

IE598 Big Data Optimization Introduction

Instructor: Niao He

Aug 23, 2016

A little about me

- Assistant Professor,
 UIUC, 2016 –
- Ph.D. in Operations Research,
 M.S. in Computational Sci. & Eng.
 Georgia Tech, 2010 2015
- B.S. in Mathematics,
 University of Sci. & Tech. of China,
 2006 2010

A little about the course

Big Data Optimization

- Explore modern optimization theories, algorithms, and big data applications
- Emphasize a deep understanding of structure of optimization problems and computation complexity of numerical algorithms
- Expose to the frontier of research in large-scale optimization and machine learning

Course Details

- Prerequisites: no formal ones, but assume knowledge in
 - linear algebra, real analysis, and probability theory
 - mathematical thinking and modeling
- Textbooks: no required ones, but recommend to read the listed references on website

• Evaluation:

- Scribing: sign up 1~2 lecture per student
- Project: some guidelines on website, details to come

Course Admin

Syllabus & Website

http://niaohe.ise.illinois.edu/IE598/ (pwd: fall2016)

Where to get help

- Email: niaohe@illinois.edu_with [IE 598] in your subject
- Office Location: 211 Transport Building
- Office Hours: Tue. 10:00-11:00 or by appointment via email
- Issue with 3 or 4 credit hours
 - Peggy Regan, TB 104, <u>plregan@illinois.edu</u>

Introduction

Era of Big Data

- Big data heat in academia
 - NIPS'16 conference
 at least 500/2500 submissions are about Big Data

Harvard
Business
Review

GETTING
CONTROL
OF

- Big data heat in industry
 - LinkedIn:

29,203 Data Scientist jobs in United States

Stay tuned for the UIUC Big Data Symposium 2016 September 23-24

Really, what is Big Data?

Why is it so important?

- Big data analytics play a key role in various areas
 - Business and Industry
 - Social Statistics and Natural Recourses
 - Health and Medicine
 - Research and Science

Healthcare

Finance

Lifestyle

Aerospace

How to do data analysis?

Key Steps

- Pose a problem
- Collect data
- Pre-process and clean data
- Formulate a mathematical model
- Find a solution
- Evaluate and interpret the results

What is Optimization?

 Find the optimal solution that minimize/maximize an objective function subject to constraints

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, \dots, k$

$$h_j(x) = 0, j = 1, \dots, \ell$$

$$x \in X$$

Why do we care?

Optimization lies at the heart of many fields, especially machine learning.

- Finance
 - Portfolio selection, asset pricing, etc.
- Electrical Engineering
 - Signal and image processing, control and robotics, etc.
- Industrial Engineering
 - Supply chain, revenue management, transportation etc.
- Computer Science
 - Machine learning, computer vision, etc.

Example – Portfolio Selection

Markowitz Mean-Variance Model

$$\min_{w} \ w^{T} \Sigma w - \lambda \cdot R^{T} w$$
s.t.
$$\sum_{i} w_{i} = 1$$

- w is a vector of portfolio weights
- R is the expected returns
- Σ is the variance of portfolio returns
- $-\lambda > 0$ is the risk tolerance factor

Example – Image Denoising

Total Variation Denoising Model

$$\min_{x} \sum_{(i,j)\in P} |x_{ij} - O_{ij}|^2 + \lambda \cdot TV(x)$$

- -x is image matrix
- O is the noisy image, P is the observed entries
- -TV(x) is the total variation

$$TV(x) = \sum_{ij} |x_{i+1,j} - x_{ij}| + |x_{i,j+1} - x_{ij}|$$

Newsvendor Model

$$\max_{q \ge 0} \quad \mathbb{E}_D[p \cdot \min(q, D)] - c \cdot q$$

- -q is number of newspaper to be stocked
- D is the random demand
- c is the unit purchase price
- -p is the sell price

Example – Regression

Linear Regression Model

$$\min_{w \in \mathbf{R}^d} \quad \frac{1}{n} \sum_{i=1}^n (y_i - w^T x_i)^2$$

- $-x_i$: predictor vector (feature)
- $-y_i$: response vector (label)
- w: parameters to be learned
- n: number of data points

Example – Regularized Regression

Ridge Regression Model

$$\min_{w \in \mathbf{R}^d} \quad \frac{1}{n} \sum_{i=1}^n (y_i - w^T x_i)^2 + \frac{\lambda}{2} ||w||_2^2$$

