Worksheet 6 Review 2

Hyungmo Gu

April 13, 2020

Question 1

a. $\forall x \in \mathbb{N}, P(123) \land P(x) \Rightarrow x \leq 123$

Correct Solution:

$$P(123) \land (\forall x \in \mathbb{N}, P(x) \Rightarrow x \le 123)$$

b. $IsCD(x, y, d): d \mid x \wedge d \mid y$, where $x, y, d \in \mathbb{Z}$

 $IsGCD(x, y, d): \forall n \in \mathbb{N}, IsCD(x, y, n) \Rightarrow \exists d \in \mathbb{N}, IsCD(x, y, d) \land n \leq d$

Correct Solution:

 $IsCD(x, y, d): d \mid x \wedge d \mid y$, where $x, y, d \in \mathbb{Z}$

 $IsGCD(x,y,d): (x=0 \land y=0 \Rightarrow d=0) \land (x \neq 0 \land y \neq 0 \Rightarrow IsCD(x,y,d) \land (\forall d_1 \in \mathbb{Z}, IsCD(x,y,d_1) \Rightarrow d_1 \leq d)), \text{ where } x,y,d \in \mathbb{Z}$

Notes:

- Realized the definition of *IsGCD* extends from previous question
- Noticed professor defines if...else conditions in a predicate logic the following way

(case $1 \Rightarrow$ statement 1) \land (case $2 \Rightarrow$ statement 2)

• Hm... I feel puzzled about \land operator used in between cases (i.e. $(x = 0 \land y = 0 \Rightarrow d = 0) \land (x \neq 0...)$). At glimpse, I felt \lor is more appropriate since if this case is not true, then we want other case should be true.

c. Statement: $IsCD(x,0,x) \land (\forall d_1 \in \mathbb{Z}, IsCD(x,0,d_1) \Rightarrow d_1 \leq x)$

Proof. Let $x \in \mathbb{Z}^+$

We need to prove x is a common divisor to both 0 and x, and we need to prove all common divisors d_1 of 0 and x is less than or equal to x.

First, we need to show there is $k_1 \in \mathbb{Z}$ such that $x = k_1 \cdot x$ and we need to show $k_2 \in \mathbb{Z}$ such that $0 = k_2 \cdot x$.

Let $k_1 = 1$ and $k_2 = 0$.

Then, we can calculate that

$$x = 1 \cdot x = k_1 \cdot x \tag{1}$$

$$0 = 0 \cdot x = k_2 \cdot x \tag{2}$$

Now, we need to show all integers d_1 that is a common divisor to both 0 and x is less than equal to x.

Let $d_1 \in \mathbb{Z}$ and assume $d_1 \mid x$ and $d_1 \mid 0$.

We need to show $d_1 \leq x$.

The hint tells us

$$\forall n \in \mathbb{Z}^+, \, \forall d \in \mathbb{Z}, \, d \mid n \Rightarrow d \le n \tag{3}$$

Because we know from assumption that $d_1 \mid x$, by using the hint, we can conclude

$$d_1 \le x \tag{4}$$

Pseudoproof:

Let $x \in \mathbb{Z}^+$

We need to prove x is a common divisor to both 0 and x, and we need to prove all common divisors d_1 of 0 and x is less than or equal to x.

1. Show IsCD(x, 0, x)

We need to show there is $k_1 \in \mathbb{Z}$ such that $x = k_1 \cdot x$ and we need to show $k_2 \in \mathbb{Z}$ such that $0 = k_2 \cdot x$.

Let $k_1 = 1$ and $k_2 = 0$.

• Show $x = k_1 \cdot x$ and $0 = k_2 \cdot 0$

Then, we can calculate that

$$x = 1 \cdot x = k_1 \cdot x \tag{5}$$

$$0 = 0 \cdot x = k_2 \cdot x \tag{6}$$

2. Show $\forall d_1 \in \mathbb{Z}, IsCD(x, 0, d_1) \Rightarrow d_1 \leq x$

Let $d_1 \in \mathbb{Z}$ and assume $d_1 \mid x$ and $d_1 \mid 0$.

