Численные методы в физике

Губкин А.С.

Тюменский филиал Института теоретической и прикладной механики им. С. А. Христиановича СО РАН, г. Тюмень

10 мая 2020 г.

Введение

Законы сохранения первоначально возникают в интегральной форме, так как прямой физический смысл имеет функция множества, а не точки. Однако в классе гладких функций интегральная форма эквивалентна дифференциальным уравнениям поля.

Функции множества

$$\int_{x_1}^{x_2} f(x) dx = F(x_2) - F(x_1)$$

$$\int_{1}^{2} x dx = \frac{1}{2} 2^2 - \frac{1}{2} 1^2 = \frac{3}{2}$$

$$\int_{1}^{3} x dx = \frac{1}{2} 3^2 - \frac{1}{2} 1^2 = 4$$

Законы сохранения и уравнения поля

$$\begin{bmatrix} \int_{\Omega} \mathbf{s} \left(\mathbf{x}, t \right) d\mathbf{x} \end{bmatrix}_{t_{1}}^{t_{2}} + \int_{t_{1}}^{t_{2}} \oint_{\partial \Omega} \mathbf{A} \left(\mathbf{x}, t \right) \mathbf{n} dS dt + \int_{t_{1}}^{t_{2}} \oint_{\partial \Omega} \mathbf{g} \left(\mathbf{x}, t \right) d\mathbf{x} dt = 0.$$

$$\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix}, \ \mathbf{s} = \begin{bmatrix} s_{1} \\ s_{2} \\ \vdots \\ s_{m} \end{bmatrix}, \ \mathbf{g} = \begin{bmatrix} g_{1} \\ g_{2} \\ \vdots \\ g_{m} \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Законы сохранения и уравнения поля

Это уравнение утверждает, что изменение функции множества

$$\mathbf{\Sigma}\left(\Omega,t
ight)=\int_{\Omega}\mathbf{s}_{t}\left(\mathbf{x},t
ight)d\mathbf{x}$$

на интервале времени от t_1 до t_2 уравновешено потоком величины **A** через $\partial\Omega$ и действием источников ${\bf g}\left({\bf x},t\right)$ в области Ω в течение того же времени. В основе физики сплошных сред, типичные компоненты функции Π — это масса, импульс, момент импульса, энергия, электрический заряд и т. д.

Законы сохранения и уравнения поля

Законы сохранения дополняются исходными предположениями, которые определяют природу среды. Состояние системы описывается вектором состояния \mathbf{u} , так что величины \mathbf{s} , \mathbf{g} и \mathbf{A} зависят от \mathbf{u} через известные дифференцируемые определяющие уравнения

S

Система гиперболических законов сохранения

Системой гиперболических законов сохранения называется система вида:

$$\vec{u}_t + \vec{\nabla} \cdot f(\vec{u}) = 0,$$

где u – вектор сохраняемых величин, $f(\vec{u})$ – тензор потока.

Такая запись уравнений в частных производных называется консервативной или дивергентной.

Такие системы законов сохранения встречается в нефтянной отрасли, газовой динамике, теории мелкой воды и т.д.

Уравнения Эйлера

Уравнения Эйлера можно представить в виде системы гиперболических законов сохранения:

$$\vec{u}_t + \vec{\nabla} \cdot f(\vec{u}) = \vec{q},$$

$$\vec{u} = \begin{bmatrix} \rho \\ \rho \vec{v} \\ \rho E \end{bmatrix}, \ f(\vec{u}) = \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \rho \mathbf{I} \\ \vec{v} (\rho E + \rho) \end{bmatrix}, \ \vec{q} = \begin{bmatrix} 0 \\ \vec{F} \\ \vec{F} \cdot \vec{v} \end{bmatrix}.$$

Одна особенность

Одной из особенностей нелинейных дифференциальных уравнений является то, что начальное условие, будучи гладким, может приводить к появлению разрывов в решении. Например ударные волны в газовой динамике.

Характеристики

Стандартным методом решения гиперболических уравнений является метод характеристик.

