A PROJECT REPORT

ON

"REMOTE GRIP ROVER"

Is submitted to

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, ANANTAPUR

In partial fulfilment of

the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

In

ELECTRONICS AND COMMUNICATION ENGINEERING

During the academic year 2023-2024

Submitted by

S. IRAM KISHWAR	209F1A0492
S. SHABAZ BANU	209F1A0496
M.PAVAN SAI	209F1A0478
K. MOUNESH	209F1A0472
K. VASUDHA	209F1A0475

Under the esteemed guidance of

Dr. N. KARTHIKEYAN M. Tech, Ph. D

Assistant Professor, ECE Dept.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SRI VENKATESHWARA INSTITUTE OF TECHNOLOGY

(Affiliated to J.N.T. UNIVERSITY, ANANTAPUR)

NH-44, HAMPAPURAM, ANANTAPURAM - 515722

2023 - 2024

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SRI VENKATESWARA INSTITUTE OF TECHNOLOGY

(Affiliated to J.N.T.UNIVERSITY, ANANTAPURAMU)

NH-44,HAMPAPURAM,ANANTAPURURAMU-515722

CERTIFICATE

This is to certify that project work entitled "REMOTE GRIP ROVER" is the bona fide work done by S. IRAM KISHWAR (209FIA0492), S. SHABAZ BANU (209F1A0496), M. PAVAN SAI (209F1A0478), K. MOUNESH (209F1A0472), K. VASUDHA (209F1A0475). Under my supervision and guidance, in partial fulfilment of the requirements for the award of degree of "BACHELOR OF TECHONOLGY in ELECTRONICS AND COMMUNICATION ENGINEERING" from Jawaharlal Nehru Technological University, Anantapur, Anantapuramu, during the period of 2023-2024.

PROJECT GUIDE

Dr. N. Karthikeyan M. Tech, Ph. D. Assistant Professor, Department of ECE,

S.V.I.T.

HEAD OF THE DEPARTMENT

Smt. T. Ranjitha Devi M. Tech, (Ph. D) Assistant Professor and HOD, Department of ECE,

S.V.I.T.

Certified that the candidate was examined in the viva-voce examination held on	
--	--

(External Examiner)

ACKNOWLEDGEMENT

It is a great pleasure to express my deepest sense of gratitude and indebtedness to our internal guide **Dr. N. Karthikeyan**, Assistant Professor of Electronics and Communication Engineering department, Sri Venkateshwara Institute of Technology, Anantapuramu, for having been a source of constant inspiration, precious guidance and generous assistance during the internship. I deem it as a privilege to have worked under his able guidance. Without his close monitoring and valuable suggestions this work wouldn't have taken this shape. I feel that his help is un-substitutable and unforgettable.

I wish to express my sincere thanks to **L. RANGASWAMY**, Assistant Professor, project coordinator, Dept of Electronics and Communication Engineering, Sri Venkateswara Institute of Technology, Anantapuramu for giving their valuable suggestions for the completion of the project.

I wish to express my sincere thanks to **Smt. T. RANJITHA DEVI**, Head., Dept of Electronics and Communication Engineering, Sri Venkateswara Institute of Technology, Anantapuramu, for giving their valuable suggestion and providing an eminent guide for the completion of the project.

I wish to express my sincere thanks to **Dr. T. VISHNU VARDHAN**, Principal, Sri Venkateswara Institute of Technology, Anantapuramu, for providing the facilities at the campus for the completion of the project.

I wish to express my thanks to my **PARENTS** for providing me good environment to complete this work.

Finally, I thank to all Teaching and Non-Teaching Staff of Electronics and Communication Engineering department and friends for their valuable support and co-operation in the laboratories and helping me throughout degree program.

PROJECT ASSOCIATES

S. IRAM KISHWAR	209F1A0492
S. SHABAZ BANU	209F1A0496
M. PAVAN SAI	209F1A0478
K. MOUNESH	209F1A0472
K. VASUDHA	209F1A0475

ABSTRACT

A robot is usually an electro-mechanical machine that is guided by computer and electronic programming. Many robots have Been built for manufacturing purpose and can be found in factories around the world. Designing of the latest inverted ROBOT which can be controlling using an APP for android mobile. We are developing the remote buttons in the android app by which we can control. The robot motion with them. And in which we use Bluetooth communication to interface controller and android. Controller can be Interfaced to the Bluetooth module though UART protocol. According to commands received from android the robot motion can be controlled. The consistent output of a robotic system along with quality and repeatability are unmatched. Pick and Place robots can be Reprogrammable and tooling can be interchanged to provide for multiple applications.

