Andes 乙級證照 108考題練習與解析

Q1

考題類型。	□ Non-OS □ Linux。
實作平台。	□ ADP-XC5FF676 □ ADPAG102-UP □ ADP-WT95F064 ■ VEP (AndeSight™ STD v2.0)。
環境設定。	1. PC 主機:Host OS - Microsoft Windows XP。 2. Andes/AndeSight V2.0 Toolchains。
實作內容。	在 AndeSight™整合開發環境撰寫程式,使用 ESL 環境下的 VEP(Virtual Evaluation Platform)功能,設定屬性 Target Chip 使用 ADP-AG101-4GB-N1033-S; Tool Chain 必須用 nds32le-elf-newlib-v2 (1) 實現五次" My name is James 等字 " 文字顯示;(2) 產生最 小容量的 bin 檔案。。
注意事項。	1. 請將作答所產生之所有檔案儲存於資料夾 Q1 \Ans 內。。 2. 可依需要參考或使用 Q1\ 內各子資料夾預存之程式碼或資料。。


```
2* * hello.c
7
8 #include <stdio.h>
9
10* int main()
11 {
12    int cnt=0;
13    for(cnt=0; cnt<5; cnt++){
       puts("My name is Steven Su");
15    }
16 }</pre>
```


若是你的程式碼結果沒有顯示請到以下畫面設定

考題類型。 □ Non-OS □ Linux₂ \square ADP-XC5FF676 \square ADPAG102-UP \square ADP-WT95F064 實作平台。 | VEP (AndeSight™ STD v2.0)。 1. PC 主機:Host OS - Microsoft Windows XP。 環境設定。 2. Andes/AndeSight V2.0 Toolchains 在 AndeSightTM整合開發環境撰寫程式,使用 ESL 平台環境下(1) 將 程式修改為一列 LED 間隔之閃爍效果(2)使 LED 同時兩列以上達到 實作內容。 跑馬燈閃爍之顯示效果。。 1. 請將作答所產生之所有檔案儲存於資料夾 Q2\Ans 內。 注意事項。 2. 可依需要參考或使用 Q2\内各子資料夾預存之程式碼或資料。

$Q2_{1}$

Q2_(1)一列LED相鄰不亮 0xAA→1010,反向→0x0101

```
1 #define GPIO_BASE 0x98700000
2 #define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
3
4 #define LED GREEN 0xAA
5 #define DELAY TIME 100000
6
7 void toggleLED (unsigned int LEDMask);
8 void delay(unsigned int count);
                                        10 int main()
                                        11 {
                                              GPIO DATA OUT=0;
                                        12
       GPIO
                                              while(1)
                                        13
                                        14
```



```
11 {
12     GPIO_DATA_OUT=0;
13     while(1)
14     {
15          toggleLED(LED_GREEN);
16          delay(DELAY_TIME);
17     }
18     return 0;
19 }
```

```
1 #define GPIO BASE 0x98700000
 2 #define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
 3
4 #define LED GREEN 0x55555555
 5 #define DELAY TIME 100000
6
7 void toggleLED (unsigned int LEDMask);
 8 void delay(unsigned int count);
10 int main()
11 {
12
      GPIO DATA OUT=0;
                                        GPIO
       while(1)
13
14
           toggleLED(LED_GREEN);
15
16
           delay(DELAY TIME);
17
18
       return 0;
19 }
20
```

Q2_(2)將亮燈位置儲存在陣列中

```
10 unsigned int data[]={0x0101,0x0202,0x0404,0x0808,
11
                         0x1010,0x2020,0x4040,0x8080,
                         0x4040,0x2020,0x1010,0x0808,
12
13
                         0 \times 0404, 0 \times 0202;
14 int main()
15 {
16
       GPIO DATA OUT=0; //輸出緩衝器=0, LED滅掉
       int cnt;
17
18
       for(cnt=0; cnt<3; cnt++){
           toggleLED(LED GREEN); //執行一次LED即滅掉
19
           delay(DELAY TIME);
20
21
       while(1){
22
23
           for(cnt=0; cnt<14; cnt++){
               GPIO DATA OUT = data[cnt];
24
               delay(DELAY_TIME);
25
26
27
28
       return 0;
29 }
```

