3
        16 0
                            0.041
                  1
## # ... with 575 more rows
rename(): Renames variables whilst keeping all variables.
rename(CW, Group = Diet, Weight = weight)
## # A tibble: 578 x 4
     Chick Group Time Weight
##
     <int> <fct> <fct> <int>
## 1
        18 1
                  0
                             39
                  2
## 2
        18 1
                             35
## 3
        16 1
                  0
                             41
## # ... with 575 more rows
filter(): Keeps or drops observations (rows).
filter(CW, Time==21 & weight>300)
## # A tibble: 8 x 4
##
     Chick Diet Time weight
##
     <int> <fct> <fct> <int>
## 1
         7 1
                  21
                            305
## 2
        29 2
                  21
                            309
## 3
        21 2
                  21
                            331
## # ... with 5 more rows
For comparing values in vectors use: < (less than), > (greater than), <= (less than and equal to), >= (greater
than and equal to), == (equal to) and != (not equal to). These can be combined logically using & (and) and
```

arrange(): Changes the order of the observations.

```
arrange(CW, Chick, Time)
```

1.8. TIDYVERSE 27

```
## # A tibble: 578 x 4
##
    Chick Diet Time weight
     <int> <fct> <fct> <int>
## 1
         1 1
                           42
                 0
## 2
         1 1
                 2
## 3
         1 1
                 4
                           59
## # ... with 575 more rows
arrange(CW, desc(weight))
## # A tibble: 578 x 4
    Chick Diet Time weight
     <int> <fct> <fct> <int>
##
       35 3
                 21
## 1
                          373
## 2
       35 3
                 20
                          361
## 3
       34 3
                 21
                          341
## # ... with 575 more rows
```

What does the desc() do? Try using desc(Time).

1.8.3 The pipe operator %>%

In reality you will end up doing multiple data wrangling steps that you want to save. The pipe operator %>% makes your code nice and readable:

```
CW21 <- CW %>%
  filter(Time %in% c(0, 21)) %>%
  rename(Weight = weight) %>%
 mutate(Group = factor(str_c("Diet ", Diet))) %>%
  select(Chick, Group, Time, Weight) %>%
  arrange(Chick, Time)
CW21
## # A tibble: 95 x 4
   Chick Group Time Weight
     <int> <fct> <fct> <int>
## 1
         1 Diet 1 0
                            42
## 2
         1 Diet 1 21
                           205
## 3
         2 Diet 1 0
                            40
## # ... with 92 more rows
```

Hint: To understand the code above we should read the pipe operator %>% as "then".

Create a new dataset (object) called CW21 using dataset CW *then* keep the data for days 0 and 21 *then* rename variable weight to Weight *then* create a variable called Group *then* keep variables Chick, Group, Time and Weight and *then* finally arrange the data by variables Chick and Time.

This is the same code:

```
CW21 <- CW %>%
  filter(., Time %in% c(0, 21)) %>%
  rename(., Weight = weight) %>%
  mutate(., Group=factor(str_c("Diet ",Diet))) %>%
  select(., Chick, Group, Time, Weight) %>%
  arrange(., Chick, Time)
```

The pipe operator, %>%, replaces the dots (.) with whatever is returned from code preceding it. For

example, the dot in filter(., Time %in% c(0, 21)) is replaced by CW. The output of the filter(...) then replaces the dot in rename(., Weight = weight) and so on. Think of it as a data assembly line with each function doing its thing and passing it to the next.

1.8.4 The group_by() function

From the data visualisations above we concluded that the diet 3 has the highest mean and diet 4 the least variation. In this section, we will quantify the effects of the diets using **summmary statistics**. We start by looking at the number of observations and the mean by **diet** and **time**.

```
mnsdCW <- CW %>%
  group_by(Diet, Time) %>%
  summarise(N = n(), Mean = mean(weight)) %>%
  arrange(Diet, Time)
mnsdCW
## # A tibble: 48 x 4
## # Groups:
               Diet [4]
##
    Diet Time
                     N Mean
##
     <fct> <fct> <int> <dbl>
## 1 1
           0
                    20 41.4
## 2 1
           2
                    20
                       47.2
## 3 1
           4
                    19 56.5
## # ... with 45 more rows
```

For each distinct combination of Diet and Time, the chick weight data is summarised into the number of observations (N) and the mean (Mean) of weight.

Further summaries: Let's also calculate the standard deviation, median, minimum and maximum values but only at days 0 and 21.

