

ENTWICKLUNG EINER GESTENERKENNUNG MITHILFE VON STEREOKAMERAS MIT ROS

BACHELORARBEIT

ZUR ERLANGUNG DES AKADEMISCHEN GRADES
BACHELOR OF ENGINEERING (B. ENG.)

Oliver Bosin

Betreuer:

Prof. Dr. Ferdinand Englberger

Tag der Abgabe: TT.MM.JJJJ

Universität der Bundeswehr München Fakultät für Elektrotechnik und Technische Informatik Institut 4

Neubiberg, Juni 2019

	/ 10		\sim
	K IZ	I	1111
	N L	ш	ıи
			3
Erl			J

gemäß Beschluss des Prüfungsausschusses für die Fachhochschulstudiengänge der UniBwM vom 25.03.2010

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, insbesondere keine anderen als die angegebenen Informationen.

N. 1.1
Neubiberg, den TAG MONAT JAHR
OI' D '
Oliver Bosin
Erklärung
gemäß Beschluss des Prüfungsausschusses für die Fachhochschulstudiengänge der UniB wM vom 25.03.2010
Der Speicherung meiner Masterarbeit zum Zweck der Plagiatsprüfung stimme ich zu. Ich versichere, dass die elektronische Version mit der gedruckten Version inhaltlich übereinstimmt
Neubiberg, den TAG MONAT JAHR
Oliver Bosin

Abstrakt

Dieses Dokument dient zum Einen dazu, eine einheitliche Vorlage für alle Abschlussarbeiten im Institut 4 bereitzustellen. Zum Anderen wird es den Studenten hiermit vereinfacht eine umfassende Abschlussarbeit anzufertigen, die gewissen Grundregeln für wissenschaftliche Arbeiten entspricht. Diese Vorlage ist nicht bindend. Es wird allerdings empfohlen, sich hieran zu halten. Auf diese Weise kann man sich auf den Inhalt und das Schreiben konzentrieren, ohne sich große Gedanken über das Layout und die technische Umsetzung Gedanken machen zu müssen.

Das erste Kapitel einer Arbeit ist das Abstrakt. Auch wenn es chronologisch an erster Stelle steht, so wird es doch eigentlich zeitlich ganz am Ende geschrieben. Denn hier wird dem Leser ein umfassender Überblick über die Arbeit ermöglicht, ohne diese komplett lesen zu müssen. Alle wichtigen Punkte der Ausarbeitung müssen dabei aufgeführt werden. Beginnend mit einer Einleitung, den Grundlagen (bzw. Methoden), die Ergebnisse und Ausblick bzw. Diskussion. Die Kunst hierbei ist, dass sich **kurz** zu fassen. Ein Abstrakt sollte maximal zwei Seiten umfassen.

Inhaltsverzeichnis

Та	belle	verzeichnis	III
ΑŁ	bildu	ngsverzeichnis	٧
Li	stings		VII
1	1.1 1.2 1.3	tung Motivation	1 1 1 1
2	Syst 2.1 2.1 2.2	Software 2.1.1 Betriebsysteme 2.1.2 Integrierte Entwicklungsumgebungen 2.1.3 Robot Operating System 2.1.4 OpenNI 2.1.5 SensorKinect 2.1.6 Ros-Kinetic-OpenNI 2.1.7 NITE 2.1.8 OpenNI Tracker 2.1.9 MoveIt! 2.1.10 Turtle Simulator 2.1.11 Gesamtsoftwarekonzept Hardware	33 33 33 44 44 55 55 55 55 55
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Example 2. Auflösung	7 7 8 9 10 12 12 12 12

Inhaltsverzeichnis

	3.11 Formeln	13
4	Diskussion 4.1 Ausblick	15
5	Anhang 5.1 Schaltpläne	
Li	iteraturverzeichnis	23
In	ndex	25

Tabellenverzeichnis

2 1	D:	1 C4	Modelling Language											12
1	- Diagrammarien	der System	- Modelling Langliage											13
J.1	Diagrammarten	dei by stein	middenning Bunguage	 	•	•	 •	•	•	•	•	•	•	10

