ECON-GA 1025 Macroeconomic Theory I Lecture 5

John Stachurski

Fall Semester 2018

Today's Lecture

- Stochastic kernels and Markov chains on finite sets
- Distribution dynamics
- Aperiodicity and irreducibility
- Stability
- Ergodicity
- High performace computing in Python

Prequel 1: Directed Graphs

A directed graph is a nonempty set of nodes $X = \{x, y, ..., z\}$ and a set of arcs $(x, y) \in X \times X$

- y is called **accessible** from x if y = x or \exists a sequence of arcs leading from x to y
- The graph is called strongly connected if y is accessible from x for all x, y ∈ X

Another example

• Strongly connected?

We can also attach numbers to the edges of a directed graph

The resulting graph is called a weighted directed graph

Interpretation will be given later

Prequel 2: Brouwer's Fixed Point Theorem

Theorem. (Brouwer-Hadamard, 1910) If

- 1. C is a convex compact subset of \mathbb{R}^d
- 2. T is a continuous self-map on C

then T has at least one fixed point in C

Prequel 3: The Space of Distributions

Let X be any finite set with elements x_1, \ldots, x_n

As usual, on \mathbb{R}^X we adopt the pointwise partial order

• $h \leqslant g$ if $h(x) \leqslant g(x)$ for all $x \in X$

The set of **distributions** on X is denoted $\mathcal{P}(\mathsf{X})$ and defined as all $\varphi \in \mathbb{R}^\mathsf{X}$ such that

- φ ≥ 0
- $\sum_{x \in X} \varphi(x) = 1$

Think of $\varphi(x)$ as probability of hitting x

Metrizing $\mathcal{P}(X)$

As usual,

- $||h||_1 := \sum_{x \in X} |h(x)|$
- $d_1(g,h) := \|g h\|_1$

Thus,

$$\mathcal{P}(\mathsf{X}) = \{ h \in \mathbb{R}^{\mathsf{X}} : h \geqslant 0 \text{ and } \|h\|_1 = 1 \}$$

 $\mathcal{P}(\mathsf{X})$ also called the **unit simplex** in \mathbb{R}^n

• A convex, compact subset of \mathbb{R}^n

Figure: The unit simplex in $\ensuremath{\mathbb{R}}^3$

Notation: $g^+ := g \vee 0$ and $g^- := (-g) \vee 0$

Ex. Show that, for all $g \in \ell_1(X)$ we have

$$g = g^+ - g^-$$
 and $|g| = g^+ + g^-$

Stochastic Kernels

A **stochastic kernel** on X is a function $\Pi: X \times X \to \mathbb{R}$ such that

$$\Pi(x,\cdot) \in \mathcal{P}(\mathsf{X})$$
 for all $x \in \mathsf{X}$

In other words,

- 1. $\Pi(x,y) \geqslant 0$ for all $(x,y) \in X \times X$
- 2. $\sum_{y \in X} \Pi(x, y) = 1$ for all $x \in X$

Intuition:

- 1. We have one distribution $\Pi(x,\cdot)$ for each point $x \in X$
- 2. $\Pi(x,y)$ is the probability of moving from x to y in one step

Matrix Representation

There are some alternative representations of stochastic kernels

When X is finite, we can represent Π by a matrix

$$\Pi = \begin{pmatrix} \Pi(x_1, x_1) & \cdots & \Pi(x_1, x_n) \\ \vdots & & \vdots \\ \Pi(x_n, x_1) & \cdots & \Pi(x_n, x_n) \end{pmatrix}$$

Note: this is a Markov matrix / stochastic matrix

- 1. Square, nonnegative, rows sum to one
- 2. Distributions are rows, stacked vertically

Example. (Hamilton, 2005)

Estimates a statistical model of the business cycle based on US unemployment data

Markov matrix:

$$P_H := \left(\begin{array}{ccc} 0.971 & 0.029 & 0\\ 0.145 & 0.778 & 0.077\\ 0 & 0.508 & 0.492 \end{array}\right)$$

