ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ $\label{eq:tmhma}$ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Νευρωνικά Δίκτυα: Ενδιάμεση Εργασία

Αφροδίτη Λάτσκου

Σύνολο Δεδομένων

Το σύνολο δεδομένων που επιλέχθηκε για την ερευνητική εργασία είναι το <u>Augmented Alzheimer MRI Dataset</u> από το Kaggle που περιέχει τόσο τις πραγματικές όσο και τις augmented MRI images ασθενών με και χωρίς Alzheimer σε διάφορα επίπεδα άνοιας.

Not Demented

Very Mildly Demented

Mildly Demented

Moderately Demented

Το dataset αποτελείται από τα εξής files:

	Original	Augmented	In Total
Not Demented	3200	9600	12800
Very Mildly Demented	2240	8960	11200
Mildly Demented	896	8960	9856
Moderately Demented	64	6464	6528

Επομένως δουλεύουμε με συνολικά 40384 εικόνες

Στο preprocessing βήμα, δημιουργήσαμε τα X και y υποσύνολα που περιέχουν τις εικόνες και τα labels αντίστοιχα και επίσης κάναμε flatten τις εικόνες ώστε να έχουμε μονοδιάστατους πίνακες, εφόσον τα KNN algorithms δουλεύουν με μονοδιάστατα δεδομένα.

Τέλος, πριν την εφαρμογή των αλγορίθμων χωρίσαμε τα δεδομένα μας σε training και testing data, εφόσον δεν υπήρχε ήδη ξεχωριστό testing υποσύνολο (60% to train, 40% to test).

KNN

Οι ΚΝΝ αλγόριθμοι ταξινομούν ένα νέο δείγμα με βάση του κοντινότερους σε αυτό "γείτονες" με βάση την απόσταση (εδώ ευκλείδεια). Στην περίπτωση μας έχουμε ένα πρόβλημα ταξινόμησης σε κλάσεις, επομένως το νέο δείγμα παίρνει την κλάση των περισσότερων γειτόνων του.

Χρησιμοποιήσαμε το KNearestClassifier της βιβλιοθήκης sklearn και αρχικοποιήσαμε δύο μοντέλα, ένα με k=1 και ένα με k=3.

KNN with 1 Neighbor:

11 1 1 (618115)	· - •				
Accuracy: 0.86	9586851553794	172			
Classification Report:					
	precision	recall	f1-score	support	
0	0.82	0.85	0.84	5116	
1	0.79	0.77	0.78	4488	
2	0.80	0.74	0.77	3899	
3	0.81	0.87	0.84	2651	
accuracy			0.81	16154	
macro avg	0.80	0.81	0.81	16154	
weighted avg	0.81	0.81	0.81	16154	
Confusion Matrix:					
[[4359 392	235 130]				
[479 3478]	355 176]				
[354 418 28	884 243]				
[109 123 1	[22 2297]]				

KNN with 3 Neighbors:

Accuracy: 0.79175436424415					
Classification Report:					
	precision	recall	f1-score	support	
0	0.72	0.90	0.80	5132	
1	0.79	0.75	0.77	4477	
2	0.88	0.68	0.77	3953	
3	0.86	0.82	0.84	2592	
accuracy			0.79	16154	
macro avg	0.81	0.79	0.80	16154	
weighted avg	0.80	0.79	0.79	16154	
Confusion Matr	ix:				
[[4604 335	118 75]				
[840 3344 1	87 106]				
[672 422 27	04 155]				
[242 157	55 2138]]				

Όπως παρατηρούμε, είχαν και τα δύο πολύ παρόμοια συμπεριφορά και είχαν ως αποτέλεσμα αρκετά καλές μετρικές. Ειδικά από τα confusion matrices βλέπουμε πως αποδίδουν βέλτιστα στην κλάση των Moderate Demented ασθενών και ταυτόχρονα έχουν πολύ αρκετά recall στην κλάση των Non-Demented (στην ικανότητα δηλαδή να ταξινομούν σωστά ένα δείγμα αυτής της κλάσης), δεδομένα που είναι πολύ σημαντικά όταν έχουμε να κάνουμε με ιατρικά datasets.

Nearest Centroid

Στον αλγόριθμο nearest centroid, υπολογίζονται τα "κέντρα" κάθε κλάσης (μέσος όρος των δειγμάτων) και κάθε νέο δείγμα ταξινομείται με βάση την απόσταση από αυτό το σημείο.

Χρησιμοποιήσαμε το NearestCentroid της βιβλιοθήκης sklearn.

Accuracy: 0.43	252445214807	48				
Classification Report:						
	precision	recall	f1-score	support		
0	0.47	0.64	0.54	5132		
1	0.36	0.16	0.22	4477		
2	0.39	0.50	0.44	3953		
3	0.50	0.39	0.44	2592		
accuracy			0.43	16154		
macro avg	0.43	0.42	0.41	16154		
weighted avg	0.42	0.43	0.41	16154		
Confusion Matr	Confusion Matrix:					
[[3263 591 9	993 285]					
[1909 730 144	45 393]					
[1034 596 198	82 341]					
[779 101 70	00 1012]]					

Βλέπουμε ήδη τεράστια διαφορά από τον προηγούμενο αλγόριθμο, με το NearestCentroid να αποδίδει πολύ χειρότερα και για τις 4 κλάσεις και ειδικά για την VeryMildDemented. Μπορούμε επομένως εύκολα να συμπεράνουμε πως είναι ο πιο αδύναμος εκ των 2.