GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

:51 ; Search time 63.75 Seconds	(without alignments)	66.482 Million cell updates/sec
May 19, 2004, 16:52:51		
Run on:		

US-10-034-974-7 104 1 WKACPGEDWLFCWGS 15 Title: Perfect score:

Seguence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

1586107 seqs, 282547505 residues Searched:

1586107 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

A_Geneseq_29Jan04:*
1: geneseqp1980s:*
2: geneseqp1990s:*
3: geneseqp2000s:* geneseqp2000s:*
geneseqp2001s:*
geneseqp2002s:*
geneseqp2003as:*
geneseqp2003bs:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		lon	Aae26735 Fibrin bi	Aae26758 Fibrin bi	Fibrin bi	Fibrin bi	Slow diss	Aae26745 Slow diss	Aae26743 Slow diss	Fibrin bi	Fibrin bi
		Description	Aae26735 Fibr	Aae26758	Aae26762	Aae26733	Aae26744	Aae26745	Aae26743	Aae26753	Aae26732
			5	æ	2	3	4	2	3	3	2
		Q.	AAE26735	AAE26758	AAE26762	AAE26733	AAE26744	AAE26745	AAE26743	AAE26753	AAE26732
		8	ı,	S	Ŋ	ß	ល	S	ഹ	'n	ഗ
		Match Length DB ID	15	15	15	15	19	19	19	6	15
dР	Query		100.0	70.2	67.3	63.5	63.5	63.5	63.5	9.09	60.6
		Score	104	73	70	99	99	99	99	63	63
	Result	. I	-	N	ო	4	ഗ	9	7	œ	on

Aae26731 Fibrin bi	4 Fibrin	e26765 Fibri	6 Fibrin	Aau61462 Propionib	981 Propioni	51 Drosophi	577	26778 Fibrin b	6761 Fibrin b	Human co	03 Human B	39 Anti-a	Aae26780 Fibrin bi	34 Fibrin	326746 Slow di	e26748 Slow dis	6747 Slow dis	6774 Fibrin b	0149 Novel P	24468 Novel	3519 Human	0783	_	Abo26520 Protein a	w	3457	. 29	2966	3456	965	3455	3975	0558 Human	9 Human	5207 Human n
AAE26731	AAE26764	AAE26765	AAE26766	AAU61462	73	ABB59051	AAE26777	AAE26778	AAE26761	AAW40294	ABP45903	AAY06189	AAE26780	AAE26734	AAE26746	AAE26748	AAE26747	AAE26774	014	446	ABP43519	378	ABO45040		ABU23786	345	596	AAG52966	AAG13456	AAG52965	AAG13455	AAB83975	AAY60558	AAB93469	AAU1 6207
ď	S	ഗ	Ŋ	4	ω	4	മ	മ	Ŋ	~	S	7	Ŋ	S	S	2	ß	ഗ	4	4	ς	77	9	^	Q	ო	ო	ന	ო	ო	ო	4	0	4	4
		15			S	4547	თ	σ	15	33	255	34	თ			13	13	თ	270	93	82	86	98	σ	3	4	347	9	9	N	N	σ	169	B	œ
	4.	53.8	e٠	ä	'n,	•	ė.	49.0	ó	ė,	ö	œ.	œ.	•	•	œ,	œ.	ė.	ø.	Š.	4.	4,	4.	4	4	4.	4	4.	•	4.	•		43.8	•	43.8
9	57	26	Ŋ	4.	54.5	÷.	51	21	51	51	S		20			20	20	48	48	4	46.5	46								46				45.5	ď.
10	11	12	13	14	15	16	17	18	13	20	21	22	23	24	25	56	27	28	29	30	31	35	33	34	35	36	37	38	39	40	41	42	43	44	45

ALI GAMENTS

AAE26735 standard; peptide; 15 AA. 13-DEC-2002 (first entry) Fibrin binding peptide #6. AAE26735;

Fibrin binding peptide; thrombosis; pulmonary embolism; atherosclerosis; myocardial infarct; ischaemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic retinopathy; autoimmune disorder; inflammatory disorder; angiogenesis; stroke; cerebroprotective.

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

WPI; 2002-666875/71.

Wescott CR, Beltzer JP, Sato AK;

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radioimaging and for treating diseases involving thrombus formation e.g. stroke.

Claim 10; Page 57; 89pp; English.

currenting a disease involving thrombus formation eg, deepvent introduced to pulmonary embolism, rardiquent thrombosis, atherosclerosis, myceardial infarct, reperfusion ischaemia or stroke. The binding moieties are useful of or detection, imaging and localisation of fibrin-containing clots by magnetic resonance imaging and localisation of fibrin-containing clots by magnetic resonance imaging and localisation of fibrin-containing clots by magnetic resonance imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moieties are useful for detecting and diagnosing numerous pathophysiologies in which fibrin plays a role ag. peritoneal adhesions which often occur after surgery or inflammatory and neoplastic processes and are comprised of a fibrin charmatory and neoplastic processes and new blood vessels; rheumatorid arthritis, moiet new plood vessels; rheumatorid arthritis, lupus or septic arthritis which often have bits of fibrin containing tissues called rice bodies in the synovial fluid of their justics; thrombotypeoperic purpuer, a type of anaemia in which deposits in carterioles causes turbulent blood flow resulting in stress and destruction of red blood cells. The fibrin specific agents can also be useful or there organs, as well as the detection of tumours, diabetic retinopathy, early or high-risk atherosclerosis and other autoimmume and inflammatory disorders. Fibrin specific agents also could provide both correction of serceening molecular libraries. The present sequence is a fibrin in this interior or surrogate markers of disease models in which hypoxia and containing the sequence is a fibrin containing and containing molecular libraries. The present sequence is a fibrin containing and containing molecular interactors. The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide in the subject. The invention is useful for treating a disease involving thrombus formation eg. deep-vein thrombosis, binding peptide

