Δομές Δεδομένων και Αλγόριθμοι

Χρήστος Γκόγκος

ΤΕΙ Ηπείρου

Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 10. The Master Theorem

The Master Theorem

Έστω μια αναδρομική εξίσωση της μορφής

$$T(n) = aT(\frac{n}{b}) + f(n)$$
 $f(n) = O(n^d)$

για την οποία γνωρίζουμε ότι:

- $oldsymbol{0}$ $oldsymbol{a}=$ αριθμός αναδρομικών κλήσεων ≥ 1
- ② b = συντελεστής συρρίκνωσης του προβλήματος <math>> 1
- ③ d = εκθέτης του <math>n για τον αλγοριθμικό χρόνο που απαιτεί το μη αναδρομικό τμήμα του αλγορίθμου

τότε ισχύει:

- $T(n) = O(n^d \log n) \text{ av } a = b^d$
- $T(n) = O(n^d)$ av $a < b^d$
- $T(n) = O(n^{\log_b a}) \text{ av } a > b^d$

Εφαρμογή του Master Theorem στην ταξινόμηση με συγχώνευση MergeSort

Ποια είναι η ασυμπτωτική πολυπλοκότητα της MergeSort $T(n)=2T(\frac{n}{2})+O(n);$

Προκύπτει από την αναδρομική σχέση ότι $\pmb{a}=2, \pmb{b}=2, \pmb{d}=1$ Άρα $\pmb{a}=\pmb{b}^{\pmb{d}}$ καθώς $2=2^1$ και συνεπώς η ασυμπτωτική πολυπλοκότητα είναι $\pmb{O}(\pmb{n}\log \pmb{n})$

Εφαρμογή του Master Theorem στη δυαδική αναζήτηση (Binary Search)

Ποια είναι η ασυμπτωτική πολυπλοκότητα της BinarySearch $T(n) = T(\frac{n}{2}) + O(1);$

Προκύπτει από την αναδρομική σχέση ότι $\pmb{a}=1, \pmb{b}=2, \pmb{d}=0$ Άρα $\pmb{a}=\pmb{b}^d$ καθώς $1=2^0$ και συνεπώς η ασυμπτωτική πολυπλοκότητα είναι $\pmb{O}(\log n)$

Εφαρμογή του Master Theorem

Ποια είναι η ασυμπτωτική πολυπλοκότητα της αναδρομικής σχέσης $T(n)=3T(\frac{n}{2})+O(n)$;

Προκύπτει από την αναδρομική σχέση ότι $\pmb{a}=3, \pmb{b}=2, \pmb{d}=1$ Άρα $\pmb{a}>\pmb{b}^{\pmb{d}}$ καθώς $3>2^1$ και η ασυμπτωτική πολυπλοκότητα είναι $O(n^{\log_2 3})=O(n^{1.58})$

Εφαρμογή του Master Theorem

Ποια είναι η ασυμπτωτική πολυπλοκότητα της αναδρομικής σχέσης $T(n)=3T(\frac{n}{3})+O(n^2);$

Προκύπτει από την αναδρομική σχέση ότι $\pmb{a}=3, \pmb{b}=3, \pmb{d}=2$ Άρα $\pmb{a}>\pmb{b}^d$ καθώς $3<2^2=4$ και η ασυμπτωτική πολυπλοκότητα είναι $\pmb{O}(\pmb{n}^3)$