

Linux MIPI CSI 开发指南

版本号: 2.1

发布日期: 2021.04.15

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.11.9	AWA1645	创建初始版本
2.0	2020.11.11	AWA1645	适配 linux5.4
2.1	2021.04.15	AWA1689	适配 R528 平台

目 录

1	前言		1
	1.1	文档简介	1
	1.2	目标读者	1
	1.3	适用范围	1
_			_
2	模块		2
	2.1	模块功能介绍	2
	2.2	相关术语介绍	2
	2.3	模块配置介绍	3
		2.3.1 Device Tree 配置说明	3
		2.3.2 kernel menuconfig 配置	6
	2.4	源码模块结构	8
	2.5		12
			12
		1	13
		2.5.3 Device Driver 层	13
3	V/AT	.2 接口描述	14
3	2 1	VIDIOC OUEDVCAD	14 14
	5.1		14 14
		3.1.2 Poturns	14 14
		3.1.3 Description	14 14
	3 2	VIDIOC ENUM INPUT	14 14
	٥.۷		14 14
			14 15
			15 15
	3 3		15 15
	5.5		15 15
			15 15
			15 15
	3 /	-	15 16
	5.4		16 16
			16 16
			16 16
	3 5	-	16 16
	5.5		16 16
			10 17
			1 / 17
	2.6		1 / 17
	ა.0		1 / 17
			1 / 17
			1 / 17
		3.6.3 Description	τ/

3.7 VIDIOC_ENUM_FMT
3.7.1 Parameters
3.7.2 Returns
3.7.3 Description
3.8 VIDIOC_TRY_FMT 18
3.8.1 Parameters
3.8.2 Returns
3.8.3 Description
3.9 VIDIOC_S_FMT
3.9.1 Parameters
3.9.2 Returns
3.9.3 Description
3.10 VIDIOC_G_FMT
3.10.1 Parameters
3.10.2 Returns
3.10.3 Description
3.11 VIDIOC_OVERLAY
3.11.1 Parameters
3.11.2 Returns
3.11.3 Description
3.11.1 Parameters 20 3.11.2 Returns 20 3.11.3 Description 21 3.12 VIDIOC_REQBUFS 22 3.12.1 Parameters 23 3.12.2 Returns 23
3.12.1 Parameters
3.12.2 Returns
3.12.3 Description
3.13 VIDIOC_QUERYBUF
3.13.1 Parameters
3.13.2 Returns
3.13.3 Description
3.14 VIDIOC_DQBUF
3.14.1 Parameters
3.14.2 Returns
3.14.3 Description
3.15 VIDIOC_QBUF
3.15.1 Parameters
3.15.2 Returns
3.15.3 Description
3.16 VIDIOC_STREAMON
3.16.1 Parameters
3.16.2 Returns
3.16.3 Description
3.17 VIDIOC_STREAMOFF
3.17.1 Parameters
3.17.2 Returns

	3.17.3 Description	24
	3.18 VIDIOC_QUERYCTRL	25
	3.18.1 Parameters	25
	3.18.2 Returns	25
	3.18.3 Description	25
	3.19 VIDIOC_S_CTRL	25
	3.19.1 Parameters	25
	3.19.2 Returns	25
	3.19.3 Description	26
	3.20 VIDIOC_G_CTRL	26
	3.20.1 Parameters	26
	3.20.2 Returns	26
	3.20.3 Description	26
	3.21 VIDIOC_ENUM_FRAMESIZES	26
	3.21.1 Parameters	
	3.21.2 Returns	27
	3.21.3 Description	27
	3.22 VIDIOC_ENUM_FRAMEINTERVALS	27
	3.22.1 Parameters	27
	3.22.2 Returns	28
	3.22.2 Returns	28
	3.23 VIDIOC_ISP_EXIF_REQ	28
4	模块使用范例	30
	4.1 测试 demo	30
	4.2 调用流程	31
5	FAQ	32
	5.1 调试方法	
	5.1.1 调试节点	
	5.1.2 settle time	
	5.2 常见问题	
	5.2.1 I2C 不通	
	5.2.2 sensor 不出图	33
	5.2.3 已出图但画面是绿色或者粉红色	34
	5.2.4 I2c 已通,但是读所有 sensor 寄存器值都为 0	34
	5.2.5 画面旋转 180 度	34
	5.2.6 没有 video 节点	34

插图

2-1	Device Drivers 选项配置					 							 		7
2-2	Device Drivers 选项配置														7
2-3	Device Drivers 选项配置														8
2-4	驱动框图														12
4-1	CSI 调用流程														31
5-1	vi 节点												 		32
5-2	i2c 不诵														33

1.1 文档简介

介绍 VIN(video input)驱动配置,API 接口和上层使用方法

1.2 目标读者

camera 驱动开发、维护人员和应用开发人员

1.3 适用范围

ra 驱动开发、维护人员	员和应用开发人员
适用范围	- MER
	表 1-1: 适用产品列表
内核版本	驱动文件
Linux-4.9	drivers/media/platform/sunxi_vin/*.c
Linux-5.4	drivers/media/platform/sunxi_vin/*.c

2.1 模块功能介绍

- 1. Video input 主要由接口部分(CSI/MIPI)和图像处理单元(ISP/VIPP)组成;
- 2. CSI/MIPI 部分主要实现视频数据的捕捉;
- 3. ISP 实现 sensor raw data 数据的处理,包括 lens 补偿、去坏点、gain、gamma、 de-mosaic、de-noise、color matrix 等以及一些 3A 的统计;
- 4. VIPP 能对将图进行缩小、和打水印处理。VIPP 支持 bayer raw data 经过 ISP 处理后再缩 .v dat 小,也支持对一般的 YUV 格式的 sensor 图像直接缩小。

2.2 相关术语介绍

相关术语	解释说明
ISP	Image Signal Processor 图像信号处理
VIPP	Video Input Post Processor 图像输入后处理
MIPI	Mobile Industry Processor Interface 移动工业处理接口
CCI	Camera Control Interface 摄像头控制接口
TDM	Time division multiplexing ISP 时分复用
MCLK	Master clock(From AP to camera)摄像头主时钟
PCLK	Pixel clock (From camera to AP, Sampling clock for data-bus) 像素时钟
YUV	Color Presentation (Y for luminance, U&V for Chrominance) 图像数据格式

文档密级: 秘密

2.3 模块配置介绍

2.3.1 Device Tree 配置说明

- 设备树文件的配置是该 SoC 所有方案的通用配置,对于 ARM64 CPU 而言,设备树的路径 为: kernel/{KERNEL VERSION}/arch/arm64/boot/dts/sunxi/sun*.dtsi。
- 设备树文件的配置是该 SoC 所有方案的通用配置,对于 ARM32 CPU 而言,设备树的路径 为: kernel/{KERNEL VERSION}/arch/arm/boot/dts/sun*.dtsi。
- 板级设备树 (board.dts) 路径: /device/config/chips/{IC}/configs/{BOARD}/KERNEL VERSION/board.dts

