L03 Reproduction numbers and their estimation¹

Michael Höhle¹

¹Department of Mathematics, Stockholm University, Sweden

** m hoehle

STA427 FS2021

Statistical Methods in Infectious Disease Epidemiology Epidemiology, Biostatistics and Prevention Institute University of Zurich, Switzerland

Outline

- 1 Effective Reproduction Number
- 2 Implementation and Results
 - Outbreak simulation
 - ullet R(t) for Switzerland
- Outlook

Overview

- Effective Reproduction Number
- 2 Implementation and Results
 - Outbreak simulation
 - R(t) for Switzerland
- Outlook

Outline

- Effective Reproduction Number
- Implementation and Results
- Outlook

Basic Reproduction Number

 In a previous lecture we considered the basic reproduction number R_0 , which was given as²

$$R_0 = \beta/\gamma S(0)$$

- R₀ is the mean number of direct offspring one infectious case generates in a completely susceptible population without intervention measures
- However, once an epidemic unfolds susceptibles are depleted. Furthermore, interventions or behavioral changes aim at reducing β , γ or the amount of susceptibles (\rightarrow vaccination).
- In order to assess public health interventions the basic reproduction number is not useful (Delamater, Street, Leslie, Yang, and Jacobsen 2019).

 $^{^2\}beta$ was the infectious contact rate, γ the mean duration of the infectious period and S(0) is the number of susceptibles at time zero $(S(0) \approx N)$.

Effective Reproduction Number (1)

- We define the time-varying effective reproduction number R(t) as a time varying quantity denoting the average number of secondary cases generated by one case at calendar time t
- If contact and recovery rates do not vary with time we get

$$R(t) = R_0 \times \frac{S(t)}{S(0)}$$

Interventions could be reflected by extending this to

$$R(t) = (1 - c(t)) \times R_0 \times \frac{S(t)}{S(0)}$$

- The derivations in this lecture will follow Fraser (2007), who does not explicitly consider depletion of susceptibles
- Let the **transmissibility** function $\beta(t,\tau)$ be a function of calendar time t and time since infection τ
- Dependence on τ could, e.g., be due to time-dependence of viral shedding in the host, but also changes in contact behaviour after infection, depletion of susceptibles
- Renewal equation

$$I(t) = \int_0^\infty \beta(t, \tau) I(t - \tau) d\tau \tag{1}$$

Effective Reproduction Number (3)

• Case reproduction number

$$R_c(t) = \int_0^\infty \beta(t+ au, au) d au$$

Interpretation: Average number of individuals an infected at time t can expect to infect

Instantaneous reproduction number

$$R(t) = \int_0^\infty \beta(t, \tau) d\tau$$

Interpretation: Average number of individuals an infected at time t is expected to infect should conditions remain unchanged

Effective Reproduction Number (4)

• Assuming the factorization

$$\beta(t,\tau) = \phi_1(t)\phi_2(\tau),$$

Fraser (2007) shows that by assuming $\int_0^\infty \phi_2(\tau) d\tau = 1$ we get

$$\beta(t,\tau) = R(t)w(\tau) \tag{2}$$

• Here $w(\tau)$ denotes the distribution of the new infections as a function of time since infection, i.e. the generation time distribution.

Effective Reproduction Number (5)

Inserting (2) into (1) yields:

• Instantaneous reproduction number

$$R(t) = \frac{I(t)}{\int_0^\infty I(t-\tau)w(\tau)d\tau}$$

Case reproduction number

$$R_c(t) = \int_0^\infty R(t+\tau)w(\tau)d\tau$$

Discretised Instantaneous Reproduction Number (1)

• If only discrete observations for time intervals $t_i \equiv [t_i, t_{i+1}]$ are available, then one would use a discretized version of the instantaneous reproduction number

$$R(t_i) = \frac{I_i}{\sum_{j=0}^n w_j I_{i-j}}$$

• Note: the $0 \le w_i \le 1$ now denote the probability mass function of a discretized version of the generation time, i.e. $\sum_{i=0}^{n} w_i = 1$.

