МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторної роботи № 7 «Розв'язування задачі про багатополюсний максимальний потік за допомогою алгоритму Гоморі-Ху»

з дисципліни «Дослідження операцій» для здобувачів першого (бакалаврського) рівня вищої освіти спеціальності 121 «Інженерія програмного забезпечення»

Укладачі:

д.т.н., проф., проф. кафедри

Любов ЖУРАВЧАК

к.ф.-м..н., старший викладач кафедри

Наталія ІВАСЬКО

Тема роботи: Розв'язування задачі про багатополюсний максимальний потік за допомогою алгоритму Гоморі-Ху.

Мета роботи: Ознайомитись на практиці із алгоритмом Гоморі-Ху розв'язування задач про максимальний потік.

7.1. Задача про максимальний потік

Під час опису багатьох реальних ситуацій, які можна моделювати за допомогою мережі, наприклад, руху транспорту вулицями міста, використовують поняття "потік". Існує багато технічних і економічних задач, в яких системи можуть бути наближено описані у вигляді потокових моделей. Прикладами таких систем є транспортні мережі, де автостради зображують дугами з пропускними спроможностями, що відповідають максимально допустимій інтенсивності руху; телефонні мережі, де телефонні лінії описують дугами, а пропускні спроможності відповідають максимальній кількості викликів, які можуть обслуговуватися в кожен момент часу і т.д. У всіх цих задачах передбачається існування декількох джерел деякого продукту. Передбачається також, що величина продукту, який може транспортуватися до декількох витоків, обмежена тільки пропускними здатностями дуг.

Задача про максимальний потік. Нехай G = (N, A) — орієнтована мережа з одним джерелом $s \in N$ і одним витоком $t \in N$, і нехай дуги $(i, j) \in A$ мають обмежену пропускну здатність. Задача про максимальний потік полягає в пошуку таких потоків по дугах, що належать множині A, щоб результативний потік, який витікає із s в t, був максимальним.

Для знаходження розв'язку даної задачі використовують алгоритм, розроблений американськими математиками Гоморі та Xy.

7.2. Алгоритм Гоморі-Ху

Ідея алгоритму Гоморі-Ху полягає в ітеративній побудові дерева розрізів. Крок 1. Множина гілок дерева розрізів пуста. Всі вузли об'єднані в одну групу.

 $\mathit{Kpok}\ 2$. Із групи виділяємо вузол, до якого йде ребро з найбільшою пропускною спроможністю, тому його краще зразу поставити у кінець ланцюжка, всі інші вузли об'єднуємо в конденсований вузол. Присвоїмо $\mathit{l}=1$.

Крок 3. Знаходим о *мінімальний* розріз, що відділяє вибраний вузол від конденсованого, оскільки за теоремою Форда-Фалкерсона (теоремою про максимальний потік в мережі) величина максимального потоку дорівнює пропускній здатності мінімального розрізу. Зображуємо цей розріз гілкою в дереві розрізів, вага якої рівна пропускній спроможності цього розрізу. Ця гілка повинна

сполучати вузли чи групи вузлів, які розташовані по різні боки від знайденого мінімального розрізу.

 $\mathit{Крок}\ 4$. Якщо $\mathit{l}=\mathit{n}\text{-}1$, то **кінець**: дерево розрізів побудоване. Інакше переходимо до наступного кроку.

 $\mathit{Kpok}\ 5.$ Із конденсованого вузла виділяємо вузол, до якого йде ребро з найбільшою пропускною спроможністю. Присвоїмо $\mathit{l}=\mathit{l}+1$. Переходимо до кроку 3.

7.3. Приклад розв'язування потокової задачі за методом Гоморі- $\mathbf{X}\mathbf{y}$

<u>Приклад 7.1.</u> Для кожної пари вузлів мережі, зображеної на рис. 7.1, визначити величину максимального потоку між ними.

Рис. 7.1. Приклад мережі

Дана задача розв'язується за n-1=7-1=6 ітерацій алгоритму Гоморі-Ху. Крок 1. Об'єднуємо, наприклад, всі вузли, окрім 7-го (до нього йде ребро з найбільшою пропускною спроможністю, тому його краще зразу поставити у кінець ланцюжка), у конденсований вузол. Величина максимального потоку між цими вузлами дорівнює 21 (бо такою є сума ваг всіх ребер, що входять у 7: 2+8+11=21). Побудова дерева розрізів починається від гілки, яка з'єднує вузол 7 і конденсований вузол 1-2-3-4-5-6 (рис. 7.2). Вага цього ребра дорівнює 21.

Рис. 7.2. Задача про максимальний потік (крок 1)

Крок 2. Із конденсованого 1-2-3-4-5-6 вузла виділяємо вузол 6 (до нього з вершини 7 йде ребро з найбільшою пропускною здатністю). Розглядаємо два розрізи: в першому відтинаємо лише вузол 6 (пропускна спроможність такого

розрізу 9+6+11=26), в другому -6 та 7 (його пропускна спроможність 9+6+8+2=25). За теоремою Форда-Фалкерсона (теоремою про максимальний потік в мережі) величина максимального потоку дорівнює пропускній здатності мінімального розрізу, тому вибираємо другий. Оскільки ми перетнули ребра (5,7), (4,6) і (3,6), то вузли 6 і 7 лежать по одну сторону розрізу, а решта - по інший (рис. 7.3).

Рис. 7.3. Задача про максимальний потік (крок 2)

Крок 3. Із конденсованого вузла 1-2-3-4-5 виділяємо вузол 3 (до нього з вершини 6 йде ребро з найбільшою пропускною спроможністю). Пропускна здатність мінімального розрізу (і відповідно величина максимального потоку) 9+4+9=22. Оскільки ми перетнули ребра (3,1), (3,4) і (3,6), то вузол 3 лежить по один бік від конденсованого вузла 1-2-4-5 та вузлів 6 і 7 (рис. 7.4).

Рис. 7.4. Задача про максимальний потік (крок 3)

Крок 4. Із конденсованого вузла 1-2-4-5 виділяємо вузол 1. Величина максимального потоку дорівнює 8+7+9=24. Оскільки ми перетнули ребра (1,2), (1,4) і (1,3), то його розташовуємо зліва від конденсованого вузла 2-4-5, вузол 3 – внизу, а вузли 6 і 7 – справа (рис. 7.5).

Рис. 7.5. Задача про максимальний потік (крок 4)

Крок 5. Із конденсованого вузла 2-4-5 виділяємо вузол 4. Величина максимального потоку дорівнює 8+9+2=19. Оскільки ми перетнули ребра (4,2-5), (4,1), (4,3) і (4,6-7), то вгору від вузла 4 розташовуємо конденсований вузол 2-5 (рис. 7.6).

Рис. 7.6. Задача про максимальний потік (крок 5)

Крок 6. Із конденсованого вузла 2-5 виділяємо вузол 5. Величина максимального потоку дорівнює 7+4+2=13. Оскільки ми перетнули ребро (2,5), то вузол 5 розташовуємо вгору від вузла 2 (рис. 7.7).

Рис. 7.7. Задача про максимальний потік (крок 6)

У результаті одержано повне дерево розрізів. Величини максимальних потоків записуються у вигляді такої матриці (елемент матриці v_{ij} дорівнює найменшій вазі ребра серед тих, що сполучають вузли i та j):

$$V = \begin{bmatrix} - & 19 & 22 & 24 & 13 & 24 & 21 \\ 19 & - & 19 & 19 & 13 & 19 & 19 \\ 22 & 19 & - & 22 & 13 & 22 & 21 \\ 24 & 19 & 22 & - & 13 & 25 & 21 \\ 13 & 13 & 13 & 13 & - & 13 & 13 \\ 24 & 19 & 22 & 25 & 13 & - & 21 \\ 21 & 19 & 21 & 21 & 13 & 21 & - \end{bmatrix}$$

Контрольні запитання до лабораторної роботи № 7

- 1. Що таке потік?
- 2. Який потік називається максимальним?
- 3. Сформуйте задачу про максимальний потік.
- 4. Наведіть приклади задач про максимальний потік.
- 5. Що таке розріз?
- 6. Що таке пропускна здатність розрізу?
- 7. Поясніть процедуру побудови мінімального розрізу.
- 8. Що таке дерево розрізів?
- 9. На якій ідеї ґрунтується розв'язок задачі про багатополюсний максимальний потік?
- 10. Яка основна ідея алгоритму Гоморі-Ху?
- 11. Які основні кроки алгоритму Гоморі-Ху?
- 12.Що таке конденсований вузол?
- 13. Сформулюйте теорему Форда-Фалкерсона про максимальний потік.
- 14. Як отримати матрицю максимальний потоків між вузлами мережі?

Завдання до лабораторної роботи № 7

- 1. Отримати індивідуальний варіант завдання.
- 2. Знайти максимальну інтенсивність інформаційних потоків між всіма вузлами мережі за допомогою алгоритму Гоморі-Ху, якщо задані інтенсивності потоків інформації між безпосередньо пов'язаними вузлами цієї мережі з Додатку № 1 до лабораторної роботи № 7. Побудувати дерево розрізів (вручну).
- 3. Написати програму розв'язування задачі про максимальний потік за методом Гоморі-Ху згідно з Додатком № 1 до лабораторної роботи № 7.
- 4. Оформити звіт про виконану роботу.
- 5. Продемонструвати викладачеві результати, відповісти на запитання стосовно виконання роботи.

Вимоги до програми

Програма має передбачати такі можливості:

- 1. Введення вхідних даних вручну (вагова матриця).
- 2. Передбачити можливість некоректного введення даних.
- 3. Автоматичне знаходження максимального потоку з використанням алгоритму Гоморі-Ху.
- 4. Передбачити можливість покрокового відображення проміжних дерев розрізів.
- 5. Виведення матриці максимальних потоків між вузлами мережі.
- 6. Підписання усіх кроків.

