บทที่ 3

กำหนดการพลวัต (Dynamic Programming)

จากบทที่ 2 จะเป็นอัลกอริทึมในลักษณะ top-down ที่แบ่งเป็นปัญหาย่อยๆ แล้วหา กำตอบจากปัญหาเล็กๆ แล้วรวบรวมเป็นกำตอบของปัญหา อย่างกรณี merge sort ที่แต่ละ กำตอบเล็กๆ ไม่ซ้ำซ้อนกัน เพราะ แต่ละอาเรย์ย่อยต่างก็แยกกันจัดเรียงลำดับ โดยไม่ต้องง เกี่ยวข้องกับสมาชิกของอาเรย์ย่อยอื่น ในทางตรงข้ามกับการแก้ปัญหา Fibonacci พจน์ที่ n ต้องหาค่าของพจน์ที่ n-1 กับ พจน์ที่ n-2 ทำให้ต้องมีการเรียกซ้ำแล้วต้องเรียกซ้ำอีก เป็นผล ให้ห้ค่า complexity โตแบบ exponential แต่ถ้าเราเก็บผลลัพธ์ของพจน์ก่อนหน้าเพื่อใช้ในการ ประมวลผลพจน์ถัดไป โดยเก็บผลลัพธ์ที่ได้จากการประมวลผลในแต่ละขั้นตอนไว้ในอาเรย์ เพื่อสามารถนำไปใช้ในภายหลัง ซึ่งเทคนิคหนึ่งที่ใช้แนวคิดนี้ก็คือ กำหนดการพลวัต

กำหนดการพลวัตกล้ายกลึงกับอัลกอริทึมการแบ่งแยกกับการเอาชนะตรงที่มีการ แบ่งแยกปัญหาใหญ่ออกเป็นปัญหาย่อยที่มีลักษณะเช่นเดิม แต่ที่ต่างกันคือ กำหนดการพลวัตมี การเก็บผลลัพธ์ย่อย ๆ ไว้ใช้ในการหาผลลัพธ์ของปัญหาที่ใหญ่ขึ้น แทนการคำนวณซ้ำๆ โดยทั่วไปกำหนดการพลวัต การทำงานจะเป็นในลักษณะจากล่างขึ้นบน (bottom-up) โดยมี ขั้นตอนในการแก้ปัญหาโดยกำหนดการพลวัตมีดังนี้

- 1. หาความสัมพันธ์ซ้ำที่จะใช้ในการแก้ปัญหา
- 2. แก้ปัญหาจากล่างขึ้นบน โดยแก้ปัญหาย่อยก่อน และเก็บผลลัพธ์จากปัญหาย่อยใส่ ลงในอาเรย์เพื่อใช้ในการแก้ปัญหาที่ใหญ่ขึ้น

ในบทนี้จะใช้กำหนดการพลวัตในการแก้ปัญหาสัมประสิทธิทวินาม(Binomial coefficient), การคูณห่วงโซ่เมตริกซ์(matrix chain multiplication) และการหาลำดับร่วมที่ยาวที่สุด (longest common subsequence)

3.1 สัมประสิทธิทวินาม (Binomial Coefficient)

Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^k b^{n-k}$$
Binomial coefficient = $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for $0 \le k \le n$

สำหรับค่า n, k โตๆ การคำนวณค่า n!, k! จะเกิด overflow ทำให้ไม่สามารถหาค่าสัม ประสิทธิจากสมการนี้ได้ แต่เราสามารถปรับสมการใหม่เป็น

$$\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 1 & k = 0 \text{ or } k = n \end{cases}$$

<u>ตัวอย่าง 3.1</u> จงหาค่าสัมประสิทธิของ $(a+b)^5$

โปรแกรมหาค่าสัมประสิทธิทวินามด้วยวิธีการแบ่งแยกและเอาชนะ

(Binomial Coefficient Using Divide and conquer)

```
//โปรแกรม Binomial1.java
public class Binomial1
  { public static int binCoef(int n, int k)
     {
         if(k == 0 || n == k)
          { return 1; }
         else
           {return binCoef(n-1, k-1)+binCoef(n-1, k);}
       }// binomial Coefficient
       public static void main(String[] args)
      {
           int i,j,c; c=0;
           for (i = 0; i < = 5; ++i)
             for (j=0; j<=i;++j)
              {
                 c=binCoef(i,j);
                  System.out.print(c+"\t");
               } // end for j
               System.out.println();
            } //end for i
        }//main
}//class Binomial1
```

Outputs

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Complexity ของกรณีนี้จะเหมือนกับกรณีของ Fibonacci คือ ประมาณ O(2ⁿ)

