

Video tutorials

- Introducing linear regression https://youtu.be/n61tkVF6uAU
- Deriving closed-form solution https://youtu.be/-H2hFOFjfoE

The Purpose of Regression Analysis

Explanatory modeling

 How marketing spend affects quarterly sales

How smoker status affects insurance premium

How education affects income

Predictive modeling

 Predict quarterly sales, given the marketing spend

 Predict insurance premium, given a policyholder's age, gender, body mass index (BMI), and smoker status

 Predict income, given the education, age, work experience, industry

Simple Linear Regression (SLR)

Linear equation

$$y = \beta_0 + \beta_1 x$$

- β_0 : intercept with the y-axis
- β_1 : coefficient for the input variable

Terminology

y	X
Target variable	Input variable
Dependent variable	Independent variable
Explained variable	Explanatory variable
Response variable	Control variable
Predicted variable	Predictor variable
Regressand variable	Regressor

Objective $\min SSR = \min \sum_{i=1}^{n} u_i^2 = \min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- Minimize the sum of squared residuals (SSR)
- Each residual u_i is the difference between the observation y_i and its fitted value \hat{y}_i
- In simple terms, the objective is to find the straight line that is closest to data points given

Scikit-learn: LinearRegression class

- Import LinearRegression class (inside sklearn library's linear_model module)
- Prepare x and y for the LinearRegression Model
- Create LinearRegression object to fit the x and y observed data points

• Print the results of β_0,β_1 using object's attributes .intercept_ and .coef

```
from sklearn.linear model \
import LinearRegression
# Refer to jupyter notebook
file on how to prepare x and y
lm = LinearRegression()
lm.fit(x orig, y)
print(lm.intercept )
print(lm.coef )
x new = np.array([[100], [200]])
y pred = lm.predict(x new)
y pred
```

What is class and object?

- A class is a template with defined attributes and methods; can be considered a data type
- An object can be created from the template by calling the class name with brackets
- If we assign the created object to a variable, the variable contains the object with the template's defined attributes and methods
- Use the object's attributes and methods with the dot operator

```
lm = LinearRegression()
```

```
lm.intercept_
lm.coef_
lm.fit(x_orig, y)
lm.predict(x_new)
```

Understanding the results

Mean Squared Error (MSE)

 Mean of the squared differences between observed y and predicted y

Root Mean Squared Error (RMSE)

Square root of MSE

```
R2 = 1 - \frac{\sum_{i} (y_i - \hat{y}_i)^2}{\sum_{i} (y_i - \bar{y})^2}
```

- Proportion of variance in the observed data that is explained by the model
- The higher the R2, usually the better the linear fit is for the data set (not always)

Issue: only one input variable considered in SLR

```
from sklearn.metrics import
mean_squared_error
mse = mean_squared_error(y, \
y_pred)
print("MSE:", mse, "RMSE:", \
np.sqrt(mse))
```


Multiple Linear Regression (MLR)

Equation

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

• β_i : coefficient for i-th input variable

Advantage

- Can accommodate many input variables
- Holistic view of relationship between target and all input variables

Assumptions

- None of the input variables is constant
- No perfect linear relationships among the input variables like below

$$x_j = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \dots + \gamma_k x_k$$

Ceteris paribus analysis

- Ceteris paribus: Latin of "all other things being equal"
- MLR allows us to explicitly control many other factors that simultaneously affect the target variable and observe the impact of only one factor

$$y + \Delta y = \beta_0 + \beta_1 x_1 + \dots + \beta_j (x_j + \Delta x_j) + \dots + \beta_k x_k$$
$$\Delta y = \beta_j \Delta x_j$$

• E.g., we control all other input variables but only bump x_j , to see the impact on y

MLR implementation for advertising data set

- Prepare x with all input variables, i.e., a
 DataFrame with multiple columns TV,
 Newspaper, Radio; prepare y as the sales
- Create an object from LinearRegression class
- Use the regression model to fit x and y and see the model parameters
- R2 statistically usually increases every time an input variable is added

```
x_all = data.loc[:, 'TV':'Newspaper']
y = data.loc[:, "Sales"]

lm_all_sklearn = LinearRegression()

lm_all_sklearn.fit(x_all, y)
print(lm_all_sklearn.intercept_)
print(lm_all_sklearn.coef_)
lm_all_sklearn.score(x_all,y)
```

Caveat: A regression model with more input variables and higher R2 does NOT necessarily mean that the model is a better fit and can predict better

Newspaper vs sales: positive or negative correlation?

