How Fluctuation-Dependent Coexistence Mechanisms Affect the Temporal Stability of Ecosystem Functioning

Andrew T. Tredennick^{1,*}, Peter B. Adler¹, and Frederick R. Adler²

¹Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322; ²Departments of Biology and Mathematics, University of Utah, Salt Lake City, Utah

6 Abstract

For biodiversity to increase the temporal stability of ecosystem function in the long-term, coexistence must be stable. Species-specific respones to environmental variation through time is key to understanding fluctuation-dependent coexistence mechanisms and how asynchrony in species dynamics can arise to stabilize ecosystem function. Despite the shared dependence on environmental fluctuations, theory on species coexistence and the relationship between species richness and ecosystem stability have developed independently. To formally link the two bodies of theory, we use consumer-resource models where coexistence between two species utilizing a single resource is maintained by two fluctuation-dependent mechanisms: the storage effect and relative nonlinearity. We examine how the strength of species coexistence relates to the temporal stability of aggregate ecosystem function and how the effect of environmental variability on stability is mediated by the mechanism of coexistence. Blah, blah, blah,...

Keywords: coexistence, storage effect, relative nonlinearity, diversity-stability hypothesis, pulsed differential equation, consumer-resource dynamics, synchrony

1 Introduction

3

10

11

12

13

14

15

16

17

18

19

20

Species-specific responses to non-constant environmental conditions can stabilize species coexistence (Chesson 2000) and ecosystem function (Loreau 2010). This means that fluctuation-dependent mechanisms of species coexistence are the very same mechanisms that link biodiversity and ecosystem function. Yet, the theory that has developed over the past 20 years to explain the, generally, positive relationship between species richness and stability of ecosystem function has implicitly assumed species coexistence (Loreau 2010), or, when explicitly considered, coexistence is maintained by fluctuation-independent mechanisms (Turnbull et al. 2013). Despite rapid theoretical developments in the fields of species coexistence and biodiversity-ecosystem function, a gulf remains between the two lines of inquiry (Carroll et al. 2011, Turnbull et al. 2013). This is especially surprising since stable coexistece, however maintained, is a preqrequisite for biodiversity to confer stability of ecosystem function in the long term.

^{*}Corresponding author; email: atredenn@gmail.com

Among the dizzying array of mechanisms that can maintain diversity, Chesson (2000) formalized two broad classes: fluctuation-independent and fluctuation-dependent mechanisms. Both classes of mechanisms rely on niche differences being greater than relative fitness differences for all species pairs in a community (Chesson 2000, Adler et al. 2007). In a fluctuation-independent case, species coexistence can be maintained by resource partitioning so long as each species is limited by a different resource (Tilman 1982). Much of the theoretical literature aimed at deciphering the mechanisms behind the diversity-stability relationship implicitly assumes fluctuation-independent coexistence. For example, Lotka-Volterra models have been widely used and include coexistence by keeping competition coefficients less than one (e.g., Loreau and de Mazancourt 2013). Our focus, on the other hand, is on the interaction between species coexistence and ecosystem stability in communities where coexistence is dependent on environmental fluctuations.

There are two ways that species coexist in temporally fluctuating environments. First, there is the storage effect, where species coexistence is stable if the following three conditions are met: (i) have unique responses to environmental conditions, (ii) have some way to persist in unfavorable years, and (iii) the effects of competition must be greater in 'good' years relative to 'bad' years (Chesson 2000). Second, there is relative nonlinearity, where species have unique, nonlinear responses to a shared resource that fluctuates through time (Chesson 2000).

Both the storage effect and relative nonlinearity require that species have unique responses to environmental conditions. Not only do such species-specific responses stabilize coexistence, they can also stabilize ecosystem function by creating compensatory dynamics. All else being equal, ecosystem stability is highest when species responses to the environment are perfectly uncorrelated. Under the storage effect, uncorrelated species responses to the environment also results in the most stable conditions for coexistence. It stands to reason, then, that the strength of the storage effect should predict the degree to which species asynchrony stabilizes ecosystem function. However, the exact relationship between storage effect strength and ecosystem stability could take many, unknown, forms.

Unlike the potential interaction between the storage effect and ecosystem stability, how relative nonlinearity might interact with ecosystem stability is less clear.

64 Model and Analysis

65 A General Consumer-Resource Model

We present a semi-discrete, mechanistic consumer-resource model that allows coexistence of two species on one resource by either the storage effect or relative nonlinearity. In our model, the consumer can be in one of two-states: a dormant state D and a live state N. Transitions between N and D occur at discrete intervals τ with continuous-time consumer-resource dynamics between discrete transitions. Thus, our model is formulated as "pulsed differential equations" (Pachepsky et al. 2008, Mailleret and Lemesle 2009, Mordecai et al. 2016). For clarity we refer to τ as years and the growing time between years as seasons with daily (t) time steps.

