Algoritmusok és adatszerkezetek II. Augmentált keresőfák

Szegedi Tudományegyetem

Bináris keresőfák műveletei

- h magas és n csúcsból álló bináris keresőfa esetén a Keres,
 Beszúr, Töröl műveletek O(h) időben végrehajthatók
- x csúcs rangja: a fában tárolt kulcsok között x hanyadik helyen áll < szerint
- Hogy keresnénk meg egy bináris keresőfa r rangú elemét?
- Hogyan határoznánk meg egy bináris keresőfa x csúcsának rangját?

Új műveletek – adott rangú kulcs meghatározása

- Cél: $r \le n$ ranggal rendelkező elem megtalálása a fában
- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok az r-ediknek érintett csúcsnál

Új műveletek – adott rangú kulcs meghatározása

- Cél: $r \le n$ ranggal rendelkező elem megtalálása a fában
- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok az r-ediknek érintett csúcsnál
- O(h) helyett $\Theta(r)$ idejű algoritmus
 - ullet Kiegyensúlyozott fa és kellően nagy r estében pedig $r\gg h$

Új műveletek – adott kulcs rangjának meghatározása

- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok, ha x kulcsot érintem
- A válasz a bejárás során érintett kulcsok száma lesz
- O(h) helyett O(n) idejű algoritmus

Új műveletek – adott kulcs rangjának meghatározása

- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok, ha x kulcsot érintem
- A válasz a bejárás során érintett kulcsok száma lesz
- O(h) helyett O(n) idejű algoritmus

A megoldás

Minden csúcs tároljon el kiegészítő információt magáról!

Rendezett-minta fa implementációja

```
class Node {
    Object kulcs;
    int kiegeszito;
    Node* apa;
    Node* bal;
    Node* jobb;
}
```


Rendezett-minta fa implementációja

```
class Node {
    Object kulcs;
    int kiegeszito;
    Node* apa;
    Node* bal;
    Node* jobb;
}
```

Megjegyzés

Az extra adattag az új műveletek hatékony (azaz O(h) idejű) implementációját segítik

Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
```


Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
void preorder(x){
  if(x==nil){return}
  print(x.kulcs)
  preorder(x.bal)
  preorder(x.jobb)
}
```


Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
                       void preorder(x){
                                              void postorder(x){
  if(x==nil){return}
                         if(x==nil){return}
                                                if(x==nil){return}
  inorder(x.bal)
                         print(x.kulcs)
                                                postorder(x.bal)
  print(x.kulcs)
                         preorder(x.bal)
                                                postorder(x.jobb)
  inorder(x.jobb)
                         preorder(x.jobb)
                                                print(x.kulcs)
}
                       }
```


Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa i-edik szintjén 2i csúcs található

Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa i-edik szintjén 2^i csúcs található

$$\Rightarrow$$
 a fában $n = \sum\limits_{i=0}^{h} 2^i = 2^{h+1}$ csúcsot található^a

Állítás: h magas fában $O(2^h)$ csúcs található

Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa i-edik szintjén 2i csúcs található

$$\Rightarrow$$
 a fában $n=\sum\limits_{i=0}^{h}2^{i}=2^{h+1}$ csúcsot található a

Állítás: h magas fában $O(2^h)$ csúcs található

Megfordítva: n csúcsból álló fa magassága $\Omega(\log n)$

^abizonyítás teljes indukcióval

Bináris keresőfa

Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)

Bináris keresőfa

Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)
- < rendezés tranzitivitásából adódóan

Kulcs keresése fában

```
FÁBANKERES(x, k) {
  if x == nil or k == x.kulcs
    return x

  if k < x.kulcs
    FÁBANKERES(x.bal, k)
  else
    FÁBANKERES(x.jobb, k)
}</pre>
```


Kulcs keresése fában

```
FÁBANKERES(x, k) {
  if x == nil or k == x.kulcs
    return x

    h magas fa esetén O(h)
    if k < x.kulcs
        FÁBANKERES(x.bal, k)
  else
        FÁBANKERES(x.jobb, k)
}</pre>
```


Elem beszúrása bináris keresőfába

- A keresőfa tulajdonság fenntartása mellett levélként szúrunk be
- h magas fa esetén O(h) idejű

Elem törlése bináris keresőfából

Elem törlése bináris keresőfából

- 3 esetet különböztetünk meg x csúcs törlése kapcsán
 - ① x-nek nincs gyereke
 - x apjának az x-re vonatkozó mutatóját nil-re állítjuk
 - 2 x-nek pontosan egy gyereke van
 - x apját "átkötjük" x egyedüli fiához
 - 3 x-nek 2 gyereke van
 - x-et megelőzőjével (bal oldali részfájának maximális elemével) helyettesítjük
- h magas fa esetén O(h) idejű

