

ALMA follow-up for a z=3.3 DLA found in a galaxy sight-line

Inoue, Akio K. (Waseda U.),

Mawatari, K. (U. Tokyo), Hashimoto, T. (Tsukuba U.), Yamanaka, S. (Waseda U.), Fujimoto, S. (DAWN), Umehata, H. (RIKEN)

Introduction

- Damped Ly α systems (DLAs) are high HI column density systems found in spectra of bright background sources such as QSOs and Gamma-Ray Burst afterglows.
 - log10(NHI/cm2)>20.3
 - Very important gas reservoirs in the Universe.
- Optical searches for counterparts of DLAs are difficult.
 - Due to the brightness of background QSOs (e.g., Krogager et al. 2017)
 - ~10 optical counterparts were reported.

Introduction

- ALMA surveys of emission line counterparts of DLAs are yielding very successful results.
 - [CII] 158 line and dust continuum at $z\sim4$ (Neeleman et al. 2017; but see Ogura et al. 2020 for a $z\sim3$ low-metallicity DLA case)
 - CO and dust continuum at $z\sim0.3$, 0.7 and 2 (Møller et al. 2018; Kaneker et al. 2018; Fynbo et al. 2018; Neeleman et al. 2018; Peroux et al. 2019)

- DLA found in the spectrum of a Lyman break galaxy in the SSA22 field (Mawatari et al. 2016)
- z(DLA)=3.335, log10(NHI/cm2)=21.68, z(bkLBG)=3.604

Close-up spectrum of the DLA

Observations

- Dashed circle: Band 3 field-of-view (Half-maximum of the primary beam)
- ALMA Cycle 6: 2018.1.01427.S [Grade C]
- Band 3
 - CO(4-3) at $z=3.335 \rightarrow 106.353 \text{ GHz}$
 - [CI](1-0) at $z=3.604 \rightarrow 106.898$ GHz
 - SPW0: 107.000 GHz, 1.875 GHz, 480 channels
 - SPW1: 105.200 GHz, 1.875 GHz, 480 channels
 - SPW2: 95.000 GHz, 1.875 GHz, 480 channels
 - SPW3: 93.200 GHz, 1.875 GHz, 480 channels
- Dates
 - 2018-10-23 (x2), 2018-10-24, 2018-11-05
- Exposure time
 - $3,878 \sec + 3,876 \sec + 3,876 \sec + 3,894 \sec = 15,524 \sec = 4.3 \text{ hours}$
- CASA version
 - 5.4.0-68 Pipeline 42030M (Pipeline-CASA54-P1-B)

Results Results

2 emission line detections

No continuum detection

Image: S-Cam i'-band

sensitivity of Ray and IGM Workshop 2020

07.4 22:17:07.0 06.6 06.2

> Contours: S/N=-4, -3, 3, 4, 5, 6, 7, and 8σ Red: Line image (106.186-106.487 GHz) Green: Line image (105.583-105.849 GHz)

Blue: Continuum at 100.092 GHz

Inoue et al. in prep.

Spectra

SSA22-B3-Line1		
RA (J2000)	$22:17:06.413 \pm 0.007$	
DEC (J2000)	$+00:05:43.74 \pm 0.09$	
Line center frequency	106.3399 ± 0.0069	GHz
Line FWHM	421 ± 46	${\rm km}~{\rm s}^{-1}$
Peak intensity ^a	0.152 ± 0.019	Jy km s $^{-1}$ beam $^{-1}$
Integrated flux a	0.453 ± 0.087	Jy km s $^{-1}$
Major axis $FWHM^b$	1.56 ± 0.35	arcsec
Minor axis $FWHM^b$	0.96 ± 0.30	arcsec
Position angle ^b	125 ± 26	degree
Continuum intensity c	$< 15 (3-\sigma)$	$\mu \rm Jy~beam^{-1}$
SSA22-B3-Line2		
RA (J2000)	$22:17:06.427 \pm 0.013$	
DEC (J2000)	$+00:05:31.32 \pm 0.14$	
Line center frequency	105.720 ± 0.013	GHz
Line FWHM	380 ± 87	${\rm km}~{\rm s}^{-1}$
Peak intensity ^a	0.100 ± 0.018	Jy km s $^{-1}$ beam $^{-1}$
Integrated flux a	0.279 ± 0.081	Jy km s $^{-1}$
Major axis $FWHM^b$	1.78 ± 0.60	arcsec
Minor axis FWHM b	0.80 ± 0.53	arcsec
Position angle ^b	124 ± 26	degree
Continuum intensity ^c	$< 16 (3-\sigma)$	μ Jy beam ⁻¹

^a Primary beam correction has been applied.

