Умножение в прямом коде (с ускорением второго и третьего порядков)

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (2 июля 2016 г.)

Содержание

- 🕦 Ускорение второго порядка
 - Обоснование корректности
 - Примеры
- Ускорение третьего порядка
 - Обоснование корректности
 - Примеры

Двоично-кодированные четверичные числа

Два разряда двоичного числа ≡ один четверичный разряд.

- Разряды двоичного числа группируются по два и сдвиги множителя (а также множимого или суммы частичных произведений) выполняются сразу на два двоичных разряда.
- Количество разрядов двоичной сетки выбирается кратным двум.
- Такой подход теоретически сокращает количество шагов умножения вдвое.

Правила умножения четверичной системы

$$X=(a_n\cdots a_0)_4=(b_m\cdots b_0)_2.$$

Если на некотором шаге анализируется i-й четверичный разряд a_i , то в двоичном представлении анализируется пара (b_{2i+1},b_{2i}) множителя X:

a _i	$(b_{2i+1},$	b_{2i})	Действие над СЧП
0	0	0	+0, просто!
1	0	1	+M, прибавить множимое M , просто!
2	1	0	+2M, просто! $shl(M,1)$
3	1	1	+3М, долго?!

+3*M*-проблема!

Четверичная система счисления с отрицательными цифрами

В четверичной системе счисления используются цифры $\{0,1,2,3\}.$

Нас не устраивает цифра 3

Мы можем использовать 4СС с другим набором цифр: $\{-1,0,1,2\}$.

Обозначим для удобства

$$-1 \equiv \bar{1}$$

aį	Действие над СЧП
0	+0, просто!
1	+ <i>M</i> , просто!
2	+2 <i>M</i> , просто!
$\bar{1}$	− <i>М</i> , просто!

Представим множитель

в четверичной системе счисления с отрицательными цифрами

$$3 = 4 - 1 = (10)_4 - 1 = \underbrace{(10)_4}_{\text{перенос}} + (\bar{1})_4$$

Чтобы выполнить перевод из 4CC достаточно

цифру 3 (пусть она встретилась в i-м разряде) заменить на цифру $\bar{1}$, и распространить перенос из i-го разряда далее по числу.

в четверичной системе счисления с отрицательными цифрами $\{ar{1},0,1,2\}$

Начав с младших разрядов, не встречаем трудностей:

Перенос:
Исходное число:

Сумма с переносом:

Результат:

Представим *множитель* (3213023)₄

Перенос:						1	0
Исходное число:	3	2	1	3	0	2	3
Сумма с переносом:							3
D							7
Результат:							

Начав с	младших	разрядов,	не встречаем	трудностей:
---------	---------	-----------	--------------	-------------

Перенос:					1	1	0	
Исходное число:	3	2	1	3	0	2	3	
Сумма с переносом:						3	3	
Результат:						<u>1</u>	ī	
i esymbiai.						_	_	

Представим *множитель* (3213023)₄

Перенос:				0	1	1	0	
Исходное число:	3	2	1	3	0	2	3	
Сумма с переносом:					1	3	3	
						_	_	
Результат:					1	1	1	

Начав с младших	разрядов,	не	встречаем	трудностей:
-----------------	-----------	----	-----------	-------------

Перенос:			1	0	1	1	0	
Исходное число:	3	2	1	3	0	2	3	
Сумма с переносом:				3	1	3	3	
Результат:				ī	1	ī	ī	

Начав с младших разрядов, не встречаем трудностей:	Начав с	младших	разрядов,	не	встречаем	трудностей:
--	---------	---------	-----------	----	-----------	-------------

	0	1	0	1	1	0	
3	2	1	3	0	2	3	
		2	3	1	3	3	
		2	- 1	1	- 1	- 1	
	3	3 2	3 2 1 2	0 1 0 3 2 1 3 2 3	0 0 0	0 1 0 1 1 3 2 1 3 0 2 2 3 1 3	0 0 0 - 0

в четверичной системе счисления с отрицательными цифрами $\{ar{1},0,1,2\}$

пачав с младших разрядов, не встречаем трудностей.										
Перенос:	0	0	1	0	1	1	0			
Исходное число:	3	2	1	3	0	2	3			
Сумма с переносом:		2	2	3	1	3	3			

