Sistemas Recomendadores en Python

May 11, 2018

Los Sistemas Recomendadores analizan patrones de interés del usuario como artículos o productos para poder proporcionar recomendaciones personalizadas que satisfagan sus preferencias.

Para poder llevar esto adelante se deben realizar diferentes tareas.

Python tiene un gran cantidad de librerías que nos permiten y facilitan esto:

- Pandas: Herramienta de análisis / manipulación de datos muy potente y flexible;
- SciKit-Learn: Librería que provee técnicas de minería de datos y machine learning.
- SciKit-Surprise: Librería para probar y evaluar diferentes algoritmos de recomendación. *
 Numpy: Librería de computación científica con funciones matemáticas de alto nivel para
 operar con vectores y matrices.
- Jupyter Notebook: Librería que permite crear y compartir documentos que contengan códigos, ecuaciones, visualizaciones y textos.

```
In [51]: print('Hola PyDay')
Hola PyDay
```

0.1 Hola

Dataset a utilizar: Películas de MovieLens con información de iMDB

- * 45,000 películas. De cada película se conoce el título, género, plot, ganancias...
- * 270,000 usuarios.
- * 26,000,000 ratings (1,10)
- * 750,000 etiquetas sobre las películas

0.1.1 Levántando los datos con Pandas

Pandas es la herramienta de análisis / manipulación de datos de código abierto más potente y flexible. Proporciona estructuras de datos rápidas, flexibles y expresivas diseñadas para que trabajar con datos relacionales o etiquetados.

```
In [1]: import pandas as pd
        import json
        import ast
        import numpy as np
        import matplotlib.pyplot as plt
In [52]: def load_movies_metadata(file_path):
             df = pd.read_csv(file_path, dtype='unicode')
             df['release_date'] = pd.to_datetime(df['release_date'], errors='coerce').apply(lamb
             numeric_columns = ['budget', 'vote_average','revenue','vote_count']
             for c in numeric_columns:
                 df[c] = pd.to_numeric(df[c], errors='coerce')
             # columnas en json
             json_columns = ['belongs_to_collection', 'genres', 'production_companies', 'product
             for column in json_columns:
                 # Se usa ast porque los datos json tienen comillas simples en el csv, y no "
                 df[column] = df[column].apply(lambda x: np.nan if pd.isnull(x) else ast.literal
             return df
        movies = load_movies_metadata('movies/movies_metadata.csv')
In [53]: movies.head(3)
Out[53]:
           adult
                                               belongs_to_collection
                                                                          budget \
        O False {u'backdrop_path': u'/9FBwqcd9IRruEDUrTdcaafOM...
                                                                      3000000.0
         1 False
                                                                      65000000.0
         2 False {u'backdrop_path': u'/hypTnLot2z8wpFS7qwsQHW1u...
                                                                             0.0
                                                       genres \
         0 [{u'id': 16, u'name': u'Animation'}, {u'id': 3...
         1 [{u'id': 12, u'name': u'Adventure'}, {u'id': 1...
         2 [{u'id': 10749, u'name': u'Romance'}, {u'id': ...
                                        homepage
                                                     id
                                                           imdb_id original_language
        0 http://toystory.disney.com/toy-story
                                                    862 tt0114709
                                                                                  en
         1
                                                   8844 tt0113497
                                                                                  en
         2
                                             NaN 15602 tt0113228
                                                                                  en
              original_title
                                                                       overview \
                   Toy Story Led by Woody, Andy's toys live happily in his ...
         0
         1
                     Jumanji When siblings Judy and Peter discover an encha...
         2 Grumpier Old Men A family wedding reignites the ancient feud be...
                     release_date
                                        revenue runtime \
```

```
0
                                                      81.0
                         1995-10-30
                                      373554033.0
               . . .
         1
                         1995-12-15
                                      262797249.0
                                                     104.0
               . . .
         2
                         1995-12-22
                                                     101.0
                                              0.0
               . . .
                                                spoken_languages
                                                                     status \
         0
                  [{u'iso_639_1': u'en', u'name': u'English'}]
                                                                   Released
         1
             [{u'iso_639_1': u'en', u'name': u'English'}, {...
                                                                   Released
                  [{u'iso_639_1': u'en', u'name': u'English'}]
                                                                   Released
                                                         tagline
                                                                              title video \
         0
                                                             NaN
                                                                          Toy Story
                                                                                      False
                     Roll the dice and unleash the excitement!
                                                                             Jumanji
                                                                                      False
         1
            Still Yelling. Still Fighting. Still Ready for...
                                                                  Grumpier Old Men
                                                                                      False
            vote_average vote_count
                              5415.0
         0
                     7.7
         1
                     6.9
                              2413.0
         2
                     6.5
                                92.0
         [3 rows x 24 columns]
In [56]: #movies['original_language'].unique()
         #movies[movies['original_language']=='es']
         movies.groupby('original_language').size()
Out[56]: original_language
         104.0
                       1
         68.0
                       1
         82.0
                       1
                      10
         ab
         af
                       2
                       2
         am
         ar
                      39
                       1
         ay
                      10
         bg
                       3
         bm
                      29
         bn
                       2
         bo
                      14
         bs
                      12
         ca
         cn
                     313
                     130
         cs
                       1
         су
         da
                     225
                    1080
         de
         el
                     113
                   32269
         en
                       1
         eo
```

```
994
es
             24
et
               3
eu
fa
            101
fi
            297
fr
           2438
fy
               1
gl
               1
               2
рa
            219
pl
               2
ps
            316
pt
qu
               1
             57
ro
            826
ru
rw
               1
               5
sh
               1
si
               9
sk
              17
sl
               1
sm
               5
sq
             63
sr
            384
sv
             78
ta
             45
te
               1
tg
             76
th
tl
             23
             150
tr
uk
             16
               8
ur
               1
uz
              10
νi
               5
WO
             33
ХX
zh
            409
               1
zu
Length: 92, dtype: int64
```

