Progettazione logica

Il secondo passo..

Obiettivi

Obiettivo della fase di progettazione logica è pervenire, a partire dallo schema concettuale, a uno schema logico che rappresenti in modo fedele i concetti e i requisiti analizzati e che sia, al tempo stesso, "efficiente".

- □ L'efficienza è legata alle prestazioni, ma poiché queste non sono valutabili precisamente né a livello concettuale né a livello logico, si ricorre all'impiego di indicatori semplificati.
- □ L'input per questa fase è lo schema E/R e il carico di lavoro stimato del database, in termini di quantità di dati e requisiti operativi.

Progettazione logica "fedele" = equivalenza

- Che cosa s'intende precisamente quando si dice che uno schema relazionale DB_{rel} rappresenta "fedelmente" uno schema concettuale (E/R) DB_{conc}?
- □ Intuitivamente "fedeltà" vuol dire che mediante DB_{rel} possiamo rappresentare esattamente le medesime informazioni documentate con lo schema DB_{conc} (possiamo memorizzare gli stessi dati).
- □ Più precisamente "fedeltà" significa che i due schemi sono equivalenti dal punto di vista della loro capacità informativa.
- □ Il concetto di capacità informativa ha diverse definizioni, ma per i nostri scopi può essere considerato equivalente all'insieme delle istanze legali di uno schema, indicato con **Sat(DB)** e dunque:
- \square DB_{rel} e DB_{conc} sono equivalenti se Sat(DB_{conc}) = Sat(DB_{rel}).

Progettazione che preserva l'informazione

■ La definizione intuitivamente asserisce che lo schema relazionale può contenere i dati dello schema E/R (totalità) e che si può "ritornare indietro" (iniettività).

Perché ciò non basta

Si consideri il seguente schema E/R:

e lo schema relazionale:

Persona (CF)

Auto (Targa)

Proprieta (<u>CF,Targa</u>,DataAcquisto)

FK: CF REFERENCES Persone

FK: Targa REFERENCES Auto

□ La traduzione preserva l'informazione, ma esistono infinite istanze che sono legali rispetto a DB_{rel} e che non lo sono per DB_{conc}

Persona Proprietà

CF
BLGSTR71B22
FDLNNR66M45
BSZNTN82L27

CF	Targa	DataAcquisto
BLGSTR71B22	CT 001 MJ	12/08/2004
FDLNNR66M45	CT 001 MJ	15/07/2003

Come agire in pratica?

- □ La definizione data di equivalenza non è "operativa", in quanto non dice nulla su come debba essere fatta una traduzione che garantisca l'equivalenza degli schemi.
- □ Tuttavia può essere usata "localmente": in pratica la traduzione da schema E/R a schema relazionale avviene operando una sequenza di trasformazioni/traduzioni semplici, per ognuna delle quali è altrettanto semplice rispettare regole che garantiscono l'equivalenza.
- Per quanto visto, possiamo dividere queste regole in:
 - > regole che preservano l'informazione (regole sulla "struttura");
 - > regole aggiuntive che garantiscono l'equivalenza (regole sui vincoli).
- L'equivalenza può comunque essere solo in parte garantita dal DDL di SQL, infatti alcuni vincoli non possono essere direttamente espressi in SQL.

Fasi della progettazione logica

- La progettazione logica può essere articolata in due fasi principali:
 - ➤ Ristrutturazione: eliminazione dallo schema E/R dei costrutti che non possono essere direttamente rappresentati nel modello logico target (relazionale nel nostro caso):
 - eliminazione degli attributi multivalore;
 - eliminazione delle gerarchie di generalizzazione;
 - partizionamento/accorpamento di entità e associazioni;
 - scelta degli identificatori principali.
 - > Traduzione: si mappano i costrutti residui in elementi del modello relazionale

Fase di ristrutturazione

- □ Si pone l'obiettivo di semplificare la traduzione e "ottimizzare" le prestazioni.
- Per confrontare tra loro diverse alternative bisogna conoscere, almeno in maniera approssimativa, il "carico di lavoro", ovvero:
 - > le principali operazioni che la base dati dovrà supportare;
 - ▶ i volumi dei dati in gioco.
- □ Regola 80-20: il 20% delle operazioni produce l'80% del carico.
- Gli indicatori che deriviamo considerano due aspetti
 - > spazio: numero di istanze (di entità e associazioni) previste;
 - ▶ tempo: numero di istanze visitate durante un'operazione.

