

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

OFFICE OF NAVAL RESEARCH

Contract N00014-78-C-0592

Task No. NR 051-693

TECHNICAL REPORT No. 30

SEMICONDUCTOR ELECTRODES. 51.

EFFICIENT ELECTROLUMINESCENCE AT

Zns ELECTRODE IN AQUEOUS ELECTROLYTES.

by

Fu-Ren F. Fan, Patrick Leempoel and Allen J. Bard

For Publication in the

Journal of the Electrochemical Society

The University of Texas at Austin
Department of Chemistry
Austin, Texas 78712

Anril 1, 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

E

83 04 28 133

C FIL

1.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO. AD. A127 454	3. RECIPIENT'S CATALOG NUMBER
SEMICONDUCTOR ELECTRODES. 51. EFFICIENT ELECTRO- LUMINESCENCE AT ZnS ELECTRODE IN AQUEOUS ELECTRO- LYTES.		5. TYPE OF REPORT & PERIOD COVERED 1 Sept. 1982-31 Aug. 1983
		6. PERFORMING ORG. REPORT NUMBER 30
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(s)
Fu-Ren Fan, Patrick Leempoel a	and Allen J. Bard	N00014-78-C-0592
9. Performing organization name and address Department of Chemistry University of Texas at Austin Austin, TX 78712		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Office of Naval Research 800 N. Quincy Arlington, VA 22217		12. REPORT DATE APRIL 1, 1983
		19. NUMBER OF PAGES 47
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)		18. SECURITY CLASS. (of this report)
		Unclassified
		184, DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different-from Report)

18. SUPPLEMENTARY NOTES

Prepared for publication in the Journal of the Electrochemical Society

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) electroluminescence, luminescence, display, semiconductor

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

Electroluminescence (EL) on ZnS was studied in aqueous solutions containing various redox species. For species able to generate strongly oxidizing intermediates, such as peroxydisulfate or hydrogen peroxide, bright blue luminescence was observed during cathodic polarization at potentials near to or negative of flat-band potential (V_B) of ZnS. For solutions containing supporting electrolyte alone at various pH's, no emission was detectable even at potentials 7 volts negative of V_B . This suggests that minority-carrier (hole) injection is

DD , FORM 1473

EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601 |

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bute

responsible ofr the initiation of EL. The beak energy of the EL spectrum was much smaller (by 1 eV) than the bandgap of ZnS, suggesting that the radiative recombination is through intermediate luminescent centers. Under steady state conditions, the EL intensity was proportional to the square of the current, suggesting that EL intensity is dominated by the recombination of electron-hole bairs at luminescent centers. In the early part of a potential pulse (especially the first pulse), the growth behavior of EL intensity was strongly affected by the electron trapping of the empty upper luminescent states. The location of theEL spectra depended on the current density and the EL intensity; with increasing EL intensity, a significant blue shift of the emission beak was observed. These results suggest that the overall radiative recombination rate might be limited by electron transfer (through tunneling mechanism) from the occupied upper luminescent states to the empty lower luminescent states. An EL efficiency of 0.2% can be achieved by operating at a current density of 25mA/cm².

Acce	ssion For	
DTIC	GRAŁI TAB neunced ification_	
By Dist:	cibution/	
_	lability (Codes
Dist	Avail and Special	
A		

SEMICONDUCTOR ELECTRODES. 51. EFFICIENT ELECTROLUMINESCENCE AT ZnS ELECTRODE IN AQUEOUS ELECTROLYTES.

Fu-Ren F. Fan, Patrick Leempoel and Allen J. Bard*

Department of Chemistry

The University of Texas at Austin

Austin, Texas 78712

Submitted to Journal of Electrochemical Society
December 9, 1982
Revised March 22, 1983

*Electrochemical Society Active Member

Keywords: Electroluminescence, Luminescence, Display, Semiconductor

Abstract

Electroluminescence (EL) on ZnS was studied in aqueous solutions containing various redox species. For species able to generate strongly oxidizing intermediates, such as peroxydisulfate or hydrogen peroxide, bright blue luminescence was observed during cathodic polarization at potentials near to or negative of flat-band potential (V_{fb}) of ZnS. For solutions containing supporting electrolyte alone at various pH's, no emission was detectable even at potentials 7 volts negative of $V_{\mbox{\scriptsize fh}}$. This suggests that minority-carrier (hole) injection is responsible for the initiation of EL. The peak energy of the EL spectrum was much smaller (by 1 eV) than the bandgap of ZnS, suggesting that the radiative recombination is through intermediate luminescent centers. Under steady state conditions, the EL intensity was proportional to the square of the current, suggesting that EL intensity is dominated by the recombination of electron-hole pairs at luminescent centers. In the early part of a potential pulse (especially the first pulse), the growth behavior of EL intensity was strongly affected by the electron trapping of the empty upper luminescent states. The location of the EL spectra depended on the current density and EL intensity; with increasing EL intensity, a significant blue shift of the emission peak was These results suggest that the overall radiative recombination observed. rate might be limited by electron transfer (through a tunneling mechanism) from the occupied upper luminescent states to the empty lower luminsescent states. An EL efficiency of 0.2% can be achieved by operating at a current density of 25 mA/cm^2 .

(End of Abstract)

Introduction

The study of interfacial charge-transfer processes at semiconductor electrodes is under active investigation(1-5). Luminescence techniques have been employed successfully as probes to study surface recombination and excited-state processes(6-9). Recently Ellis and co-workers(6) have carried out extensive studies on the electroluminescence and photoluminescence of cadmium chalcogenides, for example CdS and CdSe, and, by comparison with photogenerated charge transfer obtained information about the reaction processes at these electrodes. The efficiency of the room-temperature emission of these materials in the visible spectral region is quite low, as is that of most other semiconductors (e.g. quantum yields $< 10^{-3}$).

Wide bandgap II-VI compounds are potentially useful electrode materials for visible electroluminescence in solution; the zinc chalcogenides are especially good candidates for such applications. Indeed, low voltage solid-state devices which produce electroluminescence have been described; however, it is difficult to produce a good pn junction necessary for efficient charge injection due to self-compensation by native defects. Less Schuttky junctions have been attempted with some degree of success(10-12). There have been few reports of solution studies of electroluminescence of ZnS (13,14). In an early letter (14) emission was reported for a ZnS electrode immersed in fuming sulfuric acid; this was attributed to the formation of an inversion layer at ZnS surface. More recently a brief report by Tyagai et al (13) described the blue emission of a ZnS cathode in H_2O_2 , which was attributed to hole injection from the reduction intermediate, 'OH, into the valence band of ZnS. However, details of the process, the mechanism of emission and the dependence of the spectral distribution on a variety of electrochemical parameters were not explored.

We thought it of interest to examine the electroluminescence of ZnS as a probe of the energetics at the ZnS/electrolyte interface and for possible application to display devices.

In this paper we examine the electrochemical and electroluminescent properties of single-crystal, n-type ZnS electrodes with various redox couples. We demonstrate that the electroluminescence (EL) is initiated by hole injection from solution redox couples and under steady state conditions the EL intensity is dominated by the recombination of electron-hole pairs at luminescent centers. Neither electron transfer to the upper states nor hole transfer to the lower state controls the rate of emission in the condition studied. The effect of trapping on the growth of EL and the factors affecting the intensity and spectral distribution of the EL will be discussed. The EL efficiency at room temperature is among one of the highest in the photoelectrochemical-type luminescent cells or low voltage solid-state electroluminescence devices (22). An EL efficiency of 0.2% can be achieved by operating at a current density of 25mA/cm².

