Ch—03 Current Electricity Daily Practice Problem 01

- **Q1.** If 2.25 x 10²⁰ electrons pass through a wire in one minute, find the magnitude of the current flowing through the wire.
- **Q2**. A solution of sodium chloride discharges 6.1 x 10¹⁶ Na⁺ ions and 4.6 x 10¹⁶ Cr⁻ ions in 2 s. Find the current passing through the solution.
- **Q3.** In a hydrogen atom, the electron makes about 0.6×10^{16} revolutions per second around the nucleus. Determine the average current at any point on the orbit of the electron.
- **Q4.** An electron moves in a circular orbit of radius 10 cm with a constant speed of 4.0 x 10⁶ ms⁻¹. Determine the electric current at a point on the orbit.
- **Q5.** The current in a wire varies with time according to the equation i = 4 + 2t, where i is in ampere and t is in second. Calculate the quantity of charge that passes through a cross section of the wire during the time t = 2 s to t = 6 s.

- **Q6.** If 0.5 mol of electrons flows through a wire in 8 min, what are
 - a. The total charge that passes through the wire
 - **b.** Magnitude of current (Take N_A = 6 x 10^{23})
- **Q7.** In a hydrogen discharge tube, the number of protons drifting across a cross section per second is 1.0×10^{18} , while the number of electrons drifting in the opposite direction across the same cross section is 2.7×10^{18} per second. Find the current flowing in the tube.
- **Q8.** The current density across a cylindrical conductor of radius R varies in magnitude according to the equation $J = J_0 \left(1 \frac{r}{R}\right)$ where r is the distance from the central axis. Thus, the current density is a maximum J_0 at that axis (r = 0) and decreases linearly to zero at the surface (r = R). Calculate the current in terms of J_0 and the conductor's cross-sectional area $A = \pi R^2$.

ANSWERS

- **1.** 0.6 A
- **2.** 8.56 x 10⁻³ A
- **3.** 0.96 mA
- **4.** 1.02 x 10⁻¹² A
- **5.** 48 *C*

- **6. a.** $4.8 \times 10^4 C$
- **b.** 100A
- **7.** 0.592 A
- **8.** $\frac{J_0A}{3}$