10-716: Advanced Machine Learning

Spring 2019

Lecture 7: February 7

Lecturer: Pradeep Ravikumar Scribes: Jiamei Liu, Kaiji Lu, Weizhao Tang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Martingale Sequence Review

Definition. A sequence $\{Y_n\}_{n=1}^{\infty}$ is a martingale sequence w.r.t. $\{X_n\}_{n=1}^{\infty}$ if

- Y_n is a measurable function of X_1, \dots, X_n ;
- $-\mathbb{E}[|Y_n|] < \infty, \ \forall n;$
- $\mathbb{E}[Y_{k+1}|X_1,\cdots,X_k] = Y_k, \ \forall k.$

Examples.

- 1. $Y_k = \mathbb{E}[f(X)|X_1,\dots,X_k]$ is a martingale given $\mathbb{E}[|f(X)|] < \infty$.
- 2. $\{X_n\}_{n=1}^{\infty}$ is a sequence of 0-mean independent RV's. If $S_n = \sum_{i=1}^n X_i$, then $\{S_n\}_{n=1}^{\infty}$ is a martingale.

Proof: S_n satisfies the 3 conditions of the definition of martingales.

- S_n is a partial sum of $\{X_i\}_{i=1}^n$, so it's measurable.
- $\mathbb{E}[|S_n|] \le \sum_{i=1}^n \mathbb{E}[|X_i|] < \infty.$
- $-\mathbb{E}\left[S_{n+1}|X_1,\cdots X_n\right]=S_n$, because

$$\begin{split} \mathbb{E}\left[S_{n+1}|X_1,\cdots X_n\right] &= \mathbb{E}\left[S_n + X_{n+1}|X_1,\cdots X_n\right] \\ &= S_n + \mathbb{E}\left[X_{n+1}|X_1,\cdots X_n\right] \quad S_n \text{ is a constant conditioning on } X_1,\cdots,X_n \\ &= S_n + \mathbb{E}[X_{n+1}] \qquad \qquad X_{n+1} \text{ is independent of } X_1,\cdots X_n \\ &= S_n \qquad \qquad X_{n+1} \text{ has zero-mean} \end{split}$$

7.1 Martingale Difference Sequence

Definition 7.1. $\{D_k\}_{k=1}^{\infty}$ is a martingale difference sequence (abbr. MDS) w.r.t. $\{X_k\}_{k=1}^{\infty}$ if

- D_k is a measurable function of X_1, \dots, X_k ;

7-2 Lecture 7: February 7

$$-\mathbb{E}[|D_k|] < \infty, \ \forall k;$$

$$- \mathbb{E}[D_{k+1}|X_1,\cdots,X_k] = 0, \ \forall k.$$

Example. Suppose $\{Y_k\}_{k=1}^{\infty}$ is a martingale sequence w.r.t. $\{X_k\}_{k=1}^{\infty}$. Let $D_k = Y_k - Y_{k-1}, \ k = 2, 3, \cdots$.

- D_k is measurable because Y_k, Y_{k-1} are measurable.

$$- \mathbb{E}[|D_k|] \le \mathbb{E}[|Y_k|] + \mathbb{E}[|Y_{k-1}|] < \infty.$$

$$-\mathbb{E}\left[D_{k+1}|X_1,\cdots X_n\right]=D_k$$
, because

$$\begin{split} \mathbb{E}\left[D_{k+1}|X_1,\cdots X_k\right] &= \mathbb{E}\left[Y_{k+1} - Y_k|X_1,\cdots X_n\right] \\ &= \mathbb{E}\left[Y_{k+1}|X_1,\cdots X_k\right] - Y_k \qquad Y_k \text{ is a constant conditioning on } X_1,\cdots,X_k \\ &= 0 \qquad \qquad Y \text{ is a martingale, so it equals } Y_k - Y_k \end{split}$$

Hence $\{D_k\}_{k=1}^{\infty}$ is a MDS w.r.t. $\{X_k\}_{k=1}^{\infty}$. Note that $Y_n - Y_0 = \sum_{k=1}^n D_k$.

