Система распределения временных слотов в беспроводных сетях на основе протокола локального голосования с учетом приоритетов заданий

Автор: Чернов Андрей Олегович, 471 группа Научный руководитель: д.ф.-м.н., профессор Граничин Олег Николаевич Рецензент: к.ф.-м.н., ст. науч. Сотрудник ИПМаш Иванский Юрий Владимирович

Многоскачковая (multihop) сеть

Многоскачковая (multihop) сеть

Кадры и временные слоты

Многоскачковая (multihop) сеть

Постановка задачи

Целью данной работы является:

- 1) Создание прототипа системы, для моделирования распределения временных слотов
- 2) Модификация протокола локального голосования для распределения слотов с учетом приоритетов заданий Для достижения данной цели были поставлены следующие задачи:
- Провести обзор предметной области и существующих алгоритмов распределения временных слотов
- Модифицировать протокол локального голосования для того, чтобы при распределении временных слотов учитывались приоритеты заданий в очереди
- Реализовать прототип системы, моделирующей распределение временных слотов
- Провести сравнение модифицированного алгоритма с немодифицированным, а также с другими алгоритмами распределения временных слотов

Алгоритмы распределения временных слотов

- Централизованные алгоритмы
 - Longest Queue First, LQF
- Алгоритмы статического распределения
 - Алгоритм Люя
- Алгоритмы динамического распределения
 - Distributed Randomized Scheduling, DRAND
- Алгоритмы динамического распределения с учетом загрузки узлов
 - Load-Based Transmission Scheduling, LoBaTS
 - Протокол локального голосования, Local Voting Protocol, LVP

Протокол локального голосования

- q_i число заданий в узле і
- p_i число слотов, назначенных узлу і
- $x_i = p_i/q_i$ полуобратная загрузка узла і
- a_{ij} соединение между узлами і и ј
- N_i множество соседей узла I
- u_i желаемое изменение числа слотов
- \cdot^t номер кадра

Протокол локального голосования

Для каждого узла і на каждом кадре t:

- 1. Если очередь заданий пуста, освободить все слоты. В ином случае назначить слоты, еще не назначенные соседям в двухскачковом радиусе
- 2. Если u^{t-1} положительно, найти соседа ј, у которого u^{t-1} отрицательно
- 3. Обменять с ним $r = \min(u_i, u_i u_j, p_j)$ слотов: $u_i = u_i r, u_j = u_j + r, p_i = p_i + r, p_j = p_j r$. Повторять, пока u_i положительно и есть соседи с отрицательным u_j
- 4. Выполнить задания в текущем кадре
- 5. Вычислить значение u^t

Приоритеты заданий

 q_{ik} — число заданий с приоритетом k в узле і c_k — коэффициент важности приоритета k

$$p_{ik} = rac{p_i * c_k}{\sum_{q_{ik}
eq 0} c_k}$$
 — число слотов в узле і,

назначенных выполнять задания приоритета k

$$u_{ik}^{t+1} = \left[\frac{q_{ik}^{t+1}}{q_{ik}^{t} + \sum_{j \in N_i} q_{jk}^{t}} * (p_i^t + \sum_{j \in N_i} p_j^t)\right] - p_i^t$$

$$u_i^{t+1} = \sum_k u_{ik}^{t+1}$$

Характеристики узлов сети

- **Время доставки** число кадров, за которое все пакеты соединения достигли узла-получателя
- Задержка число кадров, за которое отдельный пакет достигает узла-получателя. Для соединения будет взято среднее значение задержки каждого его пакета
- Пропускная способность отношение числа пакетов соединения к числу кадров, за которое они были доставлены

Для всей сети можно использовать средние, максимальные и минимальные значения характеристик соединений сети и индекс справедливости Джайна $(\frac{\bar{x}^2}{\bar{x}^2})$.

Моделирование

- Прототип реализован на Java с использованием JADE (реализованы классы агентов, поведения, обмен сообщениями между агентами)
- Сеть задается с помощью файла json:
 - Узлы и связи между ними
 - Соединения, число пакетов в них (любые комбинации приоритетов); могут возникать в процессе работы, могут быть активны сразу
 - Пакеты соединения могут генерироваться все сразу или с установленной периодичностью
 - Таблица маршрутизации автоматически строится в начале работы системы

Результаты моделирования (варианты LVP)

