2. međuispit iz Baza podataka

13. svibnja 2011.

Zadaci 1 do 7 se odnose na relacije opisane na slici 1. Na slici nisu prikazane sve n-torke koje su sadržane u relacijama. U relacije sa slike 1 se pohranjuju podaci o trkačima (relacija *trkac*) koji sudjeluju na utrkama (relacija *utrka*). Vrijeme (u sekundama) koje pojedini trkač ostvari u pojedinoj utrci evidentirano je u relaciji *rezultat*. Trkačima koji nisu završili utrku ostvareno vrijeme nije evidentirano (ima NULL vrijednost). Države iz kojih dolaze trkači odnosno države u kojima se održavaju utrke evidentirane su u relaciji *drzava*. Osim atributa *rezVrijeme* u relaciji *rezultat* niti jedan atribut ne može poprimiti NULL vrijednost.

Slika 1.						
prezime	ime	datRodj	sifDrzava			
Petrović	Ivan	04.06.1987	1			
Jurić	Ante	12.05.1989	1			
Varga	Tamas	04.06.1991	3			
Molnar	Antal	25.11.1990	3			
Korošec	Janez	05.11.1987	2			
	Petrović Jurić Varga Molnar	Petrović Ivan Jurić Ante Varga Tamas Molnar Antal	Petrović Ivan 04.06.1987 Jurić Ante 12.05.1989 Varga Tamas 04.06.1991 Molnar Antal 25.11.1990			

utrka

rezultat						
sifTrkac	sifUtrka	rezVrijeme				
101	21	24927				
102	21	25395				
102	22	35956				
103	22	37937				
105	22	NULL				
101	23	28299				

sifUtrka	nazUtrka	datUtrka	sifDrzava	brojKm	indeksTezine
21	Istra1	25.10.2009	1	75	6
22	Velebit	15.06.2010	1	100	7
23	Red Bull	10.07.2010	4	80	3
24	Alpine	13.09.2010	2	50	1

drzava		
nazDrzava		
Hrvatska		
Slovenija		
Mađarska		
Austrija		

Napišite po jednu SQL naredbu kojom će se obaviti sljedeće:

- 1. Za svaki ostvareni rezultat u kojem je prosječna brzina trkača bila veća od 2 m/s ispisati šifru i naziv te utrke te šifru i prezime tog trkača. **Zadatak riješiti bez podupita.** (1 bod)
- Za svaku državu ispisati šifru, naziv i broj utrka (nula ili više) koje su se u njoj održavale u drugoj polovici (7.-12. mjesec) 2010. godine. Ispis poredati silazno po broju održanih utrka. Zadatak riješiti bez podupita.
 (2 boda)
- 3. Ispisati šifru i naziv svake utrke u kojoj nije sudjelovao nijedan natjecatelj iz države s nazivom 'Italija'. (1,5 bod)
- **4.** Za održanu utrku ispisati šifru i naziv, šifru osobe s najboljim vremenom utrke i spomenuto ostvareno najbolje vrijeme. Napomena: više osoba može ostvariti najbolje vrijeme. **(2 boda)**
- Svakoj utrci koju je završilo više od 50 natjecatelja smanjiti indeks težine za 1, pri čemu indeks težine ne smije poprimiti vrijednost manju od 1.
 (2 boda)
- 6. Napisati SQL naredbe koje će kreirati najmanji mogući broj indeksa koji će omogućiti efikasno obavljanje (pomoću B+ stabla) svih dolje navedenih upita. (2 boda)

SELECT * FROM utrka WHERE datUtrka = TODAY AND nazUtrka = 'Velebit';

SELECT * FROM utrka WHERE nazUtrka = 'Red Bull';

SELECT * FROM utrka ORDER BY broiKm;

SELECT * FROM utrka ORDER BY sifUtrka, nazUtrka;

SELECT * FROM utrka ORDER BY sifUtrka DESC;

SELECT * FROM utrka ORDER BY brojKm DESC, sifUtrka ASC, nazUtrka ASC;

- 7. Napisati jedan <u>izraz relacijske algebre</u> (ne SQL upit) koji odgovara sljedećem:
 - Za sve trkače ispisati šifru, prezime i broj utrka (nula ili više) na kojima su sudjelovali.

