PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-092891

(43)Date of publication of application: 31.03.2000

(51)Int.CI.

H02P 7/36

(21)Application number: 10-262694

(22)Date of filing:

: 10-262694 17.09.1998 (71)Applicant:

MITSUBISHI ELECTRIC CORP

(72)Inventor:

KANEHARA YOSHIHIKO

MAEZAWA HARUMI KAITANI TOSHIYUKI

(54) MAGNETIC POLE POSITION DETECTOR FOR SYNCHRONOUS MOTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To enable detection with a low price computer and control of generated error by calculating sum of amplitudes of a pair of current pulses in different polarities for each phase with a calculating means to which amplitude of current pulse is inputted and then outputting the reference magnetic pole position, based on such calculated value.

SOLUTION: A calculating means 2a outputs, to a circuit means 1, a voltage command to generate a pair of voltage pulses in different polarities in each phase U, V, W to a circuit means 1, and also outputs a trigger signal synchronized with the voltage command to the detecting means 4. Here, the calculating means 2a obtains amplitudes of a pair of current pulses in different polarities for each phase U, V, W, based on the amplitude of current pulse obtained from the detecting means 4. Any one is outputted as the reference magnetic polarity position θ , based on the sum of amplitude which mutually becomes maximum. As a result, a low price computer can be used and an error, if caused by mixture of noise, can be controlled.

LEGAL STATUS

[Date of request for examination]

26.12.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-92891

(P2000-92891A)

(43)公開日 平成12年3月31日(2000.3.31)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H02P 7/36 303

H02P 7/36 303S 5H575

303Q

審査請求 未請求 請求項の数5 OL (全 14 頁)

		y	
(21)出願番号	特願平10-262694	(71) 出願人	000006013
			三菱電機株式会社
(22)出顧日	平成10年9月17日(1998.9.17)		東京都千代田区丸の内二丁目2番3号
		(72)発明者	金原 義彦
			東京都千代田区丸の内二丁目2番3号 三
			菱電機株式会社内
		(72)発明者	前沢 春見
			東京都千代田区丸の内二丁目2番3号 三
			菱電機株式会社内
		(74)代理人	
		(, , , , , , , , , , , , , , , , , , ,	弁理士 宮田 金雄 (外2名)
			NET DE MAR OF THE
			最終頁に続く
		1	ACPL SCICE V

(54) 【発明の名称】 同期電動機の磁極位置検出装置

(57)【要約】

【課題】 エンコーダなどの位置検出器を用いない同期 電動機の磁極位置において、静止状態の磁極位置を電流 検出ノイズの影響を抑制し検出すること。

【解決手段】 極性が異なる一対の電流パルスの振幅和 を各相毎に演算し、その振幅和に基づいて基準磁極位置 を出力し、極性が異なる一対の電流パルスの振幅差を各 相毎に演算しその振幅差に基づいて微小磁極位置を得、 その微小磁極位置と上記基準磁極位置に基づいて修正磁 極位置を出力する。

【特許請求の範囲】

【請求項1】 多相巻線を持つ同期電動機の各相に電圧 指令に基づいて電圧を印加する回路手段と、トリガ信号 に基づいて上記同期電動機の電流パルスの振幅を検出す る検出手段と、極性が異なる一対の電圧パルスを各相に 発生させる為の電圧指令を上記回路手段に出力しその電 圧指令に同期するトリガ信号を検出手段に出力するとと もに上記同期電動機の基準磁極位置を出力する演算手段 を備え、上記検出手段は電流パルスの振幅を上記演算手 段に出力し、上記演算手段は極性が異なる一対の電流パルスの振幅和を各相毎に演算し、その振幅和に基づいて 基準磁極位置を出力することを特徴とする同期電動機の 磁極位置検出装置。

【請求項2】 多相巻線を持つ同期電動機の各相に電圧 指令に基づいて電圧を印加する回路手段と、トリガ信号 に基づいて上記同期電動機の電流パルスの振幅を検出す る検出手段と、極性が異なる一対の電圧パルスを各相に 発生させる為の電圧指令を上記回路手段に出力しその電 圧指令に同期するトリガ信号を検出手段に出力するとと もに上記同期電動機の基準磁極位置を出力する演算手段 と、上記演算手段から得られた基準磁極位置と上記検出 手段から得られた電流パルスの振幅に基づいて修正磁極 位置を出力する修正手段を備え、上記検出手段は電流パ ルスの振幅を上記演算手段と上記修正手段に出力し、上 記演算手段は極性が異なる一対の電流パルスの振幅和を 各相毎に演算し、その振幅和に基づいて基準磁極位置を 出力し、上記修正手段は極性が異なる一対の電流パルス の振幅差を各相毎に演算しその振幅差に基づいて微小磁 極位置を得、その微小磁極位置と上記演算手段から得ら れた基準磁極位置に基づいて修正磁極位置を出力するこ とを特徴とする同期電動機の磁極位置検出装置。

【請求項3】 上記演算手段は、上記極性が異なる一対の電流パルスの振幅和を各相について演算し、相対的に絶対値が最大になる上記振幅の和に基づいて(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力することを特徴とする請求項1又は請求項2記載の同期電動機の磁極位置検出装置。

【請求項4】 上記演算手段は、上記極性が異なる一対の電流パルスの振幅和の符合を各相について演算し、上記符合に関する各相の組合せに基づいて(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力することを特徴とする請求項1又は請求項2記載の同期電動機の磁極位置検出装置。

【請求項5】 上記演算手段は、上記極性が異なる一対の電流パルスの振幅の和の符合が特定の組合せになった場合、再度、極性が異なる一対の電圧パルスを各相に発生させる為の電圧指令と電流パルスを検出する為のトリガ信号を出力することを特徴とする請求項4記載の同期電動機の磁極位置検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、エンコーダ等の 位置検出器を用いないで静止状態における同期電動機の 磁極位置を検出する装置に関する。

[0002]

