

Examen d'entrée 2007-2008

Physique

Durée: 2 heures

I- [6 pts] Régime transitoire— Régime permanent A- Circuit série (R, L)

Dans le circuit de la figure 1, L = 1 H, R = 1 k Ω et E = 10 V.

À la date $t_0 = 0$, on ferme l'interrupteur K. À la date t, le circuit est parcouru par un courant d'intensité i. Un oscilloscope, convenablement branché, sert à visualiser l'évolution de la tension $u_R = u_{BC}$ en fonction du temps (Fig. 2).

1- Établir l'équation différentielle qui régit les variations de l'intensité i en fonction de R, L, E et t.

- **2-** La solution de cette équation est de la forme : $i = A_1 B_1 e^{-\frac{\tau_1}{\tau_1}}$. Déterminer les valeurs des constantes A_1 , B_1 et τ_1 et donner la signification physique de chacune.
- **3-** En se référant à la figure 2, vérifier que les valeurs de A_1 et τ_1 sont égales à celles trouvées ci-dessus.
- **4-** Déterminer:
- ${f a}$) la durée t_1 au bout de laquelle le régime permanent a été atteint ;
- **b**) la valeur de l'énergie emmagasinée par la bobine à partir de t₁.

B- Disque en mouvement de rotation

Un disque peut tourner autour d'un axe (Δ) horizontal et perpendiculaire à son plan en son centre O. Le moment d'inertie I du disque par rapport à (Δ) a pour valeur I = 1,52×10⁻⁵ kg·m².

Sous l'action d'un couple moteur, de moment constant $\mathcal{M}_M = 9,12 \times 10^{-3}$ m·N, le disque est mis en rotation à partir du repos à la date $t_0 = 0$. À la date t, les grandeurs physiques θ et $\dot{\theta}$ sont respectivement l'élongation angulaire et la vitesse angulaire du disque. Au cours de sa rotation, le disque subit aussi l'action d'un couple de forces de frottement de moment $\mathcal{M}_F = -k \dot{\theta}$ où k est une constante positive avec $k = 3,04 \times 10^{-5}$ unités SI.

Par application du théorème du moment ci<mark>nétique, mo</mark>ntrer que l'équation différentielle en θ qui décrit le

mouvement du disque s'écrit : $I \frac{d\dot{\theta}}{dt} + k \dot{\theta} = \mathcal{M}_{M}$.

C- Une analogie

- 1- Faire correspondre à chacune des grandeurs électriques E, R, L, i, et di dt la grandeur mécanique convenable.
- **2- a**) Déterminer la solution de l'équation différentielle en $\dot{\theta}$.
 - **b**) En déduire la durée t₂ au bout de laquelle le régime permanent sera pratiquement atteint.
 - c) Déterminer la vitesse angulaire en régime permanent.

II- [7 pts] L'iode 131

L'iode 131 est l'un des effluents gazeux susceptibles de s'échapper d'un réacteur nucléaire fonctionnant à l'uranium enrichi. C'est un émetteur β de demi-vie T = 8,05 j, son noyau fils étant le xénon (Xe). En effet, des quantités importantes d'iode 131 ont été relâchées lors des accidents survenus à Windscale (Royaume-Uni) en 1957 (1,4×10¹⁵ Bq), à Three Mile Island (USA) en 1979 (5,5×10¹¹ Bq) et à Tchernobyl en 1986 (5×10¹⁷ Bq).

A- La fission de l'uranium 235

Une des réactions de fission possibles de l'uranium 235 qui donne l'iode 131 est :

			_		
225	1	121	72	22	1
233 T T	$-\frac{1}{0}$ n —	131 T	1377	23 E	1 77 1 40
	- "n — 	> -a +	/ n +	~ F	$+ v \cdot n$
$92 \circ$	0 11	53 🛨 🕛	30	7	

- **1-** Compléter cette équation.
- **2-** Calculer l'énergie de liaison (E_{ℓ}) pour chaque noyau.
- 3- a) Montrer que l'énergie libérée par la réaction peut s'écrire :

$$E_{lib} = E_{\ell}(I) + E_{\ell}(Zn) + E_{\ell}(F) - E_{\ell}(U).$$

b) Calculer sa valeur.

