Estatística Aplicada a Recursos Hídricos

Docente: Rachid Muleia

(rachid.muleia@uem.mz)

Mestrado em Gestão de Recursos Hídricos - DGEO/UEM

Tema: Inferência Estatística: Comparação entre médias

Ano lectivo: 2023

Comparações de Duas Médias

- Objectivo: Testar a significância estatística da diferença $\mu_1 \mu_2$ entre as médias de duas distribuições de populações diferentes.
- Por exemplo: diferença entre as pontuações médias de duas turmas distintas submetidas a um mesmo teste;
- Possíveis situações na comparação de duas populações:

- Objectivo: comparar duas médias populacionais sendo que, para cada unidade amostral, realizamos duas medições da característica de interesse.
- De modo geral, essas observações correspondem a medidas tomadas (em um único indivíduo) antes e após uma dada intervenção. Essa técnica é conhecida como auto-emparelhamento.
- Para exemplificar, tomaremos um grupo de pessoas que fizeram determinada dieta por uma semana. Medimos o peso no início e no final da dieta, representado pelas v.a.'s X_i e Y_i , respectivamente;
- O efeito produzido pela dieta pode ser representado, para o i-ésimo indivíduo, pela variável $D_i = Y_i X_i$. Supondo, para i = 1, ..., n (n diferenças),

$$d_i \sim N\left(\mu_d, \sigma_d^2\right)$$

queremos testar as hipóteses:

 $H_0: \mu_d = 0$ (a dieta não produziu efeito)

 $H_1: \mu_d \neq 0$ ou $\mu_d > 0$ ou $\mu_d < 0$ (a dieta produziu algum efeito)

O método de análise apropriado é o teste t-pareado

- O estimador "natural" do parâmetro μ_d é a média amostral \bar{d} ;
- O estimador da variância σ_d^2 é a variância amostral s_d^2 , dado por,

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$$

■ O teste de hipóteses é realizado utilizando-se a seguinte estatística do teste:

$$t = rac{ar{d} - \mu_d}{s_{ar{d}}}, \; \; ext{onde} \; \; s_{ar{d}} = rac{s_d}{\sqrt{n}}.$$

que, sob H_0 , segue uma distribuição t-Student com n-1 graus de liberdade.

 \bar{d} : média da amostra das diferenças;

 $\mu_{ extbf{d}}$: valor das diferenças entre médias das populações a ser testado;

 s_d : desvio padrão da amostra das diferenças;

n: tamanho da amostra das diferenças

Exemplo 1: Um grupo de 10 pessoas é submetido a um tipo de dieta por 10 dias, estando o peso (em Kg) antes do início (x_i) e no final da dieta (y_i) marcados na tabela abaixo. Ao nível de 5%, podemos concluir que houve diminuição do peso médio pela aplicação da dieta?

Exemplo 1: Um grupo de 10 pessoas é submetido a um tipo de dieta por 10 dias, estando o peso (em Kg) antes do início (x_i) e no final da dieta (y_i) marcados na tabela abaixo. Ao nível de 5%, podemos concluir que houve diminuição do peso médio pela aplicação da dieta?

Resposta: Definição das hipóteses: Seja $\mu_d=\mu_y-\mu_x$, então

 $H_0: \mu_d = 0$ (a dieta não produziu efeito)

 $H_1:\mu_d<0$ (houve diminuição do peso médio)

Seja $d_i = y_i - x_i, \ i = 1, \dots, 10.$

Pessoa	Α	В	С	D	Е	F	G	Н	I	J
		104								
y _i	116	102	90	83	86	97	98	108	82	85

Pessoa	Α	В	С	D	Е	F	G	Н	ı	J	\sum
d_i	-4	-2	-3	-4	1	-1	-4	2	-6	-5	-26
$-d_i^2$	16	4	9	16	1	1	16	4	36	25	128

