The cool package*

nsetzer

December 30, 2006

This is the cool package: a COntent Oriented LATEX package. That is, it is designed to give LATEX commands the ability to contain the mathematical meaning while retaining the typesetting versatility.

Please note that there are examples of use of each of the defined commands at the location where they are defined.

This package requires the following, non-standard LATEX packages (all of which are available on www.ctan.org): coolstr, coollist, forloop

1 Implementation

```
1 \newcounter{COOL@ct} %just a general counter
2 \newcounter{COOL@ct@}%just a general counter
```

1.1 Parenthesis

\COOL@decide@paren

 $\COOL@decide@paren[\langle parenthesis\ type \rangle] \{\langle function\ name \rangle\} \{\langle contained\ text \rangle\}.$ Since the handling of parentheses is something that will be common to many elements this function will take care of it.

If the optional argument is given, $\COOL@notation@\langle function\ name\rangle$ Paren is ignored and $\langle parenthesis\ type\rangle$ is used

 $\langle parenthesis\ type \rangle$ and $\COOL@notation@\langle function\ name \rangle$ Paren must be one of none, p for (), b for [], br for {}, ap for $\langle \rangle$, inv for $\ensuremath{\mbox{left.}\mbox{\mbox{right}}}$.

- 13 \let\COOL@decide@paren@no@type=\relax
- 14 \newcommand{\COOL@decide@paren}[3][\COOL@decide@paren@no@type]{%
- 15 \ifthenelse{ \equal{#1}{\COOL@decide@paren@no@type} }%
- 16 {%
- 17 \def\COOL@decide@paren@type{\csname COOL@notation@#2Paren\endcsname}% 18 }%

^{*}This document corresponds to cool v1.35, dated 2006/12/29.

```
19 % Else
20 {%
21 \def\COOL@decide@paren@type{#1}%
23 \ifthenelse{ \equal{\COOL@decide@paren@type}{none} }%
24 {%
25 #3%
26 }%
27\,\% Else
28 {%
29 \ifthenelse{ \equal{\COOL@decide@paren@type}{p} }%
30 {%
31 \inp{#3}%
32 }%
33 % Else
34 {%
35 \ifthenelse{ \equal{\COOL@decide@paren@type}{b} }%
36 {%
37 \inb{#3}%
38 }%
39 % Else
40 {%
41 \ifthenelse{ \equal{\COOL@decide@paren@type}{br} }%
42 {%
43 \inbr{#3}%
44 }%
45 % Else
46 {%
47 \ifthenelse{ \equal{\COOL@decide@paren@type}{ap} }%
49 \inap{#3}%
50 }%
51 % Else
52 {%
53 \ifthenelse{ \equal{\COOL@decide@paren@type}{inv} }%
55 \nop{#3}%
56 }%
57 % Else
58 {%
59 \PackageError{cool}{Invalid Parenthesis Option}%
60 {*Paren can only be 'none', 'p', 'b', 'br', 'ap', 'inv'}%
61 }%
62 }%
63 }%
64 }%
65 }%
66 }%
67 }
```

1.2 Indicies

\COOL@decide@indicies

 $\label{localindication} $$ \COOL@decide@indicies {\function name} $$ {\cond indication} $$ {\cond indicies can be as common as the parenthesis decision, this } $$$

```
macro is the solution.
             (local indication) must be either u or d
            (indicies) is very likely to be required to be a comma separated list in the near
future
            the options for indicies are
                                                 allow the indicies to be decided by an optional argument to
                                                  the function (such as \LeviCivita[u]{i j})
                                                  force the indicies to appear as superscript
                 up
                 down
                                                  force the indicies to appear as subscript
68 \newcommand{\COOL@decide@indicies}[3]{%
69 \def\COOL@decide@indicies@placement%
70 {\csname COOL@notation@#1Indicies\endcsname}%
71 \ \texttt{\coole} equal \ \texttt{\co
73 \ifthenelse{\equal{#2}{u}}%
74 {^{#3}}%
75 {_{#3}}%
76 }%
77 % Else
78 {%
79 \ifthenelse{\equal{\COOL@decide@indicies@placement}{up}}%
81 {^{#3}}%
82 }%
83 % Else
84 {%
85 \ifthenelse{\equal{\COOL@decide@indicies@placement}{down}}%
86 {%
87 {_{#3}}%
88 }%
89 % else
90 {%
91 \PackageError{cool}{Invalid Option Sent}%
92 {#1Indices can only be 'up', 'down', or 'local'}%
93 }%
94 }%
95 }%
96 }
```

1.3 COntent Oriented LaTeX (COOL)

\Style \Style{\langle options\rangle} sets the style of the output (how to notate particular functions). $\langle options \rangle$ is a comma delimited list of the form $\langle key \rangle = \langle value \rangle$, where $\langle key \rangle$ is the long form of the command name without the preceding backslash (i.e. Integrate and not Int or \Int). The list can be in any order and need only contain the styles that the user desires to set.

There can be multiple \Style commands within any document—the styled output of the command depends on the last \Style command to have specified its style.

For a list of styling options for a command, see the code where the command is defined

```
97 \newcommand{\Style}[1]{%
```

```
99 }
               100 \newcommand{\COOL@keystop}{@@@}%
               101 \def\COOL@keyeater#1=#2,#3\COOL@keyend{%
               102 \ifx#3\COOL@keystop%
               103 \expandafter\gdef\csname COOL@notation@#1\endcsname{#2}%
               104 \else%
               105 \expandafter\gdef\csname COOL@notation@#1\endcsname{#2}%
               106 \COOL@keyeater#3\COOL@keyend%
               107 \fi%
               108 }
\UseStyleFile
               Since notational style should be kept consistent and will likely need to span several
                documents, use this command to input a notation style file that has previously
                been prepared. (to be implemented in a future release)
               109 \newcommand{\UseStyleFile}[1]{}
                1.3.1 Fundamental Constants
                see http://functions.wolfram.com/ for the definitions
           \I The square root of minus 1, i = \sqrt{-1}.
                   \Style{ISymb=\mathbbm{i}}, \I gives i.
               110 \newcommand{\COOL@notation@ISymb}{i}
               111 \newcommand{\I}{\COOL@notation@ISymb}
           \E Euler's constant and the base of the natural logarithm, e.
                   \Style{ESymb=\mathbbm{e}}, \E gives e.
               112 \newcommand{\COOL@notation@ESymb}{e}
               113 \newcommand{\E}{\COOL@notation@ESymb}
          \PI Pi—the ratio of the circumference of a circle to its diameter, \pi.
                   Style{PISymb=\bpi}^{1}, \PI gives \pi.
               114 \newcommand{\COOL@notation@PISymb}{\pi}
               115 \newcommand{\PI}{\COOL@notation@PISymb}
 \GoldenRatio The Golden Ratio, \varphi
               116 \newcommand{\GoldenRatio}{\varphi}
  \EulerGamma Euler's Gamma constant, \gamma.
                   \Style{EulerGammaSymb=\gamma_E}, \EulerGamma gives \gamma_E
               117 \newcommand{\COOL@notation@EulerGammaSymb}{\gamma}
               118 \newcommand{\EulerGamma}{\COOL@notation@EulerGammaSymb}
     \Catalan Catalan constant, C
               119 \newcommand{\Catalan}{C}
    \Glaisher Glaisher constant, Glaisher
               120 \newcommand{\Glaisher}{\mathord{\operatorname{Glaisher}}}
    \Khinchin Khinchin constant, Khinchin
               121 \mbox{\command{\Khinchin}{\mbox{\command{\Khinchin}}}}
                  ^{1}\mathrm{to} get the 'bbpi' symbol , you will need to use the package \mathsf{mathbbol} and pass the \mathsf{bbgreekl}
                option
```

98 \COOL@keyeater#1,\COOL@keystop\COOL@keyend%

1.3.2 Symbols

```
\Infinity Infinity, \infty
                    122 \newcommand{\Infinity}{\infty}
   \Indeterminant An indeterminant quantity
                    123 \newcommand{\Indeterminant}{%
                    124 \mathchoice%
                    125 {\mbox{\textrm>}}%
                    126 {\mbox{\small>}}%
                    127 {\mbox{\scriptsize>}}%
                    128 {\mbox{\tiny>}}%
\label{linear_property} $$\operatorname{Directed Infinity \setminus DirectedInfinity}(\langle complex\ number)$$ or \operatorname{DirInfty}(\langle complex\ number)$$
        \DirInfty number\}
                    130 \newcommand{\DirectedInfinity}[1]{#1 \, \infty}
                    131 \newcommand{\DirInfty}[1]{\DirectedInfinity{#1}}
 \ComplexInfinity Complex infinity, \tilde{\infty}
           \CInfty 132 \newcommand{\ComplexInfinity}{\tilde{\infty}}
                    133 \newcommand{\CInfty}{\ComplexInfinity}
                     1.3.3 Exponential Functions
              \Exp Exponential—for use when e^x won't suffice, \exp(x)
                    134 \newcommand{\COOL@notation@ExpParen}{p}
                    135 \newcommand{\Exp}[1]
                    136 {%
                    137 \exp\COOL@decide@paren{Exp}{#1}%
```

\Log Logarithm, \Log{x}. This function has several options to be set. The usual parentheses, then some about the notation to be used for displaying the symbol.

139 \newcommand{\COOL@notation@LogParen}{none}

The following set the symbols:

LogBaseESymb can be ln or log, indicating what symbol should be used for the natural logarithm. If set to log then logarithms of base 10 are displayed as log_{10} .

LogShowBase can be either at will or always and decides whether or not one should show the base, as in $log_b x$. If this option is set to always then logBaseESymb is ignored.

```
\lfloor \log\{5\}
                                              \ln 5
                                                        \ln 5
                                              \log 5
      \log[10]{5}
                                                        \log 5
                                             \log_4 5
      \lfloor \log[4] \{5\}
                                                        \log_4 5
      \Style{LogBaseESymb=log}
                                              \log 5
      \lfloor Log \{5\} \rfloor
                                                        \log 5
      \lfloor \log[10] \{5\}
                                              \log_{10} 5
                                                        \log_{10} 5
      \lfloor \log[4] \{5\}
                                              \log_4 5
                                                        \log_4 5
      \Style{LogShowBase=always}
                                              \log_e 5
                                                        \log_e 5
      \lfloor Log \{5\} \rfloor
      \Log[10]{5}
                                              \log_{10} 5
                                                        \log_{10} 5
      \lfloor \log[4] \{5\}
                                              \log_4 5
                                                        \log_4 5
      \Style{LogShowBase=at will}
                                                        \ln 5
      \lfloor Log \{5\} \rfloor
                                              \ln 5
                                                        \log 5
      \log[10]{5}
                                              \log 5
      \lfloor \log[4] \{5\}
                                              \log_4 5
                                                        \log_4 5
      \Style{LogParen=p}
      \lfloor \log[4] \{5\}
                                             \log_4(5) \log_4(5)
140 \newcommand{\COOL@notation@LogBaseESymb}{ln}% 'ln', 'log'
141 \newcommand{\COOL@notation@LogShowBase}{at will}% 'at will', 'always'
142 \mbox{ newcommand{\Log}[2][\E]}
143 {%
144 \ifthenelse{ \equal{\COOL@notation@LogShowBase}{at will} }%
145 {%
146 \ifthenelse{ \equal{#1}{\E} }%
147 {%
148 \ifthenelse{ \equal{\COOL@notation@LogBaseESymb}{ln} }%
149 {%
150 \ln \COOL@decide@paren{Log}{#2}%
151 }%
152 % Else
153 {%
154 \ifthenelse{ \equal{\COOL@notation@LogBaseESymb}{log} }%
156 \log \COOL@decide@paren{Log}{#2}%
157 }%
158 % Else
159 {%
160 \PackageError{cool}{Invalid Option Sent}%
161 {LogBaseESymb can only be 'ln' or 'log'}%
162 }%
163 }%
164 }%
165 % Else
166 {%
167 \ifthenelse{ \equal{#1}{10} \AND
168 \NOT \equal{\COOL@notation@LogBaseESymb}{log} }%
170 \log \COOL@decide@paren{Log}{#2}%
171 }%
172 % Else
173 {%
174 \log_{\#1} \cool@decide@paren\{Log\}{\#2}\%
```

```
177 }%
                        178 % Else
                        179 {%
                        180 \ifthenelse{ \equal{\COOL@notation@LogShowBase}{always} }%
                        182 \log_{\#1}\COOL@decide@paren\{Log\}{\#2}\%
                        183 }%
                        184 % Else
                        185 {%
                        186 \PackageError{cool}{Invalid Option Sent}%
                        187 {LogShowBase can only be 'at will' or 'always'}%
                        188 }%
                        189 }%
                        190 }
                                Trigonometric Functions
                  \Sin The sine function, \S in\{x\}, sin(x)
                        191 \newcommand{\COOL@notation@SinParen}{p}
                        192 \newcommand{\Sin}[1]{\sin\COOL@decide@paren{Sin}{#1}}
                  \Cos The cosine function, \Cos\{x\}, \cos(x)
                        193 \newcommand{\COOL@notation@CosParen}{p}
                        194 \newcommand{\Cos}[1]{\cos\COOL@decide@paren{Cos}{#1}}
                   \Tan The tangent function, \Tan{x}, tan(x)
                        195 \newcommand{\COOL@notation@TanParen}{p}
                        196 \newcommand{\Tan}[1]{\tan\COOL@decide@paren{Tan}{#1}}
                   \Csc The cosecant function, \Csc{x}, csc(x)
                        197 \newcommand{\COOL@notation@CscParen}{p}
                        198 \newcommand{\Csc}[1]{\csc\COOL@decide@paren{Csc}{#1}}
                  \Sec The secant function, \Sec\{x\}, sec(x)
                        199 \newcommand{\COOL@notation@SecParen}{p}
                        200 \end{Sec} [1] {\tt Sec\COOL@decide@paren\{Sec\}\{\#1\}\}}
                  \Cot The cotangent function, \Cot{x}, \cot(x)
                        201 \newcommand{\COOL@notation@CotParen}{p}
                        202 \newcommand{\Cot}[1]{\cot\COOL@decide@paren{Cot}{#1}}
                               Inverse Trigonometric Functions
                         1.3.5
                         The inverse trigoneometric functions style is governed by this global key. It's
\COOL@notation@ArcTrig
                            inverse (default), this displays as \sin^{-1}
                            arc, this displays as arcsin
                        203 \def\COOL@notation@ArcTrig{inverse}
```

175 }% 176 }%

```
\ArcSin The inverse of the sine function, \ArcSin{x}, \sin^{-1}(x)
        204 \newcommand{\COOL@notation@ArcSinParen}{p}
        205 \newcommand{\ArcSin}[1]{%
        206 \ifthenelse{ \equal{\COOL@notation@ArcTrig}{inverse} }%
        208 \sin^{-1}\COOL@decide@paren{ArcSin}{#1}%
        209 }
        210 % else
        211 {
        212 \ifthenelse{\equal{\COOL@notation@ArcTrig}{arc}}%
        214 \arcsin\COOL@decide@paren{ArcSin}{#1}%
        215 }%
        216 % else
        217 {%
        218 \PackageError{cool}{Invalid option sent}{}%
        219 }%
        220 }%
        221 }
\ArcCos the inverse of the cosine function, \ArcCos{x}, \cos^{-1}(x)
        222 \newcommand{\COOL@notation@ArcCosParen}{p}
        223 \newcommand{\ArcCos}[1]{%
        224 \ifthenelse{ \equal{\COOL@notation@ArcTrig}{inverse} }%
        225 {%
        226 \cos^{-1}\COOL@decide@paren{ArcCos}{\#1}\%
        227 }%
        228 % else
        229 {%
        230 \ifthenelse{\equal{\COOL@notation@ArcTrig}{arc}}%
        232 \arccos\COOL@decide@paren{ArcCos}{#1}%
        233 }%
        234 % else
        235 {%
        236 \PackageError{cool}{Invalid option sent}{}%
        237 }%
        238 }%
        239 }
\ArcTan The inverse of the tangent function, \ArcTan{x}, \tan^{-1}(x)
        240 \newcommand{\COOL@notation@ArcTanParen}{p}
        241 \newcommand{\ArcTan}[1]{%
        242 \ifthenelse{ \equal{\COOL@notation@ArcTrig}{inverse} }%
        244 \tan^{-1}\COOL@decide@paren{ArcTan}{#1}%
        245 }%
        246 % else
        247 {%
        248 \ifthenelse{\equal{\COOL@notation@ArcTrig}{arc}}%
        250 \arctan\COOL@decide@paren{ArcTan}{#1}%
        251 }%
        252 % else
```

```
253 {%
                   254 \PackageError{cool}{Invalid option sent}{}%
                   255 }%
                   256 }%
                   257 }
  \ArcCsc The Inverse Cosecant function, \ArcCsc{x}, \csc^{-1}(x)
                   258 \newcommand{\COOL@notation@ArcCscParen}{p}
                   259 \newcommand{\ArcCsc}[1]{\csc^{-1}\COOL@decide@paren{ArcCsc}{#1}}
  \ArcSec The inverse secant function, \ArcSec{x}, \sec^{-1}(x)
                    260 \newcommand{\COOL@notation@ArcSecParen}{p}
                   261 \end{ArcSec} [1] {\end{ArcSec} {#1}} \end{ArcSec} {#1} \end{ArcSec} {*1} \end{
  \ArcCot The inverse cotangent function, \ArcCot{x}, \cot^{-1}(x)
                    262 \newcommand{\COOL@notation@ArcCotParen}{p}
                    263 \newcommand{\ArcCot}[1]{\cot^{-1}\COOL@decide@paren{ArcCot}{#1}}
                     1.3.6 Hyperbolic Functions
     \Sinh Hyperbolic sine, \S h\{x\}, \sinh(x)
                    264 \newcommand{\COOL@notation@SinhParen}{p}
                    265 \newcommand{\Sinh}[1]{\sinh\COOL@decide@paren{Sinh}{#1}}
     \Cosh Hyperbolic cosine, \Cosh{x}, \cosh(x)
                   266 \newcommand{\COOL@notation@CoshParen}{p}
                    267 \newcommand{\Cosh}[1]{\cosh\COOL@decide@paren{Cosh}{#1}}
     \forall Tanh Hyperbolic Tangent, \forall Tanh\{x\}, tanh\{x\}
                   268 \newcommand{\COOL@notation@TanhParen}{p}
                    269 \newcommand{\Tanh}[1]{\tanh\COOL@decide@paren{Tanh}{#1}}
     \Csch Hyperbolic cosecant \Csch{x}, \operatorname{csch}(x)
                    270 \newcommand{\COOL@notation@CschParen}{p}
                   271 \DeclareMathOperator{\csch}{csch}
                   272 \end{\command{\csch}[1]{\csch\c00L@decide@paren{csch}{\#1}}}
     \Sech Hyperbolic secant, \Sech\{x\}, \operatorname{sech}(x)
                   273 \newcommand{\COOL@notation@SechParen}{p}
                    274 \DeclareMathOperator{\sech}{sech}
                   275 \newcommand{\Sech}[1]{\sech\COOL@decide@paren{Sech}{#1}}
     \Coth Hyperbolic Cotangent, \Coth\{x\}, \coth(x)
                    276 \newcommand{\COOL@notation@CothParen}{p}
                   277 \newcommand{\Coth}[1]{\coth\COOL@decide@paren{Coth}{#1}}
                     1.3.7 Inverse Hyperbolic Functions
\ArcSinh Inverse hyperbolic sine, \ArcSinh{x}, \sinh^{-1}(x)
                    278 \newcommand{\COOL@notation@ArcSinhParen}{p}
                    279 \newcommand{\ArcSinh}[1]{\sinh^{-1}\COOL@decide@paren{ArcSinh}{#1}}
```

```
\ArcCosh Inverse hyperbolic cosine, \ArcCosh{x}, \cosh^{-1}(x)
            280 \newcommand{\COOL@notation@ArcCoshParen}{p}
            281 \newcommand{\ArcCosh}[1]{\cosh^{-1}\COOL@decide@paren{ArcCosh}{#1}}
   \ArcTanh Inverse hyperbolic tangent, \ArcTanh{x}, \tanh^{-1}(x)
            282 \newcommand{\COOL@notation@ArcTanhParen}{p}
            283 \newcommand{\ArcTanh}[1]{\tanh^{-1}\COOL@decide@paren{ArcTanh}{#1}}
   \ArcCsch Inverse hyperbolic cosecant, \ArcCsch{x}, csch<sup>-1</sup>(x)
            284 \newcommand{\COOL@notation@ArcCschParen}{p}
            285 \newcommand{\ArcCsch}[1]{\csch^{-1}\COOL@decide@paren{ArcCsch}{#1}}
   \ArcSech Inverse hyperbolic secant, \ArcSech\{x\}, sech^{-1}(x)
            286 \newcommand{\COOL@notation@ArcSechParen}{p}
            287 \newcommand{\ArcSech}[1]{\sech^{-1}\COOL@decide@paren{ArcSech}{#1}}
   \ArcCoth Inverse hyperbolic cotangent, \ArcCoth{x}, \coth^{-1}(x)
            288 \newcommand{\COOL@notation@ArcCothParen}{p}
            289 \end{ArcCoth} [1] {\coth^{-1}\college} aren{ArcCoth} {\#1} }
             1.3.8 Product Logarithms
  \LambertW Lambert Function. \LambertW is an alias for \ProductLog and its properties are
             therefore set using that function
            290 \newcommand{\LambertW}[1]{\ProductLog{#1}}
\ProductLog Generalized Lambert Function \ProductLog{[\langle index \rangle,]\langle variable \rangle}.
                  Lambert Function
                                                  \ProductLog{x}
                                                                        W(x)
                  Generalized Lambert Function \ProductLog{k,x}
                                                                        W_k(x)
            291 \newcommand{\COOL@notation@ProductLogParen}{p}
            292 \newcommand{\ProductLog}[1]{%
            293 \listval{#1}{0}%
            294 \ifthenelse{\value{COOL@listpointer}=1}%
            296 W\COOL@decide@paren{ProductLog}{#1}%
            297 }%
            298 % else
            299 {%
            300 \ifthenelse{\value{COOL@listpointer}=2}%
            302 W_{\listval{#1}{1}}\COOL@decide@paren{ProductLog}{\listval{#1}{2}}%
            303 }%
            304 % else
            305 {%
            306 \PackageError{cool}{'ProductLog' Invaid Argument}%
            307 {Must have a comma separated list of length 1 or 2}
            308 }%
            309 }%
            310 }
```

1.3.9 Max and Min

```
\Max the maximum function, \Max{x,y,z}, max(x,y,z)
         311 \newcommand{\COOL@notation@MaxParen}{p}
         \Min the minimum function, \Min{x,y,z}, min(x,y,z)
         313 \newcommand{\COOL@notation@MinParen}{p}
         314 \newcommand{\Min}[1]{\min\COOL@decide@paren{Min}{#1}}
         1.3.10 Bessel Functions
\BesselJ Bessel Function of the first kind, \BesselJ{\nu}{x}, J_{\nu}(x)
         315 \newcommand{\COOL@notation@BesselJSymb}{J}
         316 \newcommand{\COOL@notation@BesselJParen}{p}
         317 \newcommand{\BesselJ}[2]%
         {\tt 318 \{\COOL@notation@BesselJSymb_{\#1}\COOL@decide@paren\{BesselJ\}{\#2}\}}
\BesselY Bessel Function of the second kind, \BesselY{\nu}{x}, Y_{\nu}(x)
         319 \newcommand{\COOL@notation@BesselYSymb}{Y}
         320 \newcommand{\COOL@notation@BesselYParen}{p}
         321 \newcommand{\BesselY}[2]%
         322 {\COOL@notation@BesselYSymb_{#1}\COOL@decide@paren{BesselY}{#2}}
\Bessell Modified Bessel Function of the first kind, \Bessell{\nu}{x}, I_{\nu}(x)
         323 \newcommand{\COOL@notation@BesselISymb}{I}
         324 \newcommand{\COOL@notation@BesselIParen}{p}
         325 \newcommand{\BesselI}[2]%
         326 {\COOL@notation@BesselISymb_{#1}\COOL@decide@paren{BesselI}{#2}}
\BesselK Modified Bessel Function of the second kind, \BesselK{\nu}{x}, K_{\nu}(x)
         327 \newcommand{\COOL@notation@BesselKSymb}{K}
         328 \newcommand{\COOL@notation@BesselKParen}{p}
         329 \newcommand{\BesselK}[2]%
         330 {\COOL@notation@BesselKSymb_{#1}\COOL@decide@paren{BesselK}{#2}}
         1.3.11 Airy Functions
AiryAi Airy Ai Function, AiryAi\{x\}, Ai(x)
         331 \newcommand{\COOL@notation@AiryAiParen}{p}
         332 \DeclareMathOperator{\AiryAiSymb}{Ai}
         333 \newcommand{\AiryAi}[1]{\AiryAiSymb\COOL@decide@paren{AiryAi}{#1}}
\AiryBi Airy Bi Function, \AiryBi\{x\}, Bi(x)
         334 \newcommand{\COOL@notation@AiryBiParen}{p}
         335 \DeclareMathOperator{\AiryBiSymb}{Bi}
         336 \newcommand{\AiryBi}[1]{\AiryBiSymb\COOL@decide@paren{AiryBi}{#1}}
```