Experimental Section:

<u>Materials</u>

Al-doped ZnS single crystals were generously donated by Dr. J. 0. McCaldin or were grown by iodine chemical vapor transport(15). These crystals usually had high resistivities (> 10^{10} ohm-cm). The crystals were heated in a molten 90% Zn - 10% Al mixture at 900° C for 10-24 hours. This treatment reduced the resistivity of some crystals to 20 to 10^{4} ohm-cm. The crystals with low resistivity were used in the EL experiments. They were cut into slices along the (111) plane and were subsequently polished by carborundum (1 μ m grit size) and alumina (0.5 μ m particle size). Ohmic contact was made according to the method given by Kaufman and Dowber (16). The crystals were mounted as electrodes as described previously (17).

Before a series of experiments, the electrode was etched in a potassium dichromate- $\rm H_2SO_4$ cleaning solution at $70^{\circ}\rm C$ for 5 minutes. Reagent grade chemicals were used without further purification. All solutions were prepared from triply distilled water and were deoxygenated, if not otherwise mentioned, for at least 30 minutes with purified nitrogen before each experiment. These experiments were carried out with the solution under a nitrogen atmosphere.

Electrochemical Measurements

All electrochemical measurements were performed with the same electrochemical cells, apparatus and procedures as reported previosly (17). The impedance measurements were carried out with an aqueous solution containing 1.0 M $\rm NaClO_4$. The pH of the solution was adjusted with $\rm HClO_4$ or concentrated $\rm NaOH$ (10 M). The apparatus and procedures for impedance measurements were based on those reported previously (18). Two a.c. frequencies (100 and 300 Hz) were employed and no significant dispersion was found.

Electroluminescence Measurements

The EL spectra were mainly obtained with a PAR Model 1215 OMA2 optical multichannel analyzer including a Silicon Intensifier Target vidicon detector with a vacuum UV scintillator to enhance the UV response. This detection system has an essentially flat response in the wavelength range of the ZnS EL spectrum, 350-550 nm. To obtain the EL spectra, the electrode was pulsed between 0.0 V vs. SCE and a given negative potential. The EL signal was detected by synchronizing the OMA detection system with the potential pulses applied to the electrode. Another detection system was constructed based on an Oriel monochromator equipped with gratings blazed at 500 or 1000 nm. The monochromator was interfaced to a highly red-sensitive photomultiplier tube (PMT) (Hamamatsu R928). Signals from the PMT were

amplified by a lock-in amplifier and displayed on a Houston Model 2000 X-Y recorder. In the transient experiments, the EL signal was detected by a PMT with attached neutral density filters and a 460 nm band-pass filter. Signals from the PMT were amplified by a current-to-voltage converter and displayed together with the chronoamperometric curves on a Nicolet Model 1090A digital oscilloscope and then recorded on a Houston Model 2000 X-Y recorder.

The integrated EL efficiency, $\overline{\phi}_{EL}$, was determined by an integrating sphere photometric detection system as described by Itaya and Bard (19) and by Bezman and Faulkner (20).

The total photometric appartus consisted of an integrating sphere and an EG & G radiometer attached to the viewing port of the sphere. The sensitivity, S, of the intergrating sphere was calibrated with a He-Ne laser or by a light beam (10 nm band-width) obtained from a 450 W Xe-lamp and an interference band-pass filter at 460 nm. The calibration factor, C, of the EG & G radiometer was obtained by a standard actinometric procedure with a 0.1 M ferrioxalate actinometer. The sample cell for EL experiments was inserted into the sphere and was held in position by a standard taper joint attached to the sphere. The electrode was pulsed and the total charge passed was measured with a digital coulometer. The total photon energy emitted was measured by the integrating sphere photometric apparatus. The integrated number of photons can be calculated based on Eq. (1) given in Ref. 19 or approximately,

the total number of photons (einsteins) \cong S x C x total photon energy (joules) measured/F x photon energy at λ_{\max} (1)

in which F is Faraday's constant and λ_{\max} is the wavelength at the peak of EL

spectrum. In this equation, the average energy per photon is taken as the photon energy at λ_{\max} . This is only an approximation since the EL spectra are not narrow enough to be treated as line spectra. However, they are quite symmetric and the half-width is narrow as compared with the photon energy at λ_{\max} .

Results:

Electrochemical Behavior

Flat-band Potential (V_{fb}).--Studies of the capacitance of n-ZnS electrodes were conducted in deaerated aqueous solutions containing 1 M NaClO₄ at different pH's. As shown in Fig. 1, a Schottky depletion layer was formed at the surface of ZnS, as indicated by the linear dependence of the reciprocal of the square of the capacitance on the potential (Mott-Schottky plot). V_{fb} of this ZnS electrode was -1.61 V vs. SCE at pH 1.95 and shifted about 55 mV negatively per pH unit increment. The uncompensated ionized charge density, found from the slope of the Mott-Schottky plots and the dielectric constant (ε = 8.3), (21) was 9.1 x 10^{17} cm⁻³.

Voltammetric Behavior

Cyclic voltammetric studies on n-ZnS were conducted in deaerated 1 M NaCl solution at different pH's. As shown in Fig. 2, in the absence of peroxydisulfate at pH 11.4, no appreciable cathodic current was observed at potentials positive of -2.0 V vs. SCE (curve a). The introduction of 20 mM $\rm K_2S_2O_8$ into the solution caused an increase in the cathodic current for potentials negative of -1.8 V vs. 3CE (cu $^{-}$ b). This enhanced cathodic current is apparently due to the requection of $\rm S_2O_8^{2-}$ at the ZnS electrode. When the pH of the solution used in b was decreased to 2.2, a diffusion-controlled reduction wave with a peak current, i $_{\rm p}$, proportional to the square root of scan rate and a peak potential, $\rm E_{\rm p}$, at about -1.85 V vs.

SCE appeared (curve d). This wave can mainly be attributed to proton reduction, because the peak height increases with the proton concentration (compare curve e with curve d) and the peak position was essentially the same as that corresponding to proton reduction in a solution not containing $s_2 s_8^{2-}$ (see curve c). However the different i_p -values in curves d and c suggest partial contribution by the reduction of peroxydisulfate species. The reduction of $s_2 s_8^{2-}$ does not appear to be strongly pH dependent over the pH range studied. Note that the peak position for $s_2 s_8^{2-}$ reduction of graphite electrodes is essentially pH independent (see Fig. 3).

Interfacial Energy Scheme

The interfacial energy scheme at the (ZnS/electrolyte) interface at pH 1 is summarized in Fig. 4. The location of the band edges of ZnS with respect to SCE were calculated based on the procedures reported previously (18) and the following quantities: the resistivity of the sample, ρ^2 20 ohm-cm; the effective mass of electron, $m_e^* = 0.34 m_o$ (21) (m_o is the mass of free electron); the electron mobility, $\mu_e = 160 \text{ cm}^2/\text{V.sec}$ (22); the bandgap, $E_g = 3.66 \text{ eV}$ (21,22) and the flat-band potential at pH 1, $V_{fb} = -1.54 \text{ V vs.}$ SCE. The conduction band edge, E_c , was found to be -1.74 V vs. SCE. This put the valence band edge, E_v , at a potential of 1.92 V vs. SCE. The normal potentials of the (OH⁻/OH) and $(SO_4^{\ 2^-}/SO_4^{\ 7^-})$ couples have been estimated to be 2.7 V and 3.2 V vs. SCE, respectively (23).