Результат: 2 2 $\bar{1}$ 1 $\bar{1}$

в четверичной системе счисления с отрицательными цифрами $\{ar{1},0,1,2\}$

пачав с младших разрядов, не встречаем трудностей:										
Перенос:	1	0	0	1	0	1	1	0		
Исходное число:	0	3	2	1	3	0	2	3		
Сумма с переносом:		3	2	2	3	1	3	3		

Результат: $\bar{1}$ 2 2 $\bar{1}$ 1 $\bar{1}$ $\bar{1}$

Начав с младших разрядов,	не встречаем трудн	остей:
---------------------------	--------------------	--------

Перенос:	1	0	0	1	0	1	1	0	
Исходное число:	0	3	2	1	3	0	2	3	
Сумма с переносом:	1	3	2	2	3	1	3	3	
Результат:	1	ī	2	2	ī	1	ī	$\bar{1}$	

в четверичной системе счисления с отрицательными цифрами $\{ar{1},0,1,2\}$

Начав с младших разрядов, не встречаем трудностей:

Перенос:	1	0	0	1	0	1	1	0	
Исходное число:	0	3	2	1	3	0	2	3	
Сумма с переносом:							3	3	
								_	
Результат:	1	$\bar{1}$	2	2	$\bar{1}$	1	1	$\bar{1}$	

Проверка:

$$(3213023)_4 = 3 \cdot 4^6 + 2 \cdot 4^5 + 4^4 + 3 \cdot 4^3 + 0 + 2 \cdot 4 + 3 = 14795$$

 $(1\bar{1}22\bar{1}1\bar{1}\bar{1})_4 = 4^7 - 4^6 + 2 \cdot 4^5 + 2 \cdot 4^4 - 4^3 + 4^2 - 4 - 1 = 14795$

Алгоритм перевода с младших разрядов

```
Вход: (a_n \cdots a_0)_4 — исходное число в 4СС, (a_n + 1) < 3
Выход: (d_n \cdots d_0)_{+4}— число в 4СС с отрицательными цифрами
 1: p \leftarrow 0:
 2: for i = 0 to n do
 3: if (a_i + p) \ge 3 then
       d_i \leftarrow (a_i - 4), p \leftarrow 1
    else
 5:
      d_i \leftarrow a_i, p \leftarrow 0
 6:
     end if
 8: end for
 9: return (d_n \cdots d_0)_{+4}
```

Совмещение с умножением

Нельзя выполнять преобразование множителя заранее — иначе получить выигрыш во времени не получится.

Перевод множителя из обычной 4СС в

4CC с отрицательными цифрами должен выполняться «на лету», прямо в цикле умножения.

Рассмотренный перевод с младших разрядов легко совмещается с I и II способами умножения.

Но в III и IV способах требуется

«на лету» перевести множитель в 4СС с отрицательными цифрами, продвигаясь со *старших* разрядов!

Алгоритм перевода со старших разрядов

Так как переносы распространяются от младших разрядов к старшим, то

при переводе от старших разрядов к младшим требуется правильно *предсказать* перенос из предыдущего младшего разряда.

Допустим, анализируется четверичная цифра a_i .

Можно ли по значению a_{i-1} определенно сказать

будет ли в \emph{i} -й разряд перенос из предыдущего при переводе?

a_{i-1}	Перенос
0	нет
1	нет
2	$???$ Если в a_{i-1} будет перенос — да, иначе — нет
3	да

4 D > 4 A > 4 B > 4 B >

Проблема предсказания переноса при $a_{i-1} = 2$

Выход из положения —

выполнять замену

$$2 = 4 - 2 = \underbrace{(10)_4}_{\text{negen oc}} + (\bar{2})_4.$$

Тогда неопределенность устраняется: перенос из $a_{i-1}=2$ будет всегда, а цифру

$$\bar{2}\equiv -2.$$

легко получить «на лету».

В этом случае будем иметь дело с 4СС с цифрами $\{ar{2},ar{1},0,1,2\}^1$.

