MN3205

4096-STAGE LOW VOLTAGE OPERATION LOW NOISE BBD

General description

The MN3205 is a 4096-stage low voltage operation ($V_{DD} = 5V$) BBD that provides a signal delay of up to 204.8ms at clock frequency 10KHz and is suitable for use as reverberation effect of audio equipments such as portable stereo and radio cassette recorders which need low voltage and long delay time since S/N is 67dB in spite of many stages.

■ Features

- Variable delay of audio signals: 20.48ms ~ 204.8ms.
- Wide power supply voltage: 4 ~ 9V.
- No insertion loss: Li = 0dB typ.
- Wide dynamic range: S/N = 67dB typ.
- N channel silicon gate process.
- Special 8-Lead Dual-In-Line Plastic Package.

Applications

- Reverberation and echo effects of audio equipment such as radio cassette recorder, car radio, portable radio, portable stereo, echo microphone and pre-taped musical accompaniment (Karaoke), etc.
- Sound effect of electronic musical instruments.
- Variable or fixed delay of analog signals.
- Telephone time compression and delay line for voice communication system.

■ Block Diagram

Quick Reference Data

ltem	Symbol	Value	Unit
Supply Voltage	V _{DD} , V _{GG}	$+5, \frac{14}{15}V_{DD}$	V
Signal Delay Time	t _D	20.48~204.8	ms
Total Harmonic Distortion	THD	0.8	%
Signal to Noise Ratio	S/N	67	dB

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Terminal Voltage	$V_{DD}, V_{GG}, V_{CP}, V_1$	-0.3~+11	V
Output Voltage	Vo	-0.3~+11	V
Operating Ambient Temperature	Topr	-20~+60	°
Storage Temperature	Tstg	−55∼ +125	C

■ Operating Condition (Ta = 25°C)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain Supply Voltage	V _{DD}		+4	+5	+9	V
Gate Supply Voltage	V _{GG}			14 V _{DD}		V
Clock Voltage "H" Level	V _{CPH}			V _{DD}		٧
Clock Voltage "L" Level	V _{CPL}		0		+0.5	V
Clock Frequency	fcP		10		100	kHz
Clock Pulse Width *1	t _{CPW}				0.5T *2	
Clock Rise Time *1	t _{CPr}				500	ns
Clock Fall Time *1	t _{CPf}				500	ns
Clock Input Capacitance	СсР				2800	рF
Clock Cross Point *1	V _X		0		0.3V _{CPH}	V

■ Electrical Characteristics (Ta = 25°C, $V_{DD} = V_{CPH} = 5V$, $V_{CPL} = 0V$, $V_{GG} = 14/15$ V_{DD} , $R_L = 100kΩ$)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Signal Delay Time	to		20.48		204.8	ms
Input Signal frequency	fi	$f_{cp} = 40kHz$, Output Attenuation $\leq 3dB$	6			kHz
Input Signal Swing	Vi	THD=2.5%	0.36			Vrms
Insertion Loss	Li	f _{CP} =40kHz, f _i =1kHz	-4	0	4	dB
Total Harmonic Distortion	THD	$f_{CP}=40kHz$, $f_i=1kHz$, $V_i=0.25Vrms$		0.8	2.5	%
Output Nose Voltage	V _{no}	f _{cp} = 100kHz, Weighted by "A" curve			0.35	mVrms
Signal to Noise Ratio	S/N			67		dB

*1 Clock Pulse Waveforms

*2 T = 1/f_{CP} (Clock Period)

■ Terminal Assignments

■ Circuit Diagram

■ Typical Electrical Characteristic Curves

2.2 2.4

2.0

2.6 2.8 3.0

Input Bias Voltage VBias (V)

 $-2 \\ -20$

0

20

40 Ambient Temperature Ta (°C)

60

80

10 30 100

Clock Frequency fcp (kHz)

■ Supply Voltage Characteristics

Application Circuit

Reverberation Effect Generation Circuit (Signal Delay Over 100msec.)