1 问题 1

1 问题

对于 $\Omega = (0,1), 1 < \alpha < 2$, 假设 $f \in C^2(\Omega)$

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$
 (1)

其中

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = C_R \frac{d^2}{dx^2} \int_{\Omega} \frac{u(y)}{|x-y|^{\alpha-1}} dy$$
 (2)

2 数值格式

用线性插值代替原函数,中心差分代替二阶导数,记 $u_h(x)$ 为 u(x) 在 网络点上的线性插值。

我们解这样的数值解

$$C_{R}\left(\frac{2}{h_{i+1}(h_{i}+h_{i+1})}\int_{\Omega}\frac{u_{h}(x)}{|x_{i+1}-y|^{\alpha-1}}dy - \frac{2}{h_{i}h_{i+1}}\int_{\Omega}\frac{u_{h}(x)}{|x_{i}-y|^{\alpha-1}}dy + \frac{2}{h_{i}(h_{i}+h_{i+1})}\int_{\Omega}\frac{u_{h}(x)}{|x_{i-1}-y|^{\alpha-1}}dy\right)$$

$$= F_{i}$$
(3)

矩阵 $A \in M$ 矩阵, 主队角正, 其他负, 严格对角占优。

3 一致网格

当 r=1 , 网格成为一致网格, $x_i=ih, h=\frac{1}{2N}, i=0,...,2N$. A 等于

$$a_{ij} = \frac{C_R}{(2-\alpha)(3-\alpha)}h^{-\alpha}$$

$$(|i-j-2|^{3-\alpha}-4|i-j-1|^{3-\alpha}+6|i-j|^{3-\alpha}-4|i-j+1|^{3-\alpha}+|i-j+2|^{3-\alpha})$$
(4)

矩阵行和

$$S_{i} = \sum_{j=1}^{2N-1} a_{ij} = \frac{C_{R}}{(2-\alpha)(3-\alpha)} h^{-\alpha} (|i+1|^{3-\alpha} - 3|i|^{3-\alpha} + 3|i-1|^{3-\alpha} - |i-2|^{3-\alpha} + \dots 2N)$$
(5)

我们得到

$$S_i \ge C(x_i^{-\alpha} + (1 - x_i)^{-\alpha})$$
 (6)

下面估计截断误差 R_i .

$$R_{i} = \int_{0}^{1} D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_{i}|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^{2}} dy$$
 (7)

目标是

$$R_i \le Ch^{\alpha/2}S_i \tag{8}$$

这样我们就有

$$\epsilon \le \max_{i} \frac{R_i}{S_i} \le Ch^{\alpha/2} \tag{9}$$

考虑 R₁

$$R_1 = \int_{\Omega} (u(y) - u_h(y)) \frac{|y|^{1-\alpha} - 2|y - h|^{1-\alpha} + |y - 2h|^{1-\alpha}}{h^2} dy$$
 (10)

我们有

$$R_1 = \int_0^{3h} + \int_{3h}^{1/2} \tag{11}$$

当 y > 3h,

$$\frac{|y|^{1-\alpha} - 2|y - h|^{1-\alpha} + |y - 2h|^{1-\alpha}}{h^2} \le C|y|^{-1-\alpha} \tag{12}$$

那么

$$I_{2} \leq C \int_{3h}^{1/2} |y|^{-1-\alpha} u''(y) h^{2} dy$$

$$\leq C \int_{3h}^{1} |y|^{-1-\alpha} y^{\alpha/2-2} h^{2} dy$$

$$\leq C h^{2} \int_{3h}^{1} y^{-3-\alpha/2} dy$$

$$\leq C h^{2} h^{-2-\alpha/2} = C h^{-\alpha/2}$$

$$\leq C h^{\alpha/2} x_{1}^{-\alpha} \leq C h^{\alpha/2} S_{1}$$
(13)

在考虑

$$I_{1} = \int_{0}^{3h} \frac{u(y) - u_{h}(y)}{h^{2}} (|y|^{1-\alpha} - 2|y - h|^{1-\alpha} + |y - 2h|^{1-\alpha}) dy$$

$$= \int_{0}^{h} + \int_{h}^{3h} = J_{1} + J_{2}$$
(14)

$$J_2 \le Cu''(\eta)h^{2-\alpha} \le Ch^{\alpha/2-2}h^{2-\alpha} \le Ch^{-\alpha/2}$$
 (15)

