

6. OPTICAL PERFORMANCE AND TESTS FOR SINGLE FIBER CONNECTORS

- Single Fiber (SF) Cable Assemblies must be tested according to test types listed in Table 1 and 2. Test results must conform to specified acceptance criteria. Acceptance criteria are defined in paragraphs 6.2 Insertion Loss (IL), 6.3 Return Loss (RL), 6.4 End Face Geometry (EFG), 6.5 End Face Visual Inspection, unless other specified in an engineering drawing to comply with a customer required test criteria.
- Default IL and RL Test Method is Bidirectional as defined in paragraph 6.1
- All test data for pre-terminated cable assemblies (excluding patch cords) must be stored for warranty purposes for a period of 7 years and be available to be re-issued on request for quality purposes.

Table 1 Optical tests required for SF termination(s)- Bidirectional Test

Termination Type	Test Type	Acceptance vs Termination Grades		
		Standard	Premium	
	IL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Single Fiber (SF) Termination Single	RL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Mode (SM):	End Face Geometry	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
	End Face Visual Inspection	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
		Standard	Premium	
	IL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Single Fiber (SF) Termination Multi	RL	100% Conformance	100% Conformance	
Mode (MM):	End Face Geometry	100% Conformance	100% Conformance	
	End Face Visual Inspection	100% Test/ 100% Conformance	100% Test/ 100% Conformance	

Table 2 Optical tests for SF termination(s)- Unidirectional Test

Termination Type	Test Type	Acceptance vs T	ermination Grades	
		Standard	Premium	
	IL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Single Fiber (SF)	RL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Termination SM:	End Face Geometry	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
	End Face Visual Inspection	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
		Standard	Premium	
	IL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
Single Fiber (SF) Termination MM	RL	100% Test/ 100% Conformance	100% Test/ 100% Conformance	
	End Face Geometry	100% Conformance	100% Conformance	
	End Face Visual Inspection	100% Test/ 100% Conformance	100% Test/ 100% Conformance	

6.1 IL AND RL TEST METHOD

The default IL and RL Test Method is Unidirectional as defined in 6.1.B unless the customer specifically requires Bidirectional as defined in 6.1.A. Otherwise either Unidirectional or Bidirectional testing is acceptable.

6.1.A Bidirectional Test Method (Double End)

The optical performance of the cable assemblies shall be tested in accordance with IEC 61300-3-4 method B Bidirectional method for both MM and SM (One cord Reference method, two measurements of the same optical fiber, made by launching light into opposite ends of that fiber) for Insertion Loss and Return Loss.

Figure 1 One-cord test measurement

Table 3 One-cord measurement Elements

LS	Light Source
PM	Power meter
TC1	Launch Cord
Α	Connection A
С	Cabling Under Test

6.1.B Unidirectional Test Method (Single End)

The optical performance of the cable assemblies shall be tested in accordance with IEC 61280-4-1 Annex A for MM and IEC 61280-4-2 Annex A for SM Unidirectional method (One cord Reference method) for Insertion Loss and Return Loss.

Figure 2 Two-cord test measurement

Table 4 Two-cord measurement Elements

LS	Light Source
PM	Power meter
TC1	Launch Cord
TC2	Receive Cord
Α	Connection A
В	Connection B
С	Cabling Under Test

6.1.C TEST WAVELENGTH

The default test wavelength (IL, RL Test) for Multimode MM assemblies must be 850nm. The test wavelengths for Singlemode (SM) must be 1310nm and 1550nm.

6.2 INSERTION LOSS (IL)

Max IL thresholds should be calculated using equation 1 or 2. IL values for Connection A IL_A and B IL_B to be used in Equations 1 or 2 are included in Table 5 (SF Terminations).

The Insertion loss is referred to equation 1 for Bidirectional method (as per 6.1.A) and to equation 2 for Unidirectional testing method (as per 6.1.B). Additional Loss allowance may be added to compensate for the attenuation of the fiber in the cable assembly for length greater or equal to 50 meter (IL of cable under test IL_C can be calculated using Equation 3).

