Detecting Abandoned Oil And Gas Wells Using Machine Learning And Semantic Segmentation

1. Active Wells

- Operational
- Large surrounding machine

Source: Getty Images

1. Active Wells

- Operational
- Large surrounding machine

2. Abandoned Wells

- Bankrupt companies abandon wells
- Small (1 3m)
- Unknown/inaccurate locations

Source: SRP Alberta

4 000 000+ abandoned wells in the US Canada \rightarrow 370 000

Source: SRP Alberta

4 000 000+ abandoned wells in the US

Canada → 370 000

750 000+ predicted/missing wells in Pennsylvania

Alberta → 10 000

Source: SRP Alberta

Environmental impact:

- Ground water supply contamination
- Methane emissions
 - 150% annual underestimation

Source: Kang et al

Environmental impact:

- Ground water supply contamination
- Methane emissions
 - 150% annual underestimation

Source: Kang et al

Bottleneck

Locations of abandoned oil wells are unknown

Bottleneck

Locations of abandoned oil wells are unknown

Project objectives

- 1) Identify the existence and locations of previously *unknown* abandoned oil wells
- 2) Precisely localize and correct inaccurate locations of known abandoned oil wells

Semantic segmentation can be used to locate wells in satellite imagery

Background & Related Work

Prior work on *active* oil well detection

Goal: detect illegal drilling

Image resolution: 10-60m/px

Data:

- **AER-ST37**
 - Abandoned: 219 000
 - All: 430 000
- Satellite imagery:
 - 0.5m/px

Data:

- AER-ST37
 - Abandoned: 219 000
 - All: 430 000
- Satellite imagery:
 - 0.5m/px

Semantic segmentation: pixel-wise image classification

Source: Ronnenberger et al.

Pixels -> well locations

- 1) Cluster pixels
- 2) Sum confidences of neighboring pixels

Pixels -> well locations

- 1) Cluster pixels
- 2) Sum confidences of neighboring pixels

Pixels -> well locations

- 1) Cluster pixels
- 2) Sum confidences of neighboring pixels

U-Net

Encoder-decoder architecture

- Fully convolutional neural network

Source: Ronnenberger et al.

Potential Bottlenecks	Strategies to Address Bottlenecks
Imbalanced Data	Enforcing balanced training data
Pinpointing active wells	Post processing filtering
Label noise	Number of fully accurate labels

Potential Bottlenecks	Strategies to Address Bottlenecks
Imbalanced Data	Enforcing balanced training data
Pinpointing active wells	Post processing filtering

Potential Bottlenecks	Strategies to Address Bottlenecks
Imbalanced Data	Enforcing balanced training data
Pinpointing active wells	Post processing filtering
Label noise	Number of fully accurate labels

Future Work

- Generalization with Model Agnostic Meta-Learning (MAML)
- Methane Quantification With Active Learning

Future Work

- Generalization with Model Agnostic Meta-Learning (MAML)
- Methane Quantification With Active Learning

Thank you! Michelle[dot]lin@mila.quebec

Twitter: @XMichelleLinX

