(11) Publication number:

09231701 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number: 08033342

(51) Intl. Cl.: G11B 21/10

(22) Application date: 21.02.96

(71) Applicant: HITACHI LTD

05.09.97

(72) Inventor: NAKAGAWA SHINSUKE HAMADA YOSUKE

(74) Representative:

(30) Priority:

(43) Date of application

publication:

(84) Designated contracting states:

(54) HEAD POSITIONING CONTROL METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a head positioning control method which achieves higher positioning accuracy by performing a computation of a force estimation observer derived from a model of friction force using information pertaining to a head position and a head drive signal to enable compensation for the friction force.

SOLUTION: This magnetic disc device detects information pertaining to the position of a head 2 from a servo position recorded on a disc 1 and outputs the information to a compensation signal generation means 34 as position error signal 21. The compensation signal generation means 34 is constituted of a positioning compensator 16 and a friction estimating device 15 and the like to perform a computation of a force estimation observer derived from a model of a friction force using the position error signal 21 and a head drive signal. An operation signal 31 obtained by the computation is outputted to a drive circuit 5 and the head 2 is driven through a voice coil motor 4 to be positioned at a specified point. The compensation for the friction force is accomplished by this method thereby compensating for a drop in the low pass gain attributed to the viscoelasticity of friction.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-231701

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

G11B 21/10 :

G11B 21/10

 \mathbf{R} .

審査請求 未請求 請求項の数18 〇L (全 15 頁)

(21)出願番号

特願平8-33342

(22)出願日

平成8年(1996)2月21日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72) 発明者 中川 真介

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内

(72)発明者 浜田 洋介

神奈川県小田原市国府津2880番地 株式会

社日立製作所ストレージシステム事業部内

(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】 ヘッド位置決め制御方法

(57)【要約】

【課題】磁気ディスク装置では、軸受部での摩擦の発生 は微小位置決め時における低域ゲインの不足による位置 決め精度の低下を引き起こす。したがって高記録密度磁 気ディスク装置の実現のためには摩擦力の補償制御が必 要となる。

【解決手段】ディスク1に記録されたサーボ信号から第 1のヘッド2の位置に関する情報を検出し、ヘッド2の 位置に関する情報とヘッド駆動信号を用いて、摩擦力の モデルから導かれる力推定オブザーバの演算を行い、摩 擦力の補償を行い摩擦の粘弾性特性による低域ゲインの 低下を補償する。

【特許請求の範囲】

【請求項1】ディスクにあらかじめ記録してある位置情報から、ヘッドにより目標位置と前記ヘッドの位置に関する位置誤差信号を検出し、検出された前記位置誤差信号を位置決め補償手段に入力して位置決め補償のための第1の信号を生成し、前記第1の信号を生成し、前記第2の信号を生成し、前記第2の信号を生成してが前記目標位置へ移動するための第2の信号によって、いが前記目標位置へ移動されるように制御するヘッド位置決め制御方法におりないた信号と前記第2の信号に対してハイパスフィルタ演算を行うことにより求めた信号と前記第2の信号に対してロスフィルタ演算を行うことにより求めた信号を加算することによりへッド位置決め機構の摩擦力を補償する摩擦力補償信号を求め、前記摩擦力補償信号を生成することを特徴とするヘッド位置決め制御方法。

1

【請求項2】請求項1において、前記ヘッド位置決め機構の摩擦力をヘッド位置に比例する力の比例係数,速度に比例する力の比例係数,本ッド駆動部の質量または慣性モーメントとして、前記位置誤差信号を前記比例係数と慣性モーメントを含む係数からなるハイパスフィルタに入力して求めた出力信号と、前記第2の信号を前記比例係数と慣性モーメントを含む係数からなるローパスフィルタに入力して求めた信号を加算することにより、「位置決め機構の摩擦力補償信号を求め、前記摩擦力補償信号を前記第1の信号に加算することにより、前記第2の信号を生成するヘッド位置決め制御方法。

【請求項3】ディスクにあらかじめ記録してある位置情 報から、ヘッドにより目標位置とヘッドの位置に関する 位置誤差信号を検出し、前記検出された位置誤差信号を 位置決め補償手段に入力して位置決め補償のための第1 の信号を生成し、前記第1の信号に基づいてヘッド位置 決め機構を駆動するための第2の信号を生成し、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御方法において、前記位 置誤差信号に対してハイパスフィルタ演算を行うことに より得た信号と、第2の信号に対してローパスフィルタ 演算を行うことにより得た信号を加算することにより第 1のヘッド位置決め機構の摩擦力補償信号を求め、前記 信号を前記第1の信号に加算することにより第2の信号 を生成し、前記位置誤差信号から第2のヘッド位置決め 機構の摩擦力補償信号を求め、前記第2の摩擦力補償信 号を前記生成した第2の信号に加算することにより第2 の信号を補正することを特徴とするヘッド位置決め制御 方法。

