Relacao Entre Velocidade e Distancia de Frenagem para Carros de Passeio

Aluno Consultor 1^{a,b}, Aluno Consultor 2^{a,b}, Consulente^{c,d} e Marcus A. Nunes^{a,e}

^aDepartamento de Estatistica - UFRN; ^bConsultor; ^cOutro Departamento - UFRN; ^dConsulente; ^eOrientacao

2 de Agosto de 2019

Este trabalho estuda a relacao entre a velocidade de carros (mph) e a distancia (pes) que eles levaram para parar completamente. Utilizamos o modelo de regressao linear simples para determinar se existe relacao entre estas duas variaveis.

regressao linear | automobilismo | segurança | transito

1. Objetivos

Diversos autores ja publicaram estudos referentes a seguranca no transito. McKenna et al. (1991), por exemplo, estuda a relacao entre as habilidades dos motoristas e a percepcao que eles possuem sobre estas habilidades. Alem desta caracteristica, existem diversas outras que, se estudadas, podem aumentar a seguranca no transito. Uma destas caracteristicas e a distancia minima necessaria para que um carro pare completamente apos seus freios serem acionados.

Neste trabalho estamos interessados em verificar qual e a relacao que existe entre a velocidade de um carro (em milhas por hora) e a distancia que ele levou para parar completamente (em pes). Este conjunto de dados foi fornecido pelo programa R: A Language and Environment for Statistical Computing (R Core Team (2017)). A hipotese com a qual trabalhamos e a de que existe uma relacao positiva entre estas variaveis. Isto e, quanto mais rapido um carro estiver trafegando, maior vai ser a distancia necessaria para que este carro pare completamente.

Alem de verificar se ha correlação entre estas variaveis, desejamos obter uma relação capaz de prever o quanto uma variavel varia em relacao a outra. Ou seja, gostariamos de poder estimar a distancia necessaria para um carro parar completamente se soubermos qual a sua velocidade de trafego no momento em que os freios foram acionados.

2. Metodologia

Os dados analisados neste trabalho foram obtidos a partir de uma amostra de 50 carros. As medicoes foram realizadas na decada de 1920 e disponibilizadas originalmente por Ezekiel (1930). Nao ha informacoes a respeito dos modelos dos carros utilizados neste experimento.

Utilizaremos um metodo estatistico chamado regressao linear a fim de verificar se ha relacao entre a distancia necessaria para um carro parar completamente e sua velocidade. Este e um metodo bastante popular, capaz de descrever com bastante precisao a relacao entre as variaveis que nos interessam.

Sejam x_1, x_2, \dots, x_n as observações referentes a velocidade dos carros em questao. Considere y_1, y_2, \cdots, y_n as observações referentes a distancia necessaria para os carros pararem. De acordo com Kutner et al. (2004), podemos expressar a dependencia entre y e x atraves da equacao

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

onde β_0 e β_1 sao coeficientes estimados pelas equacoes

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\widehat{\beta}_{0} = \overline{y} - \widehat{\beta}_{1} \overline{x}$$
(1)

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x} \tag{2}$$

As quantidades \overline{x} e \overline{y} sao, respectivamente, as medias amostrais de x_1, x_2, \dots, x_n e y_1, y_2, \dots, y_n . Estas medias amostrais sao dadas por

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Determinamos se o coeficiente β_1 e estatisticamente significante atraves de um teste t. Sob a hipotese nula, assumimos que o estimador possui distribuicao t com n-1 graus de liberdade.

3. Resultados

A fim de verificar visualmente se ha algum tipo de relacao entre as variaveis consideradas neste estudo, exibimos o grafico de dispersao dos dados na Figura 1. Note que e possivel perceber uma forte tendencia linear positiva na relacao entre estas variaveis. Quanto maior o valor da velocidade, maior a distancia necessaria para o carro parar completamente.

Fig. 1. Grafico de dispersao da distancia de parada completa (pes) versus velocidade (mph) dos carros.

Fig. 2. Grafico de dispersao da distancia de parada completa (pes) versus velocidade (mph) dos carros com a reta que melhor se ajusta a estes dados.

Alem disso, adicionamos ao grafico exibido na Figura 2 a reta que melhor descreve a relacao entre estas variaveis. Esta reta foi obtida atraves do metodo descrito na secao anterior, fazendo uso das formulas (1) e (2). Explicitamente, a equacao representada na Figura 2 e dada por

$$\widehat{y}_i = -17,5791 + 3,9324x_i. \tag{3}$$

Entretanto, precisamos testar se os coeficientes estimados e apresentados na relacao (3) sao, de fato, estatisticamente significantes. Para isto, testaremos as hipoteses

$$H_0:\beta_0=0$$

$$H_1: \beta_0 \neq 0$$

e

$$H_0:\beta_1=0$$

$$H_1: \beta_1 \neq 0$$

Os resultados destes testes estao apresentados na Tabela 1.s

Note que, em ambos os casos, o p-valor encontrado e inferior a $\alpha = 0,05$. Portanto, podemos rejeitar ambas as hipoteses nulas e β_0 e β_1 sao estatisticamente diferentes de zero.

Para finalizar a analise, devemos verificar se o modelo ajustado nao viola as hipoteses do modelo de regressao linear. Para verificar isto, exibimos a analise de residuos na Figura 3.

Tabela 1. Resultados dos testes de hipoteses realizados para a analise de regressao.

Coeficiente	Estimativa	Erro Padrao	t	p-valor
β_0	-17,5791	6,7584	-2,601	0,0123
$oldsymbol{eta}_1$	3,9324	0,4155	9,464	<0,0001

Fig. 3. Analise de residuos do modelo de regressao linear ajustado.

Referências

Ezekiel M (1930). Methods of Correlation Analysis. Wiley, New York.

Kutner M, Nachtsheim C, Neter J, Li W (2004). Applied Linear Statistical Models - Fifth Edition. McGraw-Hill/Irwin, New York.

McKenna FP, Stanier RA, Lewis C (1991). "Factors underlying illusory self- assessment of driving skill in males and females." *Accident Analysis and Prevention*, **23**(1), 45–52.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.