

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 05-103391

(43)Date of publication of application : 23.04.1993

(51)Int.Cl. H04R 3/12
H04R 1/40

(21)Application number : 03-258910 (71)Applicant : MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing : 07.10.1991 (72)Inventor : TANAKA TSUNEO
SATO KAZUHIDE

(54) DIRECTIVITY-CONTROLLED LOUDSPEAKER SYSTEM

(57)Abstract:

PURPOSE: To provide an excellent directivity-controlled loudspeaker system by providing plural loudspeaker units arranged in nearly a line or plane and devices which input signals to which a prescribed load function is applied to the units.

CONSTITUTION: In case loudspeaker units 1 are linearly arranged at regular intervals of, for example, 15cm, amplifiers 2 are provided to each loudspeaker pair at the same distance from the center and input level (gain) setters 3 are connected to a signal source 4. In addition, the equation shown in the figure is used as the load function applied to the input level of each unit 1.

When the function is set so that the function can become the cosine function of $n=1$, the frequency characteristic

in the service area becomes flat and, in addition, the side lobe outside the service area becomes lower. The value of the (n) is not restricted to '1', but can be set to an arbitrary positive number. Therefore, when such a load function is applied that the level at its central section is higher and level at its peripheral section is lower, the contribution from the speaker unit at the peripheral section becomes lower.

$$E_1 = E_0 \cos^n \left(\frac{\pi y}{2l} \right) \quad n > 0$$

E₁: 中心から i番目のスピーカユニットへの入力レベル

E₀: 中心のスピーカユニットへの入力レベル

2l : スピーカシステムの全幅

y : 中心から i番目のスピーカユニットの位置

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (J P)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-103391

(43)公開日 平成5年(1993)4月23日

(51)Int.Cl.⁵

H04R 3/12
1/40

識別記号

府内整理番号

Z 8622-5H
310 8946-5H

F I

技術表示箇所

(21)出願番号

特願平3-258910

(22)出願日

平成3年(1991)10月7日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 田中 恒雄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 佐藤 和栄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鏡治 明 (外2名)

(54)【発明の名称】指向性制御スピーカシステム

(57)【要約】

【目的】サービスエリア内の周波数特性が平坦で、かつサービスエリア外でサイドローブの小さい急峻な減衰特性をもつ指向性制御スピーカシステムを提供することを目的とする。

【構成】複数のスピーカユニット1に所定の荷重関数を掛けた信号を信号源4から入力するための入力レベル設定器3を有し、荷重関数としては余弦関数、円関数、ベッセル関数などのうち一つの関数を用いた。

1 スピーカユニット

2 アンプ

3 入力レベル設定器

【特許請求の範囲】

【請求項1】 ほぼ等間隔で複数のスピーカユニットを配置し、上記スピーカユニットをほぼ同心円状の複数のチャンネルに分割し、各チャンネルに所定の荷重関数をかけた信号を入力するためのレベル設定器とを有し、各チャンネルへの入力レベルが中央部ほど高く周辺部ほど低

$$E_i = E_0 \cos^n \left(\frac{\pi y_i}{21} \right) \quad n > 0$$

E_i : 中心から i 番目のスピーカユニットへの入力レベル

E_0 : 中心のスピーカユニットへの入力レベル

21 : スピーカシステムの全幅

y_i : 中心から i 番目のスピーカユニットの座標

で表わされるような請求項1記載の指向性制御スピーカシステム。

【請求項3】 複数のスピーカユニットに入力する信号にかける荷重関数が

【数2】

$$E_i = E_0 \left(1 - \left(\frac{y_i}{1} \right)^m \right)^n \quad m > 0 \quad n > 0$$

で表わされるような請求項1記載の指向性制御スピーカシステム。

【請求項4】 複数のスピーカユニットに入力する信号にかける荷重関数が(数2)で表わされ、かつ $m=1$ または 2 のいずれかの数値と、 $N=1, 2, 3, \dots$ のいずれかの値とした請求項1記載の指向性制御スピーカシステム。

【請求項5】 複数のスピーカユニットに入力する信号にかける荷重関数が

【数3】

$$E_i = E_0 J_0 \left(\alpha \frac{y_i}{2m+1} \right) \quad n=0, 1, 2, \dots$$

$$J_0(\alpha_m) = 0$$

$$\alpha_1 = 2.405$$

$$\alpha_2 = 5.520$$

$$\alpha_3 = 8.654$$

で表わされるような請求項1記載の指向性制御スピーカシステム。

【請求項6】 ほぼ等間隔に配置された複数のスピーカユニットを複数のチャンネルに分割し、各チャンネルへの入力レベルのうち最も小さなレベルが最も大きなレベルに対して20%を上限とするように配された指向性制御スピーカシステム。

