Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 18. Juni 2014

Gruppenübung

Aufgabe G4 (Resolutionsverfahren)

Seien φ und ψ AL-Formeln. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Aufgabe G5 (Sequenzenkalkül)

Finden Sie mittels Beweissuche im Sequenzenkalkül SK für folgende Sequenzen eine Herleitung.

- (a) $\vdash p \lor q \lor \neg p$
- (b) $p, q \lor r \vdash (p \land q) \lor (p \land r)$

Aufgabe G6 (Kompaktheitssatz)

Für Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jedes Modell, das alle Formeln $\phi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Hausübung

Aufgabe H4 (Resolutionsverfahren)

(12 Punkte)

Seien

$$\varphi := (p \lor q) \land (q \lor \neg r) \land (p \lor \neg q \lor r)$$

$$\psi := (\neg p \land r) \lor (p \land \neg r) \lor (p \land q \land r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Aufgabe H5 (Beweiskalküle)

(12 Punkte)

Wir betrachten folgenden Beweiskalkül von Shoenfield (1967) für das System {¬,∨} :

Axiome:
$$\neg \phi \lor \phi$$

Regeln: $\frac{\phi}{\phi \lor \psi}$ $\frac{\phi \lor \phi}{\phi}$ $\frac{\phi \lor (\psi \lor \chi)}{(\phi \lor \psi) \lor \chi}$ $\frac{\phi \lor \psi}{\psi \lor \chi}$

Wir schreiben $\Phi \vdash \psi$, falls es einen Beweisbaum gibt, dessen Blätter Axiome oder Aussagen in Φ sind und dessen Wurzel ψ ist. Beweisen Sie:

- (a) $\phi \lor \psi \vdash \psi \lor \phi$.
- (b) $\phi, \phi \to \psi \vdash \psi$ (wie üblich betrachten wir $\phi \to \psi$ als eine Abkürzung für $\neg \phi \lor \psi$).
- (c) $\phi \lor \psi, \neg \phi \vdash \psi$.
- (d) $\neg \neg \phi \vdash \phi$.

Aufgabe H6 (Kompaktheitssatz)

(12 Punkte)

Eine Interpretation $\mathscr{I}: \mathscr{V} = \{p_1, p_2, \dots\} \to \mathbb{B}$ kann aufgefasst werden als eine unendliche Bit-Sequenz. P sei irgendeine Teilmenge aller solchen Sequenzen, \overline{P} das Komplement von P. Wir betrachten ein P, so dass sowohl P als auch \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$\begin{array}{rcl} P & = & \{\mathscr{I} : \mathscr{I} \models \Phi\} \\ \overline{P} & = & \{\mathscr{I} : \mathscr{I} \models \Psi\} \end{array}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathscr{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} sogar schon durch einzelne AL-Formeln ϕ und ψ spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).