Análisis Aplicado Región de Confianza Tarea II

1 Introducción

Sea $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f \in \mathcal{C}^2\mathbb{R}^n$. Supongamos que $\hat{x} \in \mathbb{R}^n$ satisface que $g = \nabla f(\hat{x}) \neq 0$ y $B = \nabla^2 f(\hat{x})$ es simétrica y positiva definida.

El subproblema cuadrático asociado a f(x) en \hat{x} con radio de confianza $\Delta>0$ es ,

Minimizar
$$(1/2)p^TBp + g^Tp + f(\hat{x}) (\equiv m(p))$$

Sujeto a $||p||_2 \leq \Delta$. (1)

La curva de gancho asociada a (1) cuando el radio $\Delta>0$ cambia está definida como:

$$p(\mu) = -(B + \mu I_n)^{-1} g, \tag{2}$$

y satisface la condición de complementaridad

$$\mu(\|p(\mu)\|_2 - \Delta) = 0.$$

El parámetro $\mu \geq 0$ depende de Δ , es decir, $\mu(\Delta)$, ya que la dependencia es implícita, quitamos el radio Δ de la dependencia.

La técnica del doblez para aproximar la solución de (1) involucra la dirección de Newton, p^N y el punto de Cauchy, p^C , es decir:

$$p^N = -B^{-1}g, \quad p^C = -\left(\frac{g^Tg}{g^TBg}\right)g.$$

2 Problemas

1. Resuelva el problema,

Minimizar
$$g^T p + f(\hat{x})$$

Sujeto a $||p||_2^2 \le \Delta^2$,

usando únicamente geometría.

2. Supongamos que $B \in \mathbb{R}^n$, $g \in \mathbb{R}^n$ satisfacen que B es simétrica positiva definda y $g \neq 0$. Usando la Fatorización de Cholesky y la desigualdad de Cauchy Schwartz pruebe que

$$\sigma = \frac{(g^T g)^2}{(g^T B g)(g^T B^{-1} g)} \le 1,$$

con igualdad si y sólo si -g y $-B^{-1}g$ son paralelos.

3. Sea $\hat{p} \in \mathbb{R}^n - \{0\}$. Pruebe que la única solución del problema

Minimizar
$$m_c(\alpha \hat{p})$$

 $\alpha \in \mathbb{R}$,

es

$$\alpha^* = -\frac{g^T \hat{p}}{\hat{p}^T B \hat{p}}.$$

Es decir el vector solución es

$$p^* = -\left(\frac{g^T \hat{p}}{\hat{p}^T B \hat{p}}\right) \hat{p}.$$

4. Del problema anterior se puede definir la función $F: \mathbb{R}^n - \{0\} \to \mathbb{R}$ donde

$$F(p) = -\left(\frac{g^T p}{p^T B p}\right)$$

Pruebe que

- (a) $F(-B^{-1}g) = 1$
- (b) El problema

$$Min \qquad (-g)^T p$$

Sujeto a
$$p^T B p = 1$$

tiene como única solución al vector

$$p^* = \frac{B^{-1}g}{g^T B g}.$$

Ayuda: Use la factorización de Cholesky $B = LL^T$.

- 5. Sea p^* el vector solución de (1) tal que $g^Tp^* \neq 0$. Demuestre que $\nabla f(\hat{x})^Tp^* < 0$. Es decir, p^* es una dirección de descenso para f(x) en \hat{x} .
- 6. Pruebe que la curva de gancho es, $p(\Delta) = \Delta\left(\frac{p^N}{\|p^N\|_2}\right)$, para $\Delta \in [0, \|p^N\|_2]$ si y sólo si $Bg = \lambda^* g$, y determine el valor propio λ^* .
- 7. Pruebe que:
 - (a) Sea $p^{(k)}(\mu)$ la derivada k-ésima de, $p(\mu) = -(B + \mu I_n)^{-1}g$, entonces $p^{(k)}(\mu) = (-1)^{k+1} (k!)(B + \mu I_n)^{-(k+1)}g.$

(b)
$$\frac{d}{d\mu} \|p(\mu)\|_2 = -\frac{p(\mu)^T (B + \mu I)^{-1} p(\mu)}{\|p(\mu)\|_2}.$$

Es decir, la función, $||p(\mu)||_2$, es strictamente decreciente para $\mu \ge 0$.

8. Pruebe que la función

$$\phi(\mu) = \frac{1}{\parallel p(\mu) \parallel_2},$$

está bien definida para todo μ y que

$$\phi(\mu) = 0$$
 si y sólo si $\mu = -\lambda_i$ para alguna $i = 1, ..., n$.

Observación: En tal caso se puede usar el método de Newton a la ecuación no-lineal $\phi(\mu) - (1/\Delta) = 0$, para la solución de (PRC)

9. Sea $p(\mu)$ la curva de gancho con

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad g = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}.$$

Pruebe que p(0), p(1), p(2) pertenecen al plano (1/10)x+(-4/5)y+z=(1/30) y que p(3) no pertenece a este plano.

Moraleja: No necesariamente la curva de gancho es plana.

- 10. Sean $f(x) = (1/2)x_1^2 + x_2^2$, $\hat{x} = (1,1)^T$ Encuentre:
 - (a) El punto de Cauchy.
 - (b) El punto de Newton.
 - (c) La solución del problema de región de confianza con $\Delta_0 = 2$.
- 11. Demuestre que $||p^C||_2 \le ||p^N||_2$.
- 12. Supongamos que $||p^N||_2 > \Delta$ y $||p^C||_2 < \Delta$.
 - (a) Demuestre que

$$g^{T}(p^{N} - p^{C}) = -(g^{T}B^{-1}g)(1 - \sigma).$$

(b) Para la ecuación de segundo grado

$$(p^{N} - p^{C})^{T}(p^{N} - p^{C})t^{2} + 2(p^{N} - p^{C})^{T}(p^{C})t + ((p^{C})^{T}p^{C} - \Delta^{2}) = 0$$

pruebe que su discrimante es positivo y calcule ambas raíces.

- (c) Muestre que $g^T p^N \leq g^T p^C$.
- (d) Consideremos la curva $\phi(\alpha) = p^C + \alpha(p^N p^C)$ con $\alpha \in [0, 1]$. Demuestre que la función $g : [0, 1] \to \mathbb{R}$ dada por $g(\alpha) = \phi(\alpha)^T \phi(\alpha)$ es monótona creciente. Ayuda: Muestre que $g'(\alpha) \ge 0$.
- (e) Demuestre que la función $m(\phi(\alpha))$ es monótona decreciente. Ayuda: Muestre que $m(\phi(\alpha))' \leq 0$.