МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проведению практического занятия №2

Тематически содержание этого занятия можно разбить на две части:

- 2.1. SPICE-модель полупроводникового диода.
- 2.2. Выдача индивидуальных расчетных заданий.

2.1. SPICE-модель полупроводникового диода

Полупроводниковый диод относится к числу пассивных электронных компонентов. Здесь мы ограничимся рассмотрением маломощных полупроводниковых диодов, у которых рассеиваемая мощность не превышает $P_{\text{pac}} \le 150 \text{ мВт}$.

Напомним, что *SPICE*-модель любого электронного компонента состоит из трех составляющих:

- эквивалентной схемы компонента (или его схемы замещения);
- списка (или перечня) параметров модели данного компонента;
- некоторой совокупности основных уравнений работы электронного компонента, которые отражают зависимости элементов эквивалентной схемы и ряда параметров модели от напряжений, токов, температуры и др.

Эквивалентная схема модели диода изображена на рис. 2.1.

Рис. 2.1

На этом рисунке введены следующие обозначения:

- I(V) вольтамперная характеристика «идеального диода» (p-n перехода);
- C(V) зависимость полной емкости диода (при прямых и обратных смезениях);
 - RS объемное сопротивление диода;
 - RL сопротивление утечки перехода.

При графическом вводе, то есть при использовании формата схем, применяются следующие основные атрибуты:

- *PART*: <имя> позиционное обозначение;
- *MODEL*: [имя модели].

Перечень параметров модели полупроводникового диода приведен в табл. 2.1 и содержит 31 позицию.

Таблица 2.1

Обозначение	Параметр	Размер- ность Значение по умолчанию		AREA
Level	Гип модели: 1 – <i>SPICE2G</i> ,		1	
IS	Ток насыщения при температуре 27°C	A 10 ⁻¹⁴		×
N	Коэффициент эмиссии (неидеальности)	- 1		
ISR	Параметр тока рекомбинации	A	0	×
NR	Коэффициент эмиссии (не- идеальности) для тока <i>ISR</i>		2	
IKF	Предельный ток при высоком A уровне инжекции		8	
BV	Обратное напряжение пробоя в (положительная величина)		8	
IBV	Начальный ток пробоя, соответствующий напряжению BV (положительная величина)	A	10 ⁻¹⁰	×
NBV	Коэффициент неидеальности на участке пробоя	-	1	
IBVL	Начальный ток пробоя низкого уровня	A	0	×

NBVL	Коэффициент неидеальности на участке пробоя низкого уровня			
RS	Объемное сопротивление	Ом	0	/
TT	Время переноса заряда	ереноса заряда с О		
CJO	Барьерная емкость при нулевом смещении	Ф	0	×
VJ	Контактная разность потенциалов	В	1	
M	Коэффициент плавности p - n перехода ($1/2$ – для резкого, $1/3$ – для плавного)	-	0.5	
FC	Коэффициент нелинейности барьерной емкости прямосмещенного перехода	-	0.5	
EG	Ширина запрещенной зоны	эВ	1.11	
XTI	Температурный экспонен- циальный коэффициент тока насыщения <i>IS</i>		3	
TIKF	Линейный температурный коэффициент <i>IKF</i>	°C ⁻¹	0	
TBV1	Линейный температурный коэффициент BV	°C ⁻¹	0	
TBV2	Квадратичный температурный коэффициент BV	°C ⁻²	0	
TRS1	Линейный температурный коэффициент <i>RS</i>	°C ⁻¹	0	
TRS2	Квадратичный температурный коэффициент <i>RS</i>	°C ⁻²	0	
KF	Коэффициент фликер-шума	-	0	
AF	Показатель степени в формуле фликер-шума		1	
RL	Сопротивление утечки перехода	Ом	8	
T_ MEASURED	Температура измерения	°C	-	
T_ABS	Абсолютная температура	°C	-	
T_REL _GLOBAL	Относительная температура	°C	-	
T_REL _LOCAL	Разность между температурой диода и модели-прототипа (AKO)	°C	-	

Приведем также основные уравнения работы диода в программе *Micro-Cap 10 demo*.

