Cours - Graphes

Louis Thevenet

Table des matières

1.	Degré	2
	1.1. Corollaire 1.2.3	
2.	Sous graphes, graphes partiels, cliques	2
	2.1. Exercise 1.4.4	
3.	Connexité	2
	3.1. Exmeple 2.2.9	
	3.2. Exemple 2.2.3	
	3.3. Exercice 2.2.4	
	3.4. Preuve 2.2.11	
4.	Graphes eulériens et hamiltoniens	
	4.1. Exercice 3.1.2	
	4.2. Théorème 3.1.2	
	4.3. Exercice 3.1.2	
	4.4. Exercice 4.1.2	
5.	Exercice 5.1.2	2
	5.1. Preuve 5.4.3	
	5.2. Exercice 5.4.4	
	5.3. Exercice 5.4.6	
	5.4. Exercise 5.4.7	
	5.5. Preuve Théorème 5.4.8	

Méthode 0.1: Pour les preuves par inductions, on ne construit le graphe de taille
$$n +$$

Notes 70% Exam, 30% TP

1, on l'obtient en entrée. On doit faire $n+1 \rightarrow n \rightarrow n+1$

Soit N la somme des degrés de tous les sommets et n le nombdre d'arêtes du graphe. Supposons que le nombre de sommets de degré impair soit pair. D'après le lemme,

1. Degré

1.1. Corollaire 1.2.3

 $N = 2n = \underbrace{\sum_{v_k \text{ de degr\'e pair}} \delta(v_k)}_{\text{pair}} + \underbrace{\sum_{v_k \text{ de degr\'e impair}} \delta(v_k)}_{}$

2

2. Le graphe n'est pas complet car deux espions d'un même pays ne sont pas reliés.

3.
$$\forall v \in S, \deg(v) = 4$$

Il y a $\frac{4*6}{2} = 12$ arêtes.

6

3 2 5

8

 s_{11} s_{12} s_{21} s_{22} s_{31} s_{32}

9

4

10

Dans le cas du cycle eulérien, $v_1=v_n$ et on fusionne les deux arêtes, le degré devient pair. Ainsi tous les degrés sont pairs.

Soit n_i le nombre de sommets de degré impair

Puis, $deg(v_2) = 2$ car adjaccent à v_1 et v_3

parité du degré reste la même (impaire)

- Sinon, on ajoute le sommet v_k et deux arrêtes

Pour $k \in [1, n]$,

2

Soit $v_1,...,v_n$ les sommets de la chaîne eulérienne

Soit G un graphe dont les sommets sont les ouvertures. Une arrête relie deux ouvertures si et seulement si ces ouvertures sont adjaccentes 1

On reconstruit le graphe en suivant la chaîne, le degré de v_1 est 1 car c'est le début de la chaîne.

• Si $v_k = v_1$, puisque la chaîne est eulérienne, elle est simple, on ajoute ainsi deux arêtes et la

Finalement, par récurrence, $\deg(v_n) \equiv 0$ [2], on ajoute une arête finale et il devient impair.

4

3

6

11

AC

A la place, on aurait pu construire un graphes des conflits.

2

BC

Supposons qu'un graphe planaire à n sommets est 5-coloriable. Montrons que, G l'est aussi.

1. Sommets : espions de chaque pays. Une arrête relie deux sommets si les espions s'espionnent

3.3. Exercice 2.2.4 1. 1

$[\Rightarrow]$ Supposons que tous les degrés soient pairs Supposons que c'est vrai pour un graphe à n arêtes. Soit un graphe à n+1 arêtes. 4.3. Exercice 3.1.2

5

 \mathbf{C}

 (∞,\emptyset)

(4,0)

(4,0)

(4,0)

X

X

X

X

X

1

2

51

111

D

 (∞, \emptyset)

 (∞,\emptyset)

(9, A)

(8, B)

(8, B)

(8, B)

X

X

X

 \mathbf{E}

 (∞,\emptyset)

 (∞,\emptyset)

(14, A)

(14, A)

(14, A)

(14, A)

(14, A)

X

X

 \mathbf{F}

 (∞, \emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

(7, B)

(7,B)

X

X

X

X

 \mathbf{T}

 (∞, \emptyset)

 (∞, \emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

(14, F)

(13, D)

(13, D)

X

3

33

333

444

45

5

23

222

555

55

12 22

5.1. Preuve 5.4.3

AB

5.5. Preuve Théorème 5.4.8 Soit G un graphe planaire à n+1 sommets, m arrêtes, f faces.

Comme on trie selon le degré, on peut trouver un ordre qui conduit à une coloration non optimale. 5.4. Exercice 5.4.7 Le nombre d'heures nécessaires pour faire jouer toutes les équipes est la taille du plus grand ensemble de paires de sommets adjacents disjointes.