Modelltheorie Übungsblatt 6

Aufgabe 1. Seien \mathcal{L} eine Sprache und \mathcal{M} eine \mathcal{L} -Struktur, dann definiert man Diag $(\mathcal{M}) = \{ \varphi \text{ eine basic } \mathcal{L}(M)\text{-Aussage } | \mathcal{M} \models \varphi \}.$

- a) Zeigen Sie, dass die Modelle von Diag (\mathcal{M}) genau die Strukturen $(\mathcal{N}, h(a))_{a \in M}$ sind, für eine Einbettung $h : \mathcal{M} \to \mathcal{N}$.
- b) Zeigen Sie, dass T genau dann modelvollständig ist, wenn für alle $\mathcal{M} \models T$ die $\mathcal{L}(M)$ Theorie $T \cup \text{Diag}(\mathcal{M})$ vollständig ist.

Aufgabe 2. Sei $\mathcal{L} = \{R\}$. Betrachten Sie die \mathcal{L} -Theorie der Graphen:

$$T_{\rm Gr} = \{ \forall x, y R(x, y) \leftrightarrow R(y, x) \land \neg R(x, x) \}$$

Zeigen Sie, dass die Theorie T_{RG} des Zufallsgraphen der Modellbegleiter von T_{Gr} ist.

Aufgabe 3. Seien K ein algebraisch abgeschlossener Körper und A eine definierbare Teilmenge von K^n . Zeigen Sie, dass jede injektive polynomielle Funktion $f:A\to A$ surjektiv ist.

Hinweis: Benutzen Sie die Bonusaufgabe von Blatt 4.

Aufgabe 4. Seien T eine abzählbare konsistente Theorie und $\Sigma_i(x_1, \dots, x_{n_i})$ eine Folge von partiellen Typen, die nicht isoliert sind. Zeigen Sie, dass T ein Modell hat, das alle Σ_i ausläßt.