Стереометрия на ЕГЭ по математике

Здесь приведены задачи по стереометрии, которые предлагались на $E\Gamma \Im$ по математике (профильный уровень, сложная часть), а также на диагностических, контрольных и тренировочных работах МИОО начиная с 2009 года.

- **117.** ($E\Gamma$ Э, 2017) Сечением прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью α , содержащей прямую BD_1 и параллельной прямой AC, является ромб.
 - а) Докажите, что грань ABCD квадрат.
 - б) Найдите угол между плоскостями α и BCC_1 , если $AA_1=6$, AB=4.

6) arctg $\frac{5}{8}$

- **116.** (Санкт-Петербург, пробный ЕГЭ, 2017) В параллелепипеде $ABCDA_1B_1C_1D_1$ точка M середина ребра C_1D_1 , а точка K делит ребро AA_1 в отношении $AK:KA_1=1:3$. Через точки K и M проведена плоскость α , параллельная прямой BD и пересекающая диагональ A_1C в точке O.
 - а) Докажите, что плоскость α делит диагональ A_1C в отношении $A_1O:OC=3:5$.
 - б) Найдите угол между плоскостью α и плоскостью ABC, если $ABCDA_1B_1C_1D_1$ куб.

6) $\arctan \left(\frac{1}{\sqrt{2}}\right)$

- **115.** (*MИОО*, 2017) В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=4 и диагональю BD=7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS точка F так, что SF=BE=3.
 - а) Докажите, что плоскость CEF параллельна ребру SB.
- б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

6) 2√15

- **114.** (MUOO, 2017) В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
 - а) Докажите, что диагонали этого сечения равны между собой.
 - б) Найдите объём пирамиды *CABNM*.

 $\overline{\epsilon}\sqrt{2\xi} + 40$ (8

- **113.** (*MИОО*, 2017) Отрезок AB диаметр верхнего основания цилиндра, CD диаметр нижнего, причём отрезки AB и CD не лежат на параллельных прямых.
 - а) Докажите, что у тетраэдра ABCD скрещивающиеся рёбра попарно равны.
 - б) Найдите объём этого тетраэдра, если AC = 6, AD = 8, а радиус цилиндра равен 3.

 $\frac{5}{8}$ (9

- **112.** (*МИОО*, 2017) Точки P и Q середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.
 - а) Докажите, что прямые B_1P и QB перпендикулярны.
- б) Найдите площадь сечения куба плоскостью, проходящей через точку P и перпендикулярной прямой BQ, если ребро куба равно 2.

6) 2√5

- **111.** (*MИОО*, 2017) Дана правильная треугольная призма $ABCA_1B_1C_1$, у которой сторона основания равна 2, а боковое ребро равно 3. Через точки A, C_1 и середину T ребра A_1B_1 проведена плоскость.
- а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
 - б) Найдите угол между плоскостью сечения и плоскостью ABC.

6 gretg 3

- **110.** (*МИОО*, 2017) В основании правильной треугольной пирамиды ABCD лежит треугольник ABC со стороной, равной 6. Боковое ребро пирамиды равно 5. На ребре AD отмечена точка T так, что AT:TD=2:1. Через точку T параллельно прямым AC и BD проведена плоскость.
 - а) Докажите, что сечение пирамиды указанной плоскостью является прямоугольником.
 - б) Найдите площадь сечения.

 $\frac{50}{8}$

- **109.** (*МИОО*, 2017) На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E:EA=2:5$, на ребре BB_1 точка F так, что $B_1F:FB=1:6$, а точка T середина ребра B_1C_1 . Известно, что AB=5, AD=6, $AA_1=14$.
 - а) Докажите, что плоскость EFT проходит через вершину D_1 .
 - б) Найдите угол между плоскостью EFT и плоскостью AA_1B_1 .

6) arctg $\frac{10}{3\sqrt{29}}$

- **108.** (*MИОО*, 2017) В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный (AB = BC) треугольник ABC. Точки K и M середины рёбер A_1B_1 и AC соответственно.
 - а) Докажите, что KM = KB.
 - б) Найдите угол между прямой KM и плоскостью ABB_1 , если AB=8, AC=6 и $AA_1=3$.

