Lecture 10 – Regression via Linear Algebra

DSC 40A, Spring 2023

Announcements

- ► Homework 3 is due **tomorrow at 11:59pm**.
 - LaTeX template provided if you want to type your answers.
 - Please come to office hours!
- Review Groupwork 3 and Homework 2 solutions on Campuswire.
- Discussion section is on Wednesday.

Agenda

- Finish linear algebra review.
- Formulate mean squared error in terms of linear algebra.
- Minimize mean squared error using linear algebra.

Vectors

- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$\vec{V} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.

► The **length**, or **norm**, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$.

Dot products

The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a scalar!

Properties of the dot product

Commutative:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^T \vec{v} = \vec{v}^T \vec{u}$$

Distributive:

$$\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- The result is always a vector with the same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^n , what are the dimensions of the product $\vec{v}^T A^T A \vec{v}$?

a) $m \times n$ (matrix)

- b) $n \times 1$ (vector)
- c) 1×1 (scalar)
- d) The product is undefined.

Matrices and functions

- Suppose A is an $m \times n$ matrix and \vec{x} is a vector in \mathbb{R}^n .
- Then, the function $f(\vec{x}) = Ax$ is a linear function that maps elements in \mathbb{R}^n to elements in \mathbb{R}^m .
 - ▶ The input to *f* is a vector, and so is the output.
- Key idea: matrix-vector multiplication can be thought of as applying a linear function to a vector.

Mean squared error, revisited

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
 - If the intermediate steps get confusing, think back to this overarching goal.
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
 - use multiple features.
 - ▶ are non-linear.
- Let's start by expressing R_{sq} in terms of matrices and vectors.

Regression and linear algebra

We chose the parameters for our prediction rule

$$H(x) = W_0 + W_1 x$$

by finding the w_0^* and w_1^* that minimized mean squared error:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2.$$

▶ This is *kind of* like the formula for the length of a vector:

$$\|\vec{\mathbf{v}}\| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_n^2}$$

Regression and linear algebra

Let's define a few new terms:

- ► The observation vector is the vector $\vec{y} \in \mathbb{R}^n$ with components y_i . This is the vector of observed/"actual" values.
- ► The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components $e_i = y_i H(x_i)$. This is the vector of (signed) errors.

Example

Consider
$$H(x) = \frac{1}{2}x + 2$$
.

$$\vec{e} = \vec{y} - \vec{h} =$$

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 =$$

Regression and linear algebra

- ► The observation vector is the vector $\vec{y} \in \mathbb{R}^n$ with components y_i . This is the vector of observed/"actual" values.
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components $e_i = y_i H(x_i)$. This is the vector of (signed) errors.
- We can rewrite the mean squared error as:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} ||\vec{e}||^2 = \frac{1}{n} ||\vec{y} - \vec{h}||^2.$$

The hypothesis vector

- ► The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear prediction rule $H(x) = w_0 + w_1 x$, the hypothesis vector \vec{h} can be written

$$\vec{h} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_n) \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix} =$$

Rewriting the mean squared error

▶ Define the **design matrix** X to be the $n \times 2$ matrix

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}.$$

- ▶ Define the **parameter vector** $\vec{w} \in \mathbb{R}^2$ to be $\vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$.
- Then $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{sq}(H) = \frac{1}{n} ||\vec{y} - \vec{h}||^2$$

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

Mean squared error, reformulated

▶ Before, we found the values of w_0 and w_1 that minimized

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

The results:

$$W_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x} \qquad W_0^* = \bar{y} - W_1^* \bar{x}$$

Now, our goal is to find the vector \vec{w} that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

Both versions of R_{sq} are equivalent. The results will also be equivalent.

Spoiler alert...

 \triangleright Goal: find the vector \vec{w} that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

► Spoiler alert: the answer¹ is

$$\vec{w^*} = (X^T X)^{-1} X^T \vec{y}$$

- Let's look at this formula in action in a notebook. Follow along here.
- ► Then we'll prove it ourselves by hand.

¹assuming X^TX is invertible

Minimizing mean squared error, again

Some key linear algebra facts

If A and B are matrices, and \vec{u} , \vec{v} , \vec{w} , \vec{z} are vectors:

$$(A + B)^T = A^T + B^T$$

$$\triangleright$$
 $(AB)^T = B^T A^T$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^T \vec{v} = \vec{v}^T \vec{u}$$

$$\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$$

$$(\vec{u} + \vec{v}) \cdot (\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{z} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$$

Goal

We want to minimize the mean squared error:

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- Strategy: Calculus.
- **Problem:** This is a function of a vector. What does it even mean to take the derivative of $R_{sq}(\vec{w})$ with respect to a vector \vec{w} ?

