

Global United Technology Services Co., Ltd.

Report No.: GTSE14090159004

TEST REPORT

SHENZHEN GIEC ELECTRONICS CO., LTD. Applicant:

24/F, Building A Xinian Center, No. 6021 Shennan Road, Address of Applicant:

Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: V100MD T, GK-MID1042(A)

Trade Mark:

FCC ID: ZVRV100MDT

FCC CFR Title 47 Part 15 Subpart B:2013 Applicable standards:

Sept.12, 2014 Date of sample receipt:

Date of Test: Sept.12-19, 2014

Sept.22, 2014 Date of report issue:

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Sept.22, 2014	Original

Prepared By:	Edward.Pan	Date:	Sept.22, 2014	
	Project Engineer			
Check By:	hank yan Reviewer	Date:	Sept.22, 2014	

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	ST INSTRUMENTS LIST	8
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	CONDUCTED EMISSIONS	9
	7.2	RADIATED EMISSION	12
8	TES	ST SETUP PHOTO	18
9	EUT	T CONSTRUCTIONAL DETAILS	19

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	PASS	
Radiated Emissions	Part15.109	PASS	

PASS: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC ELECTRONICS CO., LTD.
Address of Applicant:	24/F, Building A Xinian Center, No. 6021 Shennan Road,
	Shenzhen, Guangdong, China
Manufacturer:	SHENZHEN GIEC ELECTRONICS CO., LTD.
Address of Manufacturer:	24/F, Building A Xinian Center, No. 6021 Shennan Road,
	Shenzhen, Guangdong, China

5.2 General Description of EUT

Product Name:	Tablet PC
Model No.:	V100MD T, GK-MID1042(A)
Power supply:	Input: DC 5V, 2000mA from adapter
	Or
	DC 3.7V, 4000mAh Li-ion Battery
Adapter Information:	Model No.:GT-WCAU05000200-303
	Input: AC 100-240V, 50-60Hz, 0.4A
	Output: DC 5V, 2000mA

5.3 Test mode

Test mode:	
REC mode	Keep the EUT in REC mode
Video Playing mode Keep the EUT in video playing mode	
PC mode	Keep the EUT in data exchanging with PC mode
HDMI mode	Keep the EUT in HDMI mode
Test voltage:	
AC 120V/60Hz	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 5 of 19

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
HP	Printer	CB495A	05257893	DoC
DELL	PC Host	OPTIPLEX745	GTS312	DoC
AOC	LCD TV	TFT24660AG	T49A5JA0006600 B9	DoC
PHILIPS	LCD TV	19PFL3120/T3	AU1A1212002906	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	Mar. 29 2014	Mar. 28 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	July 01 2014	June 30 2015	
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	July 01 2014	June 30 2015	
5	Double -ridged waveguide horn	SCHWARZBECK	9120D	GTS208	June 27 2014	June 26 2015	
6	RF Amplifier	HP	8347A	GTS204	July 01 2014	June 30 2015	
7	Preamplifier	HP	8349B	GTS206	July 01 2014	June 30 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015	
11	Thermo meter	N/A	N/A	GTS256	Mar. 29 2014	Mar. 28 2015	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	July 01 2014	June 30 2015
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test Results and Measurement Data

7.1 Conducted Emissions

 Oonaaotea Ennissions					
Test Requirement:	FCC Part15 B Section 15.107				
Test Method:	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn				
Test setup:	Reference Plane		_		
	AUX Equipment E.U.T EMI Receiver Remark E.U.T EMI Receiver Remark E.U.T Eujpment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m				
Test procedure:	The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe	n network (L.I.S.N.). Th	nis provides a		
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test Instruments:	Refer to section 6 for details				
Test mode:	Refer to section 5.3 for details. All of the mode were tested and found the "PC mode" is the worst case. Only the data of worst case was reported.				
Test results:	Pass				

Shenzhen, China 518102

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 1590RF
Test mode : PC mode
Test Engineer: Mike

est	Engineer:		LISN	Cable		Limi+	Over		
	Freq		Factor					Remark	
	MHz	dBuV	dB	dB	dBuV	dBu₹	dB		
1	0.152			0.12					
2 3		32.34	0.11 0.13	0.11					
4	0.989			0.13					
5			0.31						
6	26.139	26.62	1.07	0.23	27.92	60.00	-32.08	QP	

Neutral:

Trace: 452
Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1590RF Test mode : PC mode

Test Engineer: Mike

	Freq		LISN Factor					Remark
	MHz	dBu₹	d₿	d₿	dBuV	dBuV	dB	
1 2 3 4 5	0. 252 0. 592	35. 44 38. 65 28. 14 32. 01		0.11 0.12 0.13	35. 61 38. 84 28. 34 32. 58	61.69 56.00 56.00 60.00	-26.08 -17.16 -27.66 -27.42	QP QP QP QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Shenzhen, China 518102

