Capitolul 4: Realizarea de Stare a Sistemelor Liniare

Problema realizării (de stare) (PRS) reprezintă determinarea reprezentării de stare (deci a tripletului (A, B, C) pentru un sistem liniar specificat într-o manieră intrareieșire (prin matricea de transfer sau prin matricea de răspuns cauzal la impuls).

Problema realizării de stare se formulează astfel: Fie $T(\lambda) \in R^{p \times m}(\lambda)$ - o matrice de rationale strict proprii. Să se găsească (dacă este posibil) un sistem liniar $\Sigma_n = (n, A, B, C)$ un sistem liniar astfel încât:

$$T(\lambda) = C(\lambda I - A)^{-1}B \tag{2}$$

unde n reprezintă dimensiunea realizării de stare.

Observație: Forma standard a unei matrici de transfer $T(\lambda)$.

Fie:
$$p(\lambda) = cmmnc \{p_{ij}(\lambda)\} = \lambda^n + \alpha_{n-1}\lambda^{n-1} + ... + \alpha_0$$
 (4)
,unde $i = \overline{1, m}, j = \overline{1, p}$ și $\alpha_n = 1$.

Atunci înseamnă că putem scrie $T(\lambda)$ astfel:

$$T(\lambda) = \|t_{ij}\| = \left\| \frac{r_{ij}(\lambda)}{p_{ij}(\lambda)} \right\| = \frac{1}{p(\lambda)} \|r_{ij}^*(\lambda)\|$$

$$\text{,unde } i = \overline{1, m}, j = \overline{1, p}.$$
(5)

Exemplu:

Fie
$$T(\lambda) = \left\| \frac{1}{2(\lambda+1)} - \frac{\lambda-2}{(\lambda+1)\lambda} \right\| = \left\| \frac{0.5}{\lambda+1} - \frac{\lambda-2}{(\lambda+1)\lambda} \right\|.$$

Atunci, avem:

$$p(\lambda) = \lambda(\lambda + 1) = \lambda^{2} + \lambda \Rightarrow \begin{cases} n = 2 \\ \alpha_{1} = 1 \\ \alpha_{0} = 0 \end{cases}$$

, de unde se poate scrie că:

$$T(\lambda) = \frac{1}{\lambda(\lambda+1)} \|0.5\lambda \quad \lambda - 2\|$$

Pe de altă parte, însă, avem:

$$T(\lambda) = \frac{1}{p(\lambda)} \| R_0 + R_1 \lambda + \dots + R_{n-1} \lambda^{n-1} \|$$
 (6)

unde $R \in \mathbb{R}^{p \times m}$.

Continuând exemplul, putem scrie că:

$$T(\lambda) = \frac{1}{p(\lambda)} (\begin{bmatrix} 0 & -2 \end{bmatrix} + \begin{bmatrix} 0.5 & 1 \end{bmatrix} \lambda).$$

Teorema 1: Realizarea standard controlabilă. O realizare controlabilă a lui

$$A_{C} = \begin{bmatrix} 0_{m} & I_{m} & \dots & 0_{m} \\ \dots & \dots & \dots & \dots \\ 0_{m} & 0_{m} & \dots & I_{m} \\ -\alpha_{0}I_{m} & -\alpha_{1}I_{m} & \dots & -\alpha_{n-1}I_{m} \end{bmatrix}, B_{C} = \begin{bmatrix} 0_{m} \\ 0_{m} \\ \dots \\ I_{m} \end{bmatrix}$$
 \S{i} $C_{C} = \begin{bmatrix} R_{0} & R_{1} & \dots & R_{n-1} \end{bmatrix}$

unde dimensiunea realizării este:

$$n_C = n \times m \tag{8}$$

unde 0_m și I_m sunt de dimensiuni $n \times m$.

Demonstrația este identică în cazurile neted și discret. Vom analiza doar situația cazul unui sistem neted.

$$\begin{cases} \dot{x}_C = A_C x + B_C u \\ y = C_C x \end{cases} \tag{9}$$

 $\begin{cases} \dot{x}_C = A_C x + B_C u \\ y = C_C x \end{cases}$ Definim $x_C = \begin{bmatrix} x_1 \\ \dots \\ x_J \end{bmatrix}$, unde $x_j \in R^m$. Sistemul de la (9) se poate scrie astfel:

$$\begin{cases}
\begin{bmatrix} x_1 \\ \dots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 0_m & I_m & \dots & 0_m \\ \dots & \dots & \dots & \dots \\ 0_m & 0_m & \dots & I_m \\ -\alpha_0 I_m & -\alpha_1 I_m & \dots & -\alpha_{n-1} I_m \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_{n-1} \\ x_n \end{bmatrix} + \begin{bmatrix} 0_m \\ \dots \\ 0_m \\ I_m \end{bmatrix} u$$

$$y = \begin{bmatrix} R_0 & R_1 & \dots & R_{n-1} \\ \dots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_{n-1} \\ x_n \end{bmatrix}$$
(10)

Demonstratia constă în verificarea functiei de transfer.

