25

Contents

```
8.1 Find max tangent(x,y is increasing) 8fea15 . . . . . . .
                                             8.2 Exact Cover Set 01c503
                                             1 Basic
 1.1 .vimrc
                                             8.4 Hilbert Curve 8fa235
 1 Basic
 1.1 .vimrc
 2.1 ISAP cdd83b . . .
                                            svn on
 se ai nu rnu ru cul mouse=a
 2.3 Dinic aa63d9 .
 se cin et ts=2 sw=2 sts=2
 2.5 SW min-cut 9beb62 . . .
                                            so $VIMRUNTIME/mswin.vim
 colo desert
                                            filet plugin indent on
 2.8 Max flow with lower/upper bound b5002a . . . . . . . .
                                            no <F5> :!./a.out<CR>
no <F9> :!g++ -02 -std=gnu++14 -lm % -g -fsanitize=
 undefined -Wall -Wextra -Wshadow -Wno-unused-result<
3 Math
 1.2 hash.sh
 3.3 Fast Walsh Transform c77328 . . . . . . . . . . . . . . .
 #!/bin/bash
 cpp -dD -P -fpreprocessed $1 | tr -d '[:space:]'| md5sum
 Icut -c-6
                                            1.3 Custom Hash a296c3
 struct custom_hash {
                                          8
                                             static uint64_t splitmix64(uint64_t x) {
 x += 0x9e3779b97f4a7c15;
                                               x = (x \land (x >> 30)) * 0xbf58476d1ce4e5b9;

x = (x \land (x >> 27)) * 0x94d049bb133111eb;
                                          8
                                               return x \wedge (x \gg 31);
 4 Geometry
                                         10
                                             size_t operator()(uint64_t x) const {
 4.1 Intersection of 2 lines 3db65e . . . . . . . . .
                                         10
                                               static const uint64_t FIXED_RANDOM = chrono::
 10
                                                  steady_clock::now().time_since_epoch().count();
                                         10
                                               return splitmix64(x + FIXED_RANDOM);
 4.4 Banana de5c4e . . . . . . . . . . . .
 10
                                         10
                                           };
 4.6 Intersection of polygon and circle 95d872 . . . . . .
                                         10
 4.7 Intersection of 2 circles 57edf8 . . . . . . . . . . . .
                                         10
 1.4 python-related
 4.9 Li Chao Segment Tree 801fb6 . . . . . . . . . . . . . . .
 11
                                            from fractions import Fraction
 4.11Tangent line of two circles fab32c . . . . . . . . . . . . . .
                                            from decimal import Decimal, getcontext
 4.12Tangent line of point and circle 35a7bf . . . . . . . .
                                            getcontext().prec = 250 # set precision
 4.13Min distance of two convex 9b7d9c . . . . . . . . . . .
 itwo = Decimal(0.5)
                                         13
                                            two = Decimal(2)
 4.16Delaunay Triangulation cee898 . . . . . . . . .
                                         13
 4.17Min Enclosing Circle 9ca717 . . . . . . . . .
                                         14
 4.18Min Enclosing Ball 64186c . . . . . . . . . .
                                         14
                                            N = 200
 4.19Minkowski sum 71066d
                                         14
                                            def angle(cosT):
    """given cos(theta) in decimal return theta"""
 15
                                         15
                                             for i in range(N):
                                               cosT = ((cosT + 1) / two) ** itwo
                                         15
                                             sinT = (1 - cosT * cosT) ** itwo
return sinT * (2 ** N)
 5.1 DominatorTree aea6b3
                                         15
 5.2 Directed MST(ElogE) 4b46a2 . . . . . . . . . . . . .
                                         15
 5.3 MaximalClique a8cba8 . . . . . . . . . . . .
                                         16
                                            pi = angle(Decimal(-1))
 5.4 MaxCliqueDyn e0119d . . . . . .
 5.5 Strongly Connected Component 10c233 . . . . . . . . .
                                         16
 flow
                                         17
                                         17
 5.8 Minimum General Weighted Matching 862569 . . . . . . .
                                                ISAP cdd83b
                                         17
 5.9 Maximum General Weighted Matching b48b72 . . . . . . .
                                         18
 5.10Minimum Steiner Tree 48ef1c . . . . . . . . . . . . . . .
                                         19
                                            #define SZ(c) ((int)(c).size())
 5.11BCC based on vertex bba50a . . . . . . . . . . . . . . . .
                                         20
                                            struct Maxflow {
 20
                                             static const int MAXV = 50010;
static const int INF = 1000000;
                                         20
 5.14K-th Shortest Path 355040 . . . . . . . . . . . . . . .
                                         21
 struct Edge {
                                         22
                                               int v, c, r;
Edge(int _v, int _c, int _r):
    v(_v), c(_c), r(_r) {}
6 String
                                         22
 22
 23
                                             int s, t;
                                         23
                                             vector<Edge> G[MAXV];
 23
                                             int iter[MAXV], d[MAXV], gap[MAXV], tot;
void init(int n, int _s, int _t) {
  tot = n, s = _s, t = _t;

 23
 24
                                         24
                                               for(int i = 0; i <= tot; i++) {
                                                G[i].clear();
iter[i] = d[i] = gap[i] = 0;
7 Data Structure
```

8 Others

```
}
  void add_edge(int u, int v, int c) {
   G[u].push_back(Edge(v, c, SZ(G[v]) ));
   G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int DFS(int p, int flow) {
     if(p == t) return flow;
     for(int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
       Edge &e = G[p][i];
if(e.c > 0 && d[p] == d[e.v]+1) {
          int f = DFS(e.v, min(flow, e.c));
          if(f) {
            e.c -= f;
            G[e.v][e.r].c += f;
            return f;
       }
     if((--gap[d[p]]) == 0) d[s] = tot;
     else {
       d[p]++;
       iter[p] = 0;
       ++gap[d[p]];
     return 0;
  int flow() {
     int res = 0;
     gap[0] = tot;
     for(res = 0; d[s] < tot; res += DFS(s, INF));
     return res;
} flow;
```

2.2 MinCostFlow c72a7d

```
struct zkwflow {
  static const int maxN = 10000;
  struct Edge { int v, f, re; ll w; };
  int n, s, t, ptr[maxN];
bool vis[maxN]; ll dis[maxN];
  vector<Edge> E[maxN];
  void init(int _n, int _s, int _t) {
    n = _n, s = _s, t = _t;
for (int i = 0; i < n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f, ll w) {
    E[u].push_back({v, f, (int)E[v].size(), w});
    E[v].push_back({u, 0, (int)E[u].size()-1, -w});
  bool SPFA() {
     fill_n(dis, n, LLONG_MAX);
    fill_n(vis, n, false);
    dis[s] = 0;
    queue<int> q; q.push(s);
    while (!q.empty()) {
       int u = q.front(); q.pop();
       vis[u] = false;
       for (auto &it : E[u]) {
         if (it.f > 0 && dis[it.v] > dis[u] + it.w) {
            dis[it.v] = dis[u] + it.w;
            if (!vis[it.v]) {
              vis[it.v] = true;
              q.push(it.v);
            }
         }
      }
    return dis[t] != LLONG_MAX;
  int DFS(int u, int nf) {
     if (u == t) return nf;
     int res = 0; vis[u] = true;
     for (int &i = ptr[u]; i < (int)E[u].size(); i++) {</pre>
       auto &it = E[u][i];
```

```
if (it.f > 0 && dis[it.v] == dis[u] + it.w && !vis
           [it.v]) ·
        int tf = DFS(it.v, min(nf, it.f));
        res += tf, nf -= tf, it.f -= tf;
        E[it.v][it.re].f += tf;
        if (nf == 0) {
          vis[u] = false;
          break;
        }
      }
    return res;
  pair<int, ll> flow() {
    int flow = 0; ll cost = 0;
    while (SPFA()) {
      fill_n(ptr, n, 0);
      int f = DFS(s, INT_MAX);
      flow += f
      cost += dis[t] * f;
    return { flow, cost };
} flow;
```

2.3 Dinic aa63d9

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n;    s = _s;    t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
   E[u].push_back({v,f,(int)E[v].size()})
    E[v].push_back({u,0,(int)E[u].size()-1});
  bool BFS(){
   for (int i=0; i<n; i++) level[i] = -1;</pre>
     queue<int> que;
     que.push(s);
     level[s] = 0;
    while (!que.empty()){
       int u = que.front(); que.pop();
       for (auto &it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
      }
    return level[t] != -1;
  int DFS(int u, int nf){
     if (u == t) return nf;
     int res = 0;
    for (auto &it : E[u]){
  if (it.f > 0 && level[it.v] == level[u]+1){
         int tf = DFS(it.v, min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
         E[it.v][it.re].f += tf;
         if (nf == 0) return res;
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
       res += DFS(s,2147483647);
    return res;
}flow;
```

2.4 Kuhn Munkres 7b81b8

```
struct KM{ // max weight, for min negate the weights
   static const int MXN = 2001; // 1-based
   static const ll INF = 0x3f3f3f3f;
  int n, mx[MXN], my[MXN], pa[MXN];
ll g[MXN][MXN], lx[MXN], ly[MXN], sy[MXN];
  bool vx[MXN], vy[MXN];
  void init(int _n) {
     n = _n;
     for(int i=1; i<=n; i++) fill(g[i], g[i]+n+1, 0);</pre>
   void addEdge(int x, int y, ll w) \{g[x][y] = w;\}
  void augment(int y) {
     for(int x, z; y; y = z)
  x=pa[y], z=mx[x], my[y]=x, mx[x]=y;
  void bfs(int st) {
     for(int i=1; i<=n; ++i) sy[i]=INF, vx[i]=vy[i]=0;
     queue<int> q; q.push(st);
     for(;;) {
       while(q.size()) {
          int x=q.front(); q.pop(); vx[x]=1;
for(int y=1; y<=n; ++y) if(!vy[y]){
    ll t = lx[x]+ly[y]-g[x][y];
</pre>
             if(t==0){
                pa[y]=x;
                if(!my[y]){augment(y);return;}
                vy[y]=1, q.push(my[y]);
             }else if(sy[y]>t) pa[y]=x,sy[y]=t;
          }
        11 cut = INF;
        for(int y=1; y<=n; ++y)</pre>
          if(!vy[y]&&cut>sy[y]) cut=sy[y];
        for(int j=1; j<=n; ++j){
  if(vx[j]) lx[j] -= cut;</pre>
          if(vy[j]) ly[j] += cut;
          else sy[j] -= cut;
       for(int y=1; y<=n; ++y) if(!vy[y]&&sy[y]==0){
   if(!my[y]){augment(y); return;}</pre>
          vy[y]=1, q.push(my[y]);
       }
     }
  ll solve(){
     fill(mx, mx+n+1, 0); fill(my, my+n+1, 0); fill(ly, ly+n+1, 0); fill(lx, lx+n+1, -INF);
     for(int x=1; x<=n; ++x) for(int y=1; y<=n; ++y)</pre>
        lx[x] = max(lx[x], g[x][y]);
     for(int x=1; x<=n; ++x) bfs(x);</pre>
     11 \text{ ans} = 0;
     for(int y=1; y<=n; ++y) ans += g[my[y]][y];
     return ans;
}graph;
```

2.5 SW min-cut 9beb62

```
const int INF=0x3f3f3f3f;
template<typename T>
struct stoer_wagner{// 0-base
  static const int MAXN=501;
  T g[MAXN][MAXN], dis[MAXN];
  int nd[MAXN],n,s,t;
  void init(int _n){
    n=_n;
     for(int i=0;i<n;++i)</pre>
       for(int j=0;j<n;++j)g[i][j]=0;</pre>
  void add_edge(int u,int v,T w){
    g[u][v]=g[v][u]+=w;
  T min_cut(){
    T ans=INF;
     for(int i=0;i<n;++i)nd[i]=i;</pre>
    for(int ind,tn=n;tn>1;--tn){
  for(int i=1;i<tn;++i)dis[nd[i]]=0;</pre>
       for(int i=1;i<tn;++i){</pre>
         ind=i:
         for(int j=i;j<tn;++j){
  dis[nd[j]]+=g[nd[i-1]][nd[j]];</pre>
            if(dis[nd[ind]]<dis[nd[j]])ind=j;</pre>
```

```
    swap(nd[ind],nd[i]);
}
if(ans>dis[nd[ind]])
    ans=dis[t=nd[ind]],s=nd[ind-1];
for(int i=0;i<tn;++i)
    g[nd[ind-1]][nd[i]]=g[nd[i]][nd[ind-1]]
    +=g[nd[i]][nd[ind]];
}
return ans;
}
};</pre>
```

2.6 Max Cost Circulation 13c218

```
struct MaxCostCirc {
   static const int MAXN = 33;
  int n , m;
struct Edge { int v , w , c , r; };
vector<Edge> g[ MAXN ];
int dis[ MAXN ] , prv[ MAXN ] , prve[ MAXN ];
   int ans
  void init( int _n , int _m ) : n(_n), m(_m) {}
void adde( int u , int v , int w , int c ) {
   g[ u ].push_back( { v , w , c , (int)g[ v ].size() }
     g[ v ].push_back( { u , -w , 0 , (int)g[ u ].size()
           -1);
   bool poscyc() {
     fill( dis , dis+n+1 , 0 );
     fill( prv , prv+n+1 , 0 );
fill( vis , vis+n+1 , 0 );
     int tmp = -1;
     for(int t=0;t<=n;t++) {</pre>
        for(int i=1;i<=n;i++) -</pre>
           for(int j=0;j<(int)g[i].size();j++) {</pre>
             Edge& e = g[ i ][ j ];
if( e.c && dis[ e.v ] < dis[
dis[ e.v ] = dis[ i ]+e.w;
                                          < dis[ i ]+e.w ) {
                prv[ e.v ] = i;
                prve[ e.v ] = j;
                if( t == n ) {
                  tmp = i;
                  break;
                if( tmp == -1 ) return 0;
     int cur = tmp;
     while( !vis[ cur ] ) {
        vis[ cur ] = 1;
cur = prv[ cur ];
     int now = cur , cost = 0 , df = 100000;
     do{
        Edge \&e = g[prv[now]][prve[now]];
        df = min(df, e.c);
        cost += e.w;
        now = prv[now];
     }while( now != cur );
     ans += df*cost; now = cur;
        Edge &e = g[prv[now]][prve[now]];
        Edge &re = g[now][e.r];
        e.c -= df;
        re.c += df;
        now = prv[now];
     }while( now != cur );
     return 1;
} circ;
```

2.7 Gomory-Hu Tree 796cf8

```
//n,Dinic::flow must be filled
//result:e[u][v]=u-v mincut;p[u]:u's parent on cut tree
int n,e[MXN][MXN],p[MXN];
void gomory_hu(){
  fill(p, p+n, 0);
  fill(e[0], e[n], INF);
  for(int s = 1 ; s < n ; s++){
    int t = p[s];</pre>
```

```
Dinic F; F.init(n,s,t);
copy(flow.E,flow.E+MXN,F.E);
int tmp = F.flow();
for( int i = 0 ; i < s ; i++ )
    e[s][i] = e[i][s] = min(tmp, e[t][i]);
for( int i = s+1 ; i < n ; i++ )
    if ( p[i] == t && F.level[i]!=-1 ) p[i] = s;
}
</pre>
```

2.8 Max flow with lower/upper bound b5002a

```
// Max flow with lower/upper bound on edges
// use with ISAP
int in[ N ] , out[ N ];
int l[ M ] , r[ M ] , a[ M ] , b[ M ];
int solve(int n, int m, int s, int t){
   flow.init( n );
   for( int i = 0; i < m : i ++ ){
     in[ r[ i ] ] += a[ i ];
out[ l[ i ] ] += a[ i ];
flow.addEdge( l[ i ] , r[ i ] , b[ i ] - a[ i ] );
// flow from l[i] to r[i] must in [a[ i ], b[ i ]]
   int nd = 0;
   for( int i = 0 ; i <= n ; i ++ ){
  if( in[ i ] < out[ i ] ){
    flow.addEdge( i , flow.t , out[ i ] - in[ i ] );
    nd += out[ i ] - in[ i ];</pre>
      if( out[ i ] < in[ i ] )</pre>
         flow.addEdge( flow.s , i , in[ i ] - out[ i ] );
   // original sink to source
   flow.addEdge( t , s , INF );
if( flow.solve() != nd )
   // no solution
      return -1;
   int ans = flow.G[ s ].back().c; // source to sink
flow.G[ s ].back().c = flow.G[ t ].back().c = 0;
   // take out super source and super sink
   for( size_t i = 0 ; i < flow.G[ flow.s ].size() ; i ++</pre>
      flow.G[ flow.s ][ i ].c = 0;
      Maxflow::Edge &e = flow.G[ flow.s ][ i ];
      flow.G[ e.v ][ e.r ].c = 0;
   for( size_t i = 0 ; i < flow.G[ flow.t ].size() ; i ++</pre>
          ){
      flow.G[ flow.t ][ i ].c = 0;
Maxflow::Edge &e = flow.G[ flow.t ][ i ];
      flow.G[ e.v ][ e.r ].c = 0;
   flow.addEdge( flow.s , s , INF );
   flow.addEdge( t , flow.t , INF );
flow.reset(); // set iter,d,gap to 0
   return ans + flow.solve();
}
```

2.9 HLPPA 3c7c91

```
template <int MAXN, class T = int>
struct HLPP {
   const T INF = numeric_limits<T>::max();
   struct Edge {
     int to, rev; T f;
   };
   int n, s, t;
   vector<Edge> adj[MAXN];
   deque<int> lst[MAXN];
   vector<int> gap[MAXN];
   int ptr[MAXN];
   T ef[MAXN];
   int h[MAXN], cnt[MAXN], work, hst=0; // highest
   void init(int _n, int _s, int _t) {
     n=_n+1; s = _s; t = _t;
     for(int i=0;i<n;i++) adj[i].clear();
   }
   void add_edge(int u,int v,T f,bool isDir = true){
     adj[u].push_back({v,adj[v].size(),f});
     adj[v].push_back({u,adj[u].size()-1,isDir?0:f});
}</pre>
```

```
void updHeight(int v, int nh) {
     work++
     if(h[v] != n) cnt[h[v]]--;
     h[v] = nh;
     if(nh == n) return;
     cnt[nh]++, hst = nh; gap[nh].push_back(v);
     if(ef[v]>0) lst[nh].push_back(v), ptr[nh]++;
  void globalRelabel() {
     work = 0;
     fill(h, h+n, n);
     fill(cnt, cnt+n, 0);
     for(int i=0; i<=hst; i++)
    lst[i].clear(), gap[i].clear(), ptr[i] = 0;</pre>
     queue<int> q({t}); h[t] = 0;
     while(!q.empty()) {
       int v = q.front(); q.pop();
       for(auto &e : adj[v])
  if(h[e.to] == n && adj[e.to][e.rev].f > 0)
            q.push(e.to), updHeight(e.to, h[v] + 1);
    }
  void push(int v, Edge &e) {
     if(ef[e.to] == 0)
       lst[h[e.to]].push_back(e.to), ptr[h[e.to]]++;
     T df = min(ef[v], e.f);
     e.f -= df, adj[e.to][e.rev].f += df;
     ef[v] -= df, ef[e.to] += df;
  void discharge(int v) {
     int nh = n;
     for(auto &e : adj[v]) {
       if(e.f > 0) {
         if(h[v] == h[e.to] + 1) {
            push(v, e);
            if(ef[v] <= 0) return;</pre>
         else nh = min(nh, h[e.to] + 1);
     if(cnt[h[v]] > 1) updHeight(v, nh);
     else {
       for(int i = h[v]; i < n; i++) {</pre>
         for(auto j : gap[i]) updHeight(j, n);
gap[i].clear(), ptr[i] = 0;
    }
  T flow() {
     fill(ef, ef+n, 0);
ef[s] = INF, ef[t] = -INF;
     globalRelabel();
     for(auto &e : adj[s]) push(s, e);
for(; hst >= 0; hst--) {
       while(!lst[hst].empty()) {
         int v=lst[hst].back(); lst[hst].pop_back();
         discharge(v);
if(work > 4 * n) globalRelabel();
     return ef[t] + INF;
  }
};
```

2.10 Flow Method

```
Maximize c^T x subject to Ax \leq b, x \geq 0; with the corresponding symmetric dual problem, Minimize b^T y subject to A^T y \geq c, y \geq 0.

