数据驱动的推特新闻事件挖掘

Data Driven News Event Mining from Twitter.

报告人:黎谢鹏 指导老师:胡岩峰

目录

- 一、背景与意义
- 二、研究内容
- 三、研究进展
- 四、研究成果
- 五、学位论文框架

一、背景与意义

• 社交媒体作为社会传感器为社会科学研究提供了新的数据源。

• 新闻事件挖掘研究可以辅助社会管理者以更高的效率,更全面的信息做出正确的管理决策。

二、研究内容:

- 有监督学习效果好,但数据是瓶颈,构造可用的数据集是关键。
 - 难点:海量, 噪音, 冗余, 多样性
- 知识产生决策,事件概念图谱是利用事件相关知识进行决策辅助的基础。
 - 难点:链接预测时图遍历算法复杂性高

二、研究内容:

新闻事件挖掘任务:

新闻事件 检测系统 流程

- 推文过滤
- 推文分类
- 推文聚类
- 推文排序

新闻事件 数据集构 建

- 相关推文检索
- 相关推文过滤与排序

新闻事件 概念图谱 构建

- 推文概念化
- 事件模式抽取
- 事件概念抽取

三、研究进展:

新闻事件检测系统流程

- Build a system for event detection in twitter.
- Training a classifer for Tweet classification using char-cnn and word2vec and lexical feature for tweet representation.
- Using K-means for event instance clusering, NER and SRL model for event information extraction.
- Using MMR-submodular based text summarization technology to rank relevant tweets.

三、研究进展:

新闻事件数据集构建:

- 爬取
- 预处理

维基当前事件

相关推文检索

- 检索字符串 生成
- 推文检索

- 推文过滤
- 推文排序

相关推文过滤 与排序

Wiki current event demo

- An early-morning landslide buries 40 homes and leaves 15
 people dead and 114 others missing in Aba Prefecture, Sichuan
 Province, China. At least 500 rescue workers are on scene, and a
 2-km stretch of the river in Mao County is blocked.
- Label: 'disaster and accident'
- 中国四川省阿坝州清晨的滑坡摧毁40所房屋,造成15人死亡和 114人失踪。至少有500名救援人员在现场,毛县一条2公里长的 河流被封锁。
- 标签:自然灾害与事故

Related Tweets Query Generation

- NER + top_related([V,N]) combination
 - NUM:40 15 114 500
 - LOC: Aba.CITY Prefecture.LOCATION Sichuan.STATE_OR_PROVINCE Province.LOCATION China.COUNTRY Mao.CITY County.LOCATION
 - V: buries leaves missing blocked
 - N: landslide homes people others scene stretch river
 - Related_score(word):=boe_cosine(word,'disaster and accident')
 - Combination : c_4^2
 - Query: Combination; time [-24,+24]

Related Tweets filtering and ranking

- Related_score = boe_cosine(wiki_description,tweet)
- Filtering criteria: (boe_cosine > 0.75) &(10 < num_top_tweets = 60)
- Ranking method:
 - MMR(Maximal Marginal Relevance)-submodular
 - Greedy criteria: F_mmr = graph_cut penalty contradiction
 - Graph_cut: lambda*sim(selected,unselected)
 - Penalty: $(1-\text{lamda})*\text{sim}(C_s^2)$
 - Contradiction: beta*Log(CrossEntropy(Label_distribution(wiki_description), Label_distribution(tweet)))

Related Tweets filtering and ranking

Demo

- MMR-submodular based rank:
 - 0.9582722326723183 China: Death toll rises to 15 and over 120 others are missing after a landslide in south-western Sichuan province.
 - 0.9286372801720572 Rescue operation is under way in Sichuan province after more than 40 homes in Xinmo village were engulfed by lan.
 - 0.9461324580032283 More than 120 people are missing after a landslide in Sichuan province in south-western China, 40 homes were destroyed in Xinmo village.
 - 0.9379743462839512 Fifteen people were killed in a landslide in southwest China 's Sichuan Province on Saturday and about 100 were.
 - 0.9365613210034124 Dozens of homes are destroyed and at least 120 people are missing in the wake of a massive landslide in China.

