AIA Certified Vision Professional Advanced Color Machine Vision and Applications April 16, 2014

Presentation Notes, References and Attributions

Ben.Dawson@TeledyneDALSA.com
Edit 26 March 2014
Copyright of materials remains with the original authors

Introduction

Welcome

The **bold purple** color, that indicates important terms, should be a visible color to all three types of color blind individuals. The Red, Green, Blue (RGB) values are 102, 0, 255 and should appear as blues or green to color blind individuals.

See http://safecolours.rigdenage.com/

What is Color?

Isaac Newton's *Opticks*, editions from 1704 to 1730: "...to speak properly, the rays are not coloured..." Color is not a "property" of electromagnetic radiation (light) but is a function of our brain's processing of light. http://en.wikipedia.org/wiki/Opticks
More on the philosophical issue: http://colourware.wordpress.com/2009/06/30/the-rays-are-not-coloured/ Spectrum: http://www.chm.davidson.edu/vce/coordchem/color.html Spectral range of human vision: http://www.yorku.ca/eye/spectrum.gif

Important Uses of Color Vision – *List of items covered next*

Material Property

Image of Wood and Copper monkey head:

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Every_Material_Known_to_Man/Copper

Papers about "Material Property":

http://www.journals.elsevier.com/vision-research/call-for-papers/special-issue-on-perception-of-material-properties/

http://www.journalofvision.org/content/4/9.toc

Which Cherries are Ripe?

Color vision makes it easy to find the rip (red) and unripe (yellow – orange) cherries. Cherry image from: http://www.msue.msu.edu/fruit/tchrygrw.htm

This demonstrates color afterimages. Hold your eyes fixed while flipping between the color and monochrome images. Red and orange cherries will briefly appear to be greenish in the monochrome image. The effect disappears when you move your

eyes. Color afterimages are one of the many reasons why the human eye is not a good measurement tool – a gauge shouldn't give different readings depending on its history.

Afterimages demonstrate adaptation, the adjustment of the human visual system to colors, so that so that color changes (important!) are easier to perceive.

Color Inspection and Sorting

Peanuts image from: http://sst-

web.tees.ac.uk/external/u0003076/food_hygiene/spoilage/WebFoodspoilage.htm Currency image from: http://www.hrharmer.com/auctions/Legacy/2985-2/2988-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2/2888-2

2_09.html Currency inspection is a very difficult task for people.

Searching and Locating

Sneaker image from: http://theshoegame.com/articles/sneaker-eye-candy-volume-5.html
Finding the light, blue sneakers is fast and easy (even for most color blind viewers). Our brain seems to do this search "in parallel" and with no conscious effort.

Now try to find all the sneakers with the Nike "Swoosh" and you will have to carefully look at every part of the image. This "serial search" is a lot harder.

Importance of Fast Color Search

We can quickly detect a poisonous snake by its color.

Milk snake image from: http://en.wikipedia.org/wiki/Snake (a Batesian mimic of the

poisonous coral snake http://en.wikipedia.org/wiki/Batesian_mimicry)

Fruit image from: http://en.wikipedia.org/wiki/Fruit_tree

Measuring and Matching

 $\label{lem:color-matching image: http://www.konicaminolta.com/instruments/products/color-measurement/spectrophotometer/cm2600d-2500d/index.html} \\$

pH Test strip image from:

http://www.ph-ion.com/index.asp?PageAction=VIEWCATS&Category=205

Color Coding

Color encoding for 3D from:

http://www.siemens.com/press/en/pp_ct/2007/soct200701_03_%28_in_auto%29_142784_4.htm

"Rainbow wire" image: http://letsmakerobots.com/files/userpics/u1533/rainbowire.jpg

Bar Coding

MobiTagsTM: http://tag.microsoft.com/what-is-tag/2d-barcodes.aspx

Rail Barcode: http://www.flickr.com/photos/andrew-turnbull/6088353227/

See for discussion: http://roustaboutextra.wordpress.com/

http://commons.wikimedia.org/wiki/File:High Capacity Color Barcode.png

Human Color Vision – items covered next

Individual Differences

Color blindness test from: http://en.wikipedia.org/wiki/Color_perception_test

Low Resolution Color

Shows NTSC "chroma crawl" or "dot crawl" http://en.wikipedia.org/wiki/Dot_crawl

Influenced by Surroundings

Lotto Cube illusion: http://www.moillusions.com/2008/02/color-tile-illusion-new-aspect.html or

http://scienceblogs.com/startswithabang/2010/02/weekend_diversion_a_question_o.php

The orange square in the center of the shadowed face of the colored cube is exactly the same color as the brown square on the top of the cube and the square on the checkerboard surface.

