Master Theorem for Divide and Conquer

General Form of Recurrence Relation

$$T(n) = \alpha T(\frac{b}{\beta}) + f(n)$$

$$\alpha \ge 1 \ \beta > 1 \ f(n) = \theta(n^k Log^p n)$$

The Recurrence Equation provides all of these elements including:

- log_b^a
- k

Based on these two values of log_b^a and **k** there are 3 Cases:

Case 1: if
$$log_b^a > k$$
 then $\theta(n^{log_b^a})$

Case 2: if $log_b^a = k$ then:

- if $p > -1 \cong \theta(n^k log^{p+1}n)$
- if $p = -1 \cong \theta(n^k log log n)$
- if $p < -1 \cong \theta(n^k)$

Case 3: if $log_b^a < k$ then:

- if $p \ge 0 \cong \theta(n^k log^p n)$
- if $p = -1 \cong \theta(n^k log log n)$
- if $p < 0 \cong O(n^k)$