# ZAMAN SERİLERİ ANALİZİ DÖNEM SONU PROJESİ



# HAZIRLAYANLAR 20201101061 Hatice Simay ÖZGÜL 20201101058 Ataman Önol ÜK

Bir Havayolu Şirketinin Yolcuları Üzerinden Zaman Serisi Analizi

Verinin Linki: https://www.kaggle.com/datasets/ashfakyeafi/air-passenger-data-for-time-series-analysis

# <u>İÇERİK</u>

- Veri Setinin Tanımı
  - A) Korelasyon Testi
  - **B)** Otokorelasyon Testi
  - C) Normallik Testi
- Mevsimsellik ve Trend Analizi
- Durağanlaştırma (Fark Alma) İşlemi
- Uygun Model Karşılaştırması
  - 1. Doğrusal Regresyon Modelİ
  - 2. Birinci Farklar Modeli
  - 3. Üstel Regresyon Modeli
  - 4. Karesel Trend Modeli
  - 5. Lojistik Trend Modeli
  - 6. Kübik Trend Modeli
  - 7. Logaritmik Trend Modeli
- SONUÇ
- Karşılaşılabilecek Sorunlar
- Üstel Düzleştirme
- Veriyi Bileşenlere Ayırma
- ARIMA MODELLERİ

# Veri Setinin Tanımı

Ele almış olduğumuz bu veri seti 1949 ile 1960 yılları arasında bir havayolu şirketine ait yolcu bilgisini vermektedir. Toplamda iki değişken (ay ve yolcu) ile 144 gözlemden oluşmaktadır.

# A) Korelasyon Testi

H0: Gözlemler arasında ilişki olmadığından bu veri bir zaman serisi değildir.

H1: Gözlemler arasında ilişki olduğundan bu veri bir zaman serisidir.

| Covariance Analysis: Ordinary Date: 06/10/23 Time: 23:20 Sample: 1949M01 1960M12 Included observations: 144 |                    |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------|----------|--|--|--|
| Correlation Probability MONTH                                                                               | MONTH<br>1.000000  | PASSEN   |  |  |  |
| _PASSENGERS                                                                                                 | 0.923853<br>0.0000 | 1.000000 |  |  |  |

Tabloya baktığımızda en altta yer alan "0.000" değeri bize prob değerini vermektedir. Bu değer 0.05'ten küçük olduğu için H0 hipotezi reddedilir.

Veri setindeki gözlemlerin ilişkili olduğunu ve bu sayede veri setinin bir zaman serisi olduğunu söylemek mümkündür.

# B) Otokorelasyon Testi

H0: Otokorelasyondan söz edilemez.

H1: Otokorelasyon söz konusudur.

