ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

2D/2D/2D heterojunction of Ti_3C_2 MXene/MoS $_2$ nanosheets/TiO $_2$ nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity

Yujie Li, Zhaohua Yin, Guanrui Ji, Zhangqian Liang, Yanjun Xue, Yichen Guo, Jian Tian*, Xinzhen Wang*, Hongzhi Cui*

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

ARTICLE INFO

Keywords: Photocatalytic H₂ production Exposed active facet Ti₃C₂ MXene MoS₂ nanosheets TiO₂ nanosheets

ABSTRACT

Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO_2 nanosheets (NSs) are $in\ situ$ grown on highly conductive Ti_3C_2 MXene and then MoS_2 NSs are deposited on the (101) facets of TiO_2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of $Ti_3C_2@TiO_2@MoS_2$ composite is achieved. With an optimized MoS_2 loading amounts (15 wt%), the $Ti_3C_2@TiO_2@MoS_2$ composite shows a remarkable enhancement in the photocatalytic H_2 evolution reaction compared with $Ti_3C_2@TiO_2$ composite and TiO_2 NS. It also shows good stability under the reaction condition. This arises from: (i) the $in\ situ$ growth of TiO_2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti_3C_2 , which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO_2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS_2 NSs are deposited on the electrons-rich (101) facets of TiO_2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO_2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.

1. Introduction

To solve the ever increasing global demands for energy crisis and environmental protection, the development of clean energy has attracted great attention recently [1,2]. Hydrogen evolution via photocatalytic water splitting is a promising approach to alleviating the energy and environmental crisis [3-5]. TiO2 is one of the most important semiconductor-based photocatalysts and has been widely studied for photocatalytic H₂ production [6,7]. However, the application of TiO₂ is restricted due to the rapid recombination of photo-generated electronhole pairs, so massive scientific endeavors (for instance, surface modification, cocatalyst loading, impurity doping and heterojunction construction) have been devoted to promote photo-induced electrons and holes separation over the TiO2 -based photocatalysts [8,9]. Since Yang et al. found that the 47% exposed active (001) facets of TiO2 nanosheets (NSs) showed the highest photocatalytic activity [10], morphology engineering of TiO2 that can attain exposed high-active crystal facets is a promising approach to enhance the photocatalytic activity [11]. TiO₂ has three different exposed facets: (001), (100) and (101). The order of the average surface energies of crystal facets follows $0.90\,\mathrm{J/m^2}$ for (001) $> 0.53\,\mathrm{J/m^2}$ for (100) $> 0.44\,\mathrm{J/m^2}$ for (101) [12]. Besides, TiO₂ NSs with exposed (101) and (001) facets can form a surface heterojunction, which is beneficial for the transfer of photogenerated electrons and holes to (101) and (001) facets [13].

Herein, we propose a new design of TiO_2 -based photocatalyst with dual co-catalysts, in which both two-dimensional (2D) Ti_3C_2 MXene and MoS_2 NSs act as electron mediators and reduction cocatalysts. Recently, MXenes, a new family of 2D transition metal carbides, have been successfully synthesized by selective exfoliation of ternary carbides, nitrides, or carbonitrides with a general formula of $M_{n+1}X_n$, where M represents transition metals (such as Sc, Ti, Ta, Cr, Mo, $\it{etc.}$) and X is carbon and/or nitrogen [14–16]. The density functional theory (DFT) calculations indicate that MXenes exhibit metallic conductivity, which have been explored for catalysis, energy storage and conversion [17,18]. The experimental characterizations have also been demonstrated crucial to be the effective electrocatalysts in the hydrogen

E-mail addresses: jiantian@sdust.edu.cn (J. Tian), xzwang@sdust.edu.cn (X. Wang), cuihongzhi1965@163.com (H. Cui).

^{*} Corresponding authors.

evolution reaction (HER) [19,20], indicating that MXenes may be a good cocatalyst for photocatalytic H2. These unique electronic properties suggest the potential of MXene as a promoter for the transfer and accumulation of charge carrier, which can cause a negative shift and alignment of the Fermi level and improve the photocatalytic water splitting [21,22]. Molybdenum disulfide (MoS₂) is also a typical 2D layered transition metal sulfide with a structure composed of three stacked atom layers, composed of Mo atoms sandwiched between two layers of hexagonally close-packed sulfur atoms (S-Mo-S) [23]. MoS₂ can be used as a promising cost-effective cocatalysts and shows superior photocatalytic H₂ production activity, due that the unsaturated S atoms on the exposed edges of MoS2 act as active sites and have a strong affinity to H⁺ in solution [24]. More importantly, the unique 2D structure of MXenes and MoS2 with rich surface groups favors the construction of 2D-2D-2D heterojunction based on MXenes, MoS2 and 2D semiconductors, establishing strong interface contact between cocatalyst and photocatalyst. Such 2D-2D-2D heterojunction with intimate contact can greatly improve the transfer and separation of photo-induced charge carriers across the heterojunction interface due to intense physical and electronic coupling effects [25].

In this paper, the design motif is the grafting of in situ growth of TiO_2 NSs on the Ti_3C_2 MXene and MoS_2 NSs on the (101) facets of TiO_2 NSs with mainly exposed high-active (001) facets via a two-step hydrothermal method. In this design, electrons and holes are photogenerated on the (001) surfaces of TiO2, the most active surface for photocatalysis. Besides, the high electronic conductivity of Ti₃C₂ MXene acts as a source of titanium and a pathway transferring photogenerated electrons to enhance the separation efficiency of charges. Furthermore, the photogenerated electrons and holes can be respectively transferred onto (101) and (001) facets of TiO2 due to the presence of surface heterojunction. Moreover, the deposited of MoS₂ NSs on the (101) facets of TiO2 NSs can capture photogenerated electrons of (101) facets and act as reduction active sites. Through this design, the photogenerated charge carriers are effectively separated, and the activity of photocatalytic H₂ production is improved, showing the promise of dual cocatalyst strategy for photocatalysis.

