テキスト分析のためのR入門:エクササイズ

Ex.1 ファイル操作の基本

- 1. デスクトップ上に新しいフォルダを作成しなさい。フォルダ名はR入門20201228 とすること
- 2. コマンドプロンプトを起動し、cdコマンドでカレントフォルダを確認しなさい
 - ヒント:「ファイル名を指名して実行」(Win+R)でcmdと入力(Windowsの場合)
- 3. cdコマンドを使って、(1)で作ったフォルダに移動しなさい
 - ・ ヒント: フォルダを右クリック→プロパティから、親フォルダの場所を確認できる(Windowsの場合)
- 4. cdコマンドを使って、親フォルダに移動しなさい
- 5. cd ~を入力して実行しなさい

Ex.2 RStudio(講義では割愛)

- 1. RStudioから新規Rスクリプトを作成しなさい
 - ・ ヒント: File > New File > R Script
- 2. (1)で作ったRスクリプトをEx.1で作ったフォルダに保存しなさい。ファイル名は r_i intro. r_i とすること
- 3. 一度RStudio上でファイルを閉じ、(2)で作ったファイルを開き直しなさい
- 4. エディタ上でRスクリプトに print ('hello') と入力し、実行しなさい
 - ヒント: 実行したい部分を選択して Ctrl (command) + Enter でスクリプトを実行できる

Ex.3 はじめに覚えておくこと

1. コンソールに # print ('comment') と入力して実行し、実行結果が 出ない ことを確認しなさい

In [1]: # print('comment')

1. エディタ上で?mean と入力して実行し、ヘルプが表示されることを確認しなさい

mean {base}

R Documentation

Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

In [2]:

?mean

```
mean(x, ...)
## Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)
```

Arguments

- An R object. Currently there are methods for numeric/logical vectors and date, date-time and time interval objects. Complex vectors are allowed for trim = 0, only.
- the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.
- a logical value indicating whether NA values should be stripped before the computation proceeds. na.rm
 - further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer) or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observations deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

weighted.mean, mean. POSIXct, colMeans for row and column means.

Examples

```
x < -c(0:10, 50)
xm < - mean(x)
c(xm, mean(x, trim = 0.10))
```

[Package base version 4.0.2]

1. getwd() を実行して作業ディレクトリを確認しなさい

```
In [3]:
```

1. setwd()関数を使ってEx.1-1で作ったフォルダを作業ディレクトリに設定しなさい

In [4]: # 省略

1. 以下を	順に実行しなさい
(1) test =	1
In [5]	test = 1
(2) print(test)
In [6]	<pre>print(test)</pre>
	[1] 1
(3) print(FEST)(エラーが出ることを確認する)
In [7]	# 省略
(4) 'TEST'	== 'test'
In [8]	'TEST' == 'test'
	FALSE
(5) test =	= 'test'
In [9]	test == 'test'
	FALSE
Ex.4 演 1. [四則演	算 第] x = 3, y = 4, z = 5として以下の値を求めなさい
In [10]	x = 3 $y = 4$ $z = 5$
(1) xとyとz	の和
In [11]	x + y + z
	12
(2) xとyの利	Dをzで割った値
In [12]	(x + y) / z
	1.4
(3) zのx乗	
In [13]	z^x
	125

(4) zをxで割った商とあまり(整数除算)

```
z %/% x
           # あまり
           z %% x
           1
           2
 1. [数学関数] x = c(1,2,3,4,5)として、以下を実行しなさい
  In [15]: x = c(1, 2, 3, 4, 5)
(1) sum(x)
  In [16]: sum(x)
          15
(2) mean(x)
  In [17]: mean(x)
           3
(3) sum(x) / length(x)
  In [18]: sum(x) / length(x)
          3
 1. [比較演算子] x=1, y=2として以下の計算を実行しなさい
  In [19]: x = 1
          y = 2
(1) x == y
  In [20]: | x == y
          FALSE
(2) x != y
  In [21]: | x != y
          TRUE
(3) x > y
  In [22]: | x > y
          FALSE
(4) x \leq y
```

In [14]: # 商

```
In [23]: | x < y
           TRUE
(5) x %in% c(2,4)
  In [24]: x %in% c(2, 4)
           FALSE
(6) y %in% c(2, 4)
  In [25]: y %in% c(2,4)
           TRUE
 1. [論理演算その 1 ] x = c(T, T, F, F), y = c(T, F, T, F)として、以下を実行しなさい
  In [26]: x = c(T, T, F, F)
           y = c(T, F, T, F)
(1) x & y
  In [27]: x & y
           TRUE · FALSE · FALSE · FALSE
(2) x && y
  In [28]: x && y
           TRUE
(3) x | y
  In [29]: x | y
           TRUE · TRUE · TRUE · FALSE
(4) x || y
  In [30]: | x || y
           TRUE
(5) !x
  In [31]: !x
           FALSE · FALSE · TRUE · TRUE
 1. [NAとの計算] 以下を実行しなさい
(1) 1 + NA
```

```
In [32]: 1 + NA
          <NA>
(2) 0 * NA
  In [33]: 0 * NA
          <NA>
(3) sum (1, 2, NA)
  In [34]: sum(1, 2, NA)
          <NA>
(4) T & NA
  In [35]: T & NA
          <NA>
(5) F & NA
 In [36]: F & NA
          FALSE
(6) T | NA
  In [37]: T | NA
          TRUE
(7) F | NA
 In [38]: F | NA
          <NA>
Ex.5 ベクトル
 1. [ベクトルの作成] 以下のベクトルを作成しなさい
(1) 1から5までの整数を順に並べたベクトル
```

```
In [39]: c(1, 2, 3, 4, 5)
               1\cdot \ 2\cdot \ 3\cdot \ 4\cdot \ 5
```

(2) a,b,c,dのそれぞれの文字を要素とするベクトル

```
In [40]: c('a', 'b', 'c', 'd')
           'a' · 'b' · 'c' · 'd'
```

(3) コロン演算子: を使って、1から10までの整数を順に並べたベクトル

```
In [41]: 1:10
                1\cdot \ 2\cdot \ 3\cdot \ 4\cdot \ 5\cdot \ 6\cdot \ 7\cdot \ 8\cdot \ 9\cdot \ 10
(4) コロン演算子: を使って、8から2までの整数を大きい順に並べたベクトル
   In [42]: 8:2
                8\cdot\phantom{0}7\cdot\phantom{0}6\cdot\phantom{0}5\cdot\phantom{0}4\cdot\phantom{0}3\cdot\phantom{0}2
(5) c(1,2,3)を4つ並べたベクトル
   In [43]: rep(c(1,2,3), 4)
                1\cdot \ 2\cdot \ 3\cdot \ 1\cdot \ 2\cdot \ 3\cdot \ 1\cdot \ 2\cdot \ 3\cdot \ 1\cdot \ 2\cdot \ 3
  1. [ベクトル演算] x = 1:5, y = c(2,4), z=c(5, 3, 1)として、以下の計算をしなさい
   In [44]: x = 1:5
               y = c(2, 4)
               z = c(5, 3, 1)
(1) x + 1
   In [45]: x + 1
                2 \cdot 3 \cdot 4 \cdot 5 \cdot 6
(2) y * 2
   In [46]: y * 2
                4 · 8
(3) x + y
   In [47]: x + y
               Warning message in x + y:
               "longer object length is not a multiple of shorter object length"
                3 · 6 · 5 · 8 · 7
(4) x * z
   In [48]: | x * z
               Warning message in x * z: "longer object length is not a multiple of shorter object length" \,
                5 \cdot 6 \cdot 3 \cdot 20 \cdot 15
(5)   sqrt(x)
```

```
In [49]: sqrt(x)
            1\cdot \ \ 1.4142135623731\cdot \ \ 1.73205080756888\cdot \ \ 2\cdot \ \ 2.23606797749979
(6) mean(y)
  In [50]: mean(y)
           3
(7) rev(x)
  In [51]: rev(x)
            5\cdot \ 4\cdot \ 3\cdot \ 2\cdot \ 1
(8) sort(z)
  In [52]: sort(z, decreasing = T)
            5 \cdot 3 \cdot 1
 1. [要素へのアクセス] x = c('a', 'b', 'c', 'd', 'e'), y = 1:6として、以下の操作をしなさい
  In [53]: x = c('a', 'b', 'c', 'd', 'e')
           y = 1:6
(1) 添字番号を使ってxの3番目の要素を取り出す
  In [54]: x[3]
           'c'
(2) 整数ベクトルを使ってxの2番目と5番目の要素を取り出す
  In [55]: x[c(2, 5)]
            'b' · 'e'
(3) xの1番目の要素をfに変更する
  In [56]: x[1] = 'f'
  In [57]: x
            'f' · 'b' · 'c' · 'd' · 'e'
(4) 論理ベクトルを使ってxの1番目と4番目の要素を取り出す
  In [58]: x[c(T, F, F, T, F)]
            'f'· 'd'
```

(5) yの偶数である要素を取り出す

```
In [59]: y[y \% 2 == 0]
 2 \cdot 4 \cdot 6
```

(6) yの2番目と3番目以外の要素を取り出す

```
In [60]: y[-c(2, 3)]

1 · 4 · 5 · 6
```

Ex.6 関数

- 1. [関数の作成]以下の関数を作成しなさい
- (1) 実行すると'done.'と表示する関数

```
In [61]: func = function() {
    print('done.')
}
In [62]: func()
    [1] "done."
```

(2)金額(税抜)を入力すると消費税込の金額を返す関数(消費税率は10%ととする)※小数点以下が出てもよい

```
In [63]: func = function(price) {
    return(price * 1.1)
}
In [64]: func(1000)
1100
```

- 1. [制御構文] 以下の問に答えなさい。ただし整数以外の入力値については考慮しなくてよいものとする
- (1) 以下の関数を作成しなさい

入力された整数が偶数なら'even', 奇数なら'odd'と表示する関数

(2) 前問で作成した関数について、for文を使って1から20までの整数値を入力した結果を表示しなさい

```
In [67]: for (i in 1:20) {
                print(i)
                evenodd(i)
           [1] 1
[1] "odd"
           [1] 2
[1] "even"
           [1] 3
           [1] "odd"
           [1] 4
[1] "even"
           [1] 5
           [1] "odd"
           [1] 6
           [1] "even"
[1] 7
[1] "odd"
           [1] 8
           [1] "even"
           [1] 9
           [1] "odd"
           [1] 10
           [1] "even"
           [1] 11
           [1] "odd"
           [1] 12
           [1] "even"
           [1] 13
           [1] "odd"
           [1] 14
[1] "even"
           [1] 15
           [1] "odd"
           [1] 16
           [1] "even"
           [1] 17
[1] "odd"
           [1] 18
           [1] "even"
           [1] 19
           [1] "odd"
           [1] 20
[1] "even"
```

Ex.7 stringrによる文字列操作

1. [基本操作] month. name は1年の月名のリストである。stringrを用いて以下の問に答えなさい

(1) str_subset()関数を用いて名前に'r'を含む月を抜き出しなさい

```
In [68]: library('stringr')
library('dplyr')

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
```

```
In [69]: | month. name %>% str_subset('r')
           'January' · 'February' · 'March' · 'April' · 'September' · 'October' · 'November' · 'December'
(2) str_detect()関数を用いて各月が名前に'r'を含むかどうかの論理ベクトルを得なさい
  In [70]: | month. name %>% str_detect('r')
           TRUE: TRUE: TRUE: FALSE: FALSE: FALSE: FALSE: TRUE: TRUE: TRUE: TRUE: TRUE
(3) str_length()関数を用いて各月の文字数を求めなさい
  In [71]: month. name %>% str_length()
           7\cdot \ 8\cdot \ 5\cdot \ 5\cdot \ 3\cdot \ 4\cdot \ 4\cdot \ 6\cdot \ 9\cdot \ 7\cdot \ 8\cdot \ 8
(4) str_subset()関数は正規表現を扱える。正規表現を用いて以下の条件にあてはまる月をそれぞれ求めなさい
(4-1) 名前が'A'で始まる月
  In [72]: | month. name %>% str_subset(' ^A')
           'April' · 'August'
(4-2) 名前が'r'で終わる月
  In [73]: month. name %>% str_subset('r$')
           'September' · 'October' · 'November' · 'December'
(4-3) 名前の2文字目が'a'である月
  In [74]: | month. name %>% str_subset(' ^. a')
           'January' · 'March' · 'May'
(4-4) 名前の最後から3番目の文字が'u'である月
  In [75]: | month. name %>% str_subset('u..$')
           'June' · 'July' · 'August'
(4-5) 名前の最初の文字が母音である月
  In [76]: month. name %>% str_subset('^[AIUE0]')
           'April' · 'August' · 'October'
(4-6) 名前の最後の文字が'r'でも'y'でもない月
  In [77]: | month. name %>% str_subset('[^ry]$')
           'March' · 'April' · 'June' · 'August'
```

(4-7) 名前の末尾が'er'または'ry'で終わる月

```
In [78]: month. name %>% str_subset(' (er|ry)$')
```

'January' · 'February' · 'September' · 'October' · 'November' · 'December'

1. [正規表現による抽出]str_extract_all()関数は、文字列の中から正規表現にマッチした部分をすべて抜き出せる。 sentence='comuptational social science'として以下の要素を抜き出しなさい

(1)単語(アルファベットの連続)

```
In [79]: sentence = 'computational social science'
In [80]: sentence %>% str_extract_all('[a-zA-z]+')
```

1. 'computational' · 'social' · 'science'

(2) 's'で始まる単語

```
In [81]: sentence %>% str_extract_all('s[a-zA-z]*')

1. 'social' · 'science'
```

(3) 'al'で終わる単語

```
In [82]: sentence %>% str_extract_all('[a-zA-z]*al')
```

1. 'computational' · 'social'

Ex.8 データフレーム

- 1. [データフレームの操作] exercise フォルダに ex7_1_a. tsv ~ ex7_1_d. tsv が入っている(以下、ファイルA~Dと呼ぶ)。 これはある年における講義科目の学生の成績が入っている架空のデータである。学生は10人いて、社会学(sociology)と心理学(psychology)が必修であるため全員が受講し、 経済学(economics)と政治学(politics)は選択科目のため受講していない学生もいる。以下の問に答えなさい
- (1) ファイルA~Dをデータフレームとして読み込みなさい(名前はdfa~dfdとすること)

```
In [83]: dfa = read.delim('exercise/ex7_1_a.tsv', sep='\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{
```

A data.frame: 5 × 3

ID	sociology	psychology
<int></int>	<int></int>	<int></int>
1	8	7
2	5	6
3	6	10
4	1	8
5	5	10

In [88]: dfb

A data.frame: 5 × 3

ID	sociology	psychology
<int></int>	<int></int>	<int></int>
6	3	9
7	4	3
8	9	3
9	6	8
10	2	6

In [89]: dfc

A data.frame: 7 × 2

ID economics	
<int></int>	<int></int>
3	6
4	1
5	10
6	5
7	7
8	8
10	9

In [90]: dfd

A data.frame: 7 ×

ID		politics
	<int></int>	<int></int>
	2	4
	4	2
	5	9
	7	5
	8	9
	9	9
	10	7

(2) ファイルAはID1~ID5の学生の、ファイルBはID6~ID10の学生の社会学と心理学の成績である。rbind()関数を用いて両者を結合し、新 しいデータフレームを作りなさい(名前はdf_abとすること)

In [91]: | df_ab = rbind(dfa, dfb)

In [92]: df_ab

A data.frame: 10 × 3

ID	sociology	psychology
<int></int>	<int></int>	<int></int>
1	8	7
2	5	6
3	6	10
4	1	8
5	5	10
6	3	9
7	4	3
8	9	3
9	6	8
10	2	6

- (3) ファイルCは経済学、ファイルDは政治学の成績である。merge()関数を用いて以下の結合結果を確かめなさい。
- (3-1) 経済学と政治学の両方を受講している学生のデータのみ使う

In [93]: merge(dfc, dfd)

A data.frame: 5 × 3

ID	economics	politics
<int></int>	<int></int>	<int></int>
4	1	2
5	10	9
7	7	5
8	8	9
10	9	7

(3-2) 経済学を受講している学生のデータはすべて使い、政治学のみ受講している学生のデータは使わない

In [94]: merge(dfc, dfd, all.x=T)

A data.frame: 7 × 3

ID	economics	politics
<int></int>	<int></int>	<int></int>
3	6	NA
4	1	2
5	10	9
6	5	NA
7	7	5
8	8	9
10	9	7

(3-3) 政治学を受講している学生のデータはすべて使い、経済学のみ受講している学生のデータは使わない

In [95]: merge(dfc, dfd, all.y=T)

A data.frame: 7 × 3

ID	economics	politics
<int></int>	<int></int>	<int></int>
2	NA	4
4	1	2
5	10	9
7	7	5
8	8	9
9	NA	9
10	9	7

(3-4) ファイルC, ファイルDに含まれるすべての学生のデータを使う

In [96]: merge(dfc, dfd, all=T)

A data.frame: 9 × 3

ID	economics	politics
<int></int>	<int></int>	<int></int>
2	NA	4
3	6	NA
4	1	2
5	10	9
6	5	NA
7	7	5
8	8	9
9	NA	9
10	9	7

(4) 前間(3-4)の結合結果を df_cd と呼ぶことにする。merge()関数を用いて、 df_ab と df_cd を結合したデータフレームを作成しなさい(名前は df_ab)。ただしすべてのデータを使う(dl=T)こと。

```
In [97]: df_cd = merge(dfc, dfd, all=T)
df_abcd = merge(df_ab, df_cd, all=T)
```

In [98]: df_abcd

A data.frame: 10 × 5

ID sociology		psychology	economics	politics
<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1	8	7	NA	NA
2	5	6	NA	4
3	6	10	6	NA
4	1	8	1	2
5	5	10	10	9
6	3	9	5	NA
7	4	3	7	5
8	9	3	8	9
9	6	8	NA	9
10	2	6	9	7

(5) df_abcdについて、学生の成績の平均値を求め、列名を GPA として新しい列を追加しなさい

```
In [99]: df_abcd['GPA'] = rowMeans(df_abcd[2:5], na.rm = T) #IDは含めない
```

In [100]: df_abcd

A data.frame: 10 × 6

ID	sociology	psychology	economics	politics	GPA
<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
1	8	7	NA	NA	7.500000
2	5	6	NA	4	5.000000
3	6	10	6	NA	7.333333
4	1	8	1	2	3.000000
5	5	10	10	9	8.500000
6	3	9	5	NA	5.666667
7	4	3	7	5	4.750000
8	9	3	8	9	7.250000
9	6	8	NA	9	7.666667
10	2	6	9	7	6.000000

(6) df abcdをtsvファイルとして書き出しなさい

```
In [101]: write.table(df_abcd, 'df_abcd.tsv', sep='\text{\frac{t}{t}}', quote=F, row.names=F)
```

- 1. [データフレームと関数] USJudgeRatings は弁護士による米国高等裁判所における州裁判官の評価である。 なお、各変数の説明は以下の通りである:
 - [,1] CONT Number of contacts of lawyer with judge. # 弁護士と裁判官の接触回数
 - [,2] INTG Judicial integrity. # 司法の廉潔性
 - [,3] DMNR Demeanor. #態度
 - [,4] DILG Diligence. # 勤勉さ
 - [,5] CFMG Case flow managing. # 事案管理
 - [,6] DECI Prompt decisions. # 即決性
 - [,7] PREP Preparation for trial. # 審理への準備
 - [,8] FAMI Familiarity with law. # 法律への熟知性
 - [,9] ORAL Sound oral rulings. # 口頭決定の健全性
 - [,10] WRIT Sound written rulings. # 書面決定の健全性
 - [,11] PHYS Physical ability. #身体能力
 - [,12] RTEN Worthy of retention. # 留保の適切さ

USJudgeRatings をデータセットとして以下の問に答えなさい

(1) psychパッケージをインストールしていないならば install.packages('psych') を実行し、インストールしなさい

In [102]: # 省略

(2) library()関数でpsychパッケージを読み込んだ上でdescribe()関数を適用し、各変数の要約統計量を算出しなさい

In [103]: library('psych') describe(USJudgeRatings)

A psych: 12 × 13

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	
	<int></int>	<dbl></dbl>											
CONT	1	43	7.437209	0.9408768	7.3	7.354286	0.74130	5.7	10.6	4.9	1.0483108	1.512211829	0.14
INTG	2	43	8.020930	0.7701447	8.1	8.097143	0.74130	5.9	9.2	3.3	-0.8135419	0.257028146	0.11
DMNR	3	43	7.516279	1.1437054	7.7	7.642857	1.18608	4.3	9.0	4.7	-0.9146990	0.274266855	0.17
DILG	4	43	7.693023	0.9008978	7.8	7.771429	1.03782	5.1	9.0	3.9	-0.7561970	0.146976620	0.13
CFMG	5	43	7.479070	0.8601102	7.6	7.568571	0.88956	5.4	8.7	3.3	-0.7627529	-0.096400641	0.13
DECI	6	43	7.565116	0.8029362	7.7	7.634286	0.74130	5.7	8.8	3.1	-0.6215587	-0.531858167	0.12
PREP	7	43	7.467442	0.9533702	7.7	7.542857	0.88956	4.8	9.1	4.3	-0.6572536	-0.003622203	0.14
FAMI	8	43	7.488372	0.9489868	7.6	7.554286	1.03782	5.1	9.1	4.0	-0.5377923	-0.365348412	0.14
ORAL	9	43	7.293023	1.0100437	7.5	7.388571	0.74130	4.7	8.9	4.2	-0.7530389	0.012666878	0.15
WRIT	10	43	7.383721	0.9611328	7.6	7.460000	0.88956	4.9	9.0	4.1	-0.6726825	-0.108868716	0.14
PHYS	11	43	7.934884	0.9395753	8.1	8.077143	0.59304	4.7	9.1	4.4	-1.5041764	2.159472016	0.14
RTEN	12	43	7.602326	1.1009711	7.8	7.731429	0.88956	4.8	9.2	4.4	-0.9373609	0.255742066	0.16

(3) データセットの行数と列数を求めなさい

In [104]: nrow(USJudgeRatings) ncol(USJudgeRatings)

43

12

(4) colMeans()を用いて、各変数について裁判官全体の平均値を求めなさい

In [105]: colMeans(USJudgeRatings)

CONT: 7.43720930232558 INTG: 8.02093023255814 DMNR: 7.51627906976744 DILG: 7.69302325581395 CFMG: 7.47906976744186 DECI: 7.56511627906977 PREP: 7.46744186046512 FAMI: 7.48837209302326 ORAL: 7.29302325581395 WRIT: 7.38372093023256 PHYS: 7.93488372093023 RTEN: 7.60232558139535

Ex.9 作図

- 1. [棒グラフと散布図] USArrests は1973年の米国における10万人当たりの暴力犯罪の件数および都市人口データである。 USArrests をデータセットとして用いて以下の問に答えなさい
- (1) データセットの先頭5件を抽出し、殺人(Murder)の値を縦棒グラフで表示しなさい

```
In [106]: top = head(USArrests)
barplot(top$Murder, names.arg=rownames(top))
```


(2) データセットの末尾5件を抽出し、暴行(Assault)の値を横棒グラフで表示しなさい

```
In [107]: bottom = tail(USArrests)
barplot(bottom$Murder, names.arg=rownames(bottom), horiz=T, las=2)
```


(3) plot()関数を用いて三種類の暴力犯罪(Murder, Assault, Rape)について、総当たりで散布図を作成しなさい

```
In [108]: plot(USArrests[c('Murder', 'Assault')])
plot(USArrests[c('Murder', 'Rape')])
plot(USArrests[c('Assault', 'Rape')])
```



```
In [109]: pairs (USArrests)
```


- 1. [時系列] AirPassengers は1949年から1960年にかけての月別国際航空旅客者数のデータである。
- (1) plot()関数を用いて折れ線グラフを作りなさい

In [110]: plot(AirPassengers)

(2) png()関数を用いて(1)で作ったグラフを保存しなさい

```
In [111]: png('exercise/ex8_2_2.png', 400, 400)
plot(AirPassengers)
dev. off()
```

1. [群間データ] PlantGrowth は植物の成長に関する実験データである。統制条件と2つの実験条件の形三つの群(group)が用意され、植物の重量(weight)が測定された

(1) table()関数を用いて各条件の標本数を求めなさい

```
In [112]: table(PlantGrowth['group'])

ctrl trt1 trt2

10 10 10
```

(2) 条件間を比較する箱ひげ図を作りなさい

```
In [113]: boxplot(weight ~ group, data=PlantGrowth)
```


Ex.10 dplyrによるデータハンドリング

- 1. ToothGrowth はビタミンCの用量と与え方がモルモットの歯の長さに与える影響を調べた実験データである。 これをデータセットとして用い、dplyrパッケージを読み込んだ上で以下の問に答えなさい
- (1) パイプ演算子を使ってデータセットにhead()関数を適用しなさい

```
In [114]: library('dplyr')
In [115]: ToothGrowth %>% head()
# head(ToothGrowth)
```

A data.frame: 6 × 3

	len	supp	dose	
	<dbl></dbl>	<fct></fct>	<dbl></dbl>	
1	4.2	VC	0.5	
2	11.5	VC	0.5	
3	7.3	VC	0.5	
4	5.8	VC	0.5	
5	6.4	VC	0.5	
6	10.0	VC	0.5	

ToothGrowth {datasets}

R Documentation

The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of vitamin C and coded as VC).

Usage

 ${\bf Tooth Growth}$

Format

A data frame with 60 observations on 3 variables.

```
[,1] len numeric Tooth length[,2] supp factor Supplement type (VC or OJ).[,3] dose numeric Dose in milligrams/day
```

Source

C. I. Bliss (1952). The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Crampton, E. W. (1947). The growth of the odontoblast of the incisor teeth as a criterion of vitamin C intake of the guinea pig. *The Journal of Nutrition*, **33**(5), 491–504. doi: 10.1093/jn/33.5.491 (https://doi.org/10.1093/jn/33.5.491).

Examples

[Package datasets version 4.0.2]

- (2) パイプ演算子とfilter()関数を使って以下の操作をしなさい
- (2-1) supp が 0J であった個体を抽出する

A data.frame: 30 × 3

len	supp	dose
<dbl></dbl>	<fct></fct>	<dbl></dbl>
15.2	OJ	0.5
21.5	OJ	0.5
17.6	OJ	0.5
9.7	OJ	0.5
14.5	OJ	0.5
10.0	OJ	0.5
8.2	OJ	0.5
9.4	OJ	0.5
16.5	OJ	0.5
9.7	OJ	0.5
19.7	OJ	1.0
23.3	OJ	1.0
23.6	OJ	1.0
26.4	OJ	1.0
20.0	OJ	1.0
25.2	OJ	1.0
25.8	OJ	1.0
21.2	OJ	1.0
14.5	OJ	1.0
27.3	OJ	1.0
25.5	OJ	2.0
26.4	OJ	2.0
22.4	OJ	2.0
24.5	OJ	2.0
24.8	OJ	2.0
30.9	OJ	2.0
26.4	OJ	2.0
27.3	OJ	2.0
29.4	OJ	2.0
23.0	OJ	2.0

(2-2) supp が VC で、 dose が2である個体を抽出する

In [118]: ToothGrowth %>% filter(supp == 'VC', dose==2)

A data.frame: 10 × 3

len	supp	dose
<dbl></dbl>	<fct></fct>	<dbl></dbl>
23.6	VC	2
18.5	VC	2
33.9	VC	2
25.5	VC	2
26.4	VC	2
32.5	VC	2
26.7	VC	2
21.5	VC	2
23.3	VC	2
29.5	VC	2

(2-3) supp が VC である個体、または dose が2である個体を抽出する

A data.frame: 40 × 3

len	supp	dose
<dbl></dbl>	<fct></fct>	<dbl></dbl>
4.2	VC	0.5
11.5	VC	0.5
7.3	VC	0.5
5.8	VC	0.5
6.4	VC	0.5
10.0	VC	0.5
11.2	VC	0.5
11.2	VC	0.5
5.2	VC	0.5
7.0	VC	0.5
16.5	VC	1.0
16.5	VC	1.0
15.2	VC	1.0
17.3	VC	1.0
22.5	VC	1.0
17.3	VC	1.0
13.6	VC	1.0
14.5	VC	1.0
18.8	VC	1.0
15.5	VC	1.0
23.6	VC	2.0
18.5	VC	2.0
33.9	VC	2.0
25.5	VC	2.0
26.4	VC	2.0
32.5	VC	2.0
26.7	VC	2.0
21.5	VC	2.0
23.3	VC	2.0
29.5	VC	2.0
25.5	OJ	2.0
26.4	OJ	2.0
22.4	OJ	2.0
24.5	OJ	2.0
24.8	OJ	2.0
30.9	OJ	2.0
26.4	OJ	2.0
27.3	OJ	2.0
29.4	OJ	2.0
22 0	\sim 1	2.0

23.0

OJ

2.0

In [120]: ToothGrowth %>% select(length=len, supp_type=supp)

A data.ira	ame: 60 × 2
length	supp_type
<dbl></dbl>	<fct></fct>
4.2	VC
11.5	VC
7.3	VC
5.8	VC
6.4	VC
10.0	VC
11.2	VC
11.2	VC
5.2	VC
7.0	VC
16.5	VC
16.5	VC
15.2	VC
17.3	VC
22.5	VC
17.3	VC
13.6	VC
14.5	VC
18.8	VC
15.5	VC
23.6	VC
18.5	VC
33.9	VC
25.5	VC
26.4	VC
32.5	VC
26.7	VC
21.5	VC
23.3	VC
29.5	VC
15.2	OJ
21.5	OJ
17.6	OJ
9.7	OJ
14.5	OJ
10.0	OJ
8.2	OJ
9.4	OJ
16.5	OJ
9.7	OJ
19.7	OJ
23.3	OJ
23.6	OJ
26.4	OJ
20.0	OJ
25.2	OJ

length	supp_type
<dbl></dbl>	<fct></fct>
25.8	Ol
21.2	OJ
14.5	OJ
27.3	OJ
25.5	OJ
26.4	OJ
22.4	OJ
24.5	OJ
24.8	OJ
30.9	OJ
26.4	OJ
27.3	OJ
29.4	OJ
23.0	OJ

(4) パイプ演算子とarrange()関数を使って、 len 列で昇順にソートした結果を表示しなさい

In [121]: ToothGrowth %>% arrange(len)

A data.frame: 60 × 3

A data.frame: 60 × 3					
len	supp	dose			
<dbl></dbl>	<fct></fct>	<dbl></dbl>			
4.2	VC	0.5			
5.2	VC	0.5			
5.8	VC	0.5			
6.4	VC	0.5			
7.0	VC	0.5			
7.3	VC	0.5			
8.2	OJ	0.5			
9.4	OJ	0.5			
9.7	OJ	0.5			
9.7	OJ	0.5			
10.0	VC	0.5			
10.0	OJ	0.5			
11.2	VC	0.5			
11.2	VC	0.5			
11.5	VC	0.5			
13.6	VC	1.0			
14.5	VC	1.0			
14.5	OJ	0.5			
14.5	OJ	1.0			
15.2	VC	1.0			
15.2	OJ	0.5			
15.5	VC	1.0			
16.5	VC	1.0			
16.5	VC	1.0			
16.5	OJ	0.5			
17.3	VC	1.0			
17.3	VC	1.0			
17.6	OJ	0.5			
18.5	VC	2.0			
18.8	VC	1.0			
19.7	OJ	1.0			
20.0	OJ	1.0			
21.2	OJ	1.0			
21.5	VC	2.0			
21.5	OJ	0.5			
22.4	OJ	2.0			
22.5	VC	1.0			
23.0	OJ	2.0			
23.3	VC	2.0			
23.3	OJ	1.0			
23.6	VC	2.0			
23.6	OJ	1.0			
24.5	OJ	2.0			
24.8	OJ	2.0			
25.2	OJ	1.0			
25.5	VC	2.0			

cunn	dooo
Supp	uose
<fct></fct>	<dbl></dbl>
OJ	2.0
OJ	1.0
VC	2.0
OJ	1.0
OJ	2.0
OJ	2.0
VC	2.0
OJ	1.0
OJ	2.0
OJ	2.0
VC	2.0
OJ	2.0
VC	2.0
VC	2.0
	AC ON AC ON AC ON AC ON AC ON AC ON ON ON ON ON ON ON ON AC ON ON ON AC ON ACCORDANCE ACCOR

- (5) パイプ演算子とsummarize()関数を使って以下の操作をしなさい
- (5-1) len の最大値・最小値・中央値・平均をそれぞれ求める

In [122]: ToothGrowth %>% summarise(MAX=max(len), MIN=min(len), MED=median(len), MEAN=mean(len))

A data.frame: 1 × 4

MEAN	MED	MIN	MAX	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
18.81333	19.25	4.2	33.9	

(5-2) group_by()を supp 列に適用し、群ごとの最大値・最小値・中央値・平均をそれぞれ求める

A tibble: 2 × 5

supp	MAX	MIN	MED	MEAN	
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
OJ	30.9	8.2	22.7	20.66333	
VC	33.9	4.2	16.5	16.96333	