Diszkrét matematika I. Előadás

9. előadás

Gráfok mátrixai

Definíció

Ha egy $G=(\psi,E,V)$ irányított gráf élei e_1,e_2,\ldots,e_n , csúcsai pedig v_1,v_2,\ldots,v_m , akkor az alábbi illeszkedési mátrix (vagy élmátrix) egyértelműen megadja a gráfot:

$$a_{ij} = \begin{cases} 1 & \text{, ha } e_j\text{-nek } v_i \text{ kezdőpontja;} \\ -1 & \text{, ha } e_j \text{ nem hurokél, és } v_i \text{ a végpontja;} \\ 0 & \text{, egyébként.} \end{cases}$$

A megfelelő irányítatlan gráf élmátrixa az $|a_{ij}|$ elemekből áll.

Példa

Gráfok mátrixai

Definíció

A G irányított gráf csúcsmátrixában legyen b_{ij} a v_i kezdőpontú és v_j végpontú élek száma.

A megfelelő irányítatlan gráf csúcsmátrixának elemeire:

$$b_{ij} = \begin{cases} & \text{a } v_i\text{-re illeszkedő hurokélek száma} &, \text{ ha } i = j; \\ & \text{a } v_i\text{-re és } v_i\text{-re is illeszkedő élek száma} &, \text{ egyébként.} \end{cases}$$

Példa

$$\left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{array}\right)$$

Priifer-kód

Definíció

Legyen adott egy $F=(\varphi,E,V,w)$ csúcscímkézett fa, az egyes csúcsok címkéi 1 és n közötti különböző egész számok, ahol n=|V|. Töröljük az elsőfokú csúcsok közül a legkisebb sorszámút, és írjuk fel ennek szomszédjának a számát. A kapott fára (Miért fa?) folytassuk az eljárást, amíg már csak egy csúcs marad, mégpedig az n címkéjű (Miért?). A sorozat n-1-edik tagja szükségképpen n, ezért ez elhagyható. A kapott n-2 hosszú sorozat az F fa Prüfer-kódja.

Példa

A Prüfer-kód: 4546545(9).

Prüfer-kód

Algoritmus (Prüfer-kódból fa készítése)

megrajzoljuk az si és pi csúcsokra illeszkedő élt.

Legyen a Prüfer-kód $p_1, p_2, \ldots, p_{n-2}, p_{n-1} = n$. Legyen a kódban nem szereplő legkisebb sorszám s_1 . Ha s_i -t már meghatároztuk, akkor legyen s_{i+1} az a legkisebb sorszám, amely különbözik az alábbiaktól: $s_1, s_2, \ldots, s_i; p_{i+1}, p_{i+2}, \ldots, p_{n-2}, p_{n-1} = n$. Ilyennek mindig lennie kell, mert n lehetőségből legfeljebb n-1 számút nem engedünk meg. Az n csúcsot tartalmazó üres gráfból kiindulva minden i-re $(1 \le i \le n-1)$

Prüfer-kód

45465459 1;5465459 12;465459 123;65459 1237;5459 12376;459 123768;59 1237684;9

Síkgráfok

Definíció (Síkgráf; Síkgráf síkbeli reprezentációja)

Egy $G=(\varphi,E,V)$ gráfot síkgráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metszenék egymást (geometriai értelemben). Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának is nevezzük.

(Ebbe azt is beleérjtük, hogy ha v csúcs nem végpontja az e élnek, akkor az e élet jelentő görbe nem mehet át a v csúcsot jelentő geometriai ponton sem.)

Tétel (Fáry) (N.B.)

Egyszerű véges síkgráfoknak olyan síkbeli reprezentációjuk is van, amiben az élek egyenes szakaszok.

Tétel

Egy véges gráf pontosan akkor rajzolható síkba, ha gömbre rajzolható.

Bizonyítás: Sztereografikus projekcióval bijekciót tudunk létrehozni a sík pontjai és az egy pontjában kilyukasztott gömbfelület potjai között...

