

Art of Problem Solving 2000 USAMO

USAMO 2000

-	
Day 1	May 2nd
1	Call a real-valued function f very convex if
	$\frac{f(x) + f(y)}{2} \ge f\left(\frac{x+y}{2}\right) + x-y $
	holds for all real numbers x and y . Prove that no very convex function exists.
2	Let S be the set of all triangles ABC for which
	$5\left(\frac{1}{AP} + \frac{1}{BQ} + \frac{1}{CR}\right) - \frac{3}{\min\{AP, BQ, CR\}} = \frac{6}{r},$
	where r is the inradius and P, Q, R are the points of tangency of the incircle with sides AB, BC, CA , respectively. Prove that all triangles in S are isosceles and similar to one another.
3	A game of solitaire is played with R red cards, W white cards, and B blue cards. A player plays all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card, then he is charged a penalty which is the number of white cards still in his hand. If he plays a white card, then he is charged a penalty which is twice the number of red cards still in his hand. If he plays a red card, then he is charged a penalty which is three times the number of blue cards still in his hand. Find, as a function of R , W , and B , the minimal total penalty a player can amass and all the ways in which this minimum can be achieved.
Day 2	May 2nd
4	Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.
5	Let $A_1A_2A_3$ be a triangle and let ω_1 be a circle in its plane passing through A_1 and A_2 . Suppose there exist circles $\omega_2, \omega_3, \ldots, \omega_7$ such that for $k = 2, 3, \ldots, 7$, ω_k is externally tangent to ω_{k-1} and passes through A_k and A_{k+1} , where $A_{n+3} = A_n$ for all $n \geq 1$. Prove that $\omega_7 = \omega_1$.

Art of Problem Solving 2000 USAMO

6 Let $a_1, b_1, a_2, b_2, \ldots, a_n, b_n$ be nonnegative real numbers. Prove that

$$\sum_{i,j=1}^{n} \min\{a_i a_j, b_i b_j\} \le \sum_{i,j=1}^{n} \min\{a_i b_j, a_j b_i\}.$$

These problems are copyright © Mathematical Association of America (http://maa.org).