CAPÍTULO 7

7.1. Preliminares

Definición 7.1.1 (Cuerpo) Sea \mathbb{K} un conjunto y sean + y \cdot dos operaciones binarias internas definidas sobre \mathbb{K} , llamadas suma y producto respectivamente. Diremos que \mathbb{K} , con estas operaciones, es un cuerpo si se satisfacen los siguientes axiomas:

1.
$$\forall x, y, z \in \mathbb{K}, \quad x + (y + z) = (x + y) + z.$$

2.
$$\forall x, y \in \mathbb{K}, \quad x + y = y + x.$$

3.
$$\exists 0 \in \mathbb{K}, \ \forall x \in \mathbb{K}, \quad x + 0 = x.$$

4.
$$\forall x \in \mathbb{K}, \exists -x \in \mathbb{K}, \quad x + (-x) = 0.$$

5.
$$\forall x, y, z \in \mathbb{K}, \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

6.
$$\exists 1 \in \mathbb{K}, \ \forall x \in \mathbb{K}, \quad 1 \cdot x = x \cdot 1 = x.$$

7.
$$\forall x \in \mathbb{K}, x \neq 0, \ \exists x^{-1} \in \mathbb{K}, \quad x \cdot x^{-1} = x^{-1} \cdot x = 1.$$

Asociatividad de
$$+$$

$${\bf Conmutatividad\ de\ +}$$

8. $\forall x, y, z \in \mathbb{K}$, $x \cdot (y+z) = x \cdot y + x \cdot z \wedge (x+y) \cdot z = x \cdot z + y \cdot z$.

Distributividad de \cdot respecto de la suma +

9. Diremos que K es un cuerpo conmutativo, si además se satisface:

$$\forall x, y \in \mathbb{K}, \quad x \cdot y = y \cdot x.$$

Observaciones:

- 1. Escribiremos la terna $(\mathbb{K}, +, \cdot)$ para indicar que el conjunto \mathbb{K} con las operaciones + y \cdot es un cuerpo.
- 2. Los conjuntos \mathbb{Q} , \mathbb{R} y \mathbb{C} de los números racionales, reales y complejos respectivamente, constituyen cuerpos conmutativos con las operaciones de suma y producto usuales.

Definición 7.1.2 (Espacio vectorial) Sean V un conjunto, \mathbb{K} un cuerpo y

$$+: V \times V \to V$$

 $(x,y) \to x + y,$

una operación binaria interna llamada suma,

$$: \mathbb{K} \times V \to V$$

 $(\alpha, x) \to \alpha x,$

una operación binaria externa llamada producto por escalar.

 $Diremos\ que\ V\ con\ las\ operaciones + y\cdot es\ un\$ espacio vectorial $sobre\ \mathbb{K}\ o\ un\ \mathbb{K}$ -espacio vectorial, si:

- 1. $\forall x, y, z \in V$, x + (y + z) = (x + y) + z.
- 2. $\forall x, y \in V$, x + y = y + x.

- 3. $\exists \theta_v \in V(vector\ nulo)\ para+,\ tal\ que,\quad x+\theta_v=x, \forall x\in V.$
- 4. $\forall x \in V, \exists -x \in V, \quad x + (-x) = \theta_v.$
- 5. $\forall \alpha, \beta \in \mathbb{K}, \forall x \in V, \quad \alpha(\beta x) = (\alpha \beta)x.$
- 6. $\forall \alpha \in \mathbb{K}, \forall x, y \in V, \quad \alpha(x+y) = \alpha x + \alpha y.$
- 7. $\forall \alpha, \beta \in \mathbb{K}, \forall x \in V, \quad (\alpha + \beta)x = \alpha x + \beta x.$
- 8. $\forall x \in V, 1 \cdot x = x, donde 1 es el elemento unidad de K.$

Observaciones:

- 1. Los elementos de V se denominan vectores y los elementos de $\mathbb{K},\,$ escalares.
- 2. Del axioma 3 se concluye que $V \neq \phi$.

- 3. Si $\mathbb{K}=\mathbb{R},$ diremos que V es un espacio vectorial real. Si $\mathbb{K}=\mathbb{C},$ diremos que V es un espacio vectorial complejo.
- 4. Cualesquiera sean los vectores x e y de V, x+(-y) se escribe como x-y y se llama diferencia entre x e y.