1.3.12 Struve Functions

```
\StruveH Struve H function, \StruveH{\nu}{z}, \mathbf{H}_{\nu}(z)
                 337 \newcommand{\COOL@notation@StruveHParen}{p}
                 338 \newcommand{\StruveH}[2]{ {\ H}_{#1}\COOL@decide@paren{StruveH}{#2}}
       \StruveL Struve L function, \StruveL{\nu}{z}, \mathbf{L}_{\nu}(z)
                 339 \newcommand{\COOL@notation@StruveLParen}{p}
                 340 \newcommand{\StruveL}[2]{ {\bf L}_{#1}\COOL@decide@paren{StruveL}{#2}}
                  1.3.13 Integer Functions
         \Floor floor, \Floor\{x\}, |x|
                 341 \newcommand{\Floor}[1]{\lfloor #1 \rfloor}
       \Ceiling ceiling, \Ceiling\{x\}, [x]
                 342 \newcommand{\Ceiling}[1]{\lceil #1 \rceil}
         \Round round, \Round{x}, |x|
                 343 \newcommand{\Round}[1]{\lfloor #1 \rceil}
         \iPart The integer part of a real number, \iPart{x}, \IntegerPart{x}, int(x)
   \label{lem:linegerPart} $44 \ge \frac{100L@notation@IntegerPartParen}{p}$
                 345 \DeclareMathOperator{\iPartSymb}{int}
                 346 \newcommand{\iPart}[1]{\iPartSymb\COOL@decide@paren{IntegerPart}{#1}}
                 347 \newcommand{\IntegerPart}[1]{\iPart{#1}}
         \fPart the fractional part of a real number, \fPart{x}, \FractionalPart{x}, frac(x)
\verb|\FractionalPart|_{348} \verb|\newcommand{\COOL@notation@FractionalPartParen} \{p\}|_{p}
                 349 \DeclareMathOperator{\fPartSymb}{frac}
                 350 \newcommand{\fPart}[1] {\fPartSymb\COOL@decide@paren{FractionalPart}{#1}}
                 351 \newcommand{\FractionalPart}[1]{\fPart{#1}}
           \Mod Modulo, \Mod{n}{m}, n \mod m
                 352 \newcommand{\COOL@notation@ModDisplay}{mod}
                 353 \mbox{ } \mbox{mewcommand{\Mod} [2]{} %
                 354 \ \texttt{\cool@notation@ModDisplay}{mod}} \%
                 355 {%
                 356 #1 \mod #2%
                 357 }%
                 358 % ElseIf
                 359 { \ifthenelse{\equal{\COOL@notation@ModDisplay}{bmod}}%
                 360 {%
                 361 #1 \bmod #2%
                 362 }%
                 363 % ElseIf
                 364 { \ifthenelse{\equal{\COOL@notation@ModDisplay}{pmod}}%
                 366 #1 \pmod #2%
                 367 }%
                 368 % ElseIf
                 369 {\ifthenelse{\equal{\COOL@notation@ModDisplay}{pod}}%
                 370 {%
```

```
371 #1 \pod #2%
                             372 }%
                             373 % Else
                             374 {%
                             375 \PackageError{cool}{Invalid Option Sent}%
                             376 {ModDisplay can only be 'mod', 'bmod', 'pmod', or 'pod'}%
                             377 }}}}%
                             378 }
      \Quotient quotient, \Quotient{m}{n}, quotient(m, n)
                             379 \newcommand{\COOL@notation@QuotientParen}{p}
                             380 \DeclareMathOperator{\QuotientSymb}{quotient}
                             381 \newcommand{\Quotient}[2]%
                             382 {\QuotientSymb\COOL@decide@paren{Quotient}{#1,#2}}
                  \GCD greatest common divisor, \GCD\{n_1,n_2,\ldots,n_m\}, \gcd(n_1,n_2,\ldots,n_m)
                             383 \newcommand{\COOL@notation@GCDParen}{p}
                             384 \newcommand{\GCD}[1]{\gcd\COOL@decide@paren{GCD}{#1}}
\ExtendedGCD Extended Greatest Common Divisor.
               \EGCD
                                      \EGCD\{n\}\{m\}, \ExtendedGCD\{n\}\{m\}, \operatorname{egcd}(n, m)
                             385 \newcommand{\COOL@notation@ExtendedGCDParen}{p}
                             386 \DeclareMathOperator{\ExtendedGCDSymb}{egcd}
                             387 \newcommand{\ExtendedGCD}[2]%
                             388 {\ExtendedGCDSymb\COOL@decide@paren{ExtendedGCD}{#1,#2}}
                             389 \newcommand{\EGCD}[2]{\ExtendedGCD{#1}{#2}}
                 \LCM Least Common Multiple, \LCM\{n_1,n_2,\ldots,n_m\}, lcm(n_1,n_2,\ldots,n_m)
                             390 \newcommand{\COOL@notation@LCMParen}{p}
                             391 \DeclareMathOperator{\LCMSymb}{1cm}
                             392 \end{\collabel{lcm}[1]{\collabel{lcm}} and {\cline{lcm}[1]{\cline{lcm}} and {\cline{lcm}} and {\cli
    \Fibonacci Fibonacci number, \Fibonacci \{n\}, F_n, and
                                      Fibonacci Polynomial, \Fibonacci \{n,x\}, F_n(x)
                             393 \newcommand{\COOL@notation@FibonacciParen}{p}
                             394 \newcommand{\Fibonacci}[1]{%
                             395 \liststore{#1}{COOL@Fibonacci@arg@}%
                             396 \listval{#1}{0}%
                             397 \ifthenelse{\value{COOL@listpointer} = 1}%
                             398 {%
                             399 F_{#1}%
                             400 }%
                             401 % ElseIf
                             402 { \ifthenelse{\value{COOL@listpointer} = 2}%
                             404 F_{\COOL@Fibonacci@arg@i}%
                             405 \COOL@decide@paren{Fibonacci}{\COOL@Fibonacci@arg@ii}%
                             406 }%
                             407 % Else
                             408 {%
                             409 \PackageError{cool}{Invalid Argument}%
                             410 {'Fibonacci' can only accept a
                             411 comma separate list of length 1 or 2}%
```

```
412 }}%
               413 }
       \Euler Euler number, \Euler\{n\}, E_n, and Euler Polynomial, \Euler\{n\x\}, E_n(x)
               414 \newcommand{\COOL@notation@EulerParen}{p}
               415 \newcommand{\Euler}[1]{%
               416 \liststore{#1}{COOL@Euler@arg@}%
               417 \listval{#1}{0}%
               418 \ifthenelse{\value{COOL@listpointer} = 1}%
               419 {%
               420 E_{#1}%
               421 }%
               422 % ElseIf
               423 { \ifthenelse{\value{COOL@listpointer} = 2}%
               425 E_{\COOL@Euler@arg@i}%
               426 \COOL@decide@paren{Euler}{\COOL@Euler@arg@ii}%
               427 }%
               428 % Else
               429 {%
               430 \PackageError{cool}{Invalid Argument}%
               431 {'Euler' can only accept a
               432 \text{ comma separate list of length 1 or 2}\%
               433 }}%
               434 }
   \Bernoulli Bernoulli number, \Bernoulli\{n\}, B_n and
                   Bernoulli Polynomial \Bernoulli\{n,x\}, B_n(x)
               435 \newcommand{\COOL@notation@BernoulliParen}{p}
               436 \newcommand{\Bernoulli}[1]{%
               437 \liststore{#1}{COOL@Bernoulli@arg@}%
               438 \listval{#1}{0}%
               439 \ifthenelse{\value{COOL@listpointer} = 1}%
               440 {%
               441 B_{#1}%
               442 }%
               443 % ElseIf
               444 { \ifthenelse{\value{COOL@listpointer} = 2}%
               445 {%
               446 B_{\COOL@Bernoulli@arg@i}%
               447 \verb|\COOL@decide@paren{Bernoulli}{\COOL@Bernoulli@arg@ii}|| \\
               448 }%
               449 % Else
               450 {%
               451 \PackageError{cool}{Invalid Argument}%
               452 {'Bernoulli' can only accept a
               453 comma separate list of length 1 or 2}%
               454 }}%
               455 }
\StirlingSOne Stirling number of the first kind \StirlingSOne{n}{m}, S_n^{(m)}
               456 \newcommand{StirlingSOne}[2]{S_{#1}^{\sin{\#2}}}
\StirlingSTwo Stirling number of the second kind, \StirlingSTwo{n}{m}, \mathcal{S}_n^{(m)}
```

```
457 \end{StirlingSTwo} [2] { \cal S}_{#1}^{\inp{#2}}}
   \PartitionsP Number of unrestricted partitions of an integer, \PartitionsP{x}, p(x)
                458 \newcommand{\COOL@notation@PartitionsPParen}{p}
                459 \newcommand{\PartitionsP}[1]{p\COOL@decide@paren{PartitionsP}{#1}}
   \PartitionsQ number of partitions of an integer into distinct parts, \PartitionsQ{x}, q(x)
                460 \newcommand{\COOL@notation@PartitionsQParen}{p}
                461 \end{PartitionsQ} [1] {q\cool@decide@paren{PartitionsQ}{#1}} \\
 \DiscreteDelta Discrete delta function,
                    \DiscreteDelta\{n_1, n_2, \ldots, n_m\}, \delta(n_1, n_2, \ldots, n_m\}
                462 \newcommand{\COOL@notation@DiscreteDeltaParen}{p}
                463 \newcommand{\DiscreteDelta}[1]%
                464 {\delta\COOL@decide@paren{DiscreteDelta}{#1}}
\KroneckerDelta Kronecker Delta, \KroneckerDelta{n_1,n_2,\ldots,n_m}, \delta^{n_1n_2...n_m}
                465 \newcommand{\COOL@notation@KroneckerDeltaUseComma}{false}%
                466 \newcommand{\COOL@notation@KroneckerDeltaIndicies}{local}
                467 \newcommand{\KroneckerDelta}[2][u]{%
                468 \liststore{#2}{COOL@arg@}%
                469 \listval{#2}{0}%
                470 \def\COOL@arg@temp{}%
                471 \forLoop{1}{\value{COOL@listpointer}}{COOL@ct}%
                472 {%
                474 {%
                475 \ifthenelse{\NOT \value{COOL@ct} = 1}
                476 {%
                477 \edef\COOL@arg@temp%
                478 {\COOL@arg@temp, \csname COOL@arg@\roman{COOL@ct}\endcsname}%
                479 }%
                480 % Else
                481 {%
                482 \edef\COOL@arg@temp%
                483 {\COOL@arg@temp \csname COOL@arg@\roman{COOL@ct}\endcsname}%
                484 }%
                485 }%
                486 % Else
                487 {%
                488 \edef\COOL@arg@temp%
                489 {\COOL@arg@temp \csname COOL@arg@\roman{COOL@ct}\endcsname}%
                491 }%
                492 \delta\COOL@decide@indicies{KroneckerDelta}{#1}{\COOL@arg@temp}%
                493 }
    \LeviCivita Levi-Civita totally anti-symmetric Tensor density,
                    \LeviCivita{n_1,n_2,\ldots,n_m}, \epsilon^{n_1n_2...n_m}
     \Signature
                494 \newcommand{\COOL@notation@LeviCivitaUseComma}{false}
                495 \newcommand{\COOL@notation@LeviCivitaIndicies}{local}
                496 \newcommand{\LeviCivita}[2][u]{%
                497 \liststore{#2}{COOL@arg@}%
```

```
499 \def\COOL@arg@temp{}%
          500 \forLoop{1}{\value{COOL@listpointer}}{COOL@ct}%
          502 \ \texttt{\comma} \{ true \} \%
          503 {%
          504 \left( VOT \right) = 1%
          505 {%
          506 \edef\COOL@arg@temp%
          507 {\COOL@arg@temp, \csname COOL@arg@\roman{COOL@ct}\endcsname}%
          508 }%
          509 % Else
          510 {%
          511 \edef\COOL@arg@temp%
          513 }%
          514 }%
          515 % Else
          516 {%
          517 \edef\COOL@arg@temp%
          518 {\COOL@arg@temp \csname COOL@arg@\roman{COOL@ct}\endcsname}%
          519 }%
          520 }%
          521 \ensuremath{\mbox{\mbox{$\sim$}}} \{\$1\} \{\cool@arg@temp}\%
           523 \newcommand{\Signature}[2][u]{\LeviCivita[#1]{#2}}
           1.3.14 Classical Orthogonal Polynomials
\HermiteH Hermite Polynomial, \HermiteH{n}{x}, H_n(x)
          524 \newcommand{\COOL@notation@HermiteHParen}{p}
           525 \newcommand{\COOL@notation@HermiteHSymb}{H}
           526 \newcommand{\HermiteH}[2]%
          527 {\COOL@notation@HermiteHSymb_{#1}\COOL@decide@paren{HermiteH}{#2}}
\LaugerreL \Laugerre Polynomial, \LaugerreL\\nu,x\}, L_{\nu}(x) and
           Generalized Laugerre Polynomial \LaugerreL{\nu, \lambda,x}, L_{\nu}^{\lambda}(x)
           528 \newcommand{\COOL@notation@LaugerreLParen}{p}
          529 \newcommand{\COOL@notation@LaugerreLSymb}{L}
          530 \newcommand{\LaugerreL}[1]{%
          531 \liststore{#1}{COOL@list@temp@}%
          532 \listval{#1}{0}%
          533 \ifthenelse{\value{COOL@listpointer}=2}%
          535 \COOL@notation@LaugerreLSymb_{\COOL@list@temp@i}%
          536 \COOL@decide@paren{LaugerreL}{\COOL@list@temp@ii}%
          537 }%
          538 % Else If
          539 { \ifthenelse{\value{COOL@listpointer}=3}%
          541 \COOL@notation@LaugerreLSymb_{\COOL@list@temp@i}^{\COOL@list@temp@ii}%
          542 \COOL@decide@paren{LaugerreL}{\COOL@list@temp@iii}%
          543 }%
          544 % Else
```

498 \listval{#2}{0}%

```
545 {%
            546 \PackageError{cool}{Invalid Argument}%
            547 ('LaugerrL' only accepts a comma separated list of length 2 or 3}%
            549 }
\LegendreP Legendre Polynomials
                  Legendre Polynomial
                                                      \LegendreP{n,x}
                                                                                   P_n(x)
                  Associated Legendre Polynomial
                                                      \label{eq:legendreP} $$ \end{reP}_{\ell}, x \in P_{\ell}^m(x) $$ LegendreP_{\ell}, x, x \in P_{\ell}^m(x) $$
                     of the first kind of type 2
                  Associated Legendre Function
                                                      \LegendreP{\ell,m,3,x} \mathcal{P}_{\ell}^{m}(x)
                     of the first kind of type 3
            550 \newcommand{\COOL@notation@LegendrePParen}{p}
            551 \newcommand{\COOL@notation@LegendrePSymb}{P}
            552 \newcommand{\LegendreP}[1]{%
            553 \liststore{#1}{COOL@LegendreP@arg@}%
            554 \listval{#1}{0}%
            555 \ifthenelse{\value{COOL@listpointer} = 2}%
            557 \COOL@notation@LegendrePSymb_{\COOL@LegendreP@arg@i}%
            558 \verb|\COOL@decide@paren{LegendreP}{\COOL@LegendreP@arg@ii}|% \\
            559 }%
            560 % ElseIf
            561 { \ifthenelse{\value{COOL@listpointer} = 3}%
            563 \COOL@notation@LegendrePSymb_{\COOL@LegendreP@arg@i}%
            564 ^{\COOL@LegendreP@arg@ii}%
            565 \COOL@decide@paren{LegendreP}{\COOL@LegendreP@arg@iii}%
            566 }%
            567 % ElseIf
            568 { \ifthenelse{\value{COOL@listpointer} = 4}%
            570 \isint{\COOL@LegendreP@arg@iii}{COOL@isint}%
            571 \ifthenelse{\boolean{COOL@isint}}%
            573 \ifcase\COOL@LegendreP@arg@iii\relax%
            574 \PackageError{cool}{Invalid Argument}%
            575 {'LegendreP' third argument must be $>$ 1}%
            577 \PackageError{cool}{Invalid Argument}%
            578 {'LegendreP' third argument must be $>$ 1}%
            580 \COOL@notation@LegendrePSymb_{\COOL@LegendreP@arg@i}%
            581 ^{\COOL@LegendreP@arg@ii}%
            582 \COOL@decide@paren{LegendreP}{\COOL@LegendreP@arg@iv}%
            583 \or%
            584 {\cal P}_{\COOL@LegendreP@arg@i}%
            585 ^{\COOL@LegendreP@arg@ii}%
            586 \verb|\COOL@decide@paren{LegendreP}{\COOL@LegendreP@arg@iv}|% \\
            588 \PackageError{cool}{Invalid Argument}{unsupported}%
            589 \fi%
            590 }
```

```
591 % Else
           592 {%
           593 \PackageError{cool}{Invalid Argument}{third arg must be int}%
           594 }%
           595 }%
           596 % Else
           597 {%
           598 \PackageError{cool}{Invalid Argument}%
           599 {'LegendreP' can only accept a%
           600 comma separated list of length 2-4}%
           601 }}}%
           602 }
\LegendreQ Legendre Polynomials of the second kind
                 Legendre Polynomial
                                                   \LegendreQ{n,x}
                                                                                Q_n(x)
                 Associated Legendre Polynomial
                    of the second kind of type 2
                                                                                Q_{\ell}^{m}(x)
                                                   \LegendreQ{\ell,m,x}
                                                   \LegendreQ{\ell,m,2,x}
                 Associated Legendre Function
                    of the second kind of type 3
                                                   \LegendreQ{\ell,m,3,x}
                                                                                \mathcal{Q}_{\ell}^{m}(x)
           603 \newcommand{\COOL@notation@LegendreQParen}{p}
           604 \newcommand{\COOL@notation@LegendreQSymb}{Q}
           605 \newcommand{\LegendreQ}[1]{%
           606 \liststore{#1}{COOL@LegendreQ@arg@}%
           607 \listval{#1}{0}%
           608 \ifthenelse{\value{COOL@listpointer} = 2}%
           610 \COOL@notation@LegendreQSymb_{\COOL@LegendreQ@arg@i}%
           611 \COOL@decide@paren{LegendreQ}{\COOL@LegendreQ@arg@ii}%
           612 }%
           613 % ElseIf
           614 { \ifthenelse{\value{COOL@listpointer} = 3}%
           616 \COOL@notation@LegendreQSymb_{\COOL@LegendreQ@arg@i}%
           617 ~ \{\COOL@LegendreQ@arg@ii}\%
           618 \COOL@decide@paren{LegendreQ}{\COOL@LegendreQ@arg@iii}%
           619 }%
           620 % ElseIf
           621 { \ifthenelse{\value{COOL@listpointer} = 4}%
           623 \isint{\COOL@LegendreQ@arg@iii}{COOL@isint}%
           624 \ifthenelse{\boolean{COOL@isint}}%
           625 {%
           626 \ifcase\COOL@LegendreQ@arg@iii\relax%
           627 \PackageError{cool}{Invalid Argument}%
           628 {'LegendreQ' third argument must be $>$ 1}%
           629 \or%
           630 \PackageError{cool}{Invalid Argument}%
           631 {'LegendreQ' third argument must be $>$ 1}%
           632 \or%
           633 \COOL@notation@LegendreQSymb_{\COOL@LegendreQ@arg@i}%
           634 ^{\COOL@LegendreQ@arg@ii}%
           635 \COOL@decide@paren{LegendreQ}{\COOL@LegendreQ@arg@iv}%
           636 \or%
```

```
637 {\cal Q}_{\COOL@LegendreQ@arg@i}%
                638 ^{\COOL@LegendreQ@arg@ii}%
                639 \COOL@decide@paren{LegendreQ}{\COOL@LegendreQ@arg@iv}%
                641 \PackageError{cool}{Invalid Argument}{unsupported}%
                642 \fi%
                643 }
                644 % Else
                645 {%
                646 \PackageError{cool}{Invalid Argument}{third arg must be int}%
                647 }%
                648 }%
                649 % Else
                650 {%
                651 \PackageError{cool}{Invalid Argument}%
                652 {'LegendreQ' can only accept a%
                653 comma separated list of length 2-4}%
                654 }}}%
                 655 }
    \ChebyshevT Chebyshev Polynomial of the first kind, ChebyshevT{n}{x}, ChebyshevTnx
                 656 \newcommand{\COOL@notation@ChebyshevTParen}{p}
                657 \newcommand{\COOL@notation@ChebyshevTSymb}{T}
                 658 \newcommand{\ChebyshevT}[2]%
                659 {\COOL@notation@ChebyshevTSymb_{#1}\COOL@decide@paren{ChebyshevT}{#2}}
    \ChebyshevU , \ChebyshevU{n}{z}, U_n(z) Chebyshev Polynomial of the second kind
                660 \newcommand{\COOL@notation@ChebyshevUParen}{p}
                 661 \newcommand{\COOL@notation@ChebyshevUSymb}{U}
                 662 \newcommand{\ChebyshevU}[2]%
                663 {\COOL@notation@ChebyshevUSymb_{#1}\COOL@decide@paren{ChebyshevU}{#2}}
       \JacobiP Jacobi Polynomial, \JacobiP{n}{a}{b}{x}, P_n^{(a,b)}(x)
                664 \newcommand{\COOL@notation@JacobiPParen}{p}
                 665 \newcommand{\COOL@notation@JacobiPSymb}{P}
                666 \newcommand{\JacobiP}[4]{%
                 667 \COOL@notation@JacobiPSymb_{#1}^{\inp{#2, #3}}%
                668 \COOL@decide@paren{JacobiP}{#4}%
                669 }
                 1.3.15
                         Associated Polynomials
                 Associated Legendre Polynomial of the first kind of type 2
\AssocLegendreP
                     \AssocLegendreP{\ell}{m}{x}, P_{\ell}^{m}(x)
                670 \newcommand{\AssocLegendreP}[3]{\LegendreP{#1,#2,#3}}
                 Associated Legendre Polynomial of the second kind of type 2
\AssocLegendreQ
                     \AssocLegendreQ{\ell}{m}{x}, Q_{\ell}^{m}(x)
                 671 \newcommand{\AssocLegendreQ}[3]{\LegendreQ{#1,#2,#3}}
   \GegenbauerC Gegenbauer Polynomial, \GegenbauerC\{n}\{\lambda}\{x\}, C_n^{\lambda}(x)
                 672 \newcommand{\COOL@notation@GegenbauerCParen}{p}
                 673 \newcommand{\COOL@notation@GegenbauerCSymb}{C}
```

```
674 \newcommand{\GegenbauerC}[3]{%
                     675 \COOL@notation@GegenbauerCSymb_{#1}^{#2}%
                     676 \COOL@decide@paren{GegenbauerC}{#3}%
\SphericalHarmonicY
                     Spherical Harmonic, \SpHarmY{\ell}{m}{\theta}{\phi},
    \SphericalHarmY
                         \SphericalHarmY{\ell}{m}{\theta}{\phi},
                         \Spherical Harmonic Y {\ell}{m}{\theta}{\phi}, Y_{\ell}^{m}(\theta,\phi)
           \SpHarmY
                     678 \newcommand{\COOL@notation@SphericalHarmonicYParen}{p}
                     679 \newcommand{\COOL@notation@SphericalHarmonicYSymb}{Y}
                     680 \newcommand{\SphericalHarmonicY}[4]{%
                     681 \COOL@notation@SphericalHarmonicYSymb_{#1}^{#2}%
                     682 \COOL@decide@paren{SphericalHarmonicY}{#3,#4}%
                     683 }
                     684 \newcommand{\SphericalHarmY}[4]{\SphericalHarmonicY{#1}{#2}{#3}{#4}}
                     685 \newcommand{\SpHarmY}[4]{\SphericalHarmonicY{#1}{#2}{#3}{#4}}
                     1.3.16 Other Polynomials
       \CyclotomicC Cyclotomic Polynomial, \CyclotomicC{n}{z}, C_n(z)
                     686 \newcommand{\COOL@notation@CyclotomicCParen}{p}
                     687 \newcommand{\CyclotomicC}[2]%
                     688 {C_{#1}\COOL@decide@paren{CyclotomicC}{#2}}
        \FibonacciF Fibonacci Polynomial, \FibonacciF{n}{z}, F_n(z)
                     689 \mbox{\mbox{$\mbox{$\sim$}} [2] {\mbox{$\mbox{$\sim$}}}
            \EulerE Euler Polynomial, \EulerE{n}{z}, E_n(z)
                     690 \newcommand{\EulerE}[2]{\Euler{#1,#2}}
        \BernoulliB Bernoulli Polynomial, \BernoulliB{n}{z}, B_n(z)
                     691 \newcommand{\BernoulliB}[2]{\Bernoulli{#1,#2}}
                      1.3.17 Factorial Functions
         \Factorial Factorial, \Factorial{n}, n!
                     692 \newcommand{\Factorial}[1]{#1!}
      \DblFactorial Double Factorial, \DblFactorial {n}, n!!
                     693 \newcommand{\DblFactorial}[1]{#1!!}
          \Binomial binomial, \Binomial \{n\} \{r\}, \binom{n}{r}
                     694 \newcommand{\Binomial}[2]{ \binom{#1}{#2} }
       \Multinomial Multinomial, \Multinomial{n_1,\ldots,n_m}, (n_1 + \ldots + n_m; n_1, \ldots, n_m)
                     695 \newcommand{\Multinomial}[1]%
                     696 {%
                     697 \listval{#1}{0}% get the length of the list
                     698 \setcounter{COOL@listlen}{\value{COOL@listpointer}}% record length
                     699 \liststore{#1}{COOL@list@temp@}%
                     700 \isint{\COOL@list@temp@i}{COOL@isint}% check that the entries are integers
                     701 \setcounter{COOL@ct}{2}%
```

```
704 {%
           705 \def\COOL@Multinomial@tempa%
           706 {\csname COOL@list@temp@\roman{COOL@ct}\endcsname}%
           707 \isint{\COOL@Multinomial@tempa}{COOL@isint}%
           708 \stepcounter{COOL@ct}%
           709 }%
           710 \ifthenelse{\boolean{COOL@isint}}%
           711 {%
           712 % all of them are integers
           713 \setcounter{COOL@ct@}{ \COOL@list@temp@i }% records the sum
           714 \forLoop{2}{\value{COOL@listlen}}{COOL@ct}%
           715 {%
           716 \addtocounter{COOL@ct@}%
           717 {\csname COOL@list@temp@\roman{COOL@ct}\endcsname}%
           719 \left(\arabic{COOL@ct@}%
           720 }%
           721 % Else
           722 {%
           723 \left(%
           724 \listval{#1}{1}%
           725 \forLoop{2}{\value{COOL@listlen}}{COOL@ct}%
           727 + \listval{#1}{\arabic{COOL@ct}}%
           728 }%
           729 }%
           730 ;#1\right)%
           731 }
            1.3.18 Gamma Functions
\GammaFunc Gamma Function
             Gamma Function
                                                        \GammaFunc{z}
                                                                              \Gamma(z)
             Incomplete Gamma Function
                                                        \GammaFunc{a,z}
                                                                              \Gamma(a,z)
             Generalized Incomplete Gamma Function
                                                        \Gamma_{a,x,y}
                                                                              \Gamma(a,x,y)
           732 \newcommand{\COOL@notation@GammaFuncParen}{p}
           733 \newcommand{\GammaFunc}[1]{%
           734 \listval{#1}{0}%
           735 \ifthenelse{\value{COOL@listpointer} = 1}%
           737 \Gamma\COOL@decide@paren{GammaFunc}{#1}%
           738 }%
           739 % ElseIf
           740 { \ifthenelse{\value{COOL@listpointer} = 2}%
           742 \Gamma\COOL@decide@paren{GammaFunc}{#1}%
           743 }%
           744 % ElseIf
           745 { \ifthenelse{\value{COOL@listpointer} = 3}%
           747 \Gamma\COOL@decide@paren{GammaFunc}{#1}%
```

