Oppgaver med løsningsforslag - SOK3023

Maskinlæring for økonomer Laget av Markus J. Aase

January 15, 2025

Dette dokumentet inneholder oppgaver studentene i SOK-3023 kan jobbe med etter første uka av kurset. En del av svarene vil dere kunne finne fra de fysiske forelesningene og/eller kompendiet. Mens noen spørsmål krever at dere oppsøker informasjonen selv i dokumentasjon til Tensorflow eller andre sted på internett.

1. Gitt følgende matriser

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

- (a) Utfør matrisemultiplikasjonen $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$. Husk at elementet \mathbf{C}_{ij} beregnes ved å ta skalarproduktet av rad i i \mathbf{A} og kolonne j i \mathbf{B} .
- (b) Forklar hvorfor dimensjonene til resultatmatrisen \mathbb{C} blir 2×2 .
- (c) Verifiser beregningene ved å finne hvert element i C:

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}.$$

1. Løsningsforslag

(a) Matrisemultiplikasjon $C = A \cdot B$:

Gitte matriser er:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

Elementene i resultatmatrisen C beregnes ved:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Utførte beregninger:

$$c_{11} = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 = 1 + 4 + 9 = 14,$$

$$c_{12} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 4 + 10 + 18 = 32,$$

$$c_{21} = 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 3 = 4 + 10 + 18 = 32,$$

$$c_{22} = 4 \cdot 4 + 5 \cdot 5 + 6 \cdot 6 = 16 + 25 + 36 = 77.$$

Resultatet blir:

$$\mathbf{C} = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}.$$

Dette svarer også på oppgave 1c, hvor vi skal finne de fire elementene c_{11} , c_{12} , c_{21} og c_{22} . Matrisemultiplikasjon er nyttig i nevrale nettverk hvor vekter og biaser skal multipliseres med aktiveringen til ulike nevroner i nettverket.

(b) Forklar hvorfor dimensjonene til resultatmatrisen C blir 2×2 :

Dimensjonen til en matrise etter multiplikasjon bestemmes av antall rader i A og antall kolonner i B.

 $\bf A$ har dimensjon 2×3 , og $\bf B$ har dimensjon 3×2 . Matrisemultiplikasjon er definert når antall kolonner i $\bf A$ er lik antall rader i $\bf B$, altså 3. Resultatet får dimensjonene 2×2 (rader i $\bf A$, kolonner i $\bf B$).

(c) Verifiser beregningene for matrisen C

Besvart over i løsningsforslag til 1a.

2. Oppgave: Fra tabell til matrise og vektor

Tabellen nedenfor viser informasjon om fire personer, inkludert deres alder, antall år med utdanning, og om de jobber fulltid (ja = 1, nei = 0). Lønnen er oppgitt i tusen kroner.

Person	Alder	Utdanning (år)	Fulltid $(1/0)$	Lønn (Y, tusen kr)
1	25	16	1	450
2	30	14	0	350
3	40	18	1	600
4	35	12	0	400

Svar på følgende oppgaver:

(a) Skriv de uavhengige variablene som en matrise \mathbf{X} , der hver rad representerer en person, og hver kolonne representerer en av variablene.

- (b) Skriv målvariabelen som en vektor Y.
- (c) Verifiser at dimensjonene til \mathbf{X} og \mathbf{Y} er henholdsvis 4×3 og 4×1 .

Hint:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & x_{n3} \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

2. Løsningsforslag

(a) Skriv de uavhengige variablene som en matrise X:

De naturlige uavhengige variablene i dette tilfelle er alder, utdanning (år), og fulltid (1/0). Matrisen **X** konstrueres ved å organisere disse variablene som følger:

$$\mathbf{X} = \begin{bmatrix} 25 & 16 & 1 \\ 30 & 14 & 0 \\ 40 & 18 & 1 \\ 35 & 12 & 0 \end{bmatrix}.$$

(b) Skriv målvariabelen som en vektor Y:

Målvariabelen \mathbf{Y} er lønnen (Y), oppgitt i tusen kroner. Den representeres som en kolonnevektor:

$$\mathbf{Y} = \begin{bmatrix} 450 \\ 350 \\ 600 \\ 400 \end{bmatrix}.$$

(c) Verifiser dimensjonene til X og Y:

Dimensjonene til X er:

X har 4 rader og 3 kolonner, altså dimensjonen 4×3 .

Dimensjonene til \mathbf{Y} er:

Y har 4 rader og 1 kolonne, altså dimensjonen 4×1 .

Dermed er dimensjonene til X og Y henholdsvis 4×3 og 4×1 , som forventet.

3

3. **Tensorflow** I dette faget kommer vi til å bruke *Tensorflow*, som er et populært rammeverk for maskinlæring som støtter bruk av både CPU og GPU for å akselerere beregninger.