- state 1 = normal growth
- state 2 = mild recession
- state 3 = severe recession

Length of the period = one month

Digraph Representation

Another way to represent a finite stochastic kernel is by a weighted directed graph

Example. Here's Hamilton's business cycle model as a digraph

- set of nodes is X
- no edge means $\Pi(x,y) = 0$

Example. International growth dynamics study of Quah (1993)

State = real GDP per capita relative to world average

States are 0–1/4, 1/4–1/2, 1/2–1, 1–2 and 2– ∞

$$\Pi_Q = \left(\begin{array}{ccccc} 0.97 & 0.03 & 0.00 & 0.00 & 0.00 \\ 0.05 & 0.92 & 0.03 & 0.00 & 0.00 \\ 0.00 & 0.04 & 0.92 & 0.04 & 0.00 \\ 0.00 & 0.00 & 0.04 & 0.94 & 0.02 \\ 0.00 & 0.00 & 0.00 & 0.01 & 0.99 \\ \end{array} \right)$$

The transitions are over a one year period

Quah's income dynamics model as a weighted directed graph:

Dropping labels gives the directed graph

From Stochastic Kernels to Markov Chains

Let

- 1. X be a finite set
- 2. $\{X_t\}_{t=0}^{\infty}$ be an X-valued stochastic process

 $\{X_t\}_{t=0}^{\infty}$ is called a **Markov chain** on X if there exists a stochastic kernel Π on X such that

$$\mathbb{P}\left\{X_{t+1} = y \mid X_0, X_1, \dots, X_t\right\} = \Pi(X_t, y) \quad \text{for all} \quad t \geqslant 0, \ y \in \mathsf{X}$$

In this case we say that $\{X_t\}_{t=0}^{\infty}$ is **generated by** Π

If $X_0 \sim \psi$, then ψ is called the **initial condition**

Simulation

One technique for generating $\{X_t\}$ from a given kernel Π

For $x \in X$ and $u \in (0,1)$, let

$$F(x,u) := \sum_{i=1}^{n} y_i \mathbb{1} \{ q_{i-1}(x) < u \leqslant q_i(x) \}$$

where $\{y_1,\ldots,y_n\}=\mathsf{X}$ and

$$q_i(x) := \sum_{j=1}^i \Pi(x, y_j)$$
 with $q_0 = 0$

Now X_0 is drawn from $\psi_0 \in \mathcal{P}(\mathsf{X})$ and then

$$X_{t+1} = F(X_t, U_{t+1})$$
 where $\{U_t\} \stackrel{\text{IID}}{\sim} U(0, 1)$ (1)

Generates a Markov chain with stochastic kernel Π

The next exercise asks you to verify this

Ex. Conditional on $X_t = x$, show that, for each i in $1, \ldots, n$,

1. $X_{t+1} = y_i$ if and only if

$$q_{i-1}(x) < U_{t+1} \leqslant q_i(x)$$

2. This event has probability $\Pi(x, y_i)$

Conclude that X_{t+1} in (1) is a draw from $\Pi(x,\cdot)$

Linking Marginals

By the law of total probability we have

$$\mathbb{P}\{X_{t+1} = y\} = \sum_{x \in X} \mathbb{P}\{X_{t+1} = y \mid X_t = x\} \cdot \mathbb{P}\{X_t = x\}$$

Letting ψ_t be the distribution of X_t , this becomes

$$\psi_{t+1}(y) = \sum_{x \in X} \Pi(x, y) \psi_t(x) \qquad (y \in X)$$

Regarding distributions as row vectors, we can write this as

$$\psi_{t+1} = \psi_t \Pi$$

The map $\psi \mapsto \psi \Pi$ updates the distribution of the state

Dynamical System Representation

Think of $(\mathcal{P}(X),\Pi)$ as a dynamical system

• Π is identified with the map $\psi \mapsto \psi \Pi$,

$$(\Pi\psi)(y) := \sum_{x \in \mathsf{X}} \Pi(x, y)\psi(x)$$

ullet Also called the **Markov operator** generated by kernel Π

Ex. Show that Π is a self-mapping on $\mathcal{P}(\mathsf{X})$ Interpretation of trajectories:

- $X_0 \sim \psi \implies X_t \sim \psi \Pi^t$
- $X_0 = x \implies X_t \sim \delta_x \Pi^t$

Some of trajectories in $\mathcal{P}(\mathsf{X})$ under Hamilton's business cycle model:

Figure: Distributions from Quah's stochastic kernel, $X_0=1$

Figure: Distributions from Quah's stochastic kernel, $X_0=4$

Higher Order Kernels

Let Π be a stochastic kernel and let $\{\Pi^k\}$ be defined inductively by

$$\Pi^1 := \Pi \quad \text{and} \quad \Pi^{k+1}(x,y) := \sum_{z \in \mathsf{X}} \Pi(x,z) \Pi^k(z,y)$$

- Called the *k*-step stochastic kernel
- We are just taking matrix powers (finite case)

Ex. Show that if Π is a stochastic matrix, then so is Π^k for all k

If $\{X_t\}$ is generated by Π , then, for any $k \in \mathbb{N}$, we have

$$\Pi^{k}(x,y) = \mathbb{P}\{X_{k} = y \mid X_{0} = x\} \qquad (x,y \in X)$$

To see why, recall that

$$\{X_t\}$$
 generated by Π and $X_0=x \implies X_k \sim \delta_x \Pi^k$

Hence

$$\mathbb{P}\{X_k = y \mid X_0 = x\} = (\delta_x \Pi^k)(y)$$

But

$$(\delta_x \Pi^k)(y) = \Pi^k(x, y)$$

Chapman-Kolmogorov Equations

The kernels $\{\Pi^k\}$ satisfy the **Chapman–Kolmogorov relation**

$$\Pi^{j+k}(x,y) = \sum_{z \in \mathsf{X}} \Pi^k(x,z) \Pi^j(z,y) \qquad ((x,y) \in \mathsf{X} \times \mathsf{X})$$

Proof: Let $X_0 = x$ and let $y \in X$ be given

By the law of total probability, we have

$$\Pi^{j+k}(x,y) = \mathbb{P}\{X_{j+k} = y\}$$

$$= \sum_{z \in X} \mathbb{P}\{X_{j+k} = y \mid X_k = z\} \mathbb{P}\{X_k = z\}$$

$$= \sum_{z \in X} \Pi^k(x,z) \Pi^j(z,y)$$

Expectations

Given stochastic kernel Π and h in \mathbb{R}^X , consider

$$(\Pi h)(x) = \sum_{y \in \mathsf{X}} h(y) \Pi(x, y) \qquad (x \in \mathsf{X})$$

 $(\Pi h = ext{the product of matrix }\Pi ext{ and column vector }h)$ Interpretation

$$(\Pi h)(x) = \mathbb{E}[h(X_{t+1}) \mid X_t = x]$$

More generally,

$$(\Pi^k h)(x) = \sum_{y} h(y) \Pi^k(x, y) = \mathbb{E}[h(X_{t+k}) \mid X_t = x]$$

Stationary Distributions

Let Π be a stochastic kernel on X

If $\psi^* \in \mathcal{P}(\mathsf{X})$ satisfies

$$\psi^*(y) = \sum_{x \in \mathsf{X}} \Pi(x,y) \psi^*(x) \quad \text{for all} \quad y \in \mathsf{X}$$

then ψ^* is called **stationary** or **invariant** for Π

Equivalent to the above:

- $\psi^* = \psi^* \Pi$
- ψ^* is a steady state of $(\mathcal{P}(\mathsf{X}),\Pi)$

Interpretation:

$$X_t \sim \psi^* \implies X_{t+1} \sim \psi^*$$

Existence

Theorem (Krylov–Bogolyubov). If X is finite then Π has at least one stationary distribution

