Transaction ID	Item	Store Location	Date	Price	
:	:	:	:	:	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	
: :	:	:	:		

Table 2.4. Data set containing information about customer purchases.

and hence, aggregation often enables the use of more expensive data mining algorithms. Second, aggregation can act as a change of scope or scale by providing a high-level view of the data instead of a low-level view. In the previous example, aggregating over store locations and months gives us a monthly, per store view of the data instead of a daily, per item view. Finally, the behavior of groups of objects or attributes is often more stable than that of individual objects or attributes. This statement reflects the statistical fact that aggregate quantities, such as averages or totals, have less variability than the individual values being aggregated. For totals, the actual amount of variation is larger than that of individual objects (on average), but the percentage of the variation is smaller, while for means, the actual amount of variation is less than that of individual objects (on average). A disadvantage of aggregation is the potential loss of interesting details. In the store example, aggregating over months loses information about which day of the week has the highest sales.

Example 2.7 (Australian Precipitation). This example is based on precipitation in Australia from the period 1982–1993. Figure 2.8(a) shows a histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, while Figure 2.8(b) shows a histogram for the standard deviation of the average yearly precipitation for the same locations. The average yearly precipitation has less variability than the average monthly precipitation. All precipitation measurements (and their standard deviations) are in centimeters.

2.3.2Sampling

Sampling is a commonly used approach for selecting a subset of the data objects to be analyzed. In statistics, it has long been used for both the preliminary investigation of the data and the final data analysis. Sampling can also be very useful in data mining. However, the motivations for sampling

- (a) Histogram of standard deviation of average monthly precipitation
- (b) Histogram of standard deviation of average yearly precipitation

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the period 1982–1993.

in statistics and data mining are often different. Statisticians use sampling because obtaining the entire set of data of interest is too expensive or time consuming, while data miners usually sample because it is too computationally expensive in terms of the memory or time required to process all the data. In some cases, using a sampling algorithm can reduce the data size to the point where a better, but more computationally expensive algorithm can be used.

The key principle for effective sampling is the following: Using a sample will work almost as well as using the entire data set if the sample is representative. In turn, **a sample is representative** if it has approximately the same property (of interest) as the original set of data. If the mean (average) of the data objects is the property of interest, then a sample is representative if it has a mean that is close to that of the original data. Because sampling is a statistical process, the representativeness of any particular sample will vary, and the best that we can do is choose a sampling scheme that guarantees a high probability of getting a representative sample. As discussed next, this involves choosing the appropriate sample size and sampling technique.

Sampling Approaches

There are many sampling techniques, but only a few of the most basic ones and their variations will be covered here. The simplest type of sampling is **simple random sampling**. For this type of sampling, there is an equal

74 Chapter 2 Data

probability of selecting any particular object. There are two variations on random sampling (and other sampling techniques as well): (1) **sampling without replacement**—as each object is selected, it is removed from the set of all objects that together constitute the **population**, and (2) **sampling with replacement**—objects are not removed from the population as they are selected for the sample. In sampling with replacement, the same object can be picked more than once. The samples produced by the two methods are not much different when samples are relatively small compared to the data set size, but sampling with replacement is simpler to analyze because the probability of selecting any object remains constant during the sampling process.

When the population consists of different types of objects, with widely different numbers of objects, simple random sampling can fail to adequately represent those types of objects that are less frequent. This can cause problems when the analysis requires proper representation of all object types. For example, when building classification models for rare classes, it is critical that the rare classes be adequately represented in the sample. Hence, a sampling scheme that can accommodate differing frequencies for the object types of interest is needed. **Stratified sampling**, which starts with prespecified groups of objects, is such an approach. In the simplest version, equal numbers of objects are drawn from each group even though the groups are of different sizes. In another variation, the number of objects drawn from each group is proportional to the size of that group.

Example 2.8 (Sampling and Loss of Information). Once a sampling technique has been selected, it is still necessary to choose the sample size. Larger sample sizes increase the probability that a sample will be representative, but they also eliminate much of the advantage of sampling. Conversely, with smaller sample sizes, patterns can be missed or erroneous patterns can be detected. Figure 2.9(a) shows a data set that contains 8000 two-dimensional points, while Figures 2.9(b) and 2.9(c) show samples from this data set of size 2000 and 500, respectively. Although most of the structure of this data set is present in the sample of 2000 points, much of the structure is missing in the sample of 500 points.

Example 2.9 (Determining the Proper Sample Size). To illustrate that determining the proper sample size requires a methodical approach, consider the following task.

Given a set of data consisting of a small number of almost equalsized groups, find at least one representative point for each of the groups. Assume that the objects in each group are highly similar

Figure 2.9. Example of the loss of structure with sampling.

to each other, but not very similar to objects in different groups. Figure 2.10(a) shows an idealized set of clusters (groups) from which these points might be drawn.

This problem can be efficiently solved using sampling. One approach is to take a small sample of data points, compute the pairwise similarities between points, and then form groups of points that are highly similar. The desired set of representative points is then obtained by taking one point from each of these groups. To follow this approach, however, we need to determine a sample size that would guarantee, with a high probability, the desired outcome; that is, that at least one point will be obtained from each cluster. Figure 2.10(b) shows the probability of getting one object from each of the 10 groups as the sample size runs from 10 to 60. Interestingly, with a sample size of 20, there is little chance (20%) of getting a sample that includes all 10 clusters. Even with a sample size of 30, there is still a moderate chance (almost 40%) of getting a sample that doesn't contain objects from all 10 clusters. This issue is further explored in the context of clustering by Exercise 4 on page 126.

Progressive Sampling

The proper sample size can be difficult to determine, so **adaptive** or **progressive sampling** schemes are sometimes used. These approaches start with a small sample, and then increase the sample size until a sample of sufficient size has been obtained. While this technique eliminates the need to determine