Time – Compexity class TIME(t(n)):

Let $t: N \to R^+$ be a function. Define the time complexity class, TIME(t(n)), to be collection of all Languages that are decidable by an O(t(n)) time Turing Machine.

Small - O - notation:

Let f and g be functions $f,g:N\to R^+$. Say that $f\left(n\right)=O\left(g\left(n\right)\right)$

$$\text{If } \lim_{x \to \infty} \frac{f(n)}{g(n)} = 0$$

In other words, f(n) = 0(g(n)) means that, form any real number c > 0, a number does not exists, where f(n) < c(n) for all $n \ge n_0$.

Given that $f: N \to N$ be any function where $f(n) = 0(n \log n)$

- Now we have to show that TIME(f(n)) contains only regular languages.
- Suppose that $f(n) = 0 (n \log n)$ and M is a $S(\geq 2)$ state one tape deterministic Turing machine accepting a set L within time f(n).
- Let g(n) be defined by

$$g(n) = \begin{cases} \frac{n \log n}{f(n)}, & n \ge 2\\ 1, & n = 0, 1 \end{cases}$$

• Then we have $\lim_{n\to\infty} g(n) = \infty$ and we can select a value c such that

$$3\frac{n^{(\log s)/g(n)^{\frac{1}{2}+1}}-1}{S-1}+1 \le n-2-\frac{n}{g(n)^{\frac{1}{2}}}+C\frac{g(n)^{\frac{1}{2}}}{\log n}$$

For all $n \ge 2$.

- For this c, we show that the length of any crossing sequence of M for any input x in L with $|x| \to 2$ is at most c.
- ullet Form this, it follows, that we can design a finite automaton that accepts $\,L\,$.
- Suppose that there is an x in L with $|x| \ge 2$ such that M generates a crossing sequence of length larger than c in accepting x.
- Let x_0 be the shortest such x, n_0 be its length, and P_1 be the position of one of such long crossing sequences.

Figure

In this figure,
$$A = \frac{\log n_0}{g(n_0)^{\frac{1}{2}}}$$

- Suppose that x_0 was given to M.
- Let h be the number of positions in x_0 (excluding both ends)

$$(\log n_0)/(g(n_0)^{\frac{1}{2}})$$

• Then we have

$$\frac{n\log n_0}{g(n_0)} = f(n_0) > c + (n_0 - 2 - h) \frac{\log n_0}{g(n_0)^{\frac{1}{2}}},$$

And hence

$$h > n_0 - 2 - \frac{n_0}{g(n_0)^{\frac{1}{2}}} + c \frac{g(n_0)^{\frac{1}{2}}}{\log n_0}$$

$$\geq 3\frac{n_0^{(\log s)/g(n_0)^{\frac{1}{2}}+1}}{S-1}+1$$

$$= 3\frac{S^{(\log n_0)/g(n_0)^{\frac{1}{2}+1}}}{S-1}+1$$

- Moreover, there are at most $=\frac{S^{(\log n_0)/g(n_0)^{\frac{1}{2}+1}}-1}{S-1}$ crossing sequences of lengths smaller then $(\log n_0)/g(n_0)^{\frac{1}{2}}$
- Hence, at least four positions in x_0 have an identical crossing sequence.
- At least two of them are different from P_1 and are on the some side of P_1 .
- Let P_2, P_3 be these positions (see figure 1).

浙ICP备16034203号-2

• Let x_0^{-1} is the word obtained form x_0^{-1} by deleting the sub word between P_2^{-1} and P_3^{-1} .

Then, M accepts x_0^{-1} , generating a crossing sequence of length larger than c for x_0^{-1} and $2 \le \left|x_0^{-1}\right| < \left|x_0\right|$.

 \bullet This contradicts the selection of $\chi_0^{}.$