Other illusions: http://www.psy.ritsumei.ac.jp/~akitaoka/color12e.html

Color Machine Vision (two slides)

Image of color printing inspection system: http://www.eyec.de/index_eng.html Image of pharmaceutical inspection system: http://www.teledynedalsa.com Image of skin mole: http://skincancer.about.com/od/symptoms/ss/mole.htm

Some Markets for Color MV

Reference: http://www.machinevisiononline.org/market-data.cfm

Physics of Color Imaging

Light

Sunlight image from: http://en.wikipedia.org/wiki/Light

Photons http://wisp.physics.wisc.edu/astro104/lecture7/lec7_print.html

Wavelength or Frequency

Energy and Intensity

http://www.pveducation.org/pvcdrom/properties-of-sunlight/energy-of-photon

An electron volt is the energy required to raise an electron through 1 volt.

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

Flux = # photons / (sec meter^2) as a function of wavelength. (photon energy) * flux as a function of wavelength gives "spectral power density" or radiant flux, a measure of energy / time*area

Radiometric vs. Photometric

Power is energy / time, so watts = joules / second

Radiometric for physical measures and photometric for human perceptual measures http://en.wikipedia.org/wiki/Radiometry

http://en.wikipedia.org/wiki/Photometry_%28optics%29

Spectrum (Radiometric)

http://en.wikipedia.org/wiki/Sunlight

Polarization

http://en.wikipedia.org/wiki/Polarized_3D_system http://en.wikipedia.org/wiki/Haidinger%27s_brush

Spatial Configuration

Image of color changing ink on \$100 bill:

http://www.pbs.org/wgbh/nova/military/anatomy-bill.html

Ratios of Color Sensor Types

Cone response graph from http://homepages.cwi.nl/~steven/Talks/2012/01-13-steven-colour/

Metamers

Rough graphics by B.D.

Model of Color Image Formation

Spectral Reflectance Curve from https://www.sabic-
ip.com/staticcxp/user/en/LearnAboutColor/ColorBasicsDetail/reflectance_curves.html

A Mathematical Model

This model approximates color image (sensor output) formation. There are many variations of this kind of model. The important points are that the sensor outputs are a integrated product (an inner product in vector terms) of the illumination spectrum, the object reflectance or transmission, and the sensor responses; and, the "imaging geometry" (my term for the position and angles of lights, objects, and sensors; and the sensor acceptance angle. We need to know or control these factors to recover object color from sensor outputs.

Diagram of Imaging Model

The model is for the physical aspects of color image formation, but the computational factors (Processing) are also important in human perception and, obviously, in machine vision.

The Color Vision Problem

Given the sensor outputs, recover the illumination and then recover the object's spectrum.

Recovering the Illuminant

Light "tent" image: Teledyne DALSA

Vision is Under-constrained

A single image doesn't contain enough information to reliably recover color. http://www.codeproject.com/Articles/15935/Yet-Another-RayTracer-for-NET

Illumination *Introductory Graphic*

Black Body Radiators

http://en.wikipedia.org/wiki/Black_body

http://casa.colorado.edu/~ajsh/colour/Tspectrum.html

Black Body Radiation

http://www.as.utexas.edu/~sj/a301-fa06/

Color Temperature

http://www.mediacollege.com/lighting/colour/colour-temperature.html

Correlated Color Temperature

http://en.wikipedia.org/wiki/File:Incand-3500-5500-color-temp-comparison.png

Objects

Leaf reflection image: http://zebu.uoregon.edu/2000/ph102/lec19.html

Reflectance and Transmission

Top: https://www.sabic-

ip.com/staticcxp/user/en/LearnAboutColor/ColorBasicsDetail/reflectance curves.html