2. Experimental procedure

2.1. Materials

The Ti_3AlC_2 powder was provided by Hello Nano Technology Co., Ltd., Changchun. Hydrofluoric acid (HF, 40 wt%), hydrochloric acid (HCl), sodium tetrafluoroborate (NaBF₄), sodium molybdate dihydrate (Na₂MoO₄·2H₂O), and thiourea (CN₂H₄S) were purchased from Sinopharm. All chemicals used were of analytical reagent grade.

2.2. Preparation of Ti₃C₂ MXene

Typically, 1 g Ti $_3$ AlC $_2$ powders were slowly added to 200 mL 40 wt % HF solution. Then the reaction mixtures were stirred for 72 h at room temperature. After that, the mixed solutions were washed with deionized water to neutral, and the powders were collected after discarding the supernatant. Finally, Ti $_3$ C $_2$ MXene was dried in vacuum oven at 50 °C for 12 h.

2.3. Preparation of Ti₃C₂@TiO₂ composites and TiO₂ nanosheets (NSs)

To synthesis of $Ti_3C_2@TiO_2$ composites, $100\ mg\ Ti_3C_2$ MXene and $0.1\ M$ NaBF $_4$ were added into $15\ ml$ of $1.0\ M$ HCl. After the solution had been stirred for $30\ min$, it was transferred into a $25\ mL$ Teflon-lined stainless-steel autoclave, which was hydrothermally treated at $160\ ^\circ C$ for $12\ h$. After naturally cooling down to room temperature, the reaction solution was collected by vacuum filtration, and the resulting $Ti_3C_2@TiO_2$ composites were washed with distilled water several times, and dried in vacuum oven at $60\ ^\circ C$ for $12\ h$.

For comparison, pure TiO $_2$ NSs were also synthesized with Ti(OBu) $_4$ as the source of titanium. In the synthesis process, 0.5 mL Ti(OBu) $_4$ and 0.15 g CFs were slowly dropped into HCl (9 mL, 5 M) solution. After the solution was stirred for 30 min, then 0.2 mL HF was added to the mixed solution. And the solutions were transferred into Teflon-lined stainless-steel autoclaves with a total volume of 25 mL. The hydrothermal synthesis was conducted at 180 °C for 4 h in an electric oven. The obtained CF@TiO $_2$ composites were heated at 800 °C for 2 h to remove the CF templates.

2.4. Preparation of Ti₃C₂@TiO₂@MoS₂ composites

synthesis of Ti₃C₂@TiO₂@MoS₂ composites, 15 mg Na₂MoO₄·2H₂O and 30 mg CN₂H₄S were dissolved in 20 mL deionized water to form a transparent solution. Then, 60 mg Ti₃C₂@TiO₂ composites was added into the above solution and stirred to form the suspension. The suspension was transferred into a 25 mL Teflon-lined stainless-steel autoclave, which was hydrothermally treated at 200 °C for 24 h. After naturally cooling down to room temperature, the reaction solution was collected by vacuum filtration, and the resulting Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂) were washed with distilled water several times, and dried in vacuum oven at 50 °C for 12 h. Similarity, by changing the mass of Na₂MoO₄·2H₂O (7.5 mg, 23 mg, and 30 mg) and CN₂H₄S (15 mg, 46 mg, 60 mg), Ti₃C₂@TiO₂@MoS₂ composites with other MoS₂ loading amounts (10 wt%, 25 wt%, 30 wt%) were obtained, respectively.

2.5. Characterization

The phase constituents of the synthesized products were analyzed by X-ray diffraction (XRD, D/Max 2500PC Rigaku, Japan) with Cu $K\alpha$ $(\lambda = 0.15406 \, nm)$ radiation source. The nanostructure and surface characteristic of the products were observed with a high-resolution scanning electron microscope (FESEM, FEI Nova Nanosem 450, USA) with an energy-dispersive X-ray spectroscopy (EDS). High transmission electron microscopy (HRTEM) was carried out with a JEOL JEM 2100 F field emission transmission electron microscope. The chemical states of the composite were tested using X-ray photoelectron spectrometry measurements (XPS, Thermo ESCALAB 250XI, USA). The UV-vis diffuse reflectance spectra (DRS) of the samples were tested on a UV-vis spectrophotometer (Hitachi UV-3101) with an integrating sphere attachment within 200-800 nm range and with BaSO₄ as the reflectance standard. The surface area was measured using the Brunauer Emmett Teller (BET) method as-examined on a Micromeritics ASAP2020 nitrogen adsorption-desorption apparatus. The photoluminescence (PL) spectra were acquired at room temperature with a FLS920 fluorescence spectrometer under the ultraviolet excitation of 325 nm.

2.6. Photocatalytic and photoelectrochemical activity test

The photocatalytic reaction was implemented in a Pyrex glass vessel, with a top quartz window suitable for vertical illumination, connected to a gastight circulation system. A 300 W Xe arc lamp (CELHXF300, Beijing China Education Au-light Co., Ltd.) with an AM-1.5 filter was used as the light source. The experiments were performed in aqueous acetone with dissolved sacrificial reagent (TEOA), and suspended with 10 mg of catalysts powder following ultrasonic dispersion for 10 min. Then the reaction solution was evacuated several times to remove air and the reaction temperature of reactant solution was maintained at 25 °C. The amount of the generated hydrogen was analyzed by a gas chromatograph (Techcomp GC-7920) equipped with a thermal conductivity detector (TCD). The apparent quantum efficiency (AQE) was measured under the same light source. The focused intensity on the flask was ca. 513 mW/cm². The AQE was calculated according to the following equations:

Scheme 1. Schematic illustration of the preparation of Ti₃C₂@TiO₂@MoS₂ composites.

$$AQE = \frac{\text{number of reacted electrons}}{\text{number of incient photons}} \times 100 \%$$

$$= \frac{2 \times \text{number of evolved hydrogen molecules}}{\text{number of incient photons}} \times 100\%$$
(1)

Transient photocurrent responses (PEC) and electrochemical impedance spectroscopy (EIS) curves were measured under a 300 W Xe arc lamp with an AM-1.5 filter with light on-off switches of 100 s in a three-electrode electrochemical cell in the $0.5\,\mathrm{M}\,\mathrm{Na_2SO_4}$ electrolyte, in which Pt wire and Ag/AgCl electrode were used as the counter and reference electrodes, respectively. 5 mg as-synthesized samples were mixed with $0.5\,\mathrm{mL}$ ethanol and terpilenol. After sonicated for 5 min, the mixture was dropped onto fluoride-tin oxide (FTO) conductor glass and dried at 50 °C for 6 h to form a working electrode.