Abbildungsverzeichnis

2.1	Abstract Layered View vom Gesamtsoftwarekonzept	6
3.1	Autonomes Kettenfahrzeug des Instituts 4	8
3.2	Fahrzeuge des Instituts 4	9
3.3	Einstellung der Größe für eine Matlab Abbildung	9
3.4	Einstellung der Abbildungs-Auflösung beim Exportieren aus Matlab heraus	10
5.1	Schaltungsdesign für die Spannungsversorgungsplatine	19
5.2	Layout für die Spannungsversorgungsplatine	20
5.3	Themenbezogene Stundenaufschlüsselung für die Abschlussarbeit	21
5.4	Aufgabenübersicht für die Abschlussarbeit.	22

Listings

3.1	Wichtige Funktion für das Programm	11
3.2	Sourcecode SN74x6541	11

1 Einleitung

1.1 Motivation

1.2 Aufgabenstellung

Die konkrete Aufgabestellung kann in einem Unterkapitel verdeutlicht werden. Während die Einleitung mehr eine allgemeine Hinleitung zum Thema ist, muss hier dann erläutert werden, welche Probleme bei bestehenden Systemen bestanden, welche Einschränkungen existieren oder welche Weiterentwicklungen gewünscht sind.

Ein Beispiel wäre, wenn ein Roboterfahrzeug des Instituts 4 unter Belastung ein Fehlverhalten zeigt. Daraus ergibt sich die Aufgabe zu ermitteln, woher dieses Fehlverhalten kommt und wie es behoben werden kann.

1.3 Gliederung

2 Systemaufbau

Der Aufbau, des gesamten Systems, lässt sich in den Hardwareanteil und den Softwareanteil aufgliedern. Zuerst wird auf die verschiedenen Pakete und Treiber, die den Softwareanteil ausmachen, eingegangen und deren Zusammenspiel im Gesamtsoftwarekonzept erläutert. Im zweiten Teil des Kapitels werden die Hardwarekomponenten des Systems vorgestellt. Hier wird als erstes die Aufgabe jeder relevanten Komponente beschrieben, um diese dann verständlich in einen Kontext bringen zu können. Am Ende dieses Kapitels werden der Softwareanteil und der Hardwareanteil, im Gesamtkonzept, zu einer verständlichen Darstellung des Systems zusammengefügt.

2.1 Software

In diesem Abschnitt wird die in dem Entwicklungsprozess verwendete und eingebundene Software vorgestellt. Dies soll einen ersten Überblick über den Entwicklungsprozess geben und das Gesamtsoftwarekonzept des Systems verständlich darstellen. Die Installation und die genauere Verwendung, der hier genannten Software, ist integraler Teil des vierten Kapitels und wird somit hier nicht behandelt.

2.1.1 Betriebsysteme

Auf dem zur Entwicklung genutzten Rechner ist WINDOWS 10 als Betriebssystem installiert. Da ROS ein Framework für Linuxdistributionen ist, ist es notwendig ein Linux-Betriebssystem in einer virtuellen Maschine zu betreiben. Hierfür wird eine virtuelle Maschine von "VM-Ware' verwendet. 'In der virtuellen Maschine wird ein Ubuntu in der Version 16.04 LTS, welches in der WE4 laufend gepflegt und erweitert wird, betrieben. Unter dieser Ubuntu Version der WE4 ist das ROS-Framework, in der Version "Kinetic Kame", bereits installiert. Bei der virtuellen Maschine von "VM-Ware" ist darauf zu achten, dass der USB-Kompatibilitätsmodus auf "USB 3.0" gesetzt ist, da sonnst Probleme mit USB-Geräten auftreten können.

2.1.2 Integrierte Entwicklungsumgebungen

Für die Entwicklung von Software reicht in der Regel ein Texteditor und ein Compiler aus. Um diese Entwicklung komfortabler und übersichtlicher zu gestalten werden integrierte Entwicklungsumgebungen verwendet. Hier sind normalerweise Texteditor, Compiler, Linker und weitere Programme in einer Anwendung integriert, um ein ständiges wechseln zwischen den Programmen zu vermeiden.

Eclipse

Um Programme in der der Programmiersprache C/C++ zu entwickeln, wurde die integrierte Entwicklungsumgebung "Eclipse"[1] verwendet. Die verwendete Installation von "Eclipse" wurde innerhalb der WE4 mit dem "Ubuntu" Betriebssystem zusammen gepflegt. Weiterhin waren keine Anpassungen, der Konfiguration von "Eclipse", nötig um Programme für das ROS-Framework darin zu entwickeln.

