

Artificial Intelligence

Lecture 10. Linear Regression

Spring 2022

Prof. Jonghoon Chun, Ph.D.

E-mail: jchun@mju.ac.kr Lecture Note: http://lms.mju.ac.kr

Agenda

- Classification concept review
- Linear Regression
- Logistic Regression

Classification Concept Review

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by
 labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Regression vs. Classification

Regression problem

- predict results within a continuous output
- map input variables to some continuous function
- E.g., Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output.

Classification problem

- predict results in a discrete output
- map input variables into discrete categories (e.g., positive, negative reviews)
- E.g., Given a patient with a tumor, predict whether the tumor is malignant or benign.

LINEAR REGRESSION

Regression Problem – an example

Predict Housing Prices

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output
Classification: Discrete- Valued

Training Set

Training set of housing prices

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	ֿ ן
1416	232	
1534	315	m = 47
852	178	
		J

Notation:

- m = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable
- (x, y) : one training example
- $-(x^{(i)}, y^{(i)})$: ith training example

Supervised Learning Problem

- Our goal is,
 - Given a training set, to learn a function $h: X \to Y$ so that h(x) is a "good" predictor for the corresponding value of y.
- For historical reasons, this function h is called a hypothesis.

When the target variable is continuous, we call the learning problem a **regression** problem!

Cost Function

- Problem to solve
 - how to fit the best possible straight line to our data

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
•	2104	460
	1416	232
	1534	315
	852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- $-\theta_i$'s : Parameters
- How to choose θ_i 's?

Cost Function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

Minimize
$$\frac{1}{\theta_0} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Minimize
$$J(\theta_0, \theta_1)$$
 θ_0, θ_1 Cost Function Squared Error Function

• Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training samples (x, y)

Our Goal

• Have some function $J(\theta_0, \theta_1)$ We want $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

- Outline:
 - Start with some θ_0 , θ_1 (e.g., $\theta_0 = 0$, $\theta_1 = 0$)
 - Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

An algorithm called "Gradient Descent" for minimizing the cost function J for for the linear regression!

Gradient Descent

Gradient Descent Algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1 \text{)}$$
 } Simultaneously update
$$\theta_0 \text{ and } \theta_1$$

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Gradient Descent Algorithm Intuition

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1)$$
 }

 Assume a simpler case, we want to minimize the cost function with just one parameter

$$\min_{\theta_1} J(\theta_1), \ \theta_1 \in \mathbb{R}$$

Gradient Descent Algorithm Intuition

Learning Rate

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Local Minimum Problem

Local Minimum Problem

• Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So no need to decrease α over time.

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

•
$$j = 0 : \frac{\partial}{\partial \theta} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

•
$$j = 1 : \frac{\partial}{\partial \theta} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

repeat until convergence {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
 Simultaneously }

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Cost function for linear regression is always going to be a "Convex Function"!

Remarks

- Solving for the minimum of the cost function
 - Gradient descent: an iterative algorithm
 - Normal equation method: numerically solving for the minimum of the cost function without needing the multiple steps of gradient descent
- Gradient descent will scale better to larger data sets than that normal equation method.
- Generalization of gradient descent algorithm
 - Will make it much more powerful

MULTIVARIATE LINEAR REGRESSION

Multiple Features (variables)

Size (feet²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple Features (variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
		٠		

Notation

- -n = number of features
- $-x^{(i)}$ = input (features) of i^{th} training example
- $-x_j^{(i)}$ = value of feature j in i^{th} training example

Multivariate Linear Regression

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

e.g.,
$$h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 - 2x_4$$

General form:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

= $\theta^T x$

Multivariate Linear Regression

$$h_{\theta}(x) = \theta^T x$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

$$\mathbb{R}^{n+1} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$(n + 1) \times 1 \text{ matrix}$$

Gradient Descent

```
Previously (n=1): \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta_0} J(\theta) \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} (simultaneously update \theta_0, \theta_1) \Big\}
```

New algorithm $(n \geq 1)$: Repeat $\Big\{$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update θ_j for $j = 0, \dots, n$)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$
...

ACKNOWLEDGMENTS

 Many of the slides and examples are borrowed from the open course by Coursera "Machine Learning" by A. Ng which were modified into their current form.

END

