Chapter 1

automata abstract

1.1 Finite automata

Definition 1.1 (Finite automation). A finite automaton(an FA) is a 6-tuple (Q, V, T, E, S, F) where

- Q is a finite set of states,
- V is an alphabet,
- $T \in \mathbb{P}(Q \times V \times Q)$ is a transition relation,
- $E \in \mathbb{P}(Q \times Q)$ is an ε -transition relation
- $S \subseteq Q$ is a set of start states, and
- $F \subseteq Q$ is a set of final states.

```
class FA: virtual public FAabs {
    // Q is a finite set of states
    StatePool Q;
    // S is a set of start states, F is a
        set of final states
    StateSet S, F;
    // Transitions maps each State to its
        out-transitions.
    TransRel Transitions;
```

```
// E is the epsilon transition
    relation.
StateRel E;
}
```

StatePool:All states in an automaton are allocated from a StatePool. StatePool's can be merged together to form a larger one. (Care must be taken to rename any relations or sets (during merging) that depend on the one StatePool.) State is in [0,next)

```
class StatePool {
    int next; // The next one to be
        allocated.
}
```

StateSet:The StateSet is normally associated (implicitly) with a particular StatePool; whenever a StuteSet is to interact with another (from a different StatePool), its States must be renamed (to avoid a name clash). The capacity of a StateSet must be explicitly managed; many set operations are not bounds-checked when assert() is turned off.

```
class StateSet : protected BitVec {
    // How many States can this set
        contain?
    // [O, domain()) can be contained in
        *this.
    inline int domain() const;

    // set How many States can this set
        contain.
    // [O, r) can be contained in *this.
        inline void set_domain(const int r);
}
class BitVec {
```

1.1 Finite automata 3

```
// uesd max number bits in data,
    denote width(domain),[0,
    bits_in_use) == > [0, width)
int bits_in_use;
// number of words, 1,2,3,...
int words;
// save bytes of words,[0,1,2,...
    width(domain)]
unsigned int *data;
}
```

transition relation: $T \in Q \to \mathbb{P}(V \times Q), T(p) = \{(a,q) | (p,a,q) \in T\},$ 表示状态 p 的 out-transitions. see Fig 1.1

```
// V ---> Q
struct TransPair {
CharRange transition_label;
State transition_destination;
}
class TransImpl { TransPair *data; }
class Trans:protected TransIml { }
// map: state(r) ---> (T=Trans) out-
   transitions of r
// SteteTo::data[r] = out-transitions of
class TransRel:public StateTo<Trans> {}
// map: state(r) —> T
// data[r] = T
template <class T> class SteteTo {
T *data; // 动态数组的index(即状态的index)状
   态的out-transitions
}
```

```
class FA: virtual public FAabs {
TransRel Transitions; // maps each State to
   its out-transitions.
}
```

ε-relation: $E \in \mathbb{P}(Q \times Q) \Rightarrow E \in Q \rightarrow \mathbb{P}(Q), E(p) = \{q | (p,q) \in E\},$ 表示 ε 连接状态 p 和状态 q.

```
// Implement binary relations on States. This is most often used for epsilon transitions.

// map: state(r) —> {StateSet}

// StateTo::data[r] = {StateSet}, 表示状态r与 {StateSet}的二元关系
class StateRel:protected StateTo<StateSet> {}

class FA: virtual public FAabs {
   // E is the epsilon transition relation.
   StateRel E;
}
```


图 1.1: q_1 in-transition: $\{(q_0,a,q_1)\}$; q_1 out-transition: $\{(q_1,b,q_2),(q_1,c,q_3)\}$

[WATSON93a, p6] the signatures of the transition relations:

$$T \in \mathbb{P}(Q \times V \times Q)$$
$$T \in V \to \mathbb{P}(Q \times Q)$$
$$T \in Q \times Q \to \mathbb{P}(V)$$

$$T \in Q \times V \to \mathbb{P}(Q)$$
$$T \in Q \to \mathbb{P}(V \times Q)$$

for example, the function $T \in Q \to \mathbb{P}(V \times Q)$ is defined as $T(p) = \{(a,q): (p,a,q) \in T\}$

$$\begin{split} T &\in \mathbb{P}(Q \times V \times Q), T = \{(p, a, q)\} \\ T &\in Q \to \mathbb{P}(V \times Q), T(p) = \{(a, q) : (p, a, q) \in T\} \\ p, q &\in Q, a \in V \\ T &: Q \times V \to \mathbb{P}(Q) \\ T(p, a) &= \{q\} \end{split}$$

According to Convention A.4 (Tuple projection):

$$\begin{split} &T \in \mathbb{P}(Q \times V \times Q), T = \{(p, a, q)\} \\ &\pi_2(T) = \{a | (p, a, q) \in T\}, \bar{\pi}_2(T) = \{(p, q) | (p, a, q) \in T\} \\ &T \in Q \to \mathbb{P}(V \times Q), T(p) = \{(a, q) : (p, a, q) \in T\} \\ &\pi_2(T(p)) = \{q | (p, a, q) \in T\}, \bar{\pi}_2(T(p)) = \{a | (p, a, q) \in T\} \\ &Q_{map} : Q \times V, T(p) = \{(a, q) : (p, a, q) \in T\} \\ &Q_{map}(q) = \{a\} \\ &Q_{map} : Q \times V, T \in \mathbb{P}(Q \times V \times Q) \\ &\pi_1(T) = \{p | (p, a, q) \in T\}, \bar{\pi}_1(T) = \{(a, q) | (p, a, q) \in T\} \\ &Q_{map} = (\bar{\pi}_1(T))^R = \{(a, q) | (p, a, q) \in T\}^R = \{(q, a) | (p, a, q) \in T\} \end{split}$$

1.2 Properties of finite automata

$$M = (Q, V, T, E, S, F), M_0 = (Q_0, V_0, T_0, E_0, S_0, F_0), M_1 = (Q_1, V_1, T_1, E_1, S_1, F_1)$$

Definition 1.2 (Size of an FA). Define the size of an FA as |M| = |Q|

Definition 1.3 (Isomorphism 同构 (\cong) of FA's). We define isomorphism (\cong) as an equivalence relation on FA's. M_0 and M_1 are isomorphic (written $M_0 \cong M_1$) if and only if $V_0 = V_1$ and there exists a bijection 双射 $g \in Q_0 \to Q_1$ such that

•
$$T_1 = \{(g(p), a, g(q) | (p, a, q) \in T_0\}$$

•
$$E_1 = \{(g(p), g(q) | (p,q) \in E_0\}$$

•
$$S_1 = \{g(s) | s \in S_0\}$$
 and

•
$$F_1 = \{g(f) | f \in F_0\}$$

(see Fig 1.2). \Box

图 1.2: Isomorphism $M_0 \cong M_1$ if and only if $V_0 = V_1$ and there exists a bijection $g \in Q_0 \to Q_1$

Definition 1.4 (Extending the transition relation T**).** We extend transition relation $T \in V \to \mathbb{P}(Q \times Q)$ to $T^* \in V^* \to \mathbb{P}(Q \times Q)$ as follows:

$$T^*(\varepsilon) = E^*$$

and (for $a \in V, w \in V^*$)

$$T^*(aw) = E^* \circ T(a) \circ T^*(w)$$

Operator • (composition is defined in Convention 1).