在 sun.dtsi 文件中,配置了该 SoC 的 CSI 控制器的通用配置信息,一般不建议修改,由 CSI 驱 动维护者维护,如果需要修改配置请修改板级设备树 board.dts, 板级设备树里面的内容会覆盖 sun.dtsi 对应的信息。

• vind 配置

```
&vind0 {
   csi top = <336000000>;
   csi isp = <300000000>;
   status = "okay";
   actuator0: actuator@2108180 {
       device_type = "actuator0";
       actuator0_name = "ad5820_act";
       actuator0_slave = <0x18>;
       actuator0_af_pwdn = <>;
       actuator0_afvdd = "afvcc-csi"
       actuator0_afvdd_vol = <2800000>;
       status = "disabled";
   };
   flash0: flash@2108190 {
       device_type = "flash0";
       flash0_type = <2>;
       flash0_en = <&r_pio PL 11 GPIO_ACTIVE_LOW>;
       flash0_mode = <>;
       flash0 flvdd = "";
       flash0 flvdd vol = <>;
       device id = <0>;
       status = "disabled";
   sensor0:sensor@200b800 {
       device_type = "sensor0";
       sensor0 mname = "gc2385 mipi";
       sensor0_twi_cci_id = <2>;
       sensor0_twi_addr = <0x6e>;
       sensor0_mclk_id = <0>;
       sensor0_pos = "rear";
       sensor0_isp_used = <1>;
       sensor0_fmt = <1>;
```



```
sensor0 stby mode = <0>;
    sensor0_vflip = <0>;
    sensor0_hflip = <0>;
    sensor0_iovdd-supply = <&reg_dldo2>;
    sensor0_iovdd_vol = <1800000>;
    sensor0_avdd-supply = <&reg_dldo3>;
    sensor0 avdd vol = <2800000>;
    sensor0_dvdd-supply = <&reg_eldo2>;
    sensor0_dvdd_vol = <1200000>;
    sensor0 power en = <>;
    sensor0_reset = <&pio PE 9 GPI0_ACTIVE_LOW>;
    sensor0_pwdn = <&pio PE 8 GPI0_ACTIVE_LOW>;
    status = "okay";
};
sensor1:sensor@200b810 {
   device_type = "sensor1";
    sensor1_mname = "gc030a_mipi";
    sensor1_twi_cci_id = <2>;
    sensor1_twi_addr = <0x42>;
    sensor1_mclk_id = <0>;
    sensor1_pos = "front";
    sensor1_isp_used = <1>;
                                          sensor1 fmt = <1>;
    sensor1_stby_mode = <0>;
    sensor1 vflip = <0>;
    sensor1_hflip = <0>;
    sensor1_iovdd-supply = <&reg_dldo2>;
    sensor1_iovdd_vol = <1800000>;
    sensor1_avdd-supply = <&reg_dldo3>;
    sensor1_avdd_vol = <2800000>;
    sensor1_dvdd-supply = <>;
    sensor1_dvdd_vol = <>;
    sensor1_power_en = <>;
    sensor1_reset = <&pio PE 7 GPI0_ACTIVE_LOW>;
    sensor1_pwdn = <&pio PE 6 GPI0_ACTIVE_LOW>;
    status = "okay";
};
vinc0:vinc@2009000 {
   vinc0_csi_sel = <0>;
    vinc0_mipi_sel = <0>;
    vinc0_isp_sel = <0>;
    vinc0_isp_tx_ch = <0>;
    vinc0_tdm_rx_sel = <0xff>;
    vinc0_rear_sensor_sel = <0>;
    vinc0 front sensor sel = <1>;
    vinc0 sensor list = <0>;
    status = "okay";
};
vinc1:vinc@2009200 {
    vincl_csi_sel = <0>;
    vinc1_mipi_sel = <0>;
    vinc1_isp_sel = <0>;
    vinc1_isp_tx_ch = <0>;
    vinc1_tdm_rx_sel = <0xff>;
    vinc1_rear_sensor_sel = <0>;
    vinc1_front_sensor_sel = <1>;
    vinc1_sensor_list = <0>;
   status = "okay";
};
vinc2:vinc@2009400 {
```



```
vinc2 csi sel = <1>;
    vinc2_mipi_sel = <1>;
    vinc2_isp_sel = <0>;
    vinc2 isp tx ch = <0>;
    vinc2\_tdm\_rx\_sel = <0xff>;
   vinc2_rear_sensor_sel = <0>;
    vinc2_front_sensor_sel = <1>;
    vinc2 sensor list = <0>;
    status = "okay";
};
vinc3:vinc@2009600 {
    vinc3 csi sel = <1>;
    vinc3_mipi_sel = <1>;
   vinc3_isp_sel = <0>;
   vinc3_isp_tx_ch = <0>;
   vinc3_tdm_rx_sel = <0xff>;
    vinc3_rear_sensor_sel = <0>;
    vinc3_front_sensor_sel = <1>;
   vinc3_sensor_list = <0>;
    status = "okay";
};
```

其中:

status 是 vin 驱动的总开关,对应的是 media 设备,使用 vin 时必须设为 okay; vind0_clk 是 vin 模块的时钟,实际使用时可以根据 sensor 的帧率和分辨率来设置;

```
csi{x}_used 是 parser x 的使能开关;
csi{x}_xxx 是 dvp(或者其他并行如 BT656 接口)csi 的功能脚,mipi(或者其他串行如
hispi/sublvds)csi 的引脚一般是独占,不需要在 sysconfig 中配置;
```

```
\begin{split} & \text{flash}\{x\}\_\text{used: 0:disable 1:enable} \\ & \text{flash}\{x\}\_\text{type: 0:FLASH\_RELATING, 1:FLASH\_EN\_INDEPEND, 2:FLASH\_POWER} \\ & \text{flash}\{x\}\_\text{en: flash enable gpio, type = 0 of 1} \\ & \text{flash}\{x\}\_\text{mode: flash module io power handle string, pmu power supply, type = 2} \\ & \text{flash}\{x\}\_\text{flvdd: flash module io power voltage, pmu power supply, type = 2} \end{split}
```

```
device_type: vcm type
actuator{x}_name: vcm name
actuator{x}_slave: vcm iic slave address
actuator{x}_af_pwdn: vcm power down gpio
actuator{x}_afvdd: vcm power handle string, pmu power supply
actuator{x}_afvdd_vol: vcm power voltage, pmu power supply
status: vcm if used, disable 代表关, okay 代表开
```



```
device type: sensor type sensor{x} mname: sensor name
sensor{x} twi cci id: sensor 所使用的 twi 或者 cci 的 id。
sensor{x} twi addr: sensor 的 twi 地址
sensor{x} mclk id: sensor 所使用的 mclk 的 id。
sensor{x} pos: sensor 的位置,前置还是后置,主要用在平板上。
sensor{x}_isp_used 0:not use isp 1:use isp
sensor{x} fmt: 0:yuv 1:bayer raw rgb
sensor{x} stby mode: 0:not shut down power at standby 1:shut down power at
standby
sensor{x} vflip: flip in vertical direction 0:disable 1:enable
sensor{x} hflip: flip in horizontal direction 0:disable 1:enable
sensor{x}_iovdd: camera module io power handle string, pmu power supply
sensor{x} iovdd vol: camera module io power voltage, pmu power supply
sensor{x}_avdd: camera module analog power handle string, pmu power supply
sensor{x} avdd vol: camera module analog power voltage, pmu power supply
sensor{x} dvdd: camera module core power handle string, pmu power supply
sensor{x} dvdd vol: camera module core power voltage, pmu power supply
sensor{x}_power_en: camera module power enable gpio
sensor{x} reset: camera module reset gpio
sensor{x}_pwdn: camera module pwdn gpio sensor{x}_sm_vs: camera module
sm vs gpio status: open or close sensor device flash/actautor/sensor 节点用于对应的
外设的开关和配置。这些节点的配置一般需要参考对应方案的原理图和外设的 data sheet 来完
成。
```