A function of a vector

Solution: A function of a vector is really just a function of multiple variables, which are the components of the vector. In other words,

$$R_{sq}(\vec{w}) = R_{sq}(w_0, w_1, ..., w_d)$$

where $w_0, w_1, ..., w_d$ are the entries of the vector \vec{w} .²

We know how to deal with derivatives of multivariable functions: the gradient!

 $^{^2}$ In our case, \vec{w} has just two components, w_0 and w_1 . We'll be more general since we eventually want to use prediction rules with even more parameters.

The gradient with respect to a vector

The gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} is the vector of partial derivatives:

$$\nabla_{\vec{w}} R_{sq}(\vec{w}) = \frac{dR_{sq}}{d\vec{w}} = \begin{bmatrix} \frac{\partial R_{sq}}{\partial w_0} \\ \frac{\partial R_{sq}}{\partial w_1} \\ \vdots \\ \frac{\partial R_{sq}}{\partial w_d} \end{bmatrix}$$

where $w_0, w_1, ..., w_d$ are the entries of the vector \vec{w} .

Example gradient calculation

Example: Suppose $f(\vec{x}) = \vec{a} \cdot \vec{x}$, where \vec{a} and \vec{x} are vectors in \mathbb{R}^n . What is $\frac{d}{d\vec{x}} f(\vec{x})$?

Goal

We want to minimize the mean squared error:

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- Strategy:
 - 1. Compute the gradient of $R_{sn}(\vec{w})$.
 - 2. Set it to zero and solve for \vec{w} .
 - ightharpoonup The result is called \vec{w}^* .
- Let's start by rewriting the mean squared error in a way that will make it easier to compute its gradient.

Rewriting mean squared error

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

Discussion Question

Which of the following is equivalent to $R_{sq}(\vec{w})$?

- a) $\frac{1}{n}(\vec{y} X\vec{w}) \cdot (X\vec{w} y)$ b) $\frac{1}{n}\sqrt{(\vec{y} X\vec{w}) \cdot (y X\vec{w})}$
- c) $\frac{1}{n}(\vec{y} X\vec{w})^T(y X\vec{w})$ d) $\frac{1}{n}(\vec{y} X\vec{w})(y X\vec{w})^T$

Rewriting mean squared error

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

Rewriting mean squared error

 $R_{\rm sq}(\vec{w}) =$

Compute the gradient

$$\frac{dR_{\text{sq}}}{d\vec{w}} = \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right)$$
$$= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) \right]$$

Compute the gradient

$$\begin{split} \frac{dR_{\text{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right) \\ &= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) \right] \end{split}$$

- $\qquad \qquad \frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) = 0.$
 - ▶ Why? \vec{y} is a constant with respect to \vec{w} .
- - ▶ Why? We already showed $\frac{d}{d\vec{x}}\vec{a} \cdot \vec{x} = \vec{a}$.
- $\qquad \qquad \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) = 2 X^T X \vec{w}.$
 - Why? See Homework 4.

Compute the gradient

$$\frac{dR_{\text{sq}}}{d\vec{w}} = \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right] \right)$$
$$= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) \right]$$

The normal equations

To minimize $R_{sq}(\vec{w})$, set its gradient to zero and solve for \vec{w} :

$$-2X^{T}\vec{y} + 2X^{T}X\vec{w} = 0$$
$$\implies X^{T}X\vec{w} = X^{T}\vec{y}$$

- This is a system of equations in matrix form, called the normal equations.
- If X^TX is invertible, the solution is

$$\vec{W}^* = (X^T X)^{-1} X^T \vec{y}$$

- This is equivalent to the formulas for w_0^* and w_1^* we saw before!
 - Benefit this can be easily extended to more complex prediction rules.

Summary

Summary

We used linear algebra to rewrite the mean squared error for the prediction rule $H(x) = w_0 + w_1 x$ as

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- ► X is called the **design matrix**, \vec{w} is called the **parameter vector**, \vec{y} is called the **observation vector**, and $\vec{h} = X\vec{w}$ is called the **hypothesis vector**.
- We minimized $R_{sq}(\vec{w})$ using multivariable calculus and found that the minimizing \vec{w} satisfies the **normal** equations. $X^T X \vec{w} = X^T v$.
 - If X^TX is invertible, the solution is:

$$\vec{W}^* = (X^T X)^{-1} X^T \vec{y}$$

What's next?

- The whole point of reformulating linear regression in terms of linear algebra was so that we could generalize our work to more sophisticated prediction rules.
 - Note that when deriving the normal equations, we didn't assume that there was just one feature.
- Examples of the types of prediction rules we'll be able to fit soon:

$$\vdash H(x) = W_0 + W_1 x + W_2 x^2.$$

$$H(x) = W_0 + W_1 \cos(x) + W_2 e^x$$
.

$$H(x^{(1)}, x^{(2)}) = W_0 + W_1 x^{(1)} + W_2 x^{(2)}.$$