1 Paddy Soil Adhesion (6 points possible)

We run the OpenBUGS code and obtain the results shown. The code is attached.

Node statis	tics								×
	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample	^
BR2	0.6748	0.07591	2.728E-4	0.4961	0.6857	0.7907	1001	100000	
beta0	0.3991	0.1294	0.001104	0.1443	0.3981	0.6552	1001	100000	
beta1	0.7682	0.08246	7.089E-4	0.605	0.7686	0.9304	1001	100000	
pH.b0	0.9984	0.03972	1.777E-4	1.0	1.0	1.0	1001	100000	
pH.b1	0.00292	0.05396	2.369E-4	0.0	0.0	0.0	1001	100000	
rubber.pred	1.933	0.4227	0.00127	1.101	1.932	2.766	1001	100000	

(a) (1 point) As the mean value of β_0 and β_1 is 0.3991 and 0.7682, respectively, the fitted model is

$$y = 0.3991 + 0.7682x$$

where the response variable y is adhesion to rubber and the variable x is adhesion to steelB.

(1 point) The Bayesian \mathbb{R}^2 is 0.6748. In python this value is 0.7133, so please do not penalize for small differences.

- (b) (2 points) Any method students use to conclude that the model with $\beta_0 = 0$ and $\beta_1 = 1$ is not accurate is acceptable for credit. Solution 1: The credible set for β_0 is [0.1443, 0.6552] and the credible set for β_1 is [0.605, 0.9304]. Since these do not contain 0 or 1 respectively, we conclude the model with $b_0 = 0$ and $b_1 = 1$ is not accurate.
 - Alternate solution: The first hypothesis we monitor is $P(\beta_0 > 0)$ using the step() function in BUGS. From the mean of the pH.b0 row, we see that this probability is 0.9984, so we can be confident that β_0 is not equal to 0. Similarly for $P(\beta_1 > 1)$ we get a probability of 0.00292, thus we are confident that $\beta_1 < 1$. Other hypotheses and results are perfectly valid for credit as long as the student makes the correct conclusion.
- (c) Based on the output, the predictive response has a mean of 1.933 and a 95% credible set as [1.101, 2.766]. Each of these values is worth 1 point.

Equivalent python output:

```
intercept
                                                       5402.0
                                                                  1.0
           0.399
                   0.131
                              0.137
                                             4579.0
beta
           0.768
                   0.084
                              0.604
                                             4613.0
                                                       5034.0
                                                                  1.0
sigma
           0.418
                   0.049
                              0.328
                                             5978.0
                                                       5820.0
                                                                  1.0
                   0.043
prob H1
                              1.000
                                             5799.0
                                                       12000.0
                                                                  1.0
prob H2
                                                       5405.0
                                                                  1.0
[5 rows x 9 columns]
r2
          0.713324
r2 std
          0.080090
dtype: float64
Prediction:
mean
              1.936 | 100.00% [12000/12000 00:00<00:00]
sd
hdi 2.5%
              1.115
hdi 97.5%
              2.816
dtype: float64
```

2 Third-degree Burns (7 points possible)

By running the OpenBUGS code, we obtain the results shown as follows:

	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample	1
beta0	23.0	2.293	0.01346	18.72	22.94	27.67	1001	100000	
beta1	-10.8	1.096	0.006418	-13.04	-10.77	-8.756	1001	100000	
deviance	35.1	2.022	0.01307	33.15	34.48	40.48	1001	100000	
p.star	0.8006	0.02652	1.308E-4	0.7467	0.8013	0.8505	1001	100000	

(a) (2 points) Based on the estimated parameters, we obtain the logistic regression model as

$$y[i] \sim \mathcal{B}in(n_i, p_i)$$
, where $logit(p_i) = 23.0 - 10.8x_i, i = 1, \dots, 9$,

where y is the number of survivals, p is the probability of survival rate and n is total number patients.

(2 points) We obtain the following values for the deviance based on whether we model with a Bernoulli or Binomial likelihood:

Binomial + BUGS: 35.1 Binomial + pymc: 39.12 Bernoulli + BUGS: 337.2 Bernoulli + pymc: 339.43 (b) (3 points) When log(area+1) equals 2, the posterior probability of survival is 0.8006. Equivalent python output for Bernoulli likelihood:

```
mcse sd
                                                        ess bulk
beta0
       22.934
               2.301
                       18.497
                                 27.286
                                                0.038
                                                          1835.0
                                                                    1746.0
                                                                               1.0
beta1 -10.768
                                                                    1712.0
               1.099 -12.914
                                 -8.722
                                                0.018
                                                          1834.0
                                                                               1.0
[2 rows x 9 columns]
Computed from 12000 posterior samples and 435 observations log-likelihood matrix.
               Estimate
deviance waic
                           24.50
                 339.43
p waic
Predicted probability when log(area + 1) = 2:
```

3 SO_2 , NO_2 , and Hospital Admissions (7 points possible)

By running the OpenBUGS code, we obtain the results shown as follows:

	mean	sd	MC error	val2.5pc	median	val97.5pc	start	sample	
beta0	5.458	0.01393	7.388E-4	100 mm	5.46	5.473	1001	100000	- 1
beta1	-0.001859	3.248E-4	1.742E-5	-0.002358	-0.001831	-0.001432	1001	100000	
beta2	0.002549	3.035E-4	1.657E-5	0.002251	0.002515	0.003267	1001	100000	
lambda.star	279.1	3.003	0.1454	275.3	278.7	286.9	1001	100000	
n.star	279.0	17.06	0.1587	246.0	279.0	313.0	1001	100000	

(a) (2 points) We obtain the following model with the estimated parameters.

$$y_i \sim \mathcal{P}oi(\lambda_i)$$
, where $\lambda_i = \exp\{5.458 - 0.001859x_{i1} + 0.002549x_{i2}\}, i = 1, \dots, n$.

(2 points for correct interpretation) Based on the estimated coefficients, we see that the level of SO_2 has a negative coefficient (-0.001859) and the level of NO_2 has a positive coefficient (0.002549). This means that the level of SO_2 has a negative impact on the hospital admission, while the level of NO_2 has a positive impact on the hospital admission.

(b) (3 points) Based on the results, the expected number of hospital admissions is 279.0 and the 95% credible set is [246.0, 313.0].

Equivalent python output:

```
hdi 2.5%
                                                        ess bulk
                 sd
                               hdi 97.5%
                                               mcse sd
                                                                  ess tail
        mean
                                                                            r hat
beta0 5.461 0.007
                        5.448
                                                                    5132.0
                                                                              1.0
                                   5.476
                                                   0.0
                                                          5152.0
beta1 -0.002 0.000
                       -0.002
                                  -0.001
                                                   0.0
                                                          6359.0
                                                                    5976.0
                                                                              1.0
beta2 0.002 0.000
                        0.002
                                   0.003
                                                   0.0
                                                          4963.0
                                                                    4933.0
                                                                              1.0
[3 rows x 9 columns]
Sampling: [likelihood]
                       100.00% [12000/12000 00:01<00:00]mean
                                                                      278.457495
              16.787308
sd
             244.686301
hdi_2.5%
hdi_97.5%
             309.894521
dtype: float64
```