

LINGUAGEM DE PROGRAMAÇÃO I – LISTA 03

```
→ LINGUAGEM NATURAL
1) Início
2) Declarar a,b,c,x1,x2, d, n
3) Ler a, b, c
4) Calcular d = b^2 - 4*a*c
       4.1) Se d \ge 0
              4.1.1) Calcular: x1 = (-b + (d)^{1/2}) / (2 * a); x2 = (-b - (d)^{1/2}) / (2 * a)
              4.1.2) Mostrar x1 e x2
              4.1.3) Ler n
                      4.1.3.1) Se n != s ou n != S
                             4.1.3.1.1) Retornar ao passo 3
                             4.1.3.1.2) Fim Se
                      4.1.3.2) Se n == s ou n == S
                             4.1.3.2.1) Fim
                             4.1.2.2.2) Fim Se
       4.2) Se d < 0
              4.2.1) Mostrar "A função não possui valores reais
              4.2.2) Retornar ao passo 3
              4.2.3) Fim Se
5) Fim
→ LINGUAGEM ESTRUTURADA
1) Início
2) Declare a, b,c, x1, x2, d tipo real; n tipo caracter
```

- 3) Leia a, b,c
- 4) Faça d \leftarrow b² 4 * a * c
- 5) Se d < 0 faça
 - 5.1) Mostre "a função não possui raízes reais."
 - 5.2) Retorne ao passo 3
 - 5.3) Fim Se
- 6) Se $d \ge 0$ faça

6.1)
$$x1 \leftarrow (-b + (d)^{1/2}) / (2 * a) e x2 \leftarrow (-b - (d)^{1/2}) / (2 * a)$$

- 6.2) Mostre x1, x2
- 6.3 Leia n
- 6.4) Se n != s ou n != S faça
 - 6.4.1) Retorne ao passo 3
 - 6.4.2) Fim Se
- 6.5) Se n == s ou n == S faça
 - 6.5.1) Termino
 - 6.5.2) Fim Se
- 6.6) Fim

→ TESTE DE MESA

item	INSTRUÇÃO	A	В	С	X1	X2	D	N
1	Início	-	-	-	-	-	-	-
2	Ler a, b e c (passo 3)	4	-4	1	-	-	-	-
3	Calcular d (passo 4)	4	-4	1	-	_	0	-
4	Para d >= 0 calcular x1 e x2 (passo 6)	4	-4	1	0,5	0,5	0	
5	Exibir x1 e x2 (passo 6.2)	-	-	1	0,5	0,5	-	
6	Ler n (passo 6.3)	-	-	ı	-	-	-	f
7	Retorne ao passo 3	-	-	ı	-	-	-	1
8	Ler a, b, e c (passo 3)	5	2	1	-	_	-	-
9	Calcular d (passo 4)	5	2	1	-	_	-16	-
10	Mostre: a função não possui raízes reais. (passo 5)	-	-	-	-	-	-	-
11	Retorne ao passo 3	-	_	1	-	_	-	1
12	Ler a, b e c (passo 3)	2	-10	4	-	-	-	-
14	Calcular d (passo 4)	2	-10	4	-	-	305	-
14	Para d >= 0 calcular x1 e x2 (passo 6)	2	-10	4	11	-6	305	ı
15	Mostre x1 e x2 (passo 6.2)	-	-	ı	11	-6	-	_
16	Leia n (passo 6.3)	_	-		-	-	-	s
17	Fim (passo 6.6)	-	-	-	-	-	-	-

Exercício 04

→ LINGUAGEM NATURAL

- 1) Início
- 2) Declarar Média, Consumo, Distância
- 3) Ler Distância
 - 3.1) Se Distância ≥ 0
 - 3.1.1) Ler Consumo
 - 3.1.2 Calcular Média = Distância / Consumo
 - 3.1.3) Exibir Média
 - 3.1.4) Retornar ao passo 3
 - 3.1.5) Fim Se
 - 3.2) Se Distância < 0
 - 3.2.1) Término
 - 3.2.2) Fim Se
- 4) Fim

→ LINGUAGEM ESTRUTURADA

- 1) Início
- 2) Declare Média, Consumo, Distância tipo inteiro
- 3) Leia Distância
 - 3.1) Se Distância >= 0 faça
 - 3.1.1) Leia Consumo
 - 3.1.2 Faça Média ← Distância / Consumo
 - 3.1.3) Mostre Média
 - 3.1.4) Retorne ao passo 3
 - 3.1.5) Fim Se
 - 3.2) Se Distância < 0 faça
 - 3.2.1) Término
 - 3.2.2) Fim Se
- 4) Fim

\rightarrow TESTE DE MESA

ITEM	INSTRUÇÃO	DISTÂNCIA	CONSUMO	MÉDIA
1	Início	-	-	-
2	Leia Distância (passo 3)	180	-	-
3	Leia consumo (passo 3.1.1)	180	20	-
4	Calcule média (passo 3.1.2)	180	20	9
5	Mostre Média (passo 3.1.3)	-	-	9 km/l
6	Retorne ao passo 3	-	-	-
7	Leia distância (passo 3)	-2	-	-
8	Termino (passo 3.2.1)	-	-	-
9	Fim	-	-	-

```
→ LINGUAGEM NATURAL
```

```
1) Início
```

