

요구 사항 분석 및 사양

- 객체 지향 분석 -

가을, 2024

제홍@충북.ac.kr

다루는 주제

요구 사항 분석 방법 객체 지향 분 석

- -개요
- -기능 모델링
- -구조 모델링
- -행동 모델링

모델 균형 맞추기 요약 및 토론

요구사항 분석 및 사양을 위한 방법 (1)

구조화된 분석

- -1970년대 후반과 1980년대에 유행했습니다.
- -데이터와 기능적 프로세스에 집중
- -대표적인 방법론
 - SA/SD: 구조적 분석과 구조적 설계
 - CODART: 실시간 시스템을 위한 동시 설계 접근 방식

객체 지향 분석

- -1990년대 초반에 유행했던
- -속성과 연산을 포함하는 클래스에 초점을 맞추었습니다.
- -대표적인 방법론
 - OMT : J. Rumbaugh의 객체 모델링 방법
 - COMET: H. Gomma의 동시 객체 모델링 mETod
 - 문어 : M. Awad 지음
 - ESUML: UML 2.0을 사용한 임베디드 소프트웨어 모델링

요구사항 분석 및 사양을 위한 방법 (2)

정보공학

- -1980년대 후반에 유행했던
- -데이터와 거래 프로세스에 집중
- -대표적인 방법론
 - J. Martine의 정보공학

형식적 방법

- -이벤트, 시스템 상태 및 상태 전환에 초점을 맞추었습니다.
- -대표적인 기술
 - A. Petri의 Petri Net 모델링 접근 방식
 - PRG, Oxford University의 Z 표기법
 - CCITT의 SDL(Specification and Description Language)
 - D. Harel의 상태 차트

6. 요구 사항 분석 및 사양

객체 지향 분석

객체 지향 분석: 개요

방법론

- -SDLC/프로세스 모델을 구현하기 위한 공식화된 기술
- -"개발 방법"을 설명합니다.

소프트웨어 시스템의 구조와 동작을 포착하는 데 중점을 둡니다. 데이터와 프로세스 모두를 포괄하는 작은 모듈 기본 특성

- -클래스와 객체
- -방법과 메시지
- -캡슐화 및 정보 은닉
- -계승
- -다형성과 동적 바인딩

객체 지향 분석: UML 개요

통합 모델링 언어

객체 지향 분석 : 전체 프로세스

비즈니스 프로세스 이해: 활동 다이어그램

소프트웨어 또는 하드웨어 시스템 동작을 지정하는 데 유용합니다.

데이터 흐름 모델을 기반으로 한 그래픽 표현(지시형) 정보 시스템에서 데이터가 이동하는 방식에 대한 그래프

출처: Debenedetti Emanuele, UML 2.0의 활동 다이어그램

기능 모델링: 사용 사례 다이어그램

배우 목록

배우 이름	설명	주목
인내심 있는	의사의 진료나 치료를 받아야 하는 사람	주요한

사용 사례 목록

사용 사례 이름	설명	주목
약속을 잡으세요	진료 예약 생성, 변경 또는 삭제를 위해 호출	주요한

기능 모델링: 사용 사례 다이어그램

기능 모델링: 사용 사례 설명

UC 설명의 예:**기존 환자 예약하기 (1/3)**

사용 사례 이름	기존 환자를 위한 예약하기	ID	UC-01	중요도 수준	높은
주요 배우	오래된 환자	사용 사력	∥ 유형	세부 사항, 필수	
이해 관계자	기존 환자 - 약속을 변경, 취소하고 싶어함 의사이 적시에 충족되기를 원함	나 - 환자으	l 요구 사힝	-	
간략한 설명	이 사용 사례에서는 이전에 진료를 받은 환자의 지에 대해 설명합니다.	의 예약을	어떻게 예약	약하고, 변경하거나 취	취소하는
방아쇠	환자가 전화하여 새로운 예약을 요청하거나 기존 여	약을 취소	또는 변경하	배 달라고 요청합니다.	
관계	연관: 기존 환자 일반화: 약속 관리 포함: - 확정보 업데이트	: 환자 정			

기능 모델링: 사용 사례 설명

UC 설명의 예:**기존 환자 예약하기 (2/3)**

정상적인 사건 흐름(정상 시나리오)

- 1. 환자가 진료 예약에 관해 사무실과 계약을 맺습니다.
- 2. 환자는 접수원에게 자신의 이름과 주소를 제공합니다.
- 3. 환자의 정보가 변경된 경우

Update_Patient_Information 사용 사례를 실행합니다.

