Si noti che si tratta in questo caso di valutare la verosimiglianza come funzione dei due parametri μ e σ^2 . Applicando il logaritmo naturale, si ottiene la seguente funzione di log-verosimiglianza:

$$\ell(\mu, \sigma^2) = \log L(\mu, \sigma^2) = \log \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} - \frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}$$

$$= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}.$$
(3.2)

Modello esponenziale con diversi schemi di osservazione

Sia $(y_1, y_2, ..., y_n)$ un campione di dimensione n da Y che è distribuita secondo il modello esponenziale di parametro λ , $f(y; \lambda) = \lambda e^{-\lambda y}$, per $\lambda > 0$ e $y \geq 0$. La funzione di verosimiglianza in corrispondenza del campione osservato è:

$$L(y_1, y_2, \dots, y_n; \lambda) = L(\lambda) = \prod_{i=1}^n \lambda e^{-\lambda y_i} = \lambda^n e^{-\lambda \sum_{i=1}^n y_i}$$

Si ottiene quindi la seguente funzione di log-verosimiglianza:

$$\ell(\lambda) = \log L(\lambda) = \log \left(\lambda^n e^{-\lambda \sum_{i=1}^n y_i}\right) = n \log \lambda - \lambda \sum_{i=1}^n y_i.$$
 (3.3)

Si immagini ora che per lo stesso campione $(y_1, y_2, ..., y_n)$ di dimensione n da una distribuzione univariata, discreta o continua, $f(y; \theta)$ con $\theta \in \Theta$ e $\Theta \subset \mathbb{R}$ non sia possibile osservare il valore ma si sa solo, avendo fissato una soglia t, se $y_i > t$. L'informazione è quindi parziale e si dice che dati sono soggetti a censura dicotomica. È ancora possibile fare inferenza sul parametro λ anche con questa informazione incompleta. Ovviamente occorre costruire la funzione di verosimiglianza che rifletta il tipo di informazione disponibile. In questo caso in effetti si potrebbe associare a ogni dato y_i il valore di una variabile w_i che sia funzione indicatrice dell'evento $y_i > t$ per cui

$$w_i = 1$$
 se $y_i > t$
 $w_1 = 0$ altrimenti

I valori di w_i sono quindi determinazioni di una variabile bernoulliana di parametro $p = P(Y_i > t)$. Ricordando l'espressione ottenuta per il parametro

Figura 3.2: Funzione di log-verosimiglianza per il parametro λ di $Y \sim Esp(\lambda)$.

di una bernoulliana, La funzione di verosimiglianza per p è espressa da

$$L(w_1, w_2, \dots, w_n; p) = L(p) = p^{n_1}(1-p)^{n-n_1}$$

ove $n_1 = \sum_{i=1}^n w_i$ è il numero di valori y_i che sono risultati maggiori di t, da cui si ottiene la log-verosimiglianza per il modello bernoulliano data da:

$$\ell(p) = \log L(p) = n_1 \log(p) + (n - n_1) \log(1 - p)$$

È interessante ora considerare il caso in cui Y ha distribuzione esponenziale di parametro λ ed è una variabile che nella popolazione misura i tempi fino al verificarsi di un dato evento. Allora $p = e^{-t\lambda}$, e

$$\ell(\lambda) = \log L(w_1, w_2, \dots, w_n; \lambda) = \log \left(e^{-n_1 t \lambda} (1 - e^{-t \lambda})^{n - n_1} \right)$$

$$= -\lambda n_1 t + (n - n_1) \log(1 - e^{-t \lambda}).$$
(3.4)

Si noti che questo equivale a una riparametrizzazione di un modello bernoulliano con parametro $p=e^{-t\lambda}.$

Un tipico esempio si ha considerando il tempo trascorso dall'inizio di una infezione fino alla completa guarigione per i pazienti con una data patologia curata con un certo farmaco, per il quale si può supporre una distribuzione esponenziale di parametro λ . Si supponga che il campione di osservazioni

 (y_1, y_2, \ldots, y_n) comprenda alcune y_i^* per le quali il dato è censurato ed è noto solo che il tempo di guarigione è superiore a y_i^* . Il campione quindi comprende alcuni dati completi y_i che contribuiranno alla funzione di verosimiglianza con $f(y_i, \lambda) = \lambda \exp(-\lambda y_i)$; mentre per i dati censurati y_i^* l'informazione è incompleta e si sa solo che il tempo sarà maggiore del tempo di censura: il contributo alla verosimiglianza per essi è $P(Y > y_i^*) = 1 - F(y_i^*) = \exp(-\lambda y_i^*)$. Se i dati censurati sono $n_1 < n$ allora la funzione di verosimiglianza risulta pari a:

$$L(\lambda) = \prod_{i=1}^{n-n} \lambda e^{-\lambda y_i} \prod_{i=1}^{n} (e^{-\lambda y_i^*})$$

Modello rettangolare

Sia $(y_1, y_2, ..., y_n)$ un campione casuale estratto da una distribuzione uniforme $U(0, \theta)$, $\theta > 0$. La funzione di verosimiglianza per θ è data da

$$L(y_1, y_2, \dots, y_n; \theta) = L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} = \frac{1}{\theta^n}, \quad 0 \le y_i \le \theta, \quad i = 1, \dots, n$$

La condizione che ciascun y_i sia compreso tra 0 e θ equivale a richiedere che il massimo di (y_1, y_2, \ldots, y_n) , $y_{(n)}$, sia minore o uguale a θ . Pertanto la verosimiglianza è pari a

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} = \frac{1}{\theta^n}, \text{ se } y_{(n)} \le \theta,$$

ed è pari a zero altrimenti. Si noti che l'espressione precedente può essere riscritta come

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbf{I}_{[0,\theta]}(y_i) = \frac{1}{\theta^n} \mathbf{I}_{[y_{(n)},\infty)}(\theta).$$

La funzione presenta quindi il suo valore più elevato in corrispondenza del valore $y_{(n)}$ (si veda la figura 3.3).

3.3 Alcune proprietà della funzione di verosimiglianza

Come si è detto la funzione di verosimiglianza fornisce una sintesi del supporto del campione a ciascun valore del parametro θ in quanto esprime