

Республиканская физическая олимпиада 2021 год (Заключительный этап)

Экспериментальный тур

9 класс.

- 1. Полный комплект состоит из двух заданий, на выполнение каждого отводится два с половиной часа. Сдавать работу следует после выполнения обоих заданий. Задания могут быть не равноценными, поэтому ознакомьтесь с условиями обеих задач. Для ващего удобства в тексте вопросы, на которые Вы должны ответить, взяты в рамки.
- 2. Ознакомьтесь с перечнем оборудования проверьте его наличие и работоспособность. При отсутствии оборудования или сомнении в его работоспособности немедленно обращайтесь к представителям оргкомитета.
- 3. При оформлении работы каждую задачу и каждую ее часть начните с новой страницы.
- 4. Все графики рекомендуем строить на листе миллиметровой бумаги, выданном для выполнения каждого задания. Обязательно пронумеруйте и озаглавьте все построенные графики.
- 5. Подписывать рабочие страницы и графики запрещается.
- 6. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, калькулятор.
- 7. Со всеми вопросами, связанными с условиями задач (но не с их решениями), обращайтесь к организаторам.

Вам необходимо самостоятельно собирать и настраивать экспериментальные установки. Если в условии задачи не приведены схемы установок, то в решении приведите их, укажите, какие величины и как вы измеряли.

Погрешности следует оценивать только в тех пунктах, где указано в условии задачи.

Желаем успехов в выполнении данных заданий!

Данный комплект заданий содержит:

- титульный лист (стр. 1);
- условия двух заданий (стр. 2-5).

Задача 9-1. Растяжимость пружин

<u>Приборы и оборудование</u>: Две пружины; динамометр 10 H; линейка измерительная 50 см, шпилька металлическая с резьбой и двумя гайками, штатив.

В данной работе Вам необходимо экспериментально проверить справедливость закона Гука, а также исследовать различные типы соединения пружин.

Закон Гука утверждает, что сила упругости пружины пропорциональна ее деформации:

$$F = kx. (1)$$

Коэффициент пропорциональности k в этой формуле называется жесткостью пружин.

Задание 1.

- 1.1 Измерьте зависимости длины каждой пружины от приложенной к ней силы.
- 1.2 Постройте графики полученных зависимостей.
- 1.3 Укажите, выполняется ли закон Гука для выданных вам пружин.
- 1.4 Определите жесткости пружин, оцените погрешность найденных значений. Результаты приведите в системе СИ.

Далее расчет погрешностей не требуется!

Задание 2.

Соедините пружины последовательно, как показано на рисунке.

- 2.1 Измерьте зависимость длины первой l пружины от общей длины пружин L. Постройте график полученной зависимости. Определите коэффициент наклона данной зависимости.
- 2.2 Используя результаты, полученные ранее, получите теоретическое значение коэффициента наклона этой зависимости и сравните с экспериментальным значением.

Задание 3.

Соедините пружины параллельно.

- 3.1 Экспериментально покажите, что закон Гука выполняется и для «двойной» пружины.
- 3.2 Измерьте жесткость «двойной» пружины, сравните его с теоретическим значением.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2020-2021 учебный год

Задание 4.

Закрепите пружины на металлической шпильке с помощью гаек, так чтобы они образовали в недеформированном состоянии равнобедренный треугольник с основанием $l \approx 18cm$.

- 4.1. Измерьте зависимость отклонения вершины треугольника x от приложенной силы F (см. рисунок).
- 4.2 Постройте график полученной зависимости x(F).
- 4.3 На этом же графике нанесите теоретические значения данной зависимости. Приведите формулы, по которым вы проводили расчеты теоретической зависимости.

Задача 9-2. Изображения

<u>Приборы и оборудование</u>: собирающая линза, плоское зеркало, экран, лампочка на подставке с источником питания, соединительные провода, мерная лента, линейка (30 – 40см), круговой транспортир (распечатанный на листе бумаги), скотч тонкий (для крепления на столе оборудования при необходимости).

<u>Подсказка</u>: Для тонкой собирающей линзы в случае d > F справедливо соотношение

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f},\tag{1}$$

где F — фокусное расстояние линзы, d — расстояние от предмета до линзы, f — расстояние от линзы до экрана при чётком изображении.

