Ejercitación: DISEÑO DE INDUCTOR

Se tiene:

 $L = 180 \mu Hy$

 $I_{L_{DC}} = 1A$

 $I_{L_{max}} = 1,2A$

 $F_{SW} = 25Khz$

 $P_{cu_{max}} = 1W$

Método de Erickson

Se definen:

Wire resistivity

ρ

 $(\Omega - cm)$

Core cross-sectional area

 A_c

(cm²)

Peak winding current

 I_{max}

(A)

Core window area

 W_A

(cm²)

Inductance

L

(H)

Mean length per turn

MLT

(cm)

Winding resistance

R

 (Ω)

Winding fill factor

 K_{μ}

Maximum operating flux density

B

(T)

Especificaciones

Cálculo de la resistencia máxima del alambre

Cálculo de la constante geométrica del núcleo

Selección del núcleo

Cálculo del entrehierro necesario

Cálculo de la cantidad de vueltas del alambre

Cálculo de la sección del alambre

Verificación de la resistencia del bobinado

Cálculo de la densidad de corriente en el alambre

Se verifica que el núcleo no sature

Selección de un nuevo núcleo

Se calcula la profundidad de penetración

Fin del diseño

1) Cálculo de la resistencia máxima del alambre: $R_{cu_{max}}[\Omega]$

Despreciando el aporte a las pérdidas por el rizado de la corriente:

$$P_{cu_{max}} = I_{L_{DC}}^2 R_{cu_{max}} = R_{cu_{max}} = \frac{P_{cu_{max}}}{I_{L_{DC}}^2} = \frac{1W}{(1A)^2} = 1\Omega$$

2) Cálculo de la constante geométrica del núcleo: $K_g[cm^3]$

Dada la F_{sw} =25kHz, se decide utilizar N27 como material del núcleo

	Frec < 100Khz	Frec < 1Mhz
Magnetics	F,T,P	F,K,N
TDK	P7C4	P7C40
Siemens	N27 / N41	N67
Ferroxcube	3C8	3C85

Nota: por debajo de los 10Khz no se utiliza ferrite.

De la hoja de datos del material N27 se obtiene $B_{max} = 400mT$ pero usamos $B_{max} = 300mT$ para tener margen de seguridad

El factor de utilización $0 < K_u < 1$ varia segun la geometria de la ventana Para una ventana cuadrada, se utiliza $K_u = 0.33$

$$K_g = \frac{A_C^2 W_A}{(MLT)} \ge \frac{\rho_{CU} L^2 I_{max}^2}{B_{max}^2 R_{CU} K_u} \cdot 10^8 = \frac{\left(1,724 \cdot 10_{\Omega cm}^{-6}\right) \cdot \left(180 \cdot 10^{-6} Hy\right)^2 \cdot \left(1,2A\right)^2}{(0,3T)^2 \left(1\Omega\right) \cdot \left(0,33\right)} \cdot 10^8$$

$$K_g \ge 0.27 \cdot 10^{-3} cm^5$$

Se elije el núcleo más pequeño que cumple con lo pedido: *EE*12

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Core
type	constant	constant	sectional	winding	length	path	weight
	**	.,	area	area	per turn	length	
(A)	K_{g}	K_{gfe}	A_c	W_A	MLT	ℓ_m	
(mm)	(cm ⁵)	(cm ^x)	(cm ²)	(cm ²)	(cm)	(cm)	(g)
EE12	$0.731 \cdot 10^{-3}$	$0.458 \cdot 10^{-3}$	0.14	0.085	2.28	2.7	2.34
EE16	$2.02 \cdot 10^{-3}$	$0.842 \cdot 10^{-3}$	0.19	0.190	3.40	3.45	3.29
EE19	$4.07 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	0.23	0.284	3.69	3.94	4.83
EE22	$8.26 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	0.41	0.196	3.99	3.96	8.81
EE30	$85.7 \cdot 10^{-3}$	$6.7 \cdot 10^{-3}$	1.09	0.476	6.60	5.77	32.4
EE40	0.209	11.8·10-3	1.27	1.10	8.50	7.70	50.3
EE50	0.909	$28.4 \cdot 10^{-3}$	2.26	1.78	10.0	9.58	116
EE60	1.38	$36.4 \cdot 10^{-3}$	2.47	2.89	12.8	11.0	135
EE70/68/19	5.06	$75.9 \cdot 10^{-3}$	3.24	6.75	14.0	18.0	280

