## Bundesministerium Bildung, Wissenschaft und Forschung

|                       | Martinigläse | r*             |  |
|-----------------------|--------------|----------------|--|
| Aufgabennummer: B_523 |              |                |  |
| Technologieeinsatz:   | möglich □    | erforderlich ⊠ |  |

a) In der nebenstehenden Abbildung ist ein Martiniglas dargestellt. Der obere Teil des Martiniglases kann modellhaft als Drehkegel mit dem Durchmesser *D* und der Höhe *H* betrachtet werden.



In der unten stehenden nicht maßstabgetreuen Abbildung ist ein Modell dieses Martiniglases dargestellt. Der Drehkegel entsteht durch Rotation des Graphen der linearen Funktion f um die x-Achse.

1) Tragen Sie unter Verwendung von *H* und *D* die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein.



2) Stellen Sie mithilfe von H und D eine Gleichung der Funktion f auf.

 $V_{x}$  ist das Volumen des Drehkegels, der bei Rotation des Graphen der Funktion f um die x-Achse entsteht.

3) Stellen Sie eine Formel zur Berechnung von  $V_{x}$  auf.

$$V_{_{\scriptscriptstyle \mathrm{X}}} =$$

Der obere Teil eines bestimmten Martiniglases wird durch Rotation des Graphen der Funktion g im Intervall [0; 75] um die x-Achse modelliert.

$$g(x) = \frac{13}{17} \cdot x$$

 $x, g(x) \dots$  Koordinaten in mm

Dieses Martiniglas wird mit einer Flüssigkeitsmenge von 2 dl befüllt.

- 4) Berechnen Sie die zugehörige Füllhöhe (gemessen von der Spitze des Drehkegels).
- b) In der nachstehenden Abbildung ist der obere Teil eines teilweise befüllten Martiniglases dargestellt. Dabei handelt es sich um einen Drehkegel mit dem Durchmesser *D* und der Höhe *H*.



1) Stellen Sie eine Formel zur Berechnung von z auf. Verwenden Sie dabei H, D und x.

Dieses Martiniglas ist bis zur Höhe *x* befüllt. Das Füllvolumen entspricht dabei dem halben Volumen des Drehkegels mit dem Durchmesser *D* und der Höhe *H*.

2) Zeigen Sie allgemein, dass die Höhe x rund 80 % der Höhe H beträgt.

 c) Beim Verkauf von Martinigläsern geht man von einem linearen Zusammenhang zwischen dem Preis in GE/ME und der Verkaufsmenge in ME aus.
 Bei einem Preis von 5,00 GE/ME können 100 ME verkauft werden. Sinkt der Preis um 1,50 GE/ME, können um 200 ME mehr verkauft werden.

1) Stellen Sie eine Gleichung der zugehörigen linearen Preisfunktion der Nachfrage  $p_{_{\rm N}}$  auf.

In der nachstehenden Abbildung sind der Graph der Erlösfunktion E und der Graph der Kostenfunktion K dargestellt.



| 2) | Lesen Sie | diejenige | Verkaufsmenge | ab, bei der der | Gewinn 250 | GE beträgt. |
|----|-----------|-----------|---------------|-----------------|------------|-------------|
|    |           |           |               |                 |            |             |

ME

3) Kreuzen Sie die <u>nicht</u> zutreffende Aussage an. [1 aus 5]

| Der Erlös bei einer Verkaufsmenge von 100 ME beträgt 500 GE.                          |  |
|---------------------------------------------------------------------------------------|--|
| Die Fixkosten betragen 200 GE.                                                        |  |
| Die Kostenfunktion K ist streng monoton steigend.                                     |  |
| Für die untere Gewinngrenze $x_{u}$ gilt: $E'(x_{u}) = K'(x_{u})$ .                   |  |
| Für die zugehörige Stückkostenfunktion $\overline{K}$ gilt: $\overline{K}$ (200) = 3. |  |

## Möglicher Lösungsweg

a1)



a2) 
$$f(x) = \frac{D}{2 \cdot H} \cdot x$$

a3) 
$$V_x = \pi \cdot \int_0^H \left(\frac{D}{2 \cdot H}\right)^2 \cdot x^2 dx$$
 oder  $V_x = \pi \cdot \int_0^H (f(x))^2 dx$  oder  $V_x = \frac{1}{3} \cdot \pi \cdot \left(\frac{D}{2}\right)^2 \cdot H$ 

a4) 
$$2 dl = 200000 \text{ mm}^3$$
  
 $200000 = \pi \cdot \int_0^b (g(x))^2 dx$ 

Berechnung mittels Technologieeinsatz:

$$b = 68,8...$$

Die Füllhöhe beträgt rund 69 mm.

b1) 
$$z = \frac{D \cdot x}{H}$$

**b2)** Für das Volumen  $V_1$  des Drehkegels mit dem Durchmesser D und der Höhe H gilt:

$$V_1 = \frac{1}{3} \cdot \pi \cdot \left(\frac{D}{2}\right)^2 \cdot H = \frac{1}{12} \cdot \pi \cdot D^2 \cdot H$$

Für das Volumen  $V_{\scriptscriptstyle 2}$  des Drehkegels mit dem Durchmesser z und der Höhe x gilt:

$$V_2 = \frac{1}{3} \cdot \pi \cdot \left(\frac{z}{2}\right)^2 \cdot x = \frac{1}{12} \cdot \pi \cdot \left(\frac{D \cdot x}{H}\right)^2 \cdot x$$

$$\frac{V_1}{2} = V_2 \quad \Rightarrow \quad \frac{1}{24} \cdot \pi \cdot D^2 \cdot H = \frac{1}{12} \cdot \pi \cdot \left(\frac{D \cdot x}{H}\right)^2 \cdot x \quad \Rightarrow \quad x = \sqrt[3]{\frac{1}{2}} \cdot H \approx 0.8 \cdot H$$



## Lösungsschlüssel

- a1) Ein Punkt für das Eintragen der richtigen Ausdrücke.
- a2) Ein Punkt für das richtige Aufstellen der Gleichung der Funktion f.
- a3) Ein Punkt für das richtige Aufstellen der Formel.
- a4) Ein Punkt für das richtige Berechnen der Füllhöhe.
- b1) Ein Punkt für das richtige Aufstellen der Formel.
- b2) Ein Punkt für das richtige Zeigen.
- c1) Ein Punkt für das richtige Aufstellen der Gleichung der Funktion  $p_N$ .
- c2) Ein Punkt für das Ablesen der richtigen Verkaufsmenge.
- c3) Ein Punkt für das richtige Ankreuzen.