Chapter 13 Calcul matriciel élémentaire

13.1 **Matrices**

13.2 Addition et multiplication par un scalaire

13.3 Multiplication matricielle

Exercice 13.1

Effectuer les produits des matrices.

1.
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
;

2.
$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix};$$

3.
$$\begin{pmatrix} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{pmatrix}$$
.

Exercice 13.2

On considère les matrices

$$A = \begin{pmatrix} 1 & 3 & 5 \\ -1 & 1 & 0 \end{pmatrix},$$

$$A = \begin{pmatrix} 1 & 3 & 5 \\ -1 & 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ -1 & 4 \end{pmatrix}, \qquad d = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

$$C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ -1 & 4 \end{pmatrix}$$

$$d = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Parmi les expressions suivantes, lesquelles sont définies ? Calculer les.

2.
$$AB + C$$

$$2. AB + C$$

3.
$$A + C^T$$

$$4. C^T C$$

$$5. BC$$

$$\mathbf{6} d^T \mathbf{R}$$

$$\mathbf{8.} \ d^T d$$

9.
$$dd^T$$
.

Exercice 13.3

On pose

$$A = \begin{pmatrix} -1 & 3 & 1 \\ 4 & 0 & 5 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 2 & 1 & 3 \\ -4 & 0 & 1 \\ 3 & -1 & -2 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} -1 & 0 & 3 & -2 \\ 4 & 2 & 0 & 1 \\ 3 & 1 & -4 & -3 \end{pmatrix}$$

Vérifier sur cet exemple l'associativité du produit matriciel ABC.

Exercice 13.4

Déterminer, si possible, une matrice A et un scalaire x tels que

$$\begin{pmatrix} 1 & 7 \\ 5 & 0 \\ 9 & 3 \end{pmatrix} A = \begin{pmatrix} -4 & 14 \\ 15 & 0 \\ 24 & x \end{pmatrix}$$

Exercice 13.5

Soit $a = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10)$. Calculer aa^T et a^Ta .

Exercice 13.6

On note $E_{i,j}$ et $E_{k,\ell}$ les matrices élémentaires de $\mathcal{M}_{m,n}(\mathbb{K})$ et $\mathcal{M}_{n,p}(\mathbb{K})$ d'indices (i,j) et (k,ℓ) convenable.

1

Calculer $E_{i,j} \times E_{k,\ell}$.

Exercice 13.7

Soient
$$n \in \mathbb{N}^*$$
 et $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}), A \in \mathcal{M}_n(\mathbb{K}), \sigma(A)$ la somme des termes de A . Vérifier $JAJ = \sigma(A)J$.

13.4 Algèbre des matrices

Exercice 13.8

Soit

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

une matrice (2, 2) telle que,

$$\forall B \in \mathcal{M}_{2,2}(\mathbb{K}), AB = BA.$$

Montrer que a = d, b = 0, c = 0. En déduire que les seules matrices vérifiant cette propriété sont les multiples scalaires de la matrice unité I_2 .

Pouvez-vous généraliser ce résultat aux matrices (3,3)? Aux matrices (n,n)?

Exercice 13.9

Pour toute matrice $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$, on définit la trace de A par

$$\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}.$$

- **1.** Calculer Tr $\begin{pmatrix} -3 & 2 & 1 \\ 4 & 1 & 0 \\ 1 & -2 & 4 \end{pmatrix}$.
- **2.** Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer

$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$$
 et $\operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A)$.

On dit que la trace est linéaire.

3. Montrer que pour toutes matrices $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$, on a

$$Tr(AB) = Tr(BA)$$
.

- **4.** Existe-t-il deux matrices A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $AB BA = I_n$?
- **5.** Trouver trois matrices A, B, C de $\mathcal{M}_2(\mathbb{R})$ telles que $\text{Tr}(ABC) \neq \text{Tr}(BAC)$.

