1. La integración proporciona un medio para calcular cuanta masa entra o sale de un reactor durante un periodo específico de tiempo, así

$$M = \int_{t1}^{t2} Q(t)c(t)dt$$

Donde t1 y t2 son los tiempos inicial y final del periodo.

Use integración numérica para estimar cuanta masa sale de un reactor con base en las siguientes mediciones:

3/8 Simpson					1/3 Simpson				
A1					A2				
	T(Min)	0	10	20	30	35	40	45	50
	Q	4	4.8	5.2	5.0	4.6	4.3	4.3	5.0
	С	10	35	55	52	40	37	32	34
	Q*C	40	168	286	260	184	159.1	137.6	170

✓ Fórmula 3/8 de Simpson

$$A \cong \frac{3h}{8}(y_0 + 3y_1 + 3y_2 + y_3)$$

Fórmula de Simpson

$$A \cong \frac{h}{3}(E + 2P + 4I)$$

 $A_{1} = \frac{30}{8} (40+3.168+3.286+260) = 6232.5$ E = 260+140 = 430 I = 184+134.6 = 324.6 P = 159.4 $A_{2} = \frac{5}{3} (430+2.159.1+4.321.6) = 3391$

 $A_{TOT} = A_1 + A_2 = 9623_15$

2. Un estudio de ingeniería del transporte de mercadería requiere que usted determine el número de vehículos que pasan por un punto de control en la hora pico. Usted se para al lado de la vía y cuenta el número de vehículos que pasan cada minuto a varias horas, como se muestra en la tabla a continuación.

Tiempo (h)	7.30	7.45	8	8.15	8.45	9.15
Tasa(vehículos	4.5	6.0	6.5	5	4.5	2.25
por minuto)						

z7013601390130012701735 ---> pasamas y a Vchiculo hora

$$A_{1}=3.0.15.(270+3.360+3.390+300)=(58.63 \frac{\text{Vehiculos}}{8})$$
 $E=300+5=435$
 $I=270$
 $P=0$

$$A_2 = \frac{0.3}{3} (435 + 2.0 + 4.270) = (51.5 \frac{\text{Vehicolos}}{\text{hora}}$$

$$A\cong \frac{h}{2}(E+2P+2I)$$

$$A_2 = \frac{0.3}{Z}(435 + 2.0 + 2.270) = 146,25 \frac{\text{Vehicolos}}{\text{hora}}$$

Valor Aproximado

EA= 1310,13-304,881 = 5,25

310,13

 Durante un levantamiento, se le pide que calcule el área del terreno que se muestra en la Figura 1. Emplee reglas de integración numérica para determinar el área.

Simpson 3/8 y Trapecio	
A1	1560000
A2	1575000
A3	1845000
A4	1845000
A5	1455000
A6	780000
Α7	180000
Atotal	9240000
Trapecio	
E	3400
P	22200
l .	22200
h	200
Atotal	9220000

$$E_{A} = |9240000 - 9220000| = 20000$$

$$E_{Y} = \frac{E_{A}}{\rho} \cdot 100 = 0.227.$$