OBJECTIVE TYPE QUESTIONS

A. Fill up the blanks

- 1. The formula for the Fourier coefficients a_n , b_n for f(x) in $(-\pi, \pi)$ are ______.
- 2. If f(x) is an even function in $(-\pi, \pi)$, then the Fourier coefficients are $a_n = \underline{\hspace{1cm}}, b_n = \underline{\hspace{1cm}}$
- 3. If $f(x) = x^2 + x$ is expressed as a Fourier series in (-2, 2), then $f(2) = \underline{\hspace{1cm}}$
- 4. If the Fourier series for the function $f(x) = \begin{cases} 0, & 0 < x < \pi \\ \sin x, & \pi < x < 2\pi \end{cases}$ is

$$f(x) = -\frac{1}{\pi} + \frac{2}{\pi} \left[\frac{\cos 2x}{1 \cdot 3} + \frac{\cos 4x}{3 \cdot 5} + \frac{\cos 6x}{5 \cdot 7} + \dots \right] + \frac{\sin x}{2}, \text{ then } \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots = \underline{\qquad}.$$

- 5. The half-range sine series for f(x) = x in $(0, \pi)$ is _____.
- 6. The Dirichlet's conditions for f(x) is $c < x < c + 2\pi$ to have a Fourier series expansion are ______
- 7. The value of f(2) in the half-range cosine series for $f(x) = x^2$ in (0, 2) is _____.
- 8. The root mean square value of $f(x) = x^2$ in (0, 6) is _____.
- 9. The half-range sine series for $f(x) = x(\pi x)$ in $(0, \pi)$ is $x(\pi x) = \frac{8}{\pi} \left[\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right]$ then the value of $\frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \dots = \frac{1}{5^3} + \frac{1}{5^3}$
- 10. The half-range cosine series for $f(x) = (x 1)^2$ in (0, 1) is $f(x) = \frac{1}{3} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos n\pi x$, then the value of $\sum_{n=1}^{\infty} \frac{1}{n^4}$ is ______.
- 11. The Fourier series for f(x) = x in $(0, 2\pi)$ is $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$, then the value of $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ is _____.
- 12. If the half-range cosine series of $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 < x \le 2 \end{cases}$ is

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\frac{\cos \pi x}{1^2} + \frac{\cos 3\pi x}{3^2} + \frac{\cos 5\pi x}{5^2} + \dots \right]$$
 then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \underline{\qquad}$.

13. If the Fourier series of $f(x) = x(2\pi - x)$ in $(0, 2\pi)$ is $x(2\pi - x) = \frac{2\pi^2}{3} - 4\sum_{n=1}^{\infty} \frac{\cos nx}{x^2}$, then the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \underline{\qquad}$

If $f(x)$ is discontinuous at $x = a$, then the sum of a .	Fourier Series	17.71
If $f(x)$ is discontinuous at $x = a$, then the sum of the Fourier set the Parseval's identity for the half-range cosine expansion of g . Choose the correct answer	Pries of $f(x)$ when $x = a$ is	_

1. The value of the constant term in the Fourier series expansion of $\cos^2 x$ in $(-\pi, \pi)$ is

2. The value of b_n in the Fourier series expansion of $f(x) = x^2$ in $(-\pi, \pi)$ is

(a) 0 (b)
$$2\pi$$
 (c) π

3. The value of a_n in the Fourier series of $f(x) = x - x^3$ in $(-\pi, \pi)$ is

(a)
$$\frac{\pi}{2}(2-\pi^2)$$
 (b) $\frac{\pi}{4}(2-\pi^2)$ (c) 0

The Fourier of $f(x) = \begin{cases} \sin x, \ 0 \le x \le \pi \end{cases}$ (d) None of these

4. The Fourier of $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \pi < x \le 2\pi, \end{cases}$ of period 2π is

$$f(x) = \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \left[\frac{\cos 2x}{1 \cdot 3} + \frac{\cos 4x}{3 \cdot 5} + \frac{\cos 6x}{3 \cdot 7} + \dots \right], \text{ then the value of } \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots \text{ is}$$
(a) 1

(b) π

(c) $\frac{1}{2}$

(d) $\frac{\pi}{2}$

(a) 1 (b) π (c) $\frac{1}{2}$ (d) $\frac{\pi}{2}$ 5. The Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$ is $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \left[\frac{4}{n^2} \cos nx - \frac{2}{n} \sin nx \right]$, then the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ is

$$\frac{1^{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots \text{ is}}{4}$$
(a) $\frac{\pi - 2}{4}$
(b) $\frac{\pi^{2}}{6}$
(c) $\frac{\pi^{2}}{8}$
(d) $\frac{\pi^{2}}{12}$
(a) 4
(b) 2
(c) $\frac{\pi^{2}}{8}$

7. The root mean square value of f(x) = 1 - x in zz0 < x < 1 is

the floor mean square value of
$$f(x) = 1 - x$$
 in $zz0 < x < 1$ is

(a) $\frac{1}{2}$

(b) $\frac{1}{\sqrt{3}}$

(c) $\frac{1}{\sqrt{2}}$

(d) 1

8. If the Fourier series for f(x) in $(0, 2\pi)$ is $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$, then the root mean value is