Exercice 13.10

Résoudre

$$A(X + B) - (C + D)X = A(A - X) - C(B + X)$$

où

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & -2 \\ -1 & 0 \end{pmatrix}.$$

Exercice 13.11

L'algorithme d'Euclide pour le calcul du pgcd $\delta > 0$ de deux entiers $u \ge v > 0$, peut être décrit ainsi. On définit, par récurrence à deux pas, une suite $(x_n)_{n\ge 0}$ en posant $x_0 = u$ et $x_1 = v$ et, tant que $x_i > 0$, $x_{i+1} = x_{i-1}$ mod x_i (le reste de la division euclidienne de x_{i-1} par x_i):

$$x_{i-1} = q_i x_i + x_{i+1}.$$

Il existe alors un entier k tel que $x_k \neq 0$ et $x_{k+1} = 0$; le pgcd de u et v est alors $\delta = x_k$. Démontrer que, pour $i \in [1, k]$,

$$\begin{bmatrix} x_i \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -q_i \end{bmatrix} \begin{bmatrix} x_{i-1} \\ x_i \end{bmatrix}.$$

En déduire que $x_i = a_i u + b_i v$, où

$$\begin{bmatrix} a_i & b_i \\ * & * \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -q_i \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & -q_1 \end{bmatrix}.$$

Que valent les * de la deuxième ligne ? Donner une définition par récurrence mutuelle des suite $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$, puis une méthode de calcul des coefficients de Bézout $a,b\in\mathbb{Z}$ tels que $au+bv=\delta$.

13.5 Matrices inversibles

Exercice 13.12

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice unité 3×3 . En déduire que A est inversible et calculer son inverse.

Exercice 13.13

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
.

Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

Exercice 13.14

Soit A et B deux matrices (n, n) inversibles. En utilisant la définition de l'inverse d'une matrice, montrer que AB est inversible et

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Exercice 13.15

Soit
$$B = \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix}$$
.
On pose $C = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$.

1. Résoudre le système de quatre équations donné par l'équation matricielle $BC = I_2$,

$$\begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 2. Vérifier alors que B est inversible en utilisant la définition de matrice inverse.
- 3. Vérifier à nouveau votre solution en calculant B^{-1} à l'aide du déterminant.

Exercice 13.16

Soit deux matrices A et B telles que A et AB soient inversibles. On suppose

$$(AB)^{-1} = 2A^{-1}. (1)$$

Déterminer B.

Exercice 13.17

Soit
$$J = \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
. Calculer J^2 et en déduire que J n'est pas inversible.

A étant une matrice de $\mathcal{M}_2(\mathbb{K})$, montrer qu'il existe α et β de \mathbb{K} tels que

$$A^2 - \alpha A + \beta I_2 = 0.$$

Quel est l'inverse de A si A est inversible ?

13.6 Puissances d'une matrice

Exercice 13.19

On considère la matrice

$$M = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Calculer M^2 , M^3 , M^4 , M^5 . En déduire M^k pour $k \in \mathbb{N}$.

Exercice 13.20

On considère la matrice suivante

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$$

En écrivant $A = I_3 + B$, calculer les puissances de A.

Exercice 13.21

Soit
$$(a, b, c) \in \mathbb{K}^3$$
. On note $M = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{K})$.

- **1.** Calculer M^k pour tout $k \in \mathbb{N}$.
- **2.** Montrer que M est inversible et calculer M^k pour tout $k \in \mathbb{Z}$.

Exercice 13.22

Soit $A\in \mathcal{M}_p(\mathbb{K})$. On suppose qu'il existe deux réels a et b tels que $A^2=aA+bI_p$.

- 1. Démontrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout entier naturel n, $A^n=a_nA+a_n$ $b_n I_p$.
- **2.** En notant $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$, vérifier que $X_{n+1} = BX_n$ pour une certaine matrice $B \in \mathcal{M}_2(\mathbb{K})$.

On suppose que l'équation $r^2 - ar - b = 0$ possède deux racines distinctes r_1 et r_2 . On pose P = $\begin{pmatrix} 1 & 1 \\ -r_2 & -r_1 \end{pmatrix}$.

4

- 3. Démontrer que P est inversible et que $P^{-1}BP$ est diagonale ; les coefficients de cette dernière seront exprimés uniquement en fonction de r_1 et r_2 .
- **4.** En déduire une expression simple de a_n et b_n en fonction de n, r_1 et r_2 .

Exercice 13.23
$$Soit A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \\ 1/2 & 1/2 & 0 \end{pmatrix}.$$

- 1. Calculer $U = (A I_3)(2A + I_3)$, $V = (2A + I_3)^2$, AU et AV.
- **2.** Déterminer trois réels a, b, c tels que $A = aU + bV + cI_3$.
- 3. En déduire, pour tout entier $k \ge 1$, une expression de A^k comme combinaison linéaire de U, V et A^{k-1} .
- **4.** En déduire que, pour tout entier $k \ge 1$, $B^k B^{k-1} = \frac{2}{3}U + \frac{(-2)^k}{6}V$, où B = -2A.
- **5.** En déduire, pour $n \in \mathbb{N}$, une expression de B^n , puis de A^n , comme combinaison linéaire de U, V et I_3 .

Exercice 13.24

Sur le plan d'une ville, on a n carrefours C_1,\ldots,C_n $(n\in\mathbb{N}^\star)$. On définit une matrice $V\in\mathcal{M}_n(\mathbb{R})$ en posant V[i,j] = 1 si une rue mène directement du carrefour C_i au carrefour C_j en automobile, sans passer par un autre carrefour ; V[i, j] = 0 sinon. On convient V[i, i] = 0.

- **1.** Que dire de V si toutes les rues sont à double sens ?
- 2. Pour $k \in \mathbb{N}^{\star}$, montrer que $V^{k}[i,j]$ le coefficient de la *i*-ème ligne et *j*-ème colonne de V^{k} est le nombre d'itinéraires de C_i à C_j empruntant k rues, distinctes ou non. On appelle k-chemins ces itinéraires.
- **3.** On suppose qu'il existe $N \in \mathbb{N}$ tel que $V^N = 0$. Montrer que, pour tout $i, j \in [1, n]$, le nombre total $\gamma_{i,j}$ de chemins de C_i à C_j est fini. On pose $\Gamma = \left(\gamma_{i,j}\right)_{1 \leq i,j \leq n}$. Montrer $\left(I_n + \Gamma\right) = \left(I_n - V\right)^{-1}$.

Exercice 13.25

Soit
$$\begin{pmatrix} \operatorname{ch} x & \operatorname{sh} x \\ \operatorname{sh} x & \operatorname{ch} x \end{pmatrix}$$
. Calculer A^n .

Exercice 13.26

Soit $n \in \mathbb{N}^{\star}$. Soit $A \in \mathcal{M}_n\mathbb{C}$ une matrice nilpotente, c'est-à-dire qu'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. On note

$$e(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$

appelée exponentielle de A (la somme est en fait «finie»).

1. Montrer que si A et B sont nilpotentes et commutent, alors A + B est nilpotente et

$$e(A + B) = e(A)e(B)$$
.

- **2.** En déduire que, pour toute matrice A nilpotente, e(A) est inversible et $(e(A))^{-1} = e(-A)$.
- **3.** Calculer e(A) dans le deux exemples suivants.

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & \cdots & 0 & 1 \\ 0 & 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & \cdots & 0 & n-1 \\ 0 & 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

Exercice 13.27 Mines MP

Soit $A \in \operatorname{GL}_n(\mathbb{R})$ vérifiant

$$A + A^{-1} = I_n.$$

Pour $k \in \mathbb{N}$, calculer $A^k + A^{-k}$.

13.7 Transposée

Exercice 13.28

Résoudre l'équation d'inconnue A

$$\left(5A^T + \begin{pmatrix} 1 & 0 \\ 2 & 5 \end{pmatrix}\right)^T = 3A + \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}^{-1}.$$
(1)

Exercice 13.29

Déterminer la matrice A si

$$\left(A^{-1}\right)^T = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}.$$

Exercice 13.30

Soit A un matrice (m, n) et B une matrice (n, n). Simplifier l'expression

$$(A^T A)^{-1} A^T (B^{-1} A^T)^T B^T B^2 B^{-1}$$

en supposant que les matrices inverses apparaissant dans l'expression sont bien définies.

Exercice 13.31

Soit A une matrice carrée (n, n).

- 1. Montrer que la matrice $A + A^T$ est symétrique et que la matrice $A A^T$ est antisymétrique.
- 2. Montrer que toute matrice carrée s'écrit comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 13.32

1. Soit $A = (a_{ij})$ un matrice (m, n) sur le corps \mathbb{R} . Calculer $\operatorname{Tr} \left(AA^T\right)$. En déduire

$$AA^T = 0 \implies A = 0 \text{ et } A^T = 0.$$

2. Les matrices A, B, et C étant de dimensions convenables, prouver

$$BAA^T = CAA^T \implies BA = CA.$$

On se ramènera à la propriété précédente.

Exercice 13.33

Soit B une matrice (m, k). Montrer que la matrice $B^T B$ est une matrice symétrique (k, k).

13.8 Vecteurs de \mathbb{K}^n