

Electroplating Production Line Maintenance Model

Juan Pablo Canizales Martinez

Resumen

Resumen

 Con el uso de IA, específicamente con algoritmos de Machine Learnig se pueden predecir eventos de falla con mayor precisión y evitar interrupciones de procesos debidas a eventuales fallos en los equipos.

1.Revisión de literatura

2.Definición del problema

3. Justificación

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

1.Revisión de literatura

2.Definición del problema

3. Justificación

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Revision de literatura

Número de las publicaciones de los diferentes métodos de detección inteligente de fallas (IFD) a través de los años(1980-2020), desde el Machine Learning tradicional, Deep Learning y Transfer Learning. [3]

Revision de literatura

Source journal	NP	<i>h</i> -index	TC
IEEE Access	143	14	814
Sensors	119	14	119
Applied Sciences-Basel	47	7	148
Remote Sensing	34	8	297
IEEE Sensors journal	32	8	172
Computer & Electr. in Agriculture	26	8	291
Advanced manufacturing Techno	26	6	124
Energies	21	5	142
Scientific Reports	21	6	114
Electronics	18	4	20
Measurement	18	17	303
Neural Computing and applications	17	7	70
Plos One	17	5	166
Computer in Industry	15	7	370
Expert Systems with application	15	9	227
Intelligent manufacturing	14	7	242
Computer in Industry	15	7	370
Expert Systems with Application	15	9	227
IEEE Trans.on Instr. & Measurement	113	15	41
Multimedia tools and Application	15	4	41
IEEE Internet 0F Things Journal	14	4	132
Journal of Intelligent Manufacturing	14	7	242

Affiliations	N Articles
University Illinois	81
Shanghai Jiao Tong University	74
University California Los Angeles	71
Nayang Technology University	66
Tsinghua University	65
Zhe Jiang University	65
Stanford University	61
Huazhong University Science and Technology	59
Xi and Jiao Tong University	51
Northwest University	47
University Michigan	46
Seoul National University	45
Yonsei University	43
King Saud University	43
University California Irvine	43
Emory University	41

- Revistas ordenadas por número de publicación (NP), mayor impacto (índice h), más citadas (TC). [4]
- Universidades con mayor número de publicaciones. [4]

1.Revisión de literatura

2.Definición del problema

3.Justificación

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Definición del Problema

- En las plantas de manufactura industrial, uno de los problemas que enfrentan es el tiempo de inactividad (Downtime) de la producción debido a fallas en los equipos, esto provoca como consecuencia pérdidas de producción. [1]
- Los mantenimientos correctivos y preventivos generalmente se realizan a las máquinas de las líneas de producción, pero son limitados porque no consideran las variables de cada máquina.

1.Revisión de literatura

2.Definición del problema

3. Justificación

4. Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Justificación

- La eficiencia de la línea de producción es vital para tener el mayor tiempo disponible de operación en cualquier sector de manufactura industrial, este es un factor crítico para que una empresa sea rentable. [2]
- Los equipos de producción deben estar en óptimas condiciones de operación, y el problema surge cuando existen paros de producción no planificadas provocados por fallas en los equipos debidas a falta de mantenimiento adecuado.

1.Revisión de literatura

2.Definición del problema

3. Justificación

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

3.Desarrollo

Objetivo

 Crear un modelo de mantenimiento predictivo en una línea de producción de electroplateado, mediante el uso de algoritmos de Inteligencia Artificial como machine learning para disminuir los paros de producción no planificados.

Objetivos particulares

- Caracterizar el proceso de manufactura para el cual se creará el modelo predictivo
- Desarrollar programa en Python, utilizando Machine Learning para mantenimiento predictivo, probar y comparar su eficiencia de diferentes modelos, Python contra Azure.

1.Revisión de literatura

2.Definición del problema

3.Justificación

4. Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

 La toma de datos se realiza a través de Microsoft SQL Server, que se conecta directamente a la línea de producción para obtener la información de los sensores en tiempo real, los cuales contienen columnas con los valores de cada una de las variables críticas del proceso.

