Les vostres respostes han de mostrar els càlculs intermitjos així com les dades emprades

1. Determineu l'error màxim en el càlcul de $y = \frac{x_1 x_2^2}{\sqrt{x_3}}$ amb $x_1 = 2.0 \pm 0.1$, $x_2 = 3.0 \pm 0.2$ i $x_3 = 1.0 \pm 0.1$. Quina de les dades contribueix més a l'error en y? Per què?

Resposta. Si $g: \mathbb{R} \to \mathbb{R}$ una funció diferenciable i \widetilde{x}_1 , \widetilde{x}_2 i \widetilde{x}_3 aproximacions de x_1 , x_2 i x_3 amb cotes d'error ϵ_1 , ϵ_2 i ϵ_3 , és a dir $x_1 = \widetilde{x}_1 \pm \epsilon_1$, $x_2 = \widetilde{x}_2 \pm \epsilon_2$ i $x_3 = \widetilde{x}_3 \pm \epsilon_3$, llavors l'error propagat en el càlcul de g és;

$$|\Delta g| \approx \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_1} \right| |\epsilon_1| + \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_2} \right| |\epsilon_2| + \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_3} \right| |\epsilon_3|.$$

En el nostre cas els càlculs són

$$\left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_1}\right| = \left|\frac{\widetilde{x}_2^2}{\sqrt{\widetilde{x}_3}}\right| = 9\,, \quad \left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_2}\right| = \left|\frac{2\widetilde{x}_1\widetilde{x}_2}{\sqrt{\widetilde{x}_3}}\right| = 12\,, \quad \left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_3}\right| = \left|\frac{\widetilde{x}_1\widetilde{x}_2}{2\sqrt{\widetilde{x}_3^3}}\right| = 9\,.$$

que substituint a l'error propagat ens dóna $|\Delta g| \approx 9 \cdot 0.1 + 12 \cdot 0.2 + 9 \cdot 0.1 = 4.2$ i pertant $y = 18 \pm 4.2$. La dada que més contribueix és x_2 , motiu tant ϵ_2 com $\left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_2} \right|$ són molt més grans que per a les altres dades.

2. Determineu el radi espectral de les matrius d'iteració dels mètodes de Jacobi i de Gauss-Seidel per resoldre el sistema lineal Ax = b de valors:

$$A = \begin{pmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Trobeu la solució del sistema lineal Ax = b aplicant el mètode més ràpid (dels dos anteriors) fins que la diferència entre una iteració i la següent sigui inferior a $0.5 \cdot 10^{-8}$, comenceu amb $x^{(0)} = 0$. Quantes iteracions són necessàries?

Doneu la longitud del vector residu cada 4 iteracions, doneu també el primer i darrer residu calculat.

Resposta. Ambdós mètodes són divergents.

BJ =	0	0.2500	0.2500	0.2500	0.2500	rhoJ =	1
0.2	2500	0	0.2500	0.2500	0.2500		
0.2	2500	0.2500	0	0.2500	0.2500		
0.2500		0.2500	0.2500	0	0.2500		
0.2500		0.2500	0.2500	0.2500	0		
Bgs =	0	0.2500	0.2500	0.2500	0.2500	rhoGS =	1.0000
	0	0.0625	0.3125	0.3125	0.3125		
	0	0.0781	0.1406	0.3906	0.3906		
	0	0.0977	0.1758	0.2383	0.4883		
	0	0.1221	0.2197	0.2979	0.3604		

Exercici 3. Corba $y = 2^x$, polinomi p(x) i punts.

3. Trobeu un polinomi de grau 2 que aproximi la funció 2^x en els punts $x_i = 0, 1, 2, 3, 4, 5$. Representeu gràficament el polinomi obtingut, els punts i la corba 2^x .

Resposta. Per al polinomi $p(x) = a_1 + a_2x + a_3x^2$, les condicions donen lloc al sistema lineal Ax = b de valors

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \end{pmatrix},$$

És un sistema lineal incompatible, rank(A) = 3 i rank([A, b]) = 4.

La solució per mínims quadrats és A^+b , els valors obtinguts són $(a_1, a_2, a_3) = (2.0357, -3.0964, 1.7679)$, així el polinomi $p(x) = 2.0357 - 3.0964x + 1.7679x^2$ minimitza el residu. En la representació gràfica es mostren els punts $(x_i, 2_i^x)$ amb $x_i = 0, 1, 2, 3, 4, 5$ (vermell), la corba $y = 2^x$ (blau), el polinomi p(x) (verd).

4. Demostreu que x=4 és solució de les tres equacions següents:

$$x_{n+1} = \frac{1}{4}(8x_n - x_n^2), \quad x_{n+1} = \frac{1}{3}(x_n^2 - 4), \quad x_{n+1} = \sqrt{3x_n + 4}.$$

Tots són convergents a la solució x = 4? Quin convergeix més ràpidament? Calculeu 6 iteracions de cada un dels mètodes, escollint x_0 adient.

Resposta

Per demostrar que x=4 és solució només cal substituir x_n i x_{n+1} per 4 en les equacions, i obtenir les igualtats. Per demostrar que són convergents, cal verificar les hipotesis del teorema de convergència, trobar l'interval on la funció d'iteració té derivada entre -1 i 1 i verificar si 4 és dins l'interval.

1. Sigui $g_1(x) = \frac{1}{4}(8x - x^2)$, llavors $x_{n+1} = \frac{1}{4}(8x_n - x_n^2)$ s'escriu $x_{n+1} = g_1(x_n)$. La derivada de la funció d'iteració és $g_1'(x) = 2 - \frac{x}{2}$, la condició $|g_1'(x)| < 1$ és compleix per x = 4 i equival a 2 < x < 6. Si es pren $x_0 = 1$ la successió d'iterats serà convergent. Els sis iterats de $x_{n+1} = \frac{1}{4}(8x_n - x_n^2)$ són:

2. Sigui $g_2(x) = \frac{1}{3}(x^2 - 4)$, llavors $x_{n+1} = \frac{1}{3}(x_n^2 - 4)$ s'escriu $x_{n+1} = g_2(x_n)$. La derivada de la funció d'iteració és $g_2'(x) = \frac{2x}{3}$, la condició $|g_2'(x)| < 1$ és compleix per a $-\frac{3}{2} < x < \frac{3}{2}$, però no per a x = 4. Si es pren $x_0 = 1$ la successió d'iterats no serà convergent. Els sis iterats de $x_{n+1} = \frac{1}{3}(x_n^2 - 4)$ són:

```
[n,x] = [ 0, 1]

[n,x] = [ 1, -1]

[n,x] = [ 2, -1]

[n,x] = [ 3, -1]

[n,x] = [ 4, -1]

[n,x] = [ 5, -1]

[n,x] = [ 6, -1]
```

3. Sigui $g_3(x) = \sqrt{3x+4}$, llavors $x_{n+1} = \sqrt{3x_n+4}$ s'escriu $x_{n+1} = g_3(x_n)$. La derivada de la funció d'iteració és $g_3'(x) = \frac{3}{2\sqrt{3x+4}}$, la condició $|g_3'(x)| < 1$ és compleix per x = 4 i equival a $x \in (-\infty, -\frac{25}{12}) \cup (-\frac{7}{12}, +\infty)$. Si es pren $x_0 = 1$ la successió d'iterats serà convergent. Els sis iterats de $x_{n+1} = \sqrt{3x_n+4}$ són:

```
[n,x] = [
                  1]
           1.000000000000000
[n,x] = [
                                2.645751311064591
[n,x] = [
           2.000000000000000
                                3.455033130549369]
[n,x] = [
           3.000000000000000
                                3.790131843570630]
[n,x] = [
           4.000000000000000
                                3.920509600895258]
           5.000000000000000
[n,x] = [
                                3.970079193503043]
           6.000000000000000
[n,x] = [
                                3.988763916366715]
```

Són convergents els mètodes definits per $g_1(x)$ i $g_3(x)$, la successió $x_{n+1} = g_1(x_n)$ és més ràpida que $x_{n+1} = g_3(x_n)$ ja que en sis iterats la primera té més decimals iguals, començant les dues en el mateix x_0 .

5. Calculeu pel mètode de Simpson el valor de $\int_{1.8}^{3.4} f(x) dx$ a fent ús de la següent taula de valors $y_i = f(x_i)$: Doneu una cota superior de l'error comès.

x_i	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4
y_i	6.050	7.389	9.025	11.023	13.464	16.445	20.086	24.533	29.964

Resposta.

Primer de tot s'observa que amb les dades de la taula el càlcul és:

$$\int_{1.8}^{3.4} f(x) \, dx = \int_{1.8}^{2.2} f(x) \, dx + \int_{2.2}^{2.6} f(x) \, dx + \int_{2.6}^{3.0} f(x) \, dx + \int_{3.0}^{3.4} f(x) \, dx.$$

A continuació, s'aplica la fórmula de Simpson

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right)$$

a cada una de les àrees a calcular, el resultat és

$$\int_{1.8}^{3.4} f(x) dx \approx \frac{0.4}{6} \left(f(1.8) + 4f(2.0) + 2f(2.2) + 4f(2.4) + 2f(2.6) + 4f(2.8) + 2f(3.0) + 4f(3.2) + f(3.4) \right) = 23.9149.$$

Si es nota per $K = \max_{1,8 \le x \le 3.4} |f^{iv}(x)|$, una cota superior de l'error és 0.0002276K.