โปรแกรมหาค่าสัมประสิทธิทวินามด้วยวิธีกำหนดการพลวัต

(Binomial Coefficient Using Dynamic programming)

ทั้ง recursive case :

$$c[i][j] = \begin{cases} c[i-1][j-1] + c[i-1][j] & 0 < j < i \\ 1 & j = 0 \text{ or } j = i \end{cases}$$

2. แก้ปัญหาย่อยๆ ในรูปแบบ bottom-up โดยเริ่มจาก c[0][0], c[1][0], c[1][1] เมื่อถึง c[2][1] ก็จะสามารถนำค่าในอาเรย์ c[1][0]+c[1][1] โดยไม่ต้องคำนวณค่า c[1][0] และc[1][1] ซ้ำอีก ตามโปรแกรม Binomial2.java

$$\underline{\text{Complexity}}$$
 ของกรณีนี้ คือ $\sum_{i=0}^{n} \sum_{j=0}^{j=i} 1$

$$\sum_{i=0}^{n} \sum_{j=0}^{i} 1 = \sum_{i=0}^{n} i - 0 + 1$$

$$= \sum_{i=0}^{n} i + 1$$

$$= (\sum_{i=0}^{n} i) + n + 1$$

$$= \frac{n(n+1)}{2} + n + 1$$

$$= \frac{n^2 + 3n + 2}{2}$$

$$O(n^2)$$

```
public class Binomial2
static int b[][] = new int[20][20];
public static int binCoef2(int n, int k)
 if(k == 0 || n == k)
  \{b[n][k]=1;\}
 else
  \{b[n][k]=b[n-1][k-1]+b[n-1][k];\}
 return b[n][k];
public static void main(String[] args)
 int i,j,c; c=0;
 for (i = 0; i < = 5; ++i)
  for (j=0; j<=i;++j)
  {
  c=binCoef2(i,j);
  System.out.print(c+"\t");
 System.out.println();
 }//main
} // binomial Coefficient2
```

3.2 การคูณห่วงโซเมตริกซ์ (matrix chain multiplication)

ถ้า matrix C = matrix A ขนาด 2x3 คูณกับ matrix B ขนาด 3x4 จะได้ matric มีขนาด เท่ากับ <math>2x4 โดยที่สมาชิกของ matrix C ตัวที่ i,j มีค่าเท่ากับ

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

สมาชิกตัวที่ c_{11} จะมีค่าเท่ากับ $c_{11} = a_{11} b_{11} + a_{12} b_{21} + a_{13} b_{31}$ สมาชิก matrix c 1 ตัวจะมีการคูณกันทั้งหมด 3 ครั้ง matrix c มีสมาชิกทั้งหมด 8 จำนวน จะมีการคูณทั้งหมด = 2x3x4 = 24 ครั้ง โดยจะเท่ากับ จำนวนแถวของ A x จำนวนแถวของ B x จำนวนหลักของ B

A B C=AxB
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 \\ 5 & 7 & 8 & 2 \end{bmatrix} = \begin{bmatrix} 19 & 28 & 34 & 19 \\ 43 & 64 & 79 & 52 \end{bmatrix}$$

คราวนี้มาคูว่าถ้ามีเมตริกซ์ ${\bf n}$ เมตริกซ์ คือ $\{{\bf A}_1, {\bf A}_2, {\bf A}_3,..., {\bf A}_n\}$ จะกำหนดลำคับการคูณเพื่อทำ ให้การคูณเมตริกซ์ทั้ง ${\bf n}$ เมตริกซ์มีจำนวนครั้งของการคูณเกิดขึ้นน้อยที่สุดอย่าง ไร ตัวอย่าง การคูณเมตริกซ์จำนวน ${\bf 4}$ เมตริกซ์ $\{{\bf A}_1, {\bf A}_2, {\bf A}_3, {\bf A}_4\}$ มีขนาดของเมตริกซ์เป็น เมตริกซ์ ${\bf P}$ จะได้

$$A_1$$
 A_2 A_3 A_4 (20x2) (2x30) (30x10) (10x8)
$$P = \{ p_0, p_1, p_2, p_3 \} = \{ 20, 2, 30, 10, 8 \}$$

