R package ggplot2 STAT 133

Gaston Sanchez

Department of Statistics, UC-Berkeley

gastonsanchez.com

github.com/gastonstat/stat133

Course web: gastonsanchez.com/teaching/stat133

ggplot2

Resources for "ggplot2"

- Documentation: http://docs.ggplot2.org/
- Book: ggplot2: Elegant Graphics for Data Analysis (by Hadley Wickham)
- Book: R Graphics Cookbook (by Winston Chang)
- RStudio ggplot2 cheat sheet

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

package "ggplot2"

```
# remember to install ggplot2
# (just once)
install.packages("ggplot2")
# load ggplot2
library(ggplot2)
# see basic documentation
?ggplot
```

ggplot2 book

R Graphics Cookbook

About "ggplot2"

- "ggplot2" (by Hadley Wickham) is an R package for producing statistical graphics
- It provides a framework based on Leland Wilkinson's Grammar of Graphics
- "ggplot2" provides beautiful plots while taking care of fiddly details like legends, axes, colors, etc.
- "ggplot2" is built on the R graphics package "grid"
- Underlying philosophy is to describe a wide range of graphics with a compact syntax and independent components

The Grammar of Graphics

About the Grammar of Graphics

- ► The Grammar of Graphics is Wilkinson's attempt to define a theoretical framework for graphics
- ► Rules for constructing graphs mathematically and then representing them as graphics aesthetically

R package "ggplot2"

About "ggplot2"

- ▶ Default appearance of plots carefully chosen
- Designed with visual perception in mind
- ▶ Inclusion of some components, like legends, are automated
- Great flexibility for annotating, editing, and embedding output

Base graphics -vs- "ggplot2"

Preliminary Concepts

About "ggplot2"

- ▶ "ggplot2" is the name of the package
- ► The gg in "ggplot2" stands for *Grammar of Graphics*
- ▶ inspired in the **Grammar of Graphics** by Lee Wilkinson
- "ggplot" is the class of objects (plots)
- ▶ ggplot() is the main function in "ggplot2"

Some data set

```
##
                   mpg hp
                          cyl
## Mazda RX4
                21.0 110
## Mazda RX4 Wag 21.0 110 6
               22.8 93 4
## Datsun 710
                          6
## Hornet 4 Drive 21.4 110
## Hornet Sportabout 18.7 175
## Valiant
                18.1 105
                             8
## Duster 360
               14.3 245
## Merc 240D
               24.4 62
## Merc 230
               22.8 95
## Merc 280
                19.2 123
                             6
```

Simply put, a statistical graphic is:

- ► A mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars)
- A plot may also contain statistical transformations of the data
- ▶ A plot is drawn on a specific coordinate system
- Sometimes faceting can be used to get the same plot for different subsets of the dataset

Simply put, a statistical graphic is:

A mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars)

Simply put, a statistical graphic is:

A mapping from data to aesthetic attributes (color, shape, size) of **geometric objects** (points, lines, bars)

- ▶ ggplot(data, ...)
- ▶ aes()
- ▶ geom_objects()

Starting with "ggplot2"

starwarstoy.csv

##	name	gender	height	weight	jedi	species	weapon	
##	1 Luke Skywalker	male	1.72	77	jedi	human	lightsaber	
##	2 Leia Skywalker	female	1.50	49	no_jedi	human	blaster	
##	3 Obi-Wan Kenobi	male	1.82	77	jedi	human	lightsaber	
##	4 Han Solo	male	1.80	80	no_jedi	human	blaster	
##	5 R2-D2	male	0.96	32	no_jedi	droid	unarmed	
##	6 C-3PO	male	1.67	75	no_jedi	droid	unarmed	
##	7 Yoda	male	0.66	17	jedi	yoda	lightsaber	
##	8 Chewbacca	male	2.28	112	no_jedi	wookiee	bowcaster	

