

MA2401 Geometri Vår 2022

Norges teknisk—naturvitenskapelige universitet

Løsningsforslag — Øving 7

Institutt for matematiske fag

4.7.2 Anta først at det euklidske parallellpostulatet holder. Vi vil vise at dersom $l \parallel m$, og en linje $t \neq l$ skjærer l, så må t også skjære m. Dette kalles ofte Proclus' aksiom. Vi bruker et bevis med selvmotsigelse, og antar derfor at t skjærer l, men at t ikke skjærer m. Med andre ord betyr dette at $t \parallel m$.

La P være skjæringspunktet mellom t og l. Da er t og l to linjer som begge går gjennom P og er paralelle til m. Dette motsier det euklidske parallellpostulatet. Dermed kan vi konkludere med at t skjærer m, som var det vi ville vise.

Anto nå at Proclus' aksiom holder, og at vi har en linje l og et punkt P som ikke ligger på l. Vi må vise at det finnes en unik linje m som inneholder P og som er parallell med l. Fra teorem 4.1.3 vet vi at vi kan finne et unikt punkt A slik at $\overrightarrow{PA} \perp l$. Fra del 3 av gradskivepostulatet kan vi finne et punkt Q slik at $\mu(\angle APQ) = 90$. Merk at vi må egentlig spesifisere et halvplan for å bruke denne påstanden, men i dette tilfelle har det ikke noe å si hvilket halvplan vi velger. Det alternerende indre vinkel-teoremet gir oss at $\overrightarrow{PQ} \parallel l$, siden \overrightarrow{PA} skjærer både l og \overrightarrow{PQ} på en slik måte at alle indre vinkler er rette. Dermed har vi funnet en linje $m = \overrightarrow{PQ}$ slik at $P \in m$ og $m \parallel l$. Merk her at vi ikke har brukt hverken det euklidske parallellpostulatet eller Proclus' aksiom, så denne konstruksjonen av en parallell linje er fungerer derfor i nøytral geometri. Konstruksjonen kalles ofte for den doble perpendikulær konstruksjonen.

Det gjenstår å vise at denne linja er unik. Anta defor at vi har en linje $n \neq m$ som er paralell med l og har $P \in n$. Dermed skjærer n linjen m i punktet P. Proclus' aksiom sier oss da at n også må skjære l, noe som motsier at n og l er paralelle. Dermed er m unik, og beviset er fullført.

4.7.6 Vi skal vise at det euklidske parallellpostulatet (sammen med alle aksiomene i nøytral geometri) impliserer at alle trekanter har vinkelsum lik 180. Vi kommer til å bruke at boka har vist at det euklidske parallellpostulatet er ekvivalent med motsatsen til det alternerende indre vinkel-teoremet (teorem 4.7.1). Resultatet vi skal vise er en del av teorem 4.7.4, så vi tar oss friheten til å bruke resultatene vist før dette teoremet.

Ved hjelp av del 3 av gradskivepostulatet kan vi finne et punkt D slik at $\mu(\angle BCD) = \mu(\angle ABC)$, og slik at D og A ligger på motsatt side av \overrightarrow{BC} . Siden $\mu(\angle BCD) = \mu(\angle ABC)$, gir indre vinkel-teoremet oss at $\overrightarrow{CD} \parallel \overrightarrow{AB}$. Vi kan så bruke linjalpostulatet til å finne et punkt E på \overrightarrow{CD} slik at E*C*D. Siden $\overrightarrow{EC} = \overrightarrow{CD}$, vet vi at $\overrightarrow{EC} \parallel \overrightarrow{AB}$. Dermed gir motsatsen til det alternerende indre vinkel-teoremet (teorem 4.7.1) oss at $\mu(\angle ACE) = \mu(\angle CAB)$.

Til nå har vi vist at $\mu(\angle BCD) = \mu(\angle ABC)$ og $\mu(\angle ACE) = \mu(\angle CAB)$. For å vise at

$$\mu(\angle ABC) + \mu(\angle CAB) + \mu(\angle ACB) = 180,$$

er det dermed nok å vise at

$$\mu(\angle BCD) + \mu(\angle ACE) + \mu(\angle ACB) = 180.$$

Men, denne siste ligningen følger av å bruke lineært par-teoremet fordi dette teoremet gir oss at $\mu(\angle ACE) = \mu(\angle ACD) = 180$. Av del 4 av gradskivepostulatet vet vi at $\mu(\angle ACD) = \mu(\angle ACB) + \mu(\angle BCD)$, slik at vi til sammen har

$$\begin{aligned} 180 &= \mu(\angle ACE) + \mu(\angle ACD) \\ &= \mu(\angle ACE) + \mu(\angle ACB) + \mu(\angle BCD) \\ &= \mu(\angle ABC) + \mu(\angle CAB) + \mu(\angle ACB), \end{aligned}$$

der vi i siste ligning har brukt at $\mu(\angle BCD) = \mu(\angle ABC)$ og $\mu(\angle ACE) = \mu(\angle CAB)$. Dermed har vi vist resultatet vi ønsket å vise.