2) Declarar as variáveis como:

```
2.1) A, B, C \rightarrow \text{tipo vetor}
```

2.2) i, j, k, n, m
$$\rightarrow$$
 tipo inteiro

3) Ler i

3.1) Se
$$i < 0$$

3.1.1) Mostrar a mensagem: "Informe um valor positivo para indicar o comprimento do vetor A

```
3.2) Fim Se
```

3.3)

→ LINGUAGEM ESTRUTURADA

```
1) Início
```

2) Declare A, B, C tipo vetor; i, j, k, m, n tipo inteiro

3) Leia i

3.1) Se i < 1 faça

3.1.1) Mostre: "informe um valor positivo o comprimento do vetor."

3.2) Fim Se

3.3) Se
$$i >= 1$$
 faça

$$3.3.1$$
) n ← 1

3.3.2) Para
$$n \le i$$
 faça

$$3.3.2.2$$
) n \leftarrow n + 1

3.3.3) Fim Para

3.4) Fim Se

4) Leia j

4.1) Se
$$j < 1$$
 faça

4.1.1) Mostre: "Informe um valor positivo para o comprimento do vetor."

4.2) Fim Se

4.3) Se
$$j >= 1$$
 faça

$$4.3.1$$
) m ← 1

4.3.2) Para
$$m \le j$$
 faça

$$4.3.2.2$$
) m \leftarrow m + 1

4.3.3) Fim Para

4.4) Fim Se

5.1) Mostre "Os vetores não possuem o mesmo tamanho."

6) Fim Se

7) Se
$$i == j$$

7.2) j
$$\leftarrow$$
 1

7.3) k
$$\leftarrow$$
 1

7.4) Para
$$i \le n e j \le m$$
 faça

7.4.1)
$$C[k] \leftarrow A[i] + B[j]$$

7.4.3)
$$i \leftarrow i + 1$$

$$7.4.4$$
) j ← j + 1

7.4.5)
$$k \leftarrow k + 1$$
7.5) Fim Para
8) Fim Se
9) Fim

ightarrow TESTE DE MESA ightarrow revisar tópicos em verde quanto a indexação dos passos

ITEM	INSTRUÇÕES	A	В	С	n	m	i	j	k
1	Início	-	-	_	-	-	-	-	-
2	Ler i (passo 3)	-	-	-	-	-	-5	-	-
3	i < 0 (passo 3.1)	-	-	-	-	-	-	-	-
4	Mostre mensagem de erro (passo 3.1.1)	-	-	-	-	-	-	-	-
5	Retorne ao passo 3	-	-	-	-	-	-	-	-
6	Ler i (passo 3)	-	-	-	-	-	3	-	-
7	i > 0 (passo 3.3)	-	-	-	-	-	3	-	-
8	Seguir para o passo 3.3	-	-	-	-	-	3	-	-
9	$n \leftarrow 1 \text{ (passo 3.3.1)}$	-	-	-	1	-	3	-	-
10	Ler A[1] (passo 3.3.2.1)	8	-	-	1	-	3	-	-
11	$n \leftarrow n + 1 \text{ (passo 3.3.2.2)}$	-	-	-	2	-	3	-	-
12	Ler A[2] (passo 3.3.2.1)	3	-	-	2	-	-	-	-
13	$n \leftarrow n + 1 \text{ (passo 3.3.2.2)}$	-	-	-	3	-	-	-	-
14	Ler A[3] (passo 3.3.2.1)	5	-	-	3	-	-	-	-
15	$n \leftarrow n + 1 \text{ (passo 3.3.2.2)}$	-	-	-	4	-	-	-	-
16	n > i (saída do loop → passo 3.3.3)	-	-	-	-	-	-	-	-
17	Ler j (passo 4)	-	-	-	-	-	-	2	-
18	j > 0 (passo 4.3)								
19	Seguir para o passo 4.3								
20	m ← 1 (passo 4.3.1)					1			
21	Leia B[1] (passo 4.3.2.1)		4						
22	$m \leftarrow m + 1 \text{ (passo 4.3.2.2)}$					2			
23	Leia B[2] (passo 4.3.2.1)		0						
24	$m \leftarrow m + 1 \text{ (passo 4.3.2.2)}$					3			
25	$m > j$ (saída do loop \rightarrow passo 4.3.3)								
26	i <> j (passo 5)								
27	Exibir mensagem de erro								
28	Retornar ao passo 4								
29	Leia j (passo 4)							3	
30	j > 1 (passo 4.3)								

