Value Function Iteration & Stochastic Growth Model

Emile Alexandre Marin

emarin@ucdavis.edu

October 17, 2022

Dynamic Models: features and solution approaches

- Value function iteration: deterministic dynamic programming;
 - * Discretization;
 - * Finite element method;
 - * Chebyshev polynomials (time permitting);
- Value function iteration: how to deal with uncertainty.

Deterministic Growth Model

The model's characteristics:

- 1. time is discrete and starts from 0
- 2. infinite horizon
- 3. no uncertainty
- 4. no productivity growth
- only 1 consumer

The consumer maximizes utility to choose consumption and investment.

Deterministic Growth Model

The model's characteristics:

- 1. time is discrete and starts from 0
- 2. infinite horizon
- 3. no uncertainty
- 4. no productivity growth
- 5. only 1 consumer

The consumer maximizes utility to choose consumption and investment.

Two methods to solve the problem:

Deterministic Growth Model

The model's characteristics:

- 1. time is discrete and starts from 0
- 2. infinite horizon
- 3. no uncertainty
- 4. no productivity growth
- only 1 consumer

The consumer maximizes utility to choose consumption and investment.

Two methods to solve the problem:

- Optimal control
- Dynamic programming

Optimal control

You need the sequential formulation of the problem:

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
 $c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$
 $k_{t+1}, c_t > 0$ and k_0 given
 $\beta \in (0,1)$

Optimal control

You need the sequential formulation of the problem:

$$\begin{aligned} \max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ c_t + k_{t+1} &= F(k_t) + (1-\delta)k_t \\ k_{t+1}, c_t &> 0 \text{ and } k_0 \text{ given} \\ \beta &\in (0,1) \end{aligned}$$

- 1. Write the Lagrangian of the problem.
- Take the first order conditions (FOCs) and derive the Euler equation
- 3. Collect the FOCs and other conditions that must hold in equilibrium (e.g. from imposing market equilibrium)

Optimal control

You need the sequential formulation of the problem:

$$\begin{aligned} \max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ c_t + k_{t+1} &= F(k_t) + (1-\delta)k_t \\ k_{t+1}, c_t &> 0 \text{ and } k_0 \text{ given} \\ \beta &\in (0,1) \end{aligned}$$

- 1. Write the Lagrangian of the problem.
- Take the first order conditions (FOCs) and derive the Euler equation
- 3. Collect the FOCs and other conditions that must hold in equilibrium (e.g. from imposing market equilibrium)

The solution is an infinite sequence $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ which solves the system of equations.

Dynamic programming

You need the recursive representation of the problem

$$V(k) = \max_{c,k'} \{ u(c) + \beta V(k') \}$$

$$c + k' = F(k) + (1 - \delta)k$$

$$c \ge 0$$

$$k' \ge 0$$

Dynamic programming

You need the recursive representation of the problem

$$V(k) = \max_{c,k'} \{u(c) + \beta V(k')\}$$

$$c + k' = F(k) + (1 - \delta)k$$

$$c \ge 0$$

$$k' \ge 0$$

but lets take a step back first!

We can rewrite the sequential problem as:

$$V(k_0) = \sum_{t=0}^{\infty} \beta^t u(\hat{c}_t)$$
$$\hat{c}_t + \hat{k}_{t+1} = F(\hat{k}_t) + (1 - \delta)\hat{k}_t$$

We can rewrite the sequential problem as:

$$V(k_0) = \sum_{t=0}^{\infty} \beta^t u(\hat{c}_t)$$
$$\hat{c}_t + \hat{k}_{t+1} = F(\hat{k}_t) + (1 - \delta)\hat{k}_t$$

where $V(k_0)$ is the value **function**, i.e. if we vary $k_0..., V$ will change.

