2019 年非专业级软件能力认证模拟 CCF-CSP-2019

提高级(第二轮) 第二次认证

题目名称	考试	球	树堆
题目类型	传统型	传统型	传统型
目录	test	ball	treap
可执行文件名	test	ball	treap
输入文件名	test.in	ball.in	treap.in
输出文件名	test.out	ball.out	treap.out
每个测试点时限	1.0秒	1.0秒	2.0 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	10	20
每个测试点分值	5	10	5

提交源程序文件名

对于 C++ 语言	test.cpp	ball.cpp	treap.cpp
对于 C 语言	test.c	ball.c	treap.c
对于 Pascal 语言	test.pas	ball.pas	treap.pas

编译选项

对于 C++ 语言	-1m	-1m	-1m
对于 C 语言	-lm	-lm	-lm
对于 Pascal 语言			

注意事项:

- 1. 考试时间: 3.5 小时
- 2. 文件名(程序名和输入输出文件名)必须使用英文小写。提交文件名为: 学校名+本人姓名。
- 3. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 4. C/C++中的函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 5. 需要建子文件夹
- 6. 只提供 Linux 格式附加样例文件。
- 7. 评测在 NOI Linux 下进行。
- 8. 编译时不打开任何优化选项。

考试 (test)

【问题描述】

小 S 要参见一场考试,这场考试一共有 k 道题目。每道题目有<u>分值</u> a_i ,<u>难度</u> z_i 和 **类型** s_i 。这些题目一共有 m 中不同的类型。

由于小 S 偏科严重,所以对不同类型的题目熟练度可能不同,在第 i 种<u>类型</u>的题目**熟练度**为 $\mathbf{v_i}$ 。

为了简化问题, 我们认为当小 S 以 y 的熟练度做难度为 z 分值为 a 的题目时,

会获得
$$a \cdot \left(1 - \max\left(0, 1 - \frac{y}{z}\right)^2\right)$$
 的分数。

众所周知,做题不顺利可能影响心态和发挥,在这里我们认为,如果小 S 在某一道题目的得分<u>低于</u>总分的 64%,那么接下来做题<u>熟练度</u>会<u>下降</u>。具体来说,接下来的 第 i 道题熟练度会下降 c_i%。每一道题只会受到之前最后一次分数低于 64% 的影响。 (就是说如果第 t 道题的分数小于满分的 64%,那么第 t+i 道题的熟练度会下降 Ci%。 同时,如果有多道题分数小于满分的 64%,只有最后一次会有影响。比如说第 1 道题分数小于 64%那么第 3(即 1+2)题会下降 C2%,接下来第 4 题又低于 64%那么第 5(即 4+1) 题会下降 C1%。)

根据目前的描述,已经可以确定出小 S 在每道题的得分了。但是小 S 有 n 瓶神奇的<u>饮料</u>,在做题时喝掉第 i 瓶饮料可以让这道题的熟练度<u>提高</u> x_i %。每瓶饮料只能在一道题喝,做一道题时可以喝多瓶饮料。

熟练度的下降和上升是**依次进行**,每次都按当前的百分比计算。简单来说,就是在原来的熟练度上乘 $1 \pm u\%$ 。

现在问小 S 的总分最高是多少。

【输入格式】

从输入文件 test.in 中读入数据。

第一行三个整数n, m, k, 分别表示饮料的瓶数、题目类型的数量和试题的数量。

第二行 n 个整数 x_1, x_2, \dots, x_n ,表示饮料能带来的提升

第三行 m 个整数 y_1, y_2, \dots, y_n , 表示每种题目类型的熟练度。

第四行 k-1 个整数 $c_1, c_2, \cdots, c_{k-1}$,表示做题不顺利对之后熟练度的下降程度。接下来 k 行,每行三个整数 a_i, s_i, z_i ,分别表示题目的分值、类型和难度。

【输出格式】

输出到文件 test.out 中。

输出一行一个实数,表示答案。四舍五入后保留两位小数输出。

【样例1输入】

1 1 2

10

100

50

100 1 260

100 1 200

【样例1输出】

141.72

【样例1解释】

一共一瓶饮料,可以选择在做第一题或第二题时喝。 如果在做第二题时喝:

做第一题的能力为 100, 得分为
$$100 \times \left(1 - \left(1 - \frac{100}{260}\right)^2\right) = 62 \frac{22}{169}$$
。

由于分数低于 64,所以第二题的能力会下降 50%,又由于饮料可以提高 10%,所以实际能力为 $100\times50\%\times110\%=55$ 。

于是第二题的得分为
$$100 \times \left(1 - \left(1 - \frac{55}{200}\right)^2\right) = 47 \frac{7}{16}$$
。

总得分为 109 1535 分。

可以类似计算出在选择在做第一题时喝的得分为 $141\frac{121}{169}$ 分,所以最高分为 $141\frac{121}{169}$ 分。

【样例 2】

见选手目录下的 test/test2.in 与 test/test2.ans。

【子任务】

测试点	n	m	k	约定
1			<i>-</i> 10	
2			≤ 10	
3	≤ 0	≤ 0 ≤ 10	≤ 100000	
4				
5			≤ 500000	
6			≥ 300000	无
7	≤ 1	≤ 5		
8		≥ 3		$c_i = 0$
9			≤ 15	
10	≤ 6			
11				
12		≤ 10	≤ 20	
13				
14	~ 10			$c_i = 0$
15	≤ 10			
16	≤ 7		≤ 100	无
17		≤ 1		<i>/</i> L
18	_ ≤8			$x_1 = x_2 = \dots = x_n$
19		≤ 10		无
20	≤ 10	≥ 10		<i>/</i> L