6) $\frac{3\sqrt{11}}{8\sqrt{5}}$ orcsin

- **107.** ($E\Gamma\Theta$, 2016) В правильной треугольной призме $ABCA_1B_1C_1$ сторона AB основания равна 12, а высота призмы равна 2. На рёбрах B_1C_1 и AB отмечены точки P и Q соответственно, причём $PC_1=3$, а AQ=4. Плоскость A_1PQ пересекает ребро BC в точке M.
 - а) Докажите, что точка M является серединой ребра BC.
 - б) Найдите расстояние от точки B до плоскости A_1PQ .

 $\frac{3\sqrt{30}}{5} (\delta$

- **106.** $(E\Gamma 9,\ 2016)$ На рёбрах CD и BB_1 куба $ABCDA_1B_1C_1D_1$ с ребром 12 отмечены точки P и Q соответственно, причём DP=4, а $B_1Q=3$. Плоскость APQ пересекает ребро CC_1 в точке M.
 - а) Докажите, что точка M является серединой ребра CC_1 .
 - б) Найдите расстояние от точки C до плоскости APQ.

- **105.** ($E\Gamma$ Э, 2016) В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит прямоугольный треугольник ABC с прямым углом C, AC=4, BC=16, $AA_1=4\sqrt{2}$. Точка Q середина ребра A_1B_1 , а точка P делит ребро B_1C_1 в отношении 1:2, считая от вершины C_1 . Плоскость APQ пересекает ребро CC_1 в точке M.
 - а) Докажите, что точка M является серединой ребра CC_1 .
 - б) Найдите расстояние от точки A_1 до плоскости APQ.

- **104.** ($E\Gamma \ni$, 2016) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: $AB=4,\ BC=3,\ AA_1=2.$ Точки P и Q середины рёбер A_1B_1 и CC_1 соответственно. Плоскость APQ пересекает ребро B_1C_1 в точке U.
 - а) Докажите, что $B_1U:UC_1=2:1.$
 - б) Найдите площадь сечения параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью APQ.

- **103.** ($E\Gamma 9$, 2016) В правильной четырёхугольной пирамиде SABCD сторона AB основания равна $2\sqrt{3}$, а высота SH пирамиды равна 3. Точки M и N середины рёбер CD и AB соответственно, а NT высота пирамиды с вершиной N и основанием SCD.
 - а) Докажите, что точка T является серединой отрезка SM.
 - б) Найдите расстояние между прямыми NT и SC.

- **102.** ($E\Gamma 9,\ 2016$) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона AB основания равна 8, а боковое ребро AA_1 равно $4\sqrt{2}$. На рёбрах BC и C_1D_1 отмечены точки K и L соответственно, причём $BK=C_1L=2$. Плоскость γ параллельна прямой BD и содержит точки K и L.
 - а) Докажите, что прямая A_1C перпендикулярна плоскости γ .
 - б) Найдите расстояние от точки B до плоскости γ .

- **101.** ($E\Gamma$ Э, 2016) В правильной треугольной призме $ABCA_1B_1C_1$ сторона AB основания равна 12, а боковое ребро AA_1 равно $3\sqrt{6}$. На рёбрах AB и B_1C_1 отмечены точки K и L соответственно, причём AK=2, $B_1L=4$. Точка M середина ребра A_1C_1 . Плоскость γ параллельна прямой AC и содержит точки K и L.
 - а) Докажите, что прямая BM перпендикулярна плоскости γ .
 - б) Найдите расстояние от точки C до плоскости γ .

و) ۸٫۲

- **100.** $(E\Gamma 9,\ 2016)$ В треугольной пирамиде ABCD двугранные углы при ребрах AD и BC равны, AB=BD=DC=AC=5.
 - а) Докажите, что AD = BC.
 - б) Найдите объём пирамиды, если двугранные углы равны при рёбрах AD и BC равны 60° .

6) 10√15

- **99.** ($E\Gamma \ni$, 2016) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания AB равна 6, а боковое ребро AA_1 равно $4\sqrt{3}$. На рёбрах AB, A_1D_1 и C_1D_1 отмечены точки M, N и K соответственно, причём $AM=A_1N=C_1K=1$.
- а) Пусть L точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL квадрат.
 - б) Найдите площадь сечения призмы плоскостью MNK.

