Workflow example with R2BEAT

Scenario 2

Together with a sampling frame containing the units of the population of reference, also a previous round of the sampling survey to be planned is available

```
In [35]:
          # Install last version of R2BEAT
          #devtools::install_github("barcaroli/R2BEAT", dependencies = FALSE)
          library(R2BEAT)
In [36]:
          packageVersion("R2BEAT")
          [1] '1.0.4'
In [37]:
          ## Sampling frame
          load("pop.RData")
In [38]:
          ## Sample data
          load("sample.RData")
         Analysis of sampled data
In [39]:
          # Install ReGenesees
          #devtools::install_github("DiegoZardetto/ReGenesees")
          library(ReGenesees)
In [40]:
          ## Sample design description
          sample$stratum_2 <- as.factor(sample$stratum_2)</pre>
          sample.des <- e.svydesign(sample,</pre>
                                     ids= ~ municipality + id_hh,
                                     strata = ~ stratum_2,
                                     weights = ~ weight,
                                      self.rep.str = ~ SR,
                                      check.data = TRUE)
         # Empty levels found in factors: id_hh
         # Empty levels have been dropped!
In [41]:
          ## Find and collapse lonely strata
          ls <- find.lon.strata(sample.des)</pre>
          sample.des <- collapse.strata(sample.des)</pre>
         # All lonely strata (112) successfully collapsed!
In [42]:
          ## Calibration with known totals
          totals <- pop.template(sample.des,</pre>
```

sample.cal <- e.calibrate(sample.des,</pre>

```
totals,
calmodel = ~ sex : cl_age,
partition = ~ region,
calfun = "logit",
bounds = c(0.3, 2.6),
aggregate.stage = 2,
force = FALSE)
```

Coherence check between 'universe' and 'template': OK

Preparation of inputs for allocation steps

```
In [43]:
           ## Preparation of inputs for allocation steps
           samp frame <- pop
           RGdes <- sample.des
           RGcal <- sample.cal
           strata_vars <- c("stratum")</pre>
           target_vars <- c("income_hh",</pre>
                                "active",
                               "inactive",
                               "unemployed")
           weight_var <- "weight"</pre>
           deff_vars <- "stratum"</pre>
           id_PSU <- c("municipality")</pre>
           id_SSU <- c("id_hh")</pre>
           domain_vars <- c("region")</pre>
           delta <- 1
           minimum <- 50
           inp <- prepareInputToAllocation2(</pre>
                     samp_frame, # sampling frame
                     RGdes, # ReGenesees design object
RGcal, # ReGenesees calibrated object
                     id_PSU,  # identification variable of PSUs
id_SSU,  # identification variable of SSUs
                     strata_vars, # strata variables
                     target_vars, # target variables
                     deff_vars, # deff variables
                     domain_vars, # domain variables
                     delta, # Average number of SSUs for each selection unit
                     minimum
                                  # Minimum number of SSUs to be selected in each PSU
                   )
```

In [44]:

head(inp\$strata)

							A data.iran	ne. 6 × 15		
	stratum	STRATUM	N	M1	M2	М3	M4	S 1	S2	
	<fct></fct>	<chr></chr>	<dbl></dbl>							
1	1000	1000	196769	23339.70	0.6801679	0.2127596	0.10707247	16543.72	0.4664113	0.4
2	10000	10000	106057	29340.38	0.7793318	0.2047430	0.01592524	25031.44	0.4146972	0.4
3	11000	11000	205839	27822.70	0.7814228	0.2029522	0.01562493	26050.40	0.4132810	0.4
4	12000	12000	57606	23110.90	0.7632522	0.2079530	0.02879485	15405.51	0.4250862	0.4
5	13000	13000	102801	28185.38	0.7516670	0.2142238	0.03410920	24393.71	0.4320460	0.4
6	14000	14000	84077	24787.12	0.7537232	0.2131530	0.03312385	17403.58	0.4308417	0.4

 Δ data frame: 6 x 15

In [45]:

head(inp\$deff)

		•	_	_
А	data	a fram	e. P	× /

	stratum	STRATUM	DEFF1	DEFF2	DEFF3	DEFF4	b_nar
	<fct></fct>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1000	1000	1.002141	1.003487	1.018508	0.998091	254.50000
2	10000	10000	1.019820	1.029362	1.010320	1.000982	178.83333
3	11000	11000	1.128662	1.036882	1.002039	1.115932	52.07500
4	12000	12000	3.233942	0.978419	1.202842	0.639357	49.42857
5	13000	13000	1.063373	1.056811	1.015756	1.048938	1285.00000
6	14000	14000	1.018801	1.003173	1.002272	1.013573	263.50000

