Content LATEX 2ε

N. Setzer

October 7, 2006

1 Commands

1.1 Constants

1.1.1

Command	\mathbf{Inline}	Display
\I	i	i
\E	e	e
\PI	π	π
\Golden Ratio	φ	arphi
\EulerGamma	γ	γ
\Catalan	C	C
\Glaisher	Glaisher	Glaisher
\Khinchin	Khinchin	Khinchin

1.1.2 Symbols

\Infinity	∞	∞
\Indeterminant	į	į
\DirectedInfinity{z}	$z \infty$	$z \infty$
\DirInfty{z}	$z \infty$	$z \infty$
\ComplexInfinity	$\tilde{\infty}$	$ ilde{\infty}$
\CInfty	$ ilde{\infty}$	$ ilde{\infty}$

1.2

1.2.1 Exponential and Logarithmic Functions

Command	Inline	Display
\Exp{5x}	$\exp(5x)$	$\exp(5x)$
\Style{ExpParen=b}		
\Exp{5x}	$\exp[5x]$	$\exp[5x]$
\Style{ExpParen=br}		
\Exp{5x}	$\exp\{5x\}$	$\exp\{5x\}$
\Log{5}	$\ln 5$	$\ln 5$
\Log[10]{5}	$\log 5$	$\log 5$
\Log[4]{5}	$\log_4 5$	$\log_4 5$
\Style{LogBaseESymb=log}		
\Log{5}	$\log 5$	$\log 5$
\Log[10]{5}	$\log_{10} 5$	$\log_{10} 5$
\Log[4]{5}	$\log_4 5$	$\log_4 5$
\Style{LogShowBase=always}		
\Log{5}	$\log_e 5$	$\log_e 5$
\Log[10]{5}	$\log_{10} 5$	$\log_{10} 5$
\Log[4]{5}	$\log_4 5$	$\log_4 5$
\Style{LogShowBase=at will}		
\Log{5}	$\ln 5$	$\ln 5$
\Log[10]{5}	$\log 5$	$\log 5$
\Log[4]{5}	$\log_4 5$	$\log_4 5$
\Style{LogParen=p}		
\Log[4]{5}	$\log_4(5)$	$\log_4(5)$

1.2.2 Trigonometric Functions

 $Sin\{x\}$ $\sin(x)$ $\sin(x)$ \Cos{x} $\cos(x)$ $\cos(x)$ $Tan\{x\}$ tan(x)tan(x) \Csc{x} $\csc(x)$ $\csc(x)$ \Sec{x} sec(x)sec(x) $\cot(x)$ \Cot{x} $\cot(x)$

1.2.3 Inverse Trigonometric Functions

```
\Style{ArcTrig=inverse} (default)
              \ArcSin{x}
                                             \sin^{-1}(x)
                                                          \sin^{-1}(x)
                                             \cos^{-1}(x)
                                                          \cos^{-1}(x)
              \ArcCos{x}
                                                          \tan^{-1}(x)
                                             \tan^{-1}(x)
              \ArcTan{x}
        \Style{ArcTrig=arc}
                                                          \arcsin(x)
              \ArcSin{x}
                                             \arcsin(x)
              \ArcCos{x}
                                            \arccos(x)
                                                          \arccos(x)
              \Lambda rcTan\{x\}
                                            \arctan(x)
                                                         \arctan(x)
                                                          \csc^{-1}(x)
                                             \csc^{-1}(x)
              \ArcCsc{x}
                                                          \sec^{-1}(x)
                                             \sec^{-1}(x)
              \ArcSec{x}
                                             \cot^{-1}(x)
                                                          \cot^{-1}(x)
              \ArcCot{x}
```

1.2.4 Hyberbolic Functions

```
Sinh\{x\}
                sinh(x)
                              sinh(x)
\Cosh{x}
                \cosh(x)
                              \cosh(x)
Tanh\{x\}
                              tanh(x)
                tanh(x)
\Csch{x}
                \operatorname{csch}(x)
                              \operatorname{csch}(x)
\Sech{x}
                \operatorname{sech}(x)
                              \operatorname{sech}(x)
                \coth(x)
\Coth{x}
                              \coth(x)
```

1.2.5 Inverse Hyberbolic Functions

```
\sinh^{-1}(x)
                                           \sinh^{-1}(x)
\ArcSinh{x}

cosh^{-1}(x) 

tanh^{-1}(x)

\cosh^{-1}(x)

\ArcCosh{x}
                                           \tanh^{-1}(x)
\Lambda rcTanh\{x\}
                        \operatorname{csch}^{-1}(x)
                                           \operatorname{csch}^{-1}(x)
\ArcCsch{x}
                                           \operatorname{sech}^{-1}(x)
                        \operatorname{sech}^{-1}(x)
\ArcSech{x}
                        \coth^{-1}(x)
                                           \coth^{-1}(x)
\ArcCoth{x}
```

1.2.6 Product Logarithms

Command	Inline	Display
$\LambertW\{z\}$	W(z)	W(z)
\ProductLog{z}	W(z)	W(z)
\LambertW{k,z} \ProductLog{k,z}	$W_k(z) \\ W_k(z)$	$W_k(z) \\ W_k(z)$

1.2.7 Max and Min

$$\max\{1,2,3,4,5\}$$
 $\max(1,2,3,4,5)$ $\max(1,2,3,4,5)$ $\min\{1,2,3,4,5\}$ $\min(1,2,3,4,5)$

1.3 Bessel, Airy, and Struve Functions

1.3.1 Bessel

Bessel functions can be 'renamed' with the \Style tag. For example, \Style{BesselYSymb=N} yields $N_{\nu}(x)$

Command	Inline	Display
$\BesselJ{0}{x}$	$J_0(x)$	$J_0(x)$
$\BesselY{0}{x}$	$Y_0(x)$	$Y_0(x)$
$\BesselI{0}{x}$	$I_0(x)$	$I_0(x)$
$\Bessel K\{0\}\{x\}$	$K_0(x)$	$K_0(x)$

1.3.2 Airy

$$\label{eq:airyAi} $$ \operatorname{Ai}(x) \quad \operatorname{Ai}(x) $$ \operatorname{Ai}(x) \quad \operatorname{Bi}(x) \quad \operatorname{Bi}(x) $$ $$ $$ $$ $$$$

1.3.3 Struve

$$\label{eq:local_structure} $$ \StruveH{\nu}_{x} \quad \mathbf{H}_{\nu}(x) \quad \mathbf{H}_{\nu}(x) \\ \StruveL{\nu}_{x} \quad \mathbf{L}_{\nu}(x) \quad \mathbf{L}_{\nu}(x) \\$$

1.4 Integer Functions

Command	Inline	Display
\Floor{x}	$\lfloor x \rfloor$	$\lfloor x \rfloor$
\Ceiling{x}	$\lceil x \rceil$	$\lceil x \rceil$
\Round{x}	$\lfloor x \rceil$	$\lfloor x \rceil$

