

Queue Mining:

The journey from predictive to prescriptive analytics in congested systems

AAAI2023 Bridge on AI4BPM

Arik Senderovich

School of Information Technology, York University Rotman School of Management, University of Toronto

2/8/2023

Motivation: Congested Systems

Descriptive Analytics

Business Analytics in Congested Systems

- > Descriptive analytics: (Past)
 - Is the system performing as expected?
 - O Where are the bottlenecks?
- Predictive analytics: (Future)
 - O How long will the patient wait?
 - When will the patient be discharged?
- Prescriptive analytics: (Future + Optimization)
 - What is the optimal number of resources that we must add?
 - What is the optimal patient routing?

Queue Mining= Process mining in congested systems

Senderovich, Weidlich, Gal, Mandelbaum. Queue Mining:... Information Systems, 2014

What do we need to learn?

Queueing model via Kendall's notation: A/B/C/Y/Z +X

- ➤ **A** arrivals (Poisson, appointment based,...)
- B service times (Exponential, lognormal, empirical,...)
- C server capacity (static/dynamic)
- Y queue capacity (=K, infinite)
- Z service policy (FCFS, LCFS, Processor Sharing...)
- X (Im)patience (Exponential, general)
- Add R routing scheme in networks (e.g., Markovian)
- Typically: independence between building blocks

Common Example: M/M/1

Assumptions (on A/B/C/Y/Z+X):

- Dropped notation Y, Z, X (defaults are taken): infinite queue size, FCFS policy, no abandonments, single server
- M Poisson arrivals (completely random, one at a time, constant rate)
- M Exponentially distributed service times
- Easy to analyze when parameters are known (or fitted from data)

Closed-Form Analysis of M/M/1

- The model is "Markovian"
- One can represent M/M/1 using a continuous-time Markov chain (CTMC) that counts the number of customers in the system:
 - Poisson arrivals, rate λ ;
 - Single exponential server, rate μ ; $E[S] = 1/\mu$.

Important: small additional complexity may make the model "intractable";

However:

- Simulation
- o ML

Gallery of Empirical Assumption Violations

Operations Time In a Hospital

Queue Mining: Learning and Analyzing

Learn:

- 1. Structure (Routing)
- Dynamics (Arrivals, service times,...)
- 3. Scheduling policies

Analyze via:

- 1. Closed-form expressions
- 2. Simulation
- 3. Machine learning

Senderovich et al. (2016). Conformance checking and performance improvement in scheduled processes: A queueing-network perspective.

Agenda

- ➤ Background on queue mining
- Queue mining for:
 - Predictive analytics
 - Prescriptive analytics
- Ongoing research in queue mining

Predictive Analytics & Queue Mining

Ibrahim and Whitt (2009a, 2009b, 2010, 2011) Senderovich et al. (2015, 2018)

Green Path: Feature encoding (Leontjeva et al., 2015, Tax et al., 2017...)

Predictive queue mining: paths 1 and 2

Single-Station Models: Predictive Analytics in Call Centers

Routing in a Telecom Call Center

Snapshot Prediction and Bounds

- > Snapshot prediction: 1NN using the most recent to enter service (same class)
- Upper and lower bounds on expected wait time per class:
 - Upper bound order of service completions is from "slowest" to "fastest" customer class; includes "overtaking"
 - Lower bound "fastest" to "slowest" customer completes service in every iteration; no "overtaking"
 - Bounds coincide with each other and with the queue-length predictor for single-class queues

ML for Multi-Class Queues

- > Feature encoding:
 - Queue-lengths per class
 - Number of customers in service
 - Class (customer type)
- ➤ Fed into nonlinear regression: Generalized Additive Models (GAMs) and regression trees

Results: Telecom Call Center Data (2008)

Snapshot predictor (1-NN) – no learning required.

QModel enables `what-if?' analysis, sensitive to assumptions

ML – most accurate and robust results

What about queueing networks? Example: Hospital Processes

Congestion Graphs for Automated Time Prediction

Presented @ AAAI 2019

Arik Senderovich, J. Christopher Beck, Avigdor Gal, Matthias Weidlich

Prediction with Congestion Graphs

General model grounded in QT; no expert knowledge required

Defining Congestion Graphs

- > Dynamic graphs that capture congestion features
- >Construction:
 - Vertices are events from the log
 - Edges connect pairs of directly following events
 - Entities flow on the edges (time-on-the-arc)

Defining Congestion Graphs (Cont.)

