

HW #01: HDFS proficiency

1. Описание задания и критериев оценивания	2
2. FAQ (часто задаваемые вопросы)	3
3. Задания уровня beginner	5
4. Задания уровня intermediate	5
5. Задания уровня advanced	7
6. Правила оформления задания	10

автор задания:

- Алексей Драль, aadral@bigdatateam.org
- Founder & Big Data Instructor @ BigData Team

редактор задания¹:

- Светлана Скорикова
- Big Data Mentor @ BigData Team
- Product Analyst @ Ozon

¹ Хочешь стать ментором и оставить след в истории Big Data? Тогда хорошо учись, помогай другим и дай нам знать о своем желании. Смело пиши автору задания или менеджеру учебного курса.

1. Описание задания

Будем выделять 3 (содержательных) уровня владения HDFS:

- 0. Мимо проходил (passerby).
- 1. Новичок (beginner).
- 2. Продвинутый пользователь (intermediate).
- 3. Typy (advanced).

Наша задача - начать прокачивать HDFS-скилы с уровня новичка до гуру и мы обычно начинаем это увлекательное занятие на семинаре. На заметку, на основе обратной связи среднее выполнения всех заданий около 6 часов, поэтому не надо беспокоиться, если Вы что-либо не успели. Вы продолжите погружение дома и будете иметь возможность задать вопросы в Telegram-канале.

1.1 Определения

Новичок:

- Умеет пробрасывать порт (port forwarding) для доступа к непубличным ресурсам
- Умеет пользоваться Web UI для того, чтобы просматривать HDFS

Продвинутый пользователь умеет использовать "hdfs dfs" CLI для:

- Просмотра HDFS
- Перемещения файлов и папок в HDFS
- Перемещения файлов между локальной файловой системой (local FS) и HDFS

Гуру, должен уметь:

- Изменить реплику файла в HDFS с помощь "hdfs dfs" CLI
- Получить детальную информацию по файлам и блокам в HDFS с помощью "hdfs fsck" CLI
- Найти и прочитать содержимое реплики (replica's data) на Datanode
- Найти и прочитать содержимое "edit.log" на Namenode
- Пользоваться curl для работы с HDFS через WebHDFS API

1.2 План действий на семинар

Для отслеживания прогресса в сравнении с остальными членами группы, мы будем пользоваться "Poll" в Telegram. Отмечаем себя в телеграм-канале на уровне "passerby"

и как только переходите к заданиям нового раздела (beginner, intermediate, advanced), обновляем голосование, Таким образом, мы будем понимать, кто над какими заданиями работает, и разбирать подводные камни в заданиях, до которых добралась большая часть группы.

1.3 План действий для сдачи ДЗ

Все ответы на вопросы, полученную из системы информацию, сравнения и результаты исследований необходимо отобразить в файле домашней работы. За выполнение практических заданий учебного модуля по HDFS вы можете набрать 100%. Распределение баллов выглядит следующим образом:

- 1% задания уровня beginner
- **45**% задания уровня intermediate
- **54%** задания уровня advanced

Для простоты расчетов, соответствующие баллы (проценты) стоят около каждого упражнения. Сдача заданий производится посылкой YAML² файла, где напротив каждого упражнения будет написан ваш ответ. Шаблон находится по следующей ссылке:

github:big-data-team/big-data-course/hdfs_quiz_template.yml

По умолчанию, в файле нужно указать команды, которые вы использовали для получения ответа на вопрос. Места, где нужно указать только число или текстовые комментарии, указаны явно. Каждая задача оценивается изолированно и может не опираться на результаты предыдущих (если явно не указано обратное). Ответы проверяются в автоматическом режиме, но в случае уточнений / вопросов их будут смотреть преподаватели и менторы курса, поэтому смело пишите в многострочном режиме комментарии для людей. Обратите внимание, что многострочные ответы указаны исключительно для примера, чтобы показать как ими пользоваться, а не с целью дать подсказку, где нужны однострочные или многострочные ответы.