65 (5

- **98.** (*MИОО*, 2016) Дан прямой круговой конус с вершиной M. Осевое сечение конуса треугольник с углом 120° при вершине M. Образующая конуса равна $2\sqrt{3}$. Через точку M проведено сечение конуса, перпендикулярное одной из образующих.
 - а) Докажите, что получившийся в сечении треугольник тупоугольный.
 - б) Найдите площадь сечения.

₹√₽ (9

- **97.** (*МИОО*, 2016) В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
 - а) Докажите, что диагонали этого сечения равны между собой.
 - б) Найдите объём пирамиды *CABNM*.

 $\overline{\epsilon} \sqrt{27 + 441}$ (3)

- **96.** (*MИОО*, 2016) Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра которой равны 4. Через точки A, C_1 и середину T ребра A_1B_1 проведена плоскость.
- а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
 - б) Найдите угол между плоскостью сечения и плоскостью ABC.

6) arctg 2

- **95.** (*MИОО*, 2016) В основании правильной треугольной пирамиды ABCD лежит треугольник ABC со стороной, равной 6. Боковое ребро пирамиды равно 4. Через такую точку T ребра AD, что AT:TD=3:1, параллельно прямым AC и BD проведена плоскость.
 - а) Докажите, что сечение пирамиды указанной плоскостью является прямоугольником.
 - б) Найдите площадь сечения.

ð,⁴ (ð

- **94.** (*MИОО*, 2016) Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 6. Основание O высоты SO этой пирамиды является серединой отрезка SS_1 , M середина ребра AS, точка L лежит на ребре BC так, что BL:LC=1:2.
 - а) Докажите, что сечение пирамиды SABCD плоскостью S_1LM равнобокая трапеция.
 - б) Вычислите длину средней линии этой трапеции.

3,4 (∂

- **93.** (*MИОО*, 2015) Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9. Основание O высоты SO этой пирамиды является серединой отрезка SS_1 , M середина ребра SB, точка L лежит на ребре CD так, что CL: LD = 7: 2.
 - а) Докажите, что сечение пирамиды SBCD плоскостью S_1LM равнобокая трапеция.
 - б) Вычислите длину средней линии этой трапеции.

37,3 (**3**

- **92.** $(E\Gamma 9,\ 2015)$ В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами $AB=\sqrt{5}$ и BC=2. Длины боковых рёбер пирамиды $SA=\sqrt{7}, SB=2\sqrt{3}, SD=\sqrt{11}$.
 - а) Докажите, что SA высота пирамиды.
 - б) Найдите угол между прямой SC и плоскостью ASB.

 $^{\circ}08$ (9

- **91.** $(E\Gamma 9,\ 2015)$ В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах $SA,\ AB,\ BC$ взяты точки $P,\ Q,\ R$ соответственно так, что PA=AQ=RC=2.
 - а) Докажите, что плоскость PQR перпендикулярна ребру SD.
 - б) Найдите расстояние от вершины D до плоскости PQR.

 $\frac{7}{2}$ (8)

- **90.** $(E\Gamma\partial,\ 2015)$ В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите площадь многоугольника, который является сечением пирамиды SABC плоскостью α .

₹01 (9

- **89.** ($E\Gamma \ni$, 2015) В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
 - б) Найдите расстояние от вершины A до плоскости α .

6) $\frac{2}{5\sqrt{3}}$

- 88. $(E\Gamma\partial,\ 2015)$ В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите объём пирамиды, вершиной которой является точка C, а основанием сечение пирамиды SABC плоскостью α .

 $\frac{5750}{6}$

- 87. $(E\Gamma 9, 2015)$ Основанием прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ является квадрат ABCD со стороной $5\sqrt{2}$, высота призмы равна $2\sqrt{14}$. Точка K середина ребра BB_1 . Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .
 - а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольником.
 - б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α .

97 (9

- **86.** $(E\Gamma 9,\,2015)$ В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 5. На его ребре BB_1 отмечена точка K так, что KB=3. Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .
 - а) Докажите, что $A_1P:PB_1=1:2$, где P точка пересечения плоскости α с ребром A_1B_1 .
 - б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α .

