Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Análise de Regressão Múltipla Processos

Andrielle Couto Crystiane Souza Douglas Nestlehner Eric Sato

Sumário

1	Intr	Introdução				
2 Resultados						
	2.1	Intervalos de Confiança para β_0 e β_1 considerando toda a amostra	5			
	2.2	Intervalos de Confiança para β_0 e β_1 considerando apenas parte da amostra	7			
	2.3	Tabela ANOVA e Teste de Hipóteses	9			
	2.4	Intervalo de Confiança para $\mathbb{E}[Y_0]$	9			
	2.5	Intervalo de Predição para uma nova resposta	10			
	2.6	Intervalo de Predição para a média de m novas respostas	11			
	2.7	Teste Linear Geral	11			

Capítulo 1

Introdução

Este trabalho tem como objetivo abordar uma aplicação do modelo de regressão linear simples, o qual é dado por:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

em que Y_i é a variável resposta do i-ésimo ensaio, β_0 é o valor esperado da variável resposta quando a variável independente vale zero, β_1 é o efeito aditivo da variável independente no valor esperado da variável resposta, x_i é o valor da i-ésima observação da variável independente e ϵ_i é o erro aleatório do i-ésimo indivíduo.

Para isso, utilizamos o conjunto de dados com $n=1000000~(10^6)$ observações e l=199 covariáveis que geramos na Atividade 1 através do software de linguagem de programação Python, e para essa Atividade, consideramos apenas as observações da covariável x_3 . Em seguida, construímos intervalos de confiança para β_0 e β_1 considerando primeiro toda a amostra e depois apenas parte dela. Também, geramos a Tabela ANOVA a fim de conduzirmos um Teste de Hipóteses para testarmos $H_0: \beta_1=0$. Depois disso, construímos um intervalo de confiança para $\mathbb{E}[Y_0]$ considerando apenas parte da amostra e dois específicos x_0 , um próximo de \bar{x} e um longe de \bar{x} . Logo depois, considerando toda a amostra novamente, calculamos intervalos de predição para uma nova resposta e para a média de m novas respostas. Por fim, conduzimos um Teste Linear Geral para testar $H_0: \beta_1 = \beta_2 = \beta_3 = 0$.

Nesse sentido, no Capítulo 2 apresentamos os resultados obtidos pelo o que foi citado anteriormente e no Apêndice está o código que foi utilizado para a realização dessa atividade.

Capítulo 2

Resultados

Neste capítulo, apresentamos os resultados obtidos.

Antes, vale lembrar o começo do que foi feito na Atividade 1. Primeiro, geramos um conjunto de dados com $n = 10^6$ observações e l = 199 covariáveis, ou seja, $x_{i1}, x_{i2}, ..., x_{i199}, i = 1, ..., 10^6$, de diferentes distribuições (Distribuições Normal, Uniforme, Exponencial, Beta e Gamma), obtendo a Figura 2.1 abaixo:

```
x197
             x1
                       x2
                                 х3
                                                         x198
                                                                    x199
       -0.306653 -0.785878 0.153280
                                          17.670058 3.487106
                                                                5.211530
       0.537779 0.421365 -0.944903
                                           8.682123
                                                                0.048897
                                     . . .
                                                     1.831579
       0.509093 -0.009545 0.148196
                                          12.636960 2.508360
                                                                0.078390
3
       -0.655666 0.321823 0.617224
                                          11.467218 5.855939
                                                                8.373159
       -0.599789 1.180766
                          0.795135
                                     ... 12.625468 2.353158
                                                               16.160959
999995 0.051659 -0.358460 -1.217553
                                           8.019396
                                                     2.779270
                                                                6.715539
999996 -0.565747 0.541477 -0.074514
                                           9.001532
                                                     2.589704
                                                                1.340682
999997 -0.106465 -0.775124 -1.384023
                                           4.142704
                                                     4.136626
                                                                0.480302
999998 -0.723440 0.606755 0.307154
                                                     1.019886
                                          10.501333
                                                                5.380319
      0.670020 -0.899993 -0.723158
                                          10.428158
                                                    2.791444
                                                                2.464120
```

[1000000 rows x 199 columns]

Figura 2.1: Base de dados das covariáveis.

