Assunto: medidas de dispersão

- Mediana com intervalo:

Para cálculos de mediana com intervalo, deve-se fazer etapas diferentes. Como o exemplo abaixo:

1ª etapa: Organizar os dados de valores iniciais e a frequência;

2ª etapa: Somar todos os intervalos e dividi-lo por 2, assim achará a mediana nas próximas etapas;

vendas	n° de vendedores
0 10.000	1
10.000 20.000	12
20.000 30.000	27
30.000 40.000	31
40.000 50.000	10

Soma: 1+12+27+31+10 = 81

Dividir: 81/2 = 40,5

Então, 40,5 é o valor da mediana a ser

encontrado.

3º etapa: Após a mediana encontrada, deve-se somar as frequências até "achar" a mediana calculada no passo anterior. Caso não encontre, mas consiga encontrar o intervalo de vendas, passaremos para a próxima etapa.

vendas	n° de vendedores
0 10.000	1
10.000 20.000	+ 12
20.000 30.000	27 /40
30.000 40.000 🔸	31
40.000 50.000	10

- Vá somando até chegar perto da mediana no passo anterior, NÃO PODE ULTRAPASSAR.

Soma: 1+12+27 = 40

4ª etapa: Logo após encontrar o intervalo de frequência, deve-se organizar uma regra de três, como:

Intervalo → n° de vendedores

Md − Xi → Mdencontrado - n° de vendedores (próximo a Md encontrado)

Xi: inicio do intervalo

Md: mediana

40.000 − 30.000 → 31

 $Md - 30.000 \rightarrow 40,5 - 40$

31*(md - 30.000) = (40.000 - 30.000)*0,5

 $Md = \frac{(10.000*0.5) + 30.000}{24}$

Md = 30.161,29

- Mediana de maior frequência (com intervalo):

1ª etapa: Encontrar a maior frequência (maior número) e calcular a mediana de cada um (mesmo se aparecer várias vezes), como no exemplo abaixo:

notas	n° de alunos
1,5 3,0	6
3,0 4,5	6
4,5 6,0	6
6,0 7,5	<mark>9</mark>
7,5 9,0	<mark>9</mark>

2º etapa: Após encontrar, calcule a mediana somando as maiores frequências (devem ser n° iguais) e divide por 2, como:

Md1 =
$$\frac{6.0+7.5}{2}$$
 = 6,75 Md2 = $\frac{7.5+9.0}{2}$ = 8,25

$$Md2 = \frac{7.5 + 9.0}{2} = 8.25$$

- Desvio padrão sem intervalo:

1ª etapa: Organizar os dados do problema.

MÊS	jan	fev	Mar	abr	mai	jun	jul	ago	set	out	nov	dez
Xi	69	53	41	46	50	40	41	40	42	38	42	46

2ª etapa: Calcular Xi² e organizar junto aos demais dados:

ſ	MÊS	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez
	Xi	69	53	41	46	50	40	41	40	42	38	42	46
)	Xi^2	4761	2809	1681	2116	2500	1600	1681	1600	1764	1444	1764	2116

3º etapa: Some todos os valores de Xi, depois todos os de Xi^2:

Soma –
$$xi^2 (\sum xi^2) = 25836$$

N - 12

4ª etapa: Calcule o desvio padrão pela fórmula:

$$S^2 = \frac{\sum xi^2}{n} - \left(\frac{\sum xi^{\square}}{n}\right) ^2$$

Xi: valor correspondente à variável

Xi²: valor correspondente à variável elevado a 2

 $S^2 = \frac{25836}{12} - \left(\frac{548}{12}\right) ^2$

N: n° total de casos

S: Desvio Padrão \rightarrow S = \sqrt{s}

S²: Variância, **ou seja**, \sqrt{s}

$$S^2 = 2153 - 2085,75$$

$$S^2 = 67,25$$

- Média com intervalo:

1º etapa: organizar as informações, adicionar em uma tabela fi e i , e calculando xi:

aumento de peso em KG	n° de animais
0 1	1
1 2	5
2 3	35
3 4	37
4 5	28

intervalo	frequencia(Fi)	Xi
0 1	1	0,5
1 2	5	1,5
2 3	35	2,5
3 4	37	3,5
4 5	28	4,5

Xi = (Li + Lf)/2
Li: inicio do intervalo
Lf: final do intervalo
X1 = (0+1)/2 = 0.5

$$X1 = (0+1)/2 = 0.5$$

 $X2 = (1+2)/2 = 1.5$
 $X3 = (2+3)/2 = 2.5$
 $X4 = (3+4)/2 = 3.5$
 $X5 = (4+5)/2 = 4.5$

2ª etapa: calcular Xi *Fi:

	l		
intervalo	frequencia(Fi)	Xi	Xi*Fi
0 1	1	0,5	0,5
1 2	5	1,5	7,5
2 3	35	2,5	87,5
3 4	37	3,5	129,5
4 5	28	4,5	126

3ª etapa: Calcule a média usando a fórmula:

$$X = \frac{\sum (Xi * Fi)}{\sum Fi}$$
 $X = \frac{351}{106} = 3,311 kg$

- Coeficiente de variação

1º etapa: Organizar os dados, conforme dito no problema, em uma tabela.

	Forn	Forn
	Α	В
média	107,5	108
variância	3	1,8

2ª etapa: Usar a formula de coeficiente de variação para calcular o resultado final

$$cv = \frac{s}{x} * 100$$

Onde:

S: variância

X: média

$$CVA = \frac{3}{107.5} * 100 = 1,66\%$$

$$CVB = \frac{1.8}{108} * 100 = 2,79\%$$

Assunto: probabilidade de binominal

1º etapa: Organizar os dados conforme a logística do problema. Separando a probabilidade que queremos para resolver o problema (p), e a que não queremos (q), como também, a condição. Exemplo – QUESTÃO 6 – LISTA 3:

50 bolas { 20 pretas 30 branças → 25 bolas retiradas com reposição

• 2 bolas pretas

Onde:

N: 25

N: quantidade de repetição do ciclo

K: 2

K: n° de casos

P: 20/50 ou 2/5 ou 0,4

P: Sucesso

Q: 30/50 ou 3/5 ou 0,6

Q: Fracasso

• No mínimo,4 bolas pretas

N: 25

K >= 4

P: 20/50 ou 2/5 ou 0,4

Q: 30/50 ou 3/5 ou 0,6

2º etapa: Organizar os dados na fórmula, e calcular:

$$P(k=x) = \binom{n}{k} * P^{k} * Q^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• 2 bolas pretas

$$P(k=2) = {25 \choose 2} * (\frac{2}{5})^2 * (\frac{3}{5})^{25-2}$$

$$\binom{25}{2}$$
) = $\frac{25!}{2!(25-2)!}$ $\Rightarrow \frac{25.24.23!}{2!23!}$ $\Rightarrow \frac{600}{2}$ \Rightarrow 300

P(k=2) =
$$300*(\frac{2}{5})^2*(\frac{3}{5})^{23}$$

$$P(k=2) = 300*(\frac{2}{5})^2*(\frac{3}{5})^{23}$$

$$P(k=2) = 0,0003790$$

• No mínimo,4 bolas pretas

$$P(k>=4) = {n \choose k} * P^k * Q^{n-k}$$

$$P(k=0) = {25 \choose 0} * (\frac{2}{5})^0 * (\frac{3}{5})^{25-0}$$

$$P(k=1) = {25 \choose 1} * (\frac{2}{5})^1 * (\frac{3}{5})^{25-1}$$

$$P(k=2) = {25 \choose 2} * (\frac{2}{5})^2 * (\frac{3}{5})^{25-2}$$

$$P(k=3) = {\binom{25}{3}} * {(\frac{2}{5})}^3 * {(\frac{3}{5})}^{25-3}$$

$$\binom{25}{0}$$
 = $\frac{25!}{0!(25-0)!}$ $\Rightarrow \frac{25!}{25!}$ $\Rightarrow 1$

