	Kod ucznia								
			-			-			
	Dz	ień		Mie	siąc		R	ok	
pieczątka WKK	DATA URODZENIA UCZNIA								

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

Etap Wojewódzki

Drogi Uczniu

Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

- Arkusz liczy 17 stron i zawiera 20 zadań, brudnopis oraz kartę odpowiedzi.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania czytaj uważnie i ze zrozumieniem.
- Odpowiedzi wpisuj czarnym, niebieskim lub zielonym długopisem bądź piórem.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach od 1 do 12 prawidłową odpowiedź zaznacz na karcie odpowiedzi wybierając jedną z podanych odpowiedzi i zamaluj kratkę z odpowiadającą jej literą.
- W zadaniach od 13 do 17 oceń każdą wypowiedź jako prawdziwą (P) lub fałszywą (F) zaznacz na karcie odpowiedzi wybierając jedną z podanych odpowiedzi i zamaluj kratkę z odpowiadającą jej literą.
- Jeżeli w zadaniach od 1 do 17 się pomylisz, błędne zaznaczenie otocz kółkiem i zamaluj kratkę z inną odpowiedź.
- W zadaniach otwartych (zadania od 18 do 20) <u>przedstaw kompletny tok</u> <u>rozumowania</u> prowadzący do rozwiązania.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Obok każdego numeru zadania podaną masz maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie.
- Pracuj samodzielnie. Postaraj się prawidłowo odpowiedzieć na wszystkie pytania.
- Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.
- Nie używaj kalkulatora.

Powodzenia!

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania:

50

ZADANIE 1 (0-1 pkt)

Prostokąt ABCD podzielono odcinkami równoległymi do jego boków na kilka mniejszych prostokatów. Obwody trzech z nich podano na rysunku.

Obwód prostokata ABCD jest:

A. równy 23

B. równy 46

C. większy niż 46

D. niemożliwy do wyliczenia

ZADANIE 2 (0-1 pkt)

Liczba $(\sqrt{11} + \sqrt{44} + \sqrt{99})^2$ jest równa:

A. 66

B. 154

C. 396

D. 404

ZADANIE 3 (0-1 pkt)

Liczba mieszkańców pewnego miasta wynosi obecnie 100 000 i zwiększa się regularnie o 10% w porównaniu do roku poprzedniego. Po 3 latach liczba mieszkańców wyniesie:

A. 130 000

B. 30 000

C. 33 100

D. 133 100

ZADANIE 4 (0-1 pkt)

Na wycieczkę pojechało 30 uczniów o średniej wieku 15 lata. Średnia ta wzrośnie do 16 lat, jeśli doliczy się wiek nauczyciela. Nauczyciel ma:

A. 31 lat

B. 45 lat

C. 46 lat

D. 51 lat

ZADANIE 5 (0-1 pkt)

Jeżeli długość i szerokość prostokata ABCD zwiększymy o 10 cm, to jego pole zwiększy się o 600 cm². Jeżeli natomiast jego długość i szerokość zmniejszymy o 5 cm, to jego pole zmniejszy sie o:

A. $300 \ cm^2$

B. $275 cm^2$

C. 22,5 dm^2 D. 225 cm^2

ZADANIE 6 (0-1 pkt)

Dany jest 14 – kat foremny. Liczba trójkatów prostokatnych, których wierzchołki są jednocześnie wierzchołkami tego 14 – kata wynosi:

A. 42

B. 72

C. 84

D. 98

ZADANIE 7 (0-1 pkt)

Największa liczba naturalna, która przy dzieleniu przez 7 daje iloraz równy reszcie jest:

A. podzielna przez 5

B. podzielna przez 7

C. podzielna przez 8

D. liczbą pierwszą

ZADANIE 8 (0-1 pkt)

Miara kata między przekatnymi A_1B i BC_1 ścian sześcianu $ABCDA_1B_1C_1D_1$ jest równa:

A. 60°

B. 45°

D. 57,5°

ZADANIE 9 (0-1 pkt)

W szufladzie znajdują się 4 kredki czerwone, 3 niebieskie i 2 zielone. Z tej szuflady wyciągamy losowo kredki. Pewni będziemy, że wśród wylosowanych kredek są kredki w co najmniej dwóch różnych kolorach, gdy wyjmiemy ich:

A. 6

B. 5

C. 4

D. 3

ZADANIE 10 (0-1 pkt)

Liczb całkowitych n, dla których liczba $\frac{n+2015}{n+2017}$ jest liczbą całkowitą jest:

A. 0

D. 5

ZADANIE 11 (0-1 pkt)

Wskazówki zegara mają długości 10 cm i 6 cm. Odległość między końcami wskazówek o godzinie 20⁰⁰ wynosi:

A. 14 cm

B. $\sqrt{136 + 60\sqrt{3}} \ cm$

C. 15,4 cm

D. $(136 + 60\sqrt{3})$ cm

ZADANIE 12 (0-1 pkt)

W trójkącie prostokątnym suma długości przyprostokątnych wynosi $\sqrt{18}$, a przeciwprostokątna ma długość 4. Pole tego trójkata wynosi:

A. $\frac{1}{2}$

B. 2

- C. $\sqrt{18} 2$ D. $2(\sqrt{18} 2)$

ZADANIE 13 (0-4 pkt)

Długości boków pewnego trójkąta **ostrokątnego** są kolejnymi liczbami naturalnymi większymi od 2. Wysokość opuszczona na średni co do długości bok dzieli go na dwa odcinki x i y (dłuższy z tych odcinków oznacz x, a krótszy – y). Oceń prawdziwość zdań:

A. Boki tego trójkąta mają długości: 3, 4, 5.	P	F
B. Wartość różnicy $x - y$ jest liczbą wymierną.	P	F
C. Wartość różnicy $x - y$ jest mniejsza niż 5.	P	F
D. Wartość różnicy $x - y$ nie jest liczbą całkowitą.	P	F

ZADANIE 14 (0-4 pkt)

Liczby x, y, z i t spełniają równości:

$$x + y + z = 75,$$

 $y + z + t = 80,$
 $z + t + x = 85,$
 $t + x + y = 90$

Oceń prawdziwość zdań:

A. $x + y + z + t = 110$	P	F
$B. x^2 < yt$	P	F
C. t = x + 5	P	F
$D. \frac{y+t}{2} = x$	P	F

ZADANIE 15 (0-4 pkt)

Punkty D, E, F, G, H i I dzielą każdy bok trójkąta ABC na trzy równe części. Stosunek pola zacieniowanego czworokąta DEGI do pola trójkąta ABC jest równy p.

Oceń prawdziwość zdań:

A. $p = \frac{1}{2}$	P	F
B. $p < \frac{1}{2}$	P	F
C. $p = \frac{4}{9}$	P	F
D. $p > \frac{11}{27}$	P	F

ZADANIE 16 (0-4 pkt)

Wewnątrz kwadratu leży mniejszy kwadrat. Boki obu kwadratów są odpowiednio równoległe. Wierzchołki kwadratów połączono tak, jak na rysunku, tworząc cztery trapezy niebędące równoległobokami.

Oceń prawdziwość zdań:

A. Suma pól zacieniowanych trapezów jest równa sumie pól pozostałych dwóch trapezów niebędących równoległobokami.		
B. Suma wysokości zacieniowanych trapezów jest równa sumie wysokości pozostałych dwóch trapezów niebędących równoległobokami.		
C. Suma obwodów zacieniowanych trapezów jest większa niż suma obwodów pozostałych dwóch trapezów niebędących równoległobokami.		
D. Figura, która powstanie w wyniku połączenia środków ramion zacieniowanych trapezów jest kwadratem o boku długości równej średniej geometrycznej długości boków narysowanych kwadratów.		

ZADANIE 17 (0-4 pkt)

Dany jest czworokąt ABCD przedstawiony na rysunku.

Oceń prawdziwość zdań:

A. CD = BC	P	F
B. Czworokąt <i>ABCD</i> jest środkowosymetryczny.	P	F
C. Obwód czworokąta ABCD jest mniejszy niż 30.	P	F
D. W czworokąt ABCD można wpisać okrąg.	P	F

Uwaga!

Czworokąt wypukły można opisać na okręgu wtedy i tylko wtedy, gdy sumy długości przeciwległych boków czworokąta są równe.

ZADANIE 18 (0-6 pkt)

Wykaż, że liczba

$$\sqrt{10 + 2016 \cdot \sqrt{1 + 2015 \cdot \sqrt{1 + 2014 \cdot \sqrt{1 + 2013 \cdot \sqrt{1 + 2012 \cdot 2010}}}}.$$

jest całkowita.

Uwaga! Ze względu na omyłkowe pojawienie się w treści zadania liczby 10 zamiast 1 ocenie nie podlega stwierdzenie oraz uzasadnienie faktu czy podana liczba jest całkowita.

ZADANIE 19 (0-6 pkt)

Kucharz ma garnek w kształcie walca o polu podstawy równym 81π cm^2 i wysokości 15 cm. Aby zakonserwować konfitury na zimę wkłada do tego garnka słoiki w kształcie walca o średnicy podstawy 8 cm i wysokości 14 cm każdy. Zdołał już włożyć 3 słoiki. Czy uda mu się zmieścić do tego garnka wszystkie cztery słoiki jednocześnie? Odpowiedź uzasadnij odpowiednimi obliczeniami.

ZADANIE 20 (0-6 pkt)

Naczynie w kształcie czworościanu foremnego o krawędzi długości 12 cm napełniono całkowicie wodą. Czy woda z tego naczynia zmieści się w naczyniu w kształcie walca o promieniu podstawy równym 4 cm i wysokości równej $\frac{13}{\pi}$ cm? Odpowiedź uzasadnij odpowiednimi obliczeniami.

KARTA ODPOWIEDZI

Zadanie	A	В	C	D
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				

Zadanie	Podpunkt	Prawda	Falsz
13.	Α.		
	В.		
	C.		
	D.		
14.	A.		
	В.		
	C.		
	D.		
15.	A.		
	В.		
	C.		
	D.		
16.	Α.		
	В.		
	C.		
	D.		
17.	Α.		
	В.		
	C.		
	D.		