Чтобы ввести понятие характеристики, перепишем скалярный гиперболический закон сохранения в недивергентной форме:

$$u_t + f(u)_x = 0 \rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = 0.$$

Теперь, характеристиками будут линии в пространстве (x, t), которые определяются с помощью уравнения:

$$\frac{dx}{dt} = \frac{\partial f}{\partial u} = a(u).$$

Характеристики

Видно, что при таком определении u будет константой вдоль характеристики, $u=u_0$:

$$u_t + f(u)_x = 0 \Rightarrow \frac{\partial u}{\partial t} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = 0 \Rightarrow$$
$$\Rightarrow \frac{\partial u}{\partial t} + \frac{dx}{dt} \frac{\partial u}{\partial x} = 0 \Rightarrow \frac{du}{dt} = 0.$$

Характеристики

Таким образом, уравнение характеристик будет иметь вид:

$$\frac{dx}{dt}=a(u_0).$$

Характеристики будут задаваться линиями:

$$x(t) = a(u_0)(t-t_0) + x_0.$$

Значение переменной u_0 переносится вдоль этой линии.

Метод характеристик

Пусть дана задача Коши для скалярного гипреболическооо уравнения:

$$u_t + f(u)_x = 0, \ u(x) = \eta(x).$$

Решение строится следующим образом: из произвольной точки x_0 на оси x выпускаем характеристику. Коэффициент наклона характеристики, выходящей из точки x_0 , есть $a_0=a(u_0)=a(u(x_0))$, так что уравнение характеристики: $x-x_0=a_0t$.

Метод характеристик

Таким образом, чтобы найти u в точке (x,t) следует определить характеристику, которая приходит в эту точку из точки x_0 , из которой эта характеристика выходит, и так как u_0 постоянна на характеристике, то решение будет:

$$u(x,t) = \eta(x_0) = \eta(x - a(u)t).$$

Метод характеристик

Такое построение решения не является удовлетворительным, так как характеристики могут пересекаться и по ним в одну и ту же точку будут переноситься различные значения u, так что решение становится многозначным. Чтобы устранить эту многозначность в решение вводят разрывы, на которых должны выполняться дополнительные условия.

Пример

Рассмотрим следующую задачу Коши для уравнения Бюргерса:

$$\begin{cases} u_t + \left(\frac{1}{2}u^2\right)_x = 0, \\ u(x,0) = \sin(x), -\infty < x < \infty. \end{cases}$$

Пример

В данном случае наклон характеристик есть

$$a(u) = u$$
.

В начальный момент времени в точке $x=\pi/2,\,u(\pi/2)=1,\,$ тогда как в точке $x=3\pi/2,\,u(3\pi/2)=-1.$

Нарушение гладкости решения

Соотношения Рэнкина - Гюгонио

Рассмотрим разрыв решения. Пусть траектория движения разрыва суть x(t), его скорость $s=x'(t)=\frac{dx}{dt}$, значение u слева от разрыва обозначим u_L , справа от разрыва $-u_R$. Интегральную форму закона сохранения

$$\frac{d}{dt}\int_a^b u(x,t)dx = f(u(a,t)) - f(u(b,t)),$$

можно переписать как

$$\frac{d}{dt}\left(\int_a^{x(t)}u(x,t)dx+\int_{x(t)}^bu(x,t)dx\right)=f(u(a,t))-f(u(b,t)).$$

Соотношения Рэнкина - Гюгонио

Выполняя дифференцирование, получаем

$$\int_{a}^{x(t)} u_{t}dx + u(x(t) - \varepsilon, t)x'(t) +$$

$$+ \int_{x(t)}^{b} u_{t}dx - u(x(t) + \varepsilon, t)x'(t) =$$

$$= f(u(a, t)) - f(u(b, t)).$$

Соотношения Рэнкина - Гюгонио

Подставив $u_t = -f_{\!\scriptscriptstyle X}$ и выполняя интегрирование, получаем

$$f(u(t,a)) - f(u(t,x(t)-\varepsilon)) + u(t,x(t)-\varepsilon)x'(t) + f(u(t,x(t)+\varepsilon)) - f(u(t,b)) - u(t,x(t)+\varepsilon)x'(t) = f(u(t,a)) - f(u(t,b)).$$

Окончательно получаем

$$s(u_L-u_R)=f(u_L)-f(u_R).$$

Обобщенное решение

Решение, содержащее разрывы, не является классическим в том смысле, что не имеет непрерывных производных по каждой из переменных. Решения такого типа называются обобщенными. Обобщенное решение задачи Коши для нелинейных уравнений не является единственным.

Пример

Сделанное утверждение проиллюстрируем следующим примером. Рассмотрим следующую задачу Коши:

$$\left\{egin{array}{ll} u_t+\left(rac{1}{2}u^2
ight)_x=0,\ u(x,0)=\eta(x)=\left\{egin{array}{ll} u_L, & x<0,\ u_R, & x>0, \end{array}
ight.$$

причем $u_L < u_R$.

Два решения

Можно указать два обобщенных решения этой задачи:

Энтропийное условие

Чтобы выделить единственное решение, необходимо наложить на него дополнительные требования: возрастание (убывание) энтропии на скачке. Энтропийное условие указывает на то, что реализуется только то состояние, в котором характеристики входят в разрыв и не могут выходить из разрыва.

Алгебраически энтропийное условие может быть записано следующим образом:

$$a(u_L) = f'(u_L) \ge \frac{f(u_R) - f(u_L)}{u_R - u_L} \ge f'(u_R) = a(u_R).$$

Решение

Таким образом, решением будет функция:

$$u(x,t) = \begin{cases} u_L, & x < u_L t \\ \frac{x}{t}, & u_L t < x < u_R t \\ u_R, & x > u_R t. \end{cases}$$

Точка разрыва переменных есть идеализация, описывающая область резких градиентов решения. На самом деле в этой области становятся существенными слагаемые, которыми в областях гладкости можно пренебречь: часто они имеют диффузионный вид. С учетом этого замечания введем малую диффузию:

$$u_t + f(u)_x = (\nu u_x)_x.$$

Нас интересует предельное поведение решений этого уравнения при $u \to 0$. Этот предел (если он существует) мы объявляем решением уравнения без вязкости.

Пусть E(u) - произвольная функция, определенная при всех u. Умножим исходное уравнение на $E_u(u)$ и после несложных преобразований получим:

$$E_{u}u_{t} + E_{u}f(u)_{u}u_{x} = E_{u}(\nu u_{x})_{x} \Rightarrow$$

$$\Rightarrow E_{t} + \frac{\partial}{\partial x} \int E_{u}f_{u}du = (\nu E_{u}u_{x})_{x} - \nu E_{uu}(u_{x})^{2}.$$

Интегрируя по x от $-\infty$ до ∞ , получаем

$$-sE|_{-\infty}^{\infty}+(F-\nu E_{u}u_{x})|_{-\infty}^{\infty}=-\int_{-\infty}^{\infty}\nu E_{uu}(u_{x})^{2}dx,$$

где $F = \int E_u f_u du$ – поток величины E.

Вне разрыва член $\nu E_u u_x \to 0$ при $\nu \to 0$. Кроме того, $(\cdot)|_{-\infty}^{\infty} = -[\cdot]$, так что последнее соотношение примет вид:

$$-s[E] + [F] = -\int_{-\infty}^{\infty} \nu E_{uu} (u_x)^2 dx.$$

Если функция E(u) такая, что $s_{uu} < 0$, то в пределе получаем неравенство

$$-s[E]+[F]\leq 0.$$

В этом случае E(u) называется **энтропией**. Для скалярного уравнения таких функций существует бесконечно много.

Смысл неравенства $s[E] \geq [F]$ следующий: скорость приращения энтропии s[E] не меньше, чем ее подвод извне [F]. На разрывах за счет действия «диссипативных» процессов рост энтропии превышает ее подвод. Это обстоятельство можно записать так

$$E_t + F_{\times} \geq 0.$$

Таким образом, на обобщенное решение уравнения можно наложить дополнительное условие возрастания энтропии.

Замечание: если под энтропией понимать функцию, такую что $E_{uu}>0$, то следует говорить об убывании энтропии на разрыве.

