Proyecto final - Segunda entrega

Integrantes:

- Oscar Javier Ángel Balcázar
- Rafael Camilo Tejon Rojas
- Juan Sebastian Alvarez Eraso

Contexto

Basados en información histórica de hurtos en la ciudad de Medellín planteamos un modelo de machine learning para predecir la peligrosidad de un barrio/comuna en un día de la semana y mes del año. Esta peligrosidad la clasificamos de 1 a 3 (1 = menos peligrosa, 3 = más peligrosa).

Se plantearon y evaluaron varios modelos supervisados y no supervisados que se describen a continuación.

Modelos evaluados

Opción	Modelo	Objetivo	Conclusiones
1	Regresión lineal	Predecir la cantidad de hurtos	 Es muy complejo utilizar los datos que tenemos Datos insuficientes.
2	Árboles de decisión	Predecir categorías de barrios como peligrosos o no peligrosos	Es muy complejo.Tiene muchos features.
3	Random forest + Árboles de decisión	Predecir categorías de barrios como peligrosos o no peligrosos	 Se utilizaron menos features. Se evaluaron muchas más combinaciones de hiperparámetros. Simple de evolucionar.
4	KMEANS	Encontrar información en los datos, categorizar los barrios	- Se sale del conocimiento del curso.

GridSearch + Árboles de decisión + Random forest

Features: tipo_mod_hurtos_no_peligrosos, tipo_mod_hurtos_peligrosos, OneHotEncoding del mes y

del día de la semana.

Modelo	Hiper Parámetro	Valores	
Decision Trees	max_depth	Enteros del 3 al 15	
Decision Trees	criterion	gini o entropy	
Random Forest	max_depth	Enteros del 10 al 15	
Random Forest	criterion	gini o entropy	
Random Forest	n_estimators	Enteros múltiplos de 10 entre 50 y 150	

Modelo	Recall	Precisión	F-Score	Matriz de Confusión	
Árboles de Decisión {'criterion': 'entropy', 'max_depth': 6}	0.5765	0.5765	0.5765	1 - S181 1393 0 1 - S181 1393 0 2 - S821 2151 0 3 - 33 137 0 1 2 3 Predicted label	
Random Forest {'criterion': 'entropy', 'max_depth': 10, 'n_estimators': 90}	0.5792	0.5792	0.5792	1 5363 1221 0 0 2 3 2 3 3 2 3 4 136 0 3 2 3 2 7 2 3 Predicted label	

Conclusiones

- 1. La cantidad de datos es insuficiente para todos los modelos que se analizaron. Con más datos se pueden obtener resultados más precisos y cumplir mejor el objetivo (Registros de hurtos, información de las comunas, información de los barrios, clima, ubicación del hurto, información urbana, etc.).
- 2. Los modelos iniciales que se evaluaron contaban con muchos features que al final aumentaban la complejidad de uso para el usuario final.
- 3. El modelo seleccionado cuenta con los features necesarios que no aumentan la complejidad del mismo y facilitan el uso del API para el usuario (plataforma) final.
- 4. El modelo seleccionado es más fácil de evolucionar ya que tiene menos features (Agrupamientos) y esto permite que se puedan agregar más características, por ejemplo: información complementaria de los barrios o comunas.