 $\frac{6}{1075}$ (8

- **85.** (*МИОО*, 2015) На ребре AA_1 прямоугольного параллеленинеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E:EA=5:3$, на ребре BB_1 точка F так, что $B_1F:FB=5:11$, а точка T середина ребра B_1C_1 . Известно, что $AB=6\sqrt{2}$, AD=10, $AA_1=16$.
 - а) Докажите, что плоскость EFT проходит через вершину D_1 .
 - б) Найдите площадь сечения параллелепипеда плоскостью EFT.

8,79 (8

- **84.** (*МИОО*, 2015) На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что A_1E : EA=3: 4. Точка T середина ребра B_1C_1 . Известно, что AB=9, AD=6, $AA_1=14$.
 - а) В каком отношении плоскость ETD_1 делит ребро BB_1 ?
 - б) Найдите угол между плоскостью ETD_1 и плоскостью AA_1B_1 .

a) 3:11; 6) arctg $\frac{\sqrt{10}}{3}$

- **83.** (*МИОО*, 2015) На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E=6EA$. Точка T середина ребра B_1C_1 . Известно, что $AB=4\sqrt{2}$, $AD=12,\ AA_1=14$.
 - а) Докажите, что плоскость ETD_1 делит ребро BB_1 в отношении 4:3.
 - б) Найдите площадь сечения параллелепипеда плоскостью ETD_1 .

06 (9

- **82.** (*МИОО*, 2015) В основании правильной треугольной призмы $ABCA_1B_1C_1$ лежит треугольник со стороной 6. Высота призмы равна 4. Точка N середина ребра A_1C_1 .
 - а) Постройте сечение призмы плоскостью BAN.
 - б) Найдите периметр этого сечения.

61 (9

81. $(E\Gamma\Im,\,2014)$ В правильной треугольной пирамиде MABC стороны основания ABC равны 6, а боковые рёбра равны 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка E. Известно, что CD=BE=LM=2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

<u>08</u>\\2

80. $(E\Gamma\partial,\ 2014)$ В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA равно 6. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка E. Известно, что AD=AL=2 и BE=1. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E, D и L.

 $\operatorname{arctg} 2$

79. $(E\Gamma 3,\ 2014)$ В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MA перпендикулярно плоскости основания, стороны основания равны 3, а ребро MB равно 5. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка E. Известно, что AD=2 и BE=ML=1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

2^{3}

78. $(E\Gamma 9,\ 2014)$ Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 углом $\angle A=120^\circ$ расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания. Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

 $\frac{8}{6}$ misors

77. $(E\Gamma 9,\ 2014)$ В правильной треугольной пирамиде MABC с вершиной M сторона основания AB равна 6. На ребре AB отмечена точка K так, что AK:KB=5:1. Сечение MKC является равнобедренным треугольником с основанием MK. Найдите угол между боковыми гранями пирамиды.

76. $(E\Gamma 9, 2014)$ Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен $\sqrt{3}/4$. Найдите угол между боковыми гранями этой пирамиды.

 $\frac{7}{32}$ succes

75. ($E\Gamma$ 9, 2014) Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1:3. Найдите площадь сечения конуса плоскостью ABP.

<u>₹</u>I/\6

74. (*MИОО*, 2014) В правильной треугольной пирамиде SABC с основанием ABC боковое ребро равно 5, а сторона основания равна 6. Найдите расстояние от вершины A до плоскости SBC.

 $\frac{\overline{68}\sqrt{\epsilon}}{\sqrt{\epsilon}}$

73. (Cанкт-Петербург, пробный $E\Gamma$ Э, 2014) Отрезок AC — диаметр основания конуса, отрезок AP — образующая этого конуса и AP=AC. Хорда основания BC составляет с прямой AC угол 60° . Через AP проведено сечение конуса плоскостью, параллельной прямой BC. Найдите расстояние от центра основания конуса O до плоскости сечения, если радиус основания конуса равен O1.

72. (MUOO, 2014) Высота SO правильной треугольной пирамиды SABC составляет 5/7 от высоты SM боковой грани SAB. Найдите угол между плоскостью основания пирамиды и её боковым ребром.