Síkgráfok

Definíció (Tartomány)

A G gráf egy síkbeli reprezentációja esetén tartománynak nevezzük az élek által határolt síkidomot. Ez nem feltétlenül korlátos, ilyenkor külső tartományról beszélünk, egyébként pedig belső tartományról.

Megjegyzés

Egy belső tartomány valamely másik reprezentációban lehet külső tartomány is, de a tartományok száma nem függ a reprezentációtól.

Megjegyzés

Síkgráf (élkeresztezés nélküli) gömbre rajzolásait is tekinthetjük ("gömbfelületen való") reprezentációknak, és ezek esetén az élek, mint a gömbfelületen haladó görbék által határolt gömbfelület-darabokat tekinthetjük a reprezentáció által meghatározott tartományoknak.

Síkgráfok

Síkgráfok

Tétel (Euler-formula avagy "poliédertétel")

Egy $G=(\varphi,E,V)$ összefüggő síkgráf tetszőleges síkbeli reprezentációját tekintve, melyre t jelöli a tartományok számát, teljesül, hogy:

$$|E| + 2 = |V| + t$$

Ha a G síkgráf nem feltétlenül összefüggő, és c jelöli a komponenseinek a számát, akkor az teljesül, hogy: |E|+c+1=|V|+t

Bizonyítás (vázlat)

Ha a gráfban van kör, annak egy élét törölve az általa elválasztott két tartomány egyesül (ennek a meggondolását itt elsumákoljuk), így a tartományok és élek száma is (vagyis az egyenlet mindkét oldala) 1-gyel csökken. Az eljárás ismétlésével feszítőfát (nem összefüggő gráf esetén feszítőerdőt) kapunk, aminek 1 tartománya van, így teljesül rá az összefüggés (Miért?).

2021. április 15.

Síkgráfok

Állítás (Élszámbecslés egyszerű síkgráfokra)

Ha a $G = (\varphi, E, V)$ egyszerű, összefüggő síkgráfra |V| > 3, akkor

 $|E| \le 3|V| - 6$.

Bizonvítás

|V|=3 esetén 2 ilyen gráf van: P_2 és C_3 , amelyekre teljesül az állítás. |V| > 3 esetén legalább 3 éle van a gráfnak (Miért?). Mivel G egyszerű, ezért minden tartományát legalább 3 él határolja, ezért a tartományok határán végigszámolva az éleket az így kapott érték legalább 3t. Mivel minden él legfeljebb két tartományt választ el, ezért 3t < 2|E|. Az Euler-formulát használva $3(|E|+2-|V|) \le 2|E|$, amiből kapjuk az állítást.

Megjegyzés

A becslés *nem összefüggő* (de egyszerű) síkgráfok esetén is teljesül, hiszen élek hozzávételével egyszerű összefüggő síkgráfot kaphatunk. (Miért?)

12.

Síkgráfok

Állítás

Ha $G = (\varphi, E, V)$ egyszerű síkgráf, akkor

$$\delta = \min_{v \in V} d(v) \le 5.$$

Bizonyítás

Feltehető, hogy $|V| \ge 3$ (Miért?).

Indirekt tfh. $\delta \geq$ 6. Ekkor $6|V| \leq 2|E|$ (Miért?), továbbá az előző állítást használva $2|E| \leq 6|V|-12$, vagyis $6|V| \leq 6|V|-12$, ami ellentmondás.

Megjegyzés

Létezik 5-reguláris egyszerű síkgráf. (Például az ikozaéder élhálózatát le lehet rajzolni a síkba, és az pont ilyen lesz.)

13.