7.2. Propiedades de los espacios vectoriales

Teorema 7.2.1 Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Entonces

- 1. El elemento neutro θ_v para la operación suma, es único.
- 2. Para cada $x \in V$ existe un único simétrico (inverso aditivo) $-x \in V$.
- 3. Ley de cancelación

$$\forall x, y, z \in V, \ x + y = x + z \Rightarrow y = z$$

- 4. Para todo $x \in V$, $0 \cdot x = \theta_v$.
- 5. Para todo $\alpha \in \mathbb{K}$, $\alpha \cdot \theta_v = \theta_v$.
- 6. Para todo $\alpha \in \mathbb{K}$, para todo $x \in V$, $(-\alpha) \cdot x = -(\alpha \cdot x)$.
- 7. Para todo $\alpha \in \mathbb{K}$, para todo $x \in V$, $\alpha \cdot x = \theta_v \Leftrightarrow (\alpha = 0 \lor x = \theta_v)$.

- **Ejemplo 7.2.1** 1. Sea \mathbb{K} un cuerpo, entonces \mathbb{K} es un espacio vectorial sobre si mismo, lo cual se sigue trivialmente de las propiedades de cuerpo.
 - 2. Consideremos el conjunto \mathbb{R}^n de todas las n-uplas de números reales, es decir:

$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, \dots, n.\},\$$

 \mathbb{R}^n es un \mathbb{R} -espacio vectorial con las siguientes operaciones

$$+: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$(x_{1}, x_{2}, \dots, x_{n}) + (y_{1}, y_{2}, \dots, y_{n}) = (x_{1} + y_{1}, x_{2} + y_{2}, \dots, x_{n} + y_{n})$$

$$\cdot: \mathbb{R} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$\alpha(x_{1}, x_{2}, \dots, x_{n}) = (\alpha x_{1}, \alpha x_{2}, \dots, \alpha x_{n})$$

3. Si en \mathbb{R}^2 se definen la suma como en el ejemplo anterior y el producto por escalar como

sigue:

$$: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$\alpha(x_1, x_2) = (\alpha x_1, x_2),$$

Luego \mathbb{R}^2 con estas operaciones no es un espacio vectorial.

4. El símbolo \mathbb{K}^X denota el conjunto de todas las funciones con dominio un conjunto $X \neq \phi$ y codominio en el cuerpo \mathbb{K} , es decir

$$\mathbb{K}^X = \{ f | f : X \to \mathbb{K} \}$$

En \mathbb{K}^X definimos la suma de funciones y el producto de un escalar por una función como sique.

Si f y g son dos elementos cualesquiera de \mathbb{K}^X , entonces:

$$f + g : X \to \mathbb{K}$$

 $(f + g)(x) = f(x) + g(x), \quad \forall x \in X.$

Si α es cualquier escalar en \mathbb{K} y f cualquier elemento de \mathbb{K} , entonces:

$$\alpha f : X \to \mathbb{K}$$

 $(\alpha f)(x) = \alpha f(x), \quad \forall x \in X.$

- $(\mathbb{K}^X,+,\cdot)$ un \mathbb{K} -espacio vectorial.
- 5. El conjunto $\mathcal{M}_{n\times m}(\mathbb{K})$ de las matrices de orden $n\times m$ con elementos en el cuerpo \mathbb{K} y con las operaciones de suma y producto por un escalar usuales, es un \mathbb{K} -espacio vectorial. Los vectores de este espacio son matrices.

7.3. Subespacio vectorial

Definición 7.3.1 Sea V un \mathbb{K} -espacio vectorial y S un subconjunto de V. Diremos que S es un subespacio vectorial de V, si S es un espacio vectorial sobre \mathbb{K} con las mismas operaciones de suma y producto por escalar definidas en V.

Observación: Cualquiera sea el espacio vectorial V, tanto $\{\theta_v\}$ como V son subespacios de V llamados subespacios triviales.