Exemplo 1 (continuação):
$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
; $\bar{d} = -\frac{26}{10} = -2, 6$

$$s_d^2 = \frac{1}{n-1} \left\{ \sum_{i=1}^n d_i^2 - \frac{\left(\sum_{i=1}^n d_i\right)^2}{n} \right\}$$

$$s_d^2 = \frac{1}{9} \left\{ 128 - \frac{(26)^2}{10} \right\} = 6,71 \to s_d = \sqrt{6,71} = 2,59$$

$$s_{\bar{d}} = \frac{s_d}{\sqrt{n}} = \frac{2,59}{\sqrt{10}} = 0,82$$

Então

$$t_{calc} = \frac{\bar{d} - \mu_{d_{H0}}}{s_{\bar{d}}} = \frac{-2, 6 - 0}{0, 82} = -3, 17 \text{ e } t_{n-1,\alpha} = t_{9;0,05} = 1,833$$

Exemplo 1 (continuação): Aqui, consideramos $t_{9;0,05}$ com sinal negativo, por se tratar de um teste unilateral a esquerda.

Como $|t_{calc}| > t_{9;0,05}$, rejeita-se H_0 , isto é, a 95%, concluímos que é a dieta teve um efeito significativo.

Caso 2: Amostras independentes de populações normais com variâncias conhecidas

Teorema: Consideremos X_1 e X_2 duas amostras de populações independentes. Se

- $X_1 \sim N(\mu_1, \sigma_1^2) \rightarrow$ amostra de tamanho n_1 ;
- $X_2 \sim N(\mu_2, \sigma_2^2) \rightarrow$ amostra de tamanho n_2 ; Então

$$ar{x}_d = ar{x}_1 - ar{x}_2 \sim N(\mu_1 - \mu_2, \sigma_{ar{x}_1}^2 + \sigma_{ar{x}_2}^2)$$
 onde $\sigma_{ar{x}_1}^2 = \frac{\sigma_1^2}{n_1}$ e $\sigma_{ar{x}_2}^2 = \frac{\sigma_2^2}{n_2}$

- Observe que a independência entre as amostras foi necessária para obter a variância, uma vez que $Cov(\bar{x}_1,\bar{x}_2)=0$. Temos, então, que $\sigma_{\bar{x}_d}=\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$
- Se as populações não são normais e n_1 , e n_2 são grandes (> 30), então (pelo TLC)

$$\bar{x}_d = \bar{x}_1 - \bar{x}_2 \cong N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

Genericamente, testaremos as hipóteses:

$$H_0: \mu_1 - \mu_2 = \mu_0$$
 $H_1: \mu_1 - \mu_2 \neq \mu_0$ ou $\mu_1 - \mu_2 > \mu_0$ ou $\mu_1 - \mu_2 < \mu_0$

Docente: Rachid Muleia (DGEO/UEM)

- A estatística do teste é: $Z_{calc} = \frac{\bar{x}_d \mu_{H_0}}{\sigma_{\bar{x}_d}} = \frac{(\bar{x}_1 \bar{x}_2) \mu_{H_0}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
- Se há igualdade de variâncias, $\sigma_1^2 = \sigma_2^2 = \sigma^2$, então $Z_{calc} = \frac{(\bar{x}_1 \bar{x}_2) \mu_{H_0}}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
- Quando as variâncias forem desconhecidas e as amostras grandes usa-se (pelo TLC)

$$\sigma_{\bar{x}_d} = \sigma_{(\bar{x}_1 - \bar{x}_2)} \cong \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

onde s_1^2 e s_2^2 são estimativas de σ_1^2 e σ_2^2 , feitas por meio de amostras de tamanhos n_1 e n_2 . Dessa forma, a estatística do teste é:

$$Z_{calc} = rac{(ar{x}_1 - ar{x}_2) - \mu_{H_0}}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

Exemplo 2: De duas populações normais X_1 e X_2 com variâncias $\sigma^2=25$, levantaram-se duas amostras de tamanhos $n_1=9$ e $n_2=16$, obtendo-se:

$$\sum_{j=1}^{9} = 27 \text{ e } \sum_{j=1}^{16} = 32. \text{ Ao nível de } 10\%, \text{ testar as hipóteses:}$$

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

Exemplo 2: De duas populações normais X_1 e X_2 com variâncias $\sigma^2=25$, levantaram-se duas amostras de tamanhos $n_1=9$ e $n_2=16$, obtendo-se:

$$\sum_{j=1}^{9} = 27 \text{ e } \sum_{j=1}^{16} = 32. \text{ Ao nível de } 10\%, \text{ testar as hipóteses:}$$

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Resolução:

- 1ª população: $X_1 \sim N(\mu_1, 25)$ $n_1 = 9$; $\bar{x}_1 = \frac{27}{9} = 3$;
- 1ª população: $X_2 \sim N(\mu_2, 25)$ $n_2 = 16$; $\bar{x}_1 = \frac{32}{16} = 2$;
- $\bar{\mathbf{x}}_d = \bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2 = 3 2 = 1; \quad \sigma_{\bar{\mathbf{x}}_d} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 5\sqrt{\frac{1}{9} + \frac{1}{16}}$ $\sigma_{\bar{\mathbf{x}}_d} = 2,083$
- $Z_{calc} = \frac{\bar{x}_d \mu_{H_0}}{\sigma_{\bar{x}_d}} = \frac{1 0}{2,083} = 0,48;$

• Se $\alpha = 10\% \to Z_{1-\frac{\alpha}{2}} = 1,64$

- Como Z_{calc} ∈RNR, não se rejeita H_0 , isto é, ao nível de 10% não é significativa a diferença entre as médias das duas populações.
- Outra forma de resolução:

$$\begin{split} \textit{RNR} \to & P(\mu_{\textit{H}_0} - z_{1 - \frac{\alpha}{2}} \cdot \sigma_{\bar{\textit{x}}_d} \leq \bar{\textit{x}}_d \leq \mu_{\textit{H}_0} + z_{1 - \frac{\alpha}{2}} \cdot \sigma_{\bar{\textit{x}}_d}) = 1 - \alpha \\ & P(0 - 1, 64 \cdot 2, 083 \leq \bar{\textit{x}}_d \leq 0 + 1, 64 \cdot 2, 083) = 1 - \alpha \\ & \textit{RNR} = (-3, 416; 3, 416) \quad \textit{RC} = (-\infty; 3, 416] \cup [3, 416; +\infty) \end{split}$$

Portanto, $\bar{x}_d = 1 \rightarrow \bar{x}_d \in RNR \rightarrow \tilde{n}$ ao se rejeita H_0 .

Exemplo 3: Um supermercado não sabe se deve comprar lâmpadas da marca A ou B, de mesmo preço. Testa uma amostra de 100 lâmpadas de cada uma das marcas, obtendo:

$$\bar{x}_A = 1.160$$
 horas e $s_A = 90$ horas $\bar{x}_A = 1.140$ horas e $s_B = 80$ horas

Ao nível de 2,5%, testar a hipótese de que as marcas são igualmente boas quanto contra a hipótese de que as da marca A são melhores que as da marca B.

Exemplo 3: Um supermercado não sabe se deve comprar lâmpadas da marca A ou B, de mesmo preço. Testa uma amostra de 100 lâmpadas de cada uma das marcas, obtendo:

$$ar{x}_A = 1.160$$
 horas e $s_A = 90$ horas $ar{x}_A = 1.140$ horas e $s_B = 80$ horas

Ao nível de 2,5%, testar a hipótese de que as marcas são igualmente boas quanto contra a hipótese de que as da marca A são melhores que as da marca B.

Resolução: As hipóteses a serem testadas são:

$$\begin{cases} H_0: \mu_A - \mu_B = 0 \\ H_1: \mu_A - \mu_B > 0 \end{cases}$$
 ou
$$\begin{cases} H_0: \mu_A = \mu_B \\ H_1: \mu_A > \mu_B \end{cases}$$

Como $n_1=n_2=100$ lâmpadas, podemos usar s_{A^2} e s_{B^2} estimar σ_A^2 e σ_B^2

Exemplo 3 (cont.): Assim

$$s_{\bar{x}_d} = s_{(\bar{x}_A - \bar{x}_B)} = \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} = \sqrt{\frac{8.100}{1000} + \frac{6400}{100}} = 12,0416$$

■ A estatística do teste a ser considerada é Z da normal padrão:

$$z_{calc} = \frac{\left(\bar{x}_{A} - \bar{x}_{B}\right) - \mu_{H_{0}}}{s_{\bar{x}_{d}}} = \frac{\left(1.160 - 1.140\right) - 0}{12,0416} = \frac{20 - 0}{12,0416} = 1,6609$$

