Machine Learning for Bio-Image-Analysis

Introduction

- What is bio-image analysis?
- How is it done without machine learning?
- What is machine learning?
- How is it bio-image analysis done with machine learning?

Bio-Image-Analysis

 "The extraction of information from digital images in the context of biological research"

The Image-Analysis Workflow

pre-processing

segmentation

post-processing

Select a scale

- Use "Gaussian blur"-filter to select a scale
 - Low-pass filter
 - Removes high frequencies from the images
 - The higher sigma the lower the remaining frequencies

Convolution

 $k_1 = -\infty$ $k_2 = -\infty$

 $y(n_1,n_2) = \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} x(n_1-k_1,n_2-k_2)h(k_1,k_2)$

Image features at different scales

scale $\sigma = 3.5$ $\sigma=10$ $\sigma = 7$ feature variance sobel

Machine Learning

Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

Machine Learning

- Training
 a model is learned from training
 data
- Validation the trained model is validated against test data

Application
use the trained model to make predictions on new data

Machine Learning vocabulary

- Supervised
 - a model is learned from pairs of input and output data
- Classification
 - the result is a category

- Unsupervised
 - a model is learned from the inherent structure of the input data alone
- Regression
 - the result is a real number

Machine Learning How is that even possible?

 ML algorithm implements a mathematical model with a number of model parameters Given the training data, find parameter values that minimize the prediction error

Machine Learning Example 1 - linear regression

153

168

177

180

171

168

 Estimate body height f(x) given the femur length x.

model

$$f(x) = \omega_1 + \omega_2 * x$$

 $\omega_1, \, \omega_2$ model parameter

training data

Example 1 - Linear regression

- Find parameters $\omega_1, \, \omega_2,$
- so that error between training data and model is minimal

Example 1 - Squared Loss function

$$|f(x) = \omega_1 + \omega_2 * x|$$

$$L(\omega_{1,}\omega_{2}) = \frac{1}{N} * \sum_{n=1}^{N} (t_{n} - f(x_{n}; \omega_{1,}\omega_{2}))^{2}$$

Example 1 - Loss function

- Find the minimum of the loss function
- By using gradient descent

Example 1 - Predictions

$$f(x) = \omega_1 + \omega_2 * x$$

$$\omega_1 = 131.13 \, cm$$

$$\omega_2 = 0.87$$

$$f(55cm)=131.13cm+0.878*55cm$$

$$f(55cm)=179.42cm$$

Femur example

- Supervised or Unsupervised?
- Classification or Regression?

- a model is learned from pairs of input and output data
- Classification
 - the result is a category

- Unsupervised
 - a model is learned from the inherent structure of the input data alone
- Regression
 - the result is a real number

The programs

- ImageJ/FIJI
- Weka
- Ilastik
- Cellprofiler / Cellprofiler Analyst
- Orbit

ImageJ/FIJI

- Demo ImageJ 01
 - Open image
 - Threshold
 - Binary Watershed
 - Compare to GT

ImageJ/FIJI

- Demo ImageJ 02
 - Revert Image
 - Laplacian of Gaussian (scale 3)
 - Threshold (Yen)
 - Binary Watershed
 - Compare to GT

Ilastik

- Demo Ilastik 01
 - import image(s)
 - select features and scales
 - name classes
 - select training data
 - export result
 - batch

Exercises 01

Clustering

- A machine learning method
 - Unsupervised
 - Classification

Clustering

- Clustering
 - Group objects in a way that
 - objects in the same cluster are more similar to each other
 - than to objects in other clusters

Clustering algorithms

- K-means
- DBScan
- hierarchical clustering
- expectation-maximization
- •

k-means clustering

- Partition the featurespace into k-clusters
- Each feature-vector belongs to the cluster with nearest mean

- Algorithm:
 - Start with k initial means
 - Repeat until convergence
 - Assign feature-vectors to clusters
 - Recalculate the means of the clusters

K-means example

K-means clustering in machine learning

- Training phase:
 - randomly select a number of feature vectors
 - for example 5% of the data
 - run the k-means clustering on the selected feature vectors
 - the resulting means are the classifier

- Classification of unknown data:
 - Calculate the feature vector
 - Assign it to the cluster with the nearest mean

Classify pixels by color

Input Image

RGB

CIEL*a*b* color-space

- CIEL*a*b* color-space
 - L = lightness
 - a = green (-) to red (+)
 - b = yellow (-) to blue (+)
- Designed, so that
 - distances correspond to perceived distances between colors.

Software

- color clustering in FIJI
- comes with WEKA
- Plugins>Segmentation>Color Clustering

Exercises 02