GTSUMMARY

CREATING SUMMARY TABLES

INTRODUCTION

- An R package designed to create professional, publication-ready summary tables.
- Generates summary tables, including descriptive statistics, regression results, and statistical tests.
- Primarily used in medical and statistical reporting but versatile for a variety of applications.

Note

relies on other packages such as dplyr, purr, tidyverse so install these prior

KEY FEATURES

- Generates summary statistics like mean, median, standard deviation, etc automatically.
- Supports linear, logistic, and Cox proportional hazards regression
- Allows users to modify table appearance and content as per their needs.

INSTALL AND LOAD PACKAGE

```
1 library(gtsummary)
2 library(gt)
3 library(mgcv)
4 library(broom)
5 library(dplyr)
6 library(tidyr)
```

we use air quality data set as an working example

```
1 data("mtcars", package = "datasets")
    mydata <- mtcars
 3 head(mydata)
                 mpg cyl disp hp drat
                                         wt qsec vs am qear carb
                21.0
Mazda RX4
                       6 160 110 3.90 2.620 16.46
Mazda RX4 Waq
             21.0 6 160 110 3.90 2.875 17.02
               22.8 4 108
Datsun 710
                              93 3.85 2.320 18.61
Hornet 4 Drive
                21.4 6 258 110 3.08 3.215 19.44 1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
Valiant
                18.1
                          225 105 2.76 3.460 20.22
```

Make sure that the class of each variable are correct.

```
1 str(mydata)
2 #I want cyl, vs, am, gear to be factor, and all other numeric
3 mydata$cyl <- as.factor(mydata$cyl)
4 mydata$vs <- as.factor(mydata$vs)
5 mydata$gear <- as.factor(mydata$gear)
6 mydata$carb <- as.factor(mydata$carb)
7 mydata$am <- as.factor(mydata$am)</pre>
```

FIRST EXAMPLE: DESCRIPTIVE TABLE

```
1 simple <- mydata %>%
2 select(mpg,hp, qsec, vs, gear) %>%
3 tbl_summary()
4
5 simple
```

FIRST EXAMPLE: DESCRIPTIVE TABLE

Characteristic	$N = 32^{1}$
mpg	19.2 (15.4, 22.8)
hp	123 (96, 180)
qsec	17.71 (16.89, 18.90)
VS	
0	18 (56%)
1	14 (44%)
gear	
3	15 (47%)
4	12 (38%)
5	5 (16%)
¹ Median (Q1, Q3); r	ı (%)

FORMATTING AND STYLING

```
1 descriptive <- mydata %>%
2  select(mpg,hp, qsec, vs, gear) %>%
3  tbl_summary( by = "vs") %>%
4  modify_header(label ~ "Variable")
5
6
7 descriptive
```

FORMATTING AND STYLING

Variable	0 N = 18^{7}	$1 N = 14^{7}$
mpg	15.7 (14.7, 19.2)	22.8 (21.4, 30.4)
hp	180 (150, 230)	96 (66, 110)
qsec	17.02 (15.84, 17.42)	19.17 (18.60, 20.00)
gear		
3	12 (67%)	3 (21%)
4	2 (11%)	10 (71%)
5	4 (22%)	1 (7.1%)
¹ Median (Q1, Q3	3); n (%)	

MORE FEATURES

add mean and standard deviation instead of quartiles, change column/row percentage

```
1 descriptive <- mydata %>%
     select(mpg,hp, qsec, vs, qear) %>%
    tbl summary(
     by = "vs",
   statistic = list(
   all continuous() ~ "{mean} ({sd})",
   all dichotomous() \sim "{n} ({p}%)",
     all categorical() \sim "{n} ({p}%)"
     ),
     missing = "no",
10
11
     percent = "column", # You can change this to "row" if you want row percentages instead
     digits = list(all categorical() \sim c(0, 1))
12
13 ) %>%
     modify header(label ~ "Variable")
14
15
16 descriptive
```

MORE FEATURES

Variable	$N = 18^{1}$	$N = 14^{1}$				
mpg	16.6 (3.9)	24.6 (5.4)				
hp	190 (60)	91 (24)				
qsec	16.69 (1.09)	19.33 (1.35)				
gear						
3	12 (66.7%)	3 (21.4%)				
4	2 (11.1%)	10 (71.4%)				
5	4 (22.2%)	1 (7.1%)				
¹ Mean (SD); n (%)						