4. 환자의 지불 약정이 변경된 경우

Make_Payment_Arrangement 사용 사례를 실행합니다.

5. 접수원은 환자에게 새로운 예약을 하고 싶은지, 기존 예약을 취소하고 싶은지 또는 변경하고 싶은지 묻습니다.

환자가 새로운 약속을 원할 경우, S-1: 새로운 약속 하위 흐름이 수행됩니다.

환자가 기존 약속을 취소하고자 하는 경우 S-2: 약속 취소 하위 흐름이 수행됩니다. 환자가 기존 약속을 변경하고자 하는 경우 S-3: 약속 변경 하위 흐름이 수행됩니다.

6. 접수원은 y_transaction의 결과를 환자에게 제공합니다.

기능 모델링: 사용 사례 설명

UC 설명의 예:**기존 환자 예약하기 (3/3)**

하위 흐름

S-1: 신규 임명

- 1. 접수원은 환자에게 가능한 예약 시간을 묻습니다.
- 2. 접수원은 환자가 원하는 예약 시간과 가능한 날짜와 시간을 일치시키고 새로운 예약 시간을 예약합니다.

S-2 예약 취소

- 1. 접수원이 환자에게 이전 예약 시간을 묻습니다.
- 2. 접수원은 예약 파일에서 현재 예약을 찾아 취소합니다.

S-3: 약속 변경

- 1. 접수원은 S-2: 약속 취소 하위 흐름을 수행합니다.
- 2. 접수원은 S-1: 새로운 약속 하위 흐름을 수행합니다.

대안 / 예외적 흐름

S-1, 2a1: 접수원은 예약 일정에 있는 내용을 토대로 대체 시간을 제안합니다. S-1, 2a2: 환자는 제안된 시간 중 하나를 선택하거나 예약을 하지 않기로 결정합니다.

구조 모델링: 클래스 설명

CRC(Class-Responsibility-Collaboration) 카드(1/2)

Front:			T	
Class Name: Patient	ID: 3		Type: Concrete, Domain	
Description: An Individual that medical attention	needs to receive o	or has received	Associated Use Cases: 2	
Responsibilities	i		Collaborators	
Make appointment		Appointment		
Calculate last visit				
Change status				
Provide medical history		Medical his	tory	
			-	

구조 모델링: 클래스 설명

CRC(Class-Responsibility-Collaboration) 카드(2/2)

Amount (double)	<u> </u>	-
Insurance carrier (text)		-
		-
		-
elationships:		
Generalization (a-kind-of):	Person	
Aggregation (has-parts):	Medical History	<u> </u>
Other Associations:	Appointment	

구조 모델링: 클래스 식별

객체 식별을 위한 4가지 접근 방식

-텍스트 분석 / 브레인스토밍 / 공통 객체 목록 / 패턴

텍스트 분석

- -텍스트를 분석하다사용 사례 설명
- -잠재적인 객체, 속성, 작업 및 관계 식별
 - : 명사는 클래스를 제안합니다. :

동사는 연산을 제안합니다.

공통 객체 목록

- -시스템의 비즈니스 도메인에 공통된 객체의 목록입니다.
- -객체 카테고리
 - 물리적이고 만질 수 있는 것 : 책, 책상, 사무 장비 등
 - 사건 : 비즈니스 도메인에서 발생하는 이벤트(회의, 항공편, 사고)
 - 역할: 문제에서 사람들이 하는 일: 의사, 간호사, 환자 등
 - 상호작용 : Biz 도메인에서 발생하는 거래(판매 거래)
 - 장소, 조직, 정책 등과 같은 추가 정보

구조 모델링: 클래스 식별

브레인스토밍 - 사람들이 아이디어를 제공하다

- -클래스(객체)의 초기 목록이 개발되었습니다.
- -다른 클래스에 대한 속성, 작업 및 관계는 두 번째 라운드에서 할당될 수 있습니다.

