Métodos de Computação Experimental e Quantitativa

Trabalho Final

Prof. Dr. Eng. Isaías Bittencourt Felzmann

isaias.bittencourt@puc-campinas.edu.br

Campinas, 2s/2024

Objetivo geral

Como distorções em imagens de entrada afetam o resultado de uma rede de classificação?

Recursos

- Imagenette: base de dados
 - Link direto: https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz
 - Fonte: https://github.com/fastai/imagenette
- Ambiente de inferência:
 - Python3
 - Tensorflow
 - Keras
 - ResNet-50
 - OpenCV
 - Scikit-Image
 - Ver arquivo classifier.py de exemplo (no Canvas)

Etapas do experimento

- Selecionar uma imagem de entrada (Imagenette)
- Abrir a imagem (OpenCV)
- Aplicar alguma distorção (OpenCV ou outro)
- Computar Similaridade Estrutural SSIM (Scikit-Image)
- Inferir classificação (ResNet-50)
- Avaliar resultado

Objetivos

- Avaliar pelo menos 5 tipos de distorções diferentes
- Iterar todas sobre todo o conjunto de imagens Imagenette
- Avaliar (exemplos):
 - Como a distorção afeta a classe encontrada?
 - Como a distorção afeta a confiança na classe?
 - Como a distorção afeta a Similaridade Estrutural?
 - Como Similaridade Estrutural e classe/confiança se relacionam?
 - Como parâmetros de distorção e SSIM/classe/confiança se relacionam?
- Lembrem-se das comparações entre conjuntos de dados e testes estatísticos estudados em aula!

Exemplos de distorção

JPEG com q=70%

Exemplos de distorção

Redimensionar imagem para 64x64

Exemplos de distorção

Detecção de bordas de Canny

Mais ideias de distorção

- Cortar imagem
- Escurecer/clarear pixels
- Converter cores (RGB, BGR, CMY, CMY, HSL, etc)
- Adicionar ruído
- Definir alguma cor em pixels específicos/aleatórios
- Mesclar com outras imagens

Execução do Trabalho

- Desenvolvimento em grupos:
 - Turma 101 (Segunda):12 grupos x 4 componentes
 - Turma 102 (Sexta):7 grupos x 3 componentes1 grupo x 4 componentes
 - Não serão aceitos grupos menores!
 - Exceto se algum(a) aluno(a) houver desistido da disciplina.

Execução do Trabalho

- Primeira etapa: Definição dos experimentos
 - Trazer os grupos formados e completos
 - Trazer uma apresentação curta (2 ou 3 slides, 5- minutos) contendo:
 - Quais as distorções serão avaliadas.
 - Quais métricas serão avaliadas em cada distorção.
 - Preferencialmente trazer em Pendrive!
 - Escolher a data da Segunda Etapa (first-come, first-served)
 - Data: 21/outubro (Turma 101) e 25/outubro (Turma 102)
 - Alunos(as) que estiverem sem grupo nesta data serão aleatoriamente alocados(as) em algum grupo incompleto.

Execução do Trabalho

- Segunda etapa: Apresentação Final
 - Uma apresentação entre 15 e 20 minutos:
 - Apresentar o experimento e as distorções propostas.
 - Apresentar as formas de avaliação.
 - Apresentar os resultados:
 - Estatísticas;
 - Testes estatísticos;
 - Gráficos.
 - Indicar a participação de cada componente do grupo.
 - Preferencialmente trazer em Pendrive!
 - Quatro grupos em cada data:
 - Turma 101 (Segunda): 11, 18 ou 25 de novembro.
 - Turma 102 (Sexta): 22 ou 29 de novembro.