Phonetic implementation of phonologically different high tone plateaus in Luganda

Seung Suk Lee, Alessa Farinella, Cerys Hughes & Kristine M. Yu

TAI 1, University of Southern Denmark

December 6, 2021

Luganda high tone spans

Do we see a difference in the plateau shape?

Data from Myers et al. 2018

[òmùlèːnzìjà**lúmánːáwó**lòvù]
"The boy bit the chameleon."

[òmùlàːŋgìràː**mánóːmúlá**lwòːnò] (The prince recognizes this mad person."

Phonetic implementation of high tone spans

- How are high tone spans phonetically implemented in general?
- If we find a systematic difference in the phonetic implementation:
 - The neutralization is incomplete
- There has been a lot of work on incomplete neutralization with segments, but not so much on tone

Autosegmental Metrical (AM) Theory

- Focus has been on tonal targets and turning points rather than transitions
- Possibility for interesting findings if we look at the characterization of the transitions between targets
- Linear interpolation between unlike targets (e.g. H & L)
- Pierrehumbert 1980- "sagging" transition as a function of distance between H* targets separated by tonally underspecified syllables
- Little work on transition between like targets in tone languages, relevant for cases of tone spreading

Luganda tone spans

Short tone span Long tone spans Lexical Intonational

HL LH HH

[òmùlèːnzàːnónènːàmà]

[òmùlàːŋgìràː**mánóːmúlá**lwòːnò] [òmùlèːnzìjà**lúmánːáwó**lòvù] [òmùlàːŋgìràː**lámúlóːmúlímí**]

H tone spread

LH: High Tone Anticipation (HTA)

HH: High Tone Plateau (HTP)

Data

- Data from Myers, Selkirk & Fainleib 2018 kindly shared by Scott Myers
- Production experiment with 10 native speakers of Luganda
- Examined f0 level and timing

 Less peak delay for HL compared to long spans

 Lower f0 level for intonational H span compared to lexical H span

F0 contour shapes by span and speaker

Our study: what do we find when we consider the **curve shape**, or *transitions* between f0 targets?

Functional Principal Components Analysis (FPCA)

- Finds principal component functions (PCs) that characterize variation in the data (the f0 contours)
- Each f0 contour in the data can be approximated by a weighted sum of the component functions

$$f(t) \approx \mu(t) + s_1 \cdot PC1(t) + s_2 \cdot PC2(t) + \dots$$

- Data-driven and limiting researcher degrees of freedom: span labels are not provided, and we use all f0 contours instead of choosing only the particular span types LH and HH
- Emergent from the data, not dependent on theoretical assumptions
- Allows us to test theoretical assumptions

Methods

- F0 extracted using VoiceSauce (Shue et al. 2011) with STRAIGHT algorithm (Kawahara et al. 1998)
- Analyzed from rise onset to offset as marked in Myers et al. (2018)
- Functional data analysis in R using fda package (Ramsay et al .2021)
- b-spline basis functions for F0 contour smoothing and parameterization
- Mixed effects regressions with span type as dependent variable and principal components (PCs) as fixed effects (and vice versa)

Principal Components

PC1: 48.5% of variability

PC2: 23.5% of variability

PC 3: 16.6% of variability

Replicating Myers et. al, 2018

High PC1: LL has a lower peak LL = intonational high tone span

High PC3: HL has no sag HL= short span, no plateau

Low PC3: HH has more sag than LH

PC3: HH and LH

- Duration of each tone span
 was included as a factor in the
 regression model, but PC3 was
 not subsumed by duration
- It wasn't the case that longer span had more sag regardless of span type
- One of the PCs computed without HL still characterized the amount of sag
- There was a significant difference in that PC between HH and LH

Discussion and Conclusion

- Our findings suggest that HH and LH, which both result in a high tone span, differ in their phonetic implementation
- A further step toward understanding phonetic implementation of H tone spans
- Potential evidence for incomplete neutralization of tone spans
- Phonetic implementation invites us to think about other phonological representations
- Also compatible?։
 Wark բոլթիonetic data using a data-driven approach can evaluate theoretical claims made about phonology

Selected References

Gubian, M., Torreira, F., & Boves, L. (2015). Using Functional Data Analysis for investigating multidimensional dynamic phonetic contrasts. Journal of Phonetics, 49, 16–40.

Hyman, L. M., & Katamba, F. X. (2010). Tone, syntax, and prosodic domains in Luganda. *ZAS Papers in Linguistics*, 53, 69-98.

Kawahara, H., Cheveigne, A. D., & Patterson, R. D. (1998). An instantaneous-frequency based pitch extraction method for high-quality speech transformation: revised TEMPO in the STRAIGHT-suite. In *Fifth International Conference on Spoken Language Processing*.

Myers, S., Selkirk, E., & Fainleib, Y. (2018). Phonetic implementation of high-tone spans in Luganda. *Laboratory Phonology: Journal of the Association for Laboratory Phonology*, 9(1).

Pierrehumbert, J. 1980. The phonology and phonetics of English intonation. PhD Dissertation, MIT.

Ramsay, James O., Hooker, G., and Graves, S. (2009), Functional Data Analysis in R and Matlab, Springer, New York.

Shue, Y.-L., et al. 2011. Voicesauce: A program for voice analysis. Proceedings of ICPhS XVI.

Methods in Myers et al. 2018

Measured:

- f0 at rise onset (1st pitch point followed by a point w/ higher f0)
- rise excursion (f0 value at rise offset minus the value at rise onset)
- plateau excursion (f0 value at rise offset minus the value at fall onset)
- fall excursion (f0 value at fall onset minus the value at fall offset)

H tone spread

High Tone Anticipation (HTA)

High Tone Plateau (HTP)

Discussion: what level phonetics allowed to look at?

