Résumé de cours :

Semaine 10, du 22 novembre au 26.

Les complexes (suite)

1 Le module (fin)

Propriété. Le module est une norme sur \mathbb{C} , c'est-à-dire que l'application $|.|:\mathbb{C} \longrightarrow \mathbb{R}$ vérifie les propriétés suivantes : Pour tout $z, z' \in \mathbb{C}$ et $\alpha \in \mathbb{R}$,

- $|z| \ge 0$ (positivité),
- $|z| = 0 \iff z = 0$ (séparation),
- $|\alpha z| = |\alpha| \times |z|$ (homogénéité),
- $-|z+z'| \le |z| + |z'|$ (inégalité triangulaire).

Il faut savoir le démontrer.

Distance entre complexes : Lorsque $x, y \in \mathbb{C}$, la quantité d(x, y) = |x - y| est appelée la distance entre les deux complexes x et y.

La fonction distance vérifie les propriétés suivantes : pour tout $x, y, z \in \mathbb{C}$,

- Positivité : $d(x,y) \in \mathbb{R}_+$.
- $-d(x,y)=0 \iff x=y:d$ permet de séparer les complexes.
- Symétrie : d(x, y) = d(y, x).
- Inégalité triangulaire : $d(x,z) \le d(x,y) + d(y,z)$.

Définition. Soit $a \in \mathbb{C}$ et $r \in \mathbb{R}_+$.

- La boule fermée de centre a et de rayon r est $B_f(a,r) = \{z \in \mathbb{C}/|z-a| \le r\}$. C'est le disque de centre a et de rayon r.
- Lorsque r > 0, la boule ouverte de centre a et de rayon r est
 - $B_o(a,r) = \{z \in \mathbb{C}/d(a,z) < r\}$. C'est le disque ouvert de centre a et de rayon r.
- La sphère de centre a et de rayon r est $S(a,r) = \{z \in \mathbb{C}/d(a,z) = r\}$. C'est le cercle de centre a et de rayon r.

Définition. S(0,1) s'appelle la sphère unité ou bien le cercle unité. Il est noté \mathbb{U} .

Propriété. Pour tout
$$z \in \mathbb{C}, z \in \mathbb{U} \Longleftrightarrow \overline{z} = \frac{1}{z}$$
.

Théorème.

Pour tout $z, z' \in \mathbb{C}$, $|z + z'| \le |z| + |z'|$, avec égalité si et seulement si z' = 0 ou bien $\frac{z}{z'} \in \mathbb{R}_+$. Il faut savoir le démontrer.

Généralisation : (hors programme) $|z_1 + \cdots + z_n| \le |z_1| + \cdots + |z_n|$, avec égalité si et seulement si, pour tout i, j tels que $1 \le i < j \le n$, $(z_j = 0) \lor (\frac{z_i}{z_j} \in \mathbb{R}_+)$.

Il faut savoir le démontrer.

Corollaire de l'inégalité triangulaire :

- Pour tout $z, z' \in \mathbb{C}$, $||z| |z'|| \le |z z'|$.
- Pour tout $a, b, c \in \mathbb{C}$, $|d(a, b) d(b, c)| \le d(a, c)$.

Il faut savoir le démontrer.

Définition. Une partie A de \mathbb{C} est bornée si et seulement si il existe $R \in \mathbb{R}_+$ tel que, pour tout $a \in A$, $|a| \le R$, c'est-à-dire si et seulement si A est incluse dans un disque centré en 0.

2 Fonctions à valeurs dans \mathbb{C}

2.1 Fonctions bornées

Définition. Soit E un ensemble quelconque et f une application de E dans \mathbb{C} . On dit que f est bornée sur E si et seulement si $\{f(x)/x \in E\}$ est une partie bornée de \mathbb{C} .

Notation. Soit f une application d'un ensemble E dans \mathbb{C} .

 $E \longrightarrow \mathbb{R}$ \mathbb{R} $\mathrm{Im}(f): E \longrightarrow \mathbb{R}$ \mathbb{R} $\mathrm{Im}(f(x))$. On les appelle les parties réelle $x \longmapsto \mathrm{Im}(f(x))$. et imaginaire de l'application f.

Propriété. Avec ces notations, f est bornée sur E si et seulement si Re(f) et Im(f) sont bornées.

