ZLAN6842/6802/6844 8 路 DI/DO/AI 远程 IO 控制器 用户手册

版权©2008 上海卓岚信息科技有限公司保留所有权力

版本信息

对该文档有如下的修改:

修改记录

日期	版本号	文档编号	修改内容
2015-09-06	Rev.1	ZL DUI 20150906.1.0	发布版本
2018-05-13	Rev.2	ZL DUI 20150906.1.0	修改版本

所有权信息

未经版权所有者同意,不得将本文档的全部或者部分以纸面或者电子文档的形式重新发布。

本文档只用于辅助读者使用产品,上海卓岚公司不对使用该文档中的信息而引起的损 失或者错误负责。本文档描述的产品和文本正在不断地开发和完善中。上海卓岚信息科技 有限公司有权利在未通知用户的情况下修改本文档。

目 录

1.	概述	4
2.	功能特点	<i>6</i>
3.	技术参数	
4.	硬件说明	8
5.	软件说明	10
6.	功能测试	
7.	DI 主动上传	16
8.	AI 的主动上报	16
9.	两台设备对连使用	18
10.	使用方法	19
	ZLAN6842 使用方法	19
	ZLAN6802 的使用方法	23
	ZLAN6844 的使用方法	24
	ZLAN6844N 的使用方法	24
11.	售后服务和技术支持	错误! 未定义书签。

1. 概述

ZLAN6842、ZLAN6802、ZLAN6844 是继 ZLAN6042 之后上海卓岚信息科技有限公司推出的 8 路远程 IO 控制器。其控制的路数从 6042 的 4 路扩展到 8 路, 含有 8 路 DI、8 路 DO, 8 路 AI 输入。其中 DI 支持干节点和湿节点,带光耦隔离; DO 为继电器输出,具有 5A 250VAC 或 5A 30VDC 的控制能力; AI 输入中的前 4 路支持 0~5V 电压量输入,后 4 路支持 4~20mA 电流量输入,精度 10 位。ZLAN6842、ZLAN6802、ZLAN6844 分别支持以太网、RS485、Wifi 这 3 种形式的通信方式。

图 1 ZLAN6802/6842 采集器

ZLAN6842: 这是一款使用以太网进行控制的 IO 控制器,通常采用的通信协议为 Modbus TCP 协议,此时模块的转化协议选择为 Modbus TCP 转 RTU, DI、DO、AI 分别对应不同的寄存器。如果希望通过 Modbus RTU 协议进行控制也是可以的,此时将模块的转化协议设置为"无",通过 TCP 发送 Modbus RTU 协议

即可进行控制。该款产品可以方便、可靠的通过以太网对开关量进行采集、对继电器进行控制、对传感器进行采集。

ZLAN6802: 这是一款使用 RS485 总线进行控制的 IO 控制器。和 ZLAN6842 相比,它只支持 Modbus RTU 协议,但是它成本低,适合通过 RS485 总线进行控制继电器、采集开关量和模拟量。默认波特率为 9600bps,波特率也可以设置。

图 2 ZLAN6844/6844N WIFI 远程 IO 控制器

ZLAN6844: 6844 和 6842 相比增加 WIFI 接口,这样可以省去了网线连接的麻烦。同时它也具有以太网接口。WIFI 可以作为 AP 也可以作为 STA 方式连接路由器。

6802/6842/6844/6844N 可应用于:

- 楼宇/门禁/保安控制系统;
- 工业自动化系统;
- 信息家电。

以 ZLAN6842 为例,典型应用连接如图 3 所示。将现场输入设备和输出设备与 ZLAN6842 连接,然后通过网线将 ZLAN6842 连接到网络中。此后上位机可以通过 Modbus TCP 协议发送数据给 ZLAN6842,来实现查询输入设备和控制输出设备。

图 3 连接示意图

2. 功能特点

1. 8路数字量输入:

支持: 无源开关量(干节点)和有源电平(湿节点)。有源电平范围如下:

VCC 电压	低电平范围	高电平范围
24V	0∼17V	17~24V
9V	0∼3V	3~9V

2. 8路数字量输出:

输出类型为继电器输出(5A@AC250V/DC30V)。

- 3. 8 路模拟量输入: 默认前 4 路为 0~5V 电压输入,后 4 路为 4~20mA。如果需要定制情况下,可以将其中的任意路修改为如下 4 种方式:
 - 1) 电流信号输入: 4~20mA。
 - 2) 电压信号输入: 0~5V。
 - 3) 电压信号输入: 0~10V。
 - 4) 电阻阻抗输入:如 0~10k 或电阻型的温湿度传感器等。
- 4. 8 路开关量输入状态和 8 路开关量输出状态都有独立指示灯显示,可以通过指示灯立即了解开关的输入输出状态。
- 5. 提供通过 RS485 或者 TCP/IP 控制演示软件 RemoteIO,可以演示对设备 IO 控制和 AI 数据采集。
- 6. 可提供完整的 RS485 控制指令和 Modbus TCP 指令,方便工程师集成开发。
- 7. ZLAN6842/ ZLAN6844 免费配备 Windows 虚拟串口&设备管理工具 ZLVircom,支持虚拟串口,并可以一键式搜索,修改参数。

3. 技术参数

外形			
尺寸:	$L \times W \times H = 9.2 \text{cm} \times 19.7 \text{cm} \times 2.5 \text{cm}$		
串口参数(ZLAN6802 用到)			
RS485 接口,12	200~115200(默认 9600bps),8 位数据位、NONE 校验、1 位停止位		

软件	
上层协议:	MODBUS TCP/ MODBUS RTU
底层通讯:	以太网, RS485, Wifi
사나 그 ㅁㅁ 사나사 나	· □→ · □□ □→ □→ □ □ ○□ ·

继电器传输速度(即响应时间)

ZLAN6842/ ZLAN6802: <30ms

AI 输入形式

电流输入: 4~20mA

电压输入: 0~5V, 0~10V

电阻输入: 0~10K, 电阻型的温湿度传感器等

功耗 (继电器非吸合状态)

ZLAN6802: <12mA@24V

ZLAN6842: <92mA @24V

ZLAN6844/6844N <220mA @24V

环境要求

操作温度:	-40~85°C
储存温度:	-45~165℃
湿度范围:	5~95%相对湿度

4. 硬件说明

ZLAN6842/ ZLAN6802/ ZLAN6844 数据采集器的正视图如图 4 所示.

面板灯: 从左到右, 从上到下分别为:

- 1. ACT: 通信活动指示灯。如果为绿色,表明设备有从 RS485/以太网/WIFI 接收到指令,但是并不表明指令正常被识别;如果出现蓝色,表明收到 的指令被正确识别,且指令已经返回给发送端。
- 2. PWR: 电源指示灯。
- 3. Wifi Link: 专为 ZLAN6844 设置的 Wifi 指示灯,其它型号无效。绿色闪烁表明 Wifi 已经工作;蓝色表明 wifi 已经建立连接。

- 4. Link: 连接指示灯,绿色表明以太网线连接上;蓝色表明上位机已经和 该设备建立了 TCP 连接,可以进行数据通信了。
- 5. DI1~DI8: 绿色分别表明 DI1~DI8 输入为低电平或者闭合状态。
- 6. DO1~DO8: 绿色分别表明 DO1~DO8 输出为继电器闭合状态。

图 4 面板灯

ZLAN6842/ ZLAN6802/ ZLAN6844 上面侧接口如图 4、图 5 所示:

图 5 上面测接口

接线端子	功能
RJ45	10M/100M 以太网接口,可以通过 TCP/IP 进行远程 IO 控制,如果为
	ZLAN6802 型号此接口无效。
DC	DC 插头式电源输入,供电电压 9~24V

电源端子	接线端子式电源输入,供电电压 9~24V,和 DC 端子二选一
RS485 B 和 A	RS485 控制接口的 A 和 B 端
GND	干节点输入时,将此端子和 DII~DI8 之间跨接开关,可以采集到开关状态。
DI1~DI8	8 路开关量输入
AI1~AI4	4 路 0~5V 电压量输入
AI5~AI8	4 路 4~20mA 电流量输入
OUT	测试输出点,可以输出 5V 电平,用于 AI1~AI8 的测试用途。

ZLAN6842/ ZLAN6802/ ZLAN6844 另下面侧接口如图 4、图 6 所示:

图 6 下面测接口

接口	功能
Wifi ANT	ZLAN6844 型号的 wifi 天线接口,其它型号该接口无效
Reset	拨到 On 位置停留 3 秒以上,可以将设备 IP 地址复位为默认的
	192.168.1.254。
DO8~DO1	R 和 L 分别表示继电器的 2 个触点,这里表示 8 路继电器输出。