-

² Если вы не знакомы с форматом YAML файла - не стоит беспокоиться, это удобный JSON, который легко читают и люди, и машины. Сдать задание можно легко, не зная всех тонкостей YAML (см. раздел FAQ этого документа). Этот формат имеет много дополнительных возможностей. Если интересно изучить подробнее, то рекомендуем документацию <u>PvYAML</u>

1.4 Задания уровня beginner

Задачи:

- 1. Пробросить порт (port forwarding) для доступа к HDFS Web UI³
- 2. [task ID: beginner.how_many_items_in_hdfs, score: 1%] Воспользоваться Web UI для того, чтобы найти папку "/backup_virtual" в HDFS, а в ней логи сервиса "access_log". Посмотрите в Web UI, сколько подпапок в папке "/backup_virtual/access_logs" без учета рекурсии? (в ответе ожидается одно число).

1.5 Задания уровня intermediate

Bce следующие задачи используют "hdfs dfs" CLI (консольная утилита). Чтобы получить документацию / подсказку по HDFS-утилите или флагу, можно набрать:

- hdfs dfs -usage
- hdfs dfs -help
- hdfs dfs -usage ls
- hdfs dfs -help ls

См. флаги "-1s" и "-R", чтобы:

1. [task ID: intermediate.hdfs_list_recursively, score: 3%] Вывести рекурсивно список всех файлов в /data/wiki.

```
Вывод команды должен быть примерно таким:
/data/wiki/en_articles
```

/data/wiki/en_articles/articles

Или таким:

drwxr-xr-x - hdfs hdfs 0 2020-03-13 00:23 /data/wiki/en_articles -rw-r--r- 2 hdfs hdfs 10 2020-03-13 00:23 /data/wiki/en_articles/articles

...

2. [task ID: intermediate.hdfs_list_recursively_human_readable, score: 3%] См. п.1 + вывести размер файлов в "human readable" формате (т.е. не в байтах, а, например, в МБ, когда размер файла измеряется от 1 до 1024 МБ).

-

³ См. User Guides

Вывод команды должен быть примерно таким:

drwxr-xr-x - hdfs hdfs 0 2020-03-13 00:23 /data/wiki/en_articles -rw-r--r- 2 hdfs hdfs 1 G 2020-03-13 00:23 /data/wiki/en_articles/articles

- 3. [task ID: intermediate.hdfs_file_replication_factor, score: 1.5%] Ответьте на вопрос: какой фактор репликации используется для файлов? В случае работы с Docker-контейнером, к ответу прибавьте 2. (в ответе ожидается одно число)
- 4. [task ID: intermediate.hdfs_folder_replication_factor, score: 1.5%] Ответьте на вопрос: какой фактор репликации используется для папок? (в ответе ожидается одно число)
- 5. [task ID: intermediate.hdfs_describe_size, score: 3%] Команда "hdfs dfs -ls" выводит актуальный размер файла (actual) или же объем пространства, занимаемый с учетом всех реплик этого файла (total)? В ответе ожидается одно слово: actual или total.

См. флаг "-du"

6. [task ID: intermediate.hdfs_cumulative_size, score: 3%] Приведите команду для получения размера пространства, занимаемого всеми файлами (с учетом рекурсии, но без учета фактора репликации) внутри "/data/wiki". На выходе ожидается одна строка с указанием команды.

Вывод команды должен быть примерно таким: 1 G /data/wiki

См. флаги "-mkdir", "-rm" и "-touchz"

- 7. [task ID: intermediate.hdfs_create_folder, score: 3%] Чтобы избежать конфликтов, создайте папку в домашней HDFS-папке Вашего пользователя. На всякий случай используйте Ваш id (см. таблицу с оценками) в качестве префикса этой папки.
- 8. [task ID: intermediate.hdfs_create_nested_folder, score: 3%] Создайте вложенную структуру из папок глубины 3 одним вызовом CLI. Символы ';' и '&' в команде запрещены. Решить задачу нужно не объединением нескольких команд в одну строку, а вызовом одной команды. Имена произвольные за исключением имени верхнеуровневой директории, которая должна быть с таким же префиксом, что директория в 7 пункте.

Подсказка: команда, которой вы воспользовались в предыдущем задании – какие у неё есть флаги?

- 9. [task ID: intermediate.hdfs_remove_nested_folders, score: 3%] Удалите созданные папки рекурсивно.
- 10. [task ID: intermediate.hdfs_trash_behavior, score: 3%] Что такое Trash в распределенной FS (ответ текстом)? Как сделать так, чтобы файлы удалялись сразу, минуя "Trash" (указать команду)?
- 11. [task ID: intermediate.hdfs_create_empty_file, score: 3%] Создайте пустой файл в HDFS.