(1,5 bod)

- Uz pretpostavku da na relacijskoj shemi R = PQRSTUV vrijede funkcijske zavisnosti iz skupa:
 F = {PQ→RT, R→QS, Q→UV, V→U}, ispitajte je li skup atributa PQ ključ relacijske sheme? U svakom koraku obavezno navesti koji aksiom ili pravilo se koristi.
 (2,5 boda)
- 9. U bazi podataka evidentiraju se utrke Formule 1 koje se održavaju tijekom više godina. Relacijska shema FORMULA sastoji se od sljedećih atributa: (3 boda)

sifVN – šifra Velike nagrade

nazVN – naziv Velike nagrade (npr. Velika nagrada Australije)

sifVozac – šifra vozača
 imeVozac – ime vozača
 prezVozac – prezime vozača

sifMomcad – šifra momčadi za koju vozač nastupa u utrci
 nazMomcad – naziv momčadi za koju vozač nastupa u utrci

datUtrka – datum održavanja utrke

vrijeme – rezultat vozača u utrci (vrijeme od označenog starta do ulaska vozača u cilj)

Vrijede sljedeća pravila:

- istoga datuma održava se samo jedna utrka, a svaka se utrka vozi za jednu Veliku nagradu (npr. 14.3.2010. se održava Velika nagrada Bahreina, 28.3.2010. se održava Velika nagrada Australije,..., 27.3.2011. se održava Velika nagrada Australije ...)
- svaki vozač vozi utrku u automobilu neke momčadi i može mijenjati momčadi tijekom karijere
- moguće je da dvojica vozača u nekoj utrci ostvare posve jednako vrijeme

Odrediti ključ relacijske sheme FORMULA tako da ona bude u 1NF, a zatim postupno normalizirati relacijsku shemu na 2NF i 3NF.

- 10. Zadano je B⁺ stablo reda 25 u koje je zapisano 190 000 zapisa. Koliko je UI operacija potrebno obaviti prilikom traženja jednog zapisa u najlošijem slučaju (uračunati i jednu UI operaciju koja je potrebna za dohvat bloka s podacima)? Objasniti kako ste došli do rezultata. (2 boda)
- **11.** Napisati SQL naredbe koje će kreirati relacije *klub* i *sportas* prema relacijskim shemama KLUB={sifKlub, nazivKlub} i SPORTAS={sifSportas, sifKlub, imeSportas, prezimeSportas, spol}. Smisleno odaberite tipove podataka. Prilikom kreiranja relacija osigurati da:
 - u relaciji **sportas** atribut **sifSportas** bude primarni ključ
 - ime i prezime sportaša ne mogu poprimiti NULL vrijednost
 - vrijednost atributa spol može biti samo Z ili M
 - šifra kluba u relaciji sportas poprima samo vrijednosti atributa sifKlub u relaciji klub
 - naziv kluba ne može poprimiti NULL vrijednost
 - dva kluba ne mogu imati isti naziv
 - prilikom brisanja zapisa iz relacije *klub* budu obrisani i svi zapisi o sportašima (u relaciji *sportas*)
 koji se nalaze u obrisanom klubu

(3,5 boda)

12. Koristeći **relacijsku algebru** napišite uvjet koji mora biti zadovoljen da bi se dekompozicija relacije r(R) na relacije $r_1(R_1)$, $r_2(R_2)$, ..., $r_n(R_n)$ obavila bez gubitka informacija. (2 boda)

1. Za svaki ostvareni rezultat u kojem je prosječna brzina trkača bila veća od 2 m/s ispisati šifru i naziv te utrke te šifru i prezime tog trkača. **Zadatak riješiti bez podupita.** (1 bod)

