1. Embedding binary tree on 2d-mesh: Prove that a binary tree of depth $k \ge 4$ does not have a load-1, dilation-1, congestion-free embedding on a 2d-mesh. For this, show by induction that $2^{k+1} - 1 > 2k^2 + 2k + 1$ for k > 4

Solution:

Claim:
$$2^{k+1} - 1 > 2k^2 + 2k + 1$$
 for k>4

Basis: n=0,1,...,5: For k = 5,
$$2k^2 + 2k + 1 = 61 < 63 = 2k+1 - 1$$
, hence P_0 is true.

Hypothesis: Suppose P_k : $2^{k+1} - 1 > 2k^2 + 2k + 1$ is true, for some K > = 5.

Induction: To prove:
$$P_{k+1}$$
: $2^{k+2} - 1 > 2(k+1)^2 + 2(k+1) + 1$

L.H.S =
$$2(k+1)^2 + 2(k+1) + 1$$

$$=(2k^2+4k+2)+2k+2+1$$

$$= 2k^2 + 2k + 1 + (4k + 1)$$

$$< 2(2k^2 + 2k + 1)$$
 : $k > 4 \rightarrow k > 0, k > 1 \rightarrow k(k - 1) > 0 \rightarrow 2k^2 + 2k + 1 > (4k + 1)$

$$<2(2^{k+1}-1)$$
 as P_k is true

$$= 2^{k+2} - 2$$

$$< 2^{k+2} - 1 = R.H.S$$

Hence P_{k+1} is true.

2. Row-Column-based Matrix Multiplication on Local Memory Machines: Calculate the parallel time complexity of this algorithm for multiplying two nxn matrices using p processors con_gured in a ring C_{p} , showing the computation and communication phases calculations. Assume row-bands of _rst matrix and column-bands of second matrix are already distributed among processors.

Two nxn matrices A and B are given, with elements aij, bij and their multiplication is calculated in C.

Row band Ri contains n/p rows, namely rows from (i-1)n/p \rightarrow i(n/p)-1, where i = 0,..p-1

Column band Cj contains n/p columns, columns from $(j-1)n/p \rightarrow j(n/p)-1$, where j=0,...p-1

There are p processors, each denoted by Pi, i = 0,...p-1

Analysis:

Algorithm:

Computational time:

n*n/p chunk of A multiplied by n*n/p chunk of B = n^3/p^2

Tcomputation = $O(p*n^3/p^2) = O(n^3/p)$, because there are p steps of multiplications

Communication time: To send/receive message of length, $m = \frac{n^2}{p}$.

The process continues for p-1 times, hence

Tcommunication = $(p-1)(t s+n^2/p*tw) = O(n^2)$

Total Time = Tcomp + Tcomm = $O(n^3/p) + O(n^2)$