functional analysis study note

Zehao Li

October 2025

Definition 1. if X is a Banach Space, and then X is called reflexive if $\hat{X} = X^{**}$

example 1. $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$ then $(L^p)^* = L^q$, $(L^p)^{**} = L^p$. but this is not true for p = 1, since $(L^\infty)^* \neq L^1$

Definition 2. Let X be a topological space. $A \subset X$ a subset. Then A is nowhere dense if $(\overline{A})^{\circ} = \emptyset$

Theorem 1. The Barie Category theorem:

Let X be a complete metric space or a locally compact Hausdorff space.

1. if $\{u_n\}_{n=1}^{\infty}$ is a sequence of open dense sets, then $\bigcap_{n=1}^{\infty} u_n$ is dense in X. 2.X is not a countable union of nowhere dense sets.

Remark 1. if a set is countable union of nowhere dense sets, it is called of 1st category or meager set.

Proof. Proof of 1:

 $A \subset X$ is dense iff $\overline{A} = X$ iff for any $W \in X$ is open and non-empty, $A \cap W \neq \emptyset$

Thus,

$$W \cap (\bigcup_{n=1}^{\infty} u_n) \neq \emptyset$$

since u_1 is open and dense, so $u_1 \cap W \neq \emptyset$ and open.

thus, exists $B(x_1, r_1) = \{y \in X | d(x, y) < r_1\}$ such that $\overline{B(x_1, r_1)} \subset u_1 \cap W$ since u_2 is dense and open, $B(x_2, r_2) = \{y \in X | d(x_2, y) < r_2\}$ such that $B(x_2, r_2) \subset u_2 \cap B(x_1, r_1)$

Thus, exists $B(x_n, r_n) \subset B(x_{n-1}, r_{n-1}) \cap u_n$.

If we let $0 < r_n < 2^{-n}$. If X is local compact Hausdorff space, replace the balls $B(x_n, r_n)$ be neighborhood $B(x_n, r_n)$ such that $B(x_n, r_n)$ is compact.

Note that $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy sequence in $X, x_n, x_m \in B(x_N, r_N)$ if $n, m > \infty$ N.

Thus, $x = \lim_{n \to \infty} x_n$ exists since X is complete.

(if X is locally compact Hausdorff space, then compact sets $\{\overline{B(x_n,r_n)}\}$ have the finite intersection properly, hence $\bigcap_{n=1}^{\infty} \overline{B(x_n, r_n)} \neq \emptyset$

Note: $x_n \in B(x_k, r_k)$ for any $n \ge k$, we have $x \in \overline{B(x_k, r_k)}$ for any k. Given $n \in \mathbb{N}, \ \overline{B(x_n, r_n)} \subset u_n \cap B(x_{n-1, r_{n-1}}) \subset u_n \cap B(x_1, r_1) \subset u_n \cap W$ Thus, $\bigcap_{n=1}^{\infty} u_n \cap W \neq \emptyset$

Thus,
$$\bigcap_{n=1}^{\infty} u_n \cap W \neq \emptyset$$

Proof. Proof of 2:

Let $(A_n)_{n=1}^{\infty}$ the nowehre dense sets. Then $(\overline{A_n})^{\circ} = \emptyset$ for any n, i.e. $\overline{A_n}^C$ is dense.

$$\overline{(\overline{A_n})^C} = ((\overline{A_n})^\circ)^C = X$$

hence,

$$\bigcap_{n=1}^{\infty} (\overline{A_n})^C \neq \emptyset$$

then

$$\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \overline{A_n} = (\bigcap_{n=1}^{\infty} (\overline{A_n})^C)^C \subsetneq X$$

Theorem 2. The uniform boundness principle:

X, Y be normed space and $A \subset B(X, Y)$

1.if $\sup_{T\in A}\|T(x)\|<\infty$ for all x in a non-measure set, then $\sup_{T\in A}\|T\|<\infty$

2.if X is Banach space, then if $\sup_{T\in A}\|T(x)\|<\infty$ for any $x\in X$, then $\sup_{T\in A}\|T\|<\infty$

