Matemática atuarial

Aula 17 Comutação

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Comutação

- Comutação é a troca de ordem dos elementos, todavia, sem perder a sua realidade.
- No contexto atuarial esse processo é utilizado como forma de simplificar o cálculo do prêmio puro de diversos produtos atuariais,

Comutação

- As funções de comutação são propositadamente elaboradas de forma que seus resultados ao serem combinados levam a alguns valores atuariais conhecidos (Seguros e Anuidades).
- Essas funções são organizadas numa tabela chamada de Tábua de comutação

Tábuas de comutação

- > Johanes Nikolaus Tetens (Alemanha, 1736 -1807).
 - ➤ Matemática e atuário, (1785).

JOHN NICHOLAS TETEN:

➤ Griffith Davies (Inglaterra- 1750-1833). > Atuário, (1825).

Tábuas de comutação

- A necessidade de se trabalhar com uma taxa de juros constante,
- ➤ A tabua de comutação não é adequada ao uso com Tábuas geracionais.
- ▶ Perde-se a noção da natureza aleatória dos quais se originam os produtos,

 $ightharpoonup \acute{\rm E}$ o resultado das operações com os dados obtidos das colunas dos valores de l_{χ} e d_{χ} associados algebricamente com o valor da taxa de juros.

> Principais funções de comutação (Sistema moderno)

$$D_x$$
, N_x , S_x , C_x , M_x , R_x

- Uma tábua de comutação é constituída a partir de dois elementos:
 - ➤ i) Tábua de vida
 - ➤ ii) Taxa de juros

Idade
$$x$$
, q_x , p_x , d_x e l_x

- $ightharpoonup q_x$: Probabilidade de morte de uma pessoa com idade x antes de completar a idade de x+1 anos.
- p_x : $1 q_x$: Probabilidade de sobrevivência de uma pessoa com idade x antes de completar a idade x + 1.

VARIAÇÕES

- $\mathbf{P} = \mathbf{p} \mathbf{q}_x$: Probabilidade de uma pessoa com idade x morrer antes de completar a idade de x + n anos.
- p_x : Probabilidade que uma pessoa com idade x, sobreviva pelo menos mais **n** anos.

Idade
$$x$$
, q_x , p_x , d_x e l_x

- $\triangleright d_x$: Número de pessoas que faleceram entre a idade x e x+1.
- $\triangleright l_x$: Número (hipotético) de pessoas vivas com idade x.

RELAÇÕES

$$d_{x} = l_{x} - l_{x+1}$$

$$nq_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

$$np_{x} = \frac{l_{x+n}}{l_{x}}$$

$$_{m+l}p_{x}=(_{m}p_{x})(_{l}p_{x+m})$$

 \triangleright Coluna D_x

$$D_{x} = l_{x}v^{x} = \frac{l_{x}}{(1+i)^{x}}$$

Suponha
$$i=5\%$$
 então $D_{\chi}=l_{\chi}v^{\chi}=\frac{l_{\chi}}{(1,05)^{\chi}}$

Idade	q_X	p_X	l_{x}	v^x	D_{χ}	100000
25	0,00077	0,99923	100000	0,295303	29530,28	$D_{25} = \frac{100000}{(1,05)^{25}}$
26	0,00081	0,99919	99923	0,281241	28102,42	
27	0,00085	0,99915	99842	0,267848	26742,51	
28	0,00090	0,99910	99757	0,255094	25447,38	
29	0,00095	0,99905	99667	0,242946	24213,73	$D_{30} = \frac{99572}{(1,05)^{30}}$
30	0,00100	0,99900	99572	0,231377	23038,72	$D_{30} = (1,05)^{30}$
31	0,00107	0,99893	99472	0,220359	21919,60	
32	0,00114	0,99886	99365	0,209866	20853,35	
33	0,00121	0,99879	99251	0,199873	19837,55	
34	0,00130	0,99870	99131	0,190355	18870,06	$D_{25} = \frac{99002}{}$
35	0,00139	0,99861	99002	0,18129	17948,10	$(1,05)^{35}$

