(a) Original Objective max 4x1+572-3x3

=> min -4x1-5x2+3x3

S.t. $\chi_1+2\chi_2+3\chi_3$ = 10

 $x_1 - x_2 = 6$

 $x_1 + 3x_2 + x_3 + x_5 = 14$

71,---7530

Gincl constrain 1. already meet the Gondard formation I, we don't need to introduce a uncessary slack varaible into the system, because the coefficients of the slack varriable are not a identical matrix, it's necessary to introduce artifical variables in to the system, which are Xt, X7, X8.

PHASE I min -4x1-5x2+3x3 =>min x6+x7+78

Si X1+2X2+X3+ +X1+X1+X8=10

 $\chi_1 - \chi_2 - \chi_4 + \chi_7 = 6$

71+3x2+33 +x5 + 78 = 14 x0 x1 x2 x3 x4 x5 x6 x7 x8 RHS 1 0 0 0 0 0 0 -1 -1 -1 0

	1	0	0	0	0	0	-1	-1	-1	0		
	0	1	2	1	0	0	1	0	0	10		
	0	1	-1	0	-1	0	0	1	0	6		
	0	1	3	1	0	1	0	0	1	14		
	x0	x1	x2	x3	x4	x5	x6	x7	x8	RHS		
	1	3	4	2	-1	1	0	0	0	30		
	0	1	2	1	0	0	1	0	0	10		
	0	1	-1	0	-1	0	0	1	0	6		
	0	1	3	1	0	1	0	0	1	14		
	x0	x1	x2	x3	x4	x5	x6	x7	x8	RHS		
	1	1.666667	0	0.666667	-1	-0.33333	0	0	-1.33333	11.33333		
-	0	0.333333	0	0.333333	0	-0.66667	1	0	-0.66667	0.666667	2	
	0	1.333333	0	0.333333	-1	0.333333	0	1	0.333333	10.66667	8	
	0	0.333333	1	0.333333	0	0.333333	0	0	0.333333	4.666667	14	
-												
	x0	x1	x2	x3	x4	x5	x6	x7	x8	RHS		
	1	0	0	-1	-1	3	-5	0	2	8		
	0	1	0	1	0	-2	3	0	-2	2		
	0	0	0	-1	-1	3	-4	1	3	8		
	0	0	1	0	0	1	-1	0	1	4		
	x0	x1	x2	x3	x4	x5	x6	x7	x8	RHS		
	1	0	0	0	0	0	-1	-1	-1	0		
	0	1	0	0.333333	-0.66667	0	0.333333	0.666667	0	7.333333		
	0	0	0	-0.33333	-0.33333	1	-1.33333	0.333333	1	2.666667		
	0	0	1	0.333333	0.333333	0	0.333333	-0.33333	0	1.333333		

be have the BFS, (71, x3, x5) = (6, \frac{4}{3}, \frac{20}{3})

PHASE LI

min - 4x1-5x2+3x3

	x0	x1	x2	x3	x4	x5	RHS		
	1	4	5	-3	0	0	0		
	0	1	0	0.333333	-0.66667	0	7.333333		
_	0	0	0	-0.33333	-0.33333	1	2.666667		
	0	0	1	0.333333	0.333333	0	1.333333		
	х0	x1	x2	x3	x4	x5	RHS		
	1	0	0	-6	1	0	-36		
-	0	1	0	0.333333	-0.66667	0	7.333333		
	0	0	0	-0.33333	-0.33333	1	2.666667		
_	0	0	1	0.333333	0.333333	0	1.333333		
	х0	x1	x2	x3	x4	x5	RHS		
٠	1	0	-3	-7	0	0	-40		
	0	1	2	1	0	0	10		
-	0	0	1	0	0	1	4		
	0	0	3	1	1	0	4		

Since all the coefficences of Ro are ≤ 0 , which indicates that with the variable increase the objective value will increase, 80 the original objective will drop, 50 we got the optional solution where $(\chi_1, \chi_2, \chi_3) = (10, 0, 0)$, 80 the max value of objective function is 40

(b) Big-M simply method.

