UNIVERSIDAD DE MEDELLIN FACULTAD DE INGENIERIA INGENIERIA ELECTRONICA ELECTRONICA ANALOGICA

EJEMPLOS DE CLASE – APLICACIONES DEL DIODO – RECTIFICACIÓN DE SEÑALES

1. El siguiente circuito muestra un rectificador de media onda.

Si se tiene una señal de entrada senoidal v_I cuya amplitud es de 10 V y cuya frecuencia es de 1 Hz analice el circuito usando el modelo del diodo ideal, realice las siguientes actividades:

- ullet Dibuje las señales de entrada v_I y de salida v_O
- Dibuje el voltaje (v_D) y la corriente (i_D) del diodo
- Compare los voltajes v_I , v_O y v_D .
- Muestre la característica de transferencia.

Montaje en Spice: rectificador-media-onda_ideal.asc

.model DIdeal D(Ron=0.0001 Roff=100G Vfwd=0)
.tran 0 4 10m

Resultado simulación:

Analisis transitorio

.tran 0 4 10m

Señales de entrada v_I y de salida $v_{\it o}$

Señales de entrada v_{I} y de salida v_{0} (superpuestas)

Voltaje ($v_D=v_I-v_O$) y corriente (i_D) del diodo

Comparación señales de voltaje (Entrada: v_I ; Salida: v_0 ; Diodo: v_D)

Barrido DC

.dc V1 -10 10

Grafica del voltaje de entrada (v_I) .vs. el voltaje de salida (v_O)

- 2. Para el siguiente circuito de diodo ideal, v_I es una onda senoidal 1 kHz y 10 V de amplitud pico.
 - Dibuje la onda resultante en v_o . ¿Cuáles son los valores pico positivos y negativos?
 - Dibuje la característica de transferencia.

Montaje en Spice: ac-ejemplo1_ideal.asc

.model DIdeal D(Ron=0.0001 Roff=100G Vfwd=0)
.tran 0 4m 0.1m

Resultado simulación:

Analisis transitorio

.tran 0 4m 0.1m

Señales de entrada v_I y de salida $v_{\it 0}$

Voltaje de salida $v_{\it o}$

Barrido DC

.dc V1 -10 10

Grafica del voltaje de entrada (v_I) .vs. el voltaje de salida (v_O)

- **3.** Para el siguiente circuito de diodo ideal, v_I es una onda senoidal 1 kHz y 10 V de amplitud pico.
 - Dibuje la onda resultante en v_o . ¿Cuáles son los valores pico positivos y negativos?
 - Dibuje la característica de transferencia.

Montaje en Spice: ac-ejemplo2_ideal.asc

.model DIdeal D(Ron=0.0001 Roff=100G Vfwd=0)

.tran 0 4m 0.001m

Resultado simulación:

Analisis transitorio

.tran 0 4m 0.1m

Señales de entrada v_I y de salida $v_{\it 0}$

Voltaje de salida $v_{\it o}$

Barrido DC

.dc V1 -10 10

Grafica del voltaje de entrada (v_I) .vs. el voltaje de salida (v_o)

- **4.** Para el siguiente circuito de diodo ideal, v_I es una onda senoidal 1 kHz y 10 V de amplitud pico.
 - Dibuje la onda resultante en v_o . ¿Cuáles son los valores pico positivos y negativos?
 - Dibuje la característica de transferencia.

Montaje en Spice: ac-ejemplo3_ideal.asc

.model DIdeal D(Ron=0.0001 Roff=100G Vfwd=0) .tran 0 4m 0.001m

Resultado simulación:

Analisis transitorio

.tran 0 4m 0.1m

Señales de entrada v_I y de salida $v_{\it 0}$

Voltaje de salida $v_{\it o}$

Barrido DC

.dc V1 -10 10

Grafica del voltaje de entrada (v_I) .vs. el voltaje de salida (v_O)

- **5.** En la siguiente figura se muestra un circuito simple de carga de una batería, si v_S es una senoide de amplitud 24 V y la batería es de 12 V.
 - **a.** Encuentre la fracción de cada ciclo durante la cual conduce el diodo.
 - **b.** El valor pico de la corriente del diodo.
 - **c.** El máximo voltaje de polarización inversa que aparece en el diodo.

Montaje en Spice: cargador-bateria_ideal.asc

.model DIdeal D(Ron=0.0001 Roff=100G Vfwd=0) .tran 0 33.33m 0 16u

Grafica punto a:

Grafica punto b:

Grafica punto c:

