Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Exercise Sheet no.2

Analysis for CS

GROUPWORK:

(G 6)

Using the rules of calculation for limits, compute the limit of the sequences having the general term defined as follows:

a)
$$\frac{5^n+1}{7^n+1}$$
, b) $\frac{4^n+(-2)^n}{4^{n-1}+2}$, c) $\left(\sin\frac{\pi}{10}\right)^n$, d) $\sqrt{9n^2+2n+1}-3n$, e) $\left(5+\frac{1-2n^3}{3n^4+2}\right)^2$,

f)
$$\sqrt{n^2 + 3} - \sqrt{n^3 + 1}$$
, g) $\left(\frac{n^3 + 5n + 1}{n^2 - 1}\right)^{\frac{1 - 5n^4}{6n^4 + 1}}$, h) $\left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \dots \left(1 - \frac{1}{n}\right)$.

(G7)

Study the monotonicity, the boundedness properties and the convergence of the sequence $(x_n)_{n\in\mathbb{N}^*}$ in each of the following cases, also motivating your statements:

a)
$$x_n = \frac{2^n + 3^n}{5^n}$$
, b) $x_n = \frac{(-1)^n}{n}$, c) $x_n = \frac{2^n}{n!}$, d) $x_n = \frac{n}{n^2 + 1}$.

(G 8) (Train your brain)

Treat cases 3 and 4 in the proof of ${\bf Th2}$ in the second course.

HOMEWORK:

(H 8) (To be delivered in the next exercise-class)

1) Using the rules of calculation for limits, compute the limit of the sequences having the general term defined as follows:

a)
$$\frac{3^n}{4^n}$$
, b) $\frac{2^n + (-2)^n}{3^n}$, c) $\frac{5-n^3}{n^2+1}$, d) $\left(2 + \frac{4^n + (-5)^n}{7^n+1}\right)^{2n^3 - n^2}$, e) $\frac{1+2+\dots+n}{n^2}$, f) $\left(\frac{n^3 + 4n + 1}{2n^3 + 5}\right)^{\frac{-2n^4 + 1}{n^4 + 3n + 1}}$, g) $(\cos(-2013))^n$, h) $\left(\frac{n^5 + 3n + 1}{2n^5 - n^4 + 3}\right)^{\frac{3n - n^4}{n^3 + 1}}$.

2) Study the monotonicity, the boundedness properties and the convergence of the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_n = \sqrt{n+1} - \sqrt{n}$, and motivate your statements.

(H 9)

Study the convergence of the sequence with general term defined as follows

$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right), \ n \ge 2.$$

In case the sequence is convergent, determine its limit.

(H 10) (Train your brain)

Using the density property of the set \mathbb{Q} (see **Th5** in the first course), prove that every real number is the limit of a sequence of rational numbers. Moreover, prove that this sequence can be chosen to be increasing (or decreasing).