Implicit Solvation Models in Q-Chem (for Ground and Excited States)

John M. Herbert

Dept. of Chemistry & Biochemistry
Ohio State University

Virtual Winter School on Computational Chemistry 9 February, 2023

Outline

- Philosophy
- Dielectric Boundaries
 - Continuum Electrostatics
 - Cavity Surface
 - Models: PCM vs. SMx
- Solvation Energies
 - Nonelectrostatic Terms
 - Models: SMx vs. CMIRS
- Nonequilibrium Methods
 - \blacksquare ε_0 VS. ε_∞
 - Excited States
- Acknowledgements

Quantum chemistry is not a black box and implicit-solvent models even less so

- Set your expectations low and you might not be disappointed.
- Best viewed as dielectric boundary conditions.

Model	Ca	vity	Non-	Basis	
	Construction	Discretization	Electrostatic Terms?	Sets Supported	
Kirkwood-Onsager	spherical	point charges	no	all	
Langevin Dipoles	atomic spheres	dipoles in		all	
Langevin Dipoles	(user-definable)	3-d space	no	an	
Poisson Equation	atomic spheres	grid in	no	all	
Solver	(user-definable)	3-d space	по	an	
C-PCM	ncw atomic spheres		user-	all	
C-PCM	(user-definable)	smooth Gaussians	specified	dii	
SS(V)PE/	atomic spheres	point charges or	user-	all	
IEF-PCM	(user-definable)	smooth Gaussians	specified	an	
COSMO	predefined atomic spheres	point charges	none	all	
Isodensity SS(V)PE	isodensity contour	point charges	none	all	
CMIRS	isodensity contour	point charges	automatic	all	
	predefined			6-31G*	
SM8	atomic spheres	N/Aa	automatic	6-31+G*	
				6-31+G**	
SM12	predefined	N/Aa	automatic	all	
SM12	atomic spheres	N/A"	automatic	all	
SMD	predefined	point charges		-11	
SMD	atomic spheres		automatic	all	

Implicit solvation models available in Q-Chem

Quantum chemistry is not a black box and implicit-solvent models even less so

- Set your expectations low and you might not be disappointed.
- Best viewed as dielectric boundary conditions.
- Don't expect to push one button and obtain a fully satisfactory description.
- There are a lot of models and they are not the same. Read the literature.*

Model	Ca	vity	Non-	Basis
	Construction Discretization		Electrostatic Terms?	Sets Supported
Kirkwood-Onsager	spherical	point charges	no	all
Langevin Dipoles	atomic spheres (user-definable)	dipoles in 3-d space	no	all
Poisson Equation Solver	atomic spheres (user-definable)	grid in 3-d space	no	all
C-PCM	atomic spheres (user-definable)	point charges or smooth Gaussians	user- specified	all
SS(V)PE/ IEF-PCM	atomic spheres (user-definable)	point charges or smooth Gaussians	user- specified	all
соѕмо	predefined atomic spheres	point charges	none	all
Isodensity SS(V)PE	isodensity contour	point charges	none	all
CMIRS	isodensity contour	point charges	automatic	all
SM8	predefined atomic spheres	N/A ^a	automatic	6-31G* 6-31+G* 6-31+G**
SM12	predefined atomic spheres	N/A ^a	automatic	all
SMD	predefined atomic spheres	point charges	automatic	all

Implicit solvation models available in Q-Chem

9 Feb. 2023

[&]quot;Dielectric continuum methods for quantum chemistry" [WIREs Comput. Mol. Sci. e1519 (2021)]

Dielectric Boundary Conditions

- Philosophy
- Dielectric Boundaries
 - Continuum Electrostatics
 - Cavity Surface
 - Models: PCM vs. SMx
- Solvation Energies
 - Nonelectrostatic Terms
 - Models: SMx vs. CMIRS
- Nonequilibrium Methods
 - \blacksquare ε_0 VS. ε_∞
 - Excited States
- Acknowledgements

$$\varepsilon(\mathbf{r}) = \begin{cases} 1, & \mathbf{r} \in \Omega \\ \varepsilon_{s}, & \mathbf{r} \notin \Omega \end{cases}$$

Continuum Electrostatics Problem

Molecular electrostatic potential (\mathbf{v}) evaluated on the cavity surface

$$\mathbf{K}_{\varepsilon}\mathbf{q}=\mathbf{Y}_{\varepsilon}\mathbf{v}$$

5/19

- Solution of the electrostatics problem defines self-consistent reaction field (SCRF) theory.
- Polarizable continuum models (PCMs) are a widely-used solution.

