ME 233 Advanced Control II

Lecture 2 Introduction to Probability Theory

(ME233 Class Notes pp. PR1-PR3)

Outline

- Sample Space and Events
- Probability function
- Discrete Random Variables

Probability mass function, expectation and variance

Sample Space and Events

Assume:

- We do an experiment many times.
 - Each time we do an experiment we call that a trial

 The outcome of the experiment may be different at each trial.

 ω_i : The ith possible outcome of the experiment

Sample Space and Events

Sample Space Ω :

The space which contains all possible outcomes of an experiment.

$$\Omega = \{\omega_1, \, \omega_2, \, \cdots, \, w_n\}$$

 ω_i : The ith possible outcome of the experiment

Each outcome is an element of S_2

Example: Dice

Experiment:

A situation whose *outcome* depends on chance

- throwing a die once

Sample Space Ω

The set of <u>all possible</u> **outcomes** of an experiment

$$\Omega = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Events

Event S_i :

Is a subset of the union of the sample space $\,\Omega\,$ and the empty set $\,\phi\,$

If a sample space has $\,n\,$ outcomes:

$$\Omega = \{\omega_1, \, \omega_2, \, \cdots, \, w_n\}$$

There are 2^n events:

$$\mathcal{S} = \{S_1, \cdots, S_{2^n}\}$$

Probability - events

Experiment: throwing a die once

$$\Omega = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Outcomes: elements of the sample space S

Events: Are <u>subsets</u> of the sample space S

An event occurs if any of the outcomes in that event occurs.

Empty subsets are null or impossible events

Probability - events

Experiment: throwing a die once

$$\Omega = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

Some events:

• The event E of observing an even number of dots:

$$E = \left\{ \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \right\}$$

• The event O of observing an odd number of dots:

$$O = \{ \bullet, \bullet, \bullet \}$$

Example: throwing a pair of dice (one red and one blue)

the sample space has 36 outcomes:

• The event L of obtaining the number **7** is

$$L = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

Loccurs if any of the outcomes in Loccurs.

Union, Complement and Intersection

For a sample space $\Omega = \{\omega_1, \omega_2, \cdots, w_n\}$ And the set of all events $S = \{S_1, \cdots, S_{2^n}\}$

Union of two events (or):

$$S_i \cup S_j = \{\omega_m \mid \omega_m \in S_i \text{ or } \omega_m \in S_j\}$$

Intersection of two events (and):

$$S_i \cap S_j = \{\omega_m \mid \omega_m \in S_i \text{ and } \omega_m \in S_j\}$$

• Complement of an event (not):

Union, Complement and Intersection

Union of two events:

$$S_i \cup S_j$$

• Intersection of two events:

$$S_i \cap S_j$$

Complement of an event:

$$\backslash S_i = S_i^c$$

Complement

• The <u>complement</u> of an event A, denoted by A^c , is the set of outcomes that are not in A

• A^c occurring means that A does not occur

$$A^c = \{\omega \mid \omega \in \Omega \text{ and } \omega \notin A\}$$

Intersection of two events

• The <u>intersection</u> of two events A and B, denoted by $A \cap B$, is the set of outcomes that are in A, <u>and</u> B.

• If the event $A \cap B$ occurs, then <u>both</u> A and B occur

• Events A and B are <u>mutually exclusive</u> if they cannot both occur at the same time, i.e. if

$$A \cap B = \emptyset$$

Example of Intersection of two events

Experiment: throwing of a dice once

$$\Omega = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

• Events E and O are mutually exclusive

$$E = \{ \mathbf{C}, \mathbf{C}, \mathbf{C} \}$$
 $O = \{ \mathbf{C}, \mathbf{C}, \mathbf{C} \}$

$$E \cap O = \emptyset$$

Union of two events

- The <u>union</u> of two events A and B, denoted by
- $A \cup B$, is the set of outcomes that are in A, or B, or both

• If the event $A \cup B$ occurs, then either A or B or both occur

Probability function

We now consider the probability that a certain event occurs.

Recall: An event occurs if any of the outcomes in that event occurs.

The probability of event $oldsymbol{A}$ will be denoted by

Probability

A number between 0 and 1, inclusive, that indicates **how likely an event is to occur**.

- An event with probability of 0 is a <u>null event.</u>
- An event with probability of 1 is a certain event.

- Probability of event A is denoted as P(A).
- The closer P(A) to 1, the more likely is A to happen.

