5. előadás

VALÓS SOROZATOK 4.

Nevezetes sorozatok 2.

Az e szám bevezetése

1. feladat. Végezzünk számítógépes kísérleteket az

$$a_n := \left(1 + \frac{1}{n}\right)^n \quad \left(n \in \mathbb{N}^+\right)$$

sorozat viselkedésének a megismerésére!

Megoldás. Az eredmények:

$\left(1+1\right)^n$.	1	2	3	4	5	8	100	1 000	10 000
$\binom{1+-}{n}$	2	2,25	2,37	2,44	2,49	2,57	2,7048	2,71692	2,71815

A sorozat első néhány tagját szemlélteti az alábbi ábra:

A kísérletekből azt a **sejtést** alakíthatjuk ki, hogy az (a_n) sorozat szigorúan monoton növekedő és felülről korlátos. A következő tétel azt állítja, hogy ez a sejtés igaz.

| 6. | Az e szám értelmezése. Az

$$a_n := \left(1 + \frac{1}{n}\right)^n \quad \left(n \in \mathbb{N}^+\right)$$

sorozat szigorúan monoton növekedő és felülről korlátos, tehát konvergens. Legyen

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

1

Megjegyzés. Figyeljük meg, hogy " $1^{+\infty}$ " típusú kritikus határértékről van szó, ugyanis az 1-hez közeli a_n számok nagy kitevőjű b_n hatványaira az a_n és b_n megválasztásától függően minden eset előfordulhat. Ezt illusztrálják az alábbi példák:

$$a_{n} := \sqrt[n]{c} \to 1 \quad (c > 0), \qquad b_{n} := n \to +\infty, \qquad \Longrightarrow \qquad a_{n}^{b_{n}} \to c;$$

$$a_{n} := \sqrt[n]{n} \to 1, \qquad b_{n} := n \to +\infty \qquad \Longrightarrow \qquad a_{n}^{b_{n}} \to +\infty;$$

$$a_{n} := \begin{cases} 1, & \text{ha } n = 1, 3, 5, \dots \\ \sqrt[n]{2}, & \text{ha } n = 2, 4, 6, \dots \end{cases} \to 1, \qquad b_{n} := n \to +\infty, \qquad \Longrightarrow \qquad \nexists \lim \left(a_{n}^{b_{n}}\right).$$

A tétel azt állítja, hogy $\left(1+\frac{1}{n}\right)^n$ nagy n-ekre közel van az e-vel jelölt számhoz.

Bizonyítás. Az állítást a számtani és a mértani közép közötti egyenlőtlenség **ötletes** felhasználásaival bizonyítjuk.

ullet A monotonitás igazolásához az egyenlőtlenséget az (n+1) darab

$$1, \quad 1 + \frac{1}{n}, \quad 1 + \frac{1}{n}, \quad \dots, \quad 1 + \frac{1}{n}$$

számra alkalmazzuk. Mivel ezek nem mind egyenlők, ezért

$$\sqrt[n+1]{1 \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{1 + n \cdot \left(1 + \frac{1}{n}\right)}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}.$$

Mindkét oldalt (n + 1)-edik hatványra emelve azt kapjuk, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} = a_{n+1} \quad (n \in \mathbb{N}^+),$$

amivel beláttuk, hogy a sorozat szigorúan monoton növekedő.

• A korlátosság bizonyításához most az (n+2) darab

$$\frac{1}{2}$$
, $\frac{1}{2}$, $1 + \frac{1}{n}$, $1 + \frac{1}{n}$, ..., $1 + \frac{1}{n}$

számra alkalmazzuk ismét a számtani és a mértani közép közötti egyenlőtlenséget:

$$\sqrt[n+2]{\frac{1}{2} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{2 \cdot \frac{1}{2} + n \cdot \left(1 + \frac{1}{n}\right)}{n+2} = \frac{n+2}{n+2} = 1.$$

Ebből következik, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < 4 \quad (n \in \mathbb{N}^+),$$

ezért a sorozat felülről korlátos.

A monoton sorozatok határértékére vonatkozó tételből következik, hogy a sorozat konvergens. ■

Megjegyzés. Az e szám a matematika egyik legfontosabb állandója, amit *Leonhard Euler* (1707–1783) svájci matematikus vezetett be 1748-ban.