Keil

Die integrierte Entwicklungsumgebung " μ -vision" von "KEIL" wurde verwendet, um ggf. Änderungen an der Software, die auf dem Mikrocontrollerboard läuft, vorzunehmen.[4] Auf das genannte Mikrocontrollerboard wird im Hardwareteil des Kapitels eingegangen.

2.1.3 Robot Operating System

Das "Robot Operating System" ist ein Quelloffenes und flexibles Framework, das darauf abzielt die Entwicklung von Software, für Robotersysteme, zu vereinfachen. Dazu stellt dieses Framework eine Sammlung von Tools, Bibliotheken und anderer Software zur verfügung.[11, 5] Unter ROS werden zur Entwicklung von Software die Programmiersprachen C/C++ und Python verwendet. Um die Konsistenz zu anderer Software die in der WE4 verwendet wird zu wahren, wurde für die im Zuge dieser Bachelorarbeit entwickelte Software die Programmiersprache C/C++ gewählt. Auf den Aufbau und die Funktionen von ROS, wird im Grundlagenkapitel noch näher eingegangen.

2.1.4 OpenNI

Um auf 3D-Sensoren wie Stereokameras zugreifen zu können, wurde unter "Ubuntu" das quelloffene Framework "OpenNI" verwendet. Es bietet API's um für 3D-Sensoren, RGB-Kameras, IR-Kameras und Audioeingabegeräte Anwendungen zu entwickeln.[7] Im Zuge dieser Bachelorarbeit wurde hier die Möglichkeit von "OpenNI" genutzt unkompliziert Treiber, für die genannten Gerätetypen, einzubinden. Weiterhin ist dieses Framework notwendig, um Software die auf diesem basiert ausführen zu können. Dieses Framework ist als erster Baustein in dem Gesamtsoftwarekonzept des Systems zu sehen.

2.1.5 SensorKinect

Das Paket "SensorKinect" ist ein Modul für das Framework "OpenNI". Dieses Modul ermöglicht den Zugriff, über die API's von "OpenNI", auf die Stereokamera "Kinect" von "Microsoft". [13] Somit dient "SensorKinect" als Hardwaretreiber für die Stereokamera "Kinect". Als Modul fügt sich "SensorKinect" in den Baustein "OpenNI" des Gesamtsoftwarekozeptes ein. Wird ein zum Treiber von "PrimeSense" kompatibler Sensor genutzt, ist die Installation von "SensorKinect" nicht erforderlich.[7]

2.1.6 Ros-Kinetic-OpenNI

Um die Funktionen des Framework "OpenNI" auch in Verbindung mit ROS verwenden zu können, werden zusätzlich mehrere ROS-Pakete, die im weiteren unter dem Namen "Ros-Kinetic-OpenNI" gefasst werden sollen, benötigt.

2.1.7 NITE

Das Paket "NITE" ist eine Middleware, die sich in die Infrastruktur des Framework "OpenNI" mit eingliedert. Diese Middleware erweitert die Funktionen von "OpenNI" unter anderem um das Tracking von Handbewegungen und Körperbewegungen im ganzen.[9, 7]

2.1.8 OpenNI Tracker

Das ROS-Paket "OpenNI Tracker" greift auf die durch "NITE" implementierten Funktionen zu, um die Positionen von Körpergelenken zu bestimmen und diese in ROS zur Verfügung zu stellen.[8]

2.1.9 Movelt!

Mit "MoveIt" wurde ein weiteres Framework unter ROS genutzt. Das Framework "MoveIt" ist die "State-Of-The-Art-Software" für Navigationsplanung und Manipulationsplanung in der Robotik unter ROS.[6, 5] Dieses Framework war notwendig, da basierend auf der zu implementierenden Gestenerkennung eine Gestensteuerung für einen Roboterarm entwickelt wurde.

2.1.10 Turtle Simulator

Der "Turtle Simulator" ist eine Anwendung in der Schildkröten auf einem 2D-Spielfeld gesteuert werden können. In der ROS-Community wird der "Turtle Simulator" unteranderem für Tutorials, zum erlenen des Umganges mit den TF-Paketen, genutzt.[17]

2.1.11 Gesamtsoftwarekonzept

In diesem Abschnitt wird das Gesamtsoftwarekonzept dargestellt und erklärt. Anhand der Abbildung 2.1, einer "Abstract Layered View", wird der Aufbau des Gesamtsoftwarekonzeptes erläutert.