(a)
$$\frac{\pi}{2\sqrt{3}}$$
 (b) $\frac{\pi}{\sqrt{3}}$ (c) $\frac{\pi}{3\sqrt{2}}$ (d) $\frac{\pi^2}{\sqrt{3}}$

(a)
$$\frac{\pi}{2\sqrt{3}}$$
 (b) $\frac{\pi}{\sqrt{3}}$ (c) $\frac{\pi}{3\sqrt{2}}$ (d) $\frac{\pi^2}{\sqrt{3}}$

(a) $\frac{1}{2}$ (b) 0 (c) $\frac{\pi}{\sqrt{3}}$ (d) $\frac{\pi^2}{\sqrt{3}}$

(e) $\frac{1}{2}$ (f) $\frac{\pi}{\sqrt{3}}$ (f) $\frac{\pi}{\sqrt{3}}$ (g) $\frac{\pi}{\sqrt{3}}$ (h) $\frac{\pi}{\sqrt{3}}$ (e) $\frac{\pi}{\sqrt{3}}$ (f) $\frac{\pi}{\sqrt{$

The Fourier series for $f(x) = \begin{cases} -k, -\pi < x < 0 \\ k, 0 < x < \pi \end{cases}$ is $f(x) = \frac{4k}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right],$

then the value of
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$
 is (a) $\frac{\pi}{6}$ (b) $\frac{\pi^2}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi^2}{4}$

The half-range cosine series for $f(x) = x$ in $(0, \pi)$ is $x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ is odd}} \frac{\cos nx}{n^2}$, then the value of $\frac{1}{4} + \frac{1}{3^2} + \frac{1}{6^2} + \cdots$ is $\frac{\pi^2}{3^2} + \frac{1}{6^2} + \cdots$ is $\frac{\pi^2}{3^2} + \frac{\pi^2}{3^2} + \cdots$ (c) $\frac{\pi^2}{3^2} + \frac{\pi^2}{3^2} + \cdots$ is $\frac{\pi^2}{3^2} + \cdots$ is $\frac{$

$$\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots \text{ is} \qquad \text{(a) } \frac{\pi^{2}}{6} \qquad \text{(b) } \frac{\pi^{2}}{8} \qquad \text{(c) } \frac{\pi^{2}}{12} \qquad \text{(d) } \frac{\pi}{4}$$
Scanned by C

17.72 **Engineering Mathematics**

- 12. The half-range cosine series for $f(x) = x(\pi x) \ln 0 < x < \pi$ is $x(\pi x) = \frac{\pi^2}{6} \left[\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \dots \right]$

- then the value of $\sum_{n=1}^{\infty} \frac{1}{n^4} =$ (a) $\frac{\pi^4}{8}$ (b) $\frac{\pi^4}{96}$ (c) $\frac{\pi^4}{90}$ (d) $\frac{\pi^2}{90}$ 13. If the Fourier series of f(x) = x (2*l x*) is (0, 2*l*) of period 2*l* is $f(x) = \frac{2}{3}l^2 \frac{4}{\pi^2}l^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \cos\left(\frac{n\pi x}{l}\right)$. then the value of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ is (a) $\frac{\pi^2}{6}$ (b) $\frac{\pi^2}{8}$

- 14. If $x = \frac{l}{2} \frac{4l}{\pi^2} \left(\cos \frac{\pi x}{l} + \frac{1}{3^2} \cos \frac{3\pi x}{l} + \frac{1}{5^2} \cos \frac{5\pi x}{l} + \cdots \right)$ in 0 < x < l, f(x + 2l) = f(x),
 - then the value of $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$ is (a) $\frac{\pi^2}{32}$ (b) $\frac{\pi^4}{96}$ (c) $\frac{\pi^4}{90}$ (d) None of these

- 15. If the half-range cosine series for $f(x) = (x-1)^2$, 0 < x < 1, is $f(x) = \frac{1}{3} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos n\pi x$, then the value of
 - $\sum_{n=4}^{\infty} \frac{1}{n^4}$ is

- (b) $\frac{\pi^4}{96}$ (c) $\frac{\pi^2}{16}$
- (d) None of these

ANSWERS

A. Fill up the blanks

- 1. $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \, n = 0, 1, 2, 3, ...,$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \, n = 1, 2, 3, ...$
- 2. $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$, n = 0, 1, 2, ... and $b_n = 0, 3, 4$
- 3. 4

- 4. $\frac{\pi 2}{4}$
- 5. $2 \left[\sin x \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x \cdots \right]$

- 6. Refer definition 17.3, page 17.2.
- 7. 4

9. $\frac{\pi^{3}}{22}$

- 10. $\frac{\pi^4}{90}$
- 11. $\frac{8\pi^2}{2}$

12. $\frac{\pi^2}{8}$

- 13. $\frac{\pi^2}{6}$
- 14. $\frac{1}{2}[f(a-)+f(a+)]$

- 15. $\int [f(x)^2] dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2$
- B. Choose the correct answer
 - 2. (a) 1. (b)
- 4. (c) 3. (c)
- 5. (b)
- 6. (c) 7. (b)
- 8. (a)
- 10. (c) 9. (b)

- 12. (c) 11. (b)
- 13. (c)
- 14. (b)
- 15. (a)