Maximize c^T x subject to Ax \leq b; with the corresponding asymmetric dual problem, Minimize b^T y subject to A^T y = c, y \geq 0.

General Graph:
|Max Ind. Setl + |Min Vertex Coverl = |V|
|Max Ind. Edge Setl + |Min Edge Coverl = |V|
Bipartite Graph:
|Max Ind. Setl = |Min Edge Coverl |
|Max Ind. Setl = |Min Edge Coverl |
|Max Ind. Edge Setl = |Min Vertex Coverl |
```

To reconstruct the minimum vertex cover, dfs from each unmatched vertex on the left side and with unused edges only. Equivalently, dfs from source with unused edges only and without visiting sink. Then, a vertex is chosen iff. it is on the left side and without visited or on the right side and visited through dfs.

Minimum Weighted Bipartite Edge Cover:

Construct new bipartite graph with n+m vertices on each

for each vertex u, duplicate a vertex u' on the other side

for each edge (u,v,w), add edges (u,v,w) and (v',u',w) for each vertex u, add edge (u,u',2w) where w is min edge connects to u

then the answer is the minimum perfect matching of the new graph (KM)

Maximum density subgraph (\sum{W_e}+ \sum{W_v}) / |V| Binary search on answer:

For a fixed D, construct a Max flow model as follow:

Let S be Sum of all weight(or inf) 1. from source to each node with cap = S

2. For each (u,v,w) in E, (u->v,cap=w), (v->u,cap=w)

3. For each node v, from v to sink with cap = S + 2 * D

- deg[v] - 2 * (W of v)

where deg[v] = \sum weight of edge associated with v If maxflow < S * IVI, D is an answer.

Requiring subgraph: all vertex can be reached from source with edge whose cap > 0.

Maximum closed subgraph

- 1. connect source with positive weighted vertex(capacity =weight)
- connect sink with negitive weighted vertex(capacity=weight)
- 3. make capacity of the original edges = inf
- 4. ans = sum(positive weighted vertex weight) (max flow)

Minimum Path Cover of DAG

- For each vertex v, split it to v_in and v_out.
- 2. For each edge (u->v), add an edge between u_out and
- 3. | Minimum Path Cover| = | V| | Maximum Matching| of the new bipartite graph

Math

3.1 FFT 9ed6b5

```
const int MAXN = 262144;
// (must be 2^k)
// before any usage, run pre_fft() first
typedef long double ld;
typedef complex<ld> cplx;
const ld PI = acosl(-1);
const cplx I(0, 1);
cplx omega[MAXN+1];
void pre_fft(){
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
// n must be 2^k
void fft(int n, vector<cplx> &a, bool inv=false){
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m \gg 1;
    for (int i = 0; i < mh; i++) {</pre>
       cplx w = omega[inv ? MAXN-(i*theta%MAXN)
                             : i*theta%MAXN];
       for (int j = i; j < n; j += m) {
         int k = j + mh;
         cplx x = a[j] - a[k];
a[j] += a[k];
         a[k] = w * x;
```

```
theta = (theta * 2) % MAXN;
int i = 0;
for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
  if (j < i) swap(a[i], a[j]);
if(inv) for (i = 0; i < n; i++) a[i] /= n;
```

3.2 NTT 842b2b

```
/* p=a*2^k+1
                                              root
    998244353
                             119
                                     23
                                      27
    2013265921
                             15
                                              31
    2061584302081
                                      37
                             15
    2748779069441
                                      39
                                              3
                             27
    1945555039024054273
                                      56
                                              5 */
template<ll P,ll root,int MAXK,int MAXN>
struct NTT{
  static ll powi(ll a,ll b){
    ll ret=1;
     for(;b;b>>=1,a=mul(a, a, P)){
       if(b&1) ret=mul(ret, a, P);
    }
    return ret;
  static ll inv(ll a,ll b){
     if(a==1) return 1;
     return (((a-inv(b%a,a))*b+1)/a)%b; // overflow
  11 omega[MAXK+1],inv_omega[MAXK+1];
  NTT(){
    omega[MAXK]=powi(root,(P-1)>>MAXK);
     for(int i=MAXK-1;i>=0;i--)
       omega[i]=mul(omega[i+1], omega[i+1], P);
     for(int i=0;i<=MAXK;i++)
       inv_omega[i]=inv(omega[i],P);
  void tran(int n,ll a[],bool inv_ntt=false){//n=2^i
     for(int i=1,j=0;i<n;i++){</pre>
       for(int k=n>>1;!((j^=k)&k);k>>=1);
       if(i<j) swap(a[i],a[j]);</pre>
     11 *G=(inv_ntt?inv_omega:omega);
    for(int k=2,t=1;k<=n;k<<=1){
  int k2=k>>1;ll dw=G[t++];
       for(int j=0; j< n; j+=\bar{k}){
         ll w=1:
         for(int i=j;i<j+k2;i++){</pre>
           ll x=a[i],y=mul(a[i+k2], w, P);

a[i]=x+y; if(a[i]>=P) a[i]-=P;

a[i+k2]=x-y; if(a[i+k2]<0) a[i+k2]+=P;

w=mul(w, dw, P);
       }
     if(inv_ntt){
       ll inv_n=inv(n,P);
       for(int i=0;i<n;i++) a[i]=mul(a[i], inv_n, P);</pre>
  }
const ll P=2013265921,root=31;
const int MAXN=4194304, MAXK=22; //MAXN=2^k
NTT<P,root,MAXK,MAXN> ntt;
```

3.3 Fast Walsh Transform c77328

```
/* xor convolution:
* x = (x0,x1) , y = (y0,y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
 * x' = ( x0+x1 , x0-x1 ) , y' = ( y0+y1 , y0-y1 )

* z' = ( ( x0+x1 )( y0+y1 ) , ( x0-x1 )( y0-y1 ) )
 * z = (1/2) * z'
 * or convolution:
 * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
 * and convolution:
 * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div * ternery xor convolution:
```

```
* x = (x0+x1+x2,x0+x1w+x2w^2,x0+x1w^2+x2w)

* inv = (1/3) * (x0+x1+x2,x0+x1w^2+x2w,x0+x1w+x2w^2)
 * where w^3=1 and w^2=-w-1 */
typedef long long ll;
const int MAXN = (1<<20)+10;</pre>
const 11 \text{ MOD} = 1e9+7;
inline ll pw( ll x , ll k ) {
   ll res = 1;
   for( ll bs = x ; k ; k >>= 1, bs = (bs * bs)%MOD )
  if( k&1 ) res = ( res * bs ) % MOD;
   return res:
inline ll invf( ll x )
  return pw( x , MOD-2 );
inline void fwt( ll x[ MAXN ] , int N , bool inv=0 ) {
   for( int d = 1 ; d < N ; d <<= 1 ) {
  int d2 = d << 1;</pre>
      for( int s = 0 ; s < N ; s += d2 )
        for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
    ll ta = x[ i ] , tb = x[ j ];</pre>
           x[i] = ta+tb;
          x[j] = ta-tb;
if(x[i] >= MOD) x[i] -= MOD;
           if( x[ j ] < 0 ) x[ j ] += MOD;</pre>
   ll invN = invf(N);
   if( inv )
     for( int i = 0 ; i < N ; i++ ) {
    x[i] *= invN;
        x[ i ] %= MOD;
}
```

3.4 Poly operator 9d0cf4

```
struct PolyOp {
#define FOR(i, c) for (int i = 0; i < (c); ++i)
NTT<P, root, MAXK, MAXN> ntt;
  static int nxt2k(int x) {
     int i = 1; for (; i < x; i <<= 1); return i;
  void Mul(int n, ll a[], int m, ll b[], ll c[]) {
   static ll aa[MAXN], bb[MAXN];
     int N = nxt2k(n+m)
     copy(a, a+n, aa); fill(aa+n, aa+N, 0); copy(b, b+m, bb); fill(bb+m, bb+N, 0);
     ntt.tran(N, aa); ntt.tran(N, bb);
FOR(i, N) c[i] = aa[i] * bb[i] % P;
     ntt.tran(N, c, 1);
  void Inv(int n, ll a[], ll b[]) {
   // ab = aa^-1 = 1 mod x^(n/2)
     // (b - a^{-1})^2 = 0 \mod x^n
     // bb + a^-2 - 2 ba^-1 = 0
     // bba + a^{-1} - 2b = 0
     // a^{-1} = 2b - bba
     static ll tmp[MAXN];
     if (n == 1) {b[0] = ntt.inv(a[0], P); return;}
Inv((n+1)/2, a, b);
     int N = nxt2k(n*2);
     copy(a, a+n, tmp);
     fill(tmp+n, tmp+N, 0);
     fill(b+n, b+N, 0);
ntt.tran(N, tmp); ntt.tran(N, b);
     FOR(i, N) {
       ll t1 = (2 - b[i] * tmp[i]) % P;
if (t1 < 0) t1 += P;
b[i] = b[i] * t1 % P;</pre>
     ntt.tran(N, b, 1)
     fill(b+n, b+N, 0);
  void Div(int n, ll a[], int m, ll b[], ll d[], ll r[])
     // Ra = Rb * Rd mod x^{n-m+1}
// Rd = Ra * Rb^-1 mod
     static ll aa[MAXN], bb[MAXN], ta[MAXN], tb[MAXN];
     if (n < m) {copy(a, a+n, r); fill(r+n, r+m, 0);
           return;}
```

// d: n-1 - (m-1) = n-m (n-m+1 terms)

```
copy(a, a+n, aa); copy(b, b+m, bb);
reverse(aa, aa+n); reverse(bb, bb+m);
Inv(n-m+1, bb, tb);
     Mul(n-m+1, ta, n-m+1, tb, d);
fill(d+n-m+1, d+n, 0); reverse(d, d+n-m+1);
      // r: m-1 - 1 = m-2 (m-1 terms)
     Mul(m, b, n-m+1, d, ta);
FOR(i, n) { r[i] = a[i] - ta[i]; if (r[i] < 0) r[i]
           += P; }
   void dx(int n, ll a[], ll b[]) { for(int i=1;i<=n-1;i
++) b[i-1] = i * a[i] % P; }</pre>
   void Sx(int n, ll a[], ll b[]) {
     b[0] = 0;
     FOR(i, n) b[i+1] = a[i] * ntt.inv(i+1,P) % P;
   void Ln(int n, ll a[], ll b[]) {
   // Integral a' a^-1 dx
      static ll a1[MAXN], a2[MAXN], b1[MAXN];
      int N = nxt2k(n*2)
      dx(n, a, a1); Inv(n, a, a2);
     Mul(n-1, a1, n, a2, b1);
Sx(n+n-1-1, b1, b);
      fill(b+n, b+N, 0);
   void Exp(int n, ll a[], ll b[]) {
     // Newton method to solve g(a(x)) = \ln b(x) - a(x) =
     // b' = b - g(b(x)) / g'(b(x))
// b' = b (1 - lnb + a)
static ll lnb[MAXN], c[MAXN], tmp[MAXN];
assert(a[0] == 0); // dont know exp(a[0]) mod P
     if (n == 1) {b[0] = 1; return;}
Exp((n+1)/2, a, b);
      fill(b+(n+1)/2, b+n, 0);
     Ln(n, b, lnb)
      fill(c, c+n, 0); c[0] = 1;
     FOR(i, n) {
    c[i] += a[i] - lnb[i];
    if (c[i] < 0) c[i] += P;
        if (c[i] >= P) c[i] -= P;
     Mul(n, b, n, c, tmp);
     copy(tmp, tmp+n, b);
   bool Sqrt(int n, ll a[], ll b[]){
    // Square root of a : b * b = a ( mod x^n )
      // bb = a mod x^(n/2)
     // ( bb - a )^2 = 0 mod x^n
// ( bb + a )^2 = 4 bba
     // ( ( bb + a ) / 2b )^2 = a
// sqrt(a) = b / 2 + a / 2b
      static ll c[MAXN];
     int ind=0,x,y,p=1;
     while(a[ind]==0) ind++;
      for(int i=0;i<n;i++) a[i]=a[i+ind];</pre>
      if((ind&1)||!solve(a[0],mod,x,y)) // discrete sqrt
         return 0;
     b[0]=min(x,y);
     while(p<n) p<<=1;</pre>
      for(int t=2;t<=p;t<<=1){</pre>
        Inv(t,b,c); Mul(t,a,t,c,c);
for(int i=0;i<t;i++)</pre>
           b[i]=(b[i]+c[i])*inv(2)%mod;
      if(ind){
        for(int i=p-1;i>=ind/2;i--) b[i]=b[i-ind/2];
        for(int i=0;i<ind/2;i++) b[i]=0;
for(int i=p-1;i>=ind;i--) a[i]=a[i-ind];
         for(int i=0;i<ind;i++) a[i]=0;</pre>
     }
   }
} polyop;
3.5 Linear Recurrence 29d614
```

```
// Usage: linearRec({0, 1}, {1, 1}, k) //k'th fib
typedef vector<ll> Poly;
ll linearRec(Poly&& S, Poly&& tr, ll k) {
  int n=tr.size()
 auto combine=[&](Poly& a, Poly& b) {
    Poly res(n*2+1);
```

```
for(int i=0;i<=n;i++) for(int j=0;j<=n;j++)
    res[i+j]=(res[i+j]+a[i]*b[j])%mod;
for(int i=2*n;i>n;--i) for(int j=0;j<n;j++)
    res[i-1-j]=(res[i-1-j]+res[i]*tr[j])%mod;
    res.resize(n+1);
    return res;
}; // a * b mod (x^n-tr)
Poly pol(n+1), e(pol);
pol[0]=e[1]=1;
for (++k;k;k/=2) {
    if(k%2)pol=combine(pol,e);
    e=combine(e,e);
}
ll res=0;
for(int i=0;i<n;i++) res=(res+pol[i+1]*S[i])%mod;
    return res;
}</pre>
```

3.6 BerlekampMassey 868031

```
// find shortest linear recurrence relation O(n^2)
// example: BM({1,1,2,3,5,8,13,21})
// 2*len terms for uniqueness
inline vector<ll> BM(const vector<ll> &x) {
  vector<ll> ls, cur;
  int lf; ll ld;
for(int i=0;i<x.size();++i) {</pre>
    ll t=0;
    for(int j=0;j<cur.size();++j)</pre>
      t=(t+x[i-j-1]*cur[j])%mod;
    if((t-x[i])%mod==0) continue;
    if(!cur.size()) {
      cur.resize(i+1);lf=i;ld=(t-x[i])%mod;continue;
    ll k=-(x[i]-t)*inv(ld, mod)%mod;
    vector<ll> c(i-lf-1); c.push_back(k);
for(auto j:ls) c.push_back(-j*k\mod);
    if(c.size()<cur.size()) c.resize(cur.size());</pre>
    for(int j=0;j<cur.size();++j)</pre>
       c[j]=(c[j]+cur[j])%mod;
    if(i-lf+(int)ls.size()>=(int)cur.size())
      ls=cur,lf=i,ld=(t-x[i])%mod;
    cur=move(c);
  for(auto& xx:cur) xx=(xx\mod+mod)\mod;
  return cur;
```

3.7 Miller Rabin d99ee6