Proof: Think of distribution $\varphi \in \mathcal{P}(\mathsf{X})$ as vector $(\varphi(x_i))_{i=1}^n$

- Π is a continuous map (just matrix multiplication)
- Π maps $\mathcal{P}(\mathsf{X})$ into itself
- $\mathcal{P}(\mathsf{X})$ is a closed, bounded subset of \mathbb{R}^n
- $\mathcal{P}(\mathsf{X})$ is also convex in \mathbb{R}^n

Existence of a fixed point follows from Brouwer

Computing the Stationary Distribution

Consider solving $\psi^*\Pi=\psi^*$ for ψ^*

Problem: there are trivial solutions, such as $\psi^* = 0$

To force our solution to be in $\mathcal{P}(X)$, let

- I be the $n \times n$ identity matrix
- $\mathbb{1}_n$ be the $1 \times n$ vector of ones, $\mathbb{1}_{n \times n}$ be the $n \times n$ matrix of ones

Ex. Show that $\psi \in \mathcal{P}(\mathsf{X})$ is stationary for Π if and only if

$$\mathbb{1}_n = \psi(I - \Pi + \mathbb{1}_{n \times n}) \tag{2}$$

Now transpose and solve for ψ' — requires that $I - \Pi + \mathbb{1}_{n \times n}$ is nonsingular

Probabilistic Properties

Let Π be a stochastic kernel on X and let x, y be states

We say that y is accessible from x if x = y or

$$\exists k \in \mathbb{N} \text{ such that } \Pi^k(x,y) > 0$$

Equivalent: Accessible in the induced directed graph

A stochastic kernel Π on X is called **irreducible** if every state is accessible from any other

Equivalent: The induced directed graph is strongly connected

Irreducible:

Not irreducible:

Aperiodicity

Let Π be a stochastic kernel on X

State $x \in X$ is called **aperiodic** under Π if

$$\exists i \in \mathbb{N} \text{ such that } k \geqslant i \implies \Pi^k(x, x) > 0$$

A stochastic kernel Π on X is called **aperiodic** if every state in X is aperiodic under Π

Aperiodic?

Aperiodic?

Stability of Markov Chains

Recall the distributions generated by Quah's model

Figure: $X_0 = 1$

Figure: $X_0 = 4$

What happens when $t \to \infty$?

Figure: $X_0 = 1$

Figure: $X_0 = 4$

At t=1000, the distributions are almost the same for both starting points

This suggests we are observing a form of stability

• is $(\mathcal{P}(\mathsf{X}),\Pi)$ globally stable?

Not all stochastic kernels are globally stable

Example. Let $X = \{1,2\}$ and consider the periodic Markov chain

$$\Pi = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Ex. Show $\psi^* = (0.5, 0.5)$ is stationary for Π

Ex. Show that

$$\delta_0 \Pi^t = egin{cases} \delta_1 & ext{if } t ext{ is odd} \ \delta_0 & ext{if } t ext{ is even} \end{cases}$$

Conclude that global stability fails

Proving Stability

Fact. The operator Π is always nonexpansive:

$$\|\varphi\Pi - \psi\Pi\|_1 \leqslant \|\varphi - \psi\|_1 \quad \forall \, \varphi, \psi \in \mathcal{P}(\mathsf{X})$$

Proof:

$$\|\varphi\Pi - \psi\Pi\|_1 = \sum_y \left| \sum_x \Pi(x, y) [\varphi(x) - \psi(x)] \right|$$

$$\leqslant \sum_y \sum_x \Pi(x, y) |\varphi(x) - \psi(x)|$$

$$= \sum_x \sum_y \Pi(x, y) |\varphi(x) - \psi(x)| = \|\varphi - \psi\|_1$$

With some more conditions we might be able to apply this result:

Theorem. If (M, ρ) is a compact metric space and $T: M \to M$ is a strict contraction, then (M, T) is globally stable

- strict contraction means $\rho(Tx, Ty) < \rho(x, y)$ when $x \neq y$
- a variation on the Banach CMT