1.4.1

\iPart{x}	int(x)	int(x)
\IntegerPart{x}	int(x)	int(x)
\fPart{x}	$\operatorname{frac}(x)$	frac(x)
\FractionalPart{x}	frac(x)	frac(x)

1.4.2

```
\Style{ModDisplay=mod} (default)
            \Mod{m}{n}
                                          m \mod n
                                                           m \mod n
    \Style{ModDisplay=bmod}
                                          m \bmod n
                                                            m \bmod n
            \Mod{m}{n}
    \Style{ModDisplay=pmod}
            \Mod{m}{n}
                                         m \pmod{n}
                                                           m \pmod{n}
    \Style{ModDisplay=pod}
            \Mod{m}{n}
                                            m(n)
                                                             m(n)
         \Quotient{m}{n}
                                        quotient(m, n)
                                                         quotient(m, n)
            \GCD\{m, n\}
                                          gcd(m, n)
                                                            gcd(m, n)
       \ExtendedGCD{m}{n}
                                          \operatorname{egcd}(m,n)
                                                           \operatorname{egcd}(m,n)
           \EGCD\{m\}\{n\}
                                          \operatorname{egcd}(m,n)
                                                           \operatorname{egcd}(m,n)
            \LCM\{m, n\}
                                          lcm(m, n)
                                                            lcm(m, n)
```

1.4.3

<text></text>	$F_{ u}$	F_{ν}
\Euler{m}	E_m	E_m
\Bernoulli{m}	B_m	B_m
\StirlingSOne{n}{m}	$S_n^{(m)}$	$S_n^{(m)}$
\StirlingSTwo{n}{m}	$\mathcal{S}_n^{(m)}$	$\mathcal{S}_n^{(m)}$
$\P $	p(n)	p(n)
$\P \operatorname{Partitions} \{n\}$	q(n)	q(n)

1.4.4

\DiscreteDelta{n, m}	$\delta(n,m)$	$\delta(n,m)$
\KroneckerDelta{n,m}	δ^{nm}	δ^{nm}
\KroneckerDelta[d]{n,m}	δ_{nm}	δ_{nm}
\LeviCivita{i,j,k}	ϵ^{ijk}	ϵ^{ijk}
\LeviCivita[d]{i,j,k}	ϵ_{ijk}	ϵ_{ijk}
\Signature{i,j,k}	ϵ^{ijk}	ϵ^{ijk}
\Style{LeviCivitaIndicies=up}		
\LeviCivita[d]{i,j,k}	ϵ^{ijk}	ϵ^{ijk}
\Style{LeviCivitaIndicies=local}		
\LeviCivita[d]{i,j,k}	ϵ_{ijk}	ϵ_{ijk}
\Style{LeviCivitaUseComma=true}		
\LeviCivita[d]{i,j,k}	$\epsilon_{i,j,k}$	$\epsilon_{i,j,k}$

1.5 Polynomials

Polynomials can be 'renamed' with the \Style command:

 $\verb|\Style{|} \langle Polynomial\ command|| \rangle Symb=\langle Symbol|| \rangle \}$

As in \Style{HermiteHSymb=h,LegendrePSymb=p} θ_n,x yielding: $h_n(x)$

Command	Inline	Display
$\HermiteH{n}{x}$	$H_n(x)$	$H_n(x)$
\LaugerreL{n,x}	$L_n(x)$	$L_n(x)$
\LegendreP{n,x}	$P_n(x)$	$P_n(x)$
$\ChebyshevT{n}{x}$	$T_n(x)$	$T_n(x)$
$\ChebyshevU{n}{x}$	$U_n(x)$	$U_n(x)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$P_n^{(a,b)}(x)$	$P_n^{(a,b)}(x)$
\AssocLegendreP{\ell}{m}{x}	$P_{\ell}^{m}(x)$	$P_{\ell}^{m}(x)$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$Q_{\ell}^{m}(x)$	$Q_{\ell}^{m}(x)$
\LaugerreL{n,\lambda,x}	$L_n^{\lambda}(x)$	$L_n^{\lambda}(x)$
$\GegenbauerC{n}{\lambda}{x}$	$C_n^{\lambda}(x)$	$C_n^{\lambda}(x)$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$Y_n^m(\theta,\phi)$	$Y_n^m(\theta,\phi)$
\CyclotomicC{n}{x}	$C_n(x)$	$C_n(x)$
$\mathbf{FibonacciF}\{n\}\{x\}$	$F_n(x)$	$F_n(x)$
$\EulerE{n}{x}$	$E_n(x)$	$E_n(x)$
$\BernoulliB{n}{x}$	$B_n(x)$	$B_n(x)$

1.6 Gamma, Beta, and Error Functions

1.6.1 Factorials

Command	Inline	Display	
$\P $	n!	n!	
\DblFactorial{n}	n!!	n!!	
$\verb \Binomial{n}{k} $	$\binom{n}{k}$	$\binom{n}{k}$	
$Multinomial{1,2,3,4}$	(10; 1, 2, 3, 4)	\ /	
\Multinomial $\{n_1, n_2, \dots, n_m\}$ Inline: $(n_1 + n_2 + \ldots + n_m; n_1, n_2, \ldots, n_m)$			
`			
Display: $(n_1 + n_2 + n_3)$	$\ldots + n_m; n_1, n_2$	(n_1, \dots, n_m)	

1.6.2 Gamma Functions

$\GammaFunc\{x\}$	$\Gamma(x)$	$\Gamma(x)$
$\IncGamma{a}{x}$	$\Gamma(a,x)$	$\Gamma(a,x)$
$\GenIncGamma{a}{x}{y}$	$\Gamma(a, x, y)$	$\Gamma(a, x, y)$
$\RegIncGamma{a}{x}$	Q(a,x)	Q(a,x)
$\RegIncGammaInv{a}{x}$	$Q^{-1}(a,x)$	$Q^{-1}(a,x)$
$\GenRegIncGamma{a}{x}{y}$	Q(a, x, y)	Q(a, x, y)
$\GenRegIncGammaInv{a}{x}{y}$	$Q^{-1}(a, x, y)$	$Q^{-1}(a, x, y)$
$\P \$	$(a)_n$	$(a)_n$
\LogGamma{x}	$\log\Gamma(x)$	$\log\Gamma(x)$

1.6.3 Derivatives of Gamma Functions

$\DiGamma\{x\}$	$\digamma(x)$	$\digamma(x)$
$\displaystyle \P \operatorname{DiyGamma} \{ u \} \{ x \}$	$\psi^{(\nu)}(x)$	$\psi^{(\nu)}(x)$
$\operatorname{\mathbb{Z}}$	H_x	H_x
$\Txin {x,r}$	$H_x^{(r)}$	$H_x^{(r)}$
\Beta{a,b}	B(a,b)	B(a,b)
$\IncBeta{z}{a}{b}$	$B_z(a,b)$	$B_z(a,b)$
$\GenIncBeta{x}{y}{a}{b}$	$B_{(x,y)}(a,b)$	$B_{(x,y)}(a,b)$
$\RegIncBeta{z}{a}{b}$	$I_z(a,b)$	$I_z(a,b)$
$\RegIncBetaInv{z}{a}{b}$	$I_z^{-1}(a,b)$	$I_z^{-1}(a,b)$
$\GenRegIncBeta\{x\}\{y\}\{a\}\{b\}$	$B_{(x,y)}(a,b)$	$B_{(x,y)}(a,b)$
$\label{lem:continuous} $$ \operatorname{GenRegIncBetaInv}_{x}_{y}_{a}(b) $$$	$I_{(x,y)}^{-1}(a,b)$	$I_{(x,y)}^{-1}(a,b)$

