Categorical data and regression

Frank Edwards

Categorical data

Categorical data falls into a fixed set of categories. It may be *unordered*, meaning that there is no inherent ranking of categories, or it may be *ordered*. Ordered categorical data has an explicit hierarchical ranking of values.

Are these variables ordered or unordered?

· Candidate choice in a primary election

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move
- · Cause of death

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move
- · Cause of death
- Opinions on a political issua on a thermometer / Likert scale
 (e.g. Strongly oppose, oppose, neutral, support, strongly support)

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move
- · Cause of death
- Opinions on a political issua on a thermometer / Likert scale
 (e.g. Strongly oppose, oppose, neutral, support, strongly support)
- · Graduate program to attend

- · Candidate choice in a primary election
- · Zip code for people choosing a place to move
- · Cause of death
- Opinions on a political issua on a thermometer / Likert scale
 (e.g. Strongly oppose, oppose, neutral, support, strongly support)
- · Graduate program to attend
- · Ranking of graduate program

Visualzing categorical data

```
data(iris)
```

Crosstabs are often the best

```
table(iris$Species)
```

```
## setosa versicolor virginica
## 50 50 50
```

Visualzing categorical data (cont.)

Visualizing categorical data - frequency barplots

```
fe <- read_csv("./data/fe_1_25_19.csv")
ggplot(fe, aes(x = `Cause of death`)) + geom_bar() + coord_flip()</pre>
```


Visualizing categorical data, facets

```
ggplot(iris, aes(x = Petal.Length)) + geom_histogram() + facet_wrap(~Species)
```


Visualizing categorical data, facets

Visualizing categorical data, facets

```
ggplot(iris, aes(x = Petal.Length, y = Petal.Width)) + geom_point() + facet_wrap(~Species)
```


Visualizing categorical data, color

ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Species)) + geom_point()

Predicting categorical outcomes, logit approach

We can use logistic regression to predict the likelihood that a categorical outcome is equal to one value relative to all others. For K categories, we need to estimate K models with this approach.

```
m_setosa <- glm(Species == "setosa" - Petal.Width + Petal.Length, data = iris,
    family = "binomial")

m_versicolor <- glm(Species == "versicolor" - Petal.Width + Petal.Length, data = iris,
    family = "binomial")

m_virginica <- glm(Species == "virginica" - Petal.Width + Petal.Length, data = iris,
    family = "binomial")</pre>
```

Check the model results

```
library(broom)
tidy(m_setosa)
```

```
## # A tibble: 3 x 5

## term estimate std.error statistic p.value

## <a href="mailto:chr">chr</a>
<a
```

Can we predict species?

```
preds_setosa <- data.frame(pred = predict(m_setosa, type = "response"), species = "setosa")
preds_versicolor <- data.frame(pred = predict(m_versicolor, type = "response"),
    species = "versicolor")
preds_virginica <- data.frame(pred = predict(m_virginica, type = "response"),
    species = "virginica")
preds_out <- bind_rows(preds_setosa, preds_versicolor, preds_virginica)
ggplot(preds_out, aes(x = pred)) + geom_histogram() + facet_wrap(-species)</pre>
```


Any problems with this approach?

```
p_total <- preds_setosa$pred + preds_versicolor$pred + preds_virginica$pred
summary(p_total)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1621 0.5437 1.1650 1.0000 1.2590 1.7871
```

qplot(p_total)

Problems with this approach

1. We discard information by reducing outcome to binary

Problems with this approach

- 1. We discard information by reducing outcome to binary
- 2. Because we are separately estimating models, nothing constrains $\sum p = 1$

Problems with this approach

- 1. We discard information by reducing outcome to binary
- 2. Because we are separately estimating models, nothing constrains $\sum p=1$
- 3. This can lead to conflicting classifications

An alternative for unordered categorical data

Multinomial logistic regression is a GLM that models the log odds of a categorical outcome as a function of a linear combination of a set of predictors.

An alternative for unordered categorical data

Multinomial logistic regression is a GLM that models the log odds of a categorical outcome as a function of a linear combination of a set of predictors.

In R, we use the nnet package and the multinom function.

Multinomial logistic regression: basics

For a categorical outcome with K categories, estimate K-1 models where 1,2,3 stand in for membership in group 1, 2, 3:

$$\log \frac{Pr(y_i = 1)}{Pr(y_i = K)} = \beta x_i$$

$$\log \frac{Pr(y_i = 2)}{Pr(y_i = K)} = \beta x_i$$

$$\dots$$

$$\log \frac{Pr(y_i = K - 1)}{Pr(y_i = K)} = \beta x_i$$

Key assumtion: Independence of irrelevant alternatives. Odds of choice do not depend on the presence or absence of other alternatives (i.e. car vs bus or car vs red bus vs blue bus)

Implementation

- Choose a reference category. This is arbitrary, but changes the interpretation. Remember that we're modeling the log odds of membership in one group relative to another.
- 2. Estimate a model
- 3. Interpret results

