Name:	Centre/Index No:
Signature:	School:
P525/1	
CHEMISTRY	
Paper 1	
2 ¹ / ₄ hours	

STANDARD HIGH SCHOOL ZZANA

Uganda Advanced Certificate of Education CHEMISTRY

Paper 1

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in section A and six questions in section B.

All questions must be answered in the spaces provided.

The periodic table with relative atomic masses is provided at the end of the paper.

Mathematical tables and non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Molar gas constant, $R = 8.31 \, JK^{-1} \, mol^{-1}$

Molar volume of gas at s.t.p is 22.4 litres.

	For Examiner's use only																
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	Total

Turn Over

SECTION A: (46 marks)

Answer all questions from this section.

(a)	Define the term osmotic pressure.	(02 marks
•••••		
•••••		
(b)	At $25^{\circ}C$, a 1.24% solution of a polymer has an osmotic p 3.1×10^{-3} atmospheres. Calculate the formula mass of the $(R = 0.0821dm^3 \ atm \ mol^{-1}K^{-1})$	
	(ii oloo21am aam mot ii)	,
of co	ne one reagent that can be used to distinguish between each compounds and state what would be observed in each case if	
of co		the reagent is reacted
of co with (a)	ompounds and state what would be observed in each case if the compound.	
of co with (a)	ompounds and state what would be observed in each case if the compound. $C_6H_5CHO \text{ and } C_6H_5CH_2COCH_3$	the reagent is reacted
of co with (a) Reag	ompounds and state what would be observed in each case if the compound. $C_6H_5CHO \text{ and } C_6H_5CH_2COCH_3$	the reagent is reacted
of co with (a) Reag	ompounds and state what would be observed in each case if the compound. C_6H_5CHO and $C_6H_5CH_2COCH_3$ gent:	the reagent is reacted
of co with (a) Reag	ompounds and state what would be observed in each case if the compound. C_6H_5CHO and $C_6H_5CH_2COCH_3$ gent:	the reagent is reacted
of co with (a) Reag	ompounds and state what would be observed in each case if the compound. C_6H_5CHO and $C_6H_5CH_2COCH_3$ gent:	the reagent is reacted

• • • • •		• • • • • • • • • • • • • • • • • • • •
••••		
• • • • •		
Prop	anoic acid undergoes dissociation according to the following	equation.
	$CH_3CH_2COOH(aq) \rightleftharpoons CH_3CH_2COO^-(aq) + H^+(aq)$	
(a)	Write the expression for the acid dissociation constant, Ka	. (01 mark
••••		
(b)	Given that the concentration of propanoic acid is 0.1 <i>M</i> and dissociation is 0.01133, calculate the;	d it's degree of
	(i) pH of propanoic acid,	$(3\frac{1}{2} \text{ marks})$
• • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
• • • • •		
••••	(ii) acid dissociation constant, <i>Ka</i> .	(1½ marks)
• • • • •		
••••		
	aplete the following equations and state what is observed in extances react.	ach case when the
(a)	$HC \equiv CH(g) + Cu(NH_3)_2OH(aq) \rightarrow \dots$	
		(01 mark
	Observation	(½ mark

(b)	$CH_3 \underset{ }{C} CH_3(l) + NaHSO_3(aq) \rightarrow \dots$	• • • • • • • • • • • • • • • • • • • •
	0	(01 mark)
	Observation	(½ mark)
(c)	ОН	(01 mark)
	$ \bigcirc (aq) + Br_z (aq) \longrightarrow $	
	Observation	(½ mark)
•••••		
The i	ion MnO_4^{2-} undergoes disproportionation reaction in acidic medium	n.
(a)	What is meant by the term dispropotionation?	(02 marks)
•••••		
(b)	State the oxidation state of manganese in MnO_4^{2-} .	(½ mark)
	Write the equation for the behavior of MnO_4^{2-} in acid medium.	
	write the equation for the behavior of mino4 in acid medium.	
	bond dissociation energies of H_2 , Cl_2 and HCl are 435, 242 and 4 ectively.	131 KJmol ⁻¹
Usin	g a Born – Haber cyle, calculate the enthalpy of formation of <i>HCl</i> .	(05 marks)
		• • • • • • • • • • • • • • • • • • • •
•••••		

7. For the polymers given below, write the formula and name of the monomers.. (a) (04 marks)

Polymer	Formula of monomers	Name
(0 - C - CH ₂ CH ₂)		
(O CH2 CH2 - OC)		

	(b)	Distinguish between thermo-setting and thermo-softening plastics.	(02 marks)
	• • • • •		
	••••		
	••••		
8.	Haeı	matite is one of the ores from which iron metal is extracted.	
	(a)	Name two other substances that are added to the ore before the process is carried out.	e extraction (01 mark)
	(b)	Write equation(s) to show how iron metal is extracted from the abo	ve ore. (3½ marks)

