MATH 1B03/1ZC3 Winter 2019

Lecture 4: More matrix operations

Instructor: Dr Rushworth

January 15th

Covered in last lecture:

- Matrices: rows, columns, entries
- Matrix addition
- Scalar multiplication
- · Matrix multiplication
- · Writing a SLE as a matrix equation

Transpose and trace

(from Chapter 1.3 of Anton-Rorres)

As we have seen, matrices are more interesting than numbers. On top of the familiar operations of addition and multiplication, we can also define new operations.

Transpose (defined for any matrix)

Definition 4.1: Transpose

Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a matrix. The <u>transpose</u> of A is a new matrix, denoted A^T , which has entries

$$(A^T)_{ij} = (A)_{ji}$$

Notice the change of order of the row and column indices.

That is, the ij-th entry of A is the ji-th entry of A^T : the rows of A are the columns of A^T , and vice versa.

Notice that if A is $n \times m$, then A^T is $m \times n$.

Example 4.2

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ 4 & 5 \end{bmatrix}, \qquad A^T = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 0 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad B^T = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

Fact 4.3: Properties of the transpose

Let A and B be matrices, and λ a scalar. Then

1.
$$(A^T)^T = A$$

2.
$$(\lambda A)^T = \lambda A^T$$

3. $(AB)^T = B^TA^T$, when AB and A^TB^T are defined. Notice the order has swapped.

4.
$$(A + B)^T = A^T + B^T$$
, when $A + B$ is defined.

As before, keep these properties in your mind when doing calculations, and try to use them to speed up your working.

Trace (defined only for square matrices)

Recall that a square matrix has the same number of rows as columns, so that it is of size $n \times n$.

Definition 4.4: Diagonal

Let $A = [a_{ij}]$ be a square matrix. Then entries a_{ii} are the <u>diagonal entries</u>. The set of all the a_{ii} is the <u>main diagonal</u> of A.

For example, the boxed entries are on the main diagonal of this 3×3 matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Definition 4.5: Trace

 $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n \times n$ square matrix. The <u>trace</u> of A is a number, written tr(A), and defined

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

= $a_{11} + a_{22} + \dots + a_{nn}$.

The trace of A is the sum of the diagonal elements of A.

Example 4.6

Question: Compute the trace of the matrix

$$A = \begin{bmatrix} 3 & -7 & 0 & 1 \\ 2 & 0 & 9 & -3 \\ 0 & 0 & 1 & 4 \\ 4 & 4 & 0 & -3 \end{bmatrix}$$

Answer: The diagonal elements are

$$\begin{bmatrix}
3 & -7 & 0 & 1 \\
2 & 0 & 9 & -3 \\
0 & 0 & 1 & 4 \\
4 & 4 & 0 & -3
\end{bmatrix}$$

Then tr(A) = 3 + 0 + 1 + -3 = 1.

Fact 4.7: Properties of the trace

Let A and B be a square matrices of the same size, and λ a scalar. Then

1.
$$tr(\lambda A + B) = \lambda tr(A) + tr(B)$$

2.
$$tr(AB) = tr(BA)$$
, even if $AB \neq BA$

3.
$$tr(A^{T}) = tr(A)$$

As always, keep these properties in your mind when doing calculations, and try to use them to speed up your working.

Important properties of matrix multiplication

While there are similarities between matrix mulitiplication and the multiplication of numbers, there are important differences to be aware of.

• Even if AB = AC, we cannot deduce that B = C. This is often known as "failure of cancellation". Here is an example: consider the matrices

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \quad C = \begin{bmatrix} 3 & 5 \\ 3 & 4 \end{bmatrix}$$

It is true that

$$AB = AC = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

even though $B \neq C$.

• It is possible for non-zero matrices to have the zero matrix as their product. For example, if

$$M_1 = \begin{bmatrix} 4 & -2 \\ 0 & 0 \end{bmatrix} \quad M_2 = \begin{bmatrix} 0 & 8 \\ 0 & 1 \end{bmatrix}$$

then

$$M_1M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Question 4.8

Use matrix multiplication to check the products AB, AC, and M_1M_2 above.

Despite these differences, matrix multiplication does have some features which are familiar.