```
// n < 4,759,123,141
// n < 1,122,004,669,633
                                  2, 13, 23, 1662803
// n < 3,474,749,660,383
                                   6:
                                        pirmes <= 13
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
bool witness(ll a,ll n,ll u,int t){
  if(!a) return 0;
  11 x=mypow(a,u,n);
  for(int i=0;i<t;i++) {</pre>
   ll nx=mul(x,x,n);
    if(nx==1&&x!=1&&x!=n-1) return 1;
   x=nx;
  return x!=1;
bool miller_rabin(ll n,int s=100) {
  // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
  if(n<2) return 0;</pre>
  if(!(n\&1)) return n == 2;
  ll u=n-1; int t=0;
  while(!(u&1)) u>>=1, t++;
 while(s--){
    ll a=randll()%(n-1)+1;
    if(witness(a,n,u,t)) return 0;
  return 1;
```

3.8 Simplex c2c23c

```
/*target:
```

```
\max \sum_{j=1}^n A_{0,j}*x_j
condition:
  \sum_{j=1}^n A_{i,j}*x_j <= A_{i,0} li=1~m
  x_j >= 0 | j=1\sim n
VDB = vector<double>*/
template<class VDB>
VDB simplex(int m,int n,vector<VDB> a){
  vector<int> left(m+1), up(n+1);
iota(left.begin(), left.end(), n);
  iota(up.begin(), up.end(), 0);
auto pivot = [&](int x, int y){
     swap(left[x], up[y])
     auto k = a[x][y]; a[x][y] = 1;
     vector<int> pos;
     for(int j = 0; j <= n; ++j){
    a[x][j] /= k;
        if(a[x][j] != 0) pos.push_back(j);
     for(int i = 0; i <= m; ++i){</pre>
        if(a[i][y]==0 | | i == x) continue;
        k = a[i][y], a[i][y] = 0;
        for(int j : pos) a[i][j] -= k*a[x][j];
  for(int x,y;;){
     for(int i=x=1; i <= m; ++i)</pre>
        if(a[i][0] < a[x][0]) x = i;
     if(a[x][0]>=0) break;
     for(int j=y=1; j <= n; ++j)
  if(a[x][j]<a[x][y]) y = j;
if(a[x][y]>=0) return VDB();//infeasible
     pivot(x, y);
  for(int x,y;;){
     for(int j=y=1; j <= n; ++j)
  if(a[0][j] > a[0][y]) y = j;
     if(a[0][y]<=0) break;</pre>
     for(int i=1; i<=m; ++i) if(a[i][y] > 0)
  if(x == -1 || a[i][0]/a[i][y]
     < a[x][0]/a[x][y]) x = i;
if(x == -1) return VDB();//unbounded
     pivot(x, y);
  VDB ans(n + 1);
  for(int i = 1; i <= m; ++i)
   if(left[i] <= n) ans[left[i]] = a[i][0];</pre>
  ans[0] = -a[0][0];
  return ans;
```

3.9 Faulhaber df817f

```
/* faulhaber's formula -
 * cal power sum formula of all p=1-k in O(k^2) */
#define MAXK 2500
const int mod = 1000000007;
int b[MAXK]; // bernoulli number
int inv[MAXK+1]; // inverse
int cm[MAXK+1][MAXK+1]; // combinactories
int co[MAXK][MAXK+2]; // coeeficient of x^j when p=i
inline int getinv(int x) {
  int a=x,b=mod,a0=1,a1=0,b0=0,b1=1;
  while(b) {
    int q,t;
q=a/b; t=b; b=a-b*q; a=t;
    t=b0; b0=a0-b0*q; a0=t;
    t=b1; b1=a1-b1*q; a1=t;
  return a0<0?a0+mod:a0;</pre>
inline void pre() {
  /* combinational *
  for(int i=0;i<=MAXK;i++) {</pre>
    cm[i][0]=cm[i][i]=1;
for(int j=1;j<i;j++)
   cm[i][j]=add(cm[i-1][j-1],cm[i-1][j]);</pre>
  /* inverse */
  for(int i=1;i<=MAXK;i++) inv[i]=getinv(i);</pre>
  /* bernoullí */
  b[0]=1; b[1]=getinv(2); // with b[1] = 1/2
```

```
for(int i=2;i<MAXK;i++) {</pre>
    if(i&1) { b[i]=0; continue; }
    b[i]=1;
    for(int j=0;j<i;j++)</pre>
      b[i]=sub(b[i], mul(cm[i][j],mul(b[j], inv[i-j+1]))
  /* faulhaber */
  for(int i=1;i<MAXK;i++) {
  co[i][0]=0;</pre>
    for(int j=0;j<=i;j++)</pre>
      co[i][i-j+1]=mul(inv[i+1], mul(cm[i+1][j], b[j]));
  }
/* sample usage: return f(n,p) = sigma_x=1\sim (x^p) */
inline int solve(int n,int p) {
  int sol=0,m=n;
  for(int i=1;i<=p+1;i++) {</pre>
    sol=add(sol,mul(co[p][i],m));
    m = mul(m, n);
  return sol;
}
```

3.10 Chinese Remainder 6fe08b

3.11 Pollard Rho 76826e

```
// does not work when n is prime
ll f(ll x, ll mod){ return add(mul(x,x,mod),1,mod); }
ll pollard_rho(ll n) {
   if(!(n&1)) return 2;
   while(true){
      ll y=2, x=rand()%(n-1)+1, res=1;
      for(int sz=2; res==1; sz*=2) {
        for(int i=0; i<sz && res<=1; i++) {
            x = f(x, n);
            res = __gcd(abs(x-y), n);
        }
        y = x;
    }
   if (res!=0 && res!=n) return res;
}</pre>
```

3.12 ax+by=gcd 5a651f

```
pair<ll, ll> gcd(ll a, ll b){
   if(b == 0) return {1, 0};
   pair<ll, ll> q = gcd(b, a % b);
   return {q.second, q.first - q.second * (a / b)};
}
```

3.13 Discrete sqrt 47d40c

```
void calcH(int &t, int &h, const int p) {
   int tmp=p-1; for(t=0;(tmp&1)==0;tmp/=2) t++; h=tmp;
}
// solve equation x^2 mod p = a where p is a prime
bool solve(int a, int p, int &x, int &y) {
   if(p == 2) { x = y = 1; return true; }
   int p2 = p / 2, tmp = mypow(a, p2, p);
   if (tmp == p - 1) return false;
   if ((p + 1) % 4 == 0) {
      x=mypow(a,(p+1)/4,p); y=p-x; return true;
   } else {
   int t, h, b, pb; calcH(t, h, p);
   if (t >= 2) {
      do {b = rand() % (p - 2) + 2;
   }
```

```
} while (mypow(b, p / 2, p) != p - 1);
    pb = mypow(b, h, p);
} int s = mypow(a, h / 2, p);
for (int step = 2; step <= t; step++) {
    int ss = (((ll)(s * s) % p) * a) % p;
    for(int i=0;i<t-step;i++) ss=mul(ss,ss,p);
    if (ss + 1 == p) s = (s * pb) % p;
    pb = ((ll)pb * pb) % p;
} x = ((ll)s * a) % p; y = p - x;
} return true;</pre>
```

3.14 Romberg 6dc94c

```
// Estimates the definite integral of
// \int_a^b f(x) dx
template<class T>
double romberg( T& f, double a, double b, double eps=1e
        -8){
    vector<double>t; double h=b-a,last,curr; int k=1,i=1;
    t.push_back(h*(f(a)+f(b))/2);
    do{ last=t.back(); curr=0; double x=a+h/2;
        for(int j=0;j<k;j++) curr+=f(x), x+=h;
        curr=(t[0] + h*curr)/2; double k1=4.0/3.0,k2
        =1.0/3.0;
    for(int j=0;j<i;j++){ double temp=k1*curr-k2*t[j];
        t[j]=curr; curr=temp; k2/=4*k1-k2; k1=k2+1;
    } t.push_back(curr); k*=2; h/=2; i++;
}while( fabs(last-curr) > eps);
    return t.back();
}
```

3.15 Prefix Inverse 9e8ee9

```
void solve( int m ){
  inv[ 1 ] = 1;
  for( int i = 2 ; i < m ; i ++ )
    inv[ i ] = ((ll)(m - m / i) * inv[m % i]) % m;
}</pre>
```

3.16 Roots of Polynomial adb2af

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ]; // a[0..n](coef) must be filled
int n; // degree of polynomial must be filled
int sign( double x ){return (x < -eps)?(-1):(x>eps);}
double f(double a[], int n, double x){
  double tmp=1, sum=0;
  for(int i=0;i<=n;i++)</pre>
  { sum=sum+a[i]*tmp; tmp=tmp*x; }
  return sum;
double binary(double 1,double r,double a[],int n){
  int sl=sign(f(a,n,l)), sr=sign(f(a,n,r));
if(sl==0) return l; if(sr==0) return r;
if(sl*sr>0) return inf;
  while(r-l>eps){
     double mid=(l+r)/2;
     int ss=sign(f(a,n,mid));
     if(ss==0) return mid;
     if(ss*sl>0) l=mid; else r=mid;
  }
  return 1;
void solve(int n,double a[],double x[],int &nx){
  if(n==1){ x[1]=-a[0]/a[1]; nx=1; return; }
double da[10], dx[10]; int ndx;
for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
  nx=0:
  if(ndx==0){
     double tmp=binary(-inf,inf,a,n);
     if (tmp<inf) x[++nx]=tmp;</pre>
     return;
  double tmp;
tmp=binary(-inf,dx[1],a,n);
if(tmp<inf) x[++nx]=tmp;</pre>
   for(int i=1;i<=ndx-1;i++){</pre>
     tmp=binary(dx[i],dx[i+1],a,n);
     if(tmp<inf) x[++nx]=tmp;</pre>
```

```
tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
} // roots are stored in x[1..nx]
```

3.17 Primes and μ function d79d2b

```
/* 12721, 13331, 14341, 75577, 123457, 222557, 556679 * 999983, 1097774749, 1076767633, 100102021, 999997771
  1001010013, 1000512343, 987654361, 999991231
999888733, 98789101, 987777733, 999991921, 1010101333
* 1010102101, 1000000000039, 100000000000037
* 2305843009213693951, 4611686018427387847

* 9223372036854775783, 18446744073709551557 */

int mu[ N ] , p_tbl[ N ]; // multiplicative function f
vector<int> primes;
void sieve() {
  mu[1] = p_{tbl}[1] = 1;
   for( int i = 2; i < N; i ++ ){
  if(!p_tbl[i]){
    p_tbl[i] = i;
}</pre>
         primes.push_back( i );
         mu[i] = -1; // f(i) = ... where i is prime
     for( int p : primes ){
  int x = i * p;
  if( x >= N ) break;
        p_tbl[ x ] = p;
mu[ x ] = -mu[ i ];
if( i % p == 0 ){ // f(x)=f(i)/f(p^(k-1))*f(p^k)
            mu[x] = 0;
            break;
         } // else f(x)=f(i)*f(p)
   }
vector<int> factor( int x ){
   vector<int> fac{ 1 };
   while(x > 1){
     int fn = fac.size(), p = p_tbl[ x ], pos = 0;
while( x % p == 0 ){
        x /= p;
for( int i = 0 ; i < fn ; i ++ )
            fac.push_back( fac[ pos ++ ] * p );
   return fac;
```

3.18 Subset Convolution 53a5f7

```
// h(s)=\sum_{s^{'} \ subseteq \ s} f(s^{'})g(s\cdot s) s
     {'})
vector<int> SubsetConv(int n, const vector<int> &f,
     const vector<int> &g) {
  const int m = 1 << n;</pre>
  vector<vector<int>> a(n + 1, vector<int>(m)), b(n + 1, vector<int>(m))
          vector<int>(m));
  for (int i = 0; i < m; ++i) {
    a[__builtin_popcount(i)][i] = f[i];</pre>
     b[__builtin_popcount(i)][i] = g[i];
  for (int i = 0; i <= n; ++i) {
     for (int j = 0; j < n; ++j) {
  for (int s = 0; s < m; ++s) {</pre>
          if (s >> j & 1) {
    a[i][s] += a[i][s ^ (1 << j)];
    b[i][s] += b[i][s ^ (1 << j)];</pre>
  vector<vector<int>>> c(n + 1, vector<int>(m));
  for (int s = 0; s < m; ++s) {
     for (int i = 0; i <= n; ++i) {
  for (int j = 0; j <= i; ++j) c[i][s] += a[j][s] *
             b[i - j][s];
  for (int i = 0; i <= n; ++i) {
  for (int j = 0; j < n; ++j) {
    for (int s = 0; s < m; ++s) {
           if (s >> j & 1) c[i][s] -= c[i][s ^ (1 << j)];
  } } }
  vector<int> res(m);
```

```
for (int i = 0; i < m; ++i) res[i] = c[
     _builtin_popcount(i)][i];
return res;
```

3.19 Result fd0b69

- Lucas' Theorem : For $n,m\in\mathbb{Z}^*$ and prime P , $C(m,n)\mod P=\Pi(C(m_i,n_i))$ where m_i is the i-th digit of m in base P.
- 1st Stirling Numbers(permutation |P|=n with k cycles): $S(n,k)=\text{coefficient of }x^k\text{ in }\Pi_{i=0}^{n-1}(x+i)$ S(n+1,k)=nS(n,k)+S(n,k-1)
- 2nd Stirling Numbers(Partition n elements into k non-empty set): $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$
- S(n+1,k) = kS(n,k) + S(n,k-1)• Calculate f(x+n) where $f(x) = \sum_{i=0}^{n-1} a_i x^i$: $f(x+n) = \sum_{i=0}^{n-1} a_i(x+n)^i = \sum_{i=0}^{n-1} x^i \cdot \frac{1}{i!} \sum_{j=i}^{n-1} \frac{a_j}{j!} \cdot \frac{n^{j-i}}{(j-i)!}$
- Calculate $c[i-j]+=a[i]\times b[j]$ for a[n],b[m] 1. a=reverse(a); c=mul(a,b); c=reverse(c[:n]); 2. b=reverse(b); c=mul(a,b); c=rshift(c,m-1);
- Eulerian number(permutation $1\sim n$ with m a[i]>a[i-1]): $A(n,m) = \sum_{i=0}^{m} (-1)^{i} {\binom{n+1}{i}} (m+1-i)^{n}$

$$A(n,m) = \sum_{i=0}^{\infty} (-1)^{i} {i \choose i} (m+1-i)^{i}$$

$$A(n,m) = (n-m)A(n-1,m-1) + (m+1)A(n-1,m)$$

- Derangement: $D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n$
- Pick's Theorem : A = i + b/2 1
- Euler Characteristic: planar graph: V-E+F-C=1 convex polyhedron: V-E+F=2V,E,F,C: number of vertices, edges, faces(regions), and components
- Kirchhoff's theorem : number of spanning tree of undirected graph: degree matrix $D_{ii} = deg(i)$, $D_{ij} = 0$ adjacency matrix $G_{ij} = \# \ of \ (i,j) \in E$, $G_{ii} = 0$, let A = D G, delete any one row, one column, and cal det(A') number of spanning tree of directed graph: in-degree matrix $D_{ii}^{nn} = indeg(i)$, $D_{ij}^{nn} = 0$ out-degree matrix $D_{ii}^{out}=outdeg(i)$, $D_{ij}^{out}=0$ let $L^{in}=D^{in}-G$, $L^{out}=D^{out}-G$, delete the i-th row and column $det(L_i^{in})$ and $det(L_i^{out})$ is the number of spanning tree from/to root i
- Burnside Lemma: $|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$
- Polya theorem: $|Y^x/G| = \frac{1}{|G|} \sum_{g \in G} m^{c(g)}$ $m=\left|Y\right|$: num of colors, c(g) : num of cycle
- Anti SG (the person who has no strategy wins) : first player wins iff either 1. SG value of ALL subgame ≤ 1 and SG value of the game = 02. SG value of some subgame > 1 and SG value of the game $\neq 0$
- Möbius inversion formula $g(n) = \sum\limits_{d \mid n} f(d)$ for every integer $n \geq 1$, then
 $$\begin{split} f(n) &= \sum_{d \mid n} \mu(d) g(\frac{n}{d}) = \sum_{d \mid n} \mu(\frac{n}{d}) g(d) \text{ for every integer } n \geq 1 \\ \text{Dirichlet convolution : } f * g = g * f = \sum_{d \mid n} f(d) g(\frac{n}{d}) = \sum_{d \mid n} f(\frac{n}{d}) g(d) \\ g &= f * 1 \Leftrightarrow f = g * \mu \text{, } \epsilon = \mu * 1 \text{, } Id = \phi * 1 \text{, } d = 1 * 1 \text{, } \sigma = Id * 1 = \phi * d \text{, } \\ \sigma_k &= Id_k * 1 \text{ where } \epsilon(n) = [n = 1] \text{, } 1(n) = 1 \text{, } Id(n) = n \text{, } Id_k(n) = n^k \text{, } \\ d(n) &= \#(divisor) \text{, } \sigma(n) = \sum divisor \text{, } \sigma_k(n) = \sum divisor^k \end{split}$$