Após isso, tomamos $\beta_0 = 10$ e geramos os outros 199, ou seja, $\beta_1, \beta_2, ..., \beta_{199}$ por meio de uma Distribuição Normal(0,2), obtendo a Figura 2.2:

```
[-3.17814026 0.82174032 0.64914096 -1.04403025 1.67897664 0.03355381
 0.36548631 -0.53472134 -4.40452794 -3.72488118 2.22921507 -2.56674148
 -0.2218001 -0.30273885 -1.14344852 -1.4108977 -2.24284415 -0.34993769
 -0.29480631 -1.45472404 -1.30804015 1.21252752 -1.27263772
                                                           0.01834462
 -4.07926342 -0.02983682
                        2.1492547
                                    0.54072849
                                               3.36359461 -3.43577417
 -0.61956996 -1.65899187 -1.48100326 -0.82904771
                                               2.49938852
                                                           0.95582614
 1.64313732
            0.72736667 -0.21834761
                                   0.56758481
                                               1.68079489 -0.60776302
             2.64512003 -1.2904296
 -5.41942787
                                    3.71243567 -1.83064893 -1.72123276
 3.07093598 -0.22050032
                        1.01880253 -2.93309822
                                               2.46228704 -1.42007188
           -0.67000704
                        3.78614346 0.58582059
                                               0.40857637 -1.99265093
 -1.3490867
 -1.34064886 0.87039185 -4.48876381 1.28099526 -4.94923955 -0.71667124
 3.34536237
            3.66304458 0.06446188 2.1599863
                                                1.40821561 -0.70820471
             1.8310001
                       -0.94333349 1.18312055 -0.60613177
                                                           0.14803882
 0.15991261
                                    0.51514558
 -0.034801
             0.9503359
                         2.71121137
                                               1.18204787 -3.07282414
 -0.49542716
            3.39707191 0.42507642
                                   3.16467326 -2.16076843 -3.48066186
 1.73087323
            2.3443886
                       -1.85691189 -0.9167518
                                                1.6385639
                                                          -0.23156519
             1.39692614 -0.07161874
 -1.58362555
                                   1.82576022 -0.64032545
                                                           2.31952762
 -3.94114947
             1.59773054
                        0.22193928 -2.41061498
                                               1.42927481
                                                           3.11419923
 0.13967969
             0.62888182 -0.61918391 2.10651299
                                               0.7852024
                                                           1.8853202
 -0.99024665 -0.51201348 1.4677751 -0.89813128 -0.50220247
                                                           1.25297738
 2.23353315 -1.86371397 -1.56774697 0.54172092
                                               0.17889165 -0.9968165
 0.0181375 -0.52523938 -3.55193009
                                    0.70593984
                                               0.50482978 -0.42993725
 -2.97575416 -1.06684421 -2.66857689
                                    0.10760858
                                               2.54887705
                                                           1.08836041
                        4.60465302 -4.14096941 -0.3081288
 1.52770122 -0.52997377
                                                           2.29917931
 2.22362534 -2.21540078
                        0.19454106
                                   0.34293316 -0.56450044 -2.53945319
 1.84909421 -0.17591821
                         2.24440917
                                    0.50252927 -0.28893614 -1.9561467
 -2.32435807
             0.0770403
                         1.09228597
                                   2.71488892
                                               2.33796042
             2.52247565 -1.6330807
                                   -1.3042549
                                              -0.19458548 -0.45940525
 0.99685207
 -1.31746202 -0.79962706 -1.16531094 -1.39055513 -2.59285303 0.2597009
 -1.32777504 -0.75517182 0.3447409
                                    0.27240809 -0.05282772 -0.18319746
 -0.89783316 1.1382691 -0.73467581 -1.52279924
                                               1.84284837 -0.43858816
 -1.20277471 -0.80515865 -0.42935529 0.84206293
                                               0.1525661
                                                           1.83328626
 0.35378042]
```

Figura 2.2: Valores de $\beta_1, \beta_2, ..., \beta_{199}$.

Também, geramos valores para os erros $\epsilon_i, i=1,...,10^6$ usando uma Distribuição Normal(0,1):

```
[-0.75061472 1.31635732 1.24614003 ... -0.26060049 -1.77081153 1.64005059]
```

Figura 2.3: Valores de ϵ_i .