3) Cálculo del entrehierro necesario: $l_g[m]$

$$l_g = \frac{\mu_o L I_{max}^2}{B_{max}^2 A_C} 10^4 = \frac{(4\pi \cdot 10^{-7} Hy/m) \cdot (180 \cdot 10^{-6} Hy)(1,2A)^2}{(0,3T)^2 \cdot (0,14 cm^2)} 10^4 = 2,585 \cdot 10^{-4} m$$

$$l_g = 0.258mm$$

4) Cálculo de la cantidad de vueltas del alambre: n_L

1º opción:

$$L = \frac{\mu_o A_C n_L^2}{l_g} = > n_L = \sqrt{\frac{L \cdot l_g}{A_C \mu_o}} = \sqrt{\frac{(180 \cdot 10^{-6} Hy) \cdot (2,585 \cdot 10^{-4} m)}{(1,4 \cdot 10^{-5} m^2) \cdot (4\pi \cdot 10^{-7} Hy/m)}} = 51,4$$

$$=> n_L = 52$$

2º opción:

$$n_L = \frac{L I_{max}}{B_{max} A_C} \cdot 10^4 = \frac{(180 \cdot 10^{-6} Hy) \cdot (1,2A)}{(0,3T) \cdot (0,14cm^2)} \cdot 10^4 = 51,4$$
$$=> n_L = 52$$

5) Cálculo de la sección del alambre: $Aw[cm^2]$

$$A_W \le \frac{K_u W_A}{n_L} = \frac{(0.33) \cdot (0.085 \, cm^2)}{52} = 5.4 \cdot 10^{-4} \, cm^2$$
 $A_W \le 0.54 \cdot 10^{-3} \cdot cm^2$

$$=> AWG #30 tiene A_w = 0.5067 \cdot 10^{-3} cm^2$$

AWG#	Bare area, 10 ⁻³ cm ²	Resistance, $10^{-6} \Omega/cm$	Diameter, cm
30	0.5067	3402.2	0.0294
31	0.4013	4294.6	0.0267
32	0.3242	5314.9	0.0241
33	0.2554	6748.6	0.0236
34	0.2011	8572.8	0.0191

6) Se verifica la resistencia del bobinado: $R_{cu}[\Omega]$

$$R_{cu} = \frac{\rho_{cu} n_L(MLT)}{A_W} = \frac{(1.724 \cdot 10^{-6} \Omega \ cm) \cdot 52 \cdot (2,28cm)}{0,5067 \cdot 10^{-3} cm^2} = 0,4\Omega \qquad R_{cu} < 1\Omega$$

 ρ_{cu} : resistividad del cobre

7) Cálculo de la densidad de corriente en el alambre: $\sigma_{IL}[A/mm^2]$

$$\sigma_{IL} = \frac{I_{max}}{A_W} = \frac{1,2A}{0,05067mm^2} \cong 24 \frac{A}{mm^2}$$
 El bobinado calentará mucho!!

Hay que recalcular los parámetros pasando a un núcleo más grande.

Método de Tacca

1) Cálculo de sección del F_e : $S_{F_e}[cm^2]$

$$S_{F_e} = \sqrt{\frac{L \cdot I_{L_{ef}} I_{L_{max}}}{F_b F_V B_{max} \sigma_{I_L}}} \cdot 10 = \sqrt{\frac{(180 \cdot 10^{-6} Hy)(1A)(1,2A)}{(0,33) \cdot 1 \cdot (0,3T)(5 A/mm^2)}} \cdot 10 = 0,209 \ cm^2$$

donde:

 F_b : Factor de utilización de la ventana. Es el K_u utilizado en el metodo Erickson

 F_V : Factor de ventana. En este metodo es un factor de diseño

 σ_{IL} : Densidad de corriente en el cobre. En este metodo es un factor de diseño

De la tabla de núcleos E del libro de Erickson se tiene:

Core type	Geometrical constant	Geometrical constant	Cross- sectional area	Bobbin winding area	Mean length per turn	Magnetic path length	Core weight
(A)	K_{g}	K_{gfe}	A_c	W_A	MLT	ℓ_m	
(mm)	(cm ⁵)	(cm ^x)	(cm^2)	(cm ²)	(cm)	(cm)	(g)
EE12	$0.731 \cdot 10^{-3}$	$0.458 \cdot 10^{-3}$	0.14	0.085	2.28	2.7	2.34
EE16	$2.02 \cdot 10^{-3}$	$0.842 \cdot 10^{-3}$	0.19	0.190	3.40	3.45	3.29
EE19	$4.07 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	0.23	0.284	3.69	3.94	4.83
EE22	$8.26 \cdot 10^{-3}$	1.8·10-3	0.41	0.196	3.99	3.96	8.81

