* Problem Statement:

- Ule one climbing a stairs of n steps.
- → Each time we climb, we can cetter take I step or 2 steps.
- → Calculate the total distinct ways to climb to the top.

* Example:-

For n=1,

OP=1, only 1 way possible.

For n=2,

O/p = 2, Two passible ways: - 1+1 steps, 2 steps

Tor n=3,

Olp = 3 , 1+1+1 , 1+2 , 2+1

orp = 5 , (+1+1+1, 1+1+2 , 1+2+1 , 2+1+1 , 2+2

* Solution :-

This is a fibonacci segnence with $f_1 = 1 \stackrel{>}{>} f_2 = 2$.

n=4 -> 5

-> Directly apply it considering for (n+1) because our first term is starting from 1.

TC:- O(1) SC:- O(1)

2) Approach 2:- Simple recursive
-> Results in TLE on Sectode
-> Re-computation involved so avoid
Note: - Recommended approach is Binet's formula.
Note: - Recommended approach is Binet's formula. Recugsive approach can be optimized using DP.
Recuerlive approach can be optimized using DP. Simple iterative approach works with TC = 0(n) & SC = 0(1)
Simple iterative approach works with TC = 0(n) & SC = 0(1)
Explore matrix exponentiation approach as well.