DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - MUXed-D scan (1973, Stanford)
 - * Clocked scan (1968, NEC)
 - Latch-based
 - * LSSD (1977, IBM)
- Scan Design Flow
- Issues and Solutions
- Conclusion

Scan Chains

- Scan: connect (internal) FF/latches as shift register
 - Control and observe FF/latches in test mode
 - Remain original function in normal mode
- Proposed in early 1970's [Williams 73][Eichelberger 77]
 - Most important DFT for synchronous digital circuits
- Scan chain insertion: aka. DFT insertion, DFT synthesis
 - 1. Replace FF/latch
 2. Stitch FF/latch into a chain

Scan Flip-Flop (SFF) *scan latch is similar

- SFF has four main pins:
 - Scan Chain: Scan Input (SI), Scan output (SO)
 - Logic: Data Input (DI), Data Output (DO)
 - * DO and SO can be shared
- SFF has two functions: shift and capture
- Circuit has two operation modes: Normal mode and Test mode

Example: Scan Insertion

Example: Normal Mode

Scan-FF same as non-scan FF

Example: Test Mode

Fault Detected in Test Mode

NOTE: this fault untestable in Normal Mode. why?

Quiz

Q: Consider SA1 fault, please fill in values of ?

Scan Turns Seq. Ckt. to Comb. Ckt.

- Scan turns sequential ckt into combinational ckt in test mode
 - ATPG sees only comb. ckt. model
- SFF DO become Pseudo Primary Input (PPI), fully controllable
- SFF DI become Pseudo Primary Output (PPO), fully observable

Scan Make ATPG Easier!

QUIZ

We insert scan into this circuit so we can remove FF in ATPG model.

Q1: Which pins are PI? PO? PPI? PPO?

Q2: If we want to detect SA0 fault, what are their values?

ANS:

Pros and Cons of Scan

- Advantages of scan
 - Systematic DFT, not ad hoc. Many automatic tools.
 - Easy ATPG: faster run time and higher fault coverage (see 11.4)
 - Easy silicon debugging or diagnosis
- Disadvantages of scan
 - Area overhead (typically, 5~10% OH acceptable)
 - * larger SFF area + routing for scan chains
 - Performance overhead
 - SFF has longer setup time, hold time
 - Pin overhead
 - scan in, scan out, scan enable, scan clocks ... (11.3, 11.5)
 - Power overhead
 - Extra design efforts
 - scan insertion, verification (11.7, 11.8)

QUIZ

We insert scan into this circuit and replace non-scan FF by scan FF. Q: Given the gate area table, what is area overhead of scan DFT?

Gate	area
OR	3
AND	3
non-scan FF	5
scan FF	6

ANS:

area O.H.=
$$\frac{\text{area}_{afterDFT} - \text{area}_{beforeDFT}}{\text{area}_{beforeDFT}} =$$

Summary

- Scan is most popular DFT for digital VLSI
- Scan FF has four pins: SI, SO, DI, DO
- Circuit has two operation modes: normal mode, test mode
 - Test mode: shift (in), capture, shift (out)
- Scan makes ATPG easier at cost of overhead (area/performance ...)

Normal Mode	Test Mode		
capture	shift (in)	capture	shift (out)
DI DO	SOL	→ — — — — — — — — — — — — — — — — — — —	

FFT

- Q1: This stuck-at zero fault is untestable in normal mode, why?
- Q2: Since it is untestable, why do we care about it?

