Inference and Representation

David Sontag

New York University

Lecture 10, Nov. 28, 2016

Reminder: conditional random fields (CRFs)

 A CRF is a Markov network on variables X ∪ Y, which specifies the conditional distribution

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \phi_c(\mathbf{y}_c, \mathbf{x})$$

with partition function

$$Z(\mathbf{x}) = \sum_{\hat{\mathbf{y}}} \prod_{c \in C} \phi_c(\hat{\mathbf{y}}_c, \mathbf{x}).$$

- As before, two variables in the graph are connected with an undirected edge if they appear together in the scope of some factor
- The only difference with a standard Markov network is the normalization term before marginalized over **X** and **Y**, now only over **Y**

Reminder: log-linear parameterization of CRFs

- Parameterize $\phi_c(\mathbf{y}_c, \mathbf{x})$ using a log-linear parameterization:
 - ullet Single weight vector $oldsymbol{w} \in \mathbb{R}^d$ that is used globally
 - ullet For each potential c, a vector-valued **feature function** $\mathbf{f}_c(\mathbf{y}_c,\mathbf{x})\in\mathbb{R}^d$
 - Then, $\phi_c(\mathbf{y}_c, \mathbf{x}; \mathbf{w}) = \exp(\mathbf{w} \cdot \mathbf{f}_c(\mathbf{y}_c, \mathbf{x}))$
- The conditional distribution is in the exponential family!

$$p(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \exp{\{\mathbf{w} \cdot \mathbf{f}(\mathbf{y}, \mathbf{x}) - \log Z(\mathbf{x}; \mathbf{w})\}},$$

where
$$f(y, x) = \sum_{c} f_{c}(y_{c}, x)$$
 and $Z(x; w) = \sum_{\hat{y}} \exp\{w \cdot f(\hat{y}, x)\}$

This formulation allows for parameter sharing

Reminder: density estimation for CRFs

CRF:
$$p(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \phi_c(\mathbf{y}_c, \mathbf{x}), \quad Z(\mathbf{x}) = \sum_{\hat{\mathbf{y}}} \prod_{c \in C} \phi_c(\hat{\mathbf{y}}_c, \mathbf{x})$$

• Empirical risk minimization with CRFs, i.e. $\min_{\hat{\mathcal{M}}} \mathbf{E}_{\mathcal{D}} \left[loss(\mathbf{x}, \mathbf{y}, \hat{\mathcal{M}}) \right]$:

$$\mathbf{w}^{ML} = \arg\min_{\mathbf{w}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} -\log p(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$$

$$= \arg\max_{\mathbf{w}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \left(\sum_{c} \log \phi_{c}(\mathbf{y}_{c}, \mathbf{x}; \mathbf{w}) - \log Z(\mathbf{x}; \mathbf{w}) \right)$$

$$= \arg\max_{\mathbf{w}} \mathbf{w} \cdot \left(\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \sum_{c} \mathbf{f}_{c}(\mathbf{y}_{c}, \mathbf{x}) \right) - \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \log Z(\mathbf{x}; \mathbf{w})$$

 What if prediction is only done with MAP inference? Then, the partition function is irrelevant. Is there a way to train to take advantage of this?

Goal of learning

- The goal of learning is to return a model $\hat{\mathcal{M}}$ that precisely captures the distribution p^* from which our data was sampled
- This is in general not achievable because of
 - computational reasons
 - limited data only provides a rough approximation of the true underlying distribution
- \bullet We need to select $\hat{\mathcal{M}}$ to construct the "best" approximation to \mathcal{M}^*
- What is "best"?

What notion of "best" should learning be optimizing?

This depends on what we want to do

- Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
- ② Specific prediction tasks: we are using the distribution to make a prediction
- 3 Structure or knowledge discovery: we are interested in the model itself

Structured prediction

 Often we learn a model for the purpose of structured prediction, in which given x we predict y by finding the MAP assignment:

$$\operatorname*{argmax}_{\mathbf{y}}\hat{\rho}(\mathbf{y}|\mathbf{x})$$

- Rather than learn using log-loss (density estimation), we use a loss function better suited to the specific task
- One reasonable choice would be the **classification error**:

$$\mathsf{E}_{(\mathsf{x},\mathsf{y})\sim p^*}\left[1\!\!1\{\ \exists \mathsf{y}'\neq \mathsf{y} \text{ s.t. } \hat{\rho}(\mathsf{y}'|\mathsf{x})\geq \hat{\rho}(\mathsf{y}|\mathsf{x})\ \}\right]$$

which is the probability over all (\mathbf{x}, \mathbf{y}) pairs sampled from p^* that our classifier selects the right labels