702 \whiledo{ \boolean{COOL@isint} \AND

703 \NOT \value{COOL@ct}>\value{COOL@listlen} }%

```
748 }%
                          749 % Else
                          750 {%
                          751 \PackageError{cool}{Invalid Argument}%
                          752 {'GammaFunc' can only accept a comma separate list of length 1 to 3}%
                          753 }%
                          754 }}%
                          755 }
               \IncGamma incomplete Gamma function, \IncGamma{a}{x}, \Gamma(a, x)
                          756 \newcommand{\IncGamma}[2]{\GammaFunc{\#1,\#2}}
            \GenIncGamma Generalized Incomplete Gamma, \GenIncGamma{a}{x}{y}, \Gamma(a, x, y)
                          757 \newcommand{\GenIncGamma}[3]{\GammaFunc{#1, #2, #3}}
       \GammaRegularized Regularized Incomplete Gamma
            \RegIncGamma
                               \GammaRegularized{a,x}
                                                           Q(a,x)
               \GammaReg
                               \RegIncGamma{a}{x}
                                                           Q(a,x)
                               \Gamma \
                                                           Q(a,x)
                          758 \newcommand{\COOL@notation@GammaRegularizedParen}{p}%
                          759 \newcommand{\GammaRegularized}[1]{%
                          760 \listval{#1}{0}%
                          761 \ifthenelse{\value{COOL@listpointer} = 2}%
                          762 {%
                          763 Q\COOL@decide@paren{GammaRegularized}{#1}%
                          764 }%
                          765 % ElseIf
                          766 { \ifthenelse{\value{COOL@listpointer} = 3}%
                          768 Q\COOL@decide@paren{GammaRegularized}{#1}%
                          769 }%
                          770 % Else
                          771 {%
                          772 \PackageError{cool}{Invalid Argument}%
                          773 {'GammaRegularized' can only accept comma%
                          774 separated lists of length 2 or 3}%
                          775 }%
                          776 }%
                          777 }
                          778 \newcommand{\RegIncGamma}[2]{\GammaRegularized{#1, #2}}
                          779 \newcommand{\GammaReg}[1]{\GammaRegularized{#1}}
         \RegIncGammaInv
                          Inverse of Regularized Incomplete Gamma,
                                                                   Q^{-1}(a, x)
\InverseGammaRegularized
                               \RegIncGammaInv{a}{x}
                               \verb|\InverseGammaRegularized{a,x}| \quad Q^{-1}(a,x)
            \GammaRegInv
                                                                   Q^{-1}(a, x)
                               \GammaRegInv{a,x}
                          780 \newcommand{\COOL@notation@InverseGammaRegularizedParen}{p}
                          781 \newcommand{\InverseGammaRegularized}[1]{%
                          782 \listval{#1}{0}%
                          783 \ifthenelse{\value{COOL@listpointer} = 2}%
                          785 Q^{-1}\COOL@decide@paren{InverseGammaRegularized}{#1}%
                          786 }%
```

```
787 % ElseIf
                   788 { \ifthenelse{\value{COOL@listpointer} = 3}%
                   790 Q^{-1}\COOL@decide@paren{InverseGammaRegularized}{#1}%
                   791 }%
                   792 % Else
                   793 {%
                   794 \PackageError{cool}{Invalid Argument}%
                   795 {'InverseGammaRegularized' can only accept%
                   796 a comma separated list of length 2 or 3}%
                   797 }%
                   798 }%
                   799 }
                   800 \newcommand{\RegIncGammaInv}[2]{\InverseGammaRegularized{#1, #2}}
                   801 \newcommand{\GammaRegInv}[1]{\InverseGammaRegularized{#1}}
   \GenRegIncGamma Generalized Regularized Incomplete Gamma
                         \GenRegIncGamma{a}{x}{y}
                                                      Q(a, x, y)
                         \GammaRegularized{a,x,y} Q(a,x,y)
                   802 \newcommand{\GenRegIncGamma}[3]{\GammaRegularized{#1, #2, #3}}
\GenRegIncGammaInv Inverse of Gen. Reg. Incomplete Gamma, \GenRegIncGammaInv{a}{x}{y},
                    Q^{-1}(a, x, y)
                   803 \newcommand{\GenRegIncGammaInv}[3]{\InverseGammaRegularized{#1, #2, #3}}
       \Pochhammer Pochhammer Symbol \Pochhammer{a}{n}, (a)_n
                   804 \newcommand{\Pochhammer} [2] \{ \inf\{\#1\}_{\#2} \}
         \LogGamma Log Gamma Function, \LogGamma{x}, \log\Gamma(x)
                   805 \newcommand{\COOL@notation@LogGammaParen}{p}
                   806 \DeclareMathOperator{\LogGammaSymb}{log\Gamma}
                   807 \newcommand{\LogGamma}[1]{\LogGammaSymb\COOL@decide@paren{LogGamma}{#1}}
                    1.3.19
                            Derivatives of Gamma Functions
          \DiGamma Digamma function, \DiGamma{x}, F(x)
                   808 \newcommand{\COOL@notation@DiGammaParen}{p}
                   809 \newcommand{\DiGamma}[1]{\digamma\COOL@decide@paren{DiGamma}{#1}}
                    PolyGamma function, \PolyGamma{\nu}{x}, \psi^{(\nu)}(x)
        \PolyGamma
                   810 \newcommand{\COOL@notation@PolyGammaParen}{p}
                   811 \newcommand{\PolyGamma}[2]%
                   812 {\psi^{\inp{#1}}\COOL@decide@paren{PolyGamma}{#2}}
          \HarmNum Harmonic Number
                        Harmonic Number
                                                     \HarmNum{x}
                        General Harmonic Number
                                                     \HarmNum{x,r}
                   813 \newcommand{\HarmNum}[1]{%
                   814 \listval{#1}{0}%
                   815 \ifthenelse{\value{COOL@listpointer}=1}%
```

```
816 {%
         817 H_{#1}
         818 }%
         819 % Else If
         820 { \ifthenelse{\value{COOL@listpointer}=2}%
         822 \liststore{#1}{COOL@list@temp@}%
         823 H^{\inp{\COOL@list@temp@ii}}_{\COOL@list@temp@i}%
         824 }%
         825 % Else
         826 {%
         827 \PackageError{cool}{Invalid Argument}%
         828 {'Harm Num' can only accept a comma separated list of length 1 or 2}%
         829 }}%
         830 }
          1.3.20 Beta Functions
           Beta Function
                                                   \Beta{a.b}
                                                                          B(a,b)
                                                                          B_z(a,b)
   \Beta
           Incomplete Beta Function
                                                   \Beta{z,a,b}
           Generalized Incomplete Beta Function \Beta{z_1,z_2,a,b} B_{(z_1,z_2)}(a,b)
         831 \newcommand{\COOL@notation@BetaParen}{p}
         832 \newcommand{\Beta}[1]{%
         833 \liststore{#1}{COOL@Beta@arg@}%
         834 \listval{#1}{0}%
         835 \ifthenelse{\value{COOL@listpointer} = 2}%
         837 B\COOL@decide@paren{Beta}{\COOL@Beta@arg@i, \COOL@Beta@arg@ii}%
         838 }%
         839 % ElseIf
         840 { \ifthenelse{\value{COOL@listpointer} = 3}%
         842 B_{\COOL@Beta@arg@i}%
         843 \COOL@decide@paren{Beta}{\COOL@Beta@arg@ii, \COOL@Beta@arg@iii}%
         844 }%
         845 % ElseIf
         846 { \ifthenelse{\value{COOL@listpointer} = 4}%
         848 B_{\inp{\COOL@Beta@arg@i,\COOL@Beta@arg@ii}}%
         849 \COOL@decide@paren{Beta}{\COOL@Beta@arg@iii, \COOL@Beta@arg@iv}%
         850 }%
         851 % Else
         852 {%
         853 \PackageError{cool}{Invalid Argument}%
         854 {'Beta' can only accept a comma separated list of length 2 to 4}%
         855 }%
         856 }}%
         857 }
\IncBeta Incomplete Beta Function
              \IncBeta{z}{a}{b}
                                    B_z(a,b)
              \beta_{z,a,b}
                                     B_z(a,b)
         858 \newcommand{\IncBeta}[3]{\Beta{#1,#2, #3}}
```

```
\GenIncBeta Generalized Incomplete Beta Function
                               \GenIncBeta\{x\}\{y\}\{a\}\{b\}
                                                            B_{(x,y)}(a,b)
                                                             B_{(x,y)}(a,b)
                               \Beta{x,y,a,b}
                         859 \newcommand{\GenIncBeta}[4]{\Beta{#1,#2,#3,#4}}
                         Regularized Incomplete Beta Function
       \BetaRegularized
               \BetaReg
                               \BetaRegularized{z,a,b} I_z(a,b)
            \RegIncBeta
                               \BetaReg{z,a,b}
                                                            I_{\sim}(a,b)
                               \RegIncBeta{z}{a}{b}
                                                            I_z(a,b)
                         860 \newcommand{\COOL@notation@BetaRegularizedParen}{p}
                         861 \newcommand{\BetaRegularized}[1]{%
                         862 \liststore{#1}{COOL@BetaRegularized@arg@}%
                         863 \listval{#1}{0}%
                         864 \ifthenelse{\value{COOL@listpointer} = 3}%
                         865 {%
                         866 I_{\COOL@BetaRegularized@arg@i}%
                         867 \COOL@decide@paren{BetaRegularized}%
                         868 {\COOL@BetaRegularized@arg@ii, \COOL@BetaRegularized@arg@iii}%
                         869 }%
                         870 % ElseIf
                         871 { \ifthenelse{\value{COOL@listpointer} = 4}%
                         873 I_{\inp{\COOL@BetaRegularized@arg@i, \COOL@BetaRegularized@arg@ii}}%
                         874 \COOL@decide@paren{BetaRegularized}%
                         875 {\COOL@BetaRegularized@arg@iii, \COOL@BetaRegularized@arg@iv}%
                         876 }%
                         877 % Else
                         878 {%
                         879 \PackageError{cool}{Invalid Argument}%
                         880 {'BetaRegularized' can only accept%
                         881 a comma separated list of length 3 or 4}%
                         882 }%
                         883 }%
                         884 }
                         885 \newcommand{\RegIncBeta}[3]{\BetaRegularized{#1,#2,#3}}
                         886 \newcommand{\BetaReg}[1]{\BetaRegularized{#1}}
\InverseBetaRegularized Inverse of Regularized Incomplete Beta Function
                                                                    I_z^{-1}(a,b)

I_z^{-1}(a,b)

I_z^{-1}(a,b)
            \BetaRegInv
                               \InverseBetaRegularized{z,a,b}
         \RegIncBetaInv
                               \BetaRegInv{z,a,b}
                               \RegIncBetaInv{z}{a}{b}
                         887 \newcommand{\COOL@notation@InverseBetaRegularizedParen}{p}
                         888 \newcommand{\InverseBetaRegularized}[1]{%
                         889 \liststore{#1}{COOL@InverseBetaRegularized@arg@}%
                         890 \listval{#1}{0}%
                         891 \ifthenelse{\value{COOL@listpointer} = 3}%
                         892 {%
                         893 I^{-1}_{\COOL@InverseBetaRegularized@arg@i}%
                         894 \COOL@decide@paren{InverseBetaRegularized}%
                         895 {\COOL@InverseBetaRegularized@arg@ii,%
                         896 \COOL@InverseBetaRegularized@arg@iii}%
                         897 }%
                         898 % ElseIf
```

```
899 { \ifthenelse{\value{COOL@listpointer} = 4}%
                    901 I^{-1}_{\inp{ \COOL@InverseBetaRegularized@arg@i,%
                    902 \COOL@InverseBetaRegularized@arg@ii%
                    904 }%
                    905 \COOL@decide@paren{InverseBetaRegularized}%
                    906 {\COOL@InverseBetaRegularized@arg@iii,%
                    907 \COOL@InverseBetaRegularized@arg@iv}%
                    908 }%
                    909 % Else
                    910 {%
                    911 \PackageError{cool}{Invalid Argument}%
                    912 {'InverseBetaRegularized' can only accept%
                    913 a comma separated list of length 3 or 4}%
                    914 }%
                    915 }%
                    916 }
                    917 \newcommand{\RegIncBetaInv}[3]{\InverseBetaRegularized{#1,#2,#3}}
                    918 \newcommand{\BetaRegInv}[1]{\InverseBetaRegularized{#1}}
   \GenRegIncBeta Generalized Regularized Incomplete Beta Func
                           \GenRegIncBeta{x}{y}{a}{b} B_{(x,y)}(a,b)
                          \Beta{x,y,a,b}
                                                              B_{(x,y)}(a,b)
                    919 \newcommand{\GenRegIncBeta}[4]{\Beta{#1,#2,#3,#4}}
\GenRegIncBetaInv Inverse of Generalized Regularized Incomplete Beta Function
                          \label{eq:continuity} $$ \operatorname{GenRegIncBetaInv}\{x\}\{y\}\{z\}\{b\} \qquad I_{(x,y)}^{-1}(z,b) \\ \operatorname{InverseBetaRegularized}\{x,y,z,b\} \qquad I_{(x,y)}^{-1}(z,b) \\
                    920 \newcommand{\GenRegIncBetaInv}[4]{\InverseBetaRegularized{#1,#2,#3,#4}}
                     1.3.21 Error Functions
                       Error Function
                                                       \Erf{x}
                                                                     \operatorname{erf}(x)
              \Erf
                       Generalized Error Function
                                                      \Erf\{x,y\}
                                                                     \operatorname{erf}(x,y)
                     921 \newcommand{\COOL@notation@ErfParen}{p}
                    922 \DeclareMathOperator{\ErfSymb}{erf}
                    923 \newcommand{\Erf}[1]{%
                    924 \liststore{#1}{COOL@Erf@arg@}%
                    925 \listval{#1}{0}%
                    926 \ifthenelse{\value{COOL@listpointer} = 1}%
                    928 \ErfSymb\COOL@decide@paren{Erf}{#1}
                    929 }%
                    930 % ElseIf
                    931 { \ifthenelse{\value{COOL@listpointer} = 2}%
                    933 \ErfSymb\COOL@decide@paren{Erf}{#1}
                    934 }%
                    935 % Else
                    936 {%
                    937 \PackageError{cool}{Invalid Argument}%
                    938 {'Erf' can only accept a comma separated list of length 1 or 2}%
```

```
939 }%
            940 }%
            941 }
   \ErfInv Inverse of Error Function
                                   \operatorname{erf}^{-1}(x)
                  \ErfInv{x}
                  \ErfInv{x,y} \operatorname{erf}^{-1}(x,y)
            942 \newcommand{\COOL@notation@ErfInvParen}{p}
            943 \newcommand{\ErfInv}[1]{%
            944 \liststore{#1}{COOL@Erf@arg@}%
            945 \listval{#1}{0}%
            946 \ifthenelse{\value{COOL@listpointer} = 1}%
            948 \ErfSymb^{-1}\COOL@decide@paren{ErfInv}{#1}
            949 }%
            950 % ElseIf
            951 { \ifthenelse{\value{COOL@listpointer} = 2}%
            953 \ErfSymb^{-1}\COOL@decide@paren{ErfInv}{#1}
            954 }%
            955 % Else
            956 {%
            957 \PackageError{cool}{Invalid Argument}%
            958 {'Erf' can only accept a comma separated list of length 1 or 2}%
            959 }%
            960 }%
            961 }
   \GenErf Generalized Error Function and its inverse
\GenErfInv
                  \GenErf{z_1}{z_2}
                  \ensuremath{\mbox{GenErfInv}\{z_1\}\{z_2\}} \quad {\rm erf}^{-1}(z_1,z_2)
            962 \newcommand{\GenErf}[2]{\Erf{\#1,\#2}}
            963 \newcommand{\GenErfInv}[2]{\ErfInv{#1, #2}}
     \Erfc Complimentary Error Function and its inverse
                  \Erfc{z}
                                  \operatorname{erfc}(z)
                  \ErfcInv{z} \operatorname{erfc}^{-1}(z)
            964 \newcommand{\COOL@notation@ErfcParen}{p}
            965 \DeclareMathOperator{\ErfcSymb}{erfc}
            966 \newcommand{\Erfc}[1]{\ErfcSymb\COOL@decide@paren{Erfc}{#1}}
            967 \newcommand{\COOL@notation@ErfcInvParen}{p}
            968 \newcommand{\ErfcInv}[1]%
            969 {\ErfcSymb^{-1}\COOL@decide@paren{ErfcInv}{#1}}
     \Erfi Imaginary Error Function, \Erfi{z}, erfi(z)
            970 \newcommand{\COOL@notation@ErfiParen}{p}
            971 \DeclareMathOperator{\ErfiSymb}{erfi}
            972 \newcommand{\Erfi}[1]{\ErfiSymb\COOL@decide@paren{Erfi}{#1}}
             1.3.22 Fresnel Integrals
\FresnelS Fresnel Integral, \FresnelS{z}, S(z)
```

```
973 \newcommand{\COOL@notation@FresnelSParen}{p}
                               974 \end{fresnels} [1] {S\cooledecide@paren{fresnels}{\#1}}
                    \FresnelC Fresnel Integral, \FresnelC{z}, C(z)
                               975 \newcommand{\COOL@notation@FresnelCParen}{p}
                               976 \newcommand{\FresnelC}[1]{C\COOL@decide@paren{FresnelC}{#1}}
                               1.3.23 Exponential Integrals
                     \ExpIntE Exponential Integral, \ExpIntE{\nu}{x}, E_{\nu}(x)
                               977 \newcommand{\COOL@notation@ExpIntEParen}{p}
                               978 \newcommand{\ExpIntE}[2]{E_{#1}\COOL@decide@paren{ExpIntE}{#2}}
                    \ExpIntEi Exponential Integral, \ExpIntEi\{x\}, Ei(x)
                               979 \newcommand{\COOL@notation@ExpIntEiParen}{p}
                               980 \DeclareMathOperator{\ExpIntEiSymb}{Ei}
                               981 \newcommand{\ExpIntEi}[1]%
                               982 {\ExpIntEiSymb\COOL@decide@paren{ExpIntEi}{#1}}
                      \LogInt Logarithmic Integral, \LogInt{x}, li(x)
                               983 \newcommand{\COOL@notation@LogIntParen}{p}
                               984 \DeclareMathOperator{\LogIntSymb}{li}
                               985 \newcommand{\LogInt}[1]{\LogIntSymb\COOL@decide@paren{LogInt}{#1}}
                      SinInt Sine Integral, SinInt{x}, Si(x)
                               986 \newcommand{\COOL@notation@SinIntParen}{p}
                               987 \DeclareMathOperator{\SinIntSymb}{Si}
                               988 \newcommand{\SinInt}[1]{\SinIntSymb\COOL@decide@paren{SinInt}{#1}}
                      \CosInt Cosine Integral, \CosInt{x}, Ci(x)
                               989 \newcommand{\COOL@notation@CosIntParen}{p}
                               990 \DeclareMathOperator{\CosIntSymb}{Ci}
                               991 \newcommand{\CosInt}[1]{\CosIntSymb\COOL@decide@paren{CosInt}{#1}}
                     \ Hyberbolic Sine Integral, \ SinhInt{x}, Shi(x)
                               992 \newcommand{\COOL@notation@SinhIntParen}{p}
                               993 \DeclareMathOperator{\SinhIntSymb}{Shi}
                               994 \newcommand{\SinhInt}[1] {\SinhIntSymb\COOL@decide@paren{SinhInt}{#1}}
                     \CoshInt Hyberbolic Cosine Integral, \CoshInt\{x\}, Chi(x)
                               995 \newcommand{\COOL@notation@CoshIntParen}{p}
                               996 \DeclareMathOperator{\CoshIntSymb}{Chi}
                               997 \newcommand{\CoshInt}[1]{\CoshIntSymb\COOL@decide@paren{CoshInt}{#1}}
                               1.3.24 Hypergeometric Functions
                               This macro is a decision maker that decides what to return for the Hypergeometric
OL@Hypergeometric@pq@ab@value
                                function since its results vary based on the nature of the input. This macro is called
                                   \COOL@Hypergeometric@pq@ab@value \{'p'|'q'\}\ \{\langle p\_input|q\_input\rangle\}\ \{'a'|'b'\}
                                \{\langle a\_input \mid b\_input \rangle\}
                               998 \newcommand{\COOL@Hypergeometric@pq@ab@value}[4]{%
```

```
999 \ifthenelse{\boolean{COOL@#1@isint} \AND \boolean{COOL@#3@islist}}%
1000\ \{\%\ \mbox{\#1}\ \mbox{is an INT and \mbox{\#3}\ \mbox{is a LIST}\ \label{eq:linear_conditions}
1001 \in  #2 = 0 }%
1003 \PackageWarning{cool}{'#3'-arg ignored}%
1004 }%
1005 % Else
1006 {%
1007 \ifthenelse{ #2 = 1 }%
1010 }%
1011 % Else
1012 {%
1013 #4%
1014 }%
1015 }%
1016 }%
1017 % Else
1018 {}%
1019 \ifthenelse{ \boolean{COOL@#1@isint} \AND
1020 \NOT \boolean{COOL@#3@islist} }%
1021 {%
1022 \in  #2 = 0 }%
1023 {%
1024 % return nothing
1025 }%
1026 % Else
1027 {%
1028 \in  #2 = 1 }%
1029 {%
1030 % return
1031 #4%
1032 }%
1033 % Else
1034 {%
1035 \forLoop{1}{#2}{COOL@ct}
1037 \ifthenelse{ \value{COOL@ct} = 1 }{}{,}%
1038 #4_{\arabic{COOL@ct}}%
1039 }% end for loop
1040 }%
1041 }%
1042 }%
1043 % else
1044 {}%
1045 \ifthenelse{ \NOT \boolean{COOL@#1@isint} \AND
1046 \boolean{COOL@#3@islist} }%
1047 {%
1048 \PackageError{cool}{Invalid Argument}%
1049 {'Hypergeometric': '#1'-arg is not int but '#3'-arg is list}
1050 }%
1051 % else
1052 {}%
```

```
1053 \ifthenelse{ \NOT \boolean{COOL@#1@isint} \AND
                 1054 \NOT \boolean{COOL@#3@islist} }%
                 1055 {%
                 1056 %return
                 1057 #4_1,\ldots,#4_{#2}%
                 1058 }%
                 1059 % else
                 1060 {}%
                 1061 }%
\Hypergeometric Generalized Hypergeometric function. {}_{p}F_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};x)
                        \Hypergeometric\{0\}\{0\}\{\}\{\}\{x\}
                                                                                 _{0}F_{0}(;;x)
                        \Hypergeometric\{0\}\{1\}\{\}\{b\}\{x\}
                                                                               _{0}F_{1}(;b;x)
                        \Hypergeometric\{1\}\{1\}\{a\}\{b\}\{x\}
                                                                              _{1}F_{1}(a;b;x)
                        \Hypergeometric\{1\}\{1\}\{1\}\{1\}\{x\}
                                                                              _{1}F_{1}(1;1;x)
                        _3F_5(a_1, a_2, a_3; b_1, b_2, b_3, b_4, b_5; x)
                        \Hypergeometric\{3\}\{5\}\{1,2,3\}\{1,2,3,4,5\}\{x\}
                                                                 _{3}F_{5}(1,2,3;1,2,3,4,5;x)
                        \Hypergeometric{p}{5}{a}{b}{x}
                                                         _{p}F_{5}(a_{1},\ldots,a_{p};b_{1},b_{2},b_{3},b_{4},b_{5};x)
                        \Hypergeometric\{p\}\{3\}\{a\}\{1,2,3\}\{x\}
                                                                 _{p}F_{3}(a_{1},\ldots,a_{p};1,2,3;x)
                        \Hypergeometric{p}{q}{a}{b}{x}
                                                              _{p}F_{q}(a_1,\ldots,a_p;b_1,\ldots,b_q;x)
                 1062 \newcommand{\COOL@notation@HypergeometricParen}{p}
                 1063 \newcommand{\COOL@notation@HypergeometricSymb}{F}
                 1064 \newcommand{\Hypergeometric}[6][F]{%
                 1065 \provideboolean{COOL@p@isint}%
                 1066 \provideboolean{COOL@q@isint}%
                 1067 \provideboolean{COOL@a@islist}%
                 1068 \provideboolean{COOL@b@islist}%
                 1069 \isint{#2}{COOL@isint}%
                 1070 \ifthenelse{\boolean{COOL@isint}}%
                 1071 {\setboolean{COOL@p@isint}{true}}%
                 1072 % Else
                 1073 {\setboolean{COOL@p@isint}{false}}%
                 1074 \isint{#3}{COOL@isint}%
                 1075 \ifthenelse{\boolean{COOL@isint}}%
                 1076 {\tt \clim{COOL@q@isint}{true}}\%
                 1077 % Else
                 1078 {\setboolean{COOL@q@isint}{false}}%
                 1079 \listval{#4}{0}%
                 1080 \ifthenelse{\value{COOL@listpointer}>1}%
                 1081 {\setboolean{COOL@a@islist}{true}}%
                 1082 % Else
                 1083 {\setboolean{COOL@a@islist}{false}}%
                   ensure that the submitted list is the same length as p
                 1084 \ifthenelse{ \boolean{COOL@p@isint} \AND
                 1085 \boolean{COOL@a@islist} \AND
                 1086 \NOT \( #2 = \value{COOL@listpointer} \) }%
                 1087 {%
```

```
1089 }%
                   1090 % else
                   1091 {}%
                   1092 \listval{#5}{0}%
                   1093 \ifthenelse{\value{COOL@listpointer}>1}%
                   1094 {\setboolean{COOL@b@islist}{true}}%
                   1095 % Else
                   1096 {\setboolean{COOL@b@islist}{false}}%
                     ensure that the submitted 'b' list is the same length as q
                   1097 \ifthenelse{ \boolean{COOL@q@isint} \AND
                   1098 \boolean{COOL@b@islist} \AND
                   1099 \NOT \( #3 = \value{COOL@listpointer} \) }%
                   1101 \PackageError{cool}{'Hypergeometric' 'q'-arg mismatch with 'b'-arg}%
                   1102 {'b' list is not the same length as 'q'}%
                   1103 }%
                   1104 % else
                   1105 {}%
                   1106 % troubleshoot
                   1107 \ifthenelse{ \boolean{COOL@a@islist} \AND \NOT \boolean{COOL@p@isint} }%
                   1109 \PackageError{cool}{'Hypergeometric' 'a'-arg mismatch with 'p'-arg}%
                   1110 {happens if 'a'-arg is a list and 'p'-arg isn't an integer}%
                   1111 }%
                   1112 % else
                   1113 {}%
                   1114 \ifthenelse{ \boolean{COOL@b@islist} \AND \NOT \boolean{COOL@g@isint} }%
                   1116 \PackageError{cool}{'Hypergeometric' 'b'-arg mismatch with 'q'-arg}%
                   1117 {happens if 'b'-arg is a list and 'q'-arg isn't an integer}%
                   1118 }%
                   1119 % else
                   1120 {}%
                     First print the _{p}F_{q}
                   1121 {}_{#2}{\COOL@notation@HypergeometricSymb}_{#3}%
                   1122 \COOL@decide@paren{Hypergeometric}%
                   1123 {%
                   1124 \COOL@Hypergeometric@pq@ab@value{p}{#2}{a}{#4};%
                   1125 \COOL@Hypergeometric@pq@ab@value{q}{#3}{b}{#5};%
                   1126 #6%
                   1127 }%
                   1128 }
\RegHypergeometric Regularized hypergeometric function {}_{p}\tilde{F}_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};x)
                   1129 \verb|\newcommand{\COOL@notation@RegHypergeometricParen}{p}|
                   1130 \verb|\newcommand{\COOL@notation@RegHypergeometricSymb}{\tilde{F}}|
                   1131 \newcommand{\RegHypergeometric}[6][\tilde{F}]{%
                   1132 \provideboolean{COOL@p@isint}%
                   1133 \provideboolean{COOL@q@isint}%
                   1134 \provideboolean{COOL@a@islist}%
                   1135 \provideboolean{COOL@b@islist}%
                   1136 \isint{#2}{COOL@isint}%
```