4.8.1 La $\triangle ABC$ være en trekant og E et punkt i det indre av \overline{BC} . Vi skal vise at $\delta(\triangle ABC) = \delta(\triangle ABE) + \delta(\triangle ECA)$.

Ved å skrive ut definisjonen av δ ser vi at denne påstanden er ekvivalent med å vise at

$$180 - \sigma(\triangle ABC) = 180 - \sigma(\triangle ABE) + 180 - \sigma(\triangle ECA).$$

Med litt enkel algebraisk manipulasjon kan vi kan skrive om denne ligningen til

$$\sigma(\triangle ABC) + 180 = \sigma(\triangle ABE) + \sigma(\triangle ECA).$$

Denne siste likningen, som vi altså må vise at stemmer, er nettopp innholdet i lemma 4.5.4, som vil si at vi har vist resultatet vi var ute etter å vise.

4.8.2 Vi skal vise at når $\Box ABCD$ er en konveks firkant, er $\delta \Box ABCD = \delta(\triangle ABC) + \delta(\triangle ACD)$.

En del av definisjonen av konveks (definisjon 4.6.2), er at A ligger i det indre av $\angle BCD$. Dermed gir del 4 av gradskivepostulatet oss at

$$\mu(\angle BCA) + \mu(\angle ACD) = \mu(\angle BCD),$$

og på akkuratt samme måte viser vi at

$$\mu(\angle DAC) + \mu(\angle CAB) = \mu(\angle DAB).$$

Vi kan nå fullføre beviset med litt enkel algebra

$$\begin{split} \delta(\Box ABCD) &= 360 - \sigma(\Box ABCD) \\ &= 360 - (\mu(\angle ABC) + \mu(\angle CDA) + \mu(\angle DAB) + \mu(\angle BCD)) \\ &= 360 - (\sigma(\triangle ABC) + \sigma(\triangle ACD)) \\ &= 180 - \sigma(\triangle ABC) + 180 - \sigma(\triangle ACD) \\ &= \delta(\triangle ABC) + \delta(\triangle ACD), \end{split}$$

der vi i den tredje ligningen har brukt de to ligningene vi fant for $\mu(\angle BCD)$ og $\mu(\angle DAB)$, sammen med definisjonen av σ . Det meste vi gjør i denne oppgaven er altså å bruke definisjonene til δ og σ .

4.8.5 Vi skal vise teorem 4.8.10. I denne oppgaven vil derfor $\Box ABCD$ være en Saccherifirkant, altså at $\angle ABC$ og $\angle DAB$ er rette vinkler og at $\overline{AD} \cong \overline{BC}$. Siden teloremet har 6 deler, må vi vise 6 påstander.

1. $\overline{AC} \cong \overline{BD}$: Vi betrakter de to trekantene $\triangle ABD$ og $\triangle BAC$, se figuren. Per antagelse vet vi følgende

$$\overline{AD} \cong \overline{BC}$$
, $\overline{AB} \cong \overline{BA}$ og $\mu(\angle ABD) = \mu(\angle BAC) = 90$.

Dermed gir SVS (side-vinkel-side) oss at $\triangle ABD \cong \triangle BAC$, som spesielt betyr at $\overline{AC} \cong \overline{BD}$.

2. $\angle BCD \cong \angle ADC$: Denne gangen vender vi blikket mot trekantene $\triangle ADC$ og $\triangle BCD$. Siden vi nettopp viste at $\overline{AC} \cong \overline{BD}$, vet vi nå at alle sidene i disse to trekantene er kongruente. Dermed gir SSS (side-side-side) oss at $triangle ACD \cong \triangle BDC$, noe som spesielt betyr at $\angle BCD \cong \angle ADC$.

