

Year	Population
1980	2.1
1985	2.9
1990	3.2
1995	4.1
2000	4.9
	-
2005	?

year	1980	1985	1990	1995	2000	2005
population	2.1	2.9	3.2	4.1	4.9	?
)				

Year	Population
1980	2.1
1985	2.9
1990	3.2
1995	4.1
2000	4.9
2005	?

$$y = slope * x + intercept$$

Year	Population
1980	2.1
1985	2.9
1990	3.2
1995	4.1
2000	4.9

2005	$\hat{y} = slope * x + intercept$

$$y = slope * x + intercept$$

Manual Computation using Linear Regression Formula

$$\hat{y} = slope * x + intercept$$

$$slope = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

$$intercept = \overline{y} - slope \cdot \overline{x}$$

	×	У	×y	x^2
	Year	Population		
	1980	2.1		
	1985	2.9		
	1990	3.2		
	1995	4.1		
	2000	4.9		
Sum				
Average				
Count (n) =				

Slope Intercept

Manual Computation using Linear Regression Formula

$$\hat{y} = slope * x + intercept$$

$$slope = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

$$intercept = \overline{y} - slope \cdot \overline{x}$$

	×	У	×y	x^2
	Year	Population		
	1980	2.1	4158	3920400
	1985	2.9	5756.5	3940225
	1990	3.2	6368	3960100
	1995	4.1	8179.5	3980025
	2000	4.9	9800	4000000
Sum	9950	17.2	34262	19800750
Average	1990	3.44		
Count (n) =	5			

Slope	0.136
Intercept	-267.2

Year	Population
1980	2.1
1985	2.9
1990	3.2
1995	4.1
2000	4.9
2005	?

Verify Using Excel Function				
	Slope			
	Intercept			
Predict	For Year		Prediction	
	2005			

Year	Population
1980	2.1
1985	2.9
1990	3.2
1995	4.1
2000	4.9
	· •
2005	?
2005	?

Verify Us			
	Slope		
	Intercept -267.2		
Predict	For Year		Prediction
	2005		5.48

Regression Goodness of Fit

Several indices are used to determine the goodness of fit of the model.

R-squared, or coefficient of determination Adjusted R-squared Standard Error F statistics t statistics

R-squared (Measures of Variation)

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (y_i - \overline{y})^2$$

$$SSR = \sum (\hat{y}_i - \overline{y})^2$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

where:

 \overline{V} = Average value of the dependent variable

y_i = Observed values of the dependent variable

 \hat{y}_i = Predicted value of y for the given x_i value

22

R-squared (Measures of Variation)

$$R^2 = 1 - \frac{SSE}{SST}$$

$$R^{2} = 1 - \frac{1}{SS_{Total}} \rightarrow 1.0$$

	×	У				
	Year	Population	Prediction	Error	Square Error	Sq. Mean Difference
	1980	2.1				
	1985	2.9				
	1990	3.2				
	1995	4.1				
	2000	4.9				
Sum					SSE	SST
Mean	avg(x)	avg(y)			MSE	MST
Count (n)					df	df

Slope	0.136
Intercept	-267.2

Number of Coefficients	
R Square	
MSE	
MST	
Adjusted R Square	
Standard Error	

	X	У				
	Year	Population	Prediction	Error	Square Error	Sq. Mean Difference
	1980	2.1	2.08	-0.02	0.0004	1.80
	1985	2.9	2.76	-0.14	0.0196	0.29
	1990	3.2	3.44	0.24	0.0576	0.06
	1995	4.1	4.12	0.02	0.0004	0.44
	2000	4.9	4.8	-0.1	0.01	2.13
Sum					0.088	4.71
Mean	avg(x)	avg(y)			MSE	MST
Count (n)					df	df

Slope	0.136
Intercept	-267.2

Number of Coefficients	
R Square	
MSE	
MST	
Adjusted R Square	
Standard Error	

$$R^2 = 1 - \frac{SSE}{SST}$$

$$R_{\text{adj}}^2 = 1 - \frac{\textit{MSE}}{\textit{MST}}$$

$$MSE = SSE/(n-q)$$
 $MST = SST/(n-1)$

$$MST = SST/(n-1)$$

	X	У				
	Year	Population	Prediction	Error	Square Error	Sq. Mean Difference
	1980	2.1	2.08	-0.02	0.0004	1.80
	1985	2.9	2.76	-0.14	0.0196	0.29
	1990	3.2	3.44	0.24	0.0576	0.06
	1995	4.1	4.12	0.02	0.0004	0.44
	2000	4.9	4.8	-0.1	0.01	2.13
Sum					0.088	4.71
Mean	avg(x)	avg(y)			MSE	MST
Count (n)					df	df

$$Std.Error = \sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = \frac{MSR}{MSE}$$

