Mobile Robots and Autonomous Vehicles

Week 5: Behavior Modeling and Learning

Other approaches: Planning-based approaches

Planning-based approaches

- Assume that agents act like planners
- Easy inclusion of a priori knowledge
- Able to model both static and dynamic interaction
- Works on any environment
- Requires additional goal inference mechanisms
- Computationally expensive

Planning approaches: Overall algorithm

- At every time step:
 - Gather observations.
 - Infer destinations
 - Compute cost maps from maps & perception
 - Execute planning algorithm

Identifying destinations

- Semantic annotations from maps
- End-point clustering

- External method (HMM, goal direction)
- Integrated in planning (multiple plans, probabilistic planning)

Identifying destinations

- Semantic annotations from maps
- End-point clustering

- External method (HMM, goal direction)
- Integrated in planning (multiple plans, probabilistic planning)

Identifying destinations

- Semantic annotations from maps
- End-point clustering

- External method (HMM, goal direction)
- Integrated in planning (multiple plans, probabilistic planning)

Identifying destinations

- Semantic annotations from maps
- End-point clustering

- External method (HMM, goal direction)
- Integrated in planning (multiple plans, probabilistic planning)

Computing cost maps

- Take information from maps and perception.
- Transform it into a cost map (e.g. grid representation)
- Problem: assigning costs to different objects and situations (static obstacles, moving people, groups, etc.)

Approaches:

- Manual tunning
- Inverse reinforcement learning

Computing cost maps

- Take information from maps and perception.
- Transform it into a cost map (e.g. grid representation)
- Problem: assigning costs to different objects and situations (static obstacles, moving people, groups, etc.)

Approaches:

- Manual tunning
- Inverse reinforcement learning

Computing cost maps

- Take information from maps and perception.
- Transform it into a cost map (e.g. grid representation)
- Problem: assigning costs to different objects and situations (static obstacles, moving people, groups, etc.)

Approaches:

- Manual tunning
- Inverse reinforcement learning

Planning: popular algorithms

Deterministic:

- Dijkstra
- A-Star
- Probabilistic:
 - Markov Decision Processes (MDP)
 - Rapidly Exploring Random Trees (RRT)

Planning approaches: pros & cons

Advantages

- Easy inclusion of a priori knowledge
- Able to model both static and dynamic interaction
- Generalizes to multiple environments
- Long-term predictions

Drawbacks

- Computationally expensive
- Obtaining good cost maps is difficult
- Handling recursive planning