Classification

Allan Aasbjerg Nielsen

alan@dtu.dk

Technical University of Denmark

DTU Compute - Applied Mathematics and Computer Science

3 Feb 2017

DTU

Classification

- classification is the process of grouping observations (pixels or regions) into classes intended to represent different physical objects or types
- here, the production of a **thematic map** from (image) data with digital numbers representing for example reflected or emitted EM-radiation in different wavelength bands
- very many classification methods ranging from quite simple to highly advanced
- two major groups of methods: supervised and unsupervised
 - supervised: ideally physical classes but not necessarily statistically distinct
 - unsupervised: statistically distinct but not necessarily physical classes

Allan Aasbjerg Nielsen alan@dtu.dk Classification

Feature space Scatter Plot Matrix of Iris Data Versicolor Petal.Width p variables C classes Petal.Length N observations (or samples) $\mathbf{2} \mathbf{x}_i, i = 1, \ldots, N, p \times 1$ is a point (or vector) in Sepal.Width p-dimensional feature space figure shows all possible pairwise projections on original variables Sepal.Length

K-means

- \bigcirc choose C (or k)
- 2 assign C class centres μ_c
- **3** calculate distance, e.g., $D_{Eic}^2 = (x_i \mu_c)^T (x_i \mu_c)$ for all observations to all class centres, $i = 1, \dots, N$, $c = 1, \dots, C$
- \bullet assign class c to x_i if distance smallest for class c
- **5** compute new class centres μ_c (include only obs in class c)
- iterate from third step

Initialization of μ_c

- 1 random observations within range of data
- 2 first C 'different enough' observations
- 3 based on PCA, e.g., uniformly distributed along first PC axis, or in plane spanned by two first PC axes
- 4 ...

Fuzzy c-means

- \bigcirc choose C (or k)
- 2 assign C class centres μ_c
- **3** calculate distance, e.g., $D_{Fic}^2 = (x_i \mu_c)^T (x_i \mu_c)$ for all observations to all class centres
- **4** assign degree of membership u_{ic} to x_i for all classes, e.g., $u_{ic} = (1/D_{Eic}^2)/\sum_{i=1}^C 1/D_{Eii}^2$ leading to $\sum_{c=1}^C u_{ic} = 1$
- \odot compute new class centres (include all obs weighted by u_{ic}) $\mu_c = \sum_{i=1}^N u_{ic} x_i / \sum_{i=1}^N u_{ic}$
- iterate from third step

Optimal number of clusters

- \bullet a good clustering has high between clusters variation (SS_B) and low within (among) clusters variation (SS_W)
- maximize the variance ratio criterion VRC

$$VRC(k) = \frac{SS_B(k)/(k-1)}{SS_W(k)/(N-k)}$$

sometimes called the Calinski-Harabasz clustering evaluation criterion

Probability

- $0 < P(A_i) < 1$
- $P(\Omega) = 1$
- additivity

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

conditional probability

$$P(A \mid B) = P(A \cap B)/P(B), \ (P(B) > 0)$$

$$P(A \cap B) = P(A \mid B) P(B) = P(B \mid A) P(A)$$

MAP

Bayes' Rule

- \bullet A_1, \ldots, A_i, \ldots , disjoint and $\sum_i P(A_i) = 1$

$$P(B) = \sum_{i} P(B \cap A_i) = \sum_{i} P(B \mid A_i) P(A_i)$$

Bayes' rule

$$P(A_j \mid B) = P(A_j \cap B)/P(B) = \frac{P(B \mid A_j) \ P(A_j)}{\sum_i P(B \mid A_i) \ P(A_i)}$$

here

$$P(\omega_c|\mathbf{X}) = \frac{P(\mathbf{X}|\omega_c)P(\omega_c)}{\sum_{j=1}^{C} P(\mathbf{X}|\omega_j)P(\omega_j)} \propto P(\mathbf{X}|\omega_c) P(\omega_c)$$

3 Bayes' classifier: choose maximum $P(\omega_c|X)$

Allan Aasbjerg Nielsen alan@dtu.dk Classification

\bullet $P(\omega_c|\mathbf{X}) \propto P(\mathbf{X}|\omega_c) P(\omega_c)$

- $P(\omega_c)$ is prior (or a priori) probability
- **3** $P(\omega_c|\mathbf{X})$ is posterior (or a posteriori) probability
- $P(X|\omega_c)$ is the "likelihood", the data term, i.e., the conditional probability of the data given the class
- max a posteriori probability: MAP estimation

