Struktur Diskrit

Fungsi

Nurdin Bahtiar, MT

Pengingat

Bahan Kuliah

- 3.1. Fungsi
- 3.2. One-to-One (Injunction)
- 3.3. Fungsi Naik / Fungsi Turun
- 3.4. Onto (Surjection)
- 3.5. Bijection
- 3.6. Fungsi Invers
- 3.7. Composition
- 3.8. Graph of the Function
- 3.9. Fungsi Floor & Ceiling
- 3.10. Sequence
- 3.11. Geometric Progression
- 3.12. Arithmetic Progression
- 3.13. Recurrence Relation
- 3.14. Fibonacci Sequence
- 3.15. Summations

- Dalam beberapa kasus, kita dapat saja memasangkan suatu elemen himpunan dengan elemen himpunan lain. Misalnya digambarkan bahwa nilai mata kuliah Metode Diskrit dilambangkan dengan himpunan {A, B, C, D, F}.
- Dikatakan bahwa Adams mendapatkan nilai A, Chou mendapatkan nilai C, Goodfriend mendapatkan nilai B, Rodriguez mendapatkan nilai A, dan Stevens mendapatkan nilai F.

Gambar 3.1 Pemetaan mahasiswa dengan nilai mata kuliah Metode Diskrit

- Misalkan A dan B himpunan tak kosong. Sebuah fungsi f dari A ke B adalah sebuah pemetaan dari tepat satu elemen dari B ke setiap elemen A. Ditulis dengan f(a) = b jika b adalah elemen tunggal dari B ditandai oleh fungsi f ke elemen a dalam A.
- \Box Jika f merupakan fungsi dari A ke B, ditulis dengan:

$$f: A \rightarrow B$$

☐ Kadang fungsi disebut juga dgn *Mapping* atau *Transformations*.

Gambar 3.2. Fungsi f yang memetakan A ke B

A disebut domain

B disebut codomain

a disebut preimage

b disebut image atau range (jangkauan).

Contoh 1

□ Apakah **domain**, **codomain**, dan **jangkauan** dari fungsi yang memberikan nilai kepada siswa dari contoh yang dijelaskan di atas?

Jawab:

- ☐ Misalkan G adalah fungsi yang memberikan nilai untuk siswa di kelas Struktur Diskrit.
- ☐ Perhatikan bahwa misalnya G (Adams) = A.

Domain G adalah himpunan {Adams, Chou, Goodfriend, Rodriguez, Stevens}, **codomain**-nya adalah himpunan {A, B, C, D, F}. **Jangkauan** G adalah himpunan {A, B, C, F}, karena setiap nilai tersebut (kecuali D) telah ditetapkan untuk siswa.

Contoh 2

Misalkan R adalah relasi seperti: (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22), (Eddie, 24), dan (Felicia, 22). Di sini setiap pasangan terdiri dari seorang mahasiswa pascasarjana dan usianya. Tentukan fungsi dari relasi tersebut.

- Jika f adalah fungsi yang ditentukan oleh R, maka f (Abdul) = 22, f (Brenda) = 24, f (Carla) = 21, f (Desire) = 22, f (Eddie) = 24, dan f (Felicia) = 22. (Dimana f(x) adalah usia x, dan x adalah seorang mahasiswa.)
- Untuk **domain**, kita mengambil himpunan {Abdul, Brenda, Carla, Desire, Eddie, Felicia}. Kita juga perlu menentukan codomain, yang mengandung semua kemungkinan usia siswa. Karena sangat memungkinkan bahwa semua siswa berusia kurang dari 100 tahun, maka kita dapat mengambil himpunan bilangan bulat positif kurang dari 100 sebagai **codomain**. (Kita juga bisa memilih codomain yang berbeda, seperti himpunan semua bilangan bulat positif atau himpunan bilangan bulat positif antara 10 dan 90, tetapi itu akan mengubah fungsi. Menggunakan codomain ini juga akan memungkinkan kita untuk memperluas fungsi dengan menambahkan nama dan usia lebih banyak siswa nantinya.) **Rentang** fungsi yang telah kami tentukan adalah himpunan berbagai usia dari para siswa ini, yang merupakan himpunan {21, 22, 24}.

Contoh 3

- \square Misal f adalah fungsi yang menyatakan dua bit terakhir dari string bit dengan panjang 2 atau lebih ke string tersebut.
- Sebagai contoh, f(11010) = 10. Sehingga, **domain** dari f adalah himpunan semua string bit dengan panjang 2 atau lebih, dan **codomain** maupun **range**-nya adalah himpunan $\{00, 01, 10, 11\}$.