เราสามารถใส่วงเล็บเพื่อกำหนดลำดับการคูณได้ 5 แบบ คือ

1.
$$A_1(A_2(A_3, A_4))$$
 30x10x8 + 2x30x8 + 20x2x8 = 3,200

2.
$$(A_1 A_2)(A_3 A_4)$$
 $20x2x30 + 30x10x8 + 20x30x8 = 8,400$

3.
$$A_1((A_2A_3)A_4)$$
 $2x30x10 + 2x10x8 + 20x2x8 = 1,080$

4.
$$((A_1A_2)A_3)A_4$$
 $20x2x30 + 20x30x10 + 20x10x8 = 8,800$

5.
$$(A_1(A_2A_3))A_4$$
 $2x30x10 + 20x2x10 + 20x10x8 = 2,600$

จะได้ว่าลำดับการคูณแบบที่ 3 A_1 ((A_2A_3) A_4) ใช้จำนวนครั้งในการคูณน้อยที่สุด หากจำนวนเมตริกซ์มากๆ และมีขนาดใหญ่มากๆ การใส่วงเล็บเพื่อกำหนดลำดับการคูณจึงมี ความสำคัญมาก

3.2.1 วิธีกำหนดการพลวัต (Dynamic Programming Approach)

เราจะใช้กำหนดการพลวัตในการคูณห่วงโซ่เมตริกซ์ โดยมีขั้นตอน ดังนี้

1. หาคำตอบในรูปความสัมพันธ์ซ้ำ (recursive solution) โดยพิจารณาจำนวนครั้งใน การคูณในการหาผลคูณเมตริกซ์ $\mathbf{A}_{\!_{i}} \dots \mathbf{A}_{\!_{i}}$

$$m[i][j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

โดยที่ $\mathbf{m}[\mathbf{i},\mathbf{j}] =$ จำนวนครั้งของการคูณที่น้อยที่สุดในการหาผลคูณเมตริกซ์ $\mathbf{A}_{\mathbf{i}}...\mathbf{A}_{\mathbf{j}}$ k แทนตำแหน่งที่ใส่วงเล็บ

ในกรณี i=j คือมีเมตริกซ์เดียว ไม่มีการคูณกัน m[I,j]=0 สำหรับกรณีที่มีการคูณเมตริกซ์ มากกว่า 2 เมตริกซ์ จะต้องเลือก m[i,j] ที่มีค่าน้อยที่สุด และเพื่อที่จะได้ตามรอยการใส่วงเล็บ เราจะเก็บค่า k ไว้ในอาเรย์ s[i,j]

2. เมื่อเก็บผลลัพธ์ของปัญหาย่อยๆ ไว้แล้ว ก็จะรวบรวมเพื่อเป็นคำตอบของปัญหา หลัก

ตัวอย่าง 3.2 จงใส่วงเล็บเพื่อกำหนดลำดับการคูณของเมตริกซ์ $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ โดย ที่

เมตริกซ์	ขนาด
\mathbf{A}_{1}	30 x 40
A_2	40 x 15
A_3	15 x 35
A_4	35 x 10
A_5	10 x 20
A_6	20 x 25

$$\{p_0, p_1, p_2, p_3, p_4, p_5, p_6\} = \{10, 15, 5, 20, 35, 30, 25\}$$

วิธีทำ จาก

$$m[i][j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

<u>โปรแกรม3.3</u> MatrixChain.java

```
//โปรแกรม MatrixChain.java
class MatrixChain
     static int m[][] = new int[51][51]; // กำหนดจำนวนเมตริกซ์ไม่เกิน
     static int s[][] = new int[51][51];
     public static void MatrixChainOrder(int[] p)
     { int i,j,q,k,h;
                         // n คือ จำนวนเมตริกซ์ที่ต้องการหาผลคูณตามตัวอย่างนี้
       int n = 6;
       // กำหนดค่าเริ่มต้น m[i, i] = 0 และ s[i,ij] = 0 เพราะเป็น เมทริกซ์เดียวไม่มีการคูณ
      for(i = 1; i \le n; i++)
        \{ m[i][i] = 0;
           s[i][i] = 0; }
      for( h = 2; h \le n; h++)
         { for( i = 1; i \le n-h+1; i++)
              \{ j = i + h - 1;
                m[i][j] =1000000 ; // กำหนดให้มีค่ามาก ๆ แทนค่า 🗪
                for (k = i; k \le j-1; k++)
                   { q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
                     System.out.print(i+"\t"+j+"\t"+k+"\tm["+i+"]["+k+"]"+"+
                              m["+(k+1)+"]["+j+"]"+" + p"+(i-1)+"p"+k+"p"+j);
                     System.out.print("t="+m[i][k]+"+"+m[k+1][j]+"+"
                              +(p[i-1]*p[k]*+p[j])+"\t"+q);
                          if (q < m[i][j])
                            \{ m[i][j] = q;
                                s[i][j] = k; }//if
                            System.out.println();
```

```
}//next k
                     }//next i
                   }//next h
      }// end MatrixChainOrder
       public static void Printorder (int i, int j)
       { int k;
          if (i == j)
             System.out.print("A"+ i);
          else {
                k = s[i][j];
                System.out.print("(");
                Printorder(i, k);
                Printorder(k+1, j);
                System.out.print(")"); } //end else
       }// end PrintOrder
  public static void main (String args[])
  { int matrixSize [] = \{10, 15, 5, 20, 35, 30, 25\};
     MatrixChainOrder(matrixSize);
     int i,j,h,k;
   for (h=6;h>=1;--h)
      \{ for(k=1;k\leq h+1;++k) \}
         { System.out.print("\t"); }
        for(k=1;k<=7-h;++k)
         \{i=k;j=k+h-1;
           System.out.print(m[i][j]+"\t\t");
         }//next k
       System.out.println();
     }//next h
    for (h=6;h>=2;--h)
      { for(k=2;k<=h+1;++k)
          {System.out.print("\t");}
          for(k=1;k<=7-h;++k)
             \{i=k;j=k+h-1;
                System.out.print(s[i][j]+"\t\t");
             }//next k
         System.out.println();
     }//next h
     Printorder(1,6);
}//main
}//class MatrixChain
```

