PROBABILIDAD Y ESTADÍSTICA SEGUNDO PARCIAL

Docente: NIDIA QUINTERO PEÑA

Grupo: D1

Fecha máxima de entrega: 28 de Enero de 2021 Fecha de sustentación: 29 de Enero de 2021

OBJETIVO

Aplicar los conceptos estudiados sobre Probabilidad y las Distribuciones de Probabilidad de variables aleatorias Discretas para solucionar los problemas propuestos.

METODOLOGÍA

Solucionar los problemas propuestos en los grupos de trabajo, aplicando los conceptos estudiados en la asignatura, crear un archivo con extensión .pdf y subirlo en la plataforma Moodle en la pestaña 'lo que se va a evaluar'.

El día de la sustentación, cada grupo explicará la solución del ejercicio asignado por la profesora.

PROBLEMA 1

Sea X una variable aleatoria discreta con función de distribución de probabilidad

$$f(x)=\frac{2x+1}{25}, x=0,\ 1,\ 2,\ 3,\ 4$$

- a. Verifique que f(x) satisface las propiedades de una distribución de probabilidad y grafíquela.
- b. Grafique la función de distribución de probabilidad acumulada F(x).
- c. Calcule P(X < 2)
- d. Calcule $P(2 \le X < 4)$
- e. Calcule la media y la varianza de la variable aleatoria X.
- f. Utilice el teorema de Chebyshev para estimar el rango en el que la variable aleatoria X tiene una probabilidad mayor o igual a 80%.
- g. Se tiene una variable aleatoria G(X) = 2X + 1, calcule la media y la varianza de la variable aleatoria G(X).

PROBLEMA 2

La probabilidad de que un banco reciba un cheque sin fondos es 1.2%.

- a. Si en una hora reciben 30 cheques, ¿cuál es la probabilidad de que tenga algún cheque sin fondos?
- b. El promedio del valor de los cheques sin fondos es de \$2.300.000. Sabiendo que el banco trabaja 7 horas diarias, ¿qué cantidad de dinero no espera pagar el banco?
- c. El banco dispone de 15 sucursales en la ciudad, ¿cuál es la probabilidad de que al menos cinco sucursales reciban algún cheque sin fondos?
- d. Utilice el teorema de Chebyshev para estimar en cuantas sucursales se tiene una probabilidad de al menos 50% de recibir algún cheque sin fondos.

PROBLEMA 3

Una caja contiene 8 bombillos, de los cuales 3 están defectuosos. Se selecciona un bombillo de la caja y se prueba, si el bombillo sale defectuoso se deja por fuera de la caja y se prueba otro bombillo, hasta que se escoja un bombillo no defectuoso.

Se define la variable aleatoria **X** como la cantidad de bombillos seleccionados de la caja.

- a. Grafique la función de distribución de probabilidad f(x) de la variable aleatoria X.
- b. Calcule el numero esperado de bombillos seleccionados.
- c. Calcule la desviación estándar de los bombillos seleccionados.
- d. Se tiene una variable aleatoria $H(X) = 50 X^2 + 2 X$, calcule la media y la varianza de la variable aleatoria H(X).

PROBLEMA 4

En una fábrica se tiene que la probabilidad de la cantidad de artículos defectuosos en un día está dada por la función f(x) mostrada.

$$f(x) = \frac{4^x e^{-4}}{x!}$$

- a. Grafique la función f(x).
- b. Grafique la función acumulada F(x).
- c. Determine la media de la cantidad de artículos defectuosos en un día.

- d. Utilice el teorema de Chebyshev para estimar el rango en el que la variable aleatoria X tiene una probabilidad mayor o igual a 70%. Compare este valor obtenido con los resultados de la función f(x).
- e. Calcular la probabilidad de que en 100 días el número de artículos defectuosos esté comprendido entre 300 y 500 (incluidos).
- f. Se tiene una variable aleatoria $Z = (20 X + 3)^2$, calcule la media y la varianza de la variable aleatoria Z.