Computabilidad y Complejidad Práctica 2

- 1) Sea $\Sigma = \{a\}$ y w = a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: ww, ww, w^3 , w^5 , w^0 ¿Cuáles son sus longitudes? Definir Σ^* .
- 2) Idem al ejercicio (1), pero con $\Sigma = \{a,b\}$ y w = aba.
- 3) Sea $\Sigma = \{a,b,c\}$, escriba las 13 cadenas más cortas de Σ^* .
- 4) Dar tres ejemplos de lenguajes basados en el alfabeto {0,1}
- 5) ¿Cuántas cadenas de longitud 3 hay en $\{0,1,2\}^*$, y cuántas de longitud n?
- 6) Explicar la diferencia -si la hay- entre los lenguajes L₁ y L₂.
 - $\begin{array}{lll} a) \ L_1 = \varnothing & L_2 = \{\lambda\} \\ b) \ L_1 = \Sigma^* \cup \{\lambda\} & L_2 = \varnothing \cup \Sigma^* \\ c) \ L_1 = \Sigma^* \varnothing & L_2 = \Sigma^* \\ d) \ L_1 = \Sigma^* \{\lambda\} & L_2 = \Sigma^* \end{array}$
- 7) Mostrar que Σ^* es infinito contable.
- 8) Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:
 - a) $L_1 = \{a^n c^m d^n / n \ge 0, m \ge 0\}$ con $L_2 = \{c^n / n \ge 0\}$
 - b) $L_1 = \{a^n c^m d^n / n > 0, m \ge 0\}$ con $L_2 = \{c^n / n \ge 0\}$
 - c) $L_1 = \{a^n c^m d^n / n \ge 0, m > 10\}$ con $L_2 = \{c^n / n > 5\}$
 - d) $L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\} \text{ con } L_2 = \{2^n / n \ge 0\}$
 - e) $L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\}\ \text{con } L_2 = \{1^n / n \ge 0\}$
- 9) Encontrar si es posible un lenguaje L_1 que cumpla:
 - a) $L_1 \cap \{1^k 2^m 3^n / m = k + n + 1 \text{ y } n, \ k \ge 0\} = \{1^n 2^{n+1} / n \ge 0\}$
 - b) $L_1 \cap \{1^n 2^m / n \neq m \ y n, m \ge 0\} = \{1^n 2^n / n > 0\}$
- 10) Conteste las siguientes preguntas sobre Máquinas de Turing
 - a) ¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)?
 - b) ¿Puede una máquina de Turing tener un único estado?
 - c) ¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0,1\}$? ¿y sobre $\Sigma = \{1\}$?
 - d) ¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ?

$$\emptyset$$
, Σ , Σ^* , $\{\lambda\}$, $\{\lambda\} \cup \Sigma$, $\{\emptyset\}$

e) Sea la siguiente máquina de Turing:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$$

Con Q =
$$\{q_0,q_1,q_2,q_3\}$$
, $\Sigma = \{a,b,c\}$, $\Gamma = \{a,b,c,B\}$ y $F = \emptyset$

Reconoce el lenguaje $\{\lambda\}$?

Si no es así indique cuál es el lenguaje que reconoce.

11) a) Construir una máquina de Turing que haga un corrimiento a derecha del string binario en la cinta, marcando con un símbolo especial '#' la celda que corresponde al primer símbolo desplazado. $\Gamma = \{B, \#, 0, 1\}$. b) Y otra que haga un corrimiento a izquierda.

- 12) a) Construir una máquina de Turing M tal que $L(M) = \{0^n 1^n / n \ge 1\}$ y mostrar la traza de computación de M para las entradas w_1 =0011 y w_2 = 011.
 - b) Construir una máquina de Turing que busque en la cinta el patrón "abab" y se detenga si y sólo si encuentra ese patron. $\Gamma = \{a,b,c,B\}$
- 13) Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$, en cada caso determinar L(M)
 - a) $\begin{aligned} Q &= \{q_0, \, q_1\}; \, \Sigma = \{0, 1\}; \, \Gamma = \{0, \, 1, \, B\}; \, F = \{q_0\} \\ \delta(q_0, \, 0) &= (\, q_0, \, 0, \, I\,) \\ \delta(q_0, \, B) &= (\, q_0, \, B, \, D\,) \\ \delta(q_0, \, 1) &= (\, q_1, \, 1, \, D\,) \end{aligned}$
 - b) $Q=\{q_0, q_1\}; \Sigma=\{0,1\}; \Gamma=\{0, 1, B\}; F=\{q_1\}$ $\delta(q_0, 0)=(q_1, B, D)$
 - c) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}; F = \emptyset$ $\delta(q_0, 0) = \{q_0, 0, 1\}$

