

Ù&@^œ^¦ÊØQ&È		H€»Á/ājoÁ, EÐÁÙ^ãr{ã&ÁÖ^•ãt}
PÔX	Ùœ)åæååÁÚXTæ¢ÁÜæ&∖ā)*ÁÛ^•৫^{	
	Ü^]¦^•^} cænāç^ÁÔæn&` ænā[}•ÁEÁOEÙÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1) $I_s =$ 1.00 $C_s =$ 0.73 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

20440		
Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 1.850 <i>(Pressure)</i>	
Cf+ BOTTOM	=	1.850 (<i>Fressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away from the darrade.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>233.46</u>	<u>6751.00</u>	k
<u>3662.91</u>	<u>5278.23</u>	k
<u>16.49</u>	<u>4219.71</u>	k
0.03	0.00	k
	233.46 3662.91 16.49	233.46 6751.00 3662.91 5278.23 16.49 4219.71

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 164854.3 \text{ in-lbs}$ Resisting Force Required = 2497.79 lbs A minimum 132in long x 34in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4162.99 lbs to resist overturning. Minimum Width = 3<u>4 in</u> in Weight Provided = 6778.75 lbs Sliding 973.22 lbs Force = Friction = Use a 132in long x 34in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 2433.05 lbs Resisting Weight = 6778.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 973.22 lbs Cohesion = 130 psf Use a 132in long x 34in wide x 18in tall 31.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3389.38 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft

Bearing Pressure

Required Depth =

 $f'_c =$ Length =

0.00 ft

2500 psi

8 in

 $\frac{\text{Ballast Width}}{34 \text{ in}} = \frac{35 \text{ in}}{36 \text{ in}} = \frac{37 \text{ in}}{37 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.83 \text{ ft}) = \frac{6779 \text{ lbs}}{6978 \text{ lbs}} = \frac{7178 \text{ lbs}}{7178 \text{ lbs}} = \frac{7377 \text{ lbs}}{7377 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	- 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D +	+ 0.6W	
Width	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in
FA	1287 lbs	1287 lbs	1287 lbs	1287 lbs	1316 lbs	1316 lbs	1316 lbs	1316 lbs	1816 lbs	1816 lbs	1816 lbs	1816 lbs	-97 lbs	-97 lbs	-97 lbs	-97 lbs
F _B	1226 lbs	1226 lbs	1226 lbs	1226 lbs	2218 lbs	2218 lbs	2218 lbs	2218 lbs	2454 lbs	2454 lbs	2454 lbs	2454 lbs	-3107 lbs	-3107 lbs	-3107 lbs	-3107 lbs
F_V	196 lbs	196 lbs	196 lbs	196 lbs	1769 lbs	1769 lbs	1769 lbs	1769 lbs	1454 lbs	1454 lbs	1454 lbs	1454 lbs	-1946 lbs	-1946 lbs	-1946 lbs	-1946 lbs
P_{total}	9292 lbs	9491 lbs	9691 lbs	9890 lbs	10313 lbs	10512 lbs	10712 lbs	10911 lbs	11048 lbs	11248 lbs	11447 lbs	11646 lbs	863 lbs	983 lbs	1103 lbs	1222 lbs
M	3603 lbs-ft	3603 lbs-ft	3603 lbs-ft	3603 lbs-ft	3743 lbs-ft	3743 lbs-ft	3743 lbs-ft	3743 lbs-ft	5128 lbs-ft	5128 lbs-ft	5128 lbs-ft	5128 lbs-ft	4015 lbs-ft	4015 lbs-ft	4015 lbs-ft	4015 lbs-ft
е	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.36 ft	0.36 ft	0.35 ft	0.34 ft	0.46 ft	0.46 ft	0.45 ft	0.44 ft	4.65 ft	4.08 ft	3.64 ft	3.29 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	235.1 psf	234.6 psf	234.1 psf	233.6 psf	265.4 psf	264.0 psf	262.7 psf	261.5 psf	264.7 psf	263.4 psf	262.1 psf	260.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	361.2 psf	357.1 psf	353.2 psf	349.5 psf	396.4 psf	391.3 psf	386.5 psf	381.9 psf	444.2 psf	437.8 psf	431.6 psf	425.9 psf	239.2 psf	158.8 psf	131.8 psf	119.3 psf

Shear key is not required.

Maximum Bearing Pressure = 444 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 1053.0 \text{ ft-lbs}$

Resisting Force Required = 743.28 lbs

S.F. = 1.67

Weight Required = 1238.80 lbs Minimum Width = 34 in in Weight Provided = 6778.75 lbs A minimum 132in long x 34in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iE .	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width		34 in		34 in			34 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	259 lbs	658 lbs	259 lbs	759 lbs	2113 lbs	759 lbs	76 lbs	192 lbs	76 lbs
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs
P _{total}	8652 lbs	6779 lbs	8652 lbs	8748 lbs	6779 lbs	8748 lbs	2530 lbs	6779 lbs	2530 lbs
M	7 lbs-ft	0 lbs-ft	7 lbs-ft	22 lbs-ft	0 lbs-ft	22 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft
f _{min}	277.1 psf	217.5 psf	277.1 psf	279.2 psf	217.5 psf	279.2 psf	81.0 psf	217.5 psf	81.0 psf
f _{max}	278.1 psf	217.5 psf	278.1 psf	282.2 psf	217.5 psf	282.2 psf	81.3 psf	217.5 psf	81.3 psf

Maximum Bearing Pressure = 282 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 34in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum $\overline{\text{Axial Load}} =$	2.818 k	Maximum $\overline{\text{Axial Load}} = 4.499 \text{ k}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>38%</u>	Utilization = 61%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.725 k 12.808 k 7.421 k <u>37%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.068 \text{ in} \\ \end{array}$

<u>N/A</u>

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 126$$

$$J = 0.432$$

$$221.673$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

Not Used

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.2 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\psi = 446476 \text{ mm}$$

$$\phi F_{L}St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^{4}$$

$$2.155 \text{ in}^{4}$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^{3}$$

$$M_{max}St = 2.788 \text{ k-ft}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

16.2

3.4.16

 $\phi F_L =$

b/t =

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

3.4.16

$$D/t = 7.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

3.4.18 h/t =7.4 mDbrS1 = 35.2 m =0.68 41.067 $C_0 =$ Cc = 43.717 k_1Bbr S2 =mDbrS2 = 73.8 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_L St =$ 29.4 ksi

31.1 ksi

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =16.2 S1 =12.21 (See 3.4.16 above for formula)

 $lx = 984962 \text{ mm}^4$

2.366 in⁴

43.717 mm

1.375 in³

3.363 k-ft

32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

31.6 ksi $\phi F_L =$ b/t =7.4

S1 = 12.21 32.70 S2 = $\phi F_L {= \phi y F c y}$

 $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t =18.1 S1 =S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L =$ 31.09 ksi $\phi F_L =$ 31.09 ksi

 $A = 1215.13 \text{ mm}^2$ 1.88 in² $P_{max} =$ 58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

1.460 k-ft

 $M_{max}Wk =$

y =

Sx =

 $M_{max}St =$

Compression

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 28.0279 \text{ ksi}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$	$\varphi(S) = \varphi(S) - 1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}$
$\phi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{max}St =$ 1.460 k-ft

Compression

3.4.7

$$λ = 2.00335$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.86047$
 $φF_L = (φccFcy)/(λ^2)$
 $φF_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

30.0 ksi

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.7 $\lambda = 1.63853$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.80939$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_I = 10.5516 \text{ ksi}$

