

Quantitative Methoden

Elemente der Deskriptiven Statistik II Bivariate Analysen

Prof. Dr. rer. nat. Thomas Wiebringhaus

Elemente der Deskriptiven Statistik I

FOM Hochschule

Univariate Analysen (eine Variable)

- Merkmale + Skalenniveaus
- Absolute + relative Häufigkeiten
- Säulendiagramm, Empirische Verteilungsfunktion und Histogramm
- Lagemaße (MW, Median und Modus), Boxplots und Quantile
- Streumaße: Varianz und Standardabweichung (sd)

Elemente der Deskriptiven Statistik II

Bivariate Analysen (zwei Variablen)

- Kovarianz
- Korrelationskoeffizienten (Bravais-Pearson)
- Rangkorrelationskoeffizient (Spearman)
- Kontingenzkoeffizient (nominal) und Chi^2
- Lineare Regression

Beispiel: Datenerhebung (Anatomie einer Urliste)

Spalten (columns) = Variablen

	_				_		\downarrow	
index []	nominal	m e t	tris	c h	nominal	nomina	l metrisch	1
i	1=0; w=1	Größe	Schuhe	ken	Haare	heme =	Alto	
1	0	1,5079		14	braun	1	723	<
2	0	4,81	84	3	blond(1	30	
3	0	1,78	13	8	brank	1)7	26	
	1	1,72	40	15	bourn	1	24	
5	(A)	1,73	43	26	braun	0	25	
,	1	1,63	37	24	Szaga	1	25	
3	(2	1,85	44	36	blord	0	23	
8	0	1,79	43	3	Sraun	0	23	
	0	1.89	45	20	blond	0	27	
5	0	1,78	43	35	Sman	0	50	
11	101	1,78	43	12	15444	1	42	
<	h=	11						

Zeilen (rows) = Beobachtungen

3 wiss. Kriterien:

Objektiv: unabhängig vom Beobachter Reliable: Wiederholung zuverlässig Valide: das Gemessene ist gültig

Kovarianz

4.1 Kovarianz: ein Beispiel

Ihnen liegen Umsatzzahlen der Jahre 2011 und 2012 Ihrer Filialen Nord und Süd vor

No.	2011	2012
7		2
2	5	5 8 4
3	2 5 4	4
1 2 3 4 5 6 7 8	8 9 2	1
5	9	6 9 8 9
6	2	9
7	4 9	8
8	9	9
	2 5 2 6	3
10	5	2 5
11	2	5
12	6	9
13	6	2
14	6	9 2 5 5
15	1 6	5
16	6	1

Streudiagramm (scatter plot)

No.	2011	2012
1	1	2
2	2	1
3	3	2 1 3
	2	2
5	3	2
4 5 6	1 2 3 2 3 2 4 4	2 2 3
7	4	2
8	4	4
9	5	5
10	4 5	4
11	5	4 5
12	6	6
13	5	5
14	6	6
15	6 7	6 5 7 ⁵
16	7	7 5

→ Lin. Regression

4.1 Kovarianz: Beispiele

Bivariat (zweidimensional): 2 Merkmalsausprägungen

- → Punktwolke; Kein Zusammenhang
- → Kovarianz um 0

Anforderung an die Kovarianz: pos/ neg trend
Streuung

[→] Kovarianz positiv

4.1 Kovarianz: weiteres Beispiel

Im Jahre 1984 galten für gebrauchte PKW eines speziellen Typs folgende Händlerverkaufspreise:

	Alter	Preis			
i	x_i	y_i	$x_i \bar{x}$	$y_t \bar{y}$	$(x_i \bar{x})(y_i \bar{y})$
1	2	11700	-2	3030	-6060
2	3	10300	-1	1630	-1630
3	4	8350	0	-320	0
4	5	7100	1	-1570	-1570
5	6	5900	2	-2770	-5540
Summe ∑	20	43350	0	0	-14800
MW	_x= 4	y= 8670			

$$s_{xy} = \frac{1}{5} \sum_{i=1}^{5} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{5} (-14800) = -2960$$

Varianz
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Kovarianz
$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

