Processus Stochastique

- ► Evolution d'une variable aléatoire avec le temps
- ► Espace :
 - discret (fini ou infini) : une population
 - continu : des coordonnées
- ► Temps :
 - discret : horloge
 - continu : temps physique
 - événement discret :

Exemples

- ▶ Temps discret, Espace discret : la fortune d'un joueur
- ► Temps discret, Espace continu : une hauteur d'eau à un barrage, chaque jour
- Temps continu, Espace discret : le nombre de particules au cours d'une réaction
- Temps continu, Espace continu : les positions de corps dans une intéraction gravitationnelle
- Evénement discret, Espace discret : le nombre de paquet dans un routeur
- ▶ Evénement discret, Espace continu : prix d'une action boursière.

Trajectoire Temps Discret Espace Discret

Trajectoire Temps Discret Espace Continu

Trajectoire Evenement Discret Espace Discret

Trajectoire Evenement Discret Espace Continu

Processus de Poisson

 Un processus de comptage tel que le nombre d'événements entre 0 et t suit une loi de Poisson.

$$P(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

- Pour représenter
 - apparition de pannes
 - arrivées de paquets (réseau)
 - arrivées de sessions (serveur Web)
 - arrivées de jobs (OS)

Propriétés du processus de Poisson

- ▶ La superposition de deux processus de Poisson indépendants est un processus de Poisson. Le taux global est la somme des taux.
- Le découpage (splitting) d'un processus de Poisson (de taux λ) selon un processus de Bernoulli indépendent (de taux p) crèe deux processus de Poisson indépendents de taux λp et $\lambda (1-p)$.
- ▶ PASTA : Poisson Arrivals See Time Average.

Les inter-arrivées sont exponentielles

- Soit la variable aléatoire discrète N_t , le nombre de requêtes arrivées à un serveur dans l'intervalle de temps (0,t]
- Soit N_t distribuée selon la loi de Poisson de paramètre λt

$$P(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

- Soit X la date d'arrivée de la prochaine requête $P(X>t)=P(N_t=0)=\frac{e^{-\lambda t}(\lambda t)^0}{0!}=e^{-\lambda t}$
- $F_X(t) = 1 e^{-\lambda t}$
- ► *X* est une variable aléatoire exponentielle

Chaines de Markov en temps continu

- La suite des variables aléatoires indexés par t : $\{X(t), t \geq 0\}$
- L'évolution est continue.
- lackbox X(t) prend des valeurs dans un espace d'états dénombrable (espace d'états est discret).

Définition (Markov)

Un processus X(t) est Markovien si et seulement si pour $t_0 < t_1 \cdots < t_n < t$, the conditional property

$$Pr(X(t) = x | X(t_n) = x_n, X(t_{n-1}) = x_{n-1}, \dots, X(t_0) = x_0)$$

= $P(X(t) = x | X(t_n) = x_n)$

 Si on connaît l'état présent, on connaît l'état futur sans connaître l'historique

Transition rates

- ▶ $q_{i,j},~i \neq j$: probabilité de transition de l'état i vers l'état j durant l'intervalle de temps δt tel que $\lim \delta t \to 0$
- Un seul événement peut se produire à l'instant t
- ightharpoonup CTMC est homogène, si les $q_{i,j}$ s ne dépendent pas de temps, t.
- $lackbox{Q} = [q_{i,j}]$ est le générateur infinitesimal :
 - ▶ la somme de chaque ligne = 0
 - les éléments hors diagonale sont non-négatifs
 - les éléments diagonaux sont non-positives : $q_{i,i} = \sum_{j \neq i} q_{i,k}$

Soit
$$P = Q\Delta t + I$$

$$p_{i,j} = q_{i,j} \Delta t \quad i \neq j$$

$$p_{i,i} = -|q_{i,i}| \Delta t + 1$$

Si $\Delta t \leq 1/\max|q_i|$ la matrice P est stochastique

CTMC

- les durées de séjour dans un état sont exponentielles Soit X_i la durée de séjour à l'état $i:P(X_i \leq t) = 1 e^{-|q_{i,i}|t}$ La durée de séjour moyenne= $1/|q_{i,i}|$.
- $ightharpoonup rac{q_{i,j}}{|q_{i,i}|}$ est la probabilité que la transition de l'état i vers l'état j soit franchie en premier parmi les transitions possibles à partir de l'état i.

Analyse transitoire

 $\Pi(\mathbf{t}) = [\Pi_1(t) \ \Pi_2(t) \cdots \Pi_n(t)]$ la distribution transitoire à l'instant t. où $\Pi_i(t)$ est la probabilité que le système soit à l'état i à l'instant t.