```
sumCW <- CW %>%
  filter(Time %in% c(0, 21)) %>%
  group_by(Diet, Time) %>%
  summarise(N = n(),
            Mean = mean(weight),
            SD = sd(weight),
            Median = median(weight),
            Min = min(weight),
            Max = max(weight)) %>%
  arrange(Diet, Time)
sumCW
## # A tibble: 8 x 8
## # Groups:
               Diet [4]
     Diet Time
                     N Mean
                                  SD Median
                                              Min
                                                    Max
##
     <fct> <fct> <int> <dbl>
                              <dbl>
                                      <dbl> <dbl> <dbl>
## 1 1
           0
                    20 41.4 0.995
                                       41
                                               39
                             58.7
## 2 1
           21
                    16 178.
                                      166
                                               96
                                                    305
## 3 2
           0
                    10 40.7 1.49
                                       40.5
                                               39
                                                     43
## # ... with 5 more rows
```

Let's make the summaries "prettier", say, for a report or publication.

```
library("knitr") # to use the kable() function
prettySumCW <- sumCW %>%
  mutate(`Mean (SD)` = str_c(format(Mean, digits=1),
```

1.8. TIDYVERSE 29

```
" (", format(SD, digits=2), ")")) %>%
mutate(Range = str_c(Min, " - ", Max)) %>%
select(Diet, Time, N, `Mean (SD)`, Median, Range) %>%
arrange(Diet, Time) %>%
kable(format = "latex")
prettySumCW
```

Diet	Time	N	Mean (SD)	Median	Range
1	0	20	41 (0.99)	41.0	39 - 43
1	21	16	178 (58.70)	166.0	96 - 305
2	0	10	41 (1.5)	40.5	39 - 43
2	21	10	215 (78.1)	212.5	74 - 331
3	0	10	41 (1)	41.0	39 - 42
3	21	10	270 (72)	281.0	147 - 373
4	0	10	41 (1.1)	41.0	39 - 42
4	21	9	239 (43.3)	237.0	196 - 322

Interpretation: This summary table offers the same interpretation as before, namely that diet 3 has the highest mean and median weights at day 21 but a higher variation than group 4. However it should be noted that at day 21, diet 1 lost 4 chicks from 20 that started and diet 4 lost 1 from 10. This could be a sign of some health related issues.

Chapter 2

Statistical Hypothesis Testing

2.1 Hypotheses and Test-Statistics

Assume an independently and identically distributed random sample X_1, \ldots, X_n , where the distributions of X_1, \ldots, X_n depend on some unknown parameter $\theta \in \Omega$, where Ω is some parameter space.

General Testing problem:

 $H_0: \theta \in \Omega_0$

against

$$H_1:\theta\in\Omega_1$$

 H_0 is the null hypothesis, while H_1 is the alternative. $\Omega_0 \subset \Omega$ and $\Omega_1 \subset \Omega$ are used to denote the possible values of θ under H_0 and H_1 , respectively. Necessarily, $\Omega_0 \cap \Omega_1 = \emptyset$.

For a large number of tests we have $\Omega = \mathbb{R}$ and the respective null hypothesis states that θ has a specific value $\theta_0 \in \mathbb{R}$, i.e., $\Omega_0 = \{\theta_0\}$ and $H_0 : \theta = \theta_0$. Depending on the alternative one then often distinguishes between one-sided $(\Omega_1 = (\theta_0, \infty) \text{ or } \Omega_1 = (-\infty, \theta_0))$ and two-sided tests $(\Omega_1 = \{\theta \in \mathbb{R} | \theta \neq \theta_0\})$.

The data X_1, \ldots, X_n is used in order to decide whether to accept or to reject H_0 .

Test Statistic: Every hypothesis test relies on a corresponding test statistic

$$T = T(X_1, \ldots, X_n).$$

Any test statistics is a real valued random variable, and for given observations the resulting observed value T_{obs} is used to decide between H_0 and H_1 . Generally, the distribution of T under H_0 is analyzed in order to define a **rejection region** C:

- $T_{obs} \notin C \Rightarrow H_0$ is not rejected
- $T_{obs} \in C \Rightarrow H_0$ is rejected

Typically C is of the form $(-\infty, c_0]$, $[c_1, \infty)$ or $(-\infty, c_0] \cup [c_1, \infty)$. The limits of the respective intervals are called **critical values**, and are obtained from quantiles of the **null distribution**, i.e., the distribution of T under H_0 .

