

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190302003

FCC REPORT

Applicant: MOVILTELCO TRADE, S.L

Address of Applicant: ABTAO, 25-1Floor A-office MADRID Spain

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A86, A86A, A86B, A86C, A86D

Trade mark: mtt

FCC ID: 2ACQKTELCO020

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Mar., 2019

Date of Test: 12 Mar., to 27 Mar., 2019

Date of report issued: 28 Mar., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Mar., 2019	Original

Test Engineer

Reviewed by: Date: 28 Mar., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	20
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	46
7	TES	T SETUP PHOTO	54
Q	FIIT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (c)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Page: The ELIT complies with the assential requirements in the standard				

Pass: The EUT complies with the essential requirements in the standard. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L	
Address:	ABTAO, 25-1Floor A-office MADRID Spain	
Manufacturer/Factory:	MOVILTELCO TRADE, S.L	
Address:	6 floor, building 2, Zhenyan industrial park, No.1 xiangxing road, lanlian, longgang District, Shenzhen, China.	

5.2 General Description of E.U.T.

Product Name:	mobile phone	
Model No.:	A86, A86A, A86B, A86C, A86D	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	External Antenna	
Antenna gain:	-2.2dBi	
Power supply:	Rechargeable Li-ion Battery DC3.7V, 1400mAh	
AC adapter:	US and Europe have the same adapter specifications Model: A86 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 500mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	
Remarks:	item No.: A86, A86A, A86B, A86C, A86D were identical inside, the electrical circuit design, layout, components used and internal wiring, only difference being model name	

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

Report No: CCISE190302003

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antonno	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
Loop Antenna	SURWARZBEUK	FINIZD1319D	00044	03-16-2019	03-15-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
BICOIILOG AITIEITIA	SCHWARZBECK	VOLD9103	497	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
TIOTT ATTEMA	SCHWARZBECK	DDI IA9 120D	910	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Due emplifier	HP	0447D	2044400250	03-07-2018	03-06-2019
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020
Dro omplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G16	11004	03-07-2019	03-06-2020
Spootrum analyzar	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Ronde & Schwarz	F3F3U	101454	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMIT (D)	D 1 1 0 0 1	E0007	404070	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
O-lil-	70501	7400 NII NII 04	4000450	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	MICRO-COAX	WFK04039	K10742-5	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
Cable	SURINER	SUCUFLEXIUU	30193/4PE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
EIVII Test Receiver	Ronde & Schwarz	ESCI	101109	03-07-2019	03-06-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	0704	03-07-2018	03-06-2019	
Puise Limiter	SCHWARZBECK	USKAWI 2306	9731	03-07-2019	03-06-2020	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cabla	D.	105024	N/A	03-07-2018	03-06-2019	
Cable	HP	10503A		03-07-2019	03-06-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -2.2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	15.207			
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz			
Limit:	Frequency range	Limit (c	dBuV)		
	(MHz)				
	0.15-0.5				
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the log 1. The E.U.T and simu	anthm of the frequency. Ilators are connected to the			
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	LISN	E.U.T EMI Receiver	Iter — AC power		
Test Instruments:	Refer to section 5.8 for o	details			
Test mode:	Refer to section 5.3 for details				
Toot regulter	Doggod				
Test results:	Passed				

Measurement Data:

Product name:	mobile phone	Product model:	A86
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark

cemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
200	MHz	dBu∀	dB	₫B	dBu∀	dBu∜	<u>dB</u>	
1	0.162	29.11	0.17	10.77	40.05	65.34	-25.29	QP
1 2 3 4 5 6 7 8	0.166	14.59	0.17	10.77	25.53	55.16	-29.63	Average
3	0.327	31.22	0.13	10.73	42.08	59.53	-17.45	QP
4	0.327	17.76	0.13	10.73	28.62	49.53	-20.91	Average
5	0.481	16.12	0.12	10.75	26.99	46.32	-19.33	Average
6	0.535	26.93	0.12	10.76	37.81	56.00	-18.19	QP
7	0.665	17.09	0.13	10.77	27.99	46.00	-18.01	Average
8	0.697	26.20	0.13	10.77	37.10	56.00	-18.90	QP
	0.974	12.53	0.13	10.86	23.52	46.00	-22.48	Average
10	1.000	25.59	0.13	10.87	36.59	56.00	-19.41	QP
11	1.236	23.30	0.13	10.90	34.33	56.00	-21.67	QP
12	2.500	12.04	0.15	10.94	23.13	46.00	-22.87	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	mobile phone	Product model:	A86
Test by:	YT	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	<u>d</u> B	
1	0.158	27.80	0.98	10.77	39.55	65.56	-26.01	QP
2	0.158	15.14	0.98	10.77	26.89	55.56	-28.67	Average
3	0.327	26.58	0.97	10.73	38.28	59.53	-21.25	QP
2 3 4 5 6 7 8 9	0.327	15.97	0.97	10.73	27.67	49.53	-21.86	Average
5	0.614	25.26	0.97	10.77	37.00	56.00	-19.00	QP
6	0.614	16.82	0.97	10.77	28.56	46.00	-17.44	Average
7	0.697	24.95	0.97	10.77	36.69	56.00	-19.31	QP
8	0.731	16.22	0.97	10.78	27.97	46.00	-18.03	Average
9	1.016	10.95	0.97	10.87	22.79	46.00	-23.21	Average
10	1.049	23.35	0.97	10.88	35.20	56.00	-20.80	QP
11	2.500	11.73	0.99	10.94	23.66	46.00	-22.34	Average
12	2.540	21.61	0.99	10.94	33.54	56.00	-22.46	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Max	Limit(dBm)	Popult				
Test CH	802.11b	802.11g	802.11n(H20) 802.11n(H40)		Limit(ubin)	Result	
Lowest	17.17	14.49	14.40	13.93			
Middle	17.23	14.57	14.58	13.77	30.00	Pass	
Highest	17.33	14.58	14.56	13.77			

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		6dB Emission B	Limit/k∐→	Result			
Test Cn	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Nesuit	
Lowest	9.28	15.52	15.28	35.52			
Middle	9.76	15.58	15.28	35.52	>500	Pass	
Highest	9.76	15.28	15.28	35.68			
Test CH		99% Occupy Ba	andwidth (MHz)		Limit/kU=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Nesuit	
Lowest	12.96	16.48	17.60	36.00			
Middle	12.88	16.48	17.60	35.84	N/A	N/A	
Highest	12.88	16.48	17.60	35.84		1	

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU		Limit(dDm)	Dogult				
Test CH 802.11b		802.11g	802.11g 802.11n(H20) 802.11n(H40)		Limit(dBm)	Result	
Lowest	7.83	2.60	2.45	-1.40		Pass	
Middle	7.89	2.61	2.58	-1.78	8.00		
Highest	7.31	2.26	2.62	-1.56			

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emis	ssion Method							
Test Requirement:	FCC F	Part 15 C	Section 15.20	9 and 15.205				
Test Method:	ANSI	C63.10: 2	013 and KD	B 558074				
Test Frequency Ra	ange: 2.3GH	2.3GHz to 2.5GHz						
Test Distance:	3m							
Receiver setup:	Fred	quency	Detector	RBW		BW	Remark	
	Above	1GHz	Peak	1MHz		MHz	Peak Value	
Limit:		Frequenc	RMS v Li	1MHz nit (dBuV/m @		ИHz 	Average Value Remark	
LIIIII.				54.00	,0111)	A	verage Value	
		Above 1GI		74.00			Peak Value	
Test Procedure:	2. T a tt 2. T a tt 3. T tt E n 4. F c n tc 5. T S 6. If	 antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 						
Test setup:		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AE EUT (Turntable)	3m Ground Reference Plane	Pre-Amplier Co	Antenna Tor	wer	
Test Instruments:	Refer	to section	5.8 for detai	ls				
Test mode:	Refer	to section	5.3 for detai	s				
Test results:	Passe	ed						
		_	_	_				

802.11b mode:

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMARI	к :	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000		27.37 27.37		0.00 0.00			-23.29 -12.43	Peak Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	: mol	mobile phone				roduct M	odel:	A86	A86		
est By:	YT				T	est mode	:	802.1	802.11b Tx mode		
est Channel:	Lov	vest chan	nel		P	Polarization:			ontal		
Γest Voltage:	AC	120/60Hz	<u>z</u>		Е	nvironme	ent:	Temp:	: 24℃ Huni: 57%		
					•						
110 L	evel (dBuV/m)										
100											
11									m		
80								FC@ P	ART 15 (PK)		
60			. 0.4400	0-0		0. 0.		A FCC P	ART 15 (AV)		
	am m		and and	My mo m	Many M	MANN-	2				
40											
20											
0	310 2320		235	50					2422		
-			-		uency (MHz	2)					
REMAR	CK:		V		_						
	Freq		Antenna Factor		Factor		Limit Line	Over Limit	Remark		
	MHz	₫₿u₹	dB/m	dB	−−−dB	dBuV/m	dBuV/m	<u>dB</u>			
	2390.000	17.71			0.00	51.45	74.00	-22.55	Peak Average		
1 2	2390.000	7.83	27.37								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	mobile phone				roduct Mo	del:	A86			
Test By:	YT				Te	est mode:		802.11	802.11b Tx mode		
Test Channel:	High	nest chanr	nel		Po	olarization	ո։	Vertica	Vertical		
Test Voltage:	AC	120/60Hz			Eı	nvironme	nt:	Temp:	24 ℃ Huni	: 57%	
110 Level	(dBuV/m)										
100											
	1	1									
80								FCC F	PART 15 (PK)		
60			1								
				Javo	1-Nn	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FCCF	PART 15 (AV)		
40					2						
20											
2452				Eroc	uency (MH:	7)	2500		2520		
DEMARK				1160	lucito (min	Lj					
REMARK	:	ReadA	ntenna	Cable	Preamp		Limit		122		
	Freq					Level		Limit	Remark		
	MHz	dBu∜	dB/m	₫B	d₿	dBuV/m	dBuV/m	dB			
	483.500	18.84	27.57	4.81	0.00	52.92	74.00	-21.08	Peak		
2 24	483.500	8.75	27.57	4.81	0.00	42.83	54.00	-11.17	Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mol	oile phone			P	roduct Mo	del:	A86	A86		
Test By:	YT				To	est mode:		802.11	802.11b Tx mode Horizontal		
Test Channel:	High	hest chani	nel		P	olarizatio	n:	Horizo			
Test Voltage:	AC	120/60Hz			E	nvironme	nt:	Temp:	24℃ Huni: 5		
	<u> </u>										
110 Le	evel (dBuV/m)										
100											
		1									
80								ECC	PART 15 (PK)		
7			7					reci	PART 13 (PR)		
60			~		1			FCC	PART 15 (AV)		
					, was	~~~	~~~	No.	vinet.		
40											
20											
0 24	152						2500		2520		
				Freq	uency (MH:	z)					
REMAR	RK :				_			2			
	_	ReadA Level	Intenna Factor	Cable	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	Fred			300000000000000000000000000000000000000	100000000000000000000000000000000000000				70-12-10-10-10-10-10-10-10-10-10-10-10-10-10-		
	Freq		35 7=			Jp., 07=	3507				
	Freq MHz	—dBuV	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq							Limit	Remark	
MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
2390.000	7.42	27.37	4.69	0.00	41.16	54.00	-12.84	Average	
	MHz 2390.000	Freq Level MHz dBuV 2390.000 18.96	Freq Level Factor MHz dBuV dB/m 2390.000 18.96 27.37	Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 18.96 27.37 4.69	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2390.000 18.96 27.37 4.69 0.00	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 18.96 27.37 4.69 0.00 52.70	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2390.000 18.96 27.37 4.69 0.00 52.70 74.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 2390.000 18.96 27.37 4.69 0.00 52.70 74.00 -21.30	Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