Casting this into a distributional framework, e.g.,

$$I_i|I_{i-1},I_{i-1},\ldots \sim Po\left(R(t_i)\times \sum_{j=0}^n w_jI_{i-j}\right)$$

allows the consideration of $R(t_i)$ as a parameter to be estimated in a statistical model

• This also allows the construction of confidence intervals or credibility regions for $R(t_i)$.

Smoothed Instantaneous Reproduction Number

- Estimate R(t) using discrete data is subject to fluctuations and it is therefore in general not recommended to just use one time point (Cori, Ferguson, Fraser, and Cauchemez 2013)
- \bullet Suggested improvement: Compute instantaneous reproduction number over an interval of τ days as follows

$$R_{\tau}(t_i) = \frac{\sum_{k=i-\tau+1}^{i} I_k}{\sum_{k=i-\tau+1}^{i} \sum_{j=0}^{n} w_j I_{k-j}}$$

• Note that this is slightly different from just using the mean of the τ computed R(t) values, i.e.

$$\overline{R}_{ au}(t) = rac{1}{ au} \sum_{k=i- au+1}^{i} R(t_{i-k})$$

Superspreading

- So far we have considered the *mean* number of offspring one infectious case generates
- This view ignores the variability in the offspring distribution, e.g.,
 the larger the variation, the greater the probability of extinction
- Lloyd-Smith, Schreiber, Kopp, and Getz (2005) analysed that the 2002-2004 SARS-CoV-1 epidemic was driven by a small number of events where one case directly infected a large number of secondary cases, whereas many other cases did not infect any secondary cases
- If we can identify settings where super-spreading occurs, one can reduce the mean number of offspring substantially

Outline

- Effective Reproduction Number
- 2 Implementation and Results
 - Outbreak simulation
 - R(t) for Switzerland
- Outlook

Outbreak simulation (1)

- Consider a growth model and denote by y_t the expected number of new symptom onsets we observe on day t.
- Let $(w_1, \ldots, w_M)'$, denote the probability mass function of the generation time distribution, i.e. $P(GT = i) = w_i$ for $i = 1, 2, \ldots, M$.
- Assume that the expected number of cases can be described by the homogeneous linear difference equation

$$y_t = \sum_{i=1}^{M} R_c(t-i)w_i y_{t-i}, \quad t = 2, 3, \dots$$

• Note: We use the case reproduction number and ignore terms on the RHS when $t-M \le 0$.

Outbreak simulation (2)

- Somewhat arbitrarily we fix $y_1 = 1$ and conceptually denote by t = 1 the 15th of February 2020 in calendar time.
- To simulate a COVID-19 like outbreak with lockdown type intervention we use

$$R_e(t) = \left\{ egin{array}{ll} 2.5 & \mbox{if } t \leq 2020\mbox{-}03\mbox{-}15 \ 0.95 & \mbox{otherwise} \end{array}
ight.$$

• We use the following generation time distribution

```
## 0 1 2 3 4 5 6 7
## 0.0 0.1 0.1 0.2 0.2 0.2 0.1 0.1
```

Outbreak simulation (3)

EpiEstim (1)

- An implementation of the instantaneous reproduction estimate is available in the R package EpiEstim (Cori, Ferguson, Fraser, and Cauchemez 2013)
- Input is a 'data.frame' containing the column 'dates' and 'l' (for the incidence each day)
- It also computes credibility regions for R(t) and allows one to address uncertainty in the estimation of the generation time distribution

EpiEstim (2)

```
library(EpiEstim)
# Rename data.frame columns to names handled by the EpiEstim pkg.
out_epiestim <- out %% rename(I = y, dates = Date) %>% select(dates, I)
# Estimate the instantaneous reproduction number
res <- EpiEstim::estimate_R(out_epiestim, method = "non_parametric_si",
                            config=make config(si distr=GT obj$GT,
                                               t_start=2:nrow(out_epiestim),
                                               t end=2:nrow(out epiestim))
# Convert result to a data.frame
rt irt df <- data.frame(Date=res$dates[res$R$t end],
                        R hat=res$R$`Mean(R)`.
                        lower=res$R$`Quantile.0.025`,
                        upper=res$R$`Quantile.0.975`,
                        Method="R(t)")
```

