微分積分学・同演習 A

演習問題 6

- 1. (1) $x = -1/\sqrt{3}$ で極大値 $1 + 2/(3\sqrt{3})$, $x = 1/\sqrt{3}$ で極小値 $1 2/(3\sqrt{3})$.
 - (2) x = 1, 2 で極小値 0 , x = 3/2 で極大値 1/16 .
 - (3) $x=-\sqrt{2}-1$ で極小値 $(1-\sqrt{2})/2$, $x=\sqrt{2}-1$ で極大値 $(\sqrt{2}+1)/2$.
 - (4) $x=\sqrt{2}$ で極大値 $rac{4+\sqrt{2}}{4-\sqrt{2}}$, $x=\sqrt{2}$ で極小値 $rac{4-\sqrt{2}}{4+\sqrt{2}}$

- 2.[†] n は整数とする.
 - (1) $x=\pi/3+2n\pi$ で極小値 $\pi/3+2n\pi-\sqrt{3}$, $x=-\pi/3+2n\pi$ で極大値 $-\pi/3+2\pi$

5月23日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

 $2n\pi + \sqrt{3}$.

- (2) × $x=2n\pi+\pi/2$ で極小値 2 , $x=frm-en\pi+\pi/4,\,2n\pi+3\pi/4$ で極大値 $2\sqrt{2}$, $x=2n\pi-\pi/2$ で極大値 -2 , $x=2n\pi-pi/4,\,2n\pi-3\pi/4$ で極小値 $-2\sqrt{2}$ をとる .
- (3) x=1 で極小値 1/e をとる.
- (4) x=0 で極小値 2 をとる.

3. x=e で極大値 $e^{1/e}$ をとる.グラフの形からこれがこの関数の最大値になることも分かるので,特に $e^{1/e}>\pi^{1/\pi}$ が成り立つ.この両辺を $e\pi$ 乗すれば, $e^\pi>\pi^e$ を得る.

4. 条件は $a = 2\sqrt{b}, b > 0$.

x		$-\sqrt{b}$		0		\sqrt{b}	
f'	+	0		_		0	+
$\int f$	7		\searrow	:	\searrow		7

- $5. \ g(x) \neq 0$ と仮定する.F(x) := f(x)/g(x) とすれば,F'(x) = 0 であるので F は定数 関数ゆえ f(x) = cg(x) である.
- 6. ヒントにおける $\lambda,\,\mu$ はそれぞれ $\lambda=f(b)-f(a),\,\mu=g(b)-g(a)$ となる.あとは 平均値の定理を F に適用すればよい.
- 7^{\dagger} (1),(2),(5) は双曲線関数の定義にしたがって計算すればよい。(3),(4) は教科書 p.49 の例題や問題を参考のこと。
- 8. 教科書の解答 p.213 を参照のこと.
- 9. 教科書の解答 p.213 を参照のこと.
- 10.* $(a+h)^3=a^3+h\cdot 3(a+\theta h)^2$ より式を整理して $a+h/3=2a\theta+\theta^2 h$ である . $a\neq 0$ のときは $\theta=1/2+h/(ha)-\theta^2 h/(2a)\to 1/2$ $(h\to 0)$. また a=0 のときは $h/3=\theta^2 h$ より $\theta=1/\sqrt{3}$ $(0<\theta<1$ より .