Bijective Burrows Wheeler Transform - Open Problems -

Dominik Köppl StringMasters '21

definitions

string transformations

Burrows-Wheeler Transform (BWT)
[Burrows, Wheeler '94]

Bijective BWT (BBWT)

[Gil,Scott '12]

T\$ = bacabbabb\$

```
T$ = bacabbabb$
              all suffixes
    bacabbabb$
     acabbabb$
      cabbabb$
       abbabb$
        bbabb$
         babb$
          abb$
           bb$
            b$
```

\$ < a < b < c

```
T$ = bacabbabb$
                 all suffixes
      bacabbabb$
       acabbabb$
        cabbabb$
a
         abbabb$
          bbabb$
a
b
           babb$
  prev. char abb$
             bb$
a
b
              b$
b
```

\$ < a < b < c

T\$ = bacabbabb\$ all suffixes bacabbabb\$ \$ bacabbabb\$ acabbabb\$ b acabbabb\$ cabbabb\$ a cabbabb\$ a abbabb\$ c abbabb\$ C bbabb\$ a bbabb\$ a b babb\$ b babb\$ align prev. char abb\$ b abb\$ left bb\$ a bb\$ a b b\$ b b\$ b b \$

\$ < a < b < c

the BBWT is the BWT of the Lyndon factorization

with respect to \leq_{ω}

the BBWT is the BWT of the Lyndon factorization 1.

with respect to $<_{\omega}$ 2.

conjugates

- $T = T[1] T[2] \cdots T[n]$
- conjugates = cyclic shifts:
 - $-T[1]T[2] \cdots T[n]$
 - $-T[2]T[3] \cdots T[n]T[1]$
 - :

Lyndon words

- a
- aabab

Lyndon word is smaller than

- every proper suffix
- every rotation

Lyndon words

- a
- aabab

Lyndon word is smaller than

- every proper suffix
- every rotation

not Lyndon words:

- abaab (rotation aabab smaller)
- abab (abab not smaller than suffix ab)

Lyndon factorization [Chen+ '58]

• input: text T =

- $T_1 \mid T_2 \mid \dots$
- output: factorization $T_1...T_t$ with
 - T_x is Lyndon word
 - $-T_x \ge_{\text{lex}} T_{x+1}$
 - factorization uniquely defined
 - linear time [Duval '88]

(Chen-Fox-Lyndon Theorem)

example

T = bacabbabb

Lyndon factorization: b|ac|abb|abb

- b, ac, abb, and abb are Lyndon
- $-b >_{lex} ac >_{lex} abb ≥_{lex} abb$

\prec_{ω} order

• $u <_{\omega} w : \iff uuuuu ... <_{lex} wwww...$

- ab <_{lex} aba
- aba ≺_ω ab

\prec_{ω} order

• $u <_{\omega} w : \iff uuuu ... <_{lex} wwww...$

- ab < aba
- aba ≺_ω ab

ab<mark>ababab...</mark> aba<mark>abaaba...</mark>

b|ac|abb|abb

b|ac|abb|abb

```
b ac abb bab bab bba bba
```

conjugates of all Lyndon factors

b ac abb abb

conjugates of all Lyndon factors

b ac abb abb

conjugates of all Lyndon factors

conjugates of all Lyndon factors

BBWT(*T*) = bbcbbaaba

conjugates of all Lyndon factors

BBWT(T) = bbcbbaabaBWT(T\$) = bbcbbb\$aaa

background

properties of BBWT:

- no \$ necessary
- BBWT seems to be more compressible than BWT for some inputs

[Scott and Gill '12]

- BBWT is indexible [Bannai+ '19]:
 - O(m lg m lg σ) query time for m: pattern length, (lg σ for the wavelet tree)
- is computable in
 - O(n) time with n lg n + n lg σ bits [Bannai+ '21]
 - $O(n^2)$ time with $O(\lg n)$ bits [Köppl+ '20]
 - $O(n \lg n / \lg \lg n)$ time with $O(n \lg \sigma)$ bits [Bonomo' +14]

open problems

number of runs r_{BBWT}

connection of r_{BWT} and r_{BBWT} (where r_s : number of character runs in string S)

- if T is Lyndon, then BWT(T) = BBWT(T)
- $\Rightarrow r_{\text{BWT}(T)} = r_{\text{BBWT}(T)} = 2 \text{ for } T : \text{lower Christoffel words}$

[Mantaci+ '03]

- all conjugates of a text have the same BWT, but what about BBWT?
- empirical observation: # Lyndon factors is low $\Rightarrow r_{\text{BWT}(T)} \approx r_{\text{BBWT}(T)}$

what is the relationship between the runs of BBWT(T) and BBWT(T), where T is the inverted text

(for BWT: [Giuliani'+ 21])

improve # Lyndon factors

- finding the alphabet ordering that maximizes/minimizes # Lyndon factors is NPcomplete [Gibney+ '21]
- efficient approximation algorithm feasible?
 use different orderings
- generalized lexicographic order, etc.
- but: then still index-able?

Lyndon words $< r_{BBWT}$?

is the number of distinct Lyndon words of T bounded by $r_{BBWT(T)}$?

if so, we gain:

 $O(r_{BBWT(T)})$ words run-length compressed BBWT-index for $r_{BBWT(T)} = o(n)$ [Bannai' +19]

size of bijection cycles *k*

since BBWT is a bijection, there exists a k such that

BBWTk(T) = BBWTk-1(BBWT(T)) = T with $k \ge 1$

- we can compute k by constructing BBWT k
 times → O(kn) time
- O(n) time possible?

BBWT construction algorithms

trade-off?

- in O($(n^2/\tau + n)$ lg τ) time with
- O(τ σ_τ) words of space? with σ_τ: max |{ |{*T* [*i*],...,*T* [*i*+τ-1]}| : *i* ∈ [1..*n*] } |

(result for BWT: [Crochemore+ '15])

- run-length encoded BBWT
 - $O(n \lg r)$ time with
 - o(*r*) words of extra space

(result for BWT: [Bannai+ '20])