i	j	k	m[i][j]			s[i][j]
---	---	---	---------	--	--	---------

1	2	1	m[1][1]+ m[2][2] + p0p1p2	0+0+750	750	1
2	3	2	m[2][2]+ m[3][3] + p1p2p3	0+0+1500	1,500	2
3	4	3	m[3][3]+ m[4][4] + p2p3p4	0+0+3500	3,500	3
4	5	4	m[4][4]+ m[5][5] + p3p4p5	0+0+21000	21,000	4
5	6	5	m[5][5]+ m[6][6] + p4p5p6	0+0+26250	26,250	5
1	3	1	m[1][1]+ m[2][3] + p0p1p3	0+1500+3000	4,500	
1	3	2	m[1][2]+ m[3][3] + p0p2p3	750+0+1000	1,750	2
2	4	2	m[2][2]+ m[3][4] + p1p2p4	0+3500+2625	6,125	2
2	4	3	m[2][3]+ m[4][4] + p1p3p4	1500+0+10500	12,000	
3	5	3	m[3][3]+ m[4][5] + p2p3p5	0+21000+3000	24,000	
3	5	4	m[3][4]+ m[5][5] + p2p4p5	3500+0+5250	8,750	4
4	6	4	m[4][4]+ m[5][6] + p3p4p6	0+26250+17500	43,750	
4	6	5	m[4][5]+ m[6][6] + p3p5p6	21000+0+15000	36,000	5
1	4	1	m[1][1]+ m[2][4] + p0p1p4	0+6125+5250	11,375	
1	4	2	m[1][2]+ m[3][4] + p0p2p4	750+3500+1750	6,000	2
1	4	3	m[1][3]+ m[4][4] + p0p3p4	1750+0+7000	8,750	
2	5	2	m[2][2]+ m[3][5] + p1p2p5	0+8750+2250	11,000	2
2	5	3	m[2][3]+ m[4][5] + p1p3p5	1500+21000+9000	31,500	
2	5	4	m[2][4]+ m[5][5] + p1p4p5	6125+0+15750	21,875	
3	6	3	m[3][3]+ m[4][6] + p2p3p6	0+36000+2500	38,500	
3	6	4	m[3][4]+ m[5][6] + p2p4p6	3500+26250+4375	34,125	
3	6	5	m[3][5]+ m[6][6] + p2p5p6	8750+0+3750	12,500	5
1	5	1	m[1][1]+ m[2][5] + p0p1p5	0+11000+4500	15,500	
1	5	2	m[1][2]+ m[3][5] + p0p2p5	750+8750+1500	11,000	2
1	5	3	m[1][3]+ m[4][5] + p0p3p5	1750+21000+6000	28,750	
1	5	4	m[1][4]+ m[5][5] + p0p4p5	6000+0+10500	16,500	
2	6	2	m[2][2]+ m[3][6] + p1p2p6	0+12500+1875	14,375	2
2	6	3	m[2][3]+ m[4][6] + p1p3p6	1500+36000+7500	45,000	
2	6	4	m[2][4]+ m[5][6] + p1p4p6	6125+26250+13125	45,500	
2	6	5	m[2][5]+ m[6][6] + p1p5p6	11000+0+11250	22,250	
1	6	1	m[1][1]+ m[2][6] + p0p1p6	0+14375+3750	18,125	
1	6	2	m[1][2]+ m[3][6] + p0p2p6	750+12500+1250	14,500	2
1	6	3	m[1][3]+ m[4][6] + p0p3p6	1750+36000+5000	42,750	
1	6	4	m[1][4]+ m[5][6] + p0p4p6	6000+26250+8750	41,000	
1	6	5	m[1][5]+ m[6][6] + p0p5p6	11000+0+7500	18,500	

