Interpretable Deep Learning (AI) for

Pneumonia Detection in Chest X-Rays

By: Ratan K Ghosh 08/31/2025

Data Set Source

The dataset used in this project was downloaded from a publicly available GitHub repository. It originates from the NIH Chest X-ray dataset and has been curated for binary classification: Pneumonia vs Normal. It's widely used in academic and clinical machine learning research.

The dataset is organized into three folders: train, val, and test, each containing chest X-ray images labeled as either 'Pneumonia' or 'Normal'. There are 5,216 training images, 16 validation images, and 624 test images.

Problem Statement

 Detecting pneumonia from chest X-ray images is critical for timely treatment, especially in lowresource settings where radiologist availability is limited. Manual examination is time-consuming and prone to human error. This project automates pneumonia detection using deep learning to improve diagnostic efficiency, accuracy, and interpretability.

Dataset

- NIH Chest X-ray Dataset
- 100,000+ labeled images across 14 disease categories
- Publicly available and widely used in medical imaging research
- Includes pneumonia cases

Proposed Techniques

- Convolutional Neural Networks (CNNs) with Transfer Learning
- Pre-trained ResNet50 model fine-tuned for pneumonia detection
- Implemented using TensorFlow and Keras
- Grad-CAM visualizations for model interpretability

Project Steps

- 1. Data Preprocessing (resize, normalize, augment)
- 2. Data Splitting (train, validation, test)
- 3. Model Development (ResNet50 fine-tuning)
- 4. Model Training (hyperparameter optimization)
- 5. Evaluation (accuracy, precision, recall, AUC)
- 6. Visualization (Grad-CAM heatmaps)
- 7. Reporting (methodology & results)

Expected Results

- Achieve >90% classification accuracy on test data
- Provide an automated pneumonia screening tool
- Reduce radiologist workload and human error
- Improve early detection rates in clinical settings

Classifica	tion Report:			
	precision	recall	f1-score	support
NORMAL	0.58	0.91	0.71	234
PNEUMONIA	0.92	0.61	0.73	390
accuracy			0.72	624
macro avg	0.75	0.76	0.72	624
weighted avg	0.79	0.72	0.72	624

ROC Curve

Grad-CAM: Pneumonia Detection

- 0.8

o 6 9 Activation Intensity

- 0.2

0.0

High-Activation Regions

