

INTRODUCTION

The KS0107B is a LCD driver LSI with 64 channel output for dot matrix liquid crystal graphic display system. This device provides 64 shift register and 64 output driver. It generates the timing signal to control the KS0108B segment driver. The KS0107B is fabricated by low power CMOS high voltage process technology and compose of the liquid crystal display system in combination with the KS0108B segment driver.

FEATURES

- Dot matrix LCD common driver with 64 channel output.
- 64 bits shift register of internal LCD driver circuit.
- · Internal timing generator circuit for dynamic display.
- Selectable master/slave mode.
- Applicable LCD duty: 1/48, 1/64,1/96,1/128
- Power supply voltage: + 5V ± 10%
 LCD driving voltage: 8V~17V(V_{DD}-V_{EE})
- Interface

Driv	controller	
COMMON		
Other KS0107B	KS0108B	MPU

- High voltage CMOS process.
- 100QFP and bare chip available.

BLOCK DIAGRAM

Fig. 1. KS0107B Functional block diagram

PIN CONFIGURATION

Fig. 2. 100 QFP Top View

PIN DESCRIPTION

PIN(NO)	SYMBOL	INPUT/OUTPUT	DESCRIPTION			
28	V_{DD}	Power	For internal logic circuit (+5V ± 10%)			
40	V_{ss}		GND (0V)			
23,58	V_{EE}		For LCD driver circuit			
27, 54	V0L, V0R	Power	Bias supply voltage terminals to drive LCD.			
24, 57	V1L, V1R					
25, 56	V4L, V4R		Select Level Non-Select Level			
26, 55	V5L, V5R		V0L(R), V5L(R) V1L(R), V4L(R)			
			\(\(\text{O}\) \(\text{O}\) is a sum of the left of the state of the s			
42	MS	Innut	V0L and V0R is connected by the same voltage. Selection of master/slave mode			
42	IVIS	Input	i) Master mode (MS=1)			
			DIO1, DIO2, CL2 and M is output state.			
			ii) Slave mode (MS=0)			
			SHL=1 → DIO1 is input state(DIO2 is output state)			
			SHL=0 → DIO2 is input state(DIO1 is output state)			
			CL2 and M is input state.			
39	SHL	Input	Selction of data shift direction.			
		·	SHL Data shift direction			
			H DIO1 → C1 → → C64 → DIO2			
49	PCLK2	Input	Selection of shift clock (CL2) phase.			
		·				
			PCLK2 shift clock(CL2) phase			
			H data shift at the rising edge of CL2			
			L data shift at the falling edge of CL2			
30	FS	Input	Selection of oscillation frequency.			
			i) Master mode			
			When the freme frequency is 70Hz, the oscillation			
			frequency should be			
			fosc=430KHz at FS=1 (V _{DD})			
			fosc=215KHz at FS=0 (V _{SS})			
			ii) Slave mode			
	561		Connect to V _{DD} .			
31	DS1,	Input	Selectiom of display duty.			
32	DS2		i) Master mode			
			DS1 DS2 Duty			
			L L 1/48			
			L H 1/64			
			H L 1/96			
			H H 1/128			
			ii) Slave mode : Connect to V _{DD} .			
			ny state mede . Somiost to v _{DD} .			

PIN DESCRIPTION (continued)

PIN(NO)	SYMBOL	INPUT/OUTPUT	DESCRIPTION				
33	C		RC Oscillator				
35	R		i) Master mode				
37	CR		KS0107B KS0107B				
			R CR C R CR C				
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
			open external clock open				
			ii) Slave mode				
			R CR C				
			open V _{DD} open				
44, 43	CLK1,	Output	Operating clock output for the KS0108B				
144, 40	CLK2	Juipui	i) Master mod Connection to CLK1 and CLK2 of the KS0108B				
			ii) Slave mode Open				
46	FRM	Output	Synchronous frame signal.				
			i) Master mode Connection to FRM of the KS0108B				
			ii) Slave mode Open				
47	М	Input/Output	Alternating signal input for LCD driving.				
			i) Master mode: output state				
			Connection to M of the KS0108B ii) Slave mode: input state				
			Connection to the controller				
52	CL2	Input/Output	Data shift clock				
			i) Master mode: output state				
			Connection to CL of the KS0108B				
			ii) Slave mode: input state				
			Connection to shift clock terminal of the controller.				
29	DIO1	Input/Output	Data input/output pin of internal shift register.				
50	DIO3		MS SHL DIO1 DIO2				
50	DIO2		H H Output Output				
			L Output Output				
			L H Input Output				
			L Output Input				
22~1	C1~C64	Output	Common signal output for LCD driving.				
100~59			DATA M OUT				
			L L V ₁				
			L H V ₄				
			H L V ₅				
			H H V ₀				
34,36,38,41	NC		No Connection				
45,48,51,53							

