MATH 3339 Statistics for the Sciences

Wendy Wang wwang60@central.uh.edu

Lecture 1

Outline

- Types of Data
- Types of Variables
- Sets
- Venn Diagrams

Background

Chapter 1: Overview and Basic Concepts

What is Statistics?

- Statistics is used to make intelligent decisions in a world full of uncertainty. "A knowledge of statistics provides the necessary tool to differentiate between sound statistical conclusions and questionable conclusions." (*Business Statistics Communicating* with Numbers, Jaggia and Kelly, 2013, pg 4)
- Statistics is the science of collecting, organizing, and interpreting numerical facts which we call data.

A Data Set: Course Grades From Previous Session

	Student	Score	Grade	Tests	Quiz	HW	Session
	1	100.707	Α	99.233	87.308	101.270	Sp16
>	2	81.310	В	75	98.231	64.444	Sp16
_	3	8.194	F	14.667	12.769	3.175	Sp16
~	4	90.449	Α	91.533	77.231	82.222	Sp16
	5	68.461	D	65.783	81.769	68.571	Sp16
e im	6	103.955	Α	103.32	97.923	101.905	Sp16
1,00	7	92.889	Α	95.6	85.923	75.556	Sp16
	8	84.805	В	83.2	79.385	75.238	Sp16
	9	91.640	Α	89.967	91.231	85.079	Sp16
	10	22.316	F	17.433	40.615	44.444	Sp16
	11	98.363	Α	94.167	99.231	101.587	Sp16
	12	49.250	F.	43.917	73.077	78.095	Sp16
	13	16.967	F	15.5	20.077	29.841	Sp16
	14	50.747	F	45.533	67.385	57.460	Sp16
	15	43.184	F	72.983	47.462	38.413	Sp16
	16	100.845	Α	98.667	96.231	100.317	Sp16
	17	84.195	В	77.5	87.154	95.556	Sp16
	18	84.400	В	78.733	78.615	82.540	Sp16
	19	67.170	D	74.3	68.538	72.063	Fal15
	20	87.413	В	92	82.077	77.778	Fal15
	21	67.899	D	71.8	71.077	84.127	Fal15
	22	74.676	С	70.083	83.308	73.016	Fal15
	23	40.054	F	44.133	21.308	33.333	Fal15
	24	101.014	Α	101.08	98.923	95.873	Fal15
	25	11.972	F	17.1	10.385	3.810	Fal15
	26	79.831	В	86.233	71.923	46.667	Fal15
	27	83.301	В	94.6	69.692	60.317	Fal15
	28	72.299	С	64.967	67.615	99.394	Sum16
	29	83.821	В	77.2	80.923	83.030	Sum16
	30	90.703	Α	83.617	87.923	80.000	Sum16

Types of data

 Population Data is everything or everyone we want information about. It is a set of data that consists of all possible values pertaining to a certain set of observations or an investigation.

 Sample Data is a subset of the population that we have information from. It is just a small section of the population taken for the purpose of investigation.

Examples of Types of Data

Identify the population and the sample for each of the following:

- University of Houston is interested in how many students buy used books as opposed to new ones. They randomly choose 100 students at the student center to interview
 - ▶ Population all UH students.
 - ► Sample the 100 students interviewed.
- An elementary school is creating a new lunch menu. They send questionnaires to students with last names that begin with the letters M through R. ► Population - all stredents in this elementary school

M-R

Sample -

Two Types of Variables

Go back to the example of **grades**. We have several variables, score, grade, tests, quiz, hw, & session.

- The variables grade, & session are categorical variables.
 Categorical variables place a case into one of several groups or categories.
- The variables scores, tests, quiz & hw are quantitative variables. Quantitative Variables take numerical values for which arithmetic operations such as adding and averaging make sense.

Two Types of Quantitative Variables

Quantitative variables can be classified as either **discrete** or **continuous**.

- Discrete quantitative variables a countable set of values.
- Continuous quantitative variables data that can take on any values within some interval.

Examples of Variables

Classify the following variables as categorical or quantitative. If quantitative, state whether the variable is discrete or continuous.

Political preference.

Categorical

Number of siblings.

quantitative

Examples of Variables Part 2

Classify the following variables as categorical or quantitative. If quantitative, state whether the variable is discrete or continuous.

Blood type.

categorical

Height of men on a professional basketball team.

Quantitative - continuous.

• Time it takes to be on hold when calling the IRS at tax time.

Quentitative

 $(0) \infty$

Winning the State Lottery

- Suppose a person won the Jackpot of the State Lottery five times in a row.
- What do you think would happen?
- Is it possible for a person to win the state lottery five consecutive times?

Randomness and Probability

- We call a phenomenon random if individual outcomes are uncertain.
- However, there is a regular distribution of outcomes in a large number of repetitions.
- Chance behaviors unpredictable in the short run but has a regular and predictable pattern in the long run.
- Long-run must be infinitely long to give them frequencies of enough time to even out.

