

UMR CNRS 5312

A brief overview of Institut Clément ADER research activities

UMR CNRS 5312

Who was Clément ADER?

Avion 3

UMR CNRS 5312

UMR CNRS 5312

UMR CNRS 5312

A strong partnership with industry

UMR CNRS 5312

A few figures

- 90 Permanent Researchers
- 110 Ph.D. Students
- 30 Administrative, Engineers and Technicians
- 4 Research Groups

stephane.colin@insa-toulouse.fr

MS2M, Modelling of Mechanical Systems & Microsystems

bruno.castanie@insa-toulouse.fr

MSC, Composite Materials & Structures

Luc.penazzi@mines-albi.fr

SUMO, Surfaces, Machining, Materials & Tooling

yannick.lemaoult@mines-albi.fr

MICS, Metrology, Identification, Control & Monitoring

UMR CNRS 5312

Around aircrafts

- Microfluidic systems for analysing cabin air quality
- Piezoelectric systems for de-icing
- **Vibrations**
- Composites: Damage tolerance, low and high speed impacts, multiaxial mechanical tests, dynamical couplings, manufacturing processes (fast cure cycles, ooa, low cost), initial damages, spring-in, repair of composites, short fibres structures (air).
- **Design and optimisation** of on-board equipment
 - Mechanical assemblies
 - **Ground robotic video** systems
 - NDT of thermal barriers
 - **Forming tools for** Super alloys
 - Thermomechanical behaviour of **Engine disks**

steels: ball screw wearing

High performances

Super Plastic Forming on Titanium alloys

- **Actuators: Design process,** simulation, optimisation
- High performance steels: thermomechanical behaviour, multiscale analyses

UMR CNRS 5312

ICA keywords cloud

Extracted from keywords used in research papers published between 2014 and 2017

UMR CNRS 5312

MS2M research group

Modelling of Mechanical Systems and Microsystems

- □ Axis 1 Dynamic behaviour of Structures; Conception Preliminary design (ISM)
- □ Axis 2 Mechanical microsystems ; Modelling under
 Deterministic or uncertain environment (ISS)

UMR CNRS 5312

Modelling non linear dynamic systems

Dynamic systems with a parametric excitation:

- Stay with shrouds structures,
- Rotors,

Passive vibration control:

- Localised non linearity,
- Structural damping,
- Energy pumping.

Non-linear passive damping

Helicopters: resonance at ground

Energy dissipation and diagnostic

- Damaging processes,
- Composite materials,
- Bio-inspired systems,
- Fatigue under vibrations.

UMR CNRS 5312

Numerical modelling of fracture materials and structure

- Non-linear transitory dynamics
- Non-linear material and geometric modelling
- Spatial discretisation (X-FEM, SPH, DEM,...)

UMR CNRS 5312

Microfluidics

- Gazeous microflows
- Development of specific bench for microflows analysis
- Continous and kinetics modelling of microflows

Home-made/designed microflow measurement bench

Knudsen pump
(« thermal sweating »)

UMR CNRS 5312

MSC research group
Composites Structures and Materials

- ☐ Axis 1 Structures Impact Modelling, Machining (SIMU)
- ☐ Axis 2 Materials, Processes, Properties (MaPP)

UMR CNRS 5312

Modelling of composite structure damaging: helicopter blades example

UMR CNRS 5312

Modelling low energy impact and damage simulation on composites

UMR CNRS 5312

An overview of some of our manufacturing facilities

UMR CNRS 5312

Machining / drilling of composites

Damages prediction / cutting parameters

 Virtual material / doped matrices

Random dispersion of ellipsoïdal thermally conductive particules in a polymeric matrix

UMR CNRS 5312

SUMO research group

Surfaces, Machining, Materials & Tooling

- ☐ Axis 1 Modelling of fatigue, damaging and wear (FaMEU)
- ☐ Axis 2 Properties and behaviour of metallic materials (PUMMA)
- ☐ Axis 3 Machining and metallic materials forming (USIMEF)

UMR CNRS 5312

Fatigue, Damaging, Wear

Thermo-Mechanical loading SURFACE of metallic materials

Environment effects

Isothermal fatigue

+ thermal - mechanical

Tribology

Damage stemming from tribological laoding

UMR CNRS 5312

Properties and behaviour of metallic materials

- Various approaches
 - nano-micro-macro investigations
 - surface / volume

Various topics

- microstructure / properties relationship high performances steels, titanium alloys, super alloys
- durability of coatings and functionally graded materials
- oxidation & corrosion at high T°
- thermal surface treatments
- thermal fatigue
- thermomechanical fatigue
- fracture mechanics

UMR CNRS 5312

Manufacturing with metallic materials

Additive manufacturing

Experimental characterisation and simulation

Surface analysis

Xrays Tomography

Anisotropy characterisation

Numerical simulation

UMR CNRS 5312

• CAM (Computer Aided Manufacturing)

http://mecagenius.univ-jfc.fr/

216 activities to discover, to learn, to manufacture and to optimize machining processes

An online Serious game

to teach mechanical

UMR CNRS 5312

MICS research group

Metrology, Instrumentation, Control, Monitoring

- □ Axis 1 Innovative optical methods for dimensional and thermal metrology
- Axis 2 Identification and Control of Thermal and Mechanical Properties

UMR CNRS 5312

Innovative optical methods for dimensional and thermal metrology

- Artificial vision for photomechancis and NDT
- Measurement of real temperature fields by infrared thermography and radiometry
- Modelling interaction between IR rays and materials. Radiative properties

characterisation

- Optical fibre sensors instrumentation

UMR CNRS 5312

Identification and Control of Thermal and Mechanical Properties

- Health and behaviour of materials and structures: characterisation using digital image correlation (displacement fields) and NDE
- Design of instrumentation and sampling procedures for the study of heterogeneous materials and structures
- Identification of behaviour laws from heterogeneous tests

Damaging law

of d₁₂

e_{eq}

Institut Clément Ader - 2019 UMR CNRS 5312

Thank You

