

CREATING MOUSE-TRACKING EXPERIMENTS AND ANALYZING MOUSE-TRACKING DATA

Pascal Kieslich (University of Mannheim) & Dirk Wulff (University of Basel) Workshop at the EADM Summer School 2018 in Salzburg, Austria

Workshop agenda

Mouse-tracking introduction (Monday)

- General introduction
- Your task
- Develop & present experimental design

Creating mouse-tracking experiments (Tuesday)

- Introduction to OpenSesame & mousetrap-os plugin
- Build & preregister experiment
- Run experiments

Analyzing mouse-tracking data (Wednesday)

- Introduction to R & mousetrap package
- Covering both basic and advanced analyses and visualizations
- Analyze your data

Preparations (before the workshop)

- Read book chapter by <u>Kieslich et al. (in press)</u>
- Outline two example experiments in your group (meeting the outlined requirements) and describe them in a paragraph
- Upload your ideas in one file name 'GroupX.doc' onto OSF (<u>Project Ideas</u>)

DAY 1: MOUSE-TRACKING INTRODUCTION

Pascal Kieslich (University of Mannheim)
Workshop at the EADM Summer School 2018 in Salzburg, Austria

Mouse-tracking introduction (Monday)

- □ 13:00-14:30 General introduction to mouse-tracking
 - Paradigm and assumptions
 - Implementation and analysis
 - Previous applications
- □ 14:30-15:00 Introduction to task
 - Type of experiments considered
 - Your tasks during the workshop
- 15:00-17:00 Develop experimental design conceptually
- 17:00-18:00 Present experimental design in plenum

Paradigm & assumptions

Paradigm & assumptions

- Mouse-tracking (aka. response dynamics)
 - **□** Continuous recording of mouse movements
 - while participants decide between different spatially separated options on a screen

Assumptions

- Cognitive processing continuously revealed in motor responses (Spivey & Dale, 2006)
- "Hand in motion reveals mind in motion" (Freeman et al., 2011)
- Mouse movements reveal tentative commitments to and conflict between choice options during decision process

Seminal article by Spivey et al. (2005)

- Study on spoken word recognition
 - Instruction: "Click the candle"
- Spatial attraction of hand movement
 - Greater towards phonologically similar distractor ("candy")
 - Than towards phonologically dissimilar distractor ("dice")
- Evidence
 - Suggests parallel processing of auditory input activating competing representations

Main applications

- Mouse-tracking allows for testing psychological theories
- Two major applications (cf. review by Stillman et al., 2018)
 - Provides fine-grained measure for amount of conflict between response options
 - → test predictions about which factors (contextual factors, individual differences) influence amount of conflict for specific decision
 - Assess temporal development of conflict and its resolution
 → test models that make predictions how decisions unfold over time
 (e.g., decide between single vs. dual process models)

Application domains

- Application of mouse-tracking in a growing number of psychological domains (Reviews by Freeman, in press; Stillman et al., 2018)
 - Semantic processing (e.g., Spivey et al., 2005; Dale & Duran, 2011)
 - Social cognition (e.g., Freeman et al., 2008; Freeman & Ambady, 2011)
 - Learning and memory (e.g., Dale et al., 2008; Koop & Criss, 2016)
 - Self-control (e.g., Sullivan et al., 2015; Stillman et al., 2017)
- In the last years also extended to JDM research
 - Intertemporal choice (Dshemuchadse et al., 2013)
 - Moral dilemmas (Koop, 2013)
 - Decisions under risk (Koop & Johnson, 2013)
 - Social dilemmas (Kieslich & Hilbig, 2014)
 - Judgmental biases (Szaszi et al., 2018; Travers et al., 2016)

Replication study of Dale et al. (2007)

Animal categorization task

- Typical exemplars only share features with correct category (e.g., cat as mammal)
- Atypical exemplars share both features with correct and competing category (e.g., whale with mammal and fish)

Main hypothesis

- Increased competition when categorizing atypical exemplars
- Mouse trajectories with deviation towards competing category
- Replication study (Kieslich & Henninger, 2017)
 - Same material (translated into German) and procedure, but higher resolution and different aspect ratio
 - \sim N = 60 students from the University of Mannheim
 - Material, data, and analyses at https://github.com/pascalkieslich/mousetrap-resources

Methodological considerations

- General challenge when designing a mouse-tracking study
 - Movements should reflect developing commitment not information search (≠ eye-tracking or Mouselab)
 - → minimize amount of new information after tracking onset
 - Preferences should not develop before tracking starts
 - → critical information should only be made available at the last moment
- Mouse start positions should be comparable across trials
 - Participants have to click on a centered button to start the trial
 - Exactly identical start positions across trials achieved by resetting mouse or by computational alignment during analysis
- Counterbalancing positions across trials / participants
 - Vary which option is presented on which side (left vs. right)
 - Can be done between trials or between participants (depending on study)

Typical analyses steps

Calculate **Preprocess** Inspect Aggregate Compare Filter trials Trial-level Plot of Potential Comparison of

- Alignment of trajectories
- Remapping of trajectories
- Time (and space) normalization
- indices (e.g., MAD for curvature)
- Dynamic measures (e.g., development of acceleration over time)
- individual trajectories
- Distribution of trial-level indices
- Identification of chaotic trajectories
- aggregation of trajectories and trial measures
- Per participant and condition
- measures and trajectories
- Typically between experimental conditions in within designs

Analyses steps implemented in the mousetrap R package

More information: http://pascalkieslich.github.io/mousetrap/

Available from CRAN: install.packages("mousetrap")

Data preparation: Remapping and alignment

Data preparation: Time normalization

- □ Trials with differing response time vary regarding number of recorded coordinates
- To permit averaging across trials: time-normalization (cf. Spivey et al., 2005)
- Each trajectory divided into 101 equally spaced time steps using linear interpolation

Constant sampling rate → Absolute time

Time normalization
Relative time steps

Time-normalized trajectories per condition

Average time-normalized trajectories

Selected measures for trajectory curvature

Measures of curvature quantify perpendicular distance between observed trajectory and an idealized straight line