■ Temos que $\alpha=2,5\% \rightarrow z_{1-\alpha}=1,96$

■ Como $|z_{calc}| < z_{1-\alpha}$, não se rejeita H_0 , isto é, a diferença entre as vidas médias das lâmpadas não é estatisticamente significativa, ao nível de 2,5%

- Se $\sigma_1^2 = \sigma_2^2 = \sigma^2$ (desconhecida) e $n_1 + n_2 \le 30$, então usaremos a distribuição t de Student.
- $\sum_{i=1}^{n_1} (x_{1i} \bar{x}_1)^2 = \sum_{i=1}^{n_2} (x_{1j} \bar{x}_2)^2$ Temos que $s_1^2 = \frac{\sum_{i=1}^{n_1-1} (x_{1i} \bar{x}_2)^2}{\sum_{i=1}^{n_2-1} (x_{1i} \bar{x}_2)^2}$ são ambos estimadores não viciados da variância:
- Determinamos s^2 , uma estimativa de σ^2 , como média ponderada entre s_1^2 e s_2^2 :

$$s^{2} = \frac{\sum_{i=1}^{n_{1}} (x_{1i} - \bar{x}_{1})^{2} + \sum_{j=1}^{n_{2}} (x_{1j} - \bar{x}_{2})^{2}}{n_{1} + n_{2} - 2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} - n_{2} - 2}$$

Pelo facto de se usar estimador s^2 , temos que a estatística do teste

$$t = rac{ar{x}_d - \mu_{H_0}}{s_{ar{x}_d}}, \; \; ext{onde} \; \; s_{ar{x}_d} = \sqrt{s^2 \cdot \left(rac{1}{n_1} + rac{1}{n_2}
ight)}$$

tem, sob H_0 , distribuição t de Student com $n_1 + n_2 - 2$ graus de liberdade.

Exemplo 3: Em uma prova de estatística, 12 alunos de uma classe conseguiram média 7,8 e desvio padrão de 0,6, ao passo que 15 alunos de outra turma, do mesmo curso, conseguiram média 7,4 com desvio padrão de 0,8. Considerando distribuições normais para as notas, verificar se o primeiro grupo é superior ao segundo, ao nível de 5%.

Exemplo 3: Em uma prova de estatística, 12 alunos de uma classe conseguiram média 7,8 e desvio padrão de 0,6, ao passo que 15 alunos de outra turma, do mesmo curso, conseguiram média 7,4 com desvio padrão de 0,8. Considerando distribuições normais para as notas, verificar se o primeiro grupo é superior ao segundo, ao nível de 5%.

Resolução: Definimos as seguintes hipóteses:

$$H_0: \mu_1 - \mu_2 = 0 \rightarrow \mu_1 = \mu_2$$

 $H_1: \mu_1 - \mu_2 > 0 \rightarrow \mu_1 > \mu_2$

 Já que as turmas são do mesmo curso, as populações são normais, consideramos variâncias iguais, apesar de desconhecidas.

$$n_1 = 12; \quad \bar{x}_1 = 7,8; \quad s_1 = 0,6 \quad s_1^2 = 0,36;$$
 $n_2 = 15; \quad \bar{x}_2 = 7,4; \quad s_2 = 0,8 \quad s_2^2 = 0,64; \quad \bar{x}_d = \bar{x}_1 - \bar{x}_2 = 7,8 - 7,4 = 0,4$

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 - n_2 - 2} = \frac{11 \cdot 0,36 + 14 \cdot 0,64}{25} = 0,5168$$

Exemplo 3 (Cont.):

$$s_{\bar{x}_d}^2 = s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right) = 0,5168 \cdot \left(\frac{1}{12} + \frac{1}{15}\right) = 0,0775 \to s_{\bar{x}_d} = \sqrt{0,0775} = 0,278$$

$$t_{calc} = \frac{\bar{x}_d - \mu_{H_0}}{s_{\bar{x}_d}} = \frac{0,4-0}{0,278} = 1,439$$

$$gl = n_1 + n_2 - 2 = 25 \to t_{gl,\alpha} = t_{25;0.05} = 1,708$$

Como $|t_{calc}| < t_{gl,\alpha} \to$ não se rejeita Ho. Concluímos que ao nível de 5%, não há motivos para considerar a primeira turma superior à segunda.

