

Lógica e Sistemas Fuzzy

e Robótica

inteligencia Artificial

Lógica Fuzzy

Lógica e Sistemas Fuzzy

- □ Introdução
 - Lógica Fuzzy (ou Nebulosa)
 - □É uma lógica (matemática, com formalismos, teoremas, ...) que pode ser utilizada em diversas aplicações, inclusive controle.
 - Sistemas Fuzzy:
 - ☐ Sistemas de controle inteligentes que utilizam a lógica fuzzy como para modelar o sistema.

Lógica Fuzzy

Idéia central da Lógica Fuzzy

- Existe no mundo situações onde os limites entre estados não são claramente definidos:
 - Não são Crisp (nítido).
 - São Fuzzy (nebuloso).

Exemplos:

- Crisp: estado de um flip-flop, sinal de trânsito.
- Fuzzy: velho x novo, quente x frio.
- Lógica Fuzzy é, então, uma tentativa de tratar conceitos vagos, não incerteza!
- □ Vago é diferente de incerto!

Lógica Fuzzy

Histórico

- 1920: Início, com lógicas multivaloradas introduzidas por Lukasiewicz.
- □ 1965: Zadeh introduz a representação das variáveis linguísticas em Lógica Fuzzy.
- □ 1974: Mandami introduz o uso da Lógica Fuzzy em Controle
- □ 1980 em diante: aplicações
- □ Principio da Incompatibilidade (Zadeh, 1965)
- "Na medida que a complexidade de um sistema aumenta, nossa habilidade de fazer afirmações precisas e significativas sobre seu comportamento diminui até que um limiar é atingido, além do qual precisão e relevância se tornam características mutuamente exclusivas"

Lógica Fuzzy

Idéia principal da Lógica Fuzzy

1965: Lógica Fuzzy (Zadeh)

"Elementos pertencem a um certo conjunto com diferentes graus de pertinência".

A Lógica Clássica é a ciência que estuda e modela as leis do raciocínio humano.

Lógica Fuzzy é a ciência que estuda e modela o modo aproximado do raciocínio humano.

Lógica Fuzzy

Teoria de Conjuntos Clássica

- □ Na teoria dos conjuntos clássica, um elemento ou pertence ou não pertence a um conjunto. Conjuntos CRISP.
- □ Dado $B \subset Y$ (B um conjunto no universo Y) e $\exists y \in Y$, o grau de pertinência com respeito a B é:

$$\mu_B(y) = 1 \text{ se } y \in B.$$
 $0 \text{ se } y \notin B.$

- □ Grau de pertinência $\mu_B(y)$:
 - Define o quanto o elemento y pertence ao conjunto B.
- □ Na lógica clássica, um elemento pertence ou não, logo $\mu_B(y)$ vale zero ou um.

Lógica Fuzzy

Teoria de Conjuntos Fuzzy

□ $A \subset X$ é um conjunto Fuzzy se seus elementos forem caracterizados por: $\mu_A(x) : X = [0, 1] \ \forall x \in X$.

- \square μ_A é uma função de pertinência entre θ e 1.
 - Se μ_A próximo a 1 → alto grau de pertinência de x ∈ X.
 - Se μ_A próximo a $\theta \to$ baixo grau de pertinência de $x \in X$.

Teoria Clássica de Conjuntos

Conjuntos Fuzzy

Lógica Fuzzy

Grau de Pertinência

- José tem 43 anos.
- Ele é jovem ou velho?

Grau de Pertinência

Lógica Fuzzy

Grau de Pertinência

- José é na verdade Adulto e Velho ao mesmo tempo, porém com graus de pertinência aos respectivos conjuntos distintos.
- Os graus 0.6 p/ adulto e 0.4 p/ Velho indicam que...:
 - José é mais adulto do que velho.

Lógica Fuzzy

Comparação

Probabilidade versus Lógica Fuzzy:

José tem 0.85 de probabilidade de ser alto. José é alto com grau de pertinência 0.85.

Indica que José tem grandes chances de ser alto. Não tem-se idéia da altura de José. Ele pode, inclusive, não ser alto !