Figur 1: Figur til de to første punktene

3. Linjestykket fra midtpunktet til \overline{AB} til midtpunktet av \overline{CD} står vinkelrett på \overline{AB} og \overline{CD} : La M være midtpunktet til \overline{AB} og N være midtpunktet til \overline{CD} . Vi begynner med å kikke på trekantene $\triangle AMD$ og $\triangle BMC$. Siden $\overline{AM} \cong \overline{BM}$ (ettersom M er midtpunktet mellom de), kan vi bruke SVS til å si at

$$\triangle AMD \cong \triangle BMC.$$

Spesielt har vi $\overline{DM} \cong \overline{CM}$. Fra dette har vi nå at alle sidene i trekantene $\triangle DMN$ og $\triangle CMN$ er kongruente, slik at SSS gir oss at $\triangle DMN \cong \triangle CMN$. Spesielt betyr dette at $\mu(\angle MND) = \mu(\angle MNC)$, og siden $\angle MND$ og $\angle MNC$ er supplementærvinkler vet vi fra lineært par-teoremet at

$$180 = \mu(\angle MND) + \mu(\angle MNC) = 1\mu(\angle MND).$$

Dette betyr at $\mu(\angle MND) = 90$, som viser at vi har $\overline{MN} \perp \overline{CD}$.

Det gjenstår å vise at $\overline{MN} \perp \overline{AB}$, men beviset for denne påstanden er veldig likt første del, så vi skisserer bare raskt. Siden vi fra punkt 2 av denne oppgaven at $\angle BCD \cong \angle ADC$, kan vi bruke SVS til å konkludere med at $\triangle BCN \cong \triangle ADN$, og da spesielt at $\overline{AN} \cong \overline{BN}$. Som i første del kan vi da bruke lineært parteoremet til å konkludere med at vinkelen $\angle AMN$ er rett.

Figur 2: Figur til punkt 3

- 4. $\Box ABCD$ er et paralellogram: Siden linjen \overrightarrow{AB} skjærer \overrightarrow{AD} og \overrightarrow{BC} slik at skjæringsvinklene er rette, gir alternerende indre vinkel-teoremet at $\overrightarrow{AD} \parallel \overrightarrow{BC}$. Tilsvarende skjærer \overrightarrow{MN} linjene \overrightarrow{AB} og \overrightarrow{CD} slik at skjæringsvinklene er rette (dette er resultatet fra punkt 3 av denne oppgaven). Vi vet da at $\mu(\angle AMN) = \mu(\angle DNM) = 90$. Fra lineært par-teoremet vet vi da at $\mu(\angle CNM) = 90$. Dette betyr at de to indre vinklene $\angle AMN$ og $\angle CNM$ er kongruente. Det alternerende indre vinkel-teoremet gir oss da at $\overrightarrow{AB} \cong \overrightarrow{CD}$.
- 5. $\Box ABCD$ er konveks: Vi har vist at $\Box ABCD$ er et paralellogram, og i forrige øving viste vi teorem 4.6.6 som sier at alle paralellogram er konvekse. Dermed er vi ferdige.
- 6. Vinklene $\angle BCD$ og $\angle CDA$ er enten rette elle spisse: Vi må vise at $\mu(\angle BCD) \le 90$ og at $\mu(\angle CDA) \le 90$. Fra teorem 4.6.4 vet vi at

$$\mu(\angle ABC) + \mu(\angle BCD) + \mu(\angle CDA) + \mu(\angle DAB) \le 360.$$

Vi vet at $\mu(\angle ABC) = \mu(\angle DAB) = 90$, og fra punkt 2 av denne oppgaven vet vi at $\mu(\angle CDA) = \mu(\angle BCD)$. Setter vi dette inn i ligningen over får vi at $2\mu(\angle CDA) \leq 180$, slik at vi har $\mu(\angle CDA) = \mu(\angle BCD) \leq 90$.

 $\boxed{\textbf{4.8.8}}$ La $\Box ABCD$ være en Lambert-firkant, altså en firkant hvor vinkelen ved de tre hjørnene A, B og C er rette.

Vi skal vise 4 utsagn.

- 1. $\Box ABCD$ er et paralellogram: Dette følger lett fra alternerende indre vinkelteoremet, nærmere bestem fra korollar 4.4.8. Vi har at $\overrightarrow{AB} \perp \overrightarrow{AD}$ og at $\overrightarrow{AB} \perp \overrightarrow{BC}$ siden $\Box ABCD$ er en Lambert-firkant. Siden vi åpenbart ikke har at $\overrightarrow{AD} = \overrightarrow{BC}$ gir korollar 4.4.8 oss at $\overrightarrow{AD} \parallel \overrightarrow{AB}$.
 - Helt tilsvarende har vi at $\overrightarrow{BC} \perp \overrightarrow{CD}$ og at $\overrightarrow{BC} \perp \overrightarrow{AB}$, slik at korollar 4.4.8 gir at $\overrightarrow{CD} \parallel \overrightarrow{AB}$. Dermed er firkanten et paralellogram.
- 2. $\Box ABCD$ er konveks: Vi har vist at $\Box ABCD$ er et paralellogram, og i forrige øving viste vi teorem 4.6.6 so sa at alle paralellogrammer en konvekse. Dermed er vi ferdige.
- 3. $\mu(\angle CDA) < 90$: Fra teorem 4.6.4 vet vi at

$$\mu(\angle ABC) + \mu(\angle BCD) + \mu(\angle CDA) + \mu(\angle DAB) \le 360.$$

