Machine Translation Evaluation

Multilinguisme — lecture n°1

Guillaume Wisniewski guillaume.wisniewski@linguist.univ-paris-diderot.fr November 2019

Université de Paris & LLF

Context

1

Why Evaluating (Machine) Translation Quality?

Practitioners and Users

- how to compare alternative systems, choices for building and customizing off-the-shelves systems?
- quantify the effectiveness of using MT

Researchers

- evaluate models
- train our systems!

2

Translation Quality versus MT Quality

- Are human translators making mistakes?
 - \hookrightarrow no, if you believe them
- Quality of human translation generally measured by number of words edited/corrected in the editing or proof-reading stages
- One of the main problem of translation studies!
- Can the same metrics be applied to MT systems?
 - \hookrightarrow no, their output is not good enough \oplus very different error profile

3

Usage scenario

Offline 'benchmark' testing of MT engine performance

- sample representative test documents with reference human translation available
- assess the performance on this particular dataset

Operational quality assessment at runtime

- MT engine is translating new source material
- Is the output 'good enough' for the underlying application?
- reference-less evaluation / confidence estimation

Common usage of reference-based evaluation

On the same dataset

- compare two MT engines
- compare two versions of the same engine
 - $\hookrightarrow\,$ before and after customizing the engine
 - \hookrightarrow before and after incremental development of the engine

On different datasets

- compare MT engine performance
 - \hookrightarrow across domains or types of input data
 - \hookrightarrow on different sentence types, linguistic structures

4

ŗ

Common usage of confidence evaluation

- identify / flag poorly translated segment during MT engine operation
 - \hookrightarrow can the translation be used as-it?

6

Be careful

User expectations on MT depends on their knowledge of:

- the source language
- the target language

-

Be careful

When you are using Google Translate to translate French into English your knowledge of English is good enough to decide whether you want to keep the translation or modify it. What about translating into Greek?

User expectations on MT depends on their knowledge of:

- the source language
- the target language

The difficulties of MT Evaluation

1

Major Issues

- Language variability: there is no single correct translation
- human evaluation is subjective
- how good is 'good enough'?
- evaluation depends on the target application and context

Automatic Metrics

Historical Metrics Main ideas: • same words in the hypothesis and in the reference(s)? • in the same order? • avoid adding extra words ⇒ use only surface information → RI-style evaluation (BLEU, NIST, Meteor, MMS, ...) → recall/precision on words

Formally i

• Brevity Penalty :

$$BP = \begin{cases} 1 & \text{if hypothesis longer than reference} \\ e^{1 - \frac{\#r}{\#h}} & \text{otherwise} \end{cases}$$
 (1)

 $\hookrightarrow\,$ penalizes hypothesis that are 'too' long \simeq recall

• Modified n-gram precision :

$$p_n = \sum_{n\text{-gram} \in \text{hyp}} \frac{\#_{\text{clip}} n\text{-gram}}{\# n\text{-gram}} \tag{2}$$

with $\#_{\text{clip}}(a) = \min \{ \# a \in h, \# a \in r \}$ \hookrightarrow no reward for over-generated words

12

Formally ii

• Final score :

$$BLEU = BP \times \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

where $\sum_{i=1}^{N} w_i = 1$

• usually N=4 and $W_i=\frac{1}{4}$

13

More precisely: n-gram generator

```
def ngrams(sequence, n):
    sequence = iter(sequence)

history = []

while n > 1:
    history.append(next(sequence))
    n -= 1

for item in sequence:
    history.append(item)
    yield tuple(history)
    del history[0]
```

More precisely: clipped n-gram precision

14

16

An historical note

- Introduced in (Papineni et al. 2002)
- First paragraph of the article:
 - "[...] developers of machine translation systems need to monitor the effect of daily changes to their systems in order to weed out bad ideas from good ideas. [...] We propose such an evaluation method in this paper."

 - \hookrightarrow only designed to compare a system and its modification!
- Why using BP, exp, modified precision, ...
 - $\hookrightarrow\,$ they have tested several way to combine 'basic' information...

But: no precise description of what has been tested \oplus correlation measured on a small corpus that is not freely available.

The problem with BLEU (1)

Practical issues

- can only be computed at the corpus level

 → a lot of application requires a score at the sentence level
- very hard to optimize: not decomposable, not differentiable

Questioning BLEU definition

- for an average hypothesis there are millions of possible variants
 (generated either by permuting or replacing n-grams) with a similar BLEU score ⇒
 but they are not all grammatically or semantically plausible
- see e.g. (Callison-Burch, Osborne, and Koehn 2006): 'We show that an improved Bleu score is neither necessary nor sufficient for achieving an actual improvement in translation quality.'

The problem with BLEU (2)

From an end-user point of view

- BLEU scores are not fully comparable across languages or even across different benchmarks for the same language
- not easily interpretable by most translation professionals
- scores depends on the implementation
 - \hookrightarrow impact of tokenization

 - \Rightarrow de facto standard: (Post 2018)

Score interpretation

- score over 30 generally reflect understandable translations
- scores over 50 generally reflect good and fluent translations
- \Rightarrow most papers report improvement $\simeq 1~\mathrm{BLEU}$ point

18

At the end...

Like it or not, you have to use it (Blatz et al. 2004)

 $\begin{tabular}{ll} \hookrightarrow & \text{there is not a single MT} \\ & \text{paper that does not report} \\ & \text{BLEU scores} \\ \end{tabular}$

19

Meteor

- Metric for Evaluation of Translation with Explicit Ordering [Lavie and Denkowski, 2009]
- rely on unigram recall and precision
 - \hookrightarrow align/match words of the hypothesis and of the reference
- matching takes into account translation variability via word inflection variations, synonymy and paraphrasing matches
- direct penalty for word order: how fragmented is the matching?
- weighted metrics: the weights of the difference components can be optimized to improve correlation with human judgments

20

21

Alignment

21

Alignment

Alignment

- \hookrightarrow different kind of matches, with different weights
- → optimal search is NP-complete (but clever search with pruning is very fast and has near optimal results)

The Full Meteor Metric

Fragmentation

- to take fluency into account
- frag = $\frac{\text{\#'group' of word that are in matches}-1}{\text{\#words in matches}-1}$

Final Score

- discounting factor: $DF = \gamma \times frag^{\beta}$
- F_{α} score: $F_{\alpha} = \frac{P \times R}{\alpha \cdot P + (1 \alpha) \cdot R}$
- \bullet original parameter settings: $\alpha = \text{0.9}, \beta = \text{3.0}, \gamma = \text{0.5}$
- final score: $F_{\alpha} \cdot (1 \mathrm{DF})$

22

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"

23

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"
- \hookrightarrow Precision =

23

23

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"
- \hookrightarrow Precision = $\frac{5}{8} = 0.625$

23

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"
- \hookrightarrow Precision = $\frac{5}{8}$ = 0.625
- $\hookrightarrow \mathsf{Recall} =$

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"
- \hookrightarrow Precision = $\frac{5}{8}$ = 0.625
- \hookrightarrow Recall = $\frac{5}{14}$ = 0.357

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"

$$\hookrightarrow$$
 Precision = $\frac{5}{8} = 0.625$

$$\hookrightarrow$$
 Recall $=\frac{5}{14}=0.357$

$$\hookrightarrow$$
 Fragmentation =

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"

$$\hookrightarrow$$
 Precision = $\frac{5}{8} = 0.625$

$$\hookrightarrow \text{Recall} = \frac{5}{14} = 0.357$$

$$\hookrightarrow$$
 Fragmentation $=\frac{3-1}{5-1}=0.5$

23

23

23

Meteor example

Example

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- Hypothesis: "in two weeks Iraq's weapons will give army"

$$\hookrightarrow$$
 Precision = $\frac{5}{8} = 0.625$

$$\hookrightarrow \; \mathsf{Recall} = \tfrac{5}{14} = 0.357$$

$$\hookrightarrow$$
 Fragmentation $=\frac{3-1}{5-1}=0.5$

Weighted combination: 0.3498

The problem with Meteor

- easier to interpret?
- rely on external resources (e.g. paraphrase table) that are not always available
- computational cost
- fuzzy matches have very low impact

24

TER

- Translation Edit (Error) Rate (Snover et al. 2009)
- edit-based measure: number of edits to transform hypothesis into reference
- add the notion of 'block movements' as single edit operation
- ullet exact matches only extension TERP: near-matches \oplus weights
- rough estimate of post-editing effort

Meta-Evaluation: how good are MT metrics

Comparing Metrics

How do we know if a metric is better?