Table: AlarmEvents
Columnas de la base de datos:

VARIABLE	TIPO		Rango / Formato			
RackNo	Cualitativa	Nominal	1 – 38, aleatorio			
Date	Tiempo	Fecha	AAAA-MM-DD HH:MM:SS AM/PM			
Station	Cualitativa	Ordinal	1 – 38			
Message	Cualitativa	Nominal	13 tipos diferentes de alarma			
BatchA	Cualitativa	Nominal	# Único que identifica el lote de producción			
BatchB	Cualitativa	Nominal	# Único que identifica el lote de producción			

Table: BatchEvents
Columnas de la base de datos:

VARIABLE	TIPO			Unidades	Rango / Formato
RackNo	Cualitativa	Nomi	inal	NA	1 - 38
BatchA	Cualitativa	Nomi	inal	NA	# Único que identifica el lote de producción
BatchB	Cualitativa	Nomi	inal	NA	# Único que identifica el lote de producción
Date	Tiempo	Fec	ha	NA	MM/DD/AAAA HH:MM:SS AM/PM
Station	Cualitativa	Ordi	nal	NA	NA
ActualTime	Cuantitativa	Numérica	discreta	Segundos	60 - 120
Conductivity	Cuantitativa	Numérica	continua	micro siemens (µS)	10 - 90
	Cuantitativa	Numérica	continua	grados centígrados	Niquel = 49°C +/- 2°
Temperature					Estaño 27°C +/- 2°
					Cermetec = 50° C +/- 5°
PH	Cuantitativa	Numérica	continua	NA	3.0 - 4.4
AmpSPA	Cuantitativa	Numérica	discreta	amperio	Niquel = 20 - 30
Allipora	Cuarillaliva	Numenca	uisciela	ampeno	Estaño = 27 - 33
AmpMinPVA	Cuantitativa	Numérica	discreta	Ampere/Minuto	Niquel = 2400 - 3360
Ampinini VA	Odanillaliva	rumenca	discreta	Ampere/wintato	Estaño = 1560 - 1980
AmpSPB	Cuantitativa	Numérica	discreta	amperio	Niquel = 20 - 30
7	o dan manya	rumonoa	alcorota	ampono	Estaño = 27 - 33
AmpMinPVB	Cuantitativa	Numérica	discreta	Ampere/Minuto	Niquel = 2400 - 3360
					Estaño = 1560 - 1980
TimeSP	Cuantitativa	Numérica	discreta	Segundos	60 - 120

Table: BatchReport
Columnas de la base de datos:

VARIABLE		TIPO	Unidades	Rango
ReportId	Cualitativa	Nominal	NA	NA
LoadingTime	Cuantitativa	Numérica continua	Minutos	60 – 120 de diferencia entre UnloadigTime
Date	Tiempo	Fecha	NA	NA
UnloadingTime	Cuantitativa	Numérica continua	Minutos	60 – 120 de diferencia entre LoadigTime
RackNo	Cualitativa	Nominal	NA	NA
Employeeld	Cualitativa	Nominal	NA	NA
BarrelA	Cualitativa	Nominal	NA	NA
CoverA	Cualitativa	Nominal	NA	NA
BatchA	Cualitativa	Nominal	NA	# Único que identifica el lote de producción
PartA	Cualitativa	Nominal	NA	Número de parte, contiene tamaño del producto y propiedades. Ver Descripción del Número de parte Chip Making
LoadSizeA	Cuantitativa	Numérica discreta	mililitros	100 - 300
BarrelB	Cualitativa	Nominal	NA	NA
CoverB	Cualitativa	Nominal	NA	NA
BatchB	Cualitativa	Nominal	NA	# Único que identifica el lote de producción
PartB	Cualitativa	Nominal	NA	Número de parte, contiene tamaño del producto y propiedades. Ver Descripción del Número de parte Chip Making
LoadSizeB	Cuantitativa	Numérica discreta	mililitros	100 - 300
BasketA	Cualitativa	Nominal	NA	NA
BasketB	Cualitativa	Nominal	NA	NA
RunsA	Cuantitativa	Numérica discreta	Barriles	1 - 6
RunsB	Cuantitativa	Numérica discreta	Barriles	1 - 6
TotalRuns	Cuantitativa	Numérica discreta	Barriles	1 -12