Svar på følgende oppgaver:

- (a) Hva er en rank-0, rank-1, rank-2 og rank-3 tensor? Gjerne illustrer. Hva vil en rank-4 tensor være?
- (b) Tensorflow er optimalisert for å gjøre beregninger med matriser og tensorer. Hva er parallellbehandling? Hva er fordelen?
- (c) Forklar forskjellen mellom hvordan TensorFlow bruker CPU og GPU til beregninger. Hvorfor kan GPU være mer effektiv for dype nevrale nettverk sammenlignet med CPU?
- (d) Anta at du har installert TensorFlow på en maskin med både CPU og GPU. Hvordan kan du sjekke hvilke enheter TensorFlow bruker for å utføre beregningene? Gi et eksempel på en TensorFlow-kommando som lister tilgjengelige enheter.

3. Løsningsforslag

(a) Ulike tensorer

En tensors rank er definert som antall dimensjoner (eller akser) den har:

- Rank-0 tensor: En skalar (én enkelt verdi, uten dimensjoner). Eksempel: x=5.
- Rank-1 tensor: En vektor (én dimensjon). Eksempel: $\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$.
- Rank-2 tensor: En matrise (to dimensjoner: rader og kolonner). Eksempel:

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

- Rank-3 tensor: En 3D-tensor (tre dimensjoner, ofte brukt for RGB-bilder). Hvor den har en høyde, bredde og kanaler (eller dybde). Eksempel: **T** kan representeres som en "samling" av flere matriser.
- Rank-4 tensor: En 4D-tensor (fire dimensjoner, typisk brukt for batch-behandling i maskinlæring). Eksempel: En batch av bilder med form (batch size, høyde, bredde, kanaler).

(b) Parallellbehandling og TensorFlow

Parallellbehandling refererer til utførelsen av flere beregninger samtidig, i stedet for sekvensielt. I konteksten av TensorFlow, brukes flere kjerner i en CPU eller GPU for å fordele og akselerere beregningene.

Fordel: Parallellbehandling reduserer kjøretiden for store beregninger ved å utnytte flere kjerner samtidig, noe som er spesielt viktig for store matriseoperasjoner og trening av nevrale nettverk.

(c) CPU og GPU i TensorFlow

- **CPU:** CPU-en har færre kjerner med høy klokkefrekvens, som er optimalisert for sekvensielle oppgaver og generell databehandling.
- **GPU:** GPU-en har tusenvis av små kjerner designet for å håndtere store mengder data parallelt. Dette gjør GPU-en ideell for matriseoperasjoner og trening av dype nevrale nettverk, hvor mange beregninger skjer samtidig.

Hvorfor er GPU mer effektiv? Dype nevrale nettverk krever masse parallellbehandlinger, som GPU-er håndterer bedre enn CPU-er. For eksempel, i trening av et nevralt nettverk, kan GPU-en parallellisere vektoppdateringer og beregning av gradienter for alle noder/nevroner.

(d) Hvordan sjekke hvilke enheter TensorFlow bruker?

Du kan bruke følgende kommando for å liste opp enhetene som TensorFlow har tilgang til:

```
import tensorflow as tf
print(tf.config.list_physical_devices())
```

Denne kommandoen returnerer en liste over tilgjengelige enheter, for eksempel:

Eksempel: Hvis du ønsker å spesifisere hvilken enhet som skal brukes, kan du bruke følgende:

```
with tf.device('/GPU:0'):
    # Utfør operasjoner på GPU
    result = tf.matmul(a, b)
```

Vil du se hvor mange GPU'er du har, kan du skrive følgende:

```
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
```

Dette sørger for at operasjonen utføres på GPU-en. Når vi bruker Google Colab, kan vi velger hvilke kjøringstype (CPU/GPU) vi ønsker å kjøre koden på, og kan da velge f.eks. GPU.

- 4. Normer i lineær algebra: Gitt en vektor $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$:
 - (a) Beregn ℓ_1 -normen $\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|$.
 - (b) Beregn ℓ_2 -normen $\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$.
 - (c) Sammenlign de to normene og diskuter hvordan ℓ_1 og ℓ_2 -normer vektlegger elementene i vektoren.

4. Løsningsforslag

Gitt vektoren **v**

(a) Beregn ℓ_1 -normen $\|\mathbf{v}\|_1$:

$$\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i| = |3| + |-4| + |1| = 3 + 4 + 1 = 8.$$

(b) Beregn ℓ_2 -normen $\|\mathbf{v}\|_2$:

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{3^2 + (-4)^2 + 1^2} = \sqrt{9 + 16 + 1} = \sqrt{26}.$$

 $\|\mathbf{v}\|_2 \approx 5.10$ (avrundet til to desimaler).