การใส่วงเล็บของการคูณเมตริกซ์ $\{A_1, A_2, A_3, A_4, A_5, A_6\}$

- 1. คูใค้จากตารางที่ $i=1,\ j=6$ จะใต้ k=2 นั้นคือ $(A_1A_2)\,(A_3\,A_4\,A_5\,A_6)$
- 2. หาการใส่วงเลี้บของการคูณเมตริกซ์ $\{A_3,A_4,A_5,A_6\}$ จากตารางที่ $i=3,\ j=6$ จะ ใค้ k=5 นั่นคือ $(A_1A_2)((A_3A_4A_5)A_6)$
- 3. หาการใส่วงเลี้บของการคูณเมตริกซ์ $\{A_3,\,A_4,\,A_5\}$ จากตารางที่ $i=3,\,j=5$ จะได้ k=4 นั่นคือ $((A_1A_2)(((A_3\,A_4\,)A_5)\,A_6))$

คังนั้น การคูณเมตริกซ์ $\{A_1,A_2,A_3,A_4,A_5,A_6\}$ จะมีถ้ำคับการคูณเป็น $((A_1A_2)(((A_3A_4)A_5)A_6))$ และจำนวนครั้งของการคูณน้อยที่สุดเท่ากับ 14,500 ครั้ง

ความซับซ้อนของอัลกอริทึม

จากเมท็อค MatrixChainMult ที่ใช้กำหนดการพลวัตในการหาจำนวนครั้งที่น้อยที่สุดที่ ใช้ในการคูณเมตริกซ์ $\mathbf{A}_i,...,\mathbf{A}_i$ จะพบว่ามีจำนวนครั้งของการคูณและการกำหนดค่าเป็น $\mathbf{O}(\mathbf{n}^3)$

3.2.2 วิธีการแบ่งแยกและเอาชนะ (Divide and conquer Approach)

เราสามารถจะใช้วิธีเรียกซ้ำ(recursive) เพื่อแก้ปัญหานี้ได้เช่นเดียวกัน การใช้ อัลกอริทึมแบบเรียกซ้ำในการคำนวณ จะพบว่าแต่ละปัญหาย่อยจะมีการแตกกิ่งก้านทำการ เรียกตนเองอีกหลายครั้งแทนการใช้ค่าที่ได้จากการคำนวณก่อนหน้านั้น การหาค่า m[3][4] ต้องมีการคำนวณค่า m[3][3] กับ m[4][4] เช่นเดียวกับการคำนวณค่า m[2][4] ตามรูป 3.2 สังเกตุส่วนที่แรเงา

<u>รูป 3.2</u> วิธีการเรียกซ้ำจะเรียกตนเองหลายครั้ง จากส่วนที่แรเงา

โปรแกรม 3.4 RecursiveMatrixChain

```
static int m[][] = new int[51][51];
static int s[][] = new int[51][51];
public static void RecursiveMatrixChain(int[] p, int i, int j)
{int q;
    if(i==j)
    {return;}
    else
    { m[i][j] = 1000000;
        for (k=i;k<=j-1;++k)
        { q= RecursiveMatrixChain(p,i,k) + RecursiveMatrixChain(p,k+1,j) + p[i-1]*p[k]*p[j];      }
        if (q<m[i][j])
        { m[i][j] = q; }
        return m[i][j];
      }
}// end method RecursiveMatrixChain</pre>
```

Complexity

แสดงความสัมพันธ์แบบ recursive

$$T(1) \ge 1$$
,

$$T(n) \ge 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1) \quad \text{for } n > 1$$

$$T(n) \ge 1 + T(1) + T(n-1) + T(2) + T(n-2) + \dots + T(n-1) + T(1) + n - 1$$

$$T(n) \ge 2 \sum_{i=1}^{n-1} T(i) + n$$

$$T(1) \ge 1 = 2^{0}$$

$$T(n) \ge 2 \sum_{i=1}^{n-1} 2^{i-1} + n$$

$$= 2 \sum_{i=1}^{n-2} 2^{i} + n$$

$$= 2(2^{n-1} - 1) + n$$

$$= 2^{n} - 2 + n$$

$$O(2^{n})$$

เนื่องจาก
$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

ทำให้มีจำนวนครั้งของการคูณและการกำหนดค่าเป็น $\mathrm{O}(2^n)$

3.3 การหาลำดับร่วมที่ยาวที่สุด (longest common subsequence)