X is finite, so $\mathcal{P}(X)$ is compact

We just need to boost nonexpansiveness to strict contractivity

Lemma. If $\Pi(x,y)>0$ for all x,y, then Π is a strict contraction on $\mathcal{P}(\mathsf{X})$ under the metric d_1

The proof uses two lemmas:

Fact. If $\varphi, \psi \in \mathcal{P}(X)$ and $\varphi \neq \psi$, then

$$\exists\, x,x'\in \mathsf{X} \text{ such that } \varphi(x)>\psi(x) \text{ and } \varphi(x')<\psi(x')$$

Fact. If $g \in \mathbb{R}^{X}$ and $\exists x, x' \in X$ s.t. g(x) > 0 and g(x') < 0, then

$$|\sum_{y\in \mathsf{X}} g(y)| < \sum_{y\in \mathsf{X}} |g(y)|$$

Ex. Prove both

Under the conditions of the theorem, if $\varphi \neq \psi$, then

$$\|\varphi\Pi - \psi\Pi\|_{1} = \sum_{y} \left| \sum_{x} \Pi(x, y) \varphi(x) - \sum_{x} \Pi(x, y) \psi(x) \right|$$

$$= \sum_{y} \left| \sum_{x} \Pi(x, y) [\varphi(x) - \psi(x)] \right|$$

$$< \sum_{y} \sum_{x} |\Pi(x, y) [\varphi(x) - \psi(x)]|$$

$$= \sum_{y} \sum_{x} \Pi(x, y) |\varphi(x) - \psi(x)|$$

$$= \sum_{x} \sum_{y} \Pi(x, y) |\varphi(x) - \psi(x)| = \|\varphi - \psi\|_{1}$$

We have prove the following:

Proposition. If $\Pi \gg 0$, then $(\mathcal{P}(X), \Pi)$ is globally stable

But this condition is rather strict

- Quah's matrix fails it
- Hamilton's matrix fails it

Let's see if we can do better

Fact. If $(\mathcal{P}(\mathsf{X}),\Pi^i)$ is globally stable for some $i\in\mathbb{N}$, then $(\mathcal{P}(\mathsf{X}),\Pi)$ is also globally stable

Recall: If

- 1. dynamical system (M,g^i) is globally stable for some $i\in\mathbb{N}$
- 2. g is continuous at the fixed point of g^i

then (M,g) is also globally stable

Moreover, $\psi \mapsto \psi \Pi$ is everywhere continuous as already discussed

Theorem. If X is finite and Π is both aperiodic and irreducible, then Π is globally stable

Proof: It suffices to show that

$$\forall x, y \in X \times X, \quad \exists i_{x,y} \in \mathbb{N} \text{ s.t. } k \geqslant i_{x,y} \implies \Pi^k(x,y) > 0$$

Indeed, if this statement holds, then

$$i := \max\{i_{x,y}\} \implies \Pi^i(x,y) > 0 \text{ for all } (x,y) \in X \times X$$

Implies that

- $(\mathcal{P}(\mathsf{X}),\Pi^i)$ is globally stable
- and hence $(\mathcal{P}(\mathsf{X}),\Pi)$ is globally stable

So fix $x, y \in X \times X$ and let's try to show that

$$\exists i = i_{x,y} \in \mathbb{N} \text{ s.t. } k \geqslant i \implies \Pi^k(x,y) > 0$$

Since Π is irreducible, $\exists j \in \mathbb{N}$ such that $\Pi^j(x,y) > 0$ Since Π is aperiodic, $\exists m \in \mathbb{N}$ such that

$$\ell \geqslant m \implies \Pi^{\ell}(y,y) > 0$$

Picking $\ell \geqslant m$ and applying the Chapman–Kolmogorov equation, we have

$$\Pi^{j+\ell}(x,y) = \sum_{z \in \mathsf{X}} \Pi^j(x,z) \Pi^\ell(z,y) \geqslant \Pi^j(x,y) \Pi^\ell(y,y) > 0$$