【請求項4】請求項3に記載の摩擦力補償信号がヘッド 位置決め機構の軸受部で発生する転がり出し摩擦力を補 償する信号である位置決め制御方法。

【請求項5】ディスクにあらかじめ記録してある位置情報から、ヘッドにより目標位置とヘッドの位置に関する

位置誤差信号を検出し、前記検出された位置誤差信号を 位置決め補償手段に入力して位置決め補償のための第1 の信号を生成し、前記第1の信号に基づいてヘッド位置 決め機構を駆動するための第2の信号を生成し、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御方法において、前記位 置誤差信号に対してハイパスフィルタ演算を行うことに より得た信号と第2の信号に対してローパスフィルタ演 算を行うことにより得た信号を加算することにより第1 10 のヘッド位置決め機構の摩擦力補償信号を求め、前記信 号を前記第1の信号に加算することにより第2の信号を 生成し、前記位置誤差信号を微分して得られる速度信号 から第2のヘッド位置決め機構の摩擦力補償信号を求 め、前記第2の摩擦力補償信号を前記生成された第2の 信号に加算することにより第2の信号を補正することを 特徴とするヘッド位置決め制御方法。

2

【請求項 6】請求項 5 に記載の第 2 の摩擦力補償信号が ヘッドとディスク間、またはヘッド位置決め機構等で発 生するクーロン摩擦力を補償する信号である位置決め制 御方法。

【請求項7】ディスクにあらかじめ記録してある位置情 報から、ヘッドにより目標位置とヘッドの位置に関する 位置誤差信号を検出し、前記検出された位置誤差信号を 位置決め補償手段に入力して位置決め補償のための第1 の信号を生成し、前記第1の信号に基づいてヘッド位置 決め機構を駆動するための第2の信号を生成し、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御方法において、前記位 置誤差信号に対してハイパスフィルタ演算を行うことに より得た信号と、第2の信号に対してローパスフィルタ 30 演算を行うことにより得た信号を加算することにより第 1のヘッド位置決め機構の摩擦力補償信号を求め、前記 信号を前記第1の信号に加算することにより第2の信号 を生成し、前記位置誤差信号と位置誤差信号を微分して 得られる速度信号から第2のヘッド位置決め機構の摩擦 力補償信号を求め、前記第2の摩擦力補償信号を前記生 成された第2の信号に加算することにより第2の信号を 補正することを特徴とするヘッド位置決め制御方法。

【請求項8】請求項7に記載の第2の摩擦力補償信号 が、位置に比例するばね力と速度に比例する粘性摩擦力 の和である摩擦力を補償する信号であることを特徴とす る位置決め制御方法。

【請求項9】ディスクにあらかじめ記録してある位置情報から、ヘッドにより目標位置とヘッドの位置に関する位置誤差信号を検出する位置誤差信号検出手段と、前記検出された位置誤差信号を位置決め補償手段に入力して位置決め補償のための第1の信号を生成し、前記第1の信号に基づいてヘッド位置決め機構を駆動するための第2の信号を生成する駆動信号生成手段を備え、前記第2の信号を生成する駆動信号生成手段を備え、前記第2の信号によってヘッドが前記目標位置へ移動されるよう

に制御するヘッド位置決め制御装置において、前記位置 誤差信号にハイパスフィルタ演算を行う演算手段と、第 2の信号にローパスフィルタ演算を行う演算手段と、前 記ハイパスフィルタ演算により得られた信号と前記ロー パスフィルタ演算により得られた信号を加算する加算手 段と、前記加算手段の出力であるヘッド位置決め機構の 摩擦力補償信号を前記第1の信号に加算する加算手段 と、前記加算手段の出力から前記第2の信号を生成する 駆動信号生成手段を有することを特徴とするヘッド位置 決め制御装置。

【請求項10】請求項9において、前記ヘッド位置決め 機構の摩擦力を前記位置誤差信号を入力としてヘッド位 置に比例する力の比例係数、速度に比例する力の比例係 数、ヘッド駆動部の質量または慣性モーメントを含む係 数からなるハイパスフィルタの演算を行う演算手段と、 前記第2の信号を入力として前記係数からなるローパス フィルタの演算を行う演算手段と、前記ハイパスフィル タ演算により得られた信号と前記ローパスフィルタ演算 により得られた信号を加算する加算手段と、前記加算手 段の出力であるヘッド位置決め機構の摩擦力補償信号を 前記第1の信号に加算する加算手段と、前記加算手段の 出力から前記第2の信号を生成する駆動信号生成手段を 有することを特徴とするヘッド位置決め制御装置。