2.2 Hardware

In diesem Kapitel wird beispielsweise das Fahrzeug beschrieben. Aber auch eingesetzte Sensoren, Prozessoren etc. können hier jeweils ein Unterkapitel bekommen. Es ist darauf zu achten, dass hier nur der Vollständigkeit halber eine Beschreibung eingefügt wird. Dies soll einem Leser ermöglichen die Arbeit zu verstehen, der nicht hier an der WE arbeitet. Allerdings soll

Abbildung 2.1: Abstract Layered View vom Gesamtsoftwarekonzept

es nicht so ausarten, dass hier die komplette Dokumentation der einzelnen Bauteile abgeschrieben wird. In der Kürze liegt die Würze. Auch ist darauf zu achten, dass die Dokumentation, Herstellerwebseiten etc. als Quellen angegeben werden.

3 Ergebnisse

Dieses Kapitel ist ganz der eigenen Arbeit gewidmet. Hier werden alle erzielten Ergebnisse und eigenen Arbeiten dokumentiert. An erster Stelle sind hier natürlich erstellte Platinen oder auch eigens erstellte Software zu nennen. Darüber hinaus werden hier aber auch durchgeführte Messreihen dokumentiert. Ergebnisse von Fahrtest, erstellte Umgebungskarten oder auch Screenshots der eigenen Software können ebenfalls hier aufgeführt werden. Allerdings werden hier noch keine Interpretationen hinsichtlich der Aufgabenerfüllung vorgenommen. Lediglich Beobachtungen und reine Fakten sind hier von Bedeutung.

Zusätzlich zu diesen allgemeinen Informationen zu dem Ergebnis-Kapitel werden in dieser Vorlage noch ein paar Informationen zu dem handwerklichen Vorgehen beim Erstellen einer schriftlichen Ausarbeitung aufgeführt.

3.1 Zitate

Grundlegend gilt: Alle Informationen, Aussagen, Bilder, Tabellen etc. die NICHT SELBER erstellt wurden, müssen über ein Zitat kenntlich gemacht werden [Kornmeier2012, 18]. Bei uns wird in aller Regel nicht wörtlich zitiert, also nicht 1-zu-1 abgeschrieben und in Hochkommata gesetzt. Vielmehr werden Informationen aus Artikeln, Webseiten, Datenblättern oder Ähnlichem übernommen und sinngemäß wiedergegeben. Wird eine Quelle nicht deutlich gemacht, ist dies in der Regel ein Plagiat [Anderson1998, 10].

Es gibt sehr unterschiedliche Arten zu zitieren. Grundlegend wird in Geisteswissenschaften häufig in Form von Fußnoten zitiert. In der Naturwissenschaft ist ein nachgestelltes Literaturverzeichnis die Regel, so wie es auch in diesen Guidelines der Fall ist. Ein Zitat wird meist am Ende eines Satzes durch ein in eckige Klammern eingefasstes Kürzel angegeben. Dieses Kürzel kann numerisch durchnummeriert werden, IEEE Zitat Stil, oder aber Namens-Kürzel und Jahresangabe verwenden (bsp. [ENG2012]). Diese Vorlage nutzt im Wesentlichen den IEEE Zitierungs Stil.

Wenn Informationen aus dem Internet oder anderen Quellen verwendet werden, sind einige Punkte zu beachten. Nicht alles wird als zitierungswürdig betrachtet. So ist es beispielsweise unüblich Artikel aus Tageszeitungen oder Ähnliches zu zitieren. Und auch Artikel aus Wikipedia sind nicht unbedingt guter Stil. Besser ist es sich Bücher oder wissenschaftliche Artikel zu dem Thema zu besorgen und diese zu referenzieren. Über das Uni-Netz hat man Zugang zu mehreren online Quellen von wissenschaftlichen Artikeln. Wichtige Beispiele sind der IEEE Xplorer [2], SpringerLink [16] oder auch die Unibibliothek [19]. Um ein paar Beispiele an die Hand zu geben, werden an dieser Stelle eine Bachelor-, eine Masterarbeit, ein Datenblatt sowie ein Skript referenziert [LM2731, EmbSys, 12, 14].

Abbildung 3.1: Autonomes Kettenfahrzeug des Instituts 4

3.2 Bilder

Wenn die Bilder nicht selber erstellt wurden, dann müssen sie auf alle Fälle zitiert werden. Schwierig hierbei ist das Copyright. Um hier Problemen aus dem Weg zu gehen, wird empfohlen, keine Bilder aus dem Internet zu verwenden. Besser und unproblematischer ist es, selber einfache Zeichnungen zu erstellen. Bilder die im Institut 4 erstellt wurden, dürfen verwendet werden, müssen aber mit Zitat (die Intranet Seite) gekennzeichnet werden.