1.6.4 Error Functions

$$\begin{tabular}{lll} $\operatorname{Erf}\{x\}$ & $\operatorname{erf}(x)$ & $\operatorname{erf}^{-1}(x)$ & $\operatorname{erf}^{-1}(x)$ & $\operatorname{erf}^{-1}(x)$ & $\operatorname{erf}(x,y)$ & $\operatorname{erf}(x,y)$ & $\operatorname{erf}(x,y)$ & $\operatorname{erf}(x,y)$ & $\operatorname{erf}^{-1}(x,y)$ & $\operatorname{erf}^{-1}(x,y)$ & $\operatorname{erf}(x)$ & $\operatorname{erf}(x)$$$

1.6.5 Fresnel Integrals

$$\label{eq:sigma} $$ \FresnelS{x} \ S(x) \ S(x) $$ \FresnelC{x} \ C(x) \ C(x) $$$$

${\bf 1.6.6}\quad {\bf Exponential\ Integrals}$

\ExpIntE{\nu}{x}	$E_{\nu}(x)$	$E_{\nu}(x)$
\ExpIntEi{x}	$\mathrm{Ei}(x)$	$\mathrm{Ei}(x)$
$\left\lfloor \log \operatorname{Int}\{x\} \right\rfloor$	li(x)	li(x)
\SinInt{x}	$\operatorname{Si}(x)$	Si(x)
\CosInt{x}	Ci(x)	Ci(x)
\SinhInt{x}	Shi(x)	Shi(x)
\CoshInt{x}	Chi(x)	Chi(x)

1.7 Hypergeometric Functions

1.7.1 Hypergeometric Function

1.7.2 Regularized Hypergeometric Function

\RegHypergeometric{0}{0}{}{x}
$$_{0}\tilde{F}_{0}(;;x) \quad _{0}\tilde{F}_{0}(;;x)$$

\RegHypergeometric{0}{1}{}\b\{x}\
$$_0\tilde{F}_1(;b;x)$$
 $_0\tilde{F}_1(;b;x)$

\RegHypergeometric{3}{5}{a}{b}{x}
$$_3\tilde{F}_5(a_1,a_2,a_3;b_1,b_2,b_3,b_4,b_5;x) = _3\tilde{F}_5(a_1,a_2,a_3;b_1,b_2,b_3,b_4,b_5;x)$$

\RegHypergeometric{3}{5}{1,2,3}{1,2,3,4,5}{x}
$$_{3}\tilde{F}_{5}(1,2,3;1,2,3,4,5;x) - _{3}\tilde{F}_{5}(1,2,3;1,2,3,4,5;x)$$

\RegHypergeometric{p}{5}{a}{b}{x}
$$_{p}\tilde{F}_{5}(a_{1},\ldots,a_{p};b_{1},b_{2},b_{3},b_{4},b_{5};x) \quad _{p}\tilde{F}_{5}(a_{1},\ldots,a_{p};b_{1},b_{2},b_{3},b_{4},b_{5};x)$$

\RegHypergeometric{p}{3}{a}{1,2,3}{x}
$$_{p}\tilde{F}_{3}(a_{1},\ldots,a_{p};1,2,3;x) - _{p}\tilde{F}_{3}(a_{1},\ldots,a_{p};1,2,3;x)$$

$$\label{eq:local_reg} $$ \end{equation} $$ \end{equation} $$ $$ {\rm RegHypergeometric}\{p\}\{q\}\{a\}\{b\}\{x\} $$ $$ $_p\tilde{F}_q(a_1,\ldots,a_p;b_1,\ldots,b_q;x) $$ $$ $_p\tilde{F}_q(a_1,\ldots,a_p;b_1,\ldots,b_q;x) $$ $$$$

1.7.3 Meijer G-Function

$$MeijerG[a,b]{n}{p}{m}{q}{x}$$

$$G_{p,q}^{m,n}\left(x \begin{vmatrix} a_1, \dots, a_n, a_{n+1}, \dots, a_p \\ b_1, \dots, b_m, b_{m+1}, \dots, b_q \end{vmatrix}\right) \quad G_{p,q}^{m,n}\left(x \begin{vmatrix} a_1, \dots, a_n, a_{n+1}, \dots, a_p \\ b_1, \dots, b_m, b_{m+1}, \dots, b_q \end{vmatrix}\right)$$

 $MeijerG{1,2,3,4}{5,6}{3,6,9}{12,15,18,21,24}{x}$

$$G_{6,8}^{3,4}\left(x\left|\begin{smallmatrix}1,2,3,4,5,6\\3,6,9,12,15,18,21,24\end{smallmatrix}\right)\quad G_{6,8}^{3,4}\left(x\left|\begin{smallmatrix}1,2,3,4,5,6\\3,6,9,12,15,18,21,24\end{smallmatrix}\right)$$

 $MeijerG[a,b]{4}{6}{3}{8}{x}$

$$G_{6,8}^{3,4}\left(x \begin{vmatrix} a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \\ b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8} \end{vmatrix}\right) G_{6,8}^{3,4}\left(x \begin{vmatrix} a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \\ b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8} \end{vmatrix}\right)$$

 $MeijerG[a,b]{4}{p}{3}{8}{x}$

$$G_{p,8}^{3,4}\left(x \begin{vmatrix} a_{1,a_{2},a_{3},a_{4},a_{5},\dots,a_{p}} \\ b_{1,b_{2},b_{3},b_{4},b_{5},b_{6},b_{7},b_{8}} \end{vmatrix}\right) G_{p,8}^{3,4}\left(x \begin{vmatrix} a_{1},a_{2},a_{3},a_{4},a_{5},\dots,a_{p} \\ b_{1},b_{2},b_{3},b_{4},b_{5},b_{6},b_{7},b_{8} \end{vmatrix}\right)$$

 $MeijerG[a,b]{n}{p}{3}{8}{x}$

$$G_{p,8}^{3,n}\Big(x\left|\begin{smallmatrix} a_1,\dots,a_n,a_{n+1},\dots,a_p\\b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8\end{smallmatrix}\right) \quad G_{p,8}^{3,n}\Big(x\left|\begin{smallmatrix} a_1,\dots,a_n,a_{n+1},\dots,a_p\\b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8\end{smallmatrix}\right)\\ \text{MeijerG[a]}\{4\}\{6\}\{3,6,9\}\{12,15,18,21,24\}\{x\}$$

$$G_{6,8}^{3,4}\left(x \begin{vmatrix} a_{1,a_{2},a_{3},a_{4},a_{5},a_{6}} \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right) \quad G_{6,8}^{3,4}\left(x \begin{vmatrix} a_{1},a_{2},a_{3},a_{4},a_{5},a_{6} \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right)$$