- If p^* is in the model family, training with log-loss (density estimation) and classification error would perform similarly (given sufficient data)
- Otherwise, better to directly go for what we care about (classification error)

Structured prediction

• Consider the empirical risk for 0-1 loss (classification error):

$$\frac{1}{|\mathcal{D}|} \sum_{(\textbf{x},\textbf{y}) \in \mathcal{D}} 1\!\!1 \{ \ \exists \textbf{y}' \neq \textbf{y} \ \mathrm{s.t.} \ \hat{\rho}(\textbf{y}'|\textbf{x}) \geq \hat{\rho}(\textbf{y}|\textbf{x}) \ \}$$

• Each constraint $\hat{p}(\mathbf{y}'|\mathbf{x}) \geq \hat{p}(\mathbf{y}|\mathbf{x})$ is equivalent to

$$\mathbf{w} \cdot \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}'_{c}) - \log Z(\mathbf{x}; \mathbf{w}) \ge \mathbf{w} \cdot \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) - \log Z(\mathbf{x}; \mathbf{w})$$

• The log-partition function cancels out on both sides. Re-arranging, we have:

$$\mathbf{w} \cdot \left(\sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}'_{c}) - \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c})\right) \geq 0$$

• Said differently, the empirical risk is **zero** when $\forall (x,y) \in \mathcal{D}$ and $y' \neq y$,

$$\mathbf{w} \cdot \left(\sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) - \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}'_{c})\right) > 0.$$

Structured prediction

• Empirical risk is **zero** when $\forall (x, y) \in \mathcal{D}$ and $y' \neq y$,

$$\mathbf{w} \cdot \left(\sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) - \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}'_{c})\right) > 0.$$

- In the simplest setting, learning corresponds to finding a weight vector w
 that satisfies all of these constraints (when possible)
- This is a linear program (LP)!
- How many constraints does it have? $|\mathcal{D}| * |\mathcal{Y}|$ exponentially many!
- Thus, we must avoid explicitly representing this LP
- The first part of this lecture is about algorithms for solving this LP (or some variant) in a tractable manner

Structured perceptron algorithm

- **Input:** Training examples $\mathcal{D} = \{(\mathbf{x}^m, \mathbf{y}^m)\}$
- Let $f(x,y) = \sum_c f_c(x,y_c)$. Then, the constraints that we want to satisfy are

$$\mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y}) \right) > 0, \quad \forall \mathbf{y} \neq \mathbf{y}^m$$

• The perceptron algorithm uses MAP inference in its inner loop:

$$\mathrm{MAP}(\boldsymbol{x}^m; \boldsymbol{w}) = \arg\max_{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{w} \cdot \boldsymbol{f}(\boldsymbol{x}^m, \boldsymbol{y})$$

The maximization can often be performed efficiently by using the structure!

- The perceptron algorithm is then:
 - **1** Start with $\mathbf{w} = 0$
 - While the weight vector is still changing:
 - $For m = 1, \dots, |\mathcal{D}|$
 - $\mathbf{y} \leftarrow \mathrm{MAP}(\mathbf{x}^m; \mathbf{w})$
 - $\mathbf{0} \qquad \mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) \mathbf{f}(\mathbf{x}^m, \mathbf{y})$

Structured perceptron algorithm

- If the training data is *separable*, the perceptron algorithm is guaranteed to find a weight vector which perfectly classifies all of the data
- When separable with margin γ , number of iterations is at most

$$\left(\frac{2R}{\gamma}\right)^2$$
,

where
$$R = \max_{m,\mathbf{y}} ||\mathbf{f}(\mathbf{x}^m,\mathbf{y})||_2$$

- In practice, one stops after a certain number of outer iterations (called *epochs*), and uses the *average* of all weights
- The averaging can be understood as a type of regularization to prevent overfitting

Allowing slack

• We can equivalently write the constraints as

$$\mathbf{w} \cdot \Big(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y})\Big) \geq 1, \quad orall \mathbf{y}
eq \mathbf{y}^m$$

