#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Technical Papers | 3. DATES COVERED (From - To)                                                   |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|
| 4. TITLE AND SUBTITLE                                       | 5a. CONTRACT NUMBER                                                            |
| ,                                                           | In-House                                                                       |
|                                                             | 5b. GRANT NUMBER                                                               |
|                                                             | 5c. PROGRAM ELEMENT NUMBER                                                     |
| 6. AUTHOR(S) Please Se<br>attache                           | 0 62203F                                                                       |
| 6. AUTHOR(S)                                                | 5d. PROJECT NUMBER                                                             |
|                                                             | 3058<br>5e. TASK NUMBER                                                        |
| attache                                                     | ON SE TASK NOWIDER                                                             |
|                                                             | 5f. WORK UNIT NUMBER                                                           |
|                                                             | 5 49 9 8 3<br>8. PERFORMING ORGANIZATION                                       |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)          | 8. PERFORMING ORGANIZATION REPORT                                              |
| Air Force Research Laboratory (AFMC)                        |                                                                                |
| AFRL/PRS                                                    | ·                                                                              |
| 5 Pollux Drive                                              |                                                                                |
| Edwards AFB CA 93524-7048                                   |                                                                                |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS       | ES) 10. SPONSOR/MONITOR'S                                                      |
| o o o o o o o o o o o o o o o o o o o                       | ACRONYM(S)                                                                     |
| A. Farra Danasak I alamatan (A.F.M.C.)                      |                                                                                |
| Air Force Research Laboratory (AFMC) AFRL/PRS               | 11. SPONSOR/MONITOR'S                                                          |
| 5 Pollux Drive                                              | NUMBER(S) AFRL-PR-                                                             |
| Edwards AFB CA 93524-7048                                   | ED-TP-PY99-0180                                                                |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT                   | 120 11 1 / 11 0180                                                             |
|                                                             |                                                                                |
| Approved for public release; distribution unlimited.        |                                                                                |
| 1. Approved for public relocate, distribution diministra.   |                                                                                |
| 13. SUPPLEMENTARY NOTES                                     |                                                                                |
|                                                             | •                                                                              |
| 14. ABSTRACT                                                |                                                                                |
|                                                             |                                                                                |
|                                                             |                                                                                |
|                                                             |                                                                                |
|                                                             |                                                                                |
|                                                             |                                                                                |
|                                                             | 20020240 405                                                                   |
|                                                             | 20030310 105                                                                   |
|                                                             |                                                                                |
|                                                             |                                                                                |
| 15. SUBJECT TERMS                                           |                                                                                |
| 13. SUBJECT TERING                                          |                                                                                |
|                                                             |                                                                                |
| 16. SECURITY CLASSIFICATION OF:                             | 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE OF ABSTRACT OF PAGES PERSON |
|                                                             | OF AGES PERSON Leilani Richardson                                              |
| a. REPORT b. ABSTRACT c. THIS PAGE                          | 19b. TELEPHONE NUMBER                                                          |
|                                                             | (include area code)                                                            |
| Unclassified Unclassified Unclassified                      | (661) 275-5015                                                                 |

MEMORANDUM FOR PRS (In-HousePublication)

FROM: PROI (TI) (STINFO)

10 September 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0180, Karen Olson, "Material Property Sensitivities on Cryo Upperstage Rocket Engines,"

26<sup>th</sup> Annual Western Regional Conference (Statement A)

## Material Property Sensitivities on Cryo Upperstage Rocket Engines



#### Karen Olson

Applications and Assessments Branch Propulsion Sciences & Advanced Concepts Division **AFRL/PRST** 

#### Overview



- Objective
- Baseline & Demonstrator Engine Description
- Material / Engineering Limits
- Sensitivities
- Weight Estimations
- Impact on Payload
- Conclusion
- Recommendation

#### Study Objective



Identify the critical material properties that enable a demonstrator engine (IHPRPT) performance (Isp and to meet Integrated High Payoff Rocket Propulsion Technology thrust-to-weight) goals.