//把跑馬燈順序放入陣列


```
#define GPIO_BASE 0x98700000
#define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
              #define LED_GREEN 0x99669966
                #define DELAY_TIME 100000
           void toggleLED (unsigned int LEDMask);
               void delay(unsigned int count);
                         int main()
                          GPIO_DATA_OUT=0;
                                while(1)
                               toggleLED(LED_GREEN);
                                delay(DELAY_TIME);
                                return 0;
           void toggleLED (unsigned int LEDMask)
                     GPIO_DATA_OUT ^= LEDMask;
               void delay(unsigned int count)
                         for(;count>0;count--);
```

```
1 #define GPIO_BASE 0x98700000
 2 #define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
 3
   #define LED_GREEN 0x00FF00FF //1.3列閃
   #define DELAY TIME 100000
 6
   void toggleLED (unsigned int LEDMask);
   void delay(unsigned int count);
10 int main()
<sup>11</sup>|{
12
       GPIO_DATA_OUT=0;
                                          GPIO
13
       while(1)
14
15
           toggleLED(LED_GREEN);
16
           delay(DELAY_TIME);
17
18
       return 0;
19
20
```

```
1 #define GPIO BASE 0x98700000
 2 #define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
 3
4 #define LED_GREEN 0xAA55AA55
 5 #define DELAY_TIME 100000
 6
7 void toggleLED (unsigned int LEDMask);
 8 void delay(unsigned int count);
10 int main()
11 {
12
       GPIO DATA OUT=0;
                                      GPIO
       while(1)
13
14
           toggleLED(LED_GREEN);
15
16
           delay(DELAY_TIME);
17
18
       return 0;
19 }
20
```

```
unsigned int outdata=0x01;
11
       GPIO DATA OUT=0;
12
13
       while(1)
14
15
           while(outdata<0x80){</pre>
16
17
                GPIO_DATA_OUT=outdata;
                outdata = outdata<<1;
18
                delay(DELAY TIME);
19
20
21
           GPIO_DATA_OUT=outdata;
22
           delay(DELAY TIME);
           outdata = outdata>>1;
23
24
                                            GPIO
25
           while(outdata>0x01){
26
                GPIO_DATA_OUT=outdata;
                outdata = outdata>>1;
27
                delay(DELAY TIME);
28
29
30
```

```
#define GPIO BASE 0x98700000
#define GPIO DATA OUT (*((unsigned int *)(GPIO BASE+0x00)))
#define DELAY TIME 500000
void toggleLED (unsigned int LEDMask);
void delay(unsigned int count);
int main()
             unsigned int outdata=0x01;
             GPIO_DATA_OUT=0;
             while(1)
                           while(outdata<0x80){
                                        GPIO_DATA_OUT=outdata;
                                        outdata = outdata<<1;</pre>
                                        delay(DELAY_TIME);
                           GPIO_DATA_OUT=outdata;
                           delay(DELAY_TIME);
                           outdata = outdata>>1;
                           while(outdata>0x01){
                                        GPIO_DATA_OUT=outdata;
                                        outdata = outdata>>1;
                                        delay(DELAY_TIME);
                           }
              }
             return 0;
}
void toggleLED (unsigned int LEDMask)
{
             GPIO DATA OUT ^= LEDMask;
void delay(unsigned int count)
             for(;count>0;count--);
```

```
9 int main()
10 {
       unsigned int outdata=0x01000001;
11
12
       GPIO DATA OUT=0;
13
14
       while(1)
15
           while(outdata<0x80000080){</pre>
16
                GPIO_DATA_OUT=outdata;
17
                outdata = outdata<<1;
18
19
                delay(DELAY TIME);
            }
20
21
           GPIO DATA OUT=outdata;
           delay(DELAY TIME);
22
23
           outdata = outdata>>1;
24
25
           while(outdata>0x01000001){
26
                GPIO_DATA_OUT=outdata;
                outdata = outdata>>1;
27
28
                delay(DELAY_TIME);
29
30
       return 0;
31
32 }
```