Bilder aus wissenschaftlichen Artikeln dürfen unter anderem abgedruckt werden. Hier ist es ratsam, sich im Vorfeld eine "Reprint Permission" vom Autor einzuholen. Viele Verlage haben eigene Vorgehen, um eine "Reprint Permissions" zu erteilen. Hier muss man sich vorher auf alle Fälle erkundigen ob man ein verwendetes Bild wirklich verwenden darf [IEEEReprint, 15].

Auch die Platzierung von Bildern ist immer wieder missverständlich. Generell sollten diese entweder ganz oben oder ganz unten auf der Seite zu finden und mit einer Bildunterschrift versehen sein. Bei der Verwendung von Latex wird dies automatisch erfolgen. Ganz wichtig ist, dass ein Bild immer im Text erwähnt beziehungsweise erläutert werden muss. Keine Bilder aufführen, die nicht im Text Erwähnung finden. Gerade Diagramme o.ä. müssen auch erläutert werden. Ein SysML-Blockdiagramm, ein Ablaufdiagramm oder ein Zustandsdiagramm (auch wenn sie nur im Anhang gezeigt werden) müssen textuell erläutert und beschrieben werden. Bei Bildern von Robotern oder Sensoren reicht auch eine Erwähnung in einem Halbsatz.

Als Beispiel zeigt die Abbildung 3.1 das Kettenfahrzeug FTW-TV5 Rumbler welches im Institut 4 für autonome Fahrversuche verwendet wird.

Sollen zwei Abbildungen nebeneinander platziert werden, so wird eine *Subfigure* Umgebung verwendet. Auch andere Konstellationen mit mehr Bildern sind realisierbar sollen hier aber nicht weiter vertieft werden. Hierbei lässt sich die komplette Abbildung referenzieren 3.2 oder aber auch einzelne Unterabbildungen 3.2(a).

Abbildung 3.2: Fahrzeuge des Instituts 4.

Abbildung 3.3: Einstellung der Größe für eine Matlab Abbildung.

3.3 Auflösung

Werden eigene Diagramme und Skizzen erstellt, so ist auf eine gute Auflösung für den Druck zu achten. Die meisten Textsatzsysteme unterstützen leider keine Vektorgrafiken. Aber es ist möglich die Abbildungen erst als Vektorgrafik zu erstellen (bsp. Mittel dem Open Source Tool Inkscape[3] und dann in einer hohen Auflösung in eine Rastergrafik zu exportieren.

Auch das Erstellen von Abbildung aus Matlab heraus führt immer wieder zu Problemen. Häufigester Fehler ist eine zu niedrige Auflösung und zu kleine Schrift oder zu dünne Linien. Hierbei sollte zunächst einmal die Größe der Abbildung festgelegt werden. Dies kann unter Eigenschaften der Abbildung erfolgen, wie in Abbildung 3.3 gezeigt. Danach können die Schriftarten und die Liniendicken entsprechend der schriftlichen Ausarbeitung angepasst werden. Danach sollte die Abbildung nicht einfach als Bild gespeichert, sondern Exportiert werden. Hierbei kann dann die Auflösung eingestellt werden, siehe Abbildung 3.4.

3.4 Farben

Hierbei gilt: Weniger ist mehr. Nach Möglichkeit sind nur wenige oder gar keine Farben zu verwenden. Ausnahmen hierbei sind natürlich Fotografien. Für alle selber erstellten Abbildungen

Abbildung 3.4: Einstellung der Abbildungs-Auflösung beim Exportieren aus Matlab heraus.

gilt, dass diese im Zweifel besser und professioneller wirken, wenn man diese nur in Graustufen erstellt. Ein positiver Nebeneffekt ist, dass weniger Farbseiten beim Ausdruck anfallen.

3.5 Quelltext

Hier im Institut 4 ist es die Regel, dass der Quelltext mittels dem Tool Doxygen dokumentiert wird. Insofern ist es nicht notwendig, den kompletten Quelltext im Text oder auch im Anhang aufzuführen. Trotzdem sollten **zentrale** Abschnitte im Text erläutert werden. Beispielsweise ein komplizierterer Algorithmus oder Ähnliches muss hier erwähnt und beschrieben werden. Dies ist schließlich ein zentraler Teil der eigenen Arbeit. Dies dient zum einen der Dokumentation, da der Ablauf unter Umständen nicht aus den Dokumentierungen im Quelltext deutlich wird. Außerdem muss die Arbeit auch für Außenstehende verständlich sein. Diese haben vielleicht keinen Zugang zur beigelegten CD.

