IIC2343-2 - Arquitectura de Computadores (I/2022)

Examen

Respuestas sin desarrollo o justificación no tendrán puntaje.

Viernes 1 de Julio a las 8:30 horas

Instrucciones

Lea atentamente los enunciados. Responda cada pregunta en hojas separadas. Ponga su nombre, número de alumno y número de lista. Siga el código de honor. Existen 2 preguntas obligatorias y 4 opcionales. En total deberá contestar un máximo de 4 preguntas. Si justificó una interrogación deberá elegir las correspondientes a esa evaluación.

Código de Honor de la UC

"Como miembro de la comunidad de la Pontificia Universidad Católica de Chile me comprometo a respetar los principios y normativas que la rigen. Asimismo, prometo actuar con rectitud y honestidad en las relaciones con los demás integrantes de la comunidad y en la realización de todo trabajo, particularmente en aquellas actividades vinculadas a la docencia, el aprendizaje y la creación, difusión y transferencia del conocimiento. Además, velaré por la integridad de las personas y cuidaré los bienes de la Universidad."

Pregunta	Puntos	Logrados
I1 - En la NASA Día 2	15	
I1 - Un poco más de Stack	15	
I2 - La Memoria, Mi Float y mi Otro Dato	15	
I2 - ¿Qué es un IO?	15	
Ex - Pipeline	15	
Ex - Intentando mantener coherencia	15	
Le Bonus	0	
Total:	90	

Nombro	Nº do alumno:	Nº lieta

Pregunta 1: I1 - En la NASA Día 2 (15 ptos.)

Usando tan solo compuertas lógicas NOR, implemente un multiplexor de 4 entradas de 4 bits. Puede implementar componentes intermedios.

Solución:

- implementar compuertas lógicas: (6 ptos)
 - NOT (2 ptos)
 - AND (2 ptos)
 - OR o XOR. (2 ptos)
- implementar un muxer 1x1 (3 ptos)
 - al menos un enabler (1 pto)
 - seleccionar entre dos entradas (2 ptos)
- definir o fundamentar un soporte para 4 bits (3 ptos)
- implementar un muxer de 4x4 a partir de los componentes anteriores. (3 ptos)
- Si un componente se implementa correctamente, se le sumará el puntaje de los subcomponentes que no hayan sido definidos explícitamente.

Pregunta 2: I1 - Un poco más de Stack (15 ptos.)

Para poder aprovechar aún más los beneficios del *stack* se requiere agregar las siguientes instrucciones al computador básico. Para cada una indique si es posible agregarla sin modificar el *hardware* del computador. En caso de que se requiera modificar el computador, realice los cambios en el diagrama adjunto. Especifique las nuevas señales de control agregadas (si corresponde) e indique el valor que deben tener las señales de control para ejecutar cada instrucción.

(a)	Agregue las instrucciones INC SP y DEC SP, la cuales incrementan y decrementan en 1 e
	valor del registro SP respectivamente. Se deben ejecutar en 1 ciclo. Explique además cómo
	funciona su solución.

Solución:			

(5)

- por decir que no se requieren agregar componentes (3 ptos)
- por especificar las señales que se activan (2 ptos)
- (b) Agregue las instrucciones SUB SP, Lit y ADD SP, Lit, la cuales permiten decrementar e incrementar el registro SP en el valor del literal. Se deben ejecutar en 1 ciclo. Explique además cómo funciona su solución.

Solución:

- agrega conexión SP con MUX A (1 pto)
- agrega conexion del Resultado ALU Con SP (1 pto)
- agrega señal de la control unit a SP Lsp (1 pto)
- explicar que señales se activan para SUB SP,Lit y ADD SP,Lit (2 ptos)
- Si agrega otro bit al selector de muxer A (-1 pto)
- (c) Agregue la instrucción MOV B,SP, la cual guarda en el registro B el valor del registro SP. Se debe ejecutar en 1 ciclo. Explique además cómo funciona su solución.

Solución:

- por decir que los cambios de b son suficientes, en el caso de B estar mal evaluar componentes que se agregaron en esta solución (2 ptos)
- por explicar las señales de control (3 ptos)

Pregunta 3: I2 - La Memoria, Mi Float... y mi Otro Dato (15 ptos.)

Las memorias son un excelente lugar para almacenar datos... si es que logras recordar qué, dónde y cómo lo guardaste.

Considerando los valores almacenados en la siguiente memoria de datos con palabras de 8 bits:

(5)

(5)

dirección	0	1	2	3	4	5	6	7
palabra	0xC5	0x12	0x70	0xE3	0x04	0xEC	0x01	0xFF

(a) Si un *float* estuviese almacenado desde la dirección 0 ¿cómo se sería su notación científica en base 2? Describa el procedimiento. Considere la *endianness* como *big-endian*.