During a growing season, consumer-resource dynamics are modeled as two differential equations: 75

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = N_i \epsilon_i f_i(R), \quad t \neq \tau_k \tag{1}$$

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = N_i \epsilon_i f_i(R), \quad t \neq \tau_k
\frac{\mathrm{d}R}{\mathrm{d}t} = -\sum_{i=1,2} f_i(R) N_i, \quad t \neq \tau_k$$
(2)

where the discrete transitions between N and D occur between seasons at times τ_k , k = $1, 2, 3, \ldots, K$. The subscript i denotes species, N is the living biomass state, and ϵ_i is each 77 species' resource-to-biomass conversion efficiency. The growth rate of living biomass is a resource-dependent Hill function, $f_i(R) = r_i R^{a_i}/(b_i^{a_i} + R^{a_i})$, where r is a species' intrinsic 79 growth rate and a and b define the curvature of the function. Resource depletion is equal to 80 the sum of each species' consumption. 81

Along with resource uptake, consumer population growth depends on the production of dormant biomass (D), the activation of dormant biomass to live biomass $(D \to N)$, and the survival of living biomass from one year to the next. The biomass of each species' states at the start of a growing season are equal to

82

83

$$D_i(\tau_k^+) = (1 - \gamma_{i,\tau_k})(\alpha_i N_i(\tau_k) + D_i(\tau_k))(1 - \eta_i)$$
(3)

$$N_i(\tau_k^+) = \beta_i (1 - \alpha_i) N_i(\tau_k) + \gamma_{i,t} (D_i(\tau_k) + \alpha_i N_i(\tau_k)) (1 - \eta_i), \tag{4}$$

where $D(\tau_k)$, $N(\tau_k)$, and $R(\tau_k)$ are the abundances of each state at the end of growing season k and τ_k^+ denotes the beginning of growing season k=1. The activation of dormant biomass 87 to live biomass is controlled by γ , which is year (k) and species (i) specific. Dormant biomass is equal to a constant fraction (α) of live biomass at the end of the previous season $(N_i(\tau_k))$, plus survival $(1-\eta_i)$ of dormant biomass $(D_i(\tau_k))$ at the end of the previous year and dormant biomass remaining after live biomass activation $(D_i(\tau_k)(1-\gamma_{i,\tau_k}))$. Live biomass is equal 91 to the survival (β) of live biomass remaining after converting a fraction of live biomass to dormant biomass $((1 - \alpha_i)N_i(\tau_k))$, plus newly activated dormant biomass $(\gamma_{i,t}|D_i(\tau_k))$. We assume the resource pool is not replenished within a growing season. Resource replenishment occurs between growing seasons, and the resource pool (R) at the start of the growing season k+1 is

$$R(\tau_k^+) = \theta_i(1 - \alpha_i)N_i(\tau_k) + \nu R(\tau_k) + R^+, \tag{5}$$

where θ is the fraction of live biomass that dies and is recycled into the resource pool, ν is the fraction of the resource pool carried over from the previous year, and R^+ is a random resource 98 pulse drawn from a log-normal distribution with mean $\mu(R^+)$ and standard deviation $\sigma(R^+)$. 99 Model parameters and notation are described in table 1.

Table 1: Default values of model parameters and their descriptions. Parameters that vary depending on the mode and strength of species coexistence or depending on species copmetive hierarchies are labeled as "variable" in parantheses. The dormant-to-live biomass transition fraction (γ) is a function of other parameters, so has no default value.

Parameter	Description	Value
r	maximum per capita growth rate	1 (variable)
a	Hill function rate parameter	2 (variable)
b	Hill function curvature parameter	2.5 (variable)
ϵ	resource-to-biomass conversion efficiency	0.5
α	allocation fraction of live biomass to dormant biomass	0.5 (variable)
γ	dormant-to-live biomass transition fraction	_
ho	correlation of species' response to the environment	0 (variable)
σ_E	variance of the environmental cue	2 (variable)
η	dormant biomass mortality rate	0.1
β	live biomass survival rate	0
θ	resource recycling fraction	0
ν	resource carry-over fraction	0
$\mu(R^+)$	mean annual resource pulse	20 (non-log scale)
$\sigma(R^+)$	standard deviation of annual resource pulse	0 (variable)

of Implementing the Storage Effect

To make this a "storage-effect" model, we need to satisfy three conditions: (1) the organisms must have a mechanism for persistence under unfavorable conditions, (2) species must respond differently to environmental conditions, and (3) the effects of competition on a species must be more strongly negative in good years relative to unfavorable years. Our model meets condition 1 because we include a dormant stage with very low death rates. We satisfy condition 2 with our model whenever g is not perfectly correlated between species. Lastly, our model meets condition 3 because condition 2 partitions intraspecific and interspecific competition into different years. Thus, during a high g year for one species, resource uptake is also inherently high for that species, which increases intraspecific competition relative to interspecific competition. So, given adequate variability in g, the inferior competitor (species with lower r) can persist.