Az $((1+1/n)^n)$ sorozat határértékére külön szimbólum bevezetésének indoka a következő: Később majd meg fogjuk mutatni, hogy e irracionális szám, egy közelítő értéke $e\approx 2,718$. Az is igaz, hogy e ún. transzcendens szám. Ez azt jelenti, hogy nincs olyan egész együtthatós polinom, aminek ez a szám gyöke lenne. ($\sqrt{2}$ például irracionális, de nem transzcendens szám, mert $\sqrt{2}$ gyöke az $x^2-2=0$ egyenletnek.) Azokat a valós számokat, amelyek valamely egész együtthatós polinomnak a gyökei algebrai számnak nevezzük. ($\sqrt{2}$ tehát algebrai szám.)

7. Ha x tetszőleges racionális szám, akkor

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

Bizonyítás. $1^{+\infty}$ típusú kritikus határértékről van szó.

1. eset. Ha x=0, akkor az állítás nyilvánvaló, hiszen az (1) konstans sorozat határértéke $1=e^0$.

2. eset. Tegyük fel, hogy $x = \frac{p}{q} > 0$. Legyen $\alpha_n := \frac{n}{x}$ $(n \in \mathbb{N})$, és vegyük ezen számok $[\alpha_n]$ egészrészét. Ekkor

$$[\alpha_n] \le \alpha_n < [\alpha_n] + 1 \quad (n \in \mathbb{N}),$$

továbbá $\lim (\alpha_n) = \lim ([\alpha_n]) = +\infty$. Így

$$\underbrace{\left(1 + \frac{1}{\left[\alpha_{n}\right] + 1}\right)^{\left[\alpha_{n}\right] + 1}}_{=:a_{n}} \cdot \underbrace{\left(1 + \frac{1}{\left[\alpha_{n}\right] + 1}\right)^{-1}}_{\rightarrow 1} \leq \left(1 + \frac{1}{\alpha_{n}}\right)^{\alpha_{n}} < \underbrace{\left(1 + \frac{1}{\left[\alpha_{n}\right]}\right)^{\left[\alpha_{n}\right]}}_{=:b_{n}} \cdot \underbrace{\left(1 + \frac{1}{\left[\alpha_{n}\right]}\right)^{\left[\alpha_{n}\right]}}_{\rightarrow 1}.$$

Könnyen igazolható, hogy az (a_n) és a (b_n) sorzatok határértéke e-vel egyenlő, ezért a közrefogási elv alapján

(*)
$$\lim_{n \to +\infty} \left(1 + \frac{1}{\alpha_n} \right)^{\alpha_n} = \lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^{\frac{n}{x}} = e.$$

A fentiekből az is következik, hogy $minden \ (+\infty)$ -hez tartó racionális sorozatra is fennáll a

$$\lim_{n \to +\infty} \left(1 + \frac{1}{\beta_n} \right)^{\beta_n} = e$$

egyenlőség.

Ha $x=\frac{p}{q}>0$ alakú racionális szám, akkor

$$\left(1 + \frac{x}{n}\right) = \left[\left(1 + \frac{1}{\frac{n}{x}}\right)^{\frac{n}{x}}\right]^{x} = \left[\left(1 + \frac{1}{\frac{n}{x}}\right)^{\frac{n}{x}}\right]^{\frac{p}{q}} \xrightarrow[n \to +\infty]{} \left(a \ (*) \text{ \'es } c_{n}^{p/q} \to A^{p/q}, \text{ ha } c_{n} \to A \text{ alapj\'an}\right) \xrightarrow[n \to +\infty]{} e^{\frac{p}{q}} = \sqrt[q]{e^{p}} = e^{x}.$$

3. eset. Tegyük fel, hogy $x = -\frac{p}{q} < 0$ racionális szám. Először azt mutatjuk meg, hogy tetsző-leges $(+\infty)$ -hez tartó (β_n) racionális sorozatra

$$\lim_{n \to +\infty} \left(1 - \frac{1}{\beta_n} \right)^{\beta_n} = \frac{1}{e} = e^{-1}.$$