【発明の詳細な説明】

【0001】

くなるように荷重関数の値を設定してなる指向性制御スピーカシステム。

【請求項2】 複数のスピーカユニットに入力する信号にかける荷重関数が

【数1】

【産業上の利用分野】 本発明は、特にサービスエリア内の周波数特性が平坦で、かつサービスエリア外のサイドロープは小さくした指向性制御スピーカシステムに関する。

【0002】

20 【従来の技術】 近年、美術館やショールームなどにおいて、展示物を見ている人にだけその説明が聞こえるようにしたいというように、音を限定された領域にだけ伝えたいという要求は極めて大きなものがあった。従来そのようなスピーカとしては、ホーンスピーカを用いる方法、パラメトリックスピーカを用いる方法、トーンゾイレスピーカのようなフェーズドアレイスピーカを用いる方法などがあった。

【0003】 ところで、実際の使用においては、指向性を単に鋭くするだけではサービスエリアが狭くなり、多勢の受聴者にサービスすることができない。そのためにはサービスエリア内ではできるだけ均一に、かつサービスエリア外では急峻な減衰を示す音圧分布をもつスピーカシステムが求められている。

【0004】 以下に従来の指向性制御スピーカシステムについて図面を用いて説明する。図5では口径8cmのスピーカユニット1を12個、間隔1.5cmで直線上にアレイ状配置したトーンゾイレ方式の例である(図では5個を示す)。実際の使用条件を考慮し、スピーカシステムが高さ3mの天井面にとりつけられていて、その下を受聴者が通過するものとし、指向性として受聴者の耳の高さにおける水平面(x-y平面)での音圧分布を考える。これらのスピーカユニットに同相同レベルの信号を入力した場合のy軸方向の指向特性を図6に示す。

【0005】 つぎに、帯域分割された数組のスピーカユニットを用いたスピーカシステムについて図7を用いて説明する。4個のスピーカユニットを外側の2個の間隔をd、内側の2個の間隔をd/4になるように配置したとき、距離dを波長とする周波数fcに対してfc/2~2fcの帯域においてサイドロープのない滑らかな指向特性が得られることが知られている。たとえば、2個のスピーカユ

ニットを15cm間隔で設置したときの指向特性は図8のようになり、1.25kHzにおいては図6で示したトーンゾイレ方式に比べて小型で鋭い指向性を得ることができた。

【0006】

【発明が解決しようとする課題】しかしながら上記従来構成のトーンゾイレ方式のスピーカシステムでは図6に示すように、大きさの割に鋭い指向性が得られず、サービスエリア外の音圧レベルが十分にさがらないという問題点があった。一方、帯域分割された数組のスピーカユニットを用いる方式では、図8に示すように低域では小型で鋭い指向性が得られるが高域では大きなサイドローブが発生する。また帯域分割するためのネットワークによる位相変化によって指向特性が変化してしまうなどという問題点を有していた。

【0007】本発明は上記従来の問題点を解決するもので、小型でかつサービスエリア内の周波数特性が平坦で、しかもサービスエリア外ではサイドローブの小さな指向性制御スピーカシステムを提供することを目的とする。

【0008】

【課題を解決するための手段】上記目的を達成するため本発明の指向性制御スピーカシステムは、複数のスピーカユニットと、それらに中央部ほど大きく、周辺部ほど

$$E_i = E_0 \cos^n \left(\frac{\pi y_i}{21} \right) \quad n > 0$$

E_i :中心から i 番目のスピーカユニットへの入力レベル

E_0 :中心のスピーカユニットへの入力レベル

21:スピーカシステムの全幅

y_i :中心から i 番目のスピーカユニットの座標

【0013】ここで、 $n=1$ の余弦関数となるように設定した場合の指向特性を図2に示す。スピーカシステムの全幅21は図7の場合と同じであるが、サービスエリア内の周波数特性は平坦で、しかもサービスエリア外のサイドローブのレベルは小さい。なお、 n は1に限らず任意の正の数であればよい。

【0014】(実施例2)以下の実施例はすべてスピーカユニット1の配列は第1の実施例と同じものとし、ただ各スピーカユニット1への信号入力レベルに加える荷重関数を異なるものとしている。第2の実施例として荷重関数を(数5)に示す式とする。

【0015】

【数5】

$$E_i = E_0 \left(1 - \left(\frac{y_i}{1} \right)^m \right)^N \quad m > 0 \quad N > 0$$

【0016】ここで、 $m=2$ 、 $N=1$ の場合の指向特性を図3に示す。第1の実施例の余弦関数の場合よりも高周波におけるサイドローブがさらに小さく滑らかな減衰

