Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年10月29日

目录

	0.1	协方差的性质				3
	0.2	相关系数				5
		0.2.1 标准化				5
		0.2.2 性质				5
1	大数	定律和中心极限定理				6
	1.1	大数定律				7
	1.2	中心极限定理				8
Lecture 11						10.24
	Rei	iew:				
N	otatio	on. 数学期望的性质:				
	1. <i>I</i>	$E\left(c\right) = c$				
	2. 1	$E\left(cX\right) =cE\left(X\right)$				
	3. <i>I</i>	E(X+Y) = E(X) + E(Y)				
	3.1	E(E(Y)X) = E(Y)E(X)				
	4. 2	X, Y 相互独立, $E(XY) = E(X)E(Y)$				

协方差:
$$cov(X,Y) = E(X - EX)(Y - EY) = E(XY) - E(X)E(Y)$$
 若 X,Y 独立则 $cov(X,Y) = 0$

Notation. 方差的性质:

1.
$$D(c) = 0$$

2.
$$D(cX) = c^2 D(X)$$

2.1.
$$D(X) = E(X - EX)^2 = E(X^2) - E(X)^2$$

3. X, Y 相互独立, D(X + Y) = D(X) + D(Y)

$$cov(X,Y) = E(X - EX)(Y - EY)$$

当 $X = Y$, $cov(X,Y) = cov(X,X) = E(X - EX)^2 = D(X)$
或: $cov(X,Y) = E(XY) - E(X)E(Y) = E(X^2) - E(X)^2$

Example. D(aX + bY + c) = D(aX + bY)

$$D(aX + bY) = E((aX + bY) - E(aX + bY))^{2}$$

$$= E(a(X - EX) + b(Y - EY))^{2}$$

$$= E(a^{2}(X - EX)^{2} + 2ab(X - EX)(Y - EY) + b^{2}(Y - EY)^{2})$$

$$= a^{2}D(X) + b^{2}D(Y) + 2abcov(X, Y).$$

。切比雪夫不等式:已知一个随机变量的方差可以估算出数学期望

Question. 一个随机变量 X 分布未知, 已知 $\mu = 18, \sigma = 2.5$, 求 $P\{X \in (8, 28)\}$

解:由切比雪夫不等式:

$$P\{X \in (8,28)\} = P\{X - 18 \in (-10,10)\}$$

$$= P\{|X - 18| < 10\}$$

$$= P\{|X - \mu| < \varepsilon\}$$

$$\geq 1 - \frac{\sigma^2}{\varepsilon^2}$$

$$= 1 - \frac{2.5^2}{10^2} = 0.9375.$$

。马尔可夫不等式

Example. $X_1, X_2, \dots, X_n : i.i.d, X \sim N(\mu, \sigma^2)$, 证明:

1.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

2. 设
$$Y_i = \frac{X_i - \mu}{\sigma}, i = 1, 2, \dots, n$$
 则 $E\left(\sum_{i=1}^n Y_i^2\right) = n$

证明. 1. 由线性性:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(E\overline{X}, D\overline{X}\right).$$

由于 X 之间相互独立,有 $D(X_1 + X_2) = D(X_1) + D(X_2)$

$$E\overline{X} = \frac{1}{n} \sum_{i=1}^{n} EX_i = \mu, \quad D\overline{X} = \frac{1}{n^2} \sum_{i=1}^{n} DX_i = \frac{\sigma^2}{n}.$$

2. 由题: $EY_i = 0, DY_i = 1$

$$E\left(\sum_{i=1}^{n} Y_i^2\right) = \sum_{i=1}^{n} EY_i^2.$$

Notation. Y_i^2 符合自由度为 1 的卡方分布: $Y_i^2 \sim X^2$ (1)