| D + 00/40/00 T                                | 00.04               |    |       |        |        |       |
|-----------------------------------------------|---------------------|----|-------|--------|--------|-------|
| Date: 06/10/23 Tim                            |                     |    |       |        |        |       |
| Sample: 1949M01 19                            |                     |    |       |        |        |       |
| Included observation<br>Autocorrelation       | Partial Correlation |    | AC    | PAC    | Q-Stat | Prob  |
| -                                             |                     | 1  | 0.979 | 0.979  | 140.96 | 0.000 |
|                                               |                     | 2  |       | -0.010 | 276.94 | 0.000 |
|                                               |                     | 3  |       | -0.011 | 408.00 | 0.000 |
|                                               |                     | 4  |       | -0.010 | 534.19 | 0.000 |
|                                               |                     | 5  |       | -0.010 | 655.59 | 0.000 |
|                                               | - i i               | 6  |       | -0.010 | 772.26 | 0.000 |
| 1                                             | - I i i             | 7  |       | -0.011 | 884.28 | 0.000 |
| 1                                             | ı İı i              | 8  |       | -0.010 | 991.71 | 0.000 |
| 1                                             | i                   | 9  |       | -0.010 | 1094.6 | 0.000 |
| ı                                             | . t <b>i</b> t i    | 10 | 0.792 | -0.010 | 1193.1 | 0.000 |
| 1                                             |                     | 11 |       | -0.011 | 1287.3 | 0.000 |
| ı <b>——</b>                                   | i     i             | 12 | 0.751 | -0.011 | 1377.1 | 0.000 |
| ı <b>İ</b>                                    | - I ( I             | 13 |       | -0.010 | 1462.8 | 0.000 |
| ı <b>——</b>                                   | [                   | 14 | 0.710 | -0.011 | 1544.4 | 0.000 |
|                                               | 1 1                 | 15 | 0.690 | -0.011 | 1621.9 | 0.000 |
| 1                                             | 1 1                 | 16 | 0.669 | -0.011 | 1695.5 | 0.000 |
| ı <b>———</b>                                  | [                   | 17 | 0.649 | -0.011 | 1765.3 | 0.000 |
| 1                                             |                     | 18 | 0.629 | -0.010 | 1831.3 | 0.000 |
| 1                                             |                     | 19 | 0.609 | -0.011 | 1893.6 | 0.000 |
|                                               |                     | 20 | 0.589 | -0.010 | 1952.3 | 0.000 |
| ı <b>—</b>                                    |                     | 21 | 0.569 | -0.011 | 2007.6 | 0.000 |
| ı <b>—</b>                                    | - I (I - I          | 22 | 0.549 | -0.011 | 2059.5 | 0.000 |
| ı <b> </b>                                    | - [ [ ]             | 23 | 0.529 | -0.011 | 2108.1 | 0.000 |
| ı <b>                                    </b> |                     | 24 | 0.509 | -0.011 | 2153.6 | 0.000 |
| ı <b>                                    </b> |                     | 25 | 0.490 | -0.010 | 2195.9 | 0.000 |
| ı <b> </b>                                    |                     | 26 | 0.470 | -0.011 | 2235.3 | 0.000 |
| ı <b>                                    </b> | - I ( I             | 27 | 0.451 | -0.011 | 2271.8 | 0.000 |
| · <b> </b>                                    | [                   | 28 | 0.431 | -0.011 | 2305.5 | 0.000 |
| · 🗀 📗                                         |                     | 29 | 0.412 | -0.011 | 2336.6 | 0.000 |
| · 🗀 📗                                         |                     | 30 | 0.393 | -0.011 | 2365.1 | 0.000 |
| · 🗀 📗                                         | 1 1 1               | 31 |       | -0.011 | 2391.1 | 0.000 |
| ı <b> </b>                                    |                     | 32 | 0.355 | -0.011 | 2414.8 | 0.000 |
| · 🗀 📗                                         |                     | 33 | 0.337 | -0.011 | 2436.3 | 0.000 |
| · 🗀 📗                                         |                     | 34 | 0.318 | -0.011 | 2455.6 | 0.000 |
| · 🗀 📗                                         |                     | 35 |       | -0.011 | 2472.9 | 0.000 |
| - 🗀                                           | [ [ ]               | 36 | 0.281 | -0.011 | 2488.3 | 0.000 |
|                                               |                     |    |       |        |        |       |

Bu hipotez testinde ele alınan konu için "Autocorrelation" adlı sütuna bakılması gerekmektedir. Güven sınırlarını aşan değerler görüldüğünden bu veri setinde otokorelasyon söz konusudur diyebilir ve H0 hipotezini reddedebiliriz.

## C) Normallik Testi

H0: Veri normal dağılmaktadır.

H1: Veri normal dağılmamaktadır.



Yukarıdaki grafiğe baktığımızda veri setimizin sağa çarpık olduğunu görmekteyiz. (Skewness değeri 0.577 > 0 )

Aynı zamanda basıklık olduğunu da söyleyebiliriz. (Kurtosis değeri 2.60 < 3)

Son olarak Prob değerimiz 0.011 < 0.05 olduğu için H0 hipotezi reddedilir. Veri setinin normal dağılmadığı söylenebilir.

# **Mevsimsellik ve Trend Analizi**

Ele alınan veri setinde mevsimsellik ve trend olup olmadığı incelenmesi amacı ile aşağıda uygulanmış olan testler görülmektedir. Öncelikle grafik incelendiğinde veride mevsimsellik olduğu, yukarı yönlü bir artış görüldüğünden ise trend olduğu yorumu yapılabilir. Ancak ne yazık ki grafik tek başına yeterli olmadığından hipotez testi ile bu yorum netleştirilmelidir.





Grafiğin yanında verilmiş olan "Augmented Dickey-Fuller" testi incelenecek şekilde bir hipotez testi yapılacak olursa,

H0: Seri durağan değil, stokastik trende sahip, birim kök içermektedir.

H1: Seri durağan, stokastik trende sahip değil, birim kök içermemektedir.

Tabloda verilmiş olan Prob değerinin 0.9940 geldiği görülmektedir. Bu değer 0.05'ten büyük olduğu için H0 reddedilemez. Serinin durağan olmadığı, dolayısıyla durağanlaştırma yoluna gidilmesi ve bu şekilde analize devam edilmesi gerektiği kanısına varmaktayız.

# Durağanlaştırma (Fark Alma) İşlemi

Serinin birinci farkı alınarak durağanlık incelendiğinde, yanda da görüldüğü üzere yeni Prob değeri 0.057 gelmiştir. Bu değer hala 0.05'ten büyük olduğu için ikinci defa fark alma işlemi uygulanacaktır.





İkinci fark alma işlemi sonrası Prob değeri 0.000 olduğundan 0.05 değerinden küçük gelmektedir. Artık bir önceki bölümde yazmış olduğumuz H0 hipotezini reddedebiliriz.





Özetle, seri artık birim kök içermemekte ve durağanlaşmış olup 2. dereceden entegre bir seridir denilebilir.

Durağanlaştırma işlemi sonrası veriye ait yeni bilgiler aşağıda verilmiştir.

