CE-220: Fundamentals of Civil Engineering

Jacob Sigman

Lecture 1 - 1/25/22

- Course Description
 - Planning, execution, and interpretation of drawings and specifications for Civil Engineering projects.
 - Sample drawings and specifications.
 - Contractual requirements and sample contracts.
 - Permitting, scheduling, and cost estimation.
 - Basic operations of design and construction firms.
 - Interface with other disciplines on Civil Engineering projects.
- Midterm
 - Likely March 8, before Spring Break.
 - Multiple choice questions (might have multiple right answers)
- Final group project/presentation
- Grading
 - Class participation: 20%
 - Quizzes: 15%
 - HW: 20%
 - Midterm: 15%
 - Final Project: 30%
- Office Hours: 4:30 5:00, 8:00 8:30, by appointment
- 10 points deducted for each week that an assignment is late.
- Recommended readings: ENR, ASCE, any professional journals of interest
- Abbreviated notes will be posted in teams. Take notes like they won't be.
- Civil Engineering Sub-Disciplines
 - Airport Engineering
 - Architectural Engineering
 - Coastal Engineering
 - Construction Engineering
 - Earthquake Engineering
 - Environmental Engineering
 - Forensic Engineering
 - Geotechincal Engineering

- Highway Engineering
- Ports and Marine Engineering
- Materials Engineering
- Municipal/Urban Engineering
- Railway Engineering
- Site Engineering
- Structural Engineering
- Transportation Engineering
- Wastewater/Water Resources Engineering
- Civil Engineers fulfill society's needs, a service profession.
- Introduction
 - The Process from Request for Qualifications and Proposal for initial Planning to Opening Day for the Project.
 - * Where it begins
 - * A "Need" is identified
 - · Owner needs to develop property purchased to lease for income (return on investment)
 - · Inspectors note that deck deterioration is advanced and needs repair/replacement.
 - · Trafic demands have grown to regularly "jam" the route and no viable alternates are available.
 - * Scope developed usually by owner or owner's representative (program manager for major projects)
 - * Request for Qualifications (RFQ) or Request for Proposal (RFP) for Design issued by Owners
 - · Lists qualifications needed (Sometimes 2-step process: RFQ first and shortlisted teams get the RFP second).
 - · Objectives and Scope of Work are detailed
 - · Schedule is defined
 - · Criteria
 - The Players Relationships among Owners, Designers, Builders (and sometimes Financers)
 - * Owner/Owner's Representative
 - * Designer/Engineer Develops construction (or contract) Documents (CDs). Supports construction (reviews of Contractor's alternatives, RFIs, Means and Methods, relays design intent).
 - * Contractor Bids on work defined in CDs. Lowest qualified bidder (usually) gets awarded the contract.
 - * Resident/Construction Inspector Assures work is performed in accordace with CDs. Processes pay requisitions. Coordinates submissions to/from designer.
 - * Quality Control/Quality Assurance/Testing
 - * **Design-Bid-Build** Contractual relationships between owner and engineer and owner and contractor. Cooperative support between engineer and contractor.
 - * Roles civil engineers play: Designer, Resident/Owner's Representative, Contractor, Owner, Maintenance Engineer, QA/QC.
 - New Construction Case Study Tacoma Narrows Bridge
 - * Timeline for Tacoma Narrows Bridge
 - · 1994 WSDOT Public Private Initiative Announced
 - · 1996 Major Investment Study

- · 1996/98 Environmental Impact Studies
- · 1999 Project Standards and Criteria Development
- · 2000 Basic Configuration and Initial Design
- · 2001 Determination of Fixed Price
- · 2002 Legislation enacted and bonds shortlisted
- $\cdot 2002$ Notice to proceed 9/25/2002
- \cdot 2007 Opening day 7/17/2007
- * Financial mechanisms for procuring and paying for projects.
 - · Buidlings v. Bridges
 - · Procurement Methods
 - · Conventional Design-Bid-Build (DBB)
 - · Design/Build (DB) and Progressive Design/Build (PDB)
 - · Public-Private Partnerships (P3) and Design-Build-Bid-Operate-Maintain (DBOM)
 - · Construction Manager/General Contractor (CM/GC)
 - · Last three are called alternate delivery (AltD)
 - · Conventional Design-Bid-Build: Owner \to Design \to contract bid then built **Engineering Oriented**: Owner controlled, low risk, low opportunity.
 - Design-Build and P3: Owner → 30-40% Design and RFP → Design/Build teams advance design, bid then final designed/built staged. Also adds finance/operate/maintain in P3.
 Construction Oriented: Contractor controlled, managed risk, better opportunity.
 - · Progressive Design-Build: Owner \rightarrow 5-10% Design and RFP \rightarrow PDB teams selected on qualifications, advance design with owner and owner's representative.

