MATH3424 Regression Analysis

Assignment 5

Chapter 3: Logistic Regression

1. Consider a data set of house price (Y) in Canada and three variables: X_1 = number of bedrooms; X_2 = recreation room (= 1 if Yes; = 0 if No) and X_3 = air conditioning (= 1 if Yes; = 0 if No), where X_2 and X_3 are categorical variables. A new binary response variable labeled by HP, where HP = "high" if house price is greater than its sample lower quartile of Y; otherwise, HP = "low".

Consider a logistic model for the probability of HP = "high" on X_1 , X_2 and X_3 . Note that both categorical variables, X_2 and X_3 , choose "0" as reference group. The table below shows the summary of the maximum likelihood estimates and their variance and covariance matrix.

Parameter	Estimate	Covariance Matrix			
		Intercept	X_1	$X_2 = 1$	$X_3 = 1$
Intercept	-1.5756	0.213584	-0.07276	-0.01578	-0.00516
X_1	0.778	-0.07276	0.026593	0.001115	-0.00307
$X_2 = 1$	1.4334	-0.01578	0.001115	0.176468	-0.00045
$X_3 = 1$	1.6317	-0.00516	-0.00307	-0.00045	0.106437

Based on the above table, answer the following questions.

- (a) Write down the fitted model.
- (b) Estimate the odds ratio with 95% confidence interval of being a "high-pricing" house with air conditioning VS without air conditioning.
- (c) Estimate odds and then the probability of of being a "high-pricing" house for a house having three bedrooms (with 90% confidence interval) for the following two cases: (1) with recreation room AND withOUT air conditioning; (2) withOUT recreation room AND withOUT air conditioning.
- (d) Are the probabilities of being a "high-pricing" house for the two cases in (c) equal? State clearly the test statistic, critical value and your decision. Set $\alpha = 0.1$
- (e) From the data set, it is noted that 382 (out of 469 houses with driveway) and 33 (out of 77 houses without driveway) were "high-pricing" houses.
 - i. Estimate the odds ratio of having driveway for the model of probability of being a "high-pricing" house on driveway.
 - ii. Estimate the regression coefficient of driveway with 95% confidence interval for the model of being a "high-pricing" house on driveway.
- (f) Consider a logistic model for the probability of HP = "high" on X_4 and X_5 , where X_4 = driveway (= 1 if Yes; = 0 if No) and X_5 = basement (= 1 if Yes; = 0 if No). The fitted line is

$$log\left(\frac{p}{1-p}\right) = -0.6366 + 1.7994 I_{X_4=1} + 1.1364 I_{X_5=1}$$

And the table below shows the number of "high-pricing" houses & total number of houses for each combination of X_4 and X_5 .

	$X_4 = 0, X_5 = 0$	$X_4 = 0, X_5 = 1$	$X_4 = 1, X_5 = 0$	$X_4 = 1, X_5 = 1$
"high-pricing" houses	16	17	232	150
total number of houses	54	1 23	301	168

Is the logistic regression model fitted well? Draw your conclusion at a significance level of 0.01.

- 2. Consider a data set of 32 high school 'senior' boys with the following variables:
 - Intelligence (IQ) (high (H), upper middle (UM), lower middle (LM), low (L));
 - Parental encouragement (PE) (low (L), high (H));
 - Plans for attending college (Yes, No).

Consider the logistic regression to study the dependence of "plan for attending college" with IQ and Parental Encouragement. Note that both two categorical variables, IQ and Parental Encouragement, choose "Low" as reference group. The table below shows the summary of the maximum likelihood estimates and their variance and covariance matrix.

Parameter	Estimate	Covariance Matrix				
		Intercept	IQ='H'	IQ='UM'	IQ='LM'	PE='H'
Intercept	-3.6265	0.015722	-0.00911	-0.00909	-0.00893	-0.00795
IQ='H'	2.0986	-0.00911	0.013954	0.009295	0.0093	-0.00022
IQ='UM'	1.4129	-0.00909	0.009295	0.013686	0.009301	-0.00025
IQ='LM'	0.6533	-0.00893	0.0093	0.009301	0.014549	-0.00044
PE='H'	2.7374	-0.00795	-0.00022	-0.00025	-0.00044	0.00982

Based on the above table, answer the following questions.

- (a) Write down the fitted model.
- (b) Estimate the odds (with 90% confidence interval) for one senior boy with high IQ and high Parental Encouragement.
- (c) Estimate the probability of "plan for attending college" (with 90% confidence interval) for one senior boy with high IQ and high Parental Encouragement.
- (d) Estimate the odds ratio (with 90% confidence interval) of one with high IQ and high Parental Encouragement to one with low middle IQ with low Parental Encouragement.
- (e) Test whether the odds ratio in the above part is equal to 70.
- (f) From the data set, it is noted that 1703 (out of 2906 senior boys with high Parental Encouragement) and 136 (out of 2085 senior boys with lower Parental Encouragement) have "plan for attending college". Estimate the unknown parameters of the logistic regression of the probability of "plan for attending college" on Parental Encouragement.
- (g) Table below shows the number of boys having "plan for attending college" for each level of IQ.

	IQ='H'	IQ='UM'	IQ='LM'	IQ='L'
Boys having "plan for attending college"	821	553	321	144
Total number of boys	1255	1238	1263	1235

Estimate the odds ratios of different levels of IQ to IQ='L' for the model of the probability of "plan for attending college" on IQ using the method of weighted least squares.

Chapter 4: Selection of best model

3. Consider a linear regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + e_i$$

for $i = 1, 2, ..., 25$ & $e_i \sim i.i.d.N(0, \sigma^2)$

Use the table below to answer the following questions

Model (β_0 included)	Res.SS	Model (β_0 included)	Res.SS
none	59.5563	x_1, x_2, x_3	44.7876
x_1	51.9824	x_1, x_2, x_4	41.1557
x_2	55.1987	x_1, x_2, x_5	39.1650
x_3	47.3552	x_1, x_3, x_4	17.6848
x_4	48.1212	x_1, x_3, x_5	34.8297
x_5	42.3137	x_1, x_4, x_5	35.1082
x_{1}, x_{2}	50.9585	x_2, x_3, x_4	16.7184
x_{1}, x_{3}	45.3950	x_2, x_3, x_5	34.0068
x_1, x_4	41.2131	x_2, x_4, x_5	36.1719
x_1, x_5	40.4325	x_3, x_4, x_5	16.3408
x_{2}, x_{3}	45.8334	x_1, x_2, x_3, x_4	16.6766
x_{2}, x_{4}	46.3141	x_1, x_2, x_3, x_5	34.0068
x_{2}, x_{5}	39.7824	x_1, x_2, x_4, x_5	34.8175
x_{3}, x_{4}	17.6926	x_1, x_3, x_4, x_5	16.2265
x_{3}, x_{5}	34.9528	x_2, x_3, x_4, x_5	15.6264
x_4, x_5	37.5419	x_1, x_2, x_3, x_4, x_5	15.6218

- (a) Find the best model by a stepwise regression analysis. Write down how to get the best model in details. The significance levels for both entry and removal are 0.05. Which variables are in the best model?
- (b) Find the best model by examination of C_p . Write down how to get the best model in details. Which variables are in the best model?
- (c) Compute \mathbb{R}^2 , AIC and BIC for the models obtained from parts (a) and (b). Which model do you recommend? Why?