Lange & Herbert, "A smooth, nonsingular, and faithful discretization scheme..." [J. Chem. Phys. 133, 244111 (2010)]

Solute Cavity Surface

Isocontour of the electron density ($\rho_0=0.001$ a.u.)

Cavity constructions based on atomic spheres

Solute Cavity Surface

Isocontour of the electron density ($\rho_0 = 0.001 \text{ a.u.}$)

Cavity constructions based on atomic spheres

6/19

- vdW surface: Union of spheres with radii $R_A = \alpha R_{A,vdW}$.
 - Atomic radii {R_{A,vdW}} are parameters
 - ▶ Typically, $\alpha = 1.1-1.4$

"Dielectric continuum methods for quantum chemistry" [WIREs Comput. Mol. Sci. e1519 (2021)]

Solute Cavity Surface

Isocontour of the electron density ($\rho_0 = 0.001 \text{ a.u.}$)

Cavity constructions based on atomic spheres

9 Feb. 2023

6/19

- vdW surface: Union of spheres with radii $R_A = \alpha R_{A,vdW}$.
 - ▶ Atomic radii {R_{A,vdW}} are parameters
 - ▶ Typically, $\alpha = 1.1 1.4$
- **SAS:** Augmented atomic radii, $R_A = R_{A,vdW} + R_{probe}$
 - $ightharpoonup R_{probe} = 1.4 \text{ Å for water (from the oxygen-oxygen RDF)}$

"Dielectric continuum methods for quantum chemistry" [WIREs Comput. Mol. Sci. e1519 (2021)]

Cavity Construction Matters!

$R_A = \alpha R_{A,\text{vdw}} + R_{\text{probe}}$	R_A	=	$\alpha R_{A,\text{vdw}}$	+	Rprobe
--	-------	---	---------------------------	---	--------

Cavity	α	R _{probe}	Electrostatic Energy (kcal/mol) ^a	
Type		(Å)	amino acid	zwitterion
vdW	1.0	0.0	-26.1	-68.2
vdW	1.1	0.0	-20.2	-56.0
vdW	1.2	0.0	-16.1	-46.8
vdW	1.3	0.0	-12.9	-39.0
vdW	1.4	0.0	-10.6	-32.6
SAS	1.0	0.2	-18.0	-51.4
SAS	1.0	0.4	-13.1	-39.8
SAS	1.0	1.4	-4.3	-13.9
isodensity ^b			-16.4	-48.1

amino acid

zwitterion

^aSS(V)PE @ B3LYP/6-31+G*

bisovalue = 0.001 a.u.

		Electrostatic Energy (kcal/mol)				
solute	solvent	solvent exact ^a SS(V)PE	SS(V)DEb	C-F	PCM ^c	
			33(V)FL	$\zeta = 0$	$\zeta = 1/2$	
H ₂ O	toluene	-3.9	-3.9	-4.8	-3.9	
CH ₃ CONH ₂	toluene	-5.3	-5.0	-5.9	-4.8	
NO^+	toluene	-52.2	-52.2	-52.5	-43.3	
CN-	toluene	-39.4	-39.4	-39.4	-32.5	
H ₂ O	water	-8.6	-8.6	-8.6	-8.6	
CH ₃ CONH ₂	water	-10.9	-10.8	-10.9	-10.8	
NO^+	water	-89.5	-89.5	-89.5	-88.9	
CN-	water	-67.4	-67.3	-67.3	-66.9	

^aPoisson's equation including outlying charge

- SS(V)PE / IEF-PCM is formally more correct in low-dielectric solvents but the practical difference is nil
- C-PCM is simpler and has more features available

Data: Chipman, "Comparison of solvent reaction field representations" [Theor. Chem. Acc. 107, 80 (2002)]