1.Revisión de literatura

2.Definición del problema

3. Justificación

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Metodología

Proceso actual de Electroplateado

Metodología

 El modelo de referencia CRISP-DM (Cross Industry Standard Process for Data Mining) [5]

- Understanding the business
- Understanding the data
- Data preparation
- Modeling
- Evaluation
- Development

1.Revisión de literatura

2.Definición del problema

3.Justificaciór

4.Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Análisis Exploratorio

 La siguiente graficas muestra los diferentes tipos de alarmas de la tabla "AlarmEvents", de la línea de producción, el 92.4% del total de registros son del tipo "Alarma de Temperatura" en la estación 35. Se procede a investigar las posibles causas.

Análisis Exploratorio

 Se revisaron las especificaciones del valor de temperatura que tiene el proceso, encontrando que el valor de los registros se encontraba dentro de los límites aceptables.

Temperatura: 50°C +/- 5°C

Tiempo de inmersión: 60-120 segundos

 Para corregir este error, se ajustó el valor de configuración del PLC para la alarma de temperatura, la fecha del cambio fue a partir del 27 de febrero de 2023. Luego de la modificación se notó una disminución considerable en el número de alarmas.

Análisis Exploratorio

 Después de cambiar el valor del rango de temperatura correcto, podemos apreciar que los tipos de alarmas en cantidad están mejor distribuidos.
Para el análisis en esta etapa, solo se consideran los registros posteriores al cambio o ajuste de temperatura.

1.Revisión de literatura

2.Definición del problema

3. Justificación

4. Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Desarrollo

- El conjunto de datos consta de tres tablas, que se combinaron. La tabla BatchEvents se tomó como base para agregar la información de las tablas AlarmEvents y BatchReport, considerando los siguientes criterios:
- Si un registro de BatchEvents y BatchReport coincidía en fecha y hora con otro registro de AlarmEvents, se consideraba como una falla en la línea de producción, en caso contrario se consideraba como una operación normal.

Date	Time	Station *	ActualTime 💌	Concat	Extraer	Tipo de Alarma	Falla	4
3/1/2023	3:27:52 PM	16	103	449860.64435185185185216	449860.644	#N/D	No	
3/4/2023	11:27:26 AM	19	186	449890.47738425925925919	449890.477	Ni 1-6 PH abnormal	Si	
3/4/2023	7:17:09 PM	23	91	449890.80357638888888923	449890.803	#N/D	No	
3/8/2023	2:49:36 AM	34	339	449930.1177777777777834	449930.117	#N/D	No	
3/14/2023	2:51:24 PM	8	120	449990.619027777777788	449990.619	#N/D	No	
3/4/2023	7:18:09 PM	19	75	449890.804270833333333319	449890.804	#N/D	No	
3/4/2023	7:19:00 PM	36	315	449890.80486111111111136	449890.804	#N/D	No	
3/4/2023	7:20:10 PM	34	304	449890.80567129629629634	449890.805	#N/D	No	
3/4/2023	7:21:02 PM	13	120	449890.80627314814814813	449890.806	#N/D	No	
3/4/2023	7:21:29 PM	33	160	449890.80658564814814833	449890.806	#N/D	No	
3/4/2023	7:22:59 PM	25	78	449890.80762731481481525	449890.807	Alarma de Cond. RIN	s si	

Desarrollo

• El conjunto de datos considerados para generar los modelos de ML en Python.

	RackNo	Station	ActualTime	Falla	Falla binaria	Temperature	PH	AmpSPA	AmpMinPVA	EmployeeId	LoadSizeA	TotalRuns	TimeSP
0	26	6	120	Si	1	48.8	8.93	35	4183	40506	380	4	120
1	5	6	120	Si	1	49.1	8.64	35	4174	40506	300	2	120
2	26	11	120	Si	1	48.9	7.35	35	4166	40506	300	2	120
3	24	5	122	Si	1	48.7	8.67	35	4181	40506	300	2	120
4	20	8	120	Si	1	49.0	8.55	35	4173	40506	300	2	120

Desarrollo

• Gráfico de Dispersión y Correlación de Pearson.

