MTH101: Lecture 9

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

September 28, 2017

A **Sequence** of complex numbers $\{z_n\}$ is defined by associating to each positive integer n a complex number z_n .

Definition

We say that the **Sequence** $\{z_n\}$ **Converges** to c:

$$\lim_{n\to\infty}z_n=c,$$

if for any $\epsilon > 0$ there exists an integer N such that

$$|z_n - c| < \epsilon$$
, for any $n > N$.

Figure : The Definition of Convergence of a Sequence: for n > N the points z_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and radius ϵ_n are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with center c and c are inside the Disk with c and c

Theorem

Let
$$z_n = x_n + iy_n$$
 be a **Sequence** and $c = a + ib$. Then

$$\lim_{n\to\infty} z_n = c \iff \begin{cases} \lim_{n\to\infty} x_n = a, \\ \lim_{n\to\infty} y_n = b. \end{cases}$$

A sequence defined as

$$s_n = \sum_{k=1}^n z_k,$$

(where $\{z_k\}$ are a sequence of Complex Numbers) is called the **n-th partial sum** of the **serie**

$$\sum_{k=1}^{\infty} z_k = z_1 + z_2 + \cdots.$$

We say that the **Series** $\{s_n\}$ **Converges** to s, or that it is **Convergent**, if

$$\lim_{n\to\infty} s_n = s,$$

and we write

$$\sum_{k=1}^{\infty} z_k = s.$$

We regard s as the Sum of the Series and s_n as the n^{th} Partial Sums of the Series.

The series

$$R_n = \sum_{m=n+1}^{\infty} z_m = s - s_n,$$

is called the Remainder.

Remark

If
$$\lim_{n\to\infty} s_n = s$$
 then

$$\lim_{n\to\infty}R_n=\lim_{n\to\infty}(s-s_n)=0.$$

Cauchys Convergence Principle for Series

Theorem

A series $\sum\limits_{k=1}^{\infty}z_k$ is convergent, if and only if for every $\epsilon>0$ there exists an N such that

$$\left|\sum_{k=n+1}^{n+p} z_k\right| = |z_{n+1} + z_{n+2} + \dots + z_{n+p}| < \epsilon, \text{ for every } n > N \text{ and } p > 0.$$

Corollary

If the series $\sum_{k=1}^{\infty} z_k$ is convergent then $\lim_{k\to\infty} z_k = 0$.

Remark

The previous result gives a Necessary Condition for Convergence: that is, if $\lim_{k\to\infty} z_k \neq 0$ then the series $\sum_{k=1}^{\infty} z_k$ does not converge.

Absolute convergence

Definition

If the series $\sum_{k=1}^{\infty} |z_k|$ is convergent, then the series $\sum_{k=1}^{\infty} z_k$ is called **Absolutely Convergent**.

Theorem

Absolutely convergent series are convergent.

Remark

The converse of the previous theorem is false. For examples

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k},$$

is convergent but **not** absolutely convergent. This kind of series are called **Conditionally Convergent**.

Comparison Test

Theorem

If $|z_k| < a_k$ for $k \ge 1$ and $\sum_{k=1}^{\infty} a_k$ is convergent, then the series

$$\sum_{k=1}^{\infty} z_k$$

is absolutely convergent.

Theorem

The Geometric Series

$$\sum_{k=1}^{\infty} z^k = \frac{1}{1-z} \iff |z| < 1$$

and the convergence is absolute.

The Geometric series does not converge if $|z| \ge 1$.

Ratio Test

Theorem

If there exists N > 0, such that for all n > N,

$$\left|\frac{z_{n+1}}{z_n}\right| \le q < 1,$$

then the series $\sum_{k=1}^{\infty} z_k$ is absolutely convergent.

If for every n > N

$$\left|\frac{z_{n+1}}{z_n}\right| \geq 1,$$

then the series $\sum_{k=1}^{\infty} z_k$ does not converge.

Corollary

If the limit

$$\lim_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|=L,$$

then

- (i) if L < 1, the series $\sum_{k=1}^{\infty} z_k$ converges absolutely.
- (ii) if L > 1, the series $\sum_{k=1}^{\infty} z_k$ does not converge.
- (iii) if L = 1, the series $\sum_{k=1}^{\infty} z_k$ may converge or not.

Example

Study the Convergence of the following Series:

$$\sum_{n=0}^{\infty} \frac{(-3+10i)^n}{n!}.$$

Solution:

We use the Ratio Test

$$\left| \frac{z_{n+1}}{z_n} \right| = \left| \frac{(-3+10i)^{n+1}}{(n+1)!} \frac{n!}{(-3+10i)^n} \right| = \left| \frac{(-3+10i)}{n+1} \right| = \frac{\sqrt{109}}{n+1}$$

from which

$$\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = \lim_{n\to\infty} \frac{\sqrt{109}}{n+1} = 0.$$

Then L=0 and from the **Ration Test** we have that the series is Convergent.