Noyau	Énergie de	
	liaison par	
	nucléon (MeV)	
U 235	7,59	
I 131	8,42	
Zn 73	8,64	
F 23	7,62	

B- La désintégration de l'iode 131

- 1- Écrire la réaction de désintégration de l'iode 131.
- **2- a)** Calculer la constante radioactive λ de l'iode.
- **b)** En déduire le temps qu'il faut pour que l'activité des effluents gazeux relâchés lors de l'accident survenu à Tchernobyl devienne égale à l'activité initiale des effluents gazeux relâchés lors de l'accident survenu à Three Mile Island.
- **3-** La figure 3 montre les désintégrations les plus probables de l'iode 131 en xénon 131.
- a) Que représente Q?
- **b**) i) Vérifier que l'énergie cinétique maximale de l'émission β₂ est 333 keV.
 - ii) En déduire l'énergie cinétique maximale de chacune des β_1 et β_3 .
- c) Calculer la vitesse maximale de chacune des β_2 .
- **d**) i) Calculer l'énergie du photon γ_3 qui est l'un des plus probables.
 - ii) Ce photon tombe sur une plaque métallique ; un électron est arraché de ce métal. Pourquoi ?

Données: La masse d'un électron est $m_0 = 511 \text{ keV/c}^2$; $E_C = m_0 c^2 (\gamma - 1) \text{ avec } \frac{1}{\gamma} = \sqrt{1 - \frac{V^2}{c^2}}$

III- [7 pts] Importance du circuit oscillant (L, C)

A. Charge du condensateur

Dans le circuit de la figure 4, $C=10~\mu F$, L=1~H, la valeur de R est réglable et E=10~V. Un oscilloscope peut enregistrer les variations de la tension $u_C=u_{AM}$ et celles de la tension $u_R=u_{BM}$.

- **1-** On règle R à la valeur $R = 50 \Omega$. À un instant donné, on fait passer l'interrupteur K dans la position (1).
- a) Donner l'expression de la constante de temps τ du circuit RC.
- b) En déduire la durée minimale au bout de laquelle le condensateur sera supposé pratiquement chargé.
- 2- Calculer, en fin de charge, l'énergie emmagasinée par le condensateur.

B. Circuit oscillant idéal

On règle R à la valeur zéro et à la date $t_0 = 0$, on place K dans la position 2.

- 1- Établir l'équation différentielle qui régit les variations de u_C en fonction du temps.
- 2- Montrer que u_C s'écrit : $u_C = A \cos(\frac{2\pi}{T_0}t)$. Calculer A et T_0 .

C. Exploitation d'un oscillogramme

On règle R à la valeur R = 50Ω . L'oscilloscope nous fournit les courbes de la figure 5.

- **1-** Calculer, à la date $t_1 = 5$ ms:
- a) l'intensité du courant dans le circuit;
- b) l'énergie totale emmagasinée dans le circuit.
- **2-** En déduire la puissance moyenne perdue entre les dates t_0 et t_1 .
- **3-** Déterminer la durée T d'une oscillation. Comparer T et T₀.

D. Le portique

Pour éviter le vol des marchandises, on leur attache de petits circuits oscillants du type LC. À la sortie d'un magasin, on est obligé de passer à travers le portique de sécurité. Ce portique émet en permanence une onde radio de faible puissance de fréquence f = 10 MHz, exactement égale à la fréquence propre f_0 du petit oscillateur. Dans ces conditions, le circuit capte l'énergie émise, se met à osciller, et émet à son tour une onde qui vient perturber l'onde émise par le portique. La détection de cette perturbation déclenche une alarme.

- **1-** Pourquoi f doit-elle être égale à f₀?
- 2- La capacité C' du condensateur vaut 0,5 nF. Déterminer la valeur de l'inductance L' de la bobine.
- **3- a)** Calculer la longueur d'onde de l'onde radio émise par le portique (On donne : $c = 3.0 \times 10^8 \text{ m.s}^{-1}$).
- **b**) Cette onde est émise à partir du portique dans plusieurs directions. Elle subit ainsi un des phénomènes physiques : réflexion, réfraction ou diffraction. Lequel ?

Examen d'entrée 2007-2008

Solution de Physique

Durée: 2 heures

I- [6 pts] Régime transitoire- Régime permanent

A- Circuit série (R, L)

$$\text{1- On a } u_{AC} = E = L \frac{di}{dt} + Ri \Rightarrow \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}.$$

2- À
$$t_0 = 0$$
, $i = 0$, donc: $0 = A_1 - B_1$; $A_1 = B_1$. $\Rightarrow : i = A_1(1 - e^{-\frac{\tau}{\tau_1}})$;

$$\frac{di}{dt} = \frac{A_1}{\tau_1} \, e^{-\frac{t}{\tau_1}} \Rightarrow \frac{A_1}{\tau_1} \, e^{-\frac{t}{\tau_1}} + \frac{R}{L} \, A_1 - \frac{R}{L} \, A_1 \, e^{-\frac{t}{\tau_1}} = \frac{E}{L}$$

Par identification: $\tau_1 = \frac{L}{R} = 1$ ms, appelée constante de temps du circuit RL et $A_1 = B_1 = \frac{E}{R} = I_0 = 10$ mA, appelée intensité du courant en régime permanent.

