INTRODUCTION

CHAPTER #1

Introduction to IT

Muhammad Usman

What is Computing

- Computing is any goal-oriented activity which benefits from computers
- Computing is the study of how computers and computer systems work and how they are constructed and programmed
- Computing includes
 - designing and building hardware and software systems
 - processing, structuring and managing various kinds of information
 - doing scientific research on and with computers
 - making computer systems behave intelligently
 - creating and using communications and entertainment media etc

What is Computing

- Its primary aspects of theory, systems and applications are drawn from the disciplines of
 - Technology
 - Design
 - Engineering
 - Mathematics
 - Physical Sciences and
 - Social Sciences

Chapter # 1

Subfields of Computing

Computer Science

Software Engineering

Computer Engineering

Information Systems

Information Technology

Subfields of Computing

Computer science (CS) or computing science

It is the scientific and practical approach to computation and its applications

Software engineering (SE)

It is the application of a systematic, disciplined, quantifiable approach to the design, development, operation, and maintenance of software, and the study of these approaches; that is, the application of engineering to software

Computer engineering (CE)

It is a discipline that integrates several fields of electrical engineering and computer science required to develop computer systems

Information technology (IT)

It is the application of computers and telecommunications equipment to store, retrieve, transmit and manipulate data, often in the context of a business or other enterprise

Information systems (IS)

■ It is the study of complementary networks of hardware and software that people and organizations use to collect, filter, process, create, and distribute data

History of Computing

- The history of computing is longer than the history of computing hardware and modern computing technology
- It includes the history of methods intended for pen and paper or for chalk and slate, with or without the aid of tables
- The earliest known tool for use in computation was the abacus (invented in Babylon circa 2400 BC)
- Calculators were also a popular computation tool used in recent centuries

Modern Day Computing

- Modern day computing is usually performed with the help of computers
- A computer is a machine that manipulates data according to a set of instructions called a computer program
- A computer program provides instructions to the computer hardware

What is a Computer

- Computer is a Latin word which means to compute
- It is a calculation machine to perform computations and to make logical decisions millions / billions times faster than human beings
- Computer is an electronic device used for information processing
- A computer is, at its most basic, a machine which can take instructions, and perform computations based on those instructions and give results
- Computer is an electronic machine made with many subunits that enables the user to access data easily
- A computation on a computer is performed on the basis of two main entities
 - i.e. hardware and software

Computer Hardware

- Computer hardware is the collection of physical elements that comprise a computer system
- It encompasses the physical interconnections and devices required to store and execute (or run) the software
- It refers to the physical parts or components of a computer such as
 - monitor, keyboard, storage, hard drive disk, mouse, printers, CPU, memory, motherboard, graphic card, sound card, and other chips
- It contains physical objects that can be actually touched

Computer Software

- Software is a collection of computer programs and related data that provides the instructions for telling a computer what to do and how to do it
 - e.g. Microsoft Word, Internet Explorer, Windows
- Software is a set of programs, procedures, algorithms and its documentation concerned with the operation of a data processing system
- Software cannot be touched

History of Computers

- Before the 1500s, in Europe, calculations were made with an abacus
 - Invented around 2500BC, available in many cultures (China, Mesopotamia, Japan, Greece, Rome, etc.)
- In 1642, Blaise Pascal (French mathematician, physicist, philosopher) invented a mechanical calculator called the Pascaline
- In 1671, Gottfried von Leibniz (German mathematician, philosopher) extended the Pascaline to do multiplications, divisions, square roots
- None of these machines had memory, and they required human intervention at each step

History of Computers

- In 1822 Charles Babbage (English mathematician, philosopher), sometimes called the "father of computing" built the Difference Engine
 - Machine designed to automate the computation (tabulation) of polynomial functions
 - which are known to be good approximations of many useful functions
 - based on the "method of finite difference"
 - implements some storage
- In 1833 Babbage designed the Analytical Engine, but he died before he could build it
 - It was built after his death, powered by steam

Early Computers

- Based on mechanical relays
 - 1940: Stibitz at Bell Laboratories
 - 1944: Mark I: Howard Aiken and IBM at Harvard
- Based on vacuum tubes
 - 1937-1941: Atanasoff-Berry at Iowa State
 - 1940s: Colossus: secret German code-breaker
 - 1940s: ENIAC: Mauchly & Eckert at U. of Penn.

Early Computers

The Mark I computer

Generations of Computers

- □ First Generation Vacuum tube (1946 − 1957)
- □ Second Generation Transistor (1958 1964)
- □ Third Generation Integrated Circuits (1965 now)
 - Some people divide third generation into two more generations
- □ Fourth generation computers IC LSI
- □ Fifth generation computers IC VLSI

Generations of Computers

First Generation - Vacuum tube (1946 – 1957) Second Generation – Transistor (1958 – 1964) Third Generation – Integrated Circuits (1965 – now) Fourth generation computers – IC LSI Fifth generation computers – IC VLSI

Generations of Computers

	First Gen.	Second Gen.	Third Gen.
Technology	Vacuum Tubes	Transistors	Integrated Circuits (multiple transistors)
Size	Filled Whole Buildings	Filled half a room	Smaller

First Generation – Vacuum Tubes

The ENIAC (Electronic Numerical Integrator and Computer) was unveiled in 1946: the first all-electronic, general-purpose digital computer

Second Generation – Transistors

Third Generation – Integrated Circuits

Third Generation – Integrated Circuits

- □ Small scale integration (1965 1968)
 - up to 100 devices on a chip
- Medium scale integration (1968 1971)
 - 100 3,000 devices on a chip
- □ Large scale integration (1971 1977)
 - 3,000 100,000 devices on a chip
 - sometimes referred as fourth generation
- □ Very large scale integration (1978 1991)
 - 100,000 100,000,000 devices on a chip
 - sometimes referred as fifth generation
- □ Ultra large scale integration (1991 now)
 - over 100,000,000 devices on a chip

Modern Computers

Computer Science

- The science of algorithms
- Draws from other subjects, including
 - Mathematics
 - Engineering
 - Psychology
 - Business Administration
 - Psychology

Central Questions of Computer Science

- Which problems can be solved by algorithmic processes?
- How can algorithm discovery be made easier?
- How can techniques of representing and communicating algorithms be improved?
- How can characteristics of different algorithms be analyzed and compared?

Central Questions of Computer Science

- How can algorithms be used to manipulate information?
- How can algorithms be applied to produce intelligent behavior?
- How does the application of algorithms affect society?

The central role of algorithms in computer science

Computer Science Terminologies

Algorithm

A set of steps that defines how a task is performed

Program

A representation of an algorithm

Programming

The process of developing a program

Software

Programs and algorithms

Hardware

Equipment

0-27