$$\delta(q_0, 0) = (q_0, 0, I)$$

$$\delta(q_0, B) = (q_0, B, D)$$

$$\delta(q_0, 1) = (q_1, 1, D)$$

$$\delta(q_1, 0) = (q_0, B, I)$$

$$\delta(q_1, B) = (q_0, B, D)$$

- $\begin{array}{ll} \text{d)} & Q \!\!=\!\! \{q_0 \;\}; \; \! \Sigma \!\!=\!\! \{0,1\}; \; \! \Gamma \!\!=\!\! \{0,\,1,\,B\}; \; \! F \!\!=\!\! \{q_0\} \\ & \delta(q_0,\,1) = (\;q_0,\,B,\,I\;) \\ & \delta(q_0,\,B) = (\;q_0,\,B,\,D\;) \end{array}$
- e) $\begin{aligned} Q &= \{q_0,\,q_1,\,q_2\};\, \Sigma \\ &= \{0,1\};\, \Gamma \\ &= \{0,\,1,\,B\};\, F \\ &= \{q_2\}\\ \delta(q_0,\,0) = (\,\,q_1,\,B,\,D\,\,)\\ \delta(q_1,\,0) = (\,\,q_1,\,1,\,D\,\,)\\ \delta(q_1,\,1) = (\,\,q_1,\,0,\,D\,\,)\\ \delta(q_1,\,B) = (\,\,q_2,\,1,\,D\,\,) \end{aligned}$
- 14) Construir máquinas de Turing para computar las siguientes funciones:
 - a) Suma unaria. $\Sigma = \{+, 1\}$.
 - b) Resta unaria $a b \operatorname{con} a > b \Sigma = \{-, 1\}.$
 - c) Calcular el complemento a 2 de un número binario de 8 bits $\Sigma = \{0, 1\}$
- 15) Implementar en el lenguaje de su preferencia una máquina de Turing determinística de una sóla cinta (modelo estándar visto en clase)
- 16) Utilice la implementación de la máquina de Turing del ejercicio 15 para verificar los ejercicios anteriores y responder lo siguiente:

$$\begin{aligned} &\text{Sea M} = < Q, \Sigma, \Gamma, \delta, q_0, F>, \quad Q = \{q_0, q_1, q_2\}, \Sigma = \{0, 1, 2\}, \quad \Gamma = \{\ 0, 1, B\}, \quad F = \varnothing \\ &\delta(q_0, 1) = (q_0, 1, D) & \delta(q_0, 0) = (q_0, 0, D) & \delta(q_0, B) = (q_1, B, I) \\ &\delta(q_0, 2) = (q_1, B, I) & \delta(q_1, 0) = (q_0, 1, I) & \delta(q_1, B) = (q_2, B, D) \\ &\delta(q_1, 1) = (q_1, B, D) & \delta(q_1, 2) = (q_1, 2, D) & \delta(q_2, 1) = (q_1, 2, D) \\ &\delta(q_2, 0) = (q_0, 0, D) & \delta(q_2, B) = (q_2, 1, I) & \delta(q_2, 2) = (q_1, 0, I) \end{aligned}$$

- a) Determinar la configuración de la máquina (contenido de la cinta, posición de la cabeza y estado de M) luego de efectuar el movimiento (o paso de computación) número 67 con el input w = 01012000
- b) Si agregamos el estado q_3 en M y reemplazamos la última definición $\delta(q_2, 2) = (q_1, 0, I)$ por $\delta(q_2, 2) = (q_3, 0, I)$ ¿Cuántos movimientos hace M con input w = 011012000 y cuál es la configuración al detenerse?