Problem Solving Assignment 2

Name: Mohamed Haneefa Jiyavudeen

Tutorial group: T03F

UOW number: 8496407

Question 1)

Knapsack capacity = 800

Item	Weight	Value
1	600	36,000
2	400	23,200
3	400	23,200
4	160	7,200

Strategy 1: Using highest value-to-weight best,

Compute value-to-weight ratio and arrange items.

Item	Weight	Value	Value-to-Weight
1	600	36,000	60
2	400	23,200	58
3	400	23,200	58
4	160	7,200	45

Using greedy approach for this strategy,

- 1) Select item 1, total weight = 600
- 2) Skip item 2 as total weight = 600+400 = 1000 > 800
- 3) Skip item 3 as total weight = 600+400 = 1000 > 800
- 4) Select item 4, total weight = 600 + 160 = 760

Using highest value-to-weight strategy, select item 1 and 4

Total weight = 600+160 = 760 which is within the knapsack capacity

Strategy 2: Using Highest value best

Using greedy approach for this strategy,

- 1) Select item 1, total weight = 600
- 2) Skip item 2 as total weight = 600+400 = 1000 > 800
- 3) Skip item 3 as total weight = 600+400 = 1000 > 800
- 4) Select item 4, total weight = 600 + 160 = 760

Using highest value best strategy, select item 1 and 4

Total weight = 600+160 = 760 which is within the knapsack capacity

Since both strategies, give same results, the most suitable subset will be item 1 and 4.

Question 2)

- Sort orders by profits in non-increasing order

Order No.	6	3	8	7	10	5	4	9	2	1
Profit	100	90	80	70	60	50	40	30	20	10
Deadline	1	1	4	2	4	4	3	3	6	6

Next, consider Order No 6, since it is the first order considered, we fit in our schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6					
Deadline	100					

Next, consider Order No 3, but we cannot fit into the schedule.

Next, consider Order No 8 and fit in the schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6			8		
Deadline	100			80		

Next consider Order No 7 and fit in the schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6	7		8		
Deadline	100	70		80		

Next consider Order No 10 and fit in the schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6	7	10	8		
Deadline	100	70	60	80		

Next, consider Order No 5, but we cannot fit into the schedule.

Next, consider Order No 4, but we cannot fit into the schedule.

Next, consider Order No 9, but we cannot fit into the schedule.

Next consider Order No 2 and fit in the schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6	7	10	8		2
Deadline	100	70	60	80		20

Next consider Order No 1 and fit in the schedule as latest as possible as follows:

Order No.	1	2	3	4	5	6
Profit	6	7	10	8	1	2
Deadline	100	70	60	80	10	20

The schedule is full now, we stop. Hence, the above table shows the accepted orders and the schedule.

The total profit can be achieved by the accepted orders = 100 + 70 + 60 + 80 + 10 + 20 = 340.

Question 3)

0	1	2	3	4	5
128	242	202	150	172	134

	0	1	2	3	4	5
Step 1	242	128	202	150	172	134
Step 2	242	202	128	150	172	134
Step 3	242	202	<u>172</u>	150	128	134
Step 4	242	202	<u>172</u>	<u>150</u>	128	134
Step 5	242	202	<u>172</u>	<u>172</u>	<u>134</u>	128
Step 6	242	202	<u>172</u>	<u>172</u>	<u>134</u>	<u>128</u>
Final	242	202	<u>172</u>	<u>172</u>	<u>134</u>	<u>128</u>
Result						

Question 4)

Using Insertion sort,

0	1	2	3	4
19	17	15	11	13

	0	1	2	3	4
Step 1	<u>19</u>	<u>17</u>	15	11	13
Step 2	<u>19</u>	<u>17</u>	<u>15</u>	11	13
Step 3	<u>19</u>	<u>17</u>	<u>15</u>	<u>13</u>	11
Step 4	<u>19</u>	<u>17</u>	<u>15</u>	<u>13</u>	<u>11</u>
Final Result	<u>19</u>	<u>17</u>	<u>15</u>	<u>13</u>	<u>11</u>

Question 5)

Using bubble sort,

0	1	2	3	4	5
14	71	51	25	36	17

1st Comparison sequence

	0	1	2	3	4	5
1 st Comp	71	14	51	25	36	17
2 nd Comp	71	51	14	25	36	17
3 rd Comp	71	51	25	14	36	17
4 th Comp	71	51	25	36	14	17
5 th Comp	71	51	25	36	<u>17</u>	<u>14</u>