2.2Dérivation

Définition. Soit I un intervalle inclus dans $\mathbb R$ et $f:I\longrightarrow \mathbb C$ une application. On verra plus loin que f est continue (resp : dérivable, k fois dérivable, de classe C^k où $k \in \mathbb{N}^* \cup \{\infty\}$) si et seulement si les applications Re(f) et Im(f) sont continues (resp : dérivables, k fois dérivables, de classe C^k où $k \in \mathbb{N}^* \cup \{\infty\}$). De plus, lorsque f est k fois dérivable, où $k \in \mathbb{N}^*$, on verra que, pour tout $t \in I$, $f^{(k)}(t) = [\text{Re}(f)]^{(k)}(t) + i[\text{Im}(f)]^{(k)}(t)$.

Propriété. Les formules suivantes, déjà admises pour des fonctions de \mathbb{R} dans \mathbb{R} sont aussi valables pour des fonctions de \mathbb{R} dans \mathbb{C} , ainsi que nous le démontrerons plus tard.

Les fonctions qui interviennent dans ces formules sont toutes supposées dérivables sur un intervalle. On se limite éventuellement à un sous-intervalle pour s'assurer que les quantités qui interviennent dans les formules sont bien définies. :

- Pour tout $\alpha, \beta \in \mathbb{C}$, $(\alpha f + \beta g)' = \alpha f' + \beta g'$. - (fg)' = f'g + fg'. $- \left(\frac{1}{f}\right)' = -\frac{f'}{f^2}.$
- $\left(\frac{f}{g}\right) = \frac{f'g g'f}{g^2}.$ $\text{ Si } g : \mathbb{R} \longrightarrow \mathbb{R}, \text{ alors } (f \circ g)' = g' \times (f' \circ g).$ $\text{ Pour tout } n \in \mathbb{Z}, (f^n)' = nf' \times f^{n-1}.$

Formule de Leibniz : Soient f et g deux applications d'un intervalle I dans \mathbb{C} . Si f et g sont n fois dérivables sur I, alors fg est n fois dérivable sur I et

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$

2.3 Intégration

Définition. Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{C}$ une application continue. Pour tout $a,b\in I$, on pose

$$\int_a^b f(t) \ dt = \int_a^b \operatorname{Re}(f(t)) \ dt + i \int_a^b \operatorname{Im}(f(t)) \ dt.$$

Remarque. Ainsi,
$$\operatorname{Re}\left(\int_a^b f(t) \ dt\right) = \int_a^b \operatorname{Re}(f(t)) \ dt$$
 et $\operatorname{Im}\left(\int_a^b f(t) \ dt\right) = \int_a^b \operatorname{Im}(f(t)) \ dt$.

On admettra pour le moment que les intégrales vérifient les propriétés suivantes :

Propriété. Soit I un intervalle inclus dans \mathbb{R} .

Soit f et g deux applications continues de I dans \mathbb{C} . Soit $a, b \in I$.

— Linéarité : Pour tout
$$\alpha, \beta \in \mathbb{C}$$
, $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

— Relation de Chasles : Pour tout
$$c \in I$$
, $\int_a^b f(t)dt = \int_a^c f + \int_c^b f$.

— Inégalité triangulaire :
$$\left| \int_a^b f(t) \ dt \right| \leq \int_{\min(a,b)}^{\max(a,b)} |f(t)| \ dt.$$

Définition. Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{C} que l'on suppose continue. On dit que F est une primitive de f sur I si et seulement si F est dérivable et F' = f. Si F_0 est une primitive de f, alors les autres primitives de f sont exactement les applications $F_0 + k$, où k est une fonction constante.

Théorème : Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{C} que l'on suppose continue. Soit $x_0 \in I$. Alors $x \longmapsto \int_{x_0}^x f(t)dt$ est l'unique primitive de f qui s'annule en x_0 .

Corollaire. Soit f une application continue d'un intervalle I dans \mathbb{C} .

Si F est une primitive de f, alors pour tout $a, b \in I$, $\int_a^b f(t)dt = F(b) - F(a) \stackrel{\Delta}{=} [F(t)]_a^b$.

Corollaire. Si f est C^1 de I dans \mathbb{C} , pour tout $a,b\in I$, $\int_a^b f'(t)dt=f(b)-f(a)$.

Notation. L'écriture " $\int f(t) dt = F(t) + k, t \in I$ " signifiera que f est continue de I dans \mathbb{C} et que l'ensemble des primitives de f est $\{F + k/k \in \mathbb{C}\}$.

Changement de variable :

si $f: I \longrightarrow \mathbb{C}$ est continue et si $\varphi: J \longrightarrow I$ est de classe C^1 , alors $\forall (\alpha, \beta) \in J^2$ $\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$ Cette égalité correspond au changement de variable $x = \varphi(t)$.

