Invitation to chat:

Have you made a personal O2 account?

Introduction to

High-Performance Computing (HPC)

Introduction to High Performance Computing and O2 for New Users

HMS Research Computing

(Slides courtesy of Kris Holton & Kathleen Chappell at HMS-RC)

HPC Cluster

- multi-user, shared resource
- lots of nodes = lots of processing capacity + lots of memory
- a system like this requires constant maintenance and upkeep, and there is an associated cost

Wiki page:

https://harvardmed.atlassian.net/wiki/spaces/O2/overview

Tweets by @hms_rc

Θ

HMSResearchComputing @hms_rc

It's cake time for RC -- happy birthday to O2 !!

0 6

Sep 12, 2017

HMSResearchComputing @hms_rc

O2 is officially being launched today as the new RC production HPC cluster!! (thnx beta testers!) Get started at: hmsrc.me/O2docs

O [+

Sep 12, 2017

Welcome to O2!

- One of HMS Research
 Computing's High-Performance
 Compute clusters to enhance the
 compute capacity available to
 HMS Researchers
- Heterogeneous environment of newer, faster cores with high memory allocation to facilitate multi-core and parallelized workflows
- SLURM scheduler to efficiently dispatch jobs

O2 Tech Specs

- 13000+ cores
- 32 cores per node
- 256GiB RAM (memory) per node
- 8 756GiB RAM highmem nodes
- 240+ GPU cards
 - Most GPUs available to Quad researchers only
- RedHat Enterprise Linux
- SLURM job scheduler

2-Factor Authentication

- For logins using WiFi networks other than HMS Private/ Harvard Secure
- Easiest: download Duo app to phone
- Similar to the setup for Harvard Key logins
- Setup details at:

https://harvardmed.atlassian.net/wiki/spaces/O2/pages/1605009747/Two+Factor+Authentication+on+O2

Using O2!

1. Logging in to remote machines (securely)

- When logging in we used the "ssh" command, ssh stands for Secure SHell
- **ssh** is a protocol for data transfer that is secure, i.e the data is encrypted as it travels between your computer and the cluster (remote computer)
- Commonly used commands that use the ssh protocol for data transfer are, scp and sftp

Logging Into O2

Open a terminal

ssh yourHMSaccount@o2.hms.harvard.edu

If outside of "approved" internet sources (HMS Private/Harvard Secure):
 Type 1/2/3 for DUO push/sms/phone

Welcome to O2!

Where are you in O2?

```
mfk8@login01:~$
```

You are logged into a "shell login server",

login01-05. These are not meant for heavy lifting!

```
mfk8@login01:~$ pwd
```

You are in your home directory.

Interactive Sessions

- The login servers are not designed to handle intensive processes, and CPU usage is throttled.
- Start by entering your first job! This will (usually) log you into a "compute node!"

2. Using & installing software

LMOD: Software Modules

- Most "software" on O2 is installed as an environment module.
- LMOD system adds directory paths of software into \$PATH variable, to make sure the program runs without any issues.
- Allows for clean, easy loading, including most dependencies, and switching versions.

LMOD: Software Modules

Most software is compiled against something called "gcc-14.2.0" — so, we need to load that before loading other programs that depend on it.

- \$ module load gcc/14.2.0
- \$ module avail #to see software now available to load
- \$ module spider #verbose list of all software available

Loading/Unloading Modules

Check module status (e.g. the alignment tool bowtie2)

```
$ module list
```

- \$ echo \$PATH
- \$ bowtie2

Load the module

- \$ module load bowtie2/2.5.4
- \$ bowtie2

Which module version is loaded (if at all)?

- \$ which bowtie2
- \$ module list
- \$ echo \$PATH

Loading/Unloading Modules

Need help with the module?

\$ module help bowtie2/2.5.4

Unloading modules

\$ module unload bowtie2/2.5.4

Dump all modules

\$ module purge

3. The Job Scheduler, SLURM

Simple Linux Utility for Resource Management (SLURM)

- Fairly allocates access to resources (computer nodes) to users for some duration of time so they can perform work
- Provides a framework for starting, executing, and monitoring batch jobs
- Manages a queue of pending jobs; ensures that no single user or core monopolizes the cluster

Choosing the proper resources for your job with the appropriate **SBATCH** options

Submitting Jobs

In an "interactive session", programs can be run directly, however your computer will have to remain connected to the cluster for the duration of this run.

```
mfk8@compute-a:~$ bowtie2 -p 4 -x hg19 -1
file1_1.fq -2 file1_2.fq
```

What if you wanted to run the program, close your computer and come back later to check on it?

A script with the required commands can be submitted to O2 (SLURM) using the sbatch command.

mfk8@compute-a:~\$ sbatch mybowtiejob.sh

Creating a job submission script

```
#!/bin/sh

#SBATCH -p short
#SBATCH -t 0-03:00
#SBATCH -c 4
#SBATCH --mem=8G
#SBATCH -0 %j.out
#SBATCH -e %j.err
#SBATCH -J bowtie2_run1
#SBATCH -J mail-type=ALL
#SBATCH --mail-user=mfk8@med.harvard.edu

module load bowtie2/2.5.4
bowtie2 -p 4 -x hg19 -1 file1_1.fq -2 file1_2.fq
```

Save script as myJobScript.run and run it as follows:

\$ sbatch myJobScript.run

**O2 will notify you when the job is done, or if there is an error

Partitions -p

Partition	Priority	Max Runtime	Max Cores	Limits
short	12	12 hours	20	
medium	6	5 days	20	
long	4	30 days	20	
interactive	14	12 hours	20	2 job limit
priority	14	30 days	20	2 job limit
mpi	12	5 days	640	20 core min
highmem	12	5 days	20	
gpu, gpu_quad, gpu_requeue	12	200 GPU hours	34 (total)	420GiB (total)
transfer	1	5 days	4	

Runtime: -t

- -t days-hours:minutes
- t hours:minutes:seconds
- Need to specify how long you estimate your job will run for
- Aim for 125%
- Subject to maximum per partition
- Excessive runlimits (like partition max) take longer to dispatch, and affect fairshare

Cores: -c

- -c X to designate cores: max 20 per job
- -N X to constrain all cores to X nodes
 - Only relevant for MPI partitions
- CPU time: wall time (-t) * (-c) cores used
- Unable to use cores not requested (no overefficient jobs): cgroups constraint
- Adding more cores does not mean jobs will scale linearly with time, and causes longer pend times

Memory: --mem

- Only 1GiB is allocated by default
- --mem XG #total memory over all cores
- --mem-per-cpu XG #total memory per CPU requested, use for MPI
- No unit request (G) defaults to Mebibytes (MiB)
 - 8G ~= 8000

Job Priority

- Dynamically assigned
- Factors contributing: Age, Fairshare, Partition, QOS, Nice
- Fairshare: 0-1 scale
- Check your fairshare:
 - \$ sshare -Uu \$USER
- Check job priority values for your pending jobs:
 - \$ sprio -u \$USER

Managing jobs and getting information about submitted/running jobs

Job Monitoring: Current jobs

- \$ 02squeue
 - JOBID, PARTITION, STATE, TIME_LIMIT, TIME,
 NODELIST(REASON), ELIGIBLE_TIME, START_TIME, TRES_ALLOC
 - O2squeue documentation
- Detailed job info:
 - \$ scontrol show jobid <jobid>
 - Output has the command/script you ran & the location your stdout and stderr messages are being written to
- Another option is the Slurm command squeue, but it is less user friendly.

Job Information: Past Jobs

- \$ 02_jobs_report
 - JobID, User, Account, Partition, State, Starttime, Walltime (hr), nCPU,RAM(GB),nGPU, PENDINGTIME(hr), CPU_EFF(%), RAM_EFF(%), WALLTIME_EFF(%)
 - Can specify job ID, job status, and/or timeframe to report accounting info
 - Can get a summary report instead of per-job information
 - O2 jobs report documentation
- Another option is the Slurm command sacct, but it is less user friendly.

