Sprawozdanie - Statystyczna Analiza Danych Julia Ordecka

Bioinformatyka, II rok, grupa I

Skrypt przeprowadza analizę statystyczną dla danych niezależnych.

1. Przygotowanie danych wejściowych

W przypadku braków w danych wejściowych brakujące wartości (NA) są zastępowane za pomocą funkcji impute. W każdej w ramce danych z danymi numerycznymi brakujące dane zostają zastąpione wartością średnią z danej kolumny dla odpowiadającej grupy.

Kod grupuje dane według unikalnych wartości w kolumnie określonej przez group_col i stosuje imputację wartości średniej do wszystkich kolumn numerycznych.

Fragment ramki danych przed zastąpieniem braków:

^	grupa [‡]	plec [‡]	wiek [‡]	hsCRP [‡]	ERY [‡]	PLT [‡]	HGB [‡]	нст 💠	мснс 🗦	MON [‡]	LEU [‡]
1	CHOR1	k	36	2.711000	4.19	201	13.21020	0.3920	34.71490	0.48	11.86
2	CHOR1	m	39	4.699380	4.48	222	13.04910	0.3800	35.37930	0.76	10.32
3	CHOR1	k	35	2.353540	3.59	278	10.14930	0.3210	32.55560	1.08	13.60
4	CHOR1	m	29	2.271610	3.66	200	11.27700	0.3360	34.54880	0.63	10.11
5	CHOR1	m	29	4.465190	4.41	128	12.40470	0.3630	35.21320	NA	10.55
6	CHOR1	m	43	6.162690	3.68	176	11.43810	0.3400	34.71490	0.83	9.28
7	CHOR1	k	29	4.988360	4.12	288	12.24360	0.3570	35.37930	0.90	10.07
8	CHOR1	k	26	1.849380	4.44	231	13.21020	0.3980	34.21660	0.74	9.56
9	CHOR1	m	23	20.154800	4.13	153	12.56580	0.3840	35.59523	1.07	14.48
10	CHOR1	m	23	3.204050	4.02	249	11.92140	0.3530	34.88100	1.07	10.51
11	CHOR1	m	24	0.487607	4.07	177	11.92140	0.3500	35.04710	0.61	6.79
12	CHOR1	k	30	2.322680	4.11	295	12.24360	0.3600	35.04710	0.72	14.97
13	CHOR1	m	26	16.406900	4.18	174	NA	0.3340	36.37590	1.50	16.00
14	CHOR1	k	27	3.044270	4.59	207	13.85460	0.3940	36.20980	0.59	9.23

Fragment ramki danych po imputowaniu:

^	grupa [‡]	plec [‡]	wiek [‡]	hsCRP [‡]	ERY [‡]	PLT [‡]	HGB [‡]	нст 💠	мснс 🗦	MON [‡]	LEU [‡]
1	CHOR1	k	36	2.711000	4.19	201	13.21020	0.3920	34.71490	0.4800000	11.86
2	CHOR1	m	39	4.699380	4.48	222	13.04910	0.3800	35.37930	0.7600000	10.32
3	CHOR1	k	35	2.353540	3.59	278	10.14930	0.3210	32.55560	1.0800000	13.60
4	CHOR1	m	29	2.271610	3.66	200	11.27700	0.3360	34.54880	0.6300000	10.11
5	CHOR1	m	29	4.465190	4.41	128	12.40470	0.3630	35.21320	0.8579167	10.55
6	CHOR1	m	43	6.162690	3.68	176	11.43810	0.3400	34.71490	0.8300000	9.28
7	CHOR1	k	29	4.988360	4.12	288	12.24360	0.3570	35.37930	0.9000000	10.07
8	CHOR1	k	26	1.849380	4.44	231	13.21020	0.3980	34.21660	0.7400000	9.56
9	CHOR1	m	23	20.154800	4.13	153	12.56580	0.3840	35.59523	1.0700000	14.48
10	CHOR1	m	23	3.204050	4.02	249	11.92140	0.3530	34.88100	1.0700000	10.51
11	CHOR1	m	24	0.487607	4.07	177	11.92140	0.3500	35.04710	0.6100000	6.79
12	CHOR1	k	30	2.322680	4.11	295	12.24360	0.3600	35.04710	0.7200000	14.97
13	CHOR1	m	26	16.406900	4.18	174	12.41141	0.3340	36.37590	1.5000000	16.00
14	CHOR1	k	27	3.044270	4.59	207	13.85460	0.3940	36.20980	0.5900000	9.23

