

Theoretische Informatik Formale Sprachen

Prof. Dr. Juho Mäkiö

Hier geht es um....

- · Verarbeitung von Sprachen
 - Sprache = Formulierung von Probleminstanzen
 - Sprache = Träger von Information
 - Sprache = Beschreibung von Systemverhalten

Welche Sprachen kennen Sie?

Was ist eine Sprache?

Sprache besteht aus Sätzen, die durch Verkettung aus einem Zeichenvorrat, den zur Verfügung stehenden Symbolen gebildet werden können.

Motivation - Verarbeitung von Sprachen

- Sprache bildet die Grundlage für Kommunikation
 - Mensch Mensch
 - Mensch Maschine
 - Maschine Maschine

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Verarbeitung von Sprachen

- Anwendung:
 - Compilerbau C, C++, JAVA, ...
 - Internet HTML
 - Datenbanken SQL, XML
 - Nutzerschnittstellen SHELL
 - Dateien einlesen XML

Beschreibung von Systemverhalten

- Formale Modelle f
 ür Systeme, formale Semantik
- Beschreibung & Analyse von Phänomenen
- Studium von Operationen auf Systemen (Komposition, Verfeinerung, ...)
- · Anwendung:
 - Modelprüfung [engl. Model Checking (Fehlersuche jenseits von Testen)]
 - Vollautomatische Verifikation einer Systembeschreibung (Modell) gegen seine Spezifikation (Formel)
 - Statische Programmanalyse, -optimierung
 - Design leistungsfähiger Operationen
 - Korrektheit per Konstruktion

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Grundlegendes

Alphabet: X endliche Menge $X = \{x_1,, x_n\}$ Wort: w endliche Folge von Buchstaben

 $w: \{0, ..., n-1\} \rightarrow X$

Wortlänge |w|: Anzahl der Buchstaben (n)

Wortmenge X* die Menge aller Wörter über Alphabet X

Sprache L eine Menge von Wörtern über X

 $L \subseteq X^*$

Satz von L ein Wort $w \in L$

Alphabet

- Alphabet ∑: endliche Menge von Zeichen (meist ≠ Ø)
- Bsp. $\sum_{1} = \{0, ..., 9\}, \sum_{2} = \{0, 1\}, \sum_{3} = \{a, ..., z\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Wort

- Wort ω (über dem Alphabet ∑) ist eine endliche Folge von Zeichen aus ∑. (-> String/Zeichenkette)
- ω besteht aus n Zeichen:

- n = 0 : $\epsilon \triangleq \underline{leeres\ Wort}$

-n > 0: $\omega = \omega_1 \dots \omega_n$ mit $\omega_i \in \sum$ für $i = 1, \dots, n$

 $- Bsp. \sum = \{0, ..., 9\}$

 $- \omega = 123$

- <u>Länge eines Wortes</u> → Anzahl der Zeichen (Kardinalität)
 - $|\omega| = n$
 - $Z.B. |\varepsilon| = 0$; |123| = 3

Konkatenation (Verkettung)

```
Gegeben seien: \omega = \omega_1 \dots \omega_n und v = v_1 \dots v_m

\omega v = \omega_1 \dots \omega_n v_1 \dots v_m mit |\omega v| = n + m (oft auch: \omega + v)

(oder Operation \circ: \omega \circ v = \omega_1 \dots \omega_n \circ v_1 \dots v_m)
```

Neutrales Element:

Es gilt:
$$\varepsilon \omega = \omega$$
 , $\omega \varepsilon = \omega$ ($\varepsilon \triangleq$ "neutrales Element" - WICHTIG)

Beispiel: ab + cd = abcd (Mehrdeutigkeit von ,+') (manchmal auch * oder
$$\circ$$
)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Wort über ∑

- \sum_{n}
- $\sum_{n=1}^{\infty} \{\omega \mid \omega \text{ ist Wort "uber } \sum_{n=1}^{\infty} \{\omega \mid \omega \} = 1\}$
 - Wörter der Länge n
 - $-\sum_0 = \{\varepsilon\}$
 - Bsp.:

$$\sum_{i=1}^{n} = \{0, 1\}$$

$$\sum_{i=1}^{n} = \{00, 01, 10, 11\}$$

Gegeben sei $\Sigma = \{a, b, c\}$ mit n=3. Bestimmen Sie die $|\Sigma|$.