Human-following robots have been researched and developed actively these decades due to its plentiful applications in daily life and manufacturing. A human-following robot requires several techniques such as human's target detection, robot control algorithm and obstacles avoidance. Various approaches of following robots have been proposed such as using ultrasonic sensors, voice recognition sensors, laser range sensors, charge-coupled device (CCD) camera and so on. These technologies detect the relative position between a mobile robot and a human. In this research, a robust vision-based target detection system that detects a custom-designed tricolored belt with short initialization time, and a computationally less complex Robot Control Architecture was proposed using Fuzzy logic and Subsumption architecture to achieve these goals. The robust performance of the proposed approach is illustrated by the experimental results on a real-world robot which maintains accuracy, hardware cost as well as simplicity of the system and ensures that the robot follows the target person stably, smoothly, and safely.

Keywords: IR sensors, DC geared motors, Arduino board, Robotic arm kit, battery, Android phone, motor drivers, Ultrasonic sensor.

LIST OF FIGURES

Figure No.	TITLE	Page No.
3.2	Block Diagram of Existing System	06
3.3	Arduino Uno R3 Board	07
3.4	Arduino Uno Pin Diagram	07
3.5	I.R Sensor	09
3.6	Ultrasonic Sensor	10
3.7	DC Motors	10
3.8	L293D 4-Channel motor driver	11
4.2	Block diagram of Proposed System	15
4.3	Arduino Uno	16
4.3.1	Structure of Arduino Uno	18
4.3.2	ICSP	19
4.3.5	Motor Driver	21
4.3.6	DC motors	22
4.3.7	HC-05 Module	23
4.3.8	Robot ARM	24
6.2.1	Arduino set-up installation options	28
6.2.2	Arduino setup installation folder	28
6.2.3	Arduino set-up installing	29
6.2.4	USB Cable UNO R3 board	29
6.2.5	Representation of USB connection with UNO	30
6.2.6	LED valve and program to blink LED	31
6.2.7	Path to select board	32
6.2.8	Path to select serial port	32
6.2.9	Path to Upload	33
6.2.10	Tools in Arduino interface software	33
6.2.11	UNO with hardware	34
6.2.12	Path to add library files	34
6.2.13	Selecting the file to Arduino	35
7.1	Experimental setup of remote grip rover	42.

8.1	Assembling the Robotic Arm	43
8.2	3D view of full assembly	43
8.3	Initial and final positions of robotic arm	44
8.4	Building of the robotic arm	44
8.5	Connecting the project with MIT AI2 App	45
8.6	Scanning the QR code to connect	45
8,7	Graphical representation of o/p	47
8.8	Human following operations	47
8.9	Pick and place and human following operations	48
	by remote grip rover	

LIST OF TABLES

Table No.	TITLE	Page No.
8.1	Time taken to complete different tasks	46
8.2	Comparison between existing system	49
	and proposed system	

CONTENTS

Chapter No.	Chapter Name	Page No.
CHAPTER 1	: INTRODUCTION	01
CHAPTER 2	: LITERATURE SURVEY	03
CHAPTER 3	: EXISTING SYSTEM	05
	3.1 Introduction	05
	3.2 Block Diagram	06
	3.3 Arduino Uno R3 V1.0	07
	3.4 Arduino Uno Pin Diagram	07
	3.5 IR sensor	08
	3.6 Ultrasonic Sensor	09
	3.7 DC motors	10
	3.8 L293D 4-Channel motor driver	11
	3.9 Disadvantages of existing system	13
CHAPTER 4: PROPOSED SYSTEM		14
	4.1 Introduction	14
	4.2 Block Diagram	15
	4.3 Arduino	16
	4.3.1 Arduino Uno Structure	17
	4.3.2 ICSP	19
	4.3.3 Infrared sensor	20
	4.3.4 Ultrasonic sensor	20
	4.3.5 Motor driver	21
	4.3.6 DC Motors	22
	4.3.7 HC-05 Bluetooth Module	23
	4.3.8 Robotic Arm	23

CHAPTER :	5: ADVANTAGES AND APPLICATIONS	25
	5.1 Advantages	25
	5.2 Applications	25
CHAPTER	6: TOOLS	27
	6.1 Arduino IDE	27
	6.2 Operation Demo	27
	6.3 Source Code	36
CHAPTER 7: EXPERIMENTAL SETUP		42
	7.1 Representation of the project	42
CHAPTER	8: RESULT AND DISCUSSION	43
CHAPTER 9	9: CONCLUSION AND FUTURE SCOPE	50
	9.1 Conclusion	50
	9.2 Future Scope	51
CHAPTER	10: REFERENCE	53