- Suppose there do not exist weights w that satisfy all constraints
- Introduce *slack* variables $\xi_m \ge 0$, one per data point, to allow for constraint violations:

$$\mathbf{w} \cdot \Big(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y})\Big) \geq 1 - \xi_m, \quad orall \mathbf{y}
eq \mathbf{y}^m$$

• Then, minimize the sum of the slack variables, $\min_{\xi \geq 0} \sum_m \xi_m$, subject to the above constraints

Structural SVM (support vector machine)

$$\min_{\mathbf{w},\xi} \sum_{m} \xi_{m} + C||\mathbf{w}||^{2}$$

subject to:

$$\mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y}) \right) \geq 1 - \xi_m, \quad \forall m, \mathbf{y} \neq \mathbf{y}^m$$
$$\xi_m \geq 0, \quad \forall m$$

This is a quadratic program (QP). Solving for the slack variables in closed form, we obtain

$$\xi_m^* = \max\left(0, \max_{\mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}^m} 1 - \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y})\right)\right)$$

Thus, we can re-write the whole optimization problem as

$$\min_{\mathbf{w}} \sum_{m} \max \left(0, \max_{\mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}^{m}} 1 - \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^{m}, \mathbf{y}^{m}) - \mathbf{f}(\mathbf{x}^{m}, \mathbf{y}) \right) \right) + C ||\mathbf{w}||^{2}$$

Hinge loss

- We can view $\max \left(0, \max_{\mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}^m} 1 \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) \mathbf{f}(\mathbf{x}^m, \mathbf{y})\right)\right)$ as a loss function, called *hinge loss*
- When $\mathbf{w} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) \ge \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y})$ for all \mathbf{y} (i.e., correct prediction), this takes a value between 0 and 1
- When $\exists \mathbf{y} \neq \mathbf{y}^m$ such that $\mathbf{w} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y}) \geq \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y}^m)$ (i.e., incorrect prediction), this takes a value ≥ 1
- Thus, this always upper bounds the 0-1 loss!
- Minimizing hinge loss is good because it minimizes an upper bound on the 0-1 loss (prediction error)

Better Metrics

- It doesn't always make sense to penalize all incorrect predictions equally!
- We can change the constraints to

$$\mathbf{w} \cdot \Big(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y})\Big) \geq \Delta(\mathbf{y}, \mathbf{y}^m) - \xi_m, \quad \forall \mathbf{y}$$

where $\Delta(\mathbf{y}, \mathbf{y}^m) \geq 0$ is a measure of how far the assignment \mathbf{y} is from the true assignment \mathbf{y}^m

- This is called margin scaling (as opposed to slack scaling)
- We assume that $\Delta(\mathbf{y}, \mathbf{y}) = 0$, which allows us to say that the constraint holds for all \mathbf{y} , rather than just $\mathbf{y} \neq \mathbf{y}^m$
- A frequently used metric for MRFs is **Hamming distance**, where $\Delta(\mathbf{y}, \mathbf{y}^m) = \sum_{i \in V} \mathbb{1}[y_i \neq y_i^m]$

Structural SVM with margin scaling

$$\min_{\mathbf{w}} \sum_{m} \max_{\mathbf{y} \in \mathcal{Y}} \left(\Delta(\mathbf{y}, \mathbf{y}^{m}) - \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^{m}, \mathbf{y}^{m}) - \mathbf{f}(\mathbf{x}^{m}, \mathbf{y}) \right) \right) + C||\mathbf{w}||^{2}$$

How to solve this? Many methods!

- ① Cutting-plane algorithm (Tsochantaridis et al., 2005)
- 2 Stochastic subgradient method (Ratliff et al., 2007)
- Dual Loss Primal Weights algorithm (Meshi et al., 2010)
- Frank-Wolfe algorithm (Lacoste-Julien et al., 2013)

Stochastic subgradient method

$$\min_{\mathbf{w}} \sum_{m} \max_{\mathbf{y} \in \mathcal{Y}} \left(\Delta(\mathbf{y}, \mathbf{y}^{m}) - \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^{m}, \mathbf{y}^{m}) - \mathbf{f}(\mathbf{x}^{m}, \mathbf{y}) \right) \right) + C||\mathbf{w}||^{2}$$

