# 1 Introduction

### 1.1 Estimateurs semi-locaux en une dimension

# 2 Courbes

#### 2.1 Premières définitions

**Définition 2.1** (Courbe). — Une courbe paramétrée  $\gamma$  est une application continue d'un intervalle [a, b] dans  $\mathbb{R}^2$ .

- Une courbe paramétrée fermée simple  $\gamma$  est une application continue injective d'un intervalle [a,b[ dans  $\mathbb{R}^2$  telle que  $\lim_{t\to b} \gamma(t) = \gamma(a)$ .
- Une courbe géométrique  $\mathcal C$  est l'image d'une courbe paramétrée  $\gamma$ . On dit alors que  $\gamma$  est une paramétrisation de  $\mathcal C$  .
- Une courbe paramétrée  $\gamma:[a,b]\mapsto\mathbb{R}^2$  est dite simple si les points de  $\gamma(]a,b[)$  n'ont qu'un seul antécédent par  $\gamma$ .
- Une courbe de Jordan est une courbe géométrique fermée simple.
- Une courbe paramétrée de longueur finie sera dite rectifiable.
- La longueur d'une courbe paramétrée sera notée  $L(\gamma)$ .

Afin de définir l'intérieur et l'extérieur d'une courbe géométrique rappelons le théorème de Jordan.

**Théorème 2.2** (Théorème de Jordan). Dans le plan  $\mathbb{R}^2$ , le complémentaire d'une courbe de Jordan  $\mathcal{C}$  est formé d'exactement deux composantes connexes, une bornée, l'autre non.

On appelle intérieur de  $\mathcal{C}$  la composante connexe bornée et extérieur de  $\mathcal{C}$  la composante connexe non-bornée. Si  $\mathcal{C}$  est une courbe simple, paramétrée par  $\gamma:[s_0,s_1]\to\mathbb{R}^2$ , telle que  $[\gamma(s_0),\gamma(s_1)]$  n'intersecte pas  $\mathcal{C}$ , on appelle alors intérieur de  $\mathcal{C}$  la composante connexe non-bornée délimitée par  $\mathcal{C}$  et le segment  $[\gamma(s_0),\gamma(s_1)]$ .

**Définition 2.3** (Relation d'ordre). — A chaque courbe paramétrée simple  $\gamma$ , une relation d'ordre est définie pour les points de la courbe géométrique associée par :

$$\gamma(\alpha) \leq_{\gamma} \gamma(\beta) \Leftrightarrow \alpha \leq \beta.$$

- Lorsqu'il n'y aura pas d'ambiguïté possible, nous noterons  $\leq_{\gamma}$  plus simplement  $\leq$ .
- Une courbe paramétrée simple munie d'une telle relation d'ordre est appelée courbe orientée.
- Un semi-voisinage à gauche (respectivement semi-voisinage à droite) d'un point x d'une courbe orientée  $\gamma$  est un ensemble de points  $\gamma(]t_0,t_1]$ ) tel que  $\gamma(t_1)=x$  (respectivement  $\gamma([t_0,t_1])$  tel que  $\gamma(t_0)=x$ ).
- Un voisinage d'un point x d'une courbe orientée  $\gamma$  est un ensemble de points  $\gamma(]t_0,t_1[)$  tel qu'il existe  $t \in ]t_0,t_1[$  tel que  $\gamma(t)=x$ .

# 2.2 Courbes latéralement lisses

Les notions définies dans ce paragraphe sont tirées de [?]. Cependant, contrairement à [?], nous ne considérons ici que des courbes simples.

**Définition 2.4** (Courbes latéralement lisses [?]). — Un angle entre deux droites orientées  $D_1$  et  $D_2$  est la valeur absolue du représentant dans  $]-\pi,\pi]$  de l'angle algébrique

 $(x_1-y_1,x_2-y_2)$  où  $x_1,y_1$  (respectivement  $x_2,y_2$ ) sont deux points de  $D_1$  (respectivement de  $D_2$ ) tels que  $x_1 <_{D_1} y_1$  (respectivement  $x_2 <_{D_2} y_2$ ). Un angle entre deux droites est donc compris entre 0 et  $\pi$ .

- Une droite orientée D est appelée sécante d'une courbe orientée si elles se coupent en deux points x et y tels que  $x \leq_D y \Leftrightarrow x \leq_{\gamma} y$ .
- Une droite orientée D est appelée tangente à gauche (respectivement tangente à droite) si pour tout  $\epsilon > 0$ , il existe un semi-voisinage à gauche (respectivement à droite)  $V_x$  tel que toute sécante de  $V_x$  forme un angle inférieur à  $\epsilon$  avec D.
- Une courbe orientée est latéralement lisse si tout point de la courbe orientée, à l'exception de ses extrémités, admet une tangente à gauche et une tangente à droite.
- Pour chaque point  $\gamma(s)$  d'une courbe orientée  $\gamma$  paramétrée par longueur d'arc, on définit  $e_l(s)$  (respectivement  $e_r(s)$ ) le vecteur tangent à gauche (respectivement à droite) comme étant le vecteur orienté de norme 1, orienté dans le sens de la tangente à gauche (respectivement à droite).

**Proposition 2.5** (Théorème 3.1.1. [?]). Toute courbe latéralement lisse est rectifiable.

Définition 2.6. — Un point d'une courbe latéralement lisse dont la tangente à gauche et la tangente à droite coïncident est dit lisse.

— Un point d'une courbe latéralement lisse qui n'est pas lisse est dit angulaire.

Proposition 2.7 (Théorème 3.3.2, [?]). L'ensemble des points angulaires d'une courbe latéralement lisse est dénombrable.