QED

Example. Quah's stochastic kernel is both irreducible and aperiodic

And therefore globally stable

Same with Hamilton's business cycle model


```
In [1]: import quantecon as qe
In [2]: P = [[0.971, 0.029, 0],
   \dots: [0.145, 0.778, 0.077],
   \dots: [0, 0.508, 0.492]]
In [3]: mc = qe.MarkovChain(P)
In [4]: mc.is aperiodic
Out[4]: True
In [5]: mc.is irreducible
Out[5]: True
In [6]: mc.stationary_distributions
Out[6]: array([[ 0.8128 , 0.16256, 0.02464]])
```

A Weaker Set of Conditions

Let Π be a stochastic kernel on (finite set) X

Theorem. The following statements are equivalent:

- 1. Π^k has a strictly positive column for some $k \in \mathbb{N}$
- 2. For any $x,x'\in X$, there exists a $k\in \mathbb{N}$ and a $y\in X$ such that $\Pi^k(x,y)>0 \text{ and } \Pi^k(x',y)>0$
- 3. $(\mathcal{P}(X), \Pi)$ is globally stable

Intuition for sufficiency

We know a stationary distribution exists, just need to prove convergence

Suppose that, for any $x, x' \in X$, there exists a $k \in \mathbb{N}$ and a $y \in X$ such that

$$\Pi^k(x,y) > 0$$
 and $\Pi^k(x',y) > 0$

Wherever we are now, we can meet up again

Hence no one is stuck at a local attractor

Initial conditions don't matter in the long run

Hence $(\mathcal{P}(X), \Pi)$ is globally stable

Application: Inventory Dynamics

Let X_t = inventory of a product, obeys

$$X_{t+1} = \begin{cases} (X_t - D_{t+1})^+ & \text{if } X_t > s \\ (S - D_{t+1})^+ & \text{if } X_t \leqslant s \end{cases}$$

Assume $\{D_t\} \stackrel{ ext{\tiny IID}}{\sim}$ the geometric distribution, say

A Markov chain on $X := \{0, 1, \dots, S\}$ with kernel

$$\Pi(x,y) = \begin{cases} \mathbb{P}\{(x - D_{t+1})^+ = y\} & \text{if } x > s \\ \mathbb{P}\{(S - D_{t+1})^+ = y\} & \text{if } x \leqslant s \end{cases}$$

Proposition The pair $(\mathcal{P}(X), \Pi)$ is globally stable

Proof: Suppose that $D_{t+1} \geqslant S$

Then

$$0 \leqslant X_{t+1} \leqslant (S - D_{t+1})^+ = 0$$

Hence $\mathbb{P}\{D_{t+1}\geqslant S\}>0$ implies $\Pi(x,0)>0$ for all x

Moreover $\mathbb{P}\{D_{t+1}\geqslant S\}>0$ holds for the geometric distribution

Hence $(\mathcal{P}(X), \Pi)$ is globally stable

The Law of Large Numbers

Let $h \in \mathbb{R}^{X}$ and let $\{X_t\}$ be a Markov chain on generated by stochastic kernel p

Theorem. If X is finite and Π is globally stable with stationary distribution ψ^* , then

$$\mathbb{P}\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n h(X_t) = \sum_{x\in\mathsf{X}} h(x)\psi^*(x)\right\} = 1$$

Intuition: $\{X_t\}$ "almost" identically distributed for large t

Also, stability means that initial conditions die out — a form of long run independence

An approximation of the IID property used in the classical LLN

LLN provides a new interpretation for the stationary distribution

Using the LLN with $h(x) = 1\{x = y\}$, we have

$$\frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = y\} \to \sum_{x \in X} \mathbb{1}\{x = y\} \psi^*(x) = \psi^*(y)$$

Turning this around,

 $\psi^*(y) pprox \,$ fraction of time that $\{X_t\}$ spends in state y

This is **not** always valid **unless** the chain in question is stable