- Although this objective is convex, it is not differentiable everywhere
- We can use a subgradient method to minimize (instead of gradient descent)
- The subgradient of $\max_{\mathbf{y} \in \mathcal{Y}} \ \Delta(\mathbf{y}, \mathbf{y}^m) \mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) \mathbf{f}(\mathbf{x}^m, \mathbf{y})\right)$ at $\mathbf{w}^{(t)}$ is

$$f(x^m,\hat{y}) - f(x^m,y^m),$$

where $\hat{\mathbf{y}}$ is one of the maximizers with respect to $\mathbf{w}^{(t)}$, i.e.

$$\hat{\mathbf{y}} = rg \max_{\mathbf{y} \in \mathcal{Y}} \ \Delta(\mathbf{y}, \mathbf{y}^m) + \mathbf{w}^{(t)} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y})$$

This maximization is called loss-augmented MAP inference

Loss-augmented inference

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y} \in \mathcal{Y}} \ \Delta(\mathbf{y}, \mathbf{y}^m) + \mathbf{w}^{(t)} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y})$$

• When $\Delta(\mathbf{y}, \mathbf{y}^m) = \sum_{i \in V} \mathbb{1}[y_i \neq y_i^m]$, this corresponds to adding additional single-node potentials

$$\theta_i(y_i) = 1$$
 if $y_i \neq y_i^m$, and 0 otherwise

- If MAP inference was previously exactly solvable by a combinatorial algorithm, loss-augmented MAP inference typically is too
- ullet The Hamming distance pushes the MAP solution *away* from the true assignment $oldsymbol{y}^m$

Cutting-plane algorithm

$$\min_{\mathbf{w},\xi} \sum_{m} \xi_{m} + C||\mathbf{w}||^{2}$$

subject to:

$$\mathbf{w} \cdot \left(\mathbf{f}(\mathbf{x}^m, \mathbf{y}^m) - \mathbf{f}(\mathbf{x}^m, \mathbf{y}) \right) \geq \Delta(\mathbf{y}, \mathbf{y}^m) - \xi_m, \quad \forall m, \mathbf{y} \in \mathcal{Y}_m$$
$$\xi_m \geq 0, \quad \forall m$$

- Start with $\mathcal{Y}_m = \{\mathbf{y}^m\}$. Solve for the optimal \mathbf{w}^*, ξ^*
- Then, look to see if any of the unused constraints are violated
- To find a violated constraint for data point *m*, simply solve the loss-augmented inference problem:

$$\hat{\mathbf{y}} = arg \max_{\mathbf{y} \in \mathcal{Y}} \ \Delta(\mathbf{y}, \mathbf{y}^m) + \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^m, \mathbf{y})$$

- If $\hat{\mathbf{y}} \in \mathcal{Y}_m$, do nothing. Otherwise, let $\mathcal{Y}_m = \mathcal{Y}_m \cup \{\hat{\mathbf{y}}\}$
- Repeat until no new constraints are added. Then we are optimal!

Cutting-plane algorithm

- ullet Can prove that, in order to solve the structural SVM up to ϵ (additive) accuracy, takes a polynomial number of iterations
- In practice, terminates very quickly

Summary of convergence rates

Optimization algorithm	Online	Primal/Dual	Type of guarantee	Oracle type	# Oracle calls
dual extragradient (Taskar et al., 2006)	no	primal-'dual'	saddle point gap	Bregman projection	$O\left(\frac{nR\log \mathcal{Y} }{\lambda\varepsilon}\right)$
online exponentiated gradient (Collins et al., 2008)	yes	dual	expected dual error	expectation	$O\left(\frac{(n+\log \mathcal{Y})R^2}{\lambda\varepsilon}\right)$
excessive gap reduction (Zhang et al., 2011)	no	primal-dual	duality gap	expectation	$O\left(nR\sqrt{\frac{\log \mathcal{Y} }{\lambda \varepsilon}}\right)$
BMRM (Teo et al., 2010)	no	primal	\geq primal error	maximization	$O\left(\frac{nR^2}{\lambda \varepsilon}\right)$
1-slack SVM-Struct (Joachims et al., 2009)	no	primal-dual	duality gap	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
stochastic subgradient (Shalev-Shwartz et al., 2010a)	yes	primal	primal error w.h.p.	maximization	$\tilde{O}\left(\frac{R^2}{\lambda \varepsilon}\right)$
this paper: block-coordinate Frank-Wolfe	yes	primal-dual	expected duality gap	maximization	$O\left(\frac{R^2}{\lambda \varepsilon}\right)$ Thm. 3

