Popisné charakteristiky

Charakteristiky polohy

aritmetický průměr	\overline{x}	$\frac{1}{n} \sum_{i=1}^{n} x_i$	harmonický průměr	\overline{x}_H	$\frac{n}{\sum\limits_{i=1}^{n}\frac{1}{x_{i}}}$	
geometrický průměr	\overline{x}_G	$\sqrt[n]{x_1 \cdot x_2 \cdots x_n}$	kvadratický průměr	\overline{x}_K	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}$	
100p%	· ·	$i_p: np < i_p < np + 1$				
kvantil	x_p	pokud existuje i	x_p celé: $x_{(i_p)}$	pokı	nd je np celé: $\frac{1}{2} \left[x_{(np)} + x_{(np+1)} \right]$	
modus	\hat{x}		hodnota znaku	s nejv	větší četností	

Charakteristiky variability

variační rozpětí	R	$x_{\max} - x_{\min}$	průměrná odchylka	$\overline{d}_{\overline{x}}$	$\frac{1}{n}\sum_{i=1}^{n} x_i-\overline{x} $
kvartilové rozpětí	R_Q	$x_{0,75} - x_{0,25}$	kvartilová odchylka	Q	$R_Q/2$
decilové rozpětí	R_D	$x_{0,90} - x_{0,10}$	decilová odchylka	D	$R_D/8$
percentilové rozpětí	R_C	$x_{0,99} - x_{0,01}$	percentilová odchylka	C	$R_C/98$
rozptyl	s_n^2	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2$	směrodatná odchylka	s_n	$\sqrt{s_n^2}$
výběrový rozptyl	s^2	$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$	výběrová směrodatná odchylka	s	$\sqrt{s^2}$
variační koeficient	v	$\frac{s_n}{\overline{x}}, \overline{x} \neq 0$			

${\it Charakteristiky\ koncentrace}$

r-tý obecný moment	m_r'	$\frac{1}{n} \sum_{i=1}^{n} x_i^r$	r-tý centrální moment	m_r	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^r$
koeficient šikmosti	a_3	$\frac{\frac{m_3}{m_2^{3/2}} = \dots = \frac{1}{ns_n^3} \sum_{i=1}^n (x_i - \overline{x})^3$	koeficient špičatosti	a_4	$\frac{m_4}{m_2^2} - 3 = \dots =$ $= \frac{1}{ns_n^4} \sum_{i=1}^n (x_i - \overline{x})^4 - 3$

Rozdělení náhodné veličiny – funkce

Diskrétní rozdělení

	<u> </u>			
pozn.	$\pi \in (0;1)$	$\pi \in (0;1)$		$x_D = \max\{0, n + M - N\}$ $x_H = \min\{n, M\}$
$\begin{array}{c} \text{obor hodnot} \\ M \end{array}$	x = 0, 1	$x = 0, 1, 2, \dots, n$	$x=0,1,2,\dots$	$x = x_D, \dots, x_H$
distribuční funkce $F(x)$	$\sum_{t \le x} p(t)$	$\sum_{t \le x} p(t)$	$\sum_{t \le x} p(t)$	$\sum_{t \leq x} p(t)$
pravděpodobnostní funkce $p(x)$	$\pi^x (1-\pi)^{1-x}$	$\binom{n}{x}\pi^x(1-\pi)^{n-x}$	$\frac{e^{-\lambda \lambda x}}{x!}$	$\frac{\binom{N-M}{x-n}\binom{N}{x}}{\binom{N}{n}}$
rozdělení	alternativní $A(\pi)$	binomické $B(n,\pi)$	Poissonovo $P(\lambda)$	hypergeometrické $Hg(N, M, n)$

Pozn.: platí p(x) = P(X = x) a $F(x) = P(X \le x)$.