 Investor Oriented: Investor controlled, high risk, high opportunity.
 - · CMGC Owner "brokers" the marriage
 - · Private public Partnerships, Design/Build/Operate/Maintain and other concepts
 - · Bonding/Tolling and it's place in financing
 - · Federally funded projects interstate system
 - · Real estate and tax implications
- * Contracts for Design
 - \cdot General Terms and Conditions: Standard of care, Insurance, Payment terms, other "legalese"
 - · Scope of Work
 - · Compensation types of Contracts
 - · Schedule for project
 - · Special provisions
- * Construction Inspection and Construction Management
- * Contracts for Contractors General terms and conditions (Division 1). The rest is the construction documents (plans and specifications, usually done by the design engineer)
- Rehabilitation Case Study Verrazzano Narrows Upper Level Deck Replacement
 - * First phase Study and design brief
 - \cdot Notice to proceed 12/2003
 - · Two viable operations: steel orthotropic and concrete filled steel grid.
 - · Traffic studies to determine workable staging
 - · Utility survey to evaluate relocation
 - · Analyses to "global" impact of each alternative
 - · Final recommendations
 - · Two conceptual (10%) designs

- \cdot Budgetary cost estimates
- * Second Phase Designer
 - · Two main construction contracts (Part A: Utility Relocation and Part B: Deck Replacement)
 - · Two prototypes (Trinidad Lake asphalt pavement at throggs neck bridge and orthotropic deck for fabrication "proof of concept" and fatigue tests)
 - · Additional Wind Tunnel Testing
 - · Value Engineering
 - · Constructability review
 - · Final Design VN-90A December 2008
 - · Survey How Dissimilar might the panels be?

- Recent Trends

- * Sustainability Going "Green" needs to be part of process early if it will be followed through to completion.
- * Integrated Project Delivery/BIM
- Homework 0
 - Do one random act of kindness
 - You cannot personally benefit from this
 - You must not tell anyone what it is
 - If the person you did it for finds out, it doesn't count

Lecture 2 - 2/1/22

- Project documentation
 - Contract/"Boilerplate"
 - Specifications
 - Plans
 - Engineer's estimate
- Bridges vs. Buildings
- Interdisciplinary projects
- Conflicts and Contradictions minimizing them
- Civil Engineering Sub-Disciplines
 - Airport Engineering
 - * JFK Terminal 4
 - * LaGuardia Airport re-envisioned
 - Architectural Engineering
 - * San Francisco's Salesforce tower
 - * Atlanta's Mercedes Benz Stadium

- * Major coordination with architects and other trades
- * Customers demanding more "bells and whistles" and "moving parts"
- * Facade and structural glass specialties are becoming a "thing"

- Coastal Engineering

- * Waterfront work: Levees and flood protection, bulkheads, seawalls, scour protection
- * Beach erosion mitigation: Jetties, groins, sand replenishment, delta preservation
- * Offshore structures: Oil rigs, wind farms, bridge pier scour protection, wave and tidal generators

- Construction Engineering

- * Means and Methods: Staging, formwork and falsework, concrete curing plans.
- * Traffic control plans
- * Shop drawings
- * Fabrication procedures
- * Erection procedures
- * Sizing cranes for construction: Temporary track driven cranes, tower cranes, gantries
- * Transportation problem solver
- * Procurement

- Earthquake Engineering

- * Seismology
- * Soil effects
 - · Soil-structure interaction coming up with the springs
 - · Attenuation/amplification from intervening soil layers
- * Tectonics movement of plates
- * Monitoring and prediction modeling
- * Stuctural analysis
 - · Response spectra
 - · Multi-modal response spectra
 - · Time history
 - \cdot Design elements
- * Research and Development
 - · Active/passive damping systems
 - · Innovative bearings (isolation, friction/pendulum)

- Environmental Engineering

- * Water treatment
 - · Controls for effluent and runoff
 - · Groundwater, settlement basins
 - \cdot Desalination
 - · Waste treatment
 - · Cleanup from spills
- * Air
 - · Air quality effluent control/scrubbers, etc.

- · Indoor air Quality: Dust control / filtering, Cleaning chemical pollutants
- * Noise control, indoor and out
- * Soil-structure: Erosion controls (planting, hay bales, riprap, etc.)
- Forensic Engineering
- Geotechincal Engineering
 - * Soils
 - · Geotechnical investigations
 - · Classifying
 - · Soil improvement: Stone columns, Soilcreting/jet grouting
 - \cdot Settlement control/preconsolidation
 - · Highway and utility work
 - * Foundations
 - · Spread footings and mats
 - · Pile foundations many kinds
 - · Support of excavation: Tie-backs and sheeting, soil nailing
 - · Tunnels, shafts
- Highway Engineering
 - * Alignments plan and profile
 - * Cross sections
 - * Mass haul optimization
 - * Utility plans and relocations
 - * Pavement boxes
 - * Curbs, sidewalks, paths, driveways
 - * Survey coordination
 - * Drainage
 - * Signalization and lighting
 - * Speed and red-light enforcement
 - * Traffic control
 - * Striping
 - * Signing
- Ports and Marine Engineering
- Materials Engineering
 - * Metallurgy and alloying
 - · High performance steels
 - · Other metals
 - · Corrosion protection Coatings, metalizing, cathodic protection, etc.
 - * Concrete
 - · New mixes and materials: Glassphalt, lightweight aggregates, cements, fly ash, slag, and pozzolans, fiber reinforcement, ultra-high-performance concrete (UHPC)
 - * Asphalts and binders
 - * Research and Development