• $||w||_2^2 = \sum_{j=1}^d w_j^2$ is the L_2 -regularization

LASSO (Least Absolute Shrinkage and Selection Operator)

$$\min_{w \in \mathbf{R}^d} \quad \frac{1}{n} \sum_{i=1}^n (y_i - w^T x_i)^2 + \lambda ||w||_1$$

• $||w||_1 = \sum_{j=1}^d |w_j|$ is the L_1 -regularization

Example – Classification

Maximum Margin Classifier Model

$$\max_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{2c}{\|w\|_2}$$
s.t. $y_i(w^T x_i + b) \ge c, i = 1, \dots, n$

- $-x_i$: predictor vector (feature)
- y_i ∈ {1, −1}: label/class
- w: parameters to be learned
- n: number of data points

Example – More Classification

Soft Margin SVM (support vector machine)

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \quad \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b)) + \frac{\lambda}{2} ||w||_2^2$$

Logistic Regression

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \quad \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i(w^T x_i + b))) + \frac{\lambda}{2} ||w||_2^2$$

Example – Maximum Likelihood Estimation

• Assume data points $x_1, ..., x_n$ are drawn i.i.d. from some distribution and we want to fit the data with a model p(x|w) with parameter w, the maximum likelihood estimation is to solve

$$\max_{w} \log \prod_{i=1}^{n} p(x_i|w) = \sum_{i=1}^{n} \log(p(x_i|w))$$

- Least square regression as a special case
- Logistic regression as a special case

Example – Clustering

K-Means Model

$$\min_{\substack{\mu_1, \dots, \mu_k \\ C_1, \dots, C_k}} \quad \sum_{j=1}^k \sum_{i \in C_j} \|x_i - c_i\|^2$$

- $x_1, ..., x_n$: data
- $-\mu_1, \dots, \mu_k$: cluster centers to be learned
- C_1 , ..., C_k : clusters to be assigned to

Many More Examples in ML

- Supervised learning (predictive models)
 - Regression
 - Classification
 - Neural networks
 - Boosting
- Unsupervised learning (data exploration)
 - Clustering (K-means)
 - Dimension reduction (PCA)
 - Density estimation
- Reinforcement learning
- Collaborative filtering
- Graphical models
- Active learning

•

Theme of This Course

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \leq 0, i = 1, \dots, k$

$$h_j(x) = 0, j = 1, \dots, \ell$$

$$x \in X$$

How to solve optimization problems efficiently in the new Big Data environment?

Structure of Optimization

- Linear vs. Nonlinear
- Deterministic vs. Stochastic
- Continuous vs. Combinatorial
- Smooth vs. Nonsmooth
- Convex vs. Nonconvex
- Separable vs. Non-separable
- Low-dimensional vs. High-dimensional
- Static vs. Online
- Single vs. Sequential Decision Making

Easy or Hard?

What makes an optimization problem easy or hard?

Find minimum volume ellipsoid

Find maximum volume ellipsoid

NP-hard

Polynomial solvable

Easy or Hard?

What makes an optimization problem easy or hard?

$$\min_{x} c^{T} x$$
s.t. $Ax \le b$

$$\min_{x} P(x)$$

where P(x) is polynomial

Linear Optimization

Polynomial Optimization

Polynomial solvable

P ~ NP-hard

Complexity

"The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

— R. Rockafellar, SIAM Review 1993

Non-Convex Optimization

Convex Optimization

Types of Algorithms

- Polynomial-time algorithms (dates back to 1970s or so)
 - E.g., interior point method (IPM)
- First-order algorithms (dates back to 1900s, resurrection since 1980)
 - E.g., gradient descent method (GD)
- Second-order algorithms
 - E.g., Newton method, L-BFGS
- Stochastic algorithms (dates back to 1950s, resurrection since 2004)
 - E.g., stochastic approximation (SA)

Central Topics

Boyd & Vandenberghe

Rockafellar

Ben-Tal & Nemirovski

Bertsekas

Nesterov

Index Card

- 1. Name
- 2. Major
- 3. Class year (M.S. or Ph.D.?)
- 4. Have you taken an optimization course before? If so, what course?
- 5. What is your background in optimization? (none/limited/moderate/strong, etc.)
- 6. What are your expectations for this course? What do you hope to learn?
- 7. Tell me two interesting facts about yourself / hobbies.