大语言模型时代:最大化 CPU价值的优化策略

何普江 英特尔AI软件架构师



## 目录

01 背景 (为什么?)

02 CPU上如何优化大语言模型?

03 最大化CPU价值

04 总结

背景 (为什么考虑最大化CPU 价值?)



### Computing Needs in LLM



**GPT-J Model Structure** 

#### MatMul shapes in GPT-J

(suppose prompt token size = 2048, batch size=1, greedy search)

|                   | 1 <sup>st</sup> token            | Next tokens                   |
|-------------------|----------------------------------|-------------------------------|
|                   | A: 2048x4096<br>B: 4096x12288    | A: 1x4096<br>B: 4096x12288    |
| MHA (1st BMM)     | A: 16x2048x256<br>B: 16x2048x256 | A: 16x1x256<br>B: 16x2048x256 |
|                   | A: 2048x4096<br>B: 4096x4096     | A: 1x4096<br>B: 4096x4096     |
|                   | A: 2048x4096<br>B: 4096x16384    | A: 1x4096<br>B: 4096x16384    |
| 2nd MatMul in FFN | A: 2048x16384<br>B: 4096x4096    | A: 1x16384<br>B: 4096x4096    |

Compute Bound Memory Read Bandwidth Bound

### **GPT Series Model Analysis**

- Parameters visited during one time inference
  - $P = n_{layer} * (4 * d_{hidden}^2 + 2 * 4 * d_{hidden}^2) + n_{vocab} * d_{hidden}$
- Memory latency & Compute latency
  - $laetency_{memory} = \frac{P*n_{bytes}}{Peak\ memory\ bandwidth}$
  - $latency_{compute} = \frac{2*P*(BatchSize*SeqLen)}{Peak\ FLOPs}$
- Arithmetic intensity
  - $AI = \frac{2 * P * B * S}{P * n_{bytes}} = \frac{2 * B * S}{n_{bytes}}$  FLOIPS/byte
  - Peak Al for SPR-SP with BF16 with AMX
    - $MAX AI_{spr-spbf 16} = \frac{123.2TFLOPS}{307.2G/1000} = 401 \text{ FLOIPS/byte}$
    - · Compute bound
      - $AI > MAX AI_{spr-spbf16} \Rightarrow B * S > 401$
    - Memory bound
      - $AI > MAX AI_{spr-spbf 16} \Rightarrow B * S < 401$

### Latest CPU Features for LLM





# Only x86 CPU with High Bandwidth Memory (HBM)



### CPU is NOT Fully Utilized!

#### LLM Inference Pipeline



Pre-processing and post processing in LLM inference is relatively simple and do not need too much CPU resource.

### CPU Utilization in LLM Training (offload mode)

metric\_CPU utilization %



Even for offload LLM training, CPU is still not fully utilized.

CPU上如何优化大语言模型?



## Optimization

- Leverage the high-performance kernel (e.g., oneDNN)
- Avoid redundant computing
  - Continuous batching
  - -Causal masking
  - Prefix sharing
- Lower precision & Sparsity
- Graph fusion
- Minimize memory copy and reorder
- Reuse the memory
- Distributed inference & use efficient communication library oneCCL
- Runtime tunning

### Optimization for Distributed Inference

#### Distributed inference based on oneCCL



Improve scalability by minimizing synchronization.



One time synchronization per layer is enough for some models



Minimize memory copy with full stack ownership

# Attention Optimization

(split score in 2 dimesion)



Computing Order: 1020304059...
Intermediate score size: Same size with 1

Advantage: minimal intermediate buffer w/ some redundant computing

### Do We Need Paged Attention on CPU?







"Pathologies of Big Data" by Adam Jacobs in the ACM Communications, 2009





### Int8 Weight Only Quantization



# 最大化CPU价值



### CPU vs. GPU





#### **GPU**



A smaller number of larger cores

Low latency

Performs fewer instructions per

clock

Designed and optimized for complex

programs w/ serial processing

Automatic cache management

Large memory capacity

A larger number (thousands) of smaller cores

High throughput

Performs more instructions per

clock

Optimized for parallel processing w/

bulk repetitive calculations

Allows for manual memory

management

Limited memory capacity

Key Challenges in LLM Inference or certain control of the control

generation

- Attention (square)
- Model is large

Key HW Factors in LLM

bandwidth

- Computing
- Memory capacity

### Scenarios CPU has values

- Long tail models (many models, few requests)
- Offline mode (to maximize throughput)
- Occasional demand
- Very long prompt token size and no strict latency requirement
- Very large model and no enough GPU
- Hybrid solution (e.g., speculative sampling)



- · All models loaded in memory
- · Not all models serving together





### Speculative Decoding





Image from https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a





In Practice, draft models are about 15-20x smaller than the target model.



### 总结

Why
Considering
CPU?

How to
optimize on
CPU?

When to use
CPU?