- Maximum absolute
 deviation (MAD)
 McKinstry, Dale, & Spivey (2008)
- Average deviation (AD) Koop & Johnson (2011)
- Area under curve (AUC) Spivey, Grosjean, & Knoblich (2005)

Typical analyses steps

Preprocess Calculate Inspect Aggregate Compare

- Filter trials
- Alignment of trajectories
- Remapping of trajectories
- Time (and space) normalization
- Trial-level indices (e.g., MAD for curvature)
- Dynamic measures (e.g., development of acceleration over time)
- Plot of individual trajectories
- Distribution of trial-level indices
- Identification of chaotic trajectories
- Potential aggregation of trajectories and trial measures
- Per participant and condition
- Comparison of measures and trajectories
- Typically between experimental conditions in within designs

Analyses steps implemented in the mousetrap R package

More information: http://pascalkieslich.github.io/mousetrap/

Available from CRAN: install.packages("mousetrap")

Comparison of (maximum) absolute deviations

- MAD larger for atypical exemplars
 - $d_z = 0.87, p < .001$
 - $BF_{10} = 1.57 * 10^6$
- AD larger for atypical exemplars
 - $d_7 = 0.87, p < .001$
 - $BF_{10} = 1.78 * 10^6$

Error bars represent 1 SEM.

Average x-positions per time step

Selected mouse-tracking measures

Measure	Definition	Possible interpretation	Example
Maximum absolute deviation (MAD)	Maximum deviation from idealized trajectory	Maximum attraction of non-chosen option	McKinstry et al. (2008)
Average Deviation (AD)	Mean deviation from idealized trajectory	Average attraction of non-chosen option	Koop & Johnson (2011)
Area under curve (AUC)	Geometric area between actual and idealized trajectory	Total attraction of non- chosen option	Spivey et al. (2005)
x-flips (xpos_flips)	Number of directional changes along x-axis	Instability, reversal of the momentary valence	Koop & Johnson (2013)
x-reversals (xpos_reversals)	Number of crossings of the y-axis	General reversal of preference	Koop & Johnson (2013)

Analytical and theoretical challenges

- Interpretation of measures still needs to be validated
- Multitude of mouse-tracking measures available
 - Often highly correlated in practice
 - There is no standard yet which measure should be used
 - ensure that result does not depend on the specific measure used
 - → decide which is the measure of interest a priori / conduct preregistered replications of your findings
- Consider effects of aggregation by inspecting distribution of trajectories and indices on the trial level

Smooth competition vs. abrupt shifts

- □ Different assumptions about response process (e.g., Hehman et al., 2015)
 - Single process
 - "smooth graded competition" in all trials
 - Continuous competition between response options
 - Dual process
 - "abrupt shifts" / Change of Mind in some trials: Initial movement towards one option, then reversal and choice of other option
 - Straight movements in other trials
- Statistical analysis of AUC or MAD distribution (Freeman & Dale, 2013)
 - "smooth graded competition" → unimodal
 - "abrupt shifts"

 bimodal

Methods for assessing bimodality and trajectory shapes

Bimodality coefficient (BC, e.g., Pfister et al., 2013)

BC =
$$\frac{m_3^2 + 1}{m_4 + 3 \cdot \frac{(n-1)^2}{(n-2)(n-3)}}$$

- Bimodal, if **BC** > **0.555**
- Hartigan's dip statistic (HDS, Hartigan & Hartigan, 1985)
 - Statistical test (H0: Distribution is unimodal)
 - If p < .05, distribution is multimodal (i.e., at least bimodal)

Assessment of bimodality

- Distribution of standardized MAD
- □ Bimodality coefficient (*BC*)
 - $BC_{\text{typical}} = .61$; $BC_{\text{atypical}} = .59$
 - Indicates bimodality as BC > .555
- Also influenced by setup of study (cf. design factors)

Assessing distribution of individual trajectory shapes

- Assess distribution of trajectory shapes (Wulff et al., in press)
 - Bimodality analyses so far focus on a single measure only
 - New analyses proposed taking complete **trajectory shape** into account
 - General question: is aggregate trajectory representative of individual trajectories
 - or are there **different types** of trajectories on the trial level?
- Visualization tools
 - Animations
 - Heatmaps and difference maps
- Analyses tools
 - Clustering
 - Prototype allocation

Heatmap of raw trajectories

Heatmap of raw trajectories (smoothed)

Difference map for typical vs. atypical condition

Prototype recognition (Wulff et al., in press)

Specify set of prototypes

Set of prototypes based on clustering results of the meta-analysis by Wulff et al. (in prep.)

Spatialize trajectories

Resample trajectories to small number of points distributed equally across space

Assign trajectories to prototypes

- Compute dissimilarity between every trajectory and prototype
- Assign trajectory to prototype with smallest distance
- (Potentially exclude trajectories where smallest distance is too large)

Prototype allocation for replication experiment

Classification frequencies per condition

- Relative frequency of prototype classification differs for conditions
 - $\chi^2 = 57.9, p < .001$
- Atypical condition predicts occurrence of types that indicate more conflict
 - in ordinal mixed regression model on trial level
 - with random intercept per participant
 - z = 6.74, p < .001

Previous applications

Focusing on JDM research

Mouse-tracking

Application domains

- Application of mouse-tracking in a growing number of psychological domains (Reviews by Freeman, in press; Stillman et al., 2018)
 - Semantic processing (e.g., Spivey et al., 2005; Dale & Duran, 2011)
 - Social cognition (e.g., Freeman et al., 2008; Freeman & Ambady, 2011)
 - Learning and memory (e.g., Dale et al., 2008; Koop & Criss, 2016)
 - Self-control (e.g., Sullivan et al., 2015; Stillman et al., 2017)
- In the last years also extended to JDM research
 - Intertemporal choice (Dshemuchadse et al., 2013)
 - Moral dilemmas (Koop, 2013)
 - Decisions under risk (Koop & Johnson, 2013)
 - Social dilemmas (Kieslich & Hilbig, 2014)
 - Judgmental biases (Szaszi et al., 2018; Travers et al., 2016)

