预习报告		实验记录		分析讨论		总成绩	
20		30		30		80	

年级、专业:	2021 级 物理学(强基计划)	组号:	3组
姓名:	孙浩然	学号:	21305010
实验日期:	2022. 11. 22 2022. 11. 29	教师签名:	81 RET

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - 1) 预习报告:课前认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用、完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格。**(20 分)**
 - 2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得手记的值输入到电脑打印);离开前请实验教师检查记录并签名。(30分)
 - 3) 数据处理及分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。(30分)

实验报告就是将预习报告、实验记录、和数据处理与分析讨论合起来,加上本页封面。 (80 分)

2. 实验报告在下一周的实验之前提交,最后一次实验,在结束一周后提交。

3. 注意事项:

- 1) 电路复杂, 需要耐心连接, 认真检查;
- 2) 程序编写和调试过程中,遇到问题及时查看 LabVIEW 帮助,留意各个器件时刻处于可控状态;
- 3) 直流稳压电源的输出,要根据实验过程及时地手动打开或关闭,不要在程序没有正常运行的情况下,让直流稳压电源有持续的输出;
- 4) 注意根据信号电流大小选取合适直接的导线,杜邦线一般只用于小电流和信号传输,电流大时则需要选用直径大的导线。

【实验目的】

- 1. 了解 TEC 半导体制冷的原理
- 2. PID 反馈控制的参数调节。
- 3. 基于 LabVIEW 和 myDAQ 设计和搭建温度采集和控制系统。

【仪器用具】(4分)(列出仪器、器材的名称、数量和主要参数等)

序号	仪器用具名称	数量	主要参数(型号, 量程, 测量精度等)
1	计算机	1	Windows 系统, 安装 LabVIEW 程序
2	myDAQ	1	
3	直流稳压电源	1	DP832
4	控温实验平台	1	
5	IBT_2 电机驱动器	1	12V 供电, 最大电流 2A
6	温度变送器	1	24V 供电, 测温范围 0-100℃, 输出电压 0-10V
7	电路元器件	1套	面包板, 连接线等

【原理概述】 (10分) (用自己的语言描述,可自行加页)

1. PID 反馈控制原理[3分](第一次预习完成);

PID 电路作为反馈控制器,广泛应用在各种形式的伺服控制电路中。 缩写 PID 中的每个字母分别代表比例 P(proportion)、积分 I(integral)、微分 D(differential),它们表示一个 PID 电路的三种控制设置。任何控制电路的目的都是将系统的参数长时间控制在设定值上。在当前值与设定值发生差异时,PID 电路可以产生一个误差信号作为反馈,并通过控制电路将系统的参数锁定在设定值上。PID 中的三种控制设置对应时间相关的误差信号: 比例控制依赖于当前误差;积分控制依赖于前面误差的累加;微分控制则是依赖于误差的变化率。对每一种控制设置的结果进行加权,加权后的值会对输出电路 u(t)进行调整。该输出电路会通向一个控制器,该控制器可以主动控制系统的参数,从而使被控参数稳定在设定值。一个伺服电路中可以采用一个或多个控制设置,这取决于系统的需要(例如 P,PI,PD,或 PID等)。

PID 控制电路的输出u(t)可以写为:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

其中 K_p 为比例增益, K_i 为积分增益, K_d 为微分增益,e(t)为设定值与实际值之差。

①比例控制(P): 依赖于当前误差。比例控制与误差信号成比例,较大的比例增益可以对误差信号有更大的响应。比例增益太高会使电路在目标值附近振荡; 比例增益太低, 电路将不能有效地对系统变化进行响应。

$$P = K_p e(t)$$

②积分控制(I):依赖于前面误差的累加。积分控制不仅与误差信号的大小成比例关系,还和误差经历的时间有关。积分控制能够有效地增加电路的响应时间,同时可以消除只用比例控制而引起的稳态误差。本质上,积分控制只是将之前未矫正的误差信号进行叠加,然后乘以 K_i 来产生集成响应。即使是很小的持续误差,也可以产生很大的合成集成响应。积分增益过高,会引起电路的过度超调,从而导致振荡和不稳定;积分增益太低,电路在系统发生改变时响应将十分缓慢。

