1.2 ИССЛЕДОВАНИЕ ЭФФЕКТА КОМПТОНА Денис Васильев

1 Цель:

- 1. С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите.
- 2. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

2 Оборудование:

Источник излучения, коллиматор, графитовая мишень, сцинтилляционный счётчик, высоковольтный выпрямитель, усилитель-анализатор, ЭВМ.

3 Введение

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволнового излучения, испытывает трудности при описании рассеянии рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеяного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения. Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов, имеющих энергию $\hbar\omega$ и импульс $p=\frac{\hbar\omega}{c}$. Эффект Комптона — увеличение длины волны рассеяного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта и свободного электрона.

4 Теория:

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\frac{\hbar\omega_0}{c}$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma=(1-^2)^{\frac{-1}{2}},=\frac{v}{c},$ а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равными $\hbar\omega_1$ и $\frac{\hbar\omega_1}{c}$. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1},$$

$$\frac{\hbar\omega_{0}}{c} = \gamma mv \cos\phi + \frac{\hbar\omega_{1}}{c}\cos\theta,$$

$$\gamma mv \sin\phi = \frac{\hbar\omega_{1}}{c}\sin\theta.$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos\theta) = \Lambda_k (1 - \cos\theta), (1)$$

где λ_0 и λ_1 – длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_k = \frac{h}{mc} = 2.42 \cdot 10^{-10} cm$$

называется комптоновской длиной волны электрона. Из формулы (1) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В приведенном выводе электрон в атоме считается свободным. Для γ -квантов с энергией в несколько десятков, а тем более сотен килоэлектрон-вольт, связь электронов в атоме, действительно, мало существенна, так как энергия их связи в лёгких атомах не превосходит нескольких килоэлектрон-вольт, а для большинства электронов ещё меньше. Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta.$$

Здесь $\varepsilon_0=\frac{E_0}{mc^2}$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m — масса электрона.

5 Экспериментальная установка:

ьлок-схема уста-

новки изображена на рисунке. Источником излучения служит Cs^137 , испускающий γ -лучи с энергией 662кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень. Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного

умножителя и сцинтиллятора. Сцинтиллятором служит кристалл NaI цилиндрической формы, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относително мишени, угол поворота отсчитывается по лимбу. Головная часть сцинтилляционного блока закрыта свинцовым коллиматором, который формирует входной пучок и защищает детектор от постороннего излученияю Основной вклад в это излучение вносят γ -кванты, проходящие из источника через стенки защищенного контейнера. Этот фон особенно заметен при исследовании комптоновского рассеяния на большие углы, когда расстояние между детектором и источником уменьшается.

6 Ход работы:

Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полёта γ -квантов и вводя значения этих углов в ЭВМ, снимаем амплитудные спектры и определяем положения фотопиков для каждого угла θ . По-

лучаем:

Исполь-

зуя экспериментальные результаты, построим график, откладывая по оси абсцисс величину $1-\cos\theta$, а по оси ординат величину $\frac{1}{N(\theta)}$ и её ошибку. По МНК находим коэффициент наклона лучшей прямой, а также ошибку, равную:

$$\varepsilon = 3.8\%$$

. Далее с помощью графика и формулы

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)}$$

считаем энергию покоя частицы, на которой происходит комптоновское рассеяние первичных гамма квантов. С помощью МНК мы нашли коэффициенты k и b, которые задают наилучшую прямую y = kx + b, причём $y = 1.43 \cdot 10^{-3}$, а $b = 1.21 \cdot 10^{-3}$.

По этим значениям легко находим $N(90)=k\cdot N'(90)+b=5.46\cdot 10^{-1}$ и $N(0)=k\cdot N'(0)+b=1.23$, где N'(90),N'(0) экспериментальные результаты. Теперь, зная, что $E_{\gamma}=662$ кэВ мы находим значение энергии покоя: $mc^2=(526.05\pm 19.99)$ кэВ. Результат совпадает в пределах погрешности с истинным значением, равным 511кэВ.

