

Predicting Rideshare Fare Prices

DS 5110 Final Project

By: Rishi Kamtam and Sabari Mathavan

Introduction

Objectives and Goals

Objectives:

- Develop a Prediction Model for Rideshare Fares in Boston
- Enhance Fare Estimation Accuracy

• Goals:

- Deliver a solution that benefits the consumer
- Use Advanced ML Data Science Tools and Visualizations

Project Scope

- Using previous Rideshare data from Uber and Lyft
 - Includes Source, Destination, Price, Distance, Car Type, and
 Time
- Using Weather Data to match with Rides
- Preprocessing Data by cleaning datasets and aggregating them together to match weather with specific rides
- Visualize trends and insights
- Building ML Models to predict
- Evaluating ML Models through metrics and visualizations

Literature Review

Summary of Relevant Existing Work

- Existing work includes using Deep Learning (Neural Networks) to predict Uber Fare Prices
 - Important Features were Distance Traveled, Time Elapsed, and Number of Passengers
 - Feature Scaling and Selection were also large parts of existing work already done

Important for distinguishing what metrics actually influence the pricing of Rideshares

Relation of Your Project to Previous Work

- Missing aspect of the existing work was considering Weather
 - Weather has a large influence on demand of Rideshares and specific metrics like Rain and others could play a role in the variability of pricing
 - O Matching Rides to Weather patterns could provide insights into if Weather has a role in how Uber and Lyft determine prices

Methodology

Project Workflow

- Preprocessing:
 - o Rides CSV = Rideshare Data
 - Removed Null Values
 - Time (Unix) -> Datetime (Truncated to the nearest 30 min)
 - Weather CSV = Weather Data
 - Time (Unix) -> Datetime (Truncated to the nearest 30 min)
 - Null Values in Rain column to 0 (No Rain)

Pre process the data (timestamp truncation, duplication removal, removal of

unwanted columns, splitting)

- Data Storage:
 - Google Big Query used as a Cloud Database Storage
 - 3 Tables Lyft Data, Uber Data, Weather Data
- Data Processing:
 - Spark connects with Big Query
 - Data is Queried into a Spark Dataframe

- Analysis and Visualizations
 - Pyspark is used to visualise data, as it has a better processing rate compared to Pandas
 - Some samples include: Fare price distribution, Distance vs Price,
 Heatmaps, Weather's influences, etc
 - The visualised data are presented on web pages using Python's Flask (both static and dynamic)

- Machine Learning:
 - Define Features (Weather Data, Distance) and Target Variable (Price)
 - Feature Engineering (Data from Categorical -> Numerical)
 - Random Forest (Combines Independent Decision trees)
 - Cross Validation (Splits dataset and trains on unseen data; avoids overfitting)
 - XGBoost (Builds trees one after another to fix earlier mistakes)
 - Model Evaluation (Metrics and Visualizations)

ERD Diagram

Analysis and Results

• Preprocessing:

- Difference in the timestamp of the rail hailing datasets and weather; unnecessary columns presence
- Big Query API to push data into the tables
- Ride hailing appr. 690,000 rows combined, and the weather is 6,200
- Reduced weather to 4,100

Ride hailing datasets		weather dataset	
distance	float	temp	float
cab_type	string	location	string
time_stamp	datetime	clouds	float
destination	string	pressure	float
source	string	rain	float
price	float	times_stamp	datetime
surge_multiplier	float	humidity	float
id	integer	wind	float
name	string		

- Data Analysis and Visualization
 - PySpark usage to improve performance in reading data from Big
 Query as well as to process the data that has been extracted.
 - Evident that uber has the lower average pricing and lower SD
 - Weather metrics do not hold a significant change on the pricing
 - Huge influence by the hour and location

From the data analytics point of view, the following observations were made:

Metric	Lyft	Uber
Average Price	17.35	15.8
Min, Max prices	3.5, 97.5	4.5, 89.5
Median price	16.5	12.5
Price SD	10.02	8.56

- ML modeling
 - Feature Importance played a key role in how accurate/error the model had
 - The XGBoost Model outperformed other ML Models indicating its ability to handle non-linear relationships better
 - Residual Analysis shows the model performed well with mid-range fares but struggled with outliers

Visualizations

- To make inferences on the data obtained, PySpark was used to analyse it
- The analysed data were represented in the form of charts, graphs, and tabular data
- These visualizations are presented to the user in a webpage using Python's Flask environment to avoid data reveals to the end user

Visualizations: Demo

Static Visualizations

Dynamic Visualizations

© 2024 Visualization Dashboard | All Rights Reserved

Interpretation of Results: Visualisations

Number of outliers beyond Q3 + 1.5 * IQR: 4092 Percentage of outliers: 1.33%

Number of outliers beyond Q3 + 1.5 * IQR: 3015 Percentage of outliers: 0.91%

Lyft

Uber

Interpretation of Results: Visualisations

Lyft

Interpretation of Results: Machine Learning Models

	Random Forest Model	XGBoost Model
Mean Absolute Error	7.11	6.69
Mean Squared Error	74.94	64.75
Root Mean Squared Error	8.65	8.04
R^2 Score	0.029	0.11

- Performance of XGBoost Model was better as it had a lower Mean Absolute Error
- Both Models had average performance as there still was variability in pricing predictions
- R^2 score indicate that the features do not explain the pricing very well

Interpretation of Results: Machine Learning Models

Discussion

Implications of Findings

- Rideshare Prices vary drastically across different metrics
 - Hard to predict prices using Machine Learning due to variability in drivers, passengers, and other metrics like location and time
- Visualizations show that there is roughly no correlation between price and specific weather metrics
- Distance, Location, and Time have a **bigger** impact than weather

Project Limitations

- Dataset is 6 years old (2018)
 - Does not account for inflation in rideshare prices
 - Location demographics could have changed in the past 6 years influencing prices
 currently
- ML Model is too General
 - o Performs decently on training data, but not on unseen data
 - Effectiveness for predicting fares in areas or situations not represented is reduced

Conclusion

Conclusions for Project

- Based on the dataset we had gathered, we infer that weather metrics do
 not hold much significance in the pricing model
- Uber's pricing to be better than Lyft's pricing
- Able to integrate Big Query and PySpark
- Were able display both static and dynamic visualizations using Flask
- ML Modeling was accurate for mid-tier pricing, not for low and high

Recommendations for Future Work

- Incorporate Real Time Data
 - Integrate live traffic, weather, and surge pricing data to improve the accuracy and relevance of fare predictions
 - Data push to be made dynamic
- Use Deep Learning for capturing non-linear relationships
- Expand Geographical Scope outside of just Boston
 - Look into suburban Boston
 - Other major cities (New York, Chicago)

References

Connecting Apache Spark to BigQuery. *Google Cloud Documentation*, Google, https://cloud.google.com/bigquery/docs/connect-to-spark. Accessed 3 Dec. 2024.

Random Forest Algorithm in Machine Learning. *GeeksforGeeks*, https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/. Accessed 3 Dec. 2024.

Thomas, Moses Moncy. Predictive Analysis: Estimating UBER Fare Prices Using ML. *Medium*, 26 Apr. 2023,

https://medium.com/@mosesmoncy1626/predictive-analysis-estimating-uber-fare-prices-using-ml-7bb8c545 07e9.

XGBoost. NVIDIA Glossary, NVIDIA, https://www.nvidia.com/en-us/glossary/xgboost/. Accessed 3 Dec. 2024.

Thank you!

Questions?