

Ensino Médio Integrado ao Técnico

Ciclo Trigonométrico

Prof^a: Queila Batista Muniz de Azevedo

Arcos de circunferência

- A e B dividem a circunferência em duas partes: arco de circunferência (ou apenas arco).
- A e B são denominados extremidades dos arcos.

Medida de arcos de circunferência: medida angular

- A medida do ângulo AÔB é igual à medida angular do arco AB.
- Unidades de medida o grau ou o radiano.

Medida de arcos de circunferência: medida Linear

A **medida linear** de um arco é a medida de seu comprimento. (*o metro, o centímetro, o milímetro etc.*)

Unidade de medida de arcos e ângulos: o grau

180°

O grau

• $med(\widehat{AB}) = 60^{\circ} e med(\widehat{AOB}) = 60^{\circ}$

O grau tem submúltiplos:

- 1' (1 minuto) = $\frac{1}{60}$ do grau
- 1" (1 segundo) = $\frac{1}{60}$ do minuto

Unidade de medida de arcos e ângulos: o radiano

Um arco de um radiano (1 rad) é aquele que tem comprimento igual ao raio da circunferência que o contém, ou seja, o comprimento do arco dividido pelo raio da circunferência é igual a 1. De modo geral:

O radiano

Exemplo

Uma circunferência mede 360°; essa medida também pode ser dada em radiano.

Sabemos que o comprimento de uma circunferência de centro O e raio r é dado por $2\pi r$ e que um arco de medida 1 rad tem comprimento r, assim:

$$\alpha = \frac{C}{r} = \frac{2\pi r}{r} \Rightarrow \alpha = 2\pi$$

Logo, a medida de uma circunferência, em radiano, é 2π rad.

Relação entre grau e radiano

Grau	0	45	90	135	180	270	360
Radiano	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{3\pi}{2}$	2π

medidas em radiano

Relação entre grau e radiano

Exemplo

a) Vamos verificar quanto mede, em grau, um arco de $\frac{\pi}{6}$ rad. Sabendo que π rad = 180°, fazemos a substituição:

$$x = \frac{\pi}{6} \Rightarrow x = \frac{180}{6} \Rightarrow x = 30$$

Assim, um arco de $\frac{\pi}{6}$ rad mede 30°.

Relação entre grau e radiano

Exemplo

b) Para determinar quanto mede, em radiano, um arco de 200º, fazemos:

$$180 \cdot x = 200 \cdot \pi \Rightarrow x = \frac{200 \cdot \pi}{180} \Rightarrow x = \frac{10\pi}{9}$$

Portanto, um arco de 200º mede $\frac{10\pi}{9}$ rad.

Circunferência orientada no plano cartesiano

A circunferência trigonométrica, ou ciclo trigonométrico, tem centro na origem O(0, 0) de um plano cartesiano e raio de 1 unidade. O ponto A(1, 0) é a **origem** de todos os arcos.

Sentido horário e sentido anti-horário

Podemos percorrer uma circunferência em dois sentidos:

■ Sentido anti-horário: med $(\widehat{AP}) = 60^{\circ}$

■ Sentido horário: med $(\widehat{AP}) = -300^{\circ}$

sentido anti-horário

Quadrantes do ciclo trigonométrico

O eixo das abscissas (eixo $\overrightarrow{A'A}$) e o eixo das ordenadas (eixo $\overrightarrow{B'B}$) do plano dividem o ciclo em quatro quadrantes

Simetria no ciclo trigonométrico

 $med(\widehat{AP}) = \alpha rad$

9:

Exercício resolvido

R5. Determinar a medida dos arcos simétricos ao arco de $\frac{\pi}{6}$ rad em relação aos eixos das ordenadas e das abscissas e em relação à origem.

Resolução:

Em um ciclo trigonométrico, quando um valor, sem unidade de medida, está associado a um ponto, subentende-se que esse valor representa a medida de um arco em radiano.

Exercício resolvido

Resolução

- Os arcos simétricos ao arco de $\frac{\pi}{6}$ rad medem:

 em relação ao eixo das ordenadas (eixo y): $(\pi \frac{\pi}{6})$ rad = $\frac{5\pi}{6}$ rad
- em relação ao eixo das abscissas (eixo x): $(2\pi \frac{\pi}{6})$ rad = $\frac{11\pi}{6}$ rad
- em relação à origem (O): $(\pi + \frac{\pi}{6})$ rad = $\frac{7\pi}{6}$ rad