3. Results and discussion

Scheme 1 describes the synthesis strategy of the hybrid structures of the ${\rm Ti}_3{\rm C}_2@{\rm TiO}_2@{\rm MoS}_2$ composites. Firstly, The ${\rm Ti}_3{\rm AlC}_2$ ceramics (MAX phase) are firstly etched by HF to remove the Al layers [26]. Secondly, the *in-situ* growth of ${\rm TiO}_2$ NSs with preferentially exposed (001) facets from the layered ${\rm Ti}_3{\rm C}_2$ MXene are got through the hydrothermal oxidation of ${\rm TiO}_2$ NSs with abundant high-activity (001) surfaces can improve the photocatalytic activity. Subsequently, the obtained ${\rm Ti}_3{\rm C}_2@{\rm TiO}_2$ composites are immersed in a clear solution with ${\rm Na}_2{\rm MoO}_4\cdot{\rm 2H}_2{\rm O}$ and ${\rm CN}_2{\rm H}_4{\rm S}$ at 200 °C for 24 h in order to introduce ${\rm MoS}_2$ cocatalyst. Ultimately, ${\rm MoS}_2$ NSs are deposited onto (101) facets of ${\rm TiO}_2$ NSs to form the ternary ${\rm Ti}_3{\rm C}_2@{\rm TiO}_2@{\rm MoS}_2$ composites.

The etching of Ti_3AlC_2 and the formation of Ti_3C_2 and $Ti_3C_2@TiO_2$ composites were clearly revealed by XRD analysis. The MAX phase exhibits intense peaks, which can be assigned to Ti_3AlC_2 according to previous reports [26,27]. After Ti_3AlC_2 was etched by HF, as expected, the most intense (104) diffraction peak in Ti_3AlC_2 pattern located at 39° completely disappeared (Fig. 1a). The (002) at 9.58° and (004) at

 19.17° of Ti_3AlC_2 were broadened and shifted toward lower angle side, indicating the transformation from Ti_3AlC_2 to Ti_3C_2 MXene [28]. The hydrothermal oxidation of Ti_3C_2 caused the growth of TiO_2 NSs across the layered Ti_3C_2 sheets, evidenced by the SEM image in Scheme 1 and the emergence of XRD reflections from anatase TiO_2 (Fig. 1a, JCPDS No. 21-1272). For $Ti_3C_2@TiO_2@MoS_2$ composites with different MoS_2 loading amounts (Fig. 1b), all the diffraction peaks could be well indexed to the Ti_3C_2 or anatase TiO_2 . No signals assignable to MoS_2 are detectable. This can be explained by the fact that MoS_2 is ultra-thin and is high dispersed on the $Ti_3C_2@TiO_2@MoS_2$ composites.

The morphology of Ti₃C₂ MXene, Ti₃C₂@TiO₂ composites, and Ti₃C₂@TiO₂@MoS₂ composites with different MoS₂ loading amounts were characterized by scanning electron microscopy (SEM) (Figs. 2, S1 and S2). As shown in Fig. 2a, as the Al atoms between layers are removed after HF etching, the formed loose accordion-shape layered structure reveals the typical MXene morphology. After hydrothermal oxidation of Ti₃C₂ MXene, a lot of nanosheets are sideling inserted across the stack of Ti₃C₂ MXene to form 2D-2D Ti₃C₂@TiO₂ composites (Fig. 2b). These nanosheets are anatase TiO2 with exposed (001) surfaces which are in situ grown due to the introduction of HCl and NaBF4 during the delamination of Ti₃C₂. Under the acidic hydrothermal conditions, the layered Ti₃C₂ provides Ti sources for the growth of TiO₂ [29]. Assisted by the directing reagent NaBF₄, the formation of highenergy (001) facets is enhanced during the sequential crystal growth, because of the lower energy of (101) planes adsorbing F⁻ [25,30-32]. The TiO₂ NSs with the most active (001) facets can be homogeneously distributed around the layered Ti₃C₂ to provide improved accessibility to light and reactants. More importantly, the 2D Ti₃C₂ sheets traverse TiO₂ nanocrystals at the most active (001) facets, as shown in Fig. 2b. The intimate contact between these two phases might facilitate the separation of charge carriers photogenerated on the (001) surfaces, thereby improving the photocatalytic activity.

For $Ti_3C_2@TiO_2@MoS_2$ composites (15 wt% MoS_2), it should be noted that most of MoS_2 NSs with a very thin layer can be found on the (101) facets of TiO_2 NSs in $Ti_3C_2@TiO_2$ composites (Fig. 2c), while a

Fig. 1. XRD patterns of (a) Ti₃AlC₂, Ti₃C₂ MXene, Ti₃C₂@TiO₂ composites and (b) Ti₃C₂@TiO₂@MoS₂ composites with different MoS₂ loading amounts (10 wt%, 15 wt%, 25 wt%, 30 wt%).

