ریز پردازنده مقایسه کننده آنالوگ

محسن راجي

دانشگاه شیراز بخش مهندسی و علوم کامپیوتر

مقایسه کننده آنالوگ

- اساس کار مقایسه کننده آنالوگ
- دارای دو پایه ورودی آنالوگ (مثبت و منفی)
- هنگامی که ولتاژ ورودی مثبت بیشتر از ولتاژ ورودی منفی باشد، خروجی مقایسه کننده ۱ خواهد بود و در غیر اینصورت برابر صفر خواهد بود

(2

مقایسه کننده آنالوگ در ATmega16

- ورودی مقایسه کننده آنالوگ پایه های PB3,PB2 در ATmega16
- پایه PB2 مربوط به ورودی مثبت و پایه PB3 مربوط به ورودی منفی مقایسه کننده است

3

مقایسه کننده آنالوگ در ATmega16 Figure 97. Analog Comparator Block Diagram(4) BANDGAP REFERENCE VCC ACD → ACIE ANALOG INTERRUPT COMPARATOR ➤ ACI AIN1 ACIS1 ACIS0 ACIC ACME TO T/C1 CAPTURE TRIGGER MUX ADC MULTIPLEXER OUTPUT(1) 4

- •رجيستر كنترلى ACSR
- (Analog Comparator Disable)ACD •
- •این بیت جهت فعال (0) و غیر فعال (1) نمودن مقایسه کننده آنالوگ مورد استفاده قرار می گیرد

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	N/A	0	0	0	0	0	

رجیستر های کنترلی مقایسه کننده آنالوگ

- (Analog Comparator Bandgap Select)ACBG •
- •با فعال کردن این بیت یک ولتاژ مرجع داخلی (۱/۲۳ ولت) به عنوان ورودی مثبت مقایسه کننده در نظر گرفته می شود
- •در صورت صفر بودن این بیت، پایه AINO (PBO) به عنوان ورودی مثبت در نظر گرفته خواهد شد

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	N/A	0	0	0	0	0	

- (Analog Comparator Output)ACO •
- این بیت به عنوان خروجی مقایسه کننده آنالوگ است.
- باید توجه داشت که خروجی مقایسه کننده دارای مقداری تاخیر در وضعیت خود است
- CPU داخلی میکروکنترلر حین همگام سازی خروجی با پالس ساعت میکرو از آن استفاده می کند
 - روند همگام سازی ۱ یا ۲ پالس ساعت طول می کشد

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	N/A	0	0	0	0	0	

7

رجیستر های کنترلی مقایسه کننده آنالوگ

- ACIS1, ACIS0: Analog Comparator Interrupt Mode Select •
- این دو بیت مشخص می کند وقفه AC در چه حالتی از تغییر خروجی مقایسه کننده رخ دهد
- مثال: ACIS1, ACIS0 =11 وقتی خروجی مقایسه کننده از صفر به یک تغییر کرد، وقفه رخ دهد (rising edge)
- هنگام تغییر دادن این بیت ها برای جلوگیری از رخ دادن وقفه باید قبل از تغییرات ، بیت ACIE را غیر فعال کنید

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	N/A	0	0	0	0	0	

Table 78. ACIS1/ACIS0 Settings

ACIS1	ACIS0	Interrupt Mode
0	0	Comparator Interrupt on Output Toggle
0	1	Reserved
1	0	Comparator Interrupt on Falling Output Edge
1	1	Comparator Interrupt on Rising Output Edge

9

رجیستر های کنترلی مقایسه کننده آنالوگ

- (Analog Comparator Interrupt Flag)ACI •
- زمانی که خروجی مقایسه کننده آنالوگ مطابق با تنظیمات وقفه (ACIS1:0) تغییر کند، بیت ACI توسط سخت افزار یک می شود و ISR در صورت فعال بودن بیت ACIE و I اجرا خواهد شد
 - (Analog Comparator Interrupt Enable)ACIE •
- اگر یک باشد و I نیز در SREG یک باشد وقفه مقایسه کننده آنالوگ فعال خواهد شد

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	N/A	0	0	0	0	0	

- Analog Comparator Input Capture)ACIC (Enable
- با فعال کردن این بیت ، خروجی مقایسه کننده آنالوگ به عنوان تحریک کننده Capture تایمر یک عمل خواهد کرد • برای کار با این بیت، باید با مد capture در تایمر یک آشنا شوید!!

Bit	7	6	5	4	3	2	1	0	
	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	N/A	0	0	0	0	0	

11

رجیستر های کنترلی مقایسه کننده آنالوگ

• رجيستر SFIOR

Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	ADHSM	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- (Analog Comparator Multiplexer Enable)ACME •
- هنگامی که این بیت صفر باشد، پین PB3 به عنوان ورودی منفی مقایسه کننده عمل خواهد کرد
- هنگامی که این بیت یک باشد، می توان از پایه های مبدل آنالوگ به دیجیتال (ADC) به عنوان ورودی منفی مقایسه کننده استفاده کرد
 - به شرط غیرفعال بودن ADC
- انتخاب ورودی منفی در این حالت به کمک بیت های MUX2:0 در ADMUX (12

- ورودی های منفی بوسیله MUX
- بوسیله سه بیت MUX2:0 در رجیستر ADMUX میتوان هر یک از پایه های ADC7:0 را توسط مالتی پلکسرADC به ورودی منفی مقایسه کننده اعمال نمود.
- •البته باید توجه داشت که این حالت در صورتی قابل اجراست که مبدل آنالوگ به دیجیتال غیر فعال باشد

رجیستر های کنترلی مقایسه کننده آنالوگ

Table 79. Analog Comparator Multiplexed Input

ACME	ADEN	MUX20	Analog Comparator Negative Input
0	х	xxx	AIN1
1	1	xxx	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7