

# ROČNÍKOVÁ PRÁCE S OBHAJOBOU

Téma: Roverbert

Autor práce: Matouš Hep

Třída: 3.L

Vedoucí práce: Jiří Švihla Dne: 30.4.2024

Hodnocení:



## Vyšší odborná škola a Střední průmyslová škola elektrotechnická Plzeň, Koterovská 85

| ZADÁ                                 | NÍ ROČNÍKOVÉ PRÁCE                                                                                                                                                                        |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Školní rok                           | 2023/2024                                                                                                                                                                                 |
| Studijní obor                        | 78-42-M/01 Technické lyceum                                                                                                                                                               |
| Jméno a příjmení                     | Matouš Hep                                                                                                                                                                                |
| Třída                                | 3.L                                                                                                                                                                                       |
| Předmět                              | Kybernetika                                                                                                                                                                               |
| Hodnoceno v předmětu                 | Kybernetika                                                                                                                                                                               |
| Téma                                 | Roverbert                                                                                                                                                                                 |
| Obsah práce                          | <ol> <li>Návrh softwaru pro prevenci kolize</li> <li>Implementace antikolizních senzorů do karoserie</li> <li>Implementace mechaniky pohonu</li> <li>Návrh a 3D tisk karoserie</li> </ol> |
| Zadávající učitel<br>Příjmení, jméno | Švihla Jiří                                                                                                                                                                               |
| Podpis zadávajícího učitele          |                                                                                                                                                                                           |
| Termín odevzdání                     | 30. dubna 2024                                                                                                                                                                            |

V Plzni dne: 30. 11. 2023 Mgr. Vlastimil Volák ředitel školy

#### **Anotace**

| Ročníková práce se zabývá řešením problematiky navádění vozítka podle čáry. První část práce        |
|-----------------------------------------------------------------------------------------------------|
| nabízí možnosti zpracování vstupu ze senzoru detekujícího překážky. Dále práce obsahuje návrh       |
| softwaru řídícího pohonnou jednotku s ohledem na regulaci rychlosti jízdy podle zakřivení vodicí    |
| čáry. Poslední část práce je věnována designu karoserie s ohledem na implementaci mechaniky         |
| zatáčení, senzorů, baterie, motorů a jednočipového počítače. Finálním výstupem práce je vozidlo     |
| schopné následovat vodicí čáru, které je schopno zastavit v případě vyskytnutí se překážky v cestě. |
|                                                                                                     |

"Já Matouš Hep prohlašuji, že jsem ročníkovou práci na téma Roverbert zpracoval sám se spolužákem Martinem Robbem za konzultace vedoucího práce Jiřího Švihly. Veškeré prameny a zdroje informací, které jsme použili k sepsání této práce, byly citovány a jsou uvedeny v seznamu použitých pramenů a literatury."

V Plzni dne: Podpis:

# Obsah

| 1 | L Automatická prevence kolize |               |    |  |
|---|-------------------------------|---------------|----|--|
|   | 1.1                           | Princip       | 6  |  |
|   | 1.2                           | Zapojení      | 6  |  |
|   | 1.3                           | Program       | 8  |  |
| 2 | 2 Pohon                       |               |    |  |
| 3 | Desi                          | ign karoserie | 10 |  |

# Úvod

#### Motivace

Sledování čáry nachází v současné době značné využití ve skladování, logistice a na autonomních výrobních linkách například jako navigace pro skladovací roboty. Cílem práce je vytvoření vozidla s obdobným navigačním systémem.

#### Řešení

Navigaci po čáře zajišťuje řada infračervených (dále jen IR) senzorů. Senzor přijímá odražené IR záření, které se liší na základě barvy odrazové plochy, což umožňuje odlišení kontrastních barev a převedení na logickou jedničku a nulu. Detekci překážky před vozidlem zajišťuje ultrazvukový senzor, z něhož lze zjistit vzdálenost od překážky na základě rozdílu mezi přijetím a vysláním signálu.

Výstupy z ultrazvukového a IR senzorů jsou zpracovávány v jednočipovém počítači Raspberry Pi Pico, který podle příchozího vstupního signálu řídí zatáčení vozidla a rychlost jízdy.

### 1 Automatická prevence kolize

#### 1.1 Princip

K automatické prevenci kolize využívám v ročníkové práci ultrazvukového senzoru pro měření vzdálenosti HC-SR04 (viz Obrázek 1).