Bottom: http://www.fli-cam.com/images/Product%20Images/fli%20filters.jpg

Additive Color

http://chipl.edublogs.org/2010/11/25/isaac-newton/

http://en.wikipedia.org/wiki/Color_space

Subtractive Color

http://en.wikipedia.org/wiki/Color space

Example: LEDs and LCDs

Left: stock

Right: http://express.howstuffworks.com/exp-tv3.htm

Color Filters

Transmission filters: http://www.creativeapplications.net/sound/tangible-color-music-instrument-openframeworks-sound/

Surface Plasmon color generation:

http://www.timkelf.com/researchsurfaceplasmons.html

Lycurgus cup – an interesting example of surface plasmon color generation:

http://nanoden.blogspot.com/2010/12/plasmonics-at-bottom-shrinking.html

Depicts King Lycurgus (Lye-KUR-gus) of Thrace being dragged to the underworld.

Reflects blue-green, transmits red. So when lit from outside appears blue-green and

when lit from inside appears red.

Color filtering can also be produced by scattering

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html

Material Reflectance

Reflection maps from http://www.flickr.com/photos/mitopencourseware/4815499473/

Diffuse Reflectance

Lambertian Reflectance is the ideal, but not often met by real diffuse surfaces http://en.wikipedia.org/wiki/Lambertian_reflectance
http://www.its.bldrdoc.gov/fs-1037/dir-020/_2967.htm

Specular Reflection

Image: http://cct.rncan.gc.ca/glossary/index_e.php?id=3133

Discussion: http://commons.wikimedia.org/wiki/File:Specular-Reflection-1.png

Pigmented Reflection

http://www.ijvs.com/volume1/edition5/section1.html http://en.wikipedia.org/wiki/Fresnel_equations

Interference Colors

Image: http://commons.wikimedia.org/wiki/Category:Interference_color (http://commons.wikimedia.org/wiki/File:Oelfleckerp.jpg)

Image: Daniel Klarmann, http://mrtitanium.com/images/wave-interference.gif

Reference: http://en.wikipedia.org/wiki/Iridescence

Color Shifts with Geometry

Butterfly image from: http://www.photonics.com/Article.aspx?AID=27660

Bubbles image from: http://en.wikipedia.org/wiki/Iridescence

Combination of Reflectance Types

http://www.glenspectra.co.uk/glen/spectroradiometry/images/reflectivity.gif
For highly detailed reflection mapping, use BRDF
http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
http://cct.rncan.gc.ca/glossary/index_e.php?id=212

Sensors – *introductory graphic*

Color Vision Sensors

Zebrafish retina: http://www.biology.ualberta.ca/faculty/ted_allison/

Bayer pattern:

http://www.cfar.umd.edu/~jneumann/videogeometry/CMSC828Z/project1/RGB_Bayer.htm

Human Eye

Image: http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap16/F16-

01%20Human%20eye.jpg

Reference: http://en.wikipedia.org/wiki/Scotopic_vision

Retina and Fovea

http://www.blueconemonochromacy.org/what-is-bcm/eye-retina-and-cones-2/

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rodcone.html

http://www.phys.ufl.edu/~avery/course/3400/gallery/gallery_vision.html

Human Cone Sensor Types

http://en.wikipedia.org/wiki/Photopsin

http://www.handprint.com/HP/WCL/color1.html (Copyright ©, Bruce McEvoy)

Cone Distribution

Packing arrangement of the three cone classes in primate retina, by Austin Roorda, Andrew B. Metha, Peter Lennie, David R. Williams. <u>Vision Research</u> 41 (2001) 1291–1306.

Camera Color Sensors

Sensor "chip" drawing: http://digital.pho.to/

http://www.daviddarling.info/encyclopedia/P/plano-convex_lens.html

http://www.astronomics.com/celestron-nightscape-ccd-camera_p19460.aspx

Camera Sensors' Responses

Camera image and response curves: Teledyne DALSA

Human spectral response curves: http://www.handprint.com/HP/WCL/color1.html

DN =

http://www.pixelink.com/umbraco/supportkb/?solution=/_ui/selfservice/pkb/PublicKnowledgeSolution/d?&id=5018000000SDjaCsY

Human Color Vision

http://www.futurity.org/tag/psychology/page/13/www.merringtons.com.au

Pop Quiz!