In [57]: movies.columns

```
u'vote_average', u'vote_count'],
               dtype='object')
In [58]: movies.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45466 entries, 0 to 45465
Data columns (total 24 columns):
adult
                         45466 non-null object
                         4494 non-null object
belongs_to_collection
budget
                         45463 non-null float64
                         45466 non-null object
genres
                         7782 non-null object
homepage
id
                         45466 non-null object
imdb_id
                         45449 non-null object
                         45455 non-null object
original_language
                         45466 non-null object
original_title
overview
                         44512 non-null object
popularity
                         45461 non-null object
                         45080 non-null object
poster_path
production_companies
                         45463 non-null object
                         45463 non-null object
production_countries
release_date
                         45376 non-null object
revenue
                         45460 non-null float64
                         45203 non-null object
runtime
                         45460 non-null object
spoken_languages
                         45379 non-null object
status
                         20412 non-null object
tagline
                         45460 non-null object
title
                         45460 non-null object
video
                         45460 non-null float64
vote_average
                         45460 non-null float64
vote_count
dtypes: float64(4), object(20)
memory usage: 8.3+ MB
In [59]: genres = []
         for i,row in movies.iterrows():
             if row['genres'] is not np.nan:
                 a = row['genres']
                 for item in a:
                     if item['name'] not in genres:
                         genres.append(item['name'])
         print(genres)
['Animation', 'Comedy', 'Family', 'Adventure', 'Fantasy', 'Romance', 'Drama', 'Action', 'Crime',
```

Calcular el género cinematográfico que tuvo más ganancias.

```
In [60]: genre_revenue = {}
         for i in range(movies.shape[0]):
             for item in movies.iloc[i]['genres']:
                 if 'name' in item and movies.iloc[i]['revenue'] >0:
                     genre_name = item['name']
                     b = int(movies.iloc[i]['revenue'])/1000000
                     if genre_name in genre_revenue:
                         genre_revenue[genre_name]['total_revenue'] += b
                     else:
                         genre_revenue[genre_name] = {}
                         genre_revenue[genre_name]['genre'] = genre_name
                         genre_revenue[genre_name]['total_revenue'] = b
         most_profitable_genre = pd.DataFrame(None,None,columns=['genre','revenue'])
         for k,v in genre_revenue.items():
             most_profitable_genre = most_profitable_genre.append({'genre':v['genre'], 'revenue'})
In [61]: most_profitable_genre = most_profitable_genre.sort_values(by='revenue', ascending=False)
In [62]: most_profitable_genre.head()
Out [62]:
                 genre revenue
                Action 200726
         13
         11 Adventure 199616
         15
                Comedy 165797
         6
                 Drama 159386
         18
              Thriller 129054
0.1.2 Visualización de Datos
In [63]: plt.style.use('ggplot')
         plt.figure(figsize=(17,7))
         number_of_genres= len(most_profitable_genre['genre'])
         index = np.arange(number_of_genres)
         bar_width = 0.8
         plt.bar(index, most_profitable_genre['revenue'], bar_width, color='#5555FA')
         plt.gca().set_xlabel(u"Género")
         plt.gca().set_ylabel(u"Ganancias (en millones dólares)")
         plt.xticks(index +bar_width/2, most_profitable_genre['genre'],rotation=30, fontsize=12)
         plt.gca().set_title(u"Películas más rentables por género")
         plt.show()
```