$$I = K_i \int_0^t e(\tau) \, d\tau$$

③微分控制(D):微分控制的目的是减少比例和积分控制中潜在的超调和振荡。它能决定电路随时间变化的速度(通过对误差信号进行微分),将该速度乘以 K_a 就可以产生微分响应。与比例控制和积分控制不同,微分控制将会降低电路的响应速度,它可以部分地补偿超调以及减弱积分和比例控制所引起的振荡。 微分控制增益过高,会使电路响应速度非常缓慢,并使电路对噪声和高频振荡非常敏感(这是由于电路不能快速响应);微分控制增益太低,电路则很有可能发生设定值的超调。但是在一些情况下,如果需要避免任何程度的设定值超调,就应该采用更高的微分增益(同时采用更低的比例增益)。

$$D = K_d \frac{d}{dt} e(t)$$

2. 半导体控温原理(Peltier 效应、 Seebeck 效应、以及两者之间的关系) [3分] (第一次预习完成);

Peltier 效应是指当电流流过不同材料时,随着电流方向的不同,在不同材料的连接处出现的吸热或放热现象。由 A 和 B 两种材料组成的回路,流过的电流为I,在连接处吸收或放热的速率为q,它们满足的关系为: $q = \pi_{AB} \cdot I$, π_{AB} 为 Peltier 系数,如图 1(a) 所示。

Peltier 效应和 Seebeck 效应互为逆效应。 Seebeck 效应是指当两种不同的材料连接时,如果两个连接处存在温差 ΔT ,会产生温差电动势 V,满足关系 $V=\alpha$ $AB \Delta T$, α AB 为 Seebeck 系数,如图 5(b) 所示。 Peltier 系数和 Seebeck 系数满足的关系为: π $AB=\alpha$ ABT, T 为绝对温度。 热电制冷器 TEC 利用的是 Peltier 效应,热电偶测温利用的是 Seebeck 效应。需要补充说明的是,这两种效应最早发现时是涉及两种材料,后来研究发现这两种效应是材料的本征性质,它不依赖于另一种材料而存在,但要实施测量时,不可避免地引入了至少第二种材料。

3. 傅里叶变换基本原理,功率谱密度或幅度谱密度基本原理(自行查资料)[4分](第二次预习完成)。

傅里叶级数

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$
$$f(t) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \int_{-\infty}^{\infty} e^{i\omega t} d\omega$$

傅里叶变换

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$
$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

傅里叶逆变换

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$

能量守恒

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |F(f)|^2 df$$

功率 P

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} E[|f(t)|^2] dt = \int_{-\infty}^{\infty} S(f) df$$

功率谱密度 PSD

$$S(f) = \lim_{T \to \infty} \frac{E[|F_T(f)|^2]}{T}$$

幅度谱密度 ASD

$$ASD = \sqrt{PSD}$$

【实验前思考题】 (3×2分) (空间不够,可自行加页)

1. 热敏电阻测温点位置不同, 是否会影响 PID 参数的设定, 为什么?

会。由于测温点位置不同,其对控温装置的相应延迟也不同,离 TEC 位置越远,相应延迟越大,其控温效果也会随之受到影响,因此会影响 PID 参数的设定。

2. 被控物体材料不同, 是否会影响 PID 参数的设定, 为什么?

会。被控材料不同,其热学性质也不同,升温速度和导热速度不相同,导致其对控温的相应速度不同,因此会影响 PID 参数的设定。

3. 除了脉冲宽度调制控温,可以使用连续信号控温吗?如何实现?

可以。通过阈值控制或根据输出电压的振幅来控制输出功率。

专业:	物理学 (强基计划)	年级:	2021 级
姓名:	孙浩然	学号:	21305010
室温:	25℃	实验地点:	A515
学生签名:	对-治然	评分:	
实验日期:	2022. 11. 22 2022. 11. 29	教师签名:	THE

【实验内容、步骤、结果】

1. 实验电路连接拍图(4分)

2. Labview编程截图 (5分)

- 3. 控温结果截图(至少两个控温点或两种 PID 参数的截图)(6分)
- 注: 温度值个位数要与学号个位数相同,十位或百位数自选。

(得知此要求时已完成第一次实验,故本次实验数据无法满足该项要求)

提醒:本实验可以动态测量,也可以静态测量。实验系统标配为静态测量,PID 控温;建议静态测量时,每个控温点控温(测量温度与目标温度之差小于 1° 》时间不少于 3 分钟。也可以设计动态测量或准静态测量,并与静态测量结果比较。

