

Radiation Hardness Assurance (RHA): Challenges and New Considerations

Michael J. Campola NASA Goddard Space Flight Center (GSFC) NASA Electronic Parts and Packaging (NEPP) Program

Acronyms

COTS	Commercial Off The Shelf			
DD	Displacement Damage			
GEO	Geostationary Earth Orbit			
GSFC	Goddard Space Flight Center			
LEO	Low Earth Orbit			
LET	Linear Energy Transfer			
MBU	Multi-Bit Upset			
MCU	Multi-Cell Upset			
NEPP	NASA Electronic Parts and Packaging			
RDM	Radiation Design Margin			
RHA	Radiation Hardness Assurance			
SEB	Single Event Burnout			
SEDR	Single Event Dielectric Rupture			
SEE	Single Event Effects			
SEFI	Single Event Functional Interrupt			
SEGR	Single Event Gate Rupture			
SEL	Single Event Latchup			
SOA	Safe Operating Area			
TID	Total Ionizing Dose			

RHA Challenges

- New Technologies
 - Radiation Testing / Data collection
 - Modeling the Physics of Failure
- Test Facility Access
- Increased COTS parts/subsystem usage
- Translation of system requirements into radiation pass/fail criteria
- Determining appropriate mitigation level (operational, system, circuit/software, device, material, etc.)
- Wide range of mission profiles and needs
- Always in a <u>dynamic</u> environment

RHA Flow Doesn't Change With Risk or Mission

- **Define the Environment**
 - External to the spacecraft
- **Evaluate the Environment**
 - Internal to the spacecraft
- **Define the Requirements**
 - Define criticality factors
- **Evaluate Design/Components**
 - Existing data/Testing
 - Performance characteristics
- "Engineer" with Designers
 - Parts replacement/Mitigation schemes
- **Iterate Process**
 - Review parts list based on updated knowledge

K.A. LaBel, A.H. Johnston, J.L. Barth, R.A. Reed, C.E. Barnes, "Emerging Radiation Hardness Assurance (RHA) issues: A NASA approach for space flight programs," IEEE Trans. Nucl. Sci., pp. 2727-2736, Dec. 1998.

Risk Acceptance Will Change

- Mission Profiles Are Expanding
 - Based on mission life, objective, and cost
 - Oversight gives way to insight for lower class
 - o Ground systems, do no harm, hosted payloads
 - Similarity and heritage data requirement widening
 - o In some cases unbounded radiation risks are likely

Credits: NASA's Goddard Space Flight Center/Bill Hrybyk

Part Classifications Growing

Summary of Environmental Hazards

	Plasma (charging)	Trapped Protons	Trapped Electrons	Solar Particles	Cosmic Rays	Human Presence	Long Lifetime (>10 years)	Nuclear Exposure	Repeated Launch	Extreme Temperature	Planetary Contaminates (Dust, etc)
GEO	Yes	No	Severe	Yes	Yes	No	Yes	No	No	No	No
LEO (low-incl)	No	Yes	Moderate	No	No	No	Not usual	No	No	No	No
LEO Polar	No	Yes	Moderate	Yes	Yes	No	Not usual	No	No	No	No
ISS	No	Yes	Moderate	Yes - partial	Minimal	Yes	Yes	No	Yes	No	No
Interplanetary	During phasing orbits; Possible Other Planet	During phasing orbits; Possible Other Planet	During phasing orbits; Possible Other Planet	Yes	Yes	No	Yes	Maybe	No	Yes	Maybe
Exploration – Lunar, Mars, Jupiter	Phasing orbits	During phasing orbits	During phasing orbits	Yes	Yes	Possibly	Yes	Maybe	No	Yes	Yes

https://radhome.gsfc.nasa.gov/radhome/papers/SSPVSE05_LaBel.pdf

Two Example Missions

LEO Technology Demonstration

- SEE more of a driver than TID
- Un-vetted technology

Interplanetary Asset

- Mission objectives
- Exotic environment at target

Environment/Lifetime

		Low	Medium	High
(m)	Low	COTS upscreening/ testing optional; do no harm (to others)	COTS upscreening/ testing recommended; fault-tolerance suggested; do no harm (to others)	Rad hard suggested. COTS upscreening/ testing recommended; fault tolerance recommended
Cinconny	Medium	COTS upscreening/ testing recommended; fault- tolerance suggested	COTS upscreening/ testing recommended; fault-tolerance recommended	Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.
	High	Level 1 or 2 suggested. COTS upscreening/ testing recommended. Fault tolerant designs for COTS.	Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.	Level 1 or 2, rad hard recommended. Full upscreening for COTS. Fault tolerant designs for COTS.