$\phi F_{L} = 10.5516 \text{ ksi}$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Υ	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-85.097	-85.097	0	0
2	M14	V	-85.097	-85.097	0	0
3	M15	V	-136.895	-136.895	0	0
4	M16	V	-136.895	-136.895	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	192.393	192.393	0	0
2	M14	٧	147.995	147.995	0	0
3	M15	V	81.397	81.397	0	0
4	M16	V	81 397	81 397	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	827.435	2	1238.672	2	.722	1	.003	1	Ō	1	0	1
2		min	-1018.643	3	-1586.148	3	.04	15	0	15	0	1	0	1
3	N7	max	.04	9	1087.766	1_	621	15	001	15	0	1	0	1
4		min	207	2	-23.292	3	-12.686	1	025	1	0	1	0	1
5	N15	max	.033	9	2817.623	1	0	2	0	2	0	1	0	1
6		min	-2.295	2	-179.581	3	0	11	0	11	0	1	0	1
7	N16	max	3009.671	2	4060.179	2	0	1	0	1	0	1	0	1
8		min	-3245.932	3	-5193.08	3	0	3	0	3	0	1	0	1
9	N23	max	.04	9	1087.766	1	12.686	1	.025	1	0	1	0	1
10		min	207	2	-23.292	3	.621	15	.001	15	0	1	0	1
11	N24	max	827.435	2	1238.672	2	04	15	0	15	0	1	0	1
12		min	-1018.643	3	-1586.148	3	722	1	003	1	0	1	0	1
13	Totals:	max	4661.832	2	10888.479	2	0	2	·					
14		min	-5283.411	3	-8591.543	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	123.436	1	438.551	2	-9.043	15	.001	3	.295	1	0	2
2			min	5.879	15	-739.333	3	-190.841	1	014	2	.014	15	0	3
3		2	max	123.436	1	307.18	2	-6.958	15	.001	3	.098	1	.735	3
4			min	5.879	15	-520.289	3	-146.752	1	014	2	.005	15	435	2
5		3	max	123.436	1	175.809	2	-4.874	15	.001	3	0	3	1.214	3
6			min	5.879	15	-301.245	3	-102.663	1	014	2	047	1	717	2
7		4	max	123.436	1	44.438	2	-2.79	15	.001	3	006	12	1.438	3
8			min	5.879	15	-82.201	3	-58.574	1	014	2	141	1	845	2
9		5	max	123.436	1	136.844	3	706	15	.001	3	008	12	1.406	3
10			min	5.879	15	-86.933	2	-14.485	1	014	2	184	1	82	2
11		6	max	123.436	1	355.888	3	29.604	1	.001	3	008	15	1.118	3
12			min	5.879	15	-218.304	2	.688	12	014	2	175	1	642	2
13		7	max	123.436	1	574.932	3	73.692	1	.001	3	005	15	.575	3
14			min	5.879	15	-349.675	2	2.772	12	014	2	115	1	311	2
15		8	max	123.436	1	793.976	3	117.781	1	.001	3	.001	10	.174	2
16			min	5.879	15	-481.045	2	4.856	12	014	2	004	3	223	3
17		9	max	123.436	1	1013.021	3	161.87	1	.001	3	.16	1	.811	2
18			min	5.879	15	-612.416	2	6.94	12	014	2	.005	12	-1.277	3
19		10	max	123.436	1	1232.065	3	205.959	1	.014	2	.375	1	1.603	2
20			min	5.879	15	-743.787	2	9.024	12	001	3	.014	12	-2.587	3
21		11	max	123.436	1	612.416	2	-6.94	12	.014	2	.16	1	.811	2
22			min	5.879	15	-1013.021	3	-161.87	1	001	3	.005	12	-1.277	3
23		12	max	123.436	1	481.045	2	-4.856	12	.014	2	.001	10	.174	2
24			min	5.879	15	-793.976	3	-117.781	1	001	3	004	3	223	3
25		13	max	123.436	1	349.675	2	-2.772	12	.014	2	005	15	.575	3
26			min	5.879	15	-574.932	3	-73.692	1	001	3	115	1	311	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
27		14	max	123.436	1	218.304	2	688	12	.014	2	008	15	1.118	3
28			min	5.879	15	-355.888	3	-29.604	1	001	3	175	1	642	2
29		15	max	123.436	1	86.933	2	14.485	1	.014	2	008	12	1.406	3
30			min	5.879	15	-136.844	3	.706	15	001	3	184	1	82	2
31		16	max	123.436	1	82.201	3	58.574	1	.014	2	006	12	1.438	3
32			min	5.879	15	-44.438	2	2.79	15	001	3	141	1	845	2
33		17	max	123.436	1	301.245	3	102.663	1	.014	2	0	3	1.214	3
34			min	5.879	15	-175.809	2	4.874	15	001	3	047	1	717	2
35		18	max	123.436	1	520.289	3	146.752	1	.014	2	.098	1	.735	3
36			min	5.879	15	-307.18	2	6.958	15	001	3	.005	15	435	2
37		19	max	123.436	1	739.333	3	190.841	1	.014	2	.295	1	0	2
38			min	5.879	15	-438.551	2	9.043	15	001	3	.014	15	0	3
39	M14	1	max	55.58	1	464.025	2	-9.311	15	.009	3	.335	1	0	1
40			min	2.651	15	-579.752	3	-196.527	1	011	2	.016	15	0	3
41		2	max	55.58	1	332.654	2	-7.227	15	.009	3	.131	1	.579	3
42			min	2.651	15	-412.506	3	-152.438	1	011	2	.006	15	465	2
43		3	max	55.58	1	201.284	2	-5.143	15	.009	3	.002	3	.963	3
44			min	2.651	15	-245.259	3	-108.349	1	011	2	021	1	776	2
45		4	max	55.58	1	69.913	2	-3.059	15	.009	3	005	12	1.151	3
46			min	2.651	15	-78.013	3	-64.26	1	011	2	122	1	934	2
47		5	max	55.58	1	89.234	3	975	15	.009	3	008	12	1.145	3
48			min	2.651	15	-61.458	2	-20.171	1	011	2	171	1	939	2
49		6	max	55.58	1	256.481	3	23.918	1	.009	3	008	15	.943	3
50		ľ	min	2.651	15	-192.829	2	.432	12	011	2	169	1	791	2
51		7	max	55.58	1	423.727	3	68.007	1	.009	3	005	15	.546	3
52		-	min	2.651	15	-324.2	2	2.516	12	011	2	115	1	489	2
53		8	max	55.58	1	590.974	3	112.095	1	.009	3	0	10	0	15
54			min	2.651	15	-455.571	2	4.6	12	011	2	01	1	046	3
55		9	max	55.58	1	758.22	3	156.184	1	.009	3	.147	1	.574	2
56		9	min	2.651	15	-586.942	2	6.684	12	011	2	.004	12	833	3
57		10	max	55.58	1	925.467	3	200.273	1	.011	2	.355	1	1.335	2
58		10	min	2.651	15	-718.313	2	8.768	12	009	3	.013	12	-1.815	3
59		11	max	55.58	1	586.942	2	-6.684	12	.011	2	.147	1	.574	2
60			min	2.651	15	-758.22	3	-156.184	1	009	3	.004	12	833	3
		12			1	455.571	2	-4.6	12	.011	2			0	15
61 62		12	max	55.58 2.651	_	-590.974	3	-112.095	1		3	01	10		3
		12	min		15					009				046	
63		13	max	55.58	1	324.2	3	-2.516	12	.011	3	005	15	.546	3
64		14	min	2.651	15	-423.727 192.829		-68.007 432		009		115		489	
65		14	max	55.58	1		2		12	.011	2	008	15	.943	2
66		4.5	min	2.651	15	-256.481	3	-23.918	1	009	3	169	1	791	
67		15	max		1	61.458	2	20.171	1	.011	2	008	12	1.145	3
68		10	min	2.651	15	-89.234	3	.975	15	009	3	171	1	939	2
69		16	max	55.58	1	78.013	3	64.26	1	.011	2	005	12	1.151	3
70		47	min	2.651	15	-69.913	2	3.059	15	009	3	122	1	934	2
71		17	max	55.58	1	245.259	3	108.349	1_	.011	2	.002	3	.963	3
72		40	min	2.651	15	-201.284	2	5.143	15	009	3	021	1	776	2
73		18	max		1	412.506	3	152.438	1	.011	2	.131	1	.579	3
74		40	min	2.651	15	-332.654	2	7.227	15	009	3	.006	15	465	2
75		19	max	55.58	1	579.752	3	196.527	1	.011	2	.335	1	0	1
76	B 4.4 =	4	min	2.651	15	-464.025	2	9.311	15	009	3	.016	15	0	3
77	M15	1	max	-2.793	15	668.002	2	-9.309	15	.011	2	.335	1	0	2
78			min	-58.499	1_	-317.689	3	-196.501	1_	008	3	.016	15	0	3
79		2	max	-2.793	15	476.2	2	-7.225	15	.011	2	.131	1	.318	3
80			min	-58.499	1	-228.14	3	-152.412	1	008	3	.006	15	667	2
81		3	max	-2.793	15	284.398	2	-5.141	15	.011	2	.002	3	.532	3
82			min	-58.499	1_	-138.591	3	-108.323	1_	008	3	021	1	-1.111	2
83		4	max	-2.793	15	92.597	2	-3.056	15	.011	2	005	12	.642	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC			y-y Mome	LC		
84			min	-58.499	1	-49.042	3	-64.234	1	008	3	122	1	-1.331	2
85		5	max	-2.793	15	40.507	3	972	15	.011	2	008	12	.647	3
86			min	-58.499	1	-99.205	2	-20.145	1	008	3	171	1	-1.327	2
87		6	max	-2.793	15	130.055	3	23.944	1	.011	2	008	15	.547	3
88			min	-58.499	1	-291.007	2	.487	12	008	3	169	1	-1.1	2
89		7	max	-2.793	15	219.604	3	68.033	1	.011	2	005	15	.343	3
90			min	-58.499	1	-482.809		2.571	12	008	3	115	1	648	2
91		8	max	-2.793	15	309.153	3	112.122	1	.011	2	0	10	.035	3
92			min	-58.499	1	-674.611	2	4.655	12	008	3	01	1	003	9
93		9	max	-2.793	15	398.702	3	156.211	1	.011	2	.147	1	.926	2
94		9	min		1		2	6.739	12	008	3	.004	12	378	3
		40		-58.499		-866.413									
95		10	max		15	488.251	3	200.3	1	.008	3	.355	1	2.049	2
96			min	-58.499	1_	-1058.215	2	8.823	12	011	2	.013	12	<u>895</u>	3
97		11	max	-2.793	15	866.413	2	-6.739	12	.008	3	.147	1	.926	2
98			min	-58.499	1	-398.702	3	-156.211	1	011	2	.004	12	378	3
99		12	max	-2.793	15	674.611	2	-4.655	12	.008	3	0	10	.035	3
100			min	-58.499	1	-309.153	3	-112.122	1	011	2	01	1	003	9
101		13	max	-2.793	15	482.809	2	-2.571	12	.008	3	005	15	.343	3
102			min	-58.499	1	-219.604	3	-68.033	1	011	2	115	1	648	2
103		14	max	-2.793	15	291.007	2	487	12	.008	3	008	15	.547	3
104			min	-58.499	1	-130.055	3	-23.944	1	011	2	169	1	-1.1	2
105		15	max		15	99.205	2	20.145	1	.008	3	008	12	.647	3
106			min	-58.499	1	-40.507	3	.972	15	011	2	171	1	-1.327	2
107		16	max	-2.793	15	49.042	3	64.234	1	.008	3	005	12	.642	3
108		10	min	-58.499	1	-92.597	2	3.056	15	011	2	122	1	-1.331	2
109		17		-2.793	15	138.591	3	108.323	1	.008	3	.002	3	.532	3
		17	max												2
110		4.0	min		1_	-284.398	2	5.141	15	011	2	021	1	<u>-1.111</u>	
111		18	max	-2.793	15	228.14	3	152.412	1	.008	3	.131	1	.318	3
112		1.0	min	-58.499	1	-476.2	2	7.225	15	011	2	.006	15	<u>667</u>	2
113		19	max	-2.793	15	317.689	3	196.501	1_	.008	3	.335	1	0	2
114			min	-58.499	1	-668.002	2	9.309	15	011	2	.016	15	0	3
115	<u>M16</u>	1	max		15	643.427	2	-9.051	15	.01	2	.297	1	0	2
116			min	-132.482	1	-297.974	3	-191.1	1	011	3	.014	15	0	3
117		2	max	-6.318	15	451.625	2	-6.967	15	.01	2	.1	1	.295	3
118			min	-132.482	1	-208.425	3	-147.011	1	011	3	.005	15	639	2
119		3	max	-6.318	15	259.823	2	-4.882	15	.01	2	0	12	.486	3
120			min		1	-118.876	3	-102.922	1	011	3	046	1	-1.054	2
121		4	max		15	68.021	2	-2.798	15	.01	2	006	12	.573	3
122			min	-132.482	1	-29.327	3	-58.833	1	011	3	141	1	-1.245	2
123		5	max	-6.318	15	60.222	3	714	15	.01	2	008	12	.555	3
124				-132.482	1			-14.744	1	011	3	184	1	-1.212	2
125		6	max		15	149.771	3	29.345	1	.01	2	008	15	.432	3
126			min		1	-315.582	2	.87	12	011	3	175	1	956	2
127		7						73.434							
		-	max	-6.318	15	239.32	3		1	.01	2	005	15	.205	3
128			min	-132.482	1_	-507.384	2	2.954	12	011	3	115	1	<u>476</u>	2
129		8	max		15	328.869	3	117.523	1	.01	2	0	10	.228	2
130		_	min		1	-699.186	2	5.038	12	011	3	004	1	126	3
131		9	max		15	418.418	3	161.612	1	.01	2	.159	1	1.155	2
132			min	-132.482	1	-890.988	2	7.122	12	011	3	.005	12	562	3
133		10	max	-6.318	15	507.967	3	205.7	1	.011	3	.373	1	2.307	2
134			min	-132.482	1	-1082.79	2	9.206	12	01	2	.015	12	-1.102	3
135		11	max	-6.318	15	890.988	2	-7.122	12	.011	3	.159	1	1.155	2
136			min		1	-418.418	3	-161.612		01	2	.005	12	562	3
137		12	max	-6.318	15	699.186	2	-5.038	12	.011	3	0	10	.228	2
138			min	-132.482	1	-328.869	3	-117.523	1	01	2	004	1	126	3
139		13	max		15	507.384	2	-2.954	12	.011	3	005	15	.205	3
140		10	min		1	-239.32	3	-73.434	1	01	2	115	1	476	2
1+0			1111111	102.402		-203.02	J	-70.404		01		110		470	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-6.318	15	315.582	2	87	12	.011	3	008	15	.432	3
142			min	-132.482	1	-149.771	3	-29.345	1	01	2	175	1_	956	2
143		15	max	-6.318	15	123.781	2	14.744	1_	.011	3	008	12	.555	3
144			min	-132.482	1	-60.222	3	.714	15	01	2	184	1	-1.212	2
145		16	max	-6.318	15	29.327	3	58.833	1	.011	3	006	12	.573	3
146			min	-132.482	1	-68.021	2	2.798	15	01	2	141	1	-1.245	2
147		17	max	-6.318	15	118.876	3	102.922	1	.011	3	0	12	.486	3
148			min	-132.482	1	-259.823	2	4.882	15	01	2	046	1	-1.054	2
149		18	max	-6.318	15	208.425	3	147.011	1	.011	3	.1	1	.295	3
150			min	-132.482	1	-451.625	2	6.967	15	01	2	.005	15	639	2
151		19	max	-6.318	15	297.974	3	191.1	1	.011	3	.297	1	0	2
152			min	-132.482	1	-643.427	2	9.051	15	01	2	.014	15	0	3
153	M2	1		1038.898	2	1.928	4	.569	1	0	5	0	3	0	1
154	1412		min	-1373.419	3	.454	15	.027	15	0	1	0	2	0	1
155		2	max		2	1.843	4	.569	1	0	5	0	1	0	15
156			min	-1373.063	3	.434	15	.027	15	0	1	0	15	0	4
157		3	max	1039.85	2	1.757	4	.569	1	0	5	0	1	0	15
158		3		-1372.706	3	.414	15	.027	15	0	1	0	15		4
		4	min											001	_