Schema di riferimento

Operazioni

- ☐ Operazione 1: assegna un impiegato a un progetto
- Operazione 2: trova i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- ☐ Operazione 3: trova i dati di tutti gli impiegati di un certo dipartimento
- ☐ Operazione 4: per ogni sede, trova i suoi dipartimenti con il cognome del direttore e l'elenco degli impiegati

Operazione	Tipo	Frequenza
Op. 1	I	50/giorno
Op. 2	I	100/giorno
Op. 3	I	10/giorno
Op. 4	В	2/settimana

Esempio valutazione di costo

Operazione 2: Visualizzare tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa.

Volumi dei dati

- Numero di istanze per ogni entità e associazione dello schema
- Dimensione di ogni attributo
- □ Nella tavola dei volumi si riportano per tutti i concetti (entità e associazioni) i volumi previsti a regime

Concetto	Tipo	Volume
<nome></nome>	E/R	<dimensione></dimensione>

- Per le associazioni il volume dipende da
 - > numero di istanze coinvolte nella associazione
 - > il numero (medio) di partecipazioni di una istanza di entità alle istanze di associazione (dipende dalla cardinalità delle associazioni)

Tavola dei volumi

Concetto	Costrutto	Volume
SEDE	E	10
DIPARTIMENTO	Е	80
IMPIEGATO	Е	2000
PROGETTO	Е	500
COMPOSIZIONE	Α	80
AFFERENZA	Α	1900
DIREZIONE	Α	80
PARTECIPAZIONE	Α	6000

- Composizione: è pari al numero di Dipartimenti (1 Dipartimento 1 Sede)
- Afferenza: è paragonabile (leggermente inferiore) al numero di Impiegati
- > Partecipazione: si assume che in media un Impiegato partecipi a 3 Progetti
- Direzione: ogni Dipartimento ha un Direttore

Schema di navigazione

- □ Lo schema di navigazione descrive i dati coinvolti in un'operazione
- Corrisponde al frammento dello schema ER interessato all'operazione sul quale viene disegnato il cammino logico per accedere alle informazioni di interesse

Tavola degli accessi

- Con lo schema di navigazione si può fare una stima del costo di un'operazione contando il numero di accessi alle istanze di entità e associazioni
- Il risultato può essere riassunto in una tavola degli accessi

Concetto	Tipo	Accessi	Tipo
<name></name>	E/A	<number></number>	S/L

- Il tipo distingue gli accessi in scrittura (S) e in lettura (L)
- Le operazioni di scrittura sono in genere più onerose (esecuzione in modo esclusivo, aggiornamento degli indici)
- Il costo di una scrittura viene considerato pari a 2 operazioni (O), una lettura pari a 1

Esempio tavola degli accessi

- Il numero delle istanze si ricava dalla tavola dei volumi mediante semplici operazioni (assumendo uniformità nella distribuzione dei valori):
 - ➤ ad esempio in media ogni impiegato partecipa a 6000/2000 = 3 progetti.

Operazione 2:

- Impiegato: 1 accesso
- Afferenza: 1 accesso (ogni Impiegato afferisce al più a un Dipartimento)
- Dipartimento: 1 accesso
- Partecipazione: 3 accessi
- Progetto: 3 accessi
- Tutti gli accessi sono in lettura

Concetto	Costrutto	Accessi	Tipo
IMPIEGATO	E	1	L
AFFERENZA	Α	1	L
DIPARTIMENTO	E	1	L
PARTECIPAZIONE	Α	3	L
PROGETTO	Е	3	L

Esercizio 1

□ Stimare il numero degli accessi

operazione: dato un autista trovare gli autobus che guida

Esercizio 1 - soluzione

Stimare il numero degli accessi

operazione: dato un autista trovare gli autobus che guida

□ Per calcolare il numero di accessi a Guida e Autobus, è necessario conoscere il numero medio di istanze in Guida per Autista (200/100=2)

