Семинарский лист 2.4

Денис Козлов Telegram Елизавета Орешонок Telegram

Ира Голобородько Telegram

Версия от 27.11.2020 21:38

Предполагая функцию f непрерывной на D, запишите тройной интеграл от f по D в виде одного из повторных, если D задано неравенствами.

Задача 1

$$0 \le z \le 4 - x^2, \ x^2 - y^2 \ge 0, \ x \ge 0.$$

Хочу интегрировать в порядке $\int\limits_{\cdots}^{\cdots}dx\int\limits_{\cdots}^{\cdots}dy\int\limits_{\cdots}^{\cdots}f(x,y,x)dz.$

Посмотрим, что происходит при фиксированном x.

Так как $x^2\geqslant y^2\iff |x|\geqslant |y|$, то $-x\leqslant y\leqslant x$ (x положительный). Ещё знаем, что $0\leqslant z\leqslant 4-x^2$.

Итак,
$$\int_{-x}^{\dots} dx \int_{-x}^{x} dy \int_{0}^{4-x^2} f(x,y,x) dz.$$

А каковы границы x? $x \geqslant 0$, это нам дано. Из того, что $z \in [0, 4-x^2]$, сделаем вывод, что $x \leqslant 2$, ведь при больших значениях x множество становится вырожденным.

Так что границы интегрирования знаем, $\left|\int\limits_0^2 dx \int\limits_{-x}^x dy \int\limits_0^{4-x^2} f(x,y,x) dz\right|.$

Задача 2

$$x + y + z \leqslant 2; \quad 0 \leqslant 4z \leqslant 4 - x^2 - y^2; \quad x \geqslant 0; \quad y \geqslant 0$$

$$\begin{cases} x \geqslant 0, \quad y \geqslant 0; \quad z \geqslant 0 \\ x + y + z \leqslant 2 \\ x^2 + y^2 \leqslant 4 - 4z \end{cases} \Rightarrow \begin{cases} x \in [0, 2] \\ y \in [0, 2] \\ z \in [0, 1] \end{cases}$$

$$\begin{cases} z = 2 - x - y \\ 4z = 4 - x^2 - y^2 \end{cases} \Rightarrow 8 - 4x - 4y = 4 - x^2 - y^2 \Rightarrow y = \sqrt{4x - x^2} + 2 - \text{пересечение фигур} \end{cases}$$

$$\int_0^1 dx \begin{cases} \sqrt{4x - x^2} + 2 & - \frac{x^2}{4} - \frac{y^2}{4} \\ 0 & f(x, y, z) dx + \int_{\sqrt{4x - x^2} + 2}^{1 - x} dy \int_0^{2 - x - y} f(x, y, z) dz \end{cases}$$

Пересечение параболоида и плоскости. Первый интеграл отвечает за часть параболоида, а второй — за плоскость.

Задача 3

$$0 \leqslant z \leqslant 4xy, \ x + 4y + z \leqslant 1.$$

Задача 4

$$y^2 \le z \le 4$$
, $x^2 + y^2 \le 16$

Все точки рассматриваемой области находятся внутри круга радиуса 4 с центром в начале координат (его задает неравенство $x^2 + y^2 \le 16$). Значения z, как видно из 1-го неравенства, лежат в промежутке $[y^2;4]$. Искомый повторный интеграл может иметь вид:

$$\int_{-4}^{4} dx \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} dy \int_{y^2}^{4} f(x, y, z) dz$$

Задача 5

$$x^2 + y^2 \geqslant 3z^2, \ x^2 + y^2 - z^2 \leqslant 2.$$

Проинтегрируем внешне по z.

$$z = const \implies x^2 + y^2 \ge 3z^2, \ x^2 + y^2 \le z^2 + 2.$$

Нам интересно примерно такое колечко:

Можно начать разбивать область интегрирования по x. Но мы ленивые. Поэтому просто вычтем из площади большей окружности площадь меньшей.

Тогда внутри интеграла по z появится $\int\limits_{-\sqrt{z^2+2}}^{\sqrt{z^2+2}} dx \int\limits_{-\sqrt{z^2+2-x^2}}^{\sqrt{z^2+2-x^2}} f dy - \int\limits_{-\sqrt{3z^2}}^{\sqrt{3z^2}} dx \int\limits_{-\sqrt{3z^2-x^2}}^{\sqrt{3z^2-x^2}} f dy.$

Для не-вырожденности множества, получаем условие $\sqrt{3z^2} \leqslant \sqrt{z^2+2} \iff 2z^2 \leqslant 2 \iff |z| \leqslant 1 \iff z \in [-1,1].$

3

$$\text{MTOPO} \int_{-1}^{1} dz \left(\int_{-\sqrt{z^2+2}}^{\sqrt{z^2+2}} dx \int_{-\sqrt{z^2+2-x^2}}^{\sqrt{z^2+2-x^2}} f dy - \int_{-\sqrt{3z^2}}^{\sqrt{3z^2}} dx \int_{-\sqrt{3z^2-x^2}}^{\sqrt{3z^2-x^2}} f dy \right).$$

Задача 6

$$y^2 + x + z \le 1, \ x \ge z \ge 0$$

Проинтегрируем в порядке

$$\int\limits_{\cdots}^{\cdots}dy\int\limits_{\cdots}^{\cdots}dx\int\limits_{\cdots}^{\cdots}f(x,y,z)\,dz$$

При фиксированном y неравенства $y^2+x+z\leq 1$ и $x\geq z\geq 0$ можно переписать в виде системы

$$\begin{cases} z & \leq (1 - y^2) - x, \\ z & \leq x, \\ z & > 0 \end{cases},$$

задающей треугольник, ограниченный прямыми $z=(1-y^2)-x, z=x$ и z=0, при условии того, что точка пересечения прямых $z=(1-y^2)-x$ и z=x находится не ниже оси Ox:

$$(1-y^2) - x = x \Leftrightarrow x = \frac{1-y^2}{2} \Rightarrow z = x = \frac{1-y^2}{2} \ge 0 \Rightarrow 1-y^2 \ge 0 \Leftrightarrow y \in [-1;1]$$

Значения x нас интересуют только те, при которых $z \geq 0 \Leftrightarrow \left\{ \begin{array}{ccc} (1-y^2)-x & \geq & 0, \\ x & \geq & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccc} x & \leq & (1-y^2), \\ x & \geq & 0 \end{array} \right. ,$

т.е. $x \in [0; 1-y^2]$. При этом при $x \leq \frac{1-y^2}{2}$ значения z лежат на отрезке [0; x], а при $x \geq \frac{1-y^2}{2}$ — на отрезке $[0; 1-y^2]$

Получили границы для повторного интеграла:

$$\int_{-1}^{1} dy \left(\int_{0}^{\frac{1-y^2}{2}} dx \int_{0}^{x} f(x, y, z) dz + \int_{\frac{1-y^2}{2}}^{1-y^2} dx \int_{0}^{1-y^2} f(x, y, z) dz \right)$$

Вычислите интеграл.

Задача 7

$$\int_{0}^{1} dx \int_{0}^{x} dy \int_{0}^{xy} (x+y+z)dz = \int_{0}^{1} dx \int_{0}^{x} dy \left(\int_{0}^{xy} (x)dz + \int_{0}^{xy} (y)dz + \int_{0}^{xy} (z)dz \right) = \int_{0}^{1} dx \int_{0}^{x} dy \left(x \int_{0}^{xy} 1 dz + y \int_{0}^{xy} 1 dz + \int_{0}^{xy} (z)dz \right) = \int_{0}^{1} dx \int_{0}^{x} dy \left(x \cdot (xy) + y \cdot (xy) + \frac{(xy)^{2}}{2} \right) = \int_{0}^{1} x dx \cdot \int_{0}^{x} dy \left(xy + y^{2} + \frac{xy^{2}}{2} \right) = \int_{0}^{1} x \cdot \left(x \cdot \left(\frac{x^{2}}{2} \right) + \frac{x^{3}}{3} + x \cdot \left(\frac{x^{3}}{6} \right) \right) dx = \int_{0}^{1} \frac{x^{4}}{2} + \frac{x^{4}}{3} + \frac{x^{5}}{6} dx = \left(\frac{x^{5}}{10} + \frac{x^{5}}{15} + \frac{x^{6}}{36} \right)_{0}^{1} = \frac{1}{10} + \frac{1}{15} + \frac{1}{36} = \frac{3+2}{30} + \frac{1}{36} = \frac{6}{36} + \frac{1}{36} = \frac{7}{36}.$$

Задача 8

$$\int_{1}^{2} dy \int_{y}^{2} dx \int_{0}^{1/(xy)} \frac{dz}{x(1+x^{2}y^{2}z^{2})} = \left[u = xyz, \frac{du}{dz} = xy \Leftrightarrow dz = \frac{du}{xy} \right] \int_{1}^{2} dy \int_{y}^{2} \frac{1}{x} \cdot \frac{1}{xy} dx \int_{0}^{1} \frac{du}{1+u^{2}} = \int_{1}^{2} dy \int_{y}^{2} \frac{1}{x} \cdot \frac{1}{xy} dx \cdot \left(\operatorname{arctg} u \Big|_{0}^{1} \right) = \frac{\pi}{4} \int_{1}^{2} \frac{1}{y} dy \int_{y}^{2} \frac{1}{x^{2}} dx = \frac{\pi}{4} \int_{1}^{2} \frac{1}{y} dy \cdot \left(-\frac{1}{x} \Big|_{y}^{2} \right) = \frac{\pi}{4} \int_{1}^{2} \frac{1}{y} \left(\frac{1}{y} - \frac{1}{2} \right) dy = \frac{\pi}{4} \left(\int_{1}^{2} \frac{1}{y^{2}} dy - \frac{1}{2} \int_{1}^{2} \frac{1}{y} dy \right) = \frac{\pi}{4} \left(-\frac{1}{y} \Big|_{1}^{2} - \frac{1}{2} \ln y \Big|_{1}^{2} \right) = \frac{\pi}{4} \left(1 - \frac{1}{2} - \frac{1}{2} \ln 2 \right) = \frac{\pi}{8} (1 - \ln 2)$$

Задача 9

Задача 10

$$\int_{1}^{3} dz \int_{1-z}^{3-y} dy \int_{0}^{3-y-z} \frac{dx}{(x+y+z)^{2}} = \left[u = x+y+z, \frac{du}{dx} = 1 \Leftrightarrow dx = du \right] \int_{1}^{3} dz \int_{1-z}^{3-z} dy \int_{y+z}^{3} \frac{du}{u^{2}} =$$

$$= \int_{1}^{3} dz \int_{1-z}^{3-z} dy \cdot \left(-\frac{1}{u} \Big|_{y+z}^{3} \right) = \int_{1}^{3} dz \int_{1-z}^{3-z} \left(\frac{1}{y+z} - \frac{1}{3} \right) dy = \left[v = y+z, dy = dv \right] \int_{1}^{3} dz \left(\int_{1}^{3} \frac{1}{v} dv - \frac{1}{3} \int_{1-z}^{3-z} dy \right) =$$

$$= \int_{1}^{3} dz \left(\ln 3 - \frac{1}{3} \left((3-z) - (1-z) \right) \right) = \int_{1}^{3} dz \left(\ln 3 - \frac{2}{3} \right) \left(3-1 \right) = 2 \ln 3 - \frac{4}{3}$$

Измените порядок интегрирования и вычислите интеграл.

Задача 11

$$\int\limits_0^{\sqrt[3]{\pi}}dx\int\limits_x^{\sqrt[3]{\pi}}dy\int\limits_x^{\sqrt[3]{\pi}}\sin(z^3)dz$$
. Исследуем границы для восстановления D .

 $x \in [0, \sqrt[3]{\pi}]$. Нам интересны точки между плоскостями x = y и $y = \sqrt[3]{\pi}$.

Вертикально множество ограничено плоскостями y=z и $z=\sqrt[3]{\pi}.$ Итого получили пирамидку:

Так как функция зависит от z, то сначала лучше интегрировать именно по z.

$$\int\limits_{0}^{\sqrt[3]{\pi}} \sin(z^3) dz \int\limits_{0}^{z} dy \int\limits_{0}^{y} dx = \int\limits_{0}^{\sqrt[3]{\pi}} \sin(z^3) dz \int\limits_{0}^{z} y \ dy = \int\limits_{0}^{\sqrt[3]{\pi}} \frac{z^2}{2} \cdot \sin(z^3) dz = \left[t = z^3; \ dt = 3z^2 dz\right] = \frac{1}{6} \cdot \int\limits_{0}^{\pi} \sin t \ dt = \frac{1}{6} \left(-\cos t \bigg|_{0}^{\pi}\right) = \frac{1}{6} + \frac{1}{6} = \boxed{\frac{1}{3}}.$$

Вычислите многократный интеграл.