Decidability of Bidirectional Type Checking and Synthesis

See our paper for the algorithm/proof

• if $|\Gamma| \vdash_{\Sigma,\Omega} t^{\Rightarrow}$, then it is decidable whether $\Gamma \vdash_{\Sigma,\Omega} t :^{\Rightarrow} A$ for some A; • if $|\Gamma| \vdash_{\Sigma\Omega} t^{\leftarrow}$, then it is decidable for any A whether $\Gamma \vdash_{\Sigma\Omega} t :^{\leftarrow} A$;

• For a mode-correct bidirectional type system specified by (Σ, Ω) ,

Proof (of Theorem 5.7). We prove this statement by induction on the mode derivation $|\Gamma| \vdash_{\Sigma,\Omega} t^d$. The two cases VAR^{\Rightarrow} and $ANNO^{\Rightarrow}$ are straightforward and independent of mode-correctness. The case SUB^{\Leftarrow} invokes the uniqueness of synthesised types to refute the case that $\Gamma \vdash_{\Sigma,\Omega} t \Rightarrow B$ but $A \neq B$ for a given type A. The first three cases follow essentially the same reasoning provided by Wadler et al. [30], so we only detail the last case OP, which is new (but has been discussed informally above). For brevity we omit the subscript (Σ, Ω) .

For a mode derivation of $|\Gamma| \vdash \mathsf{op}_o(\vec{x}_1, t_1; \dots; \vec{x}_n, t_n)^d$, we first claim:

Claim. For an argument list $[\Delta_1]A_1^{d_1}, \ldots, [\Delta_n]A_n^{d_n}$ and any partial substitution ρ from Ξ to \emptyset , either

1. there is a minimal extension $\bar{\rho}$ of ρ such that

$$dom(\bar{\rho}) \supseteq fv^{\Rightarrow}([\Delta_1]A_1^{d_1}, \dots, [\Delta_n]A_n^{d_n}) \text{ and } \Gamma, \vec{x}_i : \Delta_i \langle \bar{\rho} \rangle \vdash t_i : A_i \langle \bar{\rho} \rangle^{d_i}$$
 (2)

for $i = 1, \ldots, n$, or

2. there is no extension σ of ρ such that (2) holds.

Then, we proceed with a case analysis on d in the mode derivation:

- -d is \Rightarrow : We apply our claim with the partial substitution ρ_0 defined nowhere.
 - 1. If there is no $\sigma \geq \rho$ such that (2) holds but $\Gamma \vdash \mathsf{op}_o(\vec{x}_1, t_1; \ldots; \vec{x}_n, t_n) \Rightarrow A$ for some A, then by inversion we have $\rho \colon \mathsf{Sub}_{\Sigma}(\Xi, \emptyset)$ such that

$$\Gamma, \vec{x}_i : \Delta_i \langle \rho \rangle \vdash t_i : A_i \langle \rho \rangle^{d_i}$$

for every i. Obviously, $\rho \geq \rho_0$ and $\Gamma, \vec{x}_i : \Delta_i \langle \rho \rangle \vdash t_i : A_i \langle \rho \rangle^{d_i}$ for every i, which contradict the assumption that no such extension exists.

2. If there exists a minimal $\bar{\rho} \geq \rho_0$ defined on $fv^{\Rightarrow}([\Delta_1]A_1^{d_1}, \dots, [\Delta_n]A_n^{d_n})$ such that (2) holds, then by mode-correctness $\bar{\rho}$ is total, and thus

$$\Gamma \vdash \mathsf{op}_{o}(\vec{x}_{1}.t_{1}; \ldots; \vec{x}_{n}.t_{n}) \Rightarrow A_{0}\langle \bar{\rho} \rangle$$
.

- -d is \Leftarrow : Let A be a type and apply Lemma 5.10 with ρ_0 defined nowhere.
 - 1. If there is no $\sigma \ge \rho_0$ s.t. $A_0\langle \sigma \rangle = A$ but $\Gamma \vdash \mathsf{op}_o(\vec{x}_1, t_1; \dots; \vec{x}_n, t_n) \Leftarrow A$, then inversion gives us a substitution ρ s.t. $A = A_0\langle \rho \rangle$ —a contradiction.
 - 2. If there is a minimal $\bar{\rho} \geq \rho_0$ s.t. $A_0 \langle \bar{\rho} \rangle = A$, then apply our claim with $\bar{\rho}$:

- (a) If no $\sigma \geq \bar{\rho}$ satisfies (2) but $\Gamma \vdash \mathsf{op}_o(\vec{x}_1.t_1; \ldots; \vec{x}_n.t_n) \Leftarrow A$, then by inversion there is γ s.t. $A_0\langle\gamma\rangle = A$ and $\Gamma, \vec{x}_i : \Delta_i\langle\gamma\rangle \vdash t_i : A_i\langle\gamma\rangle^{d_i}$ for every i. Given that $\bar{\rho} \geq \rho$ is minimal s.t. $A_0\langle\bar{\rho}\rangle = A$, it follows that γ is an extension of $\bar{\rho}$, but by assumption no such an extension satisfying $\Gamma, \vec{x}_i : \Delta_i\langle\gamma\rangle \vdash t_i : A_i\langle\gamma\rangle^{d_i}$ exists, thus a contradiction.
- (b) If there is a minimal $\bar{\rho} \geq \bar{\rho}$ s.t. (2), then by mode-correctness $\bar{\bar{\rho}}$ is total and

$$\Gamma \vdash \mathsf{op}_o(\vec{x}_1.t_1; \dots; \vec{x}_n.t_n) \Leftarrow A_0\langle \bar{\rho} \rangle$$

where $A_0\langle \bar{\rho}\rangle = A_0\langle \bar{\rho}\rangle = A$ since $\bar{\rho}(x) = \bar{\rho}$ for every x in $dom(\bar{\rho})$.