We can rewrite the sequential problem as:

$$V(k_0) = \sum_{t=0}^{\infty} \beta^t u(\hat{c}_t)$$
$$\hat{c}_t + \hat{k}_{t+1} = F(\hat{k}_t) + (1 - \delta)\hat{k}_t$$

where $V(k_0)$ is the value **function**, i.e. if we vary k_0 ..., V will change.

Write out :
$$V(k_0) = u(\hat{c}_0) + \underbrace{\beta u(\hat{c}_1) + \beta^2 u(\hat{c}_2) + ...}_{\overrightarrow{V}_1}$$

We can rewrite the sequential problem as:

$$V(k_0) = \sum_{t=0}^{\infty} \beta^t u(\hat{c}_t)$$
$$\hat{c}_t + \hat{k}_{t+1} = F(\hat{k}_t) + (1 - \delta)\hat{k}_t$$

where $V(k_0)$ is the value **function**, i.e. if we vary k_0 ..., V will change.

Write out :
$$V(k_0) = u(\hat{c}_0) + \underbrace{\beta u(\hat{c}_1) + \beta^2 u(\hat{c}_2) + ...}_{\overrightarrow{V}_1}$$

 $*\overrightarrow{V}_1$ is a continuation value

* $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ is the continuation plan

- * $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ is the continuation plan
- * if we knew \overrightarrow{V}_1 , easy problem to find \hat{c}_0,\hat{k}_1

- * $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ is the continuation plan
- * if we knew \overrightarrow{V}_1 , easy problem to find \hat{c}_0,\hat{k}_1
- \implies we would know $V(k_0)$

- * $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ is the continuation plan
- * if we knew \overrightarrow{V}_1 , easy problem to find \hat{c}_0,\hat{k}_1

 \implies we would know $V(k_0)$

"An optimal policy [plan] has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision".

- * $\{c_t, k_{t+1}\}_{t=1}^{\infty}$ is the continuation plan
- * if we knew \overrightarrow{V}_1 , easy problem to find \hat{c}_0, \hat{k}_1

 \implies we would know $V(k_0)$

"An optimal policy [plan] has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision".

* $\overrightarrow{V}_1 = V(\hat{k}_{t+1})$ (prove, go through the cases)

From optimal control to recursive

So we can go from:

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
 $c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$
 $k_{t+1}, c_t > 0$ and k_0 given
 $\beta \in (0, 1)$

From optimal control to recursive

So we can go from:

$$\begin{aligned} \max_{\left\{c_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\ c_{t} + k_{t+1} &= F\left(k_{t}\right) + (1 - \delta)k_{t} \\ k_{t+1}, c_{t} &> 0 \text{ and } k_{0} \text{ given} \\ \beta &\in \left(0, 1\right) \end{aligned}$$

to

$$V(k_0) = \max_{c_0, k_1} \{ u(c_0) + \beta V(k_1) \}$$

s.t. $c_0 + k_1 = F(k_0) + (1 - \delta)k_0$

From optimal control to recursive

So we can go from:

$$\begin{aligned} \max_{\left\{c_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\ c_{t} + k_{t+1} &= F\left(k_{t}\right) + (1-\delta)k_{t} \\ k_{t+1}, c_{t} &> 0 \text{ and } k_{0} \text{ given} \\ \beta &\in \left(0,1\right) \end{aligned}$$

to

$$V(k_0) = \max_{c_0, k_1} \{ u(c_0) + \beta V(k_1) \}$$

s.t. $c_0 + k_1 = F(k_0) + (1 - \delta)k_0$

▶ and time subscripts redundant, only state k matters

Bellman Operator and Policy Functions

We are interested in c = h(k) and k' = g(k):

$$V(k) = u(h(k) + \beta V(g(k)))$$

s.t. $h(k) + g(k) = F(k) + (1 - \delta)k$

- ▶ To find policy functions, need V(k)
 - * functional equation in one unknown function)
- ightharpoonup Since everything depends on k, make grid and guess and verify
- ightharpoonup Once we have h and g we can simulate model