Funções de comutação- D_{χ}

	16	▼ (f_{i}	-												~
. /	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N	О	
1	Х	qx	рх	lx	vx	Dx										
2	0	0,00231	0,99769	100000	1	100000										
3	1	0,00091	0,99909	99768,9	0,952381	95018										
4	2	0,00050	0,99950			90411,35						Fator de a	tualização			
5	3	0,00041	0,99959	99628,27	863838	86062,65						i	5%			
6	4	0,00036	0,99964		0,822702											
7	5	0,00032	0,99968	99552,07	0,783526	78001,65										
8	6	0,00030	0,99970	99519,82	0,746215	74263,22			_ ת	$v^x l_x$						
9	7	0,00029	0,99971	99489,86	0,710681	705,59			D_{χ} –	ν ι_{x}						
10	8	0,00033	0,99967	99461,41	0,676839	67319,39										
11	9	0,00036	0,99964	99428,78	0,644609	64092,68										
12	10	0,00039	0,99961	99392,79	0,613913	61018,55			v	1						
13	11	0,00041	0,99959	99354,03	0,584679	58090,24		ľ	$y^{x} = -$	4 . 1) 2						
14	12	0,00043	0,99957	99312,99	0,556837	55301,19				$(1+i)^x$						
15	13	0,00045	0,99955	99270,19	0,530321	52645,1										
16	14	0,00046	0,99954	99225,91	0,505068	50115,83										
17	15	0,00047	0,99953	99180,47	0,481017	47707,5		١,								
18	16	0,00048	0,99952	99133,85	0,458112	45414,36		l_x	$_{+1} = l$	$l_x p_X$						
19	17	0,00050	0,99951	99086,17	0,436297	43230,97										
20	18	0,00051	0,99949	99037,12	0,415521	41151,97										
21	19	0,00053	0,99947	98986,61	0,395734	39172,36										
22	20	0,00055	0,99945	98934,35	0,376889	37287,32										
23	21	0,00057	0,99943	98880,03	0,358942	35492,23										
24	22	0,00060	0,99940	98823,38	0,34185	33782,76										
25	23	0,00063	0,99937	98764,18	0,325571	32154,78										
26	24	0,00066	0,99934	98702,26	0,310068	30604,4										
27	25	0,00069	0,99931	98637,41	0,295303	29127,9										
28	26	0,00071	0,99929	98569,74	0,281241	27721,83										
29	27	0,00074	0,99926	98499,36	0,267848	26382,89										
30	28	0,00076	-		0,255094											
31	29	0,00077	-		0,242946											
33	20 N Dla	n 00070	Dlan2		0 224277	22720.04										
14 4	I ▶ ▶I Pla	n1 / Plan2	Plan3							1		-	III			•

 \triangleright Coluna N_x

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)} = \frac{l_{x}}{(1+i)^{x}} + \frac{l_{x+1}}{(1+i)^{x+1}} + \frac{l_{x+2}}{(1+i)^{x+2}} + \dots + \frac{l_{\omega - x}}{(1+i)^{\omega - x}}$$

 ω corresponde a idade máxima atingida

Funções de comutação- N_{χ}

Suponha
$$i=5\%$$
 então: $N_{x}=\sum_{t=0}^{\omega-x}D_{(x+t)}=\sum_{t=0}^{\omega-x}\frac{l_{x+t}}{(1.05)^{x+t}}$

Idade	q_X	p_X	l_x	D_{x}	N_{x}	90
25	0,00077	0,99923	100000	29530,28	6928266	$N_{25} = \sum_{t=0}^{\infty} D_{(25+t)} = D_{25} + D_{26} + \cdots D_{115}$
26	0,00081	0,99919	99923	28102,42	6573343	t=0
27	0,00085	0,99915	99842	26742,51	6235516	
28	0,00090	0,99910	99757	25447,38	5913968	
29	0,00095	0,99905	99667	24213,73	5607924	85
30	0,00100	0,99900	99572	23038,72	5316645	$N_{30} = \sum_{t=0}^{\infty} D_{(30+t)} = D_{30} + D_{31} + \dots + D_{115}$
31	0,00107	0,99893	99472	21919,60	5039426	t=0
32	0,00114	0,99886	99365	20853,35	4775598	
33	0,00121	0,99879	99251	19837,55	4524517	
						0
115	1,00000	00000	0,18042	0,000022	0,000022	$N_{115} = \sum_{t=0}^{5} D_{(115+t)} = D_{115}$
1						