¹Цифр больше, чем надо, но цифра 2 будет получаться, когда в текущем разряде 1, и прогнозируется перенос. Страдает только однозначность представления числа, например, $8 = (1\overline{2}0)_4 = (20)_4$

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

прогнозируем переносы из младщих разрядов:											
Перенос: Исходное число: Сумма с переносом:	0	3	2	1	3	0	2	3			
Результат:											

Представим множитель (3213023)₄

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

прогнозируем переносы из младщих разрядов:										
Перенос: Исходное число: Сумма с переносом:		3	2	1	3	0	2	3		
Результат:	1									

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

Выполняя перевод со старших разрядов,

прогнозируем переносы из младщих разрядов:											
Перенос:	1										
Исходное число:	0	3	2	1	3	0	2	3			
Сумма с переносом:	1	0									

Результат: 1 0

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

Выполняя перевод со старших разрядов,

прогнозируем переносы из младщих разрядов:												
Перенос:	1	1	0									
Исходное число:	0	3	2	1	3	0	2	3				
C	1	Λ	0									

Сумма с переносом: 1 0 2

Результат: 1 0 2

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

Выполняя перевод со старших разрядов,

прогнозируем переносы из младщих разрядов.												
Перенос:	1	1	0	1								
Исходное число:	0	3	2	1	3	0	2	3				

Сумма с переносом: 1 0 2 2

Результат: 1 0 2 2

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

Выполняя перевод со старших разрядов,

прогнозируем переносы из младщих разрядов:												
Перенос:	1	1	0	1	0							
Исходное число:	0	3	2	1	3	0	2	3				
Сумма с переносом:	1	0	2	2	3							

Результат: 1 0 $\bar{2}$ 2 $\bar{1}$

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

прогнозируем переносы из младщих разрядов:											
	Перенос:	1	1	0	1	0	1				
Исходное число:		0	3	2	1	3	0	2	3		
Сумма с переносом:		1	0	2	2	3	1				
_										_	
	Результат:	1	0	2	2	ī	1				

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

прогнозируем переносы из младщих разрядов:										
Перенос:	1	1	0	1	0	1	1			
Исходное число: Сумма с переносом:		3	2	1	3	0	2	3		
		0	2	2	3	1	3			
- Результат:	1	0	<u>-</u>	2	ī	1	ī			

Представим *множитель* (3213023)₄

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

прогнозируем переносы из младщих разрядов:											
Перенос:	1	1	0	1	0	1	1	0			
Исходное число:	0	3	2	1	3	0	2	3	,0		
Сумма с переносом:	1	0	2	2	3	1	3	3			
Результат:	1	0	2	2	ī	1	ī	$\bar{1}$			

в четверичной системе счисления с отрицательными цифрами $\{ar{2},ar{1},0,1,2\}$

Выполняя перевод со старших разрядов,

прогнозируем переносы из младщих разрядов:

Проверка:

$$(3213023)_4 = 3 \cdot 4^6 + 2 \cdot 4^5 + 4^4 + 3 \cdot 4^3 + 0 + 2 \cdot 4 + 3 = 14795$$

 $(10\overline{2}2\overline{1}1\overline{1}\overline{1})_4 = 4^7 - 2 \cdot 4^5 + 2 \cdot 4^4 - 4^3 + 4^2 - 4 - 1 = 14795$

Алгоритм перевода со старших разрядов

```
Вход: (a_n \cdots a_0)_4 — исходное число в 4СС, где a_n < 2, a_{-1} = 0
Выход: (d_n \cdots d_0)_{+4}— число в 4СС с отрицательными цифрами
 1: for i = n to 0 do
 2: c \leftarrow a_i
 3: if a_i > 2 then
 4:
         c \leftarrow c - 4; // этот перенос был учтён на предыдущем шаге
     end if
 5.
 6: if a_{i-1} > 2 then
 7:
         c \leftarrow c + 1; // учтём перенос, который будет на следующем
    end if
 8.
    d_i \leftarrow c:
10: end for
11: return (d_n \cdots d_0)_{+4}
```

Универсальный подход Перевод *i-*го разряда

Правило преобразования $a_i\mapsto d_i$ со старших разрядов

можно использовать и для преобразования с младших.

Вход: a_i, a_{i-1} — две четверичных цифры исходного числа в 4СС

Выход: d_i — цифра в 4СС с отрицательными цифрами

- 1: $c \leftarrow a_i$;
- 2: if $a_i \geq 2$ then
- 3: $c \leftarrow c 4$; // перенос из i-го разряда
- 4: end if
- 5: if $a_{i-1} \ge 2$ then
- 6: $c \leftarrow c+1$; // перенос в i-й разряд
- 7: end if
- 8: $d_i \leftarrow c$;

