Cody strange 1/27/2022

1.11.1(b):	p	•	•	C
	p	V	q	
		p		

р	q	рVq	$p \leftrightarrow q$
T	T	Т	T
Т	F	Т	F
F	T	Т	F
F	F	F	T

True

1.11.1(g):

 $q \rightarrow p$

¬q

∴ р

р	q	-р	$q \rightarrow p$
Т	Т	F	T
Т	F	F	T
F	T	Т	F
F	F	Т	T

False, p = F q=F

Cody	strange
1/27/	2022

1.11.3(c)

The patient has high blood pressure or diabetes or both.

The patient has diabetes or high cholesterol or both.

∴ The patient has high blood pressure or high cholesterol.

P = The patient has high blood pressure, Q = The patient has diabetes, R = The patient has high cholesterol

PVQ

QVR

∴ P V R

Р	Q	R	PVR	QVR	PVR
Т	Т	Т	Т	Т	T
Т	Т	F	Т	Т	T
Т	F	Т	Т	Т	T
Т	F	F	Т	F	T
F	Т	Т	Т	Т	T
F	Т	F	F	Т	F
F	F	Т	Т	Т	Т
F	F	F	F	F	F

True

1.12.1(a)

Sally had a side effect or Sally took the medication.

Sally took the medication.

∴ Sally did not have side effects.

P = Sally had a side effect

Q = Sally took the medication

PVQ

Q

.. ¬P

Invalid, Sally had a side effect = T, Sally took the medication = T

......

Cody strange 1/27/2022 1.12.1(d) If Sally had side effects, then she took the medication. Sally did not take the medication. ∴ Sally did not have side effects. P = Sally had a side effect

Q = Sally took the medication $P \rightarrow Q \\ \neg Q$

∴¬P

Valid, modus tollens

1.12.2(f) $p \rightarrow q$ $r \rightarrow u$ $p \wedge r$

∴q∧u

- 1. $p \wedge r$, hypothesis
- 2. r, simplification 2
- 3. $r \rightarrow u$, hypothesis
- 4. u, modus ponens 2&3
- 5. $p \rightarrow q$, hypothesis
- 6. ¬p V q, conditional identities 5
- 7. q, addition 6
- 8. $q \Lambda u$, conjunction 4&7

```
Cody strange
1/27/2022
```

1.12.4(a)

If I drive on the freeway, I will see the fire.

I will drive on the freeway or take surface streets (or both).

I am not going to take surface streets.

∴ I will see the fire.

```
p = drive on the freeway
```

q = see the fire

r = take surface streets

 $p \rightarrow q$ p V r

¬r

'nФ

- 1. p V r, hypothesis
- 2. p, addition 1
- 3. $p \rightarrow q$, hypothesis
- 4. q, modus ponens 2&3
- 5. ¬r, hypothesis
- 6. q, simplification 4&5

```
1.13.1(a)
```

P(x) = practices hard

Q(x) = plays badly

 $\forall x (P(x) \lor Q(x))$ $\exists x (\neg P(x))$

∴ Q(x)

- 1. $\forall x(P(x) \lor Q(x))$, hypothesis
- 2. $\forall xQ(x)$, addition 1
- 3. Q(x), Universal instantiation 2
- 4. $\exists x(\neg P(x))$, hypothesis
- 5. Q(x), simplification 3&4

Cody strange 1/27/2022

1.13.5(a)

Every student on the honor roll received an A. No student who got a detention received an A.

No student who got a detention is on the honor roll.

P(x) = x was on the honor roll

Q(x) = x received an A

R(x) = x got detention

 $\forall x (P(x) \rightarrow Q(x))$

 $\forall x (R(x) \rightarrow \neg Q(x))$

 $\therefore \forall x (R(x) \rightarrow \neg P(x))$

Valid

- 1. $\forall x(P(x) \rightarrow Q(x))$, hypothesis
- 2. $P(x) \rightarrow Q(x)$, Universal instantiation 1
- 3. $\neg P(x) \lor Q(x)$, conditional identities 2
- 4. $\forall x(R(x) \rightarrow \neg Q(x))$, hypothesis
- 5. $R(x) \rightarrow \neg Q(x)$, Universal instantiation 4
- 6. $\neg R(x) \lor \neg Q(x)$, conditional identities 5
- 7. $\forall x(R(x) \rightarrow \neg P(x))$, hypothesis
- 8. $R(x) \rightarrow \neg P(x)$, Universal instantiation 7
- 9. $\neg R(x) \lor \neg P(x)$, conditional identities 8
- 10. $\neg R(x) \lor \neg P(x)$, Resolution 3&6

......

1.13.5(c)

Every student who missed class got a detention.

Penelope is a student in the class.

Penelope got a detention.

Penelope missed class.

P(x) = x missed classs

Q(x) = x got detention

Invalid

P(F)

P(T)