Intégration par parties : soit $u:I\longrightarrow \mathbb{C}$ et $v:I\longrightarrow \mathbb{C}$ deux applications de classe C^1 sur I.

Pour tout
$$(a, b) \in I^2$$
, $\int_a^b u(t)v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) dt$.
On a aussi : $\int u(t)v'(t) dt = u(t)v(t) - \int u'(t)v(t) dt$, $t \in I$.

Théorème. Formule de Taylor avec reste intégral.

Soient $k \in \mathbb{N}$ et $f:[a,b] \longrightarrow \mathbb{C}$ une application de classe C^{k+1} sur [a,b]. Alors

$$f(b) = f(a) + \sum_{h=1}^{k} \frac{(b-a)^h}{h!} f^{(h)}(a) + \int_{a}^{b} \frac{(b-t)^k}{k!} f^{(k+1)}(t) dt.$$

©Éric Merle 3 MPS12, LLG

Il faut savoir le démontrer.

Propriété. Pour tout $t \in \mathbb{R}$, $e^t = \sum_{n=0}^{+\infty} \frac{t^n}{n!}$.

Il faut savoir le démontrer.

3 L'exponentielle complexe (début)

Définition. Une suite $(z_n)_{n\in\mathbb{N}}$ de complexes converge vers $\ell\in\mathbb{C}$ si et seulement si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ |z_n - \ell| \leq \varepsilon.$$

On dit que $(z_n)_{n\in\mathbb{N}}$ est convergente si et seulement si il existe $\ell\in\mathbb{C}$ tel que $z_n\underset{n\to+\infty}{\longrightarrow}\ell$.

Définition. La série de complexes $\sum z_n$ converge si et seulement si la suite de ses sommes partielles

$$\left(\sum_{k=0}^{n} z_{k}\right)_{n\in\mathbb{N}}$$
 est une suite convergente. On note alors $\sum_{n=0}^{+\infty} z_{n} = \lim_{n\to+\infty} \sum_{k=0}^{n} z_{k}$.

Propriété. Si $\sum z_n$ est une série convergente de complexes, alors $z_n \underset{n \to +\infty}{\longrightarrow} 0$.

La réciproque est fausse : on peut avoir $z_n \underset{n \to +\infty}{\longrightarrow} 0$ alors que la série $\sum z_n$ diverge.

Il faut savoir le démontrer.

Théorème. Si $\sum |z_n|$ converge alors $\sum z_n$ est une série convergente. On dit alors que la série $\sum z_n$ est absolument convergente.

Définition. Pour tout complexe $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ est absolument convergente. Ceci permet de prolonger l'exponentielle réelle sur \mathbb{C} , en convenant que $\forall z \in \mathbb{C}, \ e^z = \lim_{n \to +\infty} \sum_{k=0}^n \frac{z^k}{k!}$.

Propriété. Soit $(z_n)_{n\in\mathbb{N}}$ une suite de complexes qui converge vers $\ell\in\mathbb{C}$. Alors $\overline{z_n}\underset{n\to+\infty}{\longrightarrow}\overline{\ell}$.

Il faut savoir le démontrer.

Propriété. Pour tout $z \in \mathbb{C}$, $\overline{(e^z)} = e^{\overline{z}}$.

Il faut savoir le démontrer.

Propriété. Pour tout $u, v \in \mathbb{C}$, $e^u e^v = e^{u+v}$.

Il faut savoir le démontrer.

Corollaire. Pour tout $z \in \mathbb{C}$, $e^z \neq 0$ et $\frac{1}{e^z} = e^{-z}$.

Propriété. $|e^z| = e^{\operatorname{Re}(z)}$.

Il faut savoir le démontrer.

Théorème. $e^z \in \mathbb{U} \iff z \in i\mathbb{R}$.

Formules d'Euler:

$$\cos\theta \stackrel{\Delta}{=} \operatorname{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{et} \quad \sin\theta \stackrel{\Delta}{=} \operatorname{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

De plus,

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Propriété. Pour tout
$$\theta \in \mathbb{R}$$
, $\cos \theta = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$ et $\sin \theta = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$.

Il faut savoir le démontrer.

Corollaire. sin est une fonction impaire et cos est une fonction paire. cos et sin sont de classe C^{∞} et $\cos' = -\sin$, $\sin' = \cos$.

Il faut savoir le démontrer.

Formule circulaire: Pour tout $\theta \in \mathbb{R}$, $\cos^2 \theta + \sin^2 \theta = 1$.

Formule d'addition : $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et $\sin(a+b) = \sin a \cos b + \cos a \sin b$.