**Proposition 2.8** (Théorème 3.3.3, [?]). Soit  $\gamma$  une courbe latéralement lisse paramétrée par longueur d'arc  $s \in [0, l]$ . Pour tout  $s \in [0, l]$ ,  $\gamma$  admet une dérivée à droite  $\gamma'_r(s)$ et une dérivée à gauche  $\gamma'_{l}(s)$ . De plus :

- $\begin{array}{l} \ ||\dot{\gamma}_l'(s)|| = ||\gamma_r'(s)|| = 1, \\ \ l'application \ \gamma_l' \ (\ respective ment \ \gamma_r' \ ) \ est \ continue \ \grave{\bf a} \ droite \ (respective ment \ continue \ \grave{\bf a} \end{array}$
- pour tout  $s \in [0, L]$ ,

$$\lim_{\substack{t \to s \\ t < s}} e_r(t) = \gamma'_l(s)$$

et

$$\lim_{\substack{t \to s \\ t > s}} e_l(t) = \gamma_r'(s).$$

Indicatrice des tangentes Dans le cas d'une courbe paramétrée simple  $C^1$  de  $\mathbb{R}^2$ , l'indicatrice des tangentes est simplement  $(\gamma, \frac{\gamma'}{||\gamma'||})$  reparamétrée par longueur d'arc. Cette courbe est à image dans  $\mathbb{R}^2 \times S^1$ . Construisons l'indicatrice des tangentes dans le cas d'une courbe simple latéralement lisse  $\gamma$  paramétrée par longueur d'arc. Les projections canoniques de  $\mathbb{R}^2 \times S^1 \to \mathbb{R}^2$  et  $\mathbb{R}^2 \times S^1 \to S^1$ sont respectivement notées  $p_1$  et  $p_2$ .

**Définition 2.9.** Une indicatrice des tangentes  $\tau$  est une courbe simple paramétrée par longueur d'arc de  $\mathbb{R}^2 \times S^1$  telle que

- pour tout  $s \in [0, L(\tau)], p_1(\tau(s)) \in Im(\gamma),$
- s'il existe  $(s,s') \in [0,L(\tau)] \times [0,L(\gamma)]$  tel que  $p_1(\tau(s)) = \gamma(s')$ , alors  $p_2(\tau(s))$  appartient à une géodésique de longueur minimale de  $S^1$  reliant  $e_l(s')$  à  $e_r(s')$ . Si  $e_l(s') = e_r(s')$ , cette géodésique est réduite à un point et si  $e_l(s') \neq -e_r(s')$ , cette géodésique est unique.

Remarque 2.10. La projection  $p_2$  de l'indicatrice des tangentes n'est pas nécessairement une courbe simple.

#### 2.3 Courbure totale

**Définition 2.11.** — Une *chaîne* d'une courbe orientée  $\gamma$  est une suite finie de points de  $\gamma$  croissante.

- Une ligne brisée est inscrite dans une courbe orientée  $\gamma$  si ses sommets forment une chaîne de  $\gamma$ .
- Un polygône est inscrit dans une courbe orientée  $\gamma$  fermée si ses sommets forment une chaîne de  $\gamma$ .
- La courbure totale  $\kappa(L)$  d'une ligne brisée L de sommets  $x_0,\,...,\,x_m$  est définie par :

$$\kappa(L) := \sum_{i=1}^{m-1} \widehat{(x_{i-1}x_i, x_ix_{i+1})}.$$

— La courbure totale  $\kappa(P)$  d'un polygône P de sommets  $x_0, ..., x_m$  est définie par :

$$\kappa(P) := \sum_{i=1}^{m} \widehat{(x_{i-1}x_i, x_ix_{i+1})}.$$

où  $x_{m+1} := x_0$ .

- La courbure totale  $\kappa(\gamma)$  d'une courbe orientée  $\gamma$  est la borne supérieure des courbures totales de ses lignes brisées inscrites.
- La courbure totale  $\kappa(\gamma)$  d'une courbe orientée fermée  $\gamma$  est la borne supérieure des courbures totales de ses polygônes inscrits.



FIGURE 1 – La courbure totale du polygone est la somme de ses angles verts.

**Proposition 2.12** (Théorème 5.1.2 [?]). Toute courbe de courbure totale finie est latéralement lisse.

**Proposition 2.13** (Théorème 5.4.1 [?]). Soit  $\gamma$  une courbe rectifiable paramétrée par la longueur d'arc. Si de plus  $\gamma$  est de courbure totale finie, alors pour tout  $s \in [0, L(\gamma)]$ , les dérivées à gauche

 $\gamma_l'(s)$  et à droite  $\gamma_r'(s)$  existent et les fonctions dérivées à gauche et à droite sont à variation bornée.

**Proposition 2.14** (Théorème de Fenchel, théorème 5.1.5 [?] ). Pour toute courbe fermée  $\gamma$   $\kappa(\gamma) \geq 2\pi$ . De plus  $\kappa(\gamma) = 2\pi$  si et seulement si  $\gamma$  est le bord d'une partie convexe du plan.

**Proposition 2.15** (Théorème 5.2.2 [?]). La courbure totale d'une courbe latéralement lisse est égale à la longueur de la projection  $p_2$  d'une de ses indicatrices des tangentes.



FIGURE 2 – La courbure totale de la courbe est la longueur de la courbe tracée par le vecteur tangent unitaire sur le cercle compté avec multiplicité. Ici le vecteur  $e_l(s) = e_r(s)$  (en rouge) parcourt la courbe tracée sur le cercle en partant de  $e_l(0)$  (en bleu) va jusqu'à  $e_l(s_1)$  et retourne à  $e_l(L)$  (en vert). La courbure totale est alors la somme des arcs  $e_l(0)e_l(s_1)$  et  $e_l(s_1)e_l(L)$ .

La proposition suivante est une variante du théorème de comparaison de Schur (Théorème 5.1, Partie II, [?]) les arguments utilisés sont semblables à ceux du thèorème 5.8.1 de [?].

