Study	SMD S	SE(SMD)	Standardised Mean Difference	SMD	95%-CI	Weight
GuYY_2017_Acarbose_D90	-17.4400	3.8200		–17.44 [–	-24.93; -9.95]	16.8%
ZhangXY_2021_Acarbose_D168	-11.6900	3.0500		-11.69 [-	-17.67; -5.71]	17.7%
ZhangYF_2020_Berberine_D84	0.5100	3.6200		0.51	[-6.59; 7.61]	17.1%
WuH_2018_Metformin_D60						0.0%
WuH_2018_Metformin_D120						0.0%
Ren_2023_Metformin_D90	0.6700	4.9600		0.67 [-9.05; 10.39]	15.4%
ZhangXY_2021_Vlidagliptin_D168	1.4600	3.6100	-	1.46	[-5.62; 8.54]	17.1%
GuYY_2017_Glipizide_D90	13.1500	4.5800		13.15	[4.17; 22.13]	15.9%
Random effects model (HK)				-2.47 [-	–13.81 ; 8.87]	100.0%
Prediction interval		-		-	-32.08; 27.14]	
		<u> </u>	30 –20 –10 0 10 20 3	0		

Ins120

Heterogeneity: $I^2 = 87\%$, $\tau^2 = 95.2578$, p < 0.01