Traitement d'images

Introduction à l'image

NGUYEN Thi Oanh — IPH oanhnt@soict.hust.edu.vn

Qu'est-ce qu'une image?

Qu'est-ce qu'une image?

- Une image est avant tout un signal 2D (x,y)
- Souvent, cette image représente une réalité 3D (x,y,z)
- D'un point de vue mathématique :
 - Une image est un matrice de nombres représentant un signal
 - Plusieurs outils permettent de manipuler ce signal
- D'un point de vue humain :
 - Une image contient plusieurs informations sémantiques
 - Il faut interpréter le contenu au-delà de la valeur des nombres

Images naturelles et artificielles

- Image naturelle Plusieurs moyens d'acquisition
 - caméra, microscope, tomographie, infra-rouge, satellite, ...
- Image artificielle Plusieurs outils de représentation
 - synthèse d'images, réalité virtuelle, visualisation scientifique, ...

Image naturelle

Image artificielle

Image artificielle

Trois principaux types d'images

Images en niveaux de gris $I(x,y) \in [0..255]$

Images binaires $I(x,y) \in \{0, 1\}$

Images couleurs $I_R(x,y) I_G(x,y) I_B(x,y)$

... et plus encore (image 3D, image multi-résolution, ...)

Image couleur dans l'espace RVB

Mais il existe aussi d'autres codages de la couleur que RVB...

Demo: CVIPTools: File>View Band>{Red, Green, Blue} / Utilities>Convert>Color to Gray Source: Tal Hassner. Computer Vision. Weizmann Institute of Science (Israel).

Acquisition des images

- La fovea est la région où la vision est la plus précise et sensible
- L'oeil se déplace pour aligner la fovea, l'axe optique et l'objet désiré
 - Deux types de photorécepteur dans la rétine: cones et batonnets

L'oeil humain

- Deux types de photorécepteur dans la rétine (repartition differente)
- Les Cones: réponse photométrique et chromatique, grace a des pigments absorbant le bleu, le vert ou le rouge.
 - Les cônes sont activés par une longueur d'onde différente selon leur variété
 - Les cônes bleus (ou short wavelength) : 420 nm
 - Les cônes verts (ou medium wavelength): 530 nm
 - Les cônes rouges (ou long wavelength) : 660 nm
- Les **batonnets**: responsables de la vision nocturne

L'humain et la couleur

- Chez l'humain, la couleur est perçue dans l'oeil via les cônes.
- Il y en a trois types : Low, Medium and Supra-Frequency.
 - Par abus, on parle de cônes Rouge, Vert et Bleu.
- La transformation entre stimuli des cônes et perception de la couleur est un phénomème qui n'est pas encore bien modélisé.

Acquisition d'une image

Capteur – Principe général

- Principe général :
 - L'énergie incidente est convertie en signal électrique
 - Sortie est proportionnelle à la lumière
 - Filtre pour augmenter la sélectivité

Capteur – Principe général

Fonctionnement :

- Un capteur est constitué de cellules photovoltaïques qui mesurent l'intensité de la lumière et sa couleur
- Cette intensité lumineuse est ensuite transformée en courant électrique
- Chaque point du capteur, qui compose une partie d'un pixel, enregistre l'intensité lumineuse pour produire une image
- Le capteur : 2 éléments superposés :
 - le premier est composé de cellules photosensibles,
 - le second est le dispositif à transfert de charge
 - Pour la couleur, chaque cellule photosensible possède 3 filtres :
 R, B et V ; chaque filtre peut capter une couleur

Capteurs

- Types de capteurs
 - CCD (Charge-Coupled Device) : utilisés en majorité sur les compacts
 - CMOS (Complementary Metal Oxyde Semi-conductor) : équipe plutôt les reflex et les hybrides

Image numérique

- Les valeurs de f (x,y) sont la réponse du capteur au phénomène observé
- Les valeurs de f(x,y) sont des valeurs de « voltage » continu
- Les valeurs de f (x,y) doivent être converties vers le domaine numérique
 - Conversion Analogique/Numérique (A/N)
- Deux procédés sont impliqués pour numériser une image :

Numérisation = Échantillonnage + Quantification

a b c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

- L'échantillonnage est limité par la capacité du capteur, donc le nombre de pixels disponible (ou autre limite imposée)
- La quantification est limitée par la quantité de tons (de gris) définie dans l'intervalle

Avec un capteur à matrice :

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Représentation des images

- Matrice de dimension M X N
- Chaque élément à une valeur entière dans l'intervalle $[L_{min}, L_{max}]$
- Le nombre de « bits » requis pour représenter les niveaux de gris dans l'intervalle « L » est « K » :

$$L = 2^{\kappa}$$

Le nombre de bits pour entreposer un image est donc :

$$b = MXNXK$$

Résolutions des images

- Résolution spatiale
 - Le plus petit détail discernable
- Résolution tonale (de tons de gris)
 - Le plus petit changement discernable
- Une image a donc une résolution spatiale de MX N pixel et une résolution de tons de gris de K bits ou de L niveaux ou tons

Résolutions spatiale et tonale

Résolution spatiale : échantillonage

256x256

128x128

64x64

32x32

Résolution tonale : quantification

6 bits

4 bits

3 bits

2 bits

1 bit

Formats de fichiers d'images

- Il existe beaucoup de format de fichiers pour sauvegarder les images
 - TIF, GIF, JPEG, PNG, PPM, PGM, BMP, ...
- Chaque format a ses particularités et nous ne les étudierons pas dans ce cours
 - Entête contenant les informations de l'image
 - Pixels de l'image codés de différentes façons
- Quelques notions seulement sur les principaux formats que nous utiliserons

Formats sans compression

- Les formats les plus simple sont les images sans compression
 - Les pixels sont codés directement, les uns à la suite des autres
- Nous utiliserons ici principalement :
 - PGM: images en niveaux de gris 8 bits
 - PPM: images en couleurs Rouge-Vert-Bleu 24 bits
- Utiles comme formats d'entrée et sortie des traitements que nous ferons sur les images

Formats avec compression

- Les pixels sont compressés pour que le fichier soit plus petit sur le disque
 - Compression sans perte : Fichier compressé sans modification de la valeur des pixels
 - Exemple : PNG
 - <u>Compresssion avec perte</u>: Valeurs des pixels modifiées pour prendre encore moins de place après la compression
 - Exemple : JPEG
- JPEG est très bien pour visualiser les images (vision humaine) mais très mauvais pour le traitement d'images, car on perd beaucoup d'informations
 - Images d'entrée peuvent être en JPEG
 - Eviter autant que possible de sauvegarder les résultats en JPEG

Autre format d'images

- TIFF: format multi-usage avec/sans compression
- Autres :
 - BMP : format couleurs 24 bits sans compression
 - GIF: format couleurs 8 bits avec compression
- Encore beaucoup d'autres formats...

Profils d'intensité dans une image

Profil d'intensité d'une image

 Un profil d'intensité d'une ligne dans une image est représenté par des signaux 1D.

Profil d'intensité d'une image

Profil d'intensité d'une image

Références

- Antoine Mazanera. Cours de Traitement d'images. ENSTA (France).
 - http://www.ensta.fr/~manzaner/Support_Cours.html
 - Cours TI et Vision Introduction et filtrage : http://cours.enise.fr/info/vision/tai/traitements_ponctuels.pdf