Note de l'auteur, c'est un résumé des notes de cours d'analyse 3, pas tous les théorèmes, définitions, et autres y sont écrites, seules celles que je veux retenir et qui ne sont pas évidentes.

(Cours 2)

Définition 1. Soit (E, d) un espace métrique et $A \subset E$.

- 1. Un point $a \in E$ est dit adhérent à A si tout voisinage de a rencontre A.
- 2. On note $\bar{A} = l$ 'ensemble des points adhérent à A.
- 3. Un point $x \in A$ est dit intérieur à A s'il existe une boule ouverte centré en x et contenue dans A.
- 4. On note $\mathring{A} = l$ 'ensemble des points intérieurs de A.

Définition 2. Soit (E,d) un espace métrique et $A \subset E$. A est dense si tout point de E est adhérent à A.

Théorème 1. Soit (E, d) un espace métrique et $A \subset E$.

- 1. \bar{A} est le plus petit fermé contenant A.
- 2. Å est le plus grand ouvert contenu dans A.

(Cours 3)

Théorème 2. Soit (E, d_E) et (F, d_F) 2 espaces métriques et $f: E \longrightarrow F$ une application. Alors les 3 propriétés suivantes sont équivalentes :

- 1. L'application f est continue sur E.
- 2. Pour tout ouvert U de F, $f^{-1}(U)$ est un ouvert de E.
- 3. Pour tout fermé B de F, $f^{-1}(B)$ est un fermé de E.

(Cours 4)

Définition 3. Soit (E,d) et $(U_i)_{i\in I}$ une famille d'ouvert de E. On dit que la famille $(U_i)_{i\in I}$ est un recouvrement ouvert de E, si $E = \bigcup_{i\in I} U_i$. On appelle un sous-recouvrement une sous-famille $(U_i)_{i\in J}$, avec $J \subset I$ fini et $E = \bigcup_{i\in J} U_i$.

Définition 4. On dit que (E, d) est un espace métrique <u>compact</u> si tout recouvrement ouvert de E contient un sous-recouvrement fini.

Remarque 1. (E,d) compact $\Leftrightarrow \forall (U_i)_{i\in I}$ une famille d'ouvert tel que $E=\bigcup_{i\in I}U_i, \ \exists J\subset I$ fini $v\acute{e}rifiant \ E=\bigcup_{i\in I}U_i$

 \Leftrightarrow De tout recouvrement ouvert de E, on peut extraire un sous-recouvrement fini.

Remarque 2. On peut définir les espaces métriques compacts en utilisant les fermés.

Théorème 3. (E,d) est un compact si et seulement si toutes familles de fermés non vides, qui est stables par intersection finie, possède une intersection non vide.

Définition 5. Soit (E, d) un espace métrique et $K \subset E$ une partie non vide de E. On dit que K est compact si et seulement si (K, d_K) est un espace métrique compact, avec d_K est la restriction de la distance d à K.

Théorème 4. Si (E, d) un espace métrique, $K \subset E$ compact et $F \subset K$ un fermé, alors F est compact.

Propriétés 1. Soit (E, d) un espace métrique.

- 1. Si K_1 et K_2 sont 2 compacts de E, alors $K_1 \bigcup K_2$ est aussi un compact de E.
- 2. Si $(K_i)_{i\in I}$ est une famille de compacts de E et $\bigcap_{i\in I} K_i \neq \emptyset$, alors $\bigcap_{i\in I} K_i$ est un compact de E.

Théorème 5. Soit (E, d_E) et (F, d_F) deux espaces métriques, et $f : E \longrightarrow F$ une application continue. Si $K \subset E$ compact, alors f(K) est un compact de F. En particulier, si E est compact et f surjective, alors F est compact.

Corollaire 1. Si $f: E \longrightarrow F$ est une application continue bijective et E un espace métrique compact, alors f est un homéomorphisme.

Théorème Bolzano-Weirstrass

Théorème 6. Soit E un espace métrique. Il y a équivalence entre :

- 1. L'espace E est compact.
- 2. Toute suite de point de E possède un point adhérent.
- 3. Toute suite de point de E possède une sous-suite convergente dans E.

