1

Assignment:- 2

AI1110: Probability and Random Variables Indian Institute of Technology, Hyderabad

CS22BTECH11001

Aayush Adlakha 29 April, 2023

Exexplar 11.16.3.11 The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, Pr(AB) = .07). Determine

- (a) Pr(A)
- (b) Pr(BC')
- (c) Pr(A + B)
- (d) Pr(AB')
- (e) Pr(BC)
- (f) Probability of exactly one of the three occurs.

Solution.

(a) Clearly,

$$Pr(A) = 0.13 + 0.07 \tag{1}$$

$$= 0.20$$
 (2)

(b) Clearly,

$$Pr(B) = 0.10 + 0.07 + 0.15$$
 (3)

$$=0.32$$
 (4)

Also,

$$B = B(C + C') \tag{5}$$

$$= BC + BC' \tag{6}$$

$$Pr(BC') = Pr(B) - Pr(BC)$$
 (7)

$$= 0.32 - 0.15$$
 (8)

$$= 0.17$$
 (9)

(c) From Axioms of Probability

$$Pr(A + B) = Pr(A) + Pr(B) - Pr(AB) \quad (10)$$

$$= 0.20 + 0.32 - 0.07 \tag{11}$$

$$= 0.45$$
 (12)

(d)

$$Pr(AB') = Pr(A) - Pr(AB)$$
 (13)

$$= 0.20 - 0.07$$
 (14)

$$= 0.13$$
 (15)

(e) Clearly,

$$Pr(BC) = 0.15$$
 (16)

(f) Let X be the event that exactly one of A, B and C occur.

Let Y be the event that atleast one of A, B and C occur.

Let Z be the event that exactly two of A, B and C occur.

By Principle of Inclusion and Exclusion

$$Pr(Y) = Pr(A) + Pr(B) + Pr(C)$$
 (17)

$$-\Pr(AB) - \Pr(BC) - \Pr(AC)$$

$$[:: \Pr(ABC) = 0] \tag{18}$$

$$= 0.20 + 0.32 + 0.43 - 0.07 - 0.15$$

$$(19)$$

= 0.73 (20)

$$Pr(Z) = Pr(AB) + Pr(BC) + Pr(AC)$$
 (21)

$$[:: \Pr(ABC) = 0] \tag{22}$$

$$= 0.07 + 0.15 \tag{23}$$

$$=0.22$$
 (24)

Now,

$$Pr(X) = Pr(Y) - Pr(Z)$$
 (25)

$$= 0.73 - 0.22 \tag{26}$$

$$= 0.51$$
 (27)