因为

$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy$$

$$\le C \int_0^{x_1} y^{\alpha/2 - 1} dy$$

$$\le C x_1^{\alpha/2} , x \in (0, h)$$
(16)

$$J_{1} = \int_{0}^{h} \frac{u(y) - u_{h}(y)}{h^{2}} (|y|^{1-\alpha} - 2|y - h|^{1-\alpha} + |y - 2h|^{1-\alpha}) dy$$

$$\leq Ch^{\alpha/2 - 2}h^{2-\alpha} = Ch^{-\alpha/2}$$
(17)

所以有

$$R_1 \le Ch^{-\alpha/2} \le Ch^{\alpha/2}h^{-\alpha} \le Ch^{\alpha/2}S_1, \quad (S_1 \ge Cx_1^{-\alpha})$$
 (18)
 R_1, R_2, R_3 全部类似。

3.1 猜想

$$R_i \leq Ch^{\alpha/2+1}(x_i^{-\alpha-1} + (1-x_i)^{-\alpha-1})$$
 (then $\leq Ch^{\alpha/2}S_i$) (19) 为了简便,我们记 $D(y) := u(y) - u_h(y)$. 当 $3 < i \leq N$ 时,

$$\begin{split} R_i &= \int_0^1 D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_i|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^2} dy \\ &= \int_0^{x_1} D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_i|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^2} dy \\ &+ \int_{x_1}^{x_{\lceil \frac{i}{2} \rceil}} D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_i|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^2} dy \\ &+ \int_{x_1}^{x_{\lceil \frac{i}{2} \rceil}} \frac{D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_i|^{1-\alpha} + D(y)}{h^2} |y - x_i|^{1-\alpha} - |y - x_i|^{1-\alpha}}{h^2} dy \\ &+ \int_{x_{\lceil \frac{i}{2} \rceil}+1}^{x_i} \frac{D(y + h) - D(y)}{h^2} |y - x_i|^{1-\alpha} + D(y) \frac{|y - x_{i+1}|^{1-\alpha} - |y - x_i|^{1-\alpha}}{h^2} dy \\ &+ \int_{x_i}^{x_{N+\lfloor \frac{i}{2} \rfloor}-1} \frac{D(y - h) - 2D(y) + D(y + h)}{h^2} |y - x_i|^{1-\alpha} dy \\ &+ \int_{x_{N+\lfloor \frac{i}{2} \rfloor}-1}^{x_{N+\lfloor \frac{i}{2} \rfloor}-1} \frac{D(y - h) - D(y)}{h^2} |y - x_i|^{1-\alpha} + D(y) \frac{|y - x_{i-1}|^{1-\alpha} - |y - x_i|^{1-\alpha}}{h^2} dy \\ &+ \int_{x_{N+\lfloor \frac{i}{2} \rfloor}}^{x_{2N-1}} + \int_{x_{2N-1}}^{1} D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_i|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^2} dy \\ &= I_1 + I_2 + I_3 + I_4 + \cdots \end{split} \tag{20}$$

1.

$$I_{1} = \int_{0}^{x_{1}} (u(y) - u_{h}(y)) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_{i}|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^{2}} dy$$

$$\leq Ch^{\alpha/2} \int_{0}^{h} |y - x_{i}|^{-1-\alpha} dy$$

$$\leq Ch^{\alpha/2+1} x_{i}^{-1-\alpha}$$
(21)

2.

$$I_{2} = \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil}} D(y) \frac{|y - x_{i-1}|^{1-\alpha} - 2|y - x_{i}|^{1-\alpha} + |y - x_{i+1}|^{1-\alpha}}{h^{2}} dy$$

$$\leq C \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil}} y^{\alpha/2 - 2} h^{2} |x_{i} - y|^{-1-\alpha} dy$$

$$\leq C h^{\alpha/2 - 1} h^{2} x_{i}^{-1-\alpha} \leq C h^{\alpha/2 + 1} x_{i}^{-1-\alpha}$$
(22)

3.