**Proposition 2.16.** Soit  $\gamma$  et  $\bar{\gamma}$  deux courbes latéralement lisses paramétrées par longueur d'arc de  $\mathbb{R}^2$  telles que :

- $\gamma$  et  $\bar{\gamma}$  ont mêmes extrémités, plus précisément  $\gamma(0) = \bar{\gamma}(0)$  et il existe  $s_1$  et  $\bar{s_1}$  tels que  $\gamma(s_1) = \gamma(\bar{s_1})$ ;
- l'intérieur de  $\bar{\gamma}|_{[0,s_1]}$  existe et est convexe;
- $\bar{\gamma}$  est de courbure supérieure à  $\gamma$ , c'est-à-dire pour tout intervalle  $I \subset [0, \bar{s_1}], \ \kappa(\gamma|_I) \leq \kappa(\bar{\gamma}|_I)$

Alors la longueur de  $\bar{\gamma}$  est supérieure à la longueur de  $\gamma$ , plus précisément  $\bar{s_1} \geq s_1$ .

 $D\'{e}monstration$ . Notons m le milieu du segment  $[\bar{\gamma}(1), \bar{\gamma}(0)]$ . Notons  $\delta_1$  et  $\delta_2$  les paramétrisisations des segments  $[m, \bar{\gamma}(0)]$  et  $[\bar{\gamma}(1), m]$  par longueur d'arc. Notons  $\xi := \delta_2 \Box \bar{\gamma} \Box \delta_1$ . Soit  $\tau$  une indicatrice des tangentes de  $\xi$ . Par la proposition 2.14,  $L(p_2(\tau)) = 2\pi$ . Il existe alors s' tel que  $L(p_2(\tau|_{[0,s']})) = L(p_2(\tau|_{[s',L(\tau)]})) = \pi$ .  $p_2 \circ \tau(s')$  est alors orienté dans le même sens que  $\bar{\gamma}(1) - \bar{\gamma}(0)$ . Notons  $\bar{\gamma}(\tilde{s}) := p_1 \circ \tau(s')$  et  $T_0 := p_2 \circ \tau(s')$ .

Donc pour tout point p de  $\tau$ ,  $(p, \tau(s')) \leq \frac{1}{2}L(\tau) = \pi$ . Pour tout  $s \in [0, \bar{s_1}]$ ,  $(\bar{\gamma}_l(s), T_0) \leq \pi$ , donc

$$(\gamma_l'(\widehat{s}), \gamma_l'(\widetilde{s})) \le \kappa(\gamma|_{[\widetilde{s},s]}) \le \kappa(\overline{\gamma}|_{[\widetilde{s},s]}) \le (\overline{\gamma_l'(s)}, T_0) \le \pi$$

Par décroissance de cosinus, pour tout  $s \in [0, \bar{s_1}]$ ,

$$\langle \bar{\gamma}'_l(s), T_0 \rangle = \cos(\widehat{T_0, \bar{\gamma}'_l(s)}) \leq \cos(\widehat{\gamma}'_l(\tilde{s}), \widehat{\gamma}'_l(s)) = \langle \gamma'_l(s), \gamma'_l(\tilde{s}) \rangle. \tag{1}$$

De plus,

$$|\bar{\gamma}(s_1) - \bar{\gamma}(0)| = \langle \bar{\gamma}(s_1) - \bar{\gamma}(0), T_0 \rangle = \int_0^{\bar{s_1}} \langle \bar{\gamma}'_l(s), \bar{\gamma}'_l(\tilde{s}) \rangle ds,$$

or

$$|\bar{\gamma}(s_1) - \bar{\gamma}(0)| = |\gamma(s_1) - \gamma(0)| \ge <\gamma(s_1) - \gamma(0), \gamma'_l(\tilde{s})> = \int_0^{s_1} <\gamma'_l(s), \gamma'_l(\tilde{s}) > ds,$$

donc

$$\int_0^{\bar{s_1}} <\bar{\gamma}_l'(s), T_0 > ds \geq \int_0^{s_1} <\gamma_l'(s), \gamma_l'(\tilde{s}) > ds,$$

et par l'inégalité 1,  $\bar{s_1} \geq s_1$ .



FIGURE 3

L'hypothèse sur les courbures de  $\gamma$  et  $\bar{\gamma}$  de la proposition 2.16 est assez restrictive, elle implique que  $\bar{\gamma}$  possède au moins autant de points angulaires que  $\gamma$ . En pratique cette proposition risque de n'être utilisable que pour des courbes  $C^1$ .

Lemme 2.17 (Comparaison cordes et courbe). Soit  $\mathcal C$  une courbe latéralement lisse telle que toute paramétrisation  $\gamma$  soit de courbure inférieure à celle d'un cercle de rayon r>0, c'est-à-dire pour tout intervalle  $I\subset [0,L(\gamma)],\ \kappa(\gamma|_I)\leq \frac{|I|}{r}$ . Soient a et b des points de  $\mathcal C$ , tels que  $||a-b||_2<\sqrt{2}r$ . En notant  $L(\gamma_{ab})$  la longueur d'arc entre a et b, arc inclus dans  $\bar B_{||.||_2}(a,\sqrt{2}r)$ ,

$$||a-b||_2 \le L(\gamma_{ab}) \le 2r\arcsin(\frac{||a-b||_2}{2r}).$$

Dlpha monstration. La distance euclidienne entre a et b est plus faible que la longueur de  $\gamma_{ab}$ ,  $||a-b||_2 \leq L(\gamma_{ab})$ . Notons  $\phi:=2\arcsin(\frac{||a-b||_2}{2r})$ . Par la proposition , la longueur maximale de  $\gamma_{ab}$  est majorée par celle d'un arc de cercle de longueur  $r\phi$ .



FIGURE 4 – Lemme 2.17 MODIFIER DESSIN

3 Courbe discrétisée

# 3.1 Discrétisation de Gauss

[?]