Универсальный подход Правила преобразования и действий в цикле умножения

a _i	a_{i-1}	$d_i \cdot M$ — прибавляется к СЧП
0	$\{0, 1\}$	0
0	$\{2, 3\}$	+M
1	$\{0,1\}$	+M
1	$\{2, 3\}$	+2 <i>M</i>
2	$\{0,1\}$	_2 <i>M</i>
2	$\{2, 3\}$	-M
3	$\{0,1\}$	-M
3	$\{2, 3\}$	0

Универсальный подход в 2СС

Правила преобразования и действий в цикле умножения

$$X=(a_n\cdots a_0)_4=(b_m\cdots b_0)_2.$$

Тек как в двоичном представлении

четверичные цифры $\{0,1\}$ в старшем разряде содержат 0, а $\{2,3\}$ содержат 1, то для составления таблицы действий в двоичной системе счисления, достаточно анализа трех двоичных разрядов:

$$b_{2i+1}, b_{2i}, b_{2i-1},$$

где
$$a_i \equiv (b_{2i+1}, b_{2i})$$
 и $a_{i-1} \equiv (b_{2i-1}, b_{2i-2})$.

Универсальный подход в 2CC Таблица действий в цикле умножения

a _i		a_{i-1}	$d_i \cdot M$ — прибавляется к СЧП
$(b_{2i+1},$	$b_{2i})$	$(b_{2i-1},$	
0	0	0	0
0	0	1	+M
0	1	0	+M
0	1	1	+2 <i>M</i>
1	0	0	-2M
1	0	1	-M
1	1	0	-M
1	1	1	0

Резюме

- Разряды двоичного числа группируются по два и сдвиги множителя (а также множимого или суммы частичных произведений) выполняются сразу на два двоичных разряда.
- Количество разрядов двоичной сетки выбирается кратным двум.
- Перевод в 4СС с отрицательными цифрами совмещается с основным циклом умножения.
- В цикле умножения выполняется анализ *трех* двоичных разрядов.
- Множитель, представленный в 4СС с отрицательными цифрами может занять на один четверичный разряд больше, например: $(30)_4 \equiv (1\bar{1}0)_{\pm 4}$. Этого не происходит, если старшая значащая четверичная цифра меньше двух.

Умножение | сп. $(100110)_2 \cdot (100001)_2 = (10011100110)_2$, масштаб операндов $4^3 = 2^6$.

мн-ль $ ightarrow$	СЧП →	прим.
00,100110 .	+ 00,000000 000000	—2 <i>М</i> ; сдвиг(2);
00,1001	10,11111	— <i>21</i> 01, сдвиг (2),
	10,111110 000000	
,001001 1	11,101111 100000	+2 <i>M</i> ; сдвиг(2);
,00100111	01,00001	— — 21VI, СДВИГ (2),
	00,110001 100000	
,0010 0	00,001100 011000	_2 <i>M</i> ; сдвиг(2);
,001010	10,11111	— <i>21</i> 01, сдвиг (2),
	11,001010 011000	
, <u>00 1</u>	11,110010 100110	+ <i>M</i> ; Рез-т!
	00,100001	+1vi, 1 e3-1:
	00,010011 100110	

```
Умножение | сп. (100110)_2 \cdot (100001)_2 = (10011100110)_2
```

Следует обратить внимание на следующие детали приведенного выше примера:

- Так как старшая цифра множителя 2, то будет сгенерирован перенос, и число в 4СС с отрицательными цифрами станет на разряд длиннее.
- Этот разряд также нужно анализировать и учитывать его вклад.
- Поэтому в множителе добавлен нулевой разряд (до запятой), что объясняет почему в каждом такте к СЧП множимое прибавляется (в 4СС) не сдвинутым (т.к. вклад последнего разряда 2^0).
- К СЧП добавлен один четверичный разряд, чтобы не терять перенос.

Умножение || сп. $(100111)_2 \cdot (100001)_2 = (10100000111)_2$, масштаб операндов $4^3 = 2^6$.

мн-ль $ ightarrow$	мн-е ←; СЧП	прим.
00,10011110	мн-е:,000000 100001	<i>−М</i> ; сдвиг(2);
	,000000 000000	
	,111111 011111	
	,111111 011111	
,0010 <u>01 1</u>	мн-е:,000010 0001	+2M; сдвиг(2);
	,111111 011111	
	,000100 001	
	,000011 100111	
,0010 0	мн-е:,001000 01	-2 <i>M</i> ; сдвиг(2);
	,000011 100111	
	,101111 1	
	,110011 000111	
,00 1	мн-е:,100001	+ <i>M</i> ; Рез-т!
	,110011 000111	
	,100001	
	,010100 000111	

```
Умножение || сп. (100111)_2 \cdot (100001)_2 = (10100000111)_2
```

Следует обратить внимание на следующие детали приведенного выше примера:

- К множителю добавлен нулевой разряд (обоснование см. выше).
- К СЧП нулевой четверичный разряд не добавляется он не оказывает влияния на СЧП.