1088 \PackageError{cool}{'Hypergeometric' 'p'-arg mismatch with 'a'-arg}{}%

```
1137 \ifthenelse{\boolean{COOL@isint}}%
1138 {\setboolean{COOL@p@isint}{true}}%
1139 % Else
1140 {\setboolean{COOL@p@isint}{false}}%
1141 \isint{#3}{COOL@isint}%
1142 \ifthenelse{\boolean{COOL@isint}}%
1143 {\setboolean{COOL@q@isint}{true}}%
1144 % Else
1145 {\setboolean{COOL@q@isint}{false}}%
1146 \listval{#4}{0}%
1147 \ifthenelse{\value{COOL@listpointer}>1}%
1148 {\setboolean{COOL@a@islist}{true}}%
1149 % Else
1150 {\setboolean{COOL@a@islist}{false}}%
 ensure that the submitted list is the same length as p
1151 \ifthenelse{ \boolean{COOL@p@isint} \AND
1152 \boolean{COOL@a@islist} \AND
1153 \NOT \( #2 = \value{COOL@listpointer} \) }%
1154 {%
1155 \PackageError{cool}%
1156 {'RegHypergeometric' 'p'-arg mismatch with 'a'-arg}{}% = 156  {'RegHypergeometric' 'p'-arg mismatch with 'a'-arg}
1158 % else
1159 {}%
1160 \listval{#5}{0}%
1161 \ifthenelse{\value{COOL@listpointer}>1}%
1162 {\setboolean{COOL@b@islist}{true}}%
1164 {\setboolean{COOL@b@islist}{false}}%
 ensure that the submitted 'b' list is the same length as q
1165 \ifthenelse{ \boolean{COOL@q@isint} \AND
1166 \boolean{COOL@b@islist} \AND
1167 \NOT \( #3 = \value{COOL@listpointer} \) }%
1168 {%
1169 \PackageError{cool}%
1170 {'RegHypergeometric' 'q'-arg mismatch with 'b'-arg}%
1171 {'b' list is not the same length as 'q'}%
1172 }%
1173 % else
1174 {}%
1175 % troubleshoot
1176 \ifthenelse{ \boolean{COOL@a@islist} \AND \NOT \boolean{COOL@p@isint} }%
1177 {%
1178 \PackageError{cool}%
1179 {'RegHypergeometric' 'a'-arg mismatch with 'p'-arg}%
1180 {happens if 'a'-arg is a list and 'p'-arg isn't an integer}%
1181 }%
1182 % else
1184 \ifthenelse{ \boolean{COOL@b@islist} \AND \NOT \boolean{COOL@q@isint} }%
1185 {%
1186 \PackageError{cool}%
1187 {'RegHypergeometric' 'b'-arg mismatch with 'q'-arg}%
```

```
1189 }%
                         1190 % else
                         1191 {}%
                           First print the _pF_q
                         1192 {}_{#2}{\COOL@notation@RegHypergeometricSymb}_{#3}%
                         1193 \COOL@decide@paren{RegHypergeometric}%
                         1194 {%
                         1195 \COOL@Hypergeometric@pq@ab@value{p}{#2}{a}{#4};%
                         1196 \COOL@Hypergeometric@pq@ab@value{q}{#3}{b}{#5};%
                         1197 #6%
                         1198 }%
                         1199 }
             \AppellFOne Appell Hypergeometric Function
                                \Lambda = 1, b_2 \{c\} \{z_1, z_2\}  F_1(a; b_1, b_2; c; z_1, z_2)
                         1200 \newcommand{\COOL@notation@AppellFOneParen}{p}
                         1201 \newcommand{\AppellFOne} [4]%
                         1202 {F_{1}\COOL@decide@paren{AppellFOne}{#1; #2; #3; #4}}
       \HypergeometricU Tricomi confluent hypergeometric function
                                \HypergeometricU{a}{b}{z} U(a,b,z)
                         1203 \newcommand{\COOL@notation@HypergeometricUSymb}{U}
                         1204 \newcommand{\HypergeometricU}[3]%
                         1205 {\COOL@notation@HypergeometricUSymb\inp{#1, #2, #3}}
                           This macro is a decision maker for the \MeijerG macro. Despite the name it is
\COOL@MeijerG@anp@value
                           used for both p and q. It is called as
                              \COOL@MeijerG@anp@value \{\langle a \mid b \rangle\}\ \{\langle n \mid m \rangle\}\ \{\langle p \mid q \rangle\}
                         1206 \newcommand{\COOL@MeijerG@anp@value}[3]{%
                         1207 \isint{#3}{COOL@isint}%
                         1208 \ifthenelse{\boolean{COOL@isint}}%
                         1210 \isint{#2}{COOL@isint}%
                         1211 \ifthenelse{\boolean{COOL@isint}}%
                         1212 {%
                         1213 \forLoop{1}{#3}{COOL@ct}%
                         1214 {%
                         1215 \ifthenelse{\value{COOL@ct}=1}{}{,}%
                         1216 #1_{\arabic{COOL@ct}}%
                         1217 }%
                         1218 }%
                         1219 % else
                         1220 {%
                         1221 #1_1,\ldots,#1_{#2},#1_{#2+1},\dots,#1_{#3}%
                         1222 }%
                         1223 }%
                         1224 % else
                         1225 {%
                         1226 \isint{#2}{COOL@isint}%
                         1227 \ifthenelse{\boolean{COOL@isint}}%
                         1229 \forLoop{1}{#2}{COOL@ct}%
```

1188 {happens if 'b'-arg is a list and 'q'-arg isn't an integer}%

```
1230 {%
                      1231 \ifthenelse{\value{COOL@ct}=1}{}{,}%
                      1232 #1_{\arabic{COOL@ct}}%
                      1234 \setcounter{COOL@ct}{#2}%
                      1235 \addtocounter{COOL@ct}{1}%
                      1236 ,#1_{\arabic{COOL@ct}}, \ldots, #1_{#3}%
                      1237 }%
                      1238 % else
                      1239 {%
                      1240 #1_1,\ldots,#1_{#2},#1_{#2+1},\dots,#1_{#3}%
                      1241 }%
                      1242 }%
                      1243 }
\MeijerG \MeijerG\{a_1,\ldots,a_n\}\{a_{n+1},\ldots,a_p\}\{b_1,\ldots,b_m\}\{b_{m+1},\ldots,b_q\}\{\langle x\rangle\}
                           \label{eq:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_con
                           MeijerG[\langle a \ list \ symbol \rangle] \{\langle n \rangle\} \{\langle p \rangle\} \{b_1, \ldots, b_m\} \{b_{m+1}, \ldots, b_q\} \{\langle x \rangle\} \}
                           MeijerG[,\langle b \ list \ symbol \rangle]\{a_1,\ldots,a_n\}\{a_{n+1},\ldots,a_n\}\{\langle m \rangle\}\{\langle q \rangle\}\{\langle x \rangle\}\}
                                                                                                       Meijer G-Function
                                               \label{eq:meijerg} $$ \widetilde{g}_{n}^{n}_{q}^{n}(z \mid_{b_{1},...,b_{m},b_{m+1},...,b_{q}}^{a_{1},...,a_{n},a_{n+1},...,a_{p}}) $$ Meijer $G$-Function
                                                             \MeijerG{1,2}{3}{a,b}{c,d}{z} G_{3,4}^{2,2}\left(z\left| \begin{smallmatrix} 1,2,3\\a,b,c,d \end{smallmatrix} \right.\right)
                                                                                        Generalized Meijer G-Function
                                          \label{eq:continuous} $$ \ensuremath{\mathsf{MeijerG[a,b]\{n\}\{p\}\{m\}\{q\}\{z,r\}}} $$$ $G^{m,n}_{p,q}\Big(z,r\,\Big|_{b_1,\ldots,b_m,b_{m+1},\ldots,b_q}^{a_1,\ldots,a_n,a_{n+1},\ldots,a_p}\Big)$$ Generalized Meijer $G$-Function
                                                       \MeijerG{1,2}{3}{a,b}{c,d}{z,r} G_{3,4}^{2,2}(z,r \begin{vmatrix} 1,2,3\\a,b,c,d \end{pmatrix}
                      1244 \newcommand{\COOL@notation@MeijerGSymb}{G}
                      1245 \newcommand{\MeijerG}[6][0,0]{%
                      1246 \listval{#1}{0}
                      1247 \ifthenelse{\value{COOL@listpointer}>2 \OR \value{COOL@listpointer}<1}%
                      1249 \PackageError{cool}{'MeijerG' Invalid Optional Argument}%
                      1250 {Must be a comma separated list of length 1 or 2}%
                      1251 }%
                      1252 % else
                      1253 {%
                      1254 }%
                      1255 \COOL@notation@MeijerGSymb%
                      1256 \left\{ \frac{\#1}{0,0}\right\}
                      1257 {%
                      1258 \listval{#2}{0}% n
                      1259 \setcounter{COOL@ct}{\value{COOL@listpointer}}%
                      1260 \listval{#4}{0}% m
                      1261 \setcounter{COOL@ct@}{\value{COOL@listpointer}}%
                      1262 ^{\arabic{COOL@ct@},\arabic{COOL@ct}}%
                      1263 \listval{#3}{0}% p - n
                      1264 \addtocounter{COOL@ct}{\value{COOL@listpointer}}%
                      1265 \listval{#5}{0}% q - m
                      1266 \addtocounter{COOL@ct@}{\value{COOL@listpointer}}%
```

```
1267 _{\arabic{COOL@ct},\arabic{COOL@ct@}}%
1268 \mathbf{\mbox{mathopen}{\mbox{}}\left(\mbox{\mbox{}}\right)}
1269 #6%
1270 \left|%
1271 { {#2,#3} \@@atop {#4,#5} }%
1272 \right)\right.%
1273 }%
1274 % else
1275 {%
1276 \listval{#1}{0}%
1277 \ifthenelse{\value{COOL@listpointer}=2}%
1279 \provideboolean{COOL@MeijerG@opt@one@blank}%
1280 \label{locality} $$1280 \end{COOL}$ @Sniffer##1,##2\cool@MeijerG@SnifferQend{\%} $$
1281 \ifthenelse{\equal{##1}{}}%
1283 \setboolean{COOL@MeijerG@opt@one@blank}{true}%
1284 }%
1285 % else
1286 {%
1287 \setboolean{COOL@MeijerG@opt@one@blank}{false}%
1288 }%
1289 }%
1290 \expandafter\COOL@MeijerG@sniffer#1\COOL@MeijerG@sniffer@end\relax%
1291 \ifthenelse{\boolean{COOL@MeijerG@opt@one@blank}}%
1292 {%
 this is MeijerG[,b]{a_1,...,a_n}{a_{n++},...,a_p}{m}{q}{x}
1293 \listval{#2}{0}% n
1294 \setcounter{COOL@ct}{\value{COOL@listpointer}}%
1295 ^{#4,\arabic{COOL@ct}}%
1296 \listval{#3}{0}% p
1297 \addtocounter{COOL@ct}{\value{COOL@listpointer}}%
1298 _{\arabic{COOL@ct},#5}%
1299 \mathopen{}\left(%
1300 #6%
1301 \left|%
1302 {%
1303 \{#2,#3\} \end{thmu} \collower= general u={\pi1}{2}{#4}{#5}
1304 }%
1305 \right)\right.%
1306 }%
1307 % else
1308 {%
1309 ^{#4,#2}_{#3,#5}%
1310 \mathopen{}\left(%
1311 #6%
1312 \left|%
1313 {%
1314 {\COOL@MeijerG@anp@value{\listval{#1}{1}}{#2}{#3}}%
1315 \@@atop%
1316 {\COOL@MeijerG@anp@value{\listval{#1}{2}}{#4}{#5}}
1317 }%
1318 \right)\right.%
1319 }%
```

```
1320 }%
               1321 % else
               1322 {%
                 this is \ensuremath{\mbox{MeijerG[a]{n}{p}{b_1,...,b_m}{b_{m++},...,a_p}{x}}
               1323 \listval{#4}{0}% m
               1324 \setcounter{COOL@ct}{\value{COOL@listpointer}}%
               1325 ^{\arabic{COOL@ct}, #2}%
               1326 \listval{#5}{0}% q
               1327 \addtocounter{COOL@ct}{\value{COOL@listpointer}}%
               1328 _{#3, \arabic{COOL@ct}}%
               1329 \mathopen{}\left(%
               1330 #6%
               1331 \left|%
               1332 {%
               1333 {\COOL@MeijerG@anp@value{#1}{#2}{#3}} \@@atop {#4,#5}
               1334 }%
               1335 \right)\right.%
               1336 }%
               1337 }%
               1338 }%
                 1.3.25 Angular Momentum Functions
\ClebschGordon Clebsch-Gordon Coefficients
                      \ClebschGordon{j_1,m_1}{j_2,m_2}{j,m} \quad \langle j_1, j_2; m_1, m_2 | j_1, j_2; j, m \rangle
                http://functions.wolfram.com/HypergeometricFunctions/ClebschGordan/
               1339 \newcommand{\ClebschGordon}[3]{%
               1340 \listval{#1}{0}%
               1341 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
               1343 \PackageError{cool}{'ClebschGordon' Invalid Argument}%
               1344 {Must have a comma separated list of length two}%
               1345 }%
               1346 % else
               1347 {}%
               1348 \listval{#2}{0}%
               1349 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
               1351 \PackageError{cool}{'ClebschGordon' Invalid Argument}%
               1352 {Must have a comma separated list of length two}%
               1353 }%
               1354 % else
               1355 {}%
               1356 \listval{#3}{0}%
               1357 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
               1358 {%
               1359 \PackageError{cool}{'ClebschGordon' Invalid Argument}%
               1360 {Must have a comma separated list of length two}%
               1361 }%
               1362 % else
               1363 {}%
```

1364 \left<%

1365 \listval{#1}{1},\listval{#2}{1};%

```
1366 \listval{#1}{2},\listval{#2}{2}%
              1367 \left|%
              1368 \listval{#1}{1},\listval{#2}{1};%
              1369 \listval{#3}{1},\listval{#3}{2}%
              1370 \right>\right.%
              1371 }
\ThreeJSymbol Wigner 3-j Symbol
                    \label{local_to_m_1} $$ \ThreeJSymbol{j_1,m_1}{j_2,m_2}{j_3,m_3}$
               http://functions.wolfram.com/HypergeometricFunctions/ThreeJSymbol/
              1372 \newcommand{\ThreeJSymbol}[3]{%
              1373 \listval{#1}{0}%
              1374 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
              1376 \PackageError{cool}{'ThreeJSymbol' Invalid Argument}%
              1377 {Must have comma separated list of length 2}%
              1378 }%
              1379 % else
              1380 {}%
              1381 \listval{#2}{0}%
              1382 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
              1384 \PackageError{cool}{'ThreeJSymbol' Invalid Argument}%
              1385 {Must have comma separated list of length 2}%
              1386 }%
              1387 % else
              1388 {}%
              1389 \listval{#3}{0}%
              1390 \ifthenelse{\NOT \value{COOL@listpointer}=2}%
              1392 \PackageError{cool}{'ThreeJSymbol' Invalid Argument}%
              1393 {Must have comma separated list of length 2}%
              1394 }%
              1395 % else
              1396 {}%
              1397 \mathchoice{%
              1398 % displaystyle
              1399 \inp{\!%
              1400 \begin{array}{ccc}%
              1401 \listval{#1}{1} & \listval{#2}{1} & \listval{#3}{1} \\%
              1402 \listval{#1}{2} & \listval{#2}{2} & \listval{#3}{2}
              1403 \end{array}%
                       \!}%
              1404
              1405
                     }%
              1406
                     {%
              1407 % inline
              1408 \leq 1408 
              1409 {\listval{#1}{1} \@@atop \listval{#1}{2}}%
              1410 {\listval{#2}{1} \@@atop \listval{#2}{2}}%
              1411 {\listval{#3}{1} \@@atop \listval{#3}{2}}%
              1412
                       \!}%
              1413
                     }%
```

1414

₹%

```
1415 % subscript
            1416 \inp{\!%
            1417 {\listval{#1}{1} \@@atop \listval{#1}{2}}%
            1418 {\listval{#2}{1} \@@atop \listval{#2}{2}}%
            1419 {\listval{#3}{1} \@@atop \listval{#3}{2}}%
            1420
                     \!}%
            1421
                   }%
                   {%
            1422
            1423 % subsubscript
            1424 \inp{\!%
            1425 {\listval{#1}{1} \@@atop \listval{#1}{2}}%
            1426 {\left\{ \frac{\#2}{1} \right\} } 1426 {\left\{ \frac{\#2}{2} \right\}}
            1427 {\listval{#3}{1} \@@atop \listval{#3}{2}}%
            1428
                     \!}%
            1429
                   }%
           1430 }
\SixJSymbol Racah 6-j Symbol
                  \sum_{j_1, j_2, j_3}{\{j_4, j_5, j_6\}}
                 http://functions.wolfram.com/HypergeometricFunctions/SixJSymbol/
            1431 \newcommand{\SixJSymbol}[2]{%
            1432 \listval{#1}{0}%
            1433 \ifthenelse{\NOT \value{COOL@listpointer}=3}%
            1435 \PackageError{cool}{'SixJSymbol' Invalid Argument}%
            1436 {Must have a comma separated list of length 3}%
            1437 }%
            1438 %else
           1439 {}%
            1440 \listval{#2}{0}%
            1441 \ifthenelse{\NOT \value{COOL@listpointer}=3}%
            1443 \PackageError{cool}{'SixJSymbol' Invalid Argument}%
            1444 {Must have a comma separated list of length 3}%
            1445 }%
           1446 %else
           1447 {}%
            1448 \mathchoice{%
            1449 % displaystyle
            1450 \inbr{\!%
            1451 \begin{array}{ccc}%
            1452 \listval{#1}{1} & \listval{#1}{2} & \listval{#1}{3} \\%
            1453 \listval{#2}{1} & \listval{#2}{2} & \listval{#2}{3}%
            1454 \end{array}%
            1455
                     \!}%
            1456
                  }%
            1457
                 ₹%
            1458 % inline
            1459 \inbr{\!%
            1460 {\listval{#1}{1} \@@atop \listval{#2}{1}}%
            1461 {\listval{#1}{2} \@@atop \listval{#2}{2}}%
            1462 {\listval{#1}{3} \@@atop \listval{#2}{3}}%
            1463
                     \!}%
```

```
1465 {%
          1466 % superscript
          1467 \inbr{\!%
          1468 {\listval{#1}{1} \@@atop \listval{#2}{1}}%
          1469 {\listval{#1}{2} \@@atop \listval{#2}{2}}%
          1470 {\listval{#1}{3} \@@atop \listval{#2}{3}}%
                    \!}%
          1471
                }%
          1472
          1473
                {%
          1474 % supersuperscript
          1475 \inbr{\!%
          1476 {\listval{#1}{1} \@@atop \listval{#2}{1}}%
          1477 {\listval{#1}{2} \@@atop \listval{#2}{2}}%
          1478 {\listval{#1}{3} \@@atop \listval{#2}{3}}%
          1479
                    \!}%
          1480
               }%
          1481 }
                     Complete Elliptic Integrals
\EllipticK Complete Elliptic Integral of the First Kind
                 \EllipticK{x} K(x)
          1482 \newcommand{\COOL@notation@EllipticKParen}{p}
          1483 \newcommand{\COOL@notation@EllipticKSymb}{K}
          1484 \newcommand{\EllipticK}[1]%
          1485 {\tt \COOL@notation@EllipticKSymb\COOL@decide@paren\{EllipticK\}\{\#1\}\}\%}
\EllipticE Complete Elliptic Integral of the Second Kind
                 \EllipticE{x} E(x)
          1486 \newcommand{\COOL@notation@EllipticEParen}{p}
          1487 \newcommand{\COOL@notation@EllipticESymb}{E}
          1488 \newcommand{\EllipticE}[1]{%
          1489 \liststore{#1}{COOL@EllipticE@arg@}%
          1490 \listval{#1}{0}%
          1491 \ifthenelse{\value{COOL@listpointer} = 1}%
          1492 {%
          1493 \COOL@notation@EllipticESymb\COOL@decide@paren{EllipticE}{#1}%
          1494 }%
          1495 % ElseIf
          1496 { \ifthenelse{\value{COOL@listpointer} = 2}%
          1497 {%
          1498 \COOL@notation@EllipticESymb%
          1499 \COOL@decide@paren{EllipticE}%
          1500 {\COOL@EllipticE@arg@i \left| \, \COOL@EllipticE@arg@ii \!\!\right.}%
          1501 }%
          1502 % Else
          1503 {%
          1504 \PackageError{Invalid Argument}%
          1505 ('EllipticE' can only accept a comma separated list of length 1 or 2}%
          1506 }%
          1507 }%
          1508 }
```

