- Problem set 01 is due on Thursday Feb 4th at 10am. I have office hours today from 3-4pm in Zoom. Post to Slack if you'll be attending. See Canvas for more office hours info and the link.
- There is a skill check today. Find it on Gradescope and submit it there.
- There is no class on Friday (wellness day).
- There is a skill check on Monday Feb 8th for classes C04 and C05. The sample problem for C04 is in this handout.

Big picture

This week we will work with vectors, with a focus on moving between the algebraic and geometric definitions of the dot product and the cross product. We will also look briefly at the determinant of a matrix. These vector products will become very important in March: we'll be using them all of the time once we start working with functions that have vectors for their output.

Skill Check C04 practice

Rewrite the equation of the plane

$$3x - 5y + 2z = 10$$

- in intercept form.
- using a dot product between a normal vector and a vector parallel to the plane.

Skill Check C04 solution

For intercept form, I want x/a+y/b+z/c=1 where a,b,c are the axis intercepts of the plane. Option 1: I'll divide by 10 to make the right hand side 1. I have 3x/10-y/2+z/5=1. Rearranging, this is $\frac{x}{10/3}+y/(-2)+z/5=1$.

Option 2: I'll find the intercepts. At (a,0,0) we have 3a=10, so a=10/3. At (0,b,0) we have -5b=10 so b=-2. At (0,0,c) we have 2c=10 so c=5. In intercept form the plane is

$$\frac{x}{10/3} + \frac{y}{-2} + \frac{z}{5} = 1.$$

For the dot product, I can "read" the normal vector off of the plan equation. It is $\langle 3, -5, 2 \rangle$. To form a vector parallel to the plane, I use $(x,y,z)-(x_0,y_0,z_0)$, where (x,y,z) is a variable point in the plane and (x_0,y_0,z_0) needs to be a specific point in the plane. The equation of the plane will be $\langle 3,-5,2 \rangle \cdot \langle x-x_0,y-y_0,z-z_0 \rangle = 0$, where (x_0,y_0,z_0) is a point on the plane. From the intercept form, we know that (0,0,5) is a point on the plane, so one way to write the equation of the plane is

$$\langle 3, -5, 2 \rangle \cdot \langle x, y, z - 5 \rangle = 0.$$

Of course, $\langle 3, -5, 2 \rangle \cdot \langle x, y+2, z \rangle = 0$ works as well. As do many other options. (So long as the point (x_0, y_0, z_0) satisfies $3x_0 - 5y_0 + 2z_0 - 10 = 0$, we will end up with a plane equation equivalent to 3x - 5y + 2z = 10.)

Matlab code example 1

```
1 %% what proportion of the output is between 30 and 40
2 % for the x-range and y-range selected?
3 f1 = @(x,y) y.*x.^2;
4 [x1,y1] = meshgrid(0:0.2:5,0:0.1:2);
5 zval = f1(x1,y1);
6 contour(x1,y1,zval)
7 colorbar
8 sz = size(zval);
9 pixelcount = sz(1)*sz(2);
10 figure
11 imagesc(zval<40 & zval>30)
12 z30to40 = (zval>30 & zval<40);
13 proportion = sum(sum(z30to40))/pixelcount</pre>
```

Pre-class Assignment follow up

Dot product knowledge

Skill check

Mathematical properties (included for completeness)

Vector addition and subtraction have some important mathematical properties:

- 1. Vector addition is **associative**: $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.
- 2. There is an **additive identity**: $\vec{u} + \vec{0} = \vec{u}$.
- 3. There is an **additive inverse**: $\vec{v} + -\vec{v} = \vec{0}$ where $-\vec{v} = (-1)\vec{v}$.
- 4. Vector addition is **commutative**: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.

Scalar multiplication with vectors has important properties as well:

- 1. **Distributivity** of scalar multiplication with respect to vector addition $(\alpha + \beta)\vec{v} = \alpha \vec{v} + \beta \vec{v}$.
- 2. **Distributivity** of scalar multiplication with respect to vector addition $\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$.
- 3. Compatibility of scalar multiplication with usual multiplication $\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v}$
- 4. **Identity** element of scalar multiplication: $1\vec{v} = \vec{v}$

These properties are the properties of a mathematical object called a *vector space*. You studied vector spaces as mathematical objects last semester.

Basis vectors

In 3-space, we'll use the **standard basis vectors** $\underline{i}=\begin{pmatrix}1\\0\\0\end{pmatrix}=\underline{e}_1,\ \underline{j}=\begin{pmatrix}0\\1\\0\end{pmatrix}=\underline{e}_2,$

$$\underline{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \underline{e}_3.$$

In n-space, the vectors $\underline{e}_1,\underline{e}_2,...,\underline{e}_k$ are assumed to have n-components and are used to denote the standard basis vectors for that space.

Example

$$\begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} = 2\underline{e}_1 + 5\underline{e}_2 + \underline{e}_3 = 2\underline{i} + 5\underline{j} + \underline{k}.$$

Teams

You will work with the same team as last time on the in-class activity today.

1. student names

Relative motion

Velocity, **acceleration**, and **force** are each quantities that have a magnitude and a direction, so are well represented by vectors.

For a velocity vector, we refer to its magnitude as the **speed**. For acceleration and force vectors we don't have special words to denote the size of the acceleration/force.