Siden alle andre vinkler enn $\angle CDA$ er rette, gir dette at

$$270 + \mu(\angle CDA) \le 360,$$

som vil si at $\mu(\angle CDA) \leq 90$.

4. $BC \leq AD$: Vi antar at BC > AD og viser at dette fører til en selvmotsigelse. Fra teorem 3.2.23 kan vi finne et punkt $P \in \overrightarrow{BC}$ slik at BP = AD. Siden BP = AD < BC per antagelse, gir korollar 3.2.18 at B * P * C, slik at $P \in \overline{BC}$.

Da er $\Box ABPD$ en Saccheri-firkant. Fra siste del av teorem 4.8.10, altså forrige oppgave, vet vi da at $\mu(\angle BPD) \leq 90$. Men $\angle BPD$ er også en ytre vinkel til trekanten $\triangle PCD$, slik at ytre vinkel-teoremet gir oss

$$\mu(\angle BPD) > \mu(\angle PCD) = 90.$$

De to siste ligningene kan selvsagt ikke stemme samtidig, altså har vi nådd en selvmotsigelse. Dermed kan ikke antagelsen vår være sann, altså har vi $BC \leq AD$.

4.8.10 La $\angle BAC$ være en spiss vinkel og la P og Q være to punkter på \overrightarrow{AB} slik at A*P*Q. Vi kan finne vinkelrette linjer fra P og Q ned på linjen \overleftarrow{AC} . Kall skjæringspunktene E og F respektivt. Vi viser først at QF > PE.

Siden $\angle BAC$ er spiss må skjæringspunktene P og Q ligge på strålen \overrightarrow{AC} . Vinkelen $\angle EPQ$ må også være stump. Vi må ha en av følgende tre muligheter: QF < PE, QF = PE eller QF > PE. Vi viser at de to første mulighetene fører til en selvmotsigelse.

Anta først at QF = PE. Da er firkanten $\Box EFQP$ en Saccheri-firkant. Dermed vet vi fra teorem 4.8.10 del 6, altså oppgave 4.8.5 i denne øvingen, at vinkelen $\angle EPQ$ enten rett eller spiss. Men dette motsier påstanden vår, så vi kan ikke ha at QF = PE.

Anta nå at vi har QF < PE. Fra linjalpostulatet kan vi finne et punkt P' mellom E og P slik at P'E = QF. Da er firkanten $\Box EFQP'$ en Saccheri-firkant, som igjen vil si at vinkelen $\angle EP'Q$ er enten rett eller spiss (oppgave 4.8.5 del 6). Men dette motsier ytre vinkel-teoremet, ettersom vinkelen $\angle EP'Q$ er en ytre vinkel til $\triangle PP'Q$ og $\angle EPQ$ er en indre vinkel til den samme trekanten. Dermed kan vi ikke ha at QF < PE.

Den eneste muligheten som gjenstår er dermed QF > PE som var det vi ville vise.

Vi viser nå andre del av teoremet, nemlig at for ethvert reelt tall d_0 så finnes et punkt R på \overrightarrow{AB} slik at $d(R, \overrightarrow{AC}) = d_0 > d_0$. La d_0 være et gitt reellt tall. Definer $B_0 = A$ og $B_1 = B$. Vi kan bruke linjalpostulatet til å finne punkter B_2, B_3, \ldots på \overrightarrow{AB} slik at for hver $i \geq 1$ har vi $B_0 * B_i * B_{i+1}$ og $B_i B_{i+1} = B_0 B_i$. Vi bruker oppgave $4.8.9^1$ som gir oss $d(B_{i+1}, \overrightarrow{AC}) \geq 2d(B_i, \overrightarrow{AC})$. Det følger ved matematisk induksjon at vi har $d(B_n, \overrightarrow{AC}) = 2^{n-1}d(B_1, \overrightarrow{AC})$ for hver $n \geq 0$.

Fra Arkimedes' aksiom for de reelle tallene kan vi finne et naturlig tall k slik at $2^{k-1}d(B_1, \overleftarrow{AC}) \ge d_0$. Punktet $R = B_k$ har de egenskapene vi er ute etter.