SELECT rezultat.sifutrka, nazutrka, rezultat.siftrkac, prezime FROM trkac JOIN rezultat ON trkac.siftrkac=rezultat.siftrkac JOIN utrka ON rezultat.sifutrka=utrka.sifutrka WHERE (brojKm*1000)/rezVrijeme>2;

Za svaku državu ispisati šifru i naziv države te broj utrka (nula ili više) koje su se u njoj održale u drugoj polovici 2010. godine. Rezultat poredati silazno po broju održanih utrka. Zadatak riješiti bez podupita.
 (2 boda)

SELECT drzava.sifdrzava, nazdrzava, COUNT(utrka.sifutrka) AS broj_utrka
FROM drzava
LEFT JOIN utrka on drzava.sifdrzava = utrka.sifdrzava
AND month(datutrka)>6
AND year(datutrka)=2010
GROUP BY drzava.sifdrzava, nazdrzava
ORDER BY broj_utrka DESC;

3. Ispisati šifru i naziv svake utrke u kojoj nije sudjelovao nijedan natjecatelj iz države s nazivom 'Italja'.

(1.5 boda)

SELECT sifutrka, nazutrka FROM utrka WHERE sifUtrka NOT IN (SELECT sifutrka FROM rezultat JOIN trkac ON rezultat.siftrkac=trkac.siftrkac JOIN drzava ON drzava.sifdrzava=trkac.sifdrzava WHERE nazdrzava='Italiia'): ili SELECT sifutrka, nazutrka FROM utrka WHERE NOT EXISTS (SELECT 7 FROM rezultat JOIN trkac ON rezultat.siftrkac=trkac.siftrkac JOIN drzava ON drzava.sifdrzava=trkac.sifdrzava WHERE nazdrzava='Italija' AND rezultat.sifutrka=utrka.sifutrka); ili SELECT utrka.sifutrka, nazutrka FROM rezultat JOIN trkac ON rezultat.siftrkac=trkac.siftrkac JOIN drzava ON drzava.sifdrzava=trkac.sifdrzava RIGHT JOIN utrka ON rezultat.sifutrka=utrka.sifutrka

4. Za održanu utrku ispisati šifru i naziv, šifru osobe (jedne ili više njih) s najboljim vremenom utrke i spomenuto ostvareno najbolje vrijeme. (**2 boda**)

```
SELECT utrka.sifutrka, utrka.nazutrka, siftrkac, rezvrijeme
FROM rezultat r1 JOIN utrka ON r1.sifutrka=utrka.sifutrka
WHERE r1.rezvrijeme=(
SELECT MAX(r2.rezvrijeme)
FROM rezultat r2
WHERE r1.sifutrka=r2.sifutrka);
```

AND nazdrzava='Italiia'

GROUP BY utrka.sifutrka, nazutrka HAVING COUNT(rezultat.sifUtrka)=0;

ili

```
SELECT utrka.sifutrka, utrka.nazutrka, siftrkac, rezvrijeme
FROM rezultat r1 JOIN utrka ON r1.sifutrka=utrka.sifutrka
WHERE (
SELECT COUNT(*)
FROM rezultat r2
WHERE r1.sifutrka=r2.sifutrka AND r2.rezvrijeme>r1.rezvrijeme
)=0;
```

SELECT r1.sifUtrka, nazutrka, r1.siftrkac, r1.rezvrijeme FROM utrka JOIN rezultat r1 ON utrka.sifutrka=r1.sifutrka LEFT JOIN rezultat r2 ON r1.sifutrka=r2.sifutrka AND r2.rezvrijeme>r1.rezvrijeme GROUP BY r1.sifUtrka, r1.siftrkac, nazutrka, r1.rezvrijeme HAVING COUNT(r2.sifUtrka)=0;