См. флаги "-put", "-cat", "-tail", "-cp", "-get", "-getmerge"

- 12. [task ID: intermediate.hdfs_create_small_file, score: 3%] Создайте небольшой произвольный файл (идеально 15 строчек по 100 байт) и загрузите файл из локальной файловой системы (local FS)⁴ в HDFS.
- 13. [task ID: intermediate.hdfs_output_file, score: 1%] Выведите содержимое HDFS-файла на экран.
- 14. [task ID: intermediate.hdfs_output_file_end, score: 1%] Выведите конец HDFS-файла на экран.
- 15. [task ID: intermediate.hdfs_output_file_start, score: 1%] Выведите содержимое нескольких первых строчек HDFS-файла на экран.
- 16. [task ID: intermediate.hdfs_tail_vs_unix_tail, score: 3%] Разберитесь в чем разница между HDFS флагом "-tail" и локальной утилитой "tail". С помощью какой команды (флага) можно воспроизвести поведение HDFS "-tail" локально?

Подсказка: проверьте себя на 2-3 файлах с разным количеством и длиной строк. В обоих случаях результат должен быть идентичным.

- 17. [task ID: intermediate.hdfs_copy_file, score: 1.5%] Сделайте копию файла в HDFS.
- 18. [task ID: intermediate.hdfs_move_file, score: 1.5%] Переместите копию файла в HDFS на новую локацию.
- 19. [task ID: intermediate.hdfs_download_and_concatenate, score: 3%] Загрузите HDFS-файлы локально⁵, объединив их в один файл во время загрузки одним вызовом CLI.

1.6 Задания уровня advanced

Задачи на консольные утилиты "hdfs dfs" и "hdfs fsck"

-

⁴ Cm. FAO

⁵ См. FAQ: на edge-ноду (client), с которой есть доступ к кластеру и где вы запускаете команду "hdfs dfs" в консоли.

Полезные флаги:

- Для "hdfs dfs", см. "-setrep -w"
- hdfs fsck /path -files blocks -locations

Задачи:

- 1. [task ID: advanced.hdfs_set_file_replication, score: 6%] Изменить replication factor для файла (команда). Как долго занимает время на увеличение / уменьшение числа реплик для файла (текст/обсуждение в чатах)?
- 2. [task ID: advanced.hdfs_get_files_and_block, score: 6%] Найдите информацию по файлу, блокам и их расположениям с помощью "hdfs fsck" CLI

Вывод команды должен быть примерно такой:

Connecting to namenode via

..

0. BP-981064612-78.46.171.101-1581506447497:blk_1073743032_2208 len=76861985 Live_repl=3

[DatanodeInfoWithStorage[176.9.53.253:50010,DS-6d9bdfe0-471b-4bc4-8d58-f827 459f44f3,DISK],

DatanodeInfoWithStorage[5.9.107.98:50010,DS-2d80c46a-a735-48d4-b986-996129 9f6d20,DISK],

DatanodeInfoWithStorage[88.198.61.247:50010,DS-0dbc060f-de26-42eb-915f-0163 10326169,DISK]]

Status: HEALTHY

•••

3. [task ID: advanced.hdfs_get_block_information, score: 6%] Получите информацию по любому блоку из п.2 с помощью "hdfs fsck -blockId". Обратите внимание на Generation Stamp (GS number).

Вывод команды должен быть примерно такой:

Connecting to namenode via http://brain-master.bigdatateam.org:50070/fsck?...

Block Id: ...

Block belongs to: ...

No. of Expected Replica: 3

No. of live Replica: 3

...

- 4. [task ID: advanced.hdfs_dfs_architecture, score: 6%] Выберите произвольный файл в HDFS
 - Воспользовавшись знаниями из предыдущих 3 заданий, найдите информацию, из каких блоков состоит этот файл.