Com isso, através da fórmula

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{199} x_{i199} + \epsilon_i$$

chegamos nos seguintes valores de Y_i :

```
[-128.77452511 60.28502227 -6.50087476 ... -38.03158261 126.04605317 -4.63388594]
```

Figura 2.4: Valores de Y_i .

2.1 Intervalos de Confiança para β_0 e β_1 considerando toda a amostra

Para determinar o intervalo de confiança para β_0 e β_1 considerando toda a nossa amostra, escolhemos apenas uma covariável com o objetivo de ajustar uma regressão linear simples.

A covariável escolhida dentre as 199 da Figura 2.1 foi x_3 , a qual pode ser observada abaixo:

```
[[ 0.15327959]
 [-0.94490268]
 [ 0.14819629]
 ...
 [-1.38402254]
 [ 0.30715368]
 [-0.72315764]]
```

Figura 2.5: Valores das 10^6 observações da covariável x_3 .

Após isso, geramos valores para os erros ϵ_i , $i=1,...,10^6$, usando uma Distribuição Normal(0,1) e usamos os betas gerados na atividade anterior, ou seja, $\beta_0=10$ e $\beta_1=-3.1781402630116435$ (correspondente ao valor de β_3 na Atividade 1, já que a covariável que estamos utilizando é x_3), para encontrar os valores da variável resposta Y_i , $i=1,...,10^6$, chegando nos seguintes valores:

```
[ 8.76224125 14.31939057 10.77515144 ... 14.13801727 7.25301099 13.93834699]
```

Figura 2.6: Valores das 10^6 variáveis resposta $Y_i, i=1,...,10^6$, geradas.

Desse modo, tendo obtido os valores das variáveis respostas Y_i , $i=1,...,10^6$, e o valor da variável preditora x_3 estimamos, através da regressão linear simples, os valores $\hat{\beta}_0$ e $\hat{\beta}_1$, sendo eles:

$$\hat{\beta}_0 = 9.999146868848243 \quad \text{e} \quad \hat{\beta}_1 = -3.1762718676089308$$

Calculamos em seguida os valores ajustados \hat{Y}_i utilizando a fórmula $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i3}$, $i = 1, ..., 10^6$:

[9.51228922 13.00041466 9.52843517 ... 14.39517872 9.02354327 12.29609212]

Figura 2.7: Valores de
$$\hat{Y}_i$$
, $i = 1, ..., 10^6$.

Depois, calculamos os resíduos e_i , sendo o i-ésimo resíduo a diferença entre o valor observado e o valor correspondente ajustado \hat{Y}_i , obtendo como resultado:

Figura 2.8: Valores observados dos resíduos $e_i, i=1,...,10^6$.

Com os valores anteriores, calculamos a soma de quadrados dos resíduos SSE e o quadrado médio dos resíduos MSE cujas fórmulas são:

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \quad \text{e} \quad MSE = \frac{SSE}{n-2}$$

Sabendo que, no caso da nossa atividade, $n=10^6$, obtivemos assim SSE=998361.8862771506 e MSE=0.9983638830049166.

Os estimadores da variância de $\hat{\beta}_0$ e $\hat{\beta}_1$ foram obtidos através das fórmulas:

$$\hat{V}[\hat{\beta}_0] = MSE \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$
$$\hat{V}[\hat{\beta}_1] = \frac{MSE}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

e seus resultados foram, respectivamente, $9.98364391\cdot 10^{-07}$ e $1.34002636\cdot 10^{-06}$.

Desse modo, fomos capazes de determinar os intervalos de confiança para β_0 e β_1 , utilizando uma confiança de 95%. O IC de β_0 é:

$$IC(\beta_0; 95\%) = \left[\hat{\beta}_0 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} ; \hat{\beta}_0 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} \right]$$
$$= \left[9.99718850601654 ; 10.001105231679945 \right]$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [9.99718850601654; 10.001105231679945] contém o verdadeiro valor de β_0 . Como sabemos que $\beta_0 = 10$, então concluímos que esse intervalo realmente contém o verdadeiro valor do intercepto.