VFI: Discretization 1/2

- 1. Set:
 - $ightharpoonup n_k$ (number of grid points);
 - \triangleright [k_{\min}, k_{\max}] (support of k);
 - \triangleright ε (the tolerance error);
- 2. Define the grid $\{k_1, k_2, \dots, k_{n_k}\}$
- 3. Choose the initial guess of the value function: $V^0 = \{V_i^0\}_{i=1}^{n_k}$
- 4. Find $V^1 = \{V_i^1\}_{i=1}^{n_k}$ following the next steps:
- a) For every $j = 1, \ldots, n_k$ compute:

$$V_{i,j}^{1} = u(F(k_i) + (1 - \delta)k_i - k_j) + \beta V_j^{0}$$

b) Choose j which gives the highest $V_{i,j}^1$ and set $V_i^1 = V_{i,j}^1$. Store the optimal decision rule as $j = g_i \in \{1, 2, \dots, n_k\}$.

VFI: Discretization 2/2

- 5. Do a) and b) for every $i=1,\ldots,n_k$ until you get the entire vector $V^1=\left\{V_i^1\right\}_{i=1}^{n_k}$
- 6. Compare V^0 and V^1 . Compute:

$$d = \max_{i=1,2,\dots,n_k} \left| V_i^0 - V_i^1 \right|$$

- a) if $d > \varepsilon$ go to step 4 and set $V^0 = V^1$;
- b) if $d \le \varepsilon$ you are done: $V^0 = V^*$ and the optimal decision rule is $g^* = \{g_i\}_{i=1}^{n_k}$

VFI: Discretization 2/2

- 5. Do a) and b) for every $i=1,\ldots,n_k$ until you get the entire vector $V^1=\left\{V_i^1\right\}_{i=1}^{n_k}$
- 6. Compare V^0 and V^1 . Compute:

$$d = \max_{i=1,2,\dots,n_k} \left| V_i^0 - V_i^1 \right|$$

- a) if $d > \varepsilon$ go to step 4 and set $V^0 = V^1$;
- b) if $d \le \varepsilon$ you are done: $V^0 = V^*$ and the optimal decision rule is $g^* = \{g_i\}_{i=1}^{n_k}$

CAVEATS:

- a) Check the bounds of $\{k_1, \ldots, k_{n_k}\}$;
- b) Redo 1)- 6) with a smaller ε .
- c) Increase n_k .

$$\begin{split} \varepsilon &= 0.0001 \\ \mathbf{n}_k &= \mathbf{21} \\ k_{\min} &= 0.1 k_{ss} \text{ and } k_{\min} = 1.9 k_{ss} \end{split}$$

$$\begin{split} \varepsilon &= 0.0001 \\ \mathbf{n}_k &= \mathbf{201} \\ k_{\min} &= 0.1 k_{ss} \text{ and } k_{\min} = 1.9 k_{ss} \end{split}$$

Improvement algorithms (1/3)

Step 4 (maximization) is the computationally expensive part.

Improvement algorithms (1/3)

Step 4 (maximization) is the computationally expensive part.

When problem convave \implies values of objective function decline after optimal!

Improvement algorithms (1/3)

Step 4 (maximization) is the computationally expensive part.

When problem convave \implies values of objective function decline after optimal!

- 4. Find $V^1 = \{V_i^1\}_{i=1}^{n_k}$ following the next steps. For every $i=1,\ldots,n_k$:
 - a) Set j = 1;
 - b) Compute $V_{i,j}^1$:

$$V_{i,j}^{1} = u(F(k_i) + (1 - \delta)k_i - k_j) + \beta V_j^{0}$$

c) Compute $V_{i,j+1}^1$:

$$V_{i,j+1}^{1} = u(F(k_i) + (1 - \delta)k_i - k_{j+1}) + \beta V_{j+1}^{0}$$

- d) Compare $V_{i,j}^1$ and $V_{i,j+1}^1$
 - i. If $V_{i,i}^1, < V_{i,i+1}^1$ do j = j + 1 and go to step b)
 - ii. If $V_{i,i}^1 \ge V_{i,i+1}^1$ you are done and $V_i^1 = V_{i,i}^1$, and $G_i = J$.