Fig. 2. SEM images of (a) Ti₃C₂ MXene, (b) Ti₃C₂@TiO₂ composites, and (c, d) Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂).

few of MoS_2 NSs are observed on the (001) facets. This phenomenon is also confirmed by a magnified FE-SEM image of $Ti_3C_2@TiO_2$ composites (Fig. 2d), which can keep the maximum exposure of (001) facets of TiO_2 NSs with higher surface energy. Furthermore, $Ti_3C_2@TiO_2@MoS_2$ composites with other different MoS_2 loading amounts (10 wt%, 25 wt %, 30 wt%) are also obtained, the corresponding SEM images are shown in Fig. S1. The SEM images of pure TiO_2 NSs and $TiO_2@MoS_2$ composites (15 wt%) are shown in Fig. S2. As shown in Fig. S2a, TiO_2 NS still keep a sheet shaped structure with co-exposed (001) and (101) facets. For $TiO_2@MoS_2$ composites (15 wt% MoS_2), most of MoS_2 NSs are assembled on the (101) facets of TiO_2 NSs (Fig. S2b). Moreover, The EDS mapping images and point scan (Figs. S3, S4 and Table S1) shows that Ti, C, C0, C1 Mo and C2 elements can be observed in the $Ti_3C_2@TiO_2@MoS_2$ composites, and no other impurities are observed.

Taking advantage of transmission electron microscope (TEM) can give an insight into the heterojunctions between the Ti_3C_2 , TiO_2 and MoS_2 . Fig. 3 shows the TEM images of $Ti_3C_2@TiO_2@MoS_2$ composites. Under the low magnification (Fig. 3a and b), a 2D transparent layered structure can be observed which possess the unique texture of the delaminated MXene sample and decorated with some TiO_2 NSs and MoS_2 NSs. The clearly-observed lattice fringes of the Ti_3C_2 , TiO_2 and MoS_2 (Fig. 3c) suggested successful preparation of the $Ti_3C_2@TiO_2@MoS_2$ composite. In detail, the lattices with d spaces of 0.98, 0.62 and 0.35 nm

are attributed to the (002) planes of Ti_3C_2 MXene, the (002) planes of MoS_2 , and the (101) planes of TiO_2 , respectively [31–33]. Interestingly, thin MoS_2 NSs are intimately deposited on the (101) facets of TiO_2 NSs with few layers. All these results of electron microscopy strongly suggest the uniform and intimate coupling between Ti_3C_2 , TiO_2 and MoS_2 NSs, namely, the successful construction of 2D-2D-2D heterojunction of Ti_3C_2 @ TiO_2 @ MoS_2 composites. Such heterojunction is featured with large contact area between cocatalyst and photocatalyst, effectively facilitating the interfacial charge transfer during the photocatalytic reactions [34].

 $Ti_3C_2@TiO_2@MoS_2$ composites is investigated to further confirm the chemical composition and states of elements, the results are shown in Fig. 4. From the survey scan of the $Ti_3C_2@TiO_2@MoS_2$ composites (Fig. 4a), the concomitant of Ti, C, O, Mo and S elements were detected, in concert with EDS mapping, whereas impurity F element can also be found because of the residue F ions from the HF solution. The peak located at 685 eV can be attributed to the F^- ions physically adsorbed on the surface of $Ti_3C_2@TiO_2@MoS_2$ composites (Fig. S5). The Ti 2p XPS spectra of $Ti_3C_2@TiO_2@MoS_2$ composites can be deconvoluted into two doublet peaks (Fig. 4b). The two peaks at binding energies of 459.3 eV (Ti $2p_{3/2}$) and 465.1 eV (Ti $2p_{1/2}$) are attributed to the lattice Ti-O bond in TiO_2 [35], while the other two peaks at binding energies of 455.5 eV (Ti $2p_{3/2}$) and 461.6 eV (Ti $2p_{1/2}$) correspond to the lattice

Fig. 3. TEM images of Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂).

Fig. 4. XPS spectra of (a) fully scanned spectra, (b) Ti 2p, (c) C 1 s, (d) O 1 s, (e) Mo 3d and (f) S 2p in Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂).

Ti–C bond in Ti_3C_2 [25]. Furthermore, the C 1 s XPS spectrum of $Ti_3C_2@TiO_2@MoS_2$ composites exhibits two obvious peaks at 284.8 and 282.1 eV, designated to sp^2 carbon (C=C) and C-Ti, respectively. Those are attributed to the adventitious elemental carbon and Ti_3C_2 (Fig. 4c) [31]. With respect to the O 1 s XPS spectra, two peaks at 530.6 and 532.1 eV have been deconvoluted (Fig. 4d), which are ascribed to Ti–O-Ti (lattice O) and surface hydroxyl groups [36], respectively. The Mo 3d XPS spectra of $Ti_3C_2@TiO_2@MoS_2$ composites (Fig. 4e) can be deconvoluted into two peaks at 231.8 and 228.6 eV, attributed to the Mo $3d_{3/2}$ and Mo $3d_{5/2}$ of Mo^{4+} in MoS_2 , respectively [32]. The S 2p high-resolution spectra (Fig. 4f) of the $Ti_3C_2@TiO_2@MoS_2$ composites displays two main peaks at 162.6 and 161.6 eV, corresponding to the S $2p_{1/2}$ and S $2p_{3/2}$ doublet of S^{2-} in MoS_2 [37].

The nitrogen adsorption–desorption isotherms and the corresponding pore size distribution curves (inset) of the samples are shown in Fig. 5 and S6, and the specific surface areas are listed in Table S2. The pore size distribution curve (Fig. 5a–d inset) of the $\rm Ti_3C_2@TiO_2@MoS_2$ composites reveals that the pore size is mainly mesopore, and the average pore size diameter is about 3 nm, which are similar to $\rm Ti_3C_2$

and $Ti_3C_2@TiO_2$ composites (Fig. S6a and b), while the average pore size diameter of MoS_2 NSs is about 5.5 nm (Fig. S6c). As it has been reported in the previous works, all samples have the isotherms of type IV with a typical H3 hysteresis loop, suggesting the slit-like mesoporous character of the samples (Figs. 5 and S6) [26,38–40]. The BET surface area of Ti_3C_2 , MoS_2 , $Ti_3C_2@TiO_2$, $Ti_3C_2@TiO_2@MoS_2-10\%$, $Ti_3C_2@TiO_2@MoS_2-15\%$, and $Ti_3C_2@TiO_2@MoS_2-15\%$, and $Ti_3C_2@TiO_2@MoS_2-15\%$ are 7.097, 6.302, 13.951, 18.894, 20.065, 16.374 and 15.156 m² g⁻¹, respectively (Table S2). The $Ti_3C_2@TiO_2@MoS_2-15\%$ exhibits a higher surface area than others, which is beneficial for the adsorption and migration of reactant and product molecules.