Kleensche Hülle

- Die Kleensche Hülle eines Alphabets ∑ ist die Menge alle Wörter, die durch beliebige Konkatenation von Symbolen des Alphabets ∑ gebildet werden können, inklusive das leere Wort ε.
- Menge aller Wörter ∑*
- $\sum^* = \sum^0 \cup \sum^1 \cup \sum^2 \cup \sum^3 \cup ...$

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Positive Hülle

Die Positive Hülle

$$\begin{array}{l} \epsilon\text{-freie Menge aller W\"orter } \Sigma^+ \\ \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \ldots \\ \text{d.h. } \Sigma^+ = \Sigma^* \setminus \{\epsilon\} \quad , \quad \Sigma^* = \Sigma^+ \cup \{\epsilon\} \end{array}$$

Bsp.
$$\sum = \{0, 1\}$$

(1 ist eine Ziffer, Zahl) 1 ist Zeichen aus ∑ 1 ist Wort der Länge 1

Aufbau eines Wortes

 $\underline{\omega^n}$

n=0 : $\omega^0=\epsilon$

n=3 : $\omega^3 = \omega \omega \omega$

rekursiv: $\omega^0 = \varepsilon$

 $\omega^n = \omega \omega^{n-1}$

Oft werden auch (,) verwendet:

 $1 (01)^3 1 = 1 010101 1$

Die Klammern (,) dürfen nicht zu ∑ gehören

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Spiegelung eines Wortes ω^{R}

•
$$\omega = \omega_1 \dots \omega_n$$
 : $\omega^R = \omega_n \dots \omega_1 \text{ mit } \omega_i \in \sum$ Bsp.

$$\varepsilon^{R} = \varepsilon$$

$$a^R = a$$

$$\omega^R = ba$$
 mit $\omega = ab$

$$(abc)^R = cba$$

$$\omega = \omega^R$$
 \rightarrow Palindrom

Bsp. OTTO

RELIEFPFEILER LAGERREGAL

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

•7

Formale Sprache

Eine (formale) Sprache L über einem Alphabet ∑ ist eine Menge von Wörtern

über
$$\Sigma$$
: L ⊂ Σ *

Bsp.

$$\sum = \{0, 1\}$$

$$L_1 = \{0, 1, 00, 01, 10, 11\}$$

$$L_2 = \{1, 10, 100, 1000, ...\}$$

L bzw. die Elemente von L (Wörter) haben zunächst keine Semantik/Bedeutung.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beschreibung von formalen Sprachen

Angabe einer Eigenschaft

Angabe eines Konstruktionsmusters

$$\begin{array}{l} L_3 = \{1\omega \mid \omega \in \Sigma^*\} \\ L_3 = \{1, \ 10, \ 11, \ \ldots\} = L_1 \\ \\ L_4 = \{v1\omega \mid v, \ \omega \in \Sigma^*\} \\ L_4 = \{1, \ 01, \ 010, \ \ldots\} \\ L_4 = \{\omega \in \Sigma^* \mid \omega \text{ enthält mindestens eine 1}\} \end{array}$$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Bedingte Kardinalität

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

•9

Beispiel

Bsp.
$$\Sigma = \{0, 1\}$$

a)
 $L_1 = \{\omega 1 v \mid \omega, v \in \Sigma^*\}$
Konstruktionsmuster
 $L_1 = \{\omega \mid \omega \in \Sigma^* \land |\omega|_1 \ge 1\}$
 $L_1 = \{\omega \mid \omega \in \Sigma^* \land \omega \text{ enthält mindestens eine 1}\}$

Verschiedene Beschreibungen für dieselbe Sprache.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel

$$\begin{split} L_2 &= \{x1x \mid x \in \Sigma\} = \{010, \, 111\} \\ L_3 &= \{\omega \mid \omega \in \Sigma^* \land |\omega|_1 = 1\} \\ L_3 &= \{1, \, 01, \, 010, \, 001, \, \ldots\} \\ L_3 &= \{0^n 10^m \mid n, \, m \in \mathbb{N}; \, n, \, m \geq 0\} \\ &\quad \text{Konstruktionsmuster} \\ L_4 &= \{\omega \mid \omega \in \Sigma^* \land \omega \text{ enthält genau 2 Einser}\} \\ L_4 &= \{11, \, 011, \, 0101, \, 010010, \, \ldots\} \end{split}$$

Yes we can...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

21

a₂ a₃

• $\mathbb{N} \mathbb{Z} \mathbb{R} \mathbb{Q}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

22