Síkgráfok

Állítás (Élszámbecslés egyszerű páros síkgráfokra)

Ha a $G=(\varphi,E,V=A\uplus B)$ egyszerű, összefüggő síkgráf páros gráf, és $|V|=|A|+|B|\geq 4$, akkor

$$|E| \leq 2|V| - 4.$$

Bizonyítás

|V|=4esetén 3 ilyen gráf van: $S_3,\,P_3$ és $C_4,\,$ amelyekre teljesül az állítás. |V|>4esetén legalább 4 éle van a gráfnak (Miért?). Mivel Gegyszerű, ezért minden tartományát legalább 3 él határolja, és mivel Gpáros, azaz minden köre páros hosszú, ezért minden tartományát legalább 4 él határolja. (A külső tartományt is! Miért?) A tartományok határán végigszámolva az éleket az így kapott érték legalább $4t.\,$ Mivel minden él legfeljebb két tartományt választ el, ezért $4t \leq 2|E|.\,$ Az Euler-formulát használva $4(|E|+2-|V|) \leq 2|E|,\,$ amiből kapjuk az állítást.

Síkgráfok

Megjegyzés

A becslés *nem összefüggő* (de egyszerű) páros síkgráfok esetén is teljesül, hiszen élek hozzávételével összefüggő páros síkgráfot kaphatunk. (Miért?)

Megjegyzés

A becslés 3 csúcsú páros síkgráfokra is teljesül, mert ezeknek legfeljebb két élük van.

15.

Síkgráfok

Állítás

K_{3,3} nem síkgráf.

Bizonyítás

Indirekt tfh. $K_{3,3}$ síkgráf. $|E|=3\cdot 3=9$ és |V|=3+3=6, így az egyszerű páros síkgráfok élszámára vonatkozó becslés alapján $9\leq 2\cdot 6-4=8$, ami ellentmondás.

Állítás

 K_5 nem síkgráf.

Bizonyítás

Indirekt tfh. K_5 síkgráf. |E|=10 és |V|=5, így az egyszerű síkgráfok élszámára vonatkozó becslés alapján $10 \le 3 \cdot 5 - 6 = 9$, ami ellentmondás.

Síkgráfok

Definíció (Topologikus izomorfia)

A G és G' gráfokat topologikusan izomorfnak nevezzük, ha az alábbi lépést, illetve a fordítottját alkalmazva, véges sok lépésben az egyikből a másikkal izomorf gráfot kaphatunk: egy másodfokú csúcsot törlünk, és a szomszédjait összekötjük egy éllel.

Példa (az első lépése még NEM!)

Az első lépésben *harmadfokú* csúcsot törlünk, így kapjuk a Petersen gráf egy 9 csúcsú részgráfját (ezt a részgráfot ábrázolja a második ábra). A második és a harmadik ábrán ábrázolt gráfok topologikusan izomorfak.

17.

Síkgráfok

Tétel (Kuratowski) (NB)

Egy egyszerű gráf pontosan akkor síkgráf, ha nincs olyan részgráfja, ami topologikusan izomorf K_5 -tel vagy $K_{3,3}$ -mal.

Kuratowski tételének az egyik iránya triviálisan igaz (Melyik?), a másik irány Kuratowski tényleges tétele, és itt nem bizonyítjuk.

18.

Gráfok színezése

Szeretnénk egy térképet kiszínezni úgy, hogy a szomszédos régiók különböző színűek legyenek.

A probléma megközelítése gráfokkal: a régióknak felelnek meg a csúcsok. Két csúcs szomszédos, ha a megfelelő régióknak van közös határvonala. A térképnek megfelelő gráf síkgráf lesz.

Tétel (Négyszíntétel) (NB)

Minden síkgráf 4 színnel színezhető.

Megjegyzés

1976-ban bizonyította Appel és Haken. Ez volt az első nevezetes sejtés, aminek a bizonyításához számítógépet is használtak. 1936 lehetséges ellenpéldát ellenőriztek, 1200 órán keresztül futott a program.

19.

Gráfok színezése

Definíció

Egy gráf egy csúcsszínezését jólszínezésnek nevezzük, ha a szomszédos csúcsok színe különböző.

Definíció

Egy gráf kromatikus száma az a legkisebb n természetes szám, amelyre jólszínezhető n színnel.

Megjegyzés

A kromatikus szám pontosan akkor 1, ha nincs éle a gráfnak, és ha 2 a kromatikus szám, akkor a gráf páros. A síkgráfok kromatikus száma legfeljebb 4.