Filter Summary Report: CG,TIA,simple,Z1,ZL

Generated by MacAnalog-Symbolix January 16, 2025

Contents

1 Examined H(z) for CG TIA simple Z1 ZL: $\frac{Z_1Z_Lg_m}{Z_1g_m+1}$

$$H(z) = \frac{Z_1 Z_L g_m}{Z_1 g_m + 1}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

$H(s) = \frac{L_{L}R_{1}R_{L}g_{m}s}{R_{1}R_{L}g_{m} + R_{L} + s^{2}\left(C_{L}L_{L}R_{1}R_{L}g_{m} + C_{L}L_{L}R_{L}\right) + s\left(L_{L}R_{1}g_{m} + L_{L}\right)}$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1 R_L g_m}{R_1 g_m + 1}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

Parameters:

Q:
$$\frac{C_{L}L_{1}R_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{1}R_{L}g_{m}}}}{C_{L}R_{L}+L_{1}g_{m}}$$
 wo:
$$\sqrt{\frac{1}{C_{L}L_{1}R_{L}g_{m}}}$$
 bandwidth:
$$\frac{C_{L}R_{L}+L_{1}g_{m}}{C_{L}L_{1}R_{L}g_{m}}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{L_{1}R_{L}g_{m}}{C_{L}R_{L}+L_{1}g_{m}}$$
 Qz: 0 Wz: None

3.3 BP-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L\right)$

$H(s) = \frac{L_1 R_L g_m s}{C_1 L_1 s^2 + L_1 g_m s + 1}$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0

3.4 BP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_L\right)$$

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{R_1g_m+1}{C_1R_1}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1R_Lg_m}{R_1g_m+1}$
Qz: 0
Wz: None

4 LP

4.1 LP-1
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1C_LR_L\sqrt{\frac{g_m}{C_1C_LR_L}}}{C_1+C_LR_Lg_m}\\ &\text{wo: } \sqrt{\frac{g_m}{C_1C_LR_L}}\\ &\text{bandwidth: } \frac{C_1+C_LR_Lg_m}{C_1C_LR_L}\\ &\text{K-LP: } R_L\\ &\text{K-HP: } 0\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: None} \end{aligned}$$

4.2 LP-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$\begin{aligned} &\text{Q: } \frac{C_{1}C_{L}R_{1}R_{L}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{L}}} + \frac{1}{C_{1}C_{L}R_{1}R_{L}}}{C_{1}R_{1}+C_{L}R_{1}R_{L}g_{m}+C_{L}R_{L}} \\ &\text{wo: } \sqrt{\frac{R_{1}g_{m}+1}{C_{1}C_{L}R_{1}R_{L}}} \\ &\text{bandwidth: } \frac{\sqrt{\frac{R_{1}g_{m}+1}{C_{1}C_{L}R_{1}R_{L}}}(C_{1}R_{1}+C_{L}R_{1}R_{L}g_{m}+C_{L}R_{L})}{C_{1}C_{L}R_{1}R_{L}}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{L}}} + \frac{1}{C_{1}C_{L}R_{1}R_{L}}} \\ &\text{K-LP: } \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ &\text{K-HP: } 0 \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: None} \end{aligned}$$

$$I(s) = \frac{L_1 R_1 R_L g_m s}{C_1 L_1 R_1 s^2 + R_1 + s \left(L_1 R_1 g_m + L_1 \right)}$$

$$H(s) = \frac{R_L g_m}{C_1 C_L R_L s^2 + g_m + s (C_1 + C_L R_L g_m)}$$

$$H(s) = \frac{R_1 R_L g_m}{C_1 C_L R_1 R_L s^2 + R_1 g_m + s \left(C_1 R_1 + C_L R_1 R_L g_m + C_L R_L \right) + 1}$$

4.3 LP-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_L}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

4.4 LP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{R_1g_m+1}{C_1R_1}$ K-LP: $\frac{L_1g_m}{C_L}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP:
$$\frac{R_1R_Lg_m}{R_1g_m+1}$$
 K-HP:
$$\frac{R_1R_Lg_m}{R_1g_m+1}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

$$H(s) = \frac{L_1 g_m}{C_1 C_L L_1 s^2 + C_L L_1 g_m s + C_L}$$

$$H(s) = \frac{L_1 R_1 g_m}{C_1 C_L L_1 R_1 s^2 + C_L R_1 + s \left(C_L L_1 R_1 g_m + C_L L_1 \right)}$$

$$H(s) = \frac{C_L L_L R_1 R_L g_m s^2 + R_1 R_L g_m}{R_1 g_m + s^2 \left(C_L L_L R_1 g_m + C_L L_L \right) + s \left(C_L R_1 R_L g_m + C_L R_L \right) + 1}$$

