In-Class Assignment 10

- 1. Define an exponential random variable with parameter $\lambda = 1/3$. Generate 2 sets of simulations of the random variable (call them exp_1 and exp_2) of 10,000 simulations each. Create a third variable su which is the sum of exp_1 and exp_2. Verify that
 - i. val = 1/3
 - ii. exp_1 <- rexp(10000, val)
 - iii. exp_2 <- rexp(10000, val)
 - iv. su <- exp_1 + exp_2
 - b. $E(su) = E(exp_1) + E(exp_2)$
 - i. $print(mean(exp_1) + mean(exp_2)) = 6.075177$
 - ii. print(mean(su)) = 6.075177
 - c. Var(su) = Var(exp_1) + Var(exp_2)
 - i. $print(var(exp_1) + var(exp_2) = 18.3664$
 - ii. print(var(su))) =18.65352
- 2. Create 1,000,000 simulations of a multivariate normal random variable similar to the one you worked with in ICA 9 (set var(X) = var(Y) = 1.5, and cor(X,Y) = -0.8), and call it mvn. x will be the first column of mvn and y will be the second column (for example, x = mvn[,1]). Create a new variable z which is the sum of the two outputs from the simulation. Verify from the experimental data that
 - a. min <- -4
 - b. max <- 5
 - c. var_x <- 1.5
 - d. var_y <- 1.5
 - e. cor_xy <- -0.8
 - f. mvn <cbind(c(var_x,cor_xy*sqrt(var_x)*sqrt(var_y)),c(cor_xy*sqrt(var_x)*sqrt(var_y),var_y))
 - g. $x \leftarrow mvn[,1]$
 - h. y <- mvn[,2]
 - i. $z \leftarrow sum(x,y)$

j.
$$Cov(x, y) = -1.2$$

i.
$$cov(x,y)$$

k.
$$E(z) = E(x) + E(y)$$

i.
$$print(mean(z)) = 0.3$$

ii.
$$print(mean(x) + mean(y)) = 0.3$$

I.
$$Var(z) = Var(x) + Var(y) + 2Cov(x, y)$$

i.
$$print(var(x) + var(y) + 2*cov(x,y)) = 1.87653$$

ii.
$$print(var(z)) = 1.81346$$

3. For this problem we will look at sample means of an exponential distribution with mean value 3 (parameter is 1/3). Create 20,000 simulation sets of 10,000 simulations each for this distribution. Calculate the means of the 20,000 sets and plot a histogram. Does the histogram look approximately like a normal distribution?

- d. largev<- replicate(20000,um)
- e. mean(largev)
- f. hist(largev)

3

[1] 3.038718

