

Université catholique de Louvain Louvain School of Statistics

LSTAT2130 - Bayesian Statistics

Project - Group Q

LIONEL LAMY - 1294-1700 ADRIEN KINART SIMON LENGENDRE

Contents

1	Introduction
2	Question 12.1 (a) Theoretical probability2.2 (b) Theoretical expression for the likelihood2.3 Taking approximation2.4 Not taking approximation but the CDF differences
3	Question 2 : Priors
4	Question 3 4.1 Question 3a: posterior 4.1.1 With approximation 4.1.2 Without approximation 4.2 3.b
5	4.
\mathbf{A}	Appendix A.1 Figures

1 Introduction

shape ## 3089.944

shape ## 0.399687

Histogram of FI

shape ## 2914.882

shape ## 0.471615

Histogram of Wall

[1] 0.05892352

[1] 0.0001358382

2 Question 1

Let $\theta_k := (\mu_k, \phi_k)$ be the set of parameters for a HNI with respect to region k.

2.1 (a) Theoretical probability

Let X be the monthly net income of 1123 Belgian households net income (HNI) older than 30 years. Regardless the 2 regions ($k = \{1, 2\}$ wrt Flanders and Wallonnia, respectively), is assumed it follows a Gamma distribution. It can be reparametrised in terms of its mean μ and dispersion parameter ϕ with the following trick:

shape:
$$\kappa = \frac{1}{\phi}$$
rate: $\lambda = \frac{1}{\phi \mu}$

For both regions $k = \{1, 2\}$: This gives

$$f(x_k) = \frac{(\phi_k \mu_k)^{-1/\phi_k}}{\Gamma(\phi_k^{-1})} x_k^{1/\phi_k - 1} \exp\left(\frac{-x_k}{\phi_k \mu_k}\right)$$

3

Then, the probability to fall into a certain HNI interval I is:

$$P(x_k \in I_j) = \int_{I_j} \frac{(\phi_k \mu_k)^{-1/\phi_k}}{\Gamma(\phi_k^{-1})} x_k^{1/\phi_k - 1} \exp\left(\frac{-x_k}{\phi_k \mu_k}\right) dx$$

Using CDF writing, for a region k,

$$p_{j} = \begin{cases} F(x_{j}, \kappa, \lambda) \text{ if } j = 1\\ F(x_{j+1}, \kappa, \lambda) - F(x_{j}, \kappa, \lambda) \text{ if } j \in \{2, ..9\}\\ 1 - F(x_{j}, \kappa, \lambda) \text{ if } j = 10 \end{cases}$$

$$(1)$$

$$p_{j} = \begin{cases} \frac{1}{\Gamma(\kappa)} \gamma(\kappa, \lambda x_{j}) & \text{if } j = 1\\ \frac{1}{\Gamma(\kappa)} \left(\gamma(\kappa, \lambda x_{j+1}) - \gamma(\kappa, \lambda x_{j}) \right) & \text{if } j \in \{2, ..9\}\\ 1 - \frac{1}{\Gamma(\kappa)} \gamma(\kappa, \lambda x_{j}) & \text{if } j = 10 \end{cases}$$

$$(2)$$

$$p_{j} = \begin{cases} \frac{1}{\Gamma(\kappa)} \int_{0}^{\lambda x_{j}} t^{\kappa - 1} e^{-t} dt & \text{if } j = 1\\ \frac{1}{\Gamma(\kappa)} \int_{\lambda x_{j}}^{\lambda x_{j+1}} t^{\kappa - 1} e^{-t} dt & \text{if } j \in \{2, ..9\}\\ \frac{1}{\Gamma(\kappa)} \int_{\lambda x_{j}}^{+\infty} t^{\kappa - 1} e^{-t} dt & \text{if } j = 10 \end{cases}$$

$$(3)$$

2.2 (b) Theoretical expression for the likelihood

On behalf of writing simplicity, the region index is removed. Since the frequency distribution in a given region is multinomial, i.e.

We have, writing $P := (p_1, ..., p_{10})$ and $X := (X_1, ... X_{10})$:

$$X|P \sim \text{Mul}(N, P) = \frac{x!}{x_1! \dots x_{10}!} p_1^{x_1} \times \dots \times p_{10}^{x_{10}} \text{ when } \sum_{j=1}^{10} p_j = 1$$
$$= 0 \text{ otherwise}$$

Up to a multiplicative constant, the likelihood can be written as follow:

$$L(\theta_k, D_k) = P(D_k | \mu_k, \phi_k) \propto \prod_{i=1}^{10} p_{k,j}^{x_{k,j}}$$

2.3 Taking approximation

 p_j corresponds to the area in the j^{th} interval. One can take the approximation mean the mean,e.g. $x_{Flanders,3} = (1500 + 1800)/2 = 1650$? On can approximate that with $f(x_i)\Delta$ where Δ is the unit of measurement.

$$p_j = P(x_j - \frac{\Delta_j}{2} < x_j < x_j + \frac{\Delta_j}{2}) \approx f(x_j) \Delta_j$$

$$\approx \frac{1}{\Gamma(\phi_k^{-1})} (\phi_k \mu)^{-1/\phi_k} x_j^{\frac{1}{\phi_k} - 1} \exp\left(\frac{-x_j}{\phi_k \mu}\right) \Delta_j$$

This gives for the likelihood:

$$P(D|\mu,\phi) \propto \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k}-1} \exp\left(\frac{-x_j}{\phi_k \mu}\right) \Delta_j$$
$$\propto \exp\left(\frac{-\sum_{j=1}^{10} x_j}{\phi_k \mu}\right) \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k}-1} \Delta_j$$