Часть 1. Линза

- 1.1. Определите фокусное расстояние линзы F однократным прямым измерением. Кратко опишите (3 4) предложения как Вы это сделали.
- 1.2. Постройте изображение точечного источника света, расположенного на расстоянии 1,5F от линзы. На том же рисунке постройте изображение того же источника, если линзу повернуть относительно оптического центра на 30° . Для обоих случаев, используя рисунок, определите расстояния от оптического центра линзы до изображений на экране a_1 и a_2 .

Расположите вдоль главной оптической оси линзы зажженную лампочку, линзу и экран. Положите под линзу распечатанный на листе транспортир, так чтобы линза была в его центре. Расстояние между предметом и линзой установите d=1,5F.

1.3 Перемещая экран, получите чёткое изображение предмета на экране. Поверните линзу на угол 30° относительно оси, проходящей через оптический центр линзы и перпендикулярной поверхности стола. Перемещая экран, получите чёткое изображение предмета на экране в данном случае. Укажите в работе положение линз и экранов с четкими изображениями для двух проведенных вами экспериментов. Укажите геометрические характеристики расположения лампочки, линзы и экрана.

Укажите, в чём принципиальное отличие результатов, полученных в данном пункте и в п. 1.2. Дайте объяснение данным отличиям.

Расстояние между предметом и линзой установите d=1,25F.

1.4 Исследуйте экспериментально зависимость $f(\alpha)$, где α — угол поворота линзы, f — расстояние от линзы до экрана при чётком изображении.

1.5. По экспериментальным данным получите уравнение зависимости $f(sin\alpha)$. Постройте график этой зависимости.

Часть 2. Зеркало

Расположите вдоль главной оптической оси линзы зеркало, линзу и экран. Расстояние между зеркалом и линзой для первого наблюдения установите равное фокусному расстоянию *F*. Лампочку расположите в главной плоскости линзы как можно ближе к линзе. Включите лампочку. Перемещая экран, получите чёткое изображение предмета на экране.

- 2.1 Постройте изображение предмета в оптической системе «линза зеркало» для описанного в данном пункте случая.
- 2.2. Пусть l расстояние от зеркала до линзы, f расстояние от линзы до экрана при чётком изображении. Используя подсказку, получите уравнение зависимости f(l).
- 2.3. Исследуйте зависимость f(l) экспериментально. Постройте график полученной зависимости.
- 2.4. Используя экспериментальные данные, полученные в п.2.3. определите интервал значений l, на котором будет выполняться зависимость, составленная Вами в п.2.2. Дайте объяснение полученным результатам.

Республиканская физическая олимпиада 2021 год (Заключительный этап)

Экспериментальный тур

10 класс.

- 1. Полный комплект состоит из двух заданий, на выполнение каждого отводится два с половиной часа. Сдавать работу следует после выполнения обоих заданий. Задания могут быть не равноценными, поэтому ознакомьтесь с условиями обеих задач. Для ващего удобства в тексте вопросы, на которые Вы должны ответить, взяты в рамки.
- 2. Ознакомьтесь с перечнем оборудования проверьте его наличие и работоспособность. При отсутствии оборудования или сомнении в его работоспособности немедленно обращайтесь к представителям оргкомитета.
- 3. При оформлении работы каждую задачу и каждую ее часть начните с новой страницы.
- 4. Все графики рекомендуем строить на листе миллиметровой бумаги, выданном для выполнения каждого задания. Обязательно пронумеруйте и озаглавьте все построенные графики.
- 5. Подписывать рабочие страницы и графики запрещается.
- 6. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, калькулятор.
- 7. Со всеми вопросами, связанными с условиями задач (но не с их решениями), обращайтесь к организаторам.

Вам необходимо самостоятельно собирать и настраивать экспериментальные установки. Если в условии задачи не приведены схемы установок, то в решении приведите их, укажите, какие величины и как вы измеряли.

Погрешности следует оценивать только в тех пунктах, где указано в условии задачи.

Желаем успехов в выполнении данных заданий!

Данный комплект заданий содержит:

- титульный лист (стр. 1);
- условия двух заданий (стр. 2-6).

Задача 10-1 Кинетическая энергия катящегося тела.