【従来の技術】静止状態の同期電動機を起動する場合、 その静止磁極位置は不可欠である。そこで、同期電動機 に電圧パルスを印加することにより、静止磁極位置を得 る方法が考案されている。

【0003】図12は、例えば欧州公開特許明細書25 1,785号に示された従来のエンコーダを用いない同 期電動機の磁極位置検出装置を示す構成図である。ま ず、検出原理について説明する。同期電動機を流れる電 流パルスの振幅は磁気飽和の影響によって、その相対的 な大きさは以下の様に異なる。

- ・回転子磁束に対して増磁する場合 → 磁気飽和大 → 電流パルスの振幅大
- ・回転子磁束に対して減磁する場合 → 磁気飽和小 → 電流パルスの振幅小

【0004】図13は同期電動機の磁極位置と後述する電流パルスの振幅 iul,iv2,iw3,iu4,iv5,iw6 の関係の一例である。図の様に磁気飽和が起因する影響は磁極位置に対して360度の周期で変化する。例えば、磁極位置が60度の時では、振幅iw6の絶対値が、iul~iv5の絶対値より相対的に大きい。また、磁極位置が120度の時には振幅iv2の絶対値が他の5つの振幅の絶対値より相対的に大きい。そこで、電流 iul,iv2,iw3,iu4,iv5,iw6 の中で相対的に絶対値が最も大きい電流パルスの振幅に基づいて磁極位置を出力しても良い。

【0005】図12において、1は回路手段、2は演算手段、3は三相巻線を持つ同期電動機、4は演算手段2から得られたトリガ信号に基づいて同期電動機3の各相の電流パルスの振幅を検出する検出手段である。演算手段2は各相についてHもしくはLの電圧指令を回路手段1に出力する。図14は回路手段1の内部構成を示す図である。5~7は反転器、8,9は電圧VDCの直流電圧源、10はスイッチSUH、11はスイッチSUL、12はスイッチSVH、13はスイッチSVL、14はスイッチSWH、15はスイッチSWLである。

【0006】反転器5は入力がHの時はLを出力し、入力がLの時はHを出力する。同様に反転器6,7も入力がHの時はLを出力し、入力がLの時はHを出力する。例えば演算手段2から得られたU相電圧指令がHの場合、スイッチSUH10にONの指令が入力されると同時に、反転回路5を介してスイッチSUL11にOFFの指令が入力される。この時、スイッチSUH10は短絡、スイッチSUL11は開放であるので、U相の電圧は+VDCである。また、U相電圧指令がLの場合、スイッチSUH10へOFFの指令が入力されると同時に、反転回路5を介してスイッチSUL11へONの指令が

入力される。この時、スイッチSUH10は開放,スイッチSUL11は短絡であるので、U相の電圧は-VDCである。

【0007】同様にV相電圧指令がHの場合V相の電圧は+VDC、V相電圧指令がLの場合V相の電圧は-VDCである。同様にW相電圧指令がHの場合W相の電圧は+VDC、W相電圧指令がLの場合W相の電圧は-VDCである。この様に回路手段1は、演算手段2から得られたH又はLの電圧指令に基づいて+VDC又は-VDCの電圧を同期電動機3の各相に印加する。

【0008】図15は、検出手段4の内部構成を示す図である。16~18は電流検出器、19~21はA/D変換器、22~24はサンプルホールド回路である。A/D変換器19は電流検出器16から得られたU相電流をデジタル信号に変換する。サンプルホールド回路22は、演算手段2からトリガ信号が入力されるタイミングでA/D変換器19から得られた電流値をサンプルホールドし、電流パルスの振幅として演算手段2へ出力する。

【0009】図3は、回路手段1が同期電動機3の各相に印加する電圧と各相に流れる電流と演算手段2が出力するトリガ信号の様子を示している。区間aにおいて演算手段2は、U,V,W相の電流,電圧指令をそれぞれしの状態から、U相の電圧指令をHに変化させる。これに従って回路手段1はU相に電圧+VDCを印加する。時間 Δ T 秒後、演算手段2はトリガ信号を検出手段4に出力する。そして、検出手段4は電流パルスの振幅を出力し、演算手段2はU相の電流パルスの振幅iulを得る。ここで、Δ T は同期電動機3を磁気飽和させる時間である。区間 b において演算手段2はU相の電圧指令をHからしに変化させ、これに従って回路手段1はU相に電圧-VDCを印加する。

【0010】各相の電流が十分小さくなった後、区間 c では同様に V 相に電圧 + V DCを印加する。 Δ T 秒後に演算手段 2 は検出手段 4 にトリガ信号を出力する。 そして、検出手段 4 は電流パルスの振幅を出力し、演算手段 2 は V 相の電流パルスの振幅 i v 2 を得る。 同様に、 区間

 $\theta = (180/\pi) \times (\tan 2\theta) / 2$ (度)

という近似式が成り立つ。そこで、後述する9つの電流 パルスの振幅 iul, ivl, iwl, iu2, iv2, iw2, iu3, iv 3, iw3に基づいてここで、iau, ibu, iav, ibv, iaw, i eにおいて、演算手段2はW相の電流パルスの振幅iw3を得る。

【0011】区間fにおいて、各相間に電位差はないように、U, V, W相の電圧指令をHの状態にしておく。区間gにおいて、演算手段2はU相の電圧指令をLに変化させる。これに従って回路手段1はU相に電圧-VDCを印加する。区間aではU相に電圧+VDCを印加したのに対し、区間gではU相に極性の異なる電圧-VDCを印加した。即ち演算手段2の電圧指令に基づいて、区間aの電圧パルスと区間gの電圧パルスという極性の異なる一対の電圧パルスがU相に発生した。