Junto disso, o IC para β_1 é:

$$IC(\beta_1; 95\%) = \left[\hat{\beta}_1 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} ; \hat{\beta}_1 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} \right]$$
$$= \left[-3.178540715010965 ; -3.1740030202068965 \right]$$

Agora, temos 95% de confiança de que o intervalo [-3.178540715010965; -3.1740030202068965] contém o verdadeiro valor de β_1 . Como sabemos que $\beta_1 = -3.1781402630116435$, então concluímos que esse intervalo realmente contém o verdadeiro valor do slope.

2.2 Intervalos de Confiança para β_0 e β_1 considerando apenas parte da amostra

Nessa seção, faremos os mesmos passos da anterior, porém considerando agora uma amostra aleatória de tamanho 4800 retirada da mesma covariável x_3 , a qual é mostrada abaixo:

```
[[-0.02464019]

[-0.06923491]

[ 1.09485779]

...

[ 1.84945334]

[-1.04604505]

[-1.67696782]]
```

Figura 2.9: Valores das 4800 observações da covariável x_3 .

Após isso, geramos valores para os erros $\epsilon_i, i=1,...,4800$, usando uma Distribuição Normal(0,1) e usamos novamente $\beta_0=10$ e $\beta_1=-3.1781402630116435$ para encontrar novos valores da variável resposta $Y_i, i=1,...,4800$, chegando em:

```
[10.37115253 7.9589889 7.82161447 ... 3.9869818 12.57241937 16.43704434]
```

Figura 2.10: Valores das 4800 variáveis resposta Y_i , i = 1, ..., 4800, geradas.

Desse modo, estimamos, através da regressão linear simples, os valores $\hat{\beta}_0$ e $\hat{\beta}_1$, sendo eles:

$$\hat{\beta}_0 = 10.002770288849836$$
 e $\hat{\beta}_1 = -3.1545368314263604$

Calculamos em seguida os valores ajustados \hat{Y}_i :

[10.08049867 10.22117436 6.54900106 ... 4.1686016 13.30255791 15.29282705]

Figura 2.11: Valores de
$$\hat{Y}_i, i=1,...,4800.$$

Depois, calculamos os resíduos e_i , sendo o i-ésimo resíduo a diferença entre o valor observado e o valor correspondente ajustado \hat{Y}_i , obtendo como resultado:

Figura 2.12: Valores observados dos resíduos $e_i, i=1,...,4800.$

Com os valores anteriores, calculamos a soma de quadrados dos resíduos SSE e o quadrado médio dos resíduos MSE, obtendo SSE = 4763.775615994951 e MSE = 0.992866947893904. Além disso, os estimadores da variância de $\hat{\beta}_0$ e $\hat{\beta}_1$ têm como resultados, respectivamente, 0.00027615 e 0.00020691.

Desse modo, fomos capazes de determinar os intervalos de confiança para β_0 e β_1 , utilizando uma confiança de 95%. O IC de β_0 é:

$$IC(\beta_0; 95\%) = \left[\hat{\beta}_0 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} ; \hat{\beta}_0 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} \right]$$
$$= \left[9.974570259587507 ; 10.030970318112166 \right]$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [9.974570259587507; 10.030970318112166] contém o verdadeiro valor de β_0 . Como sabemos que $\beta_0 = 10$, então concluímos que esse intervalo realmente contém o verdadeiro valor do intercepto.

Junto disso, o IC para β_1 é:

$$IC(\beta_1; 95\%) = \begin{bmatrix} \hat{\beta}_1 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} ; \hat{\beta}_1 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} \end{bmatrix}$$
$$= \begin{bmatrix} -3.187115395101897 ; -3.121958267750824 \end{bmatrix}$$

Agora, temos 95% de confiança de que o intervalo [-3.187115395101897; -3.121958267750824] contém o verdadeiro valor de β_1 . Como sabemos que $\beta_1 = -3.1781402630116435$, então concluímos que esse intervalo realmente contém o verdadeiro valor do slope.

Comparando essa seção com a anterior, ou seja, a construção dos intervalos de confiança para β_0 e β_1 considerando toda a amostra e depois uma parte dela de tamanho 4800, percebemos que quanto maior o tamanho amostral, menor é a amplitude dos intervalos, isto é, maior é a precisão deles.