<u>Приборы и оборудование</u>: желоб прямой; желоб изогнутый; два цилиндра тонкий и толстый; набор из 3 шаров; секундомер; линейка 50 см; кусок пластилина; маркер.

Ускорение свободно падения считать равным $g = 9.8 \frac{M}{c^2}$

При качении без проскальзывания осесимметричного тела его кинетическая энергия определяется формулой

$$E = \gamma \frac{mv^2}{2} \,, \tag{1}$$

где v - скорость центра масс тела, m - масса тела, γ - безразмерный коэффициент, зависящий от формы катящегося тела.

В данной работе вам предстоит экспериментально определить значения коэффициента γ для сплошного цилиндра и сплошного шара. Для этого исследуется скатывание тел по наклонной плоскости.

Вам предстоит измерять время скатывания с помощью ручного секундомера, что приводит к заметным погрешностям. Поэтому все измерения необходимо проводить несколько раз, используя для расчетов средние значения времен скатывания.

Для уменьшения погрешности рекомендуем использовать экспериментальный метод «ОППА!»: возьмите в одну руке цилиндр или шарик в начальной точке наклонной плоскости, во вторую секундомер; дайте себе команду «оппа!» при этом одновременно отпускайте тело и запускайте секундомер.

При проведении измерений угол наклона желоба не стремитесь делать слишком большим (иначе измеряемые времена будут слишком малыми), высота подъема желоба h не должна превышать 60 мм. В качестве опоры используйте

пластилин, следите, чтобы желоб не колебался при качении тел. Тела можно запускать с различных начальных точек, находящихся на расстоянии l от конца желоба. Полную длину желоба обозначим L.

Задание 1.

1.1 Используя формулу (1), покажите, что при скатывании тела по наклонной плоскости ускорение его центра масс определяется формулой

$$a = \frac{g}{\gamma} \sin \alpha \tag{2}$$

где α - угол наклона плоскости к горизонту.

Задание 2.

В данном задании измерения проведите для тонкого (и более длинного) цилиндра.

В этой части вам необходимо проверить, можно ли считать движение оси цилиндра равноускоренным. Установите желоб под малым углом, на высоту h = 20мм.

- 2.1 Измерьте зависимость времени скатывания цилиндра t от пройденного пути l.
- 2.2 Оцените случайную погрешность измерения времени движения при скатывании на всю длину желоба L.
- 2.2 Постройте линеаризованный график измеренной зависимости.
- 2.3 На основании полученных данных укажите, можно ли считать движение цилиндра равноускоренным.
- 2.4 Рассчитайте среднее значение ускорения цилиндра, оцените погрешность найденного значения ускорения.

Не зависимо от полученных результатов в дальнейшем считайте, что при скатывании тел по прямому желобу его ускорение постоянно. В дальнейшем измерения проводите только при скатывании на всю длину желоба. Расчет погрешностей в следующих заданиях не требуется.

Задание 3.

В этой части измерения проведите для обоих цилиндров.

- 3.1 Измерьте зависимость времени скатывания t цилиндров (на всю длину желоба) от высоты подъема одного конца желоба h .
- 3.2 Представьте полученные результаты t(h) графически в линеаризованном виде. Графики зависимостей для двух цилиндров приведите на одном бланке.
- 3.3 Качественно кратко (одним предложением) объясните возможные различия между результатами, полученными для разных цилиндров.
- 3.4 Рассчитайте значение параметра γ для сплошного цилиндра.

Задание 4.

Установите прямой желоб на высоту h = 20*мм* и не изменяйте ее.

- 4.1 Измерьте времена скатывания металлических шариков по желобу на всю его длину.
- 4.2 Рассчитайте значение параметра γ для шара.
- 4.3. Измерьте время скатывания пластмассового шарика по установленному желобу. Укажите основную причину заметного различия времен скатывания пластмассового и металлических шаров.

Задание 5.

- В данном задании вы должны исследовать скатывание металлического шарика по изогнутому желобу.
- 5.1 Считая, что профиль желоба является дугой окружности, измерьте радиус кривизны желоба.

Установите желоб так, чтобы он касался поверхности стола плавно (т.е. поверхность стола должна быть касательной к желобу). При этом высота верхнего края желоба может больше, чем 60 мм.