【0012】 Δ T 秒後、演算手段 2 はトリガ信号を出力し、検出手段 4 は電流パルスの振幅を出力する。そして、演算手段 2 は検出手段 4 から U 相の電流パルスの振幅iu4を得る。同様にして、区間i, kにおいて演算手段 2 は、V 相の電流パルスの振幅iv5, W 相の電流パルスの振幅iw6を検出手段 4 から得る。そして、演算手段 2 は、検出手段 4 から得る。そして、演算手段 2 は、検出手段 4 から得られた電流 iu1, iv2, iw3, iu 4, iv5, iw6の中で絶対値が相対的に最も大きい電流を選択し、図 1 6 に示すテーブルに従って 6 (相数×2)通りの位置のうちいずれか一つを磁極位置として出力する。この様にして、従来の同期電動機の磁極位置検出装置はエンコーダ等の位置検出器を用いることなく静止している同期電動機の磁極位置を検出することが可能である。

【0013】なお、(相数×2)通りの位置のうちいずれか一つを磁極位置とする上記従来の磁極位置検出装置以外に、精度向上を図った磁極位置検出装置が考案されている。

【0014】図17は、例えば電気学会論文誌D, 116 巻 7 号 (平成 8 年) 736 頁に示された従来の同期電動機の磁極位置検出装置の電圧パルスと電流パルスの様子を示す。なお、検出装置の構成は欧州公開特許明細書 251, 785 号に示された従来のエンコーダを用いない同期電動機の磁極位置検出装置と同一である。磁極位置 θ が 0 近傍では、

· · · (1)

bw, iau0, iav0, iaw0 を次式によって定義する。

[0015]

【数1】

$$\binom{\text{iaw}}{\text{ibw}} = \sqrt{\frac{2}{3}} \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 1\\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} & 0 \end{pmatrix} \begin{pmatrix} \text{iu3} \\ \text{iv3} \\ \text{iw3} \end{pmatrix} \dots (4)$$

$$iau0 = 2iau - iav - iaw$$
 ...(5)

$$iav0 = 2iav - iaw - iau$$
 ...(6)

$$iaw0 = 2iaw - iau - iav$$
 ...(7)

【0016】突極性をもつ同期電動機の場合(1)式を利用した図18に示すテーブルに従えば、磁極位置 θ を0~180度もしくは180~360度の区間内で演算

 $\theta - 30$ 度 $= (180/\pi) \times (\tan 2\theta) / 2$

の近似式が成り立つので、図18のテーブルに従い磁極

$$\theta = 3.0 + (180/2\pi) \times (\tan 2\theta) / 2$$

$$= 3 0 + (180/2\pi) \times \sqrt{3}(iau-iaw) / \{2(2iav-iaw-iau)\} \cdot \cdot \cdot (9)$$

【0017】図19は上記磁極位置検出装置の処理の概要を示すフローチャートであり、第1ステップでは、演算手段2から得られた電圧指令に従って回路手段1は印加時間 Δ Tの電圧を印加する。ここで、印加時間 Δ Tは磁気飽和の影響が現れない十分短い時間である。検出手段4は、図17に示した9つの電流パルスの振幅 iul, ivl, iwl, iu2, iv2, iw2, iu3, iv3, iw3を検出する。そして演算手段2は、上記9つ電流パルスの振幅iul, …, iw3に基づいて、図18に示すテーブルに従い0~180度もしくは180~360度の区間内での磁極位置 θ を演算する。次に、図19の第2ステップでは、図18のテーブルに従って電圧パルスを印加する相を一つ決定する。

【0018】例えばiau0の符合が+, iav0の符合が-,

可能である。例えば、iau0の符合が+, iav0の符合が -, iaw0の符合が+の場合、

... (8)

位置 θ を次式で与える。

iaw0の符合が+の場合、電圧パルスを印加する相はU相に決定される。そして、図17の様に演算手段2は回路手段1へ区間判定の為の電圧指令を出力し、回路手段1は極性が異なる一対の電圧パルスをT秒間U相に印加する。なお、T秒はΔT秒より十分大きく、同期電動機3を磁気飽和させる時間である。

【0019】演算手段は検出手段4から電流パルスの振幅iu4, iu5を得、その絶対値の大小により電気角が $0\sim180$ 度もしくは $180\sim360$ 度のいずれの区間内に属するかを特定する。

[0020]

【発明が解決しようとする課題】欧州公開特許明細書251,785号に示された従来の磁極位置検出装置では、混入する測定ノイズによって正しく動作しない問題

があった。

【0021】図20は、電気学会論文誌D, 116巻7号(平成8年)736頁に示された突極性を持つ永久磁石型同期電動機の磁極位置と iu1, iv2, iw3, iu4, iv5, iw6の関係を示す。

【0022】図13の様な突極性を持たない同期電動機では、例えば磁極位置が60度の場合、iw6がiu1,…,iw6の中で絶対値が相対的に最大である。検出手段4へ測定ノイズが混入する等によってiw6を最大振幅と認識できなくても絶対値が二番目に大きな電流は、iu1,iv2のいずれかであるから、磁極位置検出誤差は高々±60度程度である。

【0023】しかし、突極性をもつ同期電動機の場合、 突極性が起因する影響は磁極位置に対して180度の周期で変化する。図20において、磁極位置が60度の場合、iw6がiu1,…,iw6の中で絶対値が相対的に最大であるものの、絶対値が二番目に大きな電流はiw3である。 検出手段4に測定ノイズが混入してiw6を最大と認識できない場合、最大電流をiw3と誤認し、検出誤差が180度に達してしまう。一般的に±60度程度の磁極位置検出誤差であれば、スムーズさに欠けながらも同期電動機を起動することが出来る。しかし、磁極位置検出が180度も誤差を持ってしまうと、同期電動機を起動することができない。このように上記従来装置では混入する測定ノイズによって、同期電動機を起動することができない問題あった。