5. Svakoj utrci koju je **završilo** više od 50 natjecatelja smanjiti indeks težine za 1, pri čemu indeks težine ne smije poprimiti vrijednost manju od 1. (2 boda)

```
UPDATE utrka
SET indeksTezine = indeksTezine - 1
WHERE indeksTezine > 1
AND sifUtrka IN

(
SELECT sifUtrka
FROM rezultat
WHERE rezVrijeme IS NOT NULL
GROUP BY sifUtrka
HAVING COUNT(*)>50);
```

6. Napisati SQL naredbe koje će kreirati najmanji mogući broj indeksa koji će omogućiti efikasno obavljanje (pomoću B+ stabla) svih dolje navedenih upita. (2 boda)

```
CREATE INDEX i1 ON utrka (brojKm, sifUtrka DESC, nazUtrka DESC);
CREATE INDEX i2 ON utrka (nazUtrka, datUtrka);
CREATE INDEX i3 ON utrka (sifUtrka, nazUtrka);
```

7. Za sve trkače ispisati šifru, prezime i broj utrka na kojima su sudjelovali. (1,5 bod)

PREZULTAT(sifra, prezime, brojUtrka)(sifTrkac, prezime, GCOUNT(sifUtrka)(trkac*><rezultat)

8. Uz pretpostavku da na relacijskoj shemi R = PQRSTUV vrijede funkcijske zavisnosti iz skupa:
 F = {PQ→RT, R→QS, Q→UV, V→U}, ispitati je li PQ ključ relacijske sheme? U svakom koraku obavezno navedite koji aksiom ili pravilo koristite.
 (2.5 boda)

Provjeriti može li PQ biti ključ relacijske sheme?

```
PQ→PQ (refleksivnost)
PQ→PQ i PQ→RT \Rightarrow PQ→PQRT (akumulacija)
PQ→PQRT i Q→UV \Rightarrow PQ→PQRTUV (akumulacija)
PQ→ PQRTUV i R→QS \Rightarrow PQ→PQRSTUV (akumulacija)
```

PQ funkcijski određuje cijelu relacijsku shemu; potrebno je provjeriti određuju li je i podskupovi **P** odnosno **Q**.

```
P→P (refleksivnost)
```

Nije moguće izraz dalje dopuniti s desne strane da uključi **QRSTUV** pa funkcijska zavisnost **P**→**QRSTUV** ne vrijedi tj. **P** nije ključ.

```
Q \rightarrow Q (refleksivnost)

Q \rightarrow Q i Q \rightarrow UV \Rightarrow Q \rightarrow QUV (akumulacija)
```

Nije moguće izraz dalje dopuniti s desne strane da uključi **PRSTUV** pa funkcijska zavisnost **Q**→**PRSTUV** ne vrijedi tj. **Q** nije ključ.

 U bazi podataka evidentiraju se utrke Formule 1 koje se održavaju tijekom više godina. Relacijska shema FORMULA sastoji se od sljedećih atributa: (3 boda)

sifVN – šifra Velike nagrade

nazVN – naziv Velike nagrade (npr. Velika nagrada Australije)

sifVozac – šifra vozača imeVozac – ime vozača prezVozac – prezime vozača

sifMomcad – šifra momčadi za koju vozač nastupa u utrci nazMomcad – naziv momčadi za koju vozač nastupa u utrci

datUtrka – datum održavanja utrke

vrijeme – rezultat vozača u utrci (vrijeme od označenog starta do ulaska

vozača u cilj)

Vrijede sljedeća pravila:

- istoga datuma održava se samo jedno natjecanje
- svaki vozač vozi utrku u automobilu neke momčadi i može mijenjati momčadi tijekom karijere
- moguće je da dvojica vozača u nekoj utrci ostvare posve jednako vrijeme

Odaberite ključ relacijske sheme FORMULA tako da ona bude u 1NF a zatim postupno normalizirajte relacijsku shemu na 2NF i 3NF.