In [46]:

head(inp\$effst)

A data.frame: 6 × 6

	stratum	STRATUM	EFFST1	EFFST2	EFFST3	EFFST4
	<fct></fct>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1000	1000	0.9875397	0.8647755	0.7565498	1.0033213
2	10000	10000	0.9948599	0.9076545	0.8982699	1.0054137
3	11000	11000	0.9765404	0.8136085	0.7835224	0.9925166
4	12000	12000	1.0145565	0.9113590	0.9126909	1.0007101
5	13000	13000	1.0045911	0.9263170	0.9180502	0.9942647
6	14000	14000	1.0016745	0.9471318	0.9375788	0.9967146

In [47]:

head(inp\$rho)

A data.frame: 6 × 9

					A data.frame. 6 A	9		
	STRATUM	RHO_AR1	RHO_NAR1	RHO_AR2	RHO_NAR2	RHO_AR3	RHO_NAR3	RHC
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	1000	1	0.000008445759	1	0.00001375542	1	0.000073009862	
2	10000	1	0.000111452671	1	0.00016510965	1	0.000058031865	
3	11000	1	0.002519079785	1	0.00072211454	1	0.000039921684	
4	12000	1	0.046128595870	1	-0.00044562537	1	0.004188477876	
5	13000	1	0.000049355919	1	0.00004424533	1	0.000012271028	
6	14000	1	0.000071622857	1	0.00001208762	1	0.000008655238	
4								•

In [48]:

head(inp\$psu_file)

PSU_ID STRATUM PSU_MOS

	<dbl></dbl>	<fct></fct>	<dbl></dbl>
1	309	1000	50845
2	330	1000	146162
3	292	2000	24794
4	293	2000	19609
5	300	2000	13897
6	304	2000	36195

In [49]:

head(inp\$des_file)

A data.frame: 6 × 4

STRATUM STRAT_MOS DELTA MINIMUM

	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1000	197007	1	50
2	2000	261456	1	50
3	3000	115813	1	50
4	4000	17241	1	50
5	5000	101067	1	50
6	6000	47218	1	50

Allocation

In [50]:

A data.frame: 2 × 5

DOM	CV1	CV2	CV3	CV4
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
DOM1	0.02	0.03	0.03	0.03
DOM2	0.03	0.06	0.06	0.06

```
mmdiff_deft = 1,
maxi = 15,
epsilon = 10^(-11),
minnumstrat = 2,
maxiter = 200,
maxiter1 = 25)
```

```
iterations PSU_SR PSU NSR PSU Total
1
          0
                 0
                        0
                                   0 13512
                                 145 13209
2
          1
                78
                        67
3
                44
          2
                       124
                                 168 13016
4
                43
          3
                       123
                                 166 13011
```

Selection of PSUs (I stage)

```
In [52]:
          allocat <- alloc$alloc[-nrow(alloc$alloc),]</pre>
          set.seed(1234)
           sample_2st <- StratSel(dataPop= inp$psu_file,</pre>
                                   idpsu= ~ PSU_ID,
                                   dom= ~ STRATUM,
                                   final_pop= ~ PSU_MOS,
                                   size= ~ PSU_MOS,
                                   PSUsamplestratum= 1,
                                   min_sample= minimum,
                                   min_sample_index= FALSE,
                                   dataAll=allocat,
                                   domAll= ~ factor(STRATUM),
                                   f_sample= ~ ALLOC,
                                   planned_min_sample= NULL,
                                   launch= F)
```

```
In [53]: sample_2st[[2]]
```

A data.frame: 26×6

Domain	SRdom	nSRdom	SRdom+nSRdom	SR_PSU_final_sample_unit	NSR_PSU_final_sample_unit
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1000	2	0	2	423	0
2000	5	4	9	288	235
3000	0	5	5	0	247
4000	0	1	1	0	2
5000	2	0	2	281	0
6000	1	1	2	43	66
7000	0	1	1	0	56
8000	0	1	1	0	35
9000	1	0	1	911	0
10000	6	0	6	936	0
11000	16	20	36	761	1091
12000	0	11	11	0	537
13000	1	0	1	1298	0
14000	4	0	4	1049	0

Domain	SRdom	nSRdom	SRdom+nSRdom	SR_PSU_final_sample_unit	NSR_PSU_final_sample_unit
--------	-------	--------	--------------	--------------------------	---------------------------

