Purle:]x6R Jx+2 +220.
proof: Jan = -2
$(\sqrt{\kappa_{+2}})^{\frac{1}{2}}(-2)^{\frac{2}{1}}$
x+2 = 4 /2 This step is imprrect.
7 = 2
Λ = -
In 7/2 17 -4/2 1/2 1/2 then there a 2/2 an in 1/2 a 2/42
Ex 3.6.3. if xERAX\$2, then there exist an unique yER
such that $\frac{2\gamma}{\gamma+1} = x$
Proof: let xCR and assume x = 2. Let y= 2x, which is well
defined since x = 2. Then:
$\frac{2y}{y+1} = \frac{2}{2} \frac{\frac{7}{2}}{x+1} = \frac{2}{x+2-x} = x \cdot R $ (lenist).
yel = +1 2+2-2 (enist).
To see that the result is unique. suppose $\frac{22}{241} = \infty$. Then
$2t=x(2+1)$ and $t=\frac{x}{2x}=7$. \leftarrow unique)
Exercise 8: let U be a set VAGU, Here is a unique BGU such
that VCSU, CIA=CNB.
Coven God
A 614 HA 71216 CVA 7608
BEU SIBUCCIA: CNB.
3/3 784C
A
B=mA.
YCCCIA=CNCUIA)
CEU GCIA= (NCMA)
SCIA = CN (MA) these are easy to
SCA (MA) & CIA proof.
ASU AD(ACCIA=CUD) -> D=(NIA)
ADMC MUSCUD) = D=MA
CON DO (MA=MAD)
MND=D

Proof: let u be a set and let a & U. Existence: Take B= m/A. Lee arbitrary CE U. Let x= CA. SO xGCAxQA. Since CLU xou so xouxx4. so x6 MA. Since x6C. So x6c N Cu/A). Let x6 cncu-A then x6 CMCMA), x6c, x6u, x6A, so x6c1A, Therefore CIA=(ACMA) Uniqueness, Suppose DEN, as the property, CIA=CND F. every CEN-Taking CZN, we get that MA ZNND. Since DEU, we have UND=D, so D= WA=13:D. tx 3.6.4. Suppose A, B, Care sets. ANB # \$, ANC # \$, A has exactly one element, prove BACI & Good 74 YEBAC -ANB 79 Ancto Ilx xEA. 3 x xeANB 3 x xCANCbe BNA CECNA CZX b=C=X. Proof: Given A, B are not disjoint, there exist b that btA and b CB. Similarly, fiven A, Core not disjoint, Here exist c such that CGA and CGC. Since A has only one element, b=L. Therefore, bcC and c6B. Since b6C and b6B, B and C are not disjoint 1.