2.4 Not taking approximation but the CDF differences

$$P(D|\kappa,\lambda) \propto \gamma(x_1,\kappa,\lambda)^{x_1} \left[\prod_{j=2}^{9} \left(\gamma(x_j,\kappa,\lambda) - \gamma(x_{j-1},\kappa,\lambda) \right)^{x_j} \right] \left(1 - \gamma(x_{10},\kappa,\lambda) \right)^{x_{10}}$$

$$\propto \left(\int_0^{\lambda x_1} x^{\kappa-1} e^{-x} dx \right)^{x_1} \left[\prod_{j=2}^{9} \left(\int_{\lambda x_j-1}^{\lambda x_j} x^{\kappa-1} e^{-x} dx \right)^{x_j} \right] \left(\int_{\lambda x_{10}}^{+\infty} x^{\kappa-1} e^{-x} dx \right)^{x_{10}}$$

If we write $[0; x_1], [x_1; x_2], ..., [x_9; x_{10}], [x_{10}, +\infty]$ as $I_1, I_2, ..., I_9$ and I_{10} . The notation can be lightened. With respect to the region k, this gives:

$$P(D_k|\kappa_k, \lambda_k) \propto \prod_{j=1}^{10} \left(\int_{\lambda_k I_j} x^{\kappa_k - 1} e^{-x} dx \right)^{x_{k,j}}$$

Writing in terms of μ_k and ϕ_k :

$$P(D_k|\mu_k,\phi_k) \propto \prod_{j=1}^{10} \left(\int_{\frac{I_j}{\phi_k \mu_k}} x^{(\phi_k^{-1}-1)} e^{-x} dx \right)^{x_{k,j}}$$

3 Question 2: Priors

• Statement 1: we are at 95% convinced that the mean net monthly household income in a given region is in the interval (2400, 3600). If one assumes a normal distribution for the mean μ_k (à justifier), then it is possible to get a prior of the distribution for both regions:

For both regions $\mu_0 = 3000$. Then, to get the standard deviation:

$$3000 - t_{(n_k - 1, 1 - \alpha/2)} \frac{s_k}{\sqrt{n_k}} = 2400$$
$$\rightarrow \hat{\sigma}_0 = \frac{s_k}{\sqrt{n_k}} = \frac{600}{t_{(n_k - 1, 1 - \alpha/2)}}$$

$$\hat{\sigma}_{Fl} = 306$$

So we have

$$\mu \sim N(\mu_0 = 3000, \sigma_0 = 306)$$

$$\pi(\mu) \propto \sigma_0^{-1/2} \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

• dispersion parameter:

If one considers that the parameter can be in any point within the interval (0.0, 10.0) with the same probability, then one could say that it follows a uniform distribution between those to interval

$$\phi_k \sim U(a=0, b=10) \propto 1_{0,10}$$

Using the entropy theorem, the conjugate prior would be the product of the two last quantity:

prior:
$$P(\mu_k, \phi_k) = P(\mu_k) P(\phi_k)$$

 $\propto \sigma_0^{-1/2} \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right) 1_{0;10}$

4 Question 3

4.1 Question 3a: posterior

4.1.1 With approximation

$$\sigma^2 = \phi \mu^2$$

$$P(\mu, \phi|D) \propto \exp\left(\frac{-\sum x_j}{\phi_k \mu}\right) \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k} - 1} \Delta_j \sigma^{-1/2} \exp\left(-\frac{1}{2\sigma^2} (\bar{x}_k - \mu)^2\right) 1_{0,10}$$
$$\propto \exp\left(\frac{-\sum x_j}{\phi_k \mu}\right) \prod_{j=1}^{10} x_j^{\frac{1}{\phi_k} - 1} \Delta_j \left(\frac{1}{\sqrt{\phi}\mu}\right) \exp\left(-\frac{1}{2\phi\mu^2} (\bar{x}_k - \mu)^2\right) 1_{0,10}$$

4.1.2 Without approximation

$$P(\mu_k, \phi_k | D) \propto \left(\prod_{j=1}^{10} \left(\int_{\frac{I_j}{\phi_k \mu_k}} x^{(\phi_k^{-1} - 1)} e^{-x} dx \right)^{x_{k,j}} \right) \sigma_0^{-1/2} \exp\left(-\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2 \right) 1_{0;10}$$

4.2 3.b

the log likelihood is:

$$LL \propto \sum_{j=1}^{10} x_j \ln \left(\int_{\frac{I_j}{\phi_k \mu_k}} x^{(\phi_k^{-1} - 1)} e^{-x} dx \right)$$

[1] -1755.954

[1] -956.3159

5 4.

$$h(\mu, \phi) \propto l(\mu, \phi) + \ln(\pi(\mu, \phi))$$

$$h(\mu, \phi) = Ct + \sum_{j} x_{j} \ln \left(F(\mu, \phi, x_{j+1}) - F(\mu, \phi, x_{j}) \right) - \frac{1}{2\sigma_{0}^{2}} (\mu - \mu_{0})^{2}$$

... pour le moment... (voir photo envoyée sur messenger)

$$\mu^* = \mu_0 + \sigma_0^2 \left(\sum_{j=1}^{10} x_j \frac{f_{j+1} - f_j}{F_{j+1} - F_j} \right)$$
$$\sigma^{2*} = \sigma_0^2$$

A Appendix

A.1 Figures

A.2 Code

Note

For reproducibility purposes, the complete R project containing the source code and the results is available on github.com.