Tekintsük ugyanis a következő átalakításokat:

$$\left(1 - \frac{1}{\beta_n}\right)^{\beta_n} = \left(\frac{\beta_n - 1}{\beta_n}\right)^{\beta_n} = \left(1 + \frac{1}{\beta_n - 1}\right)^{-\beta_n} =$$

$$= \left[\left(1 + \frac{1}{\beta_n - 1}\right)^{\beta_n - 1}\right]^{-1} \cdot \left(1 + \frac{1}{\beta_n - 1}\right)^{-1}.$$

Az első tényező (**) alapján e^{-1} -hez, a második pedig nyilván 1-hez tart, ezért a (#) állítás valóban teljesül.

Ha $x = -\frac{p}{q} < 0$, akkor y = -x > 0. Így

$$\left(1+\frac{x}{n}\right)^n = \left(1-\frac{y}{n}\right)^n = \left[\left(1-\frac{1}{\frac{n}{y}}\right)^{\frac{n}{y}}\right]^y = \left[\left(1-\frac{1}{\frac{n}{y}}\right)^{\frac{n}{y}}\right]^{\frac{p}{q}}.$$

Az [...]-beli sorozat határértéke (#) alapján e^{-1} , ezért

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = \left(e^{-1} \right)^{\frac{p}{q}} = e^{-\frac{p}{q}} = e^x.$$

Az állítást tehát negatív racionális számokra is igazoltuk.

Rekurzív sorozatok határértéke

A monoton sorozatok konvergenciájára vonatkozó tétel egyszerű feltételei miatt jól alkalmazható számos, rekurzióval megadott sorozat konvergencia-vizsgálatánál.

A továbbiakban ennek a tételnek a felhasználásával igazoljuk pozitív valós számok m-edik gyökének a létezésére vonatkozó állítást, és egy egyszerű konstruktív eljárást adunk ezek kiszámítására.

Ha A>0 tetszőleges valós szám és $m\geq 2$ természetes szám, akkor az $\sqrt[m]{A}$ szimbólummal jelöljük (és az A szám m-edik gyökének nevezzük) azt a pozitív valós számot, amelynek az m-edik hatványa A. A következő tétel azt (is) állítja, hogy adott A és m esetén egyértelműen létezik a szóban forgó szám.

- 1. tétel: Gyökvonás. Legyen A > 0 valós szám és $m \ge 2$ természetes szám. Ekkor:
 - **1º** Pontosan egy olyan α pozitív valós szám létezik, amelyre $\alpha^m = A$ (α -t az A szám m-edik gyökének nevezzük, és az $\sqrt[m]{A}$ szimbólummal jelöljük).
 - **2°** Ez az α szám az

$$\begin{cases} a_0 > 0 \ tetsz \'oleges \ val\'os, \\ a_{n+1} := \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \quad (n \in \mathbb{N}) \end{cases}$$

rekurzióval értelmezett (a_n) sorozat határértéke, azaz $\lim (a_n) = \alpha = \sqrt[m]{A}$.

Bizonyítás. Az állítást több lépésben igazoljuk.

- 1. lépés. Az egyértelműség. Mivel $0 < \alpha_1 < \alpha_2 \Longrightarrow \alpha_1^m < \alpha_2^m$, ezért legfeljebb egy olyan pozitív a szám létezik, amelyre $\alpha^m = A$.
- 2. lépés. Teljes indukcióval igazolható, hogy az (a_n) sorozat "jól definiált" és $a_n > 0$ $(n \in \mathbb{N})$.
- 3. lépés. Igazoljuk, hogy az (a_n) sorozat konvergens.

A sorozat alulról korlátos és 0 egy triviális alsó korlát. Szükségünk lesz azonban arra, hogy ennél jobb alsó korlát is megadható. Ehhez **vegyük észre** azt, hogy a rekurzív képlet jobb oldalán álló összeg az m darab

$$x_1 := \frac{A}{a_n^{m-1}}, \quad x_2 := a_n, \quad x_3 := a_n, \quad \dots, \quad x_{m-1} := a_n \quad (n = 1, 2, \dots)$$

pozitív szám számtani közepe, és ezek mértani közepe

$$\sqrt[m]{\frac{A}{a_n^{m-1}} \cdot \underbrace{a_n \cdot a_n \cdot \ldots \cdot a_n}_{m-1 \text{ darab}}} = \sqrt[m]{A}.$$

