An Introduction to Linear Algebra & Quantum Mechanics

Welcome!

What do you think a vector is?

A set is can be thought of as a collection of objects.

1.8 **Definition** list, length

Suppose n is a nonnegative integer. A **list** of **length** n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\ldots,x_n).$$

Two lists are equal if and only if they have the same length and the same elements in the same order.

F denotes either the set of complex numbers (C) or real numbers (R)
F is filled with scalars (fancy word for 'numbers')

1.10 **Definition** \mathbf{F}^n

 \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \{(x_1, \dots, x_n) : x_i \in \mathbf{F} \text{ for } j = 1, \dots, n\}.$$

For $(x_1, ..., x_n) \in \mathbf{F}^n$ and $j \in \{1, ..., n\}$, we say that x_j is the jth coordinate of $(x_1, ..., x_n)$.

1.12 **Definition** addition in \mathbf{F}^n

Addition in \mathbf{F}^n is defined by adding corresponding coordinates:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

1.13 Commutativity of addition in \mathbf{F}^n

If
$$x, y \in \mathbf{F}^n$$
, then $x + y = y + x$.

In math we like to use definitions to prove things... Definitions → Statements → Proofs

A statement can be either true or false, we use proofs to determine the validity of a statement

1.13 Commutativity of addition in \mathbf{F}^n

If
$$x, y \in \mathbf{F}^n$$
, then $x + y = y + x$.

Proof Suppose
$$x = (x_1, ..., x_n)$$
 and $y = (y_1, ..., y_n)$. Then
$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n)$$

$$= (x_1 + y_1, ..., x_n + y_n)$$

$$= (y_1 + x_1, ..., y_n + x_n)$$

$$= (y_1, ..., y_n) + (x_1, ..., x_n)$$

$$= y + x,$$

1.14 **Definition** 0

Let 0 denote the list of length n whose coordinates are all 0:

$$0 = (0, \ldots, 0).$$

1.16 **Definition** additive inverse in \mathbf{F}^n

For $x \in \mathbf{F}^n$, the *additive inverse* of x, denoted -x, is the vector $-x \in \mathbf{F}^n$ such that

$$x + (-x) = 0.$$

In other words, if $x = (x_1, \dots, x_n)$, then $-x = (-x_1, \dots, -x_n)$.

1.17 **Definition** scalar multiplication in \mathbb{F}^n

The **product** of a number λ and a vector in \mathbf{F}^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n);$$

here $\lambda \in \mathbf{F}$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$.

Vectors and Vector Spaces

1.19 **Definition** vector space

A **vector space** is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

$$u + v = v + u$$
 for all $u, v \in V$:

associativity

$$(u + v) + w = u + (v + w)$$
 and $(ab)v = a(bv)$ for all $u, v, w \in V$ and all $a, b \in \mathbb{F}$:

additive identity

there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;

additive inverse

for every $v \in V$, there exists $w \in V$ such that v + w = 0;

multiplicative identity

$$1v = v$$
 for all $v \in V$;

distributive properties

$$a(u + v) = au + av$$
 and $(a + b)v = av + bv$ for all $a, b \in \mathbb{F}$ and all $u, v \in V$.

.18 **Definition** addition, scalar multiplication

- An *addition* on a set V is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V$.
- A *scalar multiplication* on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$.

This property is commonly known as being 'closed' under addition and scalar multiplication.

Subspaces

1.32 **Definition** subspace

A subset U of V is called a *subspace* of V if U is also a vector space (using the same addition and scalar multiplication as on V).

I told you what a set was... what do you think a subset is?

Quantum Mechanics

In quantum mechanics the state of a particle is represented as a vector which lives in a complex Hilbert space (infinite-dimensional vector space)

Vectors in Dirac Notation

In quantum we commonly use Dirac Notation, where vectors such as v and u above are represented as kets $v \to |\psi\rangle$.

A special property of Hilbert spaces is that they are L^2 spaces

L^2 Spaces

 L^2 defines the set of all square integrable functions on a specific interval [a, b].

$$L^{2}(a,b) := \left\{ f(x) : \int_{a}^{b} |f(x)|^{2} dx < \infty \right\}$$

For physicists Hilbert spaces are L^2 spaces, by defintion. But mathemathicians can refer to them as separate things.

Quantum Mechanics

Why are there complex numbers in quantum mechanics?

Schrodinger's Eqn

H represents the Hamiltonian which represents the total energy of the system

$$i\hbar\frac{\partial}{\partial t}|\Psi\rangle=\hat{H}|\Psi\rangle$$

There is a real-valued counterpart:

$$\hbar^2 \frac{\partial^2 \psi}{\partial t^2} = -H^2 \psi$$

The complex version is much simpler to calculate

In general there isn't a conclusive answer

Linear Combinations

2.3 **Definition** linear combination

A *linear combination* of a list v_1, \ldots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

where $a_1, \ldots, a_m \in \mathbf{F}$.

