Concepte generale. Clasificatorul Bayes Naiv. Măsurarea performanței.

Prof. Dr. Radu Ionescu raducu.ionescu@gmail.com

Facultatea de Matematică și Informatică Universitatea din București

Paradigme ale învățării

- Învățare supervizată (supervised learning)
- Învățare nesupervizată (unsupervised learning)
- Învățare semi-supervizată (semi-supervised learning)
- Învățare ranforsată (reinforcement learning)

- Paradigme non-standard:
- Învățarea activă (active learning)
- Învățare prin transfer (transfer learning)

Formele canonice ale problemelor de învățare supervizată

Clasificare

Regresie

Paradigma de învățare supervizată

Functions \mathcal{F}

 $f: \mathcal{X} \to \mathcal{Y}$

Training data

$$\{(x_i,y_i)\in\mathcal{X} imes\mathcal{Y}\}$$

LEARNING

find $\hat{f} \in \mathcal{F}$ s.t. $y_i \approx \hat{f}(x_i)$

 $\hat{c}(\cdot)$

$$\mathbf{y} = \hat{f}(x)$$

New data

 \boldsymbol{x}

PREDICTION

Pașii necesari pentru învățare supervizată

- Definirea problemei de învățare supervizată
- Colectarea datelor

Pornim cu datele de antrenare, pentru care știm etichetele corecte (de la un profesor sau oracol)

Reprezentarea datelor

Alegem cum să reprezentăm datele

Modelarea

Alegerea spațiului de ipoteze: $H = \{g: X \rightarrow Y\}$

- Învățarea / Estimarea parametrilor
 Găsirea celei mai bune ipoteze din spațiul ales
- Selectarea modelului
 Încercăm mai multe modele și îl păstrăm pe cel mai bun
- Dacă rezultatele sunt mulțumitoare atunci ne oprim Altfel rafinăm unul sau mai mulți pași anteriori

Clasificare între Banana și Furbish

- Date de antrenare
- Banana language:
 - baboi, bananonina, bello, hana, stupa
- Furbish:
 - doo, dah, toh, yoo, dah-boo, ee-tay

- Date de test: gelato
- Care este limba?
- De ce?
- Învățarea este grea fără a stabili un spațiu de ipoteze H!

Antrenare versus testare

- Ce ne dorim?
- Performanță bună (pierdere scăzută) pe datele de antrenare?
- Nu, performanță bună pe datele de test (nevăzute)
- Date de antrenare:
- $\succ \{(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)\}$
- Sunt date pentru a învăța funcția de mapare f
- Date de testare:
- $\succ \{x_1, x_2, ..., x_M\}$
- > Folosite pentru a vedea cât de bine am învățat

Funcția de eroare / de pierdere

- Cum măsurăm performanța?
- Regresie:
- Media pătratelor erorilor
- Media erorilor în valoare absolută
- Clasificare:
- Numărul de clasificări greșite (misclassification error)
- > Pentru clasificare binară:

True Positive, False Positive, True Negative, False Negative

> Pentru clasificare în mai multe clase:

Matricea de confuzie

Erori

Eroarea de generalizare (generalization error):

$$\mathcal{E}(h) = \int_{X \times Y} V(h(x), y) \rho(x, y) dx dy$$

- Probabilitatea comună $\rho(x,y)$ este deobicei necunoscută
- Atunci calculăm eroare empirică (empirical error):

$$E(h) = \frac{1}{n} \sum_{i=1}^{n} V(h(x_i), y_i)$$

- Estimăm eroarea empirică pe datele de antrenare sau pe cele de test?
- Nu este corect să raportăm eroarea pe datele de antrenare!

Descompunerea erorii

Descompunerea erorii

- Eroare de modelare
- Am încercat să modelăm realitatea cu un spațiu de ipoteze
- Eroarea de estimare
- Am încercat să antrenăm un model cu o mulțime finite de date
- Eroarea de optimizare
- Nu am reuşit să optimizăm funcția până în punctul optim

Underfitting versus overfitting

- Problema cea mai importantă a învățării?
- Îmbunătățirea capacității de generalizare

Underfitting versus overfitting

• Exemplu 1: problemă de regresie

Underfitting versus overfitting

• Exemplu 2: problemă de clasificare

Bias-Variance Trade-off

- Bias
- Eroare sistematică care provine din inabilitatea modelului de a învăța adevărata relație dintre trăsături și etichete (underfitting)
- Poate fi corectată prin creșterea complexității modelului
- Variance
- Eroare aleatoare care provine din senzitiviatea ridicată la mici fluctuații din date, cauzată de faptul că modelul a învățat și zgomotul din datele de antrenare (overfitting)
- Poate fi corectată prin adăugarea de exemple de antrenare sau prin scăderea complexității modelului