vinc $\{x\}$ _csi_sel: 表示该 pipeline 上 parser 的 id,必须配置,且为有效 id。 vinc $\{x\}$ _mipi_sel: 表示该 pipeline 上 mipi (sublvds/hispi) 的 id,不使用时配置为 0xff。 vinc $\{x\}$ _isp_sel: 表示该 pipeline 上 isp 的 id,必须配置,当 isp 为空时,这个 isp 只是表示路由不做 isp 的效果处理。 vinc $\{x\}$ _isp_tx_ch 表示该 pipeline 上 isp 的 ch,必须配置,默认为 0。当 sensor 是 bt656 多通道或者 WDR 出 RAW 时,该 ch 可以配置 $0\sim3$ 的值。 vinc $\{x\}$ _rear_sensor_sel 表示该 pipeline 上使用的后置 sensor 的 id。 vinc $\{x\}$ _front_sensor_sel 表示该 pipeline 上使用的前置 sensor 的 id。 vinc $\{x\}$ _sensor_list 表示是否使用 sensor_list 来时适配不同的模组,1 表示使用,0 表示不使用。 status: vipp 的使能开关,okay or disable。

2.3.2 kernel menuconfig 配置

1. 首先,进入 Device Drivers,选择 Multimedia support ,然后依次打开 Cameras/video grabbers support 、Media Controller support 和 SUNXI platform devices, 如下图所

示:

图 2-1: Device Drivers 选项配置

2. 其次,进入 SUNXI platform devices,选择 sunxi video input (camera csi/mipi isp vipp)driver 和 v4l2 new driver for SUNXI, 如下图所示:

图 2-2: Device Drivers 选项配置

3. 最后,sunxi video input (camera csi/mipi isp vipp)driver 目录下的其他选项需要根据实际产品需求进行开关,如:使用闪光灯、对焦马达、打开 vin log、使用 IOMMU 如下图所示:

图 2-3: Device Drivers 选项配置

2.4 源码模块结构

驱动路径位于 drivers/media/platform/sunxi-vin 目录

```
sunxi-vin:.

    Kconfig

  Makefile
   modules
     - actuator
        — actuator.c
                                 ; vcm driver的一般行为
        actuator.h
                                ; vcm driver的头文件
         ad5820_act.c
                                ; 具体vcm driver型号实现
         – an41908a act.c
                                ; 具体vcm driver型号实现
         – dw9714 act.c
                                 ; 具体vcm driver型号实现
        — Makefile
                                 ;编译文件
      - flash
        — flash.c
                                 ;led补光灯控制实现
        — flash.h
                                 ;led补光灯驱动头文件
       sensor
        — ar0238.c
                                 ; 具体的sensor驱动
                                 ; camera ioctl扩展命令头文件
         camera_cfg.h
                                 ;camera公用结构体头文件
         - camera.h
         - gc030a_mipi.c
                                 ;具体的sensor驱动
         - gc0310_mipi.c
                                 ;具体的sensor驱动
         - gc5024_mipi.c
                                 ;具体的sensor驱动
         imx179_mipi.c
                                 ;具体的sensor驱动
```



```
imx214.c
                              ;具体的sensor驱动
       imx219.c
                              ; 具体的sensor驱动
       imx317_mipi.c
                              ; 具体的sensor驱动
       Makefile
                              ;驱动的编译文件
       nvp6134
                              ; 具体的dvp sensor驱动
         - acp.c
           acp_firmup.c
           acp_firmup.h
           acp.h
          common.h
          csi dev nvp6134.c
           csi_dev_nvp6134.h
          eq.c
          eq_common.c
          eq_common.h
          - eq.h
           eq_recovery.c
          eq_recovery.h
          - Makefile
          - nvp6134c.c
                                ;具体的sensor驱动实现
          - type.h
          - video.c
                                 - video.h
       nvp6158
                                ; 具体的dvp sensor驱动
         - audio.c
                                ;音频部分实现
          - audio.h
                                ; 音频部分头文件接口
          coax protocol.c
           coax_protocol.h
          coax_table.h
          common.h
          - Makefile
          - modules.builtin
           modules.order
           motion.c
           motion.h
                                ;具体的sensor驱动实现
           nvp6158c.c
           nvp6158_drv.c
          - nvp6158_drv.h
          nvp6168_eq_table.h
           video_auto_detect.c
           video_auto_detect.h
         - video.c
         - video_eq.c
         - video_eq.h

    video eq table.h

         — video.h
       rn6854m mipi.c
                                ; 具体的sensor驱动实现
      - sensor-compat-ioctl32.c
      - sensor helper.c
                                ; 驱动函数接口的实现
     — sensor helper.h
                                ; 驱动函数接口的定义
modules.builtin
modules.order
platform
  - platform_cfg.h
                                ;vin平台配置文件
  - sun50iw10p1_vin_cfg.h
                                ;不同平台配置文件
  - sun50iw3p1_vin_cfg.h
                                ;不同平台配置文件
  - sun50iw6p1_vin_cfg.h
                                ;不同平台配置文件
                                ;不同平台配置文件
  - sun50iw9p1_vin_cfg.h
  - sun8iw12p1_vin_cfg.h
                                ;不同平台配置文件
  - sun8iw15p1_vin_cfg.h
                                 ;不同平台配置文件
```



```
├─ sun8iw16p1 vin cfg.h
                                ;不同平台配置文件
 └─ sun8iw19p1_vin_cfg.h
                                 ;不同平台配置文件
- top_reg.c
- top_reg.h
- top_reg_i.h
- top_reg.o
utility
 bsp_common.c
   - bsp_common.h
   bsp common.o
  — cfg_op.c
                                 ;读取ini文件的实现函数
  — cfg_op.h
                                 ;读取ini文件的实现函数
                                 ;sensor电压、通道选择、i2c地址等信息读取函数
  config.c
  config.h
                                 ;sensor电压、通道选择、i2c地址等信息读取函数头文件
   - vin_io.h
                                 ;vin模块寄存器操作头文件
   - vin_os.c
   - vin_os.h
  vin_supply.c
 ├─ vin_supply.h
 vin.c
- vin-cci
 ├─ bsp_cci.c
                               ;底层cci bsp函数
   - bsp cci.h
                               ;底层cci bsp函数头文件
                               ; cci 帮助函数,供sensor驱动调用
   — cci helper.c
   – cci helper.h
                               ; cci 帮助函数头文件
   - csi_cci_reg.c
                               ;cci硬件底层实现
                               ;cci硬件底层实现头文件
   - csi_cci_reg.h
   - csi_cci_reg_i.h
                                ; cci 寄存器资源头文件
   Kconfig
                                ; cci 平台驱动源文件
   - sunxi_cci.c
                                ; cci 平台驱动头文件
  — sunxi_cci.h
 vin-csi
                                ;CSI控制函数
  parser reg.c
   - parser_reg.h
                                 CSI控制函数头文件
  — parser_reg_i.h
                                ; CSI 寄存器值
                                ; csi 子模块驱动原文件
   - sunxi_csi.c
                                ; csi 子模块驱动头文件
 __ sunxi_csi.h
- vin.h
- vin-isp
  — isp500
     isp500_reg_cfg.c
     isp500_reg_cfg.h
      — isp500_reg_cfg.o
     isp500_reg.h
   - isp520
     ├─ isp520 reg cfg.c
       - isp520 reg cfg.h
     └─ isp520_reg.h
   - isp521
     ├─ isp521_reg_cfg.c
       - isp521_reg_cfg.h
     isp521_reg.h
   - isp522
     ├─ isp522_reg_cfg.c
       isp522_reg_cfg.h
     isp522_reg.h
   isp_default_tbl.h
   - sunxi_isp.c
   - sunxi_isp.h
   - sunxi isp.o
```



```
vin-mipi
 ├── bsp_mipi_csi.c
├── bsp_mipi_csi.h
                           ; 底层mipi bsp函数
                           ; 底层mipi bsp函数头文件
  - bsp_mipi_csi_null.c
                          ; 底层mipi bsp空函数
  - bsp_mipi_csi_v1.c
                           ; 底层mipi bsp函数--v1
   - combo_common.h
   - combo csi
    — combo_csi_reg.c
      - combo_csi_reg.h
    combo_csi_reg_i.h
   - combo rx
    combo_rx_reg.c
     — combo_rx_reg.h
     — combo_rx_reg_i.h
    └─ combo_rx_reg_null.c
   - dphy
    ├─ dphy.h
                           ;mipi dphy头文件
     — dphy_reg.c
— dphy_reg.h
                          ;mipi dphy底层实现函数
                          ;mipi dphy底层实现函数头文件
    └─ dphy_reg_i.h
                          ;mipi dphy 寄存器资源头文件
   protocol
    ─ protocol.h
                           ;mipi协议层头文件
                                           NER
      — protocol_reg.c
— protocol_reg.h
                           ;mipi协议层底层实现
                           ;mipi协议层底层实现头文件
    └─ protocol_reg_i.h
   - protocol.h
   sunxi mipi.c
  — sunxi_mipi.h
vin-stat
                             3A控制接口函数
  — vin h3a.c
                             3A控制接口函数头文件
  — vin h3a.h
vin-tdm
                              TDM寄存器控制函数
  — tdm reg.q
  — tdm_reg.h
  — tdm_reg_i.h
  - vin_tdm.c
 └─ vin_tdm.h
- vin_test
 mplane_image
    — csi_test_mplane.c
                             camera抓图测试用例
   └─ Makefile
                            ;测试用例编译文件
  - sunxi_camera_v2.h
 └─ sunxi_display2.h
vin-video
 ├─ dma reg.c
                            ; csi dma寄存器控制函数
                            ; csi dma寄存器控制函数
  — dma req.h
                            ; csi dma 寄存器值定义头文件
  — dma reg i.h
  — vin_core.c
                            ;vin模块核心
  — vin core.h
                            ;vin模块核心头文件
   - vin_video.c
                            ;数据格式处理、pipe通道选择、Buffer管理等函数
  — vin_video.h
                            ;数据格式处理、pipe通道选择、Buffer管理等函数头文件
vin-vipp
 ├─ sunxi_scaler.c
                            ;图像压缩处理函数
  sunxi_scaler.h
                            ;图像压缩处理函数头文件
  - vipp_reg.c
                            ;vipp寄存器控制函数
  - vipp_reg.h
                            ;vipp寄存器控制函数头文件
  - vipp_reg_i.h
                            ;vipp寄存器具体描述头文件
```


2.5 驱动框架介绍

图 2-4: 驱动框图

VIN 驱动可以分为 Kernel 层、Video Input Framework、Device Driver 层。

2.5.1 Kernel 层

- 1)V4l2 Framework
- 2)Linux 内核视频驱动第二版(Video for Linux Two)
- 3) 适用于收音机、视频编解码、视频捕获以及视频输出设备驱动
- 4) 提供/dev/videoX 节点,应用通过该节点进行相应视频流和控制操作
- 5) Media Device Framework
- 6)Linux 多媒体设备框架
- 7) 适用于管理设备拓扑结构
- 8) 提供/dev/mediaX 节点,通过该节点应用可以获取媒体设备拓扑结构,并能够通过 API 控制子设备间数据流向

2.5.2 Video Input Framework 层

1)Video Control: 视频命令处理(分辨率协商,数据格式处理,Buffer 管理等)

2)Runtime Handle:运行时管理(Pipeline管理,系统资源管理,中断调度等)

3)Event Process: 事件管理(如上层调用,中断等事件的接收与分发)

4)Config Handle:配置管理(如硬件拓扑结构,模组自适应列表等)

2.5.3 Device Driver 层

1)Camera Modules:模组驱动(图像传感器,对焦电机,闪光灯等驱动)

2)Camera Interfac:接口驱动(MIPI、Sub-Lvds、HiSpi、Bt656、Bt601、Bt1120、DC

等)

3)Image Signal Processor:图像处理器驱动(基本处理模块驱动,3A统计驱动)

4)Video Input Post Processor: 视频输入后处理(Scaler,OSD等)

V4L2 接口描述

3.1 VIDIOC QUERYCAP

3.1.1 Parameters

```
Capability of csi driver (struct v4l2 capability * capability)
struct v4l2_capability {
   card[32]; /* i.e. "Hauppauge WinTV" */
  __u8
                     _u32 version;
                /* should use KERNEL_VERSION() */
   __u32 capabilities; /* Device capabilities */
  __u32 reserved[4];
```

3.1.2 Returns

Success:0; Fail: Failure Number

3.1.3 Description

获取驱动的名称、版本、支持的 capabilities 等,如 V4L2 CAP STREAMIN, V4L2 BUF TYPE VIDEO CAPTURE MPLANE 等.