Equation 1 Insertion Loss of one end (IL of connection):

MAX IL of connection = $IL_A + IL_C[dB]$

- IL_A Max Insertion Loss of Connection A [dB]
- IL_C Max Insertion Loss of Cabling Under Test [dB]

Equation 2 Attenuation of double ended (IL of assembly):

MAX IL of assembly = $IL_A + IL_B + IL_C [dB]$

- IL_A Max Insertion Loss of Connection A [dB]
- IL_B Max Insertion Loss of Connection B [dB]
- IL_C MAX Insertion Loss of Cabling Under Test [dB]

Equation 3 MAX Insertion Loss of Cabling Under Test:

 IL_C [dB] = Cable Attenuation MAX $\left[\frac{dB}{km}\right]$ * Assembly Length[mtr] $\frac{1}{1000}$

Table 5 Optical performance for SF termination(s)- MAX IL

	SM		MM	
	Standard	Low Loss Premium	Standard	Low Loss Premium
Insertion Loss per Single Connector (Maximum)	0.30dB	0.20 dB	0.30dB	0.20 dB

Table 6 Cable Attenuation Max

Cabled	Cabled attenuation max (dB/km)		Cabled attenuation typical (drum measurement) (dB/km)	
fiber type	850nm 1310nm/ 1550nm		850nm	1310nm/1550nm
G652D	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
G657A1	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
G657A2	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
OM2	3.5 dB	-	2.7 dB	-
OM3	3.5 dB	-	2.7 dB	-
OM4	3.5 dB	-	2.7 dB	-

6.3 RETURN LOSS (RL)

Minimum RL thresholds for Connection A and B in Bidirectional test are specified in Table 7 (SF Terminations). *Note: Testing for RL on multimode SF terminations is not required unless specifically requested by the customer*.

RL of assembly in Unidirectional test must be calculated using Equation 3. RL for Unidirectional testing (includes Connection A and B) shall be more or equal as RL of one connection defined in table 7.

Equation 3 Return Loss (-RL) Calculation Double Ended Assemblies:

-RL of assy =
$$10 \log(10^{10} + 10^{10})[dB]$$

- RL_A Return Loss of Connection A
- RL_B Return Loss of Connection B

Table 7 Optical performance of SF Terminations-RL- individual terminated connection

	MM		
	Standard	Low Loss Premium	
Minimum Return Loss per Single Connector (UPC)	28dB 28dB (upon customer request)		
		SM	
	Standard	Low Loss Premium	
Minimum Return Loss per Single Connector (UPC/APC)	55/65 dB	55/65 dB	

6.4 END FACE GEOMETRY (EFG) SPECIFICATION

6.4.A SF Terminations (IEC 61755 Series)

The end face geometry of single mode and multimode single fiber terminations must be tested in accordance with the requirements of Table 1 or 2 and meet the following criteria as given in Table 8.

Table 8 Geometry criteria for 1.25 and 2.5mm ferrule

Doromotore	Acceptance Limit			
Parameters	PC	APC		
Radius of Curvature (ROC)	5 - 30mm	5 - 12mm		
Apex Offset	0 - 70μm	0 - 70μm		
Fiber Height (upper limit)	+100nm	+100nm		
Fiber Height (lower limit)	See graph and equation	See graph and equation		
Angle (for 5≤R<6 mm)		8º± 0.50		
Angle (for 6 <r<7 mm)<="" td=""><td></td><td>8º± 0.40</td></r<7>		8º± 0.40		
Angle (for 7 <r<8 mm)<="" td=""><td></td><td>8º± 0.35</td></r<8>		8º± 0.35		
Angle (for 8 <r<10 mm)<="" td=""><td></td><td>8º± 0.30</td></r<10>		8º± 0.30		
Angle (for 10 <r<12 mm)<="" td=""><td></td><td>8º± 0.25</td></r<12>		8º± 0.25		

