Adversarial Learning for Neural Dialogue Generation

Jiwei Li¹, Will Monroe¹, Tianlin Shi¹, Sébastien Jean², Alan Ritter³ and Dan Jurafsky¹

¹Stanford University, Stanford, CA, USA

²New York University, NY, USA

³Ohio State University, OH, USA

EMNLP2017

Previous Dialogue Generation

- 1. Use Maximum Likelihood Estimation.
- 2. Use Seq2Seq-like model.

Problem:

1. Using MLE has been proved to lead to simple, repetitive, meaningless responses.

Motivation:

- 1. Use a different evaluation method to guide generate process.
- 2. Manually defined reward can not cover all crucial aspects of responses.

Problems:

- 1. Text Generation is discrete, makes error hard to backpropagate.
- 2. Lack of immediate reward.

am Fine. Thank you, and you? Reward: 0.01 (0, 255)(0, 255)(0, 255)(0, 255)(0, 255)(0, 255)(0, 255)

Problems:

1. Text Generation is discrete, makes error hard to backpropagate.

Solution:

- 1. Use Policy Gradient Descent.
- 2. Use hidden state rather than generated text.

Problems:

1. Lack of immediate reward.

query

What is your name?

Real world data

I am liyucheng.

Generated data

I do not know.

Solution:

- 1. Monte Carlo Search.
- 2. Train Discriminator to give reward to partially decoded sequence.

Monte Carlo Search:

• Generate 5 instance shared the same prefix. Use mean reward as the final reward.

Train discriminator with prefixes of responses.

• ${y_{1:1}}{y_{1:2}} ... {y_{1:t}}$

Generator: Seq2Seq

Discriminator: Binary

classifier.

$$J(\theta) = \mathbb{E}_{y \sim p(y|x)}(Q_+(\{x,y\})|\theta) \qquad (1) \qquad \text{Objective function}$$

$$\nabla J(\theta) \approx [Q_+(\{x,y\}) - b(\{x,y\})]$$

$$\nabla \log \pi(y|x)$$

$$= [Q_+(\{x,y\}) - b(\{x,y\})]$$

$$\nabla \sum_t \log p(y_t|x,y_{1:t-1}) \qquad (2)$$

Immediate Reward

$$\nabla J(\theta) \approx \sum_{t} (Q_{+}(x, Y_{t}) - b(x, Y_{t}))$$

$$\nabla \log p(y_{t}|x, Y_{1:t-1}) \quad (3)$$

State S; Action a; Reward r

策略:

Policy: $\pi_{\theta}(s, a) = P(a \mid s)$

Action Sequence:

$$\tau = s_1, a_1, s_2, a_2, s_3, \cdots$$

$$P(\tau) = P(s_1)P_{\theta}(a_1 | s_1)P(s_2 | s_1, a_1)P_{\theta}(a_2 | s_2)\cdots$$

Total reward:

$$R(\tau) = \sum_{\tau} r_{t}$$

$$\bar{R}_{\theta} = \sum_{\tau}^{t} R(\tau) P_{\theta}(\tau)$$

$$= E_{\tau \sim P_{\theta}(\tau)}[R(\tau)]$$

Maximum R:

策略梯度下降 Policy Gradient Descent

$$\begin{split} \nabla \bar{R}_{\theta} &= \sum_{\tau} R(\tau) \nabla_{\theta} P(\tau) \\ &= \sum_{\tau} R(\tau) P_{\theta}(\tau) \nabla \log P_{\theta}(\tau) \\ &= E_{\tau \sim P_{\theta}(\tau)} [R(\tau) \nabla \log P_{\theta}(\tau)] \\ &\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P_{\theta}(\tau^{n}) \end{split}$$

Add a bias

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P_{\theta}(\tau^{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} [R(\tau^{n}) - b] \nabla \log P_{\theta}(\tau^{n})$$

$$b = E_{n}[R(\tau^{n})]$$

Except adversarial learning: Use *Teach Forcing*

1. Update generator both in adversarial learning and in MLE.

```
For number of training iterations do
   For i=1,D-steps do
       Sample (X,Y) from real data
       Sample \hat{Y} \sim G(\cdot|X)
         Update D using (X, Y) as positive examples and
(X, \hat{Y}) as negative examples.
   End
   For i=1,G-steps do
       Sample (X,Y) from real data
       Sample \hat{Y} \sim G(\cdot|X)
       Compute Reward r for (X, \hat{Y}) using D.
       Update G on (X, \hat{Y}) using reward r
       Teacher-Forcing: Update G on (X, Y)
   End
End
```

Evaluation:

- 1. Use Evaluator to evaluate generation model.
 - Definition of AdverSuc: instance fooled evaluator successfully / total
 - ERE(Evaluator Reliability Error)

Setting	ERE
SVM+Unigram	0.232
Concat Neural	0.209
Hierarchical Neural	0.193
SVM+Neural+multil-features	0.152

Table 2: ERE scores obtained by different models.

ERE:

- 1. Set human-generated dialogue as both positive and negative examples. Expected AdverSuc=0.5.
- 2. Set human-generated examples as positive and random sentences as negative. Expected AdverSuc=0
- 3. ...

Model	AdverSuc	machine-vs-random
MLE-BS	0.037	0.942
MLE-Greedy	0.049	0.945
MMI+p(t s)	0.073	0.953
MMI-p(t)	0.090	0.880
Sampling	0.372	0.679
Adver-Reinforce	0.080	0.945
Adver-REGS	0.098	0.952

Table 3: AdverSuc and machine-vs-random scores achieved by different training/decoding strategies.

Machine-vs-random:

the accuracy of distinguishing be- tween machine-generated responses and randomly sampled responses