Proof. 1. set

$$E_u = \{x \in X | \sup_{T \in A} ||T(x)|| \le u\} = \bigcap_{T \in A} \{x \in X | ||T(x)|| \le u\}$$

 E_n is closed. By assumption $\bigcup_{n=1}^{\infty} E_n$ is not meager, i.e. at least one of the E_n is not nowhere dense. Thus, exists $n \in N$ s.t. $(E_n)^{\circ} \neq \emptyset$

hence, exists $B(x_0,r)$ s.t $\overline{B(x_0,r)} \subset E_n$, hence $\overline{B(0,r)} \subset E_{2n}$:

if $||x|| \le r$, then $x_0 - x \in \overline{B(x_0, r)}$ hence

$$||T(x)|| = ||T(x - x_0 + x_0)|| \le ||T(x - x_0)|| + ||T(x_0)|| \le 2n$$

for any $T \in A$.

Thus,
$$||T|| \leq \frac{2n}{r}$$
 for any $T \in A$

Proof. 2. follows by Barie category: Since Banach space are complete and metric space proved by 1. \Box

Definition 3. X, Y be topological space $f: X \to Y$ a function. if u open in X and then f(u) is open in Y

Theorem 3. open mapping theorem:

Let X, Y be Banach space and $T: X \to Y$ a bounded linear operator such that T is surjection, then T is open.

more, X,Y Banach space, $T:X\to Y$ bounded linear operator, T bijection then T^{-1} is continuous.

Definition 4. Let X, Y be topological space $f: X \to Y$ a function, then f is open if f(u) is open in Y for all open u in X

Theorem 4. Let X, Y be normed space $f: X \to Y$ linear map. Then f is open iff f(B) contain a ball centered at 0 in Y where $B = \{x \in X | ||x|| < 1\}$

Proof. if f is open, then f(0) = 0 is trivial.

the opposite direction: By assumption $D \subset f(B)$ where $D = \{y \in Y | ||y|| < r\}$.

Since $0 \in f(B)^{\circ}$, then f is linear implies $0 \in (f(B_r))^{\circ}$, so let

$$B_r = \{x \in X | ||x|| < r\} = rB, f(B_r) = rf(B)$$

and $x \in X \to rx$ (r > 0) is a homomorphism. Thus, we have $0 \in f(B)$

Let $O \subset X$ be an open set, then for any $x \in O$, exists rx > 0 such that $B(x, rx) = \{w \in X | ||w - x|| < rx\} \subset O$. Since $0 \in (f(B_{rx}))^{\circ}$, exist ball $D_{tx} \subset f(B_{rx})$ in Y, $f(x) + D_{tx}$ is open as the transition by transition invariant is a homomorphism.

so we have $f(x) \in f(B(x, rx))^{\circ}$, then exists sx > 0 such that $D_{f(x)} = \{y \in Y | ||y - f(x)|| < sx\} \subset f(O)$.

Implies

$$\bigcup_{x \in O} D_{f(x)} \subset f(O)$$

$$f(x) \in D_{f(x)}$$
 hence, $f(O) = \bigcup_{x \in O} D_{f(x)}$ is open.

Theorem 5. open mapping theorem: let X, Y be Banach space, $T \in B(X, Y)$. If T is surjection, then T open.

Proof. Let $B_r = \{x \in X | ||x|| < r\}$

need to show $T(B_1)$ contain a ball centered at 0 in Y.

 $X=\bigcup_{n=1}^\infty B_n,$ then Y=T(X) (T is surjection), we have $Y=T(X)=\bigcup_{n=1}^\infty T(B_n)$

by Barie category: Since Y is complete, exists a n such that $T(B_n)$ is not nowhere dense.

Since $x \in X \to kx \in X$ is a homomorphism for any $k \in \mathbb{N}$, this implies:

 $T(B_1)$ can not be nowhere dense hence $(T(B_1))^{\circ} \neq \emptyset$.