1464 }%

```
\EllipticPi Complete Elliptic Integral of the Third Kind
                    \EllipticPi{n,m} \Pi(n \mid m)
              1509 \newcommand{\COOL@notation@EllipticPiParen}{p}
              1510 \newcommand{\COOL@notation@EllipticPiSymb}{\Pi}
              1511 \newcommand{\EllipticPi}[1]{%
              1512 \liststore{#1}{COOL@EllipticPi@arg@}%
              1513 \listval{#1}{0}%
              1514 \ifthenelse{\value{COOL@listpointer} = 2}%
              1515 {%
              1516 \COOL@notation@EllipticPiSymb%
              1517 \COOL@decide@paren{EllipticPi}%
              1518 {\COOL@EllipticPi@arg@i \left| \, \COOL@EllipticPi@arg@ii \!\!\right.}%
              1520 % ElseIf
              1521 { \ifthenelse{\value{COOL@listpointer} = 3}%
              1522 {%
              1523 \COOL@notation@EllipticPiSymb%
              1524 \COOL@decide@paren{EllipticPi}%
              1525 { \COOL@EllipticPi@arg@i; \,%
              1526 \COOL@EllipticPi@arg@ii \left| \,%
              1527 \COOL@EllipticPi@arg@iii \!\!\right.%
              1528 }%
             1529 }%
             1530 % Else
              1531 {%
              1532 \PackageError{cool}{Invalid Argument}%
              1533 {'EllipticPi' can only accept a comma separated list of length 2 or 3}%
              1534 }%
              1535 }%
              1536 }
               1.3.27 Incomplete Elliptic Integrals
   \EllipticF Incomplete Elliptic Integral of the First Kind
\IncEllipticF
                    \EllipticF{z,m}
                                             F(z \mid m)
                    \IncEllipticF{z}{m} F(z|m)
              1537 \newcommand{\COOL@notation@EllipticFParen}{p}
              1538 \newcommand{\COOL@notation@EllipticFSymb}{F}
              1539 \newcommand{\EllipticF}[1]{%
              1540 \liststore{#1}{COOL@EllipticF@arg@}%
              1541 \listval{#1}{0}%
              1542 \ifthenelse{ \value{COOL@listpointer} = 2 }%
              1544 \COOL@notation@EllipticFSymb%
              1545 \COOL@decide@paren{EllipticF}%
              1546 {\COOL@EllipticF@arg@i \left| \, \COOL@EllipticF@arg@ii \!\!\right.}%
              1547 }%
             1548 % Else
              1549 {%
              1550 \PackageError{cool}{Invalid Argument}%
              1551 {'EllipticF' can only accept a comma separated list of length 2}%
              1552 }%
              1553 }
```

```
1554 \newcommand{\IncEllipticF}[2]{\EllipticF{#1,#2}}
\IncEllipticE Incomplete Elliptic Integral of the Second Kind
                     \IncEllipticE{z}{m} E(z | m)
                     \EllipticE{z,m}
                                             E(z \mid m)
              1555 \newcommand{\IncEllipticE}[2]{\EllipticE{#1,#2}}
\IncEllipticPi Incomplete Elliptic Integral of the Third Kind
   \EllipticPi
                     \IncEllipticPi{n}{z}{m} \Pi(n; z | m)
                     \EllipticPi{n,z,m}
                                                  \Pi(n; z \mid m)
              1556 \newcommand{\IncEllipticPi}[3]{\EllipticPi{#1,#2,#3}}
   \JacobiZeta Jacobi Zeta Function
                     1557 \newcommand{\COOL@notation@JacobiZetaParen}{p}
              1558 \newcommand{\COOL@notation@JacobiZetaSymb}{Z}
              1559 \newcommand{\JacobiZeta}[2]{%
              1560 \COOL@notation@JacobiZetaSymb
              1561 \COOL@decide@paren{JacobiZeta}{#1 \left| \, #2 \right.\!\!}%
              1562 }
                1.3.28 Jacobi Theta Functions
\EllipticTheta Jacobi Theta Functions
 \JacobiTheta
                     \JacobiTheta{1}{z}{q} \vartheta_1(z,q)
                     JacobiTheta{2}{z}{q} \vartheta_2(z,q)
                     \JacobiTheta{3}{z}{q} \vartheta_3(z,q)
                     \JacobiTheta{4}{z}{q} \vartheta_4(z,q)
              1563 \newcommand{\COOL@notation@EllipticThetaParen}{p}
              1564 \newcommand{\EllipticTheta}[3]%
              1565 {\bf \{\c \{\#1\}\c OOL@decide@paren\{EllipticTheta\} \{\#2,\ \#3\}\}}
              1566 \newcommand{\JacobiTheta}[3]{\EllipticTheta{#1}{#2}{#3}}
                1.3.29 Neville Theta Functions
\NevilleThetaC Neville Theta Function, \NevilleThetaC{z}{m}, \vartheta_c(z|m)
              1567 \newcommand{\COOL@notation@NevilleThetaCParen}{p}
              1568 \newcommand{\NevilleThetaC}[2]{%
              1569 \vartheta_{c}\COOL@decide@paren{NevilleThetaC}%
              1570 {#1 \left| \, #2 \right.\!\!}%
              1571 }
\NevilleThetaD Neville Theta Function, \NevilleThetaD{z}{m}, \vartheta_d(z|m)
              1572 \newcommand{\COOL@notation@NevilleThetaDParen}{p}
              1573 \newcommand{\NevilleThetaD}[2]{%
              1574 \vartheta_{d}\COOL@decide@paren{NevilleThetaD}%
              1575 {#1 \left| \, #2 \right.\!\!}%
              1576 }
\NevilleThetaN Neville Theta Function, \NevilleThetaN{z}{m}, \vartheta_n(z|m)
              1577 \newcommand{\COOL@notation@NevilleThetaNParen}{p}
              1578 \newcommand{\NevilleThetaN}[2]{%
```

```
1579 \vartheta_{n}\COOL@decide@paren{NevilleThetaN}%
                 1580 {#1 \left| \, #2 \right.\!\!}%
                 1581 }
  \NevilleThetaS Neville Theta Function, \NevilleThetaS{z}{m}, \vartheta_s(z \mid m)
                 1582 \newcommand{\COOL@notation@NevilleThetaSParen}{p}
                 1583 \newcommand{\NevilleThetaS}[2]{%
                 1584 \vartheta_{s}\COOL@decide@paren{NevilleThetaS}%
                 1585 {#1 \left| \, #2 \right.\!\!}%
                 1586 }
                   1.3.30 Weierstrass Functions
   \Weierstrass Elliptic Function
           \WeiP
                       \WeierstrassP{z}{g_2,g_3} \wp(z;g_2,g_3)
                       \WeiP{z}{g_2,g_3}
                                                       \wp(z; q_2, q_3)
                 1587 \newcommand{\COOL@notation@WeierstrassPParen}{p}
                 1588 \newcommand{\WeierstrassP}[2]{%
                 1589 \liststore{#2}{COOL@WeiP@arg@g@}%
                 1590 \listval{#2}{0}%
                 1591 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                 1593 \PackageError{cool}{Invalid Argument}%
                 1594 {'WeierstrassP' second argument must be%
                 1595 a comma separated list of length 2}%
                 1596 }
                 1597 % Else
                 1598 {%
                 1599 \wp\COOL@decide@paren{WeierstrassP}{#1; #2}
                 1600 }%
                 1601 }
                 1602 \newcommand{\WeiP}[2]{\WeierstrassP{#1}{#2}}
\WeierstrassPInv Inverse of Weierstrass Elliptic Function
                                             $\ \ensuremath{$\backslash$}$ WeiPInv{z}{g_2,g_3} $$ $\wp^{-1}(z;g_2,g_3)$
        \WeiPInv
                       Inverse
                       Generalized Inverse \WeiPInv{z_1,z_2}{g_2,g_3} \wp^{-1}(z_1,z_2;g_2,g_3)
                 1603 \newcommand{\COOL@notation@WeierstrassPInvParen}{p}
                 1604 \newcommand{\WeierstrassPInv}[2]{%
                 1605 \liststore{#1}{COOL@WeiPinv@arg@z@}%
                 1606 \liststore{#1}{COOL@WeiPinv@arg@g@}%
                 1607 \listval{#2}{0}%
                 1608 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                 1610 \PackageError{cool}{Invalid Argument}%
                 1611 {'WeierstrassPInv' second argument must be%
                 1612 a comma separated list of length 2}%
                 1613 }
                 1614 % Else
                 1615 €
                 1616 \listval{#1}{0}%
                 1617 \ifthenelse{\value{COOL@listpointer} = 1}%
                 1619 \wp^{-1}\COOL@decide@paren{WeierstrassPInv}{#1; #2}%
```

```
1620 }%
                    1621 % ElseIf
                    1622 { \ifthenelse{\value{COOL@listpointer} = 2}%
                    1624 \wp^{-1}\COOL@decide@paren{WeierstrassPInv}{#1; #2}%
                    1625 }%
                    1626 % Else
                    1627 {%
                    1628 \PackageError{cool}{Invalid Argument}%
                    1629 {'WeierstrassPInv' first argument must be%
                    1630 a comma separate list of length 1 or 2}%
                    1631 }}%
                    1632 }%
                    1633 }
                    1634 \newcommand{\WeiPInv}[2]{\WeierstrassPInv{#1}{#2}}
\WeierstrassPGenInv Generalized Inverse of Weierstrass Elliptic Function
                         \label{lem:wierstrassPGenInv} $$ \widetilde{z_1}_{z_2}_{g_1}_{g_2} $$
                    1635 \newcommand{\WeierstrassPGenInv}[4]{\WeierstrassPInv{#1,#2}{#3,#4}}
  \WeierstrassSigma Wierstrass Sigma Function
          \WeiSigma
                           Sigma
                                               \WeierstrassSigma{z}{g_2,g_3}
                                                                                      \sigma(z;g_2,g_3)
                                               \WeiSigma{z}{g_2,g_3}
                                                                                       \sigma(z;g_2,g_3)
                           Associated Sigma
                                               \WeierstrassSigma{n,z}{g_2,g_3} \sigma_n(z;g_2,g_3)
                                               \WeiSigma{n,z}{g_2,g_3}
                                                                                      \sigma_n(z;g_2,g_3)
                    1636 \newcommand{\WeierstrassSigma}[2]{%
                    1637 \liststore{#1}{COOL@WeiSigma@arg@z@}%
                    1638 \liststore{#2}{COOL@WeiSigma@arg@g@}%
                    1639 \listval{#2}{0}%
                    1640 \ifthenelse{\NOT \value{COOL@listpointer} = 2}
                    1641 {%
                    1642 \PackageError{cool}{Invalid Argument}%
                    1643 {'WeierstrassSigma' second argument must be%
                    1644 a comma separated list of length 2}%
                    1645 }%
                    1646 % Else
                    1647 {%
                    1648 \listval{#1}{0}%
                    1649 \ifthenelse{\value{COOL@listpointer} = 1}%
                    1651 \sigma\inp{#1; #2}%
                    1652 }%
                    1653 % ElseIf
                    1654 { \ifthenelse{\value{COOL@listpointer} = 2}%
                    1656 \sigma_{\COOL@WeiSigma@arg@z@i}\inp{\COOL@WeiSigma@arg@z@ii; #2}%
                    1657 }%
                    1658 % Else
                    1659 {%
                    1660 \PackageError{cool}{Invalid Argument}%
                    1661 {'WeierstrassSigma' first argument must be%
                    1662 a comma separated list of length 1 or 2}%
                    1663 }}%
```

```
1664 }%
                          1665 }
                          1666 \newcommand{\WeiSigma}[2]{\WeierstrassSigma{#1}{#2}}
 \AssocWeierstrassSigma Associated Weierstrass Sigma Function
                                \AssocWeierstrassSigma{n}{z}{g_2}{g_3} \sigma_n(z;g_2,g_3)
                                 \WeiSigma{n,z}{g_2,g_3}
                                                                                  \sigma_n(z;q_2,q_3)
                          1667 \newcommand{\AssocWeierstrassSigma}[4]{\WeierstrassSigma{#1,#2}{#3,#4}}
       \WeierstrassZeta Weierstrass Zeta Function
                                \verb|\weierstrassZeta{z}{g_2,g_3}| \quad \zeta(z;g_2,g_3)
                \WeiZeta
                                \WeiZeta{z}{g_2,g_3}
                                                                      \zeta(z;g_2,g_3)
                          1668 \newcommand{\COOL@notation@WeierstrassZetaParen}{p}%
                          1669 \newcommand{\WeierstrassZeta}[2]{%
                          1670 \listval{#2}{0}%
                          1671 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                          1673 \PackageError{cool}{Invalid Argument}%
                          1674 {'WeierstrassZeta' second argument must be%
                          1675 a comma separated list of length 2}%
                          1676 }%
                          1677 % Else
                          1678 {%
                          1679 \zeta\COOL@decide@paren{WeierstrassZeta}{#1; #2}%
                          1680 }%
                          1682 \mbox{\mbox{\mbox{$1682$ } \mbox{$1682$ } [2] {\mbox{\mbox{$41$} } $}}
\WeierstrassHalfPeriods Weierstrass half-periods
         \WeiHalfPeriods
                                \WeierstrassHalfPeriods{g_2,g_3} \{\omega_1(g_2,g_3),\omega_3(g_2,g_3)\}
                                \WeiHalfPeriods{g_2,g_3}
                                                                           \{\omega_1(g_2,g_3),\omega_3(g_2,g_3)\}
                          1683 \newcommand{\WeierstrassHalfPeriods}[1]{%
                          1684 \listval{#1}{0}%
                          1685 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                          1687 \PackageError{cool}{Invalid Argument}%
                          1688 {'WeierstrassHalfPeriods' can only accept%
                          1689 a comma separated list of length 2}%
                          1690 }%
                          1691 % Else
                          1692 {%
                          1693 \ \text{omega_1}, \ \text{omega_3}, \ \%
                          1694 }%
                          1695 }
                         1696 \mbox{\weiHalfPeriods} [1] {\weierstrassHalfPeriods} {\#1}} \label{eq:halfPeriods} $$
 \WeierstrassInvariants Weierstrass Invariants
                             \WeierstrassInvariants{\omega_1,\omega_3} \{g_2(\omega_1,\omega_3),g_3(\omega_1,\omega_3)\}
                                                                                   \{g_2(\omega_1,\omega_3),g_3(\omega_1,\omega_3)\}\
                             \WeiInvars{\omega_1,\omega_3}
                          1697 \newcommand{\WeierstrassInvariants}[1]{%
                          1698 \listval{#1}{0}%
                          1699 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                          1700 {%
```

```
1701 \PackageError{cool}{Invalid Argument}%
                                                                                                                                               1702 {'WeierstrassInvariants' can only accept%
                                                                                                                                               1703 a comma separated list of length 2}%
                                                                                                                                               1704 }%
                                                                                                                                               1705 % Else
                                                                                                                                               1706 {%
                                                                                                                                               1707 \{ g_2\inp{#1}, g_3\inp{#1} \}%
                                                                                                                                               1708 }%
                                                                                                                                               1709 }
                                                                                                                                               1710 \ensuremath{\label{locality} 1710 \ensuremath{\locality} 1710 \ensuremath{\loca
                                                                        \COOL@hideOnSF Used to hide inputs or other when style is sf
                                                                                                                                                                              sf
                                                                                                                                                                                                  short form
                                                                                                                                                                              ff
                                                                                                                                                                                                 full form
                                                                                                                                               1711 \newcommand{\COOL@hideOnSF}[2]
                                                                                                                                               1713 \ifthenelse{ \equal{\csname COOL@notation@#1\endcsname}{sf} }%
                                                                                                                                               1714 {}%
                                                                                                                                               1715 % Else
                                                                                                                                               1716 {#2}%
                                                                                                                                               1717 }
\WeierstrassPHalfPeriodValues
                                                                                                                                                    Weierstrass elliptic function values at half-periods
                                                   \WeiPHalfPeriodVal
                                                                                                                                                                              \Style{WeierstrassPHalfPeriodValuesDisplay=sf} (Default)
                                                                                                                                                                                                                           \WeierstrassPHalfPeriodValues{g_2,g_3}
                                                                                                                                                                                                                                                         \WeiPHalfPeriodVal{g_2,g_3}
                                                                                                                                                                                                                                                                                                            \{e_1, e_2, e_3\}
                                                                                                                                                                                                   \Style{WeierstrassPHalfPeriodValuesDisplay=ff}
                                                                                                                                                                                                                           \WeierstrassPHalfPeriodValues{g_2,g_3}
                                                                                                                                                                                                                                                         \WeiPHalfPeriodVal{g_2,g_3}
                                                                                                                                                                                                                                                         \{e_1(g_2,g_3),e_2(g_2,g_3),e_3(g_2,g_3)\}
                                                                                                                                               1718 \verb|\newcommand{\COOL@notation@WeierstrassPHalfPeriodValuesDisplay}{sf} \\
                                                                                                                                               1719 \newcommand{\WeierstrassPHalfPeriodValues}[1]
                                                                                                                                               1720 {%
                                                                                                                                               1721 \listval{#1}{0}%
                                                                                                                                               1722 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                                                                                                                                               1723 {%
                                                                                                                                               1724 \PackageError{cool}{Invalid Argument}%
                                                                                                                                               1725 {'WeierstrassPHalfPeriodValues' can only accept%
                                                                                                                                               1726 a comma separated list of length 2}%
                                                                                                                                               1727 }%
                                                                                                                                               1728 % Else
                                                                                                                                               1729 {%
                                                                                                                                               1730 \{ e_1\COOL@hideOnSF\{WeierstrassPHalfPeriodValuesDisplay\}\{\inp\{\#1\}\},\%\}
                                                                                                                                               1731 \; e\_2 \\ COOL@hideOnSF{WeierstrassPHalfPeriodValuesDisplay}{\\ inp{\#1}}, \% \\ COOL@hideOnSF{Weierst
                                                                                                                                               1732 \; e\_3 \\ COOL@hideOnSF{WeierstrassPHalfPeriodValuesDisplay}{\\ inp{\#1}}\%
                                                                                                                                               1733 \}%
                                                                                                                                               1734 }%
                                                                                                                                               1735 }
                                                                                                                                               1736 \ensuremath{\mbox{\mbox{$1$}}} 1736 \ensuremath{\mbox{\mbox{$1$}}} 1736 \ensuremath{\mbox{\mbox{$1$}}} 1736 \ensuremath{\mbox{$1$}} 1736 \ensuremath{\mbox
```

erstrassZetaHalfPeriodValues WeiZetaHalfPeriodVal

ierstrassZetaHalfPeriodValues Weierstrass zeta function values at half-periods

```
\WeierstrassZetaHalfPeriodValues{g_2,g_3}
                                     \WeiZetaHalfPeriodVal{g_2,g_3}
                                                \{\eta_1, \eta_2, \eta_3\}
                          \Style{WeierstrassZetaHalfPeriodValuesDisplay=ff}
                               \WeierstrassZetaHalfPeriodValues{g_2,g_3}
                                     \WeiZetaHalfPeriodVal{g_2,g_3}
                                       \{\eta_1(g_2,g_3),\eta_2(g_2,g_3),\eta_3(g_2,g_3)\}
                1737 \newcommand{\COOL@notation@WeierstrassZetaHalfPeriodValuesDisplay}{sf}
                1738 \newcommand{\WeierstrassZetaHalfPeriodValues}[1]
                1739 {%
                1740 \listval{#1}{0}%
                1741 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
                1742 {%
                1743 \PackageError{cool}{Invalid Argument}%
                1744 {'WeierstrassZetaHalfPeriodValues' can only accept%
                1745 a comma separated list of length 2}%
                1746 }%
                1747 % Else
                1748 {%
                1749 \{%
                1750 \eta_1\COOL@hideOnSF%
                1751 {WeierstrassZetaHalfPeriodValuesDisplay}{\inp{#1}},%
                1752 \eta_2\COOL@hideOnSF%
                1753 {WeierstrassZetaHalfPeriodValuesDisplay}{\inp{#1}},%
                1754 \eta_3\COOL@hideOnSF%
                1755 {WeierstrassZetaHalfPeriodValuesDisplay}{\inp{#1}}%
                1756 \}%
                1757 }%
                1758 }
                1759 \newcommand{\WeiZetaHalfPeriodVal}[1]%
                1760 {\WeierstrassZetaHalfPeriodValues{#1}}
                 1.3.31
                         Jacobi Functions
1761 \newcommand{\COOL@notation@JacobiAmplitudeParen}{p}
                1762 \DeclareMathOperator{\JacobiAmplitudeSymb}{am}
                1763 \newcommand{\JacobiAmplitude}[2]{%
                1764 \JacobiAmplitudeSymb\COOL@decide@paren%
                1765 {JacobiAmplitude}{#1 \left| , #2 \right|
      \JacobiCD Jacobi elliptic function and its inverse
   \JacobiCDInv
                      \JacobiCD{z}{m}
                                            \operatorname{cd}(z \mid m)
                      1767 \newcommand{\COOL@notation@JacobiCDParen}{p}
                1768 \newcommand{\COOL@notation@JacobiCDInvParen}{p}
                1769 \DeclareMathOperator{\JacobiCDSymb}{cd}
                1770 \newcommand{\JacobiCD}[2]{%
                1771 \JacobiCDSymb\COOL@decide@paren%
                1772 {JacobiCD}{#1 \left| \, #2 \right.\!\!}%
```

