О введении бесконечно-малых в курсе матанализа

Щепин Евгений Витальевич Математический институт им. В.А. Стеклова РАН scepin@mi-ras.ru

Секция: Математическое образование и просвещение

В докладе изложен подход к введению и активному использованию актуально бесконечно-малых величин в начальном курсе математического анализа, который достаточно строг и хорошо адаптирован к применениям в физике и геометрии. Для описания дифференциалов функций одной переменной используются числа, известные под именем дуальных, которые автор предпочитает называть числами двойной точности, мотивируя это название компьютерной аналогией. Числа двойной точности представляют собой минимальное неархимедово расширение действительных чисел. А именно, к полю действительных чисел добавляется один "идеальный"бесконечномалый элемент, обозначаемый $\sqrt{0}$, который положителен но имеет нулевой квадрат. В результате возникает линейно упорядоченное кольцо чисел вида $a+b\sqrt{0}$ с интуитивно понятными операциями сложения и умножения. Для определения значений трансцендентных функций на числах двойной точности достаточно постулировать, что все известные для них нестрогие неравенства для действительных чисел остаются справедливыми для чисел двойной точности.

Связь с теорией пределов обеспечивается следующей моделью построения чисел двойной точности. Действительные числа интерпретируются как постоянные последовательности. $\sqrt{0}$ интерпретируется как монотонная стремящаяся к нулю последовательность положительных чисел o_n . А числа двойной точности интерпретируются как сходящиеся последовательности x_n , такие что сходятся последовательности отношений $\frac{x_n-\lim x_n}{o_n}$. Число двойной точности $a+b\sqrt{0}$ представляется как совокупность всех последовательностей с описанными условиями сходимости, для которых $\lim x_n = a$, $\lim \frac{x_n-a}{o_n} = b$.