23. a.	Find the values of $f'(4)$ and $f''(4)$ from the following data. x: 0 1 2 3 y: 1 2 9 28	8 -	3	3	2
	y: 1 2 9 28				
b.	(OR)	8	3	3	3
υ.	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h=0.2. Hence find the value of				
	π . Can you use Simpson's formula in this case?				
24. a.	Use Taylor's series method to find $y(1.1)$ correct to 4 decimal places given $y' = xy^{1/3}$ and $y(1) = 1$.	8	3	4	2
	(OR)				
b.	Solve $y' = x^2 + y^2$; $y(0) = 1$ by modified Euler's method and find $y(0.2)$.	8	3		
25. a.	Solve $u_{xx} = 2u_t$, $u(0,t) = 0$, $u(4,t) = 0$ and $u(x,0) = x(4-x)$ choosing $h=k=1$ and using Bender Schmidt formula, find values upto $t=5$.	8	4	5	2
	(OR)				
b.	Solve by Crank Nicholson method, $16u_t = u_{xx}$; $0 < x < 1$, $t > 0$ given that $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = 100t$.	8	4	5	2.
	$PART - C (1 \times 15 = 15 Marks)$				
	` /	Marks	BL	со	PO
26.	Given $y''+xy'+y=0$; $y(0)=1$ $y'(0)=0$ find the value of $y(0.1)$ by R.K. method of fourth order.	15	4	4	3.
27.	If $f(0) = 0$, $f(1) = 0$, $f(2) = -12$, $f(4) = 0$, $f(5) = 600$, $f(7) = 7308$, find a polynomial that satisfies this data using Newton's divided difference formula, hence find $f(6)$.	15	4	3	3
	* * * * *	12			

		Reg. No.				-4						
	B.Tech. / M	I.Tech (Integrate		REE EX	AMIN	ATIO	N, MA	Y 2023				
		AB206T – NUME didates admitted fr										
)	over to hall invigi	oe answered in OM lator at the end of 4 t - C should be answered	0th minute	ð.		utes an	d OMR	sheet she	ould	l be	han	ded
: 3	Hours							Ma	ax. l	Ma	rks:	75
		PART – A (20 >						Mai	ks	BL	co	PO
1.	The negative roo (A) -1.6 and -1 (C) -1.8 and -1	.7	(B)	x lies be -1.7 and -1.9 and	1 - 1.8			1		1	1	1
2.	The iteration for (A) $x_{n+1} = x_n$	$(2-Nx_n)$	(B)	$x_{n+1} = 3$	$c_n(1-\lambda)$	$\forall x_n$	hod is	1		1	1	1
	$(C) x_{n+1} = x_n (1)$	$(1+Nx_n)$	(D)	$x_{n+1} = x_n$	$c_n(2+1)$	$\forall x_n$)						
3.	If the nth different is a polynomial of		d function	on are con	stants,	then t	he funct	ion 1		1	1	1
	(A) 1 (C) n-1		(B) (D)									
4.	$\Delta \log f(x) =$							1		1	1	2
	(A) $\log f(x) - 1$ (C) $\log f(x) + 1$,		`	,	,	,					
5.	What is $\Delta^2 f(x)$	$, if f(x) = x^2 - 3$						1		2	2	1
	(A) $2x+1$ (C) 2		(B) (D)	2x								

7. The relation between E and μ is (A) $\mu = E^{1/2} + E^{-1/2}$

(B) $\mu = E^{-1/2} - E^{1/2}$

(B) $f(x_1)-f(x_0)$

(D) $f(x_0)-f(x_1)$

 $x_0 - x_1$

 $x_0 - x_1$

6. The first divided difference of f(x) for the arguments x_0, x_1 is defined as

(D) $\mu = \frac{1}{2} \left[E^{-1/2} - E^{1/2} \right]$

31MF3-21MAB206T

Note:

(ii)

Time: 3 Hours

(A) $f(x_1)-f(x_0)$

(C) $f(x_1)-f(x_0)$

 $x_1 - x_0$

 $x_0 + x_1$

(C) $\mu = \frac{1}{2} \left[E^{1/2} + E^{-1/2} \right]$

2 2 2

2 2 1

16.	Adam's corrector formula is	1	1	4	1
	(A) $y_{n+1} = y_n + \frac{h}{24} \left[55y_n - 58y_{n-1} + 37y_{n-2} - 9y_{n-3} \right]$				
	(B) $y_{n+1} = y_n + \frac{h}{24} \left[55y_n + 59y_{n-1} - 37y_{n-2} + 9y_{n-3} \right]$	- 3			
	(C) $y_{n+1} = y_n + \frac{h}{24} \left[9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2} \right]$				
	(D) $y_{n+1} = y_n + \frac{h}{24} \left[9y_{n+1} - 19y_n + 5y_{n-1} + y_{n-2} \right]$				
17.	If $B^2 - 4AC = 0$ then second order PDE is known as	1	1	5	1
	(A) Elliptic (B) Parabolic				
	(C) Hyperbolic (D) Laplace equation				
18.	$\nabla^2 u = 0$ is called	1	1	5	1
	(A) Elliptic (B) Parabolic				
	(C) Hyperbolic (D) Laplace equation				
19.	Bender Schmidt recurrence equation is valid only if	1	1	5	1
	(A) $k = \frac{h^2}{2}$ (B) $k = \frac{ah^2}{2}$				
	2				
	(C) $k = \frac{2}{ah^2}$ (D) $k = \frac{2}{h^2}$				
20.	The error in the diagonal five point formula istimes the error	1	1	5	1
	in standard five point formula.				
	(A) 1 (B) 2	2			
	(C) 3 (D) 4				
	$PART - B (5 \times 8 = 40 Marks)$				
	Answer ALL Questions	Marks	BL	CO	PO
. a.	Find a negative root of the equation $x^3 - 2x + 5 = 0$ by the iteration method correct to 4 decimal places.	8	3	1	2
	(OR)				
b.	Find the positive root of the equation $3x - \cos x - 1 = 0$ by Newton's method correct to 4 decimal places.	8	3	1	2
2. a.	Estimate the value of $f(22)$ from the following table:	8	3	2	2
	x: 20 25 30 35 40 45				
	f(x): 354 332 291 260 231 204				
	(OR)				
b.	Find $f(x)$ as a polynomial in x from the given data.	8	3	2	2
	x: 3 7 9 10				
	f(x): 168 120 72 63				

21.

22.