Esercizio 2

Stimare il numero degli accessi

Operazione: Stampare il curriculum di uno Studente

Esercizio 2 - soluzione

Stimare il numero degli accessi

Operazione: Stampare il curriculum di uno Studente

Il numero medio degli esami sostenuti dagli studenti è 10000/1000= 10

Concetto	Tipo	Accesso	Tipo
Studente	E	1	L
Esame	Α	10	L
Corso	E	10	L
TOTALE		21	0

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è un'informazione significativa ma derivabile da altre.
- □ In questa fase si decide se eliminare o meno le ridondanze eventualmente presenti; è quindi comunque importante averle individuate in fase di progettazione concettuale!
- Se si mantiene una ridondanza
 - > si semplificano alcune interrogazioni, ma
 - > si appesantiscono gli aggiornamenti e
 - > si occupa maggior spazio.
- Le possibili ridondanze riguardano
 - > attributi derivabili da altri attributi;
 - > associazioni derivabili dalla composizione di altre associazioni (presenza di cicli).

Attributi derivabili

Associazioni ridondanti

Esempio d'analisi di una ridondanza

■ L'attributo Numero residenti è derivabile da una operazione di conteggio delle istanze di persona residenti in una città

tabella dei volumi

Concetto	Tipo	Volume
Città	ш	200
Persona	ш	1000000
Residenza	R	1000000

Le operazioni...

- □ Si considerano innanzitutto le operazioni influenzate dalla ridondanza, considerando anche le loro frequenze di esecuzione:
- operazione 1: inserisci una nuova persona con la relativa città di residenza (500 volte al giorno);
- operazione 2: visualizza tutti i dati di una città (incluso il numero di residenti) (2 volte al giorno);
- □ e si costruiscono le tavole degli accessi.

...in presenza di ridondanza...

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	5
Residenza	Associazione	1	S
Città	Entità	1	L
Città	Entità	1	5

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

...in assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Associazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Associazione	5000	L

Mantenere o no la ridondanza?

- □ È importante considerare la frequenza delle operazioni:
- con ridondanza:
 - > operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno;
 - > operazione 2: 2 accessi in lettura al giorno;
 - > totale: 3502 accessi al giorno;
- senza ridondanza:
 - operazione 1: 1000 accessi in scrittura al giorno;
 - operazione 2: 10002 accessi in lettura al giorno;
- □ Si decide pertanto di mantenere la ridondanza, privilegiando l'efficienza.
- In generale si devono fare anche considerazioni sullo spazio in più richiesto per mantenere la ridondanza

Eliminazione delle gerarchie

- Il modello relazionale non può rappresentare direttamente le generalizzazioni.
- Entità e associazioni sono invece direttamente rappresentabili.
- □ Si eliminano perciò le gerarchie, sostituendole con entità e relazioni.
- Vi sono 3 possibilità (più altre soluzioni intermedie):
 - accorpare le entità figlie nel genitore (collasso verso l'alto);
 - > accorpare il genitore nelle entità figlie (collasso verso il basso);
 - > sostituire la generalizzazione con associazioni.

Schema di riferimento

1. Collasso verso l'alto...

1. Esempio

Collasso verso l'alto: osservazioni

"Tipo" è un attributo selettore che specifica se una singola istanza di E appartiene a una delle N sotto-entità.

- Copertura
 - ➤ totale esclusiva: Tipo assume N valori, quante sono le sotto-entità;
 - > parziale esclusiva: Tipo assume N+1 valori; il valore in più serve per le istanze che non appartengono a nessuna sotto-entità;
 - ➤ sovrapposta: occorrono tanti selettori quante sono le sotto-entità, ciascuno a valore booleano Tipo_i, che è vero per ogni istanza di E che appartiene a E_i; se la copertura è parziale i selettori possono essere tutti falsi, oppure si può aggiungere un selettore.
- □ Le eventuali associazioni connesse alle sotto-entità si trasportano su E, le eventuali cardinalità minime diventano 0.

