Исследование функций и построение графиков

План исследования функции

1. Найти область определения функции.

Определение. Областью определения функции y = f(x) называется совокупность всех значений независимой переменной x, для которых функция y = f(x) определена.

2. Определить является функция четной, нечетной или общего вида.

Определение. Функция y = f(x), определенная на множестве D, называется четной, если $\forall x \in D$ выполняется условие $(-x) \in D$ и f(-x) = f(x), называется нечетной, если $\forall x \in D$ выполняется условие $(-x) \in D$ и f(-x) = -f(x).

График четной функции симметричен относительно оси O_y , график нечетной — относительно начала координат.

Если функция y = f(x) является четной или нечетной, то исследование можно провести только для $x \ge 0$ и при построении графика воспользоваться его симметричностью.

3. Определить является ли функция периодической.

Определение. Функция y = f(x), определенная на множестве D, называется периодической на этом множестве, если существует такое число T > 0, что для $\forall x \in D, (x+T) \in D$ и f(x+T) = f(x). При этом число T называется периодом функции.

Наименьшее положительное число T, удовлетворяющее равенству f(x+T) = f(x), является основным периодом функции.

Если функция периодическая, то исследование проводится на любом интервале, длина которого совпадает с основным периодом функции.

4. Определить координаты точек пересечения графика с осями координат, определить интервалы знакопостоянства функции.

5. Найти наклонные (в т.ч. горизонтальные) асимптоты и вертикальные асимптоты графика функции.

Прямая x = a является вертикальной асимптотой графика функции y = f(x), если $\lim_{x \to a \to 0} f(x) = \pm \infty$ или $\lim_{x \to a \to 0} f(x) = \pm \infty$, где a - точка разрыва или граничная точка области определения функций.

Прямая y = b является горизонтальной асимптотой графика функции y = f(x), если существует предел $\lim_{x \to +\infty} f(x) = b$.

Прямая y = kx + b является наклонной асимптотой графика функции y = f(x), если существуют пределы $\lim_{x \to \pm \infty} \frac{f(x)}{x} = k$ и $\lim_{x \to \pm \infty} [f(x) - kx] = b$.

При нахождении этих пределов удобно пользоваться правилом Лопиталя.

6. Найти точки экстремума и интервалы возрастания (убывания) функции.

Определение. Функция y = f(x) называется возрастающей (убывающей), если большему значению аргумента соответствует большее (меньшее) значение функции.

Возрастание и убывание функции характеризуется знаком ее производной y'.

Достаточные условия возрастания (убывания) функции. Если функция y = f(x) дифференцируема на интервале (a;b) и f'(x) > 0 (f'(x) < 0) для $\forall x \in (a;b)$, то эта функция возрастает (убывает) на (a;b).

Определение. Точка x_0 называется точкой максимума (минимума) функции, если существует такая δ -окрестность точки x_0 , что для всех $x \neq x_0$ из этой окрестности выполняется неравенство $f(x) < f(x_0)$, $(f(x) > f(x_0))$.

Максимум и минимум функции называется экстремумом функции. Функция y = f(x) может иметь экстремум только в тех точках, которые принадлежат области определения функции и в которых первая производная равна нулю или не существует. Такие точки называются критическими.

Достаточные условия экстремума

I Если непрерывная функция y = f(x), дифференцируема в некоторой δ - окрестности точки x_0 и при переходе через нее (слева направо) производная f'(x) меняет знак с плюса на минус, то x_0 есть точка максимума, с минуса на плюс, то x_0 - точка минимума.

II Если в точке x_0 первая производная функции f(x) равна нулю (f'(x) = 0), а вторая производная существует и отлична от нуля $(f''(x) \neq 0)$, то в точке x_0 функция имеет экстремум. Если f''(x) < 0 - максимум, если f''(x) > 0 - минимум.

7. Найти точки перегиба и интервалы выпуклости (вогнутости) графика функции.

Определение. График дифференцируемой функции y = f(x) называется выпуклым (вогнутым) на интервале (a;b), если он расположен выше (ниже) любой ее касательной на этом интервале.

Теорема. Если функция y = f(x) во всех точках интервала (a;b) имеет отрицательную вторую производную f''(x) < 0, то график функции в этом интервале выпуклый. Если же f''(x) > 0 $\forall x \in (a;b)$ - график вогнутый.

Точка графика непрерывной функции y = f(x), отделяющая его части выпуклости и вогнутости, является точкой перегиба.

Достаточное условие существования точек перегиба. Если вторая производная f''(x) при переходе через точку x_0 , в которой она равна нулю или не существует, меняет знак, то точка графика с абсциссой x_0 есть точка перегиба.

