Advanced CNN

Использование CNN для других задач

- Трансформация изображений (перенос стиля, синтез изображений, ...)
- Обработка видео (spatio-temporal ...)
 https://arxiv.org/abs/1606.04698
- Обработка пространственных данных
 http://www.microsoft.com/en-us/research/wp-content/uploads/2016/09/DeepST-SIGSP
 ATIAL2016.pdf
- Обработка звука (ASR, WaveNet, ...)
 http://benanne.github.io/2014/08/05/spotify-cnns.html
 https://deepmind.com/blog/wavenet-generative-model-raw-audio/
 http://ronan.collobert.com/pub/matos/2015_cnnspeech_interspeech.pdf
 http://www.microsoft.com/en-us/research/publication/convolutional-neural-networks-for-speech-recognition-2/
- Обработка текстов (классификация, перевод(!), ...)
 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
 https://arxiv.org/abs/1611.02344

1D Convolution

https://www.invasivecode.com/weblog/convolutional-neural-networks-ios-10-macos-sierra/

1D Convolution

https://www.kaggle.com/shivamb/3d-convolutions-understanding-and-implementation

1D Convolution Example: Classification

Figure 1. Our trained convolutional neural network correctly detecting the sinus rhythm (SINUS) and Atrial Fibrillation (AFIB) from this ECG recorded with a single-lead wearable heart monitor.

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks, https://arxiv.org/abs/1707.01836

1D Convolution Example: Classification

M3 (0.2M)	M5 (0.5M)	M11 (1.8M)	M18 (3.7M)	M34-res (4M)
Input: 32000x1 time-domain waveform				
[80/4, 256]		[80/4, 64]		[80/4, 48]
Maxpool: 4x1 (output: 2000 × n)				
[3, 256]	[3, 128]	$[3, 64] \times 2$	$[3, 64] \times 4$	$\left[\begin{array}{c}3,48\\3,48\end{array}\right]\times3$
Maxpool: 4x1 (output: 500×n)				
	[3, 256]	$[3, 128] \times 2$	$[3, 128] \times 4$	$\left[\begin{array}{c}3,96\\3,96\end{array}\right]\times4$
	Maxpool: $4x1$ (output: $125 \times n$)			
	[3, 512]	$[3,256]\times 3$	$[3, 256] \times 4$	$\left[\begin{array}{c} 3,192\\3,192 \end{array}\right] \times 6$
	Maxpool: $4x1$ (output: $32 \times n$)			
		$[3,512]\times 2$	$[3,512] \times 4$	$\left[\begin{array}{c}3,384\\3,384\end{array}\right]\times3$
Global average pooling (output: $1 \times n$)				
Softmax				

Very Deep Convolutional Neural Networks for Raw Waveforms, https://arxiv.org/abs/1610.00087

3D Convolution

3D Convolution

3D conv.

2D conv. with channels

https://stackoverflow.com/questions/42883547/what-do-you-mean-by-1d-2d-and-3d-convolutions-in-cnn

3D Convolution Example: Classification

VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition https://www.ri.cmu.edu/publications/voxnet-a-3d-convolutional-neural-network-for-real-time-object-recognition/

3D Convolution Example: Segmentation

Convolutions in Keras

- keras.layers.Conv1D
 Input: 3D tensor with shape: (batch, steps, channels)
 Output: 3D tensor with shape: (batch, new_steps, filters)
- keras.layers.Conv2D
 2D convolution layer (e.g. spatial convolution over images).
 Input: 4D tensor with shape: (batch, channels, rows, cols)
 Output: 4D tensor with shape: (batch, filters, new rows, new cols)
- keras.layers.Conv3D
 Input: 5D tensor with shape: (batch, channels, conv_dim1, conv_dim2, conv_dim3)
 Output: 5D tensor with shape: (batch, filters, new_conv_dim1, new_conv_dim2, new_conv_dim3)

https://keras.io/layers/convolutional/

Dilated/Altrous Convolutions

R-CNN, Fast R-CNN, Faster R-CNN

Детекция:

R-CNN: Region-based Convolutional Network

http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/detection.ipynb https://github.com/rbgirshick/rcnn https://people.eecs.berkeley.edu/~rbg/papers/pami/rcnn pami.pdf

Fast R-CNN

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

Faster R-CNN

Key Idea: Region Proposal Net (RPN) layer

https://arxiv.org/abs/1506.01497

https://github.com/ShaogingRen/faster_rcnn

http://www.slideshare.net/ssuser416c44/faster-rcnn

YOLO: Real-Time Object Detection

Fully-convolutional networks (FCN)

Fully-convolutional networks (FCN)

Обычная свёрточная сеть, но без MLP сверху (нет полносвязных слоёв).