**Définition 3.1.** — Le voisinage 4-connexe d'un point  $a \in \mathbb{R}^2$  est l'ensemble noté

$$V_a := \{a + (0,1), a + (1,0), a + (-1,0), a + (0,-1)\}.$$

— Le voisinage 8-connexe d'un point  $a \in \mathbb{R}^2$  est l'ensemble noté

$$V_{a,8} := V_a \cup \{a + (1,1), a + (-1,1), a + (-1,-1), a + (1,-1)\}.$$

— A une résolution h fixée, un pixel centré en un point  $a \in h\left(\left(\frac{1}{2}, \frac{1}{2}\right) + \mathbb{Z}^2\right)$  est noté  $P_a$  et est défini par :

$$P_a := \bar{\mathbf{B}}_{||.||_{\infty}} \left( a, \frac{h}{2} \right).$$

— La discrétisation de Gauss d'un ensemble A pour le pas h  $G_h(A)$  est définie par :

$$G_h(A) := \bigcup_{z \in A \cap h\mathbb{Z}^2} P_z.$$

Autrement dit  $G_h(A)$  est la réunion de tous les carrés formés par le réseau  $h\mathbb{Z}^2$  de côté de longueur h, dont le centre est dans A.

— La discrétisation de Gauss d'une courbe de Jordan  $\mathcal{C}$   $\partial_h(\mathcal{C})$  est la frontière de la discrétisation de Gauss de l'intérieur de  $\mathcal{C}$ .

— Notons de plus :

$$\operatorname{Dig}_h(\mathcal{C}) := \partial_h(\mathcal{C}) \cap h\left(\left(\frac{1}{2}, \frac{1}{2}\right) + \mathbb{Z}^2\right).$$

- Les éléments de  $\operatorname{Dig}_h(\mathcal{C})$  sont appelés les sommets de la discrétisation et un segment reliant deux sommets consécutifs est appelé une arête de la discrétisation.
- Un sommet d'un pixel  $P_z$  est dit *intérieur* s'il appartient à l'intérieur de C, extérieur s'il appartient à l'extérieur de C et frontalier s'il appartient à C.



FIGURE 5 – Les intersections de la grille sont dans  $h\mathbb{Z}^2$ . En bleu,  $\mathcal{C}$ , en rouge  $\partial_h(\mathcal{C})$ , les triangles sont les points intérieurs, les cercles les points frontaliers, et les carrés les points extérieurs.

Remarque 3.2.  $\partial_h(\mathcal{C})$  étant le bord de  $G_h(A)$ , où A est l'intérieur de  $\mathcal{C}$ , une arête de  $\partial_h(\mathcal{C})$  traverse l'arête d'un pixel  $P_z$  si et seulement si cette arête possède un point intérieur et un point soit extérieur soit frontalier comme extrémités.

### 3.2 Autre association

**Proposition 3.3.** Soit C une courbe fermée simple et h > 0 tels que  $\partial_h(C)$  soit 4-connexe. Il existe alors une application  $\xi : Dig_G(C) \to C$  telle que

$$\forall z \in Dig_G(\mathcal{C}), ||\xi(z) - z||_{\infty} \le \frac{h}{2}$$

Démonstration. Si  $z \in \operatorname{Dig}_G(\mathcal{C})$  alors z appartient à une arrête de  $\partial_h(\mathcal{C})$ , qui est elle même frontière de deux carrés  $\bar{\mathrm{B}}_{||.||_{\infty}}(p_i, \frac{h}{2})$  et  $\bar{\mathrm{B}}_{||.||_{\infty}}(p_2, \frac{h}{2})$  tel que  $p_i$  soit un point intérieur et  $p_2$  soit un point frontalier ou extérieur. Si  $p_2$  est un point frontalier, alors  $p_2$  est un point de  $\mathcal{C}$  à distance inférieure à  $\frac{h}{2}$  de z en norme  $||.||_{\infty}$ . Sinon  $p_2$  est un point extérieur. L'intérieur et l'extérieur de  $\mathcal{C}$  étant deux composante connexes distinctes,  $\mathcal{C}$  sépare le pixel  $P_z$  en deux composantes connexes, l'une contenant  $p_i$ , l'autre  $p_e$ . Donc  $\stackrel{\circ}{P_z} \cap \mathcal{C} \neq \emptyset$ . On peut alors définir une telle application  $\xi$ .  $\square$ 

Une telle application  $\xi$  sera appelée association. Le but de cette sous-section est de montrer une propriété 3.10 de conservation de l'ordre défini sur  $\partial_h(\mathcal{C})$  par une association. Si « localement », il se peut qu'une association ne conserve pas l'ordre d'une suite de points de  $\mathrm{Dig}_h(\mathcal{C})$ , l'ordre sera « globalement » respecté. Cette propriété repose sur l'hypothèse que la courbe possède une

certaine épaisseur 3.6. La démonstration de cette propriété repose essentiellement sur trois arguments basiques : la séparation de sommets de différentes nature dans des composantes connexes différentes de  $\mathbb{R}^2\mathcal{C}$  utilisé dans la preuve de la proposition 3.2, le lemme 3.3 et le corollaire 3.5.

**Lemme 3.4.** Soit h > 0. Soit C une courbe géométrique fermée admettant une paramétrisation par longueur d'arc  $\gamma$  telle que

— si la courbe  $\gamma$  sort d'un pixel  $P_z$  en  $\gamma(s_0)$  et rentre de nouveau dans ce pixel en  $\gamma(s_1)$ , c'est-à-dire,

$$\exists z \in \mathbb{R}^2, \ tel \ que \ \gamma(s_0) \in \partial P_z \ et \ \gamma([s_0, s_1[) \cap P_z = \emptyset)$$

trois

—  $\gamma(s_0)$  et  $\gamma(s_1)$  n'appartiennent pas à la même arête de  $P_z$ ,

$$\kappa(\gamma([s_0, s_1]) \ge \frac{\pi}{2}.$$

Plus précisément,

$$\kappa(\gamma([s_0, s_1]) \ge n_s \frac{\pi}{2}$$

où  $n_s$  est le nombre de sommets de  $P_z$  compris dans l'intérieur de  $\gamma([s_0, s_1])$ .