An attempt to induce "active learning"

As the Sun Goes Down...?

http://en.wikipedia.org/wiki/Photometry_%28optics%29 A "thought experiment" on the Purkinje Shift http://en.wikipedia.org/wiki/Purkinje_effect

Retinal Processing

http://webvision.med.utah.edu/GCPHYS1.HTM

Retinal Processing of Colors

Drawing by BD

http://en.wikipedia.org/wiki/HSL_and_HSV

http://www.yorku.ca/eye/toc-sub.htm

Color Opponency Demo How's Your Hering?

Color afterimages demonstrate R-G and B-Y opponency

Perceptual Color Terms

These are terms used to describe human perception of color http://en.wikipedia.org/wiki/Colorfulness

Human Color Sensitivity

Light Science: Physics and the Visual Arts By Thomas D. Rossing, Christopher J.

Chiaverina

http://www.hiddenvalleynaturearts.com/images/blushingpeach.jpg

http://www.polyvore.com/cgi/img-thing?.out=jpg&size=l&tid=52189530

http://www.visualexpert.com/FAQ/Part2/cfaqPart2.html

Some Retinal Processing

Retinal and Cortical Processing

Color Processing Paths

http://en.wikipedia.org/wiki/Color vision

http://www.dana.org/news/cerebrum/detail.aspx?id=1222

http://en.wikipedia.org/wiki/Visual cortex

http://www.merck.com/media/mmhe2/figures/MMHE_20_224_02_eps.gif

Psychophysics

http://www.bccn-tuebingen.de/research/cluster-a/a2.html

A study of retinal function with image defocus

http://www2.le.ac.uk/departments/psychology/research/language-and-vision/vision-and-language-group-photo-gallery

Measuring Human Color Vision

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/millerroyer_color_portland2013.pdf

Dependence on Field of View

http://en.wikipedia.org/wiki/Visual_angle

http://www.perceptionweb.com/abstract.cgi?id=p200415

CIE Color Matching Functions

http://sensing.konicaminolta.asia/learning-center/color-measurement/general-color-terms/http://en.wikipedia.org/wiki/CIE_1931_color_space

CIE Color Matching Functions (second slide)

http://en.wikipedia.org/wiki/CIE_1931_color_space

Measuring XYZs

http://www.pcimag.com/articles/understanding-color-communicaton http://www.xrite.com/documents/literature/en/L10-001 Understand Color_en.pdf

Color Space

Left: http://7art-screensavers.com/screenshots/fruits/

Right: Teledyne DALSA

Color Mixing http://en.wikipedia.org/wiki/Color_space

CIE XYZ Color Space

http://www.couleur.org/?page=transformations

CIE xyY Color Space

http://www.handprint.com/HP/WCL/color6.html

http://www.cs.kent.edu/~farrell/cg02/lectures/color/colour.html

http://www.couleur.org/?page=transformations

Projection onto xy

http://cdn.intechopen.com/pdfs-wm/38362.pdf

http://sensing.konicaminolta.asia/learning-center/color-measurement/color-spaces/

CIE Chromaticity Diagram

http://www.pcimag.com/articles/understanding-color-communicaton

Gamut

http://www.allquests.com/question/3710060/Sonys-XBrite-FullHD-vs-Dells-RGBLED-for-photo-editing.html

See also NTSC gamut: http://www.behardware.com/articles/570-1/lumileds-the-future-of-the-lcd.html

Non-Spectral Colors

http://www.yorku.ca/eye/nonspect.htm

Why is CIE Color Important?

Planckian Locus: http://en.wikipedia.org/wiki/File:PlanckianLocus.png and

http://wapedia.mobi/en/Planckian locus

Paint samples: http://www.normankoren.com/CIE_xy_Spaulding_realworld.jpg

Example: L*a*b*

http://www.techbriefs.com/component/content/article/10-ntb/tech-briefs/bio-

medical/13285

http://www.xrite.com/documents/literature/en/L10-001_Understand_Color_en.pdf

http://www.couleur.org/?page=transformations

Another View of CIE L*a*b* Axes

http://www.xrite.com/documents/literature/en/L10-001_Understand_Color_en.pdf http://www.flexoglobal.com/flexomag/08-September/flexomag-ploumidis.htm

