CIRCUITOS LOGICOS DIGITALES

Universidad Peruana de Ciencias Aplicadas

Laureate International Universities®

EJEMPLOS FSM MEALY – MOORE

CICLO ACADÉMICO: 2024-I

EJEMPLO-1: Diseñar un Sistema Secuencial Síncrono que permita detectar la secuencia de entrada en binario 101. Utilice FFs JK como elementos de memoria.

1. Realizar el diagrama de transición de estados teniendo en cuenta que la señal de entrada X ingresará los datos, que el sistema detectará, bit a bit.

2. Determinar el número de FFs y el número de estados además definir el tipo de biestables y finalmente codificar las entradas, los estados y la salida del sistema.

REGLAS					
# ESTADOS	4				
# FF:	2				
CONDICIÓN	4	≤	4		
MSB:	Q1(t)				
TIPO FF:	FF-JK				

LEYENDA					
Q1(t);Q0(t):	SALIDA DE BIESTABLES				
X(t):	ENTRADA				
S(t):	ESTADO ACTUAL				
Z(t):	SALIDA				

Q0(t)X(t)	CODIFICACIÓN ESTADO ACTUAL S(t)
00	Representa el E0 (Estado inicial, ningún bit en la entrada)
01 10 11	Representa el E1 (Se ha recibido un '1', MSB)
10	Representa el E2 (Se ha recibido la secuencia '01')
71	Representa el E3 (Se ha recibido la secuencia '101')

X(t)	CODIFICACIÓN ENTRADA X(t)
0	Mantiene E0, cambia E1 a E2, mantiene E2 y cambia E3 a E0
1	Cambia E0 a E1, mantiene E1, cambia E2 a E0 y cambia E3 a E0

Z(t)	CODIFICACIÓN SALIDA Z(t)
0	Cuando no detecta la secuencia '101'
1	Cuando sí detecta la secuencia '101'

NOTA: SALIDA Z(t) DEPENDE DEL ESTADO ACTUAL S(t) Y X(t)

3. Construir la tabla de transición de estados, tabla de excitación y tabla de la(s) salida(s) del sistema secuencial identificando las salidas de los biestables, su número de estados y su codificación así como las entradas de los FFs usados como elementos de memoria.

	TABLA DE TRANSICION DE ESTADOS					TABLA DE EXCITACIÓN DE LOS ELEMENTOS DE MEMORIA PARA LA TRANSICIÓN $S(t) \to S(t+1)$					TABLA DE SALIDA								
	ESTADO .		AL S(t) JAL X	(t)			ESTAD	ESTADO SIGUIENTE S(t+1)		_ J1	J1 K1 J0 K0				SALIDA ACTUAL Z(t)		Z(t)		
	S(t) Q1(t)	Q0(t)	X(t)	X(t))		Q1(t+1)	Q0(t+1)		_						Z(t)			
E0	0	0	Ŏ	CLK1		E0	0	0		0	Х	0	Х			O			
E0 E0 E1	0	0	1	CLK2		E1	0	1		0	Χ	1	Χ			0			
E1	0	1	0	CLK3		E2	1	0		1	Х	Х	1			0			
E1	0	1	1	CLK4		E1	0	1		0	Х	Χ	0			0			
E2	1	0	0	CLK5		E2	1	0		X	0	0	Х			0			
E2	1	0	1	CLK6		E0	0	0		X	1	0	Х			1			
E3	1	1	0	CLK7		E0	0	0		X	1	Х	1			0			
E1 E2 E3 E3	1	1	1	CLK8		E0	0	0		X	1	X	1			0			

NOTA: Para obtener la tabla de excitación de los elementos de memoria, se deberá usar la tabla de transición de los FFs que usará la FSM.

Q(t)	Q(t+1)	J	K	
0	0	0	X	
0	1	1	X	
1	0	Х	1	
1	1	X	0	

4. Simplificar o minimizar las funciones lógicas de la(s) salida(s) de la FSM y también de las entradas de los FFs.

J1				
Q1(t) Q0(t) X(t) CLK	00	01	11	10
0	0	0	0	1
1	Х	X	X	X
	0	0	0	0
	0	0	0	0

Z(t) = Q1Q0'X

30				
Q1(t) Q0(t) X(t) CLK	00	01	11	10
0	0	1	X	Χ
1	0	0	X	Χ
	0	0	0	0
	0	0	0	0

.10

K1					K0				
Q1(t) Q0(t) X(t) CLK	00	01	11	10	Q1(t) Q0(t) X(t) CLK	00	01	11	10
0	X	X	X	X	0	X	Χ	0	1
1	0	1	1	1	1	X	X	1	V
	0	0	0	0		0	0	0	0
	0	0	0	0		0	0	0	0

J1= Q0X' K1= X + Q0 J0= Q1'X K0= X' + Q1 Z(t)
Q1(t) Q0(t) X(t) CLK
00 01 11 10
0 0 0 0 0
1 0 0 0
0 0 0
0 0 0 0
0 0 0 0

5. Realizar el circuito lógico del sistema secuencial síncrono.

EJEMPLO-2: Diseñar un sistema secuencial síncrono que permita detectar la secuencia de entrada en binario 1101 que ingresa desde el MSB hasta el LSB. Utilice FFs JK como elementos de memoria.

