# 研究生课程

# 程序验证方法 Rely-Guarantee Method

朱惠彪

华东师范大学软件学院

#### **Related Paper:**

Qiwen Xu, Willem P. de Roever, Jifeng He:
 The Rely-Guarantee Method for Verifying Shared Variable
 Concurrent Programs. Formal Asp. Comput. 9(2): 149-174 (1997)

**Owicki and Gries Method:** 

an interference freedom test

formulated in such a way that the knowledge of the complete system code is assumed

**Rely-Guarantee Method:** 

The key point to achieve compositionality is to reformulate this interference freedom test.

# The Language Syntax

►  $P ::= \bar{x} := \bar{e} \mid P_1; P_2 \mid if \ b_1 \rightarrow P_1 \square ... \square \ b_n \rightarrow Pn \ fi \mid$ while  $b \ do \ P \ od \mid await \ b \ then \ P \ end \mid P_1 \mid \mid P_2$ 

#### A Proof System for Partial Correctness

**Example (Owicki & Gries Method)** 

$$P_{1} :: x := x + 1 || P_{2} :: x := x + 2$$
Let  $p_{1} \equiv x = 0 \lor x = 2$   $q_{1} \equiv x = 1 \lor x = 3$ 

$$p_{2} \equiv x = 0 \lor x = 1$$
  $q_{2} \equiv x = 2 \lor x = 3$ 

The local verification:

$$\begin{cases}
p_1 \\ x := x + 1 \\ q_1 \\ r
\end{cases}$$

$$\begin{cases}
p_2 \\ x := x + 2 \\ q_2 \\ r
\end{cases}$$

#### A Proof System for Partial Correctness

#### Interference freedom test: four cases.

$$\{p_1 \land p_2\} \ x := x + 2 \ \{p_1\}$$
  
 $\{q_1 \land p_2\} \ x := x + 2 \ \{q_1\}$   
 $\{p_1 \land p_2\} \ x := x + 1 \ \{p_2\}$   
 $\{p_1 \land q_2\} \ x := x + 1 \ \{q_2\}$ 

Satisfied!

## **Specification**

#### (pre, rely, guar, post)

- The assumption is composed of pre and rely.
- ► The commitment is composed of *guar* and *post*.
- ▶ P <u>sat</u> (pre, rely, guar, post), if
  - 1) P is invoked in a state which satisfies pre, and
  - 2) any environment transition satisfies rely,

#### then

- 3) any component transition satisfies guar,
- 4) if a computation terminates, the final state satisfies *post*.

$$x \coloneqq 10 \underline{sat} (true, x > 0 \rightarrow x' \ge x, true, x \ge 10)$$

#### **Some notations:**

For two predicates  $f(y, y_0)$  and  $g(y, y', y_0)$ , let f stable when g be a shorthand for  $\forall y, y', y_0. f(y, y_0) \land g(y, y', y_0) \rightarrow f(y', y_0)$  and  $f'(y, y_0)$  denote  $f(y', y_0)$ .

Assignment axiom

$$pre \rightarrow post[\bar{e}/\bar{x}]$$
 $(pre \land [\bar{x}' = \bar{e}]) \rightarrow guar$ 
 $pre \underline{stable \ when \ rely}$ 
 $post \underline{stable \ when \ rely}$ 
 $\bar{x} \coloneqq \bar{e} \ sat \ (pre, rely, guar, post)$ 

- $|\overline{x}' = \overline{e}| \stackrel{\text{def}}{=} (\overline{x}' = \overline{e} \lor x' = x) \land \forall z \in (y \overline{x}). z' = z.$
- In a typical computation, there are a number of environment transitions before and after the component transition. Since *pre* holds initially, it follows from *pre* <u>stable</u> <u>when</u> <u>rely</u> that <u>pre</u> still holds immediately before the component transition.
- Due to post stable when rely, post holds in any states after a number of environment transitions.
- $x := 10 \underline{sat} (true, x > 0 \rightarrow x' \ge x, true, x \ge 10)$

► Consequence rule

$$pre \rightarrow pre_1, rely \rightarrow rely_1, guar_1 \rightarrow guar, post_1 \rightarrow post$$

$$P \ sat \ (pre_1, rely_1, guar_1, post_1)$$

$$P \ \underline{sat} \ (pre, rely, guar, post)$$

 $x := 10 \underline{sat} (x = -2, x > 0 \rightarrow x' \geq x, true, x \geq 10 \forall x = -6)$ 

> Sequential composition rule

$$x := x + 1 \underline{sat} (x \ge x_0, x_0 \le x \to x \le x', x' \ge x, x \ge x_0 + 1)$$

$$x := x + 1 \underline{sat} (x \ge x_0 + 1, x_0 \le x \to x \le x', x' \ge x, x \ge x_0 + 2)$$

$$x := x + 1; x := x + 1 \underline{sat} (x \ge x_0, x_0 \le x \to x \le x', x' \ge x, x \ge x_0 + 2)$$

► Parallel rule

```
(rely \lor guar_1) \rightarrow rely_2

(rely \lor guar_2) \rightarrow rely_1

(guar_1 \lor guar_2) \rightarrow guar

P \underbrace{sat} (pre, rely_1, guar_1, post_1)

Q \underbrace{sat} (pre, rely_2, guar_2, post_2)

P // Q \underbrace{sat} (pre, rely, guar, post_1 \land post_2)
```



```
(rely \lor guar_1) \rightarrow rely_2

(rely \lor guar_2) \rightarrow rely_1

(guar_1 \lor guar_2) \rightarrow guar

P \underline{sat} (pre, rely_1, guar_1, post_1)

Q \underline{sat} (pre, rely_2, guar_2, post_2)
```

 $P // Q \underline{sat}$  (pre, rely, guar, post<sub>1</sub> \( post<sub>2</sub> \)

- Assume the overall environment is *R*. The environment of process *P* consists of *Q* and *R*, and the environment of process *Q* consists of *P* and *R*.
- The strongest rely-condition that P can assume is  $rely \lor guar_2$  and the strongest rely-condition for Q is  $rely \lor guar_1$ .



```
(rely \lor guar_1) \rightarrow rely_2

(rely \lor guar_2) \rightarrow rely_1

(guar_1 \lor guar_2) \rightarrow guar

P \underline{sat} (pre, rely_1, guar_1, post_1)

Q \underline{sat} (pre, rely_2, guar_2, post_2)
```

 $P // Q \underline{sat}$  (pre, rely, guar, post<sub>1</sub> \( \text{post}\_2 \)

- A component transition of  $P \parallel Q$  is either from P or from Q, and hence it satisfies  $guar_1 \lor guar_2$ .
- When both P and Q have terminated, from the two sub-specifications it follows that both  $post_1$  and  $post_2$  are satisfied.

## Thanks!