Przygotowano raport wartości odstających dla danych parametrów:

	[1]	"Raport v	wartości odstających:"
		parameter	outlier_value
	1	wiek	48.0000
	2	hsCRP	20.1548
	3	hsCRP	16.4069
	4	hsCRP	42.6499
1	5	hsCRP	19.2124
	6	ERY	33.0000
	7	PLT	456.0000
	8	PLT	434.0000
9	9	HGB	22.2318
	10	HCT	0.0423
	11	MCHC	38.8674
	12	MCHC	38.2030
	13	MCHC	32.0573
	14	MCHC	32.2234
1	15	MON	1.5000
1	16	MON	1.5200
1	17	MON	0.1400
	18	MON	1.6100
	19	MON	7.0000

Poniżej przedstawiono przykładowe wykresy wizualizujące wartości odstające dla wybranych parametrów za pomocą boxplotów z wyznaczeniem wartości odstających w poszczególnych grupach.

Group: CHOR1 - HGB

Group: CHOR2 - MCHC

Group: KONTROLA - MON

Na wykresach boxplot wartości odstające zostały oznaczone okręgami oraz podpisane.

2. Wykonanie charakterystyk dla badanych grup

Charakterystyki badanych grup dokonuje się poprzez wykorzystanie statystyk opisowych w ocenie parametrów.

Za pomocą funkcji generate_summary skrypt generuje statystyki ogólne dla wszystkich kolumn w pliku wejściowym. Statystyki ogólne zawierają takie informacje jak częstość występowania danej wartości dla danych nienumerycznych oraz poniżej wymienione metryki dla danych numerycznych:

Min: minimalna wartość w kolumnie,

1st Qu: pierwszy kwartyl (25. percentyl) w kolumnie,

Median: mediana w kolumnie,

Mean: Średnia arytmetyczna w kolumnie,

3rd Qu: Trzeci kwartyl w kolumnie,

Max: Maksymalna wartość w kolumnie.

Funkcja podsumowanie_kolumn tworzy statystyki grupowe - podsumowanie dla każdej kolumny numerycznej w ramce danych według danej kolumny grupującej group_col i zapisuje te podsumowania jako osobne ramki danych. Wyniki są przechowywane w osobnej ramce danych dla każdej kolumny.

Statystyki grupowe zawierają informacje o następujących wartościach:

count: liczba obserwacji (wierszy) w każdej grupie

min: Minimalna wartość w kolumnie

median: Mediana

mean: Średnia arytmetyczna max: Maksymalna wartość sd: Odchylenie standardowe

IQR: Rozstęp międzykwartylowy (IQR)

var: Wariancja

Przykładowe ramki danych z podsumowaniem ogólnym:

	A	÷ _	ά.	
	Value	Freque	ency \	/ariable
	1 k		40 p	olec
	2 m		35 p	olec
	V==1 ÷	<u></u>	<u></u>	
	Var1	Var2	Freq	Variable
1	Α	Min.	9.50490	HGB
2	Α	1st Qu.	11.27700	HGB
3	Α	Median	12.24360	HGB
4	Α	Mean	12.16923	HGB
5	Α	3rd Qu.	13.04910	HGB
6	Α	Max.	22.23180	HGB
^	Var1	Var2	Freq	Variable
1	Α	Min.	32.05730	MCHC
2	Α	1st Qu.	34.38270	MCHC
3	Α	Median	35.04710	MCHC
4	Α	Mean	35.02783	MCHC
5	Α	3rd Qu.	35.71150	MCHC
6	Α	Max.	38.86740	MCHC

