

1.종합설계 개요

5.개발환경

2.관련 연구 및 사례

6.업무 분담

3.시스템 수행 시나리오

7.종합설계 수행일정

4.시스템 구성도

8.필요기술 및 참고 문헌

종합설계 개요 <u>연구 개발 배경</u>

구분		2013	2014	2015	2016	
유·아동	고위험군	-	_	1.7	1.2	
	잠재적위험군	-	-	10.7	16.7	
(3~9세)	과의존위험군	-	-	12.4	17.9	
청소년 (10~19세)	고위험군	2.4	3.3	4.0	3.5	
	잠재적위험군	23.1	25.9	27.6	27.1	
	과의존위험군	25.5	29.2	31.6	30.5	
성인	고위험군	1.0	1.8	2.1	2.5	
	잠재적위험군	7.9	9.5	11.4	13.5	
(20~59세)	과의존위험군	8.9	11.3	13.5	16.1	
고령층 (60~69세)	고위험군	_	_	-	2.0	
	잠재적위험군	-	-	-	9.7	
	과의존위험군	_	_	_	11.7	

2013년 이후 전 연령층에서 스마트폰 중독 비율이 가파르게 상승하고 있는 것으로 나타났다. 스마트폰 중독이 심각한 사회적 문제로 대두되면서 스몸비(스마트폰+좀비)라는 신조어까지 등장했다. '최근 4년 간 연령별 스마트폰 중독 실태조사 현황'에 따르면 대부분 연령층에서 스마트폰 '과의존위험군' 비율이 증가했다.

종합설계 개요 <u>연구 개발 배경</u>

구	분	2013	2014	2015	2016
유·아동	고위험군	_	-	1.7	1.2
	잠재적위험군	_	-	10.7	16.7
(3~9세)	과의존위험군	_	-	12.4	17.9
청소년 (10~19세)	고위험군	2.4	3.3	4.0	3.5
	잠재적위험군	23.1	25.9	27.6	27.1
	과의존위험군	25.5	29.2	31.6	30.5
성인	고위험군	1.0	1.8	2.1	2.5
	잠재적위험군	7.9	9.5	11.4	13.5
(20~59세)	(20~59세) 과의존위험군 8.9	8.9	11.3	13.5	16.1
고령층 (60~69세)	고위험군	-	-	-	2.0
	잠재적위험군	-	-	-	9.7
	과의존위험군	-	-	-	11.7

과도한 스마트폰 이용으로 <mark>스마트폰에 대한 현저성</mark>(개인 삶에서 스마트폰을 이용하는 생활패턴이 다른 행태보다 두드러지고 가장 중요한 활동이 되는 것)이 증가했다. 이에 대해 "전 세대에 걸쳐 10%대부터 많게는 30% 이상이 스마트폰 '과의존위험군'으로 조사될 정도로 스마트폰 중독 문제가 심각하다"며 "과학기술정보통신부 등 관계기관의 실효성 있는 대책 마련이 시급하다"고 강조했다.

종합설계 개요 <u>연구 개발 배경</u>

종합설계 개요 🛭

연구 개발 배경

종합설계 개요 <u>연구 개발 목표</u>

"라즈베리파이를 이용한 개인용 스몸비 사고방지 시스템 개발"

종합설계 개요 <u>연구 개발 효과</u>

스몸비 사고율 감소 및 스몸비 사고 대책 방안 마련

http://news.sbs.co.kr/news/endPage.do?news_id=N100445553 http://news.joins.com/article/2156075 http://news.jtbc.joins.com/article/ArticlePrint.aspx?news_id=NB1124781 http://news.sbs.co.kr/news/endPage.do?news_id=N100392556

관련 연구 및 사례

http://news.sbs.co.kr/news/endPage.do?news_id=N100445553 http://news.joins.com/article/2156075 http://news.jtbc.joins.com/article/ArticlePrint.aspx?news_id=NB1124781 http://news.sbs.co.kr/news/endPage.do?news_id=N100392556

관련 연구 및 사례

시스템 수행 시나리오

구성도

개발 환경

제품 사양

Raspberry Pi Zero W

- · 802.11 b/g/n wireless LAN
- · Bluetooth 4.1
- · Bluetooth Low Energy (BLE)
- · 1GHz, single-core CPU
- 512MB RAM
- · Mini HDMI and USB On-The-Go ports
- · Micro USB power
- · HAT-compatible 40pin header
- · Composite video and reset headers
- · CSI camera connector

업무 분담

	정웅	김범수	이영수	지혜영	
자료수집	라즈베리파이 보드 및 모듈 조사 거리측정 알고리즘 조사	장애물 인식 알고리즘 조사 라즈베리파이 모듈 조사	장애물 인식 알고리즘 조사 통신 기술 조사	거리측정 알고리즘 조사 통신 기술 조사	
설계	하드웨어 모듈 연동	영상처리 및 서버 설계	영상 처리	영상 송수신	
구현	하드웨어 스마트폰 연동 하드웨어 서버 통신	장애물 인식 알고리즘 개발 DB서버 구현	장애물 인식 알고리즘 개발	하드웨어 스마트폰 연동 하드웨어 서버 통신	
테스트	하드웨어 작동 / 제어 테스트 서버 작동 테스트 통합 테스트 / 유지보수	하드웨어 작동 / 제어 테스트 서버 작동 테스트 통합 테스트 / 유지보수	하드웨어 작동 / 제어 테스트 서버 작동 테스트 통합 테스트 / 유지보수	하드웨어 작동 / 제어 테스트 서버 작동 테스트 통합 테스트 / 유지보수	

종합설계 수행일정

-	추진사항	12월	1월	2월	3월	4월	5월	6월	7~9월
	통신 자료 조사								
	물체 인식 영상처리 조사								
	거리 감지 알고리즘 조사								
추진일정	센서의 거리감지 및 안드로이드와 통신 구현								
-	카메라의 물체 인식 영상처리 구현								
	단위 테스트								
	통합 테스트								
	테스트 및 유지보수								

거리측정 알고리즘 <u>스테레오 정합</u>

$$x = \frac{b \cdot f}{dl + dr}$$

거리측정 알고리즘 │ _{스테레오 정합}

해결 사항

- (1) 영상에 적절한 특징 추출
- (2) 추출된 특징에 따른 정합 전략
- (3) 정합 창틀의 크기 결정
- (4) 폐색(occlusion)과 변이 경계선 영역 처리
- (5) 오정합을 줄이고 일관성 있는 결과를 얻기 위한 이완 처리
- (6) 복잡한 내삽 및 외삽 과정 (특징 기반)

거리측정 알고리즘 <u>스테레오 정합</u>

실험영상 (pentagon)

사물 인식 알고리즘 YOLO (You Only Look Once) 알고리즘

사물 인식 알고리즘 YOLO (You Only Look Once) 알고리즘

사물 인식 알고리즘 YOLO (You Only Look Once) 알고리즘

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)

GitHub

https://github.com/jkan0405/SmombieProject.git

참고문헌

참고문헌

- http://it.chosun.com/news/article.html?no=2840869
- http://blog.daum.net/sotongman/10
- http://martin.pixelstairs.com/51
- http://cilab.knu.ac.kr/research/Vision/matching.htm
- http://news.joins.com/article/21560758
- http://s-space.snu.ac.kr/bitstream/10371/123062/1/000000018306.pdf

참고영상

https://www.youtube.com/watch?v=tvJ7cfcW5rA