- ➤ Dynamic node labelling:
 - System state representation at time t
 - Mapped to congestion features
 - Technical details in the paper:
 - ☐ Queueing theoretic justifications for system state representation (via Jackson networks)
 - Approximating system from data

Node Labelling: Intuition

- ➤ Labelling of nodes with system state at time *t*:
 - Number of patients on outgoing edges (14)
 - Cumulative time patients spend on outgoing edges (60 MIN)
 - Node inter-arrival time (5 MIN)

State(t) = (14, 60min, 5min)

Generalizes to Inter-Case Encoding

Specific features to capture inter-case dependencies

Examples:

- Patients in system
- Patients at particular activity in the process
- Patients of a particular type

Also, feature engineering using the performance spectrum, e.g., identifying batching

[Senderovich, Di Francescomarino, Ghidini, Jorbina, Maria-Maggi, BPM 2017] [Klijn, Fahland, ICPM 2020]

Congestion Feature Extraction

Features = node labels

Patient ID	Event	Timestamp	CG[Lab Wait]	CG[Lab]
111	Reception_End	7:30:04	14,60,5	6,35,15
111	Triage_End	7:47:12	10,15,10	15,45,7
111	Treatment_End	9:10:10		
222	Triage_End	7:35:52		
222	Discharge	7:51:24		

Information available at test time Number of features grows linearly in size of congestion graph

Results on a hospital dataset: Accuracy and Explainability

Agenda

- ➤ Background on queue mining
- Queue mining for:
 - O Predictive analytics
 - Prescriptive analytics
- Ongoing research in queue mining

Mining Hybrid Machine Learning and Simulation Models Presented @ BPO Workshop 2022

Arik Senderovich

School of Information Technology, York University (Toronto)

Opher Baron and Dmitry Krass

Rotman School of Management, University of Toronto

Nancy Li

Industrial Engineering, University of Toronto

- Background: NYGH is one of the largest EDs in Toronto
- > Goal: improve patient flow by reducing length-of-stay (LOS) of consult patients
- > Task: Estimate the effect of the intervention on the overall performance
- Failed solution: model LOS via ML and shorten LOS until convergence
 - Finds the "first-order" effect (individual reduction)
 - O Doesn't capture "second-order" effect (system) no convergence!
- Required: a model that would capture dependencies between cases (system)

Problem: Missing Resource and Service Information

- In queueing models: nodes = resources
- ➤ However (as before) healthcare event logs are often missing:
 - Resource information (privacy consideration and measuring4billing)
 - Wait start-times
 - Most of the activities (only arrival, departure are trustworthy) cannot use congestion graphs

Solution: Hybrid ML and Infinite-Server Model

- > A Arrivals = Poisson/appointment based/ML based/data-driven
- B Service times = ML model
 - "Contextual" + state features
- C Server capacity = infinity (missing data)

Analysis: Simulation (+ML)

In Queueing Theoretic Notation

- \rightarrow "G(t)/G(X,S)/infinity" queueing model
- Service times depend on current system state S and context X
 System state = static + dynamic + congestion contexts:
 - Static = medical history
 - Dynamic = temperature, time of day
 - Congestion = number in system (NIS) with variations
- Theoretical problem:
 - Does an M/G(S)/infinity => M/G/C?
 - Preliminary results are encouraging (under restrictions)

Service Times Sampling via Random Forests

Service times via Random Forest (RF) Regressor:

- x = Patient static info*, System State X, Season, Trend, Holidays*
- y = Patient's length of stay (LOS)
- Hyperparameters: min 30 samples in leafs and 100 trees in the RF model

Sampling Method from RF Model:

- Store a bucket of training errors
- For each sample (in log minutes):
 - los pred = RF mean prediction
 - Error = random sample from the bucket of training errors
 - Sampled LOS = exp(los_pred + error)
- •*Patient static info: age, gender, ambulance, consult, initial zone, arrival hour, arrival day of week
- •*Season (arrival week number, arrival month), **Trend** (number of weeks since beginning of training data), **Holidays** (Ontario public holidays)

Bringing it together...