Improvement algorithms (2/3)

If the optimal control is also monotone:

Improvement algorithms (2/3)

If the optimal control is also monotone:

- 4. Find $V^1 = \{V_i^1\}_{i=1}^{n_k}$ following the next steps. For every $i=1,\dots,n_k$:
 - a) Find the lower bound of the optimal choice j_{min} . For i=1, $j_{min}=1$. For i>1, $j_{min}=g_{i-1}$
 - b) For every $j = j_{\min}, j_{\min} + 1, \dots, n_k$ compute:

$$V_{i,j}^{1} = u(F(k_i) + (1 - \delta)k_i - k_j) + \beta V_j^{0}$$

c) Choose j which gives the highest $V_{i,j}^1$ and set $V_i^1 = V_{i,j}^1$. Store the optimal decision rule as $j = g_i \in \{1, 2, \dots, n_k\}$

Improvement algorithms (3/3)

Using information on the policy function (PF), we can improve speed of convergence in V (Howard's improvmt algorithm)

Improvement algorithms (3/3)

Using information on the policy function (PF), we can improve speed of convergence in V (Howard's improvmt algorithm)

Key: Policy function often converges faster than VF

Improvement algorithms (3/3)

Using information on the policy function (PF), we can improve speed of convergence in V (Howard's improvmt algorithm)

Key: Policy function often converges faster than VF

Choose n_h : # times to update the VF using current PF

- 4. Set $V^{1,1} = V^1$. Then update the value function $V^{1,t}$ by applying the following steps n_h times and obtain V^{1,n_k} . Replace V^1 by V^{1,n_k} and go to step 5
- a) For each $i=1,\ldots,n_h$ we have the optimal decision $g_i\in\{1,2,\ldots,n_k\}$ associated for each i.
- b) Update the value function from $V^{1,t}$ to $V^{1,t+1}$ using the following modified Bellman equation for each $i=1,\ldots,n_k$:

$$V_i^{1,t+1} = u(F(k_i) + (1-\delta)k_i - k_{g_i}) + \beta V_{g_i}^{1,t}$$

Improvement algorithms (3/3)

Using information on the policy function (PF), we can improve speed of convergence in V (Howard's improvmt algorithm)

Key: Policy function often converges faster than VF

Choose n_h : # times to update the VF using current PF

- 4. Set $V^{1,1} = V^1$. Then update the value function $V^{1,t}$ by applying the following steps n_h times and obtain V^{1,n_k} . Replace V^1 by V^{1,n_k} and go to step 5
- a) For each $i=1,\ldots,n_h$ we have the optimal decision $g_i\in\{1,2,\ldots,n_k\}$ associated for each i.
- b) Update the value function from $V^{1,t}$ to $V^{1,t+1}$ using the following modified Bellman equation for each $i=1,\ldots,n_k$:

$$V_i^{1,t+1} = u(F(k_i) + (1-\delta)k_i - k_{g_i}) + \beta V_{g_i}^{1,t}$$

Intuition to speed up VFI

- + VFI is a stable and reliable convergence algorithm
- + Can easily handle occasionally binding constraints (global)
- Slow and suffers from curse of dimensionality

Do not do any operations that are not necessary!

e.g.: Calculating $F(k_i) + (1 - \delta)k_i - k_j$ does not depend on V or PF! Calculate once at the beginning and retrieve values as needed!