R same as before. n=number of training examples. λ is the regularization constant (corresponding to 2C/n)

Application to segmentation & support inference

(Silberman, Sontag, Fergus. ECCV '14)

Application to machine translation

Word alignment between languages:

(Taskar, Lacoste-Julien, Klein. EMNLP '05)

MAP inference

Recall the MAP inference task,

$$\operatorname{arg\,max}_{\mathbf{x}} p(\mathbf{x}), \qquad p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \phi_c(\mathbf{x}_c)$$

(we assume any evidence has been subsumed into the potentials)

• Since the normalization term is simply a constant, this is equivalent to

$$\arg\max_{\mathbf{x}} \prod_{c \in C} \phi_c(\mathbf{x}_c)$$

(called the max-product inference task)

• Furthermore, since log is monotonic, letting $\theta_c(\mathbf{x_c}) = \lg \phi_c(\mathbf{x_c})$, we have that this is equivalent to

$$\arg\max_{\mathbf{x}} \sum_{c \in C} \theta_c(\mathbf{x}_c)$$

(called max-sum)

Motivating application: image denoising

- Input (left): noisy image
- Output (right): denoised image

Motivating application: protein side-chain placement

• Find "minimum energy" conformation of amino acid side-chains along a fixed carbon backbone:

- Orientations of the side-chains are represented by discretized angles called rotamers
- Rotamer choices for nearby amino acids are energetically coupled (attractive and repulsive forces)

Motivating application: dependency parsing

Given a sentence, predict the dependency tree that relates the words:

- Arc from head word of each phrase to words that modify it
- May be non-projective: each word and its descendents may not be a contiguous subsequence
- m words $\Longrightarrow m(m-1)$ binary arc selection variables $x_{ij} \in \{0,1\}$
- Let $\mathbf{x}_{|i} = \{x_{ij}\}_{j \neq i}$ (all outgoing edges). Predict with:

$$\max_{\mathbf{x}} \theta_{\mathcal{T}}(\mathbf{x}) + \sum_{ij} \theta_{ij}(x_{ij}) + \sum_{i} \theta_{i|}(\mathbf{x}_{|i})$$

How to perform approximate MAP inference?

- Local search (iterated conditional modes)
 - Start from an arbitrary assignment (e.g., random). Iterate:
 - Choose a variable. Change a new state for this variable to maximize the value of the resulting assignment
- Branch-and-bound
 - Exhaustive search over space of assignments, pruning branches that can be provably shown not to contain a MAP assignment
 - Can use LP relaxations or dual decomposition to obtain upper bounds
 - Lower bound obtained from value of any assignment found
- Branch-and-cut (most powerful method; used by CPLEX & Gurobi)
 - Same as branch-and-bound; spend more time getting tighter bounds
 - Adds new constraints to cut off fractional solutions of the LP relaxation, making the upper bound tighter

effective, simple, approximate MAP inference, with guarantees

Consider the MAP problem for pairwise Markov random fields:

$$\mathrm{MAP}(\theta) = \max_{\mathbf{x}} \sum_{i \in V} \theta_i(\mathbf{x}_i) + \sum_{ij \in E} \theta_{ij}(\mathbf{x}_i, \mathbf{x}_j).$$

• If we push the maximizations *inside* the sums, the value can only *increase*:

$$MAP(\theta) \leq \sum_{i \in V} \max_{x_i} \theta_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \theta_{ij}(x_i, x_j)$$

- Note that the right-hand side can be easily evaluated
- One can always reparameterize a distribution by operations like

$$\theta_i^{\text{new}}(x_i) = \theta_i^{\text{old}}(x_i) + f(x_i)$$

$$\theta_{ij}^{\text{new}}(x_i, x_j) = \theta_{ij}^{\text{old}}(x_i, x_j) - f(x_i)$$

for any function $f(x_i)$, without changing the distribution/energy

Define:

$$\tilde{\theta}_{i}(x_{i}) = \theta_{i}(x_{i}) + \sum_{ij \in E} \delta_{j \to i}(x_{i})
\tilde{\theta}_{ij}(x_{i}, x_{j}) = \theta_{ij}(x_{i}, x_{j}) - \delta_{j \to i}(x_{i}) - \delta_{i \to j}(x_{j})$$