Sequence 15 AA;

0; Gaps 100.0%; Score 104; DB 5; Length 15; 100.0%; Pred. No. 2.6e-08; 0; Indels 0; Mismatches Query Match
Best Local Similarity 100.
Matches 15; Conservative

1 WKACPGEDWLFCWGS 15

1 WKACPGEDWLFCWGS 15

셤

Search completed: May 19, 2004, 17:05:46 Job time : 64.75 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

protein search, using sw model OM protein -

(without alignments) 80.461 Million cell updates/sec May 19, 2004, 17:07:54 ; Search time 51.875 Seconds Run on:

US-10-034-974-7 104 1 WKACPGEDWLFCWGS 15

Perfect score: Sequence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

1145568 seqs, 278261457 residues Searched: lotal number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Published Applications AA:*

| cgn2_6/ptodata/2/pubpaa/UGO7_PUBCOMB.pep:*
2: /cgn2_6/ptodata/2/pubpaa/UGO6_NEW_PUB.pep:*
3: /cgn2_6/ptodata/2/pubpaa/UGO6_NEW_PUB.pep:*
4: /cgn2_6/ptodata/2/pubpaa/UGO6_NEW_PUB.pep:*
5: /cgn2_6/ptodata/2/pubpaa/UGO6_PUBCOMB.pep:*
6: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
7: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
8: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
9: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
10: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/UGO8_NEW_PUB.pep:*
12: /cgn2_6/ptodata/2/pubpaa/UGO9_NEW_PUB.pep:*
13: /cgn2_6/ptodata/2/pubpaa/UGO9_PUBCOMB.pep:*
14: /cgn2_6/ptodata/2/pubpaa/UGO_PUBCOMB.pep:*
15: /cgn2_6/ptodata/2/pubpaa/UGO_PUBCOMB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/UGO_PUBCOMB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/UGO_PUBCOMB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/UGO_NEW_PUB.pep:*
17: /cgn2_6/ptodata/2/pubpaa/UGO_NEW_PUB.pep:*
18: /cgn2_6/ptodata/2/pubpaa/UGO_NEW_PUB.pep:*
18: /cgn2_6/ptodata/2/pubpaa/UGO_NEW_PUB.pep:* Database

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Query Score Match Length DB Š. Result

Description

Sequence 7, Appliseduence 30, Appliseduence 15, Appliseduence 15, Appliseduence 15, Appliseduence 17, Appliseduence 17, Appliseduence 25, Appliseduence 31, Appliseduence 31, Appliseduence 31, Appliseduence 11, Appliseduence 11, Appliseduence 11, Appliseduence 11, Appliseduence 11, Appliseduence 15, Appliseduence 19, Appliseduence 19, Appliseduence 19, Appliseduence 110, Appliseduence 1110, Appli # US-10-034-974-7

US-10-034-974-30

US-10-034-974-34

US-10-034-974-15

US-10-034-974-15

US-10-034-974-16

US-10-034-974-16

US-10-034-974-36

US-10-034-974-18

US-10-038-053A-110

US-10-038-053A-110

US-10-038-053A-114611

US-10-038-053A-114611

US-10-038-053A-114611

US-10-038-053A-114611

US-10-038-053A-1173

US-10-048-053A-1173

US-10-034-974-7

Sequence 7, Application US/10034974
Publication No. US20030143158A1
GENERAL INFORMATION:
APPLICANT: DY3X CORP.

```
ö
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Gaps
APPLICANT: Beltzer, James P. APPLICANT: Wescott, Charles R. APPLICANT: Wescott, Charles R. APPLICANT: Wasto, Aaron K. TITLE OF INVENTION: FIRBIN BINDING MOIETIES USEFUL AS IMAGING AGENTS FILE REFERENCE: DYX-024.1 PCT; DYX-024.1 US CURRENT APPLICATION NUMBER: US/10/034,974 CURRENT FILING DATE: 2001-12-21 PRIOR APPLICATION NUMBER: US 09/747,403 NUMBER OF SEQ ID NOS: 56 SOFTWARE: Patentin version 3.1 SEQ ID NO 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ;
0
                                                                                                                                                                                                                                                                                                                                                                                                                                  Length 15;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Indels
                                                                                                                                                                                                                                                                                                                                                                                                                             Query Match
100.0%; Score 104; DB 14;
Best Local Similarity 100.0%; Pred. No. 3.7e-07;
Matches 15; Conservative 0; Mismatches 0;
                                                                                                                                                                                                                                                                                                                                               ; OTHER INFORMATION: fibrin binding polypeptide US-10-034-974-7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Search completed: May 19, 2004, 17:17:35 Job time : 58.875 secs
                                                                                                                                                                                                                                                                                             TYPE: PRT
ORGANISM: Artificial Sequence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 WKACPGEDWLFCWGS 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 WKACPGEDWLFCWGS 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               à
```

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

(without alignments) 85.504 Million cell updates/sec May 19, 2004, 16:59:56; Search time 16.875 Seconds 104 1 WKACPGEDWLFCWGS 15 US-10-034-974-7 Title: Perfect score: Run on:

Sequence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

283366 seqs, 96191526 residues Searched: 283366 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 00% Maximum Match 100% Listing first 45 summaries