The photocatalytic performance is greatly determined by the optical absorption property. The solar light harvesting of the samples were investigated through UV–vis diffuse reflectance spectra (UV–vis DRS), as shown in Fig. 6. The ${\rm Ti}_3{\rm C}_2$ MXene and ${\rm MoS}_2$ NSs show an enhanced visible absorption due to the black color nature [41]. Pure ${\rm TiO}_2$ NSs possess an obvious absorption in the UV region, and no optical absorption in the visible region, which is consistent with antase ${\rm TiO}_2$ [42]. After coupled with partially oxidative ${\rm Ti}_3{\rm C}_2$ and ${\rm MoS}_2$, the optical

Fig. 5. N_2 adsorption–desorption isotherms and the corresponding pore size distribution curves (inset) of $Ti_3C_2@TiO_2@MoS_2$ composites with different MoS_2 loading amounts: (a) 10 wt%, (b) 15 wt%, (c) 25 wt%, and (d) 30 wt%.

Fig. 6. UV–vis absorption spectra of Ti_3C_2 MXene, $Ti_3C_2@TiO_2$ composites, TiO_2 NSs, $Ti_3C_2@TiO_2@MoS_2$ composites (10 wt%, 15 wt%, 25 wt% and 30 wt% MoS₂) and MoS₂ NSs.

absorption of ${\rm Ti_3C_2@TiO_2@MoS_2}$ composites is significantly enhanced over the UV and visible spectrum, indicating the efficiency for harvesting photons of the heterostructured sample is greatly promoted. With increasing the ${\rm MoS_2}$ content, gradually increased absorption intensity can be found in the wide visible range of 420–800 nm. Such absorption is attributed to the UV/visible absorption of ${\rm MoS_2}$, which is also reflected by the dark color of the ${\rm Ti_3C_2@TiO_2@MoS_2}$ composites (Fig. S7). And the band gap energy (${\rm E_g}$) of ${\rm TiO_2}$ is calculated by the plot of transformed Kubelka-Munk function (${\rm F(R)h}\nu$)ⁿ versus the energy of exciting light (${\rm h}\nu$). Then the estimated ${\rm E_g}$ of ${\rm TiO_2}$ and ${\rm Ti_3C_2@TiO_2@MoS_2}$ is 3.15 and 2.70 eV (Fig. S8), respectively.

The photocatalytic activity for H2 evolution was evaluated under

simulated sunlight irradiation with 300 W Xe arc lamp. Fig. 7 presents a comparison of the photocatalytic H2 production activities of Ti3C2 MXene, Ti₃C₂@TiO₂ composites, Ti₃C₂@TiO₂@MoS₂ composites (10 wt %, 15 wt%, 25 wt% and 30 wt% MoS₂) and TiO₂ NSs in aqueous acetone solution with TEOA. Here, acetone is a scavenger and TEOA is sacrificial agent to quench the photo-generated holes. As shown in Fig. 7b, pure TiO₂ NSs are photocatalytically active but the H₂ evolution rates as low as $73.758 \, \mu \text{mol} \, h^{-1} \, g^{-1}$, because of the rapid recombination of electrons and holes [43]. And there is no H₂ detected on Ti₃C₂ MXene due to the metallic properties Ti₃C₂, consistent with the literature [44]. Nevertheless, the H_2 evolution rates of $Ti_3C_2@TiO_2$ composites is $898.128 \,\mu\text{mol}\,h^{-1}\,g^{-1}$. As the Ti_3C_2 presents metallic properties, the contribution to the H2 production can be ascribed mainly to the high-activity (001) facets of TiO2 in the Ti3C2@TiO2 composites. The metallic Ti₃C₂ in the Ti₃C₂@TiO₂ composites can attract the photo-induced electron, leave the hole behind, and promote the H₂ production from water. For the Ti₃C₂@TiO₂@MoS₂ composites with different MoS₂ loading amount, the yield of H₂ evolution is nearly linear increase with the irradiation time prolong (Fig. 7a). An optimum H_2 evolution rate of 6425.297 μ mol $h^{-1}g^{-1}$ is obtained on Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂) (Fig. 7b), which is much higher than other samples. Such performance enhancement can be attributed to the formation of 2D-2D-2D heterojunction of Ti₃C₂@TiO₂@MoS₂ composites with the following advantages: (1) Photo-induced electrons from the conduction band (CB) of TiO₂ can effectively transfer across the interface of the hybrids and accumulate on the surface of Ti₃C₂, due to the large interface contact area and the quite short charge transport distance of the in situ growth of TiO2 NSs on Ti₂C₂ allowing for the interface with minimized defects [45], (2) The introduction of Ti₃C₂ and MoS₂ increases the specific surface area and enhances the water adsorption capability of the photocatalytic system. (3) Most of MoS2 NSs are deposited onto electrons-rich (101) facets of

Fig. 7. (a) Photocatalytic H₂ production and (b) rate of photocatalytic H₂ production of different catalysts in aqueous acetone solution with TEOA within 8 h.

