Harmonics

- Defined as sinusoidal voltages and currents at frequencies other than the fundamental frequency.
- Harmonic frequencies are integer multiples of the fundamental frequency

$$f(x) = a_0 + \sum_{n=0}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$$

$K_{\rm c}$ and $K_{\rm d}$ for Harmonic Frequencies

$$K_{\rm cn} = \cos \frac{n\alpha}{2}$$

$$K_{\rm dn} = \frac{\sin\frac{mn\beta}{2}}{m\sin\frac{n\beta}{2}}$$

where *n* is the harmonic order

if
$$n = 5$$
 and $\alpha = 36^{\circ}$

$$K_{c5} = \cos\frac{5\times36}{2} = 0$$

Short chording can help to eliminate harmonics

Line voltage with harmonics in generated emf

Phase voltage

$$V_{RY} = V_R - V_Y$$

Third Harmonic voltages

Line voltage

Line voltage with harmonics in generated emf

Phase voltage

$$V_{RY} = V_R - V_Y$$

Third Harmonic voltages

Line voltage

Third harmonics cancel in line voltage

Slot Harmonics

- Distortion of flux occur due to variation of reluctance between the slot area and tooth area
- Distortion of flux produce distortion in voltage waveform which is known as slot harmonics
- Slot harmonics is reduced either by skewing of field poles or by incorporating fractional slot winding

Methods for Elimination of Harmonics

- 120 Degrees phase spread
 - Eliminates 3rd order harmonics
- Short Chording
 - Eliminates 5th and 7th order harmonics
- Fractional slot winding
 - Eliminates slot harmonics
- Skewing of field poles or armature slots
 - Eliminates slot harmonics
- Star connection
 - Eliminates triplen (order 3, 9, 15 etc) harmonics

120 Degree Phase Spread Winding

Fractional Slot Winding

- □ Slots per pole per phase is not an integer
- Reduces slot harmonics

4 pole 3 phase 21 slot double layer winding

Example 1.3

Calculate the rms value of induced voltage per phase of a 3 phase, 10 pole, 50 Hz, alternator with 2 slots per pole per phase and 4 conductor per slot in 2 layers. The coil span is 150 degrees. Flux per pole has a fundamental component of 0.12 Wb and a 20 % third harmonic component. Also find the line voltage.

Slots/pole/phase,
$$m = 2$$

Slots/pole =
$$2 \times 3 = 6$$

Slot angle,
$$\beta = \frac{180}{\text{Slots/pole}} = \frac{180}{6} = 30^{\circ}$$

Short chording angle,
$$\alpha = (180-150) = 30^{\circ}$$

Number of turns,
$$T = \frac{10 \times 2 \times 4}{2} = 40$$

$$K_{\rm c} = \cos\frac{\alpha}{2} = \cos\frac{30}{2} = 0.966$$

$$K_{\rm d} = \frac{\sin\frac{m\beta}{2}}{m\sin\frac{\beta}{2}} = \frac{\sin\frac{2\times30}{2}}{2\times\sin\frac{30}{2}} = 0.966$$

Per phase fundamental voltage = $4.44 K_c K_d \Phi f T$ = $4.44 \times 0.966 \times 0.966 \times 0.12 \times 50 \times 40 = 995$ volts

$$K_{c3} = \cos\frac{3\alpha}{2} = \cos\frac{3\times30}{2} = 0.707$$
 $K_{d3} = \frac{\sin\frac{mn\beta}{2}}{m\sin\frac{n\beta}{2}} = \frac{\sin\frac{2\times3\times30}{2}}{2\times\sin\frac{3\times30}{2}} = 0.707$

$$f_3 = 150 \text{ Hz}$$
 $\Phi_3 = \frac{0.2 \times 0.12}{3} = 0.008 \text{ Wb}$

Per phase third harmonic voltage = $4.44 K_{c3} K_{d3} \Phi_3 f_3 T$ = $4.44 \times 0.707 \times 0.707 \times 0.008 \times 150 \times 40 = 106$ volts

Per phase voltage =
$$\sqrt{E_1^2 + E_3^2}$$

= $\sqrt{995^2 + 106^2}$ = 1000 volts

Line voltage = $\sqrt{3} \times 995 = 1723.4$ volts