Theorem 7.2. Suppose $\{D_k\}_{k=1}^{\infty}$ is a MDS w.r.t. $\{X_k\}_{k=1}^{\infty}$, satisfying

$$\mathbb{E}\left[e^{\lambda D_n}\big|X_1,\cdots,X_{n-1}\right] \le \exp\left(\frac{\lambda^2 \nu_n^2}{2}\right), \quad \forall \lambda \in \left[0,\frac{1}{\alpha_n}\right].$$

i.e. $D_n|X_1, \dots X_{n-1} \sim SE(\nu_n, \alpha_n)$. Define $\nu_n^* = \sqrt{\nu_1^2 + \dots + \nu_n^2}$, $\alpha_n^* = \max_{k=1}^n \alpha_k$. Then,

$$\sum_{k=1}^{n} D_k \sim \operatorname{SE}\left(\nu_n^*, \ \alpha_n^*\right) \Longrightarrow \mathbb{P}\left\{\sum_{k=1}^{n} D_k > t\right\} \leq \exp\left(-\frac{t^2}{2\nu_n^{*2}}\right), \ \forall t \in \left[0, \frac{1}{\alpha_n^*}\right].$$

Proof:

$$\mathbb{E}_{X_{1},\dots,n}\left[\exp\left(\lambda\sum_{k=1}^{n}D_{k}\right)\right] = \mathbb{E}_{X_{1},\dots,n-1}\left[\mathbb{E}_{X_{n}}\left[\exp\left(\lambda\sum_{k=1}^{n}D_{k}\right)\middle|X_{1},\dots,X_{n-1}\right]\right]$$

$$= \mathbb{E}_{X_{1},\dots,n-1}\left[\exp\left(\lambda\sum_{k=1}^{n-1}D_{k}\right)\mathbb{E}_{X_{n}}\left[e^{\lambda D_{n}}\middle|X_{1},\dots,X_{n-1}\right]\right], \quad \forall \lambda \in \left[0,\frac{1}{\alpha_{n}}\right]$$

$$\leq \exp\left(\frac{\lambda^{2}\nu_{n}^{2}}{2}\right)\mathbb{E}_{X_{1},\dots,n-1}\left[\exp\left(\lambda\sum_{k=1}^{n-1}D_{k}\right)\right]$$

$$\leq \dots \leq \exp\left(\frac{\lambda^{2}}{2}\sum_{k=1}^{n}\nu_{k}^{2}\right), \quad \forall \lambda \in \bigcap_{k=1}^{n}\left[0,\frac{1}{\alpha_{k}}\right] = \left[0,\frac{1}{\max_{k=1}^{n}\alpha_{k}}\right].$$

Azuma Hoeffding]

Theorem 7.3 (Azuma-Hoeffding Inequality). For a sequence of Martingale Difference Sequence random variable $\{D_k\}_{k=1}^{\infty}$ with respect to some other sequence of random variable $\{X_n\}_{k=1}^{\infty}$, if we have $D_k \in [a_k, b_k]$ almost sure for some constant a_k , b_k and k = 1, 2, ..., n, Then:

$$\mathbb{P}(\sum_{k=1}^{n} D_k > t) \le e^{\frac{-2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}}$$

Lecture 7: February 7

Proof: Recall that by hoeffding's lemma [?] $D_k \sim SG(\frac{b_k - a_k}{2})$, we have that $D_k | X_1, \dots X_k - 1 \sim SG(\frac{b_k - a_k}{2})$,

$$\mathbb{E}[e^{\lambda \sum_{k=1}^{n} D_{k}}] = \mathbb{E}_{X_{1},...X_{n-1}} \left[\mathbb{E}_{X_{n}} [\exp(\lambda \sum_{k=1}^{n} D_{k}) | X_{1}, ..., X_{n-1}] \right]$$

$$= \mathbb{E}_{X_{1},...,X_{n-1}} \left[\mathbb{E}_{X_{n}} [\exp(\lambda \sum_{k=1}^{n-1} D_{k}) \exp(\lambda D_{n}) | X_{1}, ..., X_{n-1}] \right]$$

$$= \mathbb{E}_{X_{1},...,X_{n-1}} \left[\exp(\lambda \sum_{k=1}^{n-1} D_{k}) \mathbb{E}_{X_{n}} [\exp(\lambda D_{n}) | X_{1}, ..., X_{n-1}] \right]$$

$$\leq \mathbb{E}_{X_{1},...,X_{n-1}} \left[\exp(\lambda \sum_{k=1}^{n-1} D_{k}) \exp(\frac{\lambda^{2} (b_{k} - a_{k})^{2}}{8}) \right]$$

$$= \exp(\frac{\lambda^{2} (b_{k} - a_{k})^{2}}{8}) \mathbb{E}_{X_{1},...,X_{n-1}} [\exp(\lambda \sum_{k=1}^{n-1} D_{k})]$$

By iteratively derive the bound we could get that:

$$\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_k}\right] \le e^{\frac{\lambda \sum_{k=1}^{n} (b_k - a_k)^2}{8}}$$

That is $\sum_{k=1}^{n} D_k \sim SG(\frac{1}{2}\sqrt{\sum_{k=1}^{n}(b_k-a_k)^2})$, By that we can prove that:

$$\mathbb{P}(\sum_{k=1}^{n} D_k > t) \le e^{\frac{-2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}}$$