Schema di riferimento

2. Collasso verso il basso...

2. Esempio

Collasso verso il basso: osservazioni

- Se la copertura non è completa, il collasso verso il basso non si può applicare:
 - > non si saprebbe infatti dove collocare le istanze di E che non sono né in E1, né in E2.
- Se la copertura non è esclusiva, si introduce ridondanza:

3. Sostituire con associazioni...

3. Esempio

Sostituire con associazioni: osservazioni

- □ Tutte le entità vengono mantenute: le entità figlie sono in associazione binaria con l'entità padre e sono identificate esternamente.
- La sostituzione con associazioni è sempre possibile, indipendentemente dalla copertura della gerarchia.

Quale alternativa scegliere?

- □ La scelta fra le alternative illustrate si può fare adottando un metodo simile a quello visto per l'analisi delle ridondanze, considerando sia il numero degli accessi sia l'occupazione di spazio.
- È possibile seguire alcune semplici regole generali (ovvero: mantieni insieme ciò che viene usato insieme):
 - 1. conviene se gli accessi all'entità padre e alle entità figlie sono contestuali;
 - 2. conviene se gli accessi alle entità figlie sono distinti, ma d'altra parte è possibile solo con generalizzazioni totali;
 - conviene se gli accessi alle entità figlie sono separati dagli accessi al padre.
- Sono anche possibili soluzioni "ibride", soprattutto in presenza di gerarchie a più livelli.

Una soluzione ibrida...

Partizionamenti e accorpamenti

- È possibile ristrutturare lo schema accorpando o partizionando entità e associazioni.
- □ Tali ristrutturazioni sono effettuate per rendere più efficienti le operazioni in base al principio già visto, ovvero:
- gli accessi si riducono:
 - > separando attributi di un concetto che vengono acceduti separatamente;
 - > raggruppando attributi di concetti diversi a cui si accede insieme.
- I casi principali sono:
 - > partizionamento verticale di entità;
 - > partizionamento orizzontale di associazioni;
 - > eliminazione di attributi multivalore;
 - > accorpamenti di entità e associazioni.

Partizionamento verticale di entità

Si separano gli attributi in gruppi omogenei:

Eliminazione di attributi composti e/o multivalore

- Il vincolo che i domini siano atomici rende attributi composti (record) e multivalore (array) non mappabili nel modello relazionale
- □ Gli attributi composti vengono semplicemente scomposti in attributi semplici (introducendo dei vincoli per gestire eventuali opzionalità)

Eliminazione di attributi multivalore (1)

Eliminazione di attributi multivalore (2)

Se è nota la cardinalità massima K di un attributo multivalore allora è possibile prevedere K attributi a singolo valore.

Indirizzo Città Nome

Idraulico

Tel2

Tel1

Eliminazione di attributi multivalore (3)

Se un valore dell'attributo multivalore compare una sola volta nella ripetizione esso può costituire l'identificatore della nuova entità (o una sua parte).

Eliminazione di attributi multivalore (4)

Se un valore dell'attributo multivalore può comparire Marcatore CodPart più volte nella ripetizione occorre introdurre un (0,N)numero d'ordine Partita CodPart Data N-Ordine Q Nome Marcatura Marcatore Partita (0,N)

Esercizio 3

□ Eliminare l'attributo multivalore

Nota: le istanze di marcatore possono essere ripetute: un marcatore può segnare 2 gol in partite diverse o anche nella stessa partita

Esercizio 3 - soluzione

 Questa soluzione non è corretta perché un marcatore non potrebbe segnare più di un goal nella stessa partita

Esercizio 3 - soluzione

Se un valore dell'attributo multivalore può comparire più volte nella ripetizione si può introdurre un numero d'ordine

Eliminazione di attributi multivalore nelle associazioni

Accorpamento di entità

Scelta degli identificatori principali

- □ È un'operazione indispensabile per la traduzione nel modello relazionale, e corrisponde alla scelta della chiave primaria.
- I criteri da adottare sono:
 - > assenza di opzionalità (valori NULL);
 - > semplicità;
 - > utilizzo nelle operazioni più frequenti o importanti.
- □ Se nessuno degli identificatori soddisfa i requisiti si introducono nuovi attributi (codici) ad hoc.

