A Theoretical Framework for Bayesian Nonparametric Regression: Orthonormal Random Series and Rates of Contraction

Fangzheng Xie (fxie5@jhu.edu), Wei Jin (wjin@jhu.edu), and Yanxun Xu (yanxun.xu@jhu.edu) Department of Applied Mathematics and Statistics, Johns Hopkins University

1. Overview

- A general framework to study rates of contraction w.r.t. to $\|\cdot\|_2$ for Bayesian nonparametric regression
- Key features:
 - Flexibility: Orthonormal series;
 - Convenience: Drop L_{∞} -bound.
- Applications:
 - Finite random series prior;
 - Block prior w/o truncation;
 - SE-GP w/ fixed design.
- Extension: sparse additive models in high dimensions.

2. Background: G-VDV Method

Sufficient conditions for

$$\Pi(d(\theta, \theta_0) > M\epsilon_n \mid \text{data}) = o_{\mathbb{P}_0}(1)$$
:

- 1. The prior concentration condition: $\Pi(B_{\mathrm{KL}}(p_0, \epsilon_n)) \ge \mathrm{e}^{-Dn\epsilon_n^2}.$
- 2. Existence of sieves $(\Theta_n)_{n=1}^{\infty}$ s.t. $\Pi(\Theta_n^c) \le e^{-(D+4)n\epsilon_n^2}$.
- 3. Existence of tests $(\phi_n)_{n=1}^{\infty}$ s.t.

$$\mathbb{E}_0\phi_n\to 0,$$

$$\sup_{\{d(\theta,\theta_0)>M\epsilon_n\}} \mathbb{E}_{\theta}(1-\phi_n) \leq e^{-\bar{D}Mn\epsilon_n^2}.$$

3. The Framework and Main Results

- Sampling model: $y_i = f(\mathbf{x}_i) + e_i$.
- Tool: orthonormal basis $(\psi_k)_k$
- Prior: $f = \sum_{k} \beta_k \psi_k$, $(\beta_k)_{k=1}^{\infty} \sim \Pi$.

Sufficient conditions for

$$\Pi(||f - f_0||_2 > M\epsilon_n \mid data) = o_{\mathbb{P}_0}(1)$$
:

1. The prior concentration condition: $\Pi(B(f_0,\epsilon_n)) \ge e^{-Dn\epsilon_n^2}$, where

$$B(f_0, \epsilon) = B_2(f_0, \epsilon)$$

$$\cap \left\{ \sum_{k>k_n} |\beta_k - \beta_{0k}| = \omega \right\},$$

and $k_n \epsilon_n^2 = O(1)$.

2. Existence of sieves $(\mathcal{F}_n)_{n=1}^{\infty}$ s.t. $\Pi(\mathcal{F}_n^c) < e^{-(2D+\sigma^{-2})n\epsilon_n^2}$, where

$$\mathcal{F}_n \subset \left\{ \sum_{k>m_n}^{\infty} |\beta_k - \beta_{0k}| = \delta \right\},\,$$

and $m_n \epsilon_n^2 \to 0$.

3. Existence of tests $(\phi_n)_{n=1}^{\infty}$ guaranteed by metric entropy:

$$\mathcal{N}\left(\xi j\epsilon_n, \mathcal{F}_n \cap B_2(f_0, 2j\epsilon_n), \|\cdot\|_2\right)$$