Умножение | | | | сп. $(100111)_2 \cdot (100001)_2 = (10100000111)_2$, масштаб операндов $4^3 = 2^6$.

мн-ль ←	СЧП ←	прим.
00,100111	,000000 000000	+ <i>M</i> ; сдвиг(2);
<u>====</u>	⁺ , 100001	+ivi, сдвиг(2),
	,000000 100001	
10 0111	,000010 0001	-2 <i>M</i> ; сдвиг(2);
<u>10,0</u> 111	,111110 11111.	— <i>— 21</i> 01, сдвиг (2),
	,000001 000010	
01 11	,000100 0010	+2 <i>M</i> ; сдвиг(2);
<u>01,1</u> 1	,1 00001.	+21VI, СДВИГ(2),
	,000101 001010	
11	,010100 1010	<i>−М</i> ; Рез-т!
===	,111111 011111	- IVI, FE3-1!
	,010100 000111	

```
Умножение || сп.
(100111)<sub>2</sub> · (100001)<sub>2</sub> = (10100000111)<sub>2</sub>
```

Следует обратить внимание на следующие детали приведенного выше примера:

- К множителю добавлен нулевой разряд.
- В СЧП нулевой четверичный разряд не добавляется.

Умножение IV сп. $(100111)_2 \cdot (100001)_2 = (10100000111)_2$, масштаб операндов $4^3 = 2^6$.

мн-ль ←	мн-е →; СЧП	прим.
00,100111	мн-е:,100001	+ M ; сдвиг(2);
	,000000 000000	
	,100001	
	,100001 000000	
10,0111	мн-е:,1000 01	−2M; сдвиг(2);
	,100001 000000	
	,101111 1	
	,010000 100000	
01,11	мн-е:,10 0001	+2M; сдвиг(2);
	,010000 100000	
	,100 001	
	,010100 101000	
11,	мн-е:, 100001	<i>−М</i> ; Рез-т!
	,010100 101000	
	111111 011111, [†]	
	,010100 000111	

Умножение IV сп. $(100111)_2 \cdot (100001)_2 = (10100000111)_2$

Следует обратить внимание на следующие детали приведенного выше примера:

- Множимое на первом шаге на четверичный разряд не сдвигается, так как к множителю добавлен нулевой разряд, который вносит вклад $M\cdot 4^0$.
- В СЧП нулевой четверичный разряд не добавляется.

Двоично-кодированные восмеричные числа

Три разряда двоичного числа ≡ один восьмеричный разряд.

$$X=(a_n\cdots a_0)_8=(b_m\cdots b_0)_2.$$

Если на некотором шаге анализируется i-й восьмеричный разряд a_i , то в двоичном представлении анализируется тройка $(b_{3i+2}, b_{3i+1}, b_{3i})$ множителя X:

- Разряды двоичного числа группируются по три и сдвиги множителя (а также множимого или суммы частичных произведений) выполняются сразу на три двоичных разряда.
- Количество разрядов двоичной сетки выбирается кратным трем.
- Такой подход теоретически сокращает количество шагов умножения втрое.

Правила умножения восьмеричной системы

aį	К СЧП прибавляется
0	0, просто!
1	+ <i>M</i> , просто!
2	$+2M$, просто! $\mathrm{shl}(M,1)$.
3	+3М, долго?!
4	$+4M$, просто! $\mathrm{shl}(M,2)$.
5	+5 M , долго?!
6	+6М, долго?!
7	+7М, долго?!

Переход к отрицательным цифрам

Вычитанием из восьмерки степеней двойки можем получить цифры:

- 7 = 8 1;
- 6 = 8 2:
- \bullet 4 = 8 4. Пока и без этого все хорошо!
- $^{a}\{1,2,4\}$ эти цифры нас устраивают: их можно получить сдвигом

Остаются проблемные 3 и 5, которые выражаются друг через друга:

$$5 = 8 - 3$$
.

Утроенное множимое придется вычислить *заранее*!