Rappel 1. Soit $(U_i)_{i \in I}$ un recouvrement ouvert de E. Le nombre $\rho > 0$ est dit nombre de Lebesgue du recouvrement $(U_i)_{i \in I}$ si $\forall x \in E$, $B(x, \rho)$ est contenue dans certain U_i .

Lemme 1. Soit E un espace métrique. Si toute suite de points de E possède une valeur d'adhérence, alors tout recouvrement ouvert de E admet un nombre de Lebesgue

Rappel 2. Le diamètre :

$$\delta(E) := \sup_{x \in E, y \in E} d(x, y)$$

Théorème 7. Si E est un espace métrique compact, alors il est de diamètre fini.

Théorème 8. Soit (E, d) un espace métrique compact et $(x_n)_n$ une suite de point de (E, d). Si $(x_n)_n$ possède une seule valeur d'adhérence, alors $(x_n)_n$ est convergente

Définition 6. Soit (E, d) un espace métrique. On dit que E est précompact si, $\forall \epsilon > 0$, il existe un recouvrement de E par un nombre fini de parties de diamètre inférieur à ϵ .

Remarque 3. On peut montrer l'équivalence suivante :

- 1. E est précompacte.
- 2. $\forall \epsilon > 0$, on peut recouvrir E par un nombre fini de boules ouvertes de rayon ϵ .

Théorème 9. Tout espace métrique compact est précompact.

Remarque 4. La réciproque est fausse, on verra plus tard qu'un espace métrique est compacte si et seulement si il est précompact et complet.

Définition 7. Soit (E, d) un espace métrique. On dit qu'il est <u>séparable</u> si et seulement si il existe $B \subset E$ une partie de E qui est dénombrable et dense dans E. C'est-à-dire $\bar{B} = E$, avec $B \subset E$ dénombrable.

Théorème 10. Tout espace métrique compact est séparable

Théorème 11. Si E et F sont des espaces métriques compacts, alors le produit $E \times F$ est compact.

Théorème 12. Le produit d'une famille d'espaces métriques compacts est compact.

(Cours 5)

(Suite de Cauchy)

Définition 8. Soit (E,d) un espace métrique. Une suite $(x_n) \subset E$ est dite de Cauchy si : $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}, \forall n, m \geq n_0 \ d(x_n, x_m) \leq \epsilon$.

Remarque 5. (x_n) est de cauch $y \Leftrightarrow d(x_n, x_m) \longrightarrow 0$ quand $n, m \longrightarrow \infty$ $\Leftrightarrow \lim_{n \to \infty} diam(P_n) = 0$ où $P_n = \{x_k; k \ge n\}.$

Proposition 1. (Premières propriétés des suites de Cauchy). Soit (E, d) un espace métrique.

- 1. Toute suite convergente est une suite de Cauchy.
- 2. Toute suite de Cauchy est bornée.
- 3. Toute suite extraite (y_n) d'une suite de Cauchy (x_n) est de Cauchy.
- 4. Si (x_n) est une suite de Cauchy admettant une sous-suite convergente, alors (x_n) est convergente.

Corollaire 2. Une suite de Cauchy est convergente si et seulement si elle a une valeur d'adhérence.

Remarque 6. Souvent, pour montrer qu'une suite de Cauchy est convergente, on montre qu'elle possède une valeur d'adhérence.

Définition 9. Un espace métrique (E, d) est dit <u>complet</u> si toute suite de Cauchy de (E, d) est convergente dans (E, d).

- **Remarque 7.** 1. La notion d'espace complet n'est pas topologique, c'est-à-dire que la notion n'est pas invariante par homéomorphisme. En effet \mathbb{R} et]-1,1[sont homéomorphe, mais \mathbb{R} est complet et]-1,1[ne l'est pas.
 - 2. Soit (E,d) un espace métrique et $F \subset E$. F est complet si l'espace métrique (F,d_F) est complet, où d_F est la métrique induite par d sur F, c'est-à-dire $d=d|_F$. Dans la suite, on note d pour d_F : la restriction de d à F.

