Network Layer - Complete Study Notes

Overview

- **Position**: Third layer from bottom in OSI Model
- **Data Flow**: Takes data from Transport Layer → passes to Data Link Layer
- **Primary Function**: Handles communication between different networks

Key Responsibilities of Network Layer

1. Host-to-Host Delivery (Source-to-Destination Delivery)

Alternative Names:

- Host-to-Host delivery
- Source-to-Destination delivery
- Machine-to-Machine delivery

Example Scenario:

- **Network A** (Hub topology) and **Network B** (Bus topology)
- Machine A2 wants to communicate with Machine B2
- **Path**: A2 → R1 (Router 1) → R2 (Router 2) → B2

Key Points:

- No direct communication between machines in different networks
- Data Link Layer handles node-to-node delivery (A2 to R1)
- Network Layer handles **end-to-end** delivery (A2 to B2)

Implementation Method:

Uses Logical Addresses (IP Addresses)

IP Address Components:

IP Address = Network ID + Host ID

- **Network ID**: Identifies which network to send the message
- Host ID: Identifies specific machine/server within that network

Process:

1. Source (A2) adds its IP address

- 2. Source adds destination IP address (B2)
- 3. Network Layer uses these addresses for routing decisions

2. Routing

Definition:

Process of determining the best path for data packets from source to destination

Key Routing Protocols:

- **RIP** (Routing Information Protocol)
- **OSPF** (Open Shortest Path First)
- Distance Vector Routing
- Link State Routing

Why Protocols Are Important:

- Provide standardized set of instructions
- Ensure both source and destination follow same rules
- Enable fast, convenient, and efficient communication
- Prevent confusion from different custom protocols

Router Intelligence:

- Routers make independent routing decisions
- Each router determines the best path to destination
- Use routing algorithms to find shortest/optimal paths
- Example: R1 decides best path to reach B2, then R2 makes its own decision

Network Layer Devices:

Primary Devices:

- Routers (most important)
- Switches

Other Devices:

- Bridges
- Firewalls

Device Comparison:

- Routers: Have all 3 layers (Physical, Data Link, Network)
- **Bridges**: Only have 2 layers (Physical, Data Link)

3. Fragmentation

Terminology:

- Network Layer uses packets
- Implements packet switching

When Fragmentation is Needed:

Scenario Example:

- Host sends large message to destination
- Message goes to R1 router
- Next router in path has limited buffer capacity
- Example: Ethernet (CSMA/CD) accepts maximum 1500 bytes
- If packet size > router capacity → Fragmentation required

Fragmentation Process:

- 1. Router receives large packet
- 2. Checks its buffer capacity and network limitations
- 3. Divides packet into smaller fragments
- 4. Each fragment sized according to network capacity
- 5. Forwards multiple smaller packets instead of one large packet

Why It's Important:

- Prevents packet loss due to size limitations
- Ensures compatibility across different network types
- Maintains data flow efficiency

4. Congestion Control

Definition:

Managing network traffic to prevent network overload

Congestion Situation:

Network filled to capacity with packets

- Multiple nodes sending unlimited packets simultaneously
- Network becomes saturated with messages
- Can cause packet loss and delays

Implementation:

Note: Primarily handled by Transport Layer, but Network Layer assists

Methods Used:

- Leaky Bucket Method
- Token Bucket Method

Protocols Used:

- **ICMP** (Internet Control Message Protocol)
- **IGMP** (Internet Group Management Protocol)

ICMP Functions:

- Router sends acknowledgment to source about message problems
- Sends speed reduction requests when source transmits too fast
- Helps maintain optimal network performance

Important Concepts Summary

Data Flow Path:

Source Machine (A2)

↓ (Data Link Layer - node to node)

Router R1

↓ (Network Layer - routing decision)

Router R2

↓ (Network Layer - routing decision)

Destination Machine (B2)

Key Technologies:

- **IP Addressing**: For host identification and routing
- Packet Switching: For efficient data transmission
- Routing Algorithms: For optimal path selection
- Fragmentation: For packet size management

Internet Context:

- Internet = Connection of different networks
- Routers connect multiple networks (not just 1-2)
- Each network can use different topologies
- Network Layer ensures interoperability

Layer Comparison:

- Data Link Layer: Node-to-node delivery (adjacent devices)
- **Network Layer**: Host-to-host delivery (across networks)
- **Transport Layer**: Process-to-process delivery (applications)

Key Takeaways

- 1. Most Important Function: Host-to-Host delivery using IP addresses
- 2. **Essential for Internet**: Enables communication across different networks
- 3. **Router Intelligence**: Routers make independent routing decisions
- 4. Flexibility: Handles different network types and sizes through fragmentation
- 5. **Efficiency**: Optimizes paths and manages congestion for better performance