Aula 9

Capítulo 5 - Circuitos Aritméticos

- Circuitos Aritméticos
 - Meio somador
 - Somador completo
 - Somador completo a partir de meio somadores
 - Meio subtrator
 - Subtrator completo
 - Subtrator completo a partir de Meio Subtratores
 - Somador/Subtrator completo

Circuitos Aritméticos

 Dentro do conjunto de circuitos combinacionais aplicados para finalidade específica nos sistemas digitais, destacam-se os circuitos aritméticos. São utilizados, principalmente, para construir a ULA (Unidade Lógica Aritmética) dos microprocessadores e ainda, encontrados disponíveis em circuitos integrados comerciais.

ULA de 1 bit

Meio somador

o Relembrando...

Meio somador

Tabela verdade soma de 2 números binários de 1 algarismo

A	В	S	Ts '
0	0	0	0
0	1	1	0.
1	0	1	0
1	1	0	1

Ts → transporte de saída

$$(0 + 0 = 0 \rightarrow Ts = 0)$$

 $(0 + 1 = 1 \rightarrow Ts = 0)$

$$(0+1=1 \rightarrow Ts=0)$$

$$(1+0=1 \rightarrow Ts=0)$$

$$(1 + 1 = 0 \rightarrow Ts = 1)$$

Meio somador

 Representando cada número cada número por um bit, podemos, então, montar um circuito com entradas A e B, e como saída a soma dos algarismos (S) e o respectivo transporte de saída (Ts).

Meio somador

- As expressões características do circuito, extraídas da tabela,
 são:
- \circ $A \oplus B$
- \circ Ts = AB

Circuito a partir das expressões

Meio somador

A representação em bloco deste circuito é:

 Este circuito Meio Somador também é conhecido como Half Adder, sendo a saída de transporte denominada carry out.

Somador Completo

 O Meio Somador possibilita efetuar soma de números binários com 1 algarismo. Para se fazer a soma de números binários de mais algarismos, esse circuito torna-se insuficiente, pois não possibilita a introdução do transporte de entrada proveniente da coluna anterior.

 \circ Analisando a soma: $1110_2 + 110_2$

Somador Completo

 A soma de 2 números binários de + mais algarismos, basta somarmos coluna a coluna, levando em conta o transporte de entrada que nada mais é do que o Ts da coluna anterior.

Somador Completo

Tabela verdade deste circuito:

A	В	$T_{\rm E}$	S	75
0	0	0	0	0
0	0	1	1,	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1.	1	1	1

$$T_E \rightarrow \text{transporte de entrada}$$

 $(0+0+0=0 \rightarrow \text{Ts}=0)$
 $(0+0+1=1 \rightarrow \text{Ts}=0)$
 $(0+1+0=1 \rightarrow \text{Ts}=0)$
 $(0+1+1=0 \rightarrow \text{Ts}=1)$
 $(1+0+0=1 \rightarrow \text{Ts}=1)$
 $(1+0+1=0 \rightarrow \text{Ts}=1)$
 $(1+1+0=0 \rightarrow \text{Ts}=1)$
 $(1+1+1=1 \rightarrow \text{Ts}=1)$

$$\begin{split} S &= \overline{A}\,\overline{B}T_E \,+\, \overline{A}B\overline{T}_E \,+\, A\overline{B}\overline{T}_E \,+\, ABT_E \\ Ts &= \overline{A}BT_E \,+\, A\overline{B}T_E \,+\, AB\overline{T}_E \,+\, ABT_E \end{split}$$

Expressão característica sem simplificação

Somador Completo

Simplificação:

S:

$$S = A \oplus B \oplus T_E$$

 T_s :

$$T_S = BT_E + AT_E + AB$$

Somador Completo

Circuito somador completo:

Somador Completo

A representação em bloco deste circuito é:

 O circuito Somador Completo também é conhecido como Full Adder, sendo a saída de transporte denominada carry in.

Somador Completo

 A exemplo de aplicação, vamos montar um sistema em blocos que efetua a soma de 2 números de 4 bits, conforme o esquema:

Somador Completo

 Para efetuar a soma dos bits A₀ e B₀ dos números (1º coluna), vamos utilizar um Meio Somador, pois não existe transporte de entrada, mas para as outras utilizaremos Somadores Completos:

Somador Completo

 Generalizando para um sistema que efetua a soma de 2 números de m bits (m= n+1), temos:

Somador Completo a partir de Meio Somador

Analisando as expressões de ambos os blocos:

$$S = A \oplus B \oplus T_{E}$$

$$T_{S} = \overline{A}BT_{E} + A\overline{B}T_{E} + AB\overline{T}_{E} + ABT_{E}$$

Somador Completo a partir de Meio Somador

Fatorando a expressão de Ts, temos:

$$T_S = T_E (\overline{A}B + A\overline{B}) + AB (\overline{T}_E + T_E) : T_S = T_E (A \oplus B) + AB$$