\MeijerG[a]{4}{p}{3,6,9}{12,15,18,21,24}{x}

$$G_{p,8}^{3,4}\left(x \begin{vmatrix} a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \dots, a_{p} \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right) \quad G_{p,8}^{3,4}\left(x \begin{vmatrix} a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \dots, a_{p} \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right)$$

 $MeijerG[a]{n}{6}{3,6,9}{12,15,18,21,24}{x}$

$$G_{6,8}^{3,n}\left(x \mid_{3,6,9,12,15,18,21,24}^{a_1,\dots,a_n,a_{n+1},\dots,a_6}\right) \quad G_{6,8}^{3,n}\left(x \mid_{3,6,9,12,15,18,21,24}^{a_1,\dots,a_n,a_{n+1},\dots,a_6}\right)$$

 $MeijerG[a]{n}{p}{3,6,9}{12,15,18,21,24}{x}$

$$G_{p,8}^{3,n}\left(x \begin{vmatrix} a_1,\dots,a_n,a_{n+1},\dots,a_p \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right) \quad G_{p,8}^{3,n}\left(x \begin{vmatrix} a_1,\dots,a_n,a_{n+1},\dots,a_p \\ 3,6,9,12,15,18,21,24 \end{vmatrix}\right)$$

$$MeijerG[,b]{1,2,3,4}{5,6}{3}{8}{x}$$

$$G_{6,8}^{3,4}\left(x \Big|_{b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8}^{1,2,3,4,5,6}\right) \quad G_{6,8}^{3,4}\left(x \Big|_{b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8}^{1,2,3,4,5,6}\right)$$

 $MeijerG[,b]{1,2,3,4}{5,6}{3}{q}{x}$

$$G_{6,q}^{3,4}\left(x \begin{vmatrix} 1,2,3,4,5,6 \\ b_1,b_2,b_3,b_4,\dots,b_q \end{pmatrix} \quad G_{6,q}^{3,4}\left(x \begin{vmatrix} 1,2,3,4,5,6 \\ b_1,b_2,b_3,b_4,\dots,b_q \end{pmatrix}\right)$$

 $MeijerG[,b]{1,2,3,4}{5,6}{m}{q}{x}$

$$G_{6,q}^{m,4}\left(x \begin{vmatrix} 1,2,3,4,5,6 \\ b_1,\dots,b_m,b_{m+1},\dots,b_q \end{pmatrix} \quad G_{6,q}^{m,4}\left(x \begin{vmatrix} 1,2,3,4,5,6 \\ b_1,\dots,b_m,b_{m+1},\dots,b_q \end{pmatrix}\right)$$

 $\MeijerG[a,b]{n}{p}{m}{q}{x, r}$

$$G_{p,q}^{m,n}\left(x,r \begin{vmatrix} a_{1},\dots,a_{n},a_{n+1},\dots,a_{p} \\ b_{1},\dots,b_{m},b_{m+1},\dots,b_{q} \end{vmatrix}\right) G_{p,q}^{m,n}\left(x,r \begin{vmatrix} a_{1},\dots,a_{n},a_{n+1},\dots,a_{p} \\ b_{1},\dots,b_{m},b_{m+1},\dots,b_{q} \end{vmatrix}\right)$$

1.7.4 Appell Hypergeometric Function F_1

\AppellFOne{a}{b_1, b_2}{c}{x, y}
$$F_1(a; b_1, b_2; c; x, y) = F_1(a; b_1, b_2; c; x, y)$$

1.7.5 Tricomi Confluent Hypergeometric Function

1.7.6 Angular Momentum Functions

\ClebschGordon{j_1,m_1}{j_2,m_2}{j,m}
$$\langle j_1, j_2; m_1, m_2 | j_1, j_2; j, m \rangle \quad \langle j_1, j_2; m_1, m_2 | j_1, j_2; j, m \rangle$$

$$\begin{array}{c} \texttt{\SixJSymbol} \{ \texttt{j_1}, \texttt{j_2}, \texttt{j_3} \} \{ \texttt{j_4}, \texttt{j_5}, \texttt{j_6} \} \\ \left\{ \begin{matrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{matrix} \right\} & \left\{ \begin{matrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{matrix} \right\} \end{array}$$

1.8 Elliptic Integrals

1.8.1 Complete Elliptic Integrals

Command	\mathbf{Inline}	Display
\EllipticK{x}	K(x)	K(x)
$\EllipticE\{x\}$	E(x)	E(x)
\EllipticPi{n,m}	$\Pi(n \mid m)$	$\Pi(n \mid m)$

${\bf 1.8.2}\quad {\bf Incomplete\ Elliptic\ Integrals}$

Command	Inline	Display
$\IncEllipticF{x}{m}$	$F(x \mid m)$	$F(x \mid m)$
$\IncEllipticE{x}{m}$	$E(x \mid m)$	$E(x \mid m)$
$\IncEllipticPi{n}{x}{m}$	$\Pi(n; x \mid m)$	$\Pi(n; x \mid m)$
\JacobiZeta{x}{m}	$Z(x \mid m)$	$Z(x \mid m)$

1.9 Elliptic Functions

1.9.1 Jacobi Theta Functions

Command	\mathbf{Inline}	Display
$\Xi_{x}^{1}_{x}^{q}$	$\vartheta_1(x,q)$	$\vartheta_1(x,q)$
$\JacobiTheta{1}{x}{q}$	$\vartheta_1(x,q)$	$\vartheta_1(x,q)$

1.9.2 Neville Theta Functions

Command	\mathbf{Inline}	Display
lem:lemma:lemma:lemma:lem:lem:lem:lem:lem:lem:lem:lem:lem:lem	$\vartheta_c(x \mid m)$	$\vartheta_c(x \mid m)$
$\NevilleThetaD{x}{m}$	$\vartheta_d(x \mid m)$	$\vartheta_d(x \mid m)$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\vartheta_n(x \mid m)$	$\vartheta_n(x \mid m)$
\NevilleThetaS{x}{m}	$\vartheta_s(x \mid m)$	$\vartheta_s(x \mid m)$

1.9.3 Weierstrass Functions

$$\label{eq:weierstrassP} $\{z_2, g_3\} \\ \wp(z; g_2, g_3) \quad \wp(z; g_2, g_3) \\ \\ \lozenge(z; g_2, g_3) \quad \wp(z; g_2, g_3) \\ \\ \lozenge(z; g_2, g_3) \quad \wp^{-1}(z; g_2, g_3) \\ \\ \lozenge(z; g_2, g_3) \quad \wp^{-1}(z; g_2, g_3) \\ \\ \lozenge(z_1, z_2; g_2, g_3) \quad \wp^{-1}(z_1, z_2; g_2, g_3) \\ \\ \lozenge(z_1, z_2; g_2, g_3) \quad \wp^{-1}(z_1, z_2; g_2, g_3) \\ \\ \lozenge(z_1, z_2; g_2, g_3) \quad \wp^{-1}(z_1, z_2; g_2, g_3) \\ \\ \lozenge(z_1, z_2; g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_2, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_3) \\ \lozenge(z_1, g_2, g_3) \quad \wp(z_1, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \\ \\ \lozenge(z_2, g_3) \quad \wp(z_1, g_3) \\ \\ \lozenge(z_1, g_2, g_3) \\ \\ \lozenge(z_2,$$