We need to show $d_1 \leq x$.

1. Use fact ' $\forall n \in \mathbb{Z}^+$, $\forall d \in \mathbb{Z}$, $d \mid n \Rightarrow d \leq n$ ' to show $d_1 \leq x$.

The hint tells us

$$\forall n \in \mathbb{Z}^+, \, \forall d \in \mathbb{Z}, \, d \mid n \Rightarrow d \le n \tag{7}$$

Because we know from assumption that $d_1 \mid x$, by using the hint, we can conclude

$$d_1 \le x \tag{8}$$

d. $\forall a, b \in \mathbb{Z}, (a \neq 0) \lor (b \neq 0) \Rightarrow \exists p, q \in \mathbb{Z}, pa + qb = gcd(a, b)$

Question 2

a. Proof. Assume Even(n). That is $\exists k \in \mathbb{Z}, n = 2k$.

We need to show there is an integer k_1 such that $n^2 - 3n = 2k_1$.

Let
$$k_1 = (2k^2 - 3k)$$
.

The assumption tells us n = 2k.

Then, by using this fact, we can write

$$n^2 - 3n = (2k)^2 - 3(2k) \tag{1}$$

$$=4k^2 - 6k\tag{2}$$

$$= 2(2k^2 - 3k) (3)$$

$$=2k_1\tag{4}$$

Pseudoproof:

Assume Even(n). That is $\exists k \in \mathbb{Z}, n = 2k$.

We need to show there is an integer k_1 such that $n^2 - 3n = 2k_1$.

Let $k_1 = (2k^2 - 3k)$.

• Show $n^2 - 3n = 2k_1$ by using assumption.

The assumption tells us n = 2k.

Then, by using this fact, we can write

$$n^2 - 3n = (2k)^2 - 3(2k) (5)$$

$$=4k^2 - 6k\tag{6}$$

$$=2(2k^2 - 3k) (7)$$

$$=2k_1\tag{8}$$

b. *Proof.* In this case, assume Odd(n). That is $\exists k \in \mathbb{Z}, n = 2k - 1$.

We need to show there is an integer k_1 such that $n^2 - 3n = 2k_1$.

Let
$$k_1 = (2k^2 - 5k + 2)$$
.

The assumption tells us n = 2k - 1.

Then, by using this fact, we can write

$$n^{2} - 3n = (2k - 1)^{2} - 3(2k - 1)$$
(1)

$$=4k^2 - 4k + 1 - 6k + 3\tag{2}$$

$$=4k^2 - 10k + 4\tag{3}$$

$$=2(2k^2 - 5k + 2) \tag{4}$$

$$=2k_1\tag{5}$$

Pseudoproof:

Assume Odd(n). That is $\exists k \in \mathbb{Z}, n = 2k - 1$.

We need to show there is an integer k_1 such that $n^2 - 3n = 2k_1$.

Let $k_1 = (2k^2 - 5k + 2)$.

• Show $n^2 - 3n = 2k_1$ by using assumption.

The assumption tells us n = 2k - 1.

Then, by using this fact, we can write

$$n^{2} - 3n = (2k - 1)^{2} - 3(2k - 1)$$
(6)

$$=4k^2 - 4k + 1 - 6k + 3\tag{7}$$

$$=4k^2 - 10k + 4 \tag{8}$$

$$=2(2k^2 - 5k + 2) (9)$$

$$=2k_1\tag{10}$$

Notes:

 $\bullet\,$ Noticed professor uses predicate logic when expanding definition in assumption.

Assume that n is odd, i.e. $\exists k \in \mathbb{Z}, n = 2k - 1$.

Question 3

a. $\forall a,b \in \mathbb{N}, Prime(b) \Rightarrow 1 \geq gcd(a,b) \vee gcd(a,b) \geq b$

b. Statement (Contrapositive): $\forall a, b \in \mathbb{N}, Prime(b) \Rightarrow 1 \geq gcd(a, b) \vee gcd(a, b) \geq b$

Proof. Let $a, b \in \mathbb{N}$. Assume Prime(b). That is, $p > 1 \land (\forall d \in \mathbb{N}, d \mid p \Rightarrow d = 1 \lor d = p)$.

We will prove $1 \ge gcd(a, b)$ or $gcd(a, b) \ge b$ using proof by cases.

Case 1 $(b \mid a)$:

In this case, assume b divides a. That is, $\exists k \in \mathbb{Z}, a = kb$.

We need to prove $b \ge gcd(a, b)$.

First, we need to show b is the greatest common divisor to both a and b. That is, $IsCD(a,b,b) \wedge (\forall d_1 \in \mathbb{Z}, IsCD(a,b,d_1) \Rightarrow d_1 \leq b))$

Starting with showing IsCD(a, b, b), the assumption tells us $b \mid a$, and we know $b \mid b$.

Then, it follows from these facts that b is a common divisor to both a and b.

Next for showing $(\forall d_1 \in \mathbb{Z}, IsCD(a, b, d_1) \Rightarrow d_1 \leq b)$, the definition of prime number tells us b has two non-negative divisors 1 and b.

Because we know $1 \mid a$ and $b \mid a$, we can conclude 1 and b are the only non-negative common divisor to both a and b.

Since 1 < b, b = b and all other common divisors are less than 0, we can conclude all common divisors to both a and b are less than or equal to b.

Now, we need to show $b \leq \gcd(a, b)$.

The hint from question 1.c tells us

$$\forall n \in \mathbb{Z}^+, \ \forall d \in \mathbb{Z}, \ d \mid n \Rightarrow d \le n \tag{1}$$

Since we know b divides b, by using this fact, we can write

$$b \le b \tag{2}$$

Because we know b = gcd(a, b), we can conclude

$$b \le \gcd(a, b) \tag{3}$$

Case 2 $(b \nmid a)$:

In this case, assume b doesn't divide a.

We need to prove $1 \ge \gcd(a, b)$.

First, we need to show 1 is the greatest common divisor to both a and b.

The assumption tells us b is a prime number, and so, from definition, we know b has two non-negative divisors 1 and b.

Because we know $b \nmid a$ from assumption and $1 \mid a$, we can conclude 1 is the only non-negative common divisor to both a and b.

Because we know all common divisors to both a and b are less than or equal to 1, we can conclude gcd(a,b) = 1.

Now, we need to show $1 \ge \gcd(a, b)$.

The hint from question 1.c tells us

$$\forall n \in \mathbb{Z}^+, \, \forall d \in \mathbb{Z}, \, d \mid n \Rightarrow d \le n \tag{4}$$

Since we know 1 divides 1, by using this fact, we can write

$$1 \ge 1 \tag{5}$$

Because we know 1 = gcd(a, b), we can conclude

$$1 \ge \gcd(a, b) \tag{6}$$

Pseudoproof:

Let $a, b \in \mathbb{N}$. Assume Prime(b). That is, $p > 1 \land (\forall d \in \mathbb{N}, d \mid p \Rightarrow d = 1 \lor d = p)$.

We will prove $1 \ge \gcd(a, b)$ or $\gcd(a, b) \ge b$ using proof by cases.

Case 1 $(b \mid a)$:

In this case, assume b divides a. That is, $\exists k \in \mathbb{Z}, a = kb$.

We need to prove $gcd(a, b) \geq b$.

