Notizen

18. Oktober 2019

Vernetzte IT Systeme

Topologie

Beschreibt die Art und Weise wie Netzknoten physikalisch untereinder verbunden werden.

Grundtypen:

- Baumtopologie (hierarchische Struktur, ausgehend von einem zentralen Knoten, verzweigend in die unteren Ebenen)
- Ringtopologie
- Bustopologie (Empfindlich gegen Teilausfälle)
- Sterntopologie (Empfindlich gegen Teilausfälle)
- Maschentopologie (Wenn jeder Knoten mit jedem anderen verbunden ist spricht man vom "vollständigen Graphen")

Abhängig von der Topologie spricht man von:

- Diffusionsnetze
 - Bustopologie
- Teilstreckennetze
 - Ringtopologie
 - Baumtopologie
 - Sterntopologie
 - Maschentopologie

ISO-OSI Referenzmodell

OSI stands for Open System Interconnect. Das OSI-Modell beschreibt das Kommunikationsverhalten in offenen Netzwerken in seinen einzelnen Funktionen. Es definiert Komponenten der Datenkommunikation.

Schichtmodel des OSI-Modells:

NR	Deutsche Bezeichnung	Englische Bezeichnung
	Transportorientiert:	
0.	In frastruktur	in frastructure
1.	Bitübertragungsschicht	physical Layer
2.	Sicherungsschicht	Datalink Layer
3.	Vermittlungsschicht	Network Layer
$4\cdot$	Transportschicht	Transport Layer
	Anwendungsorientiert:	
$5\cdot$	Sitzungsschicht	Session Layer
6.	Darstellungsschicht	Presentation Layer
7.	Anwendungsschicht	Application Layer
8.	Anwender	User

In of fiziel

Aufgaben der jeweiligen Schichten

- Schicht 1 Physical Layer
 - Sie ist zuständig für den physikalischen Transport der Daten.
 - Sie benötigt keine Protokolle oder Dienste
 - In dieser Schicht geregelt:
 - * physikalische Verbindung (Definition der Kabel, Stecker, Dosen, Netzwerkkarten etc.) zwischen Sender und Verbinder
 - * Kodierung der Bits
 - * Impulsdauer u. Takt zur Unterscheidung zweier gleicher Informationen (00 11)
 - ★ Empfang-/Sendebereitschaft
 - ⊳ Simplex
 - ▷ Duplex
 - ▷ Vollduplex
 - Definition der Schnittstellen
- Schicht 2 Datalink Layer
 - Hauptaufgaben:
 - * Absicherung der Datenbits und Fehlererkennung
 - * Adressierung der Netzknoten
 - Bezeichnung der Datenpakete der Schicht 2: Frames Datenrahmen
 - 2 Typen von Schicht2-Protokollen:
 - 1. Frames mit fester Länge:

- ▷ Nur Header, Keine Trailer
- ⊳ Frames müssen aufgefüllt werden
- - Nachteil:
 - Übertragung massenhaft Headerinfos
 - Vorteil
 - \bigcirc wenige Wiederholsendungen
- - Vorteil:
 - weniger Overhead
 - Nachteil:
 - $\bigcirc\;$ erhöhte Anzahl an Wiederholungen
- 2. Frames mit variabler Länge

 - ⊳ Keine zusätzliche Belastung durch Auffühlung von zu kurzen Frames
 - ⊳ MTU gibt maximale Framegröße an -> 1500 standartmäßig

PoWi