10 класс. Экспериментальный тур. Вариант 1.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2020-2021 учебный год

- 5.2 Укажите, на какой высоте h находится при этом второй край желоба.
- 5.3 Измерьте время скатывания металлического шарика по всему желобу.
- 5.4 Проведите теоретическую оценку времени скатывания шарика. Сравните это значение с измеренным.

 $\underline{\textit{Подсказка}}$: период колебаний математического маятника (груза, подвешенного на нити длиной l) определяется по формуле $T=2\pi\sqrt{\frac{l}{g}}$.

Задача 10-2. Тепловая труба

Одним из мощнейших механизмов переноса теплоты является испарение жидкости с ее последующей конденсацией. Этот механизм играет важнейшую роль в различных природных явлениях: образовании грозовых облаков, формировании циклонов и тайфунов, переносе теплоты из экваториальных областей в умеренные широты. Основным теплоносителем в природе является вода с ее аномально высокой удельной теплотой испарения.

Этот же механизм используется и в различных производственных и технологических процессах, например, для переноса теплоты в энергетических установках, в том числе ядерных с помощью так называемых тепловых труб.

Конечно, Вам не предлагается создать грозовое облако или модифицировать ядерный реактор. Но показать возможность и эффективность такого процесса Вы должны.

<u>Приборы и оборудование</u>: электронный термометр, секундомер с памятью этапов, мензурка, пробирка, штатив, горячая и холодная вода со льдом, подсолнечное масло, вата, одноразовая посуда, чашка, фольга кухонная.

Будьте осторожны с горячей водой, переносите ее только в фарфоровой чашке!

Справочные данные: плотность воды $\rho = 1.0 \cdot 10^3 \frac{\kappa z}{M^3}$,

удельная теплоемкость воды $c = 4,2 \cdot 10^3 \frac{\cancel{\square} \cancel{\cancel{M}}}{\cancel{\kappa} \cancel{c} \cdot \cancel{K}}$,

удельную теплоту испарения воды считайте не зависящей от температуры и равной $L = 2, 2 \cdot 10^6 \, \frac{\text{Дж}}{\text{кг}} \; .$

Часть 1. Измерительная.

1.1 Измерьте теплоемкость пробирки.

Методику измерений и расчетов предложите самостоятельно. Кратко ее опишите, приведите расчетные формулы, результаты измерений и расчетов.

Соберите установку: Пробирку закрепите в лапке штатива и поместите внутрь мензурки, термометр поместите в пробирку, пространство между стенками пробирки и мензурки закройте ватой. Горячую воду необходимо заливать в мензурку, холодную - в пробирку.

Уровень воды в мензурке должен находиться ниже дна пробирки на расстоянии примерно равным 4-5 см. Пробирка погружена в мензурку как можно глубже. В пробирку наливайте одно и тоже количество холодной воды, заполняя ее примерно на три четверти.

При проведении измерений стремитесь, чтобы холодная вода была как можно холоднее, но содержала льда.

Для уменьшения теплопотерь заверните мензурку в фольгу, но так, чтобы вам был виден уровень воды.

1.2 Залейте в мензурку горячую воду (предварительно измерив ее температуру), в пробирку – холодную. Измерьте зависимость температуры воды в пробирке от времени $t_1(\tau)$. Измерьте температуру воды в мензурке после окончания измерений зависимости

- 1.3 Проведите аналогичные измерения зависимости температуры воды в пробирке от времени $t_2(\tau)$ только добавив в горячую воду немного подсолнечного масла (примерно 0,5 см по уровню).
- 1.4 На одном бланке постройте графики полученных зависимостей температуры воды в пробирке от времени.

Часть 2. Расчетная.

- 2.1 Используя полученные экспериментальные данные, рассчитайте какая доля (в процентах) теплоты передана пробирке посредством испарения воды в мензурке.
- 2.2 Оцените какая масса воды сконденсировалась на пробирке.
- 2.3 Постройте график зависимости скорости конденсации воды на пробирке (в граммах, деленных на секунду) от температуры пробирки. Качественно объясните полученную зависимость.

Республиканская физическая олимпиада 2021 год (Заключительный этап)

Экспериментальный тур

11 класс.