Spojitá rozdělení

pozn.		$\alpha \in \mathbb{R}, \delta > 0$	$u = \frac{x - \mu}{\sigma} \sim N(0, 1)$		$u = \frac{\ln x - \mu}{\sigma} \sim N(0, 1)$
$\begin{array}{c} \text{obor hodnot} \\ M \end{array}$	$x \in (\alpha, \beta)$	$x > \alpha$	$x \in \mathbb{R}$	$u\in\mathbb{R}$	x > 0
distribuční funkce $F(x)$	$\frac{x-\alpha}{\beta-\alpha}$	$1 - e^{-\frac{x-\alpha}{\delta}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{t^2}{2}} dt$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \frac{1}{t} e^{-\frac{(\ln t - \mu)^2}{2\sigma^2}} dt$
hustota pravděpodobnosti $f(x)$	$\frac{1}{eta-lpha}$	$\frac{1}{\delta}e^{-\frac{x-\alpha}{\delta}}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$
rozdělení	rovnoměrné $R(\alpha)$	exponenciální $E(\alpha, \delta)$	normální $N(\mu, \sigma^2)$	normované normální $N(0,1)$	logaritmicko- normální $LN(\mu, \sigma^2)$

Pozn.: pro spojitou náhodnou veličinu platí f(x) = F'(x) a $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$.

Náhodné veličiny – charakteristiky

	střední hodnota $E(X)$	$\operatorname*{rozptyl}_{D(X)}$	směrodatná odchylka $\sigma(X)$	r -tý obecný moment $\mu'_r(X)$	r -tý centrální moment $\mu_r(X)$	koeficient šikmosti $\alpha_3(X)$	koeficient špičatosti $\alpha_4(X)$	$\begin{array}{c} 100 \mathrm{P}\% \\ \mathrm{kvantil} \\ x_P \end{array}$
obecná definice	viz učebnice	$E\left\{ \left[X - E(X) \right]^2 \right\}$	$\sqrt{D(X)}$	$E(X^r)$	$E[X - E(X)]^r$	$\frac{\mu_3(X)}{\sigma(X)^3}$	$\frac{\mu_4(X)}{\sigma(X)^4} - 3$	viz učebnice
obecné diskrétní rozdělení	$\sum_{x \in M} x p(x)$	$\sum_{x \in M} \left[x - E(X) \right]^2 p(x)$	$\sqrt{D(X)}$	$\sum_{x \in M} x^r p(x)$	$\sum_{x \in M} [x - E(X)]^r p(x)$	$\frac{\mu_3(X)}{\sigma(X)^3}$	$\frac{\mu_4(X)}{\sigma(X)^4} - 3$	viz učebnice
obecné spojité rozdělení	$\int_{M} x f(x) \mathrm{d}x$	$\int_{M} x f(x) dx \qquad \int_{M} [x - E(X)]^{2} f(x) dx$	$\sqrt{D(X)}$	$\int_{M} x^{r} f(x) \mathrm{d}x$	$\int_{M} x^{r} f(x) dx \qquad \int_{M} [x - E(X)]^{r} f(x) dx$	$\frac{\mu_3(X)}{\sigma(X)^3}$	$\frac{\mu_4(X)}{\sigma(X)^4} - 3$	$F(x_P) = P$ $0 < P < 1$

Výpočetní tvar:

 \bullet rozptyl

$$D(X) = E(X^2) - E(X)^2$$

• koeficient šikmosti

$$\mu_3(X) = E(X^3) - 3E(X^2)E(X) + 2E(X)^3$$

koeficient špičatosti

$$\mu_4(X) = E(X^4) - 4E(X^3)E(X) + 6E(X^2)E(X)^2 - 3E(X)^4$$

Rozdělení náhodné veličiny – charakteristiky

Diskrétní rozdělení

pozn.				$ \begin{aligned} \pi &= M/N, \\ \sigma &= \sqrt{D(X)} \\ a &= \frac{(M+1)(n+1)}{N+2} \end{aligned} $
$\begin{array}{c} 100P\% \\ \text{kvantil} \\ x_P \end{array}$				
$\frac{\text{modus}}{Mo(X)}$	$2\pi - 1 \le Mo(X) \le 2\pi$	$(n+1)\pi - 1 \le Mo(X) \le (n+1)\pi$	$\lambda - 1 \le Mo(X) \le \lambda$	$a - 1 \le Mo(X) \le a$
koeficient špičatosti $\alpha_4(X)$	$\frac{1-6\pi(1-\pi)}{\pi(1-\pi)}$	$\frac{1-6\pi(1-\pi)}{n\pi(1-\pi)}$	7 1	$\frac{\mu_4(X)}{\sigma(X)^4} - 3$
koeficient šikmosti $\alpha_3(X)$	$\frac{1-2\pi}{\sqrt{\pi(1-\pi)}}$	$\frac{1-2\pi}{\sqrt{n\pi(1-\pi)}}$		$\frac{(1-2\pi)(N-2n)}{(N-2)\sigma}$
$\frac{\text{rozptyl}}{D(X)}$	$\pi(1-\pi)$	$n\pi(1-\pi)$	ζ	$n\pi(1-\pi)\frac{N-n}{N-1}$
střední hodnota $E(X)$	Т	$n\pi$	~	пт
rozdělení	alternativní $A(\pi)$	binomické $B(n,\pi)$	Poissonovo $P(\lambda)$	hypergeometrické $Hg(N,M,n)$

Spojitá rozdělení

$x_{0,5} = \frac{\alpha + \beta}{2}$	$\alpha - \delta \ln(1 - P)$ $x_{0,5} = \alpha + \delta \ln 2$	$x_{0,5} = \mu$	$u_{0,5} = 0$	$\omega = e^{\sigma^2}$ $x_{0,5} = e^{\mu}$
$\alpha + P(\beta - \alpha)$	$\alpha - \delta \ln(1 - P)$	$dn ho + \eta$		$e^{\mu-\sigma^2 u_P}$
		ф	0	$e^{\mu-\sigma^2}$
-1,2	9	0	0	$\sqrt{\omega - 1}(\omega + 2)$ $\omega^4 + 2\omega^3 + 3\omega^2 - 6$
0	2	0	0	$\sqrt{\omega-1}(\omega+2)$
$\frac{(\beta - \alpha)^2}{12}$	δ^2	σ^2	11	$e^{2\mu}\omega(\omega-1)$
$\frac{\alpha + \beta}{2}$	$\alpha + \delta$	π	0	$e^{\mu+\sigma^2/2}$
rovnoměrné $R(\alpha)$	exponenciální $E(\alpha,\delta)$	normální $N(\mu,\sigma^2)$	normované normální $N(0,1)$	logaritmicko- normální $LN(\mu, \sigma^2)$

Odhady parametrů

rozdělení	parametr bodový	bodový	intervalové odhady	dhady		DOZN.
náh. vel.		odhad	oboustranný odhad	dolní odhad	horní odhad	· · · · · · · · · · · · · · · · · · ·
$N(\mu,\sigma^2)$	ή	x	$\overline{x} - t_{1-\alpha/2}(\nu) \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{1-\alpha/2}(\nu) \frac{s}{\sqrt{n}}$	$\overline{x} - t_{1-\alpha}(\nu) \frac{s}{\sqrt{n}}$	$\overline{x} + t_{1-\alpha}(\nu) \frac{s}{\sqrt{n}}$	$\nu = n - 1$
	σ^2	s^2	$\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(\nu)} < \sigma^2 < \frac{(n-1)s^2}{\chi_{\alpha/2}^2(\nu)}$	$\frac{(n-1)s^2}{\chi_{1-\alpha}^2(\nu)}$	$\frac{(n-1)s^2}{\chi_{\alpha}^2(\nu)}$	$\nu = n - 1$
libovolné	ή	s	$\overline{x} - u_{1-\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + u_{1-\alpha/2} \frac{s}{\sqrt{n}}$	$\overline{x} - u_{1-\alpha} \frac{s}{\sqrt{n}}$	$\overline{x} + u_{1-\alpha} \frac{s}{\sqrt{n}}$	pro dost velké n
$A(\pi)$	π	d	$p - u_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} < \pi < p + u_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$	$p - u_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}$	$p + u_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}$	pro $n : np(1-p) > 9$

