Question Number	Scheme	Marks
1. (a)	R = 13	B1
	$\tan \alpha = \frac{12}{5} \Rightarrow \alpha = 67.38^{\circ}$	M1 A1
	5	(3)
(b)	$13\cos(2\theta + 67.4^{\circ}) = 10 \Rightarrow \cos(2\theta + 67.4^{\circ}) = \frac{10}{13}$	M1
	$2\theta + 67.38^{\circ} = 39.715^{\circ}, (320.285^{\circ}, 399.715^{\circ})$	A1
	θ = 126.5°	A1
	$\theta = 166.2^{\circ}$	M1 A1
		(5)
		(8 marks)
2. (a)	x $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π	
	y 1.844321332 4.810477381 8.87207 0	
	awrt 1.84432	B1
	awrt 4.81048 or 4.81047	B1
		(2)
(b)	$\frac{1}{2} \times \frac{\pi}{4}$ or $\frac{\pi}{8}$	B1
	Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \{0 + 2(1.84432 + 4.81048 + 8.87207) + 0\}$	M1
	<u>12.1948</u>	A1
		(3)
(c)	Uses $vu' + uv'$ $\frac{dy}{dx} = e^x \times \frac{1}{2} (\sin x)^{-\frac{1}{2}} (\cos x) + e^x (\sin x)^{\frac{1}{2}}$	M1 A1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \mathrm{e}^x \times \frac{1}{2} (\sin x)^{-\frac{1}{2}} (\cos x) + \mathrm{e}^x (\sin x)^{\frac{1}{2}} = 0$	
	$\cos x = -2\sin x$	M1
	$\tan x = -\frac{1}{2} \Rightarrow x = 2.68$	M1 A1
		(6)
		(11 marks)

Question Number	Scheme	Marks
3.	$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	B1
	$\int e^{\cos x + 1} \sin x dx = -\int e^u du$	M1 A1
	$=-e^{u}(+c)$ ft on sign error	A1
	$=-e^{(\cos x+1)}(+c)$	
	$-e^{(\cos x+1)} \int_{0}^{\frac{\pi}{2}} = (-e) - (-e^{2}) = e(e-1)$ cso	M1 A1*
		(6 marks)
4. (a)	$(2-3x)^{-2} = 2^{-2} \left(1 - \frac{3x}{2}\right)^{-2}$	B1
	$\left[\left(1 - \frac{3x}{2} \right)^{-2} = 1 + (-2) \left(-\frac{3x}{2} \right) + \frac{(-2)(-3)}{2 \times 1} \left(-\frac{3x}{2} \right)^2 + \frac{(-2)(-3)(-4)}{3 \times 2 \times 1} \left(-\frac{3x}{2} \right)^3 + \dots \right]$	M1 A1
	$=1+3x+\frac{27}{4}x^2+\frac{27}{2}x^3+\dots$	
	$(2-3x)^{-2} = \frac{1}{4} + \frac{3}{4}x + \frac{27}{16}x^2 + \frac{27}{8}x^3 + \dots$	M1 A1
		(5)
(b)	$f(x) = (a+bx)\left(\frac{1}{4} + \frac{3}{4}x + \frac{27}{16}x^2 + \frac{27}{8}x^3 + \dots\right)$	
	Coefficient of x: $\frac{3a}{4} + \frac{b}{4} = 0 \qquad (3a + b = 0)$	M1
	Coefficient of x^2 : $\frac{27a}{16} + \frac{3b}{4} = \frac{9}{16}$ $(9a + 4b = 3)$	M1
	A1 (either correct) Loading to $a = 1, b = 3$	A1
(c)	Leading to $a = -1, b = 3$ Coefficient of x^3 : $\frac{27a}{8} + \frac{27b}{16} = \frac{27}{8} \times -1 + \frac{27}{16} \times 3$	dM1 A1 (5) M1 A1ft
	$= \frac{27}{16} = \left(1\frac{11}{16}\right)$ cao	A1
		(3) (13 marks)

Question Number	Scheme	Marks
5. (a)	$fg(x) = e^{-2\ln x} + 2,$	M1
	$= e^{\ln x^{-2}} + 2 = x^{-2} + 2 = \left(\frac{1}{x^2} + 2\right)$	M1 A1
(b)	$e^{-(2x+3)} + 2 = 6 \Rightarrow e^{-(2x+3)} = 4$ $\Rightarrow -(2x+3) = \ln 4$	M1 A1 (3)
	$\Rightarrow x = \frac{-3 - \ln 4}{2}$	M1 A1
	_	(4)
(c)	Let $y = e^{-x} + 2 \Rightarrow y - 2 = e^{-x} \Rightarrow \ln(y - 2) = -x$ $\Rightarrow x = -\ln(y - 2)$ $f^{-1}(x) = -\ln(x - 2), x > 2.$	M1 A1 B1 (3)
(d)	Shape for $f(x)$ $(0, 3)$ Shape for $f^{-1}(x)$ $(3, 0)$	B1 B1 B1 B1 (4)
	$y=f^{-1}(x)$	(14 marks)

