Foundations of Financial Economics 2020/21 Problem set 4: Two-period Arrow-Debreu economy under uncertainty

Paulo Brito

19.3.2021

- 1. Consider a two-period Arrow-Debreu economy with the data that follows. Define the equilibrium, determine the solution for the consumer problem, and determine the equilibrium AD prices. Interpret the results:
 - (a) assume a logaritmic utility function, $u(c) = \ln(c)$, 2, states of nature and generic probability and endowment distributions;
 - (b) assume a quadratic utility function, $u(c) = ac \frac{b}{2}c^2$, a > 0, 2, states of nature and generic probability and endowment distributions. Set conditions for the results to make sense:
 - (c) assume an exponential utility function, $u(c) = -\frac{e^{-\lambda c}}{\lambda}$, $\lambda > 0$, 2, states of nature and generic probability and endowment distributions;
 - (d) assume an isoelastic utility function, $u(c) = \frac{c^{1-\theta}-1}{1-\theta}$, $\theta > 0$, 2, states of nature and generic probability and endowment distributions;
 - (e) assume a generic HARA utility function, 2, states of nature and generic probability and endowment distributions;
 - (f) solve the same problems as before with N states of nature.
- 2. Assume the following economic environment: (1) there are N states of nature, with an uniform probability distribution, and (2) there is an endowment distribution for the period t=1, $y_{1,s}=y_0\Gamma^{N/2-s}$, $s=0,\ldots,N$, for $0<\Gamma<1$. Consider Arrow-Debreu economies with the data that follows. Define the equilibrium, determine the solution for the consumer problem, and determine the equilibrium AD prices. Interpret the results:
 - (a) assume a logarithmic utility function, $u(c) = \ln(c)$;
 - (b) assume a quadratic utility function, $u(c) = ac \frac{b}{2}c^2$, a > 0. Set conditions for the results to make sense;
 - (c) assume an exponential utility function, $u(c) = -\frac{e^{-\lambda c}}{\lambda}, \lambda > 0$;

- (d) assume an isoelastic utility function, $u(c) = \frac{c^{1-\theta}-1}{1-\theta}, \theta > 0$;
- (e) assume an generic HARA utility function.
- 3. Consider Arrow-Debreu economies with the data that follows: (1) the information is given by a binomial tree with two periods two periods, $\mathbb{T} = \{0,1\}$, with probabilities, for period $1, \pi_s = \zeta \cdot (1+\zeta)^{-s}$ for state $s=1,\ldots,\infty$, where $\zeta>0$; (2) the endowment distribution for the period t=1 is $y_{1,s}=y_0\cdot (1+\zeta)^{-s/\theta}$, for state $s=1,\ldots,\infty$ and $\theta>0$; (3) agents are homogenous; (4) the representative agent has a discounted time-additive, von-Neumann-Morgenstern utility functional with a CRRA Bernoulli utility function, $u(C)=\frac{C^{1-\theta}-1}{1-\theta}$;
 - (a) Define the equilibrium, and provide an intuition for it.
 - (b) Determine the solution for the consumer problem, and provide an intuition for it.
 - (c) Determine the equilibrium AD prices. Interpret the results you have obtained
- 4. Consider Arrow-Debreu economies with the data that follows: (1) the information is given by a binomial tree with two periods, $\mathbb{T} = \{0, 1\}$ and N states of nature for period 1; (2) the endowment distribution for the period t = 1 is $y_{1,s} = y_0 \cdot (1 + \gamma_s)$, for state $s = 1, \dots, N$; (3) agents are homogenous; (4) the representative agent has a discounted time-additive, von-Neumann-Morgenstern utility functional with a CARA Bernoulli utility function,

$$u(C) = -\frac{e^{-\lambda C}}{\lambda}, \ \lambda > 0$$

- (a) Define the equilibrium, and provide an intuition.
- (b) Determine the solution for the consumer problem, and provide an intuition.
- (c) Determine the equilibrium stochastic discount factor. Assuming that $\mathbb{E}[\Gamma] = \gamma > 0$ find a bound to the expected value of the stochastic discount factor by using Jensen's inequality. Provide an intuition for your results.
- 5. Consider endowment economy in which the information be given by a two-period binomial tree, the endowment process, $\{Y_0, Y_1\}$, verifies $Y_0 = 1$ and $Y_1 = (1 \gamma, 1 + \gamma)$ for $0 < \gamma < 1$, the intertemporal utility functional is time additive, discounted and von-Neumann-Morgenstern, with a linear Bernoulli utility function u(c) = a c, for a > 0 constant.
 - (a) Define, explicitly, the Arrow-Debreu equilibrium for this economy.
 - (b) Write the equilibrium conditions. Under which conditions an equilibrium exists? Is it unique? Justify.
 - (c) Find the stochastic discount factor and provide an economic intuition for its value.
- 6. Consider a two-period intertemporal utility function, in a stochastic setting, for the consumption sequence $\{c_0, C_1\}$ where $C_1 = (c_{11}, \dots, c_{1s}, \dots, c_{1n})$

$$U(c_0, c_1) = ((1 - \mu) c_0^{\eta} + \mu \mathbb{CE}[C_1]^{\eta})^{\frac{1}{\eta}}$$

for $0 < \mu < 1$ and $\eta \in (-\infty, \infty)$, where $\mathbb{CE}[C_1]$ is the certainty equivalent of $\mathbb{E}[\ln(C_1)]$.

- (a) Discuss the existence of risk aversion (Tip: compare $\mathbb{CE}[C_1]$ with $\mathbb{E}[C_1]$ for the cases in which C_1 is state independent and or it is state-dependent).
- (b) Assume a representative-agent Arrow-Debreu (AD) endowment economy, where the flow of endowment is $\{y_0, (1+\Gamma)y_0\}$, where $\Gamma = (\gamma_1, \ldots, \gamma_n)$ is state-dependent. Solve the representative agent problem. Discuss the response of the optimal consumption c_0 to changes in q_s .
- (c) Find the equilibrium stochastic discount factor, M^* . Find the covariance between M^* and $1 + \Gamma$. Which signs this covariance can display? Do they depend on the behavioral parameters of the model?
- 7. Assume a representative-agent Arrow-Debreu (AD) endowment economy, in a stochastic environment, where the flow of endowments is $\{y_0, (\mathbf{1} + \Gamma)y_0\}$ where $\mathbf{1} + \Gamma = (1 + \gamma_1, \dots, 1 + \gamma_s, \dots, 1 + \gamma_n)$.
 - (a) Find the dynamic stochastic general equilibrium, assuming that the representative consumer has the intertemporal utility functional

$$U(c_0, c_1) = (1 - \beta) \ln(c_0) + \beta \mathbb{E}[\ln(C_1)], \text{ with } 0 < \beta < 1,$$

over the consumption sequence $\{c_0, C_1\}$, where $C_1 = (c_{11}, \ldots, c_{1s}, \ldots, c_{1n})$,

(b) Find the dynamic stochastic general equilibrium, assuming instead that the representative consumer has the intertemporal utility functional

$$U(c_0, c_1) = (1 - \beta) \ln(c_0) + \beta \ln(CE[C_1]), \text{ with } 0 < \beta < 1.$$

where $CE[C_1]$ is the certainty equivalent associated to the utility function $u(c_{1s}) = \frac{c_{1s}^{1-\sigma} - 1}{1-\sigma}$, with $\sigma \ge 0$.

(c) Compare the equilibrium stochastic discount factor (ESDF) you have derived in (a) with the one you have derived in (b), addressing specifically the cases in which $\sigma = 0$ and $\sigma > 0$. Provide an intuition.