Neural Networks

Deep Neural Network for 3-way Classification

$$h_i^{\text{layer }l} = \phi \left(\sum_j w_{ji}^{(\text{layer }l)} \cdot h_j^{(\text{layer }l-1)} \right)$$

- L := hidden layers - $h^{(l)} :=$ activations at layer l - $w^{(l)} :=$ weights taking activations from layer l - 1 to l - $\phi :=$ nonlinear activation function - Must be nonlinear because otherwise hidden layers are collapsed - Last layer is still just a logistic regression - Prev layers just learn the 'features' of input

Rectified Linear Unit (ReLU)

$$\phi(z) = \max(0, z)$$

- Type of nonlinear activation function - Commonly used

Training Neural Networks

• Just like logistic regression:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log \mathbb{P}(y^{(i)}|x^{(i)};w)$$

- Just w tends to be a much larger vector - Just run gradient ascent and stop when log likelihood of hold-out data starts to decrease - Algorithm: 1. Initialize w 2. Repeat: $w \leftarrow w + \alpha * \sum_i \nabla \log \mathbb{P}(y^{(i)}|x^{(i)};w) - \alpha := \text{learning rate (generally small)}$

Computing Derivatives

- Automatic differentiation exists
- Relatively quick with backpropagation

Neural Network Properties

- Theorem (Universal Function Approximators) := a two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy
- Can be seen as learning the features
- Large number of neurons can cause overfitting

Preventing Overfitting

- - Good because w can grow without constraint
 - Use a constraint hyperparameter λ (typically 0.1 to 0.0001 or smaller)

$$\max_{w} \sum_{i} \log \mathbb{P}(y^{(i)}|x^{(i)};w) - \frac{\lambda}{2} \sum_{j} w_{j}^{2}$$

Simplicity

- Reduce the hypothesis/model space
 - Assume more
 - Fewer features or neurons
 - Other limits on model structure
- Regularization

- Laplace smoothing
 Weight regularization
 Hypothesis state stays big, but harder to get to outskirts