Így a számtani és a mértani közép közötti egyenlőtlenség alapján

$$a_n = \frac{1}{m} \left(\frac{A}{a_{n-1}^{m-1}} + a_{n-1} + \dots + a_{n-1} \right) \ge \sqrt[m]{A} \implies \underbrace{a_n^m \ge A > 0}_{n-1} \ (n \in \mathbb{N}^+).$$

Most azt mutatjuk meg, hogy az (a_n) sorozat a második tagtól kezdve **monoton csökkenő**, azaz

$$a_{n+1} \le a_n \iff \frac{a_{n+1}}{a_n} \le 1$$
, ha $n = 1, 2, \dots$

Valóban, a rekurzív képlet és az $a_n^m \geq A$ egyenlőtlenség alapján azt kapjuk, hogy

$$\frac{a_{n+1}}{a_n} = \frac{1}{m} \left(\frac{A}{a_n^m} + m - 1 \right) \le \frac{1}{m} (1 + m - 1) = 1, \text{ ha } n = 1, 2, \dots,$$

ezért az (a_n) sorozat valóban monoton csökkenő.

Az (a_n) sorozat tehát monoton csökkenő és alulról korlátos, ezért a monoton sorozatok határértékére vonatkozó tétel alaján (a_n) konvergens. Legyen

$$\alpha := \lim (a_n).$$

Az eddigiekből az következik, hogy $\alpha \geq 0$. Fontos észrevétel azonban az, hogy az

$$\alpha > 0$$

egyenlőtlenség is igaz. Ez az állítás a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételből, az $a_n^m \geq A$ egyenlőtlenségből, valamint a határérték és a rendezés kapcsolatára vonatkozó tételből következik.

4. lépés. Igazoljuk, hogy $\alpha^m = A$.

Az (a_n) sorozatot megadó rekurzív összefüggésben az $n \to +\infty$ határátmenetet véve az α határértékre egy egyenletet kapunk. Valóban, ha alkalmazzuk a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételeket (itt használjuk az $\alpha > 0$ egyenlőtlenséget), akkor az adódik, hogy

$$a_{n+1} = \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \quad (n \in \mathbb{N})$$

$$\downarrow \qquad n \to +\infty \qquad \downarrow \qquad (\alpha > 0 !)$$

$$\alpha = \frac{1}{m} \left(\frac{A}{\alpha^{m-1}} + (m-1)\alpha \right).$$

Innen már egyszerű átrendezéssel azt kapjuk, hogy

$$m \alpha^m = A + (m-1)\alpha^m \implies \underline{\alpha}^m = \underline{A}.$$

Így a tétel minden állítását bebizonyítottuk.

Megjegyzések

1. A tételből egy igen egyszerű konstruktív eljárást kapunk irracionális számok racionális számokkal való megközelítésére. Ez a helyzet például akkor, ha A és a_0 racionális és $\sqrt[m]{A}$ irracionális.

Alkalmazzuk a közölt iterációt a $\sqrt{2}$ irracionális szám racionális számokkal való megközelítésére. Legyen

$$a_0 := 2$$
 és $a_{n+1} := \frac{1}{a_n} + \frac{a_n}{2}$ $(n \in \mathbb{N}).$

Világos, hogy $a_n \in \mathbb{Q}$ minden n-re. A tételből következik, hogy (a_n) konvergens és $\sqrt{2}$ a határértéke. Ez azt jelenti, hogy nagy n indexekre a_n közel van $\sqrt{2}$ -höz:

$$a_n \approx \sqrt{2} \quad (n \in \mathbb{N}).$$

Az iterációs sorozat első 7 tagja:

```
a_0 = 2,
a_1 = 1, 5
a_2 = 1, 416\,666\dots
a_3 = 1, 414\,215\dots
a_4 = 1, 414\,213\,562\,374\,689\dots
a_5 = 1, 414\,213\,562\,373\,095\,048\,801\,689\,623\dots
a_6 = 1, 414\,213\,562\,373\,095\,048\,801\,688\,724\dots
```

Az eredményekből úgy tűnik, hogy a szóban forgó konvergencia elég gyors. Az $a_n \approx \sqrt{2}$ közelítésre az

$$\left| a_n - \sqrt{2} \right| \le \frac{3}{2^{2^n}} \quad (n \in \mathbb{N})$$

egyenlőtlenség (az ún. **hibabecslés**) igazolható, és ez bizonyítja is a számítógépes kísérletekből sejthető gyors konvergenciát.

