Protótipo de plugue para tomada elétrica controlado remotamente

Aluno(a): Dyego Alekssander Maas

Orientador: Francisco Adell Péricas

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Desenvolvimento
- Conclusões
- Sugestões de continuidade
- Demonstração

Introdução

Desperdício de 53TWh em 2015

40 novas usinas hidrelétricas na Bacia do Rio Tapajós

Consumo residencial de 9,6%

Objetivo Geral

Desenvolver um plugue para tomada elétrica que possa, através do emprego de sensores e atuadores, ser controlado remotamente e que permita o monitoramento do consumo elétrico dos equipamentos conectados.

Objetivos Específicos

- Desenvolver um protótipo de plugue para tomada elétrica controlado remotamente;
- Permitir ativar e desativar, via aplicativo móvel, o fornecimento de energia elétrica para os aparelhos conectados ao plugue;
- Disponibilizar em um aplicativo móvel relatórios do consumo de energia elétrica dos aparelhos conectados ao plugue.

Internet das Coisas

MQTT

CoAP

NodeMCU - ESP8266

16 GPIOs 1 ADC 32bit 80Mhz Wi-Fi Baixo custo

Event Sourcing

Trabalhos Correlatos

Sonoff POW

- Controla equipamentos;
- Mede consumo;
- Baixo custo;
- Invasivo.

Trabalhos Correlatos

TP-LINK HS110

- Controla equipamentos;
- Indisponível no padrão nacional tomadas.

Trabalhos Correlatos

Waka (2015)

- Controla equipamentos;
- Mede consumo.

Requisitos funcionais

Requisito	Descrição
RF1	Permitir ligar/desligar um equipamento
RF2	Permitir agendar as ações de ligar/desligar
RF3	Disponibilizar relatório de consumo
RF4	Permitir gerenciar múltiplos plugues

Requisitos não-funcionais

Requisito	Descrição
RNF1	Consumir menos de 1W
RNF2	Apresentar compatibilidade com tomadas no padrão nacional
RNF3	Utilizar conectividade Wi-Fi e permitir controle via aplicativo móvel
RNF4	Utilizar o SoC ESP8266
RNF5	Utilizar o protocolo MQTT
RNF6	Utilizar IDE Visual Studio 2017 com <i>plugin</i> Visual Micro para o <i>firmware</i>
RNF7	Utilizar o padrão arquitetural Event Sourcing para salvar os eventos do plugue

Casos de Uso

Arquitetura

Protótipo do Hardware

Hardware

Sensor de corrente

-30A a 30A 0V a 5V

0V a 3,3V

0 a 1023

Cálculo de potência

Publicação

Ferramentas utilizadas

Estrutura das mensagens MQTT

ID do plugue	Divisor	Conteúdo
2c6c-54ea-485a-9e0b-c74a7a0fb334		turn-on
2c6c-54ea-485a-9e0b-c74a7a0fb334		1.5 220 330

Tabela de Eventos

mt_events

seq_id: uuid

id: uuid

stream_id: uuid

version: int

data: jsonb

type: varchar

timestamp: timestamp

tentant_id: varchar

mt_dotnet_type: varchar

```
"Current": 4.64,
"Voltage": 220,
"ConsumptionInWatts": 1021.77
```


Eventos

Eventos

PlugActivated

PlugDeativated

PlugRenamed

PlugTurnedOn

PlugTurnedOn

OperationScheduled

ConsumptionReadingReceived

```
public class Plug
   public Guid Id { get; set; }
   public PlugState CurrentState { get; set; }
   public string Name { get; set; }
   public double LastConsumptionInWatts { get; set; }
   public bool Active { get; set; }
   public bool IsOn() => CurrentState == PlugState.On;
   public void Apply(PlugActivated activation)
        Id = activation.PlugId;
       Name = activation.PlugName;
       Active = true;
   public void Apply(PlugTurnedOn plugTurnedOn)
        CurrentState = PlugState.On;
   public void Apply(PlugRenamed plugRenamed)
        Name = plugRenamed.NewName;
```


Visões Materializadas

mt_doc_plug

id: uuid

data: jsonb

mt_last_modified: timestamp

mt_version: uuid

mt_dotnet_type: varchar

```
"Id": "90b94d31-61df-44fe-8f6a-d2df9ebdf6ec",
    "Name": "Pinheiro de Natal",
    "Active": false,
    "CurrentState": 0,
    "LastConsumptionInWatts": 0
}
```


Relatório de Consumo

Operacionalidade da Implementação

Plugues Inteligentes	s - Administr	ação					
Search	Q	Dashboard					
♠ Dashboard		Basilboard					
Lill Relatórios	<	Novo Plugue					
		PlugOne					
		Estado					
Novo agendamento							
	Ação						
		Desligar					
		Executar em					
		45					
		Minutos					
		Criar agendamento					
		☆ Agendamentos					
		Ligar após 30 Minutos 11/16/2017 17:06:14					
		Ligar após 1 Horas 11/16/2017 17:36:21					
		Desligar após 30 Segundos 11/16/2017 16:37:06					
		Desligar após 45 Minutos 11/16/2017 17:21:46					
		0a8252b7-dbd6-4b18-b771-a2bae1af7b29					

Operacionalidade da Implementação

Operacionalidade da Implementação

Resultados e Discussões

Características mais	Tr	Maas (2017)		
relevantes	Sonoff POW	TP-Link HS110	Waka (2015)	Plugue Inteligente
Portal cativo para informar credenciais de rede	Sim	Sim	Não	Não
Interface de usuário	Android/iOS	Android/iOS	Navegador Web	Navegador Web
Histórico de consumo	Sim	Não	Sim	Sim
Permite agendamento	Sim	Sim	Não	Sim
Histórico de atividades do plugue/tomada	Sim	Sim	Não	Sim
Desenho intrusivo	Sim	Não	Não	Não
Aplicação controla múltiplos dispositivos	Sim	Sim	Não	Sim
Custo	US\$ 10,50 (R\$35,00)	US\$ 39,99 (R\$ 133,00)	R\$ 443,90 (protótipo)	R\$ 148,39 (protótipo)

Conclusões

- Um dos objetivos específicos foi atendido parcialmente, com o portal WEB substituindo o aplicativo móvel previsto;
- O requisito RNF1 n\u00e3o foi atendido;
- O protótipo apresentou diferencias em relação aos correlatos, como históricos de consumo e de atividade, além de um desenho não-intrusivo;
- O uso do padrão Event Sourcing e da biblioteca Marten simplificaram o processo de desenvolvimento.

Sugestões de continuidade - I

- Adicionar um portal cativo para informar credenciais de rede;
- Empregar técnicas de aprendizado de máquina, permitindo ao plugue adaptar-se à rotina do usuário;
- Acrescentar novas formas de agendamento;
- Persistir os agendamentos na EPROM do ESP8266;
- Reimplementar a interface de usuário para dispositivos móveis, como um Progressive Web App ou aplicativo nativo.

Sugestões de continuidade - II

- Reduzir o consumo do plugue, implementado estratégias de hibernação do ESP8266;
- Utilizar a variante do ACS712 que trabalha na faixa de -20A a 20A;
- Utilizar um sensor de tensão, visando melhorar a acuracidade do cálculo de potência.

Sugestões de continuidade - III

- Criar um HUB para centralizar o controle de múltiplos plugues;
- Implementar recursos de segurança na comunicação com o broker MQTT;
- Implementar uma interface de harware para conectar módulos de sensores ao plugue, de modo que possam conferir novos comportamentos condicionados por dados sensoriais.

Demonstração

