M.Sc. 2nd Semester Midsem Examination

Subject: Automata and Compiler Design Paper Code: CSMC 202

(Full Marks – 20, Time: 1hr)

. Answer any four:

2×4=8

If there are n no. of inputs, how many outputs are generated by *Mealy* and *Moore* machines separately? Justify your answer.

Why do you need a DFA to be minimized?

Find a grammar in Chomsky Normal Form equivalent to $S \rightarrow aAbB$, $A \rightarrow aA \mid a, B \rightarrow bB \mid b$.

d) Derive the strings concretely generated by the *regular* expression $r = (1+01)^*(0+\lambda)$.

When is a production said to be useless? Explain with example.

2. Answer any three:

 $4 \times 3 = 12$

✓ a) Construct a *Turing Machine* that accepts the language of 010 over $\Sigma = \{0, 1\}$.

b) Minimize the following *DFA*:

(c) Construct a Moore Machine equivalent to the Mealy Machine M defined

Present State	Next State			
	G=0		G=1	
	State	Output	State	Output
$\rightarrow q_1$	q_1	1	q_2	0
92	q_4	1	q_4	1
<i>Q</i> 3	q_2	1	93	i
94	q_3	0	a ₁	1

7 d) Construct a grammar in *Greibach Normal Form* equivalent to the grammar $S \rightarrow AA \mid a$, $A \rightarrow SS \mid b$.