4.1 Kovarianz: noch ein Beispiel

Das Streudiagramm läßt einen negativen Zusammenhang erwarten

No.	x_i	y_i	x_i - x	y_i - y	$(x_i - x)(y_i - y)$
1	1	5	-1,9	1,4	-2,66
2	2	5	-0,9	1,4	-1,26
3	3	3	0,1	-0,6	-0,06
4	2	2	-0,9	-1,6	1,44
5	1	4	-1,9	0,4	-0,76
6	6	3	3,1	-0,6	-1,86
7	4	2	1,1	-1,6	-1,76
8	4	4	1,1	0,4	0,44
9	2	5	-0,9	1,4	-1,26
10	4	3	1,1	-0,6	-0,66
Summe	29	36	0	0	-8,4
MW	2,9	3,6			-0,84

Anforderung an die Kovarianz: pos/ neg trend! Streuung? (nicht leicht interpretierbar)

Korrelation nach Pearson

4.2 Korrelationskoeffizient (Pearson)

$$Korrelationskoeffizient = \frac{Kovarianz}{std_x \cdot std_y}$$

$$r_{xy} = \frac{\sigma_{xy}}{\sigma_{x} \cdot \sigma_{y}}$$

- Der Korrelationskoeffizient r_{xy} normiert die Kovarianz mit den Standardabweichungen
- Dadurch bewegt sich der r_{xv} zwischen
 - -1 (maximal negativer Zusammenhang) und
 - +1 (maximal positiver Zusammenhang)

Werte um 0 sind (zumindest nicht linear) korreliert

Korrelation (Beträge)

0: keine

0 - 0,5: schwache

0,5 - 0,8: mittlere

0,8 – 1: starke

1: perfekte

4.2 Korrelationskoeffizient (Pearson)

	Alter	Preis					
i	x_i	y_i	$x_{\bar{\iota}}\bar{x}$	$(x_i \bar{x})^2$	$y_{ar{\iota}}ar{y}$	$(y_i \bar{y})^2$	$(x_{\bar{\iota}}\bar{x})(y_{\bar{\iota}}\bar{y})$
1	2	11700	-2	4	3030	9180900	-6060
2	3	10300	-1	1	1630	2656900	-1630
3	4	8350	0	0	-320	102400	0
4	5	7100	1	1	-1570	2464900	-1570
5	6	5900	2	4	-2770	7672900	-5540
Summe	20	43350	0	10	0	22078000	-14800
MW	4	8670		2		4415600	-2960

$$s_{xy} = \frac{1}{5} \sum_{i=1}^{5} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{5} (-14800) = -2960$$

$$r_{xy} = \frac{-2960}{\sqrt{2.4415600}} = -0,9960516$$

4.2 Korrelationskoeffizient (Pearson): Beispiel

i	x_i	y_i	$x_{\bar{t}}\bar{x}$	$(x_i \bar{x})^2$	$y_{ar{\iota}}ar{y}$	$(y_i \bar{y})^2$	$(x_{\bar{\iota}}\bar{x})(y_{\bar{\iota}}\bar{y})$
1	1	5	-1,9	3,61	1,4	1,96	-2,66
2	2	5	-0,9	0,81	1,4	1,96	-1,26
3	3	3	0,1	0,01	-0,6	0,36	-0,06
4	2	2	-0,9	0,81	-1,6	2,56	1,44
5	1	4	-1,9	3,61	0,4	0,16	-0,76
6	6	3	3,1	9,61	-0,6	0,36	-1,86
7	4	2	1,1	1,21	-1,6	2,56	-1,76
8	4	4	1,1	1,21	0,4	0,16	0,44
9	2	5	-0,9	0,81	1,4	1,96	-1,26
10	4	3	1,1	1,21	-0,6	0,36	-0,66
Summe	29	36	0	22,9	0	12,4	-8,4
MW	2,9	3,6	0	2,29	0	1,24	-0,84

$$r_{xy} = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y}$$

$$r_{xy} = \frac{-0.84}{\sqrt{2.29 \cdot 1.24}} = -0.4984834$$

Rangkorrelation nach Spearman

4.3 Rangkorrelation (Spearman)

- Robust gegenüber Ausreißer
- anzuwenden bei nicht normalverteilten Daten (folgt), oder ordinale Daten
- Daten sortieren, die Position steht f
 ür den Rang
- Bei gleichen Werten (Bindungen/ties) wird der MW (der Ränge) gebildet

Korrelation (Beträge)

0: keine

0 - 0,5: schwache

0,5-0,8: mittlere

0,8 – 1: starke

1: perfekte

Spearman
$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{n} d_i^2}{n \cdot (n^2 - 1)} mit d_i = rg(x_i) - rg(y_i)$$

