2 Announcements

Recitation sessions:

- Review of proof techniques and probability
 - Friday January 17, 3:00-4:10 PM in Skilling Auditorium
- Review of linear algebra
 - Friday January 17, 4:20-5:20 PM in Skilling Auditorium

Deadlines tonight, 11:59 PM:

Colab 0 (Spark Tutorial), Colab 1

Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Theory of Locality Sensitive Hashing

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recap: Finding similar documents

Task: Given a large number (N in the millions or billions) of documents, find "near duplicates"

Problem:

- Too many documents to compare all pairs
- Solution: Hash documents so that similar documents hash into the same bucket
 - Documents in the same bucket are then
 candidate pairs whose similarity is then evaluated

Recap: The Big Picture

Recap 1: Shingles

- A k-shingle (or k-gram) is a sequence of k
 tokens that appears in the document
 - Example: k=2; D_1 = abcab Set of 2-shingles: C_1 = $S(D_1)$ = {ab, bc, ca}
- Represent a doc by a set of hash values of its k-shingles
- A natural similarity measure is then the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Similarity of two documents is the Jaccard similarity of their shingles

Recap 2: Minhashing

• Min-Hashing: Convert large sets into short signatures, while preserving similarity: Pr[h(C₁) = h(C₂)] = sim(D₁, D₂)

Permutation π

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	О
1	O	1	O

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities of columns and signatures (approx.) match!

Col/Col Sig/Sig

	1-3	2-4	1-2	3-4	
	0.75	0.75	0	0	
3	0.67	1.00	0	0	

Recap 3: LSH

- Hash columns of the signature matrix M:
 Similar columns likely hash to same bucket
 - Divide matrix M into b bands of r rows (M=b·r)
 - Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Today: Generalizing Min-hash

Design a locality sensitive hash function (for a given distance metric)

Apply the "Bands" technique

The S-Curve

The S-curve is where the "magic" happens

Similarity s of two sets

This is what 1 hash-code gives you

$$\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$$

Similarity s of two sets

This is what we want!

How to get a step-function?

By choosing *r* and *b*!

How Do We Make the S-curve?

- Remember: b bands, r rows/band
- Let $sim(C_1, C_2) = s$

What's the prob. that at least 1 band is equal?

- Pick some band (r rows)
 - Prob. that elements in a single row of columns C₁ and C₂ are equal = s
 - Prob. that all rows in a band are equal = s^r
 - Prob. that some row in a band is not equal = 1 s^r
- Prob. that all bands are not equal $= (1 s^r)^b$
- Prob. that at least 1 band is equal = $1 (1 s^r)^b$ $P(C_1, C_2 \text{ is a candidate pair}) = 1 - (1 - s^r)^b$

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

S-curves as a func. of b and r

Given a fixed threshold *t*.

We want choose r and b such that the P(Candidate pair) has a "step" right around t.

Visualizing S-Curves

Visualization of the effect of threshold, band size, and # of rows in LSH

by Trenton Chang (Thank you!!)

https://www.desmos.com/calculator/lzzvfjiujn

Theory of LSH

Theory of LSH

- We have used LSH to find similar documents
 - More generally, we found similar columns in large sparse matrices with high Jaccard similarity
- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let's generalize what we've learned!

Distance Measures

- $d(\cdot)$ is a **distance measure** if it is a function from pairs of points x,y to real numbers such that:
 - $d(x,y) \ge 0$
 - d(x,y) = 0 iff x = y
 - d(x,y) = d(y,x)
 - $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)
- Jaccard distance for sets = 1 Jaccard similarity
- Cosine distance for vectors = angle between the vectors
- Euclidean distances:
 - L₂ norm: d(x,y) = square root of the sum of the squares of the differences between x and y in each dimension
 - The most common notion of "distance"
 - L_1 norm: sum of absolute value of the differences in each dimension
 - Manhattan distance = distance if you travel along axes only

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that allows us to say whether two elements are "equal"
 - Shorthand: h(x) = h(y) means "h says x and y are equal"
- A family of hash functions is any set of hash functions from which we can efficiently pick one at random
 - Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

 Suppose we have a space S of points with a <u>distance</u> measure d(x,y)

Critical assumption

- A family H of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for any x and y in S:
 - 1. If $d(x, y) \le d_1$, then the probability over all $h \in H$, that h(x) = h(y) is at least p_1
 - 2. If $d(x, y) \ge d_2$, then the probability over all $h \in H$, that h(x) = h(y) is at most p_2

With a LS Family we can do LSH!

A (d_1, d_2, p_1, p_2) -sensitive function

Example of LS Family: Min-Hash

Let:

- S = space of all sets,
- d = Jaccard distance,
- H is family of Min-Hash functions for all permutations of rows
- Then for any hash function h∈ H:

$$Pr[h(x) = h(y)] = 1 - d(x, y)$$

 Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family – (2)

Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d.

If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that Min-Hash values agree is $\geq 2/3$

• For Jaccard similarity, Min-Hashing gives a $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any $d_1 < d_2$

Amplifying a LS-Family

Can we reproduce the "S-curve" effect we saw before for any LS family?

