

TEMA 3: ESPACIO AFÍN EUCLÍDEO

Problema 1. Demuestra que tres puntos P_1 , P_2 y P_3 están alineados con razón simple $[P_1, P_2, P_3] \ge 1$, si y solo si la distancia entre ellos verifica

$$d(P_1, P_3) = d(P_1, P_2) + d(P_2, P_3).$$

Problema 2. En $\mathbb{A}^3_{\mathbb{R}}$ sea L la recta que pasa por los puntos $P_1 = (3, 0, -1)$ y $P_2 = (2, 1, 0)$. Calcula su perpendicular por P_2 .

Problema 3. Calcula la distancia entre la recta $L_1 \in \mathbb{A}^3_{\mathbb{R}}$ que pasa por (-1,0,-1) con dirección $\mathcal{L}\{(-2,1,1)\}$ y la recta de ecuaciones

$$L_2: \left\{ \begin{array}{cccc} x & +y & +z & = & -2 \\ & -y & +2z & = & 1 \end{array} \right.$$

Problema 4. Calcula la distancia en $\mathbb{A}^3_{\mathbb{R}}$ del punto P=(1,1,4) a la recta

$$L: \left\{ \begin{array}{rrr} -3x & +z & = & 2 \\ y & -z & = & -1 \end{array} \right.$$

Problema 5. Calcula la distancia entre los dos planos paralelos $B_1: \{x+y-2z=-1\}$ y $B_2: \{x+y-2z=1\}$.

Problema 6. Prueba que la aplicación asociada a un movimiento $f: A \longrightarrow A$ en un espacio afín euclídeo es lineal. Para ello prueba que, dados $\overrightarrow{v}, \overrightarrow{w} \in V$ y $\lambda, \mu \in \mathbb{R}$,

$$\|\overrightarrow{f}(\lambda\overrightarrow{v}+\mu\overrightarrow{w})-\lambda\overrightarrow{f}(\overrightarrow{v})-\mu\overrightarrow{f}(\overrightarrow{w})\|^2=0.$$

Problema 7. Muestra que, al igual que sucede en las isometrías lineales, el determinante de un movimiento

$$\det(f) := \det(M(\overrightarrow{f})_{\mathcal{R}_c \mathcal{R}_c})$$

no depende de la referencia ortonormal escogida \mathcal{R}_c , por lo tanto el determinante es un invariante de f, igual a ± 1 .

Problema 8. Estudia la simetría en $\mathbb{A}^2_{\mathbb{R}}$ respecto de la recta $L:\{x+3y=-2\}$, encontrando una representación matricial respecto de una referencia cartesiana apropiada. Calcula sus subespacios invariantes y la imagen de la recta $B:\{3x-y=5\}$.

Problema 9. Estudia el giro en $\mathbb{A}^2_{\mathbb{R}}$ de centro Q = (-1, -2) y ángulo $\frac{\pi}{6}$, encontrando una representación matricial respecto de una referencia cartesiana apropiada. Calcula la imagen del punto P = (3, 3).

Problema 10. Estudia el movimiento composición de una simetría en $\mathbb{A}^2_{\mathbb{R}}$ respecto de la recta $L: \{x+y=2\}$, y una traslación de vector $\overrightarrow{v}=(3,-3)$, encontrando una representación matricial respecto de una referencia cartesiana apropiada. Calcula la imagen del origen de coordenadas.

Problema 11. Estudia el movimiento composición de una simetría en $\mathbb{A}^3_{\mathbb{R}}$ respecto del plano $H: \{x+y-2z=-1\}$, y una traslación de vector $\overrightarrow{v}=(-1,1,0)$, encontrando una representación matricial respecto de una referencia cartesiana apropiada. Calcula la imagen de la recta que une los puntos (0,0,0) y (1,1,-2).

Problema 12. Estudia el giro en $\mathbb{A}^3_{\mathbb{R}}$ respecto de la recta $L = (0,1,2) + \mathcal{L}\{(1,1,1)\}$ y ángulo $\frac{3\pi}{4}$, encontrando una representación matricial respecto de una referencia cartesiana apropiada. Calcula sus puntos fijos y la imagen del punto P = (-2, -2, 1).