5.2 BS-2
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

Q:
$$L_1g_m\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{1}{L_1g_m}$
K-LP: R_L
K-HP: R_L
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_1L_1}}$

5.3 BS-3
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{L_1 R_1 g_m \sqrt{\frac{1}{C_1 L_1}} + L_1 \sqrt{\frac{1}{C_1 L_1}}}{R_1} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth:} \ \frac{R_1 \sqrt{\frac{1}{C_1 L_1}}}{L_1 R_1 g_m \sqrt{\frac{1}{C_1 L_1}} + L_1 \sqrt{\frac{1}{C_1 L_1}}} \\ &\text{K-LP:} \ \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-HP:} \ \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_1 L_1}} \end{aligned}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$\begin{array}{l} \text{Q: } \frac{L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth: } \frac{R_{1}g_{m}+1}{L_{1}g_{m}} \\ \text{K-LP: } R_{L} \\ \text{K-HP: } R_{L} \\ \text{K-BP: } \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ \text{Qz: } \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ \text{Wz: } \sqrt{\frac{1}{C_{1}L_{1}}} \end{array}$$

$$T(s) = \frac{C_1 L_1 R_L g_m s^2 + R_L g_m}{C_1 L_1 g_m s^2 + C_1 s + g_m}$$

$$H(s) = \frac{C_1 L_1 R_1 R_L g_m s^2 + R_1 R_L g_m}{C_1 R_1 s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

$$H(s) = \frac{C_1 L_1 R_L g_m s^2 + C_1 R_1 R_L g_m s + R_L g_m}{C_1 L_1 g_m s^2 + g_m + s \left(C_1 R_1 g_m + C_1\right)}$$

6.2 GE-2
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{C_1 L_1 R_1 R_L g_m s^2 + L_1 R_L g_m s + R_1 R_L g_m}{L_1 g_m s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_1 R_1 g_m \sqrt{\frac{1}{C_1 L_1}} + C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ \text{bandwidth:} \ \frac{g_m \sqrt{\frac{1}{C_1 L_1}}}{C_1 R_1 g_m \sqrt{\frac{1}{C_1 L_1}} + C_1 \sqrt{\frac{1}{C_1 L_1}}} \\ \text{K-LP:} \ \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ \text{K-HP:} \ \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ \text{K-BP:} \ R_L \\ \text{Qz:} \ C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1 L_1}} \end{array}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{C_1 R_1 R_L g_m s + R_L g_m}{g_m + s^2 \left(C_1 C_L R_1 R_L g_m + C_1 C_L R_L \right) + s \left(C_1 R_1 g_m + C_1 + C_L R_L g_m \right)}$$

Parameters:

$$Q \colon \frac{C_{1}C_{L}R_{1}R_{L}g_{m}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}} + C_{1}C_{L}R_{L}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}}}}{C_{1}R_{1}g_{m}+C_{1}+C_{L}R_{L}g_{m}}$$
wo:
$$\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}}$$
bandwidth:
$$\frac{\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}}}(C_{1}R_{1}g_{m}+C_{1}+C_{L}R_{L}g_{m}})}{C_{1}C_{L}R_{1}R_{L}g_{m}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}} + C_{1}C_{L}R_{L}\sqrt{\frac{g_{m}}{C_{1}C_{L}R_{1}R_{L}g_{m}+C_{1}C_{L}R_{L}}}}}$$
K-LP: R_{L}
K-HP: 0
K-BP:
$$\frac{C_{1}R_{1}R_{L}g_{m}}{C_{1}R_{1}g_{m}+C_{1}+C_{L}R_{L}g_{m}}}$$
Qz: 0
Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_1 R_L g_m s + L_1 g_m}{C_1 C_L L_1 s^2 + C_L L_1 g_m s + C_L}$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_L}$$
 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

8.3 INVALID-NUMER-3
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 R_1 R_L g_m s + L_1 R_1 g_m}{C_1 C_L L_1 R_1 s^2 + C_L R_1 + s \left(C_L L_1 R_1 g_m + C_L L_1 \right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{L}} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