max 4x1+5x2-3x3

- =) min -4x,-5x2+3x3
- => min -4x,-+x,+3x,-Mx4+Mx5

5.t. $\gamma_1+2\gamma_2+\gamma_3$ $+M\gamma_6$ = 10

 $\gamma_1 - \gamma_2 - \gamma_4 + M_{\gamma_7} = 6$

71, +372 + 73 + 75. + 11/38 = 14

		x0	x1	x2	x3	x4	x5	x6	x7	x8	RHS		
		1											
		0		_									
		0			0								
		0											
	,	x0	x1	x2	x3	x4	x5				RHS		
		1	304	405	197	-100	100	0	0	0	3000		
		0	1	2	1	0	0	1	0	0			
		0	1	-1	0	-1	0	0	1	0	6		
		0	1	3	1	0	1	0	0	1	14		
			x1		x3	x4	x5	x6	x7	x8	RHS		
		1	169	0	62	-100	-35	0	0	-135	1110		
		0	0.333333	0	0.333333	0	-0.66667	1	0	-0.66667	0.666667	2	
		0	1.333333	0	0.333333	-1	0.333333	0	1	0.333333	10.66667	8	
		0	0.333333	1	0.333333	0	0.333333	0	0	0.333333	4.666667	14	
		x0	x1				x5			x8			
		1			-107						772		
		0	_						0				
		0	0	0					1	3	8		
		0	0	1	0	0	1	-1	0	1	4		
		x0	x1	x2	x3	x4	x5	х6	v7	x8	DHC		
		1				1		-103			-36		
		0			0.333333				0.666667		7.333333		
		0			-0.33333				0.333333		2.666667		
		0							-0.33333		1.333333		
		U	U	1	0.333333	0.555555	U	0.555555	-0.55555	U	1.555555		
		x0	x1		x3	x4	x5			x8	RHS		
	,	1						-104	-100	-100	-40		
		0		2	1	0	0	1	0	0	10		
		0	0	1	0	0	1	-1	0	1	4		
		0	0	3	1	1	0	1	-1	0	4		

Since ···· C Same as two-phase) -----

SD the last tableau give the optional solution, $(x_1, x_2, x_3) = (10, 0, 0)$, and the max value of the objective function is 40.

1b) Since the wefficients of the black variables are indentical, and the RHS are ≥ 0 , so we could start with χ_5, χ_6, χ_7 as bfs. without add artificial variables.

x0	x1	x2	x3	x4	x5	x6	x7	RHS	
1	10	-57	-9	-24	0	0	0	0	
0	0.5	-5.5	-2.5	9	1	0	0	0	
0	0.5	-1.5	-0.5	1	0	1	0	0	
0	1	0		0	0	0	1	1	
			•						
х0	x1	x2	x3	x4	x5	x6	x7	RHS	
1	0	53	41	-204	-20	0	0	0	
0	1	-11	-5	18	2	0	0	0	
0	0	4	2	-8	-1	1	0	0	
0	0	11	5	-18	-2	0	1	1	
х0	x1	x2	x3	x4	x5	x6	x7	RHS	
1	0	0	14.5	-98	-6.75	-13.25	0	0	
0	1	0	0.5	-4	-0.75	2.75	0	0	
0	0	1	0.5	-2	-0.25	0.25	0	0	
0	0	0	-0.5	4	0.75	-2.75	1	1	
x0	x1	x2	x3	x4	x5	x6	x7	RHS	
1	0	-29	0	-40	0.5	-20.5	0	0	
0	1	-1	0	-2	-0.5	2.5	0	0	
0	0	2	1	-4	-0.5	0.5	0	0	
0	0	1	0	2	0.5	-2.5	1	1	
x0	x1	x2	x3	x4	x5	x6	x7	RHS	
1	0	-30	0	-42	0	-18	-1	-1	
0	1	0	0	0	0	0	1	1	
0	0	3	1	-2	0	-2	1	1	
0	0	2	0		1	-5	2	2	

Starting 75, 76, 77, we can reach the opitional bolution that the coefficients one all 20

So that with the variable growing the objective value will grow up, so the optional solution minimise.

is (x,, x, x3, x2) = (1,0,1,0), the object of the value is (1).