Intuitive Notion of Probability

The probability of event $oldsymbol{A}$ is

$$P(A) = \frac{\text{Possible outcomes associated with } A}{\text{Total possible outcomes}}$$

(Assumes each outcome is equally likely)

$$0 \leq P(A) \leq 1$$

Assigning Probability - Frequentist approach

An experiment is repeated n times under essentially identical conditions

• if the event $oldsymbol{A}$ occurs $oldsymbol{m}$ times and $oldsymbol{n}$ is <u>large</u>

$$P(A) \approx \frac{m}{n}$$

Dice example

Experiment: throwing a fair die once

$$\Omega = \{ \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0} \}$$

- $P(\Omega) = 1$
- P(1) = 1/6, P(3) = 1/6, P(6) = 1/6
- $P(even\ number) = 3/6 = 1/2$
- $P(odd\ number) = 3/6 = 1/2$

Example: poker

Example: In poker you are dealt 5 cards from a deck of 52

- What is the probability of being dealt four of a kind?
 - e.g. 4 aces or four kings, and so fourth?

$$P(\text{four of a kind}) = ?$$

Example: poker

Solution:

- There are only 48 possible hands containing 4 aces, another 48 containing 4 kings, etc.
- 2. Thus, there are 13 x 48 possible "four of a kind" hands.
- 3. The possible number of hands is obtained from the combination formula for "52 things taken 5 at a time":

total possible outcomes:
$$\binom{52}{5} = \frac{52!}{5!(52-5)!} = 2,598,960$$

4. Thus,
$$P(\text{four of a kind}) = \frac{13 \times 48}{2,598,960} = 0.00024$$

Probability Space

The probability space is the triple:

$$(\Omega, \mathcal{S}, P)$$

Where

- Ω is the sample space
- \mathcal{S} the set of all possible events
- $P: \mathcal{S} \rightarrow [0, 1]$ is the probability function

Probability function

Probability function: $P: \mathcal{S} \rightarrow [0, 1]$

Satisfies 3 axioms:

1.
$$P(S_i) \geq 0, \quad \forall S_i \in \mathcal{S}$$

2.
$$P(\Omega) = 1$$

3.
$$P(S_i \cup S_j) = P(S_i) + P(S_j) \text{ if } S_i \cap S_j = \emptyset$$
 where $S_i, S_j \in \mathcal{S}$

Complement

• The <u>complement</u> of an event A, denoted by A^c , is the set of outcomes that are not in A

• A^c occurring means that A does not occur

$$A^c = \{\omega \mid \omega \in \Omega \text{ and } \omega \notin A\}$$

$$P(A^c) = 1 - P(A)$$

Independent Events

Two events are <u>independent</u> if

$$P(A \cap B) = P(A) \times P(B)$$

 Intuitively, two events are independent if the events do not influence each other:

 Event A occurring does not affect the chances of B occurring, and vice versa.

Example of independence

Experiment: throwing a pair of dice (one red and one blue)

36 possible outcomes

The probability of throwing a red 1 and a blue 5 is

$$P(1 \cap 5) = 1/36$$

= $1/6 \times 1/6 = P(1) \times P(5)$

Law of Union

Recall: If A and B are mutually exclusive

$$P(A \cup B) = P(A) + P(B)$$

If A and B are not mutually exclusive

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Law of Union

If A and B are not mutually exclusive

Example

Experiment: throwing a pair of dice (one red and one blue)

• P(L) = the probability of obtaining a 7

$$L = \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$$

$$P(L) = P(1,6) + P(2,5) + P(3,4) + P(4,3) + P(5,2) + P(6,1)$$

$$P(L) = 6/36 = 1/6$$

Joint Probability

Let $oldsymbol{A}$ and $oldsymbol{B}$ be two events

$$P(A \cap B)$$

is often called the *joint probability* of A and B

$$P(A)$$
 $P(B)$

are often called the *marginal probabilities* of $oldsymbol{A}$ and $oldsymbol{B}$

Conditional Probability

Let \boldsymbol{A} and \boldsymbol{B} be two events and $P(B) \neq 0$

The conditional probability of event $m{A}$ given that event $m{B}$ has occurred is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' Rule

Let $oldsymbol{A}$ and $oldsymbol{B}$ be two events

$$P(A|B)P(B) = P(B|A)P(A)$$

$$= P(A \cap B)$$

Independence

The following are equivalent:

1. $oldsymbol{A}$ and $oldsymbol{B}$ are independent

2.
$$P(A \cap B) = P(A) P(B)$$

3.
$$P(A|B) = P(A)$$

4.
$$P(B|A) = P(B)$$

Array of Probabilities

Let C and D be two chance experiments.