【0024】また、上記電気学会論文誌D, 116巻7 号(平成8年) 736頁に示された従来の磁極位置検出 装置では、ある程度のサンプリング時間を必要とする廉 価の計算機を用いると正確に磁極位置を検出できない問 題があった。これはサンプリング時間を十分短くできな いと、第1ステップの電圧パルスの印加時間も十分短く することが出来ない。従って、第1ステップに用いる電 流パルスの振幅は磁気飽和の影響を受け、磁極位置検出 値の精度が劣化する。また、第2ステップで0~180 度と180~360度のいずれの区間内に属するかを特 定する。この第2ステップでは、磁極位置検出の区間が 180度という大雑把な値であり、電流検出時のノイズ の混入等により第2ステップで電流パルスの振幅を誤検 出した場合、磁極検出値は実際の値と180度異なるこ とになる。上述した通り、磁極位置検出値に180度の 誤差を持ってしまうと、同期電動機は起動できない。即 ち、電流検出時のノイズの混入等により同期電動機が起 動出来ない問題があった。この発明は上述した従来の問 題点を解決するためになされたもので、廉価な計算機を 用いても正確に磁極位置を検出でき、またノイズ混入等 によって誤差が発生してもその大きさを抑制することの できる同期電動機の磁極位置検出装置を提供しようとす るものである。

[0025]

【課題を解決するための手段】請求項1に係る同期電動機の磁極位置検出装置は、多相巻線を持つ同期電動機の各相に電圧指令に基づいて電圧を印加する回路手段と、トリガ信号に基づいて上記同期電動機の電流パルスの振幅を検出する検出手段と、極性が異なる一対の電圧パルスを各相に発生させる為の電圧指令を上記回路手段に出力しその電圧指令に同期するトリガ信号を検出手段に出力するとともに上記同期電動機の基準磁極位置を出力する演算手段を備え、上記検出手段は電流パルスの振幅を上記演算手段に出力し、上記演算手段は極性が異なる一対の電流パルスの振幅和を各相毎に演算し、その振幅和に基づいて基準磁極位置を出力するものである。

【0026】請求項2に係る同期電動機の磁極位置検出 装置は、多相巻線を持つ同期電動機の各相に電圧指令に 基づいて電圧を印加する回路手段と、トリガ信号に基づ いて上記同期電動機の電流パルスの振幅を検出する検出 手段と、極性が異なる一対の電圧パルスを各相に発生さ せる為の電圧指令を上記回路手段に出力しその電圧指令 に同期するトリガ信号を検出手段に出力するとともに上 記同期電動機の基準磁極位置を出力する演算手段と、上 記演算手段から得られた基準磁極位置と上記検出手段か ら得られた電流パルスの振幅に基づいて修正磁極位置を 出力する修正手段を備え、上記検出手段は電流パルスの 振幅を上記演算手段と上記修正手段に出力し、上記演算 手段は極性が異なる一対の電流パルスの振幅和を各相毎 に演算し、その振幅和に基づいて基準磁極位置を出力 し、上記修正手段は極性が異なる一対の電流パルスの振 幅差を各相毎に演算しその振幅差に基づいて微小磁極位 置を得、その微小磁極位置と上記演算手段から得られた 基準磁極位置に基づいて修正磁極位置を出力するもので ある。

【0027】請求項3に係る同期電動機の磁極位置検出 装置は、請求項1又は請求項2において、その演算手段 は、上記極性が異なる一対の電流パルスの振幅和を各相 について演算し、相対的に絶対値が最大になる上記振幅 の和に基づいて(相数×2)通りの位置のうちいずれか 一つを基準磁極位置として出力するものである。

【0028】請求項4に係る同期電動機の磁極位置検出装置は、請求項1又は請求項2において、その演算手段は、上記極性が異なる一対の電流パルスの振幅和の符合を各相について演算し、上記符合に関する各相の組合せに基づいて(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力するものである。

【0029】請求項5に係る同期電動機の磁極位置検出 装置は、請求項4において、その演算手段は、上記極性 が異なる一対の電流パルスの振幅の和の符合が特定の組 合せになった場合、再度、極性が異なる一対の電圧パル スを各相に発生させる為の電圧指令と電流パルスを検出 する為のトリガ信号を出力するものである。

[0030]

【発明の実施の形態】実施の形態 1. 図 1 はこの発明の実施の形態 1 における同期電動機の磁極位置検出装置を示すもので、図において、1,3,4 は上記従来装置と同一のものであり、その説明は省略する。2 a は演算手

 $\Delta iu = iu1 + iu4$ $\Delta iv = iv2 + iv5$ $\Delta iw = iw3 + iw6$

【0031】図2は同期電動機の磁極位置と電流パルスの振幅 iu1, iv2, iw3, iu4, iv5, iw6及び極性が異なる一対の電流パルスの振幅和 Δiu , Δiv , Δiw の関係の一例である。図において、例えば磁極位置が60度の時では、 Δiu , Δiv , Δiw , $-\Delta iu$, $-\Delta iv$, $-\Delta iw$ の中で振幅和 $-\Delta iw$ が他の振幅和より相対的に大きい。また、120度の時には振幅和 Δiv が他の5つの振幅和より相対的に大きい。以上の様にして振幅和 Δiu , Δiv , Δiw , $-\Delta iu$, $-\Delta iv$, $-\Delta iw$ の中で相対的に最も大きい振幅和に基づいて磁極位置を決定してもよいことが分かる。

【0032】図1において、演算手段2aは、極性が異なる一対の電圧パルスをU, V, Wの各相に発生させる為の電圧指令を回路手段1に出力し、その電圧指令に同期するトリガ信号を検出手段4に出力する。

【0033】図3は、回路手段1が同期電動機3の各相に印加する電圧と各相に流れる電流の様子を示している。図において、区間a,gでは極性が異なり電位差の絶対値が等しい一対の電圧パルスをU相に印加し、区間c,iでは極性が異なり電位差の絶対値が等しい一対の電圧パルスをV相に印加している。さらに、区間e,kでは極性が異なり電位差の絶対値が等しい一対の電圧パルスをW相に印加している。