PIR_78:* Database:

1: pirl:* 2: pir2:* 3: pir3:* 4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

& Query

No.	Score	Match	Score Match Length DB ID	DB	ID	Description
 	50	48.1	215 2	~	,	glutathione transf
8	47	45.2	624	~	S74222	alpha-galactosidas
ო	46	44.2	339	7	F97190	phenylalanyl-tRNA
4	46	44.2	423	7	G85255	CDP-diacylglycerol
ഗ	46	44.2	423	7	T04915	CDP-diacylglycerol
9	45.5	43.8		~	JC5056	polybromo 1 - chic
7	45	43.3	119	~	T46478	hypothetical prote
œ	45	43.3		~	G83281	hypothetical prote
o	45	43.3	499	7	528306	hypothetical prote
10	45	43.3	532	~	E69343	2-oxoacid-ferredox
11	45	43.3		7	D88551	protein T23G5.5 [i
12	45	43.3		7	T43330	catecholamine tran
13	44	42.3	217	7	S54138	probable coat prot

leuD 3'~region hyp	hypothetical prote	ABC transporter AT	CAP59 protein - Cr	probable primosoma	protein ZK1240.5 (aminoglycoside pho	hypothetical prote	hypothetical prote	system,		frvA protein - Esc		cytochrome-c oxida	D-alanine-D-alanin	hypothetical prote	hypothetical prote	probable enzyme Z4	gadd34 protein - 1	probable nitrite r	nitrite reductase	hypothetical prote	DIP2 protein - yea			probable thioredox	hypothetical prote	photosystem II pro	hypothetical prote	CDP-diacylglycerol	glypican 1 precurs	hypothetical prote
F36889	S35136	F86777	A56055	D86977	G88071	AB2832	F97609	T18995	A86079	B91232	D48649	D96541	B70488	T35363	G97298	E91170	E86016	A56535	E95980	D87325	T23573	S59317	A53294	S51465	B72454	A83779	F2VFD1	T21113	T04800	T18896	H70379
2	7	7	7	7	N	~	7	~	~1	0	~	~	7	7	7	7	7	7	7	7	7	~	~	7	~	~	Н	N	8	7	7
259	259	277	458	651	292	297	297	3036	148	148	148	195	236	346	437	558	558	590	820	822	922	943	203	889	250	292	353	429	438	521	538
42.3		42.3	42.3	42.3	41.3	41.3	41.3	41.3	40.9	40.9	40.9	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	39.9	39.9	39.4	39.4	39.4	39.4	39.4	39.4	39.4
4.4	44	44	44	44	43	43	43	43	42.5	42.5	42.5	42	42	42	42	42	42	42	42	42	42	42	41.5	41.5	41	41	41	41	41	41	41
14	15	16	17	18	19	20	21	22	23	24	52	56	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

Search completed: May 19, 2004, 17:08:25 Job time : 17.875 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:56:57; Search time 12.5 Seconds (without alignments) 62.484 Million cell updates/sec Run on:

Title: US-10-034-974-7
Perfect score: 104
Sequence: 1 WKACPGEDWLFCWGS 15

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

141681 seqs, 52070155 residues Searched:

Total number of hits satisfying chosen parameters:

141681

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

SwissProt_42:* Database : Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	Description	Q97gk9 clostridium	Q14679 homo sapien	Q03614 caenorhabdi	Q02151 lactococcus	Q9ccq3 mycobacteri	P321,55 escherichia	013504 pichia past	Q13630 homo sapien	Q9xak7 streptomyce	Q12220 saccharomyc	Q06488 saccharomyc	Q9y910 aeropyrum p	Q84bq9 thermus the	075593 homo sapien	Q9ep82 mus musculu	Q96a84 homo sapien	Q91vf5 mus musculu
	ID	SYFA_CLOAB	Y173 HUMAN	NTDO_CAEEL	YMEB LACLA	PRIA_MYCLE	PTVA_ECOLI	TRPF_PICPA	FCL HUMAN	VANL STRCO	DIP2 YEAST	RSC2_YEAST	TDXH AERPE	PRMA_THETH	FXH1 HUMAN	WDR4 MOUSE	EMU1 HUMAN	EMU1_MOUSE
	DB	-	7	7	7	٦	-	Н	+	П	۲4	٦	٦	7	~	-	-	ч
	Query Match Length DB	339	1199	615	259	651	148	237	321	346	943	889	250	254	365	413	441	444
dр	Query Match	44.2	44.2	43.3	42.3	42.3	40.9	40.4	40.4	40.4	40.4	39.9	39.4	39.4	39.4	39.4	39.4	39.4
	Score	46	46	45	44	44	42.5	42	42	42	42	41.5	41	41	41	41	41	41
	Result No.	1	7	ო	び	'n	v	7	ω	o	10	11	12	13	14	15	16	17

