Grinnell College

October 16, 2024

Review

A sampling distribution refers to the distribution of a sample statistic (i.e., \overline{x}) if we were to repeatedly sample from a population and recompute the statistic

- What values would they take?
- How frequently would they appear?

The Law of Large Numbers guarantees that, as the number of observations n in my sample increases, my estimate of the parameter will converge to the true value

The **Central Limit Theorem** states that is my statistic is an average or a proportion, then the sampling distribution of my statistic will be approximately normal, with

$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

STA 209 is cool:)

Different Sample SD

colour —
$$\sigma = 30$$
 — $\sigma = 15$ — $\sigma = 5$

Notes on Normal

The normal distribution describes a distribution that is

- Bell-shaped
- Symmetric about the mean
- lacktriangle Has two distributional parameters, the mean μ and standard deviation σ

Grinnell College STA 209 is cool :) October 16, 2024 4 / 28

Some Terms to Know

Standard Deviation: A description of the variability in our *observations* describing average distances from the average or mean. It is often denoted σ

Standard Error: A description of variability in our *estimates* of a parameter (such as the mean). We will denote standard error as SE, with $SE = \sigma/\sqrt{n}$, where n is the number of observations in our sample

Empirical Rule

Suppose we conduct a study to estimate a population mean, and we collect sample of size n=30. How could we use this to estimate the mean?

Intervals

For now, recall that our goal here is to determine the mean of our *population*.

If we can make an estiamte of the uncertainty associated with our statistic, \overline{X} , perhaps we can find a range of reasonable values:

Point Estimate \pm Margin of Error

Empirical Rule

Intervals

95% seems a reasonable thing to do, which is $\mu \pm 2\sigma$ from the previous slide

If our *point estimate* is \overline{x} and our margin of error for measuring parameters is the standard error, then perhaps

$$\overline{x} \pm 2 \times SE$$

would create for us a suitable interval of plausible values

Grinnell College ST

The mean of my population from the previous slide is $\mu=$ 50, with $\sigma=$ 15. The statistics from my sample were

$$\overline{x} = 46.35, \qquad s = 2.79$$

From here, we can construct a 95% confidence interval of:

$$95\%$$
 CI = Point estimate \pm Margin of Error
= $\overline{x} \pm 2 \times s$
= $46.35 \pm 2 \times 2.79$
= $(40.75, 51.93)$

What does this even mean?

- ▶ 95% what?
- ▶ We are 95% sure it contains the mean?
- ▶ The probability of the mean being there is 95%?
- Or something else?

A confidence interval is an interval that has the following properties:

- ▶ It is the result of a random process
- ▶ It is constructed according to a procedure or set of rules
- ▶ It is made with the intention of giving a plausible range of values for a parameter based on a statistic
- ► There is no probability associated with a confidence interval; it is either correct or it is incorrect

Consider the confidence interval that we constructed on a previous slide from Sample 4:

▶ It was constructed according to the procedure

Point estimate \pm Margin of Error

- It was made to present a reasonable range of values for the parameter μ as estimated by the statistic \overline{X}
- ▶ The interval was (40.75, 51.93). As our true mean is $\mu = 50$, this interval *is* correct and it *does* contain our true parameter

When we say something has a 95% confidence interval, what we mean is:

The process that constructed this interval has the property that, on average, it contains the true value of the parameter 95 times out of 100

To be absolutely clear: we will *never* know if the confidence interval we construct contains the true value of the parameter

This is akin to throwing a dart but never seeing the target

This is the nature of statistical inference: we can describe properties of the *process* that created our intervals, but we can never conclusively speak about the interval itself

It is also worth observing that we can *alter* our process to acheive different results. There is a tradeoff between how frequently we are correct and how much uncertainty we allow in our prediction

Our college dataset, which represents a population, contains 1,095 observations, with 647 private schools and 448 public schools. The distributions and true average cost of each group is given below:

Туре	Average Cost
Private	47073
Public	22766

Let's randomly collect a sample of 50 schools from each group and create a confidence interval for the mean

Туре	X	Std. Error
Sample Private $(N = 50)$	44947	1467
Sample Public ($N = 50$)	22833	684

95% CI for Private = Point estimate
$$\pm$$
 Margin of Error = $\overline{X} \pm 2 \times SE$ = 44947 $\pm 2 \times 1467$ = (42013, 47882)

Let's randomly collect a sample of 50 schools from each group and create a confidence interval for the mean

Туре	X	Std. Error
Sample Private $(N = 50)$	44947	1467
Sample Public ($N = 50$)	22833	684

95% CI for Public = Point estimate
$$\pm$$
 Margin of Error = $\overline{X} \pm 2 \times SE$ = 22833 $\pm 2 \times 684$ = (21464, 24201)

Туре	95% Conf Int.	True Mean
Private	(42013, 47882)	47,073
Public	(21464, 24201)	22,766

Review

- ▶ Standard deviation (σ) is an estimate of the amount of variability in our sample, while standard error (σ/\sqrt{n}) is an estimate of the variability in estimating a parameter
- A sampling distribution describes the distribution of a statistic or parameter estimate if we could repeat the sampling process as many times as we wish
- Approximations to the normal distribution generally follow the **66-95-99 rule** with 1/2/3 standard deviations of the mean
- If these properties hold, we can create a reasonable interval of possible parameter values of the form Point Estimate \pm Margin of Error
- A confidence interval is an interval with the properties that:
 - It is constructed according to a procedure or set of rules
 - It is intended to give plausible range of values for a parameter based on a statistic
 - It has no probability; the interval either contains the true value or it does not

 Grinnell College
 STA 209 is cool :)
 October 16, 2024
 28 / 28