Αριθμητική Αναλύση

Ασκήσεις Εργαστηρίου 9

- 1. (α΄) Υλοποιήστε τον αλγόριθμο τραπεζίου σε υποπρόγραμμα. Αυτό θα δέχεται ως ορίσματα τουλάχιστον τα όρια της ολοκλήρωσης και το πλήθος των διαστημάτων. Θα επιστρέφει την προσεγγιστική τιμή του ολοκληρώματος.
 - (β΄) Χρησιμοποιήστε το υποπρόγραμμα για να υπολογίσετε το ολοκλήρωμα

$$\int_0^{\pi} \sin x \, \mathrm{d}x$$

διαδοχικά με $N=2,4,8,16,\ldots,512$ διαστήματα. Το πρόγραμμά σας να τυπώνει για κάθε N την υπολογιζόμενη τιμή και την απόλυτη διαφορά της από την ακριβή τιμή.

- 2. (α΄) Υλοποιήστε τον αλγόριθμο Simpson σε υποπρόγραμμα. Αυτό θα δέχεται ως ορίσματα τουλάχιστον τα όρια της ολοκλήρωσης και το πλήθος των διαστημάτων. Θα επιστρέφει την προσεγγιστική τιμή του ολοκληρώματος.
 - (β΄) Χρησιμοποιήστε το για να υπολογίσετε το ολοκλήρωμα

$$\int_0^{\pi} \sin x \, \mathrm{d}x$$

με όσα διαστήματα χρειάζεται ώστε να έχετε ακρίβεια τουλάχιστον 6 ψηφίων.

Υπόδειξη: Επιλέξτε κατάλληλα το βήμα (άρα και το πλήθος των διαστημάτων) ώστε το σφάλμα

$$|E| \le \frac{b-a}{180} Mh^4 .$$

του σύνθετου τύπου Simpson να είναι μικρότερο από 10^{-6} .

3. Υλοποιήστε ένα υποπρόγραμμα που να υπολογίζει ολοκληρώματα ανεξάρτητα με το πλήθος των σημείων στα οποία είναι γνωστή η ολοκληρωτέα συνάρτηση. Αν το πλήθος των διαστημάτων είναι περιττό (και μεγαλύτερο του 3), να χρησιμοποιεί τον τύπο 3/8 Simpson για τα πρώτα 3 και για τα υπόλοιπα τον τύπο 1/3 Simpson. Αν είναι άρτιο, να χρησιμοποιεί μόνο τον 1/3 Simpson.

Να το εφαρμόσετε για να υπολογίσετε το ολοκλήρωμα της συνάρτησης που δίνεται με τη μορφή σημείων x,y στο αρχείο. Η πρώτη γραμμή του αρχείου περιέχει το πλήθος των σημείων, τα οποία ακολουθούν. Τα σημεία ισαπέχουν.

Υπόδειξη: Τα σημεία στο αρχείο προέκυψαν από τη συνάρτηση $e^x \sin x$ στο [0,3]. Υπολογίστε ακριβώς την τιμή του ολοκληρώματος για να μπορείτε να ελέγξετε το αποτέλεσμά σας.

4. Παρέκταση Richardson για ολοκληρώματα (Μέθοδος Romberg). Μπορεί να δειχθεί ότι ο σύνθετος τύπος τραπεζίου για το ολοκλήρωμα,

$$I_0 = \int_{x_0}^{x_n} f(x) \, \mathrm{d}x \;,$$

δίνει για την ακριβή τιμή τη σχέση

$$I_0 = I_h + \alpha_2 h^2 + \alpha_4 h^4 + \cdots , (1)$$

όπου

$$I_h = \frac{h}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n) ,$$

 $h=(x_n-x_0)/n$ και α_i οι συντελεστές των όρων h^i του σφάλματος.

Γράψτε τη (1) για τρία διαφορετικά βήματα, π.χ. h,h/2,h/4. Παρατηρήστε ότι σχηματίζεται ένα σύστημα τριών γραμμικών εξισώσεων με αγνώστους τα I_0,α_2,α_4 . Βρείτε τη λύση του συστήματος ως προς I_0 ; ο τύπος στον οποίο θα καταλήξετε—γραμμικός συνδυασμός των $I_h,I_{h/2},I_{h/4}$ που έχουν σφάλματα $O(h^2)$ —δίνει την ακριβή τιμή του ολοκληρώματος με σφάλμα $O(h^6)$.

[Λύση συστήματος: $I_0 = (I_h - 20I_{h/2} + 64I_{h/4})/45$.]

Υλοποιήστε σε κώδικα τον παραπάνω αλγόριθμο ολοκλήρωσης.

5. Υλοποιήστε σε κώδικα τη μέθοδο ολοκλήρωσης Gauss-Legendre για 2 και για 3 σημεία. Εφαρμόστε τη για να υπολογίσετε το ολοκλήρωμα

$$\int_{2.1}^{5.2} x^3 e^{-x} \, \mathrm{d}x \, .$$

[Ακριβής τιμή ολοκληρώματος: 3.60346...]

6. Τα πρώτα πολυώνυμα Hermite είναι τα

$$H_0(x) = 1$$
 , $H_1(x) = 2x$
 $H_2(x) = 4x^2 - 2$, $H_3(x) = 8x^3 - 12x$
 $H_4(x) = 16x^4 - 48x^2 + 12$.

Να γράψετε υποπρόγραμμα που να υλοποιεί τη μέθοδο Gauss–Hermite για n=4. Χρησιμοποιήστε το για να υπολογίσετε το ολοκλήρωμα

$$\int_{-\infty}^{\infty} e^{-x^2} x^2 dx.$$

Συγκρίνετε με την ακριβή τιμή $(\sqrt{\pi}/2)$.