Démonstration. Trois cas sont possibles, l'intérieur de l'arc  $[\gamma(s_0), \gamma(s_1)]$  contient soit un seul sommet  $p_1$  de  $\partial(P_z)$   $(\gamma(s_1))$  est sur une face adjacente à  $\gamma(s_0)$ , soit deux sommets  $p_1, p_2$   $(\gamma(s_1))$  est sur une face opposée à  $\gamma(s_0)$ , soit trois sommets  $p_1, p_2, p_3$ ,  $(\gamma(s_1))$  est sur une face adjacente à  $\gamma(s_0)$ .

— Si l'intérieur contient un seul sommet  $p_1$  (figure 6a), alors les droites  $(\gamma(s_0), p_1)$  et  $(\gamma(s_1), p_1)$  intersectent  $\gamma(]s_0, s_1[)$  en deux points A et B tels que  $A \leq_{\gamma} B$ . Notons  $\theta_1$  l'angle formé entre  $(\gamma(0), A)$  et (A, B),  $\theta_2$  l'angle formé entre (A, B) et  $(B, \gamma(1))$ ,  $\phi_1$  l'angle formé entre  $(\gamma(0), A)$  et  $(\gamma(0), B)$  et  $\phi_2$  l'angle formé entre  $(\gamma(1), A)$  et  $(\gamma(1), B)$ . Comme la somme des angles d'un triangle fait  $\pi$  et que  $(\gamma(0), B)$  et  $(\gamma(1), A)$  forme un angle droit en  $p_1$ ,

$$\phi_1 + \frac{\pi}{2} + \pi - \theta_1 + \frac{\pi}{2} + \pi - \theta_2 + \phi_2 + \frac{\pi}{2} = 3\pi,$$

donc

$$\theta_1 + \theta_2 = \phi_1 + \phi_2 + \frac{\pi}{2},$$

donc

$$\frac{\pi}{2} \le \theta_1 + \theta_2 \le \frac{3\pi}{2}.$$

Par définition de la courbure totale,  $\kappa(\gamma|_{[s_0,s_1]}) \ge \theta_1 + \theta_2 \ge \frac{\pi}{2}$ .

- Si l'intérieur de  $\gamma([s_0, s_1])$  contient deux sommets consécutifs  $p_1$  et  $p_2$  de  $P_z$  (figure 6b), alors les droites  $(\gamma(s_0), p_1)$  et  $(\gamma(s_1), p_2)$  intersectent  $\gamma([s_0, s_1])$  en deux points A et B tels que  $A \leq_{\gamma} B$ . Notons  $\theta_1$  l'angle entre  $(\gamma(0), A)$  et (A, B),  $\theta_2$  l'angle entre (A, B) et  $(B, \gamma(1))$ .  $\theta_1 + \theta_2 = \pi$ . Par définition de la courbure totale,  $\kappa(\gamma|_{[s_0, s_1]}) \geq \theta_1 + \theta_2 = \pi$ .
- Si l'intérieur  $\gamma([s_0, s_1])$  contient trois sommets consécutifs  $p_1$ ,  $p_2$   $p_3$  de  $P_z$  (figure 6c), avec  $p_1$  sur la même arête que  $\gamma(s_0)$  et  $p_3$  sur celle de  $\gamma(s_1)$  alors les droites  $(\gamma(s_0), p_1)$ ,  $(\gamma(s_1), p_2)$   $[p_3, p_2)$  intersectent  $\gamma([s_0, s_1])$  en trois points A, B et C tels que  $A \leq_{\gamma} B \leq_{\gamma} C$ . Notons  $\theta_1$  l'angle entre  $(p_1A)$  et (AB),  $\theta_2$  l'angle entre (AB) et (BC) et  $\theta_3$  l'angle entre (BC) et  $(Cp_3)$ . Alors  $\pi \theta_1 \theta_2$ ,  $\pi \theta_3$  et  $\frac{\pi}{2}$  sont les trois angles du triangle  $p_3BC$ . Donc  $\pi \theta_1 \theta_2 + \pi \theta_3 + \frac{\pi}{2} = \pi$ . Par définition de la courbure totale,  $\kappa(\gamma([s_0, s_1])) \geq \theta_1 + \theta_2 + \theta_3 = \frac{3\pi}{2}$ .

— Si l'intérieur  $\gamma([s_0, s_1])$  contient trois quatre sommets consécutifs  $p_1, p_2, p_3, p_4$  de  $P_z$  (figure 6d), avec  $p_1$  sur la même arête que  $\gamma(s_0)$  et  $p_4$  sur celle de  $\gamma(s_1)$  alors les droites  $(\gamma(s_0), p_1), (\gamma(s_1), p_4)$   $(p_3, p_2)$  intersectent  $\gamma([s_0, s_1])$  en quatre points A, B, C et D tels que  $A \leq_{\gamma} B \leq_{\gamma} C \leq_{\gamma} D$ . Notons  $\theta_1$  l'angle entre  $(\gamma(s_0)A)$  et  $(AB), \theta_2$  l'angle entre (AB) et  $(BC), \theta_3$  l'angle entre (BC) et (CD) et  $\theta_4$  l'angle entre (CD) et  $(D\gamma(s_1))$ .  $\theta_1 + \theta_2 = \pi$  et  $\theta_3 + \theta_4 = \pi$ , donc  $\kappa(\gamma([s_0, s_1])) \geq \theta_1 + \theta_2 + \theta_3 + \theta_4 \geq 2\pi$ 





(a) L'intérieur de  $\gamma([s_0, s_1])$  contient un seul sommet. (b) L'intérieur de  $\gamma([s_0, s_1])$  contient deux sommets.





(c) L'intérieur de  $\gamma([s_0, s_1])$  contient trois sommets. (d) L'intérieur de  $\gamma([s_0, s_1])$  contient quatre sommets.

**Lemme 3.5.** Soient  $\mathcal{C}$  une courbe fermée simple de paramétrisation par longueur d'arc  $\gamma$  et  $s_0, s_1 \in [0, L(\gamma)]$  tels que  $s_0 < s_1$  et  $\kappa(\gamma([s_0, s_1]) < \frac{\pi}{2}$ , alors  $\gamma(]s_0, s_1[) \subset \overset{\circ}{B}_{||\cdot||_2}(c, \frac{l}{2})$  où c est le milieu de  $[\gamma(s_0), \gamma(s_1)]$  et  $l := ||\gamma(s_1) - \gamma(s_0)||_2$ .