- Find a Primitive Root of n: n has primitive roots iff $n=2,4,p^k,2p^k$ where p is an odd prime. 1. Find $\phi(n)$ and all prime factors of $\phi(n)$, says $P=\{p_1,...,p_m\}$
- 2. $\forall g \in [2,n)$, if $g^{\frac{\phi(n)}{p_i}} \neq 1, \forall p_i \in P$, then g is a primitive root. 3. Since the smallest one isn't too big, the algorithm runs fast. 4. n has exactly $\phi(\phi(n))$ primitive roots.
- Sum of Two Squares Thm (Legendre): For a given positive integer N, let $D1=(\#\ \text{of}\ d\in N\ \text{dividing}\ N\ \text{that}\ d=1\ (\text{mod 4}))$ $D3=(\#\ \text{of}\ d\in N\ \text{dividing}\ N\ \text{that}\ d=3\ (\text{mod 4}))$ then $\stackrel{\circ}{N}$ can be written as a sum of two squares in exactly R(N) = 4(D1 - D3) ways.
- Difference of D1-D3 Thm: let $N=2^t \times [p_1^{e_1} \times \ldots \times p_r^{e_r}] \times [q_1^{f_1} \times \ldots \times q_s^{f_s}]$ where $p_i \in mod~4=1~prime$, $q_i \in mod~4=3~prime$ then $D1 - D3 = \begin{cases} (e1+1)(e2+1)...(er+1) & if \ f_i \ all \ even \\ 0 & if \ any \ f_i \ is \ odd \end{cases}$

```
• Sherman-Morrison formula: suppose A \in \mathbb{R}^{n \times n} is invertible and u,v \in \mathbb{R}^n A + uv^T is invertible if and only if 1 + v^TA^{-1}u \neq 0 (A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}u}{1 + v^TA^{-1}u}
```

4 Geometry

4.1 Intersection of 2 lines 3db65e

```
Pt LLIntersect(Line a, Line b) {
  Pt p1 = a.s, p2 = a.e, q1 = b.s, q2 = b.e;
  ld f1 = (p2-p1)^(q1-p1), f2 = (p2-p1)^(p1-q2), f;
  if(dcmp(f=f1+f2) == 0)
    return dcmp(f1)?Pt(NAN,NAN):Pt(INFINITY,INFINITY);
  return q1*(f2/f) + q2*(f1/f);
}
```

4.2 halfPlaneIntersection 8fb188

```
/ for point or line solution, change > to >=
bool onleft(Line L, Pt p) {
  return dcmp(L.v^(p-L.s)) > 0;
// assume that Lines intersect
vector<Pt> HPI(vector<Line>& L) {
  sort(L.begin(), L.end()); // sort by angle
int n = L.size(), fir, las;
  Pt *p = new Pt[n];
  Line *q = new Line[n];
  q[fir=las=0] = L[0];
  for(int i = 1; i < n; i++) {
  while(fir < las && !onleft(L[i], p[las-1])) las--;</pre>
    while(fir < las && !onleft(L[i], p[fir])) fir++;</pre>
    a[++las] = L[i];
     if(dcmp(q[las].v^q[las-1].v) == 0) {
       if(onleft(q[las], L[i].s)) q[las] = L[i];
     if(fir < las) p[las-1] = LLIntersect(q[las-1], q[las</pre>
         ]);
  while(fir < las && !onleft(q[fir], p[las-1])) las--;
if(las-fir <= 1) return {};</pre>
  p[las] = LLIntersect(q[las], q[fir]);
  int m = 0;
  vector<Pt> ans(las-fir+1);
  for(int i = fir ; i <= las ; i++) ans[m++] = p[i];</pre>
  return ans;
}
```

4.3 Intersection of 2 segments b7e393

4.4 Banana de5c4e

4.5 Intersection of circle and line 73c7f5

```
vector<Pt> CLInter(const Line &a,const Circle &c){
   Pt p=a.s+(c.o-a.s)*a.v/norm2(a.v)*a.v;
   ld d=c.r*c.r-norm2(c.o-p);
   if(d<-eps) return {};
   if(d<eps) return {p};
   Pt v=a.v/norm(a.v)*sqrt(d);
   return {p+v,p-v};
}</pre>
```

4.6 Intersection of polygon and circle 95d872

```
ld PCIntersect(vector<Pt> v, Circle cir) {
  for(int i = 0; i < (int)v.size(); ++i)v[i] = v[i] -
        cir.o;
  ld ans = 0, r = cir.r;
  int n = v.size();
  for(int i = 0; i < n; ++i) {
  Pt pa = v[i], pb = v[(i+1)%n];
  if(norm(pa) < norm(pb)) swap(pa, pb);</pre>
     if(dcmp(norm(pb)) == 0) continue;
     ld s, h, theta;
    ld a = norm(pb), b = norm(pa), c = norm(pb-pa);
     1d cosB = (pb*(pb-pa))/a/c, B = acos(cosB);
     if(cosB > 1) B = 0;
     else if(cosB < -1) B = PI;</pre>
     ld cosC = (pa*pb)/a/b, C = acos(cosC);
     if(cosC > 1) C = 0;
     else if(cosC < -1) C = PI;</pre>
     if(a > r) {
       s = (C/2)*r*r
       h = a*b*sin(C)/c;
       if(h < r \&\& B < PI/2) s -= (acos(h/r)*r*r - h*sqrt
            (r*r-h*h));
    else if(b > r) {
  theta = PI - B - asin(sin(B)/r*a);
       s = 0.5*a*r*sin(theta) + (C-theta)/2*r*r;
     else s = 0.5*sin(C)*a*b;
    ans += abs(s)*dcmp(v[i]^v[(i+1)%n]);
  return abs(ans);
```

4.7 Intersection of 2 circles 57edf8

```
vector<Pt> CCinter(Circle& a, Circle& b){
  Pt o1=a.o,o2=b.o; ld r1=a.r,r2=b.r;
  if(norm(o1-o2)>r1+r2) return {};
  if(norm(o1-o2)<max(r1,r2)-min(r1,r2)) return {};
  ld d2=(o1-o2)*(o1-o2),d=sqrt(d2);
  if(d>r1+r2) return {};
  Pt u=(o1+o2)*0.5+(o1-o2)*((r2*r2-r1*r1)/(2*d2));
  ld A=sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d));
  Pt v=Pt(o1.y-o2.y,-o1.x+o2.x)*A/(2*d2);
  return {u+v,u-v};
}
```

4.8 Circle cover 635fba

```
#define N 1021
struct CircleCover{
  int C; Circle c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  ld Area[N];
  void init(int _C){ C = _C; }
  struct Teve {
    Pt p; ld ang; int add;
    Teve() {}
```

```
Teve(Pt _a, ld _b, int _c):p(_a), ang(_b), add(_c){}
bool operator<(const Teve &a)const</pre>
     {return ang < a.ang;}
   }eve[N * 2];
   // strict: x = 0, otherwise x = -1
   bool disjuct(Circle& a, Circle &b, int x)
   {return sign(norm(a.o - b.o) - a.r - b.r) > x;}
bool contain(Circle& a, Circle &b, int x)
   {return sign(a.r - b.r - norm(a.o - b.o)) > x;}
  bool contain(int i, int j){

/* c[j] is non-strictly in c[i]. */
return (sign(c[i].r - c[j].r) > 0 ||
               (sign(c[i].r - c[j].r) == 0 \&\& i < j)) \&\&
                    contain(c[i], c[j], -1);
   void solve(){
     for(int i = 0; i < C; i++)
for(int j = 0; j < C; j++)</pre>
          g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                        disjuct(c[i], c[j], -1));
     for(int i = 0; i < C; i++){
       int E = 0, cnt = 1;
       for(int j = 0; j < C; j++)
          if(j != i && overlap[j][i])
            cnt++;
       for(int j = 0; j < C; j++)
  if(i != j && g[i][j]){
    vector<Pt> v=CCinter(c[i], c[j]);
            ld A=atan2(v[0].y - c[i].o.y, v[0].x - c[i].o.
            ld B=atan2(v[1].y - c[i].o.y, v[1].x - c[i].o.
                 x);
            eve[E++] = Teve(v[1], B, 1);
eve[E++] = Teve(v[0], A, -1);
            if(B > A) cnt++;
       if(E == 0) Area[cnt] += pi * c[i].r * c[i].r;
       else{
          sort(eve , eve_+ E);
          eve[E] = eve[0];
          for(int j = 0; j < E; j++){
            cnt += eve[j].add;
            Area[cnt] += (eve[j].p ^{\circ} eve[j + 1].p) * .5;
            ld theta = eve[j + 1].ang - eve[j].ang;
            if (theta < 0) theta += 2. * pi;
            Area[cnt] +=
               (theta - sin(theta)) * c[i].r*c[i].r * .5;
```

4.9 Li Chao Segment Tree 801fb6

```
struct LiChao_min{
  struct line{
    LL m, c;
line(LL _m=0, LL _c=0) { m = _m; c = _c; }
    LL eval(LL x) { return m * x + c; }
  struct node{
    node *l, *r; line f;
    node(line v) \{ f = v; l = r = NULL; \}
  typedef node* pnode;
 pnode root; int sz;
#define mid ((l+r)>>1)
  void insert(line &v, int 1, int r, pnode &nd){
    if(!nd) { nd = new node(v); return; }
    LL trl = nd \rightarrow f.eval(1), trr = nd \rightarrow f.eval(r);
    LL vl = v.eval(l), vr = v.eval(r);
    if(trl <= vl && trr <= vr) return;
    if(trl > vl && trr > vr) { nd->f = v; return; }
if(trl > vl) swap(nd->f, v);
    if(nd->f.eval(mid) < v.eval(mid)) insert(v, mid + 1,</pre>
          r, nd->r);
    else swap(nd->f, v), insert(v, l, mid, nd->l);
  LL query(int x, int 1, int r, pnode &nd){
    if(!nd) return LLONG_MAX;
    if(l == r) return nd->f.eval(x);
```

4.10 Convex Hull trick 0b12ee

```
/* Given a convexhull, answer querys in O(\lg N)
CH should not contain identical points, the area should
be > 0, min pair(x, y) should be listed first */
double det( const Pt& p1 , const Pt& p2 )
{ return p1.x * p2.y - p1.y * p2.x; }
struct Conv{
  int n;
  vector<Pt> a;
  vector<Pt> upper, lower;
  Conv(vector<Pt> _a) : a(_a){
    n = a.size();
    int ptr = 0;
    for(int i=1; i<n; ++i) if (a[ptr] < a[i]) ptr = i;
for(int i=0; i<=ptr; ++i) lower.push_back(a[i]);</pre>
    for(int i=ptr; i<n; ++i) upper.push_back(a[i]);</pre>
    upper.push_back(a[0]);
  int sign( LL x ){ // fixed when changed to double
  return x < 0 ? -1 : x > 0; }
  pair<LL,int> get_tang(vector<Pt> &conv, Pt vec){
    int l = 0, r = (int)conv.size() - 2;
    while(l + 1 < r){
       int mid = (l + r) / 2;
       if(sign(det(conv[mid+1]-conv[mid],vec))>0)r=mid;
      else l = mid;
    return max(make_pair(det(vec, conv[r]), r)
                make_pair(det(vec, conv[0]), 0));
  void upd_tang(const Pt &p, int id, int &i0, int &i1){
    if(det(a[i0] - p, a[id] - p) > 0) i0 = id;
    if(det(a[i1] - p, a[id] - p) < 0) i1 = id;
  void bi_search(int l, int r, Pt p, int &i0, int &i1){
    if(l == r) return;
upd_tang(p, l % n, i0, i1);
    int sl=sign(det(a[l % n] - p, a[(l + 1) % n] - p));
    while(l + 1 < r) 
       int mid = (l + r) / 2;
       int smid=sign(det(a[mid%n]-p, a[(mid+1)%n]-p));
      if (smid == sl) l = mid;
      else r = mid;
    upd_tang(p, r % n, i0, i1);
  int bi_search(Pt u, Pt v, int l, int r) {
    int sl = sign(det(v - u, a[l % n] - u));
    while(l + 1 < r) {
      int mid = (1 + r) / 2;
      int smid = sign(det(v - u, a[mid % n] - u));
      if (smid == s\bar{l}) l = mid;
      else r = mid;
    return 1 % n;
  // 1. whether a given point is inside the CH
  bool contain(Pt p) {
    if (p.x < lower[0].x || p.x > lower.back().x) return
    int id = lower_bound(lower.begin(), lower.end(), Pt(
         p.x, -INF)) - lower.begin();
    if (lower[id].x == p.x) {
    if (lower[id].y > p.ý) return 0;
}else if(det(lower[id-1]-p,lower[id]-p)<0)return 0;</pre>
    id = lower_bound(upper.begin(), upper.end(), Pt(p.x,
    INF), greater<Pt>()) - upper.begin();
if (upper[id].x == p.x) {
      if (upper[id].y < p.y) return 0;</pre>
```

```
}else if(det(upper[id-1]-p,upper[id]-p)<0)return 0;</pre>
  return 1;
// 2. Find 2 tang pts on CH of a given outside point
// return true with i0, i1 as index of tangent points
// return false if inside CH
bool get_tang(Pt p, int &i0, int &i1) {
  if (contain(p)) return false;
  i0 = i1 = 0;
  int id = lower_bound(lower.begin(), lower.end(), p)
 - lower.begin();
bi_search(0, id, p, i0, i1);
bi_search(id, (int)lower.size(), p, i0, i1);
  id = lower_bound(upper.begin(), upper.end(), p,
      greater<Pt>()) - upper.begin();
 bi_search((int)lower.size() - 1, (int)lower.size() -
 1 + id, p, i0, i1);
bi_search((int)lower.size() - 1 + id, (int)lower.
      size() - 1 + (int)upper.size(), p, i0, i1);
  return true:
// 3. Find tangent points of a given vector
// ret the idx of vertex has max cross value with vec
int get_tang(Pt vec){
 pair<LL, int> ret = get_tang(upper, vec);
  ret.second = (ret.second+(int)lower.size()-1)%n;
  ret = max(ret, get_tang(lower, vec));
  return ret.second;
// 4. Find intersection point of a given line
// return 1 and intersection is on edge (i, next(i))
// return 0 if no strictly intersection
bool get_intersection(Pt u, Pt v, int &i0, int &i1){
int p0 = get_tang(u - v), p1 = get_tang(v - u);
if(sign(det(v-u,a[p0]-u))*sign(det(v-u,a[p1]-u))<0){</pre>
   if (p0 > p1) swap(p0, p1);
   i0 = bi_search(u, v, p0, p1);
   i1 = bi_search(u, v, p1, p0 + n);
  return 1;
 return 0;
```

4.11 Tangent line of two circles fab32c

```
vector<Line> go(const Circle& c1, const Circle& c2, int
     sign1){
   // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_{sq} = norm2(c1.o - c2.o);
  if(d_sq < eps) return ret;</pre>
  double d = sqrt(d_sq);
Pt v = (c2.0 - c1.0) / d;
  double c = (c1.r - sign1 * c2.r) / d;
  if(c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
for(int sign2 = 1; sign2 >= -1; sign2 -= 2){
     Pt n = \{v.x * c - sign2 * h * v.y\}
    v.y * c + sign2 * h * v.x };

Pt p1 = c1.o + n * c1.r;

Pt p2 = c2.o + n * (c2.r * sign1);
     if(fabs(p1.x - p2.x) < eps and
         fabs(p1.y - p2.y) < eps)
       p2 = p1 + perp(c2.o - c1.o);
     ret.push_back({p1, p2});
  return ret;
}
```

4.12 Tangent line of point and circle 35a7bf

```
vector<Line> PCTangent(const Circle& C, const Pt& P) {
  vector<Line> ans;
  Pt u = C.o - P;
  double dist = norm(u);
  if(dist < C.r) return ans;
  else if(abs(dist) < eps) {
    ans.push_back({P, P+rotate(u, M_PI/2)});
    return ans;
}</pre>
```

```
else {
   double ang = asin(C.r/dist);
   ans.push_back({P, P+rotate(u, -ang)});
   ans.push_back({P, P+rotate(u, +ang)});
   return ans;
  }
}
```

4.13 Min distance of two convex 9b7d9c

```
double TwoConvexHullMinDis(Point P[], Point Q[], int n,
    int m) {
  int YMinP=0, YMaxQ=0; double tmp, ans=1e9;
  for(int i=0;i<n;++i) if(P[i].y<P[YMinP].y) YMinP=i;
  for(int i=0;i<m;++i) if(Q[i].y>Q[YMaxQ].y) YMaxQ=i;
  P[n]=P[0]; Q[m]=Q[0];
  for (int i=0;i<n;++i) {
    while(tmp=((Q[YMaxQ+1]-P[YMinP+1])^(P[YMinP]-P[YMinP+1])) YMaxQ=(YMaxQ+1)*m;
    if(tmp<0)ans=min(ans,PtToSegDis(P[YMinP],P[YMinP+1],
        Q[YMaxQ]));
  else ans=min(ans,TwoSegMinDis(P[YMinP],P[YMinP+1],Q[YMaxQ],Q[YMaxQ+1]));
    YMinP=(YMinP+1)*n;
  }
  return ans;
}</pre>
```

4.14 Poly Union 7ac791

sort(c,c+r);

```
int n; Pt pt[5]; double area;
  Pt& operator[](const int x){ return pt[x]; }
  void init(){ //n,pt[0~n-1] must be filled
    area=pt[n-1]^pt[0];
     for(int i=0;i<n-1;i++) area+=pt[i]^pt[i+1];</pre>
     if((area/=2)<0)reverse(pt,pt+n),area=-area;</pre>
  }
PÝ py[500];
pair<double,int> c[5000];
inline double segP(Pt &p,Pt &p1,Pt &p2){
  if(dcmp(p1.x-p2.x)==0) return (p.y-p1.y)/(p2.y-p1.y);
  return (p.x-p1.x)/(p2.x-p1.x);
double polyUnion(int n){ //py[0\sim n-1] must be filled
  int i,j,ii,jj,ta,tb,r,d;
  double z,w,s,sum,tc,td;
  for(i=0;i<n;i++) py[i][py[i].n]=py[i][0];</pre>
  sum=0;
  for(i=0;i<n;i++){</pre>
    for(ii=0;ii<py[i].n;ii++){</pre>
       r=0;
       c[r++]=make_pair(0.0,0);
       c[r++]=make_pair(1.0,0);
       for(j=0;j<n;j++){</pre>
         if(i==j) continue;
         for(jj=0;jj<py[j].n;jj++){
  ta=dcmp(tri(py[i][ii],py[i][ii+1],py[j][jj]));</pre>
            tb=dcmp(tri(py[i][ii],py[i][ii+1],py[j][jj+1])
            if(ta==0 \&\& tb==0){
              if((py[j][jj+1]-py[j][jj])*(py[i][ii+1]-py[i
                   ][ii])>0 && j<i){
                c[r++]=make_pair(segP(py[j][jj],py[i][ii],
                     py[i][ii+1]),1);
                c[r++]=make\_pair(segP(py[j][jj+1],py[i][ii
                     ],py[i][ii+1]),-1);
           }else if(ta>=0 && tb<0){
              tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
c[r++]=make_pair(tc/(tc-td),1);
            }else if(ta<0 && tb>=0){
              tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
              c[r++]=make\_pair(tc/(tc-td),-1);
         }
```

```
z=min(max(c[0].first,0.0),1.0);
d=c[0].second; s=0;
for(j=1;j<r;j++){
    w=min(max(c[j].first,0.0),1.0);
    if(!d) s+=w-z;
    d+=c[j].second; z=w;
}
sum+=(py[i][ii]^py[i][ii+1])*s;
}
return sum/2;
}</pre>
```