- Our results potentially raise questions about what level of representation is subject to phonetic implementation
- If it's the surface, post-lexical level, why do we see a difference between LH and HH spans?
- If underlying or intermediate level, it differs from the classical model where the phonetic module can only depend on the surface representation, not the underlying representation (see Aaron Braver 2014 for a review relevant to English /t/ and /d/ flapping)
 - Alternative approaches: allowing phonology more control over phonetic implementation, a 'projection' relation between phonological features and phonetic output, exemplar theory

FDA Settings

- Implemented using R package fda (Ramsay, Hooker & Graves 2009)
- 8 knots, order 5 B-splines
 - Rising/falling of sag on the order of 100ms, spans on average about 800ms
- Penalization for rate of curvature change (Lfdobj = 3), with a weight of lambda = 10^6
- Insensitivity of PCs to these parameters, e.g., same PC shapes for 5 nots, order 4 Bsplinaes

PC1 & PC2: HH and LH

PC2: Individual variation

PC3: Individual variation

PCs: Data without HL

Data without HL

PC: Data HH and LH only

argvals

Data HH and LH only

Logistic regression: HH and LH

Characteristic	log(OR) ¹	95% CI ¹	p-value
pc1	0.01	-0.02, 0.04	0.3
pc2	0.08	0.05, 0.12	<0.001
рс3	0.17	0.12, 0.22	<0.001
duration	2.1	0.41, 3.8	0.015

Characteristic	$log(OR)^{1}$	95% CI ¹	p-value	
pc1	0.02	-0.07, 0.12	0.6	
pc2	0.10	-0.02, 0.21	0.10	
рсЗ	0.22	0.05, 0.39	0.012	
duration	1.8	-0.32, 3.9	0.10	
pc1 * duration	-0.01	-0.10, 0.09	0.9	
pc2 * duration	-0.01	-0.13, 0.10	8.0	
pc3 * duration	-0.05	-0.22, 0.11	0.5	
¹ OR = Odds Ratio, CI = Confidence Interval				

Cross Validation of PCA

- The f0 contours were randomly assigned to 1 of 5 folds
- FPCA was repeated 5 times, each time leaving out a different fold
- Each time, the first three PCs appear to have roughly the same shape as when FPCA is conducted on the whole dataset

Shown: PC curves for one of the 5 repetitions

Multinomial logistic regression: HH as ref.

```
Call:
        multinom(formula = Span \sim (pc1 + pc2 + pc3) * duration, data = dat.pc.scores)
        Coefficients:
           (Intercept)
                                                             duration pc1:duration pc2:duration pc3:duration
                                pc1
                                            pc2
                                                      pc3
        HL -0.08468288
                        0.029001552 -0.04836188 0.5936409 -0.6770708
                                                                       0.04628559
                                                                                    -0.03632203
                                                                                                 -0.02588859
            0.50787176 -0.004071648
                                     0.05757479 0.1573436
                                                           0.1130129
                                                                       -0.01094180
                                                                                    -0.02427356 -0.04660831
                        0.623546230 -0.07304272 0.5807668 2.7901803
        LL -6.07485855
                                                                       -0.23224053
                                                                                     0.08107037
                                                                                                 -0.34876188
        Std. Errors:
           (Intercept)
                                                         duration pc1:duration pc2:duration pc3:duration
                              pc1
                                         pc2
             1.4884729 0.07457400 0.07406409 0.18244517 1.3963280
                                                                     0.07303242
                                                                                  0.07274608
                                                                                               0.17456017
        HL
                                                                                               0.06953447
        LH
             0.7979404 0.03481658 0.04482121 0.07180288 0.7422944
                                                                    0.03520044
                                                                                  0.04419008
        LL
             3.6217529 0.20244910 0.14632393 0.23207176 3.1387931
                                                                     0.17578893
                                                                                  0.13638968
                                                                                               0.21099222
P-values Residual Deviance: 752.9595
        AIC: 800.9595
                                                          duration pc1:duration pc2:duration pc3:duration
           (Intercept)
                                         pc2
            0.95463086 0.697352852 0.5137735 0.001138707 0.6277517
                                                                       0.5262325
                                                                                    0.6175689
                                                                                                0.88210005
            0.52446471 0.906903112 0.1989519 0.028428176 0.8789913
                                                                       0.7559202
                                                                                    0.5828004
                                                                                                0.50267250
            0.09347885 0.002069903 0.6176490 0.012330880 0.3740385
                                                                       0.1864571
                                                                                    0.5522429
                                                                                                0.09833883
```

Perceptibility of sag

[òmùlèːnzìjà**lúmánːáwó**lòvù] "The boy bit the chameleon."

C1 V1 C 2 V2
F0 rise F0 fall

Data from Myers et al. 2018

H plateau Less sag

[òmùlàːŋgìràː**mánóːmúlá**lwòːnò] "The prince recognizes this mad person."

Incomplete Neutralization: Perception and Meta-Analysis

- For other examples of incomplete neutralization, do listeners perceive the difference between incompletely neutralized segments/tone spans?
- Bruno Nicenboim meta-analysis for production of vowel length differences with German stop voicing neutralization
 - Supporting evidence for a production difference
- Warner 2004 finds listeners can use small durational differences as cues to different underlying forms of voicing-neutralized stops in Dutch
- Aaron Braver production and discrimination experiment for English /d/-/t/ flapping
 - Speakers produce slightly longer vowels before /d/ flaps than /t/ flaps
 - Speakers could not distinguish between underlyingly different flaps