Новые действия над суммой

a¡	К СЧП прибавляется
0	0, просто!
1	+M, просто!
2	+2M, просто! $shl(M,1)$.
3	+3М, Вычислим заранее
4	+4M, просто! $shl(M,2)$.
5	$-3M$, просто: $5=8-3$, но учесть перенос в a_{i+1} .
6	$-2M$, просто: $6=8-2$, но учесть перенос в a_{i+1} .
7	$-M$, просто: 7 $=$ 8 $-$ 1, но учесть перенос в a_{i+1} .

Навстречу переносу

В III и IV способах умножения выполняестя анализ старших разрядов.

Поэтому при анализе вклада a_i нужно уметь предсказать

будет ли перенос из младшего восьмеричного разряда a_{i-1} ?

a_{i-1}	Будет перенос в a_i ?
0	нет.
1	нет.
2	нет.
3	нет.
4	???
5	да.
6	да.
7	да.

$\mathsf{Heoghoshaчhocb}$ возникновения переноса из $a_{i-1}=4$

Если перенос в $a_{i-1} = 4$

- ullet отсутствовал, то из a_{i-1} переноса не будет: $4M = ext{shl}(M,2)$;
- ullet был, то 5 преобразуется 5M = 8M 3M и из a_{i-1} будет перенос.

Чтобы перенос из $a_{i-1}=4$ был всегда, при отсутствии переноса в этот разряд будем получать 4M как:

$$4M = 8M - 4M = 8M - \text{shl}(M, 2).$$

Из восьмеричного разряда a_{i-1} будет перенос в a_i , если $a_{i-1} \geq 4$.

Восьмеричные цифры ≥ 4 , в двоичном представлении содержат единицу в старшем разряде: $(1**)_2$.

Следовательно, в двоичном представлении анализируется 4 разряда: три разряда a_i и старший разряд a_{i-1} .

Таблица действий в цикле умножения в 2СС

	a_i		a_{i-1}	$d_i \cdot M$
$(b_{3i+2},$	b_{3i+1} ,	$b_{3i})$	$(b_{3i-1},$	прибавляется к СЧП
0	0	0	0	0
0	0	0	1	+M
0	0	1	0	+M
0	0	1	1	+2 <i>M</i>
0	1	0	0	+2 <i>M</i>
0	1	0	1	+3 <i>M</i>
0	1	1	0	+3 <i>M</i>
0	1	1	1	+4 <i>M</i>
1	0	0	0	_4 <i>M</i>
1	0	0	1	-3M
1	0	1	0	-3 <i>M</i>
1	0	1	1	-2M
1	1	0	0	-2 <i>M</i>
1	1	0	1	-M
1	1	1	0	-M
1	1	1	1	0

Резюме

- Множитель представляется в 8СС системе счисления с цифрами $\{-4,-3,-2,-1,0,1,2,3,4\}.$
- множителя (а также множимого или суммы частичных произведений) выполняются сразу на *три* двоичных разряда.
- Количество разрядов двоичной сетки выбирается кратным трем.
- Перевод в 8СС с отрицательными цифрами совмещается с основным циклом умножения.

Разряды двоичного числа группируются по три и сдвиги

- В цикле умножения выполняется анализ четырех двоичных разрядов.
- Множитель, представленный в 8СС с отрицательными цифрами может занять на один восьмеричный разряд больше, например: $(40)_8 \equiv (1\bar{4}0)_{\pm 4}$. Этого не происходит, если старшая значащая четверичная цифра меньше двух.

Умножение \mid СП. $(101011111)_2 \cdot (111000001)_2 = (100110011110011111)_2$, масштаб операндов $8^3 = 2^9$

$3 \cdot (111000001)_2 = (1110000010)_2 + (111000001)_2 = 010,101000011$

мн-ль $ ightarrow$	СЧП →	прим.
000,101011111 .	000,000000000 000000000	M. oppus(2).
000,101011 <u>1111.</u>	111,000111111	<i>−М</i> ; сдвиг(3);
	111,000111111 000000000	
,000101011 1	111,111000111 111000000	+4 <i>M</i> ; сдвиг(3);
,000101	011,1000001	+4707, сдвит (3),
	011,011001011 111000000	
,000 <u>101 0</u>	+,011011001 011111000	−3 <i>М</i> ; сдвиг(3);
,	101,010111101	— <i>51</i> 07, сдвит (<i>5</i>),
	101,110010110 011111000	
00011	111,101110010 110011111	+ <i>M</i> ; Рез-т!
, <u>000 1</u>	000,111000001	+ IVI, 1 63-1:
	000,100110011 110011111	