2.17 **Definition** linearly independent

- A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- The empty list () is also declared to be linearly independent.

2.5 **Definition** span

The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the **span** of v_1, \ldots, v_m , denoted span (v_1, \ldots, v_m) . In other words,

$$span(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1, ..., a_m \in \mathbb{F}\}.$$

The span of the empty list () is defined to be $\{0\}$.

Bases and Dimensionality

2.27 **Definition** basis

A *basis* of V is a list of vectors in V that is linearly independent and spans V.

Before thinking about dimensionality let's consider an important question:

Do you think that all basis of a specific vector space have the same length?

Bases and Dimensionality

2.35 Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length.

2.23 Length of linearly independent list \leq length of spanning list

In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

Proof Suppose V is finite-dimensional. Let B_1 and B_2 be two bases of V. Then B_1 is linearly independent in V and B_2 spans V, so the length of B_1 is at most the length of B_2 (by 2.23). Interchanging the roles of B_1 and B_2 , we also see that the length of B_2 is at most the length of B_1 . Thus the length of B_1 equals the length of B_2 , as desired.

Bases and Dimensionality

2.36 **Definition** dimension, $\dim V$

- The *dimension* of a finite-dimensional vector space is the length of any basis of the vector space.
- The dimension of V (if V is finite-dimensional) is denoted by dim V.

Basis in Dirac Notation

In a n-dimensional Hilbert space, we can write any ket $|\psi\rangle$ in terms of $|n\rangle$ other kets (the basis vectors) multiplied by specific scalars.

$$|\psi\rangle = a_1|1\rangle + a_2|2\rangle + a_3|3\rangle + \dots + a_n|n\rangle$$

ASIDE: We can also add different kets. Assuming $|\psi_1\rangle = a_1|1\rangle + \cdots + a_n|n\rangle$ and $|\psi_2\rangle = b_1|1\rangle + \cdots + b_n|n\rangle$ then:

$$|\psi_1\rangle + |\psi_2\rangle = (a_1 + b_1)|1\rangle + \dots + (a_n + b_n)|n\rangle$$

Linear Maps & Matrices

3.2 **Definition** *linear map*

A *linear map* from V to W is a function $T: V \to W$ with the following properties:

additivity

$$T(u + v) = Tu + Tv$$
 for all $u, v \in V$;

homogeneity

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$.

Linear Maps & Matrices

Vectors and states can also be represented as matrices...

What do you think a matrix is?

Linear Maps and Matrices

3.32 **Definition** matrix of a linear map, $\mathcal{M}(T)$

Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_m is a basis of W. The *matrix of* T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

If the bases are not clear from the context, then the notation $\mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m))$ is used.

3.62 **Definition** matrix of a vector, $\mathcal{M}(v)$

Suppose $v \in V$ and v_1, \ldots, v_n is a basis of V. The *matrix of* v with respect to this basis is the n-by-1 matrix

$$\mathcal{M}(v) = \left(\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right),$$

where c_1, \ldots, c_n are the scalars such that

$$v = c_1 v_1 + \dots + c_n v_n.$$

Inner Product Spaces

Hilbert spaces are inner product spaces.

6.3 **Definition** inner product

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

positivity

$$\langle v, v \rangle \ge 0$$
 for all $v \in V$;

definiteness

$$\langle v, v \rangle = 0$$
 if and only if $v = 0$;

additivity in first slot

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$
 for all $u, v, w \in V$;

homogeneity in first slot

$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 for all $\lambda \in \mathbb{F}$ and all $u, v \in V$;

conjugate symmetry

$$\langle u, v \rangle = \langle v, u \rangle$$
 for all $u, v \in V$.

6.5 **Definition** inner product space

An *inner product space* is a vector space V along with an inner product on V.

Inner Product Spaces

We can define inner products in any way we wish as long as the conditions previously are satisfied.

• The Euclidean Inner Product (Dot Product).

$$\langle (v_1, \cdots, v_n), (u_1, \cdots, u_n) \rangle = v_1 \bar{u}_1 + \cdots + v_n \bar{u}_n$$

• Continuous Real Valued Funtions.

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

• On $\mathcal{P}(\mathbb{R})$ (the set of all polynomails with real coefficients).

$$\langle p, q \rangle = \int_0^\infty p(x)q(x)e^{-x}dx$$

Observables

In QM the things that you can measure (position, momentum, velocity, etc) are denoted as observables.

Observables are represented as Hermitian operators!

Defintion: Operator

A linear map from a vector space to itself is called an **operator**.