- (c) Sammenligning av ℓ_1 og ℓ_2 -normene:
 - ℓ_1 -normen summerer de absolutte verdiene av elementene i vektoren. Denne normen gir en direkte indikasjon på den totale "lengden" (eller størrelsen) av vektoren når vi ser på hver dimensjon individuelt.
 - ℓ_2 -normen beregner den euklidiske avstanden fra origo til vektoren i rommet. Den vektlegger større elementer mer, fordi den kvadrerer verdiene før summen beregnes. Dermed er ℓ_2 -normen mer følsom for store elementer i vektoren.
 - I dette tilfellet er ℓ_1 -normen 8, mens ℓ_2 -normen er omtrent 5.10. Generelt vil ℓ_1 -normen være større enn eller lik ℓ_2 -normen, ettersom ℓ_1 -normen ikke kvadrerer elementene før summen beregnes. Dette kommer av noe som kalles $\ell_1\ell_2$ -ulikheten (men det er ikke pensum her).
- 5. Mean Squared Error (MSE) som en norm: Gitt dataene (\hat{y}_i, y_i) som representerer prediksjoner og sanne verdier for *i*-te datapunkt:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
.

(a) Forklar hvordan MSE kan relateres til
$$\ell_2$$
-normen. Hint: Se på vektoren $\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$, der $r_i = \hat{y}_i - y_i$, som residualvektoren.

Definisjon: Residualvektor

La \mathbf{y} være en vektor som representerer de faktiske verdiene (observasjoner) og $\hat{\mathbf{y}}$ være en vektor med modellens prediksjoner. Da defineres residualvektoren \mathbf{r} som:

$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}},$$

hvor elementene i \mathbf{r} er gitt ved:

$$r_i = y_i - \hat{y}_i$$
, for $i = 1, 2, \dots, n$.

Tolkning:

- $r_i > 0$: Modellen undervurderte verdien (prediksjonen er lavere enn observasjonen).
- $r_i < 0$: Modellen overvurderte verdien (prediksjonen er høyere enn observasjonen).
- $r_i = 0$: Modellen predikerte nøyaktig riktig for dette datapunktet.
- (b) Vis at MSE kan uttrykkes som:

$$MSE = \frac{1}{n} ||\mathbf{r}||_2^2.$$

5. Løsningsforslag

Gitt dataene (\hat{y}_i, y_i) , hvor \hat{y}_i er prediksjonen og y_i er den sanne verdien for *i*-te datapunkt.

(a) Forklaring av hvordan MSE relateres til ℓ_2 -normen:

Residualvektoren \mathbf{r} er definert som:

$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = egin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix},$$

hvor hvert element $r_i = y_i - \hat{y}_i$ representerer avviket mellom den faktiske verdien og prediksjonen for datapunkt i.

Mean Squared Error (MSE) kan skrives som:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
.

Dette kan relateres til ℓ_2 -normen ved å observere at:

$$\|\mathbf{r}\|_{2}^{2} = \sum_{i=1}^{n} r_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}.$$

Dermed kan MSE uttrykkes som:

$$MSE = \frac{1}{n} \|\mathbf{r}\|_2^2.$$

(b) Vis at MSE = $\frac{1}{n} ||\mathbf{r}||_2^2$:

Dette har vi egentlig vist over i 5a, men men :-)

Fra definisjonen av residualvektoren \mathbf{r} , der $r_i = y_i - \hat{y}_i$, har vi:

$$\|\mathbf{r}\|_{2}^{2} = \sum_{i=1}^{n} r_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}.$$

Når vi deler summen av kvadrerte residualer på antall datapunkter n, får vi MSE:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} ||\mathbf{r}||_2^2.$$

(c) Tolkning:

MSE er altså den gjennomsnittlige kvadrerte residualen. Dette betyr at MSE kvantifiserer modellens feil i kvadratiske termer, hvor større feil vektlegges mer enn mindre feil. Samtidig viser relasjonen til ℓ_2 -normen (også kalt $euklidisk\ norm$) at MSE er en skalert versjon av residualvektorens lengde.

- 6. Sammenligning mellom ℓ_p -normer og MSE: Gitt residualvektoren $\mathbf{r} = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \end{bmatrix}$:
 - (a) Beregn ℓ_1 -normen $\|\mathbf{r}\|_1$, ℓ_2 -normen $\|\mathbf{r}\|_2$, og ℓ_∞ -normen $\|\mathbf{r}\|_\infty = \max |r_i|$.
 - (b) Diskuter hvordan de forskjellige normene gir ulik informasjon om residualene.
 - (c) Beregn MSE for residualvektoren, og forklar hvordan den er relatert til ℓ_2 -normen.
- 7. **Praktisk anvendelse:** Du jobber med en regresjonsmodell som gir følgende prediksjoner:

$$\hat{\mathbf{y}} = \begin{bmatrix} 2.1 \\ 3.9 \\ 6.0 \\ 8.2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}.$$

- (a) Beregn residualvektoren $\mathbf{r} = \hat{\mathbf{y}} \mathbf{y}$.
- (b) Finn $\|\mathbf{r}\|_{1}$, $\|\mathbf{r}\|_{2}$, og MSE.
- (c) Diskuter hvordan en lav $\|\mathbf{r}\|_1$ eller $\|\mathbf{r}\|_2$ kan være et mål for modellens kvalitet.

8