- The "bands" technique we learned for signature matrices carries over to this more general setting
- Can do LSH with any (d₁, d₂, p₁, p₂)-sensitive family!
- Two constructions:
 - AND construction like "rows in a band"
 - OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family H, construct family H' consisting of r functions from H
- For $h = [h_1,...,h_r]$ in H', we say h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for all i
 - Note this corresponds to creating a band of size r
- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive
- Proof: Use the fact that h_i 's are independent

Also lowers probability for small distances (Bad)

Lowers probability for large distances (Good)

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
 - But two particular hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of *H*, *H*' (i.e., average case and not the worst case)

OR of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h = [h_1,...,h_b]$ in H', h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for at least 1 i
- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive
- Proof: Use the fact $that h_i$'s are independent

Raises probability for small distances (Good)

Raises probability for large distances (Bad)

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not
- OR makes all probs. grow, but by choosing b correctly, we can make the higher prob. approach 1 while the lower does not

0.9

Prob. sharing a bucket *r*=1, *b*=1..10

OR

Combine AND and OR Constructions

- By choosing b and r correctly, we can make the lower probability approach 0 while the higher approaches 1
- As for the signature matrix, we can use the AND construction followed by the OR construction
 - Or vice-versa
 - Or any sequence of AND's and OR's alternating

Composing Constructions

- r-way AND followed by b-way OR construction
 - Exactly what we did with Min-Hashing
 - AND: If bands match in all r values hash to same bucket
 - **OR:** Cols that have ≥ 1 common bucket \rightarrow Candidate
- Take points x and y s.t. Pr[h(x) = h(y)] = s
 - H will make (x,y) a candidate pair with prob. s
- Construction makes (x,y) a candidate pair with probability $1-(1-s^r)^b$ The S-Curve!
 - Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H" by the OR construction with b = 4

Table for Function 1-(1-s4)4

s	p=1-(1-s ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

r = 4, b = 4 transforms a
 (.2,.8,.8,.2)-sensitive family into a
 (.2,.8,.8785,.0064)-sensitive family.

How to choose *r* and *b*

Picking r and b: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions (r = 5, b = 10)

Blue area X: False Negative rate
These are pairs with sim > t but the X
fraction won't share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!

Green area Y: False Positive rate
These are pairs with sim < t but
we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.

Picking r and b: The S-curve

- Picking r and b to get desired performance
 - 50 hash-functions (r * b = 50)

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms similarity s (probability p) into (1-(1-s)^b)^r
 - The same S-curve, mirrored horizontally and vertically
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H' by the AND construction with r = 4

Table for Function (1-(1-s)4)4

S	p=(1-(1-s) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family
 - Note this family uses 256 (=4*4*4*4) of the original hash functions

General Use of S-Curves

- For each AND-OR S-curve 1-(1-s^r)^b, there is a threshold t, for which 1-(1-t^r)^b = t
- Above t, high probabilities are increased; below t, low probabilities are decreased
- You improve the sensitivity as long as the low probability is less than t, and the high probability is greater than t
 - Iterate as you like
- Similar observation for the OR-AND type of Scurve: (1-(1-s)^b)^r

Visualization of Threshold

Summary

- Pick any two distances $d_1 < d_2$
- Start with a $(d_1, d_2, (1-d_1), (1-d_2))$ -sensitive family
- Apply constructions to **amplify** (d_1, d_2, p_1, p_2) -sensitive family, where p_1 is almost 1 and p_2 is almost 0
- The closer to 0 and 1 we get, the more hash functions must be used!

LSH for other distance metrics

LSH for other Distance Metrics

- LSH methods for other distance metrics:
 - Cosine distance: Random hyperplanes
 - Euclidean distance: Project on lines

Summary of what we will learn

"Bands" technique

Candidate pairs

"Bands" technique

Candidate pairs

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question $d(A, B) = \theta = \arccos(A \cdot B / \|A\| \cdot \|B\|)$
 - Has range $[0,\pi]$ (equivalently $[0,180^{\circ}]$)
 - Can divide θ by π to have distance in range [0,1]
- Cosine similarity = 1-d(A,B)
 - But often defined as **cosine sim**: $cos(\theta)$

Cosine of angle is near 0 i.e. 0%

- Has range -1...1 for general vectors
- Range 0..1 for non-negative vectors (angles up to 90°)

Score Vectors in opposite direction Angle between then is near 180 deg. Cosine of angle is near -1 i.e. -100%

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
 - Technique similar to Min-Hashing
- Random Hyperplanes method is a $(d_1, d_2, (1-d_1/\pi), (1-d_2/\pi))$ -sensitive family for any d_1 and d_2
- Reminder: (d_1, d_2, p_1, p_2) -sensitive
 - 1. If $d(x,y) \le d_1$, then prob. that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. that h(x) = h(y) is at most p_2

Random Hyperplanes

- Each vector v determines a hash function h_v
 with two buckets
- $h_v(x) = +1$ if $v \cdot x \ge 0$; = -1 if $v \cdot x < 0$
- LS-family H = set of all functions derived from any vector
- Claim: For points x and y, $Pr[h(x) = h(y)] = 1 - d(x,y) / \pi$

Proof of Claim

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of
 +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in *M* dimensions for large *M*
 - Would have to generate M random numbers
- A more efficient approach
 - It suffices to consider only vectors v
 consisting of +1 and -1 components
 - Why? Assuming data is random, then vectors of +/-1 cover the entire space evenly (and does not bias in any way)

LSH for Euclidean Distance

- Idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
 - An element of the "Signature" is a bucket id for that given projection line
- Nearby points are always close;
 distant points are rarely in same bucket

Projection of Points

different buckets

projection

Multiple Projections

Projection of Points (1)

If **d** << **a**, then the chance the points are in the same bucket is at least **1** – **d/a**.

Projection of Points (2)

A LS-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob.
 they are in same bucket ≥ 1- d/a = ½
- If points are distance $d \ge 2a$ apart, then they can be in the same bucket only if $d \cos \theta \le a$
 - $-\cos\theta \leq \frac{1}{2}$
 - $60 \le \theta \le 90$, i.e., at most 1/3 probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Summary

Two Important Points

 Property P(h(C₁)=h(C₂))=sim(C₁,C₂) of hash function h is the essential part of LSH, without which we can't do anything

 LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied