Datas

1 Assumptions

Notation	Definition (according to [?])	Value
U	Total aqueous humor	
F_h	Fluid inflow in posterior chamber	mean daily value : 2.4mm ³ /min
	•	datas: $2.1 - 4.0 \text{mm}^3 / min$
F_e	net inflow via trabecular path	,
p	IOP	14 – 30mmHg
R	output hydraulic resistance	2.5–5mmHgmin/mm ³ [?]
		4mmHgmin/mm ³ (mean) [?]
p_e	pressure in the episcleral veins	4 – 8 mmHG
p_a	pressure in the ciliary body capillaries	30 – 35mmHg [?]
	we can find it by using the formula $p_a = 1/3\text{MAP}$	HBP: 35.5mmHg – NBP: 31.1mmHg
	REF?	
		LBP : 26.6mmHg
L_p	permeability of the equivalent membrane	0.3mm ³ /minmmHg
$\Delta\Pi_p$	osmotic pressure diff. accross membrane (pro-	$\approx 25 \text{mmHg}$
1	teins)	
$\Delta\Pi_s$	osmotic pressure diff. accross membrane (low	-400 - 450 mmHg
	molecular component)	
σ_p	reflection coeff. (proteins)	1
σ_s	reflection coeff. (low molecular components)	must range 0.02–0.2
C_{p_1}	proteins concentration at membrane output	$\approx 7 \mathrm{g/dl}$
_	(blood plasma)	
C_{p_2}	proteins concentration at membrane output	≈ 0
	(aqueous humor)	
C_p	proteins concentration	$\equiv C_{p_1}$
ρ	universal gas constant \times absolute temperature	$8.31 \times 300 \text{J/mol}$
		2493N.m/mol
C_1	total molar concentration of low-molecular com-	$306.64.10^{-3} \mu \text{mol/mm}^3$??[?]
	ponents (blood)	
C_2	total molar concentration of low-molecular com-	
	ponents (intra-ocular fluid near ciliary body sur-	
	face)	
C_2^0	Initial possible value of C_2	$325.02 \mu \mathrm{mol/mL}$
		$=325.02.10^{-3} \mu \text{mol/mm}^3$ [?]
Q_s	Flux of these low-molecular components	
J	Influx due to active transport	≈ 0.04 – $0.18 \mu \text{mol/min}$
ξ_s	average permeability of membrane for low-	
	molecular species	
\overline{C}	C_1+C_2	
	2	

2 Mathematical model

$$\frac{\mathrm{d}V}{\mathrm{d}t} = L_p \left((p_a - p) - \sigma_p \Delta \Pi_p - \sigma_s \rho (C_1 - C_2) \right) - \frac{p - p_e}{R}$$
$$f(v, p) = 0$$

$$V^{\star} \frac{\mathrm{d}C_2}{\mathrm{d}t} = -\xi_s(C_2 - C_1) + J + (1 - \sigma_s) L_p \left((p_a - p) - \sigma_p \Delta \Pi_p - \sigma_s \rho(C_1 - C_2) \right) \frac{C_1 + C_2}{2}$$

$$\text{Resolution? (stationary state?)}$$

$$p\left(L_p + \frac{1}{R}\right) = L_p \left(pa - \sigma_p \Delta \Pi_p - \sigma_s \rho C_1 \right) + \frac{p_e}{R} + \sigma_s \rho C_2$$

$$p = \alpha_1 + \alpha_2 C_2$$

$$\alpha_1 = \frac{1}{L_p + \frac{1}{R}} \left(L_p \left(p_a - \sigma_p \Delta \Pi_p - \sigma_s \rho C_1 \right) + \frac{p_e}{R} \right)$$

 $\alpha_2 = \frac{\sigma_s \rho}{L_p + \frac{1}{R}}$

 $\Delta\Pi_s = \rho(C_1 - C_2)$

then

$$C_1 = \frac{\Delta \Pi_s}{\rho} + C_2$$

Resolution: non stationary state?

$$V = V_0 + \alpha(p - \beta) - \beta P$$
$$\frac{dV}{dt} = \alpha \frac{dp}{dt}$$

But we're gonna go with ODE system

$$\alpha \frac{\mathrm{d}p}{\mathrm{d}t} = f(p, C_2)$$

with

$$V^{\star} \frac{\mathrm{d}C_2}{\mathrm{d}t} = g(p, C_2)$$

3 values

L_p	$0.3mm^3$
$\mid \sigma_p \mid$	1
σ_s	0.02-0.2
p = p(R)	
C_1	??
??	$2.5-5$ mmHg min / mm 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	volume of intraocular fluid between the folds of the

Notation	Definition (according to [?])	Value
2l	characteristic distances between the folds of	$100\mu\mathrm{m}$
	strongly convoluted surface of the ciliary body	
D	diffusion coefficient (low molecular species in	$\approx 10^{-9} \text{m/s}$
	water)	
T_1	characteristic time of diffusion mixing (T_1 =	$< 2.5 \approx 1$
	l^2/D)	
T_2	dwell time of fluid between the folds of ciliary	$\approx 10 \mathrm{min}$
	$body (T_2 = V^*/F_h)$	
V_1	volume of posterior chamber	$\approx 60 \mathrm{mm}^3$
T_3	dwell time in the posterior chamber $(T_3 = V_1/F_h)$	$\approx 25 \mathrm{min}$
L	characteristic distance covered by the fluid in	$\approx 1 \mathrm{cm}$
	posterior chamber	
T_4	diffusion time in the posterior chamber (T_1 =	$\approx 2 \times 10^2 \text{min}$
	L^2/D)	
Q_e	solute outflow from V^* into the posterior cham-	
	ber	
V_2	volume of solid structure	
V_3	volume of blood in blood vessels and choroids	
S	area of the posterior chamber-facing secreting	$6 \mathrm{mm}^2$
	surface of the ciliary body	
ξ_0	epithelial membrane permeability coeff. for low-	$10^7 \mathrm{m/s}$
	molecular admixture per unit area ($\xi_0 = \xi/S$)	
α	volume compliance of the eye shell (varies sig-	$1 \mathrm{mm}^3 / \mathrm{mmHg}$
	nificantly)	
τ	characteristic time of transient processes for hy-	$pprox 1 \mathrm{min}$ (or somewhat higher
	drodynamic quantities (if $\Delta\Pi_s=\mathrm{Ct}$)	
	urodynamic quantities (ii $\Delta H_s = 00$)	

iiiiiiii HEAD

4 Goal

- 1. Paper values $\rightarrow p$
- 2. R, L_p, σ_s
- 3. as 2/ for $p_a = 20...40$
- 4. R = R(p)
- 5. V_3 choroid
- 6. connect with retina

Here is change ======

Now in the general case where $\Delta\Pi_s$ varies

$ au_c$	characteristic time (stabilization of the concentra-	an order greater than $ au$
	tions) (if $\Delta\Pi_s$ varies)	-
		need checking
F_h^{\star}	characteristic influx rate	$\approx 2.4 \text{mm}^3/\text{min}$
p_t	amplitude of $p(\omega)$	
$\Delta \phi$	phase shift relative to the forcing action	