OFFICE HOURS

Instructor: Dr. Letao Zhang

Office Hour: Tuesday 1:30pm-2:30pm

Location: Math Learning Center (Math Tower Room S-235)

• TA: Mu Zhao (mu.zhao - at - stonybrook.edu)

Office hour: Tuesday 4-5pm

Location: Math Tower 2-122

Office hour: Tuesday 11:00am-11:30am

Location: Math Learning Center (Math Tower Room S-235)

PROBABILITY REVIEW

RECAP

Definition. A random variable is a mapping

$$X:\Omega o\mathbb{R}$$

that assigns a real number $X(\omega)$ to each outcome ω .

- Ω is the sample space. Points
- ω in Ω are called sample outcomes, realizations, or elements.
- Note X only assigns ONE and only ONE real number to each element in the sample space Ω .
- The set of all possible values of the random variable X is called the support, or space, of X.

PDF

X is called a **discrete random variable** if it takes countably many values $\{x_1, x_2, \ldots\}$.

We define the **probability function** or the **probability mass function** (**pmf**) for X by:

$$f_X(x)=p(X=x)$$

PROBABILITY MASS AND DISTRIBUTION FUNCTION

The pmf for the number of heads in two coin tosses (taken from All of Stats) looks like this:

CUMULATIVE DISTRIBUTION FUNCTION

The **cumulative distribution function**, or the **CDF**, is a function

$$F_X: \mathbb{R} \to [0,1],$$

defined by

$$F_X(x) = p(X \le x).$$

We also call this function: Distribution

CDF

CUMULATIVE DISTRIBUTION FUNCTION

• Let X be the random variable representing the number of heads in two coin tosses.

$$P(X = 2) = 1/4$$

 $P(X<1.5) = P(X = 0) + P(X = 1) = 0.75$

CDF for this random variable:

• Note: This function is **right-continuous** and defined for all real numbers x.

RECAP

The Rules of Probability

Sum rule

$$P(x) = \sum_{y} P(x, y)$$

Product rule

$$P(x,y) = P(y|x)P(x)$$

Bayes' theorem

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Denominator

$$P(x) = \sum_{y} P(x|y)P(y)$$

Bayes' theorem

$$P(x,y) = P(y|x)P(x)$$

$$likelihood$$

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$
posterior

Prior – belief before making a particular obs.

Posterior – belief after making the obs.

Posterior is the prior for the next observation

Intrinsically incremental

CONTINUOUS RANDOM VARIABLES

On the other hand, a random variable is called a **continuous random variable** if there exists a function f_X such that $f_X(x) \ge 0$ for all x, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and for every $a \le b$,

$$p(a < X < b) = \int_{a}^{b} f_X(x) dx$$

The function f_X is called the probability density function (pdf). We have the CDF:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

 $f_X(x) = \frac{dF_X(x)}{dx}$ at all points x at which F_X is differentiable.

- For continuous random variables, we use:
 Probability density function for f(x)
- For discrete random variables, we use:
 Probability MASS function for f(x)

DISCRETE VS CONTINUOUS DISTRIBUTIONS

• Discrete:

1) The probability distribution is defined by a probability mass function (or simply probability function) denoted by f(x), which provides the probability for each value of the random variable

2) Required conditions for discrete probability function are:

$$f(x) \ge 0$$
$$\Sigma f(x) = 1$$

Continuous:

$$P(a \le x \le b) = \int_{a}^{b} f(x)dx \le 1$$

A DISCRETE EXAMPLE: THE BERNOULLI DISTRIBUTION

- The Bernoulli Distribution represents the distribution a coin flip.
- Let the random variable X represent such a coin flip (like before), where X(H)=1, and X(T)=0.
- Let us further say that the probability of heads is p (p=0.5) is a fair coin).
- In general, the number p is the success probability.

A DISCRETE EXAMPLE: THE BERNOULLI DISTRIBUTION

 The pmf or probability function associated with the Bernoulli distribution is:

$$f(x) = \begin{cases} 1 - p & x = 0 \\ p & x = 1. \end{cases}$$

• p is between 0 and 1. This pmf, for x in the set {0,1}, is also written as:

$$f(x) = p^x (1-p)^{1-x}$$

- f(0) + f(1) = 1
- p is called a parameter of the Bernoulli distribution.