5. 软件说明

ZLAN6842/ ZLAN6802/ ZLAN6844 使用标准的 Modubs TCP 和 Modubs RTU 协议,其 MODBUS 寄存器表如下:

表 1. DI 寄存器表

寄存区地址通道	指令码	描述	属性
---------	-----	----	----

00001	0	01	1号DI值	只读
00002	1	01	2 号 DI 值	只读
00003	2	01	3 号 DI 值	只读
00004	3	01	4 号 DI 值	只读
00005	4	01	5 号 DI 值	只读
00006	5	01	6 号 DI 值	只读
00007	6	01	7号 DI 值	只读
00008	7	01	8号 DI 值	只读

表 2. DO 寄存器表

寄存区地址	通道	指令码	描述	属性
00017	0	01/05	1号 DO 值	读写
00018	1	01/05	2号 DO 值	读写
00019	2	01/05	3 号 DO 值	读写
00020	3	01/05	4号 DO 值	读写
00021	4	01/05	5 号 DO 值	读写
00022	5	01/05	6号 DO 值	读写
00023	6	01/05	7号 DO 值	读写
00024	7	01/05	8号 DO 值	读写

表 3. AI 寄存器表

寄存区地址	通道	指令码	描述	属性
30001	0	04	1号AI值	只读
30002	1	04	2 号 AI 值	只读
30003	2	04	3 号 AI 值	只读
30004	3	04	4 号 AI 值	只读
30005	4	04	5 号 AI 值	只读
30006	5	04	6号AI值	只读
30007	6	04	7号 AI 值	只读

30008	7	04	8号AI值	只读

ZLAN6842/ ZLAN6802/ ZLAN6844 采用 MODBUS 的通用协议来与上位机的软件进行信息传递,目前支持:读单线圈组指令、强置单线圈指令、读输入寄存器指令。

1、读单线圈组指令 0x01

字节数	1	1	1	1	1	1	1	1
名称	设备	指令类	起始地址	起始地址	长 度	长 度	CRC	CRC
	地址	型	高	低	高	低	高	低

例如:发送-> 01 01 00 00 00 08 3d cc

返回-> 01 01 01 80 50 28

2、读输入寄存器指令 0x04

字 节	1	1	1	1	1	1	1	1
数								
名称	设备地	指令类	起始地址	起始地址	长 度	长 度	CRC	CRC
	址	型	高	低	高	低	高	低

例如:发送-> 01 04 00 00 00 08 fl cc

3、强置单线圈指令 0x05

字 节	1	1	1	1	1	1	1	1
数								
名称	设备地	指令类	起始地址	起始地址	长 度	长 度	CRC	CRC
	址	型	高	低	高	低	高	低

例如:发送-> 01 05 00 10 **ff 00** 8d ff

返回-> 01 05 00 10 ff 00 8d ff

6. 功能测试

1. 测试软件功能

RemoteIO 软件是用于测试以及配置 6802 的工具软件,如图 7 界面所示。

图 7 测试软件

软件分为 5 部分。第一部分为 6842 远程 IO 控制器的通信设置,第二部分是 6802 远程 IO 控制器的通信设置,第三部分是 6842/6802 控制部分,第 4 部分是 参数设置,第 5 部分为报告区。

2. 6842 以太网控制

首先将 6842 通过网线接入局域网,如所示,点击"搜索设备"按钮可以搜索到局域网内的 6842 设备。

图 8 搜索

可以看到列表栏中出现了一些设备,这里 ZLDEV0001 是 6842 远程控制器。后面的内容分别为 IP 地址,端口号,工作模式,转换协议,串口参数。这里要强调的是,设备的工作模式一定是服务器模式,转换协议(Modbus RTU 或者 Modubs TCP)需要与软件右上角的转化协议(Modbus TCP)一致,如果不一致需要用 zlvircom 进行配置,串口参数为 115200、8、N、1。工作模式、转化协议、串口参数都正确的才可以进行通信。

在列表选中需要控制的 6842 设备, IP 及端口号自动填充到相应的编辑框中, 点击"连接"按钮进行 TCP 连接。

观察报告区,出现提示信息"TCP Client Connected to ... "就表示 TCP 建立成功了。连接成功后软件会自动检测设备站地址并且使得"高级参数"按钮可用。接下来就可以通过控制区域的按钮来测试 6842 了。