$$MSR = \frac{\sum_{i} (\hat{y}_{i} - \overline{y})}{q - 1} = \frac{SST - SSE}{q - 1}$$

of Coefficients	Numbe
R Square	
MSE	
MST	
djusted R Square	A
Standard Error	

	Degree of freedom	Sum of square	Mean square	F
Regression	q-1	$SST - SSE = \sum_{i} (\hat{y}_{i} - \overline{y})$	$MSR = \frac{SST - SSE}{q - 1}$	$F = \frac{MSR}{MSE}$
Residual (Error)	n-q	$SSE = \sum_{i} (y_i - \hat{y}_i)^2$	$MSE = \frac{SSE}{n-q}$	
Total	n-1	$SST = \sum_{i} (y_i - \overline{y})^2$		

Linear Regression Equation: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_n X_n$ Simple Linear Regression: $Y = \beta_0 + \beta_1 X_1$ = Intercept + X1* Slope No. of Coefficients q = 2 (β_0 = Intercept, β_1 = Slope)

$$R^2 = 1 - \frac{SSE}{SST}$$

$$R_{\text{adj}}^2 = 1 - \frac{MSE}{MST}$$

$$MSE = SSE/(n-q)$$
 $MST = SST/(n-1)$

$$MST = SST/(n-1)$$

$$MST = SST/(n-1)$$

$$Std.Error = \sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = \frac{MSR}{MSE}$$

$$MSR = \frac{\sum_{i} (\hat{y}_i - \overline{y})}{q - 1} = \frac{SST - SSE}{q - 1}$$

	×	У				
	Year	Population	Prediction	Error	Square Error	Sq. Mean Difference
	1980	2.1	2.08	-0.02	0.0004	1.80
	1985	2.9	2.76	-0.14	0.0196	0.29
	1990	3.2	3.44	0.24	0.0576	0.06
	1995	4.1	4.12	0.02	0.0004	0.44
	2000	4.9	4.8	-0.1	0.01	2.13
Sum					0.088	4.71
Mean	avg(x)	avg(y)			MSE	MST
Count (n)		17			df	df

Number of Coefficients	
R Square	
MSE	
MST	
Adjusted R Square	
Standard Error	

$$R^2 = 1 - \frac{SSE}{SST}$$

$$R_{adj}^2 = 1 - \frac{MSE}{MST}$$

$$MSE = SSE/(n-q)$$

$$MST = SST/(n-1)$$

	oom //	- 4
MST =	SST/(n)	-1)

$$Std.Error = \sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = \frac{MSR}{MSE}$$

$$MSR = \frac{\sum_{i} (\hat{y}_{i} - \overline{y})}{q - 1} = \frac{SST - SSE}{q - 1}$$

	×	У				
	Year	Population	Prediction	Error	Square Error	Sq. Mean Difference
	1980	2.1	2.08	-0.02	0.0004	1.80
	1985	2.9	2.76	-0.14	0.0196	0.29
	1990	3.2	3.44	0.24	0.0576	0.06
	1995	4.1	4.12	0.02	0.0004	0.44
	2000	4.9	4.8	-0.1	0.01	2.13
Sum					0.088	4.71
Mean	avg(x)	avg(y)			0.029	1.178
Count $(n) = 5$					df = 3	df = 4

Number of Coefficients	2
R Square	0.981
MSE	0.029
MST	1.178
Adjusted R Square	0.975
Standard Error	0.1712698

Calculate Statistics (Using Tool)

Regression Sta	tistics							
Multiple R	0.991							
R Square								
Adjusted R Square								
Standard Error	() /							
Observations	5							
				16.7	0			
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	4.624	4.624	157.636	0.001			
Residual	3	0.088	0.029					
Total	4	4.712						
t & p Statistics								
	Coefficien ts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-267.2	21.556	-12.396	0.001	-335.801	-198.599	-335.801	-198.599
X Variable 1	0.136	0.011	12.555	0.001	0.102	0.170	0.102	0.170

Calculate Statistics (Using Tool)

	A	8	С	D	E	F	G	н	1
	SUMMARY OUTPUT								
2	:		1 P Source	o muet	he bio	ger than 0.8			
3	Regression St	tatistics	I. IV Oquar	e muai	oe bigi	ger triari 0.0			
4	Multiple R	0.991							
5(R Square	0.981		2 Ciar	sificanut f	= must be on	aller then O	ΛΕ	
6	Adjusted R:Square:			z. Sigi	nngami r	must be sm	aller trian o		
7	Standard Error	0.171							
8	Observations	5							
9	:								
10	ANOVA								
11		df		MS	. F	Significance F			
12	Regression	1	4.624	4.624	157.636	0.001)		
	Residual	3	0.088	0.029					
14	Total	4	4.712						
15	:								
16		Goefficients 3	Standard Error	t-Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95,0%
17	Intercept	-267.2	21:556	-12.396	0.001	-335.601	-198.599	-335.801	-198.599
18	X Variable 1	0.136	0.011	12.555	.0.001	0.102	0.170	0.102	0.170
19		3							