Simple linear regression

 $y = \beta_0 + \beta_1 x_{Newspaper}$

0.0547

-0.001

Newspaper spend vs. sales has a positive correlation of 0.228299

data.loc[:, ['Newspaper','Sales']].corr()

Multiple linear regression

$$y = \beta_0 + \beta_1 x_{TV} + \beta_2 x_{Radio} + \beta_3 x_{Newspaper}$$

Simple linear regression

- $\beta > 0 => y$ and x are positively correlated
- y and x are positively correlated $=>\beta>0$

Multiple linear regression

- $\beta > 0 \neq >$ y and x are positively correlated
- y and x are positively correlated $\neq > \beta > 0$

Case study: Car insurance

y : claim amount in one year

 x_{age} : age of car

 x_{sum} : sum insured (higher sum indicates higher market value)

y vs. x_{age} : **negatively** correlated, because newer cars usually have higher market value; hence higher claim amount

y vs. x_{sum} : positively correlated, i.e., more expensive cars have higher claim amount

MLR:
$$y = \beta_0 + \beta_1 x_{age} + \beta_2 x_{sum}$$

- β_1 is positive, i.e., for a fixed x_{sum} , y has a **positive** relationship with x_{age}
- For a fixed sum insured, newer cars have lower claim amount than older cars
 - An old car is likely to be an inherently more prestigious brand or model, while a new car with the same sum insured is likely to be a mass-market brand
 - Due to depreciation, an old car has the same low sum insured as a new car
 - Older cars with high-end brand are more likely to have higher claim amount, maybe because the parts are more expensive etc

How do we fit in categorical variables for the data set of condo transaction?

	name	price	unit_price	district_code	segment	type	area	level	remaining_years	date
0	SEASCAPE	4388000	2028	4	CCR	Resale	2164	06 to 10	87.0	Nov-19
1	COMMONWEALTH TOWERS	1300000	1887	3	RCR	Resale	689	16 to 20	93.0	Nov-19
2	THE TRILINQ	1755000	1304	5	OCR	Resale	1346	06 to 10	92.0	Nov-19
3	THE CREST	2085000	2201	3	RCR	Resale	947	01 to 05	92.0	Nov-19
4	THE ANCHORAGE	1848888	1468	3	RCR	Resale	1259	01 to 05	999.0	Nov-19

Solution: one-hot encoding

Categorical variable

$$x_{type} = \begin{cases} 'Resale' \\ 'New Sale' \end{cases}$$

$$d_{Resale} = \begin{cases} 1 & \text{if } x_{type} = 'Resale' \\ 0 & \text{if } x_{type} = 'New Sale' \end{cases}$$

For student's own exploration

Option 1: Use pandas.get_dummies()

Option 2: Use scikit-learn OneHotEncoder

Alternative method - Ordinary Least Squares (OLS)

- Statsmodels library has OLS method, which can handle numerical and categorical variables efficiently
- Input ' $y = x_1 + x_2 + \cdots$ ' as a string and data set to create a new OLS object, i.e., a new multiple linear regression model
- Call the fit() method to run the MLR and show the results

```
import statsmodels.formula.api as smf
d5 condo =
data.loc[(data['district code']==5) &
(data['area']<1500) &
(data['remaining years']<100)]</pre>
d5 model = smf.ols('price ~ area + type',
data=d5 condo)
result = d5 model.fit()
print(result.summary())
```