<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
15000	28	10	38	1629	627
16000	0	27	27	0	1333
17000	1	0	1	141	0
18000	0	3	3	0	134
19000	0	6	6	0	320
20000	0	3	3	0	166
21000	1	0	1	130	0
22000	1	1	2	41	68
23000	0	3	3	0	165
24000	0	1	1	0	2
Total	69	98	167	7931	5084
Mean				330	212

```
In [54]:
           ## Plot of allocation (PSUs and SSUs)
           des <- sample_2st[[2]]</pre>
           des2 <- NULL
           des2$strata <- c(des$Domain[1:24],des$Domain[1:24])</pre>
           des2$SR <- c(rep("SR",24),rep("nSR",24))</pre>
           des2$PSU <- as.numeric(c(des$SRdom[1:24],des$nSRdom[1:24]))</pre>
           des2$SSU <- as.numeric(c(des$SR_PSU_final_sample_unit[1:24],des$NSR_PSU_final_sample</pre>
           des2 <- as.data.frame(des2)</pre>
           des2$strata <- as.numeric(des2$strata)</pre>
           par(mfrow=c(2, 1))
           barplot(PSU~SR+strata, data=des2,
                   main = "PSUs by strata",
                   xlab = "strata", ylab = "PSUs",
                   col = c("black", "grey"),
                   # beside = TRUE,
                   las=2,
                   cex.names=0.7)
           legend("topright",
                  legend = c("Non Self Representative", "Self Representative"), cex = 0.7,
                  fill = c("black", "grey"))
           barplot(SSU~SR+strata, data=des2,
                   main = "SSUs by strata",
                   xlab = "strata", ylab = "PSUs",
col = c("black", "grey"),
                   # beside = TRUE,
                   las=2,
                   cex.names=0.7)
           legend("topright",
                  legend = c("Non Self Representative", "Self Representative"), cex = 0.7,
                  fill = c("black", "grey"))
```