Podsumowanie dla wybranych danych numerycznych względem grup:

^	grupa [‡]	variable [‡]	count [‡]	min [‡]	median [‡]	mean [‡]	max [‡]	sd [‡]	IQR [‡]	var [‡]
1	CHOR1	MCHC	25	32.5556	35.0471	35.12882	36.8742	0.8775039	0.88033	0.770013
2	CHOR2	MCHC	25	32.8878	35.5454	35.55204	38.8674	1.2906016	1.16270	1.665653
3	KONTROLA	MCHC	25	32.0573	34.5488	34.40263	36.0437	1.1197078	1.49490	1.253746
^	grupa [‡]	variable [‡]	count [‡]	min [‡]	median	mean	max	\$ sd \$	IQR [‡]	var
1	CHOR1	hsCRP	25	0.487607	3.96646	6.103022	42.6499	9 8.824633	2.67086	77.87415
2	CHOR2	hsCRP	25	0.335089	3.44546	5.536029	19.2124	4.645587	6.53121	21.58148
3	KONTROLA	hsCRP	25	0.758440	4.22037	5.295149	14.395	1 3.996580	4.54994	15.97265
^	grupa [‡]	variable [‡]	count [‡]	min [‡]	median [‡]	mean ‡	max [‡]	sd [‡]	IQR [‡]	var
1	CHOR1	MON	25	0.48	0.76	0.8579167	1.52	0.2992451	0.46	0.08954764
2	CHOR2	MON	25	0.14	0.66	0.9528000	7.00	1.2978685	0.33	1.68446267
3	KONTROLA	MON	25	0.35	0.76	0.7604000	1.25	0.1875162	0.21	0.03516233

3. Analiza porównawcza pomiędzy grupami

Porównywane są grupy niezależne - badane są te same parametry u różnych grup – kontrolnych i grup chorych. Grupy są o liczebności >2.

Do zbadania zgodności z rozkładem normalnym wykorzystano test Shapiro-Wilka. Wartość p-value większa od 0,05 oznacza, że dane są zgodne z rozkładem normalnym. Wartość p-value mniejsza od 0,05 świadczy o niezgodności danych z rozkładem normalnym. Również wartość statystyki testowej wskazuje na zgodność z rozkładem normalnym - wartości bliskie 1 wskazują, że rozkład danych jest bardziej zbliżony do rozkładu normalnego.

Fragment ramki danych zawierający wyniki testu Shapiro-Wilka:

grupa [‡]	variable	statistic [‡]	p_value [‡]	normality
CHOR1	wiek	0.9691404	6.233499e-01	zgodny z rozkładem normalnym
CHOR2	wiek	0.9569757	3.575393e-01	zgodny z rozkładem normalnym
KONTROLA	wiek	0.9551495	3.263464e-01	zgodny z rozkładem normalnym
CHOR1	hsCRP	0.5418468	9.933661e-08	niezgodny
CHOR2	hsCRP	0.8731146	4.998515e-03	niezgodny
KONTROLA	hsCRP	0.8813002	7.351605e-03	niezgodny
CHOR1	ERY	0.2494035	2.653537e-10	niezgodny
CHOR2	ERY	0.9815472	9.139531e-01	zgodny z rozkładem normalnym
KONTROLA	ERY	0.9692766	6.267790e-01	zgodny z rozkładem normalnym
CHOR1	PLT	0.9662912	5.532056e-01	zgodny z rozkładem normalnym
CHOR2	PLT	0.8636689	3.237412e-03	niezgodny
KONTROLA	PLT	0.8675775	3.869518e-03	niezgodny
CHOR1	HGB	0.9643358	5.073768e-01	zgodny z rozkładem normalnym
CHOR2	HGB	0.7513306	3.885087e-05	niezgodny
KONTROLA	HGB	0.9589733	3.944054e-01	zgodny z rozkładem normalnym

Wygenerowano wykresy gęstości, które można zinterpretować w kontekście zgodności z rozkładem normalnym. Jeśli wykres gęstości jest symetryczny względem środka (średniej) i ma jeden szczyt, to może to sugerować, że rozkład danych jest zbliżony do rozkładu normalnego.

