Word and sentence embedding

Friday, June 15, 2018 10:22 PM

Distributional semantics

First order co-occurrences syntagmatic associates / relatedness (bee and honey) Second order co-occurences paradigmatic parallels / similarity (bee and bumblebee) Schutze, H., & Pedersen, J. (1993). A vector model for syntagmatic and paradigmatic relatedness. In Making Sense of Words: Proceedings of the Conference, pp. 104-113, Oxford, England.

Distributional hypothesis "You shall know a word by the company it keeps." — Firth, 1957. • Use a sliding window of a fixed size • Compute word co-occurrences n_{uv}

Distributional hypothesis

"You shall know a word by the company it keeps." — Firth, 1957.

- · Use a sliding window of a fixed size
- Compute word co-occurrences n_{uv}
- Better: Pointwise Mutual Information:

$$PMI = log \frac{p(u, v)}{p(u)p(v)} = log \frac{n_{uv}n}{n_{u}n_{v}}$$

Compute a second-order co-occurrence between the , words 'bees' and 'honey' (the cosine similarity between their first-order co-occurrence vectors). Use the toy corpus:

These are the wrong sort of bees. Quite the wrong sort. So I should think they would make the wrong sort of honey.

- Let's define a context of a word as three words to the left and three words to the right from the target word, occurred within the same sentence (if there are any).
- For the first-order co-occurrence, let's consider pPMI values (the formula was given on slide 5 of the first video).

<u>Hint:</u> in this question you actually do not need to *compute* anything... And the answer would be the same for any type of first-order co-occurrence.

occurrence.

whether the without sentence bee I I I I

randomly are honey I I I

related.

Herer a -occur: - p(u,v) = 2

-> pm I -> - 20

So, the take max (1-9 new n, 2)

Distributional hypothesis

"You shall know a word by the company it keeps." — Firth, 1957.

- · Use a sliding window of a fixed size
- Compute word co-occurrences n_{uv}
- Better: Pointwise Mutual Information:

$$PMI = log \frac{p(u, v)}{p(u)p(v)} = log \frac{n_{uv}n}{n_{u}n_{v}}$$

• Even better: positive Pointwise Mutual Information:

$$pPMI = \max(0, PMI)$$

Any problems here? • First order co-occurrences syntagmatic associates / relatedness (bee and honey) • Second order co-occurences paradigmatic parallels / similarity (bee and bumblebee) bee cosine similarity Schutze, H., & Pedersen, J. (1993). A vector model for syntagmatic and paradigmatic relatedness. In Making Sense of Words: Proceedings of the Conference, pp. 104-113, Oxford, England.

Vector Space Models of Semantics

- Input: word-word co-occurrences (counts, PMI, ...)
- Method: dimensionality reduction (SVD, ...)
- Output: similarity between vector representations of words

Turnay, P.D., Pantel, P.: from Frequency to Meaning: Vector Space Models of Semantics, 2010.

matrix factorization

2. Choose correct statements about Singular Value Decomposition (SVD), an importan
notion from the linear algebra. Feel free to consult any additional resource like <u>wiki</u> needed.
Truncated SVD is the best rank \$k\$ approximation of the original matrix in terms of Frobenius norm.
Any rectangular matrix with real entries has a singular value decomposition
Singular values can be negative.
$lacksquare$ Squares of singular values of a matrix X are eigenvalues of X^TX (or XX^T)
Singular values of a rectangular matrix are its eigenvalues.
Singular values decomposition is not unique (for example, the zero matrix of be decomposed in infinitely many ways).

Truncated SVD

Keep only first k components: $\hat{X}_k = U_k \Sigma_k V_k^T$

It's the best approximation of rank k in terms of Frobenius norm:

$$||X - \hat{X}||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m (x_{ij} - \hat{x}_{ij})^2}$$

Vector Space Models of Semantics

- Input: word-word co-occurrences (counts, PMI, ...)
- Method: dimensionality reduction (SVD, ...)
- Output: similarity between vector representations of words

Turnay, P.D., Pantel, P.: from Frequency to Meaning: Vector Space Models of Semantics, 2010.

Word prediction: skip-gram model

Training this model.