Умножение | | | сп. $(101011111)_2 \cdot (111000001)_2 = (100110011110011111)_2$, масштаб операндов $8^3 = 2^9$

	CHE	
мн-ль →	мн-е ←; СЧП	прим.
000,101011 <u>111 0</u>	<i>M</i> :,000000000 111000001	<i>−М</i> ; сдвиг(3);
	3 <i>M</i> :,000000010 101000011	
	,00000000 000000000	
	,111111111 000111111	
	,111111111 000111111	
,000101 <u>011 1</u>	M:,000000111 000001	+4М; сдвиг(3);
	3 <i>M</i> :,000010101 000011	
	,111111111 0001111111	
	,000011100 0001	
	,000011011 001011111	
,000 <u>101 0</u>	<i>M</i> :,000111000 001	−3M; сдвиг(3);
	3 <i>M</i> :,010101000 011	
	,000011011 001011111	
	,101010111 101	
	,101110010 110011111	
,000 1	M:,111000001	+М; Рез-т!
	3 <i>M</i> :,101000011	
	,101110010 110011111	
	,111000001	
	,100110011 110011111	

Умножение | | | | сп. $(101011111)_2 \cdot (111000001)_2 = (100110011110011111)_2$, масштаб операндов $8^3 = 2^9$

$3 \cdot (111000001)_2 = (1110000010)_2 + (111000001)_2 = 10 \ 101000011$

мн-ль ←	СЧП ←	прим.
000,101011111	,000000000 000000000	+ <i>M</i> ; сдвиг(3);
<u>=====</u>	, 111000001	+m, сдвиг (3),
	,000000000 111000001	
101,011111	,000000111 000001	-3 <i>M</i> ; сдвиг(3);
=======================================	,111111101 010111101	— <i>Этит</i> , сдвит (<i>э)</i> ,
	,000000100 011000101	
011 111	,000100011 000101	+4 <i>M</i> ; сдвиг(3);
<u>011,1</u> 11	,11 1000001	+4m, сдвиг(3),
	,000100110 100101100	
111	,100110100 101100	<i>−М</i> ; Рез-т!
<u>111,</u>	,111111111 000111111	- <i>IVI</i> , Fe3-1:
	,100110011 110011111	

Умножение IV сп. $(101011111)_2 \cdot (111000001)_2 = (100110011110011111)_2$, масштаб операндов $8^3 = 2^9$

	CUE	
мн-ль ←	мн-е →; СЧП	прим.
000,101011111	M:,111000001	. + <i>M</i> ; сдвиг(3);
	3 <i>M</i> :010,101000011	-
	,00000000 00000000	ō
	,111000001	
	,111000001 000000000	<u> </u>
101,011111	M:,111000 001	. —3 <i>M</i> ; сдвиг(3);
	3 <i>M</i> :,010101000 011	-
	,111000001 000000000	ō
	,101010111 101	
	,100011000 101000000	5
011,111	M:,111 000001	. +4 <i>M</i> ; сдвиг(3);
	3 <i>M</i> :,010101 000011	
	,100011000 101000000	5
	,11100 0001	
	,100110100 101100000	<u> </u>
<u>111,.</u>	M:, 111000001	I <i>−М</i> ; Рез-т!
	3 <i>M</i> :,010 101000011	ī
	,100110100 101100000	ō
	,11111111 000111111	1
	,100110011 110011111	

Какой масштаб результата результата должен получиться, если модули перемножаемых двоичных чисел имеют разрядность 7 и используется метод ускорения

- второго порядка;
- третьего порядка.

Перемножить числа:

- множитель 103, множимое 81 III-м способом с ускорением второго порядка;
- множитель 231, множимое 81 IV-м способом с ускорением второго порядка.
- множитель 226, множимое 161 І-м способом с ускорением третьего порядка;
- множитель 495, множимое 161 II-м способом с ускорением третьего порядка;

Обосновать выбор масштаба.

3)

Разработать метод ускорения четвертого порядка.

Советы самоучке

Классика жанра: [1].

Библиография I

Б.Г.Лысиков. Арифметические и логические основы цифровых автоматов / Б.Г.Лысиков. —

2 изд. —

Мн.: Выш. школа, 1980. — 336 с.