

Parametric density estimation

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 2

Bayesian decision theory (cont'd)

loss and risk

- Define
 - action α_i as the decision to assign the input to class \mathcal{L}_i
 - λ_{ik} as the loss incurred for taking α_i when the input actually belongs to C_k (if we allow abuse of notation, we can say $x \in C_k$).
- Then the **expected risk** for taking α_i is

$$R(\alpha_i|\mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k|\mathbf{x})$$

loss and risk

•
$$R(\alpha_i|\mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k|\mathbf{x})$$

• In the special case of **0/1 loss**, where $\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ 1 & \text{if } i \neq k \end{cases}$

•
$$R(\alpha_i|\mathbf{x}) = \sum_{k \neq i} P(C_k|\mathbf{x}) = 1 - P(C_i|\mathbf{x})$$

- In the above, we already have actions α_i as the decision to assign the input to class C_i , $i=1,2,\cdots,K$
- Let's define an additional action of reject (not making any decision, indecisive): α_{K+1}
- By modifying the 0/1 loss, a possible loss function is

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ 1 & \text{if } i \in [K] - \{k\} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1 \end{cases}$$

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1 \end{cases}$$

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{otherwise} \end{cases}$$

$$\lambda \sum_{k=1}^{K} P(C_k | x) = \lambda \cdot 1$$

$$| | | | |$$

- The risk of reject is $R(\alpha_{K+1}|\mathbf{x}) = \sum_{k=1}^{K} \lambda P(C_k|\mathbf{x}) = \lambda$
- The risk of choosing C_i is $1 P(C_i|x)$

- The optimal decision rule:
 - Choose C_i if (1) $R(\alpha_i|\mathbf{x}) < R(\alpha_k|\mathbf{x})$ for all $k \neq i$ and (2) $R(\alpha_i|\mathbf{x}) < R(\alpha_{K+1}|\mathbf{x})$
 - Reject if $R(\alpha_{K+1}|x) < R(\alpha_i|x)$ for all i

- The optimal decision rule:
 - Choose C_i if $(1) P(C_i|x) > P(C_k|x)$ for all $k \neq i$ and $(2) P(C_i|x) > 1 - \lambda$
 - Reject if $P(C_i|x) < 1 \lambda$ for all i

decision region and decision boundary

$$P(C_{1}|x_{1},x_{1})$$

$$> 1-\lambda \quad \text{and}$$

$$P(C_{1}|x_{1},x_{1})$$

$$P(C_{j}|x_{1},x_{1})$$

$$for \quad j=2,3.$$

discriminant functions

• Classification can be viewed as implementing a set of discriminant functions $g_i(x)$, $i=1,\cdots,K$, such that we

choose
$$C_i$$
 if $g_i(\mathbf{x}) = \max_{k=1,\dots,K} g_k(\mathbf{x})$

- We can choose $g_i(x) = -R(\alpha_i|x)$ or choose it to be $P(C_i|x)$
- We can also put $g_i(x) = p(x|C_i)P(C_i)$

because
$$P(C_i|x)$$
 $= \frac{p(x|C_i)}{p(C_i)}$

Same for all $p(x)$

classes

maximum likelihood estimator

parametric approach

- In a parametric method
 - A sample is drawn from some distribution that obeys a known model.
 - This model is defined up to a small number of parameters.
 - e.g. $\mathcal{N}(\mu, \sigma^2)$ is a parametric model that depends on two parameters: μ and σ .

statistic

 A statistic is any value that is calculated from a given sample.

- A statistic is said to be sufficient (for the underlying parametric model) if:
 - no further information can be inferred from other statistics calculated from the same sample

statistic

independent, identically distributed

- e.g. $x_1, x_2, \cdots, x_N \sim^{i.i.d.} \mathcal{N}(\mu, \sigma^2)$
 - the sample mean $m = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - the sample variance $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i m)^2$
 - then (m, s^2) is a sufficient statistic for (μ, σ^2)
- Using sufficient statistics, we can get statistical models with only few parameters.

parametric approach

 We start the study of parametric approaches with the problem of density estimation:

•
$$\mathcal{X} = \{x_n\}_{n=1}^N$$
, where $x_n \sim^{i.i.d.} p(x|\theta)$

• Want θ such that x_n is sampled from $p(x|\theta)$ as likely as possible.

likelihood

$$p(x_1,x_2,...,x_N|\theta) \stackrel{\text{by i.i.d}}{=} p(x_1|\theta)p(x_2|\theta) -- p(x_N|\theta)$$

• maximize the **likelihood** of θ given \mathcal{X} :

$$l(\boldsymbol{\theta}|\mathcal{X}) := p(\mathcal{X}|\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\boldsymbol{x}_n|\boldsymbol{\theta})$$