It is easy to verify that

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{ij \in E} \theta_{ij}(x_{i}, x_{j}) = \sum_{i} \tilde{\theta}_{i}(x_{i}) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_{i}, x_{j}) \quad \forall \mathbf{x}$$

Thus, we have that:

$$\mathrm{MAP}(\theta) = \mathrm{MAP}(\tilde{\theta}) \leq \sum_{i \in V} \max_{x_i} \tilde{\theta}_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

- ullet Every value of δ gives a different upper bound on the value of the MAP!
- \bullet The **tightest** upper bound can be obtained by minimizing the r.h.s. with respect to $\delta !$

• We obtain the following **dual** objective: $L(\delta) =$

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \right),$$

$$DUAL-LP(\theta) = \min_{\varepsilon} L(\delta)$$

This provides an upper bound on the MAP assignment!

$$MAP(\theta) \le DUAL-LP(\theta) \le L(\delta)$$

• How can find δ which give tight bounds?

Solving the dual efficiently

• Many ways to solve the dual linear program, i.e. minimize with respect to δ :

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \right),$$

- One option is to use the subgradient method
- Can also solve using block coordinate-descent, which gives algorithms that look very much like belief propagation:

Max-product linear programming (MPLP) algorithm

Input: A set of factors $\theta_i(x_i), \theta_{ij}(x_i, x_j)$

Output: An assignment x_1, \ldots, x_n that approximates the MAP

Algorithm:

- Initialize $\delta_{i\to j}(x_j) = 0$, $\delta_{j\to i}(x_i) = 0$, $\forall ij \in E, x_i, x_j$
- Iterate until small enough change in $L(\delta)$:

For each edge $ij \in E$ (sequentially), perform the updates:

$$\begin{split} \delta_{j \to i}(x_i) &= -\frac{1}{2} \delta_i^{-j}(x_i) + \frac{1}{2} \max_{x_j} \left[\theta_{ij}(x_i, x_j) + \delta_j^{-i}(x_j) \right] \quad \forall x_i \\ \delta_{i \to j}(x_j) &= -\frac{1}{2} \delta_j^{-i}(x_j) + \frac{1}{2} \max_{x_i} \left[\theta_{ij}(x_i, x_j) + \delta_i^{-j}(x_i) \right] \quad \forall x_j \end{split}$$

where
$$\delta_i^{-j}(x_i) = \theta_i(x_i) + \sum_{ik \in E, k \neq j} \delta_{k \to i}(x_i)$$

• Return $x_i \in \operatorname{arg\,max}_{\hat{x}_i} \tilde{\theta}_i^{\delta}(\hat{x}_i)$

Generalization to arbitrary factor graphs

Inputs:

■ A set of factors $\theta_i(x_i), \theta_f(\boldsymbol{x}_f)$.

Output:

■ An assignment x_1, \ldots, x_n that approximates the MAP.

Algorithm:

- Initialize $\delta_{fi}(x_i) = 0$, $\forall f \in F, i \in f, x_i$.
- Iterate until small enough change in $L(\delta)$ (see Eq. 1.2): For each $f \in F$, perform the updates

$$\delta_{fi}(x_i) = -\delta_i^{-f}(x_i) + \frac{1}{|f|} \max_{\boldsymbol{x}_{f} \setminus i} \left[\theta_f(\boldsymbol{x}_f) + \sum_{\hat{i} \in f} \delta_{\hat{i}}^{-f}(x_{\hat{i}}) \right], \tag{1.16}$$

simultaneously for all $i \in f$ and x_i . We define $\delta_i^{-f}(x_i) = \theta_i(x_i) + \sum_{\hat{f} \neq f} \delta_{\hat{f}i}(x_i)$.

■ Return $x_i \in \arg \max_{\hat{x}_i} \bar{\theta}_i^{\delta}(\hat{x}_i)$ (see Eq. 1.6).

Experimental results

Comparison of two block coordinate descent algorithms on a 10×10 node Ising grid:

Experimental results

Performance on stereo vision inference task:

Linear programming duality

Beyond the scope of this class, but one can show intimate relationship between dual decomposition and linear programming relaxations:

(Dual) LP relaxation (Primal) LP relaxation Integer linear program

$$MAP(\theta) \le LP(\theta) = DUAL-LP(\theta) \le L(\delta)$$