Proportion of Heads in Long Run

Probability

- "A probability is a numerical value that measures the likelihood that an uncertain event occurs." Business Statistics: Communicating with Numbers, Jaggia and Kelly, pg 96
- The probability of any outcome of a random phenomenon is the proportion of times the outcome would occur in a very long series of repetitions.

Why Study Probability in Statistics?

- Statistical Idea Rare event rule or inferential statistics
- If, under a given assumption, the probability of a particular observed event is extremely small, we conclude that the assumption is probably not correct.

<0,0000 /

Random Experiments

In order to study probability we need know how random experiments work. Examples of random experiments:

- Flipping a coin
- Asking who is the likely winner of a presidential election.
- Weighing Hershey chocolate bars.

A random experiment has the following two characteristics:

- 1. The experiment can be replicated an indefinite number of times under essentially the <u>same experimental conditions</u>.
- 2. There is a degree of uncertainty in the outcome of the experiment. The outcome may vary from replication to replications even though the experimental conditions are the same.

Sample Space

- A set is a collection of objects.
- The items that are in a set called elements.
- We typically denote a set by capital letters of the English alphabet.
 Usually, E_i
- Examples: $E_1 = \{knife, spoon, fork\}, E_2 = \{2, 4, 6, 8\}.$
- The set E₂ could also be written as
 E₂ = {x|x are even whole numbers between 0 and 10}.
- The sample space of a random experiment is the set of all possible outcomes. Ω is used to denote sample space.

Notations of Sets

Notation	Description
<i>a</i> ∈ <i>A</i>	The object a is an element of the set A.
A ⊆ B	Set A is a subset of set B.
	That is every element in A is also in B.
$A \subset B$	Set A is a proper subset of set B.
	That is every element that is is in A is also in set B and
	there is at least one element in set B that is not in set A.
$A \cup B$	A set of all elements that are in A or B. A union B.
$A \cap B$	A set of all elements that are in A and B. A & B
Ω	Called the universal set , all elements we are interested in.
~ A ,	The set of all elements that are in the universal set
Complement	but are not in set A. \overline{A} A'
$\bigcup_i E_i$	$E_1 \cup E_2 \cup \ldots$, the union of multiple sets
$\bigcap_i E_i$	$E_1 \cap E_2 \cap \ldots$, the intersection of multiple sets UNIVERSITY of HOUSTON
	DEPARTMENT OF MATHEMATICS

Examples

The following are sets:
$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $E_1 = \{1, 2, 3, 4, 5, 6, 9, 10\}$, $E_2 = \{3, 4, 7, 8\}$, and $E_3 = \{2, 3, 9, 10\}$.

 $E_3 \subset E_1$
 $E_1 \cap E_2 = \{3, 4, 7, 8\}$, $E_2 \cap E_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 $E_3 \subset E_1$
 $E_4 \cap E_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 $E_5 \subset E_3 = E_3 = E_3 = \{1, 4, 5, 6, 7, 8\}$

Examples

The following are sets:
$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $E_1 = \{1, 2, 3, 4, 5, 6, 9, 10\}$, $E_2 = \{3, 4, 7, 8\}$, and $E_3 = \{2, 3, 9, 10\}$. $E_2 \sim E_1 = E_2 \cap \sim E_1 = E_2 \cap E_2 \cap E_2 \cap E_1 = E_2 \cap E_2 \cap E_2 \cap E_1 = E_2 \cap E_2 \cap E_2 \cap E_2 \cap E_2 \cap E_2 \cap E_1 = E_2 \cap E_2 \cap E_2 \cap E_2 \cap E_2 \cap E_1 = E_2 \cap E_2 \cap$

More Examples

The following are sets: $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $E_1 = \{1, 2, 3, 4, 5, 6, 9, 10\}$, $E_2 = \{3, 4, 7, 8\}$, and $E_3 = \{2, 3, 9, 10\}$ 1. What elements are in ${}^{\sim}E_2 \cap {}^{\sim}E_3$?

$$\sim E_2 \cap \sim E_3 = \{1, 2, 5, 6, 9, 10\} \cap \{1, 4, 5, 6, 7, 8\}$$

$$= \{1, 5, 6\}$$

2. What elements are in $E_2 \cap^{\sim} E_1$?

Definitions

- A Venn diagram is a very useful tool for showing the relationships between sets.
- Venn diagrams consist of a rectangle with one or more shapes (usually circles) inside the rectangle.
- The rectangle represents all of the elements that we are interested in for a given situation. This set is the universal set.

Graph of Venn Diagrams

Graph of Disjoint Events

UNIVERSITY of HOUSTON DEPARTMENT OF MATHEMATICS

Soft Drink Preference

A group of 100 people are asked about their preference for soft drinks. The results are as follows: 55 like Coke, 25 like Diet Coke, 45 like Pepsi, 15 like Coke and Diet Coke, 5 like all 3 soft drinks, 25 like Coke and Pepsi, 5 only like Diet Coke (nothing else). Fill in the the Venn diagram with these numbers.