【請求項11】ディスクにあらかじめ記録してある位置 情報から、ヘッドにより目標位置とヘッドの位置に関す る位置誤差信号を検出する位置誤差信号検出手段と、前 記検出された位置誤差信号を位置決め補償手段に入力し て位置決め補償のための第1の信号を生成し、前記第1 の信号に基づいてヘッド位置決め機構を駆動するための 第2の信号を生成する駆動信号生成手段を備え、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御装置において、前記位 置誤差信号を入力としてハイパスフィルタの演算を行う 演算手段と第2の信号を入力としてローパスフィルタの 演算を行う演算手段と、前記ハイパスフィルタの演算か ら得られた信号と前記ローパスフィルタの演算から得ら れた信号を加算する加算手段と、前記加算結果を第1の ヘッド位置決め機構の摩擦力補償信号とし、前記信号を 前記第1の信号に加算する加算手段と、前記加算信号と して、前記位置誤差信号から第2のヘッド位置決め機構 の摩擦力補償信号を求める第2の摩擦力補償信号生成手 段と、前記第2の摩擦力補償信号を前記加算信号に加算 する加算手段と、前記加算手段の出力により第2の信号 を生成する駆動信号生成手段を有することを特徴とする ヘッド位置決め制御装置。

【請求項12】請求項11に記載の第2の摩擦力補償信 号生成手段から得られるヘッド位置決め機構の摩擦力補 償信号がヘッド位置決め機構の軸受部で発生する転がり 出し摩擦力を補償する信号である第2の摩擦力補償手段 を備えた位置決め制御装置。

【請求項13】ディスクにあらかじめ記録してある位置 情報から、ヘッドにより目標位置とヘッドの位置に関す る位置誤差信号を検出する位置誤差信号検出手段と、前 記検出された位置誤差信号を位置決め補償手段に入力し て位置決め補償のための第1の信号を生成し、前記第1 の信号に基づいてヘッド位置決め機構を駆動するための 第2の信号を生成する駆動信号生成手段を備え、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御装置において、前記位 10 置誤差信号を入力としてハイパスフィルタの演算を行う 演算手段と第2の信号を入力としてローパスフィルタの 演算を行う演算手段と、前記ハイパスフィルタの演算か ら得られた信号と前記ローパスフィルタの演算から得ら れた信号を加算する加算手段と、前記加算結果を第1の ヘッド位置決め機構の摩擦力補償信号とし、前記摩擦力 補償信号を前記第1の信号に加算する加算手段と、前記 加算結果として、前記位置誤差信号を微分して得られる 速度信号から第2のヘッド位置決め機構の前記摩擦力補 償信号を求める摩擦力補償信号生成手段と、前記第2の 摩擦力補償信号を前記加算信号に加算する加算手段と、 前記加算信号から第2の信号を生成する駆動信号生成手

【請求項14】請求項13に記載の第2の摩擦力補償信 号生成手段から得られるヘッド位置決め機構の前記摩擦 力補償信号がヘッドとディスク間、またはヘッド駆動機 構等で発生するクーロン摩擦力を補償する信号であるこ とを特徴とする第2の摩擦力補償信号生成手段を備える 位置決め制御装置。

段を有することを特徴とするヘッド位置決め制御装置。

【請求項15】ディスクにあらかじめ記録してある位置 情報から、ヘッドにより目標位置とヘッドの位置に関す る位置誤差信号を検出する位置誤差信号検出手段と、前 記検出された位置誤差信号を位置決め補償手段に入力し て位置決め補償のための第1の信号を生成し、前記第1 の信号に基づいてヘッド位置決め機構を駆動するための 第2の信号を生成する駆動信号生成手段を備え、前記第 2の信号によってヘッドが前記目標位置へ移動されるよ うに制御するヘッド位置決め制御装置において、前記位 置誤差信号を入力としてハイパスフィルタの演算を行う 演算手段と第2の信号を入力としてローパスフィルタの 演算を行う演算手段と、前記ハイパスフィルタの演算か ら得られた信号と前記ローパスフィルタの演算から得ら れた信号を加算する加算手段と、前記加算結果を第1の 摩擦力補償信号とし、前記信号を前記第1の信号に加算 する加算手段と、前記加算手段の出力として、前記位置 誤差信号と前記位置誤差信号を微分して得られる速度信 号から第2のヘッド位置決め機構の摩擦力補償信号を求 める第2の摩擦力補償信号生成手段と、前記第2の摩擦 力補償信号を前記生成した信号に加算する加算手段と、 前記加算手段の出力から第2の信号を生成する駆動信号

