Fundamentos de Análise de Algoritmos (GABARITO)

Unidade I: Análise de Algoritmos

Exercício (1)

• Encontre o maior e menor valores em um *array* de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

Exercício (1) - Versão 1

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
void maxMin1 () {
    max = min = array[0];
    for (int i = 1; i < n; i ++) {
        if (array[i] > max) max = array[i];
        if (array[i] < min) min = array[i];
    }
}</pre>
```

```
Todos os casos:

f(n) = 2(n - 1)
```

Exercício (1) - Versão 2

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
void maxMin2 () {
   max = min = array[0];
   for (int i = 1; i < n; i ++) {
      if (array[i] > max) max = array[i];
      else if (array[i] < min) min = array[i];
   }
}</pre>
```

```
Melhor caso: elementos em ordem crescente f(n) = n - 1

Pior caso: elementos em ordem decrescente f(n) = 2(n - 1)

Caso médio: array[i] > max em metade das vezes f(n) = 3n/2 - 3/2
```

Exercício (1) - Versão 3

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
void maxMin3 () {
 int inicio = 1;
                                                              for (int i = inicio; i < n-1; i += 2) {
 if ((n % 2) == 0) {
                                                                if (array[i] > array[i+1]) {
   if (array[0] > array[1]) {
                                                                  if (array[i] > max) max = array[i];
                                                                 if (array[i+1] < min) min = array[i+1];
     max = array[0]; min = array[1];
   } else {
                                                                 } else {
     max = array[1]; min = array[0];
                                                                 if (array[i] < min) min = array[i];
   } inicio = 2;
                                                                  if (array[i+1] > max) max = array[i+1];
 } else {
   max = min = array[0];
                                                            (n é ímpar)
                                 Todos os casos:
```

f(n) = n-2 + n-2 = 3(n-2)

PUC Minas Virtual

Exercício (2)

 Considerando o problema de encontrar o maior e menor valores em um array, veja os quatro códigos propostos e analisados no livro do Ziviani

 Resposta: Apresentamos as três primeiras versões no Exercício 1. A quarta versão utiliza o paradigma de projeto Dividir e Conquistar e será abordada mais na frente

Exercício (3)

• Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ (lg n)	Θ (n)	⊕ (n.lg(n))	⊕ (n²)	⊕ (n³)	⊖ (n ⁵)	⊙ (n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (3)

Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ(lg n)	Θ(n)	⊕ (n.lg(n))	Θ(n²)	⊕ (n³)	⊙ (n⁵)	Θ(n ²⁰)
f(n) = Ig(n)		Х						
$f(n) = n \cdot lg(n)$				Х				
f(n) = 5n + 1			X					
$f(n) = 7n^5 - 3n^2$							х	
$f(n) = 99n^3 - 1000n^2$						х		
$f(n) = n^5 - 99999n^4$							X	

Exercício (4)

• Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (4)

• Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)		Х	Х	Х	Х	Х	Х	Х
$f(n) = n \cdot lg(n)$				X	X	X	X	X
f(n) = 5n + 1			X	X	X	X	X	X
$f(n) = 7n^5 - 3n^2$							X	X
$f(n) = 99n^3 - 1000n^2$						X	X	X
$f(n) = n^5 - 99999n^4$							X	X

Exercício (5)

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^5)$	$\Omega(n^{20})$
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (5)

• Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^5)$	$\Omega(n^{20})$	
f(n) = Ig(n)	X	Х							
$f(n) = n \cdot lg(n)$	X	X	X	X					
f(n) = 5n + 1	X	X	X						
$f(n) = 7n^5 - 3n^2$	X	Х	X	X	Х	х	X		
$f(n) = 99n^3 - 1000n^2$	Х	х	Х	Х	х	х			
$f(n) = n^5 - 99999n^4$	Х	X	Х	Х	Х	Х	X		

Exercício (6)

• Dada a definição da notação Ω :

- a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n^2)$
- b) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n)$
- c) Prove que $3n^2 + 5n + 1 \underline{não \acute{e}} \Omega(n^3)$

Exercício (6)

- Dada a definição da notação Ω :
 - a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1$ é $\Omega(n^2) \Rightarrow c = 3$ e m = 1
 - b) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n) \Rightarrow c = 3 \in m = 1$
 - c) Prove que $3n^2 + 5n + 1$ <u>não é</u> $\Omega(n^3) \Rightarrow$ Não existe par (c, m) tal que para $n \ge m$, $|3n^2 + 5n + 1| \ge c \times |n^3|$ seja verdadeira. Aumentando o valor de c, apenas retardamos o momento em que a curva cúbica supera a quadrática

Exercício (7)

Dada a definição da notação Θ:

- a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2)$
- b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$
- c) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3)$

Exercício (7)

- Dada a definição da notação Θ :
 - a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2) \Rightarrow c_1 = 3$, $c_2 = 4$ e m = 5.2
 - b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n) \Rightarrow N$ ão existe par (c_2, m) tal que para $n \ge m$, $|3n^2 + 5n + 1| \le c_2 \times |n|$ seja verdadeira. Aumentando o valor de c_2 , apenas retardamos o momento em que a curva quadrática supera a linear
 - c) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3) \Rightarrow N$ ão existe par (c_1, m) tal que para $n \ge m$, $|3n^2 + 5n + 1| \ge c_1 \times |n^3|$ seja verdadeira. Aumentando o valor de c_1 , apenas retardamos o momento em que a curva cúbica supera a quadrática

Exercício (8)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    alarme(((telefone() == true && luz() == true)) ? 0 : 1);
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
        }
    }
}</pre>
```

