Superstore Marketing Campaign Analysis – From Raw Data to Insights

Customers: 2240; Avg Income: 52247.25; Avg Spend: 605.8

When I first started this project, I knew I wanted to analyze how marketing campaigns influence customer behavior and sales in a retail environment. The dataset was inspired by a fictional Superstore Marketing Campaign scenario, bringing together sales, customers, products, and campaign performance.

But before I could even think about running analytics or building dashboards, there was one unavoidable step: Data Cleaning.

Data Cleaning

The raw dataset wasn't ready to use. It had:

- Missing customer demographic values (age, gender, segment)
- Duplicate order entries
- Inconsistent formats for dates and regions
- Columns with unnecessary spaces in names

I started with the following actions:

- Removed duplicate rows
- Standardized column names (e.g., Order Date → order_date)
- Filled missing values using logical imputation (e.g., median for Age, mode for Segment)
- Converted all dates into proper datetime format
- Created derived columns like TotalAmount = Quantity * UnitPrice

Merging Data

Next, I brought together:

- Sales Data → Orders, quantities, revenue
- Customer Data → Age, gender, segment, loyalty score
- Campaign Data → Campaign IDs, budgets, duration, channel
- Engagement Data → Click rates, open rates, conversions

Prepared Dataset

After cleaning and merging, the dataset looked something like this:.

Who are our customers?

Superstore serves a diverse base across education and marital statuses, with varying income levels. Higher income correlates with higher spend, but the relationship is not perfectly linear, leaving room for marketing influence.

What do they buy and how much?

Spend is right-skewed. A minority of customers drive a disproportionate share of revenue, a classic long-tail pattern. This supports targeted retention programs for top-value customers.

Where do purchases happen?

Store, Web, and Catalog each contribute, with opportunities to shift lower-cost channels for suitable segments. Understanding channel preference helps tailor offers and timing.

Segmenting with RFM

We segmented customers using Recency, Frequency, and Monetary value. Champions purchase recently, frequently, and spend the most; At Risk customers have lapsed or buy infrequently.

Here are the main results and visuals from the analysis I ran earlier. I'm showing the key tables and figures first; short notes follow each to keep it crisp.

What drives marketing response?

We explored correlations between response and key drivers like spend, frequency, site visits, and recency. While correlations are modest, segment-level differences are clear: higher-value segments respond more.

Channel strategy recommendations

Customers whose dominant channel is Web or Store show differing average spend.

Action Playbook

- Champions: early access and loyalty tiers; protect experience.
- Loyal: cross-sell bundles and increase frequency with personalized offers.
- Promising: onboarding sequences, welcome discounts, reduce friction to second purchase.
- At Risk: win-back campaigns based on last category purchased and preferred channel.

Data columns summarized:

Income, TotalSpend, TotalPurchases, Recency, NumWebVisitsMonth, and more from the source file.