#### **IHPRPT** Goals











| Boost and Orbit Transfer Propulsion                 | 2000 | 2002 | 2010        |
|-----------------------------------------------------|------|------|-------------|
| <ul> <li>Reduce Stage Failure Rate</li> </ul>       | 25%  | 20%  | <b>15</b> % |
| <ul> <li>Improve Mass Fraction (Solids)</li> </ul>  | 15%  | 25%  | 35%         |
| • Improve ISP (sec)                                 | 14   | 21   | <b>5</b> 6  |
| Reduce Hardware Costs                               | 15%  | 25%  | 35%         |
| Reduce Support Costs                                | 15%  | 25%  | 35%         |
| • Improve Thrust to Weight (Liquids)                | 30%  | %09  | 100%        |
| • Mean Time Between Removal (Mission Life-Reusable) | 20   | 40   | 100         |

| .0       |
|----------|
| S        |
| 3        |
| Q        |
| 0        |
| 7        |
| <u>+</u> |
| af       |
| ij       |
| e        |
| <u>0</u> |
| a        |
| Š        |

| • Improve Itel Mass (wet) (Electrostatic/Electromagnetic) | 20%/200% | 35%/200% | 20%/200% 35%/500% 75%/1250% |
|-----------------------------------------------------------|----------|----------|-----------------------------|
| • Improve Isp (Bipropellant/Solar Thermal)                | 5%/10%   | 10%/15%  | 20%/20%                     |
| <ul> <li>Improve Density-Isp (Monopropellant)</li> </ul>  | 30%      | 20%      | <b>%0</b> 2                 |
| <ul> <li>Improve Mass Fraction (Solar Thermal)</li> </ul> | 15%      | 72%      | 35%                         |

#### **Tactical Propulsion**

| <ul> <li>Improve Delivered Energy</li> </ul>                       | 3%         | %2  |
|--------------------------------------------------------------------|------------|-----|
| <ul> <li>Improve Mass Fraction (Without TVC/Throttling)</li> </ul> | <b>5</b> % | 2%  |
| <ul> <li>Improve Mass Fraction (With TVC/Throttling)</li> </ul>    | 10%        | 20% |

15% 10% 30%

of the state of th



### Liquid Rocket Engine Material Property Requirement Generation Flow Diagram





#### Performance Goals for Cryogenic Upperstage Rocket Engine

#### Goals:

Isp improvement of 3% over Baseline

Thrust-to-weight improvement of 100% better than Baseline

# Baseline & Demonstrator Engine Comparison



| Demonstrator -  | 50,000lbs  | 9.03           | 2000 psia :       |                     | 3-stage Fuel:        |
|-----------------|------------|----------------|-------------------|---------------------|----------------------|
| Baseline Engine | 16,500 lbs | 0.0            | 500 psia 7        |                     | 1 2-stage Fuels      |
|                 | Throsit    | Mixturre Ratto | Chamber Pressures | * Nozzle Area Ratio | Turbopump Desempilon |

## Delta III Configuration





# **Baseline Flow Schematic**





## Engine Modifications





# Advanced Expander Combustor





# Powerhead-Showing Chamber Detail







### Material Limits Impacting Performance Combustion Chamber

## Main combustion chamber wall temperature limit about 1100° F with Ox/H2 propellants

- Performance penalties :
- Film cooling requirement for low grain growth temperature Isp loss from unreacted propellant
- Lowered heat load transferred to coolant due to high resistance in Turbopump reliability loss from increased pressure requirement material (thermal conductivity, low yield strength) and design

|                            |                                        |             |                         |          | · LANG |                             |     |
|----------------------------|----------------------------------------|-------------|-------------------------|----------|--------|-----------------------------|-----|
|                            |                                        |             |                         |          |        |                             |     |
|                            |                                        |             |                         |          |        |                             | :   |
| <b>-</b>                   |                                        |             |                         |          |        |                             |     |
|                            | å.<br>Ne∖                              |             |                         |          |        | g<br>R                      | . 4 |
| insi                       | \                                      | \           |                         |          |        | ep) €                       |     |
| Se                         |                                        | 1           | P.                      |          |        | ature                       |     |
| sp Temperature Sensitivity |                                        | 9 i.\       |                         | d.       |        | Chamber Temperature (deg R) |     |
| 96                         |                                        | )<br>14 (1) | Ţ.                      |          |        | Ten                         |     |
| e iii                      |                                        |             | $\langle \cdot \rangle$ |          |        | nber                        |     |
| ë<br>T                     | 1                                      | Magazine.   | . \<br>*}-              | \*-      |        | Char                        |     |
| <b>"</b>                   |                                        |             |                         | <i>\</i> |        | . T.                        |     |
|                            |                                        |             | j +/                    |          |        |                             |     |
|                            |                                        | (spuc       | oəs)                    | dsį      |        | 2 * .<br>- *                | 1   |
| Survey A                   | ************************************** |             |                         |          |        | : · ··.                     |     |