TiO2 NSs with exposed (001) facets. MoS2 NSs can capture photogenerated electrons of (101) facets and act as reduction active sites. The mainly high-active exposed (001) facets of TiO2 NSs facilitate the activation of water molecules and the photocatalytic reduction [46]. Control experiments (Fig. S9) indicate that no appreciable H₂ production is detected in the absence of either irradiation or photocatalyst, suggesting that H₂ is produced by a photocatalytic reaction of the photocatalyst. In addition, as shown in Fig. 7b, the photocatalytic activities of the samples increase non-linearly with increasing MoS₂ loading (from 10 to 15 wt% MoS₂), because of the relatively lower solar energy input via increasing catalyst amount. However, further increasing the content of MoS2 (from 15 wt% to 30 wt% MoS2) leads to a gradual decrease of the photocatalytic activity. Because excess black MoS₂ NSs absorb photons in the photocatalytic system, probably decreasing the intensity of light through the deeper reaction solution and shielding the light from reaching the TiO2 surface, which could be called a "shielding effect" [47]. The above results demonstrate clearly the significant role of Ti₃C₂ and MoS₂ as effective cocatalysts in improving the photocatalytic activity of $Ti_3C_2@TiO_2@MoS_2$ composites for H2 production. We further evaluated the apparent quantum yields (AQE) of the samples under 300 W Xe arc lamp with CUT420 optical filter. As shown in Table S3, AQE values over the samples: 4.61% $(Ti_3C_2@TiO_2@MoS_2-15 wt\%) > 4.01\%$ $(Ti_3C_2@TiO_2@MoS_2-10 wt$ %) > 2.89% ($Ti_3C_2@TiO_2@MoS_2-25 wt$ %) > 1.86% ($Ti_3C_2@TiO_2@TiO_2$ MoS_2 -30 wt%) > 0.644% ($Ti_3C_2@TiO_2$) > 0.0529% (TiO_2 NSs), which is consistent with their photocatalytic H2 production. Stability and recyclability of the Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂) were estimated by repeating intermittent H2 evolution under solar light (Fig. S10). After 3 cycles, the photocatalytic H2 production rate of the Ti₃C₂@TiO₂@MoS₂ composites did not show pronounced change, indicating its excellent photostability. Besides, XRD pattern and SEM image of Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂) after 3 cycles in Fig. S11 show no obvious difference between those of the fresh sample. It further demonstrates the stability of the Ti₃C₂@TiO₂@MoS₂ composites. Valence band (VB) XPS spectrum of Ti₃C₂@TiO₂@MoS₂ composites is measured (Fig. S12a). The VB maximum of Ti₃C₂@TiO₂@ MoS₂ is about 0.2 eV. Based on the above data, combined with the band gap energy (2.7 eV, Fig. S8b), the electronic band structures of Ti₃C₂@TiO₂@MoS₂ composites is schematically given in Fig. S12b. It is obvious that Ti₃C₂@TiO₂@MoS₂ composites is more suitable for photocatalytic hydrogen evolution as it has a more negative conduction band (CB) potential (-2.5 eV).

Photoluminescence (PL) emission spectroscopy has been used as an effective and commonly used method to reveal the transfer and separation efficiency of photogenerated charge carriers [48,49]. So that, to further comprehend the function of the photoexcited charge carriers, the photoluminescence (PL) and time-resolved fluorescence decay spectra of the samples upon 325 nm excitation are studied, as shown in Fig. 8. In general, a lower steady-state PL intensity indicates a longer lifetime and higher separation efficiency of photo-generated electron-

hole pairs, leading to higher photocatalytic activity [50]. As shown in Fig. 8a, compared with $Ti_3C_2@TiO_2$ composites, $Ti_3C_2@TiO_2@MoS_2$ composites exhibit substantially depressed PL emissions, implying the photo-induced electron and holes is separated efficiently through the interface between the heterojunction of Ti_3C_2 , TiO_2 and MoS_2 . This process can further be understood by analyzing the time-resolved fluorescence decay spectra (Fig. 8b). The intensity-average lifetimes (τ) of $Ti_3C_2@TiO_2$ composites is 0.2085 ns, which is lower than that of $Ti_3C_2@TiO_2@MoS_2$ composites (0.2687 ns). It is believed that the increased lifetime of charge carriers in $Ti_3C_2@TiO_2@MoS_2$ composites is associated with improved electron transport and charge-separation efficiency.

In addition to PL experiment, the photocurrent-time (I-t) and electrochemical impedance spectroscopy (EIS) were also performed to further investigate the improved carrier separation efficiency of Ti₃C₂@TiO₂@MoS₂ composites. Fig. 9a shows a comparison the photocurrent-time (I-t) curves for these samples with typical on-off cycles of intermittent simulated sunlight irradiation. It can be seen that all the samples show an immediate rise in the photocurrent response when the light is on. The Ti₃C₂@TiO₂@MoS₂ composites display a higher photocurrent intensity than Ti₃C₂@TiO₂ composites, which implies that the Ti₃C₂@TiO₂@MoS₂ composites could achieve a higher separation and transfer efficiency of photogenerated carriers. In general, a smaller arc radius on an EIS Nyquist plot means a smaller charge-transfer resistance on the electrode surface and a higher separation efficiency of electronhole pairs [42]. As illustrated in Fig. 9b and c, the arc size of Ti₃C₂@TiO₂@MoS₂ composites is much less than Ti₃C₂@TiO₂ composites, suggesting that the Ti₃C₂@TiO₂@MoS₂ composites own more effective separation of photogenerated charges. Besides, Ti₂C₂@TiO₂@ MoS₂ and Ti₃C₂@TiO₂ composites under solar light irradiation show decreased impedance values compared to the same samples in the dark, consistent with the increased electron conductivity of Ti₃C₂@TiO₂@ MoS₂ composites and Ti₃C₂@TiO₂ composites under light irradiation. Apparently, there is well agreement among PL, I-t, and EIS results, validating that Ti₃C₂@TiO₂@MoS₂ composites would obviously improve the charge transfer rate, which could lead to the enhanced photocatalytic activity of Ti₃C₂@TiO₂@MoS₂ composites.