- Better correlation with human judgments of MT output
- Reduced score variability on MT outputs that are ranked equivalent by humans
- Higher and less variable scores on scoring human translations against the reference translations
- $\hookrightarrow\,$ several challenges to find the best metric
- \hookrightarrow still a hot topic in MT research

26

Manual Evaluation

Why Perform Human Evaluation?

- automatic MT metric are not sufficient:
 - $\hookrightarrow \ \mathsf{not} \ \mathsf{interpretable}$
 - \hookrightarrow biased
 - $\hookrightarrow\,$ no possibility of error analysis
- need for reliable human measure to evaluate automatic metric

27

Difficulties

- time & cost
- reliability and consistency: difficulty in obtaining high-levels of intra and inter-coder agreement

28

Historical Human Metrics

- Adequacy: is the meaning translated correctly?
 - \hookrightarrow By comparing MT translation to a reference translation (or to the source)?
- Fluency: is the output grammatical and fluent?
 - → By comparing MT translation to a reference translation, to the source, or in isolation?
- same scale: [1,5]
- initiated during DARPA MT evaluation in the mid-1990s
- main issues: definition of scales, agreement, normalization across judges

Fluency and Adequacy Scales

Adequacy

- no meaning
- 2 little meaning
- 3 much meaning
- 4 most meaning5 all meaning

Fluency

- 1 incomprehensible
- 2 disfluent English
- 3 non-native English
- 4 good English
- flawless English

29

Let's try it!

- Source: N'y aurait-il pas comme une vague hypocrisie de votre part?
- Reference: Is there not an element of hypocrisy on your part?
- **System 1:** Would it not as a wave of hypocrisy on your part?
- System 2: Is there would be no hypocrisy like a wave of your hand?
- System 3: Is there not as a wave of hypocrisy from you?

32

Consistency of judgments

Inter-rater agreement		
	κ	
2011	0.40	
2012	0.33	
2013	0.26	
2014	0.37	

Intra-rater agreement	
	κ
2011	0.58
2012	0.41
2013	0.48
2014	0.52

 \Rightarrow very low in both cases

A new proposition for human evaluation (Graham, Baldwin, and Mathur 2015)

Modus operandi

- each sentence is rated by n humans on a [0, 100] scale (monolingual evaluation)
- 2 normalize the scores of each raters (i.e. consider the z-score)
- **3** define the quality of the translation by its mean rating

Why?

- ullet law of large numbers \Rightarrow the mean to the expected value
- axiomatic choice: the expected value is the true translation quality.

34

The unreasonable effectiveness of data

- ullet only one difference with the historical human metrics: collect as many ratings as possible (in practice $\simeq 15$)
- no need to define the notion of 'translation quality' formally ⇒ let it emerge from the data.

At the end

33

35

Method that is used today in most evaluation campaign

References

- Blatz, John et al. (2004). "Confidence Estimation for Machine Translation". In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics. Geneva, Switzerland: COLING, pp. 315-321. URL: https://www.aclweb.org/anthology/C04-1046.
- Callison-Burch, Chris, Miles Osborne, and Philipp Koehn (2006). "Re-evaluating the Role of Bleu in Machine Translation Research". In: 11th Conference of the European Chapter of the Association for Computational Linguistics. Trento, Italy: Association for Computational Linguistics. URL: https://www.aclweb.org/anthology/E06-1032.
- Graham, Yvette, Timothy Baldwin, and Nitika Mathur (2015). "Accurate Evaluation of Segment-level Machine Translation Metrics". In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Denver, Colorado: Association for Computational Linguistics, pp. 1183–1191. DOI: 10.3115/v1/N15-1124. URL: https://www.aclweb.org/anthology/N15-1124.
- Papineni, Kishore et al. (2002). "Bleu: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, pp. 311–318. DOI: 10.3115/1073083.1073135. URL: https://www.aclweb.org/anthology/P02-1040.

38

Post, Matt (2018). "A Call for Clarity in Reporting BLEU Scores".

In: Proceedings of the Third Conference on Machine Translation: Research Papers. Belgium, Brussels: Association for Computational Linguistics, pp. 186–191. URL:

https://www.aclweb.org/anthology/W18-6319.

Snover, Matthew et al. (2009). "Fluency, Adequacy, or HTER? Exploring Different Human Judgments with a Tunable $\ensuremath{\mathsf{MT}}$ Metric". In: Proceedings of the Fourth Workshop on Statistical Machine Translation. Athens, Greece: Association for Computational Linguistics, pp. 259–268. URL: https://www.aclweb.org/anthology/W09-0441.