

Наследственные синдромы в онкологии

Стрельников Владимир Викторович ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»

Источники знаний на русском

Суспицын Евгений Николаевич Научно-популярная брошюра НАСЛЕДСТВЕННЫЕ ОПУХОЛЕВЫЕ СИНДРОМЫ

Ретинобластома: диагностика и генетическое консультирование

В представленной работе обсуждаются результаты использования клинико-генетических и молекулярных методов в собственных многолетих исследованиях больных ретинобластомой и данные литературы. Показано, что включение современных методов молекулярно-генетического анализа в комплексное обследование пациентов расширяет возможности ранней диагностики, своевременного лечения и профилактики ретинобластомы. Идентификация мутаций гена RB1 крайне важна для эффективного генетического консультирования. Успехи в лечении ретинобластомы позволяют сохранить жизнь более 90% пациентов, однако качество их жизни строго зависит от ранней диагностики опухоли.

Ключевые слова: ретинобластома, ген RB1, молекулярная диагностика, генетическое консульти-

(Для цитирования: Козлова В.М., Казубская Т.П., Соколова И.Н., Алексеева Е.А., Бабенко О.В., Близнец Е.А., Ушакова Т.Л., Михайлова С.Н., Любченко Л.Н., Поляков В.Г. Ретинобластома: диагностика и генетическое консультирование. Онкопедиатрия. 2015; 2 (1): 30 – 38).

Клинические случаи синдрома Ли-Фраумени в детской онкологической практике

В статье описаны три случая синдрома Ли-Фраумени у детей с редкой опухолью головного мозга и первично-множественными опухолями. Представлены различные методы молекулярной диагностики синдрома, ассоциированного с герминальной мутацией гена ТР53. Проанализирован гетерогенный характер клинического проявления синдрома, его взаимосвязь с видом мутаций в гене ТР53, мониторинг лиц-носителей мутантного ТР53-генотипа. С учетом генетических особенностей синдрома Ли-Фраумени приведены возможности проведения патогенетически оправданной таргетной терапии, направленной на модификацию белка р53.

Ключевые слова: синдром Ли-Фраумени, молекулярно-генетическое тестирование, ген TP53, дети.

(Для цитирования: Козлова В.М., Валиев Т.Т., Казубская Т.П., Ковалёва Я.В., Лукьянова Е.Н., Стрельников В.В., Поспехова Н.И., Михайлова С.Н., Заева Г.Е., Любченко Л.Н. Клинические случаи синдрома Ли-Фраумени в детской онкологической практике. Онкопедиатрия. 2016; 3(3): 207–213. Doi: 10.15690/onco.v3i3.1599)

НИИ онкологии им. Н.Н. Петрова, С.-Петербург

Наследственные опухолевые синдромы являются самой частой разновидностью медико-генетической

патологии

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О НАСЛЕДСТВЕННЫХ ОПУХОЛЕВЫХ СИНДРОМАХ

Е.Н. Имянитов

Под термином «наследст сутствие генного дефекта, ко ком возникновения новооб леваний является самой час мость «классических» насле, ями среди сотен тысяч инд как минимум на 2 порядка в ных на сегодняшний день, по расположенности у 1-2% лк

Наследственные опухолевые синдромы

- группа заболеваний (описано более 200), проявление которых связано с передачей из поколения в поколение предрасположенности к тому или иному виду рака
- составляют около 5-10% всех случаев онкологических заболеваний и относятся к одним из наиболее часто встречающихся медико-генетических нозологий
- 10% рака молочной железы, 20% рака яичников, 3% новообразований толстой кишки и эндометрия Имянитов Е.Н., Суспицын Е.Н.

Наследственный опухолевый синдром определение по Е.Н.Имянитову

- Присутствие генного дефекта, который ассоциирован с практически фатальным риском возникновения новообразования в определенном органе.
- Эта группа заболеваний является самой частой медико-генетической патологией:

если встречаемость «классических» наследственных болезней исчисляется единичными случаями среди тысяч индивидуумов, то частота носителей «раковых» мутаций как минимум на порядок выше — даже неполный перечень ДНК тестов, доступных на сегодняшний день, позволяет найти явные признаки онкологической предрасположенности у 1-2% людей.

ХАРАКТЕРИСТИКА НАСЛЕДСТВЕННЫХ ОПУХОЛЕВЫХ СИНДРОМОВ

- большинство наследственных опухолевых синдромов

 моногенные (менделирующие) заболевания с
 аутосомно-доминантным типом наследования и
 неполной пенетрантностью
- отягощенный семейный анамнез
- относительно ранний дебют (на 10-15 лет раньше, чем спорадических опухолей)
- риск развития первично-множественных опухолей

Условно моногенные опухолевые синдромы

- нефробластома (опухоль Вильмса, частота повышена при синдроме Беквита-Видеманна)
- Синдром Ли-Фраумени ТР53
- ретинобластома *RB1*
- семейный рак желудка *CDH1*
- факоматозы:

```
синдром фон Хиппель-Линдау – VHL нейрофиброматоз – NF1, NF2 туберозный склероз - TSC1, TSC2
```

- синдром Пейтца–Егерса STK11
- ювенильный гастро-интестинальный полипоз SMAD4, BMPR1A
- синдром Коудена *PTEN*
- рак молочной железы / рак яичников BRCA1, BRCA2

Сколько синдромов? Сколько генов?