	(c)	Write the equation for the reaction between conthe ore.	calcium oxide and the impurity in (01 mark)
9.		e what would be observed and write equation n the following compounds are added together.	for the reaction that takes place
	(a)	Potassium dichromate(VI) solution in present peroxide.	ce of an acid and hydrogen
		Observation:	(½ mark)
		Equation:	(1½ marks)
	••••		
	(b)	Acidified potassium permanganate solution a	and sodium oxalate solution.
		Observation:	(½ mark)
		Equation:	(1½ marks)
	•••••		
		SECTION B: (54 marks)
		Attempt only six questions from the	is section.
10.		ne a reagent that can be used to distinguish between and state what is observed when the reagent is t	<u> </u>
	(a)	Fe^{3+} and Cr^{3+}	
		Reagent	(01 mark)

and Zn^{2+}	
und 21t	
ent	(01 mark)
vations	(02 marks)
200 1 C O ²⁻	
ent	(01 mark)
vations	(02 marks)
tions to show how the following compound de reagents and conditions for the reactions.	s can be synthesized. You
H ₂ CH ₂ COCl from CH ₃ CH ₂ CH ₂ OH	(3½ marks)
	ent evations ions to show how the following compound de reagents and conditions for the reactions.

7

Turn over

• • • •	••••••	• • • • • • • • • • • • • • • • • • • •
• • • •		
(b)	from $HC \equiv CH$	(2½ marks)
••••		••••••
••••		••••••
••••		• • • • • • • • • • • • • • • • • • • •
• • • •		• • • • • • • • • • • • • • • • • • • •
(0	c) from OCH ₃	(03 marks)
(a)		
	(i) PCl_3	(02 marks)

	(ii) BCl ₃	(02 marks)
(b)	Briefly explain how the species adopt the shapes named in (a) above.	(i) and (ii) (05 marks)
• • • • •		
••••		
• • • • •		•••••
• • • • •		•••••
• • • • •		•••••
• • • • •		•••••
• • • • •		•••••
••••		
A co	ompound W has a molecular formula $C_4H_{10}O$. When W is heat smium(VI) oxide it gave another compound, which formed silvation of silver nitrate in excess ammonia.	ed with acidified
A co	compound W has a molecular formula $C_4H_{10}O$. When W is heat smium(VI) oxide it gave another compound, which formed silve	ed with acidified
A co	compound W has a molecular formula $C_4H_{10}O$. When W is heat smium(VI) oxide it gave another compound, which formed silvation of silver nitrate in excess ammonia.	ed with acidified yer mirror with a (03 marks)
A co	ompound W has a molecular formula $C_4H_{10}O$. When W is heat omium(VI) oxide it gave another compound, which formed silvation of silver nitrate in excess ammonia. Write the structures and names of possible isomers of W .	ed with acidified ver mirror with a (03 marks)
A co	ompound W has a molecular formula $C_4H_{10}O$. When W is heat omium(VI) oxide it gave another compound, which formed silvation of silver nitrate in excess ammonia. Write the structures and names of possible isomers of W .	ed with acidified ver mirror with a (03 marks)

9

Turn Over

	(11)	Write a mechanism for the reaction leading to formation of	
	(iii)	Use mechanism to show how X can be converted to an alc	
(a)	Defi (i)	ne the term; solubility of a salt	(01 mark)
	(ii)	solubility product	
(b)		how the solubility of a sparingly soluble salt can be affected mon salt.	d by adding a (01 mark)
(c)	Mag (i)	nesium hydroxide is sparingly soluble in water. Write an equation for the solubility of magnesium hydroxide.	(1½ marks)
••••	(ii)	an expression for the solubility product, <i>Ksp</i> of magnesi	um hydroxide. (01 marks)

	$1.44 \times 10^4 \ moldm^{-3}$ at $25^{\circ}C$. Calculate it's solubility prod (3)	1/2 marks)
••••		
• • • • •		
••••		
• • • • •		
••••		
• • • • •		
(a)	Using equations, show how nitric acid is manufactured from	ammonia gas. (4½ marks)
• • • • •		
(b)	Briefly describe how nitric acid reacts with copper metal.	(4½ marks)
••••		
• • • • •		
• • • • •		
••••		• • • • • • • • • • • • • • • • • • • •
• • • • •		
• • • • •		

(b)		e four colligative properties of a solution.	(04 marks)		
(c)	(i)	Define the term mole fraction.	(01 mark)		
	(ii)	Calculate the mole fraction of potassium chloride in an aque containing $10g$ of potassium chloride per $100g$ of water. $(K = 39, Cl = 35.5)$	ueous solutior (04 marks)		
	• • • • • • • •				
	• • • • • • • •				
For e	each of	the following equations suggest a possible mechanism for the	he reaction.		
		0			
(a)	CH_3	$ \begin{array}{c} 0\\C CH_3 + H_2NOH \xrightarrow{H^+} CH_3 C CH_3 \end{array} $	(05 marks)		
		$\stackrel{\cap}{NOH}$			
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		

• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		•••••
(b)			I			
	$C_6H_5C\equiv C$	$H + 2HI \rightarrow 0$	C_6H_5 C CH_3	3		(04 marks)
			Ι			
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		••••••
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••			• • • • • • • • • • • • • • • • • • • •		
•••••	•••••			• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••	•••••	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••			• • • • • • • • • • • • • • • • • • • •		••••••

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3	ata la	0 414		200 1			90 As	r - 85			13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zu 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 35.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr (223)	88 Ra (226)	89 Ac (227)									•						
			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cr 251	99 Es (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw

1. H Indicates atomic number.

2. H Indicates relative atomic mass.