FEUILLE 5: GÉOMÉTRIE AFFINE

Exercice 1. On considère le plan affine canonique $\mathcal{P} = \mathbb{R}^2$. On rappelle qu'une droite affine est un sous-espace affine de dimension 1.

- 1. Rappeler quelle est sa structure affine.
- 2. On choisit le point X = (1,1) comme origine et on note $\tilde{+}$ l'addition de la structure vectorielle sur \mathcal{P} d'origine X et + pour celle usuelle d'origine (0,0).
 - (a) Quel est le neutre de +? Que vaut X + X?
 - (b) Que vaut 0+0? Soit A=(1,0). Que vaut 3A pour la structure vectorielle d'origine X?
- 3. Démontrer que si \mathcal{D} est une droite affine de \mathcal{P} , alors il existe des réels a, b, c avec (a, b) tels que

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 / ax + by = c.\}$$

- 4. A quelle condition sur $(a, b, c) \in \mathbb{R}^3$ a-t-on que $\{(x, y) \in \mathbb{R}^2 / ax + by = c.\}$ est une droite affine ? Vectorielle ?
- 5. Soit \mathcal{D} une droite d'équation ax + by = c. Pour quelles valeurs de (a', b', c') a-t-on que $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 / a'x + b'y = c'.\}$?
- 6. Soit M, N deux points distincts dans \mathcal{P} . Démontrer qu'il existe une unique droite affine qui passe par M et N. Déterminer une de ses équations pour M = X et N = X + X.
- 7. On note $T = \{t_u, u \in \mathbb{R}^2\}$ le groupe des translations de \mathcal{P} .
 - (a) Démontrer que l'image d'une droite affine \mathcal{D} par une translation t_u est une droite affine (notée $t_u(\mathcal{D})$ et en déduire une action de T sur l'ensemble des droites affines de \mathcal{P} .
 - (b) Soit \mathcal{D} et \mathcal{D}' deux droites affines de \mathcal{P} . Déterminer une condition nécessaire et suffisante pour qu'il existe un vecteur u tel que \mathcal{D}' et $t_u(\mathcal{D})$.
 - (c) Soit \mathcal{D}_0 la droite d'équation x-y=1. Déterminer $\operatorname{Stab}_{\mathcal{D}_0}$ ainsi que l'orbite de \mathcal{D}_0 pour l'action de T.

Exercice 2. On considère l'espace affine canonique \mathbb{R}^3 .

- 1. Soit $M \in M_3(\mathbb{R})$. On considère $M \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un système linéaire de 3 équations à 3 inconnues avec second membre.
 - (a) Démontrer que les solutions du système forment un sous-espace affine de \mathbb{R}^3 .
 - (b) Est-ce que les solutions du système forment un sous-espace linéaire?
 - (c) Quelle est le type de sous-espace affines formé par les solutions (selon M)?
- 2. Soit \mathcal{E} un espace affine réel de dimension 3. Démontrer que \mathcal{E} est affinement isomorphe à l'espace affine \mathbb{R}^3 .
- 3. Soit \mathcal{P}_1 , \mathcal{P}_2 deux plans affines dans \mathcal{E} de direction P_1 et P_2 . Déterminer la nature possible de l'intersection $P_1 \cap P_2$.

Exercice 3. On considère l'ensemble

$$X = \{ f : \mathbb{R} \to \mathbb{R} / \forall x \in \mathbb{R} \quad f(x+1) = f(x) + 1 \}$$

•

- 1. Pour quoi l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ est-il un espace affine ?
- 2. Démontrer que X est un (sous-)espace affine et déterminer un point et sa direction.

Exercice 4. Soit $(\mathcal{E}, E, *)$ un espace affine de dimension finie. On rappelle que le centre d'un groupe est le sous-ensemble de ses éléments qui commutent avec tous les autres.

- 1. Quel est l'espace des isomorphismes affines $f: \mathcal{E} \to \mathcal{E}$ qui commutent avec les translations ?
- 2. Démontrer que le centre de GL(E) est constitué des homothéties $x \mapsto \lambda x$ (avec $\lambda \neq 0$).
- 3. Quel est le centre du groupe affine $\mathbf{Aff}(\mathcal{E})$?