패턴

- -일반적으로 발생하는 문제에 대한 솔루션을 제공하는 협업 클래스의 유용한 그룹
- -예를 들어 거래

구조 모델링: 클래스 다이어그램

3가지 기본 관계 : 일반화, 집계 및 연관

일반화

- -다른 클래스로부터 속성 및 작업 상속을 가능하게 합니다.
- -일종의관계
- -슈퍼클래스와 서브클래스의 관계

집합

- -구성 관계
- -**의 일부**또는 부품이 있다관계

협회

- -클래스 간의 다양한 관계
- -일반화나 집계에 딱 맞지 않음

구조 모델링: 클래스 다이어그램

행동 모델링 : 시퀀스 다이어그램

미디칼 예약 시스템:약속을 잡으세요사용 사례

행동 모델링: 시퀀스 다이어그램

결합된 조각

-대안, 옵션, 병렬, 루프, 중요 지역 등

행동 모델링 : 상태 머신 다이어그램

클래스 객체가 가질 수 있는 모든 가능한 상태를 보여주세요.

라이프 사이클 인스턴스

강요

-상태; 이벤트; 전환; 가드_조건; 동작

행동 모델링 : 상태 머신 다이어그램

국가 식별

- 1. 고객이 웹에서 주문을 생성합니다.
- 2. 고객이 제출합니다주문하다 그 사람이 끝나면
- 3. 신용승인은 다음에 대하여 승인되어야 합니다.주문하다 수락되다
- 4. 거부되는 경우,주문하다 변경 또는 삭제를 위해 고객에게 반환됩니다.
- 5. 수락된 경우,주문하다 배치됩니다
- 6. 그주문하다 고객에게 배송됩니다
- 7. 고객이 다음을 수신합니다.주문하다
- 8. 그주문하다 닫혀있습니다

행동 모델링 : 상태 머신 다이어그램

이벤트 [guard-condition] / 액션-표현식"엘리베이터" 객체에 대해

모델 균형 맞추기

분석 모델 간 일관성을 보장하는 프로세스 기능적, 구조적, 행동적 모델 현재 분석 모델 세트가 충실하게 표현되도록 하려면 고려중인 문제 도메인

의도

- -다양한 모델 간 일관성 보장
- -규칙 집합을 사용하여 분석 모델의 교차점을 확인하고 검증합니다.

모델 균형 맞추기

균형 맞추기기능적그리고구조적모델

- -사용 사례 설명 vs. CRC 카드, 클래스
- -활동/행동 대 클래스 책임, 클래스 작업

균형 맞추기기능적그리고행동적모델

- -사용 사례 설명 대 시퀀스 다이어그램
- -Seq. 다이어그램, Comm. 다이어그램의 Actors vs. Actors

균형 맞추기구조적그리고행동적모델

- -상태 머신 대클래스 다이어그램의 클래스
- -Seq. 다이어그램의 객체 vs. 클래스의 인스턴스(객체)
- 시퀀스 다이어그램의 메시지, 상태 머신의 전환 vs. _____

SRS의 내용

* 문서의 내용은 조직의 표준에 따라 달라집니다.

1. 서론

- -본 문서의 목적
- -프로젝트 개요
- -관련 문서, 용어, 약어

2. 요구사항 사양

- -기능 모델링(시스템 컨텍스트)
- -구조 모델링
- -행동 모델링

3. 기타 요구 사항 또는 제약 사항

- -성능 요구 사항
- 하드웨어 요구 사항
- 예외 처리
- 사용자 인터페이스 제약
- -기타 제약사항

4. 수락 기준

- -기능 테스트 기준
- -성능 테스트 기준
- 5. 기타
 - -상당한 문제
- 6. 추적성 분석
 - -추적성 매트릭스
- 7. 참고문헌 및 부록

요약 및 토론

객체 지향 분석의 활동 및 아티팩트

- -기능 모델링
 - 활동 다이어그램,사용 사례 다이어그램(UC 설명 포함)
- -구조 모델링
 - 클래스 다이어그램(CRC 카드 포함), 객체 다이어그램, 통신 다이어그램 등
- -행동 모델링
 - 시퀀스 다이어그램, 상태 머신 다이어그램 등

모델 균형 맞추기

-기능적 vs. 구조적 vs. 행동적

