

ОНЛАЙН-ОБРАЗОВАНИЕ



# Теория пределов

Вычисление пределов функции. Оценка сложности функции.



# Меня хорошо слышно && видно?



Напишите в чат, если есть проблемы! Ставьте + если все хорошо



- Заканчиваю механико-математический факультет МГУ им. Ломоносова
- Учился в Техносфере от Mail.Ru Group
- Являюсь ментором в Техносфере
- Работаю программистом-исследователем в Mail.Ru Group
- Веду лекции открытого курса mlcourse.ai

# Правила вебинара





Активно участвуем



Задаем вопросы в чат



🗱 slack Off-topic обсуждаем в Slack



Вопросы вижу в чате, могу ответить не

После занятия вы сможете:

Вычислять различные пределы функций.

Разделять функции на некоторые классы эквивалентности.

**С**можете примерно вычислить время выполнения вашего кода.

**Определение** (по Коши). Значение A называется пределом функции f(x) в точке  $x_0$  если выполняется равенство:

$$\lim_{x o x_{0}}f\left(x
ight)=A\Leftrightarroworallarepsilon>0\;\exists\delta=\delta\left(arepsilon
ight)>0:\;orall x\;0<\left|x-x_{0}
ight|<\delta\Rightarrow\left|f\left(x
ight)-A
ight|$$





# Свойства предела функции (повторение)



1. 
$$\left(\lim_{x o a}f(x)=A
ight)\wedge\left(\lim_{x o a}g(x)=B
ight)\Rightarrow\left(\lim_{x o a}\left[f(x)+g(x)
ight]=A+B
ight)$$

2. 
$$\left(\lim_{x o a}f(x)=A
ight)\wedge\left(\lim_{x o a}g(x)=B
ight)\Rightarrow\left(\lim_{x o a}\left[f(x)\cdot g(x)
ight]=A\cdot B
ight)$$

$$\mathsf{GL} \left(\lim_{x o a} f(x) = A
ight) \wedge \left(\lim_{x o a} g(x) = B 
eq 0
ight) \Rightarrow \left(\lim_{x o a} \left[rac{f(x)}{g(x)}
ight] = rac{A}{B}
ight)$$

**Теорема (о 2 милиционерах).** Если функция y = f(x) такая, что

 $arphi(x)\leqslant f(x)\leqslant \psi(x)$  для всех x в некоторой окрестности точки a, причем функции arphi(x) и  $\psi(x)$  имеют одинаковый предел равный A при  $x\to a$ , то:

$$\lim_{x o a} arphi(x) = \lim_{x o a} \psi(x) = A \Rightarrow \lim_{x o a} f(x) = A.$$

# Ряд Тейлора (повторение)



**Определение.** Многочленом Тейлора функции f(x) вещественной переменной x, дифференцируемой k раз в точке a называется функция:

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

**Определение.** Если функция f(x) бесконечно дифференцируема, то многочлен Тейлора называется рядом Тейлора.

**Определение.** Если a=0, то ряд Тейлора называется рядом Маклорена.

#### Бином Ньютона

**Определение.** Формула для разложения целой неотрицательной степени суммы двух слагаемой, задаваемая формулой ниже, называется биномом Ньютона.

$$(a+b)^n=\sum_{k=0}^ninom{n}{k}a^{n-k}b^k=inom{n}{0}a^n+inom{n}{1}a^{n-1}b+\cdots+inom{n}{k}a^{n-k}b^k+\cdots+inom{n}{n}b^n$$

**Определение**. Число сочетаний или биномиальный коэффициент выражается формулой:

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{k!(n-k)!} = C_n^k$$

**Замечание.** Формула бинома Ньютона является частным случаем разложениям в ряд Тейлора для уравнения:

$$(1+x)^r = \sum_{k=0}^\infty inom{r}{k} x^k$$

Видеолекция с выводом формулы бинома Ньютона:

# Вычисление пределов



Все пределы рассматриваем при x o 0

$$\lim rac{e^x-1-x}{x^2} = \lim rac{1+x+rac{x^2}{2}-1-x}{x^2} = rac{1}{2}$$

# Вычисление пределов



Все пределы рассматриваем при x o 0

$$\lim rac{\sqrt{1+2tg(x)}-e^2+x^2}{arctg(x)-sin(x)}=rac{rac{2x^3}{3}}{rac{x^3}{3}}=2$$

1. 
$$arctg(x) - sin(x) = (x + \frac{x^3}{6}) - (x - \frac{x^3}{6}) = \frac{x^3}{3}$$

2. 
$$\sqrt{1+2tg(x)} = 1 + \frac{2tg(x)}{2} - \frac{(2tg(x))^2}{8} + \frac{(2tg(x))^3}{16} = 1 + tg(x) - \frac{tg^2(x)}{2} + \frac{tg^3(x)}{2}$$
  