DTU

Supervised: Gaussian $P(X|\omega_c)$

Gaussian "likelihood" in 1-D

$$P(X|\omega_c) = rac{1}{\sqrt{2\pi}}rac{1}{\sigma_c}\exp\left[-rac{1}{2}\left(rac{X-\mu_c}{\sigma_c}
ight)^2
ight]$$

 σ_c^2 is variance for class c

Question "likelihood" in p-D

$$P(\boldsymbol{X}|\omega_c) = (2\pi)^{-\rho/2} |\boldsymbol{\Sigma}_c|^{-1/2} \exp\left[-\frac{1}{2}(\boldsymbol{X} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\boldsymbol{X} - \boldsymbol{\mu}_c)\right]$$

 Σ_c is $p \times p$ dispersion or covariance matrix for class c

 Σ_c contains variances on diagonal and covariances off diagonal

Supervised: Gaussian $P(X|\omega_c)$

1 MAP: max $P(\omega_c|\mathbf{X}) \Leftrightarrow \max \log \text{-likelihood } \mathcal{L}_c(\mathbf{X})$ (use Bayes' rule)

$$\mathcal{L}_{c}(\boldsymbol{X}) = \ln P(\omega_{c}|\boldsymbol{X})$$

$$= \ln P(\omega_{c}) + \ln P(\boldsymbol{X}|\omega_{c}) - \ln \sum_{j=1}^{C} P(\boldsymbol{X}|\omega_{j})P(\omega_{j})$$

2 In of sum in last term same for all c, drop it; insert Gaussian $\ln P(X|\omega_c)$

$$\mathcal{L}_c(\boldsymbol{X}) \sim \ln P(\omega_c) - \frac{p}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_c| - \frac{1}{2} (\boldsymbol{X} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\boldsymbol{X} - \boldsymbol{\mu}_c)$$

- 3 drop $-\frac{p}{2} \ln 2\pi$
- **1** if equal priors: drop $\ln P(\omega_c)$

1

Supervised: Confusion Matrix

Supervised: Gaussian $P(X|\omega_c)$

log-likelihood

$$\mathcal{L}_c(oldsymbol{X}) \sim \ln P(\omega_c) - rac{1}{2} \ln |oldsymbol{\Sigma}_c| - rac{1}{2} (oldsymbol{X} - oldsymbol{\mu}_c)^T oldsymbol{\Sigma}_c^{-1} (oldsymbol{X} - oldsymbol{\mu}_c)$$

quadratic in X: quadratic discriminant analysis

② if equal dispersions, $\Sigma_c = \Sigma$: drop $-\frac{1}{2} \ln |\Sigma| - \frac{1}{2} X^T \Sigma^{-1} X$

$$\mathcal{L}_c(oldsymbol{X}) \sim \ln P(\omega_c) + oldsymbol{\mu}_c^{ au} oldsymbol{\Sigma}^{-1} (oldsymbol{X} - rac{1}{2} oldsymbol{\mu}_c)$$

linear in X: linear discriminant analysis

- min Mahalanobis distance?
- min Euclidean distance?

DTU

Allan Aasbjerg Nielsen alan@dtu.dk Classification

			Classified as										
or error matrix:			bare	urban	tailings	water	forest	tundra	poor veg	waste	wetland	Row total	Producer's accuracy (%)
measures quality of classification result		bare	6628	1115	0	1	0	1	436	1857	563	10601	62.5
		urban	470	972	1	23	0	1	19	514	286	2286	42.5
		tailings	0	0	1076	0	0	0	0	0	0	1076	100.0
	class	water	8	17	0	4519	0	0	1	11	26	4582	98.6
	wn cl	forest	0	0	0	0	1917	176	0	0	0	2093	91.6
resubstitution	Known	tundra	4	0	0	0	1973	22420	334	0	8	24739	90.6
or training/test		poor veg	180	40	0	1	0	91	4801	0	230	5343	89.9
		waste	30	27	0	0	0	0	0	865	29	951	91.0
		wetland	125	371	0	50	0	29	1136	129	6231	8071	77.2
		Column total		2542	1077	4594	3890	22718	6727	3376	7373	59742	
		Consumer's accuracy (%)		38.2	99.9	98.4	49.3	98.7	71.4	25.6	84.5		