Preferential decision making

Validation experiment (Koop & Johnson, 2013, Exp. 1)

- Decisions between affective images
 - Task: Which of two images do you prefer?
 - Pictures from IAPS database: provides norms for pleasantness ratings
 - Creation of pairs where difference in preferences is systematically varied

Preferential decision making

Validation experiment (Koop & Johnson, 2013, Exp. 1)

- Decisions between affective images
 - Increase in difference of a priori preference ratings leads to
 - Decrease in trajectory curvature
 - Decrease in maximum absolute deviation (MAD)

Basic structure

- □ Social dilemma (Dawes 1980; Van Lange et al., 2013)
 - Individuals can choose between two options
 - Defection
 - Cooperation
- □ Standard social dilemma: **Prisoner's dilemma game** (PDG; Rapoport & Chammah, 1965)

		Play	er 1
		cooperates	defects
Player 2	cooperates	100 100	200 0
	defects	0 200	50 50

Spontaneous cooperation?

- □ Theoretical proposition (Rand et al., 2012, 2014)
 - People are spontaneously inclined to cooperate
 - Defection requires effortful deliberation
- Empirical test using response times
 - Idea: spontaneous = fast, deliberative = slow
 - Mixed results (e.g., Rand et al., 2014; meta-analysis by Rand, 2016; Registered replication report, 2017)
 - Other factors may influence speed (e.g., guessing, information search)
- Experiment using mouse-tracking (Kieslich & Hilbig, 2014)
 - When deciding to defect, mouse movements should be more curved towards non-chosen option (cooperation)
 - When deciding to **cooperate**, mouse movements should be less curved towards non-chosen option (defection)

Mouse-tracking experiment (Kieslich & Hilbig, 2014)

- □ Lab experiment (N = 115)
 - at the University of Mannheim
 - implementation in OpenSesame (Mathôt et al., 2012) in combination with
 - mousetrap plug-ins for mouse-tracking (Kieslich & Henninger, 2017)
 - psynteract plug-ins for interactive experiments (Henninger, Kieslich, & Hilbig, 2017)
- Participants play 15 two-person social dilemma games
 - without receiving feedback
 - random order
 - incentivized (5 interactions paid out, Ø payout: 2.56 €)
- Social dilemma games
 - 5 x prisoner's dilemma game (PDG)
 - 5 x chicken game
 - 5 x stag hunt game

Decision 9 of 15

	You choose Option A	You choose Option B	
Person 2 chooses Option A	100 100	200 0	Person 2 chooses Option A
Person 2 chooses Option B	0 200	50 50	Person 2 chooses Option B
	You choose Option A	You choose Option B	

Please choose between Option A and B.

Start

Average time-normalized response trajectories

Maximum deviation per decision

- Main effect of decision
 - MAD significantly higher for defection than for cooperation
- Effect replicated
 - With different measures
 - With filtered trials
 - With linear mixed model on trial level

Predicting individual differences in conflict

- Individual differences in conflict: Differences should be stronger for individuals high in Honesty-Humility
 - Dispositional cooperativeness
 - Basic personality factor in the HEXACO personality model (Ashton & Lee, 2007)
- Significant interaction between HH and decision

Mouse-tracking challenges

Experimental control over comparison dimension

- Mouse-tracking tasks usually involves "correct"/desired response option
 + comparison dimension is experimentally manipulated
- Here final choice constitutes comparison dimension of interest
 - loss of experimental control
 - use of different games to achieve variation in cooperation rates

Complexity and amount of information

- Amount of information and complexity of decision considerably higher than in previous tasks
- Mouse movements more noisy (e.g., reading movements in some trials)
 - Current solution: analyses replicated with and without problematic trials
 - Ideal solution: simpler task design with less information
 → working on conceptual replication in binary public goods game, also taking into account the newly proposed analytical approaches (prototype mapping)

Action selection

Simon effect and conflict adaptation (Scherbaum et al., 2010)

Mouse-tracking in Simon task

- Participants have to click on left vs. right option depending on the stimulus
 (e.g., left if number < 5, otherwise right)
- Position of stimulus varied (left vs. right) so that desired response and position are either congruent or incongruent

Results

- Simon effect: larger deviations in incongruent than in congruent trials
- Conflict adaptation: Simon effect reduced if previous trial was incongruent

Reanalysis from Scherbaum & Kieslich (in press)

Action selection

Time continuous multiple regression (Scherbaum et al., 2010)

Time continuous multiple regression

- □ Criterion: mouse movement angles on the XY plane (≈ movement direction)
- Separate regressions per time step and participant
- Reveals temporal order and strength with which each predictor influences preference development

Predictors

- Task relevant
 - Direction (left/right)
- Task irrelevant
 - stimulus location (left/right)
 - previous response (left/right)
 - congruency sequence (same/different)

Average β weights per time step and predictor.

Design factors

Overview

- Researchers face a number of design choices
 when creating mouse-tracking experiments
 - Starting procedure (static, restricted initiation time, dynamic)
 - Cursor speed settings (velocity & acceleration)
 - Indicate response via click vs. touch
- Some authors have given recommendations about designing mouse-tracking studies (Fischer & Hartmann, 2014; Hehman et al., 2015)
- Empirical validation studies are being conducted (Scherbaum & Kieslich, in press; Kieslich et al., in preparation)

Design factors

Preliminary summary of findings

Response indication

■ Click on button leads to larger effects than touch — effect related to higher proportion of trials with extreme movements to non-chosen option

Mouse sensitivity settings

- Did not significantly influence effect of interest in static setup although default settings generally lead to more extreme curvature than reduced mouse speed
- Reducing mouse speed becomes relevant for dynamic start condition to ensure stimulus information can be acquired during upwards movement

Starting procedure

- Restricting maximum initiation time led to larger effects a dynamic start only influenced shape but not effect size
- However, restricting initiation times also led to largest proportion of excluded trials (and seemed to be challenging for some participants)

Method (Scherbaum & Kieslich, in press)

Mouse-tracking in Simon task

- Participants click on left vs. right option depending on stimulus (left if number < 5, otherwise right)
- Position of stimulus varied (left vs. right) so that desired response and position are either congruent or incongruent
- Variation starting procedure
 - Dynamic: move upwards to display stimulus (data from Scherbaum et al., 2010)
 - Static: stimulus displayed after fixed interval of 200 ms (typical duration of movement initiation in dynamic condition) (new data)

Discrete effects: Results for average deviation

- Simon effect and congruency sequence effect replicated in both conditions
- No significant interaction of theoretically important effects with starting procedure

Error bars represent 1 SEM.