Electroluminescence (EL).

Studies of EL from n-ZnS electrodes were conducted in deaerated aqueous solutions containing various redox couples given in Fig. 4 or in oxygen-saturated solution containing no redox couples other than supporting electrolyte, 1 M NaClO $_4$. In the presence of peroxydisulfate or hydrogen peroxide a bright blue emission was observed starting at potentials negative of $V_{\rm fb}$ that was readily observable under day light conditions (Fig. 5). No detectable EL was observed in solution containing only supporting

electrolyte even at an applied potential of -10 V vs. SCE. In Ce(IV) solution, the blue emission was found at potentials far negative of $V_{\rm fs}$, such as -5 V vs. SCE. EL with peroxydisulfate was studied most extensively, and details of the results in solutions containing 0.2 to 1 M $S_2O_8^{2-}$ at different pH's are given below.

Steady-State <u>Current</u> and <u>EL-Potential Properties.</u>--As shown in Fig. 6a, the current, i, increases exponentially with potential, and some cathodic current flows when the potential is positive of V_{fb} . This exponential dependence is consistent with the capacitance measurements which indicate the formation of a Schottky depletion layer at the surface of ZnS. When the potential is well negative of V_{fb} , the i- ΔV (where $\Delta V = V-V_{fb}$) characteristic obeys a power-law relationship over a wide range of applied potential of the form $i \propto \Delta V^{n}$ with n equal to 2. This suggests that the current in this potential range is dominated by double injection (24). A current doubling effect is expected with this system based on the interfacial energy scheme shown in Fig. 4.

Different from the $i-\Delta V$ behavior, significant EL intensity is only detected at potentials near to or negative of V_{fb} (see Fig. 6b), where double injection takes place. Moreover, the EL intensity rises more steeply, as compared with the current, with increasing negative potential. As shown in Fig. 7 the EL intensity, I, varies according to a relationship of the form I α iⁿ, with n equal to 2 over the current range studied.

Spectral Distribution--EL spectra were obtained by repetitively pulsing the electrode between 0.0 V and a potential negative of V_{fb} . The bright blue emission could be seen easily with the naked eye even under ordinary room light conditions. The EL spectra were obtained by synchronizing the OMA detection system with the potential pulses applied to the electrode.

Since the intensity and the spectral distribution of the EL vary with time during the first several potential pulses and reach a steady-state condition only after some period of cycling, the EL spectra shown were recorded under steady-state potential pulsing conditions, if not otherwise mentioned. The EL growth behavior is described in the following sections.

The EL spectra, shown in Fig. 8, are characterized by a single broad band with maximum EL intensity at about 460 nm. The exact peak position, $\lambda_{\rm max}$, of the EL spectrum depends on several parameters which will be discussed in the following sections. Because the sensitivity of the OMA detection system was low at wavelengths beyond 700 nm, a highly red-sensitive photomultiplier tube (Hamamatsu R928) was used to check the EL spectrum in this region. No other bands were observed out to 1000 nm.

Effects of Potential on EL Intensity and Spectral Distribution.--As shown in Fig. 8, significant changes in the intensity and shifts in spectral distribution of the EL were found with small changes of the negative potential limit. More negative step potentials increased the EL intensity and produced a blue shift in the EL spectrum (by about 35 nm in $\lambda_{\rm max}$ with a potential change of -1.95 to -2.25 V vs. SCE). The EL spectrum also was broadened with decreasing negative limits (half-width of 92 nm at -1.95 V vs. 84 nm at -2.25 V vs. SCE). Note that the EL spectrum with the higher emission intensity had a sharper high-energy edge than that with low emission intensity. This is shown more clearly in Fig. 9 by normalizing curve e in Fig. 7 to the same peak height as curve a and then translating this normalized curve by 35 nm to shorter wavelengths to match the peak positions of the two curves.

<u>Pulses.--The</u> growth and decay of the EL intensity and current during a sequence of potential pusles between 0 and -2.75 V vs. SCE is shown in Fig.

10. In the first pulse, the current (the lower curve) reaches a peak value within 5 usec, which is very close to the rise time of the potential step generated from the potentiostat. After reaching the maximum, the current decays exponentially to a steady state value. In the subsequent pulses, this current overshoot disappeares gradually and the current more rapidly (\sim 20 µsec) attains the steady-state value. In the reverse (positive) potential step, the current decays to zero within 20 usec and occasionally shows an oscillation. The increase of EL intensity was slower than the corresponding rate of current increase and no significant decay occurred during the cathodic step, if the pulse width was short (<5 msec.) (Fig. 10). The EL intensity increased with sequential potential pulses and reaches a steady-state value after about 10 pulses, if the cathodic step potential was negative of -2.5 V vs. SCE. The decay time of EL (< 20 μ sec) was much shorter than its rise time. The rise time depended on the history of pulsing and the step potential. Extensive potential pulsing and/or a large amplitude potential step decreased the rise time of EL. A rise time of 200 usec can be achieved after extensive pulsing of the ZnS electrode between 0 and -3.5 V vs. SCE. There was always a dead zone at the beginning of the first potential pulse of a sequence where significant current was observed without generation of a significant amount of EL.

Accompanying the growth of the EL intensity during a sequence of pulses, a blue-shift of the EL spectrum was observed. As shown in Fig. 11, the integrated EL intensity during a single pulse increased with pulse number. This is consistent with the result shown in Fig. 10. The integrated EL intensity in the 26th pulse was about 100 times higher than that of the first pulse. Moreover, a pronounced blue shift of about 20 nm in $\lambda_{\rm max}$ was observed on the EL spectrum of the 26th pulse compared to that

of the first.

Effects of pH on EL Intensity and Spectral Distribution--Studies of pH effects on the EL were conducted in deaerated solutions containing 0.2 M $(NH_4)_2S_2O_8$ and 1 M $NaClO_4$. The pH of the solution was adjusted with 10M NaOH and $HClO_4$. The peak intensity of the EL was a function of pH (Fig. 12). When the potential of the ZnS electrode was pulsed between 0 and -3 V vs. SCE with a 5 msec. pulse width, the EL intensity reached a maximum value at pH 7-9 and decreased gradually at lower pH and more steeply at higher pH. An increase in pH from 8.0 to 10.1 caused a large decrease in the EL intensity and a red shift of 35 nm in the EL spectrum. Similarly, a decrease of pH from 8.0 to 1.2 decreased the EL intensity and caused a red-shift (\sim 18 nm) of the EL spectrum (Fig. 13).

Electroluminescence in the First Potential Pulse--The growth of EL during the first pulse was usually very different from that observed under steady-state pulse conditions. The effect of the negative potential limit is shown in Fig. 14. At smaller negative potentials (e.g. positive of -2 V vs. SCE), the EL intensity was very low and increased linearly with time (see curve 14a). As the limit was made more negative, the EL intensity increased linearly with time at the very beginning and exponentially approached a saturation value at longer times (see curve 14c), indicating a faster growing-in of EL as compared with that at less negative potentials. A faster rate in EL growth could also be achieved at less negative potentials, if the electrode was pre-biased to a potential where no EL was generated but a significant current was observed (for example, a pre-bias at any potential between -1.4 and -1.8 V vs. SCE at pH 8.4).