对于 100%的测试点,保证 $0 \le n \le 10,1 \le s_i \le m \le 10,1 \le k \le 5 \times 10^5,0 \le c_{k-1} \le c_{k-2} \le \cdots \le c_1 \le 100,1 \le a_i,y_i,z_i \le 10^5,1 \le x_i \le 1000$ 。

球 (ball)

【问题描述】

小 T 有 n 个桶和 2n-1 个球,其中第 i 个桶能装前 2i-1 个球。每个桶只能装一个球。

现在小 T 取了 m 个桶和 m 个球,并将这些球各自放在这些桶里。问这样的方案有多少。

两种方案不同当且仅当<u>选择</u>了<u>不同的桶或球</u>或者同一个桶在两种方案<u>放了不同的</u> 球。

由于方案的数量可能很大,所以只需要求方案数模 998244353 后的结果。

【输入格式】

从输入文件 ball.in 中读入数据。

第一行一个整数 T, 表示数据组数。

接下来 T 行,每行两个整数 n,m,含义见【问题描述】。

【输出格式】

输出到文件 *ball.out* 中。 输出共 T 行,每行一个整数表示一组数据的答案。

【样例1输入】

4

1 1

2 1

2 2

3 2

【样例1输出】

1

4

2

18

【样例1说明】

对于 n=m=1 的情况,只有选择第一个球和第一个桶,并将第一个球放在第一个桶里这一种方案。

对于 n=2, m=2 的情况,会选择所有桶,第一个桶里放的一定是第一个球,于是第二个桶里可以放第二个或第三个球,共两种方案。

【样例2输入】

4

1000 1

10000 1

100000 1

1000000 1

【样例2输出】

1000000

100000000

17556470

757402647

【子任务】

测试点编号	n	m
1	≤ 5	≤ 5
2	≤ 10	≤ 10
3	≤ 15	≤ 15
4	≤ 100	
5		≤ 100
6	- 100000	
7	≤ 100000	
8		≤ 100000
9	≤ 10 ⁷	≤ 10 ⁷
10	≥ 10,	≥ 10′

对于 100% 的测试点,保证 $1 \le T \le 10^5, 1 \le m \le n \le 10^7$ 。

树堆 (treap)

【问题描述】

小 D 有一棵 n 个节点的树,并给了每个节点一个 $1 \sim n$ 的编号。所有节点的编号是**互不相同**的。

由于小 \mathbf{D} 最近对堆十分感兴趣,所以他希望研究这棵树节点的堆性质。由于小 \mathbf{D} 比较小,所以他研究的是**小根堆**。

首先,小 D 选择了一个节点作为树的根。接下来对于树的每个节点,如果它的编号是以它为根的**子树中最小的**,那么小 D 就称这个节点满足**堆性质**。

由于小 D 之前分配编号是比较随意,所以可能存在不满足**堆性质**的节点。

设此时树中满足<u>堆性质</u>的节点有 \mathbf{k} 个,小 \mathbf{D} 认为这样整棵树的权值是 $\mathbf{p}^{\mathbf{k}}$,其中 \mathbf{p} 是一个小 \mathbf{D} 预先设置好的常数。

现在假设小 D 是从 n! 种方案中等概率随机一种编号的方案, 然后从 n 种方案中等概率随机一种选择根的方案, 那么树的权值的期望是多少?

可以证明期望一定是一个分数 $\frac{x}{y}$ (gcd(x,y) = 1), 你只需要求出这个分数模 998244353 的结果: $x \cdot y^{-1}$ mod 998244353 = $x \cdot y^{998244351}$ mod 998244353。

【输入格式】

从输入文件 treap.in 中读入数据。

第一行两个整数 n,p, 分别表示树的大小和小 D 设置的常数。

接下来 n-1 行,每行两个整数,表示树的一条边。

【输出格式】

输出到文件 treap.out 中。

输出一行一个整数,表示答案。

【样例1输入】

- 18 1
- 1 2
- 1 3
- 1 4
- 1 16
- 2 5
- 3 6
- 4 7

- 4 12
- 4 17
- 5 8
- 6 9
- 6 11
- 6 13
- 7 10
- 7 14
- 9 15
- 15 18

【样例1输出】

1

【样例1解释】

对任意的树,由于 $p^k = 1^k = 1$,所以权值都是 1,期望权值自然也是 1。

【样例 2 输入】

- 3 2
- 1 2
- 1 3

【样例2输出】

776412279

【样例2解释】

在所有方案中,权值为 2^1 有 4 种,权值为 2^2 有 10 种,权值为 2^3 有 4 种。 所以总权值为 80,期望权值为 $\frac{80}{18} = \frac{40}{9}$,模意义下为 776412279。

【样例3】

见选手目录下的 treap/treap3.in 与 treap/treap3.ans。

【子任务】

- 对于 10% 的测试点, 保证 $n \le 10$ 。
- 对于 20% 的测试点, 保证 $n \le 18$ 。
- 对于 30% 的测试点, 保证 $n \le 100$ 。
- 对于 50% 的测试点, 保证 n ≤ 1000。
- 对于另 10% 的测试点, 保证 $p \le 1$ 。
- 对于另 10% 的测试点,保证树是一条链。
- 对于另 10% 的测试点,保证树上存在一个点与其他点均相连。
- 对于 100% 的测试点, 保证 $1 \le n \le 10^6$, $0 \le p < 998244353$ 。