Teorema 7.3.1 Sea V un espacio vectorial sobre \mathbb{K} . Diremos que $S\subset V$ es subespacio vectorial de V si y sólo si

- 1. $S \neq \emptyset$
- 2. si para cualquier $x, y \in S$, se cumple que $x + y \in S$ y

3. $si \ \lambda \in \mathbb{K} \ y \ x \in S$, entonces $\lambda x \in S$.

Ejemplo 7.3.1 1. Sea $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a = b \land c = -d \right\}$. S es un subespacio del espacio vectorial $\mathcal{M}_2(\mathbb{R})$.

- 2. Sea $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$. S no es subespacio vectorial de \mathbb{R}^3 .
- 3. El conjunto $V = C_{[0,1]}(\mathbb{R})$ de las funciones reales continuas sobre [0,1] es un subespacio del espacio vectorial $\mathbb{R}^{[0,1]}$ de las funciones de [0,1] en \mathbb{R} .
- 4. Sea $A \in M_{m \times n}(\mathbb{K})$. Si $x = (x_1, \dots, x_n) \in \mathbb{K}^n$, entonces Ax denotará la multiplicación de A por la matriz columna formada por x_1, \dots, x_n , es decir

$$Ax = A \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}.$$

Sea

$$S = \{ x \in \mathbb{K}^n : Ax = 0 \}.$$

Es decir, S es el subconjunto de \mathbb{K}^n de las soluciones del sistema Ax = 0. Entonces, S es un subespacio vectorial de \mathbb{K}^n .

7.3.1. Intersección de subespacios

Teorema 7.3.2 Si S y T son dos subespacios vectoriales de un mismo \mathbb{K} -espacio vectorial V, entonces la intersección de S y T, $S \cap T$, es un subespacio vectorial de V.

Demostración: Hacer en clase.

- 1. $S \cap T \neq \phi$.
- 2. $S \cap T$ es cerrado para la suma.

3. $S \cap T$ es cerrado para multiplicación por escalar.

7.3.2. Unión de subespacios

En general la unión de subespacios no es un subespacio vectorial. Veamos el siguiente ejemplo.

Ejemplo 7.3.2 1. Sean $S = \{(x,y) \in \mathbb{R}^2 : y = 2x\}$ $y \ T = \{(x,y) \in \mathbb{R}^2 : y = \frac{x}{2}\}$ subespacios vectoriales. Luego $u = (1,2) \in S$, por lo tanto $u \in S \cup T$. Análogamente, $v = (2,1) \in T$, por lo tanto $v \in S \cup T$. Pero, $u + v = (3,3) \notin S$ $y \ (3,3) \notin T$. Luego, $u + v \notin S \cup T$. Por lo tanto $S \cup T$ no es un subespacio vectorial.

Teorema 7.3.3 Si S y T son subespacios de un \mathbb{K} -espacio vectorial V, entonces $S \cup T$ es subespacio si y sólo si $S \subseteq T \vee T \subseteq S$.

7.3.3. Suma de espacios vectoriales

Sean S y T dos subespacios del mismo $\mathbb{K}\text{-espacio}$ vectorial V, se llama % Y suma de S y T al conjunto

$$S + T = \{ v \in V : v = s + t, s \in S \land t \in T \}.$$

Teorema 7.3.4 S + T es un subespacio vectorial de V.

Demostración: Hacer en clase.

Observación: Si $S \cap T = \{\theta_v\}$, la suma S + T se llama suma directa y se escribe $S \oplus T$.

Ejemplo 7.3.3 1. Sea

$$S = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\} = \{(x, 0, 0) : x \in \mathbb{R}\},\$$

S es el subespacio representado por el eje X, y

$$T = \{(x, y, z) \in \mathbb{R}^3 : x = 0\} = \{(0, y, z) : y, z \in \mathbb{R}\}.$$

El subespacio T es el plano coordenado YZ. Muestre que $S \oplus T = \mathbb{R}^3$.

2. En $V = \mathcal{M}_2(\mathbb{R})$, consideremos los subespacios

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : b = c = 0 \right\},$$

y

$$T = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) : b = d = 0 \right\}.$$

Calcule S + T y muestre que S + T no es suma directa.