Bias-Variance Trade-off

Bias-Variance Trade-off

Abordarea procedurală

- Etapa de antrenare:
- Date neprelucrate x (extragerea trăsăturilor / caracteristicilor = feature extraction)
- ➤ Date de antrenare {(x,y)} → f (învățare)
- Etapa de testare:
- ➤ Date neprelucrate → x (extragerea trăsăturilor)
- Date de testare x → f(x)
 (aplicarea funcției, calcularea erorii)

Abordarea statistică

- Folosim probabilități:
- > x și y sunt variabile aleatoare
- $ightharpoonup D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$
- Presupunem că datele sunt i.i.d. (independent şi identic distribuite):
- Datele de antrenare şi testare sunt generate i.i.d. din P(X,Y)
- Învățăm pe setul de antrenare
- > Sperăm ca modelul să generalizeze pe datele de test

Concepte

- Capacitatea modelului
- Cât de larg este spațiul de ipoteze H?
- Este sau nu restrâns spațiul de funcții?
- Supra-învățare (overfitting)
- f funcționează bine pe datele de antrenare
- Dar foarte slab pe datele de testare
- Capacitatea de generalizare
- Abilitatea de a obţine eroare mică pe datele noi de test

Garanții

- Simplificând 20 de ani de cercetare din Teoria Învățării...
- Dacă:
- Avem suficiente date de antrenare D
- Şi spaţiul de ipoteze H nu este foarte complex
- atunci probabil că modelul va avea capacitate de generalizare

Probabilități (recapitulare)

- A este un eveniment nedeterminist:
- A = "Simona Halep va câştiga Roland Garros"
- Ce înseamnă P(A)?
- Abordarea statistică:

$$\lim_{N\to\infty}\frac{\#(A=true)}{N}$$

- Frecvenţa la limită a unui eveniment repetabil şi nedeterminist
- Abordarea Bayesiană:
- P(A) este ceea ce "credem" despre A
- Abordarea economică:
- > P(A) ne spune cât de mult "pariem" dacă alegem A

Axiomele Probabilității (recapitulare)

- $0 \le P(A) \le 1$
- $P(\emptyset) = 0$
- $P(\forall) = 1$
- P(A sau B) = P(A) + P(B) P(A si B)

Probabilități condiționate (recapitulare)

$$P(Y = y \mid X = x)$$

- Ce să credem despre Y = y, dacă știm că X = x?
- P(Simona Halep va câştiga Roland Garros)?
- Dacă ştim următoarele:
- În 2018, Simona Halep a câştigat Roland Garros
- Simona Halep a pierdut două finale de Roland Garros
- Simona se află pe poziția a treia în clasamentul WTA
- În 2019, Ashleigh Barty (poziția întâi WTA) a câștigat Roland Garros

Probabilități condiționate (recapitulare)

- P(A | B) = În cazurile în care B este adevărat, proporția în care A este adevărat
- Exemplu:
- D: "Am dureri de cap"
- > R: "Sunt răcit"
- $P(D) = \frac{1}{10}$
- $P(R) = \frac{1}{40}$
- $P(D \mid R) = \frac{1}{2}$

 Durerile de cap sunt rare şi răceala este şi mai rară, dar dacă eşti răcit atunci sunt 50% şanse să ai dureri de cap

Regula Bayes

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A \mid B) P(B)}{P(A)}$$

- Thomas Bayes "An Essay towards solving a Problem in the Doctrine of Chances" Royal Society, 1763.
- Simplu de înțeles dacă vă gândiți la arii

Regula Bayes

Concepte:

- Probabilitate
- Cât de bine explică datele o anumită ipoteză?
- Informaţii apriori
- Ce credem înainte de a vedea datele?
- Informații aposteriori
- > Ce credem după ce vedem datele?

Problema Monty Hall

- Sunt 3 uși numerotate cu 1, 2, 3.
- Un premiu mare (o maşină) este ascunsă în spatele unei uși. Celelalte două uși au câte o capră.
- Trebuie să alegem o ușă.
- Să presupunem că alegem poarta 1. Gazda deschide poarta 3, arătând capra din spate. Ce alegem mai departe?
- (a) Rămânem cu alegerea inițială (poarta 1);
- (b) Schimbăm și alegem poarta 2;
- (c) Este vreo diferență?

Problema Monty Hall

• H = i denotă ipoteza "premiul este după ușa i". Apriori toate cele 3 uși sunt egal probabile să ascundă premiul:

$$P(H = 1) = P(H = 2) = P(H = 3) = \frac{1}{3}$$

- Alegem poarta 1.
- Dacă premiul este în spatele ușii 1, gazda este indiferentă și va alege ușile 2 sau 3 cu probabilitate egală:

$$P(U = 2 \mid H = 1) = \frac{1}{2}, P(U = 3 \mid H = 1) = \frac{1}{2}$$

 Dacă premiul este în spatele ușii 2 (respectiv 3), gazda alege ușa 3 (respectiv 2):

$$P(U = 2 | H = 2) = 0, P(U = 3 | H = 2) = 1$$

 $P(U = 2 | H = 3) = 1, P(U = 3 | H = 3) = 0$

Gazda deschide poarta 3 (U=3), descoperind capra.
 Observaţia este U=3. Premiul este în spatele uşii 1 sau 2?

