

# PHYS2326 Lecture #3

Prof. Fabiano Rodrigues

Department of Physics
The University of Texas at Dallas

### Goals for this lecture (Ch. 1)

- Quick review
- Remind ourselves of the principle of superposition
- Analyze the net electric force due to charges
- Understand the concept of electric field and electric field lines
- To understand how to derive the electric field for "typical" distribution of charges

### **Quick Review**

- Electric charge
- Charging objects
- Coulomb's Law

### Quick Review: Electric Charge

 Objects that have an excess or deficiency of electrons are said to be electrically charged

- Number of electrons = protons: Neutral
- Excess of electrons: negatively charged
- Deficiency of electrons: Positively charged

### Quick Review: Electric Charge

 Charged objects exert an "action-at-distance" or "non-contact" force

- Same type of charge: Repulsion
- Opposite type of charge: Attraction





- 2. Sphere A initially charged with Q
- 3. What happens when spheres A and B touch?



- 1. Two identical metal spheres
- 2. Sphere A initially charged with Q





- 1. Two identical metal spheres
- 2. Sphere A initially charged with Q







- 1. Two identical metal spheres
- 2. Sphere A initially charged with Q
- 3. What happens when spheres A and B touch?
- 4. What is the final charge in B of sphere were separated?







$$\vec{F}_{12} = k \; \frac{|q_1||q_2|}{r^2} \hat{r}$$



$$\vec{F}_{12} = k \frac{|q_1||q_2|}{r^2} \hat{r}$$

$$\vec{F}_{21} = -k \frac{|q_1||q_2|}{r^2} \hat{r}$$



$$\vec{F}_{12} = k \frac{|q_1||q_2|}{r^2} \hat{r}$$

$$\vec{F}_{21} = -k \frac{|q_1||q_2|}{r^2} \hat{r}$$

$$\vec{F} = \vec{F}_{12} = -\vec{F}_{21}$$

$$k = \frac{1}{4\pi\epsilon_0} = constant \approx 9.0 \times 10^9 Nm^2/C^2$$

 $\varepsilon_0$  = Permittivity of free space (8.852x10<sup>-12</sup> C/m<sup>2</sup>)

 $q_1 = Amount of charge in object #1 (in C)$ 

 $q_2$  = Amount of charge in object #2 (in C)

r = distance between objects 1 and 2 (in m)



$$\vec{F} = \frac{1}{4\pi\epsilon_0} \, \frac{|q_1||q_2|}{r^2} \hat{r}$$

 $\varepsilon_0$  = Permittivity of free space (8.852x10<sup>-12</sup> C/m<sup>2</sup>)

 $q_1 = Amount of charge in object #1 (in C)$ 

 $q_2$  = Amount of charge in object #2 (in C)

r = distance between objects 1 and 2 (in m)

## Charge is Quantized

The electron charge (e) is the elementary charge.

$$q_e = e = 1.602176565(35) \times 10^{-19} C$$

 The charge (Q) of any object is an integer multiple of the electron charge.

$$Q = nq_e$$

### 1.0 Coulomb

What does 1.0 C represent?

#### 1.0 Coulomb

What does 1.0 C represent?

$$Q = 1.0 C$$

$$N_e = \frac{Q}{q_e} = \frac{1.0 \ C}{1.6 \times 10^{-19} \ C}$$

$$N_e = 6.25 \times 10^{18}$$
 electrons

 The principle of superposition of forces states that the resulting (net) force on a given object is the vector summation of all individual forces.

 The principle of superposition applies to electric forces just like it does for gravitational forces.















force?





(a) 
$$\overline{1}F1 = 1 \frac{19.11921}{4118}$$
  $\frac{1}{42}$   $\frac{1}{411}$   $\frac{1}{4$ 



(a) 
$$\vec{1} = 1$$
  $19,11921 \hat{r}$   
 $4\pi = 1.6 \times 10^{-19} \text{ C}$   
 $19,1 = 1.6 \times 10^{-19} \text{ C}$   
 $19,21 = 1.6 \times 10^{-19} \text{ C}$   
 $Y = ?$   
 $Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 



(a) 
$$\vec{1} = 1$$
  $19,11921 \hat{r}$ 
 $4\pi = 1.6 \times 10^{19} \text{ C}$ 
 $19,1 = 1.6 \times 10^{19} \text{ C}$ 
 $19,21 = 1.6 \times 10^{19} \text{ C}$ 
 $Y = ?$ 
 $Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 
 $|\vec{1}| = 1$   $(1.6 \times 10^{19})^2$ 
 $|\vec{1}| = 1$   $(1.6 \times 10^{19})^2$ 



@ 
$$\vec{F}_{1} = \frac{1}{4\pi \delta} \frac{19,11921}{4\pi \delta} \hat{r}$$
 $19,1 = 1.6 \times 10^{19} \text{ C}$ 
 $19,21 = 1.6 \times 10^{19} \text{ C}$ 
 $Y = ?$ 
 $Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 
 $1\vec{F}_{1} = \frac{1}{4\pi \delta} \frac{(1.6 \times 10^{19})^2}{(\sqrt{8})^2}$ 
 $1\vec{F}_{1} = 29 \times 10^{29} \text{ M}$ 

force?