Cancelling/Pausing Jobs

- \$ scancel <jobid> #Cancels specific job
- \$ scancel —t PENDING #Cancels pending job
- \$ scancel --name JOBNAME #Cancels job by name
- \$ scancel jobid_[indices] #array indices
- \$ scontrol hold <jobid> #pause pending jobs
- \$ scontrol release <jobid> #resume

Exercise!

https://tinyurl.com/hpcc-sbatch-exercise

4. Filesystems and storage

Filesystems and storage

Filesystems and storage

- Storage on HPC systems is organized differently than on your personal machine
- Physical disks are bundled together into a virtual volume; this
 volume may represent a single filesystem, or may be divided up, or
 partitioned, into multiple filesystems
- Filesystems are accessed over the internal network

O2 Primary Storage

O2 Cluster

- · 11000+ cores
- SLURM batch system

Your computer

/home

- /home/HMS_account
- quota: 100GiB per user
- Backup: extra copy & snapshots: daily to 14 days, weekly up to 60 days

/n/data1, /n/data2, /n/groups

- /n/data1/institution/dept/lab/ your_dir
- quota: expandable
- Backup: extra copy & snapshots: daily to 14 days, weekly up to 60 days

RESEARCH
COMPUTING
https://rc.hms.harvard.edu/

Temporary "Scratch" storage

- /n/scratch/users/<first_HMS_account_char>/<HMS_account>
 e.g. /n/scratch/users/m/mfk8
- For data only needed temporarily during analyses
- Each user can use up to 25 TiB and 2.5 million files/directories
- Files not changed for 45 days are automatically purged!
 - What is "change time" or "ctime"? The timestamp that reflects when the file metadata or file contents were last updated. Simply accessing a file (without changing the file content or properties) will not update ctime.
- No backups!
- Create your folder:
 - \$ /n/cluster/bin/scratch_create_directory.sh
- Scratch documentation

Important Note about O2 Storage

- O2 can only be used to store data of <u>Harvard Security Level</u>
 and below.
- None of the standard filesystems are automatically encrypted, and cannot be used for HIPAA-protected or other secure data (Harvard's data security above level 3) unless those data have been de-identified.

HMS Storage Offerings

Active

- Active Compute: O2 group folders, /n/data1, /n/data2, /n/groups
 - e.g., /n/data1/institution/dept/lab
- Active Collaboration: research.files, /n/files on transfer cluster
- Research data that is frequently accessed, modified, or computed against.

Standby

- Infrequently accessed data, that is directly available for reference, retrieval, or analysis.
- Accessible as /n/standby/institution/dept/lab on transfer cluster

Cold

 Rarely accessed data requiring long-term retention, for regulatory or historical purposes

HMS Storage Offerings

- For more detail on all the Storage Offerings, please see the <u>Research Computing Storage Services Website.</u>
- New/additional Storage can be requested through the Storage Request Forms through the STAT Service Portal.

Chargeback for Storage & Compute

- Charges apply to labs whose PIs do NOT have a primary or secondary appointment with an HMS Quad department (external users)
- External users and PIs must register with the RC Core in the PPMS system prior to obtaining an O2 account.
- Details on the O2 Account Request Process for Off Quad Labs
- Bills are sent out quarterly
 - Charged: O2 jobs, O2 group folders, research.files
 - Free: Scratch and Home folders
- More details (including billing rates) are on the Research Computing Core website.
- Reach out to rccore@hms.harvard.edu with any questions.

For more direction

Email: rchelp@hms.harvard.edu

Website: https://it.hms.harvard.edu/rc

Office hours:

Wednesdays, 1:00-3:00 pm

Zoom: https://rc.hms.harvard.edu/office-hours

O2 documentation:

https://harvardmed.atlassian.net/wiki/spaces/O2/overview

