Mathematics for Machine Learning

- Introduction

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbook:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Grading Policy

- Attendance (10%)
- Assignments & Quizzes (30%)
- Midterm Exam (30%)
 - 7 Nov. 2023.
- Final Exam (30%)
 - 2 Jan. 2024.

Outline

Introduction

Four pillars of ML

- Regression
 - Linear Algebra
 - Vector Algebra
- Dimensionality Reduction
 - Analytic Geometry
 - Probability & Distribution
- Density Estimation
 - Analytic Geometry
 - Probability & Distribution
- Classification
 - Matrix Decomposition
 - Optimization

Four pillars of ML

- Regression
 - Linear Algebra
 - Vector Algebra
- Dimensionality Reduction
 - Analytic Geometry
 - Probability & Distribution
- Density Estimation
 - Analytic Geometry
 - Probability & Distribution
- Classification
 - Matrix Decomposition
 - Optimization

Four pillars of ML

- Regression
 - Linear Algebra
 - Vector Algebra
- Dimensionality Reduction
 - Analytic Geometry
 - Probability & Distribution
- Density Estimation
 - Analytic Geometry
 - Probability & Distribution (quantification of uncertainty)
- Classification
 - Matrix Decomposition
 - Optimization (continuous optimization)

Part I.

Mathematics as the Foundation

• The study of vectors and matrices.

- The study of vectors and matrices.
- Represent numerical data as vectors.

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.
- Formalize the *similarity* between vectors:
 - Analytic geometry (distance, norm, inner product, projection,

- The study of vectors and matrices.
- Represent numerical data as vectors.
- Represent a table of data as a matrix.
- Formalize the similarity between vectors:
 - Analytic geometry (distance, norm, inner product, projection,
- Intuitive interpretation of the data and better efficiency for learning: matrix decomposition.

Part II:

Introductory Machine Learning

Topics

- Data, model & parameter estimation.
- Continuous Optimization.
- Linear regression.
 - Map the input $\mathbf{x} \in \mathbb{R}^d$ to corresponding observed function values $y \in \mathbb{R}$.
- Density estimation.
 - Find a probability distribution that describes the data.
- Principal Component Analysis
 - Matrix decomposition.
- Classification.

Terminologies

- \bullet i.e. \Longrightarrow that is,
- \bullet e.g. \Longrightarrow such as
- \therefore \Longrightarrow therefore
- \bullet et al. \Longrightarrow and others
- $\bullet \ \forall \Longrightarrow \text{for any}$
- $\exists \Longrightarrow$ there exists
- a.k.a. \Longrightarrow also known as
- w.r.t. ⇒ with respect to

Warm-up Exercise

Exercise

- Consider $\mathbf{x} = [x_1 \ x_2 \ x_3]^{\top} \in \mathbb{R}^3$ and $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$.
- Compute $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$.
- Compute $tr(\mathbf{A}\mathbf{x}\mathbf{x}^{\top})$.

Discussions