9 INVALID-WZ

9.1 INVALID-WZ-1
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L g_m s^2 + L_1 g_m}{C_1 C_L L_1 s^2 + C_L L_1 g_m s + C_L}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ & \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ & \text{bandwidth:} \ \frac{g_m}{C_1} \\ & \text{K-LP:} \ \frac{L_1 g_m}{C_1} \\ & \text{K-HP:} \ \frac{L_L g_m}{C_1} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

9.2 INVALID-WZ-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L g_m s^2 + C_L L_1 R_L g_m s + L_1 g_m}{C_1 C_L L_1 s^2 + C_L L_1 g_m s + C_L}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth:} \ \frac{g_m}{C_1} \\ &\text{K-LP:} \ \frac{L_1 g_m}{C_L} \\ &\text{K-HP:} \ \frac{L_L g_m}{C_1} \\ &\text{K-BP:} \ R_L \\ &\text{Qz:} \ \frac{L_L \sqrt{\frac{1}{C_1 L_1}}}{R_L} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

9.3 INVALID-WZ-3
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_1 g_m s^2 + L_1 R_1 g_m}{C_1 C_L L_1 R_1 s^2 + C_L R_1 + s \left(C_L L_1 R_1 g_m + C_L L_1 \right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{L}} \\ \text{K-HP:} \ \frac{L_{L}g_{m}}{C_{1}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

9.4 INVALID-WZ-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_1 g_m s^2 + C_L L_1 R_1 R_L g_m s + L_1 R_1 g_m}{C_1 C_L L_1 R_1 s^2 + C_L R_1 + s \left(C_L L_1 R_1 g_m + C_L L_1 \right)}$$

Parameters:

$$Q: \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1}$$
wo: $\sqrt{\frac{1}{C_{1}L_{1}}}$
bandwidth: $\frac{R_{1}g_{m}+1}{C_{1}R_{1}}$
K-LP: $\frac{L_{1}g_{m}}{C_{L}}$
K-HP: $\frac{L_{L}g_{m}}{C_{1}}$
K-BP: $\frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1}$
Qz: $\frac{L_{L}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{L}}$
Wz: $\sqrt{\frac{1}{C_{L}L_{L}}}$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_1 R_L g_m}{R_1 g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_1 g_m}{s \left(C_L R_1 g_m + C_L \right)}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_1 R_L g_m}{R_1 g_m + s \left(C_L R_1 R_L g_m + C_L R_L \right) + 1}$$

8

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_1 R_L g_m s + R_1 g_m}{s \left(C_L R_1 g_m + C_L \right)}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L R_1 g_m s^2 + R_1 g_m}{s (C_L R_1 g_m + C_L)}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{R_1 g_m + s^2 \left(C_L L_L R_1 g_m + C_L L_L \right) + 1}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L R_1 g_m s^2 + C_L R_1 R_L g_m s + R_1 g_m}{s (C_L R_1 q_m + C_L)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_1 R_L g_m s^2 + L_L R_1 g_m s + R_1 R_L g_m}{R_1 g_m + s^2 \left(C_L L_L R_1 g_m + C_L L_L \right) + 1}$$

10.9 INVALID-ORDER-9
$$Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$$

$$H(s) = \frac{L_1 R_L g_m s}{L_1 q_m s + 1}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m}{C_L L_1 g_m s + C_L}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 R_L g_m s + L_1 g_m}{C_L L_1 q_m s + C_L}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L g_m s^2 + L_1 g_m}{C_L L_1 g_m s + C_L}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{C_L L_1 L_L g_m s^3 + C_L L_L s^2 + L_1 g_m s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_1 L_L g_m s^2 + C_L L_1 R_L g_m s + L_1 g_m}{C_L L_1 g_m s + C_L}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{C_L L_1 L_L R_L g_m s^3 + R_L + s^2 (C_L L_L R_L + L_1 L_L g_m) + s (L_1 R_L g_m + L_L)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_L g_m s^3 + L_1 L_L g_m s^2 + L_1 R_L g_m s}{C_L L_1 L_L g_m s^3 + C_L L_L s^2 + L_1 g_m s + 1}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L\left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_L g_m s^3 + L_1 R_L g_m s}{C_L L_1 L_L g_m s^3 + s^2 \left(C_L L_1 R_L g_m + C_L L_L \right) + s \left(C_L R_L + L_1 g_m \right) + 1}$$