Problema Monty Hall

$$P(H = 1) = P(H = 2) = P(H = 3) = \frac{1}{3}$$

$$P(U = 2 \mid H = 1) = \frac{1}{2}, P(U = 3 \mid H = 1) = \frac{1}{2}$$

$$P(U = 2 \mid H = 2) = 0, P(U = 3 \mid H = 2) = 1$$

$$P(U = 2 \mid H = 3) = 1, P(U = 3 \mid H = 3) = 0$$

Aplicăm regula Bayes:

$$P(H = 1 \mid U = 3) = \frac{P(U = 3 \mid H = 1) P(H = 1)}{P(U = 3)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{1}{3}$$

$$P(H = 2 \mid U = 3) = \frac{P(U = 3 \mid H = 2) P(H = 2)}{P(U = 3)} = \frac{1 \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

Clasificatorul optimal

- Învățăm: $h: X \to Y$
- X trăsături
- ➤ Y etichete
- Presupunând cunoscută P(Y|X), cum clasificăm datele?
- Aplicăm clasificatorul Bayes:

$$y^* = h^*(x) = \underset{y}{\operatorname{argmax}} P(Y = y \mid X = x)$$

De ce?

Clasificatorul optimal

- Teoremă: Clasificatorul Bayes h_{Bayes} este optim!
 - Adică:

$$error_{true}(h_{Bayes}) \leq error_{true}(h), \forall h$$

• Eroarea Bayes este cea mai mica eroare posibilă:

$$error_{Bayes} = 1 - \sum_{y \neq y^*} \int_{x \in H_i} P(y \mid x) P(x) dx$$

Clasificatorul optimal

- Cât de greu este să învățăm clasificatorul optimal?
- Dar pentru date categorice?
- Cum reprezentăm datele? Câţi parametrii trebuie estimaţi?
- Probabilitatea apriori a claselor P(Y):

Presupunem că Y este compus din k clase

Probabilitatea P(X | Y):

Presupunem că X este compus din n trăsături binare

Model complex → Avem varianță mare cu date limitate!

Soluție: considerăm că trăsăturile sunt independente

Două variabile sunt independente dacă și numai dacă:

$$P(x,y) = P(x) P(y)$$

 Două variabile sunt independente condiționat dacă, fiind dată o a treia variabilă, avem:

$$P(x, y \mid z) = P(x \mid z) P(y \mid z)$$

Clasificatorul Naïve Bayes

- Presupunerea Naïve Bayes:
- ➤ Trăsăturile sunt independente:

$$P(X_1, X_2 | Y) = P(X_1 | Y)P(X_2 | Y)$$

Mai general:

$$P(X_1 ... X_n \mid Y) = \prod_i P(X_i \mid Y)$$

- Câţi parametrii trebuie estimaţi acum?
- > Presupunem că X este compus din n trăsături binare
- \triangleright Redus de la 2^n la $2 \cdot n$

Clasificatorul Naïve Bayes

- Fiind date:
- Probabilitatea apriori a claselor P(Y)
- n trăsături independente X condiționate de Y
- \triangleright Pentru fiecare X_i , probabilitatea $P(X_i \mid Y)$
- Regula de decizie Naïve Bayes este:

$$h_{NB}(x) = \underset{y}{\operatorname{argmax}} P(y) P(x_1, ..., x_n \mid y)$$
$$h_{NB}(x) = \underset{y}{\operatorname{argmax}} P(y) \prod_{i} P(x_i \mid y)$$

- În practică folosim sumă de log!
- Dacă presupunerea este adevărată, NB este clasificatorul optimal!

Estimarea parametrilor NB

- Se aplică metoda aproximării verosimilității maxime (Maximum Likelihood Estimation)
- Fiind dat setul de antrenare, calculăm numărul de exemple pentru care A=a și B=b:

count(A=a, B=b)

- Estimarea parametrilor:
- \triangleright Probabilitatea apriori a fiecărei clase: P(Y = y) = ...
- > Probabilitatea condiționată de clase: $P(X_i = x_i | Y = y) = ...$

Încălcarea presupunerii NB

Deobicei, trăsăturile nu sunt independente condiționat:

$$P(X_1 ... X_n \mid Y) \neq \prod_i P(X_i \mid Y)$$

- Probabilitățile P(Y|X) sunt deseori 0 sau 1
- Totuşi, clasificatorul NB este foarte popular
- Deorece se descurcă bine, chiar dacă presupunerea este încălcată

Underfitting versus overfitting

• Îmbunătățirea capacității de generalizare

Împărțirea datelor în date de antrenare, validare și test

- Pentru a construi un model cât mai performant, trebuie să îl testăm pe date "necunoscute"
- O posibilă abordare (atunci când avem la dispoziție multe date):
- > 50% exemple pentru antrenare
- 25% exemple pentru validare
- > 25% exemple pentru testare

(procentele pot să varieze)

De ce nu este suficient să împărțim datele în train și test?