013157 gallus gall P51802 rattus norv	P13394 mus musculu Q9w754 rana catesb O04928 a phosphati	-	-		P71670 mycobacteri	P37700 clostridium	P02671 homo sapien	Q8r526 mus musculu	Q9uul4 schizosacch	P98159 drosophila	P14111 bacteriopha	P38341 saccharomyc	Q04772 saccharomyc	Q9by08 homo sapien	P15751 klebsiella	O15482 homo sapien	004940 s phosphati	P03395 friend muri		014154 schizosacch	Q50335 mycoplasma	P31549 escherichia	P37063 lactobacill	013262 xenopus lae
GFR2_CHICK CICL_RAT	SCAB RANCA	VENV_DHVI1	AOF_ONCMY	GLGB_RHOMR	PRIA_MYCTU	GUNG_CLOCE	FIBA_HUMAN	P1L1_MOUSE	MOKC SCHPO	NDL DROME	VKIL BPP22	YB9I_YEAST	YMW3_YEAST	EBRP HUMAN	GSPL_KLEPN	TX28 HUMAN	CDS1_SOLTU	ENV MLVFR	E2BG_HUMAN	AMY3_SCHPO	YF92 MYCPN	THIP ECOLI	POXB_LACPL	SCB2_XENLA
200	0 W -	10	2 1	-	5	5	1 9	1 1	2	6 1	62 1	16	1 1	1 9	18	0 1	14 1	5	2 1	3 1	1 1	16 1	603 1	1
465	273	52	522	62	65	725	866	531	2352	2616	w	106	201	206	398	41	424	44	45	513	52	53	9	64
39.4	2 8 8 2 8 8 4 50 7	38.5	38.5	38.5	38.5	38.5	38.5	38.0	38.0	38.0	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	•	37.5	37.5	37.5	37.5	37,5
14.4	4 4 4	4 0	40	40	40	40	40	39.5	39.5	39.5	39	39			39	39	39			39		99	39	39
18	212	23	24	52	56	27	28	53	30	31	32	33	34	35	36	37	38	33	40	41	45	43	44	45

Search completed: May 19, 2004, 17:06:20 Job time : 14.5 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

 Run on:
 May 19, 2004, 16:58:07; Search time 45.625 Seconds

 Title:
 (without alignments)

 Perfect score:
 104

 Sequence:
 1 WKACPGEDWLFCWGS 15

 Scoring table:
 BLOSUM62

 Gapop 10.0
 Gapext 0.5

 Searched:
 1017041 seqs, 315518202 residues

 Total number of hits satisfying chosen parameters:
 1017041

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Maximum Ds Seq length: 2000000000
Post-processing: Minimum Match 100%
Maximum Match 100%
Listing first 45 summaries

Database : SPTREMBL_25:*

1: sp_archea:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:*
5: sp_invertebrate:*
6: sp_mammal:*
7: sp_more is sp_phage:*
10: sp_phage:*
11: sp_vortebrate:*
13: sp_vortebrate:*
14: sp_unclessified:*
15: sp_rivius:*
16: sp_rivius:*
17: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query
No. Score Match Length DB ID

5 drosophil	9w343 drosophil	91tq6 tupaia her	42706 coccomyx	Bv3Z3 citrus v	8v325 citrus v	941v5 oryza s	8ca33 mus mus	rqv1 bacillus	7ur25 rho	8blh8 mus	ЯЪКј6 ш	2451 t	Q7u6x7 synechococo	Q9kyu8 streptomyce	49639	nitr	homod	homod	chla	leis	leishmani	homod	homo		gall	рошо	рошо	homo	mrs mrsc		10	Q9hzt8 pseudomonas	-	oryza	7 nitrosom	oryza sat	~	:93 strept	70	ig7 t	2 citrus va	121 citrus v	ũ	N	
95.5	Q9W343	Q91TQ6	042706	Q8V323	Q8V325	Q941V5	Q8CA33	QBRQV1	Q7UR25	Q8BLH8	QBBKJ6	092451	Q7U6X7	Q9KYU8	049639	Q82V65	Q8WW29	6XNN60	Q9M5B9	Q9GRT8	Q9GY D0	Q96MS2	Q9H2T3	Q9H2T5	090941	Q9H314	Q86U86	Q9NSV2	QBC4A2	Q9HBQ8	266106	Q9HZT8	Q8F9F7	Q7X920	Q82TM7	Q9FSJ6	029509	Q9RK93	Q7Y2S7	Q99HQ7	32	N	ന	32	
Ŋ	Ŋ		10					7	16	1	11	ო	16	16	10	16	ℴ	4	10	'n	Ŋ	4	4	4	13	4	4	4	1	4	12	16		10	16	10	17	16	ψŊ		12				
LO.	4547	vo	-	-	-	Ø	£	144	661	157	185	624	302	315	423	88	1199	289	503	551	605	9	58	1602	63	1634	89	119	120	144	217	242	315	384	393	428	532	1053	434	212	217	217	217	217	
51.4	÷	0	48.1	œ	•	۲.	ó	δ.	•	ď,	Š.	•	4	4.	4.	4.	44.2	•		'n,	'n.		•	43.8		e,	ë.	ë.	ë.			e,	ë,	ë,	ë,	ω.	e,	•	'n.			42.3	2	N	
53.5	က်	52	20	20	20	49	48	۲.	47.5	47	47	47	46	46	46	46	46	٠	5.	•	5.	5.	S.	45.5	5.	ů,	ŝ	45	45	45	45	45	45	45	45	45	45	45	44.5	44	44	44	44	44	
п	2	က	4	ഗ	9	7	80	σ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	

Search completed: May 19, 2004, 17:07:46 Job time : 47.625 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Seconds	ents)
38.25	lignm
time	hout a
Search	(wit
٠.	
16:52:51	
2004,	1
6	١
4ау 19	ı
Ma	ı
	1
ä	
ц	
R.	