Matriz de Correlación												
RackNo -	1	-0.02					-0.0061					
Station -		1	-0.32		-0.84	-0.84	-0.22	-0.64	-0.014			
ActualTime -		-0.32	1	0.042				0.68	0.0011			0.75
Falla binaria -				1	-0.025							
Temperature -		-0.84	0.42		1	0.94	0.25	0.76	0.00028			0.63
PH -		-0.84	0.42		0.94	1	0.22	0.71	0.052			0.59
AmpSPA -							1	0.32				
AmpMinPVA -		-0.64	0.68	0.019	0.76	0.71		1	-0.029			0.89
Employeeld -									1		0.56	
LoadSizeA -										1		
TotalRuns -									0.56		1	-0.073
TimeSP -		-0.53	0.75	0.017	0.63	0.59	-0.099	0.89	-0.038			1
	RackNo	Station	ActualTime	Falla binaria	Temperature	PH	AmpSPA	AmpMinPVA	Employeeld	LoadSizeA	TotalRuns	TimeSP

1.Revisión de literatura

2.Definición del problema

3.Justificación

4. Objetivo

5.Fuente de datos

6.Metodología

7.Análisis exploratorio

8.Desarrollo

Resultados

 Cuando usamos modelos de clasificación en el aprendizaje automático, hay tres métricas comunes que usamos para evaluar la calidad del modelo: Precision, Recall y F1-score

Gradient Boosting

	precision	recall	f1-score	support
0 1	0.65 0.92	0.95 0.54	0.77 0.68	194 213
accuracy macro avg weighted avg	0.79 0.79	0.74 0.73	0.73 0.73 0.72	407 407 407

Random Forest

	precision	recall	f1-score	support
0	0.74	0.91	0.81	194
1	0.89	0.71	0.79	213
accuracy			0.80	407
macro avg	0.82	0.81	0.80	407
weighted avg	0.82	0.80	0.80	407

Resultados

 Elegimos el modelo que tenga el Accuracy más alto para hacer predicciones, el modelo con mayor precisión es Random Forest con 0.803.
Existe un 80.3% de probabilidad de que el modelo pueda predecir y/o determinar entre un evento de falla o no en la línea de producción.

Conclusiones

 Elegimos el modelo que tenga el Accuracy más alto para hacer predicciones, el modelo con mayor precisión es Random Forest con 0.803.
Existe un 80.3% de probabilidad de que el modelo pueda predecir y/o determinar entre un evento de falla o no en la línea de producción.

Referencias

- [1] J.-R. Ruiz-Sarmiento, J. Monroy, F.-A. Moreno, C. Galindo, J.-M. Bonelo, and J. Gonzalez-Jimenez, "A predictive model for the maintenance of industrial machinery in the context of industry 4.0," Eng Appl Artif Intell, vol. 87, p. 103289, Jan. 2020, doi: 10.1016/j.engappai.2019.103289
- [2] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, "A systematic literature review of machine learning methods applied to predictive maintenance," Comput Ind Eng, vol. 137, 2019, doi: 10.1016/j.cie.2019.106024.
- [3] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, "Applications of machine learning to machine fault diagnosis: A review and roadmap," Mechanical Systems and Signal Processing, vol. 138. 2020. doi: 10.1016/j.ymssp.2019.106587.
- [4] A. T. Keleko, B. Kamsu-Foguem, R. H. Ngouna, and A. Tongne, "Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis," Al and Ethics, vol. 2, no. 4, 2022, doi: 10.1007/s43681-021-00132-6.
- [5] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. y Wirth, R. (2007). Metodología CRISP-DM para minería de datos. https://www.dataprix.com/es/book/export/html/107

Gracias por su atencion.

Contacto:

Juan Pablo Canizales Martínez jpcanizales 20@gmail.com

Whatsapp: 8113827525

https://www.linkedin.com/in/jpcanizales