The fiber undercut shall meet the following criteria as given below:

Figure 3 Fiber undercut for 1.25mm ferrule

$$A_{Maximum} = 1798 \cdot B^{(-0.795)} - B \cdot 10^6 + \left(\sqrt{B^2 \cdot 10^6 - C^2} \right) \cdot 10^3 - 60$$

Figure 4 Fiber undercut for 2.5mm ferrule

$$A_{Maximum} = 1988 \cdot B^{(-0.795)} - B \cdot 10^6 + \left(\sqrt{B^2 \cdot 10^6 - C^2} \right) \cdot 10^3 - 60$$

6.5 ENDFACE VISUAL INSPECTION CRITERIA (IEC 61300-3-35)

The end face visual inspection of single mode and multimode fiber in SF terminations shall be 100% tested and shall meet the following criteria as given in table 9, using 200X magnification.

The microscope systems for end face visual inspection should have following, or higher capability:

1. Detecting low-contrast defects of 1 micron in diameter and width.

The fiber end face criteria of each multimode and single mode fiber in the cable assembly shall be as follows:

Multimode Zone Definition			
Zone A 0 – 65 μm			
Zone B 65 – 115 μm			

Figure 5 Fiber zone definition - Multimode

Singlemode Zone Definition			
Zone A 0 – 25 μm			
Zone B 25 – 115 μm			

Figure 6 Fiber zone definition – Singlemode

Table 9 Visual inspection requirements for SF connectors (IEC – 61300-3-35)

		Zone A	Zone B
	SM	None	No Limit ≤ 3μm
Scratch	SIVI	None	None > 3µm
Scratch	ММ	No Limit ≤ 3μm	No Limit ≤ 5μm
	IVIIVI	None > 3 μm	None > 5 μm
	SM	None	No Limit < 2 μm
			5 Defects from 2 μm to 5 μm
Defect			None > 5 μm
Defect		4 Defects ≤ 5 μm	No Limit ≤ 5 μm
	MM		5 Defects from 5 μm to 10 μm
		None > 5 μm	None > 10 μm

Note 1: Defects refer to chips, pits and contaminations.

Note 2: For scratches, the requirement refers to width. For pits (defects) it refers to the maximum diameter.

Note 3: No visible subsurface cracks are allowed in the fiber area, diameter 115 μm .

Note 4: All loose particles must be removed by cleaning. Non-removable loose particles must be within the criteria above to be acceptable for use.

Visual Inspection Defect Classification examples of Unacceptable Polished End face

Figure 7 Crack in the fiber

Figure 8 Chip in zone A

Figure 9 Edge crack with loose chip

Note: Examples show multimode fibers, but the same criteria also cover singlemode fibers.

6. DESEMPEÑO ÓPTICO Y PRUEBAS PARA CONECTORES DE UNA FIBRA

- Los ensambles de cable con conector de 1 fibra (SF) deben ser probados de acuerdo con los tipos de prueba listados en la Tabla 1 y 2. Los resultados de las pruebas deben cumplir con los criterios de aceptación especificados. Los criterios de aceptación se definen en los párrafos 6.2 Perdida por inserción (IL), 6.3 Perdida por retorno (RL), 6.4 Geometría de Endface (EFG), 6.5 Inspección visual de Endface, a menos que venga una especificación diferente en el dibujo de ingeniería para cumplir con los criterios requeridos por el cliente.
- El método de prueba predeterminado de IL y RL es bidireccional como se define en el párrafo 6.1
- Todos los datos de prueba de ensambles pre-terminados (excepto patch cords) deben almacenarse con fines de garantía durante un periodo de 7 años y estar disponibles en caso de requerirse por motivos de calidad.