The effect of pre-bias on the growth behavior of EL at -2.25 V vs. SCE is shown in Fig. 15. Without pre-bias, the EL intensity was low and grew very slowly (see curve b). The corresponding chronoamperometric curve

(curve d) showed a significant current overshoot and sharp decay to a steady-state value. Pre-bias of the electrode for 30 sec. at -1.72 V vs. SCE, where no EL but a significant transient current was detected, not only enhanced the EL intensity but also accelerated the growth of EL (see curve a). The current overshoot in curve d disappeared and the current reaches the steady-state value within a few tens of μsec (see curve c).

Efficiency and Stability of ZnS Electrode--The EL efficiency was determined in a pulse experiment with a step potential to -2.5 V vs. SCE where a steady-state current density of 25 mA/cm 2 was obtained. An integrated EL efficiency, $\phi_{\rm Fl}$, was calculated based on Eq. (2)

$$\tilde{\phi}_{EL} = \frac{\text{Total light emitted x F}}{\text{Total charge passed through the electrode}}$$
 (2)

in which F is Faraday's constant, the light emitted was in einsteins and the The total light energy, in joules, was converted to charge in coulombs. einsteins at 460 nm. The broad (fwhm of ∿80 nm) but quite symmetric feature of the EL spectrum makes this only an approximation. The EL efficiency at a current density of 25mA/cm² ranged from 0.2 to 0.35%, depending on the particular electrode. Since the EL intensity depends in a nonlinear way on the current density, as illustrated in Fig. 7, so does ϕ_{Fl} . To investigate the stability of the ZnS electrodes in aqueous solution containing peroxydisulfate, we performed a long-term pulse experiment. The electrode was immersed in a solution containing 0.2 M (NH $_4$) $_2$ S $_2$ 0 $_8$ and 1 M $(NH_A)_2HPO_A$ (pH \sim 8) and was pulsed between 0 and -2.5 V vs. SCE with a pulse width of 5 msec. The EL intensity was monitored occasionally with a Since peroxydisulfate is reduced irreversibly on the ZnS electrode and is not regenerated at the counter electrode, an additional amount of peroxydisulfate was introduced daily into the solution. The pH of

the solution was kept at $^{\circ}8$. The EL intensity showed some short-term fluctuation but the electrode glowed continuously for at least 11 days, after which time the experiment was terminated. The surface of the electrode after this test was darker colored than originally but the weight loss was < 1%. At present we are uncertain as to the origin of the apparent change of the electrode surface color. The darkening of the electrode surface did not decrease the EL intensity and the surface film was difficult to remove by etching with dichromate cleaning solution.

Discussion

Interfacial Energetics and Mechanism of Electroluminescence.

The fact that significant EL intensity near V_{fh} occurs only in solutions containing redox couples, such as ${\rm H_2^{0}_2}$ and ${\rm S_2^{0}_8}^{2-}$, whose reduction produces intermediates that are sufficiently oxidizing to inject holes into the valence band of n-ZnS (see Fig. 4), supports the minority-carrier injection mechanism of electroluminescence (6-8,13). The lack of EL in supporting electrolyte alone and the observation of little EL in solutions containing weakly oxidizing species, such as $Fe(CN)_6^{3-}$, even at a potential far negative of V_{fb} (for example -8.0 V vs. SCE), rules out the possibility that the energetic holes required for EL are generated by high electric processes inside thesemiconductor, e.g. field-assisted electron tunneling from valence band to conduction band. In solutions containing redox couples with potentials located within the band gap but close to the valence band edge of n-ZnS, such as Ce(IV)/Ce(III) and T1(II)/T1(I), significant EL was observed only when the n-ZnS electrode was biased at a at least 1 V negative of V_{fh} . The requirement of this potential understandable simply based on the energetics for overpotential is

interfacial hole transfer. Both Ce(IV) and Tl(II) are energetically insufficient to inject holes into the valence band of n-ZnS. However, efficient hole injection can occur, if a significant net change in the potential drop across the double layer is allowed or a strong negative bias is applied to the electrode so that electron tunneling from the valence band to the solution species can take place. This seems the case for Ce(IV) and Tl(II).

The mechanism proposed for the electroluminescence in ${\rm S_20_8}^{2^-}$ or ${\rm H_20_2}$ is shown in Scheme I. This scheme has long been applied to explain the edge emission from GaP, CdSe, etc.

The first stage (Eq. 3) involves the reduction of $S_2O_8^{2-}$ or H_2O_2 by conduction-band electrons of the n-ZnS electrode. This produces SO_4^- or OH; these are sufficiently oxidizing to capture electrons from the valence band in the second stage (Eq. 4). The radiative recombination of these injected holes with conduction-band electrons does not produce edge emission (corresponding to E_g) in the present experiment. The peak energy (2.74 eV) of the EL spectrum is substantially smaller than the bandgap (3.66 eV) of ZnS. This subband-gap emission can only be explained based on radiative recombination through intermediate levels, such as the donor impurity level

 E_{n} and/or acceptor impurity level E_{A} .

The interfacial energetics can also be changed by varying the pH of the solution. Capacitance measurements clearly show the strong pH dependence of V_{fh} of n-ZnS electrodes. Increasing the pH shifts V_{fh} towards more negative This favors hole injection (Eq.(4) in Scheme I) but makes electron transfer from the conduction band of n-ZnS to solution species (the first step or Eq. (3) in Scheme I) less favorable. Thus at a given potential, the current density and the corresponding EL intensity decrease with an increase in pH. This is consistent with the results shown in Fig. 12 when the pH is beyond 8. The decrease of EL intensity with a decrease in pH at pH < 7 does not fit this argument. The decrease of EL intensity in this pH range might be caused by at least two factors. The first involves the competition between the reduction of proton and $S_2 O_8^{2-}$ on the ZnS electrode. This is illustrated in Fig. 2. Proton reduction which produces no EL, would decrease the contribution of the reduction of $S_2 o_8^{2}$ to the total current density and thus reduces the EL intensity. The second factor pertains to the instability of ZnS in acidic solution. Significant weight loss ($^{\circ}5\%$) was observed after a ZnS crystal was immersed in an air-saturated solution containing 1 M (NH₄)₂ S_2O_8 at pH 1 for two months.

Spectral Distribution and Intensity of Electroluminescence

That EL spectra are more asymmetric at high emission intensity than at low intensity as shown in Fig. 9 might be partially due to the effect of self-absorption. If holes can be transferred from some distance into the ZnS, the photons emitted there (especially those with shorter wavelength) could be recaptured to promote photo-induced electron transfer from traps. Experiments showing a photo-enhanced cathodic current and photo-quenching of EL, which will be discussed in a separate paper, support this argument. The sharper rise in intensity in the high-energy edge is expected from the

reabsorption of the luminescence by the transition between the band tail (caused by heavily doping) and filled intermediate levels. These results suggest that EL from ZnS is produced in a region extending from the seminconductor/solution interface into a certain depth of the semiconductor. However, due to the much lower (\sim 16 times) hole mobility compared with the electron mobility, the emission zone could be quite thin.