 $\begin{array}{lll} \textit{D\'{e}monstration.} & \text{Soit A un point de } \gamma(]s_0,s_1[). \text{ Comme } \kappa(\gamma([s_0,s_1])) < \frac{\pi}{2}, \text{ l'angle g\'{e}om\'{e}trique}\\ \bar{\theta} := (\gamma(s_0) - \widehat{A}, \gamma(s_1) - A) = \pi - \theta > \frac{\pi}{2}. \text{ Notons } H \text{ (respectivement } B) \text{ l'intersection de }\\ [\gamma(s_0),\gamma(s_1)] \text{ (respectivement du cercle de centre } c \text{ et de rayon } \frac{l}{2}) \text{ et de la perpendiculaire à }\\ [\gamma(s_0),\gamma(s_1)] \text{ passant par } A. \text{ Notons \'{e}galement } \bar{\theta_1} \text{ l'angle entre les droites } (A\gamma(s_0)) \text{ et } (AH),\\ \bar{\theta_2} \text{ l'angle entre les droites } (AH) \text{ et } (A\gamma(s_1)), \ \phi_1 \text{ l'angle entre les droites } (Bp_1) \text{ et } (BH), \ \phi_2 \text{ l'angle entre les droites } (BH) \text{ et } (Bp_2). \ \phi_1 + \phi_2 = \frac{\pi}{2} \text{ et } \bar{\theta_1} + \bar{\theta_2} > \frac{\pi}{2}. \text{ Donc } \bar{\theta_1} > \phi_1 \text{ ou } \bar{\theta_2} > \phi_2. \\ \text{Donc } AH < \frac{\gamma(s_0)H}{\tan\phi_1} = BH \text{ ou } AH < \frac{\gamma(s_1)H}{\tan\phi_2} = BH. \text{ Donc } A \text{ est sur le segment } ]BH[, \text{ donc } A \in \mathring{B}_{||.||_2}(c,\frac{h}{2}). \end{array}$ 



Corollaire 3.6. Soit  $\mathcal C$  une courbe fermée simple de paramétrisation par longueur d'arc  $\gamma$  telle que  $\gamma(s_0)$  et  $\gamma(s_1)$  appartiennent à une même arête  $[p_1,p_2]$  d'un pixel  $P_z$  telle que  $\gamma(]s_0,s_1[)\cap P_z=\emptyset$  et  $\kappa(\gamma([s_0,s_1])<\frac{\pi}{2},\ alors\ \gamma(]s_0,s_1[)\subset \overset{\circ}{B}_{||.||_2}(c,\frac{h}{2})\ où\ c\ est\ le\ milieu\ de\ [p_1,p_2].$ 

**Définition 3.7.** L'épaisseur e d'une courbe fermée  $\mathcal{C}$  est la borne inférieure des réels positifs tels que pour toute paramétrisation  $\gamma$  de  $\mathcal{C}$  si  $\kappa(\gamma([s_0, s_1]) \geq \frac{\pi}{2}, \text{ alors } ||\gamma(s_1) - \gamma(s_0)|| \geq e$ .

Remarque 3.8. Une courbe d'épaisseur non-nulle, ne peut pas avoir des points angulaires aigus.

**Lemme 3.9.** Soit C une courbe fermée simple d'épaisseur e. Soient  $\sqrt{2}h < e$ ,  $N \in \mathbb{N}$ ,  $a_i \in Dig_h(C)$ . Soit  $\gamma$  une paramétrisation de C par longueur d'arc telle que  $\gamma(0) \notin P_{a_i}$ . Notons

$$s^+ := \max \{ s \in [0, L(\gamma)] | \gamma(s) \in P_{a_i} \},$$

$$s^- := \min \{ s \in [0, L(\gamma)] | \gamma(s) \in P_{a_i} \}.$$

Autrement dit  $\gamma(s^-)$  est le premier point de la courbe C à être dans le pixel  $P_{a_i}$  et  $\gamma(s^+)$  le dernier. Alors  $\gamma(]s^-, s^+[) \subset U$  où

$$U:=P_{a_i}\cup\bigcup_{b\in\frac{1}{2}V_{a_i}}\overset{\circ}{B}_{||.||_2}(b,\frac{h}{2})$$



Démonstration. Comme le diamètre de  $P_{a_i}$  est  $\sqrt{2}h$ , par l'hypothèse  $e > \sqrt{2}h$ ,  $\kappa(\gamma([s^-, s^+])) < \frac{\pi}{2}$ . Si la courbe  $\gamma(]s, s^+[)$  sort de  $\bar{\mathbf{B}}_{||.||_{\infty}}(a_i, \frac{h}{2})$ , elle intersecte  $\partial P_{a_i}$  en un point  $\gamma(s_0)$ . Par le lemme 3.3 elle rentre alors de nouveau dans  $P_{a_i}$  en passant par une arête fermée d sur laquelle est  $\gamma(s_0)$ . Si la courbe  $\gamma(]s, s^+[)$  sort puis rentre de nouveau par une certaine arête de  $P_{a_i}$ , alors, par le lemme 3.5 la courbe  $\gamma([s^-, s^+])$  ne peut sortir de U.  $\partial_h(\mathcal{C})$  4-connexe.

**Lemme 3.10.** Soient C une courbe fermée simple d'épaisseur e et h tels que  $0 < \sqrt{2}h < e$  et  $\partial_h(C)$  soit 4-connexe simple fermée.  $N \in \mathbb{N}$ ,  $a_i \in Dig_h(C)$ . Soit  $\gamma$  une paramétrisation de C par longueur d'arc telle que  $\gamma(0) \notin P_{a_i}$ . Notons

$$s^+ := \max \{ s \in [0, L(\gamma)] | \gamma(s) \in P_{a_i} \},$$

$$s^- := \min \{ s \in [0, L(\gamma)] | \gamma(s) \in P_{a_i} \}.$$

Soit  $\xi$  une association. S'il existe j tel que  $\xi(a_j) \in \gamma(|s^-, s^+|)$ , alors  $j \in [|i-2, i+2|]$ .