Théorème 13. Soit (E, d) un espace métrique <u>complet</u> et $F \subset E$. Alors (F, d_F) est complet si et seulement si F est fermé de E.

Remarque 8. $]0,1[\subset \mathbb{R} \text{ n'est pas complet, car }]0,1[\text{ n'est pas ferm\'e. De même, }\mathbb{Q}\subset \mathbb{R} \text{ n'est pas complet, donc }\mathbb{Q} \text{ n'est pas ferm\'e dans }\mathbb{R}$

Proposition 2. Soit (E, d) un espace métrique et $F \subset E$. Alors si F est complet, alors F est fermé.

Théorème 14. Un produit fini ou dénombrable d'espaces métriques complets est complet.

Corollaire 3. $(\mathbb{R}^n, ||.||)$ est complet, $\forall n \geq 1$.

Théorème 15. Un espace métrique (E, d) est compact si et seulement si il est précompact et complet

Théorème de Cantor

Théorème 16. Soit (E,d) un espace métrique. Alors (E,d) est complet si et seulement si pour toute suite (F_n) d'ensembles fermés non vides tels que

- 1. $F_1 \supset F_2 \supset F_3 \supset F_4 \supset \dots \supset F_{n+1} \supset \dots$ (on dit que (F_n) est décroissante),
- 2. $\lim_{n\to\infty} diam(F_n) = 0$ $(diam(F_n) = diamètre de F_n)$

On a l'intersection des (F_n) qui contient un et un seul point.

Théorème de Baire

Théorème 17. Soit (E, d) un espace métrique complet et $(\theta_n)_{n \in \mathbb{N}}$ une suite d'ouverts dense dans E $(\bar{\theta_n} = E, \forall n \in \mathbb{N})$. Alors $\bigcap_{n \in \mathbb{N}} \theta_n$ est aussi dense dans E.

Corollaire 4. Soit (E, d) un espace métrique complet et (F_n) une suite de fermés d'intérieur vide $(\mathring{F}_n = \emptyset, \forall n \geq 1)$. Alors $\bigcup_{n \geq 1} F_n$ est d'intérieur vide.

Corollaire 5. Soit (E, d) un espacae métrique complet et (F_n) une suite de fermés telle que $E = \bigcup_n F_n$. Alors il existe $n_0 \in (N)$ tel que $\mathring{F_{n_0}} \neq \emptyset$.

Théorème 18. Si f est une fonction continue du compact K dans \mathbb{R} , alors f est bornée sur K et atteint sur K sa borne supérieure et sa borne inférieure.

Théorème de Heine

Théorème 19. Soit (E, d_E) un espace métrique compact, (F, d_F) un espace métrique et $f: E \longrightarrow F$ une application continue. ALors f est uniformément continue.

Définition 10. Soit (E, d_E) et (F, d_F) deux espaces métrique et $f : E \longrightarrow F$ une application. On dit que F est une contraction (ou une application contractante) s'il existe une constante k: 0 < k < 1 vérifiant :

$$d_F(f(x), f(y)) \le k d_E(x, y), \forall x, y \in E$$

Théorème deu point fixe de Banach

Théorème 20. Soit (E, d) un espace métrique <u>complet</u> et $f : E \longrightarrow E$ une <u>contraction</u>. Alors il existe un unique point fixe de f, c'est-à-dire il existe un unique $a \in E$ tel que f(a) = a.

(Cours 6)

Remarque 9. Soit (K, d) un espace métrique compact et (E, d) un espace métrique complet. On note $\varphi(K, E)$ l'ensemble des fonctions continues de K dans E. On définit l'application d sur C(K, E):

$$d(f,g) = \sup_{x \in K} d(f(x),g(x))$$

Cette borne supérieure est atteinte en au moins un point de K.

Théorème 21. L'application d définit une distance sur C(K, E) appelée distance de la convergence uniforme.

Théorème 22. Si K est compact et E complet, alors C(K, E) muni de la distance de convergence uniforme est complet.

Remarque 10. Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues $(f_n \in C(K, E))$, et si $(f_n)_n$ converge vers f pour la distance de la convergence uniforme, alors la limite de f est continue. Inversement, si $(f_n)_n$ converge simplement et si f est continue, la convergence n'est pas nécessairement uniforme.