Identificatori principali: esempio

- □ L'identificatore {Interno, Comune, Indirizzo} è opzionale, quindi non può essere scelto come chiave primaria.
- □ Tra gli attributi CodiceFiscale e CodiceSSN la scelta dipende da quale fra questi è più frequentemente usato per accedere ai dati di una persona.

Traduzione delle entità

Idea di base:

- Ogni entità è tradotta con una relazione con gli stessi attributi.
 - La chiave primaria coincide con l'identificatore principale dell'entità.
 - ➤ Gli attributi composti vengono ricorsivamente suddivisi nelle loro componenti, oppure sono mappati in un singolo attributo della relazione, il cui dominio deve essere opportunamente definito.
 - > Si usa l'asterisco (*) per indicare la possibilità di valori nulli.

Persona (<u>CF</u>, Cognome, Nome, Via, NCivico*, Città, CAP)

Traduzione delle associazioni

Idea di base:

- Ogni associazione è tradotta con una relazione con gli stessi attributi, cui si aggiungono gli identificatori di tutte le entità che essa collega.
 - > Gli identificatori delle entità collegate costituiscono una superchiave.
 - La chiave dipende dalle cardinalità massime delle entità nell'associazione.
 - Le **cardinalità minime** determinano, a seconda del tipo di traduzione effettuata, la presenza o meno di valori nulli (e quindi incidono sui vincoli e sull'occupazione di memoria).

Entità e associazione molti a molti

- Impiegato (Matricola, Nome, Cognome, Stipendio)
- Progetto (<u>Codice</u>, Nome, Budget)
- Partecipazione (Matricola, Codice, DataInizio)
 - > FK: Matricola REFERENCES Impiegato
 - > FK: Codice REFERENCES Progetto

Entità e associazione molti a molti

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Partecipazione(<u>Matricola</u>, <u>Codice</u>, DataInizio)
Progetto(<u>Codice</u>, Nome, Budget)

Impiegato

Nomi delle foreign key

- □ Non è ovviamente necessario mantenere, per gli attributi chiave della relazione che traduce l'associazione, gli stessi nomi delle primary key referenziate, conviene piuttosto far ricorso a nomi più espressivi.
- Partecipazione (Impiegato, CodProgetto, DataInizio)
 - > FK: Impiegato REFERENCES Impiegato
 - > FK: CodProgetto REFERENCES Progetto
- Ovviamente se le entità collegate hanno un attributo con lo stesso nome la ridenominazione è obbligatoria!

Associazioni ad anello molti a molti

In questo caso i nomi degli attributi che formano la chiave primaria della relazione che traduce l'associazione si possono derivare dai ruoli presenti nei rami dell'associazione stessa.

- Prodotto (<u>Codice</u>, Nome, Costo)
- Composizione (Composto, Componente, Quantità)
 - > FK: Composto REFERENCES Prodotto
 - > FK: Componente REFERENCES Prodotto

Associazioni ad anello molti a molti

Prodotto(<u>Codice</u>, Nome, Costo)
Composizione(<u>Composto</u>, <u>Componente</u>, Quantità)

Prodotto

Nome	Costo	<u>Codice</u>					
Cilindro	500	C003 ←				1	
Cuscinetto	800	C023 ←					
Sfera	300	V823 ←					
			Composto	Co	mp	<u>onente</u>	Quantità
		-	€ 023			C003	2
			C023			 ₩823	20

Composizione

Associazioni n-arie molti a molti

La chiave è la combinazione degli identificatori delle N entità partecipanti.

- Fornitore (PartitalVA, Nome)
- Prodotto (<u>Codice</u>, Genere)
- Dipartimento (Nome, Telefono)
- Fornitura (Fornitore, Prodotto, Dipartimento, Quantità)

> FK: ...

