ⁱ Frontpage

Institutt for datateknologi og informatikk

Eksamensoppgåve i TDT4145 Datamodellering og databasesystem

Eksamensdato: 26. februar 2024

Eksamenstid (frå-til): 10:00-12:00

Hjelpemiddelkode/Tillatne hjelpemiddel:

D: - Ingen trykte eller handskrivne hjelpemiddel tillatne. Bestemt, enkel kalkulator tillate.

Fagleg kontakt under eksamen:

Roger Midtstraum, mobil 995 72 420 Svein Erik Bratsberg, mobil: 995 39 963

Fagleg kontakt kjem til eksamenslokalet: Ja. Dei vil vere til stede i eksamenslokalet frå start av eksamenstida.

ANNA INFORMASJON:

Skaff deg eit overblikk over oppgåvesettet før du byrjar å svare på oppgåvene. Du får plusspoeng for riktige svar og minuspoeng for gale svar, men aldri mindre enn 0 poeng for ei oppgåve.

Les oppgåvene nøye, gjer deg opp dine eigne meiningar og presiser i svara dine kva for føresetnadar du har lagt til grunn i tolking/avgrensing av oppgåva. Fagleg kontaktperson kontaktast berre dersom du meiner det er direkte feil eller manglar i oppgåvesettet. Vend deg til ei eksamensvakt om du meiner det er feil eller manglar. Noter spørsmålet ditt på førehand.

Ingen handteikningar: Denne eksamenen tillèt ikkje bruk av handteikningar. Om du likevel har fått utdelt skanne-ark, er dette en feil. Arka vil ikkje bli akseptert for innlevering, og dei vil difor heller ikkje sendast til sensur.

Vekting av oppgåvene: Vektinga til oppgåva er skrive i overskrifta til kvart problem.

Varslingar: Dersom det oppstår behov for å gje beskjedar til kandidatane medan eksamen er i gang (f.eks. ved feil i oppgåvesettet), vil dette bli gjort via varslingar i Inspera. Eit varsel vil dukke opp som en dialogboks på skjermen i Inspera. Du kan finne att varselet ved å klikke på bjølla i øvre høgre hjørne på skjermen.

Trekk frå/avbroten eksamen: Blir du sjuk under eksamen, eller av andre grunnar ynskjer å levere blankt/avbryte eksamen, gå til "hamburgermenyen" i øvre høgre hjørne og vel «Lever blankt». Dette kan <u>ikkje</u> angrast sjølv om prøven framleis er open.

Tilgang til svara dine: Etter eksamen finn du svara dine i arkivet i Inspera. Merk at det kan ta ein virkedag før eventuelle handteikningar vert tilgjengelege i arkivet.

¹ Task 1: Relational Algabra (5 %)

Bruk denne databasen for ein kulestøytkonkurranse, der primærnøklar er understreka:

Athlete(StartNo, Name, ClubID)

- -- ClubID is a foreign key against Club table, cannot have NULL value ShotPut(<u>StartNo, Round</u>, Status, Length)
- -- StartNo is a foreign key against Athlete-table, cannot have NULL value Club(<u>ClubID</u>, Name)

Deltakarane (eng: athletes) gjer inntil seks kulestøyt (eng: shot puts), ein støyt i kvar omgang (eng: round). Alle støyt har status "godkjent" (eng: approved) eller "dødt" (eng: foul) og ei lengde.

Vi gjer denne relasjonsalgebra-spørjinga:

Kva er riktig utsegn om denne spørjinga?

Vel eitt alternativ

 It finds the number of athletes, which have taken part in the competition
It finds the number of clubs, which have participants in this round of the competition
 It finds the number of start numbers, which are in use in the competition
It finds the number of throws (shot puts), which have been made in each round of the competition

None of the other alternatives are correct

² Task 2: ER models (5 %)

Det er 10 entitetar i A, 15 entitetar i B, 20 entitetar i C og 25 entitetar i D.

D

(0,m)

Kva er det *minst*e talet på relasjonar som kan vere i R?

Mitt svar er:		
---------------	--	--

3 Task 3: ER Models (5 %)

Bruk datamodellen:

Det er 10 entitetar i A, 15 entitetar i B, 20 entitetar i C og 25 entitetar i D.

Kva er det *høgaste* talet på relasjonar som kan vere i R?

⁴ Task 4: ER models and relational databases (5 %)

Bruk denne datamodellen:

Ved oversetting til relasjonsdatabase-modell vel vi å representere R med tabellen R(aid, bid).

Kva vil vere primærnøkkelen i denne tabellen (R)?

Vel eitt eller fleire alternativ

■ We must have an extra attribute, rid, which will be the primary key
aid
□ bid
None of the other alternatives are correct
(aid, bid) - both attributes are necessary to have a primary key

⁵ Task 5: Normalization (5 %)

Vi har R(A,B,C,D,E) og F = {BC->A; CD->E}.

Vel dei alternativa som er *supernøklar* (eng: super keys) i R.

