Lenti

Agostino Luca, Cafaro Alessandro, Gili Francesco, Gros Jacques Matteo Turno AII - Gruppo 7 A.A. 2024-2025

28 febbraio 2025

Indice

1	Obiettivi della misura	2
2	Apparato sperimentale	2
3	Presa dati	2
	3.1 Lente biconvessa	2
	3.2 Lente piano-convessa	2
	3.3 Lente biconcava	2
	3.4 Sistema di lenti	2
4	Analisi dati	2
	4.1 Lente biconvessa	2
	4.2 Lente biconcava	
	4.3 Sistema di lenti	
5	Risultati e osservazioni conclusive	3
	5.1 Lente biconvessa	3
	5.2 Lente biconcava	3
	5.3 Sistema di lenti	3
\mathbf{A}_{1}	ppendices	3
A	Dati	3
В	Calcoli	3

1 Obiettivi della misura

Verificare la validità delle leggi sulle lenti sottili, misurandone le proprietà geometriche; in particolare:

- 1. Ricavare la distanza focale e l'ingrandimento di una lente biconvessa
- 2. Ricavare la distanza focale di una lente piano-convessa
- 3. Ricavare la distanza focale di una lente divergente
- 4. Misurare la posizione dell'immagine di un sistema di due lenti convergenti non a contatto.

2 Apparato sperimentale

- Banco ottico (sensibilità: 1 mm)
- Proiettore con illuminazione regolabile
- Diapositiva da proiettare
- Lenti di diverso tipo: biconvessa, piano-convessa, biconcava
- Schermo per visualizzare l'immagine
- Calibro (sensibilità: 0.05 mm)

3 Presa dati

3.1 Lente biconvessa

Abbiamo fissato la lente biconvessa su un supporto posto a distanza $p = (0.140 \pm 0.002)$ m. Successivamente abbiamo compiuto 70 misure ripetute della posizione dell'immagine, spostando lo schermo finché questa non risultasse nitida, con l'accortezza di alternare destra e sinistra come direzioni di avvicinamento.

Ci aspettiamo che i due fuochi abbiano la stessa distanza dalla lente; l'abbiamo quindi ruotato di π e ripetuto le misure utilizzando la stessa procedura e le medesime accortezze.

Per entrambe le lenti abbiamo poi calcolato l'ingrandimento come il rapporto tra la distanza di due punti distinti sullo schermo e degli stessi sulla diapositiva.

3.2 Lente piano-convessa

Abbiamo ripetuto le precedenti misurazioni su una lente convergente piano-convessa mantenendo inalterato il numero di misure e la procedura utilizzata.

3.3 Lente biconcava

Riutilizzando la lente biconvessa della Sezione 3.1, costruiamo un sistema ottico formato da quest'ultima e da una lente negativa biconcava, montandole in modo che siano il più possibile vicine tra loro. Poniamo le due lenti a distanza p dall'oggetto, ed esattamente nello stesso modo descritto precedentemente, misuriamo ripetutamente q.

3.4 Sistema di lenti

Utilizzando due lenti convergenti disposte non a contatto, abbiamo misurato 10 volte il valore di q_2 , ossia la distanza dalle lenti che rende nitida l'immagine sullo schermo.

4 Analisi dati

4.1 Lente biconvessa

Poiché abbiamo compiuto N=70 misure ripetute della stessa grandezza, ci aspettiamo che i dati si distribuiscano secondo un andamento gaussiano. Abbiamo dunque eseguito un fit dell'istogramma delle frequenze assolute dei dati.

Lente biconvessa

Figura 1: Lente biconvessa

Di seguito riportiamo il test del $\chi^2,$ con un livello di significatività del 5%:

 H_0 : la distribuzione gaussiana ben descrive quella dei dati sperimentali.

χ^2	1.942
ν	9
χ_c^2	16.919
χ_s^2	3.325

 $\chi^2 \leq \chi^2_s < \chi^2_c,$ questo significa che

- 4.2 Lente biconcava
- 4.3 Sistema di lenti
- 5 Risultati e osservazioni conclusive
- 5.1 Lente biconvessa
- 5.2 Lente biconcava
- 5.3 Sistema di lenti

Appendices

- A Dati
- B Calcoli