66.482 Million cell updates/sec US-10-034-974-25 63 Title: Perfect score:

BLOSUM62 Gapop 10.0 , Gapext 0.5 1 CPGEDWLFC 9 Scoring table: Sequence:

1586107 seqs, 282547505 residues Searched:

1586107 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Aae26758 Fibrin bi Aae26751 Fibrin bi	e26733 Fibrin	e26744 Slow di	745 Slow di	743 Slow di		2 Fibr	7 Novel h	1361 Human	Aay28286 Amino aci	A GDP.	Human	Novel	Abp69754 Human pol	Abr82247 Human nuc	Abg00133 Novel hum		Human	1 Drosop	٥.	Fibrin	6 Slow di	5748 Slow	147 Slow	52 Humar	354 Human	3 Human	Abg22448 Novel hum	Abr53214 Protein s	Abg06029 Novel hum	Aau39512 Propionib	6031	3631	Abb80581 Human sbg	Abg04658 Novel hum
AAE26758 AAE26751	67	AAE26744	674	AAE26743	675	AAE26732	AAU28117	AAY81361	AAY28286	AAY54116	AB007263	AAU28305	ABP69754	ABR82247	ABG00133	ABB11946	AAM79508	ABB5 9051	AAE26752	AAE26734	4	AAE26748	AAE26747	3	35	90	ABG22448	21	602	AAU39512	ABM36031	AAB43631	ABB80581	ABG04658
വവ	Ŋ	ß	ഗ	Ŋ	ა	'n	4	m	0	ო	ø	4	S	ø	4	4	4	4	S	ស	ß	Ŋ	Ŋ	Ŋ	4	ß	4	9	4	4	9	٣	S	4
15	15	19	19	19	σ	15	マ	$\overline{}$	$^{\circ}$	α	\sim	10	O	ന	16	22	1222	54	თ	15	19	19	19	21	2	255	~	4	S	9	9	9	194	0
9.5							2.7					7.7	۲.	.7	۲.	.1	5.1	<u>.</u>	د	5.	5.	٠.	.5	.5	٠. ت	'n.		ī.	'n	6	6.	6	o.	٥.
7 6	9	9	9	9	ě	õ	9	ě	9	9	9	9	9	9	9	65	65	9	63	63	63	63	63	63	63	63	63	63	63	6	61	61	61	61
48	44	44	44	44	42	42	45	42	42	42	42	42	42	42	42	41		40.5	40	40	40	40	40	40	40	40	40	40	40	6£.	39	39	39	ტ წ
10	12	13	14	12	9	17	18	13	20	21	22	23	24	52	56	27	28	53	30	31	32	33	34	32	36	37	38	39	40	41	42	43	44	45

ALIGNMENTS

AAE26753 standard; peptide; 9 AA. 13-DEC-2002 (first entry) Fibrin binding loop #5. AAE26753; RESULT 1

Fibrin binding peptide; thrombosis; pulmonary embolism; atherosclerosis; myocardial inferent; ischbemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic retinopathy; autoimmune disorder; inflammatory disorder; angiogenesis; stroke; oerebroprotective.

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

Wescott CR,

Beltzer JP, Sato AK;

WPI; 2002-666875/71.

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radioimaging and for treating diseases involving thrombus formation e.g. stroke.

Claim 4; Page 55; 89pp; English.

pulmonary embolism, cardiogenic thrombosis, atherosclerosis, myocardial infarct, reperfusion ischaemia or stroke. The binding modeties are useful for detection, imaging and localisation of fibrin-containing clots by magnetic resonance imaging, radiolmaging and other imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moleties are useful for ecception and diagnosing numerous pathophysiologies in which fibrin plays a role so performed adhesions which often occur after surgery or inflammatory and neoplastic processes and are comprised of a fibrin network, fibroblasts, macrophages and new blood vessels; rheumatoid arthritis, luques or septic arthritis which often have bits of fibrin containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial containing tissues called rice to the containing tissues called rice to th The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide in the subject. The invention is useful for treating a disease involving thrombus formation eq. deep-vein thrombosis, joints; thrembotytopenic purpus, a type of anamia in which deposits in arterioles causes turbulent blood flow resulting in stress and destruction of red blood cells. The fibrin specific agents can also be used to detect hypoxia or ischaemia of heart, kidney, liver, lung, brain or other organs, as well as the detection of tumous, diabetic retinopathy, early or high-risk atherosclerosis and other autoimmume and inflammatory disorders. Fibrin specific agents also could provide both direct or surrogate markers of disease models in which hypoxia and angiogenesis are expected to play a role. The invention is also useful for screening molecular libraries. The present sequence is a fibrin binding loop

Sequence 9 AA;

ö 0; Gaps 100.0%; Score 63; DB 5; Length 9; 100.0%; Pred. No. 1.40+06; Indels ö 0; Mismatches 9; Conservative Query Match Best Local Similarity Matches

RESULT 2

AAE26735 standard; peptide; 15 AA.

AAE26735;

(first entry) 13-DEC-2002

Fibrin binding peptide #6.

Fibrin binding peptide; thrombosis; pulmonary embolism, atherosclerosis; myocardial infarct; ischaemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic retinopathy; autoimmune disorder; inflammatory disorder; angiogenesis; stroke; cerebroprotective.

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

Wescott CR, Beltzer JP, Sato AK;

WPI; 2002-666875/71.

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radioimaging and for treating diseases involving thrombus formation e.g. stroke.

Claim 10; Page 57; 89pp; English.