Val aitt allar flaire alternativ

ver ettt etter tiefre atternativ
BCD
ABC
■ None of the other alternatives are super keys
ABCD
BC
ABCDE

⁶ Task 6: Data models (5 %)

Bruk datamodellen:

		١

aid	bid
1	2
1	3
2	1
2	2
2	3

Tabellen R er ein gyldig tabellførekomst for relasjonsklassen R representert i ein relasjonsdatabase.

Vel eitt eller fleire alternativ

- \square (1,3)
- (0,n)
- \square (2,3)
- (0,3)
- \square (3,3)
- None of the other alternatives
- (2,2)
- (2,n)

^{*} er ein plasshaldar for ein (x,y)-parentes. Finn dei alternativa som kan vere moglege verdiar for *.

⁷ Task 7: SQL (5 %)

Bruk tabellane:

	г		1
	۰		•
	г	٠	
		×	•

A	В
1	1
1	2
2	1

S

В	С
1	1
1	2
2	1
2	2
3	3

T

С	D
1	2
3	2
1	3

Kor mange rader blir det i resultat-tabellen frå spørjinga:

select D

from (R cross join S) natural join T;

Skriv svaret her:

١.

8 Task 8: SQL (5 %)

Bruk tabellane:

R

A	В
1	1
1	2
2	1

S

В	С
1	1
1	2
2	1
2	2
3	3

T

С	D
1	2
3	2
1	3

Kor mange rader blir det i resultat-tabellen frå spørjinga:

select D

from (R natural join S) natural join T;

Skriv svaret her:

9 Task 9: SQL (5 %)

Bruk tabellane:

R

A	В
1	1
1	2
2	1

S

В	С
1	1
1	2
2	1
2	2
3	3

T

C	D
1	2
3	2
1	3

Kor mange rader blir det i resultat-tabellen frå spørjinga:

select count(C)

from S

where not exists (select * from R where B = S.B);

Skriv svaret her:

¹⁰ Task 10: SQL (5 %)

Bruk tabellen:

R

Α	В	С	D
1.	2	5	6
1	2	7	8
2	4	15	16
3	5	13	14
1	3	9	10
1	3	8	10
2	4	11	12
3	5	15	11
1	3	9	17
1	2	13	10
3	6	3	8
3	6	13	6

Kor mange *rader* blir det i resultattabellen viss vi gjer spørjinga:

select A, B, sum(D) from R where B <= 4 group by A, B having sum(D) > 25

Skriv	svaret her:	
Skriv	svaret her:	

11 Task 11: Relational databases (5 %)

Bruk denne databasen for ein kulestøytkonkurranse, der primærnøklar er understreka:

Athlete(StartNo, Name, ClubID)

- -- ClubID is a foreign key against Club table, cannot have NULL value ShotPut(<u>StartNo, Round</u>, Status, Length)
- -- StartNo is a foreign key against Athlete-table, cannot have NULL value Club(<u>ClubID</u>, Name)

Ta utgangspunkt i SQL-spørjinga:

select distinct StartNo, Name from Athlete where StartNo in (select StartNo from ShotPut);

Kva for nokre av desse relasjonsalgebra-spørjingane vil gje same resultat som SQL-spørjinga?

For minus-operatoren vil det vere slik at den høgre operanden (b) blir trekt frå den venstre operanden (a).

Vel eitt eller fleire alternativ	
□ D	
□ A	
□ C	
В	
■ None of the other alternatives will give the same result.	
	Maks poeng: 5

12 Task 12: Relational databases (5 %)

Bruk denne databasen for ein kulestøytkonkurranse, der primærnøklar er understreka:

Athlete(StartNo, Name, ClubID)

- -- ClubID is a foreign key against Club table, cannot have NULL value ShotPut(<u>StartNo, Round</u>, Status, Length)
- -- StartNo is a foreign key against Athlete-table, cannot have NULL value Club(<u>ClubID</u>, Name)

Vi vil finne StartNo, (Athlete-)Name og (Club-)Name for utøvarar som har registrert minst ein gyldig kulestøyt (Status = 'Approved'). Gitt føljande relasjonsalgebra-spørringer, vel dei som gir riktig resultat.

Vel eitt eller fleire alternativ B None of the other alternatives gives the correct result A D C

¹³ Task 13: Normalization (5 %)

Vi har R(A,B,C) og $F = \{A->>B, A->>C\}$. Når vi dekomponerer ein særskild tabellførekomst av R = R(A,B) og R(A,C) får vi desse tabellførekomstane for R(A,C)

R1

A	В
1	2
1	3
1	4
2	2

R2

Α	С
1	5
1	6
2	7

(1,2,3) er eit døme på ei rad i R, der A=1, B=2 og C=3. Gitt informasjonen over, velg ut dei alternativa som må vere med som ei rad i den aktuelle tabellførekomsten av R.