Root Test

Theorem

If there exists N > 0, such that for all n > N

$$\sqrt[n]{|z_n|} \le q < 1,$$

then the series $\sum_{k=1}^{\infty} z_k$ is absolutely convergent. If for infinitely many k > N

$$\sqrt[n]{|z_n|} \geq 1,$$

then the series $\sum_{k=1}^{\infty} z_k$ does not converge.

Corollary

If the limit

$$\lim_{n\to\infty}\sqrt[n]{|z_n|}=L,$$

then

- (i) if L < 1, the series $\sum_{k=1}^{\infty} z_k$ converges absolutely.
- (ii) if L > 1, the series $\sum_{k=1}^{\infty} z_k$ does not converge.
- (iii) if L = 1, the series $\sum_{k=1}^{\infty} z_k$ may converge or not.

Power Series

Definition

The series

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

is called **Power Series** in powers of $z - z_0$ with **Coefficients** a_n .

Theorem

The **Power Series** $\sum_{n=0}^{\infty} a_n (z-z_0)^n$

- (i) converges for $z = z_0$.
- (ii) If it converges for $z = z_1$ then it converges for all z such that $|z z_0| < |z_1 z_0|$.
- (iii) if it does not converge for $z = z_2$ then it does not converge for any z such that $|z z_0| > |z_2 z_0|$.

Lecture 8

Figure : The Power Series Converges in the disk $|z-z_0| < |z_1-z_0|$. The Power Series Does not Converge in the set $|z-z_0| > |z_2-z_0|$.

Corollary

For the power series

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

there exists a number $0 \le R \le \infty$, called the Radius of Convergence, such that

- (i) The series converges for all z such that $|z z_0| < R$ (this is also called **Disk of Convergence**).
- (ii) The series does not converge all $|z z_0| > R$.
- (iii) On points of the set $\{z \in \mathbb{C} : |z z_0| = R\}$ the power series may converge or not.

Figure : The Power Series Converges inside the Disk $|z - z_0| < R$ (Green Region, the **Disk of Convergence**).

The Power Series does not converge outside the Disk, that is for $|z - z_0| > R$ (Red Region).

On the circle $|z - z_0| = R$ the Power series may converge or not.

$\mathsf{Theorem}$

Consider the **Power Series** $\sum_{n=0}^{\infty} a_n (z-z_0)^n$. If the limit

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L^*,$$

then the Radius of Convergence of the Power Series is given by

$$R=\frac{1}{L^*},$$

where we set $R = \infty$ if $L^* = 0$ and R = 0 if $L^* = \infty$.

Example

Find the Radius of convergence of the following Series

$$\sum_{n=0}^{\infty} \frac{(3n)!}{(n!)^3} (z+2-i)^n.$$

Solution:

We have $a_n = \frac{(3n)!}{(n!)^3}$ and $z_0 = -2 + i$. We use the previous theorem

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(3n+3)!}{[(n+1)!]^3} \frac{(n!)^3}{(3n)!} \right|$$
$$= \frac{(3n+3)(3n+2)(3n+1)}{(n+1)^3}$$

from which

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=27$$

and the Radius of Convergence is $R = \frac{1}{27}$, while the Disk of Convergence is:

$$|z+2-i|<\frac{1}{27}.$$

Theorem

Consider the **Power Series** $\sum_{n=0}^{\infty} a_n(z-z_0)^n$. If the limit

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=\tilde{L},$$

then the Radius of Convergence of the Power Series is given by

$$R=rac{1}{ ilde{L}},$$

where we set $R = \infty$ if $\tilde{L} = 0$ and R = 0 if $\tilde{L} = \infty$.

Example

Find the Radius of convergence of the following Series

$$\sum_{n=0}^{\infty} \frac{5^n}{(1+2i)^n} (z+i)^n.$$

Solution:

We have $a_n = \frac{5^n}{(1+2i)^n}$ and $z_0 = -i$. We use the previous theorem:

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\frac{5^n}{(1+2i)^n}\right|} = \frac{5}{|1+2i|} = \sqrt{5},$$

from which

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=\sqrt{5}$$

and the Radius of Convergence is $R = \frac{1}{\sqrt{5}}$, while the Disk of Convergence is

$$|z+i|<\frac{1}{\sqrt{5}}.$$

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 10th Edition.