^bSimilar to IEF-PCM [Chem. Phys. Lett. **509**, 77 (2011)]

 $^{^{}c}\tilde{f}_{\varepsilon}(\zeta)=(\varepsilon-1)/(\varepsilon+\zeta)$

■ For an SCF calculation with SOLVENT_METHOD = PCM in \$rem:

■ The total SCF energy minimizes a functional

$$\mathcal{G}_0[\Psi] = \underbrace{\langle \Psi | \hat{\mathcal{H}}_{\text{vac}} | \Psi \rangle}_{\mathcal{H}_0[\Psi], \text{ "internal energy"}} + \underbrace{\frac{1}{2} \langle \Psi | \hat{\mathcal{R}}_0 | \Psi \rangle}_{\mathcal{G}_{\text{elst}} \equiv \mathit{V/2}}$$

Interpreting the Q-Chem Output

■ For an SCF calculation with SOLVENT_METHOD = PCM in \$rem:

■ The total SCF energy minimizes a functional

$$\mathcal{G}_0[\Psi] = \underbrace{\langle \Psi | \hat{\mathcal{H}}_{\text{vac}} | \Psi \rangle}_{\mathcal{H}_0[\Psi], \text{ "internal energy"}} + \underbrace{\frac{1}{2} \langle \Psi | \hat{\mathcal{R}}_0 | \Psi \rangle}_{\mathcal{G}_{\text{elst}} \equiv V/2}$$

- "PCM" includes only the electrostatic contribution to the free energy
- ► G_{nonelst} must be parameterized separately

Solvation Energies

- - Cavity Surface
- Solvation Energies
 - Nonelectrostatic Terms
 - Models: SMx vs. CMIRS
- - \blacksquare ε_0 VS. ε_∞
 - Excited States

9 Feb. 2023

There Is More to Solvation Than Electrostatics!

Error statistics for $\Delta_{solvn} \mathcal{G}^{\circ}$, versus experiment

		mean ເ	unsigned error (kcal/mol)				
Data Set	N_{data}	C-PCM	SMD (\mathcal{G}_{ϵ}	$_{ m elst} + \mathcal{G}_{ m nonelst})$			
		only ^a	(C-PCM) ^b	(IEF-PCM) ^c			
aq. neutrals	274	1.6	0.9	0.9			
aq. cations	52	7.3	2.9	2.8			
aq. anions	60	8.1	3.9	3.9			
nonaq. neutrals	666	2.8	0.7	0.7			
nonaq. cations	72	12.0	5.4	5.4			
nonaq. anions	148	6.6	4.1	4.1			
all neutrals	940	2.5	0.8	0.8			
all ions	332	8.1	4.1	4.1			

^aElectrostatics-only model

Data set: Kelly, Cramer, & Truhlar [*J. Chem. Theory Comput.* 1, 1133 (2005)]

Error statistics: Marenich, Cramer, & Truhlar [*J. Phys. Chem. B* 113, 6378 (2009)]

 $^{^{}b}\mathcal{G}_{elst}(C\text{-PCM}) + \mathcal{G}_{nonelst}(SMD)$

 $^{^{}c}\mathcal{G}_{elst}(IEF-PCM) + \mathcal{G}_{nonelst}(SMD)$

Models for $\Delta_{\mathsf{solvn}}\mathcal{G}^{\circ}$

Error statistics for hydration energies, vs. experiment

		mean unsigned error (kcal/mol)					
Data Set	N data	SM8 ^a	SM12 ^a	SMD ^a	CMIRS ^b		
		(GB)	(GB)	(IEF-PCM)	[SS(V)PE]		
neutrals	274	0.6	1.3	8.0	0.8		
cations	52	2.7	3.5	3.4	1.8		
anions	60	4.0	3.8	6.3	2.8		
all ions	112	3.4	3.7	4.9	2.4		

^aB3LYP/6-31G*, using an explicit H₂O for 31 of the ions

- Minnesota solvation database
- \blacksquare Experimental uncertainties are ± 0.2 kcal/mol for neutrals and ± 3 kcal/mol for ions

