Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3}-4t_3}{3(k+2k^3)^2r_3t_3}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	$\frac{4i}{3kr_3+6k^3r_3}$
$\tau_{1}^{\#1}{}_{\!$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3\bar{t}\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
·	$\sigma_1^{\#1} \dagger^{lphaeta}$	$\sigma_1^{\#2} + ^{lphaeta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}Ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	2 ikt3 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	k ² t ₂	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2}t_2}{3}$	2 3	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_1^{\#1}\!$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	i √2 kt;	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{\#1} + \alpha \beta - \frac{1}{3}i$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$
	$\omega_1^{\#1} +$	$\omega_1^{\#2}$	$f_1^{\#1}$	ω_{1}^{*}	$\omega_{1}^{\#}$	$f_{1}^{\#}$	$f_{1}^{\#}$

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	t_3	$i\sqrt{2}~kt_3$	0	0
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_{0}^{#2} +$	$\omega_{0^{\text{-}}}^{\#1}\dagger$

Source constraints/gauge generators SO(3) irreps Multiplicities

 \sim

 $\iota_{1}^{\#1}{}^{\alpha\beta}+ik\;\sigma_{1}^{\#1}{}^{\alpha\beta}$

 $\sigma_{1}^{\#1}\alpha\beta := \sigma_{1}^{\#2}\alpha\beta$

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$

 $\tau_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$

 $\tau_{1}^{\#1\alpha} == 0$

 $r_{0+}^{\#1} - 2ik\sigma_{0+}^{\#1} == 0$

0	0	0					
0	0	0			$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}$
$\frac{3k^2r_3}{2}$	0	0	$\sigma_{2}^{#1} \dagger^{\alpha}$	ιβ	$-\frac{2}{3k^2r_3}$	0	0
$-\alpha\beta$	$\alpha\beta$	$\chi eta \chi$	$\tau_{2}^{\#1} + \alpha$	ιβ	0	0	0
$\omega_2^{\#1}$ †	$f_2^{#1} \uparrow$	$\int_{2^{-1}}^{\#_{1}} +^{\alpha}$	$\sigma_2^{\#1} \dagger^{\alpha\beta}$	Зх	0	0	0
,		3					

	$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
	$\tau_0^{\#2}$	0	0	0	0
s: 24	$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
Total constraints:	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
Total		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$