

PLANO DE ESTUDO Metodologia Ecológica 2022 / 2

Professores responsáveis:

Marcus Vinícius Vieira (mvvieira@gmail.com.br), Lab. de Vertebrados, sala A2-084 (2°. andar do Bl. A) Natália Lacerda dos Santos (natalia.ictio@gmail.com), Lab. Ecologia de Peixes, sala A0-010 (sub-solo Bl. A) Carga horária: 60 h (30 h teóricas, 30 h práticas)

Horário: 8:30-12:00h

Local: LIG Faculdade de Farmácia (prédio da Fac. Farmácia)

Página internet: https://github.com/marcusvvieira/Metodologia-Ecologica_Abordagens-em-Ecologia

OBJETIVOS DA DISCIPLINA:

Apresentação de conceitos chave para compreensão das abordagens contemporâneas da análise de dados ecológicos, utilizando funções do ambiente R: gráficos e exploração de dados, testes de hipótese nula paramétricos e por reamostragem, como reunir modelos e dados (métodos de estimativa de parâmetros de modelos: quadrados mínimos e verossimilhança máxima), seleção de modelos e conceitos de estatística Bayesiana. Aplicação de métodos de regressão linear, análises de variância e de dados categóricos a estudos de caso utilizando estas abordagens.

METODOLOGIA DE ENSINO:

Aulas expositivas e atividades práticas no laboratório de informática ou computadores pessoais. Nas aulas expositivas, os conceitos são apresentados com recursos visuais, utilizando-se de exemplos, estudos de caso, simulações ou exercícios. Entretanto, a aprendizagem é vista como um processo ativo, que depende de esforço e interesse por parte do aluno. Assim, a leitura dos textos recomendados é básica para o desenvolvimento da aula, e aprendizado. As aulas práticas apresentarão comandos e roteiros do ambiente R envolvendo análises de conjuntos de dados utilizando as abordagens e modelos apresentados na aulas teóricas

CRITÉRIOS DE AVALIAÇÃO:

Testes curtos (1-2 questões) ao longo do semestre (4 pontos cada) e uma prova. Os testes serão de 30 min, antes do início da aula, com questões para interpretação de dados, ou para analisar dados.

A prova envolverá conjuntos de dados para análise em sala de aula utilizando as ferramentas de análise vistas durante o curso, justificando seu uso e conclusões que permitem.

PROGRAMA:

DATA	AULA	LEITURA	APOSTILA DE R
6 Sep	Introdução ao curso e ao ambiente R. Análise de dados: porque e o o que é fazer estatística? Arcabouços para análises estatísticas. Introdução ao R: Instalação, tipos de objetivos e sua criação, funções básicas, R Studio		Barbosa & Paiva até 2.2
13 Sep	Como quantificar a incerteza nas nossas estimativas: princípios de probabilidade. Introdução ao R: Tipos de objetivos, como criá-los e manipulação de dados	Cap. 1 Gotelli & Ellison	Barbosa & Paiva 2.3 até 2.6
20 Sep	Modelos matemáticos e modelos estatísticos: qual diferença? Distribuições de probabilidade ("Variáveis aleatórias"). Introdução ao R: Funções que permitem amostragens e simulação de dados, criando funções	Cap. 2 Gotelli & Ellison	Barb osa & Paiva 2.7 até 2.9
27 Sep	Como generalizar de uma amostra para toda a população: independencia entre	Cap. 5 e 6	Barbosa &

	observações e amostragem aleatória, efeito do acaso na amostragem e relação com tamanho da amostra. Como mentir com gráficos Introdução ao ambiente R: gráficos básicos	Magnusson et al.	Paiva 3.0 até 4.0
4 Oct	Discussão de definições trazidas pelos alunos: de desvio padrão, erro padrão e intervalo de confiança, paramétrico x não-paramétrico. Médias, mediana, variância e erro padrão, intervalos de confiança. Introdução ao R: comandos básicos para leitura e exploração de 'dados', criando e salvando arquivos de dados.	Cap. 3 Gotelli & Ellison	Barbosa & Paiva 5.0 até 6.0
11 Oct	Calculando a probabilidade de um resultado segundo uma hipótese, a nula. "teste" t e Chi-quadrado, erro tipo I, poder e erro tipo II. Introdução ao R: testes de premissas, teste t e transformações de dados.	Cap. 4 Gotelli & Ellison p. 108-123.	Barbosa & Paiva até "6.0 Testes não paramétricos entre duas amostras (erro na apostila, deveria ser "8.0").
18 Oct	Fazendo previsões simples: modelos lineares ('regressões') e métodos para estimar seus parâmetros: quadrados mínimos e verossimilhança máxima. Correlação (r) e R2 Introdução ao R: Função 'lm', gráficos para avaliar premissas (qqline, qqnorm)	Cap. 9 Gotelli & Ellison p. 257-282. Cap. 5 Magnusson et al.	Barbosa & Paiva 7.0 Correlação e Regressão
25 Oct	Comparação entre duas ou mais amostras: princípios de análise de variância (ANOVA) e comparação com teste t. O mesmo teste segundo a filosofia de comparação entre hipóteses.	Cap. 7, Cap. 10 Gotelli & Ellison. p. 307-332.	Barbosa & Paiva 8.0
1 Nov	Questões em modelos lineares: valores aberrantes (outliers) e transformações de dados. Transformando categorias em variáveis contínuas: ANOVA como um modelo linear.	Cap. 5 Gotelli & Ellison p. 125-140.	
	Comparações par-a-par em ANOVA e problemas para erro tipo I. Análise de Covariância (ANCOVA) e outros delineamentos/modelos comuns	Cap. 13 Magnusson et al. Cap. 1, 2 Burnham & Anderson	
15 Nov	FERIADO		
22 Nov	Incorporando dependência entre observações na modelagem: fatores "aleatórios" e modelos mistos. Aleatorização, "Bootstrap" e Monte Carlo: testando hipóteses nulas sem definir parâmetros de variáveis aleatórias (abordagens 'não-paramétricas').	Cap. 1 Crawley	
	O método de verossimilhança máxima para comparar hipóteses e a Filosofia de comparação entre múltiplas hipóteses: teoria e prática da seleção de modelos		
	Miscelânea contemporânea: conceito de modelos lineares generalizados (GLM). Quando só temos presença e ausência como medida: regressão logística e modelos não-lineares.		
	Introdução à análise conjunta de múltiplas medidas em amostras: métodos gráficos e de análise (multivariada).		

BIBLIOGRAFIA BÁSICA:

Barbosa, C & P. C. Paiva. 2014. Introdução ao uso do programa R em análises de dados ecológicos http://www.labpoly.intranet.biologia.ufrj.br/R.pdf.

Gotelli, N. J. & A. M. Ellison. 2004. Princípios de Estatística em Ecologia. Artmed Editora, Porto Alegre.

Magnusson, W, G. Mourão & F. Costa. 2015. Estatística sem Matemática: A Ligação entre as Questões e a Análise. 2a. ed. Editora Planta, Londrina. Da Silva F.R., T. Gonçalves-Souza, G. B. Paterno, D. B. Provete & M. H. Vancine MH. 2022. Análises ecológicas no R. Nupeea, Recife, PE & Canal 6, Bauru.

Crawley, M.J. 2015. Statistics: An Introduction using R. 2nd ed. John Wiley & Sons, Ltd, West Sussex, England. Burnham, K.P. & D. R. Anderson. 2002. Model selection and

Burnham, K.P. & D. R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach, 2nd ed. Springer-Verlag, Heidelberg.