Wird Quelltext in den Text eingebunden, so erfolgt dies über ein Listing. Ein Beispiel für eine sinnlose Funktion ist im Listing 3.1 gegeben. Ein Beispiel dafür, wenn eine externe Quelldatei eingebunden wird, ist im Listing 3.2 zu finden.

```
void do_something(int i , int y)

for (int index = 0; i < 100; i++)

i = i + index * y;

if (mod(i, 2))

{
    i = 1;

    }

else

i = i *3;

}

}
</pre>
```

Listing 3.1: Wichtige Funktion für das Programm

```
VHDL Beispiel
   LIBRARY ieee;
   USE ieee.std_logic_1164.ALL;
   ENTITY SN74x6541 IS
     PORT(
        OE1a_n, OE1b_n : IN
                                 STD_LOGIC;
        OE2a_n, OE2b_n : IN
                                 STD_LOGIC;
                                 STD_LOGIC_VECTOR(7 DOWNTO 0);
        A1, A2:
                            IN
                            OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
        Y1, Y2:
10
11
   END SN74x6541;
12
   ARCHITECTURE arch OF SN74x6541 IS
14
     Y1 \leftarrow A1 \text{ WHEN } OE1a_n = '0' \text{ AND } OE1b_n = '0' \text{ ELSE}
             (OTHERS=>'Z');
17
     Y2 \leftarrow A1 \text{ WHEN } OE2a_n = '0' \text{ AND } OE2b_n = '0' \text{ ELSE}
18
             (OTHERS=>'Z');
19
   END arch;
```

Listing 3.2: Sourcecode SN74x6541

Nicht ausreichend ist es, nur den Quelltext in der Arbeit aufzunehmen. Es ist sehr wichtig, dass auch die Funktion des Programmes erläutert wird. So kann beispielsweise die Aufteilung in mehrere Tasks über ein Sequenzendiagramm dargestellt werden. Generell bieten sich Grafiken und Diagramme hier mehr an, als reiner Text. Ganz auf einen erklärenden Text kann aber nicht verzichtet werden.

3.6 Diagramme

Bei großen Diagrammen (SysML) stellt sich häufig die Frage, ob diese im Anhang oder im Text aufgeführt werden sollen. Wird ein bestehendes Diagramm lediglich wiedergegeben, so sollte dies in den Anhang. Ist das Diagramm aber ein zentraler Punkt der eigenen Arbeit, so sollte es auch im Text auftauchen. In beiden Fällen muss der Text den Diagramm-Inhalt erläutern. Sehr große Diagramme können auch in mehrere Abbildungen aufgesplittet werden.

3.7 Layout

Auch wenn es dem eigenen Design-Empfinden besser passt, die Arbeit einseitig zu drucken: Es empfiehlt sich, einen doppelseitigen Druck zu verwenden. Die Arbeit wird nicht nach Gewicht bewertet und so kann an Druckkosten gespart werden. Auch hat man somit mehr Informationen auf einen Blick. Bei der Verwendung dieser Vorlage muss doppelseitig gedruckt werden, weil ansonsten die Seitennummerierung mal auf der linken und mal auf der rechten Seite des Blattes erscheint.

3.8 Sprachliches

Nicht jedem liegt das Schreiben von spannenden Texten. Lassen Sie den Text von jemandem lesen, der von der Thematik keine Ahnung hat. Im Zweifel eher kürzere Sätze verwenden. Nicht zu lange Schachtelsätze erzeugen. Lieber Aufzählungen verwenden.

Ein häufig wiederkehrender Punkt sind sogenannte "Weichmacher", die in einer wissenschaftlichen Arbeit nach Möglichkeit vermieden werden: "sollen, sollte, könnte, wäre möglich, etc.". Definitiv schreiben. Der Roboter muss folgende Aufgaben erfüllen. Dies wiederstrebt einem in der Regel, wenn man weiß, dass vielleicht noch nicht alles hundertprozentig funktioniert. Diese Weichmacher hinterlassen aber den Eindruck, dass der Autor sich seiner Arbeit nicht so sicher ist oder auch nicht davon überzeugt ist.