10.18 INVALID-ORDER-18 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_L g_m}{C_1 s + q_m}$$

10.19 INVALID-ORDER-19 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{g_m}{C_1 C_L s^2 + C_L g_m s}$$

10.20 INVALID-ORDER-20 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L g_m s + g_m}{C_1 C_L s^2 + C_L g_m s}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L g_m s^2 + g_m}{C_1 C_L s^2 + C_L g_m s}$$

10.22 INVALID-ORDER-22 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L g_m s}{C_1 C_L L_L s^3 + C_1 s + C_L L_L g_m s^2 + g_m}$$

10.23 INVALID-ORDER-23 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L g_m s^2 + C_L R_L g_m s + g_m}{C_1 C_L s^2 + C_L g_m s}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L g_m s}{C_1 C_L L_L R_L s^3 + R_L g_m + s^2 \left(C_1 L_L + C_L L_L R_L g_m \right) + s \left(C_1 R_L + L_L g_m \right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L g_m s^2 + L_L g_m s + R_L g_m}{C_1 C_L L_L s^3 + C_1 s + C_L L_L g_m s^2 + g_m}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L g_m s^2 + R_L g_m}{C_1 C_L L_L s^3 + g_m + s^2 (C_1 C_L R_L + C_L L_L g_m) + s (C_1 + C_L R_L g_m)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_1 R_L g_m}{C_1 R_1 s + R_1 g_m + 1}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m}{C_1 C_L R_1 s^2 + s (C_L R_1 g_m + C_L)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_1 R_L g_m s + R_1 g_m}{C_1 C_L R_1 s^2 + s \left(C_L R_1 g_m + C_L \right)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L R_1 g_m s^2 + R_1 g_m}{C_1 C_L R_1 s^2 + s \left(C_L R_1 g_m + C_L \right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{C_1 C_L L_L R_1 s^3 + C_1 R_1 s + R_1 g_m + s^2 \left(C_L L_L R_1 g_m + C_L L_L \right) + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L R_1 g_m s^2 + C_L R_1 R_L g_m s + R_1 g_m}{C_1 C_L R_1 s^2 + s \left(C_L R_1 g_m + C_L\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_{L}R_{1}R_{L}g_{m}s}{C_{1}C_{L}L_{L}R_{1}R_{L}s^{3} + R_{1}R_{L}g_{m} + R_{L} + s^{2}\left(C_{1}L_{L}R_{1} + C_{L}L_{L}R_{1}R_{L}g_{m} + C_{L}L_{L}R_{L}\right) + s\left(C_{1}R_{1}R_{L} + L_{L}R_{1}g_{m} + L_{L}\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_1 R_L g_m s^2 + L_L R_1 g_m s + R_1 R_L g_m}{C_1 C_L L_L R_1 s^3 + C_1 R_1 s + R_1 g_m + s^2 \left(C_L L_L R_1 g_m + C_L L_L \right) + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_L L_L R_1 R_L g_m s^2 + R_1 R_L g_m}{C_1 C_L L_L R_1 s^3 + R_1 g_m + s^2 \left(C_1 C_L R_1 R_L + C_L L_L R_1 g_m + C_L L_L \right) + s \left(C_1 R_1 + C_L R_1 R_L g_m + C_L R_L \right) + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{C_1 R_1 R_L g_m s + R_L g_m}{g_m + s (C_1 R_1 g_m + C_1)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 R_1 g_m s + g_m}{C_L g_m s + s^2 (C_1 C_L R_1 g_m + C_1 C_L)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L R_1 R_L g_m s^2 + g_m + s \left(C_1 R_1 g_m + C_L R_L g_m \right)}{C_L q_m s + s^2 \left(C_1 C_L R_1 q_m + C_1 C_L \right)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_L R_1 g_m s^3 + C_1 R_1 g_m s + C_L L_L g_m s^2 + g_m}{C_L g_m s + s^2 \left(C_1 C_L R_1 g_m + C_1 C_L \right)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_1 L_L R_1 g_m s^2 + L_L g_m s}{C_L L_L g_m s^2 + g_m + s^3 \left(C_1 C_L L_L R_1 g_m + C_1 C_L L_L \right) + s \left(C_1 R_1 g_m + C_1 \right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_L R_1 g_m s^3 + g_m + s^2 \left(C_1 C_L R_1 R_L g_m + C_L L_L g_m \right) + s \left(C_1 R_1 g_m + C_L R_L g_m \right)}{C_L g_m s + s^2 \left(C_1 C_L R_1 g_m + C_1 C_L \right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{C_1 L_L R_1 R_L g_m s^2 + L_L R_L g_m s}{R_L g_m + s^3 \left(C_1 C_L L_L R_1 R_L g_m + C_1 C_L L_L R_L \right) + s^2 \left(C_1 L_L R_1 g_m + C_1 L_L + C_L L_L R_L g_m \right) + s \left(C_1 R_1 R_L g_m + C_1 R_L + L_L g_m \right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_{1}C_{L}L_{L}R_{1}R_{L}g_{m}s^{3} + R_{L}g_{m} + s^{2}\left(C_{1}L_{L}R_{1}g_{m} + C_{L}L_{L}R_{L}g_{m}\right) + s\left(C_{1}R_{1}R_{L}g_{m} + L_{L}g_{m}\right)}{C_{L}L_{L}g_{m}s^{2} + g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{1}g_{m} + C_{1}C_{L}L_{L}\right) + s\left(C_{1}R_{1}g_{m} + C_{1}C_{L}L_{L}\right)}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_1 C_L L_L R_1 R_L g_m s^3 + C_1 R_1 R_L g_m s + C_L L_L R_L g_m s^2 + R_L g_m}{g_m + s^3 \left(C_1 C_L L_L R_1 g_m + C_1 C_L L_L \right) + s^2 \left(C_1 C_L R_1 R_L g_m + C_1 C_L R_L + C_L L_L g_m \right) + s \left(C_1 R_1 g_m + C_1 + C_L R_L g_m \right)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 L_1 g_m s^2 + g_m}{C_1 C_L L_1 g_m s^3 + C_1 C_L s^2 + C_L g_m s}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_1 L_1 R_L g_m s^2 + R_L g_m}{C_1 C_L L_1 R_L g_m s^3 + g_m + s^2 \left(C_1 C_L R_L + C_1 L_1 g_m \right) + s \left(C_1 + C_L R_L g_m \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 R_L g_m s^3 + C_1 L_1 g_m s^2 + C_L R_L g_m s + g_m}{C_1 C_L L_1 g_m s^3 + C_1 C_L s^2 + C_L g_m s}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L g_m s^4 + g_m + s^2 (C_1 L_1 g_m + C_L L_L g_m)}{C_1 C_L L_1 g_m s^3 + C_1 C_L s^2 + C_L g_m s}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_1 L_1 L_L g_m s^3 + L_L g_m s}{C_1 C_L L_1 L_L q_m s^4 + C_1 C_L L_L s^3 + C_1 s + q_m + s^2 (C_1 L_1 q_m + C_L L_L q_m)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L g_m s^4 + C_1 C_L L_1 R_L g_m s^3 + C_L R_L g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_L L_L g_m \right)}{C_1 C_L L_1 q_m s^3 + C_1 C_L s^2 + C_L q_m s}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{C_{1}L_{1}L_{L}R_{L}g_{m}s^{3} + L_{L}R_{L}g_{m}s}{C_{1}C_{L}L_{1}L_{L}R_{L}g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{L} + C_{1}L_{1}L_{L}g_{m}\right) + s^{2}\left(C_{1}L_{1}R_{L}g_{m} + C_{1}L_{L} + C_{L}L_{R}Lg_{m}\right) + s\left(C_{1}R_{L} + L_{L}g_{m}\right)}{C_{1}C_{L}L_{1}L_{L}R_{L}g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{L} + C_{1}L_{L}L_{L}g_{m}\right) + s\left(C_{1}R_{L} + L_{L}g_{m}\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L R_L g_m s^4 + C_1 L_1 L_L g_m s^3 + L_L g_m s + R_L g_m + s^2 \left(C_1 L_1 R_L g_m + C_L L_L R_L g_m \right)}{C_1 C_L L_1 L_L g_m s^4 + C_1 C_L L_L s^3 + C_1 s + g_m + s^2 \left(C_1 L_1 g_m + C_L L_L g_m \right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L R_L g_m s^4 + R_L g_m + s^2 \left(C_1 L_1 R_L g_m + C_L L_L R_L g_m \right)}{C_1 C_L L_1 L_L g_m s^4 + g_m + s^3 \left(C_1 C_L L_1 R_L g_m + C_1 C_L L_L \right) + s^2 \left(C_1 C_L R_L + C_1 L_1 g_m + C_L L_L g_m \right) + s \left(C_1 + C_L R_L g_m \right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_L g_m s}{C_1 C_L L_1 R_L s^3 + s^2 \left(C_1 L_1 + C_L L_1 R_L g_m\right) + s \left(C_L R_L + L_1 g_m\right) + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{C_1 C_L L_1 L_L s^4 + C_L L_1 L_L g_m s^3 + L_1 g_m s + s^2 \left(C_1 L_1 + C_L L_L \right) + 1}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{C_1 C_L L_1 L_L R_L s^4 + R_L + s^3 \left(C_1 L_1 L_L + C_L L_1 L_L R_L g_m \right) + s^2 \left(C_1 L_1 R_L + C_L L_L R_L + L_1 L_L g_m \right) + s \left(L_1 R_L g_m + L_L \right)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_L g_m s^3 + L_1 L_L g_m s^2 + L_1 R_L g_m s}{C_1 C_L L_1 L_L s^4 + C_L L_1 L_L g_m s^3 + L_1 g_m s + s^2 (C_1 L_1 + C_L L_L) + 1}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_L g_m s^3 + L_1 R_L g_m s}{C_1 C_L L_1 L_L s^4 + s^3 \left(C_1 C_L L_1 R_L + C_L L_1 L_L g_m \right) + s^2 \left(C_1 L_1 + C_L L_1 R_L g_m + C_L L_L \right) + s \left(C_L R_L + L_1 g_m \right) + 1}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 L_1 g_m s^2 + C_1 R_1 g_m s + g_m}{C_1 C_L L_1 g_m s^3 + C_L g_m s + s^2 \left(C_1 C_L R_1 g_m + C_1 C_L \right)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_1 L_1 R_L g_m s^2 + C_1 R_1 R_L g_m s + R_L g_m}{C_1 C_L L_1 R_L g_m s^3 + g_m + s^2 \left(C_1 C_L R_1 R_L g_m + C_1 C_L R_L + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_1 + C_L R_L g_m \right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 R_L g_m s^3 + g_m + s^2 \left(C_1 C_L R_1 R_L g_m + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_L R_L g_m \right)}{C_1 C_L L_1 g_m s^3 + C_L g_m s + s^2 \left(C_1 C_L R_1 g_m + C_1 C_L \right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L g_m s^4 + C_1 C_L L_L R_1 g_m s^3 + C_1 R_1 g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_L L_L g_m \right)}{C_1 C_L L_1 g_m s^3 + C_L g_m s + s^2 \left(C_1 C_L R_1 g_m + C_1 C_L \right)}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_1L_1L_Lg_ms^3 + C_1L_LR_1g_ms^2 + L_Lg_ms}{C_1C_LL_1L_Lg_ms^4 + g_m + s^3\left(C_1C_LL_LR_1g_m + C_1C_LL_L\right) + s^2\left(C_1L_1g_m + C_LL_Lg_m\right) + s\left(C_1R_1g_m + C_1\right)}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_{1}C_{L}L_{1}L_{L}g_{m}s^{4} + g_{m} + s^{3}\left(C_{1}C_{L}L_{1}R_{L}g_{m} + C_{1}C_{L}L_{L}R_{1}g_{m}\right) + s^{2}\left(C_{1}C_{L}R_{1}R_{L}g_{m} + C_{1}L_{1}g_{m} + C_{L}L_{L}g_{m}\right) + s\left(C_{1}R_{1}g_{m} + C_{L}R_{L}g_{m}\right) + s\left(C_{1}R_{$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{C_{1}L_{1}L_{L}R_{L}g_{m}s^{3} + C_{1}L_{L}R_{1}R_{L}g_{m}s^{2} + L_{L}R_{L}g_{m}s}{C_{1}C_{L}L_{1}R_{L}g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{1}R_{L}g_{m} + C_{1}L_{L}L_{L}g_{m}\right) + s^{2}\left(C_{1}L_{1}R_{L}g_{m} + C_{1}L_{L}R_{1}g_{m} + C_{1}L_{L} + C_{L}L_{L}R_{L}g_{m}\right) + s\left(C_{1}R_{1}R_{L}g_{m} + C_{1}R_{L} + L_{L}g_{m}\right)}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_{1}C_{L}L_{1}L_{L}R_{L}g_{m}s^{4} + R_{L}g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{1}R_{L}g_{m} + C_{1}L_{1}L_{L}g_{m}\right) + s^{2}\left(C_{1}L_{1}R_{L}g_{m} + C_{1}L_{L}R_{1}g_{m} + C_{L}L_{L}R_{L}g_{m}\right) + s\left(C_{1}R_{1}R_{L}g_{m} + L_{L}g_{m}\right)}{C_{1}C_{L}L_{1}L_{L}g_{m}s^{4} + g_{m} + s^{3}\left(C_{1}C_{L}L_{L}R_{1}g_{m} + C_{1}C_{L}L_{L}\right) + s^{2}\left(C_{1}L_{1}g_{m} + C_{L}L_{L}g_{m}\right) + s\left(C_{1}R_{1}g_{m} + C_{1}C_{L}R_{1}g_{m} + C_{1}C_{L}R_{1}g_{m}\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_{1}C_{L}L_{1}L_{L}R_{L}g_{m}s^{4} + C_{1}C_{L}L_{L}R_{1}R_{L}g_{m}s^{3} + C_{1}R_{1}R_{L}g_{m}s + R_{L}g_{m} + s^{2}\left(C_{1}L_{1}R_{L}g_{m} + C_{L}L_{L}R_{L}g_{m}\right)}{C_{1}C_{L}L_{1}L_{L}g_{m}s^{4} + g_{m} + s^{3}\left(C_{1}C_{L}L_{1}R_{L}g_{m} + C_{1}C_{L}L_{L}R_{1}g_{m} + C_{1}C_{L}L_{L}\right) + s^{2}\left(C_{1}C_{L}R_{1}R_{L}g_{m} + C_{1}C_{L}R_{L} + C_{1}L_{1}g_{m} + C_{L}L_{L}g_{m}\right) + s\left(C_{1}R_{1}g_{m} + C_{1}C_{L}R_{L}g_{m} + C_{1}C_{L}R_{L}g_{m}\right)}$$