A DISCRETE EXAMPLE: THE BERNOULLI DISTRIBUTION

We then write:

 $X \sim Bernoulli(p)$

• which is to be read as "X has distribution Bernoulli(p)" or "X follows a Bernoulli distribution of probability p".

UNIFORM DISTRIBUTION

- A continuous example: the Uniform Distribution
- Uniform Distribution is saying that:

Fix an interval [a,b] on the real line, any point show up inside the interval is equal likely.

UNIFORM DISTRIBUTION

 The uniform distribution: all values are equally likely. The uniform distribution:

•
$$f(x)=1$$
, for $1 \ge x \ge 0$
 $f(x)=0$, elsewhere

• We can see it's a probability distribution because it integrates to 1 (the area under the curve is 1):

$$\int_{0}^{1} 1 = x \quad \Big|_{0}^{1} = 1 - 0 = 1$$

UNIFORM DISTRIBUTION

• What's the probability that x is between $\frac{1}{4}$ and $\frac{1}{2}$?

UNIFORM DISTRIBUTION

- What's the probability that x is between $\frac{1}{4}$ and $\frac{1}{2}$?
- $P(\frac{1}{2} \ge x \ge \frac{1}{4}) = \frac{1}{4}$

UNIFORM DISTRIBUTION

What is the CDF?

UNIFORM DISTRIBUTION

• The CDF is:

EXPONENTIAL DISTRIBUTION

- For example, the negative exponential function with parameter 1 (in probability, this is called an "exponential distribution"):
- For x nonnegative: $f(x) = e^{-x}$ For other x, f(x) = 0
- This function integrates to 1:

$$\int_{0}^{+\infty} e^{-x} = -e^{-x} \quad \Big|_{0}^{+\infty} = 0 + 1 = 1$$

EXPONENTIAL DISTRIBUTION

• The probability that x is any exact particular value (such as x = 1.9976) is 0;

EXPONENTIAL DISTRIBUTION

• we can only assign probabilities to possible ranges of x.

EXPONENTIAL DISTRIBUTION

the probability of x falling within 1 to 2

$$P(1 \le x \le 2) = \int_{1}^{2} e^{-x} = -e^{-x} \quad \Big|_{1}^{2} = -e^{-2} - -e^{-1} = -.135 + .368 = .23$$

EXPONENTIAL DISTRIBUTION

Cumulative distribution function:

As in the discrete case, we can specify the "cumulative distribution function" (CDF):

The CDF here =
$$P(x \le A)$$
 if $0 \le A$
= 0 if $0 > A$

$$\int_{0}^{A} e^{-x} = -e^{-x} \quad \Big|_{0}^{A} = -e^{-A} - -e^{0} = -e^{-A} + 1 = 1 - e^{-A}$$

EXPONENTIAL DISTRIBUTION

By knowing CDF explicitly, we can compute:

 $P(x \le 2)$ by plug in x = 2

EXPONENTIAL DISTRIBUTION

• Probability density of exponential distribution with parameter $\pmb{\lambda}$

$$f(x;\lambda) = egin{cases} \lambda e^{-\lambda x} & x \geq 0, \ 0 & x < 0. \end{cases}$$

EXPONENTIAL DISTRIBUTION

• Cumulative distribution function of exponential distribution with parameter λ

$$F(x;\lambda) = egin{cases} 1 - e^{-\lambda x} & x \geq 0, \ 0 & x < 0 \end{cases}$$

EXPONENTIAL FUNCTION

Suppose that survival drops off rapidly in the year following diagnosis of a certain type of advanced cancer.

Suppose that the length of survival (or time-to-death) is a random variable that approximately follows an **exponential distribution with parameter 2** (makes it a steeper drop off):

pdf here is: $2e^{-2T}$

[note:
$$\int_{0}^{+\infty} 2e^{-2x} = -e^{-2x} \Big|_{0}^{+\infty} = 0 + 1 = 1$$
]

What's the probability that a person who is diagnosed with this illness survives a year?