Dynamic effects: Time-continuous angle regression

 Time continuous multiple regression predicting vertical movement angle at each time point

Predictors

- location (congruency)
- congruency sequence (same / different)
- previous response (same / different)
- Effects stronger and more temporarily distinct in dynamic starting condition

Average β weights per time step and predictor. Lines indicate segments of β weights significantly > 0.

Movement consistency

- Smooth and consistent upwards movement in dynamic starting condition
- Participants in static starting condition often stay at bottom of screen for more than half of the trial before moving upwards quickly

Self-control

Food choices (Sullivan et al., 2015)

Decisions under risk

Basic paradigm

- Risky choice / decisions under risk
 - Which of the two gambles do you want to play?

Gamble A	Gamble B
You have a 50% chance of winning \$90, otherwise nothing	You have a 90% chance of winning \$50, otherwise nothing

- □ Gamble A: "risky"
 - Higher amount, lower probability of winning
- Gamble B: "safe"
 - Lower amount, higher probability of winning

Decisions under risk

x-flips (Koop & Johnson, 2013, Exp. 2)

Decisions under risk

Combining mouse- and eye-tracking (Koop & Johnson, 2013, Exp. 3)

attributes

- Change in x-position (Δx) as function of transitions of attention
 - $\triangle x > 0$: movement towards safe gamble
 - $\Delta x < 0$: movement towards risky gamble
- Evidence accumulation model
 - Predict momentary preference based on visual input
 - Mean correlation between predicted preference and x-position is r = .78
- **Conclusions**
 - Visual attention to probability and outcome information predicts mouse response
 - Mouse movements largely reflect quality of acquired information

Your experiments

Mouse-tracking introduction (Monday)

- 13:00-14:30 General introduction to mouse-tracking
 - Paradigm and assumptions
 - Implementation and analysis
 - Previous applications
- 14:30-15:00 Introduction to task
 - Type of experiments considered
 - Your tasks during the workshop
- 15:00-17:00 Develop experimental design conceptually
- □ 17:00-18:00 Present experimental design in plenum

Your tasks during the workshop

- Goal of workshop
 - Design, build, pre-register, run, and analyze a mouse-tracking experiment
 - In small groups
- Monday
 - Develop experimental design (task, manipulation, hypotheses, measures)
 - Present experimental design in plenum
- Tuesday
 - Build experiment
 - Register experiment at OSF
 - Participate in experiments
- Wednesday
 - Analyze and visualize your data
 - Discuss your results
- Saturday
 - Present results

Type of experiments

- In the experiment, participants complete a number of trials that involve decisions of the same structure
- In each trial, participants have to decide between two options by clicking on the corresponding button (two-alternative forced choice task, 2AFC)
- Between trials, the stimulus to be decided upon varies (usually)
 and / or the two response categories
- The stimulus (and/or the response options in case they vary) should be simple (e.g., a single word, a picture)

Implementation & analysis

Software

- Custom extensions for experimental software
 - Code based implementations, e.g., in E-Prime or MATLAB
 - Also need scripts for preprocessing the data
 - Require programming skills
- MouseTracker (Freeman & Ambady, 2010)
 - Stand-alone program
 - Relatively easy to use, but limited in features and flexibility
 - Free of charge but closed source, Windows only

- □ Mousetrap (Kieslich & Henninger, 2017; Kieslich, Wulff et al., in preparation)
 - Drag & drop plugins for experimental software OpenSesame
 - R package mousetrap for preprocessing and analysis
 - Open source, free of charge, cross-platform
 - Available from http://pascalkieslich.github.io/mousetrap/

Software for the workshop

- □ To create mouse-tracking experiments, first install OpenSesame. It is available from http://osdoc.cogsci.nl/3.2/download/.
- To install the mousetrap plugin for OpenSesame, follow the instructions at https://github.com/pascalkieslich/mousetrap-os#installation.
 Please make sure to install the latest version of OpenSesame (3.2.4) and the development version of the mousetrap-os plugin.
- To analyze mouse-tracking data install R (https://www.r-project.org/) and RStudio (https://www.rstudio.com/products/rstudio/download/).
- Afterwards, please run the following command in R to install the required packages: install.packages(c("readbulk", "mousetrap"))
- Screen resolution of experiment for lab computers: 1280 x 1024 px

Thank you!

Questions and comments are highly appreciated!

Now & via email: <u>kieslich@psychologie.uni-mannheim.de</u> dirk.wulff@gmail.com

Mousetrap-os plugins: https://github.com/pascalkieslich/mousetrap-os

Mousetrap R package: http://pascalkieslich.github.io/mousetrap/

Thanks:

Felix Henninger, co-developer of mousetrap-os plugin and R package Jonas Haslbeck & Michael Schulte-Mecklenbeck, co-developers of mousetrap R package

Mila Rüdiger and Monika Wiegelmann for data collection and testing

DAY 2: CREATING MOUSE-TRACKING EXPERIMENTS

Pascal Kieslich (University of Mannheim)
Workshop at the EADM Summer School 2018 in Salzburg, Austria

Creating mouse-tracking experiments (Tuesday)

- 09:00-11:00 OpenSesame & mousetrap-os introduction
- 11:00-12:00 Build experiment
- □ 12:00-13:00 Lunch break
- 13:00-15:00 Build experiment
- 15:00-16:00 Register experiment at OSF (Michael)
- □ 16:00-17:00 Keynote Neil Stewart
- □ 17:00-18:00 Meet the Scientist
- 18:00-19:00 Participate in experiments (Lab computers)