50 生成手段を有することを特徴とするヘッド位置決め制御

装置。

【請求項16】請求項15に記載の第2の摩擦力補償信号生成手段から求められる第2のヘッド位置決め機構の摩擦力補償信号が、位置に比例するばね力と速度に比例する粘性摩擦力の和である摩擦力を補償する信号である第2の摩擦力補償信号生成手段を備える位置決め制御装置。

【請求項17】前記ディスクを磁気ディスクとする請求項1~16のいずれか一つに記載のヘッド位置決め制御装置。

【請求項18】前記ディスクを光ディスクとする請求項 $1 \sim 16$ のいずれか一つに記載のヘット位置決め制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク装置や光ディスク装置のヘッドの位置決め方法ならびに前記方法を実施する装置に関し、特に磁気ヘッドを目標トラックに追従させる動作に関する。

[0002]

【従来の技術】磁気ディスク装置等のヘッドアクチュエ ータの位置決め機構には直動型と呼ばれるリニアアクチ ュエータと揺動型と呼ばれるロータリアクチュエータが あるが、いずれも転がり軸受で案内される。ヘッドの精 密位置決めに対する要求は小型化、高記録密度化に伴っ て厳しくなっており、アクチュエータの微小位置変動に よって生じる転がり軸受部で発生する非線形摩擦が問題 となってきた。これに関しては吉川 (東芝) らによるJ SMEでの講演に詳しい (日本機械学会第72期通常総 会講演論文集(IV) 19-20)。この現象はベアリング 球,ころ等の転動体の微小回転領域で、転動体と軌道面 の接触面の弾性変形等により摩擦力が変位に依存する領 域 (転がり出し摩擦領域) が存在することが原因となっ ている。転がり出し摩擦力と変位の関係は小泉ら(トラ イボロジスト35巻6号(1990)435-439) に より転がり出し変位曲線として近似されている。転がり 出し摩擦力はばね力と粘性摩擦力のような粘弾性体に支 持されるような特性を示すため、アクチュエータ質量と ばね定数、粘性摩擦係数で決まる固有振動数と減衰比を 持つ2次系の特性を示し、固有振動数以下の領域ではゲ インが一定となり位置決め精度を悪化させる。さらに変 位に対する摩擦力の勾配は、変位が微小な場合ほど急に なるという非線形性を持つため、変位が微小になるほど 固有振動数が高く、減衰比が小さくなる。この傾向は小 型化による質量低下と相乗して顕著になる傾向にあり、 位置決め精度向上のためには摩擦力を補償することによ る固有振動数以下の領域のゲインの回復が重要となる。

【0003】摩擦力を含む外力を補償する方法は、特開平3-30156号公報のようにディスク面に記録されたサーボ情報からヘッドの位置に関する情報を検出し、ヘッド

位置信号を得て。このヘッド位置信号とモータ駆動信号を入力とし、外力を一定と仮定して求めた力推定オブザーバよりなる外力推定手段により外力を補償する方法である。

6

[0004]

【発明が解決しようとする課題】小型化,高記録密度化が進む磁気ディスク装置で、軸受部での摩擦の発生は微小位置決め時における低域ゲインの不足による位置決め精度の低下を引き起こす。したがって高記録密度磁気デルスク装置の実現のためには摩擦力の補償制御が必要となる。

[0005]

【課題を解決するための手段】本発明によれば、ディスクに記録されたサーボ信号からヘッドの位置に関する情報を検出し、目標位置とヘッド位置の誤差を小さくするために、ヘッド目標位置とヘッドの位置に関する情報の差分を位置誤差信号として位相補償器に入力し位置決め補償信号を得、この信号に後述する摩擦力補償信号を得て、ヘッド位置を制御する。摩擦力補償信号を得て、ヘッド駆動機構の摩擦力をヘッド駆動信号を用いて、ヘッド駆動機構の摩擦力をヘッド変位に比例する弾性力とヘッド速度に比例する粘性摩擦力の和として求めた力推定オブザーバの演算を行うことにより、摩擦力補償信号を得る。得られた摩擦力補償信号は摩擦力補償信号を得る。場合よりも高精度な摩擦力補償が可能で、磁気ヘッドの目標トラック追従精度を高めることができる。

[0006]

【発明の実施の形態】本発明の第1の実施例を図1を用 いて説明する。図1は本発明のヘッド位置決め制御を適 用した磁気ディスク装置のブロック図である。ディスク 1上にはサーボ信号が記録されており、ヘッド2で読み 出されたサーボ信号はアンプ7で増幅され、復調回路8 に送られる。復調回路8では、主位置誤差信号PESN (図示せず) と90度位相の異なる副位置誤差信号PE SQ(図示せず)を作成し、これらの誤差信号からトラ ック番号に応じて極性の整った位置誤差信号21を作成 し出力する。作成された位置誤差信号21はAD変換器 12により一定のサンプリング間隔で補償信号生成手段 16に取り込まれる。また、トラック横断パルス発生回 路18は、位置誤差信号26を受けて隣接するトラック の境界でトラック横断パルス22を発生する。また、デ ィファレンスカウンタ19は、トラック横断パルス22 の数をカウントして目標トラックまでのディジタル残ト ラック数23を出力する。