159		4		1040.326	2	1.672	4	.569	1	0	5	0	1_	0	15
160		_	min	-1372.349	3	.394	15	.027	15	0	1_	0	15	002	4
161		5	max		2	1.586	4	.569	1	0	5	0	1	0	15
162		_	min	-1371.992	3	.373	15	.027	15	0	1_	0	15	002	4
163		6		1041.277	2	1.5	4	.569	1	0	5	0	1	0	15
164			min	-1371.635	3	.353	15	.027	15	0	1	0	15	003	4
165		7	max	1041.753	2	1.415	4	.569	1	0	5	.001	_1_	0	15
166			min	-1371.279	3	.333	15	.027	15	0	1	0	15	003	4
167		8	max	1042.229	2	1.329	4	.569	1	0	5	.001	1	0	15
168			min	-1370.922	3	.313	15	.027	15	0	1	0	15	004	4
169		9	max	1042.704	2	1.244	4	.569	1	0	5	.001	1	0	15
170			min	-1370.565	3	.293	15	.027	15	0	1	0	15	004	4
171		10	max	1043.18	2	1.158	4	.569	1	0	5	.002	1	001	15
172			min	-1370.208	3	.266	12	.027	15	0	1	0	15	004	4
173		11		1043.656	2	1.073	4	.569	1	0	5	.002	1	001	15
174			min	-1369.851	3	.232	12	.027	15	0	1	0	15	005	4
175		12		1044.132	2	.996	2	.569	1	0	5	.002	1	001	15
176			min	-1369.494	3	.199	12	.027	15	0	1	0	15	005	4
177		13		1044.607	2	.929	2	.569	1	0	5	.002	1	001	15
178		10	min	-1369.138	3	.166	12	.027	15	0	1	0	15	005	4
179		14	+	1045.083	2	.863	2	.569	1	0	5	.002	1	001	15
180		14	min	-1368.781	3	.132	12	.027	15	0	1	0	15	006	4
181		15		1045.559		.796	2	.569	1	0	5	.003	1	001	15
182		13	min		3	.099	12	.027	15	0	1	0	15	006	4
183		16		1046.035		.729	2	.569	1		5	.003	1	006 001	15
184		10					12	.027	15	0	1	0	15		
		17	min		3	.066				0				006	15
185		17		1046.51	2	.663	2	.569	1	0	5	.003	1 1 5	002	15
186		40		-1367.71	3	.017	3	.027	15	0	1	0	15	006	4
187		18		1046.986	2	.596	2	.569	1_	0	5	.003	1_	002	12
188			min	-1367.354	3	033	3	.027	15	0	1_	0	15	007	4
189		19		1047.462	2	.529	2	.569	1	0	5	.003	1	002	12
190			min	-1366.997	3	083	3	.027	15	0	1	0	15	007	4
191	<u>M3</u>	1_		710.727	2	7.778	4	.269	1	0	12		1_	.007	4
192			min		3	1.829	15	.013	15	0	1	0	15	.002	12
193		2	max		2	7.014	4	.269	1	0	12	0	1	.004	2
194			min		3	1.649	15	.013	15	0	1	0	15	0	12
195		3	max	710.386	2	6.249	4	.269	1	0	12	0	1	.002	2
196			min	-860.754	3	1.469	15	.013	15	0	1	0	15	001	3
197		4	max	710.216	2	5.485	4	.269	1	0	12	0	1	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	
198			min	-860.882	3	1.29	15	.013	15	0	1	0	15	002	3
199		5	max	710.045	2	4.72	4	.269	1	0	12	0	1	0	15
200			min	-861.01	3	1.11	15	.013	15	0	1	0	15	004	4
201		6	max	709.875	2	3.956	4	.269	1	0	12	.001	1	001	15
202			min	-861.138	3	.93	15	.013	15	0	1	0	15	006	4
203		7	max	709.705	2	3.191	4	.269	1	0	12	.001	1	002	15
204			min	-861.265	3	.751	15	.013	15	0	1	0	15	007	4
205		8	max	709.534	2	2.427	4	.269	1	0	12	.001	1	002	15
206			min	-861.393	3	.571	15	.013	15	0	1	0	15	008	4
207		9	max	709.364	2	1.662	4	.269	1	0	12	.001	1	002	15
208			min	-861.521	3	.391	15	.013	15	0	1	0	15	009	4
209		10	max	709.194	2	.898	4	.269	1	0	12	.001	1	002	15
210			min	-861.649	3_	.206	12	.013	15	0	1	0	15	01	4
211		11	max	709.023	2	.28	2	.269	1	0	12	.002	1	002	15
212			min	-861.776	3	162	3	.013	15	0	1	0	15	01	4
213		12	max	708.853	2	148	15	.269	1	0	12	.002	1	002	15
214			min	-861.904	3_	631	4	.013	15	0	1	0	15	<u>01</u>	4
215		13	max	708.683	2	328	15	.269	1	0	12	.002	1	002	15
216			min	-862.032	3_	-1.395	4	.013	15	0	1	0	15	009	4
217		14	max	708.512	2	507	15	.269	1	0	12	.002	1	002	15
218			min	-862.16	3	-2.16	4	.013	15	0	1	0	15	009	4
219		15	max		2	687	15	.269	1	0	12	.002	1	002	15
220		1.0	min	-862.287	3	-2.924	4	.013	15	0	1	0	15	007	4
221		16	max	708.172	2	867	15	.269	1	0	12	.002	1	001	15
222		4-	min	-862.415	3	-3.689	4	.013	15	0	1	0	15	006	4
223		17	max	708.001	2	-1.046	15	.269	1	0	12	.002	1	001	15
224		4.0	min	-862.543	3	-4.453	4	.013	15	0	1	0	15	004	4
225		18	max	707.831	2	-1.226	15	.269	1	0	12	.002	1	0	15
226		1.0	min	-862.671	3	-5.218	4	.013	15	0	1	0	15	002	4
227		19	max	707.661	2	-1.406	15	.269	1	0	12	.002	1	0	1
228	D.4.4	1	min	-862.798	3	-5.982	4	.013	15	0	1	0	15	0	1
229	M4	1_	max	1084.7	1_	0	1	622	15	0	1	.002	1	0	1
230			min	-25.592	3	0	1	-13.084	1_	0	1	0	15	0	1
231		2	max	1084.87	1	0	1	622	15	0	1	0	1	0	1
232			min	-25.464	3	0	1	-13.084	1	0	1	0	15	0	1
233		3	max		1	0	1	622	15	0	1	0	12	0	1
234		4	min	-25.336	3	0	1	-13.084	1	0	1	0	1	0	1
235		4		1085.211	1	0	1	622	15	0	1	0	15	0	1
236		_	min	-25.209	<u>3</u> 1	0	1	-13.084	1	0	1	002	1	0	1
237		5		1085.381		0	1	622	15	0		0	15	0	
238		6	min		3	0		-13.084	1	0	1	004	1	0	1
239		6		1085.551	1	0	1	622 -13.084	15 1	0	1	0 005	15	0	1
240 241		7	min	-24.953 1085.722	<u>3</u> 1	0	1	622	15	0	1	<u>005</u> 0	15	0	1
241		'	min	-24.825	3	0	1	-13.084	1	0	1	007	1	0	1
243		8		1085.892	<u> </u>	0	1	622	15	0	1	<u>007</u> 0	15	0	1
244		0	min		3	0	1	-13.084	1	0	1	008	1	0	1
245		9		1086.062	<u> </u>	0	1	622	15	0	1	<u>008</u> 0	15	0	1
246		9	min	-24.57	3	0	1	-13.084	1	0	1	01	1	0	1
247		10		1086.233	<u>ა</u> 1	0	1	622	15	0	1	<u>01</u> 0	15	0	1
248		10	min		3	0	1	-13.084	1	0	1	011	1	0	1
249		11		1086.403	<u> </u>	0	1	622	15	0	1	<u>011</u> 0	15	0	1
250		11	min		3	0	1	-13.084	1	0	1	013	1	0	1
251		12		1086.573	<u> </u>	0	1	622	15	0	1	<u>013</u> 0	15	0	1
252		12	min	-24.186	3	0	1	-13.084	1	0	1	014	1	0	1
253		13		1086.744	<u>ა</u> 1	0	1	622	15	0	1	014 0	15	0	1
254		13	min		3	0	1	-13.084	1	0	1	016	1	0	1
234			111111	-24.009	<u>ა</u>	U		-13.004		U		010		U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14	max	1086.914	_1_	0	1	622	15	0	_1_	0	15	0	1
256			min	-23.931	3	0	1	-13.084	1	0	1	017	1	0	1
257		15	max	1087.084	<u>1</u>	0	1	622	15	0	1	0	15	0	1
258			min	-23.803	3	0	1	-13.084	1	0	1	019	1	0	1
259		16	max	1087.255	1	0	1	622	15	0	1	0	15	0	1
260			min	-23.675	3	0	1	-13.084	1	0	1	02	1	0	1
261		17	max	1087.425	1	0	1	622	15	0	1	001	15	0	1
262			min	-23.548	3	0	1	-13.084	1	0	1	022	1	0	1
263		18	max	1087.595	1	0	1	622	15	0	1	001	15	0	1
264			min	-23.42	3	0	1	-13.084	1	0	1	023	1	0	1
265		19		1087.766	1	0	1	622	15	0	1	001	15	0	1
266			min	-23.292	3	0	1	-13.084	1	0	1	025	1	0	1
267	M6	1	+	3349.647	2	2.308	2	0	1	0	1	0	1	0	1
268	1010		min	-4498.725	3	.128	3	0	1	0	1	0	1	0	1
269		2		3350.123	2	2.242	2	0	1	0	1	0	1	0	3
270			min	-4498.368	3	.078	3	0	1	0	1	0	1	0	2
271		3		3350.598	2	2.175	2	0	1	0	1	0	1	0	3
272			min	-4498.011	3	.028	3	0	1	0	1	0	1	001	2
		4		3351.074	_		2	0	1		1	0	1	0	3
273		4		-4497.654	2	2.108			1	0	1	_	1		
274		-	min		3	022	3	0	1	0	_	0		002	2
275		5	max	3351.55 -4497.297	2	2.042	2	0		0	1	0	1	0	3
276			min		3_	072	3	0	1	0	1	0	1_	003	2
277		6		3352.026	2	1.975	2	0	1	0	1	0	1	0	3
278		_	min	-4496.941	3	122	3	0	1	0	1	0	1	003	2
279		7		3352.501	2	1.908	2	0	1	0	1	0	1	0	3
280			min	-4496.584	3_	172	3	0	1	0	1	0	1_	004	2
281		8		3352.977	2	1.841	2	0	1	0	1	0	1_	0	3
282			min	-4496.227	3	222	3	0	1	0	1	0	1	005	2
283		9	max	3353.453	2	1.775	2	0	1	0	1	0	1	0	3
284			min	-4495.87	3	272	3	0	1	0	1	0	1	005	2
285		10	max	3353.929	2	1.708	2	0	1	0	_1_	0	_1_	0	3
286			min	-4495.513	3	322	3	0	1	0	1	0	1	006	2
287		11	max	3354.404	2	1.641	2	0	1	0	_1	0	1	0	3
288			min	-4495.156	3	372	3	0	1	0	1	0	1	006	2
289		12	max	3354.88	2	1.575	2	0	1	0	1	0	1	0	3
290			min	-4494.8	3	422	3	0	1	0	1	0	1	007	2
291		13	max	3355.356	2	1.508	2	0	1	0	1	0	1	0	3
292			min	-4494.443	3	472	3	0	1	0	1	0	1	007	2
293		14	max	3355.832	2	1.441	2	0	1	0	1	0	1	0	3
294			min	-4494.086	3	522	3	0	1	0	1	0	1	008	2
295		15		3356.307	2	1.375	2	0	1	0	1	0	1	.001	3
296			min		3	572	3	0	1	0	1	0	1	008	2
297		16		3356.783	2	1.308	2	0	1	0	1	0	1	.001	3
298			min		3	622	3	0	1	0	1	0	1	009	2
299		17		3357.259	2	1.241	2	0	1	0	1	0	1	.001	3
300			min		3	672	3	0	1	0	1	0	1	009	2
301		18		3357.735	2	1.175	2	0	1	0	1	0	1	.002	3
302		10	min	-4492.659	3	722	3	0	1	0	1	0	1	01	2
303		19		3358.21	2	1.108	2	0	1	0	1	0	1	.002	3
304		13	min		3	772	3	0	1	0	1	0	1	01	2
	M7	1		2647.738	2		4		1		1		1	.01	2
305	IVI /			-2722.596		7.812	15	0	1	0	1	0	1		
306		0	min		3	1.834		0		0		0		002	3
307		2		2647.568	2	7.048	4	0	1	0	1	0	1	.007	2
308			min		3_	1.654	15	0		0	1	0	1_	003	3
309		3		2647.397	2	6.283	4	0	1	0	1	0	1	.005	2
310			min		3	1.475	15	0	1	0	1	0	1_	005	3
311		4	max	2647.227	_2_	5.519	4	0	1	0	_1_	0	_1_	.003	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2722.979	3	1.295	15	0	1	0	1	0	1	006	3
313		5	max	2647.057	2	4.755	4	0	1	0	_1_	0	_1_	0	2
314			min	-2723.107	3	1.115	15	0	1	0	1	0	1	007	3
315		6	max	2646.886	2	3.99	4	0	1	0	1	0	1	0	2
316			min	-2723.235	3	.936	15	0	1	0	1	0	1	007	3
317		7	max	2646.716	2	3.226	4	0	1	0	1	0	1	002	15
318			min	-2723.363	3	.756	15	0	1	0	1	0	1	008	3
319		8	max	2646.546	2	2.516	2	0	1	0	1	0	1	002	15
320			min	-2723.49	3	.481	12	0	1	0	1	0	1	008	3
321		9	max	2646.375	2	1.92	2	0	1	0	1	0	1	002	15
322			min	-2723.618	3	.183	12	0	1	0	1	0	1	009	4
323		10	max	2646.205	2	1.324	2	0	1	0	1	0	1	002	15
324			min	-2723.746	3	25	3	0	1	0	1	0	1	009	4
325		11	max	2646.035	2	.729	2	0	1	0	1	0	1	002	15
326			min	-2723.874	3	697	3	0	1	0	1	0	1	01	4
327		12	max	2645.864	2	.133	2	0	1	0	1	0	1	002	15
328			min	-2724.001	3	-1.143	3	0	1	0	1	0	1	01	4
329		13	max	2645.694	2	322	15	0	1	0	1	0	1	002	15
330			min	-2724.129	3	-1.59	3	0	1	0	1	0	1	009	4
331		14	max	2645.523	2	502	15	0	1	0	1	0	1	002	15
332			min	-2724.257	3	-2.125	4	0	1	0	1	0	1	008	4
333		15	max	2645.353	2	682	15	0	1	0	1	0	1	002	15
334			min	-2724.385	3	-2.89	4	0	1	0	1	0	1	007	4
335		16	max	2645.183	2	861	15	0	1	0	1	0	1	001	15
336			min	-2724.513	3	-3.654	4	0	1	0	1	0	1	006	4
337		17		2645.012	2	-1.041	15	0	1	0	1	0	1	001	15
338			min	-2724.64	3	-4.419	4	0	1	0	1	0	1	004	4
339		18		2644.842	2	-1.221	15	0	1	0	1	0	1	0	15
340		1	min	-2724.768	3	-5.183	4	0	1	0	1	0	1	002	4
341		19		2644.672	2	-1.4	15	0	1	0	1	0	1	0	1
342		1.0	min	-2724.896	3	-5.948	4	0	1	0	1	Ö	1	0	1
343	M8	1		2814.556	1	0	1	0	1	0	1	0	1	0	1
344	1110		min	-181.881	3	0	1	0	1	0	1	0	1	0	1
345		2		2814.727	1	0	1	0	1	0	1	0	1	0	1
346		_	min	-181.753	3	0	1	0	1	0	1	0	1	0	1
347		3		2814.897	1	0	1	0	1	0	1	0	1	0	1
348			min	-181.625	3	0	1	0	1	0	1	0	1	0	1
349		4	_	2815.067	1	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	0	1	0	1	0	1	0	1
351		5		2815.238	1	0	1	0	1	0	1	0	1	0	1
352				-181.37	3	Ö	1	0	1	0	1	0	1	0	1
353		6		2815.408	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		2815.578	_	0	1	0	1	0	1	0	1	0	1
356				-181.114	3	0	1	0	1	0	1	0	1	0	1
357		8		2815.749		0	1	0	1	0	1	0	1	0	1
358				-180.987	3	0	1	0	1	0	1	0	1	0	1
359		9		2815.919		0	1	0	1	0	1	0	1	0	1
360		 		-180.859		0	1	0	1	0	1	0	1	0	1
361		10		2816.089	1	0	1	0	1	0	1	0	1	0	1
362		10		-180.731	3	0	1	0	1	0	1	0	1	0	1
363		11		2816.26	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	+	2816.43	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
		12					1		1		1		1		1
366 367		13	min		<u>3</u> 1	0	1	0	1	0	1	0	1	0	_
		13		2816.6		0	1	0		0	1	0		0	1
368			min	-180.348	3	0		0	1	0		0	1	0	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	2816.771	_1_	0	1	0	1	0	_1_	0	1	0	1
370			min	-180.22	3	0	1	0	1	0	1_	0	1	0	1
371		15		2816.941	_1_	0	1	0	1	0	_1_	0	1	0	1
372				-180.092	3	0	1	0	1	0	1_	0	1	0	1
373		16		2817.111	1_	0	1	0	1	0	1_	0	1	0	1
374		4-	_	-179.965	3	0	1	0	1_	0	1_	0	1	0	1