\Style{WeierstrassZetaHalfPeriodValuesDisplay=sf} (Default)

```
1773 }
            1774 \newcommand{\JacobiCDInv}[2]{%
            1775 \JacobiCDSymb^{-1}\COOL@decide@paren%
            1776 {JacobiCDInv}{#1 \left| \, #2 \right.\!\!}%
             Jacobi elliptic function and its inverse
   \JacobiCN
\JacobiCNInv
                   \JacobiCN{z}{m}
                                         \operatorname{cn}(z \mid m)
                   \JacobiCNInv{z}{m} \operatorname{cn}^{-1}(z|m)
            1778 \newcommand{\COOL@notation@JacobiCNParen}{p}
            1779 \newcommand{\COOL@notation@JacobiCNInvParen}{p}
            1780 \DeclareMathOperator{\JacobiCNSymb}{cn}
            1781 \newcommand{\JacobiCN}[2]{%
            1782 \JacobiCNSymb\COOL@decide@paren%
            1783 {JacobiCN}{#1 \left| \, #2 \right.\!\!}%
            1784 }
            1785 \newcommand{\JacobiCNInv}[2]{%
            1787 {JacobiCNInv}{#1 \left| \, #2 \right.\!\!}%
   \JacobiCS
             Jacobi elliptic function and its inverse
\JacobiCSInv
                   \JacobiCS{z}{m}
                                         cs(z \mid m)
                   \JacobiCSInv{z}{m} cs^{-1}(z|m)
            1789 \newcommand{\COOL@notation@JacobiCSParen}{p}
            1790 \newcommand{\COOL@notation@JacobiCSInvParen}{p}
            1791 \DeclareMathOperator{\JacobiCSSymb}{cs}
            1792 \newcommand{\JacobiCS}[2]{%
            1793 \JacobiCSSymb\COOL@decide@paren%
            1794 {JacobiCS}{#1 \left| \, #2 \right.\!\!}%
            1795 }
            1796 \newcommand{\JacobiCSInv}[2]{%
            1797 \JacobiCSSymb^{-1}\COOL@decide@paren%
            1798 {JacobiCSInv}{#1 \left| \, #2 \right.\!\!}%
             Jacobi elliptic function and its inverse
   \JacobiDC
                  \JacobiDCInv
            1800 \newcommand{\COOL@notation@JacobiDCParen}{p}
            1801 \newcommand{\COOL@notation@JacobiDCInvParen}{p}
            1802 \DeclareMathOperator{\JacobiDCSymb}{dc}
            1803 \newcommand{\JacobiDC}[2]{%
            1804 \JacobiDCSymb\COOL@decide@paren%
            1805 {JacobiDC}{#1 \left| \, #2 \right.\!\!}%
            1807 \newcommand{\JacobiDCInv}[2]{%
            1808 \JacobiDCSymb^{-1}\COOL@decide@paren%
            1809 {JacobiDCInv}{#1 \left| \, #2 \right.\!\!}%
             Jacobi elliptic function and its inverse
   \JacobiDN
\JacobiDNInv
```

```
\JacobiDN{z}{m}
                                         dn(z \mid m)
                  \JacobiDNInv{z}{m} dn^{-1}(z|m)
            1811 \newcommand{\COOL@notation@JacobiDNParen}{p}
            1812 \newcommand{\COOL@notation@JacobiDNInvParen}{p}
            1813 \DeclareMathOperator{\JacobiDNSymb}{dn}
            1814 \newcommand{\JacobiDN}[2]{%
            1815 \JacobiDNSymb\COOL@decide@paren%
            1816 {JacobiDN}{#1 \left| \, #2 \right.\!\!}%
            1817 }
            1818 \newcommand{\JacobiDNInv}[2]{\%}
            1819 \JacobiDNSymb^{-1}\COOL@decide@paren%
            1820 {JacobiDNInv}{#1 \left| \, #2 \right.\!\!}%
   \JacobiDS Jacobi elliptic function and its inverse
\JacobiDSInv
                  \JacobiDS{z}{m}
                                         ds(z \mid m)
                  \d s^{-1}(z|m)
            1822 \newcommand{\COOL@notation@JacobiDSParen}{p}
            1823 \newcommand{\COOL@notation@JacobiDSInvParen}{p}
            1824 \DeclareMathOperator{\JacobiDSSymb}{ds}
            1825 \newcommand{\JacobiDS}[2]{%
            1826 \JacobiDSSymb\COOL@decide@paren%
            1827 {JacobiDS}{#1 \left| \, #2 \right.\!\!}%
            1829 \newcommand{\JacobiDSInv}[2]{%
            1830 \JacobiDSSymb^{-1}\COOL@decide@paren%
            1831 {JacobiDSInv}{#1 \left| \, #2 \right.\!\!}%
  \JacobiNC Jacobi elliptic function and its inverse
\JacobiNCInv
                  \JacobiNC{z}{m}
                                         \operatorname{nc}(z \mid m)
                  1833 \newcommand{\COOL@notation@JacobiNCParen}{p}
            1834 \newcommand{\COOL@notation@JacobiNCInvParen}{p}
            1835 \DeclareMathOperator{\JacobiNCSymb}{nc}
            1836 \newcommand{\JacobiNC}[2]{%
            1837 \JacobiNCSymb\COOL@decide@paren%
            1838 {JacobiNC}{#1 \left| \, #2 \right.\!\!}%
            1840 \newcommand{\JacobiNCInv}[2]{%
            1841 \JacobiNCSymb^{-1}\COOL@decide@paren%
            1842 {JacobiNCInv}{#1 \left| \, #2 \right.\!\!}%
   \JacobiND Jacobi elliptic function and its inverse
\JacobiNDinv
                  \JacobiND{z}{m}
                                         nd(z \mid m)
                  1844 \newcommand{\COOL@notation@JacobiNDParen}{p}
            1845 \newcommand{\COOL@notation@JacobiNDInvParen}{p}
            1846 \DeclareMathOperator{\JacobiNDSymb}{nd}
            1847 \newcommand{\JacobiND}[2]{%
            1848 \JacobiNDSymb\COOL@decide@paren%
            1849 {JacobiND}{#1 \left| \, #2 \right.\!\!}%
```

```
1850 }
             1851 \newcommand{\JacobiNDInv}[2]{%
             1852 \JacobiNDSymb^{-1}\COOL@decide@paren%
             1853 {JacobiNDInv}{#1 \left| \, #2 \right.\!\!}%
              Jacobi elliptic function and its inverse
   \JacobiNS
\JacobiNSInv
                   \JacobiNS{z}{m}
                                           ns(z \mid m)
                   1855 \newcommand{\COOL@notation@JacobiNSParen}{p}
             1856 \newcommand{\COOL@notation@JacobiNSInvParen}{p}
             1857 \DeclareMathOperator{\JacobiNSSymb}{ns}
             1858 \newcommand{\JacobiNS}[2]{%
             1859 \JacobiNSSymb\COOL@decide@paren%
             1860 {JacobiNS}{#1 \left| , #2 \right|
             1861 }
             1862 \newcommand{\JacobiNSInv}[2]{%
             1863 \JacobiNSSymb^{-1}\COOL@decide@paren%
             1864 {JacobiNSInv}{#1 \left| \, #2 \right.\!\!}%
   \JacobiSC
              Jacobi elliptic function and its inverse
\JacobiSCInv
                    \JacobiSC{z}{m}
                                           sc(z \mid m)
                   \JacobiSCInv{z}{m} \operatorname{sc}^{-1}(z \mid m)
             1866 \newcommand{\COOL@notation@JacobiSCParen}{p}
             1867 \newcommand{\COOL@notation@JacobiSCInvParen}{p}
             1868 \DeclareMathOperator{\JacobiSCSymb}{sc}
             1869 \newcommand{\JacobiSC}[2]{%
             1870 \JacobiSCSymb\COOL@decide@paren%
             1871 {JacobiSC}{#1 \left| \, #2 \right.\!\!}%
             1872 }
             1873 \newcommand{\JacobiSCInv}[2]{%
             1874 \JacobiSCSymb^{-1}\COOL@decide@paren%
             1875 {JacobiSCInv}{#1 \left| \, #2 \right.\!\!}%
              Jacobi elliptic function and its inverse
   \JacobiSD
                   \label{eq:sd} $$\JacobiSD\{z\}\{m\} \quad sd(z\mid m)$$ \aligned sd^{-1}(z\mid m)$$
\JacobiSDInv
             1877 \newcommand{\COOL@notation@JacobiSDParen}{p}
             1878 \newcommand{\COOL@notation@JacobiSDInvParen}{p}
             1879 \DeclareMathOperator{\JacobiSDSymb}{sd}
             1880 \newcommand{\JacobiSD}[2]{%
             1881 \JacobiSDSymb\COOL@decide@paren%
             1882 {JacobiSD}{#1 \left| \, #2 \right.\!\!}%
             1884 \newcommand{\JacobiSDInv}[2]{%
             1885 \JacobiSDSymb^{-1}\COOL@decide@paren%
             1886 {JacobiSDInv}{#1 \left| \, #2 \right.\!\!}%
             Jacobi elliptic function and its inverse
   \JacobiSN
\JacobiSNInv
```

```
\JacobiSN{z}{m}
                                               \operatorname{sn}(z \mid m)
                        1888 \newcommand{\COOL@notation@JacobiSNParen}{p}
                 1889 \newcommand{\COOL@notation@JacobiSNInvParen}{p}
                 1890 \DeclareMathOperator{\JacobiSNSymb}{sn}
                 1891 \newcommand{\JacobiSN}[2]{%
                 1892 \JacobiSNSymb\COOL@decide@paren%
                 1893 {JacobiSN}{#1 \left| \, #2 \right.\!\!}%
                 1894 }
                 1895 \newcommand{\JacobiSNInv}[2]{%
                 1896 \JacobiSNSymb^{-1}\COOL@decide@paren%
                 1897 {JacobiSNInv}{#1 \left| \, #2 \right.\!\!}%
                   1.3.32 Modular Functions
     \DedekindEta Dedekind eta modular function, \DedekindEta{z}, \eta(z)
                 1899 \newcommand{\COOL@notation@DedekindEtaParen}{p}
                 1900 \verb|\newcommand{\DedekindEta}[1]{\cdotdecide@paren{DedekindEta}{#1}} \\
\KleinInvariantJ Klein invariant modular function, \KleinInvariantJ\{z\}, J(z)
                 1901 \newcommand{\COOL@notation@KleinInvariantJParen}{p}
                 1902 \newcommand{\KleinInvariantJ}[1]%
                 1903 {J\COOL@decide@paren{KleinInvariantJ}{#1}}
   \ModularLambda Modular lambda function, \ModularLambda{z}, \lambda(z)
                 1904 \newcommand{\COOL@notation@ModularLambdaParen}{p}
                 1905 \newcommand{\ModularLambda}[1]%
                 1906 {\lambda\COOL@decide@paren{ModularLambda}{#1}}
   \EllipticNomeQ Nome and its inverse
\EllipticNomeQInv
                        \EllipticNomeQ{m}
                        \verb|\EllipticNomeQInv{m}| \quad q^{-1}(m)
                 1907 \newcommand{\COOL@notation@EllipticNomeQParen}{p}
                 1908 \newcommand{\COOL@notation@EllipticNomeQInvParen}{p}
                 1909 \newcommand{\EllipticNomeQ}[1]%
                 1910 {q\COOL@decide@paren{EllipticNomeQ}{#1}}
                 1911 \newcommand{\EllipticNomeQInv}[1]%
                 1912 \ \{q^{-1}\COOL@decide@paren\{EllipticNomeQ\}\{\#1\}\}
                   1.3.33 Arithmetic Geometric Mean
    \ArithGeoMean Arithmetic Geometric Mean
             \AGM
                        \ArithGeoMean{a}{b}
                                                agm(a,b)
                        \Lambda GM\{a\}\{b\}
                                                agm(a,b)
                 1913 \newcommand{\COOL@notation@ArithGeoMeanParen}{p}
                 1914 \DeclareMathOperator{\ArithGeoMeanSymb}{agm}
                 1915 \newcommand{\ArithGeoMean}[2]%
                 1916 {\ArithGeoMeanSymb\COOL@decide@paren{ArithGeoMean}{#1, #2}}
                 1917 \newcommand{\AGM}[2]{\ArithGeoMean{#1}{#2}}
```

1.3.34 Elliptic Exp and Log

```
\EllipticExp Elliptic exponential
       \EExp
                   \EllipticExp{z}{a,b} eexp(z; a, b)
                   \EExp{z}{a,b}
                                             eexp(z; a, b)
             1918 \newcommand{\COOL@notation@EllipticExpParen}{p}
             1919 \DeclareMathOperator{\EllipticExpSymb}{eexp}
             1920 \newcommand{\EllipticExp}[2]{%
             1921 \liststore{#2}{COOL@EllipticExp@arg@}
             1922 \listval{#2}{0}%
             1923 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
             1924 {%
             1925 \PackageError{cool}{Invalid Argument}%
             1926 {'EllipticExp' second argument must be
             1927 a comma separated list of length 2}%
            1928 }%
            1929 % Else
             1930 {%
            1931 \EllipticExpSymb\COOL@decide@paren{EllipticExp}{#1; #2}%
            1932 }%
            1933 }
             1934 \newcommand{\EExp}[2]{\EllipticExp{#1}{#2}}
\EllipticLog Elliptic logarithm
                   \Xi_1,z_2{a,b} elog(z_1,z_2;a,b)
       \ELog
                   \ELog{z_1,z_2}{a,b}
                                                   elog(z_1, z_2; a, b)
             1935 \newcommand{\COOL@notation@EllipticLogParen}{p}
             1936 \DeclareMathOperator{\EllipticLogSymb}{elog}
             1937 \newcommand{\EllipticLog}[2]{%
             1938 \liststore{#1}{COOL@EllipticLog@arg@z@}%
             1939 \liststore{#2}{COOL@EllipticLog@arg@a@}%
             1940 \listval{#1}{0}%
             1941 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
             1942 {%
             1943 \PackageError{cool}{Invalid Argument}%
             1944 {'EllipticLog' first argument must be
             1945 a comma separated list of length 2}%
             1946 }%
            1947 % Else
            1948 {%
             1949 \listval{#2}{0}%
             1950 \ifthenelse{\NOT \value{COOL@listpointer} = 2}%
             1951 {%
             1952 \PackageError{cool}{Invalid Argument}%
             1953 {'EllipticLog' second argument must be%
             1954 a comma separated list of length 2}%
             1955 }%
             1956 % Else
             1957 {%
             1958 \EllipticLogSymb\COOL@decide@paren{EllipticLog}{#1; #2}%
             1960 }%
             1961 }
             1962 \newcommand{\ELog}[2]{\EllipticLog{#1}{\#2}}
```

1.3.35 Zeta Functions

```
\RiemannZeta Riemann Zeta Function
                          \RiemannZeta{s} \zeta(s)
                          \Zeta{s}
                                              \zeta(s)
                    1963 \newcommand{\RiemannZeta}[1]{\Zeta{#1}}
       \HurwitzZeta Hurwitz Zeta Function
                          \HurwitzZeta{s}{a} \zeta(s,a)
                          \Zeta{s,a}
                                                  \zeta(s,a)
                    1964 \newcommand{\HurwitzZeta}[2]{\Zeta{#1,#2}}
              \Zeta Riemann and Hurwitz Zeta
                          Riemann Zeta \Zeta{s}
                                                         \zeta(s)
                          Hurwitz Zeta
                                          \Delta s,a \zeta(s,a)
                    1965 \newcommand{\COOL@notation@ZetaParen}{p}
                    1966 \newcommand{\Zeta}[1]{%
                    1967 \liststore{#1}{COOL@Zeta@arg@}%
                    1968 \listval{#1}{0}% get the list length
                    1969 \ifthenelse{\value{COOL@listpointer} = 2}%
                    1971 \zeta\COOL@decide@paren{Zeta}{\COOL@Zeta@arg@i,\COOL@Zeta@arg@ii}%
                    1972 }%
                    1973 % else
                    1974 {%
                    1975 \ifthenelse{\value{COOL@listpointer} = 1}%
                    1977 \zeta\COOL@decide@paren{Zeta}{#1}%
                    1978 }%
                    1979 % else
                    1980 {%
                    1981 \PackageError{cool}{'Zeta' Invalid Argument}%
                    1982 {the Zeta function can only accept%
                    1983 a comma deliminated list of length 1 or 2}
                    1984 }%
                    1985 }%
                    1986 }%
\RiemannSiegelTheta Riemann-Siegel Theta Function, \RiemannSiegelTheta{z}, \vartheta(z)
                    1987 \newcommand{\COOL@notation@RiemannSiegelThetaParen}{p}
                    1988 \newcommand{\RiemannSiegelTheta}[1]%
                    1989 {\vartheta\COOL@decide@paren{RiemannSiegelTheta}{#1}}
    \RiemannSiegelZ Riemann-SiegelZ Function, \RiemannSiegelZ\{z\}, Z(z)
                    1990 \newcommand{\COOL@notation@RiemannSiegelZParen}{p}
                    1991 \newcommand{\RiemannSiegelZ}[1]%
                    1992 {Z\COOL@decide@paren{RiemannSiegelZ}{#1}}
    \StieltjesGamma Stieltjes Constant, \StieltjesGamma{n}, \gamma_n
                    1993 \newcommand{\StieltjesGamma}[1]{\gamma_{#1}}
          \LerchPhi \Lerch transcendent, \LerchPhi{z}{s}{a}, \Phi(z, s, a)
                    1994 \newcommand{\COOL@notation@LerchPhiParen}{p}
                    1995 \newcommand{\LerchPhi}[3]{\Phi\COOL@decide@paren{LerchPhi}{#1,#2,#3}}
```

1.3.36 Polylogarithms

\NielsenPolyLog \Nielsen Polylogarithm, \NielsenPolyLog{\nu}{z}, $S_{\nu}^{p}(z)$

```
1996 \newcommand{\COOL@notation@NielsenPolyLogParen}{p}
          1997 \newcommand{%
          1998 \NielsenPolyLog}[3]{S_{#1}^{#2}%
          1999 \COOL@decide@paren{NielsenPolyLog}{#3}%
          2000 }
 \PolyLog Polylogarithm
                Nielsen PolyLog
                                 \PolyLog{\nu,p,z}
                PolvLog
                                  \PolyLog{\nu,z}
                                                         \operatorname{Li}_{\nu}(z)
          2001 \newcommand{\COOL@notation@PolyLogParen}{p}
          2002 \DeclareMathOperator{\PolyLogSymb}{Li}
          2003 \newcommand{\PolyLog}[1]{%
          2004 \liststore{#1}{COOL@PolyLog@arg@}%
          2005 \listval{#1}{0}%
          2006 \ifthenelse{\value{COOL@listpointer} = 3}%
          2008 \NielsenPolyLog{\COOL@PolyLog@arg@i}%
          2009 {\COOL@PolyLog@arg@ii}{\COOL@PolyLog@arg@iii}%
          2010 }%
         2011 % else
         2012 {%
          2013 \ifthenelse{ \value{COOL@listpointer} = 2 }%
          2015 \PolyLogSymb_{\COOL@PolyLog@arg@i}%
          2016 \COOL@decide@paren{PolyLog}{\COOL@PolyLog@arg@ii}%
          2017 }%
         2018 % else
         2019 {%
         2020 \PackageError{cool}{'PolyLog' Invalid Argument}%
          2021 {This function returns either the Polylogarithm or the%
          2022 Nielsen Polylogarithm. It therefore only accepts a comma%
          2023 deliminated list of length two or three (1 or 2 commas)}%
         2024 }%
         2025 }%
         2026 }
   \DiLog Dilogarithm (alias for \PolyLog{2,x}); \DiLog{x}, \text{Li}_2(x)
          2027 \newcommand{\DiLog}[1]{\PolyLog{2,#1}}
           1.3.37 Mathieu Functions
\MathieuC Even Mathieu Function, \MathieuC{a}{q}{z}, Ce(a, q, z)
          2028 \newcommand{\COOL@notation@MathieuCParen}{p}
          2029 \DeclareMathOperator{\MathieuCSymb}{Ce}
          2030 \newcommand{\MathieuC}[3]%
          2031 {\MathieuCSymb\COOL@decide@paren{MathieuC}{#1,#2,#3}}
\MathieuS Odd Mathieu Function, \MathieuS{a}{q}{z}, Se(a, q, z)
          2032 \newcommand{\COOL@notation@MathieuSParen}{p}
          2033 \DeclareMathOperator{\MathieuSSymb}{Se}
```

```
2035 {\bf \{MathieuSSymb\}\COOL@decide@paren\{MathieuS\}\{\#1,\#2,\#3\}\}}
                                      Mathieu Characteristics
                              Characteristic Value of Even Mathieu Function
     \MathieuCharacteristicA
          \MathieuCharisticA
                                   \MathieuCharacteristicA{r}{q} a_r(q)
                                  \MathieuCharisticA{r}{q}
                                                                     a_r(q)
                            2036 \newcommand{\COOL@notation@MathieuCharacteristicAParen}{p}
                            2037 \newcommand{\MathieuCharacteristicA}[2]%
                            2038 {a_{#1}\COOL@decide@paren{MathieuCharacteristicA}{#2}}
                            2039 \newcommand{\MathieuCharisticA}[2]{\MathieuCharacteristicA\{#1\}\{#2\}}
     \MathieuCharacteristicB Characteristic Value of Even Mathieu Fucntion
          \MathieuCharisticB
                                  \MathieuCharacteristicB{r}{q}
                                                                     b_r(q)
                                   \MathieuCharisticB{r}{q}
                                                                     b_r(q)
                            2040 \newcommand{\COOL@notation@MathieuCharacteristicBParen}{p}
                            2041 \newcommand{\MathieuCharacteristicB}[2]%
                            2042 {b_{#1}\COOL@decide@paren{MathieuCharacteristicB}{#2}}
                            2043 \newcommand{\MathieuCharisticB}[2]{\MathieuCharacteristicB{#1}{#2}}
MathieuCharacteristicExponent Characteristic Exponent of a Mathieu Fucntion
        \MathieuCharisticExp
                                   \MathieuCharateristicExponent{a}{q}
                                  \MathieuCharisticExp{a}{q}
                            2044 \newcommand{\COOL@notation@MathieuCharacteristicExponentParen}{p}
                            2045 \newcommand{\MathieuCharacteristicExponent}[2]%
                            2046 {r\COOL@decide@paren{MathieuCharacteristicExponent}{#1,#2}}
                            2047 \newcommand{\MathieuCharisticExp}[2]%
                            2048 {\MathieuCharacteristicExponent{#1}{#2}}
                              1.3.39 Complex variables
                        \Abs Absolute value, \Abs{z}, |z|
                            2049 \newcommand{\Abs}[1]{ \left|#1\right| }
                        \Arg Argument, \Arg{z}, arg(z)
                            2050 \newcommand{\Arg}[1]{ \arg\inp{#1} }
                  \Conjugate Complex Conjugate
                       \Conj
                                  Conj{z}
                                   \Conjugate{z}
                            2052 \newcommand{\COOL@notation@ConjugateParen}{inv}
                            2053 \newcommand{\Conjugate}[1]{\Conj{#1}}
                            2054 \newcommand{\Conj}[1]{%
                            2055 \ifthenelse{\equal{\COOL@notation@Conjugate}{bar}}%
                            2056 {%
                            2057 \bar{#1}%
                            2058 }%
                            2059 % ElseIf
                            2060 { \ifthenelse{\equal{\COOL@notation@Conjugate}{overline}}%
```

2061 {%

2034 \newcommand{\MathieuS}[3]%

```
2062 \operatorname{verline} \{#1\}\%
               2063 }%
               2064 % ElseIf
               2065 { \ifthenelse{\equal{\COOL@notation@Conjugate}{star}}%
               2067 \COOL@decide@paren{Conjugate}{#1}^*%
               2068 }%
               2069 % Else
               2070 {%
               2071 \PackageError{cool}{Invalid Option Sent}%
               2072 {'Conjugate' can only be set at 'star', 'bar', or 'overline'}%
               2073 }%
               2074 }}%
               2075 }
         \Real Real Part, \Real{z}, Re z
               2076 \newcommand{\COOL@notation@RealParen}{none}
               2077 \DeclareMathOperator{\RealSymb}{Re}
               2078 \newcommand{\Real}[1]{\%
                 we put a space if there is no parentheses, or leave it out if there are
               2079 \ifthenelse{\equal{\COOL@notation@ImagParen}{none}}%
               2081 \RealSymb{#1}%
               2082 }%
               2083 % Else
               2084 {%
               2085 \RealSymb\COOL@decide@paren{Imag}{#1}%
               2086 }%
               2087 }
         \lceil \text{Imag} \rceil Imaginary Part, \lceil \text{Imag}\{z\}, Im z
               2088 \newcommand{\COOL@notation@ImagParen}{none}
               2089 \DeclareMathOperator{\ImagSymb}{Im}
               2090 \newcommand{\Imag}[1]{%
                 we put a space if there is no parentheses, or leave it out if there are
               2091 \ifthenelse{\equal{\COOL@notation@ImagParen}{none}}%
               2092 {%
               2093 \ImagSymb{#1}%
               2094 }%
               2095 % Else
               2097 \ImagSymb\COOL@decide@paren{Imag}{#1}%
               2098 }%
               2099 }
         \Sign Sign function, \Sign\{x\}, sgn(x)
               2100 \newcommand{\COOL@notation@SignParen}{p}
               2101 \newcommand{\Sign}[1]{\operatorname{sgn}\COOL@decide@paren{Sign}{#1}}
                 1.3.40 Number Theory Functions
\FactorInteger Prime decomposition, \Factors\{n\}, factors(n)
```

\Factors

```
2102 \newcommand{\COOL@notation@FactorIntegerParen}{p}
                                   2103 \DeclareMathOperator{\FactorIntegerSymb}{factors}
                                   2104 \newcommand{\FactorInteger}[1]%
                                   2105 {\FactorIntegerSymb\COOL@decide@paren{FactorInteger}{#1}}
                                   2106 \newcommand{\Factors}[1]{\FactorInteger{#1}}
               \Divisors Divisors, \Divisors\{n\}, divisors(n)
                                   2107 \newcommand{\COOL@notation@DivisorsParen}{p}
                                   2108 \DeclareMathOperator{\DivisorsSymb}{divisors}
                                   2109 \newcommand{\Divisors}[1]%
                                   2110 {\mathord{\DivisorsSymb}\COOL@decide@paren{Divisors}{#1}}
                      \Prime The nth Prime, \Prime{n}, prime(n)
                                   2111 \newcommand{\COOL@notation@PrimeParen}{p}
                                   2112 \DeclareMathOperator{\PrimeSymb}{prime}
                                   2113 \newcommand{\Prime}[1]%
                                   2114 {\mathord{\PrimeSymb}\COOL@decide@paren{Prime}{#1}}
                  \PrimePi Prime counting function, \PrimePi{x}, \pi(x)
                                   2115 \newcommand{\COOL@notation@PrimePiParen}{p}
                                   2116 \newcommand{\PrimePi}[1]{\pi\COOL@decide@paren{PrimePi}{#1}}
        \DivisorSigma Sum of divisor powers, \DivisorSigma{k}{n}, \sigma_k(n)
                                   2117 \newcommand{\COOL@notation@DivisorSigmaParen}{p}
                                   2118 \newcommand{\DivisorSigma}[2]%
                                   2119 {\sigma_{#1}\COOL@decide@paren{DivisorSigma}{#2}}
               \EulerPhi Euler Totient Function, \EulerPhi\{x\}, \varphi(x)
                                   2120 \newcommand{\COOL@notation@EulerPhiParen}{p}
                                   2121 \end{\text{\command}(\colored cide@paren{EulerPhi}{#1})}
              \verb|\MoebiusMu| Moebius Function, \verb|\MoebiusMu{x}|, \mu(x)
                                   2122 \newcommand{\COOL@notation@MoebiusMuParen}{p}
                                   2123 \end{MoebiusMu} [1] {\end{MoebiusMu} {\#1}} \label{eq:muCOOLQdecideQparen} % \end{MoebiusMu} {\#1} {\end{MoebiusMu} {\#1}} \end{MoebiusMu} \end{MoebiusMu} % \end{MoebiusMu} % \end{MoebiusMu} {\#1} {\end{MoebiusMu} {\#1}} \end{MoebiusMu} % \end{
        \JacobiSymbol JacobiSymbol \JacobiSymbol \{n\} \{m\}, \left(\frac{n}{m}\right)
                                   2124 \newcommand{\JacobiSymbol}[2]{\inp{\frac{#1}{#2}}}
\CarmichaelLambda CarmichaelLambda Function, \CarmichaelLambda\{x\}, \lambda(x)
                                   2125 \newcommand{\COOL@notation@CarmichaelLambdaParen}{p}
                                   2126 \newcommand{\CarmichaelLambda}[1]%
                                   2127 {\lambda\COOL@decide@paren{CarmichaelLambda}{#1}}
            \DigitCount Count the digits of an integer n for a given base b
                                               2128 \newcommand{\DigitCount}[2]{%
                                   2129 \isint{#2}{COOL@isint}%
                                   2130 \ifthenelse{\boolean{COOL@isint}}%
                                   2131 {%
                                   2132 \{%
                                   2133 \setcounter{COOL@ct@}{#2}%
```

```
2135 \forLoop{1}{\arabic{COOL@ct@}}{COOL@ct}%
                                                                     2136 {%
                                                                     2137 s^{\arabic{COOL@ct}}_{#2}\inp{#1},
                                                                     2139 s^{\inp{0}}_{#2}\inp{#1}%
                                                                     2140 \}%
                                                                      2141 }%
                                                                     2142 % else
                                                                     2143 {%
                                                                     2144 \{%
                                                                      2145 s^{\inp{1}}_{#2}\inp{#1},%
                                                                      2146 s^{\inp{2}}_{#2}\inp{#1},%
                                                                      2147 \ldots,%
                                                                      2148 s^{\inp{#2} - 1}_{#2}\inp{#1},%
                                                                     2149 s^{\inp{0}}_{#2}\inp{#1}%
                                                                     2150 \}%
                                                                     2151 }%
                                                                     2152 }
                                                                          1.3.41
                                                                                                Generalized Functions
                                         \DiracDelta Dirac Delta Function, \DiracDelta(x), \delta(x)
                                                                      2153 \newcommand{\COOL@notation@DiracDeltaParen}{p}
                                                                      2154 \end{\colored} \label{limit} $$2154 \end{\colored} \label{limit} $$2154 \end{\colored} $$2154 \end{\col
                                                                       Heaviside Step Function
                                 \HeavisideStep
                                             \UnitStep
                                                                                      \HeavisideStep{x}
                                                                                                                                            \theta(x)
                                                                                                                                             \theta(x)
                                                                                      \UnitStep{x}
                                                                      2155 \newcommand{\COOL@notation@HeavisideStepParen}{p}
                                                                      2156 \newcommand{\HeavisideStep}[1]%
                                                                      2157 {\theta\COOL@decide@paren{HeavisideStep}{#1}}
                                                                      2158 \newcommand{\UnitStep}[1]{\HeavisideStep{#1}}
                                                                          1.3.42 Calculus
\COOL@notation@DDisplayFunc
                                                                          Both \D and \pderiv are controlled by these keys.
         \COOL@notation@DShorten
                                                                                  DDisplayFunc controls how the function is displayed, it can take the values:
                                                                                  \begin{array}{ll} \text{inset} & \text{Display as } \frac{df}{dx} \\ \text{outset} & \text{Display as } \frac{d}{dx}f \\ \text{DShorten} \text{ is for multiple derivatives. it can take the values} \end{array}
                                                                                                      force derivatives to be consolidated, as in \frac{d^2}{dxdu}f
                                                                                                     expand derivatives as in \frac{d}{dx}\frac{d}{dx}f
                                                                                      false
                                                                      2159 \newcounter{COOL@multideriv}
                                                                      2160 \newcommand{\COOL@notation@DDisplayFunc}{inset}
                                                                      2161 \newcommand{\COOL@notation@DShorten}{true}
                           \COOL@derivative Both \D and pderiv have the same basic operation, so a macro is defined that
                                                                          does the internals
                                                                                  \verb|\COOL@derivative| \{ \langle derivative| power(s) \rangle \} \{ \langle function \rangle \} \{ \langle wrt \rangle \} \{ \langle symbol \rangle \}
                                                                                   \langle wrt \rangle is a comma separated list of length \geq 1.
```

2134 \addtocounter{COOL@ct@}{-1}%

```
\langle symbol \rangle is passed by \D or \pderiv and is \COOL@notation@DSymb or '\partial''
  respectively
       \COOL@derivative{2,3}{f}{x,y,z}{d}
       \COOL@derivative{2,3,4,5}{f}{x,y,z}{d}
       \COOL@derivative{2,n,1}{f}{x,y,z}{d}
                                                                 \frac{d^{2+n+n}f}{dx^2\,dy^n\,dz^n}
       \COOL@derivative{2,n}{f}{x,y,z}{d}
       \Style{DDisplayFunc=outset}
                                                                 \frac{d^{2+n+n}}{dx^2\,dy^n\,dz^n}f
       \COOL@derivative{2,n}{f}{x,y,z}{d}
       \Style{DShorten=false,DDisplayFunc=inset}
                                                                 \frac{d^2}{dx^2} \frac{d^n}{dy^n} \frac{d^n f}{dz^n}
       \COOL@derivative{2,n}{f}{x,y,z}{d}
                                                                 \frac{d^2}{dx^2} \frac{d^3}{dx^3} \frac{d^4 f}{dx^4}
       \COOL@derivative{2,3,4,5}{f}{x,y,z}{d}
       \Style{DShorten=false,DDisplayFunc=outset}
                                                                 \frac{d^2}{dx^2} \frac{d^n}{dy^n} \frac{d^n}{dz^n} f
       \COOL@derivative{2,n}{f}{x,y,z}{d}
2162 \newcommand{\COOL@notation@DSymb}{d}
2163 \newcommand{\COOL@derivative}[4]{%
  Get the length of \langle wrt \rangle argument. \listval{#3}{0} gives the length of the list
  since lists begin indexing at 1.
2164 \listval{#3}{0}%
2165 \setcounter{COOL@listlen}{\value{COOL@listpointer}}%
  Store the \langle wrt \rangle list and get the length of \langle derivative\ power(s) \rangle.
2166 \liststore{#3}{COOL@deriv@wrt@}%
2167 \listval{#1}{0}%
2168 \setcounter{COOL@ct}{\value{COOL@listpointer}}%
2169 \ifthenelse{\value{COOL@ct}>\value{COOL@listlen}}%
2170 {\setcounter{COOL@ct}{\value{COOL@listlen}}}{}%
2171 \liststore{#1}{COOL@deriv@powers@}%
  Check to see if all of the powers are integers—if they are, then we may sum them
  in the usual sense
2172 \isint{\COOL@deriv@powers@i}{COOL@isint}%
2173 \setcounter{COOL@multideriv}{2}%
2174 \whiledo{ \boolean{COOL@isint} \AND
2175 \NOT \value{COOL@multideriv}>\value{COOL@ct} }%
2176 {%
2177 \def\COOL@tempd%
2178 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}%
2179 \isint{\COOL@tempd}{COOL@isint}%
2180 \stepcounter{COOL@multideriv}%
2181 }%
  If the length of \langle derivative\ power(s)\rangle is less than the length of \langle wrt \rangle, then we
  assume that the last value applies to all the remaining derivatives.
2182 \ifthenelse{ \equal{\COOL@notation@DShorten}{true} \AND
2183 \equal{\COOL@notation@DDisplayFunc}{inset} }%
2184 {%
```

```
2185 \ifthenelse{ \boolean{COOL@isint} }%
2187 \def\COOL@temp@D@bot{}%
2188 \setcounter{COOL@ct@}{0}%
2189 \forLoop{1}{\value{COOL@ct}}{COOL@multideriv}%
2191 \edef\COOL@power@temp%
2192 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}\%
2193 \edef\COOL@wrt@temp%
2194 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2195 \addtocounter{COOL@ct@}{\COOL@power@temp}%
2196 \ifthenelse{ \value{COOL@multideriv}=1 }{}%
2197 {\edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}}%
2198 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2199 {%
2200 \edef\COOL@temp@D@bot%
2201 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2202 }%
2203 % Else
2204 {%
2205 \texttt{\edef\COOL@temp@D@bot\%}
2206 \ {\tt COOL@temp@D@bot $ $\#4 } \ {\tt COOL@wrt@temp^COOL@power@temp} \%
2207 }%
2208 }%
 we're done with the length of the \langle derivative\ power(s) \rangle argument, and we want to
 start at it + 1 to add the remainders
2209 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
2210 {%
2211 \edef\COOL@power@temp%
2212 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2213 \stepcounter{COOL@ct}%
2214 \forLoop{\value{COOL@ct}}{\value{COOL@listlen}}{COOL@multideriv}%
2215 {%
2216 \edef\COOL@wrt@temp%
2217 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2218 \add to counter {\tt COOL@ct@} {\tt \COOL@power@temp} \%
2219 \ifthenelse{ \value{COOL@multideriv}=1 }{}%
2220 {\edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}}%
2221 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2222 {%
2223 \edef\COOL@temp@D@bot%
2224 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2225 }%
2226 % Else
2227 {%
2228 \edef\COOL@temp@D@bot%
2229 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2230 }%
2231 }%
2232 }%
2233 % Else
2234 {}%
2235 \ifthenelse{\value{COOL@ct@}=1}%
```

```
2236 {%
2237 \frac{44} #2}{\COOL@temp@D@bot}%
2238 }%
2239 % Else
2240 {%
2241 \texttt{\frac{\{\#4\}^{\hat{COOL@ct0}\}} \#2}{\cool@etemp@D@bot}\%}
2243 }%
2244 % Else
2245 {%
 Powers are not all Integers
2246 \edgh \COOL@temp@D@bot{}%
2247 \def\COOL@temp@D@top@power{}%
2248 \forLoop{1}{\value{COOL@ct}}{COOL@multideriv}%
2249 {%
2250 \edef\COOL@power@temp%
2251 \label{lem:cool_quarter} $$2251 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}, $$
2252 \edef\COOL@wrt@temp%
2253 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2254 \ifthenelse{ \value{COOL@multideriv} = 1}%
2256 \edef\COOL@temp@D@top@power{\COOL@power@temp}%
2257 }%
2258 % Else
2259 {%
2260 \edef\COOL@temp@D@top@power%
2261 {\COOL@temp@D@top@power + \COOL@power@temp}%
2262 \edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}%
2263 }%
2264 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2265 {%
2266 \edef\COOL@temp@D@bot%
2267 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2268 }%
2269 % Else
2270 {%
2271 \edef\COOL@temp@D@bot%
2272 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2273 }%
2274 }%
 we're done with the length of the \langle derivative \ power(s) \rangle argument, and we want to
 start at it + 1 to add the remainders
2275 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
2276 {%
2277 \edef\COOL@power@temp%
2278 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2279 \stepcounter{COOL@ct}%
2280 \forLoop{\value{COOL@ct}}{\value{COOL@listlen}}{COOL@multideriv}%
2281 {%
2282 \edef\COOL@wrt@temp%
2283 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2284 \ifthenelse{ \value{COOL@multideriv} = 1}%
2285 {%
```

```
2286 \edef\COOL@temp@D@top@power{\COOL@power@temp}%
2287 }%
2288 % Else
2289 {%
2290 \edef\COOL@temp@D@top@power%
2291 {\COOL@temp@D@top@power + \COOL@power@temp}%
2292 \edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}%
2293 }%
2294 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2295 {%
2296 \edef\COOL@temp@D@bot%
2297 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2298 }%
2299 % Else
2300 {%
2301 \edef\COOL@temp@D@bot%
2302 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2303 }%
2304 }%
2305 }%
2306 % Else
2307 {}%
2308 \texttt{ $$ \frac{\#4}^{COOL@temp@D@top@power} $$ $$ \cool@temp@D@bot} $$ $$
2309 }%
2310 }%
2311 % Else If
2312 { \ifthenelse{ \equal{\COOL@notation@DShorten}{true} \AND
2313 \equal{\COOL@notation@DDisplayFunc}{outset} }%
2314 {%
2315 \ifthenelse{ \boolean{COOL@isint} }%
2316 {%
2317 \def\COOL@temp@D@bot{}%
2318 \setcounter{COOL@ct@}{0}%
2319 \forLoop{1}{\value{COOL@ct}}{COOL@multideriv}%
2320 {%
2321 \edef\COOL@power@temp%
2322 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}%
2323 \edef\COOL@wrt@temp%
2324 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2325 \addtocounter{COOL@ct@}{\COOL@power@temp}%
2326 \ifthenelse{ \value{COOL@multideriv}=1 }{}%
2327 {\edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}}%
2328 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2330 \edef\COOL@temp@D@bot%
2331 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2332 }%
2333 % Else
2334 {%
2335 \edef\COOL@temp@D@bot%
2336 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2337 }%
2338 }%
```

```
we're done with the length of the \langle derivative\ power(s) \rangle argument, and we want to
 start at it + 1 to add the remainders
2339 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
2340 {%
2341 \edef\COOL@power@temp%
2342 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2343 \stepcounter{COOL@ct}%
2344 \forLoop{\value{COOL@ct}}{\value{COOL@listlen}}{COOL@multideriv}%
2346 \edef\COOL@wrt@temp%
2347 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2348 \addtocounter{COOL@ct@}{\COOL@power@temp}%
2349 \ifthenelse{ \value{COOL@multideriv}=1 }{}%
2350 {\edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}}%
2351 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2352 {%
2353 \edef\COOL@temp@D@bot%
2354 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2355 }%
2356 % Else
2357 {%
2358 \edef\COOL@temp@D@bot%
2359 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2360 }%
2361 }%
2362 }%
2363 % Else
2364 {}%
2365 \ifthenelse{\value{COOL@ct@}=1}%
2366 {%
2367 \frac{#4}{\COOL@temp@D@bot} #2%
2368 }%
2369 % Else
2370 {%
2371 \frac{{#4}^{\hat{}}}{COOL@ct@}}}{COOL@temp@D@bot} #2%
2372 }%
2373 }%
2374 % Else
2375 {%
 Powers are not all Integers
2376 \edef\COOL@temp@D@bot{}%
2377 \def\COOL@temp@D@top@power{}%
2378 \forLoop{1}{\value{COOL@ct}}{COOL@multideriv}%
2379 {%
2380 \edef\COOL@power@temp%
2381 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}%
2382 \edef\COOL@wrt@temp%
2383 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2384 \ifthenelse{ \value{COOL@multideriv} = 1}%
2386 \edef\COOL@temp@D@top@power{\COOL@power@temp}%
2387 }%
```

2388 % Else

```
2389 {%
2390 \edef\COOL@temp@D@top@power%
2391 {\COOL@temp@D@top@power + \COOL@power@temp}%
2392 \edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}%
2394 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2395 {%
2396 \edef\COOL@temp@D@bot%
2397 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2398 }%
2399 % Else
2400 {%
2401 \edef\COOL@temp@D@bot%
2403 }%
2404 }%
 we're done with the length of the \langle derivative \ power(s) \rangle argument, and we want to
 start at it + 1 to add the remainders
2405 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
2406 {%
2407 \edef\COOL@power@temp%
2408 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2409 \stepcounter{COOL@ct}%
2410 \forLoop{\value{COOL@ct}}{\value{COOL@listlen}}{COOL@multideriv}%
2411 {%
2412 \edef\COOL@wrt@temp%
2413 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2414 \ifthenelse{ \value{COOL@multideriv} = 1}%
2415 {%
2416 \edef\COOL@temp@D@top@power{\COOL@power@temp}%
2417 }%
2418 % Else
2419 {%
2420 \verb|\edef\COOL@temp@D@top@power%|
2421 {\COOL@temp@D@top@power + \COOL@power@temp}%
2422 \edef\COOL@temp@D@bot{\COOL@temp@D@bot \,}%
2423 }%
2425 {%
2426 \edgh{COOL@temp@D@bot}
2427 {\COOL@temp@D@bot {#4} \COOL@wrt@temp}%
2428 }%
2429 % Else
2430 {%
2431 \edef\COOL@temp@D@bot%
2432 {\COOL@temp@D@bot {#4} \COOL@wrt@temp^\COOL@power@temp}%
2433 }%
2434 }%
2435 }%
2436 % Else
2437 {}%
2438 \frac{\#4}^{COOL@temp@D@top@power} }{COOL@temp@D@bot} #2%
2439 }%
```

```
2440 }%
2441 % Else If
2442 { \ifthenelse{ \equal{\COOL@notation@DShorten}{false} \AND
2443 \equal{\COOL@notation@DDisplayFunc}{inset} }%
2445 \def\COOL@temp@D@result{}%
2446 \def\COOL@temp@D@bot{}%
2447 \def\COOL@temp@D@top{}%
2448 \setcounter{COOL@ct@}{\value{COOL@ct}}%
2449 \addtocounter{COOL@ct@}{-1}
2450 \forLoop{1}{\value{COOL@ct@}}{COOL@multideriv}\%
2451 {%
2452 \edef\COOL@power@temp%
2453 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}%
2454 \edef\COOL@wrt@temp%
2455 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2456 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2457 {%
2458 \edef\COOL@temp@D@top{#4}%
2459 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2460 }%
2461 % Else
2462 {%
2463 \edgh{COOL@temp@D@top{{#4}^\COOL@power@temp}\%}
2464 \edgh{COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}}\%
2466 \edef\COOL@temp@D@result%
2467 {\colletemp@D@result \frac{\cool@temp@D@top}{\cool@temp@D@bot}}\%
2468 }%
 we're done with the length of the \langle derivative\ power(s) \rangle argument, and we want to
 start at it + 1 to add the remainders
2469 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
 Must pick up the one for \value{COOL@ct}
2471 \edef\COOL@power@temp%
2472 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2473 \edef\COOL@wrt@temp%
2474 {\csname COOL@deriv@wrt@\roman{COOL@ct}\endcsname}%
2475 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2477 \edef\COOL@temp@D@top{#4}%
2478 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2479 }%
2480 % Else
2481 {%
2482 \edef\COOL@temp@D@top{{#4}^\COOL@power@temp}%
2483 \edgh{COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}}\%
2485 \edef\COOL@temp@D@result%
2486 {\colletemp@D@result \frac{\cool@temp@D@top}{\cool@temp@D@bot}}\% 
 Now add the ones beyond
2487 \stepcounter{COOL@ct}%
```

```
2488 \setcounter{COOL@ct@}{\value{COOL@listlen}}%
2489 \addtocounter{COOL@ct@}{-1}%
2490 \forLoop{\value{COOL@ct}}{\value{COOL@ct@}}{\cool@multideriv}{\cool@multideriv}{\cool@multideriv}{\cool@multideriv}{\cool@multideriv}{\cool@ct@}}{\cool@multideriv}{\cool@ct@}}{\cool@multideriv}{\cool@ct@}}{\cool@ct@}{\cool@ct@}}{\cool@ct@}}{\cool@multideriv}{\cool@ct@}}{\cool@ct@}}{\cool@ct@}}{\cool@ct@}}{\cool@ct@}}{\cool@ct@}}{\cool@ct@}
2492 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2493 {%
2494 \edef\COOL@temp@D@top{#4}%
2495 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2496 }%
2497 % Else
2498 {%
2499 \edef\COOL@temp@D@top{{#4}^\COOL@power@temp}%
2500 \edgh{COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}}\%
2501 }%
2502 \edef\COOL@temp@D@result%
2503 {\colletemp@D@result \frac{\cool@temp@D@top}{\cool@temp@D@bot}}\% 
  Must pick up the one for \value{COOL@listlen}
2505 \edef\COOL@wrt@temp%
2506 {\csname COOL@deriv@wrt@\roman{COOL@listlen}\endcsname}%
2507 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2509 \edef\COOL@temp@D@top{#4}%
2510 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2511 }%
2512 % Else
2513 {%
2514 \edef\COOL@temp@D@top{{#4}^\COOL@power@temp}%
2515 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}{}\% \\
2517 \edef\COOL@temp@D@result%
2518 {\COOL@temp@D@result \frac{\COOL@temp@D@top #2}{\COOL@temp@D@bot}}%
2519 }%
2520 % Else
2521 {%
  Must pick up the one for \value{COOL@ct}
2522 \edef\COOL@power@temp%
2523 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2524 \edef\COOL@wrt@temp%
2525 {\csname COOL@deriv@wrt@\roman{COOL@ct}\endcsname}%
2526 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2527 {%
2528 \edef\COOL@temp@D@top{#4}%
2529 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2530 }%
2531 % Else
2533 \edef\COOL@temp@D@top{{#4}^\COOL@power@temp}%
2534 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}%
2536 \edef\COOL@temp@D@result%
2537 {\COOL@temp@D@result \frac{\COOL@temp@D@top #2}{\COOL@temp@D@bot}}%
2538 }%
```

```
2539 \COOL@temp@D@result%
2540 }%
2541 % Else If
2542 { \ifthenelse{ \equal{\COOL@notation@DShorten}{false} \AND}
2543 \equal{\COOL@notation@DDisplayFunc}{outset} }%
2545 \def\COOL@temp@D@result{}%
2546 \ensuremath{\texttt{COOL@temp@D@bot}}\%
2547 \ensuremath{\mbox{\sc COOL@temp@D@top{}}\%}
2548 \forLoop{1}{\value{COOL@ct}}{COOL@multideriv}%
2550 \edef\COOL@power@temp%
2551 {\csname COOL@deriv@powers@\roman{COOL@multideriv}\endcsname}%
2552 \edef\COOL@wrt@temp%
2553 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2554 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2556 \edef\COOL@temp@D@top{#4}%
2557 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2558 }%
2559 % Else
2560 {%
2561 \edgh{COOL@temp@D@top{{#4}^\COOL@power@temp}%}
2562 \edge \COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{#4}} \COOL@wrt@temp^\COOL@power@temp}% \COOL@temp@D@bot{{Monthson}} \COOL@temp@
2564 \edef\COOL@temp@D@result%
2565 {\COOL@temp@D@result \frac{\COOL@temp@D@top}{\COOL@temp@D@bot}}%
   we're done with the length of the \langle derivative \ power(s) \rangle argument, and we want to
   start at it + 1 to add the remainders
2567 \ifthenelse{\value{COOL@ct}<\value{COOL@listlen}}%
2568 {%
2569 \edef\COOL@power@temp%
2570 {\csname COOL@deriv@powers@\roman{COOL@ct}\endcsname}%
2571 \stepcounter{COOL@ct}%
2572 \forLoop{\value{COOL@ct}}{\value{COOL@listlen}}{COOL@multideriv}\%
2573 {%
2574 \edef\COOL@wrt@temp%
2575 {\csname COOL@deriv@wrt@\roman{COOL@multideriv}\endcsname}%
2576 \ifthenelse{ \equal{\COOL@power@temp}{1} }%
2577 {%
2578 \edef\COOL@temp@D@top{#4}%
2579 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp}%
2580 }%
2581 % Else
2582 {%
2583 \edef\COOL@temp@D@top{{#4}^\COOL@power@temp}%
2584 \edef\COOL@temp@D@bot{{#4} \COOL@wrt@temp^\COOL@power@temp}%
2585 }%
2586 \edef\COOL@temp@D@result%
2587 {\colletemp@D@result \frac{\cool@temp@D@top}{\cool@temp@D@bot}}\% $$
2588 }%
2589 }%
```

```
2590 % Else
           2591 {%
           2592 }%
           2593 \COOL@temp@D@result #2
           2594 }%
           2595 % Else
           2596 {%
           2597 \PackageError{cool}{Invalid Option Sent}%
           2598 {DShorten can only be 'true' or 'false';%
           2599 DDisplayFunc can only be 'inset' or 'outset'}%
           2600 }%
           2601 }}}%
           2602 }
       \D Derivatives
\pderiv
                    \Style{DSymb={\mathrm d}}
                                                                     \frac{\mathrm{d}}{\mathrm{d}x}f
                     D{f}{x}
                                                                     \frac{\mathrm{d}^n}{\mathrm{d}x^n}f
                     D[n]{f}{x}
                                                                     \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}y}\frac{\mathrm{d}}{\mathrm{d}z}f
                     D{f}{x,y,z}
                                                                     \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}^2}{\mathrm{d}y^2} \frac{\mathrm{d}}{\mathrm{d}z} f
                     D[1,2,1]{f}{x,y,z}
                                                                     \frac{\partial}{\partial x}f
                     \displaystyle \pderiv{f}{x}
                     \pderiv[n]{f}{x}
                                                                     \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} f
                     \pderiv{f}{x,y,z}
                     \pderiv[1,2,1]{f}{x,y,z}
           2603 \end{\{D}[3][1]{\cool@derivative{\#1}{\#2}{\#3}{\{\cool@notation@DSymb\}}}}
           2604 \end{\pderiv} [3] [1] {\cool@derivative{\#1}{\#2}{\#3}{\partial}} \\
```