Software for the workshop

- □ To create mouse-tracking experiments, first install OpenSesame. It is available from http://osdoc.cogsci.nl/3.2/download/.
- To install the mousetrap plugin for OpenSesame, follow the instructions at https://github.com/pascalkieslich/mousetrap-os#installation.
 Please make sure to install the latest version of OpenSesame (3.2.4) and the development version of the mousetrap-os plugin.
- To analyze mouse-tracking data install R (https://www.r-project.org/) and RStudio (https://www.rstudio.com/products/rstudio/download/).
- Afterwards, please run the following command in R to install the required packages: install.packages(c("readbulk", "mousetrap"))
- Screen resolution of experiment for lab computers: 1280 x 1024 px

OpenSesame & mousetrap-os introduction

Creating mouse-tracking experiments

Replication study of Dale, Kehoe, & Spivey (2007)

Animal categorization task

- Typical exemplars only share features with correct category (e.g., cat as mammal)
- Atypical exemplars share both features with correct and competing category (e.g., whale with mammal and fish)

Main hypothesis

- Increased competition when categorizing atypical exemplars
- Mouse trajectories with deviation towards competing category

Overview

- Graphical experiment builder
 - Developed by Sebastiaan Mathôt (Mathôt, Schreij, & Theeuwes, 2012)
 - Create experiments by drag & drop via GUI
 - Implement complex tasks using Python scripts
- Open source & cross platform
 - Download and documentation: http://osdoc.cogsci.nl/
 - Available for Windows, Linux, Mac OS

- Allows for extensions via plugins
 - PyGaze plugin for eye-tracking (Dalmaijer, Mathôt, & Stigchel, 2014)
 - Psynteract plugin for interactive experiments (Henninger, Kieslich, & Hilbig, 2017)
 - Mousetrap plugin for mouse-tracking (Kieslich & Henninger, 2017)

Resources

- Documentation
 - http://osdoc.cogsci.nl
 - Extensive & comprehensible
- Forum
 - http://forum.cogsci.nl
 - Very supportive & fast responses
- Source code
 - https://github.com/smathot/OpenSesame
- Custom search
 - http://osdoc.cogsci.nl
 - searches documentation & forum

Items

- Items as the building blocks of an experiment
- Different types of items serve basic purposes
 - Presentation of stimuli
 - Collection of responses
 - Logging of responses
 - ...
- Organized in hierarchical + sequential structure
 - Sequence runs multiple items in succession
 - Loop repeats sequence of items multiple times (with variations)

Getting started

- New: List of available templates
 - Default: create an experiment from scratch
 - Extended: already includes a basic experimental structure
- Recent: List of recently opened experiments

Graphical user interface (GUI)

http://osdoc.cogsci.nl/manual/interface/

General experiment properties

- Set general properties for the experiment
 - Set the experiment backend to legacy or expyriment
 - Change the name of the experiment
 - Foreground color (= default font color) → black
 - ▶ Background → white
 - ▶ Font family → sans
 - ➤ Resolution → adjust to display resolution (mouse-tracking experiments are typically run full-screen)

→ use: 1280 x 1024 px (to match lab computers)

Deleting items

- Delete items
 - By right clicking on them and selecting the corresponding option
 - By pressing delete ("Del"/"Entf")
- Task: Delete starting items
- Deleted items still available& might still affect experiment
 - Can be re-added (by dragging them back to the experiment)
 - Permanently delete them by selecting corresponding option in unused items tab → usually do this

Adding new items

- Two ways to add items
 - Drag them from the item toolbar onto overview area
 - Click on the relevant sequence and select append new item (or existing item)

► Task

- Create Welcome screen (sketchpad)
- Should contain welcome message
- Rename it welcome
- Should be displayed for 3000 ms

Sketchpads

- Used to present strings of text, geometric shapes or bitmap images
- Provides simple built-in drawing tools
- Uses a coordinate system (center coordinate 0,0 and pixel metric)

http://osdoc.cogsci.nl/manual/stimuli/visual/

Running your experiment

- Run fullscreen
- Run in window
- Test run (run in window without specifying subject number & file location)
- Abort running experiment: press escape key
- After experiment is finished
 - Log file can additionally be saved within the experiments file pool
 - Usually we don't want this, especially not for test runs
- Task
 - Give your experiment a test run

Sketchpads: Drawing tools

- Select and modify (modify & move existing elements around)
- A Text element (line breaks are possible)
- Image element
- Fixation dot element
- / Line element
- Arrow element
- ☐ Rectangle element
- O Circle element
- O Ellipse element
- **//** Gabor patch element
- ::: Noise patch element

Sketchpad: Modifying elements on sketchpad

- Select modify
- Move elements: left click on them and drag them
- Modify elements: different options
 - Left click on them and change the options above
 - Double left click on them (especially to edit text)
 - Right click on them, select "edit script" and modify the underlying OpenSesame script syntax
- Delete elements: left click on them and press delete ("Entf")
- Task
 - Change appearance of welcome message: it should be displayed in blue and boldface

Display duration & input of sketchpad/feedbacks

- Values for duration
 - Any positive integer: display duration in ms
 - keypress: display until any key is pressed
 - mouseclick: display until any mouse button is clicked
- For more specific keypress/ mouseclick conditions
 - Set duration to 0
 - Use keyboard_response/ mouse_response items

Keyboard response

- Separate different keys by ;
- Flush pending keypresses
 - always a good idea
 - otherwise unprocessed keypresses from previous stage of experiment may exert an unwanted influence
- Special key names
 - See list available keys
- Task
 - Set duration of sketchpad to 0
 - Participants can press space bar to continue (use keyboard_response item)

http://osdoc.cogsci.nl/manual/response/keyboard/

Instruction screen

- Add form_text_display item to provide basic instructions
- Save experiment

Give it a test run

Mousetrap plugin for OpenSesame

- Mousetrap plugin for OpenSesame
 - Enables users to implement mouse-tracking via graphical user interface
 - Also provides Python classes for mouse-tracking in Python code