1.9.4 Jacobi Functions

Command	${\bf Inline}$	Display
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{am}(z \mid m)$	$\operatorname{am}(z \mid m)$
$\D{z}{m}$	$\operatorname{cd}(z \mid m)$	$\operatorname{cd}(z \mid m)$
$\JacobiCDInv{z}{m}$	$\operatorname{cd}^{-1}(z \mid m)$	$\operatorname{cd}^{-1}(z \mid m)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{cn}(z \mid m)$	$\operatorname{cn}(z \mid m)$
$\JacobiCNInv{z}{m}$	$\operatorname{cn}^{-1}(z \mid m)$	$\operatorname{cn}^{-1}(z \mid m)$
$\JacobiCS\{z\}\{m\}$	$cs(z \mid m)$	$cs(z \mid m)$
$\JacobiCSInv{z}{m}$	$\operatorname{cs}^{-1}(z \mid m)$	$\operatorname{cs}^{-1}(z \mid m)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$dc(z \mid m)$	$dc(z \mid m)$
$\JacobiDCInv{z}{m}$	$\mathrm{dc}^{-1}(z \mid m)$	$\mathrm{dc}^{-1}(z\mid m)$
$\JacobiDN{z}{m}$	$\operatorname{dn}(z \mid m)$	$\operatorname{dn}(z \mid m)$
$\JacobiDNInv{z}{m}$	$\mathrm{dn}^{-1}(z m)$	$\operatorname{dn}^{-1}(z \mid m)$
$\JacobiDS\{z\}\{m\}$	$ds(z \mid m)$	$ds(z \mid m)$
$\JacobiDSInv{z}{m}$	$ds^{-1}(z \mid m)$	$ds^{-1}(z \mid m)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{nc}(z \mid m)$	$\operatorname{nc}(z \mid m)$
$\JacobiNCInv{z}{m}$	$nc^{-1}(z \mid m)$	$nc^{-1}(z \mid m)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{nd}(z \mid m)$	$\operatorname{nd}(z \mid m)$
$\DInv{z}{m}$	$\operatorname{nd}^{-1}(z \mid m)$	$\operatorname{nd}^{-1}(z \mid m)$
$\JacobiNS\{z\}\{m\}$	$\operatorname{ns}(z \mid m)$	$\operatorname{ns}(z \mid m)$
$\JacobiNSInv{z}{m}$	$ns^{-1}(z \mid m)$	$ns^{-1}(z \mid m)$
$\JacobiSC\{z\}\{m\}$	$\operatorname{sc}(z \mid m)$	$\operatorname{sc}(z \mid m)$
$\JacobiSCInv{z}{m}$	$\operatorname{sc}^{-1}(z \mid m)$	$\operatorname{sc}^{-1}(z \mid m)$
$\JacobiSD\{z\}\{m\}$	$\operatorname{sd}(z \mid m)$	$\operatorname{sd}(z \mid m)$
$\JacobiSDInv{z}{m}$	$\operatorname{sd}^{-1}(z \mid m)$	$\operatorname{sd}^{-1}(z \mid m)$
\JacobiSN{z}{m}	$\operatorname{sn}(z \mid m)$	$\operatorname{sn}(z \mid m)$
$\JacobiSNInv{z}{m}$	$\operatorname{sn}^{-1}(z \mid m)$	$\operatorname{sn}^{-1}(z \mid m)$

1.9.5 Modular Functions

$\mathbf{Command}$	\mathbf{Inline}	Display
\DedekindEta{z}	$\eta(z)$	$\eta(z)$
\KleinInvariantJ{z}	J(z)	J(z)
\ModularLambda{z}	$\lambda(z)$	$\lambda(z)$
Ξ_{z}	q(z)	q(z)
\EllipticNomeQInv{z}	$q^{-1}(z)$	$q^{-1}(z)$

1.9.6 Arithmetic Geometric Mean

1.9.7 Elliptic Exp and Log

Command	${\bf Inline}$	Display
$\Xi \sum_{x} \{a,b\}$	eexp(x; a, b)	eexp(x; a, b)
\EllipticLog{x,y}{a,b}	elog(x, y; a, b)	elog(x, y; a, b)

1.10 Zeta Functions and Polylogarithms

1.10.1 Zeta Functions

Command	Inline	Display
\RiemannZeta{s}	$\zeta(s)$	$\zeta(s)$
\Zeta{s}	$\zeta(s)$	$\zeta(s)$
\HurwitzZeta{s}{a}	$\zeta(s,a)$	$\zeta(s,a)$
\Zeta{s,a}	$\zeta(s,a)$	$\zeta(s,a)$
\RiemannSiegelTheta{x}	$\vartheta(x)$	$\vartheta(x)$
\RiemannSiegelZ{x}	Z(x)	Z(x)
\StieltjesGamma{n}	γ_n	γ_n
$\LerchPhi\{z\}\{s\}\{a\}$	$\Phi(z,s,a)$	$\Phi(z,s,a)$
$\label{log} $$ \NielsenPolyLog{nu}_{p}_{z}$$	$S^p_{\nu}(z)$	$S^p_{\nu}(z)$
\PolyLog{\nu,p,z}	$S^p_{\nu}(z)$	$S^p_{\nu}(z)$
\PolyLog{\nu,z}	$\operatorname{Li}_{\nu}(z)$	$\operatorname{Li}_{\nu}(z)$
\DiLog{z}	$\mathrm{Li}_2(z)$	$\mathrm{Li}_2(z)$

1.11 Mathieu Functions and Characteristics

1.11.1 Mathieu Functions

Command	\mathbf{Inline}	Display
$MathieuC{a}{q}{z}$	Ce(a,q,z)	Ce(a,q,z)
$MathieuS{a}{q}{z}$	Se(a, q, z)	Se(a,q,z)

1.11.2 Mathieu Characteristics

Command	Inline	Display
$\verb \MathieuCharacteristicA{r}{q} $	$a_r(q)$	$a_r(q)$
$\verb \MathieuCharisticA{r}{q} $	$a_r(q)$	$a_r(q)$
$\verb \MathieuCharacteristicB{r}{q} $	$b_r(q)$	$b_r(q)$
$\verb \MathieuCharisticB{r}{q} $	$b_r(q)$	$b_r(q)$
\MathieuCharacteristicExponent{a}{q}	r(a,q)	r(a,q)
$\MathieuCharisticExp{a}{q}$	r(a,q)	r(a,q)