10.68 INVALID-ORDER-68 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{L_1 R_1 R_L g_m s}{C_1 C_L L_1 R_1 R_L s^3 + R_1 + s^2 \left(C_1 L_1 R_1 + C_L L_1 R_1 R_L g_m + C_L L_1 R_L \right) + s \left(C_L R_1 R_L + L_1 R_1 g_m + L_1 \right)}$$

10.69 INVALID-ORDER-69 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_1 L_L R_1 g_m s^2}{C_1 C_L L_1 L_L R_1 s^4 + R_1 + s^3 \left(C_L L_1 L_L R_1 g_m + C_L L_1 L_L \right) + s^2 \left(C_1 L_1 R_1 + C_L L_L R_1 \right) + s \left(L_1 R_1 g_m + L_1 \right)}$$

10.70 INVALID-ORDER-70 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

$$H(s) = \frac{L_{1}L_{L}R_{1}R_{L}g_{m}s^{2}}{C_{1}C_{L}L_{1}L_{L}R_{1}R_{L}+s^{3}\left(C_{1}L_{1}L_{L}R_{1}+C_{L}L_{1}L_{L}R_{1}g_{m}+C_{L}L_{1}L_{L}R_{L}\right)+s^{2}\left(C_{1}L_{1}R_{1}R_{L}+C_{L}L_{L}R_{1}R_{L}+L_{1}L_{L}R_{1}g_{m}+L_{1}L_{L}\right)+s\left(L_{1}R_{1}R_{L}g_{m}+L_{1}R_{L}+L_{L}R_{1}g_{m}+L_{1}R_{L}+L_{L}R_{1}\right)}$$