Figyeljük meg, hogy (*) felhasználásával meg tudnánk határozni olyan $N \in \mathbb{N}$ indexet, amelyre a_N és $\sqrt{2}$ (például) első 37 tizedesjegye megegyezik.

2. Rekurzív módon megadott (a_n) sorozatok konvergenciájának a vizsgálatánál sokszor (de nem mindig!) használható az előző tétel bizonyításában követett eljárás.

Először megmutatjuk azt, hogy (a_n) konvergens. "Szerencsés esetekben" a sorozat monoton és korlátos (ezeket a tulajdonságokat meg lehet sejteni, majd a sejtéseket például teljes indukcóval be lehet bizonyítani), következésképpen (a_n) konvergens.

Ezután a rekurzív képletben vesszük az $n \to +\infty$ határátmenetet. Így a sorozat határértékére egy egyenletet kapunk, majd ennek gyökeiből kiválasztjuk (a_n) határértékét.

A Bolzano-Weierstrass-tétel és a Cauchy-kritérium

Most két, elsősorban elméleti szempontból alapvető fontosságú eredményt ismertetünk.

A Bolzano-Weierstrass-féle kiválasztási tétel

2. tétel: A Bolzano-Weierstrass-tétel. Minden, korlátos valós sorozatnak van konvergens részsorozata.

Bizonyítás. Először egy önmagában is érdekes, de főleg a következményei miatt fontos állítást igazolunk.

<u>Segédtétel.</u> Minden $a=(a_n)$ valós sorozatnak létezik **monoton részsorozata**, azaz létezik olyan $\nu=(\nu_n)$ indexsorozat, amellyel $a\circ\nu$ monoton növekedő vagy monoton csökkenő.

A segédtétel bizonyítása. Az állítás igazolásához bevezetjük a szóban forgó (a_n) sorozat csúcsának a fogalmát: Azt mondjuk, hogy $a_{n_0} \in \mathbb{N}$ az (a_n) sorozat csúcsa (vagy csúcseleme), ha

$$\forall n \geq n_0 \text{ indexre } a_n \leq a_{n_0}.$$

Két eset lehetséges.

1. eset. A sorozatnak **végtelen** sok csúcsa van. Ez azt jelenti, hogy

$$\exists \nu_0 \in \mathbb{N} : \quad a_{\nu_0} \quad \text{csúcselem}, \quad \text{azaz} \quad \forall n \geq \nu_0 : \quad a_n \leq a_{\nu_0};$$

$$\exists \nu_0 < \nu_1 \in \mathbb{N} : \quad a_{\nu_1} \quad \text{csúcselem}, \quad \text{azaz} \quad \forall n \geq \nu_1 : \quad a_n \leq a_{\nu_1} \ (\leq a_{\nu_0})$$
 .

Ezek a lépések folytathatók, mert végtelen sok csúcselem van. Így egy olyan $\nu_0 < \nu_1 < \nu_2 \cdots$ indexsorozatot kapunk, amelyre

$$a_{\nu_0} \ge a_{\nu_1} \ge a_{\nu_2} \ge \cdots,$$

ezért a csúcsok (a_{ν_n}) sorozata (a_n) -nek egy monoton csökkenő részsorozata.

2. eset. A sorozatnak véges sok csúcsa van. Ez pedig azt jelenti, hogy

$$\exists\,N\in\mathbb{N},\ \forall\,n\geq N\ \text{eset\'en}\ a_n\ \text{m\'ar nem cs\'ucs}.$$

Igy a csúcs definíciója szerint

$$\exists \nu_0 > N : a_{\nu_0} > a_N.$$

Mivel a_{ν_0} sem csúcselem, ezért

$$\exists \nu_1 > \nu_0 : a_{\nu_1} > a_{\nu_0} (> a_N).$$

Az eljárást folytatva most olyan $N < \nu_0 < \nu_1 < \nu_2 < \cdots$ indexsorozatot kapunk, amelyre

$$a_N < a_{\nu_0} < a_{\nu_1} < a_{\nu_2} < \cdots$$

Ebben az esetben tehát (a_{ν_n}) sorozat (a_n) -nek egy (szigorúan) monoton növekedő részsorozata.

