K社様へのご提案 どこでもシャトル

チーム名:••

浅野 竣弥

00 00

00 00

00 00

目次

- 1. 本提案の目的 ~B国のあるべき姿~
- 2. 現状の課題認識~深刻な交通渋滞~
- 3. 提案内容
- 4. 本提案が提供する顧客価値 ~まとめに代えて~

B国の交通渋滞を解決したい!

- · 面積:551,500 km²
- . 人口:62,814,233人
- · GDP: 2兆5804億 米ドル
- . 世界一の観光客集客力
- ・主要交通手段は車

~国の取り組み~

- 国を上げた自動運転化推進
- 国鉄への多額投資
- 直近にオリンピックを控える

首都△△市

- 多くの歴史ある 観光名所
- 整備された鉄道交通網
- 深刻な交通渋滞
- 路上駐車も増加

交通渋滞がなくなると?

イライラがなくなる

経済効果

移動時間の 短縮

CO2削減

目的

△△に来る人に 心と時間のゆとりを与えたい

目次

- 1. 本提案の目的 ~B国のあるべき姿~
- 2. 現状の課題認識 ~深刻な交通渋滞~
- 3. 提案内容
- 4. 本提案が提供する顧客価値 ~まとめに代えて~

Q. 交通渋滞はなぜ起こる?

1.自動車が多い

<u>「国民の主要交通手段は自動車」</u>

△△市内に 自動車が集中

2.路上駐車が多い

「△△市内には駐車場が珍しい」先頭車がスペースを見つけて駐車。完了するまで後続車は待機

「国を上げて自動運転化を推進」

⇒全自動車が自動運転化しただけでは このままだと渋滞は緩和されない

⇒市内にある車の総量を減らしたい

Q. 交通渋滞はいつ起こる?

A. 通勤ラッシュの時間帯が深刻

通勤時間のロス(INRIX調べ)

1位 ボゴタ 191 時間 / 人・年

2位 リオデジャネイロ 190 時間 / 人・年

3位 ローマ 166 時間 / 人・年

日本

38時間 / 人•年

渋滞に巻き込まれているのは通勤者

⇒ターゲットは<u>郊外から△△に来る通勤者</u>

⇒通勤者に乗合バスを使ってもらう?

Q. 交通渋滞は解決できる?

従来の乗合バスの課題

- バス停までの移動手段とバス停からの 移動手段が乏しい
- 目的地はバラバラなので遠回りになってしまう →余計な時間がかかる

K社の自動運転技術

X

弊社のビッグデータソリューション技術 で解決

○ 交通渋滞け解決できる?

通勤者が提案するサービスを利用

- →市内の車の総量が減少
- →交通渋滞は**解消**
- ⇒心と時間のゆとりを与えられる

K社の自動運転技術

X

弊社のビッグデータツリューション技術 で解決

目次

- 1. 本提案の目的 ~B国のあるべき姿~
- 2. 現状の課題認識 ~深刻な交通渋滞~
- 3. 提案内容
 - a. どこでもシャトルが実現すること
 - b. ビジネスモデル
 - c. ロードマップ
 - 4. 本提案が提供する顧客価値 ~まとめに代えて~

駐車場へ案内&目的地への送迎をパッケージ化

AIにより通勤者を自動運転シャトルバスに振り分け

①②案内された駐車場まで移動に乗り換え地へ⑤ 到着!!

駐車場へ案内&目的地への送迎をパッケージ化

AIにより通勤者を自動運転シャトルバスに振り分け

①目的地を入力

駐車場へ案内&目的地への送迎をパッケージ化

AIにより通勤者を自動運転シャトルバスに振り分け

②案内された駐車場まで移動

駐車場へ案内&目的地への送迎をパッケージ化

AIにより通勤者を自動運転シャトルバスに振り分け

③駐車場でバスに乗り換え

駐車場へ案内&目的地への送迎をパッケージ化

AIにより通勤者を自動運転シャトルバスに振り分け

④目的地へ⑤ 到着!!

駐車場へ案内&目的地への送迎をパッケージ化

①目的地を入力 ③駐車場でバスに乗り換え

②案内された駐車場まで移動

4)目的地へ

シンプルかつスマートな移動の実現

どこでもシャトル

アプリの仕様

が実現すること

フロントエンド

出発地・目的地の設定のみ

バックエンド

訪問データの取得&分析

- ・効率良く目的地まで送迎
- ・ 渋滞を減らすよう最適化

どこでもシャトル

アプリの仕様

が実現すること

701

出発

混雑状況・時間帯を 基に目的地までの ルートを決定

バックエンド

訪問データの取得&分析

- 効率良く目的地まで送迎
- ・ 渋滞を減らすよう最適化

バスによる大人数 での移動

空いている郊外の 駐車場へ案内

データ分析による 目的地への最適な送迎

車の減少

△△市内の 路上駐車の減少

移動時間の短縮

駐車場 所有者

D 駐車場 別の都市にも展開が可能

(単位:万円)

弊社イニシャルコスト		
相談費	1,000	
AI制作費	100	
アプリ制作費	100	
計	800	

(単位:万円)

弊社 ランニングコスト (/月)	
AI・アフ [°] リ提供費	160
サーバー管理費	10
計	150

ユーザーが増えると サーバー管理費は増加 →アプリ提供費も増加するので 150万より減ることはない

(単位:万円)

	(単位:万円)
社 ランニングコス	ト(/月)

K社 イーンヤルコスト		
宣伝・営業活動費	1,000	
自律走行車生産費	15,300	
相談費	1,000	
計	17,300	

1台あたりの定員は26~27人 ピーク時の乗車数は全体の46% ⇒必要な台数は 170 台

マイクロバス1台の製造費:90万

K社 ランニングコスト (/月)	
ユーザー利用費	1,800
AI・アフ [°] リ提供費	160
自律走行車維持費	210
宣伝・営業活動費	200
駐車場提携費	400
(歩合制)	630
計	700

K社 イニシャルコスト	
宣伝•営業活動費	1,000
自律走行車生産費	15,300
相談費	1,000
計	17,300

K社 ランニングコスト (/月)	
ユーザー利用費	1,800
AI・アフ [°] リ提 17 3	300 / 700 ⁰
自律走行車	E L D - 3220
営業活動 2	5ヶ月で200
駐車場提携初期	費用回収
(インセンティブ制	530
度) 計	700

1台あたりの定員は26~27人 ピーク時の乗車数は全体の46% ⇒必要な台数は170台

X

マイクロバス1台の製造費:90万

(単位:万円)

(単位:万円)

ユーザー(/人月)

利用料

1.8

自分で運転すると これ以上の費用がかかる。

参考

東京の駐車場: 2~3万/月 パリの路上駐車: 1.8万/月

ガソリン(10km):7千/月

駐車場所有者 利益(/月)		
幸足酉州	(平均)5.3	
近隣施設利用料	+a	
計	5.3 +a	

= 駐車場提携費 / 契約 駐車可能台数によって前後

> 駐車場所有者が 大型スーパー等の場合 帰りに寄ってもらえる

目次

- 1. 本提案の目的 ~B国のあるべき姿~
- 2. 現状の課題認識~深刻な交通渋滞~
- 3. 提案内容
- 4. 本提案が提供する価値 ~まとめに代えて~

本提案が提供する価値

ゆとりある移動

イライラがなくなる

移動時間の短縮

本提案が提供する価値

シェア拡大

ダノン市を モデルケースとした サービスの展開

✓ケスラ車の利用 ✓サービスの利用

本提案が提供する価値

魅力を引き出す

渋滞緩和による 経済損失の解消、 CO2削減

観光しやすい街づくり