Уравнение для источника тока диода:

$$I = I_{\rm np} - I_{\rm ofp}$$

где
$$I_{\rm np} pprox IS(T) \Big(e^{rac{V}{V_{T.N}}} - 1 \Big)$$
,

 $V_T = \frac{kT}{q}$ –температурный потенциал,

k — постоянная Больцмана,

q – заряд электрона,

T – абсолютная температура в Кельвинах.

Уравнения для емкостей диода:

$$C=C_{\mathrm{A}}+C_{\mathrm{B}},$$

где $C_{\rm Д} = TT \times g_{\rm \Pi}$ - диффузионная составляющая полной емкости диода, TT - время переноса заряда,

 g_Π - дифференциальная проводимость p-n перехода для текущих значений I и V,

 \mathcal{C}_{B} – барьерная составляющая полной емкости диода.

Если $V \leq FC \cdot VJ(T)$, то

$$C_{\rm B} = CJO(T) \cdot \left[1 - \frac{V}{VJ(T)}\right]^{-M};$$

в противном случае

$$C_{\rm E} = CJO(T) \cdot [1 - FC]^{-(1+M)} \cdot \left[1 - FC(1+M) + M \cdot \frac{V}{VJ(T)}\right].$$

Примеры описания температурных эффектов диода:

$$BV(T) = BV \cdot [1 + TBV1 \cdot (T - T_{\text{HOM}}) + TBV2 \cdot (T - T_{\text{HOM}})^2],$$

$$RS(T) = RS \cdot [1 + TRS1 \cdot (T - T_{\text{HOM}}) + TRS2 \cdot (T - T_{\text{HOM}})^2].$$

Студентам учебной группы предлагается провести компьютерное моделирование пассивных схем с полупроводниковым диодом,

изображенных на рис. 2.2, с использованием подпрограммы расчета передаточных функций по постоянному току (Analysis > DC...) и подпрограммы расчета во временной области (Analysis > Transient...).

Рис. 2.2

Тип диода, величина постоянного напряжения V1, значения импульсного сигнала V2 (VZERO и VONE) и величина сопротивления резистора R приведены в табл. 2.2 для каждой бригады.

Таблица 2.2

№ бригады	Тип диода	V1 , B	<i>R</i> 1, <i>R</i> 2, O _M	V2	
	(VD1 и VD2)			VZERO	VONE
1	1 <i>N</i> 752	1,0	10	-2	1,0
2	1 <i>N</i> 4729	1,25	15	-3	1,25
3	1 <i>N</i> 4742	1,5	15	-5	1,5
4	2S191G	1,75	10	-2,5	1,75
5	D74	2,0	25	-3	2,0
6	KD104A	2,25	25	-4	2,25

C помощью подпрограммы моделирования DC следует провести измерение статической BAX диода, при этом в графе X Expression

указывается напряжение на диоде V(D1) (или V(1) - V(2)), а в графе Y Expression — ток через диод I(D1) (или -I(R1)). Задав диапазон изменения температуры окружающей среды в пределах $+60^{\circ}$ С...— 60° С с шагом 20° С, можно получить семейство ВАХ, которое показывает температурную зависимость этих характеристик. Целесообразно обсудить и назвать причины такой температурной зависимости.

С помощью подпрограммы моделирования *Transient* следует провести анализ переходных процессов в схеме, которая изображена на рис. 2.2, 6, и обсудить полученные результаты. Параметры источника импульсного сигнала V2 принять равными:

$$P1 = 100 \, n$$
, $P2 = 105 \, n$, $P3 = 500 \, n$, $P4 = 505 \, n$, $P5 = 1 \, u$.

2.2. Выдача индивидуальных расчетных заданий

В этой части упражнения преподавателю следует использовать методические указания, которые специально разработаны лектором по дисциплине «Основы компьютерного проектирования РЭС» и предваряют выдачу студентам конкретных индивидуальных расчетных заданий.