【0034】このように、区間a,gでは極性が異なる一対の電圧パルスがU相に印加され、極性が異なる一対の電流パルスがU相に発生する。同様に、区間c,iでは極性が異なる一対の電圧パルスがV相に印加され、極性が異なる一対の電流パルスがV相に発生する。同様に、区間e,kでは極性が異なる一対の電圧パルスがW相に印加され、極性が異なる一対の電流パルスがW相に印加され、極性が異なる一対の電流パルスがW相に発生する。

【0035】なお、演算手段2aは検出手段4から得られた電流パルスの振幅に基づいて、U相の極性が異なる一対の電流パルス(iu1,iu4),V相の極性が異なる一対の電流パルス(iv2,iv5),W相の極性が異なる一対の電流パルス(iv3,iv6)の振幅を得る。そして、 Δ i u, Δ iv, Δ iw, $-\Delta$ iu, $-\Delta$ iv, $-\Delta$ iwの中で相対的に最大になる振幅和に基づいて6(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力する。

【0036】図4のフローチャートは、演算手段2aの 処理の概要である。図4において、ステップ101では 変数nを0に設定する。ステップ102では電圧パルス を発生させる為に以下の様に変数nに基づいて回路手段 段である。ここで、上記極性が異なる一対の電流パルスの振幅和 Δ iu、 Δ iv、 Δ iwを後述する電流パルスの振幅iul, iv2, iw3, iu4, iv5, iw6 を用いた次式で定義する。

· · · (10)
· · · (11)
· · · (12)

1へ電圧指令を出力する。

 $n = 0 \rightarrow U$ 相H: V相L: W相L $n = 1 \rightarrow U$ 相L: V相H: W相L $n = 2 \rightarrow U$ 相L: V相L: W相H $n = 3 \rightarrow U$ 相L: V相H: W相H $n = 4 \rightarrow U$ 相H: V相L: W相H $n = 5 \rightarrow U$ 相H: V相H: W相L

【0037】 この結果、例えば変数nが1の場合は、図3の区間aに示す電圧が各相に印加される。同様に変数nが2の場合は区間cに示す電圧が各相に印加される。ステップ103では、 Δ T秒後にトリガ信号を検出手段4へ出力する。これに従って、例えば変数nが1の場合、図3の区間aの終点でトリガ信号が出力される。

【0038】図4のステップ104では、検出手段4から変数nに基づいて以下の電流パルスの振幅を得、ステップ105ではその値を記憶する。

n=0 → U相の電流パルスの振幅 iul を記憶

n=1 → V相の電流パルスの振幅 iv2 を記憶

n=2 → W相の電流パルスの振幅 iw3 を記憶

n=3 → U相の電流パルスの振幅 iu4 を記憶

n=4 → V相の電流パルスの振幅 iv5 を記憶

n=5 → W相の電流パルスの振幅 iw6 を記憶

【0039】U、V、W相に同一の電圧指令を与えると、各相間の電位差は零となり電圧パルスは終息する。そこで図4のステップ106では以下の様に変数nに基づいて回路手段1へ電圧指令を出力する。

 $n=0 \rightarrow U$ 相L: V相L: W相L $n=1 \rightarrow U$ 相L: V相L: W相L $n=2 \rightarrow U$ 相H: V相H: W相H $n=3 \rightarrow U$ 相H: V相H: W相H $n=4 \rightarrow U$ 相H: V相H: W相H $n=5 \rightarrow U$ 相H: V相H: W相H

この結果、例えば変数nが1の場合は、図3の区間bに示す電圧が各相に印加される。

【0040】図4のステップ107では、変数nに1を加算する。そしてn=6の時、極性が異なる一対の電圧パルスを各相に発生させる動作が完了する。即ち、図3の区間a, gでは極性が異なり電位差の絶対値が等しい一対の電圧パルスがU相に印加され、また、区間c, iでは極性が異なり電位差の絶対値が等しい一対の電圧パルスがV相に印加される。さらに、区間e, kでは極性が異なり電位差の絶対値が等しい一対の電圧パルスがW相に印加される。

【0041】そこで、ステップ108ではn=6が成立 するかを判断し、成立しない場合は、引続き極性が異な る一対の電圧パルスを各相に発生させる為の動作を継続 する。

【0042】ステップ109では、U相の極性が異なる一対の電流パルスの振幅和(iul+iu4), V相の極性が異なる一対の電流パルスの振幅和(iv2+iv5), W相の極性が異なる一対の電流パルスの振幅和(iv3+iv6)を演算する。

【0043】そしてステップ110では、図5に示すテーブルに従って0度、60度、120度、180度、240度、300度の6通りの位置のうちいずれか一つを基準磁極位置として出力する。なお、例えば磁極位置が60度の時、 $-\Delta$ iwの次に大きい振幅和は Δ iuか Δ ivであるので、電流パルスの振幅に測定ノイズが混入した場合でも、磁極位置検出誤差は高々 ± 60 度程度である。

【0044】また、図6は突極性を持つ永久磁石型同期電動機の磁極位置と電流パルスの振幅 iul, iv2, iw3, iu4, iv5, iw6 及び 極性が異なる一対の電流パルスの振幅和 $\Delta iu, \Delta iv, \Delta iw$ の関係の一例である。図6の様な突極性をもつ永久磁石型同期電動機の場合でも、 $\Delta iu, \Delta iv, \Delta iw, -\Delta iu, -\Delta iv, -\Delta iw$ の関係は図2と同じであるから、同様に電流パルスの振幅に測定ノイズが混入した場合でも、磁極位置検出誤差は高々±60度程度である。

【0045】このように、従来の磁極位置検出装置では電流パルスの振幅に測定ノイズが混入し、磁極位置検出の誤差が180度になる場合があったが、本実施の形態1においてはそのような場合でも磁極位置検出誤差は高々±60度程度であり、同期電動機を起動することが可能である。

【0046】実施の形態2.本実施の形態は、実施の形態1の構成において、演算手段2aの代わりに演算手段2b(図示せず)を用いる。図2において、例えば、磁極位置が60度の時では、 Δiu , Δiv , Δiw の符合の組合せは+, +, -であり、また、120度の時の Δiu , Δiv , Δiw の符合の組合せは-, +, -である。