Defintion: Adjoint

Suppose $T \in \mathcal{L}(V, W)$. The adjoint of T is a function $T^{\dagger}: W \to V$ such that:

$$\langle Tv, w \rangle = \langle v, T^{\dagger}w \rangle$$

for every $v \in V$ and $w \in W$.

Defintion: Hermitian

An operator is called **hermitian** if $T = T^{\dagger}$.

Eigenvalues and Eigenvectors

Defintion: Eigenvalues/Eigenvectors

Suppose $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is called an **eigenvalue** of T if there exists a $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$. And v is the corresponding **eigenvector**.

One of the postulates of QM....

If you measure an observable \hat{Q} on a particle in some state $|\Psi\rangle$ you will get one of the eigenvalues of \hat{Q} .

Observables as Hermitian Operators

A complicated question that is worth asking...

Why are observables represented as Hermitian operators?

Observables as Hermitian Operators

Let \mathcal{H} be a hilbert space and $T \in \mathcal{L}(\mathcal{H})$ be an Hermitian operator. Then all the eigenvalues of T are real.

When you measure something you want to get a real number!

Observables as Hermitian

Eigenvalues of Hermitian Operators are Real

Let \mathcal{H} be a hilbert space and $T \in \mathcal{L}(\mathcal{H})$ be an Hermitian operator. Then all the eigenvalues of T are real.

Proof. Let λ be an eigenvalue of T corresponding with eigenvector $v \in \mathcal{H}$. Then $Tv = \lambda v$. Consider the following:

$$\begin{split} \lambda \langle v, v \rangle &= \langle \lambda v, v \rangle \\ &= \langle T v, v \rangle \\ &= \langle v, T v \rangle \\ &= \overline{\langle T v, v \rangle} \\ &= \overline{\langle \lambda v, v \rangle} \\ &= \overline{\lambda} \langle v, v \rangle \end{split}$$

The only way $\lambda = \overline{\lambda}$ is if $\lambda \in \mathbb{R}$.

Observables

The term 'complete' means that any wavefunction can be represented in terms of this basis.

Defintion: Orthogonal

Two vectors $u, v \in V$ are called **orthogonal** if $\langle u, v \rangle = 0$.

Defintion: Norm

For $v \in V$ the **norm** of v, denoted as ||v||, is defined by:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Defintion: Orthonormal

A list of vectors is called **orthonormal** if each vector in the list has norm 1 and is orthogonal to all other vectors in the list.

Defintion: Orthonormal Basis

An **orthonormal basis** of V is an orthonormal list of vectors in V that is also a basis of V.

Probabilities

In quantum things exist in spectrum of probability...

The probability of measuring a specific value for an observable is given by the Born Rule.

Born Rule

If a system is in a state $|\Psi\rangle$ (assuming pure state) then the probability \mathbb{P} that an eigenvalue λ_i of q_i is found when \hat{Q} is measured is:

$$\mathbb{P}(\lambda_i) = |(q_i, \Psi)|^2$$

Born Rule

Born Rule

If a system is in a state $|\Psi\rangle$ (assuming pure state) then the probability $\mathbb P$ that an eigenvalue λ_i of q_i is found when $\hat Q$ is measured is:

$$\mathbb{P}(\lambda_i) = |(q_i, \Psi)|^2$$

Let's proceed to break this down. Consider again our previous representation of $|\Psi\rangle$ in the \hat{Q} basis:

$$|\Psi\rangle = c_1|q_1\rangle + \dots + c_n|q_n\rangle$$

Assume that this state is properly normalized such that $\sum_i |c_i|^2 = 1$. Then the Born rule is basically saying that:

$$\begin{split} \mathbb{P}(\lambda_i) &= |(q_i, \Psi)|^2 \\ &= \left| \left\langle q_i \middle| c_1 | q_1 \right\rangle + \dots + c_n | q_n \right\rangle \right\rangle^2 \\ &= |c_1 \langle q_i | q_1 \rangle + \dots + c_i \langle q_i | q_i \rangle + \dots + c_n \langle q_i | q_n \rangle|^2 \\ &= |c_i \langle q_i | q_i \rangle|^2 \quad \text{all } \langle q_i | q_j \rangle = 0 \text{ if } i \neq j \text{ by orthogonality} \\ &= |c_i|^2 \quad \text{by orthonormality } \langle q_1 | q_i \rangle = 1 \end{split}$$

Measurement Collapse

A common somewhat unexplained phenomena in QM is the measurement collapse of every quantum system.

$$|\Psi_{\text{before}}\rangle = c_1|q_1\rangle + \cdots + c_n|q_n\rangle \Longrightarrow |\Psi_{\text{after}}\rangle = |q_j\rangle$$

So if you were to measure Q again you'd obtain the eigenvalue of q_j.with:

100% certainty.