EECS E6893 Big Data Analytics Group 18

Real-time Music Recommendation System

Presenter:

Zhejian Jin, Yixing Wang, Zhiqing Wang

Project phase:

Final Report, 12/22/2021

Contents

- Data
- Two-stage recommendation system
- Solution architecture
- System evaluation

Data Overview

• Offline music pool:

500 random songs from Spotify

Current users behavior:
 Liked tracks with music features
 Followed artists with music genre
 Listening history with music features

name	artist	dancibility	energy	key	loudness	speechiness	instrumentalness	liveness	valence
Stuck with U (with	Ariana Grande	0.597	0.45	8	-6.658	0.0418	0	0.382	
Can I Call You T	Dayglow	0.641	0.842	9	-7.27	0.0292	0.91	0.419	
Feel Good Inc.	Gorillaz	0.818	0.705	6	-6.679	0.177	0.00233	0.613	
Way 2 Sexy (with	Drake	0.803	0.597	11	-6.035	0.141	4.50E-06	0.323	
Have Mercy	Chlöe	0.903	0.535	9	-6.434	0.0742	0	0.345	
Congratulations	Post Malone	0.63	0.804	6	-4.183	0.0363	0	0.253	
MONTERO (Cal	Lil Nas X	0.593	0.503	8	-6.725	0.22	0	0.405	
Christmas Tree I	Taylor Swift	0.599	0.681	7	-4.5	0.0331	0	0.324	
I Saw Mommy K	The Jackson 5	0.583	0.712	3	-8.222	0.0538	1.02E-06	0.817	
Jealous	Eyedress	0.474	0.91	9	-10.431	0.0462	0.859	0.476	
MONTERO (Cal	Lil Nas X	0.593	0.503	8	-6.725	0.22	0	0.405	
Happy Xmas (W	John Lennon	0.321	0.64	2	-10.023	0.0324	0	0.718	
Way 2 Sexy (wit	Drake	0.803	0.597	11	-6.035	0.141	4.50E-06	0.323	
Break from Toro	PARTYNEXTDO	0.596	0.678	9	-5.18	0.0335	0.004	0.418	
Don't Stop Belie	Journey	0.5	0.748	4	-9.072	0.0363	0	0.447	
abcdefu	GAYLE	0.695	0.54	4	-5.692	0.0493	0	0.367	
Chaot Town	Manua Most	0.570	0 545	7	1 217	0 0000	0	0 220	

id	name	artists	duration_s	popularity	added_at	acousticness
3USxtqRwSYz57	Heat Waves	Glass Animals	238.805	88	2021-11-15T16:4	0.44
5HCyWIXZPP0y	STAY (with Justin	The Kid LAROI	141.805	98	2021-11-15T16:4	0.0383
00Blm7zeNqgYL	One Right Now (Post Malone	193.506	90	2021-11-15T16:4	0.0361
0gplL1WMoJ6iYa	Easy On Me	Adele	224.694	100	2021-11-15T16:4	0.578
6zSpb8dQRaw0	Cold Heart - PNA	Elton John	202.735	95	2021-11-15T16:4	0.034
6bQfNiqyCX7Ua	Shivers	Ed Sheeran	207.853	64	2021-11-15T16:4	0.281
2dLLR6qlu5UJ5	Royals	Lorde	190.185	76	2021-09-11T03:1	0.121
3tCwjWLicbjsMC	Rude	MAGIC!	224.773	67	2021-09-10T04:2	0.0435
6OtClsQZ64Vs1	Good Life	OneRepublic	253.306	72	2021-09-10T03:	0.0771
7soJgKhQTO8hl	One Call Away	Charlie Puth	194.453	66	2021-09-10T03:2	0.403
4iJyoBOLtHqaG:	Peaches (feat. D	Justin Bieber	198.081	91	2021-09-02T23:	0.321

Real-time item matching

- Import the playlist table to BigQuery.
- 2. Create the vw_item_groups view that contains the item data used to compute item co-occurrence.
- Export song title and artist information to Datastore to make it available for lookup when making similar song recommendations.