【0047】以上の様に磁極位置に応じて上記符合の組合せが変化するので、符合の組合せに基づいて基準磁極位置を出力してもよいことが分かる。そこで、演算手段2bは演算手段2aと同様、U,V,Wの各相について極性が異なる一対の電圧パルスを各相に発生させる為の電圧指令を回路手段3へ、電流パルスを検出する為のトリガ信号を検出手段4へ、それぞれ出力する。演算手段2bは上記演算手段2aと同様、図2に示すような電圧指令を発生し、検出手段4からU相の極性が異なる一対の電流パルス(iu1,iu4),V相の極性が異なる一対の電流パルス(iv2,iv5),W相の極性が異なる一対の電流パルス(iv2,iv5),W相の極性が異なる一対の電流パルス(iv3,iv6)の振幅を得る。

【0048】続いて、(10)~(12)式に従って上

記極性が異なる一対の電流パルスの振幅和 Δ iu、 Δ iv、 Δ iwを得、その符合を演算する。そして、演算手段 2 bは図 7 に示す表に従って 6 通りの位置のうちいずれか一つを基準磁極位置として出力する。具体的な処理の概要としては、実施の形態 1 で示した図 4 のフローチャートにおいて、ステップ 1 1 0 で図 5 のテーブルの代わりに図 7 に示したテーブルに従って基準磁極位置を出力する点が演算手段 2 a と異なる。

【0049】このようにして、演算手段2 bは上記符合に関する各相の組合せに基づいて6(相数 3×2)通りの位置うちいずれか一つを基準磁極位置として出力する。なお、例えば磁極位置が6 0 度の時、測定ノイズが混入して Δ ivの符合を+でなくーと誤検出しても、磁極位置検出誤差は高々 ±6 0 度程度である。また、図6 の様な突極性をもつ永久磁石型同期電動機の場合でも、 Δ iu、 Δ iv、 Δ iwの関係は図2 と同じであるから、同様に電流パルスの振幅に測定ノイズが混入した場合でも、磁極位置検出誤差は高々 ±6 0 度程度である。

【0050】このように、従来の磁極位置検出装置では電流パルスの振幅に測定ノイズが混入し、磁極位置検出誤差が180度になる場合があったが、本実施の形態2においてはそのような場合でも磁極位置検出誤差は高々±60度程度であり、同期電動機を起動することが可能である。

【0051】実施の形態3.本実施の形態は、実施の形態2の構成において、演算手段2bの代わりに演算手段2c(図示せず)を用いる。上記実施の形態2において、 Δ iu、 Δ iv、 Δ iwの組合せとして(+,+,+)または(-,-,-)はありえない。即ち、演算手段2bで演算した各相について上記一対の極性が異なる電流パルスの振幅の和の符合の組合せが(+,+,+)または(-,-,-)の場合は測定ノイズが混入したと考えられる。

【0052】そこで、演算手段2cでは上記組合せが (+, +, +) または (-, -, -) の場合は、再度、 極性が異なる一対の電圧パルスを各相に発生させる為の 電圧指令を回路手段1に出力するとともに、電流パルスを検出する為のトリガ信号を検出手段4に出力して基準 磁極位置を再検出する。

【0053】例えば磁極位置が60度の時、測定ノイズが混入して Δ iwの符合を-でなく+と誤検出しても、特定の符合の組合せ(+,+,+)となるので、再検出により測定ノイズの影響を抑制することができる。これにより、電流パルスの振幅の和の符合がありえない特定の組合せの場合でも、演算手段2cは基準磁極位置を出力することができる。

iu4, iv4, iv4, iu5, iv5, iv5, iu6, iv6, iw6) を用いて、上記一対の極性が異なる電流パルスの振幅の差Δiu1, Δiv1, Δiw1, Δiu2, Δiv2, Δiw2, Δiu3, Δiv3, Δiw

Δiau, Δiav, Δiaw を次式で定義する。
 【0055】

$$\Delta iu1 = iu1 - iu4$$
 $\Delta iv1 = iv1 - iv4$
 $\Delta iw1 = iw1 - iw4$
 $\Delta iu2 = iu2 - iu5$
 $\Delta iu2 = iv2 - iv5$
 $\Delta iu2 = iw2 - iw5$
 $\Delta iu3 = iu3 - iu6$
 $\Delta iv3 = iv3 - iv6$
 $\Delta iw3 = iw3 - iw6$
 $\cdots (13)$
 $\cdots (14)$
 $\cdots (15)$
 $\cdots (15)$
 $\cdots (16)$
 $\cdots (17)$
 $\cdots (18)$
 $\cdots (19)$
 $\cdots (19)$

[0056]

$$\begin{pmatrix} \Delta iau \\ \Delta ibu \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \Delta iu1 \\ \Delta iv1 \\ \Delta iw1 \end{pmatrix} \qquad \cdots (22)$$

$$\begin{pmatrix} \Delta iav \\ \Delta ibv \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \Delta iu2 \\ \Delta iv2 \\ \Delta iw2 \end{pmatrix} \qquad \cdots (23)$$

$$\begin{pmatrix} \Delta iaw \\ \Delta ibw \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 1 \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} & 0 \end{pmatrix} \begin{pmatrix} \Delta iu3 \\ \Delta iv3 \\ \Delta iw3 \end{pmatrix} \qquad \cdots (24)$$

【0057】ここで、極性が異なる電流パルスの振幅iulとiu4は磁極位置に関して180度異なっているので、U相について一対の極性が異なる電流パルスの振幅差 Δ iulには磁気飽和の影響がキャンセルされ、突極性が起因する影響だけが現れる。同様に Δ ivl \sim Δ iw3についても磁気飽和による影響はキャンセルされて含まれない。そこで、従来の磁極位置検出装置で用いていた電流パルスの振幅 iul, ivl, iwl, iu2, iv2, iw2, iu3, iv3, iw3 の代わりに、電流パルスの振幅差 Δ iul, Δ ivl, Δ iwl, Δ iu2, Δ iv2, Δ iw2, Δ iu3, Δ iv3 を用いても良い。図8はこの発明の実施の形態 Δ において、1, Δ a, Δ 4は上記実施の形態と同一のものであり、その説明は省略する。31は修正手段である。

