Задача А. Известный художник

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Очень известный в определенных кругах художник Игнат рисовал каждый день по одной картине в течение N дней. В i-й день Игнат нарисовал картину с яркостью красок a_i .

Теперь Игнат хочет выбрать из N получившихся картин camyo контрастную пару. Пара картин (i,j), нарисованных в дни i и j соответственно, называется camoŭ контрастной, если значение a_i-a_j максимально среди всех возможных пар.

Формат входных данных

В первой строке содержится целое число N — количество дней ($2 \leqslant N \leqslant 10^5$). Во второй строке содержатся целые числа $a_1, a_2, ..., a_N$, где a_i — яркость картины, нарисованной в i-й день ($-10^9 \leqslant a_i \leqslant 10^9$).

Формат выходных данных

Выведите различные целые числа i и j — номера дней, в которые Игнат нарисовал самую контрастную пару картин (i,j). Числа i и j должны лежать в пределах от 1 до N. Если таких пар несколько, выведите пару с максимальным значением i-j. Обратите внимание, что пара (i,j) отличается от пары (j,i).

Система оценки

В этой задаче 2 группы тестов.

Первая группа тестов стоит 5 баллов, для нее выполняется ограничение $N \leqslant 1000$.

Вторая группа тестов стоит 5 баллов, для нее выполняется ограничение $N \leq 10^5$.

Примеры

стандартный ввод	стандартный вывод
6	6 1
1 2 1 3 1 3	
4	1 4
2 1 0 -1	

Задача В. Коллекционер

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Игнат увлекается коллекционированием настенных ковров. Недавно он смог освободить одну стену комнаты и теперь хочет повесить на эту стену ковер наибольшей возможной площади.

В стену вбито N гвоздей. Ковер можно вешать только параллельно осям координат, на четыре гвоздя, расположенных по углам ковра. Другие гвозди на стене **разрешается** накрывать ковром.

Найдите максимальную площадь ковра, который можно повесить на эту стену.

Формат входных данных

В первой строке содержится целое число N — количество забитых гвоздей в стене ($4 \le N \le 1500$). В каждой из следующих N строк содержатся целые числа x_i и y_i — координаты i-го гвоздя ($-10^9 \le x_i, y_i \le 10^9$). Гарантируется, что никакие два гвоздя не расположены в одной точке.

Формат выходных данных

Выведите максимальную площадь ковра, который можно разместить на стене. Если на стене невозможно разместить ни одного ковра, выведите 0. Обратите внимание, что ответ задачи может не помещаться в 32-битный целый тип данных!

Система оценки

В этой задаче 3 группы тестов.

Первая группа тестов стоит 4 балла, для нее выполняется ограничение $N \leq 30$.

Вторая группа тестов стоит 3 балла, для нее выполняется ограничение $N \leq 300$.

Третья группа тестов стоит 3 балла, для нее выполняется ограничение $N \leq 1500$.

Примеры

стандартный ввод	стандартный вывод
8	12
0 0	
1 1	
0 2	
5 0	
5 2	
0 4	
3 0	
3 4	
4	0
1 -1	
1 1	
-1 1	
1 0	

Замечание

В первом тесте можно повесить ковер с площадью 12 на гвозди с координатами (0,0), (3,0), (0,4), (3,4) либо ковер с площадью 10 на гвозди с координатами (0,0), (5,0), (0,2), (5,2).

Задача С. Одержимый

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Игнат просто одержим интересными подотрезками массивов из целых неотрицательных чисел. Интересным подотрезком массива $[a_1, \ldots, a_N]$ он называет массив $[a_l, a_{l+1}, \ldots, a_{r-1}, a_r]$ $(1 \le l \le r \le N)$, в котором не более одного нулевого элемента, а сумма всех элементов не превосходит числа K.

У Игната есть массив a длины N. Найдите количество интересных подотрезков этого массива.

Формат входных данных

В первой строке содержатся целые числа N и K $(1 \le N \le 10^5; 0 \le K \le 10^9)$. Во второй строке содержатся целые числа a_1, \ldots, a_N $(0 \le a_i \le 10^9)$.

Формат выходных данных

Выведите количество интересных подотрезков массива.

Система оценки

В этой задаче 4 группы тестов.

Первая группа тестов стоит 3 балла, для нее выполняются ограничения $N \leqslant 100$; $0 \leqslant a_i \leqslant 10^5$.

Вторая группа тестов стоит 3 балла, для нее выполняются ограничения $N \leq 2000$; $0 \leq a_i \leq 10^9$.