ในทางชีววิทยา เรามักต้องการเปรียบเทียบ DNA ว่าเป็นบุคคลคนเดียวกัน, เป็นญาติ กัน หรือเป็นเผ่าพันธ์เดียวกันหรือไม่ โดยวิเคราะห์จาก DNA ที่ประกอบด้วยโมเลกุลของ adenine(A), guanine(G), cytosine(C) และ thymine (T) ตัวอย่างเช่น

$$S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$$

และ $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$

ต้องการหาว่า DNA S_1 กับ S_2 มีความคล้ายกันมากน้อยอย่างไร ถ้าเหมือนกันก็จะเป็น DNA จากคนเคียวกัน ถ้าคล้ายกันมากก็มีโอกาสเป็นพี่น้องกัน วิธีหนึ่งที่ใช้วัดระดับความคล้าย ก็คือ หาว่ามีลำดับของ A, C, G, T ที่ร่วมกันของ S_1 กับ S_2 กี่จำนวน (common subsequence)

ลำคับร่วม (subsequence) ของลำคับใด ๆ ก็คือ ลำคับเดิมที่ตัดสมาชิกบางตัวทิ้งไป กำหนดให้ $X=\{x_1,x_2,...,x_m\}$ และ $Z=\{z_1,z_2,...,z_k\}$ จะกล่าวว่า Z เป็นลำคับ ร่วมของ X หากมีลำคับของคัชนีของ X เป็น $\{i_1,i_2,...,i_k\}$ โดยที่ $i_1 < i_2 < ... < i_k$

สำหรับทุกค่าของ j (j =1,..., k) จะมี $x_i=z_j$ เช่น $Z=\{D,C,B,A\}$ เป็นลำคับร่วม ของ $X=\{A,B,D,A,C,B,D,A\}$ โดยมีลำคับของคัชนีของ X เป็น $\{$ 3, 5, 6, 8 $\}$

หากมีถ้าคับ 2 ถ้าคับ คือ X,Y จะกล่าวว่า Z เป็นถ้าคับร่วมของ X,Y ถ้า Z เป็นถ้าคับร่วมของทั้งถ้าคับ X และ Y เช่น $X = \{A,B,C,B,D,A,B\}$ และ $Y = \{B,D,C,A,B,A\}$ จะได้ $Z = \{B,C,A\}$ เป็นถ้าคับร่วมถ้าคับหนึ่งของ X,Y แต่ $Z = \{B,C,A\}$ ไม่ใช่ถ้าคับร่วมที่ยาวที่สุด เนื่องจาก Z มีขนาด 3 ตัวอักขระ $V = \{B,D,A,B\}$ และ $W = \{B,C,B,A\}$ เป็นถ้าคับร่วมของ X,Y ซึ่งมีขนาด 4 ตัว อักขระ เนื่องจากไม่มีถ้าคับร่วมขนาด 5 ตัวอักขระหรือมากกว่า คังนั้น $V = \{B,D,A,B\}$ และ $W = \{B,C,B,A\}$ จึงเป็นถ้าคับร่วมที่ยาวที่สุด (longest common subsequence :LCS) ของถ้าคับ X,Y

ในการแก้ปัญหาลำดับร่วมที่ยาวที่สุดแบบถึกๆ (brute-force) ก็คือการสร้างทุกลำดับ ย่อย(subset) ที่เป็นไปได้ ของ X และ Y แล้วดูว่ามีลำดับย่อย Xi ใดตรงกับลำดับย่อย Yi และมี จำนวนลำดับยาวที่สุด ด้วยวิธีการถึกๆแบบนี้ จะต้องสร้างลำดับย่อยของ X จำนวนถึง 2^m เมื่อ m คือจำนวนสมาชิกของลำดับ X นั่นคือจะมี complexity เป็น exponential ซึ่งไม่เหมาะกับ ลำดับที่มีจำนวนสมาชิกมากๆ

เราจะใช้กำหนดการพลวัตในการหาลำดับร่วมที่ยาวที่สุด โดยมีขั้นตอน ดังนี้ 1. นิยามลำดับร่วมที่ยาวที่สุดของลำดับ X,Y ในรูปความสัมพันธ์ซ้ำ ดังนี้

$$c[i][j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1][j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i][j-1], c[i-1][j] & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

 ${f c}[i][j]$ คือ ความยาวของถำดับร่วมที่ยาวที่สุด เมื่อถำดับ X มีความยาว i ตัว อักขระและถำดับ Y มีความยาว j ตัวอักขระ

2. ทำการเก็บผลลัพธ์ของปัญหาย่อย โดยในที่นี้จะทำการเก็บค่า c[i][j] และทิศทางที่ ชี้ไปยังลำดับร่วมที่ยาวที่สุดใส่ลงในตาราง