Scatterplot

Main steps in creating ggplot graphics

Building a scatterplot

- Dataset: starwarsVariables: height, weight, jedi
- ► Geoms: points
- Aesthetics:
 - x: height
 - y: weight
 - color: jedi

```
ggplot(data = starwars) +
  geom_point(aes(x = height, y = weight, color = jedi))
```

```
ggplot(data = starwars) +
  geom_point(aes(x = height, y = weight, color = jedi))
```

- ggplot() initializes a "ggplot" object
- specify the dataset with data
- type of geometric object: geom_point()
- mapping aesthetic attributes to variables with aes()
 - x-position: heighty-position: weight
 - color: jedi

```
ggplot(data = starwars) +
geom_point(aes(x = height, y = weight, color = jedi))
```


Automated things in "ggplot2"

- Axis labels
- Legends (position, labels, symbols)
- Choose of colors for points
- Background color (e.g. gray)
- Grid lines (major and minor)
- Axis tick marks

you can always change the automated elements

Some alternative options

Some alternative options

```
# option B
ggplot(data = starwars) +
geom_point(aes(x = height, y = weight, color = jedi))
```

Some alternative options

```
# option A
ggplot() +
 geom_point(data = starwars,
             aes(x = height, y = weight, color = jedi))
# option B
ggplot(data = starwars) +
 geom_point(aes(x = height, y = weight, color = jedi))
# option C
ggplot(data = starwars,
       aes(x = height, y = weight, color = jedi)) +
 geom_point()
```

Considerations

Specifying graphical elements from 3 sources:

- ► The data values (represented by the geometric objects)
- The scales and coordinate system (axes, legends)
- Plot annotations (background, title, grid lines)

How does "ggplot2" work?

- plots are created piece-by-piece
- plot components added with + operator
- aesthetic attributes mapped to data values
- computation of scales

Mapping

data values

height	weight	jedi
1.72 1.50 1.82 1.80 0.96 1.67	77 49 77 80 32 75	jedi no_jedi jedi no_jedi no_jedi no_jedi
0.66 2.28	17 17 112	jedi no_jedi

aesthetic attributes

Х	у	color
X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈	y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇ y ₈	#F8766D #00BFC4 #F8766D #00BFC4 #00BFC4 #00BFC4 #F8766D #00BFC4

Terminology

- aesthetic mappings
- geometric objects
- statistical transformations
- scales
- non-data elements (themes & elements)
- facets

Scatterplot data

```
## height weight jedi
## 1 1.72 77 jedi
## 2 1.50 49 no_jedi
## 3 1.82 77 jedi
## 4 1.80 80 no_jedi
## 5 0.96 32 no_jedi
## 6 1.67 75 no_jedi
## 7 0.66 17 jedi
## 8 2.28 112 no_jedi
```

Main inquiries

- What is the data set of interest?
- ▶ What variables will be used to make the plot?
- What graphics shapes will be used to display?
- What features of the shapes will be used to represent the data values?

How does it work?

We specify the data and variables inside the function ggplot(). Note the use of the internal function aes() to map x to mpg, and y to hp.

```
ggplot(data = mtcars, aes(x = mpg, y = hp))
```

Then we add a layer of geometric objects: points in this case. Note the use of "+" to **add** the layer to the plot

```
+ geom_point()
```

"ggplot2" basics

- ▶ The data must be in a data.frame
- Variables are mapped to aesthetic attributes
- Aesthetic attributes belong to geometric objects geoms (points, lines, polygons)

Basic Terminology

- ggplot() The main function where you specify the dataset and variables to plot
- **geoms** geometric objetcs
 - geom_point(), geom_bar(), geom_line(), geom_density()
- aes aesthetics
 - shape, color, fill, linetype

Warning

"ggplot2" comes with the function qplot() (i.e. quick plot).
Avoid using it!

As Karthik Ram says: "you'll end up unlearning and relearning a good bit"