Recall that a sequence of random variable $\{Y_k\}_{k=1}^{\infty}$ where $Y_k = \mathbb{E}[f(x)|X_1,\ldots,X_n]$ respect to some sequence of random variable $\{X_k\}_{k=1}^{\infty}$ is a Martingale sequence, then the sequence of $\{D_k\}_{k=1}^{\infty}$ where $D_k = Y_k - Y_{k-1}$ is a Martingale Difference Sequence. We have that:

$$Y_n - Y_0 = \sum_{k=1}^n D_k$$

Where $Y_n = f(x)$ and $Y_0 = \mathbb{E}[f(x)]$, under this condition, we can bound the ERM with Azuma-Hoeffding Inequality.

7.2 Bounded Difference Inequality

Theorem 7.4 (Bounded Difference Inequality). Let X_1, \ldots, X_n be a set of random variables, $f : \mathbb{R}^n \to \mathbb{R}$, if for all $k \in \{1, 2, \ldots, n\}$, we have a set of constant L_k where:

$$|f(X_1,...,X_k,...,X_n) - f(X_1,...,X'_k,...,X_n)| \le L_k$$

Then we have the following equation:

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| > t) \le 2e^{-\frac{2t^2}{\sum_{k=1}^n L_k^2}}$$

7-4 Lecture 7: February 7

Proof: Consider a sequence of random variable $\{D_k\}_{k=1}^{\infty}$ where $D_k = \mathbb{E}[f(x)|X_1,\ldots,X_k] - \mathbb{E}[f(x)|X_1,\ldots,X_{k-1}]$, We first proof that $D_k \sim SG(\frac{L_k}{2})$. Denote B_k and A_k as the following:

$$A_k = \inf_{x} \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] - \mathbb{E}[f(x)|X_1, \dots, X_{k-1}]$$

$$B_k = \sup_{x} \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] - \mathbb{E}[f(x)|X_1, \dots, X_{k-1}]$$

we have:

$$D_k - A_k = \mathbb{E}[f(x)|X_1, \dots, X_k] - \inf_x \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] \ge 0$$

$$B_k - D_k = \sup_x \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] - \mathbb{E}[f(x)|X_1, \dots, X_k] \ge 0$$

That is $A_k \leq D_k \leq B_k$ almost surely.

$$B_k - A_k = \sup_{x} \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] - \inf_{y} \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, Y]$$
$$= \sup_{x,y} (\mathbb{E}[f(x)|X_1, \dots, X_{k-1}, X] - \mathbb{E}[f(x)|X_1, \dots, X_{k-1}, Y])$$
$$\leq L_k$$

That is $D_k \sim SG(\frac{L_k}{2})$.

By the Asuma-Hoeffding Inequality prove we get $\sum_{k=1}^{n} D_k \sim SG(\frac{1}{2}\sqrt{\sum_{k=1}^{n} L_k^2})$, which result in:

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| > t) \le 2e^{-\frac{2t^2}{\sum_{k=1}^n L_k^2}}$$

Bounded Difference Inequality theorem is very powerful in that it can calculate the tailbounds for functions of non-independent random variables.

Example: Let $f(x_1, ..., x_n) = \sum_{i=1}^n (x_i - \mu_i)$ where $x_i \in [a_i, b_i]$, we have:

$$|f(x_1,\ldots,x_k,\ldots,x_n)-f(x_1,\ldots,x_k',\ldots,x_n)|=|x_k-x_k'| \le b_k-a_k$$

By using Bounded Difference Inequality we get:

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| > t) \le e^{-\frac{2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}}$$

Example: U statistics

Define a function f on $\{X_k\}_{k=1}^{\infty}: f(X_1,...,X_n) = \frac{1}{\binom{n}{2}} \sum_{i < j} g(X_i,X_j)$ where $g: \mathbb{R}^2 \to \mathbb{R}$ is a symbolic function and $g(x,y) \leq b, \forall x,y$. We can prove that f satisfies Bounded Difference Inequality.