โปรแกรม 3.5

```
public class LongestCS
 static int c[][] = new int[51][51];
 static String b[][] = new String[51][51];
 static String s1[] = {"","1","0", "1", "1", "0", "1", "1", "0"};
 static\ String\ s2[] = \{"","0","1","0","1","1","0","1","1","0"\};
 static int m = 8;
 static int n = 9;
  public static void LCS(String x[], String y[])
   { int i,j;
       for ( i = 0; i \le m; i++) {c[i][0] = 0;b[i][0] = "\t\t";}
       for ( j = 0; j \le n; j++) { c[0][j] = 0;b[0][j]="";}
   for (i = 1; i \le m; i++)
       { for (j = 1; j \le n; j++)
            { if (x[i].equals(y[j]))
                \{c[i][j] = c[i-1][j-1]+1;
                    b[i][j] = "\"; }//if
                  else if (c[i-1][j] >= c[i][j-1])
                      \{c[i][j] = c[i-1][j];
                            b[i][j] = "|";
                                             }//else if
                        else {
                                 c[i][j] = c[i][j-1];
                                 b[i][j] = "-";
                               }//else
              }//next j
    }//next i
    } //LCS
public static void printLCS(String d[]], String x[], int i, int j)
     if (i > 0 \&\& j > 0)
      { if (d[i][j].equals("\\"))
          { printLCS(d,x, i-1, j-1);
              System.out.print(x[i]);
          else if (d[i][j].equals("|"))
               { printLCS(d,x, i-1, j);
```

```
else printLCS(d,x, i, j-1);
}
}// print-LCS
public static void main(String[] args)
{ int i,j;
   LCS(s1,s2);
   System.out.print("\tj\t");
   for(j=0;j\leq=n;++j){System.out.print(j+"\t");}
   System.out.println();
   System.out.print("i\t\tYj\t");
   for(j=1;j \le n; ++j) \{ System.out.print(s2[j]+"\t"); \}
   System.out.println();
   for(i = 0; i < = m; ++i)
       if(i==0){System.out.print("Xi\t");}
       for (j=0;j<=n;++j)
         { System.out.print(b[i][j]+"\t");}
       System.out.println();
       System.out.print(i+"\t"+s1[i]+"\t");
       for (j=0;j<=n;++j)
      { System.out.print(c[i][j]+"\t"); }
      System.out.println();
     } //end for i
 printLCS(b,s1,m,n);
 System.out.println();
}//main
// end LongestCS
```

ตัวอย่าง 3.3 จงหาถำดับร่วมที่ยาวที่สุดของ X, Y โดยที่กำหนดให้

$$X = \{1, 0, 1, 1, 0, 1, 1, 0\}$$
 และ $Y = \{0, 1, 0, 1, 1, 0, 1, 1, 0\}$

วิธีทำ

ให้
$$c[i][j] = 0$$
 เมื่อ $i = 0$ หรือ $j = 0$ เริ่ม

1. พิจารณา c[1][1] เนื่องจาก $\mathbf{x}_1 = 0$ และ $\mathbf{y}_1 = 1$ เกิดกรณี $\mathbf{x}_i \neq \mathbf{y}_j$ จะได้ c[1][1] มีค่า เท่ากับค่าที่มากที่สุดระหว่าง c[1][0] และ c[0][1] คือ c[1][1] = 0 และเนื่องจาก c[1][0] = c[0][1] (ในกรณีที่เท่ากัน) เราจะเลือก b[1][1] มีทิศเป็น "]"

- 2. พิจารณา c[1][2] เนื่องจาก $\mathbf{x}_1=0$ และ $\mathbf{y}_2=0$ เกิดกรณี $\mathbf{x}_i=\mathbf{y}_j$ ค่า c[1][2] = c[0][1]+1 = 0+1 = 1 และ b[1][2] มีทิศเป็น "\"
- 3. พิจารณา c[1][3] เนื่องจาก $\mathbf{x}_1=0$ และ $\mathbf{y}_3=1$ เกิดกรณี $\mathbf{x}_i=\mathbf{y}_j$ ค่า c[1][3] = ค่าที่มาก ที่สุดระหว่าง c[1][2] = 1 และ c[0][3] = 0 จะได้ c[1][3] = 1 และ b[1][3] มีทิศเป็น "-" จากนั้นพิจารณาต่อไปเรื่อย ๆ จนครบทุกค่า i และ j ดังแสดงในตาราง ตาราง แสดงการคำนวณค่า LCS ของลำดับ X,Y

