The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6and 7- position or positions,

comprising hydrogenating pterin of the following formula

$$H_{2}N$$

$$1$$

$$N_{3}$$

$$N_{4}$$

$$N_{5}$$

$$N_{7}$$

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein the catalyst contains a ligand which is (i) triarylphosphine, (ii) tetramethylene phenylphosphine (iii) pentamethylene phenylphosphine, or (iv) a bidentate ligand with a tertiary amine group and a phosphine group or with two tertiary phosphine groups as complexing groups, wherein the bidentate ligands form together with a metal atom a five- to ten membered ring.

EPROV-17

- 2. (Previously Presented) A process according to claim 1, wherein the polar reaction medium is an aqueous or alcoholic reaction medium.
- 3. (Previously Presented) A process according to claim 1, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.
- 4. (Previously Presented) A process according to claim 1, wherein the metal complex contains a chiral ligand.
- 5. (Previously Presented) A process according to claim 3, wherein the metal complex contains a chiral ligand.
- 6. (Previously Presented) A process according to claim 5, wherein the folic acid ester salt is of formula III and is in the form of a single enantiomer or a mixture of enantiomers of formula III,

one of R_1 or R_2 is H, and the other one of R_1 or R_2 is a monovalent hydrocarbon radical or a hydrocarbon radical attached via a carbon atom in which one or more carbon atoms are each independently replaced by oxygen, sulfur, NH, -N=, or -N(C_1 - C_4 Alkyl)-, or both R_1 and R_2 independently of one another represent a monovalent hydrocarbon radical or a hydrocarbon radical attached via a carbon atom in which one or more carbon atoms are each independently replaced by oxygen, sulfur, NH, -N=, or -N(C_1 - C_4 Alkyl)-, HA stands for a monobasic to tribasic inorganic or organic acid, and x denotes an integer from 1 to 6 or a fractional number between 0 and 6.

- 7. (Previously Presented) A process according to claim 6, wherein HA is unsubstituted or substituted phenylsulphonic acid.
- 8. (Previously Presented) A process according to claim 1, wherein said process is carried out at a hydrogen pressure of 1 to 500 bars.
- 9. (Previously Presented) A process according to claim 1, wherein said process is carried out at a temperature is 0 to 150° C.

EPROV-17

- 10. (Previously Presented) A process according to claim 1, wherein the molar ratio of pterin or pterin compound to catalyst is 10 to 100,000.
- 11. (Previously Presented) A process according to claim 1, wherein the reaction medium is water or water in admixture with an organic solvent.
- 12. (Previously Presented) A process according to claim 2, wherein the alcoholic reaction medium is an alcohol, or an alcohol in admixture with an organic solvent.
- 13. (Previously Presented) A process according to claim 1, wherein the metal complex contains a d-8 metal.
- 14. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein

$$R_4R_5P-R_6-PR_7R_8$$
 (IV),

in which

 R_4 , R_5 , R_7 and R_8 independently of one another represent a hydrocarbon radical with 1 to 20 carbon atoms which are unsubstituted or substituted with halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkoxy, $(C_6H_5)_3Si$, $(C_1$ - C_{12} -alkyl) $_3Si$, $-NH_2$, $-NH(C_1$ - C_{12} -alkyl), -NH(phenyl), -NH(phenyl), $-N(C_1$ - C_{12} -alkyl) $_2$, $-N(phenyl)_2$, $-N(phenyl)_2$, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, -ammonium- X_3 -, $-SO_3M_1$, $-CO_2M_1$, $-PO_3(M_1)_2$, or $-CO_2$ - C_1 - C_6 -alkyl, where M_1 represents an alkali metal or hydrogen, and X_3 is an anion of a monobasic acid; or R_4 and R_5 and/or R_7 and R_8 together denote tetramethylene, pentamethylene or 3-oxa-pentane-1,5-diyl, unsubstituted or substituted with halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy, and