Selection of SSUs (II stage)

```
PSU =
      1
         *** Selected SSU =
PSU =
       2
          *** Selected SSU =
                              115
          *** Selected SSU =
PSU =
       3
          *** Selected SSU =
PSU =
       4
                              43
          *** Selected SSU =
PSU =
       5
                              911
          *** Selected SSU =
PSU =
       6
          *** Selected SSU =
PSU =
      7
                              167
          *** Selected SSU =
PSU =
       8
                              126
          *** Selected SSU =
PSU =
      9
          *** Selected SSU = 66
PSU =
       10
           *** Selected SSU =
PSU =
       11
           *** Selected SSU =
PSU =
       12
                               56
           *** Selected SSU =
PSU =
       13
                               55
           *** Selected SSU =
PSU =
       14
           *** Selected SSU =
PSU =
       15
           *** Selected SSU =
PSU =
       16
           *** Selected SSU =
PSU =
       17
                               55
           *** Selected SSU =
PSU =
       18
           *** Selected SSU =
PSU =
       19
                               53
           *** Selected SSU =
PSU =
       20
           *** Selected SSU =
PSU =
       21
           *** Selected SSU =
PSU =
       22
           *** Selected SSU =
PSU =
       23
                               43
       24
           *** Selected SSU =
PSU =
                               138
           *** Selected SSU =
PSU =
       25
           *** Selected SSU =
PSU =
       26
           *** Selected SSU =
PSU =
      27
```

```
PSU =
           *** Selected SSU =
       28
                               54
           *** Selected SSU =
PSU =
       29
           *** Selected SSU =
PSU =
       30
                               47
           *** Selected SSU =
PSU =
                               49
       31
           *** Selected SSU =
PSU =
       32
                               47
           *** Selected SSU =
PSU =
       33
           *** Selected SSU = 39
PSU =
       34
           *** Selected SSU =
PSU =
       35
                               62
           *** Selected SSU = 49
PSU =
       36
           *** Selected SSU = 47
PSU =
       37
           *** Selected SSU = 56
PSU =
       38
           *** Selected SSU = 36
PSU =
       39
           *** Selected SSU = 63
PSU =
       40
           *** Selected SSU = 58
PSU =
       41
           *** Selected SSU = 64
PSU =
       42
           *** Selected SSU = 51
PSU =
       43
           *** Selected SSU = 57
PSU =
       44
           *** Selected SSU = 51
PSU =
       45
           *** Selected SSU = 48
PSU =
       46
           *** Selected SSU = 44
PSU =
       47
           *** Selected SSU = 71
PSU =
       48
           *** Selected SSU = 47
PSU =
       49
           *** Selected SSU = 49
PSU =
       50
           *** Selected SSU = 54
PSU =
       51
           *** Selected SSU = 52
PSU =
       52
           *** Selected SSU = 46
PSU =
       53
           *** Selected SSU = 45
PSU =
       54
           *** Selected SSU = 97
PSU =
       55
           *** Selected SSU = 51
PSU =
       56
           *** Selected SSU = 195
PSU =
       57
           *** Selected SSU = 45
PSU =
       58
           *** Selected SSU = 55
PSU =
       59
           *** Selected SSU = 57
PSU =
       60
           *** Selected SSU = 76
PSU =
       61
           *** Selected SSU = 43
PSU =
       62
           *** Selected SSU = 49
PSU =
      63
           *** Selected SSU = 51
PSU =
      64
           *** Selected SSU = 51
PSU =
      65
           *** Selected SSU = 40
PSU =
       66
           *** Selected SSU = 51
PSU =
       67
           *** Selected SSU = 51
PSU =
       68
           *** Selected SSU = 49
PSU =
       69
           *** Selected SSU = 53
PSU =
       70
           *** Selected SSU = 51
PSU =
       71
PSU =
       72
           *** Selected SSU = 47
PSU =
       73
           *** Selected SSU = 45
PSU =
       74
           *** Selected SSU =
PSU =
       75
           *** Selected SSU =
PSU =
       76
           *** Selected SSU =
PSU =
       77
           *** Selected SSU =
PSU =
       78
           *** Selected SSU =
PSU =
       79
           *** Selected SSU =
PSU =
       80
           *** Selected SSU =
PSU =
           *** Selected SSU =
       81
PSU =
           *** Selected SSU =
       82
PSU =
           *** Selected SSU =
       83
                               106
PSU =
           *** Selected SSU =
       84
                               61
PSU =
           *** Selected SSU = 46
       85
PSU =
           *** Selected SSU =
       86
PSU =
           *** Selected SSU =
       87
                               236
PSU =
           *** Selected SSU =
       88
PSU =
           *** Selected SSU =
       89
PSU =
           *** Selected SSU =
       90
PSU =
           *** Selected SSU =
       91
                               50
PSU =
           *** Selected SSU =
       92
                               188
PSU =
           *** Selected SSU =
       93
                               64
PSU =
           *** Selected SSU =
       94
                               55
           *** Selected SSU =
PSU =
       95
                               430
PSU =
           *** Selected SSU =
      96
                               65
```

```
*** Selected SSU = 49
PSU =
      97
           *** Selected SSU =
PSII =
       98
           *** Selected SSU = 48
       99
PSU =
           *** Selected SSU =
PSU =
       100
                                52
           *** Selected SSU =
PSU =
       101
                                44
           *** Selected SSU =
PSU =
       102
                                40
            *** Selected SSU = 45
PSU =
       103
            *** Selected SSU = 1298
PSU =
       104
            *** Selected SSU = 43
PSU =
       105
            *** Selected SSU = 42
PSU =
       106
            *** Selected SSU =
PSU =
       107
            *** Selected SSU =
PSU =
      108
                                60
            *** Selected SSU =
PSU =
      109
                                72
            *** Selected SSU =
PSU =
      110
                                55
            *** Selected SSU =
PSU =
      111
                                48
            *** Selected SSU =
PSU =
      112
                                58
            *** Selected SSU =
PSU =
      113
                                55
            *** Selected SSU =
PSU =
      114
                                45
            *** Selected SSU =
PSU =
      115
                                72
            *** Selected SSU =
PSU =
      116
                                25
            *** Selected SSU =
PSU =
      117
                                48
            *** Selected SSU =
PSU =
      118
                                59
            *** Selected SSU =
PSU =
      119
                                66
            *** Selected SSU =
PSU =
      120
                                49
            *** Selected SSU =
PSU =
      121
                                55
            *** Selected SSU =
PSU =
      122
                                55
            *** Selected SSU =
PSU =
      123
                                38
            *** Selected SSU =
PSU =
      124
            *** Selected SSU =
PSU =
      125
                                50
            *** Selected SSU =
PSU =
      126
                                39
            *** Selected SSU =
PSU =
      127
                                72
            *** Selected SSU =
PSU =
      128
                                72
            *** Selected SSU =
PSU =
      129
            *** Selected SSU =
PSU =
      130
            *** Selected SSU = 46
PSU =
      131
            *** Selected SSU = 51
PSU =
      132
            *** Selected SSU =
PSU = 133
            *** Selected SSU = 59
PSU = 134
            *** Selected SSU =
PSU = 135
            *** Selected SSU =
PSU =
      136
            *** Selected SSU = 48
PSU =
      137
            *** Selected SSU =
PSU =
      138
            *** Selected SSU =
PSU =
      139
            *** Selected SSU =
PSU =
      140
PSU =
      141
            *** Selected SSU =
PSU =
      142
            *** Selected SSU =
PSU =
      143
            *** Selected SSU =
PSU =
      144
            *** Selected SSU =
PSU =
       145
            *** Selected SSU =
PSU =
       146
            *** Selected SSU =
PSU =
       147
            *** Selected SSU =
                                275
PSU =
            *** Selected SSU =
       148
PSU =
            *** Selected SSU =
       149
PSU =
            *** Selected SSU =
       150
PSU =
            *** Selected SSU =
       151
PSU =
            *** Selected SSU =
       152
PSU =
            *** Selected SSU =
       153
PSU =
            *** Selected SSU =
       154
                                56
PSU =
            *** Selected SSU =
       155
PSU =
            *** Selected SSU =
       156
                                141
PSU =
            *** Selected SSU =
       157
PSU =
            *** Selected SSU =
       158
                                57
PSU =
            *** Selected SSU =
       159
                                39
PSU =
            *** Selected SSU =
       160
                                56
            *** Selected SSU =
PSU =
       161
                                2
            *** Selected SSU =
PSU =
       162
                                54
            *** Selected SSU =
PSU =
       163
                                60
            *** Selected SSU =
PSU =
       164
                                130
            *** Selected SSU = 41
PSU =
      165
```

```
PSU = 166 *** Selected SSU = 68
         PSU = 167 *** Selected SSU = 51
         Total PSU = 167
         Total SSU = 13015
            _____
In [56]:
         nrow(samp)
          sum(allocat$ALLOC)
        13015
        13011
In [57]:
          nrow(pop)
          sum(samp$weight)
        2258507
        2258507
In [58]:
          ## Plot of weights distribution
          par(mfrow=c(1, 2))
         boxplot(samp$weight,col="grey")
         title("Weights distribution (total sample)",cex.main=0.7)
          boxplot(weight ~ region, data=samp,col="grey")
          title("Weights distribution by region",cex.main=0.7)
          par(mfrow=c(1, 2))
          boxplot(weight ~ province, data=samp,col="grey")
          title("Weights distribution by province",cex.main=0.7)
          boxplot(weight ~ stratum, data=samp,col="grey")
          title("Weights distribution by stratum",cex.main=0.7)
```


