省选模拟赛

题目名称	极乐迪斯科	反讽	敏感词
源文件名	elysium	irony	that
输入文件名	elysium.in	irony.in	that.in
输出文件名	elysium.out	irony.out	that.out
测试点个数	20	10	10
时间限制	1s	2s	2s
空间限制	256MB	256MB	256MB

说明:

编译命令: g++ -1m -02 -std=c++11,没有栈空间限制。

如有需要,请根据需要调整时间限制。

T1 极乐迪斯科 (elysium)

作为瑞瓦肖57分局最优秀的警探,你被派到马丁内斯打击犯罪。马丁内斯的一些建筑物上安装了m个摄像头。你明白,普通人并不会因此受到多少保护,这些摄像头是保护*资本主义*的。作为一个信仰共产主义的战士,你决定滥用职权,拆掉一些摄像头。马丁内斯的街道是一棵n个点的**有根树**,每个点是一个商店,豪宅之类的重要建筑物,建筑物之间的边就是街道,一个摄像头可以监控**子树中**所有距离它 d_i 的建筑物。拆一个摄像头是不小的劳动,会减少 c_i 的快乐度。而一个毫无监视的重要建筑物会给予你 v_i 的快乐度。你想知道,你最大能增加多少快乐度。

输入格式

第一行两个数n, m。

第二行n-1个数,第i个数表示i+1号点的父亲 f_{i+1} 。根是1号点。

第三行n个整数 v_i 。

接下来m行,每行三个数 x_i, d_i, c_i ,表示在 x_i 号建筑物的一个摄像头。

输出格式

一行一个数表示最大快乐度。

样例

input1

```
7 4
1 1 2 2 4 1
1 2 3 4 5 6 7
2 2 8
1 2 10
4 1 8
6 0 4
```

output1

1

说明:破坏了2号摄像头。

数据范围

```
1 < f_i < i
```

 $1 \le x_i \le n$

 $0 \le d_i \le n$

 $1 \le c_i, v_i \le 10^9$

$n,m \leq 5 imes 10^5$

数据点	n,m	性质
1,2	≤ 20	
3,4,5,6	≤ 200	
7,8,9	≤ 3000	
10,11	$\leq 4 imes 10^4$	$d_i \leq 20$
12,13,14,15,16	$\leq 10^5$	
17,18,19,20		

T2 反讽 (irony)

有两个括号序列 $\{A_n\}$, $\{B_m\}$, A_i , $B_i \in \{(,)\}$, 这两个括号序列**不一定合法**。现在,我们想要归并这两个序列,得到一个新的序列 $\{C_{n+m}\}$ (所谓归并,就是说每次将 $\{A\}$ 或 $\{B\}$ 中的第一个元素删去并加入新序列 $\{C\}$ 的末尾,直到 $\{A\}$, $\{B\}$ 均为空)。这样的序列依然**可能不合法**。我们再在其中插入一些括号,使得 $\{C\}$ 合法。你的任务就是找到一种归并方法,使得最后一步中插入的括号最少。

输入格式

一行一个整数T表示数据组数。

每组数据共三行,第一行两个整数n, m。

第二行n个数,表示 $\{A_i\}$, 第二行m个数,表示 $\{B_i\}$ 。

输出格式

T行,每行一个数表示答案。

样例

input1

2

2 3

)()

4 4

(())

))()

output1

1 2

样例解释:

()()()

NAABBB

ANAABNBBBA

数据范围

 $T \leq 10$

 $n, m \le 10^6$

数据点	n,m	性质
1	≤ 10	
2	≤ 100	
3	≤ 1000	
4,5,6	≤ 200000	
7,8		$A_i=B_i, n=m$
9,10		

T3 敏感词 (that)

你写了一篇文章,想要发布在知乎。不幸的是,你发现你文章中多了不少的星号。研究了一番,你发现你发现*那个词*被过滤掉了。过滤的方法是:标记出文章中出现一个词的所有位置,然后替换之。比如 weininiubi 对 ini 进行过滤后变成 we*****ubi ,对 in 过滤则是 we****iubi 。热爱思考的你觉得这很有意思。你现在想知道,如果只将一个词设置为敏感词,能使你的文章中出现恰好*个星号的最短的词中字典序最小的是什么?

输入格式

第一行一个数T表示数据组数。

对每组数据,第一行一个字符串。表示你的文章,仅包含小写字母。

第二行一个数k。

输出格式

T行,每行一个字符串表示答案。若没有满足要求的单词,则输出 NOTFOUND!

样例

input1

```
4
xiaoxiongweini
6
aidangaiguoairenmin
6
abababbcabab
8
baaaabaaabaaa
5
```

output1

```
aoxion
ai
aba
NOTFOUND!
```

数据范围

```
T \le 10
```

 $|s| \le 20000$

 $1 \le k \le |s|$

数据点	s
1	≤ 50
2,3	≤ 100
4	≤ 1000
5	≤ 2000
6,7	≤ 5000
8,9,10	