Характеристика (I приоритет; II приоритет)	Стандартный LVP; задания разных приоритетов выполняются равномерно		LVP; сн зада высс	артный начала ния с оким итетом	приор и г испол	Р с итетам іри нении аний	LVP с приоритетами при исполнении и распределении		
Максимальное время доставки, кадр	26,100 ± 0,406	41,600 ± 0,500	15,200 ± 1,107	41,400 ± 0,369	20,600 ± 0,904	41,100 ± 0,226	14,600 ± 0,369	41,100 ± 0,226	
Среднее время доставки, кадр	14,270 ± 0,231	28,510 ± 0,227	9,420 ± 0,496	29,100 ± 0,316	11,400 ± 0,334	28,660 ± 0,250	9,480 ± 0,220	29,190 ± 0,235	
Справедливость времени доставки	0,788 ± 0,003	0,849 ± 0,009	0,797 ± 0,002	0,879 ± 0,012	0,801 ± 0,005	0,858 ± 0,007	0,836 ± 0,002	0,874 ± 0,015	
Средняя задержка, кадр	11,383 ± 0,799	23,869 ± 1,166	7,834 ± 0,414	33,712 ± 0,210	9,196 ± 0,284	23,451 ± 0,097	7,700 ± 0,176	23,710 ± 0,029	

Результаты моделирования (разные алгоритмы, время доставки)

Характеристика (I приоритет; II приоритет)	LQF		LVP		DRAND		Алгоритм Люя		LoBaTS	
Среднее время доставки, кадр	61,215 ± 0,172	90,295 ± 1,372	61,510 ± 0,212	84,225 ± 0,983	69,530 ± 3,565	201,340 ± 32,114	63,930 ± 0,964	148,515 ± 1,518	64,580 ± 0,444	142,105 ± 3,381
Максимальное время доставки, кадр	69,500 ± 1,025	141,500 ± 2,111	72,100 ± 3,360	135,600 ± 4,060	86,700 ± 9,282	393,500 ± 66,725	73,000 ± 2,021	287,600 ± 2,387	73,800 ± 1,644	197,600 ± 12,246
Справедливость времени доставки	0,983 ± 0,001	0,865 ± 0,009	0,984 ± 0,002	0,855 ± 0,013	0,978 ± 0,011	0,799 ± 0,024	0,988 ± 0,001	0,776 ± 0,006	0,987 ± 0,001	0,828 ± 0,018

Результаты моделирования (разные алгоритмы, задержка)

Характеристик а (I приоритет; II приоритет)	LQF		LVP		DRAND		Алгоритм Люя		LoBaTS	
Средняя	5,743	63,516	6,308	57,740	14,289	164,100	8,315	109,614	8,871	103,828
задержка, кадр	± 0,083	± 1,420	± 0,094	± 0,973	± 2,660	± 27,954	± 0,667	± 1,562	± 0,353	± 3,970
Максимальная задержка, кадр	11,655 ± 0,232	110,746 ± 3,446	13,500 ± 0,341	113,316 ± 3,904	34,850 ± 8,062	359,129 ± 61,701	19,130 ± 1,683	257,789 ± 2,446	19,615 ± 1,134	223,164 ± 14,764
Справедливост	0,842 ±	0,796 ±	0,824	0,741	0,678	0,740	0,761	0,686	0,779	0,728
ь задержки	0,004	0,009	± 0,010	± 0,014	± 0,037	± 0,020	± 0,025	± 0,006	± 0,018	± 0,021

Результаты моделирования (разные алгоритмы, пропускная способность)

Характеристика (I приоритет; II приоритет)	LQF		LVP		DRAND		Алгоритм Люя		LoBaTS	
Средняя пропускная способность, пакет/кадр	0,333 ±0,001	1,167 ± 0,028	0,331 ±0,001	1,252 ± 0,028	0,296 ± 0,011	0,619 ± 0,067	0,317 ± 0,005	0,766 ± 0,011	0,315 ± 0,002	0,819 ± 0,010
Минимальная пропускная способность, пакет/кадр	0,288 ± 0,004	0,566 ± 0,008	0,278 ± 0,012	0,591 ± 0,019	0,235 ± 0,022	0,213 ± 0,033	0,274 ± 0,007	0,278 ± 0,002	0,271 ± 0,006	0,312 ± 0,014
Справедливость пропускной способности	0,977 ± 0,001	0,657 ± 0,006	0,979 ± 0,002	0,673 ± 0,009	0,972 ± 0,011	0,557 ± 0,074	0,983 ± 0,001	0,721 ± 0,013	0,980 ± 0,001	0,513 ± 0,009

Заключение

В ходе работы были получены следующие результаты:

- Проведен обзор алгоритмов распределения временных слотов в беспроводных многоскачковых сетях
- Для алгоритма локального голосования представлена модификация, реализующая распределение слотов с учетом приоритетов заданий
- Прототип системы распределения временных слотов в беспроводных сетях реализован на языке Java с использованием библиотеки JADE
- Проведены сравнения модифицированного протокола локального голосования с другими алгоритмами распределения временных слотов в беспроводных сетях и с немодифицированным протоколом локального голосования