Tabla 1 – Pruebas ópticas requeridas para terminación SF – Prueba Bidireccional

Tipo de Tipo de Prueba Terminación		Criterio de Aceptación vs Grados de Terminación		
		Standard	Premium	
	Pérdida por inserción (IL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
1 Fibra (SF) Monomodo (SM):	Pérdida por retorno (RL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
ivionomodo (sivi).	Geometría de Endface (EFG)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
	Inspección visual de Endface	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
		Standard	Premium	
	Pérdida por inserción (IL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
1 Fibra (SF) Multimodo (MM):	Pérdida por retorno (RL)	100% Conformidad	100% Conformidad	
	Geometría de Endface (EFG)	100% Conformidad	100% Conformidad	
	Inspección visual de Endface	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	

Tabla 2 - Pruebas ópticas requeridas para terminación SF – Prueba Unidireccional

Tipo de Terminación	Tipo de Prueba	Criterio de Aceptación vs Grados de Terminación		
Terminación		Standard	Premium	
	Pérdida por inserción (IL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
1 Fibra (SF)	Pérdida por retorno (RL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
Monomodo (SM):	Geometría de Endface (EFG)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
	Inspección visual de Endface	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
		Standard	Premium	
	Pérdida por inserción (IL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
1 Fibra (SF) Multimodo (MM):	Pérdida por retorno (RL)	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	
	Geometría de Endface (EFG)	100% Conformidad	100% Conformidad	
	Inspección visual de Endface	100% Prueba/ 100% Conformidad	100% Prueba/ 100% Conformidad	

6.1 Método de Prueba IL y RL

El método de prueba IL y RL predeterminado es Unidireccional como se define en el párrafo 6.1.B, a menos que un cliente determinado requiera específicamente prueba bidireccional como se define en la sección 6.1.A. De lo contrario, se acepta prueba Unidireccional o Bidireccional.

6.1.A Método de Prueba Bidireccional (Doble Punta)

El desempeño óptico de los ensambles de cable debe probarse de acuerdo con IEC 61300-3- 4 método B, Bidireccional para MM and SM (Método de un cable de referencia, dos medidas de la misma fibra óptica, hecho por el lanzamiento de luz en las puntas opuestas de esa fibra) para Pérdida por inserción y Pérdida por retorno.

Figura 1 – Medición mediante Prueba con una referencia

Tabla 3 - Elementos para medición con una referencia

LS	Fuente de luz
PM	Medidor de potencia
TC1	Referencia de emisión
Α	Conexión A
С	Cable bajo prueba

6.1.B Método de prueba Unidireccional (Una Punta)

El desempeño óptico de los ensambles de cable debe probarse de acuerdo con la IEC 61280-4-1 Anexo A para MM e IEC 61280-4-2 Anexo A para SM Método Unidireccional (Método de un cable de referencia) para Pérdida por inserción y Pérdida por retorno.

Figura 2 – Medición mediante Prueba con dos referencias

Tabla 4 – Elementos para medición con dos referencias

LS	Fuente de luz
PM	Medidor de potencia
TC1	Referencia de emisión
TC2	Referencia de recepción (extensión)
Α	Conexión A
В	Conexión B
С	Cable bajo prueba

6.1.C LONGITUD DE ONDA PARA PRUEBA

La longitud de onda predeterminada para la prueba (Prueba IL, RL) de ensambles Multimodo (MM) debe ser 850nm. La longitud de onda para la prueba de ensambles Monomodo (SM) debe ser 1310nm y 1550nm.

6.2 PÉRDIDA POR INSERCIÓN (IL)

Los límites máximos de IL deben calcularse utilizando la ecuación 1 o 2. Los valores de IL para la Conexión A I L Ay B I L B que se usarán en las Ecuaciones 1 o 2 se incluyen en la Tabla 5.

Para la pérdida por inserción, referirse a la ecuación 1 para el método Bidireccional (según lo indica el párrafo 6.1.A) y la ecuación 2 para el método de prueba Unidireccional (según lo indica el párrafo 6.1.B). En ensambles con una longitud mayor o igual a 50 metros, se puede agregar un valor de pérdida adicional para compensar la atenuación de la fibra en el ensamble del cable (IL del cable bajo prueba IL_C puede ser calculada usando la ecuación 3).

