Unit – **IV** (Multiple Integrals)

1. $\int_a^b \int_0^x f(x,y) dx dy$ x: a to b and y: 0 to x (Here the first integral is w.r.t. y)

2. $\int_a^b \int_0^y f(x, y) dx dy$ x:0 to y and y:a to b (Here the first integral is w.r.t. x)

3. Area = $\iint_R dxdy$ (or) $\iint_R dydx$

To change the polar coordinate $x = r\cos\theta$, $y = r\sin\theta$ and $dxdy = rdrd\theta$.

4. Volume = $\iiint_V dx dy dz$ (or) $\iiint_V dz dy dx$

Unit – V (Differential Equations)

1. **ODE with constant coefficients:** Solution y = C.F + P.I

Complementary functions:

Sl.No.	Nature of Roots	C.F
1.	$m_1 = m_2$	$(Ax+B)e^{mx}$
2.	$m_1 = m_2 = m_3$	$\left(Ax^2 + Bx + c\right)e^{mx}$
3.	$m_1 \neq m_2$	$Ae^{m_1x} + Be^{m_2x}$
4.	$m_1 \neq m_2 \neq m_3$	$Ae^{m_1x} + Be^{m_2x} + Ce^{m_3x}$
5.	$m_1 = m_2, m_3$	$(Ax+B)e^{mx}+Ce^{m_3x}$
6.	$m = \alpha \pm i\beta$	$e^{\alpha x}(A\cos\beta x + B\sin\beta x)$
7.	$m = \pm i\beta$	$A\cos\beta x + B\sin\beta x$

Particular Integral:

If
$$f(x) = 0$$
 then $P.I = 0$

Type-II

If
$$f(x) = e^{ax}$$
 (or) $\sinh ax$ (or) $\cosh ax$
$$P.I = \frac{1}{\phi(D)}e^{ax}$$

Replace D by a. If $\phi(D) \neq 0$, then it is P.I. If $\phi(D) = 0$, then diff. denominator w.r.t D and multiply x in numerator. Again replace D by a. If you get denominator again zero then do the same procedure.

Type-III

Case: i If $f(x) = \sin ax$ (or) $\cos ax$

$$P.I = \frac{1}{\phi(D)} \sin ax \text{ (or) } \cos ax$$

Here you have to replace only for D^2 not for $D \cdot D^2$ is replaced by $-a^2$. If the denominator is equal to zero, then apply same procedure as in Type – I.

Case: ii If $f(x) = Sin^2x$ (or) $\cos^2 x$ (or) $\sin^3 x$ (or) $\cos^3 x$

Use the following formulas $Sin^2x = \frac{1-\cos 2x}{2}$, $\cos^2 x = \frac{1+\cos 2x}{2}$,

$$\sin^3 x = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x$$
, $\cos^3 x = \frac{3}{4}\cos x + \frac{1}{4}\cos 3x$ and separate $P.I_1 \& P.I_2$

Case: iii If $f(x) = \sin A \cos B$ (or) $\cos A \sin B$ (or) $\cos A \cos B$ (or) $\sin A \sin B$ Use the following formulas:

(i)
$$s \operatorname{in} A \cos B = \frac{1}{2} \left(\sin(A+B) + \sin(A-B) \right)$$

(ii)
$$\cos A \sin B = \frac{1}{2} \left(Sin(A+B) - \sin(A-B) \right)$$

(iii)
$$\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B))$$

$$(iv) \sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right)$$

Type-IV

If
$$f(x) = x^m$$

$$P.I = \frac{1}{\phi(D)} x^m = \frac{1}{1 + g(D)} x^m = (1 + g(D))^{-1} x^m$$

Here we can use Binomial formula as follows:

i)
$$(1+x)^{-1} = 1-x+x^2-x^3+...$$

ii)
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + ...$$

iii)
$$(1+x)^{-2} = 1-2x+3x^2-4x^3+...$$

iv)
$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + ...$$

Type-\

If
$$f(x) = e^{ax}V$$
 where $V = \sin ax, \cos ax, x^m$

$$P.I = \frac{1}{\phi(D)}e^{ax}V = e^{ax}\frac{1}{\phi(D+a)}V$$

Type-VI

If
$$f(x) = x^n V$$
 where $V = \sin ax, \cos ax$

$$\sin ax = \text{I.P of } e^{iax}$$

 $\cos ax = \text{R.P of } e^{iax}$

Type-VII

If
$$f(x) = \sec ax$$
 (or) $\csc ax$ (or) $\tan ax$

$$P.I = \frac{1}{D-a} f(x) = e^{ax} \int e^{-ax} f(x) dx$$

1. ODE with variable co-efficient: (Euler's Method)

The equation is of the form
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = f(x)$$

Implies that $(x^2D^2 + xD + 1)y = f(x)$

To convert the variable coefficients into the constant coefficients

Put
$$z = \log x$$
 implies $x = e^z$
 $xD = D'$
 $x^2D^2 = D'(D'-1)$ where $D = \frac{d}{dx}$ and $D' = \frac{d}{dz}$
 $x^3D^3 = D'(D'-1)(D'-2)$

The above equation implies that (D'(D'-1)+D'+1)y=f(x) which is O.D.E with constant coefficients.

2. Legendre's Linear differential equation:

The equation if of the form
$$(ax+b)^2 \frac{d^2y}{dx^2} + (ax+b)\frac{dy}{dx} + y = f(x)$$

Put $z = \log(ax+b)$ implies $(ax+b) = e^z$

$$(ax+b)D = aD'$$

 $(ax+b)^2D^2 = a^2D'(D'-1)$ where $D = \frac{d}{dx}$ and $D' = \frac{d}{dz}$
 $(ax+b)^3D^3 = a^3D'(D'-1)(D'-2)$

3. Method of Variation of Parameters:

The equation is of the form
$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$
 $C.F = Ay_1 + By_2$ and

$$P.I = Py_1 + Qy_2$$
 where $P = -\int \frac{y_2 f(x)}{y_1 y_2' - y_1' y_2} dx$ and
$$Q = \int \frac{y_1 f(x)}{y_1 y_2' - y_1' y_2} dx$$

Textbook for Reference:

"ENGINEERING MATHEMATICS - I"

Publication: Sri Hariganesh Publications Author: C. Ganesan

Mobile: 9841168917, 8939331876

To buy the book visit www.hariganesh.com/textbook

----Ass the Best----