=  $1 + (x + \frac{x^3}{3}) - \frac{x^2}{2} + \frac{x^3}{2} = 1 + x - \frac{x^2}{2} + \frac{5x^3}{6}$ 

3. 
$$\sqrt{1+2tg(x)}-e^x+x^2=1+x-rac{x^2}{2}+rac{5x^3}{6}-1-x-rac{x^2}{2}-rac{x^3}{6}+x^2=rac{2x^3}{3}$$

## Вычисление пределов



Все пределы рассматриваем при x o 0

$$\lim rac{3x^2+x}{ln(1-2x)} = \lim rac{(3x^2+x)'}{(ln(1-2x)')} \ = \lim rac{6x+1}{rac{-2}{1-2x}} = -rac{1}{2}$$



Все пределы рассматриваем при x o 0

# Вычислите пределы:

$$\lim \frac{x + ln(1+x)}{e^{3x} - 1} = \frac{2}{3}$$

$$\lim rac{cos(x)-1+rac{x^2}{2}}{x^4}=rac{1}{24}$$

# Ряд Тейлора



**Определение.** Многочленом Тейлора функции f(x) вещественной переменной x, дифференцируемой k раз в точке a называется функция:

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

**Определение.** Если функция f(x) бесконечно дифференцируема, то многочлен Тейлора называется рядом Тейлора.

**Определение.** Если a=0, то ряд Тейлора называется рядом Маклорена. Определение. Ряд Тейлора можно записать в следующей форме:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k + o(x - x_0)^n$$

Остаточный член в форме Пеано

# Нотация О-большое и о-малое



**Определение.** f является О-большим от g при  $x \to x_0$ , если существует такая константа C>0, что для всех x из некоторой окрестности точки  $x_0$  имеет место неравенство:

$$|f(x)| \leqslant C|g(x)|$$

**Определение.** f является о-малым от g при  $x \to x_0$ , если для любого  $\varepsilon > 0$  в проколотой окрестности точки  $x_0$  имеет место неравенство:

$$|f(x)| < \varepsilon |g(x)|$$

# Эквивалентные функции



**Определение.** Назовем 2 функции асимптотически эквивалентными, если их отношение стремится к некоторой константе.

**Определение.** Назовем 2 функции асимптотически эквивалентными, если предел их отношения равен некоторой константе.

**Обозначение.** Введем нотацию О-большого. f(n) = O(g(n)) означает, что функция f асимптотически эквивалентна функции g.

**Теорема**. Если  $\lim_{x \to a} \frac{|f(x)|}{|g(x)|}$ конечен, то f(x) = O(g(x)) при том же условии.

# Эквивалентные функции



**Определение.** Назовем 2 функции асимптотически эквивалентными, если их отношение стремится к некоторой константе.

**Определение.** Назовем 2 функции асимптотически эквивалентными, если предел их отношения равен некоторой константе.

**Обозначение.** Введем нотацию О-большого. f(n) = O(g(n)) означает, что функция f асимптотически эквивалентна функции g.

**Теорема**. Если  $\lim_{x \to a} \frac{|f(x)|}{|g(x)|}$ конечен, то f(x) = O(g(x)) при том же условии.

**Пример.**  $x+x^2=O(x)$  или  $O(x^2)$  при x o 0?

$$\lim_{x \to 0} \frac{x + x^2}{x} = \lim_{x \to 0} 1 + x = 1.$$

Подробнее о нотацие О-большое с примерами: http://math-hse.info/a/2014-15/ling-la/o\_O.pdf

# Примеры нотации О-большого и о-малого

1. 
$$N + 2 = O(N)$$

2. 
$$2N = O(N)$$

3. 
$$N = O(N^2)$$

4. 
$$N^2 = O(N)$$

$$5. \quad 100 = O(N)$$

6. 
$$N = O(1)$$

7. 
$$214 N + 34 = O(N^2)$$

8. 
$$100 = O(1)$$

9. 
$$100^{12} = 0(1)$$



Можно рассматривать сложность кода алгоритмов как функцию от размера входящих параметров.

Если мы подаем на вход алгоритму массив из n элементов, то можем обозначить его вычислительную сложность как f(n).

**Обозначение.** f(n) = O(g(n)) означает, что функция f асимптотически эквивалентна функции g.

**Теперь мы можем разделить все функции на** некоторых классы эквивалентности.

#### Классы эквивалентности



**Линейная сложность O(n).** Такой сложностью, например, обладает алгоритм поиска элемента в не отсортированном массиве.

**Квадратичная сложность О(n^2).** Такой сложностью, например, обладает пузырьковая сортировка.

**Константная сложность O(1).** Такой сложностью обладают некоторые операции над структурами данных.

**Суперполиномиальная сложность O(2<sup>n</sup>).** Такой сложностью не обладают правильно написанные стандартные алгоритмы. Если получили такую сложность, то стоит задуматься как его ускорить.



