

## Key Components of Sampling-Based Planning

### Sampling-based planning requires several important subroutines

- $\Rightarrow$  An <u>efficient sampling routine</u> is needed to generate the samples. These samples should **cover**  $C_{free}$  well in order to be effective
- $\Rightarrow$  Efficient nearest neighbor search is necessary for quickly building the roadmap: for each sample in  $C_{free}$  we must find its k-nearest neighbors
- ⇒The neighbor search also requires a **distance metric** to be properly defined so we know the distance between two samples
  - $\Rightarrow$  This can be tricky for certain spaces, e.g., SE(3)
- $\Rightarrow$  Collision checking Note that  $C_{free}$  is not computed explicitly so we actually are checking collisions between a complex robot and a complex environment



## "Goodness" of Samples

The sampling process aims at "covering"  $C_{free}$ . How to measure the "goodness" of a set of samples?

**Dispersion**: the dispersion of a finite set P of samples in a metric space  $(X, \rho)$  is

$$\delta(P) = \sup_{x \in X} \{ \min_{p \in P} \{ \rho(x, p) \} \}$$

Roughly, this means the largest ball that can be fit in the samples without including any sample inside the ball



Generally speaking, given |P| samples, a sample set with smaller dispersion  $\delta(P)$  is better.

## Sampling Routine

The simplest way of achieving this: uniformly random sampling



### Generally, incremental, dense sampling w/ good dispersion







## Nearest Neighbor Search w/ k-d Tree

### Connecting the samples

- ⇒Building the graph requires connecting the samples
- ⇒Need efficient methods for this



#### k-d Tree





### Bounded Volume Hierarchy (BVH)

Collision checking can be difficult for general objects, e.g.,



d(A,B) are hard to compute directly!

Often, simpler bounding volumes are used to approximate the shapes

- ⇒ However, bounding volumes **over approximate** the shapes
- ⇒No collision between bounding volumes → no collision between the shapes
- ⇒Collision between bounding volumes → **possible** collision
- ⇒ Need to refine hierarchically if a possible collision is detected
- ⇒Such a method is called **bounded volume hierarchy** (BVH)

### Bounded Volume Hierarchy (BVH), Continued







### For collision checking, it works with two BVH trees

- ⇒Starting from the roots and check for collision (how?)
  - $\Rightarrow$  No collision  $\rightarrow$  done with the branch
  - ⇒Otherwise, check pairs of children on the trees
- ⇒Recursively call the procedure
- ⇒Traverse down the tree
- $\Rightarrow$  How many possible checks in total (say each object has n pieces)?
  - $\Rightarrow$ At most  $n^2$  checks
  - ⇒Using BVH can save some checks

## Probabilistic Roadmap in More Detail



## Generating Random Samples



# Rejecting Samples Outside $\mathcal{C}_{free}$



# Collecting Enough Samples in $\mathcal{C}_{free}$



## Connect to k Nearest Neighbors (If Possible)



## Connect to k Nearest Neighbors (If Possible)



## Query Phase



## Drawbacks of Multi-Query Methods

PRM is known as a "multi-query" sampling-based method because after initial roadmap is built, multiple queries can be executed on the same roadmap

- ⇒But, this also means that the roadmap is likely to have a lot of useless information stored if we want to run a single query
- ⇒ People developed **single-query** methods to handle such situations
- ⇒One method is the rapidly-exploring random trees (RRT, by LaValle & Kuffner)



## Rapidly-Exploring Random Trees w/o Obstacle

RRT without obstacle simply grows a tree from a point

⇒ Basically, tries to connect new points to the closest part of the existing tree



Image sources: Planning Algorithms by LaValle

### RRT with Obstacles

When there are obstacles, try to extend the tree as much as possible



Same procedure if sample falls inside an obstacle

## Tree Building Example



### Kinodynamic RRT

#### We can grow an RRT respecting the differential constraints

- ⇒Standard PRM and RRT cannot be applied!
- ⇒Need to compute path more carefully
  - ⇒ Needs to solve a boundary value problem (differential equations)
- ⇒Example w/o obstacles



### Non-Optimality of PRM and RRT

### PRM and RRTs are not optimal

⇒It is possible construct instances to make PRM/RRT produce long paths



Problem Optimal solution

 $\chi_I$ 



Likely RRT solution

- ⇒Can we do better?
  - ⇒ Need to keep "re-wiring" the graph structure

## Multi-Robot Path Planning



MPP Problem:  $(G, X_I, X_G)$ , solution: collision free  $P = \{p_1, ..., p_n\}$ Optimality objectives (minimization):

- $\Rightarrow$  Max time (makespan):  $\min_{P \in \mathcal{P}} \max_{p_i \in P} time(p_i)$
- $\Rightarrow \underline{\text{Total time}}: \min_{P \in \mathcal{P}} \sum_{p_i \in P} time(p_i)$
- $\Rightarrow$  Max distance:  $\min_{P \in \mathcal{P}} \max_{p_i \in P} length(p_i)$
- $\Rightarrow$  Total distance:  $\min_{P \in \mathcal{P}} \sum_{p_i \in P} length(p_i)$

## A Simple Method for $N^2-1$ Puzzle Feasibility



### Steps

1. Move the empty spot to the lower right (doesn't matter how you do it)



2. Flatten the square row by row



3. Bubbling each number from 1 and count number of moves

- 4. Sum up X = 6 + 6 + 0 + 3 + 1 + 1 + 1 = 18
- 5. Odd infeasible. Even feasible. X = 18, instance is feasible

## Incompatibility of the Formulations



A pair of the four MPP objectives on makespan, total time, max distance, and total distance demonstrates a Pareto-optimal structure.

## NP-Hardness of Makespan Optimal MPP<sub>r</sub>

Min Makespan MPP<sub>r</sub> is NP-hard



**Theorem.** MPP is NP-hard when optimizing min makespan, min total time, min max distance, and min total distance.

## Other Planning Methods



Potential fields

Feedback-based planner

Spanning tree doubling (for coverage)

Bug algorithms

Gap-navigation trees









### A Little History on Modern Feedback Control

After steam engine was invented, how to control its running speed is a problem of major interest

A successful design was Watt's flyball governor



Image source: http://www.ece.mcmaster.ca/~davidson/

### PID Controller

#### PID controller stands for proportional-integral-derivative controller

- ⇒There are many different "theoretical" feedback controllers
- ⇒However, the final implementation often uses some form of PID control

#### General form:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

$$e(t) = Set\ Point\ - Current\ Location$$

#### Block diagram



Image source: wikipedia.org

### Pure Pursuit for Differential Drive Robots

# Most two wheeled robots can be viewed as a differentially driven robot (DDR)

 $\Rightarrow$  Two wheel inputs in the range of [-1, 1]

#### Pure pursuit path following algorithm

- $\Rightarrow$  From the current location of car, locate a waypoint of distance  $\ell$  (some constant) on the desired trajectory
- ⇒Compute the required curvature to the waypoint
- ⇒Adjust wheel speeds to follow the computed arc
- ⇒ Note: the car's direction is tangential to the computed arc

