离散数学 (2023) 作业 03 - 证明方法

周帛岑 221900309

2023年3月2日

1 Problem 1

证:

1.∀x(P(x)∨Q (x)) 题设

2.∃x(¬P(x)) 题设

 $3.\forall xQ(x)$ 1,2

 $4.\forall x(\neg Q(X)veeS(x))$ 题设

 $5.\forall xS(x)$ 3,4

 $6.\forall x(R(x)\rightarrow \neg S(x))$ 题设

 $7.\forall x(\neg R(x) \lor \neg S(x))$ 6,7

 $8.\forall x(\neg R(x))$ 5,7

 $9\exists x(\neg R(x))$ 8

2 Problem 2

证:

 $1.\forall x(P(x)\rightarrow(Q(x)\land S(x)))$ 题设

 $2.\forall x(\neg P(x) \lor (Q(x) \land S(x))) \qquad 1$

 $3.\forall x(P(x)\land R(x))$ 题设

 $4.\forall xP(x)$ 3

 $5.\forall x R(x)$

 $6.\forall x(Q(x)\land S(x))$ 2,4

 $7.\forall xS(x)$ 6

 $8.\forall x(S(X) \land R(x))$ 5,7

3 Problem 3

证:

不妨假设 x 为奇数,y 为偶数,则 \mathbf{x}^2 $x \cdot y y^2$ $x \cdot y + y^2$ $x^2 - (x \cdot y + y^2)$ $x \cdot y + x^2 \cdot x \cdot y + y^2$

4 Problem 4

证:

不妨假设 min(a,b,c) = a, 则左侧等于 a, 右侧等价于 min(a,c) 等于 a。即左侧与右侧等价 假设 min(a,b,c) = b,则左侧等价于 min(a,b) = b,右侧等价于 min(b,c) = b 即左侧与右侧等价 假设 min(a,b,c) = c,则左侧等价于 min(a,c) = c,右侧等价于 c,即左侧与右侧等价

5 Problem 5

证:

不妨假设存在
$$\mathbf{n}=4\mathbf{m}+3=\mathbf{x}^2+y^2$$
 n x y $x=2a$ $y=2b+1$ a b $4m-2=4a^2+4b^2+4b,\ 2m-1=2a^2+2b^2+2b$

6 Problem 6

$$\sqrt{\frac{x^2\!+\!y^2}{2}}\!\ge\!\frac{x\!+\!y}{2}$$

证:

若 x+y<0, 则上式显然成立, 不妨假设 x+y≥0。

已知
$$(x-y)^2 = x^2 - 2xy + y^2 \ge 0$$

 $\rightarrow 2x^2 + 2y^2 \ge x^2 + y^2 + 2xy$
 $\rightarrow \frac{2x^2 + 2y^2}{4} \ge \frac{x^2 + y^2 + 2xy}{4}$
左右取根号得 $\sqrt{\frac{x^2 + y^2}{2}} \ge \frac{x + y}{2}$

7 Problem 7

证:

化简原方程,有 ax = c-b 不妨假设存在 x_1 和 x_2 且 x_1 不等于 x_2 ,使上式成立,则对于原方程,有 ax_1 = c-b 以及 ax_2 = c-b 又 a 不等于0 $x_1=\frac{c-b}{a}$ 以及 $x_2=\frac{c-b}{a}$,故 $x_1=x_2$

8 Problem 8

证:

显然,对于 $\forall x,\exists a,b,$ 且 $a,b\in\mathbb{Z}$,使得 $a\geq x\geq b$

则显然,取 n 为 a, ϵ 为 a-x,则上式成立,不妨假设这样的 n 和 ϵ 不不唯一,即存在 $_{1,2},\epsilon_{1},\epsilon_{2}$ 使原式成立,又 a \geq x \geq b,要使 x+ ϵ_{i} (i=1,2)=n,且 ϵ_{i} (i=1,2)<1,此时 n 一定取 a, ϵ = a-x 也唯一存在,故原命题得证

9 Problem 9

证:

我们先证明关于 x 无整数解,化简原式,得 $2x^2 = 14 - 5y^2$, $y^2 \ge 0$, $x^2 \ge 0$, 故 $14-5y^2 \ge 0$, 以 只 取 0, 1, -1. 分别带入,显然,x 无整数解。

对于 y, 有 $5y^2 = 14 - 2x^2$, x 0 1 2 - 1 - 2 y

综上,原命题得证

10 Problem 10

证: 取 x 为 2, y 为 $\log_2 e$, 显然 $\mathbf{x}^y = 2^{\log_2 e} = \mathbf{e}$ 为无理数,则原命题成立