2.2 Interfacing Computers (Networking)

Network

- Nodes: Points in network that sends / receives data; end points
- Network: Interconnected system of nodes with links established via wired/wireless media
- Networking: Practice of linking two or more devices together for sharing of resources
 - Facilitate sharing of resources
 - Remote access
 - Consolidate information
- Benefits:
 - Efficiency in management of multiple machines
 - Reduce cost of maintenance / operation
 - Collaborative
 - Allows sharing of resources / data
 - No need for duplication of files / hardware
 - E.g. printer, storage, files, bandwidth
 - Convenient
 - ◆ Ease of access to resources and information
 - Allows for remote access
- Drawbacks:
 - Network failure: slow service
 - High cost due to hardware and high bandwidth required
 - Complicated set-up and maintenance
 - Expertise required
 - Security problems:
 - Controlled access
 - Intrusions
 - Virus infections

Ethernet

- A series of network devices connected together on a shared Ethernet cable
 - May or may not be connected to the Internet
- Collision may occur when two or more devices try to send data simultaneously
- O Each device has a Media Access Control (MAC) Address
 - Physical address
 - 6 bytes

- Unique for each device
- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
 - Devices take turns to send and receive data
 - Process:
 - 1. Is my frame ready for transmission? Y go to 2
 - 2. Is medium idle? N wait until ready
 - 3. Start transmitting and monitor for collision during transmission
 - 4. Did collision occur? Y go to Collision Detected Procedure
 - 5. Reset retransmission counter and end transmission
- Collision Detected Procedure:
 - Used to resolve a detected collision
 - Complete when retransmission is initiated or retransmission is aborted due to numerous collisions
 - Procedure:
 - 1. Continue transmission until minimum packet time is reached to ensure all receivers detect collision
 - 2. Increment retransmission counter
 - 3. Was max number of transmission attempt reached? Y- abort transmission
 - 4. Calculate and wait random backoff period based on number of collisions
 - 5. Re-enter main procedure at stage 1 of transmission process
- O Methods to overcome collision:
 - Use switches instead of hubs: data sent to port that is meant only for device connected to that port
 - Cables:
 - Twisted pair cabling: separate cables for sending and receiving
 - Optic fibre: uses light transmission, bi-directional

Local Area Network (LAN)

- Connected to Intranet using Switches
- Network that connects computers and devices in a limited geographical area e.g. home
- WLAN: LAN using wireless signals
 - ◆ E.g. Bluetooth, Wi-Fi
- Can be a part of WAN
- Cheaper than WAN

- Able to control security, lower risk of data leaks and viruses
- Provides Intranet
 - Private network contained within an enterprise / organisation
 - Consists of many linked LANs
 - Use leased lines in WAN
 - Connections through one or more gateway computers to the Internet
 - Purpose:
 - Share information, resources, operational systems, computing services, etc. within organisation
 - ◆ Facilitate group work
 - ◆ Teleconferences
 - ◆ Tunnelling:
 - ◆ Virtual Private Network (VPN)
 - Send private data through public network
 - Uses public network with encryption/decryption and other security safeguards
 - ◆ Firewall:
 - Access to internet through firewall servers
 - Ability to screen data in both directions
 - Maintain company security:
 - Prevents viruses from entering
 - Prevents private information from being leaked

Wide Area Network (WAN)

- Connects to the Internet using Routers
- Network that covers a large geographical area using a communications channel
- Provides Internet
- Devices use Internet Protocol (IP) Address
- O Combines many types of media
- Larger volume of traffic
- More expensive than LAN
- Less secure due to larger exposure

Connecting Devices

- Purpose of connecting devices
 - Transferring data from one host to another
- Broadcast: receive from one and send to all
- Unicast: receive from one and send to another