R₆ is C₂-C₄-alkylene, unsubstituted or substituted with C₁-C₆-alkyl, C₁-C₆-alkoxy, C₅-cycloalkyl or C₆-cycloalkyl, phenyl, naphthyl or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-

cycloalkenylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkenylene with 4 to 10 carbon atoms, unsubstituted or substituted with C_1 - C_6 -alkyl, phenyl or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkenylene with 4 to 10 carbon atoms, unsubstituted or substituted with C_1 - C_6 -alkyl, phenyl or benzyl, and attached at whose 1- and/or 2-position(s) or at whose 3-position is methylene or C_2 - C_4 -alkylidene; 1,4-butylene, substituted in the 2,3-positions with R_9 - R_{10} C(O-)₂, and in the 1- and/or 4-positions unsubstituted or substituted with C_1 - C_6 -alkyl, phenyl or benzyl, and where R_9 - and R_{10} independently of one another represent hydrogen, C_1 - C_6 -alkyl, phenyl or benzyl; 3,4- or 2,4-pyrrolidinylene or 2-methylene-4-pyrrolydinyl methylene-4-pyrrolidine-4-yl, the N-Atom of which is substituted with hydrogen, C_1 - C_{12} -alkyl, phenyl, benzyl, C_1 - C_{12} -alkoxycarbonyl, C_1 - C_8 -acyl, C_1 - C_{12} -alkylamino carbonyl; or 1,2-phenylene, 2-benzylene, 1,2-xylylene, 1,8-naphthylene, 2,2'-dinaphthylene or 2,2'-diphenylene, unsubstituted or substituted with halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, phenyl, benzyl, phenyloxy or benzyloxy; or R_6 stands for a radical of one of the following formulas

R₉ denotes hydrogen, C₁-C₈-alkyl, C₁-C₄-fluoroalkyl, unsubstituted phenyl or phenyl substituted with 1 to 3 F, Cl, Br, C₁-C₄-alkyl, C₁-C₄-alkoxy or fluoromethyl;

$$\begin{array}{c} R_{14} \\ R_{15} \\ O \\ O \\ CHR_{\overline{11}} \\ PR_{7}R_{8} \end{array}$$

$$\begin{array}{c} R_{16} \\ N \\ CHR_{10} \\ -PR_{7}R_{8} \end{array}$$

$$\begin{array}{c} R_{16} \\ N \\ PR_{4}R_{5} \end{array}$$

$$(XIV), \qquad (XV),$$

$$PR_{4}R_{5}-CHR_{10}$$

$$CHR_{11}-PR_{7}R_{8}$$

$$(XVI),$$

$$PR_{4}R_{5}$$

$$PR_{7}R_{8}$$

$$(XVII),$$

$$PR_4R_5 - CHR_{10} CHR_{\overline{11}} PR_7R_8$$
(XIX)

R₄, R₅ R₇ and R₈ have the meanings as recited above,

 R_{10} and R_{11} independently of one another denote hydrogen, C_1 - C_4 alkyl or benzyl or phenyl, unsubstituted or substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

 R_{12} and R_{13} independently of one another represent hydrogen, C_1 - C_4 alkyl, phenyl or benzyl,

 R_{14} and R_{15} independently of one another denote hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or benzyl or phenyl, unsubstituted or substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

 R_{16} represents hydrogen, C_1 - C_{12} alkyl, unsubstituted benzyl or phenyl, or benzyl or phenyl substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy, C_1 - C_{12} alkoxy-C(O)-, unsubstituted phenyl-C(O)- or benzyl-C(O)-, or phenyl-C(O)- or benzyl-C(O)- substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy, C_1 - C_{12} alkyl-NH-CO-, or phenyl-NH-C(O)- or benzyl-NH-C(O)-, unsubstituted or substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

n stands for 0, 1 or 2,

 R_{17} and R_{18} are C_1 - C_4 alkyl or C_1 - C_4 alkoxy, or R_{17} and R_{18} together denote oxadimethylene,