Ecuación 1 – Pérdida por inserción de un lado (IL de la conexión):

IL MAX de la conexión = $IL_A + IL_C [dB]$

- IL_A Pérdida MAX por inserción de Conexión A [dB]
- IL_C Pérdida MAX por inserción de Cable bajo prueba [dB]

Ecuación 2 - Atenuación de ensamble conectorizado en ambos lados (IL del ensamble):

IL MAX del ensamble = $IL_A + IL_B + IL_C [dB]$

- IL_A Pérdida MAX por inserción de Conexión A [dB]
- IL_B Pérdida MAX por inserción de Conexión B [dB]
- IL_C Pérdida MAX por inserción de Cable bajo prueba [dB]

Ecuación 3 – Pérdida MAX por inserción de Cable bajo prueba:

$$IL_{C} [dB] = Atenuación MAX del cable $\left[\frac{dB}{km}\right] * Longitud del ensamble[mtr] \frac{1}{1000}$$$

Tabla 5 – Desempeño óptico para terminaciones SF – IL MAX

	SM		MM	
	Standard	Low Loss Premium	Standard	Low Loss Premium
Pérdida máxima por inserción (por conector)	0.30dB	0.20 dB	0.30dB	0.20 dB

Table 6 - Atenuación MAX del cable

	Atenuación MAX del cable (dB/km)		Atenuación típica del cable (dB/km)	
Tipo de fibra	850 nm	1310nm/ 1550nm	850nm	1310nm/ 1550nm
G652D	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
G657A1	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
G657A2	-	0.38 dB/0.25 dB	-	0.35dB/0.20 dB
OM2	3.5 dB	-	2.7 dB	-
OM3	3.5 dB	-	2.7 dB	-
OM4	3.5 dB	-	2.7 dB	-

6.3 PÉRDIDA POR RETORNO (RL)

Los límites mínimos de RL para las conexiones A y B en la prueba Bidireccional se especifican en la Tabla 7. **Nota: No se requiere prueba de RL en terminaciones multimodo, a menos que el cliente lo solicite específicamente.**

El RL del ensamble en la prueba unidireccional debe calcularse utilizando la Ecuación 3. El RL para la prueba unidireccional (incluye las conexiones A y B) debe ser mayor o igual al RL de una conexión, como se define en la tabla 7.

Ecuación 3 – Pérdida por retorno (-RL) Calculo para ensambles conectorizados en ambos lados

-RL del ensamble =
$$10 \log(10^{\frac{RL_A}{10}} + 10^{\frac{RL_B}{10}})[dB]$$

- RL_A Pérdida por Retorno de Conexión A
- RL_B Pérdida por Retorno de Conexión B

Tabla 7 - Desempeño óptico de Terminaciones SF – RL - Solo un lado conectorizado

	MM		
	Standard	Low Loss Premium	
Pérdida mínima por retorno por conector (UPC)	28dB (a petición del cliente)	28dB (a petición del cliente)	
	SM		
	Standard	Low Loss Premium	
Pérdida mínima por retorno por conector (UPC/APC)	55/65 dB	55/65 dB	

6.4 ESPECIFICACIÓN DE GEOMETRÍA DE ENDFACE (EFG)

6.4.A Terminaciones SF (IEC 61755 Series)

La geometría de Endface de las terminaciones monomodo y multimodo debe probarse de acuerdo con los requerimientos de la Tabla 1 y 2 y cumplir con los siguientes criterios, tal como se especifican en la Tabla 8.