Indica que José é bem compatível com o conceito alto. Tem-se idéia da altura de José.

Lógica Fuzzy

Conjuntos Fuzzy

Exemplo: Conjunto de pessoas altas

Lógica Fuzzy

Características Lógica Fuzzy

- □ Permite formalizar variáveis lingüísticas
- □ Exemplo Idade:
 - □ pode assumir como valor um dos membros do conjunto [jovem, velho].
 - □Jovem, Velho: Etiquetas lingüísticas primárias.
- □ A formalização de cada Etiqueta lingüística é dada por uma função de pertinência.

Lógica Fuzzy

Função de Pertinência

- As funções de pertinência podem ter formas padrão ou definidas pelo usuário e diferentes usuários podem definir funções de pertinência distintas para um mesmo conjunto fuzzy.
 - Tipos de Função de Pertinência
 - Linear
 - Trapezoidal e Triangular
 - Formatos S, Z e PI
 - Gaussiana
 - Singleton
 - Irregulares

Lógica Fuzzy

Funções de Pertinência

Linear

Conjunto + simples. Boa escolha p/ aproximação de conceitos não muito bem compreendidos.

Lógica Fuzzy

Funções de Pertinência

Trapezoidal

Processamento rápido. É o mais usual.

$$\operatorname{Trap}(x, a, b, c, d) = \begin{cases} 0 & x \le a \\ 1 - (b - x)/(b - a) & a < x \le b \\ 1 & b < x \le c \\ (d - x)/(d - c) & c < x \le d \\ 0 & x > d \end{cases}$$

Lógica Fuzzy

Funções de Pertinência

Triangular

Caso especial da função de pertinência trapezoidal

$$Tri(x, a, b, c) = \begin{cases} 0 & x \le a \\ 1 - (b - x)/(b - a) & a < x \le b \\ (c - x)/(c - b) & b < x \le c \\ 0 & x > c \end{cases}$$

Lógica Fuzzy

Funções de Pertinência

Curva Formato S

Equação quadrática

$$S(x,a,b) = \begin{cases} 0 & x \le a - b \\ [x - (a - b)]^2 / 2b^2 & a - b < x \le a \\ 1 - [(a + b) - x]^2 / 2b^2 & a < x \le a + b \\ 1 & x > a + b \end{cases}$$

Lógica Fuzzy

Funções de Pertinência

- Curva Formato Z
- Z(x,a,b) = 1 S(x,a,b)

$$Z(x,a,b) = \begin{cases} 1 & x \le a - b \\ 1 - [x - (a - b)]^2 / 2b^2 & a - b < x \le a \\ [(a + b) - x]^2 / 2b^2 & a < x \le a + b \\ 0 & x > a + b \end{cases}$$

Lógica Fuzzy

Funções de Pertinência

- Curva Formato PI
- Junção das curvas S e Z.

Lógica Fuzzy

Funções de Pertinência

Gaussiana

Simétrica, radial e uni-modal

Lógica Fuzzy

Funções de Pertinência

Singleton

Tal função não descreve um conjunto fuzzy.

Lógica Fuzzy

Funções de Pertinência

Irregulares

Ás vezes as formas padrão não conseguem escrever/capturar a semântica desejada (representações arbitrárias)

Lógica Fuzzy

Operações com Conjuntos Nebulosos

Operadores Básicos (Zadeh):

- Interseção (AND)
- União (OR)
- Complemento (NOT)

Lógica Fuzzy

Operador AND

• Interseção: $min(\mu_A(x), \mu_B(y))$

Exemplo: Se x é A AND y é B então z é C

$$\mu_{c}(z) = \min(\mu_{A}(x), \mu_{B}(y))$$

Isto é, o grau de pertinência de z no conjunto fuzzy C é determinado pela força ou grau de interseção entre os conjuntos A e B.

Lógica Fuzzy

Exemplo: Quem é alto e de meia idade?

