ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики Им. А.Н.Тихонова НИУ ВШЭ

Департамент компьютерной инженерии

Практическая работа №1
«Знакомство с САПР Altera Quartus II»
Вариант №13

Выполнил:

Студент группы БИВ174

Солодянкин Андрей Александрович

Проверил:

Романова Ирина Ивановна

Содержание

1	Задание	3
2	Выполнение работы	3
3	Вывод	5
Cl	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	6

1 Цель работы

Знакомство с САПР Altera Quartus II

2 Задание

Составить схему указанного выражения в базисе И, ИЛИ, НЕ. Построить временную диаграмму и выполнить моделирование в режимах Functional и Time. Оценить аппаратные ресурсы на реализацию схемы и обосновать полученный результат. Упростить заданное логическое выражение с помощью алгебры логики. Сравнить работу двух схем. Запрограммировать учебную плату и продемонстрировать результаты работы на макете (Часть 2).

13 Вариант

$$y = !(x_1U!(!x_1\&!x_2))$$

3 Выполнение работы

Создаем проект.

Далее создадим блок схему:

Рис. 1: Блок схема

Таблица истинности:

Таблица 1: Таблица истинности

x_2	y
0	1
1	0
0	0
1	0
	$ \begin{array}{c c} x_2 \\ \hline 0 \\ \hline 1 \\ 0 \\ \hline 1 \end{array} $

Компилируем проект:

Рис. 2: Результат компиляции

Назначим пины:

out LEDRO	Output	PIN_A8	7	B7_N0	PIN_W8	3.3-V LVTTL
in_ SW0	Input	PIN_C10	7	B7_N0	PIN_AA3	3.3-V LVTTL
in_ SW1	Input	PIN_C11	7	B7_N0	PIN_AB4	3.3-V LVTTL

Рис. 3: Назначенные пины

И проведем симуляцию:

Рис. 4: Временные диаграммы

Упростим логическое выражение:

$$!(x_1U!(!x_1\&!x_2)) = !(x_1Ux_1Ux_2) = !(x_1Ux_2)$$

$$y = !(x_1 U x_2)$$

Добавим к существующей схеме выход, соответствующий упрощенной функции(LEDR1).

Рис. 5: Блок схема выражения

Новая временная диаграмма выглядит следующим образом:

Рис. 6: Временная диаграмма с упрощенной функцией

4 Вывод

В ходе проделанной работы были построены логические блок схемы в базисе И, ИЛИ, НЕ, а также временные диаграммы полученных функций. Оценены аппаратные ресурсы схемы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Vijayakumar P., Vijayalakshmi V., Zayaraz G. Comparative study of hyperelliptic curve cryptosystem over prime field and its survey //International Journal of Hybrid Information Technology. − 2014. − T. 7. − №. 1. − C. 137-146.
- 2. Антонов А., Филиппов А., Золотухо Р. Средства системной отладки САПР Quartus II //Компоненты и технологии. -2008. -№. 89.