Week 1

The diet problem

Methodology, Modelling, and Consulting Skills The University of Edinburgh

The diet problem Stigler

For a moderately active man (economist) weighing 154 pounds, how much of each of 77 foods should be eaten on a daily basis so that the man's intake of nine nutrients (including calories) will be at least equal to the recommended dietary allowances (RDAs) suggested by the National Research Council in 1943, with the cost of the diet being minimal?

An approach to OR problems Implement **Define Problem Gather Data** Test Solve Model

Elements of an optimization problem

In general

Variables Quantifiable decisions to be taken.

Objective function What must be optimized?

Constraints Limitations and requirements.

Linear Programming

- Linear objective function.
- Linear constraints.

The diet problem Stigler

For a moderately active man (economist) weighing 154 pounds, how much of each of 77 foods should be eaten on a daily basis so that the man's intake of nine nutrients (including calories) will be at least equal to the recommended dietary allowances (RDAs) suggested by the National Research Council in 1943, with the cost of the diet being minimal?

Solution Collect data

At 1943 prices, \$1 worth of Food f has h_{nf} amount of nutrient n:

	Rice	Liver (beef)	Cabbage	
Calories	21200	2200	2600	
Protein	460	333	125	
:	÷	:	÷	:

Suppose that we require r_n amount of nutrient n:

	Calories	Protein	
r	3000	70	•••

Solution

Define variables and objective

Decision variables

 x_1 money spent on rice

 x_2 money spent on liver (beef)

 x_3 money spent on cabbage

Objective function

$$1x_1 + 1x_2 + 1x_3$$

Solution

Define constraints

Constraints

Calorie requirement

$$21200x_1 + 2200x_2 + 2600x_3 \ge 3000$$

Protein requirement

$$460x_1 + 333x_2 + 125x_3 \ge 70$$

Nonnegativity

$$x_1, x_2, x_3 \ge 0$$

Complete model

min
$$1x_1 + 1x_2 + 1x_3$$

s.t. $21200x_1 + 2200x_2 + 2600x_3 \ge 3000$
 $460x_1 + 333x_2 + 125x_3 \ge 70$
 $x_1, x_2, x_3 \ge 0$

Optimal solution

$$x^* = (x_1^*, x_2^*, x_3^*) = (0.153, 0, 0)$$
 $z^* = 0.153$

Result

- Optimal diet consists of spending only \$0.153 on rice
- No other foods are used (Why should we expect this?)
- The optimal cost is \$0.153

Complete model

General form

Index sets		Parameters	
F	set of foods set of nutrients	c_f	cost of one unit of food f $(f \in F)$
N Variables	set of nutrients	h_{nf}	amount of nutrient <i>n</i> in
X_f	amount of food f ($f \in F$)	r _n	food f ($f \in F$, $n \in N$) required amount of nutrient n ($n \in N$)
	$\min \sum_{f \in F} c_f x_f$		
	$\text{s.t.} \sum_{f \in F} h_{nf} x_f \ge r_n$	for	all $n \in N$
	$x_f \geq 0$	for	$f \in F$

Complete model

General form – classical formulation

Index sets F	set of foods		
Ν	set of nutrients		
Variables			
X_f	$\frac{\text{dollars spent on food } f}{(f \in F)}$		
	$\min \sum_{f \in F} 1 \cdot x_f$		
	s.t. $\sum_{f \in F} h_{nf} x_f \ge r_n$		
	$x_f \geq 0$		

Parameters

$$h_{nf}$$
 amount of nutrient n in one dollar worth of food f $(f \in F, n \in N)$

required amount of nutrient
$$n$$
 per day $(n \in N)$

for all
$$n \in N$$

for all $f \in F$