

Подпространства и ранг

Слелин А. В.a.slelin.work@mail.ru
ЯрГУ им. П. Г. Демидова

Подпространства линейного пространства. Примеры. Ранг и база системы векторов.

Пусть *L* – произвольное линейное пространство.

Определение 1. Непустое подмножество *L*₁ ⊂ *L* называется *линейным подпространством*, если *L*₁ замкнуто относительно операций сложения и умножения на число:

- 1) $\forall x, y \in L_1 \ x + y \in L_1$;
- 2) $\forall x \in L_1 \ \mathsf{u} \ \forall \alpha \in \mathsf{R} \quad \alpha x \in L_1$.

Замечание: из второго условия при α = 0 сразу следует то, что 0 ∈ L₁. Таким образом, все линейные подпространства одного пространства L обязательно содержат общий элемент, а именно нулевой вектор L. Подмножество не содержащее нуля, линейным подпространством не является.

Примеры:

- 1) Линейным пространством являются $\{0\}$ и всё L. Они называются несобственными подпространствами L.
- 2) Собственные подпространства V_3 прямые и плоскости, проходящие через т.О.
- 3) Совокупность L_1 n-мерных векторов $x=(x_1,\ldots,x_n)$ таких, что $\sum_{i=1}^n x_i=0$, образуют линейное подпространство в $L=\mathbb{R}^n$.
- 4) Пусть $A \in M_{m,n}$ фиксированная матрица. Обозначим через L_1 подмножество пространства $L = \mathbb{R}^n$, состоящее из всех $x = (x_1, \dots, x_n)$ таких, что

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}. \tag{1}$$

- L_1 является линейным подпространством.
- 5) Совокупности многочленов $R_j[t]$, $j=0,1,\ldots,n-1$, степени $\leq j$ составляют цепочку собственных линейных подпространств одного пространства $R_n[t]$.
- 6) Каждое из функциональных пространств $C^{\infty}[a,b]$, $C^k[a,b]$, $C^k[a,b]$ является бесконечномерным подпространством пространства B[a,b] ограниченных на [a,b] функций.
- 7) Каждое из пространств последовательностей l_1 , c_0 , c является бесконечномерным линейным подпространством пространства $b=l_{\infty}$ ограниченных последовательностей.
- 8) Линейная оболочка $L_1 = \lim(x_1, \dots, x_k)$ является конечномерным линейным подпространством L.

Определение 2. Размерность подпространства $L_1 = \text{lin}(x_1, \dots, x_k)$ называется рангом системы векторов x_1, \dots, x_n , а базис L_1 , состоящий из каких-то векторов x_i , называется базой системы x_1, \dots, x_k .

Прямая сумма подпространства. Теорема о прямой сумме.

Пусть L – произвольное линейное пространство, L_1 , L_2 – два его подпространства. Если их сумма $S:=L_1+L_2$ обладает одним из нескольких эквивалентных свойств, то эта сумма является прямой.

Определение 3. Сумма $S = L_1 + L_2$ называется *прямой*, если для любого $x \in S$ представление $x = x_1 + x_2$, $x_1 \in L_1$, $x_2 \in L_2$, является единственным.

Теорема 1. Сумма $S = L_1 + L_2$ является прямой тогда и только тогда, когда выполнено любое из следующих эквивалентных условий.

- 1) $L_1 \cap L_2 = \{0\}.$
- 2) $\dim(L_1 + L_2) = \dim L_1 + \dim L_2$.
- 3) Если f_1, \ldots, f_l базис L_1, g_1, \ldots, g_m базис L_2 , то $f_1, \ldots, f_l, g_1, \ldots, g_m$ базис $L_1 + L_2$.
- **4)** Единственность разложения по L_1 и L_2 имеет место для нулевого вектора: если $x_1+x_2=0$, $x_1\in L_1$, $x_2\in L_2$, то обязательно $x_1=x_2=0$.

Утверждение 1. Каждая матрица $\mathbf{A} \in M_n$ единственным образом представляется в виде суммы симметричной \mathbf{B} ($b_{ji}=b_{ij}$) и кососимметричной \mathbf{C} ($c_{ji}=-c_{ij}$) матриц.

Сумма и пересечение подпространств. Теорема о размерностях суммы и пересечения.

