CS2040S Cheatsheet

for midterms AY23-24, Sem 2 m. zaidan

Asymptotic Analysis

$$T(n) = O(f(n))$$
 | Upper Bound

There exists constants c > 0, $n_0 > 0$ such that $\forall n > n_0, \ T(n) < cf(n)$.

$$T(n) = \Omega(f(n))$$
 | Lower Bound

There exists constants c > 0, $n_0 > 0$ such that $\forall n > n_0, T(n) > cf(n)$.

$$T(n) = \Theta(f(n))$$

if and only if $T(n) = O(f(n)) \& T(n) = \Omega(f(n))$

Generally,
$$n^n > n! > a^n > n^a > \log_a(n)$$

$$log_a(b) = log_c(a) \div log_c(b)$$

$$a^{log(x)} = x^{log(a)}$$

Binary Search

Reduce and Conquer

$$T(n) = T(n/2) + O(1)$$

Reduce the size of search by half every single iteration.

Sorting

Sort	Worst-Case	Avg-Case	Stable?
Bubble	$O(n^2)$	$O(n^2)$	Yes
Selection	$O(n^2)$	$O(n^2)$	No
Insertion	$O(n^2)$	$O(n^2)$	Yes
Merge	$O(n^2)$	O(nlogn)	Yes
Quick	O(nlogn)	O(nlogn)	No

BubbleSort $O(n^2)$, Stable, In-Place

Invariant: At the end of iteration *i*:

Sorts of $T(n) = T(n-1) + O(n) = O(n^2)$

the **biggest** *j* items are correctly sorted in the

final j positions of the array.

SelectionSort $O(n^2)$, Not Stable, In-Place

Invariant: At the end of iteration *i*:

the **smallest** j items are correctly sorted in the **first** *j* positions of the array.

InsertionSort $O(n^2)$, Stable, In-Place

Invariant: At the end of iteration *j*: the **first** i items are in sorted order.

Note: Complexity goes closer to O(n) as the array becomes increasingly closer to sorted.

Sorts of $T(n) = 2T(n/2) + O(n) = O(n \log n)$

MergeSort O(nlogn), Stable, Not In-Place

Divide & Conquer

- 1. Split array into two halves
- 2. Sort two halves
- 3. Combine

Iterative

- 1. Start with pairs of 2 elements, and sort.
- 2. Merge two pairs...
- Continue

QuickSort O(nlogn), Not Stable, In-Place

Divide & Conquer

1. Partition array into two sub-arrays around a

Elements in lower subarray < x < elements in upper subarrau

2. Recursively sort sub-arrays

Handling Duplicates

3-Way Partition: Pack duplicates together as a partition

Order Statistics

QuickSelect finds k smallest element, O(logn)

- 1. Choose random pivot.
- 2. If current index of pivot is bigger than k, recurse right. Otherwise, recurse left.

Binary Tree

Definition: A binary tree is either empty or a node pointing to two binary trees.

Traversals (generally)

In-order: Left > SELF > Right Pre-order: SELF > Left > Right Post-order: Left > Right > SELF

Level-order: BFS

Operations

delete(v) O(height)

- 1. No children (just remove)
- 2. 1 child (remove v, connect child(v) to parent(v))
- 3. 2 children (find x = successor(v), remove it temporarily, remove v, then connect it back to left(v), right(v) and parent(v))

insert(v) O(height)

searchMin() O(height) keep recursing left **searchMax()** O(height) keep recursing right successor() O(height)

node has right subtree: searchMin(rightSubtree) else: first parent with key in left subtree.

AVL Trees

Invariants:

- 1. All nodes have 0-2 children.
- 2. All keys in left subtree < value in node < All keys in right subtree
- 3. Height-balanced $|height(v.left) height(v.right)| \le 1$ If every node is height-balanced, the tree is height-balanced.

A height balanced tree is balanced (h = O(logn))

Min number of nodes n: $n > 2^{h/2}$ (h < 2logn)

Max number of nodes n: $n < 2^{h+1} - 1$

Rotations

Insertion max 2

left-hvy, not right-sub hvy:

right-rotate(v)

left-hvy, right-sub hvy:

left-rotate(v.left), right-rotate(v)

(symmetric for the other side)

Deletion O(log(n))

- 1. If node has 2 children, swap with successor.
- 2. Delete node from tree, reconnect children
- 3. Check all ancestors are height-balanced.

Tries

Time Complexity O(L)Space Complexity more nodes & overhead Node fixed amount of children for strings

Interval Trees

Sorted: Left endpoint

Possible augmentation: max endpoint in subtree

Rotations (and maintaining max)

All-Overlaps (with \boldsymbol{k} overlapping intervals):

O(klogn)

Fastest range query implementation: O(k + logn)

(a,b)-Trees

Invariants/Rules:

1: Child-Policy:

	Key		Child	
Node Type	Min	Max	Min	Max
Root	1	b-1	2	b
Internal	a-1	b-1	a	b
Leaf	a-1	b-1	0	0

2: Key-Range: For every non-leaf node, child = keys + 1.

3: Leaf-Depth: All leafs are at same depth from root.

Insertion

- 1, Put element in correct order
- 2. If overflow, find median key in the node.
- 3. Put median key in parent, split current node.

Deletion

- 1, Delete key at present node
- 2. Check for orphan children/downflow
- 3. If orphan children, replace deleted key with successor or predecessor.
- 4. If downflow, check for two cases.
- 5. If sibling has enough keys, then share keys with the other sibling.
- 6. Else, merge siblings and parent.

Maximum Height $log_a(n)$

Minimum branches a.

Each non-root node a-1 keys. Root node has 1 key, 2 children.

Minimum Height $log_b(n)$

Maximum branches b.

Each non-root node b-1 keys.

KD Trees

Generally: split by different dimensions: $x \to y \to x \to y$ for x, y 2D example

 $x \rightarrow y \rightarrow x \rightarrow y$ for x, y 20 example

Construction Utilise QuickSelect:

 $T(n) = 2T(n/2) + O(n) = O(n\log n)$