Proofs and Induction

ดร. ธนัญชัย ตรีภาค

Basic Proofs

Given a premise X, how do we show that a conclusion Y holds?

- Direct Proof
- Proof by contrapositive
- Proof by contradiction
- Proof by cases and examples
- Proof by induction

Direct Proof - msinsylational/simusion

• Start with premise X, and directly deduce Y through a series of logical steps.

Let n be an integer, If n is even, then n^2 is even. If n is odd, then n^2 is odd.

Direct proof: if n is even, then n=2k for integer k, and

6.00.01.80.00 9 (6.01.70.6.97.8.10.90)

N= 2/2+1 M

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$
, which is even

8=180381897 (0 EI

If n is odd, then n=2k+1 for integer k, and

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$$
, which is odd

Activity: Direct proof $\chi \rightarrow \gamma$

• Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square. (An integer a is a perfect square if there is an

• The product of any two odd integers is odd
$$n=2l_1+1$$
 l_1, l_2, l_3 $(2l_1+1)(2l_2+1)=2p+1$ $n=2l_2+1$ l_1, l_2, l_3 $(2l_1+1)(2l_2+1)=2p+1$ $2(2l_2+l_2+l_2+l_3+l_2)+1=2p+1$

• The negative of any even integer is even.

$$n = 2 \ln \frac{1}{2} \times 6 = 2 \ln \frac{1}{2} = 2 \ln \frac{$$

Proof by contrapositive

 $\sim (x \rightarrow y) \rightarrow \sim y \rightarrow \sim x$ or solitions and solitions of $x \rightarrow y \rightarrow z$ at the contract of the cont

• starts by assuming that the conclusion Y is false, and deduce that the premise X must also be false through a series of logical steps

98/1981987/189095/980/189

Let n be an integer. If n² is even, then n is even. N²-26 AND MARKET MA

Suppose that n is not even, then n=2k+1 for integer k, and

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$$
, which is odd

• Then, n² is not even as well. (The proof ends.)

3ท+2 เป็นที่เลิว ก เป็นที่

Direct prove n=26+1, 66 I+ contrapositive 311+2 3(2(+1)+2

66+3+2 66+4+1

2(36+2)+ 2 (P) +1

h धिरणे (एउ) 3N+2 (मेरणे

n=24 1210665, 6>0

: 3n+2 1940 (12) n (1940)

Activity: Proof by contrapositive

• Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square. (An integer a is a perfect square if there is an integer b such that a = b2.)

The sum of two odd numbers is even.

The product of any two odd integers is odd

• The negative of any even integer is even.

Proof by contradiction

Tubistaminte K+ x ishin= = 1 sterior mintes in ex

 assumes both that the premise X is true and the conclusion Y is false, and reach a logical fallacy Let n be an integer. If n^2 is even, then n is even.

• Suppose that n² is even, but n is odd.

$$n^{2} = 2k = 2(2*p*p)$$
 $n=2p$
 n^{4}
 n^{4}
 n^{4}
 n^{4}

n is not odd

$\sqrt{2}$ is irrational

- Assume for contradiction that √2 is rational ເປັນຄົວຄຸດຄວາ
- Then there exists integers p and q, with no common divisors, such that $\sqrt{2} = p/q$

$$2 = p^2/q^2 -> 2q^2 = p^2 \rightarrow p$$
 () $1 - p$ $1 - p$ $1 - p$

• So, p^2 is even -> p is even -> p=2k

$$q^2=2k^2 \longrightarrow q^2 6944av\dot{q} \longrightarrow q 6944av\dot{q}$$

• So, q² is even -> q is even pulseq เป็นเลงก์ :. ฐนติรส์ตัว common โลส์ตา ที่ง ม เพิ่ว แล้ว p and q now shares a common factor of 2.

Activity: Proof by contradiction

• Let x and y be non-negative reals. Then, $\frac{x+y}{2} \ge \sqrt{xy}$

Proof by cases and examples

Msunemor แต่ 1 วุก ถึงส F ขึ้งเดียวก็ถึงล่า F

• Split into several cases, make sure that all cases are covered.

• For all real x , $|x^2| = |x|^2$

If
$$x \ge 0$$
 then $|x^2| = x^2 = |x|^2$

If
$$x < 0$$
 then $|x^2| = x^2 = (-x)^2 = |x|^2$

Activity: Proof by cases and examples

• $(n + 1)^2 \ge 2^n$ for all integers n satisfying $0 \le n \le 5$.

(2)
$$n^{2}5$$
 (6) $2 \ge 2^{5}$ $31 \ge 32 \times 10^{10}$

• Show that there exists some n such that $(n + 1)^2 \ge 2^n$.

• There exists irrational numbers x and y such that x^y is rational.

Proof by induction

(มากับแกกกรัง กับต่าๆไปกระกาศังจุดังจ

- Formulate the inductive hypothesis
- Prove base case is true.
- Prove inductive step is also true.

9tanns (1) p (base) 19trass

(2) अग्रध्य Iscu) श्वीमग्रह

9 การปการมีโดๆ คารหา prove

อัตนีนเมื่อจานอนชาก+า กิจะตัวรเป็นจริงกวีย

for all
$$n$$
, $1 + 2 + ... + n = n(n + 1)/2$.

Formulate the inductive hypothesis

$$P(n) = 1+2+3+...+n = n(n+1)/2$$

• P(base) is true:

• P(n) is true -> P(n+1) is also true

$$P(n+1) = 1+2+3+...+n + n+1$$

$$= n(n+1)/2 + (n+1)$$

$$= [n(n+1)+2(n+1)]/2$$

$$= [(n+1)(n+2)]/2$$

Activity: Prove by induction $(2) p(n) = 1+3+5+...+ n = n^2$ $(3) p(n+1) = 1+3+5+...+ n + n + 1 = (n+1)^2$

p(n) + (n+1) = (n+1),/

- Sum of the first n positive odd integers is n²
- For all of negative integer n,

$$1+2+2^2+...+2^n = 2^{n+1}-1$$

For all of positive integer n,

$$n < 2^n$$
 $p(1) \Rightarrow 1L2$ $f(1) \Rightarrow 1L2$ $f(1) \Rightarrow 1L2$ $f(1) \Rightarrow 1L2$ $f(1) \Rightarrow 1L2$

• For every integer n that $n \ge 4$

$$2^n < n!$$

(3)
$$p(n+1) = (n+1) L2^{n+1}$$

 $n+1 L2 \cdot 2^{n}$ (9) 189

(1) p(u) = 16624(2) $p(n) = 2^{n} < n ? (2) = 3$

99167 991223392ñ92

2h 2 n-n ? อรุเลือง เมรงมางห์

 2^{n+1} L(n+1)ND

on21/2(N+1) (9/2 00 2 n+7 L (N+1) D

2^{h+1} L (n+7)(n)