Military Base Clustering and Analysis using Big Data Tools

Capstone Project – INSY 8413 | Introduction to Big Data Analytics

Academic Year: 2024–2025, Semester III

Prepared by: Milindi Shema David (Student ID: 25914)

Project Overview

This project analyzes U.S. Department of Defense (DoD) military base data using **Python** and **Power BI**.

1

Geographical & Operational Patterns

Explore military installation distribution.

2

Unsupervised Machine Learning

Apply KMeans clustering to group similar bases.

3

Interactive Dashboard Design

Create a visually appealing Power BI dashboard.

4

Real-World Application

Demonstrate Big Data tools for government problems.

m Selected Sector & Problem Statement

Selected Sector: Government

This dataset belongs to the transportation/government domain, offering insights into the spatial and administrative structure of military sites.

Problem Statement

How can clustering and exploratory data analytics help understand the operational distribution and geographical spread of U.S. military installations across different states and military branches?

- Dataset Title: Military Bases
- **Source**: <u>USDOT Open Data Military Bases</u>
- File Format: CSV
- Rows & Columns: ~2,000 rows × 6 main attributes used
- Data Type: Structured
- **Preprocessing Required**: **V** Yes

E	F	G		
bel:type	label:price	label:address	1980	1
ınd	\$7,175,000.00	Wadsen Rd, Montgomery, AL, 36105	0.0	
ınd	\$3,950,000.00	Lower Buckeye Road, Buckeye, AZ, 85326	0.0	
ınd	\$3,000,000.00	21286 I-30, Benton, AR, 72015	0.0	
etail	\$399,900.00	485 N Washington Ave, Titusville, FL, 32796	0.0	
etail	\$3,300,000.00	4645 E Chandler Blvd, Phoenix, AZ, 85048	0.0	
etail	\$3,175,000.00	300 S Gentry Blvd, Gentry, AR, 72734	0.0	
ınd	\$4,807,320.00	SW of Sheridan Rd. and Hwy 65, Redfield, AR, 72132	0.0	
etail	\$4,210,526.00	1740 Scenic Highway, Snellville, GA, 30078	0.0	
ınd	\$5,227,200.00	River Valley Drive, Fort Smith, AR, 72908	0.0	
ınd	\$13,852,080.00	1419 N. 2nd E., Rexburg, ID, 83440	0.0	
ınd	\$3,500,000.00	85713, Tucson, AZ, 85713	0.0	
ınd	\$4,850,841.00	S Gate Dr, Windsor, CO, 80550	0.0	
ınd	\$3,500,000.00	3741 E 64th Ave, Commerce City, CO, 80022	0.0	
dustrial	\$7,500,000.00	4115 E Speedway Blvd, Tucson, AZ, 85712	0.0	
etail	\$3,975,000.00	27596 Clinton Keith Rd, Murrieta, CA, 92562	0.0	
etail	\$3,287,000.00	7111 E Thomas Rd, Scottsdale, AZ, 85251	0.0	
ınd	\$3,575,000.00	31601 S State Road 85, Buckeye, AZ, 85326	0.0	
etail	\$10,000,000.00	13909 Chenal Pky, Little Rock, AR, 72211	0.0	
ınd	\$5,841,000.00	31 Towner Lane, Oxford, CT, 06478	0.0	
etail	\$9,350,000.00	5755-5761 Mountain Hawk Way, Santa Rosa, CA, 95409	0.0	
etail	\$6,000,000.00	425 Buford Hwy, Suwanee, GA, 30024	0.0	
ınd	\$1,250,000.00	Gatlin Blvd and Savona Blvd, Port Saint Lucie, FL, 34953	0.0	
etail	\$3,900,000.00	1416 Skyland Boulevard East, Tuscaloosa, AL, 35405	0.0	
etail	\$3,100,000.00	22202 N Cave Creek Rd, Phoenix, AZ, 85024	0.0	
ffice	\$300,000.00	446 Magnolia Ave, Merritt Island, FL, 32952	0.0	
etail	\$7,499,000.00	185 Vallecitos De Oro, San Marcos (San Diego), CA, 92069	0.0	
fice	\$4,045,000.00	8100 Shaffer Pky, Littleton, CO, 80127	0.0	
ınd	\$4,358,100.00	213 LLC Alcovy Road, Covington, GA, 30014	0.0	
etail	\$3,900,000.00	760 S San Pedro St, Los Angeles Made with GAMA	00	
ınd	\$3,492,000.00	1685 Friendship Road, Hoschton,	JIF1	

Python Analytics Workflow (Jupyter Notebook)

All analysis was conducted in military_bases.ipynb through a series of structured steps.

1. Import Libraries & Load Data

Initial setup and data ingestion.

2. Data Cleaning & Selection

Refine dataset for analysis.

3. Exploratory Data Analysis (EDA)

Visualize data patterns and distributions.

4. Feature Engineering

Prepare data for clustering algorithms.

5. KMeans Clustering

Group similar military installations.

• 1. Import Libraries and Load CSV

The first step involves importing necessary libraries and loading the raw CSV data into a Pandas DataFrame.

```
import pandas as pd
df = pd.read_csv("NTAD_Military_Bases.csv")
```

Why? To efficiently read and inspect the original structured CSV file into a manageable DataFrame for subsequent operations.

• 2. Data Cleaning & Column Selection

```
df_clean = df[[ 'Site Name', 'Site Operational Status', 'Site Reporting Component Code', 'State Name Code', 'Shape__Area',
'Shape__Length' ]].copy()
df_clean.columns = ['site_name', 'status', 'component', 'state', 'area', 'length']
df_clean.dropna(inplace=True)
df_clean['component'] = df_clean['component'].str.strip().str.upper()
```

Why?

- Reduce to relevant columns only for focused analysis.
- Standardize naming for improved consistency and readability.
- Remove missing data to ensure model reliability and accuracy.

3. Exploratory Data Analysis (EDA)

```
import seaborn as sns
import matplotlib.pyplot as plt

# Bar chart: bases by component
sns.countplot(data=df_clean, x='component')

# Histogram: area distribution
sns.histplot(df_clean['area'], bins=30, kde=True)
```

Why? To visualize distribution and frequency across different dimensions, such as military branch (component), state, and base size (area), gaining initial insights.

• 4. Feature Engineering for Clustering

```
from sklearn.preprocessing import LabelEncoder

df_clean['component_code'] =
  LabelEncoder().fit_transform(df_clean['component'])

df_clean['status_code'] =
  LabelEncoder().fit_transform(df_clean['status'])
```

Why? Machine learning algorithms require numerical input. Label encoding converts categorical values (like military branches and operational statuses) into numerical representations, making them suitable for clustering algorithms.

Summary & Features Provided

Key Takeaways

This initial phase of the project has laid a robust foundation for military base analysis:

- Successful data acquisition and cleaning.
- Initial insights gained through EDA.
- Data prepared for advanced clustering.

Features Provided

The subsequent phases will involve:

- Implementing KMeans clustering algorithm.
- Developing interactive Power BI dashboards.
- Presenting comprehensive findings and strategic implications.