HW: week 4 Question 28 a

These were the results of the code which can be found in the respective R data file.

I think that the Quadratic model has the best, because first of all the **quadratic model** most accurately follows the curvature in the yield data. The **log(TIME)** and **log(YIELD)** models underfit or distort the actual yield pattern.

Model	R ²	Shapiro- Wilko p- value	Residuals	Fit Curve
1. Linear	0.578	0.679	Moderate pattern	Decent
2. Log(TIME)	0.339	0.186	Slight curvature remains	Poor fit
3. TIME ² (Quadratic)	0.689	0.827	Most random residuals	Best fit
4. log(YIELD)	0.507	0.000072	Heteroskeda stic + skewed	Unreliable

Looking at the residuals:

- The **quadratic model's residuals** are the most randomly distributed with minimal structure.
- The **log(YIELD)** model has residuals that clearly show **non-normality** and heteroskedasticity.
- inear and log(TIME) models show some mild patterns, suggesting misspecification.

In term of the normality test we see that:

Model	W Statistic	p-value
1. Linear	0.982	0.679
2. Log(TIME)	0.967	0.186
3. TIME ² (Quadratic)	0.986	0.827
4. log(YIELD)	0.869	0.000072

Out of the for models only the log model has a p-value less than 0.05, in other words the residuals are not normally distributed.

In terms of R-squares we see that:

summary(model1)\$r.squared [1] 0.5778369

summary(model2)r.squared [1] 0.3385733 summary(model3) $r.squared \rightarrow this being the Quadratic model and one which seems to have the highest R² [1] 0.6890101$

summary(model4)\$r.squared [1] 0.5073566

Question 28 b

I used this code to fit a quadratic regression model: model3 <- $Im(YIELD \sim I(TIME^2), data = df)$

After I summarised the model I was left with this output:

```
lm(formula = YIELD \sim I(TIME^2), data = df)
Residuals:
                   Median
     Min
               1Q
                                30
                                        Max
-0.56899 -0.14970 0.03119 0.12176 0.62049
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.737e-01 5.222e-02
                                  14.82 < 2e-16 ***
           4.986e-04 4.939e-05
                                  10.10 3.01e-13 ***
I(TIME^2)
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
′ 1
Residual standard error: 0.2396 on 46 degrees of freedom
Multiple R-squared: 0.689, Adjusted R-squared:
F-statistic: 101.9 on 1 and 46 DF, p-value: 3.008e-13
```

Which can be simplified into: $YIELDt = 0.7737 + 0.0004986 * TIME^2 + e_t$

From which we get: **Intercept** = 0.7737 and **TIME coefficient**: = 0.0004986

This is means that the **wheat yield** at TIME = 0, or in this case 1950, is equivalent to 0.7737. The the TIME coefficient show the exponential growth rate of the wheat yield of 0.0004986. In other words for every increase in T + 1 the wheat yield experiences a corresponding increase of 0.0004986.