$$\binom{25}{1}$$
 = $\frac{25!}{1!(25-1)!}$ $\Rightarrow \frac{25.24!}{1!24!}$ $\Rightarrow 25$

$$\binom{25}{2}$$
) = $\frac{25!}{2!(25-2)!}$ $\Rightarrow \frac{25.24.23!}{2!23!}$ $\Rightarrow \frac{600}{2}$ \Rightarrow 300

$$\binom{25}{3}$$
 = $\frac{25!}{3!(25-3)!}$ $\Rightarrow \frac{25.24.23.22!}{3!22!}$ $\Rightarrow \frac{600}{2}$ $\Rightarrow 4600$

P(k=0) =
$$1*(\frac{2}{5})^0*(\frac{3}{5})^{25}$$

$$P(k=0) = 1*1*(\frac{3}{5})^{25}$$

$$P(k=0) = 0,000002843$$

$$P(k=1) = 25*(\frac{2}{5})^{1}*(\frac{3}{5})^{24}$$

P(k=1) = 25*
$$(\frac{2}{5})^{1}$$
* $(\frac{3}{5})^{24}$

$$P(k=1) = 0,00004738$$

P(k=2) = 300*
$$(\frac{2}{5})^2$$
* $(\frac{3}{5})^{23}$

P(k=2) =
$$300*(\frac{2}{5})^2*(\frac{3}{5})^{23}$$

$$P(k=2) = 300*0,16*0,000007897$$

$$P(k=2) = 0,0003790$$

P(k=3) =
$$4600*(\frac{2}{5})^3*(\frac{3}{5})^{22}$$

P(k=3) = 4600*
$$(\frac{2}{5})^3$$
* $(\frac{3}{5})^{22}$

$$P(k=3) = 0.003874$$

3ª etapa: Usar a ultima fórmula para descobrir a probabilidade:

P(desejado) + P(não desejado) = 1

• 2 bolas pretas

P(k=2) =
$$300*(\frac{2}{5})^2*(\frac{3}{5})^{23}$$

P(k=2) = 300*
$$(\frac{2}{5})^2$$
* $(\frac{3}{5})^{23}$

$$P(k=2) = 0,0003790$$

• No mínimo, 4 bolas pretas:

$$P(k>=4) + P(k<4) = 1$$

$$P(k>=4) = 1 - (P(k=0) + P(k=1) + P(k=2) + P(k=3))$$

$$P(k>=4) = 1 - (0,000002843 + 0,00004738 + 0,0003790 + 0,003874)$$

$$P(k>=4) = 1 - 0,004303223$$

$$P(k>=4) = 0.9956$$

Assunto: Técnicas de amostragem

- Amostragem aleatória simples

Exemplo 1: em uma empresa há 90 computadores. Obtenha uma amostra correspondente a 15%.

OBS: use a tabela de números aleatórios, a partir da 18° linha, da esquerda para a direita, para obter os elementos dessa amostra.

18°: 610201817392606673585334426826383403274496044665

População: o todo | amostra: parte do todo

1ª etapa: é necessário fazer a relação entre as informações dos problemas, como:

Temos 90 pc - então a numeração de relação seria de 01 à 90.

2ª etapa: Por meio de uma regra de 3, descobriremos com a numeração de relação, a porcentagem da amostra, como:

$$90 \rightarrow 100\%$$
 $100x = 90*15$

$$X \to 15\%$$
 $X = \frac{90*15}{100} \to x = 13,5 \text{ ou } 14$

Obs: caso tenha o resultado quebrado. pode-se arredondar.