VFI: Finite element method

ightharpoonup Likely, your V^{i+1} will not lie on the grid \Longrightarrow error SO approximate V with a continuous function

VFI: Finite element method

ightharpoonup Likely, your V^{i+1} will not lie on the grid \implies error

SO approximate V with a continuous function

We split the domain of \boldsymbol{x} into different regions and use different polynomial for each region.

* Piece-wise linear for $x \in [x_i, x_{i+1}]$

$$f(x) \approx f_i + \left(\frac{f_{i+1} - f_i}{x_{i+1} - x_i}\right)(x - x_i)$$

CAVEAT: it is not differentiable in the nodes.

* n^{th} -order spline for $x \in [x_{i-1}, x_i]$

$$f(x) \approx a_i + b_i x + c_i x^2 + d_i x^3 + ... + z_i x^n$$

This is differentiable & shapre preserving

VFI: Finite element method (piece-wise linear)

- 1. Set:
 - $ightharpoonup n_k$ (number of grid points);
 - \triangleright [k_{\min}, k_{\max}] (support of k);
 - \triangleright ε (the tolerance error);
- 2. Define the grid $\{k_1, k_2, \ldots, k_{n_k}\}$
- 3. Choose the initial guess of the value function at the nodes: $V^0 = \{V_i^0\}_{i=1}^{n_k}$
- 4. Call $\widetilde{V}(k)$ the approximation of the value function implied by the piece-wise linear interpolation with $\{V_i^0\}_{i=1}^{n_k}$ (in MATLAB interp1 (.,.,., 'linear')
- 5. $\forall i = 1, 2, ..., n_k$ solve the following problem

$$\max_{k' \in [k_{\min}, k_{\max}]} \left\{ u\left(F\left(k_i\right) + (1 - \delta)k_i - k'\right) \right\} + \beta \widetilde{V}^0\left(k'\right)$$

(CAVEAT: one dimension optimization algorithm needed)

- 6. Set g_i the argmax of the previous problem.
- 7. Update the value function, such as:

$$V_i^1 = \{u(F(k_i) + (1 - \delta)k_i - g_i)\} + \beta \widetilde{V}^0(g_i)$$

9. Compare V^0 and V^1 . Compute:

$$d = \max_{i=1,2,\dots,n_k} \left| V_i^0 - V_i^1 \right|$$

- a) if d>arepsilon go to step 4 and set $V^0=V^1$
- b) if $d \le \varepsilon$ you are done: $V^0 = V^*$ and the optimal decision rule is $g^* = \{g_i\}_{i=1}^{n_k}$

CAVEAT: This approximation is not differentiable in the nodes. A spline is more advisable, but has more conditions to satisfy.

VFI: Chebyshev

This time we approximate the value function using Chebyshev polynomials of order n.

Chebyshev polynomial of order j defined in [-1,1]:

$$T_j(x) = \cos\left(j\cos^{-1}x\right)$$

The polynomials are:

$$T_0(x)=1$$

$$T_1(x)=x$$

$$T_j(x)=2xT_{j-1}(x)-T_{j-2}(x) \quad \text{ for } j>1$$

The approximation of a function f(x) defined in [-1,1] with Chebyshev polynomials of order n is

$$\widetilde{f}(x) = \sum_{i=0}^{n} \theta_{i} T_{j}(x)$$

The problem is to choose n+1 coefficients $\theta=\{\theta_j\}_{j=0}^n$ such as the error between f(x) and $\widetilde{f}(x)$ is minimized.

VFI: Chebyshev

- 1. Choose the number of nodes m:
 - (a) $m = n + 1 \Longrightarrow$ Chebyshev collocation
 - (b) $m > n + 1 \Longrightarrow$ Chebyshev regression
- 3. Find the nodes $\{z_i\}_{i=1}^m$

$$z_i = -\cos\left(\frac{(2i-1)\pi}{2m}\right)$$

4. Find the coefficients minimizing the sum of the squared errors between f(x) and $\tilde{f}(x)$ evaluated in $\{z_i\}_{i=1}^m$

$$\theta_0 = \frac{1}{m} \sum_{i=1}^m f(z_i)$$

$$\theta_j = \frac{2}{m} \sum_{i=1}^m f(z_i) T_j(z_i)$$

VFI: Chebyshev Cookbook

- 1. Set:
 - order of the polynomial n; number of collocation points m such that $m \ge n + 1$;
 - \triangleright ε (the tolerance error);
 - \triangleright $[k_{\min}, k_{\max}]$ (support of k)
- 3. Compute the Chebyshev roots $\{z_i\}_{i=1}^m$

$$z_i = -\cos\left(\frac{(2i-1)\pi}{2m}\right)$$

4. Compute the collocation points implied by $\{z_i\}_{i=1}^m$

$$k_i = (z_i + 1) \left(\frac{k_{\mathsf{max}} - k_{\mathsf{min}}}{2}\right) + k_{\mathsf{min}}$$

5. We want to approximate the value function V(k) by

$$\widetilde{V}(k) = \sum_{i=0}^{n} \theta_j T_j t(k)$$

VFI: Chebyshev

- 6. Implicitly guess $\left\{\theta_j^0\right\}_{j=0}^n$:
 - (a) Choose a guess of the value function at the collocation points $\{k_i\}_{i=1}^m$ and call them $\{y_i^0\}_{i=1}^m$;
 - (b) back up the values of $\left\{\theta_{j}^{0}\right\}_{j=0}^{n}$ using:

$$\theta_0^0 = \frac{1}{m} \sum_{i=1}^m y_i^0$$

$$\theta_j^0 = \frac{2}{m} \sum_{i=1}^m y_i^0 T_j(z_i)$$

- 7. Denote the guessed value function as $\widetilde{V}^0(k)$;
- 8. For each i = 1, 2, ..., m solve the following problem

$$\max_{k' \in [k_{\min}, k_{\max}]} \left\{ u \left(F(k_i) + (1 - \delta) k_i - k' \right) \right\} + \beta \widetilde{V}^0(k')$$

using a one dimension optimization algorithm.

- 9. Set g_i the argmax of the previous problem
- 10. Use g_i to update the value function:

$$y_i^1 = \{u(F(k_i) + (1 - \delta)k_i - g_i)\} + \beta \widetilde{V}^0(g_i)$$

11. Obtain an updated guess of the coefficients:

$$\theta_0^1 = \frac{1}{m} \sum_{i=1}^m y_i^1$$

$$\theta_j^1 = \frac{2}{m} \sum_{i=1}^m y_i^1 T_j(z_i)$$

12. Compare $\left\{\theta_{j}^{0}\right\}_{j=0}^{n}$ and $\left\{\theta_{j}^{1}\right\}_{j=0}^{n}$:

$$d = \max_{j=1,\dots,n_k} \left| \theta_j^0 - \theta_j^1 \right|$$

(a) if $d>\varepsilon$ set $\theta^0=\theta^1$ and go to step 6 (b) if $d\le\varepsilon$ you are done: $V^0=V^*$ and the optimal decision rule is $g^*=\{g_i\}_{i=1}^m$

Moving to Stochastics

Suppose now that the model is the following:

$$V(k, z) = \max_{c, k'} \mathbb{E} \left\{ u(c) + \beta V(k', z') \right\}$$

$$c + k' = zF(k) + (1 - \delta)k$$

$$c \ge 0$$

$$k' \ge 0$$

where z is a stochastic shock.

- discrete valued iid shock (very easy)
- a (discrete valued) Markov chain (easy)
- a (continuous valued) autoregressive process (not so easy need to discretise/approximate)

Moving to Stochastics

Suppose now that the model is the following:

$$V(k, z) = \max_{c, k'} \mathbb{E} \left\{ u(c) + \beta V(k', z') \right\}$$

$$c + k' = zF(k) + (1 - \delta)k$$

$$c \ge 0$$

$$k' > 0$$

where z is a stochastic shock.

- discrete valued iid shock (very easy)
- a (discrete valued) Markov chain (easy)
- a (continuous valued) autoregressive process (not so easy need to discretise/approximate)

The model now has two state variables k and z:

► The social planner now chooses policy contingent on the realization of the shock

Moving to Stochastics

Suppose now that the model is the following:

$$V(k, z) = \max_{c, k'} \mathbb{E} \left\{ u(c) + \beta V(k', z') \right\}$$

$$c + k' = zF(k) + (1 - \delta)k$$

$$c \ge 0$$

$$k' > 0$$

where z is a stochastic shock.

- discrete valued iid shock (very easy)
- a (discrete valued) Markov chain (easy)
- a (continuous valued) autoregressive process (not so easy need to discretise/approximate)

The model now has two state variables k and z:

► The social planner now chooses policy contingent on the realization of the shock

Consider a state vector v = [01]' and transition matrix

$$T = \begin{bmatrix} \pi_{11} & \pi_{1,2} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

Consider a state vector v = [01]' and transition matrix

$$T = \begin{bmatrix} \pi_{11} & \pi_{1,2} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

Probability of the state in t years: $v_t = (T')^t v_0 = T' v_{t-1}$

Consider a state vector v = [01]' and transition matrix

$$T = \begin{bmatrix} \pi_{11} & \pi_{1,2} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

Probability of the state in t years: $v_t = (T')^t v_0 = T' v_{t-1}$ The unconditional distribution is given by v = T'v

Consider a state vector v = [01]' and transition matrix

$$T = \begin{bmatrix} \pi_{11} & \pi_{1,2} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

Probability of the state in t years: $v_t = (T')^t v_0 = T' v_{t-1}$ The unconditional distribution is given by v = T'v

$$\implies (I - T')v = 0$$

v is the eigenvector associated with a unit eigenvalue of matrix T^{\prime} and normalised to sum to one

Stochastic Growth Model

With a discrete iid shock:

Assume

$$z_t = \left\{ egin{array}{ll} z_1 & ext{w.p. } \pi_1 \ z_2 & ext{w.p. } \pi_2 \end{array}
ight., ext{ for all } t$$

► The Bellman equation is then

$$V(k,z) = \max \left\{ U + \beta EV(k',z') \right\}$$
$$= \max \left\{ U + \beta \sum_{i=1}^{2} \pi_{i} V_{i}(k',z'_{i}) \right\}$$

Steps are like for the deterministic case but repeat twice, one for each state z

Stochastic VFI algorithm 1/2

- 1. Set:
 - $ightharpoonup n_k$ (number of grid points);
 - \triangleright [k_{\min}, k_{\max}] (support of k);
 - \triangleright ε (the tolerance error);
- 2. Define the grid $\{k_1, k_2, \ldots, k_{n_k}\}$
- 3. Choose the initial guess of the value functions: $(a \circ a)^{n_k}$

$$V_1^0 = \left\{ V_{1,i}^0 \right\}_{i=1}^{n_k} \text{ and } V_2^0 = \left\{ V_{2,i}^0 \right\}_{i=1}^{n_k}$$

- 4. Find $V_1^1 = \left\{ V_{1,i}^1 \right\}_{i=1}^{n_k}$ and $V_2^1 = \left\{ V_{2,i}^1 \right\}_{i=1}^{n_k}$:
 - a. For every $j = 1, \ldots, n_k$ compute:

$$V_{1,i,j_{1}}^{1} = u(z_{1}F(k_{i}) + (1 - \delta)k_{i} - k_{j_{1}})$$

$$+ \beta \left(\pi_{1}V_{1,j_{1}}^{0} + \pi_{2}V_{2,j_{1}}^{0}\right)$$

$$V_{2,i,j_{2}}^{1} = u(z_{2}F(k_{i}) + (1 - \delta)k_{i} - k_{j_{2}})$$

$$+ \beta \left(\pi_{1}V_{1,j_{2}}^{0} + \pi_{2}V_{2,j_{2}}^{0}\right)$$

Stochastic VFI algorithm 1/2

- b. Choose j_1 and j_2 which gives the highest V^1_{1,i,j_1} and V^1_{2,i,j_2} and set $V^1_{1,i}=V^1_{1,i,j}$ and $V^1_{2,i}=V^1_{2,i,j_2}$. Store the optimal decision rule as $j_1=g_{1,i}\in\{1,2,\ldots,n_k\}$ and $j_2=g_{2,i}\in\{1,2,\ldots,n_k\}$
- 5. Do a) and b) for every $i=1,\ldots,n_k$ until you get the entire vector

$$V_1^1 = \left\{V_{1,i}^1\right\}_{i=1}^{n_k} \text{ and } V_2^1 = \left\{V_{2,i}^1\right\}_{i=1}^{n_k}$$

7. Compare V^0 and V^1 . Compute:

$$d_{1} = \max_{i=1,2,\dots,n_{k}} \left| V_{1,i}^{0} - V_{1,i}^{1} \right|$$

$$d_{2} = \max_{i=1,2,\dots,n_{k}} \left| V_{2,i}^{0} - V_{2,i}^{1} \right|$$

- a) if $d_1 > \varepsilon$ or $d_2 > \varepsilon$ go to step 4 and set $V_1^0 = V_1^1$ and $V_2^0 = V_2^1$:
- b) if $d_1<\varepsilon$ and $d_2<\varepsilon$ you are done: $V_1^0=V_1^*$ and $V_2^0=V_2^*$ and the optimal decision rules is $g_1^*=\{g_{1,i}\}_{i=1}^{n_k}$ and $v_1^0=v_2^*$

Stochastic VFI (Markov Chain)

Assume

$$z_t = \begin{cases} z_1 \\ z_2 \end{cases}$$

with transition matrix

$$\Pi = \left[\begin{array}{cc} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{array} \right]$$

where $\pi_{i1} + \pi_{i2} = 1$ (rows sum up to one)

▶ The steps are the same as with iid shocks - step 4 is now

$$V_{1,i,j_{1}}^{1} = u(z_{1}F(k_{i}) + (1 - \delta)k_{i} - k_{j_{1}}) + \beta(\pi_{1,1}V_{1,j_{1}}^{0} + \pi_{1,2}V_{2,j_{1}}^{0})$$

$$V_{2,i,j_{2}}^{1} = u(z_{2}F(k_{i}) + (1 - \delta)k_{i} - k_{j_{2}}) + \beta(\pi_{2,1}V_{1,j_{2}}^{0} + \pi_{2,2}V_{2,j_{2}}^{0})$$

Stochastic VFI (Stochastic Process)

Assume now that

$$\log z_t = \rho \log z_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \operatorname{iid}\left(0, \sigma^2\right)$$

- Problem: The (stochastic) state variable z_t is continuous. Like for capital, we need to discretise the space that z_t takes values from
- Solution: we approximate the Markov process with a Markov chain
- ▶ Method: Tauchen (see Heer and Maussner pp 497-499 for the algorithm)
- ► Then use the approximate Markov chain as above

Readings

- Heer and Maussner,2008, "Value Function Itereration as a Solution Method for the Ramsey Model", CESifo Wp n.2278
- ▶ Heer and Maussner, chapters 8-9, relevant sections
- ► Heer and Maussner, 1.2 and 1.3
- ightharpoonup Ljunqvist and Sargent, p. 29 36 and p. 39 41
- ▶ Tauchen, 1986, Finite state markov-chain approximations to univariate and vector autoregressions, Economics Letters
- Wouter den Haan Notes http://www.wouterdenhaan.com/notes