Understanding the results

========= Dep. Variable:	========	price	 R-squared:	=======	========	0.824	
Model:		OLS Least Squares Tue, 19 Apr 2022		red:		0.824 3271.	
Method:	Le			:			
Date:	Tue,			Prob (F-statistic):		0.00	
Time:		13:54:04	Log-Likelih	Log-Likelihood:		-18424.	
No. Observation	s:	: 1402 1399		AIC: BIC:		3.685e+04 3.687e+04	
Df Residuals:							
Df Model: Covariance Type	β_j	2 nonrobust			$\beta_j \pm 2$ *	std err	
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	1.887e+05	1.17e+04	16.087	0.000	1.66e+05	2.12e+05	
$d_{Resale} = \text{type}[T.Resale]$	-1.614e+05	7465.490	-21.624	0.000	-1.76e+05	-1.47e+05	
area	1024.6680	12.803	80.035	0.000	999.553	1049.783	
			_				

95% confidence interval (CI) for the truth of β_j

$$H_0: oldsymbol{eta}_j = 0$$
 Null hypothesis $H_a: oldsymbol{eta}_i
eq 0$ Alternative hypothesis

P-value is the probability for H_0 to be true; hence if P-value < significance level (typically 0.05), we prove H_0 false, and hence H_a true

Effectively we have a different linear equation for each value of d_{resale}

segment	type	area	level
CCR	Resale	2164	06 to 10
RCR	Resale	689	16 to 20
OCR	Resale	1346	06 to 10
RCR	Resale	947	01 to 05
RCR	Resale	1259	01 to 05
	CCR RCR OCR RCR	CCR Resale RCR Resale OCR Resale RCR Resale	CCR Resale 2164 RCR Resale 689 OCR Resale 1346 RCR Resale 947

Question: how to deal with categorical variables with more than 2 values?

How OLS deals with categorical variable with multiple values

	d _B	 d _z
Α	0	0
В	1	0
Z	0	1

- One value (e.g., A) is set as baseline value
- All other values become a binary variable
- n values means n-1 dummy variables

Question: Why not n dummy variables? Why do we exclude the baseline value?

- If we have d_A , what is the relationship between d_A , d_B , ... d_Z ?
- Hence it adds no value to include d_A

A different linear equation for each value of segment variable

$$y = \beta_0 + \beta_1 d_{OCR} + \beta_2 d_{RCR} + \beta_3 x_{area}$$

CCR condo

$$y = \beta_0 + \beta_3 x_{area}$$

OCR condo

$$y = \beta_0 + \beta_1 + \beta_3 x_{area}$$

RCR condo

$$y = \beta_0 + \beta_2 + \beta_3 x_{area}$$

Resale vs. New Sale: should the gradient of the two linear equations be the same?

Issue: Should resale condo's price per sqft be the same as new sale condo?

Solution: Interaction terms

Interaction terms

$$y = \beta_0 + \beta_1 d_{resale} + \beta_2 x_{area} + \beta_3 d_{resale} \cdot x_{area}$$

Resale condo

$$d_{Resale} = 1 = y = \beta_0 + \beta_1 + (\beta_2 + \beta_3)x_{area}$$

```
d5_model = smf.ols('price ~ type * area',
d5_condo)
result = d5_model.fit()
print(result.summary())
```

New sale condo

$$d_{Resale} = 0 \Longrightarrow y = \beta_0 + \beta_2 x_{area}$$

Did the interaction term improve the model?

$$y = \beta_0 + \beta_1 d_{resale} + \beta_2 x_{area}$$

		OLS Regres	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		price OLS of Squares Apr 2022 13:54:04 1402 1399	R-squared: Adj. R-squ F-statisti Prob (F-st Log-Likeli AIC: BIC:	ared: c: atistic):	3.0	0.824 0.824 3271. 0.00 -18424. 685e+04
type[T.Resale] -1.61	coef 7e+05 4e+05	nonrobust std err 1.17e+04 7465.490 12.803	16.087 -21.624 80.035	P> t 0.000 0.000 0.000 0.000	[0.025 1.66e+05 -1.76e+05 999.553	0.975] 2.12e+05 -1.47e+05 1049.783