Predict context words given a focus word:

$$p(w_{i-h}, \dots w_{i+h}|w_i) = \prod_{-h \le k \le h, \ k \ne 0} p(w_{i+k}|w_i)$$

Model each probability with a softmax:

$$\underline{p(u|v)} = \frac{\exp \langle \phi_u, \theta_v \rangle}{\sum_{u' \in W} \exp \langle \phi_{u'}, \theta_v \rangle}$$

Still two matrices of parameters.

How do we train the model?

Log-likelihood maximization:

$$\mathcal{L} = \sum_{u \in W} \sum_{v \in W} n_{uv} \log p(u|v)$$
word co-occurrence

Method:

· SGD, online by word pairs in the corpus

Problem:
• softmax over vocabulary is slow!

Skip-gram Negative Sampling (SGNS)

Instead of predicting a word for another word, predict "yes" or "no" for word pairs:

$$\sum_{u \in W} \sum_{v \in W} n_{uv} \log \sigma \left(\left\langle \phi_u, \theta_v \right\rangle \right) +$$

sample for every in many

$$k \mathbb{E}_{\bar{v}} \log \sigma \left(-\langle \phi_u, \theta_{\bar{v}} \rangle \right) \to \max_{\phi_u, \theta_v}$$

- Use positive examples from data: v co-occurred with u
- Sample negative examples: $k \text{ random } \bar{v} \text{ from the vocabulary}$

Train with SGD to find two matrices of parameters (as usual).

signoid fundita

PDF J.

word2vec and doc2vec

Word2vec

Two architectures:

· CBOW (Continuous Bag-of-words):

$$p(w_i|w_{i-h},\ldots w_{i+h})$$

· Continuous Skip-gram:

inuous Bag-of-words): (outext -) varid of interest interest
$$p(w_i|w_{i-h},\ldots w_{i+h})$$
 kip-gram: $p(w_{i-h},\ldots w_{i+h}|w_i)$ word of interest -> context oid softmax:

Two ways to avoid softmax:

- · Negative sampling
- · Hierarchical softmax

Open-source and fast: code.google.com/archive/p/word2vec/

Evaluation: word similarities

How do we test that similar words have similar vectors?

· Linguists know a lot about what is "similar".

not straightformal task.
Not the best way.

• Compare Spearman's correlation between two lists:

/w., ,		
tiger	tiger	10.00
media	radio	7.42
tiger	cat	7.37
train	car	6.31

tiger	tiger	$\cos(\phi_u, \phi_v)$
media	radio	
tiger	cat	***
train	car	***

Evaluation: word analogies

- In cognitive science well known as relational similarity (vs. attributional similarity).
- a : a' is as b : b' (man : woman is as king : ?)

Gentner, D. Structure-mapping: A theoretical framework for analogy. Cognitive Science, 1983. Mikolov et. al. Linguistic Regularities in Continuous Space Word Representations, 2013.

relational similarity.

relational similarity.

attributional similarity.

Word similarity task performance

• For word similarity task, count-based methods (PPMI, SVD) perform on par with predictive methods (GloVe, SGNS).

win	Method	WordSim Similarity	WordSim Relatedness	Bruni et al. MEN	Radinsky et al. M. Turk
	PPMI	.732	.699	.744	.654
2	SVD	.772	.671	.777	.647
2	SGNS	.789	.675	.773	.661
	GloVe	.720	.605	.728	.606
	PPMI	.732	.706	.738	.668
5	SVD	.764	.679	.776	.639
3	SGNS	.772	.690	.772	.663
	GloVe	.745	.617	.746	.631

win is the width of the window for co-occurrences collection.

Levy et. al. Improving distributional similarity with lessons learned from word embeddings, 2015.

what's Glave.

Picture on page "Word and sentence embedding"

natrix featuraction of log-come wrt workled squared (ors

Word analogy task performance

• Word analogy task is solved with 70% average accuracy.

win	Method	Google	MSR
		Add / Mul	Add / Mul
2	PPMI	.552 / .677	.306 / .535
	SVD	.554 / .591	.408 / .468
	SGNS	.676 / .689	.617 / .644
	GloVe	.649 / .666	.540 / .591
5	PPMI	.518 / .649	.277 / .467
	SVD	.532 / .569	.369 / .424
	SGNS	.692 / .714	.605 / .645
	GloVe	.700 / .712	.541 / .599

Add is the way of analogy solving that we discussed. Mull is a modification.

Levy et. al. Improving distributional similarity with lessons learned from word embeddings, 2015.