Ligando A e B nas entradas Meio Somador 1 temos:

Somador Completo a partir de Meio Somador

Fatorando a expressão de Ts, temos:

$$Ts = T_E (\overline{AB} + A\overline{B}) + AB (\overline{T}_E + T_E) : Ts = T_E (A \oplus B) + AB$$

 Ligando a saída S do Meio Somador 1 à entrada X do outro Meio Somador e à entrada Y deste, a variável T_E, temos:

Somador Completo a partir de Meio Somador

- Notamos:
 - o que a saída S do meio Somador 2 apresenta a soma de 2 números.
 - as saídas T_{S1} e T_{S2} sãos os termos da expressão de Ts de um Somador Completo, logo se fizermos a soma dessas 2 saídas (porta OU), teremos na saída o Ts de um Somador Completo:

Meio Subtrator

o Relembrando...

$$0-0=0$$

 $0-1=1$ e transporta 1 ("empresta 1)
 $1-0=1$
 $1-1=0$

Meio Subtrator

o Relembrando...

$$0-0=0$$

 $0-1=1$ e transporta 1 ("empresta 1)

$$1 - 0 = 1$$

$$1 - 1 = 0$$

	В	S	Ts
0	0	0	0
0	1	1	. 1
1	0	1	0
1	1	0	0

$$(0 - 0 = 0 \rightarrow Ts = 0)$$

$$(0 - 1 = 1 \rightarrow Ts = 1)$$

$$(1 - 0 = 1 \rightarrow Ts = 0)$$

 $(1 - 1 = 0 \rightarrow Ts = 0)$

$$(1 - 1 = 0 \rightarrow Ts = 0)$$

$$S = A \oplus B$$

$$Ts = \overline{A}B$$

Expressão característica

Meio Subtrator

O circuito a partir das expressões

$$S = A \oplus B$$
$$Ts = \overline{A}B$$

Meio Subtrator

Em bloco o circuito recebe a representação:

Também recebe a denominação Half Subtractor.

Subtrator Completo

- O meio Subtrator Completo possibilita-nos efetuar a subtração de números binários de 1 algarismo.
- Analisando a subtração: 1100₂ 11₂

Subtrator Completo

 Para fazermos a subtração de números binários de mais algarismos, basta subtrairmos coluna a coluna, levando em conta o transporte de entrada que nada mais é que o Ts da coluna anterior.

A	B #	$T_{\rm Fa}$	S	T _s
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1.	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1.	0	0	0
1	1	1	1	1

 $S = \overline{A} \overline{B} T_{E} + \overline{A} B \overline{T}_{E} + A \overline{B} \overline{T}_{E} + A B T_{E}$ $Ts = \overline{A} \overline{B} T_{E} + \overline{A} B \overline{T}_{E} + \overline{A} B T_{E} + A B T_{E}$

S: $\overline{B} \qquad B$ $\overline{A} \qquad 0 \qquad 1 \qquad 0 \qquad 1$ $A \qquad 1 \qquad 0 \qquad 1 \qquad 0$ $\overline{T}_E \qquad T_E \qquad \overline{T}_E$

(b)
$$Ts = \overline{A}B + \overline{A}T_E + BT_E$$

Subtrator Completo

Subtrator Completo e a representação em bloco :

Este também é chamado Full Subtractor.

Subtrator Completo

 Generalizando para um sistema que efetua a subtração de 2 números de m bits (m= n+1), temos:

O Nesse sistema, a saída de transporte Ts do último bloco torna-se desnecessária se o número $A_n...A_0$ (minuendo) for maior ou igual a $B_n...B_0$ (subtraendo), porém poderá ser utilizada no caso contrário para sinalizar que o resultado é negativo, estando, então, na notação de complemento de 2.

Subtrator Completo a partir de Meio Subtrator

Analisando as expressões dos dois blocos:

Meio Subtrator:

Subtrator Completo:

Subtrator Completo a partir de Meio Subtrator

Fatorando a expressão de Ts temos:

$$Ts = T_E (\overline{A} \overline{B} + AB) + \overline{A}B(\overline{T}_E + T_E)$$

$$Ts = T_E (A \odot B) + \overline{A}B \quad \therefore \quad Ts = T_E (\overline{A \odot B}) + \overline{A}B$$

Ligando A e B nas entradas X e Y do Meio Subtrator 1, temos:

Subtrator Completo a partir de Meio Subtrator

○ Ligando a saída S na entrada X do 2º bloco, e à entrada Y, a variável T_E, temos:

 Notamos que a saída S do Meio Subtrator 2 apresenta a subtração completa de 2 números.

