

COMP110: Principles of Computing

11: Numerical Representations

Worksheets

- ► Worksheet 7: due this Wednesday
- ► Worksheet 8: due **next Wednesday**

2's Complement

Modular arithmetic

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1
- ► E.g. modulo 16:
 - ► 14 + 7 = 5
 - ► 4-7=13

Modulo operator

- Present in many programming languages (including C++, C#, Python) as %
- ▶ a % b gives the remainder of a divided by b
- ► E.g. 21 % 16 gives 5
- Useful for wrapping around e.g. loop indexes or screen coordinates

2's complement

- ► How can we represent negative numbers in binary?
- ightharpoonup Represent them modulo 2^n (for *n* bits)
- ▶ I.e. represent -a as $2^n a$
- Instead of an *n*-bit number ranging from 0 to $2^n 1$, it ranges from -2^{n-1} to $+2^{n-1} 1$
- \blacktriangleright E.g. 16-bit number ranges from -32768 to +32767
- Note that the left-most bit can be interpreted as a sign bit: 1 if negative, 0 if positive or zero

Converting to 2's complement

- Convert the absolute value to binary
- lacktriangle Invert all the bits (i.e. change 0 \leftrightarrow 1)
- ► Add 1
- (This is equivalent to subtracting the number from 2ⁿ... why?)
- This is also the process for converting back from 2's complement, i.e. doing it twice should give the original number

Why 2's complement?

- Allows all addition and subtraction to be carried out modulo 2ⁿ without caring whether numbers are positive or negative
- In fact, subtraction can just be done as addition
- ▶ I.e. a b is the same as a + (-b), where a and -b are just n-bit numbers

Scientific notation

Integer powers

Let $a \neq 0$ be a real number, and let b > 0 be an integer

$$a^b = \underbrace{a \times a \times \cdots \times a}_{b \text{ times}}$$
 $a^0 = 1$

$$a^{-b} = \underbrace{\frac{1}{a \times a \times \cdots \times a}}_{b \text{ times}}$$

Powers of 10

$$10^{6} = 1 \underbrace{000000}_{6 \text{ zeroes}}$$

$$10^{1} = 10$$

$$10^{0} = 1$$

$$10^{-1} = 0.1$$

$$10^{-6} = 0.\underbrace{00000}_{5 \text{ zeroes}} 1$$

Multiplying by powers of 10

Multiplying by 10^n is the same as moving the decimal point n places to the **right** (adding zeroes if necessary)

$$3.14159 \times 10^2 = 314.159$$

$$27 \times 10^3 = 27\,000$$

Similarly if n is negative, the decimal point moves to the **left**

$$123.45 \times 10^{-2} = 1.2345$$

Scientific notation

- A way of writing very large and very small numbers
- $ightharpoonup a imes 10^b$, where
 - a (1 \leq |a| < 10) is the mantissa
 - (a is a positive or negative number with a single non-zero digit before the decimal point)
 - b (an integer) is the exponent
- ► E.g. 1 light year = 9.461×10^{15} metres
- ▶ E.g. Planck's constant = 6.626×10^{-34} joules
- ► Socrative FALCOMPED

Scientific notation in code

Instead of writing $\times 10$, write = (no spaces)

```
double lightYear = 9.461e15;
double plancksConstant = 6.626e-34;
```


Floating point numbers

Floating point numbers

- Similar to scientific notation, but base 2 (binary)
- $ightharpoonup a imes 10^b$, where
 - ightharpoonup a (1 \leq |a| < 2) is the mantissa
 - (a is a positive or negative number with a single 1 before the "decimal point")
 - ▶ b (an integer) is the **exponent**

Storing the mantissa

- A positive or negative number with a single 1 before the "decimal point"
- ▶ Sign is stored as a single bit: 0 = +, 1 = -
- We know there's a 1 before the point so no need to store it — just store the binary digits after the point

Storing the exponent

- An integer can be positive, negative or zero
- NB we don't use 2's complement to store it!
- Instead it is stored in binary as a positive integer with a bias added on
- ► (This is so that exponents can be efficiently compared (less/greater than) 2's complement would be less efficient for this)