- Installation (of current development version)
 - See https://github.com/pascalkieslich/mousetrap-os#installation
 - Execute following commands in OpenSesame's debug window import pip pip.main(['install', 'https://github.com/PascalKieslich/mousetrap-os/archive/master.zip'])
 - OpenSesame needs to be run in admin mode for this (under Windows)
 - Restart OpenSesame afterwards

Mousetrap plugin for OpenSesame

Resources

- Documentation and example experiments: https://github.com/pascalkieslich/mousetrap-os
- Article (including tutorial and validation): Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking package. *Behavior Research Methods*, 49(5), 1652-1667. https://doi.org/10.3758/s13428-017-0900-z
- Questions and updates
 - Forum for questions: http://forum.cogsci.nl/index.php?p=/categories/mousetrap
 - Mailing list for updates: http://eepurl.com/co1AqX

Mousetrap plugin for OpenSesame

Two different options for implementing mouse-tracking

mousetrap_response item

- Tracks mouse movements while stimulus display is provided by another item
- Can use graphical user interface for designing the stimulus display

🕐 mousetrap_form item

- Provides both stimulus display and mouse-tracking
- Stimulus designed using simple OpenSesame script syntax

Start button

- Add form_text_display item that contains the start button
- Participants start stimulus presentation by clicking on this button
- This ensures that start position of cursor is comparable across trials
- This start position usually is in the bottom center of the screen

Creating mouse-tracking experiments Stimulus display

- Use a sketchpad item to create the stimulus display
- Create two buttons
 - Draw their borders using rect elements and give them a label via the Name field
 - Add the button text using textline elements
- Layout considerations
 - Place buttons in screen corners to avoid overshooting
 - Ensure symmetric layout and that buttons have same distance from start position (bottom center)

Track mouse movements

- Set duration of sketchpad to 0
- Add a mousetrap_response item to track mouse movements and specify number of buttons, their sketchpad and name
- As name we enter the label text
 this will be saved when button is clicked
- Run experiment and check data using variable inspector

Trial structure

- Loops and sequences are used to structure the experiment
- Sequences
 - List of items that is executed sequentially
 - Does not repeat automatically need to combine it with a loop

Loops

- Repeatedly calls a single other item usually a sequence (drag new sequence item on loop or select existing sequence)
- → Insert into new_loop→ Insert after new_loop✓ Cancel
- In the loop item, variables can be stored that vary for each trial
- Thereby, independent variables can be varied and/or experimental material can be stored for the experiment
- http://osdoc.cogsci.nl/manual/structure/loop/

Trial structure

- Implement trial structure by including a stimuli loop and a trial sequence
- Include all items except the instructions in the trial sequence as they should be presented in each trial
- Add a logger item at the end of the trial sequence which writes the recorded data to the logfile

- Loops can be used to store material or to vary independent variables
 - Variables stored in columns
 - Distinct trials/conditions stored in rows (= cycles)
- Repeat: number of repetitions of each cycle
 - Total repetitions = cycles x repeat
 - If repeat is < 1, a randomly selected subset of trials is chosen (e.g., 50 % of trials for 0.5)
- Order refers to the order with which all trials are presented
 - Random = every trial is randomly drawn without replacement (ignoring cycles x repeat structure)
 - Sequential = every trial in sequential order
- http://osdoc.cogsci.nl/manual/structure/loop/

Material loop

- Design options of the loop are displayed at the top
- Material can be added in the bottom
 - each column corresponds to one experimental variable
 - each row corresponds to one unique trial
- Create the loop as displayed on the right

		Exemplar	CategoryLeft	CategoryRight	CategoryCorrect	Condition
	1	Cat	mammal	reptile	mammal	Typical
;	2	Hawk	reptile	bird	bird	Typical
	3	Penguin	bird	fish	bird	Atypical
	4	Whale	fish	mammal	mammal	Atypical

Creating mouse-tracking experiments Choosing variable names

- OpenSesame (and Python) is case sensitive
 - "Condition" and "condition" are different variables
- Variable names may not contain spaces
 - use "_" instead, e.g., "my_variable"
- Variables may not contain . or ,

http://osdoc.cogsci.nl/manual/variables/

Using variables

- Variables that are defined in a loop or recorded through an item can be used by including their name in square brackets
- Adjust the button labels in sketchpad and mousetrap_response item so that they vary in each trial
- Present exemplar name in bottom center of screen
- Give the experiment a test run

Built-in experimental variables (excerpt)

Experiment variables

subject_nr (1, 2, ...) & subject_parity ("odd" or "even")

Item variables

- □ count_item_name: number of times 1 item has been called (starting at 0)
- time_item_name: timestamp of last time item was executed

Response variables

- □ response & response_item_name → last response overall and to specific item
- □ response time & response time item_name → response time in ms
- □ correct & correct_item_name → =1 if response == correct_response, 0 otherwise

Feedback variables

- average_response_time/avg_rt: average response time
- accuracy /acc: average percentage of correct responses
- □ can be reset, e.g., are reset by default when using feedback item → take care!
- http://osdoc.cogsci.nl/manual/variables/#built-in-variables

Variable inspector

- Overview of experimental variables: variable inspector
 - User defined variables (e.g., via loop or inline_scripts)
 - Built-in variables
- Displays the current status of all experimental variables
 - Can be used to monitor changes while experiment is running
 - For this the Runner (specified in Tools/Preferences) cannot be set to opensesamerun

http://osdoc.cogsci.nl/manual/variables/#the-variable-inspector

Response collection & logging

- Variables only saved in the log file if there is a logger item!
 - Every time a logger item is passed, it writes the current status of all experimental variables to the log file
 - Always check that you have a logger item included in your trial
 - Always use the same logger by using append existing item / linked copy
 - Always check your log file
 - Default (log all variables) makes sense
 - In case a variable is not logged, add it as a custom variable but inspect experiment closely, as there might be a problem somewhere

http://osdoc.cogsci.nl/manual/logging/

Opening logfiles

- Logfiles are saved in csv format – specifications
 - Separator: ","
 - Decimal point (not decimal comma)
 - Encoding: UTF-8
- Open csvs in Excel via text import assistant
- Task
 - Run experiment once and look at the logfile

