TRAJECTOIRES avec COSMOGRAVITY TUTORIEL

J.P. CORDONI 08/08/2022

Cadre géométrique

La relativité a opéré la fusion de l'espace et du temps, deux notions qui étaient complètement distinctes en mécanique galiléenne. Il faut quatre nombres pour déterminer un événement dans le « continuum » d'espace et temps : trois pour sa localisation spatiale (par exemple ses coordonnées cartésiennes $\{x, y, z\}$ ou sphériques $\{r, \theta, \varphi\}$) et un pour sa date (t). La structure mathématique correspondant à ce « continuum » à quatre dimensions est celle de **variété**.

Variété: vue de près, une variété ressemble à R^n (n = 2 sur la figure), mais cela n'est plus nécessairement vrai au niveau global.

Il convient de souligner que la ressemblance locale avec R⁴ s'arrête à l'étiquetage des points et ne s'étend pas à la structure d'espace euclidien de R⁴. En particulier le choix du système de coordonnées est complètement libre.

Ces notes sont extraites de Gourgoulhon-Relativité Générale

Dans le logiciel **Cosmogravity** les « trajectoires » sont les géodésiques suivies par les différentes particules (baryoniques, non baryoniques, photons) représentées par leurs coordonnées (r, φ) dans R^2 en fonction du temps propre (τ) des particules ou du temps de l'observateur lointain (t).

La distance qui serait mesurée (à l'aide de l'échelle de la simulation) entre deux positions d'une particule n'est évidemment pas égale à la distance métrique entre ces deux positions.

Trajectoire d'un projectile en métrique de Schwarzchild Entrer les paramètres physiques de la trajectoire Cliquer sur Start pour lancer la simulation Lire l'avertissement Avertissement M(kg) = 2.6e30r_{physique} (m) = 11000 r_0 (m) = 21000 v_0 (m/s) = 1e8 $\phi^{\circ}_{0} = 0$ **Utiliser les info-bulles** Nombre de mobiles 1 Afficher le graphe du potentiel Masse de l'astre Observateur distant Rebond Trajectoire complète Trajectoire simple Spationaute Tracé continu ou point par point Choisir le référentiel Valeurs précédentes Stop Reset Enregistrer $rs = \frac{2GM}{c^2}(m) \mid grav = \frac{GM}{H^2} \frac{1}{8[8]}(g) \mid Vlib = c(\frac{rs}{H})^{1/2} \mid T = 6.15 * 10^{-8} \frac{M\odot}{M}(K) \mid t = 6.6 * 10^{74} (\frac{M}{M\odot})^3(s)$ L1(m)7.430e+3 9.583e-1 3.861e+3 1.462e+11 1.776e+8 4.973e-8 1.474e+75 Temps propre mobile Gradient V_r(m.s⁻¹) V₀(m.s⁻¹) Temps observateur distant Décalage spectral / Energie consommée V_{physique} (m.s⁻¹) Valeurs calculées 2.016e+4 6.482e-3 1.324e+7 1.002e+6 1.037e+8 7.652e-3 1.037e+8 durant la simulation Calculs en pause Masse et mobile baryoniques Entrées : Echelle de la simulation M = 2.600e + 30 kg $r_{phy} = 1.100e + 4 \text{ m}$ Référentiel La touche Enregistrer sauve Spationaute rayon de l'étoile mobile1: le graphisme ainsi que les Entrées. $r_0 = 2.100e + 4 m$ La touche Stop met fin à la simulation $V_0 = 1.000e + 8 \text{ m.s}^{-1}$ $\phi = 0.000e + 0$ et remet les entrées par défaut ... mais la touche Valeurs précédentes permet de rappeler ensuite les précédentes entrées. **Durant la simulation on peut :** - la diminuer (Zoom-) - la ralentir - la mettre en pause - revenir - l'agrandir (Zoom+) - l'accélérer rs: rayon de Schwarzschild **Exemple: Etoile à neutrons** Accélérer (attention, réduit la précision)

Trajectoire d'un projectile en métrique de Schwarzchild

Trajectoire d'un photon en métrique de Schwarzchild

Exemple: Trajectoires de photons

Trajectoire d'un projectile en métrique de Schwarzchild (cas non baryonique)