$y = \beta_0 + \beta_1 d_{resale}$	$+\beta_2 x_{area}$	$+\beta_3 d_{resale}$	$\cdot x_{area}$
	1 L area	1 5 Tesate	arci

OLS Regression Results

	OL3 REGIES:	======================================	========	.========	:=
Dep. Variable:	price	R-squared:		0.83	3
Model:	OLS	Adj. R-squared	:	0.83	32
Method:	Least Squares	F-statistic:		2317	· •
Date:	Tue, 19 Apr 2022	Prob (F-statis	tic):	0.0	00
Time:	13:26:27	Log-Likelihood	:	-18388	В.
No. Observations:	1402	AIC:		3.678e+0)4
Df Residuals:	1398	BIC:		3.681e+0)4
Df Model:	3				
Covariance Type:	nonrobust				
===========		==========	========	========	========
	coef std	err t	P> t	[0.025	0.975]
Intercept	1.408e+05 1 27e	+04 11.051	0.000	1.16e+05	1.66e+05
type[T.Resale]	1.081e+05 β_1 24e	+04 3.333	0.001	4.45e+04	1.72e+05

76.631

-8.527

0.000

0.000

-318.395

1080.5225 β_2 14.100

type[T.Resale]:area -258.8491 β_3 30.355

-199.304

When do we use interaction terms?

Most commonly, to indicate that the relationship

between y and a continuous x might be different for subgroups (indicated by categorical variable)

- Female vs. Male: the relationship between weight (y) and height (x) might be different
- Degree holder vs. non-holder: the relationship between salary (y) and years of experience (x) might be different

How to treat numbers as categorical variables

4 3 5 3

- Issue: district_code is read into the DataFrame as an integer column. But it has no numerical meaning and should be a categorical variable
- Solution: put a C() around the column name

```
small condo model = smf.ols('price ~ district code + area', data=small condo)
                                                                                          1 small condo model = smf.ols('price ~
                                                                                                                                   C(district code) + area', data=small condo)
 2 result = small condo model.fit()
                                                                                         2 result = small condo model.fit()
 3 print(result.summary())
                                                                                         3 print(result.summary())
                                                                                                                     OLS Regression Results
                             OLS Regression Results
                                                                                        Dep. Variable:
                                                                                                                                  R-squared:
                                                                                                                                                                    0.705
Dep. Variable:
                                                                                                                          price
                                 price
                                          R-squared:
                                                                            0.448
Model:
                                          Adj. R-squared:
                                                                                        Model:
                                                                                                                                  Adj. R-squared:
                                                                                                                                                                    0.705
                                                                            0.448
                                                                                                                                  F-statistic:
Method:
                         Least Squares
                                          F-statistic:
                                                                                        Method:
                                                                                                                 Least Squares
                                                                                                                                                                    2526.
                                                                        1.075e + 04
                                                                                                                                  Prob (F-statistic):
Date:
                      Tue, 19 Apr 2022
                                          Prob (F-statistic):
                                                                                        Date:
                                                                                                              Tue, 19 Apr 2022
                                                                                                                                                                     0.00
                                                                             0.00
                                                                                                                                  Log-Likelihood:
                                                                                        Time:
Time:
                              14:15:05
                                          Log-Likelihood:
                                                                      -3.7747e+05
                                                                                                                      14:15:43
                                                                                                                                                              -3.6919e+05
                                                                                        No. Observations:
No. Observations:
                                                                                                                          26480
                                                                                                                                  AIC:
                                                                                                                                                                7.384e + 05
                                 26480
                                          AIC:
                                                                        7.550e+05
                                                                                        Df Residuals:
                                                                                                                          26454
                                                                                                                                  BIC:
                                                                                                                                                                7.386e+05
Df Residuals:
                                 26477
                                         BIC:
                                                                        7.550e+05
                                                                                        Df Model:
Df Model:
                                                                                                                             25
                                     2
                                                                                        Covariance Type:
Covariance Type:
                             nonrobust
                             std err
                                                      P>|t|
                                                                  [0.025
                                                                               0.975]
                                                                                        Intercept
                                                                                                                 9.771e+05
                                                                                                                               4.1e + 04
                                                                                                                                            23.832
                                                                                                                                                        0.000
                                                                                                                                                                 8.97e+05
                                                                                                                                                                              1.06e+06
                            9347,102
                                          79,991
                                                      0.000
                                                                7,29e+05
                                                                            7.66e+05
Intercept
               7,477e+05
                                                                                        C(district code)[T.2]
                                                                                                                              6.17e + 04
                                                                                                                                            -4.496
                                                                                                                                                        0.000
                                                                                                                                                                             -1.56e + 05
                                                                            -2.73e+04
                                                                                                                -2.772e+05
                                                                                                                                                                -3.98e + 05
district code -2.798e+04
                             338.519
                                         -82.662
                                                      0.000
                                                               -2.86e + 04
                                                                                        C(district code)[T.3]
                                                                                                                -3.864e+05
                                                                                                                               4.1e+04
                                                                                                                                            -9.429
                                                                                                                                                        0.000
                                                                                                                                                                -4.67e+05
                                                                                                                                                                             -3.06e+05
                                                                            1014,979
area
                999.3194
                               7.989
                                         125,080
                                                      0.000
                                                                 983,660
```

