## **EICHUNG (KURS 4)**

### 4.1. <u>Eichung durch Vergleich</u>

Bei der Eichung eines Messgerätes liest man folgende Werte ab:

| Wert des Eichgerätes | Wert des Messgerätes |  |
|----------------------|----------------------|--|
| 4.00                 | 4.24                 |  |
| 5.00                 | 5.26                 |  |
| 6.00                 | 6.27                 |  |
| 7.00                 | 7.25                 |  |
| 8.00                 | 8.19                 |  |
| 9.00                 | 9.15                 |  |
| 10.00                | 10.05                |  |
| 11.00                | 11.01                |  |
| 12.00                | 11.98                |  |
| 13.00                | 12.95                |  |
| 14.00                | 13.91                |  |
| 15.00                | 14.90                |  |

Man nimmt an, dass das Eichgerät den genauen Wert der zu messenden Grösse angibt.

- 1) Zeichnen Sie die statische Kennlinie des Messgerätes für obigen Fall und für den Fall, dass das Messgerät die genauen Werte anzeigen würde.
- 2) Wie würden Sie die Genauigkeit dieses Gerätes für einen Kunden angeben? Wir nehmen an, alle Fehler seien systematisch, und nicht zufällig.
- 3) Zeichnen Sie die Korrekturkurve, damit der Kunde eine genauere Messung durchführen kann.

#### 4.2. <u>Lineare Regression</u>

Gegeben seien die 3 folgenden Eichpunkte einer Temperaturmessung :

x entspricht der zu messenden Grösse (in°C).

y ist das Ausgangssignal (gemessen in Volt).

| i | х | у |
|---|---|---|
| 1 | 1 | 2 |
| 2 | 3 | 3 |
| 3 | 5 | 5 |

Stellen Sie graphisch y = f(x) dar.

Bestimmen Sie a und b für eine optimale Gerade welche durch die Eichwerte x verläuft.

Wie gross ist die Empfindlichkeit des Sensors?

#### 4.3. <u>Lineare Regression</u>

Gegeben seien folgende experimentell ermittelten Punkte einer Windgeschwindigkeitsmessung:



x entspricht der zu messenden Grösse (in m/sec), und y ist das Ausgangssignal (in Volt).

Bestimmen Sie a und b der besten Gerade, welche durch die Eichpunkte x verläuft.

Wie gross ist die Empfindlichkeit des Sensors?

# 4.4. <u>Medianfilter</u>

Gegeben sei das folgende Signal y(t), von dem ein Punkt pro Sekunde gespeichert wird :



Zeichnen Sie das gefilterte Signal y<sub>f</sub>(t), nach Durchlauf durch ein Medianfilter mit Fenster der Länge 3.

#### SOLUTIONS - CALIBRATION (COURS 4) - LÖSUNGEN EICHUNG (KURS 4)

#### 4.1) ETALONNAGE PAR COMPARAISON - EICHUNG DURCH VERGLEICH

1) Statische Kennlinie: / Caractéristique statique:



2) Die maximale Abweichung beträgt +0.27 (bei einem Eichwert von 6).

L'écart absolu maximal relevé est de +0.27 (pour une valeur étalon de 6).

Die Genauigkeit beträgt also: / La précision est donc comprise entre:

$$\pm 0.27/15 = \pm 1.8 \%$$
, bzw. / soit  $\pm 2 \%$ 

indem man noch eine Sicherheitsreserve dazu nimmt.

en conservant une marge de sécurité.

Man könnte eventuell auch einen kleineren negativen Wert spezifizieren:

On pourrait éventuellement fixer une valeur négative plus faible:

$$-0.1/15 = -0.66 \%$$
 ->  $+ 2 \%$  und  $/ et -1 \%$ .

3) Korrekturkurve: / courbe d'étallonnage:



## 4.2) Régression linéaire - Lineare Regression

$$S_1 = 3$$

$$S_x = 9$$

$$S_y = 10$$

$$S_{xx} = 35$$

$$S_{xy} = 36$$

$$D = 3.35 - 9^2 = 24$$

$$a = 0.75$$

$$b = 1.083$$

# 4.3) Régression linéaire - Lineare Regression



a = 1.0818, b = 1.1364

# 4.4) Filtre médian – Medianfilter