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = x_{3} \\ \dots \\ \dot{x}_{n-1} = x_{n} \\ \dot{x}_{n} = -\alpha_{0}x_{1} + \dots + -\alpha_{n-1}x_{n} + u \\ y = R_{0}x_{1} + \dots + R_{n-1}x_{n} \end{cases}$$
(11)

Aplicând sistemului (11) transformata Laplace pentru $x_0 = 0$ obținem:

$$\begin{cases} sx_1 = x_2 \\ sx_2 = x_3 \\ \dots \\ sx_{n-1} = x_n \\ sx_n = -\alpha_0 x_1 + \dots + -\alpha_{n-1} x_n + u \\ y = R_0 x_1 + \dots + R_{n-1} x_n \end{cases}$$
(12)

Prin substituții succesive, din sistemul (12) putem obținem următoarele:

$$x_2 = sx_1$$

 $x_3 = s^2x_1$ de unde rezultă că:

...

$$x_{n} = s^{n-1}x_{1}$$

$$(s^{n} + \alpha_{n-1}s^{n-1} + \dots + \alpha_{0})x_{1} = u$$
(13)

Care se mai poate scrie și astfel:

$$x_1(s) = \frac{1}{s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_0} u(s)$$

Înlocuind în ultima ecuație din sistemul (12) obținem că:

$$y_f(s) = (R_0 + sR_1 + \dots + s^{n-1}R_{n-1})x \quad (s) \implies y_f(s) = R_0 x_1(s) + \dots + R_{n-1} x_n(s)$$
(14)

Iar dacă introducem și ecuația (13), ajungem la forma:

$$y_f(s) = \frac{R_0 + sR_1 + \dots + s^{n-1}R_{n-1}}{s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_0} u(s)$$
(15)

Din ecuația (15) putem scrie imediat că:

$$y_f(s) = T(s)u(s)$$

$$T(s) = \frac{1}{s^{n} + \alpha_{n-1}s^{n-1} + \dots + \alpha_{0}} \left(R_{0} + R_{1}s + \dots + R_{n-1}s^{n-1} \right)$$
 q.e.d

Exemplul:

$$n_{C} = 2 \times 2 = 4$$

$$A_{C} = \begin{bmatrix} 0_{2} & I_{2} \\ -\alpha_{0}I_{2} & -\alpha_{1}I_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$B_{C} = \begin{bmatrix} 0_{2} \\ I_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C_{C} = \begin{bmatrix} R_{0} & R_{1} \end{bmatrix} = \begin{bmatrix} 0 & -2 & 0.5 & 1 \end{bmatrix}$$

<u>Teorema 2: Realizarea standard observabilă</u>. O realizare observabilă a lui $T(\lambda) \in R^{p \times m}(\lambda)$ de raționale strict proprii este dată de:

$$A_{O} = \begin{bmatrix} 0_{p} & \dots & 0_{p} & -\alpha_{0}I_{p} \\ I_{p} & \dots & 0_{p} & -\alpha_{1}I_{p} \\ \dots & \dots & \dots & \dots \\ 0_{p} & \dots & I_{p} & -\alpha_{n-1}I_{p} \end{bmatrix}, B_{O} = \begin{bmatrix} R_{0} \\ R_{1} \\ \dots \\ R_{n-1} \end{bmatrix} \text{ si } C_{O} = \begin{bmatrix} 0_{p} & 0_{p} & \dots & I_{p} \end{bmatrix}$$

$$(18)$$

unde dimensiunea realizării este:

$$n_O = n \times p$$

Exemplul:

$$n_{O} = 2 \times 1 = 2$$

$$A_{O} = \begin{bmatrix} 0_{1} & -\alpha_{0}I_{1} \\ I_{1} & -\alpha_{1}I_{1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix},$$

$$B_{O} = \begin{bmatrix} R_{0} \\ R_{1} \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 0.5 & 1 \end{bmatrix}$$

$$C_{O} = \begin{bmatrix} 0_{1} & I_{1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Observatie Problema realizării minimale :

Deoarece in general $m \neq p \Rightarrow n_c \neq n_0$

Problema realizarii minimale Fiind data $T(\lambda) \in R^{pxn}(\lambda)$ o matrice de rationale strict proprii. Sa se gaseaasca daca e posibila o realizare minimala (caciulitia si la suma) $\Sigma_{\widetilde{n}} = (\widetilde{n}, \widetilde{A}, \widetilde{B}, \widetilde{C})$ avem $\widetilde{n} \geq n$ ai pt orice alta realizare a lui $T(\lambda)$, $\Sigma_n = (n, A, B, C)$ n>= n cu caciula

(3)

Minimalitatea trebuie înțeleasă în sensul dimensiunii spațiului stărilor.