Funções de comutação- N_{χ}

 \triangleright Coluna S_x

$$S_{x} = \sum_{t=0}^{\omega - x} N_{x+t} = N_{x} + N_{x+1} + N_{x+2} + \dots + N_{\omega - x}$$

 ω corresponde a idade máxima atingida.

$$S_{x} = \sum_{t=0}^{\omega - x} N_{x+t} = \sum_{t=0}^{\omega - x} \left(\sum_{k=0}^{\omega - x+k} D_{(x+k+t)} \right) = \sum_{t=0}^{\omega - x} \left(\sum_{k=0}^{\omega - x+k} l_{x+k+t} v^{x+k+t} \right)$$

A utilização de S_x pertence ao cálculo de rendas crescentes, ...

Funções de comutação- C_{x}

 \triangleright Coluna C_x

$$C_{x} = v^{x+1}d_{x}$$

Lembrando que $d_x = l_x - l_{x+1}$ e $q_x = \frac{d_x}{l_x}$, logo:

$$C_{\mathcal{X}} = v^{x+1}d_{\mathcal{X}} = v^{x+1}q_{\mathcal{X}}l_{\mathcal{X}}$$

Suponha i=5% então $C_x=v^{x+1}d_x$

Idade	q_X	p_X	l_x	D_{x}	C_x
25	0,00077	0,99923	100000	29530,28	21,655
26	0,00081	0,99919	99923	28102,42	21,679
27	0,00085	0,99915	99842	26742,51	21,648
28	0,00090	0,99910	99757	25447,38	21,812
29	0,00095	0,99905	99667	24213,73	21,907
30	0,00100	0,99900	99572	23038,72	21,941
31	0,00107	0,99893	99472	21919,60	<u> </u>
·					

$$C_{25} = v^{25+1}(l_{25} - l_{26}) = q_{25}l_{25}(v^{26})$$

$$C_{30} = v^{30+1} (l_{30} - l_{31}) = q_{30} l_{30} v^{31}$$

Funções de comutação- C_{χ}

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	Χ	qx	рх	lx	vx	Dx	Nx	Sx	Сх				
2	0	0,00231	0,99769	100000	1	100000	2031767,454	39001334,26	=B2*D2 *E3				
3	1	0,00091	0,99909	99768,9	0,952381	95018	1931767,454	36969566,81	81,98696				
4	2	0,00050	0,99950	99678,51	0,907029	90411,35	1836749,454	35037799,36	43,39745			Fator de	atualização
5	3	0,00041	0,99959	99628,27	0,863838	86062,65	1746338,107	33201049,9	33,44149			i	5%
6	4	0,00036	0,99964	99587,62	0,822702	81930,98	1660275,46	31454711,8	27,85653				
7	5	0,00032	0,99968	99552,07	0,783526	78001,65	1578344,477	29794436,34	24,06908				
8	6	0,00030	0,99970	99519,82	0,746215	74263,22	1500342,825	28216091,86	21,28879				
9	7	0,00029	0,99971	99489,86	0,710681	70705,59	1426079,606	26715749,04	19,25885				
10	8	0,00033	0,99967	99461,41	0,676839	67319,39	1355374,02	25289669,43	21,0293			10.1	
11	9	0,00036	0,99964	99428,78	0,644609	64092,68	1288054,625	23934295,41	22,09671		$C_{10} =$	$v^{10+1}c$	$q_{10}l_{10}$
12	10	0,00039	0,99961	99392,79	0,613913	61018,55	1223961,946	22646240,78	22,66403				
13	11	0,00041	0,99959	99354,03	0,584679	58090,24	1162943,395	21422278,84	22,84883				
14	12	0,00043	0,99957	99312,99	0,556837	55301,19	1104853,154	20259335,44	22,69982				
15	13	0,00045	0,99955	99270,19	0,530321	52645,1	1049551,963	19154482,29	22,36163				
16	14	0,00046	0,99954	99225,91	0,505068	50115,83	996906,8625	18104930,33	21,86005				
17	15	0,00047	0,99953	99180,47	0,481017	47707,5	946791,0329	17108023,46	21,35479				
18	16	0,00048	0,99952	99133,85	0,458112	45414,36	899083,5315	16161232,43	20,8041				
40	47	0.00050	0.00054	0000647	0 405007	*****	050550 4707	450504400	20.20224				