31	$m \leftarrow 1 \text{ (passo 4.3.1)}$					1			
32	Leia B[1] (passo 4.3.2.1)		2						
33	$m \leftarrow m + 1 \text{ (passo } 4.3.2.2)$					2			
34	Leia B[2] (passo 4.3.2.1)		9						
35	$m \leftarrow m + 1 \text{ (passo 4.3.2.2)}$					3			
36	Leia B[3] (passo 4.3.2.1)		3						
37	$m \leftarrow m + 1 \text{ (passo 4.3.2.2)}$					4			
38	$m > j$ (saída do loop \rightarrow passo 4.3.3)								
39	i == j (passo 7)								
40	$i \leftarrow 1 \text{ (passo 7.1)}$						1		
41	j ←1 (passo 7.2)							1	
42	$k \leftarrow 1 \text{ (passo 7.3)}$								1
43	$C[1] \leftarrow A[1] + B[1]$	8	2	10					
44	Exiba C[1]			10					
45	$i \leftarrow i + 1 \text{ (passo 7.4.3)}$						2		
46	$j \leftarrow j + 1 \text{ (passo 7.4.4)}$							2	
47	$k \leftarrow k + 1 \text{ (passo 7.4.5)}$								2
48	$C[2] \leftarrow A[2] + B[2]$	3	9	12					
49	Mostre C[2]			12					
50	$i \leftarrow i + 1 \text{ (passo 7.4.3)}$						3		
51	$j \leftarrow j + 1 \text{ (passo 7.4.4)}$							3	
52	$k \leftarrow k + 1 \text{ (passo 7.4.5)}$								3
53	$C[4] \leftarrow A[3] + B[3]$	5	3	8					
54	Mostre C[3]			8					
55	$i \leftarrow i + 1 \text{ (passo 7.4.3)}$						4		
56	$j \leftarrow j + 1 \text{ (passo 7.4.4)}$							4	
57	$i > n e j > m$ (saída do loop \rightarrow passo 7.4.6)								
58	Fim (passo 9)	-	-	-	-	-	-	-	_

→ LINGUAGEM NATURAL

```
1) Início
```

- 2) Declarar S_atual, S_novo tipo real;
- 3) Leia S atual
- 4) Se S atual <= 2000, faça
 - 4.1) S novo = S atual * 1,5
 - 4.2) Mostrar S novo
- 5) Fim Se
- 6) Se 2000 < S atual ≤ 5000
 - 6.1) S novo = S atual * 1,4
 - 6.2) Mostrar S novo
- 7) Fim Se
- 8) Se 5000 < S atual ≤ 7000
 - 8.1) S novo = S atual * 1,2
 - 8.2) Mostrar S novo
- 9) Fim Se
- 10) Se S atual > 7000
 - 10.1) $S_{novo} = S_{atual} * 1,1$
 - 10.2) Mostrar S novo
- 11) Fim Se
- 12) Fim

\rightarrow LINGUAGEM ESTRUTURADA

- 1) Início
- 2) Declare S atual, S novo tipo real
- 3) Leia S atual
 - 3.1) Se S_Atual <= 2000 faça
 - $3.\overline{1.1}$) S novo = 1,5 * S atual
 - 3.1.2) Mostrar S novo
 - 3.2) Fim Se
 - 3.3) Se S_atual > 2000 e S_atual <= 5000 faça
 - 3.3.1) S novo = 1,4 * S atual
 - 3.3.2) Mostrar S atual
 - 3.4) Fim Se
 - 3.5) Se S atual > 5000 e S atual <= 7000 faça
 - 3.5.1) S novo = 1,2 * S atual
 - 3.5.2) Mostrar S atual
 - 3.6) Fim Se
 - 3.7) Se S atual < 7000 faça
 - $3.\overline{7}.1$) S novo = 1,1 * S atual
 - 3.7.2) Mostrar S_atual
 - 3.8) Fim Se
- 4) Fim

\rightarrow TESTE DE MESA

ITEM	INSTRUÇÃO	S_atual (R\$)	S_novo (R\$)
1	Início	-	-
2	Leia S_atual	4.000	-
3	$S_{novo} \leftarrow 1,4 * S_{atual} (passo 3.3.1)$	4.000	5.600
4	Mostrar S_novo (passo 3.3.2)	-	5.600
5	Término	-	-
6	Início	-	-
7	Leia S_atual	1.500	-
8	$S_{novo} \leftarrow 1.5 * S_{atual (passo 3.1.1)}$	1.500	2.250
9	Mostrar S_novo (passo 3.1.2)	-	2.250
10	Término	-	-
11	Início	-	-
12	Leia S_atual	7.000	-
13	$S_{novo} \leftarrow 1.2 * S_{atual} (passo 3.5.1)$	7.000	8.400
14	Mostrar S_novo (passo 3.5.2)	-	8.400
15	Término	-	-
16	Início	-	-
17	Leia S_atual	8.000	-
18	$S_{novo} \leftarrow 1.1 * S_{atual} (passo 3.7.1)$	8.000	8.800
19	Mostrar S_novo (passo 3.7.2)	-	8.800
20	Término	-	-

EXERCÍCIO 01

EXERCÍCIO 04

EXERCÍCIO 08