1. Realizar el diagrama de transición de estados teniendo en cuenta que la señal de entrada X ingresará los datos, que el sistema detectará, bit a bit.

DIAGRAMA ESTADOS

2. Determinar el número de FFs y el número de estados además definir el tipo de biestable y finalmente codificar las entradas, los estados y la salida del sistema.

REGLAS					
# ESTADOS	4				
# FF:	2				
CONDICIÓN	4	≤	4		
MSB:	X(t)				
TIPO FF:	FF-JK				

LEYENDA					
Q1(t);Q0(t):	SALIDA DE BIESTABLES				
X(t):	ENTRADA				
S(t):	ESTADO ACTUAL				
Z(t):	SALIDA				

Q1(t)Q0(t) 00	CODIFICACIÓN ESTADO ACTUAL S(t)
	Representa el E0 (Estado inicial, ningún bit en la entrada)
01	Representa el E1 (Se ha recibido un '1', MSB)
10	Representa el E2 (Se ha recibido la secuencia '11')
11	Representa el E3 (Se ha recibido la secuencia '110')

X(t)	CODIFICACIÓN ENTRADA X(t)
0	Mantiene E0, cambia E1 a E0, E2 a E3 y mantiene E3
1	Cambia E0 a E1, E1 a E2, mantiene E2 y cambia E3 a E0

Z(t)	CODIFICACIÓN SALIDA Z(t)
0	Cuando no detecta la secuencia '1101'
1	Cuando sí detecta la secuencia '1101'

NOTA: SALIDA Z(t) DEPENDE DEL ESTADO ACTUAL S(t) Y X(t)

3. Construir la tabla de transición de estados, tabla de excitación y tabla de la(s) salida(s) del sistema secuencial identificando las salidas de los biestables, su número de estados y su codificación así como las entradas de los FFs usados como elementos de memoria.

	TABLA DE TRANSICION DE ESTADOS				TABLA DE EXCITACIÓN DE LOS ELEMENTOS DE MEMORIA PARA LA TRANSICIÓN S(t) → S(t+1)					TOS	TABLA DE SALIDA									
	ESTADO /		AL S(t) X(t)) + EN X(t			ESTADO SIGUIENTE S(t+1)		ESTADO SIGUIENTE S(t+1)		ESTADO SIGUIENTE S(t+1)		J1 K1 J0 I		J0 K0			SALIDA Z(t)		
ŀ		Q1(t)	Q0(t)		,		Q1(t+1)	Q0(t+1)									Z(t)			
E0		0	0	CLK1		E0	0	0		0	Х	0	Х				0			
E1	0	0	1	CLK2		E0	0	0		0	Χ	X	1				0			
E2	0	1	0	CLK3		E3	1	1		X	0	1	X				0			
E3	0	1	1	CLK4		E3	1	1		X	0	X	0				0			
E0	1	0	0	CLK5		E1	0	1		0	X	1	Х				0			
E1	1	0	1	CLK6		E2	1	0		1	Χ	X	1				0			
E2	1	1	0	CLK7		E2	1	0		X	0	0	Х				0			
E0 E1 E3 E0 E1 E2 E3	1	1	1	CLK8		E0	0	0		Χ	1	X	1				1			

NOTA: Para obtener la tabla de excitación de los elementos de memoria, se deberá usar la tabla de transición de los FFs que usará la FSM.

	Q(t)	Q(t+1)	J K	
	0	0	0 X	
l	0	1	1 X	
ı	1	0	X 1	
	1	1	X 0	

4. Simplificar o minimizar las funciones lógicas de la(s) salida(s) de la FSM y también de las entradas de los FFs.

J1				
X(t) Q1(t) Q0(t) CLK	00	01	11	10
0	0	0	Х	Χ
1	0	1	X	X
	0	0	0	0
	0	0	0	0

X(t) Q1(t) Q0(t) CLK	00	01	11	10
0	0	X	X	
1	1	X	X	0
	0	0	0	0
	0	0	0	0

J0

KΩ

Z(t)

N1				
X(t) Q1(t) Q0(t) CLK	00	01	11	10
0	Х	X	0	0
1	Х	X	1	0
	0	0	0	0
	0	0	0	0

110				
X(t) Q1(t) Q0(t) CLK	00	01	11	10
0	X	1	0	Χ
1	X	1	1	X
	0	0	0	0
	0	0	0	0

J1= XQ0 K1= XQ0 J0= X'Q1 + XQ1' K0= X + Q1'

Z(t) = XQ1Q0

X(t) Q1(t) Q0(t) CLK	00	01	11	10
0	0	0	0	0
1	0	0		0
	0	0	0	0
	0	0	0	0

5. Realizar el circuito lógico del sistema secuencial síncrono.

EJEMPLO-3: Diseñar un generador de secuencia. El generador en cuestión deberá proporcionar a su salida la secuencia 110010, desde el MSB hasta el LSB. Utilice FFs D como elementos de memoria.