Interseção

Nome	Idade	Altura
Abel	36	1.70
Marcelo	58	1.75
Carlos	64	1.65
João	32	1.78
Pedro	40	1.77
Tiago	22	1.60
Felipe	47	1.73
André	25	1.75

Lógica Fuzzy

Interseção

Lógica Fuzzy

Interseção

Lógica Fuzzy

Intersecção

- Exemplo: Quem é alto E de meia idade?
- São todos os membros com grau de pertinência diferente de zero em ambos conjuntos 'alto' e 'meiaidade'.

Nome	Idade	$\mu_{MI}(x)$	Altura	$\mu_{ALTO}(x)$	Fuzzy
Abel	36	0.83	1.70	0.44	0.44
Marcelo	58	0.00	1.75	0.64	0.00
Carlos	64	0.00	1.65	0.23	0.00
João	32	0.47	1.78	0.70	0.47
Pedro	40	1.00	1.77	0.69	0.89
Tiago	22	0.00	1.60	0.13	0.00
Felipe	47	0.74	1.73	0.62	0.82
André	25	0.10	1.75	0.64	0.10

Lógica Fuzzy

Operador OR

$$\max(\mu_A(x), \mu_B(y))$$

Exemplo: Se x é A AND y é B então z é C

$$\mu_{c}(z) = \max(\mu_{A}(x), \mu_{B}(y))$$

Ou seja, neste caso,

se x é A então z é C se y é B então z é C

Lógica Fuzzy

União

• Exemplo: Quem é alto OU de meia idade?

Nome	Idade	$\mu_{MI}(x)$	Altura	$\mu_{ALTO}(x)$	Fuzzy
Abel	36	0.83	1.70	0.44	0.83
Marcelo	58	0.00	1.75	0.64	0.84
Carlos	64	0.00	1.65	0.23	0.23
João	32	0.47	1.78	0.70	0.70
Pedro	40	1.00	1.77	0.69	1.00
Tiago	22	0.00	1.60	0.13	0.13
Felipe	47	0.74	1.73	0.62	0.74
André	25	0.10	1.75	0.64	0.64

Lógica Fuzzy

Complemento (NOT)

Complemento:

$$\mu_{\mathsf{B}}(x) = 1 - \mu_{\mathsf{A}}(x)$$

O grau de pertinência de B é exatamente o inverso do grau de pertinência de A

Lógica Fuzzy

Propriedades da Lógica Fuzzy

- □ União de $A \cup B$ ("OR" Lógico): $\mu_{A \cup B}(u) = m\acute{a}x[\mu_A(u); \mu_B(u)]$
- □ Intersecção de $A \cap B$ ("AND" Lógico): $\mu_{A \cap B}(u) = min[\mu_A(u); \mu_B(u)]$
- □ Complemento de *A* ("*NOT*" Lógico): $\mu_{\neg A}(u) = 1 \mu_A(u)$

Lógica Fuzzy

Aplicação da Lógica Fuzzy em Controle

- □ Controle Clássico
 - Controle descrito por equações diferenciais lineares (ou não), etc...

Σ

Modelar matematicamente a dinâmica do processo.

Referência

Requer um bom conhecimento da planta a ser controlada.

□ Controle Inteligente

No mínimo, controle com regras
 Se -Então

Dinâmica mais Lógica!

Lógica Fuzzy

Regras Fuzzy

- ho regras do tipo Se $-Ent ilde{a}o$ baseadas em variáveis Fuzzy.
- Se "x vale A" então "y vale B".

□ Ex:

- Se a temperatura estiver alta então diminua um pouco corrente.
- Se a velocidade estiver baixa então aumente muito a aceleração.