71. (*MИОО*, 2014) Дана правильная четырёхугольная пирамида MABCD, рёбра основания которой равны $5\sqrt{2}$. Тангенс угла между прямыми DM и AL равен $\sqrt{2}$, L — середина ребра MB. Найдите высоту данной пирамиды.

70. (*MИОО*, 2013) Площадь боковой поверхности правильной четырёхугольной пирамиды SABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.

69. (*MИОО*, 2013) Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра основания которой равны $2\sqrt{7}$. Сечение, проходящее через боковое ребро AA_1 и середину M ребра B_1C_1 , является квадратом. Найдите расстояние между прямыми A_1B и AM.

68. (*МИОО*, 2013) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра AB=5, AD=4, $AA_1=9$. Точка O принадлежит ребру BB_1 и делит его в отношении 4:5, считая от вершины B. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, O и C_1 .

1821\

67. $(E\Gamma 9,\ 2013)$ В правильной треугольной пирамиде MABC с вершиной M высота равна 3, а боковые рёбра равны 6. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон AB и AC параллельно прямой MA.

66. ($E\Gamma$ Э, 2013) В правильную шестиугольную пирамиду, боковое ребро которой равно $\sqrt{5}$, а высота равна 1, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

 $\pi \left(\overline{\varepsilon} \sqrt{4} - 7 \right) \Omega I$

65. $(E\Gamma 9,\ 2013)$ Радиус основания конуса равен 8, а его высота равна 15. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 14. Найдите расстояние от центра основания конуса до плоскости сечения.

<u>₹</u>

64. ($E\Gamma$ 9, 2013) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна 6, а боковое ребро $AA_1=1$. Точка F принадлежит ребру C_1D_1 и делит его в отношении 2:1, считая от вершины C_1 . Найдите площадь сечения этой призмы плоскостью, проходящей через точки A, C и F.

 $15\sqrt{2}$

63. $(E\Gamma 9,\ 2013)$ В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

2√2

62. ($E\Gamma$ 9, 2013) Две параллельные плоскости, расстояние между которыми равно 2, пересекают шар. Одна из плоскостей проходит через центр шара. Отношение площадей сечений шара этими плоскостями равно 0,84. Найдите радиус шара.

 3

61. (*EГЭ*, 2013) Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 7. Плоскость β , параллельная плоскости α , касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 5. Найдите площадь сечения большего шара плоскостью α .

12

60. (MUOO, 2013) Правильные треугольники ABC и BCM лежат в перпендикулярных плоскостях, BC=8. Точка P — середина CM, а точка T делит отрезок BM так, что BT:TM=1:3. Вычислите объём пирамиды MPTA.

₹7

59. (*MИОО*, 2013) В правильной треугольной призме $ABCA_1B_1C_1$ боковое ребро равно $8\sqrt{3}$, а ребро основания равно 1. Точка D — середина ребра BB_1 . Найдите объём пятигранника $ABCA_1D$.

8

58. ($\Phi \Pi T$, 2013) В правильной треугольной пирамиде SABC с основанием ABC проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 7, а сторона основания равна 8.

57\29

57. (*МИОО*, 2013) В правильной четырёхугольной пирамиде SABCD точка S — вершина. Точка M — середина ребра SA, точка K — середина ребра SC. Найдите угол между плоскостями BMK и ABC, если AB=10, SC=8.

suctg $\frac{10}{\sqrt{7}}$

56. (*МИОО*, 2013) В правильной треугольной пирамиде SABC с основанием ABC сторона основания равна 8, а угол ASB равен 36°. На ребре SC взята точка M так, что AM — биссектриса угла SAC. Найдите площадь сечения пирамиды, проходящего через точки A, M и B.

₹√91

55. (*МИОО*, 2012) В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 8, а боковые рёбра равны $\sqrt{13}$. Изобразите сечение, проходящее через вершины A, C и середину ребра A_1B_1 . Найдите его площадь.

30

54. (MIOO, 2012) В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если все рёбра пирамиды равны 8.

