```
Given functions f1 and f2, f1(n) \in O(g1(n)) and f2(n) \in O(g2(n)). Prove or disprove that f1(n) + f2(n) \in O(max{g1(n), g2(n)})
```

Prove:

Assume $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$

 $f_1(n) \in O(g_1(n)) \rightarrow$ there exist positive constants c_1 and n_1 such that $f_1(n) \le c_1 * g_1(n)$ whenever $n \ge n_1$

 $f_2(n) \in O(g_2(n)) \rightarrow$ there exist positive constants c_2 and n_2 such that $f_2(n) \le c_2 * g_2(n)$ whenever $n \ge n_2$

Add those inequalities together:

$$f_1(n) + f_2(n) \le c_1 * g_1(n) + c_2 * g_2(n)$$
 whenever $n \ge \max \{n_1, n_2\}$

Want to show $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Lemma: $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$ if and only if there exist positive constants c_3 and n_3 such that $f_1(n) + f_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$

Want to show c₃ and n₃ exists

```
Take c_3 = c_1 + c_2 and n_3 = max\{n1, n2\}
```

We need to show $c_1 * g_1(n) + c_2 * g_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$ There are two cases:

```
First: Assume g_1(n) \ge g_2(n)
```

Then $c_2 * g_2(n) \le c_2 * g_1(n)$ (since c_2 is positive)

Then $c_1 * g_1(n) + c_2 * g_2(n) \le c_1 * g_1(n) + c_2 * g_1(n)$

Therefore $c_1 * g_1(n) + c_2 * g_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$

(since $c_3 = c_1 + c_2$)

Second: Assume $g_1(n) < g_2(n)$

Then $c_1 * g_1(n) \le c_1 * g_2(n)$ (since c_1 is positive)

Therefore $c_1 * g_1(n) + c_2 * g_2(n) \le c_1 * g_2(n) + c_2 * g_2(n)$

Therefore $c_1 * g_1(n) + c_2 * g_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$ (since $c_3 = c_1 + c_2$)

So $f_1(n) + f_2(n) \le c_1 * g_1(n) + c_2 * g_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$

Therefore $f_1(n) + f_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$

Therefore positive constants c_3 and n_3 exists such that $f_1(n) + f_2(n) \le c_3 * O(\max\{g_1(n), g_2(n)\})$ whenever $n \ge n_3$

Therefore $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$