8

9

1

CLAIMS

WHAT IS CLAIMED IS:

1	1.	A method of analyzing anisotropic turbulent flows of an anisotropic fluid
2	comprising:	
3		defining a set of moment equations governing time average thermal and turbulent
4	motion	n, directional kinetic energy, shear, directional kinetic energy fluxes, and structure
5	correla	ations; and
6		defining n^{th} order directional kinetic energy fluxes and structure correlation
7	equati	ons closure relationships using $(n + 1)^{th}$ order density gradient independent time

1 2. The method of claim 1 wherein the set of moment equations governing time average 2 turbulent directional kinetic energy, shear, directional kinetic energy fluxes, and structure 3 correlations is defined by Equation Set 12.

average thermal and turbulent moment closure relationships to yield a set of closed time

3. The method of claim 1 wherein n is odd.

average turbulent moment equations.

- 1 4. The method of claim 3 wherein the density gradient independent time average 2 thermal moment closure relationships are defined by Equation Set 16.
- 1 5. The method of claim 3 wherein the density gradient independent time average 2 turbulent moment closure relationships are defined by Equation Set 17.

- 1 6. The method of claim 1 further comprising solving $(n+1)^{th}$ and $(n+2)^{th}$ order
- 2 moment sets.
- 1 7. The method of claim 1 wherein the set of closed time average turbulent moment
- 2 equations are defined by Equation Set 15.
- 1 8. A method of analyzing time average directional thermal energy in turbulent flows of
- 2 an anisotropic fluid by solving Equation 15-3.
- 1 9. A method of analyzing time average thermal shear in turbulent flows of an
- 2 anisotropic fluid by solving Equation 15-4.
- 1 10. A method of analyzing time average directional thermal energy fluxes in turbulent
- 2 flows of an anisotropic fluid by solving Equations 15-5 and 15-6.
- 1 11. A method of analyzing time average thermal structure correlation in turbulent flows
- 2 of an anisotropic fluid by solving Equation 15-7.
- 1 12. A method of analyzing time average directional turbulent energy in turbulent flows
- 2 of an anisotropic fluid by solving Equation 15-8.
- 1 13. A method of analyzing time average turbulent shear in turbulent flows of an
- 2 anisotropic fluid by solving Equation 15-9.
- 1 14. A method of analyzing time average turbulent directional energy fluxes in turbulent
- 2 flows of an anisotropic fluid by solving Equations 15-10 and 15-11.

