Lab Report 4

EE23BTECH11049 - Praful Kesavadas

Aim:

- Construct a two port network using resistors and obtain their Z parameters..

Materials Used:

- Resistors (10k Ω , 18k Ω , 22k Ω)
- Breadboard
- Multimeter
- Connecting Wires
- DC Voltage Source

Circuit diagrams:

A and B: Input terminals

 ${\cal C}$ and ${\cal D}$: Output terminals

 $V_{AB} = V_1 V$

 $V_{CD} = V_2 V$

KCL at node E, gives

$$I_{AE} + I_{CE} = I_{EF} \implies I_{EF} = I_1 + I_2$$

Theory:

- A two-port network is a fundamental concept in electrical engineering that describes
 a system with two input terminals and two output terminals
- The behavior of the network is characterized by relating the voltage and current at the input port to the voltage and current at the output port.

Z-parameters, also known as impedance parameters or open-circuit impedance parameters, are one of the several representations used to characterize the behavior of two-port networks.

The Z-parameters are represented by a 2 x 2 matrix as follows:

$$Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \Omega$$

The equations are given as:

$$V_1 = Z_{11} I_1 + Z_{12} I_2$$
 -----(1)

$$V_2 = Z_{21} I_1 + Z_{22} I_2$$
 ---- (2)

Procedure:

- Connect the circuit as shown in the circuit diagram
- Now set $V_1 = 5.62V$ and check for the current through each resistor using multimeter and note down the values.
- Now set $V_2 = 5.62V$ and again check for the current through each resistor using multimeter and note down the values.

Observations:

– When
$$V_1 = 5.62V$$
 (Case 1) $\implies I_1 \approx 0.27$ mA, $I_2 = 0$ A

– When
$$V_2 = 5.62V$$
 (Case 2) $\implies I_1 = 0$ A, $I_2 \approx 0.28$ mA

Calculations:

(1) <u>Case 1</u>:

From KVL,
$$V_2 = 10k (I_1 + I_2) = 10k I_1$$

From eq. (1) and (2),

$$5.62 = Z_{11} (0.27m) + Z_{12} (0)$$

$$V_2 = Z_{21} (0.27m) + Z_{22} (0)$$

from these equations, we get

$$\mathbf{Z}_{21}$$
 = 10.3k Ω

$$\mathbf{Z}_{11}$$
 = 20.81k Ω

(2) <u>Case 2</u>:

From KVL,
$$V_1 = 10k (I_1 + I_2) = 10k I_2$$

From eq. (1) and (2),

$$V_1 = Z_{11} (0) + Z_{12} (0.28m)$$

$$5.62 = Z_{21} (0) + Z_{22} (0.28m)$$

from these equations, we get

$$\mathbf{Z}_{12}$$
 = 10.3k Ω

$$\mathbf{Z}_{22}$$
 = 20.03k Ω

Conclusion:

The Z parameter matrix of the given circuit is :

$$Z = \begin{pmatrix} 20.81 & 10.3 \\ 10.3 & 20.03 \end{pmatrix} \mathbf{k} \ \Omega$$