1.12 Complex Components

Command	Inline	Display
\Abs{z}	z	z
\Arg{z}	arg(z)	arg(z)
$\Conj\{z\}$	z^*	z^*
$\Style{Conjugate=bar}\Conj{z}$	$ar{z}$	$ar{z}$
\Style{Conjugate=overline}\Conj{z}	\overline{z}	\overline{z}
$\Real\{z\}$	$\operatorname{Re} z$	$\operatorname{Re} z$
$\Imag\{z\}$	$\operatorname{Im} z$	$\operatorname{Im} z$
σ_{z}	$\operatorname{sgn}(z)$	$\operatorname{sgn}(z)$

1.13 Number Theory Functions

Command	Inline	Display
$\texttt{FactorInteger}\{n\}$	factors(n)	factors(n)
\Factors{n}	factors(n)	factors(n)
\Divisors{n}	divisors(n)	divisors(n)
$\Pr\{n\}$	prime(n)	prime(n)
\PrimePi{x}	$\pi(x)$	$\pi(x)$
$\DivisorSigma\{k\}\{n\}$	$\sigma_k(n)$	$\sigma_k(n)$
\EulerPhi{n}	$\varphi(n)$	$\varphi(n)$
$\MoebiusMu\{n\}$	$\mu(n)$	$\mu(n)$
\JacobiSymbol{n}{m}	$\left(\frac{n}{m}\right)$	$\left(\frac{n}{m}\right)$
\CarmichaelLambda{n}	$\lambda(n)$	$\lambda(n)$

$$\label{eq:local_problem} $$\operatorname{Inline:}$ $ \{s_b^{(1)}(n), s_b^{(2)}(n), \ldots, s_b^{(b)-1}(n), s_b^{(0)}(n)\} $$ $ \operatorname{Display:}$ $ \{s_b^{(1)}(n), s_b^{(2)}(n), \ldots, s_b^{(b)-1}(n), s_b^{(0)}(n)\} $$ $$$

$$\label{eq:DigitCount} $$\operatorname{Inline:}$ $ \{s_6^1(n)\,,s_6^2(n)\,,s_6^3(n)\,,s_6^4(n)\,,s_6^5(n)\,,s_6^{(0)}(n)\}$ $$\operatorname{Display:}$ $ \{s_6^1(n)\,,s_6^2(n)\,,s_6^3(n)\,,s_6^4(n)\,,s_6^5(n)\,,s_6^{(0)}(n)\}$ $$$$

1.14 **Generalized Functions**

Command	\mathbf{Inline}	Display
\DiracDelta{x}	$\delta(x)$	$\delta(x)$
$DiracDelta{x_1, x_2}$	$\delta(x_1, x_2)$	$\delta(x_1, x_2)$
\HeavisideStep{x}	$\theta(x)$	$\theta(x)$
$\HeavisideStep{x, y}$	$\theta(x,y)$	$\theta(x,y)$
\UnitStep{x}	$\theta(x)$	$\theta(x)$
\UnitStep{x.v}	$\theta(x,y)$	$\theta(x,y)$

1.15 **Calculus Functions**

Derivatives 1.15.1

\Style{DDisplayFunc=inset,DShorten=true} (Default)

$$\ \ \, \ \, \ \, \ \, \ \, \ \, \frac{df}{dx} \qquad \frac{df}{dx}$$

$$\label{eq:dn} $$ \D[n]{f}{x} \quad \frac{d^n f}{dx^n} \quad \frac{d^n f}{dx^n} $$$$

\Style{DDisplayFunc=outset,DShorten=false}

\D{f}{x}
$$\frac{d}{dx}f$$
\D[n]{f}{x}
$$\frac{d^n}{dx^n}f$$
\\D{f}{x,y,z}
$$\frac{d}{dx}\frac{d}{dy}\frac{d}{dz}f$$
\\D[2,n,3]{f}{x,y,z}
$$\frac{d^2}{dx^2}\frac{d^n}{dy^n}\frac{d^3}{dz^3}f$$
\\D[1,n,3]{f}{x,y,z}
$$\frac{d}{dx}\frac{d^n}{dy^n}\frac{d^3}{dz^3}f$$
\\D[1,n,3]{f}{x,y,z}
$$\frac{d}{dx}\frac{d^n}{dy^n}\frac{d^3}{dz^3}f$$
\\\D[1,n,3]{f}{x,y,z}

\Style{DDisplayFunc=outset,DShorten=true}

\Style{DDisplayFunc=inset,DShorten=true}

1.15.2 Partial Derivatives

\Style{DDisplayFunc=inset,DShorten=true} (Default)

$$\label{eq:pderivff} $$ \begin{array}{ccc} \int df & \frac{\partial f}{\partial x} & \frac{\partial f}{\partial x} \end{array} $$$$

$$\begin{array}{ll} \texttt{\pderiv[n]{f}{x}} & \frac{\partial^n f}{\partial x^n} & \frac{\partial^n f}{\partial x^n} \end{array}$$

\Style{DDisplayFunc=outset,DShorten=false}

\Style{DDisplayFunc=outset,DShorten=true}

\Style{DDisplayFunc=inset,DShorten=true}

$$\label{eq:pderiv} $$ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \end{array} & \frac{\partial f}{\partial x} \end{array} & \frac{\partial f}{\partial x} \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \end{array} & \frac{\partial^n f}{\partial x^n} \end{array} & \frac{\partial^n f}{\partial x^n} \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial^n f \\ \partial x^n \end{array} & \frac{\partial^n f}{\partial x^n} \end{array} & \frac{\partial^n f}{\partial x^n} \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial^3 f \\ \partial x \partial y \partial z \end{array} & \frac{\partial^3 f}{\partial x \partial y^n \partial z} \end{array} & \frac{\partial^3 f}{\partial x \partial y^n \partial z^3} \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial^{2+n+3} f \\ \partial x^2 \partial y^n \partial z^3 \end{array} & \frac{\partial^{2+n+3} f}{\partial x \partial y^n \partial z^3} \end{array} & \frac{\partial^{2+n+3} f}{\partial x \partial y^n \partial z^3} \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial^{1+n+3} f \\ \partial x \partial y^n \partial z^3 \end{array} & \frac{\partial^{1+n+3} f}{\partial x \partial y^n \partial z^3} \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} & \frac{\partial^{1+n+3} f}{\partial x \partial y^n \partial z^3} \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} & \frac{\partial f}{\partial x \partial y^n \partial z^3} \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \end{array} $$ \\ \begin{array}{ll} \partial f \\ \partial x \partial y^n \partial z^3 \partial x \partial y^n \partial z^3 \partial x \partial y^n \partial z^3 \partial x \partial x \partial y^n \partial x^n \partial$$

1.15.3 Integrals

Command	Inline	Display
$\Integrate{f}{x}$	$\int f dx$	$\int f dx$
$\left\{ f(x)\right\} \left\{ x\right\}$	$\int f(x) dx$	$\int f(x) dx$
$\inf\{f\}\{S,C\}$	$\int_C f dS$	$\int_C f dS$
$\left(\int \left(x\right) \right) \left(x,a,b\right) $	$\int_{a}^{b} f(x) dx$	$\int_{a}^{b} f(x) dx$
\Int{f(x)}{x,0,b} \Int{\Int{f(x)}{x,0,y}}{y,0,z}	$\int_0^b f(x) dx$ $\int_0^z \int_0^y f(x) dx dy$	$\int_0^z \int_0^b f(x) dx$ $\int_0^z \int_0^y f(x) dx dy$