2.3 Tabela ANOVA e Teste de Hipóteses

Nessa seção, continuaremos a considerar a amostra retirada anteriormente de tamanho 4800.

A fim de testarmos $H_0: \beta_1 = 0$, ou seja, se há ou não uma associação linear entre x_3 e a variável resposta, geramos a Tabela ANOVA abaixo:

Figura 2.13: Tabela ANOVA.

Observando a Figura 2.13 acima e considerando uma significância de 1%, percebemos que o valor-p=0 < α = 0.01, ou seja, rejeitamos H_0 : β_1 = 0. Desse modo, com valor-p=0, há evidências de que há uma associação linear entre x_3 e a variável resposta.

2.4 Intervalo de Confiança para $\mathbb{E}[Y_0]$

Nessa seção, assim como na anterior, continuaremos a considerar a amostra retirada anteriormente de tamanho 4800 e utilizando o mesmo ajuste e estimação dos parâmetros feitos na Seção 2.2 (que considerava apenas uma amostra de tamanho 4800).

Faremos agora o intervalo de confiança para $\mathbb{E}[Y_0]$, ou seja, para o valor predito da variável resposta, considerando dois específicos x_0 , um próximo de \bar{x} e um longe de \bar{x} . Como temos $\bar{x}=-0.015207517319944928$, consideramos $x_0^{\text{próximo}}=-0.014999$ e $x_0^{\text{longe}}=1.555555$. Através dos valores apresentados agora, obtivemos as variáveis resposta ajustadas: $\hat{Y}_0^{\text{próximo}}=10.04977288763809$ e $\hat{Y}_0^{\text{longe}}=5.0958882475661325$.

Após isso, calculamos os estimadores da variância de $\hat{Y}_0^{\text{próximo}}$ e \hat{Y}_0^{longe} através da fórmula:

$$\hat{V}[\hat{Y}_0] = MSE \cdot \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

chegando em $\hat{V}[\hat{Y}_0^{\text{próximo}}] = 0.00020684730692609572$ e $\hat{V}[\hat{Y}_0^{\text{longe}}] = 0.0008881486777383533$.

Na sequência, construímos os intervalos de confiança para ambos os $\mathbb{E}[Y_0]$, considerando 95% de confiança. Assim, o IC para $\mathbb{E}[Y_0^{\text{próximo}}]$ é:

$$\begin{split} IC(\mathbb{E}[Y_0^{\text{pr\'oximo}}];95\%) &= \left[\; \hat{Y}_0^{\text{pr\'oximo}} - t_{n-2;\frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{pr\'oximo}}]} \; ; \; \hat{Y}_0^{\text{pr\'oximo}} + t_{n-2;\frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{pr\'oximo}}]} \right] \\ &= \left[10.021577209052666 \; ; \; 10.077968566223515 \right] \end{split}$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [10.021577209052666; 10.077968566223515] contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{próximo}}]$. Como sabemos que $\mathbb{E}[Y_0^{\text{próximo}}] = 10.047354289918873$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{próximo}}]$.

Junto disso, o IC para $\mathbb{E}[Y_0^{\text{longe}}]$ é:

$$IC(\mathbb{E}[Y_0^{\text{longe}}]; 95\%) = \left[\hat{Y}_0^{\text{longe}} - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{longe}}]} ; \hat{Y}_0^{\text{longe}} + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{longe}}]} \right]$$
$$= \left[5.037463014632696 ; 5.154313480499569 \right]$$

Agora, temos 95% de confiança de que o intervalo [5.037463014632696; 5.154313480499569] contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{longe}}]$. Como sabemos que $\mathbb{E}[Y_0^{\text{longe}}] = 5.056402820885388$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{longe}}]$.

Comparando esses dois intervalos, ou seja, a construção dos intervalos de confiança para $E[Y_0^{\text{próximo}}]$ e $\mathbb{E}[Y_0^{\text{longe}}]$, percebemos que quanto mais próximo for x_0 de \bar{x} , menor é a amplitude do intervalo, isto é, maior é a precisão dele. Concluímos isso devido à variabilidade de $\hat{Y}_0^{\text{próximo}}$ ser menor do que a de \hat{Y}_0^{longe} .