This definition could also have been presented symmetrically. \Box

Note 1.1.
$$s_1, s_2, s_3, s_4 \in Q, a \in V, w \in V^*$$

$$E = T(\varepsilon) = \{(s_1, s_2)\}, T(a) = \{(s_2, s_3)\}, T^*(w) = \{(s_3, s_4)\}$$

$$T^*(aw) = E^* \circ T(a) \circ T^*(w)$$

= $\{(s_1, s_2)\} \circ \{(s_2, s_3)\} \circ \{(s_3, s_4)\} = \{(s_1, s_3)\} \circ \{(s_3, s_4)\} = \{(s_1, s_4)\}$

Note 1.2.
$$T \in Q \times V \to \mathbb{P}(Q)$$
, extend to: $T^* \in Q \times V^* \to \mathbb{P}(Q)$
 $\forall q \in Q, w \in V^*, a \in V$,

1.
$$T^*(q, \varepsilon) = q$$

2.
$$T^*(q, wa) = T(T^*(q, w), a)$$

$$T^*(q, a) = T^*(q, \varepsilon a)$$

= $T(T^*(q, \varepsilon), a)$
= $T(q, a)$

两值相同,不用区分这两个符号。

Convention 1 (Relation composition) Given sets A, B, C (not necessarily different) and two relations, $E \subseteq A \times B$ and $F \subseteq B \times C$, we define relation composition (infix operator 中缀操作符 \circ) as:

$$E \circ F = \{(a,c) | (\exists b \in B), (a,b) \in E \land (b,c) \in F)\}$$

Note 1.3. if $\exists b \in B, (a,b) \in E, (b,c) \in F$, then

$$E: A \rightarrow B \Rightarrow E(a) = b$$

$$F: B \to C \Rightarrow F(b) = c$$

$$E \circ F = \{(a,b)\} \circ \{(b,c)\} = \{a,c\}$$

$$(E \circ F)(a) = F(E(a))$$
$$= F(b) = c$$

$$\boxtimes 1.3: E \circ F = (F \circ E)(a) = F(E(a)) = c = f(a)$$

Remark 1.1. We also sometimes use the signature $T^* \in Q \times Q \to \mathbb{P}(V^*)$

Note 1.4.
$$T(p,q) = \{w | p, q \in Q, w \in V^*\}$$

Remark 1.2. if $E = \emptyset$ then $E^* = \emptyset^* = I_Q$ where I_Q is the identity relation 单位关系 on the states of M.

Definition 1.5 (The language between states). The language between any two states $q_0, q_1 \in Q$ is $T^*(q_0, q_1)$.

Definition 1.6 (Left and right languages). The left language of a state (in M) is given by function, $\overleftarrow{L}_M \in Q \to \mathbb{P}(V^*)$, where

$$\overleftarrow{L}_M(q) = (\cup s : s \in S : T^*(s,q))$$

The right language of a state (in M) is given by function $\overrightarrow{L}_M \in Q \to \mathbb{P}(V^*)$, where

$$\overrightarrow{L}_{M}(q) = (\cup f : f \in F : T^{*}(q,f))$$

The subscript M is usually dropped when no ambiguity can arise. \square

Example 1.1. $T^* \in Q \times Q \to \mathbb{P}(V^*), \overleftarrow{L}_M, \overrightarrow{L}_M \in Q \to \mathbb{P}(V^*).$

 $\overleftarrow{L}_M(q) =$ 能引导 M 从开始状态到达 q 状态的字符串集合}, (从 q 往 左看)

 $\overrightarrow{L}_{M}(q) = \{$ 能引导 M 从开始状态到达 q 状态的字符串集合 $\}$, (从 q 往右看)

start
$$\longrightarrow$$
 s $\xrightarrow{L}_{M}(q)$ q $\xrightarrow{L}_{M}(q)$ f

see Fig 1.4.

$$\overleftarrow{L}_{M}(q_{2}) = (s \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= [(s \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2})] \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= \{1(10)^{*}0, 1(10)^{*}1\}$$

$$\overrightarrow{L}_{M}(q_{2}) = \{01^{*}0, 10^{*}1(001^{*}0 + (10)^{*}1)\}$$

Definition 1.7 (Language of an FA). The language of a finite automaton (with alphabet V) is given by the function $L_{FA} \to \mathbb{P}(V^*)$ defined as:

$$L_{FA}(M) = (\cup s, f : s \in S \land f \in F : T^*(s, f))$$
 (所有从开始状态到接受状态的字符串集合)

Property 1.1 (Language of an FA). From the definition of left and right languages (of a state), we can also write:

 $L_{FA}(M) = (\cup f : f \in F : \overleftarrow{L}(f))$ (所有从 s 到 f 的字符串集合,从 f 向 左看)

and

图 1.4: $\{x|x \in \{0,1\}^+$ 且当把 x 看成二进制数时,x 模 5 与 3 同余,要求当 x 为 0 时,|x|=1,且当 $x\neq 0$ 时,x 的首字符为 $1\}$ 语言对应的 DFA

 $L_{FA}(M)=(\cup s:s\in S:\overrightarrow{L}(s))$ (所有从 s 到 f 的字符串集合,从 s 向右看)

Definition 1.8 (ε -free 无 ε 转移). Automaton M is ε -free if and only if $E = \emptyset$.

Remark 1.3. Even if M is ε -free it is still possible that $\varepsilon \in L_{FA}(M)$: inthiscase $S \cap F \neq \emptyset$. (开始状态也是接受状态)

Form [WATSON93a, Convention A.4] (Tuple projection).

Convention 2 (Tuple projection) For an n-tuple $t = (x_1, x_2, ..., x_n)$ we use the notation $\pi_i(t)(1 \le i \le n)$ to denote tuple element x_i ; we use the notation $\bar{\pi}_i(t)(1 \le i \le n)$ to denote the (n-1)-tuple $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$. Both π and $\bar{\pi}$ extend naturally to sets of tuples.

Form [WATSON93a, Definition A.20] (Tuple and relation reversal).

Definition 1.9 (Tuple and relation reversal). For an *n*-tuple $(x_1, x_2, ..., x_n)$ define reversal as (postfix and superscript) function R:

$$(x_1, x_2, ..., x_n)^R = (x_n, x_n - 1, ..., x_2, x_1)$$

Given a set A of tuples, we define $A^R = \{x^R : x \in A\}$.