ADDING STATISTICAL TESTS

```
descriptive <- mydata %>%
     select(mpg,hp, qsec, vs, gear) %>%
     tbl summary(
      by = "vs",
     statistic = list(
       all continuous() ~ "{mean} ({sd})",
        all dichotomous() \sim "{n} ({p}%)",
         all categorical() ~ "{n} ({p}%)"
 9
      missing = "no",
10
11
     percent = "column",
12
      digits = list(all categorical() \sim c(0, 1))
13
     ) 응>응
14
     add overall() %>% # Add overall column
15
     add p (
16
     test = list(
17
         all continuous() ~ "t.test", # t-test for continuous variables
         all categorical() ~ "chisq.test" # chi-square test for categorical variables
18
19
      ),
20
       pvalue fun = ~style pvalue(.x, digits = 3) # Optionally set the number of digits for p-
21
     ) 응>응
     modify header(label ~ "**Variable**") %>% # Modify the header
22
```

ADDING STATISTICAL TESTS

		VS		
Variable	Overall $N = 32^{7}$	0 N = 18^{7}	$N = 14^{7}$	p-value
mpg	20.1 (6.0)	16.6 (3.9)	24.6 (5.4)	
hp	147 (69)	190 (60)	91 (24)	
qsec	17.85 (1.79)	16.69 (1.09)	19.33 (1.35)	
gear				
3	15 (46.9%)	12 (66.7%)	3 (21.4%)	
4	12 (37.5%)	2 (11.1%)	10 (71.4%)	
5	5 (15.6%)	4 (22.2%)	1 (7.1%)	
¹ Mean (SD);	; n (%)			

MAKING TABLE MORE PUBLICATION READY

```
descriptive modified <- descriptive %>%
     as gt() %>%
    gt::tab options(
     table.font.size = "small",
    heading.title.font.size = "medium",
   heading.subtitle.font.size = "small"
    gt::tab header(
    title = "Descriptive Analysis of mtcars"
10
    ) 응>응
   gt::cols align(
11
    align = "center",
12
13
    columns = everything()
14
    ) 응>응
15
   gt::tab style(
    style = cell borders(
16
    sides = "bottom",
17
18
    color = "black",
19
     weight = px(2)
20
21
      locations = cells body(
22
        columns = everything(), # style to all columns in the table, not just specific ones
```

MAKING TABLE MORE PUBLICATION READY

Variable	Overall $N = 32^{7}$	$N = 18^{1}$	1 N = 14 ⁷	p-value
mpg	20.1 (6.0)	16.6 (3.9)	24.6 (5.4)	
hp	147 (69)	190 (60)	91 (24)	
qsec	17.85 (1.79)	16.69 (1.09)	19.33 (1.35)	
gear				
3	15 (46.9%)	12 (66.7%)	3 (21.4%)	
4	12 (37.5%)	2 (11.1%)	10 (71.4%)	
5	5 (15.6%)	4 (22.2%)	1 (7.1%)	

ADVANCED FEATURES

REGRESSION TABLES

```
1 mod<- lm(mpg ~ vs + hp +gear, data = mydata)
2 tbl_regression(mod)</pre>
```

Now you can format the tables as you like by adding more commands

REGRESSION TABLES

Characteristic	Beta	95% CI ¹	p-value
VS			
0			
1	1.8	-1.7, 5.2	0.3
hp	-0.06	-0.09, -0.03	<0.001
gear			
3		_	
4	2.2	-1.2, 5.5	0.2
5	6.4	3.1, 9.8	<0.001
¹ CI = Confidence Ir	nterval		

FORMATTING

```
1 table_model <- tbl_regression(
2 mod
3 ) %>%
4 add_global_p(anova_fun = gtsummary::tidy_wald_test)
5 table_model
```

FORMATTING

Characteristic	Beta	95% CI ¹	p-value
VS			0.3
0	<u>—</u>	<u>—</u>	
1	1.8	-1.7, 5.2	
hp	-0.06	-0.09, -0.03	<0.001
gear			<0.001
3	_	<u> </u>	
4	2.2	-1.2, 5.5	
5	6.4	3.1, 9.8	
¹ CI = Confidence Ir	nterval		