- Multicast: receive from one and send to many (not all)
 - Controlling network traffic
- **Network Hub** (Physical Layer)
 - Used as network connecting device to connect all devices together
 - Basic broadcasting: replicate incoming data and forwards to all connected devices
 - Each device is responsible for determining which packets are destined for it, ignores others
 - O Benefits:
 - ◆ Cheap
 - Simplicity
 - ◆ No error management: high speed
 - O Drawbacks:
 - Wastes bandwidth: costs unnecessary traffic and collisions
 - Security leaks: every host/device on network gets access to data
- Switch (Data Link Layer)
 - Used in LAN / Intranet
 - Each device is connected to a unique port
 - MAC table: records MAC addresses of all the connected devices
 - Sends data to the addressed device (Unicast)
 - Packet sent to switch is read to determine which computer to send to
 - If switch doesn't recognise the destination MAC address, broadcast packet, each device determines if the packet is meant for it
 - O Benefits:
 - Packet handling
 - Only sends packet to specified destination, better security
 - Collision management during high traffic
 - Creates connection between sender and receiver hosts
 - Improves performance and efficiency
 - Problem isolation
 - Circuit Switching
 - Two network nodes establish a dedicated communication channel through the network before nodes may

communicate

- Entire circuits are switched to route traffic to correct destination
- Benefits:
 - Circuit guarantees full bandwidth of channel, no interruption
 - Remains connected for duration of communication session
 - Highly reliable (than packet switching)
 - Ensures data gets across fully
- Drawbacks:
 - Single point of failure cause full disruption in communications
 - Expensive and inflexible due to unused capacity
- E.g. early analog telephone network
- Packet Switching
 - Transmitting data by splitting it into smaller packets
 - Groups all transmitted data into suitably sized packets (broken up)
 - Each packet consist of header and payload
 - Header: IP address, destination MAC address
 - Benefits:
 - Efficient
 - Stable: prevents single point of failure
 - Packets are short
 - Communication links between nodes are only allocated to transferring a single message for short period of time while transmitting each packet
 - Longer messages require series of packets to be sent, but do not require link to be dedicated between transmission of each packet
 - Pipelining
 - Multiple transmissions that do not cause collision can occur simultaneously
 - Drawbacks:
 - ◆ Lagging due to high traffic
 - ◆ Interference
 - Less reliable: loss of packets resulting in data not fully transmitted
- Router (Network Layer)
 - Used for WAN / Internet

- Connect networks to one another using IP address
- Receives packet, router reads destination IP, forwards to destination device
- Can assign IP addresses using DHCP
- Can be used as gateway

Gateway

- System that joins two or more networks with different protocols
- Connects Ethernet to Internet
- O Implementation:
 - Completely in software
 - Completely in hardware
 - Combination of software and hardware
- Operates on every level of OSI model
- Firewalls, VPNs, etc can be integrated into gateways
- E.g. broadband router in households

Network Architecture

• Client-Server

- Specific workstations/terminals that serve the requests of other systems
- One or more computers act as server
- Purpose:
 - Provides service to other systems
 - Dedicated to one server task
- O Client:
 - Request services from the specific servers
- E.g. File server, Print server, Mail server, Proxy server, Domain Name server, Network Time Protocol server
- O Benefits:
 - Centralisation
 - Central servers
 - Help in administrating set-up
 - Access rights and resource allocations by server
 - Proper file management
 - All files stored in servers
 - Easy management
 - Back-up and recovery
 - Security
 - Rules of security defined when setting-up server

O Drawbacks:

- Congestion
 - High volume of traffic overloads servers
 - Servers break down
- Service unavailable
 - Service is down when servers fail
- Maintenance
 - Professionals are required to maintain the set-up

Proxy Server

- Obscure client IP, provides anonymity
- Bypass IP address blocking
- Firewall: filters request to control incoming and outgoing data
 - ◆ Block malicious traffic
- Log activities
- Improve performance:
 - Browser send all HTTP request to cache.
 - If data in cache, proxy returns cache to client; else proxy fetch data from internet and returns data to client, and stores it in proxy cache

Domain Name Server

- Contain database of domain names and their IP addresses
- Hierarchy of databases
- Device sends domain name to DNS
- Process:
- DNS checks its cache if it contains requested domain's IP address:
 - If present, returns back to client
 - If not present, DNS queries Internet Service Provider (ISP)
 - If ISP does not contain requested domain:
 - Direct query to Root server
 - If Root server does not contain requested domain:
 - Direct query to Top Level Domain (TLD) server

Mail Server

- Outgoing:
 - ◆ Simple Mail Transfer Protocol (SMTP)
- Incoming:

- ◆ Post Office Protocol 3 (POP3)
 - Stores emails on client device
 - Delete email after forwarding to client
- Internet Message Access Protocol (IMAP)
 - Stores copies of emails online
- Process of sending mail:
 - Client sends mail to SMTP server of his own domain
 - SMTP server reads recipient address to determine domain
 - If sender and receiver have the same domain, SMTP forwards the email to the domain's POP3 or IMAP servers
 - Sender SMTP server looks for recipient SMTP server and forwards mail to it
 - Recipient SMTP server forwards email to POP3 for local storage or IMAP for online storage
 - Email ready for download when recipient client comes online

Dynamic Host Configuration Protocol (DHCP)

- Every device has a unique unicast IP address to access network
- Centralised and automated TCP/IP configuration
- ◆ Assigns IP addresses to connected devices automatically
- Allocation of IP address (DORA):
 - DISCOVER: Client broadcasts DHCPDISCOVER packet in subnet
 - 2. OFFER: Server responds with DHCPOFFER packet containing potential IP addresses for client
 - 3. REQUEST: Client responds with DHCPREQUEST packet containing server identifier, if multiple offer packets are received, client chooses the fastest response
 - 4. ACK: Server replies with DHCPACK packet to acknowledge client on requested IP address, stores IP address into database
- DHCP servers maintain a pool of IP addresses and leases an address to a client when it connects to the network
- Addresses that are no longer in use are automatically returned to the pool
- Benefits:
 - ◆ Reliable

- Minimises errors caused by manual configurations
- Reduce network administration
- ◆ Ffficient

Peer-to-Peer (P2P)

- Each computer (peer) has equal responsibilities and capabilities.
- No central server
- All computers able to share resources without going through a server computer
- E.g. bitTorrent, Napster
- O Benefits:
 - ◆ More resilient in case of failures and traffic bottlenecks
 - Lack of central server
 - Cheaper costs
 - No maintenance needed
 - More available resources
- O Drawbacks:
 - No control over shared data
 - Copyright infringements, piracy
 - ◆ Poor security
 - Virus
 - Illegal access to computer by others
 - User computer can be slowed down when accessed by others

Transmission

Rate of Transmission

- Measure pf the amount of data that can be transmitted through a connection over a given amount of time.
- Every machine is connected by cable or other types of connection
- Measure of bandwidth
 - Unit: bits per second (bps)
 - aka Baud Rate / Bit rate

Directions of Transmission

- Simplex:
 - Data transmission in one direction
 - ◆ E.g. keyboard: keyboard transmits user input to CPU, but CPU does not need to reply to keyboard
- O Half-Duplex:

- Transmission in both directions, but only one direction will be allowed through at a time
- Type of parallel interface
- Consists of 8 lanes
- E.g. printers, walkie-talkie
- Full-Duplex:
 - Transmission in two ways simultaneously
 - ◆ E.g.:
 - Telephones: allow both people to hear each other at the same time
 - Computers: connected via Ethernet cable can send and receive data at the same time
 - ◆ I/O standards: USB / Thunderbolt

Synchronisation of Transmission

- Coordinating sending and receiving within the network
- Serial transmission: transmission by single bits
- Asynchronous transmission:
 - Sends only one character at a time
 - Character either an alphabet, number, or control character
 - Bit synchronisation between two devices:
 - Use of start bit and end bit
 - Indicated beginning and end of data
 - Idle time between transmissions of different data types
 - Responsibility of sender to separate bit stream into bytes of characters
 - Sender and receiver are not to be synchronised
 - Receiver has to synchronise with incoming bit stream when receiving
 - Benefit:
 - Low cost
 - Drawback: Slow transmission speed
- Synchronous transmission:
 - Bit stream is combined into longer frames that may contain multiple bytes
 - No gaps between various bytes in data stream
 - Bit synchronisation established between sender and receiver by timing transmission of each bit
 - Sender and receiver operate at same frequency in order for receiver to receive data error-free
 - Responsibility of receiver to separate bit stream into bytes

so as to construct original information

- Benefit:
 - Fast transmission speed
- Drawback:
 - High costs

Cyclic Redundancy Check

 Purpose: Check that information is entered correctly / transmitted without corruption

Parity check

- Uses parity bit
- Using bit patterns
 - Even parity check: Parity bit added to ensure even number of "1"s
 - Odd parity check: Parity bit added to ensure odd number of "1"s
- Used for small blocks of data
- Simple to check
- Detects error when bit parity is wrong
- Unable to detect error when two bits are altered

• Check digit

- Attach weights to the digits
- Sum the product of each weight to the corresponding digit of the code
- O Divide the sum using the modulo to find remainder
- Check digit is the difference between modulo and remainder
- O Check digit added to the back of the code
- O E.g. Modulo 11
 - Weights: 7, 6, 5, 4, 3, 2
 - ◆ Code: 508795
 - ◆ Modulo: 11
 - Weighted sum: 7x5 + 6x0 + 5x8 + 4x7 + 3x9 + 2x5 = 140
 - ◆ Remainder: 140 / 11 = 12 R <8>
 - ◆ Check digit: 11 8 = 3
 - ◆ Code: 5087953
- o For checking:
 - Find weighted sum of the multiplication of code and weight, check digit has
 - Divide by modulo
 - Weighted sum should be exactly divisible by modulo (no

remainder)

- Check digit has weightage of 1
- ◆ E.g. Modulo 11
 - ◆ Code = 5087953
 - Weighted sum = 7x5 + 6x0 + 5x8 + 4x7 + 3x9 + 2x5 + 1x3 = 143
 - ◆ Remainder = 143 mod 11 = 0
 - ◆ Thus valid code
- Used for small blocks of data

MD5 Checksum

- Hash function to check if file is legit and untampered with
- o 128 bits string
- If original and checked MD5 checksums match, the file is legit
- If MD5 strings do not match, there's a possibility that the file has been altered
- Most common approach after error detection: Retransmit

Cloud Computing

- Traditional server
 - Organisations own their own servers
 - O Drawbacks:
 - High initial setup cost
 - Require maintenance
 - ◆ High level of administrative work

Cloud Computing

- Network computing approach whereby applications run on a server / group of servers owned by a service provider
- Technologies that provide software, data access, and storage services
- Not owned by user
- O Virtualisation:
 - Technique of running OS and software within another OS / software
 - Simulates real hardware
 - Allows multiple virtual machines to run on the same set of hardware
 - Foundation of cloud computing
- O Benefits:
 - Utility based usage

- ◆ Pay-as-you-use approach
- Use when you want to
- Does not require user to configure or understand how the system works

Flexibility:

- Scalability and Elastic capabilities: Support fluctuating workloads, users can request for more services
- Control choices: Services offer different levels of control as they require
- Security: Imbedded virtual private clouds, encryption, etc.

◆ Efficiency:

- Ease of access: Cloud based applications and data
- Data security: Hardware failures do not result in data loss due to cloud back-ups
- Pay structure: Utility based usage, pay for what you use

◆ Strategic Value:

- Collaboration: Worldwide access allows users to collaborate from various locations
- Competitive edge: Ability to devote less resources to managing infrastructure
- Economy: decrease in total cost as size of system grows

Drawbacks:

- ◆ Lack of control:
 - No ownership and control over hardware and infrastructure
 - Question of ownership: if data is owned by user or service provider
 - Freedom of usage limited by producer e.g. downed services

• Security:

- Data that used to reside locally is now stored and residing elsewhere
- Data is now openly accessible as it is put on the Internet

High cost:

- Cloud computing may be efficient for large companies
- Small companies may lose money as drawbacks > benefits

- Cloud deployment models:
 - Private cloud
 - Public cloud e.g. Google Suite
- Oloud service models:
 - Software as a Service (SaaS) (Top Tier)
 - Allows users to run prebuilt online applications
 - Hardware and software provided and managed by service provider
 - Can't be customised more than provider allows
 - No administrative work needed
 - E.g. iCloud, Google Suite
 - Platform as a Service (PaaS) (Mid Tier)
 - Allows users to create, edit, maintain their own cloud applications using supplier-specific tools and languages
 - Hardware is provided and managed by service provider
 - Operating system and applications managed by user
 - Low administrative work: applications, data
 - ◆ E.g. Google App Engine, Pivotal CF
 - ◆ Infrastructure as a Service (IaaS) (Base Tier)
 - Allows users to run any application they please on cloud hardware of their choice
 - Grants users full access to hardware
 - Virtual machines
 - Hardware is provided and managed by service provider
 - High administrative work: applications, data, OS
 - ◆ E.g. Amazon Web Services; Google; Windows Azure