Fact 4.9: Properties of matrix mulitiplication

Let A be an $m \times n$ matrix, B and C be $n \times k$ matrices, and D a $k \times l$ matrix. Then

$$1. \ A(B+C) = AB + AC$$

2.
$$(B+C)D=BD+CD$$
 (notice the order)

3.
$$A(\lambda B) = (\lambda A)B = \lambda AB$$
, for λ a scalar

4.
$$A0 = 0A = 0$$
, for 0 the appropriate size 0 matrix

As always, keep these properties in your mind when doing calculations, and try to use them to speed up your working.,

Example 4.10

Question: Let M_1 , M_2 and M_3 be matrices such that

$$tr(M_1M_2) = 4$$
, $tr(M_1M_3^T) = -12$

Find

$$tr\left(M_1(M_2^T+M_3)^T\right)$$

(you may assume that M_1M_2 , $M_1M_3^T$ and $M_1(M_2^T+M_3)^T$ are defined). **Answer:** Use the properties of the transpose, the trace, and matrix multiplication (from Facts 4.3, 4.7 and 4.9).

$$tr\left(M_{1}\left(M_{2}^{T}+M_{3}\right)^{T}\right) = tr\left(M_{1}\left((M_{2}^{T})^{T}+M_{3}^{T}\right)\right)$$

$$as\left(A+B\right)^{T} = A^{T}+B^{T}$$

$$= tr\left(M_{1}(M_{2}+M_{3}^{T})\right)$$

$$as\left(A^{T}\right)^{T} = A$$

$$= tr\left(M_{1}M_{2}+M_{1}M_{3}^{T}\right)$$

$$as A(B+C) = AB+AC$$

$$= tr\left(M_{1}M_{2}\right) + tr\left(M_{1}M_{3}^{T}\right)$$

$$as tr(A+B) = tr(A) + tr(B)$$

$$= 4-12$$

$$= -8$$

Question: Let A be a 4×7 matrix, and B an $m \times n$ matrix. Given that $B^T A^T$ is a 3×4 matrix, find m and n.

Answer: Recall from Fact 4.3 that $(AB)^T = B^T A^T$. This shows that as $B^T A^T$ is defined, then AB is defined also.

We can determine m by looking at the size of AB:

$$\begin{array}{ccc} (4 \times 7) & (m \times n) & = & (4 \times n) \\ A & B & AB \end{array}$$

as AB is defined we must have m=7.

To find n, recall that if M is $k \times l$, then M^T is $l \times k$. As AB is $4 \times n$, and B^TA^T is 3×4 , we must have that n=3 (using the fact that $(AB)^T=B^TA^T$ again).

The inverse of a matrix

(from Chapter 1.4 of Anton-Rorres)

We saw that given a matrix A, there is always a matrix -A such that

$$A - A = 0$$
, (the zero matrix)

This corresponds to the fact that given a number x, there exists a number -x such that

$$x - x = 0$$
, (the number zero)

In other words, given any matrix, we can always add another matrix to it to get back to the zero matrix.

If the number x is non-zero, we can also get back to 1:

$$x \cdot \frac{1}{x} = 1$$

Can we do this for matrices? In general, the answer is <u>no</u>.

We have the matrix equivalent of the number 0: the zero matrix. We need the matrix equivalent of the number 1.

Definition 4.11: The identity matrix

The <u>identity matrix</u>, denoted I, is the square matrix with 1's on the main diagonal, and 0's everywhere else. If we need to specify the size, we use I_n to denote the $n \times n$ identity matrix.

For example, here are I_2 and I_5 :

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

We can now answer the question: given a matrix A does there exist another matrix B such that AB = I?

If A is an $m \times n$ matrix with $m \neq n$ (i.e. not square), then there <u>does not exist</u> such a matrix B. We will see why this is later on.

If A is a square matrix, it is possible that such a matrix B exists, but this is not always the case.

The matrix B has a special name.

Definition 4.12: Inverse of a matrix

Let A be an $n \times n$ matrix. We say that A is <u>invertible</u> if there exists another $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

If such a B exists, it is unique, and we refer to it as the <u>inverse</u> of A, and denote it A^{-1} .

The word 'unique' in the definition above means that if there exist two matrices ${\cal B}$ and ${\cal C}$ such that

$$AB = BA = I_n$$

 $AC = CA = I_n$

then B=C (so there was really only one matrix all along!).

Suggested problems

Practice the material in this lecture by attempting the following problems.

From **Chapter 1.3** of Anton-Rorres, starting on page 36

- Questions 1, 5, 11, 15, 29, 35
- True/False questions (h), (i), (j)

From **Chapter 1.4** of Anton-Rorres, starting on page 49

- Questions 3, 11, 17, 33, 46
- True/False questions (b), (c), (d), (e)