D. On Sum of Number of Inversions in Permutations

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given a permutation p. Calculate the total number of inversions in all permutations that lexicographically do not exceed the given one.

As this number can be very large, print it modulo $100000007 (10^9 + 7)$.

Input

The first line contains a single integer n ($1 \le n \le 10^6$) — the length of the permutation. The second line contains n distinct integers $p_1, p_2, ..., p_n$ ($1 \le p_i \le n$).

Output

Print a single number — the answer to the problem modulo $100000007 (10^9 + 7)$.

Examples

input	
2 2 1	
output	
1	

```
input
3
2 1 3
output
2
```

Note

Permutation p of length n is the sequence that consists of n distinct integers, each of them is from 1 to n.

An inversion of permutation $p_1, p_2, ..., p_n$ is a pair of indexes (i, j), such that i < j and $p_i > p_j$.

Permutation a do not exceed permutation b lexicographically, if either a = b or there exists such number i, for which the following logical condition fulfills: AND $(a_i < b_i)$.