•

.

.

.

·
.
.

.

(Cours 8)

Corollaire 6. Toutes les normes sur un espace vectoriel normé sont équivalentes. Et elles sont topologiquement équivalentes. (Voir théorème 3.1 et corollaire 3.3).

Théorème 23. Soit E un espace vectoriel normé de dimension finie et $\{e_1, ..., e_n\}$ une base de E. Alors l'application

$$T: \mathbb{R}^n \longrightarrow E$$

$$x = (x_1, ..., x_n) \mapsto x_1 e_1 + ... + x_n e_n$$

est une homéomorphisme.

Corollaire 7. Dans un espace vectoriel normé, tout sous-espace de dimension finie est fermé

Théorème 24. Si E est un espace vectoriel normé de dimension finie, alors la boule unité fermé $\bar{B}(0,1)$ est compacte.

Théorème 25. Si E est un espace vectoriel normé de dimension finie, alors $K \subset E$ est compact de E si et seulement si K est fermé borné.

(Théorème de Riez

Théorème 26. Soit E un espace vectoriel normé . Si la boule unité fermée $\bar{B}(0,1)$ est compacte, alors E est de dimension finie.

'En fait, s'il existe une boule fermée et compacte, alors l'espace E est de dimension finie. Suite de la remarque cours 8 page 3 du pdf.

Théorème de Hahn-Banach

Théorème 27. Soit E un espace vectoriel normé, $F \subset E$ un sous-espace vectoriel de dimension finie et $x \in E$. Alors il existe un point $v \in F$ tel que:

$$d(x, F) = ||x - v||$$

Théorème 28. Soit E un espace vectoriel normé et $F \subset E$ un sous-espace vectoriel. Alors $Si \ F$ est de dimension finie, alors F est fermé.

Notation: Si $\bar{x} \in E/F$, alors $||\bar{x}|| := \inf ||y||$, pour $y \in \bar{x}$ (pour y est en dessous du inf..., voir page 5 cours 8)

Théorème 29. L'application $\bar{x} \in E/F \mapsto ||\bar{x}|| = \inf ||y||$ définit une norme sur E/F pour laquelle l'application ... trop long à écrire, voir thm 4.3

Théorème 30. Soit E et F 2 espace vectoriel normé et $f: E \longrightarrow F$ une application linéaire de rang fini. ALors f est continue sur E si et seulement si son noyau est fermé dans E.

Théorème de Hahn-Banach

Théorème 31. Soit E un espace vectoriel normé sur \mathbb{R} , $H \subset E$ un sous-espace vectoriel et $f: H \longrightarrow \mathbb{R}$ une forme linéaire continue sur H. Alors il existe une forme linéaire continue F définie sur E qui prolonge f et de même norme c-a-d $F: E \longrightarrow \mathbb{R}$ continue

$$F(x) = f(x), \ \forall x \in H$$

$$||F|| = ||f||$$

(Cours 9)

Corollaire 8. Soit E un espace vectoriel normé sur \mathbb{R} . ALors $E^1 \neq \emptyset$. De plus si $x_0 \in E$ non nul, alors il existe une forme linéaire continue f_0 tel que $f_0(x_0) = ||x_0||$ et $||f_0|| = 1$

Corollaire 9. Soit E un espace vectoriel normé. Alors l'application ... dur a écrire voir coro 4.7 page 3 cours 9.

Définition 11. Soit E un espace vectoriel normé.

1. Un hyperplan de E est un ensemble de la forme :

$$H = \{ x \in E | f(x) = \alpha \}$$

où $f \in E^*$ non nulle et $\alpha \in \mathbb{R}$ (f n'est pas nécessairement continue). On dit que H est d'équation $f(x) = \alpha$.

- 2. L'hyperplan H est fermé si et seulement si f est continue.
- 3. Une partie $C \subset E$ est dite convexe si et seulement si $\forall x, y \in C$ et $\forall \lambda, \mu \in \mathbb{R}$ $(\lambda + \mu = 1)$, on a $\lambda x + \mu y \in C$ avec (pas sure du reste)