INTRODUÇÃO AO MACHINE LEARNING E PROCESSAMENTO DE LINGUAGEM NATURAL

github.com/joaorafaelm joaoraf@me.com

AGENDA

- o que é e como funciona
- fluxo de desenvolvimento
- o que é NLP
- problemas e aplicações
- exemplo prático

DEFINIÇÃO

66

Uma área da Ciência da Computação que dá aos computadores a habilidade de "aprender" sem ter sido programado explicitamente.

MÉTODOS

- Supervisionado
- Não Supervisionado
- Reforço

SUPERVISIONADO

Onde o sistema tenta *aprender* a partir dos exemplos fornecidos.

CLASSIFICAÇÃO

REGRESSÃO

NÃO SUPERVISIONADO

Onde o sistema tenta detectar *padrões* nos dados de entrada.

ASSOCIAÇÕES

CLUSTERIZAÇÃO

Exemplo: Pessoas que compraram

Exemplo: Detecção de fraude.

X, tendem a comprar o produto Y.

REFORÇO

Onde o sistema tem um objetivo específico, dentro de um ambiente dinâmico.

Exemplos: melhorar desempenho em jogos (poker, tetris etc); carros autônomos etc.

FLUXO

FLUXO

DADOS

A quantidade e qualidade dos dados determina diretamente o quão bom será o modelo preditivo.

PRE PROCESSAMENTO E SELEÇÃO DE FEATURES

Nem todos os dados são relevantes para o seu modelo preditivo.

	Cor	Álcool (%)	Ano de criação
Cerveja	laranja	5	1870
Vinho	vermelho	13	1970

ALGORITMO

Decision Trees

Logistic Regression

Naive Bayes

Multilayer Perceptron

SVM

Nearest Neighbors

NLP

O objetivo é fazer com que o computador *entenda* linguagem natural.

APLICAÇÕES

Sumarização de texto

Chat bot

Gerar keywords ou tags

Extração de entidades (data, pessoa etc)

FEATURES

DOCUMENTO

PALAVRA

Metadados: título, autor etc. Vocabulário

Parágrafos Forma

Sentenças Frequência

VECTORIZAÇÃO

A representação básica é um vetor contendo todas as palavras do vocabulário dos dados

VECTORIZAÇÃO

"Eu gosto de quentão"

"Eu não gosto de quentão"

 As posições do vetor normalmente se baseiam na ordem léxica

BAG OF WORDS

Uma das formas mais simples de computar a frequência das palavras.

"Eu gosto de quentão"

1 1 1 0 1

de eu gosto não quentão

PROBLEMAS

O vocabulário pode ser muito grande, o que resultará em um vetor com muitas colunas.

Dependendo da representação escolhida, coisas importantes como contexto e ordem podem se perder.

SOLUÇÕES

Remover palavras que podem não ser relevantes para resolver o problema, como "a", "o", "para" etc.

Reduzir o número de palavras, normalizando elas em uma forma comum.

NLTK

Stemming: Remove representações morfológicas da palavra.

```
>>> from nltk.stem.snowball import SnowballStemmer
>>> stemmer = SnowballStemmer('english')
>>> print(stemmer.stem('running'))
run
```

NLTK

Lemmatization: Retorna a palavra em seu estado canônico.

```
>>> from nltk.stem import WordNetLemmatizer
>>> lemmer = WordNetLemmatizer()
>>> print(lemmer.lemmatize('going', pos='v'))
go
>>> print(lemmer.lemmatize('went', pos='v'))
go
```

NLTK

Stop words: lista de palavras comuns que podem não ter uma relevância.

```
>>> from nltk.corpus import stopwords
>>> print(stopwords.words('english'))
{'ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there', 'about' ...}
```

4

EXEMPLO PRÁTICO

Fazer um modelo para classificar um texto em spam ou ham.

importando dados

```
import json

# Load data
training = json.load(open('training.json', encoding='utf-8'))
test = json.load(open('test.json', encoding='utf-8'))
```

Definindo o método de tokenização

```
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from nltk import wordpunct_tokenize

# POS tag sentences and lemmatize each word
def tokenizer(text):
    for token in wordpunct_tokenize(text):
        if token not in ENGLISH_STOP_WORDS:
            yield token
```

Definindo o fluxo de processamento

```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.pipeline import Pipeline
from sklearn.linear_model import SGDClassifier
# Pipeline definition
pipeline = Pipeline([
   ('vectorizer', TfidfVectorizer(
       tokenizer=tokenizer,
       ngram_range=(1, 2)
  )),
   ('classifier', SGDClassifier()),
])
```

Treinando o classificador

pipeline.fit(training.get('data'), training.get('label'))

Prevendo...

print(pipeline.predict('você acabou de ganhar 1 milhão de reais !!!!1111onze!!'))

SPAM

OBRIGADO :)

Perguntas?

github.com/joaorafaelm joaoraf@me.com