2.5 Intervalo de Predição para uma nova resposta

Nessa seção, voltaremos a considerar toda a amostra.

A fim de construirmos o intervalo de predição para uma nova resposta, geramos uma nova observação da covariável x_3 , e denotamos essa observação como x_{novo} , sendo $x_{\text{novo}} = -0.08112442165992582$. Através desse valor e utilizando o mesmo ajuste e estimação dos parâmetros feitos na Seção 2.1 (que considerava toda a amostra), obtivemos Y_{novo} e \hat{Y}_{novo} , os quais são, respectivamente, 10.672226800235403 e 10.25682008714271.

Ainda, temos que o intervalo de predição com uma confiança de 95% para $Y_{\rm novo}$ é dado por:

$$IP(Y_{\rm novo};95\%) = \left[\ \hat{Y}_{\rm novo} - t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \ ; \ \hat{Y}_{\rm novo} + t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \right] \right] + \left[\frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right) \right] + \frac{1}{n} \left(\frac{1}{n} + \frac$$

Desse modo, temos:

$$IP(Y_{\text{novo}}; 95\%) = \begin{bmatrix} 8.298456766118457 ; 12.215183408166963 \end{bmatrix}$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [8.298456766118457; 12.215183408166963] contém o verdadeiro valor de $Y_{\rm novo}$. Como sabemos que $Y_{\rm novo}=10.672226800235403$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $Y_{\rm novo}$.

2.6 Intervalo de Predição para a média de m novas respostas

Nessa seção, também consideraremos toda a amostra.

Com o objetivo de construirmos agora o intervalo de predição para a média de m novas respostas, consideramos m=150 e o mesmo $x_{\rm novo}=-0.08112442165992582$ considerado na seção anterior, e calculamos a média dessas m respostas, encontrando como valor $\bar{Y}_{\rm novo}=10.209972327215253$.

Ainda, temos que o intervalo de predição com uma confiança de 95% para m novas respostas é dado por:

$$IP(\bar{Y}_{\text{novo}};95\%) = \left[\ \hat{Y}_{\text{novo}} - t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(\frac{1}{m} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \ ; \ \hat{Y}_{\text{novo}} + t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(\frac{1}{m} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \right] \right] + \frac{1}{n} \left[\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right) \right] + \frac{1}{n} \left[\frac{1}{n} + \frac{1}{n}$$

Desse modo, temos:

$$IP(\bar{Y}_{\text{novo}}; 95\%) = \left[10.096908375859297 ; 10.416731798426124\right]$$

Portanto, temos 95% de confiança de que o intervalo [10.096908375859297; 10.416731798426124] contém o verdadeiro valor de \bar{Y}_{novo} . Como sabemos que $\bar{Y}_{\text{novo}} = 10.209972327215253$, então concluímos que esse intervalo realmente contém o verdadeiro valor de \bar{Y}_{novo} .

2.7 Teste Linear Geral

Para a realização do teste linear geral e considerando os dados da Figura 2.1, escolhemos 8 covariáveis, sendo elas: x_{60} , x_{79} , x_{120} , x_{127} , x_{145} , x_{160} , x_{175} , x_{194} , para ajustar o modelo de regressão linear múltipla considerando uma amostra escolhida aleatoriamente de tamanho 800. Além disso, dentre os β 's que acompanham essas covariáveis, três são próximos de zero e os outros cinco são mais distantes de zero.

