Continuità e invertibilità

Alessio Serraino

March 6, 2016

<u>Teorema</u>: (una funzione continua è invertibile se e solo se è monotona) Sia f una funzione continua definita su un intervallo $I \subseteq \mathbb{R}$. Allora f è invertibile se e solo se è strettamente monotona. Se f è invertibile la sua inversa è ancora continua e strettamente monotona.

Dimostrazione:

Se f è strettamente monotona allora $\forall x, y \in I$ $f(x) = f(y) \iff x = y$, ovvero la funzione assume al più una volta uno stesso valore. Quindi si può costruire la funzione inversa che ad ogni "output" di f associa l'unico "input" che lo genera, quindi se è f monotona è invertibile. (si noti che la dimostrazione dell'implicazione in questo verso non richiede che f sia continua).

Dimostriamo l'implicazione nell'altro verso: se f è continua ed invertibile allora è strettamente monotona. Supponiamo per assurdo che f non sia monotona

Allora $\exists x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$: $f(x_1) < f(x_2) \land f(x_2) > f(x_3)$ oppure $f(x_1) > f(x_2) \land f(x_2) < f(x_3)$. Supponiamo che valga la prima, nell'altro caso la dimostrazione è analoga. E distinguiamo ancora due casi: $f(x_1) < f(x_3)$ oppure $f(x_1) > f(x_3)$. Non possono essere uguali perchè f è invertibile. E supponiamo ancora che valga la prima, nell'altro caso il ragionamento è analogo. Abbiamo trovato che:

$$x_1, x_2, x_3 \in I, x_1 < x_2 < x_3$$
: $f(x_1) < f(x_3) < f(x_2)$

Applichiamo allora il teorema dei valori intermedi a f, sull'intervallo $[x_1, x_2]$, ne segue che $\exists x^* \in [x_1, x_2] : f(x^*) = f(x_3)$, perchè $f(x_3)$ è compreso fra $f(x_1)$ ed $f(x_2)$, quindi a maggior ragione fra il massimo ed il minimo di f. Tuttavia $x^* \in [x_1, x_2]$, intervallo al quale non appartiene x_3 . Quindi si verifica che $x^* \neq x_3$, e $f(x^*) = f(x_3)$, assurdo perchè f è invertibile.

Dimostriamo che g è monotona. Consideriamo $x_1, x_2 \in I$. Se $x_1 > x_2$ allora $f(x_1) > f(x_2)$ perchè f è monotona per quanto dimostrato prima. (se f è crescente, caso analogo se f è decrescente). siano $y_1 = f(x_1)$, $y_2 = f(x_2)$. $y_1 > y_2$, e $g(y_1) = x_1 > g(y_2) = x_2$, ovvero $g(y_1) > g(y_2)$. Quindi g è strettamente monotona crescente. (si sarebbe ottenuto monotona decresente se avessimo supposto f decrescente).

Sia ora f contriua, strettamente monotona, quindi invertibile, e sia g la sua inversa, ancora strettamente monotona ed invertibile. Dobbiamo dimostrare che

g è continua. Per il teorema di monotonia g o è continua o presenta discontinuità "a salto", non può presentare altri tipi di discontinuità. Se per assurdo g presentasse discontinuità a salto la sua immagine sarebbe l'unione di più intervalli, e ciò è assurdo, perchè l'immagine di g è I, che è un unico intervallo. Quindi g è continua.