Numerical Analysis Semester 4

Contents

Chapter 1	Interpolation	Page 2
1.1	Linear Interpolation	2
1.2	Polynomial Interpolation	2
	Lagrange Polynomials — 2 • Newton Polynomial — 3	

Chapter 1

Interpolation

1.1 Linear Interpolation

 $\begin{array}{c|ccc}
x & f(x) \\
\hline
0 & 0 \\
1 & 2 \\
2 & 3 \\
3 & 1 \\
4 & 3 \\
5 & 3.5
\end{array}$

Linear interpolation is just drawing lines between the data points.

Definition 1.1.1: Linear Interpolation(lerp) equation

The equation of the lines between data points is

$$y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}(x - x_i) + y_i.$$

$\textbf{Theorem 1.1.1} \ \mathsf{Error} \ \mathsf{due} \ \mathsf{to} \ \mathsf{linear} \ \mathsf{interpolation}$

Let f be a continuous and differentiable on [a,b]. We define the error z(x) to be

$$|z(x)| \leq \frac{(b-a)^2}{8} \sup_{a \leq x \leq b} |f''(x)| \,.$$

1.2 Polynomial Interpolation

1.2.1 Lagrange Polynomials

Really nice video here explaining Lagrange polynomials.

Theorem 1.2.1 Lagrange polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Lagrange polynomial for this set of data is

$$L(x) = \sum_{k=0}^{n} y_k \ell_k(x).$$

where

$$\ell_k(x) = \prod_{\substack{i=1\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

1.2.2 Newton Polynomial

Definition 1.2.1: Newton Polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Newton polynomial for this set of data is

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n \prod_{i=0}^{n-1} (x - x_i).$$

where

$$a_i = f[x_0, x_1, \dots, x_i].$$

Here $f[\dots]$ is the divided difference of the inputted data.

The divided difference has 2 formulas, the recurrence formula

$$f[x_0,x_1,\ldots,x_{n+1}]=\frac{f[x_1,x_2,\ldots,x_{n+1}]-f[x_0,x_1,\ldots,x_n]}{x_{n+1}-x_0}.$$

and a general formula

$$f[x_0, x_1, \dots, x_n] = \sum_{i=1}^n \frac{y_i}{\prod_{\substack{k=0 \ k \neq i}}^n (x_i - x_k)}.$$

Now forget you ever saw those cause there is an easier method to finding the divided difference.

Divided Difference Table

After we have constructed the table we can find the divided difference we want by looking at the top diagonal

Example 1.2.1 (Yes)

I wanna do an example for the data I used at the top but it's 1AM so cowabunga it is