Name: Shaan Yadav

NetID: ay140

Honor Code: I have adhered to the Duke Community Standard in completing this assignment.

## Activity

The load was too high therefore the power supply changed from constant voltage to constant current for brown out protection.

|    | Measured Resistance (Ω) | Nominal Resistance (Ω) |
|----|-------------------------|------------------------|
| R1 | 43.23                   | 43                     |
| R2 | 98.36                   | 100                    |
| R3 | 219.52                  | 220                    |
| R4 | 474.75                  | 470                    |

|    | Theoretical<br>Voltage with<br>Measured<br>Resistance (V) | Theoretical<br>Voltage with<br>Nominal<br>Resistance (V) | Measured<br>Voltage (V) | Nominal<br>Voltage (V) |
|----|-----------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------|
| V1 | 0.658                                                     | 0.660                                                    | 0.66133                 | 0.660                  |
| V2 | 1.342                                                     | 1.340                                                    | 1.3245                  | 1.34                   |
| V3 | 0.424                                                     | 0.429                                                    | 0.41878                 | 0.427                  |
| V4 | 0.918                                                     | 0.911                                                    | 0.90617                 | 0.913                  |

|    | Theoretical Current with Measured Resistance (mA) | Theoretical Current with Nominal Resistance (mA) | Measured<br>Current (mA) | Nominal<br>Current (mA) |
|----|---------------------------------------------------|--------------------------------------------------|--------------------------|-------------------------|
| l1 | 15.578                                            | 15.35                                            | 15.077                   | 15.3                    |
| 12 | 13.645                                            | 13.40                                            | 13.222                   | 13.4                    |
| 13 | 1.933                                             | 1.950                                            | 1.9005                   | 1.94                    |
| 14 | 1.933                                             | 1.950                                            | 1.9005                   | 1.94                    |

## **KVL Verification**



$$\begin{aligned} &\text{Loop 1:} - v_s + i_1 R_1 + i_2 R_2 = 0 \\ &\text{Loop 2:} - v_s + i_1 R_1 + i_3 (R_3 + R_4) = 0 \\ &\text{Loop 3:} - i_2 R_2 + i_3 (R_3 + R_4) = 0 \end{aligned}$$

|        | Sum of<br>Theoretical<br>Voltages from<br>Measured<br>Resistance in<br>Loop (V) | Sum of<br>Theoretical<br>Voltages from<br>Nominal<br>Resistance in<br>Loop (V) | Sum of<br>Measured<br>Voltage in Loop<br>(V) | Sum of<br>Nominal<br>Voltage in Loop<br>(V) |
|--------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|
| Loop 1 | 0                                                                               | 0                                                                              | -0.01417                                     | 0                                           |
| Loop 2 | 0                                                                               | 0                                                                              | -0.01372                                     | 0                                           |
| Loop 3 | 0                                                                               | 0                                                                              | 0.00045                                      | 0                                           |

The measured voltages seem to create measuring error.

## **KCL Verification**



Node 1:  $i_s - i_1 = 0$ 

Node 2:  $i_1 - i_2 - i_3 = 0$ 

Node 3:  $i_3 - i_4 = 0$ 

Node 4:  $i_2 + i_3 - i_s = 0$ 

|        | Sum of<br>Theoretical<br>Currents from<br>Measured<br>Resistance at<br>Node (V) | Sum of<br>Theoretical<br>Currents from<br>Nominal<br>Resistance at<br>Node (V) | Sum of<br>Measured<br>Currents at<br>Node (mA) | Sum of<br>Nominal<br>Currents at<br>Node (mA) |
|--------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|
| Node 1 | 0                                                                               | 0                                                                              | 0                                              | 0                                             |
| Node 2 | 0                                                                               | 0                                                                              | -0.0455                                        | -0.04                                         |
| Node 3 | 0                                                                               | 0                                                                              | 0                                              | 0                                             |
| Node 4 | 0                                                                               | 0                                                                              | 0.0455                                         | 0.04                                          |

The measured currents seem to create measuring error.

## **Arduino Code**

```
This program turns on an LED at pin 2 of the Arduino when
void setup()
 Serial.begin(9600);
 pinMode(4, INPUT);
 pinMode(2, OUTPUT);
 digitalWrite(2, LOW);
void loop()
 int sensorValue = analogRead(A4);
 // Convert the analog reading (which goes from 0 - 1023) to a voltage (0
 float voltage = sensorValue * (5.0 / 1023.0);
 Serial.println(voltage);
 // if the analog pin is on high, turn the LED to high
 if (digitalRead(4) == HIGH) {
   digitalWrite(2, HIGH);
 else {
   digitalWrite(2, LOW);
```

The threshold between LOW and HIGH is between 2.35 V and 2.48 V.