3.9 Abkürzungen

Ein Abkürzungsverzeichnis ist nicht verpflichtend. Aber jede eingesetzte Abkürzung, muss beim ersten Auftauchen erläutert werden. Dies kann als Fußnote, in Klammern oder auch im Text erfolgen. Als Beispiel sei hier SysML¹ aufgeführt.

3.10 Tabellen

Zu Tabellen gelten die gleichen Regeln wie auch für Abbildungen. Jede Tabelle muss im Text erläutert oder zumindest erwähnt werden. Auch sollte darauf geachtet werden, dass die Tabellen

¹System Modelling Language

Diagramm	Anmerkung		
System Context Diagram	Gibt einen überblick über das System und die Interaktion		
	mit der Umwelt.		
Use Case Diagram	Anwendungsfälle, also das was mit dem System gemacht		
	werden kann.		
Block Definition Diagram	Aufteilung in System und Subsysteme.		
Internal Block Definition Diagram	Schnittstellen von Subsystemen zueinander.		
Requirements Diagram	Anforderungen an das System.		
Package Diagram	Wird hier nicht benötigt.		
State Machine	Zustände die das System annehmen kann.		
Allocations	Wird hier nicht benötigt.		
Parametric Diagram	Wird hier nicht benötigt.		
Sequence Diagram	Ablauf von Funtkionen und Nachrichtenflüssen.		
Activity Diagram	Abfolge von Aktivitäten im System.		

Tabelle 3.1: Diagrammarten der System Modelling Language

übersichtlich bleiben und nicht überladen werden. Als Beispiel listet Tabelle die unterschiedlichen Diagramme der *System Modelling Language* auf.

3.11 Formeln

Formeln können zum einen direkt inline im Text oder abgesetzt eingefügt werden. Wird sich für eine abgesetzte Formel entschiede, dann sind diese zu nummerieren, um sie im Text referenzieren zu können. Alle etwas komplizierteren Formeln sollten abgesetzt werden, um das Schriftbild übersichtlich zu halten. Einfache Zusammenhänge, wie beispielsweise $x_i = \cos{(i-1)}$, stören das Schriftbild aber nicht weiter. Als Beispiel für eine abgesetzte Formel sei auf Formel 3.1 oder 3.2 verwiesen.

$$f(x_{k,i}, x_{k+1,i}) = \begin{cases} 1 & \text{falls} & (-x_{k,i} \cdot x_{k+1,i}) > 0 \land |x_{k,i} - x_{k+1,i}| > \text{Schwellwert} \\ 0 & \text{sonst} \end{cases}$$
(3.1)

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 (3.2)

4 Diskussion

Was lässt sich aus den Ergebnissen ableiten. Sind die Anforderungen an die neue Entwicklung erfüllt? Bestehen Probleme im entwickelten Programm? Hat der Sensor Einschränkungen für die Benutzung. Hier wird nicht nur das wiedergegeben, was man selber gemacht hat, sondern versucht die Ergebnisse zu interpretieren.

4.1 Ausblick

Es hat sich bewährt, einen Ausblick zu geben, was weiterhin verbessert werden kann. Welche Änderungen an der Software sind noch notwendig, welche Hardware-Umbauten wären hilfreich etc. Das ist gerade für uns wichtig, wenn wir weiter Arbeiten für dieses Fahrzeug o.ä. anbieten.

5 Anhang

In den Anhang kommen alle entworfenen und umgesetzten Schaltpläne, Layouts etc., die wichtig für die Arbeit sind. Alle Anhänge sollten aus dem Text heraus referenziert werden. Auch hier im Anhang können Unterkapitel eingefügt werden.

5.1 Schaltpläne

Wenn Schaltpläne bzw. Layouts eingefügt werden, dann sind immer die Kenndaten mit aufzuführen. Hierzu gehören der Platinen-Name, die Platinen-Nummer, die Version, der Status und ob noch Fehler und Änderungen offen sind.

Abbildung 5.1: Schaltungsdesign für die Spannungsversorgungsplatine

Abbildung 5.2: Layout für die Spannungsversorgungsplatine.

5.2 Projektplan mit themenbezogenem Zeitaufwand

Am Anfang der Arbeit sollte man sich Gedanken darüber machen, welche Arbeiten notwendig sind und wie viel Zeit man hierfür benötigt. Außerdem sollte eine Übersicht über die tatsächlich aufgewendeten Stunden erstellt werden. Die Planung der Arbeit kann über ein GANTT-Diagramm erfolgen. Um den Aufwand für bestimmte Tätigkeiten zu bestimmen, können die Mitarbeiter des Instituts 4 befragt werden.