Contoh 4

Misal $f: Z \to Z$ yang menetapkan kuadrat bilangan bulat ke bilangan bulat. Kemudian, $f(x) = x^2$, dimana **domain** f adalah himpunan semua bilangan bulat, **codomain** f adalah himpunan semua bilangan bulat, dan **range** f adalah himpunan semua bilangan bulat yang merupakan kuadrat sempurna, yaitu, $\{0, 1, 4, 9, \ldots\}$.

Misalkan f_1 dan f_2 merupakan fungsi dari A ke R. Kemudian $f_1 + f_2$ dan f_1 . f_2 juga merupakan fungsi dari A ke R, didefinisikan $x \in A$ dengan:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$$

Contoh 5

 \square Misal f_1 dan f_2 menjadi fungsi dari R ke R yaitu:

$$f_1(x) = x^2 \operatorname{dan} f_2(x) = x - x^2$$
.

Bagaimana hasil dari fungsi $f_1 + f_2$ dan $f_1 \cdot f_2$?

Pembahasan:

dan

$$\Box$$
 $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x) = x^2 (x - x^2) = x^3 - x^4$

3.2. One-to-One (Injunction)

- Suatu fungsi yang tidak memberi nilai yang sama pada dua elemen domain yang berbeda disebut fungsi satu-ke-satu (*one-to-one*).
- Fungsi f dikatakan one-to-one (injunction) jika dan hanya jika f(a) = f(b) menyiratkan bahwa a = b untuk semua a dan b dalam domain fungsi f.
- ☐ Suatu fungsi dikatakan *injective* jika fungsi tersebut *one-to-one*.

Gambar 3.3. Fungsi one-to-one

3.3. Fungsi Naik / Fungsi Turun

- Suatu fungsi f yang domain dan codomain-nya merupakan subset dari himpunan bilangan real dikatakan **fungsi naik** jika $f(x) \le f(y)$ dan naik tajam jika f(x) < f(y), dengan x < y serta x dan y merupakan domain f.
- Sedangkan suatu fungsi f dikatakan **fungsi turun** jika $f(x) \ge f(y)$ dan turun tajam jika f(x) > f(y), dengan x > y serta x dan y merupakan domain f.

3.4. Onto (Surjection)

- Suatu fungsi f dari A ke B dikatakan onto (surjection) jika dan hanya jika untuk setiap elemen $b \in B$ terdapat elemen $a \in A$ dengan f(a) = b.
- \blacksquare Suatu fungsi f dikatakan *surjective* jika fungsi tersebut *onto*.

Gambar 3.4. Fungsi onto

3.4. Onto (Surjection)

Contoh 6

Misalkan f adalah fungsi dari $\{a, b, c, d\}$ ke $\{1, 2, 3\}$ yang didefinisikan dengan f(a) = 3, f(b) = 2, f(c) = 1, dan f(d) = 3. Apakah f merupakan fungsi onto?

Jawab:

 \square Karena ketiga elemen codomain-nya merupakan cerminan dari elemen pada domain, maka dapat disimpulkan bahwa fungsi f tersebut *onto*.

Contoh 7

Apakah fungsi $f(x) = x^2$ dari himpunan bilangan bulat ke sesama himpunan bilangan bulat merupakan fungsi *onto*?

Jawab:

Fungsi f tidak onto, misalnya karena tidak ada bilangan bulat x yang memenuhi $x^2 = -1$.

3.4. Onto (Surjection)

Contoh 8

Apakah fungsi f(x) = x + 1 dari himpunan bilangan bulat ke sesama himpunan bilangan bulat merupakan fungsi onto?

- Fungsi f merupakan fungsi onto karena untuk setiap bilangan bulat y terdapat bilangan bulat x yang menjadikannya f(x) = y.
- Perhatikan bahwa f(x) = y jika dan hanya jika x + 1 = y, dimana: x = y 1.

3.5. Bijection

 \Box Fungsi f dikatakan berkorespondensi satu-satu (one-to-one correspondence), atau bijection, jika fungsi tersebut one-to-one dan onto.

Contoh 9

- Misalkan f fungsi dari $\{a, b, c, d\}$ ke $\{1, 2, 3, 4\}$ yang didefinisikan dengan f(a) = 4, f(b) = 2, f(c) = 1, dan f(d) = 3.
- \square Apakah f merupakan fungsi *bijection*?