Here are slope and intercept of regression line

3. Absolute value of t statistics must be larger than 1.645

Regression Goodness of Fit

Regression model needs to pass all the criteria below:

- 1. The R square must be bigger than 0.80 (!?)
- 2. The significant F (from ANOVA) must be smaller than 0.05
- 3. The absolute value of t-statistics must be larger than 1.96 for α =0.05 and must larger than 1.645 for α =0.10

Regression analysis using chart (Scatter Plot)

Manual Computation we did

$$\hat{y} = slope * x + intercept$$

$$slope = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

$$intercept = \overline{y} - slope \cdot \overline{x}$$

	×	У	хy	x^2
	Year	Population		
	1980	2.1		
	1985	2.9		
	1990	3.2		
	1995	4.1		
	2000	4.9		
Sum				
Average				
Count (n) =				

Slope

Intercept

Manual Computation we did

$$\hat{y} = slope * x + intercept$$

$$slope = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

$$intercept = \overline{y} - slope \cdot \overline{x}$$

	×	У	хy	x^2
	Year	Population		
	1980	2.1	4158	3920400
	1985	2.9	5756.5	3940225
	1990	3.2	6368	3960100
	1995	4.1	8179.5	3980025
	2000	4.9	9800	4000000
Sum	9950	17.2	34262	19800750
Average	1990	3.44		
Count (n) =	5			

Slope	0.136
Intercept	-267.2

$$y = m \cdot x + c$$

$$m \cdot x_{1} + c = y_{1}$$

$$m \cdot x_{2} + c = y_{2}$$

$$\vdots$$

$$m \cdot x_{n} + c = y_{n}$$

$$\begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} m \\ c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y = m \cdot x + c$$

$$m \cdot x_1 + c = y_1$$
$$m \cdot x_2 + c = y_2$$
$$\vdots$$

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{b} = \mathbf{y}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} m \\ c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$m \cdot x_{1} + c = y_{1}$$

$$m \cdot x_{2} + c = y_{2}$$

$$\vdots$$

$$m \cdot x_{n} + c = y_{n}$$

$$\begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$(\mathbf{A}^{t} \cdot \mathbf{A}) \cdot \mathbf{b} = \mathbf{A}^{t} \cdot \mathbf{y}$$

$$(\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot (\mathbf{A}^{t} \cdot \mathbf{A}) \cdot \mathbf{b} = (\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^{t} \cdot \mathbf{y}$$

$$\mathbf{A} \cdot \mathbf{b} = \mathbf{y}$$

$$[\mathbf{b} = (\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^{t} \cdot \mathbf{y}]$$

$$\mathbf{A}^t \cdot \mathbf{A} =$$

$$\mathbf{A}^t \cdot \mathbf{y} =$$

$$y = m \cdot x + c$$

$$m \cdot x_1 + c = y_1$$
$$m \cdot x_2 + c = y_2$$
$$\vdots$$

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} m \\ c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$m \cdot x_{1} + c = y_{1}$$

$$m \cdot x_{2} + c = y_{2}$$

$$\vdots$$

$$m \cdot x_{n} + c = y_{n}$$

$$\begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$(\mathbf{A}^{t} \cdot \mathbf{A}) \cdot \mathbf{b} = \mathbf{A}^{t} \cdot \mathbf{y}$$

$$(\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot (\mathbf{A}^{t} \cdot \mathbf{A}) \cdot \mathbf{b} = (\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^{t} \cdot \mathbf{y}$$

$$\mathbf{b} = (\mathbf{A}^{t} \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^{t} \cdot \mathbf{y}$$

$$\mathbf{A}^t \cdot \mathbf{A} = \begin{bmatrix} \sum x^2 & \sum x \\ \sum x & n \end{bmatrix}$$

$$\mathbf{A}^t \cdot \mathbf{y} = \begin{bmatrix} \sum xy \\ \sum y \end{bmatrix}$$

A	у	
1980	1	2.1
1985	1	2.9
1990	1	3.2
1995	1	4.1
2000	1	4.9

A'				
1980	1985	1990	1995	2000
1	1	1	1	1
0				
A'A				
19800750	9950			
9950	5			
Inverse of A'A				
0.004	-7.96			
-7.96	15840.6			
L = Inv(A'A).A'				
-0.04	-0.02	8.88E-16	0.02	0.04
79.8	40	0.2	-39.6	-79.4
b = Inv(A'A).A' * y = L	_*y			
0.136				
-267.2				

THANK YOU!