MAXIUM ABSOLUTE LIMIT

Characteristic	Symbol	Value	Unit	Note
Operating Voltage	V_{DD}	-0.3~+7.0	٧	*1
Supply Voltage	V _{EE}	V _{DD} -19.0~V _{DD} +0.3	٧	*4
Driver Supply Voltage	V _B	-0.3~V _{DD} +0.3	٧	*1,2
	V _{LCD}	V _{EE} -0.3~V _{DD} +0.3	٧	*3,4
Operating Temperature	T _{OPR}	-30~+85	${\mathbb C}$	-
Storage Temperature	T _{STG}	-55~+125	\mathbb{C}	-

^{*1.} Based on V_{SS}=0V

ELECTRICAL CHARACTERISTICS

DC Characteristics (V_{DD} =+5V \pm 10%, V_{SS} =0V, $|V_{DD}$ - $V_{EE}|$ =8~17V, T_a =-30 ~ +85 $^{\circ}$ C)

Charac	teristic	Symbol	condition	Min	Тур	Max	Unit	Note
Input	High	V_{IH}	-	0.7V _{DD}	-	V_{DD}	V	*1
Voltage	Low	V _{IL}		Vss	-	0.3V _{DD}		
Output	Hogh	V _{OH}	I _{OH} =-0.4mA	V _{DD} -0.4	-	-	V	*2
Voltage	Low	V _{OL}	I _{OL} =0.4mA	-	-	0.4		
Input Leak	age Current	I _{LKG}	$V_{IN}=V_{DD}\sim V_{SS}$	-1.0	-	1.0	μA	*1
OSC Fr	equency	fosc	Rf=47K $arOmega\pm2\%$	315	450	585	KHz	
			Cf=20pf \pm 5%					
On Res	sistance	R _{ON}	V _{DD} -V _{EE} =17V	-	-	1.5	KΩ	
(Vdi	v-Ci)		Load current					
			\pm 150 $\mu\!\mathrm{A}$					
Operatin	g Current	I _{DD1}	Master mode	-	-	1.0	mA	*3
			1/128 Duty					
		I _{DD2}	Slave mode	-	-	200	μA	*4
			1/128 Duty					
Supply	Current	I _{EE}	Master mode	-	-	100		*5
			1/128 Duty					
Ope	rating	f _{op1}	Master mode	50	-	600	KHz	
			External clock					
Freq	uency	f _{op2}	Slave mode	0.5	-	1500	1	

^{*1.} Applies to input terminals FS, DS1, DS2, CR, SHL, MS and PCLK2 and I/O terminals DIO1, DIO2, M and CL2 in the input state

Internal oscillation circuit: Rf=47k Ω , Cf=20pF

Each terminals of DS1, DS2, FS, SHL and MS is connected to V_{DD} and out is no load.

Each terminals is DS1, DS2, FS, SHL, PCLK2 and CR is connected to V_{DD} , MS is connected to V_{SS} and CL2, M, DIO1 is external clock.

^{*2.} Applies to input terminals and I/O terminals at high impedance. (Except V0L(R), V1L(R), V4L(R) and V5L(R))

^{*3.} Applies to V0L(R), V1L(R), V4L(R) and V5L(R).

^{*4.} Voltgae level: $V_{DD} \ge V0L = V0R \ge V1L = V1R \ge V4L = V4R \ge V5L = V5R \ge V_{EE}$.

^{*2.} Applies to output terminals CLK1, CLK2 and FRM and I/O terminals DIO1, DIO2, M and CL2 in the output state.

^{*3.} This value is specified about current flowing through V_{SS}.

^{*4.} This value is specified about current flowing through $\ensuremath{V_{\text{SS}}}.$

^{*5.} This value is specified about current flowing through V_{EE}. Don't connect to V_{LCD} (V1~V5).

