Heat treatments

Hardening and tempering:

Heating medium/high carbon steel to a given temperature, rapidly cooling via quenching, and then heating to a set temperature to remove excess hardness

Advantages	Disadvantages
 Improved tensile strength 	 Less ductile
Very hard	 More likely to
 Reversible process (via 	crack/damage in worked
annealing)	area
_	 Metal becomes brittle

Uses: Screwdrivers, Wrenches, Hardened steel

Case hardening:

Hardens the surface of steels with less than 0.4% carbon content

Advantages	Disadvantages
 Greater hardness for outside surface Improved wear resistance Resistance to surface indentations 	 Depth of hardness is less Difficult to machine metal after process
indentationsLower coefficient of friction	

Uses: Firing pins in guns, rifle bolts, engine camshafts (CAMs to move pistons)

Annealing:

Used to make work-hardened metal easier to work. The metal is heated and allowed to cool very slowly

Advantages	Disadvantages
 Makes metal less brittle 	 Time consuming process
 Makes metal more ductile 	

Uses: Reduce hardness and increase ductility in metals such as steels

Normalising:

Heated to critical temperature and held there for a set time, then allowed to cool slowly in air

Advantages	Disadvantages
 Metal becomes easier to machine Relieves internal stress on metal Decrease in hardness/improved ductility 	 Can't normalize non-ferrous metals Decrease in hardness

Uses: To relieve stress on metal after cold working process for better physical properties