Use commands to run the CPU version: nvcc -o cgl cgl.cu ./cgl

Use commands to run the GPU version: nvcc -o cglgpu cglgpu.cu ./cglgpu

Use commands to run the GPUSharedMemory version: nvcc -o cglsharedmemory cglsharedmemory.cu ./cglsharedmemory

Execution time record in milliseconds:

Generations	CPU	GPU	GPUSharedMemory
1	25.901659	0.207470	0.215080
2	25.422342	0.121471	0.125195
3	25.456868	0.120967	0.124178
4	25.472965	0.121100	0.123643
5	25.440151	0.120298	0.124425
6	25.454412	0.120301	0.124305
7	25.399603	0.120704	0.123775
8	25.528057	0.120571	0.124066
9	25.505825	0.119893	0.124647
10	25.596776	0.119969	0.124297

OpenCL	CUDA	Note		
kernel	global	CUDA uses the keywordglobal to define a kernel		
work item	thread	In CUDA, a work item is analogous to a thread		
work group	block	In CUDA, a work group is analogous to a block of threads		
compute unit	multiprocessor	A compute unit in OpenCL corresponds to a streaming multiprocessor in CUDA		
processing element	core	A processing element typically refers to a CUDA core in NVIDIA terminology		
local memory	shared memory	In CUDA, local memory refers to the shared memory accessible by threads in a block		
global memory	global memory	Both OpenCL and CUDA use global memory to refer to memory accessible by all threads across all work groups/blocks		
constant memory	constant memory	Memory that is read-only for the kernel and cached on the chip; useful for broadcasting the same value to all threads		
private memory	local memory	In CUDA, private memory refers to memory that is private to each thread		

OpenCL CUDA Note kernel

global

CUDA uses the keyword __global__ to define a kernel

work item

thread

In CUDA, a work item is analogous to a thread

work group

block

In CUDA, a work group is analogous to a block of threads

compute unit

multiprocessor

A compute unit in OpenCL corresponds to a streaming multiprocessor in CUDA

processing element

core

A processing element typically refers to a CUDA core in NVIDIA terminology

local memory

shared memory

In CUDA, local memory refers to the shared memory accessible by threads in a block

global memory

global memory

Both OpenCL and CUDA use global memory to refer to memory accessible by all threads across all work

groups/blocks

constant memory

constant memory

Memory that is read-only for the kernel and cached on the chip; useful for broadcasting the same value to all

threads

private memory

local memory

In CUDA, private memory refers to memory that is private to each thread