

Machine Learning (IS ZC464) Session 10:

Artificial Neural Networks(ANN) – Perceptron and Linear decision Boundary, Pattern Recognition using ANN, Gradient Descent Algorithm

Neural Network for XOR

Neural Network for XOR

Perform Computations (T=1)

Activation Function

$$f(n) = 1 \text{ if } n > = 1$$

= 0 if n < 1

x1	x2	w11	w12	w21	w22	n1	f(n1)	n2	f(n2)	f(m)
0	0	1	-1	-1	1	0	0	0	0	0
0	1	1	-1	-1	1	-1	0	1	1	1
1	0	1	-1	-1	1	1	1	-1	0	1
1	1	1	-1	-1	1	0	0	0	0	0

Activation Functions

- Activation functions trigger the received weighted sum of the input according to the expected output.
- Let g(n) be the activation function where $n = \sum_{i=1}^{n} w_i x_i$
- Based on the value of n, the g(n) is triggered.
- Different Activation Functions are
 - Step Function
 - Linear function
 - Sigmoid Function (Logistic Function)

Step Function

- G(n) = 1 if n>T = 0 if n<=T
- The output is always 1 or 0.
- Useful is pattern recognition where an output 1 can represent the class which the input test pattern belong to.

Example

- Let us have two discriminatory features <color, texture> for automatic fruit recognition.
- Let us code the attributes as 1, 2 and 3 for red, orange and yellow colors respectively. Also let the textures be defined as 1,2 and 3 representing the degrees of smoothness in increasing order.
- Let the training samples be

Training data

Color	Texture	Fruit (supervised learning)
1	2	Apple
3	2	Mango
2	1	Orange
1	3	Plum
1.4	2.8	plum
2	1.5	orange
2.5	2.2	mango
1	2.2	apple

Expected output

- Apple → 1
- Orange → 2
- Mango \rightarrow 3
- Plum → 4

The expected output can also be modeled as a 4 tuple as <1,0,0,0> for apple

<0,1,0,0> for Orange

<0,0,1,0> for Mango

<0,0,0,1> for plum

Check the feasibility of using a single neuron for recognition of patterns

Try to draw lines that separate the classes: two decision boundaries hint the need for two neurons

A simple step function simply gives o or 1 and is not sufficient to produce output for 4 classes

Output modeling

- y1 = 0, y2 = 0 represents that the test input is Apple
- y1 = 1, y2 = 0 represents that the test input is Orange
- y1 = 1, y2 = 0 represents that the test input is Mango
- y1 = 1, y2 = 1 represents that the test input is Plum

Parameters for each neuron

Neuron 1:

- Activation Function: Step function
- Threshold: 1
- Weights: <1,-1>

Neuron 2:

- Activation Function: Step function
- Threshold:1
- Weights:<1,-1>

Training and Learning

- Training is supervised in nature.
- Neural network learns from training examples
- Knowledge is captured in terms of weights.
- Learning Algorithms require the initialization of weights which later adapt to other examples.
- Hit and trial methods do not work for larger data sets.
- Gradient Descent is the most popular learning algorithm.

Neural Network Architecture

- The arrangement of neurons, along with the number of neurons, activation functions associated with the neurons and the input and output constitute the architecture of the Neural Network.
- Different Architectures include
 - Feed Forward Neural Networks-represents a function of its input
 - Single Layered
 - Multi Layered
 - Back Propagation Neural Networks- feeds its output back into its own inputs

Activation functions

Linear

$$y = x$$

Logistic
$$y = \frac{1}{1 + \exp(-x)}$$

Hyperbolic tangent

$$y = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

Feed Forward Neural Networks

- The information is propagated from the inputs to the outputs
- Time has no role (NO cycle between outputs and inputs)

Recurrent Neural Networks

- Can have arbitrary topologies
- Can model systems with internal states (dynamic ones)
- Delays are associated to a specific weight
- Training is more difficult
- Performance may be problematic
 - Stable Outputs may be more difficult to evaluate
 - Unexpected behavior (oscillation, chaos, ...)

Slide adapted from: acat02.sinp.msu.ru/presentations/prevotet/tutorial.ppt

Learning

- The procedure that consists in estimating the parameters of neurons so that the whole network can perform a specific task
- 2 types of learning
 - The supervised learning
 - The unsupervised learning
- The Learning process (supervised)
 - Present the network a number of inputs and their corresponding outputs
 - See how closely the actual outputs match the desired ones
 - Modify the parameters to better approximate the desired outputs

Slide adapted from: acat02.sinp.msu.ru/presentations/prevotet/tutorial.ppt

Recall

- Knowledge is acquired by the network through a learning process.
- Interconnection strengths known as synaptic weights are used to store the knowledge.

Example: Draw decision boundaries

Example: Linear boundaries

Example: give each region a label

Role of neurons in design of a neural network

Input

Represent Training Data

- $\{x^{(i)}, d^{(i)}\}\$ for i = 1, 2, 3,, m
- Size of the training data = m
- x⁽¹⁾ is the feature vector corresponding to the first object
- x⁽²⁾ is the feature vector corresponding to the first object
- $d^{(1)}$ is the class to which $x^{(1)}$ belongs
- $d^{(2)}$ is the class to which $x^{(2)}$ belongs
- And so on

Forward Learning

O1,02,03 etc are the output values produced by the NN

Output Layer

Hidden Layer

Input Layer

Goal

Sum of Squared Errors

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

Goal:

Minimize
$$E = \sum_{l=1}^{p} E^{(l)}$$

Learning Factors

- Initial Weights
- Learning Constant (η)
- Cost Functions
- Update Rules
- Training Data and Generalization
- Number of Layers
- Number of Hidden Nodes

Learning Phase

- During the learning phase the weights in the Feed Forward Neural Network are modified.
- All weights are modified in such a way that when a pattern is presented, the output unit with the correct category, hopefully, will have the largest output value.

In 2D space the line parameters are two

- Slope and intercept
- Can be called as w₁ and w₂
- In order to find a line that best fits the given data, we must find w1 and w2 in such a way that the sum of the squared error is minimum

Error surface for Neural Network based classification

- Consider m observations <x¹,y¹>, <x²,y²>,
 <x^m,y^m>.
- An hypothesis h_w(x) that approximates the function that fits best to the given values of y
- There is likely to be some error corresponding to each observation (say i).
- The magnitude of such error is yⁱ -h_w(xⁱ)
- Objective is to find such w that minimizes the sum of squares of errors

$$E_{min}(w) = Minimize_w \sum_i (y^i - h_w(x^i))^2$$

Plotting error when y=f(x)

Plotting error when $y=f(x_1,x_2)$

Plotting error when $y=f(x_1,x_2)$