Remark

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	mobile phone				roduct Mo	odel:	A86			
Гest By:	YT				Te	est mode		802.11	802.11g Tx mode		
Test Channel:	Low	est chanr	nel		P	Polarization:			ntal		
Test Voltage:	AC	120/60Hz			E	nvironme	nt:	Temp:	24 ℃ ⊢	luni: 57%	
110 Level	(dBuV/m)									_	
100											
80								FCC	PART 15 (PK	J	
								1		Ţ	
60							1.	FCC	PART 15 (AV	7)	
~~	manyor	m	mulm	~~~~	m	m	mora				
40											
20											
0											
2310	2320		23	50 Free	quency (MH	(z)			2	422	
REMARK						10.5					
KENIAKK	:	ReadA	Intenna	Cable	Preamp		Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBu√/m	dB			
1 23	90.000	19.33	27.37	4.69	0.00	53.07	74.00	-20.93	Peak		
	90.000		27.37	4 00	0 00		E4 00	10 00	Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	m	nobile phone	•		P	roduct Me	odel:	A86			
Гest By:	Y	Т			T	est mode	:	802.1	802.11g Tx mode		
Test Channel:	Н	lighest chan	nel		P	olarizatio	n:	Horizo	Horizontal		
Test Voltage:	А	.C 120/60Hz			Е	Environment:			24℃	Huni: 57%	
	•										
110 Le	evel (dBuV/m)				1					
100	~~~	~~~									
/			1								
80/			1					FC	C PART 15	(PK)	
			1	M	1						
60					Im		~~~~	FC	C PART 15	(AV)	
									10.7		
40											
20											
20											
0	150				H		2500			2520	
24	152			Fre	equency (Mi	Hz)	2500			2520	
REMAR	K.	:									
	Fre	Read! q Level			Preamp Factor		Limit Line	Over Limit	Remark		
	MH	z dBuV	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB			
1 2	2483.50 2483.50		27.57 27.57	4.81 4.81	0.00 0.00	64.18	74.00 54.00			2	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	mob	ile phone			Pı	oduct Mo	odel:	A86			
Test By:	YT				Te	est mode:		802.11	802.11n(HT20) Tx mode		
Test Channel:	Low	est chann	el		Po	Polarization: Veri			al		
Test Voltage:	AC ·	120/60Hz			Eı	nvironme	nt:	Temp:	24℃ Huni: 57		
110 Lev	el (dBuV/m)					-1					
100											
								~	mmy		
80								FCC	PART 15 (PK)		
00000											
60	~~~	Marine	moon	. (~\mathcal{O}) an .	~ ~ ~ ~		non/ /	FCC	PART 15 (AV)		
40	9	. n Christ 414		/V - D-W	4 .7	4. 4. 6.44	2				
40											
20											
0231	0 2320		23						2422		
				Fred	uency (MH	z)					
REMARK	:	Readú	intenna	Cable	Preamn		Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level			Remark		
-	MHz	dBu₹		₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>			
	2390.000	20.50		4.69	0.00	54.24	74.00	-19.76	Peak		
2	2390.000	8.76	27.37	4.69	0.00	42.50	54.00	-11.50	Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mok	mobile phone				roduct Mo	del:	A86		
est By:	YT				Te	est mode:		802.11n(HT20) Tx mode		
est Channel:	Low	est chanr	nel		Po	olarization	1:	Horizoi	Horizontal	
Test Voltage:	AC	120/60Hz	:		Er	nvironme	nt:	Temp:	24 ℃	Huni: 57%
110 Le	vel (dBuV/m)									_
100			-							-
									mon	_
80								FCC F	PART 15 (PI	O
20										
60	man and many	~~~ ~~~	marin	mmm	1 marrie	and and	mw	FCCF	PART 15 (A)	/)
40	38 1 7					.,,	2			
20										
										1
023	10 2320		23			W			2	422
0 23	10 2320		23		quency (MH:	z)			2	2422
0 ₂₃		Read	y.	Freq			Limit	Ower	2	2422
			23s Antenna Factor	Freq	Preamp	- Table	Limit Line	Over Limit		422
			Antenna Factor	Cable Loss	Preamp Factor	- Table	Line			422
	(: Freq	Level dBuV	Antenna Factor ——dB/m 27.37	Cable Loss dB	Preamp Factor ————————————————————————————————————	Level	Line dBuV/m 74.00	Limit 	Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86					
Test By:	YT	Test mode:	802.11n(HT20) Tx mode					
Test Channel:	Highest channel	Polarization:	Vertical					
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%					
1 - 1/45								

REMAR	1000		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2 3 4	2483, 500 2483, 500 2484, 136 2484, 136	24. 34 12. 49 26. 72 14. 77	27.57 27.57 27.58 27.58	4.81 4.81 4.81 4.81	0.00 0.00 0.00 0.00	58.42 46.57 60.81 48.86	54.00 74.00	-13.19	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86					
Test By:	YT	Test mode:	802.11n(HT20) Tx mode					
Test Channel:	Highest channel	Polarization:	Horizontal					
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%					

REMARI	к :	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
7	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500			4.81 4.81	0.00 0.00			-13.20 -8.42	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86		
Test By:	YT	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		
110 Level (dBu	V/m)		Van vanna		