<u>A</u>ndere:

Copying items

- Different options for copying an item
 - Unlinked copy
 - create a duplicate of the item that is not connected to the original item anymore
 - → if original item is changed, new item is not affected
 - Linked copy
 - create a duplicate of the item that is actually the very same item
 - → if either item is modified, the other changes as well

Conditional presentation of items and elements

- Run if in sequence and show if on sketchpad
 - Specify conditions under which an item is presented
 - Specify complex conditions by using ands and ors
 - Can be used
 - ... for implementing experimental conditions
 - ... for giving feedback
 - ... for adapting to a participant response
- Examples
 - [correct]==1
 - [correct]==1 and [response_time] >= 2000
 - [condition]==2 or [condition]==3
 - [condition]!=1
- Additional values are: always and never (for ignoring items)
- http://osdoc.cogsci.nl/manual/variables/#using-conditional-if-statements

Mouse-tracking settings

- Define buttons
- Automatically code correctness of response (correct = 0 or 1), e.g., to provide feedback
- Reset cursor position at tracking onset to exact coordinates
- Limit maximum response time
- Use dynamic start procedure (cf. Scherbaum & Kieslich, in press)
- End trial on click vs. on touch
- Issue immediate warning for long initiation times

Creating mouse-tracking experiments Mousetrap settings

- Task: Try out different mousetrap_response settings
 - Center the cursor position on exact coordinates when tracking starts
 - Record response and finish tracking as soon as the cursor touches one of the buttons (needs not to be clicked)
 - Only allow clicks on the left button of the physical mouse
 - Specify which variable contains the correct response and give feedback to the participant

Creating mouse-tracking experiments

File pool & pictures

File pool

- Is included in the experiment file itself
- Can be used to include pictures (and other files) in the experiment

Pictures

- Can have various formats however, especially the .png format seems recommendable
- Rescaling should not be performed in OpenSesame but before, as it can lead to lags between trials
- If pictures should vary between trials, set the file name in a loop and change the OpenSesame script of the image

Loops

- Loops can be used to store material or to vary independent variables
 - Variables stored in columns
 - Distinct trials/conditions stored in rows (= cycles)
- Repeat: number of repetitions of each cycle
 - Total repetitions = cycles x repeat
 - If repeat is < 1, a randomly selected subset of trials is chosen (e.g., 50 % of trials for 0.5)
- Order refers to the order with which all trials are presented
 - Random = every trial is randomly drawn without replacement (ignoring cycles x repeat structure)

http://osdoc.cogsci.nl/manual/structure/loop/

- Sequential = every trial in sequential order

Implementing randomizations in OpenSesame

Between participants

- i.e., participant is in one condition set for whole experiment and every participant works on the same set of items
- Assign condition at the beginning of the experiment (using a keyboard_response item)

Within participants

- One factor is manipulated and same items are presented for each factor level (blocked)
 - use one loop item for factor & nested within this a loop for material
- Several factors are manipulated and same material is presented for each combination of factor levels (blocked)
 - If all combination of factor levels should be presented in random order, create combinations of all levels within one loop (see (a))
 - If structure is hierarchical, i.e., for each level of one factor first all levels of the other factor are presented: use nested loops
- Note: if items should repeatedly be presented: make use of repeat

Within participants: Full-factorial

- Case: all items are presented for all factor levels
 - Idea: One factor is manipulated within participants and same items are presented for each factor level – however, the presentation should not be blocked for factor levels but everything is presented in random order
 - Solution: Create one large loop where each factor level and item are combined (make use of full-factorial design)

Crossed randomizations

Crossed randomization

- Idea: One factor is manipulated within participants and items are randomly assigned to one of the factor levels importantly, each item is only presented once
- Besides, presentation is not blocked but all items are presented in random order
- Solution with nested loops
 - One loop for items within this loop: another loop for within factor where repeat is set to 1/number of factor levels
 - Can also be used, e.g., to counterbalance presentation order when item pairs are presented
 - Problem: cannot ensure that number of items (i.e., number of trials) for each factor level are exactly the same
- Solution using advanced loop operations
 - Include items and within factor levels in the same loop in different columns
 - Use the advanced loop operation shuffle to only shuffle the column containing the within factor levels

Advanced loop operations

Advanced loop operations

- Can be used for implementing advanced randomizations in loops
- Have to be specified in the OpenSesame script of the loop item after the setcycle commands (i.e. at the end of the script)
- Particularly useful operations
 - **shuffle cue:** Shuffle the column called cue → implement crossed randomizations
 - **shuffle_horiz word1 word2:** Shuffle the columns word1 and word2 horizontally → **useful for counterbalancing presentation order**
 - weight w: Repeat each rowby a weighting factor specified in column w

 → useful if each stimulus should be presented with a different frequency
- To test if a operation works as expected, use the preview feature
- http://osdoc.cogsci.nl/manual/structure/loop/#advanced-loop-operations

How to implement manipulations

- If manipulation affects specific task characteristic (e.g., color of font or different target letters)
 - Modify specific elements with experimental variables
 - Use show if condition

- If difference between conditions affects complex task changes
 - Complex layout changes
 - Create different sketchpads and use run if condition
 - Complex task changes
 - Use different loops/sequences and set run if condition for them
 - Identical elements within the different conditions can be realized by creating linked copies

Item name

experiment

set condition

condition response

block_loop_cond1block_loop_cond2

Run if

always

always

[condition]==1

[condition]==2

Block & trial structure

- Situation: Different blocks of trials are used with the same task
 - Typically: material (i.e., items) change but task remains the same
 - e.g., practice and task block
 - Solution: use different loops that run the same sequence
- Situation: block of trials has a specific structure
 - e.g., first 10 test items are presented, then the actual task items follow
 - Solution: the block actually consists of multiple blocks
 - → use different loops that run the same sequence

