Differentiation Principles

Competitive Strategy, Lecture 5

James Traina

traina@uchicago.edu

Spring 2021

Overview of Today

- Games with Names
 - Cournot
 - Bertrand
 - Hotelling
 - Salop

Cournot Competition

- Shrimp Game is similar to Cournot competition
 - The original model (1838) was for mineral water
 - ... selling water isn't new!
- Compete on quantities
- Incentives to produce more than monopoly
 - ... but less than Perfect Competition
 - ... still have profits in equilibrium

Bertrand Competition

- Compete on prices
- Setup
 - Demand is d(p), consumers go to lowest price
 - Profits are (p-c)*d(p) if you price lower, and 0 otherwise
 - (Can split if there's a tie)
- Equilibrium
 - Competitive $p^* = c$
 - Can either firm do better?
 - Increase price, still get 0 since no customers
 - What about a higher price NE?
 - Undercut rival's price and steal all the market

Worked Example

- d(p) = 100 20p, c = 1
- $p^* = c = 1$ is a NE by the same logic
- What about a higher price?
 - Suppose we both plan on charging 2
 - If successful, we split (2-1)*(100-40) = 60 for 30 each
 - Incentive to defect
 - If I charge e.g. 1.5, I get (1.5 1) * (100 30) = 35
 - Turtles all the way down

Product Differentiation Strategy

- OK, so price competition is brutal
 - Could cooperate/collude, though difficult/illegal...
 - Alternative: differentiate yourself!
 - Value creation and value capture framework
 - (Business strategy to fit the differentiation)
 - The 3 Questions of positioning

Types of Product Differentiation

- Horizontal
 - Consumers differ in their ranking of goods with same price
- Vertical
 - Consumers all rank identically with same pric
 - Becomes horizontal if you think about quality-price tradeoff
- Would you pay \$5 for a latte?
 - SBUX vs Intelligentsia?
 - Bridgeport? Metropolis? Dark Matter?

Hotelling Line Model

- Vendors on a boardwalk setup
 - Boardwalk line of length 10
 - Consumers spread out evenly, go to nearest vendor for water

Minimal Differentiation Principle

Easier Than the 1929 Original

Conditions of competition for the market of Fig. 1. The co-ordinates represent the prices at A's and B's shops for the same article. The straight lines through E are the two lines of maximum profit. On one of the curves through E, A's profit is everywhere 648; on the other, B's is 578. The lower curve is the locus on which A's profit is 200.

Hotelling Discussion

- Same result as homogenous Bertrand!
- Applies to other areas: Median Voter Theorem
- Is this what we see in the real world?

Salop Circle Model

- Circle city of circumference 10
- Consumers spread out evenly, go to nearest vendor for water
 - Consumers incur a small travel cost per distance traveled

Maximal Differentiation Principle

Salop Discussion

- Small change completely flips the result!
- What's the key difference?
 - Two sides to the location effect
 - Consider if firms already located at Hotelling endpoints
 - What if you could 'push' them out?
 - Strategic interaction is key!
- Similar results in Hotelling by allowing price AND location choice

Vice Example 1: Gambling

Table 2
Statistical Properties of Select Casino Games and Devices
(assuming an initial wager of 1 unit)

Game	House Advantage ^d	Standard Deviation (One Wager) ^d	Standard Deviation (1,000 Wagers) ^d	Standard Deviation (House Advantage after 1,000 Wagers) ^d
Craps ^a	1.41%	1.0	31.6	3.16%
Blackjack ^b	0.50%	1.1	34.8	3.48%
Roulette (American) ^c	5.26%	5.7	179.8	17.98%
Roulette (European) ^c	2.70%	5.8	182.1	18.21%
Baccarata	1.25%	1.0	31.6	3.16%
Pai Gow Poker ^b	2.50%	1.0	31.6	3.16%
Video Poker ^{b,e}	2%	2.3	73.7	7.37%
Slot Machines ^e	5%	10.6	335.2	33.52%
Keno	28%	42.3	1,336.3	133.63%

a Standard wager.

^b Assumes the player plays optimal strategy with typical house rules.

^c Single number wagers.

d Approximate.

c Typical.

Vice Example 2: Beer

Table 2. Ratings Dispersion and Sales Growth

	Sales growth	
	Original value	Standardized
SD_Ratings	0.156***	0.0304***
_ •	(0.0564)	(0.0110)
Mean_Ratings	0.0900***	0.0341***
_ •	(0.0299)	(0.0113)
Log_Count_Ratings	0.00489	0.00791
5 0	(0.0098)	(0.0158)
Log Sales	0.0171	0.0242
5_	(0.0098)	(0.0138)
Young	0.159***	0.159***
•	(0.0567)	(0.0567)
Middle	0.0941***	0.0941***
	(0.0228)	(0.0228)
Controls	Year	Year
Observations	484	484
R ²	0.0568	0.0568

Notes: Huber–White standard errors are shown in parentheses. *** p < 0.01.

Vice Example 3: Politics

Blue Ocean Strategy

What About Economic Clustering?

Caveats: Agglomeration Economies

- So why are there so many clustered
- Dark side argument: easier to collude
- Bright side argument: increases the line size
 - Might offset competition effects (similar to Walmart vs Amazon)