3.2 VIDIOC ENUM INPUT

3.2.1 Parameters

```
input (struct v4l2 input *inp)
struct v4l2_input {
   __u32
                          /* Which input */
                index;
                             /* Label */
   __u8
                name[32];
   __u32
                          /* Type of input */
                type;
                              /* Associated audios (bitfield) */
   __u32
                audioset;
   __u32
                tuner;
                                  /* Associated tuner */
```



```
v4l2 std id std;
 u32
             status;
 u32
             capabilities;
 u32
             reserved[3];
```

3.2.2 Returns

Success:0; Fail: Failure Number

3.2.3 Description

获取驱动支持的 input index。目前驱动只支持 input index = 0 或 index = 1。

Index = 0 表示 primary csi device

Index = 1 表示 secondary csi device

. V4L2 应用输入 index 参数,驱动返回 type。对于 VIN 设备来说,type 为 V4L2_INPUT_TYPE_CAMERA。

3.3 VIDIOC S INPUT

3.3.1 Parameters

```
input (struct v4l2_input *inp)
The same as VIDIOC_ENUM_INPUT
```

3.3.2 Returns

Success:0; Fail: Failure Number

3.3.3 Description

通过 inp.index 设置当前要访问的 csi device 为 primary device 还是 secondary device。 Index = 0 (双摄像头配置中,一般对应后置双摄像头。若只有一个摄像头设备,则 index 固定 为 0)

Index = 1 (双摄像头配置中,一般对应前置摄像头)

调用该接口后,实际上会对 csi device 进行初始化工作。

在 A133 平台: Index 在 video0、1 时固定要设为 0; 在 video2、3 要设为 1。

3.4 VIDIOC_G_INPUT

3.4.1 Parameters

```
input (struct v4l2 input *inp)
The same as VIDIOC ENUM INPUT
```

3.4.2 Returns

Success:0; Fail: Failure Number

3.4.3 Description

获取 inp.index,判断当前设置的 csi device 为 primary device 还是 secondary device。 Index = 0 (双摄像头配置中,一般对应后置双摄像头。若只有一个摄像头设备,则 index 固定 为 0)

Index = 1(双摄像头配置中,一般对应前置摄像头) $3.5 \ VIDIOC_S_PARM$

3.5.1 Parameters

```
Parameter (struct v4l2_streamparm *parms)
struct v4l2_streamparm {
    enum v4l2_buf_type type;
    union {
        struct v4l2_captureparm capture;
        struct v4l2_outputparm output;
                raw data[200]; /* user-defined */
    } parm;
};
struct v4l2_captureparm {
    __u32
                                 /* Supported modes */
                capability;
                  capturemode; /* Current mode */
    __u32
    struct v4l2_fract timeperframe; /* Time per frame in .1us units */
    __u32
                  extendedmode; /* Driver-specific extensions */
    __u32
                      readbuffers; /* # of buffers for read */
    __u32
                  reserved[4];
```

文档密级: 秘密

3.5.2 Returns

Success:0; Fail: Failure Number

3.5.3 Description

CSI 作为输入设备,只关注 parms.type 和 parms. capture。
应用使用时,parms.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
其中通过设定 parms->capture.capturemode(V4L2_MODE_VIDEO 或 V4L2_MODE_IMAGE),实现视频或图片的采集。通过设定 parms->capture.timeperframe,可以设置帧率。

3.6 VIDIOC_G_PARM

3.6.1 Parameters

Parameter (struct v4l2_streamparm *parms)
The same as VIDIOC S PARM

3.6.2 Returns

Success:0; Fail: Failure Number

3.6.3 Description

应用使用时,parms.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; 通过 parms->capture.capturemode 返回当前是 V4L2_MODE_VIDEO 或 V4L2_MODE_IMAGE; 通过 parms->capture.timeperframe, 返回当前设置的帧率

3.7 VIDIOC ENUM FMT

3.7.1 Parameters

```
V4L2 format (struct v4l2 fmtdesc * fmtdesc)
struct v4l2 fmtdesc {
    __u32
                   index;
                                      /* Format number
    enum v4l2_buf_type type;
                                          /* buffer type
    u32
                       flags;
                   description[32]; /* Description string */
    __u8
                                      /* Format fourcc
                   pixelformat;
     _u32
    __u32
                   reserved[4];
```

3.7.2 Returns

Success:0; Fail: Failure Number

3.7.3 Description

获取驱动支持的 V4L2 格式

rm-应用输入 type, index 参数, 驱动返回 pixelformat 。对于 VIN 设备来说, type 为 V4L2 BUF TYPE VIDEO CAPTURE MPLANE.

3.8 VIDIOC_TRY_FMT

3.8.1 Parameters

```
Video type, format and size (struct v4l2_format * fmt)
struct v4l2_format {
    enum v4l2_buf_type type;
    union {
        struct v4l2_pix_format
                                   pix;
        struct v4l2_pix_format_mplane pix_mp;
        struct v4l2_window
        struct v4l2_vbi_format vbi;
        struct v4l2_sliced_vbi_format sliced;
              raw_data[200];
        __u8
    } fmt;
};
struct v4l2_pix_format {
    __u32
                        width;
```



```
u32
               height;
               pixelformat;
 u32
enum v4l2_field
                    field;
 _u32
                    bytesperline;
                                   /* for padding, zero if unused */
 u32
                   sizeimage;
enum v4l2_colorspace
                       colorspace;
 u32
               priv;
                            /* private data, depends on pixelformat */
```

3.8.2 Returns

Success:0; Fail: Failure Number

3.8.3 Description

根据捕捉视频的类型、格式和大小,判断模式、格式等是否被驱动支持。不会改变任何硬件设置。

对于 VIN 设备, type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。使用 struct v4l2 pix format mplane 进行参数传递。

应用程序输入 struct v4l2_pix_format_mplane 结构体里面的 width、height、pixelformat、field 等参数,驱动返回最接近的 width、height;若 pixelformat、field 不支持,则默认选择驱动支持的第一种格式。

