2a Prova de Cálculo III – 10/12/2019Prof. Rafael B. de R. Borges

Aluno:	
Matrícula:	Turma: 2
1,1001100100	

Instruções para a prova:

- Só escreva nesta capa o que foi pedido acima.
- Você pode resolver as questões na ordem que quiser.
- Resolva as questões a lápis e escreva a caneta apenas a resposta final.
- Faça uma prova organizada. Há folhas de sobra para você fazer as questões. E, caso falte, é só pedir que eu grampeio mais.
- Parênteses são muito importantes. Use-os. Exemplos:
 - "x vezes -6" é $x \cdot (-6)$, não $x \cdot -6$, ou, pior, x 6.

$$\mathbf{I} \quad x - \frac{1}{y+2} \quad \text{\'e} \quad \frac{x \cdot (y+2) - 1}{y+2}, \quad \text{n\~ao} \quad \frac{x \cdot y + 2 - 1}{y+2}.$$

- Manipulações algébricas absurdas serão (muito) descontadas. As crianças do nosso Brasil dependem de que você saiba Matemática!
- Lembre-se: é melhor não simplificar, do que tentar e se complicar!
- Mas você tem que saber o valor de expressões básicas como sen 0, $\cos \pi$, $\ln 1$, e^0 etc.
- São proibidos: folha própria de rascunho, calculadora, e celular. Guarde-os na mochila, que deve ser guardada na frente da sala.
- Não serão aceitas respostas sem desenvolvimento. Mostre que você sabe o que está fazendo.
- Não desgrampeie o caderno de provas.

Questão 1. Seja

$$\alpha = (x^2 + y^2)\cos(zw) dx^{\wedge} dy + \operatorname{senh}\left(\frac{x}{z}\right) dz^{\wedge} dw$$

uma 2-forma diferencial em \mathbb{R}^4 . Seja E um sólido suave em \mathbb{R}^4 , e ∂E a sua superfície de fronteira (com uma orientação positiva). Determine a forma diferencial β tal que a igualdade

$$\iint_{\partial E}\alpha=\iiint_E\beta$$

seja válida.

Questão 2. Seja R a borda do retângulo de pontos (0, 0), (2, 0), (0, 1) e (2, 1), com uma orientação positiva. Calcule

$$\oint_{R} e^{y} dx + xy^{2} dy.$$

Questão 3. Seja P a fronteira do paralelepípedo em \mathbb{R}^3 limitado pelos planos coordenados e pelos planos $x=1,\ y=2$ e z=3, com uma orientação positiva. Calcule $\iint_P \vec{F} \cdot \vec{n} \, dS, \text{ onde}$

$$\vec{F} = \langle x + y + z, x^2 + y^2 + z^2, x^3 + y^3 + z^3 \rangle.$$

Questão 4. Seja P a fronteira do paralelotopo em \mathbb{R}^4 limitado pelos hiperplanos coordenados e pelos hiperplanos $x=1,\,y=1,\,z=1$ e w=1, com uma orientação positiva. Seja

$$\alpha = x^2 w \, dy^{\wedge} dz^{\wedge} dw.$$

Calcule
$$\iiint_P \alpha$$
.