K.A. LaBel, J.A. Pellish, "Notional Radiation Hardness Assurance (RHA) Planning For NASA Missions: Updated Guidance" HEART Conference 2014.

RHA Risk Acceptance

- Define the Environment
 - External to the spacecraft
- Evaluate the Environment
 - Internal to the spacecraft
- Define the Requirements
 - Define criticality factors
- Evaluate Design/Components
 - Existing data/Testing
 - Performance characteristics
- "Engineer" with Designers
 - Parts replacement/Mitigation schemes
- Iterate Process
 - Review parts list based on updated knowledge

LEO Tech Demo

Interplanetary Asset

Environment/Lifetime

		Low	Medium	High	
	High	Spenvis Run / Dose Depth /	Dose depth evaluation at thinnest shielding	Ray-trace for subsystem	
Criticality	Medium	Spenvis Run / Dose Depth /	Spenvis Run / Dose Depth /	Dose depth evaluation at thinnest shielding	
	Low	Similar mission dose, based same solar cycle	Spenvis Run / Dose Depth	Spenvis Run / Dose Depth /	

Environment/Lifetime

		Low	Medium	High
	High	Ray-trace for subsystem		
Criticality	Medium	Dose depth evaluation at thinnest shielding	Ray-trace for subsystem	Ray-trace for subsystem
	Low	Spenvis Run / Dose Depth /	Spenvis Run / Dose Depth /	Dose depth evaluation at thinnest shielding

New Considerations: NEPP Efforts to Improve RHA

- Define / Evaluate the Environment
 - Inclusion of Environment Variability
 - » M. Xapsos; C. Stauffer; A. Phan; S. McClure; R. Ladbury; J. Pellish; M. Campola; K. LaBel, "Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology," in *IEEE Transactions on Nuclear Science*, vol.PP, no.99, pp.1-1.
- Define the Requirements
 - Requirements by Technology
 - » JESD57 updates, establishes testing procedures.
 - » NEPP RHA guideline & Small Mission RHA .
- Evaluate Design/Components and "Engineer" with Designers
 - Bayesian Methodologies
 - » R. Ladbury, J. L. Gorelick, M. A. Xapsos, T. O'Connor and S. Demosthenes, "A Bayesian Treatment of Risk for Radiation Hardness Assurance," 2005 8th European Conference on Radiation and Its Effects on Components and Systems, Cap d'Agde, 2005, pp. PB1-1-PB1-8.
 - » Ron Schrimpf's MRQW talk before the break.

Inclusion of Environment Variability

- NASA
- Confidence levels on environment external to the spacecraft account for variation.
- Transport to spacecraft's internal environment remains the same.
- Convolution of part failure distribution with environment confidence removes the ambiguity of RDM while maintaining/tailoring conservatism for TID/DD.

Requirements by Technology

- SEL, SEB
 - Environment driven, risk avoidance
 - Diode Derating
- SEGR, SEDR
 - Effect driven, normally incident is worst case
 - SOA
 - Validate test procedures
- Proton SEE susceptible parts are evaluated as determined here: https://nepp.nasa.gov/files/25401/Proton_RHAGuide_NASAAug09.pdf
- MBU, MCU, SEFI, Locked States only on devices that can exhibit the effect

Summary

- Challenges identified in the past are here to stay
- RHA flow doesn't change, risk acceptance needs to be tailored
- Varied missions profiles and environments don't necessarily benefit from the same risk reduction efforts or cost reduction attempts
- We need data with statistical methods in mind
- Risks versus rewards can have big impact on mission enabling technologies

Sponsor: NASA Electronic Parts and Packaging (NEPP) Program

michael.j.campola@nasa.gov

THANK YOU