The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide, in the subject. The invention is useful for treating a disease involving thrombuse formation of deep-ven thrombosis, pulmonary embolism, cardiogenic thrombosis, atherosalessis, myocardial infarct, reperfusion is cacheama or stroke. The binding moieties are useful for detection, inaging and localisation of fibrin-containing oldes by magnetic resonance imaging, radioimaging and other imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moieties are useful for detecting and diagnosing numerous pathophysiologies in which fibrin plays

c role eg. peritoneal adhesions which often occur after surgery or inflammatory and neoplastic processes and are comprised of a fibrin network, fibroblasts, macrophages and new blood vessels; rhetmatorid network, fibroblasts, macrophages and new blood vessels; rhetmatorid containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues called rice bodies in the symovial fluid of their containing tissues causes turbulent blood flow resulting in stress and astruction of rad blood cells. The fibrin specific agents can also be core to east to detect hypoxia or ischaemia of heart, kidney, liver, lung, brain or or orber organs, as well as the detection of tumours, diabetic retinopathy, early or high-risk atherosclerosis and other autoimmume and direct or surrogate markers of disease models in which hypoxia and canding neptide containing molecular libraries. The present sequence is a fibrin binding peptide ö Gaps .; 0 Score 63; DB 5; Length 15; Pred. No. 0.0016; Mismatches 0; Indels 0; Mismatches completed: May 19, 2004, 17:05:47 upery Match
Best Local Similarity 100.0%;
Matches 9; Conservative 0; 4 CPGEDWLFC 12 1 CPGEDWLFC 9 Sequence 15 AA; Search ò 유

Job time : 39.25 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

(without alignments) 80.461 Million cell updates/sec May 19, 2004, 17:07:54; Search time 31.125 Seconds Total number of hits satisfying chosen parameters: 1145568 seqs, 278261457 residues Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Gapop 10.0 , Gapext 0.5 Minimum DB seq length: 0 Maximum DB seq length: 200000000 US-10-034-974-25 63 1 CPGEDWLFC 9 **BLOSUM62** Scoring table: Perfect score: Searched: Sequence: Run on: Title:

Published Applications AA:*

| cgn2 6/ptodata/2/pubpaa/USO7_PUBCOMB.pep:*
| cgn2 6/ptodata/2/pubpaa/PCT NEW PUB.pep:*
| cgn2 6/ptodata/2/pubpaa/PCT NEW PUB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO6_NEW_PUB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO7_NEW_PUB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
| cgn2 6/ptodata/2/pubpaa/USO8_PUBCOMB. / cgn2_6/ptodata/2/pubpaa/USO9C_PUBCOMB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USO9 NEW PUB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USO9 NEW PUB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOB_PUBCOMB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOB_PUBCOMB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOS_NEW PUB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOS_NEW PUB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOS_NEW PUB.pep: .
/ cgn2_6/ptodata/2/pubpaa/USOS_NEW PUB.pep: . Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

f Score Match Length DB

equence 25, A	equence 49,	edneuce 20'	equence 33,	edneuce	aquence 52,	equence 36,	Sequence 46, Appl	equence 30,	equence 23,	equence 5, A	equence 15,	e 16,	e 17,	e 22,	e 4, Ap	e 286,	286,	6, App	Sequence 662, App	equence 662,	œ	equence 24,	odnence e'	equence 18,	equence 19,	equence 20, Ap	equence 3163,	equence 3163,	e 2010	equence 21653	Sequence 257281,	Φ	equence 1914,	Sequence 1589	1076, 2	equence 8487,	equence 20998	e 225	equence 21,	Sequence 53, Appl	equence 3,	equence 37,	equence 2653	
S-10-034-974-2 S-10-034-974-7	-10-034-974-4	S-10-034-974-5	4-974-	US-10-034-974-34	4-974-5	10-034-9	US-10-034-974-46	-10-034-974-3	4-974-	US-10-034-974-5	-10-034-974-	-10-034-974-1	-10-034-974-1	-10-034-974-	-10-034-974-4	-278-28	US-10-291-172-286	18-271-6	S-10-221-278-66	-10-291-172-662	3-276-774-2	-10-034-974-	-10-034-974-6	-10-034-974-1	10-034-974-	0-034-974-2	-09-880-748-316	-10-293-418-3163	-10-424-599-2010	10-424-599-21653	10-424-599-257.	-09-880-748-191	S-10-293-418-1914	5-10-424-599-158	19-925-301-1076	US-10-369-493-848	US-10-424-599-2	US-10-369-493-222	US-10-034-974-2	US-10-034-974-53			US-10-424-	
		14	14	14	14	14	14	14	14	14	14	14	14	14	14	12	15		-	-	12	٦	-	14	H	٦	Ä	H	H	-		7	Н	7		Н		15	7	14	14	-	12	
9 51	თ	თ	15		on	15		15	6	15	19	19	19	ത	15	147		N	455	ß	1222	σ	15	19	19	19	21	21	83	マ	190	ഹ	LO.	œ	w	σ	~	513	თ	on	15	15	106	
	.:	_;	81.0	_;	σ.	ď	vo	ú	σ,	σ.	ď	o,	O)	é	66.7		9	ø.	9	66.7	65.1	۳.	ന	ش	ω,	63.5	έ,	e,		ë.	63,5					61.9		_	0		0	0		
63									44	44	44	44	44	42	42	42	42	42	42	42	41	40	40	40	40	40	40	40	40	40	40	40	40	40	33	39	m	38.5	ന	38	38	38	38	
42	m	7	S	9	~	- 00	o	10	Ξ	12	13	14	15	16	17	18	13	20	21	22	23	24	52	56	27	28	53	30	31	32	33	34	35	36	37	38	33	40	4	42	43	44	45	,

