Algorithms: Greedy Method

Shortest Path Problems

Shortest-Path

- Given a graph (directed or undirected) G = (V, E) with weight function $w: E \to \mathbf{R}$ and a vertex $s \in V$, find for all vertices $v \in V$ the minimum possible weight for path from s to v.
- The weight of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is $w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$
- Shortest path = a path of the minimum weight
- Algorithm will compute a shortest-path tree.

Shortest-Path Problems

- Shortest-Path problems
 - **Single-Source:** Find a shortest path from a given source (vertex *s*) to each of the vertices.
 - **Single-Destination:** Find a shortest path to a given destination (vertex *t*) from each of the vertices.
 - **Single-Pair:** Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
 - **All-Pairs:** Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

Single-Source Shortest Path

- Given a graph (directed or undirected) G = (V, E) with weight function $w: E \to \mathbf{R}$ and a vertex $s \in V$, find for all vertices $v \in V$ the minimum possible weight for path from s to v.
- We will discuss two general case algorithms:
 - **Dijkstra's Algorithm** (positive edge weights only)
 - Bellman-Ford Algorithm (positive and negative edge weights)
- If all edge weights are equal (let's say 1), the problem is solved by BFS in $\Theta(V+E)$ time.

Single-Source Shortest Path

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

Single-Source Shortest Path

Tokyo Subway Map

Shortest Path Properties

- The shortest path problem satisfies the *optimal* substructure property:
 - Subpaths of shortest paths are shortest paths.

- **Proof**: suppose some subpath P_1 is not a shortest path
 - \bullet There must then exist a shorter subpath P_2
 - \bullet Could substitute the subpath P_1 by the shorter path P_2
 - ◆ But then overall path is not the shortest path. Contradiction

Shortest Path Properties

- Define $\delta(u, v)$ to be the weight of the shortest path from u to v
- Shortest paths satisfy the *triangle inequality*: $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$

This path is no longer than any other path

Shortest Path Properties

• In graphs with negative weight cycles, some shortest paths will not exist (*Why*?):

Relaxation

- A key technique in shortest path algorithms is *relaxation*
 - Idea: for all v, maintain upper bound d[v] on $\delta(s, v)$

```
Relax(u,v,w) {

if (d[v] > d[u]+w(u,v))

then d[v] = d[u]+w(u,v);
}

u

v

5

Relax(u,v)

Felax(u,v)

5

2

6
```

Bellman-Ford Algorithm

```
BellmanFord()
                                          Initialize d[], which
    for each v \in V
                                          will converge to
   d[v] = \infty;
                                          shortest-path value \delta
  d[s] = 0;
    for i=1 to |V|-1
4
                                          Relaxation:
       for each edge (u,v) \in E
                                          Make |V|-1 passes,
          Relax(u,v,w);
                                          relaxing each edge
    for each edge (u,v) \in E
                                          Test for solution
       if (d[v] > d[u] + w(u,v))
                                          Under what condition
            return "no solution";
                                          do we get a solution?
```

```
Relax(u,v,w): if (d[v] > d[u]+w(u,v))
then d[v]=d[u]+w(u,v)
```

Bellman-Ford Algorithm

```
BellmanFord()
    for each v \in V
    d[v] = \infty;
                                        Q: What will be the
  d[s] = 0;
                                        running time?
    for i=1 to |V|-1
4
                                        A: O(VE)
       for each edge (u,v) \in E
          Relax(u,v,w);
7
    for each edge (u,v) \in E
       if (d[v] > d[u] + w(u,v))
            return "no solution";
Relax(u,v,w): if (d[v] > d[u]+w(u,v))
                  then d[v]=d[u]+w(u,v)
```


We prove that Bellman-Ford Algorithm returns TRUE correctly, and FALSE correctly.

- Firstly: If G contains no negative-weight cycles that are reachable from s, then we show that the algorithm returns TRUE.
 - We prove that $d[v] = \delta(s, v)$, for all v, after |V|-1 passes
 - Lemma: $d[v] \ge \delta(s, v)$ always
 - ◆ Initially true
 - For a contradiction, let v be the first vertex for which $d[v] < \delta(s, v)$
 - ◆ Let u be the vertex that caused d[v] to change:

$$d[v] = d[u] + w(u, v)$$

◆ By triangle inequality, we have

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

♦ Then
$$d[v] < \delta(s, v)$$

$$d[u] + w(u, v) < \delta(s, u) + w(u, v)$$

$$d[u] < \delta(s, u), a contradiction of v be the first vertex.$$

- After |V|-1 passes, all d values are correct
 - Consider shortest path from s to v:

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_k = v$$
, where $k \le |V|-1$

- Initially, d[s] = 0 is correct, and doesn't change
- \bullet After 1 pass through edges, d[v₁] is correct and doesn't change
- ◆ After 2 passes, d[v₂] is correct and doesn't change
- **♦** ...
- \bullet Terminates in |V| 1 passes.
- By the path-relaxation property:
 - $\bullet d[v] = d[v_k] = \delta(s, v_k) = \delta(s, v).$

• At termination, we have for all edges $(u, v) \in E$

■ So, none of the tests in Line 8 of Bellman-Ford algorithm returns FALSE.