Se verifica el valor de F_V con las dimensiones de un núcleo EE19

$$F_V = \frac{S_V}{S_{FP}} = \frac{E\left(\frac{B-C}{2}\right)}{CD} = \frac{5.7mm\left(\frac{14.1mm-4.6mm}{2}\right)}{5.6mm4.7mm}$$
 CORE - EE Series

 $F_V \cong 1$

			DIMENSIONS(mm)								
A	В	С	D	E	F						
30.2±0.3	19.8±0.2	7.0±0.2	7.0±0.2	10.0±0.2	15.1±0.2						
28.2±0.3	19.0±0.2	7.0±0.2	10.5±0.2	6.4±0.2	10.5±0.2						
25.2±0.3	18.2±0.2	7.2±0.2	7.1±0.2	9.2±0.2	12.5±0.2						
20.2±0.3	14.5±0.2	5.8±0.2	5.7±0.2	7.5±0.2	10.5±0.2						
19.0±0.3	14.1±0.2	4.6±0.2	4.7±0.2	5.7±0.2	8.0±0.2						
16.0±0.3	11.5±0.2	4.5±0.2	4.5±0.2	5.9±0.2	8.2±0.2						
13.2±0.3	10.1±0.2	2.8±0.2	5.9±0.2	4.8±0.2	6.4±0.2						
10.2±0.3	7.9±0.2	2.3±0.2	4.5±0.3	4.3±0.2	5.6±0.2						
	30.2±0.3 28.2±0.3 25.2±0.3 20.2±0.3 19.0±0.3 16.0±0.3 13.2±0.3	30.2±0.3 19.8±0.2 28.2±0.3 19.0±0.2 25.2±0.3 18.2±0.2 20.2±0.3 14.5±0.2 19.0±0.3 14.1±0.2 16.0±0.3 11.5±0.2 13.2±0.3 10.1±0.2	30.2±0.3 19.8±0.2 7.0±0.2 28.2±0.3 19.0±0.2 7.0±0.2 25.2±0.3 18.2±0.2 7.2±0.2 20.2±0.3 14.5±0.2 5.8±0.2 19.0±0.3 14.1±0.2 4.6±0.2 16.0±0.3 11.5±0.2 4.5±0.2 13.2±0.3 10.1±0.2 2.8±0.2	30.2±0.3 19.8±0.2 7.0±0.2 7.0±0.2 28.2±0.3 19.0±0.2 7.0±0.2 10.5±0.2 25.2±0.3 18.2±0.2 7.2±0.2 7.1±0.2 20.2±0.3 14.5±0.2 5.8±0.2 5.7±0.2 19.0±0.3 14.1±0.2 4.6±0.2 4.7±0.2 16.0±0.3 11.5±0.2 4.5±0.2 4.5±0.2 13.2±0.3 10.1±0.2 2.8±0.2 5.9±0.2	30.2±0.3 19.8±0.2 7.0±0.2 7.0±0.2 10.0±0.2 28.2±0.3 19.0±0.2 7.0±0.2 10.5±0.2 6.4±0.2 25.2±0.3 18.2±0.2 7.2±0.2 7.1±0.2 9.2±0.2 20.2±0.3 14.5±0.2 5.8±0.2 5.7±0.2 7.5±0.2 19.0±0.3 14.1±0.2 4.6±0.2 4.7±0.2 5.7±0.2 16.0±0.3 11.5±0.2 4.5±0.2 4.5±0.2 5.9±0.2 13.2±0.3 10.1±0.2 2.8±0.2 5.9±0.2 4.8±0.2						

2) Cálculo del entrehierro: $l_g[mm]$

$$l_g = 12 \frac{L}{S_{F_e}} \left(\frac{I_{L_{max}}}{B_m} \right)^2 = 12 \cdot \frac{180 \cdot 10^{-6} Hy}{0,23 cm^2} \left(\frac{1,2A}{0,3T} \right) = 0,15 mm$$

3) Cálculo del número de vueltas del alambre: n_L

$$n_L = 850 \left(\frac{B_{max}}{I_{L_{max}}}\right) l_g = 850 \cdot \left(\frac{0.3T}{1.2A}\right) 0.15mm = 31.87$$

=> $n_L = 32$

 $10^{-6} \Omega/cm$ 850.3 1.040 674.2 2.557 0.927 0.825 336.3 5.128 0.654 266.7 6.463 0.583 0.519 167.7 10.28 0.462 0.411 133.0 105.5 0.366 83,67 0.326 66.32 0.267 41.37 41.60 0.238 0.190 0.171 0.153 0.137 165.8 0.122 209.5 0.109 0.0948 0.0874 4.116 2.508 0.0632