Démonstration. Soit j tel que  $\xi(a_j) \in \gamma(]s^-, s^+[)$ ). Par définition d'une association, les points de  $\gamma([s^-, s^+])$  qui sont dans l'image de  $\xi(\mathrm{Dig}_h(\mathcal{C})\backslash\{a_i\})$  sont en dehors de  $P_{a_i}$ . Par le lemme 3.8, les seuls points  $a \in \mathrm{Dig}_h(\mathcal{C})$  tels que  $\xi(a) \in \gamma([s^-, s^+])$  sont les voisins 8-connexes de  $a_i$ . Il « suffit » alors de montrer que si un voisin 8-connexe a de  $a_i$  est tel que  $\xi(a) \in \gamma([s^-, s^+])$ , alors  $a \in \{a_{i-2}, a_{i-1}, a_{i+1}, a_{i+2}\}$ . De plus, par le lemme 3.8 et l'hypothèse  $\sqrt{2}h < e$  si  $\gamma(]s^-, s^+[)$  sort de  $P_{a_i}$  par une certaine arête et si elle rentre de nouveau, alors elle rentre par la même arête. Plus précisément, s'il existe  $s_0, s_1 \in [s^-, s^+]$  (éventuellement  $s_0 = s_1$ ) tels que  $\gamma(s_0), \gamma(s_1) \in \partial P_{a_i}$  et  $\gamma(]s_0, s_1[) \notin P_{a_i}$ . Soit  $a \in V_{a_i,8}$  tel que  $\xi(a) \in \gamma([s^-, s^+])$ , seuls deux cas sont alors possibles : dans le premier cas a est adjacent à  $a_i$  pour la 4-connexité, dans le second cas a n'est pas adjacent à  $a_i$  pour la 4-connexité.

- Dans le premier cas, montrons que a et  $a_i$  sont deux points consécutifs de  $\partial_h(\mathcal{C})$ . Supposons par l'absurde que a et  $a_i$  ne sont pas connectés par une arête de  $\partial_h(\mathcal{C})$ .  $P_{a_i}$  et  $P_a$  possède une arête un commun d. Seuls trois sous-cas sont possibles : dans le premier sous-cas, les extrémités de d sont toutes les deux des points intérieurs ou toutes les deux des points extérieurs ; dans le deuxième sous-cas, une extrémité de d est un point frontalier et l'autre sommet un point extérieur ; dans troisième sous-cas : les deux extrémités de d sont des points frontaliers.
  - Dans le premier sous-cas (figure 7a), par le lemme 3.5, la courbe  $\gamma([s,s^+])$  ne permet pas d'isoler les sommets de  $P_a$  en deux composantes connexes distinctes de  $\mathbb{R}^2 \setminus \mathcal{C}$ . De plus, la courbe  $\mathcal{C}$  ne peut passer dans  $P_a$  en dehors de  $\gamma([s^-,s^+])$ . En effet par la contraposée du lemme 3.3, cela contredirait l'hypothèse  $\sqrt{2}h < e$ . Donc il n'y a pas de sommets sommets frontaliers dans  $P_a$  ni de sommets extérieurs si les extrémités de d sont des sommets extérieurs et intérieurs et intérieurs si les extrémités de d sont des sommets extérieurs. Donc  $a \notin \mathrm{Dig}_h(\mathcal{C})$ . Contradiction!