【0058】図9において、演算手段2aは上記実施の 形態と同様に、極性が異なる一対の電圧パルスを各相に 発生させる為の電圧指令を回路手段1に出力するととも に電流パルスを検出する為のトリガ信号を検出手段4に 出力する。そして、検出手段4は上記トリガ信号に基づ いて、図9に示した電流パルスの振幅(iu1, iv1, iw1, iu2, iv2, iw2, iu3, iv3, iw3, iu4, iv4, iw4, iu5, iv5, iw5, iu6, iv6, iw6) を出力する。

【0059】演算手段2aは、検出手段4からU相の極性が異なる一対の電流パルス(iu1,iu4), V相の極性が異なる一対の電流パルス(iv2,iv5), W相の極性が異なる一対の電流パルス(iv3,iv6)の振幅を得、上記極性が異なる一対の電流パルスの振幅の和に基づいて6(相数 3×2)通りの位置うちいずれか一つを基準磁極位置 θ 1として出力する。

【0060】図10は修正手段31の構成を示す。32は正接演算器、33は増幅器、34はリミッタ、35は加算器である。正接演算器32は演算手段2aが出力する6(相数 3×2)通りの基準磁極位置 $\theta1$ に応じて正接($\tan 2\Delta\theta1$)/2を演算し、微小磁極位置 $\Delta\theta1$ [rad] として出力する。正接演算器32が基準磁極位

 び電流パルスの振幅に基づいて微小磁極位置 $\Delta \theta$ 1 を出力する。なお、微小磁極位置 $\Delta \theta$ 1 の単位は $\{r \ a \ d\}$ であるので、増幅器 3 3 によって($\{180/\pi\}$)倍することによって単位を $\{g\}$ に変換する。

【0061】なお、微小磁極位置 $\Delta\theta$ 2〔度〕は基準磁極位置の間隔の1/2、即ち \pm 30度以内でなければならない。増幅器33が出力する微小磁極位置 $\Delta\theta$ 2の絶対値が30度を越えないように、 $\Delta\theta$ 2をリミッタ34へ入力する。 $\Delta\theta$ 2を \pm 30度以内に制限するリミッタ34の出力と基準磁極位置 θ 1を加算器35により加算する。加算器35の出力を修正磁極位置 θ 2とし、この θ 2を利用することにより、より良い精度で同期電動機を起動することが出来る。

【0062】従来の磁極位置検出装置ではある程度のサンプリング時間を必要とする廉価の計算機を用いると磁極位置の2倍の正接 $\tan 2\theta$ を演算する過程でiu1, iv1, iv1, iv2, iv2, iv2, iv3, iv3, iv3を用いる為に磁気飽和の影響を受けたが、本実施の形態では、上記一対の極性が異なる電流パルスの振幅の差 $\Delta iu1$, $\Delta iv1$, $\Delta iv1$, $\Delta iu1$, $\Delta iv2$, $\Delta iv2$, $\Delta iv2$, $\Delta iv3$, $\Delta iv3$, $\Delta iv3$ を用いるので修正磁極位置 $\Delta \theta$ を演算する過程で磁気飽和の影響を受けない。

【0063】また、従来の磁極位置検出装置はノイズ混入ににより、180度の誤差を持つことがあった。しかし、本実施の形態では、基準磁極位置 θ 1の誤差は高々60度程度であり、微小磁極位置 Δ 02は \pm 30度以内であることから、修正磁極位置 θ 2の誤差は高々90度以内である。

【0064】実施の形態5.上記実施の形態5において、演算手段2aの代わりに2b,2cを用いてもその効果は同じである。

[0065]

【発明の効果】請求項1に係る同期電動機の磁極位置検出装置は、多相巻線を持つ同期電動機の各相に電圧指令に基づいて電圧を印加する回路手段と、トリガ信号に基づいて上記同期電動機の電流パルスの振幅を検出する検出手段と、極性が異なる一対の電圧パルスを各相に発生させる為の電圧指令を上記回路手段に出力しその電圧指令に同期するトリガ信号を検出手段に出力するとともに上記同期電動機の基準磁極位置を出力する演算手段に出力は表に出力は、上記検出手段は電流パルスの振幅を上記演算手段に出力し、上記演算手段は極性が異なる一対の電流パルスの振幅和を各相毎に演算し、その振幅和に基づいて基準磁極位置を出力するので、廉価な計算機で構成することが可能であり、ノイズ混入等によって誤差が発生してもその大きさを抑制する効果がある。

【0066】請求項2に係る同期電動機の磁極位置検出 装置は、多相巻線を持つ同期電動機の各相に電圧指令に 基づいて電圧を印加する回路手段と、トリガ信号に基づ いて上記同期電動機の電流パルスの振幅を検出する検出

手段と、極性が異なる一対の電圧パルスを各相に発生さ せる為の電圧指令を上記回路手段に出力しその電圧指令 に同期するトリガ信号を検出手段に出力するとともに上 記同期電動機の基準磁極位置を出力する演算手段と、上 記演算手段から得られた基準磁極位置と上記検出手段か ら得られた電流パルスの振幅に基づいて修正磁極位置を 出力する修正手段を備え、上記検出手段は電流パルスの 振幅を上記演算手段と上記修正手段に出力し、上記演算 手段は極性が異なる一対の電流パルスの振幅和を各相毎 に演算し、その振幅和に基づいて基準磁極位置を出力 し、上記修正手段は上記演算手段は極性が異なる一対の 電流パルスの振幅差を各相毎に演算しその振幅差に基づ いて微小磁極位置を得、上記基準磁極位置と微小磁極位 置に基づいて修正磁極位置を出力するので、磁気飽和の 影響を受けることなく、精度の良い修正磁極位置を得る ことが出来る。

