Assignment 7 (4/13)

Subhadip Chowdhury

Problem 1

Find a formula $f(n) = \dots$, (i.e. not a recursive definition) for each of the following sequences:

- (a) $-1, \frac{2}{3}, -\frac{3}{5}, \frac{4}{7}, -\frac{5}{9}, \cdots$
- (b) $-\frac{1}{3}, \frac{4}{9}, -\frac{9}{27}, \frac{16}{81}, \cdots$
- (c) $f(n) = f(n-1) + 3n^2 + 3n + 1$, f(1) = 8
- (d) f(n+1) = 3f(n), f(1) = 5
- (e) $2, 0, \frac{1}{2}, 0, 2, 0, \frac{1}{2}, 0, \cdots$
- (f) $f(n) = -\frac{1}{f(n-1)}$, f(1) = 1

Problem 2

Prove that the sequence defined by $a_n = \frac{n^3}{3^n}$ is a decreasing sequence.

Problem 3

In problem 9.1.53, find A_n and B_n as a function of n.

Problem 4

Give an $\epsilon - N$ proof of the fact that $\lim_{n \to \infty} \frac{1}{n^p} = 0$ for any positive integer p.

Problem 5

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x \to \infty} f(x)$ exists i.e. the graph of f has an asymptote.

Define a sequence $\{a_n\}_{n\geq 1}$ by $a_n=f(n)$. Does this sequence converge? Conversely, let $f: \mathbb{R} \to \mathbb{R}$ be a function such that the sequence $f(1), f(2), f(3), f(4), \cdots$ converges. Does $\lim_{x\to\infty} f(x)$ necessarily exist?