Przykładowy wykres dla parametru MON:

Z wykresów wynika, że dla parametru MON w grupie CHOR1 i CHOR2 dane są niezgodne z rozkładem normalnym.

Do analizy homogeniczności wariancji wykorzystano test Levene'a. Dla wartości p-value wynoszącej >0,05 można założyć jednorodność wariancji.

Zgodnie z poniższą tabelą dobrane zostały testy statystyczne:

Porównanie grup niezależnych									
Ilość porównywanych grup	Zgodność z rozkładem normalnym	Jednorodność wariancji	Wybrany test						
2	TAK	TAK NIE	test t-Studenta (dla gr. niezależnych) test Welcha						
	NIE	-	test Wilcoxona (Manna-Whitneya)						
	TAK	TAK	test ANOVA (post hoc Tukeya)						
>2	IAK	NIE	test Kruskala-Wallisa (post hoc Dunna)						
	NIE	-	test Kruskala- Wanisa (post noc Dunia)						

Jeśli dane nie spełniają założenia o zgodności z rozkładem normalnym (p-value < 0.05) do analizy porównawczej wykorzystuje się testy nieparametryczne, np. test Kruskala-Wallisa. Tak samo w przypadku, gdy dane są zgodne z rozkładem normalnym, ale nie spełniają założenia o jednorodności wariancji to również stosuje się test Kruskala-Wallisa.

W przypadku niespełnienia założenia dotyczącego zgodności z rozkładem normalnym lub w przypadku spełnienia tego założenia, ale jednocześnie niespełnienia założenia o jednorodności wariancji wykorzystuje się test Kruskala-Wallisa. W przypadku spełnienia warunku zgodności z rozkładem normalnym oraz warunku jednorodności wariancji stosuje się test ANOVA.

variable [‡]	test_type	p_value [‡]
wiek	ANOVA	0.2056278453
hsCRP	Kruskal-Wallis	0.8807212193
ERY	Kruskal-Wallis	0.1543513635
PLT	Kruskal-Wallis	0.3240306971
HGB	Kruskal-Wallis	0.0007673315
HCT	Kruskal-Wallis	0.0189609134
MCHC	ANOVA	0.0018598103
MON	Kruskal-Wallis	0.2542134912
LEU	ANOVA	0.5965009414

Gdy wynikowa wartość p-value wynosi <0,05 można założyć, że istnieją znaczące różnice pomiędzy badanymi grupami. Stosując testy post hoc można ocenić pomiędzy którymi grupami są istotne różnice i jak one są duże.

Przykładowy wynik testu post hoc dla parametru MCHC:

^	diff [‡]	lwr [‡]	upr [‡]	p adj $^{\scriptsize \scriptsize $	Comparison	Variable [‡]
CHOR2-CHOR1	0.4232228	-0.3274109	1.17385653	0.372940393	CHOR2-CHOR1	MCHC
KONTROLA-CHOR1	-0.7261892	-1.4768229	0.02444453	0.060043259	KONTROLA-CHOR1	MCHC
KONTROLA-CHOR2	-1.1494120	-1.9000457	-0.39877827	0.001352322	KONTROLA-CHOR2	MCHC

- -diff to różnica średnich między dwiema porównywanymi grupami
- -lwr to dolna granica przedziału ufności dla różnicy średnich
- -upr to górna granica przedziału ufności dla różnicy średnich
- -p adj mówi, czy różnica między grupami jest statystycznie istotna