\Integrate Integrate

\Int This has the option IntegrateDisplayFunc which can be inset or outset:

```
\Style{IntegrateDisplayFunc=inset} (Default)
                                                                                  \prod_{f}{x}
                                                                                                                                                  \int f dx
                                                                                 \inf\{f\}\{x\}
                                                                                                                                                   \int f dx
                                                                                 \prod_{x,A}
                                                                                                                                                 \int_{A} f \, dx
                                                                                                                                                  \int_A f \, dx
                                                                                 \inf\{f\}\{x,A\}
                                                                                 \Integrate{f}{x,a,b} \int_a^b f dx
                                                                                                                                                  \int_a^b f dx
                                                                                 \inf\{f\}\{x,a,b\}
                \Style{IntegrateDisplayFunc=outset,IntegrateDifferentialDSymb=\text{d}}
                                                                                 \Integrate{f}{x}
                                                                                                                                                  \int \mathrm{d}x \, f
                                                                                                                                                  \int dx f
                                                                                 \inf\{f\}\{x\}
                                                                                                                                                 \int_A \mathrm{d}x \, f
                                                                                 \Integrate{f}{x,A}
                                                                                                                                                  \int_A \mathrm{d}x \, f
                                                                                 \inf\{f\}\{x,A\}
                                                                                \Integrate{f}{x,a,b} \int_a^b dx f
                                                                                 \inf\{f\}\{x,a,b\}
2605 \newcommand{\COOL@notation@IntegrateDisplayFunc}{inset}
2606 \newcommand{\COOL@notation@IntegrateDifferentialDSymb}{d}
2607 \newcommand{\Integrate}[2]{%
2608 \listval{#2}{0}%
    record the length of the list
2609 \setcounter{COOL@listlen}{\value{COOL@listpointer}}%
2610 \ifthenelse{ \value{COOL@listlen} = 1 }%
2611 {%
2612 \verb|\collong| and the melse \verb|\collong|
2613 {%
2614 \int \! \COOL@notation@IntegrateDifferentialDSymb{}#2 \, #1%
2615 }%
2616 % ElseIf
2617 { \ifthenelse{\equal{\COOL@notation@IntegrateDisplayFunc}{inset}}%
2619 \int #1 \, \COOL@notation@IntegrateDifferentialDSymb{}#2%
2620 }%
2621 % Else
2622 {%
2623 \PackageError{cool}{Invalid Option Sent}%
2624 {'DisplayFunc' can only be 'inset' or 'outset'}%
2625 }}%
2626 }%
2627 % ElseIf
2628 { \ifthenelse{ \value{COOL@listlen} = 2 }%
2629 {%
2630 \ \texttt{\equal}\ \texttt{\cool@notation@IntegrateDisplayFunc} \{outset\}\} \%
2631 {%
2632 \int_{\listval{#2}{2}} \!
2633 \COOL@notation@IntegrateDifferentialDSymb{}{\listval{#2}{1}} \, #1%
2634 }%
2635 % ElseIf
```

```
2638 \int_{\listval{#2}{2}} #1 \,
    2639 \COOL@notation@IntegrateDifferentialDSymb{}{\listval{#2}{1}}%
    2641 % Else
    2642 {%
    2643 \PackageError{cool}{Invalid Option Sent}%
    2644 {'DisplayFunc' can only be 'inset' or 'outset'}%
    2645 }}%
    2646 }%
    2647 % ElseIf
    2648 { \ifthenelse{ \value{COOL@listlen} = 3 }%
    2649 {%
    2650 \ \texttt{\equal}\ \texttt{\cool@notation@IntegrateDisplayFunc} \{outset\}\} \%
    2651 {%
    2652 \int_{\listval{#2}{2}}^{\listval{#2}{3}} \!
    2653 \COOL@notation@IntegrateDifferentialDSymb{}{\listval{#2}{1}} \, #1%
    2655 % ElseIf
    2656 { \ifthenelse{\equal{\COOL@notation@IntegrateDisplayFunc}{inset}}%
    2657 {%
    2658 \int_{\listval{#2}{2}}^{\listval{#2}{3}} #1 \,
    2659 \COOL@notation@IntegrateDifferentialDSymb{}{\listval{#2}{1}}%
    2660 }%
    2661 % Else
    2662 {%
    2663 \PackageError{cool}{Invalid Option Sent}%
    2664 {'DisplayFunc' can only be 'inset' or 'outset'}%
    2665 }}%
    2666 }%
    2667 % Else
    2669 \PackageError{cool}{'Integrate' has invalid parameter list}%
    2670 {this happens when the second argument has more than two commas}%
    2671 }}}%
    2672 }%
    2673 \newcommand{\Int}[2]{\Integrate{\#1}{\#2}}
\Sum Sum
          \sum_n a_n
          \sum_{n=1}^{N} a_n
    2674 \newcommand{\Sum} [2]{\%}
    2675 \listval{#2}{0}%
      record the length of the list
    2676 \setcounter{COOL@listlen}{\value{COOL@listpointer}}
    2677 \ifthenelse{ \value{COOL@listlen} = 1 }%
    2678 {%
    2679 \sum_{#2} #1%
    2680 }%
    2681 % else
    2682 {%
    2683 \ifthenelse{ \value{COOL@listlen} = 3 }%
```

```
2684 {%
            2685 \sum_{ \listval{#2}{1} = \listval{#2}{2} }^{ \listval{#2}{3} } #1
            2686 }%
            2687 % else
            2688 {%
            2689 \PackageError{cool}{Invalid list length for 'Sum'}%
            2690 {can only have none or two commas for second argument}%
            2691 }%
            2692 }%
            2693 }
      \Prod Product
                   \Pr d{a_n}{n}
                                          \prod_n a_n
                   \P  \Prod{a_n}{n,1,N} \prod_{n=1}^{N} a_n
            2694 \newcommand{\Prod}[2]{%
            2695 \listval{#2}{0}%
              record the length of the list
            2696 \setcounter{COOL@listlen}{\value{COOL@listpointer}}
            2697 \ifthenelse{ \value{COOL@listlen} = 1 }%
            2698 {%
            2699 \prod_{#2} #1%
            2700 }%
            2701 % else
            2702 {%
            2703 \ifthenelse{ \value{COOL@listlen} = 3 }%
            2705 \prod_{ 1istval{#2}{1} = \left| {#2}{2} \right| ^{ \left| {#2}{3} \right| #1}
            2706 }%
            2707\,\% else
            2708 {%
            2709 \PackageError{cool}{Invalid list length for 'Prod'}%
            2710 {can only have none or two commas for second argument}%
            2711 }%
            2712 }%
            2713 }
              1.3.43 Vector Operators
\DotProduct The dot product, \DotProduct{\vec{A}}}\\vec{B}}, \vec{A} \cdot \vec{B}
            2714 \newcommand{\DotProduct}[2]{#1 \cdot #2}
     \Cross The cross product, \Cross{\vec{A}}}\, \vec{A} \times \vec{B}
            2715 \newcommand{\Cross}[2]{#1 \times #2}
       \Div the divergence, \Div{\vec{A}}, \nabla \cdot \vec{A}
            2716 \newcommand{\Div}[1]{\nabla \cdot #1}
      \Grad The gradient, \Grad{f}, \nabla f
            2717 \mbox{ \newcommand{\Grad}[1]{\nabla #1}}
      \Curl The curl, \Curl{\vec{A}}, \nabla \times \vec{A}
            2718 \newcommand{\Curl}[1]{\nabla \times #1}
```

```
\Laplacian The laplacian, \Laplacian{f}, \nabla^2 f
           2719 \newcommand{\Laplacian}[1]{\nabla^2 #1}
            1.3.44 Matrix Operations
\Transpose Transpose of a matrix, \Transpose{A}, A^T
           2720 \newcommand{\COOL@notation@TransposeParen}{inv}
           2721 \newcommand{\Transpose}[1]{ \COOL@decide@paren{Transpose}{#1}^T }
   \Dagger Conjugate Transpose of a matrix, \Dagger{A}, A^{\dagger}
           2722 \newcommand{\COOL@notation@DaggerParen}{inv}
           2723 \newcommand{\Dagger}[1]{ \COOL@decide@paren{Dagger}{#1}^\dagger }
      \Det determinant of a matrix
                 \Style{DetDisplay=det} (Default)
                 \Det{A}
                                                         \det A
                 \Style{DetDisplay=barenc}
                 \Det{A}
                                                         |A|
           2724 \newcommand{\COOL@notation@DetParen}{none}
           2725 \newcommand{\COOL@notation@DetDisplay}{det}
           2726 \mbox{ } \mbox{Det} [1] {\%}
           2727 \ifthenelse{\equal{\COOL@notation@DetDisplay}{det}}%
           2728 {%
           2729 \ensuremath{\mbox{\tt COOL@decide@paren{Det}{\#1}}\%}
           2730 }%
           2731 % ElseIf
           2732 { \ifthenelse{\equal{\COOL@notation@DetDisplay}{barenc}}%
           2733 {%
           2734 \left|#1\right|%
           2735 }%
           2736 % Else
           2737 {%
           2738 \PackageError{cool}{Invalid Option Sent}%
           2739 {'DetDisplay' can only be 'det' or 'barenc'}%
           2740 }}%
           2741 }
       \Tr Trace of a Matrix, \Tr{A}, \operatorname{Tr} A
           2742 \newcommand{\COOL@notation@TrParen}{none}
           2743 \newcommand{\Tr}[2][]{%
           2744 \left\{ \frac{\#1}{} \right\}
           2746 \ensuremath{\mbox{\sc VOOL@decide@paren{Tr}{\#2}}\%}
           2747 }%
           2748 % Else
           2749 {%
           2750 \operatorname{Tr}_{#1}\COOL@decide@paren{Tr}{#2}%
           2751 }%
           2752 }
```

1.3.45 Matricies

2800 % ElseIf

```
\IdentityMatrix The Identity Matrix
                       \IdentityMatrix
                      \IdentityMatrix[2]
               2753 \newcommand{\COOL@notation@IdentityMatrixParen}{p}
               2754 \newcounter{COOL@row}%
               2755 \newcounter{COOL@col}%
               2756 \end{COOL@notation@IdentityMatrixSymb}{\mathbb{1}}
               2757 \newcommand{\IdentityMatrix}[1][0]{%
               2758 \isint{#1}{COOL@isint}%
               2759 \ifthenelse{\boolean{COOL@isint}}%
               2760 {%
               2761 \in #1=0 }%
               2763 \COOL@notation@IdentityMatrixSymb%
               2764 }%
               2765 % Else
               2766 {%
               2767 \setcounter{COOL@ct}{\value{MaxMatrixCols}}%
               2768 \setcounter{MaxMatrixCols}{#1}%
               2769 \ifthenelse{\equal{\COOL@notation@IdentityMatrixParen}{p}}%
               2770 {%
               2771 \begin{pmatrix}%
               2772 }%
               2773 % ElseIf
               2774 { \ifthenelse{\equal{\COOL@notation@IdentityMatrixParen}{b}}%
               2775 {%
               2776 \begin{bmatrix}%
               2777 }%
               2778 % ElseIf
               2779 { \ifthenelse{\equal{\COOL@notation@IdentityMatrixParen}{br}}%
               2780 {%
               2781 \begin{Bmatrix}%
               2782 }%
               2783 % Else
               2784 {%
               2785 \begin{matrix}%
               2786 }}}%
               2787 \forLoop{1}{#1}{COOL@row}%
               2789 \ifthenelse{\NOT \value{COOL@row} = 1{\\}{}%
               2790 \forLoop{1}{#1}{COOL@col}%
               2791 {%
               2792 \ifthenelse{ \NOT \value{COOL@col} = 1 }{&}{}%
               2793 \ifthenelse{ \value{COOL@row}=\value{COOL@col} }{1}{0}%
               2794 }%
               2795 }%
               2796 \ifthenelse{\equal{\COOL@notation@IdentityMatrixParen}{p}}%
               2797 {%
               2798 \end{pmatrix}%
               2799 }%
```

```
2802 {%
2803 \end{bmatrix}%
2804 }%
2805 % ElseIf
2808 \end{Bmatrix}%
2809 }%
2810 \% Else
2811 {%
2812 \end{matrix}%
2813 }}}%
2814 \verb|\counter{MaxMatrixCols}{\value{COOL@ct}}| \%
2815 }%
2816 }%
2817 \% Else
2818 {%
2819 \COOL@notation@IdentityMatrixSymb%
2820 }%
2821 }%
```

Change History

v0	mands to have a mathopen
General: pre-Initial version [tena-	before the left. Added
tive edition] $\dots \dots \dots$	${\tt IntegrateDifferentialDSymb}$
v1.0	and DSymb options for
General: Initial Release 1	Integrate and D. Added
v1.1	${\tt IdentityMatrixSymb} \qquad \qquad {\rm for} \qquad \qquad$
General: Added listlenstore to pack-	IdentityMatrix and changed
age to allow storing of the list	the default to display a double-
length $\dots 1$	struck 1. Added ESymb, ISymb,
v1.2	PISymb, and EulerGammaSymb
General: Split off the list, string,	for fundamental constants 1
and forloop parts to separate packages	v1.35
v1.3	General: Adjusted package to be
General: Redefined the in* com-	compatible with new coolstr \dots 1

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

	${f Symbols}$	${f A}$
		\Abs $\underline{2049}$
\{	7, 1693, 1707, 1730, 1749, 2132, 2144	\AGM <u>1913</u>
		\AiryAi 331
\}	7, 1693, 1707, 1733, 1756, 2140, 2150	\AiryAiSymb 332, 333

\ A : mr.D:	\COOL@decide@paren 13
\AiryBi 334	<u>. </u>
\AiryBiSymb 335, 336	\COOL@decide@paren@no@type 13-15
\AppellFOne <u>1200</u>	\COOL@decide@paren@type
\ArcCos <u>222</u>	\ldots 17, 21, 23, 29, 35, 41, 47, 53
\ArcCosh <u>280</u>	\COOL@deriv@powers@i 2172
\ArcCot <u>262</u>	\COOL@derivative 2162 , 2603 , 2604
\ArcCoth <u>288</u>	\COOL@hideOnSF
\ArcCsc <u>258</u>	1711, 1730–1732, 1750, 1752, 1754
\ArcCsch 284	\COOL@Hypergeometric@pq@ab@value 998
\ArcSec 260	\COOL@keyeater 98, 101, 106
\ArcSech 286	\COOL@keyend 98, 101, 106
\ArcSin	\COOL@keystop 98, 100, 102
\ArcSinh	\COOL@MeijerG@anp@value
\ArcTan 240	<u>1206</u> , 1303, 1314, 1316, 1333
\ArcTanh	\COOL@notation@ArcTrig 203
\Arg	\COOL@notation@DDisplayFunc 2159
\ArithGeoMean <u>1913</u>	\COOL@notation@DShorten 2159
\ArithGeoMeanSymb 1914, 1916	\COOL@notation@DSymb 2162, 2603
\AssocLegendreP $\underline{670}$	\COOL@notation@ESymb 112, 113
\AssocLegendreQ $\dots \dots \underline{671}$	\COOL@notation@EulerGammaSymb
\AssocWeierstrassSigma $\dots \dots \underline{1667}$	
	\COOL@notation@IdentityMatrixSymb
В	
\Bernoulli <u>435</u> , 691	\COOL@notation@IntegrateDifferentialDSymb
\BernoulliB <u>691</u>	$\dots \dots $
\BesselI <u>323</u>	2614, 2619, 2633, 2639, 2653, 2659
\BesselJ <u>315</u>	\COOL@notation@ISymb 110, 111
\BesselK <u>327</u>	\COOL@notation@PISymb 114, 115
\BesselY	\COOL@notation@PISymb 114, 115 \COOL@tempd 2177, 2179
\BesselY $\overline{319}$	
\BesselY $\overline{319}$ \Beta	\COOL@tempd
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\COOL@tempd 2177, 2179 \Cos <u>193</u> \Cosh <u>266</u>
\BesselY \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\COOL@tempd 2177, 2179 \Cos
\BesselY \ \frac{319}{319} \Beta \ \frac{831}{858}, 859, 919 \BetaReg \ \frac{860}{860} \BetaRegInv \ \frac{887}{860} \BetaRegularized \ \frac{860}{860} \end{array}	\COOL@tempd 2177, 2179 \Cos \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\BesselY \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989
\BesselY \ \frac{319}{319} \Beta \ \frac{831}{858}, 859, 919 \BetaReg \ \frac{860}{860} \BetaRegularized \ \frac{860}{81000} \Binomial \ \frac{694}{81000} \Binomial	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegularized 860 Binomial 694 C	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125	$\begin{array}{llllllllllllllllllllllllllllllllllll$
NesselY 319 Neta	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
NesselY 319 Neta	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270 \Curl 2718
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270 \Curl 2718 \CyclotomicC 686
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevI 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 COOL@arg@temp 470, 477, 478,	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevI 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 COOL@arg@temp 470, 477, 478,	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 COOL@arg@temp 470, 477, 478, 482, 483, 488, 489, 492, 499,	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270 \Curl 2718 \CyclotomicC 686 D 2603 \Dagger 2722 \DblFactorial 693 \DedekindEta 1899
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 COOL@arg@temp 470, 477, 478, 482, 483, 488, 489, 492, 499, 506, 507, 511, 512, 517, 518, 521	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 C00L@arg@temp 470, 477, 478, 482, 483, 488, 489, 492, 499, 506, 507, 511, 512, 517, 518, 521 C00L@Bernoulli@arg@i 446	\COOL@tempd 2177, 2179 \Cos
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 Conjugate 2051 Conjugate 470, 477, 478, 482, 483, 488, 489, 492, 499, 506, 507, 511, 512, 517, 518, 521 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 447 A82 483 487 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 447	\COOL@tempd 2177, 2179 \Cos 193 \Cosh 266 \CoshInt 995 \CoshIntSymb 996, 997 \CosInt 989 \CosIntSymb 990, 991 \Cot 201 \Coth 276 \Cross 2715 \Csc 197 \Csch 270 \Curl 2718 \CyclotomicC 686 D 2603 \Dagger 2722 \DblFactorial 693 \DedekindEta 1899 \Det 2724 \DiGamma 808
BesselY 319 Beta 831, 858, 859, 919 BetaReg 860 BetaRegInv 887 BetaRegularized 860 Binomial 694 C CarmichaelLambda 2125 Catalan 119 Ceiling 342 ChebyshevT 656 ChebyshevU 660 CInfty 132 ClebschGordon 1339 ComplexInfinity 132 Conj 2051 Conjugate 2051 Conjugate 470, 477, 478, 482, 483, 488, 489, 492, 499, 506, 507, 511, 512, 517, 518, 521 COOL@Bernoulli@arg@i 446 COOL@Bernoulli@arg@i 447 COOL@decide@indicies 68	\COOL@tempd 2177, 2179 \Cos

\DirInfty $\underline{130}$ \DiscreteDelta $\underline{462}$ \Div $\underline{2716}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\Divisors	${f G}$
	\GammaFunc
\DivisorSigma	\GammaReg
\DivisorsSymb	\GammaRegInv
\DotProduct <u>2714</u>	\GammaRegularized 758, 802
${f E}$	\GCD
	\GegenbauerC
\E <u>112,</u> 142, 146	\GenErf 962
\EExp	\GenErfInv
\EGCD	\GenIncBeta
\EllipticE <u>1486</u> , 1555	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\EllipticExp	\GenRegIncBeta
\EllipticExpSymb 1919, 1931	\GenRegIncBetaInv 920
\EllipticF	\GenRegIncGamma
\EllipticK <u>1482</u>	\GenRegIncGammaInv 803
\EllipticLog	\Glaisher 120
\EllipticLogSymb 1936, 1958	\GoldenRatio
\EllipticNomeQ <u>1907</u>	\Grad
\EllipticNomeQInv 1907	(Grad
\EllipticPi <u>1509</u> , <u>1556</u>	Н
\EllipticTheta <u>1563</u>	\HarmNum 813
\ELog	\HeavisideStep 2155
\Erf <u>921</u> , 962	\HermiteH 524
\Erfc <u>964</u>	\HurwitzZeta 1964
\ErfcInv	\Hypergeometric \(\frac{1062}{1062} \)
\ErfcSymb 965, 966, 969	
•	\HvpergeometricU 1203
\Erfi <u>970</u>	\HypergeometricU $\underline{1203}$
\Erfi	\HypergeometricU <u>1203</u> I
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	I
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	I \I <u>110</u>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\Erfi	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 921, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\tensilon \text{Erfi} \tag{970} \\ \text{ErfInv} \tag{942}, 963 \\ \text{ErfSymb} \tag{922}, 928, 933, 948, 953 \\ \text{Euler} \tag{414}, 690 \\ \text{EulerGamma} \tag{117} \\ \text{EulerPhi} \tag{2120} \\ \text{Exp} \tag{314} \\ \text{ExpIntE} \tag{977} \\ \text{ExpIntE} \tag{977} \\ \text{ExpIntE} \tag{977} \\ \text{ExpIntE} \tag{973} \\ \text{ExpIntE} \tag{973} \\ \text{ExpIntE} \tag{973} \\ \text{ExpIntE} \tag{977} \\ \text{ExpIntE} \tag{978} \\ \text{ExpIntExpIntE} \tag{978} \\ ExpIntExpIntExpIntExpIntExpIntExpIntExpIntExpIntExpIntExpIntExpIntE	I \I \flagstarting \flags
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979	I \I \frac{110}{10} \IdentityMatrix \frac{2753}{2088} \ImagSymb \frac{2089}{2093}, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1537}
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982	I \I \flat 10 \IdentityMatrix 2753 \Imag 2088 \ImagSymb 2089, 2093, 2097 \IncBeta 858 \IncEllipticE 1555 \IncEllipticF 1537 \IncEllipticPi 1556 \IncGamma 756 \Indeterminant 123
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982 \ExtendedGCD 385	I \I \frac{110}{2753} \Imag \frac{2088}{2088} \ImagSymb 2089, 2093, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1537} \IncEllipticPi \frac{1556}{1566} \IncGamma \frac{756}{756} \Indeterminant \frac{123}{123} \Infinity \frac{122}{122}
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982	I \I \frac{110}{2753} \Imag \frac{2088}{2088} \ImagSymb 2089, 2093, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1537} \IncEllipticPi \frac{1537}{1556} \IncGamma \frac{756}{756} \Indeterminant \frac{123}{122} \Int \frac{2605}{2605}
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388	I \I \frac{110}{2753} \Imag \frac{2088}{2088} \ImagSymb 2089, 2093, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1555} \IncEllipticF \frac{1537}{1556} \IncGamma \frac{756}{756} \Indeterminant \frac{123}{122} \Int \frac{2605}{2605} \IntegerPart \frac{344}{344}
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388	I \I \frac{110}{2753} \Imag \frac{2088}{2088} \ImagSymb 2089, 2093, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1555} \IncEllipticF \frac{1537}{1556} \IncGamma \frac{756}{756} \Indeterminant \frac{123}{122} \Int \frac{2605}{2605} \IntegerPart \frac{344}{2605}
\terfi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I \I \frac{110}{2753} \Imag \frac{2088}{2088} \ImagSymb 2089, 2093, 2097 \IncBeta \frac{858}{858} \IncEllipticE \frac{1555}{1555} \IncEllipticF \frac{1537}{1556} \IncGamma \frac{756}{756} \Indeterminant \frac{123}{122} \Int \frac{2605}{2605} \Integrate \frac{2605}{2605} \InverseBetaRegularized \frac{887}{920}
\terrilon \terri	T
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \FactorIntegerSymb 2103, 2105	T
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEi 979 \ExpIntEiSymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \FactorIntegerSymb 2103, 2105 \Factors 2102	T
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEii 979 \ExpIntEisymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \FactorIntegerSymb 2103, 2105 \Factors 2102 \Fibonacci 393, 689	T
\Erfi 970 \ErfInv 942, 963 \ErfiSymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEisymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \Factors 2102 \Factors 2102 \Fibonacci 393, 689 \Fibonacci 689	I \I
\Erfin 970 \ErfInv 942, 963 \Erfisymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEisymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \Factors 2102 \Factors 2102 \Fibonacci 393, 689 \FibonacciF 689 \Floor 341	I \I
\Erfin 970 \ErfInv 942, 963 \Erfisymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEisymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \Factors 2102 \Fibonacci 393, 689 \FibonacciF 689 \Floor 341 \fPart 348	T
\Erfin 970 \ErfInv 942, 963 \Erfisymb 971, 972 \ErfSymb 922, 928, 933, 948, 953 \Euler 414, 690 \EulerE 690 \EulerGamma 117 \EulerPhi 2120 \Exp 134 \ExpIntE 977 \ExpIntEisymb 980, 982 \ExtendedGCD 385 \ExtendedGCDSymb 386, 388 F \Factorial 692 \FactorInteger 2102 \Factors 2102 \Factors 2102 \Fibonacci 393, 689 \FibonacciF 689 \Floor 341	I \I

\JacobiCDSymb 1769, 1771, 1775	\LeviCivita $\underline{494}$
\JacobiCN <u>1778</u>	\Log
\JacobiCNInv <u>1778</u>	\LogGamma
\JacobiCNSymb 1780, 1782, 1786	\LogGammaSymb 806, 807
\JacobiCS <u>1789</u>	\LogInt <u>983</u>
\JacobiCSInv <u>1789</u>	\LogIntSymb 984, 985
\JacobiCSSymb 1791, 1793, 1797	
\JacobiDC <u>1800</u>	M
\JacobiDCInv <u>1800</u>	\mathbbm
\JacobiDCSymb 1802, 1804, 1808	\MathieuC 2028
\JacobiDN <u>1811</u>	\MathieuCharacteristicA 2036
\JacobiDNInv <u>1811</u>	\MathieuCharacteristicB 2040
\JacobiDNSymb 1813, 1815, 1819	\MathieuCharacteristicExponent \frac{2044}{2000}
\JacobiDS <u>1822</u>	\MathieuCharisticA 2036
\JacobiDSInv <u>1822</u>	\MathieuCharisticB 2040
\JacobiDSSymb 1824, 1826, 1830	\MathieuCharisticExp 2044
\JacobiNC <u>1833</u>	\MathieuCSymb 2029, 2031
\JacobiNCInv <u>1833</u>	\MathieuS 2032
\JacobiNCSymb 1835, 1837, 1841	\MathieuSSymb 2033, 2035
\JacobiND <u>1844</u>	\mathopen 3,
\JacobiNDInv 1851	5, 7, 9, 11, 1268, 1299, 1310, 1329
\JacobiNDinv <u>1844</u>	\Max 311
\JacobiNDSymb 1846, 1848, 1852	\MeijerG <u>1244</u>
\JacobiNS <u>1855</u>	\Min
\JacobiNSInv <u>1855</u>	\Mod
\JacobiNSSymb 1857, 1859, 1863	\ModularLambda <u>1904</u>
\JacobiP	\MoebiusMu
\JacobiSC	\Multinomial <u>695</u>
\JacobiSCInv	N
\JacobiSCSymb 1868, 1870, 1874	\NevilleThetaC 1567
\JacobiSD	\\NevilleThetaD
\JacobisDSymb 1879, 1881, 1885	\\NevilleThetaN
\JacobiSN 1888	\NevilleThetaS
\JacobiSNInv	\NielsenPolyLog 1996, 2008
\JacobiSNSymb 1890, 1892, 1896	(M10120M 01)108 <u>1000</u> , 2000
\JacobiSymbol 2124	P
\JacobiTheta 1563	\PartitionsP 458
\JacobiZeta 1557	\PartitionsQ $\overline{460}$
	\pderiv <u>2603</u>
K	\PI
\Khinchin <u>121</u>	\Pochhammer <u>804</u>
\KleinInvariantJ <u>1901</u>	$\verb \PolyGamma \underline{810}$
\KroneckerDelta $\underline{465}$	\PolyLog <u>2001</u> , 2027
	\PolyLogSymb 2002, 2015
${f L}$	\Prime <u>2111</u>
$\verb \LambertW \dots \underline{290}$	\PrimePi <u>2115</u>
\Laplacian $\underline{2719}$	$\verb \PrimeSymb 2112, 2114 $
\LaugerreL $\dots \dots \underline{528}$	$\verb \Prod \underline{2694} $
\LCM <u>390</u>	$\verb \ProductLog 290, \underline{291}$
\LCMSymb 391, 392	
\LegendreP <u>550</u> , 670	Q
\LegendreQ <u>603</u> , 671	\Quotient 379
\LerchPhi <u>1994</u>	\QuotientSymb 380, 382

\mathbf{R}	\Sum <u>2674</u>
\Real <u>2076</u>	Th.
\RealSymb 2077, 2081, 2085	T
RegHypergeometric 1129	\Tan
\RegIncBeta <u>860</u>	\Tanh
\RegIncBetaInv 887	\ThreeJSymbol <u>1372</u>
\RegIncGamma <u>758</u>	\Tr
\RegIncGammaInv 780	\Transpose
RiemannSiegelTheta 1987	U
$\verb \RiemannSiegelZ \underline{1990}$	\UnitStep 2155
\RiemannZeta <u>1963</u>	\UseStyleFile
\Round <u>343</u>	(00000) Tel 110
S	\mathbf{W}
	\WeierstrassHalfPeriods $\dots 1683$
\Sec	\WeierstrassInvariants $\underline{1697}$
\Sech	\WeierstrassP <u>1587</u>
\Sign	$\verb \WeierstrassPGenInv \underline{1635}$
\Sin	$\WeierstrassPHalfPeriodValues$. $\underline{1718}$
\Sinh	\WeierstrassPInv $\underline{1603}$, 1635
\SinhInt	\WeierstrassSigma $\dots 1636, 1667$
\SinhIntSymb	\WeierstrassZeta $\underline{1668}$
\SinInt	\WeierstrassZetaHalfPeriodValues
\SinIntSymb	
\SixJSymbol	\WeiHalfPeriods $\underline{1683}$
\SpHarmY	\WeiInvars 1710
\SphericalHarmonicY	\WeiP <u>1587</u>
\SphericalHarmY	\WeiPHalfPeriodVal 1718
\StieltjesGamma 1993	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\StirlingSOne	\WeiSigma <u>1636</u>
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\StirlingSTwo	\WeiZetaHalfPeriodVal $\dots 1737$
\StruveL 339	${f z}$
 -	\Zeta 1963, 1964, <u>1965</u>
\Style <u>97</u>	1200, 1904, 1900