EXPONENTIAL FUNCTION

The probability of dying within 1 year can be calculated using the cumulative distribution function:

Cumulative distribution function is:

$$P(x \le T) = -e^{-2x} \quad \Big|_{0}^{T} = 1 - e^{-2(T)}$$

The chance of surviving past 1 year is: $P(x \ge 1) = 1 - P(x \le 1)$

$$1 - (1 - e^{-2(1)}) = .135$$

OTHER IMPORTANT DISTRIBUTIONS

- Poisson
- Gaussian and multivariate Gaussian
- Gamma distribution
- Beta distribution
- Binomial (discrete)

EXPECTED VALUE AND VARIANCE

EXPECTED VALUES AND VARIANCE

ALL RANDOM VARIABLES

- All probability distributions are characterized by an expected value and a variance (standard deviation squared).
- For example, bell-curve (normal) distribution:

EXPECTED VALUES AND VARIANCE

EXPECTED VALUE, OR MEAN

- If we understand the underlying probability function of a certain phenomenon,
 then we can make informed decisions based on how we expect x to behave on-average over the long-run...(so called "frequentist" theory of probability).
- Expected value is just the weighted average or mean (μ) of random variable x.
- Imagine placing the masses p(x) at the points X on a beam; the balance point of the beam is the expected value of x.

EXPECTED VALUES AND VARIANCE

EXPECTED VALUE, OR MEAN

• eg: Discrete random variable X with following probability distribution

X	10	11	12	13	14
P(x)	.4	.2	.2	.1	.1
$\sum_{i=1}^{5} x_i p(x) = 10(.4) + 11(.2) + 12(.2) + 13(.1) + 14(.1) = 11.3$					

Mean or expectation = probability based weighted average

EXPECTED VALUES AND VARIANCE

EXPECTED VALUE, OR MEAN

Discrete case:

$$E[X] = \sum_{i} x_i f(x_i)$$

Continuous case:

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

WHAT IS AVERAGE IN REALITY?

• Empirical Mean is a special case of Expected Value...

Sample mean, for a sample of n subjects: =

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \sum_{i=1}^{n} x_i \left(\frac{1}{n}\right)$$

The probability (frequency) of each person in the sample is 1/n.

EXPECTED VALUES: CONTINUOUS CASE

UNIFORM DISTRIBUTION

• uniform distribution on [0,1]

$$f(x) = \left\{ egin{array}{ll} rac{1}{b-a} & ext{for } a \leq x \leq b, \ \ 0 & ext{for } x < a ext{ or } x > b \end{array}
ight.$$

EXPECTED VALUES: CONTINUOUS CASE

UNIFORM DISTRIBUTION

• uniform distribution on [0,1]

$$f(x) = \left\{ egin{array}{ll} rac{1}{b-a} & ext{for } a \leq x \leq b, \ \ 0 & ext{for } x < a ext{ or } x > b \end{array}
ight.$$

EXPECTATION SYMBOL

EXPECTED VALUE, OR MEAN

- $E(X) = \mu$ these symbols are used interchangeably
- Expected value is an extremely useful concept for good decision-making! Or the idea of machine learning to predict the future
- Predicting future
 - = Expected Value +/- (uncertainty...)

EXPECTED VALUE, OR MEAN

- example about The simple Lottery:
- A certain lottery works by the following
 - Picking 6 numbers from 1 to 49.
 - It costs \$1.00 to play the lottery
 - if you win, you win \$2 million after taxes.
- If you play the lottery once, what are your expected winnings or losses?

EXPECTED VALUE, OR MEAN

Calculate the probability of winning in 1 try:

EXPECTED VALUE, OR MEAN

Calculate the probability of winning in 1 try:

$$\frac{1}{\binom{49}{6}} = \frac{1}{49!} = \frac{1}{13,983,816} = 7.2 \times 10^{-8}$$

"49 choose 6"

Out of 49 numbers, this is the number of distinct combinations of 6.

EXPECTED VALUE, OR MEAN

Calculate the probability of winning in 1 try:

$$\frac{1}{\binom{49}{6}} = \frac{1}{49!} = \frac{1}{13,983,816} = 7.2 \times 10^{-8}$$
Out of 49 numbers, this is the number of distinct combinations of 6.