1.15.4 Sums and Products

Command	Inline	Display
$\sum_{a(k)}{k}$	$\sum_{k} a(k)$	$\sum_{k} a(k)$
\Sum{a(k)}{k,1,n}	$\sum_{k=1}^{n} a(k)$	$\sum_{k=1}^{n} a(k)$
$\Pr d{a(k)}{k}$	$\prod_k a(k)$	$\prod_{k} a(k)$
\Prod{a(k)}{k,1,n}	$\prod_{k=1}^{n} a(k)$	$\prod_{k=1}^{n} a(k)$

1.15.5 Matrices

Command	Inline	Display
\IdentityMatrix \Style{IdentityMatrixParen=p} (Default)	1	1
\IdentityMatrix[2]	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\Style{IdentityMatrixParen=b}	· /	· /
\IdentityMatrix[2]	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\Style{IdentityMatrixParen=br}	[, -]	[° -]
\IdentityMatrix[2]	$ \begin{cases} 1 & 0 \\ 0 & 1 \end{cases} $	$ \begin{cases} 1 & 0 \\ 0 & 1 \end{cases} $
\Style{IdentityMatrixParen=none}		
\IdentityMatrix[2]	$\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}$

 $\verb|\IdentityMatrix[20]| yields$

```
0 \quad 0
             0
                0
                   0
                      0 \quad 0
                            0
                               0
                                  0
                                      0
                                         0
                                            0
                                               0
                                                    0 \quad 0
                      0
                         0
                             0
                                0
                                      0
                                         0
                                0
                                   0
                                      0
                                         0
                                            0
                                               0
                                                  0
                                                     0
                                                        0
                                                            0
                      0
                         0
       0
                                0
                                   0
                                      0
                                         0
                                                  0
             0
                0
                   0
                      0
                         0
                            0
                                            0
                                               0
                                                     0
                                                        0
                                                            0
                0
                   0
                      0
                         0
                            0
                                0
                                   0
                                      0
                                         0
                                            0
                   0
                      0
                         0
                            0
                                0
                                   0
                                      0
                                         0
                                            0
                                               0
                                                  0
                                                            0
                      0
                0
                   0
                      1
                            0
                                0
                                   0
                                      0
                                         0
                                            0
                                               0
                                                  0
                                                     0
                         0
                                                            0
                0
                   0
                      0
                         1
                             0
                                0
                                   0
                                      0
                                         0
                                            0
                0
                   0
                      0
                         0
                            1
                                0
                                  0
                                      0
                                         0
                                            0
                                               0
                                                            0
      0
          0
             0
                0
                   0
                      0
                         0
                            0
                                1
                                   0
                                      0
                                         0
                                            0
                                               0
                                                  0
                                                     0
                                                        0
                                                            0
                      0
                         0
                             0
                                      0
                0
                   0
                      0
                         0
                            0
                                0
                                   0
                                      1
                                         0
                                            0
                                               0
                                                  0
                                                        0
                                                            0
                   0
                      0
                         0
                            0
                                   0
                                      0
                                         1
                0
                   0
                            0
                                0
                                   0
                                      0
                                         0
                                            1
   0 \quad 0
                      0
                         0
                                                  0
                                                            0
                                  0
                                      0
          0
             0
                0
                   0
                      0
                         0
                            0
                                0
                                         0
                                            0
                                               1
      0
                                                  0
                                                     0
                                                        0
                                                            0
                                     0
                0
                  0 \ 0 \ 0
                            0
                               0
                                  0
                                        0
                                            0
                                               0
                                                  1
                                                           0
                                     0
0 0
      0
          0
             0
                0
                   0
                      0
                         0
                            0
                                0
                                  0
                                         0
                                            0
                                               0
                                                  0
                                                      1
                                                        0
                                                           0
                                         0
                               0
                                  0
                                     0
                   0
                      0
                         0
                            0
                                                        1
                                                            0
0 \ 0 \ 0 \ 0
            0
               0
                   0 0 0 0 0 0 0 0 0 0 0 0
                                                        0
```

\mathbf{Index}

3-j Symbol, 13	\Beta, 8
6-j Symbol, 13	Beta Functions, 8
J 18 J 18 19 1	Inverse, 8
\Abs, 19	\Binomial, 7
Airy Functions, 4	(Dinomial, 1
\AiryAi, 4	Calculus, 20
\AiryBi, 4	Derivatives, 20, 22
Appell Hypergeometric Function, 13	Integrals, 24
\AppellFOne, 13	\CarmichaelLambda, 19
\ArcCos, 3	\Catalan, 1
\ArcCosh, 3	\Ceiling, 5
\ArcCot, 3	Charmicheal Lambda Function, 19
\ArcCoth, 3	\ChebyshevT, 7
\ArcCsc, 3	\ChebyshevU, 7
\ArcCsch, 3	\CInfty, 1
\ArcSec, 3	Clebsch-Gordon Coefficients, 13
\ArcSech, 3	\ClebschGordon, 13
\ArcSin, 3	Complete Elliptic Integrals, 14
\ArcSinh, 3	Complex Components, 19
\ArcTan, 3	\ComplexInfinity, 1
\ArcTanh, 3	\Conj, 19
\Arg, 19	\Cos, 2
\ArithGeoMean, 17	\Cosh, 3
Arithmetic Geometric Mean, 17	\CoshInt, 9
\AssocLegendreP, 7	\CosInt, 9
\AssocLegendreQ, 7	\Cot, 2
\AssocWeierstrassSigma, 15	\Coth, 3
G ,	\Csc, 2
\Bernoulli, 5	\Csch, 3
\BernoulliB, 7	\CyclotomicC, 7
Bessel Functions, 4	,
$\BesselI, 4$	\D, 20-22
$\Bessel J, 4$	$\DblFactorial, 7$
\Bessel K, 4	\DedekindEta, 17
$\Bessel Y, 4$	Derivatives

