Presence

Auto-Attendance System with report generation

Presented by Team SARS

Rupesh Budhathoki, 191721 Apsara Bishwokarma, 191704 Sampada Kharel, 191723 Sudarshan Khsettri, 191729

TOC

Introduction	Literature Review	Methodology	Face Recognition
Overview	Fareclock	SDLC	Deliverables
Motivation	LMS (Moodle)	Architecture	Task Division
Objectives	Why us?	System Designs	Time Schedule
		Technology	

SARS Presence Introduction

Overview

"Presence" is an automated attendance system designed for college classrooms. It uses facial recognition technology to track student entry and exit, eliminating the need for manual attendance taking. It provides valuable data insights to help educators analyze attendance patterns and make informed decisions for better student engagement and success.

Motivation

Time-consuming and inefficient manual attendance tracking methods in college classrooms.

Non-effective monitoring and decision-making.

Errors and inaccuracies in manual attendance processes can lead to unreliable records.

Presence Introduction

SARS

- To automate attendance system for college classrooms
- To provide insights into attendance patterns and behavior
- To support data-driven decision-making for improved student success

Fareclock

Presence

Fareclock[1] is a web-based time clock software designed to streamline employee time tracking, attendance management, and payroll processing.

Features

- track work hours
- face recognition attendance
- generate accurate payroll reports.

LMS (moodle)

02

Moodle offers attendance activity[2] to track attendance of students digitally.

Features

- Manual attendance marking by instructors
- Customizable attendance statuses (Present, Absent, Late, Excused)
- Download attendance reports in Excel or text format
- Option for students to record their own attendance

Then, Why Us?

- O1 | Automated attendance tracking using facial recognition technology
- 02 | Captures both arrival and departure times
- 03 | Provides insights for optimizing class scheduling
- 04 | Real-time attendance updates
- 05 | View reports

Methodology

Waterfall model

Our proposed SDLC is WATERFALL MODEL[3] because of limited time and clear goals.

Client-Server Architecture

Central Database

We will divide the functionality and responsibilities of a software application into two main components

SARS Presence

Methodology

Use-Case Diagram

How the Authority and Student interacts with the system

Methodology

Technology

Next.js

Frontend facing the authority and students

WebSocket

Realtime Frontend and backend communication

Python

Our core which recognizes faces and mark their attendance while also generating reports.

Typescript, TailwindCSS

Frontend tooling responsible for robust code and responsive design.

PostgreSQL

Industry favored SQL database to store students and attendance data

OpenCV

Face recognition

OpenCV and Deep Learning

OpenCV face recognition pipeline. The key step is a CNN feature extractor that generates 128-d facial embeddings.

- 01 | Input an image or video frame
- 02 | Apply face detection to detect the location of a face
- 03 | Extract unique facial data (Crop)
- 04 | Recognize using trained model
- 05 | The model is pre-trained with ~3 million images

Face Recognition Process

Simplified representation of face recognition process

Datasets and Working

- Load and preprocess the dataset using pre-trained model
- Train the facial recognition model
- Detect and align faces in input images
- Compute the Euclidean distance between embeddings to determine the identity of a face

Deliverables

These deliverables encompass various components and functionalities of the automated attendance system, ensuring a comprehensive solution for tracking and analyzing student attendance.

Realtime frontend interface

Client

Deployed Frontend interface where the authority can control the system and students can view their attendance information and report mistakes

Core mechanism

Server

Deployed Python program responsible for face-recognition, api communications and report generation. Including the database design and implementation

SARS Presence Schedule

Team

Our team consists of four dedicated individuals with diverse skill sets and roles

References

- [1] Fareclock, https://www.fareclock.com/.
- [2] Moodle, Attendance, https://moodle.org/plugins/mod attendance.
- [3] B. Lutkevich, "Definition: Waterfall model," TechTarget, 2022. [Online]. Available:

 $\frac{https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model \#: \sim: text=The \%20 waterfall \%20 model \%20 is \%20 a, the \%20 edge \%20 of \%20 a \%20 cliff.$

[4] Rosebrock, A. (2018, June 18). Face recognition with OpenCV, Python, and deep learning. PylmageSearch. https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

Thank you for your time!!!