- - 1. $\triangle ABC \cong \triangle CDA$ og $\triangle ABD \cong \triangle CBD$: Vi viser kun $\triangle ABC \cong \triangle CDA$, da den andre kongruensen vises på akkuratt samme måte. Vi vet at $\overrightarrow{AD} \parallel \overrightarrow{BC}$, og at disse linjene skjæres av \overrightarrow{AC} i henholdsvis A og C. Det motsatte alternerende indre vinkel-teoremet (MAIVT, teorem 5.1.1) gir derfor at

$$\angle DAC \cong \angle BCA$$
.

På tilsvarende vis vet vi at $\overrightarrow{AB} \parallel \overrightarrow{CD}$ og at disse to linjene skjæres av \overrightarrow{AC} i henholdsvis A og C. Igjen gir MAIVT dermed at

$$\angle CAB \cong \angle ACD$$
.

Vi vet nå at $\angle DAC \cong \angle BCA$, $\angle CAB \cong \angle ACD$ og $\overline{AC} \cong \overline{CA}$. Side-vinkel-side-postulatet (VSV) gir oss dermed at $\triangle ABC \cong \triangle CDA$.

- 2. $\overline{AB} \cong \overline{CD}$ og $\overline{BC} \cong \overline{AD}$: Fra det første punktet i oppgaven vet vi at $\triangle ABC \cong \triangle CDA$. Da må vi spesielt ha $\overline{AB} \cong \overline{CD}$. På tilsvarende vis får vi $\overline{BC} \cong \overline{AD}$ fordi $\triangle ABD \cong \triangle CBD$.
- 3. $\angle DAB \cong \angle BCD$ og $\angle ABC \cong \angle CDA$: Som i punkt 2 følger dette punktet direkte fra kongruensene i punkt 1.

¹Det burde kanskje skrives ned et kjapt bevis på denne oppgaven for å bruke den...

4. Diagonalene \overline{AC} og \overline{BD} skjærer hverandre i et punkt P slik at AP = PC og BP = PD: Vi vet fra forrige øving (teorem 4.6.6) at $\Box ABCD$ er konveks. Videre vet vi fra teorem 4.6.8 at diagonalene i en konveks firkant skjærer hverandre i det indre, og vi vet dermed at \overline{AC} og \overline{BD} skjærer hverandre i et punkt P. Vi må vise at AP = PC og BP = PD.

Vi vet at $\overrightarrow{AB} \parallel \overrightarrow{CD}$ og at disse to linjene skjæres av \overrightarrow{AC} i henholdvis A og C. MAIVT gir oss dermed at

$$\angle PAB \cong \angle PCD$$
.

De samme linjene skjæres også av \overrightarrow{BD} i henholdsvis B og D, og MAIVT gir igjen at

$$\angle ABP \cong \angle PDC$$
.

Fra punkt 2 i denne oppgaven vet vi også at $\overline{AB} \cong \overline{CD}$, og disse tre kongruensene lar oss bruke VSV (vinkel-side-vinkel) til å konkludere med at

$$\triangle ABP \cong \triangle CDP$$
,

noe som spesielt betyr at AP = PC og BP = PD.

[5.1.3] La □ABCD være en firkant slik at $\overrightarrow{AB} \parallel \overrightarrow{CD}$ og $\overrightarrow{AB} \cong \overrightarrow{CD}$. Vi skal vise at □ABCD er et paralellogram, altså at vi også har $\overrightarrow{AD} \parallel \overrightarrow{BC}$. Linjen \overrightarrow{AC} skjærer de to paralelle linjene \overrightarrow{AB} og \overrightarrow{CD} i henholdsvis A og C. Det motsatte alternerende indre vinkel-teoremet (MAIVT) gir oss da at

$$\angle CAB \cong \angle ACD$$
.

Nå har vi at $\overline{AC}\cong \overline{AC}$, $\overline{AB}\cong \overline{CD}$ og $\angle CAB\cong \angle ACD$. Fra SVS (side-vinkel-side) får vi da at $\triangle ABC\cong \triangle CDA$, noe som spesielt betyr at $\angle DAC\cong \angle BCA$. Men dette betyr at \overrightarrow{AC} skjærer linjene \overrightarrow{AD} og \overrightarrow{BC} i punktene A og C, slik at $\angle DAC\cong \angle BCA$. Det alternerende indre vinkel-teoremet (AIVT) gir oss dermed at $\overrightarrow{AD}\parallel \overrightarrow{BC}$, som var det vi ville vise.

