다음 발표: 전기공학과 12181350 권준혁

- 데이터 분할
- 결정트리회귀 모델
- 랜덤포레스트회귀 모델
- 교차검증
- 두 모델의 특성 중요도를 비교
- 결론: 랜덤포레스트회귀 모델이 '중고차 가격 예측'에 더 적합한 모 델임을 알 수 있다.

훈련 세트와 테스트 세트로 분할

```
from sklearn.model_selection import train_test_split
train_input, test input, train_target, test_target = train_test_split(data,
target, test_size = 0.2, shuffle = True, random_state = 34)
#훈련 세트(train_input,train_target)와 테스트 세트(test_input, test_target)로 나눈다.
#train_test_split함수의 여러 옵션 값들을 잘 확인해서 사용한다.
```

훈련 세트:

모델 훈련(가중치 찾기)<mark>에 쓰이는 데이터 세트</mark>

테스트 세트:

모델의 실제 정확도를 판별<mark>하기 위해 쓰이는 데이터 세트.</mark>

오버피팅이란?

DecisionTreeRegressor

타이타닉호 탑승객의 생존 여부를 나타내는 결정 트리. ("sibsp"는 탑승한 배우자와 자녀의 수를 의미한다.) 잎 아래의 숫자는 각각 생존 확률과 탑승객이 그 잎에 해당될 확률을 의미한다.

DecisionTreeRegressor

```
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor(random_state = 34)
 중고차 가격 예측과 같이, 회귀 모델에서는 분류 모델인 DecisionTreeClassifier가 아닌
  귀 모델인 DecisionTreeRegressor를 사용해야 한다.
dt.fit(train_input, train_target)
print(dt.score(train_input, train_target))
print(dt.score(test_input, test_target))
#높은 점수가 나왔지만, 테스트 세트와 차이가 크므로 과대적합이다. 이후에 교차검증을 시도해본다.
```

0.8987533037919507

0.999993149338792

교차검증

DecisionTreeRegressor를 교차검증

```
from sklearn.model_selection import cross_validate scores = cross_validate(dt, train_input, train_target) print(np.mean(scores['test_score'])) #5-폴드 교차 검증을 해서 교차 검증을 5회 시도한다. #다시 말해, 결정트리회귀를 다른 세트들로 총 5회 했을 때 정확도를 뜻한다.
```

0.8780421659174685

0.999993149338792 0.8987533037919507

RandomForestRegressor

결정트리회귀(DecisionTreeRegressor)를 N번 시행해서 평균을 낸 결과를 보여주는 것이 RandomForestRegressor이다.

RandomForestRegressor

```
Dataset
from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(n_jobs = -1, random_state = 34)
                                                                   Decision Tree-1
                                                                                   Decision Tree-2
                                                                                                    Decision Tree-N
forest.fit(train_input, train_target)
                                                                     Result-1
                                                                                     Result-2
                                                                                                      Result-N
print(forest.score(train_input, train_target))
                                                                               Majority Voting / Averaging
print(forest.score(test_input, test_target))
                                                                                    Final Result
#DecisionTreeRegressor보다 테스트 세트에
DecisionTreeRegressor는 특성(feature)가
#오버피팅 된 것이다.
                        해결하기 위해 RandomForestRegressor를 활용해서
                                                         나로 합치는 과정을 거쳐서 더 일반적인 예측을 한다.
0.9911032662018787
                                                                                   0.999993149338792
0.9512260774841852
                                                                                   0.8987533037919507
```

RandomForestRegressor를 교차검증

```
from sklearn.model_selection import cross_validate import numpy as np scores = cross_validate(forest, train_input, train_target, return_train_score = True, n_jobs = -1) print(np.mean(scores['train_score']), np.mean(scores['test_score'])) #랜덤포레스트의 교차 검증을 수행하면, 테스트 세트로 검증할 때보다 예측도가 약간은 떨어졌지만, #그래도 DecisionTreeRegressor보다 더 일반화됐다고 볼 수 있다.
```

0.9908856208199041 0.9368537449318787

특성 중요도 활용

Year	Kilometers_Driven	Mileage	Engine	Power	New_Price
7.608374	11.314475	2.772589	7.686621	4.467440	2.436612
7.605890	11.156251	2.944439	6.905753	4.191169	2.079847
7.608871	10.126631	3.068053	7.311886	4.686750	2.763800
7.607381	10.741384	2.986187	6.990257	4.220243	2.453149
7.607878	11.512925	2.653946	7.669962	5.282630	4.300184
7.606885	11.775290	2.977568	7.286876	4.686289	2.041413
7 605302	11.002100				2 /57070

훈련 세트인 train_input 데이터프레임의 83개의 특성 중 Year ~ New_Price까지의 6개의 특성이 모델을 적용할 때 중요하게 작용한다. (가중치가 큰 요소들이다)

DecisionTreeRegressor의 특성 중요도

```
dt_f_i = (dt.feature_importances_)
dt_f_i[83:90] #Year~New_price
print("특성 중요도: Year, Kilometers_Driven, Mileage, Engine, Power, New_Price")
print("특성 중요도: ", dt_f_i[83:90])
```

```
특성 중요도: Year, Kilometers_Driven, Mileage, Engine, Power, New_Price
특성 중요도: [0.22186042 0.01431341 0.01445565 0.13736743 0.51418665 0.03783751]
```

RandomForestRegressor의 특성 중요도

```
f_f_i = forest.feature_importances_
f_f_i[83:90] #Year~New_price
#위에서 봤던 DecisionTreeRegressor는 Power의 중요도가 0.5가 넘어섰다. 중요도가 다소 치우친 것이다.
#그러나 RandomForestRegressor는 Power의 중요.
            중요도가 낮았던 특성들의 중요도가
                                  않고 좀
      대적합을 줄이고 일반화 성능을 높이는
array([0.22074151, 0.01737459, 0.01609983, 0.1473653 , 0.27597517
     0.26893453])
```

결론

[중고차 가격 예측]을 할 때, DecisionTreeRegressor 모델보다 RandomForestRegressor 모델이 더 적합한 모델임을 알 수 있었다.

이유:

- 중고차에 대한 데이터가 83개의 특성을 포함하는데, 이렇게 특성이 많은 경우에 DecisionTreeRegressor를 사용하면 오버피팅이 될수 있다.
- 이를 해결하기 위해, RandomForestRegressor 모델을 사용한다.

한계:

RandomForestRegressor를 사용해도 오버피팅이 생긴다.