Prof. Dr. Andreas Maletti, Dr. habil. Karin Quaas, Fabian Sauer

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Lösungen zu Serie 7

Übungsaufgabe 7.1

Besitzen die folgenden Instanzen des Postschen Korrespondenzproblems (PCP) eine Lösung? Falls ja, geben Sie eine Lösung an. Falls nicht, begründen Sie, warum keine Lösung existieren kann.

- (a) $\langle (ab,abb), (aab,ba), (ba,aa) \rangle$ Nein, es existiert keine Lösung: gäbe es eine Lösung, so müssten die beiden Wörter im letzten Index gleich enden; allerdings endet keines der Paare im gleichen Index gleich.
- (b) $\langle (ab, abab), (b, a), (aba, b), (aa, a) \rangle$ Ja, die Indexfolge 4, 4, 2, 1 ist eine Lösung, denn sie ergibt das Wort aaaabab = aaaabab.

Übungsaufgabe 7.2

Gegeben sei das folgende Entscheidungsproblem P_1 :

- Gegeben ein PCP $P = \langle (u_1, v_1), \dots, (u_k, v_k) \rangle$ über $\Sigma = \{a\}$.
- Frage: Besitzt *P* eine Lösung?

Zeigen Sie, dass P_1 deterministisch polynomiell entscheidbar ist.

LÖSUNG: Sei $\langle (u_1, v_1), \dots, (u_k, v_k) \rangle$ ein PCP über $\Sigma = \{a\}$. Wir unterscheiden vier Fälle:

- (a) Falls es ein $1 \le i \le k$ gibt mit $u_i = v_i$, so ist die Indexfolge i eine Lösung für P.
- (b) Falls für alle $1 \le i \le k$ gilt, dass $|u_i| < |v_i|$, so kann es keine Lösung geben (das erste Wort ist notwendigerweise immer kürzer als das zweite Wort).
- (c) Falls für alle $1 \le i \le k$ gilt, dass $|u_i| > |v_i|$, so kann es keine Lösung geben (das zweite Wort ist notwendigerweise immer kürzer als das erste Wort).
- (d) Anderenfalls muss es $1 \le i, j \le k$ mit $i \ne j$ geben, sodass $|u_i| < |v_i|$ und $|u_j| > |v_j|$. Setze $J = |v_i| |u_i|$ und setze $I = |u_j| |v_j|$. Die Indexfolge $\underbrace{i, \ldots, i, j, \ldots, j}_{\text{I-mal}}$ ist eine Lösung für P.

Diese Tests können in Polynomialzeit von einer deterministischen Turingmaschine ausgeführt werden: Die TM geht von links nach rechts über das Eingabeband (mit der darauf gespeicherten Instanz des PCP). Das Problem ist also polynomiell entscheidbar.

Übungsaufgabe 7.3 (NP)

Wir definieren das Problem der zwei Fahrradtaschen wie folgt.

- Gegeben: n_1, n_2, \ldots, n_k in Binärkodierung
- Frage: Existieren nicht-leere $I, J \subseteq \{1, ..., k\}$ sodass $I \cap J = \emptyset$ und $\sum_{i \in I} n_i = \sum_{j \in I} n_j$?
- (a) Geben Sie für die beiden folgenden Instanzen des Problems der zwei Fahrradtaschen an, ob es sich um positive oder negative Instanzen handelt (mit Begründung).
 - (i) 5, 7, 3, 17, 1, 2
 - (ii) 1, 2, 4, 8, 16
- (b) Zeigen Sie, dass das Problem der zwei Fahrradtaschen nichtdeterministisch polynomiell entscheidbar ist.

LÖSUNG: Zertifikatrelation $R \subseteq (\{0,1\}^* \times \{0,1\}^*)$ definiert durch $(u,z) \in R$ gdw.

- $u = bin(n_1) #bin(n_2) #... #bin(n_k)$
- $z = i_1 i_2 \dots i_k j_1 j_2 \dots j_k$ ($i_p = 1$ bedeutet: $n_p \in I$, analog: $j_p = 1$ bedeutet $n_p \in J$)
- es existiert $1 \le p \le k$ mit $i_p = 1$ (mindestens ein Element in I)
- es existiert $1 \le p \le k$ mit $j_p = 1$ (mindestens ein Element in J)
- für alle $1 \le p \le k$ gilt $i_p = 1 \Rightarrow j_p = 0$
- für alle $1 \le p \le k$ gilt $j_p = 1 \Rightarrow i_p = 0$ (diese und vorherige Bedingung garantieren $I \cap J = \emptyset$)
- $\sum_{\substack{1 \le p \le k \\ i_p = 1}} n_p = \sum_{\substack{1 \le p \le k \\ i_p = 1}} n_p$
- *R* ist polynomiell entscheidbar: die einzelnen Bedingungen müssen getestet werden. Dies kann in polynomieller Zeit geschehen.
- u ist positive Instanz des Problems der zwei Fahrradtaschen gdw. es existiert $z \in \Gamma^{2k}$ mit $(u, z) \in R$, für alle $u \in \{0, 1\}^*$:

- Angenommen, u ist eine positive Instanz des Problems. Dann gibt es zwei nicht-leere disjunkte Mengen $I = \{\alpha_1, \ldots, \alpha_m\} \subseteq \{1, \ldots, k\}$ und $J = \{\beta_1, \ldots, \beta_n\} \subseteq \{1, \ldots, k\}$ mit $\sum_{\alpha_\ell \in I} n_{\alpha_\ell} = \sum_{\beta_\ell \in J} n_{\beta_\ell}$. Definiere das Zertifikat $z = i_1 i_2 \ldots i_k j_1 j_2 \ldots j_k$ durch $i_\ell = 1$ gdw. $\ell \in I$ und $j_\ell = 1$ gdw. $\ell \in J$. Da I, J nicht leer, existieren $1 \le p \le k$ mit $i_p = 1$ und $1 \le q \le k$ mit $j_q = 1$. Da $I \cap J = \emptyset$, gilt für alle $1 \le p \le k$: falls $i_p = 1$, dann $j_p = 0$, und falls $j_p = 1$, dann $i_p = 0$. Die Summenbedingung gilt direkt nach Annahme. Also $(u, z) \in R$.
- Angenommen $(u,z) \in R$ mit $z = i_1 i_2 \dots i_k j_i \dots j_k$. Setze $I = \{\alpha \mid i_\alpha = 1\}$ und $J = \{\alpha \mid j_\alpha = 1\}$. Nach Annahme gibt es $1 \le i \le k$ mit $i_p = 1$, also $p \in I$, also $I \ne \emptyset$ (und analog für J). Weiterhin gilt für alle p, falls $i_p = 1$, dann $j_p = 0$, also: falls $p \in I$, dann $p \not\in J$, und falls $j_p = 1$, dann $i_p = 0$, also: falls $p \in J$, dann $p \not\in I$. Also $I \cap J \ne \emptyset$. Summe gilt auch, also u positive Instanz.