Comments

- lacktriangle quadratic \mathcal{L} and reject class
- 2 confusion matrix, learning/test samples, misclassification rate
- 1 histograms of all variables in all classes, derived features (e.g. \sqrt{X} , $\ln X$, products, ratios, principal components, local moments, ...)
- calculate posterior $P(\omega_c|\mathbf{X})$ for each class
- **3** visualisation: Mahalanobis' distance $D_{Mic}^2 = (\mathbf{X} \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{X} \boldsymbol{\mu}_c)$ as intensity or saturation, class as hue

Comments

- quadratic discriminant analysis: p elements in mean vector, p(p+1)/2elements in dispersion matrix, problem for large p
- remedy
 - regularization
 - diagonal dispersion matrices for each class: p-dimensional Gaussian factors into product of p univariate Gaussians
 - linear discriminant analysis: all classes have same dispersion matrix
 - all classes have dispersion matrix equal to identity matrix
- Mahalanobis distance
- contour curves of constant Mahalanobis distance: for 2-D ellipse (broad, near circle vs thin, elongated), for p-D hyperellipsoid

Unsupervised: Gaussian mixture models, GMM

1 Bayes' rule: $P(\omega_c|\mathbf{x}_i) = K P(\mathbf{x}_i|\omega_c)P(\omega_c)$ with $1/K = \sum_{i=1}^C P(\mathbf{x}_i|\omega_i)P(\omega_i)$

2 GMM: Given some $u_{ic} = P(\omega_c|x_i)$ with $\sum_{c=1}^{C} u_{ic} = 1$, calculate

 $\mu_c = \frac{1}{NP(\omega_c)} \sum_{i=1}^N u_{ic} x_i$

 $\Sigma_c = \frac{1}{NP(u_c)} \sum_{i=1}^{N} u_{ic}(\mathbf{x}_i - \boldsymbol{\mu}_c)(\mathbf{x}_i - \boldsymbol{\mu}_c)^T$

 \bullet μ_c and Σ_c define $P(x_i|\omega_c)$ which with $P(\omega_c)$ via Bayes' rule give a new $u_{ic} = P(\omega_c | x_i)$ which in turn gives a new $P(\omega_c)$: iterate

example on Expectation Maximization (EM) algorithm E-step: calculate $P(\omega_c)$, μ_c , Σ_c M-step: calculate $P(\omega_c|\mathbf{x}_i)$ in Bayes' rule

DTU

Allan Aasbjerg Nielsen alan@dtu.dk Classification

• k-means and fuzzy c-means:

$$\max - \sum_{i=1}^{N} \sum_{c=1}^{C} u_{ic}^{m} (\mathbf{x}_{i} - \boldsymbol{\mu_{c}})^{T} (\mathbf{x}_{i} - \boldsymbol{\mu_{c}})$$

GMM:

$$\max \sum_{i=1}^{N} \ln \sum_{c=1}^{C} P(\omega_c) P(\mathbf{x}_i | \omega_c)$$

(In is optional)

Initialization of μ_c and $oldsymbol{\Sigma}_c$

GMM initialization

- select observations at random as initial means
 - mixing proportions are uniform
 - initial covariance matrices are diagonal, elements on the diagonal are the variances
- 2 start with result from k-means or fuzzy c-means
- **③** ...

DTU

Hierarchical clustering

- hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram
- 2 the tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level
- 3 this allows you to decide the level or scale of clustering that is most appropriate for your application
- two extremes: every pixels is its own cluster vs entire image is one cluster

Other supervised methods

- support vector machines, SVM
- 2 tree based methods, CART, random forests
- 3 artificial neural networks, ANN, CNN
- 4 ...

fin

Allan Aasbjerg Nielsen alan@dtu.dk Classification

Classification take-away

- classification is the process of grouping observations (pixels or regions) into classes intended to represent different physical objects or types
- here, the production of a **thematic map** from (image) data with digital numbers representing for example reflected or emitted EM-radiation in different wavelength bands
- very many classification methods ranging from quite simple to highly advanced
- two major groups of methods: supervised and unsupervised
- use original data or derived (spatial) features; combine unsupervised and supervised

Allan Aasbjerg Nielsen alan@dtu.dk Classification