【0007】コントローラ20が移動コマンド24を位置決め補償器16に発行すると、位置決め補償器16は 位置決め補償信号25を出力する。この位置決め補償信号25の演算方法は、たとえばMEE & DANIEL "MAGNETIC RECORDING", Vol.2, McGraw-Hillの53-84頁

に記載のものがある。これは、位置誤差信号26,ディジタル残トラック数23,トラック横断パルス22を入力とし、ヘッド2が目標トラックの近くに到達するまでのシーク動作に対しては速度制御系により演算し、目標トラック近くになってからのフォロイング動作に対しては位置制御系により演算するもので、本実施例でもこの方法を用いるものとする。

【0008】摩擦力を推定し補償する摩擦力推定器15は、位置誤差信号26と操作信号31を入力として演算を行い外力補償信号30を生成する。外力補償信号30と位置決め補償信号25を加算器17により加算することによって得られた操作信号31はDAコンバータ14によって駆動回路5に出力される。駆動回路5から出力された駆動電流32はボイスコイルモータ4に入力され、ヘッド2を駆動し所定の位置に位置決めする。以下に摩擦力推定器15で行われる演算について詳細に説明する。

【0009】図2のブロック図は、図1の実施例のヘッド制御系を等価な機能ブロック図で示したもので、摩擦推定器 15内のブロック図は離散時間系の伝達関数で記 20述されており、 \mathbf{z}^{-1} は1サンブルの遅延を意味する演算

子である。その他の構成要素は、連続時間系の伝達関数として表現されており、ラプラス演算子をまで、ヘッド2を搭載したアクチュエータのピポット軸回りの慣性モーメントをJで、駆動回路5のゲインをKa(A/V)で、ポイスコイルモータ4のゲインをKt(N・m/A)で、回転角速度をω(rad/s)で、回転角度をθ(rad)で、ピポット軸からヘッドまでの回転半径をr(m)で、ヘッド位置からヘッド位置信号までのゲインをKp(V/m)で、AD変換器12のゲインをgadp(count/V)で、DA変換器14のゲインをgda(V/count)として表している。転がり出し摩擦力の作用するモデルをFc45で表している。ヘッド位置信号21はヘッド位置xにトラック位置変動(ランアウト)D1が加算され、Kp倍された信号として得られる。

【0010】次に離散補償器の係数LA2, LA3, LB1, LB2, LB3, HA2, HA3, HB1, HB2, HB3計算について述べる。ここでK1=gda*ka*kt, K2=Ks*gadtとする。

[0011]

20 【数1】

$$G \mid p(s) = \frac{\frac{c}{J}s + \left(\frac{c \cdot l_1 + k + l_2}{j}\right)}{s^2 + 2 \cdot \zeta \cdot \omega \cdot s + \omega^2} \qquad \dots (21)$$

[0012]
$$Ghp(s) = \frac{1}{K1 \cdot K2} \cdot \frac{|_{2} \cdot s^{2} - k \cdot |_{1} \cdot s}{s^{2} + 2 \cdot L \cdot \omega \cdot s + \omega^{2}} \qquad \cdots (数2)$$

【0013】上式に対して例えば双1次変換法により s 整理するとの多項式からzの多項式に置換すると、すなわちサンプ 【0014】 リングタイムをTとおいて数3を数1,数2に代入し、 【数3】

【数3】 …(**数3**)

 $s = \frac{2}{T} \frac{z-1}{z+1}$

【0015】数4,数5が得られる。

[0016]

G | p(z) =
$$\frac{LB1 + LB2 \cdot z^{-1} + LB3 \cdot z^{-2}}{1 - LA2 \cdot z^{-1} - LA3 \cdot z^{-2}}$$
 ... (数4)

【数4】

【数6】

[0017]

$$Ghp(z) = \frac{HB1 + HB2 \cdot z^{-1} + HB3 \cdot z^{-2}}{1 - HA2 \cdot z^{-1} - HA3 \cdot z^{-2}}$$
 ... (数5)

【0018】数4,数5の分母,分子の2の各項の係数が図2の各ブロックの係数に相当する。数1,数2のをおよび ω はオブザーバの推定の速さ、および減衰比を表

す。 $\mathbf{1}_1$, $\mathbf{1}_2$ は ξ , ω から下式により決定される。 【 $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{9}$ 】