即:
$$\sum_{i=1}^{n} E\left(Y_{i}^{2}\right) = nE\left(Y_{i}^{2}\right)$$

由方差的定义: $D(Y_i) = E(Y_i^2) - E(Y_i)^2$:

$$EY_i^2 = D(Y_i) + E(Y_i)^2 = 1 + 0^2 = 1$$

$$\sum_{i=1}^n E(Y_i^2) = nE(Y_i^2) = n.$$

0.1 协方差的性质

$$\circ \operatorname{cov}(X, Y) = \operatorname{cov}(Y, X)$$
 (对称性)
 $\circ \operatorname{cov}(aX, bY) = ab\operatorname{cov}(X, Y)$

证明. 已知:
$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$cov(aX,bY) = E(aXbY) - E(aX)E(bY)$$

$$= abE(XY) - abE(X)E(Y)$$

$$= abcovE(X,Y).$$

$$\circ \operatorname{cov}(c, X) = 0$$

Notation. 协方差用于衡量随机变量之间的线性关系,常数和其他随机变量不存在线性关系

证明.

$$cov(cX) = E(cX) - E(c)E(X)$$
$$= cE(X) - cE(X)$$
$$= 0.$$

Notation. cov(c, c) = D(c) = 0

$$\circ$$
 cov $(aX + bY, cZ) = accov(X + Y) + bccov(Y + Z)$ (分配律)

证明.

$$\begin{aligned} \cos\left(aX + bY, cZ\right) &= E\left(\left(aX + bY\right)cZ\right) - E\left(aX + bY\right)E\left(cZ\right) \\ &= E\left(acXZ + bcYZ\right) - cEZ\left(aEX + bEY\right) \\ &= acE\left(XZ\right) + bcE\left(YZ\right) - acEXEZ - bcEYEZ \\ &= ac\text{cov}\left(X, Z\right) + bc\text{cov}\left(Y, Z\right). \end{aligned}$$

Notation.
$$\operatorname{cov}\left(\sum_{i=1}^{n} a_i X_i, b_i Z\right) = \sum_{i=1}^{n} a_i b_i \operatorname{cov}\left(X_i, Z\right)$$

Notation. $D\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 DX_i + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_i a_j \operatorname{cov}\left(X_i, X_j\right)$

Lecture 11

0.2 相关系数

0.2.1 标准化

$$X^* = \frac{X - EX}{\sqrt{DX}}.$$

标准化后的变量 $EX^* = 0, DX^* = 1$

Definition. X^*, Y^* 的协方差 $cov(X^*, Y^*)$ 为 X, Y 的相关系数 $\rho(X, Y)$

$$cov(X^*, Y^*) = cov\left(\frac{X - EX}{\sqrt{D(X)}}, \frac{Y - EY}{\sqrt{DX}}\right)$$
$$= \frac{1}{\sqrt{DX}\sqrt{DY}}cov(X - EX, Y - EY).$$

易得 cov(X - EX, Y - EY) = cov(X, Y)

$$cov(X^*, Y^*) = \frac{cov(X, Y)}{\sqrt{DX}\sqrt{DY}}$$
$$= \rho(X, Y).$$

0.2.2 性质

$$\circ |\rho(X,Y)| \le 1$$

。
$$P\left\{X^* = \pm Y^*\right\} = 1$$
 是 $\rho\left(X,Y\right) = \pm 1$ 的充要条件

Lecture 12

10.27

Notation. 相关系数/Pearson 相关系数: 描述两个随机变量之间的线性相关性 只能描述数值性的变量

 $|\rho(X,Y)|=1$ 时:正相关

 $|\rho(X,Y) > 0.8|$: 强相关

 $|\rho(X,Y) \in (0,0.5)|$: 弱相关

 $\rho = 0$: 不相关/非线性关系

Notation. 相关系数本质上描述:

$$P\left\{Y=aX+b\right\}.$$

Example.
$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & x^2 + y^2 > 1 \end{cases}$$
, \vec{x} :

1. X, Y 的相关性; 2. X, Y 的独立性

解: 1.