 R_{19} , R_{20} , R_{21} , R_{22} , R_{23} and R_{24} are independently of one another H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_5 - or C_6 cycloalkyl or C_5 - or C_6 cycloalkoxy, phenyl, benzyl, phenoxy, benzyloxy,

halogen, OH, -(CH₂)₃-C(O)-O-C₁-C₄.alkyl, -(CH₂)₃-C(O)-N(C₁-C₄-alkyl)₂ or -N(C₁-C₄-alkyl)₂, or R_{19} and R_{21} , and/or R_{17} and R_{21} , and/or R_{20} and R_{22} , and/or R_{18} and R_{22} , or R_{21} and R_{23} and/or R_{22} and R_{24} together represent a fused-on 5 or 6-membered, monocyclic or bicyclic hydrocarbon ring, and

 R_{25} is C_1 - C_4 alkyl;

$$R_{33}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{33}$$

$$R_{33}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{35}$$

$$R_{36}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{35}$$

$$R_{36}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{39}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{39}$$

$$R$$

R stands for cyclohexyl or unsubstituted phenyl or phenyl substituted with one to three C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, or an -NH₂, (C₁-C₄-alkyl)NH-, (C₁-C₄-alkyl)₂N-,

R₂₆ and R₂₇ independently of one another denote C₁-C₄-alkyl, phenyl or benzyl,

R₂₈ represents C₁-C₈-alkyl, C₁-C₈-acyl or C₁-C₈-alkoxycarbonyl,

R₂₉ stands for hydrogen, C₁-C₄-alkyl, phenyl or benzyl,

R₃₀ represents C₁-C₄-alkyl, phenyl or benzyl,

R₃₁ denotes methyl, methoxy, or both R₃₁ together denote oxadimethylene,

 R_{32} and R_{33} independently of one another represent H, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or $(C_1$ - C_4 -alkyl)₂N-,

 R_{34} and R_{35} independently of one another represent H, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, $-(CH_2)_3$ -C(O)-O- C_1 - C_4 -alkyl, $-(CH_2)_3$ -C(O)- $N(C_1$ - C_4 -alkyl) $_2$ or one pair R_{34} and R_{35} together represents a radical of formula XLI and the other pair R_{34} and R_{35} together represents a radical of formula XLII

and

R₃₆ stands for C₁-C₄-alkyl,

$$R_{112}$$

$$P(C_6H_5)_2$$

$$(Y1)$$

$$P(C_6H_5)_2 C_1-C_6-Alkyl$$
(Y2)

wherein R_{111} and R_{112} are each independently \boldsymbol{H} or methyl.

15-28. (Cancelled)

29. (Previously Presented)

the following formula

A process for preparing tetrahydropterin of

 $\begin{array}{c|c}
 & H \\
 & N_3 \\
 & N_5 \\
 & N_8
\end{array}$

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in alcohol or in alcohol in admixture with an organic solvent in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium.

30-32. (Cancelled)

- 33. (Previously Presented) A process according to claim 3, wherein the hydrogenation is carried out at elevated pressure.
- 34. (Previously Presented) A process according to claim 1, wherein the metal complex contains iridium, rhodium or ruthenium.

35-36. (Cancelled)

37-39. (Cancelled)

40. (Previously Presented) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in alcohol or in alcohol in admixture with an organic solvent in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

41-44. (Cancelled)

45. (Previously Presented) A process according to claim 1, wherein the pterin compound is a pterin that is substituted in the 6- position.

20 EPROV-17

46. (Previously Presented) A process according to claim 1, wherein the pterin compound is of formula (A)

$$\begin{array}{c|c}
H & N & R_{100} \\
H_2N & N & R_{101}
\end{array}$$
(A)

in which

 R_{101} is H or independently has the meaning of R_{100} , and

R₁₀₀ is an organic radical attached via a C, O or N atom and having 1 to 50 carbon atoms.