Decision Errors	Verbal Definition	Formal Definition
Type I error Type II error	H_0 is rejected even though H_0 is true. The test fails to reject a false H_0 .	$P(T \notin C H_0 \text{ true})$ $P(T \in C H_1 \text{ true})$

2.2 Significance Level, Size and P-values

In a statistical significance test, the probability of a type I error is controlled by the **significance level** α (e.g., $\alpha = 5\%$).

$$P(\text{Type I error}) = P(T \in C | H_0 \text{ true}) \leq \alpha$$

The **size** of a statistical test is defined as

$$\sup_{\theta \in \Omega_0} P(T \in C | \theta \in \Omega_0).$$

The preselected significance level α is a bound for the size, which may not be attained (i.e., size $< \alpha$) if, for instance, the relevant probability function is discrete.

Practically important significance levels:

- $\alpha = 0.05$ It is common to say that a test result is "significant" if a hypothesis test of level $\alpha = 0.05$ rejects H_0 .
- $\alpha = 0.01$ It is common to say that a test result is "strongly significant" if a hypothesis test of level $\alpha = 0.01$ rejects H_0 .

p-value: The p-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

Remarks:

- The p-value is random since it depends on the observed data. That is, different random samples will lead to different p-values.
- For given data, having determined the p-value of a test we also know the test decisions for all possible levels α :

$$\alpha > \text{p-value} \Rightarrow H_0 \text{ is rejected}$$

 $\alpha < \text{p-value} \Rightarrow H_0 \text{ is accepted}$

Example: Let $X_i \sim N(\mu, \sigma^2)$ independently for all i = 1, ..., 5 = n. Observed realizations from this iid random sample:

$$X_1 = 19.20, X_2 = 17.40, X_3 = 18.50, X_4 = 16.50, X_5 = 18.90$$

$$\Rightarrow \bar{X} = 18.1$$

Testing problem: $H_0: \mu = 17$ against $H_1: \mu \neq 17$ (two-sided test).

Since the variance is unknown, we have to use a **t-test** in order to test H_0 . Test statistic of the t-test:

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S},$$

where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is the unbiased estimator of σ^2 .

$$T_{obs} = \frac{\sqrt{5}(18.1 - 17)}{1.125} = 2.187$$

$$\Rightarrow$$
 p-value = $P(|T_{n-1}| \ge 2.187) = 0.094$

t-test for different significance levels α :

Figure 2.1: From: https://xkcd.com/1478/

- $\alpha = 0.2 \Rightarrow 2.187 > t_{4,0.9} = 1.533 \Rightarrow H_0$ is rejected
- $\alpha = 0.1 \implies 2.187 > t_{4,0.95} = 2.132 \implies H_0$ is rejected
- $\alpha = 0.05 \Rightarrow 2.187 < t_{4,0.975} = 2.776 \Rightarrow H_0$ is accepted
- $\alpha = 0.01 \Rightarrow 2.187 < t_{4,0.995} = 4.604 \Rightarrow H_0$ is accepted

2.3 The power function

For every possible value $\theta \in \Omega_0 \cup \Omega_1$, all sample sizes n and each significance level α the corresponding value of the **power function** β is given by the probability

$$\beta_{n,\alpha}(\theta) := P(H_0 \text{ is rejected, if the true parameter value equals } \theta)$$

Obviously, $\beta_{n,\alpha}(\theta) \leq \alpha$ for all $\theta \in \Omega_0$. For any $\theta \in \Omega_1$, $1 - \beta_{n,\alpha}(\theta)$ is the probability of committing a type II error.

The power function is an important tool for accessing the quality of a test and for comparing different test procedures. Obviously, the power of a test depends on the true value $\theta \in \Omega$, the sample size n, and on the significance level α .

Some important terminology: - If possible, a test is constructed in such a way that size equals level, i.e., $\beta_{n,\alpha}(\theta) = \alpha$ for some $\theta \in \Omega_0$. In some cases, however, as for discrete test statistics or complex, composite null hypothesis, it is not possible to reach the level, and $\sup_{\theta \in \Omega_0} \beta_{n,\alpha}(\theta) < \alpha$. In this case the test is called **conservative**. - **Unbiased test:** A significance test of level $\alpha > 0$ is called **unbiased** if $\beta_{n,\alpha}(\theta) \ge \alpha$ for all $\theta \in \Omega_1$. - **Consistent Test:** A significance test of level $\alpha > 0$ is called **consistent** if

$$\lim_{n\to\infty}\beta_{n,\alpha}(\theta)=1$$

for all $\theta \in \Omega_1$.

