Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 13 Tuesday 19 March 2024

Topics:

- §6.3: Special classes of operators
- §6.4: Selfadjoint operators
- §6.6: Spectra of compact, selfadjoint operators

Characterization of selfadjointness

Lemma:
$$T = T^* \Leftrightarrow \langle Tx, x \rangle \in \mathbb{R} \quad \forall x \in X$$

Proof (\Rightarrow):

$$\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$$

Note: \Leftarrow only true when $\mathbb{K} = \mathbb{C}!$

So from now on: $\mathbb{K} = \mathbb{C}$

Characterization of selfadjointness

Proof (\Leftarrow): for all $x \in X$ we have

$$\langle Tx, x \rangle = \overline{\langle x, Tx \rangle} = \langle x, Tx \rangle$$

Imitating the proof of the polarization identity gives

$$4\langle Tx, y \rangle = \sum_{k=0}^{3} i^{k} \langle T(x + i^{k}y), x + i^{k}y \rangle$$
$$= \sum_{k=0}^{3} i^{k} \langle x + i^{k}y, T(x + i^{k}y) \rangle = 4\langle x, Ty \rangle$$

Nonnegative operators

Definition: assume X is a Hilbert space and $T \in B(X)$

T is called nonnegative if $\langle Tx, x \rangle \ge 0 \quad \forall x \in X$

[In particular, T is selfadjoint since $\mathbb{K}=\mathbb{C}$]

Notation: $T \ge 0$

Orthogonal projections

Example: if P is an orthogonal projection, then $P \ge 0$

For all $x \in X$ we have

$$\langle Px, x \rangle = \langle P^2x, x \rangle$$

$$= \langle Px, P^*x \rangle$$

$$= \langle Px, Px \rangle$$

$$= \|Px\|^2 \ge 0$$

Lemma:
$$T \ge 0 \Rightarrow ||Tx||^2 \le ||T|| \langle Tx, x \rangle \quad \forall x \in X$$

Proof: imitating the proof of Cauchy-Schwarz gives

$$|\langle Tx, y \rangle|^2 \le \langle Tx, x \rangle \langle Ty, y \rangle \quad \forall x, y \in X$$

Setting y = Tx gives

$$||Tx||^4 \le \langle Tx, x \rangle \langle TTx, Tx \rangle$$

$$\le \langle Tx, x \rangle ||T^2x|| ||Tx|| \qquad \text{[by Cauchy-Schwarz]}$$

$$\le \langle Tx, x \rangle ||T|| ||Tx||^2$$

Lemma:
$$T \ge 0 \implies ||T|| = \sup_{||x||=1} \langle Tx, x \rangle$$

Proof: by Cauchy-Schwarz we have

$$\langle Tx, x \rangle \le ||Tx|| ||x|| \le ||T|| ||x||^2 \quad \Rightarrow \quad \sup_{||x||=1} \langle Tx, x \rangle \le ||T||$$

But the previous lemma gives

$$||T||^2 = \left(\sup_{\|x\|=1} ||Tx\|\right)^2 = \sup_{\|x\|=1} ||Tx||^2 \le ||T|| \sup_{\|x\|=1} \langle Tx, x \rangle$$

The numbers a and b

Definition: for a selfadjoint $T \in B(X)$ we define

$$a:=\inf_{\|x\|=1}\langle Tx,x
angle \quad {
m and} \quad b:=\sup_{\|x\|=1}\langle Tx,x
angle$$

[Note: we do *not* have ||T|| = b since we did not assume $T \ge 0$]

Exercise: show that

$$T-a>0$$
 and $b-T>0$

Properties of the spectrum

Theorem: if T is selfadjoint, then

- 1. $Tx = \lambda x$ and $Ty = \mu y$ with $\lambda \neq \mu$ implies $\langle x, y \rangle = 0$
- 2. $\sigma(T)$ only contains approximate eigenvalues
- 3. $\sigma(T) \subset [a, b]$
- 4. $a, b \in \sigma(T)$

Proof (1,2): follows from T being normal

Properties of the spectrum

Proof (3): Let $\lambda \in \sigma(T)$

There exists (x_n) with $||x_n||=1$ such that $(T-\lambda)x_n o 0$

$$|\langle Tx_n, x_n \rangle - \lambda| = |\langle Tx_n, x_n \rangle - \lambda \langle x_n, x_n \rangle|$$
$$= |\langle (T - \lambda)x_n, x_n \rangle|$$
$$\leq ||(T - \lambda)x_n|| \to 0$$

 $\langle Tx_n, x_n \rangle \in [a, b]$ for all $n \Rightarrow \lambda \in [a, b]$

Properties of the spectrum

Proof (4): there exists (x_n) such that

$$||x_n|| = 1$$
 and $\langle Tx_n, x_n \rangle \to a$

Since $T - a \ge 0$ we have

$$||(T-a)x_n||^2 \leq ||T-a||\langle (T-a)x_n, x_n\rangle|$$
$$= ||T-a||\{\langle Tx_n, x_n\rangle - a\}| \to 0$$

Hence $a \in \sigma(T)$

Similarly, $b \in \sigma(T)$

Theorem: if T is selfadjoint, then

$$||T|| = \sup_{||x||=1} |\langle Tx, x \rangle| = \max\{|a|, |b|\}$$

Proof:

$$||x|| = 1 \Rightarrow |\langle Tx, x \rangle| \le ||Tx|| ||x|| \le ||T|| ||x||^2 = ||T||$$
$$\Rightarrow M := \sup_{||x|| = 1} |\langle Tx, x \rangle| \le ||T||$$