One of the interesting features of the EL spectrum on the ZnS electrode is the blue shift of λ_{\max} with increasing excitation rate (current density) Several experiments have been conducted to and thus EL intensity. illustrate this phenomenon. These include (1) the effect of cathodic step potential (see Fig. 8), (2) the time dependence of EL spectrum (see Fig. 11) and (3) the pH effect (see Fig. 13). Such peak shifts might be attributed to a kinetic effect involving the rate of filling of holes in a band of acceptor levels involved in the radiative process. Thus at low currents only the upper acceptor levels would be populated, resulting in lower energy transition, while at high currents, lower acceptor levels would be involved and a higher energy transition would be observed. If this mechanism applies, one would expect the low-energy edge of the EL spectrum to reproduce approximately the shape of the acceptor band at the low-energy tail. This consistent with the experiment, if the impurity band has an exponential distribution of states at the low-energy edge. However, the high-energy edge of the EL spectrum should be a rather abrupt cutoff before the impurity band is completely filled. The experiment does not show this behavior especially at low current densities (low EL intensities).

One of the accepted models to explain this phenomenon and most of our results on luminescence (including photoluminescence and photoquenching of EL which are not reported here) at ZnS involves tunneling between spatially separated upper (or donor) and lower (or acceptor) states (see Scheme 1).

This concept was proposed about two decades ago by Williams and coworkers (25) to explain luminescence from Cu-doped and Cu In-doped ZnS. Similar recombination processes by electron tunneling have been identified for donor-acceptor pairs in many semiconductors (26-28) and in alkali halides (29).

The energy of the emitted light due to the transition from the donor level to the acceptor level in a donor-acceptor pair separated by a distance, r, is given by (21) Eq.(5), if the phonon coupling is neglected,

$$E(r) = E_q - (E_A + E_D) + e^2 / _o r,$$
 (5)

in which E_g is the band gap, E_A and E_D are the depth of the donor and acceptor, respectively, e is the elementary charge and ε_0 is the static dielectric constant. The electron tunneling probability between two states can be written (30,31)

$$W(r) = W_0 \exp(-2r/a) \tag{6}$$

where a is the effective radius for overlap of the donor wave functions with the acceptor wave functions and W_{Ω} is a parameter independent of r.

Based on the tunneling model, the rate-determining step for the overall recombination process is the electron transfer (through a radiative tunneling mechanism) between the occupied upper states and the empty lower states. With progressive excitation by a potential pulse of large amplitude, electrons are accumulated in the upper luminescent levels and holes in the lower levels. This increases the density of excited luminescent states and thus statistically shortens the inter-impurity distance. A blue shift of the emission peak (Eq. 5) with

increasing transition probability (Eq. 6) should be observed. However, since the number of possible pairings decreases as r decreases, (25c,26c) the emission intensity must go through a maximum as the separation r is varied. Qualitatively, this model explains the relation between the spectral distribution and the EL intensity quite satisfactorily.

Electroluminescence Intensity-Current Relationship

The intensity (I)-current (i) relationship of the form I \propto i² suggests that the radiative recombination of electron-hole pairs at the luminescent centers is the rate-determining step of the EL under steady-state conditions. Neither electron transfer to the upper states nor hole transfer to the lower state controls the rate of emission. This is consistent with the tunneling model discussed above.

At steady-state, the electron density of the upper occupied state, n_u , is proportional to $\exp[e(QFLE)/kT]$ and the density of free electrons, n. The QFLE term represents the quasi-Fermi level of electrons, k is the Boltzmann constant and T is the absolute temperature. Assuming that the diffusive component of the current is negligibly small as compared to the migration term, the current density is thus proportional to N. Hence, we have

The hole density of the lower empty state, $p_{\underline{I}}$, is proportional to $\exp[e(QFLH)/kT)]$ and the density of free holes, p. The QFLH term is the quasi-Fermi level of holes. p is proportional to the rate of hole injection which contributes one half of the total current. The splitting of QFLH and QFLE from the equilibrium Fermi level arises because electrons accumulate in the donor levels and holes accumulate in the lower acceptor states. Thus, we have

Since the emission rate is proportional to the product of n_u and p_ℓ , if the radiative recombination process is the rate-determining step, a square law for the intensity-current relationship, is predicted.

Effect of Trapping on the Growth of Electroluminescence

Several experimental results demonstrate the existence of electron trapping, which strongly affects the EL on ZnS: (1) there is a potential region where no EL intensity is detected but significant current is observed (see Fig. 6). (2) the current overshoots in the first potential pulse; pre-biasing the electrode or pulsing the electrode continuously eliminates this current overshoot (see Figs. 10 and 15); this suggests that the current overshoot at the beginning of the first potential pulse is not controlled by solution double layer; (3) at a low negative step potential, the EL intensity is very low and inceases linearly with time (see Fig. 14). Progressively pulsing the electrode accelerates the growing-in of EL and increases also the EL intensity (see Fig. 10). The increase of cathodic limit potential has the same effect on the growth of EL (see Fig. 14).

A simple rate equation is adequate to illustrate qualitatively these points (see Scheme II). If the upper (donor) states are sufficiently deep that the detrapping of electrons to the conduction band can be neglected, the rate of electron filling of the initially empty upper (donor) states is given by

$$\frac{dn_{u}}{dt} = A_{1}n(n_{0}-n_{u}) - A_{2}n_{u}p_{\ell} - A_{3}n_{u}p_{\ell}$$
 (9)

in which n_u is the density of occupied upper (donor) states, n the density of electrons in the conduction band, n_D the total number of upper states (empty and occupied) per unit volume, p_ℓ the density of empty lower (acceptor) states, and A_1 and A_2 are constants describing the rate of generation of n_u , the radiative recombination rate and the non-radiative recombination through n_u and p_ℓ , respectively.

We assume that before most of the upper states are filled, electron trapping by these states is the predominant process for the consumption of electrons injected from the bulk of semiconductor into the emission zone. Thus, in the early part of the pulse, n, p and p_{ℓ} are small and only slowly-varying variables, i.e.

$$\frac{dn}{dt} \sim 0 \tag{10a}$$

$$\frac{d\mathbf{p}}{dt} \sim 0 \tag{10b}$$

$$\frac{dp}{dt} \sim 0 \tag{10c}$$

By integration of Eq. 9 with $n_u=0$ at t=0 and the assumptions in Eqs. 10a, 10b and 10c,

$$n_u = n_u^{\infty} [1 - \exp(-t/\tau)]$$
 (11)

in which

$$n_u^{\infty} = A_1 n n_D / (S_1 n + A_2 p_L + A_3 p_L)$$
 (12)

and

$$\tau = 1/(A_1 n + A_2 p_L + A_3 p_L$$
 (13)

The EL interacty is given by

$$I = A_2 n_{U} p_{U} = A_2 p_{L} n_{U}^{\infty} [1 - \exp(-t/\tau)]$$
 (14)

This exponential growth of EL was observed at high step potentials and in the time domain away from the beginning of a potential step (Fig. 14).

When $t/\tau \rightarrow 0$, Eq. (14) reduces to

$$I = A_2 \rho_{\mathcal{E}} n_{\mathcal{U}}^{\infty} t / \tau \tag{15}$$

This linear growth behavior of EL is observed at the beginning of any potential step or throughout the whole width of potential pulse, when its amplitude is small (see curve a of Fig. 14).