 Realizar el diagrama de transición de estados.

2. Determinar el número de FFs y el número de estados además definir el tipo de biestable y finalmente codificar las entradas, los estados y la salida del sistema.

	REGLAS			
# ESTADOS	6			
# FF:	3			
CONDICIÓN	6	≤	8	
MSB:				
TIPO FF:	FF-JK			

LEYENDA						
Q2(t);Q1(t);Q0(t):	SALIDA DE BIESTABLES					
CLK:	ENTRADA					
S(t):	ESTADO ACTUAL					
Z(t):	SALIDA					

	CODIFICACIÓN ESTADO ACTUAL S(t)
000	Representa el E0 (Estado inicial)
001	Representa el E1
010	Representa el E2
011	Representa el E3
100	Representa el E4
101	Representa el E5
100 101 110 111	Representa el E6
111	Representa el E7

CLK	CODIFICACIÓN ENTRADA X(t)
CLK1	Cambia E0 a E1
CLK2	Cambia E1 a E2
CLK3	Cambia E2 a E3
CLK4	Cambia E3 a E4
CLK5	Cambia E4 a E5
CLK6	Cambia E5 a E6
CLK7	Cambia E6 a un estado don't care EX
CLK8	Cambia E7 a un estado don't care EX

Z(t)	CODIFICACIÓN SALIDA Z(t)
0	Representa E2, E3 y E5
1	Representa E0, E1 y E4
X	Representa una salida don't care

NOTA: SALIDA Z(t) DEPENDE DEL ESTADO ACTUAL S(t)

3. Construir la tabla de transición de estados, tabla de excitación y tabla de la(s) salida(s) del sistema secuencial identificando las salidas de los biestables, su número de estados y su codificación así como las entradas de los FFs usados como elementos de memoria.

	TABLA DE TRANSICION DE ESTADOS								TABLA DE EXCITACIÓN DE LOS ELEMENTOS DE MEMORIA PARA LA TRANSICIÓN S(t) → S(t+1)							ros	TABLA DE SALIDA					
	ESTADO ACT		6(t) + I		ADA X(t)		ESTAD	OO SIGUI	ENTE S(t	:+1)	D2	D1	D0							SALID	A Z(t)	
H		, Q1(t)	Q0(t)				Q2(t+1)	Q1(t+1)	Q0(t+1)										Z(t)			
E0	0	0		CLK1		E1	0	0	1		0	0	1						1			
E0 E1 E2	0	0	1	CLK2		E2	0	1	0		0	1	0						1			
E2	0	1	0	CLK3		E3	0	1	1		0	1	1						0			
E3	0	1	1	CLK4		E4	1	0	0		1	0	0						0			
E4 E5	1	0	0	CLK5		E5	1	0	1		1	0	1						1			
E5	1	0	1	CLK6		E0	0	0	0		0	0	0						0			
E6 E7	1	1	0	CLK7		EX	X	X	X		X	X	X						X			
E7	1	1	1	CLK8		EX	X	X	X		X	X	Х						X			

NOTA: Para obtener la tabla de excitación de los elementos de memoria, se deberá usar la tabla de transición de los FFs que usará la FSM.

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

4. Simplificar o minimizar las funciones lógicas de la(s) salida(s) de la FSM y también de las entradas de los FFs.

D2					D0				
Q2(t) Q1(t) Q0(t) CLK	00	01	11	10	Q2(t) Q1(t) Q0(t) CLK	00	01	11	10
0 ~	0	0	1	0	0	1	0	0	
1	1	0	X	X	1	1	70	X	X
_	0	0	0	0		0	0	0	0
	0	0	0	0		0	0	0	0

01				
Q2(t) Q1(t) Q0(t) CLK	00	01	11	10
0	0	1	0	1
1	0	0	X	X
	0	0	0	0
	0	0	0	0

$$Z(t) = Q1'Q0' + Q2'Q1'$$

Z(t)				
Q2(t) Q1(t) Q0(t) CLK	00	01	11	10
0		1	0	0
1	1	0	X	X
	0	0	0	0
	0	0	0	0

5. Realizar el circuito lógico del sistema secuencial síncrono.