10.71 INVALID-ORDER-71 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{C_L L_1 L_L R_1 R_L g_m s^3 + L_1 L_L R_1 g_m s^2 + L_1 R_1 R_L g_m s}{C_1 C_L L_1 L_L R_1 s^4 + R_1 + s^3 \left(C_L L_1 L_L R_1 g_m + C_L L_1 L_L \right) + s^2 \left(C_1 L_1 R_1 + C_L L_L R_1 \right) + s \left(L_1 R_1 g_m + L_1 \right)}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_L L_1 L_L R_1 R_L g_m s^3 + L_1 R_1 R_L g_m s}{C_1 C_L L_1 L_L R_1 s^4 + R_1 + s^3 \left(C_1 C_L L_1 R_1 R_L + C_L L_1 L_L R_1 g_m + C_L L_1 L_L\right) + s^2 \left(C_1 L_1 R_1 + C_L L_1 R_1 R_L g_m + C_L L_1 R_1 + C_L L_1 R_1 R_L g_m + C_L R_1 R_L g_m$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 L_1 R_1 g_m s^2 + L_1 g_m s + R_1 g_m}{C_L L_1 g_m s^2 + s^3 \left(C_1 C_L L_1 R_1 g_m + C_1 C_L L_1 \right) + s \left(C_L R_1 g_m + C_L \right)}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{C_{1}L_{1}R_{1}R_{L}g_{m}s^{2} + L_{1}R_{L}g_{m}s + R_{1}R_{L}g_{m}}{R_{1}g_{m} + s^{3}\left(C_{1}C_{L}L_{1}R_{1}R_{L}g_{m} + C_{1}C_{L}L_{1}R_{L}\right) + s^{2}\left(C_{1}L_{1}R_{1}g_{m} + C_{1}L_{1} + C_{L}L_{1}R_{L}g_{m}\right) + s\left(C_{L}R_{1}R_{L}g_{m} + C_{L}R_{L} + L_{1}g_{m}\right) + 1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_1 C_L L_1 R_1 R_L g_m s^3 + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_L L_1 R_L g_m \right) + s \left(C_L R_1 R_L g_m + L_1 g_m \right)}{C_L L_1 g_m s^2 + s^3 \left(C_1 C_L L_1 R_1 g_m + C_1 C_L L_1 \right) + s \left(C_L R_1 g_m + C_L \right)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_1 C_L L_1 L_L R_1 g_m s^4 + C_L L_1 L_L g_m s^3 + L_1 g_m s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_L L_L R_1 g_m \right)}{C_L L_1 g_m s^2 + s^3 \left(C_1 C_L L_1 R_1 g_m + C_1 C_L L_1 \right) + s \left(C_L R_1 g_m + C_L \right)}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_1L_1L_LR_1g_ms^3 + L_1L_Lg_ms^2 + L_LR_1g_ms}{C_LL_1L_Lg_ms^3 + L_1g_ms + R_1g_m + s^4\left(C_1C_LL_1L_LR_1g_m + C_1C_LL_1L_L\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_LL_LR_1g_m + C_LL_L\right) + 1}$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_{1}C_{L}L_{1}L_{L}R_{1}g_{m}s^{4} + R_{1}g_{m} + s^{3}\left(C_{1}C_{L}L_{1}R_{1}R_{L}g_{m} + C_{L}L_{1}L_{L}g_{m}\right) + s^{2}\left(C_{1}L_{1}R_{1}g_{m} + C_{L}L_{1}R_{L}g_{m} + C_{L}L_{1}R_{1}g_{m}\right) + s\left(C_{L}R_{1}R_{L}g_{m} + L_{1}g_{m}\right)}{C_{L}L_{1}g_{m}s^{2} + s^{3}\left(C_{1}C_{L}L_{1}R_{1}g_{m} + C_{1}C_{L}L_{1}\right) + s\left(C_{L}R_{1}g_{m} + C_{L}L_{1}R_{1}g_{m}\right) + s\left(C_{L}R_{1}R_{L}g_{m} + L_{1}g_{m}\right)}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2 + L_Ls + R_L}\right)$$

$$H(s) = \frac{C_{1}L_{L}R_{1}R_{L}g_{m}s^{3} + L_{1}L_{L}R_{L}g_{m}s^{2} + L_{L}R_{1}R_{L}g_{m}s}{R_{1}R_{L}g_{m} + R_{L} + s^{4}\left(C_{1}C_{L}L_{1}L_{L}R_{1}g_{m} + C_{1}C_{L}L_{1}L_{L}R_{1}g_{m} + C_{1}L_{1}L_{L}R_{1}g_{m} + C_{1}L_{1}L_{L}R_{1}g_{m} + C_{1}L_{1}R_{L}g_{m} + C_$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{C_LL_LR_Ls^2 + L_Ls + R_L}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{C_1C_LL_1L_LR_1R_Lg_ms^4 + R_1R_Lg_m + s^3\left(C_1L_1L_LR_1g_m + C_LL_1L_LR_Lg_m\right) + s^2\left(C_1L_1R_1R_Lg_m + C_LL_LR_1R_Lg_m + L_1L_Lg_m\right) + s\left(L_1R_Lg_m + L_LR_1g_m\right) + s\left(L_1R_1g_m + L_LR_1g_m\right) + s\left(L_1R_1g_m$$

10.81 INVALID-ORDER-81
$$Z(s) = \begin{pmatrix} C_1 \int_{C_1^{-1} C_1^{-1} C_2^{-1} C_2^{-1$$

11 PolynomialError