4) Evaluación de la sección del alambre:
$$A_W[cm^2]$$

$$A_W \le \frac{K_u W_A}{n_L} = \frac{0.33 \cdot 0.284 cm^2}{32} = 2.93 \cdot 10^{-3} cm^2$$

=> $AWG \# 23 \ tiene \ A_W = 2.508 \cdot 10^{-3} cm^2$

 $R_{cu} < 1\Omega$

5) Se verifica la resistencia del bobinado:
$$R_{cu}[\Omega]$$

$$R_{cu} = \frac{\rho_{cu} n_L (MLT)}{A_W} = \frac{(1.724 \cdot 10^{-6} \Omega \ cm) \cdot 32 \cdot (3.69 cm)}{2.508 \cdot 10^{-3} cm^2} = \frac{0.08\Omega}{0.080}$$

6) Cálculo de la densidad de corriente en el alambre: $\sigma_{IL}[A/mm^2]$

$$\sigma_{IL} = \frac{I_{max}}{A_{vv}} = \frac{1,2A}{0.2508mm^2} = 4,78 \frac{A}{mm^2} < 5 \frac{A}{mm^2}$$

7) Se verifica que no sature el núcleo

$$B_{max} = \frac{\mu_o \ n_L \ I_{L_{max}}}{l_a} = \frac{(4\pi \cdot 10^{-7} Hy/m) \cdot 32 \cdot (1,2A)}{1,5 \cdot 10^{-4} m} = 321 mT < 400 mT$$

8) Se calcula la profundidad de penetración: δ [cm]

$$\delta = \frac{7.5}{\sqrt{f_{sw}}} = \frac{7.5}{\sqrt{25Khz}} = 0.047 \ cm$$

Se puede corroborar gráficamente.

El diametro del conductor se obtiene:

AWG#	Bare area, 10 ⁻³ cm ²	Resistance, 10 ⁻⁶ Ω/cm	Diameter, cm	
0000	1072.3	1.608	1.168	
000	850.3	2.027	1.040	
00	674.2	2.557	0.927	
0	534.8	3.224	0.825	
1	424.1	4.065	0.735	
2	336.3	5.128	0.654	
3	266.7	6.463	0.583	
4	211.5	8.153	0.519	
5	167.7	10.28	0.462	
6	133.0	13.0	0.411	
7	105.5	16.3	0.366	
8	83.67	20.6	0.326	
9	66.32	26.0	0.291	
10	52.41	32.9	0.267	
11	41.60	41.37	0.238	
12	33.08	52.09	0.213	
13	26.26	69.64	0.190	
14	20.02	82.80	0.171	
15	16.51	104.3 0.1		
16	13.07	131.8	0.137	
17	10.39	165.8	0.122	
18	8.228	209.5	0.109	
19	6.531	263.9	0.0948	
20	5.188	332.3	0.0874	
21	4.116	418.9	0.0785	
22	3.243	531.4	0.0701	
23	2.508	666.0	0.0632	
24	2.047	842.1	0.0566	
25	1.623	1062.0	0.0505	
26	1.280	1345.0	0.0452	
27	1.021	1687.6	0.0409	
28	0.8046	2142.7	0.0366	
29	0.6470	2664.3	0.0330	

Se verifica que no hay efecto pelicular, siendo que:

$$\delta \ge \frac{d_{AWG \#23}}{2} = \frac{0,0632 \ cm}{2} = 0,0316 \ cm$$

En caso que se hubiera verificado un efecto skin, se hubiera tenido que utilizar un tipo de cable llamado alambre *litz* (alambre trenzado). Consiste en varios hilos de alambre aislados entrelazados en un patrón cuidadosamente diseñado, de modo que el campo magnético general actúa por igual en todos los cables y hace que la corriente total se distribuya por igual entre ellos. Dado que el efecto skin tiene poco efecto sobre cada una de las hebras delgadas, el haz no sufre el mismo aumento en la resistencia de CA que un conductor sólido de la misma área de sección transversal debido al efecto skin.

EE19 Ferrite Core

Potencia	Tipo E		Tipo P (Cazoleta)		RM	
(W)	N27 25Khz	N67 100Khz	N41 25Khz	N67 100Khz	N41 25Khz	N67 100Khz
5	E13/7/4	E8,8			RM5	RM5LP
12	E16/8/5		P14x8	P9x5	RM6	RM4LP
20	E20/10/6	E13/7/4		P11x7	RM6	RM4
35					RM8	RM5
50	E25/13/7	E16/8/5		P14x8		RM6
63		E19/8/5			RM10	RM7LP
80	E30/15/7	E20/10/6	P26x16			RM7
95	E30/15/7			P18x11		
120	E34/14/9	E25/13/7		P22x13	RM12	RM8