(10)

(5)

(5)

Solución:

- Describe las características del float y donde y como está almacenado (1 pto)
- Reconstruye correctamente el numero en hexadecimal o binario (2 ptos)
- Identifica el bit correspondiente al signo (2 ptos)
- Identifica los bits correspondientes al exponente y lo calcula (2 ptos)
- Identifica los bits que forman parte del significante (2 ptos)
- Construye correctamente el número en notación científica (2 ptos)
- (b) Si un arreglo de 3 enteros sin signo de 16 bits estuviese almacenado desde la dirección 1 ¿cuáles serían su valores en octal? Describa el procedimiento. Considere la endianness como little-endian.

Solución:

- Llega correctamente a el entero en octal (1 pto cada uno)
- Describe el procedimiento (2 ptos)

Pregunta 4: I2 - ¿Qué es un IO? (15 ptos.)

En referencia a la materia de dispositivos de entrada y/o salida.

(a) Mencione y explique los dos componentes principales de un dispositivo de entrada y/o salida.

Solución:

- Mencionar componentes analógicos o partes electro mecánicas (1 pto)
- Explicar que realizan cierto tipo de interacción (1 pto)
- Mencionar Controlador (1pto)
- Explicar su función de traducción (2 ptos)
- (b) Profundice explicando los componentes digitales que pueden poseer y su propósito.

Solución:

- Mencionar Circuitos lógicos o Controlador (1pto)
- Explicar cómo permite el funcionamiento del dispositivo (2 ptos)
- Mencionar Conversores Análogo-Digital (1pto)
- Explicar cómo interactúa con las partes electro mecánicas (2 ptos)
- Mencionar Memoria o algún tipo de registro (1pto)
- Explicar que puede ser un buffer o un conjunto de registros de estado, control, datos o dirección (3 ptos)

Pregunta 5: Ex - Pipeline (15 ptos.)

Determine el número de ciclos que se demora el siguiente código, detallando en un diagrama los estados del *pipeline* por instrucción. El *pipeline* tiene *forwarding* entre todas sus etapas, el manejo de *stalling* es por software (instrucción NOP) y predicción de salto asumiendo que no ocurre. Indique en el diagrama cuándo ocurre *forwarding*, *stalling* y *fushing*.

```
DATA:
n 1
index 1
prev1 0
prev2 1
res 0

CODE:
```

(10)

```
main:
MOV A,(n)
MOV B,(index)
JEQ end
ADD B,1
MOV (index),B
JMP main

end:
MOV A,(prev1)
MOV B,(prev2)
ADD A,B
MOV (res),A
```

Solución:

- Comprende el hazard que necesita stalling (NOP) (3 ptos)
- Comprende el hazard que necesita forwarding (3 ptos)
- Comprende el hazard que necesita flushing (3 pto)
- Su código sigue bien los inputs y tiene buen flujo (4 pto)
- Su diagrama funciona y no se cae por hazards (2 pto)

Pregunta 6: Ex - Intentando mantener coherencia (15 ptos.)

En referencia a la memoria caché.

(a) Explique qué condiciones se tienen que cumplir para que existan problemas de coherencia.

Solución:

- Paralelismo (MIMD) / múltiples CPUs (1 pto)
- Cachés independientes por núcleo (1 pto)
- Memoria compartida por todas las cachés (1 pto)
- Explicar al menos un caso en el que surjan problemas si se dan las tres condiciones anteriores (2 ptos)

(5)

(b) Mencione qué se debe agregar y explique el protocolo que usaría para poder mantener la coherencia.

(10)

Solución:

- Comunicación entre las cachés (puede ser explícito o se puede intuir del resto de la respuesta (1 pto)
- Agregar estados a las líneas de la caché (1 pto)
- Nombrar los estado del protocolo MESI, o equivalente. (4 ptos, 1 pto cada uno)
- Explicar los estados del protocolo MESI y su interacciones, o equivalente. (4 ptos, 1 pto cada uno)

Pregunta 7: Le Bonus (Bonus 5 ptos.)

Respecto a lo expuesto en la charla conteste:

(a)	¿Qué aplicación real crítica se le ha dado a los súper computadores en los últimos años?	(1 bonus)
	Solución:	
	■ Menciona la aplicación mencionada en la charla (1 pto)	
(b)	¿Qué significa que un algoritmo sea quantum safe?	(1 bonus)
	Solución:	
	■ Menciona el significado del concepto(1 pto)	
(c)	En el año 2019 Google publicó un <i>paper</i> donde afirmaba alcanzar la supremacía cuántica. ¿De qué compañía era el equipo que demostró que esta proclamación era incorrecta?	(1 bonus)
	\Box Meta \Box D-Wave $\sqrt{\ \mathbf{IBM}}$ \Box Microsoft \Box Rigetti \Box Xanadu \Box Honeywell \Box Otro:	
(d)	¿Cuál es el problema matemático que los computadores cuánticos buscan resolver rápidamente, amenazando la ciberseguridad moderna?	(1 bonus)
	Solución:	
	■ Menciona el algoritmo o algoritmos relacionados a criptografía (1 pto)	
(e)	¿Por qué el problema de la decoherencia hace imposible tener computadores cuánticos personales?	(1 bonus)
	Solución:	
	■ Menciona la la dificultad de tener sistemas cuánticos personales (1 pto)	