ВСЕМ УДАЧИ с:

1.	Уравнения Максвелла	2
2.	Уравнения Максвелла в интегральной и комплексной формах	5
3.	Плоские электромагнитные волны	7
ΩЛ	4. Сферические и цилиндрические электромагнитные волны в нородных средах	9
	5. Излучение электромагнитных волн элементарным электрически	
	5. излучение электроматнитных волн элементарным электрически братором	
	Элементарная площадка и магнитный излучатель	
7.	Отражение и преломление плоских электромагнитных волн	. 18
	8. Поверхностные электромагнитные волны и замедляющие	
ст	руктуры	. 22
9.	Рассеяние и дифракция радиоволн	. 29
10	. Прямоугольный волновод	. 34
11	. Круглый волновод	. 37
12	. Линии передач с волнами типа Т	. 39
13	. Энергетические характеристики волноводов	. 42
14	. Передача электромагнитной энергии от генератора к нагрузке	. 45
15	. Резонаторы волноводного типа	. 51
16	б. Резонаторы неволноводного типа	. 57
17	. Электромагнитные волны над земной поверхностью	. 60
18	з. Распространение радиоволн в атмосфере	. 66

1. Уравнения Максвелла.

Выводы:

- 1. Электромагнитное поле описывается шестью независимыми дифференциальными уравнениями.
- 2. Силовые линии магнитного поля всегда замкнуты.
- 3. Силовые линии электрического поля могут быть разомкнутыми или замкнутыми.

Поле можно считать полностью определенным, если в каждой точке пространства в заданный момент времени известны величины и направления следующих векторов:

$$\vec{E}(M') = \lim_{\Delta q \to 0} \frac{\Delta \vec{F}}{\Delta q} = \frac{dF}{dq} \begin{bmatrix} \frac{B}{M} \end{bmatrix}$$
 - напряженности электрического

поля;Е↑↑Г

$$\vec{D} = \frac{q}{4\pi r^2} \vec{r}_o \quad \left[\frac{Kn}{m^2}\right]$$
- электрической индукции; (характеризует связь

электрического заряда с собственным электрическим полем)

$$B(M') = \lim_{\Delta q \to 0} \frac{\Delta F}{I \cdot \Delta l} \left[\frac{B \cdot c}{M^2} \right]$$
 - магнитной индукции (отношения силы, с

которой поле действует на пробный элемент линейного тока); $\mathrm{B}^\perp\mathrm{F}$

величины $ec{E}$ и $ec{B}$ характеризуют силовое воздействие электромагнитного поля на неподвижные заряды и токи, находящиеся в нем.

$$\vec{H} = \frac{I}{2\pi r} \vec{\varphi}_o \quad \left[\frac{A}{M}\right]$$
- напряженности магнитного поля. (характеризует

связь электрического тока с собственным магнитным полем)

С электромагнитным полем неразрывно связаны заряды и токи, которые характеризуются двумя величинами:

$$\vec{j}(M') = \lim_{\Delta S_{\perp} \to 0} \frac{\Delta I}{\Delta S_{\perp}} \vec{l}_o \left[\frac{A}{M^2} \right] - \text{ вектором плотности электрического тока;}$$

$$\rho(M') = \lim_{\Delta q \to 0} \frac{\Delta q}{\Delta V} = \frac{dq}{dV} \left[\frac{K_A}{M^3} \right] - \text{ объемной плотностью электрического заряда.}$$

$$\rho(M') = \lim_{\Delta q \to 0} \frac{\Delta q}{\Delta V} = \frac{dq}{dV} \left[\frac{K_{\Lambda}}{M^3} \right]$$
 - объемной плотностью электрического заряда.

Чтобы получить формулу для величины заряда в конечном объеме Vс плотностью заряда $\rho(M')$, нужно обе части равенства (6) умножить на dV и затем проинтегрировать его по объему V

$$q = \int \rho(M')dV \ [K_A]$$

$$\vec{D} = \varepsilon_a \vec{E}, \ \vec{B} = \mu_a \vec{H}, \ \vec{j} = \sigma \vec{E},$$
 (11)

где \mathcal{E}_a - абсолютная диэлектрическая проницаемость;

 $\mu_{_{\! d}}$ - абсолютная магнитная проницаемость;

 σ - удельная проводимость.

первое уравнение Максвелла

$$rot\vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j}$$
, где $\vec{j}_{cM} = \frac{\partial \vec{D}}{\partial t}$ (14)

второе уравнение Максвелла

$$rot\vec{E} = -\frac{\partial \vec{B}}{\partial t},\tag{15}$$

третье уравнение Максвелла - закон сохранения заряда в дифференциальной форме

$$div \, \vec{j} = -\frac{\partial \rho}{\partial t},\tag{16}$$

четвертое уравнение максвелла - закон Ома в дифференциальной форме

$$\vec{j} = \sigma \, \vec{E},\tag{17}$$

пятое и шестое уравнения Максвелла - материальные уравнения

$$\vec{D} = \varepsilon_a \vec{E} \,, \tag{18}$$

$$\vec{B} = \mu_a \vec{H} \,. \tag{19}$$

где \mathcal{E}_a - абсолютная диэлектрическая проницаемость;

 μ_{a} - абсолютная магнитная проницаемость;

 σ - удельная проводимость.ь

Эти величины называют параметрами среды.

Об этой системе необходимо знать следующее.

- 1) Дифференциальные уравнения представляют собой систему поступатов (аксиом), сформулированную Максвеллом на основе обобщения опытных законов различных электромагнитных явлений (закон электромагнитной индукции Фарадея, закон полного тока, закон Кулона и закон Био-Савара).
- 2) Система является <u>полной</u>, т. е. с ее помощью можно описать, в основном, все свойства электромагнитного поля (определить все величины, характеризующие поле, токи и заряды).

- 3) Уравнения, входящие в систему, являются <u>независимыми</u>, т. е. любое их них не может быть выведено из остальных, так как каждое отображает какую-то сторону электромагнитного поля как явления.
- 4) Система основных дифференциальных уравнений применима в так называемых регулярных точках в тех случаях, когда <u>среды</u>, находящиеся в электромагнитном поле, <u>неподвижны</u>. Под регулярными понимаются такие точки, в окрестностях которых величины \mathcal{E}_a , μ_a и σ являются непрерывными функциями положения.

Смысл 1: изменяющееся во времени электрическое поле или протекающий ток проводимости создают в окружающем пространстве завихряющееся магнитное поле

Смысл 2: всякое изменение во времени магнитного поля вызывает появление изменяющегося в пространстве электрического поля

$$div \vec{D} = \rho$$
, $div \vec{B} = 0$

силовые линии электрического поля начинаются и оканчиваются на зарядах, объемная плотность которых равна ρ ;

магнитные силовые линии замкнуты сами на себе.

Смысл 3: изменяющийся в некотором объеме заряд является причиной возникновения тока, вытекающего через поверхность, ограничивающую этот объем.

Смысл 4 - закон Ома в дифференциальной форме отражает связь между плотностью тока \vec{j} и напряженностью электрического поля \vec{E} в каждой точке проводящей среды. Величина σ в данном случае есть удельная электрическая проводимость среды.

Известный из электротехники закон Ома для постоянного тока в интегральной форме является следствием уравнения (17).

Пятое и шестое уравнения Максвелла - материальные уравнения уже рассмотрены ранее, они связывают между собой попарно векторы \vec{D} , \vec{E} и \vec{B} , \vec{H} с учетом влияния среды.

2. Уравнения Максвелла в интегральной и комплексной формах.

Физический смысл **первого** уравнения Максвелла в интегральной форме заключается в том, что циркуляция вектора напряженности магнитного поля \vec{H} по произвольному контуру численно равна сумме тока проводимости и тока смещения, протекающих через любую поверхность, опирающуюся на этот контур. Замкнутые магнитные силовые линии охватывают ток, который может быть либо током проводимости, либо током смещения, либо их суммой.

второе уравнение Максвелла в интегральной форме

$$\Im = -\frac{\partial \Phi}{\partial t}$$

Физический смысл 2 этого уравнения состоит в том, что эдс, наводимая в произвольном контуре (мысленно начерченном в пространстве), в любой среде равна взятой с обратным знаком скорости изменения магнитного, потока пронизывающего любую поверхность, опирающуюся на контур. Знак минус показывает, что вторичный магнитный поток препятствует изменению магнитного потоко, явившегося причиной эдс.

Третье уравнение Максвелла в интегральной форме

$$q_s = \Delta q$$

физический смысл уравнения заключается в том, что величина заряда, перенесенного током через поверхность S, всегда равна изменению заряда внутри объема V, ограниченного этой поверхностью. Закон сохр. заряда

Уравнения в компл.форме

Представляя параметры поля в виде комплексных функций времени с учетом выражений (15) и (16), запишем систему основных уравнений электродинамики в комплексной форме:

$$rot\dot{\vec{H}} = i\omega\dot{\vec{D}} + \dot{\vec{j}}$$

$$rot \dot{\vec{E}} = -i\omega \dot{\vec{B}},$$

$$div \dot{\vec{j}} = -i\omega \dot{\rho},$$

$$\dot{\vec{j}} = \sigma \dot{\vec{E}},$$

$$\dot{\vec{D}} = \varepsilon_a \dot{\vec{E}},$$

$$\dot{\vec{B}} = \mu_a \dot{\vec{H}}.$$

Эти уравнения можно преобразовать для комплексных амплитуд, представляя каждый вектор в форме

$$\vec{U}(t) = \vec{U}_m e^{i\omega t}$$

Уравнения Максвелла для комплексных амплитуд

$$rot\vec{H}_{m} = i\omega\vec{D}_{m} + \dot{\vec{j}}_{m}$$

$$\dot{\vec{j}}_{m} = i\omega\vec{D}_{m} + \dot{\vec{j}}_{m}$$

$$rot\vec{E}_{m} = -i\omega\vec{B}_{m}, \qquad (24)$$

$$div\dot{\vec{j}}_m = -i\omega\dot{\rho}_m,\tag{25}$$

$$\dot{\vec{j}}_m = \sigma \dot{\vec{E}}_m, \tag{26}$$

$$\dot{\vec{D}}_m = \varepsilon_a \dot{\vec{E}}_m, \tag{27}$$

$$\dot{\vec{B}}_m = \mu_a \dot{\vec{H}}_m$$

3. Плоские электромагнитные волны.

Электромагнитной волной называется процесс распространения в пространстве изменений электромагнитного поля. В практике чаще всего используются поля, изменяющиеся во времени по гармоническому закону, поэтому электромагнитной волной можно назвать процесс распространения в пространстве переменного электромагнитного поля.

Основные понятия:

Поверхностью равных фаз называется воображаемая поверхность в пространстве, во всех точках которой начальные фазы напряженностей поля одинаковы.

Электромагнитная волна (волновой процесс) характеризуется тем, что поверхности равных фаз перемещаются в пространстве с фазовой скоростью, близкой к скорости света.