- · Plastics and composites, including carbon
- · Fiber reinforced polymers (FRP)
- · Nanotechnology
- \cdot Reuse of waste materials in new work

- Municipal/Urban Engineering

- * Utilities/Infrastructure
 - · Communications phone, broadband, cable, cell cites
 - · Electric and power generation/distribution
 - \cdot Gas storage and distribution
 - · Steam
 - · Sewage/sanitary
 - · Pump stations
- * Mapping
- * Geographical Information Systems (GIS)
- * Parkland development and maintenance
- * Streetscape
- * Zoning and city Planning
- * Maintenance

- Railway Engineering

- * Railroad design
 - · Alignments: Plan, Profile, tolerances get tighter with increased Speed
 - · Track work: Rail (continuously welded), frogs and switches, ballast, clamps
 - · Signals
 - · Platforms and "gaps"
 - · Mezzanines and station design
 - · Bridge and tunnel design
 - · Embankments and retaining walls

- Site Engineering

- * Permitting
- * Site plans
- * Drainage
- * Sanitary sewers
- * Parking lots
- * Survey coordination
- * Curbs, sidewalks, paths, driveways
- * Utility plans and relocations
- * Site and facility lighting
- * Signing and striping

- Structural Engineering

- * Buildings
- * Bridges

- * Retaining walls
- * Tunnels
- * Special structures
 - \cdot Guyed towers
 - · Blast design
 - · Shells and domes
 - · Fabric structures
 - · Stadiums
 - \cdot Oil rigs
 - \cdot Wind farms
 - \cdot Transfer stations
 - · Ports and marine structures

- Transportation Engineering

- * Transportation surveys
- * Planning, modeling, and studies
- * Operations
- * Highway Systems
 - · Traffic projections
 - · Toll studies and financing
 - · Tolling methods
 - · Bike lanes and pedestrian paths
- * Mass transit
 - · Bus Systems
 - \cdot Metro and light rail systems
 - · Commuter rail systems
 - · High-speed Rail
 - \cdot Fare collection systems
- * Carpooling and other alternative transportation

- Wastewater/Water Resources Engineering

- * Water supply
- * Testing and treatment
- * Storage
- * Distribution
- * Pumping stations
- * Maintenance
- * Fire lines
- * Desalination
- * Wells and Aquifiers
- * Irrigation
- * Hydraulic Studies
 - · Dams
 - \cdot River backwater studies
 - · Flooding studies

- Sub-Disciplines: Wrap-up
 - Lots to choose from
 - Many overlap
 - None are stagnant continuous developments keep things interesting
 - Plenty of long-term opportunities
- Planning and permitting Subject overview
 - Private v. Public: Who's in charge?
 - * Architects tend to take lead on private work/buildings
 - \cdot Contract with the owners
 - · Subcontract to structural, mechanical, electical, and plumbing designers
 - · Make decisions on overall configuration
 - \cdot Tend to be the "LEEDers" for Sustainability decisions
 - $\ast\,$ Civil Engineers tend to take the lead on public works/bridges
 - Planning: Site selection, preliminary bedgeting, feasibility studies
 - * Site selection
 - · Owner purchases property, often in consultation with designers
 - · Owner objectives = "program"
 - · Proximity to utilities/transportation
 - · LEED of ENV SP criteria
 - * Preliminary Budgeting
 - · Does it make economic sense?
 - · Cost/benefit analysis
 - · Financing bonds or loans needed?
 - * Feasibility studies
 - · Any fatal flaws in the plan?
 - · Work arounds possible?
 - Environmental Assessment Impacts to consider
 - * Water Quality
 - · Additional runoff created?
 - · Settlement ponds or permeable areas
 - * Air Quality
 - * Dust and noise control during construction
 - * Additional traffic generated?
 - * Wildlife affected?
 - * Parkland
 - * Open Spaces
 - * Cultural Resources
 - * Historical Resources

- * Natural Resources
- * Quality of Life
- Major investment studies
 - * Will it pay off?
 - $\ast\,$ Depends on: Cost/benefit analysis, Life cycle costs, return on investment
 - * Financing options