SMART INDIA HACKATHON 2025

AI-Driven Traffic Optimization in VANETs

- Problem Statement ID SIH25050
- Problem Statement Title Smart Traffic
 Management System for Urban Congestion
- Theme Transportation & Logistics
- PS Category- Software
- Team ID- BMS/SIH2025/54
- Team Name (Registered on portal) FlowGuardians

FlowGuardians

AI-Driven Traffic Optimization in VANETs -

Proposed Solution/Idea

- ❖ Al-driven traffic optimization system in VANET.
- Real-time data from cameras & IoT sensors, processed via YOLO and OpenCV.
- Reinforcement Learning (DQN/PPO) for dynamic signal phase & duration control.
- RSUs (200m intervals & intersections): act as relays & lightweight edge processors.
- Emergency vehicle prioritization: automatic green-wave creation.
- Integrated dashboard: heatmaps, manual overrides, emergency tracking.
- Simulation with SUMO + TraCI, benchmark against baseline systems.

Key Benefits

- Reduced Congestion: Adaptive, self-learning signals cut commute time by $\geq 10\%$.
- Faster Emergency Response: Priority signaling enables rapid green paths for ambulances/fire trucks.
- Scalable & Transparent Control: Edge-enabled RSUs lower latency, while a unified dashboard ensures monitoring.

Unique Value Propositions(UVP):

- ❖ AI + VANET + Edge integration with Google Maps → SUMO for realistic road networks.
- Adaptive signals & proactive emergency handling via automated green-wave routing.
- Authority dashboard for monitoring, overrides, and decision-making.

TECHNICAL APPROACH

Technologies Used:

- Programming Languages & APIs: Python (for SUMO+TraCI), TensorFlow and PyTorch (for RL), OpenCV (for vehicle detection), Google Maps API (for route prediction).
- Frameworks & Tools: SUMO (traffic simulation), TraCl (signal control), Flask(backend), React (dashboard).
- Hardware & Infrastructure:
 RSUs (edge devices with 200m coverage, deployed at intersections), IoT Sensors, Cameras.
- Database & Cloud: MongoDB for logging simulation data, REST APIs for integration.

Implementation Status: 50% of the build is completed and further steps - RL agent training, dashboard visualization along with evaluation metrics is in progress

FlowGuardians

FEASIBILITY AND VIABILITY

- Feasibility Analysis
- Existing tools like SUMO, RSUs, AI/ML are viable.
- Increasing adoption of IoT, VANETs, 5G and Wimax makes real-time edge processing practical.
- Potential Challenges
- **Heterogeneous data format** of Google map and SUMO.
- GPS inaccuracies and delayed communication can impact routing by increasing latency.
- **Packet sniffing** on wireless media leading to security issues.
- High initial set up costs for RSU and sensors.
- **Strategies**
 - Deploying the system in emergency prone areas and regions with high traffic.
 - Deploying light weight ML models and hierarchical cloud-component coordination.
- Implement strong authentication in data communication to prevent intrusion.

IMPACT AND BENEFITS

Improved Travel Safety

Enhances road safety through V2V and V2I communication

Environmental Benefits

Lowers emissions and promotes clean air

Economic Savings

Reduces costs from fuel, delays, and congestion

Safety

Increases community safety and well-being

Reduced Response Time

Speeds up emergency services response with realtime data

Sustainable City Growth(SDG 11)

Supports urban sustainability through data-driven insights

FlowGuardians

RESEARCH AND REFERENCES

- A. Mchergui, T. Moulahi, and S. Zeadally, "Survey on Artificial Intelligence (AI) techniques for Vehicular Ad-hoc Networks (VANETs)," *Vehicular Communications*, vol. 34, p. 100403, Apr. 2022, doi: 10.1016/J.VEHCOM.2021.100403.
- X. Liang, X. Du, G. Wang, and Z. Han, "Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks," IEEE Transactions on Vehicular Technology, Mar. 2018, doi: 10.1109/TVT.2018.2890726.
- I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, "Reinforcement learning-based multi-agent system for network traffic signal control," *IET Intelligent Transport Systems*, vol. 4, no. 2, pp. 128–135, 2010, doi: 10.1049/iet-its.2009.0070.
- ❖ B. De Schutter, "Optimal traffic light control for a single intersection," in *Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251*), vol. 3, 1999, pp. 2195–2199, doi: 10.1109/ACC.1999.786344.
- M. Gill and D. Singh, "A comprehensive study of simulation frameworks and research directions in fog computing," Computer Science Review, vol. 40, p. 100391, May 2021, doi: 10.1016/J.COSREV.2021.100391.
- D. Alsadie, "Artificial Intelligence Techniques for Securing Fog Computing Environments: Trends, Challenges, and Future Directions," *IEEE Access*, vol. 12, pp. 151598–151648, 2024, doi: 10.1109/ACCESS.2024.3463791.
- R. Ghafari and N. Mansouri, "Swarm intelligence techniques and their applications in fog/edge computing: an in-depth review," *Artificial Intelligence Review*, vol. 58, no. 11, p. 359, 2025, doi: 10.1007/s10462-025-11351-2.