

ONE DIMENSIONAL MODEL FOR RELATIVISTIC QUANTUM CHEMISTRY

Timothée AUDINET

Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

²R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, Phys. Rev. Lett. 106, 018301 (2011)

 $^{^3}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

• Important for fast-moving particles (e.g. electrons)

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

²R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, Phys. Rev. Lett. 106, 018301 (2011)

 $^{^3}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

Introduction

Why are we interested in relativistic quantum chemistry?

- Important for fast-moving particles (e.g. electrons)
- Explains some physical properties of heavy elements
 - 1. yellow color of gold $^{\rm 1}$
 - 2. lead-acid battery electro-chemical potential ²
 - 3. liquid state of mercury at room temperature 3

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

²R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, Phys. Rev. Lett. 106, 018301 (2011)

 $^{^3}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

Why are we interested in relativistic quantum chemistry?

- Important for fast-moving particles (e.g. electrons)
- Explains some physical properties of heavy elements
 - 1. yellow color of gold 1
 - 2. lead-acid battery electro-chemical potential ²
 - 3. liquid state of mercury at room temperature ³
- Explains the electron spin and spin-orbit coupling

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

²R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, Phys. Rev. Lett. 106, 018301 (2011)

 $^{^3}$ K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)

Yellow color of gold⁴

- Fast-moving electrons in s and p orbitals
- Mass increases due to relativity
- Contraction of those orbitals
- Stronger screening of the nucleus
- Destabilize d and f orbitals
- Change the gap energy between 5d and 6s, from UV to yellow

Figure 1: Orbitals diagram of Gold and Silver, with and without relativistic effects

⁴P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

Relativistic energy

Relativistic energy

$$E^2 = m^2 c^4 + c^2 p^2 \Rightarrow E = \pm \sqrt{m^2 c^4 + p^2 c^2},$$
 (1)

• The energy can be negative!

Relativistic energy

Introduction

Relativistic energy

$$E^2 = m^2 c^4 + c^2 p^2 \Rightarrow E = \pm \sqrt{m^2 c^4 + p^2 c^2},$$
 (1)

• The energy can be negative!

Link with non-relativistic energy

• Taylor expansion of the square root for the positive part

$$E = \underbrace{mc^{2}}_{\text{Rest mass}} + \underbrace{\frac{p^{2}}{2m}}_{\text{Kinetic energy}} - \underbrace{\frac{p^{4}}{8m^{3}c^{2}}}_{\text{1st order}} + \dots$$
 (2)

Dirac equation

Introduction

Dirac operator

$$\mathcal{D}(x) = c \left(\vec{\alpha} \cdot \vec{p} \right) + \beta mc^2 + V(x), \tag{3}$$

•
$$\vec{\pmb{\alpha}} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$$
 where $\vec{\sigma} = \{\sigma_x, \ \sigma_y, \ \sigma_z\}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac equation

Introduction

Dirac operator

$$\mathcal{D}(x) = c (\vec{\alpha} \cdot \vec{p}) + \beta mc^2 + V(x), \qquad (3)$$

• $\vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$ where $\vec{\sigma} = \{\sigma_x, \ \sigma_y, \ \sigma_z\}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac equation

$$\mathcal{D}(x)\psi(x) = \mathcal{E}\psi(x) \tag{4}$$

$$m{\psi} = egin{pmatrix} \psi^{\mathsf{L}} \ \psi^{\mathsf{S}} \end{pmatrix}$$
 where $\psi^{\mathsf{L}/\mathsf{S}} = egin{pmatrix} \psi^{\mathsf{L}/\mathsf{S}} \ \psi^{\mathsf{L}/\mathsf{S}} \ \end{pmatrix}$

• \mathcal{E} is the energy of the state $\pmb{\psi}$

Hydrogenic spectrum

Non-relativistic spectrum

$$\mathcal{H}(x) = -\frac{\Delta}{2m} + V(x) \tag{5}$$

Spectrum:

- If $\mathcal{E} > 0$: continuum
- If $\mathcal{E} < 0$: bound states

Relativistic spectrum

$$\mathcal{D}(x) = c (\vec{\alpha} \cdot \vec{p}) + \beta mc^2 + V(x)$$
 (6)

Spectrum:

- If $\mathcal{E} \in (-\infty, -mc^2] \cup [mc^2, +\infty)$: continuum
- If $\mathcal{E} \in (0, mc^2)$: bound states
 - ⇒ Negative continuum spectrum

How to deal with the negative continuum

No-pair approximation

- Solving the Dirac equation
- Projecting it on the positive energy part

How to deal with the negative continuum

QED treatment of negative energy electrons

- Solving the Dirac equation
- Filling the negative part with electrons
- QED description of the system

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry

⁵P. Schwerdtfeger *et al.*, Phys. Rev. Let. 118, 023002 (2017)

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)

⁵P. Schwerdtfeger *et al.*, Phys. Rev. Let. 118, 023002 (2017)

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)
- Second level: Quantum electrodynamics (QED) effects (e.g. IP and EA of gold, Lamb shift in hydrogen)

	IP	Error	EA	Error
DC-HF	7.6892	-1.5363	0.6690	-1.6396
DC-CCSD	9.1164	-0.1092	2.1070	-0.2017
DC-CCSD(T)	9.2938	0.0683	2.3457	0.0371
DC-CCSDTQP	9.2701	0.0446	2.3278	0.0192
+Breit	9.2546	0.0290	2.3188	0.0102
+QED	9.2288	0.0032	2.3072	-0.0014
Experiment [31,32]	9.2256		2.3086	

Figure 2: IP and EA of gold with different levels of approximation⁵

⁵P. Schwerdtfeger *et al.*, Phys. Rev. Let. 118, 023002 (2017)

Motivation

Introduction

- Most of the relativistic calculation are done in the "no-pair" approximation
- Next challenge for RQC is to go beyond no-pair approximation!

