Bacteriology: Lab 2

Keelan Krinsky: 1634953

Experiment #3

Section #2

Plate counts.

- 1. 10^{-2} dilution: Too numerous to count.
- 2. 10^{-3} dilution: Too numerous to count.
- 3. 10^{-4} dilution: Too numerous to count.
- 4. 10^{-5} dilution: Too numerous to count.
- 5. 10^{-6} dilution: 185 colonies.

Bacterial Concentration in original solution = $\frac{\displaystyle\sum_{i=1}^{n}(C_{i}x_{i})}{^{nv}}$

where:

 C_i = Number of colonies counted on plate i

 $x_i = \text{dilution factor of plate i}$

v = volume of bacterial solution added to each plate.

 \rightarrow Bacterial Concentration in original solution = $\frac{(10^6 \cdot 294) \mathrm{cells} \cdot m l^{-1}}{1}.$ (Each colony observed is assumed to derive from one cell.)

 \rightarrow Bacterial concentration = $1.85 \cdot 10^8$ cells $\cdot ml^{-1}$

Experiment #4

Section #2

Plate counts.

- 1. 10^{-2} dilution: Too numerous to count.
- 2. 10^{-3} dilution: Too numerous to count.
- 3. 10^{-4} dilution: Too numerous to count.
- 4. 10^{-5} dilution: Too numerous to count.
- 5. 10^{-6} dilution: 294 colonies.

$$\sum_{i=1}^{n} (C_i x_i)$$

Bacterial Concentration in original solution = $\frac{\displaystyle\sum_{i=1}^{n}(C_{i}x_{i})}{\frac{1}{n}}$

 C_i = Number of colonies counted on plate i

 $x_i = \text{dilution factor of plate i}$

v = volume of bacterial solution added to each plate.

- \rightarrow Bacterial Concentration in original solution = $\frac{(10^6 \cdot 294) \mathrm{cells} \cdot m l^{-1}}{1}$. (Each colony observed is assumed to derive from one cell.) \rightarrow Bacterial concentration = $2.94 \cdot 10^8 \mathrm{cells} \cdot m l^{-1}$