Uma regra Fuzzy é uma implicação: A → B

Lógica Fuzzy

Regras Fuzzy

Implicações Fuzzy (Mandani)

Mínimo: $\mu_{p\to q}(x, y) = \min[\mu_p(x), \mu_q(y)]$

Produto: $\mu_{p\to q}(x, y) = \mu_p(x) \times \mu_q(y)$

Lógica Fuzzy

Regras Fuzzy

Exemplo: se $(x \in A)$ então $(y \in B)$

Grau de ativação da regra

Lógica Fuzzy

Regras Fuzzy

Exemplo: se $(x \in A)$ então $(y \in B)$

Grau de ativação da regra

Lógica Fuzzy

Regras Fuzzy

Exemplo: se (x é A) então (y é B)

Grau de ativação da regra

Lógica Fuzzy

Controle Fuzzy

- Controle inteligentes que utilizam a lógica Fuzzy para modelar o sistema.
- □ Usa variáveis Fuzzy.
- □ Baseado com regras Fuzzy Se Então

Exemplo: CONTROLE DE NÍVEL DE ÁGUA EM UM TANQUE SE "nível água estiver alto" ENTÃO "abrir muito a válvula"

Lógica Fuzzy

Controle Fuzzy (esquema geral)

Lógica Fuzzy

Controle Fuzzy

☐ Fuzzyficador:

- Transforma a entrada numérica em um valor fuzzy.
- Pode ser feito via função ou por uma tabela.
- No gráfico da função de pertinência, representa descobrir o valor de μ para o valor de entrada.

□ Exemplo: Nível do reservatório de água em 1,7 metros

Lógica Fuzzy

Controle Fuzzy

□ Inferência Fuzzy:

Mínimo:

 Para cada regra, a partir da pertinência de cada entrada encontra o gráfico de saída resultante (PODE SER O MÍNIMO OU O PRODUTO)

 Quando houver mais de uma regra, agrega-se os resultados parciais fornecidos por cada regra em um único gráfico, geralmente por união dos resultados.

Lógica Fuzzy

Controle Fuzzy

- □ Desfuzzyficação:
 - A partir do gráfico resultante da inferência, calcula uma saída numérica.
 - Diversos métodos para isso, sendo o mais comum o do centróide.

$$C.G. = \frac{\sum_{y} y \cdot \mu_{B}(y)}{\sum_{y} \mu_{B}(y)}$$
 Equivalente discreto de: $y_{p} = \frac{\int y \mu_{B}(y) dy}{\int \mu_{B}(y) dy}$

Exemplo: Quanto devo abrir a válvula para nível em 1,7 metros ?

C.G. =
$$\underline{20*0,2 + 40*0,25 + 60*0,4 + 80*0,7 + 90*0,8}$$

0,2 + 0,25 + 0,4 + 0,7 + 0,8

$$C.G. = 70,6 \text{ graus}$$

Lógica Fuzzy

Controle Fuzzy

- □ Desfuzzyficação (Outros Métodos):
 - Bisector: É a linha vertical que divide a região da curva em duas regiões de áreas iguais. Quase sempre dá o mesmo valor do centróide.
- Valores com o Máximo:
 - □ SOM: Smallest of Maximum
 - MOM: Middle of Max
 - □ **LOM**: Largest of Max

Lógica Fuzzy

Controle Fuzzy

□ E se a entrada for fuzzy ? Ou seja, não sabemos o nível do tanque precisamente, sabemos apenas que ele está no nível médio.

Nível médio do tanque

Lógica Fuzzy

Esquema Geral da Inferência Fuzzy

Lógica Fuzzy

Exemplo: Obesidade

□ Definindo o que é "Comer" e o que é "Peso"

Podemos definir esses conjuntos fuzzy da forma como entendemos cada um dos termos "comer" e "peso"

Lógica Fuzzy

Exemplo: Obesidade

□ Como definir uma regra ?

SE "comer bastante" ENTÃO "ficará pesado"

Lógica Fuzzy

Exemplo: Obesidade

□ Como definir uma regra ?

SE "comer bastante" ENTÃO "ficará pesado"

Lógica Fuzzy

Exemplo: Obesidade

□ Como definir uma regra ?

Fazendo a Fuzzyficação para uma entrada 5

Lógica Fuzzy

6

8

10

(10 Kg)

Exemplo: Obesidade

□ Como definir uma regra ?

8 (1000 Kcal)

Fazendo a Inferência Fuzzy

2

Lógica Fuzzy

Exemplo: Obesidade

□ Como definir uma regra ?

SE "comer bastante" ENTÃO "ficará pesado"

Fazendo a Defuzzificação.

