ACTIVITÉS D'INTRODUCTION AUX PROBABILITÉS

Exercice 1. "Maximum de deux dés"

On lance deux dés équilibrés à six faces numérotés de 1 à 6: un dé bleu et un dé rouge. On note le résultat du lancer sous la forme d'un couple.

Par exemple (2; 5) signifie que l'on a obtenu le 2 avec le dé bleu et 5 avec le dé rouge (mettre des couleurs si besoin).

QUESTIONS:

- 1. (a) Combien de couples différents peut-on obtenir?
 - (b) Quelle est la probabilité d'obtenir le couple (3; 5) et le couple (6; 6)?
- 2. On s'intéresse à l'expérience aléatoire suivante :

Après avoir lancé ces deux dés, on observe la valeur maximale des faces supérieures obtenues. Le couple (2; 5) donne ainsi un maximum de 5 et le couple (6; 6) donne ainsi un maximum de 6.

- (a) Remplir en Annexe 1 le tableau associé à cette expérience aléatoire.
- (b) Quelles sont les issues de cette expérience aléatoire, en déduire l'univers Ω associé à cette expérience aléatoire
- (c) En utilisant les questions précédentes, associer à chacune des issues possibles la probabilité qui lui correspond.

Exercice 2. "Notion d'évènements"

Dans un verger, trois variétés de pommes sont cultivées : des Golden Délicious (50% de la production), des Gala (30% de la production) et des Granny Smith. Malheureusement, ces variétés sont sensibles à une maladie appelée Tavelure. La Tavelure affecte 6% des pommiers Golden, 4% des Gala et 7% des Granny Smith.

On choisit un pommier et on note :

D l'évènement	"Le pommier est de variété Golden Délicious
G l'évènement	"Le pommier est de variété Gala"
S l'évènement	"Le pommier est de variété Granny Smith"
U l'évènement	"Le pommier n'est pas atteint de Tavelure"
T l'évènement	"Le pommier est atteint de Tavelure"

QUESTIONS:

- 1. Remplir le tableau présent en Annexe 2.
- 2. À partir de l'évènement T, on peut définir l'évènement contraire de l'évènement T, on le note \overline{T} . Ainsi $\overline{T} = U$.
 - (a) Donner les valeurs de P(T) et de $P(\overline{T})$.
 - (b) En déduire une relation entre P(T) et de $P(\overline{T})$
- 3. À partir du tableau en **Annexe 2**:
 - (a) Déterminer les probabilités $P(T \cap D)$, $P(\overline{T} \cap D)$ et $P(\overline{D} \cap T)$.
 - (b) Interpréter les trois probabilités précédentes dans le contexte. En déduire $P(T \cup D)$.
 - (c) Comparer P(T) + P(D) et $P(T \cup D) + P(T \cap D)$. Que remarque-t-on?

Annexe 1:

Dé bleu Dé rouge	1	2	3	4	5	6
1	1				5	
2	2					
3	3					
4						
5						
6		6				

Annexe 2:

Variété Maladie	D	G	S	TOTAL
U				
Т	0.03			
TOTAL	0.5			1