Exemplo 3: Resolução por intervalo de confiança

$$\begin{split} \textit{RNR} \to & P(\bar{x} < \mu_0 + t_{gl,\alpha} \cdot \sigma_{\bar{x}_d}) = 0,95 \\ & P(\bar{x} < 0 + 1,708 \cdot 0,278) = 0,95 \\ \textit{RNR} = & (-\infty; 0,478) \quad \textit{RC} = [0,478; +\infty) \end{split}$$

Como $\bar{x}_d = 0, 4 \rightarrow \bar{x}_d \in RNR$, o que nos leva a não rejeitar H_0

■ Caso as populações sejam normais e $\sigma_1^2 \neq \sigma_2^2$ e desconhecidas, então para $n_1 + n_2 \leq 30$, teremos:

$$t_{calc} = rac{ar{x}_d - \mu_{H_0}}{s_{ar{x}_d}}, \; \; ext{onde} \; \; s_{ar{x}_d} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

■ Portanto, a estatística do teste é

$$t_{calc} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)_{H_0}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

que tem distribuição t de Student com com ϕ graus de liberdade, onde

$$\phi = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 + 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 + 1}} - 2.$$

A sequência do teste é similar àquela apresentada nos casos anteriores.

Exemplo 4: O QI de 16 estudantes de uma zona pobre de certe cidade apresenta a média de 107 pontos com desvio padrão de 10 pontos, enquanto os 14 estudantes de outra região rica da cidade apresentam média de 112 pontos com desvio padrão de 8 pontos. O QI em ambas as regiões tem distribuição normal. Há uma diferença significativa entre os QI's médios dos dois grupos a 5%?.

Exemplo 4: O QI de 16 estudantes de uma zona pobre de certe cidade apresenta a média de 107 pontos com desvio padrão de 10 pontos, enquanto os 14 estudantes de outra região rica da cidade apresentam média de 112 pontos com desvio padrão de 8 pontos. O QI em ambas as regiões tem distribuição normal. Há uma diferença significativa entre os QI's médios dos dois grupos a 5%?.

Resolução: Definimos as seguintes hipóteses:

$$H_0: \mu_1 - \mu_2 = 0 \rightarrow \mu_1 = \mu_2$$

 $H_1: \mu_1 - \mu_2 \neq 0 \rightarrow \mu_1 \neq \mu_2$

• Supomos que σ_1^2 e σ_2^2 desconhecidas e diferentes, já que se trata de QI's de estudantes de duas regiões distintas da mesma cidade;

$$n_1 = 16$$
; $\bar{x}_1 = 107$; $s_1 = 10$ $s_1^2 = 100$;
 $n_2 = 14$; $\bar{x}_2 = 112$; $s_2 = 8$ $s_2^2 = 64$; $\bar{x}_d = \bar{x}_1 - \bar{x}_2 = 107 - 112 = -5$

$$s_{\bar{x}_d} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{100}{16} + \frac{64}{14}} = \sqrt{10,8214} = 3,2896$$

$$t_{calc} = \frac{\bar{x}_d - \mu_{H_0}}{s_{\bar{x}_d}} = \frac{(107 - 112) - 0}{3,2896} = \frac{-5}{3,2896} = -1,52$$

$$\phi = \frac{\left(\frac{100}{16} + \frac{64}{14}\right)^2}{\left(\frac{100}{16}\right)^2 + \left(\frac{64}{14}\right)^2} - 2 = 29,7425 \approx 30 \rightarrow t_{\phi,\frac{\alpha}{2}} = t_{30;0,025} = 2,042$$

Como $|t_{calc}| \in RNR \to$ não se rejeita H_0 , isto é, ao nível de 5% não há evidências suficientes para afirmar a diferença entre os QI's das duas regiões é significativa.

Resolução por intervalo de confiança:

$$RNR \rightarrow P(\mu_{H_0} - t_{\phi,\frac{\alpha}{2}} < \bar{x}_d < \mu_{H_0} + t_{\phi,\frac{\alpha}{2}}) = 1 - \alpha$$

$$P(0 - 2,042 \cdot 3,2896 < \bar{x}_d < 0 + 2,042 \cdot 3,2896) = 0,95$$

$$RNR = (-6,7174;6,7174) \quad RC = (-\infty;-6,7174) \cup [6,7174;+\infty)$$

Como $\bar{x}_d = -5 \rightarrow \bar{x}_d \in RNR \rightarrow$ não se rejeita H_0 .