数据记录(15分):

PID 参数调节

记录人: 孙浩然	、车昕益	日期: 2022.11.22				
参数调节记录	设定温度/℃	实际温度/℃	控温时长/s	K_p	K_I	K_d
P1	30	30. 1299	125	125. 000	0.000	0.000
P2	30	29. 8701	125	300.000	0.000	0.000
PI1	30	30. 1299	100	112. 500	0. 283	0.000
PI2	30	30. 1299	210	112. 500	212. 500	0.000
PID1	35	35. 0649	114	150.000	0. 167	0.042
PID2	35	35. 0649	167	150.000	125. 000	31. 250

专业:	物理学(强基计划)	年级:	2021 级
姓名:	孙浩然	学号:	21305010
日期:	2022. 11. 29		
评分:		教师签名:	

【分析与讨论】 (按照实验过程依次完成每项实验的"分析和讨论",总计30分)

1. 控温结果作图展示(8分)

(1) 控温时域图 (可多幅图一起展示)

Ρ1

P2

PI1

PI2

PID1

PID2

(2) 控温频域图 (可多幅图一起展示)

使用 PSD 或 ASD 进行展示,横坐标纵坐标为对数坐标(横轴单位[Hz],ASD 纵轴单位[K/ $\sqrt{\text{Hz}}$],PSD 纵轴单位[K²/ $\sqrt{\text{Hz}}$])

(注: 做 FFT 操作时去掉了升温/降温段,仅保留了温度在设定值附近震荡时的数据)

P1

PID1

PID2

2. 分析和讨论(12分)

时域上做标准差分析,频率上对 PSD 或 ASD 处理的结果做讨论,对最终控温水平做分析和总结

参数	P1	P2	PI1	PI2	PID1	PID2
标准差	0. 17505	1. 11917	0. 24756	0. 24977	0. 19956	0. 25509

仅调节 P 参数控温时, K_p 值较大(>200)时震荡较明显,且 K_p 值越大控温速度越快。PI 和 PID 控温时,从实验结果来看,P、I、D 的参数设定值并不唯一,只要有周期性震荡即可通过调节参数来达到控温目的。增大 K_p 、 K_d 值时,控温速度变快。

对比各组实验结果可知,按照 Ziegler-Nichols 方法调节参数控温效果最好。从标准差和响应时间可以验证这一点。

3. 课后思考题 (6分)

1) 影响控温精度和稳定度的因素都有哪些,如何进行改进?

- (1)PID 参数: 可进行有效的条件加以改进(齐格勒-尼柯尔斯调节效果最佳)。
- ②输出电流大小: 温度在设定温度附近震荡时可适当减小电流。
- ③环境温度;对被控物体进行绝热处理以减小环境温度造成的影响。

2)本实验中直流电源的电流输出建议设置为 2A,为了减小温度的波动,电流设置应该增大还是减小,为什么?

电流设置应该减小。

加热制冷元件是惯性系统,在升温时,达到目标温度,控温系统虽然不再输出升温信号,但是由于元件温度不是突变的,仍会继续加热;此时控温系统输出降温信号,到达目标温度后,同理仍会继续降温,所以温度存在一定程度的波动。减小电流可以减慢元件温度的变化,从而减小温度波动对结果产生的影响。

3) 实验是否达到了控温的目的,还有哪些可以改进的地方?

实验达到了控温的目的。

可以多改变几组P、I、D参数,观察、比较控温结果。

4) 温度控制程序是否工作正常,是否还有优化的地方?

温度控制程序工作正常。

可以加入低通滤波器来减少噪声干燥。

4. 实验过程遇到问题、感受、想法(4分)

- ①温度测量为离散值(每 1s 采样一次),无法得到其连续变化过程,可能会导致实验结果存在一定误差。
 - ②因时间关系,实验中 P、I、D 参数设置有限,若时间充足希望调整更多参数进行分析。
 - ③对傅里叶变换和功率谱密度等原理的理解不够深入。
- ④本人编程能力有限,尚无法编写傅里叶变换的程序对实验数据进行处理,故本次实验数据均使用 origin 软件进行快速傅里叶变换(FFT)操作。

【附件】含实验完成后收拾好的实验桌面照片等

第一次实验后桌面整理

第二次实验后桌面整理