Testy hypotéz – jednovýběrové

noor	POZII.	$\nu = n - 1$	$\nu = n - 1$	pro dostatečně velké n	pro $n: n\pi_0(1-\pi_0) > 9$	
kritický obor	W_{lpha}	$ t \ge t_{1-\alpha/2}(\nu)$ $t \ge t_{1-\alpha}(\nu)$ $t \le -t_{1-\alpha}(\nu)$	$\chi^2 \le \chi^2_{\alpha/2}(\nu) \vee \chi^2 \ge \chi^2_{1-\alpha/2}(\nu)$ $\chi^2 \ge \chi^2_{1-\alpha}(\nu)$ $\chi^2 \le \chi^2_{0}(\nu)$	$ u \ge u_{1-\alpha/2}$ $u \ge u_{1-\alpha}$ $u \le -u_{1-\alpha}$	$ u \ge u_{1-\alpha/2}$ $u \ge u_{1-\alpha}$ $u \le -u_{1-\alpha}$	
toot on a limit familiary	restove Kriterium	$t = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$u = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$	$u = \frac{p - \pi_0}{\sqrt{\pi_0(1 - \pi_0)}} \sqrt{n}$	
testovaná hypotéza	alternativní A	$\mu \neq \mu_0$ $\mu > \mu_0$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$\mu \neq \mu_0$ $\mu > \mu_0$	$\pi \neq \pi_0$ $\pi > \pi_0$ $\pi < \pi_0$	
testovan nulová H		$\mu=\mu_0$	$\sigma^2 = \sigma_0^2$	$\mu=\mu_0$	$\pi=\pi_0$	
rozdělení	náh. vel.	$N(\mu,\sigma^2)$		libovolné	$A(\pi)$	

Testy hypotéz – dvouvýběrové

HYDYN	роди.	(ν_1, ν_2) $\nu_1 = n_1 - 1, \ \nu_2 = n_2 - 1$	$V = n_1 + n_2 - 2$ $S = \left[\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \right]^{\frac{1}{2}}$	$\nu \approx \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$	pro dostatečně velké n_1,n_2	$ \nu = n - 1 $ $ d_i = x_i - y_i $ $ \overline{d} \dots \operatorname{prum \check{e}r} $ diferencí d_i $s_d \dots \operatorname{jejich} $ výběrová odchylka	pro $n_1 : n_1 p_1 (1 - p_1) > 9$ $n_2 : n_2 p_2 (1 - p_2) > 9$
kritický obor	M_{lpha}	$F \le F_{\alpha/2}(\nu_1, \nu_2) \lor F \ge F_{1-\alpha/2}(\nu_1, \nu_2)$ $F \ge F_{1-\alpha}(\nu_1, \nu_2)$ $F \le F_{\alpha}(\nu_1, \nu_2)$	$ t \ge t_{1-\alpha/2}(\nu)$ $t \ge t_{1-\alpha}(\nu)$ $t \le -t_{1-\alpha}(\nu)$	$ t \ge t_{1-\alpha/2}(\nu)$ $t \ge t_{1-\alpha}(\nu)$ $t \le -t_{1-\alpha}(\nu)$	$ u \ge u_{1-\alpha/2}$ $u \ge u_{1-\alpha}$ $u \le -u_{1-\alpha}$	$ t \ge t_{1-\alpha/2}(\nu)$ $t \ge t_{1-\alpha}(\nu)$ $t \le -t_{1-\alpha}(\nu)$	$ u \ge u_{1-\alpha/2}$ $u \ge u_{1-\alpha}$ $u < -u_{1-\alpha}$
y y y y y y y y y y y y y y y y y y y	testove kriterium	$F = \frac{s_1^2}{s_2^2}$	$t = \frac{\overline{x} - \overline{y}}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$	$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$u = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d} \sqrt{n}$	$u = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$
ypotéza	alternativní A	$\sigma_1^2 \neq \sigma_2^2$ $\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$\pi_1 \neq \pi_2$ $\pi_1 > \pi_2$ $\pi_1 < \pi_2$
testovaná hypotéza	nulová H	$\sigma_1^2=\sigma_2^2$	$\mu_1 = \mu_2$ za předpokladu $\sigma_1^2 = \sigma_2^2$	$\mu_1 = \mu_2$ za předpokladu $\sigma_1^2 \neq \sigma_2^2$	$\mu_1=\mu_2$	$\mu_1=\mu_2$	$\pi_1=\pi_2$
rozdělení	náh. vel.		$X \sim N(\mu_1, \sigma_1^2)$ $Y \sim N(\mu_2, \sigma_2^2)$ nezávislé		X libovolné Y libovolné nezávislé	$X \sim N(\mu_1, \sigma_1^2)$ $Y \sim N(\mu_2, \sigma_2^2)$ $závislé$	$X \sim A(\pi_1)$ $Y \sim A(\pi_2)$ nezávislé

