# PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

LECTURE SLIDES Lecture 13 (September 02, 2019)

### Functions of Random Variables: Technique 1

Example 1: Let  $X_1$  and  $X_2$  be *i.i.d.* U(0, 1) random variables. Find the CDF of  $Y = X_1 + X_2$ .

Example 2: Let the JPDF of  $(X_1, X_2)$  be given by

$$f_{X_1, X_2}(x_1, x_2) = \begin{cases} e^{-x_1} & \text{if } 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find the JCDF of  $Y_1 = X_1 + X_2$  and  $Y_2 = X_2 - X_1$ .

## Functions of RVs: Technique 2 for DRV

Theorem: Let  $X = (X_1, X_2, ..., X_n)$  be a DRV with JPMF  $f_X$  and support  $S_X$ . Let  $g_i : \mathbb{R}^n \to \mathbb{R}$  for all i = 1, 2, ..., k. Let  $Y_i = g_i(X)$  for i = 1, 2, ..., k. Then  $Y = (Y_1, ..., Y_k)$  is a DRV with JPMF

$$f_{\mathbf{Y}}(y_1, \ldots, y_k) = \begin{cases} \sum_{\mathbf{x} \in A_{\mathbf{y}}} f_{\mathbf{X}}(\mathbf{x}) & \text{if } (y_1, \ldots, y_k) \in S_{\mathbf{Y}} \\ 0 & \text{otherwise,} \end{cases}$$

where  $A_{\mathbf{y}} = \{ \mathbf{x} \in S_{\mathbf{X}} : g_i(\mathbf{x}) = y_i, i = 1, ..., k \}$  and  $S_{\mathbf{Y}} = \{ (g_1(\mathbf{x}), ..., g_k(\mathbf{x})) : \mathbf{x} \in S_{\mathbf{X}} \}.$ 

#### Functions of RVs: Technique 2 for DRV

Example 3:  $X_1 \sim P(\lambda_1)$  and  $X_2 \sim P(\lambda_2)$  and they are independent. Then  $X_1 + X_2 \sim P(\lambda_1 + \lambda_2)$ .

Example 4:  $X_1 \sim Bin(n_1, p)$  and  $X_2 \sim Bin(n_2, p)$  and they are independent. Then  $X_1 + X_2 \sim Bin(n_1 + n_2, p)$ .

Example 5:  $X_i \sim Bin(n_i, p)$ , i = 1, 2, ..., m and  $X_i$ 's are independent. Then  $\sum_{i=1}^m X_i \sim Bin(\sum_{i=1}^m n_i, p)$ .

## Functions of RVs: Technique 2 for CRV

- Theorem: Let  $X = (X_1, ..., X_n)$  be a CRV with JPDF  $f_X$ .
  - ① Let  $y_i = g_i(x)$ , i = 1, 2, ..., n be  $\mathbb{R}^n \to \mathbb{R}$  functions such that y = g(x) is one-to-one. That means that there exists the inverse tranformation  $x_i = h_i(y)$ , i = 1, 2, ..., n defined on the range of the transformation.
  - ② Assume that both the mapping and its' inverse are continuous.
  - 3 Assume that partial derivatives  $\frac{\partial x_i}{\partial y_j}$ , i = 1, 2, ..., n, j = 1, 2, ..., n, exist and are continuous.
  - Assume that the Jacobian of the inverse transformation

$$J \doteq \det \left( \frac{\partial x_i}{\partial y_j} \right)_{i,j=1,2,\ldots,n} \neq 0$$

on the range of the transformation.

Then  $Y = (g_1(X), \ldots, g_n(X))$  is a CRV with JPDF

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h_1(\mathbf{y}), \ldots, h_n(\mathbf{y}))|J|.$$

