TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} = \mathbf{T}$ $p \land \mathbf{F} = \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$\begin{split} p &\rightarrow q \equiv \neg p \vee q \\ p &\rightarrow q \equiv \neg q \rightarrow \neg p \\ p &\vee q \equiv \neg p \rightarrow q \\ p &\wedge q \equiv \neg (p \rightarrow \neg q) \\ \neg (p \rightarrow q) \equiv p \wedge \neg q \\ (p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r) \\ (p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \vee q) \rightarrow r \\ (p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r) \\ (p \rightarrow r) \vee (q \rightarrow r) \equiv (p \wedge q) \rightarrow r \end{split}$$

TABLE 8 Logical Equivalences Involving Biconditionals.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$