Associazioni n-arie molti a molti

Fornitore(<u>PartitaIVA</u>,Nome)

Prodotto(<u>Codice</u>, Genere), Dipartimento(<u>Nome</u>, Telefono)

Fornitura(<u>Fornitore</u>, <u>Prodotto</u>, <u>Dipartimento</u>, Quantità)

Nome	<u>PartitaIVA</u>						Codice	Genere
Rossi	08009382		ı				*A0034	Computer
Verdi	07092913	1					B3456	Stampante
Bianchi	04563281						V0567	Video
Fornitore		<u>Fornitore</u>	<u>Prodotto</u>	Diparti	mento	Quantità	P	rodotto
		07092913	A0034	Fisica		5		
				•				
			<u>Nome</u>	Tele	efono			
			Ingegneria	0577	233601			
		L.	Fisica	0577	232471			
			Biologia	0577	234632	Dinartir	mento	

Associazioni uno a molti (1)

- Giocatore (Cognome, DataNascita, Ruolo)
- Squadra (Nome, Città, ColoriSociali)
- Contratto (CognGiocatore, DataNascG, Squadra, Ingaggio)
 - > FK: (CognGiocatore, DataNascG) REFERENCES Giocatore
 - > FK: Squadra REFERENCES Squadra
- Il Nome della Squadra non fa parte della chiave di Contratto

Associazioni uno a molti (2)

- □ Poiché un giocatore ha un contratto con una sola squadra, nella relazione Contratto un giocatore non può apparire in più tuple.
- Si può pertanto adottare anche una soluzione più compatta, che fa uso di 2 sole relazioni:
- □ Giocatore (Cognome, DataNasc, Ruolo, Squadra, Ingaggio)
 - > FK: Squadra REFERENCES Squadra
- Squadra (Nome, Città, ColoriSociali)
- che corrisponde a tradurre l'associazione insieme a Giocatore (ovvero all'entità che partecipa con cardinalità massima 1)
- Se fosse min-card(Giocatore, Contratto) = 0, allora gli attributi Squadra e Ingaggio dovrebbero entrambi ammettere valore nullo (e per un giocatore o lo sono entrambi o non lo è nessuno dei due).

Associazioni ad anello uno a molti

In questo caso è possibile operare una traduzione con 1 o 2 relazioni.

- 1 relazione:
- Impiegato (Codice, Nome, Cognome, Qualifica, Responsabile*)
 - > FK: Responsabile REFERENCES Impiegato
- 2 relazioni:
- Impiegato (<u>Codice</u>, Nome, Cognome, Qualifica)
- Dipendenza (<u>Dipendente</u>, Responsabile)
 - > FK: Dipendente REFERENCES Impiegato
 - > FK: Responsabile REFERENCES Impiegato

Associazioni ad anello uno a molti

2 relazioni:

Impiegati(<u>Codice</u>, Nome, Cognome, Qualifica)

Dipendenze(<u>Dipendente</u>, Responsabile)

<u>Codice</u>	Nome	Nome	Qualifica
D1	Mario	Bianchi	Dirigente
D2	Luca	Rossi	Capo-Reparto
D3	Gianni	Neri	Operaio
D4	Davide	Verdi	Operaio

<u>Dipendente</u>	Responsabile		
D2	D1		
D3	D2		
D4	D2		

1 relazione:

Impiegati(<u>Codice</u>, Nome, Cognome, Qualifica, Responsabile)

<u>Codice</u>	Nome	Nome	Qualifica	Responsabile
D1	Mario	Bianchi	Dirigente	null
D2	Luca	Rossi	Capo-Reparto	D1
D3	Gianni	Neri	Operaio	D2
D4	Davide	Verdi	Operaio	D2

Entità con identificazione esterna

- □ Nel caso di entità identificata esternamente, si "importa" l'identificatore della/e entità identificante/i.
- □ L'associazione relativa risulta automaticamente tradotta.

- Studente (Matricola, Università, Cognome, Nome, AnnoDiCorso)
 - > FK: Università REFERENCES Università
- Università (Nome, Città, Indirizzo)

Identificazioni esterne: una precisazione

- Nel caso generale, si possono avere identificazioni esterne in cascata.
- □ Per operare correttamente occorre partire dalle entità non identificate esternamente e propagare gli identificatori che così si ottengono.