1.4霹靂燈


```
#define GPIO BASE 0x98700000
#define GPIO_DATA_OUT (*((unsigned int *)(GPIO_BASE+0x00)))
#define DELAY TIME 500000
void toggleLED (unsigned int LEDMask);
void delay(unsigned int count);
int main()
             unsigned int outdata=0x01000001;
             GPIO DATA OUT=0;
             while(1)
                           while(outdata<0x80000080){
                                        GPIO_DATA_OUT=outdata;
                                        outdata = outdata<<1;</pre>
                                        delay(DELAY_TIME);
                           GPIO_DATA_OUT=outdata;
                           delay(DELAY_TIME);
                           outdata = outdata>>1;
                           while(outdata>0x01000001){
                                        GPIO_DATA_OUT=outdata;
                                        outdata = outdata>>1;
                                        delay(DELAY_TIME);
             }
             return 0;
}
void toggleLED (unsigned int LEDMask)
{
             GPIO DATA OUT ^= LEDMask;
void delay(unsigned int count)
             for(;count>0;count--);
```

甲級-LED來回

```
11 int main()
12 {
13
       GPIO ACT PE = 0xFFFF; //Initialize GPIO
14
       GPIO OMOD PE = 0x0;
15
       GPIO_OEN_PE = 0x0;
16
       unsigned int Data[]={0xFFFE, 0xFFFD, 0xFFFB, 0xFFF7,\
17
                            0xFFEF, 0xFFDF, 0xFFBF, 0xFF7F,\
                            0xFFBF, 0xFFDF, 0xFFEF, 0xFFF7,\
18
19
                            0xFFFB, 0xFFFD, 0xFFFE};
20
```

```
while(1)
21
22
            GPIO_DAT_PE = 0xFFFF;
23
            delay1(1000000);
24
            int i=0;
25
            for(i=0;i<15;i++)</pre>
26
                GPIO_DAT_PE = Data[i];
27
                delay1(1000000);
28
       }
29
30
            GPIO_DAT_PE = 0xFFFF;
            delay1(1000000);
31
            int i=0;
32
            for(i=0;i<15;i++)</pre>
33
34
                GPIO_DAT_PE = Data[i]<<8+0xFF;</pre>
            delay1(1000000);
35
36
       return 0;
37 }
```

Q3

題號: 3 版本:1.0。

考題類型。	□ Non-OS □ Linux。
實作平台。	□ ADP-XC5FF676 □ ADPAG102-UP □ ADP-WT95F064
	■ VEP (AndeSight [™] STD v2.0),
環境設定。	1. PC 主機:Host OS - Microsoft Windows XP。
	2. Andes/AndeSight V2.0 Toolchains
實作內容。	在 AndeSight™整合開發環境,使用 VEP(Virtual Evaluation Platform)
	功能,(1) 在 UART 傳送文字字串至終端機上顯示。(2)完整的呈現
	Interrupt 步驟。。
	参考設定參數: 。
	Memory Map 在 URAT 的 "Base" 欄位輸入 "0x99600000";
	"Size <u>"</u> 欄位輸入 <u>"</u> 0x00000020 <u>"</u> 。
注意事項。	1. 請將作答所產生之所有檔案儲存於資料夾 Q3\ Ans 內。.
	2. 可依需要參考或使用 Q3\內各子資料夾預存之程式碼或資料。
	e e

- SWI_VEP
 - ▶ ﷺ Binaries
 - ▶ 🚮 Includes
 - ▶

 bin

 - 🗁 obj
 - ▷ (⇒ src)
 - exampleC.ld
 - Makefile
 - readme
 - script.ld
 - 🖪 swi.vep
 - swi.vep.bak

Uart3: (CONNECTED) Start to test Software interrupt Generate a Software interrupt

複製swi.vep到內建檔案

- ▲ B Chip Profile Editor
 - ▲ B ADP-AG101P-4GB-N1033A-S-01
 - ADP-XC5-for-N1033A-S.vep
 - AG101P-4GB.regs
 - AG101P-4GB-memory.mem
 - IIII N1033A-S.crgs
 - 🕒 swi.vep
 - TargetChip.atd
- - ▶ ₩ Binaries
 - ▶ ⋒ Includes
 - ⊳ 🗁 bin
 - → include
 - D 🗁 obj
 - - exampleC.ld
 - Makefile
 - neadme
 - script.ld
 - swi.vep
 - swi.vep.bak

新增Uart與排線

Memory Map 在URAT的 "Base"欄位輸入"0x99600000" "Size"欄位輸入"0x00000020"

evice Name	Base	Size (Byte)	Range	
AHB				
Memory	0x00000000	0x10000000	0x00000000 - 0x0FFFFFF	
APB				
Uart	0x99600000	0x00000020	0x99600000 - 0x9960001F	

點選TargetChip.atd

將更新後的目標版匯入

新增後即顯示於下

- - ADP-AG101P-16MB-N801-S
 - ▶ ♣ ADP-AG101P-4GB-N1033A-S
 - ADP-AG101P-4GB-N1068A-S
 - ADP-AG101P-4GB-N1233-FPU
 - ADP-AG101P-4GB-N1337-FPU
 - ADP-AG101P-4GB-N903-S-32GPR
 - ADP-AG101P-4GB-N968A-S
 - ➡ VirtualMCU-N8
 - ➡ VirtualMCU-N9
 - ₩T59F064
 - ADP-AG101P-4GB-N1033A-S-01
- Running Target

原SWI_VEP需設定新的目標

- ADP-AG101P-4GB-N1068A-S
- ♠ ADP-AG101P-4GB-N1233-FPU
- ♠ ADP-AG101P-4GB-N903-S-32GPR
- □ VirtualMCU-N8
- ☑ VirtualMCU-N9
- ₩T59F064
- ▲ B ADP-AG101P-4GB-N1033A-S-01
 - ▲ 🔁 ADP-AG101P-4GB-N1033A-S-01 GdbServer:9902

Q4

題號: 4 版本:1.0

考題類型。	□ Non-OS □ Linux。							
實作平台。	□ ADP-XC5FF676 □ ADPAG102-UP □ ADP-WT95F064 ■ VEP (AndeSight™ STD v2.0)。							
環境設定。	1. PC 主機: Host OS - Microsoft Windows XP。 2. Andes/AndeSight V2.0 Toolchains。							
實作內容。	在 AndeSight TM 整合開發環境,使用 VEP(Virtual Evaluation Platform) 功能,(1) 在 LCD(LCDC)視窗有圖片顯示,設定屬性 Target Chip 使用 ADP-AG101-4GB-N1033-S。(2) 承上題,使用此 VEP 模擬包 AHB 上能有 Memory, CPU 與 LCDC 但不包括其它元件,實現顯示 JPEG 解碼器(decoder)。(3) 將 CPU N1033-S 改成 N1233-S,其 JPEG 結果一樣可以顯示。 参考設定 AHB 參數: Memory Map 在 AHB 下 LCD 的 "Base" 欄位輸入 "0x90600000", "Size(Byte)" 欄位輸入 "0x00001000"。。							

$Q4_{1}$

$Q4_{(2)}$

原本的

AG101P-4GB-memory.mem

IIII N1033A-S.crgs

TargetChip.atd

新增LCDC

Memory Map

			1	1 -		_	
6	₩ Problems	Memory I	Map 🛭 🗏 IF	RQ Map 🕓 C	lock Setting	Clock Domain	System Call Emulation
				·			
	Device Nam	ne	Base	Size (Byte)	Range		
	▲ AHB						
	Memory		0x00000000	0x20000000	0x0000000	0 - 0x1FFFFFFF	
	LC	CDC	0x90600000	0x00001000	0x90600000	0 - 0x90600FFF	

Clock Domain	Clock Source	Scale	add	Property
TARGET	target	1		
HOST	host	1		
				4

Problems ==	Memory Map	IRQ Map (Clock Setting Clock Domain)	3
Clock Domain	Clock Source	Scale	
TARGET	target	1	
LCDC_clk	host	100	
HOST	host	1	

- ADP-AG101P-16MB-N801-S
- ADP-AG101P-4GB-N1033A-S
 - ADP-AG101P-4GB-N1068A-S
 - ADP-AG101P-4GB-N1233-FPU
 - ADP-AG101P-4GB-N1337-FPU
 - ADP-AG101P-4GB-N903-S-32GPR
 - ADP-AG101P-4GB-N968A-S
 - VirtualMCU-N8
 - VirtualMCU-N9
 - ADP-AG101P-4GB-N1033A-S-01

Q4_(3)_CPUN1233

重新安裝平台