- Objectivo: verificar o comportamento de uma certa característica em duas populações;
- Suponhamos amostras retiradas de duas populações independentes;
- Podemos obter então duas proporções amostrais independentes
- Se a amostra for suficientemente grande sabemos, pelo TLC, que $\hat{p} \approx$ Normal;
- Assim, se o interesse é comparar proporções de duas populações

$$H_0: p_1 - p_2 = 0 \rightarrow p_1 = p_2$$

 $H_1: p_1 - p_2 \neq 0 \rightarrow p_1 \neq p_2$

então o estimador a ser utilizado será $\hat{p}_1 - \hat{p}_2$, cuja distribuição será aproximada pela Normal;

• É fácil demonstrar-se que $\hat{p}_1 - \hat{p}_2$ é estimador não viciado de $p_1 - p_2$;

 $\hat{p}_1 - \hat{p}_2$ tem aproximadamente uma distribuição normal com parâmetros

$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$
 $Var(\hat{p}_1 - \hat{p}_2) = Var(\hat{p}_1) + Var(\hat{p}_2) = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}.$

- Note que, para calcular a variância, a independência entre as amostras garantiu a independência entre \hat{p}_1 e \hat{p}_2 , $Cov(\hat{p}_1,\hat{p}_2)=0$
- Sob H_0 verdadeira, denotamos $p_1 = p_2 = p$, e obtemos seu estimador através da ponderação dos estimadores \hat{p}_1 e \hat{p}_2 :

$$\hat{p}_p = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

■ Substituindo os valores de p_1 e p_2 por \hat{p}_p na expressão da $Var(\hat{p}_1 - \hat{p}_2)$, obtemos a estatística do teste

$$z_{calc} = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)(1/n_1 + 1/n_2)}} \sim \mathcal{N}(0, 1)$$

A sequência do teste é similar àquela apresentada nos casos anteriores.

Exemplo 6: Num estudo sobre doenças infantis, desejamos investigar se a incidência de casos de contaminação por vermes é afectada pela idade. Dois grupos de crianças, um com idades de 2 a 4 anos (Grupo I) e outro, com idades de 7 a 9 anos (Grupo II) foram escolhidos para serem examinados quanto à ocorrência de vermes. Os dados são apresentados a seguir:

Grupo	Amostra	Proporção com verminose
I	120	0,083
ll l	260	0,104

Será que a faixa etária influencia na incidência dessa doença? Teste ao nível de 8%

Resposta: Vamos testar as seguintes hipóteses

$$H_0: p_1 - p_2 = 0 \rightarrow p_1 = p_2$$

 $H_1: p_1 - p_2 \neq 0 \rightarrow p_1 \neq p_2$

■ Temos que $n_1 = 120$, $n_2 = 260$, $\hat{p}_1 = 0{,}083$ e $\hat{p}_2 = 0{,}104$. Logo, Sob H_0

$$\hat{p}_p = \frac{n_1 \cdot \hat{p}_1 + n_2 \cdot \hat{p}_2}{n_1 + n_2} = \frac{120 \times 0,083 + 260 \times 0,104}{120 + 260} = 0,097;$$

e também

$$\textit{Var}(\hat{p}_1 - \hat{p}_2) = \hat{p}_p(1 - \hat{p}_p)(1/n_1 + 1/n_2) = 0,097 \times 0,903 \times (1/120 + 1/260) = 0,0011$$

Segue então que

$$z_{calc} = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{0,0011}} \sim N(0,1).$$

- Como o teste é bilateral, $z_{1-\frac{\alpha}{2}}=z_{0,96}=1,75$. Portanto RNR=(-1,75;1,75) e $RC=(-\infty;-1,75]\cup[1,75;+\infty)$
- Observe que $z_{calc} = -0,633 \in RNR$, então, não se rejeita H_0 . Ao nível de significância de 8%, concluímos que a incidência de casos de contaminação por vermes não é afectada pela idade ou, dita de outra forma, a faixa etária não tem influência significativa na a incidência de casos de vermes em crianças;