$$I_{3} = \int_{x_{\lceil \frac{i}{2} \rceil + 1}}^{x_{\lceil \frac{i}{2} \rceil + 1}} \frac{D(y+h) - D(y)}{h^{2}} |y - x_{i}|^{1-\alpha} + D(y) \frac{|y - x_{i+1}|^{1-\alpha} - |y - x_{i}|^{1-\alpha}}{h^{2}} dy$$

$$\leq \int_{x_{\lceil \frac{i}{2} \rceil + 1}}^{x_{\lceil \frac{i}{2} \rceil + 1}} u'''(\eta_{1}) h |x_{i} - y|^{1-\alpha} + u''(\eta_{2}) h |x_{i} - y|^{-\alpha} dy$$

$$\leq Ch^{2} x_{i}^{-2-\alpha/2} \leq Ch^{1+\alpha/2} x_{i}^{-1-\alpha}$$

$$(23)$$

4.

$$I_{4} = \int_{x_{\lceil \frac{i}{2} \rceil + 1}}^{x_{i}} \frac{D(y - h) - 2D(y) + D(y + h)}{h^{2}} |y - x_{i}|^{1 - \alpha} dy$$

$$\leq \int_{x_{\lceil \frac{i}{2} \rceil + 1}}^{x_{i}} u''''(\eta) h^{2} |x_{i} - y|^{1 - \alpha} dy$$

$$\leq Cx_{i}^{\alpha/2 - 4} h^{2} x_{i}^{2 - \alpha}$$

$$\leq Ch^{2} x_{i}^{-2 - \alpha/2} \leq Ch^{1 + \alpha/2} x_{i}^{-1 - \alpha}$$
(24)

猜想证毕,一致网格证完。

4 非一致

r > 1,

$$\begin{cases} x_i = \frac{1}{2} \left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ x_i = 1 - \frac{1}{2} \left(\frac{2N - i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

$$(25)$$

令 $h = \frac{1}{2N}$,那么 当 $i < N, x_i < \frac{1}{2}$ 时

$$h_{i} = \frac{1}{2} \left(\left(\frac{i}{N} \right)^{r} - \left(\frac{i-1}{N} \right)^{r} \right) \leq C(r) \left(\frac{i}{N} \right)^{r-1} \frac{1}{N} = Chx_{i}^{(r-1)/r}$$
 (26)
$$\stackrel{\underline{\mathsf{u}}}{=} i \geq N, x_{i} \geq \frac{1}{2} \; \mathbb{N}$$

$$h_{i} = \frac{1}{2} \left(\left(\frac{2N - i + 1}{N} \right)^{r} - \left(\frac{2N - i}{N} \right)^{r} \right) \leq C(r) \left(\frac{2N - i + 1}{N} \right)^{r-1} \frac{1}{N} = Ch(1 - x_{i-1})^{(r-1)/r}$$
我们声明

$$S_{i} = \sum_{j=1}^{2N-1} a_{ij} = \frac{C_{R}}{(2-\alpha)(3-\alpha)} \frac{2}{h_{i} + h_{i+1}}$$

$$\left(\frac{1}{h_{i+1}} \frac{|x_{i+1} - x_{0}|^{3-\alpha} - |x_{i+1} - x_{1}|^{3-\alpha}}{x_{1} - x_{0}} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}}\right) \frac{|x_{i} - x_{0}|^{3-\alpha} - |x_{i} - x_{1}|^{3-\alpha}}{x_{1} - x_{0}} + \frac{1}{h_{i}} \frac{|x_{i-1} - x_{0}|^{3-\alpha} - |x_{i-1} - x_{1}|^{3-\alpha}}{x_{1} - x_{0}}\right)$$

$$> C(x_{i}^{-\alpha} + (1 - x_{i})^{-\alpha})$$
(28)

$$R_{i} = \int_{0}^{1} D(y) \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} |x_{i+1} - y|^{1-\alpha} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) |x_{i} - y|^{1-\alpha} + \frac{1}{h_{i}} |x_{i-1} - y|^{1-\alpha} \right) dy$$
下面讨论 R_{1} (29)

$$R_{1} = \int_{0}^{x_{1}} + \int_{x_{1}}^{x_{3}} + \int_{x_{3}}^{1/2} + \int_{1/2}^{x_{2N-1}} + \int_{x_{2N-1}}^{1}$$

$$D(y) \frac{2}{h_{1} + h_{2}} (\frac{1}{h_{2}} |x_{2} - y|^{1-\alpha} - (\frac{1}{h_{1}} + \frac{1}{h_{2}}) |x_{1} - y|^{1-\alpha} + \frac{1}{h_{1}} |y|^{1-\alpha}) dy$$

$$:= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

$$(30)$$
与一致网格时相似,

1.

$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy$$

$$\le C \int_0^{x_1} y^{\alpha/2 - 1} dy$$

$$\le C x_1^{\alpha/2} , x \in (0, x_1)$$
(31)

因为 $1-\alpha > -1$

$$I_{1} \leq C \int_{0}^{x_{1}} \frac{D(y)}{h_{1}^{2}} (|x_{2} - y|^{1-\alpha} + 2|x_{1} - y|^{1-\alpha} + |y|^{1-\alpha}) dy$$

$$\leq C x_{1}^{\alpha/2-2} x_{1}^{2-\alpha} = C x_{1}^{-\alpha/2} = C h^{-r\alpha/2}$$
(32)

2.

$$I_2 \le Cu''(\eta)x_3^{2-\alpha} \le Cx_1^{\alpha/2-2}x_3^{2-\alpha} \le Ch^{-r\alpha/2}$$
 (33)

3.

$$I_{3} = \int_{x_{3}}^{1/2} D(y) \frac{2}{h_{1} + h_{2}} \left(\frac{1}{h_{2}} | x_{2} - y|^{1-\alpha} - \left(\frac{1}{h_{1}} + \frac{1}{h_{2}}\right) | x_{1} - y|^{1-\alpha} + \frac{1}{h_{1}} |y|^{1-\alpha}\right) dy$$

$$\leq C \int_{x_{3}}^{1/2} y^{\alpha/2 - 2} (hy^{(r-1)/r})^{2} y^{-1-\alpha} dy$$

$$\leq C h^{2} \int_{x_{3}}^{1/2} y^{\alpha/2 - 2/r - 1 - \alpha} dy$$

$$\leq C h^{2} (h^{r})^{-2/r - \alpha/2} = C h^{-r\alpha/2}$$

$$(34)$$

4.

$$I_{4} = \int_{1/2}^{x_{2N-1}} D(y) \frac{2}{h_{1} + h_{2}} \left(\frac{1}{h_{2}} |x_{2} - y|^{1-\alpha} - \left(\frac{1}{h_{1}} + \frac{1}{h_{2}}\right) |x_{1} - y|^{1-\alpha} + \frac{1}{h_{1}} |y|^{1-\alpha}\right) dy$$

$$\leq C \int_{1/2}^{x_{2N-1}} (1 - y)^{\alpha/2 - 2} (h(1 - y)^{(r-1)/r})^{2} y^{-1-\alpha} dy$$

$$\leq C h^{2} \int_{1/2}^{x_{2N-1}} (1 - y)^{\alpha/2 - 2 + 2 - 2/r}$$

$$\leq C h^{2} (C + h_{2N}^{\alpha/2 - 2/r + 1})$$

$$= C h^{2} (C + h^{r\alpha/2 - 2 + r}) \leq C h^{\min\{2, r\alpha/2 + r\}}$$

$$(35)$$

5.

$$I_5 \le Ch_{2N}^{\alpha/2+1} \le Ch^{r\alpha/2+r} \tag{36}$$

综合有

$$R_1 \le Ch^{-r\alpha/2} \tag{37}$$

 R_1, R_2, R_3 一样。

 $R_i, 3 < i \le N$ 比较困难。

$$R_{i} = \int_{0}^{x_{1}} + \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil}} + \dots$$

$$D(y) \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} |x_{i+1} - y|^{1-\alpha} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) |x_{i} - y|^{1-\alpha} + \frac{1}{h_{i}} |x_{i-1} - y|^{1-\alpha} \right) dy$$
(38)

1.

$$I_1 \le C x_1^{\alpha/2+1} x_i^{-1-\alpha} \le C h^{r\alpha/2+r} x_i^{-1-\alpha}$$
 (39)

2.

$$I_{2} \leq C \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil}} y^{\alpha/2-2} (hy^{(r-1)/r})^{2} |x_{i} - y|^{-1-\alpha} dy$$

$$\leq C h^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil}} y^{\alpha/2-2/r} dy$$

$$\leq C h^{2} x_{i}^{-1-\alpha} (h^{r\alpha/2-2+r} + x_{i}^{\alpha/2-2/r+1})$$

$$(40)$$