Obrázek 1: Ultrazvukový senzor

Ultrazvukový senzor při přijetí řídicího signálu ve formě napěťového pulzu o minimální délce 10 µs vyšle 8 cyklů ultrazvuku o frekvenci 40 kHz (viz Obrázek 2). V případě, že se vyskytuje ve vzdálenosti odpovídající měřicímu rozsahu 2-400 cm překážka, vyslaný ultrazvukový signál se od překážky odrazí zpět, kde je zachycen senzorem. Při opětovným přijetím signálu senzor vyšle z výstupního pinu napěťový pulz, jehož délka odpovídá času mezi vysláním a přijetím ultrazvukového signálu. Z délky tohoto pulzu a rychlosti šíření zvuku lze posléze dopočítat vzdálenost překážky. Rychlost šíření zvuku ve vzduchu záleží na teplotě a vlhkosti vzduchu, což jsem při výpočtu vzdálenosti překážky zanedbal a počítám s konstantní rychlostí zvuku 340 m/s.

### 1.2 Zapojení

Ultrazvukový senzor HC-SR04 má čtyři piny (viz Obrázek 3): 5V napájení (VCC), vstupní pin řídícího signálu (TRIG), výstupní pin (ECHO) a připojení k zemi (GND).

Ultrazvukový senzor je určen pro 5V logiku. Jedno-čip Raspberry Pi Pico funguje na 3,3V logice. V případě vstupního pinu TRIG rozdíl v napěťové logice nehraje roli, jelikož senzor vyšle ultrazvukový signál i při přijetí napěťového pulzu s napěťovou hladinou 3,3 V.



Obrázek 2: Časový diagram ultrazvukového senzoru



Obrázek 3: Schéma zapojení ultrazvukového senzoru

To už ale neplatí pro výstup z ultrazvukového senzoru. Výstupní signál o hladině 5 V by mohl poškodit Raspberry Pi Pico. Proto je zapotřebí přijímané napětí snížit na požadovanou hodnotu zapojením napěťového děliče (viz Obrázek 3). Podílem napětí zjistíme poměr potřebných rezistorů.

$$\frac{U_1}{U_2} = \frac{3,3}{5} \approx \frac{2}{3} \tag{1}$$

Z toho vyplývá že potřebné rezistory musí být přibližně v poměru 1:2. Dále musí mít dostatečně velkou hodnotu natolik, aby nebylo překročeno maximální zatížení výstupu ultrazvukového senzoru a zároveň musí mít dostatečně malou hodnotu, aby byly zanedbatelné oproti vstupnímu odporu Raspberry Pi Pico. Maximální proud výstupního pinu ultrazvukového senzoru je 20 mA. V rámci bezpečnosti jsem použil pro výpočet hodnotu přibližně o 85 % menší tedy 3 mA.

$$R = \frac{U}{I} = \frac{5}{0,003} \approx 1667 \ \Omega$$
 (2)

Potřebný odpor tedy musí mít přibližně hodnotu 1667  $\Omega$ , což si díky veliké rezervě můžu dovolit zaokrouhlit na 1500  $\Omega$ . Hodnota odporu 1500  $\Omega$  je také o tři řády nižší než vstupní odpor Raspberry Pi, jenž je v jednotkách M $\Omega$ , takže vstupní odpor Raspberry Pi zásadně neovlivní funkčnost napěťového děliče. Hodnotu 1500  $\Omega$  rozdělím v požadovaném poměru 1:2.

$$R_1 = 1500 \cdot \frac{1}{3} = 500 \tag{3}$$

$$R_2 = 1500 \cdot \frac{2}{3} = 1000 \tag{4}$$

Jelikož hodnota 500  $\Omega$  se nevyskytuje v normalizovaných odporových řadách, použil jsem nejbližší normalizovanou hodnotu 470  $\Omega$ .

#### 1.3 Program

Ultrazvukový senzor vrací napěťový pulz o délce odpovídající časovému rozdílu mezi odesláním a přijetím ultrazvukového signálu (viz. Kapitola 1.1). K určení vzdálenosti překážky je potřeba délku tohoto pulzu změřit.

K tomuto ve své ročníkové práci používám funkci time\_pulse\_us knihovny machine pro python. Funkce time\_pulse\_us má tři argumenty: pin, pulse\_level a timeout\_us. Argument pin vyžaduje adresu pinu, na kterém má být měřena doba pulzu. Argument pulse\_level má dvě možné hodnoty logickou nulu nebo jedničku. V Případě, že je v argumentu logická nula, funkce měří dobu po kterou je na pinu logická nula. V opačném případě funkce vrací čas, po který je na pinu lo-

gická jedna. Argument timeout\_us určuje maximální dobu trvání pulzu a je ze základu nastavený na 1 000 000 μs tedy na jednu sekundu. V případě, že je tato doba překročena v době mezi pulzy, funkce vrátí hodnotu -2. Pokud je samotný měřený signál delší než hodnota timeout\_us, funkce vrátí hodnotu -1.

Aby senzor vyslal ultrazvukový signál, musí přijmout pulz o minimální délce 10 μs.

- 2 Pohon
- 3 Design karoserie