CS100433 Part III Rendering Rasterization

Junqiao Zhao 赵君峤

Department of Computer Science and Technology
College of Electronics and Information Engineering
Tongji University

The graphics pipeline

Vector Graphics

- Algebraic equations describe shapes.
- Can render type and large areas of color with relatively small file sizes
- Can be reduced/enlarged with no loss of quality
- Cannot show continuous tone images (photographs, color blends)
- Examples:
 - Plotters, Oscilloscopes,
 - Illustrator, Flash, PDF

Raster Graphics

- Pixel-based / Bit-mapped graphics
- Grid of pixels
- Size of grid = resolution of image
- Poor scalability: zoom in loss of quality (jagged look)
- Best for large photographic images
- Modification at pixel level texture mapping, blending, alpha channels, antialiasing, etc.
- Examples :
 - CRT, LCD, Dot-matrix printers
 - Adobe Photoshop, BMP

The Display Hardware

Cathode Ray Tube (CRT)

(Wikipedia)

The Display Hardware

Liquid-crystal display (LCD)

Frame Buffer Model

- Raster Display: 2D array of picture elements (pixels)
- Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices
- Pixel colors determined later using color, texture, and other vertex properties

(Durand and Cutler MIT)

Rasterization

- Geometric primitives (point, line, polygon, circle, polyhedron, sphere...)
- Primitives are continuous; screen is discrete
- Scan Conversion: algorithms for efficient generation of the samples comprising this approximation

Rasterization

Rasterization

- = Scan Conversion
- = Converting a continuous object such as a line or a circle into discrete pixels.

Rasterization

- First job: enumerate the pixels covered by a primitive
 - simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices

Primitives to be Rasterized

- Points
- Line segments
 - and chains of connected line segments
- Triangles
- And that's all!
 - Curves? Approximate them with chains of line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - simple, uniform, repetitive: good for parallelism

Rasterize Points

- How?
- Rules

Rasterize Lines

- Given:
 - Segment endpoints (integers x1, y1; x2, y2)
- Identify:
 - Set of pixels (x, y) to display for segment

		_		_	_		_		_	_	_	_		_	_	_	_	_
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	(+)	72	+	y 2	4 -)	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	,	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	O	#	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	()	1	+ ,	1	11	+	+	+	+	+	+	+	+	+	+	+	+	+
+	V	+	J +	y +	• •	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

(Durand and Cutler MIT)

Requirements

- Transform continuous primitive into discrete samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

Comparison

Think about?

- Assume:
 - $m = \frac{dy}{dx}$, 0 < m < 1
 - x2 > x1
- One pixel per column
 - Fewer -> disconnected
 - More -> thick

(Durand and Cutler MIT

Think about?

- Note: brightness can vary with slope
 - What is the maximum variation?
- How can we compensate for this?
 - Antialiasing

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

(Durand and Cutler MIT)

The naive method

- Simply compute y as a function of x
 - Conceptually: move vertical scan line from x1 to x2 $\Delta x = 1$
 - What is the expression of y as function of x?
 - Set pixel (x, round (y(x)))

$$\bullet \ y = y1 + m(x - x1)$$

•
$$m = \frac{dy}{dx}$$

(Durand and Cutler MIT)

Improvement

- Computing y value is expensive
 - $y_i = y1 + m(x_i x1)$
 - $m = \frac{dy}{dx}$
- Observe:
 - $\bullet \ y_i = y1 + m(x_i x1)$
 - $y_{i+1} = y1 + m(x_i + \Delta x x1)$ = $y_i + m\Delta x$
- In each step, y += m, x += 1!

(Durand and Cutler MIT)

DDA (Digital Difference Analyzer)

- Select pixel vertically closest to line segment
 - intuitive, efficient,
 - pixel center always within 0.5 vertically

DDA pseudo code

```
For (x=x1; x<=x2,x++) {
   y+=m;
SetPixel(x, round(y));
}</pre>
```

How to solve general cases?

- \bullet Previously, we assumed x2 > x1 , 0 < m < 1
- E.g. When $x^2 < x^2$? when m > 1?

Use Symmetry

- For m > 1, swap role of x and y
 - For each y, plot closest x

$$\bullet \ x_{i+1} = x_i + \frac{1}{m}$$

DDA pseudo code

```
dx = x2-x1;dy = y2-y1;
If |dx| > |dy| then step = dx else step =
dy;
For(i=0; i<step,i++) {
    x+=dx/steps;
    y+=dy/steps;
    SetPixel(round(x), round(y));
}</pre>
```

Bresenham's algorithm

- The short comings of DDA
 - Floating point arithmetic
 - Round operation
- Observe again:
 - If we're at pixel $P(x_p, y_p)$, the next pixel must be
 - either E $(x_p + 1, y_p)$ or
 - NE $(x_p + 1, y_p + 1)$
 - Why?

Candidate Pixels

Candidate Pixels

The decision function

The decision parameter

- If *a* < *b*
 - Then upper pixel
- If a > b
 - Then lower pixel

•
$$a = (y_k+1) - y = y_k + 1 - m(x_k+1) - b$$

•
$$b = y - y_k = m(x_k + 1) + b - y_k$$

•
$$let d = \Delta x(b - a) = 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

d is an integerd > 0 use upper pixeld < 0 use lower pixel

Bresenham's algorithm

- Further observation:
- $d_k = 2\Delta y \cdot x_k 2\Delta x \cdot y_k + c$
- $d_{k+1} = 2\Delta y \cdot x_{k+1} 2\Delta x \cdot y_{k+1} + c$
- $d_{k+1} d_k = 2\Delta y \cdot (x_{k+1} x_k) 2\Delta x \cdot (y_{k+1} y_k)$
- Here:
 - $x_{k+1} x_k = 1$, if 0 < m < 1
 - $y_{k+1} y_k = 0$ or 1, depending on the sign of d_k
 - $d_0 = 2\Delta y \Delta x$ (substitute y_0 to d_k)

Bresenham's algorithm

- Given x₁, y₁, x₂, y₂
- Calculate Δx , Δy
- $d_0 = 2\Delta y \Delta x$
- SetPixel(x_0, y_0)
- At each x_k , k starts from k=0, do $\Delta x 1$ steps
 - If $d_k > 0$, SetPixel($x_k + 1$, $y_k + 1$) and $d_{k+1} = d_k + 2\Delta y 2\Delta x$
 - If d_k <0, SetPixel(x_k +1, y_k) and $d_{k+1} = d_k + 2\Delta y$

Mid-point algorithm

• Similar to Bresenham's

• But can be easily extended!

Curve

- Take Circle as an example
- Generate pixels for 1/8 octant only
- Slope progresses from 0 →1
- Analog of Bresenham's Algorithm

Midpoint Circle Algorithm

• Decision Function:

- $d_k = D(x_k + 1, y_k 0.5) = (x_k + 1)^2 + (y_k 0.5)^2 r^2$
- If $d_k < 0$, the mid point is inside the circle, choose upper

- If $d_k > 0$, the mid point is outside the circle, choose lower
- If $d_k = 0$, the mid point is on the circle, choose lower

Midpoint Circle Algorithm

Observation

•
$$d_{k+1} = D(x_{k+1} + 1, y_{k+1} - 0.5) = (x_{k+1} + 1)^2 + (y_{k+1} + 0.5)^2 - r^2$$

•
$$d_{k+1} = d_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

• y_{k+1} is either y_k or y_{k-1} , depending on the sign of d_k

On each iteration:

•
$$x += 1$$

•
$$d_k += 2x_{k+1} + 1$$
 if $d_k < 0$

•
$$d_k += 2x_{k+1} + 1 - 2y_{k+1}$$
 if $d_k > 0$

• Questions?

Rasterize Polygons

Scan Conversion = Fill Polygons

(Durand and Cutler MIT)

Brute force solution

- 1. Enumerate all the pixels
- 2. Test whether a pixel is inside of the polygon
- 3. If inside then draw the pixel

But how to know if a pixel is inside or not?

- Simplest polygon
- how to know if a pixel is inside or not?
- "clip" against the triangle

- Problem?
- A lot of use less computation when the triangle is small
- Always the case

- Improvement
- Bounding box of the triangle
- Only compute the enclosed pixels

- However, we have to compute the line equations which are expensive
- Take the advantage of line rasterization

- However, we have to compute the line equations which are expensive
- Take the advantage of line rasterization

- Compute the boundary pixels
- Fill the spans
- How?
 - Draw edges vertically
 - Fill in horizontal spans for each scanline
- Take advantage of spatial coherence
- Take advantage of edge linearity

- How about this?
- The line changes at one vertex
- One way is to split
- Why?

• Questions?

Inside or outside test

- How to know if a pixel/point is inside of a polygon or not?
 - Triangle method works only for convex ones

Various polygons

Can be messy!

Inside polygon rule

• Odd-Even rule

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```
flood_fill(int x, int y) {
    if(read_pixel(x,y) = = WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
}
```

Inside polygon rule

- Odd-parity rule
 - Set parity even
 - Invert parity at each intersection
 - Draw pixels when parity if odd

Triangulation

- Rasterization algorithms can take advantage of triangle properties
- Graphics hardware is optimized for triangles
- Because triangle drawing is so fast, many systems will subdivide polygons into triangles prior to scan conversion
- How?

Triangulation

Ear-clipping

Trapezoid decomposition

Interpolation of attributes

- Rasterizer does not only select pixels
- Attributes are interpolated during rasterization
 - Depth
 - Color
 - Texture coords
 - Many others

Linear interpolation

- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

(2013 Steve Marschner)

Interpolation for triangles

- Barycentric coordinates
- Or just interpolation while filling spans

Using Interpolation

 C_1 C_2 C_3 specified by **glColor** or by vertex shading C_4 determined by interpolating between C_1 and C_3 C_5 determined by interpolating between C_2 and C_3 interpolate between C_4 and C_5 along span

Anti-aliasing

- Why?
- What is aliasing?
 - Discretization artefacts of continuous shapes

(2013 Steve Marschner)

Aliasing

- Rasterizing lines
 - We sample the line by just selecting or ignoring pixels

(2013 Steve Marschner)

Point sampling in action

Aliasing

- The lines have stair steps and variations in width
- Sharp edges of line contain high frequencies

Antialiasing

- On bitmap devices this can not be avoid
 - We need high resolution
 - 600+ dpi in printers
- On continuous-tone devices they can be alleviate

Antialiasing

- Basic idea: replace "is the image black at the pixel center?" with "how much is pixel covered by black?"
- Replace yes/no question with quantitative question.

(2013 Steve Marschner)

Box filtering

- Compute coverage fraction by counting subpixels
- Simple, accurate
- Slow
- Unweighted filtering

Box filtering in action

Weighted filtering

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

Xiaolin Wu's line algorithm

- Bresenham's algorithm draws lines extremely quickly, but it does not perform anti-aliasing
- The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line.

References

- Ed Angel, CS/EECE 433 Computer Graphics, University of New Mexico
- Cutler and Durand, MIT EECS 6.837
- Steve Marschner, CS4620/5620 Computer Graphics, Cornell
- Tom Thorne, COMPUTER GRAPHICS, The University of Edinburgh
- Elif Tosun, Computer Graphics, The University of New York

• Questions?