

CS5242 Final Project

Presented by: Group 10 (Huang Ziyu, Li Zhaofeng, Wang Yuchen)

Date: 14 Nov 2022

National University of Singapore

Content

- Problem Statement
- Data Preparation
 - data collection
 - data pre-processing
 - data analysis
- Model Architecture
 - baseline models: MLP, CNN, LSTM
 - proposed model: vision transformer
- Discussion and Analysis
 - result visualization
 - project novelty
 - future research directions

Problem Statement

- Objective: accurate facial mask detection under covid-19
- Methodology: DL-based multi-class image classification

Data Preparation

- data collection
- data pre-processing
 - cleansing
 - augmentation
- data analysis

Data Preparation - Collection

- Google/Baidu
- Sleep time/IP address
- With mask/Without mask/Irrelevant

Data Preparation - Pre-processing

Data pre-processing increase sample size/variety and reduce data noise

data cleansing

- remove deprecated images
- re-assign wrongly-classified images

Data Preparation - Pre-processing

Data pre-processing increase sample size/variety and reduce data noise

data cleansing

- remove deprecated images
- re-assign wrongly-classified images

face centered - image cropping

- crop images to focus on the face part with face_recognition library

Data Preparation - Pre-processing

Data pre-processing increase sample size/variety and reduce data noise

data cleansing

- remove deprecated images
- re-assign wrongly-classified images

face centered - image cropping

- crop images to focus on the face part with face_recognition library

data augmentation

- resizing
- random cropping
- affine transformation
- rotation (45/90/180/270)

- flipping
- lightening
- Gaussian blurring
- salt and pepper noise

Data Preparation - Analysis

Data splitting

Train set : val set: testset: 8 : 1 : 1

```
train:
without masks: 7427
with masks: 4527
no faces: 1672
val:
without masks: 1563
with masks: 986
no faces: 370
test:
without masks: 1554
with masks: 1015
no faces: 350
```

Data Preparation - Analysis

- Data splitting
- Data visualization
 - bar plot to show the number of images from three categories.

Model Architecture

- MLP
- CNN
- LSTM
- Vision Transformer

MLP

• model architecture: fully connected layers

MLP

- model architecture
- **performance**: 79%

MLP

- model architecture
- performance: 79%
- pros and cons:
 - easy to generalize
 - quick predictions
 - large #parameters

CNN

 model architecture: grey-scale -> conv layers -> linear layers (referring to LeNet 5)

CNN

- model architecture
- performance: 83 %

CNN

- model architecture
- performance: 83 %
- pros and cons
 - image feature capturing
 - parameter sharing
 - parallel computation
 - over-emphasize individual features vs whole object

LSTM

model architecture:

batch size = 64. linear layers(flatten, (64, 3*32*32)->(64, 512)) -> relu(activation) -> lstm(unsqueeze, (64,1,512)->(64, 1,128)) -> linear layers(flatten, (64, 128)->(64, 3)).

LSTM

• performance: 81%

LSTM

- model architecture
- performance: 81 %
- pros
 - less prone to vanishing gradient problem in RNN
 - avoid the long-term dependency issue
 - parameter sharing

cons

- easy to overfit
- hard to implement Dropout
- takes longer training time

Vision Transformer

Vision Transformer

DL-Based Facial Mask Detect

© Copyright National University of Singapore. All Rights Re

Discussion & Analysis

- results visualization
- project novelty
- future research directions

Result Visualization

 tSNE visualization of 1600 samples on 2D space

 Proposed a suitable model architecture

21.jpg

Created a new dataset from scratch

20.jpg

19.jpg

train acc val acc

train loss

val_loss

Implemented 14 data augmentation methods

Used Smart training strategies

0.4

0.2

- Proposed a suitable model architecture
- Created a new dataset from scratch
- Implemented 14 data augmentation methods
- Used Smart training strategies
- Proposed a model with highly generalizable

Limitations

- Size of dataset
- Training with more GPU
- Ensembling and optimization

Future Research Directions

- Model pruning
- Ensemble learning: hard voting and soft voting
- Adversarial training

Acknowledgment

• We'd like to thank all CS5242 teaching staffs for their support and guidance through out the learning journey.

Dr Ai Xin

Kin Whye Chew kinwhye@nus.edu.sg

Lin Qiuxia qiuxia.lin@u.nus.edu

Zhao Jingwei jzhao@u.nus.edu

Reference

We have attached our reference sources to corresponding notebooks.