REMARK	:	D 1		6.11	D		T 1-14	^	
	Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2386.859	23.93	25.45	4.69	0.00	54.07	74.00	-19.93	Peak
2	2386.859	11.80	25.45	4.69	0.00	41.94	54.00	-12.06	Average
2	2390.000	22.24	25.45	4.69	0.00	52.38		-21.62	
4	2390.000	12.67	25.45	4.69	0.00	42.81	54.00	-11.19	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMAR	к :	Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2483.500 2483.500		25.66 25.66	4.81 4.81		50.29 40.33			Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mol	bile phone	<u> </u>		Pi	roduct Mo	del:	A86		
Test By:	YT	YT			Te	Test mode:		802.11	n(HT40) T	x mode
Test Channel:	Hig	Highest channel			Po	Polarization:		Horizo	Horizontal	
Test Voltage:	AC	120/60Hz			Eı	nvironme	nt:	Temp:	24 ℃	Huni: 57%
110 60 60 20	evel (dBuV/m)		·				34	FCC P	ART 15 (PK	0
024	432	24	150	Freq	uency (MHz	z)			2	500
REMAR	K : Freq	Level	intenna Factor	Loss	Factor	Level			Remark	
3	MHz	dBu∜	dB/m	₫B	₫₿	dBuV/m	dBuV/m	dB		
1 2 3 4	2483.500 2483.500 2484.057 2484.057	10.61	25.66 25.66 25.66 25.66	4.81 4.81 4.81 4.81	0.00	41.08 59.16	54.00 74.00	-14.84	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

OTT OUTGOOD ETTISSION			
Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.7.2 Radiated Emission Method

7.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:201	3						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value		
	Above 1GHz Peak 1MHz 3MHz Peak Value							
		RMS	1MHz	3M	1Hz	Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88MH		40.0			uasi-peak Value		
	88MHz-216MH		43.5			uasi-peak Value		
	216MHz-960M 960MHz-1GH		46.0 54.0			uasi-peak Value uasi-peak Value		
			54.0			Average Value		
	Above 1GHz		74.0			Peak Value		
Test Procedure:	1. The EUT wa	s placed on t	he top of a rot	ating t	able 0			
rest Flocedure.	1GHz)/1.5m The table was highest radia value. 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the means and the meters and the meters and to find the most of the test-reconspecified Base. 6. If the emission the limit specified base of the EUT whave 10dB meters and the limit specified base.	(above 1GHz as rotated 360 ation. It is set 3 meter ich was mour ich eight is var o determine total and vertice asurement. Is pected emissen the antenniche rota table aximum read eiver system andwidth with on level of the cified, then te would be reponargin would	above the grown and polarization was turned from the was turned from the was turned from the was turned from the maximum the was turned from the w	tound a etermine the interpretation of a value of a val	at a 3 ine the efference variable to four of the fine ante effect Fulled. Was 1 bed and emissione us	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees enction and OdB lower than d the peak values ions that did not sing peak, quasi-		
Test setup:	Below 1GHz EUT Turn Table Ground F							

Measurement Data (worst case):

Below 1GHz:

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMARK	:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor			Level			Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$		<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	74.135	39.61	8.67	1.61	29.69	20.20	40.00	-19.80	QP
2	85.598	41.31	9.19	1.87	29.60	22.77	40.00	-17.23	QP
3	134.559	41.14	8.42	2.34	29.30	22.60	43.50	-20.90	QP
4	141.330	40.98	8.17	2.42	29.27	22.30	43.50	-21.20	QP
1 2 3 4 5 6	204.238	34.47	11.67	2.87	28.80	20.21	43.50	-23.29	QP
6	267.546	35.00	13.41	2.86	28.51	22.76	46.00	-23.24	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A86
Test By:	YT	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	: Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	$\overline{-}\overline{dB}/\overline{m}$	āB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	āB	
1	54.643	31.93	13.27	1.34	29.80	16.74	40.00	-23.26	QP
2	102.719	31.62	11.87	1.96	29.51	15.94	43.50	-27.56	QP
3	178.758	42.96	9.75	2.72	28.98	26.45	43.50	-17.05	QP
4	207.123	42.40	11.78	2.86	28.78	28.26	43.50	-15.24	QP
5	251.180	37.26	13.31	2.81	28.54	24.84		-21.16	001-0 7- 300-08-
1 2 3 4 5	357.929	34.59	14.75	3.10	28.59	23.85		-22.15	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz										
				802.11b						
			Test ch	nannel: Lowe	est channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.62	30.94	6.81	41.82	44.55	74.00	-29.45	Vertical		
4824.00	49.12	30.94	6.81	41.82	45.05	74.00	-28.95	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.62	30.94	6.81	41.82	35.55	54.00	-18.45	Vertical		
4824.00	40.22	30.94	6.81	41.82	36.15	54.00	-17.85	Horizontal		
			Toot of	nannel: Mido	المحمدة عالم					
	Dood	Antonno		tector: Peak	l value		<u> </u>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.78	31.20	6.85	41.84	45.99	74.00	-28.01	Vertical		
4874.00	48.12	31.20	6.85	41.84	44.33	74.00	-29.67	Horizontal		
			Dete	ector: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.62	31.20	6.85	41.84	35.83	54.00	-18.17	Vertical		
4874.00	40.25	31.20	6.85	41.84	36.46	54.00	-17.54	Horizontal		
	Test channel: Highest channel									
				tector: Peak	value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.62	31.46	6.89	41.86	46.11	74.00	-27.89	Vertical		
4924.00	48.17	31.46	6.89	41.86	44.66	74.00	-29.34	Horizontal		
			Dete	ector: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.75	31.46	6.89	41.86	36.24	54.00	-17.76	Vertical		
4924.00	40.15	31.46	6.89	41.86	36.64	54.00	-17.36	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g						
	Test channel: Lowest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.82	30.94	6.81	41.82	45.75	74.00	-28.25	Vertical		
4824.00	48.25	30.94	6.81	41.82	44.18	74.00	-29.82	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.60	30.94	6.81	41.82	35.53	54.00	-18.47	Vertical		
4824.00	40.11	30.94	6.81	41.82	36.04	54.00	-17.96	Horizontal		
			Test ch	nannel: Mido	dle channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.78	31.20	6.85	41.84	45.99	74.00	-28.01	Vertical		
4874.00	48.55	31.20	6.85	41.84	44.76	74.00	-29.24	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.62	31.20	6.85	41.84	35.83	54.00	-18.17	Vertical		
4874.00	38.74	31.20	6.85	41.84	34.95	54.00	-19.05	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.55	31.46	6.89	41.86	46.04	74.00	-27.96	Vertical		
4924.00	50.12	31.46	6.89	41.86	46.61	74.00	-27.39	Horizontal		
				ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.55	31.46	6.89	41.86	36.04	54.00	-17.96	Vertical		
4924.00	41.17	31.46	6.89	41.86	37.66	54.00	-16.34	Horizontal		
Remark:	vol – Posoivo	r Pood lovel	Antonna Fa	otor i Coblo	Loop Proon	anlifior Footor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT20)										
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	49.62	36.06	6.81	41.82	50.67	74.00	-23.33	Vertical			
4824.00	48.52	36.06	6.81	41.82	49.57	74.00	-24.43	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	39.75	36.06	6.81	41.82	40.80	54.00	-13.20	Vertical			
4824.00	38.12	36.06	6.81	41.82	39.17	54.00	-14.83	Horizontal			
			Test ch	nannel: Midd	dle channel						
			De	tector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	48.87	36.32	6.85	41.84	50.20	74.00	-23.80	Vertical			
4874.00	49.23	36.32	6.85	41.84	50.56	74.00	-23.44	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical			
4874.00	40.02	36.32	6.85	41.84	41.35	54.00	-12.65	Horizontal			
				annel: High							
				tector: Peak	value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	48.72	36.58	6.89	41.86	50.33	74.00	-23.67	Vertical			
4924.00	49.58	36.58	6.89	41.86	51.19	74.00	-22.81	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical			
4924.00	40.20	36.58	6.89	41.86	41.81	54.00	-12.19	Horizontal			
Remark:	, 5	5			, –						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	40)					
				annel: Low						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	50.16	36.06	6.81	41.82	51.21	74.00	-22.79	Vertical		
4844.00	49.76	36.06	6.81	41.82	50.81	74.00	-23.19	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Vertical		
4844.00	40.09	36.06	6.81	41.82	41.14	54.00	-12.86	Horizontal		
			Test ch	nannel: Mido	lle channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.87	36.32	6.85	41.84	51.20	74.00	-22.80	Vertical		
4874.00	50.47	36.32	6.85	41.84	51.80	74.00	-22.20	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical		
4874.00	40.22	36.32	6.85	41.84	41.55	54.00	-12.45	Horizontal		
			Test ch	annel: High	est channel					
		T		tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	49.75	36.45	6.87	41.85	51.22	74.00	-22.78	Vertical		
4904.00	48.13	36.45	6.87	41.85	49.60	74.00	-24.40	Horizontal		
		,	Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	39.62	36.45	6.87	41.85	41.09	54.00	-12.91	Vertical		
4904.00	40.77	36.45	6.87	41.85	42.24	54.00	-11.76	Horizontal		
Remark:	vol Dogošivo	r Dood lovel	Antonno Fo	otor : Coblo	l oss – Pream	anlifiar Footor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.