375		17		2817.282	1_	0	1	0	1	0	1_	0	1	0	1
376		40		-179.837	3	0	1	0	1_	0	1_	0	1	0	1
377		18		2817.452	1_	0	1	0	1	0	1	0	1	0	1
378		19		-179.709	3	0	1	0	<u>1</u> 1	0		0	1	0	1
379 380		19		2817.623 -179.581	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1038.898	2	1.928	4	027	15	0	1	0	2	0	1
382	IVITO		min	-1373.419	3	.454	15	569	1	0	5	0	3	0	1
383		2		1039.374	2	1.843	4	027	15	0	1	0	15	0	15
384			min	-1373.063	3	.434	15	569	1	0	5	0	1	0	4
385		3	max		2	1.757	4	027	15	0	1	0	15	0	15
386			min	-1372.706	3	.414	15	569	1	0	5	0	1	001	4
387		4		1040.326	2	1.672	4	027	15	0	1	0	15	0	15
388		•		-1372.349	3	.394	15	569	1	0	5	0	1	002	4
389		5		1040.801	2	1.586	4	027	15	Ö	1	0	15	0	15
390			min	-1371.992	3	.373	15	569	1	0	5	0	1	002	4
391		6	max	1041.277	2	1.5	4	027	15	0	1	0	15	0	15
392			min	-1371.635	3	.353	15	569	1	0	5	0	1	003	4
393		7	max	1041.753	2	1.415	4	027	15	0	1	0	15	0	15
394			min	-1371.279	3	.333	15	569	1	0	5	001	1	003	4
395		8	max	1042.229	2	1.329	4	027	15	0	1	0	15	0	15
396			min	-1370.922	3	.313	15	569	1	0	5	001	1	004	4
397		9		1042.704	2	1.244	4	027	15	0	_1_	0	15	0	15
398			min	-1370.565	3	.293	15	569	1	0	5	001	1	004	4
399		10	max		2	1.158	4	027	15	0	_1_	0	15	001	15
400			min	-1370.208	3	.266	12	569	1_	0	5	002	1	004	4
401		11		1043.656	2	1.073	4	027	15	0	1_	0	15	001	15
402			min	-1369.851	3	.232	12	569	1_	0	5	002	1	005	4
403		12		1044.132	2	.996	2	027	15	0	1_	0	15	001	15
404		40	min	-1369.494	3	.199	12	569	1_	0	5	002	1_	005	4
405		13		1044.607	2	.929	2	027	15	0	1_	0	15	001	15
406		4.4	min	-1369.138	3	.166	12	569	1_	0	5	002	1	005	4
407		14		1045.083 -1368.781	2	.863	2 12	027	<u>15</u>	0	<u>1</u> 5	0	1 <u>5</u>	001	15
409		15		1045.559	3	.132 .796	2	<u>569</u> 027	15	_	<u> </u>	002		006 001	15
410		15		-1368.424	3	.099	12	569	1	0	5	003	1 <u>5</u>	006	15
411		16		1046.035	2	.729	2	027	15	0	<u> </u>	003 0	15	006 001	15
412		10		-1368.067	3	.066	12	569	1	0	5	003	1	006	4
413		17		1046.51	2	.663	2	027	15	0	1	0	15	002	15
414		1,		-1367.71	3	.017	3	569	1	0	5	003	1	006	4
415		18		1046.986	2	.596	2	027	15	0	1	0	15	002	12
416				-1367.354	3	033	3	569	1	0	5	003	1	007	4
417		19		1047.462	2	.529	2	027	15	0	1	0	15	002	12
418				-1366.997	3	083	3	569	1	0	5	003	1	007	4
419	M11	1		710.727	2	7.778	4	013	15	0	1	0	15	.007	4
420				-860.499	3	1.829	15	269	1	0	12	0	1	.002	12
421		2		710.556	2	7.014	4	013	15	0	1	0	15	.004	2
422				-860.627	3	1.649	15	269	1	0	12	0	1	0	12
423		3		710.386	2	6.249	4	013	15	0	1	0	15	.002	2
424				-860.754	3	1.469	15	269	1	0	12	0	1	001	3
425		4		710.216	2	5.485	4	013	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC v	/-v Mome	LC	z-z Mome	. LC
426			min	-860.882	3	1.29	15	269	1	0	12	0	1	002	3
427		5	max	710.045	2	4.72	4	013	15	0	1	0	15	0	15
428			min	-861.01	3	1.11	15	269	1	0	12	0	1	004	4
429		6	max	709.875	2	3.956	4	013	15	0	1	0	15	001	15
430			min	-861.138	3	.93	15	269	1	0	12	001	1	006	4
431		7	max	709.705	2	3.191	4	013	15	0	1	0	15	002	15
432			min	-861.265	3	.751	15	269	1	0	12	001	1	007	4
433		8	max		2	2.427	4	013	15	0	1	0	15	002	15
434			min	-861.393	3	.571	15	269	1	0	12	001	1	008	4
435		9	max	709.364	2	1.662	4	013	15	0	1	0	15	002	15
436		Ĭ	min	-861.521	3	.391	15	269	1	0	12	001	1	009	4
437		10	max		2	.898	4	013	15	0	1	0	15	002	15
438			min	-861.649	3	.206	12	269	1	0	12	001	1	01	4
439		11	max	709.023	2	.28	2	013	15	0	1	0	15	002	15
440			min	-861.776	3	162	3	269	1	0	12	002	1	01	4
441		12	max	708.853	2	148	15	013	15	0	1	0	15	002	15
442			min	-861.904	3	631	4	269	1	0	12	002	1	01	4
443		13	max		2	328	15	013	15	0	1	0	15	002	15
444		1.0	min	-862.032	3	-1.395	4	269	1	0	12	002	1	009	4
445		14	max	708.512	2	507	15	013	15	0	1	0	15	002	15
446		1 -	min	-862.16	3	-2.16	4	269	1	0	12	002	1	009	4
447		15	max		2	687	15	013	15	0	1	0	15	002	15
448		'0	min	-862.287	3	-2.924	4	269	1	0	12	002	1	007	4
449		16	max	708.172	2	867	15	013	15	0	1	0	15	001	15
450		10	min	-862.415	3	-3.689	4	269	1	0	12	002	1	006	4
451		17	max	708.001	2	-1.046	15	013	15	0	1	<u>002</u>	15	001	15
452		11/	min	-862.543	3	-4.453	4	269	1	0	12	002	1	004	4
453		18	max		2	-1.226	15	013	15	0	1	<u>002</u> 0	15	0	15
454		10	min	-862.671	3	-5.218	4	269	1	0	12	002	1	002	4
455		19	max	707.661	2	-1.406	15	013	15	0	1	<u>002</u> 0	15	0	1
456		19	min	-862.798	3	-5.982	4	269	1	0	12	002	1	0	1
457	M12	1	max	1084.7	<u> </u>	0	1	13.084	1	0	1	<u>002</u> 0	15	0	1
458	IVIIZ	<u> </u>	min	-25.592	3	0	1	.622	15	0	1	002	1	0	1
459		2	max	1084.87	<u> </u>	0	1	13.084	1	0	1	<u>002</u> 0	15	0	1
460				-25.464	3	0	1	.622	15	0	1	0	1	0	1
461		3	min	1085.04	<u> </u>	0	1	13.084	1	0	1	0	1	0	1
462		3	max	-25.336	3	0	1	.622	15	0	1	0	12	0	1
463		4	min		<u> </u>		1	13.084	1		1	.002	1		1
		4		1085.211 -25.209	3	0	1	.622		0	1	<u>.002</u>		0	1
464		E	min		<u> </u>	0	1		15	0	1		15	0	1
465 466		5		1085.381	3	0	1	13.084	15	0	1	.004	15	0	1
		G		-25.081			_	.622		0	1	0			1
467 468		6		1085.551	1	0	1	13.084	15	0	1	005 0	15	0	1
		7	min		3	0		.622		0				0	
469		7		1085.722	1	0	1	13.084	1	0	1	.007	1	0	1
470		0	min		3	0	1	.622	15	0	1	0	15	0	1
471		8		1085.892	1	0	1	13.084	1	0	1	800	1	0	1
472			min		3_	0	1	.622	15	0	1	0	15	0	1
473		9		1086.062	1	0	1	13.084	1	0	1	.01	1	0	1
474		40	min	-24.57	3	0	1	.622	15	0	1	0	15	0	1
475		10		1086.233	1	0	1	13.084	1	0	1	011	1	0	1
476		4.4	min		3	0	1	.622	15	0	1	0	15	0	1
477		11		1086.403	1_	0	1	13.084	1	0	1	.013	1_	0	1
478			min		3	0	1	.622	15	0	1	0	15	0	1
479		12		1086.573	_1_	0	1	13.084	1	0	1	014	1	0	1
480			min		3_	0	1_	.622	15	0	1	0	15	0	1
481		13	_	1086.744	1_	0	1	13.084	1	0	1	.016	1	0	1
482			min	-24.059	3	0	1	.622	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec		Axial[lb]					l	Torque[k-ft]					1
483		14		1086.914	1_	0	1	13.084	1	0	1	.017	1_	0	1
484		4.5	min	-23.931	3	0	1_	.622	15	0	1_	0	15	0	1
485		15		1087.084	1	0	1	13.084	1	0	1	.019	1_	0	1
486		4.0	min	-23.803	3	0		.622	15	0		0	15	0	
487		16		1087.255 -23.675	1	0	1	13.084	15	0	1	.02	1 15	0	1
488		17	min		3	0		.622		0		0		0	-
489		17		1087.425	1_	0	1	13.084	1	0	1	.022	1	0	1
490		40	min	-23.548	3_	0	1_	.622	15	0	1_	.001	15	0	1
491		18		1087.595	1	0	1_	13.084	1_	0	1_	.023	1_	0	1
492		40	min	-23.42	3	0	1_	.622	15	0	1_	.001	15	0	1
493		19	max	1087.766	1_	0	1	13.084	1	0	1	.025	1	0	1
494		_	min	-23.292	3	0	1	.622	15	0	1	.001	15	0	1
495	<u>M1</u>	1	max	190.849	_1_	739.296	3	-5.878	15	0	2	.295	1	.001	3
496		_	min	9.043	15	-437.853	2	-123.272	1	0	3	.014	15	014	2
497		2	max	191.565	_1_	738.366	3	-5.878	15	0	2	.23	1	.217	2
498		_	min	9.259	15	-439.094	2	-123.272	1	0	3	.011	15	389	3
499		3	max	531.233	3	519.55	2	-5.852	15	0	3	.165	1_	.438	2
500			min	-307.082	2	-538.97	3	-122.951	1	0	2	.008	15	763	3
501		4	max	531.771	3	518.31	2	-5.852	15	0	3	.1	1_	.17	1
502			min	-306.366	2	-539.9	3	-122.951	1	0	2	.005	15	478	3
503		5	max	532.308	3_	517.069	2	-5.852	15	0	3	.035	1	003	15
504			min	-305.65	2	-540.831	3	-122.951	1	0	2	.002	15	193	3
505		6	max	532.845	3	515.829	2	-5.852	15	0	3	001	15	.093	3
506			min	-304.933	2	-541.761	3	-122.951	1	0	2	03	1	382	2
507		7	max	533.382	3	514.588	2	-5.852	15	0	3	004	15	.379	3
508			min	-304.217	2	-542.691	3	-122.951	1	0	2	094	1	653	2
509		8	max	533.919	3	513.348	2	-5.852	15	0	3	008	15	.666	3
510			min	-303.501	2	-543.622	3	-122.951	1	0	2	159	1	925	2
511		9	max	549.549	3	51.278	2	-8.503	15	0	9	.093	1	.777	3
512			min	-220.895	2	.379	15	-178.579	1	0	3	.004	15	-1.06	2
513		10	max	550.086	3	50.037	2	-8.503	15	0	9	0	15	.757	3
514			min	-220.179	2	.004	15	-178.579	1	0	3	001	1	-1.086	2
515		11	max	550.623	3	48.797	2	-8.503	15	0	9	005	15	.737	3
516				-219.463	2	-1.506	4	-178.579	1	0	3	095	1	-1.112	2
517		12	max	566.163	3	357.393	3	-5.71	15	0	2	.157	1	.642	3
518				-136.835	2	-619.198	2	-120.146	1	0	3	.007	15	986	2
519		13	max		3	356.463	3	-5.71	15	0	2	.094	1	.454	3
520				-136.119	2	-620.438	2	-120.146	1	0	3	.004	15	659	2
521		14	max		3	355.533	3	-5.71	15	0	2	.03	1	.266	3
522				-135.403	2	-621.679	2	-120.146	1	0	3	.001	15	332	2
523		15		567.775	3	354.602	3	-5.71	15	0	2	002	15	.079	3
524				-134.686	2	-622.919	2	-120.146	1	0	3	033	1	026	1
525		16		568.312	3	353.672	3	-5.71	15	0	2	005	15	.326	2
526		'		-133.97	2	-624.16	2	-120.146		0	3	096	1	108	3
527		17		568.849	3	352.741	3	-5.71	15	0	2	008	15	.655	2
528		- ' '		-133.254	2	-625.4	2	-120.146		0	3	16	1	294	3
529		18	max		15	645.262	2	-6.318	15	0	3	011	15	.33	2
530		10		-191.809	1	-297.128	3	-132.642	1	0	2	227	1	146	3
531		19		-9.051	15	644.021	2	-6.318	15	0	3	014	15	.011	3
532		13		-191.093	1	-298.058	3	-132.642	1	0	2	297	1	01	2
533	M5	1		411.903	1	2463.984	3	0	1	0	1	0	1	.028	2
534	IVIO			18.05	12	-1483.354	2	0	1	0	1	0	1	003	3
535		2	min	412.619	<u>12</u> 1	2463.053	3	0	1	0	1	0	1	003 .811	2
					12	-1484.594	2	0	1	0	1	0	1		3
536		2		18.408					1	-		_		-1.303	
537		3		1712.164 -1079.231	3	1585.824	2	0	1	0	<u>1</u> 1	0	1	1.558	2
538		A			2	-1741.89	3	0	-	0		0	1	-2.551	3
539		4	max	1712.701	3	1584.583	2	0	1	0	_1_	0	1	.721	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1078.515	2	-1742.821	3	0	1	0	1	0	1	-1.632	3
541		5	max	1713.238	3	1583.343	2	0	1	0	1	0	1	.004	9
542			min	-1077.798	2	-1743.751	3	0	1	0	1	0	1	712	3
543		6	max	1713.775	3	1582.102	2	0	1	0	1	0	1	.208	3
544			min	-1077.082	2	-1744.681	3	0	1	0	1	0	1	95	2
545		7	max	1714.313	3	1580.862	2	0	1	0	1	0	1	1.129	3
546			min	-1076.366	2	-1745.612	3	0	1	0	1	0	1	-1.784	2
547		8	max	1714.85	3	1579.621	2	0	1	0	1	0	1	2.05	3
548			min	-1075.65	2	-1746.542	3	0	1	0	1	0	1	-2.618	2
549		9		1741.468	3	171.463	2	0	1	0	1	0	1	2.357	3
550			min	-905.212	2	.376	15	0	1	0	1	0	1	-2.984	2
551		10	max	1742.005	3	170.223	2	0	1	0	1	0	1	2.286	3
552			min	-904.496	2	.002	15	0	1	0	1	0	1	-3.074	2
553		11	max	1742.543	3	168.982	2	0	1	0	1	0	1	2.216	3
554			min	-903.78	2	-1.349	4	0	1	0	1	0	1	-3.164	2
555		12		1769.34	3	1145.709	3	0	1	0	1	0	1	1.948	3
556				-733.387	2	-1927.97	2	0	1	0	1	0	1	-2.833	2
557		13		1769.878	3	1144.779	3	0	1	0	1	0	1	1.344	3
558				-732.671	2	-1929.211	2	0	1	0	1	0	1	-1.816	2
559		14		1770.415	3	1143.848	3	0	1	0	1	0	1	.74	3
560				-731.954	2	-1930.451	2	0	1	0	1	0	1	798	2
561		15		1770.952	3	1142.918	3	0	1	0	1	0	1	.221	2
562				-731.238	2	-1931.692	2	0	1	0	1	0	1	004	13
563		16		1771.489	3	1141.988	3	0	1	0	1	0	1	1.241	2
564				-730.522	2	-1932.932	2	0	1	0	1	0	1	466	3
565		17		1772.026	3	1141.057	3	0	1	0	1	0	1	2.261	2
566				-729.806	2	-1934.173	2	0	1	0	1	0	1	-1.069	3
567		18	max		12	2170.246	2	0	1	0	1	0	1	1.165	2
568			min	-412.13	1	-1015.525	3	0	1	0	1	0	1	559	3
569		19	max	-18.411	12	2169.006	2	0	1	0	1	0	1	.02	2
570				-411.414	1	-1016.455	3	0	1	0	1	0	1	023	3
571	M9	1	max		1	739.296	3	123.272	1	0	3	014	15	.001	3
572			min	9.043	15	-437.853	2	5.878	15	0	2	295	1	014	2
573		2	max	191.565	1	738.366	3	123.272	1	0	3	011	15	.217	2
574			min	9.259	15	-439.094	2	5.878	15	0	2	23	1	389	3
575		3	max		3	519.55	2	122.951	1	0	2	008	15	.438	2
576			min	-307.082	2	-538.97	3	5.852	15	0	3	165	1	763	3
577		4	max		3	518.31	2	122.951	1	0	2	005	15	.17	1
578				-306.366	2	-539.9	3	5.852	15	0	3	1	1	478	3
579		5	max		3	517.069	2	122.951	1	0	2	002	15	003	15
580				-305.65	2	-540.831			15		3	035	1	193	3
581		6		532.845	3	515.829	2	122.951	1	0	2	.03	1	.093	3
582				-304.933	2	-541.761	3	5.852	15	0	3	.001	15	382	2
583		7		533.382	3	514.588	2	122.951	1	0	2	.094	1	.379	3
584				-304.217	2	-542.691	3	5.852	15	0	3	.004	15	653	2
585		8		533.919	3	513.348	2	122.951	1	0	2	.159	1	.666	3
586				-303.501	2	-543.622	3	5.852	15	0	3	.008	15	925	2
587		9		549.549	3	51.278	2	178.579	1	0	3	004	15	.777	3
588				-220.895	2	.379	15	8.503	15	0	9	093	1	-1.06	2
589		10		550.086	3	50.037	2	178.579	1	0	3	.001	1	.757	3
590		10		-220.179	2	.004	15	8.503	15	0	9	0	15	-1.086	2
591		11		550.623	3	48.797	2	178.579	1	0	3	.095	1	.737	3
592				-219.463	2	-1.506	4	8.503	15	0	9	.005	15	-1.112	2
593		12		566.163	3	357.393	3	120.146	1	0	3	007	15	.642	3
594		14		-136.835	2	-619.198	2	5.71	15	0	2	157	1	986	2
595		13		566.701	3	356.463	3	120.146	1	0	3	004	15	<u>966</u> .454	3
596		10		-136.119	2	-620.438	2	5.71	15	0	2	094	1	659	2
030			1111111	100.119		020.430		J./ I	IJ	U		034		008	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	567.238	3	355.533	3	120.146	1	0	3	001	15	.266	3
598			min	-135.403	2	-621.679	2	5.71	15	0	2	03	1	332	2
599		15	max	567.775	3	354.602	3	120.146	1	0	3	.033	1	.079	3
600			min	-134.686	2	-622.919	2	5.71	15	0	2	.002	15	026	1
601		16	max	568.312	3	353.672	3	120.146	1	0	3	.096	1	.326	2
602			min	-133.97	2	-624.16	2	5.71	15	0	2	.005	15	108	3
603		17	max	568.849	3	352.741	3	120.146	1	0	3	.16	1	.655	2
604			min	-133.254	2	-625.4	2	5.71	15	0	2	.008	15	294	3
605		18	max	-9.267	15	645.262	2	132.642	1	0	2	.227	1	.33	2
606			min	-191.809	1	-297.128	3	6.318	15	0	3	.011	15	146	3
607		19	max	-9.051	15	644.021	2	132.642	1	0	2	.297	1	.011	3
608			min	-191.093	1	-298.058	3	6.318	15	0	3	.014	15	01	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.109	2	.009	3 9.081e-3	2	NC	1_	NC	1
2			min	0	15	017	3	005	2 -1.774e-3	3	NC	1	NC	1
3		2	max	.001	1	.387	3	.049	1 1.051e-2	2	NC	5	NC	2
4			min	0	15	116	1	.002	10 -1.907e-3	3	623.16	3	5190.609	1
5		3	max	0	1	.715	3	.12	1 1.194e-2	2	NC	5	NC	3
6			min	0	15	284	1	.006	15 -2.04e-3	3	344.395	3	2111.478	1
7		4	max	0	1	.913	3	.182	1 1.336e-2	2	NC	5	NC	3
8			min	0	15	379	1	.009	15 -2.173e-3	3	270.903	3	1393.655	1
9		5	max	0	1	.959	3	.213	1 1.479e-2	2	NC	5	NC	3
10			min	0	15	387	1	.01	15 -2.307e-3	3	258.264	3	1185.592	1
11		6	max	0	1	.855	3	.206	1 1.622e-2	2	NC	5	NC	5
12			min	0	15	311	1	.01	15 -2.44e-3	3	289.082	3	1227.496	1
13		7	max	0	1	.632	3	.162	1 1.765e-2	2	NC	5	NC	5
14			min	0	15	169	1	.008	15 -2.573e-3	3	388.163	3	1565.554	1
15		8	max	0	1	.35	3	.094	1 1.907e-2	2	NC	4	NC	3
16			min	0	15	009	9	.002	10 -2.706e-3	3	686.932	3	2720.286	1
17		9	max	0	1	.189	2	.031	3 2.05e-2	2	NC	4	NC	1
18			min	0	15	.004	15	008	10 -2.839e-3	3	2272.55	3	NC	1
19		10	max	0	1	.261	2	.029	3 2.193e-2	2	NC	3	NC	1
20			min	0	1	022	3	02	2 -2.972e-3	3	1659.264	2	NC	1
21		11	max	0	15	.189	2	.031	3 2.05e-2	2	NC	4	NC	1
22			min	0	1	.004	15	008	10 -2.839e-3	3	2272.55	3	NC	1
23		12	max	0	15	.35	3	.094	1 1.907e-2	2	NC	4	NC	3
24			min	0	1	009	9	.002	10 -2.706e-3	3	686.932	3	2720.286	1
25		13	max	0	15	.632	3	.162	1 1.765e-2	2	NC	5	NC	5
26			min	0	1	169	1	.008	15 -2.573e-3	3	388.163	3	1565.554	1
27		14	max	0	15	.855	3	.206	1 1.622e-2	2	NC	5	NC	5
28			min	0	1	311	1	.01	15 -2.44e-3	3	289.082	3	1227.496	1
29		15	max	0	15	.959	3	.213	1 1.479e-2	2	NC	5	NC	3
30			min	0	1	387	1	.01	15 -2.307e-3	3	258.264	3	1185.592	1
31		16	max	0	15	.913	3	.182	1 1.336e-2	2	NC	5	NC	3
32			min	0	1	379	1	.009	15 -2.173e-3	3	270.903	3	1393.655	1
33		17	max	0	15	.715	3	.12	1 1.194e-2	2	NC	5	NC	3
34			min	0	1	284	1	.006	15 -2.04e-3	3	344.395	3	2111.478	1
35		18	max	0	15	.387	3	.049	1 1.051e-2	2	NC	5	NC	2
36			min	001	1	116	1	.002	10 -1.907e-3	3	623.16	3	5190.609	1
37		19	max	0	15	.109	2	.009	3 9.081e-3	2	NC	1	NC	1
38			min	001	1	017	3	005	2 -1.774e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.234	3	.008	3 5.362e-3	2	NC	1	NC	1
40			min	0	15	355	2	004	2 -4.096e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.62	3	.034	1	6.451e-3	2	NC	5	NC	2
42			min	0	15	703	2	0	10	-5.012e-3	3	652.308	3	7551.461	1
43		3	max	0	1	.946	3	.097	1	7.539e-3	2	NC	15	NC	3
44			min	0	15	-1.001	2	.005	15	-5.928e-3	3	353.992	3	2620.343	1
45		4	max	0	1	1.169	3	.156	1	8.627e-3	2	NC	15	NC	3
46			min	0	15	-1.217	2	.008	15	-6.844e-3	3	269.451	3	1621.797	1
47		5	max	0	1	1.27	3	.19	1	9.715e-3	2	NC	15	NC	3
48			min	0	15	-1.334	2	.009	15	-7.761e-3	3	243.239	3	1332.23	1
49		6	max	0	1	1.249	3	.188	1	1.08e-2	2	9990.873	15	NC	3
50			min	0	15	-1.35	2	.009	15	-8.677e-3	3	248.292	3	1349.025	1
51		7	max	0	1	1.128	3	.15	1	1.189e-2	2	NC	15	NC	3
52			min	0	15	-1.283	2	.007	15	-9.593e-3	3	271.715	2	1693.632	1
53		8	max	0	1	.949	3	.088	1	1.298e-2	2	NC	15	NC	3
54			min	0	15	-1.164	2	.002	10	-1.051e-2	3	311.735	2	2904.317	1
55		9	max	0	1	.778	3	.028	3	1.407e-2	2	NC	5	NC	1
56			min	0	15	-1.042	2	007	10	-1.143e-2	3	366.83	2	NC	1
57		10	max	0	1	.698	3	.026	3	1.516e-2	2	NC	5	NC	1
58			min	0	1	984	2	018	2	-1.234e-2	3	400.706	2	NC	1
59		11	max	0	15	.778	3	.028	3	1.407e-2	2	NC	5	NC	1
60			min	0	1	-1.042	2	007	10	-1.143e-2	3	366.83	2	NC	1
61		12	max	0	15	.949	3	.088	1	1.298e-2	2	NC	15	NC	3
62			min	0	1	-1.164	2	.002	10	-1.051e-2	3	311.735	2	2904.317	1
63		13	max	0	15	1.128	3	.15	1	1.189e-2	2	NC	15	NC	3
64			min	0	1	-1.283	2	.007	15	-9.593e-3	3	271.715	2	1693.632	1
65		14	max	0	15	1.249	3	.188	1	1.08e-2	2	9990.873	15	NC	3
66			min	0	1	-1.35	2	.009	15	-8.677e-3	3	248.292	3	1349.025	1
67		15	max	0	15	1.27	3	.19	1	9.715e-3	2	NC	15	NC	3
68			min	0	1	-1.334	2	.009	15	-7.761e-3	3	243.239	3	1332.23	1
69		16	max	0	15	1.169	3	.156	1	8.627e-3	2	NC	15	NC	3
70			min	0	1	-1.217	2	.008	15	-6.844e-3	3	269.451	3	1621.797	1
71		17	max	0	15	.946	3	.097	1	7.539e-3	2	NC	15	NC	3
72			min	0	1	-1.001	2	.005	15	-5.928e-3	3	353.992	3	2620.343	1
73		18	max	0	15	.62	3	.034	1	6.451e-3	2	NC	5	NC	2
74			min	0	1	703	2	0	10	-5.012e-3	3	652.308	3	7551.461	1
75		19	max	0	15	.234	3	.008	3	5.362e-3	2	NC	1	NC	1
76			min	0	1	355	2	004	2	-4.096e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.238	3	.008	3	3.548e-3	3	NC	1	NC	1
78			min	0	1	354	2	004	2	-5.608e-3	2	NC	1	NC	1
79		2	max	0	15	.482	3	.035	1	4.349e-3	3	NC	5	NC	2
80			min	0	1	813	2	.001	10	-6.75e-3	2	549.068	2	7515.99	1
81		3	max	0	15	.693	3	.097	1	5.15e-3	3	NC	15	NC	3
82			min	0	1	-1.202	2	.005	15	-7.893e-3	2	297.225	2	2612.966	1
83		4	max	0	15	.846	3	.157	1	5.95e-3	3	NC	15	NC	3
84			min	0	1	-1.473	2	.008	15	-9.035e-3	2	225.256	2	1618.165	
85		5	max	0	15	.932	3	.191	1	6.751e-3	3	NC	15	NC	3
86			min	0	1	-1.602	2	.009	15	-1.018e-2	2	201.946	2	1329.448	1
87		6	max	0	15	.948	3	.188	1	7.552e-3	3	NC	15	NC	3
88			min	0	1	-1.59	2	.009	15	-1.132e-2	2	203.941	2	1346.003	1
89		7	max	0	15	.907	3	.15	1	8.352e-3	3	NC	15	NC	3
90			min	0	1	-1.461	2	.007	15	-1.246e-2	2	227.705	2	1688.796	1
91		8	max	0	15	.829	3	.088	1	9.153e-3	3	NC	15	NC	3
92			min	0	1	-1.264	2	.002	10	-1.361e-2	2	277	2	2890.239	
93		9	max	0	15	.748	3	.026	3	9.954e-3	3	NC	5	NC	1
94			min	0	1	-1.072	2	007		-1.475e-2	2	351.108	2	NC	1
95		10	max	0	1	.71	3	.024	3	1.075e-2	3	NC	5	NC	1
96			min	0	1	982	2	017	2	-1.589e-2	2	401.445	2	NC	1
97		11	max	0	1	.748	3	.026	3	9.954e-3	3	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
98			min	0	15	-1.072	2	007	10	-1.475e-2	2	351.108	2	NC	1
99		12	max	0	1	.829	3	.088	1	9.153e-3	3	NC	<u>15</u>	NC	3
100			min	0	15	-1.264	2	.002	10	-1.361e-2	2	277	2	2890.239	1
101		13	max	0	1	.907	3	.15	1	8.352e-3	3	NC	15	NC	3
102			min	0	15	-1.461	2	.007	15	-1.246e-2	2	227.705	2	1688.796	1
103		14	max	0	1	.948	3	.188	1	7.552e-3	3	NC	15	NC	3
104			min	0	15	-1.59	2	.009	15	-1.132e-2	2	203.941	2	1346.003	1
105		15	max	0	1	.932	3	.191	1	6.751e-3	3	NC	15	NC	3
106			min	0	15	-1.602	2	.009	15	-1.018e-2	2	201.946	2	1329.448	1
107		16	max	0	1	.846	3	.157	1	5.95e-3	3	NC	15	NC	3
108			min	0	15	-1.473	2	.008	15	-9.035e-3	2	225.256	2	1618.165	1
109		17	max	0	1	.693	3	.097	1	5.15e-3	3	NC	15	NC	3
110			min	0	15	-1.202	2	.005	15	-7.893e-3	2	297.225	2	2612.966	1
111		18	max	0	1	.482	3	.035	1	4.349e-3	3	NC	_ <u></u>	NC	2
112		1.0	min	0	15	813	2	.001	10	-6.75e-3	2	549.068	2	7515.99	1
113		19	max	0	1	.238	3	.008	3	3.548e-3	3	NC	1	NC	1
114			min	0	15	354	2	004	2	-5.608e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.096	2	.007	3	6.215e-3	3	NC	1	NC	1
116	IVITO		min	001	1	077	3	004	2	-7.48e-3	2	NC	1	NC	1
117		2	max	0	15	.067	3	.049	1	7.386e-3	3	NC	5	NC	2
118			min	001	1	238	2	.002	15	-8.526e-3	2	754.538	2	5225.091	1
119		3	max	<u>001</u> 0	15	.179	3	.12	1	8.556e-3	3	NC	5	NC	3
		3			1		2					419.316		2117.825	1
120		1	min	001	-	505		.006	15	-9.572e-3			2		
121		4	max	0	15	.24	3	.181	1	9.727e-3	3	NC 222.057	5_	NC	3
122		-	min	0	1	66	2	.009		-1.062e-2	2	333.257	2	1395.023	1
123		5	max	0	15	.24	3	.213	1	1.09e-2	3_	NC	5	NC	3
124			min	0	1	683	2	.01	15	-1.166e-2	2	323.53	2	1184.728	1
125		6	max	0	15	<u>.181</u>	3	.207	1	1.207e-2	3	NC	5	NC	3
126		_	min	0	1	577	2	.01	15	-1.271e-2	2	374.614	2	1224.073	1
127		7	max	0	15	.077	3	.163	1	1.324e-2	3	NC	5	NC	3
128			min	0	1	369	2	.008	15	-1.376e-2	2	541.69	2	1555.754	1
129		8	max	0	15	001	13	.095	1	1.441e-2	3	NC	4_	NC	3
130			min	0	1	112	2	.004	10	-1.48e-2	2	1209.697	2	2679.513	1
131		9	max	00	15	.129	1	.027	1	1.558e-2	3	NC	2	NC	2
132			min	0	1	16	3	006	10	-1.585e-2	2	3020.454	3	9600.815	1
133		10	max	0	1	.222	2	.021	3	1.675e-2	3_	NC	4_	NC	1
134			min	0	1	21	3	016	2	-1.69e-2	2	1893.565	3	NC	1
135		11	max	0	1	.129	1	.027	1	1.558e-2	3	NC	2	NC	2
136			min	0	15	16	3	006	10	-1.585e-2	2	3020.454	3	9600.815	1
137		12	max	0	1	.001	13	.095	1	1.441e-2	3	NC	4	NC	3
138			min	0	15	112	2	.004	10	-1.48e-2	2	1209.697	2	2679.513	1
139		13	max	0	1	.077	3	.163	1	1.324e-2	3	NC	5	NC	3
140			min	0	15	369	2	.008	15	-1.376e-2	2	541.69	2	1555.754	1
141		14	max	0	1	.181	3	.207	1	1.207e-2	3	NC	5	NC	3
142			min	0	15	577	2	.01	15		2	374.614	2	1224.073	1
143		15	max	0	1	.24	3	.213	1	1.09e-2	3	NC	5	NC	3
144			min	0	15	683	2	.01	15	-1.166e-2	2	323.53	2	1184.728	1
145		16	max	0	1	.24	3	.181	1	9.727e-3	3	NC	5	NC	3
146			min	0	15	66	2	.009	15	-1.062e-2	2	333.257	2	1395.023	1
147		17	max	.001	1	.179	3	.12	1	8.556e-3	3	NC	5	NC	3
148			min	0	15	505	2	.006	15	-9.572e-3	2	419.316	2	2117.825	1
149		18	max	.001	1	.067	3	.049	1	7.386e-3	3	NC	5	NC	2
150		10	min	001	15	238	2	.002	15	-8.526e-3		754.538	2	5225.091	1
		10													
151		19	max	001	15	.096	2	.007	3	6.215e-3	3	NC NC	<u>1</u> 1	NC NC	1
152	MO	4	min	0		077	3	004	2	-7.48e-3	<u>2</u>	NC NC	_	NC NC	
153	M2	1	max	.007	2	.008	2	.01	1	-1.296e-5	<u>15</u>	NC 0F0C 22F	1	NC 7227.20	2
154			min	009	3	014	3	0	15	-2.724e-4	<u> 1</u>	8506.225	2	7327.39	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

155	Member	Sec 2	max	x [in] .007	LC 2	y [in] .007	LC 2	z [in] .009	LC 1	x Rotate [r	LC 15	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 2
156			min	009	3	013	3	0	15	-2.568e-4	1	9852.821	2	7990.771	1
157		3	max	.006	2	.006	2	.008	1	-1.147e-5	15	NC	1	NC	2
158			min	008	3	013	3	0	15	-2.411e-4	1	NC	1	8781.258	1
159		4	max	.006	2	.005	2	.007	1	-1.073e-5	15	NC	1	NC	2
160			min	008	3	012	3	0	15	-2.255e-4	1	NC	1	9732.511	1
161		5	max	.005	2	.004	2	.006	1	-9.983e-6	15	NC	1	NC	1
162			min	007	3	012	3	0	15		1	NC	1	NC	1
163		6	max	.005	2	.003	2	.006	1	-9.238e-6	15	NC	1	NC	1
164			min	007	3	011	3	0	15	-1.941e-4	1	NC	1	NC	1
165		7	max	.005	2	.002	2	.005	1	-8.494e-6	15	NC	1	NC	1
166			min	006	3	011	3	0	15	-1.785e-4	1	NC	1	NC	1
167		8	max	.004	2	.001	2	.004	1	-7.749e-6	15	NC	1_	NC	1
168			min	006	3	01	3	0	15	-1.628e-4	1_	NC	1_	NC	1
169		9	max	.004	2	0	2	.004	1	-7.004e-6	15	NC	_1_	NC	1
170			min	005	3	009	3	0	15	-1.471e-4	1_	NC	1_	NC	1
171		10	max	.004	2	0	2	.003	1	-6.259e-6	15	NC	_1_	NC	1
172			min	005	3	009	3	0		-1.315e-4	<u>1</u>	NC	1_	NC	1
173		11	max	.003	2	00	2	.002	1	-5.514e-6	<u>15</u>	NC	_1_	NC	1
174			min	004	3	008	3	0		-1.158e-4	1_	NC	1_	NC	1
175		12	max	.003	2	001	15	.002	1	-4.769e-6	<u>15</u>	NC	_1_	NC	1
176		10	min	004	3	007	3	0	15	-1.001e-4	1_	NC	1_	NC	1
177		13	max	.002	2	001	15	.001	1	-4.024e-6	<u>15</u>	NC	1	NC	1
178		4.4	min	003	3	006	3	0	15	-8.446e-5	1_	NC NC	1_	NC NC	1
179		14	max	.002	2	001	15	001	1	-3.279e-6	<u>15</u>	NC NC	1	NC NC	1
180		15	min	003	2	005 0	3 15	0	15	-6.88e-5	1_	NC NC		NC NC	•
181 182		15	max	.002 002	3	004	3	0	15	-2.534e-6 -5.313e-5	<u>15</u> 1	NC NC	<u>1</u> 1	NC NC	1
183		16	min max	002 .001	2	004 0	15	0	1	-3.313e-3 -1.789e-6	15	NC NC	1	NC NC	1
184		10	min	002	3	003	3	0	15	-3.746e-5	1	NC NC	1	NC NC	1
185		17	max	0	2	003	15	0	1	-1.044e-6	15	NC	1	NC	1
186		- ' '	min	001	3	002	3	0	15	-2.18e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-2.993e-7	15	NC	1	NC	1
188			min	0	3	001	4	0	15	-6.132e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	9.533e-6	1	NC	1	NC	1
190			min	0	1	0	1	0	1	3.773e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-1.792e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-3.945e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	2.215e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	12	1.053e-6	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1_	4.825e-5	<u>1</u>	NC	_1_	NC	1
196			min	0	2	004	4	0	12	2.291e-6	15	NC	1_	NC	1
197		4	max	.001	3	001	15	0	1	7.435e-5	1_	NC	1	NC	1
198			min	001	2	006	4	0	15	3.529e-6	15	NC	1	NC	1
199		5	max	.002	3	002	15	0	1	1.005e-4	1_	NC	1	NC	1
200			min	001	2	008	4	0	15	4.767e-6	<u>15</u>	NC	1_	NC	1
201		6	max	.002	3	002	15	0	1	1.266e-4	1_	NC	1	NC	1
202		-	min	002	2	01	4	0	15			9626.391	4	NC NC	1
203		7	max	.002	3	003	15	0	1	1.527e-4	1_	NC	1_	NC NC	1
204		0	min	002	2	011	4	0		7.244e-6		8291.841	4_	NC NC	1
205		8	max	.003	3	003	15	.001	1	1.788e-4	1_	NC 7460 251	1_1	NC NC	1
206 207		9	min	002 .003	3	012 003	15	<u> </u>	15	8.482e-6	<u>15</u> 1	7469.351 NC	2	NC NC	1
208		9	max min	003	2	003 013	4	0	15	2.049e-4 9.72e-6		6986.082	4	NC NC	1
209		10	max	.004	3	013	15	.002	1	2.31e-4	<u>15</u> 1	NC	_ 4 _	NC NC	1
210		10	min	003	2	003 014	4	<u>.002</u>	15	1.096e-5		6758.456	4	NC NC	1
211		11	max	.004	3	003	15	.002	1	2.57e-4	1	NC	5	NC	1
411			παλ	.007		.000	10	.002		2.070 7		110		110	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	003	2	014	4	0	15	1.22e-5		6753.125	4_	NC	1
213		12	max	.005	3	003	15	.003	1	2.831e-4	1_	NC	3	NC	1_
214			min	004	2	013	4	0	15	1.343e-5	15	6974.193	4	NC	1
215		13	max	.005	3	003	15	.003	1	3.092e-4	1	NC	1	NC	1
216			min	004	2	013	4	0	15	1.467e-5	15	7466.441	4	NC	1
217		14	max	.005	3	003	15	.004	1	3.353e-4	1	NC	1	NC	1
218			min	004	2	011	4	0	15	1.591e-5	15	8338.264	4	NC	1
219		15	max	.006	3	002	15	.005	1	3.614e-4	1	NC	1	NC	1
220			min	005	2	01	4	0	15	1.715e-5	15	9828.827	4	NC	1
221		16	max	.006	3	002	15	.006	1	3.875e-4	1	NC	1	NC	1
222			min	005	2	008	4	0	15	1.839e-5	15	NC	1	NC	1
223		17	max	.007	3	001	15	.007	1	4.136e-4	1	NC	1	NC	1
224			min	005	2	006	1	0	15	1.963e-5	15	NC	1	NC	1
225		18	max	.007	3	0	15	.008	1	4.397e-4	1	NC	1	NC	1
226			min	006	2	004	1	0	15	2.086e-5	15	NC	1	NC	1
227		19	max	.007	3	0	10	.009	1	4.658e-4	1	NC	1	NC	2
228			min	006	2	002	1	0	15	2.21e-5	15	NC	1	9939.644	1
229	M4	1	max	.003	1	.006	2	0	15	1.089e-4	1	NC	1	NC	3
230			min	0	3	008	3	009	1	5.184e-6	15	NC	1	2732.922	1
231		2	max	.002	1	.005	2	0	15	1.089e-4	1	NC	1	NC	3
232			min	0	3	007	3	008	1	5.184e-6	15	NC	1	2967.636	1
233		3	max	.002	1	.005	2	0	15	1.089e-4	1	NC	1	NC	3
234			min	0	3	007	3	008	1	5.184e-6	15	NC	1	3247.24	1
235		4	max	.002	1	.005	2	0	15	1.089e-4	1	NC	1	NC	3
236			min	0	3	006	3	007	1	5.184e-6	15	NC	1	3583.35	1
237		5	max	.002	1	.005	2	0	15	1.089e-4	1	NC	1	NC	3
238			min	0	3	006	3	006	1	5.184e-6	15	NC	1	3991.755	1
239		6	max	.002	1	.004	2	0	15	1.089e-4	1	NC	1	NC	2
240			min	0	3	006	3	006	1	5.184e-6	15	NC	1	4494.349	
241		7	max	.002	1	.004	2	0	15	1.089e-4	1	NC	1	NC	2
242			min	0	3	005	3	005	1	5.184e-6	15	NC	1	5122.213	1
243		8	max	.002	1	.004	2	0	15	1.089e-4	1	NC	1	NC	2
244			min	0	3	005	3	004	1	5.184e-6	15	NC	1	5920.671	1
245		9	max	.001	1	.003	2	0	15	1.089e-4	1	NC	1	NC	2
246			min	0	3	004	3	004	1	5.184e-6	15	NC	1	6957.947	1
247		10	max	.001	1	.003	2	0	15	1.089e-4	1	NC	1	NC	2
248		"	min	0	3	004	3	003	1	5.184e-6	15	NC	1	8340.671	1
249		11	max	.001	1	.003	2	0	15	1.089e-4	1	NC	1	NC	1
250			min	0	3	003	3	002	1	5.184e-6	15	NC	1	NC	1
251		12	max	.001	1	.002	2	0	15		1	NC	1	NC	1
252		'-	min	0	3	003	3	002	1	5.184e-6	_	NC	1	NC	1
253		13	max	0	1	.002	2	0	15	1.089e-4	1	NC	1	NC	1
254			min	0	3	003	3	001	1	5.184e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	0		1.089e-4	1	NC	1	NC	1
256			min	0	3	002	3	001	1	5.184e-6	15	NC	1	NC	1
257		15	max	0	1	.002	2	0	15		1	NC	1	NC	1
258			min	0	3	002	3	0	1	5.184e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.089e-4	1	NC	1	NC	1
260		10	min	0	3	001	3	0	1	5.184e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.089e-4	1	NC	1	NC	1
262		11	min	0	3	0	3	0	1	5.184e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.089e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	5.184e-6	15	NC NC	1	NC	1
265		19		0	1	0	1	0	1	1.089e-4	1	NC NC	1	NC NC	1
266		13	max min	0	1	0	1	0	1	5.184e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.023	2	.031	2	0	1	0	1 <u>0</u>	NC NC	4	NC NC	1
268	IVIO		min	03	3	044	3	0	1	0	1	1602.584	3	NC NC	1
200			THILL	03	J	044	J	U		U		1002.304	J	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio L			
269		2	max	.021	2	.028	2	0	1_	0	_1_		4	NC	1
270			min	029	3	041	3	0	1	0	1_		3	NC	1
271		3	max	.02	2	.026	2	0	1	0	_1_		4	NC	1
272			min	027	3	039	3	0	1	0	1		3	NC	1
273		4	max	.019	2	.023	2	0	1	0	_1_		4	NC	1
274			min	025	3	036	3	0	1	0	1_		3	NC	1
275		5	max	.018	2	.021	2	0	1	0	1		4	NC	1
276			min	024	3	034	3	0	1	0	1		3	NC	1
277		6	max	.016	2	.018	2	0	1	0	1_		4	NC	1
278			min	022	3	031	3	0	1	0	1		3	NC	1
279		7	max	.015	2	.016	2	0	1	0	1		1	NC	1
280			min	02	3	029	3	0	1	0	1	2428.036	3	NC	1
281		8	max	.014	2	.013	2	0	1	0	1	NC	1	NC	1
282			min	018	3	026	3	0	1	0	1	2656.124	3	NC	1
283		9	max	.013	2	.011	2	0	1	0	1	NC	1	NC	1
284			min	017	3	024	3	0	1	0	1	2931.15	3	NC	1
285		10	max	.011	2	.009	2	0	1	0	1	NC	1	NC	1
286			min	015	3	021	3	0	1	0	1		3	NC	1
287		11	max	.01	2	.007	2	0	1	0	1		1	NC	1
288			min	013	3	019	3	0	1	0	1		3	NC	1
289		12	max	.009	2	.006	2	0	1	0	1		1	NC	1
290			min	012	3	016	3	0	1	0	1		3	NC	1
291		13	max	.008	2	.004	2	0	1	0	1		1	NC	1
292		10	min	01	3	014	3	0	1	0	1		3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1		1	NC	1
294		17	min	008	3	012	3	0	1	0	1		3	NC NC	1
295		15	max	.005	2	.002	2	0	1	0	1		1	NC	1
296		10	min	007	3	009	3	0	1	0	1		3	NC NC	1
297		16	max	.004	2	.001	2	0	1	0	1		1	NC NC	1
298		10	min	00 4	3	007	3	0	1	0	1		1	NC NC	1
299		17		.003	2	<u>007</u> 0	2	0	1		1		1	NC NC	1
		17	max		3	005			1	0	1		1	NC NC	1
300		10	min	003	2		3	0	1	0			_	NC NC	
301		18	max	.001		0	2	0	1	0	1		1		1
302		40	min	002	3	002	3	0	-	0			•	NC NC	
303		19	max	0	1	0	1	0	1	0	1_		1	NC NC	1
304	N 477		min	0	1	0	1	0	1	0	1_	110	1	NC NC	1
305	M7	1	max	0	1	0	1	0	1	0	1		1	NC_	1
306			min	0	1	0	1	0	1	0	1_		1	NC NC	1
307		2	max	.001	3	0	2	0	1	0	1_		1	NC	1
308			min	001	2	003	3	0	1	0	1_	.,,	1	NC NC	1
309		3	max	.003	3	0	2	0	1	0	1	NC NC	1	NC NC	1
310			min	003	2	005	3	0	1	0	1_		1	NC NC	1
311		4	max	.004	3	001	15	0	1	0	1_		1	NC	1
312			min	004	2	008	3	0	1	0	1_		1	NC	1
313		5	max	.005	3	002	15	0	1	0	1_	.,,	1	NC	1
314			min	005	2	01	3	0	1	0	1_	110	1	NC	1
315		6	max	.007	3	002	15	0	1	0	_1_		1	NC	1
316			min	006	2	012	3	0	1	0	1		3	NC	1
317		7	max	.008	3	003	15	0	1	0	1		1	NC	1
318			min	008	2	014	3	0	1	0	1	7813.264	3	NC	1
319		8	max	.009	3	003	15	0	1	0	1		1	NC	1
320			min	009	2	015	3	0	1	0	1	7262.585	3	NC	1
321		9	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
322			min	01	2	016	3	0	1	0	1		3	NC	1
323		10	max	.012	3	003	15	0	1	0	1		1	NC	1
324			min	011	2	016	3	0	1	0	1		4	NC	1
325		11	max	.013	3	003	15	0	1	0	1		1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	ΙC	(n) L/v Ratio	I C	(n) I /z Ratio	I.C.
326	Wichinger		min	013	2	016	3	0	1	0	1	6866.819	4	NC NC	1
327		12	max	.014	3	003	15	0	1	0	1	NC	1	NC	1
328			min	014	2	016	3	0	1	0	1	7086.332	4	NC	1
329		13	max	.016	3	003	15	0	1	0	1	NC	1	NC	1
330			min	015	2	015	3	0	1	0	1	7581.744	4	NC	1
331		14	max	.017	3	003	15	0	1	0	1	NC	1	NC	1
332			min	017	2	014	3	0	1	0	1	8462.611	4	NC	1
333		15	max	.018	3	002	15	00	1	0	1	NC	1_	NC	1
334			min	018	2	013	3	0	1	0	1	9971.148	4	NC	1
335		16	max	.02	3	002	15	0	1	0	1	NC	1_	NC	1
336			min	019	2	012	3	0	1	0	1	NC	1	NC	1
337		17	max	.021	3	<u>001</u>	15	0	1	0	1	NC	1	NC	1
338		10	min	02	2	01	3	0	1	0	1	NC	1_	NC NC	1
339		18	max	.022	3	0	10	0	1	0	1	NC	1_	NC	1
340		40	min	022	2	008	3	0	1	0	1	NC NC	1	NC NC	1
341		19	max	.024	3	0	10	0	1	0	1	NC NC	1_	NC NC	1
342	MO	1	min	023	1	006	3	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
343	M8		max min	.007	3	.022 024	3	0	1	0	1	NC NC	1	NC NC	1
345		2		.006	1	024 .021	2	0	1	0	1	NC NC	1	NC NC	1
346			max min	<u>.006</u>	3	023	3	0	1	0	1	NC NC	1	NC NC	1
347		3	max	.006	1	.023	2	0	1	0	1	NC	1	NC	1
348			min	0	3	022	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.018	2	0	1	0	1	NC	1	NC	1
350			min	0	3	02	3	0	1	0	1	NC	1	NC	1
351		5	max	.005	1	.017	2	0	1	0	1	NC	1	NC	1
352			min	0	3	019	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.016	2	0	1	0	1	NC	1	NC	1
354			min	0	3	018	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.015	2	0	1	0	1	NC	1	NC	1
356			min	0	3	016	3	0	1	0	1	NC	1	NC	1
357		8	max	.004	1	.014	2	0	1	0	1	NC	1	NC	1
358			min	0	3	015	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.012	2	0	1	0	1	NC	1	NC	1
360			min	0	3	014	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
362			min	0	3	012	3	0	1	0	1	NC	1_	NC	1
363		11	max	.003	1	.01	2	0	1	0	1	NC	1_	NC	1
364		10	min	0	3	011	3	0	1	0	1	NC	1_	NC	1
365		12	max	.003	1	.009	2	0	1	0	1	NC	1	NC NC	1
366		40	min	0	3	01	3	0	1	0	1	NC NC	1_	NC NC	1
367		13	max	.002	1	.007	2	0	1	0	1	NC	1_	NC NC	1
368		4.4	min	0	3	008	3	0	1	0	1	NC NC	1_	NC NC	1
369		14	max	.002	3	.006	3	0	1	0	1	NC NC	1	NC NC	1
370 371		15	min	<u> </u>	1	007 .005	2	0	1	0	1	NC NC	1	NC NC	1
372		10	max	0	3	005	3	0	1	0	1	NC NC	1	NC NC	1
373		16		.001	1	.004	2	0	1	0	1	NC	1	NC	1
374		10	max	0	3	004	3	0	1	0	1	NC NC	1	NC NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		17	min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	.003	2	0	1	0	1	NC	;	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.008	2	0	15	2.724e-4	1	NC	<u> </u>	NC	2
382			min	009	3	014	3	01	1	1.296e-5	15	8506.225	2	7327.39	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC		LC	(n) L/z Ratio	-
383		2	max	.007	2	.007	2	0	15	2.568e-4	_1_	NC	_1_	NC	2
384			min	009	3	013	3	009	1	1.222e-5	15	9852.821	2	7990.771	1
385		3	max	.006	2	.006	2	0	15	2.411e-4	<u>1</u>	NC	_1_	NC	2
386			min	008	3	013	3	008	1	1.147e-5	15	NC	1_	8781.258	1
387		4	max	.006	2	.005	2	0	15	2.255e-4	1_	NC	1_	NC	2
388			min	008	3	012	3	007	1	1.073e-5	15	NC	1	9732.511	1
389		5	max	.005	2	.004	2	0	15	2.098e-4	1_	NC	1_	NC	1
390			min	007	3	012	3	006	1	9.983e-6	15	NC	1	NC	1
391		6	max	.005	2	.003	2	0	15	1.941e-4	1_	NC	1	NC	1
392			min	007	3	011	3	006	1	9.238e-6	15	NC	1	NC	1
393		7	max	.005	2	.002	2	0	15	1.785e-4	1	NC	1	NC	1
394			min	006	3	011	3	005	1	8.494e-6	15	NC	1	NC	1
395		8	max	.004	2	.001	2	0	15	1.628e-4	1_	NC	1	NC	1
396			min	006	3	01	3	004	1	7.749e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.471e-4	1	NC	1	NC	1
398			min	005	3	009	3	004	1	7.004e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	1.315e-4	1	NC	1	NC	1
400			min	005	3	009	3	003	1	6.259e-6	15	NC	1	NC	1
401		11	max	.003	2	0	2	0	15	1.158e-4	1	NC	1	NC	1
402			min	004	3	008	3	002	1	5.514e-6	15	NC	1	NC	1
403		12	max	.003	2	001	15	0	15	1.001e-4	1	NC	1	NC	1
404			min	004	3	007	3	002	1	4.769e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	8.446e-5	1	NC	1	NC	1
406			min	003	3	006	3	001	1	4.024e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	6.88e-5	1	NC	1	NC	1
408			min	003	3	005	3	001	1	3.279e-6	15	NC	1	NC	1
409		15	max	.002	2	0	15	0	15	5.313e-5	1	NC	1	NC	1
410		10	min	002	3	004	3	0	1	2.534e-6	15	NC	1	NC	1
411		16	max	.002	2	0	15	0	15	3.746e-5	1	NC	1	NC	1
412		10	min	002	3	003	3	0	1	1.789e-6	15	NC	1	NC	1
413		17	max	0	2	<u>003</u>	15	0	15	2.18e-5	1	NC	1	NC	1
414		- ' '	min	001	3	002	3	0	1	1.044e-6	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	6.132e-6	1	NC	1	NC	1
416		10	min	0	3	001	4	0	1	2.993e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-3.773e-7	12	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-9.533e-6	1	NC NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.945e-6	1	NC	1	NC	1
	IVI I I			0	1	0	1	0	1	1.792e-7	12	NC	1	NC	1
420		2	min		3	<u> </u>		0	12	-1.053e-6		NC NC	1	NC NC	1
421 422			max	0	2	002	15	0	1	-2.215e-5	<u>15</u> 1	NC NC	1	NC NC	1
423		3	min	0	3	002 0	15						1		1
		3	max					0		-2.291e-6			-	NC NC	1
424		4	min	0	2	<u>004</u>	4	0	1_	-4.825e-5		NC NC	1_	NC NC	
425		4	max	.001	3	001	15	0	15	-3.529e-6		NC NC	1	NC	1
426		_	min	001	2	006	4	0	1_	-7.435e-5		NC NC	1_	NC NC	1
427		5	max	.002	3	002	15	0	15	-4.767e-6		NC NC	1_	NC NC	1
428			min	001	2	008	4	0	1_	-1.005e-4		NC NC	1_	NC NC	1
429		6	max	.002	3	002	15	0	15	-6.005e-6		NC 2000 CO4	1	NC	1
430		<u> </u>	min	002	2	01	4	0	1_	-1.266e-4		9626.391	4_	NC	1
431		7	max	.002	3	003	15	0	15	-7.244e-6		NC	1	NC	1
432			min	002	2	<u>011</u>	4	0	1	-1.527e-4	1_	8291.841	4_	NC	1
433		8	max	.003	3	003	15	0	15	-8.482e-6		NC 7400.054	1	NC	1
434			min	002	2	012	4	001	1	-1.788e-4		7469.351	4_	NC	1
435		9	max	.003	3	003	15	0	15	-9.72e-6	<u>15</u>	NC	2	NC	1
436			min	003	2	013	4	001	1	-2.049e-4	1_	6986.082	4	NC	1
437		10	max	.004	3	003	15	0	15	-1.096e-5	15	NC	5	NC	1
438			min	003	2	014	4	002	1	-2.31e-4	1_	6758.456	4	NC	1
439		11	max	.004	3	003	15	0	15	-1.22e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	003	2	014	4	002	1	-2.57e-4	1	6753.125	4	NC	1
441		12	max	.005	3	003	15	0	15	-1.343e-5	15	NC	3	NC	1
442			min	004	2	013	4	003	1	-2.831e-4	1_	6974.193	4	NC	1
443		13	max	.005	3	003	15	0	15		15	NC	_1_	NC	1
444			min	004	2	<u>013</u>	4	003	1_	-3.092e-4	1_	7466.441	4_	NC	1
445		14	max	.005	3	003	15	0	15		<u>15</u>	NC	1	NC NC	1
446		45	min	004	2	011	4	004	1	-3.353e-4	1_	8338.264	4	NC NC	1
447		15	max	.006	3	002	15	0	15		<u>15</u>	NC	1_	NC NC	1
448		4.0	min	005	2	01	4	005	1	-3.614e-4	1_	9828.827	4	NC NC	1
449		16	max	.006	3	002 008	15	0 006	15	-1.839e-5 -3.875e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	005 .007	3		15	<u>006</u> 0	15		1_	NC NC	1	NC NC	1
451		17	max	007 005	2	001 006	1	007	1	-1.963e-5 -4.136e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	max	.005	3	<u>006</u> 0	15	<u>007</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	006	2	004	1	008	1	-4.397e-4	1	NC NC	1	NC NC	1
455		19	max	.007	3	- <u>004</u> 0	10	008	15	-2.21e-5	15	NC	1	NC	2
456		13	min	006	2	002	1	009	1	-4.658e-4	1	NC	1	9939.644	1
457	M12	1	max	.003	1	.002	2	.009	1	-5.184e-6	15	NC	1	NC	3
458	IVIIZ	'	min	0	3	008	3	0		-1.089e-4	1	NC	1	2732.922	1
459		2	max	.002	1	.005	2	.008	1	-5.184e-6	15	NC	1	NC	3
460			min	0	3	007	3	0	15		1	NC	1	2967.636	
461		3	max	.002	1	.005	2	.008	1	-5.184e-6	15	NC	1	NC	3
462			min	0	3	007	3	0	15	-1.089e-4	1	NC	1	3247.24	1
463		4	max	.002	1	.005	2	.007	1	-5.184e-6	15	NC	1	NC	3
464			min	0	3	006	3	0	15	-1.089e-4	1	NC	1	3583.35	1
465		5	max	.002	1	.005	2	.006	1	-5.184e-6	15	NC	1	NC	3
466			min	0	3	006	3	0	15	-1.089e-4	1	NC	1	3991.755	1
467		6	max	.002	1	.004	2	.006	1	-5.184e-6	15	NC	1	NC	2
468			min	0	3	006	3	0	15		1	NC	1	4494.349	1
469		7	max	.002	1	.004	2	.005	1	-5.184e-6	<u>15</u>	NC	1_	NC	2
470			min	0	3	005	3	0	15		1_	NC	1	5122.213	1
471		8	max	.002	1	.004	2	.004	1	-5.184e-6	15	NC	_1_	NC	2
472			min	0	3	005	3	0	15	-1.089e-4	1_	NC	1_	5920.671	1
473		9	max	.001	1	.003	2	.004	1	-5.184e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	004	3	0	15	-1.089e-4	_1_	NC	_1_	6957.947	1
475		10	max	.001	1	.003	2	.003	1	-5.184e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	004	3	0	15	-1.089e-4	_1_	NC	1_	8340.671	1
477		11	max	.001	1	.003	2	.002	1	-5.184e-6	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	3	003	3	0	15		1_	NC	_1_	NC NC	1
479		12	max	.001	1	.002	2	.002	1	-5.184e-6	<u>15</u>	NC NC	1_	NC NC	1
480		40	min	0	3	003	3	0		-1.089e-4		NC NC	1	NC NC	1
481		13	max	0	3	.002	2	.001	1	-5.184e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	1	<u>003</u>	2	0	15	-1.089e-4 -5.184e-6	1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	.002	3	.001	1		1 <u>1</u>	NC NC	1	NC NC	1
484 485		15	min max	0	1	002 .001	2	<u> </u>	1 <u>5</u>	-1.089e-4 -5.184e-6		NC NC	1	NC NC	1
486		15	min	0	3	002	3	0		-1.089e-4	1	NC	1	NC	1
487		16	max	0	1	<u>002</u> 0	2	0	1	-5.184e-6		NC	1	NC	1
488		10	min	0	3	001	3	0		-1.089e-4	1	NC	1	NC	1
489		17		0	1	0	2	0	1		15	NC	1	NC	1
490		17	max min	0	3	0	3	0	<u> </u>	-1.089e-4	1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-5.184e-6		NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-5.184e-6	•	NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-1.089e-4	1	NC	1	NC	1
495	M1	1	max	.009	3	.109	2	.001	1	1.62e-2	2	NC	1	NC	1
496			min	005	2	017	3	0		-2.996e-2	3	NC	1	NC	1
											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio L			
497		2	max	.009	3	.051	2	0	15	7.946e-3	2		4	NC_	1
498			min	005	2	005	3	007	1	-1.482e-2	3		2	NC	1
499		3	max	.009	3	.014	3	0	15	2.223e-5	10		5	NC	1_
500			min	005	2	011	2	01	1	-1.895e-4	1_		2	NC	1
501		4	max	.009	3	.048	3	0	15	4.712e-3	2		5	NC	1_
502			min	005	2	081	2	009	1	-5.387e-3	3		2	NC	1
503		5	max	.009	3	.092	3	0	15	9.434e-3	2		5	NC	1_
504			min	005	2	155	2	006	1	-1.063e-2	3		2	NC	1
505		6	max	.009	3	.139	3	0	15	1.416e-2	2		15	NC	1
506			min	005	2	226	2	003	1	-1.587e-2	3		2	NC	1
507		7	max	.009	3	.184	3	0	1	1.888e-2	2		15	NC	1_
508			min	005	2	289	2	0	12	-2.111e-2	3		2	NC	1
509		8	max	.008	3	.222	3	.001	1	2.36e-2	2		15	NC	1_
510			min	004	2	34	2	0	15	-2.635e-2	3		2	NC	1
511		9	max	.008	3	.247	3	0	15	2.704e-2	2	8709.106	15	NC	1
512			min	004	2	372	2	0	1	-2.646e-2	3	239.918	2	NC	1
513		10	max	.008	3	.256	3	0	1	2.962e-2	2	8522.771	15	NC	1
514			min	004	2	383	2	0	12	-2.316e-2	3	234.969	2	NC	1
515		11	max	.008	3	.249	3	0	1	3.22e-2	2	8708.786	15	NC	1
516			min	004	2	372	2	0	15	-1.986e-2	3	240.774	2	NC	1
517		12	max	.008	3	.228	3	0	15	3.129e-2	2	9320.393	15	NC	1
518			min	004	2	338	2	001	1	-1.656e-2	3		2	NC	1
519		13	max	.007	3	.194	3	0	15	2.51e-2	2		15	NC	1
520			min	004	2	285	2	0	1	-1.325e-2	3		2	NC	1
521		14	max	.007	3	.151	3	.002	1	1.891e-2	2		_ 15	NC	1
522			min	004	2	219	2	0	15	-9.949e-3	3		2	NC	1
523		15	max	.007	3	.103	3	.006	1	1.272e-2	2		5	NC	1
524		'	min	004	2	146	2	0	15	-6.643e-3	3		2	NC	1
525		16	max	.007	3	.053	3	.008	1	6.535e-3	2		5	NC	1
526		10	min	004	2	073	2	0	15	-3.338e-3	3		2	NC	1
527		17	max	.007	3	.005	3	.009	1	6.168e-4	1		5	NC	1
528		- ' '	min	004	2	006	2	0	15	-3.31e-5	3		2	NC	1
529		18	max	.007	3	.048	2	.006	1	1.236e-2	2		4	NC	1
530		10	min	004	2	037	3	0	15	-5.262e-3	3		2	NC NC	1
531		19	max	.007	3	.096	2	0	15	2.48e-2	2		1	NC	1
532		19	min	00 <i>1</i>	2	077	3	001	1	-1.069e-2	3		1	NC	1
533	M5	1	max	.029	3	.261	2	0	1	0	<u> </u>		1	NC	1
534	IVIO			02	2	022	3	0	1	0	1		1	NC NC	1
		2	min			022 .12	2		1		1		•		•
535		2	max	.029	3			0		0	1		5	NC NC	1
536		2	min	02	2	001	3	0	1	0	1	0=00 .	2	NC NC	4
537		3	max	.029	3	.046	3	0	1	0	4		5	NC NC	1
538		4	min	02	2	037	2	0	1	0	1_		2	NC NC	1
539		4	max	.029	3	.141	3	0	1	0	1		15	NC NC	1
540		_	min	02	2	222	2	0	1	0	1_		2	NC NC	1
541		5	max	.028	3	.268	3	0	1	0	1		15	NC NC	1
542			min	02	2	422	2	0	1	0	1		2	NC NC	1
543		6	max	.027	3	41	3	0	1	0	1_		15	NC_	1
544			min	019	2	<u>619</u>	2	0	1	0	1_		2	NC	1
545		7	max	.027	3	.547	3	0	1	0	1_		15	NC	1
546			min	019	2	798	2	0	1	0	1_		2	NC NC	1
547		8	max	.026	3	.662	3	0	1	0	_1_		15	NC	1_
548			min	019	2	941	2	0	1	0	1		2	NC	1
549		9	max	.026	3	.736	3	0	1	0	_1_		15	NC	1
550			min	018	2	-1.031	2	0	1	0	1		2	NC	1
551		10	max	.025	3	.762	3	0	1	0	1		15	NC	1
552			min	018	2	-1.062	2	0	1	0	1		2	NC	1
553		11	max	.025	3	.743	3	0	1	0	1	3606.686	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

September Sept		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
See	554			min	018	2	-1.031	2	0	1	0	1	89.753	2	NC	1
557	555		12	max	.024	3	.679	3	0	1	0	1	3881.286	15	NC	1
558	556			min	017	2	936	2	0	1	0	1	97.159	2	NC	1
559	557		13	max	.023	3	.576	3	0	1	0	1	4416.617	15	NC	1
560	558			min	017	2	785	2	0	1	0	1	111.797	2	NC	1
561	559		14	max	.023	3	.446	3	0	1	0	1	5337.063	15	NC	1
562	560			min	017	2	597	2	0	1	0	1	137.384	2	NC	1
The color of the	561		15	max	.022	3	.301	3	0	1	0	1	6930.396	15	NC	1
See	562			min	017	2	394		0	1	0	1	182.708	2	NC	1
The color of the	563		16	max	.022	3	.154	3	0	1	0	1	9899.881	15	NC	1
See Min 016 2 02 2 0 1 0 1 463.587 2 NC 567 18 max .021 3 .113 2 0 1 0 1 NC 5 NC 568 min 016 2 103 3 0 1 0 1 1 NC 5 NC 569 19 max .021 3 .222 2 0 1 0 1 NC 1 NC 570 min 016 2 21 3 0 1 0 1 NC 1 NC 1 NC 571 M9 1 max .009 3 .109 2 0 15 2.996e-2 3 NC 1 NC 572 min 005 2 017 3 001 1 1.62e-2 2 NC 1 NC 573 2 max .009 3 .051 2 .007 1 1.482e-2 3 NC 1 NC 574 min 005 2 005 3 0 15 7.946e-3 2 1998.06 2 NC 575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.238-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5 .387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 283 2 0 15 -4.34e-3 2 437.445 2 NC 581 6 max .009 3 .184 3 0 12 .2111e-2 3 NC 15 NC 585 min 005 2 2289 2 0 1 1.88e-2 2 289.315 2 NC 585 min 005 2 2289 2 0 1 1.88e-2 2 2 289.315 2 NC 586 min 005 2 2289 2 0 1 1.88e-2 2 289.315 2 NC 586 min 004 2 372 2 0 15 -2.36e-2 2 234.4275 2 NC 586 min 004 2 372 2 0 15 -2.36e-2 2 234.969 2 NC 587 min 004 2 372 2 0 15 -2.36e-2 2 234.969 2 NC 589 min 004 2 372 2 0 1 -2.36e-2 2 234.969 2 NC 599 min 004 2 338 2 0 1 -2.96e-2 2 234.969 2 NC 599 min 004 2 338 2 0 1 -2.96e-2 2 234.969 2 NC 599 min 004 2 338 2 0 1 -2.96e-2 2 234.969 2 NC 599 min 004 2 338 2 0 1 -2.96				min	016				0	1	0	1			NC	1
Sef	565		17	max	.021	3	.016	3	0	1	0	1	NC	5	NC	1
Sef				min	016				0	1		1	463.587	2	NC	1
See			18				.113		0	1	0	1				1
The color of the					016	2	103	3	0	1	0	1	1024.582	2	NC	1
S70			19	max	.021	3			0	1	0	1	NC	1	NC	1
572 min 005 2 017 3 001 1 -1.62e-2 2 NC 1 NC 573 2 max .009 3 .051 2 .007 1 1.482e-2 3 NC 4 NC 574 min 005 2 005 3 0 15 -7.946e-3 2 1998.06 2 NC 575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 155 2 0 15 -9.434e-3 2 437.445					016	2	21	3	0	1	0	1	NC	1	NC	1
572 min 005 2 017 3 001 1 -1.62e-2 2 NC 1 NC 573 2 max .009 3 .051 2 .007 1 1.482e-2 3 NC 4 NC 574 min 005 2 005 3 0 15 -7.946e-3 2 1998.06 2 NC 575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 155 2 0 15 -9.434e-3 2 437.445		M9	1		.009	3	.109	2	0	15	2.996e-2	3	NC	1	NC	1
573 2 max .009 3 .051 2 .007 1 1.482e-2 3 NC 4 NC 574 min 005 2 005 3 0 15 -7.946e-3 2 1998.06 2 NC 575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 -4.712e-3 2 .666.704 2 NC 580 min 005 2 155 2 0 15 -4.712e-3 2 .066.704 2 NC				min					001				NC	1	NC	1
574 min 005 2 005 3 0 15 -7.946e-3 2 1998.06 2 NC 575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 -4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 226 2 0 15 -1.416e-2 2 347.445 </td <td>573</td> <td></td> <td>2</td> <td>max</td> <td>.009</td> <td>3</td> <td>.051</td> <td>2</td> <td>.007</td> <td>1</td> <td></td> <td>3</td> <td>NC</td> <td>4</td> <td>NC</td> <td>1</td>	573		2	max	.009	3	.051	2	.007	1		3	NC	4	NC	1
575 3 max .009 3 .014 3 .01 1 1.895e-4 1 NC 5 NC 576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 -4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC									0	15				2		1
576 min 005 2 011 2 0 15 -2.223e-5 10 962.198 2 NC 577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 -4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC 582 min 005 2 226 2 0 15 -1.416e-2 2 344.275			3			3		3	.01	1	1.895e-4	1		5	NC	1
577 4 max .009 3 .048 3 .009 1 5.387e-3 3 NC 5 NC 578 min 005 2 081 2 0 15 -4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 15 NC				min	005		011		0	15	-2.223e-5	10	962.198	2	NC	1
578 min 005 2 081 2 0 15 -4.712e-3 2 606.704 2 NC 579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC 582 min 005 2 226 2 0 15 -1.416e-2 2 344.275 2 NC 583 7 max .009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			4						.009							1
579 5 max .009 3 .092 3 .006 1 1.063e-2 3 NC 5 NC 580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC 582 min 005 2 226 2 0 15 -1.416e-2 2 344.275 2 NC 584 min 009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .227 3 0 1 2.646e-2 3 9321.063										15		2				1
580 min 005 2 155 2 0 15 -9.434e-3 2 437.445 2 NC 581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC 582 min 005 2 226 2 0 15 -1.416e-2 2 344.275 2 NC 583 7 max .009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .222 3 0 15 2.636e-2 3 9321.063 15 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 2			5	max					.006			3		5		1
581 6 max .009 3 .139 3 .003 1 1.587e-2 3 NC 15 NC 582 min 005 2 226 2 0 15 -1.416e-2 2 344.275 2 NC 583 7 max .009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .222 3 0 15 2.635e-2 3 9321.063 15 NC 586 min 004 2 34 2 001 1 -2.646e-2 2 256.824 2 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239										15			437.445	2	NC	1
582 min 005 2 226 2 0 15 -1.416e-2 2 344.275 2 NC 583 7 max .009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .222 3 0 15 2.635e-2 3 9321.063 15 NC 586 min 004 2 34 2 001 1 -2.36e-2 2 256.824 2 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 2			6	max	.009	3	.139	3	.003	1		3	NC	15	NC	1
583 7 max .009 3 .184 3 0 12 2.111e-2 3 NC 15 NC 584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .222 3 0 15 2.635e-2 3 9321.063 15 NC 586 min 004 2 34 2 001 1 -2.36e-2 2 256.824 2 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 23				min						15						1
584 min 005 2 289 2 0 1 -1.888e-2 2 289.315 2 NC 585 8 max .008 3 .222 3 0 15 2.635e-2 3 9321.063 15 NC 586 min 004 2 34 2 001 1 -2.36e-2 2 256.824 2 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 591 11 max .008 3 .249 3 0 15 1.986e-2			7	max	.009	3	.184	3	0	12		3	NC	15	NC	1
586 min 004 2 34 2 001 1 -2.36e-2 2 256.824 2 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2				min	005				0	1		2			NC	1
586 min 004 2 34 2 001 1 -2.36e-2 2 256.824 2 NC 587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2	585		8	max	.008	3	.222	3	0	15	2.635e-2	3	9321.063	15	NC	1
587 9 max .008 3 .247 3 0 1 2.646e-2 3 8709.106 15 NC 588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 <td< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td>34</td><td></td><td>001</td><td>1</td><td></td><td></td><td></td><td>2</td><td>NC</td><td>1</td></td<>				min			34		001	1				2	NC	1
588 min 004 2 372 2 0 15 -2.704e-2 2 239.918 2 NC 589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2			9							1		3				1
589 10 max .008 3 .256 3 0 12 2.316e-2 3 8522.771 15 NC 590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2					004	2	372		0	15		2			NC	1
590 min 004 2 383 2 0 1 -2.962e-2 2 234.969 2 NC 591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2			10		.008	3			0	12		3			NC	1
591 11 max .008 3 .249 3 0 15 1.986e-2 3 8708.786 15 NC 592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3				min					0	1					NC	1
592 min 004 2 372 2 0 1 -3.22e-2 2 240.774 2 NC 593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3 NC 15 NC 598 min 004 2 219 2 002 1 -1.891e-2 2 35			11		.008	3	.249	3	0	15		3		15	NC	1
593 12 max .008 3 .228 3 .001 1 1.656e-2 3 9320.393 15 NC 594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3 NC 15 NC 598 min 004 2 219 2 002 1 -1.891e-2 2 358.026 2 NC					004	2	372		0	1		2	240.774	2	NC	1
594 min 004 2 338 2 0 15 -3.129e-2 2 259.444 2 NC 595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3 NC 15 NC 598 min 004 2 219 2 002 1 -1.891e-2 2 358.026 2 NC	593		12	max	.008	3	.228	3	.001	1		3	9320.393	15	NC	1
595 13 max .007 3 .194 3 0 1 1.325e-2 3 NC 15 NC 596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3 NC 15 NC 598 min 004 2 219 2 002 1 -1.891e-2 2 358.026 2 NC	594			min	004	2	338	2	0	15	-3.129e-2	2	259.444	2	NC	1
596 min 004 2 285 2 0 15 -2.51e-2 2 295.725 2 NC 597 14 max .007 3 .151 3 0 15 9.949e-3 3 NC 15 NC 598 min 004 2 219 2 002 1 -1.891e-2 2 358.026 2 NC			13			3		3	0			3		15		1
597	596				004	2	285	2	0	15		2	295.725	2	NC	1
598 min004 2219 2002 1 -1.891e-2 2 358.026 2 NC			14	max	.007	3	.151		0	15		3	NC	15	NC	1
	598			min	004	2		2	002			2	358.026	2	NC	1
			15							15		3				1
600 min004 2146 2006 1 -1.272e-2 2 465.861 2 NC									006							1
			16							15						1
									008							1
			17							15						1
										-						1
			18							15		3		4		1
									006							1
			19							1						1
										15				1		1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	1/5				
Project:	Standard PVMax - Worst Case, 34-	Standard PVMax - Worst Case, 34-35 Inch Width					
Address:							
Phone:							
E-mail:							

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 34-	-35 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2700.0	1671.0	0.0	1671.0
2	2700.0	1671.0	0.0	1671.0
Sum	5400.0	3342.0	0.0	3342.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5400 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	r _c (psi)	n _{ef} (In)	N _b (ID)					
17.0	1.00	2500	6.000	12492					
$\phi N_{cbg} = \phi (A_{I})$	$_{ m lc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ed}$	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (\$	Sec. D.4.1 & Eq	. D-5)					
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$arPsi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)	
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231	_

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi da$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_{a}$ / $A_{Na0}) arPsi_{ed,Na} arPsi_{g}$	$_{g,Na} arPsi_{ec,Na} arPsi_{p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{\!\scriptscriptstyle {p,Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/e^2)$	da) ^{0.2} √daλ√f'c c a1	^{1.5} (Eq. D-24)				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)	
4.00	0.50	1.00	2500	12.00	15593	

 $\phi V_{cbgx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} (Sec. D.4.1 \& Eq. D-22)$

A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
612.00	648.00	1.000	0.944	1.000	1.000	15593	0.70	9735

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	14.66	21056		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
791.64	967.12	1.000	1.000	1.000	21056	0.70	24129

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{ec},\textit{N}} \, \Psi_{\textit{ed},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ ho,Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2700	6071	0.44	Pass
Concrete breakout	5400	10231	0.53	Pass
Adhesive	5400	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1671	3156	0.53	Pass (Governs)
T Concrete breakout x+	3342	9735	0.34	Pass
Concrete breakout y-	1671	24129	0.07	Pass
Pryout	3342	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 34-35 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3	0.67	0.53	119.7 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.