@ 
$$\vec{F}_{1} = \frac{1}{4\pi \delta} \frac{19,11921}{4\pi \delta} \hat{r}$$
 $19,1 = 1.6 \times 10^{19} \text{ C}$ 
 $19,21 = 1.6 \times 10^{19} \text{ C}$ 
 $Y = ?$ 
 $Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 
 $1\vec{F}_{1} = \frac{1}{4\pi \delta} \frac{(1.6 \times 10^{19})^2}{(\sqrt{8})^2}$ 
 $1\vec{F}_{1} = 29 \times 10^{29} \text{ M}$ 



(a) 
$$\vec{1} = 1$$
  $19,11921 \hat{r}$ 
 $19,1 = 1.6 \times 10^{19} \text{ C}$ 
 $19,1 = 1.6 \times 10^{19} \text{ C}$ 
 $19,2 = 1.6 \times 10^{19} \text{ C}$ 
 $Y = ?$ 
 $Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 
 $1\vec{1} = 1 = 1.6 \times 10^{19}$ 
 $1\vec{1} = 1.6 \times 10^{19}$ 
 $1\vec{1} = 1.6 \times 10^{19}$ 



(a) 
$$|F| = 1$$
  $|q_1||q_2||\hat{r}$   
 $|q_1| = 1.6 \times 10^{19} \text{ C}$   
 $|q_2| = 1.6 \times 10^{19} \text{ C}$   
 $|Y| = 7$   
 $|Y| = \sqrt{2^2 + 2^2} = \sqrt{8}$   
 $|F| = 1$   $(1.6 \times 10^{19})^2$   
 $|F| = 2.9 \times 10^{-29} \text{ N}$ 

$$\hat{\mathbf{G}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_2 - \hat{\mathbf{P}}_1$$



@ 
$$|F| = \int \frac{19.11921}{4\pi \& Y^2} \hat{V}$$
 $|9.1 = 1.6 \times 10^{19} \text{ C}$ 
 $|921 = 1.6 \times 10^{19} \text{ C}$ 
 $|Y = ?$ 
 $|Y = \sqrt{2^2 + 2^2} = \sqrt{8}$ 
 $|F| = \int \frac{1.6 \times 10^{19}}{4\pi \& (\sqrt{8})^2}$ 
 $|F| = 2.9 \times 10^{-29} \text{ N}$ 

$$\hat{\mathbf{b}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} + \hat{\mathbf{p}}_{3}) - (\hat{\mathbf{z}} + \hat{\mathbf{z}} + \hat{\mathbf{y}})$$



(a) 
$$|F| = \frac{1}{4\pi \delta} \frac{19.11921}{y^2}$$

$$|9.1 = 1.6 \times 10^{19} \text{ C}$$

$$|921 = 1.6 \times 10^{19} \text{ C}$$

$$|Y = ?$$

$$|Y = \sqrt{2^2 + 2^2} = \sqrt{8}$$

$$|F| = \frac{1}{4\pi \delta} \frac{(1.6 \times 10^{19})^2}{(\sqrt{8})^2}$$

$$|F| = 2.9 \times 10^{-29} \text{ N}$$

$$\hat{\mathbf{G}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{o}}\hat{\mathbf{x}} + \hat{\mathbf{o}}\hat{\mathbf{y}}) - (\hat{\mathbf{c}}\hat{\mathbf{x}} + \hat{\mathbf{c}}\hat{\mathbf{y}})$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{c}}\hat{\mathbf{x}} - \hat{\mathbf{c}}\hat{\mathbf{y}}$$



(a) 
$$|F| = 1$$
  $|q_1||q_2||\hat{r}$   
 $|q_1| = 1.6 \times 10^{19} \text{ C}$   
 $|q_2| = 1.6 \times 10^{19} \text{ C}$ 

$$\hat{\mathbf{G}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{o}}\hat{\mathbf{x}} + \hat{\mathbf{o}}\hat{\mathbf{y}}) - (\hat{\mathbf{c}}\hat{\mathbf{x}} + \hat{\mathbf{c}}\hat{\mathbf{y}})$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{c}}\hat{\mathbf{x}} - \hat{\mathbf{c}}\hat{\mathbf{y}}$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{c}}\hat{\mathbf{x}} - \hat{\mathbf{c}}\hat{\mathbf{y}}$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{r}}\hat{\mathbf{r}}$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{r}}\hat{\mathbf{r}}$$