Subtrator Completo a partir de Meio Subtrator

O Analisando as saída T_{S1} e T_{S2} , notamos que são os termos da expressão de Ts de um Subtrator Completo. Se injetarmos T_{S1} e T_{S2} nas entradas de uma porta OU, teremos na saída o Ts de um Subtrator Completo. O circuito com essa ligação é:

Somador/Subtrator Completo

- Podemos esquematizar um circuito que efetue as duas operações.
- Para isso, vamos introduzir uma outra entrada que permanecendo em nível 0, faz o circuito efetuar uma soma completa, e permanecendo em nível 1, faz efetuar uma subtração completa.

Somador/Subtrator Completo

 Montando a tabela verdade do circuito, sendo M a variável de controle (M=0 → soma e M=1 → subtração):

M	A	В	$T_{\rm E}$	S	T_{s-}	
0	0	0	0	0	0	
0	0	0	1	1	0	
0	0	1	0	1	0	
0	0	1	1	0	1	
0	1	0	0	1	0	
0	1	0	1	0	1	
0	1.	1	0	0	1	
0	1	1	1	1	1	2000000
1	0	.0	0	0	0	
1	0	0	1	1	1	
1	0	1	0	1	1	
1	0	1	1	0	1	
1	1	0	0	1	0	0.0000
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	1	1	

Soma Completa (M = 0)

> Subtração Completa (M = 1)

Somador/Subtrator Completo

Simplificação:

Do diagrama, obtemos:

$$S = A\overline{B}\overline{T}_{E} + \overline{A}\overline{B}T_{E} + ABT_{E} + \overline{A}B\overline{T}_{E}$$

Fatorando a expressão, temos:

$$S = \overline{A}(\overline{B}T_E + B\overline{T}_E) + A(\overline{B}\overline{T}_E + BT_E)$$

$$S = \overline{A}(B \oplus T_E) + A(B \odot T_E)$$

$$S = \overline{A}(B \oplus T_E) + A(\overline{B \oplus T_E})$$

$$::S = A \oplus B \oplus T_E$$

Somador/Subtrator Completo

Simplificação:

Ts:

Do diagrama, obtemos: $T_S = BT_E + \overline{M}AB + \overline{M}AT_E + M\overline{A}B + M\overline{A}T_E$

Fatorando a expressão, temos:

$$Ts = BT_E + B(\overline{M}A + M\overline{A}) + T_E(M\overline{A} + \overline{M}A)$$

$$Ts = BT_E + B(M \oplus A) + T_E(M \oplus A)$$

$$Ts = BT_E + (M \oplus A) (B + T_E)$$

Somador/Subtrator Completo

O circuito e sua representação em bloco:

Exercícios

 Desenhe um sistema somador para 2 números de 2 bits apenas com blocos de Somadores Completos.

Exercícios

 Desenhe um sistema somador para 2 números de 2 bits apenas com blocos de Somadores Completos.

Exercícios

 Desenvolva um circuito com uma entrada de controle M, para fornecer à saída o complemento de 1 de um número binário de 1 bit (M = 0 => Saída = número de entrada e M = 1 => Saída = complemento de 1).

Exercícios

 Desenvolva um circuito com uma entrada de controle M, para fornecer à saída o complemento de 1 de um número binário de 1 bit (M = 0 => Saída = número de entrada e M = 1 => Saída = complemento de 1).

М	A	S	
0	0	0	1
0	1	1	Saída = número de entrada
1.	0	1	
1	1	0	Saída = complemento de 1

A partir da tabela, obtemos a expressão: $S = \overline{M}A + M\overline{A}$ ou $S = M \oplus A$, sendo o circuito derivado, visto na figura 5.60.

Exercícios

 Esquematize, em blocos, um sistema subtrator para 2 números com 2 bits.

$$A_1 \quad A_0$$

$$- \quad B_1 \quad B_0$$

$$S_1 \quad S_0$$

Exercícios

 Esquematize, em blocos, um sistema subtrator para 2 números com 2 bits.

Quadro resumo (1)

	Códigos																					
Decimal	В	CD	842	21	E	xce	sso	3		Gı	ray			2 e	ntr	e 5			Jo	nhs	on	
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	1
2	0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1
3	0	0	1	1	0	1	1	0	0	0	1	0	0	1	Ò	0	1	0	0	1	1	1
4	0	1	0	0	0	1	1	1	0	1	1	0	0	1	0	1	0	0	1	1	1	1
5	0	1	0	1	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	1	1
6	0	1	1	0	1	0	0	1	0	1	0	1	1	0	0	0	1	1	1	1	1	0
7	0	1	1	1	1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	1	0	0
8	1	0	0	0	1	0	1	1	1	1	0	O	1	0	1	0	0	1	1	0	0	0
9	. 1	0	0	1	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	0	0	0

Quadro resumo (2)

	Display d	e 7 segmentos						
√ g Jb	catodo comum	Cada segmento acende com 1 aplicado ao respectivo anodo.						
<i>و</i> ڪي د	anodo comum	Cada segmento acende com 0 aplicado ao respectivo catodo.						

Quadro resumo (2)