 $\Pi(\mathbf{0}) = [\Pi_1(0) \ \Pi_2(0) \cdots \Pi_n(0)]$ est la distribution initiale , à l'instant 0.

$$\frac{\partial \Pi(t)}{\partial t} = \Pi(t)Q$$

$$\mathbf{\Pi}(\mathbf{t}) = \mathbf{\Pi}(\mathbf{0})e^{Qt}$$

$$\mathbf{\Pi(t)} = \mathbf{\Pi(0)}(I + \sum_{k=1}^{\infty} \frac{Q^k t^k}{k!})$$

Equilibre Stationnaire

▶ La distribution d'équilibre est solution de

$$\pi Q = 0$$
 et $\pi e = 1$

- ightharpoonup e est un vecteur plein de 1 (notation classique)
- ► On n'étudiera pas les distributions transitoires (équations différentielles)

Flux Stationnaire

► Considérons l'équation d'équilibre sous forme matricielle :

$$\pi Q = 0$$

► En développant pour un *i* quelconque, on a :

$$\sum_{j} \pi(j)Q(j,i) = 0$$

Séparons la somme :

$$\sum_{j \neq i} \pi(j)Q(j,i) = -\pi(i)Q(i,i)$$

► Mais:

$$Q(i,i) = -\sum_{k \to i} Q(i,k)$$

▶ Donc :

$$\sum_{j \neq i} \pi(j) Q(j,i) = \sum_{k \neq i} \pi(i) Q(i,k)$$

- ▶ Interprétation en terme de flux : tout ce qui permet de sortir de *i* (partie droite) est égal à tout ce qui permet de rentrer en *i*.
- ▶ Interprétation simple et plus facile à utiliser

Modèle de Disponibilité à deux états

- ▶ $Q(up, down) = \alpha$, $Q(up, up) = -\alpha$, $Q(down, down) = -\beta$, $Q(down, up) = \beta$,
- $ightharpoonup \alpha$ est le taux de panne, β le taux de réparation.
- Stationnaire : résoudre $\pi Q = 0$
- ▶ 2 inconnues, 2 équations, mais une seule indépendante.
- ▶ On rajoute $\pi(up) + \pi(down) = 1$.
- ▶ Donc $\pi(up) = \frac{\beta}{\alpha + \beta}$
- ▶ Et la fiabilité asymptotique vaut $\pi(up)$.
- $lackbox{ On a aussi } \pi(down) = rac{lpha}{lpha + eta}$

Transitoire

- ▶ On doit maintenant résoudre $\pi(t)Q = \frac{\partial \pi}{\partial t}$ sachant $\pi_{UP}(0) = 1$.
- ▶ Mais on a pour tout t, $\pi_{DOWN}(t) = 1 \pi_{UP}(t)$.
- ► Ce qui donne l'équation (solution connue) :

$$\frac{\partial \pi_{UP}}{\partial t} = \beta - (\alpha + \beta)\pi_{UP}(t)$$

► Et donc,

$$\pi_{UP}(t) = \frac{\beta}{\alpha + \beta} - \frac{exp(-(\alpha + \beta)t)}{\alpha + \beta}$$

Système à deux composants

- On suppose maintenant que l'on a ajouté un second composant redondant.
- Les pannes sont exponentielles (taux α) et indépdendantes.
- Les réparations sont exponentielles et indépendantes. Il y a un réparateur et le taux de réparation est β .
- ▶ Le systàme est DOWN quand tous les composants sont DOWN.
- ▶ On ne peut réparer qu'un seul composant à la fois.

Modèle

- ▶ Etats : nombre de composants en activité : 0, 1, 2.
- ► Transitions :
 - \triangleright 2 vers 1 : taux 2α
 - 1 vers 0 : taux α
 - \triangleright 0 vers 1 : taux β
 - ▶ 1 vers 2 : taux β

Equation Stationnaire

$$2\alpha\pi(2) = \beta\pi(1)$$

$$(\alpha + \beta)\pi(1) = 2\alpha\pi(2) + \beta\pi(0)$$

$$\alpha\pi(1) = \beta\pi(0)$$

$$1 = \pi(0) + \pi(1) + \pi(2)$$

Résolution

Apres substitution on a :

$$\pi(1) = \frac{\beta}{\alpha}\pi(0) \qquad \pi(2) = \frac{\beta}{2\alpha}\pi(1)$$

Donc

$$\pi(0)(1+\frac{\beta}{\alpha}+\frac{\beta^2}{2\alpha^2})=1$$

ightharpoonup Et la disponibilité stationnaire vaut $1-\pi(0)$.