עבודת בית 4. פתרונות.

 $\vec{v}\in V$ כך שעבור כל $\vec{u}\in V$ יהי . \mathbb{C} או מעל \mathbb{R} או מעל פנימית מכפלה פנימית מעל . $\vec{u}=\vec{0}$ - הוכיחו ש- $\vec{u}=\vec{0}$ - הוכיחו ש- $\vec{u}=\vec{0}$ - הוכיחו ש-

על פי אחת $|\vec{u},\vec{u}\rangle=0$ נציב ($|\vec{u},\vec{u}\rangle=0$ בשויון הנתון בשויון במקום ($|\vec{u},\vec{u}\rangle=0$ במקום במקום ($|\vec{u},\vec{u}\rangle=0$ במקסיאומות של מכפלה פנימית מזה נובע ש- $|\vec{u}|=0$

 $M_{k imes n}(\mathbb{R})$ - בנימית מכפלה פנימית אדירה ($A,B
angle = Trace(AB^t)$.

מטריצה של מטריצה. Trace פתרון. בהזדמנות זו נזכיר הגדרה ותכונות של העקבה, דמכות זו נזכיר מטריצה $(X \mid X \mid Trace(X), X = \left[x_{ij}\right]_{i=1}^k$ ריבועית דיבועית אלכסון הראשי של דיבועית אלכסון הראשי של

- Trace(X+Y) = Trace(X) + Trace(Y) אז איז מטריצות מטריצות Y, א אם X
 - $Trace(\alpha X) = \alpha \cdot Trace(X)$ גו אם מטריצה ריבועית ו- α סקלר, אז מטריצה ריבועית ב.
 - $Trace(X^t) = Trace(X)$ ג. אם אם מטריצה ריבועית, אז אם X.
 - Trace(PQ) = Trace(QP) אז $n \times k$ מטריצה Q 1 $k \times n$ מטריצה P ה
 - (נובע מד') . Trace(X) = Trace(Y) אז $k \times k$ מטריצות Y , X מטריצות אם X , X

$$.Traceig(PP^tig) = \sum_{i=1}^k igg(\sum_{j=1}^n ig(p_{ij}ig)^2igg)$$
 אם $P = ig[p_{ij}ig]_{i=1,j=1}^k$ מטריצה אב

בפתרון של הבעיה שלנו לא נזדקק לתכונות ד',ה'.

נחזור לבעיה שלנו. תחילה נעיר שאם AB^t , אז $A,B\in M_{k\times n}(\mathbb{R})$ נחזור לבעיה שלנו. תחילה נעיר שאם האקסיאומות כל האקסיאומות של מכפלה פנימית. העקבה שלה מוגדרת. יש לוודא שמתקיימות כל האקסיאומות של

 $\langle A+C,B\rangle = Traceig((A+C)B^iig) = Traceig(AB^i+CB^iig) = Traceig(AB^iig) + Traceig(CB^iig) = \langle A,B\rangle + \langle C,B\rangle$ כאן השתמשנו בתכונה א' של

$$.\langle \alpha A, B \rangle = Trace((\alpha A)B^{t}) = \alpha Trace(AB^{t}) = \alpha \langle A, B \rangle$$

כאן השתמשנו בתכונה ב' של Trace.

$$\langle B, A \rangle = Trace(BA^t) = Trace((AB^t)^t) = Trace(AB^t) = \langle A, B \rangle$$

כאן השתמשנו בתכונה ג' של Trace ובתכונות פשוטות של פעולת שחלוף:

$$.(PQ)^{t} = Q^{t}P^{t} \quad , \quad (P^{t})^{t} = P$$

נקבל: Trace לשל 'ו בעזרת תכונה בעזרת על ידי א רכיבי את נסמן את ו $A\in M_{k\times n}(\mathbb{R})$ תהי תהי

תמיד תמיד מספרים של הריבועים כום כי $\langle A,A \rangle = Trace \left(AA^t\right) = \sum_{i=1}^k \left(\sum_{j=1}^n \left(a_{ij}\right)^2\right) \geq 0$ לא שלילי.