Vel eitt eller fleire alternativ

	None of	the oth	er alter	natives	will be	a row	in the	R table.
--	---------	---------	----------	---------	---------	-------	--------	----------

(2,2,7)

(2,3,8)

(1,2,7)

(2,2,6)

(1,3,6)

¹⁴ Task 14: Normalization (5 %)

Vi har $R(A,B,C,D)$ og $F = \{A->B; D->C\}$. R oppfyller fyrste normalform (1NF).
Anta at vi dekomponerer R i R1(A,B), R2(A,D) og R3(C,D).
Velg dei utsegna som er riktige.

Vel eitt eller fleire alternativ

☐ The decompocition preserves functional dependencies
☐ The decomposition has the lossless join property
■ None of the other alternatives are correct
☐ The decomposation has the attribute preservation property
R1, R2 and R3 all satiesfies Boyce-Codd normal form (BCNF)

¹⁵ Task 15: SQL (5 %)

Bruk denne databasen for ein kulestøytkonkurranse, der primærnøklar er understreka:

Athlete(StartNo, Name, ClubID)

- -- ClubID is a foreign key against Club table, cannot have NULL value ShotPut(<u>StartNo, Round</u>, Status, Length)
- -- StartNo is a foreign key against Athlete-table, cannot have NULL value Club(<u>ClubID</u>, Name)

Vi har SQL spørjinga:

Den delen av spørjinga som er merka med A, kan bytast ut. Vel dei alternativa som gjer at (den nye) spørjinga gjev det same resultatet

Vel eitt eller fleire alternativ

Athlete inner join ShotPut using (StartNo)
■ Athlete left outer join ShotPut on (Athlete.StartNo = ShotPut.StartNo)
Athlete, ShotPut
Athlete cross join ShotPut
☐ Athlete right outer join ShotPut on (Athlete.StartNo = ShotPut.StartNo)
None of the other alternatives will give the same result

¹⁶ Task 16: Normalization (5 %)

Vi har $R(A,B,C,D)$ og $F = \{AC->D; BC->D; A->B; B->A \}$. R oppfyller fyrste normalform (1N	F).
--	-----

Vel den høgaste normalforma som R oppfyller.

			4.5
Ve	leitt	alter	nativ

○ First normal form (1NF)	

- Boyce-Codd normal form (BCNF)
- Third normal form (3NF)
- Second normal form (2NF)

¹⁷ Task 17: Normalization (5 %)

Bruk tabellen:

R

Α	В	С	D
1	2	2	2
1	3	3	3
1	4	4	4
2	2 2 2		2
2	2 5		2

Kva for funksjonelle avhengnadar (eng: functional dependencies) kan ikkje gjelde for R?

Vel eitt eller fleire alternativ

BC->A

All the other alternatives might hold for R

AB->A

□ D->C

CD->A

□ C->C

■ A->B

18 Task 18: Data Models (5 %)

Bruk denne modellen:

Kva for utsegn er riktige?

Vel eitt eller fleire alternativ

bus
When mapped to a relational model, according to guidelines, the MeansOfTransport table will have two attributes, MOTID and Type. MOTID will have a value, which is either a BikeID or a CarID
When mapped to a relational model, according to guidelines, the Bike table will have a foreign key against the MeansOfTransport table
There can be bikes, which have not been used as MeansOfTransport
A travel is made by one or more bikes, by one or more cars, or by a combination of bikes and cars
None of the other alternatives are correct

¹⁹ Task 19: Data Models (5 %)

Bruk denne datamodellen:

Vel dei utsegna som er riktige.

Vel eitt eller fleire alternativ

All persons must be either employee or student

We can store unused email addresses
A person who is both employee and student must have two different email addresses
An employee can be student at the department where she/he works
Several persons can have the same email address
None of the other alternatives are correct
☐ It is optional for students to have an email address

²⁰ Task 20: Normalization (5 %)

Vi har R(A,B,C,D) og $F = \{A->B; D->C\}$. R oppfyller fyrste normalform (1NF). Anta at vi dekomponerer R i R1(A,B,C) og R2(B,C,D).

Vi vil legge til ein avhengnad (eng: dependency). Kva for alternativ vil sikre at dekomponeringen har tapslaus join eigenskapen (eng: lossless join property)?

Vel eitt eller fleire alternativ
□ CD->B
■ None of the other alternatives
□ A->BC
□ BC->>A
□ C->D
□ B->C
□ BC->A

21 Task 21: Comments (0 %)

Denne "oppgåva" er ei moglegheit for å informere om *omstende* som du tenker er **heilt naudsynte** å kommunisere til sensor, for at svara dine skal bli riktig vurdert. Dette kan til dømes vere føresetnader som det var heilt naudsynt å gjere.

Du skal *ikkje* bruke dette feltet til å gje *generelle kommentarar* til eksamen, det kan du gjere i Piazza eller i e-post til faglærar.

Skriv svaret ditt her...

Format	- B I	<u>Ū</u> ×₂	$\mathbf{x}^{z} \mid \underline{\mathbf{I}}_{x} \mid \bar{\mathbb{D}}$	= C	: Ω =	
ΣΙΧ						
						Words: 0