Exercício (8)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
                                                                           Ordem de Complexidade
                                                                                  alarme()
      alarme(((telefone() == true && luz() == true)) ? 0 : 1);
      for (int i = 2; i < n; i++){
                                                                                  O(n), \Omega(n) e \Theta(n)
                                                                          Pior
             if (sensor(i- 2) == true){
                   alarme (i - 2);
                                                                        Melhor
                                                                                  O(1), \Omega(1) e \Theta(1)
             } else if (camera(i- 2) == true){
                   alarme (i - 2 + n);
                                             Função de Complexidade
} } }
                                                     alarme()
                                            Pior
                                                     f(n) = 1 + (n-2)
```

Melhor

 $f(n) = 1 + \frac{(n-2)x0}{n}$

PUC Minas Virtual

Exercício (8)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
                                                                       Ordem de Complexidade
                                                                           outros métodos
      alarme(((telefone() == true && luz() == true)) ? 0 : 1);
      for (int i = 2; i < n; i++){
                                                                      Pior
            if (sensor(i- 2) == true){
                                                                              O(n), \Omega(n) e \Theta(n)
                  alarme (i - 2);
                                                                     Melhor
            } else if (camera(i- 2) == true){
                  alarme (i - 2 + n);
                                           Função de Complexidade
} } }
                                               outros métodos
                                          Pior
                                                  f(n) = 2 + 2x(n-2)
                                                                      PUC Minas Virtual
                                         Melhor
                                                  f(n) = 2 + (n-2)
```

Exercício (9)

 Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso

Exercício (9)

 Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso

RESPOSTA: Cada aluno terá uma resposta distinta

Exercício (10)

• Anteriormente, verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n x | g(n)) + \Theta(lg(n)) = \Theta(n x | g(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

Exercício (10)

• Anteriormente, verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n x | g(n)) + \Theta(lg(n)) = \Theta(n x | g(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

RESPOSTA: As n pesquisas sequenciais terão o custo de n $x \Theta(n) = \Theta(n^2)$ e a ordenação mais as n pesquisas binárias, $\Theta(n x \lg(n)) + n x \Theta(\lg(n)) = \Theta(n x \lg(n))$. Logo, a segunda solução é mais indicada