Task 3

Welcome to NB theme!	2				
		Enginee	ring a i	better	· tom

Rulebook Task 0 Task 1 Task 2

Q

eYRC 2020-21: Nirikshak Bot (NB)

Understanding Proportional Integral Derivative (PID) Controller

[Last Updated on: 13th December 2020, 11:30 Hrs]

NOTE: Make sure you have covered the Control Systems document before proceeding further.

- Introduction
- So what is this hype for PID all about?
- Variations of PID controllers
 - 1. Proportional Controller aka P Controller
 - o 2. Proportional-Derivate Controller aka PD Controller
 - o 3. Proportional-Integral-Derivate Controller aka PID Controller
- Improving your Controller
- References

Introduction

- Proportional-integral-derivative (PID) controllers are widely used in industrial systems despite the significant developments of recent years in control theory and technology.
- PID is an example of a closed loop system.
- They **perform well** for a wide class of processes.
- Also, they give **robust performance** for a wide range of operating conditions and, they are easy to implement using analogue or digital hardware.

So what is this hype for PID all about?

Tips and Tricks to improve your Ball Balancing Platform Design

Introduction to Control Systems

Understanding Proportional Integral Derivative (PID) Controller

Balance ball on platform

Task 4 Task 5

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Welcome to NB theme!

Rulebook

Task 0

Task 1

Task 2

Task 3

Tips and Tricks to improve your Ball Balancing Platform Design

Introduction to Control Systems

Understanding Proportional Integral Derivative (PID) Controller

Balance ball on platform

Task 4
Task 5

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

Well, lets look at some videos first.

1. Refer this video from your **beloved eYRC competition host - eYantra**.

2. Refer this video by **Aerospace Controls Laboratory of Massachusetts Institute of Technology (MIT)**.

Welcome to NB theme! Rulebook Task 0 Task 1 Task 2 Task 3 Tips and Tricks to improve your Ball Balancing Platform Design Introduction to Control Systems **Understanding Proportional Integral** Derivative (PID) Controller Balance ball on platform Task 4 Task 5 **Practice Task** Instructions for Task 6 Task 6 Scene Details Coding Standard Git and GitHub Live Session 1 - 24th October 2020 Live Session 2 - 21st November 2020 Live Session 3 - 12th December 2020 Live Session 4 - 10th January 2021 Changelog

NOTE:

- Try watching the videos again to understand as much as possible. It has a lot of important information.
- After you think you have some background about PID start reading below.

To put things in perspective, we will have to go through some definitions.

Variations of PID controllers

1. Proportional Controller aka P Controller

- Proportional controller is mostly used **in first order processes** with single energy storage **to stabilize the unstable process**.
- The main usage of the P controller is to **decrease the steady state error** of the system.
- As the proportional gain factor K increases, the steady state error of the system decrease:

Welcome to NB theme!

Rulebook

Task 0

Task 1

Task 2

Task 3

Tips and Tricks to improve your Ball Balancing Platform Design

Introduction to Control Systems

Understanding Proportional Integral Derivative (PID) Controller

Balance ball on platform

Task 4)
Task 5)

Practice Task

Instructions for Task 6

Task 6 Scene Details

Coding Standard

Git and GitHub

Live Session 1 - 24th October 2020

Live Session 2 - 21st November 2020

Live Session 3 - 12th December 2020

Live Session 4 - 10th January 2021

Changelog

- However, despite the reduction, P control can never manage to eliminate the steady state error of the system.
- As we increase the proportional gain, it provides smaller amplitude and phase margin, faster dynamics satisfying wider frequency band and larger sensitivity to the noise.
- We can use this controller only when our system is tolerable to a constant steady state error.
- In addition, it can be easily concluded that applying P controller decreases the rise time.
- Moreover, after certain value of reduction on the steady state error, increasing K only leads to overshoot of the system response.
- P control also causes oscillation if sufficiently aggressive in the presence of lags and/or dead time.

Assignment: Learn about dead time in control systems.

- The more lags (higher order), the more problem it leads. Plus, it directly amplifies process noise.
- A P controller consists of only a linear gain Kp. The output of such controller can be simply given as

4

2. Proportional-Derivate Controller aka PD Controller

- A controller which changes the input of the controller to proportional plus derivative of error signal is called PD controller.
- It is used to **damp the oscillations** that arise because of increasing the proportional constant

output = (Kp * error) + (Kd * ((error - previous error)/
$$\Delta$$
t))

Where, Δ t is a small duration of time

3. Proportional-Integral-Derivate Controller aka PID Controller

Welcome to NB theme! Rulebook Task 0 Task 1 Task 2 Task 3 Tips and Tricks to improve your Ball Balancing Platform Design Introduction to Control Systems **Understanding Proportional Integral** Derivative (PID) Controller Balance ball on platform Task 4 Task 5 **Practice Task** Instructions for Task 6 Task 6 Scene Details Coding Standard Git and GitHub Live Session 1 - 24th October 2020 Live Session 2 - 21st November 2020 Live Session 3 - 12th December 2020 Live Session 4 - 10th January 2021

Changelog

- A controller which changes the input of the controller to proportional plus derivative of error signal plus the integral of the error is called PID controller.
- It is used to **remove the steady state error** which might arise in PD controller.

```
sum err = sum err + error  
output = (Kp * error) + (Kd * ((error - previous error)/\Deltat)) + (Ki * sum err * \Deltat)
```

Improving your Controller

- The simple equations stated **may not** always **be enough** to stabilize the system.
- Hence there are various techniques to improve the performance of PID controller. These
 are as follows:
 - Sample Time
 - Derivative Kick
 - On-The-Fly-Tuning Changes
 - Reset Windup Mitigation
 - o On/Off
 - Initialization
 - Controller Direction
 - Proportional on measurement
- You can read about these in the **blog by brettbeauregard** here.

NOTE: The above blog is very important to write your code. Make sure you read everything carefully.

References

- 1. Feedback Control Systems: A conceptual Approach by U.A. Bakshi, V.U. Bakshi
- 2. The series of videos by **MATLAB** will help to grasp the concept of PID in the best way possible You can watch the entire playlist from here.

Welcome to NB theme!				
Rulebook	>			
Task 0	>			
Task 1	>			
Task 2	>			
Task 3	~			
Tips and Tricks to improve your Ball Balancing Platform Design				
Introduction to Control Systems				
Understanding Proportional Integral Derivative (PID) Controller				
Balance ball on platform				
Task 4	>			
Task 5	>			
Practice Task				
Instructions for Task 6				
Task 6 Scene Details				
Coding Standard				
Git and GitHub				
Live Session 1 - 24th October 2020				
Live Session 2 - 21st November 2020				
Live Session 3 - 12th December 2020				
Live Session 4 - 10th January 2021				
Changelog				

3. This document by **National Programme on Technology Enhanced Learning** will help you ge some great insights about PID. You can download it from here.

ALL THE BEST