### Material Limits Impacting Performance Nozzle

- Weight gain
- Requires reduction in nozzle area ratio
- Lead to decreased lsp and thrust
- Temperature limitation
- Reduces power available to the turbine
- Leads to decreased thrust and/or reliability (depending on how the pressure loss is divided)
- Current material: 347 Stainless Steel
- Specific Strength (Yield Strength / Density) = 93,103 in





#### Advanced Liquid Hydrogen Turbopump







#### Turbopump





### Material Limits Impacting Performance Turbopump

Turbopump shaft speed limits:

- Turbine AN<sup>2</sup> tensile strength and creep at high temp
- Bearing DN modulus of elasticity & rigidity
- Pump impeller tip speeds same as turbine
- Pump labyrinth seal clearance heat distortion temp

Lower shaft speed = Less available pressure to produce thrust



Existing Labyrinth Seal material: Kel - F Heat Distortion Temp: 259 deg F

#### Material and Engineering Limits Exploited

Table II Engineering (Material) Limits Varied for Sensitivity

|                    | Representative<br>Material Property                         | Normal Limit                                                            | Increased Limit                                        |
|--------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|
| Turbopump          |                                                             |                                                                         |                                                        |
| Pump Eff.          | Heat Distortion Temp                                        | 10% Drop in Efficiency                                                  | 0% Drop in Efficiency                                  |
|                    | & Internal Friction of<br>the Seal Material                 | <b>259 °∃</b> *                                                         | Property Kequires<br>Research                          |
| Impeller Tip Speed | Modulus-<br>Elasticity/Rigidity                             | 1900 ft/sec                                                             | Not Challenged, No<br>Change Required                  |
| Turbine Eff.       | Blade Melting Temp                                          | Turbine Temperature<br>Limit to Efficiency =<br>6% Loss                 | Turb Temp 1.5x Limit<br>to Eff = 5% Loss<br>Not Needed |
| Bearing DN         | Design                                                      | 20x10 <sup>6</sup> mm x RPM                                             | Not Challenged, No<br>Change Required                  |
| Turbine AN2        | Modulus-<br>Elasticity/Rigidity                             | 8 in x RPM <sup>2</sup>                                                 | Not Challenged, No<br>Change Required                  |
| Heat Load          | Thermal Properties<br>of the Combustion<br>Chamber & Nozzle | 25,000 BTU/sec<br>k=202.3 BTU/ff-hr-°F<br>Meil. Temp:<br>2500 - 2600 °F | 39,000 BTU/sec<br>New Property                         |
| Nozzle Area Ratio  | Specific Strength of Nozzle                                 | 175:1**<br>Spec. Str. 74K in***                                         | 300:1                                                  |
|                    |                                                             |                                                                         |                                                        |







### (All Weights Assumed Stainless Steel) Weight Estimation Methodology

#### By IMWG Direction:

Material Property Advances are Assumed; Particular Advanced Materials are to be Selected Later

- Turbopumps & Combustion Chamber:
- Hoop Stress Calculation High Pressure Devices
- Nozzle
- Method of Characteristics For Shape and Area
- High Pressure Across Nozzle Wall for thickness
- Remaining Hardware
- Scaled to Turbopump and Nozzle

# **Engine Weight Comparison**





# Thrust-to-Weight Comparison









#### Weight Effects on Vehicle Performance

- Payload gains from the higher ISP Engines are offset by weight penalties.
- Single heaviest engine component: Nozzle about 40% of Engine total weight
- 10x Specific Strength improvement of nozzle will result in more reasonable weight reduction in remaining components

## Delta III Configuration







# Resultant Delta III System Payoff to GTO





#### Conclusion

- Major Improvers:
- Thermal Properties of combustion chamber and nozzle
- Strength to Weight of nozzle
- Important Improver:
- Heat Distortion Temp of Labyrinth Seal



### Recommendations

- Develop material properties improving:
- operation & thermal conductivity for high hoop stress in both Thermal properties - grain growth temp for higher temp the chamber and nozzle
- Specific strength of material used in the nozzle
- Heat distortion temperature in the fuel pump labyrinth seal
- Next Steps:
- Start quantification of candidate material critical properties for this demonstrator.
- Applied, Existing or New
- Investigate other Engines and Applications.