On the basis of the above experimental results, a possible photocatalytic mechanism for the H_2 generation with $Ti_3C_2@TiO_2@MoS_2$ composites is proposed and illustrated in Scheme 2. For $Ti_3C_2@TiO_2@MoS_2$ composites, under light irradiation, the photoexcited electrons and holes are generated in the conduction band (CB) and valance band (VB) of TiO_2 , respectively. The coexposed (101) and (001) facets of TiO_2 can form a surface heterojunction within single TiO_2 . The electrons migrate from the (001) facets of TiO_2 to (101) facets and Ti_3C_2 due to the excellent electron conductivity of Ti_3C_2 . On the (101) facets of TiO_2 , the electrons then transport to MoS_2 because MoS_2 NSs contain several individual sandwiched S-Mo-S layers via weak van der Waals interactions, which lead to the abundant exposure of Mo-terminated edges with the metallic character and a high d-electron density [51].

Fig. 8. (a) Photoluminescence (PL) and (b) time-resolved fluorescence decay spectra of $Ti_3C_2@TiO_2$ and $Ti_3C_2@TiO_2@MoS_2$ composites (15 wt% MoS_2), $\lambda_{ex} = 325$ nm.

Thus, an electron-rich environment is obtained on the planar surface of ${\rm Ti}_3{\rm C}_2$ and ${\rm MoS}_2$, on which the ${\rm H}_2{\rm O}$ is reduced to produce ${\rm H}_2$ [52]. The holes in (001) facets of ${\rm TiO}_2$ are consumed by the sacrificial reagents.

Although the coupling of the Ti₃C₂ and MoS₂ with TiO₂ NSs is beneficial for photocatalytic H₂ generation, we should always keep in mind that an excess of Ti₃C₂ and MoS₂ can cause adverse effect on the photocatalytic performance. An excess of Ti₃C₂ and MoS₂ lead to the light shielding effect. In detail, Ti₃C₂ and MoS₂ would compete with TiO₂ NSs to absorb the incident photons, significantly suppressing the photoconversion efficiency of the TiO₂ NSs. Thus, the control over the ratio of TiO₂ NSs to Ti₃C₂ and MoS₂ is crucial to achieve optimized photocatalytic performance of the composite. Therefore, accurately controlled condition to regulate the formation of Ti₃C₂@TiO₂@MoS₂ composites, incorporated with the excellent light absorption ability and enlarged specific surface area, make Ti₃C₂@TiO₂@MoS₂ composites

superior photocatalyst for H₂ evolution under light irradiation.

4. Conclusions

In summary, the design concept is the *in situ* growth of TiO_2 NSs on the Ti_3C_2 MXene and then MoS_2 NSs being introduced onto the (101) facets of TiO_2 NSs with mainly exposed high-active (001) facets by combining heterojunction nanostructure construction and morphology engineering method. The obtained $Ti_3C_2@TiO_2@MoS_2$ composites exhibits high photocatalytic H_2 evolution activity with a rate as high as 6425.297 μ mol h⁻¹ g⁻¹ for the sample with 15 wt% MoS_2 loading, which is higher than $Ti_3C_2@TiO_2$ composites and TiO_2 NSs. The photocatalytic reaction followed a dual-carrier-separation mechanism, where, the photogenerated electrons and holes can be respectively transferred onto (101) and (001) facets of TiO_2 due to the presence of

Fig. 9. (a) Transient photocurrent responses and (b, c) electrochemical impedance spectroscopy of Ti₃C₂@TiO₂ and Ti₃C₂@TiO₂@MoS₂ composites (15 wt% MoS₂).

Scheme 2. Schematic photocatalytic reaction mechanism for Ti₃C₂@TiO₂@MoS₂ composites under solar light irradiation.

surface heterojunction. MoS₂ NSs on the (101) and facets of TiO₂ and Ti₃C₂ acted as the electron mediator and reduction cocatalyst to enhance the separation of photo-generated charges. Moreover, the close interfacial contact benefiting from in situ growth of TiO2 NSs on Ti3C2 is crucial for accelerating the photogenerated electrons transfer. The large specific surface area of the unique 2D-2D-2D structure of Ti₃C₂@TiO₂@ MoS₂ composites and the mainly high-active exposed (001) facets governs in providing enormous surface-active sites for photocatalytic reaction. These results not only demonstrated the promise of 2D MXene based hybrids as high-performance photocatalysts, but also shed light on the loading locations and distributions of the cocatalysts in the photocatalytic hydrogen production.

Acknowledgement

The authors are thankful for fundings from the National Natural Science Foundation of China (No.51872173), Taishan Scholarship of Young Scholars, Natural Science Foundation of Shandong Province (No. ZR2017JL020), Taishan Scholarship of Climbing Plan (No. tspd20161006), and Key Research and Development Program of Shandong Province (No. 2018GGX102028).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2019.01.051.

References

- [1] J. Huang, R. Meng, L. Zu, Z. Wang, N. Feng, Z. Yang, Y. Yu, J. Yang, Nano Energy 46 (2018) 20-28.
- C. Meng, T. Ling, T.Y. Ma, H. Wang, Z. Hu, Y. Zhou, J. Mao, X.W. Du, M. Jaroniec, S.Z. Qiao, Adv. Mater. 29 (2017) 1604607.
- [3] Y. Cao, Y. Yang, Z. Ren, N. Jian, M. Gao, Y. Wu, M. Zhu, F. Pan, Y. Liu, H. Pan, Adv. Funct. Mater. 27 (2017) 1700342.
- [4] F. Du, H. Lu, S. Lu, J. Wang, Y. Xiao, W. Xue, S. Cao, Int. J. Hydrogen Energy 43 (2018) 3223-3234.
- Y.J. Yuan, P. Wang, Z.J. Li, Y.Z. Wu, W.F. Bai, Y.B. Su, J. Guan, S.T. Wu, J.S. Zhong, Z.T. Yu, Z.G. Zou, Appl. Catal. B-Environ. 242 (2019) 1-8.
- C. Li, S. Zhang, Y. Zhou, J. Li, J. Mater. Sci. Mater. El. 28 (2017) 1-8.
- H. Yang, J. Tian, Y. Bo, Y. Zhou, X. Wang, H. Cui, J. Colloids Interface Sci. 487 (2017) 258-265.
- [8] H. Tian, K. Shen, X. Hu, L. Qiao, W.N. Zheng, J. Alloys. Compd. 691 (2017) 369-377
- [9] X. Yu, X. Han, Z. Zhao, J. Zhang, W. Guo, C. Pan, A. Li, H. Liu, Z.L. Wang, Nano Energy 11 (2015) 19-27.
- Y. Yang, H. Zhong, C. Tian, Res. Chem. Intermediat. 37 (2010) 91-102.
- [11] J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114 (2010) 13118–13125.
- [12] Q. Xiang, J. Yu, Chin. J. Catal. 32 (2011) 525-531.
- [13] X.-Q. Gong, S. Annabella, J. Phys. Chem. B 109 (2005) 19560-19562.
- [14] J.C. Lei, X. Zhang, Z. Zhou, Front. Phys. 10 (2015) 276-286.
- [15] M. Naguib, Y. Gogotsi, Acc. Chem. Res. 48 (2015) 128-135.
- [16] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992-1005.