Определение 4. *Сумма* и *пересечение* подпространств L_1 , L_2 линейного пространства L определяется следующим образом:

$$L_1 + L_2 := \{ x \in L : x = x_1 + x_2, x_i \in L_i, i = 1, 2 \},$$
 (2)

$$L_1 \cap L_2 := \{ x \in L : x \in L_i, i = 1, 2 \}.$$
 (3)

Теорема 2. $L_1 + L_2$, $L_1 \cap L_2$ – линейный подпространства L. Если основное пространство L конечномерно, то имеет место равенство

$$\dim(L_1 + L_2) + \dim L_1 \cap L_2 = \dim L_1 + \dim L_2.$$
 (4)

Размерность и базис подпространства \mathbb{R}^n , задаваемого системой линейных однородных уравнений.

Рассмотрим систему линейных однородных уравнений (1) с данной матрицей коэффициентов $\mathbf{A} \in M_{m,n}$. Пусть $L \in \mathbb{R}^n$ определяется равенством

$$L := \{x = (x_1, \dots, x_n) : x$$
удовлетворяет (1) $\}.$ (10)

Теорема 6. dim L = n - rg(A).

С каждой матрицей $\mathbf{A} \in \mathcal{M}_{m,n}$ можно связать два линейных подпространства \mathbf{R}^n :

- 1) L_1 линейная оболочка строк матрицы **A**. Размерность dim L_1 = rg(**A**). Базис L_1 образует любая система из r = rg(**A**) линейно независимых строк.
- 2) L_2 подпространство решений системы однородных уравнений. Размерность dim L_2 = n-rg(A). Базис L_2 образует фундаментальную систему решений данной системы уравнений.

Ранг матрицы. Теорема о ранге. Свойства ранга матрицы.

Определение 5. *Рангом матрицы* **A** называется ранг системы её столбцов как элементов \mathbb{R}^m , то есть размерность линейной оболочки системы столбцов X_1, \ldots, X_n :

$$rg(\mathbf{A}) := rg(X_1, \dots, X_n) = \dim \lim(X_1, \dots, X_n). \tag{5}$$

Теорема 3. Ранг матрицы равен максимальному порядку *r* отличного от нуля минора этой матрицы.

Следствие 1. Для каждой $A \in \mathcal{M}_{m,n}$ $\operatorname{rg}(A^\mathsf{T}) = \operatorname{rg}(A)$.

Свойства:

- 1) Для $\mathbf{A} \in \mathcal{M}_{m,n}$ $\operatorname{rg}(\mathbf{A}) \leq \min(m,n)$.
- 2) Пусть $A \in M_{m,n}$. $rg(A) = n \iff |A| \neq 0$.
- 3) Пусть $A \in M_{m,n}$. Матрица A обратима \iff $\operatorname{rg}(A) = n$.
- 4) Если AB существует, то $rg(AB) \leq min(rg(A), rg(B))$.
- 6) Для $A \in M_{m,k}$, $B \in M_{k,n}$ $rg(A) + rg(B) \le rg(AB) + k$.
- 7) Для $A, B \in M_{m,n}$ $rg(A + B) \le rg(A) + rg(B)$.
- 8) Если все произведения существуют, то

$$rg(AB) + rg(BC) \le rg(B) + rg(ABC)$$
 (6)

Применение понятия ранга к анализу систем линейных уравнений. Теорема Кронекера – Капелли. Критерий определённости.

Пусть дана система m уравнений с n неизвестными x_1, \ldots, x_n и матрицей коэффициентов $\mathbf{A} = (a_{i,j}) \in M_{m,n}$:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + \dots + a_{2n}x_n = b_2$
 $\dots + a_{mn}x_n = b_m$
(7)

Пусть X_1, \ldots, X_n – столбцы матрицы **A**, **b** – столбец свободных членов. Обозначим через **A**|**b** расширенную матрицу системы (7).

Теорема 4. Система (7) является совместной тогда и только тогда, когда

$$rg(\mathbf{A}|\mathbf{b}) = rg(\mathbf{A}).$$
 (8)

Теорема 5. Система линейных уравнений (7) является определённой тогда и только тогда, когда выполняются одновременно два равенства

$$rg(\mathbf{A}|\mathbf{b}) = rg(\mathbf{A}) = n. \tag{9}$$

Литература

1. *Невский М. В.* Подпространства и ранг. // Лекции по алгебре: Учебное пособие // Ярославль: ЯрГУ, 2002. с. 72 – 85