Therefore, it returns TRUE

Conversely, suppose that graph G contains a negative-weight cycle that is reachable from the source s; let this cycle be $c = \Box v_0, v_1, ..., v_k \Box$, where $v_0 = v_k$. Then,

$$(24.1)\sum_{i=1}^k w(v_{i-1},v_i)<0.$$

Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE. Thus, $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ for i = 1, 2, ..., k. Summing the inequalities around cycle c gives us

$$\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Since $v_0 = v_k$, each vertex in c appears exactly once in each of the summations $\sum_{i=1}^k d[v_i]$ and $\sum_{i=1}^k d[v_{i-1}]$, and so

$$\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}].$$

Moreover,

 $d[v_i]$ is finite for i = 1, 2, ..., k. Thus,

$$0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
,

which contradicts inequality (24.1). We conclude that the Bellman-Ford algorithm returns TRUE if graph G contains no negative-weight cycles reachable from the source, and FALSE otherwise.

Dijkstra's Algorithm

- If no negative edge weights, we can beat Bellman-Ford Algorithm
- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 - Use a priority queue keyed on d[v]

Dijkstra's Algorithm

```
Dijkstra(G)
     for each v \in V
        d[v] = \infty;
    d[s] = 0; S = \emptyset; Q = V;
    while (Q \neq \emptyset)
        u = ExtractMin(Q);
        S = S \cup \{u\};
        for each v \in u-\lambda j[]
if (d[v] > d[u]+w(u,v))

Note: this
d[v] = d[u]+w(u,v);
Step
is really a
call to Q->DecreaseKey()
```


Dijkstra's Algorithm: Idea

Dijkstra's Algorithm: Idea


```
Dijkstra(G)
   for each v \in V
      d[v] = \infty;
                                 How many times is
   d[s] = 0; S = \emptyset; Q = V;
                                 ExtractMin() called?
   while (Q \neq \emptyset)
      u = ExtractMin(Q);
                                 How many times is
      S = S \cup \{u\};
                                 DecraseKey() called?
      for each v \in u-Adj[]
          if (d[v] > d[u]+w(u,v))
             d[v] = d[u] + w(u,v);
```

What will be the total running time?

```
Dijkstra(G)
   for each v \in V
       d[v] = \infty;
   d[s] = 0; S = \emptyset; Q = V;
   while (Q \neq \emptyset)
       u = ExtractMin(Q);
       S = S \cup \{u\};
       for each v \in u-Adj[]
           if (d[v] > d[u]+w(u,v))
              d[v] = d[u] + w(u,v);
```

A: O(E lg V) using binary heap for Q
Can achieve O(V lg V + E) with Fibonacci heaps

Using Array:

The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary array

- Good for dense graphs (many edges)
- |V| vertices and |E| edges
- Initialization O(|V|)
- While loop O(|V|)
 - Find and remove a min distance vertex O(|V|)
 - Potentially | E | updates
 - ◆ Each update costs O(1)
- Reconstruct path O(|E|)

Total time
$$O(|V^2| + |E|) = O(|V^2|)$$

Using Priority Queue:

For sparse graphs, Dijkstra's Algorithm can be implemented more efficiently by *priority queue*

- Initialization O(|V|) using O(|V|) buildHeap()
- While loop O(|V|)
 - Find and remove a min dist vertex needs O(log |V|) using O(log |V|) ExtractMin()
 - Potentially | E | updates
 - ◆ Each update costs O(log |V|) using decreaseKey()
- Reconstruct path O(|E|)

Total time $O(|V|\log|V| + |E|\log|V|) = O(|E|\log|V|)$

Correctness of Dijkstra's Algorithm

```
Dijkstra(G)
   for each v \in V
      d[v] = \infty;
   d[s] = 0; S = \emptyset; Q = V;
   while (Q \neq \emptyset)
       u = ExtractMin(Q);
       S = S \cup \{u\};
       for each v \in u-Adj[]
          if (d[v] > d[u]+w(u,v))
             d[v] = d[u] + w(u,v);
Correctness: we must show that when u is
removed from Q, it has already converged
```

Correctness of Dijkstra's Algorithm

- Note that $d[v] \ge \delta(s,v) \ \forall v$
- Let u be the first vertex picked s.t. \exists shorter path than d[u] $\Rightarrow d[u] > \delta(s,u)$
- Let y be the first vertex \in V-S on actual shortest path from s \rightarrow u \Rightarrow d[y] = δ (s,y)
 - Because d[x] is set correctly for y's predecessor $x \in S$ on the shortest path, and
 - When we put x into S, we relaxed (x,y), giving d[y] the correct value

Correctness of Dijkstra's Algorithm

- Note that $d[v] \ge \delta(s,v) \ \forall v$
- Let u be the first vertex picked s.t. \exists shorter path than d[u]

- $\Rightarrow d[u] > \delta(s,u)$
- Let y be the first vertex \in V-S on actual shortest path from s \rightarrow u \Rightarrow d[y] = δ (s,y)

$$\Rightarrow$$
 d[y] = $\delta(s,y)$

- $d[u] > \delta(s,u)$ $= \delta(s,y) + \delta(y,u)$ (Optimal substructure property) $= d[y] + \delta(y,u)$ $\geq d[y]$
- But if d[u] > d[y], wouldn't have chosen u. Contradiction.