Definition 1.10 (Reachable states). For M we can define a reachability relation $Reach(M) \subseteq (Q \times Q)$ defined as

$$Reach(M) = (\bar{\pi}_2(T) \cup E)^* \operatorname{see}^1$$

Functions π and $\bar{\pi}$ are defined in Convention 2. Similarly the set of start-reachable states is defined to be:

$$SReachable(M) = Reach(M)(S) \text{ see}^2$$

and the set of final-reachable states is defined to be:

$$FReachable(M) = (Reach(M))^R(F) \text{ see}^3$$

Reversal of a relation is defined in Definition 1.9. The set of useful states is: $Reachable(M) = SReachable(M) \cap FReachable(M)$

Remark 1.4. For FAM = (Q, V, T, E, S, F), function SReachable satisfies the following interesting property:

$$q \in SReachable(M) \equiv \overleftarrow{L}_M(q) \neq \emptyset$$

FReachable satisfies a similar property:

$$q \in FReachable(M) \equiv \overrightarrow{L}_M(q) \neq \emptyset$$

Example 1.2. $T \in \mathbb{P}(Q \times V \times Q), T = \{(p, a, q) | p, q \in Q, a \in V\},\$ $\bar{\pi}_2(T) = \{(p, q) | (p, a, q) \in T\}$ $Q_{map} = (\bar{\pi}_1(T))^R, Q_{map} = \{(a, q) | (p, a, q) \in T\}^R = \{(q, a) | (p, a, q) \in T\}$

 $^{^{1}}$ { $(p_{1},q_{1}),(p_{2},q_{2}),...$ }

² 从 start state 可以到达的状态集合

³ 可以到达 final state 的状态集合

e.g.
$$p = \{1, 2\} \in Q_1 \subseteq \mathbb{P}(Q_0), \overrightarrow{L}_{M_1}(p) = \overrightarrow{L}_{M_0}(1) \cup \overrightarrow{L}_{M_0}(2)$$

1.3 Σ -algebras and regular expressions

Σ -homomorphism

X 集合中的元素与有序集 S 中的元素一一对应, 称 X 是 S-sorted.

$$S = \{1,3,7,9\}, X = \{d,a,c,f\}, s \in S, X_s \in X$$

$$S$$
 是有序的, $S_{s_1} = 1$, $S_{s_2} = 3$, $S_{s_3} = 7$, $S_{s_4} = 9$

$$X$$
 与 S 中的元素一一对应。 $X_{s_1}=d,X_{s_2}=a,X_{s_3}=c,X_{s_4}=f$

 Σ -homomorphism 同态: $(V,F)\Leftrightarrow (W,G)$, 载体 (V,W) 和操作 (F,G) ——对应。

 Σ -homomorphism function: $h \in V \to W$

$$L(v) = (h \circ f)(v) = h(f(v)) = g(w) = L_{reg} = L_V = L_W$$

$$L(v) = (g \circ h)(v) = g(h(v)) = g(w) = L_{reg} = L_V = L_W$$

$$\Rightarrow h(f(v)) = g(h(v))$$

$$V \xrightarrow{h} h(v)$$

$$f \downarrow \qquad \downarrow g$$

$$f(v) \xrightarrow{h} g(h(v))$$

图 1.6:
$$(h \circ f)(v) = (g \circ h)(v) \Rightarrow h(f(v)) = g(h(v))$$

$$(e_1, e_2) \xrightarrow{h} (h(e_1), h(e_2))$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$f(e_1, e_2) \circ \xrightarrow{h} g(h(e_1), h(e_2))$$

$$\boxtimes 1.7: (h \circ f)(e_1, e_2) = (g \circ h)(e_1, e_2) \Rightarrow h(f(e_1, e_2)) = g(h(e_1), h(e_2))$$

Example 1.3. $\Sigma = (S, \Gamma)$, sort: expr, $\Gamma := \{a, plus\}, a$ is a constant. operator $plus : expr \times expr \rightarrow expr$.

 Σ -term algebra: plus[a,a], plus[plus[a,plus[a,a]],a]

 Σ -algebra X, carrier set: natural number, constant 0. operator $f_{plus}(x, y) = (x \ max \ y) + 1$

 $\Sigma\text{-homomorphism function("expression tree height"): }h_{expr}:\Sigma\text{-term algebra}\to X$

$$(h_{expr} \circ plus)(s) = (f_{plus} \circ h_{expr})(s)$$

$$h_{expr}(plus(s)) = f_{plus}(h_{expr}(s))$$

$$left: s \leftarrow e, f \Rightarrow plus[e, f]$$

$$right: s \leftarrow e, f \Rightarrow f_{plus}(h_{expr}(e), h_{expr}(f))$$

$$h_{expr}(plus(e, f)) = f_{plus}(h_{expr}(e), h_{expr}(f))$$

$$= (h_{expr}(e) \quad max \quad h_{expr}(f)) + 1)$$

$$and,$$

$$h_{expr}(a) = 0$$

$$S \xrightarrow{h_{expr}} X$$

$$plus \downarrow \qquad L \downarrow f_{plus}$$

$$0 \xrightarrow{h_{expr}} 0$$

$$\boxtimes$$
 1.8: $(h_{expr} \circ plus)(s) = (f_{plus} \circ h_{expr})(s) \Rightarrow h_{expr}(plus(s)) = f_{plus}(h_{expr}(s))$

$$\begin{array}{c|c} (e,f) & \xrightarrow{h_{expr}} & (h_{expr}(e),h_{expr}(f)) \\ plus & & \downarrow & \downarrow \\ plus [e,f] & \xrightarrow{h_{expr}} & f_{plus}(h_{expr}(e),h_{expr}(f)) \end{array}$$

图 1.9:
$$(h_{expr} \circ plus)(e, f) = (f_{plus} \circ h_{expr})(e, f) \Rightarrow h_{expr}(plus[e, f]) = f_{plus}(h_{expr}(e), h_{expr}(f))$$

Definition 1.11 (Regular expressions). We define regular expressions (over alphabet V) as the Σ -term algebra over signature $\Sigma = (S, O)$ where

- S consists of a single sort Reg (for regular expression), and
- O is a set of several constans: $\varepsilon, \emptyset, a_1, a_2, \ldots, a_n$; Reg (where $V = \{a_1, a_2, \ldots, a_n\}$) and five operators . : $Reg \times Reg \rightarrow Reg$ (the dot operator), \cup : $Reg \times Reg \rightarrow Reg$, *: $Reg \rightarrow Reg$, +: $Reg \rightarrow Reg$, and? : $Reg \rightarrow Reg$.