1.NF

KLJUČ: (sifVozac, datUtrka)

2.NF

VOZAC (<u>sifVozac</u>, imeVozac, prezVozac)

TERMIN (<u>datUtrka</u>, sifVN, nazVN)

UTRKA (**sifVozac**, **datUtrka**, sifMomcad, nazMomcad, vrijeme)

3.NF

VOZAC1 (sifVozac, imeVozac, prezVozac)

TERMIN1 (<u>datUtrka</u>, sifVN) NATJECANJE(<u>sifNatj</u>, nazVNj)

UTRKA1 (sifVozac, datUtrka, sifMomcad, vrijeme)

MOMCAD (**sifMomcad**, nazMomcad)

10. Zadano je B+ stablo reda 25 u koje je zapisano 190 000 zapisa. Koliko će biti potrebno obaviti UI operacija prilikom traženja jednog zapisa u najgorem slučaju (uračunati i jednu UI operaciju koja je potrebna za dohvat bloka s podacima)? Objasniti kako ste došli do rezultata. (2 boda)

Najgori slučaj:

Broj kazaljki u internim čvorovima minimalno 13 (osim u korijenu 2), u listovima minimalno 12.

Za 5 razina: 2*13*13*13*12=52 728 Za 6 razina: 2*13*13*13*13*12=685 464

Sa 6 razina stablo mora obuhvatiti BAREM 685 464 zapisa, što je previše; s 5 razina stablo mora

obuhvatiti BAREM 52 728 zapisa, ali može imati i više od toga, tj. potrebnih 190 000.

Stablo treba imati 5 razina; ukupno 5+1 = 6 UI operacija

- **11.** Napisati SQL naredbe koje će kreirati relacije *klub* i *sportas* prema relacijskim shemama KLUB {sifKlub, nazivKlub } i SPORTAS {sifSportas, sifKlub, imeSportas, prezimeSportas, spol}. Smisleno odaberite tipove podataka. Prilikom kreiranja relacija osigurati da:
 - u relaciji sportas atribut sifSportas bude primarni ključ
 - ime i prezime sportaša ne mogu poprimiti NULL vrijednost
 - vrijednost atributa spol može biti samo Z ili M
 - šifra kluba u relaciji **sportas** poprima samo vrijednosti atributa **sifKlub** u relaciji **klub**
 - naziv kluba ne može poprimiti NULL vrijednost
 - dva kluba ne mogu imati isti naziv
 - prilikom brisanja zapisa iz relacije *klub* budu obrisani i svi zapisi o sportašima (u relaciji *sportas*) koji se nalaze u obrisanom klubu
 (3.5 boda)

```
CREATE TABLE klub(
sifKlub INTEGER PRIMARY KEY
, nazivKlub NCHAR(25) NOT NULL UNIQUE
);

CREATE TABLE sportas(
sifKlub INTEGER NOT NULL REFERENCES klub(sifKluba) ON DELETE CASCADE
, imeSportas NCHAR(25) NOT NULL
, prezimeSportas NCHAR (25) NOT NULL
, spol CHAR(1) CHECK (spol IN ('Z', 'M')) -
, mbrSportas CHAR(11) PRIMARY KEY);
```

- 12. Koristeći **relacijsku algebru** napišite uvjet koji mora biti zadovoljen da bi se dekompozicija relacije r(R) na relacije $r_1(R_1)$, $r_2(R_2)$, ..., $r_n(R_n)$ obavila bez gubitka informacija. (2 boda)
- Relacija r(R) se dekomponira na relacije $r_1(R_1)$, $r_2(R_2)$, ..., $r_n(R_n)$ bez gubitaka informacija (lossless decomposition) ako vrijedi:

$$r_1(R_1)
ightharpoonup r_2(R_2)
ightharpoonup r_n(R_n) = r(R)$$
 odnosno
$$\pi_{R_1}(r)
ightharpoonup \pi_{R_2}(r)
ightharpoonup r_n \pi_{R_n}(r) = r(R)$$