

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA E CIÊNCIA DE DADOS

PROVA II - Probabilidade (PPGECD000000001)

Professor: Raydonal Ospina Martinez. E-mail: raydonal@castlab.org

Regras

Leia com atenção as perguntas. A prova deve ser claramente resolvida. Seja organizado. Pode fazer uso da calculadora e de materiais impressos, como livros, manuais ou quaisquer textos. É expressamente **proibido** o uso do computador e celular durante a prova.

Problema 1

Sejam X e Y variáveis aleatórias com função de densidade de probabilidade conjunta dada por

$$f(x,y) = \begin{cases} \frac{1}{4}, & \text{se } -1 < x < 1, -1 < y < 1, \\ 0, & \text{caso contrário.} \end{cases}$$

Obtenha a função de densidade condicional de Y dado X, i.e., $f_{Y|X}(y|x)$.

Problema 2

Seja $\Omega = \{a, b, c\}$ um espaço amostral, $\mathcal{F} = \mathcal{P}(\Omega)$ o conjunto de partes de Ω como sua σ -álgebra e $P(\{\omega\}) = \frac{1}{3}$ para todo $\omega \in \Omega$. Consideremos as variáveis aleatórias X e Y definidas em (Ω, \mathcal{F}, P) como

$$X(\omega) = \begin{cases} 1, & \text{se } \omega = a, \text{ ou } \omega = b, \\ 0, & \text{se } \omega = c \end{cases} \quad \text{e} \quad Y(\omega) = \begin{cases} \pi, & \text{se } \omega = a, \\ \frac{1}{2}, & \text{se } \omega = b, \\ -1, & \text{se } \omega = c \end{cases}$$

Obtenha E(X|Y) e E(X). Dica: Note que as variáveis X e Y são discretas.

Problema 3

Suponha que a distribuição conjunta das variáveis aleatórias X e Y está dada por

$X \setminus Y$	1	2
1	0,1	0,2
2	0,4	0,3

Calcule o coeficiente de correlação entre X e Y^2 , i.e. $\rho(X,Y^2)$.

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA E CIÊNCIA DE DADOS

Problema 4

Seja $\{Xn\}_{n\geq 1}$ uma sequência de variáveis aleatórias tais que $X_n \sim \operatorname{Exp}(n)$, i.e., para cada n, a variável aleatória X_n segue uma distribuição exponencial de parâmetro n. Demonstre que X_n converge em probabilidade para 0.

Problema 5

Seja $\{Xn\}_{n\geq 1}$ uma sequência de variáveis aleatórias tais que

$$P(X_n = 0) = 1 - \frac{1}{n^2}$$
 e $P(X_n = n^2) = \frac{1}{n^2}$.

Demonstre que X_n converge quase certamente (ache o limite X), mas não converge em r-ésima média para todo $r=1,2,\ldots$

BOA PROVA