Math 13 - First Hour Exam - January 30, 2002

Part I: Multiple choice. Each problem is worth 5 points.

1. The following is the tangent line to $\mathbf{c}(t) = (e^t, \sin t, \cos t)$ at $t_0 = 0$:

- (a) (1, 1, 0)
- (b) (1+t,0,1)
- (c) (1+t,t,1)
- (d) (t, 1, t)

2. The following vector is normal to the plane 3(x-1) + 2y - z = 4

- (a) (4,0,0)
- (b) (3,0,0)
- (c) (3, 2, -1)
- (d) (4,0,-4)

3. Consider the matrices: $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 5 \end{bmatrix}$,

$$C = \left[\begin{array}{cc} 4 & 2 \\ 3 & -1 \\ 8 & 0 \end{array} \right].$$

Which of the matrix products AC, AB, CB, and BC make sense?

- (a) CB and AB
- (b) AC, AB, and CB
- (c) all of them
- (d) AB, CB, and BC

4. Which of the following is NOT a gradient field?

- (a) $\mathbf{F} = (yz 2y, xz 2x, xy)$
- (b) $\mathbf{F} = (z^2 + y, x, zyx)$
- (c) Neither are gradient fields
- (d) Both are gradient fields

5. The path in the xy-plane of a particle following the ellipse $2x^2 + y^2 = 2$ in the counterclockwise direction is described by:

- (a) $\mathbf{c}(t) = (2\cos t, \sin t)$
- (b) $\mathbf{c}(t) = (\cos t, \sqrt{2}\sin t)$
- (c) $\mathbf{c}(t) = (\sqrt{2}\sin t, \cos t)$
- (d) $\mathbf{c}(t) = (2\sin t, \cos t)$

- 6. Let the acceleration of a particle in the plane be given by $\mathbf{a} = (24t, e^t)$. Suppose that it's initial velocity at t = 0 is (1, 1), and it's initial position at t = 0 is (2, 2). Then the particle is moving on the following path:
 - (a) $(12t^2, e^t)$
 - (b) $(4t^3 + t + 2, e^t + 1)$
 - (c) $(4t^3 + t + 2, e^t + t + 2)$
 - (d) $(4t^3, e^t)$
- 7. True False: State whether the following statements are true or false, in the order (1), (2), (3).
 - (1) A flow line of a vector field is a curve which the field is perpendicular to at each point of the curve.
 - (2) If **a** and **b** are perpendicular, then $\mathbf{a} \cdot \mathbf{b} = 0$
 - (3) A plane is perpendicular to the cross product of any two vectors in it.
 - (a) TTT
 - (b) TTF
 - (c) FTT
 - (d) FTF
- 8. Let **F** and **G** be vector fields, and let f be a scalar function of three variables (**F** and **G**: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ and $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$). Do the following statements make mathematical sense, ie, can the operations be performed? Answer Y or N in the order (1) (5).
 - $(1) \ div(\mathbf{F} \times \mathbf{G})$
 - (2) $\nabla f \times \mathbf{F}$
 - (3) the curl of $\mathbf{F} \cdot \mathbf{G}$
 - (4) the cross product of a vector field and its curl
 - (5) the dot product of ∇f and $div(\mathbf{F})$
 - (a) YNNYY
 - (b) YYNYN
 - (c) NYNYN
 - (d) YYYNY
- 9. Which of the following level surfaces is expressible as a graph z = f(x, y) about the point (0, 1, 1)?
 - (a) $xze^y + \frac{1}{3}z^3 zy = 0$
 - (b) $\frac{1}{4}z^4y + z\cos(x^2) = 0$
 - (c) Both of the above are expressible as z = f(x, y)
 - (d) Neither of the above are expressible as z = f(x, y)

10. Match the equations to the surfaces (or parts of surfaces) that they map in \Re^3 .

(i)
$$z = x^2 + y^2$$

 (α) cone

(ii)
$$z = \sqrt{x^2 + y^2}$$

 (β) plane

(iii)
$$3 = x^2 + y^2$$

 (γ) cylinder

(i)
$$z = x + y$$

(ii) $z = \sqrt{x^2 + y^2}$
(iii) $3 = x^2 + y^2$
(iv) $z = \sqrt{4 - x^2 - y^2}$
(v) $z = 5 - x + 2y$

 (δ) sphere

(v)
$$z = 5 - x + 2y$$

 (ϵ) paraboloid

Which of the following is true?

(a)
$$(i) - \gamma$$
, $(ii) - \alpha$, $(iii) - \epsilon$, $(iv) - \delta$, $(v) - \beta$

(b)
$$(i) - \epsilon$$
,

(b) $(i) - \epsilon$, $(ii) - \delta$, $(iii) - \gamma$, $(iv) - \beta$, $(v) - \alpha$

(c)
$$(i)$$
 - α , (ii)

(c) (i) - α , (ii) - ϵ , (iii) - δ , (iv) - β , (v) - γ

(d)
$$(i) - \epsilon$$
,

(d) $(i) - \epsilon$, $(ii) - \alpha$, $(iii) - \gamma$, $(iv) - \delta$, $(v) - \beta$

Part II: You can earn partial credit on the next five problems.

11. (10 points) Location on a particular mountain is given by points in the x-y plane where north is in the positive y direction. The elevation in feet above sea level at a point (x, y) is given by $g(x,y) = 10000 - 2x^2 - y^2$. If you are standing at point (1,1),

(a) What is the rate of change of elevation in the south-eastern direction (ie, in direction of vector $\mathbf{i} - \mathbf{j}$?

(b) In what direction is the mountain decreasing in elevation the fastest from point (1,1)?

12. (10 points) Suppose that $f(x, y, z) = (2xy, e^{xz})$ and $g(u, v) = (\cos u, vu)$.

(a) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $g: \mathbb{R}^p \longrightarrow \mathbb{R}^q$, what are n, m, p and q?

(b) Which of the compositions, $f \circ g$ or $g \circ f$, is (are) defined?

(c) For any compositions that are defined, compute their derivative matrix.

13. (10 points) Find the arc length of $\mathbf{c}(t) = (1, 3t^2, t^3)$ from (1, 0, 0) to (1, 12, 8).

14. (10 points) Find the equation of the tangent plane to the surface $z = e^x(\sin y + 1)$ at $(0, \frac{\pi}{2}, 2)$.

15. (10 points) Find the divergence and curl of

$$\mathbf{F}(x, y, z) = (x \sin z, -2xz, z^2 + 2y)$$