Funções de comutação- M_{χ}

 \triangleright Coluna M_{χ}

$$M_x = C_x + C_{x+1} + C_{x+2} + \dots + C_{\omega-x} = \sum_{t=0}^{\omega-x} C_{x+t}$$

$$M_{x} = v^{x+1}q_{x}l_{x} + v^{x+2}q_{x+1}l_{x+1} + v^{x+3}q_{x+2}l_{x+2} + \cdots$$

Funções de comutação- M_χ

	Α	В	С	D	F	F	G	Н	1	1	К	1	M	N	0	
1	X	qx	рх	lx	VX	Dx	Nx	Cx	Mx	,	K	L	IVI	14		•
89	87	0,09696	0,90304	36000.82	0,014339	516.2302	2909,279962									_
90	88	0,10563	0,89437	-		-	2393,049748	-								
91	89	0,11486	0,88514		0,013006		1949,071114	41,36771								
92	90	0,12461	0,87539	•	0,012387	-	1570,898994	37,83413								
93	91	0,13486		22529,45			1252,102778	34,1367								
94	92	0,14558	0,85443	19491,11	0,011235	218,9884	986,3214621	30,36117								
95	93	0,15673		16653,69	0,0107	-	767,3330982									
96	94	0,16829	0,83171	14043,61	0,010191		589,1339241	22,9379								
97	95	0,18025	0,81976	11680,21	0,009705	113,3619	446,0191126	19,45992								7
98	96	0,19257	0,80744	9574,91	0,009243	88,50381	332,6571889	16,23118			$M_{102} =$	$= C_{102}$	+ [<i>C</i> ₁₀₃	₃ + ··· +	- C ₁₁₅]	
99	97	0,20523	0,79477	7731,117	0,008803	68,05817	244,1533757	13,30239					- 20.			
100	98	0,21868	0,78132	6144,468	0,008384	51,51491	176,0952078	10,72899								
101	99	0,23337	0,76663	4800,777	0,007985	38,33284	124,5802952	8,519783						V		
102	100	0,24974	0,75026	3680,415	0,007604	27,98768	86,24746001	6,65683						1/1		
103	101	0,26824	0,73176	2761,264	0,007242	19,9981	58,25978086	5,108792		K				M_{101}		
104	102	0,28931	0,71070	2020,591	0,006897	13,93702	38,26167783	3,840047	12,11497							
105	103	0,31339	0,68661	1436,024	0,006569	9,433306	24,32465701	2,815536	8,274926							
106	104	0,34094	0,65906	985,987	0,006256	6,168564	14,89135129	2,002962	5,45939							
107	105	0,37240	0,62760	649,8246	0,005958	3,871861	8,722786896	1,373213	3,456427							
108	106	0,40821	0,59179	407,8312	0,005675	2,314274	4,850925899	0,899724	2,083215							
109	107	0,44882	0,55118	241,3504	0,005404	1,304347	2,536651893	0,557544	1,183491							
110	108	0,49468	0,50532	133,0268	0,005147	0,684691	1,232305022	0,322575	0,625947							
111	109	0,54623	0,45377	67,22098	0,004902	0,329512	0,547613599	0,171419	0,303372		1/	- C	1 C			
112	110	0,60392	0,39608	30,5028	0,004668	0,142402	0,218101612	0,081904	0,131954		W ₁₁	$L_4 = C_1$	14 + 61	L15		
113	111	0,66819	0,33181	12,08164	0,004446	0,053717	0,075699399	0,034184	0,05005							
114	112	0,73948	0,26052	4,008857	0,004234	0,016975	0,021982164	0,011955	0,015866							
115	113	0,81825	0,18175	1,044375	0,004033	0,004212	0,005006802	0,003282	0,003911	./		K				
116	114	0,90495	0,09506	0,189811	0,003841	0,000729	0,000795021	0,000628	0,000628	K	M_{11}	$L_{5} = C_{1}$	15			
117	115	1,00000	0,00000	0,018042	0,003658	6,6E-05	6,59974E-05	0	0				-			
118																~
H 4	▶ ▶ Plar	n1 / Plan2	Plan3 🥂]/								IIII			-	
Pront	0												1009	% -	-0-	+

 \triangleright Coluna R_x

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t} = M_{x} + M_{x+1} + M_{x+2} + \dots + M_{\omega - x}$$

A utilização de R_{χ} pertence ao cálculo de seguro contra morte de capital crescente, ...