4.15 Lower Concave Hull dd665b

```
const ll is_query = -(1LL<<62);</pre>
struct Line {
  11 m, b;
  mutable function<const Line*()> succ;
  bool operator<(const Line& rhs) const {</pre>
    if (rhs.b != is_query) return m < rhs.m;</pre>
    const Line* s = succ();
    return s ? b - s->b < (s->m - m) * rhs.m : 0;
}; // maintain upper hull for maximum
struct HullDynamic : public multiset<Line> {
  bool bad(iterator y) {
    auto z = next(y)
    if (y == begin()) {
      if (z == end()) return 0;
      return y->m == z->m && y->b <= z->b;
    auto x = prev(y);
    if(z==end())return y->m==x->m&&y->b<=x->b;
    return (x->b-y->b)*(z->m-y->m)>=
              (y->b-z->b)*(y->m-x->m);
  void insert_line(ll m, ll b) {
    auto y = insert({m, b});
y->succ = [=]{return next(y)==end()?0:&*next(y);};
if(bad(y)) {erase(y); return; }
    while(next(y)!=end()&&bad(next(y)))erase(next(y));
    while(y!=begin()&&bad(prev(y)))erase(prev(y));
  il eval(ll x) {
  auto l = *lower_bound((Line) {x, is_query});
    return l.m * x + l.b;
};
```

4.16 Delaunay Triangulation cee898

```
* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)%3], u.p[(i+2)%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const int N = 100000 + 5;
const type inf = 2e3;
type eps = 1e-6; // 0 when integer
type sqr(type x) { return x*x; }
// return p4 is in circumcircle of tri(p1,p2,p3)
bool in_cc(const Pt& p1, const Pt& p2, const Pt& p3,
    const Pt& p4){
  type u11 = p1.x - p4.x; type u12 = p1.y - p4.y;
 type u21 = p2.x - p4.x; type u22 = p2.y - p4.y;
type u31 = p3.x - p4.x; type u32 = p3.y - p4.y;
type u13 = sqr(p1.x)-sqr(p4.x)+sqr(p1.y)-sqr(p4.y);
  type u23 = sqr(p2.x)-sqr(p4.x)+sqr(p2.y)-sqr(p4.y);
  type u33 = sqr(p3.x)-sqr(p4.x)+sqr(p3.y)-sqr(p4.y)
  type det = -u13*u22*u31 + u12*u23*u31 + u13*u21*u32
```

```
-u11*u23*u32 - u12*u21*u33 + u11*u22*u33;
  return det > eps;
type side(const Pt& a, const Pt& b, const Pt& p)
{ return (b - a) ^ (p - a); }
typedef int SdRef;
struct Tri;
typedef Tri* TriRef;
struct Edge {
  TriRef tri; SdRef side;
  Edge():tri(0), side(0){}
  Edge(TriRef _tri, SdRef _side):tri(_tri), side(_side)
};
struct Tri {
  Pt p[3];
  Edge edge[3];
TriRef chd[3];
  Tri() {}
  Tri(const Pt& p0, const Pt& p1, const Pt& p2) {
  p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return chd[0] == 0 ? 0
: chd[1] == 0 ? 1
          : chd[2] == 0 ? 2 : 3;
  bool contains(Pt const& q) const {
    for( int i = 0 ; i < 3 ; i ++ )
  if( side(p[i], p[(i + 1) % 3] , q) < -eps )</pre>
         return false;
    return true;
} pool[ N * 10 ], *tris;
void edge( Edge a, Edge b ){
  if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig(){
    the_root = // Tri should at least contain all points
      new(tris++)Tri(Pt(-inf,-inf),Pt(+inf+inf,-inf),Pt
           (-inf,+inf+inf));
  TriRef find(Pt p)const{ return find(the_root,p); }
  void add_point(const Pt& p){ add_point(find(the_root,p
       ),p); }
  TriRef the_root;
  static TriRef find(TriRef root, const Pt& p) {
    while( true ){
  if( !root->has_chd() )
         return root;
      for( int i = 0; i < 3 && root->chd[i] ; ++i )
  if (root->chd[i]->contains(p)) {
           root = root->chd[i];
           break;
        }
    assert( false ); // "point not found"
  void add_point(TriRef root, Pt const& p) {
    TriRef tab, tbc, tca;
     /* split it into three triangles */
    tab=new(tris++) Tri(root->p[0],root->p[1],p);
    tbc=new(tris++) Tri(root->p[1],root->p[2],p);
tca=new(tris++) Tri(root->p[2],root->p[0],p);
    edge(Edge(tab,0), Edge(tbc,1))
    edge(Edge(tbc,0), Edge(tca,1));
    edge(Edge(tca,0), Edge(tab,1))
    edge(Edge(tab,2), root->edge[2]);
    edge(Edge(tbc,2), root->edge[0]);
    edge(Edge(tca,2), root->edge[1]);
    root->chd[0] = tab;
    root->chd[1] = tbc;
    root->chd[2] = tca;
    flip(tab,2);
    flip(tbc,2);
    flip(tca,2);
  void flip(TriRef tri, SdRef pi) {
```

```
TriRef trj = tri->edge[pi].tri;
     int pj = tri->edge[pi].side;
     if (!trj) return;
    if (!in_cc(tri->p[0],tri->p[1],tri->p[2],trj->p[pj])
          ) return;
     /* flip edge between tri,trj */
    TriRef trk = new(tris++) Tri(tri->p[(pi+1)%3], trj->
          p[pj], tri->p[pi]);
    TriRef trl = new(tris++) Tri(trj->p[(pj+1)%3], tri->
    p[pi], trj->p[pj]);
edge(Edge(trk,0), Edge(trl,0));
edge(Edge(trk,1), tri->edge[(pi+2)%3]);
    edge(Edge(trk,2), trj->edge[(pj+1)%3]);
edge(Edge(trl,1), trj->edge[(pj+2)%3]);
edge(Edge(trl,2), trj->edge[(pi+1)%3]);
    tri->chd[0]=trk; tri->chd[1]=trl; tri->chd[2]=0;
    trj->chd[0]=trk; trj->chd[1]=trl; trj->chd[2]=0;
flip(trk,1); flip(trk,2);
     flip(trl,1); flip(trl,2);
  }
vector<TriRef> triang; // vector of all triangle
set<TriRef> vst;
void go( TriRef now ){ // store all tri into triang
  if( vst.find( now ) != vst.end() )
     return:
  vst.insert( now )
  if( !now->has_chd() ){
     triang.push_back( now );
  for( int i = 0 ; i < now->num_chd() ; i ++ )
    qo(now->chd[i]);
void build( int n , Pt* ps ){ // build triangulation
  tris = pool; triang.clear(); vst.clear();
random_shuffle(ps, ps + n);
  Trig tri; // the triangulation structure
  for(int i = 0; i < n; ++ i)
    tri.add_point(ps[i]);
  go( tri.the_root );
```

4.17 Min Enclosing Circle 9ca717

```
struct Mec{
  // return pair of center and r
  static const int N = 101010;
  int n;
  Pt p[N], cen;
  double r2;
  void init( int _n , Pt _p[] ){
    memcpy( p , _p , sizeof(Pt) * n );
  double sqr(double a){ return a*a; }
  Pt center(Pt p0, Pt p1, Pt p2) {
    Pt a = p1-p0;
    Pt b = p2-p0;
    double c1=norm2( a ) * 0.5;
    double c2=norm2( b ) * 0.5;
    double d = a \wedge b;
    double x = p0.x + (c1 * b.y - c2 * a.y) / d;
    double y = p0.y + (a.x * c2 - b.x * c1) / d;
    return Pt(x,y);
  pair<Pt,double> solve(){
    random_shuffle(p,p+n);
    for (int i=0; i<n; i++){</pre>
       if (norm2(cen-p[i]) <= r2) continue;</pre>
       cen = p[i];
       r2 = 0;
       for (int j=0; j<i; j++){
  if (norm2(cen-p[j]) <= r2) continue;
  cen=Pt((p[i].x+p[j].x)/2,(p[i].y+p[j].y)/2);</pre>
         r2 = norm2(cen-p[j]);

for (int k=0; k++){

   if (norm2(cen-p[k]) <= r2) continue;
            cen = center(p[i],p[j],p[k]);
           r2 = norm2(cen-p[k]);
```

```
}
}
return {cen,sqrt(r2)};
}
mec;
```

4.18 Min Enclosing Ball 64186c

```
// Pt : { x
#define N 202020
int n, nouter; Pt pt[ N ], outer[4], res;
double radius,tmp;
double det(double m[3][3]){
     return m[0][0]*m[1][1]*m[2][2]
+ m[0][1]*m[1][2]*m[2][0]
+ m[0][2]*m[2][1]*m[1][0]
           - m[0][2]*m[1][1]*m[2][0]
- m[0][1]*m[1][0]*m[2][2]
           - m[0][0]*m[1][2]*m[2][1];
void ball() {
  Pt q[3]; double m[3][3], sol[3], L[3], d;
  int i,j; res.x = res.y = res.z = radius = 0;
switch ( nouter ) {
     case 1: res=outer[0]; break;
     case 2: res=(outer[0]+outer[1])/2; radius=norm2(res,
           outer[0]); break;
     case 3:
       L[0]=(sol[0]*m[1][1]-sol[1]*m[0][1])/d;
L[1]=(sol[1]*m[0][0]-sol[0]*m[1][0])/d;
res=outer[0]+q[0]*L[0]+q[1]*L[1];
       radius=norm2(res, outer[0]);
       break;
     case 4:
       for(i=0; i<3; ++i) q[i]=outer[i+1]-outer[0], sol[i
    ]=(q[i] * q[i]);</pre>
       for(i=0;i<3;++i) for(j=0;j<3;++j) m[i][j]=(q[i] *</pre>
             q[j])*2;
       d=det(m)
        if(fabs(d)<eps) return;</pre>
       for(j=0; j<3; ++j) {
          for(i=0; i<3; ++i) m[i][j]=sol[i];
L[j]=det(m) / d;</pre>
          for(i=0; i<3; ++i) m[i][j]=(q[i] * q[j])*2;</pre>
        } res=outer[0];
       for(i=0; i<3; ++i ) res = res + q[i] * L[i];
radius=norm2(res, outer[0]);</pre>
void minball(int n){ ball();
  if(nouter < 4) for(int i = 0; i < n; i ++)</pre>
     if(norm2(res, pt[i]) - radius > eps){
       outer[nouter ++] = pt[i]; minball(i); --nouter;
        if(i>0){ Pt Tt = pt[i]
          memmove(&pt[1], &pt[0], sizeof(Pt)*i); pt[0]=Tt;
double solve(){
  // n points in pt
  random_shuffle(pt, pt+n); radius=-1;
   for(int i=0;i<n;i++) if(norm2(res,pt[i])-radius>eps)
     nouter=1, outer[0]=pt[i], minball(i);
  return sqrt(radius);
```

4.19 Minkowski sum 71066d

4.20 Min dist on Cuboid 30cd50

4.21 Heart of Triangle 4da867

```
| Pt inCenter( Pt &A, Pt &B, Pt &C) { // 內心 double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c); }
| Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心 Pt bb = b - a, cc = c - a; double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc); return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; }
| Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心 Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0 = (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0 = -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

5 Graph

5.1 DominatorTree aea6b3

```
const int MAXN = 100010;
struct DominatorTree{
#define REP(i,s,e) for(int i=(s);i<=(e);i++)
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
   int n , m , s;
   vector< int > g[ MAXN ] , pred[ MAXN ];
   vector< int > cov[ MAXN ];
   int dfn[ MAXN ] , nfd[ MAXN ] , ts;
   int par[ MAXN ] ;
   int sdom[ MAXN ] , idom[ MAXN ];
   int mom[ MAXN ] , mn[ MAXN ];
   int mom[ MAXN ] , int w )
   { return dfn[ u ] < dfn[ v ]; }
   int eval( int u ){</pre>
```

```
if( mom[ u ] == u ) return u;
      int res = eval( mom[ u ] );
if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
        mn[u] = mn[mom[u]];
      return mom[ u ] = res;
   void init( int _n , int _m , int _s ){
     ts = 0; n = _n; m = _m; s = _s;
REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
   void addEdge( int u , int v ){
    g[ u ].push_back( v );
      pred[ v ].push_back( u );
   void dfs( int u ){
      ts++;
     dfn[ u ] = ts;
nfd[ ts ] = u;
for( int v : g[ u ] ) if( dfn[ v ] == 0 ){
        par[ v ] = u;
dfs( v );
      }
   void build(){
     REP( i , 1 , n ){
  dfn[ i ] = nfd[ i ] = 0;
  cov[ i ].clear();
         mom[i] = mn[i] = sdom[i] = i;
     dfs( s );

REPD( i , n , 2 ){
    int u = nfd[ i ];
    int u = nfd[ i ];
        if( u == 0 ) continue ;
for( int v : pred[ u ] ) if( dfn[ v ] ){
            eval( v );
            if( cmp( sdom[ mn[ v ] ] , sdom[ u ] ) )
  sdom[ u ] = sdom[ mn[ v ] ];
        cov[ sdom[ u ] ].push_back( u );
mom[ u ] = par[ u ];
         for( int w : cov[ par[ u ] ] ){
           eval( w );
if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
              idom[w] = mn[w];
           else idom[ w ] = par[ u ];
         cov[ par[ u ] ].clear();
      REP( i , 2 , n ){
  int u = nfd[ i ];
         if( u == 0 ) continue;
         if( idom[ u ] != sdom[ u ] )
  idom[ u ] = idom[ idom[ u ] ];
} domT;
```

5.2 Directed MST(ElogE) 4b46a2

```
struct RollbackUF {
  vi e; vector<pii> st;
  RollbackUF(int n) : e(n, -1) {}
int size(int x) {return -e[find(x)]; }
  int find(int x) {return e[x] < 0 ? x : find(e[x]);}</pre>
  int time() {return st.size();}
  void rollback(int t) {
    for(int i = time(); i --> t;)
       e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(int a, int b) {
    a = find(a), b = find(b);
    if(a == b) return false;
    if(e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]}); st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
     return true;
  }
};
struct Edge {int a, b; ll w;};
struct Node { // lazy skew heap node
  Edge key; Node *1, *r; ll d;
```

```
void prop() {
    key.w+=d; if(1) 1->d+=d; if(r) r->d+=d; d=0;
  Edge top() {prop(); return key;}
Node *merge(Node *a, Node *b) {
  if(!a | | !b) return a ?: b;
  a->prop(), b->prop();
  if(a->key.w > b->key.w) swap(a, b);
  swap(a\rightarrow l, (a\rightarrow r = merge(b, a\rightarrow r)));
void pop(Node*& a) {a->prop(); a=merge(a->1, a->r);}
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
  RollbackUF uf(n); vector<Node*> pq(n);
  for(Edge e:g) pq[e.b]=merge(pq[e.b], new Node{e});
  ll res = 0; vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\});
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while(seen[u] < 0) {
  if(!pq[u]) return {-1,{}};</pre>
       Edge e = pq[u]->top();
pq[u]->d -= e.w, pop(pq[u]);
       Q[qi] = e, path[qi++] = u, seen[u] = s;
       res += e.w, u = uf.find(e.a);
       if(seen[u] == s) { // found cycle, contract
Node* cyc = 0; int end = qi, t = uf.time();
         do cyc = merge(cyc, pq[w = path[--qi]]);
         while(uf.join(u, w));
         u = uf.find(u), pq[u] = cyc, seen[u] = -1
         cycs.push_front(\{u, \bar{t}, \{\&Q[qi], \&Q[\bar{e}nd]\}\});
    rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
  for(auto& [u,t,comp] : cycs) {// restore sol
  uf.rollback(t); Edge inEdge = in[u];
    for(auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
  rep(i,0,n) par[i] = in[i].a;
  return {res, par};
```

5.3 MaximalClique a8cba8

```
#define N 80
struct MaxClique{ // 0-base
  typedef bitset<N> Int;
  Int lnk[N], v[N];
  int n;
  void init(int _n){
    n = _n;
for(int i = 0 ; i < n ; i ++){
  lnk[i].reset(); v[i].reset();
    }
  }
  void addEdge(int a , int b)
{ v[a][b] = v[b][a] = 1; }
int ans , stk[N], id[N] , di[N] , deg[N];
  void dfs(int elem_num, Int candi, Int ex){
     if(candi.none()&ex.none()){
       cans.reset();
       for(int i = 0 ; i < elem_num ; i ++)
  cans[id[stk[i]]] = 1;
ans = elem_num; // cans is a maximal clique</pre>
       return;
     int pivot = (candilex)._Find_first();
    Int smaller_candi = candi & (~lnk[pivot]);
    while(smaller_candi.count()){
       int nxt = smaller_candi._Find_first();
       candi[nxt] = smaller_candi[nxt] = 0;
       ex[nxt] = 1;
       stk[elem_num] = nxt;
       dfs(elem_num+1,candi&lnk[nxt],ex&lnk[nxt]);
```