- [17] S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano 10 (2016) 3334-3341.
- [18] X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, Y. Gogotsi, Nano Energy 26 (2016) 513–523.
 [19] M. Shao, Y. Shao, J.W. Chai, Y. Qu, M. Yang, Z. Wang, M. Yang, F.L. Weng, T.K. Chi,
- X.Q. Shi, J. Mater. Chem. A 5 (2017) 16748-16756.
- [20] M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy 44 (2018) 181-190.
- [21] J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, X. Yang, J. Zhang, Y. Gan, ACS Nano 11 (2017) 2459-2469.
- [22] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Nat. Commun. 8 (2017) 13907.
- [23] X. Hu, S. Lu, J. Tian, N. Wei, X. Song, X. Wang, H. Cui, Appl. Catal. B-Environ. 241 (2018) 329-337.
- [24] X. Zhang, Y. Guo, J. Tian, B. Sun, Z. Liang, X. Xu, H. Cui, Appl. Catal. B-Environ. 232 (2018) 355-364
- [25] C. Peng, P. Wei, X.Y. Li, Y.P. Liu, Y.H. Cao, H.J. Wang, H. Yu, F. Peng, Nano Energy 53 (2018) 97-107.
- [26] Y.J. Li, X.D. Deng, J. Tian, Z.Q. Liang, H.Z. Cui, Appl. Mater. Today. 13 (2018) 217-227.
- [27] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, H. Min, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4207-4207.
- [28] C. Yang, Y. Liu, X. Sun, Y. Zhang, L. Hou, Q. Zhang, C. Yuan, Electrochim. Acta 271 (2018) 165-172
- [29] X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Cheminform 45 (2014) 1889-1895
- [30] Z. Wang, Z.X. Low, X. Zeng, B. Su, Y. Yin, C. Sun, T. Williams, H. Wang, X. Zhang, Int. J. Hydrogen Energy 43 (2017) 1508-1515.
- [31] Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, ACS Nano 11 (2017) 4792-4800.
- [32] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 9 (2013) 140-147.
- [33] Y.J. Yuan, Z.J. Li, S.T. Wu, D.Q. Chen, L.X. Yang, D.P. Cao, W.G. Tu, Z.T. Yu, Z.G. Zou, Chem. Eng. J. 350 (2018) 335–343. [34] B. Chen, E. Liu, F. He, C. Shi, C. He, J. Li, N. Zhao, Nano Energy 26 (2016) 541–549.
- [35] L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12 (2016) 1527-1536.
- [36] C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Appl. Catal. B-Environ. 164 (2015) 1-9.
- [37] S.L. Harmer, L.V. Goncharova, R. Kolarova, W.N. Lennard, M.A. Muñozmárquez, I.V. Mitchell, H.W. Nesbitt, Surf. Sci. 601 (2007) 352-361.
- [38] K.S.W. Sing, Pure Appl. Chem. 57 (1985) 603-619.
- [39] R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao, L. Zhang, J. Mater. Chem. A. 6 (2018) 1017-1027.
- [40] J. Zhang, L. Qian, F. Wei, J. Xi, Z. Ji, F. Alkaline, J. Xi, Z. Ji, J. Am. Ceram. Soc. 97
- [41] L.W. Yu, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, L. Wang, Nanoscale 6 (2014) 5762-5769.
- [42] Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Appl. Catal. B-Environ. 243 (2019) 711-720.
- [43] X. Hu, Y. Li, J. Tian, H. Yang, H. Cui, J. Ind. Eng. Chem. 45 (2016) 189-196.
- [44] Y. Liu, H. Du, X. Zhang, Y. Yang, M. Gao, H. Pan, Chem. Commun. 52 (2015)
- [45] H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi, M.L. Taheri, J. Mater. Chem. A 2 (2014) 14339-14343.
- J. Wang, P. Rao, W. An, J. Xu, Y. Men, Appl. Catal. B-Environ. 195 (2016) 141–148.
- [47] M. Mazurais, C. Lescot, P. Retailleau, P. Dauban, Appl. Catal. B-Environ. 1 (2014)
- [48] H. Li, Y. Liu, Y. Cui, W. Zhang, C. Fu, X. Wang, Appl. Catal. B-Environ. 183 (2016)
- Y.J. Yuan, Y. Yang, Z.J. Li, D.Q. Chen, S.T. Wu, G.L. Fang, W.F. Bai, M.Y. Ding, L.X. Yang, D.P. Cao, Z.T. Yu, Z.G. Zou, ACS Appl. Energy Mater. 1 (2018) 1400-1407
- [50] M. Schvartzman, V. Sidorov, D. Ritter, Y. Paz, Semicond. Sci. Tech. 16 (2001) L68-L71.
- [51] S. Guo, X. Li, J. Zhu, T. Tong, B. Wei, Small 12 (41) (2016) 5649-5649.
- J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang, X. Fan, Appl. Catal. B-Environ. 241 (2019) 89–94.