Результаты проведенного исследования функции рекомендуется свести в таблицу, в первой строке которой указываются все значения x, выделенные в результате исследования, как самой функции f(x), так и ее производных f'(x) и f''(x), а также интервалы, на которые данными точками разбивается область определения. Во второй строке указываются значения функции на каждом из выделенных интервалов. В третьей строке выделяются критические точки функции и указывается знак первой производной на каждом интервале. В четвертой строке — знак второй производной на каждом интервале. В последней строке по знакам f'(x) определяется характер монотонности функции, по знакам f''(x) выпуклость (вогнутость) графика функции, а также определяется характер выделенных точек (точки максимума, точки минимума, точки перегиба).

Построение графика функции рекомендуется начать с обозначения на координатной плоскости точек, выделенных в таблице и построения асимптот (если они есть). Для более точного построения можно вычислить значения функции в дополнительных точках.

Приведем примеры полного исследования функции:

Пример 1:
$$y = \sqrt[3]{x^3 - 3x}$$

1. Область определения:

$$D(x):(-\infty;+\infty)$$

2.
$$f(-x) = \sqrt[3]{(-x)^3 - 3(-x)} = -\sqrt[3]{x^3 - 3x} = -f(x)$$
 \Rightarrow функция нечетная.

- 3. Функция не является периодической.
- 4. $y = 0 \Rightarrow \sqrt[3]{x^3 3x} = 0$ $\Rightarrow x_1 = 0, x_2 = \sqrt{3}, x_3 = -\sqrt{3}$ -нули функции.

$$-\frac{+}{\sqrt{3}}$$
 $-\frac{+}{\sqrt{3}}$ (знаки у)

5. Функция непрерывна на всей области определения, поэтому вертикальных асимптот нет.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\sqrt[3]{x^3 - 3x}}{x} = 1$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \sqrt[3]{x^3 - 3x} - x = 1$$

$$= \lim_{x \to \pm \infty} \frac{x^3 - 3x - x^3}{\sqrt[3]{(x^3 - 3x)^2} + x\sqrt[3]{x^3 - 3x} + x^2} = 0$$

Прямая y = x является наклонной асимптотой графика функции.

6. Найдем первую производную:

$$f'(x) = \frac{1}{3} \left(x^3 - 3x \right)^{-\frac{2}{3}} \cdot \left(3x^2 - 3 \right) = \frac{x^2 - 1}{\sqrt[3]{\left(x^3 - 3x \right)^2}}$$

$$f'(x) = 0$$
 при $x_1 = -1$, $x_2 = 1$

$$f'(x)$$
 не существуют при $x_3 = 0$, $x_4 = -\sqrt{3}$, $x_5 = \sqrt{3}$

Используя достаточные условия экстремума, получаем, что x=1 - точка минимума, x=-1 -точка максимума.

4

7. Найдем вторую производную:

$$f''(x) = -\frac{2(x^2+1)}{(x^3-3x)^{\frac{5}{3}}}$$

$$f''(x) \neq 0$$
 $\forall x \in D(f)$ $f''(x)$ не существует при $x_1 = 0, x_2 = \sqrt{3}, x_3 = -\sqrt{3}$

В точках $x = \sqrt{3}$, $x = -\sqrt{3}$, x = 0 - перегиб графика.

Составим таблицу:

х	$\left(-\infty;-\sqrt{3}\right)$	$-\sqrt{3}$	$\left(-\sqrt{3};-1\right)$	-1	(-1;0)
у	-	0	+	$\sqrt[3]{2}$	+
y'	+		+		ı
y''	+		-		1
	U 1	пере- гиб	A	max	X

Продолжение таблицы

					Î	
x	0	(0;1	1	$(1;\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3};+\infty)$
у	0	-	$-\sqrt[3]{2}$	-	0	+
y'		-		+		+
y''		+		+		-
		B	min	8	пере- гиб	△ ≯

Строим график функции (рис.1).

Рис.1

Пример 2:
$$y = \frac{x^2}{x^2 - 4}$$

1. Область определения:

$$x^{2} - 4 \neq 0$$

$$x_{1} \neq 2, x_{2} \neq -2 \Rightarrow D(f) : (-\infty; -2) \cup (-2; 2) \cup (2; +\infty)$$

2.
$$f(-x) = \frac{(-x)^2}{(-x)^2 - 4} = \frac{x^2}{x^2 - 4} = f(x)$$

 \Rightarrow функция четная. Дальнейшее исследование проведем для $x \ge 0$.

3. Функция не является периодической.

5. Поскольку x = 2 и x = -2 - точки разрыва

$$\text{II} \lim_{x \to 2-0} \frac{x^2}{x^2 - 4} = -\infty, \quad \lim_{x \to -2-0} \frac{x^2}{x^2 - 4} = +\infty$$

$$\lim_{x \to 2+0} \frac{x^2}{x^2 - 4} = +\infty, \quad \lim_{x \to -2+0} \frac{x^2}{x^2 - 4} = -\infty,$$

то x = 2 и x = -2 - вертикальные асимптоты.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 4}{x^2 \cdot x} = 0,$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \frac{x^2 - 4}{x^2} = 1,$$

 \Rightarrow y = 1 - горизонтальная асимптота.

