

Leakage Bounds for Gaussian Side Channels

Thomas Unterluggauer¹, Thomas Korak¹, Stefan Mangard¹, Robert Schilling¹, Luca Benini², Frank K. Gürkaynak², and Michael Muehlberghuber²,

- ¹ IAIK, Graz University of Technology
- ² Integrated Systems Laboratory, ETH Zürich
- 14. November 2017

Content

- Side-channel attacks threaten embedded devices
- Leakage-resilient schemes offer bounded leakage
- Challenge: specify leakage of underlying primitive
- This work: new approach to quantify leakage under a single data input
 - Mutual information in multivariate leakages: capacity of n-to-m communication channels
 - Channel capacity: (multivariate) SNR in m POIs
 - Averaging N traces: SNR increases $\sim N^m$
 - Practical verification: KECCAK-f[400] on ASIC

Motivation

- Key update inherently prevents DPA
- Total leakage is bounded given λ -bit leakage of F
- Practical question: what is the value of λ ?

Leakage Quantification

- Attacker tries to learn x from l_x
- lacktriangle Quantify information about x in l_x
 - Mutual information
 - $\bullet MI(X, L_x) = H[X] H[X|L_x]$

Channel Model

- Channel H: leakage behavior of implementation
- Linear $m \times n$ channel matrix H:
 - $l_x = \mathbf{H}\mathbf{x} + \nu$
- Secret state x: n × 1 vector (for n-bit state)
- Leakage trace l_x : $m \times 1$ vector (for m POIs)
- Noise ν : $m \times 1$ vector

Channel Capacity

- Maximize mutual information between x and l_x
 - Channel capacity $C = \max_{p(X)} MI(X, L_x)$
- Similar to Multi-Input Multi-Output (MIMO) channels
 - Wireless communication: n senders, m receivers

Capacity of MIMO Channels

Capacity of MIMO channel (fixed H):

$$C = \max_{\Sigma_{\mathbf{x}}: tr(\Sigma_{\mathbf{x}}) = P} \log_2 |\mathbf{I}_m + \mathbf{H}\Sigma_{\mathbf{x}}\mathbf{H}^H|$$

- $n \times n$ signal covariance matrix $\Sigma_{\mathbf{x}}$
- Gaussian white noise with $\sigma_{\nu}^2 = 1$
- Side channels:
 - No power constraint *P*
 - Real values, e.g., power, no complex numbers
 - Noise correlations and different variances

Capacity of Gaussian Side Channels (1)

Capacity of Gaussian Side Channels

$$C = \max_{p(X)} MI(X, L_x) = \frac{1}{2} \log_2 |\mathbf{I}_m + \Sigma_{\nu}^{-1} \mathbf{H} \Sigma_{\mathbf{x}} \mathbf{H}^H|.$$

• $m \times m$ noise covariance matrix Σ_{ν}

Capacity of Gaussian Side Channels (2)

$$C = \frac{1}{2} \log_2 |\mathbf{I}_m + \Sigma_{\nu}^{-1} \mathbf{H} \Sigma_{\mathbf{x}} \mathbf{H}^H|$$

- Channel matrix H is typically unknown...
- Profile side channel: multivar. Gaussian distribution
 - Templates: $(\mu_i, \Sigma_{\nu,i})$ for all possible states \mathbf{x}_i
- Independent noise: estimate Σ_{ν} from $\Sigma_{\nu,i}$
- Means μ_i give $\Sigma_{\mathbf{y}}$ (corresponding to $\mathbf{y} = \mathbf{H}\mathbf{x}$)

Leakage from Gaussian Side Channels

- Channel capacity: $C=\frac{1}{2}\log_2|\mathbf{I}_m+\Sigma_{\nu}^{-1}\Sigma_{\mathbf{y}}|$
- Multivariate SNR: $\Sigma_{\nu}^{-1}\Sigma_{\mathbf{y}}$
 - Reflects correlations in signal and noise
 - Device- and measurement-specific
- Univariate leakage:

•
$$C = \frac{1}{2} \log_2 \left(1 + \frac{\sigma_y^2}{\sigma_\nu^2} \right) = \frac{1}{2} \log_2 \left(1 + SNR \right)$$

Averaging Attacker

Averaging Attacker

- Attackers observe the same operation multiple times
 - E.g., decryption of an FPGA bitfile
- lacktriangle Average N leakage traces $\mathbf{l_x}$ to remove noise
 - Noise covariance changes: $\overline{\Sigma}_{\nu} = \frac{1}{N} \Sigma_{\nu}$
 - Channel capacity increases:

$$C = \frac{1}{2} \log_2 \left| \mathbf{I}_m + N \cdot \Sigma_{\nu}^{-1} \Sigma_{\mathbf{y}} \right|$$

Estimated Attack Complexity

- Averaging a large number of traces
- Scalar, single-trace $SNR_m = |\Sigma_{\nu}^{-1}\Sigma_{\mathbf{y}}|$
- Leakage proportional to N^m
- Number of averaged traces N reflects attack complexity
 - Tool for both attackers and designers

Experimental Evaluations

Experimental Evaluations

- Implementation of KECCAK-f[400]-based ISAP
 - Leakage-resilient authenticated encryption
 - Specifies leakage bounds for 128-bit security
- Two kind of evaluations:
 - Verify soundness of leakage bounds
 - Evaluate MI and channel capacity on hardware
 - Estimate security of ISAP implementation

Evaluation Hardware: FULMINE

Methodology

- Creation of multivariate Gaussian power templates
 - 5- and 8-bit parts of 400-bit KECCAK-f[400] state
 - Remaining state held constant
- Training phase: 1400 measurements per class
- Choice of POIs:
 - Points of highest variance
 - Maintain a certain minimum distance
 - Register and combinatorial activity

Capacity and Mutual Information (32 classes)

Capacity and Mutual Information (256 classes)

Security Estimation of ISAP

- Large state size
 - 400-bit KECCAK-f[400] state
 - Template building infeasible
- $SNR_m = |\Sigma_{\nu}^{-1}\Sigma_{\mathbf{y}}|$ is relevant for leakage quantification
 - SNR_m determined for 5- and 8-bit templates
 - ullet Estimation for larger state: security margin γ

$$N = \left(\frac{2^{2S} - 1}{\gamma \cdot SNR_m}\right)^{1/m}$$

Security of ISAP on FULMINE ($\gamma=100$)

Conclusion

- Leakage quantification is of ongoing interest
- Method to quantify the leakage from Gaussian side channels
 - Capacity of n-to-m communication channels
- Leakage bounded by physical property: SNR
- Averaging N traces: SNR increases $\sim N^m$
 - Tool to estimate the attack complexity
- Practical verification on ASIC: KECCAK-f[400]

Leakage Bounds for Gaussian Side Channels

Thomas Unterluggauer¹, Thomas Korak¹, Stefan Mangard¹, Robert Schilling¹, Luca Benini², Frank K. Gürkaynak², and Michael Muehlberghuber²,

- ¹ IAIK, Graz University of Technology
- ² Integrated Systems Laboratory, ETH Zürich
- 14. November 2017