Funções de comutação- M_{χ}

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
1	Х	qx	рх	lx	VX	Dx	Nx	Sx	Сх	Mx	Rx		
2	0	0,00231	0,99769	100000	1	100000	2031767,454	39001334,26	220,0952	3249,169	174561,1		
3	1	0,00091	0,99909	99768,9	0,952381	95018	1931767,454	36969566,81	81,98696	3029,074	171311,9		
4	2	0,00050	0,99950	99678,51	0,907029	90411,35	1836749,454	35037799,36	43,39745	2947,087	168282,8	Fator de at	ualização
5	3	0,00041	0,99959	99628,27	0,863838	86062,65	1746338,107	33201049,9	33,44149	2903,689	165335,7	i	5%
6	4	0,00036	0,99964	99587,62	0,822702	81930,98	1660275,46	31454711,8	27,85653	2870,248	162432		
7	5	0,00032	0,99968	99552,07	0,783526	78001,65	1578344,477	29794436,34	24,06908	2842,391	159561,8		
8	6	0,00030	0,99970	99519,82	0,746215	74263,22	1500342,825	28216091,86	21,28879	2818,322	156719,4		
9	7	0,00029	0,99971	99489,86	0,710681	70705,59	1426079,606	26715749,04	19,25885	2797,033	153901,1		
10	8	0,00033	0,99967	99461,41	0,676839	67319,39	1355374,02	25289669,43	21,0293	2777,774	151104		
11	9	0,00036	0,99964	99428,78	0,644609	64092,68	1288054,625	23934295,41	22,09671	2756,745	148326,3		
12	10	0,00039	0,99961	99392,79	0,613913	61018,55	1223961,946	22646240,78	22,66403	2734,648	145569,5		
13	11	0,00041	0,99959	99354,03	0,584679	58090,24	1162943,395	21422278,84	22,84883	2711,984	142834,9		
14	12	0,00043	0,99957	99312,99	0,556837	55301,19	1104853,154	20259335,44	22,69982	2689,136	140122,9		
15	13	0,00045	0,99955	99270,19	0,530321	52645,1	1049551,963	19154482,29	22,36163	2666,436	137433,8		
16	14	0,00046	0,99954	99225,91	0,505068	50115,83	996906,8625	18104930,33	21,86005	2644,074	134767,3		
17	15	0,00047	0,99953	99180,47	0,481017	47707,5	946791,0329	17108023,46	21,35479	2622,214	132123,2		
18	16	0,00048	0,99952	99133,85	0,458112	45414,36	899083,5315	16161232,43	20,8041	2600,859	129501		
19	17	0,00050	0,99951	99086,17	0,436297	43230,97	853669,1707	15262148,9	20,38031	2580,055	126900,2		
20	18	0,00051	0,99949	99037,12	0,415521	41151,97	810438,2026	14408479,73	19,9881	2559,675	124320,1		
21	19	0,00053	0,99947	98986,61	0,395734	39172,36	769286,2323	13598041,53	19,6981	2539,687	121760,4		
22	20	0,00055	0,99945	98934,35	0,376889	37287,32	730113,8678	12828755,29	19,49594	2519,989	119220,8		
2	04	0.00057	0.00040	20000 00	0.00040	25.402.22	500005 550	********	10.0000	2502 402	4467000		

$$D_{x} = l_{x}v^{x}$$

$$C_{x} = v^{x+1}d_{x}$$

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)}$$

$$M_{x} = \sum_{t=0}^{\omega - x} C_{x+t}$$

$$S_{x} = \sum_{t=0}^{\omega - x} N_{x+t}$$

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters.
 Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