124 гена в клинических NGS-тестах

AIP, AKT1, ALK, APC, ATM, ATR, AXIN2, BAP1, BARD1, BLM, BMPR1A, BRCA1, BRCA2, BRIP1, CCND1, CDC73, CDH1, CDK4, CDKN1B, CDKN1C, CDKN2A, CHEK2, CYLD, DDB2, DICER1, DIS3L2, EPCAM, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, FAM175A, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FH, FLCN, GREM1, HNF1A, HNF1B, HOXB13, HRAS, IL1B, IL1RN, KIT, LIG4, LZTR1, MAD2L2, MAX, MC1R, MEN1, MET, MITF, MLH1, MRE11A, MSH2, MSH3, MSH6, MUTYH, NBN, NF1, NF2, NTHL1, PALB2, PALLD, PIK3CA, PMS2. POLD1. POLE. POLH. POT1. PRKAR1A. PRSS1. PTCH1. PTEN. RAD50, RAD51, RAD51C, RAD51D, RASAL1, RB1, RECQL4, RET, RHBDF2, RINT1, RNF43, RPS20, SCG5, SDHA, SDHAF2, SDHB, SDHC, SDHD, SEC23B, SLX4, SMAD4, SMARCA4, SMARCB1, SMARCE1, SPINK1, SPRED1, SRGAP1, STK11, SUFU, TMEM127, TP53, TSC1, TSC2, UBE2T. VHL. WRN. WT1. XPA. XPC. XRCC2. YAP1

GeneReviews[®]

< Prev

Next >

Сколько синдромов?

Сколько генов?

Margaret P Adam, Editor-in-Chief; Senior Editors: Holly H Ardinger, Roberta A Pagon, and Stephanie E Wallace. Molecular Genetics: Lora JH Bean and Karen Stephens. Anne Amemiya, Genetic Counseling.

Seattle (WA): University of

Washington, Seattle; 1993-2019.

ISSN: 2372-0697

Copyright and Permissions

Search GeneReviews

GeneReviews Advanced

Search Help

GeneReviews, an international point-of-care resource for busy clinicians, provides clinically relevant and medically actionable information for inherited conditions in a standardized journal-style format, covering diagnosis, management, and genetic counseling for patients and their families. Each chapter in GeneReviews is written by one or more experts on the specific condition or disease and goes through a rigorous editing and peer review process before being published online.

GeneReviews currently comprises 754 chapters.

"cancer"
261 глава в
GeneReviews
(уникальны ~80)

	34 genes	Breast	Ovarian	GYN	Colon	Pancreatic	Renal
	BRCA1	BRCA1	BRCA1	BRCA1		BRCA1	
	BRCA2	BRCA2	BRCA2	BRCA2		BRCA2	
	STK11	STK11	STK11		STK11	STK11	
7G	CDH1	CDH1	CDH1		CDH1		
	PTEN	PTEN	PTEN	PTEN	PTEN		PTEN
	TP53	TP53	TP53	TP53	TP53	TP53	TP53
	PALB2	PALB2	PALB2			PALB2	
	BARD1 BRIP1	BARD1 BRIP1	BARD1 BRIP1				
	NBN	NBN	NBN				
	NF1	NF1	NF1				
	RAD51C	RAD51C	RAD51C				
	RAD51D	RAD51D	RAD51D				
	ATM	ATM	ATM			ATM	
	MUTYH	MUTYH	MUTYH		MUTYH		
	CHEK2	CHEK2	CHEK2		CHEK2		
	RET	RET			RET		
	MEN1	MEN1					
	MLH1		MLH1	MLH1	MLH1	MLH1	MLH1
	MSH2		MSH2	MSH2	MSH2	MSH2	MSH2
27G	MSH6		MSH6	MSH6	MSH6	MSH6	MSH6
	PMS2		PMS2	PMS2	PMS2	PMS2	PMS2
	EPCAM		EPCAM	EPCAM	EPCAM	EPCAM	EPCAM
	APC				APC	APC	
	BMPR1A SMAD4				BMPR1A SMAD4		
	POLD1				POLD1		
	POLE				POLE		
	CDKN2A				1022	CDKN2A	
	CDK4					CD TED	
	SDHB						SDHB
	SDHC						SDHC
	SDHD						SDHD
	VHL						VHL

Вариант NGSпанели для диагностики наследственных форм онкозаболеваний

(рак молочной железы, яичников, матки, колоректальный, поджелудочной железы, почки)

Какие гены? Какие тесты?

Пример 1: ретинобластома

Gene	Test Method	Sample	Proportion of Probands with a Germline Pathogenic Variant Detectable by This Method
	Sequence analysis ³	Germline, tumor	80%-84%
	Gene- targeted deletion/duplication analysis	Germline, tumor	16%-20%
RB1	CMA ⁵	Germline	6%-8%
ND1	Targeted analysis for pathogenic variants	Germline, tumor	25%
	Methylation analysis	Tumor	See footnote 8
	Allele loss analysis	Tumor	See footnote 9
MYCN	Gene- targeted deletion/duplication analysis	Tumor	See footnote 10

Какие гены? Какие тесты?

Пример 2: наследственный рак молочной железы / яичников

	Proportion of BRCA1/BRCA2 Associated HBOC Attributed to Pathogenic Variants in This Gene	Proportion of Pathogenic Variants ² Detected by Test Method		
Gene ¹		Sequence analysis ³	Gene- targeted deletion/ duplication analysis	
BRCA1	66%	>80% ⁵	~10% ⁵	
BRCA2	34%	>80% ⁵	~10% ⁵	

Двухударная модель канцерогенеза

Валидация результатов АД хромосомно-микроматричным анализом (ХМА)

Образец 18

Образец 19

