Lecture 3: Bayesian Networks 1

Jingpeng Li

1

Content

- · Reminder from previous lecture: Bayes theorem
- · Bayesian networks
- · Why are they currently interesting?
- · Detailed example from medical diagnostics
- · Bayesian networks and decision making
- · What are Bayesian networks used for?
- · More real-world applications
- Summary: Bayesian networks
- References

Bayes theorem

- · For any two events, A and B:
 - $p(B|A) = p(A|B) \times p(B) / p(A)$
 - 'p(A)' as "the probability of A", and 'p(A|B)' as "the probability of A given that B has occurred".
- Allows us to update all the probabilities in a Bayesian Network, when any one piece of information changes.
- Simple example:
 - Winter in Stirling. Rain: 50%, Cloudy: 80% (sometimes it is cloudy without rain). We know that If it rains it is cloudy (i.e. p(C|R) = 1.0)
 - What are the chances of rain given that it is cloudy?
 - Bayes: $p(R|C) = p(R)p(C|R)/p(C) = 0.5 \times 1.0 / 0.8 = 0.625 = 5/8$
 - So 5/8 of the time, in Stirling during winter, if it is cloudy then it is rainy

3

Bayesian Networks

What are they?

 Bayesian nets are a network-based framework for representing and analysing models involving uncertainty

What are they used for?

 Intelligent decision aids, data fusion, intelligent diagnostic aids, automated free text understanding, data mining

Where did they come from?

 Cross fertilization of ideas between the artificial intelligence, decision analysis, and statistic communities

Why are Bayesian Networks interesting nowadays?

- Development of propagation algorithms followed by availability of easy to use commercial software
- Growing number of creative applications: dementia diagnosis, cancer care symptom modelling, likelihood of car purchase
- How are they different from other:
 - Knowledge-based systems tools: uncertainty is handled in mathematically rigorous yet efficient and simple way
 - Probabilistic analysis tools: network representation of problems, use of Bayesian statistics, and the synergy between these

5

Example from medical diagnostics Visit to Asia Smoking Patient Information Tuberculosis or Cancer Diseases Network represents a knowledge structure that models the relationship between diseases, their causes and effects, patient information and diagnostic tests

Characteristics of the links in a BN

- The direction of the link arrows roughly corresponds to "causality"
- · The nodes higher up in the diagram tend to influence those below
- The links may from loops, but they may not form cycles
- This does not limits the modeling power of the network. We need to be careful when building BNs
- · Avoiding cycles makes possible very fast update algorithms.

7

Example from medical diagnosis

Knowledge from medical text books and public statistics to incorporate in a Bayesian network model

- 30% of the UK population smokes
- Lung cancer can be found in about 70 people per 100,000
- TB occurs in about 10 people per 100,000.
- Bronchitis can be found in about 800 people per 100,000.
- Dyspnea can be found in about 10% of people, but most of that is due to asthma and causes other than TB, lung cancer, or bronchitis

- · A first attempt using only text book information and public statistics.
- · We need to gather more data specific for a clinic treating respiratory diseases

9

Data related to patients with respiratory conditions

- 50% of patients smoke.
- 1% have TB
- 5.5% have lung cancer
- 45% have some form of mild or chronic bronchitis
- This would represent a 'new' patient that has been referred to the clinic from whom we do not have yet any additional knowledge
- As more knowledge is gathered for each particular patient, the probabilities in the network will automatically adjust.

- New patient arrives. We gather specific information about her.
- She tells us that she is often short of breath (dyspnea). We add this to the network (Dyspnea Present = 100)
- · The probabilities for all three illnesses has increased. Why is this?
- Most likely disease now is Bronchitis, but we need more information!

11

- We ask her if she has been to Asia recently. Surprisingly, she answers "yes"
- The chances of TB has increased from 2% to 9%
- The chances of lung cancer and bronchitis have decreased. Why is this?
- We need more information for an accurate diagnosis

- We ask if the patient smokes, the answer is yes
- · The current best hypothesis is still Bronchitis
- To be sure, we order a diagnostic X-Ray

13

If the X-Rays is normal: this strongly confirms the possibility of a Bronchitis, and reduces the likelihood of TB or lung cancer

If the X-Rays is Abnormal: Big difference.

- Bronchitis is still the most probable of the three separate illnesses, but it is less than the combination hypothesis of TB or Lung Cancer.
- We can decided to conduct further test (blood, tissue, etc.)

15

Bayesian networks and decision theory

- Decision theory: interdisciplinary subject. Science of decision making.
- Example of decisions
 - Shall I bring the umbrella today?
 - I am looking for a house to buy. Shall I buy this one?
- There is the notion of *utility* that the user wants to maximise (well-being, leisure time, money, increased survival, etc.)
- BNs can be extended to compute utility, given the degree of knowledge we have on a situation
- BNs have become very popular in business and civic decision making
- · The idea is to find a plan that maximises the expected utility
- Decision networks: produce the best decision for the user

What are Bayesian networks used for?

- In any situation where modeling an uncertain reality is involved (i.e. probabilities are present)
- Decision support: when ever it is helpful to make intelligent, justifiable, quantifiable decisions that will maximise the changes of a desirable outcome
- Application areas:
 - Diagnosis
 - Prediction
 - Risk assessment and Finance
 - Sensor fusion
 - Monitoring and alerting

17

Diagnosis

- Typical example of a Diagnostic networks
- The diagnosis can be medical or mechanical
- Many industrial applications are for determining component failure (nuclear, airline, construction industry)
- Top nodes: predispositions which influence the likelihood of diseases
- Second and third layer (potentially more layers): diseases or internal conditions and failure states
- Last layer: nodes of observables
- Links: correspond to causation

Applications of Bayesian networks

Prediction

- BN present casual chains (i.e cause-effect relationships between parent and child nodes
- Given evidence of past events, run the BN to see what the most likely future outcomes will be
- Examples
 - Weather forecasting
 - Stock market prediction
 - Ecological modeling

Financial risk management

- Difficult decisions need to be made, where often all the factors influencing a case are unknown
- BN are able to make intelligent, quantifiable decisions whatever information is available.
- Examples:
 - Bank officers
 - Insurance underwriters
 - Investment advisors

19

Applications of Bayesian networks

Sensor fusion

- Data from various sources must be integrated to arrive to an interpretation
- Example: Data from various cameras, different angles and resolution
- BN are robust to missing data, they combine information well
- A single sensor has limited information, the combination of all the sensors produce a better interpretation
- Robot vision, sonar image

Monitoring and alerting

- An extension to diagnosing a system
- Deciding when to send an alert that the system is not working properly
- There are high costs for both: when the system fails, and when sending a false alarm
- Example: Vista used by the NASA. Interpreted live telemetry and provided advice on possible failures of the propulsion system

More real-world applications

Industrial

- · Processor Fault Diagnosis by Intel .
- Auxiliary Turbine Diagnosis GEMS .
 by GE
- Diagnosis of space shuttle propulsion systems - VISTA by NASA/Rockwell
- Situation assessment for nuclear power plant - NRC

Military

- Automatic Target Recognition MITRE
- Autonomous control of unmanned underwater vehicle - Lockheed Martin
- · Assessment of Intent

Medical Diagnosis

- · Internal Medicine
- Pathology diagnosis Intellipath by Chapman & Hall
- · Breast Cancer Manager with Intellipath

Commercial

- Financial Market Analysis
- · Information Retrieval
- Software troubleshooting and advice -Windows 95 & Office 97
- · Pregnancy and Child Care Microsoft
- Software debugging American Airlines' SABRE online reservation system

21

Interesting properties of BNs

- Probabilities need not be exact to be useful
 - Approximate probabilities, even subjective ones, give good
 - BNs are quite robust to imperfect knowledge
 - Combinations of several strands of imperfect knowledge can produce strong conclusions
- Causal Conditional Probabilities are easier to estimate than the reverse
 - People are better at estimating probabilities "in the forward direction"
 - Example: doctors can give probability estimates for "if the patient has lung cancer, what are the chances their X-ray will be abnormal?", rather than the reverse, "if the X-ray is abnormal, what are the chances of lung cancer being the cause?"

Summary: Bayesian Networks

Represent joint probability distribution as a directed graph:

- structure for representing knowledge about uncertain variables
- computational architecture for computing the impact of evidence on beliefs

Knowledge structure:

- · variables are depicted as nodes
- arcs represent probabilistic dependence between variables
- conditional probabilities encode the strength of the dependencies

Computational architecture:

- computes posterior probabilities given evidence about selected nodes
- exploits probabilistic independence for efficient computation

23

References

- <u>Netica Tutorial</u>: An introduction Tutorial on Bayes Nets by Norsys Software Corp.
- Asia example
 - Lauritzen, Steffen L. and David J. Spiegelhalter (1988) "Local computations with probabilities on graphical structures and their application to expert systems" in *Journal Royal Statistics Society B*, 50(2), 157-194.
- Other tutorials
 - What Are "Bayesian Network Models?" by Bruce G. Marcot
 - Tutorial: Introduction to Belief Networks by Amos Storkey
 - Bayesian Networks Models in Ecology by Bruce G. Marcot