Relative motion: If an object is moving at velocity \underline{v} relative to a river, and the river is moving at velocity \underline{w} relative to the shore, then the object will be moving at velocity $\underline{v} + \underline{w}$ relative to the shore.

Example.

A boat is heading due east relative to the water at $25~\rm km/hr$. The current in the water is moving southwest at $10~\rm km/hr$. We want to understand the motion of the boat relative to the ground.

• Draw this scenario out using vectors.

The **dot product** between two vectors of the same size, \underline{u} and \underline{v} , is given by $\underline{u} \cdot \underline{v} = u_1v_1 + u_2v_2 + ... + u_nv_n$ where $\underline{u} = (u_1, u_2, ..., u_n)^T$ and $\underline{v} = (v_1, v_2, ..., v_n)^T$. This is the **algebraic definition** of the dot product.

The **angle** between the vectors \underline{u} and \underline{v} can be found using the relationship $\underline{u} \cdot \underline{v} = \|\underline{u}\| \|\underline{v}\| \cos \theta$. This is the **geometric definition** of the dot product.

The dot product is **commutative**: $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$.

The dot product **distributes** over vector addition: : $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$.

Taking a **scalar multiple** of the dot product is equivalent to rescaling either of the vectors by that scalar: $c(\underline{u} \cdot \underline{v}) = (c\underline{u}) \cdot \underline{v} = \underline{u} \cdot (c\underline{v})$.

The dot product of a vector with itself is the **square of its length**: $\underline{u} \cdot \underline{u} = ||\underline{u}||^2$.

Examples.

Show that the algebraic and geometric definitions give the same answer for

- the dot product $\underline{i} \cdot j$,
- and for the dot product $\langle 1, 1 \rangle \cdot \langle 0, 3 \rangle$.

Q: Why do the geometric and algebraic definitions give the same result?

A: There is an argument presented in section 13.3 of the textbook if you are interested.

- Combine the two definitions of the dot product to find the cosine of the angle between $\underline{v} = \langle \, 3, 4, 5 \, \rangle$ and $\underline{w} = \langle \, 1, 0, 1 \, \rangle$.
- Use the geometric definition to show that two (non-trivial) vectors \underline{v} and \underline{w} are perpendicular if, and only if, their dot product is zero. Show each direction explicitly.

• Find a value c so that $\langle 3, 4, 5 \rangle$ is perpendicular to $\langle 4, 2, c \rangle$.

Implicit equation of a (hyper)plane

A **hyperplane** passing through point $\underline{x_0}$ and orthogonal to a vector \underline{n} is the set of solutions to the equation $(\underline{x}-x_0)\cdot\underline{n}=0$.

Examples.

•
$$y = mx + b$$
 becomes $\left(\underline{x} - \begin{pmatrix} 0 \\ b \end{pmatrix}\right) \cdot \begin{pmatrix} m \\ -1 \end{pmatrix} = 0$

•
$$m(x-x_0)+n(y-y_0)=0$$
 becomes $\left(\underline{x}-\left(\begin{array}{c}x_0\\y_0\end{array}\right)\right)\cdot\left(\begin{array}{c}m\\n\end{array}\right)=0$

•
$$x/a + y/b = 1$$
 becomes $\left(\underline{x} - \left(\begin{array}{c} 0 \\ b \end{array}\right)\right) \cdot \left(\begin{array}{c} 1/a \\ 1/b \end{array}\right) = 0$

•
$$n_x(x-x_0) + n_y(y-y_0) + n_z(z-z_0) = 0$$
 becomes $\left(\underline{x} - \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}\right) \cdot \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix} = 0$

•
$$x/a + y/b + z/c = 1$$
 becomes $\left(\underline{x} - \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}\right) \cdot \begin{pmatrix} 1/a \\ 1/b \\ 1/c \end{pmatrix} = 0$

- Find a normal vector to the plane x + 2y z = 2.
- Find a vector perpendicular to the plane z = 2x + 3y.

Projected length

Taking a dot product of a vector, \underline{v} , with a unit vector, $\underline{\hat{u}}$, gives the **oriented**, **projected length** of \underline{v} along the " \underline{u} -axis". https://www.youtube.com/watch?v=LxSMhIUaIc4

Example.

• Let $\underline{v}=3\underline{i}+4\underline{j}$ and $\underline{F}=4\underline{i}+\underline{j}$. Find the oriented, projected length, of \underline{F} along the direction of \underline{v} .

• Construct a vector $\vec{F}_{\text{parallel}}$ that is parallel to \vec{v} , and has its length given by the oriented, projected length, of \underline{F} along the direction of \underline{v} .

Matlab code example 2

```
1 %% Dot product
_{2} vecu = [4,0,-6];
3 \text{ vecv} = [-1, 1, 1];
4 % dot product
5 dot (vecu, vecv)
6 % Using a loop:
7 dotout = 0;
  for k1 = 1:length(vecu)
       dotout = dotout+vecu(k1) *vecv(k1);
10 end
11
12 %% Plane equation
13 % Set up the left hand side of an implicit equation for the plane
14 % through pt (0,1,2) with normal vector \langle 2,5,4\rangle,
15 % Setting the left hand side equal to zero defines the plane.
16 pt = [0,1,2];
17 \text{ vecn} = [2, 5, 4];
18 SYMS X Y Z
19 g = (x, y, z) dot(vecn, [x, y, z]-pt)
```