```
int solve(){
       for(int i = 0; i < n; i ++){
          id[i] = i; deg[i] = v[i].count();
      sort(id , id + n , [&](int id1, int id2){
    return deg[id1] > deg[id2]; });
for(int i = 0 ; i < n ; i ++) di[id[i]] = i;
for(int i = 0 ; i < n ; i ++)</pre>
          for(int j = 0; j < n; j ++)
             if(v[i][j]) lnk[di[i]][di[j]] = 1;
       ans = 1; cans.reset(); cans[0] = 1;
dfs(0, Int(string(n,'1')), 0);
       return ans;
|} solver;
```

5.4 MaxCliqueDyn e0119d

```
#define N 150
struct MaxClique{ // Maximum Clique
  bitset<N> a[N],cs[N];
  int ans,sol[N],q,cur[N],d[N],n;
  void init(int _n){
    n=_n; for(int i=0;i<n;i++) a[i].reset();
  void addEdge(int u,int v){a[u][v]=a[v][u]=1;}
  void csort(vector<int> &r,vector<int> &c){
    int mx=1,km=max(ans-q+1,1),t=0,m=r.size();
    cs[1].reset(); cs[2].reset();
    for(int i=0;i<m;i++){
  int p=r[i],k=1;</pre>
       while((cs[k]&a[p]).count()) k++;
       if(k>mx){ mx++; cs[mx+1].reset();}
       cs[k][p]=1;
       if(k<km) r[t++]=p;</pre>
    c.resize(m);
    if(t) c[t-1]=0;
    for(int k=km;k<=mx;k++){</pre>
       for(int p=cs[k]._Find_first();p<N;p=cs[k].</pre>
            _Find_next(p)){
         r[t]=p; c[t]=k; t++;
    }
  void dfs(vector<int> &r,vector<int> &c,int 1,bitset<N>
       mask){
    while(!r.empty()){
       int p=r.back(); r.pop_back(); mask[p]=0;
       if(q+c.back()<=ans) return;</pre>
       vector<int> nr,nc; bitset<N> nmask=mask&a[p];
       for(int i:r) if(a[p][i]) nr.push_back(i);
       if(!nr.empty()){
         if(1<4){
           for(int i:nr) d[i]=(a[i]&nmask).count();
           sort(nr.begin(),nr.end(),[&](int x,int y){
                return d[x]>d[y];});
         csort(nr,nc); dfs(nr,nc,l+1,nmask);
       else if(q>ans){
         ans=q; copy(cur,cur+q,sol);
       c.pop_back(); q--;
    }
  int solve(bitset<N> mask=bitset<N>(string(N,'1'))){ //
        vertex mask
    vector<int> r,c; ans=q=0;
    for(int i=0;i<n;i++) if(mask[i]) r.push_back(i);
for(int i=0;i<n;i++) d[i]=(a[i]&mask).count();</pre>
    sort(r.begin(),r.end(),[&](int i,int j){return d[i]>
         d[j];});
    csort(r,c); dfs(r,c,1,mask);
return ans; // sol[0 ~ ans-1]
  }
}graph;
```

Strongly Connected Component 10c233

|void dfs(int i){

```
V[i]=low[i]=++ts,stk[top++]=i,instk[i]=1;
for(auto x:E[i]){
    if(!V[x])dfs(x),low[i]=min(low[i],low[x]);
    else if(instk[x])low[i]=min(low[i],V[x]);
}
if(V[i]==low[i]){
    int j;
    do{j = stk[--top], instk[j] = 0, scc[j] = i;
    }while(j != i);
}
```

5.6 Dynamic MST 12c615

```
/* Dynamic MST 0( Q lg^2 Q )
n nodes, m edges, Q query
 (u[i], v[i], w[i])->edge
(qid[i], qw[i])->chg weight of edge No.qid[i] to qw[i]
 delete an edge: (i, \infty)
 add an edge: change from \infty to specific value */
const int SZ=M+3*MXQ;
int a[N],*tz;
int find(int x){
     return x==a[x]?x:a[x]=find(a[x]);
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }
int kx[N],ky[N],kt, vd[N],id[M], app[M], cur;
long long answer[MXQ]; // answer after ith query</pre>
bool extra[M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,int
      *z,int m1,long long ans){
  if(Q==1){
    for(int i=1;i<=n;i++) a[i]=0;
z[ qx[0] ]=qy[0]; tz = z;
for(int i=0;i<m1;i++) id[i]=i;
     sort(id,id+m1,cmp); int ri,rj;
     for(int i=0;i<m1;i++){</pre>
       ri=find(x[id[i]]); rj=find(y[id[i]]);
if(ri!=rj){ ans+=z[id[i]]; a[ri]=rj; }
         answer[cur++]=ans;
    return;
  int ri,rj;
  //contract
  kt=0;
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<Q;i++){</pre>
    ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
          ri]=rj;
  int tm=0;
  for(int i=0;i<m1;i++) extra[i]=true;</pre>
  for(int i=0;i<Q;i++) extra[ qx[i] ]=false;</pre>
  for(int i=0;i<m1;i++) if(extra[i]) id[tm++]=i;</pre>
  tz=z; sort(id,id+tm,cmp);
  for(int i=0;i<tm;i++){</pre>
    ri=find(x[id[i]]); rj=find(y[id[i]]);
     if(ri!=rj){
       a[ri]=rj; ans += z[id[i]];
       kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
    }
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<kt;i++) a[ find(kx[i]) ]=find(ky[i]);</pre>
  int n2=0;
  for(int i=1;i<=n;i++) if(a[i]==0)</pre>
  vd[i]=++n2;
  for(int i=1;i<=n;i++) if(a[i])</pre>
  vd[i]=vd[find(i)];
  int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
  for(int i=0;i<m1;i++) app[i]=-1;</pre>
  for(int i=0;i<Q;i++) if(app[qx[i]]==-1){</pre>
    Nx[m2]=vd[x[qx[i]]; Ny[m2]=vd[y[qx[i]]; Nz
          [m2]=z[qx[i]];
    app[qx[i]]=m2; m2++;
  for(int i=0;i<Q;i++){ z[ qx[i] ]=qy[i]; qx[i]=app[qx[i</pre>
       ]]; }
  for(int i=1;i<=n2;i++) a[i]=0;</pre>
  for(int i=0;i<tm;i++){</pre>
    ri=find(vd[x[id[i]]]); rj=find(vd[y[id[i]]]);
```

```
if(ri!=rj){
    a[ri]=rj; Nx[m2]=vd[ x[id[i]] ];
    Ny[m2]=vd[ y[id[i]] ]; Nz[m2]=z[id[i]]; m2++;
    }
}
int mid=Q/2;
solve(qx,qy,mid,n2,Nx,Ny,Nz,m2,ans);
solve(qx+mid,qy+mid,Q-mid,n2,Nx,Ny,Nz,m2,ans);
}
int u[SZ],v[SZ],w[SZ],qid[MXQ],qw[MXQ],n,m,Q;
void work(){if(Q) cur=0,solve(qid,qw,Q,n,u,v,w,m,0);}
```

5.7 Maximum General graph Matching a70889

```
// should shuffle vertices and edges
const int N = 100005, E = (2e5) * 2 + 40;
struct Graph{
  int to[E],bro[E],head[N],e;
  int lnk[N],vis[N],stp,n;
  void init( int _n ){
    stp = 0; e = 1; n = _n;
for( int i = 1 ; i <= n ; i ++ )
       head[i] = lnk[i] = vis[i] = 0;
  void add_edge(int u,int v){
  to[e]=v,bro[e]=head[u],head[u]=e++;
    to[e]=u,bro[e]=head[v],head[v]=e++;
  bool dfs(int x){
    vis[x]=stp;
    for(int i=head[x];i;i=bro[i]){
       int v=to[i];
       if(!lnk[v]){
         lnk[x]=v, lnk[v]=x;
         return true;
    } for(int i=head[x];i;i=bro[i]){
       int v=to[i];
       if(vis[lnk[v]]<stp){</pre>
         int w=lnk[v]
         lnk[x]=v, lnk[v]=x, lnk[w]=0;
         if(dfs(w)) return true;
         lnk[w]=v, lnk[v]=w, lnk[x]=0;
    }
    return false;
  int solve(){
    int ans = 0;
     for(int i=1;i<=n;i++) if(!lnk[i])</pre>
         stp++, ans += dfs(i);
    return ans;
  }
} graph;
```

5.8 Minimum General Weighted Matching 862569

```
struct Graph {
 // Minimum General Weighted Matching (Perfect Match)
  static const int MXN = 105;
  int n, edge[MXN][MXN]
 int match[MXN],dis[MXN],onstk[MXN];
 vector<int> stk;
 void init(int _n) {
    for( int i = 0 ; i < n ; i ++ )
      for( int j = 0; j < n; j ++ )
edge[ i ][ j ] = 0;
  void add_edge(int u, int v, int w)
  \{ edge[u][v] = edge[v][u] = w; \}
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.push_back(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){
      if (u != v && match[u] != v && !onstk[v]){
        int m = match[v];
        if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
          dis[m] = dis[u] - edge[v][m] + edge[u][v];
          onstk[v] = 1;
```

```
stk.push_back(v);
           if (SPFA(m)) return true;
           stk.pop_back();
           onstk[v] = 0;
      }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i<n; i+=2){
  match[i] = i+1;</pre>
       match[i+1] = i;
    while (true){
       int found = 0;
       for( int i = 0 ; i < n ; i ++ )</pre>
         onstk[ i ] = dis[ i ] = 0;
       for (int i=0; i<n; i++){</pre>
         stk.clear()
         if (!onstk[i] && SPFA(i)){
           found = 1;
           while ((int)stk.size()>=2){
              int u = stk.back(); stk.pop_back();
int v = stk.back(); stk.pop_back();
              match[u] = v;
              match[v] = u;
         }
       if (!found) break;
    int ret = 0;
    for (int i=0; i<n; i++)
       ret += edge[i][match[i]];
    ret /= 2;
    return ret;
}graph;
```

5.9 Maximum General Weighted Matching b48b72

```
struct WeightGraph {
  static const int INF = INT_MAX;
  static const int N = 514;
  struct edge{
    int u,v,w; edge(){}
    edge(int ui,int vi,int wi)
       :u(ui),v(vi),w(wi){}
  int n,n_x;
  edge g[N*2][N*2];
  int lab[N*2];
  int match[N*2],slack[N*2],st[N*2],pa[N*2];
int flo_from[N*2][N+1],S[N*2],vis[N*2];
  vector<int> flo[N*2];
  queue<int> q;
  int e_delta(const edge &e){
    return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
  void update_slack(int u,int x){
    if(!slack[x]||e_delta(g[u][x])<e_delta(g[slack[x]][x</pre>
         ]))slack[x]=u;
  void set_slack(int x){
    slack[x]=0;
    for(int u=1;u<=n;++u)</pre>
      if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
        update_slack(u,x);
  void q_push(int x){
    if(x<=n)q.push(x);</pre>
    else for(size_t i=0;i<flo[x].size();i++)</pre>
      q_push(flo[x][i]);
  void set_st(int x,int b){
    st[x]=b;
    if(x>n)for(size_t i=0;i<flo[x].size();++i)</pre>
```

```
set_st(flo[x][i],b);
int get_pr(int b,int xr){
  int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].
      begin();
  if(pr%2==1){
    reverse(flo[b].begin()+1,flo[b].end());
    return (int)flo[b].size()-pr;
  }else return pr;
void set_match(int u,int v){
  match[u]=g[u][v].v;
  if(u<=n) return;</pre>
  edge e=g[u][v];
  int xr=flo_from[u][e.u],pr=get_pr(u,xr)
  for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i</pre>
      ^17);
  set_match(xr,v);
  rotate(flo[u].begin(),flo[u].begin()+pr,flo[u].end()
void augment(int u,int v){
  for(;;){
    int xnv=st[match[u]];
    set_match(u,v);
    if(!xnv)return;
    set_match(xnv,st[pa[xnv]]);
    u=st[pa[xnv]],v=xnv;
  }
int get_lca(int u,int v){
  static int t=0;
  for(++t;ullv;swap(u,v)){
    if(u==0)continue;
    if(vis[u]==t)return u;
    vis[u]=t;
    u=st[match[u]]
    if(u)u=st[pa[u]];
  }
  return 0;
void add_blossom(int u,int lca,int v){
  int b=n+1;
  while(b<=n_x&&st[b])++b;</pre>
  if(b>n_x)++n_x
  lab[b]=0,S[b]=0;
  match[b]=match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for(int_x=u,y;x!=lca;x=st[pa[y]])
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
         ]]),q_push(y);
  reverse(flo[b].begin()+1,flo[b].end());
  for(int x=v,y;x!=lca;x=st[pa[y]])
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
         ]]),q_push(y);
  set_st(b,b);
  for(int x=1;x<=n_x;++x)g[b][x].w=g[x][b].w=0;</pre>
  for(int x=1;x<=n;++x)flo_from[b][x]=0;</pre>
  for(size_t i=0;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    for(int x=1;x<=n_x;++x)</pre>
      if(g[b][x].w==0|ie_delta(g[xs][x])<e_delta(g[b][x])
           x]))
        g[b][x]=g[xs][x],g[x][b]=g[x][xs];
    for(int x=1;x<=n;++x)</pre>
      if(flo_from[xs][x])flo_from[b][x]=xs;
  set slack(b):
void expand_blossom(int b){
  for(size_t i=0;i<flo[b].size();++i)</pre>
    set_st(flo[b][i],flo[b][i]);
  int xr=flo_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
  for(int i=0;i<pr;i+=2){
  int xs=flo[b][i],xns=flo[b][i+1];</pre>
    pa[xs]=g[xns][xs].u;
    S[xs]=1,S[xns]=0;
    slack[xs]=0,set_slack(xns);
    q_push(xns);
  S[xr]=1,pa[xr]=pa[b];
```

```
for(size_t i=pr+1;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    S[xs]=-1, set\_slack(xs);
  st[b]=0;
bool on_found_edge(const edge &e){
  int u=st[e.u],v=st[e.v];
  if(S[v]==-1){
    pa[v]=e.u,S[v]=1
    int nu=st[match[v]]
    slack[v]=slack[nu]=0;
    S[nu]=0,q_push(nu);
 }else if(S[v]==0){
    int lca=get_lca(u,v);
    if(!lca)return augment(u,v),augment(v,u),true;
    else add_blossom(u,lca,v);
  return false;
bool matching(){
 memset(S+1,-1,sizeof(int)*n_x);
 memset(slack+1,0,sizeof(int)*n_x);
  q=queue<int>();
  for(int x=1;x<=n_x;++x)</pre>
    if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(x);
  if(q.empty())return false;
  for(;;){
    while(q.size()){
      int u=q.front();q.pop();
      if(S[st[u]]==1)continue
      for(int v=1;v<=n;++v)</pre>
        if(g[u][v].w>0&&st[u]!=st[v]){
          if(e_delta(g[u][v])==0){
             if(on_found_edge(g[u][v]))return true;
          }else update_slack(u,st[v]);
        }
    int d=INF;
    for(int b=n+1;b<=n_x;++b)</pre>
      if(st[b]==b&&S[b]==1)d=min(d,lab[b]/2);
    for(int x=1;x<=n_x;++x)</pre>
      if(st[x]==x\&slack[x]){
        if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]));
        else if(S[x]==0)d=min(d,e_delta(g[slack[x]][x
             ])/2);
    for(int u=1;u<=n;++u){</pre>
      if(S[st[u]]==0){
        if(lab[u]<=d)return 0;</pre>
        lab[u]-=d;
      }else if(S[st[u]]==1)lab[u]+=d;
    for(int b=n+1;b<=n_x;++b)</pre>
      if(st[b]==b){
        if(S[st[b]]==0)lab[b]+=d*2;
        else if(S[st[b]]==1)lab[b]-=d*2;
    q=queue<int>();
    for(int x=1;x<=n_x;++x)</pre>
      if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&e_delta(
          g[slack[x]][x])==0
        if(on_found_edge(g[slack[x]][x]))return true;
    for(int b=n+1;b<=n_x;++b)</pre>
      if(st[b]==b\&\&S[b]==1\&\&lab[b]==0)expand_blossom(b)
          );
 return false;
pair<long long,int> solve(){
 memset(match+1,0,sizeof(int)*n);
  n_x=n;
  int n_matches=0;
  long long tot_weight=0;
  for(int u=0;u<=n;++u)st[u]=u,flo[u].clear();</pre>
  int w_max=0;
  for(int u=1;u<=n;++u)</pre>
    for(int v=1;v<=n;++v){</pre>
      flo_from[u][v]=(u==v?u:0);
      w_{max}=max(w_{max},g[u][v].w);
  for(int u=1;u<=n;++u)lab[u]=w_max;</pre>
```

```
while(matching())++n_matches;
for(int u=1;u<=n;++u)
    if(match[u]&&match[u]<u)
        tot_weight+=g[u][match[u]].w;
    return make_pair(tot_weight,n_matches);
}
void add_edge( int ui , int vi , int wi ){
    g[ui][vi].w = g[vi][ui].w = wi;
}
void init( int _n ){
    n = _n;
    for(int u=1;u<=n;++u)
        for(int v=1;v<=n;++v)
        g[u][v]=edge(u,v,0);
}
} graph;</pre>
```

5.10 Minimum Steiner Tree 48ef1c