• equivalently, maximize the log-likelihood of θ given \mathcal{X} :

$$\mathcal{L}(\boldsymbol{\theta}|\mathcal{X}) = \log l(\boldsymbol{\theta}|\mathcal{X}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}_n|\boldsymbol{\theta})$$

Bernoulli density
$$X = \begin{cases} 1 & \text{with probability } 1 \\ 0 & \text{with probability } 1 - 7 \end{cases}$$

$$P(X = x) = \frac{1-x}{2}(1-2)^{1-x} x \in [0,1]$$

Parameter: $\frac{1-x}{2}$

Now, if we are given a sample $\mathcal{X} = \{x_n\}_{n=1}^N$

By definition. the likelihood is

$$L(2|\chi) = p(\chi|2) = \prod_{n=1}^{N} 2^{x_n} (1-2)^{1-x_n}$$

The \log -likelihood is $L(2|x) = \sum_{n=1}^{N} x_n \log q + (1-x_n) \log (1-2)$

Bernoulli density

To maximize
$$L(f|x)$$
, we need to solve
$$\max_{n=1}^{\infty} \sum_{n=1}^{\infty} x_n \log_{f} + (1-x_n) \log_{f} (1-f)$$

$$\int_{f(f)}^{f(f)} Setting \frac{df(f)}{df} = \sum_{n=1}^{\infty} \frac{x_n}{f} - \frac{1-x_n}{1-f} = 0$$
That gives
$$\sum_{n=1}^{\infty} x_n = \frac{N-\sum_{n=1}^{\infty} x_n}{1-f}$$
That is $f(f) = \sum_{n=1}^{\infty} x_n$ We conclude $f(f) = \sum_{n=1}^{\infty} x_n$

K states
$$\{1, 2, \dots, K\}$$
.

X takes State 1 with probability g_i . $\sum_{i=1}^{K} g_{ii} = 1$

Define $X_i = \begin{cases} 1 & \text{if State ai is taken} \\ 0 & \text{otherwise} \end{cases}$

We can represent X as a vector $(X_1 X_2 - \dots X_K)^T$

one—hot $X_i = (X_1 X_2 - \dots X_K)^T$
 $X_i = (X_1 X_1 X_1 -$

$$(\chi_1 \chi_2 \cdots, \chi_k)^T$$

$$|| f(X = x) = \begin{cases} x_1 & x_2 & \dots & x_k \\ x_1 & x_2 & \dots & x_k \end{cases} \leftarrow f(x | x_1, \dots, x_k)$$

Given a sample
$$\chi = \{ \chi_n \}_{n=1}^N$$

$$L(q_1, q_2, \dots, q_K \mid \chi) = \prod_{n=1}^{N} \prod_{i=1}^{K} q_i^{\chi_{ni}}$$

$$Nector$$

$$L(\mathcal{Y}_{i}, \mathcal{Y}_{i}, \dots, \mathcal{Y}_{k} | \mathcal{X}) = \sum_{n=1}^{N} \sum_{i=1}^{K} \chi_{ni} \log \mathcal{Y}_{i}$$

To maximize the (log) like lihood, we need to solve

Max

S

S

Xni log ?i

?i,..., ?k

$$5.4. \qquad \sum_{i=1}^{k} q_i = 1.$$

multinomial density Define $L = \sum_{n=1}^{N} \sum_{i=1}^{K} x_{ni} \log q_i - \lambda \left(\sum_{i=1}^{K} q_i - 1\right)$

Setting
$$\begin{cases} \frac{\partial L}{\partial q_i} = \frac{\sum_{n=1}^{N} x_{ni}}{q_i} - \lambda = 0 \\ \frac{\partial L}{\partial \lambda} = \sum_{n=1}^{N} q_{i} - 1 = 0 \end{cases}$$

$$\frac{\omega}{\omega}$$
 yields $q_i = \frac{\sum_{n=1}^{\infty} x_n}{\lambda}$. Plugging this in

$$\sum_{i=1}^{K} \frac{\sum_{n=1}^{N} \chi_{ni}}{\lambda} = 1 \quad \text{That is,} \quad \lambda = \sum_{n=1}^{\infty} \left(\sum_{i=1}^{K} \chi_{ni}\right) = N$$
Therefore,
$$\sum_{i=1}^{N} \frac{\chi_{ni}}{\lambda}$$
This gives you χ_{ni}

Questions?

Reference

- Bayesian decision theory:
 - [Al] Ch.3.1-3.4
 - [HaTF] Ch.2.4
- Maximum likelihood:
 - [Al] Ch.4.1-4.3
 - [Bi] Ch.2.4
 - [HaTF] Ch.2.6, 8.2.2