^b Measurements deconvolved from the clean beam.

 $^{^{\}it c}$ At the mean frequency of 100.092 GHz. Primary beam corrected.

- No continuum counterpart.
 - But, Spitzer/IRAC ch2 [4.5]
- If the emission line at 106.340 GHz is CO(4-3), the redshift is 3.33554.
 - +160 km/s from Ly α absorption
- Physical distance is 71.0 kpc from the DLA sight-line.
 - >2x further than Neeleman+19 CO counterpart at z~2.
- CO(4-3) luminosity corresponds to H2 mass of **3.3e11 Msun**.
 - MW values of $\alpha_{CO} = 4.3$, $r_{41} = 0.17$ are assumed.

- No continuum counterpart.
 - But, Spitzer/IRAC ch2 [4.5]
- If the emission line at 106.340 GHz is CO(4-3), the redshift is 3.33554.
 - +160 km/s from Ly α absorption
- Physical distance is 71.0 kpc from the DLA sight-line.
 - >2x further than Neeleman+19 CO counterpart at $z\sim2$.
- CO(4-3) luminosity corresponds to H2 mass of 3.3e11 Msun.
 - MW values of $\alpha_{CO} = 4.3$, $r_{41} = 0.17$ are assumed.

- The spatially coincided galaxy has z(photo)=1.1.
- If the emission line at 105.720 GHz is CO(2-1), z=1.18065.
- Probably, this is a CO(2-1) line at z=1.18.
- The H2 mass is estimated at 4.4e10 Msun.
 - MW conversion factors: $\alpha_{CO}=4.3$, $r_{21}=0.50$.

Discussions

CO(4-3) and [CI](1-0) upper limits for LBGs

- LBG1
 - L'CO(4-3)<1.5e9 K km/s pc2
 - M(H2)<3.8e10 Msun
- LBG2
 - L'CO(4-3)<2.1e9 K km/s pc2
 - M(H2)<5.3e10 Msun
- bkLBG
 - L'[CI](1-0)<1.1e9 K km/s pc2
 - M(H2)<5e10 Msun
- DLA
 - L'CO(4-3)<1.2e9 K km/s pc2
 - M(H2)<3e10 Msun
 - N(H2)<5e22 cm-2 c.f. N(HI)=4.8e21 cm-2
 - \rightarrow f(H2)=2N(H2)/[2N(H2)+N(HI)]<0.95

- The most likely solution: SMG at z=3.335
 - Gas-rich (~3e11 Msun)
 - High SFR (~1e3 Msun/yr)
 - Very warm dust (Td~80K)

DLA

- A part of the cosmic web connecting the LBG and the SMG (Line1)?
- The SMG may be located at the node of two filaments?

To confirm the possible cosmic web filaments, Ly α imaging is highly desirable.

A proposal was rejected by ESO...

Inoue et al. in prep.

Summary

- We carried out ALMA Band3 observations for a CO(4-3) emission counterpart of a z=3.335 DLA found in an LBG spectrum.
- We detected 2 emission line sources and no continuum source.
- One is likely to be a gas-rich SMG at z=3.335.
 - In this case, the velocity difference from the Ly α line center is +160 km/s, supporting the idea that the line is CO(4-3) at z=3.33554.
 - The molecular mass is as large as 3e11 Msun, comparable to a CO counterpart of $z\sim2$ DLA (Neeleman et al. 2018).
 - The physical distance from the DLA is 71.0 kpc, which is 2x further than the $z{\sim}2$ example.
 - The DLA is located on a straight line connecting the SMG and an LBG at the same redshift, suggesting that the DLA is a part of the cosmic web.
- The other is associated with a foreground galaxy of z(photo)=1.1.
 - The emission line is probably CO(2-1) at z=1.18.
 - The molecular mass is 4e10 Msun.