C.G. =
$$8*0.2 + 9*0.38 + 10*0.38$$

0.2 + 0.38 + 0.38

$$C.G. = 9,1875$$

Lógica Fuzzy

Exemplo: Obesidade

□ Regras

SE "comer bastante" ENTÃO "ficará pesado"

SE "comer razoável"
ENTÃO "ficará peso médio"^{1,0}

SE "comer pouco" ENTÃO "ficará leve"

Lógica Fuzzy

Exemplo: Obesidade

Quanto será o peso de uma pessoa que comeu "um pouco mais que pouco"?

Lógica Fuzzy

Exemplo: Obesidade

□ Saída (defuzzificação - mínimo)

Contróide (C.G.) =
$$\frac{2*0.5 + 3*0.5 + 4*0.5 + 5*0.3 + 6*1.0 + 7*1.0 + 8*1.0 + 9*0.4 + 10*0.4}{0.5 + 0.5 + 0.5 + 0.3 + 1.0 + 1.0 + 1.0 + 0.4 + 0.4}$$

C.G. =
$$34,6/5,6 = 6,17 \rightarrow 61,7 \text{ Kg}$$

Lógica Fuzzy

Exemplo: Obesidade

Outras Saídas Fuzzy


```
SOM \rightarrow 6 \rightarrow 60Kg
MOM \rightarrow 7 \rightarrow 70Kg
LOM \rightarrow 8 \rightarrow 80kg
```


Lógica Fuzzy

Exemplo 2: calculo de gorjeta

- Calcular a gorjeta a ser dada para o garçom a partir da qualidade do serviço e da comida.
- □ Entradas e saídas numéricas
 - Entradas: Serviço: nota de 0 a 10 e Comida: nota de 0 a 10
 - Saída: Gorjeta: de 5 a 25 %
- □ 3 Regras:
 - Se "o serviço é pobre" ou "a comida é ruim" então "dar pouca gorjeta".
 - Se "a serviço é bom" então "dar gorjeta média".
 - Se "o serviço é excelente" ou "a comida é ótima" então "dar muita gorjeta".

□ Obs:

 Como é ou, então usa-se o máximo entre as duas funções de pertinência.

Lógica Fuzzy

Calculo da Gorjeta

Lógica Fuzzy

Exemplos de Aplicações

- □ Metro de Sendai Japão (controle de velocidade).
- □ Câmera Reflex Sanyo (mecanismo de foco).
- Chuveiro Panasonic (controle de temperatura).
- Máquinas de Lavar Roupa.
- ☐ Freio ABS.
- □ Resultado mais conhecido: Metro de Sendai (década de 80)
 - 24 regras Se Então
 - Microprocessador de 8 bits
 - Velocidade de 10 FLIPS (Fuzzy logic Inference per second)
 - A cada 100 ms atualiza a previsão do comando do trem para os próximos 3 segundos.

Lógica Fuzzy

Quando Utilizar Lógica Fuzzy

- ☐ Utiliza-se Lógica Fuzzy para criar sistemas de controle onde os dados são:
 - Mais qualitativos.
 - Menos quantitativos.
- □ Conhecimento é difícil de ser modelado em lógica convencional
- Quando o conhecimento do sistema não é preciso e geralmente é extraído em forma de variáveis lingüísticas (conceitos vagos)
- □ Sistemas devem ser benignos (conseqüências de uma ação de controle incorreta não podem ser catastróficas)
- □ Objetivos do controle são modestos.
- Operadores humanos competentes estão disponíveis.

Lógica Fuzzy

Bibliografia

Para aprofundamento da Aula de Fuzzy:

- □ Rezende, Solange (Sistemas Inteligentes): Capítulo 7
- Alguns slides desta aula foram baseados no slides:
- □ Anna Reali Costa: "Lógica Nebulosa", Poli-USP.
- Reinaldo A.C. Bianchi: "Lógica Fuzzy", FEI, 2001.
- □ Carlos Eduardo Thomaz: "Lógica Fuzzy", FEI, PEL203,2011
- □ Grupo ICA PUC-RJ