The conservation of charges gives

$$\frac{dn_u}{dt} + \frac{dn}{dt} - \frac{d}{dt} - \frac{dP_L}{dt} = i_d$$
 (16)

wi th

$$i_d = i_T - (i_{f \cdot e} + i_{f \cdot h}) \tag{17}$$

 i_d in these equations should represent the current overshoot in the chronoamperograms in the first potential pulses. Combination of Eqs. (10a), (10b), (10c), (12) and (16) yields

$$i_{d} = (n_{u}^{\infty}/\tau) \exp(-t/\tau)$$
 (18)

This current transient is clearly shown in the first potential pulse in Fig. 10. The time constant for the increase of EL is very similar to that for the current decay, as expected from Eqs. (14) and (18).

The actual mechanism is certainly more complicated than that given above and involves radiationless recombinations between n and p, probably via trapping levels. These radiationless processes are what contribute to the modest efficiency of the observed EL. Additional surface quenching

processes by solution species also occur. Such processes are currently under investigation.

Conclusions

Bright blue EL results from the electrochemical reduction of peroxydisulfate at a n-ZnS electrode. This luminescence arises from recombination of an electron with a hole injected by an intermediate (SO_4^{-}) in the reduction.

Acknowledgment

The support of this research by the Solar Energy Research Institute and the Office of Naval Research is greatly appreciated. We are indebted to Professor J. D. McCaldin (Cal. Tech) for supplying several ZnS crystals. P. L. was partially supported by a Fulbright grant.

References:

- 1. A. Heller, Acc. Chem. Res., 14, 154, (1981).
- 2. A. J. Bard, Science (Washington, D.C.) 207, 139,(1980).
- 3. M. S. Wrighton, Acc. Chem. Res., 12, 303 (1979).
- 4. A. J. Nozik, Annu. Rev. Phys. Chem., 29, 189 (1978).
- 5. H. J. Gersicher, <u>J. Electroanal. Chem. Interf. Electrochem.</u>, **58**, 263 (1975).
- (a) H. H. Strickert, J.-R Tong, A. B. Ellis, <u>J. Amer. Chem. Soc.</u>,
 104, 581 (1982); (b) B. R. Karas, H. H. Strickert, R. Schreiner,
 A. B. Ellis; <u>Ibid</u>, 103, 1648 (1981); (c) B. R. Karas, A. B. Ellis,
 <u>Ibid</u>, 102, 968 (1980); (d) B. R. Karas, A. B. Ellis, <u>Ibid</u>, 101,
 236 (1979); (e) H. H. Strickert, J.-R Tong, A. B. Ellis, <u>Ibid</u>,
 104, 581 (1982); references therein.
- 7. B. Pettinger, H.-R. Schoppel, H. Gerischer, <u>Ber. Bunsenges. Phys.</u>
 Chem., 80, 849 (1976).
- 8. K. H. Beckmann and R. Memming, <u>J. Electrochem. Soc.</u>, **116**, **368** (1969).
- (a) J. D. Luttmer and A. J. Bard, <u>J. Electrochem. Soc.</u>, 126, 414 (1979); <u>Ibid</u>, 125, 1424 (1978); (b) R. N. Noufi, P. A. Kohl, S. N. Frank and A. J. Bard, Ibid, 125, 246 (1978).
- 10. M. Aven and J. Z. Devine, <u>J. Luminesc.</u>, 7, 195 (1973).
- 11. M. E. Ozsan and J. Woods, Appl. Phys (1974).
- 12. H. Katayama, S. Oda and H. Kukimoto, <u>Appl. Phys. Lett.</u>, **27**, 697 (1975).
- 13. V. A. Tyagai, M. K. Sheinkman, E. L. Shtrum, G. Ya. Kelbasov and N. K. Moiseava, Sov. Phys. Semicond., 14, 112 (1980).

- 14. L. J. Van Ruyven and F. E. Williams, <u>Phys. Rev. Lett.</u> 16, 889 (1966).
- 15. R. Nitsche, <u>J. Phys. Chem. Solids</u>, 17, 163 (1960).
- 16. R. G. Kaufman and P. Dowbor, <u>J. Appl. Phys.</u>, **45**, 4487, (1974).
- 17. F.-R. Fan, H. S. White, B. L. Wheeler and A. J. Bard, <u>J. Amer.</u>
 Chem. Soc., 102, 5412 (1980).
- 18. F.-R. Fan and A. J. Bard, J. Electrochem. Soc., 128, 945 (1981).
- 19. K. Itaya and A. J. Bard, <u>J. Phys. Chem.</u> 85, 1358 (1981).
- 20. R. Bezman and L. R. Faulkner, Anal. Chem., 43, 1749 (1971).
- 21. J. I. Pankove, "Optical Processes in Semiconductors", Prentice-Hall; (Englewood Cliffs, N. J. 1971) 412.
- 22. Y. S. Park and B. K. Shin, "Topics in Applied Physics", J. I. Pankove (Ed.), Springer-Verlag, (Berlin, 1977) Vol. 17, p.136.
- 23. R. J. Memming, J. Electrochem. Soc., 116, 785 (1969).
- 24. M. A. Lampert and A. Rose, Phys. Rev., 121, 26 (1961).
- (a) J. S. Prener and F. E. Williams, <u>J. Electrochem. Soc.</u>, 103,342
 (1956); (b) E. F. Apple and F. E. Williams, <u>Ibid</u>, 106, 224 (1960);
 (c) F. E. Williams, <u>J. Phys. Chem. Solids</u>, 12, 265 (1960).
- 26. (a) J. J. Hopfield, D. G. Thomas and M. Gershenzon, Phys. Rev. Lett., 10, 162 (1963); (b) D. G. Thomas, M. Gershenzon and F. A. Trumbore, Phys. Rev., 133, 269 (1964); (c) D. G. Thomas, J. J. Hopfield and W. M. Augustyniak, Phys. Rev., A140, 202 (1965).
- 27. D. Redfield, J. P. Wittke and J. L. Pankove, <u>Phys. Rev.</u>, B2, 1830 (1970).
- 28. R. A. Street, Adv. Phys., 30, 593 (1981).
- 29. C. J. Delbecq, Y. Toyozawa and P. H. Yuster, <u>Phys. Rev.</u>, **B9**, 449 (1974).
- 30. A. Miller and E. Abrahams, E. Phys. Rev., 120, 745 (1960).

31. F. Mott, Phil. Mag., 19, 835 (1969).

Figure Captions

- Fig. 1 Mott-Schottky plots of ZnS electrodes in 1 M NaClO₄ at different pH. A. C. frequencies, 100 and 300 Hz. Δ, pH 1.95; □, pH 7; O, pH 10.
- Fig. 2 Cyclic voltammograms on ZnS electrodes. Scan rate; 100 mV/sec in (a) 1.0 M NaClO $_4$, pH 11.4; (b) 1.0 M NaClO $_4$, 20 mM K $_2$ S $_2$ O $_8$, pH 11.4; (c) 1.0 M NaClO $_4$, pH 2.3; (d) 1.0 M NaClO $_4$, 20 mM K $_2$ S $_2$ O $_8$ at pH 2.2; (e) 1.0 M NaClO $_4$, 20 mM K $_2$ S $_2$ O $_8$ at pH 2.0. Solution pH was adjusted with concentrated NaOH (10 M) and HClO $_4$.
- Fig. 3 Cyclic voltammograms on graphite electrode. Scan rate, 100 mV/sec in (a) 1.0 M Na ClO $_4$, pH 11.4; (b) 1.0 M NaClO $_4$, 20 mM K $_2$ S $_2$ O $_8$, pH 11.4; (c) 1.0 M NaClO $_4$, 20 mM K $_2$ S $_2$ O $_8$, pH 2.2.
- Fig. 4 Energy scheme at ZnS/Electrolyte interface.
- Fig. 5 Photo of EL at ZnS electrode.
- Fig. 6 Current-(curve a) and EL intensity-(curve b) vs. potential at ZnS electrodes in 1.0 M NaClO₄ and 0.2 M (NH₄) $_2$ S $_2$ O₈ at pH 8.4. Scan rate, 20 mV/sec.
- Fig. 7 EL intensity vs. current for ZnS electrodes in 1.0 M NaClO $_4$ and 0.2 M (NH $_4$) $_2$ S $_2$ 0 $_8$ at pH 8.4.
- Fig. 8 Steady state EL spectra at different step potentials on ZnS electrodes in 1.0 M NaClO₄ and 0.2 M (NH₄)₂S₂O₈ at pH 8.9. The positive limit potential was 0 V vs. SCE. Negative limit potentials; (a) -2.25 V, (b) -2.20 V; (c) -2.15 V; (d) -2.10 V; (e) -2.05 V vs SCE.
- Fig. 9 EL spectra from curves a and e in Fig. 8 normalized curve e to the same peak height as curve a and then this normalized curve

