System-level Analysis and Verification of Mixers

Jaijeet Roychowdhury

ECE Dept, University of Minnesota, Twin Cities

Outline

- The big picture: system-level simulation of portable/RF front-ends
- Automated macromodelling and its role
- Automated macromodelling techniques for mixers (and other linear time-varying systems)

Market and Circuit Trends

Market Trend: Portable Devices

- Proliferation of small, cheap, ubiquitous devices
 - cellphones, PDAs, wireless LANs, Bluetooth, two-way paging, SMS
 - 802.11g/a, 2.5G networks
 - next: 3G, UMTS

Demand for Portable Commns.

- 2 billion users worldwide by 2007
 - Maximum growth: SE Asia and China
 - ✓ India: 28M users (Dec 2003); 100M projected, 2005
- US: Tenfold growth by 2005 (200x?)
 - \$22–\$140b (IDC, Merrill-Lynch)
 - exceed PC growth over last decade: <u>Intel</u>

Drivers for Demand

- Price
 - ✓ India: 2.1M new subscribers, Dec 2003
 - "driven by some of the lowest tariffs in the world"
- Competitive pressures
 - rapid time to market of new designs
- Design challenge: mixed-signal/RF blocks
 - the main design bottleneck

Integrated Bluetooth Transceiver

• Cheap • Low margins • Must work first time

Important Mixed-Signal Blocks

- Mixers, phase detectors, frequency dividers, VCOs, PLLs
- LNAs, power amps
- \blacksquare ADCs, $\Sigma \Delta$ s, DACs
- z-domain switched-capacitor ckts: baseband filtering
- DC-DC power converters
- System focus: deliver everything working together

Mixed-Signal Simulation Needs

- Correct, speedy noise simulation
 - mixers, oscillators, PLLs
 - issues: nonlinearity, cyclostationarity
- Faster basic time- and frequency-domain simulation
 - VCOs, PLLs, mixers, ...
 - issues: fast-slow dynamics, strong nonlinearities
- Research to production tool: "Time-to-market"
 - need effective transition path
 - issue: traditionally extremely slow
- Automated macromodelling techniques
 - enabler for effective hierarchical system verification
 - issues: nonlinearity, time-variation; oscillator dynamics

Today's Design Flow

Credits: McCorquodale et al, Univ Michigan • 3-5 spins = cutting edge; (10 at Lucent)

System-Verification-Based Design Flow

Credits: McCorquodale et al, Univ Michigan

Macromodelling Mixed-Signal Blocks

- Substitute big block by small
 - preserve I/O relationship
- Speed system verification
 - simulate connection of macromodels

- Automated macromodel generation
 - Input: (large) SPICE deck
 - Output: (small)
 SPICE/Matlab macromodel
 - <u>Fast/convenient</u>: "Computers made of iron, let them work"
 - Applicable to *general classes* of circuits

^aVladimir Rokhlin, ∼1997

Classifying systems for Macromodelling

Types of Algorithmic Macromodelling

- Linear Time Invariant (LTI) macromodelling
 - application: interconnect networks (delay, crosstalk)
 - AWE, PVL, PRIMA: moment-matching, Krylov subspace methods
- Linear Time Varying (LTV) macromodelling
 - mixers, sampling/switching circuits
 - TVP (Time-Varying Padé)
- Weakly nonlinear macromodelling
 - companding circuits, amplifier/mixer gain compression
 - Low-order polynomial-based reduction
- Strongly nonlinear macromodelling
 - Piecewise polynomial (PWP): comparators, switching

Linear Time-Invariant MM

u(t)

Original Linear Space

$$C\frac{dx}{dt} + Gx = bu(t)$$

$$y = l^T x$$

$$H(s) = l^T (sC + G)^{-1}b$$

$$\hat{H}(s) = \hat{l}^T (s\hat{C} + \hat{G})^{-1}\hat{b}$$

u(t)

