

All the inputs and outputs for the FPGA (Yes, this schematic symbol is even terribler.)

IC5 EP4CE30F23C6N

LVDSIN_CLK_P LVDSIN_CLK_N LVDSIN_TRIG_P LVDSIN_TRIG_N LVDSIN_TRIGB_P LVDSIN_TRIGB_N

LVDS receivers require an external 100 Ohm termination resistor between the two signals at the input buffer

We use 0201 resistors that fit on the bottom of the board and connect the vias under the FPGA for each LVDS input pair

Hard reset (reload firmware) and soft reset (send reset signal to firmware) buttons

2.5V outputs from the FPGA for debugging, etc.

These go to LEDs for monitoring

2.5V inputs and outputs to/from the FPGA for status monitoring and control of things, etc.

50 Ohm external trigger input

50 Ohm 1kHz / Aux output

1kOhm 1kHz output for probe compensation

Extra clock input and output

LVDS outputs and inputs for sync between boards

Cyclone IV E left and right I/O banks support true LVDS transmitters, so use them for LVDS outputs

50 MHz clock for FPGA