Calibrating MV to CIE

Why MV systems are difficult to calibrate to CIE XYZ color spaces

Tristimulus Colorimeter

http://elektrophysikusa.com/

http://img.directindustry.com/images_di/photo-g/portable-reflectance-colorimeter-322066.jpg

Inspecting Baked Goods

www.montrose-tech.com

English Muffin "Toast Mark"

Images © 2014, Ben Dawson

Muffin Inspection Details

Perceptually Uniform Color Spaces

http://en.wikipedia.org/wiki/MacAdam_ellipse

Making xy Perceptually Uniform

Non-Linear, Perceptually Uniform

http://www.couleur.org/?page=transformations

Munsell Color Space

Http://www.brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html

http://www.russellcottrell.com/photo/matrixCalculator.htm

http://code.google.com/p/cuda-convnet/wiki/LayerParams

http://www.codeproject.com/KB/directx/d3dmunsell.aspx?msg=881279

Converting from MV's RGB

Example: YUV (linear from RGB)

http://www.couleur.org/?page=transformations

http://en.wikipedia.org/wiki/YUV

More on Individual Differences

http://en.wikipedia.org/wiki/Color_blindness

http://faculty.washington.edu/chudler/gif/colf7.jpg Color blindness test images

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/Vision.html

Packing arrangement of the three cone classes in primate retina, by Austin Roorda, Andrew B. Metha, Peter Lennie, David R. Williams. <u>Vision Research</u> 41 (2001) 1291–1306.

Color Fills Luma Edges

Spatial Frequency

Color Constancy

http://en.wikipedia.org/wiki/Color constancy

http://www-psych.stanford.edu/~lera/psych115s/notes/lecture5/

Adaptation

http://www.psy.ritsumei.ac.jp/~akitaoka/shikisai2005.html

http://en.wikipedia.org/wiki/Same_color_illusion

http://en.wikipedia.org/wiki/File:Optical_grey_squares_orange_brown.svg

Adaptation Example

http://haroldrossfineart.wordpress.com/2011/06/24/visual-adaptation-our-friend-and-our-enemy/

McCollough Effect

http://en.wikipedia.org/wiki/McCollough_effect

Mom Quiz!

Let's Choose a Paint Color...

http://lebaroninteriors.blogspot.com/2011/04/designer-tip-tuesday-choosing-paint.html

Towards Painting Harmony

McCollough Effect Test

http://en.wikipedia.org/wiki/McCollough effect

Color Machine Vision Systems

Title slide by Ben Dawson

Color Measurement Tools

http://en.wikipedia.org/wiki/Colorimeter_(chemistry)

http://en.wikipedia.org/wiki/Spectrograph

http://en.wikipedia.org/wiki/CIE_1931_color_space

Colorimeter: http://img.directindustry.com/images_di/photo-g/portable-reflectance-

colorimeter-322066.jpg

Spectrometer: http://www.prophotowiki.com/w/index.php/Spectrophotometer

Spectrometer and Hyperspectral

http://www-cger.nies.go.jp/cger-j/db/enterprise/remote/images/db05_fig6.jpg

Color Sensors

Keyence http://www.keyence.com/products/sensors/rgb/czv20/czv20.php

Color Machine Vision Systems

Overview of features and components

CMVS Example: Gelcap Inspection Copyright © 2014 Teledyne DALSA

Part Presentation & Environment

Image: http://www.odenberg.com/images/titan_sorter.gif
Reference: http://www.odenberg.com/sorting_packers.htm

Desired Illumination for CMV

http://scienceblogs.com/startswithabang/2009/07/why_do_stars_twinkle.php

Why (not) use Incandescent

http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html http://www.moonbattery.com/archives/2007/03/light bulbs tar.html

Fluorescent Lights

http://www.gelighting.com/na/business_lighting/education_resources/learn_about_light/d istribution_curves.htm

RGB "White" LEDs

http://www1.jands.com.au/support/product_support/lighting_technical_materials/what_to look for when judging an led fixture146s colour mixing capabilities133

White Phosphor LEDs

http://www.photonstartechnology.com/learn/how_leds_produce_white_light http://www.mvlc.info/images/photos/led/spectral3.jpg