- 1. Полный комплект состоит из двух заданий, на выполнение каждого отводится два с половиной часа. Сдавать работу следует после выполнения обоих заданий. Задания могут быть не равноценными, поэтому ознакомьтесь с условиями обеих задач. Для вашего удобства в тексте вопросы, на которые Вы должны ответить, взяты в рамки.
- 2. Ознакомьтесь с перечнем оборудования проверьте его наличие и работоспособность. При отсутствии оборудования или сомнении в его работоспособности немедленно обращайтесь к представителям оргкомитета.
- 3. При оформлении работы каждую задачу и каждую ее часть начните с новой страницы.
- 4. Все графики рекомендуем строить на листе миллиметровой бумаги, выданном для выполнения каждого задания. Обязательно пронумеруйте и озаглавьте все построенные графики.
- 5. Подписывать рабочие страницы и графики запрещается.
- 6. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, калькулятор.
- 7. Со всеми вопросами, связанными с условиями задач (но не с их решениями), обращайтесь к организаторам.

Вам необходимо самостоятельно собирать и настраивать экспериментальные установки. Если в условии задачи не приведены схемы установок, то в решении приведите их, укажите, какие величины и как вы измеряли.

Погрешности следует оценивать только в тех пунктах, где указано в условии задачи.

Желаем успехов в выполнении данных заданий!

Данный комплект заданий содержит:

- титульный лист (стр. 1);
- условия двух заданий (стр. 2-5).

Задача 11-1. Время удара

<u>Приборы и оборудование</u>: Два металлических шарика; два цилиндра; нить; штатив с двумя лапками; штангенциркуль; источник напряжения 1,5 В; мультиметр; конденсатор емкости $C = 1000 \text{мк} \Phi$; постоянный резистор; ключ электрический; соединительные провода.

В данной работе вам необходимо разработать методику измерения очень малых времен – времен удара металлического шарика о закрепленный металлический цилиндр.

Основная идея этого метода заключается в изменении напряжения на конденсаторе за время столкновения шарика с цилиндром. Старайтесь, чтобы скорости шариков в момент удара оставались примерно одинаковыми.

Вам предстоит самостоятельно (с помощью незначительных подсказок) разрабатывать схемы проведения измерений.

Оценивать погрешности в данной работе не требуется! Тем не менее, стремитесь к тому, чтобы эти погрешности были минимальны. Результаты измерений представьте в наглядной графической форме.

Задание 1.

- 1.1 Используя выданное оборудование, измерьте внутреннее сопротивление r и ЭДС источника напряжения (гальванического элемента) ε .
- 1.2 Используя выданное оборудование, измерьте внутреннее сопротивление вольтметра R_V в использованном вами диапазоне измерения напряжений.

Приведите схемы измерений, расчетные формулы, результаты измерений и расчетов.

 $\underline{\textit{Подсказка 1.}}$ При разрядке конденсатора через резистор сопротивления R, зависимость напряжения на конденсаторе от времени описывается функцией

$$U = U_0 \exp\left(-\frac{t}{RC}\right). \tag{1}$$

Впрочем, вы можете обойтись и без этой формулы, рассматривая изменение напряжения ΔU за малый промежуток времени Δt .

Задание 2.

Если конденсатор подключить к источнику напряжения, через цепь, которая замыкается только в момент удара шарика, то напряжение на конденсаторе будет изменяться скачками при каждом ударе.

- 2.1 Приведите электрическую схему, позволяющую измерять напряжение на конденсаторе в зависимости от числа ударов шарика о цилиндр. Предусмотрите в этой схеме возможность быстрой разрядки конденсатора в произвольный момент времени.
- 2.2 Пусть ЭДС источника равна U_0 , а напряжение на конденсаторе после n ударов равно U_n . Считая, что время удара τ мало по сравнению с характерным временем разрядки конденсатора RC, найдите формулу для напряжения на конденсаторе после очередного удара U_{n+1} .
- 2.3 Считая, что изначально конденсатор не заряжен, получите зависимость напряжения на конденсаторе от числа ударов.

Для экспериментальных исследований в данной части используйте алюминиевый (белый) цилиндр.