Após escolher as covariáveis e retirar a amostra, para construir o teste linear geral é necessário dar o primeiro passo que é ajustar o modelo completo. Nesse sentido, na Figura 2.14 temos o conjunto de dados das covariáveis que foram usadas para ajustar o modelo completo.

```
x79
                                 x194
                     x127
                                                  x160
                                                              x175
0
     0.106861
                0.818931
                             2.878963
                                             0.317880
                                                          6.879663
1
     0.787219
                0.739447
                             7.864554
                                             1.590331
                                                          4.839365
2
     0.872126
                0.593939
                             3.947550
                                             0.287297
                                                          4.822773
3
     0.862474
                0.613155
                           12.531605
                                             0.718214
                                                          1.801654
4
     0.257793
                0.822022
                             4.423280
                                             0.748059
                                                          1.708784
                      . . .
                                  . . .
                                                   . . .
795
     0.352054
                0.872846
                           12.265217
                                             0.496957
                                                         12.478482
     0.361209
796
                0.797508
                             3.419382
                                             0.385098
                                                          1.996428
797
     0.680479
                0.302043
                             3.224519
                                             0.126229
                                                          8.378537
     0.907782
                0.679589
798
                             8.315152
                                             0.909111
                                                          3.418992
799
     0.817525
                0.658900
                             5.165363
                                             0.019627
                                                          9.910728
```

Figura 2.14: Base de dados das covariáveis para o modelo completo.

Nesse contexto, denotando $x_1 = x_{79}$, $x_2 = x_{127}$, $x_3 = x_{194}$, $x_4 = x_{60}$, $x_5 = x_{120}$, $x_6 = x_{145}$, $x_7 = x_{160}$ e $x_8 = x_{175}$, e gerando um erro aleatório usando uma Distribição Normal(0,1) temos o seguinte modelo de regressão:

```
Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \beta_6 x_{i6} + \beta_7 x_{i7} + \beta_8 x_{i8} + \epsilon_i, i=1,...,800em que:
```

```
\beta_0=10\;;\;\beta_1=0.018137500871328753\;;\;\beta_2=0.018344615457445486\;; \beta_3=0.02644061506466454\;;\;\beta_4=-1.9926509283527098\;; \beta_5=1.2529773794892074\;;\;\beta_6=2.223625336049015\;; \beta_7=2.7148889203997544\;;\;\beta_8=-1.3277750401412078.
```

e através dos quais podemos percebemos que os três β 's próximos de zero são β_1, β_2 e β_3 . Sendo assim, ao realizar o ajuste do modelo completo através da regressão linear múltipla, temos os valores de Y_i representados na Figura 2.15.

```
[[ 2.62969791e+00]
 [ 8.52342699e+00]
 [ 8.00262183e+00]
 ...
 [ 1.27833355e+00]
 [ 8.72770633e+00]
 [-1.72173784e+00]]
```

Figura 2.15: Valores de Y_i , i = 1, ..., 800.

Além disso, temos que $\hat{\beta}_0 = 9.891565160052185$ e que os valores de $\hat{\beta}_1$ até $\hat{\beta}_8$ são os apresentados na Figura 2.16:

Figura 2.16: Valores de $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_8$.

Desse modo,

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \hat{\beta}_{2}x_{i2} + \hat{\beta}_{3}x_{i3} + \hat{\beta}_{4}x_{i4} + \hat{\beta}_{5}x_{i5} + \hat{\beta}_{6}x_{i6} + \hat{\beta}_{7}x_{i7} + \hat{\beta}_{8}x_{i8}
= 9.891565160052185 - 0.02838375x_{i1} + 0.30001007x_{i2} + 0.01047673x_{i3} - 1.9567567x_{i4}
+ 1.06379156x_{i5} + 2.1916815x_{i6} + 2.72519925x_{i7} - 1.31080136x_{i8}, i=1,...,800$$

Portanto, após isso, calculamos o SSE (error sum of squares) desse modelo, obtendo:

$$SSE_F = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{n} e_i^2$$

$$= 743.0523238039088.$$

Para continuar o teste linear geral, ajustamos o modelo reduzido. Nesse caso, a fim de testarmos $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, das 8 covariáveis que tínhamos, passamos a considerar apenas as 5 que eram mais distantes de zero. Na Figura 2.17 temos o conjunto de dados das covariáveis que foram utilizadas para ajustar o modelo reduzido.

	x60	x120	x145	x160	x175
0	0.405620	0.825170	0.532528	0.317880	6.879663
1	0.425470	0.019710	0.508636	1.590331	4.839365
2	0.179142	0.772082	0.531151	0.287297	4.822773
3	0.562808	0.423557	0.458763	0.718214	1.801654
4	0.876407	0.831110	0.697260	0.748059	1.708784
795	0.102798	0.235132	0.706814	0.496957	12.478482
796	0.804806	0.416398	0.552890	0.385098	1.996428
797	0.370474	0.486421	0.708183	0.126229	8.378537
798	0.931451	0.740708	0.440223	0.909111	3.418992
799	0.303573	0.423201	0.842520	0.019627	9.910728

Figura 2.17: Base de dados das covariáveis para o modelo reduzido.