```
// Minimum Steiner Tree O(V 3^T + V^2 2^T)
// shortest_path() should be called before solve()
// w:vertex weight, default 0
struct SteinerTree{
#define V 66
#define T 10
#define INF 1023456789
  int n , dst[V][V] , dp[1 << T][V] , tdst[V] , w[V]; void init( int _{\rm n} ){
     n = _n; fill( w , w + n , 0 );
for( int i = 0 ; i < n ; i ++ ){
  for( int j = 0 ; j < n ; j ++ )
    dst[ i ][ j ] = INF;
  dst[ i ][ i ] = 0;
}</pre>
     }
  void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
  void shortest_path(){
     for( int i = 0 ; i < n ; i ++ )
for( int j = 0 ; j < n ; j ++ )
  if( i != j && dst[ i ][ j ] != INF )
  dst[ i ][ j ] += w[ i ];
for( int k = 0 ; k < n ; k ++ )</pre>
         for( int i = 0; i < n; i ++)
for( int j = 0; j < n; j ++)
     int solve( const vector<int>& ter ){
      int t = (int)ter.size();
      for( int i = 0; i < (1 << t); i ++ )
      for(int j = 0; j < n; j ++)

dp[i][j] = INF;

for(int i = 0; i < n; i ++)
         dp[0][i] = 0;
      for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){
  if( msk == ( msk & (-msk) ) ){</pre>
            int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
         for( int i = 0 ; i < n ; i ++ )</pre>
            for( int submsk = ( msk - 1 ) & msk ; submsk ;
    submsk = ( submsk - 1 ) & msk )
                  dp[ msk ^ submsk ][ i ] - w[
                                                   i ] );
         for( int i = 0 ; i < n ; i ++ ){</pre>
            tdst[i] = INF;
for(int j = 0; j < n; j ++ )
tdst[i] = min(tdst[i],
                                dp[ msk ][ j ] + dst[ j ][ i ] - w[
                                        j]);
         }
```

5.11 BCC based on vertex bba50a

```
struct BccVertex {
  int n,nScc,step,dfn[MXN],low[MXN];
  vector<int> E[MXN],sccv[MXN];
  int top,stk[MXN];
  void init(int _n) {
  n = _n; nScc = step = 0;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void addEdge(int u, int v)
  { E[u].push_back(v); E[v].push_back(u); }
  void DFS(int u, int f) {
    dfn[u] = low[u] = step++;
    stk[top++] = u;
    for (auto v:E[u]) {
      if (v == f) continue;
      if (dfn[v] == -1) {
        DFS(v,u);
        low[u] = min(low[u], low[v]);
        if (low[v] >= dfn[u]) {
          int z;
          sccv[nScc].clear();
          do {
            z = stk[--top];
            sccv[nScc].push_back(z);
          } while (z != v);
          sccv[nScc++].push_back(u);
      }else
        low[u] = min(low[u],dfn[v]);
  vector<vector<int>> solve() {
    vector<vector<int>> res;
    for (int i=0; i<n; i++)
      dfn[i] = low[i] = -1;
    for (int i=0; i < n; i++)
      if (dfn[i] == -1) {
        top = 0;
        DFS(i,i);
    for(int i=0;i<nScc;i++) res.push_back(sccv[i]);</pre>
    return res;
}graph;
```

5.12 Min Mean Cycle 5ce5a3

```
′* minimum mean cycle O(VE) */
struct MMC{
#define E 101010
#define V 1021
#define inf 1e9
#define eps 1e-6
  struct Edge { int v,u; double c; };
  int n, m, prv[V][V], prve[V][V], vst[V];
  Edge e[E];
  vector<int> edgeID, cycle, rho;
  double d[V][V];
  void init( int _n_)
  { n = _n; m = 0; }
// WARNING: TYPE matters
  void addEdge( int vi , int ui , double ci )
  { e[ m ++ ] = { vi , úi , ci }; }
void bellman_ford() {
     for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
       fill(d[i+1], d[i+1]+n, inf);
       for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;
  if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
```

```
d[i+1][u] = d[i][v]+e[j].c;
          prv[i+1][u] = v;
          prve[i+1][u] = j;
      }
    }
  double solve(){
    // returns inf if no cycle, mmc otherwise
    double mmc=inf;
    int st = -1;
    bellman_ford();
    for(int i=0; i<n; i++) {</pre>
      double avg=-inf;
      for(int k=0; k<n; k++) {</pre>
        if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i</pre>
             ])/(n-k));
        else avg=max(avg,inf);
      if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
    if(st==-1) return inf;
    FZ(vst);edgeID.clear();cycle.clear();rho.clear();
    for (int i=n; !vst[st]; st=prv[i--][st]) {
      vst[st]++;
      edgeID.push_back(prve[i][st]);
      rho.push_back(st);
    while (vst[st] != 2) {
      int v = rho.back(); rho.pop_back();
      cycle.push_back(v);
      vst[v]++;
    reverse(ALL(edgeID));
    edgeID.resize((int)cycle.size());
    return mmc;
} mmc;
```

5.13 Directed Graph Min Cost Cycle 8de30f

```
// works in O(N M)
#define INF 10000000000000000LL
#define N 5010
#define M 200010
struct edge{
 int to; LL w;
  edge(int a=0, LL b=0): to(a), w(b){}
struct node{
 LL d; int u, next;
 node(LL a=0, int b=0, int c=0): d(a), u(b), next(c){}
struct DirectedGraphMinCycle{
 vector<edge> g[N], grev[N];
LL dp[N][N], p[N], d[N], mu;
 bool inq[N];
 int n, bn, bsz, hd[N];
 void b_insert(LL d, int u){
    int i = d/mu;
    if(i >= bn) return;
   b[++bsz] = node(d, u, hd[i]);
   hd[i] = bsz;
 void init( int _n ){
   n = _n;
    for( int i = 1 ; i <= n ; i ++ )
      g[ i ].clear();
 void addEdge( int ai , int bi , LL ci )
  { g[ai].push_back(edge(bi,ci)); }
 LL solve(){
    fill(dp[0], dp[0]+n+1, 0);
    for(int i=1; i<=n; i++){</pre>
     dp[i-1][j]+g[j][k].w);
     }
   mu=INF; LL bunbo=1;
```

static int cmp(heap* a,heap* b)

```
for(int i=1; i<=n; i++) if(dp[n][i] < INF){
  LL a=-INF, b=1;</pre>
                                                                           { return a->edge->d > b->edge->d; }
                                                                           struct node{
       for(int j=0; j<=n-1; j++) if(dp[j][i] < INF){
  if(a*(n-j) < b*(dp[n][i]-dp[j][i])){</pre>
                                                                              int v; ll d; heap* H; nd* E;
                                                                              node(){}
            a = dp[n][i]-dp[j][i];
                                                                              node(ll _d, int _v, nd* _E)
                                                                             { d =_d; v = _v; E = _E; }
node(heap* _H, ll _d)
            b = n-j;
          }
                                                                              {H = _H; d = _d; }
       if(mu*b > bunbo*a)
                                                                              friend bool operator<(node a, node b)</pre>
          mu = a, bunbo = b;
                                                                              { return a.d > b.d; }
     if(mu < 0) return -1; // negative cycle</pre>
                                                                           int n, k, s, t, dst[ N ];
                                                                           nd *nxt[ N ];
     if(mu == INF) return INF; // no cycle
                                                                           vector<nd*> g[ N ], rg[ N ];
heap *nullNd, *head[ N ];
     if(mu == 0) return 0;
     for(int i=1; i<=n; i++)</pre>
       for(int j=0; j<(int)g[i].size(); j++)
g[i][j].w *= bunbo;</pre>
                                                                           void init( int _n , int _k , int _s , int _t ){
                                                                             n = _n; k = _k; s = _s; t = _t;
for( int i = 1 ; i <= n ; i ++ ){
    g[ i ].clear(); rg[ i ].clear();
    nxt[ i ] = NULL; head[ i ] = NULL;
    dst[ i ] = -1;</pre>
     memset(p, 0, sizeof(p));
     queue<int> q;
     for(int i=1; i<=n; i++){</pre>
       q.push(i);
       inq[i] = true;
                                                                              }
     while(!q.empty()){
                                                                           void addEdge( int ui , int vi , ll di ){
                                                                             nd* e = new nd(ui, vi, di);
g[ui].push_back( e );
       int i=q.front(); q.pop(); inq[i]=false;
       for(int j=0; j<(int)g[i].size(); j++){
  if(p[g[i][j].to] > p[i]+g[i][j].w-mu){
                                                                              rg[ vi ].push_back( e );
            p[g[i][j].to] = p[i]+g[i][j].w-mu;
             if(!inq[g[i][j].to]){
                                                                           queue<int> dfsQ;
               q.push(g[i][j].to);
                                                                           void dijkstra(){
               inq[g[i][j].to] = true;
                                                                              while(dfsQ.size()) dfsQ.pop();
            }
                                                                              priority_queue<node> Q;
          }
                                                                              Q.push(node(0, t, NULL));
       }
                                                                              while (!Q.empty()){
                                                                                node p = Q.top(); Q.pop();
     for(int i=1; i<=n; i++) grev[i].clear();
for(int i=1; i<=n; i++)</pre>
                                                                                if(dst[p.v] != -1) continue;
                                                                                dst[ p.v ] = p.d;
nxt[ p.v ] = p.E;
        for(int j=0; j<(int)g[i].size(); j++){</pre>
          g[i][j].w += p[i]-p[g[i][j].to]
                                                                                dfsQ.push( p.v );
for(auto e: rg[ p.v ])
          grev[g[i][j].to].push_back(edge(i, g[i][j].w));
                                                                                   Q.push(node(p.d + e->d, e->u, e));
     LL mldc = n*mu;
                                                                              }
     for(int i=1; i<=n; i++){</pre>
       bn=mldc/mu, bsz=0;
                                                                           heap* merge(heap* curNd, heap* newNd){
       memset(hd, 0, sizeof(hd));
                                                                              if(curNd == nullNd) return newNd;
                                                                             heap* root = new heap;
memcpy(root, curNd, sizeof(heap));
       fill(d+i+1, d+n+1, INF);
       b_insert(d[i]=0, i)
        for(int j=0; j<=bn-1; j++) for(int k=hd[j]; k; k=b</pre>
                                                                              if(newNd->edge->d < curNd->edge->d){
                                                                                root->edge = newNd->edge;
root->chd[2] = newNd->chd[2];
             [k].next){
          int u = b[k].u;
          LL du = b[k].d;
                                                                                root->chd[3] = newNd->chd[3];
          if(du > d[u]) continue;
                                                                                newNd->edge = curNd->edge;
          for(int l=0; l<(int)g[u].size(); l++) if(g[u][l</pre>
                                                                                newNd \rightarrow chd[2] = curNd \rightarrow chd[2]
               ].to > i){}
                                                                                newNd \rightarrow chd[3] = curNd \rightarrow chd[3];
            if(d[g[u][i].to] > du + g[u][i].w){
  d[g[u][i].to] = du + g[u][i].w;
                                                                              if(root->chd[0]->dep < root->chd[1]->dep)
               b_insert(d[g[u][l].to], g[u][l].to);
                                                                                root->chd[0] = merge(root->chd[0], newNd);
                                                                              else
          }
                                                                                root->chd[1] = merge(root->chd[1],newNd);
                                                                              root->dep = max(root->chd[0]->dep, root->chd[1]->dep
       for(int j=0; j<(int)grev[i].size(); j++) if(grev[i])</pre>
                                                                                   ) + 1;
                                                                              return root;
             ][j].to > i)
          mldc=min(mldc,d[grev[i][j].to] + grev[i][j].w);
                                                                           vector<heap*> V;
     return mldc / bunbo;
                                                                           void build(){
  }
                                                                              nullNd = new heap;
|} graph;
                                                                              nullNd->dep = 0;
                                                                              nullNd->edge = new nd;
                                                                              fill(nullNd->chd, nullNd->chd+4, nullNd);
5.14 K-th Shortest Path 355040
                                                                              while(not dfsQ.empty()){
                                                                                int u = dfsQ.front(); dfsQ.pop();
if(!nxt[ u ]) head[ u ] = nullNd;
// time: O(|E| \setminus g \mid E| + \mid V| \setminus g \mid V| + K)
// memory: O(|E| \langle1g |E| + |V|)
struct KSP{ // 1-base
                                                                                else head[ u ] = head[nxt[ u ]->v];
                                                                                V.clear();
   struct nd{
     int u, v; ll d;
                                                                                for( auto&& e : g[ u ] ){
     nd(int ui = 0, int vi = 0, ll di = INF)
                                                                                   int v = e->v;
                                                                                  if( dst[ v ] == -1 ) continue;
e->d += dst[ v ] - dst[ u ];
     \{ u = ui; v = vi; d = di; \}
  struct heap{
                                                                                   if( nxt[ u ] != e ){
                                                                                     heap* p = new heap;
     nd* edge; int dep; heap* chd[4];
```

fill(p->chd, p->chd+4, nullNd);

p->dep = 1;

```
p->edae = e
            V.push_back(p);
         }
       if(V.empty()) continue;
       make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)
#define R(X) ((X<<1)+2)
       for( size_t i = 0 ; i < V.size() ; i ++ ){
  if(L(i) < V.size()) V[i] -> chd[2] = V[L(i)];
          else V[i]->chd[2]=nullNd;
          if(R(i) < V.size()) V[i] -> chd[3] = V[R(i)];
         else V[i]->chd[3]=nullNd;
       head[u] = merge(head[u], V.front());
  vector<ll> ans:
  void first_K(){
    ans.clear();
     priority_queue<node> Q;
     if( dst[ s ] == -1 ) return;
    ans.push_back( dst[ s ] );
if( head[s] != nullNd )
    Q.push(node(head[s], dst[s]+head[s]->edge->d));
for( int _ = 1 ; _ < k and not Q.empty() ; _ ++ ){
  node p = Q.top(), q; Q.pop();</pre>
       ans.push_back( p.d );
       if(head[ p.H->edge->v ] != nullNd){
          q.H = head[p.H->edge->v];
         q.d = p.d + q.H->edge->d;
         Q.push(q);
       for( int i = 0 ; i < 4 ; i ++ )</pre>
         if( p.H->chd[ i ] != nullNd ){
   q.H = p.H->chd[ i ];
            q.d = p.d - p.H->edge->d + p.H->chd[i]->edge
            Q.push( q );
    }
  void solve(){ // ans[i] stores the i-th shortest path
    dijkstra();
     build()
     first_K(); // ans.size() might less than k
} solver;
```

5.15 Chordal Graph

```
struct Chordal {
  static const int MXN = 100010;
  vector<int> E[MXN], V[MXN];
  int n,f[MXN],rk[MXN],order(MXN],stk[MXN],nsz[MXN];
  bool vis[MXN], isMaximalClique[MXN];
  void init(int _n) {
    n = _n;
    for(int i = 0; i <= n; ++i) {</pre>
       E[i].clear(), V[i].clear();
       f[i]=rk[i]=order[i]=vis[i]=0;
  void addEdge(int x, int y) {
    E[x].push_back(y), E[y].push_back(x);
  void mcs() {
    for(int i = 1; i <= n; ++i) V[0].push_back(i);
for(int i = n, M = 0; i >= 1; --i) {
         while(V[M].size()&&vis[V[M].back()])
           V[M].pop_back();
         if(V[M].size()) break; else M--;
       auto x=V[M].back();order[i]=x;rk[x]=i;vis[x]=1;
      for(auto y : E[x]) if(!vis[y])
f[y]++, V[f[y]].push_back(y), M=max(M,f[y]);
    }
  }
  bool isChordal() {
    for(int i = 0; i <= n; ++i) vis[i] = stk[i] = 0;
for(int i = n; i >= 1; --i) {
```

```
int top = 0, cnt = 0, m = n+1;
for(auto x : E[order[i]]) if(rk[x] > i)
       stk[top++]=x, vis[x]=1, m = min(m, rk[x]);
     if(m==n+1) continue;
     for(auto x : E[order[m]]) if(vis[x]) ++cnt;
     for(int j = 0; j < top; ++j) vis[stk[j]] = 0;
if(cnt + 1 != top) return 0;</pre>
  }
  return 1;
void getMaximalClique() {
  for(int i = n; i >= 1; --i) {
    int M = n+1, w = order[i], v = 0;
nsz[w] = 0; isMaximalClique[w] = 1;
for(auto x : E[w]) if(rk[x] > i) {
       nsz[w]++;
       if(rk[x] < M) M = rk[x], v = x;
     if(v)isMaximalClique[v]&=nsz[v]+1>nsz[w];
  }
int getMaximumClique() {
  int res = 0;
  for(int i = 1; i \le n; ++i) res=max(res,f[i]+1);
  return res;
int getMaximumIndependentSet() {
  for(int i = 0; i <= n; ++i) vis[i] = 0;</pre>
  int res = 0;
  for(int i = 1; i <= n; ++i) if(!vis[order[i]]) {
  res++, vis[order[i]] = 1;</pre>
     for(auto x : E[order[i]]) vis[x] = 1;
  return res;
```

5.16 Graph Method

Manhattan MST

For each point, consider the points that surround it(8 octants). Then, connect it with the closest point. For example, consider 45~90. For each point p, the closest point is min{x+y | x-y >= p.x-p.y, x >= p.x}. Finally, the answer is this new graphs(E=4N) MST.

6 String

6.1 PalTree 7280a6