- Utilizarea repetată a unei împărţiri atunci când încercăm diverşi hiperparametrii poate să "uzeze" setul de de test:
 - Facem overfitting în spaţiul hiperparametrilor!
- Obţinem o estimare mai bună a erorii dacă tunăm hiperparametrii pe un set diferit, anume setul de validare

Training, validation, test

- O altă abordare (funcționează bine cu data puține):
- Împărțim datelor în k părțile egale (fold-uri)
- Antrenăm pe k-1 fold-uri și testăm pe fold-ul dat deoparte
- Repetăm de k ori
- Calculăm media rezultatelor

- Atunci când numărul de fold-uri este egal cu numărul de exemple:
- Leave-one-out cross-validation

Îmbunătățirea capacității de generalizare

Early stopping

 Oprirea învățării atunci când observăm că eroarea pe validare începe să crească

Regularizare

 Adăugarea unui termen care să penalizeze complexitatea funcției de învățare, impunând restricții de netezire sau limite asupra normei vectorului de ponderi

$$\min_f \sum_{i=1}^n V(f(\hat{x}_i), \hat{y}_i) + \lambda R(f)$$

Evaluare performanței

Măsurăm acuratețea / eroarea pe datele de test:

- Acuratețea: 4 corecte din 6 = 66.67%
- Eroarea: 2 greșite din 6 = 33.33%

Construim matricea de confuzie

- Acuratețea: suma elementelor de pe diagonală principală supra numărul de componente diferite de zero (4/6)
- Eroarea: suma elementelor rămase în afara diagonalei supra numărul de componente diferite de zero (2/6)

Predicted Actual	Car	Dog	Person
Car	1	1	0
Dog	0	1	1
Person	0	0	2

	Predicted YES	Predicted NO
Actual YES	True Positive	False Negative
Actual NO	False Positive	True Negative

	Predicted YES	Predicted NO
Actual YES	2	False Negative
Actual NO	False Positive	True Negative

	Predicted YES	Predicted NO
Actual YES	2	1
Actual NO	False Positive	True Negative

	Predicted YES	Predicted NO
Actual YES	2	1
Actual NO	1	True Negative

	Predicted YES	Predicted NO
Actual YES	2	1
Actual NO	1	2

Calculul măsurilor Precision şi Recall

- Precision = TP / (TP + FP)= 66.67%
- Recall = TP / (TP + FN)= 66.67%

	Predicted YES	Predicted NO
Actual YES	2	1
Actual NO	1	2

Curba Precision-Recall

Curba Precision-Recall

Average Precision

Calculul măsurilor TPR şi FPR

- TPR = TP / (TP + FP) = 66.67%
- FPR = FP / (FP + TN) = 33.33%

	Predicted YES	Predicted NO
Actual YES	2	1
Actual NO	1	2

Curba ROC (Receiver Operating Characteristic)

Măsura AUC: Aria de sub curba ROC

Măsura F_β

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

- Măsura F_1 este poate cea mai folosită măsură de tipul F_{β}

Intersecție supra Reuniune (indexul Jaccard)

- Intersecție supra Reuniune (indexul Jaccard)
- Detecție corectă dacă J(A,B) > 0.5

Media pătratelor erorilor (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Ordinea dificultății conform oamenilor

Ordinea dificultății prezisă de sistem

Corelația Kendall Tau:

$$\tau_a = \frac{P - Q}{\frac{n(n-1)}{2}}$$

 Măsură ordinală bazată pe perechi concordante (P) şi discordante (Q)

$$P = |\{(i,j): 1 \le i < j \le n, (x_i - x_j)(y_i - y_j) > 0\}|$$

$$Q = |\{(i,j): 1 \le i < j \le n, (x_i - x_j)(y_i - y_j) < 0\}|$$

Ordinea dificultății conform oamenilor

Concordantă cu ordinea prezisă de sistem

Ordinea dificultății conform oamenilor

Discordantă cu ordinea prezisă de sistem

Cât este corelația Kendall Tau?

• P = ?, Q = ?

Cât este corelația Kendall Tau?

P = 8, Q = 2, Kendall Tau = (8-2) / 10 = 0.6