Set of disjoint events associated with C

$$\mathcal{C} = \{C_1, C_2, \cdots C_m\}$$

Set of disjoint events associated with D

$$\mathcal{D} = \{D_1, D_2, \cdots D_n\}$$

Array of Probabilities

We can construct:

D	Event	Event		Event	Marginal
C	D_1	D_2	•••	D_n	Probabilities
Event C_1	$P(C_1 \cap D_1)$	$P(C_1 \cap D_2)$		$P(C_1 \cap D_n)$	$P(C_1) =$
					$\sum_{i=1} P(C_1 \cap D_i)$
:	ŧ	:	•••	:	:
Event C_m	$P(C_m \cap D_1)$	$P(C_m \cap D_1)$		$P(C_m \cap D_n)$	$P(C_m) =$
					$\sum_{i=1}^n P(C_m \cap D_i)$
Marginal	$P(D_1) = $	$P(D_2) = \frac{m}{m}$			Sum = 1
Probabilities	$\sum_{i=1} P(C_i \cap D_1)$	$\sum_{i=1} P(C_i \cap D_2)$		$\sum_{i=1} P(C_i \cap D_n)$	

There are 4 balls in one jar, 2 balls are red and two balls are black.

 A person can remove a ball from the jar two times, without seeing the balls inside the jar.

What is the probability of removing a red ball after having removing a red ball the first time?

To answer this question, lets build the table of probabilities.

What is the probability of removing a red ball after having removing a red ball the first time?

To answer this question, lets build the table of probabilities.

Labels:

Probability of picking R_1 the first time?

$$P(R_1) = 1/4$$

Probability of picking R_2 with only 3 balls left?

$$P(R_2) = 1/3$$
 (second time)

Probability of picking R_1 the first time and R_2 the second time?

$$P(R_1 \cap R_2) = 1/4 \times 1/3 = 1/12$$

Example: Array of Probabilities

2 pick 1 pick	$R_{\it 1}$	R_2	B_1	B_2	Marginal Probabilities
R_1	0	1/12	1/12	1/12	1/4
R_2	1/12	0	1/12	1/12	1/4
B_1	1/12	1/12	0	1/12	1/4
B_2	1/12	1/12	1/12	0	1/4
Marginal Probabilities	1/4	1/4	1/4	1/4	Sum = 1

Probability of pick red balls consecutively

Probability of event A: picking a red ball the first time and a red ball the second time?

- Event B: Picking R_1 first and R_2 second
- Event C: Picking R_2 first and R_1 second

Mutually exclusive

events

$$P(A) = P(B \cup C)$$

$$= P(B) + P(C)$$

$$= \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

Example: Array of Probabilities

2 pick 1 pick	Red	Black	Marginal Probabilities
Red	1/6	1/3	1/2
Black	1/3	1/6	1/2
Marginal Probabilities	1/2	1/2	Sum = 1

What is the probability of picking a red ball the second time after having picked a red ball the first time?

$$P(Red_2|Red_1) = \frac{P(Red_2 \cap Red_1)}{P(Red_1)}$$

$$P(Red_2|Red_1) = \frac{1/6}{1/2} = \frac{1}{3}$$

Discrete random variable

Given a sample Space Ω , a random variable X is a function that assigns to each outcome a unique numerical value.

• Example: throwing of a die once

$$\Omega = \{ \mathbf{0}, \mathbf{0}$$

Discrete random variable

• Example: throwing of a die once

$$\Omega = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

• In this case, the random variable X only takes discrete values

$$x_i \in \{1, 2, 3, 4, 5, 6\}$$

• The discrete random variable X is defined by the probability mass function

$$P(x_i) = P(X = x_i)$$
 the probability that, after throwing a die,

the probability that, X will be equal to x_i

Discrete random variable

• For a $\underline{\text{fair die}}$, the probability mass function of the random variable X is

