Chapter 4: Geocentric Models

Tait Algayer & Emily Rampone

Why are normal distributions normal?

 Any process that adds together random values from the same distribution converges to normal

 Everything other than the mean is a fluctuation form the average value

Heavy tails

- There must be more uncertainty about how big the variance is than about how small it is
- If the variance is estimated to be near zero, then you know for sure that it can't be much smaller. But it could be a lot bigger

Gaussian model of growth rate

- small effects that multiply together are approximately additive
- they also tend to stabilize on Gaussian distributions

A Language for Describing Models

1. Define variables: Data and Parameters

1. Define variables in terms of each other

1. Form a joint generative model by combining by combining variables to simulate hypothetical observations and analyze real ones

$$h_i \sim \text{Normal}(\mu, \sigma)$$

$$\mu \sim \text{Normal}(178, 20)$$

$$\sigma \sim \text{Uniform}(0, 50)$$

$$\mu_i = \alpha + \beta(x_i - \bar{x})$$

$$\alpha \sim \text{Normal}(178, 20)$$

$$\beta \sim \text{Normal}(0, 10)$$

$$\sigma \sim \text{Uniform}(0, 50)$$

Gaussian model of height

Generative model

How does **height** influence **weight**?

$$H \longrightarrow W \longleftarrow U$$

$$W = f(H, U)$$

"Weight is some function of height & unmeasured stuff"

Statistical model

How does average weight change with height?

$$W_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta H_i$$

$$\alpha \sim \text{Normal}(0, 10)$$

$$\beta \sim \text{Uniform}(0,1)$$

$$\sigma \sim \text{Uniform}(0, 10)$$

Quadratic Approximation (QUAP)

- Approximate the posterior distribution as a multivariate Gaussian distribution
- Maximum A Posteriori (MAP) a probabilistic framework for solving the problem of density estimation
- Provides approximations for each parameters marginal distribution

When H = 0, W = 0

Weight increases (on avg) with height

Weight (kg) is less than height (cm)

sigma must be positive

What the hell is going on

Please help me

Regression - a general term, describes one or more predictor variables to model the distribution of one or more outcome variables.

Francis Galton - regress to the mean

Linear Model Strategy - make mu into a linear function of the predictor variable

Dear Golem: 'Consider all the lines that relate one variable to the other. Rank all of these lines by plausibility, given these data.'

Golem: Here's a posterior distribution.

Howell1 (adult) data

d <- Howell1

d2 <- d[d\$age >= 18,]

Life Histories of the DOBE !KUNG

FOOD, FATNESS, AND WELL-BEING OVER THE LIFE-SPAN

NANCY HOWELL

plot(d2\$height ~ d2\$weight)

Height **covaries** with weight.

Linear Prediction - Posterior Distribution

OK of Gaussian of height

$h_i \sim \text{Normal}(\mu, \sigma)$	height ~ dnorm(mu,sigma)
$\mu \sim \text{Normal}(178, 20)$	mu ~ dnorm(178,20)
$\sigma \sim \text{Uniform}(0, 50)$	sigma ~ dunif(0,50)
$h_i \sim \text{Normal}(\mu_i, \sigma)$	height ~ dnorm(mu,sigma)
$\mu_i = \alpha + \beta(x_i - \bar{x})$	mu <- a + b*(weight-xbar)
$\alpha \sim \text{Normal}(178, 20)$	a ~ dnorm(178,20)
$\beta \sim \text{Log-Normal}(0,1)$	b ~ dlnorm(0,1)
$\sigma \sim \text{Uniform}(0, 50)$	sigma ~ dunif(0,50)

Linear Prediction - Posterior Distribution

$h_i \sim \text{Normal}(\mu, \sigma)$	height ~ dnorm(mu,sigma)
$\mu \sim \text{Normal}(178, 20)$	mu ~ dnorm(178,20)
$\sigma \sim \text{Uniform}(0,50)$	sigma ~ dunif(0,50)
$h_i \sim \text{Normal}(\mu_i, \sigma)$	height ~ dnorm(mu,sigma)
$\mu_i = \alpha + \beta(x_i - \bar{x})$	mu <- a + b*(weight-xbar)
$\alpha \sim \text{Normal}(178, 20)$	a ~ dnorm(178,20)
$\beta \sim \text{Log-Normal}(0,1)$	b ~ dlnorm(0,1)
$\sigma \sim \text{Uniform}(0, 50)$	sigma ~ dunif(0,50)