- Dans le deuxième sous-cas (figure 7b),  $a \in \operatorname{Dig}_h(\mathcal{C})$  si et seulement si  $P_a$  possède un point intérieur comme sommet. Si tel était le cas, alors par le lemme 3.5,  $\gamma([s^-, s^+])$  ne permettrait pas d'isoler le point extérieur et le point intérieur sans enfreindre la contrainte  $\sqrt{2}h < e$ . Donc  $a \notin \operatorname{Dig}_h(\mathcal{C})$ .
- Dans le troisième sous-cas,  $a \in \operatorname{Dig}_h(\mathcal{C})$  si et seulement si  $P_a$  possède un point intérieur comme sommet. Si tel était le cas, alors le dernier sommet de  $P_a$  serait aussi un point intérieur, sinon la courbe devrait passer par un une autre arête de  $P_a$  que d soit en passant par l'extérieur de  $P_a$ , ce qui est impossible par le lemme 3.3 (figure 7c) soit en passant par l'intérieur de  $P_a$  ce qui est impossible par le lemme 3.5.  $P_a$  posséderait donc deux sommets frontaliers (ce sont les extrémités de d) et deux sommets intérieurs. De plus  $a_i \in \operatorname{Dig}_h(\mathcal{C})$ , donc  $P_{a_i}$  possède au moins un point intérieur. Dans  $P_a \cup P_{a_i}$ , il y a donc un segment d de longueur d0 perpendiculaire à d0 ayant pour extrémités des points intérieurs et pour milieu un point frontalier. La courbe d0 ne doit pas isoler les deux extrémités de d1. Elle doit alors soit repasser par d1 soit ne pas repasser par d2, auquel cas, elle ne traverse pas d3 mais lui est juste tangente. Si d2 repasse par d3 (figure 7d), alors par le lemme 3.5 et l'hypothèse d5, d6 ne peut atteindre la seconde extrémité de d6 qui est un point frontalier. Absurde! Si d6 ne repasse pas par d3 (figure 7e), par le lemme 3.3 et l'hypothèse d5, d6 ne peut pas atteindre la seconde extrémité de d6 qui est un point frontalier. Absurde! Donc d6 pigd6.
- Dans le second cas, montrons qu'il existe  $b \in \text{Dig}_h(\mathcal{C})$ , voisin 4-connexe de  $a_i$  et a tel que  $P_b$  possède  $\xi(a)$  comme sommet ainsi que deux sommets intérieurs diagonalement opposés. Comme  $a, a_i \in \text{Dig}_h(\mathcal{C})$ , il est nécessaire que  $P_a$  et  $P_{a_i}$  aient chacun un point intérieur comme sommet. De plus, si aucun des sommets de  $P_a$  adjacent à  $\xi(a)$  n'était intérieur, alors le sommet opposé à  $\xi(a)$  serait intérieur, et la courbe  $\mathcal C$  couperait les arêtes de  $P_a$ ayant pour extrémité le sommet intérieur, par le lemme 3.4 et l'hypothèse  $\sqrt{2}h < e, \, \xi(a)$ ne pourrait pas être un point frontalier. Absurde! Donc il existe un sommet intérieur adjacent à  $\xi(a)$  de  $P_a$  noté  $p_1$  et par le même raisonnement de  $P_{a_i}$  noté  $p_2$ . Si  $p_1, \xi(a), p_2$ ne sont pas alignés, il existe alors  $P_b$  possédant  $\xi(a)$  comme sommet ainsi que les sommets  $p_1$  et  $p_2$  qui sont diagonalement opposés, donc  $b \in \mathrm{Dig}_b(\mathcal{C})$ . Si au contraire  $p_1, \, \xi(a)$  et  $p_2$  sont alignés, montrons qu'il existe un point intérieur adjacent à  $\xi(a)$ . Par l'absurde supposons que les deux autres sommets adjacents à  $\xi(a)$  ne sont pas des points intérieurs. D'une part,  $p_1$  et  $p_2$  étant dans la même composante connexe de  $\mathbb{R}^2 \setminus \mathcal{C}$ ,  $\gamma([s^-, s^+])$  est tangente au segment  $[p_1, p_2]$  au point  $\xi(a)$  ou elle repasse par un point y de  $[p_1, p_2]$ . Si  $\gamma([s^-,s^+])$  est tangente au segment  $[p_1,p_2]$  sans repasser par  $[p_1,p_2]$ , alors par le lemme 3.3 et l'hypothèse  $\sqrt{2}h < e, \gamma([s^-,s^+])$  ne peut pas repasser soit par  $P_a$  soit par  $P_{a_i}$  (figure 8c). Si au contraire  $\gamma([s^-, s^+])$  repasse par  $[p_1, p_2]$  en un point y, alors par l'hypothèse  $\sqrt{2h} < e$ , la courbure totale d'un arc entre  $\xi(a)$  et y est inférieur à  $\frac{\pi}{2}$ , donc par le lemme 3.5 et 3.3,  $\mathcal{C}$  ne peut pas repasser soit par  $\partial P_a$  soit par  $\partial P_{a_i}$  soit par  $\partial P_b$  en dehors de  $[p_1, p_2]$ où  $P_b$  est un pixel adjacent à  $P_a$  et  $P_{a_i}$ . D'autre part, il existe sur une arête de  $P_a$  n'ayant pas  $\xi(a)$  pour extrémité, un point x de la courbe C en effet, il existe un sommet frontalier ou une arête possédant un sommet intérieur et un sommet extérieur pour extrémités. Idem pour  $P_{a_i}$  et  $P_b$ . Contradiction! Donc il existe  $P_b$  possédant  $\xi(a)$  comme sommet ainsi que deux sommets intérieurs diagonalement, opposés donc  $b \in \text{Dig}_b(\mathcal{C})$ . Donc a, b et  $a_i$  sont des points consécutifs de  $\partial_h(\mathcal{C})$ . Donc  $a = a_{i-2}$  ou  $a = a_{i+2}$ .



(e)

FIGURE 7









FIGURE 8

**Proposition 3.11.** Soit C une courbe fermée simple d'épaisseur e. Soient h < e,  $N \in \mathbb{N}$ ,  $(a_i)_{i \in [|1,N|]}$  une suite de points de  $Dig_h(C)$  croissante pour une certaine paramétrisation de  $\partial_h(C)$  telle que pour tout (i,j) la longueur d'un arc de  $\partial_h(C)$  reliant  $a_i$  et  $a_j$  est supérieure à 2, il existe alors une paramétrisation de C pour laquelle la suite  $(\xi(a_i))$  est croissante.

Démonstration. Pour trois points sur une courbe fermée simple, il existe toujours une certaine paramétrisation de cette courbe pour laquelle ces trois points sont ordonnés dans l'ordre souhaité. Notons  $(a_{i,k})$  la suite croissante des sommets de  $\mathrm{Dig}_h(\mathcal{C})$  entre  $a_i$  et  $a_{i+1}$  avec  $a_{i,1} := a_i$  et  $a_{i,K} := a_{i+1}$ . Par le lemme 3.8, il existe un arc  $\mathcal{C}_i$  de  $\mathcal{C}$  d'extrémités  $\xi(a_i)$  et  $\xi(a_{i+1})$  inclus entièrement dans la réunion des  $U_{a_{i,k}}$ ,  $k \in [|1,K|]$  où

$$U_{a_{i,k}} := \bar{\mathbf{B}}_{||\cdot||_{\infty}}(a_{i,k}, \frac{h}{2}) \cup \bigcup_{b \in \frac{1}{2}V_{a_{i,k}}} \overset{\circ}{\mathbf{B}}_{||\cdot||_{2}}(b, \frac{h}{2}).$$

Donc  $C_i$  peut être recouverte par les  $\gamma([s_k^-, s_k^+])$  où

$$s_k^+ := \max \left\{ s \in [0, \mathcal{L}(\gamma)] | \gamma(s) \in P_{a_{i,k}} \right\},\,$$

$$s_k^- := \min \left\{ s \in [0, \mathcal{L}(\gamma)] | \gamma(s) \in P_{a_{i,k}} \right\}.$$

Donc par le lemme 3.9, il n'existe pas terme  $a_j$  de la suite  $(a_i)$  tel que  $\xi(a_j) \in C_i$ . Donc il existe une paramétrisation  $\gamma$  de C telle que la suite  $(\xi(a_i))_{i \in [[1,N]]}$  soit croissante.