SM8: Marenich, Olson, Kelly, Cramer, & Truhlar [J. Chem. Theory Comput. 3, 2011 (2007)]

SM12: Marenich, Cramer, & Truhlar [J. Chem. Theory Comput. 9, 609 (2013)]

SMD: Marenich, Cramer, & Truhlar [*J. Phys. Chem. B* **113**, 6378 (2009)] **CMIRS:** You & Herbert [*J. Chem. Theory Comput.* **12**, 4338 (2016)]

OMITIO: Tod & Herbert [b. Oriem. Theory Compat. 12, 4000 (20

^bB3LYP/6-31+G*, no explicit water

Models for $\Delta_{\mathsf{solvn}}\mathcal{G}^{\circ}$

Error statistics for hydration energies, vs. experiment

	<u> </u>	mean unsigned error (kcal/mol)						
Data Set	<i>N</i> _{data}	SM8 ^a	SM12 ^a	SMD ^a	CMIRS ^b			
		(GB)	(GB)	(IEF-PCM)	[SS(V)PE]			
neutrals	274	0.6	1.3	0.8	0.8			
cations	52	2.7	3.5	3.4	1.8			
anions	60	4.0	3.8	6.3	2.8			
all ions	112	3.4	3.7	4.9	2.4			

^aB3LYP/6-31G*, using an explicit H₂O for 31 of the ions

- Minnesota solvation database
- \blacksquare Experimental uncertainties are ± 0.2 kcal/mol for neutrals and ± 3 kcal/mol for ions

SM8: Marenich, Olson, Kelly, Cramer, & Truhlar [J. Chem. Theory Comput. 3, 2011 (2007)]

SM12: Marenich, Cramer, & Truhlar [J. Chem. Theory Comput. 9, 609 (2013)]

SMD: Marenich, Cramer, & Truhlar [*J. Phys. Chem. B* 113, 6378 (2009)]

CMIRS: You & Herbert [J. Chem. Theory Comput. 12, 4338 (2016)]

^bB3LYP/6-31+G*, no explicit water

Vertical Excitation or Ionization

- Philosophy
- Dielectric Boundaries
 - Continuum Electrostatic
 - Cavity Surface
 - Models: PCM vs. SMx
- Solvation Energies
 - Nonelectrostatic Terms
 - Models: SMx vs. CMIRS
- Nonequilibrium Methods
 - lacksquare $arepsilon_0$ vs. $arepsilon_\infty$
 - Excited States
- 4 Acknowledgements

$$\left(\hat{\mathcal{H}}_{\text{vac}} + \hat{\mathcal{R}}_{0}^{\text{s}} + \hat{\mathcal{R}}_{k}^{\text{f}}\right) \left| \Psi_{k} \right\rangle = \mathcal{E}_{k} \left| \Psi_{k} \right\rangle$$

$$\begin{array}{c|cccc} \textbf{PTD:} & \textbf{SCF} \xrightarrow{\textbf{MOs}} \textbf{post-SCF} \xrightarrow{\textbf{p}} \textbf{PCM} \\ & \downarrow & \downarrow & \downarrow \\ & \mathcal{E}_{\textbf{SCF}} & \mathcal{E}_{\textbf{corr}} & \mathcal{G}_{\textbf{elst}} \end{array}$$

9 Feb. 2023

PTED:
$$\begin{array}{c} \sigma \\ SCF \xrightarrow{MOs} post\text{-SCF} \xrightarrow{p} PCM \\ \downarrow \\ \mathcal{E}_{SCF} \xrightarrow{\mathcal{E}_{corr}} g_{elst} \end{array}$$