Dataset Usage Demo

- Top 5: multi-reference news summaration dataset
- Top 15: News Event Concept Graph Building
- Top 30: Classification dataset
- Top 45: Clustering Algorithm testing

三、研究进展:

新闻事件概念图谱构建

- Probase+ConceptNet5:单词或词组表示概念
- Word2vec 候选项高速查询
- HIN (异质信息网络):
 - G(V,E)
 - $\varphi = V \rightarrow A$
 - $\psi = E \rightarrow R$
 - |A| > 1 or |R| > 1
 - Meta-path(作为链接预测的特征): $A_1 \overset{R_1}{\to} A_2 \overset{R_2}{\to} \cdots \overset{R_l}{\to} A_{l+1}$

Simple demo: instance conceptulize

- In Spanish football, FC Barcelona win La Liga.
- Concept hierarchy level:
 - Level-0: event, entity
 - Level-1: nationality, organization, sport, game, club
 - Level-2: football, win, club
 - Level-instance: Spanish, FC Barcelona, La Liga

[predefine]

[ner & query]

[extract & inference]

Simple demo: event entity & concept extraction

- Event info:
 - {'event.type':['sport.football','game.win'],
 - 'club.instance': ['FC Barcelona', 'La Liga'],
 - ' football.hasSubEvent':'win',
 - 'event.pattern':' In [entity.nationality] [event.sport.football], [entity.organization.club] [event.game.win] [entity.organization.club].'}
- tweet-based event.pattern-[frequent]->event instance pattern –
 [frequent]-> event category pattern

Conceptulize the trigger V.&N.

- Rank_score(word)= boe_cosine(word,tweet_categorical_label)
- football,win
- MATCH p=(a)-[:`/r/lsA`|:`/r/microsoft/lsA`|:`/r/InstanceOf`*1..2] >(b) WHERE a.conceptId IN ['/c/en/football'] AND b.conceptId =
 "/c/en/event" RETURN extract(x IN nodes(p) | x.conceptId) as
 nodes,extract(x IN relationships(p) | type(x)) as rels,reduce(prob =
 1.0, x IN relationships(p) | prob*x.weight) as probs ORDER BY
 probs DESC LIMIT 10;

Vector similarity context vs (c)<-[:\/r/RelatedTo\]-(a)

- wv.most_similar(positive=['win', 'football', 'organization'], topn=10, indexer=annoy_index)
 - [('football', 0.6417830884456635),
 - ('league', 0.6238529682159424), #联赛
 - ('win', 0.622621089220047),
 - ('team', 0.5995824038982391), #球队
 - ('winning', 0.5774330496788025),
 - ('teams', 0.5667363405227661), #球队
 - ('soccer', 0.5631313323974609), #冠军
 - ('championship', 0.5575762391090393),
 - ('club', 0.555101752281189), #俱乐部
 - ('baseball', 0.5484375953674316)]

Concept inference by neo4j Cypher query:

- Topk=10
 vector_similarity_context=['/c/en/league','/c/en/team','/c/en/championship','/c/en/club']
- MATCH p=(a)-[:\r/IsA\]:\r/microsoft/IsA\]:\r/InstanceOf*1..1] >(b) WHERE a.conceptId IN {vector_similarity_context} AND
 b.conceptId = "/c/en/organization" RETURN extract(x IN nodes(p)
 | x.conceptId) as nodes,extract(x IN relationships(p) | type(x)) as
 rels,reduce(prob = 1.0, x IN relationships(p) | prob*x.weight) as
 probs ORDER BY probs DESC LIMIT {topk};
- Add type constraint on vector_similarity_context