Jawab:

Fungsi f memiliki sifat one-to-one dan onto. Ia one-to-one karena tidak ada dua nilai pada domain yang memiliki nilai yang sama, serta onto karena keempat elemen dari codomain menggambarkan elemen pada domain. Oleh karena itu, fungsi f merupakan fungsi bijection.

Summary

Summary

Catatan pengingat:

- → Fungsi → Kiri habis dan hanya memiliki satu panah.
- ☐ Injective (One-to-one) → Kanan hanya ditunjuk oleh satu panah.
- □ Surjective (Onto) → Kanan habis.
- ☐ Bijective → Injective & Surjective.

3.6. Fungsi Invers

- \square Misalkan f adalah fungsi *one-to-one* dari himpunan A ke B.
- Fungsi **invers** dari f adalah fungsi yang memberi nilai ke elemen b milik B, elemen unik a dalam A dengan f(a) = b.

Gambar 3.5. Fungsi f^{-1} merupakan invers dari fungsi f.

3.6. Fungsi Invers

Contoh 10

 \square Misalkan f adalah fungsi dari $\{a, b, c\}$ ke $\{1, 2, 3\}$ yang didefinisikan dengan:

$$f(a) = 2$$
, $f(b) = 3$, $f(c) = 1$

Apakah fungsi *f invertible* (memiliki *invers*)? Jika iya, bagaimana hasil *inverse*-nya?

- ☐ Fungsi *f invertible* karena berkorespondensi satu-ke-satu (*one-to-one correspondence*).
- \square Invers fungsi f^{-1} reverse korespondensi yang diberikan oleh f sehingga menjadi:

$$f^{-1}(1) = c, f^{-1}(2) = a, \text{ dan } f^{-1}(3) = b$$

3.6. Fungsi Invers

Contoh 11

☐ Misalkan f adalah fungsi dari R ke R dengan $f(x) = x^2$. Apakah fungsi f invertible? Jika iya, bagaimana hasil inverse-nya?

- Karena f(-2) = f(2) = 4, maka f bukan fungsi *one-to-one*. Jika fungsi *inverse* didefinisikan, maka dapat mengisi nilai dua elemen menjadi 4.
- \Box Oleh karena itu, f tidak invertible.

3.7. Composition

Misalkan g adalah fungsi dari himpunan A ke himpunan B dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi dari fungsi f dan g, untuk setiap $a \in A$ dilambangkan dengan f o g, dan didefinisikan:

$$(f \circ g)(a) = f(g(a))$$

Gambar 3.6. Komposisi dari fungsi f dan g.

3.7. Composition

Contoh 12

- Misalkan g adalah fungsi dari himpunan $\{a, b, c\}$ ke dirinya sendiri dengan g(a) = b, g(b) = c, dan g(c) = a.
- Misalkan f adalah fungsi dari himpunan $\{a, b, c\}$ ke himpunan $\{1, 2, 3\}$ dengan f(a) = 3, f(b) = 2, dan f(c) = 1.
- Bagaimana hasil komposisi dari f dan g, serta komposisi dari g dan f?

Jawab:

 \square Komposisi dari $f \circ g$ didefinisikan oleh:

$$(f \circ g)(a) = f(g(a)) = f(b) = 2,$$

 $(f \circ g)(b) = f(g(b)) = f(c) = 1, \text{ dan}$
 $(f \circ g)(c) = f(g(c)) = f(a) = 3.$

Sedangkan *g* o *f* tidak dapat terdefinisi karena range dari *f* bukan merupakan subset dari domain *g*.

3.7. Composition

Contoh 13

 \square Misalkan f dan g adalah fungsi dari himpunan bilangan bulat ke sesama himpunan bilangan bulat yang didefinisikan oleh:

$$f(x) = 2x + 3 \operatorname{dan} g(x) = 3x + 2$$

Bagaimana hasil komposisi dari f dan g, serta komposisi dari g dan f?

