

Deep learning for time series forecasting

Pedro Lara Benítez Manuel Carranza García

Time series forecasting

- Data particularities
- Problem to solve

Single step forecasting

Single step forecasting

Multi step forecasting

Univariate vs Multivariate time series

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

Multi-layer Perceptron

Multi-layer Perceptron

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

Recurrent Neural Network

Requirements for time series modelling

- Handle variable-length sequences
- Track long-term dependencies
- Maintain information about order
- Share parameters across the sequence

Elman Recurrent Neural Network

Elman Recurrent Neural Network

Perceptron RNN $S_t = f(W, U, X_t, S_{t-1}) = tanh(U \times X_t + W \times S_{t-1})$

Elman Recurrent Neural Network

Perceptron RNN $S_t = f(W, U, X_t, S_{t-1}) = tanh(U \times X_t + W \times S_{t-1})$

Computing the gradient involves many factors of W (and repeated f')

RNNs problems

Exploding gradient

Many values to compute

Vanishing gradient

Multiply by small numbers

RNNs problems

Exploding gradient

Many values to compute

Vanishing gradient

Multiply by small numbers

LSTM as the solution

(Long short-term memory)

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

LSTM RNN

UNIVERSIDAD B SEVILLA

LSTM RNN

LSTM RNN

- $\rightarrow c_t$ 1. Forget
 - 2. Update
 - 3. Output

LSTM RNN - Forget

LSTMs forget irrelevant parts of the previous state

$$\int_{a_t}^b f_t = (\mathbf{W}_f \cdot \sigma [h_{t-1}, x_t] + b_f)$$

- Use previous cell output and input
- Sigmoid: value 0 and 1 "completely forget" vs. "completely keep"

LSTM RNN - Update

$$i_t = \sigma(\boldsymbol{W_i}[h_{t-1}, x_t] + b_i)$$

$$\tilde{C_t} = \tanh(\boldsymbol{W_C}[h_{t-1}, x_t] + b_C)$$

- Sigmoid layer: decide what values to update
- Tanh layer: generate new vector of "candidate values" that could be added to the state

LSTM RNN - Update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Apply forget operation to previous internal cell state: $f_t * C_{t-1}$
- Add new candidate values, scaled by how much we decided to update: $i_t * \tilde{C}_t$

LSTM RNN - Output

$$o_t = \sigma(\mathbf{W}_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- Sigmoid layer: decide what parts of state to output
- Tanh layer: squash values between I and I
- o_t * tanh(C_t): output filtered version of cell state

LSTM RNN - Backpropagation flow

Backpropagation from C_t to C_{t-1} requires only elementwise multiplication! No matrix multiplication \rightarrow avoid vanishing gradient problem.

LSTM RNN - Backpropagation flow

Uninterrupted gradient flow

LSTM - Key concept

- 1. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate return a filtered version of the cell state
- Backpropagation from Ct to Ct-1 doesn't require matrix multiplication: uninterrupted gradient flow

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

GRU RNN

Elman RNN

LSTM RNN

GRU RNN

GRU RNN

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Code example

Moving window strategy

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

Convolutional NN

CNN

CNN

Input signal

Recon-signals as multi-channels

Convolutional operation

1,	1,0	1,1	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Dilated CNN

Dilated CNN

(a) Standard 1D casual convolution

(b) Dilated 1D casual convolution

Deep learning models for TSF

- Fully connected
 - MLP
- Recurrent neural network
 - Elman
 - LSTM
 - GRU
- Convolutional neural network
 - CNN
 - TCN

Temporal Convolutional Network (TCN)

TCN - Receptive field

Receptive field = nb_stacks_of_residuals_blocks * kernel_size * last_dilation

TCN - Receptive field

TCN - Receptive field

Code example

Resources

TCN implementation: https://github.com/philipperemy/keras-tcn

LSTM video explanation: https://www.youtube.com/watch?v= h66BW-xNgk