Whole Lung Tissue vs. BAL Fluid 16S Sequencing Analysis (Untrimmed Dataset)

Jennifer M. Baker

August 18, 2020 (updated)

This report was created with:

R version 4.0.2 (2020-06-22)

Platform: x86 64-apple-darwin17.0 (64-bit)

 $\textbf{locale:} \ en_US.UTF-8||en_$

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: pander(v.0.6.3), cbmbtools(v.0.0.0.9034), vegan(v.2.5-6), lattice(v.0.20-41), permute(v.0.9-5), ggpubr(v.0.4.0), knitr(v.1.29), scales(v.1.1.1), gtools(v.3.8.2), tidyselect(v.1.1.0), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.1.0.1), purrr(v.0.3.4), readr(v.1.3.1), tidyr(v.1.1.1), tibble(v.3.0.3), ggplot2(v.3.3.2) and tidyverse(v.1.3.0)

I. 16S rRNA gene amplicon quantification

Hypothesis testing - 16S rRNA gene amplicon quantification

Kruskal-Wallis rank sum test

data: Gene_16S_copies_per_mL by Sample_Type
Kruskal-Wallis chi-squared = 29.276, df = 6, p-value = 5.394e-05

Pairwise comparisons using Wilcoxon rank sum exact test

data: ddpcr\$Gene_16S_copies_per_mL and ddpcr\$Sample_Type

	NTC	Iso_Ctrl	PBS	Syringe_Rinse	Homog_Ctrl	BAL
Iso_Ctrl	0.64000	-	-	_	_	-
PBS	0.58947	0.40000	-	_	_	-
Syringe_Rinse	0.42353	0.03333	0.40000	_	_	-
Homog_Ctrl	0.58947	0.16667	0.42353	0.40000	_	-
BAL	0.22238	0.00839	0.31818	0.27082	0.90909	-
Lung	0.00839	0.00262	0.07955	0.00839	0.07955	0.00023

P value adjustment method: BH

II. Quality Checks - Confirmation of Sufficient Reads

2.1 MiSeq Reads by Sample Type

2.2 OTU Counts by Sample Type

III. Principal Component Analysis

3.1 Lung Samples vs. Sampling Controls

Principal Component 1 (13.7% explained)

```
Call:
adonis(formula = adonis.hel.df.wbn ~ otu.df.lungsamp.sampctrls$RA_Groups,
                                                                               permutations = 10000, me
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                    Df SumsOfSqs MeanSqs F.Model
                                                                      R2
otu.df.lungsamp.sampctrls$RA_Groups
                                          3.9774 1.98870 2.4676 0.16486
Residuals
                                    25
                                         20.1478 0.80591
                                                                 0.83514
Total
                                    27
                                         24.1252
                                                                 1.00000
                                       Pr(>F)
otu.df.lungsamp.sampctrls$RA_Groups 9.999e-05 ***
Residuals
Total
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Call:
adonis(formula = adonis.hel.bl ~ adonis.otudf.bl$Sample_Type,
                                                                   permutations = 10000, method = "eucl
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bl\$Sample_Type 1 2.469 2.46898 3.1997 0.15093 9.999e-05 ***

Residuals 18 13.889 0.77162 0.84907 Total 19 16.358 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.wn ~ adonis.otudf.wn\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.wn\$RA_Groups 1 2.5283 2.52828 3.423 0.17623 2e-04 ***

Residuals 16 11.8179 0.73862 0.82377 Total 17 14.3462 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.bn ~ adonis.otudf.bn\$Organ, permutations = 10000, method = "euclidean"

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bn\$Organ 1 0.9155 0.91549 1.0041 0.05905 0.4382

Residuals 16 14.5885 0.91178 0.94095 Total 17 15.5040 1.00000

3.2 Lung Samples v. Isolation Controls

Principal Component 1 (12.1% explained)

```
Call:
adonis(formula = otu.good.lungsamp.isoctrls_hel ~ otu.df.lungsamp.isoctrls$Sample_Type,
                                                                                               permutatio:
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model
otu.df.lungsamp.isoctrls$Sample_Type
                                      3
                                           5.1677 1.7226 2.1035 0.18392
Residuals
                                     28
                                          22.9291 0.8189
                                                                   0.81608
Total
                                          28.0968
                                                                   1.00000
                                        Pr(>F)
```

otu.df.lungsamp.isoctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

adonis(formula = adonis.hel.il ~ adonis.otudf.il\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.il\$RA_Groups 1 2.7563 2.75633 3.5591 0.15107 9.999e-05 ***

Residuals 20 15.4890 0.77445 0.84893 Total 21 18.2453 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.ib ~ adonis.otudf.ib\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.ib\$RA_Groups 1 1.2216 1.22157 1.338 0.06271 0.05969 .

Residuals 20 18.2596 0.91298 0.93729 Total 21 19.4812 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

3.3 Lung Samples vs. Sequencing Controls

Principal Component 1 (13.5% explained)