Observatii:

1) RSC

Pentru cazul m = p = 1 (sistem cu o intrare și o ieșire) avem:

$$\begin{cases} \dot{x} = Ax + bu \\ y = c^{T} x \end{cases}, -> \Rightarrow T(S) = \frac{\beta_{n-1} S^{n-1} + \dots + \beta_{0}}{S^{n} + \alpha_{n-1} S^{n-1} + \dots + \alpha_{0}}$$

$$\Rightarrow T(\lambda) = \frac{\beta_{n-1}\lambda^{n-1} + \dots + \beta_0}{\lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_0}$$

$$A_{C} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \\ -\alpha_{0} & -\alpha_{1} & \dots & -\alpha_{n-1} \end{bmatrix}, b_{C} = \begin{bmatrix} 0 \\ \dots \\ 0 \\ 1 \end{bmatrix}$$

$$R_{C} = [b_{c} A_{c} b_{c} \dots A_{c}^{n-1} b_{c}] = \begin{bmatrix} 0.0 \dots 1 \\ \dots \\ 0.1 \dots \\ 1, \alpha_{n-1} \dots \end{bmatrix}$$

$$\text{si } C_{C}^{T} = [\beta_{0} \quad \beta_{1} \quad \dots \quad \beta_{n-1}]$$

$$(16)$$

Observăm că matricea A_C este în formă de companion matricial, iar coeficienții $\alpha_0, \alpha_1, ... \alpha_{n-1}$ sunt coeficienții polinomului caracteristic.

Matricea A_C este ciclică.

Faptul că

$$R_{c} = \begin{bmatrix} b_{C} & A_{C}b_{C} & \dots & A_{C}^{n-1}b_{C} \end{bmatrix}$$

$$(17)$$

este de rang maximal face ca realizarea să fie controlabilă ($rang(R) = n_C$), care este criteriul de controlabilitate.

2) RSO

Pentru cazul m = p = 1 (sistem cu o intrare și o ieșire) avem:

$$A_{o} = \begin{bmatrix} 0 & \dots & 0 & -\alpha_{0} \\ 1 & \dots & 0 & -\alpha_{1} \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & -\alpha_{n-1} \end{bmatrix}, b_{o} = \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \dots \\ \beta_{n-1} \end{bmatrix}$$
 $\hat{\mathbf{y}} \hat{\mathbf{i}} c_{o}^{T} = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}$ (19)

Faptul că

$$Q = \begin{bmatrix} c_0^T \\ c_0^T A_0 \\ \dots \\ c_0^T A_0^{n-1} \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 1 & * \\ \dots & \dots & \dots & \dots \\ 1 & \dots & * & * \end{bmatrix} \neq 0$$
 (20)

este de rang rg(Q) = n face ca realizarea să fie observabilă

Principiul dualității.
$$\sum_{c} = (A_{c}, b_{c}, c_{c}^{t}) \xrightarrow{T} \sum_{0} = (A_{0}, b_{0}, c_{0}^{T})$$

$$A_{c}^{t}.c_{c}, b_{0}^{T}$$

Fie $H(\lambda)$. Scriem că:

$$H(\lambda) = c_C^T (\lambda I_C - A_C)^{-1} b_C = H^T(\lambda) = \left[c_C^T (\lambda I_C - A_C)^{-1} b_C \right]^T = b_C^T (\lambda I - A_C^T)^{-1} c_C$$
 (21)

Pe de altă parte, avem:

$$H(\lambda) = c_O^T (\lambda I - A_O)^{-1} b_O \tag{22}$$

Din (21) și (22) putem scrie că:

$$\Sigma_C = \left(A_C, b_C, c_C^T \right) = \Sigma_O \left(A_C^T, c_C, b_C^T \right) \tag{23}$$

 \xrightarrow{u} unpatrat(H) \xrightarrow{y} unpatrat(?) \xrightarrow{u}

Obs: RSC si RSO sunt controlabile, respectiv observabile.

m=p=1 det($\lambda I - A_{0}$) = det(SI- $\lambda I - A_{0}$) = $\lambda^{n} + \alpha_{n-1}\lambda^{n-1} + ... + \alpha_{0}$