Events at specific trials

- Situation: Something happens at trial X
 - e.g., task has 6 trials and there should be a break after trial 3
 - Solution: use count_sequence to set run if condition
 - Note: trial counter starts at 0 (i.e., count_trial_sequence has value 0 in first trial, so if you want to make a break after 3 trials, the counter should be equal to 2)

More complex events can be realized using inline_scripts

(also using the count_sequence variable)

Randomizations & manipulations Manipulation of task order

- Situation: The order of two tasks should be manipulated
 - Solution: Create linked copy of whole loop and set run if condition

Creating mouse-tracking experiments

Methodological considerations

- General challenge when designing a mouse-tracking study
 - Movements should reflect developing commitment not information search
 → minimize amount of new information after tracking onset
 - □ Preferences should not develop before tracking starts
 → critical information should only be made available at the last moment
- Mouse start positions should be comparable across trials
 - Participants have to click on a centered button to start the trial
 - Exactly identical start positions across trials achieved by resetting mouse or by computational alignment during analysis
- Counterbalancing positions across trials / participants
 - Vary which option is presented on which side (left vs. right)
 - Can be done between trials or between participants (depending on study)

Overview

- Researchers face a number of design choices
 when creating mouse-tracking experiments
 - Starting procedure (static, restricted initiation time, dynamic)
 - Cursor speed settings (velocity & acceleration)
 - Indicate response via click vs. touch
- Some authors have given recommendations about designing mouse-tracking studies (Fischer & Hartmann, 2014; Hehman et al., 2015)
- Empirical validation studies are being conducted (Scherbaum & Kieslich, in press; Kieslich et al., in preparation)

Preliminary summary of findings

Response indication

■ Click on button leads to larger effects than touch — effect related to higher proportion of trials with extreme movements to non-chosen option

Mouse sensitivity settings

- Did not significantly influence effect of interest in static setup although default settings generally lead to more extreme curvature than reduced mouse speed
- Reducing mouse speed becomes relevant for dynamic start condition to ensure stimulus information can be acquired during upwards movement

Starting procedure

- Restricting maximum initiation time led to larger effects a dynamic start only influenced shape but not effect size
- However, restricting initiation times also led to largest proportion of excluded trials (and seemed to be challenging for some participants)

Starting procedure

- Simplest setup: static start
 - Stimulus presented immediately (or after a short delay) after click on start button
 - Participants can freely decide when to initiate their movement
 - Potential risk: participants make their decision first and then initiate mouse movement
 - Studies using this procedure often still find effects but in some trials (with extremely straight trajectories) this problem might occur
- Alternative: ensure early movement initiation
 - Alternative I: Participants explicitly told to initiate movement within certain time limit (around 400-600 ms) – if they take longer, warning message is displayed after the trial
 - Alternative II: dynamic start: Participants first have to move the mouse upwards for
 50 px so the stimulus is presented
 - These procedures tend to lead to larger effects and more consistent movements alternative I sometimes hard for participants to accomplish
 - Challenge: is the task simple enough that participants can make the complete decision during the upwards movement?

Cursor speed and acceleration

- Different settings have been employed
 - Default: medium speed, acceleration enabled
 - Slow: reduced speed, acceleration disabled
 - → Reduction of speed and disabling of acceleration important for starting procedures that encourage early movement initiation → ensure that decision can be completed during upwards movement

Method (Scherbaum & Kieslich, in press)

Mouse-tracking in Simon task

- Participants click on left vs. right option depending on stimulus (left if number < 5, otherwise right)
- Position of stimulus varied (left vs. right) so that desired response and position are either congruent or incongruent
- Variation starting procedure
 - Dynamic: move upwards to display stimulus (data from Scherbaum et al., 2010)
 - Static: stimulus displayed after fixed interval of 200 ms (typical duration of movement initiation in dynamic condition) (new data)

Discrete effects: Results for average deviation

- Simon effect and congruency sequence effect replicated in both conditions
- No significant interaction of theoretically important effects with starting procedure

Error bars represent 1 SEM.

Dynamic effects: Time-continuous angle regression

- Time continuous multiple regression predicting vertical movement angle at each time point
- Predictors
 - location (congruency)
 - congruency sequence (same / different)
 - previous response (same / different)
- Effects stronger and more temporarily distinct in dynamic starting condition

Average β weights per time step and predictor. Lines indicate segments of β weights significantly > 0.

Movement consistency

- Smooth and consistent upwards movement in dynamic starting condition
- Participants in static starting condition often stay at bottom of screen for more than half of the trial before moving upwards quickly

Creating mouse-tracking experiments

Implementing a dynamic start procedure

- Task: Implement a dynamic start procedure
 - Include a new sketchpad without stimulus before decision screen as well as a new mousetrap_response item
 - Reset mouse cursor to center of the start button when tracking starts
 - Set number of buttons to 0 and specify an upper tracking boundary 50 px above start (→ subtract 50 px as px in OpenSesame increase towards the bottom)

Creating mouse-tracking experiments (Tuesday)

- 09:00-11:00 OpenSesame & mousetrap-os introduction
- □ 11:00-12:00 Build experiment
- □ 12:00-13:00 Lunch break
- 13:00-15:00 Build experiment
- 15:00-16:00 Register experiment at OSF (Michael)
- □ 16:00-17:00 Keynote Neil Stewart
- □ 17:00-18:00 Meet the Scientist
- 18:00-19:00 Participate in experiments (Lab computers)

Thank you!

Questions and comments are highly appreciated!

Now & via email: <u>kieslich@psychologie.uni-mannheim.de</u> dirk.wulff@gmail.com

Mousetrap-os plugins: https://github.com/pascalkieslich/mousetrap-os

Mousetrap R package: http://pascalkieslich.github.io/mousetrap/

Thanks:

Felix Henninger, co-developer of mousetrap-os plugin and R package Jonas Haslbeck & Michael Schulte-Mecklenbeck, co-developers of mousetrap R package

Mila Rüdiger and Monika Wiegelmann for data collection and testing