Pervasive Computing

COMP5047 - Tutorial 01

The School of Computer Science The University of Sydney

Your Tutors

- Adele Tong and Oliver Mulcahy
- aton6105@uni.sydney.edu.au and omul4225@uni.sydney.edu.au

 Tutorial slide decks will be published on Canvas every Friday evening.

Ideating and Brainstorming

The 10 Plus 10 Method

Ideation and sketching user experience

- 1. State your design challenge.
 - Framed as a particular problem or
 - need stated by a client, or
 - even just as a desire to build a novel system

E.g. A case when you may want to connect your mobile smart phone to a nearby person's smart phone, for example, to exchange information such as photos and contacts.

- 2. Generate 10 or more different design concepts of a system that addresses this challenge. (Sketch)
 - Akin to brainstorming
 - Goal is to be as creative and diverse as possible concepts
 - Don't judge the merits of these concepts

- 3. Reduce the number of design concepts.
 - Review your concepts
 - discard those that don't seem to have much merit
 - For those that remain, show and explain your design(s) to others

4. Choose the most promising design concept(s) as a starting point.

- 5. Produce 10 details and/or variations of a particular design concept.
 - First, try to generate different ways of realizing that particular concept
 - Second, go a bit deeper into a particular concept, where you try to flesh out details of your idea

- 6. Present your best idea(s) to a group.
 - Solicit feedback from them
 - Tell your audience that the best feedback they can give will be suggestions about possible redesigns

- 7. As your ideas change, sketch them out.
 - Continue to refine and generate your concept as needed

Generating Ideas

Ideation and sketching user experience

Project Groups

- We will setup groups with 4 students per group
- You will be able to see the groups in Canvas

Lets collect group kits!

- Each group gets one kit + esp32
 - Your group needs to sing for it

https://core-electronics.com.au/kitronik-inventor-s-kit-for-the-arduino.html

https://core-electronics.com.au/firebeetleesp32-e-iot-microcontroller-with-headersupports-wi-fi-bluetooth.html

What Are We Doing Today

- Run a sample application in your Microcontroller
- Install
 - Goto Week 02 Module Installation Links (Canvas) and install each tool step by step

Create New Project: Open VSC

- Goto Platform IO Home
 - Use the bottom bar home icon
- Use "+ New Project"
- Use the correct settings
 - Name can be anything
 - Board and Framework fixed
 - Use an appropriate location
 - Then Click Finish
 - Will take time to initialize

• Locate the platfromio.ini file

- Locate the change the library version
 - platform = espressif32@3.5.0

```
[cnv:firebectle32]
platform = espressif32
board = firebeetle32
framework = arduino
monitor_speed = 115200
```



```
[env:firebeetle32]
platform = espressif32@3.5.0
board = firebeetle32
framework = arduino
monitor_speed = 115200
```

Locate the main.cpp file

Two Important functions

void setup()

- Setting up things
 - E.g. initialize variables
 - Only run once

void loop()

- Runs in a loop
 - Do your work here

Lets write the code

```
#include <Arduino.h>
     void setup() {
                                                      Set the LED BUILTIN pin to output
       pinMode(LED_BUILTIN, OUTPUT);
                                                      LED_BUILTIN – Is a pin number
 6
     void loop() {
       digitalWrite(LED_BUILTIN, HIGH);
                                                      Set the LED BUILTIN pin to high and low
       delay(2000);
                                                      (turns on and off) with a delay of 2000ms in between
       digitalWrite(LED_BUILTIN, LOW);
10
       delay(2000);
11
12
```

Compile

Upload to the board

Check the LED

Play around with different delays

```
#include <Arduino.h>

void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
  digitalWrite(LED_BUILTIN, HIGH);
  delay(2000);
  digitalWrite(LED_BUILTIN, LOW);
  delay(2000);
}
```

Or try other samples

https://bit.ly/3Q4h1a9