Patient's LOS Model

Testing on NYGH Data

- > Hybrid modeling and feature selection
- "Goodness-of-fit" analysis
- Prescriptive analytics:
 - Is the model useful for intervention analysis?

i.e., can the model capture congestion effects?

Additional datasets tested: Israeli ED, Singapore ED

"Goodness-of-Fit" Results

- 1. System State 0 (General NIS)
- 2. System State 1 (NIS by Patient Type)
- 3. System State 2 (NIS by Zone)
- 4. System State 3 (NIS by Patient Type x Zone)

- > Performance of the 4 models cannot be differentiated via visual inspection
- > Their LOS tends to be higher in simulated distribution than in actual distribution (except for the tail)
- > At the tails (highest values in the distribution), all models deviates significantly from the 45-degree line
- > The model of System State 0 with General NIS is the best (model 1 is a close second)

Intervention on Consult Patients

Intervention Results

> For T123 Admitted patients:

- The % of reduction in both mean and 90th percentile LOS are comparable to the (% LOS cutdown x % of consult patients)
- Reason: queueing system is "transparent" for these patients

> For both T123 Not Admitted and T45 patients:

- Baseline captures the 1st order effect of reducing consult patient's LOS
- Our state-aware models, also capture 2nd order effect
- The 2nd order congestion effect can be up to 10 times stronger than the 1st order

Ongoing Research in ~ Queue Mining

- Comparing simulation/queue mining approaches (with Dumas et al.)
- Relating stochastic Petri nets and queueing models to process mining (with Montali)
- > The price of misprediction: on scheduling with predictions (with Dijkman)
- Queues with invisible customers (with Shaposhnik et al.)
- > Prescriptive analytics (with Baron, Krass, Hu):
 - Developing theoretical model for convergence to finite-server model (for many-servers)
 - Applying to a model with more data (gathered recently)
 - Employing causal models in queue mining for better intervention estimates
 - Considering additional interventions (e.g., admission control)

Commercial Pause: Friday morning talk @ AAAI2023

Privacy Attacks on Schedule-Driven Data

Stephan A. Fahrenkrog-Petersen, Arik Senderovich, Alexandra Tichauer, Ali Kaan Tutak, J. Christopher Beck, Matthias Weidlich

AAAI 2023

Acknowledgements

The work was developed with my wonderful supervisors and co-authors including (left-to-right): Avigdor Gal, Matthias Weidlich, Avishai Mandelbaum, Chris Beck, Opher Baron, Dmitry Krass

Thank you!

sariks@yorku.ca

Networks of Queues with Pre-Defined Routes (Transportation Systems)

Snapshot Prediction

Snapshot Prediction

Learning from Historical GPS Data

Event Id	Journey Id	Timestamp	Bus Stop	Journey Pattern
1	36006	1415687360	Leeson Street Lower (846)	046 <i>A</i> 0001
2	36012	1415687365	North Circular Road (813)	046A0001
3	36009	1415687366	Parnell Square (264)	046A0001
4	36006	1415687381	Leeson Street Lower (846)	046 <i>A</i> 0001
5	36009	1415687386	O'Connell St (6059)	046 <i>A</i> 0001
6	36012	1415687386	North Circular Road (814)	046A0001
7	36006	1415687401	Leeson Street Upper (847)	046 <i>A</i> 0001
8	36009	1415687406	O'Connell St (6059)	046A0001

- > Snapshot predictor lacks context (day of week, time of day, future traffic state...)
- > We would like to **learn** from similar historical situations to predict the current travel time

ML Approach: Feature Construction

Snapshot predictor is one of the features

Feature Construction

	X				
					Y
Journey ID	Segment	HR:MM:SS	Snapshot	Age	Travel Time
36006	846-847	7:00:02	2.5MIN	10MIN	2 MIN
36012	813-814	7:47:12	1.2MIN	30MIN	1 MIN

Learner adaptation Boosting over the Snapshot Predictor

Results

Accuracy of the prediction over all trips. Worse, Best, Best of S+xx and xx

	RMSE	MARE (%)	MdARE (%)
S	539	23.37	16.15
RF	539	24.11	16.37
ET	519	22.05	15.23
AB	512	27.08	18.05
S+AB	504	26.32	16.84
GB	508	20.46	13.84
S+GB	494	19.95	13.53
GBLAD	520	19.38	13.86
S+GBLAD	514	19.06	13.65

Common Performance Measures

- L number of customers at the service station (sometimes L_s);
- L_q number of customers in the queue;
- W sojourn time of a customer at the service station (W_s) ;
- ullet W_q waiting time of a customer in the queue.

