1. Activation Function

An activation function is a key components in neural networks that decides the output of a neuron based on its inputs. It adds non-linearity to the networks, allowing it to model complex relationships in data. Common activation functions include:

Comparison of Activation Functions

Activation	Formula	Output Range	Key Characteristics
Sigmoid Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$	(0,1)	 Converts input to probabilities Smooth curve Prone to vanishing gradients for large inputs
ReLu	$f(x) = \max(0, x)$	[0,∞)	 Computationally efficient Avoids vanishing gradient for positive inputs Prone to dying ReLu
Tanh	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	(-1,1)	 Outputs are zero- centered Better than sigmoid in hidden layers Suffers from vanishing gradients
Leakly ReLu	f(x) = x if x > 0, 0.01x otherwise	$(-\infty,\infty)$	 Mitigates dying ReLu by allowing small gradients for negative inputs Requires slope tuning

Use Cases and Limitation

1. Sigmoid:

• The **sigmoid function** is commonly used for binary classification as it outputs values between 0 and 1, representing probabilities. Its smooth curve makes it useful for logistic regression and as an activation function in shallow networks.

Limitation:

• Causes vanishing gradient problem, making it unsuitable for deep networks

2. ReLu:

• Widely used in hidden layers of deep learning models, especially in CNNs and feedforward networks.

Limitation:

• Suffers from the dying ReLu problem, where some neurons stop updating during training.

3. Tanh:

Used in RNNs and other architectures where zero-centered outputs are beneficial.

Limitation:

 Computationally expensive and inefficient for sparse representations compared to ReLU.

4. Leaky ReLu

Suitable for deep networks where the dying ReLu Problem is observed

Limitations:

• Less commonly used than standard ReLu in practice

2. Optimization Algorithm

An **optimization algorithm** is a method used to adjust a neural network's weights and biases to minimize the loss function during training. It ensures efficient convergence by determining the direction and size of weight updates. Under is a detailed comparison of three widely used algorithms:

Comparison of Optimization Algorithm

Algorithm	Description	Pros	Cons
SGD	Updates weights	Simple, memory-	Sensitive to learning
	using the gradient of	efficient	rate; slow
	a mini-batch		convergence
Adam	Combines	Fast convergence;	Require more
	momentum and	adaptive learning	memory; many
	adaptive learning	rates	hyperparameters
	rates(uses moving		
	averages of gradient		
	and its square)		
RMSprop	Uses moving average	Works well for RNNs	Can converge too
	of squared gradients	and non-stationary	quickly to suboptimal
	to scale learning rate	problems	values

Impact of Learning Rate

The impact of learning rate determines the magnitude of weight adjustments during training; a high rate might result in overshooting the optimal values, while a low rate could make the training process slower to converge. Proper tuning is crucial for balancing speed and stability in optimization.

- High Learning Rate: Rapid updates but risk overshooting the minimum, leading to divergence
- Low Learning Rate: Safer convergence but requires more epocs and may get stuck in local minima

Addressing Learning Rate Issue

1. Learning Rate Scheduling

 Gradually reduces the learning rate during training(e.g.., exponential decay, step decay)

2. Adaptive Methods

• The Adam and RMSprop adjust learning rate dynamically based on gradient magnitudes, allowing for efficient learning even with poorly chosen initial values

3. Warm Restarts

• The warm restarts periodically remit the learning rate to help escape local minima and explore the loss landscape