; 0

0; Gaps

Query Match 100.0%; Score 63; DB 14; Length 9; Best Local Similarity 100.0%; Pred. No. 1e+06; Matches 9; Conservative 0; Mismatches 0; Indels

1 CPGEDWLFC 9

ò

; FEATURE: ; OTHER INFORMATION: fibrin binding loop US-10-034-974-25

TYPE: PRT ORGANISM: Artificial Sequence

APPLICANT: Beltzer, James P.
APPLICANT: Wescott, Charles R.
APPLICANT: Sato, Aaron K.
TITLE OF INVENTION: FIRBIN BINDING MOLETIES USEFUL AS INAGING AGENTS
FILE REFERENCE: DYX-024.1 PCT; DYX-024.1 US
CURRENT APPLICATION NUMBER: US/10/034,974
CURRENT FILING DATE: 2001-12-21
PRIOR FILING DATE: 2000-12-23
NUMBER OF SEQ ID NOS: 56
SOFTWARE: Patentin version 3.1
SEQ ID NO 25

ALI GNMENTS

RESULT 1
US-10-034-974-25
; Sequence 25, Application US/10034974
; Sequence 25, Publication No. US2030143158A1
; GENERAL INFORMATION:
; APPLICANT: DYAX CORP.

Gaps

ö APPLICANT: DYAX CORP.

APPLICANT: Baltzer, James P.

APPLICANT: Baltzer, James P.

APPLICANT: Wescott, Charles R.

APPLICANT: Sato, Aaron K.

TITLE OF INVENTION: FIRBN BINDING MOIETIES USEFUL AS IMAGING AGENTS

FILE REFERENCE: DYX-024.1 PCT; DYX-024.1 US

FILE REFERENCE: DYX-024.1 PCT; DYX-024.1 US

CURRENT PELLION NUMBER: US 10/10/034,974

CURRENT FILING DATE: 2000-12-23

PRIOR FILING DATE: 2000-12-23

NUMBER OF SEQ ID NOS: 56

SOFTWARE: Patentin version 3.1

SOFTWARE: Patentin version 3.1 ö Query Match 100.0%; Score 63; DB 14; Length 15; Best Local Similarity 100.0%; Pred. No. 0.0039; Matches 9; Conservative 0; Mismatches 0; Indels ; FEATURE: ; OTHER INFORMATION: fibrin binding polypeptide US-10-034-974-7 ; Sequence 7, Application US/10034974 ; Publication No. US20030143158A1 ; GENERAL INFORMATION: TYPE: PRT ORGANISM: Artificial Sequence 1 CPGEDWLFC 9 RESULT 2 US-10-034-974-7 LENGIH: 15 셤

ద ò

Search completed: May 19, 2004, 17:17:36 Job time : 32.125 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:59:56 ; Search time 10.125 Seconds (without alignments) 85.504 Million cell updates/sec Run on:

US-10-034-974-25 63 1 CPGEDWLFC 9 Title: U. Perfect score: 6. Sequence: 1

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

283366 seqs, 96191526 residues Searched:

283366 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

PIR_78:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Query Match Length DB	DB	ID	Description
-	42	66.7	236	2	B70488	cytochrome-c oxida
7	40	63.5	429	7	T21113	hypothetical prote
n	40	63,5		7	S59317	DIP2 protein - yea
4	39	61.9		7	C56695	transducin-like en
S	38.5	61.1		N	138770	alpha-amylase a pr
ω	38	60.3		-	512516	hypothetical prote
7	38	60.3		N	AH2408	permease protein o
ω	38	60.3		~	T16588	hypothetical prote
თ	37	58.7		~	E86251	protein F25C20.8 [
10	37	58.7		7	G82092	conserved hypothet
11	37	58.7		N	A75009	probable aryl phos
12	37	58.7		~	E86239	protein F20B24.2 [
13	37	58.7		7	G85255	CDP-diacylglycerol

CDP-diacylglycerol probable membrane probable membrane mscd6 precursor - MEGF6 protein - ra hypothetical prote		0.000		reductase reductase jen alpha -2-oxobut	channel jated cho channel en alpha reductase channel	chloride channel p lantibiotic subtil
T04915 S51456 S67084 I49100 T13954	T49766 T31263 B53116 C53116	D65005 B91030 C85874 S52833	T13145 T15075 T19233 H65057		\$1341 \$1972 \$6821 D4423 T0224 \$2339 \$33707	S19595 I39987
4 70 70 70 70	346 346 399	182 2 182 2 182 2 182 2	88 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		805 2 810 2 822 2 866 2 889 2 907 2	994 2 1030 2
5588.7 568.7 568.7 7.0 7.0 7.0	0.7.0	rrr	57.1	. ۲. ۲. ۲. ۲.	57.1 57.1 57.1 57.1 57.1	57.1
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36.5		9 9 9 9	, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36
14 15 17 18	20000	1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 0 0 E	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37 38 39 40 42 43	44 45

ز ۱

Search completed: May 19, 2004, 17:08:27 Job time : 12.125 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: May 19, 2004, 16:56:57; Search time 7.5 Seconds (without alignments) 62.484 Million cell updates/sec

Title: US-10-034-974-25
Perfect score: 63
Sequence: 1 CPGEDMLFC 9

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched: 141681 seqs, 52070155 residues