3º etapa: Usamos a tabela de n° aleatórios para chegarmos a nossa amostragem, pegamos a quantidade de casas da nossa população e agrupamos esses números. Temos que ter cuidado para não selecionarmos algum n° que ultrapasse o limite da nossa população. E, "pegaremos" a quantidade da nossa amostra (que obtemos na regra de 3 – passo anterior, lembrando sempre do agrupamento de casas, como:

Ou seja, pegamos 14 números dessa tabela de nº aleatórios e sem ultrapassar 90

Resultado: 61 02 01 81 73 60 66 73 58 53 34 42 68 26 38

Assunto: Técnicas de amostragem

- Amostragem estratificada

Exemplo 2: em uma empresa há 90 computadores, dos quais 36 são Windows e os demais são Linux. Obtenha uma amostra contendo 9 computadores.

OBS: use a tabela de números aleatórios, a partir da 18° linha, da esquerda para a direita, para obter os elementos dessa amostra.

18°: 610201817392606673585334426826383403274496044665

1ª etapa: Saber a quantidade proporcional do todo e da amostra. Separando as informações.

90 pc
$$\begin{cases} 36 \ windows \\ 54 \ linux \end{cases}$$

Duas possibilidades para 2ª etapa, sendo:

2ª etapa - 1: Pela amostra, devemos separar para cada proporção do problema e usamos regra de 3, para saber: quantidade da mostra separada por grupo.

p/ Windows, temos:

$$90 \rightarrow 9$$
 $90x = 9*36$

36
$$\rightarrow$$
 x $X = \frac{9*36}{90} \rightarrow$ x = 3,6 ou 4

p/ linux, temos:

$$90 \rightarrow 9$$
 $90x = 9*54$

54
$$\rightarrow$$
 x $X = \frac{9*54}{90} \rightarrow x = 5.4$ ou 5

*Escolha qual dos dois você vai arredondar para + e qual para -, caso você some ambos os resultados, e ultrapasse o valor da amostragem de problema.

2ª etapa – 2: podemos calcular a porcentagem da amostragem de CADA parte do problema e após achar, "tirar" a quantidade proporcional dessa porcentagem encontrada. Como:

90
$$\rightarrow$$
 100% 90x = 9*100
9 \rightarrow x $X = \frac{9*100}{90} \rightarrow$ x = 10% ou 0,1

$$\left\{ \begin{array}{l} 36 \ w \rightarrow 10\% = 3,6 \ ou \ 4 \\ 54 \ l \rightarrow 10\% = 5,4 \ ou \ 5 \end{array} \right.$$

3º etapa: usamos a tabela de n° aleatórios, agrupamos pela quantidade do todo (população). E separando a nossa relação de n° do todo, com base em suas proporções e seu intervalo do todo, como:

• A amostra vai de até 90, então:

```
Amostra<sub>(01 à 90)</sub> \{ \begin{array}{c} win~(01~\grave{a}36) \rightarrow 02,01,34,36 \\ linux~(37~\grave{a}~90) \rightarrow 61,81,73,60,66 \end{array} \}
```

^{*}Com base no intervalo, selecionamos cada n° dos n° aleatórios da tabela, respeitando: o limite do todo(população), o limite de cada proporção do problema e o limite calculado na etapa 2.

Assunto: Técnicas de amostragem

- Amostragem sistemática

1º etapa: retirar as informações do problema. Calcular o intervalo entre os números da sequência, como:

População: 300 clientes

Amostra: 15 clientes

Calculo do intervalo:

Intervalo = $\frac{população}{amostro}$

Intervalo = $\frac{300}{15}$ = 20

2ª etapa: caso a questão não decida e informe o n° que esta "dentro" da amostra, você pode escolher aleatoriamente e somar ao intervalo. Deve-se completar o ciclo da população com a quantidade da amostra, como:

Numeração: 01 à 300

Amostra:

Limite de n°: 20

69,89,109,129,149,169,189,209,229,249,269,289,009,029,049.

N° escolhido: 69