También podemos ver la cantidad máxima de votos para cada género

```
In [64]: genre_vote_count = {}
         for i,_ in movies.iterrows():
              for item in movies.loc[i]['genres']:
                  if 'name' in item and movies.loc[i]['vote_count'] >0:
                       a = item['name']
                       b = movies.loc[i]['vote_count']
                       if a in genre_vote_count:
                           genre_vote_count[a]['total_votes'] += b
                       else:
                           genre_vote_count[a] = {}
                           genre_vote_count[a]['genre'] = a
                           genre_vote_count[a]['total_votes'] = b
         most_votes_genre = pd.DataFrame(None,None,columns=['genre','total_votes'])
         for k,v in genre_vote_count.items():
              most_votes_genre = most_votes_genre.append({'genre':v['genre'], 'total_votes':v['total_votes':v['total_votes'], 'total_votes':v['total_votes']
In [66]: most_votes_genre = most_votes_genre.sort_values(by='total_votes',ascending=False)
         most_votes_genre.head()
Out [66]:
                         total_votes
                  genre
         1
                  Drama
                            1956070.0
         13
                 Action
                            1708508.0
         15
                 Comedy
                            1438185.0
         11
              Adventure
                            1434576.0
         18
               Thriller
                            1434045.0
```

```
In [66]: number_of_genres= len(most_votes_genre['genre'])
    index = np.arange(number_of_genres)
    bar_width = 0.8
    plt.figure(figsize=(17,7))
    plt.bar(index, most_votes_genre['total_votes'], bar_width, color='#5555FA' )
    plt.gca().set_xlabel(u"Género")
    plt.gca().set_ylabel(u"Total de votos")
    plt.xticks(index +bar_width/2, most_votes_genre['genre'],rotation=30, fontsize=12)
    plt.gca().set_title(u"Total de votos por género")
    plt.xlabel(u"Géneros")
    plt.ylabel(u"Total de votos")
    plt.show()
```


Relación entre ratings y las ganancias

```
In [74]: revenue_votes=movies[movies['vote_average']>1]
    plt.figure(figsize=(17,7))
    plt.scatter(revenue_votes['vote_average'],revenue_votes['revenue'], c='g', edgecolors='
    plt.ylabel('Ganancias')
    plt.xlabel('Rating promedio')
    ax = plt.gca()
    ax.get_yaxis().get_major_formatter().set_scientific(False)
    plt.title(u'Relación entre los ratings promedios y los ganancias')

plt.show()
```


Distribución de ratings

```
In [68]: ratings=pd.read_csv('movies/ratings.csv')
         ratings=ratings.groupby('rating').size().reset_index(name='count')
         ratings.sort_values('count', ascending=False, inplace=True)
         ratings
Out [68]:
            rating count
         7
               4.0 28750
         5
               3.0 20064
         9
               5.0 15095
         6
               3.5 10538
         8
               4.5
                    7723
         3
               2.0
                    7271
         4
               2.5
                   4449
         1
               1.0 3326
         2
               1.5
                     1687
         0
               0.5
                     1101
In [50]: ratings.sort_values('rating', inplace=True)
         index= np.arange(0.5,5.5,0.5)
         plt.figure(figsize=(17,7))
         plt.bar(index, ratings['count'], color='#5555FA', edgecolor='#5555FA', align='center',
         plt.xlabel(u'Ratings')
         plt.ylabel(u'Cant de películas')
         plt.title(u'Frecuencia de los ratings')
```

```
plt.xticks(np.arange(0,5.5,0.5))
plt.show()
```


Cantidad de calificaciones por película

3.543608255669773

Out[70]:		${ t movieId}$	count
	321	356	341
	266	296	324
	284	318	311
	525	593	304
	232	260	291
	427	480	274
	2062	2571	259
	0	1	247
	472	527	244
	522	589	237
	953	1196	234
	100	110	228
	1024	1270	226
	535	608	224

2288	2858	220
955	1198	220
644	780	218
966	1210	217
521	588	215
406	457	213
523	590	202
2374	2959	202
45	47	201
48	50	201
328	364	200
695	858	200
129	150	200
3869	4993	200
344	380	198
524	592	196
5164	7541	2
3019	3774	2
3774	4834	2
5414	8482	2
5153	7459	2
3821	4920	2
8221	99764	2
5408	8460	2
3836	4949	2
5146	7449	2
5183	7615	2
3024	3784	2
8329	103539	2
3983	5172	2
5426	8522	2
2883	3613	2
3035	3795	2
5441	8571	2
3802	4885	2
5184	7616	2
3021	3777	2
3840	4956	2
3027	3787	2
3985	5179	2
3838	4952	2
3988	5186	2
8211	99437	2
5187	7624	2
4016	5238	2
5428	8525	2