```
const int MXN = 1000010;
struct PalT{
  int nxt[MXN][26],fail[MXN],len[MXN];
  int tot,lst,n,state[MXN],cnt[MXN],num[MXN];
 int diff[MXN],sfail[MXN],fac[MXN],dp[MXN];
  char s[MXN] = \{-1\}
 int newNode(int 1,int f){
   len[tot]=1, fail[tot]=f, cnt[tot]=num[tot]=0;
   memset(nxt[tot],0,sizeof(nxt[tot]));
   diff[tot]=(1>0?1-len[f]:0);
    sfail[tot]=(l>0&&diff[tot]==diff[f]?sfail[f]:f);
   return tot++;
 int getfail(int x){
   while(s[n-len[x]-1]!=s[n]) x=fail[x];
    return x;
 int getmin(int v){
   dp[v]=fac[n-len[sfail[v]]-diff[v]];
    if(diff[v]==diff[fail[v]])
        dp[v]=min(dp[v],dp[fail[v]]);
    return dp[v]+1;
 int push(){
    int c=s[n]-'a',np=getfail(lst);
    if(!(lst=nxt[np][c])){
      lst=newNode(len[np]+2,nxt[getfail(fail[np])][c]);
     nxt[np][c]=lst; num[lst]=num[fail[lst]]+1;
   fac[n]=n;
    for(int v=lst;len[v]>0;v=sfail[v])
        fac[n]=min(fac[n],getmin(v));
```

```
return ++cnt[lst],lst;
  void init(const char *_s){
    tot=lst=n=0;
    newNode(0,1), newNode(-1,1);
    for(;_s[n];) s[n+1]=_s[n],++n,state[n-1]=push();
    for(int i=tot-1;i>1;i--) cnt[fail[i]]+=cnt[i];
}palt;
```

6.2 SAIS 0e93de

```
const int N = 300010;
struct SA{
#define REP(i,n) for ( int i=0; i<int(n); i++ )</pre>
#define REP1(i,a,b) for ( int i=(a); i<=int(b); i++ )
  bool _t[N*2];
  int _s[N*2], _sa[N*2], _c[N*2], x[N], _p[N], _q[N*2],
      hei[N], r[N];
  int operator [] (int i){ return _sa[i]; }
void build(int *s, int n, int m){
    memcpy(_s, s, sizeof(int) * n);
    sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
  void mkhei(int n){
    REP(i,n) r[\_sa[i]] = i;
    hei[0] = 0;
    REP(i,n) if(r[i]) {
       int ans = i>0 ? max(hei[r[i-1]] - 1, 0) : 0;
      while(_s[i+ans] == _s[_sa[r[i]-1]+ans]) ans++;
      hei[r[i]] = ans;
    }
  }
  void sais(int *s, int *sa, int *p, int *q, bool *t,
       int *c, int n, int z){
    bool uniq = t[n-1] = true, neq;
int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
         lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
memcpy(x, c, sizeof(int) * z); \
memcpy(x + 1, c, sizeof(int) * (z - 1)); 

REP(i,n) if(sa[i] && !t[sa[i]-1]) sa[x[s[sa[i]-1]]++] =
    sa[i]-1; \
memcpy(x, c, sizeof(int) * z); \
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i]-1])
    sa[--x[s[sa[i]-1]]] = sa[i]-1;
    MSO(c, z);
    REP(i,n) uniq \&= ++c[s[i]] < 2;
    REP(i,z-1) c[i+1] += c[i];
    MAGIC(REP1(i,1,n-1) if(t[i] \&\& !t[i-1]) sa[--x[s[i
         ]]]=p[q[i]=nn++]=i)
    REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
      neq=lst<0||memcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa[
           i])*sizeof(int));
      ns[q[lst=sa[i]]]=nmxz+=neq;
    sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
         + 1);
    MAGIC(for(int i = nn - 1; i \ge 0; i--) sa[--x[s[p[
         nsa[i]]]] = p[nsa[i]]);
int H[N], SA[N], RA[N];
void suffix_array(int* ip, int len) {
  // should padding a zero in the back
  // ip is int array, len is array length
  // ip[0..n-1] != 0, and ip[len] = 0
  ip[len++] = \bar{0};
  sa.build(ip, len, 128);
memcpy(H,sa.hei+1,len<<2)</pre>
  memcpy(SA,sa._sa+1,len<<2)</pre>
  for(int i=0; i<len; i++) RA[i] = sa.r[i]-1;</pre>
  // resulting height, sa array \in [0,len)
```

```
// any path start from root forms a substring of S
// occurrence of P : iff SAM can run on input word P
// number of different substring : ds[1]-1
// total length of all different substring : dsl[1]
// max/min length of state i : mx[i]/mx[mom[i]]+1
// assume a run on input word P end at state i:
// number of occurrences of P : cnt[i]
// first occurrence position of P : fp[i]-IPI+1
// all position of P : fp of "dfs from i through rmom"
const int MXM = 1000010;
struct SAM{
  int tot, root, lst, mom[MXM], mx[MXM]; //ind[MXM]
  int nxt[MXM][33]; //cnt[MXM],ds[MXM],dsl[MXM],fp[MXM]
  // bool v[MXM]
  int newNode(){
    int res = ++tot;
    fill(nxt[res], nxt[res]+33, 0);
    mom[res] = mx[res] = 0; //cnt=ds=dsl=fp=v=0
    return res:
  void init(){
    tot = 0; root = newNode(); lst = root;
  void push(int c){
    int p = lst;
    int np = newNode(); //cnt[np]=1
mx[np] = mx[p]+1; //fp[np]=mx[np]-1
    for(; p && nxt[p][c] == 0; p = mom[p])
      nxt[p][c] = np;
     if(p == 0) mom[np] = root;
    else{
      int q = nxt[p][c];
       if(mx[p]+1 == mx[q]) mom[np] = q;
         int nq = newNode(); //fp[nq]=fp[q]
         mx[nq] = mx[p]+1;
         for(int i = 0; i < 33; i++)
           nxt[nq][i] = nxt[q][i];
         mom[nq] = mom[q]; mom[q] = nq; mom[np] = nq;
         for(; p && nxt[p][c] == q; p = mom[p])
           nxt[p][c] = nq;
    lst = np;
  void calc(){
    calc(root); iota(ind,ind+tot,1);
    sort(ind,ind+tot,[&](int i,int j){return mx[i]<mx[j</pre>
    ];});
for(int i=tot-1;i>=0;i--)
    cnt[mom[ind[i]]]+=cnt[ind[i]];
  void calc(int x){
    v[x]=ds[x]=1;dsl[x]=0; //rmom[mom[x]].push_back(x);
    for(int i=0; i<26; i++){
      if(nxt[x][i]){
        if(!v[nxt[x][i]]) calc(nxt[x][i]);
ds[x]+=ds[nxt[x][i]];
         dsl[x]+=ds[nxt[x][i]]+dsl[nxt[x][i]];
    }
  void push(char *str){
    for(int i = 0; str[i]; i++)
      push(str[i]-'a');
} sam;
6.4 Z Value 391d23
void z_value(const char *s,int len,int *z){
  z[0]=len;
  for(int i=1,l=0,r=0;i<len;i++){</pre>
    z[i]=i< r?(i-l+z[i-l]< z[l]?z[i-l]:r-i):0;
    while(i+z[i]<len&&s[i+z[i]]==s[z[i]]) ++z[i];
if(i+z[i]>r) l=i,r=i+z[i];
  }
}
```

6.3 SuffixAutomata 94a0a8

| struct BurrowsWheeler{

BWT 12ae24

```
#define SIGMA 26
#define BASE 'a'
   vector<int> v[ SIGMA ];
   void BWT(char* ori, char* res){
  // make ori -> ori + ori
      // then build suffix array
   void iBWT(char* ori, char* res){
      for( int i = 0 ; i < SIGMA ; i ++ )</pre>
         v[ i ].clear()
     v[ i ].clear();
int len = strlen( ori );
for( int i = 0 ; i < len ; i ++ )
  v[ ori[i] - BASE ].push_back( i );</pre>
      vector<int> a;
     for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
for( auto j : v[ i ] ){</pre>
            a.push_back( j );
ori[ ptr ++ ] = BASE + i;
     for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
        ptr = a[ ptr ];
      res[len] = 0;
} bwt;
```

6.6 ZValue Palindrome 66e932

```
void z_value_pal(char *s,int len,int *z){
  len=(len<<1)+1;
  for(int i=len-1;i>=0;i--)
        s[i]=i&1?s[i>>1]:'@';
  z[0]=1;
  for(int i=1,l=0,r=0;i<len;i++){
        z[i]=i<r?min(z[l+l-i],r-i):1;
        while(i-z[i]>=0&&i+z[i]<len&&s[i-z[i]]==s[i+z[i]])++
        z[i];
        if(i+z[i]>r) l=i,r=i+z[i];
  }
}
```

6.7 Smallest Rotation fb9bcf

```
//rotate(begin(s),begin(s)+minRotation(s),end(s))
int minRotation(string s) {
  int a = 0, N = s.size(); s += s;
  rep(b,0,N) rep(k,0,N) {
    if(a+k == b || s[a+k] < s[b+k])
      {b += max(0, k-1); break;}
  if(s[a+k] > s[b+k]) {a = b; break;}
  } return a;
}
```

6.8 Cyclic LCS 50b06d

```
#define L 0
#define LU 1
#define U 2
const int mov[3][2]=\{0,-1, -1,-1, -1,0\};
int al,bl;
char a[MAXL*2],b[MAXL*2]; // 0-indexed
int dp[MAXL*2][MAXL];
char pred[MAXL*2][MAXL];
inline int lcs_length(int r) {
  int i=r+al, j=bl, l=0;
  while(i>r) {
    char dir=pred[i][j];
    if(dir==LU) l++;
    i+=mov[dir][0]; j+=mov[dir][1];
  }
  return 1;
inline void reroot(int r) \{ // r = new base row \}
  int i=r, j=1;
  while(j<=bl&&pred[i][j]!=LU) j++;</pre>
  if(j>bl) return;
  pred[i][j]=L;
while(i<2*al&&j<=bl) {</pre>
    if(pred[i+1][j]==U) {
       i++; pred[i][j]=Ĺ;
    } else if(j<bl&&pred[i+1][j+1]==LU) {</pre>
```

```
i++; j++; pred[i][j]=L;
    } else j++;
  }
int cyclic_lcs() {
 // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
                concatenated after itself
  char tmp[MAXL];
  if(al>bl)
    swap(al,bl); strcpy(tmp,a);
    strcpy(a,b); strcpy(b,tmp);
  strcpy(tmp,a); strcat(a,tmp);
  // basic lcs
  for(int i=0;i<=2*al;i++) -</pre>
    dp[i][0]=0; pred[i][0]=U;
  for(int j=0;j<=bl;j++) {</pre>
    dp[0][j]=0; pred[0][j]=L;
  for(int i=1;i<=2*al;i++) {
    for(int j=1;j<=bl;j++)</pre>
      if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1;
      else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
      if(dp[i][j-1]==dp[i][j]) pred[i][j]=L;
else if(a[i-1]==b[j-1]) pred[i][j]=LU;
      else pred[i][j]=U;
    }
  // do cyclic lcs
  int clcs=0;
  for(int i=0;i<al;i++) {</pre>
    clcs=max(clcs,lcs_length(i)); reroot(i+1);
  // recover a
  a[al]='\0'
  return clcs;
```

7 Data Structure

7.1 Link-Cut Tree 775e1d

```
const int MEM = 100005;
struct Splay {
  static Splay nil, mem[MEM], *pmem;
  Splay *ch[2], *f;
  int val, rev, size
  Splay (int _val=-1) : val(_val), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir(){return f->ch[0] != this;}
  void setCh(Splay *c, int d){
    ch[d] = c; if (c != &nil) c->f = this; pull();
  void push(){
  if( !rev ) return;
    swap(ch[0], ch[1]);
if (ch[0] != &nil) ch[0]->rev ^= 1;
if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev=0:
  void pull(){
    size = ch[0] -> size + ch[1] -> size + 1;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
}Splay::nil,Splay::mem[MEM],*Splay::pmem=Splay::mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x){
  Splay *p = x->f; int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f
  p->setCh(x->ch[!d], d); x->setCh(p, !d);
vector<Splay*> splayVec;
void splay(Splay *x){
  splayVec.clear();
  for (Splay *q=x;; q=q->f){
    splayVec.push_back(q);
```

```
if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
for (auto it : splayVec) it->push();
while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir())
       rotate(x->f),rotate(x);
    else rotate(x),rotate(x);
  }
int id(Splay *x) { return x - Splay::mem + 1; }
Splay* access(Splay *x){
  Splay *q = nil;
for (;x!=nil;x=x->f){
    splay(x); x -> setCh(q, 1); q = x;
  return q;
void chroot(Splay *x){
  access(x); splay(x); x->rev ^= 1;
void link(Splay *x, Splay *y){
  chroot(y); y->f=x;
void cut_p(Splay *y) {
  access(y); splay(y); y->ch[0] = y->ch[0]->f = nil;
void cut(Splay *x, Splay *y){
  chroot(x); cut_p(y);
Splay* get_root(Splay *x) {
  x=access(x):
  for(; x \rightarrow ch[0] != nil; x = x \rightarrow ch[0]) x \rightarrow push();
  splay(x); return x;
bool conn(Splay *x, Splay *y) {
  return get_root(x) == get_root(y);
Splay* lca(Splay *x, Splay *y) {
  access(x); return access(y);
/* query(Splay *x,Splay *y){
  setroot(y),x=access(x); return x->size;
 * query(Splay *x,Splay *y){
  Splay *p=lca(x,y);
  return p \rightarrow val + p \rightarrow ch[1] \rightarrow size + (x! = p?x \rightarrow size:0);
```

8 Others

8.1 Find max tangent(x,y is increasing) 8fea15

```
const int MAXN = 100010;
Pt sum[MAXN], pnt[MAXN], ans, calc; inline bool cross(Pt a, Pt b, Pt c){
  return (c.y-a.y)*(c.x-b.x) > (c.x-a.x)*(c.y-b.y);
double find_max_tan(int n,int l,LL dy[]){
  int np, st, ed, now;
  sum[0].x = sum[0].y = np = st = ed = 0;
  for (int i = 1, v; i <= n; i++)
  sum[i].x=i,sum[i].y=sum[i-1].y+dy[i-1];</pre>
  ans.x = now = 1,ans.y = -1;
for (int i = 0; i <= n - 1; i++){
    while(np>1&&cross(pnt[np-2],pnt[np-1],sum[i]))
    if (np < now \&\& np != 0) now = np;
    pnt[np++] = sum[i];
    while(now<np&&!cross(pnt[now-1],pnt[now],sum[i+l]))</pre>
    calc = sum[i + l] - pnt[now - 1];
    if (ans.y * calc.x < ans.x * calc.y)
      ans = calc, st = pnt[now - 1].x, ed = i + l;
  return (double)(sum[ed].y-sum[st].y)/(sum[ed].x-sum[st
      ].x);
```

8.2 Exact Cover Set 01c503

```
// given n*m 0-1 matrix
// find a set of rows s.t.
// for each column, there's exactly one 1
#define N 1024 //row
#define M 1024 //column
#define NM ((N+2)*(M+2))
char A[N][M]; //n*m 0-1 matrix
bool used[N]; //answer: the row used
int id[N][M]
int L[NM],R[NM],D[NM],U[NM],C[NM],S[NM],ROW[NM];
void remove(int c){
  L[R[c]]=L[c]; R[L[c]]=R[c]
  for( int i=D[c]; i!=c; i=D[i] )
  for( int j=R[i]; j!=i; j=R[j] );
       U[D[j]]=U[j]; D[U[j]]=D[j]; S[C[j]]--;
void resume(int c){
  for( int i=D[c]; i!=c; i=D[i] )
  for( int j=L[i]; j!=i; j=L[j] ){
       U[D[j]]=D[U[j]]=j; S[C[j]]++;
  L[R[c]]=R[L[c]]=c;
bool dfs(){
  if(R[0]==0) return 1;
  int md=1000000000,c;
  for( int i=R[0]; i!=0; i=R[i] )
     if(S[i]<md){ md=S[i]; c=i; }</pre>
  if(md==0) return 0;
  remove(c);
  for( int i=D[c]; i!=c; i=D[i] ){
    used[ROW[i]]=1;
    for( int j=R[i]; j!=i; j=R[j] ) remove(C[j]);
if(dfs()) return 1;
    for( int j=L[i]; j!=i; j=L[j] ) resume(C[j]);
used[ROW[i]]=0;
  resume(c);
  return 0;
bool exact_cover(int n,int m){
  for( int i=0; i<=m; i++ ){
   R[i]=i+1; L[i]=i-1; U[i]=D[i]=i;</pre>
     S[i]=0; C[i]=i;
  R[m]=0; L[0]=m;
  int t=m+1;
  for( int i=0; i<n; i++ ){</pre>
    int k=-1;
for( int j=0; j<m; j++ ){
   if(!A[i][j]) continue;
   if(k=-1) L[t]=R[t]=t;
   else{ L[t]=k; R[t]=R[k];</pre>
       k=t; D[t]=j+1; U[t]=U[j+1];
       L[R[t]]=R[L[t]]=U[D[t]]=D[U[t]]=t
       C[t]=j+1; S[C[t]]++; ROW[t]=i; id[i][j]=t++;
    }
  for( int i=0; i<n; i++ ) used[i]=0;</pre>
  return dfs();
```

8.3 Binary Next Permutation b7a40a

```
ull next_perm(ull v){
  ull t=v|(v-1);
  return (t+1)|(((~t&-~t)-1)>>(__builtin_ctzll(v)+1));
}
```

8.4 Hilbert Curve 8fa235

```
long long hilbert(int n, int x, int y) {
  long long res = 0;
  for (int s = n / 2; s; s >>= 1) {
    int rx = (x & s) > 0;
    int ry = (y & s) > 0;
    res += s * 1ll * s * ((3 * rx) ^ ry);
    if (ry == 0) {
        if (rx == 1) x = s - 1 - x, y = s - 1 - y;
    }
}
```

```
swap(x, y);
}
return res;
```