A tétel bizonyításának a befejezése. Ha a sorozat korlátos, akkor minden részsorozata is korlátos. A segédtételből következik, hogy minden korlátos sorozatnak van monoton részsorozata; és a monoton sorozatok konvergencájára vonatkozó tételünk alapján ez a részsorozat konvergens.

Megjegyzés. Az ismertetett gondolatmenethez hasonló módon bizonyíthatók az alábbi állítások:

Ha egy sorozat felürlől nem korlátos, akkor van $(+\infty)$ -hez tartó monoton növekedő részsorozata; ha alulról nem korlátos, akkor pedig van $(-\infty)$ -hez tartó monoton csökkenő részsorozata.

Cauchy-sorozatok és a Cauchy-féle konvergenciakritérium

Előzetes megjegyzések. A számsorozatokkal kapcsolatos vizsgálatok egyik központi kérdése annak eldöntése, hogy a szóban forgó sorozat konvergens-e. Ennek a definíciójában azonban szerepel egy, a sorozat tagjain "kívüli" dolog is, nevezetesen: a sorozat határértéke, és ennek meghatározása igen sok esetben nem egyszerű feladat.

Néhány, már megismert eredmény azonban egyszerűsíti a helyzetet. Például, ha egy sorozat nem korlátos, akkor nem konvergens. Ennél lényegesebb a monoton és korlátos sorozatokra vonatkozó tétel. Ebben az esetben tehát akkor is eldönthető egy sorozat konvergenciája, ha nem ismerjük a határértékét. A szóban forgó tétel azonban nem egyenértékű a konvergenciával, annak "csak" egy elégséges feltétele. Ezért alapvető jelentőségű az a tény, hogy a konvergenciára megadható egy olyan szükséges és elégséges feltétel is, amely kizárólag a sorozat tagjainak a segítségével dönt a sorozat konvergens vagy divergens voltáról.

A konvergenciát illetően könnyen juthatunk egy szükséges feltételhez. Tegyük fel ui., hogy az (a_n) sorozat konvergens, és legyen $A := \lim (a_n)$. Ekkor

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \forall n > n_0 : |a_n - A| < \frac{\varepsilon}{2},$

következésképpen tetszőleges $m, n > n_0$ index mellett

$$|a_n - a_m| = |(a_n - A) + (A - a_m)| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Meg fogjuk mutatni, hogy ez **elégséges** feltétele is a konvergenciának. ■

Az elmondottak motiválják az alábbi fogalom bevezetését.

Definíció. $Az(a_n)$ valós sorozatot Cauchy-sorozatnak nevezzük, ha

$$\forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall m, n > n_0 \ indexre \ |a_n - a_m| < \varepsilon.$$

Megjegyzés. Pongyolán, de szemléletesen fogalmazva: " (a_n) akkor Cauchy-sorozat, ha az elég nagy indexű tagjai tetszőlegesen közel vannak egymáshoz".

A fentiek szerint tehát, ha egy sorozat konvergens, akkor az szükségképpen Cauchy-sorozat is. ■

Példák

 $\mathbf{1}^o$ Az $a_n := \frac{1}{n} \ (n \in \mathbb{N}^+)$ harmonikus sorozat Cauchy-sorozat, mert tetszőleges $\varepsilon > 0$ esetén

$$\left|\frac{1}{m} - \frac{1}{n}\right| = \frac{|m-n|}{m} \cdot \frac{1}{n} < \frac{1}{n} < \varepsilon,$$

ha $m, n > n_0 := \left[\frac{1}{\varepsilon}\right].$

 $\mathbf{2}^{o}$ $((-1)^{n})$ nem Cauchy-sorozat. Valóban, ha (például) $\varepsilon = 1$, akkor minden $n \in \mathbb{N}$ esetén $|a_{n} - a_{n+1}| = |(-1)^{n} - (-1)^{n+1}| = 2 > \varepsilon$.