0.1.3 Sistema Recomendador basado en la información de las películas

Obtener mejores recomendaciones para la peli The Dark Knight, acá conocida como "Batman: el caballero de la noche".

```
In [81]: from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
In [120]: corpus =['yo programo en python', 'python y yo yo y', 'programo mucho']
          example = tf.fit(corpus)
          data= example.transform(corpus).todense()
          pd.DataFrame(data=data, index=corpus, columns=example.get_feature_names())
Out[120]:
                                 en mucho programo python yo
          yo programo en python
                                  1
                                         0
                                                                1
                                                    1
          python y yo yo y
                                  0
                                         0
                                                    0
                                                            1
          programo mucho
                                  0
                                         1
                                                    1
                                                            0
                                                                0
In [91]: movies['tagline'] = movies['tagline'].fillna('')
         movies['description'] = movies['overview'] + movies['tagline']
         movies['description'] = movies['description'].fillna('')
         tf = CountVectorizer(analyzer='word', stop_words='english')
         tfidf_matrix = tf.fit_transform(movies['description'])
  Similitud del coseno
In [122]: from sklearn.metrics.pairwise import cosine_similarity
          film1_index = np.where(movies["title"] =="The Dark Knight")[0]
          tfidf_vector_film_1 =tfidf_matrix[film1_index,:]
          distances = cosine_similarity(tfidf_vector_film_1, tfidf_matrix)[0]
          indices_of_most_simmilar_films = distances.argsort()[-15:-1]
          movies.iloc[indices_of_most_simmilar_films]["title"]
Out[122]: 585
                                                               Batman
          40974
                   LEGO DC Comics Super Heroes: Batman: Be-Leaguered
          18009
                                              This Must Be the Place
          41976
                                               The Lego Batman Movie
          18035
                                                     Batman: Year One
                             Batman: The Dark Knight Returns, Part 2
          20232
          21194
                   Batman Unmasked: The Psychology of the Dark Kn...
          26102
                                                       Going Straight
          150
                                                       Batman Forever
          28023
                                                      The Dead Season
          15511
                                          Batman: Under the Red Hood
          1328
                                                       Batman Returns
```

```
40658 Paranoia
18252 The Dark Knight Rises
Name: title, dtype: object
```

0.1.4 Utilizando Sistemas Recomendadores con Surprise

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
User 1	0	3	0	3	0	0
User 2	4	0	0	2	0	0
User 3	0	0	3	0	0	5
User 4	0	0	0	0	3	0
User 5	4	0	0	4	0	0

Filtrado Colaborativo enfoque item-item

```
predictions = algo.test(testset)
             # Se evalua la performance calculando el error RMSE
             accuracy.rmse(predictions, verbose=True)
Computing the cosine similarity matrix...
Done computing similarity matrix.
RMSE: 0.9970
Computing the cosine similarity matrix...
Done computing similarity matrix.
RMSE: 0.9874
Computing the cosine similarity matrix...
Done computing similarity matrix.
RMSE: 0.9905
  Filtrado Colaborativo enfoque usuario-usuario
In [20]: # Se define un iterador de cross-validation
         kf = KFold(n_splits=3)
         sim_options = {'name': 'pearson_baseline'}
         algo = KNNBasic(sim_options=sim_options)
         for trainset, testset in kf.split(data):
             # Se entrena y se corre el algoritmo.
             algo.fit(trainset)
             predictions = algo.test(testset)
             # Se evalua la performance calculando el error RMSE
             accuracy.rmse(predictions, verbose=True)
             accuracy.fcp(predictions, verbose=True)
Estimating biases using als...
Computing the pearson_baseline similarity matrix...
Done computing similarity matrix.
RMSE: 1.0061
FCP: 0.6477
Estimating biases using als...
Computing the pearson_baseline similarity matrix...
Done computing similarity matrix.
RMSE: 1.0137
FCP: 0.6428
Estimating biases using als...
Computing the pearson_baseline similarity matrix...
Done computing similarity matrix.
```

RMSE: 1.0242 FCP: 0.6398

Predecir un rating con mi modelo

In [145]: two_ratings = list(algo.trainset.all_ratings())[0:2]

```
uid = algo.trainset.to_raw_uid(two_ratings[0][0]) #user id
iid = algo.trainset.to_raw_iid(two_ratings[1][1]) #item id

# prediccion de rating para ese usuario y ese item.
pred = algo.predict(uid, iid, verbose=True)

user: 631    item: 1584    r_ui = None    est = 3.79    {u'actual_k': 23, u'was_impossible'
```

0.1.5 Kaggle

https://www.kaggle.com/

Hay muchos datasets disponibles y notebooks con análisis de datos, y recomendaciones. https://github.com/mcharnelli/PyDayLP2018