The probability function (note, sums to 1.0):

x\$	p(x)
-1	.99999928
+ 2 million	7.2 x 108

EXPECTED VALUE, OR MEAN

- Rules:
 - Picking 6 numbers from 1 to 49.
 - It costs \$1.00 to play the lottery
 - if you win, you win \$2 million after taxes.
- The probability function

x\$	p(x)
-1	.99999928
+ 2 million	7.2 x 108

EXPECTED VALUE, OR MEAN

- Rules:
 - Picking 6 numbers from 1 to 49.
 - It costs \$1.00 to play the lottery
 - if you win, you win \$2 million after taxes.
- The probability function

x\$	p(x)
-1	.99999928
+ 2 million	7.2 x 108

Expected Value:

$$E(X) = P(win)*$2,000,000 + P(lose)*-$1.00$$

= .144 - .999999928 = -\$.86

EXPECTED VALUE, OR MEAN

The probability function

x\$	p(x)
-1	.99999928
+ 2 million	7.2 x 108

Expected Value:

$$E(X) = P(win)*$2,000,000 + P(lose)*-$1.00$$

= .144 - .999999928 = -\$.86

Negative expected value means?

EXPECTED VALUE, OR MEAN

The probability function

x\$	p(x)
-1	.99999928
+ 2 million	7.2 x 108

Expected Value:

$$E(X) = P(win)*$2,000,000 + P(lose)*-$1.00$$

= .144 - .999999928 = -\$.86

- Negative expected value means?
- You shouldn't play if you expect to lose money!

EXPECTED VALUE, OR MEAN

- Lottery
- Expected Value:

$$E(X) = P(win)*$2,000,000 + P(lose)*-$1.00$$

= .144 - .999999928 = -\$.86

- Negative expected value is never good!
 You shouldn't play if you expect to lose money!
- But statistics/probability is a summary from a big population...
 So, there is always some lucky person...
- Luck is always for someone else and expected value is always for a group of population.

EXPECTED VALUE, OR MEAN

• If you play the lottery every week for 10 years, what are your expected winnings or losses?

EXPECTED VALUE, OR MEAN

- If you play the lottery every week for 10 years, what are your expected winnings or losses?
- 52 weeks per year
- $520 \times (-.86) = -$447.20$

- A few notes about Expected Value as a mathematical operator:
- c is a constant, X and Y are two random variables
- E(c) = c
- E(cX)=cE(X)
- E(c + X)=c + E(X)
- E(X+Y)=E(X)+E(Y)

- E(c) = c
- Example:
 If you cash in water bottles in NY, you always get 5 cents per bottle.
- Therefore, there's no randomness. You always expect to (and do) get 5 cents.

• E(X+Y)=E(X)+E(Y)

Example: If you play the lottery twice, you expect to lose: -\$.86 +
 -\$.86. (E(X+X))

• NOTE: This works even if X and Y are dependent!! Does not require independence!! Proof left for later...

- Expected value isn't everything though...
- What does uncertainty mean?

- Expected value isn't everything though...
- What does uncertainty mean?
- eg: Let's say there are two identical doors one with \$1 and the other with \$400,000.
 - While, the banker offers you \$200,000.
 - You can choose to open door (pay 0.5\$ to do so) or to accept bankers offer, but not both.
- So, Deal or No Deal?

We have two cases here

	-0.5
x\$	p(x)
+1	.50
+\$400,000	.50
x\$	p(x)
+\$200,000	1.0

x\$	p(x)
+1	.50
+\$400,000	.50

$$\mu = E(X) = \sum_{\text{all } x} x_i p(x_i) = +1(.50) + 400,000(.50) = 200,000$$

x\$	p(x)
+\$200,000	1.0

 $\mu = E(X) = 200,000$

• Expected values are the same, how to decide?

- Expected values are the same, how to decide?
- Well, I will just take the 200000, feel safe...
- What is the "safe feeling"?

Variance!

- If you take the deal, the variance/standard deviation is 0.
- •If you don't take the deal, what is average deviation from the mean?
- •What's your gut guess?

MEASURE UNCERTAINTY

- "The average (expected) squared distance (or deviation) from the mean"
- Discrete version:

$$\sigma^2 = Var(x) = E[(x - \mu)^2] = \sum_{\text{all } x} (x_i - \mu)^2 p(x_i)$$

Continuous version:

$$\mathrm{Var}(X) = \sigma^2 = \int (x-\mu)^2 f(x) \, dx$$

MEASURE UNCERTAINTY

 "The average (expected) squared distance (or deviation) from the mean"

 σ^2

- We square because squaring has better properties than absolute value. Take square root to get back linear average distance from the mean (="standard deviation").
- more like a square of distance
- standard deviation: σ distance

MEASURE UNCERTAINTY

Similarity to empirical variance

The variance of a sample: $s^2 =$

$$\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{n-1} = \sum_{i=1}^{N} (x_i - \bar{x})^2 (\frac{1}{n-1})$$

Division by n-1 reflects the fact that we have lost a "degree of freedom" (piece of information) because we had to estimate the sample mean before we could estimate the sample variance.