CHOR2-CHOR1: różnica nie jest statystycznie istotna przy poziomie istotności 0.05 (p adj = 0.373)

KONTROLA-CHOR1: różnica ta jest bliska istotności, ale nie jest statystycznie istotna

KONTROLA-CHOR2: różnica jest statystycznie istotna

4. Analiza korelacji

- -1 < r ≤ -0.7 bardzo silna korelacja ujemna
- -0.7 < r ≤ -0.5 silna korelacja ujemna
- -0.5 < r ≤ -0.3 korelacja ujemna o średnim natężeniu
- -0.3 < r ≤ -0.2 słaba korelacja ujemna
- -0.2 < r < 0.2 brak korelacji
- 0.2 ≤ r < 0.3 słaba korelacja dodatnia
- 0.3 ≤ r < 0.5 korelacja dodatnia o średnim natężeniu
- 0.5 ≤ r < 0.7 silna korelacja dodatnia
- 0.7 ≤ r < 1 bardzo silna korelacja dodatnia

Dla danych parametrycznych użyty został współczynnik korelacji liniowej Pearsona. W przypadku danych nieparametrycznych użyto współczynnika korelacji rangowej Spearmana.

Fragment ramki danych:

Group [‡]	parametr1 [‡]	parametr2 [‡]	Test [‡]	Est [‡]	p_value [‡]	interpretacja
CHOR1	hsCRP	MCHC	spearman	0.1457776234	4.868672e-01	brak korelacji
CHOR1	hsCRP	MON	spearman	0.3818322917	5.963262e-02	korelacja dodatnia o średnim natężeniu
CHOR1	hsCRP	LEU	spearman	0.2676923077	1.950876e-01	słaba korelacja dodatnia
CHOR1	ERY	PLT	spearman	0.1454405648	4.878860e-01	brak korelacji
CHOR1	ERY	HGB	spearman	0.6443040352	5.088237e-04	silna korelacja dodatnia
CHOR1	ERY	HCT	spearman	0.6150144484	1.068964e-03	silna korelacja dodatnia
CHOR1	ERY	MCHC	spearman	0.3699855592	6.869226e-02	korelacja dodatnia o średnim natężeniu
CHOR1	ERY	MON	spearman	-0.3479014505	8.835189e-02	korelacja ujemna o średnim natężeniu
CHOR1	ERY	LEU	spearman	0.0665640680	7.519023e-01	brak korelacji
CHOR1	PLT	HGB	spearman	-0.1815382765	3.851371e-01	brak korelacji
CHOR1	PLT	HCT	spearman	-0.1200692907	5.675349e-01	brak korelacji
CHOR1	PLT	MCHC	spearman	-0.2298504326	2.690315e-01	słaba korelacja ujemna
CHOR1	PLT	MON	spearman	-0.0531177986	8.009100e-01	brak korelacji
CHOR1	PLT	LEU	spearman	0.1176923077	5.738419e-01	brak korelacji
CHOR1	HGB	HCT	spearman	0.9361754294	6.306757e-12	bardzo silna korelacja dodatnia
CHOR1	HGB	MCHC	spearman	0.5835749773	2.196412e-03	silna korelacja dodatnia
CHOR1	HGB	MON	spearman	-0.2653811483	1.998043e-01	słaba korelacja ujemna
CHOR1	HGB	LEU	spearman	0.0219696003	9.169817e-01	brak korelacji
CHOR1	HCT	MCHC	spearman	0.4175197518	3.783346e-02	korelacja dodatnia o średnim natężeniu
CHOR1	HCT	MON	spearman	-0.2724821926	1.875841e-01	słaba korelacja ujemna

Dane dotyczące korelacji zostają również wyeksportowane do pliku tekstowego. Dla każdej grup zostały wygenerowane macierze korelacji:

