Name: Yash Waghumbare Div: **BE9-S9** Roll no: 43180 Title: Assignment 5: Implement the Continuous Bag of Words (CBOW) Model In [1]: #importing libraries from keras.preprocessing import text from keras.utils import np_utils from keras.preprocessing import sequence from keras.utils import pad_sequences import numpy as np import pandas as pd In [2]: #taking random sentences as data data = """Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, convolutional dl_data = data.split() In [3]: #tokenization tokenizer = text.Tokenizer() tokenizer.fit_on_texts(dl_data) word2id = tokenizer.word_index word2id['PAD'] = 0id2word = {v:k for k, v in word2id.items()} wids = [[word2id[w] for w in text.text_to_word_sequence(doc)] for doc in dl_data] vocab_size = len(word2id) $embed_size = 100$ $window_size = 2$ print('Vocabulary Size:', vocab_size) print('Vocabulary Sample:', list(word2id.items())[:10]) Vocabulary Size: 75 Vocabulary Sample: [('learning', 1), ('deep', 2), ('networks', 3), ('neural', 4), ('and', 5), ('as', 6), ('of', 7), ('machine', 8), ('supervised', 9), ('have', 10)] In [4]: #generating (context word, target/label word) pairs def generate_context_word_pairs(corpus, window_size, vocab_size): context_length = window_size*2 for words in corpus: sentence_length = len(words) for index, word in enumerate(words): context_words = [] $label_word = []$ start = index - window_size end = index + window_size + 1 context_words.append([words[i] for i in range(start, end) if 0 <= i < sentence_length</pre> and i != index]) label_word.append(word) x = pad_sequences(context_words, maxlen=context_length) y = np_utils.to_categorical(label_word, vocab_size) yield (x, y) for x, y in generate_context_word_pairs(corpus=wids, window_size=window_size, vocab_size=vocab_size): **if** 0 **not in** x[0]: # print('Context (X):', [id2word[w] for w in x[0]], '-> Target (Y):', id2word[np.argwhere(y[0])[0][0]]) **if** i == 10: break In [5]: #model building import keras.backend as K from keras.models import Sequential from keras.layers import Dense, Embedding, Lambda cbow = Sequential() cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_length=window_size*2)) cbow.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(embed_size,))) cbow.add(Dense(vocab_size, activation='softmax')) cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop') print(cbow.summary()) # from IPython.display import SVG # from keras.utils.vis_utils import model_to_dot # SVG(model_to_dot(cbow, show_shapes=True, show_layer_names=False, rankdir='TB').create(prog='dot', format='svg')) Model: "sequential" Layer (type) Output Shape Param # ______ embedding (Embedding) (None, 4, 100) 7500 lambda (Lambda) (None, 100) 0 dense (Dense) (None, 75) 7575 ______ Total params: 15,075 Trainable params: 15,075 Non-trainable params: 0 None In [6]: for epoch in range(1, 6): loss = 0.for x, y in generate_context_word_pairs(corpus=wids, window_size=window_size, vocab_size=vocab_size): i += 1 loss += cbow.train_on_batch(x, y) **if** i % 100000 == 0: print('Processed {} (context, word) pairs'.format(i)) print('Epoch:', epoch, '\tLoss:', loss) print() Epoch: 1 Loss: 434.40525007247925 Epoch: 2 Loss: 429.64614844322205 Epoch: 3 Loss: 426.254625082016 Epoch: 4 Loss: 422.88486409187317 Epoch: 5 Loss: 420.2294900417328 In [7]: weights = cbow.get_weights()[0] weights = weights[1:] print(weights.shape) pd.DataFrame(weights, index=list(id2word.values())[1:]).head() (74, 100) Out[7]: 91 92 deep -0.028218 -0.005919 0.005274 -0.029521 -0.022013 -0.019620 0.027524 0.011648 0.025632 -0.008394 ... 0.014053 0.002022 -0.046732 0.045974 -0.040925 -0.039103 -0.005919 0. **networks** 0.004388 -0.018607 0.009451 0.030428 -0.031672 0.031915 0.055260 0.020617 -0.008885 -0.030407 $0.029352 \quad -0.036660 \quad 0.021049 \quad 0.003298 \quad -0.023420 \quad 0.046911 \quad -0.039212 \quad 0.010056$ 0.043364 -0.042134 ... -0.033033 neural 0.013651 -0.043134 -0.045682 0.017554 -0.042856 -0.025171 0.022546 0.006237 0.001115 -0.019212 0.003657 -0.048563 0.045061 -0.048979 0.004712 ... 0.002042 -0.031780 0.047122 0.016723 -0.014286 -0.018209 and $0.041465 \quad -0.014640 \quad \dots \quad -0.038623 \quad 0.010498 \quad -0.013775 \quad 0.005803 \quad 0.013803 \quad -0.037896$ -0.013465 -0.035403 0.010038 0.037268 -0.045731 0.005324 -0.017414 -0.0052595 rows × 100 columns In [8]: from sklearn.metrics.pairwise import euclidean_distances distance_matrix = euclidean_distances(weights) print(distance_matrix.shape) similar_words = {search_term: [id2word[idx] for idx in distance_matrix[word2id[search_term]-1].argsort()[1:6]+1] for search_term in ['deep']} similar_words (74, 74)

{'deep': ['transformers', 'climate', 'convolutional', 'of', 'family']}