Proof:

$$f(X_1, ..., X_k, ..., X_n) - f(X_1, ..., X'_k, ..., X_n) = \frac{1}{\binom{n}{2}} \sum_{j \neq k} g(X_j, X_k) - g(X_j, X'_k)$$

$$\leq \frac{2(2b)}{n(n-1)} \leq \frac{4b}{n}$$

Lecture 7: February 7

As a result, plugging it into Bounded Difference Inequality where $L_k = \frac{4b}{n}$, we get:

$$\mathbb{P}(|f(X) - \mathbb{E}[f(X)]| > t) \le \exp\left(-\frac{2t^2}{n(\frac{4b}{2})^2}\right) = \exp\left(-\frac{2nt^2}{8b^2}\right)$$

Example: Rademacher Complexity

If $\epsilon_1...\epsilon_n$ are Rademacher random variables where $\epsilon_n \in [-1, +1]$ with equal probabilities. Then we define a function $f(\epsilon_1...\epsilon_n) = R_n(A) = \sup_{a \in A} a^T \epsilon(A \subseteq \mathbb{R}^n)$ and it satisfies Bounded Difference Inequality.

Proof:

$$f(\epsilon_{1}...\epsilon_{k}...\epsilon_{n}) - f(\epsilon_{1}...\epsilon'_{k}...\epsilon_{n}) \leq \sup_{a \in A} a^{T} \boldsymbol{\epsilon} - \sup_{a \in A} a^{T} \bar{\boldsymbol{\epsilon}}$$

$$\leq \langle a^{*}, \boldsymbol{\epsilon} \rangle - \langle a^{*}, \bar{\boldsymbol{\epsilon}} \rangle \qquad (a^{*} = \sup_{a \in A} a^{T} \boldsymbol{\epsilon})$$

$$\leq \langle a^{*}, \boldsymbol{\epsilon} - \bar{\boldsymbol{\epsilon}} \rangle$$

$$= a^{*}_{k}(\epsilon_{k} - \epsilon'_{k})$$

$$\leq 2|a^{*}_{k}| \leq 2 \sup_{a_{k}} |a_{k}|$$

As a result, plugging it into Bounded Difference Inequality where $L_k = \sup_{a_k} |a_k|$, we get:

$$f(\epsilon) - \mathbb{E}[f(\epsilon)] = R_n(A) - \mathbb{E}[R_n(A)] \sim SG\left(\sqrt{\sum_{k=1}^n \sup_{a \in A} |a_k|^2}\right)$$

Example: Lipschitz functions

We can bound |f(x) - f(y)|(x,y) only differs in k^{th} coordinate) by the distance between x and y according to some distance metric if f satisfies Lipschitz conditions. For example, if f is Lipschitz w.r.t. Hamming distance, then

$$|f(x) - f(y)| \le L \cdot d_H(x, y) = L \cdot \sum_{i=1}^n \mathbb{I}(x_i \ne y_i)$$

Theorem 7.5. If $X_1, ..., X_n$, iid, is stand Gaussian with distribution N(0,1) and f is L_n -Lipschitz w.r.t. L_2 -norm distance, i.e, $|f(x) - f(y)| \le L_n \cdot ||x - y||_2, \forall x, y \in \mathbb{R}^n$ Then:

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| > t) \le 2 \exp\left(\frac{-t^2}{2L_n^2}\right)$$

The proof is very hard and will be omitted. For example, if $X_1...X_n$, iid, is stand Gaussian with distribution N(0,1) and $X_{(1)},...,X_{(n)}$ is a function of $X_1,...,X_n$ that it orders it such that $X_{(1)} \geq X_{(2)},...,\geq X_{(k)},...,\geq X_{(n)}$ where $X_{(k)}$ is the k^{th} largest. Then, if we $X_{(n)}$ and $Y_{(n)}$ only differs in k^{th} component, according to the pigeonhole principle, we have:

$$|X_{(k)} - Y_{(k)}| \le ||X - Y||_2$$

As a result:

$$\mathbb{P}(|X_{(k)} - \mathbb{E}[X_{(k)}]| > t) \le 2\exp\left(\frac{-t^2}{2}\right)$$

7-6 Lecture 7: February 7

Example: Gaussian Complexity

 $X_1,...,X_n$, iid, is stand Gaussian with distribution N(0,1). $R(A) = \sup_{a \in A} \langle a, X \rangle$ with $A \in \mathbb{R}^n$ and $f(X) = R_n(A)$ and X,Y only differs in the $k^{th}coordinate$ Then similar to the Rademacher Complexity example, we have:

$$\begin{split} f(X) - f(Y) &\leq \langle a^*, X - Y \rangle & (a^* = \sup_{a \in A} \lVert a, X \rVert) \\ &\leq \lVert a^* \rVert_2 \lVert X - Y \rVert_2 & \text{Cauchy Schwartz Inequality} \\ &\leq \sup_{a \in A} \lVert a \rVert_2 \lVert X - Y \rVert_2 \end{split}$$

As a result, applying Bounded Difference Inequality:

$$f(X) - \mathbb{E}[f(X)] \sim SG(\sup_{a \in A} ||a||_2)$$