Some of the Many Control o

#### Backup Charts





#### **Engine Weights**

| Total                                       |                                 | 5      | 1576             | 1203                        | 72                        | 1275                              |                         | 1385                      |
|---------------------------------------------|---------------------------------|--------|------------------|-----------------------------|---------------------------|-----------------------------------|-------------------------|---------------------------|
| Ducts,                                      | I                               |        | 464              | 418                         | 582                       | 407                               | 373                     | 406                       |
| Тох                                         |                                 |        | 116              | 104                         | 145                       | 102                               | 93                      | 101                       |
| len-l                                       | Chamber   Turbopump   Turbopump | Weight | 224              | 194                         | 301                       | 186                               | 164                     | 185                       |
|                                             | Chamber                         | Weight | 80               | 80                          | 80                        | 08                                | 80                      | 8.1                       |
|                                             | Nozzle                          | Weight | 692              | 407                         | 699                       | 499                               | 461                     | 612                       |
|                                             | Area                            | Ratio  | 300              | 200                         | 122                       | 171                               | 170                     | 1//                       |
| 不是这种是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 |                                 |        | VII improvements | Nozzle & MccQ = 1.25 x Demo | Demo with 217% Mcc Q impr | Demonstrator Meeting IHPRPT Goals | Nozzie & MccQ = 2x RL10 | Jemo minus HPFP seal impr |



Step I:Completed Goal definition

Step II: Way Behind Rocket Design meeting goals

Spacecraft 8 Demonstrators

Boost & Orbit Xfer 15 Demonstrators

Drew DeGeorge 3 Categories of IHPRPT Goals

**IMWG Preliminary Organization** 

Step III: Way Way Behind

Material Property Requirement Definition

Material Property Identification

**Existing Material Programs** 

without property values to target their results

Material Development Programs underway (without

Step IV: Completed

IHPRPT target values for their properties)



### Phase III IHPRPT Performance Goals for Cryogenic Upperstage

Isp improvement of 3% over baseline engine

Thrust-to-weight improvement of 100% over baseline engine



#### Progression from Demonstrator Optimization to Sensitivity



# Material and Engineering Limits Exploited

| Increased Limit                     |           | 0% drop in Eff.<br>Property Requires<br>Research | Not Challenged, no<br>change required | Not Changed                        | 10% incr in eff.       | Not Challenged, no change required | Not Challenged, no<br>change required |
|-------------------------------------|-----------|--------------------------------------------------|---------------------------------------|------------------------------------|------------------------|------------------------------------|---------------------------------------|
| Normal Limit                        |           | 10% drop in Eff<br>259 deg F                     | 1900 ft/sec                           | Function of RPM,<br>GPM, g, & NPSH | 6% nominal eff<br>loss | 20x10^6                            | 8" RPM^2                              |
| Representative<br>Material Property |           | Heat Distortion<br>Temp & internal<br>friction   | Modulus-<br>Elasticity/Rigidity       | Fluid Vapor<br>Pressure            | Blade Melting<br>Temp  | Design                             | Modulus-<br>Elasticity/Rigidity       |
|                                     | Turbopump | Pump Eff.                                        | Impeller Tip<br>Speed                 | Cavitation                         | Turbine Eff.           | Bearing DN                         | Turbine AN2                           |





### Material Limits Impacting Performance Injector

- Material finish and orifice inlet design promote high pressure drop = lowered reliability due to increased pressure demand from pump
- Variability in material machining tolerances induce mixture ratio nonuniformity= lowered reliability and lowered thrust, this is a primary factor of combustion efficiency and stability.





### Nozzle Definition





50% Bell

80% Bell

15° Half Angle Cone

Percentage is based on nozzle length compared to the length for a 15° nozzle to get to the same exit area



#### Variation of Length Constrained Nozzles







Increasing Percent Bell



Nozzle shapes resulting from fixed length and varying area ratios



### Material Limits Impacting Performance Combustion Chamber

Heat Load to the coolant:

Conductive Heat Load: Q<sub>k</sub>

 $KA(T_{sg} - T_{sc})$ 



Radiation and Convection  $h_rA(T_g - T_{sg}) + h_cA(T_g - T_{sg})$ 