$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7$$

$$\Box$$
 $(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

3.8. Graph of the Function

☐ Misalkan f adalah suatu fungsi dari himpunan A ke himpunan B. Graph dari fungsi f merupakan himpunan dari pasangan terurut $\{(a, b) \mid a \in A \text{ dan } f(a) = b\}$

Contoh 14

- Gambarkan grafik dari fungsi f(n) = 2n + 1 dari himpunan integer ke sesama himpunan integer!
- Grafik dari fungsi f merupakan himpunan pasangan terurut dari bentuk (n, 2n + 1), dimana n merupakan bilangan bulat. Grafik tersebut digambarkan seperti berikut:

Gambar 3.7. Grafik dari f(n) = 2n + 1 dari Z ke Z

3.8. Graph of the Function

Contoh 15

Gambarkan grafik dari fungsi $f(x) = x^2$ dari himpunan integer ke sesama himpunan integer.

Jawab:

Grafik dari fungsi f merupakan himpunan pasangan terurut dari bentuk $(x, f(x)) = (x, x^2)$, dimana n merupakan bilangan bulat. Grafik tersebut digambarkan seperti berikut:

Gambar 3.8. Grafik dari $f(x) = x^2$ dari Z ke Z

3.9. Fungsi Floor & Ceiling

- Fungsi **floor** menetapkan ke bilangan real x ke integer terbesar yang kurang dari atau sama dengan x. Nilai dari fungsi floor pada x dilambangkan dengan x.
- Fungsi **ceiling** menetapkan ke bilangan real x ke integer terkecil yang lebih besar atau sama dengan x. Nilai dari fungsi ceiling pada x dilambangkan dengan x.

Contoh 16

☐ Berikut merupakan beberapa nilai dari fungsi floor dan ceiling.

$$\lfloor \frac{1}{2} \rfloor = 0, \lceil \frac{1}{2} \rceil = 1, \lfloor -\frac{1}{2} \rfloor = -1, \lceil -\frac{1}{2} \rceil = 0, \lfloor 3.1 \rfloor = 3, \lceil 3.1 \rceil = 4, \lfloor 7 \rfloor = 7, \lceil 7 \rceil = 7.$$

3.9. Fungsi Floor & Ceiling

Contoh 17

Data yang tersimpan pada komputer atau dikirimkan melalui jaringan data biasanya direpresentasikan sebagai string of bytes. Setiap byte terdiri dari 8 bit. Berapa banyak byte yang dibutuhkan untuk mengkodekan 100 bit data?

- ☐ Untuk menentukan jumlah byte yang diperlukan, tentukan integer terkecil yang paling tidak bernilai sama dengan hasil dari 100 dibagi 8, jumlah bit dalam byte.
- □ Jadi, $\lceil 100/8 \rceil = \lceil 12.5 \rceil = 13$ byte dibutuhkan.

3.10. Sequence

Sequence (barisan) merupakan suatu fungsi dari subset himpunan bilangan bulat (biasanya himpunan $\{0, 1, 2, ...\}$ atau himpunan $\{1, 2, 3, ...\}$ ke himpunan S. Dilambangkan dengan a_n .

Contoh 18

- \Box Misalkan $a_n = \frac{1}{n}$.
- List dari sequence tersebut yang dimulai dengan a_1 menjadi a_1 , a_2 , a_3 , a_4 , ... Dimulai dengan $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, ...

3.11. Geometric Progression

☐ **Geometric progression** merupakan sequence dari bentuk:

$$a, ar, ar^2, ..., ar^n, ...$$

dimana **initial term** a dan **common ratio** r merupakan bilangan real.

Contoh 19

□ Sequence: $\{b_n\}$ dengan $b_n = (-1)^n$

 $\{c_n\}$ dengan $c_n = 2 \cdot 5^n$

 $\{d_n\}$ dengan $d_n = 6 \cdot (1/3)^n$

merupakan geometric progression dengan initial term dan common ratio sama dengan 1 dan -1; 2 dan 5; serta 6 dan 1/3.

Berturut-turut jika kita mulai dari n = 0 maka:

- List dari term b_0 , b_1 , b_2 , b_3 , ... dimulai dengan 1, -1, 1, -1, 1, ...
- List dari term c_0 , c_1 , c_2 , c_3 , ... dimulai dengan 2, 10, 50, 250, 1250 ...
- ☐ List dari term d_0 , d_1 , d_2 , d_3 , ... dimulai dengan 6, 2, $\frac{2}{3}$, $\frac{2}{9}$, $\frac{2}{27}$...

3.12. Arithmetic Progression

☐ Arithmetic Progression merupakan sequence dari bentuk:

$$a, a + d, a + 2d, \dots, a + nd$$

dimana initial term a dan common difference d merupakan bilangan real.