Proof (ctd):

$$4\operatorname{Re}\langle Tx, y \rangle = 2[\langle Tx, y \rangle + \overline{\langle Tx, y \rangle}]$$

$$= 2[\langle Tx, y \rangle + \langle Ty, x \rangle] \qquad (T = T^*)$$

$$= \langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle$$

$$\leq |\langle T(x+y), x+y \rangle| + |\langle T(x-y), x-y \rangle|$$

$$\leq M(||x+y||^2 + ||x-y||^2)$$

$$= 2M(||x||^2 + ||y||^2)$$

Proof (ctd):

$$\left. \begin{array}{l}
4 \operatorname{Re}\langle Tx, y \rangle \leq 2M(\|x\|^2 + \|y\|^2) \\
y = \frac{\|x\|}{\|Tx\|} Tx
\end{array} \right\} \quad \Rightarrow \quad 4\|Tx\| \|x\| \leq 4M\|x\|^2$$

Hence
$$||T|| \leq M$$

Existence of an eigenvalue

Proposition: if T is compact and selfadjoint, then

$$-\|T\|$$
 or $\|T\|$ is an eigenvalue

Proof: assume $||T|| \neq 0$

$$||T|| = \max\{|a|, |b|\}$$
 so one of the following cases applies:

$$a = ||T||, \quad a = -||T||, \quad b = ||T||, \quad b = -||T||$$

Existence of an eigenvalue

Proof (ctd): assume that a = ||T||

Since $a \in \sigma(T)$ there exists (x_n) such that

$$\|x_n\|=1$$
 and $(T-a)x_n\to 0$

Claim: there exists $y \neq 0$ with Ty = ay

Existence of an eigenvalue

Proof (ctd):

$$T ext{ compact } \Rightarrow Tx_{n_k} o y ext{ for some subsequence of } (x_n)$$

$$\Rightarrow ax_{n_k} = Tx_{n_k} - (T-a)x_{n_k} o y \quad (\Rightarrow ||y|| = a \neq 0)$$

$$\Rightarrow x_{n_k} o y/a$$

$$\Rightarrow Tx_{n_k} o Ty/a$$

$$\Rightarrow Ty/a = y$$

$$\Rightarrow Ty = ay$$

Invariant subspaces

Lemma: if V is a linear subspace of X and $T \in B(X)$, then

$$T(V) \subset V \quad \Rightarrow \quad T^*(V^{\perp}) \subset V^{\perp}$$

Proof:

$$x \in V^{\perp} \Rightarrow \langle T^*x, y \rangle = \langle x, Ty \rangle = 0 \quad \forall y \in V$$

 $\Rightarrow T^*x \in V^{\perp}$

Theorem: if X is a Hilbert space and $T = T^* \in K(X)$, then

there exist:

- countably many real eigenvalues λ_i [In case of infinitely many eigenvalues we have $\lambda_i \to 0$]
- countably many orthonormal eigenvectors e_i

such that

$$Tx = \sum_{i} \lambda_{i} \langle x, e_{i} \rangle e_{i}$$

Proof:

$$T_1 := T = T^* \in K(X) \quad \Rightarrow \quad \lambda_1 = \pm ||T_1|| \in \sigma_p(T_1)$$

$$X_1 := \ker(T_1 - \lambda_1) = \operatorname{span}\{e_i^1 : i = 1, \dots, m_1\}$$
 ONB

$$X_1$$
 invariant under $T_1 \quad \Rightarrow \quad X_1^\perp$ invariant under $T_1^* = T_1$

If $T_2 := T_1 \upharpoonright X_1^{\perp}$ is nonzero, then continue

Proof:

$$T_2 = T_2^* \in K(X_1^{\perp}) \quad \Rightarrow \quad \lambda_2 = \pm ||T_2|| \in \sigma_p(T_2)$$

$$|\lambda_2| = ||T_2|| \le ||T_1|| = |\lambda_1|$$

$$X_2 := \ker(T_2 - \lambda_2) = \operatorname{span}\{e_i^2 : i = 1, \dots, m_2\}$$
 ONB

$$X_2$$
 invariant under $T_2 \Rightarrow (X_1 \oplus X_2)^{\perp}$ invariant under $T_2^* = T_2$

$$T_3 := T_2 \upharpoonright (X_1 \oplus X_2)^{\perp}$$
 et cetera...

Proof (ctd): after *n* steps we have for all $x \in X$ that

$$P_n x := x - \sum_{j=1}^n \left(\sum_{i=1}^{m_j} \langle x, e_i^j \rangle e_i^j \right) \in (X_1 \oplus \cdots \oplus X_n)^{\perp}$$

Note that P_n is an orthogonal projection and

$$x = P_n x + (I - P_n) x$$

This gives

$$||x||^2 = ||P_n x||^2 + ||(I - P_n)x||^2$$
 and thus $||P_n x|| \le ||x||$

Proof (ctd): observe that

$$Tx - \sum_{i=1}^{n} \left(\sum_{i=1}^{m_j} \lambda_j \langle x, e_i^j \rangle e_i^j \right) = TP_n x$$

If for some $n \in \mathbb{N}$ we have $TP_n x = 0$ for all $x \in X$, then stop

Otherwise, observe that

$$\begin{aligned} ||TP_nx|| &= ||T_nP_nx|| \\ &\leq ||T_n|| ||P_nx|| \\ &\leq ||T_n|| ||x|| \\ &= |\lambda_n||x|| \to 0 \quad \text{as} \quad n \to \infty \end{aligned}$$