Définition. On appelle série alternée toute série réelle de la forme $\sum (-1)^n \alpha_n$ ou $\sum (-1)^{n+1} \alpha_n$, où pour tout $n \in \mathbb{N}$, $\alpha_n \in \mathbb{R}_+$.

Théorème spécial des séries alternées (TSSA).

Soit $\sum a_n$ une série alternée. On dit qu'elle est spéciale alternée lorsque la suite $(|a_n|)$ est décroissante et tend vers 0. Dans ce cas, $\sum a_n$ est convergente.

De plus, pour tout $n \in \mathbb{N}$, $\sum_{k=n}^{+\infty} a_k$ est du signe de son premier terme a_n et $|\sum_{k=n+1}^{+\infty} a_k| \le |a_{n+1}|$.

Propriété. L'application cos est strictement décroissante sur]0,2] et elle possède un unique zéro sur]0,2], que l'on notera $\frac{\pi}{2}$: c'est la **définition** de π .

Propriété. Pour tout $x \in \mathbb{R}$, $\cos(x + \frac{\pi}{2}) = -\sin(x)$ et $\sin(x + \frac{\pi}{2}) = \cos(x)$. On dispose des tableaux de variations suivants :

x	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
$\cos(x)$	1	\searrow	0	\searrow	-1	7	0	7	1
$\sin(x)$	0	7	1	>	0	\searrow	-1	7	0

 2π est la plus petite période de cos, ainsi que de sin.

Propriété. Soit $(a,b) \in \mathbb{R}^2$ tel que $a^2 + b^2 = 1$.

Il existe un unique $\theta \in [0, 2\pi[$ tel que $a = \cos(\theta)$ et $b = \sin(\theta)$.

Corollaire. Soit $\theta, \varphi \in \mathbb{R}$ tels que $\cos \theta = \cos \varphi$ et $\sin \theta = \sin \varphi$. Alors $\theta \equiv \varphi$ [2 π].

Paramétrage du cercle unité : l'application $\begin{bmatrix} \mathbb{R} & \longrightarrow & \mathbb{U} \\ t & \longmapsto & e^{it} \end{bmatrix}$ est périodique et sa plus petite période est 2π . Sa restriction à $[0, 2\pi[$ est bijective.

Définition. Soit $a,b \in \mathbb{R}$ avec a < b et $M: [a,b] \longrightarrow \mathbb{C}$ une application de classe C^1 . Notons $C = \{M(t)/t \in [a,b]\}$: C est une courbe dans le plan complexe, dont l'application M est un paramétrage. Par définition, la longueur de C est égale à $\int_a^b |M'(t)| dt$.

Propriété. Soit $\theta \in [0, 2\pi]$. Notons $C_{\theta} = \{e^{it}/t \in [0, \theta]\}$: C_{θ} est une portion du cercle unité. Sa longueur est égale à θ .

4 Arguments d'un complexe

Propriété. Si z = a + ib, où $(a, b) \in \mathbb{R}^2$, $e^z = e^a(\cos(b) + i\sin(b))$.

Définition. Pour tout $z \in \mathbb{C}$, il existe $\rho, \theta \in \mathbb{R}$ tels que $z = \rho e^{i\theta}$. On dit alors que (ρ, θ) est un couple de coordonnées polaires du point M(z) (l'image du complexe z).

On peut imposer $\rho \geq 0$. Dans ce cas, $\rho = |z|$. On dit alors que θ est un argument de z et l'on note $\theta = \arg(z)$.

Lorsque $z \neq 0$, on peut imposer $\rho > 0$ et $\theta \in [0, 2\pi]$. Dans ce cas, le couple (ρ, θ) est unique.

Définition. Un complexe z possède ainsi deux écritures usuelles :

- l'écriture algébrique : z = a + ib avec $a, b \in \mathbb{R}$, ou bien z = Re(z) + iIm(z);
- l'écriture trigonométrique (ou exponentielle, ou polaire) : $z = \rho e^{i\theta}$, avec $\rho \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$.

Les relations suivantes font le lien entre ces deux écritures :

lorsque $z = a + ib = \rho e^{i\theta}$ avec $a, b, \rho, \theta \in \mathbb{R}$ et $\rho \ge 0$,

$$-\rho = \sqrt{a^2 + b^2};$$

— lorsque
$$z \neq 0$$
, $\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$;

— Lorsque
$$a \neq 0$$
, $\tan \theta = \frac{b}{a}$;

— Lorsque
$$z \neq 0$$
 et $\theta \in [0, \pi]$, $\theta = \arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right)$;

— Lorsque
$$z \neq 0$$
 et $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], \theta = \arcsin\left(\frac{b}{\sqrt{a^2 + b^2}}\right);$

— Lorsque
$$a \neq 0$$
 et $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \theta = \arctan(\frac{b}{a});$

— Lorsque
$$z \neq 0$$
 et $\theta \in]-\pi, \pi[, \theta = 2\arctan\left(\frac{b}{a + \sqrt{a^2 + b^2}}\right).$

Il faut savoir le démontrer.