3. 6802 RS485 控制

将 RS485 线连接到 6802 的 485 接口上。打开 RemoteIO 的相应的串口号,不需要选择波特率(考虑客户可能会忘记设备的波特率,所以我们通过软件自动检测波特率),然后点击搜索设备,这里需要等待软件搜索设备。如果搜索到设

备的话,在报告框会提示"已搜索到设备"。

图 9 未搜索到设备

搜索到设备之后, 可以在控制区域进行简单的测试。

4. 高级参数

高级参数 6802 与 6842 共用一个对话框,请勿两种型号同时使用。 点击"高级参数",如所示

图 10 高级参数

固件版本:代表 6802 内固件的版本号。

设备地址:代表 6802 的设备从站地址(Modbus 地址)。

波特率: 6842 工作的波特率。

上报地址:请参考下一章部分。

修改相应参数,点击"设置"按钮,完成修改。需要重启设备使之生效。注意如果无需高级参数的功能,不要进行配置。

7. DI 主动上传

6842 是标准的 MODBUS 设备,使用方式是问答形式,但有的用户想要在 DI 输入一发生变化时就得到反馈,即主动返回的功能。这里介绍 6842 的主动上报功能了。设置如图 11 所示(设置方法参考第 6 章内容),将"是否主动上报"设置为 1,开启功能。上报地址则在 0~255 任意设置,它会被填充到反馈指令中的地址字段中。如果用户想要回到原始的问答形式,将"是否主动上报"设置为 0 即可。

图 11

8. AI 的主动上报

AI 的主动上报功能是让采集的模拟量能够自动发送到上位机。这个方式无需上位机进行 Modbus 的指令查询,对于基于 Internet 的网络模拟量监控非常有用。

这里可以设置 A1 和 A2 这 2 个模拟量的上报时间。时间间隔从 $0\sim65535$ 可以选择,单位是 ms,如果设置 0 表示不启用主动上报。点击 RemoteIO 的"高级参数"弹出对话框如图 12 所示。注意 RomoteIO 的软件版本必须是 2014.12.22 版本以上。固件版本必须是 V5 以上。

固件版本:	V5		设置
设备地址:	1		取消
波特率:	9600 -]	
启用DI主动上报:	0	(0:否,1:是)	
DI上报地址:	0		
AI1主动上报:	1000	(0~65535ms)	(0表示不启用)
AI2主动上报:	0	(0~65535ms)	(0表示不启用)

图 12

这里设置 AI1 主动上报时间和 AI2 的主动上报时间。另外注意上报时间的分辨率为 200ms。也就是 $1\sim200$ ms 都是 200ms 报一次,而 $201\sim400$ 都是 400ms 上报一次,以此类推。

数据上报的格式和 Modbus 查询的返回数据格式是一样的。

(1) 假如只有 A1 或者 A2 被设置,上传指令为:

转化协议为无时的指令为: aa 04 02 xx yy c1 c2

转化协议为 Modbus TCP 转 RTU 时的指令为: s1 s2 00 00 00 05 aa 04 02 xx yy 这里 aa 表示设备的地址(可通过高级参数设置),xx yy 就是一个上报的 AI 量,十六进制表示的电压值,c1 c2 是 crc 校验。s1 s2 是 Modbus TCP 的序号,一般不用处理。

A1 和 A2 的上传指令是一样的,所以用户应该自己知道是 A1 上传还是 A2 上传的,因为 A1 和 A2 中只有一个被允许上传。注意当只有 A2 被选择上时,主动上报的数值在 RemoteIO 程序中是显示在 A1 的采集量的框中的。

(2) 假如 A1 和 A2 同时被设置要上传,上传指令为:

转化协议为无: aa 04 04 x1 y1 x2 y2 c1 c2。

转化协议为 Modbus TCP 转 RTU: s1 s2 00 00 00 07 aa 04 04 x1 y1 x2 y2

这里 x1 y1 表示 A1 的采集量, x2 y2 表示 A2 的采集量。A1 和 A2 同时被设置时,上报周期是以小的周期为主,一次在数据包中同时上报 A1 和 A2 的量。

9. 两台设备对连使用

考虑到用户需要通过 DI 输入来控制 DO 输出,然而 DI 输入设备与 DO 输出设备相距较远,那么我们可以通过以太网络将两个 6842 连接起来,来做到 DI 远程控制 DO 输出。DI 输入只能控制对应的 DO。例如 1 号设备的 DI1 控制 2 号设备的 DO1、1 号设备的 DI2 控制 2 号设备的 DO2,依次类推。