Позволяет работать с изображениями произвольного размера и выдавать на выходе тепловую карту классификации.

https://arxiv.org/abs/1411.4038

Fully-convolutional networks (FCN)

Можно преобразовать полносвязный слой на свёрточный

```
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  inner_product_param {
    num_output: 4096
}
}
```

```
layer {
  name: "conv6"
  type: "Convolution"
  bottom: "pool5"
  top: "conv6"
  convolution_param {
    num_output: 4096
    kernel_size: 6
  }
}
```

Table 1: Left: fc6 definition, Right: equivalent conv6 definition with a kernel size of 6 because the input to fc6 is a 6×6 image patch.

https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5

Ресурсы

- https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
- https://github.com/shelhamer/fcn.berkeleyvision.org
- https://github.com/developmentseed/caffe-fcn
- https://www.quora.com/How-is-Fully-Convolutional-Network-FCN-different-from-the-original-Convolutional-Neural-Network-CNN
- https://www.quora.com/What-are-the-advantages-of-Fully-Convolutional-Networks-over-CNNs
- https://www.quora.com/How-does-the-conversion-of-last-layers-of-CNN-from-fully-connected-to-fully
 -convolutional-allow-it-to-process-images-of-different-size

Deconvolution networks

Deconvolution networks

Правильнее называть это Transposed convolution, а не Deconvolution (это слово уже занято в цифровой обработке сигналов для обратной операции).

По сути, реализован обучаемый upsampling.

http://cvlab.postech.ac.kr/research/deconvnet/

Deconvolution networks

Специальный тип слоя: Deconvolution.

Параметр stride задаёт степень увеличения.

```
layer {
 name: "upscore"
 type: "Deconvolution"
 bottom: "score"
 top: "upscore"
  convolution param {
   num output: 12 # set this to number of classes
    kernel size: 63
    stride: 32
```

Как работает Transposed convolution

- 1) Делаем padding нулями (unpooling)
- 2) Применяем convolution

Генерация изображений

Ресурсы

- https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5
- https://github.com/vdumoulin/conv_arithmetic
- A guide to convolution arithmetic for deep learning https://arxiv.org/abs/1603.07285
- https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
- https://towardsdatascience.com/transpose-convolution-77818e55a123
- https://www.quora.com/How-does-a-deconvolutional-neural-network-work
- http://stackoverflow.com/questions/35049197/how-does-the-unpooling-and-deconvolution-work-in-deconvnet
- Кейс с убиранием очков
 <u>https://blog.insightdatascience.com/isee-removing-eyeglasses-from-faces-using-deep-learning-d4e7d935376f</u>

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a 64×64 pixel image. Notably, no fully connected or pooling layers are used.

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate.

https://arxiv.org/pdf/1511.06434v2.pdf

volcano

http://www.evolvingai.org/ppgn

Example: StackGAN

This small blue bird has a short pointy beak and brown on its wings

This bird is completely red with black wings and pointy beak

A small sized bird that has a cream belly and a short pointed bill

A small bird with a black head and wings and features grey wings

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, https://arxiv.org/abs/1612.03242

Example: Progressive Growing of GANs

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $N\times N$ refers to convolutional layers operating on $N\times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. One the right we show six example images generated using progressive growing at 1024×1024 .

Progressive Growing of GANs for Improved Quality, Stability, and Variation, https://arxiv.org/abs/1710.10196
https://www.youtube.com/watch?v=XOxxPcy5Gr4

Ресурсы

- https://openai.com/blog/generative-models/
- https://www.quora.com/What-are-Generative-Adversarial-Networks
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
 - https://arxiv.org/abs/1511.06434
- http://blog.aylien.com/introduction-generative-adversarial-networks-code-tens orflow/
- Plug & Play Generative Networks
 http://www.evolvingai.org/ppgn

Кейс: Перенос стиля

Неклассические задачи: перенос стиля

https://arxiv.org/abs/1508.06576

Перенос стиля: оригинальный алгоритм

https://arxiv.org/abs/1508.06576

Перенос стиля: быстрый алгоритм

Texture Networks

Реализации

Классический алгоритм:

- https://github.com/jcjohnson/neural-style (Torch)
- https://github.com/fzliu/style-transfer (Caffe)
- https://github.com/titu1994/Neural-Style-Transfer (Keras)

Быстрые алгоритмы:

- https://github.com/jcjohnson/fast-neural-style (Torch)
- https://github.com/yusuketomoto/chainer-fast-neuralstyle (Python/Chainer)
- https://github.com/lengstrom/fast-style-transfer (Python/TF)
- https://github.com/DmitryUlyanov/texture_nets (Torch)

Doodle:

https://github.com/alexjc/neural-doodle