End of Pass 1

	0	1	2	3	4	5
Pass 1	71	51	25	36	<u>17</u>	<u>14</u>

2nd Comparison

	0	1	2	3	4	5
1 st Comp	71	51	25	36	<u>17</u>	<u>14</u>
2 nd Comp	71	51	25	36	<u>17</u>	<u>14</u>
3 rd Comp	<u>71</u>	<u>51</u>	<u>36</u>	<u>25</u>	<u>17</u>	<u>14</u>
4 th Comp						
5 th Comp						

End of Pass 2

	0	1	2	3	4	5
Pass 1	71	51	25	36	<u>17</u>	<u>14</u>
Pass 2	<u>71</u>	<u>51</u>	<u>36</u>	<u>25</u>	<u>17</u>	<u>14</u>
Final result	<u>71</u>	<u>51</u>	<u>36</u>	<u>25</u>	<u>17</u>	<u>14</u>

Question 6)

	0	1	2	3	4	5	6	7
Step 1:	200	100	250	150	300	50	<u>350</u>	400
Step 2:	150	100	50	200	300	250	<u>350</u>	400
Step 3:	50	100	<u>150</u>	200	300	250	350	400
Step 4:	<u>50</u>	100	<u>150</u>	200	300	250	<u>350</u>	400
Step 5:	50	100	<u>150</u>	200	300	250	350	400
Step 6:	<u>50</u>	100	<u>150</u>	200	250	300	350	400
Step 7:	<u>50</u>	100	<u>150</u>	200	<u>250</u>	300	350	400
Step 8:	<u>50</u>	<u>100</u>	<u>150</u>	200	<u>250</u>	300	<u>350</u>	400
Final Result	<u>50</u>	100	<u>150</u>	200	<u>250</u>	300	350	400

Question 7)

0	1	2	3	4	5	6	7	8	9	10	11	12
1	2	4	7	9	11	17	23	27	30	34	38	43

(a)

Let T be sequence.

Let f = first

Let l = last

Target number: 38

Step 1:

$$f = 0, l = 12$$

$$mid = (0+12)/2 = 6$$

As target 38 > T(6) = 17, hence, f of step 2 = 6+1 = 7, and l of step 2 = 12

Step 2:

$$f = 7, l = 12$$

$$mid = (7+12)/2 = 9.5 = 9$$
 (Floor function)

As target 38 > T(9) = 30, hence f of step 3 = 9+1 = 10, and l of step 3 = 12

Step 3:

$$f = 10, l = 12$$

$$mid = (10+12)/2 = 11$$

As target 38 = T(11) = 38, target has been found, its index is 11.

(b)

Target number: 25

Step 1:

$$f = 0, l = 12$$

$$mid = (0+12)/2 = 6$$

As target 25 > T(6) = 17, hence, f of step 2 = 6+1 = 7, and l of step 2 = 12

Step 2:

$$f = 7, l = 12$$

$$mid = (7+12)/2 = 9.5 = 9$$
 (Floor function)

As target 25 < T(9) = 30, hence, f of step 3 = 7, l of step 3 = 9-1 = 8

Step 3:

$$f = 7, l = 8$$

$$mid = (7+8)/2 = 7.5 = 7$$
 (Floor function)

As target 25 > T(7) = 23, f of step 4 = 7 + 1 = 8, and l = 8

Step 4:

$$f = 8, l = 8$$

$$mid = (8+8)/2 = 8$$

As target 25 < T(8) = 27, hence, f od step 5 = 8 and l of step 5 = 8-1 = 7

Step 5:

$$f = 8, l = 7$$

As f > l, there is no such subsequence.

Hence, 25 (target) cannot be found.

Question 8)

8)	
	largest_index_position (A, f, L) {
	"Input: A portion of sequence A between indices f and l(fsl)
	11 Output: The index of the largest element in the above portion
	if f=l
	return 1
	elsef
	temp1 = largest_sindex_position (A, f, [(f+l)/2])
	temp 2 = largest - Endex - position (A, [Gf+2)/2]+I, L)
	ζ
	if A [temp1] ≥ A [temp2]
	return temp!
	else
	pe return temp 2
	ζ