**Константная сложность O(1).** Такой сложностью обладают некоторые операции над структурами данных.



**Линейная сложность O(n).** Такой сложностью, например, обладает алгоритм поиска элемента в не отсортированном массиве.

**Квадратичная сложность O(n^2).** Такой сложностью, например, обладает пузырьковая сортировка.

```
In [24]: def bubble sort(array):
             # Генерируем длину массива
             N = len(array)
             # Проходимся по всем элементам списка
             for i in range(N-1):
                 # Проходимся по всем элементам списка после і-го
                 for j in range(N-i-1):
                     # Если не выполняется сравнение, то меняем местами элементы
                     if array[j] > array[j+1]:
                         array[j], array[j+1] = array[j+1], array[j]
             return array
In [25]: bubble sort(list(reversed(range(5))))
Out[25]: [0, 1, 2, 3, 4]
In [26]: 5 in list(range(10))
Out[26]: True
```



# Что делать с рекурсией?

### Рекурсия



#### Простая рекурсия

В случае простой рекурсии сложность программы в общем случае можно оценить как  $O(n\ f(n))$ , где O(f(n)) - сложность рекурсивной функции.



**Логарифмическая сложность O(log(n)).** Такой сложностью обладает бинарный поиск. То есть поиск элемента в отсортированном массиве. Рекурсивный алгоритм с приемлемой сложностью.

```
In [15]: def binary search(array, n):
             # Генерируем индекс середины массива
             mid = int(len(array) / 2)
             # Проверяем не на середине ли наш искомый элемент
             if n == array[mid]:
                 return mid
             # Если нет, то рекурсивно ищем в левой стороне массива
             elif n > array[mid]:
                 return mid + binary search(array[mid:], n)
             # Иначе рекурсивно ищем в правой стороне массива
             else:
                 return binary search(array[:mid], n)
In [16]: binary search([1,2,3,4,5,6,7], 3)
Out[16]: 2
```

## Рекурсия



#### Простая рекурсия

В случае простой рекурсии сложность программы в общем случае можно оценить как O(n \* f(n)), где O(f(n)) - сложность рекурсивной функции.

#### Многократная рекурсия

В случае многократной рекурсии сложность программы в общем случае можно оценить как  $O(k^n * f(n))$ , где O(f(n)) - сложность рекурсивной функции и k - число вызовов рекурсии внутри функции.

#### Пример.

## Рекурсия



#### Простая рекурсия

В случае простой рекурсии сложность программы в общем случае можно оценить как O(n \* f(n)), где O(f(n)) - сложность рекурсивной функции.

#### Многократная рекурсия

В случае многократной рекурсии сложность программы в общем случае можно оценить как  $O(k^n * f(n))$ , где O(f(n)) - сложность рекурсивной функции и k - число вызовов рекурсии внутри функции.

#### Вывод

Рекурсия может быть полезна и аккуратна, если применять ее правильно, иначе могут быть большие проблемы.



# Найдите сложность данных алгоритмов:

```
1. In [6]:
              for x in range(n):
                                              O(n)
                   s += x
2.
    In [8]: def factorial(n):
                if not n:
                   return 1
                                              O(n)
                return factorial(n-1) * n
    In [10]: factorial(n)
3.* In [36]:
              s = x = 0
              while n:
                                              O(n*log(n))
                  x += 1
                   s += factorial(x)
                  n //= 2
```

# Время исполнения программы наглядно



|        | 10          | 20          | 30          | 40          | 50              | 60             |
|--------|-------------|-------------|-------------|-------------|-----------------|----------------|
| O(n)   | 0.00001 сек | 0.00002 сек | 0.00003 сек | 0.00004 сек | 0.00005 сек     | 0.00006 сек    |
| O(n^2) | 0.0001 сек  | 0.0004 сек  | 0.0009 сек  | 0.0016 сек  | 0.0025 сек      | 0.0036 сек     |
| O(n^3) | 0.001 сек   | 0.008 сек   | 0.027 сек   | 0.064 сек   | 0.125 сек       | 0.216 сек      |
| O(n^5) | 0.1 сек     | 3.2 сек     | 24.3 сек    | 1.7 мин     | 5.2 мин         | 13 мин         |
| O(2^n) | 0.0001 сек  | 1 сек       | 17.9 мин    | 12.7 дней   | 35.7 веков      | 366 веков      |
| O(3^n) | 0.059 сек   | 58 мин      | 6.5 лет     | 3855 веков  | 2*10^8<br>веков | 10^13<br>веков |

## Время исполнения программы наглядно





# Есть вопросы или замечания?



Напишите в чат свои вопросы и замечания! Ставьте + если все понятно



# Антон Лоскутов

Slack:

@LoskutovAnton

# Спасибо за внимание!