Priors

Linear Prediction - Priors

Linear Prediction - Posterior Distribution

$h_i \sim \text{Normal}(\mu, \sigma)$	height ~ dnorm(mu,sigma)
$\mu \sim \text{Normal}(178, 20)$	mu ~ dnorm(178,20)
$\sigma \sim \text{Uniform}(0,50)$	sigma ~ dunif(0,50)
$h_i \sim \text{Normal}(\mu_i, \sigma)$	height ~ dnorm(mu,sigma)
$\mu_i = \alpha + \beta(x_i - \bar{x})$	mu <- a + b*(weight-xbar)
$\alpha \sim \text{Normal}(178, 20)$	a ~ dnorm(178,20)
$\beta \sim \text{Log-Normal}(0, 1)$	b ~ dlnorm(0,1)

sigma ~ dunif(0,50)

Mu function of weight

 $\sigma \sim \text{Uniform}(0, 50)$

Linear Prediction - Uncertainty

Mu - made of parameters with distributions.

Posterior distribution considers every regression line connecting height and weight and assigns a relative plausibility to each.

Linear Prediction - Uncertainty

Curves from Lines

2 approaches in Chapter 4: Polynomial and B-spline.

Polynomial - add extra predictors that are powers of a variable.

Howell1 (adult) data

d <- Howell1

d2 <- d[d\$age >= 18,]

Linear	Polynomial
$h_i \sim \text{Normal}(\mu_i, \sigma)$	$h_i \sim \text{Normal}(\mu_i, \sigma)$
$\mu_i = \alpha + \beta(x_i - \bar{x})$	$\mu_i = \alpha + \beta_1 x_i + \beta_2 x_i^2$
$\alpha \sim \text{Normal}(178, 20)$	$\alpha \sim \text{Normal}(178, 20)$
$\beta \sim \text{Log-Normal}(0,1)$	$\beta_1 \sim \text{Log-Normal}(0,1)$
$\sigma \sim \mathrm{Uniform}(0, 50)$	$\beta_2 \sim \text{Normal}(0, 1)$
	$\sigma \sim \text{Uniform}(0, 50)$

Why is Beta1 dlnorm and Beta 2 dnorm?

Polynomial

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_1 x_i + \beta_2 x_i^2$$

$$\alpha \sim \text{Normal}(178, 20)$$

$$\beta_1 \sim \text{Log-Normal}(0,1)$$

$$\beta_2 \sim \text{Normal}(0,1)$$

$$\sigma \sim \text{Uniform}(0, 50)$$

B (Basis)-Splines

B-spline - generate synthetic predictor variables that turn off specific a parameters within a range of the real predictor variables.

Basis Function - each synthetic variable (many Betas)

Knots - pivot points used to divide the horizontal axis.

Where should the knots go? You decide!

Cherry Blossoms in Japan from 812 CE - 2015 CE.

More "wiggly."

B-Splines

function

Weight of basis function (influence wiggle)

B-Splines

Knots evenly spaced.

Knots weighted.

(Both Degree 1)

B-Splines - Degree

Degrees determine how many basis functions overlap at each knot.

Knots evenly spaced by year.

Knots weighted.

Degree 3 - 4 functions combine (cubic spline)

 $D_i \sim \text{Normal}(\mu_i, \sigma)$

Probability of model

$$\mu_i = \alpha + \sum_{k=1}^K w_k B_{k,i}$$

Priors

$$\alpha \sim \text{Normal}(100, 10)$$

$$w_j \sim \text{Normal}(0, 10)$$

$$\sigma \sim \text{Exponential}(1)$$

Exponential distribution of sigma - contains no more than mean deviation

B-Splines - Posterior

Construct Posterior

```
m4.7 < - quap(
alist(
    D ~ dnorm( mu , sigma ) ,
    mu < -a + B \% *\% w,
    a \sim dnorm(100,10),
    w \sim dnorm(0,10),
    sigma \sim dexp(1)
), data=list( D=d2$doy , B=B ) ,
start=list( w=rep( 0 , ncol(B) ) ) )
```


B-Splines - Posterior

Plot Posterior Predictions

B-Splines

How are this and this related?

$$D_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \sum_{k=1}^K w_k B_{k,i}$$

$$\alpha \sim \text{Normal}(100, 10)$$

$$w_i \sim \text{Normal}(0, 10)$$

$$\sigma \sim \text{Exponential}(1)$$