

第二次作业

李子龙 123033910195

2023年9月26日

1. (a) 解: 是。 $Z_5 = \{0, 1, 2, 3, 4\}$,则

封闭性 若 $a, b \in Z_5$, 则 $((a+b) \mod 5) \in Z_5$;

结合律 $(a+b)+c \mod 5 = a+(b+c) \mod 5$;

单位元 0 是群的单位元, $a+0 \equiv a \pmod{5}$;

逆元 每个元素都有逆元: $0+0 \equiv 0 \pmod{5}$; $1+4 \equiv 0 \pmod{5}$; $2+3 \equiv 0 \pmod{5}$; $3+2 \equiv 0 \pmod{5}$; $4+1 \equiv 0 \pmod{5}$.

所以 $(Z_5, + \text{mod } 5)$ 是一个群。

生成元 而 g = 3 是它的一个生成元:

所以 $(Z_5, + \text{mod } 5)$ 是一个循环群。

(b) 解: 不是。 $Z_8^* = \{1,3,5,7\}$,则:

封闭性 $1 \times x \equiv x \pmod{8} \in Z_8^*$; $3 \times 5 \equiv 7 \pmod{8}$, $3 \times 7 \equiv 5 \pmod{8}$, $5 \times 7 \equiv 7 \pmod{8}$;

结合律 $(a \times b) \times c \equiv a \times (b \times c) \pmod{8}$;

单位元 1 是群的单位元, $a \times 1 \equiv a \pmod{8}$;

逆元 每个元素都有逆元: $1 \times 1 \equiv 1 \pmod{8}$, $3 \times 3 \equiv 1 \pmod{8}$, $5 \times 5 \equiv 1 \pmod{8}$, $7 \times 7 \equiv 1 \pmod{8}$.

所以 $(Z_8^*, \times \text{ mod } 8)$ 是一个群。

生成元 而它的任何一个元素都不是它的生成元: $\{1\}$, $\{1,3\}$, $\{1,5\}$, $\{1,7\}$ 都是它的生成子群。

所以 $(Z_8^*, \times \text{ mod } 8)$ 不是循环群。

2. 解:由于循环群的性质: $h \circ h^{q-1} = h^q = e$,以及循环群的封闭性性质, $h^{q-1} \in G$,所以 h^{q-1} 是h 的逆元。

为了求出 h^{q-1} ,可以考虑使用平方相乘法,逐步求出 $h, h^2, \dots, h^{2^k} (k = \lfloor \log_2(q-1) \rfloor)$,而 $q-1 = (a_k a_{k-1} \dots a_0)_2$ 表示为二进制形式,那么

$$h^{q-1} = (h^{2^k})^{a_k} \cdot (h^{2^{k-1}})^{a_{k-1}} \cdot \dots \cdot h^{a_0}$$

可以在 $O(\log_2(q-1))$ 时间内求出。

3. 解: $(Z_{13}, + \text{ mod } 13)$ 是满足条件的 13 阶循环群。

封闭性 若 $a, b \in Z_{13}$, 则 $((a+b) \mod 13) \in Z_{13}$;

结合律 $(a+b)+c \mod 13 = a+(b+c) \mod 13$;

单位元 0 是群的单位元, $a+0 \equiv a \pmod{13}$;

逆元 每个元素 $x \in Z_{13}$ 都有逆元 $(13-x) \in Z_{13}, x + (13-x) \equiv 0 \pmod{13}$ 。

所以 $(Z_{13}, + \text{ mod } 13)$ 是一个群。

生成元 g = 5 是它的一个生成元。

g												12	
$g^i \mod 13$	5	10	2	7	12	4	9	1	6	11	3	8	0