1. Show IsGCD(a,b,b), i.e. $IsCD(a,b,b) \land (\forall d_1 \in \mathbb{Z}, \ IsCD(a,b,d_1) \Rightarrow d_1 \leq b))$

First, we need to show b is the greatest common divisor to both a and b. That is, $IsCD(a, b, b) \land (\forall d_1 \in \mathbb{Z}, IsCD(a, b, d_1) \Rightarrow d_1 \leq b))$

• Show IsCD(a, b, b)

Starting with showing IsCD(a, b, b), the assumption tells us $b \mid a$, and we know $b \mid b$.

Then, it follows from these facts that b is a common divisor to both a and b.

• Show $\forall d_1 \in \mathbb{Z}, \ IsCD(a, b, d_1) \Rightarrow d_1 \leq b$

Next for showing $(\forall d_1 \in \mathbb{Z}, IsCD(a, b, d_1) \Rightarrow d_1 \leq b)$, the definition of prime number tells us b has two non-negative divisors 1 and b.

Because we know $1 \mid a$ and $b \mid a$, we can conclude 1 and b are the only non-negative common divisor to both a and b.

Since 1 < b, b = b and all other common divisors are less than 0, we can conclude all common divisors to both a and b are less than or equal to b.

2. Show $b \leq \gcd(a, b)$ by using the fact $b \mid b$ and $\forall n \in \mathbb{Z}^+, \forall d \in \mathbb{Z}, d \mid n \Rightarrow d \leq n$.

Now, we need to show $b \leq \gcd(a, b)$.

The hint from question 1.c tells us

$$\forall n \in \mathbb{Z}^+, \ \forall d \in \mathbb{Z}, \ d \mid n \Rightarrow d \le n \tag{7}$$

Since we know b divides b, by using this fact, we can write

$$b \le b \tag{8}$$

Because we know b = gcd(a, b), we can conclude

$$b \le \gcd(a, b) \tag{9}$$

Case 2 $(b \nmid a)$:

In this case, assume b doesn't divide a.

We need to prove $1 \ge gcd(a, b)$.

1. Show IsGCD(a, b, 1)

First, we need to show 1 is the greatest common divisor to both a and b.

• Find all possible common divisors to both a and b.

The assumption tells us b is a prime number, and so, from definition, we know b has two non-negative divisors 1 and b.

• Show 1 is the only common divisor to a and b.

Because we know $b \nmid a$ from assumption and $1 \mid a$, we can conclude 1 is the only non-negative common divisor to both a and b.

• Conclude gcd(a, b) = 1.

Because we know all common divisors to both a and b are less than or equal to 1, we can conclude gcd(a, b) = 1.

2. Show $gcd(a,b) \leq 1$ by using the fact $\forall n \in \mathbb{Z}^+, \forall d \in \mathbb{Z}, d \mid n \Rightarrow d \leq n$.

Now, we need to show $1 \ge \gcd(a, b)$.

The hint from question 1.c tells us

$$\forall n \in \mathbb{Z}^+, \ \forall d \in \mathbb{Z}, \ d \mid n \Rightarrow d \le n \tag{10}$$

Since we know 1 divides 1, by using this fact, we can write

$$1 \ge 1 \tag{11}$$

Because we know 1 = gcd(a, b), we can conclude

$$1 \ge \gcd(a, b) \tag{12}$$

Notes:

- $Prime(p): p > 1 \land (\forall d \in \mathbb{N}, d \mid p \Rightarrow d = 1 \lor d = p)$
- I struggled so much with this problem (4+ hours).
- I struggled when trying to make the logic to flow in nested 'shows' in a 'show' (see case 1). Some of the thoughts I had are 'should I use or here? Next? Finally? So?' what phrases do I need to use when proving statements with ∧ operators? Should I use sub-headers like 'part 1' or 'part 2'? But I am already using 'case 1' and 'case 2' up here.
- I re-read and re-read the paragraphs.
- The whole process feels like trying to write an essay with disconnected thoughts. I am trying to make it flow, but I don't know how to make them connect and flow.
- What strategies are available to improve the flow of logics in nested shows?
- I tried to bundle up phrases and logics, because I felt like I was losing control.