Exercises 2: Set Operations

Exercises

1. Using an appropriate Venn Diagram in each case indicate the following sets.

(, (, - ,	(a)	$(A \cap$	$\cap B)$	\cupB^c
-----------	-----	-----------	-----------	-----------

(e) $(A \cup B) \cap C$

(b)
$$A \setminus (A \setminus B)$$

(f) $(A \cup B) \cap (A \cup C)$

(c)
$$A \cap (B \setminus A)$$

(g)
$$A^c \cup B^c \cup C^c$$

(d)
$$A \cup (B \cap C)$$

(h) $A^c \cap (B \setminus C^c)$

2. Let $A=\{1,2,3,4,5\}$, $B=\{3,4,5,6,7\}$, and $C=\{1,2,6,7\}$, with the universal set being $U=\{1,2,3,\ldots,10\}$. Write down the following sets by listing their elements:

(a)
$$(A \cap B) \cup B^c$$

(e) $(A \cup B) \cap C$

(b) $A \setminus (A \setminus B)$

(f) $(A \cup B) \cap (A \cup C)$

(c) $A \cap (B \setminus A)$

(g) $A^c \cup B^c \cup C^c$

(d) $A \cup (B \cap C)$

(h) $A^c \cap (B \setminus C^c)$

3. Give an example of three sets A, B and C such that $A \cap B \cap C = \emptyset$, but $A \cap B$, $B \cap C$ and $C \cap A$ are all non-empty.

Solutions

1. (a)

(c)

(d)

(e)

(f)

(g)

2. Let $A=\{1,2,3,4,5\},\ B=\{3,4,5,6,7\},$ and $C=\{1,2,6,7\},$ with the universal set being $U=\{1,2,3,\ldots,10\}.$ Write down the following sets by listing their elements:

- (a) $(A \cap B) \cup B^c = \{1, 2, 3, 4, 5, 8, 9, 10\}$
- (b) $A \setminus (A \setminus B) = \{3, 4, 5\}$
- (c) $A \cap (B \setminus A) = \emptyset$

(h)

- (d) $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6, 7\}$
- (e) $(A \cup B) \cap C = \{1, 2, 6, 7\}$
- (f) $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\}$
- (g) $A^c \cup B^c \cup C^c = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (h) $A^c \cap (B \setminus C^c) = \{6, 7\}$
- 3. $A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}$ is but one example.