OLS can handle nonlinear terms

• The Meaning of "Linear" in Regression Analysis is that the equation is linear in the parameters $\beta_0, \beta_1, \beta_2$...

Below can all be viewed as linear regression models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2$$
$$y = \beta_0 + \beta_1 \log(x_1)$$
$$\sqrt{y} = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_1)$$

• Below canNOT b $y = \beta_0 + \beta_1^x$ s linear regression model

Nonlinear terms in wage data set (1/2)

- Wage data set: wages of several working individuals in 1976
- Can the relationship be fitted to a straight line based on the scatter plot of only female workers?

Try the two models and interpret which one might be better

Model 1:

$$y_{wage} = \beta_0 + \beta_1 x_{exper}$$

Model 2:

$$y_{wage} = \beta_0 + \beta_1 x_{exper} + \beta_2 \sqrt{x_{exper}}$$

```
model1 = smf.ols('wage ~ exper', data=wage_female)
result1 = model1.fit()
print(result1.summary())

model2 = smf.ols('wage ~ exper + np.sqrt(exper)',
data=wage_female)
result2 = model2.fit()
print(result2.summary())
```

Nonlinear terms in wage data set (2/2)

Model 3 $\log(y_{wage}) = \beta_0 + \beta_1 x_{exper} + \beta_2 \sqrt{x_{exper}}$

```
model3 = smf.ols('np.log(wage) ~ exper + np.sqrt(exper)', data=wage_female)
result3 = model3.fit()
print(result3.summary())
```


Why can the log term improve the model?

Model 3

$$\log(y_{wage}) = \beta_0 + \beta_1 x_{exper} + \beta_2 \sqrt{x_{exper}}$$

Histogram of Hourly Wage

 Outliers with high wage affect the model performance

Histogram of the log of Hourly Wage

- Log(wage) reduces the impact of outliers
- Distribution is closer to a bell curve

Deriving the closed-form solution

Coding exercise

- Data set: insurance.csv
- Columns: age, sex, bmi, children, smoker, region, charges
- Questions for exploration:
 - Which variable is the y?
 - Which variables are categorical? Which ones are numerical?
 - Any interaction terms?
 - Any non-linear terms?

Recap and next lecture

Recap

- Linear Regression
- Scikit-learn LinearRegression Class
- Statsmodels OLS method
- Simple Linear Regression
- Multiple Linear Regression
- Coefficient vs. correlation
- Categorical variables with 2 or more values
- Interaction terms
- Treat numbers as categorical variables
- Nonlinear terms

Next lecture

Logistic Regression

Homework

Review video tutorials, class materials and recordings to week 2

 Go through the accompanying coding material (to be uploaded after week 2 class)

Post learning reflections and questions if any

Complete group assignment and submit as a group before week 3 lecture