Then, exists $y_0 \in Y, r > 0$ such that $B(y_0, 4r) \subset T(B_1)$

we show a ball of radius $\frac{r}{2}$ centered at 0 in Y is contained in $T(B_1)$ since $y_0 \in \overline{T(B_1)}$, so exists $y_1 \in T(B_1), y_1 = T(x_1)$. $x_1 \in B_1$ with $||y_1 - y_0|| < 2r$, then $B(y_1, 2r) \subset \overline{T(B_1)}$

Let ||y|| < 2r, then

$$y = T(x_1) - (y_1 - y_0) \in T(x) - \overline{T(B_1)} = T(x_1) + \overline{T(B_1)} \subset \overline{T(x_1 + B_1)} \subset \overline{T(B_2)}$$

Thus, we have $\frac{y}{2} \in \overline{T(B_1)}$, so we have found a T > 0 such that ||y|| < r, $y \in \overline{T(B_1)}$.

Then need to show $B_{\frac{r}{2}} \subset T(B_1)$

Since ||y|| < r, we have $y \in \overline{T(B_1)}$, so if $||y|| < \frac{r}{2}$, then $y \in \overline{T(B_{\frac{1}{2}})}$. Hence, $||y|| < r(\frac{1}{2})^n$, then $y \in \overline{T(B_{\frac{1}{2^n}})}$

Then, WTS $\{y \in Y | \|y\| < r/2\} \subset T(B_1)$

Since ||y|| < r/2, there exists $x_1 \in B_1/2$ such that $||y - Tx_1|| < r/4$.

Then exists $x_2 \in B_{(1/2^2)}$ such that $||y - Tx_1 - Tx_2|| < r/2^3$. By induction, exists $X_n \in B_{(1/2^n)}$ such that $||y - \sum_{i=1}^n Tx_i|| < r/2^n$ and

Since $\sum_{i=1}^{\infty} x_i$ absolutely converge, that $\sum_{i=1}^{N} x_i \to x$ in X since X is Banach

Hence, exists $x \in X$ such that $x = \sum_{i=1}^{\infty} x_i$, $||x|| \le \sum_{i=1}^{\infty} ||x_i|| < \sum_{i=1}^{\infty} 1/2^i =$

Thus, $x \in B_1$ and $||y - \sum_{i=1}^n Tx_i|| = ||y - T(\sum_{i=1}^n x_i)|| < 1/2^n$. As $n \to \infty$, $T(\sum_{i=1}^\infty x_i) = Tx$. So $||Tx - y|| \to 0$, i.e. $y = Tx \in T(B_1)$.

corollary 1. Let X, Y be Banach Space, $T \in B(X, Y)$, T is bijection then T^{-1} $is\ continuous$

Theorem 6. Let $T: X \to Y$ a linear map X, Y normed space then the graph of T is defined in a subspace of $X \times Y$ by $y(T) = \{(x,y) \in X \times Y | y \in T_x\}$ linear subspace of $X \times Y$.

T is closed if y(T) is closed subspace of $X \times Y$.

Note if T is continuous, y(T) is closed. $(x_n \to x, y_n \to y)$ then T(x) = y.

Theorem 7. Closed Graph theorem

Let X, Y be the Banach space, $T: X \to Y$ a closed linear map. Then T is continuous.

Proof. $\Pi_1: X \times Y \to X, \Pi_2: X \times Y \to Y$ be the $\Pi_1: ((x,y)) = x, \Pi_2((x,y)) = y$. Restrict Π_1, Π_2 to y(T) which is closed subspace of $X \times Y$.

Hence, y(T) is also a Banach space.

Then $\|\Pi_1(X, Tx)\| = \|x\| \le \|x\| + \|T_x\|$,

$$\|\Pi_2(X, Tx)\| = \|Tx\| \le \|x\| + \|T_x\|$$

Thus, Π_1, Π_2 are bounded linear operator. Π_1 is bijection from $y(T) \to X$ so Π_1^{-1} is continuous.

Then
$$T_x = \Pi_2 \circ \Pi_1^{-1}(x)$$
 is continuous for any $x \in X$.

Remark 2. WTS a given T is continuous, it is often easier to use closed graph theorem than check continuous.