• Use **currency** as scarce recource.

One dollar = One vote

- Those with the most coins have more to lose
 - They work in the interests of the network

- Freeze a certain amount of money (stake) to be able to mine (mint)
- PPCoin (Peer Coin)

```
H(prevblockhash \parallel addr \parallel timeinsec) < d_0.stake(addr)
```

- Base difficulty d_0 adjusted based on deposit stake(addr)
- timeinsec ensures only one try every second

- Pros
 - Cost efficient (Energy, Hardware)
 - More stakeholders = more security
 - More decentralized
- Cons
 - Economic inequality (Rich gets richer)
 - Nothing at stake (Can mine on 2 different forks)
 - Predictablity (Will I get the next block?)
 - Long Range attacks (Can rewrite the complete history)

- Lose nothing by behaving badly
- Lose nothing by signing all forks
- PoW
 - Loses the computational power!
- PoS
 - · Can try hashes for different last blocks in each fork per second

- Lose nothing by behaving badly
- Lose nothing by signing all forks
- Optimal strategy for miners: Mine of every chain
 - Get the reward anyway, no matter which fork wins
- Double spending with even 1% of stakes!

- Solution: Slashing!
- The miners stakes is freezed till a certain number of blocks
 - Deposit
- If a miner behave badly, will punished by losing the deposit
 - Punish if found a miner is mining on 2 different chains at the same time
 - Punish if found a miner is mining on a wrong chain
- What happens to the deposit?
 - Burned
 - Given to the miner who reported

Rich get richer

- Problem: The block reward directly can be used as the part of stake for the next blocks!
 - Miner with the most stakes has the most probability to be selected for the next block
 - If selected, block reward is added to its stake, and its probability increases even more!
- Solution: Coin age
 - Use time as a scarce resource
 - Coin age = The number of days the stake has been held
 - Multiply stake by coin age
 - Reset coin age when a new block is created!

Long range attacks

- Similar to 51% attack in Bitcoin
- A miner creates a fork on the blockchain starting from the Genesis block and overtakes the main chain
- Reasons
 - Weak subjectivity
 - Online nodes monitor the blockchain in real-time, they know the main chain
 - New nodes cannot tell which chain is the main
 - Longest chain rule
 - Nothing at stake
 - Longest chain rule is not enough

Long range attacks

- Long range attacks
 - Simple
 - Posterior Corruption
 - Stake bleeding

Simple long range attack

- Nodes do not check timestamps
- Attacker wants to overtake the main chain
 - can start from genesis, forge timestamps and builds a chain faster than the real chain
- Having 3 miners with same stake

Simple long range attack

- Nodes do not check timestamps
- Attacker wants to overtake the main chain
 - can start from genesis, forge timestamps and builds a chain faster than the real chain
- Having 3 miners with same stake

Posterior corruption long range attack

- Miners check timestamps
 - Forging timestamp is not possible
- Get access to the acounts of miners that are no longer active, but had a large stake at the beginning
 - Bribe them
 - Hack them
- If the accounts have good amount of stake, the attacker chain is built faster than main chain

Stake bleeding long range attack

- Attacker
 - DDoS the network and other miners by any way possible
 - Increase its blocks on the private chain by increasing its stake
 - Stealing blocks from the main chain to use transaction fees
 - Very slow!

- Moving check points
 - Do not accept forks started before the checkpoints

- Moving check points
 - Do not accept forks started before the checkpoints
 - Update checkpoints frequently
 - Every 1000 blocks, every day
 - Does not solve the problem
 - Short range attacks!
 - Used for all 3 kinds of long range attacks

- Downtime slashing
 - Solves weak subjectivity
 - If a node remains offline for a certain amount of time, it will be punished
 - E.g. offline for more than 16 hours
 - Incentivise nodes to stay online

- Key-evolving cryptography
 - When miner signs the generated block, it destroys the key used for signing that block
 - Miner key evolves and changes per each generated block
 - Miners can not return to an older version of the key
 - Counters Posterior Corruption attacks

- Context-aware transactions
 - Include the hash of a previous block inside a transaction
 - Transactions contain a historical reference of the blockchain
 - Can not be copied in another chain that the historical reference is not there
 - Counters stake bleeding attacks