LEDs in Chromaticity Diagram

http://www.olympusmicro.com/primer/lightandcolor/ledsintro.html http://cdn.cbsi.com.au/story_media/339301439/samsung-syncmaster-xl2370-cie-before2.jpg

Why (not) LEDs?

http://www.olympusmicro.com/primer/lightandcolor/ledsintro.html

LED Color Changes with Current

http://www.lrc.rpi.edu/programs/solidstate/pdf/dyble-SPIE2005.pdf

Some White LED Lights

Advanced Illumination, Inc. http://www.advill.com/

Filters

Midwest Optical http://www.machinevisionfilters.com/

Why Filter a Color Image!?

Teledyne DALSA, Inc.

https://www.bintelshop.com.au/HTML/0500Filter.jpg

Monochrome "Color Imaging"

Midwest Optical Systems, Inc.: http://www.machinevisionfilters.com/

"Correcting" Some Color Blindness

http://enchroma.com/

http://pogue.blogs.nytimes.com/2013/08/15/glasses-that-solve-colorblindness-for-a-big-

price-tag/?_php=true&_type=blogs&_r=0

Here is a cure if you are up for gene therapy...

http://news.sciencemag.org/sciencenow/2009/09/16-01.html

Lenses for CMVS

http://www.schneideroptics.com/

Lens Chromatic Aberration

http://en.wikipedia.org/wiki/Lens_(optics)

http://www.yorku.ca/eye

http://commons.wikimedia.org/wiki/File:Chromatic aberration convex.svg

Color Cameras

Teledyne DALSA www.TeledyneDalsa.com

Bayer Pattern Sensors

Teledyne DALSA www.TeledyneDalsa.com

Bayer Pattern "Removal"

http://media.photobucket.com/image/bayer%20interpolation/industry7/Bayer.png

Bayer Pattern Color Noise

Teledyne DALSA www.TeledyneDalsa.com

Spatial Frequency Response

http://www.owlnet.rice.edu/%7Epsyc351/Images/ModulationTransferFunction.bmp and http://en.wikipedia.org/wiki/File:SinVibr.png

http://www.microsoft.com/appliedsciences/content/projects/ClearTypeDisplay.aspx

Digital Sampling & Aliasing

http://support.svi.nl/wikiimg/Aliasing-plot.png

Color Aliasing

Copyright © 1997, Ben Dawson

Color vs. Resolution

3 CCD Cameras (1)

www.jai.com/en

3 CCD Cameras (2)

www.jai.com/en

Color Line Scan Cameras

Teledyne DALSA www.TeledyneDalsa.com

Living with the Bayer

http://buddy2blogger.blogspot.com/2012/01/edge-of-eden-living-with-grizzlies.html

In-Camera Processing

Teledyne DALSA www.TeledyneDalsa.com

Gain and Offset, A to D

Color Space Conversions, LUTs

The Curse of Gamma

http://www-graphics.stanford.edu/images/skitrip95 fixed.jpg Gamma Off http://www-graphics.stanford.edu/images/skitrip95 fixed-gamma17.jpg Gamma On http://www-graphics.stanford.edu/gamma.html Copyright ©, Mark Levoy

Gamma Curves

Color MV Processors (introduction slide)

Color "Smart Cameras"

Teledyne DALSA www.TeledyneDalsa.com

PC-Based Processors

Teledyne DALSA www.TeledyneDalsa.com

Attached Processor

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Tips (1)

Basic Color MV Algorithms

Camera Setup

Three terms, often confused. Standard vs. Comparative calibration.

White Balance Example

http://upload.wikimedia.org/wikipedia/commons/0/01/Lily-M7292-As-shot-and-manual.jpg

http://www.cambridgeincolour.com/tutorials/white-balance.htm

Color Balance for Human Viewing

www.xrite.com

http://marsrover.nasa.gov/mission/spacecraft_instru_calibr.html

Comparative Calibration

All need to Recover the Illuminant

http://blog.xritephoto.com/2009/12/getting-white-balance-right/

Color Constancy (again)

http://www.colorcube.com/illusions/chrmadptb.htm http://en.wikipedia.org/wiki/Color_constancy