Reduced Linear Space
$$\hat{C} \frac{dz}{dt} + \hat{G}z = \hat{b}u(t)$$

$$y \simeq \hat{l}^T z$$

Macromodelling LTV Systems

- First obtain time-varying transfer function
- Problem: interaction of "system" and "input" time variations
- Solution: separate using multiple time scales

$$\begin{bmatrix} \frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2} \end{bmatrix} (C(t_1)\hat{x}) + G(t_1)\hat{x} = bu(t_2)$$

$$\hat{y}(t_1, t_2) = d^T \hat{x}(t_1, t_2)$$

Time-varying operator form of transfer function

$$H(t_1,s) = d^T \left(\frac{\partial}{\partial t_1} C(t_1) + sC(t_1) + G(t_1) \right)^{-1} [b]$$

From LTV to Artificial MIMO LTI System

- Expand t_1 dependence in basis (eg, Fourier)
 - operator expression \leadsto MIMO LTI form
 - $H_{FD}(s) = D^T (sC_{FD} + J_{FD})^{-1} B_{FD}$
- Apply any (eg, Krylov-subspace-based) LTI model reduction method
 - Arnoldi, Lanczos methods reduce to size q system
- Map reduced LTI system back to LTV form
 - reduced model: $-T_q \frac{\partial x_q}{\partial t} + x_q = r_q u(t), \quad y(t) \approx l_q^T(t) x_q(t)$
 - $u(t) \mapsto y(t)$ relation approximated well

TVP: Time-Varying Padé

Prerequisites

- any SPICE-type circuit description, can be large
- nonlinear periodic steady-state (by HB or shooting)

Main steps and features

- choice of model-reduction algorithm (explicit/Arnoldi/Lanczos)
- choice of time-domain / frequency-domain computations
- solve Jx = b (J = steady-state Jacobian)
- iterative methods essential for linear solution
- size of macromodel = q = # of solns
- macromodel in LTI + memoryless form
- poles/residues/transfer-plots produced

Application to RF mixer block

- I-channel mixer and buffer block (Lucent ME W2013 RFIC)
 - 360 nodes, RF \approx 80kHz, LO=178MHz
 - Steady-state: Harmonic Balance with 10 LO harmonics, zero RF input
- TVP: Lanczos process on frequency-domain Jacobian
 - q = 2: provides reasonable macromodel
 - q = 10: matches xfer fn upto twice LO frequency
 - size reduction: 30–100; macromodel evaluation speedup: > 500

W2013 mixer: upconversion transfer function, +ve frequencies

W2013 mixer: upconversion transfer function, -ve frequencies

W2013 mixer: poles of macromodel

TVP, $q=2$	TVP, $q = 10$
-5.3951e+06	-5.3951e+06
-6.9196e+07 - <i>j</i> 3.0085e+05	-9.4175e+06
	-1.5588e+07 - <i>j</i> 2.5296e+07
	-1.5588e+07 + <i>j</i> 2.5296e+07
	-6.2659e+08 - j1.6898e+06
	-1.0741e+09 - <i>j</i> 2.2011e+09
	-1.0856e+09 + <i>j</i> 2.3771e+09
	-7.5073e+07 - j1.4271e+04
	-5.0365e+07 + j1.8329e+02
	-5.2000e+07 + j7.8679e+05

Switched-Capacitor Integrator

Lossy balanced design;350 MOSFETs

• clock: 12.8 MHz; test

signal: 10 kHz

Switched-Capacitor Integrator

SC Integrator: transient detail

TVP on SC Integrator

DC/DC Switching Power Converter

- clock: 100 kHz; PWM gain: 10
- Vref: 1.4V; RC pole \approx 20 Hz
- Steady-state: Shooting $(\approx 200 \text{ points})$

TVP: Switching Converter, gain=10

Switching Converter, gain=1000

Conclusion

- TVP automated macromodelling for mixers and other LTV systems
 - weak signal-path nonlinearities also incorporated
- Automated <u>nonlinear</u> macromodelling: coming soon (?)
 - oscillators, VCOs (phase/amplitude domain)
 - LNAs, mixers, switching filters, op-amps, comparators
 - large digital aggressor blocks: interference macromodels
 - from research idea \Rightarrow designer tool: open-source prototypes
- Automated MM: critical enabler for first-time-correct SoC design methodologies