MEASURE UNCERTAINTY

- symbol
- $Var(X) = \sigma^2$
 - these symbols are used interchangeably
- σ standard deviation

MEASURE UNCERTAINTY

Back to the question: accept banker's offer?
 Both cases has expected value 200,000

x\$	p(x)
+1	.50
+\$400,000	.50
x\$	p(x)
+\$200,000	1.0

Now you examine your personal risk tolerance...

MEASURE UNCERTAINTY

Back to the question: accept banker's offer?

$$\sigma^{2} = \sum_{\text{all } x} (x_{i} - \mu)^{2} p(x_{i}) =$$

$$= (1 - 200,000)^{2} (.5) + (400,000 - 200,000)^{2} (.5) = 200,000^{2}$$

$$\sigma = \sqrt{200,000^{2}} = 200,000$$

Now you examine your personal risk tolerance...

MEASURE UNCERTAINTY

Handy calculation formula — discrete random variable

$$Var(X) = \sum_{\text{all x}} (x_i - \mu)^2 p(x_i) = \sum_{\text{all x}} x_i^2 p(x_i) - (\mu)^2$$

Intervening algebra!

$$= E(x^2) - [E(x)]^2$$

MEASURE UNCERTAINTY

 For continuous random variable we have the same formula (need proofs)

$$Var(x) = E(x-\mu)^2 = E(x^2) - [E(x)]^2$$

MEASURE UNCERTAINTY

- c= a constant number (i.e., not a variable)
- X and Y are random variables, then
 - Var(c) = 0
 - Var (c+X)= Var(X)
 - Var(cX)= c2Var(X)
 - Var(X+Y)= Var(X) + Var(Y)+2Cov(X,Y)

MEASURE UNCERTAINTY

Var(c) = 0

Constants, no vary!

MEASURE UNCERTAINTY

 $Var(cX) = c^2Var(X)$

Multiplying each instance of the random variable by c makes it c-times as wide of a distribution, which corresponds to c² as much variance (deviation squared). For example, if everyone suddenly became twice as tall, there'd be twice the deviation and 4 times the variance in heights in the population.

Thus, we use standard deviation that make a factor impact the same

STANDARD DEVIATION

square root of variance...
 universal symbol:

· 0

COVARIANCE: JOINT PROBABILITY

- The covariance measures the strength of the linear relationship between two variables
- The covariance:

$$E[(x-\mu_x)(y-\mu_y)]$$

$$\sigma_{xy} = \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y) P(x_i, y_i)$$

sample covariance

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

Covariance between two random variables:

•	cov(X,Y) > 0	X and Y	are	positively	correlated
---	--------------	---------	-----	------------	------------

• cov(X,Y) = 0 X and Y are independent

sample covariance

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

THE NORMAL AND STANDARD NORMAL

GAUSSIAN

Probability density function of a Gaussian distribution

GAUSSIAN

The Normal Distribution:
 as mathematical function (pdf)

Note constants:

 $\pi = 3.14159$

e=2.71828

This is a bell shaped curve with different centers and spreads depending on μ and σ

GAUSSIAN

• It's a probability function, so no matter what the values of μ and σ , must integrate to 1!

$$\mathsf{E}(\mathsf{X}) = \mu = \int_{-\infty}^{+\infty} x \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx - \mu^2$$

Standard Deviation(X)= σ

GAUSSIAN

Normal curve:

No matter what μ and σ are,

- the area between μ - σ and μ + σ is about 68%;
- the area between μ -2 σ and μ +2 σ is about 95%;
- and the area between μ -3 σ and μ +3 σ is about 99.7%.
- Almost all values fall within 3 standard deviations.

• 68-95-99.7 Rule

GAUSSIAN

GAUSSIAN

• 68-95-99.7 Rule (more data later) in Math terms...

$$\int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx = .68$$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx = .95$$

$$\int_{\mu-3\sigma}^{\mu+3\sigma} \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx = .997$$