3.9 VIDIOC_S_FMT

3.9.1 Parameters

```
Video type, format and size (struct v4l2_format * fmt)
The same as VIDIOC_TRY_FMT
```

3.9.2 Returns

Success:0; Fail: Failure Number

3.9.3 Description

设置捕捉视频的类型、格式和大小,设置之前会调用 VIDIOC_TRY_FMT。 对于 VIN 设备,type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。使用 struct

v4l2 pix format mplane 进行参数传递。

应用程序输入 width、height、pixelformat、field 等,驱动返回最接近的 width、height; 若 pixelformat、field 不支持,则默认选择驱动支持的第一种格式。

应用程序应该以驱动返回的 width、height、pixelformat、field 等作为后续使用传递的参数。 对于 OSD 设备,type 为 V4L2 BUF TYPE VIDEO OVERLAY。使用 struct v4l2 window 进行参数传递。

应用程序输入水印的个数、窗口位置和大小、bitmap 地址、bitmap 格式以及 global_alpha 等。驱动保存这些参数,并在 VIDIOC OVERLAY 命令传递使能命令时生效。

3.10 VIDIOC G FMT

3.10.1 Parameters

LLWINER Video type, format and size (struct v4l2_format * fmt) The same as VIDIOC_TRY_FMT

3.10.2 Returns

Success:0; Fail: Failure Number

3.10.3 Description

获取捕捉视频的 width、height、pixelformat、field、bytesperline、sizeimage 等参数

3.11 VIDIOC OVERLAY

3.11.1 Parameters

Overlay on/off (unsigned int i)

3.11.2 Returns

Success:0; Fail: Failure Number

文档密级: 秘密

3.11.3 Description

传递 1 表示使能,0 表示关闭。设置使能时会更新 osd 参数,使之生效。

3.12 VIDIOC REQBUFS

3.12.1 Parameters

```
Buffer type ,count and memory map type (struct v4l2_requestbuffers * req)
struct v4l2_requestbuffers {
   enum v4l2 buf type
                       type;
   enum v4l2 memory
                reserved[2];
                            LLWINER
```

3.12.2 Returns

Success:0; Fail: Failure Number

3.12.3 Description

v4l2 requestbuffers 结构中定义了缓存的数量,驱动会据此申请对应数量的视频缓存。多个缓 存可以用于建立 FIFO,来提高视频采集的效率。这些 buffer 通过内核申请,申请后需要通过 mmap 方法,映射到 User 空间。

Count: 定义需要申请的 video buffer 数量

Type: 对于 VIN 设备,为 V4L2 BUF TYPE VIDEO CAPTURE MPLANE

Memory: 目前支持 V4L2 MEMORY MMAP、V4L2 MEMORY USERPTR、

V4L2 MEMORY DMABUF 方式

应用程序传递上述三个参数,驱动会根据 VIDIOC S FMT 设置的格式计算供需要 buffer 的大 小,并返回 count 数量。

3.13 VIDIOC_QUERYBUF

3.13.1 Parameters

```
Buffer type ,index and memory map type (struct v4l2 buffer *buf)
struct v4l2_buffer {
   __u32
                  index:
   enum v4l2_buf_type
                         type;
   __u32
                 bytesused;
   __u32
                  flags;
   enum v4l2_field
                     field;
   struct timeval
                     timestamp;
   struct v4l2_timecode
                        timecode;
                  sequence;
   /* memory location */
   enum v4l2_memory
                         memory;
   union {
                                 offset;
       __u32
       unsigned long userptr;
      struct v4l2_plane *planes;
    __u32
                  length;
    __u32
                  input;
    u32
                  reserved;
```

3.13.2 Returns

Success:0; Fail: Failure Number

3.13.3 Description

通过 struct v4l2 buffer 结构体的 index,访问对应序号的 buffer,获取到对应 buffer 的缓存 信息。主要利用 length 信息及 m.offset 信息来完成 mmap 操作。

文档密级: 秘密

3.14 VIDIOC_DQBUF

3.14.1 Parameters

Buffer type ,index and memory map type (struct v4l2_buffer *buf) struct v4l2 buffer is the same as VIDIOC QUERYBUF

3.14.2 Returns

Success:0; Fail: Failure Number

3.14.3 Description

将 driver 已经填充好数据的 buffer 出列,供应用使用。 应用程序根据 index 来识别 buffer,此时 m.offset 表示 buffer 对应的物理地址。

3.15 VIDIOC_QBUF

3.15.1 Parameters

Buffer type ,index and memory map type (struct v4l2_buffer *buf)

3.15.2 Returns

Success:0; Fail: Failure Number

3.15.3 Description

将 User 空间已经处理过的 buffer, 重新入队,移交给 driver,等待填充数据。 应用程序根据 index 来识别 buffer。

3.16 VIDIOC_STREAMON

3.16.1 Parameters

Buffer type (enum v4l2_buf_type *type)

3.16.2 Returns

Success:0; Fail: Failure Number

3.16.3 Description

此处的 buffer type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。运行此 IOCTL,将 buffer 队列中所有 buffer 入队,并开启 CSIC DMA 硬件中断,每次中断便表示完成一帧 buffer 数据的填入。

3.17 VIDIOC_STREAMOFF

3.17.1 Parameters

Buffer type (enum v4l2_buf_type *type)

3.17.2 Returns

Success:0; Fail: Failure Number

3.17.3 Description

此处的 buffer type 为 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE。运行此 IOCTL,停止捕捉视频,将 frame buffer 队列清空,以及 video buffer 释放。

3.18 VIDIOC_QUERYCTRL

3.18.1 Parameters

```
Control id and value (struct v4l2 queryctrl *qc)
struct v4l2_queryctrl {
    __u32
                    id:
   enum v4l2_ctrl_type type;
                    name[32]; /* Whatever */
    u8
                    minimum; /* Note signedness */
    __s32
    __s32
                    maximum;
    s32
                    step;
     _s32
                    default_value;
    __u32
                        flags;
    u32
                    reserved[2];
```

3.18.2 Returns

Success:0; Fail: Failure Number

3.18.3 Description

ER 应用程序通过 id 参数,驱动返回需要调节参数的 name, minmum, maximum, default value 以及步进 step。(由 v4l2 conctrols framework 完成) 目前可能支持的 id 请参考 VIDIOC S CTRL

3.19 VIDIOC S CTRL

3.19.1 Parameters

```
Control id and value (struct v4l2_queryctrl *qc)
The same as VIDIOC_QUERYCTRL
```

3.19.2 Returns

Success:0; Fail: Failure Number

3.19.3 Description

应用程序通过 id, value 等参数,对 camera 驱动对应的参数进行设置。

驱动内部会先调用 vidioc queryctrl, 判断 id 是否支持, value 是否在 minimum 和 maximum 之间。(由 v4l2 conctrols framework 完成)