V := RE(正则表达式), W := FA(有限自动机)

 Σ -homomorphism function: $f \in RE \to FA$

 $F: RE_{opt}$ 运算,二元: union(or),concat; 一元: star,plus,question;

常量:epsilon,empty,symbol

G: *FA*_{opt} 运算, 同上


```
//Sigma.h
template < class T>
class Reg : public T {
// Helper for constructing the homomorphic
   image of a regular expression.
// T is carrier set: RE,FA,RFA,
// 各自的操作, 分别在Sig-RE.cpp,Sig-FA.cpp,
   Sig-RFA.cpp中定义
inline void homomorphic_image(const RE% r);
Reg<T>& epsilon();
Reg < T > \& empty();
Reg<T>& symbol(const CharRange r);
Reg < T > \& Or(const Reg < T > \& r);
Reg < T > \& concat(const Reg < T > \& r);
Reg<T>\& star();
Reg<T>& plus();
Reg<T>& question();
}
```

Definition 1.12 (The *nullable* Σ -algebra). We define the *nullable* Σ -algebra as follows:

• The carrier set is $\{true, false\}$.

$$\begin{array}{l} \bullet \ \ a \in V, E_1, E_2 \in RE, \varepsilon \in E_1^*, \varepsilon \in E_1^?, \varepsilon \notin E_1^+ \\ \\ nullable(\varepsilon) = true \\ \\ nullable(\emptyset) = nullable(a) = false \\ \\ nullable(E_1 \vee E_2) = nullable(E_1 \cup E_2) \\ \\ nullable(E_1 \wedge E_2) = nullable(E_1 \cdot E_2) \\ \\ nullable(E_1^*) = true \\ \\ nullable(E_1^*) = nullable(E_1) \\ \\ nullable(E_1^?) = true \\ \\ nullable(E_1) = \begin{cases} true & \varepsilon \in E_1 \\ false & \varepsilon \notin E_1 \end{cases} \\ \end{aligned}$$

1.4 Constructing ε -lookahead automata

1.5 Towards the Berry-Sethi construction

$$\varepsilon \in L_{FA}(M) \equiv s \in F$$

start \longrightarrow s

图 1.11:
$$\varepsilon \in L_{FA}(M) \equiv s \in F$$

图 1.12: All in-transitions to a state are on the same symbol (in V)

$$q_1 \xrightarrow{v_1} q_3$$

$$q_2 \xrightarrow{v_2} q_4$$

图 1.13:

 $q_4(in-transition) = \{(q_1,b), (q_2,b)\}, q_1(out-transition) = \{(a,q_3), (b,q_4)\}$

$$q_1 \longrightarrow v_1$$
 $q_1 \longleftarrow v_1$ $q_3 \xrightarrow{v_1} q_1$ $q_2 \longrightarrow v_2$ $q_2 \longleftarrow v_2$ $q_4 \xrightarrow{v_2} q_2$

(a) $Q \to V$ ——对应关系 (b) $V \to \mathbb{P}(Q)$ —对多的关系 (c) 物理含义, 进入状态的字母是唯一的。

$$\begin{split} &Q_{map}(q_1) = \{v_1\}, Q_{map}^{-1}(v_1) = \{q_1\}, (q_3, v_1, q_1) \in T \\ &Q_{map}(q_2) = \{v_2\}, Q_{map}^{-1}(v_2) = \{q_2\}, (q_3, v_2, q_2) \in T, (q_4, v_2, q_2) \in T \end{split}$$

图 1.14:
$$Q_{map}, Q_{map}^{-1}$$

Definition 1.13 (RFA). A reduced FA (RFA) is a 7-tuple $(Q, V, follow, first, last, null, Q_{map})$ where

- Q is a finite set of states,
- V is an alphabet,

- $follow \in \mathbb{P}(Q \times Q)$ is a follow relation (relpace the transition relation: $T \in \mathbb{P}(Q \times V \times Q)$),
- $first \subseteq Q$ is a set of initial states (replacing T(s) in an LBFA),
- $null \in \{true, false\}$ is a Boolean value (encoding $s \in F$ in an LBFA, $\varepsilon \in L_{FA}(M) \equiv s \in F$), and
- $Q_{map} \in \mathbb{P}(Q \times V), Q_{map}(q) = \{v\}, one \to one$. maps each state to exactly one symbol. i.e. $Q_{map} \in Q \to V$.

 $Q_{map}(q) = \{a | (p,a,q) \in T\}$ 表示 (q,v) 的——对应关系。物理含义是进入 q 状态的唯一字母 a

class RFA 中表示 its inverse: $Q_{map}^{-1}:V \to \mathbb{P}(Q),$ 部分函数 $Q_{map}^{-1}(a)=\{q|(p,a,q)\in T\}$

```
class RFA: virtual public FAabs{
// Q is a finite set of states
StatePool Q;
// first (subset Q) is a set of initial states
   (replacing T(s) in an LBFA),
// last(subset Q) is a set of final states,
StateSet first, last;
// Qmap (in P( Q x V)) maps each state to
   exactly one symbol (it is also viewed as
   Qmap in Q \longrightarrow V,
// and its inverse as Qmap^-1 in V --/-->P(Q)
   [the set of all partial functions from V
   to P(Q)]).
// Trans用struct TransPair 表示:T(a) = { q |
   (p,a,q) in T \},
// 因此这里表示Qmap的inverse, V —> P(Q)
Trans Qmap_inverse;
```

```
// follow(in P(Q x Q)) is a follow relation(
    replacing the transition relation),
StateRel follow;

// null (in {true, false}) is a Boolean value
    (encoding s in F in an LBFA)

// if epsilon属于LBFA, true; final set中包含s

// {true, flase} == > {1, 0}

int Nullable;
}
```

```
// V -> Q
struct TransPair {
        CharRange transition_label;
        State transition_destination;
}

class TransImpl { TransPair *data; }
class Trans:protected TransIml { }
}
```


图 1.15: $rfa \circ R(E) = R \circ rfa(E)$

Definition 1.14. (Dual of a function) We assume two sets A and B whose reversal operators are R and R' respectively. Two functions, $f \in A \to B$ and $f_d \in A \to B$ are one another's dual if and only if

$$f(a) = (f_d(a^R))^{R'}$$

In some cases we relax the equality to isomorphism (when isomorphism is defined on B).

图 1.16:
$$f(a) = (f_d(a^R))^{R'}$$
)

1.6 The Berry-Sethi construction

 $C_{\cdot,RFA}(rfa(\$),rfa(E)) = C_{\cdot,RFA}(C_{\$,RFA},rfa(E)) = L_{RE}(\$E) = \{\$\}L_{RE}(E)$ covert 简单剔除 E 的第一个字符。 $L_{FA} \circ convert \circ rfa(E) = V^{-1}L_{RE}(E)$ convert $(C_{\cdot,RFA}(C_{\$,RFA},rfa(E)) = rfa(E)$

图 1.17:
$$convert(C_{\cdot,RFA}(C_{\$,RFA},rfa(E))=rfa(E)$$

Algorithm 2.45(imperents $useful_s \circ subset$): initial: $D = \emptyset, U = S$

$$d := \bigcup_{q \in u} T(q, a)$$

 $\{q_1, q_2\} \stackrel{a}{\longrightarrow} \{T(q_1, a), T(q_2, a)\}$

using Algorithm 2.45 for decode
(RFA
$$\rightarrow$$
 LBFA)
$$d:=\bigcup\{q|q\in first \land Q_{map}(q)=a\}$$

$$\{s\} \stackrel{a}{\longrightarrow} \{d\}$$

note:

 $RE \rightarrow [DFA]_{\simeq}$

$$d := \bigcup_{p \in u} \{q | (p,q) \in follow \land Q_{map}(q) = a\}$$
 $u = \{p_1, p_2\}, d = \{q_1, q_2\},$
 $follow(p_1) = q_1, follow(p_2) = q_2, Q_{map}(q_1) = Q_{map}(q_2) = a$
 $\{p_1, p_2\} \xrightarrow{a} \{q_1, q_2\}$

1.7 The McNaughton-Yamada-Clushkov construction

$$\begin{split} MYG(E) &= useful_s \circ subset \circ decode \circ rfa(E) \\ RE &\xrightarrow{rfa} [RFA]_{\cong} \overset{decode}{\longrightarrow} [NFA]_{\cong} \\ &\downarrow subset \\ [DFA]_{\cong} &\longleftarrow [DFA]_{\cong} \overset{useful_s}{\longleftarrow} P(Q) \\ &\boxtimes 1.18 \colon MYG(E) = useful_s \circ subset \circ decode \circ rfa(E) \end{split}$$

Dual construction:
$$R \circ f \circ R$$
 $f : FA$ construction
$$RE \xrightarrow{R} RE \xrightarrow{f} FA \xrightarrow{R} FA \xrightarrow{R} FA$$

$$L_{RE} \xrightarrow{f} FA \xrightarrow{L_{RE}} L_{rep}$$

图 1.19: Dual construction: $R \circ f \circ R$

1.8 The dual of the Berry-Sethi construction

$$R \circ R$$
 is the identity $\Rightarrow R \circ R(A) = A$

1.9 Algorithm 4.52 (Aho-Sethi-Ullman)

note:

$$d := \bigcup_{q \in u} \{follow(q) | Q_{map}(q) = a\}$$
 $q \xrightarrow{a} follow(q)$

note:

$$T_{0}(b) = (p, p'), T_{1}(b) = (q, q')$$

$$\pi_{2}(T_{0}(b)) = p', \pi_{2}(T_{1}(b)) = q'$$

$$T_{0}(s_{0}, a) = p, T_{1}(s_{1}, a) = q$$

$$Q' = \{q_{0}\} \cup (\bigcup_{b \in V}) \{\pi_{2}(T_{0}(b) \times \pi_{2}(T_{1}(b))\}$$

$$M_{0} : s_{0} \xrightarrow{a} p \xrightarrow{b} p'$$

$$M_{1} : s_{1} \xrightarrow{a} q \xrightarrow{b} q'$$

notes:

 $[V^*]_{R_L} = V^*/R_L$ 表示右不变的等价关系,每个等价关系对应一个状态。 $[\varepsilon]_{R_L}$ 表示 ε 所在的等价类对应的状态, 就是开始状态

$$\begin{split} T_0(b) &= (p,p'), T_1(b) = (q,q') \\ \pi_2(T_0(b)) &= p', \pi_2(T_1(b)) = q' \\ T_0(s_0,a) &= p, T_1(s_1,a) = q \\ Q' &= \{q_0\} \cup \bigcup_{b \in V} (\pi_2(T_0(b)) \times \pi_2(T_1(b))) \\ \hline \underbrace{s0 \quad a}_{} \qquad p \quad b \\ \hline p' \end{split}$$

$$(s1)$$
 $\xrightarrow{a} (q)$ $\xrightarrow{b} (q')$

图 1.20: Intersection of LBFA's

图 1.21: Intersection of RFA's

start
$$\rightarrow$$
 s $\xrightarrow{L}(p)$ p a q

图 1.22: text111

$$T([w]_E, a) = \{[wa]_E\}$$

$$\text{start} \longrightarrow \underbrace{s} \underbrace{w} \underbrace{[w]_E} \underbrace{a} \underbrace{[wa]_E}$$

图 1.23:
$$T([w]_E, a) = \{[wa]_E\}$$

$$T([w]_{R_L}, a) = \{[wa]_{R_L}\}, (wa)^{-1}L = a^{-1}(w^{-1}L), \varepsilon^{-1}L = L$$

$$\text{start} \longrightarrow \underbrace{s} \underbrace{w} \underbrace{[w]_{R_L}} \underbrace{a} \underbrace{[wa]_{R_L}}$$

图 1.24:
$$T([w]_{R_L}, a) = \{[wa]_{R_L}\}$$

图 1.25: $a,b \in V, (a,b) \in Follow(E)$

图 1.26: BSenc(E)

 $\circ \xrightarrow{a} \circ q_0$

图 1.27: text

 $[V^*]_E = V^*/R_E$ 表示右不变的等价关系,每个等价关系对应一个状态。 $[\mathcal{E}]_E$ 表示 \mathcal{E} 所在的等价类对应的状态, 就是开始状态

$$First((a \cup \varepsilon)b^*) = (Defn. \quad First(E \cdot F), \varepsilon \in (a \cup \varepsilon), Null(E) = true)$$

$$= (\Rightarrow First(E) \cup First(F))$$

$$= First(a \cup \varepsilon) \cup First(b^*)$$

$$= (Defn. \quad First(E \cup F) = First(E) \cup First(F), First(E^*) = First(E))$$

$$= (First(a) \cup First(\varepsilon)) \cup First(b)$$

$$= \{a \cup \emptyset\} \cup \{b\} = \{a, b\}$$

$$\begin{aligned} First((a \cup \varepsilon)b^*) &= First(ab^* \cup \varepsilon b^*) \\ &= (Defn. \quad Fitst(E \cup F) = First(E) \cup First(F)) \\ &= First(ab^*) \cup First(b^*) \\ &= (Defn. \quad First(E \cdot F), \varepsilon \notin \{a\}, Null(E) = false \Rightarrow First(ab^*) = First(a) \cup \emptyset = \{a\}) \\ &= First(a) \cup First(b) = \{a,b\} \end{aligned}$$

$$\begin{aligned} Last((a \cup \varepsilon)b^*) &= (Defn. \quad Last(E \cdot F), \varepsilon \in (a \cup \varepsilon), Null(E) = true) \\ &= (\Rightarrow Last(E) \cup Last(F)) \\ &= Last(a \cup \varepsilon) \cup Last(b^*) \\ &= (Defn. \quad Last(E \cup F) = Last(E) \cup Last(F), Last(E^*) = Last(E)) \\ &= (Last(a) \cup Last(\varepsilon)) \cup Last(b) \\ &= \{a \cup \emptyset\} \cup \{b\} = \{a, b\} \end{aligned}$$

$$\begin{split} Null((a \cup \varepsilon)b^*) &= (Defn. \quad Null(E \cdot F) = Null(E \wedge F)), \varepsilon \in L_{RE} \equiv Null(E)) \\ &= Null(a \cup \varepsilon) \wedge Null(b^*) \\ &= (Defn. \quad Null(E \cup F) = Null(E \vee F), Null(E^*) = true) \\ &= (Null(a) \vee Null(\varepsilon)) \wedge true \\ &= true \wedge true = true \end{split}$$