₹√8

53. $(E\Gamma \partial,\ 2012)$ В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1\ AB=2,\ AD=AA_1=1.$ Найдите угол между прямой AB_1 и плоскостью $ABC_1.$

 $\frac{1}{\sqrt{10}}$ arcsin

52. $(E\Gamma\partial,\ 2012)$ В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 2, боковые рёбра равны 3, точка D — середина ребра CC_1 . Найдите расстояние от вершины C до плоскости ADB_1 .

<u>81\</u>

51. ($E\Gamma\Theta$, 2012) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 2, а боковые рёбра равны 5. На ребре AA_1 отмечена точка E так, что $AE:EA_1=3:2$. Найдите угол между плоскостями ABC и BED_1 .

 $\operatorname{arctg} \frac{2}{\sqrt{13}}$

50. $(E\Gamma 9,\ 2012)$ Точка E — середина ребра AA_1 куба $ABCDA_1B_1C_1D_1$. Найдите площадь сечения куба плоскостью C_1DE , если рёбра куба равны 2.

7/6

49. $(E\Gamma 9,\ 2012)$ На ребре CC_1 куба $ABCDA_1B_1C_1D_1$ отмечена точка E так, что $CE:EC_1=1:2.$ Найдите угол между прямыми BE и $AC_1.$

 $\operatorname{arccos} \frac{15}{2\sqrt{30}}$

48. $(E\Gamma 9,\ 2012)$ Точка E — середина ребра DD_1 куба $ABCDA_1B_1C_1D_1$. Найдите угол между прямыми CE и AC_1 .

 $\arccos \frac{\sqrt{12}}{1}$

47. (Репетиционный $E\Gamma$ 9, 2012) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ со стороной основания 4 и высотой 7 на ребре AA_1 взята точка M так, что AM=2. На ребре BB_1 взята точка K так, что $B_1K=2$. Найдите угол между плоскостью D_1MK и плоскостью CC_1D_1 .

∘9⊅

46. (*Репетиционный* $E\Gamma \Im$, 2012) Основанием прямого параллелепипеда $ABCDA_1B_1C_1D_1$ является ромб ABCD, сторона которого равна $4\sqrt{3}$, а угол BAD равен 60° . Найдите расстояние от точки A до прямой C_1D_1 , если известно, что боковое ребро данного параллелепипеда равно 8.

10

45. ($\Phi \Pi T$, 2012) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ AB=2, AD=4, $AA_1=3$ и точка E — середина ребра AB. Найдите угол между прямыми A_1C_1 и B_1E .

44. (*Юг*, пробный $E\Gamma$ Э, 2012) В пирамиде DABC известны длины рёбер: AB = AC = DB = DC = 13 см, DA = 6 см, BC = 24 см. Найдите расстояние между прямыми DA и BC.

мэ₽

43. (*МИОО*, 2012) В правильной треугольной пирамиде SABC точка S — вершина. Точка M — середина ребра SA, точка K — середина ребра SB. Найдите угол между плоскостями CMK и ABC, если SC=6, AB=4.

 $\operatorname{arctg}\,\frac{5}{\sqrt{23}}$

42. (*МИОО*, 2012) Дана правильная четырёхугольная пирамида SABCD. Боковое ребро $SA = \sqrt{5}$, сторона основания равна 2. Найдите расстояние от точки B до плоскости ADM, где M — середина ребра SC.

Ţ

41. (*МИОО*, 2011) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $\sqrt{2}$, а высота равна 1. M — середина ребра AA_1 . Найдите расстояние от точки M до плоскости DA_1C_1 .

40. (*MИОО*, 2011) Основанием прямой призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, AB = AC = 5, BC = 8. Высота призмы равна 3. Найдите угол между прямой A_1B и плоскостью BCC_1 .

 $\frac{3}{5}$ Stote

39. (*МИОО*, 2011) Основание прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ — прямоугольник ABCD, в котором AB=12, AD=5. Найдите угол между плоскостью основания призмы и плоскостью, проходящей через середину ребра AD перпендикулярно прямой BD_1 , если расстояние между прямыми AC и B_1D_1 равно 13.

∘9₹

38. $(E\Gamma\partial, 2011)$ В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$, стороны основания которой равны 3, а боковые рёбра равны 4, найдите угол между прямой AB_1 и плоскостью BDD_1 .

