NEURAL METWORKS

Dr. Brian Mc Ginley

NEURAL NETWORKS

- Neural networks arise from attempts to model human/animal brains
- Many models and many claims of biological plausibility
- We will focus on multi-layer perceptrons
- Mathematical properties rather than plausibility
 - An Artificial Neural Network (ANN)

NEURAL NETWORKS

- There are problems that are difficult for humans but easy for computers
 - E.g. calculating large arithmetic problems
- And there are problems easy for humans but difficult for computers
 - E.g. recognising a picture of a person from the side
- Neural Networks attempt to solve problems that would normally be easy for humans but hard for computers

THE BRAIN

- Many machine learning methods inspired by biology, e.g., the (human) brain
- Our brain has 10¹¹ neurons, each of which communicates (is connected) to 10⁴ other neurons

Figure: The basic computational unit of the brain: Neuron

WHAT ARE NEURAL NETWORKS FOR?

- The machine learning algorithms that we have looked at so far are extremely useful and should be the first option you look at for any problem.
- However, when the number of features goes up and the problems become much more complex and non-linear then the previous algorithms can struggle to cope.
- In these cases, a Neural Network can be useful.
- While it may seem that deep neural networks are the only game in town, this is a mistake, and we should always use a simpler algorithm if it will adequately solve the problem.
- Simpler algorithms use less resources and usually have greater causal reasoning.

EXAMPLE

The MNIST Data set is made up of 60k training samples and 10k test samples of handwritten letters. Each sample is a greyscale image of 28 × 28 pixels. That's 784 features and the problem is highly non-linear. Imagine trying to find a hyper-plane in 784-dimensional space, that separates each of these out.

Figure: Samples of MNIST Data Set Image By Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040

EXAMPLE

• If we try to model the non- linearity by a polynomial, then the number of features begins to increase very rapidly. So, in cases like this it makes sense to try a neural network.

Figure: Samples of MNIST Data Set Image By Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040

MATHEMATICAL MODEL OF A NEURON

- Neural networks define functions of the inputs (hidden features), computed by neurons
- Artificial neurons are called units

Figure: A mathematical model of the neuron in a neural network

PERCEPTRONS

- We start with the Perceptron (McCulloch–Pitts neuron 1943)
 - Simulated by Rosenblatt in 1957
- A perceptron consists of one or more inputs, a processor and a single output
- A perceptron follows the "feed-forward" model, meaning inputs are sent into the neuron, are processed and result in an output

PERCEPTRONS

- Receive Inputs
- Weight Inputs
- Sum Inputs
- Generate Output

EXAMPLE

- Say we have two inputs x = 12 and y = 4
- Each input that is sent into the neuron must first be weighted
 - Multiplied by some value often between -l and l
- Typically, we start with random weights Say w_1 is 0.5 and w_2 is -1
- So Input1* w_1 : 12*0.5 = 6, Input2* w_2 : 4*-1 = -4

EXAMPLE

- The output of a perceptron is generated by passing that sum through an activation function.
- In the case of a simple binary output, the activation functions is what tells the perceptron to "fire" or not
- Many activation functions to choose from
 - Trigonometric, step, logistic/sigmoid, rbf, relu

BIAS

- One more thing to consider is Bias
- Imagine both inputs were equal to zero, then any sum no matter the weights would also be zero – this is bad
- To avoid this problem, we add a third input known as bias (for now with a value of 1, remember b in previous models...)

PERCEPTRON

- To actually train a single perceptron we do the following, we initialise it with random weights - remember:
 - 1. Provide the perceptron with inputs for which there is a known answer.
 - 2. Ask the perceptron to "guess" the answer
 - 3. Compute the error
 - 4. Adjust all the weights according to the error
 - 5. Goto l and repeat
 - Repeat until we reach an error we are satisfied with (set beforehand)
- This is how a single perceptron would work.

HISTORY

- We start with the Perceptron (McCulloch–Pitts neuron 1943)
 - Simulated by Rosenblatt in 1957
- 1969: Minsky and Papert showed that a single layer of perceptrons was incapable of solving the XOR problem.
 - Even though Minsky and Papert knew that a multi-layer perceptron network could do the job, the paper caused a huge decline in interest and funding in ANNs for >10 years
- 1970 Backpropagation (for training multiple layers) was discovered by Finnish Masters student Seppo Linnainmaa.
 - Algorithm not discovered again until 1980s by Rumelhart (1982) and Hinton (1986) kickstarting new research in the field

MULTI-LAYER PERCEPTRON

 To create a neural network you link many perceptrons together in layers multilayer perceptrons (feed-forward)

```
from sklearn.neural_network import MLPClassifier import tensorflow as tf
```


PERCEPTRON - NICER PICTURE?

• The Perceptron, AKA Artificial neuron, is the building block of an artificial neural network.

NEURAL NETWORKS

- You'll have:
 - an input layer
 - an output layer
 - And some layers in between, known as hidden layers
- They are called hidden layers because you don't directly "see" anything but the input or output

NEURAL NETWORK ARCHITECTURE (MULTI-LAYER PERCEPTRON)

- Naming conventions: We have a N-layer neural network
 - N-l layers of hidden units
 - One output layer
 - Input does not count as a layer
- This example is a 2-layer neural network with 3 input units (features), 4 hidden units (in the one hidden layer) and 2 output units

NEURAL NETWORK ARCHITECTURE (MULTI-LAYER PERCEPTRON)

 Going "deeper": a 3-layer neural network with two layers of hidden units

DEEP LEARNING

- Have you heard of the term "Deep Learning"?
- This is a current buzzword.
- It is really just a Neural Network with many hidden layers, causing it to be "deep"
- Microsoft's vision recognition uses 152 layers

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

PYTHON CODE

Can be implemented efficiently using matrix operations

Example Feed-forward computation of a Neural Network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```


WHICH ACTIVATION FUNCTION?

Sigmoid

- Historically popular, but (mostly) fallen out of favor
 - Neuron's activation saturates (weights get very large → gradients get small)
 - Not zero-centered → other issues in the gradient steps
- When put on the output layer, called "softmax" because interpreted as class probability (soft assignment)
- Hyperbolic tangent g(x) = tanh(x)
 - Saturates like sigmoid unit, but zero-centered
- Rectified linear unit (ReLU) g(x) = x⁺ = max(0,x)
 - Most popular choice these days
 - Fragile during training and neurons can "die off"...
 be careful about learning rates
 - "Noisy" or "leaky" variants
- Softplus g(x) = log(1+exp(x))
 - Smooth approximation to rectifier activation

RECTIFIED LINEAR UNIT (RELU)

- The Rectified Linear Unit is now the most popular activation function.
- The reason for this, is that it is the mostsimple but still seems to work well in practice.
- Alex Krizhevsky showed, in the paper that won the ImageNet challenge in 2012, that using ReLU instead of tanh allowed the model to converge six times faster.
- Also, some suggestion from neuroscience that this is most similar to what biological neurons do.

Figure: Rectified Linear Unit

IN PRACTICE

- Use ReLU.
- Be careful with your learning rates
- Neurons can "die" using ReLU (I will go into more detail later)
- Try out Leaky ReLU (should not "die")
- Try out tanh but don't expect much
- Some will say don't use sigmoid anymore

INTERACTIVE DEMO

- https://playground.tensorflow.org/
- Use XOR dataset
- Explore impact of
 - Number of hidden units
 - Activation function

NEURAL NETS

- How to train Neural Nets?
 - Set up a loss function
 - Apply Gradient Descent
- Procedure
 - Forward Computes Loss
 - Backward Calculate Gradient
 - Update Uses Gradient to increment weights