- \mathbf{E}_0 = static dielectric constant (orientational + electronic polarization)
- $\varepsilon_{\infty} = n_{\text{refr}}^2$ = "optical" dielectric constant (electronic polarization only)
- Use to partition polarization into two components:
 - fast (remains equilibrated)
 - slow (frozen upon vertical excitation

solvent	ϵ_0	ϵ_{∞}	solvent	ϵ_0	ϵ_{∞}
<i>n</i> -hexane	1.9	1.37	ethanol	25.3	1.36
cyclohexane	2.0	1.43	ethylene glycol	42.8	1.43
benzene	2.3	1.50	methanol	33.0	1.33
toluene	2.4	1.50	nitrobenzene	35.6	1.55
diethyl ether	4.3	1.83	acetonitrile	36.6	1.34
chloroform	4.8	1.44	dimethyl acetamide	40.2	1.44
dichloromethane	8.9	1.42	dimethyl sulfoxide	47.2	1.48
2-propanol	20.2	1.38	water	80.2	1.78
acetone	21.1	1.36	formamide	111.8	1.45

Example: Vertical Ionization Energies (VIEs)

Aqueous VIEs (in eV)

Solute	Expt.		MP2 Calculations					
Solute	Expt.	Noneq. F	PCM	Equil. P	CM	vacuum		
		spherical	SAS	spherical	SAS	- vacuum		
Li ⁺	60.4	61.8	61.6	61.3	61.0	64.2		
Na^+	35.4	36.5	36.3	36.0	35.8	38.9		
H_2O	11.7	11.6	11.6	11.1	10.9	13.8		
e^{-}	3.7	3.2	3.2	2.6	2.6	1.8		
F-	11.6	11.4	11.5	10.8	10.9	10.0		
CI-	9.6	9.4	9.4	8.8	8.8	7.9		

Coons & Herbert, "Quantum chemistry in arbitrary dielectric environments..." [*J. Chem. Phys.*. **148**, 222834 (2018)] Herbert, "Dielectric continuum methods for quantum chemistry" [*WIREs Comput. Mol. Sci.* e1519 (2021)]

John Herbert (Ohio State) Implicit Solvation Models 9 Feb. 2023

■ Input

```
$rem
 exchanae
                    cam-b3lyp
                                cost similar to gradient,
 basis
                   6-31+G*
 cis n roots
                                 but unrelaxed is not the
 cis_triplets
                    false
                                true ex. state density
 solvent method
                    pcm
 cis_relaxed_density true
$end
                                without this, you are
$pcm
 NonEquilibrium
                                only getting 0th-order
 StateSpecific
                    perturb
                                solvation
$end
$solvent
 Dielectric
                      35.7 ! MeCN
 OpticalDielectric
                      1.81
$end
```

Input

```
$rem
 exchanae
                   cam-b3lyp
                                 cost similar to gradient,
                   6-31+G*
 basis
 cis n roots
                                 but unrelaxed is not the
                    false
 cis_triplets
 solvent method
                                 true ex. state density
                    pcm
 cis_relaxed_density true
$end
                                without this, you are
$pcm
 NonEquilibrium
                                only getting 0th-order
 StateSpecific
                                solvation
$end
$solvent
 Dielectric
                      35.7 ! MeCN
 OpticalDielectric
                      1.81
$end
```

■ Output

$$\hbar\omega_{0k}^{\mathsf{neq}} = \Delta\mathcal{E}_{k}^{(0)} + \mathsf{corrections}$$

```
Relaxed singlet excited state 4:

Total 1st-order corrected excitation energy
1st-order SS-PCM corrected excitation energy
1st-order LR-PCM corrected excitation energy
0th-order excition energy
0th-order excition energy
1st-order excition energy
0th-order excition energy
0th-order excition energy
1st-order excition
1st-order excition
1st-order excition
1st-order excition
2st-order excition
```

- 0th-order excitation energy is $\Delta \mathcal{E}_k^{(0)} = \mathcal{E}_k^{(0)} \mathcal{E}_0$.
- 1st-order corrections within the state-specific (SS) and linear-response (LR) formalisms are also provided.

Herbert, "Dielectric continuum methods for quantum chemistry" [WIREs Comput. Mol. Sci. e1519 (2021)]
Mewes et al., J. Phys. Chem. A 119, 5446 (2015)

Thanks!

Zhi-Qiang You OSC

Marc Coons Dow Chemical

Suranjan Paul Purdue

Bushra Alam

- Webinar: https://www.q-chem.com/webinars/51
- Reading: WIREs Comput. Mol. Sci. e1519 (2021)
- Further Discussion: https://talk.q-chem.com