4.3 Rangkorrelation (Spearman): Beispiel

In der folgenden Tabelle finden Sie die Stärke eines Erdbebens x_i und die Anzahl y_i der Personen, die bei diesem Erdbeben starben:

i	x_i	y_i	r_i	s_i	d_i
1	6,6	60	2	2	0
2	8,3	503	6	6	0
3	6,2	115	1	5	4
4	6,7	65	3	4	1
5	6,9	62	4	3	-1
6	7,4	1	5	1	-4

$$r_s = 1 - \frac{6 \cdot [0^2 + 0^2 + 4^2 + 1^2 + (-1)^2 + (-4)^2]}{6 \cdot (6^2 - 1)} = 0,029$$

Spearman
$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{n} d_i^2}{n \cdot (n^2 - 1)} \ \textit{mit} \ d_i = rg(x_i) - rg(y_i)$$

4.3 Rangkorrelation (Spearman): Beispiel

Es sind zu acht Wohnungen die Fläche x_t und die Kaltmiete y_t gegeben:

(c) Bestimmen und interpretieren Sie den Rangkorrelationskoeffizienten von Spearman.

i	x_i	y_i	r_i	$S_{\mathbf{f}}$	d_i
1	20	270	1	1	0
2	27	460	3	6	3
3	32	512	6	7	1
4	48	550	8	8	0
5	26	360	2	2	0
6	30	399	4	4	0
7	31	419	5	5	0
8	40	390	7	3	-4

$$r_s = 1 - \frac{6 \cdot [0^2 + 3^2 + 1^2 + 0^2 + 0^2 + 0^2 + 0^2 + (-4)^2]}{8 \cdot (8^2 - 1)} = 0,69$$

Der Wert i.H.v. 0,69 spricht für einen recht starken, positiv monotonen Zusammenhang zwischen der Fläche einer Wohnung und der Miete, d.h. mit steigender Fläche einer Wohnung steigt auch die Miete.

Pearson:

$$r_{x,y} = \frac{13815, 38 - 31, 75 \cdot 420}{\sqrt{(1074, 25 - 1008, 06)} \cdot \sqrt{(183200, 8 - 176400)}} = 0,716$$

Dieser spricht für einen starken, positiv linearen Zusammenhang zwischen der Größe einer Wohnung und der Miete.

Kontingenz und Häufigkeiten (Chi^2)

4.4 Kontingenzkoeffizient: Beispiel

Bei einer Befragung wurden 25 Personen nach ihrem Geschlecht befragt Außerdem mussten die Personen den folgenden Satz ergänzen

Zu Risiken und Nebenwirkungen...

Von den 13 Frauen haben 7 und von den Männern 3 den Satz richtig ergänzt.

(a) Stellen Sie die Kontingenztabelle auf.

	Geschlecht	weiblich	männlich	
Satz				
richtig		7	3_	
falsch				
		13		25

Kontingenztabelle

(c) Bestimmen Sie den Wert des korrigierten Kontingenzkoeffizientens

4.4 Kontingenzkoeffizient: Beispiel

Bei einer Befragung wurden 25 Personen nach ihrem Geschlecht befragt Außerdem mussten die Personen den folgenden Satz ergänzen

Zu Risiken und Nebenwirkungen...

Von den 13 Frauen haben 7 und von den Männern 3 den Satz richtig ergänzt.

(a) Stellen Sie die Kontingenztabelle auf.

	Geschlecht	weiblich	männlich	
Satz				
richtig		7	3	10
falsch		6	9	15
N.		13	12	25

Kontingenztabelle

4.4 Kontingenzkoeffizient: Beispiel

	Geschlecht	weiblich	männlich	
Satz				
richtig		7	3	10
falsch		6	9	15
		13	12	25

1. Tabelle der erwarteten Häufigkeiten:

	Geschlecht	weiblich	$m\%_0 nnlich$	(10*13)/25 = 5,2
Satz				(10 13)/23 = 3,2
richtig		(5,2)	4,8	10
falsch		7,8	7, 2	15
		13	12	$\overline{25}$

2. χ^2 :

Differenzen quadrieren und normieren

$$\chi^{2} = \frac{(7-5,2)^{2}}{5,2} + \frac{(3-4,8)^{2}}{4,8} + \frac{(6-7,8)^{2}}{7,8} + \frac{(9-7,2)^{2}}{7,2}$$

$$= 2.17$$

3. *k*:

$$k = \sqrt{\frac{2,17}{2,17 + 25}} = 0,2826$$

Korrelation (Beträge)

