In [1]: import pandas as pd
import numpy as np

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv") #reading the data
data.describe()

Out[2]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

- In [3]: data1=data.drop(['lat','ID'],axis=1)
- In [4]: data2=data1.drop('lon',axis=1)
- In [5]: data2['model']=data['model'].map({'lounge':1,'pop':2,'sport':3}) #making model values string to number

In [6]: data2

Out[6]:

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1538 rows × 6 columns

In [7]: y=data2['price']
x=data2.drop('price',axis=1) # droping the price column

In [8]: x

Out[8]:

	model	engine_power	age_in_days	km	previous_owners
0	1	51	882	25000	1
1	2	51	1186	32500	1
2	3	74	4658	142228	1
3	1	51	2739	160000	1
4	2	73	3074	106880	1
1533	3	51	3712	115280	1
1534	1	74	3835	112000	1
1535	2	51	2223	60457	1
1536	1	51	2557	80750	1
1537	2	51	1766	54276	1

1538 rows × 5 columns

In [9]: from sklearn.model_selection import train_test_split
x_train, x_test,y_train, y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [10]: x_test.head(5)

Out[10]:

		model	engine_power	age_in_days	km	previous_owners
•	481	2	51	3197	120000	2
	76	2	62	2101	103000	1
	1502	1	51	670	32473	1
	669	1	51	913	29000	1
	1409	1	51	762	18800	1

```
In [11]: y_test.head(5)
```

Out[11]: 481 7900 76 7900 1502 9400 669 8500 1409 9700

Name: price, dtype: int64

In [12]: from sklearn.linear_model import LinearRegression #importing linear regression
reg=LinearRegression()
reg.fit(x train,y train)

Out[12]:

▼ LinearRegression

LinearRegression()

In [13]: ypred=reg.predict(x_test)

```
In [14]: ypred # array values of ypred
Out[14]: array([ 5994.51703157,
                                 7263.58726658,
                                                  9841.90754881.
                                                                  9699.31627673.
                10014.19892635.
                                 9630.58715835.
                                                  9649.4499026 . 10092.9819664 .
                 9879.19498711.
                                 9329.19347948. 10407.2964056.
                                                                  7716.91706011.
                 7682.89152522,
                                 6673.95810983,
                                                  9639.42618839, 10346.53679153,
                 9366.53363673,
                                 7707.90063494,
                                                  4727.33552438, 10428.17092937,
                10359.87663878, 10364.84674179,
                                                  7680.16157493.
                                                                  9927.58506055.
                 7127.7284177 ,
                                 9097.51161986,
                                                  4929.31229715,
                                                                  6940.60225317,
                 7794.35120591,
                                                  7319.85877519,
                                 9600.43942019,
                                                                  5224.05298205,
                 5559.52039134.
                                 5201.35403287.
                                                  8960.11762682.
                                                                  5659.72968338.
                 9915.79926869,
                                 8255.93615893,
                                                  6270.40332834,
                                                                  8556.73835062,
                 9749.72882426,
                                 6873.76758364,
                                                  8951.72659758, 10301.95669828,
                 8674.89268564, 10301.93257222,
                                                  9165.73586068,
                                                                  8846.92420399,
                                                  9390.75738772, 10267.3912561 .
                 7044.68964545, 9052.4031418,
                10046.90924744,
                                 6855.71260655,
                                                  9761.93338967,
                                                                  9450.05744337,
                 9274.98388541, 10416.00474283,
                                                  9771.10646661,
                                                                  7302.96566423,
                10082.61483093, 6996.96553454.
                                                                  7134.21944391,
                                                  9829.40534825.
                 6407.26222178, 9971.82132188,
                                                  9757.01618446,
                                                                  8614.84049875,
                 8437.92452169,
                                 6489.24658616,
                                                  7752.65456507,
                                                                  6626.60510856,
                 8329.88998217, 10412.00324329,
                                                  7342.77348105.
                                                                  8543.63624413.
In [15]: from sklearn.metrics import r2_score
         r2 score(v test, vpred)
Out[15]: 0.8383895235218546
In [16]: from sklearn.metrics import mean squared error
         b=mean squared error(ypred,y test)
In [17]: srt=b**(1/2)
         print(b)# getting mean square value
         print(srt) #square root value for mean square
         593504.2888137395
         770.3922954013361
```

In [18]: results=pd.DataFrame(columns=['price', 'predicted'])
 results['price']=y_test #getting the result of price
 results['predicted']=ypred #getting results of predicted price
 results.head(15)

Out[18]:

	price	predicted
481	7900	5994.517032
76	7900	7263.587267
1502	9400	9841.907549
669	8500	9699.316277
1409	9700	10014.198926
1414	9900	9630.587158
1089	9900	9649.449903
1507	9950	10092.981966
970	10700	9879.194987
1198	8999	9329.193479
1088	9890	10407.296406
576	7990	7716.917060
965	7380	7682.891525
1488	6800	6673.958110
1432	8900	9639.426188

In [19]: #results=results.reset_index()
#results['Id']=results.index()