DataSet Exploration

dataset: bigquery-samples.playlists

playlist size distribution:

song occurrence distribution:

Methods overview

- Clustering the music pool
 - a. Different users prefer one or several types of songs, we need to classify them and make predictions
 - b. Finding the best K is important
- Turning implicit features(liked songs, feature of songs) into explicit ratings
 - a. Use K-means to get the types, and get rating by considering the relative ratio of a type of songs to all songs
 - b. If type A songs makes up a much more proportion of A's liked songs than the music pool, we can conclude that the user may have a higher rating for it
- Using ALS to get the recall results:
 - a. ALS is a kind of matrix factorization method which can recommend both for the item and user

Clustering: recommend for different types

Rating: get rating according to the relative ratio

Recall: get the recommendation

only needs user, item and rating

ALS model implicitPrefs = True evaluator = 'rmse'

```
def alsRecall(df):
   (training, test) = df.randomSplit([0.8, 0.2])
   # rating is inferred from other signals, set implicitPrefs to True to get better results
   als = ALS(maxIter=15, regParam=0.01,implicitPrefs=True,userCol="userid", itemCol="songid", ratingCol="rating",
           coldStartStrategy="drop")
   model = als.fit(training)
   predictions = model.transform(test)
   evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating",
                                  predictionCol="prediction")
   rmse = evaluator.evaluate(predictions)
   print("Root-mean-square error = " + str(rmse))
   # Generate top 10 song recommendations for each user
   userRecs = model.recommendForAllUsers(10)
                                                                                                      recall result for user and item
   # Generate top 10 user recommendations for each song
   songRecs = model.recommendForAllItems(3)
    return userRecs, songRecs
                             |songid|
                                           recommendations
                                   0|[{4, 1.0620573}, ...
                                  1|[{5, 0.99533343},...
                                  2|[{2, 1.0019244}, ...
                                   3|[{8, 1.0007138}, ...
```

	userid	recommendations
	1 2	[{13, 1.0887454}, [{8, 1.1075128}, [{4, 1.0469949}, [{17, 1.0808561},
	4 5 6 7	[{0, 1.0625092}, [{20, 1.0492959}, [{1, 1.0471842}, [{91, 1.0537599}, [{24, 1.0051345},
,		

Sorting: get a more accurate result

GBDT Classifier

01001

Use GBDT to find the best combination of features

Logistic Regression

```
[0.98589794 0.01410206]
[0.98051233 0.01948767]
[0.98314042 0.01685958]
[0.981483 0.018517 ]
[0.97089102 0.02910898]
[0.77317924 0.22682076]
[0.61707597 0.38292403]
```

The best accuracy is 38.2%, which is much higher than the percentage of positive samples in training set

Solution Architecture

Performance Evaluation

Primary consideration for real-time music recommendations

- Latency & Throughput
 - Container Registry: providing scalability that meets throughput requirements
 - Datastore: a quick and highly scalable NoSQL

Load test (Machine type: n1-standard-4 (4 vCPUs, 15 GB RAM))

- Under a load test with 20 concurrent users, this architecture provides recommendations at a median latency of about 40 ms and performs at a throughput of 16 requests per second.

Future improvements:

Use in-memory service such as Redis or Memcached to replace Datastore for faster latency

Reference

- https://www.analyticsvidhya.com/blog/2021/06/spotify-recommendation-systemusing-pyspark-and-kafka-streaming/
- https://docs.confluent.io/5.5.1/streams/kafka-streams-examples/docs/index.html #prerequisites
- 3. https://github.com/HanXiaoyang/pyspark-recommendation-demo
- 4. https://github.com/learn-co-curriculum/als-recommender-system-pyspark-lab

Q & A