37. $(E\Gamma 9, 2011)$ В правильной четырёхугольной пирамиде SABCD, все рёбра которой равны 1, точка E — середина ребра SB. Найдите угол между прямой CE и плоскостью SBD.

36. $(E\Gamma \ni, 2011)$ В правильной треугольной призме $ABCA_1B_1C_1$, все рёбра которой равны 1, найдите расстояние между прямыми AA_1 и BC_1 .

35. $(E\Gamma \ni, 2011)$ В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, стороны основания которой равны 3, а боковые рёбра равны 4, найдите расстояние от точки C до прямой D_1E_1 .

34. $(E\Gamma\partial,\ 2011)$ В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, стороны основания которой равны 4, а боковые рёбра равны 1, найдите расстояние от точки B до прямой F_1E_1 .

2

33. ($E\Gamma$ 9, 2011) В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$, стороны основания которой равны 3, а боковые рёбра равны 4, найдите угол между прямыми AC и BC_1 .

32. (*Репетиционный ЕГЭ*, 2011) В правильной треугольной пирамиде сторона основания равна 12. Найдите расстояние от центра основания до боковой грани, если двугранный угол при ребре основания равен $\pi/3$.

8

31. (Penemuционный ЕГЭ, 2011) Длины всех рёбер правильной четырёхугольной пирамиды PABCD с вершиной P равны между собой. Найдите угол между прямой BM и плоскостью BDP, если точка M — середина бокового ребра пирамиды AP.

 $\frac{1}{\sqrt{5}}$ Stock

30. (*МИОО*, 2011) Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является ромб ABCD, у которого $AB=10,\ BD=12$. Высота призмы равна 6. Найдите расстояние от центра грани $A_1B_1C_1D_1$ до плоскости BDC_1 .

<u>₹</u>

29. (*МИОО*, *2011*) В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB, равной $2\sqrt{10}$; высота призмы равна $2\sqrt{5}$. Найдите расстояние от точки C_1 до плоскости BCM, где M — середина ребра A_1C_1 .

7

28. (*МИОО*, 2011) Длина ребра куба $ABCDA_1B_1C_1D_1$ равна 1. Найдите расстояние от вершины B до плоскости ACD_1 .

<u>T</u>

27. (*MИОО*, 2011) Дан куб $ABCDA_1B_1C_1D_1$ с ребром 1. Найдите расстояние от вершины A до плоскости A_1BT , где T — середина ребра AD.

26. (*MИОО*, 2011) Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми AL и MO, где L — середина ребра MC, O — центр грани ABC.

<u>ħ1</u>

25. (*MИОО*, 2010) Дан куб $ABCDA_1B_1C_1D_1$. Длина ребра куба равна 1. Найдите расстояние от середины отрезка BC_1 до плоскости AB_1D_1 .

<u>7/3</u>

24. (MИOO, 2010) В кубе $ABCDA_1B_1C_1D_1$ найдите угол между плоскостями AB_1D_1 и ACD_1 .

 $\arccos \frac{3}{1}$

23. (*МИОО*, 2010) В правильной треугольной призме $ABCA_1B_1C_1$ известны рёбра: $AB=3\sqrt{3}$, $BB_1=6$. Точка M — середина ребра B_1C_1 , а точка T — середина A_1M . Найдите угол между плоскостью BCT и прямой AT.

 $\frac{8}{8}$ grots $\frac{3}{8}$

22. (*МИОО*, 2010) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$, у которого $AA_1=3$, AD=8, AB=6, найдите угол между плоскостью ADD_1 и прямой EF, проходящей через середины рёбер AB и B_1C_1 .

 $\frac{3}{5}$ Store

21. (*MИОО*, 2010) Дан куб $ABCDA_1B_1C_1D_1$ с ребром $8\sqrt{6}$. Найдите расстояние от середины ребра B_1C_1 до прямой MT, где точки M и T — середины рёбер CD и A_1B_1 соответственно.

12

20. $(E\Gamma 9,\ 2010)$ Дан куб $ABCDA_1B_1C_1D_1$. Найдите тангенс угла между плоскостями AB_1C и DCC_1 .

