Lecture slides

Philip Murray

Lecture 1

- Introduction to nonlinear difference equations
- ► The Malthusian model
- The Ricker model

A general model

Consider the first order difference equation

$$N_{t+1} = N_t f(N_t) = H(N_t), \tag{1} \label{eq:1}$$

where $f(N_t)$ is a function that defines the per capita growth rate. The function $H(N_t)$ describes the total (net) growth rate.

The Malthusian model

The population size at time t+1 is

$$N_{t+1} = N_t + bN_t - dN_t = rN_t,$$

Exercise: solve the Malthusian model and classify qualitative behaviours

Nonlinear models

Beverton-Holt

$$N_{t+1} = \frac{rN_t}{1 + \frac{N_t}{K}},$$

► Hassell model

$$N_{t+1} = \frac{rN_t}{(1 + \frac{N_t}{K})^b},$$

Ricker model

$$N_{t+1} = N_t e^{r(1-\frac{N_t}{K})}.$$

Numerical simulation of the Ricker model

Figure 1: A plot of numerical solutions of the Ricker model. (a)r=0.5.

Summary

- Motivated use of difference equation models
- Introduced general model for one population
- Solved the Malthusian model
- Introduced nonlinear models

Lecture 2 - General techniques for solving nonlinear difference equations

$$N_{t+1} = N_t f(N_t) = H(N_t),$$
 (2)

- Computational solutions
- Fixed points
- Linear stability of fixed points
- Cobweb diagrams
- Bifurcation diagrams
- Identify how model solutions depend on model parameters

Fixed points

Suppose the solution at the next iteration is equal to that at a given iteration, i,e. there exists some N^{\ast} such that

$$N^{\ast}=N_{t+1}=N_{t}$$

Fixed point definition

$$N^* = H(N^*), N^* \ge 0$$

Biological relevance: non-negative solutions

Linear stability analysis (ctd)

 $\ensuremath{ \mbox{\it C}}$ Linear stability is determined by the derivative of H evaluated at N^*

 $|H'(N^*)| < 1 \implies$ linear stability of N^* .

Exercise

Identify the fixed points of the Malthusian model

$$N_{t+1} = rN_t \\$$

and identify their linear stability.

Cobweb diagrams

A cobweb diagram is a technique for computing graphical solutions of a difference equation.

Use previous analyses to identify different qualitative cases (one cobweb digram for each fixed point).

For each case:

- lacksquare Sketch a graph of H to evaulate iterative solutions
- ► Compute an iterative solution

Example

Figure 2: Generating a cobweb plot.

Bifurcation diagrams - Plot fixed points against a parameter and annotate their stability

Exercise

Draw cobweb diagrams for the Malthusian model.

$$N_{t+1} = rN_t$$

and identify their linear stability.

Lecture 3 - Preparation for tutorial 3

Curve sketching nonlinear functions in qualitatively distinct cases

Example:

Sketch a graph of

$$f(x)=xe^{-r(1-\frac{x}{K})},\quad r,K\in\Re^+,\quad x\in\Re,x\geq0$$

• Approach
Identify properties of H to distinguish qualitatively distinct

Roots

Turning points

$Limit as x \to \infty$

Limiting behaviour as $x \to 0$

Tutorial sheet 1

Lecture 4

Consider the model

$$N_{t+1} = \frac{\gamma N_t}{1 + N_t^2}, \quad \gamma \in \Re^+.$$

Fixed points

Cobweb diagrams

Bifurcations

Symbolic computations

```
The FPs are:
[{N: 0}, {N: -sqrt(gamma - 1)}, {N: sqrt(gamma - 1)}]
The derivative of H is:
gamma*(1 - N**2)/(N**2 + 1)**2
The derivative evaluated at FP 1 is:
gamma
The derivative evaluated at FP 2 is:
(2 - gamma)/gamma
```

Lecture 4 .. A model with harvesting

$$N_{t+1} = \frac{\gamma N_t}{1 + N_t^2} - hN_t, \quad \gamma > 0, \quad h \ge 0$$
 (3)

Numerical simulation

Figure 3: Time series solution for different values of h.

Computing FPs

Deriving expressions for linear stability boundaries in the $h\gamma$ plane

Sketch of stability boundaries

Figure 4: Stability regions for the harvesting model.

Cobweb diagrams

Oscillatory solutions

$$N_{t+1} = H(N_t) \tag{4}$$

A solution to Equation 4 is defined to be periodic with period T if

$$N_{t+T} = N_t \ \forall t, N_{t+\tau} \ \neq N_t \ \forall t, \quad \tau < T.$$