- 2.4 Проведите измерения зависимости напряжения на конденсаторе от числа ударов шарика о цилиндр. Измерения проведите для двух шариков разных диаметров.
- 2.5 Представьте полученные зависимости в графической форме, так, чтобы ваша зависимость была близка к линейной и позволяла определить время соударения.
- 2.6 Рассчитайте времена столкновения шариков с цилиндром.
- 2.7 Рассчитайте отношение времен столкновения шариков разных диаметров. Сравните это отношение с отношением диаметров шариков.
- 2.8 Проведите оценку скорости упругих волн в металле.

Подсказка 2.

Конечно, для стабилизации параметров удара шарик надо подвесить на нитях. Для этого используйте бифилярный подвес: подвешивайте шарик на двух нитях, образующих небольшой угол между собой. Для получения надежных результатов начальный угол отклонения нитей подвеса должен быть постоянным (словить шарик после удара не сложно).

Задание 3.

- 3.1. Измерьте времена столкновения шариков с латунным (желтым) цилиндром.
- 3.2 Сравните полученные значения с результатами, полученными в предыдущей части, дайте качественное описание полученных значений.

Задача 11-2. Свойства растворов

Изучение физических свойств растворов имеет большую практическую значимость, поэтому давно и постоянно привлекает внимание исследователей. В данной работе мы призываем вас присоединиться к этим ученым — вы должны экспериментально исследовать свойства растворов глицерина в воде.

<u>Приборы и оборудование</u>: глицерин (только 50 мл), вода (в неограниченном количестве); мензурка, шприц с делениями, лазер с блоком питания, экран, линейка измерительная, пластилин, трубочка для коктейля, небольшой болт в качестве груза. посуда одноразовая для жидкостей, палочка для перемешивания растворов, салфетки для соблюдения чистоты.

Количество глицерина ограничено, поэтому продумайте последовательность выполнения работы, прежде чем растворять глицерин в воде!

- 1. Измерьте зависимость плотности раствора от концентрации глицерина.
- 2. Постройте график полученной зависимости.
- **3.** Приведите эмпирическую (основанную на экспериментальных данных) формулу, описывающую данную зависимость.
- **4.** Считая, что при смешивании жидкостей объем раствора равен сумме объемов смешиваемых жидкостей, рассчитайте теоретически зависимость плотности раствора от его концентрации.
- **5.** Проверьте (двумя способами), выполняется ли высказанное в предыдущем пункте предположение об объемах.

Примечания.

1. Под концентрацией раствора понимается объемная концентрация: отношение объема чистого глицерина к сумме объемов чистой воды и чистого глицерина

$$c = rac{V_{\it глицерина}}{V_{\it глицерина} + V_{\it воды}}$$
 .

- 2. Продумайте последовательность приготовления растворов, стремитесь, что бы их концентрации менялись достаточно равномерно в максимально возможном диапазоне. Кратко опишите вашу методику приготовления растворов известных концентраций.
- 3. Для измерения плотности раствора изготовьте самостоятельно ареометр, использую трубочку для коктейля, груз и пластилин. Укажите, что вы измеряли и как рассчитывали плотность по результатам измерений.
- 4. Плотность воды считайте известной и равной $\rho_0 = 1{,}00\frac{\varepsilon}{c{\it M}^2}$.
 - 6. Измерьте зависимость показателя преломления раствора от его концентрации.
 - 7. Постройте график полученной зависимости.
 - **8.** Приведите эмпирическую (основанную на экспериментальных данных) формулу, описывающую данную зависимость.
 - 9. Постройте график зависимости показателя преломления раствора от его плотности.
 - 10. Будет ли подобная зависимость выполняться для растворов других веществ?

Примечания.

Для измерения показателя преломления рекомендуем использовать теорию радуги. Если сферическую (или цилиндрическую каплю) осветить широким параллельным пучком света,

то в лучах отраженных от задней стороны капли наблюдается резкая граница, так как существует максимальный угол отклонения θ

Показатель преломления чистой воды равен $n_0 = 1,33$, а максимальный угол отклонения $\theta_0 = 42,1^{\circ}$

При малом изменении показателя преломления этот угол изменяется в соответствии с формулой

$$\frac{\Delta\theta}{\Delta n} = -\frac{2}{n} \sqrt{\frac{4-n^2}{n^2-1}} \ .$$

Для освещения мензурки рекомендуем сделать лазерный пучок максимально широким. Не забудьте привести схему вашей экспериментальной установки, укажите ее характеристики, приведите результаты прямых измерения и расчетов по ним.