 $| _{1}=2 \cdot \zeta \cdot \omega - \frac{c}{m}$

…(数6)

[0020]
$$[37]$$

$$|_2 = m \cdot \omega^2 - k - 2 \cdot \zeta \cdot c \cdot \omega + \frac{c}{m}$$
 … (数7)

【0021】 k および c は転がり出し摩擦力を粘弾性力で仮定したときのばね定数および粘性摩擦係数であり、機構系の周波数特性を測定することによって求められる固有振動数 ω p と減衰比 ξ p から c = $2 \cdot J \cdot \xi$ $p \cdot \omega$ p , k = $J \cdot \omega$ p^2 により求める。

【0022】次に、フォロイング制御の演算を図2のブロック図と図3のフローチャートに基づいて説明する。特に、摩擦力推定器における外力補償信号の演算に関して詳細に説明し、位置決め補償器内の演算については説明しない。

【0023】STEP100 : サンプル (k サンプリング時点) した位置誤差信号21Y1(k)から位置決め補償信号25V(k)を計算する。

【0024】 STEP101 : V(k)と1サンプル前の外力補 償信号 30W(k-1)から操作信号 31U(k)の計算を 行う。

【 O O 2 5 】 STEP102 : D A コンパータ 1 4 により駆動 回路に操作信号 3 1 を出力する。

【0026】STEP103: k サンプリング時点の位置誤差 信号26Y1(k)にゲインHB1を乗じて、HPX1 (k)を加算しHPX(k)を得る。

【0027】STEP104:操作信号31U(k)にゲインL B1を乗じて、LPX1(k)を加算しLPX(k)を得る。

【0028】STEP105: HPX(k)とLPX(k)を加算して外力補償信号30W(k)を得る。

【0029】STEP106:Y1(k)にHB2を乗じた結果 にHPX(k)にHA2を乗じた結果を加算し、さらにH PX2(k)を加算することによりHPX1(k+1)を得る

【0030】STEP107: Y1(k)にHB3を乗じた結果 にHPX(k)にHA3を乗じた結果を加算することによ りHPX2(k+1)を得る。

【 0 0 3 1 】 STEP108 : U(k)にLB 2 を乗じた結果に LPX(k)にLA 2 を乗じた結果を加算し、さらにLP X 2(k)を加算することによりLPX 1(k+1)を得 る。

【0032】STEP109: U(k)にLB3を乗じた結果に LPX(k)にLA3を乗じた結果を加算することにより LPX2(k+1)を得る。

【0033】以上がkサンプリング時点における磁気ディスクフォロイング制御器の計算アルゴリズムである。

【0034】次に、外力補償信号Wの推定演算の実行について説明する。Wの演算と補償動作はヘッドの移動前から常に行っているのが望ましいが、ヘッドの移動開始からWの推定を行うには、移動の伴う全トラック上へのヘッド位置を推定できるような、演算語長の長いCPUか浮動小数点演算を行うCPUが必要となり、CPUは高価なものとなる。そこで、固定小数点演算を行う安価なCPUでも、目標トラックのデータのリードライト中

の外乱や振動を抑制する方法として、目標トラックの数トラック前から推定手段を動作させ、さらにデータを読み書きする前に補正手段を動作させる方法がある。例えば、目標トラックの1トラック前から推定手段を動作させ、目標トラックの4分の1トラック手前から補正動作を行うと、推定手段の演算レンジは1トラック分を演算するだけなので、安価な固定小数点CPUでも十分な性能を引き出せる。特に軸受部の転がり出し摩擦力は運動の方向が変わってから、数μmの間で摩擦力が変化する現象であるから、シーク中は一方向の運動であるため摩擦力が一定であり、シークからフォロイングに移行する時点から補償を開始することは有効である。