- Смените пользователя на hdfsuser⁶, перейдите на одну из Datanode и найдите физическую реплику одного любого блока, выбранного hdfs-файла, на этой Datanode. Выведите содержимое этого блока. Обратите внимание где и как хранится метаинформация по этой реплике.
- Слепок файловой структуры Namenode (e.g. edits.log) предоставлен в HDFS по адресу "/data/namenode_example". Выведите содержимое этой папки. Внутри неё найдите и выведите snapshot (fsimage) и транзакции сервиса Namenode.

Скопируйте все команды, введенные в терминал, это будет являться ответом на задачу.

Задачи на работу с сервисом WebHDFS

См. документацию по адресу https://hadoop.apache.org/docs/r1.0.4/webhdfs.html Цель - научиться делать запросы к Namenode (NN) и Datanode (aм (DN) с помощью curl.

Пример запроса на чтение файла с помощью curl:

>> curl -i

"http://brain-master:50070/webhdfs/v1/data/access_logs/big_log/access.log.2015-12-10?op=OPEN"

Найдите, по какому адресу (Location) на какую Datanode нужно обращаться для чтения данных из реплики.

Задачи:

- 1. [task ID: advanced.webhdfs_read_100B, score: 6%] С помощью WebHDFS, используя параметры запроса, прочитайте 100В из произвольного файла в HDFS.
- 2. [task ID: advanced.webhdfs_curl_follow_redirects, score: 6%] Научитесь пользоваться опцией "follow redirects" с помощью curl (см. "man curl"). Прочитайте произвольный файл из HDFS с использованием этой опции,
- 3. [task ID: advanced.webhdfs_get_file_detailed_information, score: 6%] Используя параметры запроса, получите детализированную информацию по файлу (см. file status).
- 4. [task ID: advanced.webhdfs_change_file_replication, score: 6%] Используя параметры запроса, измените параметр репликации файла

⁶ Для всех слушателей курсы мы сделали беспарольный доступ с помощью команды "sudo -i -u hdfsuser"

5. [task ID: advanced.webhdfs_append_to_file, score: 6%] Используя параметры запроса, дозапишите данные в файл (append). Решение должно быть реализовано с помощью одного curl-запроса.

Подсказка: обратите внимание, что это запрос типа "POST", где предполагаются ограничения прав доступа к файлу. Решение с правами 777 (см. chmod) не принимается.

2. Критерии оценивания

Discounts (скидки и другие акции):

- 100% за плагиат в решениях (всем участникам процесса)
- 100% за посылку решения после hard deadline
- 30% за посылку решения после soft deadline и до hard deadline
- 5% за каждую дополнительную посылку в тестирующую систему (всего можно делать до 3-х посылок без штрафа):

Пример работы системы штрафов:

День	Посылка	Штраф
День 1	Посылка 1	Без штрафа
День 1	Посылка 2	Без штрафа
День 1	Посылка 3	Без штрафа
День 1	Посылка 4	-5%
День 2	Посылка 5	-5%
День 3	Посылка 6	-5%
Итоговый штраф: -15%		

Для подсчета финальной оценки **всегда** берется **последняя** оценка из Grader.

3. Инструкция по отправке задания

Перед отправкой задания: оставьте, пожалуйста, отзыв о домашнем задании по ссылке: https://rebrand.ly/bdb2c2022q2_feedback_hw. Это позволит нам скорректировать учебную нагрузку по следующим заданиям (в зависимости от того, сколько часов уходит на решение ДЗ), а также ответить на интересующие вопросы.

Оформление задания:

- Код задания (Short name): **HW01:HDFS**.
- Выполненное ДЗ сохраните в файл BD-B2C-2022-Q2_<Surname>_<Name>_HW#.yml, пример -- BD-B2C-2022-Q2_Dral_Alexey_HW01.yml. (Проверяйте отсутствие пробелов и невидимых символов после копирования имени отсюда.⁷)
- Для того, чтобы сдать задание, необходимо:
 - Зарегистрироваться и залогиниться в сервисе Everest
 - Перейти на страницу приложения: <u>B2C Big Data Grader</u>
 - Выбрать вкладку Submit Job (если отображается иная).
 - Выбрать в качестве "Task" значение: HW01:HDFS 8
 - Загрузить в качестве "Task solution" файл с решением
 - В качестве Access Token указать тот, который был выслан по почте

Внимание: если до дедлайна остается меньше суток, и вы знаете (сами проверили или коллеги сообщили), что сдача решений сломана, обязательно сдайте свое решение, прислав нам ссылку на выполненное задание (Job) на почту с темой письма "Short name. ФИО.". Например: "**HW01:HDFS**. Иванов Иван Иванович." Таким образом, мы сможем увидеть, какое решение у вас было до дедлайна и сможем его оценить. Пример ссылки:

https://everest.distcomp.org/jobs/67893456230000abc0123def

Любые вопросы / комментарии / предложения можно писать в телеграм-канал курса или на почту bd_b2c2022q2@bigdatateam.org.