47. (Previously Presented) A process according to claim 46, wherein R_{100} contains 1 to 30 carbon atoms and is not interrupted or is interrupted by one or more of -O-, -NH-, -N(C_1 -C₄-alkyl)-, -C(O)-, -C(O)O-, -OC(O)-, -C(O)NH-, -NHC(O)-, -NHC(O)-, -NHC(O)O-, -OC(O)NH-, -NHC(O)NH-, -C(O)N(C_1 -C₄-alkyl)-, -N(C_1 -C₄-alkyl)-C(O)N(C_1 -C₄-alkyl)-, and which is unsubstituted or is substituted with F, Cl, Br, -CN, -OCN, -NCO, -OH, -NH₂, -NHC₁-C₄-alkyl, -N(C_1 -C₄-alkyl)₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-hydroxyalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, -C(O)OH, -C(O)OM₁₀₀, -C(O)OC₁-C₄-alkyl, -C(O)NH₂, -C(O)NHC₁-C₄-alkyl, -C(O)N(C_1 -C₄-alkyl)₂, R₁₀₂-C(O)O-, R₁₀₂-OC(O)O-, R₁₀₂-C(O)NH-, R₁₀₂-C(O)N(C_1 -C₄-alkyl)-, R₁₀₂-NHC(O)NH-, R₁₀₃C(O)- or -CH(O), wherein

 M_{100} is Li, K, Na, NH₄⁺, or ammonium with 1 to 16 carbon atoms,

R₁₀₂ is C₁-C₈-alkyl, C₅- or C₆-cycloalkyl, phenyl or benzyl, and

 R_{103} is C_1 - C_4 -alkyl, phenyl or benzyl.

48. (Previously Presented) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium of formula XLIV, XLIVa or XLIVb,

 $[X_7Me_2YZ]$ (XLIV), $[X_7Me_2Y]^+A_2^-$ (XLIVa) $[X_7Ru(II)X_8X_9](XLIVb)$,

in which

Y stands for monoolefin ligands or a diene ligand;

X₇ represents an achiral or chiral ditertiary diphosphine, that forms a 5 to 7 membered ring with the metal atom Me₂ or Ru;

X₇ represents an achiral or chiral ligand that forms a 5 to 7 membered ring with the metal atom Me₂ or Ru, wherein said ligand contains two tertiary phosphine groups;

 Me_2 denotes Ir(I) or Rh(I);

Z represents --Cl, -Br, or --I; and

 A_2 is ClO_4 , CF_3SO_3 , CH_3SO_3 , HSO_4 , BF_4 , $B(Phenyl)_4$, PF_6 , $SbCl_6$, AsF_6 or SbF_6 ; X_8 and X_9 are the same or different and have the meaning of Z or A_2 , or X_8 has the meaning of Z or A_2 and X_9 stands for hydride.

49. (Previously Presented) A process according to claim 6, wherein R_1 and/or R_2 are, each independently,

pyrrolidinyl, piperidinyl, morpholinyl, tetrahydropyranyl, piperazinyl, pyrrolidinyl methyl, pyrrolidinyl ethyl, piperidinyl methyl, piperidinyl ethyl, morpholinyl methyl, morpholinyl ethyl, tetrahydropyranyl methyl, tetrahydropyranyl ethyl, piperazinyl methyl or piperazinyl ethyl.

- 50. (Cancelled)
- 51. (Previously Presented) A process according to claim 14, wherein the catalyst has a ligand that is of formula Y1 or Y2.
- 52. (Previously Presented) A process according to claim 14, wherein the reaction medium is an alcoholic reaction medium.
- 53. (Previously Presented) A process according to claim 14, wherein the reaction medium is an aqueous reaction medium.

- 54. (Previously Presented) A process according to claim 14, wherein the catalyst has a ligand that contains one or more water-solubilising polar substituents.
- 55. (Previously Presented) A process according to claim 14, wherein the catalyst has a ligand that is of formula IV.