We have proved the decidability by induction on the derivation of $|\Gamma| \vdash_{\Sigma,\Omega} t^d$, assuming the claim.

Proof (of Claim). We prove it by induction on the list $[\Delta_1]A_1^{d_1}, \ldots, [\Delta_n]A_n^{d_n}$:

- 1. For the empty list, ρ is the minimal extension of ρ itself satisfying (2) trivially.
- 2. For $[\Delta_i]A_i^{d_i}$, $[\Delta_{m+1}]A_{m+1}^{d_{m+1}}$, by induction hypothesis on the list, we have two cases:
 - (a) If there is no $\sigma \ge \rho$ s.t. (2) holds for all $1 \le i \le m$ but a minimal $\gamma \ge \rho$ such that (2) holds for all $1 \le i \le m+1$, then we have a contradiction.
 - (b) There is a minimal $\bar{\rho} \geq \rho$ s.t. (2) holds for $1 \leq i \leq m$. By case analysis on d_{m+1} :
 - d_{m+1} is \Leftarrow : By mode-correctness, $\Delta_{m+1}\langle\bar{\rho}\rangle$ and $A_{m+1}\langle\bar{\rho}\rangle$ are defined. By the ind. hyp. $\Gamma, \vec{x}_{m+1} : \Delta_{m+1}\langle\bar{\rho}\rangle \vdash t_{m+1} \Leftarrow A_{m+1}\langle\bar{\rho}\rangle$ is decidable. Clearly, if $\Gamma, \vec{x}_{m+1} : \Delta_{m+1}\langle\bar{\rho}\rangle \vdash t_{m+1} \Leftarrow A_{m+1}\langle\bar{\rho}\rangle$ then the desired statement is proved; otherwise we easily derive a contradiction.
 - $-d_{m+1}$ is \Rightarrow : By mode-correctness, $\Delta_{m+1}\langle \bar{\rho} \rangle$ is defined. By the ind. hyp., ' $\Gamma, \vec{x}_{m+1} : \Delta_{m+1}\langle \bar{\rho} \rangle \vdash t_{m+1} \Rightarrow A$ for some A' is decidable:
 - i. If $\Gamma, \vec{x}_{m+1} : \Delta_{m+1} \langle \bar{\rho} \rangle \nvdash t_{m+1} \Rightarrow A$ for any A but there is $\gamma \geq \rho$ s.t. (2) holds for $1 \leq i \leq m+1$, then $\gamma \geq \bar{\rho}$. Therefore $\Delta_{m+1} \langle \bar{\rho} \rangle = \Delta_{m+1} \langle \gamma \rangle$, and we derive a contradiction because $\Gamma, \vec{x}_{m+1} : \Delta_{m+1} \langle \bar{\rho} \rangle \vdash t_{m+1} \Rightarrow A_{m+1} \langle \gamma \rangle$.
 - ii. If $\Gamma, \vec{x}_{m+1} : \Delta_{m+1} \langle \bar{\rho} \rangle \vdash t_{m+1} \Rightarrow A$ for some A, then Lemma 5.10 gives the following two cases:
 - Suppose no σ ≥ ρ̄ s.t. A_{m+1}⟨σ⟩ = A but an extension γ ≥ ρ s.t.
 (2) holds for 1 ≤ i ≤ m + 1. Then, γ ≥ ρ̄ by the minimality of ρ̄ and thus Γ, x̄_{m+1} : Δ_{m+1}⟨ρ⟩ ⊢ t_{m+1} ⇒ A_{m+1}⟨γ⟩. However, by Lemma 5.6, the synthesised type A_{m+1}⟨γ⟩ must be unique, so γ is an extension of ρ̄ s.t. A_{m+1}⟨γ⟩ = A, i.e. a contradiction.
 - If there is a minimal $\bar{\rho} \geq \bar{\rho}$ such that $A_{m+1} \langle \bar{\rho} \rangle = A$, then it is not hard to show that $\bar{\rho}$ is also the minimal extension of ρ such that (2) holds for all $1 \leq i \leq m+1$.

We have proved our claim for any argument list by induction.

We have completed the proof of Theorem 5.7.

$$\Gamma \vdash_{\Sigma,\Omega} t : ^d A$$

) [] . /

Soundness

Completeness

$$|\Gamma| \vdash_{\Sigma,\Omega} t^d$$

Decoration

Mo

Decidability

Checking

algorithm/proof

pape r

м

n ו ב

1 ľ I

decidable

whether

decidable

whether

ome

mode-correct

specified

bidirectional

system

· **七** * 2

 $\Sigma, C2$

 $\sum_{i} \Omega_{i}$

 Σ_{\cdot}

 $\sum \Omega$