10

【0035】ここで、以上の計算アルゴリズムを磁気デ イスクフォロイング制御系に適用した場合、どのような 効果が得られるかを、図2中のCに加振信号を与えたと きのAからBまでの開ループの周波数応答に基づいて示 す。ここでAからBまでの開ループ周波数特性はシーク 時のような目標位置に関する命令24が発行されたとき の追従特性を示す。図4は転がり出し摩擦力が存在する 20 場合の磁気ディスク機構系の周波数特性(メカ特性)で、 図2で摩擦力推定器がない場合のUからXまでの特性で ある。それぞれのメカ特性は加振振幅を0.05,0. $1, 0.2, 0.5, 1.0 \mu m$ と変えて求めている。加 振振幅が小さいほど制御対象の固有振動数が高く減衰が 小さくなっていることがわかる。この制御対象に対して 摩擦推定オブザーバをオブザーバの極 ω =2・ π ・20 00, $\xi = 4$, 制御対象の特性は $0.2 \mu m$ 加振時の対 象に合わせて、 $\omega p = 2 \cdot \pi \cdot 90$, $\xi p = 0.3$ で設 計した。また位置決め補償器は比例要素と安定性を確保 30 する微分要素から構成し、ゼロクロス周波数550Hz として設計した。サンプリングタイムは50μsとし た。このとき、AからBまでの開ループを求めると図6 のようになる。これによれば、全体として転がり出し摩 擦による低域ゲインの損失は回復し、固有振動数のピー クもなくなっている。オブザーバの効果は0.2から1. 0μ mの範囲では低域ゲインが 40dB/dec で回復し ており、摩擦のない $1/s^2$ の特性となっている。0. 1 μm以下では、その効果が徐々に減じているが、固 有振動数と思われるピークは現れていない。またゼロク 40 ロス周波数は設計値通り550Hzとなっている。

【0036】本発明の第2の実施例を図7を用いて説明する。図7は第2の実施例のヘッド制御系を等価な機能ブロック図で示したものである。第1の実施例に運動方向検出器62と非線形摩擦モデル63,加算器64を新たに追加した構成となっている。運動方向検出器62では、今回サンプリングのY1(k)から前回サンプリングのY1(k-1)を計算し、その符号を出力する。非線形摩擦モデル63ではY1(k)とsign(Δ Y1(k))を用いて以下の式を計算することにより摩擦力推定値f。を求める。

【数8】

[0037]

z = | Y 1 (k) = Y 1' |

…(数8)

12

[0038]

【数9】

 $\mathbf{f}_{e} = \mathbf{a}_{0} + \mathbf{b}_{0} \cdot \mathbf{z} + \mathbf{c}_{0} \cdot \mathbf{z}^{2} + \mathbf{d}_{0} \cdot \mathbf{z}^{3} - \mathbf{f}_{c}'$ $(f_e < f_{max})$

(fe > fmax) … (数9)

数8,数9でY1′は運動方向が反転する直前のY1の 値、zは運動方向が反転してからの移動距離、fc'は 運動方向が反転したときの f_e の絶対値、 f_{max} はころ がり摩擦力の最大値である。 f_e の符号は $sign(\Delta Y 1)$ (k-1)) < 0 から sign($\Delta Y 1(k)$) ≥ 0 となった時点 で負、 $sign(\Delta Y 1(k-1)) > 0$ から $sign(\Delta Y 1(k))$ ≦0となった時点で正とする。数9の係数a₁, b₁, c 0, d 0は、変位と力の関係を求めた実験結果に基づいて

最少二乗法等を用いて決定すればよい。またオブザーバ の離散補償器の係数は第1の実施例の数1から数7でc = k = 0の条件で設計したものを用いる。本実施例のア ルゴリズムは、第1の実施例の演算アルゴリズムのSTEP 10 101とSTEP102の間に以下のSTEPを挿入することによ って完成される。

[0039]

STEP120 : sign(Δ Y 1(k)) = sign(Y 1(k)-Y 1(k-1))を計算 STEP121 : if $sign(\Delta Y 1 (k)) \cdot sign(\Delta Y 1 (k-1)) \le 0$ then Y 1'

 $= Y 1 (k-1), f_{e'} = f_{e}(k-1)$

STEP122 : if $sign(\Delta Y 1(k)) \cdot sign(\Delta Y 1(k-1)) \le 0$ and

 $sign(\Delta Y 1(k-1)) < 0$ then $sign f_c < 0$

else if $sign(\Delta Y 1 (k)) \cdot sign(\Delta Y 1 (k-1)) \le 0$ and

 $sign(\Delta Y 1(k-1)) > 0$ then $sign f_c > 0$

STEP123 : 数8を演算 STEP124 : 数9を演算

STEP125 : $f_e(k) = sign f_c \cdot f_e / (gda \cdot Ka \cdot Kt)$

STEP126 : $f_e(k)$ を操作信号U(k)に加算し新たなU(k)を得る。

【0040】以上がkサンプリング時点の演算アルゴリ ズムである。

【0041】本発明の第3の実施例を図8を用いて説明 する。図8は第3の実施例のヘッド制御系を等価な機能 ブロック図で示したものである。第1の実施例に運動方 向検出器62と非線形摩擦モデル63,加算器64を新 30 たに追加した構成となっている。運動方向検出器62で は、今回サンプリングのY1(k)から前回サンプリング

のY1(k-1)の差分 $\Delta Y1(k)=Y1(k)-Y1(k$ -1)を計算し、その符号を出力する。非線形摩擦モデ ル 6 3 ではsign(Δ Y 1(k))の値に応じてクーロン摩擦 力の推定値 f_e を出力する。 f_e は下式のように定め 3.