of Gamma Functions, 8	\EulerPhi, 19
Partial, 22	\Exp, 2
Total, 20	\ExpIntE, 9
\DiGamma, 8	\ExpIntEi, 9
\DigitCount, 20	Exponential Integrals, 9
\DiLog, 18	\ExtendedGCD, 5
\DiracDelta, 20	
\DirectedInfinity, 1	\Factorial, 7
\DirInfty, 1	\FactorInteger, 19
\DiscreteDelta, 6	Factors, 19
\Divisors, 19	\Fibonacci, 5
\DivisorSigma, 19	Fibonacci Number, 5
	$\$ FibonacciF, 7
\E (base of natural log), 1	\Floor, 5
\EGCD, 5	\fPart, 5
Elliptic	frac, see \fPart
Exponential, 17	$\$ FractionalPart, 5
Functions, 14	Fresnel Integrals, 8
Integrals, 14	\FresnelC, 8
Logarithm, 17	\FresnelS, 8
\EllipticE, 14	Functions
\EllipticExp, 17	Generalized, 20
\EllipticK, 14	Number Theory, 19
\EllipticLog, 17	O.F. 11
\EllipticNomeQ, 17	G-Function, 11
\EllipticNomeQInv, 17	Gamma Functions, 8
\EllipticPi, 14	Inverse, 8
$\EllipticTheta, 14$	\GammaFunc, 8
\Erf, 8	\GCD, 5
\Erfc, 8	\GegenbauerC, 7
\ErfcInv, 8	Generalized Functions, 20
\Erfi, 8	Generalized Lambert Function, 4
Error Functions, 8	Generalized Laugerre, 6
Inverse, 8	Generalized Meijer G-Function, 13
\Euler, 5	\GenErf, 8
Euler Totient Function, 19	\GenErfInv, 8
\EulerE, 7	\GenIncBeta, 8
\FulerGamma 1	$\GenIncGamma, 8$

\GenRegIncBeta, 8 \GenRegIncBetaInv, 8 \GenRegIncGamma, 8 \GenRegIncGammaInv, 8 \Glaisher, 1 \GoldenRatio, 1 Greatest Common Divisor, 5	Integrals, 24 Definite, 24 Elliptic, 14 Complete, 14 Incomplete, 14 Exponential, 9 Fresnel, 8 Indefinite, 24
\HarmNum, 8	$\Integrate, 24$
Heaviside Step, 20	\InvErf, 8
\HeavisideStep, 20	\iPart, 5
\HermiteH, 7 \HurwitzZeta, 18	Jacobi
Hyperbolic Functions, 3	Symbol, 19
Inverse, 3	Jacobi Functions, 16
\Hypergeometric, 10	Inverse, 16
Hypergeometric Functions, 10	Jacobi Theta Functions, 14
Appell, 13	\JacobiAmplitude, 16
Regularized, 11	\JacobiCD, 16
Tricomi Confluent, 13	\JacobiCDInv, 16
\HypergeometricU, 13	\JacobiCN, 16
) = ([]) 1	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$(\sqrt{-1})$, 1	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\IdentityMatrix, 25	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\IdentityMatrix[2], 25	\JacobiDC, 16
\Imag, 19	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\IncBeta, 8	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\IncEllipticE, 14	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\IncEllipticF, 14	\JacobiDS, 16
\IncEllipticPi, 14	\JacobiDSInv, 16
\IncGamma, 8 Incomplete Elliptic Integrals, 14	\JacobiNC, 16
Incomplete Camma Function, 8	\JacobiNCInv, 16
\Indeterminant, 1	\JacobiND, 16
\Infinity, 1	\JacobiNDInv, 16
\Int, 24	\JacobiNS, 16
int, see \iPart	\JacobiNSInv, 16
\IntegerPart, 5	\JacobiP, 7
(111008011 0110, 0	\JacobiSC, 16

\JacobiSCInv, 16 \JacobiSD, 16 \JacobiSDInv, 16 \JacobiSNInv, 16 \JacobiSymbol, 19 \JacobiTheta, 14 \JacobiZeta, 14	\MathieuCharisticExp, 19 \MathieuS, 18 Matrices Identity, 25 Matrix Identity, 25 \Max, 4 Meijer G-Function, 11
\Khinchin, 1 \KleinInvariantJ, 17 \KroneckerDelta, 6	Generalized, 13 \MeijerG, 11-13 \Min, 4 \Mod, 5
Lambda Function Charmicheal, 19 Lambert Function, 4 Generalized, 4 \LambertW, 4	Modular Functions, 17 \ModularLambda, 17 Moebius Function, 19 \MoebiusMu, 19 \Multinomial, 7
\LaugerreL, 7 \LCM, 5 Least Common Multiple, 5 \LegendreP, 7 \LerchPhi, 18 \LeviCivita, 6 \Log, 2 LegendreP	Neville Theta Functions, 14 \NevilleThetaC, 14 \NevilleThetaD, 14 \NevilleThetaN, 14 \NevilleThetaS, 14 \NielsenPolyLog, 18 Number Theory, 19
Logarithms Product, 4 \LogGamma, 8 \LogInt, 9 Mathieu Characteristics, 18 Functions, 18	Partial Derivatives, 22 \PartitionsP, 5 \PartitionsQ, 5 \pderiv, 22-24 \PI, 1 \Pochhammer, 8
\MathieuC, 18 \MathieuCharacteristicA, 19 \MathieuCharacteristicB, 19 \MathieuCharacteristicExponent, \MathieuCharisticA, 19 \MathieuCharisticB, 19	\PolyGamma, 8 \PolyLog, 18 Polylogarithm, 18 Polynomials Bernoulli, 6 Chebyshev, 6

Cyclotomic, 6	\StieltjesGamma, 18
Euler, 6	\StirlingSOne, 5
Fibonacci, 6	\StirlingSTwo, 5
Gegenbauer, 6	Struve Functions, 4
Hermite, 6	\StruveH, 4
Jacobi, 6	\StruveL, 4
Laugerre, 6	\Sum, 25
Legendre, 6	Symbol
\Prime, 19	Jacobi, 19
\PrimePi, 19	
\Prod, 25	\Tan, 2
Product Logarithms, 4	\Tanh, 3
\ProductLog, 4	Theta Functions
	Jacobi, 14
\Q uotient, 5	Neville, 14
Racah 6-j Symbol, 13	3-j Symbol, 13
\Real, 19	\ThreeJSymbol, 13
\RegHypergeometric, 11	Total Derivatives, 20
\RegIncBeta, 8	Totient Function, 19
\RegIncBetaInv, 8	Tricomi Confluent Hypergeometric Func-
\RegIncGamma, 8	tion, 13
_	Trigonometric Functions, 2
\RegIncGammaInv, 8 \RiemannSiegelTheta, 18	Inverse, 3
\RiemannSiegelZ, 18	Unit Step, 20
\RiemannZeta, 18	\UnitStep, 20
\Round, 5	(onitablep, 20
(Mound, 5	Weierstrass Functions, 15
\Sec, 2	$\WeierstrassHalfPeriods, 15$
\Sech, 3	$\WeierstrassInvariants, 15$
\Sign, 19	$\WeierstrassP, 15$
\Signature, 6	$\WeierstrassPGenInv, 15$
\Sin, 2	$\WeierstrassPHalfPeriodValues, 15$
\Sinh, 3	$\WeierstrassPInv, 15$
\SinhInt, 9	$\WeierstrassSigma, 15$
\SinInt, 9	\WeierstrassZeta, 15
6-j Symbol, 13	\WeierstrassZetaHalfPeriodValues,
\SixJSymbol, 13	16
\SphericalHarmY, 7	$\WeiSigma, 15$

Wigner 3-j Symbol, 13 Zeta, 18 Functions, 18

Hurwitz, 18 Riemann, 18

 $\texttt{\Zeta},\,18$