Límites Infinitos

- Si $\lim_{x \to a} f(x) = L$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)}$ tiene forma $\frac{L}{0}$, este límite tiende a ∞ y no existe, pero para saber el comportamiento de la función habrá que analizar si tiende a $+\infty$ o a $-\infty$.
 - o Si $\lim_{x \to a} f(x) = L > 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores positivos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$
 - o Si $\lim_{x \to a} f(x) = L < 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores positivos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$
 - $\text{Si } \lim_{x \to a} f(x) = L > 0 \text{ y } \lim_{x \to a} g(x) = 0 \text{ a trav\'es de valores negativos,}$ entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$
 - o Si $\lim_{x \to a} f(x) = L < 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores negativos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$

Ejemplos

a.
$$\lim_{x \to 0} \frac{2-4x^3}{5x^2+3x^3}$$
 b. $\lim_{x \to -\infty} \frac{\sqrt{x^2-9}}{3-x}$ c. $\lim_{x \to -4^-} \left(\frac{2}{x^2+3x-4} + \frac{3}{x+4}\right)$

Límites al Infinito

Teorema: Si r > 0 es un número racional, entonces $\lim_{x \to +\infty} \frac{1}{x^r} = 0$

Si r > 0 es un número racional tal que x^r está definido $\forall x, \rightarrow \lim_{x \to -\infty} \frac{1}{x^r} = 0$

Procedimiento

Para calcular los límites al infinito, tomar en cuenta

• Si la función es racional $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$, dividir entre la potencia de grado mayor para llegar al teorema $\lim_{x \to +\infty} \frac{1}{x^r} = 0$

• Si la función es racional $\lim_{x \to -\infty} \frac{f(x)}{g(x)}$, dividir entre la potencia de grado mayor para llegar al teorema $\lim_{x \to -\infty} \frac{1}{x^r} = 0$ (cuidado con las funciones que contengan radicales de índice impar)

Ejemplos: Evalúe los siguientes límites

a.
$$\lim_{x \to \infty} \frac{x^2 - 3x}{2x^2 + 12}$$

a.
$$\lim_{x \to \infty} \frac{x^2 - 3x}{2x^2 + 12}$$
 b. $\lim_{x \to -\infty} \frac{x^2 - 3x}{2x^2 - 4x^3}$ **c.** $\lim_{x \to -\infty} \frac{x^2 - 3x}{4 - 5x}$

c.
$$\lim_{x \to -\infty} \frac{x^2 - 3x}{4 - 5x}$$

d.
$$\lim_{x \to -\infty} \frac{x - \sqrt{4x^2 + 9}}{2 - 5x}$$

d.
$$\lim_{x \to -\infty} \frac{x - \sqrt{4x^2 + 9}}{2 - 5x}$$
 e. $\lim_{x \to +\infty} (\sqrt{9x^2 + ax} - 3x)$ f. $\lim_{x \to +\infty} \cos(\frac{x^2 - 1}{8 - x^3})$

f.
$$\lim_{x \to +\infty} \cos\left(\frac{x^2-1}{8-x^3}\right)$$

Límites Infinitos al Infinito

$$\lim_{x \to \infty} f(x) = \infty$$

Límites de Funciones Trigonométricas

Cuando se analizan los límites de las funciones trigonométricas, debemos tener en cuenta el dominio de cada función.

Si se tiene una forma indeterminada $\frac{0}{0}$ aplicar dos límites especiales

$$1. \lim_{x\to 0} \frac{sen x}{x} = 1$$

Х	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
$\frac{sen x}{x}$	0.9589	0.9983	0.99998		0.99998	0.9983	0.9583

2.
$$\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$$

Х	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
$\frac{\cos x - 1}{x}$	0.2448	0.04996	0.005		-0.005	-0.04996	-0.2448

RESUMEN

Los límites pueden calcularse

- numéricamente (mediante una tabla de valores),
- gráficamente (analizando la gráfica e interpretando el comportamiento de la misma)
- analíticamente (usando leyes o propiedades de límites)
 Para el cálculo analítico de límites usando leyes o propiedades de los límites
- 1. Dado $\lim_{x \to a} \frac{f(x)}{g(x)}$
 - Si $\lim_{x \to a} g(x) \neq 0$, puede usar propiedad de sustitución directa
 - Si $\lim_{x \to a} g(x) = 0$, investigue el numerador
 - Si $\lim_{x \to a} f(x) = 0$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)}$ tiene forma indeterminada $\frac{\mathbf{0}}{\mathbf{0}}$. Utilice algebra, trigonometría para obtener una expresión equivalente que no sea forma indeterminada
 - Si $\lim_{x \to a} f(x) = L$, entonces $\lim_{x \to a} \frac{f(x)}{g(x)}$ tiene forma $\frac{L}{\mathbf{0}}$, este límite tiende a ∞ y no existe, pero para saber el comportamiento de la función habrá que analizar si tiende a $+\infty$ o a $-\infty$.
 - o Si $\lim_{x \to a} f(x) = L > 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores positivos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$
 - o Si $\lim_{x \to a} f(x) = L < 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores positivos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$
 - o Si $\lim_{x \to a} f(x) = L > 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores negativos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$
 - o Si $\lim_{x \to a} f(x) = L < 0$ y $\lim_{x \to a} g(x) = 0$ a través de valores negativos, entonces $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$

Cuando se tenga un límite donde el denominador es cero, analizar límites laterales izquierda y derecha de *a*

- 2. Si f(x) es una función definida con más de una ley de correspondencia, es decir definida por partes entonces para calcular $\lim_{x \to a} f(x)$ calcular límites laterales si a es el número donde cambia la ley de correspondencia, recordando que $\lim_{x \to a} f(x)$ existe ssi $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$
- 3. Si f(x) es una función especial, es decir con un dominio conocido tomarlo en cuenta para el cálculo del límite.
- 4. Para calcular los límites al infinito, tomar en cuenta
 - Si la función es racional $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$, dividir entre la potencia de grado mayor para llegar al teorema $\lim_{x \to +\infty} \frac{1}{x^r} = 0$
 - Si la función es racional $\lim_{x \to -\infty} \frac{f(x)}{g(x)}$, dividir entre la potencia de grado mayor para llegar al teorema $\lim_{x \to -\infty} \frac{1}{x^r} = 0$,