[0042]

【数10】

$$f_e = -1 \cdot sign(\Delta Y 1 (k)) \cdot T c$$

…(数10)

数10でTcはクーロン摩擦力の絶対値である。オブザ 演算アルゴリズムのSTEP101とSTEP102の間に以下のST ーバの離散補償器の係数は第1の実施例の数1から数7 EPを挿入することによって完成される。 [0043]

で、c=k=0の条件で設計したものを用いる。 f_e の 推定を含む本実施例のアルゴリズムは、第1の実施例の

STEP130 : sign(Δ Y 1(k))=sign(Y 1(k)-Y 1(k-1))を計算

STEP131 : 数10を演算

STEP132 : $f_e(k) = f_e/(gda \cdot Ka \cdot Kt)$

 $f_e = -k \cdot Y 1(k) + c \cdot V h(k)$

STEP133 : f_e(k)を操作信号U(k)に加算し新たな操作信号U(k)を得る。

【0044】以上がkサンプリング時点の演算アルゴリ ズムである。

【0045】本発明の第4の実施例を図9を用いて説明 する。図9は第4の実施例のヘッド制御系を等価な機能 ブロック図で示したものである。第1の実施例に微分器 65と摩擦モデル66、加算器64を新たに追加した構 成となっている。微分器65では、今回サンプリングの Y 1 (k)から前回サンプリングのY 1 (k-1)の差分△ Y1(k) = Y1(k) - Y1(k-1)を計算し、サンプリ ングタイムで割ることにより後退差分法で速度信号Vh (k)を求める。摩擦モデル66では粘性摩擦係数をc. ばね定数をkとしてfeを数11により計算する。

[0046]

【数11】

… (数11)

オブザーバの離散補償器の係数は第1の実施例の数1か 50 ら数7でc=k=0の条件で設計したものを用いる。f

STEPを挿入することによって完成される。

14

e の推定を含む本実施例のアルゴリズムは、第1の実施 例の演算アルゴリズムのSTEP101とSTEP102の間に以下の

[0047]

STEP140 : Vh(k)=(Y1(k)-Y1(k-1))/Tsを計算 (Tsはサンプリ

ングタイム)

STEP141 : 数10を演算

STEP142 : $f_e(k) = f_e/(gda \cdot Ka \cdot Kt)$

STEP143 : f_e(k)を操作信号U(k)に加算し新たな操作信号U(k)を得る。

[0048]

【発明の効果】本発明によれば、ディスクに記録されたサーボ信号からヘッドの位置に関する情報を検出し、ヘッドの位置に関する情報とヘッド駆動信号を用いて、摩擦力のモデルから導かれる力推定オブザーバの演算を行うことにより摩擦力の補償が可能となり、位置決め精度が向上する。

【図面の簡単な説明】

- 【図1】本発明の第一実施例のブロック図。
- 【図2】第一実施例の機能のブロック図。
- 【図3】摩擦力推定器15の演算のフローチャート。

【図3】

図 3

step100	Y1 (k) モサンブルし、V (k) を計算する。
step (01	$U_{(k)} = V_{(k)} - W_{(k-1)}$
step I 02	U (k) をDACに出力
step103	HPX (s) = HB1 * Y1 (s) + HPX1 (s)
step104	LPX (k) = LB1 * U (k) + LPX1 (k)
step105	$W_{(k)} = HPX_{(k)} + LPX_{(k)}$
step106	HPX1 (t+1) = HB2 * Y1 (t) + HA2 * HPX (k) + HPX2 (k)
step107	HPX2 (k+1) = HB3 * Y1 (k) + HA3 * HPX (k)
step108	LPX1 (k+1) = LB2 * U (k) + LA2 * LPX (k) + LPX2 (k)
step109	LPX2 (k+1) = LB3 * U (k) + LA3 * LPX (k)

【図4】転がり出し摩擦があるときの制御対象の周波数の特性図。

- サーボ信号からヘッドの位置に関する情報を検出し、ヘ 10 【図5】本制御アルゴリズムを用いたときの開ループ周ッドの位置に関する情報とヘッド駆動信号を用いて、 \mathbb{R} 波数の特性図。
 - 【図6】本発明の第二実施例のブロック図。
 - 【図7】第二実施例の機能のブロック図。
 - 【図8】第三実施例の機能のブロック図。
 - 【図9】第四実施例の機能のブロック図。

【符号の説明】

1…ディスク、2…ヘッド、7…アンプ、12…AD C、20…コントローラ。

【図4】

図 4

【図1】

図 1

補償信号生成手段 34

[図2]

【図5】

【図6】

図 6

【図7】

【図8】

【図9】

t/