Question Number	Scheme	Marks
6. (a)	Differentiating implicitly to obtain $\pm ay^2 \frac{dy}{dx}$ and/or $\pm bx^2 \frac{dy}{dx}$	M1
	$48y^2\frac{\mathrm{d}y}{\mathrm{d}x} + \dots -54\dots$	A1
	$9x^2y \rightarrow 9x^2 \frac{dy}{dx} + 18xy$ or equivalent	B1
	$\left(48y^2 + 9x^2\right)\frac{dy}{dx} + 18xy - 54 = 0$	M1
	$\frac{dy}{dx} = \frac{54 - 18xy}{48y^2 + 9x^2} \left(= \frac{18 - 6xy}{16y^2 + 3x^2} \right)$	A1
		(5)
(b)	18 - 6xy = 0	M1
	Using $x = \frac{3}{y}$ or $y = \frac{3}{x}$	
	$16y^{3} + 9\left(\frac{3}{y}\right)^{2}y - 54\left(\frac{3}{y}\right) = 0 \text{ or } 16\left(\frac{3}{x}\right)^{3} + 9x^{2}\left(\frac{3}{x}\right) - 54x = 0$	M1
	Leading to	
	$16y^4 + 81 - 162 = 0 \qquad \text{or} \qquad 16 + x^4 - 2x^4 = 0$	M1
	$y^4 = \frac{81}{16}$ or $x^4 = 16$	
	$y = \frac{3}{2}, -\frac{3}{2}$ or $x = 2, -2$	A1, A1
	Subs either of their values into $xy = 3$ to obtain a value of other variable.	M1
	$\left(2,\frac{3}{2}\right),\left(-2,-\frac{3}{2}\right)$ both	A1
		(7) (12 marks)

Question Number	Scheme	Marks
7. (a)	$\cot x - \cot 2x \equiv \frac{\cos x}{\sin x} - \frac{\cos 2x}{\sin 2x}$	B1
	$\equiv \frac{\sin 2x \cos x - \cos 2x \sin x}{\sin x \sin 2x}$	M1
	$\equiv \frac{\sin(2x - x)}{\sin x \sin 2x}$	M1
	$\equiv \frac{\sin x}{\sin x \sin 2x} \equiv \frac{1}{\sin 2x} \equiv \csc 2x$	M1 A1*
(b)	$2x = 3\theta + \frac{\pi}{3} \Rightarrow x = 1.5\theta + \frac{\pi}{6}$	(5) B1
	$\cot\left(1.5\theta + \frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \Rightarrow \tan\left(1.5\theta + \frac{\pi}{6}\right) = \sqrt{3}$	M1
	$\left(1.5\theta + \frac{\pi}{6}\right) = \frac{\pi}{3}, \frac{4\pi}{3}$	M1
	$\theta = \frac{\pi}{9}, \frac{7\pi}{9}$	A1, A1
		(5) (10 marks)

Question Number	Scheme	Marks
8. (a)	$\frac{2}{x+2} + \frac{4}{x^2+5} - \frac{18}{(x+2)(x^2+5)} = \frac{2(x^2+5) + 4(x+2) - 18}{(x+2)(x^2+5)}$	M1 A1
	$=\frac{2x(x+2)}{(x+2)(x^2+5)}$	M1
	$=\frac{2x}{(x^2+5)}$	A1*
(b)	h'(x) = $\frac{(x^2 + 5) \times 2 - 2x \times 2x}{(x^2 + 5)^2}$	(4) M1 A1
	$h'(x) = \frac{10 - 2x^2}{(x^2 + 5)^2}$	A1
(c)	Maximum occurs when $h'(x) = 0 \Rightarrow 10 - 2x^2 = 0 \Rightarrow x =$	(3) M1
	$\Rightarrow x = \sqrt{5}$	A1
	When $x = \sqrt{5} \Rightarrow h(x) = \frac{\sqrt{5}}{5}$	M1 A1
	Range of h(x) is $0 \le h(x) \le \frac{\sqrt{5}}{5}$	A1ft
		(5) (12 marks)