图 13 6842 对连控制

如图 13 6842 对连控制所示,两个 6842 通过以太网连接在一起。

首先要对两台 6842 进行设置,如图 14 DevA 配置所示,这里就要用到上报地址、是否上报。根据上一章功能测试内容,搜索并连接设备 DevA,进入"高级参数",设备地址设置为 1,"是否上报"填入 1 表示开启这个功能,"上报地址"就是需要控制的远端 6842 的设备地址,这里设置为 2。DevA 设置完成。

图 14 DevA 配置

然后搜索并连接设备 DevB, 进入高级参数, 将设备地址设置为 2, 是否上报设置为 1, 上报地址为 1 (DevA)。按照这样设置, DevA 的 DI 变化后, 会发送一条控制 DO 指令给 DevB。同理 DevB 的 DI 变化也会发一条控制指令给 DevA。

图 15 DevB 配置

将 DevA 和 DevB 配置好参数,以建立 TCP 连接。DevB 工作在服务器模式,设置工作 IP 与端口, DevA 作为客户端模式, 设置 DevA 的目的 IP 与端口为 DevB 的 IP 与端口。具体的设置方法请参考《卓岚联网产品使用指南》。

10.使用方法

ZLAN6842 使用方法

这里以 modbus poll 这个软件为例,介绍 6842 的使用方法。

可以有2种方式和6842通信,分别为虚拟串口和Modbus TCP。用 Modubs TCP 方式时,上位机软件作为 Modbus TCP 的主站去查询 6842 的相应 Modubs 寄存器地址即可,6842 的转化协议参数配置为"Modbus TCP 转 RTU";用虚拟串口方式时,上位机软件使用 Modbus RTU 协议打开由 ZLVircom 创建的虚拟串口,通过虚拟串口直接和 6842 通信。用 ZLVirCom 软件配置 ZLAN6842 的方法参考《联网产品使用指南》。

打开 modbus poll 软件如图 16 所示:

图 16 然后点击 SETUP 配置一个 POLL1 来查询 DI 如图 17 所示:

Slave	1	OK
Function:	O1 Read Coils	Cancel
Address: Length:	4	Apply
Scan Rate:	500 ms	

图 17

然后再新建一个 POLL2 并配置,来查询和控制 DO 如图 18 所示:

Slave	1	OK
Function:	O1 Read Coils	▼ Cancel
Address:	17	· · · · · · · · · · · · · · · · · · ·
Length:	4	Apply
Scan Rate	500 ms	
▼ Enable	Polling	Poll Once

图 18

然后再新建一个 POLL3 并配置,来查询和控制 AI 如图 19 所示:

Slave	1	OK
Function:	04 Read Input Register	rs ▼ Cancel
Address: Length:	2	Apply
Scan Rate	500 ms	

图 19

以上操作完成后将看到以下如图 20:

图 20

下面先以虚拟串口方式如图 21 所示,按照如下配置,按下 OK 按钮即可建立与 ZLAN6842 的通讯。

图 21

下面是以 MOBDUS TCP 方式如图 22,按照如下配置,按下 OK 按钮即可与 ZLAN6842 建议通讯。

图 22

ZLAN6802 的使用方法

ZLAN6802 的 485 访问也可参考以上 ZLAN6842 的虚拟串口方式使用方法, 只不过这里将虚拟串口改为实际串口,并且在 PC 的串口与 ZLAN6802 的 485 之间加一个 RS232 转 RS485 转换器。

ZLAN6844 的使用方法

ZLAN6844 和 6842 的差别是多了一个 Wifi 功能。关于 Wifi 的配置方法参考卓岚的《ZLAN7104》产品手册。

ZLAN6844N 的使用方法

将 6844 和 P2P 技术相结合,可以大大提升远程 IO 控制的方便性,特别是通过 Internet 控制开关。P2P 技术使得用户无需构建一台服务器,直接可以通过 Internet 控制处于局域网内部的 Modbus TCP 设备。具体关于 P2P 的介绍,请参考: 卓岚 P2P 物联网解决方案介绍。

11. 售后服务和技术支持

上海卓岚信息技术有限公司

地址: 上海市闵行区园文路 28 号世宏金源中心 2001

电话: 18918652895

网址: https://zlan.tmall.com/

邮箱: judy@zlmcu.com