- translated 35 nm to shorter wavelengths to match the peak positions of these two curves.
- Fig. 10 Bottom: Current-time characteristics of ZnS electrodes in 1 M $\rm NaClO_4$ and 0.2 M ($\rm NH_4$) $_2\rm S_2\rm O_8$ at pH 8.4. The potential was pulsed between 0 and -2.75 V vs. SCE at a frequency of 100 Hz. Top: corresponding EL intensity-time characteristics.
- Fig. 11 Development of EL spectra for different potential pulses on ZnS electrodes in 1.0 M NaClO $_4$ and 0.2 M (NH $_4$) $_2$ S $_2$ O $_8$ at pH 8.9. Curve a: 26th pulse; curve b: 11th pulse; curve d: first pulse; curve c: 5 times expansion of the EL scale in curve d. Potential of the electrode was pulsed between 0 and -2.25 V vs. SCE at a frequency of 100 Hz.
- Fig. 12 EL peak intensity vs. pH characteristics of ZnS electrodes in 1 M $NaClO_4$ and 0.2 M $(NH_4)_2S_2O_8$. The electrode was pulsed between 0 and -3 V vs. SCE at a frequency of .100 Hz.
- Fig. 13 EL spectra at different pH on ZnS electrodes in 1 M NaClO $_4$ and 0.2 M $(NH_4)_2S_2O_8$. The electrode was pulsed between 0 and -2.25 V vs. SCE at a frequency of 100 Hz. Curve a: pH 8.0; b: pH 7.4; c: pH 5.0; d: pH 2.7; e: pH 1.2; f: pH 10.1.
- Fig. 14 Growth behavior of EL of ZnS electrodes during the first pulse. Solution contained 1.0 M NaClO₄ and 0.2 M (NH₄) $_2$ S $_2$ O₈ at pH 4.0. The cathodic step potential: -2.0 V vs. SCE (curve a); -3.0 V (curve b); -3.5V (curve c).
- Fig. 15 Effect of pre-bias on the growth of EL and current for the first potential pulse. Solution and electrode, same as in Fig 14.

 Curves a (EL) and c (current): electrode was pre-biased at -1.75 V vs. SCE for 30 sec. before step to -2.25 V; curves b (EL) and d (current): without pre-bias.

Scheme I

Scheme II

(b)

472:GAN:716-4 94/GEN

	No. Copies		No.
	Copies		Copi
Office of Naval Research		Naval Ocean Systems Center	
Attn: Code 413		Attn: Mr. Joe McCartney	
800 North Quincy Street		San Diego, California 92152	1
Arlington, Virginia 22217	2		
		Naval Weapons Center	
ONR Pasadena Detachment		Attn: Dr. A. B. Amster,	
Attn: Dr. R. J. Marcus		Chemistry Division	
1030 East Green Street		China Lake, California 93555	, 1
Pasadena, California 91106	1		
•		Naval Civil Engineering Laboratory	
Commander, Naval Air Systems Command		Attn: Dr. R. W. Drisko	
Attn: Code 310C (H. Rosenwasser)		Port Hueneme, California 93401	1
Department of the Navy			
Washington, D.C. 20360	1	Dean William Tolles	
		Naval Postgraduate School	
Defense Technical Information Center	•	Monterey, California 93940	1
Building 5, Cameron Station			
Alexandria, Virginia 22314	12	Scientific Advisor	
		Commandant of the Marine Corps	
Dr. Fred Saalfeld		(Code RD-1)	
Chemistry Division, Code 6100		Washington, D.C. 20380	1
Naval Research Laboratory			1
Washington, D.C. 20375	1	Naval Ship Research and Development	
		Center	
U.S. Army Research Office		Attn: Dr. G. Bosmajian, Applied	
Attn: CRD-AA-IP		Chemistry Division	
P. O. Box 12211		Annapolis, Maryland 21401	1
Research Triangle Park, N.C. 27709	1		
•		Mr. John Boyle	
Mr. Vincent Schaper		Materials Branch	
DTNSRDC Code 2803		Naval Ship Engineering Center	
Annapolis, Maryland 21402	1	Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center		Mr. A. M. Anzalone	
Attn: Dr. S. Yamamoto		Administrative Librarian	Í
Marine Sciences Division		PLASTEC/ARRADCOM	
San Diego, California 91232	1	Bldg 3401	
		Dover, New Jersey 07801	1

	No.		No
	Copies	•	Copi
Nw Paul Dolohow		Dr. P. J. Hendra	1
Dr. Paul Delahay Department of Chemistry		Department of Chemistry	
•		University of Southampton	į
New York University	1	Southampton SOO 5NH	
New York, New York 10003	1	United Kingdom	1
Dr. E. Yeager		_	L
Department of Chemistry		Dr. Sam Perone	4
Case Western Reserve University	_	Chemistry & Materials	
Cleveland, Ohio 41106	1	Science Department	
		Laurence Livermore National Lab.	
Dr. D. N. Bennion		Livermore, California 94550	1
Department of Chemical Engineering			
Brigham Young University	_	Dr. Royce W. Murray	
Provo, Utah 84602	1	Department of Chemistry	
		University of North Carolina	
Dr. R. A. Marcus		Chapel Hill, North Carolina 27514	11
Department of Chemistry			
California Institute of Technology		Naval Ocean Systems Center	
Pasadena, California 91125	1	Attn: Technical Library	
		San Diego, California 92152	1
Dr. J. J. Auborn			
Bell Laboratories		Dr. C. E. Mueller	
Murray Hill, New Jersey 07974	1	The Electrochemistry Branch	
		Materials Division, Research and	
Dr. Adam Heller		Technology Department	
Bell Laboratories		Naval Surface Weapons Center	
Murray Hill, New Jersey 07974	1	White Oak Laboratory	_
		Silver Spring, Maryland 20910	1
Dr. T. Katan			
Lockheed Missiles and		Dr. G. Goodman	
Space Co., Inc.		Johnson Controls	
P. O. Box 504	_	5757 North Green Bay Avenue	
Sunnyvale, California 94088	1	Milwaukee, Wisconsin 53201	1
Dr. Joseph Singer Code 302-1		Dr. J. Boechler	
NASA-Lewis		Electrochimica Corporation	
21000 rookpark Road		Attn: Technical Library	
C'eveland, Ohio 44135	1	2485 Charleston Road	
		Mountain View, California 94040	1
Dr. B. Brummer			
EIC Incorporated		Dr. P. P. Schmidt	
55 Chapel Street		Department of Chemistry	
Newton, Massachusetts 02158	1	Oakland University	
·		Rochester, Michigan 48063	1
Library			
P. R. Mallory and Company, Inc.			
Northwest Industrial Park			
Burlington, Massachusetts 01803	1		