Question Number	Scheme	Marks
9. (a)	Equate j components $3+2\lambda=9 \Rightarrow \lambda=3$ Leading to $C=(5,9,-1)$	M1 A1 A1 (3)
(b)	Choosing correct directions or finding \overrightarrow{AC} and \overrightarrow{BC}	M1
	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} = 5 + 2 = \sqrt{6} \times \sqrt{29} \times \cos \angle ABC \qquad \text{Use of scalar product.}$ $\angle ACB = 57.95^{\circ}$	M1 A1
	A (2.2 A) P (.5.0 5)	(4)
(c)	$A = (2, 3, -4) \qquad B = (-5, 9, -5)$ $\overrightarrow{AC} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} \text{ AND } \overrightarrow{BC} = \begin{pmatrix} 10 \\ 0 \\ 4 \end{pmatrix}$	
	$AC^2 = 3^2 + 6^2 + 3^2 = (3\sqrt{6})$ $BC^2 = 10^2 + 4^2 = (2\sqrt{29})$	M1 A1 A1
	Area triangle $ABC = \frac{1}{2} ACBC \sin \angle ACB = \frac{1}{2} \times 3\sqrt{6} \times 2\sqrt{29} \times \sin 57.95^{\circ}$	M1
	= 33.5	A1
		(5) (12 marks)

Question Number	Scheme		Marks
10. (a)	$\tan \theta = \sqrt{3} or \sin \theta = \frac{\sqrt{3}}{2}$		M1
	$\theta = \frac{\pi}{3}$	awrt 1.05	A1
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta$		(2)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos\theta}{\sec^2\theta} \left(=\cos^3\theta\right)$		M1 A1
	At P , $m = \cos^3\left(\frac{\pi}{3}\right) = \frac{1}{8}$ Can be	pe implied.	A1
	Using $mm' = -1$, $m' = -8$		M1
	For normal $y - \frac{1}{2}\sqrt{3} = -8\left(x - \sqrt{3}\right)$		dM1
	At Q , $y = 0$ $-\frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$		
	leading to $x = \frac{17}{16}\sqrt{3}$ $(k = \frac{17}{16})$	1.0625	A1
			(6)
(c)	$\int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta = \int \sin^2 \theta \sec^2 \theta d\theta$		M1 A1
	$= \int \tan^2 \theta \mathrm{d}\theta$		A1
	$= \int (\sec^2 \theta - 1) d\theta$		dM1
	$= \tan \theta - \theta (+C)$		A1
	$V = \pi \int_0^{\frac{\pi}{3}} y^2 dx = \left[\tan \theta - \theta \right]_0^{\frac{\pi}{3}} = \pi \left[\left(\sqrt{3} - \frac{\pi}{3} \right) - (0 - 0) \right]$		dM1
	$= \sqrt{3}\pi - \frac{1}{3}\pi^2 \qquad (p = 1, q = -\frac{1}{3})$		A1 (7)
			(7) (15 marks)

Question Number	Scheme	Marks
11. (a)	$\int \frac{1}{P(5-P)} \mathrm{d}P = \int \frac{1}{15} \mathrm{d}t$	B1
	1 = A(5 - P) + BP	M1
	$A = \frac{1}{5}, B = \frac{1}{5}$	A1
	giving $\int \frac{1}{P(5-P)} dP = \int \frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)} dP$	A1
	Hence $\int \frac{1}{P(5-P)} dP = \int \frac{1}{15} dt$	
	$\Rightarrow \frac{1}{5}\ln P - \frac{1}{5}\ln(5 - P) = \frac{1}{15}t (+c)$	M1 A1ft
	$\left\{ t = 0, P = 1 \Rightarrow \right\} \frac{1}{5} \ln 1 - \frac{1}{5} \ln (4) = 0 + c \left\{ \Rightarrow c = -\frac{1}{5} \ln 4 \right\}$	dM1
	eg: $\frac{1}{5}\ln\left(\frac{P}{5-P}\right) = \frac{1}{15}t - \frac{1}{5}\ln 4$	
	$\ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t$ Using any of the subtraction (or addition) laws for logarithms CORRECTLY.	dM1
	eg: $\frac{4P}{5-P} = e^{\frac{1}{3}t}$ or eg: $\frac{5-P}{4P} = e^{-\frac{1}{3}t}$ Eliminate ln's correctly.	dM1
	gives $4P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \implies P(4 + e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t}$	
	$P = \frac{5e^{\frac{1}{3}t}}{(4 + e^{\frac{1}{3}t})} \left\{ \frac{(\div e^{\frac{1}{3}t})}{(\div e^{\frac{1}{3}t})} \right\}$ Make <i>P</i> the subject.	dM1
	$P = \frac{5}{(1+4e^{-\frac{1}{3}t})}$ or $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ etc.	A1
	Note that the 'dM' marks are dependent upon the first two M marks.	(11)
(b)	$1 + 4e^{-\frac{1}{3}t} > 1 \implies P < 5$. So population cannot exceed 5000	B1
		(1) (12 marks)