White Balance Methods

Violating Gray World Assumption

Copyright © 2008, Ben Dawson

Color Balance

www.TeledyneDalsa.com and www.xrite.com

Color Balance Methods

Color Balance Example

Retinex Algorithms

http://en.wikipedia.org/wiki/Color_constancy

Best Use a Reference Patch

www.ceram.com

Reference Patch Example

Teledyne DALSA www.TeledyneDalsa.com

Color Space Conversions

http://www.personal.psu.edu/cab38/GEOG321/04 color02/Munsell3D.gif

Linear, 3 Color

http://msdn.microsoft.com/en-us/library/aa511283.aspx

http://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/ch6_color_

models.html

Example: YIQ (linear)

http://www.couleur.org/index.php?page=transformations

Non-Linear, Perceptually Uniform

http://www.blackice.com/colorspaceHSI.htm http://casa.colorado.edu/~ajsh/colour/rainbow.html

http://www.couleur.org/index.php?page=transformation

Color Space Conversion Issues

Example: Gelcaps

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Remove Luminance

Teledyne DALSA www.TeledyneDalsa.com

Tips (2)

Computing Application Answers

 $\underline{http://www.dementiatoday.com/brain-fibers-in-living-color-may-help-predict-the-spread-of-dementia/}$

Color Statistics

http://www.picture-newsletter.com/vegetables/

Joint Statistics

Color Spot Meter

Example: Mouthwash

Teledyne DALSA www.TeledyneDalsa.com

More Mouthwash

Teledyne DALSA www.TeledyneDalsa.com

Color Classifiers

http://www.ahinson.com/res3.htm

Threshold Classifiers

Threshold Classifier Example

Cherries image: http://www.msue.msu.edu/fruit/tchrygrw.htm

Threshold CAFs' Poor Performance

http://www.picture-newsletter.com/vegetables/

Part Location by Color

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Gaussian CAFs

Automated Weeding

http://ucce.ucdavis.edu/files/repositoryfiles/ca5804p218-69159.pdf

Automated Weeding System

http://ucce.ucdavis.edu/files/repositoryfiles/ca5804p218-69159.pdf

Radial Basis CAFs

http://www.roselladb.com/predictive-modeling.htm

http://www.pptsworld.com/2012/02/radial-basis-function-in-neural-network.html

Support Vector Machines

http://moonflare.com/blogfiles/devdev/Rosa_Gold_Glow_2_small_noblue_color_space.p

http://en.wikibooks.org/wiki/Data Mining Algorithms In R/Classification/SVM

Class Probability

Misclassification

Training a Classifier

Training a Color Classifier

Teledyne DALSA www.TeledyneDalsa.com

Thresholds and Error Costs

Cost Functions

Example: Grading Seed Corn

Teledyne DALSA www.TeledyneDalsa.com

Seed Corn Grading

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Breakfast Meal Check

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Assembly Checking

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Automotive Verification

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Assembly Verification

Teledyne DALSA www.TeledyneDalsa.com

Difficult Algorithms for Color

Bilateral Filtering

http://users.soe.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Color Map from Classifier

Teledyne DALSA www.TeledyneDalsa.com

Color Defects and Dimensioning

Teledyne DALSA www.TeledyneDalsa.com

Plating Inspection – White Balance

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Plating Inspection – Find Defects

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Sorting Recycled Plastic

Teledyne DALSA www.TeledyneDalsa.com

Use a Color Map

Teledyne DALSA www.TeledyneDalsa.com

Color Map Blob Analysis

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Counting Bows

Teledyne DALSA www.TeledyneDalsa.com

Color Classify BACKGROUND

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Color Map to Show Only Bows

Teledyne DALSA <u>www.TeledyneDalsa.com</u>

Mars Rocks and Rovers Roll

http://wpirover.com/

Sample Rocks

http://wpirover.com/

HSV's Saturation Works Well

Clean up and "Blob Detect"

A Difficult Color Vision Problem

Additional References

The Joy of Visual Perception http://www.yorku.ca/eye

Digital Color Imaging Handbook http://www.amazon.com/Digital-Handbook-

Electrical-Engineering-Processing/dp/084930900X/ref=sip_rech_dp_6

General color references http://en.wikipedia.org/wiki/Color

http://www.fz-juelich.de/inb/inb-1/Color_vision