We generated sequences of (un)correlated dormant-to-live state transition rates (g) for each species by drawing from multivariate normal distributions with mean 0 and a variance-covariance matrix (Σ_g) of

$$\Sigma_g = \begin{bmatrix} \sigma_E^2 & \rho \sigma_E^2 \\ \rho \sigma_E^2 & \sigma_E^2 \end{bmatrix} \tag{6}$$

where σ_E^2 is the variance of the environmental cue and ρ is the correlation between between the two species' transition rates. ρ must be less than 1 for stable coexistence. The inferior competitor has the strongest potential to persist when $\rho = -1$ (perfectly uncorrelated transition rates).

120 Implementing Relative Nonlinearity

When considering consumer-resource dynamics, species coexistence by relative nonlinearity requires that each species has different nonlinear responses to resource availability, and resource availability must fluctuate through time. In a constant resource environment, the species with the lowest R* will always exclude the other species. To compare this model to the storage effect model we still allow the germination rate g to vary, but both species are perfectly correlated – that is, $\rho = 1$ (fig. 1).

Figure 1: Resource uptake functions and example time series of (un)correlated germination fractions for the storage effect (a,b) and relative nonlinearity (c,d) formulations of the consumer-resource model. The resource uptake functions for both species are equivalent for the storage effect, but their germination fractions are uncorrelated in time. The opposite is true for relative nonlinearity: the two species have unique resource uptake functions, but their germination fractions are perfectly correlated in time.

127 Model Simulations

For each coexistence mechanism (storage effect, relative nonlinearity), we ran model simulations at different levels of resource variance (R_{σ^2}) , environmental cue variance (σ_E) , and correlation of species responses to the environmental cue (ρ) . We ran simulations for 100 'seasons' with 60 day growing seasons. We averaged biomass over the growing season. After discarding an initial 20 seasons to reduce transient effects on our results, we calculated the stability of summed species biomass through time and species synchrony through time. For storage effect simulations, species were equivalent in their ability to capture and assimilate the resource (R) but had different, depending on ρ , germination rates. For relative nonlinearity simulations, species had equivalent germination rates $(\rho = 1)$ but different resource acquisition functions (fig. 1). We explored a limited set of parameter space where the storage effect and relative nonlinearity were operating simultaneously. Within-season dynamics were solved given initial conditions using the package deSolve (Soetaert et al. 2010) in R (Team 2013).

140 Results

The strength of coexistence is negatively associated with ecosystem variability when species coexistence is maintained by the storage effect (fig. 2).

Figure 2: Variability of total community as function of species richness when coexistence is maintained by the storage effect (a,c) or relative nonlinearity (b,d). Top panels show results from simulations where environmental or resource variance determine the number species that coexist in a community. Bottom panels show results from simulations where environmental or resource variance is fixed at a level that allows coexistence of all four species, but speces are removed to manipulate diversity. In the most general sense, the top panels represent regional diversity-stability relationships across natural diversity gradients, whereas the bottom panels represent local diversity-stability relationships.

Discussion

144 References

- Adler, P. B., J. HilleRislambers, and J. M. Levine. 2007. A niche for neutrality. Ecology Letters 10:95–104.
- ¹⁴⁷ Carroll, I. T., B. J. Cardinale, and R. M. Nisbet. 2011. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92:1157–1165.
- ¹⁴⁹ Chesson, P. 2000. Mechanisms of Maintenance of Species Diversity. Annual Review of Ecology and Systematics 31:343–366.
- Loreau, M. 2010. From Polutations to Ecosystems: Theoretical Fondations for a New Ecological Synthesis.
- Loreau, M., and C. de Mazancourt. 2013. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters 16:106–115.
- Mailleret, L., and V. Lemesle. 2009. A note on semi-discrete modelling in the life sciences. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
- 157 367:4779-4799.
- Mordecai, E. a., K. Gross, and C. E. Mitchell. 2016. Within-Host Niche Differences and
- Fitness Trade-offs Promote Coexistence of Plant Viruses. The American Naturalist 187:E13– E26.
- Pachepsky, E., R. M. Nisbet, and W. W. Murdoch. 2008. Between discrete and continuous:
- 162 Consumer-resource dynamics with synchronized reproduction. Ecology 89:280–288.
- Soetaert, K., T. Petzoldt, and R. W. Setzer. 2010. Package deSolve: Solving Initial Value Differential Equations in R. Journal Of Statistical Software 33:1–25.
- Team, R. 2013. R Development Core Team. R: A Language and Environment for Statistical Computing.
- 167 Tilman, D. 1982. Resource competition and community structure. Pages 1–296.
- Turnbull, L. A., J. M. Levine, M. Loreau, and A. Hector. 2013. Coexistence, niches and biodiversity effects on ecosystem functioning. Ecology Letters 16:116–127.