$$Last(a \cup \varepsilon) = Last(a) \cup Last(\varepsilon) = \{a\} \cup \emptyset = \{a\}$$

$$First(b^*) = First(b) = \{b\}$$

$$Follow(a \cup \varepsilon) = Follow(a) \cup Follow(\varepsilon) = \emptyset \cup \emptyset = \emptyset$$

$$Follow(b^*) = Follow(b) \cup (Last(b) \times First(b))) = \emptyset \cup \{(b,b)\} = \{(b,b)\}$$

$$Follow((a \cup \varepsilon)b^*) = Follow(a \cup \varepsilon) \cup Follow(b^*) \cup (Last(a \cup \varepsilon) \times First(b^*))$$

$$= \emptyset \cup \{(b,b)\} \cup \{(a\} \times \{b\})\}$$

$$= \{(b,b)\} \cup \{(a,b)\}$$

$$= \{(a,b),(b,b)\}$$

$$L_0 = L, L_1 = w^{-1}L, L_2 = a^{-1}(w^{-1}L) = (aw)^{-1}L$$

start
$$\longrightarrow (L_0) \xrightarrow{w} (L_1) \xrightarrow{a} (L_2)$$

图 1.28: Construction 5.19(MNmin)

$$E_0 = E, E_1 = [v^{-1}E]_{\sim}, E_2 = \{a^{-1}[v^{-1}E]_{\sim}\} = \{[va]_{\sim}^{-1}E\}$$

start
$$\rightarrow (E_0) \xrightarrow{v} (E_1) \xrightarrow{a} (E_2)$$

图 1.29: Construction 5.34 (Brzozowski)

$$(\forall u, a, u \in V^* \land a \in V), (\exists v \in V^*, [u]_E \cdot a \subseteq [v]_E)$$

图 1.30: Definition 5.2 (Right invariance of an equivalence relation)

$$u, w \in V^*, (\forall u, w, (\exists v \in V^*, [u]_E \cdot \{w\} \subseteq [v]_E))$$

图 1.31: Right invariance of an equivalence relation [u],[v]

M=(Q,V,E,s,F),M 所确定的 V^* 上的关系 R_M 定义为: 对于 $\forall x,y\in V^*,$ $xR_My\Leftrightarrow T^*(s,x)=T^*(s,y)$

 $xR_{M}y \Leftrightarrow \exists q \in Q, x, y \in \overleftarrow{L}(q)$

按照这个定义所得的关系 R_M ,实际上是 V^* 上的等价关系,利用这个关系,可以将 V^* 划分成不多于 |Q| 个等价类。

start
$$\rightarrow s$$
 q

图 1.32: Equivalence classes of an equivalence relation

 $\forall x,y \in V^*$, 如果 $xR_L y$, 则在 x 和 y 后无论接 V^* 中的任何字符串 z,xz 和 yz 要么都属于 L、要么都不属于 L。

 $xR_Ly \Leftrightarrow (\forall z \in V^*, xz \in L \Leftrightarrow y \in L)$

start
$$\rightarrow s$$
 y q z p

图 1.33: Equivalence classes of an equivalence relation

Def:

$$\begin{split} &M = (Q, V, T, E, S, F), T^* \in (Q \times Q) \rightarrow \mathbb{P}(V^*) \\ &\overleftarrow{L}_M(q), \overrightarrow{L}_M(q) \in Q \rightarrow \mathbb{P}(V^*) \\ &\overleftarrow{L}_M(q) = \{x | x \in V^*, T^*(s, q) = x, s \in S\} \\ &\overrightarrow{L}_M(q) = \{x | x \in V^*, T^*(q, f) = x, f \in F\} \\ &L_{FA}(Q, V, T, E, S, F) = \bigcup_{f \in F} (\overleftarrow{L}(f)) \end{split}$$

1.10 Others

Definition 1.15 (Prefix-closure[Chrison2007]). Let $L \subseteq V^*$, then

$$\overline{L} := \{ s \in V^* : (\exists t \in V^*) [st \in L] \}$$

In words, the prefix closure of L is the language denoted by \overline{L} and consisting of all the prefixes in L. In general, $L \subseteq \overline{L}$.

1.10 Others 27

L is said to be prefix-closed if $L = \overline{L}$. Thus language L is prefix-closed if any prefix of any string in L is also an element of L.

$$L_1 = \{\varepsilon, a, aa\}, L_1 = \overline{L_1}, L_1 \text{ is prefix-closed.}$$

$$L_2 = \{a, b, ab\}, \overline{L_2} = \{\varepsilon, a, b, ab\}, L_2 \subset \overline{L_2}, L_2 \text{ is not prefix closed.}$$

Definition 1.16 (Post-closure[Chrison2007]). Let $L \subseteq V^*$ and $s \in L$. Then the post-language of L after s, denoted by L/s, is the language

$$L/s := \{t \in V^* : st \in L\}$$

By definition, $L/s = \emptyset$ if $s \notin \overline{L}$.

Definition 1.17 (Left derivatives[WATSON93a]). Given language $A \subseteq V^*$ and $w \in V^*$ we define the left derivative of A with respect to w as:

$$w^{-1}A = \{x \in V^* : wx \in A\}$$

A 关于 w 的左导数,就是 A 中: $\{w$ 的后缀组成的字符串集合 $\}$ 。

Sometimes derivatives are written as $D_w A$ or as $\frac{dA}{dw}$. Right derivatives are analogously defined. Derivatives can also be extended to $B^{-1}A$ where B is also a language.

Example 1.4. $A = \{a, aab, baa\}, a^{-1}A = D_aA = \frac{dA}{da} = \{\varepsilon, ab, \emptyset\} = \{\varepsilon, ab\}$

 $L = \{a, aab, baa\}$ $\operatorname{start} \longrightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc \stackrel{b}{\longrightarrow} \bigcirc$ $a^{-1}L = \{\varepsilon, ab, \emptyset\} = \{\varepsilon, ab\}$

 $\operatorname{start} \to \mathbb{O} \xrightarrow{a} \mathbb{O} \xrightarrow{b} \mathbb{O}$

图 1.34: $a^{-1}L$

 $V^{-1}L = \{\varepsilon, aa, ab\}, V \in \{a, b\}$

图 1.35: V⁻¹L

Example 1.5.
$$L = \{ba, baa, baab, ca\}, w = \{ba\},$$

$$w^{-1}L = \{\varepsilon, a, ab, \emptyset\} = \{\varepsilon, a, ab\}$$

$$(wa)^{-1}L = (baa)^{-1}L = \{\emptyset, \varepsilon, b, \emptyset\} = \{\varepsilon, b\}$$

$$a^{-1}(w^{-1}L) = a^{-1}\{\varepsilon, a, ab\} = \{\emptyset, \varepsilon, b\} = \{\varepsilon, b\}$$

$$w \in L \equiv \varepsilon \in w^{-1}L, and(wa)^{-1}L = a^{-1}(w^{-1}L)$$

Example 1.6.
$$a^{-1}\{a\} = \{\epsilon\}; \quad a^{-1}\{b\} = \emptyset, \quad \Leftarrow if(a \neq b)$$

