Physics

Lecture 3 Kinematics of Curvilinear Motion: Rectangular Coordinates

Description of Motion

Contents

 Position, velocity and acceleration in two/three dimensions – rectangular coordinates

Motion of projectile

Different Coordinates To Measure Positions

Rectangular (x, y, z)

Cylindrical (r, θ, z)

Spherical (R, θ, ϕ)

Position Vector of a Particle

Change of position vector

Displacement of a Particle

Displacement vector

 $\mathbf{r}(t)$

Path Coordinate

s(t)

Change in Path Length $\Delta s = s(t + \Delta t) - s(t)$

Velocity of a Particle

Average Velocity

$$\mathbf{v}_{average} = rac{\Delta \mathbf{r}}{\Delta t}$$

Instantaneous Velocity

$$\mathbf{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

Direction of Velocity

Velocity and Speed of a Particle

Speed = Magnitude of Velocity (the length of vector $\mathbf{v}(t)$)

Acceleration of a Particle

Instantaneous Acceleration

$$\mathbf{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbf{v}(t + \Delta t) - \mathbf{v}(t)}{\Delta t}$$

Hodographs of r and v

Direction of acceleration:

but not necessarily tangent to hodograph of r

Position, Velocity and Acceleration

Position vector

$$\mathbf{r} = x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k}$$

Time derivative of position vector

$$\frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dy}{dt}\mathbf{k}$$

Time derivative of velocity vector

$$\frac{d\mathbf{v}}{dt} = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j} + \frac{d^2y}{dt^2}\mathbf{k}$$

Position, Velocity and Acceleration

Velocity

$$\frac{d\mathbf{r}}{dt} = \mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

Acceleration

$$\frac{d\mathbf{v}}{dt} = \mathbf{a} = a_{x}\mathbf{i} + a_{y}\mathbf{j} + a_{z}\mathbf{k}$$

Magnitude and Direction of r, v and a

Magnitude and direction of **r**

Magnitude and direction of **v**

 $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$

Magnitude and direction of a

Plane Motion

All movement occurs in or can be represented as occurring in a single plane

Position

Velocity

Acceleration

Direction of Velocity and Acceleration

Rectangular Components of Velocity

Velocity is tangent to the path

$$\tan \theta = \frac{dy}{dx}$$

Rectangular Components of Acceleration

Acceleration is NOT necessarily tangent to the path

Contents

 Concept of position, velocity and acceleration in two/three dimensions – rectangular coordinates

Motion of projectile

Constant Accelerated Motion

When a body falls freely towards the earth and if we assume no air resistance

Elevation

Typical Example

Motion of a projectile

Horizontal distance

Projectile Motion

Solution for Projectile Motion

Horizontal motion

$$a_x = 0$$

Apply equations for constant acceleration

$$v_{x}(t) = v_{0x}$$

$$x(t) = x_{0x} + v_{0x} t$$

Vertical motion

$$a_y = -g$$

Apply equations for constant acceleration

$$v_{y}(t) = v_{0y} - g t$$

$$y(t) = y_0 + v_{0y} t - \frac{1}{2} g t^2$$

Projectile Motion

