Алгебра. Семестр II. Векторные пространства

II. Линейные функции

- 1. Рассмотрим линейное пространство всех сходящихся числовых последовательностей (a_n) . Какие из функций $(a_n)\mapsto \lim_{n\to\infty}a_n,\ (a_n)\mapsto \sup a_n,\ (a_n)\mapsto a_1$ являются линейными?
- 2. В пространстве $M_n(\mathbb{R})$ рассмотрим функции следа и определителя. Являются ли они линейными?
- 3. Найдите базис ядра линейного функционала $\varphi = 2x^1 3x^2 + x^4$, где $x^k : \mathbb{R}^4 \to \mathbb{R}$ функционал взятия k-той координаты вектора \mathbb{R}^4 в стандартном базисе.
- 4. Докажите, что набор линейных функций $\omega_1, \ldots \omega_n \in V^*, n = \dim V$, образует базис пространства V^* тогда и только тогда, когда пересечение их ядер нулевое.
- 5. Докажите, что k линейных функций на n-мерном линейном пространстве линейно независимы тогда и только тогда, когда пересечение их ядер является подпространством размерности n-k.
- 6. Докажите, что линейные формы $\varphi_1 = x^1 + 2x^2 + 3x^3$, $\varphi_2 = 4x^1 + 5x^2 + 6x^3$, $\varphi_3 = 7x^1 + 8x^2 + x^3$ образуют базис пространства $(\mathbb{Q}^3)^*$, и найдите сопряжённый ему базис в \mathbb{Q}^3 . Найдите координаты вектора $(4, -2, 13)^T \in \mathbb{Q}^3$ в этом базисе. Каковы коэффициенты формы $5x^1 4x^2 + 2x^3$ относительно этого базиса?
- 7. Пусть k натуральное число. Сопоставим каждому многочлену степени не выше n значение его k-той производной в точке a. Проверьте, что этим определена линейная функция. Найдите ее координатную строку в базисах:
 - a) 1, x, x^2 , ..., x^n ;
 - 6) 1, x-a, $(x-a)^2$, ..., $(x-a)^n$.
- 8. В пространстве $\mathbb{R}[x]_n$ линейные функции ω_i , $i=0,1,\ldots,n$ заданы формулой $\omega_i(f)=f^{(i)}(a)$ для всех многочленов этого пространства, где a произвольная точка числовой прямой. Докажите, что эти функции образуют базис в сопряжённом пространстве, и найдите двойственный базис изначального пространства.
- 9. В пространстве $\mathbb{R}[x]_n$ линейные функции ω_i , $i=0,1,\ldots,n$ заданы формулой $\omega_i(f)=f(a_i)$, где $a_0,\,a_1,\,\ldots,\,a_n$ различные точки числовой прямой. Докажите, что эти функции образуют базис в пространстве $(\mathbb{R}[x]_n)^*$. Найдите двойственный базис в пространстве $\mathbb{R}[x]_n$.
- 10. В пространстве $\mathbb{R}[x]_n$ линейные функции $\omega_i,\ i=0,1,\ldots,n$ заданы формулой $\omega_i(f)=\int\limits_0^{i+1}f(x)dx.$ Докажите, что эти функции образуют базис в пространстве $(\mathbb{R}[x]_n)^*.$