Tabla 8 – Criterio de Geometría para férula 1.25mm y 2.5mm

	Criterio de Aceptación		
	PC	APC	
Radio de curvatura (ROC)	5 - 30mm	5 - 12mm	
Desfase del Apex	0 - 70μm	0 - 70μm	
Altura de fibra (límite superior)	+100nm	+100nm	
Altura de fibra (límite inferior)	Ver gráfica y ecuación	Ver gráfica y ecuación	
Angulo (para 5≤R<6 mm)		8º± 0.50	
Angulo (para 6 <r<7 mm)<="" td=""><td></td><td>8º± 0.40</td></r<7>		8º± 0.40	
Angulo (para 7 <r<8 mm)<="" td=""><td></td><td>8º± 0.35</td></r<8>		8º± 0.35	
Angulo (para 8 <r<10 mm)<="" td=""><td></td><td>8º± 0.30</td></r<10>		8º± 0.30	
Angulo (para 10 <r<12 mm)<="" td=""><td></td><td>8º± 0.25</td></r<12>		8º± 0.25	

El undercut de la fibra debe cumplir con el siguiente criterio:

Figura 3 –Undercut de la fibra para férula de 1.25mm

$$A_{Maximum} = 1798 \cdot B^{(-0.795)} - B \cdot 10^6 + \left(\sqrt{B^2 \cdot 10^6 - C^2} \right) \cdot 10^3 - 60$$

Figura 4 - Undercut de la fibra para férula de 2.5mm

$$\mathsf{A}_{Maximum} \ = 1988 \cdot \mathsf{B}^{(-0.795)} - \mathsf{B} \cdot \mathsf{10}^6 + \left(\sqrt{\,\mathsf{B}^2 \cdot \mathsf{10}^6 - \mathsf{C}^2} \right) \cdot \mathsf{10}^3 - 60$$

6.5 CRITERIO DE INSPECCIÓN VISUAL DE ENDFACE (IEC 61300-3-35)

La inspección visual de Endface de fibra monomodo y multimodo en terminaciones SF debe probarse al 100% y cumplir los siguientes criterios, tal como se indica en la tabla 9, utilizando un aumento de 200x.

Los sistemas del microscopio para la inspección visual del Endface deben tener la siguiente o mayor capacidad:

1. Detección de defectos de bajo contraste de 1 micra de diámetro y ancho.

Los criterios de Endface de cada fibra multimodo y monomodo en el ensamble son los siguientes:

Definición de zonas multimodo			
Zona A 0 – 65 μm			
Zona B 65 – 115 μm			

Figura 5 - Definición de Zonas - Fibra Multimodo

Definición de zonas monomodo		
Zona A 0 – 25 μm		
Zona B 25 – 115 μm		

Figura 6 – Definición de Zonas – Fibra Monomodo

Tabla 9 - Requerimientos de Inspección Visual para Conectores SF (IEC – 61300-3-35)

	Tipo de Fibra	Zona A	Zona B
	SM	Ninguno	Sin límite ≤ 3μm Ninguno > 3μm
кауоп	Rayon MM	Sin límite ≤ 3μm Ninguno > 3 μm	Sin límite ≤ 5μm Ninguno > 5 μm
Defecto	SM	Ninguno	Sin límite < 2 μm 5 Defectos de 2 μm a 5 μm Ninguno > 5 μm
	ММ	4 Defectos ≤ 5 μm Ninguno > 5 μm	Sin límite ≤ 5 μm 5 Defectos de 5 μm a 10 μm Ninguno > 10 μm

Nota 1: Los defectos se refieren a despostillamiento, picaduras y contaminaciones.

Nota 2: Para rayones, el requisito se refiere al ancho. Para picaduras (defectos) se refiere al diámetro máximo.

Nota 3: No se permiten grietas subsuperficiales visibles en el área de fibra, diámetro 115 μm.

Nota 4: Todas las partículas sueltas deben eliminarse mediante limpieza. Las partículas sueltas no removibles deben estar dentro de los criterios anteriores para ser aceptables para su uso.

Ejemplos de clasificación de defectos de inspección visual de Endface con Pulido no aceptable

Figura 7 Grieta en la fibra

Figura 8 Despostillamiento en la zona A

Figura 9
Grieta en el borde con
despostillamiento
suelto

Nota: Se muestran ejemplos en fibras multimodo, pero el mismo criterio aplica también a las fibras monomodo.