When choosing between different testing procedures for the same testing problem, one will usually prefer the **most powerful** test. Consider a fixed sample size n.

• For a specified $\theta \in \Omega_1$, a test with power function $\beta_{n,\alpha}(\theta)$ is said to be **most powerful** for θ if for any alternative test with power function $\beta_{n,\alpha}^*(\theta)$,

$$\beta_{n,\alpha}(\theta) \geq \beta_{n,\alpha}^*(\theta)$$

holds for all levels $\alpha > 0$.

• A test with power function $\beta_{n,\alpha}(\theta)$ is said to be **uniformly most powerful** against the set of alternatives Ω_1 if for any alternative test with power function $\beta_{n,\alpha}^*(\theta)$,

$$\beta_{n,\alpha}(\theta) \geq \beta_{n,\alpha}^*(\theta)$$
 holds for all $\theta \in \Omega_1, \alpha > 0$

Unfortunately, uniformly most powerful tests only exist for very special testing problems.

Example: Let X_1, \ldots, X_n be an iid random sample. Assume that n = 9, and that $X_i \sim N(\mu, 0.18^2)$. Hence, in this simple example only the mean $\mu = E(X)$ is unknown, while the standard deviation has the known value $\sigma = 0.18$.

Testing problem: $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ for $\mu_0 = 18.3$.

Since the variance is known, a test may rely on the Gauss test statistic

$$Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} = \frac{3(\bar{X} - 18.3)}{0.18}$$

Under H_0 we have $Z \sim N(0,1)$, and for the significance level $\alpha = 0.05$ the null hypothesis is rejected if

$$|Z| \ge z_{1-\alpha/2} = 1.96.$$

Here $z_{1-\alpha/2}$ denotes the corresponding quantile of the standard normal distribution. Note that the size of this test equals its level $\alpha = 0.05$.

For determining the rejection region of a test it suffices to determine the distribution of the test statistic under H_0 . But in order to calculate the power function one needs to quantify the distribution of the test statistic for all possible values $\theta \in \Omega$. For many important problems this is a formidable task. In our example it is, however, quite easy. Note that for any (true) $\mu \in \mathbb{R}$ the corresponding distribution of $Z \equiv Z_{\mu} = \sqrt{n(\bar{X} - \mu_0)}/\sigma$ is

$$Z_{\mu} = \frac{\sqrt{n}(\mu - \mu_0)}{\sigma} + \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N\left(\frac{\sqrt{n}(\mu - \mu_0)}{\sigma}, 1\right)$$

This implies that with Φ denoting the distribution function of the standard normal distribution we obtain

$$\beta_{n,\alpha}(\mu) = P\left(|Z_{\mu}| > z_{1-\alpha/2}\right)$$

$$= 1 - \Phi\left(z_{1-\alpha/2} - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right) + \Phi\left(-z_{1-\alpha/2} - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

The example values $\mu_0 = 18.3$, n = 9 and $\sigma = 0.18$ lead to:

- $\mu = 18.36$ and $\alpha = 0.05 \Rightarrow \beta_{9,0.05}(18.36) = 0.168$
- $\mu = 18.48$ and $\alpha = 0.05 \Rightarrow \beta_{9.0.05}(18.48) = 0.873$
- $\mu = 18.48$ and $\alpha = 0.01 \Rightarrow \beta_{9,0.05}(18.48) = 0.663$

This example illustrates the power function of a "good" test, since:

- Under $H_0: \mu = \mu_0$ we have $\beta_{n,\alpha}(\mu_0) = \alpha$.
- The test is unbiased, since $\beta_{n,\alpha}(\mu) \geq \alpha$ for any $\mu \neq \mu_0$.
- The test is consistent, since $\lim_{n\to\infty} \beta_{n,\alpha}(\mu) = 1$ for every fixed $\mu \neq \mu_0$.

For fixed sample size n, $\beta_{n,\alpha}(\mu)$ increases as the distance $|\mu - \mu_0|$ increases. If $|\mu - \mu_0| > |\mu^* - \mu_0|$ then $\beta_{n,\alpha}(\mu) > \beta_{n,\alpha}(\mu^*)$. On the other hand, $\beta_{n,\alpha}(\mu)$ decreases as the size α of the test decreases. If $\alpha > \alpha^*$ then $\beta_{n,\alpha}(\mu) > \beta_{n,\alpha^*}(\mu)$.