Propriétés de l'argument : Si z, z_1, z_2 sont trois complexes non nuls, alors

$$- \arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2) [2\pi];$$

$$\operatorname{arg}(\overline{z}) = \operatorname{arg}(\overline{z}) + \operatorname{arg}(z) [2\pi]$$

$$= \operatorname{arg}(\frac{1}{z}) = \operatorname{arg}(z) [2\pi]$$

$$-\operatorname{arg}\left(\frac{1}{z}\right) \equiv \operatorname{arg}(\overline{z}) \equiv -\operatorname{arg}(z) [2\pi];$$

$$-\operatorname{arg}\left(\frac{z_1}{z_2}\right) \equiv \operatorname{arg}(z_1) - \operatorname{arg}(z_2) [2\pi];$$

— pour tout
$$n \in \mathbb{Z}$$
, $\arg(z^n) \equiv n \arg(z) [2\pi]$;

$$-\operatorname{arg}(-z) \equiv \operatorname{arg}(z) + \pi [2\pi];$$

$$- (\arg(z_1) \equiv \arg(z_2) [2\pi]) \iff \frac{z_1}{z_2} \in \mathbb{R}_+^*.$$

Remarque. Pour tout $z \in \mathbb{C}$, $\arg(e^z) \equiv \operatorname{Im}(z) [2\pi]$.

Interprétation géométrique du produit dans \mathbb{C} : Fixons $z_0 = \rho_0 e^{i\theta_0}$, où $\rho_0 \in \mathbb{R}_+$ et $\theta_0 \in \mathbb{R}$. La multiplication par z_0 , c'est-à-dire l'application $z \longmapsto zz_0$ est la composée de $h: z \longmapsto \rho_0 z$ avec $r: z \longmapsto ze^{i\theta_0}$. h s'interprète géométriquement comme une homothétie de centre O et de rapport ρ_0 et r comme la rotation de centre O et d'angle θ_0 .

Propriété. Soit $(\rho, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$. Pour tout $z \in \mathbb{C}$, $e^z = \rho e^{i\theta} \iff (\exists k \in \mathbb{Z}, \ z = \ln(\rho) + i\theta + 2ik\pi)$. En particulier, l'application exponentielle $\begin{pmatrix} \mathbb{C} & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & e^z \end{pmatrix}$ est surjective et $2i\pi$ périodique.

Il faut savoir le démontrer.

Formule de Moivre : Pour tout $n \in \mathbb{N}$ et $t \in \mathbb{R}$, $\left| e^{int} = (\cos t + i \sin t)^n \right|$.

Propriété. Pour tout $z \in \mathbb{C}$, $\frac{d}{dt}(e^{zt}) = ze^{zt}$.

Définition. Pour tout $\alpha \in \mathbb{C}$ et $x \in \mathbb{R}_+^*$, on note $x^{\alpha} \stackrel{\Delta}{=} e^{\alpha \ln x}$.

Propriété. Pour tout $\alpha \in \mathbb{C}$, $\frac{d}{dt}(t^{\alpha}) = \alpha t^{\alpha-1}$.

Technique de l'angle moyen : $e^{i\alpha} + e^{i\beta} = e^{i\frac{\alpha+\beta}{2}}(e^{i\frac{\alpha-\beta}{2}} + e^{i\frac{-\alpha+\beta}{2}}) = 2e^{i\frac{\alpha+\beta}{2}}\cos(\frac{\alpha-\beta}{2})$ et $e^{i\alpha} - e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} - e^{i\frac{-\alpha+\beta}{2}} \right) = 2ie^{i\frac{\alpha+\beta}{2}} \sin(\frac{\alpha-\beta}{2}).$

5 Linéarisation

Définition. Linéariser une expression trigonométrique, c'est transformer un produit de quantités en sin et cos en une somme de sin ou cos. Une méthode de linéarisation consiste à suivre les étapes suivantes :

- On remplace chaque occurrence en cos ou sin par son expression issue des formules d'Euler;
- On développe les différents produits qui apparaissent alors;
- On regroupe les différents termes à l'aide des formules d'Euler pour faire apparaître une somme de cos et de sin.