Example 1.7.
$$L_0 = \{ab\}, L_1 = \{ac\}, L_0L_1 = \{abac\}$$

 $a^{-1}(L_0L_1) = \{bac\}$
 $a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup \emptyset \quad \Leftarrow (\varepsilon \notin L_0)$
 $= \{b\}L_1 = \{bac\}$

Example 1.8.
$$L_0 = \{\varepsilon, ab\}, L_1 = \{ac\}, L_0L_1 = \{ac, abac\}$$

 $a^{-1}(L_0L_1) = \{c, bac\}$
 $a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1 \quad \Leftarrow (\varepsilon \in L_0)$
 $= \{\emptyset, b\}L_1 \cup \{c\} = \{c, bac\}$

证明.
$$a^{-1}(L_0L_1)$$

 $1.if(\varepsilon \in L_0) \Rightarrow a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1$
 $L_0 = (L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\}$
 $a^{-1}(L_0L_1) = a^{-1}(((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})L_1)$
 $= a^{-1}(L_0L_1 \cup L_1)$
 $a^{-1}L_0 = a^{-1}((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})$

1.10 Others 29

$$= a^{-1}(L_0 \setminus \{\varepsilon\}) \cup a^{-1}\{\varepsilon\}$$

= $a^{-1}L_0 \cup \emptyset = a^{-1}L_0$

From [Hopcroft2008, p99]

(1) 如果 L 是一个语言,a 是一个符号,则 L/a(称作 L 和 a 的商) 是所有满足如下条件的串 w 的集合: wa 属于 L。例如,如果 $L = \{a, aab, baa\}$,则 $L/a = \{\varepsilon, ba\}$,证明: 如果 L 是正则的,那么 L/a 也是。提示: 从 L 的 DFA 出发,考虑接受状态的集合。

(2) 如果 L 是一个语言,a 是一个符号,则 $a \setminus L$ 是所有满足如下条件的串 w 的集合: aw 属于 L。例如,如果 $L = \{a, aab, baa\}$,则 $a \setminus L = \{\varepsilon, ab\}$,证明:如果 L 是正则的,那么 $a \setminus L$ 也是。提示:记得正则语言在反转运算下是封闭的,又由 (1) 知,正则语言的商运算下是封闭的。

Definition 1.18 (Kleene-closure[Chrison2007]). Let $L \subseteq V^*$, then

$$L^* := \{\varepsilon\} \cup L \cup LL \cup LLL \cup \cdots$$

This is the same operation that we defined above for the set V, except that now it is applied to set L whose elements may be strings of length greater than one. An element of L^* is formed by the concatenation of a finite (but possibly arbitrarily large) number of elements of L; this includes the concatenation of "zero" elements, that is the empty string ε . Note that * operation is idempotent: $(L^*)^* = L^*$.

$$\begin{split} L^* &= \{\varepsilon\} + L^+ \\ &= \{\varepsilon\} \cup (L \backslash \{\varepsilon\}) L^* \\ &= \{\varepsilon\} + L + LL + LLL + \cdots \end{split}$$

1.11 Linear equation

see [Jean2018, 5.3,p64].

We give an algorithm to covert an automaton to a rational (regular) expression. The algorithm amounts to solving a system of linear equations on languages. We first consider an equation of the form

$$X = KX + L \tag{1.1}$$

Proposition 1.1 (Arden's Lemma). if K does not contain the empty word, then $X = K^*L$ is the unique solution of the equation X = KX + L.

where K and L are languages and X is the unknown. When K does not contain the empty word, the equation admits a unique solution.

证明. Replacing X by K^*L in the expression KX + L, one gets

$$K(K^*)L + L = K^+L + L = (K^+L + L) = K^*L.$$

and hence $X = K^*L$ is a solution of (1.1). see¹

To Prove uniqueness, consider two solutions X_1 and X_2 of (1.1). By symmetry, it suffices to show that each word u of X_1 also belongs to X_2 . Let us prove this result by induction on the length of u.

If |u| = 0, u is the empty word² and if $u \in X_1 = KX_1 + L$, then necessarily $u \in L$ since $\varepsilon \notin K$. But in this case, $u \in KX_2 + L = X_2$. see³

For the induction step, consider a word u of X_1 of length n+1. Since $X_1 = KX_1 + L$, u belongs either to L or to KX_1 . if $u \in L$, then $u \in KX_2 + L = X_2$. If $u \in KX_1$ then u = kx for some $k \in K$ and $x \in X_1$. Since k is not the empty word, one has necessarily $|x| \le n$ and hence by induction $x \in X_2$. [see⁴] It follows that $u \in KX_2$ and finally $u \in X_2$. This conclude the induction and the proof of the proposition.

From [Wonham2018, p74] The length |s| of a string $s \in \Sigma^*$ is defined according to

$$|\varepsilon| = 0; |s| = k, \text{if } s = \sigma_1 \sigma_2 \cdots \sigma_k \in \Sigma^+$$

Thus |cat(s,t)| = |s| + |t|.

$$K^* = \{\varepsilon\} + K^+$$

$$= \{\varepsilon\} + (K \setminus \{\varepsilon\})K^*$$

$$= \{\varepsilon\} + K + KK + KKK + \cdots$$

 $^{^2}$ The empty word $= \varepsilon, |\varepsilon| = 0$; if a language $M = \{\varepsilon\}, |M| = 1$, The empty language $M = \emptyset, |M| = 0$. 文献 [Jean2018] 用 1 表示 ε , 因为 $\varepsilon K = K\varepsilon = K$, 因此, ε 是连接运算的单位元,正是 1 表示的用意。 0 表示 \emptyset , 它是并运算的单位元, $K \cup \emptyset = \emptyset \cup K = K$.

³ In this case, $|u| = 0, X = \{\varepsilon\}, |X| = 1$. i.e. $\varepsilon = K\varepsilon + L, \varepsilon = K + L$

 $[|]u| = kx, |u| = |kx| = n + 1, \epsilon \notin K, |k| \ge 1, |x| \le n,$ 由假设知,u 属于 X_1 , 归纳 $|x| = 0, |x| = 1, \cdots, n, x \in X_2$.

A language over Σ is any subset of Σ^* , i.e. an element of the power set $Pwr(\Sigma^*)$; thus the definition includes both the empty language \emptyset , and Σ^* itself.

Note the distinction between \emptyset (the language with no strings) and ε (the string with no symbols). For instance the language $\{\varepsilon\}$ is nonempty, but contains only the empty string.

From [Wonham2018, p78]

Proposition 1.2 ([Wonham2018]).

