

Text Compression

25 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 7: *Text Compression*

- 1. Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE, Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for a specific type of data.

Outline

7 Text Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ▶ Unit 6 & 13: How to *work* with strings
 - finding substrings
 - ► finding approximate matches → Unit & (3)
 - ► finding repeated parts → Unit 813
 - ▶ ..
 - assumed character array (random access)!
- ▶ Unit 7 & 8: How to *store/transmit* strings
 - computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

| → sli.do/cs566

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts $S \sim C$
- **decoding:** algorithm mapping coded texts back to original source text $C \leadsto S$

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - lossy compression can only decode approximately; the exact source text S is lost
 - ▶ **lossless compression** always decodes *S* exactly
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ► We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size
- ► Focus in this unit: size of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform *data*compression.
- We will measure the *compression ratio*: $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=}$
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

Clicker Question

Do you know what uncomputable/undecidable problems (halting problem, Post's correspondence problem, . . .) are?

- A Sure, I could explain what it is.
- B Heard that in a lecture, but don't quite remember
- C No, never heard of it

→ sli.do/cs566

Is this image compressible?

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

needs fixed machine model, but compilers transfer results

► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - \leadsto can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

needs fixed machine model, but compilers transfer results

- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - **1. uneven character frequencies** some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - 1. uneven character frequencies some characters occur more often than others \rightarrow Part I
 - 2. repetitive texts
 different parts in the text are (almost) identical → Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightarrow encoding function $E\left(\Sigma_S\right) \rightarrow \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_{\mathbb{Z}S}$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                      1010000 P
                                                                                   1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                      1010001 0
                                                                                   1100001 a
                                                                                                 1110001 q
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                      1010010 R
                                                                                   1100010 b
                                                                                                 1110010 r
0000011 ETX
              0010011 DC3
                              0100011 #
                                           0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                   1100011 c
                                                                                                1110011 s
0000100 EOT
               0010100 DC4
                              0100100 $
                                           0110100 4
                                                         1000100 D
                                                                      1010100 T
                                                                                   1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                      1010101 U
                                                                                   1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                   1100110 f
                                                                                                1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                      1010111 W
                                                                                   1100111 q
                                                                                                1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                      1011000 X
                                                                                   1101000 h
                                                                                                 1111000 x
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                   1101001 i
                                                                                                 1111001 y
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                         1001010 J
                                                                      1011010 Z
                                                                                   1101010 j
                                                                                                 1111010 z
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 ;
                                                         1001011 K
                                                                      1011011 [
                                                                                   1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                      1011100 \
                                                                                   1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                      1011101 ]
                                                                                   1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                      1011110 ^
                                                                                   1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                      1011111
                                                                                   1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- ► actually an old idea: Morse Code

https://commons.wikimedia.org/wiki/File: International_Morse_Code.svg

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is (Σ_C) ?

26

256

→ sli.do/cs566

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

$\underline{\mathbf{A}}$	1	

E) 26

(F) 3

G 256

D) 4

→ sli.do/cs566

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (154 998 as of Nov 2024, and counting)
- \blacktriangleright uses 1 4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- ► Non-ASCII characters start with 1 4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence		
(hexadecimal)	(binary)		
0000 0000 - 0000 007F	0xxxxxx		
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx		
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx		
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx		

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- ► Happily encode text S = banana with the coded text $C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{010}_{\text{b a n a n a}} \underbrace{010}_{\text{b a n a n a}}$

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: $\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|ccccc} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \\ \end{array}$
- ► Happily encode text $S = \text{banana with the coded text } C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{0100}_{\text{b a n a n a n}} \underbrace{0100}_{\text{b a n a n a n}}$
- **7** $C = 1100100100 \text{ decodes both to banana and to bass: <math>\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?
- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - Leaves decoder wondering whether to stop after reading 10 or continue!
 - ✓ Usually require a *prefix-free* code: No codeword is a prefix of another.
 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a (code) trie:

- ▶ binary tree
- \blacktriangleright one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1

- ► Example for using the code trie:
 - ► Encode AN_ANT
 - ► Decode 11 100 00010101111

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie*:

- ▶ binary tree
- one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1

- ► Example for using the code trie:
 - ► Encode $AN_{\square}ANT \rightarrow 010010000100111$
 - ► Decode 111000001010111 → T0_EAT

The Codeword Supermarket

total symbol codeword budget

The Codeword Supermarket

0	00	000	0000	00000
			0001	00010
				00011
		001	0010	00100
				00101
			0011	00110
				00111
U		010	0100	01000
				01001
		010	0101 0110	01010
	01			01011
	02	011		01100
				011101
			0111	01111
	10	100	1000	10000
				10001
			1001	10010
				10011
		101	1010	10100
				10101
			1011	10110
1				10111
_	11	110	1100	11000
				11001
			1101	11010
				111011
		111	1110	11100
				11110
			1111	11111

total symbol codeword budget

- ➤ Can "spend" at most budget of 1 across all codewords
 - ▶ Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \dots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \le 1$$
 and for any such lengths there is a prefix-free code

The Codeword Supermarket

0	00	000	0000	00000
			0001	00010
				00011
		001	0010	00100
				00101
			0011	00110
				00111
O	01	010	0100	01000
				01001
			0101	01010
				01011
		011		01100
				01110
			0111	01111
	10	100	1000	10000
				10001
			1001	10010
				10011
		101	1010	10100
				10101
			1011	10110
1				10111
_	11	110	1100	11000
				11001
			1101	11010
				11011
		111	1110	11100
				111101
			1111	11111

total symbol codeword budget

- ► Can "spend" at most budget of 1 across all codewords
 - ▶ Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \ldots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \leq 1 \quad \text{ and for any such lengths there is a prefix-free code}$$

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code!**
- ▶ We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ▶ Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%		p	1.93%	-]
t	9.06%		1	4.03%		b	1.49%	
a	8.17%		С	2.78%	_	v	0.98%	•
o	7.51%		u	2.76%		k	0.77%	
i	6.97%	_	m	2.41%		j	0.15%	1
n	6.75%	_	w	2.36%		X	0.15%	1
s	6.33%		f	2.23%	-	q	0.10%	1
h	6.09%		g	2.02%		Z	0.07%	1
r	5.99%		y	1.97%				
								J

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

Huffman coding

- ▶ **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ▶ Let's abbreviate $|S|_c$ = #occurrences of c in S
- If we use $w(c) = |S|_c$, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- **1.** Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) priority queue
 - start by inserting all characters with their weight as key
 - step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

4

S

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \longrightarrow $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

LOSSLESS \rightarrow 01001110100011 compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - ▶ which subtree goes left, which goes right?
- ► For CS 566: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the <u>alphabetical order</u>, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a θ-bit).
 - 3. When combining trees of equal value, place the one containing the smallest letter to the left.
 - → practice in tutorials

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ **Pass 1:** Count character frequencies in *S*
 - Construct Huffman code E (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ **Pass 2:** Encode each character in *S* using *E* and append result to *C*
- ► Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!