- Università (Nome, Indirizzo)
- CorsoDiLaurea (<u>Università</u>, <u>Codice</u>, Denominazione)
- Studente (<u>Università</u>, <u>CodiceCdL</u>, <u>Matricola</u>, Cognome, Nome)

Associazioni uno a uno (1)

 Si hanno a disposizione varie possibilità (traduzione con 1, 2 o 3 relazioni)

- Tre relazioni:
- □ Direttore (Codice, Nome, Cognome, Stipendio)
- Dipartimento (Nome, Sede, Telefono)
- Direzione (<u>Direttore</u>, Dipartimento, DataInizio)
 - > FK:....
 - Unique(Dipartimento)

L'identificatore di una delle due entità è scelto come chiave primaria, l'altro dà origine a una chiave alternativa.
La scelta dipende dall'importanza relativa delle chiavi.

Associazioni uno a uno (2)

- Due relazioni:
- Direttore (Codice, Nome, Cognome, Stipendio, Dipartimento, DataInizio)
 - > FK: Dipartimento REFERENCES Dipartimento
 - > Unique(Dipartimento)
- Dipartimento (Nome, Sede, Telefono)
- oppure
- Direttore (<u>Codice</u>, Nome, Cognome, Stipendio)
- Dipartimento (Nome, Sede, Telefono, Direttore, DataInizio)
 - > FK: Direttore REFERENCES Direttore
 - Unique(Direttore)

Associazioni uno a uno (3)

- Una relazione:
- Direttore (<u>Codice</u>, Nome, Cognome, Stipendio, DataInizio, Dipartimento, Sede, Telefono)
 - > Unique(Dipartimento)

oppure

- Dipartimento (Nome, Sede, Telefono, Direttore, NomeDir, CognomeDir, Stipendio, DataInizio)
 - ➤ Unique(Direttore)

Associazioni uno a uno con opzionalità

- □ La traduzione con una sola relazione corrisponde a un accorpamento di entità:
 - ➤ Se min-card(E1,R) = min-card(E2,R) = 1 si avranno due chiavi, entrambe senza valori nulli (la chiave primaria è "la più importante");
 - > Se min-card(E1,R) = 0 e min-card(E2,R) = 1 la chiave derivante da E2 ammetterà valori nulli, e la chiave primaria si ottiene da E1;
 - > Se min-card(E1,R) = min-card(E2,R) = 0 entrambe le chiavi hanno valori nulli, quindi si rende necessario introdurre un codice.

ImpDip (CodiceImpDip, CodiceImp*, ..., Dipartimento*, ..., DataInizio*)

Associazioni ad anello uno a uno

- In questo caso è possibile operare una traduzione con una o due relazioni
- La traduzione con una relazione è ancora problematica se entrambe le partecipazioni sono opzionali

- Una relazione:
- Persona (<u>Codice</u>, CFUomo*, NomeUomo*, CFDonna*, NomeDonna*) **Due relazioni**:
- □ Persona (<u>CF</u>, Nome)
- Matrimonio (Marito, Moglie)
 - > FK: Marito REFERENCES Persona
 - > FK: Moglie REFERENCES Persona Unique (Moglie)

Esempio di riferimento

Schema logico relazionale

- □ Per le entità E che partecipano ad associazioni sempre con max-card(E,R) = n la traduzione è immediata:
 - > Sede (Città, Via, CAP)
 - Progetto (Nome, Budget, DataConsegna)
- Anche l'associazione Partecipazione si traduce immediatamente:
 - > Partecipazione (Impiegato, Progetto)
 - > FK: Impiegato REFERENCES Impiegato
 - > FK: Progetto REFERENCES Progetto
- L'entità Dipartimento si traduce importando l'identificatore di Sede e inglobando l'associazione Direzione:
 - Dipartimento (Nome, Città, Direttore)
 - > FK: Città REFERENCES Sede
 - > FK: Direttore REFERENCES Impiegato
- L'entità Telefono si traduce con una relazione che ingloba l'associazione Recapito
 - > Telefono (Numero, Nome, Città)
 - > FK: Nome, Città REFERENCES Dipartimento
- □ Per tradurre l'associazione Afferenza, assumendo che siano pochi gli impiegati che non afferiscono a nessun dipartimento, si opta per una rappresentazione compatta
 - ➤ Impiegato (Codice, Nome, Cognome, NomeDip*, CittàDip*, Data*)
 - > FK: NomeDip, CittàDip REFERENCES Dipartimento

Esercizio 4

Tradurre lo schema nel modello relazionale

Esercizio 4 - soluzione

Esercizio 4 - soluzione

- PERSONA(<u>CF</u>, Nome, Cognome, Patente, DataNascita, Tel1, Tel2, indirizzo, CodiceComune:COMUNE)
- COMUNE(CodiceCatastale,Nome,CodiceArea*:AREAMETROPOLITANA)
- CAP(CAP, CodComune:COMUNE)
- LAVORO(<u>CF</u>:PERSONA,<u>CodComune</u>:COMUNE)
- AREAMETROPOLITANA(<u>CadiceArea</u>,Nome,Superficie)

Osservazioni finali

- La progettazione logica non deve essere condotta "alla cieca"; in presenza di diverse alternative occorre valutare diversi fattori, tra cui:
 - > la presenza o meno di valori nulli, e la loro incidenza, che dipende dal volume dei dati;
 - > le porzioni di schema E/R interessate dalle varie operazioni (con particolare riferimento ai join tra le relazioni che vengono create);
 - > la flessibilità degli schemi relazionali rispetto ad evoluzioni future.
- □ I casi visti (semplici esempi a scopo didattico) non esauriscono certamente l'argomento e lasciano sempre spazio per soluzioni specifiche "ad hoc".
- □ Ad esempio, associazioni uno a molti con max-card(E2,R) = K, con K "piccolo", possono al limite essere tradotte con 1 sola relazione, prevedendo K repliche degli attributi di E2 (es. tipico: numeri di telefono).

Sommario

- □ La fase di progettazione logica ha lo scopo di derivare uno schema logico che rispetti quanto più possibile i concetti espressi nello schema E/R di partenza e che sia al tempo spesso "efficiente".
- □ I confronti tra le diverse alternative sono eseguiti considerando le principali operazioni interessate e i volumi dei dati in gioco.
- La fase di ristrutturazione elimina dallo schema E/R tutti i costrutti che non possono essere direttamente rappresentati nel modello logico, e apporta modifiche strutturali sulla base di considerazioni di efficienza.
- La fase di traduzione opera traducendo entità e associazioni.
- □ Le diverse alternative che si hanno a disposizione per tradurre le associazioni dipendono dalle cardinalità massime in gioco, le quali determinano anche le chiavi delle relazioni che si ottengono.
- □ Le cardinalità minime possono portare, in funzione della traduzione scelta, ad avere valori nulli.

Questionario

- Descrivere gli obiettivi della progettazione logica.
- Illustrare brevemente i principali criteri che guidano le scelte nel corso della progettazione logica. È possibile operare un collasso verso il basso di una gerarchia se la copertura è parziale? Motivare la risposta.
- Nel caso di gerarchia a copertura sovrapposta quali strategie sono più adatte?
- Come valutare l'opportunità di mantenere attributi/associazioni ridondanti? Quali operazioni devono essere considerate?
- Quali sono i principi che guidano la scelta della chiave primaria?
- Un attributo opzionale può fungere da chiave primaria? Perché?
- Descrivere le principali tecniche per la traduzione di associazioni 1:1,
 1:N, N:M.
- Come influisce l'opzionalità delle associazioni sulle scelte di progettazione logica? Cosa comporta nello schema relazionale finale?

Questionario

Discutere la corrispondenza tra lo schema concettuale e quello relazionale sotto riportati. I due schemi sono equivalenti?

IMPIEGATI(Matricola, Qualifica, Azienda, DataAssunzione)

FK: Azienda REFERENCES Aziende

AZIENDE(PIVA, Nome, SedeLegale)