Testy hypotéz o tvaru rozdělení

pozn.	•	$D(a_3) = \frac{6(n-2)}{(n+1)(n+3)}$	$D(a_4) = \frac{24n(n-2)(n-3)}{(n+1)^2(n+3)(n+5)}$	test je vhodný pro $n \ge 200$	$\delta = \frac{1}{\sqrt{\ln W}}, \ a = \sqrt{\frac{2}{W^2 - 1}},$ $W^2 = \sqrt{2(b - 1)} - 1,$ $b = \frac{3(n^2 + 27n - 70)(n+1)(n+3)}{(n-2)(n+5)(n+7)(n+9)}$	$A = 6 + \frac{8}{B} \left(\frac{2}{B} + \sqrt{1 + \frac{4}{B^2}} \right),$ $B = \frac{6(n^2 - 5n + 2)}{(n+7)(n+9)} \sqrt{\frac{6(n+3)(n+5)}{n(n-2)(n-3)}}$	test je vhodný pro $n \ge 20$	$\begin{split} \nu &= k - c - 1, \\ \text{pro } \forall j : n \hat{\pi}_j > 5, \\ \text{podrobněji viz učebnice} \end{split}$
kritický obor	W_{lpha}	$ u_3 \ge u_{1-\alpha/2}$	$ u_4 \ge u_{1-\alpha/2}$	$C \ge \chi_{1-\alpha}^2(2)$	$ z_3 \ge u_{1-\alpha/2}$	$ z_4 \ge u_{1-\alpha/2}$	$C' \ge \chi_{1-\alpha}^2(2)$	$\chi^2 \ge \chi_{1-\alpha}^2(\nu)$
testové kritérium		$u_3 = \frac{a_3}{\sqrt{D(a_3)}}$	$u_4 = \frac{a_4 + \frac{6}{n+1}}{\sqrt{D(a_4)}}$	$C = u_3^2 + u_4^2$	$z_3 = \delta \ln \left[\frac{u_3}{a} + \sqrt{\left(\frac{u_3}{a} \right)^2 + 1} \right]$	$z_4 = \frac{1 - \frac{2}{9A} - 3\sqrt{\frac{1 - \frac{2}{A}}{1 + u_4\sqrt{\frac{2}{A - 4}}}}}{\sqrt{\frac{2}{9A}}}$	$C' = z_3^2 + z_4^2$	$\chi^{2} = \sum_{j=1}^{k} \frac{(n_{j} - n\hat{\pi}_{j})^{2}}{n\hat{\pi}_{j}}$
hypotéza	alternativní A	$\alpha_3 \neq 0$	$\alpha_4 \neq 0$	X nemá normální rozdělení	$\alpha_3 \neq 0$	$\alpha_4 \neq 0$	X nemá normální rozdělení	X nemá předpokládané rozdělení
testovaná hypotéza	nulová H	$\alpha_3 = 0$	$\alpha_4 = 0$	X má normální rozdělení	$\alpha_3 = 0$	$\alpha_4 = 0$	X má normální rozdělení	X má předpokládané rozdělení
test		Test o nulové šikmosti	Test o nulové špičatosti	C-test normality	Modifikovaný test o nulové šikmosti	Modifikovaný test o nulové špičatosti	Modifikovaný C' -test normality	χ^2 -test dobré shody