 $\mathbf{3}^{o}$ Az (n) sorozat sem Cauchy-sorozat, mert pl. $\varepsilon = 1$ esetén minden n indexre $|a_{n+2} - a_n| = 2 > \varepsilon$.

A következő tétel azt állítja, hogy a Cauchy-sorozat tulajdonság szükséges és elégséges feltétele a sorozat konvergenciájának.

3. tétel: A Cauchy-kritérium. Legyen (a_n) egy valós sorozat. Ekkor

$$(a_n)$$
 konvergens \iff (a_n) Cauchy-sorozat.

Bizonyítás.

Tegyük fel, hogy (a_n) konvergens, és $A := \lim (a_n)$ a határértéke. Legyen $\varepsilon > 0$ tetszőleges valós szám. A konvergencia definíciója szerint van olyan $n_0 \in \mathbb{N}$, hogy $\forall n > n_0$ indexre $|a_n - A| < \varepsilon/2$. Így $\forall m, n > n_0$ index esetén

$$|a_n - a_m| = |(a_n - A) + (A - a_m)| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy (a_n) Cauchy-sorozat.

 \longleftarrow Tegyük fel, hogy (a_n) Cauchy-sorozat. Több lépésen keresztül látjuk be, hogy (a_n) konvergens.

<u>1. lépés.</u> Igazoljuk, hogy (a_n) korlátos sorozat. Valóban: A Cauchy-sorozat definíciójában $\varepsilon = 1$ -hez van olyan $n_1 \in \mathbb{N}$ index, hogy

$$\forall m, n > n_1: |a_n - a_m| < 1.$$

Így minden $n > n_1$ esetén

$$|a_n| = \left| \left(a_n - a_{n_1+1} + a_{n_1+1} \right) \right| \le$$

$$\le \left| a_n - a_{n_1+1} \right| + \left| a_{n_1+1} \right| < 1 + \left| a_{n_1+1} \right|.$$

Következésképpen az

$$|a_n| \le \max\{|a_0|, |a_1|, \dots |a_{n_1}|, 1 + |a_{n_1+1}|\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ számra igaz, azaz a sorozat valóban korlátos.

2. lépés. A Bolzano–Weierstrass-féle kiválasztási tételből következik, hogy (a_n) -nek létezik egy (a_{ν_n}) konvergens részsorozata. Legyen

$$A := \lim (a_{\nu_n}) \in \mathbb{R}.$$

3. lépés. Belátjuk, hogy $\lim (a_n) = A$ is igaz. Valóban: Legyen $\varepsilon > 0$ tetszőleges. Ekkor A definíciójából következik, hogy

$$\exists n_2 \in \mathbb{N}, \quad n > n_2 : \quad \left| a_{\nu_n} - A \right| < \frac{\varepsilon}{2}.$$

Az (a_n) Cauchy-sorozat, ezért $\varepsilon/2$ -höz

$$\exists n_3 \in \mathbb{N}, \ \forall n, m > n_3 : \ |a_n - a_m| < \frac{\varepsilon}{2}.$$

Mivel $(\nu_n): \mathbb{N} \to \mathbb{N}$ indexsorozat (vagyis (ν_n) szigorúan monoton növekedő), ezért $\nu_n \geq n$ $(n \in \mathbb{N})$.

Ha tehát $n > n_0 := \max\{n_2, n_3\}$, akkor

$$|a_n - A| = |(a_n - a_{\nu_n}) + (a_{\nu_n} - A)| \le |a_n - a_{\nu_n}| + |a_{\nu_n} - A)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy az (a_n) sorozat valóban konvergens (és $\lim (a_n) = A$).

Megjegyzés. Fontos megjegyezni, hogy az iménti tétel **konvergens** (tehát véges határértékű) sorozatokról szól. Végtelen határértékekre az analóg állítás nem igaz: például az (n) sorozatnak a határértéke $+\infty$, de ez nem Cauchy-sorozat. A sok hasonlóság mellett ez az egyik leglényegesebb különbség a konvergens, ill. a $\pm\infty$ -hez tartó sorozatok között.