第五章 图及其相关算法

填空题

1.	n个顶点的连通图	通图至少有 条边,强连通图至少有		连通图至少有	条边。	
2.	设有向图的顶点。	个是 n,则该有	「向图最多有_	条边,	最少有	条边。
3.	n 个顶点的连通图	国有邻接矩阵表	·示时,该矩阵	至少有	个非零元素	÷ 0
4.	有向图的邻接矩阵表示法中某一行非 0 元素的个数代表该结点的, 某一列非 0					
	结点的个数是该结点的。					
	选择题					
5.	在一个图中,所有顶点的度数之和等于所有边数的()倍;在一个有向图中,所有顶					
	点的入度之和或所有顶点出度之和是顶点度的()倍。					
	A. 1/2	B. 2		C. 1	D.	4
6.	一个具有 n 个顶点的无向图中,要连通全部顶点至少需要()条边。					
	A. n	В.	n+1	C. n/2		D. n-1
7.	一个具有 n 个顶点和 e 条边的无向图,采用邻接表表示,顶点表的大小为(),所有					
	顶点邻接表的结点总数为()。					
	①. A .n	B. n+1	C. n-1	D. n+e		
	② A. e/2	В. е	C. 2e	D. n+e		
8.	对一个具有 n 个顶点的图,采用邻接矩阵表示则该矩阵的大小为()。					
	A.n	B. (n-1	1)	C. (n+1)	D. n
9.	n个顶点的强连进	通图至少有()条边。			
	A . n	B. n-1		C. n+1		D. n(n-1)
10.	采用邻接表存储的图的深度优先遍历算法类似于二叉树的()。					
	A . 中序遍历	B. 先序遍历	j C.	后序遍历	D. 层次遍历	j
11.	关键路径是 AOE 网络中的()。					
	A. 从源点到汇点的最长路径 B. 从源点到汇点的最短路径					
	C. 最长的回路		D. 最短的	回路		
	判断题					
12.	在 n 个结点的无向图中, 若边数>n-1, 则该图必是连通图。()					

13. 若一个有向图的邻接矩阵中对角线以下元素均为 0,则该图的拓扑有序序列一定存在。

- 14. 对连通图进行一次先深遍历可访问图的全部顶点()
- 15. 对非连通图进行一次先深搜索只能得到该图的一个连通分量。()
- 16. 无向图的邻接矩阵是对称的,并且主角线上的所有元素是 0。()
- 17. 有向图的邻接矩阵一定不是对称的。()
- 18. 关键路径可能不只一条,但缩短某一关键路径一定能够缩短工期。()
- 19. AOE 网中,只有一个入度为 0 的顶点(起始点),只有一个出度为 0 的顶点(结束点)。
 ()

简要回答下列问题

- 20. 对图进行搜索时为什么对顶点被访问过作出标记?
- 21. 对图 1 所示的有向图,利用 Di jkstra 算法求出从源点 1 到其它各顶点的最短路径,并写出执行算法过程中点集 S 的每次循环状态.

22. 对图 2 所示的连通图,请分别用 Prim 和 Kruskal 算法构造其最小生成树,画出该树的生长过程。

算法设计 注意:要求写出算法的基本思想、存储结构的定义和算法

- 23. 试写出求无向图连通分量个数的算法。
- 24. 对给定的有向图的邻接表 AdjG, 试写出求该邻接表的逆邻接表的算法。
- 25. 试写出将图的邻接矩阵表示转换为邻接表表示的算法(或相反)。