7.2 Radiated Emission

Test Requirement:	FCC Part15 B S	Section 15.10	9					
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	30MHz to 6GHz							
Test site:	Measurement D	Distance: 3m	(Semi-Anecho	ic Chambe	r)			
Receiver setup:		Detector	RBW	VBW	Remark			
	Frequency 30MHz-	Quasi-peal		300kHz	Quasi-peak Value			
	1GHz				·			
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value			
Limit:								
	Freque	ency	Limit (dBuV/	/m @3m)	Remark			
	30MHz-8	8MHz	40.0	0	Quasi-peak Value			
	88MHz-2	16MHz	43.5	0	Quasi-peak Value			
	216MHz-9	60MHz	46.0	0	Quasi-peak Value			
	960MHz-	·1GHz	54.0	0	Quasi-peak Value			
	Above 1	GH ₇	54.0	0	Average Value			
	Above	OFIZ	74.0	0	Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. The antenna height is varied from one meter to four meters above 							
	ground to de	termine the ned to the desired	naximum value	e of the field	d strength. Both are set to make the			
	4. For each suspected emission, the EUT was arranged to its worst cas and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find maximum reading.							
	5. The test-rece Bandwidth w			ak Detect F	unction and Specified			
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test setup:	Below 1GHz							

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Measurement Data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL Condition

1590RF Job No. Test Mode : PC mode

32.0	Euglueet:				_		.		
	F		Antenna					Over	Pl-
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Kemark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	Juiz	ши,	ш, ж			and the same	шач, ж	ш	
1	69.114	53.10	11.06	0.93	31.88	33.21	40.00	-6.79	QP
2	121.123	53.89	12.29	1.37	31.86	35.69	43.50	-7.81	QP
3	173.205	59.38	11.16	1.70	32.06	40.18	43.50	-3.32	QP
4	239.987	58.18	14.09	2.07	32.16	42.18	46.00	-3.82	QP
5	480.528	52.16	18.07	3.22	31.62	41.83	46.00	-4.17	QP
6	721.726	47.53	21.10	4.17	31.22	41.58	46.00	-4.42	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL Condition

: 1590RF Job No. Test Mode Test Enginee : PC mode

est	Engineer:								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
				_	_			_	
1	33.328	53.89	14.31	0.59	32.06	36.73	40.00	-3.27	QP
2	129.923	58.24	10.93	1.44			43.50		
3	175.652	57.44	11.36	1.72	32.07	38.45	43.50	-5.05	QP
4	239.987	57.50	14.09	2.07	32.16	41.50	46.00	-4.50	QP
5	480.528	52.23	18.07	3.22	31.62	41.90	46.00	-4.10	QP
6	721.726						46.00		

Shenzhen, China 518102

Above 1GHz

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL : 1590RF Site Condition

Job No. Test Mode Test Engin : PC mode

est	rugineer:				_				
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB 7=	dB	dB	dBuV/m	dB.,⊽7≂	āB	
	JILLIZ	шич	ш/ лі	ш	ш	ши/ли	and 4/ III	ш	
1	1200.000	41.78	25.34	4.47	33.10	38.49	74.00	-35.51	Peak
2	2195.000	41.50	27.90	5.18	34.25	40.33	74.00	-33.67	Peak
3	3110.000	40.27	28.74	6.17	33.20	41.98	74.00	-32.02	Peak
4	3960.000	37.56	29.62	7.79	32.23	42.74	74.00	-31.26	Peak
5	4695.000	36.39	31.65	8.51	32.03	44.52	74.00	-29.48	Peak
6	5675.000	33.22	32.44	9.77	32.33	43.10	74.00	-30.90	Peak

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL : 1590RF

Condition Job No. Test Mode : PC m Test Engineer: Qing : PC mode

TIP TITOUT .	STITE.							
	Read	lnt enna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBu∜/m	dB	
1060.000	42.46	24.65	4.35	32.87	38.59	74.00	-35.41	Peak
2295.000	41.35	27.97	5.28	34.13	40.47	74.00	-33.53	Peak
3260.000	39.64	28.49	6.49	33.02	41.60	74.00	-32.40	Peak
4190.000	36.63	30.18	8.05	31.96	42.90	74.00	-31.10	Peak
5015.000	35.02	31.97	8.78	32.19	43.58	74.00	-30.42	Peak
5740.000								
	Freq MHz 1060.000 2295.000 3260.000 4190.000	Freq Level MHz dBuV 1060.000 42.46 2295.000 41.35 3260.000 39.64 4190.000 36.63 5015.000 35.02	ReadAntenna Freq Level Factor MHz dBuV dB/m 1060.000 42.46 24.65 2295.000 41.35 27.97 3260.000 39.64 28.49 4190.000 36.63 30.18 5015.000 35.02 31.97	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 1060.000 42.46 24.65 4.35 2295.000 41.35 27.97 5.28 3260.000 39.64 28.49 6.49 4190.000 36.63 30.18 8.05 5015.000 35.02 31.97 8.78	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 1060.000 42.46 24.65 4.35 32.87 2295.000 41.35 27.97 5.28 34.13 3260.000 39.64 28.49 6.49 33.02 4190.000 36.63 30.18 8.05 31.96 5015.000 35.02 31.97 8.78 32.19	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 1060.000 42.46 24.65 4.35 32.87 38.59 2295.000 41.35 27.97 5.28 34.13 40.47 3260.000 39.64 28.49 6.49 33.02 41.60 4190.000 36.63 30.18 8.05 31.96 42.90 5015.000 35.02 31.97 8.78 32.19 43.58	ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 1060.000 42.46 24.65 4.35 32.87 38.59 74.00 2295.000 41.35 27.97 5.28 34.13 40.47 74.00 3260.000 39.64 28.49 6.49 33.02 41.60 74.00 4190.000 36.63 30.18 8.05 31.96 42.90 74.00 5015.000 35.02 31.97 8.78 32.19 43.58 74.00	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

Shenzhen, China 518102

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE14090159001

----- End-----