Seno de um arco

 $med(C\hat{O}P) = med(A\hat{O}P) = med(\widehat{AP}) = \alpha$

Aplicando a definição de seno de um ângulo agudo:

$$sen \alpha = \frac{CP}{OP} = \frac{n}{1} = n$$

Para todo arco \widehat{AP} do ciclo trigonométrico, com P(m, n), $med(\widehat{AP}) = \alpha \text{ rad}, \ \alpha \in \mathbb{R} \text{ e } 0 \le \alpha \le 2\pi, \text{ temos sen } \alpha = n.$

Redução ao 1º quadrante

Para α , em radiano, no 1º quadrante:

$$■ sen (π − α) = sen α$$

•
$$sen(\pi + \alpha) = -sen \alpha$$

Variação do seno

$$-1 \le sen \alpha \le 1$$

Cosseno de um arco

Aplicando a definição de cosseno de um ângulo agudo:

$$\cos \alpha = \frac{OC}{OP} = \frac{m}{1} = m$$

Para todo arco \widehat{AP} do ciclo trigonométrico, com P(m, n), $med(\widehat{AP}) = \alpha$, $\alpha \in \mathbb{R}$ e $0 \le \alpha \le 2\pi$, temos cos $\alpha = m$.

Redução ao 1º quadrante

Para a, em radiano, no 1º quadrante:

•
$$\cos (\pi - \alpha) = -\cos \alpha$$

•
$$\cos (\pi + \alpha) = -\cos \alpha$$

•
$$\cos (2\pi - \alpha) = \cos \alpha$$

Variação do cosseno $-1 \le \cos \alpha \le 1$

Tangente de um arco

Aplicando a definição de tangente de um ângulo agudo:

$$tg \alpha = \frac{AT}{OA} = \frac{t}{1} = t$$

Para todo arco \widehat{AP} do ciclo trigonométrico, com P(m, n), $\operatorname{med}(\widehat{AP}) = \alpha, \ \alpha \in \mathbb{R} \text{ e } 0 \le \alpha \le 2\pi \text{ e } \frac{\pi}{2} \ne \alpha \ne \frac{3\pi}{2}, \text{ temos:}$ tg $\alpha = t$, ordenada de T, em que T é a intersecção das retas \overrightarrow{OP} e \overrightarrow{AT} .

Simetria no estudo da tangente

Exemplo

Na figura, vamos observar a tangente de alguns arcos do 1º quadrante e a tangente de seus simétricos em relação aos eixos ou à origem *O*.

↑ tg

Simetria no estudo da tangente

Exemplo

$$tg\frac{\pi}{6} = tg\frac{7\pi}{6} = \frac{\sqrt{3}}{3}$$

$$g \frac{\pi}{4} = tg \frac{5\pi}{4} = 1$$

$$g \frac{\pi}{3} = tg \frac{4\pi}{3} = \sqrt{3}$$

$$tg\frac{2\pi}{3} = tg\frac{5\pi}{3} = -\sqrt{3}$$

$$tg\frac{3\pi}{4} = tg\frac{7\pi}{4} = -1$$

$$tg\frac{5\pi}{6} = tg\frac{11\pi}{6} = -\frac{\sqrt{3}}{3}$$

Vale destacar:

•
$$tg \ 0 = tg\pi = 0$$

• Não existe tg $\frac{\pi}{2}$ nem tg $\frac{3\pi}{2}$.

Redução ao 1º quadrante

Para α , em radiano, no 1º quadrante:

• tg
$$(\pi - \alpha) = -\text{tg } \alpha$$

• tg
$$(\pi + \alpha) = -tg \circ$$

•
$$tg(\pi - \alpha) = -tg \alpha$$
 • $tg(\pi + \alpha) = -tg \alpha$ • $tg(2\pi - \alpha) = -tg \alpha$

Relação fundamental da Trigonometria

Essa relação é válida para qualquer arco \widehat{AP} do ciclo trigonométrico, mesmo quando P pertence a um dos eixos.

Equação trigonométrica

Toda equação em que aparecem razões trigonométricas com arco de medida desconhecida é chamada equação trigonométrica.

Exemplos

•
$$sen x = 0,5$$

$$\cos 2x = -\frac{3}{4}$$

■ sen
$$x = 0.5$$
 ■ cos $2x = -\frac{3}{4}$ ■ $tg^2x + (\sqrt{3} - 1) \cdot tg x - \sqrt{3} = 0$

Observação

 $3x \cdot \cos \pi = 2 \text{ e sen } \frac{\pi}{4} + x = \frac{1}{2} \text{ não são equações}$ trigonométricas, pois a incógnita x não é a medida de um arco.

