Chapitre 1: Structures fondamentales

Dans la suite, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$

1 Groupes, anneaux, corps, espaces vectoriels

1.1 Structures algébriques usuelles

$$\underline{\text{lci}} *: \begin{cases} E \times E \to E \\ (x,y) \mapsto x * y \end{cases}$$

Définition 1.1. Soit *M* un ensemble muni d'une lci *

(M,*) est un monoïde si :

- 1. * est associative.
- 2. * possède un élément neutre e_M

Définition 1.2. Un groupe est un monoïde dont tous les éléments sont inversibles.

Définition 1.3. Soit A un ensemble avec 2 lci : + et *

A est un anneau si :

- 1. (A, +) est un groupe abélien.
- 2. (A,*) est un monoïde.

3.
$$\forall a, x, y \in A$$

$$\begin{cases} a * (x + y) = a * x + a * y \\ (x + y) * a = x * a + y * a \end{cases}$$

Définition 1.4. Un anneau commutatif $\neq \{0\}$ dont tous les éléments non nuls sont inversibles est un corps.

Définition 1.5. Soit $(E, +, \bullet)$ avec E ensemble, * lci et \bullet : $\begin{cases} \mathbb{K} \times E \to E \\ (\lambda, x) \mapsto \lambda \bullet x \end{cases}$ (l.c. externe)

 $(E, +, \bullet)$ est un \mathbb{K} espace vectoriel si :

- 1. (E, +) groupe abélien.
- $2. \ \forall x \in E \qquad 1 \bullet x = x$
- 3. $\forall \lambda \in \mathbb{K}, \forall x, y \in E$ $\lambda \bullet (x + y) = \lambda \bullet x + \lambda \bullet y$
- 4. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E$ $(\lambda + \mu) \bullet x = \lambda \bullet x + \mu \bullet x$
- 5. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E$ $(\lambda \bullet \mu) \bullet x = \lambda \bullet (\mu \bullet x) = \mu \bullet (\lambda \bullet x)$

1.2 Sous-structures

Rappels:

1. *G* groupe, $H \subset G$

$$H \text{ sous-groupe} \iff \begin{cases} 1_G \in H \\ \forall x, y \in H, xy \in H \\ \forall x \in H, x^{-1} \in H \end{cases}$$

H est un groupe aussi pour la restri

2. A anneau, $B \subset A$

A anneau,
$$B \subset A$$

$$B \text{ sous-anneau} \iff \begin{cases} \forall x, y \in B, \ x + y \in B, \ xy \in B \\ 1_A \in B \\ \forall x \in B, \ -x \in B \end{cases}$$
Le sous-anneau B est en particulier un anneau

Le sous-anneau *B* est en particulier un anneau.

3.
$$K$$
 un corps, $L \subset K$

3.
$$K$$
 un corps, $L \subset K$

$$L \text{ sous-corps de } K \iff \begin{cases} L \text{ sous-anneau de } K \\ \forall x \in L \setminus \{0\}, x^{-1} \in L \end{cases}$$

4.
$$E$$
 un \mathbb{K} -ev, $F \subset E$

F sous-espace vectoriel de
$$E \iff \begin{cases} \forall x, y \in F, \ x + y \in F \\ \forall \lambda \in \mathbb{K}, \ \forall x \in F, \ \lambda x \in F \\ 0 \in F \end{cases}$$

Démarche : Pour montrer qu'un ensemble est un machin ¹, on pourra le réaliser comme un sous-machin d'un machin connu.

Lemme 1.6. Soit
$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL_2(K)$$

Alors

$$M^{-1} = \frac{1}{\det M} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$$

Proposition 1.7. Soit M un machin 1 et $(M_i)_{i\in I}$ une famille de sous-machins de M

Alors $\bigcap_{i \in I} M_i$ est un sous-machin de M

^{1.} monoïde, groupe, anneau, corps ou K-ev