Precision constraints compliance control (by simulation)

```
In [59]:
         selected_PSU <- sample_2st[[4]]</pre>
         df=pop
         df$one <- 1
         PSU_code="municipality"
         SSU_code="id_ind"
         PSU_sampled=selected_PSU[selected_PSU$Sampled_PSU==1,]
         target_vars <- c("income_hh",</pre>
                          "active",
                          "inactive"
                          "unemployed")
         PSU_sampled <- selected_PSU[selected_PSU$PSU_final_sample_unit > 0,]
In [60]:
         # Domain Level = national
         domain var <- "one"
         eval <- eval_2stage(df,</pre>
                             PSU_code,
                             SSU code,
                             domain_var,
                             target_vars,
                             PSU_sampled,
                             nsampl=100,
                             writeFiles=FALSE,
                             progress=TRUE)
           |-----| 100%
                 A data.frame: 1 × 5
           CV1
                 CV2
                       CV3
                              CV4
                                    dom
         <dbl>
               <dbl> <dbl> <dbl> <chr>
```

```
        CV1
        CV2
        CV3
        CV4
        dom

        <dbl> <dbl> <dbl> <dbl> <dbl> <chr>

        0.0091
        0.0094
        0.0244
        0.0378
        DOM1
```

In [62]:

|-----| 100%

Distribution of CV's in the domains

A data.frame: 3×5

CV1	CV2	CV3	CV4	dom
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
0.0078	0.0048	0.0160	0.0640	DOM1
0.0209	0.0205	0.0496	0.0805	DOM2
0.0262	0.0356	0.0599	0.0471	DOM3

Distribution of relative bias in the domains

In [63]: alloc\$sensitivity

A data.frame: 4 × 6

	Туре	Dom	V1	V2	V3	V4
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	DOM1	1	1	1	1	442
5	DOM2	1	1	0	1	2022
9	DOM2	2	1	1	16	123
13	DOM2	3	1	1	1	1

In []: