Midterm Exam II May 10, 2017

Rules and Regulations: It is permitted to bring two pieces of paper of A4 size with handwritten formulas. There is a time limit of two hours and fifty minutes. Problems for Solution:

- 1. Please determine whether each of the following statements is True or False.
 - (a) (4%) The total instantaneous power of a balanced three-phase circuit is constant.
 - (b) (4%) The resonance frequency ω_0 can be obtained from the average of half-power frequencies ω_1 and ω_2 by

$$\omega_0 = \frac{\omega_1 + \omega_2}{2}.$$

- (c) (4%) The instantaneous power for a load can be negative for some time t.
- (d) (4%) The average power P should be nonnegative.
- (e) (4%) The power factor angle $\theta > 0$ means the current lags the voltage.
- 2. (10%) Let the rms value of the voltage across a load impedance \mathbf{Z} be V_{rms} . Show that the complex power absorbed by the load is

$$S = \frac{V_{rms}^2}{Z^*}.$$

3. (10%) For a load impedance $\mathbf{Z} = R + jX$, the rms value of the voltage across the load is V_{rms} . Show that the average power absorbed by the load is

$$P = \frac{V_{rms}^2}{R^2 + X^2} R.$$

4. (10%) For a capacitive load, the frequency is ω and the rms value of voltage is V_{rms} . We know the average power is P. Determine the required inductance value L to change the power factor angle from θ_1 to θ_2 is

$$L = \frac{V_{rms}^2}{\omega P(|\tan \theta_1| - |\tan \theta_2|)}$$

or

$$\frac{1}{L} = \frac{V_{rms}^2}{\omega P(|\tan \theta_1| - |\tan \theta_2|)}?$$

You have to provide the proof.