```
Call: adonis(formula = otu.good.lungsamp.seqctrls_hel ~ otu.df.lungsamp.seqctrls$Sample_Type, permutation
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model R2 otu.df.lungsamp.seqctrls$Sample_Type 3 8.155 2.71844 3.4176 0.1647 Residuals 52 41.362 0.79543 0.8353 Total 55 49.517 1.0000 Pr(>F)
```

otu.df.lungsamp.seqctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.sl ~ adonis.otudf.sl\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sl\$RA_Groups 1 4.402 4.4017 5.5369 0.11177 9.999e-05 ***

Residuals 44 34.979 0.7950 0.88823 Total 45 39.381 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.sb ~ adonis.otudf.sb\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sb\$RA_Groups 1 2.083 2.08261 2.4274 0.05228 4e-04 ***

Residuals 44 37.750 0.85795 0.94772 Total 45 39.833 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.4 Lung Samples vs. Tongue

Permutation: free

Number of permutations: 10000

Principal Component 1 (10.5% explained)

```
Call:
adonis(formula = otu.good.tong.lungsamp_hel ~ otu.df.tong.lungsamp$Sample_Type,
                                                                                     permutations = 100
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                 Df SumsOfSqs MeanSqs F.Model
otu.df.tong.lungsamp$Sample_Type
                                       3.9905 1.9953 2.6829 0.12665 9.999e-05
Residuals
                                 37
                                      27.5168 0.7437
                                                              0.87335
Total
                                 39
                                      31.5073
                                                              1.00000
otu.df.tong.lungsamp$Sample_Type ***
Residuals
Total
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
adonis(formula = adonis.hel.tl ~ adonis.otudf.tl$Sample_Type,
                                                                   permutations = 10000, method = "eucl
```

Terms added sequentially (first to last)

Residuals 28 19.1868 0.68524 0.94784 Total 29 20.2427 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.tb ~ adonis.otudf.tb\$Sample_Type, permutations = 10000, method = "eucl

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.tb\$Sample_Type 1 2.6188 2.61884 3.3395 0.10656 9.999e-05 ***

Residuals 28 21.9574 0.78419 0.89344 Total 29 24.5763 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.5 Lung vs. Tongue vs. Negative Controls

Principal Component 1 (11.6% explained)

IV. Diversity Indices

4.1 Alpha Diversity - Rarified Richness

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Unique_Otus_per_1k_reads"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr	
Isolation Control-BAL	-10.612291	-27.844847	6.6202640	
Lung-BAL	20.846543	2.847725	38.8453597	
Sampling Control-BAL	-2.528455	-21.619083	16.5621736	
Sequencing Control-BAL	-13.515401	-27.901951	0.8711478	
Lung-Isolation Control	31.458834	14.226279	48.6913895	
Sampling Control-Isolation Control	8.083837	-10.286129	26.4538024	
Sequencing Control-Isolation Control	-2.903110	-16.318636	10.5124164	
Sampling Control-Lung	-23.374997	-42.465626	-4.2843690	
Sequencing Control-Lung	-34.361944	-48.748493	-19.9753948	
Sequencing Control-Sampling Control	-10.986946	-26.718045	4.7441525	
	p adj			
Isolation Control-BAL	0.4262449			
Lung-BAL	0.0150895			
Sampling Control-BAL	0.9958863			
Sequencing Control-BAL	0.0757056			
Lung-Isolation Control	0.0000253			
Sampling Control-Isolation Control	0.7329503			
Sequencing Control-Isolation Control	0.9737499			
Sampling Control-Lung	0.0087438			
Sequencing Control-Lung	0.0000000			
Sequencing Control-Sampling Control	0.2986417			

4.2 Alpha Diversity - Shannon Diversity Index

Sample Type

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Shannon"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr	p adj
Isolation Control-BAL	-1.0172362	-1.8642930	-0.1701794	0.0106434
Lung-BAL	0.5738854	-0.3108366	1.4586074	0.3728207
Sampling Control-BAL	-0.5979371	-1.5363265	0.3404522	0.3911169
Sequencing Control-BAL	-1.2413229	-1.9484858	-0.5341600	0.0000534
Lung-Isolation Control	1.5911216	0.7440648	2.4381785	0.0000143
Sampling Control-Isolation Control	0.4192991	-0.4836665	1.3222647	0.6921918
Sequencing Control-Isolation Control	-0.2240867	-0.8835195	0.4353462	0.8756718
Sampling Control-Lung	-1.1718226	-2.1102119	-0.2334332	0.0071118
Sequencing Control-Lung	-1.8152083	-2.5223712	-1.1080454	0.000000
Sequencing Control-Sampling Control	-0.6433858	-1.4166393	0.1298678	0.1478642

4.3 Beta Diversity - Bray-Curtis dissimilarity Index within Sample Type

[1] 88 2

Pairwise comparisons using Wilcoxon rank sum test with continuity correction

 $\tt data: bray_dist_lbtce_long_mut_filt_uniq\$BC_Index \ and \ bray_dist_lbtce_long_mut_filt_uniq\$Sample_Type$

BAL Blank Cecum Lung
Blank 0.29581 - - - - Cecum < 2e-16 < 2e-16 - Lung 3.8e-12 7.1e-07 < 2e-16 Tongue < 2e-16 2.4e-11 < 2e-16 0.00028

P value adjustment method: BH

4.4 Bray-Curtis dissimilarity - Lung Samples vs. Matched Tongue Samples

Wilcoxon rank sum exact test

data: BC_Index by Comparison_Type
W = 95, p-value = 0.0002057

alternative hypothesis: true location shift is not equal to $\ensuremath{\text{0}}$

V. Relative Abundance

5.1 Ordered by Lung OTUs

5.2 Ordered by Pooled Negative Control OTUs

5.3 Ordered by Tongue OTUs