目前可能支持的 id 和 value 参考附件。

3.20 VIDIOC G CTRL

3.20.1 Parameters

```
Control id and value (struct v4l2 queryctrl *qc)
The same as VIDIOC QUERYCTRL
```

3.20.2 Returns

Success:0; Fail: Failure Number

3.20.3 Description

应用程序通过 id, 驱动返回对应 id 当前设置的 value。

3.21 VIDIOC ENUM FRAMESIZES

3.21.1 Parameters

```
index,type,format (struct v4l2_frmsizeenum)
enum v4l2_frmsizetypes {
   V4L2_FRMSIZE_TYPE_DISCRETE = 1,
    V4L2_FRMSIZE_TYPE_CONTINUOUS = 2,
    V4L2_FRMSIZE_TYPE_STEPWISE = 3,
};
struct v4l2_frmsize_discrete {
   __u32
           width; /* Frame width [pixel] */
    __u32
                  height;
                            /* Frame height [pixel] */
};
```



```
struct v4l2_frmsize_stepwise {
   __u32
                  min width; /* Minimum frame width [pixel] */
                  max_width; /* Maximum frame width [pixel] */
    __u32
                 step_width; /* Frame width step size [pixel] */
    u32
                  min_height; /* Minimum frame height [pixel] */
    u32
    __u32
                 max_height; /* Maximum frame height [pixel] */
                  step height; /* Frame height step size [pixel] */
    u32
};
struct v4l2 frmsizeenum {
           index;
                              /* Frame size number */
   __u32
   __u32
                 pixel_format; /* Pixel format */
    __u32
                              /* Frame size type the device supports. */
                          /* Frame size */
   union {
       struct v4l2_frmsize_discrete discrete;
       struct v4l2_frmsize_stepwise stepwise;
   };
    __u32
           reserved[2];
                                 /* Reserved space for future use */
```

3.21.2 Returns

Success:0; Fail: Failure Number

3.21.3 Description

根据应用传进来的 index, pixel format, 驱动返回 type, 并根据 type 填写 discrete 或 stepwise 的值。Discrete 表示分辨率固定的值; stepwise 表示分辨率有最小值和最大值,并根据 step 递增。上层根据返回的 type,做对应不同的操作。

3.22 VIDIOC ENUM FRAMEINTERVALS

3.22.1 Parameters

```
Index, format, size, type (struct v4l2_frmivalenum)
enum v4l2 frmivaltypes {
    V4L2 FRMIVAL TYPE DISCRETE = 1,
    V4L2 FRMIVAL TYPE CONTINUOUS = 2,
    V4L2 FRMIVAL TYPE STEPWISE = 3,
};
struct v4l2_frmival_stepwise {
                                   /* Minimum frame interval [s] */
    struct v4l2_fract min;
    struct v4l2_fract
                       max;
                                   /* Maximum frame interval [s] */
```



```
/* Frame interval step size [s] */
   struct v4l2_fract
                     step;
};
struct v4l2_frmivalenum {
   __u32
                            /* Frame format index */
             index;
                pixel_format; /* Pixel format */
   __u32
    u32
                height;
                           /* Frame height */
   u32
   __u32
                 type;
                            /* Frame interval type the device supports. */
   union {
                         /* Frame interval */
       struct v4l2 fract
                            discrete;
       struct v4l2_frmival_stepwise
                                   stepwise;
   };
   __u32
         reserved[2];
                               /* Reserved space for future use */
```

3.22.2 Returns

Success:0; Fail: Failure Number

3.22.3 Description

INER 应用程序通过 pixel_format、width、height、驱动返回 type,并根据 type 填写 V4L2 FRMIVAL TYPE DISCRETE、V4L2 FRMIVAL TYPE CONTINUOUS 或 V4L2_FRMIVAL_TYPE_STEPWISE。Discrete 表示支持单一的帧率; stepwise 表示支持步 进的帧率。

3.23 VIDIOC ISP EXIF REQ

作用: 得到当前照片的 EXIF 信息,填写到相应的编码域中。目的: 对于 raw sensor 尽量填写正 规的 EXIF 信息, yuv sensor 该 IOCTRL 也可以使用,不过驱动中填写的也是固定值。相关参 数:

```
struct v4l2_fract {
    __u32 numerator;
    __u32
            denominator;
};
struct isp exif attribute {
    struct v4l2_fract exposure_time;
    struct v4l2 fract shutter speed;
    __u32 aperture;
    __u32 focal_length;
    __s32 exposure_bias;
    __u32 iso_speed;
```

文档密级: 秘密


```
__u32 flash_fire;
   __u32 brightness;
};
struct v4l2_fract exposure_time;
曝光时间:分数类型,例如numerator = 1, denominator = 200,则表示1/200秒的曝光时间。
struct v4l2_fract shutter_speed;
快门速度:分数类型,例如numerator = 1,denominator = 200,则表示1/200秒的快门速度。(实际上和曝光时间数
    值相同)
 u32 aperture;
光圈大小: FNumber, 例如aperture = 22, 则表示, 光圈大小为2.2, 即FNumber = 22/10;
 _u32 focal_length;
焦距: 例如focal_length = 1400,则表示焦距为14mm,即FocalLength = 1400/100(mm);
 _s32 exposure_bias;
曝光补偿: 范围 -4~4
 _u32 iso_speed;
感光速度: 50~3200
 u32 flash fire;
闪光灯是否开启: flash_fire = 1 表示闪光灯开启, flash_fire = 0 表示闪光灯未开启
 _u32 brightness;
图像亮度: 0~255.
使用示例:
int V4L2CameraDevice::getExifInfo(struct isp_exif_attribute *exif_attri)
   int ret = -1;
   if (mCameraFd == NULL)
       return 0xFF000000;
    ret = ioctl(mCameraFd, VIDIOC_ISP_EXIF_REQ, exif_attri);
    return ret;
```


4

模块使用范例

4.1 测试 demo

模块使用的 demo 的代码位于 drivers/media/platform/sunxi-vin/vin_test/mplane_image; 此目录下可以直接 make 生成 demo; 把 demo 推到机器里面执行便可以获取指定 video 节点 的图像。推荐在 pc 上创建 bat 批处理文件,使用 adb 命令完成一系列抓图的动作,bat 内容参 考如下,不同机器请注意修改 push 进去的路径:

```
del .\result\*.bin
adb root
adb remount
adb shell "mkdir /vendor/extsd/"
adb shell "mkdir /vendor/extsd/result"
adb shell rm /vendor/extsd/result/*.bin
adb push demo路径\csi_test_mplane /vendor/extsd/csi_test1
adb shell chmod 777 /vendor/extsd/csi_test1
adb shell "cd /vendor/extsd/ && ./csi_test1 0 0 1920 1080 ./result 1 20000 60 0"
adb shell ls /vendor/extsd/result
adb pull /vendor/extsd/result
pause
```