i	j	0 Yj	1 0	2 1	3 0	4 1	5 1	6 0	7 1	8 1	9 0
0	Xi	0	0	0	0	0	0	0	0	0	0
1	1	0	-0	1	- 1	1	\ 1	1	\ 1	1	- 1
2	0	0	\ 1	1	\ 2	- 2	- 2	\ 2	- 2	- 2	\ 2
3	1	0	1	\ 2	2	\ 3	\	- 3	\	\	- 3
4	1	0	1	\ 2	2	\ 3	\ 4	- 4	\ 4	\ 4	- 4
5	0	0	\ 1	2	\ 3	 	 	\ 5	- 5	- 5	\ 5
			-	\		\	\	_	\	\	-
6	1	0	1	2	3	4	4	5	6	6	6 -
7	1	0	1	2	3	4	5	5	6	7	7
8	0	0	1	2	3	4	5	6	6	7	8

จะได้ค่า LCS = 8 (ค่า c[8][9]) และลำดับร่วมจะหาได้จากการท่องตารางจากช่อง i=8 และ j=9 ไปตามทิศของ b[i][j] ถ้าเป็นทิศ "\" เราจะได้ว่า x[i][j] ตำแหน่งนั้นเป็นลำดับร่วม แล้วท่องตารางไปจนกระทั่งถึงตำแหน่ง b[i][1] ดังต่อไปนี้

- 1. b[8][9] เป็น "\" ให้ท่องไปตามแนวทแยง คือ b[7][8]
- 2. b[7][8] เป็น "\" ให้ท่องตามแนวทแยง คือ b[6][7]
- b[6][7] เป็น "\" ให้ท่องตามแนวทแยง คือ b[5][6]
- 4. ท่องไปเรื่อย ๆ ตามทิศทางจนพบช่อง i=0 และ j=0 ซึ่งช่องผลลัพธ์ที่ได้จะแสดง ด้วยการระบายสี
- 5. สุดท้ายจะได้ลำดับร่วมเป็น 10110110

ตัวอย่าง 3.4 จงหาถำดับร่วมที่ยาวที่สุดของ S_1, S_2 โดยที่กำหนดให้ $S_1 = \{$ "A", "B", "C", "B", "D", "A", "B" $\}$ และ $S_2 = \{$ "B", "D", "A", "B", "A" $\}$;

i	j	0 Yj	1 B	2 D	3 C	4 A	5 B	6 A
0	Xi	0	0	0	0	0	0	0
					_	\	-	\
1	Α	0	0	0	0	1	1	1
			\	-	-		\	-
2	В	0	1	1	1	1	2	2
					\	-		
3	С	0	1	1	2	2	2	2
			\				\	-
4	В	0	1	1	2	2	3	3
				\				
5	D	0	1	2	2	2	3	3
						\		\
6	Α	0	1	2	2	3	3	4
			\				\	
7	В	0	1	2	2	3	4	4

จะได้ลำดับร่วมยาวที่สุด คือ "BCBA"

ตัวอย่าง 3.5 จงหาลำดับร่วมที่ยาวที่สุดของ $\mathbf{S}_{\scriptscriptstyle 1},\mathbf{S}_{\scriptscriptstyle 2}$ โดยที่กำหนดให้

$$\begin{split} &S_1 = \\ &\{\text{"A","C","G","G","G","T","C","G","A","G","T","G","C","G","C","G","A","A","A","G","C","C","G","G","C","C","G","G","A","A","A","S}; \\ &S_2 = \\ &\{\text{"G","T","C","G","T","C","G","G","G","A","A","A","T","G","C","C","G","T","T","G","C","T","C","T","G","T","A","A","A","A","S}; \\ \end{split}$$

จะได้ลำดับร่วมยาวที่สุด คือ "GTCGTCGGAAGCCGGCCGAA"

ด้วยวิธีกำหนดการพลวัต ในการหาลำดับร่วมที่ยาวที่สุด ใน method LCS จะได้ complexity เป็น O(mn) และ method printLCS จะมี complexity = O(m+n) เพราะแต่ละ i, j จะลดลงในแต่ละรอบของการเรียกซ้ำ

แบบฝึกหัด

- 1. จงใส่วงเล็บเพื่อกำหนดถำดับการคูณของเมตริกซ์ $\{A_1,A_2,A_3,A_4,A_5,A_6\}$ ให้มีจำนวนครั้ง ของการคูณน้อยที่สุด โดยกำหนดให้ $A_1:2x50$ $A_2:50x40$ $A_3:40x10$ $A_4:10x20$ $A_5:20x100$ $A_6:100x10$
- 2. จงหาถำดับร่วมที่ยาวที่สุดของ X,Y โดยที่ ถำหนดให้ $X = \{A, B, D, C, D, A, B, D, A\}$ และ $Y = \{B, C, A, D, B, A, B\}$