A partir disso, o modelo reduzido é,

$$Y_i = \beta_0 + \beta_4 x_{i4} + \beta_5 x_{i5} + \beta_6 x_{i6} + \beta_7 x_{i7} + \beta_8 x_{i8} + \epsilon_i$$
, i = 1,...,800

Com isso, após realizar o ajuste do modelo reduzido através da regressão linear múltipla, temos os valores de Y_i representados na Figura 2.18:

```
[[ 3.30623679e+00]
 [ 8.53766985e+00]
 [ 5.19794417e+00]
 ...
 [ 1.06534564e+00]
 [ 7.17271831e+00]
 [-1.83648375e+00]]
```

Figura 2.18: Valores de Y_i , i = 1, ..., 800.

Ademais, temos os valores de $\hat{\beta}_0 = 10.110555423040278$ e os valores de $\hat{\beta}_3$ até $\hat{\beta}_8$ apresentados na Figura 2.19 abaixo.

$$[-2.02501787 \quad 1.41503217 \quad 1.98297221 \quad 2.72350746 \quad -1.33598369]$$

Figura 2.19: Valores ajustados $\hat{\beta}_3, \hat{\beta}_4, \dots, \hat{\beta}_8$.

Desse modo.

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{4}x_{i4} + \hat{\beta}_{5}x_{i5} + \hat{\beta}_{6}x_{i6} + \hat{\beta}_{7}x_{i7} + \hat{\beta}_{8}x_{i8}$$

$$= 10.110555423040278 - 2.02501787x_{i4} + 1.41503217x_{i5} + 1.98297221x_{i6}$$

$$+ 2.72350746x_{i7} - 1.33598369x_{i8}, i=1,...,800$$

Assim, após isso, vamos calcular novamente o SSE (error sum of squares), mas agora para o modelo reduzido. Logo, temos que,

$$SSE_R = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^n \epsilon_i^2$$

$$= 796.3711652776251.$$

Depois de ambos os modelos serem ajustados, construímos uma estatística teste, a qual foi usada para comparar a soma de quadrados dos erros dos modelo completo e do modelo reduzido, ou seja, comparar SSE_F e SSE_R .

Com isso, devemos considerar as seguintes hipóteses:

$$\begin{cases} H_0: \beta_1 = \beta_2 = \beta_3 = 0; \\ H_1: \beta_i \neq 0, \text{ para pelo menos um i} = 1, 2, 3. \end{cases}$$

Denotando gl_F como os graus de liberdade do modelo completo e gl_R como os graus de liberdade do modelo reduzido, temos que, sob H_0 , a estatística teste é dada por:

$$F_0 = \frac{\frac{SSE_R - SSE_F}{gl_R - gl_F}}{\frac{SSE_F}{gl_F}} \sim F_{gl_R - gl_F, gl_F}$$

Já sabemos quem são SSE_F e SSE_R , e sabemos também que, como temos 800 observações, $gl_F=800-9=791$ e $gl_R=800-6=794$. Logo, considerando $\alpha=0.05$, temos como regra de decisão:

$$F_0 < F_{3,791;0.05} = 2.616159809544512 \longrightarrow \text{concluo por } H_0$$

$$F_0 > F_{3,791;0.05} = 2.616159809544512 \longrightarrow \text{concluo por } H_1$$

Desse modo, calculando o valor observado da estatística de teste, obtivemos:

$$F_0 = \frac{\frac{796.37 - 743.05}{794 - 791}}{\frac{743.05}{791}}$$
$$= 18.919799792744058$$

Portanto, como $F_0=18.919799792744058>F_{3,791;0.05}=2.616159809544512$, concluímos pela hipótese alternativa H_1 , ou seja, não há evidências de que x_1,x_2 e x_3 têm contribuição nula na explicação de Y_i simultaneamente.