Implementation

```
lapply(df, unique)
## $fatherOccup
## [1] "farm"
                                                  "professional"
                   "unskilled"
                                    "skilled"
##
## $sonOccup
## [1] "farm"
               "unskilled"
                                    "skilled"
                                                  "professional"
##
## $black
## [1] "no" "yes"
##
## $nonintact
## [1] "no" "yes"
## reference category for outcome
df <- df %>% mutate(sonOccup = factor(sonOccup, levels = c("unskilled", "farm",
    "skilled", "professional")))
```

Let's predict social mobility

```
library(nnet)
library(broom)
m1 <- multinom(sonOccup ~ fatherOccup + black, data = df)
## # weights: 24 (15 variable)
## initial value 29260.515080
## iter 10 value 24541.608966
## iter 20 value 23838.133949
## final value 23832.906648
## converged
```

Let's interpret this

Same approach as a logit model

- 1. Log odds (β) of option 1 vs reference
- 2. Odds ratio (e^{β}) of option 1 vs reference
- 3. Probability of outcome

Let's interpret this

Same approach as a logit model

- 1. Log odds (β) of option 1 vs reference
- 2. Odds ratio (e^{β}) of option 1 vs reference
- 3. Probability of outcome

However, now we effectively have coefficients for K-1 models to look at.

Interpreting the model (Log odds and odds ratio)

```
tidy(m1) %% select(y.level, term, estimate, std.error) %% mutate(OR = exp(estimate))
```

```
## # A tibble: 15 x 5
##
     v.level
                                        estimate std error
                                                              ΠR
                 term
     <chr>>
##
                 <chr>>
                                           <db1>
                                                    <dbl> <dbl>
   1 farm
                 (Intercept)
                                         0.558
                                                   0.0483
                                                            1.75
   2 farm
                 fatherOccupprofessional
                                         0.152
                                                   0.141
                                                           1.16
   3 farm
                 fatherOccupskilled
                                         0.0856
                                                   0.137 1.09
  4 farm
                 fatherOccupunskilled
                                         0.0672
                                                   0.141
                                                           1.07
   5 farm
                 blackyes
                                          0.326
                                                   0.136
                                                           1.39
   6 skilled
                 (Intercept)
                                          1.09
                                                   0.0385
                                                            2.98
   7 skilled
                 fatherOccupprofessional
                                                            4.46
                                          1.50
                                                   0.0602
   8 skilled
                 fatherOccupskilled
                                          1.40
                                                   0.0509
                                                            4.07
   9 skilled
                 fatherOccupunskilled
                                          0.936
                                                   0.0510
                                                            2.55
## 10 skilled
                 blackves
                                          0.484
                                                   0.0597
                                                           1.62
## 11 professional (Intercept)
                                          0.877
                                                   0.0410
                                                            2.40
## 12 professional fatherOccupprofessional
                                          5.26
                                                   0.0574 192.
## 13 professional fatherOccupskilled
                                          2.14
                                                   0.0522
                                                            8.52
## 14 professional fatherOccupunskilled
                                          1.15
                                                   0.0534
                                                           3.16
## 15 professional blackyes
                                          0.339
                                                   0.0649
                                                           1.40
```

Interpreting the model (probability)

```
preds <- as.data.frame(predict(m1, type = "probs"))</pre>
df %>% bind_cols(preds) %>% select(-nonintact, -sonOccup) %>% distinct()
## # A tibble: 8 x 6
    fatherOccup black unskilled farm skilled professional
##
    <chr>
                 <chr>
                          <dbl> <dbl>
                                        <dbl>
                                                      <db1>
##
## 1 farm
                          0.284 0.158
                                         0.309
                                                      0.249
                 no
## 2 farm
               yes
                          0.498 0.0907 0.263
                                                      0.148
                                         0.333
## 3 unskilled
              no
                          0.326 0.0122
                                                      0.329
## 4 unskilled
              yes
                          0.541 0.00661
                                        0.267
                                                      0.185
## 5 skilled
                          0.224 0.0107
                                         0.344
                                                      0.422
                 no
## 6 skilled
                 yes
                          0.418 0.00650
                                        0.310
                                                      0.266
## 7 professional no
                          0.136 0.0116
                                          0.223
                                                      0.629
## 8 professional yes
                          0.296 0.00821
                                          0.234
                                                      0.462
```

Comparing models

```
m2 <- multinom(sonOccup ~ fatherOccup + black + nonintact, data = df)
## # weights: 28 (18 variable)
## initial value 29260.515080
## iter 10 value 24606.268291
## iter 20 value 23855.389636
## final value 23823.503155
## converged
BIC(m1)
## [1] 47815.17
BIC(m2)
## [1] 47826.24
```

Going further

- For ordered categorical variables, consider using ordinal regression methods.
- polr in the MASS package estimates proportional odds logistic regression models for ordered categorical varibles