Третья группа тестов стоит 2 балла, для нее выполняются ограничения $N \leqslant 10^5$; $1 \leqslant a_i \leqslant 10^9$.

Четвертая группа тестов стоит 2 балла, для нее выполняются ограничения $N \leqslant 10^5$; $0 \leqslant a_i \leqslant 10^9$.

Примеры

стандартный ввод	стандартный вывод
4 1	6
0 1 1 0	
4 4	5
1 2 3 4	

Замечание

В первом примере интересными являются четыре одноэлементных подотрезка, а также подотрезки [0,1] и [1,0].

Во втором примере интересными являются четыре одноэлементных подотрезка, а также подотрезок [1,2].

Задача D. Общительный человек

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Игнат позиционирует себя как общительный человек, поэтому у него много друзей. Недавно Игнат и его друзья придумали новый способ генерации случайных чисел.

Способ заключается в том, что каждый из N друзей Игната берет кубик и записывает на всех его гранях какие-то целые числа (не обязательно различные). После этого все друзья одновременно кидают свои кубики, а Игнат складывает все выпавшие на кубиках числа. Получившаяся сумма и будет случайным сгенерированным числом.

Игнату интересно, сколько различных целых чисел он может получить таким способом.

Формат входных данных

В первой строке содержится целое число N — количество друзей Игната ($3 \le N \le 100$).

В *i*-й из следующих N строк содержатся целые числа $a_{i1}, a_{i2}, a_{i3}, a_{i4}, a_{i5}, a_{i6}$ — числа, записанные на гранях кубика *i*-го друга ($0 \le a_{ij} \le 500$).

Формат выходных данных

Выведите количество различных целых чисел, которые могут быть получены с помощью описанного способа генерации случайных чисел.

Система оценки

В этой задаче 3 группы тестов.

Первая группа тестов стоит 4 балла, для нее выполняется ограничение N=3.

Вторая группа тестов стоит 3 балла, для нее выполняется ограничение $N \leqslant 9$.

Третья группа тестов стоит 3 балла, для нее выполняется ограничение $N \leq 100$.

Пример

стандартный ввод	стандартный вывод
3	16
0 1 2 3 4 5	
0 0 2 3 4 5	
3 4 5 0 0 0	

Замечание

В примере описанным способом можно получить любое целое число от 0 до 15 включительно.

Задача Е. Неплохой огородник

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В деревне у Игната есть огород. План огорода представляет из себя клеточное поле из N строк и M столбцов. Строки нумеруются от 1 до N сверху вниз, а столбцы нумеруются от 1 до M слева направо.

Игнат на время уезжал в город, и за время его отсутствия огород зарос сорняками. Теперь огород можно описать матрицей N на M из целых неотрицательных чисел, обозначающих высоту сорняков в текущей клетке.

Игнат хочет привести огород в порядок. Но так как он человек занятой, у него хватит времени только на то, чтобы прополоть ровно одну строку и ровно один столбец на плане огорода. После того как Игнат пропалывает одну клетку, высота сорняков в этой клетке становится равной нулю.

Игнат ввел понятие *запущенности* огорода. Так он называет **максимальную высоту сорня-ков** среди всех клеток огорода.

Теперь Игнат хочет выбрать строку и столбец, которые нужно прополоть, чтобы запущенность огорода стала как можно меньше. Найдите такие строку и столбец.

Формат входных данных

В первой строке содержатся целые числа N и M ($2 \le N, M \le 1400$).

В каждой из следующих N строк содержатся по M цифр от '0' до '9' без пробелов — высоты сорняков в соответствующих клетках огорода.

Формат выходных данных

Выведите номер строки и номер столбца, которые нужно прополоть, чтобы запущенность огорода стала минимально возможной. Если подходящих ответов несколько, выведите любой из них.

Система оценки

В этой задаче 3 группы тестов.

Первая группа тестов стоит 4 балла, для нее выполняется ограничение $N \leq 30$.

Вторая группа тестов стоит 3 балла, для нее выполняется ограничение $N \leq 300$.

Третья группа тестов стоит 3 балла, для нее выполняется ограничение $N \leq 1400$.

Пример

стандартный ввод	стандартный вывод
5 4	1 3
4412	
3212	
0121	
2192	
4103	

Замечание

В примере есть несколько способов добиться минимальной запущенности огорода (она равна 4). Например, другой способ, кроме приведённого в примере — прополоть четвёртую строку и первый столбец. Любой ответ, приводящий к запущенности 4, является правильным.