Contoh 20

- Sequence $\{s_n\}$ dengan $s_n = -1 + 4n$ dan $\{t_n\}$ dengan $t_n = 7 3n$ keduanya merupakan arithmetic progression dengan initial term dan common difference sama dengan -1 dan 4, serta 7 dan -3, berturutturut jika kita mulai dari n = 0.
- \square List dari term s_0 , s_1 , s_2 , s_3 , ... dimulai dengan -1, 3, 7, 11, ...
- \square List dari term t_0 , t_1 , t_2 , t_3 , ... dimulai dengan 7, 4, 1, -2, ...

3.13. Recurrence Relation

- **Requirence relation** untuk sequence $\{a_n\}$ merupakan persamaan yang mengekspresikan a_n pada term dari satu atau lebih pada term sebelumnya pada sequence, yaitu a_0 , a_1 , ..., a_{n-1} untuk semua integer n dengan $n \ge n_0$ dimana n_0 bukan integer negatif.
- ☐ Sebuah sequence disebut solusi dari relasi rekursif jika persyaratannya memenuhi relasi rekursif.

Contoh 21

 \square Misalkan $\{a_n\}$ menjadi sequence yang memenuhi relasi rekursif:

 $a_n = a_{n-1} + 3$, untuk $n = 1, 2, 3, \dots$, dan misalkan $a_0 = 2$.

Berapa nilai a_1 , a_2 , dan a_3 ?

Jawab:

☐ Kita melihat dari relasi rekursif bahwa:

$$a_1 = a_0 + 3 = 2 + 3 = 5.$$

Kemudian diikuti: $a_2 = 5 + 3 = 8$ dan

$$a_3 = 8 + 3 = 11.$$

3.14. Fibonacci Sequence

■ **Fibonacci sequence** berbentuk: f_0 , f_1 , f_2 , ... didefinisikan dengan initial condition $f_0 = 0$, $f_1 = 1$, dan recurrencce relation: $f_n = f_{n-1} + f_{n-2}$ untuk n = 2, 3, 4, ...

Contoh 22

 \square Temukan angka Fibonacci dari f_2 , f_3 , f_4 , f_5 , dan f_6

$$\Box$$
 $f_2 = f_1 + f_0 = 1 + 0 = 1$

$$\Box$$
 $f_3 = f_2 + f_1 = 1 + 1 = 2$

$$\Box$$
 $f_4 = f_3 + f_2 = 2 + 1 = 3$

$$\Box$$
 $f_5 = f_4 + f_3 = 3 + 2 = 5$

$$\Box$$
 $f_6 = f_5 + f_4 = 5 + 3 = 8.$

3.15. Summations

Notasi penjumlahan merupakan notasi yang digunakan untuk menyatakan jumlah dari term a_m , a_{m+1} , ..., a_n dari sequence $\{a_n\}$. Dinyatakan dengan notasi:

$$\sum_{j=m}^{n} a_j$$
 atau $\sum_{m \le j \le n} a_j$

Dibaca:

Jumlah dari a_i untuk j dari m ke n, untuk merepresentasikan:

$$a_m + a_{m+1} + \dots + a_n$$
.

Di sini, variabel j disebut indeks penjumlahan, dan pilihan huruf j sembarang; dengan kata lain kita bisa menggunakan huruf lain, seperti i atau k. Atau, dalam notasi:

$$\sum_{i=m}^{n} a_{i} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}$$

Di sini, indeks penjumlahan berjalan melalui semua bilangan bulat yang dimulai dengan batas bawah m yang diakhiri dengan batas atas n. Huruf besar huruf Yunani sigma, Σ , digunakan untuk melambangkan **summation**.

3.15. Summations

Contoh 23

Gunakan notasi penjumlahan untuk menyatakan jumlah dari 100 term pertama dari sequence $\{a_j\}$, dimana $a_j = 1/j$ untuk j = 1, 2, 3, ...

Jawab:

☐ Batas bawah untuk indeks penjumlahan adalah 1, dan batas atas adalah 100. Sehingga didapat:

$$\sum_{j=1}^{100} \frac{1}{j}$$

Contoh 24

 \square Berapakah nilai dari $\sum_{i=1}^{5} j^2$?

Pembahasan:

3.15. Summations

Contoh 25

 \square Berapakah nilai dari $\sum_{k=4}^{8} (-1)^k$?

Pembahasan:

$$\sum_{k=4}^{8} (-1)^k = (-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8$$
$$= 1 + (-1) + 1 + (-1) + 1$$
$$= 1$$

End of File