3-
$$\tau_1 = 1$$
 ms (tangente); $A_1 = B_1 = I_0 = u_R(max)/R = 10/10^3 = 10 \times 10^{-3} = 10$ mA

4- a) Durée
$$t_1 = 5\tau_1 = 5$$
 ms. b) $\mathcal{E} = \frac{1}{2} L I_0^2 = 5 \times 10^{-5} J$

B- Disque en mouvement de rotation

Théorème du moment cinétique : $\sum M_{\Delta} = \frac{d\sigma_{\Delta}}{dt}$ avec $\sigma_{\Delta} = I\dot{\theta} \Rightarrow \mathcal{M}_{M} + \mathcal{M}_{F} + \mathcal{M}_{\Delta}(\vec{R}) + \mathcal{M}_{\Delta}(\vec{R}) = I\frac{d\dot{\theta}}{dt}$;

$$I\frac{\mathrm{d}\dot{\theta}}{\mathrm{d}t} + k\,\dot{\theta} = \mathcal{M}_{\mathrm{M}}.$$

C- Une analogie

1- En comparant les deux équations, on aura : $\dot{\theta} = i$; $\frac{d\dot{\theta}}{dt} = \frac{di}{dt}$; k = R; L = I et $\mathcal{M}_M = E$.

2- a) Par analogie avec la solution en i : $\dot{\theta} = A_2 - B_2 e^{-\frac{t}{\tau_2}}$.

Pour $t_0 = 0$, $\dot{\theta} = 0$, alors : $A_2 = B_2 = \mathcal{M}_M/k = 300 \text{ rd/s}$; et $\tau_2 = \frac{I}{k} = 0.5 \text{ s. } \dot{\theta} = 300(1 - e^{-\frac{t}{0.5}}) = 300(1 - e^{-2t})$

b)
$$t_1 = 5\tau_2 = 2.5 \text{ s.}$$

c) La vitesse angulaire (régime permanent) $\dot{\theta}_{\ell} = 300 \text{ rd/s}.$

II- [7 pts] L'iode 131

A- La fission de l'uranium 235.

1. Conservation de nombre de masse : $235 + 1 = 131 + 73 + 23 + y \Rightarrow y = 9$.

Conservation du nombre de charge : $92 + 0 = 53 + 30 + z + 0 \Rightarrow z = 9$.

$${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{131}_{53}I + {}^{73}_{30}Zn + {}^{23}_{9}F + 9 {}^{1}_{0}n$$
.

2. Pour l'uranium : $E_{\ell} = 7.59 \times 235 = 1783.65 \text{ MeV}$; **pour l'iode :** $E_{\ell} = 8.42 \times 131 = 1103.02 \text{ MeV}$.

pour le zinc : $E_{\ell} = 8,64 \times 73 = 630,72 \text{ MeV}$; **pour le fluor :** $E_{\ell} = 7,62 \times 23 = 175,26 \text{ MeV}$.

3. a) $E_{lib} = \{m(U) + m_n - [m(I) + m(Zn) + m(F) + 9m_n]\} \cdot c^2$.

Mais: $E_{\ell}({}_{Z}^{A}X) = [Zm_{P} + Nm_{n} - m_{X}] \cdot c^{2} \Rightarrow m_{X} = Zm_{P} + Nm_{n} - E_{\ell}/c^{2}$. (N = A - Z)

 $m(U) = 92 m_P + 143 m_n - E_{\ell}(U)/c^2$; $m(I) = 53 m_P + 78 m_n - E_{\ell}(I)/c^2$;

 $m(Zn) = 30 m_P + 43 m_n - E_{\ell}(Zn)/c^2$; $m(F) = 9 m_P + 14 m_n - E_{\ell}(F)/c^2$;

Ainsi: $E_{lib} = \{m(U) - [m(I) + m(Zn) + m(F) + 8 m_n]\} \cdot c^2$

= $\{92 - (53 + 30 + 9)\}$ $m_Pc^2 + \{143 - (78 + 43 + 14 + 8)\}$ $m_nc^2 + \{E_{\ell}(I) + E_{\ell}(Zn) + E_{\ell}(F) - E_{\ell}(U)\}$