Abbildung 5.3: Themenbezogene Stundenaufschlüsselung für die Abschlussarbeit.

Abbildung 5.4: Aufgabenübersicht für die Abschlussarbeit.

Literaturverzeichnis

- [1] Eclipse. 15. Mai 2019. URL: https://www.eclipse.org/.
- [2] *IEEE Xplorer Digital Library*. http://ieeexplore.ieee.org/Xplore/guesthome.jsp. Dez. 2012. URL: http://ieeexplore.ieee.org/Xplore/guesthome.jsp.
- [3] *Inkscape*. http://inkscape.org/?lang=de. Dez. 2012.
- [4] KEIL. 15. Mai 2019. URL: http://www.keil.com/.
- [5] Anis Koubaa. *Robot Operating System(ROS)*. Springer International Publishing Switzerland, 2016.
- [6] Movelt! 17. Mai 2019. URL: https://moveit.ros.org/.
- [7] *OpenNI*. 15. Mai 2019. URL: https://github.com/OpenNI/OpenNI/blob/master/Documentation/OpenNI_UserGuide.pdf.
- [8] OpenNI Tracker. 16. Mai 2019. URL: http://wiki.ros.org/openni_tracker.
- [9] PrimeSense NITE Algorithms 1.5. PrimeSense. 16. Mai 2019. URL: http://cvrlcode.ics.forth.gr/web_share/OpenNI/NITE_SDK/NITE_1.x/NITE-Algorithms.pdf.
- [10] Tim S. Robert. Student Plagiarism in an Online Eorls: Problems and Solutions (Premier Reference Source). Idea Group Reference, 2007.
- [11] Robot Operating System. 15. Mai 2019. URL: https://www.ros.org/about-ros/.
- [12] Ralf Rüther. "Weiterentwicklung der Roboterplattform Rumbler (Kettenfahrzeug)". Bachelorarbeit. Universität der Bundeswehr München, 2011.
- [13] SensorKinect. 15. Mai 2019. URL: https://github.com/avin2/SensorKinect.
- [14] Thomas Solzbacher. "Entwicklung und Implementierung des SLAM Algorithmus (Synchronous Localization and Mapping) zur Steuerung von autonomen Robotern". Masterarbeit. Universität der Bundeswehr München, 2011.
- [15] Springer Verlag New York / Heidelberg. *Springer Rights Platform*. http://www.springer.com/rights?SGWI 122-0-0-0. Juni 2012.
- [16] SpringerLink. http://link.springer.com/. Dez. 2012. URL: http://link.springer.com/.
- [17] Turtle Simulator. 17. Mai 2019. URL: http://wiki.ros.org/turtlesim.

- [18] Sylwia Ufnalska. *EASE Guidelines for Authors and Translators of Scientific Articles to be Published in English*. Technischer Bericht. European Association of Science Editors, 2011.
- [19] *Universität der Bundeswehr München Universitätsbibliothek.* http://link.springer.com/. Dez. 2012. URL: http://www.unibw.de/unibib/digibib.

Index

Überblick, 5 Abkürzungen, 24 Ablaufdiagramm, 20 Abschlussarbeit, 5 Abstrakt, 5 Anhang, 29 Auflösung, 21 Aufwand, 33 Ausblick, 27 Bilder, 20 Blockdiagramm, 20 Diagramm, 20 Diagramme, 24 Diskussion, 27 Einleitung, 13 Ergebnisse, 19 Farben, 21 Formeln, 25 GANTT-Diagramm, 33 Hardware, 18 IEEE Xplorer, 19 Inkscape, 21 Layout, 24 Matlab, 21 Methoden, 15 Miktex, 15 Plagiat, 19 Platine, 30

Platinen-Nummer, 30

Projektplan, 33 Quelltext, 22 Rastergrafik, 21 Roboter, 13 Rumbler, 20 Schaltpläne, 30 Schaltplan, 29 Sprache, 24 SpringerLink, 19 SysML, 20, 24 Tabellen, 24 TexnicCenter, 18 Vektorgrafik, 21 Version, 30 Versuchsaufbau, 18 Zeitaufwand, 33 Zitate, 19 Zustandsdiagramm, 20