	No. Copies		No. Copi
Dr. H. Richtol		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	·
Rensselaer Polytechnic Institute	•	Northwestern University	
Troy, New York 12181	1	Evanston, Illinois 60201	1
Dr. A. B. Ellis		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
University of Wisconsin		University of Alberta	
Madison, Wisconsin 53706	1	Edmonton, Alberta	
- w		CANADA T6G 2G2	1
Dr. M. Wrighton		De Mahari I Usawa	
Chemistry Department		Dr. Michael J. Weaver	
Massachusetts Institute		Department of Chemistry	
of Technology		Michigan State University	,
Cambridge, Massachusetts 02139		East Lansing, Michigan 48824	1
Larry E. Plew		Dr. R. David Rauh	
Naval Weapons Support Center		EIC Corporation	
Code 30736, Building 2906		55 Chapel Street	
Crane, Indiana 47522	1	Newton, Massachusetts 02158	1
S. Ruby		Dr. J. David Margerum	
DOE (STOR)		Research Laboratories Division	
600 E Street		Hughes Aircraft Company	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road	
Tiovidence, knode Island Oziya	•	Malibu, California 90265	1
Dr. Aaron Wold	•	indiabo, dalitoriilo yoloo	•
Brown University		Dr. Martin Fleischmann	
Department of Chemistry		Department of Chemistry	
Providence, Rhode Island 02192	1	University of Southampton	
11012ddddy Idiodd 202did V2270	-	Southampton 509 5NH England	1
Dr. R. C. Chudacek			
McGraw-Edison Company		Dr. Janet Osteryoung	
Edison Battery Division		Department of Chemistry	
Post Office Box 28		State University of	
Bloomfield, New Jersey 07003	1	New York at Buffalo	
		Buffalo, New York 14214	1
Dr. A. J. Bard			
University of Texas		Dr. R. A. Osteryoung	
Department of Chemistry		Department of Chemistry	
Autin, Texas 78712	1	State University of	
•	•	New York at Buffalo	
Dr. M. M. Nicholson		Buffalo, New York 14214	1
Electronics Research Center			
Rockwell International			
3370 Miraloma Avenue			
Anaheim, California	1		

	No. <u>Copies</u>		No Cop
Dr. Donald W. Ernst		Mr. James R. Moden	
Naval Surface Weapons Center		Naval Underwater Systems	
Code R-33		Center	
White Oak Laboratory		Code 3632	
Silver Spring, Maryland 20910	1	Newport, Rhode Island 02840	
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory		U. S. Army Research Office	
Code 6130		P. O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University	_	Scientific Research	
Sharon, Pennsylvania 16146	1	Bolling AFB	
		Washington, D.C. 20332	
Dr. D. F. Shriver			
Department of Chemistry		Dr. David Aikens	
Northwestern University	,	Chemistry Department	
Evanston, Illinois 60201	1	Rensselaer Polytechnic Institute Troy, New York 12181	
Dr. D. H. Whitmore			
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
·		Downsview, Ontario M3J1P3	
Dr. Alan Bewick		Canada	
Department of Chemistry			
The University		Dr. Stanislaw Szpak	
Southampton, SO9 5NH England		Naval Ocean Systems Center Code 6343	
Dr. A. Himy		San Diego, California 95152	
NAVSEA-5433			
NC #4		Or. Gregory Farrington	
2541 Jefferson Davis Highway		Department of Materials Science	
Arlington, Virginia 20362		and Engineering	
		University of Pennsylvania	
Dr. John Kincaid		Philadelphia, Pennsylvania 19104	
Department of the Navy			
Strategic Systems Project Office		Dr. Bruce Dunn	
Room 901		Department of Engineering &	
Washington, D.C. 20376		Applied Science	
		University of California	
		Los Angeles, California 90024	

	No.		No
	Copies		Copi
M. L. Robertson		Dr. T. Marks	
Manager, Electrochemical		Department of Chemistry	ł
and Power Sonices Division		Northwestern University	i
Naval Weapons Support Center		Evanston, Illinois 60201	1
Crane, Indiana 47522	1		
		Dr. D. Cipris	•
Dr. Elton Cairns		Allied Corporation	
Energy & Environment Division		P. O. Box 3000R	
Lawrence Berkeley Laboratory		Morristown, New Jersey 07960	1
University of California	•		
Berkeley, California 94720	1	Dr. M. Philpot	
		IBM Corporation	
Dr. Micha Tomkiewicz		5600 Cottle Road	
Department of Physics		San Jose, California 95193	1
Brooklyn College			
Brooklyn, New York 11210	1	Dr. Donald Sandstrom	
		Washington State University	
Dr. Lesser Blum		Department of Physics	
Department of Physics		Pullman, Washington 99164	1
University of Puerto Rico			
Rio Piedras, Puerto Rico 00931	1	Dr. Carl Kannewurf	
		Northwestern University	- 1
Dr. Joseph Gordon, II		Department of Electrical Engineering	
IBM Corporation		and Computer Science	į
K33/281		Evanston, Illinois 60201	1
5600 Cottle Road			
San Jose, California 95193	1	Dr. Edward Fletcher	
		University of Minnesota	
Dr. Robert Somoano		Department of Mechanical Engineering	
Jet Propulsion Laboratory		Minneapolis, Minnesota 55455	1
California Institute of Technology			
Pasadena, California 91103	1	Dr. John Fontanella	
		U.S. Naval Academy	
Dr. Johann A. Joebstl		Department of Physics	_
USA Mobility Equipment R&D Command DRDME-EC		Annapolis, Maryland 21402	1
Fort Belvior, Virginia 22060	1	Dr. Martha Greenblatt Rutgers University	
Dr. Judith H. Ambrus		Department of Chemistry	
NASA Headquarters		New Brunswick, New Jersey 08903	1
M.S. RTS-6		•	
Washington, D.C. 20546	1	Dr. John Wassib	
		Kings Mountain Specialties	i
Dr. Albert R. Landgrebe		P. O. Box 1173	
U.S. Department of Energy		Kings Mountain, North Carolina 28086	1
M.S. 6B025 Forrestal Building		-	
Washington, D.C. 20595	1		
•			

TECHNICAL REPORT DISTRIBUTION LIST, 359

	No. Copies	No. Copies
Dr. J. J. Brophy University of Utah Department of Physics Salt Lake City, Utah 84112	. 1	
Dr. Walter Roth Department of Physics State University of New York Albany, New York 12222	1	
Dr. Thomas Davis National Bureau of Standards Polymer Science and Standards Division		
Washington, D.C. 20234	1	
Dr. Charles Martin Department of Chemistry Texas A&M University	1	
Dr. Anthony Sammells Institute of Gas Technology 3424 South State Street Chicago, Illinois 60616	1	
Dr. H. Tachikawa Department of Chemistry Jackson State University Jackson, Mississippi 39217	1	
Dr. W. M. Risen Department of Chemistry Brown University		
Providence, Rhode Island	1	

П

ELLMED

5-83