

TRACKING => Particle filtering => Overview

=> Stochastically predict joint angles for the next frame <=

KALMAN FILTER

- predict single position
- uni-modal & Gaussian

PARTICLE FILTER

- predict multiple positions
- multi-modal & non-Gaussian
- PROBLEM specification: 3 probability distributions
 - Prior density $p(x_{t-1})$ for the state $x \rightarrow joint$ angles in previous frame
 - 2 Process density $p(x_t|x_{t-1})$
- kinematic and body models
- 3 Observation density $p(z_{t-1}|x_{t-1})$ \rightarrow image in previous frame
- SOLUTION specification: 1 probability distribution
 - 1 State Density $\equiv (x_t|Z_t) \rightarrow joint angles in next frame$

TRACKING => Particle filtering => Sample

SAMPLE \acute{s}_t from the prior density $p(x_{t-1}|z_{t-1})$

 x_{t-1} =joint angles in previous frame, z_{t-1}

SAMPLE SET > possible alternate values for parameters When tracking through background clutter or occlusion, a joint angle may have N possible alternate values (samples) s with respective weights w

PRIOR DENSITY $p(x) \approx S_{t-1} = \{(s^{(n)}, w^{(n)}), n=1...N\}$

Select samples for the next frame $\dot{s}_t = s_{t-1}$

by finding the smallest n for which $c^{(n)} \ge r$ Where $c^{(n)} = \sum w^{(n)} (1..t)$, r is a random number [0,1]

TRACKING => Particle filtering => Predict

PREDICT s_t from the process density $p(x_t|x_{t-1}=s_t)$

Predict joint angles for the next frame considering kinematic model, body model & error minimisation:

Minimise edge errors E_e

$$E_{e}(S_{t}) = \frac{1}{2\eta_{t}V_{e}} \sum_{x,y} (|\nabla i_{t}(x,y)| - m_{t}(x,y,S_{t}))^{2} + 0.5(S - S_{t})^{T} C^{-1}(S - S_{t}) \rightarrow \min S_{t}$$

Minimise region errors E_r

$$E_{r}(S_{t}) = \frac{1}{2n.v_{r}} \sum_{i=1}^{n_{r}} (i_{t}[p_{j}(S_{t})] - i_{t-1}[p_{j}(S_{t-1})]^{2} + E_{e}(S_{t}) \rightarrow \min S_{t}$$

Where i_t represents the image and m_t the model gradients at time t, n_e is the number of edge values summed, v_e is the edge variance, n_r is the number of region values summed, v_r is the region variance, p_i is the image pixel coordinate of the j^{th} surface point on a body part.

TRACKING => Particle filtering => Measure

MEASURE and weigh the new position in terms of the observation density, p(z_t|x_t)

- Estimate weights $w_t = p(z_t|x_t = s_t)$
- Normalise weights $\sum_{n} w^{(n)} = 1$
- Smooth weights w_t over 1..t, for n trajectories
 - Replace each sample set with its n trajectories {(st, wt)} for 1..t
 - Re-weight all w⁽ⁿ⁾ over 1..t
 - Trajectories tend to merge less than 10 frames ago=> O(Nt) storage prunes down to O(N)

TRACKING => Particle filtering

expected value of the distribution ∑_nw_ts_t

TRACKING => popular solutions

- Kalman Filter: For linear transitions and Gaussian distributions, exact solutions are obtained using this filter.
- Particle Filter: Also known as condensation algorithm, predicts multiple states/positions with non-Gaussian distributions.
- Unscented Kalman Filter: Improves the Kalman Filter approximation for non-linear systems, but still assumes Gaussian distributions.
- (Above, all are implemented in Python using filter.py by Roger Labbe <u>https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python</u>)