Concept inference by neo4j Cypher query:

```
MATCH p=(a)-[:\/r/IsA\/|:\/r/microsoft/IsA\/|:\/r/InstanceOf\*1..1]->(b) WHERE a.conceptId IN ['/c/en/league','/c/en/team','/c/en/
 championship','/c/en/club']
 AND b.conceptId = "/c/en/organization" RETURN extract(x IN nodes(p) | x.conceptId) as nodes, extract(x IN relationships(p) |
 type(x)) as rels, reduce(prob = 1.0, x IN relationships(p) | prob*x.weight ) as probs ORDER BY probs DESC LIMIT 10;
H p=(a)-[:`/r/IsA`|:`/r/microsoft/IsA`|:`/r/InstanceOf`*1..1]->(b) WHERE a.conceptId IN ['/c/en/league','/c/en/team','/c/en/ championshi...
  nodes
                                                                          rels
                                                                                                                   probs
  ["/c/en/club", "/c/en/organization"]
                                                                          ["/r/microsoft/IsA"]
                                                                                                                   0.012199999764561653
                                                                          ["/r/microsoft/lsA"]
  ["/c/en/league", "/c/en/organization"]
                                                                                                                   0.00039999998989515007
  ["/c/en/team", "/c/en/organization"]
                                                                          ["/r/microsoft/IsA"]
                                                                                                                   0.00039999998989515007
```

Level-2 concept relation:

MATCH p=(a:Concept {conceptId:'/c/en/football'})-[*1..2]
 (b:Concept {conceptId:'/c/en/win'}) RETURN extract(x IN nodes(p)|x.conceptId) as nodes,extract(x IN relationships(p)|type(x)) as rels,reduce(prob = 1.0,x IN relationships(p)|prob*x.weight) as probs ORDER BY probs DESC LIMIT 25;

nodes	rels	probs
["/c/en/football", "/c/en/game", "/c/en/win"]	["/r/lsA", "/r/RelatedTo"]	4.463354876537323
["/c/en/football", "/c/en/game", "/c/en/win"]	["/r/RelatedTo", "/r/RelatedTo"]	0.049673997903823874
["/c/en/football", "/c/en/game", "/c/en/win"]	["/r/microsoft/lsA", "/r/RelatedTo"]	0.027612898706710354
["/c/en/football", "/c/en/playing_game", "/c/en/win"]	["/r/microsoft/lsA", "/r/HasSubevent"]	0.0063687002355383715
["/c/en/football", "/c/en/playing_game", "/c/en/win"]	["/r/microsoft/lsA", "/r/Causes"]	0.005200000014156103
["/c/en/football", "/c/en/playing_sport", "/c/en/win"]	["/r/microsoft/lsA", "/r/HasSubevent"]	0.0027000000700354576
["/c/en/football", "/c/en/playing_sport", "/c/en/win"]	["/r/microsoft/lsA", "/r/Causes"]	0.0027000000700354576
["/c/en/football", "/c/en/play_game", "/c/en/win"]	["/r/microsoft/lsA", "/r/MotivatedByGoal"]	0.0003999998989515007
["/c/en/football", "/c/en/play_game", "/c/en/win"]	["/r/microsoft/lsA", "/r/HasSubevent"]	0.00019999999494757503
["/c/en/football", "/c/en/reward", "/c/en/win"]	["/r/microsoft/lsA", "/r/RelatedTo"]	0.0000174999992598896

Level-2 concept relation:

- Contraint on core event relation
 - 同义词-表达多样性:'/r/FormOf'|:'/r/Synonym'|:'/r/DerivedFrom'
 - 上下位:`/r/IsA`|:`/r/MannerOf`
 - 因果关系:'/r/Causes'
 - 目的关系:'/r/MotivatedByGoal'|:'/r/Desires'
 - 包含关系: '/r/HasSubevent'
 - 条件关系: `/r/HasPrerequisite`|:`/r/Entails`
- Candidate pairs <s,t>:
 - <football,win>
 - <football,club>
 - <win,club>