Paragraph2vec aka doc2vec

And the only reason for being a bee that I know of is making honey.

contexts

focus word contexts

aucos

DM (Distributed Memory):

$$p(w_i|w_{i-h},\ldots w_{i+h}, \boldsymbol{d})$$

DBOW (Distributed Bag Of Words):

$$p(w_{i-h}, \dots w_{i+h}|d)$$

Condition not on document

Evaluation: document similarities

How do we test that similar documents have similar vectors?

- ArXiv triplets: paper A, similar paper B, dissimilar paper C
- · Measure the accuracy of guessing the dissimilar paper

http://arxiv.org/pdf/1206.5743 http://arxiv.org/pdf/1209.0268

 $http://arxiv.org/pdf/cond-mat/0403258 \\ http://arxiv.org/pdf/1408.0189$ http://arxiv.org/pdf/1307.7598 http://arxiv.org/pdf/hep-ph/9908436 http://arxiv.org/pdf/nucl-th/9707019 http://arxiv.org/pdf/1112.3014 http://arxiv.org/pdf/1111.2905 http://arxiv.org/pdf/1303.2538 http://arxiv.org/pdf/1109.1922 $http://arxiv.org/pdf/nucl-ex/0112013 \quad http://arxiv.org/pdf/physics/9704013 \quad http://arxiv.org/pdf/1408.4595$ $http://arxiv.org/pdf/0709.3419 \\ http://arxiv.org/pdf/quant-ph/0611134 \\ http://arxiv.org/pdf/0902.0616 \\$

http://arxiv.org/pdf/math/0504051 $http://arxiv.org/pdf/hep-th/9609148 \\ \quad http://arxiv.org/pdf/solv-int/9710009 \\ \quad http://arxiv.org/pdf/astro-ph/0508060 \\ \quad http://arxiv.org/pdf/hep-th/9609148 \\ \quad http://arxiv.org/pdf/solv-int/9710009 \\ \quad http://arxiv.org/pdf/solv-int/97$

Evaluation: document similarities

Integral formula of Minkowski type and new characterization of the Wulff shape

Yijun He * Haizhong Li 1

Abstract

Given a positive function F on S^n which satisfies a conventy condition, we introduce the r-th anisotropic mass curvature M_r for hypersurfaces in B^{n+1} which is a generalization of the usual r-th mean curvature R_r . We get integral formulus of Minkowski type for compact hypersurfaces in B^{n+1} . We give some new characterisation of the Wall r-base by use of our integral formulus of Minkowski type, is case F = 1 which radiants to some well-known results.

2000 Mathematics Subject Classification: Primary 53C42, 53A30; Secondary 53B25.

Key words and phrases: Wulff shape, F-Weingarten operator, anisotropic principal curvature, r-th anisotropic mean curvature, integral formula of Minkowski type.

xiv.org/pdf/1408.0189 xiv.org/pdf/math/0504051 xiv.org/pdf/1112.3014 xiv.org/pdf/1109.1922 xiv.org/pdf/1408.4595 xiv.org/pdf/0902.0616 xiv.org/pdf/astro-ph/0508060

Resume

Methods:

· word2vec: SGNS, CBOW, ...

· doc2vec: DBOW, DM, ...

• Python library for both: https://radimrehurek.com/gensim/

Evaluation:

· Word similarity and analogy

· Document similarity

· Interpretability of the components

· Geometry of the embeddings space

Count-based and predictive approaches are not so different!

not much different from
predictive-based method !

word analogy

A magical property of word2vec

And the only reason for being a bee that I know of is making honey.

contexts

focus word contexts

Learn word vectors by predicting their contexts (or vice-versa).

Obtain vectors that solve word analogies:

- king man + woman = queen
- Moscow Russia + France = Paris

Demo: rare-technologies.com/word2vec-tutorial/

The target

10.90

1.75

0.60

0.45

0.30

The target

If we do not exclude b.

We end up with b.

7. It to \$\frac{1}{2}\$, it exclude b?

本元成接了近 我的的 de classor vento-就的了。 hat accuracy

BATS dataset

Inflectional morphology:

· student:students, strong:stronger, follow:following, ...

Derivational morphology:

· bake:baker, edit:editable, home:homeless, ...

Lexicographic semantics:

- Hypernyms, meronyms: peach:fruit, sea:water, player:team,
 ...
- · Antonyms, synonyms: up:down, clean:dirty, cry:scream, ...