6. Найдем первую производную:

$$f'(x) = \frac{-8x}{(x^2 - 4)^2}$$

$$f'(x) = 0$$
 при $x = 0$

f'(x) не существует при $x_1 = 2, x_2 = -2$.

x = 0 - точка максимума.

7. Найдем вторую производную:

$$f''(x) = \frac{8(3x^2 + 4)}{(x^2 - 4)^3}$$

$$f''(x) \neq 0$$
 при $\forall x \in D(f)$

$$f''(x)$$
 не существует при $x_1 = 2, x_2 = -2$

Т.к. при $x = \pm 2$ функция f(x) не определена, то точек перегиба нет.

Составим таблицу:

х	0	(0;2)	2	(2;+∞)
у	0	ı	Не существует	+
y'		-		1
y''		-		+
	max	α	Вертикальная асимптота	√ √

Строим график функции для $x \in [0;+\infty)$, затем на интервале $(-\infty;0)$ строим линию, симметричную относительно оси Oy (рис.2).

Рис.2

Пример 3:
$$y = \frac{\sin x}{\sin\left(x + \frac{\pi}{4}\right)}$$

1. Область определения:

Функция определена для всех x, для которых $\sin\left(x + \frac{\pi}{4}\right) \neq 0$,

T.e.
$$x \neq -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
.

2. Функция не является ни четной, ни нечетной.

3.
$$f(x+T) = \frac{\sin(x+T)}{\sin(x+T+\frac{\pi}{4})} = \frac{\sin x}{\sin(x+\frac{\pi}{4})}$$
 при $T = \pi$

 π - основной период, основной промежуток $[0;\pi]$.

4. y = 0 при $\sin x = 0, \Rightarrow x = \pi n, n \in \mathbb{Z}$.

Промежутку $[0;\pi]$ принадлежат точки $x_1=0, x_2=\pi$.

5. В промежутке $[0;\pi]$ одна точка разрыва $x = \frac{3\pi}{4}$, в остальных точках функция непрерывна.

8

$$\lim_{x \to \frac{3\pi}{4} - 0} \frac{\sin x}{\sin\left(x + \frac{\pi}{4}\right)} = +\infty, \quad \lim_{x \to \frac{3\pi}{4} + 0} \frac{\sin x}{\sin\left(x + \frac{\pi}{4}\right)} = -\infty.$$

Прямая $x = \frac{3\pi}{4}$ - вертикальная асимптота.

Наклонных и горизонтальных асимптот нет.

6. Найдем первую производную:

$$f'(x) = \frac{\sqrt{2}}{\sin^2\left(x + \frac{\pi}{4}\right)}$$

$$f'(x) \neq 0$$
 при $\forall x \in D(f)$,

f'(x) не существует при $x = \frac{3\pi}{4}$.

$$\frac{1}{2}$$
 + $\frac{1}{2}$ (знаки y')

Следовательно, точек экстремума нет.

7. Найдем вторую производную:

$$f''(x) = \frac{-\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)}{\sin^3\left(x + \frac{\pi}{4}\right)}$$
$$f''(x) = 0, \text{ если } \cos\left(x + \frac{\pi}{4}\right) = 0,$$
$$\text{т.e. } x = \frac{\pi}{4} + \pi n, n \in Z$$

Из этого множества промежутку $[0;\pi]$ принадлежит точка $x = \frac{\pi}{4}$.

$$f''(x)$$
 не существует при $x = \frac{3\pi}{4}$.

Составим таблицу:

x	0	$\left(0;\frac{\pi}{4}\right)$	$\frac{\pi}{4}$	$\left(\frac{\pi}{4}; \frac{3\pi}{4}\right)$	$\frac{3\pi}{4}$	$\left(\frac{3\pi}{4};\pi\right)$	π
у	0	+	$\frac{\sqrt{2}}{2}$	+	$-\infty/+\infty$	-	0
<i>y</i> '		+		+		+	
y''		-		+		-	
		À	пе- ре- гиб	∪ _A	верти- каль- ная асим- птота	7	

Строим график функции на промежутке $[0;\pi]$, затем используем ее периодичность (рис.3).

9

Пример 4: Найти наибольшее и наименьшее значения функции $y = 5x - x^5$ на отрезке [0;3].

1. Найдем критические точки на [0;3]

$$y' = 5 - 5x^4$$

$$y'=0$$
 при $5-5x^4=0$

$$x_1 = 1, x_2 = -1$$

$$x = -1$$
 не принадлежит [0;3] \Rightarrow

2. Вычислим значения функции в критической точке x = 1 и на концах отрезка x = 0, x = 3.

$$y(1) = 4$$

$$y(0) = 0$$

$$y(3) = -238$$

3. Среди полученных значений функции выберем наибольшее и наименьшее:

$$y_{\text{наибольшее}} = 4$$

$$y_{\text{наименьшее}} = -238$$