Tip

For logistic models you can add exponentiate = TRUE, command to get the odds ratio

MERGING TABLES

```
1 mod1<- lm(qsec ~ vs + hp +gear, data = mydata)
2
3 table_model_1 <- tbl_regression(
4    mod1
5 ) %>%
6    add_global_p(anova_fun = gtsummary::tidy_wald_test)
7
8 # Merge the regression tables for comparison
9 comparison_table <- tbl_merge(
10    tbls = list(table_model, table_model_1),
11    tab_spanner = c("Model1", "Model2")
12 )
13
14 comparison_table</pre>
```

MERGING TABLES

Model1			Model2		
Beta	95% CI ¹	p-value	Beta	95% CI ¹	p-value
		0.3			<0.001
<u>—</u>	_				
1.8	-1.7, 5.2		2.0	0.92, 3.0	
-0.06	-0.09, -0.03	<0.001	-0.01	-0.02, 0.00	0.047
		<0.001			<0.001
_	<u>—</u>			_	
2.2	-1.2, 5.5		-0.66	-1.7, 0.34	
6.4	3.1, 9.8		-1.9	-2.9, -0.88	
	 1.8 -0.06 2.2	Beta 95% Cl ⁷ — — — 1.8 -1.7, 5.2 -0.06 -0.09, -0.03 — — — — 2.2 -1.2, 5.5	Beta 95% Cl ⁷ p-value 0.3 — — 1.8 -1.7, 5.2 — -0.06 -0.09, -0.03 <0.001	Beta 95% Cl ⁷ p-value Beta 0.3 - - 1.8 -1.7, 5.2 2.0 -0.06 -0.09, -0.03 <0.001	Beta 95% Cl ⁷ p-value Beta 95% Cl ⁷ 0.3

 $Getting\ started\ with\ gtsummary$

```
comparison table final <- as gt(comparison table) %>%
     gt::tab options(
     table.font.size = "small",
      heading.title.font.size = "medium",
 4
 5
      heading.subtitle.font.size = "small"
    ) 응>응
 6
    gt::tab header(
     title = "Model Comparison"
 8
 9
    ) 응>응
10
     gt::cols align(
    align = "center",
11
12
    columns = everything()
13
    14
    gt::tab style(
       style = cell text(weight = "bold"),
15
16
      locations = cells column labels(
17
       columns = everything()
18
19
     ) 응>응
20
     gt::tab style(
21
     style = cell borders(
22
         sides = "bottom",
```

			Model Comparison			
_		Model1		Model2		
Characteristic	Beta	95% CI ¹	p-value	Beta	95% CI [*]	p-value
VS			0.3			<0.001
0	_	_		_	_	
1	1.8	-1.7, 5.2		2.0	0.92, 3.0	
hp	-0.06	-0.09, -0.03	<0.001	-0.01	-0.02, 0.00	0.047
gear			<0.001			<0.001
3	_	_		_	_	
4	2.2	-1.2, 5.5		-0.66	-1.7, 0.34	
5	6.4	3.1, 9.8		-1.9	-2.9, -0.88	

 $Getting\ started\ with\ gtsummary$

SAVING TABLES

```
1 #saving into word document
2 gtsave(comparison_table_final, "table.docx")
3
4
5 # Save the gt table as an HTML file
6 gtsave(comparison_table_final, "table.html")
7
8 # Capture the HTML file as an image using webshot2
9 webshot2::webshot("table.html", file = "table.png", vwidth = 1000, vheight = 800)
```

Model Comparison							
		Model1			Model2		
Characteristic	Beta	95% CI ¹	p-value	Beta	95% CI ¹	p-value	
VS			0.3			<0.001	
0	_	_		_	_		
1	1.8	-1.7, 5.2		2.0	0.92, 3.0		
hp	-0.06	-0.09, -0.03	<0.001	-0.01	-0.02, 0.00	0.047	
gear			<0.001			<0.001	
3	_	_		_	_		
4	2.2	-1.2, 5.5		-0.66	-1.7, 0.34		
5	6.4	3.1, 9.8		-1.9	-2.9, -0.88		
' CI = Confidence	Interva	I					