TRIGONOMETRY ADVISORY

2nd SECONDARY

TOMOS 5 y 6

HELICOPRÁCTICA el gráfico, RESOLUCIÓN

Del gráfico, efectúe

N =
$$(5; 12)$$

 $r = 13$

Recordar:

$$csc\beta = \frac{r}{y}$$
 $cot\beta = \frac{x}{y}$

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{5^2 + 12^2}$$
 $r = \sqrt{1}$
 $r = \sqrt{3}$
 $r = \sqrt{3}$

$$x = 5$$
 $y = 12$ $r = 13$

Piden: $N = \csc\beta - \cot\beta$

$$N = \frac{13}{12} - \frac{5}{12} N = \frac{8}{12} \therefore N$$

Si el punto P(-6; -8) pertenece al lado final del ángulo α en posición normal. Calcule: E = 16cot α –

18secα <u>RESOLUCIÓN</u>

Calculando el radio

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-6)^2 + (-8)^2}$$

$$r = \sqrt{36 + 64}$$

$$r = \sqrt{100}$$

$$x = -6$$
 $y = -8$ $r = 10$

Piden: $E = 16\cot\alpha - 18\sec\alpha$

$$\Rightarrow E = \frac{2}{16} \left(\frac{-6}{-8} \right) - \frac{3}{18} \left(\frac{10}{-6} \right)$$

$$\Rightarrow$$
 E = 12 + 30 : E = 42

3

Del gráfico, calcule el valor de a si cot $\alpha = -\frac{3}{4}$

 $cot\alpha =$

RESOLUCIÓN

Del gráfico:

$$\cot \alpha = \frac{a}{4 - a}$$

. Del dato:

$$\cot \alpha = -\frac{3}{4} \dots (II)$$

De (I) y

$$\frac{(11)a}{4-a} = -\frac{3}{4} \implies 4a = -12 + 3a$$

Del gráfico, determine el signo de:

$$E = \frac{\csc\theta.\sec\alpha}{\tan\beta}$$
Recordar: $\tan\beta$

<u>RESOLUCIÓN</u>

Del gráfico:

$$\alpha \in IC$$
 $\beta \in IIC$ $\theta \in IVC$

• Piden signo:

$$E = \frac{\csc\theta.\sec\alpha}{\tan\beta}$$

$$E = \frac{(-)(+)}{(-)} \blacktriangleright E = \frac{(-)}{(-)}$$

5

Si $\alpha \in IIC$ y $\theta \in IIIC$, determine el signo de:

$$A = \frac{\sin \alpha}{\tan \theta}$$

$$B = \tan^2 \alpha \cdot \csc^3 \theta$$

Recordar:

<u>RESOLUCIÓN</u>

Piden signo:

$$A = \frac{\operatorname{sen}\alpha}{\tan\theta}$$

$$A = \frac{(+)}{(+)}$$

$$A = (+)$$

$$B = \tan^2\alpha \cdot \csc^3\theta$$

$$B = (-)^2(-)^3$$

$$B = (+)(-)$$

$$B = (-)$$

Determine el signo en cada caso:

$$M = \frac{\tan 84^{\circ}. \sec 179^{\circ}}{\sec 220^{\circ}. \csc 70^{\circ}}$$

$$Sen = \frac{\sec 220^{\circ}. \csc 70^{\circ}}{\sec 280^{\circ}}$$

Recordar:

<u>RESOLUCIÓN</u>

Piden signo:

$$M = \tan 84^{\circ}.sen179^{\circ} (+)(+)$$
IC IIC

$$M = (+)$$

$$IIIC IC$$

$$N = \frac{\sec 220^{\circ} \cdot \csc 70^{\circ}}{\sec 280^{\circ}} = \frac{(-) (+)}{(-)}$$

$$N = (+)$$
 : $(+); (+)$

HFIICOPRACTICA

Si $270^{\circ} < \theta < 360^{\circ}$, determine le signo de

$$P = \cos\left(\frac{\theta}{2}\right) \cdot \tan\left(\frac{\theta}{3}\right)$$

Recordar:

<u>RESOLUCIÓN</u>

1)
$$270^{\circ} < \theta <$$
 360°
 $\cos\left(\frac{\theta}{2}\right) = (-)$

IIC

$$\Rightarrow$$
 $\cos\left(\frac{\sigma}{2}\right) = (-)$

| 11)
$$270^{\circ} < \theta < \Rightarrow 90^{\circ} < \left(\frac{\theta}{3}\right) < 120^{\circ}$$

$$\tan\left(\frac{\theta}{3}\right) = (-)$$

Piden signo de P = $\cos\left(\frac{\theta}{2}\right)$. $\tan\left(\frac{\theta}{3}\right)$

$$P = (-)(-)$$
 : $P = (+)$

8 Efectúe

 $W = (\csc 270^{\circ} + \sec 180^{\circ})^{2}(\sec 90^{\circ} + \sec 760^{\circ})^{3}$

RESOLUCIÓN

Usando las RT de ángulos cuadrantales:

$$W = ((-1) (-1))^{2} (1) + (1))^{3}$$

$$W = (-2)^{2} (2)^{3}$$

$$W = (4)(8)$$

RT [≮]	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	<u>-1</u>	ND	1
csc	ND	1	ND	-1	ND

Calcule el valor de x si

2xcos360° + 3csc90° = sen270° Recordar

RESOLUCIÓNOº

Usando las RT de ángulos cuadrantales:

$$2x(1) + 3(1) = (-1) - x(0)$$

$$2x + 3 = -1$$

$$2x = -4$$

$$x = -2$$

RT [≮]	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

HELICOPRÁCTICA ntinuación se muestra la RESOLUCIÓN

A continuación se muestra la distribución de la memoria de un dispositivo USB con capacidad de 16GB.

A: archivos

B: música

C: espacio disponible

Donde:

$$A = (4 sen 90^{\circ} - 2 sen 270^{\circ}) GB$$

$$B = (5\cos 360^{\circ} + 2\sec 180^{\circ}) GB$$

Determine el espacio disponible del USB.

Usando las RT de ángulos cuadrantales:

•
$$A = (4(1) - 2(-1))$$
 GB

$$A = (4+2)$$
 \Rightarrow $A = 6 GB$

$$B = GB$$

$$5(1) + 2(-1)$$

$$B = \begin{pmatrix} GB \\ 5-2 \end{pmatrix} \Rightarrow B = 3 GB$$

Piden:C: espacio disponible