Всем удачи!

⁷ Онлайн инструмент для проверки: https://www.soscisurvey.de/tools/view-chars.php

⁸ Сервисный ID: hdfs.quiz

4. FAQ (часто задаваемые вопросы)

Никогда раньше не использовал YAML, как проверить валидность файла?

Быстрое введение в YAML: https://learnxinyminutes.com/docs/yaml/ Проверить валидность файла можно с помощью онлайн-ресурсов:

- https://yaml-online-parser.appspot.com/ (показывает результат парсинга)
- https://yamlchecker.com/ (есть встроенный syntax highlight)

Поскольку онлайн ловит не все проблемы, затем в обязательном порядке в Python: >>> yaml.safe_load(open("/path/to/solution.yml"))

Можно поподробнее про разницу local FS и HDFS?

В первом приближении Hadoop кластер выглядит следующим образом (клиентский узел - brain-client, мастер-сервер (где работает NameNode) - brain-master, рабочие узлы кластера - brain-node1, brain-node2, ...):

Под local FS понимается файловая система brain-client, с которого есть доступ к кластеру. В случае эмуляции через Docker-контейнер - это та файловая система, в которую вы попадаете при запуске терминала (посредством открытия сессии bash или через интерфейс jupyter ноутбука).

Что такое SSH tunneling и где посмотреть примеры проброса портов с подробным описанием?

- Порт (компьютерные сети)
- https://en.wikipedia.org/wiki/Port_forwarding
- SSH tunnel
- SSH Port Forwarding Example

Никогда не пользовался консолью Linux, где можно получить максимально быстрый ликбез?

Для хорошего погружения рекомендуем "The Unix Workbench" в формате:

- книги: https://seankross.com/the-unix-workbench/
- или онлайн курса на Coursera: https://www.coursera.org/learn/unix

Быстрое введение в основы работы в командной оболочке Linux:

https://learnxinyminutes.com/docs/bash/

Особое внимание следует уделять опциям команд (флагам)

"You are not allowed to run this application", что делать?

Если Вы видите надпись "You are not allowed to run this application" во вкладке Submit Job в Everest, то на данный момент сдача закрыта (нет доступных для сдачи домашних заданий, по техническим причинам или другое). Попробуйте, пожалуйста, еще раз через некоторое время. Если Вы еще ни разу не сдавали, у коллег сдача работает, но Вы видите такое сообщение, сообщите нам об этом.

Grader показывает 0 или < 0, а отчет (Grading report) не помогает решить проблему

Ситуации:

- система оценивания показывает оценку (Grade) < 0, а отчет (Grading report) не помогает решить проблему. Пример: в случае неправильно указанного access token система вернет -401 и информацию о том, что его нужно поправить;
- система показывает 0 и в отчете (Grading report) не указано, какие тесты не пройдены. Пример: вы отправили невалидный архив (rar вместо zip), не приложили нужные файлы (или наоборот приложили лишние временные файлы от Mac OS и т.п.), рекомендуется проверить содержимое архива в консоли:

unzip -l your_solution.zip

Если Вы столкнулись с какой-то из них, присылайте ссылку на выполненное задание (Job) в чат курса. Пример ссылки:

https://everest.distcomp.org/jobs/67893456230000abc0123def

Что в отчете Grader означает проверка X?

test_exact_str_value_comparison - ответ совпадает

test_stdout_match_regexp - введены верные команды

test_fsck_files_and_blocks - корректно использованы флаги "-files", "-blocks"

test_datanode_physical_architecture - выполнен вход на одну из namenode

test_physical_dfs_architecture_location - осуществлен вывод физической реплики блока

test_namenode_physical_architecture - выведено содержимое или скачаны "/data/namenode_example", snapshot (fsimage) и транзакции сервиса Namenode