⁶P. Chaix, D. Iracane, J. Phys. B 22, 3791 (1989)

Motivation

Introduction

- Most of the relativistic calculation are done in the "no-pair" approximation
- Next challenge for RQC is to go beyond no-pair approximation!
- 3D RQC encounters heavy problems when looking at vacuum properties
- 1D model to understand the problem and offer a solution for these approximations
- 1D model to develop a relativistic functional based on a nice QED framework
- No-photon effective QED framework ⁶

⁶P. Chaix, D. Iracane, J. Phys. B 22, 3791 (1989)

From 3D to $1D^7$

Introduction

Free 1D Dirac operator

$$\mathbf{D}_0(x) = -\mathrm{i} c \sigma_x \frac{\mathrm{d}}{\mathrm{d}x} + \sigma_z m c^2 \tag{7}$$

Dirac equations

$$\mathbf{D}_0(x)\psi_p^0(x) = \varepsilon_p \psi_p^0(x) \tag{8}$$

• Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$

$$(\mathbf{D}_0(x) - Z\delta(x))\,\psi_p^Z(x) = \varepsilon_p \psi_p^Z(x) \tag{9}$$

- Bound State: $\varepsilon_b < mc^2$

[•] Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$ ⁷T. Audinet, J. Toulouse, J. Chem. Phys. 158, 244108 (2023)

Vacuum Polarization

Introduction

- Spontaneous creation of electron positron pairs due to the external potential
- Creates a charge density that will interact through the two-electron interaction

$$\mathbf{n}_1^{\mathsf{vp}}(x,x') = \sum_{\varepsilon_p < 0} \psi_p^{\mathsf{Z}}(x) \psi_p^{\mathsf{Z}\dagger}(x') - \sum_{\varepsilon_p < 0} \psi_p^{0}(x) \psi_p^{0\dagger}(x')$$

- In 3D this quantity diverges, needs to be renormalized
- We want to have a better understanding of this quantity and its influence on the energy spectrum

Vacuum Polarization

Vacuum Polarization Density

$$n^{\mathsf{vp}}(x) = \operatorname{tr}\left[\mathbf{n}_{1}^{\mathsf{vp}}(x,x)\right]$$

$$= \sum_{\varepsilon_{p}<0} \psi_{p}^{\mathsf{Z}\dagger}(x) \psi_{p}^{\mathsf{Z}}(x') - \sum_{\varepsilon_{p}<0} \psi_{p}^{\mathsf{0}\dagger}(x) \psi_{p}^{\mathsf{0}}(x')$$
(11)

In a basis... convergence issues?

Plane waves basis

$$\forall x \in \mathbb{R}, k \in \frac{2\mathbb{Z}\pi}{L}, |k| \le \Lambda, \quad \xi_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$$
 (12)

Figure 3: Vacuum polarization density $n^{vp}(x)$ as a function of x for c=1.

Using Green's functions

Direct Fourier transform

$$\mathcal{F}[n^{\mathsf{vp}}](k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} n^{\mathsf{vp}}(x) e^{-\mathsf{i}kx} \mathsf{d}x \tag{13}$$

Figure 4: Fourier coefficient of Uehling density with both FT and PT

Finding the delta

Vacuum polarization density

$$n^{\mathsf{vp}}(x) = \mathcal{N}_0^{\mathsf{vp}} \delta(x) + n_{\mathsf{reg}}^{\mathsf{vp}}(x) \tag{14}$$

The Fourier coefficients

Introduction

Regularization $n_{\text{reg}}^{\text{vp}}(x) = \mathcal{F}^{-1} \Big[\mathcal{F}[n^{\text{vp}}](k)\theta(k_{\text{max}} - k) - \mathcal{F}[n^{\text{vp}}](k_{\text{max}}) \Big]$ (15)

Regularization of vacuum polarization density

Introduction

Figure 5: Convergence of the regular part of the vacuum polarization density

Lamb Shift calculation

Lamb shift $\mathcal{E}_{\mathsf{Lamb}} = \iint \mathsf{Tr} \Big[\mathbf{w} \ \mathbf{n}^{\mathsf{el}} \otimes \mathbf{n}^{\mathsf{vp}} \Big] \mathsf{d}1 \mathsf{d}2$ $= \iint \mathsf{Tr} \Big[\mathbf{w} \ \mathbf{n}^{\mathsf{el}} \otimes \mathbf{n}^{\mathsf{vp}}_{\mathsf{reg}} \Big] \mathsf{d}1 \mathsf{d}2 + \mathcal{N}_0^{\mathsf{vp}} n^{\mathsf{el}}(0) \qquad (16)$

Figure 6: Convergence of the Lamb shift in a basis

Conclusion

- QED effects are the next challenge of relativistic quantum chemistry
- Nowadays some codes offer such calculations but only for atoms and with some approximations
- This 1D model help us to understand this problem

Conclusion

- QED effects are the next challenge of relativistic quantum chemistry
- Nowadays some codes offer such calculations but only for atoms and with some approximations
- This 1D model help us to understand this problem

Perspectives

- Develop relativistic functional beyond the no-pair approximation for molecules
- Generalize the problem to 3D