4. korrigierter Kontingenzkoeffizient k^* :

$$M = min\{2, 2\} = 2 \rightarrow k_{max} = \sqrt{\frac{2-1}{2}} = \sqrt{0, 5} \rightarrow k^* = \frac{0,2826}{\sqrt{0,5}} = 0,399$$

4.4 Kontingenzkoeffizient

-	M
lochsc	M

	Frauen	Männer	SUMME
Ja	19	18	37
Nein	43	20	63
SUMME	62	38	100

Berechnung des χ^2 -Koeffizienten:

$$\frac{\left(19 - \frac{37*62}{100}\right)^2}{\frac{37*62}{100}} + \frac{\left(18 - \frac{37*38}{100}\right)^2}{\frac{37*38}{100}} + \frac{\left(43 - \frac{63*62}{100}\right)^2}{\frac{63*62}{100}} + \frac{\left(20 - \frac{63*38}{100}\right)^2}{\frac{63*38}{100}} = 2,83$$

$$k = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Kontingenzkoeffizient *k*:
$$k = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$
 $k = \sqrt{\frac{2,83}{2,83 + 100}} = 0,1659$

Korrigierter Kontingenzkoeffizient k*:

$$k_{max} = \sqrt{\frac{M-1}{M}}$$
 mit $M = \min(I; J)$ $k_{max} = \sqrt{\frac{2-1}{2}} = \sqrt{0.5}$ $M = \min(2; 2) = 2$

$$k^* = \frac{k}{k_{\text{max}}} = \frac{0,1659}{\sqrt{0,5}} = 0,234$$

Lineare Regression

4.5 Lineare Regression

i	X _i	y_i	10
1	1	2	9
	2	4	8
2 3	3	4	7
4	5	5	6
<i>4</i> <i>5</i>	4	5	5 4
6	7	8	3
6 7	8	8	2
8	9	9	1
9	5	7	0 0
10	6	8	

Lineare Funktion:

y=mx + b (Normalform) m =Steigung b = y- Achsenabschnitt

Lineare Regression (Ausgleichsgrade):

$$\hat{y} = a + bx$$

$$b = \frac{\sigma_{xy}}{\sigma_x^2} = \frac{cov_{xy}}{var_x}$$

$$a = \bar{y} - b\bar{x}$$

i	x_i	y_i	$x_{\bar{l}}$ - \bar{x}	$y_{ar{\iota}}ar{y}$	$(x_i - \bar{x})^2$	$(x_{\bar{\iota}}\bar{x})(y_{\bar{\iota}}\bar{y})$
1	1	2	-4	-4	16	16
2	2	4	-3	-2	9	6
3	3	4	-2	-2	4	4
4	5	5	0	-1	0	0
5	4	5	-1	-1	1	1
6	7	8	2	2	4	4
7	8	8	3	2	9	6
8	9	9	4	3	16	12
9	5	7	0	1	0	0
10	6	8	1	2	1	2
Summe	50	60	0	0	60	51
MW	(5) (6) 0	0	6	5,1

$$\mathcal{P} = a + bx$$

$$b = \frac{\sigma_{xy}}{\sigma_x^2} = \frac{cov_{xy}}{var_x}$$

$$a = \bar{y} - b\bar{x}$$

$$a = y - bx = 6 - 0.85 * 5 = 1.75$$

$$b = \frac{\sigma_{xy}}{\sigma_x} = \frac{5.1}{6} = 0.85$$

$$\hat{y} = a + bx$$

i	x_i	y_i	$x_{\bar{i}}\bar{x}$	$y_{ar{\iota}}ar{y}$	$(x_i \bar{x})^2$	$(x_{\bar{\iota}}\bar{x})(y_{\bar{\iota}}\bar{y})$
1	8	2	3	-3	9	-9
2	4	5	-1	0	1	0
3	6	4	1	-1	1	-1
4	7	4	2	-1	4	-2
5	7	2	2	-3	4	-6
6	5	5	0	0	0	0
7	5	4	0	-1	0	0
8	2	7	-3	2	9	-6
9	2	9	-3	4	9	-12
10	4	8	-1	3	1	-3
Summe	50	50	0	0	38	-39
MW	5	5	0	0	3,8	-3,9

$\hat{\mathbf{v}} = a + bx$	

$$b = \frac{\sigma_{xy}}{\sigma_x^2} = \frac{cov_{xy}}{var_x}$$

$$a = \bar{y} - b\bar{x}$$

-1,0263158	b
10,1315789	а