 $\leq \exp\left(Dn\epsilon_n^2/2\right).$

4. Applications

- Finite Random Series prior
 - Truth f_0 is α -Hölder, $\alpha > 1/2$.
 - Assume α unknown, $\gamma \in (1/2, \alpha)$.
 - Prior: $(f \mid N = m) = \sum_{k=1}^{m} \beta_k \psi_k$, $((k^{\gamma}\beta_k)_{k=1}^m \mid N=m)^{\text{i.i.d.}} g, g(\beta) \propto$ $\mathrm{e}^{- au_0 |eta|^{ au}}$, $N \sim \mathrm{ZTP}(\lambda)$.
 - Adaptive contraction: $\Pi\left(\|f-f_0\|_2 > M\epsilon_n \mid \mathrm{data}\right) \stackrel{\mathbb{F}_0}{\to} 0,$ where $\epsilon_n = n^{-\alpha/(2\alpha+1)} (\log n)^t$, $t > \alpha/(2\alpha + 1)$.
- Block prior w/o truncation
 - Truth f_0 is α -Sobolev, $\alpha > 1/2$.
 - Prior: $[\beta_{k_\ell}, \cdots, \beta_{k_{\ell+1}-1}] \mid A_\ell \sim 1$ $\mathrm{N}(\mathbf{0},A_{\ell}\mathbf{I}_{n_{\ell}})$, $k_{\ell}=\lceil\mathrm{e}^{\ell}\rceil$, $A_{\ell}\sim g_{\ell}$, and g_{ℓ} shrinks toward 0.
 - Exact minimax-optimal contraction: $\Pi\left(\|f-f_0\|_2 > M\epsilon_n \mid \mathrm{data}\right) \stackrel{\mathbb{P}_0}{\to} 0,$ where $\epsilon_n = n^{-\alpha/(2\alpha+1)}$.
- SE-GP prior $(K(x, x') = e^{-(x-x')^2})$
 - Truth f_0 is supersmooth.
 - Prior: $\beta_k \sim N(0, \lambda_k)$, $\lambda_k \approx e^{-k^2/4}$
 - Design points $(\mathbf{x}_i)_{i=1}^n$ are fixed
 - Near-parametric contraction: $\Pi\left(\|f-f_0\|_2 > M\epsilon_n \mid \text{data}\right) \stackrel{\mathbb{F}_0}{\to} 0,$ where $\epsilon_n = (\log n)/\sqrt{n}$.

5. Extension: Sparse Additive Model

- Sparse additive model: $f(\mathbf{x}) = \mu + \sum_{r=1}^{q} f_{j_r}(x_{j_r}), \ p \gg n$
- Prior: $f(\mathbf{x}) = \mu + \sum_{jk} z_j \beta_{jk} \psi_k(x_j)$ $z_i \sim \mathrm{Bern}(1/p)$, $(\beta_{jk})_{jk} \sim \Pi$ Sufficient conditions for

$$\Pi(\|f-f_0\|_2 > M\epsilon_n \mid \mathrm{data}) \stackrel{\mathbb{P}_0}{\to} 0$$
:

1. Prior: $\Pi(\widetilde{B}(f_0, \epsilon_n)) \geq e^{-Dn\epsilon_n^2}$, where

$$B(f_0, \epsilon) = B_2(f_0, \epsilon) \cap \{ \|\mathbf{z}\|_1 \le 2q \}$$

$$\cap \left\{ \sum_{j,k>k_n} |z_j \beta_{jk} - \beta_{0jk}| \le \omega \right\}$$

- and $k_n \epsilon_n^2 = O(1)$.
- 2. Sieves \mathcal{G}_n : $\Pi(\mathcal{G}_n^c) \leq \mathrm{e}^{-(2D+\sigma^{-2})n\epsilon_n^2}$. $A_n m_n \epsilon_n^2 o 0$, $\mathcal{G}_n = \bigcup_{\|\mathbf{z}\|_1 < A_n q} \mathcal{G}_n^{\mathbf{z}}$,

$$\mathcal{G}_n^{\mathbf{z}} \subset \left\{ \sum_{j,k>m_n} |z_j \beta_{jk} - \beta_{0jk}| \le \delta \right\}.$$

3. Tests $(\phi_n)_{n=1}^{\infty}$ guaranteed by metric entropy:

$$\mathcal{N}\left(\xi j\epsilon_n, \mathcal{G}_n \cap B_2(f_0, 2j\epsilon_n), \|\cdot\|_2\right)$$

 $\leq \exp\left(Dn\epsilon_n^2/2\right).$