

Packet Tracer : analyse de la convergence

Topologie

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut
R1	G0/0	209.165.0.1	255.255.255.0	N/A
	G0/1	64.100.0.1	255.0.0.0	N/A
	S0/0/0	192.168.1.2	255.255.255.0	N/A
R2	G0/0	10.0.0.1	255.0.0.0	N/A
	S0/0/0	192.168.1.1	255.255.255.0	N/A
PC1	NIC	64.100.0.2	255.0.0.0	64.100.0.1
PC2	NIC	209.165.0.2	255.255.255.0	209.165.0.1
PC3	NIC	10.0.0.2	255.0.0.0	10.0.0.1

Objectifs

Partie 1 : affichage de la table de routage d'un réseau convergent

Partie 2 : ajout d'un nouveau LAN à la topologie

Partie 3 : observation de la convergence du réseau

Contexte

Cet exercice vous aidera à identifier les informations importantes dans les tables de routage et à observer le processus de convergence du réseau.

Partie 1 : Affichage de la table de routage d'un réseau convergent

Étape	1 : Utilisez les commandes show et interprétez les résultats.				
a.	a. Affichez les réseaux connectés directement de R1. Combien de routes sont connectées à R1 ?				
	R1# show ip route connected				
b.	Affichez la configuration en cours de R1. Quel est le protocole de routage utilisé ?				
C.	Les adresses IP de la configuration annoncée par le protocole RIP sont-elles les mêmes que celles qui sont connectées ?				
d.	Quelle est la nature de ces adresses IP : attribuables, réseau ou de diffusion ?				
e.	e. Affichez les réseaux de R1 appris par le protocole RIP. Combien de routes y a-t-il ?				
	R1# show ip route rip				
f.	Affichez tous les réseaux dont R1 dispose dans sa table de routage. Que représentent les premières lettres ?				
	R1# show ip route				
g.	Répétez l'étape 1, de a à f sur R2 . Comparez le résultat des deux routeurs.				
Étape	2 : Vérifiez l'état de la topologie.				
a.	Envoyez une requête ping à PC3 depuis PC2. La requête ping devrait aboutir.				
b.	. Affichez l'état des interfaces sur R2 . Deux interfaces doivent avoir des adresses attribuées. Chaque adresse correspond à un réseau connecté.				
	R2# show ip interface brief				
C.	Affichez l'état des interfaces sur R1. Combien d'interfaces ont des adresses attribuées ?				
	R1# show ip interface brief				
Parti	ie 2 : Ajout d'un nouveau LAN à la topologie				
Étape	1 : Ajoutez un câble Ethernet.				
a.	Branchez le câble Ethernet approprié entre S1 et le port correspondant sur R1 .				
b.	Envoyez une requête ping de PC1 vers PC2 dès que le port concerné sur S1 devient vert. La requête ping a-t-elle abouti ?				
C.	Envoyez une requête ping entre PC1 et PC3. La requête ping a-t-elle abouti ? Pourquoi ?				
Étape	2 : Configurez une route.				
a.	Passez du mode Realtime au mode Simulation.				
b.	Entrez une nouvelle route sur R1 pour le réseau 64.0.0.0.				
	R1(config)# router rip				
	R1(config-router)# network 64.0.0.0				
C.	Examinez les unités de données de protocole à la sortie de R1. De quel type sont-elles ?				

Partie 3 : Observation de la convergence du réseau

Étape 1 : Utilisez les commandes de débogage.

a. Activez le débogage sur R2.

R2# **debug ip rip**R2# **debug ip routing**

- b. À titre de référence, affichez la table de routage de R2 comme à l'étape 1f.
- c. Cliquez sur **Capture / Forward** en mode Simulation. Quelle notification est apparue dans le terminal de **R2**?
- d. Selon le résultat du débogage, à combien de sauts se situe R2 par rapport à 64.0.0.0 ? ______
- e. Quelle interface de **R2** envoie les paquets destinés au réseau 64.0.0.0 ? _____
- f. Affichez la table de routage de **R2**. Notez la nouvelle entrée.

Étape 2 : Vérifiez l'état de la topologie.

Envoyez une requête ping entre PC1 et PC3. La requête ping a-t-elle abouti ? Pourquoi ?

Suggestion de barème de notation

Section d'exercice	Emplacement de la question	Nombre maximum de points	Points accumulés
Partie 1 : affichage de la	Étape 1-a	6	
table de routage d'un réseau convergent	Étape 1-b	6	
	Étape 1-c	6	
	Étape 1-d	6	
	Étape 1-e	6	
	Étape 1-f	6	
	Étape 2-c	6	
	42		
Partie 2 : ajout d'un	Étape 1-b	6	
nouveau LAN à la topologie	Étape 1-c	6	
	Étape 2-c	6	
	18		
Partie 3 : observation de	Étape 1-c	6	
la convergence du réseau	Étape 1-d	6	
	Étape 1-e	6	
	Étape 1-f	6	
	Étape 2-a	6	
	30		
Score rela	10		
	100		