<u>7</u>/

19. $(E\Gamma \Im, 2010)$ В правильной треугольной пирамиде SABC с основанием ABC известны рёбра: $AB=6\sqrt{3},\ SC=10.$ Точка N — середина ребра BC. Найдите угол, образованный плоскостью основания и прямой AT, где T — середина отрезка SN.

arctg $\frac{8}{15}$

18. $(E\Gamma 9, 2010)$ В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB=8, AD=6, $CC_1=6.$ Найдите угол между плоскостями CD_1B_1 и AD_1B_1 .

FICCOS $\frac{41}{6}$

17. $(E\Gamma 9, 2010)$ В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB=8, AD=6, $CC_1=5$. Найдите угол между плоскостями BDD_1 и AD_1B_1 .

srctg $\frac{24}{24}$

16. $(E\Gamma \partial, 2010)$ В правильной треугольной пирамиде SABC с основанием ABC известны рёбра: $AB = 8\sqrt{3}, SC = 17$. Найдите угол, образованный плоскостью основания и прямой, проходящей через середины рёбер AS и BC.

arctg <u>15</u>

15. $(E\Gamma \ni, 2010)$ В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ сторона основания равна 7, а высота равна 1. Найдите угол между прямой F_1B_1 и плоскостью AF_1C_1 .

 $\arcsin \frac{1}{\sqrt{151}}$

14. (*МИОО*, 2010) В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 1, найдите расстояние от точки C до прямой F_1E_1 .

7

13. (*MИОО*, 2010) В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые рёбра равны 2, найдите расстояние от точки C до прямой SA.

<u>₹</u>

12. (*MИОО*, 2010) В тетраэдре ABCD, все рёбра которого равны 1, найдите расстояние от точки A до прямой, проходящей через точку B и середину E ребра CD.

11. (*Репетиционный ЕГЭ*, 2010) В правильной четырёхугольной пирамиде SABCD с основанием ABCD сторона основания равна $3\sqrt{2}$, а боковое ребро равно 5. Найдите угол между плоскостями ABC и ACM, где точка M делит ребро BS так, что BM: MS = 2:1.

 $\frac{8}{8}$ 31.018

10. (*MИОО*, 2010) В правильной четырёхугольной пирамиде SABCD сторона основания равна 1, а боковое ребро равно $\sqrt{3}/2$. Найдите расстояние от точки C до прямой SA.

9. (*MИОО*, 2010) В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 1. Найдите расстояние от точки C до прямой BD_1 .

8. (*MИОО*, 2010) В правильной треугольной призме $ABCA_1B_1C_1$ высота равна 2, сторона основания равна 1. Найдите расстояние от точки B_1 до прямой AC_1 .

7. (*MИОО*, 2010) Сторона основания правильной треугольной призмы $ABCA_1B_1C_1$ равна 8. Высота этой призмы равна 6. Найдите угол между прямыми CA_1 и AB_1 .

6. (*MИОО*, 2010) В основании прямой призмы $ABCA_1B_1C_1$ лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB, равной $8\sqrt{2}$. Высота призмы равна 6. Найдите угол между прямыми AC_1 и CB_1 .

5. (*MИОО*, 2009) В основании прямой призмы $ABCA_1B_1C_1$ лежит прямоугольный треугольник ABC, у которого угол C равен 90°, угол A равен 30°, $AC = 10\sqrt{3}$. Диагональ боковой грани B_1C составляет угол 30° с плоскостью AA_1B_1 . Найдите высоту призмы.

<u>7</u>/01

4. (*МИОО*, 2009) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$, у которого AB=6, BC=6, $CC_1=4$, найдите тангенс угла между плоскостями ACD_1 и $A_1B_1C_1$.

3. (*МИОО*, 2009) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$, у которого AB=4, BC=6, $CC_1=4$, найдите тангенс угла между плоскостью ABC и прямой EF, проходящей через середины рёбер AA_1 и C_1D_1 .

<u>01/\</u>

2. (*МИОО*, 2009) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ найдите угол между плоскостью A_1BC и прямой BC_1 , если $AA_1=8$, AB=6, BC=15.

arcsin $\frac{24}{85}$

1. (*МИОО*, 2009) В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 1, найдите косинус угла между прямыми AB_1 и BC_1 .