最后会在 bat 指令的文件夹生成 result 文件夹里面保存二进制的图像数据 *.bin 文件;可用 RawViewer 等软件查看图像数据。demo 参数说明:0.019201080./result 1.20000600,分别表示 video0, set_input index0,目标分辨率宽,目标分辨率高,bin 文件保存路径、图像格式(如 NV21,具体含义可以看 demo 代码的 s_fmt 参数)、采集帧数(帧数大于 10000 即为常开节点)、目标帧率、和是否开启 wdr。

4.2 调用流程

图 4-1: CSI 调用流程

版权所有 © 珠海全志科技股份有限公司。保留一切权利

5 FAQ

5.1 调试方法

5.1.1 调试节点

```
********************
VIN hardware feature list:
mcsi 2, ncsi 1, parser 2, isp 1, vipp 4, dma 4
CSI_VERSION: CSI300_100, ISP_VERSION: ISP522 100
CSI TOP: 336000000, CSI ISP: 300000000
*****************
vi0:
gc2385_mipi => mipi0 => csi0 => isp0 => vipp0
input => hoff: 0, voff: 0, w: 1600, h: 1200, fmt: GRBG10
output => width: 1600, height: 1080, fmt: YUV420M
interface: MIPI, isp_mode: NORMAL, hflip: 0, vflip: 0
prs_in => x: 1600, y: 1200, hb: 660, hs: 8181
buf => cnt: 5 size: 2617344 rest: 5, mode: software update
frame \Rightarrow cnt: 2256, lost cnt: 1, error_cnt: 0
internal \Rightarrow avg: 32 \text{(ms)}, max: 43 \text{(ms)}, min: 21 \text{(ms)}
```

图 5-1: vi 节点

当系统打开 DEBUG_FS 编译宏时,可以 cat /sys/kernel/debug/mpp/vi 查看;否则可以 cat /sys/devices/platform/soc@2900000/2000800.vind/vi。vi 节点保存的是当前或上一次工作(当前没有工作)的状态。下面对 vi 节点的关键信息进行说明。CSI_TOP、CSI_ISP 分别是对应 CSI、和 ISP 的工作频率; input 一行表示 CSI 接收到的图片尺寸; output 表示 CSI 出尺寸,如果使用了缩放或者裁剪,那么输入输出尺寸会不一致;最后一行分别表示平均帧间隔、最大帧间隔、最小帧间隔,调试帧率时可以参考。

5.1.2 settle time

修改对应 sensor 驱动中的 sensor probe 函数,可以添加或修改 info->time hs 的值即可。

版权所有 © 珠海全志科技股份有限公司。保留一切权利

5.2 常见问题

5.2.1 I2C 不通

如下图打印:

```
i-vin-core 2009600.vinc: Adding to iommu group 0
_WARN]get csi mipi clk fail
716659
              [VIN_WARN]get csi mipi src clk fail
[gc2385_mipi] sd gc2385_mipi,PWR_ON!
721418
735845
                                                            [i2c2]
[i2c2]
              sunxi_i2c_do_xfer()1828
746538
                                                                        incomplete xfer (status: 0x20, dev addr: 0x37)
                                                                        incomplete xfer
                                                                                                    (status: 0x20, dev addr: 0x37)
                                                                                                    (status: 0x20, dev addr: 0x37)
                                                                      incomplete xfer
              [VIN_DEV_I2C]gc2385_mipi sensor read retry sunxi_i2c_do_xfer()1828 - [i2c2] incomplete
                                                                       incomplete xfer
                                                                                                    (status: 0x20, dev addr: 0x37)
             sunxi_i2c_do_xfer()1828 - [i2c2] incomplete
sunxi_i2c_do_xfer()1828 - [i2c2] incomplete
sunxi_i2c_do_xfer()1828 - [i2c2] incomplete
[VIN_DEV_I2C]gc2385_mipi sensor read retry
[gc2385_mipi]V4L2_IDENT_SENSOR = 0x0
                                                                      incomplete xfer (status: 0x20, dev addr: 0x37) incomplete xfer (status: 0x20, dev addr: 0x37)
```

图 5-2: i2c 不通

【分析步骤一】:确认供电、MCLK、i2c 上拉等外围电路信号是否正常。使用万用表测量板子上AVDD、DVDD、IOVDD 供电电压、MCLK 频率、幅度、RESET、PWDN 的电平是否符合要求。

【分析步骤二】:确认 i2c 地址,TWI 通道是否和原理图一致。

【分析步骤三】: 以上都正常就用示波器或者逻辑分析仪测量分析主控发出 i2c 波形是否正确、有无回应;最后可以考虑 sensor 损坏或者接口错位等问题

5.2.2 sensor 不出图

【分析步骤一】:确认 chip id 和 datasheet 上一致

在对应 sensor 驱动的 sensor_detect 函数中读 chip id 寄存器,这一步也能检验 i2c 的读写是否正确。

【分析步骤二】:确认配置已经配置到 sensor 里可以把写进去的寄存器读出来和写入值对比是否一致。

【分析步骤三】:确认配置正确并且 sensor 已经输出图像

和原厂确认寄存器配置、用示波器测量 mipi 数据 lane 和时钟 lane 波形,分析是否正在发送数据。

【分析步骤四】: 修改 settle time

sensor 已经在发送数据,只是 CSI 这边一直接受不到导致无法出图,可以尝试修改 settle time (参考调试方法章节)。

5.2.3 已出图但画面是绿色或者粉红色

一般是 YUYV 顺序反了,可以修改 sensor 驱动中 sensor formats 结构体的 mbus code 参 数,修改 YUV 顺序即可。

5.2.4 I2c 已通, 但是读所有 sensor 寄存器值都为 0

【分析步骤一】检查 i2c 通讯 addr 和 data 的位宽 检查 sensor 驱动中 cci drv 结构体中定义的值是否符合 datasheet 要求;

【分析步骤二】检查 i2c 通讯数据大小端是否不一致 可以在读 sensor id 时把地址高低位相反来快速验证一下。

5.2.5 画面旋转 180 度

、成成 可以修改 board.dts 里面的 hflip 和 vflip 来解决,如果画面和人眼成 90 度的话,只能通过修改 sensor 配置来解决(只有部分 sensor 支持)

5.2.6 没有 video 节点

【问题解析】没有加载 ko 或者 ko 加载失败。

【分析步骤一】检查模块加载顺序是否正确

lsmod 看一下模块是否加载正确

如果报的错误是 [VIN ERR]registering gc2355_mipi, No such device! 则表明 sensor 模 块 gc2355 mipi 没有加载。

【分析步骤二】检查 board.dts 文件配置是否配置了 vind0, 且 status 为 okay。

【分析步骤三】如果是加载失败检查加载失败的原始是 i2c 不通还是没有 ko i2c 不通参考前面的分析,没有 ko 请检查是否有对应的驱动并且在 Makefile 中使能了编译。

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。