- 一. (本题满分 20 分) 填空题:
 - 1. 设 $X_1, X_2, \cdots X_{10}$ 是来自正态母体 $N(\mu, \sigma^2)$ 的一个简单随机子样,其中 μ , σ^2 已 知。填充下列统计量的分布及其相应参数:

A.
$$\frac{X_2 + \mu}{\sigma} + \frac{X_9 - 2\mu}{2\sigma} \sim (N(\frac{3\mu}{2\sigma}, \frac{5}{4}))$$

B.
$$\frac{\sum_{i=1}^{10} (X_i - \mu)^2}{\sigma^2} \sim (\chi^2(10))$$

C.
$$\frac{2\sum_{i=1}^{6} (X_i - \mu)^2}{3\sum_{i=7}^{10} (X_i - \mu)^2} \sim (\underline{F(6,4)})$$

2. 设有一母体 X , 其均值 $EX = \mu$, 方差 $DX = \sigma^2$ 以及四阶矩 EX^4 都存在, $X_1, X_2, \cdots X_n$ 是来自母体 X 的简单随机子样。则 μ 的无偏估计量为 \overline{X} ,相合估计量为 \overline{X} ; σ^2 的无偏估计量为 $EX^2 - EX$,相合估计量为 $EX^2 - EX$ 。

- 二. 选择题(本题满分 20 分,从 A~E 中选择一个完整的答案,填入指定处) $1. \ \, \forall \, X \sim N(0,1), \, \, \cup \, P \, \{\, X > \} = 1 a \, (\, 0 < a < 1\,). \tag{C}$
 - A. u_a B. $-u_a$ C. u_{1-a} D. B 或 C E. A~D 的答案皆错

A.
$$-F_a(m,n)$$
 B. $F_{1-a}(m,n)$ C. $F_a(m,n)$ D. $F_a^{-1}(n,m)$ E. B 或 D

3.设检验假设H: θ = θ_0 的一个检验法则犯第一类错误的概率为 P(I),检验的显著水平为 α ,则。

A. $P(I)=1-\alpha$ B. $P(I)=\alpha/2$ C. $P(I)=\alpha$ D. $P(I)\geq 1-\alpha$ E. C 或 D

4,设 $X_1, X_2, \cdots X_n$ 是来自正态母体 $N(\mu, \sigma^2)$ 的子样,其中 μ 未知, σ^2 已知,则是统计量。

A. S^2/σ^2 ; B. $(X_1 - \mu)/\sigma$; C. $|X_1| + |X_2|$; D.A 和 C; E.A 和 B

5.设母体 X 及 Y 的分布式任意的,但分别是具有有限的非零方差,记 $EX = \mu_1$,

 $EY = \mu_2$, 现独立地从两母体中各取一个子样, 子样容量分别是 n_1 和 n_2 。在大子样下,

我们可以推出 $\mu_1 - \mu_2$ 的置信概率近似为 $1-\alpha$ 的置信区间。这里所谓的大子样,一般是指。

A. $n_1 \ge 50$; B. $n_2 \ge 50$; C. $n_1 + n_2 \ge 50$; D.A 且 B; E.A~D 的答案皆错

三. (本题满分 20 分)

设母体X的概率密度为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 $(0 < \theta < +\infty)$

- 1. 求 θ 的矩估计量和最大似然估计量;
- 2. 用以上方法求得的估计量是否为 θ 的无偏估计?是否为 θ 的相合估计?

解:

- 1. θ 的矩估计量和最大似然估计量均为 θ
- 2. 显然用以上方法求得的估计量是 θ 的无偏估计,也为 θ 的相合估计。
- 四. (本题满分14分)

已知某种设备的工作温度服从正态分布,现对该温度作 10 次测量,得数据($^{\circ}C$)

1250 12751265 1245 1260 1255 1270 1265 1250 1240

- 1. 求温度的母体均值 μ 的 95%置信区间;
- 2. 求温度的母体标准差 σ 的 95%置信区间。

解:

1. 枢轴量

$$T = \frac{\overline{X} - \mu}{S^* / \sqrt{n}} \sim t(n - 2)$$

2. 枢轴量

$$\chi^2 = \frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1)$$

五. (本题满分14分)

设有两个独立的来自不同正态母体的子样

$$(-4.4, 4.0, 2.0, -4.8), (6.0, 1.0, 3.2, -4.0)$$

问能否认为两个子样来自同一母体($\alpha = 0.05$)?

解:

(提示: 首先检验两母体的方差是否相同, 其次检验两母体的均值是否相同)

六. (本题满分6分)

设母体 $X \sim N(\mu, 1)$,希望检验假设 $H_0: \mu = 6 \leftrightarrow H_1: \mu = 7$ 。若从该母体中取出容量为 4 的简单随机子样,并采用如下检验法则:

当 $\bar{X}\geq 7$ 时,拒绝 H_0 ,接受 H_1 ;当 $\bar{X}<7$ 时,接受 H_0 ,拒绝 H_1 。求上述检验

法则犯第一、二类错误的概率。

解:

利用上述检验法则犯第一、二类错误的概率分别为

$$P_{\theta^{1}} = 1 - \Phi(\frac{7 - 6}{\sqrt{4}}) = 1 - \Phi(0.5)$$

$$P_{\theta^{2}} = \Phi(\frac{7 - 7}{\sqrt{4}}) = 0.5$$

七. (本题满分6分)

设 $t_{\alpha}(n)$, $F_{\alpha}(m,n)$ 分别表示t(n),F(m,n)分布相应的上侧分位数,

求证:
$$\left[t_{\alpha/2}(n)\right]^2 = F_{\alpha}(1,n)$$

证明:

设 $X \sim N(0,1), Y \sim \chi^2(n)$ 则,

$$T = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

于是,对于给定显著水平 α ,有 $P\{T|\geq t_{\alpha/2}\}=\alpha$ 。而

$$T^2 = \frac{X^2}{Y/n} \sim F(1, n)$$

于是,
$$P\{T^2 | \geq [t_{\alpha/2}(n)]^2\} = \alpha = P\{T^2 | = F \geq F_{\alpha}(1,n)\}$$