If λ – arrival rate to the system, Little's formula implies:

$$E[L] = \lambda \cdot E[W]; \qquad E[L_q] = \lambda \cdot E[W_q].$$

Performance Measures for M/M/1

Traffic intensity $\rho = \frac{\lambda}{\mu} < 1$ (assumed for stability).

Steady-state distribution $L \stackrel{d}{=} Geom(p = 1-\rho)$ (from 0):

$$\pi_i = (1 - \rho)\rho^i, \ i \ge 0.$$

Properties:

• Sojourn time is exponentially distributed:

$$W \sim \exp\left(\text{mean} = \frac{1}{\mu(1-\rho)} = \frac{1}{\mu}\left[1 + \frac{\rho}{1-\rho}\right]\right).$$

- Number-in-system: $E[L] = \frac{\rho}{1-\rho}$; $E[L_q] = \frac{\rho^2}{1-\rho}$.
- Server's utilization (occupancy) is $\rho = \lambda/\mu$. (Little's formula, system = server.)

Final Train-test split – 3 months in 2018

	Training (May, Jun, Jul)	In-sample Test (July)	Out-of-sample Test (August)
T123 Admitted	3,422 in total97.0% consults	1,171 in total97.8%consults	1,160 in total95.2% consults
T123 Not Admitted	19,281 in total6.17%consults	6,550 in total5.6% consults	6,645 in total5.3% consults
T45	6,458 in total1.33%consults	2,168 in total1.2% consults	1,939 in total1.2% consults

LOS Histograms and Q-Q Plots (T123 Admitted, August 2018)

1250 1000

System

State 2

- 1. System State 0 (General NIS)
- 2. System State 1 (NIS by Patient Type)
- 3. System State 2 (NIS by Zone)
- **4. System State 3** (NIS by Patient Type x Zone)

LOS Histograms and Q-Q Plots (T123 Not Admitted, August 2018)

- System State 0 (General NIS)
- 2. System State 1 (NIS by Patient Type)
- 3. System State 2 (NIS by Zone)
- 4. System State 3 (NIS by Patient Type x Zone)

LOS Histograms and Q-Q Plots (T45, August)

- 1. System State 0 (General NIS)
- 2. System State 1 (NIS by Patient Type)
- **3. System State 2** (NIS by Zone)
- **4. System State 3** (NIS by Patient Type x Zone)

KS Test Statistics

	System State 0	System State 1	System State 2	System State 3
T123A (July)	0.0289	0.0423	0.0385	0.0490
T123NA (July)	0.0381	0.0395	0.0839	0.0737
T45 (July)	0.0584	0.0541	0.139	0.115
T123A (August)	0.0447	0.0545	0.0496	0.0641
T123NA (August)	0.0379	0.0429	0.118	0.0441
T45 (August)	0.0315	0.0351	0.217	0.0884

- 1. System State 0 (General NIS)
- 2. System State 1 (NIS by Patient Type)
- **3.** System State 2 (NIS by Zone)
- 4. System State 3 (NIS by Patient Type x Zone)

"Goodness-of-Fit" Results

- > Performance of the 4 models cannot be differentiated via visual inspection
- Their LOS tends to be higher in simulated distribution than in actual distribution (except for the tail)
- At the tails (highest values in the distribution), all models deviates significantly from the 45-degree line
- The model of System State 0 with General NIS is the best (model 1 is a close second)

Modeling and Intervention Analysis

% Reduction in Mean LOS (August, T123A)

% Reduction in Mean LOS (August, T123NA)

% Reduction in Mean LOS (August, T45)

