

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №2 по дисциплине «Моделирование»

Тема Марковские цепи
Студент Слепокурова М.Ф.
Г руппа <u>ИУ7-76Б</u>
Оценка (баллы)
Преполаватель Рудаков И В

Постановка задачи

Определить вероятность и время пребывания системы в каждом состоянии в установившемся режиме работы СМО. Исходные данные: кол-во состояний системы (max 10) и матрица интенсивностей переходов из состояния в состояние.

Теория

Случайный процесс, протекающий в сложной системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем при $t > t_0$ зависит только от состояния системы в настоящем $t = t_0$ и не зависит от того, когда и каким образом система перешла в это состояние (как процесс развивался в прошлом). В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории процесса.

Для марковского процесса составлены уравнения Колмогорова:

$$F = (P'(t), P(t), \lambda) = 0$$

Вероятностью i-го состояния называется вероятность $p_i(t)$ того, что в момент времени t система будет находиться в состоянии S_i . Для любого момента t сумма вероятностей всех состояний равна единице.

Для нахождения предельных вероятностей используется система уравнений вида:

$$\begin{cases} p'_0 = \lambda_{10}p_1 + \lambda_{20}p_2 - (\lambda_{01} + \lambda_{02})p_0, \\ p'_1 = \lambda_{01}p_0 + \lambda_{31}p_3 - (\lambda_{10} + \lambda_{13})p_1, \\ p'_2 = \lambda_{02}p_0 + \lambda_{32}p_3 - (\lambda_{20} + \lambda_{23})p_2, \\ p'_3 = \lambda_{13}p_1 + \lambda_{23}p_2 - (\lambda_{31} + \lambda_{32})p_3. \end{cases}$$

В левой части каждого из уравнений стоит производная вероятности i-го состояния; в правой части - сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние), умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного i-го состояния.

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим при $t \to \infty$. Для решения полученной системы необходимо добавить условие нормировки $(p_0 + p_1 + p_2 + p_3)$ вместо одного из уравнений.

После нахождения вероятностей, необходимо вычислить время пребывания системы в каждом из состояний. Для этого необходимо с заданным интервалом δt вычислять приращение вероятности для i-го состояния по формуле вида:

$$dp_0 = (\lambda_{10}p_1 + \lambda_{20}p_2 - (\lambda_{01} + \lambda_{02})p_0) * \delta t,$$

Вычисления завершаются, когда найденная вероятность будет равна соответствующей предельной с точностью до заданной погрешности.

Для приращения вероятности dp необходимо задать начальные значения, например, 1/n, где n - число состояний системы.

Средства реализации

Для реализации приложения был выбран язык программирования Python, в стандартную библиотеку которого входит графическая библиотека Tkinter, использовавшаяся для реализации пользовательского интерфейса, а также библиотека numpy, использовавшаяся для решения системы уравнений методом Крамера.

Листинг кода

```
1 from numpy import linalg
  TIME DELTA = 1e-3
  EPS = 1e-5
  def __getCoefMatrix(matrix):
    count = len(matrix)
    coefMatrix = [[0.0 \text{ for } j \text{ in } range(count)] \text{ for } i \text{ in } range(count)]
9
    for i in range(count):
10
       for j in range(count):
11
         if (i = j): coefMatrix[i][i] = -sum(matrix[i]) + matrix<math>[i][i]
12
         else: coefMatrix[i][j] = matrix[j][i]
13
    return coefMatrix
14
15
  def calculateProbability(matrix):
16
    count = len(matrix)
17
    coefMatrix = __getCoefMatrix(matrix)
18
    coefMatrix[count - 1] = [1 for j in range(count)]
19
20
    ordinate Values = [0 \text{ if } i \text{ != count } -1 \text{ else } 1 \text{ for } i \text{ in range (count)}]
21
    return linalg.solve(coefMatrix, ordinateValues).tolist()
22
23
  def calculateProbDelta(matrix, probCurr):
24
    count = len(matrix)
25
    probDelta = []
26
    coefMatrix = \__getCoefMatrix(matrix)
27
    for i in range(count):
28
       for j in range(count):
         coefMatrix[i][j] *= probCurr[j]
30
       probDelta.append(sum(coefMatrix[i]) * TIME DELTA)
31
    return probDelta
```

```
def calculateTime(matrix, prob):
    count = len(matrix)
    timeCurr = 0.0
    probCurr = [1.0 / count for i in range(count)]
    time = [0.0 for i in range(count)]
    while not all(time):
      probDelta = __calculateProbDelta(matrix, probCurr)
      for i in range(count):
        if not time[i] and abs(probCurr[i] - prob[i]) <= EPS:</pre>
          time[i] = timeCurr
11
        probCurr[i] += probDelta[i]
12
      timeCurr += TIME_DELTA
13
    return time
```

Демонстрация работы программы

На рисунке 1 изображен пример работы программы для системы с 5 состояниями.

				Lab	2: Marko	v chains					
State count:		1	2	3	4	5	6	7	8	9	10
Intensity matrix:		S1:	S2:	S3:	S4:	S5:	S6:	S7:	S8:	S9:	S10:
	S1:	0	0.5	0	0	0					
	S2:	0	0	2	0	0					
	S3:	0	0	0	1.5	1.5					
	S4:	8.0	0	0	0	0					
	S5:	2	0	0	0	0					
	S6:										
	S7:										
	S8:										
	S9:										
	S10:										
					Calculate						
Result:		S1:	S2:	S3:	S4:	S5:	S6:	S7:	S8:	S9:	S10:
	Р	0.54	0.13	0.09	0.17	0.07					
	t	2.37	6.74	6.74	8.29	1.97					

Рисунок 1 – Пример работы программы — 1

На рисунке 1 изображен пример работы программы для системы с 2 состояниями.

Рисунок 2 — Пример работы программы — 2

На рисунке 1 изображен пример работы программы для системы с 10 состояниями.

	Lab2: Markov chains										
State count:		1	2	3	4	5	6	7	8	9	10
Intensity matrix:		S1:	S2:	S3:	S4:	S5:	S6:	S7:	S8:	S9:	S10:
	S1:	0.6	0	1	1	0	0.2	0	0.6	0	0.2
	S2:	0	0	0.6	0.4	0.1	0	0.25	0	0	0
	S3:	0	0.1	0	0	0	2	0	0	0.1	0
	S4:	0	2	0	0.25	0	1.5	0	1	1.5	0
	S5:	0.1	0	1	0	0.2	0	0.1	0	1	0.6
	S6:	0	1	0.1	1.5	0	2	0	0.4	0	0
	S7:	0	0	0	2	0	1.5	0	0	0	1.5
	S8:	2	0.2	0.8	0	0.1	0	0	2	0	0
	S9:	0	0	0	0	0.25	1.5	0	0	0.25	0
	S10:	0.25	1.5	0.2	0.6	0	0.2	0.1	0	0	0.6
						Calculate					
Result:		S1:	S2:	S3:	S4:	S5:	S6:	S7:	S8:	S9:	S10:
	Р	0.04	0.31	0.15	0.09	0.02	0.20	0.02	0.06	0.09	0.02
	t	5.10	5.81	4.61	3.62	3.49	0.94	0.63	4.87	5.28	3.06

Рисунок 3 — Пример работы программы — 3