| Date: 06/11/23 Time: 01:33 Sample (adjusted): 1949M03 1960M12 Included observations: 142 after adjustments |                                              |      |                  |        |                  |       |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|------------------|--------|------------------|-------|
| Autocorrelation                                                                                            | Partial Correlation                          | ents | AC               | PAC    | Q-Stat           | Prob  |
| <b>—</b>                                                                                                   | ·                                            |      | -0.191           |        | 5.2908           | 0.021 |
|                                                                                                            |                                              |      | -0.196           |        | 10.901           | 0.004 |
| 1 🗓 1                                                                                                      | <b>-</b>                                     |      | -0.049           |        | 11.247           | 0.010 |
|                                                                                                            |                                              |      | -0.207           |        | 17.575           | 0.001 |
| ' <b>!!</b> '                                                                                              | ' <b>□</b> '                                 | 5    |                  | -0.104 | 19.703           | 0.001 |
| 1 1 1                                                                                                      | <b>—</b> 1                                   | 6    |                  | -0.157 | 19.802           | 0.003 |
| ' <u> </u>                                                                                                 |                                              | 7    |                  | 0.077  | 23.013           | 0.002 |
|                                                                                                            |                                              | -    | -0.226           |        | 30.816           | 0.000 |
| <u>-                                    </u>                                                               | <u> </u>                                     | 9    |                  | -0.062 | 30.847           | 0.000 |
|                                                                                                            |                                              | i    | -0.208           |        | 37.566           | 0.000 |
| ' <u>'</u>                                                                                                 | <u> </u>                                     | 11   | -0.121           |        | 39.848           | 0.000 |
| '                                                                                                          | ! ' ᡛᢇ                                       | 12   | 0.782            | 0.231  | 136.10           | 0.000 |
| <u> </u>                                                                                                   | ! ' <b>_</b> ₽'                              |      | -0.096           | 0.114  | 137.56           | 0.000 |
|                                                                                                            | ' <b>!</b>   '                               |      | -0.195           |        | 143.66           | 0.000 |
| <u> </u>                                                                                                   | ļ 'Щ'                                        |      | -0.070           |        | 144.46           | 0.000 |
|                                                                                                            | ! <u>!                                  </u> | -    | -0.148           | 0.006  | 148.01           | 0.000 |
| ' <b>!</b> '                                                                                               | ! <u>"</u> "                                 | 17   | 0.113            | 0.153  | 150.10           | 0.000 |
| ' <u>L</u> '                                                                                               | ! <u>' !!</u> '                              | 18   | 0.019            | 0.049  | 150.17           | 0.000 |
|                                                                                                            | ! !!                                         | 19   | 0.137            | 0.084  | 153.28           | 0.000 |
|                                                                                                            | ! <b>!!</b> !                                |      | -0.240           |        | 162.95           | 0.000 |
| <b>-</b> -                                                                                                 | ! ! !                                        | 21   |                  | -0.015 | 163.07           | 0.000 |
| <b>.</b> .                                                                                                 | ! ! !                                        |      | -0.173           |        | 168.17           | 0.000 |
| ! -                                                                                                        | ! ! !                                        |      | -0.084           |        | 169.39           | 0.000 |
|                                                                                                            | 1                                            | 24   |                  | -0.010 | 240.79           | 0.000 |
|                                                                                                            | ; <b></b> ;                                  |      | -0.051           |        | 241.25           | 0.000 |
| I 78 :                                                                                                     |                                              |      | -0.186           |        | 247.33<br>248.39 | 0.000 |
|                                                                                                            | ; <u>;</u>                                   |      | -0.077<br>-0.080 | 0.033  | 248.39<br>249.54 | 0.000 |
| <b>■</b> :5:                                                                                               |                                              | 29   |                  | -0.066 | 249.54<br>249.95 | 0.000 |
| ■ : X:                                                                                                     |                                              | 30   |                  | -0.057 | 250.30           | 0.000 |
| <b>■</b> ; <b>*</b> ;                                                                                      | ;   ;                                        | 31   |                  | -0.057 | 250.30<br>252.37 | 0.000 |
| I                                                                                                          | ¦ ; <b>™</b> ;                               |      | -0.182           | 0.137  | 252.37<br>258.50 | 0.000 |
|                                                                                                            | ¦ ; <b>, ; ; ;</b> ;                         |      | -0.162           |        | 258.62           | 0.000 |
|                                                                                                            | ; <b>,</b> ,                                 |      | -0.025           | 0.124  | 259.96           | 0.000 |
|                                                                                                            | i <b>1</b>                                   |      | -0.064           |        | 262.14           | 0.000 |
|                                                                                                            |                                              | 36   |                  | -0.036 | 314.61           | 0.000 |
|                                                                                                            | 1 1 1                                        | . 55 | 0.022            | 5.014  | 314.01           | 5.000 |



Jarque-Bera testinde olasılık değerine (prob=0.64) bakıldığında değerin 0.05'ten büyük olduğu görülmektedir. Dolayısıyla seri normal dağılım gösterir.

Durağanlaşmış veriye ait Çizgi Grafiği yanda verilmiştir.



# **Uygun Model Karşılaştırması**

Seri durağan olduğundan trend modellerine girilebilir ve en küçük kareler yönteminden faydalanılarak hangi modelin uygun olduğu hesaplanabilir.

#### 1. Doğrusal Regresyon Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(genr t =@trend+1 ve ls \_passengers c @trend kodları kullanılmıştır.)

Her iki hipotezde de Prob değerinin, "0.05" değerinden küçük olduğu görülmektedir. Dolayısıyla H0 reddedilir, katsayı anlamlı ve deterministik trend vardır.

Özetle doğrusal regresyon modeli anlamlıdır.

#### 2. Birinci Farklar Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(ls d(\_passengers) c @trend kodu kullanılmıştır.)

Her iki hipotezde de Prob değerinin, "0.05" değerinden büyük olduğu görülmektedir. Dolayısıyla H0 reddedilemez, katsayı anlamsız ve deterministik trend söz konusu değildir.

Özetle birinci farklar modeli anlamsızdır.

# 3. <u>Üstel Regresyon Modeli</u>

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(ls log(\_passengers) c @trend kodu kullanılmıştır.)