EpiEstim (3)

Method: R(t) Truth

R(t) for Switzerland

- Aim: Produce a crude R(t) for Switzerland based on the daily number of new cases as reported by the Swiss Federal Office of Public Health (FOPH)
- In order to do so, we first look a bit closer at the data as of 2021-03-10 available from https://www.covid19.admin.ch/

reported_cases	reported_hosp	reported_deaths
562364	23665	9294

COVID-19 Time Series for Switzerland (1)

COVID-19 Time Series for Switzerland (2)

Coarse R(t) Estimate (1)

Coarse R(t) Estimate (2)

Limitations:

- All cases are considered as community transmissions, but
 - there is an increase in the overall number of tests
 - some settings are tested more pro-actively than others (e.g. hospital staff)
 - imported cases are ignored (negligible from mid March)
- Serial interval
 - The analysis used an estimate from Nishiura, Linton, and Akhmetzhanov (2020) with mean 4.8 days and a standard deviation of 2.3 days
 - Difference between generation time and serial interval (infection vs. symptom onset - see Svensson (2007))
 - However, in this coarse analysis the event is actually "Day of report".
 - No specific Swiss serial interval was available to me and no estimation uncertainty is considered

Coarse R(t) Estimate (3)

 Total number of tests and prroportion of positive tests over time in Switzerland

Coarse R(t) Estimate (4)

- R(t) always needs context, e.g., the absolute number of (reported) cases.
- The implication of R(t) = 1.3 is very different when you have 10,000 cases or when you have 100.
- Especially when the case number is low, spikes due to outbreaks can lead to large R(t) fluctuations
- Be very careful when using R(t) graphs to assess interventions!

Outline

- Effective Reproduction Number
- 2 Implementation and Results
- Outlook

Outlook

- Good overview preprint about pitfalls when estimating R(t) by Gostic et al. (2020)
- Site estimating COVID-19 R(t) for countries around the world:
 https://epiforecasts.io/covid

Literature I

Cori, Anne, et al. 2013. "A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics".

American Journal of Epidemiology 178 (9): 1505-1512.

doi:10.1093/aje/kwt133. eprint: http://aje.oxfordjournals.org/content/178/9/1505.full.pdf+html. http://aje.oxfordjournals.org/content/178/9/1505.abstract.

Delamater, P. L., et al. 2019. "Complexity of the Basic Reproduction Number (R_0)". 25 (1): 1. doi:10.3201/eid2501.171901.

Fraser, Christophe. 2007. "Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic". PLOS ONE 2, no. 8 (): e758.

Gostic, Katelyn M, et al. 2020. "Practical considerations for measuring the effective reproductive number, Rt." PLoS Computational Biology 16, no. 12 (): e1008409. doi:10.1371/journal.pcbi.1008409.

Literature II

Lloyd-Smith, J. O., et al. 2005. "Superspreading and the effect of individual variation on disease emergence". <u>Nature</u> 438 (7066): 355–359. doi:10.1038/nature04153.

Nishiura, Hiroshi, Natalie M. Linton, and Andrei R. Akhmetzhanov. 2020. "Serial interval of novel coronavirus (COVID-19) infections".

International Journal of Infectious Diseases 93 (): 284–286. ISSN: 1201-9712, visited on 04/12/2020. doi:10.1016/j.ijid.2020.02.060.

Svensson, Å. 2007. "A note on generation times in epidemic models". $\underline{\text{Math Biosci}}$ 208, no. 1 (): 300–311. $\underline{\text{doi:}}10.1016/\text{j.mbs.}2006.10.010$.