

## planetmath.org

Math for the people, by the people.

## $\Psi$ is surjective if and only if $\Psi^*$ is injective

 ${\bf Canonical\ name} \quad {\bf PsiIsSurjective If And Only If Psiast Is Injective}$ 

Date of creation 2013-03-22 14:36:03 Last modified on 2013-03-22 14:36:03

Owner matte (1858) Last modified by matte (1858)

Numerical id 6

Author matte (1858) Entry type Theorem Classification msc 03-00 Suppose X is a set and V is a vector space over a field F. Let us denote by M(X, V) the set of mappings from X to V. Now M(X, V) is again a vector space if we equip it with pointwise multiplication and addition. In detail, if  $f, g \in M(X, V)$  and  $\mu, \lambda \in F$ , we set

$$\mu f + \lambda q \colon x \mapsto \mu f(x) + \lambda q(x).$$

Next, let Y be another set, let  $\Psi \colon X \to Y$  is a mapping, and let  $\Psi^* \colon M(Y,V) \to M(X,V)$  be the pullback of  $\Psi$  as defined in http://planetmath.org/Pullback2this entry.

## Proposition 1.

- 1.  $\Psi^*$  is linear.
- 2. If V is not the zero vector space, then  $\Psi$  is surjective if and only if  $\Psi^*$  is injective.

*Proof.* First, suppose  $f, g \in M(Y, V), \mu, \lambda \in F$ , and  $x \in X$ . Then

$$\Psi^*(\mu f + \lambda g)(x) = (\mu f + \lambda g)(\Psi(x))$$

$$= \mu f \circ \Psi(x) + \lambda g \circ \Psi(x)$$

$$= (\mu \Psi^*(f) + \lambda \Psi^*(g))(x),$$

so  $\Psi^*(\mu f + \lambda g) = \mu \Psi^*(f) + \lambda \Psi^*(g)$ , and  $\Psi^*$  is linear. For the second claim, suppose  $\Psi$  is surjective,  $f \in M(Y,V)$ , and  $\Psi^*(f) = 0$ . If  $y \in Y$ , then for some  $x \in X$ , we have  $\Psi(x) = y$ , and  $f(y) = f \circ \Psi(x) = \Psi^*(f)(x) = 0$ , so f = 0. Hence, the kernel of  $\Psi^*$  is zero, and  $\Psi^*$  is an injection. On the other hand, suppose  $\Psi^*$  is a injection, and  $\Psi$  is not a surjection. Then for some  $y' \in Y$ , we have  $y' \notin \Psi(X)$ . Also, as V is not the zero vector space, we can find a non-zero vector  $v \in V$ , and define  $f \in M(Y,V)$  as

$$f(y) = \begin{cases} v, & \text{if } y = y', \\ 0, & \text{if } y \neq y', y \in Y. \end{cases}$$

Now  $f \circ \Psi(x) = 0$  for all  $x \in X$ , so  $\Psi^* f = 0$ , but  $f \neq 0$ .