Uogólnione modele liniowe

Laboratorium nr 9

- 9.1 Rozważamy zbiór **gator.data**, z danymi o 219 aligatorach schwytanych w czterech jeziorach Florydy (odpowiednio: Hancock, Oklawaha, Trafford, George). Zmienną (nominalną) odpowiedzi jest *food* (pięć kategorii pożywienia znajdowanego w żołądkach krokodyli, odpowiednio: ryby, bezkręgowce, gady, ptaki, inne). Zmienna *size* ma dwie wartości, odpowiadające kategoriom ≤ 2.3m i > 2.3m. Zmienna *gender* ma dwie wartości (1=male, 2=female). Celem zadania jest zbadanie wpływu zmiennych *lake* (L), *gender* (G) i *Size* (S) na typ pożywienia (*food*,F).
 - (a) Za pomocą funkcji multinom z biblioteki nnet, która dopasowuje modele logitowe dla odpowiedzi nominalnych, dopasować modele:
 - i. minimalny,
 - ii. F \sim G, F \sim S, F \sim L
 - iii. analogicznie modele uwzględniające addytywny wpływ par zmiennych G,S,L
 - iv. model $F \sim G + S + L$
 - v. model wysycony $F \sim G * S * L$ (kodowanie fitS<-multinom(food~lake*size*gender,data=...)

Jak wybiera się kategorię referencyjną w multinom?

(b) Dla każdego z modeli zbadać jakość dopasowania obliczając

deviance(model)-deviance(model wysycony)

- (c) Przeprowadzić analogiczne analizy po zagregowaniu danych ze względu na G.
- (d) Dla danych zagregowanych ze względu na płeć i modelu F~L+S, obliczyć wartości dopasowane (fitted values) i porównać je z wartościami obserwowanymi.
- (e) Na podstawie powyższego punktu obliczyć wartość statystyki X^2 i porównać ją z odpowiednią różnicą dewiacji.
- (f) Dla danych zagregowanych ze względu na płeć i modelu F~L+S, pisząc

library(MASS) # potrzeba funkcji vcov summary(nazwa modelu, cor = F)

oszacować wpływ jeziora i rozmiaru aligatora na szanse tego, że wybierze on inne niż ryby zasadnicze źródła pożywienia. Sprawdzić w szczególności, że równanie predykcyjne dla logarytmu szans wyboru bezkręgowców zamiast ryb to

$$\log \left(\hat{\pi}_{\text{bezkreg}} / \hat{\pi}_{\text{ryby}} \right) = -1.55 + 1.46s - 1.66z_H + 0.94z_O + 1.12z_T, \tag{1}$$

gdzie s=1, gdy rozmiar jest ≤ 2.3 i s=0 w przeciwnym przypadku, z_H jest zmienną indykatorową (dummy variable) dla jeziora Hancock (tzn. $z_H=1$, gdy aligator pochodzi z Hancock i $z_H=0$ w p.p.), z_T i z_O to zmienne indykatorowe dla jezior Trafford i Oklawaha.

- (g) Na podstawie poprzedniego punktu: wyestymować prawdopodobieństwo tego, że duży aligator z jeziora Hancock wybierze bezkręgowce jako główne źródło swojego pożywienia.
- (h) Napisać równanie predykcyjne dla logarytmu szans wyboru bezkręgowców zamiast elementów kategorii "inne".
- (i) Eksperymentalnie ustalić (np. na podstawie modelu F~L+S) wpływ wyboru kategorii referencyjnej na estymatory $\widehat{\beta}$ i $\widehat{\pi}$.