$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy$$
$$= \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{x}{\pi} dy$$
$$= 0.$$

同理 EY = 0,即不相关 2.

$$f_X(x) = \int_D f(x, y) dy$$
$$= \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= \frac{2}{\pi} \sqrt{1-x^2}.$$

同理 $f_{Y}\left(y\right)=\frac{2}{\pi}\sqrt{1-y^{2}}$, 易得 $f\left(x,y\right)\neq f_{X}\left(x\right)f_{Y}\left(y\right)$, 即不独立

数理统计部分

1 大数定律和中心极限定理

Definition. 大数定律:

$$\bar{X} \xrightarrow[n \to \infty]{\mathrm{P}} EX.$$

即: 以某事件发生的频率估计该事件的概率

Definition. 中心极限定理:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

其中 $X_1, X_2, \ldots X_i$ 独立同分布

该随机变量序列存在分布,中心极限定理提出不论 \bar{X} 的分布是什么,该序列的分布为正态分布

$$\bar{X} \xrightarrow[n \to \infty]{L} N\left(E\bar{X}, D\bar{X}\right).$$

如何判断随机变量的敛散性:

Corollary. 依概率收敛:

对 ∀ε 有:

$$\lim_{n \to \infty} P\{|X_n - X| < \varepsilon\} = 1.$$

代表序列 $\{X_n\}$ 收敛于随机变量 X ,记为 $X_n \xrightarrow[n \to \infty]{\mathbf{P}} X$

Corollary. 依分布收敛:

序列的分布函数为 $F_n(x)$, 随机变量的分布函数 F(x) , 对 $\forall x$, 有:

$$\lim_{n \to \infty} F_n\left(x\right) = F\left(x\right).$$

则 $\{X_n\}$ 依分布收敛于 X ,记为 $X_n \xrightarrow[n \to \infty]{L} X$

Notation. 测度变换:通过将问题映射到另一个空间简化计算 依分布收敛要求更弱,即:依概率收敛 ⇒ 依分布收敛 当收敛对象为常数时二者可互推

Notation. 撞骗:只要发出的短信足够多,成功率符合大数定律

三大大数定律:

切比雪夫大数定律: 最根本 伯努利大数定律: 例子 辛软大数定律

1.1 大数定律

Definition. $\{X_i\}$ i.i.d , $\exists EX_i, DX_i$,且 $\exists C$,使得 $DX_i \leq C$ (方差有界),则 对 $\forall \varepsilon > 0$ 当:

$$\lim_{n \to \infty} P\left\{ \left| \bar{X}_n - E\bar{X}_n \right| < \varepsilon \right\} = 1.$$

时:

$$\bar{X_n} \xrightarrow[n \to \infty]{P} E\bar{X_n}.$$

证明.
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
, 有:

$$E\bar{X}_n = \frac{1}{n} \sum_{i=1}^n EX_i$$
$$D\bar{X}_i = \frac{1}{n^2} \sum_{i=1}^n DX_i$$
$$\leq \frac{C}{n}.$$

由切比雪夫不等式:

$$P\left\{\left|\bar{X}_{n} - E\bar{X}_{n}\right| < \varepsilon\right\} \ge 1 - \frac{D\bar{X}_{n}}{\varepsilon^{2}}$$
$$\ge 1 - \frac{C}{n\varepsilon^{2}}.$$

当 $n \to \infty$ 时原式收敛于 1

Notation. 辛钦大数定律: 序列中的随机变量独立同分布

Notation. 伯努利大数定律: 序列中 $X_i \sim B(1,p)$ (已知分布), 记 μ_s 为随机变量序列之和, 有:

$$\lim_{n \to \infty} P\left\{ \left| \frac{\mu_s}{n} - p \right| < \varepsilon \right\} = 1.$$

即: $\frac{\mu_s}{n}$ 依概率收敛于 p

1.2 中心极限定理

Example. 高尔顿钉板

Corollary. i.i.d 的中心极限定理:

$$\lim_{n \to \infty} P\left\{ \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le x \right\} = \Phi(x).$$

Corollary. 拉普拉斯中心极限定理: X_i 独立同分布, $X_i \sim B(1,p)$, 令 $Y = \sum_{i=1}^n X_i$, 对 $\forall x$ 有:

$$\lim_{n\to\infty} P\left\{\frac{Y-np}{\sqrt{np\left(1-p\right)}} \le x\right\} = \Phi\left(x\right).$$