AC Charcteristics (VDD=5V \pm 10%, Ta=-30 \mathbb{C} ~+85 \mathbb{C})

(1)Master mode (MS=V_{DD}, PCLK2=V_{DD}, Cf=20pF, Rf=47K \varOmega)

Characteristic	Symbol	Min	Тур	Max	Unit
Data Setup Time	t _{S∪}	20	-	-	
Data Hold Time	t _{DH}	40	-	-	
Data Delay Time	t _D	5	-	-	
FRM Delay Time	t _{DF}	-2	-	2	μ s
M Delay Time	t _{DM}	-2	-	2	
CL2 Low Level Width	t _{WLC}	35	-	-	
CL2 High Level Width	t _{WHC}	35	-	-	
CLK1 Low Level Width	t _{WL1}	700	-	-	
CLK2 Low Level Width	t _{WL2}	700	-	-	
CLK1 High Level Width	t _{WH1}	2100	-	-	
CLK2 High Level Width	t _{WH2}	2100	=	-	ns
CLK1-CLK2 Phase Difference	t _{D12}	700	-	-	
CLK2-CLK1 Phase Difference	t _{D21}	700	-	-	
CLK1, CLK2 Rise/Fall Time	t _R /t _F	-	-	150	

(2) Slave mode (MS=V_{SS})

Characteristics	Symbol	Min	Тур	Max	Unit	Note
CL2 Low Level Width	t _{WLC1}	450	-	-	ns	PCLK2=V _{SS}
CL2 High Level Width	t _{WHC1}	150	-	-	ns	PCLK2=V _{SS}
CL2 Low Level Width	t _{WLC2}	150	-	-	ns	PCLK2=V _{DD}
CL2 High Level Width	t _{WHL}	450	-	-	ns	PCLK2=V _{DD}
Data Setup Time	t _{su}	100	-	-	ns	
Data Hold Time	t _{DH}	100	-	-	ns	
Data Delay Time	t _D	-	-	200	ns	*1
Output Data Hold Time	t _H	10	-	-	ns	
CL2 Rise/Fall Time	t _R /t _F	-	-	30	ns	

^{*1;} Connect load CL=30pF

FUNCTIONAL DESCRIPTION

1.RC Oscillator

The RC Oscillator generates CL2, M,FRM, of the KS0107B and CLK1, CLK2 of the KS0108B by the oscillation resister R and capacitor C.

When selecting the master/slave, oscillation circuit is as following:

1) Master Mode

2) Slave Mode

2. Timing Genertion Circuit

It generates CL2, M, FRM, CLK1, and CLK2 by the frequency from oscillation circuit.

1) Selection of Master/Slave (M/S)

When M/S, is "H", it generates CL2, M, FRM, CLK1, and CLK2 internally. When M/S is "L", it operates by receiving M, CL2 from master device.

2) Frequency Selection (FS)

To adjust FRM by 70Hz, the oscillation frequency should be as following:

FS	Oscillation Frequency
Н	f _{OSC} =430KHz
L	f _{osc} =215Khz

In the slave mode, it is connected to V_{DD} .

3) Duty Selection (DS1, DS2)

It provides various duty selection according to DS1, DS2.

DS1	DS2	DUTY
L	L	1/48
	Н	1/64
Н	L	1/96
	Н	1/128

3. Data Shift & Phase Select Control

1) Phase Selection

It is a circuit to shift data on synchronization or rising edge or falling edge of the CL2 according to PCLK2.

PCLK2	Phase Selection
Н	Data shift on rising edge of CL2
L	Data shift on falling edge of CL2

2) Data Shift Direction Selection

When M/S is connected to V_{DD} , DIO1 and DIO2 terminal is only output.

When M/S is connected to $V_{\mbox{\scriptsize SS}},$ it depends on the SHL.

MS	SHL	DIO1	DIO2	Direction of Data
Н	Н	Output	Output	C1 → C64
	L	Output	Output	C64 → C1
L	Н	Input	Output	DIO1 → C1 → C64 → DIO2
	L	Output	Input	DIO2 → C64 → C1 → DIO1

TIMING DIAGRAM

(1) 1/48 duty timing (Master mode)

Condition: DS1=L, DS=L, SHL=H(L), PCLK2=H

- relation of CL2 & DIO1 (DIO2)

(2) 1/128 duty timing (Master mode)

- Condition: DS1=H, DS2=H, SHL=H(L), PCLK2=H

(3) 1/48 duty timing (Slave mode) - Condition: PCLK2=L, SHL=H(L)

(4) Power driver circuit

relation of duty & bias

DUTY	BIAS	Rdiv
1/48	1/8	R2=4R1
1/64	1/9	R2=5R1
1/96	1/11	R2=7R1
1/128	1/12	R2=8R1

*When duty factor is 1/48, the value of R1 & R2 should satisfy. R1/(4R1+R2)=1/8

R1=3K \varOmega , R2=12K \varOmega

APPLICATION CIRCUIT

-1/128 duty Segment drive(KS0108B) Interface circuit

PAD DIAGRAM

^{*} There is mark of KS0107B on the center in chip

PAD LOCATION UNIT (µ m)

PAD NUMBER	PAD NAME	COORDINATE		PAD	PAD	COORDINATE		PAD	PAD	COORDINATE	
		Х	Y	NUMBER	NAME	Х	Y	NUMBER	NAME	Х	Υ
1	C22	-1314.5	1775.4	37	CR	-227.6	-1775	77	C46	1500.9	1380
2	C21	-1499.9	1630	39	SHL	-77.6	-1775	78	C45	1500.9	1505
3	C20	-1499.9	1505	40	VSS	113.8	-1775	79	C44	1500.9	1630
4	C19	-1499.9	1380	42	MS	308.7	-1775	80	C43	1310.5	1775.4
5	C18	-1499.9	1255	43	CLK2	458.7	-1775	81	C42	1185.5	1775.4
6	C17	-1499.9	1130	44	CLK1	608.7	-1775	82	C41	1060.5	1775.4
7	C16	-1499.9	1005	46	FRM	758.7	-1775	83	C40	935.5	1775.4
8	C15	-1499.9	880	47	М	908.7	-1775	84	C39	810.5	1775.4
9	C14	-1499.9	775	49	PCLK2	1058.7	-1775	85	C38	685.5	1775.4
10	C13	-1499.9	630	50	DIO2	1208.7	-1775	86	C37	560.5	1775.4
11	C12	-1499.9	505	52	CL2	1358.7	-1775	87	C36	435.5	1775.4
12	C11	-1499.9	380	54	VOR	1500.9	-1495	88	C35	310.5	1775.4
13	C10	-1499.9	255	55	V5R	1500.9	-1370	89	C34	185.5	1775.4
14	C9	-1499.9	130	56	V4R	1500.9	-1245	90	C33	60.5	1775.4
15	C8	-1499.9	5	57	V1R	1500.9	-1120	91	C32	-64.5	1775.4
16	C7	-1499.9	-120	58	VEE	1500.9	-995	92	C31	-189.5	1775.4
17	C6	-1499.9	-245	59	C64	1500.9	-870	93	C30	-314.5	1775.4
18	C5	-1499.9	-370	60	C63	1500.9	-745	94	C29	-439.5	1775.4
19	C4	-1499.9	-495	61	C62	1500.9	-620	95	C28	-564.5	1775.4
20	C3	-1499.9	-620	62	C61	1500.9	-495	96	C27	-689.5	1775.4
21	C2	-1499.9	-745	63	C60	1500.9	-370	97	C26	-814.5	1775.4
22	C1	-1499.9	-870	64	C59	1500.9	-245	98	C25	-939.5	1775.4
23	VEE	-1499.9	-995	65	C58	1500.9	-120	99	C24	-1064.5	1775.4
24	V1L	-1499.9	-1120	66	C57	1500.9	5	100	C23	-1189.5	1775.4
25	V4L	-1499.9	-1245	67	C56	1500.9	130				
26	V 5L	-1499.9	-1370	68	C55	1500.9	255				
27	VOL	-1499.9	-1495	69	C54	1500.9	380				
28	VDD	-1345.6	-1775	70	C53	1500.9	505				
29	DIO1	-1127.6	-1775	71	C52	1500.9	630				
30	FS	-979.6	-1775	72	C51	1500.9	755				
31	DS1	-827.6	-1775	73	C50	1500.9	880				
32	DS2	-677.6	-1775	74	C49	1500.9	1005				
33	С	-527.6	-1775	75	C48	1500.9	1130				
35	R	-377.6	-1775	76	C47	1500.9	1255				

