Part A: Introducing the Heat Formula

$$Q = mC\Delta T$$
 or $Q = mC(T_f - T_i)$

Symbol	Quantity	SI Unit
Q	Heat energy transferred	Joules (J)
m	mass	kilograms (kg)
		<u></u>
С	Specific Heat of substance	\overline{kg} °C
ΔΤ	Change in temperature	Kelvin (K) or Degrees Celsius (°C)
$T_{\rm f}$	Final Temperature	K or °C
Ti	Initial Temperature	K or °C

Material	Specific Heat $\left(\frac{J}{kg^{\circ}\mathbb{C}}\right)$
water	4,184
oil	1900
wood	1800
aluminum	900
concrete	880
glass	800
steel	470
silver	235
gold	129

A.1. I have 2 kg of *water*. I heat it from 20°C to 30°C.

How much heat energy does the water absorb?

Looking For	Formula	
Already Know		
Answer as equation with unit:		

HEAT FORMULA	Name	
A.2. How much heat energy do	oes it take to heat a 0.5 kg aluminum can from 20°C to 200°C?	
Looking For	Formula	
Already Know		
Answer as equation with unit:	,	
A.3. How much energy does it boiling point (100°C)?	take to heat 0.5 kg water from its melting point (0°C) to its	
Looking For	Formula	
Already Know		
Answer as equation with unit:		
A.4. How much energy does it	take to heat 2000 kg of steel from 20°C to 800°C?	
Looking For	Formula	
Already Know	i	
Answer as equation with unit:		
A.5. How much energy does it	take to heat 3 kg of glass up by 4 degrees?	
Looking For	Formula	
Already Know		
Answer as equation with unit:		

Name _____

A.6. How much energy does	it take to heat a 0.05 kg silver ring up by 40 degrees?
Looking For	Formula
Already Know	
Angwar ag aquation with amit	
Answer as equation with unit:	
A.7. How much energy do I i	need to remove to <i>cool</i> 3 kg of water from 50°C down to 37°C?
Looking For	Formula
Already Know	
Answer as equation with unit:	
	iminum increases its temperature 7°C when heat energy is added. ced this change in temperature?
Looking For	Formula
Already Know	
Answer as equation with unit:	
-	
9. A volume of water has a ma	ass of 0.5 kilogram. If the temperature of this amount of water was
raised by 7°C, how much heat	
Looking For	Formula
Looking For	
Looking For	
Looking For	Formula

Name		

10. How much heat energy is required to raise the temperature of 1 kilogram of steel by 10°C?		
Looking For	Formula	
Already Know		
Answer as equation with unit:		
	eeded to raise the temperature of 100-liters of water from 10°C to	
25°C? Note: One liter of water l	has a mass of one kilogram.	
Looking For	Formula	
Already Know		
Answer as equation with unit:		

Name _____

Answers

Answers

- 1.83680 J
- 2.81000 J
- 3.209200 J
- 4. 7.3 x10⁸ J
- 5.9600 J
- 6.470 J
- 7. 163176 J
- 15. 12 kg
- 16. 4,800 J [not right!]
- 17. about 22°C
- 18. about 1°C
- 19. approximately 33°C