. אם $a_{ij}=0$ אז $a_{ij}=0$ אז היא מטריצת האפס. אם $a_{ij}=0$ אם $a_{ij}=0$ אז היא מטריצת האפס.

או מעל \mathbb{R} האם קיימת העתקה לינארית \mathbb{R} או מעל \mathbb{R} האם קיימת העתקה לינארית V יהי מרחב מכפלה פנימית מעל $\|T(\vec{u}+\vec{v})\| = \|\vec{u}\| + \|\vec{v}\| + \|\vec{v}\| \to T: V \to V$ כך $T:V\to V$ היא העתקה $T:V\to V$ היא העתקה בעיר שאם $T:V\to V$ היא העתקה

האפס לינארית, שהיא לינארית, וגם הדרישות: קל מאד לינארית, והיא מקיימת הדרישות: דרישות: דרישות והיא מקיימת את הדרישות: $T\left(\vec{0}\right) = \vec{0}$

$$0 = \|\vec{0}\| = \|T(\vec{0})\| = \|T(\vec{0} + \vec{0})\| = \|\vec{0}\| + \|\vec{0}\|$$

. כעת נניח שינה קיימת עונים ע $v \neq \{\vec{0}\}$ -ע נניח כזאת עונים עוני

 $.\, \vec{v} = -\vec{u}\,$ נניח בשלילה שהיא קיימת. היות ו- $\{\vec{0}\}$, קיים איימת. נניח בשלילה שהיא קיימת. היות ו

מצד אחד $T(\vec{0}) = \|\vec{0}\| = \|T(\vec{u} - \vec{u})\| = \|T(\vec{0})\| = \|\vec{0}\| = 0$ בגלל ש- $T(\vec{0}) = \|\vec{0}\| = 0$ מצד אחד $T(\vec{0}) = \|\vec{0}\| = \|T(\vec{u} + \vec{v})\| = \|T(\vec{u} + \vec{v})\| = \|\vec{u}\| + \|-\vec{u}\| = 2\|\vec{u}\| \neq 0$ זו סתירה, ממנה נובע שהעתקה $T(\vec{u}) = 1$ כזאת אינה קיימת.

לינארית העתקה $T:V\to V$ יהי תהי שו מעל $\mathbb R$ או מעל פנימית מכפלה פנימית מעל .4 . T=0- עבור כל $\langle T(\vec u), \vec v \rangle = 0-$ כך ש

פתרון.

ניקח לפי הנתון נקבל: $\vec{v} = T(\vec{u})$ וניקח לפי הנתון נקבל:

$$.0 = \langle T(\vec{u}), \vec{v} \rangle = \langle T(\vec{u}), T(\vec{u}) \rangle$$

-ש בובע של מכפלה פנימית על פי אחת על פי על פי פנימית נובע ש $0 = \left< T(\vec{u}), T(\vec{u}) \right>$ מהשויון $T(\vec{u}) = \vec{0}$

T=0 , עבור כל T=0, ז.א. T=0 היא העתקת האפס, $T(\vec{u})=\vec{0}$

-ש- העתקה לינארית כך ש $T\!:\!V\! o\!V$ היהי מכפלה פנימית מעל \mathbb{C} . תהי

נובע: T מהנתון של ההעתקה $T(\vec{u}), \vec{u} = 0$ ומלינאריות של

$$0 = \langle T(\vec{u} + \vec{v}), \vec{u} + \vec{v} \rangle = \langle T(\vec{u}) + T(\vec{v}), \vec{u} + \vec{v} \rangle = \langle T(\vec{u}), \vec{u} \rangle + \langle T(\vec{u}), \vec{v} \rangle + \langle T(\vec{v}), \vec{u} \rangle + \langle T(\vec{v}), \vec{v} \rangle = 0 + \langle T(\vec{u}), \vec{v} \rangle + \langle T(\vec{v}), \vec{u} \rangle + 0 = \langle T(\vec{u}), \vec{v} \rangle + \langle T(\vec{v}), \vec{u} \rangle \implies \langle T(\vec{u}), \vec{v} \rangle = -\langle T(\vec{v}), \vec{u} \rangle$$