Encontre os valores de A na expressão:

a)
$$A = \frac{-\cos\frac{2\pi}{3} - sen\frac{4\pi}{3}}{sen\frac{2\pi}{3} - \cos\frac{4\pi}{3}}$$

$$\begin{cases} \frac{2\pi}{3} rad \equiv 120^{\circ} \Rightarrow \begin{cases} sen \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \\ cos \frac{2\pi}{3} = -\frac{1}{2} \\ \frac{4\pi}{3} rad \equiv 240^{\circ} \Rightarrow \begin{cases} sen \frac{4\pi}{3} = -\frac{\sqrt{3}}{2} \\ cos \frac{4\pi}{3} = -\frac{1}{2} \end{cases} \Rightarrow \frac{-\left(-\frac{1}{2}\right) - \left(-\frac{\sqrt{3}}{3}\right)}{\left(\frac{\sqrt{3}}{3}\right) - \left(-\frac{1}{2}\right)} = \frac{\frac{1}{2} + \frac{\sqrt{3}}{3}}{\frac{\sqrt{3}}{3} + \frac{1}{2}} = 1 \end{cases}$$

$$cos \frac{4\pi}{3} = -\frac{1}{2}$$

$$cos \frac{4\pi}{3} = -\frac{1}{2}$$
Solução = 1

Resolução de equações trigonométricas

Vamos determinar os valores de x que satisfazem a equação

 $\cos x = \frac{1}{2}$, $\cos x \in [0, 2\pi]$.

Resolução:

Observe a figura a seguir:

Veja que existem dois arcos com cosseno igual a $\frac{1}{2}$, o arco de $\frac{\pi}{3}$ e seu simétrico em relação ao eixo x, o arco de $\frac{5\pi}{3}$. Portanto, como estabelecemos que $x \in [0, 2\pi]$, os valores de x são $\frac{\pi}{3}$ e $\frac{5\pi}{3}$.

Inequação trigonométrica

Toda inequação na qual aparecem razões trigonométricas com arco de medida desconhecida é chamada **inequação trigonométrica**.

Exemplos

• sen
$$x > \frac{\sqrt{3}}{2}$$

$$-\cos\frac{x}{2} \le \frac{\sqrt{2}}{2}$$

■
$$tg x \ge 1$$

$$\cos(x+\pi)\cdot \operatorname{tg}(x+\pi) < -\frac{1}{2}$$

Resolução de inequações trigonométricas

Considere a inequação trigonométrica sen $x > \frac{1}{2}$, com $0 \le x \le 2\pi$.

Vamos determinar para quais números reais essa sentença é verdadeira.

No intervalo considerado, os arcos $\frac{\pi}{6}$ e $\frac{5\pi}{6}$ têm seno igual a $\frac{1}{2}$.

No destaque do ciclo trigonométrico ao lado, observe as extremidades dos arcos cujas medidas são a solução da inequação dada.

sen

Resolução de inequações trigonométricas

O conjunto dessas medidas é o intervalo aberto: $\left| \frac{\pi}{6}, \frac{5\pi}{6} \right|$

Portanto:
$$S = \left\{ x \in \mathbb{R} | \frac{\pi}{6} < x < \frac{5\pi}{6} \right\}$$

ANOTAÇÕES EM AULA

Coordenação editorial: Juliane Matsubara Barroso

Edição de texto: Ana Paula Souza Nani, Adriano Rosa Lopes, Enrico Briese Casentini, Everton José Luciano,

Juliana Ikeda, Marilu Maranho Tassetto, Willian Raphael Silva

Assistência editorial: Pedro Almeida do Amaral Cortez

Preparação de texto: Renato da Rocha Carlos

Coordenação de produção: Maria José Tanbellini

Iconografia: Daniela Chahin Barauna, Erika Freitas, Fernanda Siwiec, Monica de Souza e Yan Comunicação

Ilustração dos gráficos: Adilson Secco

EDITORA MODERNA

Diretoria de Tecnologia Educacional

Editora executiva: Kelly Mayumi Ishida Coordenadora editorial: Ivonete Lucirio

Editores: Andre Jun, Felipe Jordani e Natália Coltri Fernandes **Assistentes editoriais:** Ciça Japiassu Reis e Renata Michelin

Editor de arte: Fabio Ventura

Editor assistente de arte: Eduardo Bertolini

Assistentes de arte: Ana Maria Totaro, Camila Castro e Valdeí Prazeres

Revisores: Antonio Carlos Marques, Diego Rezende e Ramiro Morais Torres

© Reprodução proibida. Art. 184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998. Todos os direitos reservados.

EDITORA MODERNA

Rua Padre Adelino, 758 – Belenzinho São Paulo – SP – Brasil – CEP: 03303-904 Vendas e atendimento: Tel. (0__11) 2602-5510 Fax (0__11) 2790-1501

www.moderna.com.br

2012