Her iki hipotezde de Prob değerinin, "0.05" değerinden küçük olduğu görülmektedir. Dolayısıyla H0 reddedilir, katsayı anlamlı ve deterministik trend vardır.

Özetle üstel regresyon modeli anlamlıdır.

#### 4. Karesel Trend Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(ls\_passengers c @trend @trend^2 kodu kullanılmıştır.)

Her hipotezde Prob değerinin, "0.05" değerinden küçük olduğu görülmektedir. Dolayısıyla H0 reddedilir, katsayı anlamlı ve deterministik trend vardır.

Özetle karesel trend modeli anlamlıdır.

#### 5. Lojistik Trend Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(ls log(10/ passengers-1) c @trend kodu kullanılmıştır.)

Her hipotezde Prob değerinin, "0.05" değerinden küçük olduğu görülmektedir. Dolayısıyla H0 reddedilir, katsayı anlamlı ve deterministik trend vardır.

Özetle lojistik trend modeli anlamlıdır.

#### 6. Kübik Trend Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(ls \_passengers c @trend @trend^2 @trend^3 kodu kullanılmıştır.)

Bu model ele alındığında a katsayısının Prob değerinin "0.05" değerinden küçük olması nedeniyle anlamlı olduğu ancak beta katsayılarının Prob değerlerinin "0.05" değerinden büyük olduğu görülmektedir.

Dolayısıyla H0 hipotezi reddedilemez, deterministik trend söz konusu değildir.

Özetle kübik trend modeli anlamsızdır.

#### 7. Logaritmik Trend Modeli

H0: Beta ve a katsayısı anlamsız, deterministik trend söz konusu değildir.

H1: Beta ve a katsayısı anlamlı, deterministik trend söz konusudur.





(series w=@trend+1 ve ls passengers c log(w) kodları kullanılmıştır.)

Her iki hipotezde de Prob değerinin, "0.05" değerinden küçük olduğu görülmektedir. Dolayısıyla H0 reddedilir, katsayı anlamlı ve deterministik trend vardır.

Özetle logaritmik trend modeli anlamlıdır.

## SONUÇ OLARAK;

Birinci Farklar Modeli ve Kübik Trend Modeli bu veri seti için anlamsız çıktığından dolayı karşılaştırmaya alınmayacaktır. Diğer modeller arasında "Root Mean Squared Error" değerleri karşılaştırılacak olur ise en düşük değerin "44.435" olarak Karesel Trend Modelinde olduğu görülmektedir.

En uygun model "Karesel Trend Modeli" seçilmiştir.

# KARŞILAŞILABİLECEK SORUNLAR NELERDİR?

• ÇOKLU BAĞLANTI PROBLEMİ VAR MI?



Centered VIF değerine bakılarak bu problemin var olup olmadığına bakılır. Görüldüğü üzere değerler 1-5 aralığı için fazla büyük olduğundan çoklu bağlantı probleminin varlığından söz edilebilir.

#### • VERİ NORMAL DAĞILIYOR MU?



Prob değeri "0.05" değerinden küçük olduğu için H0 hipotezi reddedilmektedir. Dolayısıyla veri normal dağılmamaktadır diyebiliriz.

## • OTOKORELASYON VAR MI?

H0 : Otokorelasyon yoktur.H1 : Otokorelasyon vardır.

| Date: 06/11/23 Tim<br>Sample: 1949M01 1 |                                             |     |                  |        |                  |       |
|-----------------------------------------|---------------------------------------------|-----|------------------|--------|------------------|-------|
| Included observation                    |                                             |     |                  |        |                  |       |
| Autocorrelation                         | Partial Correlation                         |     | AC               | PAC    | Q-Stat           | Prob  |
| . —                                     |                                             | ۱ ، | 0.700            | 0.700  | 70.000           | 0.000 |
|                                         |                                             | 1 2 | 0.709            | 0.709  | 73.808<br>82.043 | 0.000 |
|                                         |                                             |     | -0.163           |        | 85.982           | 0.000 |
|                                         | i ii ii                                     |     | -0.103           | -      | 111.54           | 0.000 |
|                                         |                                             | :   | -0.469           |        | 144.80           | 0.000 |
|                                         |                                             |     | -0.467           |        | 177.98           | 0.000 |
| i .                                     | i 🔳 :                                       |     | -0.438           |        | 207.39           | 0.000 |
| <u> </u>                                | <b> </b>                                    | 8   | -0.369           | -0.321 | 228.45           | 0.000 |
| <b></b>                                 |                                             | 9   | -0.135           | 0.144  | 231.27           | 0.000 |
| · 🗀                                     |                                             | 10  | 0.200            | -0.037 | 237.57           | 0.000 |
| ı İ                                     |                                             | 11  | 0.589            | 0.544  | 292.41           | 0.000 |
| ı                                       | <u> </u>                                    | 12  | 0.823            | 0.185  | 400.26           | 0.000 |
|                                         | ļ <mark>I</mark>                            | 13  |                  | -0.456 | 454.77           | 0.000 |
| <u> </u>                                | !       ' <b>!!</b>                         | 14  | 0.172            | 0.159  | 459.53           | 0.000 |
| '                                       |                                             | i   | -0.169           | 0.145  | 464.18           | 0.000 |
|                                         |                                             |     | -0.370           |        | 486.67           | 0.000 |
|                                         | <u> </u>                                    | :   | -0.418           |        | 515.54           | 0.000 |
|                                         |                                             |     | -0.431           | -      | 546.50           | 0.000 |
|                                         |                                             |     | -0.422<br>-0.372 |        | 576.42<br>599.88 | 0.000 |
|                                         | <u>"                                   </u> |     | -0.372           | -      | 604.14           | 0.000 |
|                                         |                                             | 22  |                  | -0.019 | 608.08           | 0.000 |
|                                         |                                             | 23  | -                | -0.069 | 650.44           | 0.000 |
|                                         |                                             | 24  |                  | -0.102 | 735.15           | 0.000 |
|                                         | 101                                         | 25  |                  | -0.084 | 778.13           | 0.000 |
| ı <b>İ</b>                              | [ [ [ ]                                     | 26  |                  | -0.004 | 781.58           | 0.000 |
| <b>-</b>                                |                                             | 27  | -0.148           | -0.002 | 785.50           | 0.000 |
| <u> </u>                                | <b>-</b>                                    |     | -0.313           |        | 803.24           | 0.000 |
| <u> </u>                                |                                             |     | -0.356           | -0.018 | 826.37           | 0.000 |
| <u> </u>                                | ļ ( <b>ļ</b> )                              |     | -0.361           | 0.081  | 850.39           | 0.000 |
|                                         |                                             |     | -0.354           |        | 873.67           | 0.000 |
| <u> </u>                                | <u> </u>                                    | -   | -0.317           |        | 892.57           | 0.000 |
|                                         |                                             | i   | -0.143           |        | 896.46           | 0.000 |
| <u> </u>                                | '  '                                        | 34  | 0.123            | 0.030  | 899.36           | 0.000 |
|                                         | <b>   </b>                                  | 35  |                  | -0.136 | 931.31           | 0.000 |
| I                                       |                                             | 36  | 0.585            | 0.039  | 997.89           | 0.000 |
|                                         |                                             |     |                  |        |                  |       |

Güven sınırlarını aşan değerler olduğundan H0 hipotezi reddedilir, otokorelasyon vardır yorumunu yapabiliriz.

# • DEĞİŞEN VARYANS PROBLEMİ VAR MI?



White Testi'ne bakıldığında Prob değerine (0.97) bakıldığında "0.05" değerinden büyük olduğundan değişen varyans sorunu söz konusu değildir.

#### • SIFIR ORTALAMA VARSAYIM KONTROLÜ



Hatalar ortalamasına bakacak olursak sonuç "-3.35E-14" geldiğinden 0'a çok yakın bir değer olduğundan bu varsayımdan söz edilebilir.

# ÜSTEL DÜZLEŞTİRME

Bir önceki bölümde trend analizi yapılmıştı. Bu bölümde ise üstel düzleştime yöntemi yardımı ile modele ait zaman aralığı genişletilerek ileri vade için tahminleme yapılacaktır.

# 1. Çifte Üstel Düzleştirme





# 2. Holt-Winters Üstel Düzleştirme



Tahminleme yapmak için Çifte Üstel ve Holt-Winters Üstel Düzleştirme testleri yapıldığında Çifte Üstel Düzleştirme değerleri daha küçük çıktığından tercih edilen yöntem olmuştur.

Boş gözlemler yerine yazılmış olan tahmin değerleri yukarıdaki tabloda gösterilmektedir.

# Veriyi Bileşenlere Ayırma

Aşağıda verilmiş olan kodlar kullanılarak veri bileşenlere ayrılmış bilgiler olup yanda aşağıda ve verilmiştir.

"genr passengers2=0 passengers2=@movavc(\_passengers,12) genr\_passengers\_m=0 \_passengers\_m=\_passengers- \_passengers2"



| Null Hypothesis: _PASSENGERS_M has a unit root Exogenous: Constant Lag Length: 11 (Automatic - based on SIC, maxlag=12)                                                                                     |                      |                              |                      |                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|----------------------|------------------|--|--|--|--|
|                                                                                                                                                                                                             |                      |                              | t-Statistic          | Prob.*           |  |  |  |  |
| Augmented Dickey-Fuller test statistic -3.254976 0.0193                                                                                                                                                     |                      |                              |                      |                  |  |  |  |  |
| Test critical values:                                                                                                                                                                                       | 1% level             |                              | -3.485586            | 0.0.00           |  |  |  |  |
| Tool onlinear valueer                                                                                                                                                                                       | 5% level             |                              | -2.885654            |                  |  |  |  |  |
| -                                                                                                                                                                                                           | 10% level            |                              | -2.579708            |                  |  |  |  |  |
| *MacKinnon (1996) one-sided p-values.                                                                                                                                                                       |                      |                              |                      |                  |  |  |  |  |
| -                                                                                                                                                                                                           |                      |                              |                      |                  |  |  |  |  |
| Augmented Dickey-Fuller Test Equation Dependent Variable: D(_PASSENGERS_M) Method: Least Squares Date: 06/11/23 Time: 15:13 Sample (adjusted): 1950M07 1960M06 Included observations: 120 after adjustments |                      |                              |                      |                  |  |  |  |  |
| Variable                                                                                                                                                                                                    | Coefficient          | Std. Error                   | t-Statistic          | Prob.            |  |  |  |  |
| _PASSENGERS_M(-1)                                                                                                                                                                                           | -1.985453            | 0.609975                     | -3.254976            | 0.0015           |  |  |  |  |
| D(_PASSENGERS_M(-1))                                                                                                                                                                                        | 1.037644             | 0.563252                     | 1.842237             | 0.0682           |  |  |  |  |
| D(_PASSENGERS_M(-2)) D( PASSENGERS M(-3))                                                                                                                                                                   | 0.750055<br>0.646896 | 0.514368                     | 1.458208<br>1.380582 | 0.1477<br>0.1703 |  |  |  |  |
| D(_PASSENGERS_M(-3)) D(_PASSENGERS_M(-4))                                                                                                                                                                   | 0.646696             | 0.468568<br>0.414690         | 0.969112             | 0.1703           |  |  |  |  |
| D(_PASSENGERS_M(-4))                                                                                                                                                                                        | 0.350464             | 0.368603                     | 0.950789             | 0.3439           |  |  |  |  |
| D(_PASSENGERS_M(-6))                                                                                                                                                                                        | 0.071815             | 0.317563                     | 0.330703             | 0.8215           |  |  |  |  |
| D(_PASSENGERS_M(-7))                                                                                                                                                                                        | -0.027325            | 0.271187                     | -0.100762            | 0.9199           |  |  |  |  |
| D(_PASSENGERS_M(-8))                                                                                                                                                                                        | -0.322941            | 0.215669                     | -1.497388            | 0.1372           |  |  |  |  |
| D(_PASSENGERS_M(-9))                                                                                                                                                                                        | -0.363606            | 0.170156                     | -2.136906            | 0.0349           |  |  |  |  |
| D( PASSENGERS M(-10))                                                                                                                                                                                       | -0.674004            | 0.115218                     | -5.849818            | 0.0000           |  |  |  |  |
| D(_PASSENGERS_M(-11))                                                                                                                                                                                       | -0.683767            | 0.086083                     | -7.943138            | 0.0000           |  |  |  |  |
| C C                                                                                                                                                                                                         | -0.141054            | 0.827482                     | -0.170462            | 0.8650           |  |  |  |  |
| R-squared                                                                                                                                                                                                   | 0.934204             | Mean deper                   | ndent var            | 0.414236         |  |  |  |  |
| Adjusted R-squared                                                                                                                                                                                          | 0.926825             | •                            |                      |                  |  |  |  |  |
| S.E. of regression                                                                                                                                                                                          | 8.989424             |                              |                      |                  |  |  |  |  |
| Sum squared resid                                                                                                                                                                                           | 8646.644             |                              |                      |                  |  |  |  |  |
| Log likelihood                                                                                                                                                                                              | -426.9187            | Hannan-Quinn criter. 7.45461 |                      |                  |  |  |  |  |
| C atatiatia                                                                                                                                                                                                 | 400 0004             | Durbin Waters stat 4.74205   |                      |                  |  |  |  |  |

126.6031

0.000000

**Durbin-Watson stat** 

1.743855



F-statistic

Prob(F-statistic)

#### ARIMA MODELLERİ

#### ARMA(1,0,0)



#### ARMA(2,1,0)



#### ARMA(0,0,1)



#### ARMA(0,1,1)

| = Equation: UNTITLED                                                                                                                                                                                                                                                                                                                                                                   | ) Workfile: Al                                                                    | RPASSENGERS                                                                               | S::Air                                     | X                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                        | Name Freeze                                                                       |                                                                                           |                                            | ids                                                                  |  |  |
| Dependent Variable: DURAGAN_PASSENGERS Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Date: 06/11/23 Time: 21:58 Sample (adjusted): 1949M04 1960M12 Included observations: 141 after adjustments Failure to improve likelihood (non-zero gradients) after 20 iterations Coefficient covariance computed using outer product of gradients MA Backcast: 1949M03 |                                                                                   |                                                                                           |                                            |                                                                      |  |  |
| Variable                                                                                                                                                                                                                                                                                                                                                                               | Coefficient                                                                       | Std. Error                                                                                | t-Statistic                                | Prob.                                                                |  |  |
| C<br>AR(1)<br>MA(1)                                                                                                                                                                                                                                                                                                                                                                    | 0.006718<br>0.302361<br>-0.980806                                                 | 0.128366<br>0.081533<br>0.009633                                                          | 0.052334<br>3.708460<br>-101.8136          | 0.9583<br>0.0003<br>0.0000                                           |  |  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)                                                                                                                                                                                                                                                       | 0.330352<br>0.320647<br>32.96286<br>149943.9<br>-691.4029<br>34.03916<br>0.000000 | Mean depend<br>S.D. depend<br>Akaike info c<br>Schwarz crit<br>Hannan-Quir<br>Durbin-Wats | ent var<br>riterion<br>erion<br>nn criter. | 0.198582<br>39.99236<br>9.849687<br>9.912427<br>9.875182<br>1.826454 |  |  |
| Inverted AR Roots<br>Inverted MA Roots                                                                                                                                                                                                                                                                                                                                                 | .30<br>.98                                                                        |                                                                                           |                                            |                                                                      |  |  |

#### ARMA(0,1,2)



#### ARMA(2,1,1)



#### ARMA(2,1,2)



#### ARMA(4,2,4)



## VİF DEĞERİ



#### **SONUÇ OLARAK**

ARIMA modelleri ile seçmiş olduğumuz Karesel Trend Modeli'ne bakıldığında ARMA(4,2,4) modelinde R^2 değeri "0,409" çıktığından ve VİF değerinde de bu doğrulandığından en anlamlı modelin ARMA(4,2,4) çıktığı söylenebilir.