Link prediction in HIN using meta-path feature: 1.fusion of dependencies-graph & concept-graph

Named Entity Recognition: NATIONALITY ORGANIZATION ORGANIZATION In Spanish football , FC Barcelona win La Liga Enhanced++ Dependencies: In Spanish football, FC Barcelona win La "rels" | "probs" footba11","/c/en/sport","/c/en/event"] ["/r/IsA", "/r/microsoft/IsA"] ["/c/en/footbal1", "/c/en/game", "/c/en/event"] ["/r/IsA", "/r/microsoft/IsA"] ["/c/en/football", "/c/en/event"] ["/r/microsoft/IsA"] en/football","/c/en/sport","/c/en/event"] ["/r/microsoft/IsA", "/r/microsoft/IsA"] | 0.01348 | "rels" "nodes' ["/c/en/win", "/c/en/game", "/c/en/event"] ["/r/microsoft/IsA","/r/microsoft/IsA"] | 0.000004560000293478373 ["/r/microsoft/IsA", "/r/microsoft/IsA"] | 0.00000390000007944181 ["/c/en/win", "/c/en/contest", "/c/en/event"] ["/r/microsoft/IsA", "/r/microsoft/IsA"] | 0.00000114000007 ["/c/en/win", "/c/en/program", "/c/en/event"]

Link prediction in HIN using meta-path feature: 2.auto generate meta-path by random walk

- Random-walk constrain relations and weight
- <s,···,_,···,t>,r,beam_size=25
- MATCH p=(a:Concept {conceptId:s})-[*1..1]-(b:Concept {conceptId:_}) RETURN extract(x IN nodes(p)|x.conceptId) as nodes,extract(x IN relationships(p)|type(x)) as rels,reduce(prob = 1.0,x IN relationships(p)|prob*x.weight) as probs ORDER BY probs DESC LIMIT 25;

Complex demo : multi-reference dep-tree to dep-graph

- An early-morning landslide buries 40 homes and leaves 15 people dead and 114 others missing in Aba Prefecture, Sichuan Province, China. At least 500 rescue workers are on scene, and a 2-km stretch of the river in Mao County is blocked.
- China: Death toll rises to 15 and over 120 others are missing after a landslide in south-western Sichuan province.
- Rescue operation is under way in Sichuan province after more than 40 homes in Xinmo village were engulfed by Ian.
- More than 120 people are missing after a landslide in Sichuan province in south-western China, 40 homes were destroyed in Xinmo village.
- Fifteen people were killed in a landslide in southwest China 's Sichuan Province on Saturday and about 100 were.
- Dozens of homes are destroyed and at least 120 people are missing in the wake of a massive landslide in China.

四、研究成果

- 新闻事件检测系统
- 新闻事件数据集

五、学位论文框架

- 第一章 引言
 - 1.1 研究背景和意义
 - 1.2 国内外研究现状与进展
 - 1.3 本文的研究方法及结构安排
 - 1.4 本文的主要创新点与贡献
- 第二章 基础理论介绍
 - 2.1 引言
 - 2.2 文本表示方法
 - 2.3 基于次模函数的文本摘要方法
 - 2.4 概念图谱与异质信息网络
 - 2.5 本章小结
- 第三章 新闻事件检测系统
 - 3.1 推文表示
 - 3.2 推文过滤与分类
 - 3.3 推文聚类与信息抽取
 - 3.4 本章小结

五、学位论文框架

- 第四章 新闻事件数据集构建
 - 4.1 相关推文检索
 - 4.2 相关推文过滤与排序
 - 4.3 本章小结
- 第五章 新闻事件概念图谱构建
 - 5.1 概念异质信息网络
 - 5.2 推文概念化
 - 5.3 事件模式抽取
 - 5.4 事件概念抽取
 - 5.5 本章小结
- 第六章 总结与展望
 - 6.1 总结
 - 6.2 展望
- 参考文献