Assuming that the basic assumptions (normality and known variance) are true, the above "Gauss-test" is even the most prominent example of a uniformly most powerful test. Under these conditions, for any possible value of μ no other possible test can achieve a larger value of $\beta_{n,\alpha}(\mu)$.

2.4 Asymptotic Null Distributions

Generally, the underlying distributions are unknown. In this case it is usually not possible to compute the power function of a test for fixed n (exceptions are so called "distribution-free" tests in nonparametric statistics). The only way out of this difficulty is to rely on large sample asymptotics and corresponding asymptotic distributions, which allow to approximate the power function and to study the **asymptotic efficiency** of a test. The finite sample behavior of a test for different sample sizes n is then evaluated by **simulation studies**.

For a real-valued parameter θ most tests of $H_0: \theta = \theta_0$ rely on estimators $\hat{\theta}$ of θ . Under suitable regularity conditions on the underlying distribution central limit theorems usually imply that as $n \to \infty$

$$\sqrt{n}(\hat{\theta} - \theta) \to_D N(0, v^2),$$

where v^2 is the asymptotic variance of the estimator. % Often a consistent estimator \hat{v}^2 of v^2 can be determined from the data. For large n we then approximately have

$$\frac{\sqrt{n}(\hat{\theta} - \theta)}{n} \sim N(0, 1).$$

For given α , a one-sided test of $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ then rejects H_0 if

$$Z = \frac{\sqrt{n}(\hat{\theta} - \theta_0)}{v} > z_{1-\alpha}.$$

The corresponding asymptotic approximation (valid for sufficiently large n) of the true power function is then given by

$$\beta_{n,\alpha}(\theta) = 1 - \Phi\left(z_{1-\alpha} - \frac{\sqrt{n}(\theta - \theta_0)}{v}\right)$$

Note that in practice the (unknown) true value v^2 is generally replaced by an estimator \hat{v}^2 determined from the data. As long as \hat{v}^2 is a consistent estimator of v^2 this leads to the same asymptotic power function. The resulting test is asymptotically unbiased and consistent.

Usually there are many different possible estimators. Consider an alternative estimator $\tilde{\theta}$ of θ satisfying

$$\sqrt{n}(\tilde{\theta}-\theta) \to_D N(0,\tilde{v}^2).$$

If the asymptotic variance v^2 of the estimator $\hat{\theta}$ is smaller than the asymptotic variance \tilde{v}^2 of $\tilde{\theta}$, i.e., $v^2 < \tilde{v}^2$, then $\hat{\theta}$ is a **more efficient** estimator of θ . Then necessarily the test based on $\hat{\theta}$ is **more powerful** than the test based on $\hat{\theta}$, since asymptotically for all $\theta > \theta_0$

Example: Let X_1, \ldots, X_n be an iid random sample. Consider testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$, where $\mu := E(X_i)$. For a given level α the t-test then rejects H_0 if

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} > t_{n-1;1-\alpha},$$

where $t_{n-1;1-\alpha}$ is the $1-\alpha$ quantile of a t-distributions with n-1-degrees of freedom. This is an exact test if the distribution of X_i is normal. In the general case, the justification of the t-test is based on asymptotic arguments. Under some regularity conditions the central limit theorem implies that

$$\sqrt{n}(\bar{X} - \mu) \to_D N(0, \sigma^2)$$

with $\sigma^2 = Var(X_i)$. Moreover, S^2 is a consistent estimator of σ^2 and $t_{n-1;1-\alpha} \to z_{1-\alpha}$ as $n \to \infty$. Thus even if the distribution of X_i is non-normal, for sufficiently large n, $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S}$ is approximately N(0, 1)-distributed and the asymptotic power function of the t-test is given by

$$\beta_{n,\alpha}(\theta) = 1 - \Phi\left(z_{1-\alpha} - \frac{\sqrt{n}(\mu - \mu_0)}{\sigma}\right)$$

2.5 Multiple comparisons

In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. Errors in inference, including confidence intervals that fail to include their corresponding population parameters or hypothesis tests that incorrectly reject the null hypothesis are more likely to occur when one considers the set as a whole.

In empirical studies often dozens or even hundreds of tests are performed for the same data set. When searching for significant test results, one may come up with false discoveries.