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

the probability mass function satisfies:

$$\sum_{i=1}^{6} P(x_i) = 1$$

Expected value

• For a discrete random variable X taking on the N possible values

$$x_1, x_2, x_3, \dots, x_k, \dots, x_N$$

the $\operatorname{\underline{\mathbf{expected\ value}}}$ or $\operatorname{\underline{\mathbf{mean}}}$ of X is defined by

$$E[X] = m_x = \hat{x} = \sum_{k=1}^{N} x_k P(x_k)$$

$$E[X] = x_1 P(x_1) + x_2 P(x_2) + \dots + x_N P(x_N)$$

Expected value of a function

• For a discrete random variable X taking on the N possible values

$$x_1, x_2, x_3, \dots, x_k, \dots, x_N$$

and the real-valued function f

the **expected value** or **mean** of Y=f(X) is defined by

$$E[Y] = E[f(X)] = \sum_{k=1}^{N} f(x_k)P(x_k)$$

$$E[Y] = f(x_1)P(x_1) + \dots + f(x_N)P(x_N)$$

Expected value

Example: For a **fair dice**,

$$\Omega = \{ \mathbf{...}, \mathbf{...}, \mathbf{...}, \mathbf{...}, \mathbf{...} \}$$

• X takes 6 possible values $x_i = 1, 2, 3, 4, 5, 6$

•
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

the **expected value** or **mean** of X

$$E(X) = m_x = \sum_{k=1}^{6} x_k P(x_k) = \frac{1}{6} \sum_{k=1}^{6} k = \frac{1}{6} 21 = 3.5$$

Variance and standard deviation

• For a discrete random variable X taking on the N possible values

$$x_1,\,x_2,\,x_3,\,\dots,\,x_k,\,...,\,x_N$$
 and a mean $m_X=\hat{x}$

the $\underline{\mathsf{variance}}$ of X is defined by

$$E[(X - m_X)^2] = \sigma_X^2 = \sum_{k=1}^{N} (x_k - m_X)^2 P(x_k)$$

where σ_{x} is the standard deviation of X

Variance and standard deviation

Example: For a <u>fair dice</u>, where $x_i = 1, 2, 3, 4, 5, 6$

has mean $m_x = 3.5$ and $P(x_i) = 1/6$

the variance and standard deviation of X are

$$E[(x-m_x)^2] = \sum_{k=1}^{6} (x_k - 3.5)^2 P(x_k) = \frac{1}{6} \sum_{k=1}^{6} (k - 3.5)^2$$
$$= \frac{1}{6} \Big[(1 - 3.5)^2 + (2 - 3.5)^2 + \dots + (6 - 3.5)^2 \Big] = 2.9167$$

$$\sigma_{x} = \sqrt{E[(X - m_{x})^{2}]} = \sqrt{2.9167} = 1.7078$$

Cumulative Distribution Function

 The <u>cumulative distribution function</u> (CDF) for a discrete random variable X is

$$F_X(x) = P(X \le x)$$

Find index $m{k}$ such that

$$x_k \le x < x_{k+1}$$

$$F_X(x) = \sum_{j=1}^k P(x_j)$$

Cumulative Distribution Function

• The <u>cumulative distribution function</u> (CDF) for a discrete random variable X is

$$F_X(x) = \sum_{j=1}^k P(x_j)$$
 $x_k \le x < x_{k+1}$

Sum of two uniform independent random variables

• Let X and Y be 2 independent random variables with constant probability mass function

• Let
$$Z = X + Y$$

• The probability mass function of Z will not be constant

Experiment: throwing a pair of <u>fair</u> dice (red and blue)

the sample space has 36 outcomes:

each outcome has a 1/36 probability of occurring

• Define the random variable Z associated with the **event** of observing the <u>total</u> number of dots on both dice after each throw

Z = k when the throw results in the number k

number of outcomes

36

Z only takes discrete values

$$z_i \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

probability of each outcome

1/36

we now estimate:

$$Z=2 \rightarrow P(2)=1/36$$
 $Z=7 \rightarrow P(7)=6/36$
 $Z=3 \rightarrow P(3)=2/36$ $Z=12 \rightarrow P(12)=1/36$
 $Z=4 \rightarrow P(4)=3/36$

The **probability mass function** is

$$P(2) = 1/36$$
 $P(5) = 4/36$ $P(8) = 5/36$ $P(11) = 2/36$
 $P(3) = 2/36$ $P(6) = 5/36$ $P(9) = 4/36$ $P(12) = 1/36$
 $P(4) = 3/36$ $P(7) = 6/36$ $P(10) = 3/36$

the probability mass function satisfies:

$$\sum_{k=2}^{12} P(k) = 1$$