ど小さくなるような荷重関数をかけた信号を入力するようにした構成を有している。

【0009】

【作用】本発明は上記した構成によって、空間のある点における音圧は各スピーカユニットからの音の合成によって求められるので、各スピーカユニットに中央部ほど大きく周辺部ほど小さくなるような荷重関数をかけた信号を入力し、それぞれの音圧分布を求めた結果、従来よりも小型でかつサービスエリア内の周波数特性が平坦で、しかもサービスエリア外ではサイドローブの小さな指向性を得ることができる。

【0010】

【実施例】(実施例1)以下、本発明の実施例について図1を用いて説明する。

【0011】図1に示すように、スピーカユニット1を、たとえば15cm間隔で12本が直線状に配列して設けられている(5本のみ図示する)。中心から等距離にある一対のスピーカユニットごとにアンプ2を設け、入力レベル(ゲイン)設定器3を信号ソース4に接続している。ここで、各スピーカユニットへの入力レベルに加える荷重関数を(数4)に示す式とする。

【0012】

【数4】

特性となっている。なお、 m 、 N は任意の正の数であればよい。

【0017】(実施例3)第3の実施例について荷重関数を(数6)に示す式とする。

【0018】

【数6】

$$E_i = E_0 J_0 \left(\alpha \frac{y_i}{2n+1} \right) \quad n=0, 1, 2, \dots$$

$$J_0(\alpha_n) = 0$$

$$\alpha_1 = 2.405$$

$$\alpha_2 = 5.520$$

$$\alpha_3 = 8.854$$

【0019】ここで、第1種ベッセル関数において $J_0(\alpha_n) = 0$ の場合を用いた。この場合も第1の実施例の場合よりサイドローブの小さな滑らかな減衰特性が得られた。なお、一般に $J_0(\alpha_{n+1}) = 0$ の場合も同様

の結果が得られる。

【0020】(実施例4)第4の実施例について図4を用いて説明する。本実施例は30個のスピーカユニットを15cm間隔で直線状に配置したもので、各ユニットには(数5)で $m=2$ 、 $N=3$ の場合の荷重関数をかけた信号を入力している。各ユニットへの入力レベルを(表1)の特性No. Aに示す値とする。

【0021】

【表1】

特性No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	1.00	0.97	0.92	0.85	0.77	0.67	0.56	0.45	0.34	0.24	0.16	0.09	0.04	0.01
B	1.00	0.97	0.92	0.85	0.77	0.67	0.56	0.45	0.34	0.24	0.16	0	0	0
C	1.00	0.97	0.92	0.85	0.77	0.67	0.56	0.45	0.34	0	0	0	0	0
D	1.00	0.97	0.92	0.85	0.77	0.67	0.56	0.45	0.34	0	0	0	0	0

【0022】上記のように中央部のレベルが高く周辺部のレベルが低い荷重関数の場合には周辺部のスピーカユニットからの寄与は小さくなる。そこで周辺部のスピーカユニットへの入力を0にした場合(スピーカシステムの全幅が小さくなつたことに相当する)の指向特性の変化を図4に示す。図4の特性曲線A~Dは各ユニットへの入力レベルが(表1)の特性No. A~Dに示す値の場合である。この結果から入力レベルが中央部のユニットに対して0.2以下の場合はそのユニットの入力レベル

10 を0にしてもサイドロープは-25dB以下に抑えることができ、指向特性に与える影響は小さいが、0.2以上の場合にはサービスエリアも小さくなりサイドロープも大きくなる。

【0023】なお、上記実施例ではすべて直線状に配置した場合について説明したが、平面状に配置した場合についても同様の効果が得られることは当然である。

【0024】

【発明の効果】以上の実施例から明らかなように本発明は、ほぼ直線状または平面状に配置された複数のスピーカユニットと、これらのスピーカユニットに所定の荷重関数をかけた信号を入力する手段とを備えることにより、サービスエリア内の周波数特性を平坦にし、かつサービスエリア外でのサイドロープの小さな急峻な減衰特性をもつ優れた指向性制御スピーカシステムを実現することができるものである。

【図面の簡単な説明】

【図1】本発明の第1の実施例の指向性制御スピーカシステムのブロック図

【図2】同実施例の指向特性図

30 【図3】同第2の実施例の指向特性図

【図4】同第4の実施例の指向特性図

【図5】従来のトーンゾイレ方式スピーカシステムの構成図

【図6】同方式の指向特性図

【図7】従来の指向性制御スピーカシステムの他の例の構成図

【図8】2個のスピーカユニットを用いた場合の指向特性図

【符号の説明】

40 1 スピーカユニット

2 アンプ

3 入力レベル設定器

4 信号源

【図1】

【図3】

【図6】

【図2】

【図4】

【図5】

【図 7】

【図 8】