Total number of hits satisfying chosen parameters: 141681

Minimum DB seq length: 0 Maximum DB seq length: 200000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database : SwissProt_42:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		ďρ				
Result		Query				
No.	Score	Match	Match Length DB	图	ID	Description
	42	66.7	321	7	FCL HUMAN	Q13630 homo sapien
N	40	63.5	943	7	DIPZ YEAST	Q12220 saccharomyc
ო	39	61.9	743	7	TLE2_HUMAN	Q04725 homo sapien
4	39	61.9	767	-	TLE2 MOUSE	Q9wvb2 mus musculu
ഗ	38.5	61.1	513	Н	AMY3 SCHPO	O14154 schizosacch
9	38	60.3	321	Н	FCL_CRIGR	QBk3x2 cricetulus
7	38	60.3	321	Н	FCL_MOUSE	P23591 mus musculu
ω	38	60.3	463	-	ENGA BIFLO	QBg6aB bifidobacte
σ	37	58.7	598	Н	THI7 YEAST	Q05998 saccharomyc
10	37	58.7	599	+	THIY YEAST	Q08579 saccharomyc
11	37	58.7	665	Н	CD6 MOUSE	Q61003 mus musculu
12	36	57.1	182	7	YFCM ECOLI	P76938 escherichia
13	36	57.1	201	Н	YMW3_YEAST	Q04772 saccharomyc
14	36	57.1	598	Н	CYSJ ECOLI	P38038 escherichia
15	36	57.1	805	-	CICH TORMA	P21564 torpedo mar
16	36	57.1	809	1	CICH_TORCA	P35522 torpedo cal
17	36	57.1	866	-	FIBA HUMAN	P02671 homo sapien

P49102 zea mays (m P51788 homo saphen P51788 orytolagus Q9wu45 cavia porce P35523 attus norv Q9r0al mus musculu P35523 homo sapien Q64447 mus musculu P35524 rattus norv P39774 bacillus su P39574 bacillus su P39574 bacillus su P39541 saccharomyc Q07179 chodobacter Q37680 triticum ae P7151 mycobacteri Q9res Geinocococus P5248 homo sapien Q02353 rattus norv O60462 homo sapien O60462 homo sapien Q35375 mus musculu P30929 mumps virus Q61847 mus musculu P24798 gallus gallu	P13637 homo sapien P06687 rattus norv P09572 gallus gall Q92030 anguilla an
NIA3_MAIZE CLCZ_RABIT CLCZ_CAVPO CLCZ_CAVPO CLCZ_RAI CLCZ_MOUSE CLCI_HOWSE CLCI_HOWSE CLCI_RAI SPAB_BACSU XJTS_YEAST NIFV_RHOCA NUSM_WHEAT YSSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU SYSS_MACTU NIFV_RADI NUSM_WHEAT NUSM_WACUS RRPL_MUMAN MRPP_RAI NUSM_WRPP_MACTU MRPP_MUMPM MR	AIA3_HUMAN AIA3_RAT AIA1_CHICK AIA1_ANGAN
8889899988899998889999988899999888899998888	1013 1013 1021 1022
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	
9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	344.5
118 119 120 130 130 130 130 130 130 130 130 130 13	1444 1224

Search completed: May 19, 2004, 17:06:21 Job time : 8.5 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:58:07; Search time 27.375 Seconds (without alignments) 103.732 Million cell updates/sec Run on:

US-10-034-974-25 63 Title:
Perfect score: 6

1 CPGEDWLFC 9

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

1017041 Total number of hits satisfying chosen parameters: 1017041 seqs, 315518202 residues Searched:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

SPTREMBL 25:* Database :

1: sp_arches:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:*
5: sp_inverrebrate:*
6: sp_inverrebrate:*
7: sp_manmal:*
7: sp_manmal:*
8: sp_organale:*
9: sp_organale:*
10: sp_plant:*
11: sp_virus:*
12: sp_virus:*
13: sp_virus:*
14: sp_virus:*
15: sp_virus:*
16: sp_archesp:*
17: sp_archesp:*
17: sp_archesp:*
18: sp_virus:*
18: sp_virus:*
18: sp_virus:*
19: sp_archesp:*
11: sp_archesp:*
15: sp_archesp:*
16: sp_archesp:*
17: sp_archesp:*
17: sp_archesp:*
18: sp_archesp:*
18: sp_archesp:*
18: sp_archesp:*
19: sp_archesp:*
10: sp_arch

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query
No. Score Match Length DB

Description П

Q9rk93 streptomyce Q8c4a2 mus musculu O67934 aquifex aeo Q7z7k2 homo sapien Q99d18 bovine herp Q8tuw3 methanopyru Q95sn5 drosophila Q9w343 drosophila Q9w343 drosophila Q8w342 methanosarc	Ogmund boltenia vi OBrul5 oryza sativ Q09538 caenchlabdi Q0hed7 leishmania Q8qq43 pseudomonas Q8qq69 cucurbit le	seurospora seudomonas mus muscul bordetella bordetella tomo sapien	0	32.052 32.052 32.052 30	Q840q5 streptomyce Q9r3i9 streptomyce
16 09RK93 11 08C4A2 16 067934 4 072K2 12 099D18 17 08TW3 5 0983N5 5 09W343 17 08TW42	15 2 2 2 1 2	12 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112 9 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	
1053 120 236 236 595 97 279 1952 86	116 183 429 1236 196 293	548 548 637 637 2948		315 321 321 321 463 463 463 1035 1035 1187 335 335	8 8 9
0.000 0.000	63. 63. 61.	61. 61. 61. 61.	600.0000000000000000000000000000000000		വവ
44 44444 00 4644440 004					37
→ Z S A S S P S S S		116 118 120 210 210	23 24 27 27 29 29 30		44

Search completed: May 19, 2004, 17:07:48 Job time : 29.375 secs