Плоской называется такая электромагнитная волна, у которой поверхности равных фаз образуют семейство параллельных плоскостей

Волна типа Е (поперечно-магнитной волной) волна, у которой в любой точке наблюдения составляющая вектора магнитного поля, параллельная направлению распространения (лучу), равна нулю, а такая же составляющая электрического поля не равна нулю (а)

Волной типа Н

волна, у которой в любой точке наблюдения составляющая вектора электрического поля, параллельная лучу, равна нулю, а такая же составляющая магнитного поля не равна нулю (б)

Волна типа ТЕМ (поперечная волна) имеет только составляющие векторов \vec{E} и \vec{H} , перпендикулярные направлению распространения. Фазовая скорость

$$V_{\phi} = \frac{dr}{dt} = \frac{\omega}{\beta}.$$

- 1). Фазовая скорость электромагнитной волны зависит от параметров среды $\mathcal{E}_a,\ \mu_a$,;
- 2). Если коэффициент затухания равен нулю $\alpha=0$, то амплитуда плоской волны не изменяется. Если коэффициент затухания не равен нулю $\alpha\neq 0$, то амплитуда плоской волны убывает по экспоненциальному закону $e^{-\alpha x}$.

4. Сферические и цилиндрические электромагнитные волны в однородных средах.

Электромагнитной волной называется процесс распространения в пространстве изменений электромагнитного поля. В практике чаще всего используются поля, изменяющиеся во времени по гармоническому закону, поэтому электромагнитной волной можно назвать процесс распространения в пространстве переменного электромагнитного поля.

Основные понятия:

Поверхностью равных фаз называется воображаемая поверхность в пространстве, во всех точках которой начальные фазы напряженностей поля одинаковы.

Электромагнитная волна (волновой процесс) **характеризуется** тем, что поверхности равных фаз перемещаются в пространстве с фазовой скоростью, близкой к скорости света.

Сферической называют волну, у которой поверхности равных фаз образуют семейство концентрических сфер

Цилиндрическая ЭМВ имеет поверхности равных фаз в виде семейства коаксиальных цилиндров

Ближней зоной называется геометрическое место точек, удаление r которых от фазового центра O (рис. 2) удовлетворяет неравенству $\beta r << 1$ или

Рисунок 2

Дальней зоной называется геометрическое место точек, удаление которых от фазового центра удовлетворяет неравенству $\beta r >> 1$, или

$$\frac{2\pi}{\lambda}r >> 1.$$

выражения, описывающие поле сферической волны, в дальней зоне примут вид

$$\dot{E}_{r} = \frac{i2C_{2}k\cos\theta}{r^{2}}e^{-ikr} \approx 0,$$

$$\dot{E}_{\theta} = \frac{-C_{2}k^{2}\sin\theta}{r}e^{-ikr},$$

$$\dot{H}_{\varphi} = \frac{-C_{2}k\omega\varepsilon_{a}\sin\theta}{r}e^{-ikr},$$

$$\dot{E}_{\varphi} = \dot{H}_{r} = \dot{H}_{\varphi} = 0.$$
(15)

Составляющая \dot{E}_r приближенно равна нулю, так как

$$\frac{\left|\dot{E}_r\right|}{\left|\dot{E}_\theta\right|} = \frac{2}{kr} << 1.$$

Таким образом, сферическая волна в дальней зоне имеет только поперечные составляющие поля, подобно плоской волне, а ее фронт, по мере увеличения r, все более приближается к плоскому.

Характерной особенностью сферической волны является естественное убывание амплитуды, обратно пропорциональное пройденному расстоянию

- 1) Плоская и сферическая волны распространяются в заданной среде с одинаковой фазовой скоростью, которая определяется параметрами среды.
- 2) Обе волны в дальней зоне имеют одинаково поперечный характер электромагнитного поля. Векторы \vec{E} и \vec{H} перпендикулярны друг другу и направлению распространения.
- 3) В идеальной среде амплитуда сферической волны, по сравнению с плоской, убывает обратно пропорционально пройденному расстоянию.

- 1.) Фазовая скорость сферической волны зависит только от параметров среды;
- 2.) Сферические волны могут быть только E или H;
- 3.) В дальней зоне сферическую волну можно считать плоской, т.е. можно пренебречь продольной составляющей поля;
- 4.) Амплитуда поля сферической волны пропорциональна 1/r, это признак сферической волны;
- 5.) В дальней зоне электрическое и магнитное поля взаимно перпендикулярны;
- 6.) Векторное произведение электрического и магнитного полей дают вектор Умова-Пойтинга.

Цилиндрическая:

1. Любая составляющая напряженности поля \vec{E} и \vec{H} в дальней зоне может быть записана в виде

$$U = U_o \frac{e^{-ikr}}{\sqrt{r}}.$$

2. Цилиндрическая волна распространяется с фазовой скоростью

$$V_{\phi} = \frac{\omega}{\beta}.$$

3. В дальней зоне амплитуды векторов \vec{E} и \vec{H} убывают обратно пропорционально \sqrt{r} .

Векторы \vec{E} и \vec{H} в дальней зоне взаимно перпендикулярны и перпендикулярны к направлению распространения

- 1.) Фазовая скорость цилиндрической волны зависит только от параметров среды;
- 2.) Цилиндрические волны могут быть только Е или Н;
- 3.) В дальней зоне цилиндрическую волну можно считать плоской, т.е. можно пренебречь продольной составляющей поля;
- 4.) Амплитуда поля сферической волны пропорциональна $1/\sqrt{r}$, это признак цилиндрической волны;
- 5.) В дальней зоне электрическое и магнитное поля взаимно перпендикулярны;
- 6.) Векторное произведение электрического и магнитного полей дают вектор Умова-Пойтинга.

5. Излучение электромагнитных волн элементарным электрическим вибратором.

Под излучением понимается перенос энергии электромагнитными волнами из области, где расположены источники, в окружающее пространство. Излучение электромагнитной энергии возможно только при наличии в пространстве переменных токов проводимости, или смещения.

линейный вибратор

Элементарным электрическим вибратором называется прямолинейный отрезок проводника с током, длина которого намного меньше длины волны, а амплитуда тока распределена вдоль вибратора равномерно.

Такой вибратор является идеальным излучателем, удобным для анализа, но создать реальный вибратор с постоянным по всей длине распределением тока практически невозможно. Весьма близок по своим свойствам к элементарному электрическому вибратору диполь Герца. Благодаря имеющимся на его концах металлическим шарам, обладающим большой емкостью, амплитуда тока вдоль него мало изменяется.

Выводы:

1.) Колебательная система излучает электромагнитные волны, если электрическое и магнитное поля выходят за пределы реактивных элементов и замыкаются через окружающее пространство;

- 2.) Электрическое и магнитное поля взаимно обуславливают друг друга, обеспечивая распространение в пространстве.
- 3.) Составляющие электрического и магнитного полей взаимно перпендикулярны в дальней зоне.

Диаграммы направленности

Для наглядного представления о направленности излучения вибратора можно изобразить графически зависимости E от $\theta = 0$ и φ , которые называются диаграммами направленности (рис. 8).

Пространственная диаграмма направленности элементарного электрического вибратора образует поверхность тора (рис. 8).

Она получается в результате вращения диаграммы $E(\theta)$ вокруг оси вибратора.

Из анализа графиков следует, что элементарный электрический вибратор обладает направленными свойствами, хотя и недостаточно ярко выраженными.

- 1.) Элементарный электрический вибратор излучает волну типа E ($E_r \approx 0$);
- 2.) Составляющие электрического \dot{E}_{θ} и магнитного \dot{H}_{φ} полей пропорциональны I^*l/λ ; (амплитуды напряженностей электрического и магнитного полей возрастают с увеличением амплитуды тока или длины вибратора)
- 3.) 1/r излучаемая вибратором волна сферическая

- 4.) вибратор эффективно излучает электромагнитные волны только на высоких частотах
- 5.) Выражение e^{-ikr} описывает волновой процесс вдоль координаты r;
- 6.) Векторное произведение электрического и магнитного полей дает вектор Умова-Пойтинга, показывающий направление распространения электромагнитной волны $\left[\vec{E}_{\theta} \times \vec{H}_{\phi}\right] = \vec{\Pi}_{r}$;
- 7.) Выражение $\sin \theta$ описывает направленные свойства электрического вибратора;
- 8.) Отношение электрического и магнитного полей дает волновое сопротивление среды $E_{\theta}/H_{\phi}=\sqrt{\mu_{a}/\varepsilon_{a}}=Z_{c}$;
- 9.) Электрическое и магнитное поля взаимно перпендикулярны $\vec{E}_{\theta} \perp \vec{H}_{\omega}$.

6. Элементарная площадка и магнитный излучатель.

Наряду с элементарным электрическим вибратором при анализе антенных устройств бывает полезно использовать элементарный магнитный вибратор, физическую модель которого можно создать, если взять стержень из материала с магнитной проницаемостью значительно большей магнитной проницаемости среды, например, из феррита. В качестве возбуждающего устройства применить проводящую петлю, обтекаемую током проводимости (рис. 1). Постоянство вектора магнитной индукции \vec{B} вдоль стержня достигается с помощью шаров на концах.

Рисунок 1

Элементарный магнитный вибратор обладает такими же направленными свойствами, как и элементарный электрический вибратор;

Отличие элементарного магнитного вибратора от элементарного электрического вибратора состоит в том, что в выражениях для поля \dot{E}_{θ} меняется на \dot{H}_{θ} , а \dot{H}_{φ} меняется на \dot{E}_{φ} .

В этом случае формулы для напряженностей поля в дальней зоне можно получить из системы уравнений (5), заменив

$$\dot{E}_{\varphi} = \frac{\omega \mu_{a} \dot{I} s}{2\lambda r} e^{-ikr} \sin \theta,$$

$$\dot{H}_{\theta} = -\frac{\omega \mu_{a} \dot{I} s}{2\lambda r} \sqrt{\frac{\varepsilon_{a}}{\mu_{a}}} e^{-ikr} \sin \theta.$$

Из выражений видно, что поле, создаваемое элементарным магнитным вибратором в дальней зоне, представляет собой сферическую волну, распространяющуюся от вибратора со скоростью V_{ϕ} .

Выводы:

- 4.) Элементарный магнитный вибратор обладает такими же направленными свойствами, как и элементарный электрический вибратор;
- 2) Отличие элементарного магнитного вибратора от элементарного электрического вибратора состоит в том, что в выражениях для поля \dot{E}_{θ} меняется на \dot{H}_{θ} , а \dot{H}_{ω} меняется на \dot{E}_{ω} .

Элементарная площадка обладает направленными свойствами. Причем амплитуда напряженности электрического поля зависит от координаты θ и не зависит от φ . Характеристика направленности площадки описывается выражением

$$f(\theta) = 1 + \cos\theta$$
,

а диаграмма направленности имеет форму кардиоиды (рис. 6). Пространственная представляет собой поверхность, диаграмма образующуюся при вращении кардиоиды вокруг ее оси симметрии (оси Z). наблюдается Максимальное излучение В направлении оси Z, перпендикулярной площадке.

Рисунок 6

Так же как и другие элементарные излучатели, площадка создает в дальней зоне сферическую электромагнитную волну.

Всем элементарным излучателям (вибратору, рамке и площадке) присуща одинаковая закономерность. Отношение комплексных амплитуд электрического и магнитного полей, созданных ими, всегда является величиной постоянной и определяется только параметрами среды.

Параметр Z_c называется волновым, или характеристическим сопротивлением среды и измеряется в Омах. Для свободного пространства

$$Z_c = Z_0 = \sqrt{rac{\mu_a}{arepsilon_a}} = 120\pi pprox 377~O{
m M}\,,$$

а для произвольной среды без потерь

$$Z_c = \sqrt{\frac{\mu_0 \mu}{\varepsilon_0 \varepsilon}} = Z_0 \sqrt{\frac{\mu}{\varepsilon}} = 120\pi \sqrt{\frac{\mu}{\varepsilon}}.$$

Таким образом, если найдена одна из составляющих поля, созданного элементарным излучателем, например, E, то другая может быть найдена без решения уравнений Максвелла

$$H = \frac{E}{Z_c}.$$

- 1.) Элементарная площадка излучает волны типа Е и Н;
- 2.) Составляющие электрического и магнитного полей пропорциональны $\dot{E}_{\tau}\Delta s/\lambda$;
- 3.) 1/r признак сферической волны;
- 4.) Выражение e^{-ikr} описывает волновой процесс вдоль координаты r;
- 5.) Выражение $f(\theta) = 1 + \cos \theta$ описывает направленные свойства элементарной площадки;

7. Отражение и преломление плоских электромагнитных волн.

На границе раздела двух сред наблюдаются следующие явления: отражение, преломление, поглощение и дифракция электромагнитных волн.

рассмотрим точечный источник электромагнитных волн, расположенный в точке O (рис. 1) и непрозрачное для них тело T в свободном пространстве.

Рис. 1

Областью прямой видимости называется геометрическое место точек, видимых наблюдателю, находящемуся в точке стояния источника волн.

Областью тени называют область, невидимую наблюдателю из точки О.

Первичной (падающей) волной называется волна, возбужденная источником в области прямой видимости.

Вторичной называют волну, существование которой обусловлено наличием непрозрачного тела T. Она может быть отраженной (рассеянной) или преломленной.

Отраженная волна это вторичная волна в области прямой видимости, а преломленная — внутри тела T .

Дифракционной называется волна, проникшая в область тени и ее окрестности.

Плоскостью распространения (рис. 2) называется плоскость Q, перпендикулярная плоской границе раздела S и проходящая через направление распространения волны.

Рис. 2

Вертикально поляризованная волна является линейно поляризованной, при этом вектор \vec{E}_{g} лежит в плоскости распространения.

У горизонтально поляризованной волны вектор $\vec{E}_{\scriptscriptstyle\mathcal{Z}}$ перпендикулярен плоскости распространения.

$$\frac{\sin \varphi_2}{\sin \varphi_1} = \frac{\sqrt{\varepsilon_{a1}\mu_{a1}}}{\sqrt{\varepsilon_{a2}\mu_{a2}}} = \frac{n_1}{n_2}$$

Коэффициентом отражения вертикально поляризованной волны (рис. 4) называется отношение скалярных комплексных амплитуд E_{10} и E_{i0} на границе раздела (в точке O)

Аналогично записывается выражение для коэффициента преломления

$$\dot{P}_{np}^{s} = \frac{\dot{E}_{20}}{\dot{E}_{i0}}.$$
(4)

Аналогичным образом решается задача нахождения коэффициентов отражения и преломления для горизонтально поляризованных волн (рис. 5). При этом удобно выразить коэффициенты через комплексные амплитуды напряженностей магнитного поля

$$P_{omp}^{2} = \frac{k_{1}\mu_{a2}\cos\varphi_{i} - \mu_{a1}\sqrt{k_{2}^{2} - k_{1}^{2}\sin^{2}\varphi_{i}}}{k_{1}\mu_{a2}\cos\varphi_{i} + \mu_{a1}\sqrt{k_{2}^{2} - k_{1}^{2}\sin^{2}\varphi_{i}}};$$
(12)

$$P_{np}^{2} = \frac{2k_{1}\mu_{a2}\cos\varphi_{i}}{k_{1}\mu_{a2}\cos\varphi_{i} + \mu_{a1}\sqrt{k_{2}^{2} - k_{1}^{2}\sin^{2}\varphi_{i}}}.$$
 (13)

7.) Выводы:

- **1.** При падении волны на тело появляются: отраженная, преломленная и дифракционные волны.
- **2.** Коэффициенты отражения и преломления зависят от электрических параметров первой и второй среды, от угла падения, от длины волны.
- 3. Так как магнитная проницаемость первой среды обычно равна магнитной проницаемости второй среды, а диэлектрическая проницаемость первой среды равна диэлектрической коэффициенты проницаемости второй среды, следовательно отражения преломления при вертикальной поляризации аналогичных коэффициентов при отличаются по величине от горизонтальной поляризации.
- **4.** Среднее значение модуля коэффициента отражения при горизонтальной поляризации больше чем среднее значение модуля коэффициента отражения при вертикальной поляризации.
- **5.** При $\varphi_i = \varphi_{\vec{0}}$ коэффициент отражения вертикально поляризованной волны равен нулю, т.е. волна полностью переходит во вторую среду.
- **6.** При проводящей второй среде наблюдается увеличение модуля среднего значения коэффициента отражения вертикально поляризованной волны. При $\varphi_i = \varphi_\delta$ коэффициент отражения вертикально поляризованной волны не равен нулю
 - **7.** Если первая среда электрически более плотная то при углах падения, больших граничного ϕ_{cp} , наблюдается явление полного отражения.

8. Поверхностные электромагнитные волны и замедляющие структуры.

На границе раздела параметры среды $\mathcal{E}_a, \mu_{a,} \sigma$ скачкообразно меняются. Поскольку они входят в материальные уравнения

$$\vec{D} = \varepsilon_a \vec{E}, \ \vec{B} = \mu_a \vec{H}, \ \vec{j} = \sigma \vec{E},$$

то неизбежно испытывают скачки и векторы поля. Следовательно, в точках границы раздела нельзя пользоваться системой основных дифференциальных уравнений электродинамики, поскольку производные в них будут устремляться к бесконечности.

В данной ситуации предполагаем, что на границе любого материального тела физические свойства изменяются непрерывно в очень тонком слое, поэтому появляется возможность использования системы основных уравнений электродинамики в интегральной форме.

Соотношения, устанавливающие связь между векторами электромагнитного поля на поверхности раздела двух сред, называют граничными условиями.

Первый вектор называется касательной составляющей, а второй - нормальной составляющей исходного вектора.

Рассмотрим граничные условия для касательных составляющих векторов \vec{E} и \vec{H} . Они записываются с помощью следующих выражений:

$$E_{1\tau} = E_{2\tau}; \tag{1}$$

$$H_{1\tau} - H_{2\tau} = j_{nost}. (2)$$

Касательная составляющая вектора \vec{E} при переходе границы раздела не меняется (рис. 2), а такая же составляющая магнитного поля изменяется на величину поверхностного тока, протекающего по границе раздела

Граничные условия для нормальных составляющих векторов \vec{D} и \vec{B} выражаются следующими формулами:

$$D_{1\tau} - D_{2\tau} = \rho_{nos},\tag{4}$$

$$B_{1\tau} = B_{2\tau}.\tag{5}$$

При переходе границы раздела сред вектор электрической индукции изменяется на величину поверхностного заряда, наводимого волной, а вектор магнитной индукции остается неизменным.

Импедансные

$$E_{\tau} = Z H_{t}, \tag{6}$$

в котором величина Z не зависит от характера распределения векторов \vec{E} и \vec{H} (свойств источника, возбудившего поле), то это соотношение называют **импедансным** граничным условием,

$$Z = \sqrt{\frac{\mu_2}{\varepsilon_{k2}}}$$

$$\vec{n}$$

$$M$$

$$E_{1\tau}$$

$$E_{2\tau}$$

$$II$$

Поверхностные волны

Характерной особенностью импедансной поверхности является то, что над ней, в электрически однородной непроводящей среде, могут распространяться плоские волны, обладающие особыми свойствами

- по мере удаления точки наблюдения от импедансной поверхности (с ростом Z) амплитуда волны убывает
- Основная часть энергии поля сосредоточивается в узком слое, вблизи импедансной поверхности

$$V_{noe} = \frac{\omega}{\gamma}, \ V = \frac{\omega}{\beta}, \ V_{noe} \langle V \rangle$$

Фазовая скорость поверхностной волны оказывается меньше скорости волны в свободном пространстве.

Таким образом, импедансная поверхность индуктивного характера обладает замедляющими свойствами, а поэтому ее называют замедляющей структурой.

$$k = \omega \sqrt{\varepsilon_a \mu_a} = \beta^{\gamma} = \sqrt{\beta^2 + (-\omega \varepsilon_a X)^2} = \sqrt{\beta^2 + (\omega \varepsilon_a X)^2} \rangle \beta,$$
$$\gamma = \sqrt{\beta^2 + \alpha^2} \rangle \beta, \ \alpha = \omega \varepsilon_a X.$$

$$\begin{split} H_x &= 0; \\ H_y &= B e^{-\alpha z} e^{-i\gamma x}; \\ H_z &= 0. \end{split} \qquad \begin{split} E_x &= -\frac{i\alpha B}{\omega \varepsilon_a} e^{-\alpha z} e^{-i\gamma x}; \\ E_y &= 0; \\ E_z &= -\frac{\gamma B}{\omega \varepsilon_a} e^{-\alpha z} e^{-i\gamma x}. \end{split}$$

Что касается ориентации вектора \vec{E} поверхностной волны, он имеет отличные от нуля составляющие E_x , E_z лежит в плоскости, параллельной XOZ, а параллельна оси X, т. е. параллельна направлению распространения. Продольная составляющая вектора отлична от нуля, и сама волна относится к волнам типа E.

Замедляющие структуры

Линии передачи, по которым распространяются волны с фазовой скоростью, меньшей скорости света в свободном пространстве, называются замедляющими системами.

Примером такого устройства служит коаксиальная линия, внутренний проводник которой свернут в спираль (рис. 1). Электромагнитная волна распространяется вдоль спирали, огибая виток за витком, а электронный поток движется вдоль ее оси.

Рис. 1

Используя развертку одного витка (рис. 2), рассчитаем его длину

$$l = \sqrt{(2\pi a)^2 + S^2}$$
.

Рис. 2

Время прохождения волны вдоль одного витка.

$$\tau = \frac{l}{C} = \frac{\sqrt{(2\pi \ a)^2 + S^2}}{C}$$

фазовую скорость распространения волны вдоль оси спирали, зная, что

$$V_{\phi} = \frac{S}{\tau} = \frac{C}{\sqrt{1 + \left(\frac{2\pi a}{S}\right)^2}}$$

Рассмотренная замедляющая система не всегда может быть применима при создании волноводных устройств

Для создания реактивного поверхностного сопротивления стенок передающей линии существует два способа: покрытие гладкой металлической поверхности слоем диэлектрика (рис. 5);

создание прямоугольных проточек в проводящей металлической поверхности (рис. 6), в результате чего получается гребенчатая структура, имеющая индуктивный характер.

Характерной особенностью замедляющих систем является экспоненциальное убывание напряженности поля по мере удаления от импедансной поверхности, следовательно, и электронный поток должен быть приближен к ней.

Основной характеристикой замедляющих систем является **коэффициент замедления**, который показывает, во сколько раз фазовая скорость в системе меньше скорости света в свободном пространстве:

$$k_{_{3aM}} = \frac{C}{V_{_{_{_{_{3aM}}}}}} = \frac{\lambda}{\lambda_{_{_{3aM}}}}, \tag{5}$$

где λ_{3am} - длина волны в замедляющей системе.

Длина волны в замедляющей системе определяется выражением

$$\lambda_{3aM} = \frac{V_{\phi 3aM}}{f} = 2\pi \frac{V_{\phi 3aM}}{\omega}.$$

Фазовая постоянная (продольное волновое число) замедленной волны, как и для любых волн, равно

$$\beta_{_{3AM}} = \frac{\omega}{V_{_{_{_{_{_{_{3AM}}}}}}}} = \frac{2\pi}{\lambda_{_{_{3AM}}}}.$$

Выводы:

- * в прямоугольном, круглом и коаксиальном волноводах не могут распространяться «медленные» волны, если $\sigma_{cr} \!\! \to \!\! \infty$;
- * в волноводах могут распространяться «медленные» волны, если стенки волноводов имеют реактивное (импедансное) сопротивление;
- * в коаксиальном волноводе с центральным спиральным проводником распространяется «замедленная» электромагнитная волна.

5.1. Спираль

Рис. 8

Основным достоинством спиральной системы является ее широкополосность. Фазовая скорость замедленной волны почти в точности совпадает с групповой скоростью и остается практически неизменной в диапазоне частот порядка октавы и более.

Недостатками спиральной системы являются малая теплорассеивающая способность и непригодность для работы при низких коэффициентах замедления, а также трудность изготовления и применения в диапазоне наиболее коротких волн. Основной областью применения спиральных замедляющих систем являются широкополосные усилительные лампы бегущей волны малой и средней мощности.

5.2. Замедляющая система типа гребенка

Гребенка обладает более высокой рассеивающей способностью и жесткостью, чем спираль, но одновременно и более узкой полосой частот и

удобна при использовании в миллиметровом или субмиллиметровом диапазонах волн. При этом электронный поток должен следовать вдоль вершин гребенки или через отверстия во встречных штырях.

5.3. Замедляющая система типа встречные штыри

Фазовый сдвиг поля ϕ на один период системы, т.е. через один зазор, при предположении о существовании волны типа TEM в зазоре между стержнями оказывается равным

$$\varphi = \frac{2\pi}{\lambda} (2l + L).$$

Фазовая постоянная нулевой пространственной гармоники β_0 связана с величиной ϕ очевидным соотношением $\phi = \beta_0 L$, откуда

$$\beta_0 = \frac{\varphi}{L} = \frac{2\pi(2l+L)}{\lambda L}.$$

Определим фазовую постоянную *p*-й пространственной гармоники:

$$\beta_p = \beta_0 + \frac{2\pi p}{L} = \frac{2\pi (2l+L)}{\lambda L} + \frac{2\pi p}{L}.$$

Поскольку $\beta_p = \omega'(V_\phi)_p$, получаем выражение фазовой скорости p-й пространственной гармоники в виде

$$(V_{\phi})_p = C \frac{L}{2l + L + p\lambda}.$$

5.4. Прочие типы замедляющих систем

системы типа *диафрагмированного волновода*.

Достоинствами жесткость, высокая теплорассеивающая способность и достаточно высокое сопротивление связи при малых значениях замедления. Благодаря коэффициента ЭТОМУ эта система широко используется в современных линейных электронных ускорителях, где требуемый коэффициент замедления приближается к единице. Отверстия связи, имеющиеся в центре, служат одновременно для пропускания ускоряемого электронного потока.

Замедляющие системы могут быть свернуты в замкнутое кольцо,

областью применения кольцевых замедляющих систем являются электронные приборы магнетронного типа.

- * в непрерывной замедляющей системе типа спираль распространяются медленные волны малой мощности с широкой полосой частот;
- * в периодических замедляющих системах (гребенка, встречные штыри, диафрагмированный волновод, магнетрон) распространяются медленные волны большой мощности с узкой полосой частот.

9. Рассеяние и дифракция радиоволн.

Дифрракция - явление огибания препядствий ЭМВ, т.е за счет дифракции в области тени существует ЭМВ. ниже уровня тени – дифракция, выше – рассеяние (ЭМВ попадает на шероховатую поверхность)

Рассмотрим два случая поляризации падающей волны.

- 1. Вектор параллелен краю экрана ($\vec{E} = \vec{y}_0 E_y$), т. е. волна поляризована горизонтально.
- 2. Вектор параллелен краю экрана ($\vec{H} = \vec{y}_0 H_y$), т. е. волна поляризована вертикально.

Очевидно, что в первом случае отлична от нуля только составляющая E_y , а во втором - H_y . Тогда введем обозначения из соображений симметрии:

$$U = egin{cases} E_y &\text{-} & \text{при горизонтальной поляризации;} \ H_y &\text{-} & \text{при вертикальной поляризации.} \end{cases}$$

Уравнение падающей волны можно записать в следующем виде

$$U_{t}(M') = U_{0t}e^{-ik(-x\sin\alpha+z\cos\alpha)}, \qquad (2)$$

где α - угол между осью OZ и направлением распространения падающей волны;

M - текущая точка с координатами x, y, z.

Свойства дифракционной волны удобнее изучить, если рассмотреть три характерных случая расположения точки наблюдения относительно границы тени (линии M'O).

Случай 1. Точка наблюдения M располагается на границе тени (рис. 2). В этом случае глубина погружения в область тени d равна нулю, аргумент интеграла Френеля и сам интеграл обращаются в нуль (рис. 3).

$$\sqrt{\frac{k}{2r_0}}d=0, \ F(0)=0.$$

Рис. 2 Рис. 3

Выражение (3) приобретает вид:

$$U_i(M) = \frac{U_{0i}}{2} e^{-ikr_0}. (4)$$

Таким образом, экран в форме полуплоскости ослабляет напряженность поля в точке M , лежащей на границе тени, в два раза.

<u>Случай 2.</u> Точка наблюдения M расположена в области тени (рис. 4). Углы α и α_0 положительны или положительный из углов α и α_0 больше отрицательного.

Кроме того,

$$\sqrt{\frac{k}{2r_0}}d = \sqrt{\frac{\pi r_0}{\lambda}}\sin(\alpha + \alpha_0) >> 1.$$

Для этого случая воспользуемся асимптотическим представлением интеграла Френеля:

$$F\left(\sqrt{\frac{k}{2r_0}}d\right) = \frac{1}{\sqrt{2}}e^{-i\frac{\pi}{4}} + \frac{i}{\pi\sqrt{\frac{r_0}{\lambda}}\sin(\alpha + \alpha_0)}e^{-i\frac{k}{2r_0}d^2}.$$

Подставляя значение интеграла Френеля в формулу (3), получим

$$U_i(M) = \frac{\sqrt{\lambda}}{2\pi} U_{0i} \frac{e^{-i(kr_0 + \frac{\pi}{4})}}{\sqrt{r_0}\sin(\alpha + \alpha_0)}$$
(5)

Из анализа этого выражения следует, что поверхности равных фаз распространяющейся волны описываются уравнениями вида $r_0 = const$, следовательно, они образуют семейство круговых цилиндров.

Таким образом, поле в области тени, образованной экраном в виде полуплоскости, представляет собой цилиндрическую волну. Напряженность поля убывает пропорционально корню квадратному из расстояния между краем экрана и точкой наблюдения.

Кроме того, с увеличением длины волны напряженность поля возрастает пропорционально $\sqrt{\lambda}$, т. е. волна, как бы лучше огибает экран.

По мере углубления точки наблюдения M в область тени (с ростом угла $lpha_0$ при $z_0=const$) напряженность поля дифракционной волны падает.

Перечисленные выше свойства справедливы и при дифракции радиоволн на телах более сложной формы.

<u>Случай 3.</u> Точка наблюдения M находится в области прямой видимости (рис. 5). Это означает, что

$$\sqrt{\frac{k}{2r_0}}d << -1.$$

Так как F(-a) = -F(a), и приближенно считая, что

$$\sqrt{\frac{k}{2r_0}}d \to -\infty.$$

интеграл Френеля можно записать в виде:

$$F\left(\sqrt{\frac{k}{2r_0}}d\right) = -\frac{1}{\sqrt{2}}e^{-i\frac{\pi}{4}}.$$

И

$$U_{i}(M) = U_{0i}e^{-ik\left(r_{0} + \frac{r_{0}}{2}\sin^{2}(\alpha + \alpha_{0})\right)}.$$
 (6)

Выражение (6) является приближенным уравнением плоской волны. В области прямой видимости (выше границы тени) результирующее поле $U_i(M)$ приблизительно совпадает с полем прямой волны

Рассеяние

Явление рассеяния радиоволн имеет большое значение в радиолокации, так как плотность потока мощности рассеянной целью волны определяет важные тактико-технические характеристики РЛС, например, дальность обнаружения.

Задача нахождения напряженности поля рассеянной волны Опуская подробности решения, приведем конечный результат

$$\vec{E}(M) = -i\frac{abE_0 \cos\alpha}{\lambda} \frac{\sin\left(\frac{2\pi a}{\lambda}\sin\alpha\right)}{\frac{2\pi a}{\lambda}\sin\alpha} \frac{e^{-ikr}}{r_0} \vec{y}_0, \tag{9}$$

где E_0 - величина комплексной амплитуды напряженности поля первичной волны в середине пластины;

 r_0 - расстояние от середины пластины до точки наблюдения M . Анализируя формулу (9), приходим к следующим выводам:

- 1) рассеянная волна в удаленной от тела области представляет собой сферическую волну, о чем свидетельствует множитель $1/r_0$;
- 2) напряженность поля рассеянной волны прямо пропорциональна напряженности поля первичной волны и обратно пропорциональна пройденному расстоянию r_0 ;
- 3) напряженность поля рассеянной волны пропорциональна размерам пластины и зависит от ее ориентации (угла α).

Существует такое понятие как эфективная площадь рассеяния Для ее введения рассмотрим следующие формулы (P_{pac} мощность рассеяния)

$$P_{pac} = \left| \vec{\Pi}_{na\delta} \right| \sigma_{ij} = \frac{P_{usi} \sigma_{ij}}{4\pi r_0}$$
 .

Величину σ_{ij} принято называть эффективной поверхностью рассеяния цели (или эффективной отражающей поверхностью).

По известной величине P_{px} найдем плотность потока рассеянной мощности в точке стояния РЛС

$$\left| \vec{\Pi}_{np} \right| = \frac{P_{pac}}{S_{c\phi}} = \frac{P_{pac}}{4\pi r_0^2} = \frac{P_{uzn}\sigma_u}{\left(4\pi r_0^2\right)^2}$$
 (11)

Таким образом, плотность потока рассеянной мощности, возвращающейся назад к РЛС, пропорциональна излучаемой мощности, расстоянию до цели в четвертой степени и эффективной поверхности рассеяния.

Эффективной поверхностью рассеяния (ЭПР) называется некоторая воображаемая отражающая поверхность, которая будучи помещенной в точку цели перпендикулярно направлению распространения падающей волны, создаст такую же плотность потока мощности у РЛС, что и реальная цель.

Для вычисления ЭПР необходимо из уравнения (11) выразить величину σ_u .

$$\sigma_{y} = \frac{\left| \vec{\Pi}_{np} \right|}{\left| \vec{\Pi}_{na\dot{o}} \right|} 4\pi r_{0}^{2}. \tag{12}$$

10. Прямоугольный волновод

Прямоугольный волновод представляет собой металлическую трубу с прямоугольным поперечным сечением .Ширина волновода **a**(размер широкой стенки), высота **b**(размер узкой стенки). Будем считать, что он заполнен однородным изотропным диэлектриком без потерь, т.е. $\sigma = 0$, а проводимость стенок $\sigma_{cm} = \infty$.

Из полученных уравнений следует, что в прямоугольном волноводе может существовать бесконечное множество волн типа E, отличающихся множителями m и n. Волны обозначаются E_{mn} , $m \neq 0$, $n \neq 0$. Случаи m = 0, n = 0 не соответствуют реальным волнам, поскольку при этом все составляющие поля обращаются в нуль.

- 1. В прямоугольных волноводах могут распространяться только волны типа E, H .
- 2. У волны типа E_{mn} индексы могут принимать значения m, n = 1, 2, 3, ...
- 3. У волны типа H_{mn} индексы могут принимать значения $m, n = 0, 1, 2, 3, \dots$

Под *критической длиной волны* (λ_{kp}) понимается длина волны, измеренная в свободном пространстве, при которой прекращается распространение волны рассматриваемого типа по волноводу, имеющему вакуумное заполнение.

Предположим, что в прямоугольном волноводе отсутствуют потери, т.е. будем рассматривать незатухающую волну $\gamma = \beta + i\alpha = \beta(\alpha = 0)$. В критическом режиме $\lambda = \lambda_{\kappa p} (\lambda_{B \to \infty})$, тогда $\beta = \frac{2\pi}{\lambda_B} \to 0$, а волновое число K приобретает критическое значение

волновое число K приобретает критическое значение

$$K_{\kappa p} = \frac{2\pi}{\lambda_{\kappa p}} \sqrt{\varepsilon \mu}.$$

В случае вакуумного заполнения $\varepsilon=\mu=1$ и $K_{\kappa p}=\frac{2\pi}{\lambda_{\kappa p}}.$

Волной **основного типа** называется волна, имеющая наибольшее значение $\lambda_{\kappa p}$. Для прямоугольного волновода волной основного типа является волна H_{10} .

а - размер широкой стенки волновода;

b- размер узкой стенки волновода.

Подставив приведенные формулы в (2), получим исходное уравнение для расчета $\lambda_{\kappa p}$:

После преобразований из уравнения (3) получим

$$\lambda_{\kappa p} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}.$$

На диаграмме можно выделить три характерные области:

- область отсечки;
- область существования только волны основного типа;
- область высших типов волн.

11. Круглый волновод

$$\begin{split} E_{r} &= D\beta \frac{v_{ni}}{R} J_{n}' \left(r \frac{v_{ni}}{R} \right) \cos(n\varphi), \\ E_{\varphi} &= \mp D\beta \frac{n}{r} J_{n} \left(r \frac{v_{ni}}{R} \right) \sin(n\varphi), \\ E_{z} &= iD \left(\frac{v_{ni}}{R} \right)^{2} J_{n} \left(r \frac{v_{ni}}{R} \right) \cos(n\varphi), \\ H_{r} &= \pm D\omega \varepsilon_{a} \frac{n}{r} J_{n} \left(r \frac{v_{ni}}{R} \right) \sin(n\varphi), \\ H_{\varphi} &= D\omega \varepsilon_{a} \frac{v_{ni}}{R} J_{n}' \left(r \frac{v_{ni}}{R} \right) \cos(n\varphi), \\ H_{z} &= 0. \end{split}$$

$$J_n\left(R\sqrt{k^2-\beta^2}\right)=0.$$

Аргументы функции Бесселя J_n , при которых она обращается в нуль, называются корнями функции Бесселя и обозначаются

$$v_{ni} = R\sqrt{k^2 - \beta^2} \,,$$

где i= 1,2,3,...- порядковый номер корня (рис. 2).

$$\left(\lambda_{\kappa p}\right)_{E_{ni}} = \frac{2\pi R}{V_{ni}}$$

Это выражение можно использовать для расчета $\lambda_{\kappa p}$ волны типа E

в круглом волноводе. Аналогичным образом можно получить выражение для расчета $\lambda_{\kappa p}$ волны типа Н

$$\left(\lambda_{\kappa p}\right)_{H} = \frac{2\pi R}{\mu_{ni}}.\tag{7}$$

где μ_{ni} - корни производной функции Бесселя 1-го рода n-го порядка.

ВЫВОД: критическая длина волны в круглом волноводе зависит от размера волновода R и от типа волны.

Волной **основного типа** в круглом волноводе является волна \mathbf{H}_{11}

На практике, в качестве волны основного типа в круглом волноводе , используется волны E_{01} и H_{01}

12. Линии передач с волнами типа Т

Электромагнитные волны, векторы напряженности электрического и магнитного полей которых лежат в плоскости, перпендикулярной направлению распространения, называют *поперечными электромагнитными* волнами или волнами типа Т. $\beta = \omega \sqrt{\varepsilon_a \mu_a}$

Волна типа T в отличие от волн типов H и E распространяется в линии при любой частоте ($\omega_{\text{крT}}=0$)

Для волн типа Т поперечное волновое число g=0, поэтому продольное волновое число h оказывается таким же, как и в случае однородной плоской волны. Для линии без потерь

$$h = \beta = \omega \sqrt{\varepsilon_a \mu_a}$$
 ,

$$v_{\Phi} = \frac{1}{\sqrt{\varepsilon_a \mu_a}},\tag{9.2}$$

$$\lambda_{\rm B} = \lambda \,. \tag{9.3}$$

Здесь λ — длина однородной плоской волны в заполняющем диэлектрике с параметрами ε_a и μ_a . $Z_{cT}=Z_c=\sqrt{\mu_a/\varepsilon_a}$ Характеристическое сопротивление

Линии передачи с волной типа Т характеризуются волновым сопротивлением Z_B , равным отношению комплексных амплитуд напряжения и тока в режиме бегущих волн и выражающимся через погонные индуктивность L_I и емкость C_I линии следующим образом:

$$ZB=L1/C1. (9.9)$$

Фазовая скорость в линии передачи с

волной типа Т
$$v_{\Phi} = \frac{1}{\sqrt{L_1/C_1}}$$
. (9.10)

Мощность, переносимая волной по линии передачи,

$$P = \frac{1}{2} \int_{S} Re \left| \dot{E} \widetilde{H} \right| dS \tag{9.11}$$

ИЛИ

$$P = \frac{1}{2} \sqrt{\frac{\varepsilon_a}{\mu_a}} \int_{S} \left| \dot{E} \right|^2 dS , \qquad (9.12)$$

где интегрирование ведется по поперечному сечению линии.

Распространение волны типа Т возможно лишь в линиях, которые могут быть использованы для передачи постоянного тока (двухпроводные, коаксиальные, полосковые и др.).

Однопроводные

Двупроводные

Двухпроводная линия образована системой из двух параллельных проводников, окруженных однородным веществом с параметрами ε_a и μ_a .

Коаксиальная линия передачи

представляет собой систему из двух соосных металлических цилиндров с

передачи Рис. 9.5

В технике СВЧ широко применяют направляющие системы, называемые полосковыми линиями передачи, которые особенно удобны в

печатных и интегральных схемах СВЧ. На рис. 9.5, а и б изображены полосковые линии передачи несимметричного и симметричного типов. Эти линии либо заполнены воздухом, либо имеют основание из твердого диэлектрика.

Рис. 9.6

13. Энергетические характеристики волноводов

К основным энергетическим характеристикам волновода относятся: предельная и допустимая рабочая мощность, коэффициент затухания, затухание и коэффициент полезного действия

Для прямоугольного волновода
$$P = \frac{1}{4} \frac{E_m^2}{Z_{_{CH}}} ab$$

Мощность, передаваемая по волноводу, пропорциональна квадрату напряженности электрического поля и размерам поперечного сечения.

Поскольку размеры a и b рассчитываются, исходя из необходимости существования в волноводе только волны основного типа, мощность определяется, в основном, квадратом напряженности электрического поля.

В свою очередь, напряженность E нельзя увеличивать бесконечно, поскольку при достижении некоторого предельного значения наступит электрический пробой волновода.

Предельной называется наибольшая мощность, которая передается по волноводу без электрического пробоя

Предельная напряженность электрического поля E_{nped} , при котором в сухом воздухе наступает пробой, составляет в диапазоне сантиметровых волн 30 кВ/см. Тогда

$$P_{npeo} = \frac{1}{4} \frac{E_{npeo}^2}{Z_{cH}} ab. \tag{8}$$

Для воздушного наполнения

$$\begin{split} Z_{cH} &= \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{kp}}\right)^2}} = \frac{Z_0}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{kp}}\right)^2}} 0 \\ & \left(P_{npeo}\right)_{H_{10}} = 597 \, ab \sqrt{1 - \left(\frac{\lambda}{\lambda_{kp}}\right)^2} \; . \end{split}$$

Для круглого волновода:

$$\left(P_{npeo}\right)_{H_{11}} = 1790R^2 \sqrt{1 - \left(\frac{\lambda}{\lambda_{kp}}\right)^2} ; \tag{11}$$

$$(P_{nped})_{H_{01}} = 1805 R^2 \sqrt{1 - \left(\frac{\lambda}{\lambda_{kp}}\right)^2} .$$
 (12)

Для коаксиального волновода:

$$(P_{nped})_{TEM} = 1870 d^{2} \ln \left(\frac{D}{d}\right).$$

$$P = \frac{E_{MAKC}^{2}}{4Z_{c}K_{c}} ab$$

Из уравнения следует, что в режиме бегущей волны ($K_c=1$) передаваемая мощность принимает максимальное значение.

При стоячей волне передача мощности не происходит $K_c = \infty$, P = 0.

Выводы:

- 1.) Предельная мощность, передаваемая по волноводу, возрастает при увеличении размеров волновода и уменьшается с увеличением длины волны.
- 2.) Применение газообразных диэлектриков позволяет увеличивать E_{nped} в три раза, а P_{nped} приблизительно на порядок.

коэффициент затухания

При передаче энергии по волноводу имеют место потери мощности за счет конечного сопротивления металла, из которого он изготовлен.

В результате получим формулу для вычисления коэффициента затухания в волноводе

$$\alpha = \frac{1}{2} \frac{\frac{1}{2} R_{noe} \oint \left| \vec{H}_{\tau} \right|^{2} dl}{\frac{1}{2} \text{Re} \iint_{S} \left[\vec{E} \times \vec{H}^{*} \right] ds}.$$
 (22)

Напряженности магнитного поля $\vec{H}_{ au}$ у поверхности стенки волновода.

 \vec{H}^* - комплексно сопряженная амплитуда напряженности магнитного поля.

Выводы:

- 1.) Коэффициент затухания зависит от частоты СВЧ колебаний, от удельной проводимости стенки волновода, от структуры поверхностных токов, от неровности стенок.
- 2.) Коэффициент затухания не зависит от мощности.

затухание

При инженерных расчетах не всегда удобно пользоваться коэффициентом затухания, поэтому применяют другой параметр – затухание.

Пусть в волноводе распространяется волна, характеризуемая величинами E_{ex} , P_{ex} на входе, и E_{ebb} , P_{ebb} на выходе. Они связаны между собой соотношениями:

$$\left| E_{eblx} \right| = \left| E_{ex} \right| e^{-\alpha z}; \tag{23}$$

$$P_{\text{вых}} = P_{\text{ex}} e^{-2\alpha z}$$
.

$$L=10 \lg \frac{P_{ex}}{P_{ebix}} = 20 \lg \frac{|E_{ex}|}{|E_{ebix}|} = 10 \lg e^{2\alpha z} \left[\partial E \right]. \tag{25}$$

Затухание связано с коэффициентом затухания приближенной зависимостью:

$$L=8.68\alpha z \left[\partial B\right],\tag{26}$$

где z - длина линии.

Выводы:

- 1.) Наименьшими потерями обладают волноводы в дециметровом диапазоне, но при этом размеры поперечного сечения и их масса весьма велики.
- 2.) Затухание существенно зависит от неровности стенок. Поэтому они обрабатываются по 8-10 классу чистоты поверхности.

14. Передача электромагнитной энергии от генератора к нагрузке.

8.) Линия передачи электромагнитной энергии характеризуется волновым сопротивлением Z_c . Волновое сопротивление — это отношение комплексных амплитуд поперечных составляющих электрического и магнитного полей. Используя выражения для поперечных составляющих полей волн типа H и E, можно записать:

9.)
$$Z_{CH} = \left(\frac{E_x}{H_y}\right)_H = -\left(\frac{E_y}{H_x}\right)_H = \frac{\omega \mu_a}{\gamma};$$

$$Z_{CE} = \left(\frac{E_x}{H_y}\right)_E = -\left(\frac{E_y}{H_x}\right)_E = \frac{\gamma}{\omega \varepsilon_a}.$$

10.) Для случая, когда $\gamma = \beta$, с учетом выражений для β и λ_{e} , получим:

11.)
$$Z_{CH} = \sqrt{\frac{\mu_{a}}{\varepsilon_{a}}} \cdot \frac{1}{\sqrt{1 - \frac{1}{\varepsilon \mu} \cdot \left(\frac{\lambda}{\lambda_{kp}}\right)^{2}}};$$

$$Z_{CE} = \sqrt{\frac{\mu_{a}}{\varepsilon_{a}}} \cdot \sqrt{1 - \frac{1}{\varepsilon \mu} \cdot \left(\frac{\lambda}{\lambda_{kp}}\right)^{2}},$$

- 12.) где $Z_{\it CH}$, $Z_{\it CE}$ волновое сопротивление для волн типа ${\it H}$ и ${\it E}$;
 - 13.) $\sqrt{\frac{\mu_a}{\mathcal{E}_a}} = Z$ волновое сопротивление диэлектрика,

заполняющего волновод.

14.) Характер зависимости Z_{C} от длины волны показан на рис. 2.

15.) 16.) Рис. 2

17.) 18.) Для коаксиального волновода волновое сопротивление определяется по формуле

19.)
$$Z_C = 138\sqrt{\frac{\mu}{\varepsilon}} \cdot \lg \frac{R}{r_{M}}$$

20.) Обычно выбирают
$$\frac{R}{r_{_{M}}} = 2 \dots 5;$$

21.) **Коэффициентом отражения по электрическому полю** называется отношение поперечных составляющих электрического поля для отраженной и падающей волн в одной и той же точке поперечного сечения линии передачи:

$$P = \frac{E_o(l)}{E_n(l)}.$$

23.) При l=0 , т.е. в сечении нагрузки, получаем

$$P_{_{\mathit{H}}} = \frac{E_{o}}{E_{n}},$$

25.) При произвольном значении l

26.)
$$P = \frac{E_o e^{-i\beta l}}{E_n e^{i\beta l}} = P_{\mu} e^{-i2\beta l}.$$

27.) Под *входным сопротивлением* понимают отношение поперечных составляющих в произвольном сечении линии передачи (на входе линии)

28.)
$$Z_{ex} = \frac{E(l)}{H(l)} = Z_C \frac{E_n(l) + E_o(l)}{E_n(l) - E_o(l)} = Z_C \frac{1 + P}{1 - P}.$$
(6)

29.) На практике чаще используют нормированное значение сопротивления $Z' = Z/Z_C$, т. е.

30.)
$$Z'_{ex} = \frac{1 - P}{1 + P}.$$
 (7)

31.) Можно выразить коэффициент отражения через нормированное входное сопротивление.

32.)
$$P_{H} = \frac{Z_{H}' - 1}{Z_{H}' + 1}.$$

33.) Выводы:

- 1.) В коаксиальном волноводе, работающем на волне ТЕМ волновое сопротивление не зависит от частоты.
- 2.) В прямоугольном волноводе, работающем на волне типа Е или Н волновое сопротивление зависит от частоты.
- 3.) Входное сопротивление линии передачи при наличии отраженной является периодической функцией и зависит от длины линии передачи. 34.)
- 35.) При наличии отраженной волны в линии происходят, сложение полей падающей и отраженной волн. В тех сечениях, где поля складываются в фазе, напряженности поля максимальны, а там, где складываются в противофазе, напряженности поля минимальны (рис. 3).

36.)
$$|E| = |E_n e^{i\beta l} (1 + P_{H} e^{-i2\beta l})|.$$
 (12)

37.) Аналогично для магнитного поля:

38.)
$$|H| = \frac{H_n}{Z_c} e^{i\beta l} (1 - P_H e^{-i2\beta l}). \tag{13}$$

$$E(l) = \frac{E(l)}{Z_c} e^{i\beta l} (1 - P_H e^{-i2\beta l}). \tag{13}$$

$$40.)$$

$$40.)$$

$$41.) \text{ Puc. 3}$$

 $_{42.)}$ Отношение поля в максимумах к напряженности в минимумах называется коэффициентом стоячей волны (КСВ) K_c

$$K_c = \frac{E_{\text{max}}}{E_{\text{min}}} \tag{14}$$

44.) Величина обратная КСВ называется коэффициентом бегущей волны (КБВ).

45.)

Режимы работы линии

1. Режим бегущих волн. Он возникает в случае, когда сопротивление нагрузки равно волновому сопротивлению линии передачи $\mathbf{Z}_n = \mathbf{Z}_c$. (Имеется падающая волна, отраженная отстутствует).

2. Режим стоячих волн. Этот режим возникает в трех случаях. Рассмотрим первый из них - **короткое замыкание** Z_n =0.

Коэффициент бегущей волны становится равным нулю $(K_{\delta}=0)$, а коэффициент стоячей волны равным бесконечности $(K_{c}=\infty)$.

Характерной особенностью случая K3 является то, что на нагрузке напряженность поля равна нулю.

Режим стоячей волны возникает также и в случае *холостого хода*, т. е. когда $\mathbf{Z}_{u} = \infty$

Стоячая волна возникает в волноводе также *при реактивном* xарактере нагрузки Z_n = $\pm i X$

Коэффициенты КБВ и КСВ остаются прежними.

Режим смешанных волн наблюдается чаще других. Это связано с тем, что не удается добиться строгого равенства сопротивления нагрузки и волнового сопротивления линии передачи. Поэтому при $Z_n \neq Z_c$, кроме падающей волны, в волноводе присутствует отраженная волна. Коэффициент отражения лежит в пределах 0 < /P/<1, коэффициент бегущей волны изменяется в пределах $0 < /K_o/<1$, коэффициент стоячей волны изменяется в пределах $1 < /K_o/<\infty$

Для того чтобы передавать по волноводу наибольшую энергию следует стремиться к максимальному повышению КБВ путем уменьшения отражений от нагрузки

46.) Выводы:

- 1.) В режиме бегущих волн амплитуда электрического поля, входное сопротивление не зависит от длины линии передачи.
- 2.) В режиме стоячих и смешанных волн амплитуда электрического поля, входное сопротивление зависит от длины линии передачи. Период равен $\lambda_e/2$.
- 3.) Режим бегущих волн самый благоприятный режим работы, так как вся энергия от генератора попадает в нагрузку.
- 4.) Режим стоячих волн самый неблагоприятный режим работы, так как вся энергия отражается от нагрузки.

47.) Выводы:

- 1.) Короткозамкнутые и разомкнутые отрезки волноводов могут использоваться для создания реактивных элементов в диапазоне СВЧ. Наибольшее распространение получили короткозамкнутые отрезки волноводов.
- 2.) Резонатор имеет наименьшую длину равную $\lambda_{\rm g}/4$, если один конец замкнут, а другой разомкнут.

Если резонатор имеет короткозамкнутые или разомкнутые концы, то наименьшая длина равна $\,\lambda_{\!\scriptscriptstyle g}\,/\,2\,.$

15. Резонаторы волноводного типа.

К ним относятся полые колебательные системы, в которых нет пространственного разделения электрического и магнитного полей (нельзя выделить L и C). Это отрезки волноводов различного сечения, закороченные на концах с двух сторон, что и определило их название

Приближенно добротность резонатора оценивается с помощью выражения

$$Q_0 = \frac{\lambda}{\delta}$$

где δ - глубина проникновения токов в металл, составляющая единицы или доли микрометров.

В отличие от контура с сосредоточенными параметрами, в объемном резонаторе электрическое и магнитное поля не разделены в пространстве. В связи с этим электромагнитные процессы в нем описываются не уравнениями электрических цепей, а уравнениями Максвелла. Объемный резонатор представляет собой контур с распределенными параметрами.

Современные полые резонаторы разделяются на:

- резонаторы волноводного типа;
- резонаторы неволноводного (квазистационарного) типа.

К первому типу относятся полые колебательные системы, в которых нет пространственного разделения электрического и магнитного полей (нельзя выделить L и C). Это отрезки волноводов различного сечения, закороченные на концах с двух сторон, что и определило их название.

Ко второму относятся устройства, в которых имеются явно выраженные L и C, например, тороидальный резонатор, резонатор магнетронного типа, коаксиальный волновод, нагруженный на емкость.

Объемные резонаторы характеризуются: длиной волны собственных колебаний, активной проводимостью, собственной добротностью.

величина добротности влияет на характер резонансной кривой колебательного контура. Из сравнения резонансных кривых для колебательного контура с сосредоточенными параметрами (рис. 2, а) и для объемного резонатора (рис. 2, б), следует вывод о том, что последний необходимо настраивать аккуратно, так как при быстром перемещении органа настройки можно пропустить требуемую резонансную частоту.

Рис. 2

В радиотехнической аппаратуре СВЧ-диапазона наибольшее применение находят четыре разновидности резонаторов волноводного типа, выбор которых обусловливается диапазоном длин волн и требуемыми параметрами

Полуволновой коаксиальный резонатор (рис. 3) представляет собой отрезок жесткого коаксиального волновода, закороченного металлическими стенками с обеих сторон. Длина резонатора кратна $\lambda/2$. Чаще всего она бывает равна $l=\lambda/2$, что и обусловило его название.

Такой резонатор находит широкое применение в средней и короткой части диапазона метровых волн, а также в дециметровом диапазоне.

Четвертьволновый коаксиальный резонатор (рис. 4) обычно применяется в длинноволновых частях метрового и дециметрового диапазонов. Он позволяет уменьшить размеры колебательной системы по сравнению с полуволновым резонатором в два раза.

Один конец резонатора закорочен проводящей стенкой, а другой открыт. При этом часть энергии излучается в пространство. Для устранения излучения внешнюю трубу выполняют длиннее центрального стержня, и она образует запредельный волновод.

Однородный призматический резонатор (рис.5) - отрезок волновода прямоугольного сечения, закороченный с двух сторон металлическими стенками. Его длина кратна $\lambda_e/2$. Он находит применение в коротковолновой части дециметрового диапазона и, главным образом, в сантиметровом диапазоне.

Цилиндрический полый резонатор (рис. 6) так же, как и призматический, широко применяется в дециметровом и сантиметровом диапазонах волн.

Выводы:

- 1.) В СВЧ диапазоне резонаторы представляют собой отрезки закороченных волноводов.
- 2.) Параметры резонаторов зависят от их размеров, которые могут изменяться под действием температуры. В сантиметровом диапазоне

резонатор изготавливается из специального сплава - инвара, имеющего малый температурный коэффициент линейного расширения.

В диапазоне метровых и дециметровых волн температурное расширение по сравнению с длиной волны незначительно, поэтому резонаторы изготавливают из медных сплавов.

Четвертьволновый коаксиальный резонатор будем рассматривать как отрезок линии передачи, у которого при коротком замыкании $\varphi_I = \pi$, а при холостом ходе $\varphi_2 = 0$. С учетом этого уравнение (3) примет вид

$$2\beta l + \pi = 2n\pi, n=1,2,3,...$$

Подставив значение $\beta=2\pi/\lambda$, получим

$$\frac{4l}{\lambda}$$
=2n-1.

Отсюда

$$\lambda_0 = \frac{4l}{2n-1}.\tag{4}$$

При заданном значении λ_0 можно найти длину резонатора

$$l_{pes} = \frac{\lambda}{4} (2n-1).$$

Полуволновый коаксиальный резонатор рассматривается так же, как и четвертьволновый. Для него $\varphi_1 = \varphi_2 = \pi$. На основании уравнения (3) можно записать выражение

$$2\pi + 2\beta l = 2n\pi$$
, $n=1,2,3,...$

Откуда

$$\beta l = \pi (n-1),$$

$$\lambda_0 = \frac{2l}{n'}$$

где n'=n-1 - количество полуволн поля, укладывающихся вдоль оси.

<u>Для однородного призматического резонатора</u> следует учесть, что его длина должна быть кратной

$$l = p \frac{\lambda_{B}}{2}, \quad p = 1, 2, 3, \dots$$

Подставляя в это уравнение формулу для длины волны в волноводе с учетом воздушного заполнения, запишем выражение, которое справедливо как для призматического резонатора, так и для цилиндрического

$$\lambda_0 = \frac{1}{\sqrt{\left(\frac{1}{\lambda_{kp}}\right)^2 + \left(\frac{p}{2l}\right)^2}}.$$
 (6)

Воспользовавшись уравнением для определения λ_{e} в прямоугольном волноводе, получим формулу для расчета λ_{0} в призматическом резонаторе

$$\lambda_0 = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{l}\right)^2}}.$$

<u>Для цилиндрического полого резонатора</u> длина волны собственных колебаний находится из условия (6). Если подставить в него выражение для критических длин волн типа E или H в круглом волноводе, то получим

$$\left(\lambda_{0}\right)_{E} = \frac{1}{\sqrt{\left(\frac{v_{ni}}{2\pi R}\right)^{2} + \left(\frac{p}{2l}\right)^{2}}},$$

$$\left(\lambda_{0}\right)_{H} = \frac{1}{\sqrt{\left(\frac{\mu_{ni}}{2\pi R}\right)^{2} + \left(\frac{p}{2l}\right)^{2}}}.$$

$$(8)$$

Выводы:

- 1.) В четвертьволновом и полуволновом коаксиальном резонаторе длина волны равна соответственно четверти и половине длине волны. Четвертьволновый резонатор предпочтительнее, так как имеет меньшие продольные размеры.
- 2.) Наибольший интерес в призматическом резонаторе представляет вид колебания, для которого λ_0 является наибольшей, т.е. H_{101} .
- 3.) Наибольший интерес в цилиндрическом резонаторе представляет вид колебания, для которого добротность Q_0 является наибольшей, т.е. H_{011} .

$$\vec{E} = \vec{E}_{na\partial} + \vec{E}_{omp} = -i2\vec{E}_{m}\sin(\beta z)e^{i\omega t},$$

$$\vec{H} = \vec{H}_{na\partial} + \vec{H}_{omp} = 2\vec{H}_{m}\cos(\beta z)e^{i\omega t}$$
(10)

Выволы:

1.) В полуволновом резонаторе электрическое поле сосредоточено в центре, а магнитное поле у торцевых стенок. На это указывают функции синуса и косинуса.

- 2.) Мнимая единица указывает на смещение во времени на четверть периода между электрическим и магнитным полем, т.е. в резонаторе накоплена реактивная энергия.
- 3.) Множитель описывает изменения поля во времени и отсутствие волнового процесса.

Выводы:

- 1.) Силовые линии магнитного поля изображаются так же, как и при построении структуры соответствующей волны E_{mn} (H_{mn}) в волноводе.
 - 2.) Силовые линии электрического поля такой же конфигурации, как и для волны типа E_{mn} (H_{mn}), но при этом они должны быть сдвинуты вдоль оси резонатора на $\lambda_s/4$.

 $\hat{\lambda}_{e}/2$

16. Резонаторы неволноводного типа.

1. Тороидальный (клистронный) резонатор

В качестве маломощных вспомогательных генераторов СВЧ

Наиболее широко применяются конструкции с прямоугольным сечением "тороидальной" части (рис. 2), которая выполняет функцию индуктивности, образуя один виток с развитой поверхностью. Емкость образована узким зазором между круглой пластинкой в центре и "донной" поверхностью.

Частоту собственных колебаний

$$\omega_0 = \frac{1}{\sqrt{LC}}.\tag{1}$$

$$C = \frac{\mathcal{E}\mathcal{E}_o \pi \ r_0^2}{d}.$$
 (2)

$$\omega_0 = \frac{1}{\sqrt{LC}}.$$

$$C = \frac{\varepsilon \varepsilon_o \pi r_0^2}{d}.$$

$$L = \frac{\Phi}{I} = \frac{\mu \mu_0 l}{2\pi} ln \frac{R}{r_0}.$$
(2)

Для случая вакуумного заполнения $\varepsilon = \mu = 1$, а $\varepsilon_0 \mu_0 = 1/C^2$. С учетом этого получим окончательное выражение

$$\omega_0 = \frac{C}{r_0} \sqrt{\frac{2d}{l \ln \frac{R}{r_0}}}.$$
 (4)

Диапазон перестройки клистронного резонатора составляет $\Delta \! f \! = \! \! \left(\! 10 \! - \! 20\% \right) \! \! f_{cp} \, .$

т.е. этот прибор относится к классу широкополосных.

Обычно стенки в зазоре d выполняются в виде сеток. Через них движется электронный поток от источника свободных носителей зарядов (катода) к приемнику (аноду).

2. Резонатор магнетронного типа

В качестве мощных генераторов СВЧ-колебаний - магнетроны. Их колебательная система состоит из множества резонаторов, которые представляют собой сочетание щели и цилиндрического отверстия. Такую конструкцию называют еще анодным блоком.

Щель выполняет функцию емкости. Индуктивность образуется отверстием цилиндрической формы..

Однако, кроме щели, емкость образуют и стенки цилиндрического отверстия, и торцевые поверхности, разделенные щелью.

$$C_{mop} + C_{u} \approx 2\varepsilon_{0} \frac{h}{\pi} \ln \frac{D}{d}.$$
 (6)

Считая, что магнитный поток в цилиндрическом отверстии однороден, определим индуктивность L_u :

$$L_{u} = \frac{\Phi_{u}}{I} = \frac{\mu_{0} H S_{u}}{I} = \frac{\mu_{0} \pi D^{2}}{2(2h+D)}.$$
 (7)

Силовые линии магнитного поля замыкаются и через щели соседних резонаторов. Среднее значение индуктивности щели вычисляется с помощью выражения

$$L_{uq} = \frac{\Phi_{uq}}{I} = \frac{\mu_0 2ld}{2(2h+D)} = \frac{\mu_0 ld}{2h+D}.$$
 (8)

Частота собственных колебаний

$$\omega_0 = \frac{1}{\sqrt{(L_u + L_{uu})(C_{uu} + C_{mop} + C_u)}}.$$
 (9)

В перечисленных выше приборах электронный поток движется от катода к анодному по спирали.

В один из полупериодов СВЧ-колебаний электроны ускоряются полем и отбирают у него энергию, а в другой - тормозятся и отдают свою энергию.

Перестройка возможна в полосе
$$\Delta f = (5-10\%)f_{cp}$$
.

При комбинированном способе перестройки, когда одновременно изменяются и индуктивность и емкость резонатора, полоса частот перестройки достигает $\Delta f = 40\% f_{cn}$.

Вывод. В радиолокационной аппаратуре в качестве мощных генераторов СВЧ колебаний используются электровакуумные приборы - магнетроны. Особенность их колебательной системы заключается в том, что она состоит из множества резонаторов, которые представляют собой сочетание щели и цилиндрического отверстия. Существует возможность перестройки полосы частот магнетрона до 40%.

17. Электромагнитные волны над земной поверхностью.

1. Формула идеальной радиопередачи

Пусть источником электромагнитной волны является антенна. Известны: излучаемая мощность P; нормированная характеристика направленности $F(\theta)$ и коэффициент направленного действия D. Требуется определить напряженность поля E(M) в точке наблюдения M, находящейся в дальней зоне.

максимальную напряженность поля $E_{{\it макс}}(M_0)$ в точке M_0 на расстоянии r от антенны.

Формула идеальной радиопередачи **применим**а для расчета амплитуды напряженности поля в реальной атмосфере **при выполнении следующих условий.**

- 1. Длина волны электромагнитных колебаний находится в пределах $(0,03...0,05) < \lambda < (5...10)$ м.
- 2. Точка наблюдения лежит в области прямой видимости.
- 3. Антенна имеет узкую диаграмму направленности и ориентирована так, что не облучает землю (остронаправленные антенны).

2. Область, существенная для распространения радиоволн. Зоны **Френеля**

Областью существенной для распространения радиоволн из точки A в точку M называется область, охватывающая отрезок прямой AM и обладающая тем свойством, что тело достаточно больших размеров, непрозрачное для радиоволн, находясь внутри этой области, оказывает существенное влияние на значение напряженности поля в точке M и такое же тело вне этой области оказывает несущественное влияние на напряженность поля в точке M.

Для любой плоскости S,

перпендикулярной линии AM существует участок S_0 в виде круга (первая зона Френеля), который является существенным для распространения радиоволн, поскольку через этот участок проходит большая часть энергии волны. Радиус участка определяется по формуле

$$R = \sqrt{\frac{\lambda r_o \rho_o}{2(r_o + \rho_o)}}$$
 (7)

распространения радиоволн представляет собой эллипсоид вращения, в одном фокусе которого находится антенна, а в другом — точка наблюдения (рис. 9). Размер поперечного сечения эллипсоида можно определить по формуле (7).

Тело, непрозрачное для радиоволн,

излученной антенной A, окажет существенное влияние на напряженность поля в точке наблюдения M если: оно полностью или частично находится внутри существенной области;

Выводы:

- 1.) При распространении радиоволн между антенной и точкой находится область существенная для распространения радиоволн. Сечение этой области картинной плоскостью образует окружность, которая называется первой зоной Френеля.
- 2.) Радиус первой зоны Френеля увеличивается с увеличением длины волны и максимален в точке равноудаленной от антенны и точки наблюдения.

4. Постановка задачи и ее решение при отражении радиоволн от плоской земной поверхности

Известны: P — мощность излучения;

D - KHД;

 $F(\theta)$ – нормированная характеристика направленности;

 λ – длина волны;

 ε_3 , μ_3 , σ_3 , — электрические параметры земли; положение и ориентация антенны;

поляризация;

положение точки наблюдения.

Требуется определить комплексную амплитуду напряженности поля волны, отраженной от земли в точке наблюдения M (рис. 1).

$$\vec{E}_{omp}(M') = \frac{\sqrt{60*P*D}}{\rho} *P(M')*F(M')*e^{-ik\rho}\vec{l}^{o}$$

$$\vec{E}_{omp}(M) = \sqrt{60PD} *P(M'_{cm})*F(M'_{cm})*\frac{e^{-ik(\rho_{o}+r_{o})}}{\rho_{o}+r_{o}}\vec{l}_{cm}^{o}$$
(4)

где F(M') - значение характеристики направленности в направлении на точку M' .

P(M') коэффициент отражения в точке M'.

 $M_{\it cm}^\prime$ - точка стационарной фазы;

(6)

 $l'^o{}_{cm}$ - единичный вектор, направленный вдоль вектора $\vec{E}_{omp}(M'_{cm})$.

Выводы:

- 1.) Поле отраженной волны определяется по формуле идеальной радиопередачи с учетом умножения на коэффициент отражения.
 - 2.) Волна, отраженная от плоской земной поверхности сферическая.

4. Область, существенная для отражения радиоволн

Рассмотрим неровность на отражающей поверхности (выступ)

Выводы:

- 1. Область существенная для отражения представляет собой часть отражающей поверхности, ограниченной эллипсом. Внутри эллипса лежит точка отражения.
 - 2. Положение и размеры эллипса зависят от положения источника радиоволн и точки наблюдения относительно отражающей поверхности и друг друга.
 - 3. Неровности отражающей поверхности оказывают существенное влияние, если их высота удовлетворяет неравенству (8), и они располагаются в пределах существенной области, а также, если они занимают на существенной области площадь, соизмеримую с

ее размерами. Если хотя бы одно из этих условий не выполняется, то землю можно считать плоской.

Выводы: Напряженность поля в точке наблюдения образованная прямой и отраженной волной зависит от:

- характеристики направленности антенны,
- коэффициента отражения от земной поверхности,
- от отношения высоты антенны и длины волны.

1. Отражательные формулы и область их применения

$$\vec{E} = \frac{\sqrt{60PD}}{r} \sqrt{F^2(\theta) + \left|P\right|^2 F^2(\theta_2) + 2\left|P\right| F(\theta) F(\theta_2) \cos(\frac{4\pi h_a}{\lambda} \sin\theta + \arg P)} \quad \vec{l}_1^{0}$$

$$\vec{E} = \frac{\sqrt{60PD}}{r} F(\theta) \sqrt{1 + |P|^2 + 2|P|\cos(\frac{4\pi h_a}{\lambda}\sin\theta + \arg P)} \vec{l}_1^{0}. \quad (7)$$

$$\vec{E} = \frac{2\sqrt{60PD}}{r} F(\theta) \sin(\frac{2\pi h_a}{\lambda}\sin\theta) \vec{l}_1^{0}. \quad (8)$$

Выводы:

Отражательные формулы применимы для расчета напряженности поля в реальных условиях, если выполняются следующие требования.

Точка наблюдения находится в пределах области прямой видимости относительно антенны.

Длина волны $\lambda > 3...5$ см, когда можно пренебречь ослаблением и рассеянием радиоволн в тропосфере.

Высота антенны $h_a >> \lambda$ и расстояние между антенной и точкой наблюдения $r>>h_a$

Угол возвышения точки наблюдения удовлетворяет

неравенству
$$\theta > \frac{0.5...0.7}{\sqrt{\pi a/\lambda}}$$
, где a – радиус земли. В пределах области существенной д

В пределах области существенной для отражения, неровности

земной поверхности
$$\Delta h$$
 достаточно малы, т.е. $\Delta h \leq \frac{\lambda}{8 \sin \theta}$.

Удовлетворяются требования, соответствующие случаям А и Б

(\Rightarrow ширина диаграммы направленности антенны больше чем $\theta_2 + \theta_1$, диаграмма симметрична и ее максимум направлен параллельно земле; ⇒

$$\theta \le 45...60^0 \text{ H} |P| \approx 1, \ arg P \approx \pi$$
).

7. Влияние Земли на характеристику направленности антенны

Выводы:

Земля оказывает влияние на XH антенны, если она облучается главным лепестком.

За счет влияния земли диаграмма направленности антенны приобретает многолепестковый характер. Причем провалы в диаграмме достигают нулевого уровня, если земля облучается главным лепестком.

В направлении линии горизонта характеристика направленности равна нулю, что затрудняет обнаружение низколетящих целей.

При горизонтальном полете цели в направлении РЛС ее угол места увеличивается. Так как XH имеет многолепестковый характер, это приводит к флуктуации отраженного сигнала.

Направление первого лепестка ДН антенны с учетом влияния земли определяется соотношением (14) при $n\!=\!0$ и зависит от отношения h_a/λ . Чтобы прижать первый лепесток к земле необходимо либо поднимать антенну над поверхностью земли либо уменьшать λ . С другой стороны это приводит к увеличению лепестков ХН или изрезанности ХН.

18. Распространение радиоволн в атмосфере.

Общая характеристика земной атмосферы

Тропосфера — нижний слой атмосферы высотой 10-12 км над поверхностью земли. Представляет смесь газов средняя плотность которых убывает с высотой. За счет нагрева и охлаждения газов землей они перемещаются во всех направлениях, но преимущественно в вертикальном.

Молекулы воды обладают электрическими моментами, а молекулы кислорода - магнитными. При взаимодействии электромагнитной волны с молекулами веществ атмосферы наблюдаются потери. Они существенны в коротковолновой части сантиметрового и в миллиметровом диапазонах.

Наибольшее влияние на PPB оказывают осадки в виде дождей, особенно на частотах выше $8-10~\Gamma\Gamma$ ц (λ < 3,75 см). На более низких частотах потерями в гидрометеорах пренебрегают.

2. Луч в среде с переменным значением показателя преломления Выводы:

- произведение высоты точки наблюдения от центра земли на показатель преломления тропосферы в этой точке и на синус угла падения величина постоянная;
- при увеличении высоты точки наблюдения показатель преломления тропосферы уменьшается, следовательно, угол падения увеличивается, что приводит к искривлению траектории луча в сторону земли.

2.1. Рефракция радиоволн в тропосфере Выводы.

- 1. Радиус кривизны луча обратно пропорционален градиенту коэффициента преломления и углу ϕ .
- 2. Наибольшему искривлению подвергаются лучи, посланные под малым углом к горизонту ($\phi \approx \pi/2$).
- 3. При вертикальном направлении луча он прямолинеен.

Если $\varphi \approx \pi/2$, что наиболее вероятно для практики, ρ =25000 км. Таким образом, радиус луча оказывается больше радиуса земли. Из уравнения (6.8) следует, что

$$ho > 0$$
 если $\frac{dn}{dh} < 0$; $ho < 0$ если $\frac{dn}{dh} > 0$.

1. Стандартная рефракция. Это наиболее часто встречающийся на практике случай и поэтому он используется в расчетах (рис. 6.4, *a*).

2. Критическая рефракция:

Луч имеет такой же радиус кривизны, как и поверхность земли, поэтому он распространяется "параллельно" земле (рис. 6.4, δ). Эквивалентная поверхность земли - плоскость.

3. Сверхрефракция:

Лучи, посланные под небольшим углом, многократно отражаются от земли. Это явление получило название атмосферного волновода. Оно приводит к сверхдальнему распространению УКВ. Это бывает летом над сушей в вечерние часы и над морем, когда воздух движется в приземном слое с суши на море. Явление это эпизодическое.

Выводы:

- * Радиус кривизны луча уменьшается при увеличении модуля градиента коэффициента преломления и наибольшему искривлению подвергаются лучи, посланные под малым углом к горизонту ($\phi \approx \pi/2$).
- * При вертикальном направлении луча, радиус кривизны равен бесконечности, т.е. луч прямолинеен.
- * Стандартная рефракция это наиболее часто встречающийся на практике случай.
- * Критическая рефракция и сверхрефракция возникают редко, когда температура воздуха растет с высотой.

2. Ослабление напряженности поля радиоволн в атмосфере

2.1. Ослабление радиоволн в газах

При распространение радиоволн короче 3-4 см (f>7-10 $\Gamma\Gamma$ ц) в земной атмосфере происходит ослабление поля за счет поглощения в газах.

Выволы:

- * в диапазоне частот 10 до 200 ГГц наблюдается увеличение погонного ослабления;
- * водяной пар имеет полосы поглощения с центрами вблизи частот 22, 183 и 320 ГГц, а кислород 60 и 120 ГГц.

2.2. Ослабление радиоволн в осадках

Выводы:

- ослабление в дожде увеличивается с увеличением частоты и интенсивности дождя;
- ослабление в тумане и облаках увеличивается с увеличением частоты, водности и с уменьшением температуры.
 - 3. Распространение радиоволн в ионосфере
 - **3.1.** Влияние ионосферы на распространение радиоволн Выводы:
- * с увеличением частоты параметры ионосферы стремятся к параметрам свободного пространства $\mathcal{E} \to 1$, $\sigma \to 0$, и убывает коэффициент затухания α ;
- * увеличение частоты приводит к увеличению высоты точки отражения. Дальнейшее увеличение частоты приведет к тому, что рефракция станет отрицательной и луч на землю не возвратится.

3.2. Особенности распространения дециметровых и сантиметровых волн

Радиоволны дециметрового и сантиметрового диапазонов от ионизированной области атмосферы не отражаются и в ней не рассеиваются. Волны этих диапазонов распространяются на небольшие расстояния над поверхностью Земли как земные, а на большие — как тропосферные, главным образом, за счет рассеяния на неоднородностях тропосферы и в меньшей степени за счет направляющего действия тропосферных волноводов.

3.3. Особенности распространения миллиметровых волн

На условия распространения миллиметровых волн ионосфера, естественно, совершенно не влияет. Тропосфера вызывает явление атмосферной рефракции, т. е. искривление траектории распространяющихся в ней миллиметровых волн. Гидрометеоры в виде дождя, тумана, града, снега и т. д. вызывают весьма значительное поглощение. Миллиметровые волны испытывают сильное молекулярное поглощение в газах, входящих в состав тропосферы, в первую очередь, в водяных парах и в кислороде воздуха.

Широкое применение миллиметровые волны нашли в космических линиях связи, вне тропосферы, в условиях отсутствия гроз и водяных паров.

3.4. Особенности распространения радиоволн оптического диапазона

Сильный дождь, снегопад и особенно туман полностью нарушают прохождение электромагнитных волн оптического диапазона в тропосфере. Существенное поглощение волн этого диапазона вызывают дымка и сильная мгла, значительно снижая дальность распространения.

При отсутствии осадков связь на волнах оптического диапазона как земных волнах возможна только в интервале от 0,4 до 20 км, притом только в пределах «окон» прозрачности. При использовании оптических радиоволн в качестве средства связи имеет смысл применять их в тех районах земного шара, где осадки наблюдаются крайне редко. Волны этого диапазона в полной мере пригодны для космической связи и радиолокации, вне пределов тропосферы.