Exponent bias

► E.g. if the bias is 127:

An exponent of	is stored as	
-126	00000001(1)	
	:	
-1	01111110 (126)	
0	01111111 (127)	
1	10000000 (128)	
	:	
127	11111110 (254)	

► (Exponents of 00000000 and 11111111 have special meaning — more on this later)

IEEE 754 floating point formats

Туре	Sign	Exponent	Mantissa	Total
Single precision	1 bit	8 bits	23 bits	32 bits
		bias 127		
Double precision	1 bit	11 bits	52 bits	64 bits
		bias 1023		
Extended precision	1 bit	15 bits	64 bits	80 bits
		bias 16383		

IEEE 754 floating point formats

- C# (and many other languages) have float and double types for single and double precision respectively
- Literals are interpreted as float if they end in f, otherwise double
 - ▶ 3.14f | S G float
 - ▶ 3.14 is a double
- Python's float type is double precision as standard
- ► Extended precision is not usually used in programs, but is used internally on Intel CPUs

What is the value stored in the following IEEE single-precision floating point number?

- ► Sign bit is 0
- ▶ Therefore the number is positive

- ► Exponent is 10000001
- ► This is 129 in binary
- ▶ Exponent is stored with a bias of 127, therefore the actual exponent is 129 127 = 2

- ► Mantissa is 101000...
- Remember we only store the digits after the "decimal point", so the mantissa is actually 1.101000...
- ► The exponent is 2, so we move the point 2 places to the right: 110.1000...
- $ightharpoonup 4 + 2 + \frac{1}{2} = 6.5$

Special floating point numbers

- Zero is represented by a mantissa and exponent of all 0s
- An exponent of all 1s is used to represent infinity or NaN
 - ► float.PositiveInfinity Or double.PositiveInfinity: a number which is greater than every other number
 - float. NegativeInfinity Of double. NegativeInfinity: a number which is less than every other number
 - float.Nan Or double.Nan: "Not A Number" <, >, == always return false
- Can check for these with float.IsInfinity, double.IsNaN, etc.
- ► Infinities and NaNs sometimes arise from calculations (e.g. dividing by zero)

Precision of floating point numbers

- ► Precision varies by magnitude
- Numbers near 0 can be stored more accurately than numbers further from 0
- ► Analogy: in scientific notation with 3 decimal places
 - Around 3.142×10^{0} : can represent a difference of 0.001
 - ightharpoonup Around 3.142 imes 10³: can represent a difference of 1
 - \blacktriangleright Around 3.142 \times 106: can represent a difference of 1000

Range of floating point numbers

Туре	Smallest value	Largest value	
	(closest to 0)	(furthest from 0)	
Single precision	$\pm 1.175 \times 10^{-38}$	$\pm 3.403 \times 10^{38}$	
Double precision	$\pm 2.225 \times 10^{-308}$	$\pm 1.798 \times 10^{308}$	

Rounding errors

- Many numbers cannot be represented exactly in IEEE float
 - ▶ Similar to how decimal notation cannot exactly represent $\frac{1}{3} = 0.33333333...$ or $\frac{1}{7} = 0.142857...$
- ▶ Decimal: can represent $\frac{a}{b}$ exactly iff $b = 2^m 5^n$
- ▶ Binary: can represent $\frac{a}{b}$ exactly iff $b = 2^n$
- In particular, IEEE float can't represent $\frac{1}{10} = 0.1$ exactly!
- This can lead to rounding errors with some calculations

Testing for equality

- Due to rounding errors, using == or != with floating point numbers is almost always a bad idea
- ► E.g. in most languages, 0.1 + 0.2 == 0.3 evaluates to false!
- Better to check for approximate equality: calculate the difference between the numbers, and check that it's smaller than some threshold
- ► E.g. Unity has Mathf. Approximately which does exactly this

Decimal type

- ► C# has a decimal type
- Uses base 10 rather than base 2, so avoids some of the surprises of IEEE float
- ... however not natively supported by the CPU, hence much slower than float/double