3. Sean $S = \{A \in \mathcal{M}_n(\mathbb{R}) : A = A^t\}$ y $T = \{A \in \mathcal{M}_n(\mathbb{R}) : A = -A^t\}$. Muestre que $\mathcal{M}_n(\mathbb{R}) = S \oplus T$.

7.3.4. Combinaciones lineales. Dependencia e independencia lineal

Definición 7.3.2 (Combinación lineal) Sean, V un \mathbb{K} -espacio vectorial, x_1, \ldots, x_n vectores de V. El vector x es combinación lineal (C.L.) de x_1, \ldots, x_n si existen escalares $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tales que

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

Observación: El vector nulo es C.L. de cualquier conjunto de vectores.

Ejemplo 7.3.4 1. Decidir si
$$p(t) = t^2 - 2t + 3$$
 es C.L. de $p_1(t) = (t-1)^2$, $p_2(t) = \frac{1}{2}t + 1$, $p_3(t) = 5$.

2. Investigar si
$$A = \begin{pmatrix} 2 & -10 \\ 20 & 4 \end{pmatrix}$$
 es $C.L$ de las matrices $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & -4 \\ 8 & 0 \end{pmatrix}$ y

$$A_3 = \begin{pmatrix} 0 & 1/4 \\ -1/2 & 0 \end{pmatrix}$$
 Respuesta: Sí (de infinitas maneras).

Teorema 7.3.5 Sean V un \mathbb{K} -espacio vectorial y $A = \{v_1, v_2, \dots, v_r\} \subseteq V$. El conjunto de todas las combinaciones lineales de vectores de A es un subespacio vectorial de V.

$$S = \{x \in V : x = \sum_{i=1}^{r} \alpha_i v_i, \alpha_i \in \mathbb{K}, i = 1, \dots, r\}.$$

El subespacio S se llama subespacio generado por A o subespacio generado por los vectores v_1, \ldots, v_r . Los vectores v_1, \ldots, v_r se llaman generadores de S.

Se denota por $S = \langle A \rangle = \langle \{v_1, \dots, v_r\} \rangle$. También se dice que v_1, \dots, v_r generan al subespacio o que A es un sistema de generadores de S.

Demostración: Hacer en clase.

Ejemplo 7.3.5 1. Caracterice el subespacio generado por $v_1 = (0, 1, 2)$, $v_2 = (-1, 3, -1)$ y $v_3 = (2, -11/2, 3)$.

Solución: $S = \{(x, y, z) \in \mathbb{R}^3 : z - 2y - 7x = 0\}.$

2. Consideremos el subespacio de las matrices simétricas

$$S = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a, b, c \in \mathbb{R} \right\}.$$

Encuentre el conjunto A tal que $S = \langle A \rangle$.

$$Respuesta: A = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Definición 7.3.3 Sean V un \mathbb{K} -espacio vectorial y $A = \{v_1, \ldots, v_r\} \subseteq V$; A es un conjunto linealmente dependiente (L.D.) si existen escalares no todos nulos $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ tales que

$$\alpha_1 v_1 + \dots + \alpha_r v_r = \theta_v,$$

Si A no es un conjunto L.D. se dice que es linealmente independiente (L.I.).

Definición 7.3.4 S es un conjunto linealmente independiente si todo subconjunto finito de S es L.I.

Observaciones:

- 1. Todo conjunto que consta de un único vector distinto del nulo es L.I.
- 2. Todo conjunto que contiene al vector nulo es L.D.
- **Ejemplo 7.3.6** 1. Muestre que $A = \{(1,0,0), (0,1,0), (0,0,1)\} \subseteq \mathbb{R}^3$, es un conjunto L.I.
 - 2. Sea V el espacio de los polinomios de grado menor o igual que 2 con coeficientes reales, donde θ_v es el polinomio nulo. Sea $A = \{3x^2 2x, x^2 + 1, -3x + 2, x^2 1\} \subseteq \mathcal{P}_2(x)$. Muestre que A es L.D.

