Testing the Fibonacci formula

The following code demonstrates that the algorithm used by *Mathematica* to find Fibonacci numbers and the formula $\frac{\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{2^n\sqrt{5}}$ yield very close though not exact results:

```
fibonaccilist = {};
formulalist = {};
For \left[ n = 1, \, n \leq 912, \, n++, \right.
actualfib = Fibonacci [n];
formulafib = \frac{\left(1+\sqrt{5}\right)^n - \left(1-\sqrt{5}\right)^n}{2^n \sqrt{5}} // N;
AppendTo [fibonaccilist, actualfib];
AppendTo [formulalist, formulafib];
WorkingPrecision \rightarrow MachinePrecision];
If [fibonaccilist == formulalist,
Print["The two lists are equal"],
Print["The two lists are not equal"]
```

The two lists are not equal

I chose to test this up to the 912th Fibonacci number because this is where Mathematica recognizes that the methods yield different results. For instance, if we test it up to the 911th term, the numbers already differ quite noticeably, but *Mathematica* is incapable of discerning any difference (maybe this is due to the machine's precision?) . Let me show what I mean in the following ...

```
fibonaccilist[911]
formulalist[911] // IntegerPart
```

 $10\ 920\ 820\ 416\ 459\ 328\ 443\ 221\ 811\ 072\ 207\ 854\ 881\ 435\ 307\ 575\ 238\ 350\ 852\ 564\ 743\ 215\ 922\ 283\ 3679\ 178\ 069\ 381\ 290\ 262\ 679\ 629\ 826\ 259\ 806\ 842\ 091\ 635\ 423\ 101\ 972\ 412\ 825\ 783\ 917\ 076\ 523\ 888\ 382\ 721\ 659\ 090\ 269\ 202\ 596\ 043\ 912\ 832\ 242\ 330\ 879\ 807\ 510\ 689$

 $10\,920\,820\,416\,459\,476\,630\,607\,439\,164\,474\,618\,260\,512\,823\,666\,698\,852\,594\,164\,536\,094\,413\,391\,\times \\ 039\,391\,457\,475\,919\,099\,657\,836\,814\,646\,612\,952\,841\,536\,916\,240\,359\,258\,297\,583\,874\,657\,732\,792\,\times \\ 326\,536\,402\,225\,375\,405\,989\,830\,497\,729\,268\,815\,447\,218\,716\,672$

fibonaccilist[[911]] == formulalist[[911]]

True

For some reason *Mathematica* "sees" these two numbers as being equal when clearly they're not. I'm assuming this has something to do with the machine precision. Now we test the 912th term and we see that *Mathematica* no longer "sees" the two outputs as the same :

fibonaccilist[912] formulalist[912] // IntegerPart fibonaccilist[912] == formulalist[912]

 $17\,670\,258\,618\,864\,975\,009\,258\,339\,416\,537\,971\,760\,012\,675\,183\,748\,670\,183\,843\,230\,539\,845\,347\,\times 10^{-1}$ $074\ 301\ 607\ 362\ 326\ 211\ 014\ 092\ 320\ 301\ 155\ 064\ 788\ 141\ 495\ 664\ 328\ 603\ 298\ 786\ 390\ 904\ 066\ 437\ \times 100$ $630\ 628\ 079\ 431\ 525\ 530\ 236\ 022\ 705\ 233\ 071\ 673\ 280\ 212\ 746\ 944$

 $888\,290\,756\,822\,740\,523\,196\,581\,858\,363\,459\,669\,482\,138\,218\,685\,136\,202\,496\,864\,266\,276\,387\,703 \times 10^{-2}$ $338\,069\,483\,588\,144\,412\,619\,397\,243\,115\,740\,208\,626\,046\,861\,312$

False

Now we test the formulas relating the golden ratio and Fibonacci numbers:

$$1 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{Fibonacci[n] \ Fibonacci[n+1]}$$

GoldenRatio

$$\label{eq:limit} \text{Limit}\Big[\frac{\text{Fibonacci}\,[n]}{\text{Fibonacci}\,[n-1]}\,,\; n\to\infty\Big] \;\text{==}\; \text{GoldenRatio}$$

True