נציב בחישוב האחרון $i\vec{u}$ במקום $i\vec{u}$ ונקבל: $\langle T(i\vec{u}), \vec{v} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle$ מצד שני $\langle T(i\vec{u}), \vec{v} \rangle = \langle iT(\vec{u}), \vec{v} \rangle = i\langle T(\vec{u}), \vec{v} \rangle$, $\langle T(\vec{v}), i\vec{u} \rangle = \overline{i} \langle T(\vec{v}), \vec{u} \rangle = -i\langle T(\vec{v}), \vec{u} \rangle$ $\langle T(\vec{u}), \vec{v} \rangle = \langle T(\vec{v}), \vec{u} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle$. $\langle T(\vec{u}), \vec{v} \rangle = \langle T(\vec{v}), i\vec{u} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle = -\langle T(\vec{v}), i\vec{u} \rangle$

בסך הכל קיבלנו: $\langle T(\vec{u}), \vec{v} \rangle = \langle T(\vec{v}), \vec{u} \rangle = \langle T(\vec{v}), \vec{u} \rangle = -\langle T(\vec{v}), \vec{u} \rangle$. היות ולא בסך הכל קיבלנו: $\langle T(\vec{u}), \vec{v} \rangle = \langle T(\vec{v}), \vec{u} \rangle = -\langle T(\vec{v}), \vec{u} \rangle$ עבור כל $\langle T(\vec{u}), \vec{v} \rangle = 0$ שהוכחנו בבעיה מס' 4 מזה נובע ש-0.

מעל \mathbb{R} הטענה לא נכונה. השויון $\langle T(\vec{u}), \vec{u} \rangle = 0$ אומר מאונך לתמונה שלו. באמת אין שום קושי להגדיר העתקה כזאת מעל \mathbb{R} . נתבונן במרחב \mathbb{R}^2 עם מכפלה פנימית סטנדרטית וניקח לדוגמה העתקת סיבוב המישור בתשעים מעלות נגד כיוון פנימית השעון: T(x,y) = (-y,x), $T:\mathbb{R}^2 \to \mathbb{R}^2$ השעון: T(x,y) = (-y,x), $T:\mathbb{R}^2 \to \mathbb{R}^2$ בור כל T(x,y) מתקיים: T(x,y) = (-y,x) עבור כל T(x,y) מתקיים: T(x,y) = (-y,x)

: מרחב מכפלה פנימית מעל \mathbb{R} או מעל מעל המקבילית: 6. מרחב מכפלה פנימית מעל $\|\vec{u}+\vec{v}\|^2+\|\vec{u}-\vec{v}\|^2=2\left(\|\vec{u}\|^2+\|\vec{v}\|^2\right)$

<u>פתרון.</u> בהוכחה נשתמש רק באקסיאומות ובתכונות מיידיות של מכפלה פנימית ובהגדרת נורמה.

$$\begin{split} & \left\| \vec{u} + \vec{v} \right\|^2 + \left\| \vec{u} - \vec{v} \right\|^2 = \left\langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \right\rangle + \left\langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \right\rangle = \\ & = \left\langle \vec{u}, \vec{u} \right\rangle + \left\langle \vec{u}, \vec{v} \right\rangle + \left\langle \vec{v}, \vec{u} \right\rangle + \left\langle \vec{v}, \vec{v} \right\rangle + \left\langle \vec{u}, \vec{u} \right\rangle + \left\langle \vec{u}, -\vec{v} \right\rangle + \left\langle -\vec{v}, \vec{u} \right\rangle + \left\langle -\vec{v}, -\vec{v} \right\rangle = \\ & = \left\| \vec{u} \right\|^2 + \left\langle \vec{u}, \vec{v} \right\rangle + \left\langle \vec{v}, \vec{u} \right\rangle + \left\| \vec{v} \right\|^2 + \left\| \vec{u} \right\|^2 - \left\langle \vec{u}, \vec{v} \right\rangle - \left\langle \vec{v}, \vec{u} \right\rangle + \left\| \vec{v} \right\|^2 = 2 \left(\left\| \vec{u} \right\|^2 + \left\| \vec{v} \right\|^2 \right) \end{split}$$