Vícerozměrná data

Sdružená (simultánní) absolutní četnost

$$n_{jk} = N(X = x_{[j]} \land Y = y_{[k]})$$

Sdružená (simultánní) relativní četnost

$$p_{jk} = \frac{n_{jk}}{n}$$

Marginální absolutní četnost varianty x_j

$$n_{j.} = N(X = x_{[j]}) = n_{j1} + \dots + n_{js}$$

Marginální relativní četnost varianty x_i

$$p_{j.} = \frac{n_{j.}}{n} = p_{j1} + \dots + p_{js}$$

Marginální absolutní četnost varianty y_i

$$n_{.k} = N(X = y_{[k]}) = n_{1k} + \dots + n_{rk}$$

Marginální relativní četnost varianty y_k

$$p_{.k} = \frac{n_{.k}}{n} = p_{1k} + \dots + p_{rk}$$

Kovariance

$$s_{n,xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Výběrová kovariance

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Pearsonův korelační koeficient

$$r_{xy} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \overline{x}}{s_{n,x}} \cdot \frac{y_i - \overline{y}}{s_{n,y}} = \frac{s_{n,xy}}{s_{n,x}s_{n,y}} = \frac{s_{xy}}{s_x s_y}$$

Spearmanův koeficient pořadové korelace

$$r_{xy}^{s} = 1 - \frac{6\sum_{i=1}^{n} (p_i - q_i)^2}{n(n^2 - 1)}$$

Vícerozměrná náhodná veličina

Sdružená distribuční funkce vektoru (X,Y)'

$$F(x,y) = P(X \le x, Y \le y)$$

X a Y mají distribuční funkce

$$F_X(x) = F(x, \infty)$$
 a $F_Y(y) = F(\infty, y)$.

Sdružená pravděpodobnostní funkce vektoru (X,Y)'

$$p(x,y) = P(X = x, Y = y)$$

Marginální pravděpodobnostní funkce X a Y jsou

$$p_X(x) = \sum_{y \in M_y} p(x, y), \quad x \in M_x,$$

$$p_Y(y) = \sum_{x \in M_x} p(x, y), \quad y \in M_y.$$

Sdružená hustota pravděpodobnosti vektoru (X,Y)'

$$P((X,Y) \in B) = \iint_B f(x,y)dx dy$$

Marginální hustoty X a Y jsou

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Náhodné veličiny X a Y jsou nezávislé právě tehdy, když

$$F(x,y) = F_X(x)F_Y(y).$$

Diskrétní náhodné veličiny jsou nezávislé, právě když

$$p(x,y) = p_X(x)p_Y(y),$$

spojité náhodné veličiny jsou nezávislé právě tehdy, když

$$f(x,y) = f_X(x)f_Y(y).$$

Střední hodnota vektoru $\boldsymbol{X} = (X, Y)'$

$$E(\mathbf{X}) = (E(X), E(Y))'$$

Kovariance

$$C(X,Y) = E[X - E(X)][Y - E(Y)] = E(XY) - E(X)E(Y)$$

Korelační koeficient

$$\rho(X,Y) = \frac{C(X,Y)}{\sqrt{D(X)D(Y)}}$$

Test významnosti korelačního koeficientu

 $H: \rho = 0 \rightarrow A: \rho \neq 0$

$$t = \frac{r_{xy}}{\sqrt{1 - r_{xy}^2}} \sqrt{n - 2} \sim t(n - 2)$$

 W_{α} : $|t| \ge t_{1-\alpha/2}(n-2)$

Test nezávislosti v kontingenční tabulce

 $H \colon X$ a Yjsou nezávislé náhodné veličiny $\to A \colon X$ a Yjsou závislé náhodné veličiny

$$\chi^2 = \sum_{i=1}^r \sum_{k=1}^s \frac{(n_{jk} - o_{jk})^2}{o_{jk}}, \ o_{jk} = \frac{n_{j.} n_{.k}}{n}$$

$$W_{\alpha}$$
: $\chi^2 \ge \chi^2_{1-\alpha}(\nu)$, $\nu = (r-1)(s-1)$