— A rendre le jeudi 17/09/2020

Exercice 1. (Critère de divisibilité par 2) On veut montrer que : Un nombre est divisible par 2 s'il se termine par 0, 2, 4, 6 ou 8.

- 1. En remarquant que $41234 = 4123 \times 10 + 4$ montrer que 41234 est divisible par 2.
- 2. Soit n un entier, notons d son nombre de dizaines et x son chiffre des unités, montrer que si x est divisible par 2 alors n est divisible par 2.
- 3. Conclure.

Exercice 2. (Critère de divisibilité par 5) On veut montrer que : Un nombre est divisible par 5 s'il se termine par 0 ou 5.

- 1. En remarquant que $874925 = 87492 \times 10 + 5$ montrer que 874925 est divisible par 5.
- 2. Soit n un entier, notons d son nombre de dizaine et x son chiffre des unités, montrer que n est divisible par 2 si et seulement si x est divisible par 5.
- 3. Conclure.

Exercice 3. (Critère de divisibilité par 4) On veut montrer que : Un nombre est divisible par 4 si la somme de deux fois son chiffre des dizaines et d'une fois son chiffre des unités est divisible par 4.

- 1. En remarquant que $7827348 = 78273 \times 100 + 48$ montrer que 7827348 est divisible par 4
- 2. Soit m un nombre strictement inférieur à 100, notons a_1 son chiffre des dizaines et a_0 son chiffre des unités, en utilisant le fait que 10 = 8 + 2 montrer que si $2 \times a_1 + a_0$ est divisible par 4 alors il en est de même pour m.
- 3. Soit n un entier, notons c son nombre de centaines, a_1 son chiffre des dizaines et a_0 son chiffre des unités, montrer que si $2 \times a_1 + a_0$ est divisible par 4 alors il en est de même pour n.

Exercice 4. (Critère de divisibilité par 3) On a appris que : Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3.

- 1. Par un calcul, prouver que 9, 99, 999, 9999 sont divisibles par 3.
- 2. Soit m un nombre strictement inférieur à 100, notons a_1 son chiffre des dizaines et a_0 son chiffre des unités, en utilisant le fait que 10 = 9 + 1 montrer que si $a_1 + a_0$ est divisible par 3 alors il en est de même pour m.
- 3. Soit n un nombre strictement inférieur à 1000 s'écrivant $a_2a_1a_0$ c'est à dire a_2 est le chiffre des centaines, a_1 le chiffre des dizaines et a_0 le chiffre des unités, en vous inspirant de ce qui précède, montrer que si $a_2 + a_1 + a_0$ est divisible par 3 alors n est divisible par 3.
- 4. Comment ce raisonnement pourrait-il se généraliser?