Observaciones:

- 1. Si v_1, \ldots, v_k es un conjunto de vectores L.D., entonces uno de los vectores es C.L. de los restantes.
- 2. Recíprocamente, si un vector v es C.L. de v_1, \ldots, v_k , entonces $\{v, v_1, \ldots, v_k\}$ es L.D.
- 3. Si el conjunto $A = \{v_1, \dots, v_k\}$ es un sistema de generadores L.D. del espacio vectorial V, entonces existe $v_j \in A$ tal que $A \{v_j\}$ es un sistema de generadores de V.

Definición 7.3.5 (L.I. maximal) Un subconjunto $A = \{v_1, \ldots, v_n\}$ del \mathbb{K} -espacio vectorial V es L.I. maximal, si A es L.I. y si $A \cup \{w\}$ es L.D., cualquiera sea $w \in V$, $w \neq v_i$, $i = 1, \ldots, n$.

Ejemplo 7.3.7 $A = \{(1,0), (0,1)\} \subseteq \mathbb{R}^2$ es un conjunto L.I. maximal puesto que es L.I. y cualquier vector de \mathbb{R}^2 se puede escribir como combinación lineal de los vectores de A. Luego $A \cup \{w\}$ es L.D., para todo $w \in \mathbb{R}^2$.

Definición 7.3.6 (Base de V) Sea V un \mathbb{K} -espacio vectorial. $A = \{v_1, \dots, v_n\} \subseteq V$ es una base de V si:

- 1. A es L.I.
- 2. A es un sistema de generadores de V.

Teorema 7.3.6 Todo espacio vectorial posee base.

Demostración: La demostración del Teorema 7.3.6 no está al alcance de este curso.

- **Ejemplo 7.3.8** 1. $Si V = \mathbb{R}^3$, se puede demostrar fácilmente que el conjunto $A = \{(1,0,0), (0,1, es L.I. y un sistema de generadores de <math>\mathbb{R}^3$. Por lo tanto, A constituye una base de \mathbb{R}^3 , llamada base canonica de \mathbb{R}^3 .
 - 2. El conjunto $B = \{3, x-1, x^2+x\}$ es base del espacio vectorial $\mathcal{P}_2(x)$ (polinomios de grado

menor o igual a 2, con coeficientes reales).

Teorema 7.3.7 Sea V un K-espacio vectorial generado por un conjunto finito de vectores v_1, \ldots, v_n . Entonces todo conjunto L.I. de vectores de V es finito y contiene a lo más n vectores.

Definición 7.3.7 (**Dimension de V**) Se llama dimensión de un \mathbb{K} -espacio vectorial V al número de elementos de una base cualquiera de V. Se denota $\dim(V)$. Si V consiste únicamente en él vector nulo, diremos que su dimensión es 0.

7.3.5. Listado 5

1. Sean U, V, W, Z los siguientes subespacios de \mathbb{R}^3 .

$$U = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\},\$$

$$V = \{(x, y, z) \in \mathbb{R}^3 : x = 0\},\$$

$$W = \{(0,0,z) \in \mathbb{R}^3 : z \in \mathbb{R}\},\$$

$$Z = \{(x,y,z) \in \mathbb{R}^3 : x = 3y = 2z\}.$$

d) W+Z

Caracterice los elementos de cada uno de los siguientes espacios:

a)
$$U+V$$
 e) $U\cap W$

b)
$$U + W$$

c) $V + W$ f) $V \cap W$

2. Determine si los siguientes conjuntos son linealmente independientes.

a)
$$\{(3,6,1),(2,1,1),(-1,0,-1)\}\$$
en \mathbb{R}^3

b)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$
 en $\mathcal{M}_2(\mathbb{R})$

c)
$$\{t^3 - t^2 + 4t + 1, 2t^3 - 2t^2 + 9t - 1, t^3 + 6t - 5, 2t^3 - 5t^2 + 7t + 5\}$$
 en $\mathcal{P}_3(\mathbb{R})$

g) $U \cap Z$

- 3. Demuestre que los polinomios $\{(1-t)^3, (1-t)^2, (1-t), 1\}$, generan el espacio de los polinomios de grado menor o igual que tres.
- 4. Sean $S_1 = \{ \sin^2(x), \cos^2(x), \sin(x) \cos(x) \}$ y $S_2 = \{ 1, \sin(2x), \cos(2x) \}$. Muestre que los vectores de cada conjunto son L.I.
 - 5. Encuentre una base y determine la dimensión de los siguientes subespacios:

a)
$$Z = \{(x, y, z) \in \mathbb{R}^3 : x - 2y - 3z = 0\},$$

a)
$$Z = \{(x, y, z) \in \mathbb{R}^3 : x - 2y - 3z = 0\},$$

b) $V = \{(x, y, z) \in \mathbb{R}^3 : x - 2y\}$
f) $U = \{\begin{pmatrix} a & b & b \\ 0 & a & c \\ 0 & d & d \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \},$

b)
$$Y = \{(x, y, x) \in \mathbb{R}^3 : x = 3y\},$$

$$\begin{cases} \begin{pmatrix} 0 & d & a \end{pmatrix} \end{pmatrix}^{-1} & \text{if } (x, y, z) \in \mathbb{R}^3 : 6x = 3y = z\}, \end{cases}$$
 g) $T = \langle \{7 - x^2, x^2 + 1, x^2 - 1\} \rangle$,

c)
$$X = \{(x, y, z) \in \mathbb{R}^3 : 6x = 3y = z\},$$

h) $S = \langle \{\cos^2(x), \sin^2(x), \cos(2x)\} \rangle,$
d) $W = \{(a, b, c, d) \in \mathbb{R}^4 : b - 2c + d = i) \ R = \{p \in \mathcal{P}_3(\mathbb{R}) : p(0) = 0\},$

$$\begin{array}{ll} \text{d)} \ W = \{(a,b,c,d) \in \mathbb{R}^4 : b-2c+d = \\ 0\}, \\ \text{e)} \ V = \{(a,b,c,d) \in \mathbb{R}^4 : a=d,b=2c\} \end{array} \quad \begin{array}{ll} \text{i)} \ R = \{p \in \mathcal{P}_3(\mathbb{R}) : p(0) = 0\}, \\ \text{j)} \ Q = \{p \in \mathcal{P}_3(\mathbb{R}) : p(1) = 0\}, \\ \text{k)} \ P = \{p \in \mathcal{P}_3(\mathbb{R}) : p(0) = p'(0) = 0\}. \end{array}$$

6. Considere el conjunto $\mathcal{P}_2(\mathbb{R})$ con la suma usual de polinomios y la multiplicación por escalar definida por

$$\alpha p(x) = \alpha p'(x), \forall \alpha \in \mathbb{R}, \forall p(x) \in \mathcal{P}_2(\mathbb{R}).$$

Es $\mathcal{P}_2(\mathbb{R})$ un espacio vectorial con estas operaciones?.

- 7. Considere la ecuación x 2y + 3z = 0.
 - a) Muestre que el conjunto solución S de esta ecuación es un subespacio de \mathbb{R}^3 .
 - b) Encuentre una base para S y su dimensión.
- 8. Sea V un \mathbb{K} -espacio vectorial y $S_1 = \{u, v, w\}$ un subconjunto L.I de V. Demuestre que: $S_2 = \{u + v, u v, u 2v + w\}$ es también L.I.
- 9. Considere los siguientes subespacios de \mathbb{R}^3 . $U=\{(x,y,z)\in\mathbb{R}^3:x=2y\}$ $V=\langle\{-1,2,1),(0,0,1)\}\rangle$

Caracterice los subespacios $U + V \vee U \cap V$.

- 10. Encuentre la dimensión del subespacio $V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a = b \land c = d \right\}.$
- 11. Encuentre la dimensión del espacio $U = \{ax^2 + bx + c \in \mathcal{P}_2(\mathbb{R}) : 2b c = 0\}.$
- 12. Dados los subespacios $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a + c = 0 \right\}$ y

$$V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : 2b - d = 0 \right\}.$$

- a) Caracterice el subespacio $U \cap V$.
- b) Es U + V suma directa?.
- 13. Considere el conjunto $S = \{(x, y, z) \in \mathbb{R}^3 : 4x + 3y z = 0\}$ y el subespacio T de \mathbb{R}^3 generado por (3, -1, 1).
 - a) Demuestre que S es un subespacio de \mathbb{R}^3 .
 - b) Determine una base para S+T y decida si ésta es una suma directa.