Capitolul 5: Echivalența Sistemelor Liniare

Definiția 1: Două sisteme $\Sigma = (n, A, B, C)$ și $\hat{\Sigma} = (n, \hat{A}, \hat{B}, \hat{C})$ se numesc echivalente dacă există un izomorfism $T : \mathbb{R}^n \to \mathbb{R}^n$ astfel încât:

$$\hat{A} = TAT^{-1}$$

$$\hat{B} = TB$$

$$\hat{C} = CT^{-1}$$
(1)

Observăm că relația de echivalență este o schimbare de coordonate în spațiul stărilor:

$$\hat{x} = Tx \tag{2}$$

Definiția 1 descrie o relație de echivalență. Astfel, această relație trebuie să fie:

- simetrică: $\sum_{n} \hat{\Sigma} = \hat{\Sigma} \sim \hat{\Sigma} \sim \Sigma_{n}$
- tranzitivă: $\Sigma_1 \overset{T_1}{\sim} \Sigma_2$ și $\Sigma_2 \overset{T_2}{\sim} \Sigma_3 \rightarrow \Sigma_1 \overset{T_2T_1}{\sim} \Sigma_3$
- reflexivă: $\sum_{n=0}^{I_m} \sum_{n=0}^{I_m} T = \text{In}$

Se poate spune astfel că, de fapt, atunci când lucrăm cu un sisteme liniare, numerele cu care lucrăm sunt reprezentantul unei clase.

Teorema 1: Două sisteme $\Sigma_n = (A, B, C)$ și $\hat{\Sigma}_n = (\hat{A}, \hat{B}, \hat{C})$ echivalente cu inițializări echivalente (asemenea) $\hat{x}_0 = Tx_0$ și aceeași intrare au ieșiri egale și evoluții pe stare echivalente.

$$\hat{x}(t) = Tx(t)$$

$$\hat{y}(t) = y(t)$$
(3)

Demonstratie:

Din $\Sigma \sim \hat{\Sigma}$ deducem că $\exists T$ astfel încât $\hat{A} = TAT^{-1}$, $\hat{B} = TB$, $\hat{C} = CT^{-1}$. Se poate scrie, deci, că:

$$\hat{x}(t) = e^{\hat{A}t}\hat{x}_0 + \int_0^t e^{\hat{A}(t-\tau)}\hat{B}u(\tau)d\tau =$$
(4)

$$\hat{x}(t) = e^{TAT^{-1}t}Tx_0 + \int_0^t e^{TAT^{-1}(t-\tau)}TBu(\tau)d\tau =$$

$$\hat{x}(t) = Te^{At}T^{-1}Tx_0 + \int_0^t Te^{A(t-\tau)}T^{-1}TBu(\tau)d\tau =$$

$$\hat{x}(t) = Te^{At}x_0 + \int_0^t Te^{A(t-\tau)}Bu(\tau)d\tau =$$

$$\hat{x}(t) = T \left(e^{At} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right) =$$

$$\hat{x}(t) = Tx(t) \tag{5}$$

Similar, demonstrăm că:

$$\hat{y}(t) = \hat{C}\hat{x}(t) = C(T^{-1}T)x = Cx(t) = y(t) \quad \text{(iesiri egale)}$$

Definiția 2: Echivalența intrare-ieșire (I/E). Două sisteme $\Sigma = (n, A, B, C)$ și $\Sigma^* = (n^*, A^*, B^*, C^*)$ sunt echivalente intrare-ieșire dacă au aceeași matrice de transfer.

$$C^* \left(\lambda I_{n^*} - A^* \right)^{-1} B^* = C \left(\lambda I_n - A \right)^{-1} B = T(\lambda)$$
 (10)

Observație: $n^* \neq n$.

Definiția 2 descrie o relație de echivalență. Astfel, această relație trebuie să fie:

- simetrică: $\Sigma_1 \sim \Sigma_2 \rightarrow \Sigma_2 \sim \Sigma_1$ (prin identitate)
- tranzitivă: $\Sigma_1 \sim \Sigma_2$ și $\Sigma_2 \sim \Sigma_3 \rightarrow \Sigma_1 \sim \Sigma_3$
- reflexivă $\Sigma_n \sim \Sigma_n => T = In$

Obs(Relatii echivalente)

Obs echivalenta => echiv intr – iesire

2 sisteme echivalente sunt echiv si intrare –iesire

Reciproca propoziției 2 este falsă.

Relația de echivalență conservă:

a)
$$\sigma(A)$$
 – spectrul lui A

$$\sigma(A) = \{ \lambda \in C \mid \det(\lambda I - A) = 0 \}$$

$$\sigma(A) = \sigma(TAT^{-1}) = \sigma(A)$$

b) rang B si rang C

$$x = Ax + Bu$$

Obs y = Cx + Du

$$T(s) = C(sI - A)^{-1}B + D$$