MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor

Homework 10

- 1. Observations (x_i, Y_i) , i = 1, ..., n, are collected according to the model $Y_i = \alpha + \beta x_i + \epsilon_i$, where $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, and $Cov(\epsilon_i, \epsilon_j) = 0$ if $i \neq j$. find the best linear unbiased estimator of α .
- 2. Consider the residuals $\hat{\epsilon}_1, \dots, \hat{\epsilon}_n$ defined by $\hat{\epsilon}_i = Y_i \hat{\alpha} \hat{\beta}x_i$.
 - (a) Show that $E(\hat{\epsilon}_i) = 0$.
 - (b) Verify that $\operatorname{Var}(\hat{\epsilon}_i) = \operatorname{Var}(Y_i) + \operatorname{Var}(\hat{\alpha}) + x_i^2 \operatorname{Var}(\hat{\beta}) 2\operatorname{Cov}(Y_i, \hat{\alpha}) 2x_i \operatorname{Cov}(Y_i, \hat{\beta}) + 2x_i \operatorname{Cov}(\hat{\alpha}, \hat{\beta})$.
 - (c) Use Lemma 12.2.1 to show that $\text{Cov}(Y_i, \hat{\alpha}) = \sigma^2 \left(\frac{1}{n} \frac{(x_i \bar{x})\bar{x}}{S_{xx}}\right)$ and $\text{Cov}(Y_i, \hat{\beta}) = \sigma^2 \frac{x_i \bar{x}}{S_{xx}}$, and use these to verify the equation for $\text{Var}(\hat{\epsilon})$, (12.2.23).
- 3. Fill in the details about the distribution of $\hat{\alpha}$ left out of the proof of Theorem 12.2.1.
 - (a) Show that the estimator $\hat{\alpha} = \bar{y} \hat{\beta}\bar{x}$ can be expressed as $\hat{\alpha} = \sum_{i=1}^{n} c_i Y_i$, where $c_i \frac{1}{n} \frac{(x_i \bar{x})\bar{x}}{S_{xx}}$.
 - (b) Verify that $E(\hat{\alpha}) = \alpha$ and $Var(\hat{\alpha}) = \sigma^2 \left[\frac{1}{nS_{xx}} \sum_{i=1}^n x_i^2 \right]$.
 - (c) Verify that $Cov(\hat{\alpha}, \hat{\beta}) = \frac{-\sigma^2 \bar{x}}{S_{xx}}$.
- 4. We obtain observations Y_1, \ldots, Y_n which can be described by the relationship $Y_i = \theta x_i^2 + \epsilon_i$, where x_1, \ldots, x_n are fixed constants and $\epsilon_1, \ldots, \epsilon_n$ are iid $N(0, \sigma^2)$.
 - (a) Find the least squares estimator of θ .
 - (b) Find the MLE of θ .