【0067】請求項3に係る同期電動機の磁極位置検出装置の演算手段は、上記極性が異なる一対の電流パルスの振幅和を各相について演算し、相対的に絶対値が最大になる上記振幅の和に基づいて(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力するので、廉価な計算機で構成することが可能であり、ノイズ混入等によって誤差が発生してもその大きさを抑制する効果がある。

【0068】請求項4に係る同期電動機の磁極位置検出装置の演算手段は、演算手段は、上記極性が異なる一対の電流パルスの振幅和の符合を各相について演算し、上記符合に関する各相の組合せに基づいて(相数×2)通りの位置のうちいずれか一つを基準磁極位置として出力するので、廉価な計算機で構成することが可能であり、ノイズ混入等によって誤差が発生してもその大きさを抑制する効果がある。

【0069】請求項5に係る同期電動機の磁極位置検出 装置の演算手段は、上記極性が異なる一対の電流パルス の振幅の和の符合が特定の組合せになった場合、再度、 極性が異なる一対の電圧パルスを各相に発生させる為の 電圧指令と電流パルスを検出する為のトリガ信号を出力 するので、ノイズ混入等によって極性が異なる一対の電 流パルスの振幅の和の符合が特定の組合せになっても磁 極位置が検出できる効果がある。

【図面の簡単な説明】

【図1】 この発明の実施の形態1による同期電動機の 磁極位置検出装置を示すプロック図である。

【図2】 突極性を持たない同期電動機の電流パルスの振幅を示す図である。

【図3】 この発明の実施の形態1の動作を説明する電 圧と電流の関係を示す図である。

【図4】 この発明の演算手段2aの演算過程を示すフローチャートである。

【図5】 この発明の実施の形態1の演算手段が基準磁

極位置を出力するためのテーブルである。

【図6】 突極性を持つ同期電動機の電流パルスの振幅を示す図である。

【図7】 この発明の実施の形態2又は実施の形態3の 演算手段が基準磁極位置を出力するためのテーブルであ る。

【図8】 この発明の実施の形態4による同期電動機の 磁極位置検出装置を示すプロック図である。

【図9】 この発明の実施の形態4の動作を説明する電圧と電流の関係を示す図である。

【図10】 図7の修正手段31の内部構成を示すプロック図である。

【図11】 この発明の実施の形態4又は実施の形態5の修正手段が修正磁極位置を出力するためのテーブルである。

【図12】 従来の同期電動機の磁極位置検出装置を示すプロック図である。

【図13】 突極性を持たない同期電動機の電流パルスの振幅を示す図である。

【図14】 図12の回路手段1を示す内部構成図である。

【図15】 図12の検出手段4を示す内部構成図である。

【図16】 従来の演算手段が磁極位置を出力するためのテーブルである。

【図17】 従来の同期電動機の磁極位置検出装置の動作を説明する電圧と電流の関係を示す図である。

【図18】 従来の演算手段が磁極位置とステップ2で 印加する電圧を出力するためのテーブルである。

【図19】 従来の同期電動機の磁極位置検出装置の作業工程を示すフローチャートである。

【図20】 突極性を持つ同期電動機の電流パルスの振幅を示す図である。

【符合の説明】

1 回路手段、2, 2 a, 2 b, 2 c 演算手段、3 同期電動機、4 検出手段、3 1 修正手段、 θ , θ 1 基準磁極位置、 θ 2 修正磁極位置、 $\Delta \theta$ 1, $\Delta \theta$ 2 微小磁極位置。

【図1】

【図5】

MAX{Δiu, Δia, Δiw,-Δiu,-Δiv,-Δiw}	基準磁極位置6
Δίυ	0度
-Δiw ·	60度
Δiv	120度
—Δiu	180度
Δiw	240度
- Aiv	300度

【図2】

【図6】

【図7】

Δiu	Δiv	Δiw	基準磁極位置 8
+	_	_	0度
+	+		60度
_	+	~	120度
-	+	+	180度
_	_	+	240度
+	,	+	300度

【図4】

【図8】

【図9】

【図10】

【図18】

Ousi	iav0	řaw0			磁極位置 8		ステップ2
+	-	_	0	+	180 / 3(aw- av) = 2(2 au-lay-law)	度	U
+	-	+	30	+	.180 √3(<u>iau-iaw</u>) ≈ 2(2iav-iaw-iau)	度	UorV
		+	60	+	7 2(2iaw-iap-iay)	度	V
_	+	+	90	+	180 / 3 (law-lav)	度	V orW
	+		120	+	180 / 3 (lau-law) # 2(2lav-law-law)	度	w
+	+		150	+	180 / 3 (jav-jau) = 2(2 aw-jau-jay)	度	WorU

【図11】

基準磁極位置 8 1	微小磁極位置 A f 1
0度	180 €3(Aiaw-Aiav) 元 2(2Aiau-Aiav-Aiaw)
60度	180 √3 (Δiav-Δjau) 良 π 2(2Δlaw-Δiau-Δiav)
120度	180 √3(Aiau-Aiaw) 度 π 2(2Aiav-Alaw-Aiau)
180度	180 √3(Δiaw-Δiay) 度 π 2(2Δiau-Δiav-Δiaw)
240度	180 【3(Aiay-Aiau)
300度	π 2(2Δiaw-Δiaw) E

【図12】

240度 300度

【図13】

【図14】

【図15】

MAX (flutt, fiv2), fix3), fix4), fiv5), fix6)}	磁極位置 8
liu11	0度
liw61	60度
liv2l	120度
iu4	180度

【図16】

【図17】

liw3|

liv5

フロントページの続き

(72)発明者 貝谷 敏之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H575 BB06 BB10 DD03 DD06 FF01 HA07 HB01 HB20 JJ03 JJ05 JJ11 JJ16 JJ18 JJ25 JJ28 LL22 LL31