Encyclopedic semantics:

- · Animals: cat:kitten, dog:bark, ...
- · Geography: Athens:Greece, Peru:Spanish, ...
- · People: Lincoln:president, Lincoln:American, ...
- · Other: blood:red, actor:actress, ...

31:AZ1仅美压之是不能力吧。

Compare to baseline:

honometal.

Does not solve all analogy tasle. Nice area for future research Resume · word2vec works fine for word similarities • But there are many questions with word analogies · Be careful about hype!

FastText

Represent a word as a bag of character n-grams, e.g. for n = 3:
$$G_{where}: _wh, whe, her, ere, re_, _where_$$
 Model a word vector as a sum of sub-word vectors: word vector as
$$SGNS: FastText: sim(u,v) = \langle \phi_u, \theta_v \rangle \qquad sim(u,v) = \sum_{g \in G_v} \langle \phi_u, \theta_g \rangle$$

Code and pre-trained embeddings: https://fasttext.cc/

P. Bojanowsky et al. Enriching Word Vectors with Subword Information, 2016.

HSE Adv ML Page 44

Sent2vec

-> Not vice approach

Sent2vec:

Sent2vec:

• Learn sentence embedding as a sum of sub-sentence units: Sub-sentence units: $sim(u,s) = \frac{1}{|C|} \sum_{a} (a - a)^{a}$

$$sim(u, s) = \frac{1}{|G_s|} \sum_{g \in G_s} \langle \phi_u, \theta_g \rangle$$

where G_s is a set of word n-grams for the sentence s.

Code and embeddings: https://github.com/epfml/sent2vec

Pagliardini et. al. Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features, 2017.

Have you realized what's the crutial difference between averaging word2vec vectors and sent2vec?

sent2vec represents a sentence not as an average of words, but as an average of n-grams (SUB-SENTENCE UNITS) when we nel

 sent2vec represents sentences as an average of words DURING TRAINING, while averaging word2vec vectors is a postprocessing step

This should not be selected

Even though sent2vec is still based on word (or n-gram) vectors, it tunes them during traning to fit word-in-sentence co-occurrence data. This is not the same as fitting wordword co-occurrence data (as word2vec does) and can crutially improve the final representations of sentences.

Similar to fast Text

Similar to fast Text

With a lifterent units.

That alifterent units.

From a regression to represent

then it is the same as averaging cound to-vel

StarSpace

General framework:

entities (e.g. sentences) and features (e.g. words)

Lot's of applications:

- · Text classification, e.g. sentiment analysis
- · Ranking, e.g. ranking web documents given a query
- Collaborative filtering-based recommendation
- Content-based recommendation
- Embaddina aranba a a Ersabasa

- · Collaborative filtering-based recommendation
- · Content-based recommendation
- · Embedding graphs, e.g. Freebase
- · Learning word, sentence or document embeddings

Code and tutorials: github.com/facebookresearch/Starspace & Luck al. StarSpace: Embed All The Things! 2017

StarSpace

Mode 3 (sentence embeddings):

Use case: learn pairwise similarity from collections of similar objects, e.g. sentence similarity.

Data format: each line is a collection of similar sentences:

sent1_word1 sent1_word2 ... <tab> sent2_word1 sent2_word2 ...

Training:

- · Each sentence is represented as a bag of features (words or n-grams). They are embedded to predict sentence similarity
- Similar sentence pairs are taken from the collections
- · Dissimilar sentence pairs are sampled at random

Deep learning?

The most popular options:

- · Recurrent Neural Networks (sequence modelling)
- · Convolutional Neural Networks (much faster)
- Recursive Neural Networks (use hierarchical structure)

Linguistic structure is back:

- · Morphology can help to build word embeddings
- Recursive Neural Networks, Tree-LSTMs, DAG-LSTMs, etc. use syntax, span annotations, co-reference links...

* use (anguage to build hierarchical)
representation

Skip-thought vectors • Predict next and pre

- · Predict next and previous sentences in text
- · RNN encoder-decoder architecture

Thought vector

Kiros et. al. Skip-Thought Vectors, 2015, https://github.com/ryankiros/skip-thoughts.

envoler-devoler architectures

7.12/19 \$ \$1823.

2012 predict next centerne.

2012 predict next sentence.