@ 
$$|\vec{F}| = \int_{4\pi \delta} \frac{19.11921}{y^2} \hat{y}$$
  
 $|9.1 = 1.6 \times 10^{19} \text{ C}$   
 $|921 = 1.6 \times 10^{19$ 

$$\hat{\mathbf{G}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{P}}_{1})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{P}}_{1})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{P}}_{1})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{p}}_{2})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{p}}_{1})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{p}}_{2} - \hat{\mathbf{p}}_{2})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{r}}_{2} - \hat{\mathbf{p}}_{2})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{r}}_{2} - \hat{\mathbf{p}}_{2})$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{r}}_{2} - \hat{\mathbf{r}}_{2})$$



(a) 
$$|\vec{F}|_{7} = 1 |q_{1}||q_{2}||\hat{r}|$$

$$|q_{1}|_{5} = 1.6 \times 10^{19} \text{ C}$$

$$|q_{2}|_{5} = 1.6 \times 10^{19} \text{ C}$$

$$|q_{2}|_{5} = 1.6 \times 10^{19} \text{ C}$$

$$|\vec{r}|_{7} = \sqrt{2^{2} + 2^{2}} = \sqrt{8}$$

$$|\vec{F}|_{7} = 1 (1.6 \times 10^{19})^{2}$$

$$|\vec{F}|_{7} = 2.9 \times 10^{29} \text{ N}$$

$$\hat{\mathbf{G}} \quad \hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = \hat{\mathbf{P}}_{2} - \hat{\mathbf{P}}_{1}$$

$$\hat{\mathbf{r}} = (\hat{\mathbf{o}}\hat{\mathbf{x}} + \hat{\mathbf{o}}\hat{\mathbf{y}}) - (\hat{\mathbf{c}}\hat{\mathbf{x}} + \hat{\mathbf{c}}\hat{\mathbf{y}})$$

$$\hat{\mathbf{r}} = -\hat{\mathbf{c}}\hat{\mathbf{x}} - \hat{\mathbf{c}}\hat{\mathbf{y}}$$

 Physically, the electric field can be defined as a vector force field due to charges / charged objects.











$$\vec{F}_G = G \frac{m_1 m_2}{r^2} (-\hat{r})$$



$$\vec{F}_G = G \frac{m_1 m_2}{r^2} (-\hat{r})$$

$$\vec{F}_G = m_2 \left( G \frac{m_1}{r^2} \right) (-\hat{r})$$



$$\vec{F}_G = G \frac{m_1 m_2}{r^2} (-\hat{r})$$

$$\vec{F}_G = m_2 \left( G \frac{m_1}{r^2} \right) (-\hat{r})$$

$$\vec{F}_G = m_2 \vec{g}$$











$$\vec{F}_E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$



$$\vec{F}_E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$\vec{F}_E = q_2 \left( \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \hat{r} \right)$$



$$\vec{F}_E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$\vec{F}_E = q_2 \left( \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \hat{r} \right)$$

$$\vec{F}_E = q_2 \vec{E}$$



$$\vec{F}_E = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$\vec{F}_E = q_2 \left( \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \hat{r} \right)$$

$$\vec{F}_E = q_2 \vec{E}$$

Where:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2} \hat{r}$$

 Physically, the electric field can be defined as a vector force field due to charges / charged objects.

Mathematically, the electric field can be defined as electric force per unit charge, that is:















# +q















# Point Charge: Summary

#### Electric Field of a Point Charge: Direction



#### Electric Field of a Point Charge: Direction



#### Electric Field of a Point Charge: Direction



#### Electric field points:

- Away from positive charges
- Towards negative charges

#### Electric Field of a Point Charge: Magnitude



$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

#### Electric Field of a Point Charge: Field Lines

- Electric field lines represent the magnitude and direction of E
- Direction of E: Direction of the line arrows
- Magnitude of E: Proximity of the lines
- Electron field lines depart from positive charges
- Electron field lines arrive at negative charges



#### Field Line Rules

- Field lines begin and end on charges or infinity
- Arrows point:
  - away from positive charges
  - toward negative charges
- No field line can cross another field line
- The density of field lines is proportional to the magnitude of the field at that point
- The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of that charge