Example: m different, independent test of significance level $\alpha > 0$. (Independence means that the test statistics used are mutually independent – this is usually not true in practice). Let's assume that a common null hypothesis H_0 holds for each of the m tests. Then

$$P\left(\begin{array}{c} \text{Type I error} \\ \text{by at least} \\ \text{one of the } m \text{ tests} \end{array}\right) = 1 - (1 - \alpha)^m =: \alpha_m > \alpha$$

Therefore, as m increases also the probability of a type I error increases:

\overline{m}	α_m
1	0.05
3	0.143
5	0.226
10	0.401
100	0.994 (!)

Analogous problem: Construction of m many $(1 - \alpha)$ -confidence intervals.

$$P\left(\begin{array}{c} \text{at least one of the } m \text{ confidence} \\ \text{intervals does not contain} \\ \text{the true parameter value} \end{array}\right) = 1 - (1 - \alpha)^m > \alpha$$

This represents the general problem of multiple comparisons. In practice, it will not be true that all test statistics used are mutually independent. (This even complicates the problem.) However, we will still have the effect that the probability of at least one falsely significant result increases with the number m of tests, but it will not be equal to $1 - (1 - \alpha)^m$.

A statistically rigorous **solution** of this problem consists in modifying the constructions of tests or confidence intervals in order to arrive at **simultaneous tests**:

$$P\left(\begin{array}{c} \text{Type I error by} \\ \text{at least one of the } m \text{ tests} \right) \leq \alpha$$

or simultaneous confidence intervals:

$$P\left(\begin{array}{c} \text{at least one of the } m \text{ confidence} \\ \text{intervals does not contain} \\ \text{the true parameter value} \right) \leq \alpha$$

$$\Leftrightarrow P \left(\begin{array}{c} \text{All confidence intervals} \\ \text{simultaneously contain the} \\ \text{true parameter values} \end{array} \right) \geq 1 - \alpha$$

For certain problems (e.g., analysis of variance) there exist specific procedures for constructing simultaneous confidence intervals. However, the only generally applicable procedure seems to be the Bonferroni correction. It is based on Boole's inequality.

Theorem (Boole): Let A_1, A_2, \ldots, A_m denote m different events. Then

$$P(A_1 \cup A_2 \cup \cdots \cup A_m) \le \sum_{i=1}^m P(A_i).$$

This inequality also implies that:

$$P(A_1 \cap A_2 \cap \cdots \cap A_m) \ge 1 - \sum_{i=1}^m P(\bar{A}_i),$$

where \bar{A}_i denotes the complementary event "not A_i ".

Example: Bonferroni adjustment for m different tests of level $\alpha^* = \alpha/m$.

$$P\left(\begin{array}{c} \text{Type I error by} \\ \text{at least one of the } m \text{ tests} \right) \leq \sum_{i=1}^m \alpha^* = \alpha$$

Chapter 3

R-Lab: The Gauss-Test

Let's reconsider the simplest test statistic you will ever meet: The Gauss-Test (Or "Z-Test").

Setup: Let X_1, \ldots, X_n be an iid random sample with $X_i \sim N(\mu, \sigma^2)$ and $\sigma^2 < \infty$.

Idea: Under the above setup, $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ consistently estimates the (unknown) true mean value μ . That is, $\bar{X}_n \to_p \mu$.

- Under the null hypothesis (i.e., $\mu_0 = \mu$), the difference $\bar{X}_n \mu_0$ should be "small".
- Under the alternative hypothesis (i.e., $\mu_0 \neq \mu$), the difference $\bar{X}_n \mu_0$ should be "large".

Under the null hypothesis H_0 we have that $\mu_0 = \mu$. Therefore:

$$Z = \frac{\sqrt{n} (\bar{X}_n - \mu_0)}{\sigma} = \underbrace{\frac{\sqrt{n} (\bar{X}_n - \mu)}{\sigma}}_{\sim N(0,1)}$$

Under the alternative H_1 we have that $\mu_0 \neq \mu$. Therefore:

$$Z = \frac{\sqrt{n} (\bar{X}_n - \mu_0)}{\sigma}$$

$$= \frac{\sqrt{n} (\bar{X}_n - \mu_0 + \mu - \mu)}{\sigma}$$

$$= \frac{\sqrt{n} (\bar{X}_n - \mu)}{\sigma} + \frac{\sqrt{n} (\mu - \mu_0)}{\sigma} \sim N \left(\frac{\sqrt{n} (\mu - \mu_0)}{\sigma}, 1 \right)$$

The different distributions (under H_0 and H_1) of the test statistic Z can be investigated in the following dynamic plot:

One Sided Z-Test

Figure 3.1: See: https://dliebl.shinyapps.io/Gauss-Test-Distr/