Theorem: $A_n = (-\infty + n, \infty - n)$ or $\{x \in \mathbb{R} | -\infty + n < x < \infty - n\}$ has the properties $A_{n+1} \subset A_n$ for all n and their intersection $= \emptyset$.

Proof:

Start with $A_0 = (-\infty, \infty)$ which include all points on the real line.

Pick an arbitrary n. A_n will include
$$(-\infty + n + 1)$$
 since: $(-\infty+n)<(-\infty+n+1)<(\infty-(n+1))<(\infty-n)$

Now the next interval in the family is is $(-\infty + (n+1), \infty - (n+1))$. Since $\neg((-\infty+n+1)<(-\infty+n+1)<(\infty-(n+1))<(\infty-(n+1)))$ is true, then A_{n+1} will not contain the point $(-\infty+n+1)$.

Therefore a A_{n+1} is a subset of A_n .

Since the interval $A = (-\infty + \infty, \infty - \infty)$, which is the same as (0, 0), there are no points within the set since for (0 < x < 0), x cannot exist). Since there are no points within the set, it cannot intercept any other interval. This means the intersection for all intervals will be \emptyset .

This proves the theorem.