1. If
$$L = M^*N$$
 then $L = ML + N$
2. If $\varepsilon \notin M$ then $L = ML + N$ implies $L = M^*N$

Part(2) is Known as Arden's rule. Taken with Part(1) it says that if $\varepsilon \notin M$ then $L = M^*N$ is the unique solution of L = ML + N; in particular if L = ML (with $\varepsilon \notin M$) then $L = \emptyset$

Exercise 1.1. Show by counterexample that the restriction $\varepsilon \notin M$ in Arden's rule cannot be dropped.

Solution 1.1. Examples text goes here.

Exercise 1.2. Prove Arden's rule. Hint: If L = ML + N then for every $k \ge 0$

$$L = M^{k+1}L + (M^k + M^{k-1} + \dots + M + \varepsilon)N$$

Solution 1.2.

Preliminaries:

$$M^* = M^k + M^{k-1} + \dots + M^1 + M^0 \qquad (k \ge 0)$$

$$= M^k + M^{k-1} + \dots + M^1 + \varepsilon$$

$$= M^+ + \varepsilon$$

$$= MM^* + \varepsilon$$

$$= (M \setminus \{\varepsilon\})M^* + \varepsilon$$

$$M^+ = M^k + M^{k-1} + \dots + M^1 \qquad (k > 0)$$

$$= M(M^k + M^{k-1} + \dots + M^1 + M^0)$$

$$= MM^*$$

$$M^0 = \{\varepsilon\} = 1$$

$$M\varepsilon = \varepsilon M = M$$

$$\varepsilon + \varepsilon = \varepsilon$$

$$M + M = M$$

证明.

$$L = ML + N \Rightarrow$$

$$M^0 L = M^1 L + M^0 N (1.2)$$

$$M^{1}L = M^{2}L + M^{1}N \tag{1.3}$$

$$M^2L = M^3L + M^2N (1.4)$$

(1.5)

. . .

$$\Rightarrow (M^{0} + M^{1} + M^{2} + \cdots)L = (M^{1} + M^{2} + M^{3} + \cdots)L + (M^{0} + M^{1} + M^{2} + \cdots)N$$

$$\Rightarrow \text{so,if } L = ML + N, \text{then for every } k \ge 0$$

$$L = M^{k+1}L + (M^{k} + M^{k-1} + \cdots + M + M^{0})N$$

 \Rightarrow

$$L = M^{k+1}L + (M^k + M^{k-1} + \dots + M + \varepsilon)N$$
 (1.6)

$$(1) k = 0$$

$$L = ML + (\varepsilon)N = ML + N$$

$$\Rightarrow (1 - M)L = N$$

$$(\varepsilon - M)L = N$$

由于 $\varepsilon \notin M$, 左端不会消去 $\{\varepsilon\}$. 因此, 只能在 N 中找 L, 仅有唯一解: $L = \{\varepsilon\} = \{\text{empty word}\} \subseteq N$.

From [R.Su and Wonham2004, definition 2.3]

Definition 1.19. Let

$$G_A = (X_A, \Sigma, \xi_A, x_{A,0}, X_{A,m})$$

 $G_A = (X_B, \Sigma, \xi_B, x_{B,0}, X_{B,m})$

 G_B is a DES-epimorphic image(满射像) of G_A under DES-epimorphism $\theta: X_A \to X_B$ if

- 1. $\theta: X_A \to X_B$ is surjective(满射)
- 2. $\theta(x_{A,0}) = x_{B,0}$ and $\theta(X_{A,m}) = X_{B,m}$
- 3. $(\forall x \in X_A)(\forall \sigma \in \Sigma)\xi_A(x,\sigma)! \Rightarrow [\xi_B(\theta(x),\sigma)!\&\xi_B(\theta(x),\sigma) = \theta(\xi_A(x,\theta))]$
- 4. $(\forall x \in X_B)(\forall \sigma \in \Sigma)\xi_B(x,\sigma)! \Rightarrow [(\exists x' \in X_A)\xi_A(x',\sigma)!\&\theta(x') = x]$

In particular, G_B is DES-isomorphic (同构) to G_A if $\theta: X_A \to X_B$ is bijective (双射).

see figure 1.36.

$$\theta(x_{A,0}) = x_{B,0} \text{ and } \theta(X_{A,m}) = X_{B,m}$$

$$\theta(x_A) = x_B \text{ and } \theta(x'_A) = x'_B$$

$$\xi_A(x_A, \sigma) = x'_A \text{ and } \xi_B(x_B, \sigma) = x'_B \Rightarrow \text{ definition } 1.19 (3,4)$$

$$\text{start} \longrightarrow \overbrace{x_{A,0}} \longrightarrow \overbrace{x_A} \longrightarrow \overbrace{x_A} \longrightarrow \overbrace{x_A} \longrightarrow \overbrace{x_{A,m}} \longrightarrow \overbrace{x_{B,m}} \longrightarrow \underbrace{x_{B,m}} \longrightarrow \underbrace{x$$

图 1.36: definition 1.19, G_B is a DES-epimorphic image(满射像) of G_A under DES-epimorphism $\theta: X_A \to X_B$

References 35

References

Hopcroft2008. John E. Hopcroft,Rajeev Motwani,Jeffrey D. Ullman 著, 孙家骕等译,自动机理论、语言和计算机导论,Third Edition,机械工业出版社,2008.7

- WATSON93a. WATSON, B. W. A taxonomy of finite automata construction algorithms, Computing Science Note 93/43, Eindhoven University of Technology, The Netherlands, 1993. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- WATSON93b. WATSON, B. W. A taxonomy of finite automata minimization algorithms, Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands, 1993. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- WATSON94a. WATSON, B. W. An introduction to the FIRE engine: A C++ toolkit for FInite automata and Regular Expressions, Computing Science Note 94/21, Eindhoven University of Technology, The Netherlands, 1994. Available by ftp from ftp.win.tue.nl in pub/techreports/pi
- WATSON94b. WATSON, B.W. The design. and implementation of the FIRE engine: A C++ toolkit for FInite automata and Regular Expressions, Computing Science Note 94/22, Eindhoven University of Technology, The Netherlands, 1994. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- Chrison 2007. Christos G. Cassandras and Stéphane Lafortune, *Introduction to Discrete Event Systems*, Second Edition, New York, Springer, 2007
- Wonham 2018. W. M. Wonham and Kai Cai, Supervisory Control of Discrete-Event Systems, Revised 2018.01.01
- Jean 2018. Jean-Éric Pin, Mathematical Foundations of Automata Theory, Version of June 15,2018
- 蒋宗礼 2013. 蒋宗礼,姜守旭,形式语言与自动机理论(第 3 版),清华大学出版 社,2013.05
- Lipschutz 2007. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, Third Edition, New York: McGraw-Hill, 2007.
- Rosen2007. K. H. Rosen, *Discrete Mathematics and Its Applications*, Seventh Edition, New York: McGraw-Hill, 2007.
- R.Su and Wonham2004. R. Su and W. M. Wonham, Supervisor reduction for discrete-event systems, Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31-53, Jan. 2004.

1. S. Maclane and G. Birkhoff, *Algebra*, Third Edition, New York: Bchelsea Publishing Company, 1988.