 $E_{lib} = E_{\ell} (I) + E_{\ell} (Zn) + E_{\ell} (F) - E_{\ell} (U).$

b) $E_{lib} = 1103,02 + 630,72 + 175,26 - 1783,65 = 125,35 \text{ MeV}$

B- La désintégration de l'iode 131

- 1. $_{53}^{131}I \longrightarrow _{54}^{131}Xe + _{-1}^{0}e + _{0}^{0}\overline{\nu}$.
- **2. a)** La constante radioactive $\lambda = \frac{\ln 2}{T} = 0.693/(8.05 \times 24 \times 3600) = 9.97 \times 10^{-7} \text{ s}^{-1}$.
 - **b**) $A = A_0 e^{-\lambda t}$, $e^{-\lambda t} = 5.5 \times 10^{11} / 5 \cdot 10^{17} = 1.1 \times 10^{-6} \Rightarrow -9.97 \times 10^{-7} t = \ln(1.1 \times 10^{-6}) = -3.72$

Soit $t = 1,38 \times 10^7 \text{ s} \approx 159,3 \text{ jours}$

- 3. a) Q représente l'énergie libérée par la désintégration de l'iode 131.
- b) i) $E_{Cmax}(\beta_2) = 970 637 = 333 \text{ keV}.$
 - ii) $E_{Cmax}(\beta_1) = 970 723 = 247 \text{ keV}$; $E_{Cmax}(\beta_3) = 605 \text{ keV}$.
- c) La vitesse maximale de chacune des β_2 : $333 = (511)(\gamma 1)$; $\Rightarrow (\gamma 1) = 0,652 \Rightarrow \gamma = 1,652$ et par suite :

$$1 - \frac{V^2}{c^2} = \frac{1}{1,652^2} \Rightarrow V^2 = 0,633 \text{ c}^2$$
; ainsi $V = 0,796 \text{ c} = 2,388 \times 10^8 \text{ m/s}.$

- d) i- L'énergie du photon $\gamma_3 = 285 \text{ keV}$.
- ii- Car l'énergie du photon qui est de l'ordre de 300 keV est beaucoup plus grande que l'énergie d'extraction du métal qui doit être de quelques eV. (-½ pour E> W)

III- [7pts] Importance du circuit oscillant (L, C)

A. Charge du condensateur

1- a- La constante de temps $\tau = RC$.

b) $\tau = 50 \times 10 \times 10^{-6} = 0.5 \text{ ms}$; $t = 5\tau = 2.5 \text{ ms}$.

2- En fin de charge, l'énergie emmagasinée par le condensateur = $\frac{1}{2}$ CE² = 5×10^{-4} J.

B. Circuit oscillant idéal

1- On a: $u_{AM} = u_C = -L\frac{di}{dt}$ avec $i = \frac{dq_A}{dt} = C\frac{du_C}{dt} \Rightarrow \frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$.

2- L'équation différentielle est de la forme : $\ddot{x} + \omega_0^2 x = 0$; u_C est de la forme $u_C = A \cos(\frac{2\pi}{T_0}t + \phi)$; $\omega_0 = \frac{2\pi}{T_0}$

 $\omega_0^2 = \frac{1}{LC} \Rightarrow T_0 = 2\pi \sqrt{LC} \qquad = 19.9 \text{ ms }.$

À la date $t_0 = 0$, $i = 0 \implies \varphi = 0$ et A = 10 V

C. Exploitation d'un oscillogramme

1. a) $u_R = 2.7 \times 0.5 = 1.35 \text{ V et i} = u_R/50 = 0.027 \text{ A}.$

b) L'énergie totale emmagasinée dans le circuit = $E_m + E_e = \frac{1}{2}Li^2 + \frac{1}{2}Cu_C^2$

À la date t_1 , l'énergie totale = $\frac{1}{2} \times 1 \times i^2 + 0 = \frac{3.65 \times 10^{-4} \text{ J}}{1.00 \times 10^{-4} \text{ J}}$.

2. La puissance moyenne perdue entre les dates t_0 et $t_1 = \frac{|\Delta E|}{t_1 - t_0} = (\frac{1}{2}10 \times 10^{-6} \times 100 - 3,65 \times 10^{-4})/5 \times 10^{-3} = 0,027 \text{ W}.$

3. $T = 20 \text{ ms}, T \gtrsim T_0$

D. Le portique

1- Pour que le circuit capte l'énergie émise il faut qu'il soit accordé à la fréquence de l'émetteur (résonance électrique - circuit sélectif ⇔le phénomène de résonance.

2- $T_0' = 10^{-7} = 2\pi \sqrt{L'C'} \implies L' = 0.5 \mu H.$

3- a) $\lambda = c/f = 30$ m.

b) Phénomène de diffraction.