Introduction to Project 3: Multiple Sclerosis Lesion Segmentation

Segmenting brain lesions from normal tissue

T₁ weighting

M₀ weighting

T₂-weighting

Segmented

Goals

- Goal
 - Use multi-spectral data to classify voxels
 - White matter, gray matter, cerebral spinal fluid, lesion
 - Measure lesion volume

Steps in project

- Define training points for the important tissue classes
 - Lesion
 - White matter
 - Gray matter
 - Cerebral spinal fluid
- Determine class centers in the multi-spectral 'feature space'
- Classify each image pixel
 - Assign to class with closest class center
- Goal of project: find number and extent of lesion voxels

Helpful hint: Array indexing in MATLAB

Two methods: multidimensional and linear

2 5 3 6

Image_m(1, 3)

Image_m(7)

- Translating between methods:
 - [1,3] = ind2sub(size(Image_m), 7);
 - 7 = sub2ind(size(Image_m), [1,3]);

Variable naming convention: Variables hold the intensity of each tissue class in each image type

- Image contrast: first three characters
 - Proton-density weighted = 'pdw'
 - T2-weighted = 't2w'
 - T1-weighted = 't1w'
- Tissue class: fourth character
 - Lesion ('pdwl', 't2wl', 't1wl')
 - White matter ('pdww', 't2ww', 't1ww')
 - Gray matter ('pdwg', 't2wg', 't1wg')
 - Cerebrospinal fluid ('pdwc', 't2wc', 't1wc')