PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-035261

(43) Date of publication of application: 07.02.1997

(51)Int.Cl.

G11B 5/84

G11B 5/82

(21)Application number: 07-156723

(22)Date of filing:

01.06.1995

(71)Applicant: SHOWA DENKO KK

(72)Inventor: OGAWA SHINICHI

OSAWA HIROSHI

YASHIMA HIDEO

(30)Priority

Priority number: 07 89992

Priority date : 24.03.1995

Priority country: JP

18.05.1995

(54) PRODUCTION OF MAGNETIC RECORDING MEDIUM

07142411

(57)Abstract:

PURPOSE: To provide a method for producing a magnetic recording medium by which the sliding durability of the substrate of the medium and a magnetic head is improved.

CONSTITUTION: When a magnetic recording medium is produced using a glass or silicon substrate, the substrate is textured by irradiation with laser beams from UV laser in a circular band shape before a magnetic layer, etc., are formed.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-35261

(43)公開日 平成9年(1997)2月7日

 (51) Int.Cl.⁶
 識別記号
 庁内整理番号
 F I
 技術表示箇所

 G 1 1 B
 5/84
 7303-5D
 G 1 1 B
 5/84
 Z

 5/82
 5/82
 5/82

審査請求 未請求 請求項の数4 FD (全 6 頁)

(21)出願番号	特願平7-156723	(71)出願人	000002004
(22)出顧日	平成7年(1995)6月1日		昭和電工株式会社 東京都港区芝大門1丁目13番9号
(=-/ P-14/1-1		(72)発明者	小川 伸一
(31)優先権主張番号	特顧平7-89992		千葉県市原市八幡海岸通3-1 昭和電工
(32)優先日	平 7 (1995) 3 月24日	:	株式会社HD工場内
(33)優先権主張国	日本 (JP)	(72)発明者	大澤 弘
(31)優先権主張番号	特願平7-142411		千葉県市原市八幡海岸通3-1 昭和電工
(32)優先日	平7 (1995) 5 月18日		株式会社HD工場内
(33)優先権主張国	日本 (JP)	(72)発明者	八島 秀夫
			千葉県市原市八幡海岸通3-1 昭和電工
			株式会社HD工場内
		(74)代理人	弁理士 福田 武通 (外2名)
		1	

(54) 【発明の名称】 磁気記録媒体の製造方法

(57)【要約】

【目的】 磁気記録媒体の基板と磁気ヘッドとの摺動耐 久性を向上させた磁気記録媒体の製造方法を提案する。

【構成】 ガラス基板又は珪素基板を用いた磁気記録媒体の製造において、磁性層等の成膜に先立って、紫外線レーザを用い、基板に対して当該レーザビームを輪帯状として照射することにより、テクスチャ加工を施す。

【特許請求の範囲】

【請求項1】 ガラス基板又は珪素基板を用いた磁気記録媒体の製造方法において、磁性層等の成膜に先立って、紫外線レーザを用い、基板に対して当該レーザビームを輪帯状として照射することにより、テクスチャ加工を施すことを特徴とする磁気記録媒体の製造方法。

【請求項2】 アキシコンプリズムを透過させて得た輪帯状ビームのレーザ光を照射することを特徴とする請求項1記載の磁気記録媒体の製造方法。

【請求項3】 マスクの介在によって得た輪帯状ビーム 10 のレーザ光を照射することを特徴とする請求項1記載の 磁気記録媒体の製造方法。

【請求項4】 レーザビームによって基板表面に形成される突起部の大きさが、外半径 $1\sim50\mu$ m、高さ $1\sim100$ nmであり、上記突起部の基板表面に対する占有面積の割合が $0.1\sim99.9%$ であることを特徴とする請求項1又は2又は3記載の磁気記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、磁気ディスク装置等の磁気記録媒体の製造方法に関し、さらに詳しくは磁気ディスク(以下、HDという)と磁気ヘッドとの間の摺動耐久性を向上させた磁気記録媒体の製造方法に関する。

[0002]

【従来の技術】磁気記録の高密度化の進歩はまさに日進 月歩の勢いであり、かつて10年で10倍といわれたハ ードディスク・ドライブ(HDD)の記録密度向上速度 が最近では10年で100倍という声も聞かれている。 HDDは俗にウィンチェスター様式と呼ばれる、HD/ 30 磁気ヘッド間の接触摺動ーヘッド浮上ー接触摺動を基本 動作とするCSS(接触起動停止)方式が主流である。 この方式はHDDの高記録密度化を一気に加速した画期 的なものであるが、一方で深刻なトライボロジー上の課 題を持ち込む端緒にもなった。近年の記録密度の向上 は、ディスクの回転速度の増加と磁気ヘッドの浮上高さ の低減を伴い、CSS方式における摺動耐久性/安定性 やHD表面の平滑性への要求はますます強まっている現 状である。磁気ヘッド/HD間の摺動耐久性を向上させ る鍵は、材料強度向上と潤滑性も含めた摩擦係数低下に 40 あるが、HDの側で言えば、従来トップコート技術の検 討〔ダイヤモンドライクカーボン(DLC)保護膜、各 種塗布潤滑剤等〕と並んでHD表面の粗面化によって摩 擦係数を低減させる努力が払われてきた。これはテクス チャ処理と呼ばれ、接触面積の実効的低減によって摩擦 係数を下げてCSS耐久性/安定性を高めることを目的 としたものである。粗面化は基本的にはHD表面に所定 範囲の高低差を有する凹凸を形成することである。この テクスチャ処理はHD製造技術の重要な要素技術となっ ている。

2

【0003】上記テクスチャ技術は、当然のことながら基板材質と不可分の関係にあり、従来のNi-P被覆A1基板の場合には、研磨粉等を用いた機械的研磨によって凹凸を形成する手法が主流であった。また、ガラス基板等ではリソグラフィー、或いはそれと印刷技法を組み合わせたエッチング技術等が提案され、一部では実用化されている。

[0004]

【発明が解決しようとする課題】テクスチャ技術全般に 言えることとして、精密な凹凸制御と並んで工程上の効 率性も必要要件であるが、両者はしばしば拮抗する関係 にあり、特に前述のようなHDDの高記録密度化が驚く べき速さで進行している現今の状勢下では、従来技術は 所定仕様を満足しきれないだけではなく、もはや工夫や 改良の蓄積ではカバーし得ない様々な問題点を露呈しつ つある。例えば、機械研磨法では既に微細加工制御の限 界付近にあり、凹凸の高低のみならず、ゾーンテクスチ ャリング等で重要になるテクスチャ領域の精密制御でも 根本的な困難に遭遇している。具体的には一定の割合で 発生する所定範囲外の高低差を示す凹凸(過研磨、バリ 等) の発生や、テクスチャ境界のぼやけ等である。ま た、リソグラフィ的手法は、精密制御の点では問題ない ものの、工程の複雑さが避けられず、それが効率面での アキレス腱になっている。他方、HDDの高記録容量 化、高品質化は必然的にHD製造環境の高いクリーン度 達成を包含するものであり、各種汚染物、塵埃の高いレ ベルでの除去/排除が各工程に対する至上目標となって いる現状である。この観点からすれば各工程が乾式であ ることが望ましく、この乾式テクスチャリングに対して 大きな期待が持たれている。レーザ光を物質加工や測定 に応用する試みはレーザの発明当初から始まったと言え るが、昨今のレーザ光源の発達/開発は基本特性やハン ドリング性の目覚ましい向上をもたらし、高エネルギー 加工から超微細加工、精密測定まで利用技術の広い裾野 を形成している。レーザビームによって物質を成膜し、 或いは物質表面を加工するレーザアブレーション(爆 蝕)ないしレーザエッチングは80年代から盛んに検討 されている技術であるが、これによってテクスチャを施 す、所謂レーザテクスチャ技術が最近関心を集めている (例えばUSP5062021、特開昭62-2097 88号公報)。これはレーザビームの特徴を生かして形 成する個々の表面凹凸の精密制御が可能である上、基本 的に乾式過程であるという利点がある。さらに基板材質 に合わせたレーザ種ないし波長、エネルギー密度を選択 できる自由度/汎用性も具備しているといえる。しかし ながら、ガラス、珪素等の所謂代替基板の場合、レーザ 種ないし波長、エネルギー密度を限定しない単純なレー ザビームの照射/アブレーションでは、飛散微粒子の再 付着や過蝕による凹凸形状の不整等が起り、クラック発 50 生やCSS特性を却って悪化させる等の問題を発生する

確率が高い。

[0005]

【課題を解決するための手段】本発明は、上記に鑑み提 案されたもので、ガラス基板又は珪素基板を用いた磁気 記録媒体の製造方法に関し、YAGレーザの高調波、エ キシマレーザ等に代表される紫外線レーザを用い、基板 に対して当該レーザビームを輪帯状として照射すること により、テクスチャ加工を施すことを特徴とする磁気記 録媒体の製造方法に関するものである。

【0006】一般に、セラミックスや高分子材料等の物 10 質にレーザビームを照射する時、レーザビームのエネル ギー密度が一定の閾値を越えると急激に加工深さが増大 する (図1に示すようなレーザダメージの非線形性) が、その閾値以下の領域でパルスビーム照射を連続的に 施すと、コーン状構造体と呼ばれる円錐状突起物が形成 されることが知られている(例えばジャーナル・オブ・ アプライド・フィジックス誌、49巻、453頁、19 86年)。本発明者等は前述の問題に関して、レーザ照 射条件、照射雰囲気等について詳細に検討を加えた結 果、課題解決の要諦はレーザビームで形成される基板上 20 の凹凸の形状制御であり、レーザビームのエネルギー密 度分布を工夫することにより図2(A), (B)で示さ れる所期形状の構造物を適宜に形成し得ることを見いだ して本発明に至った。

【0007】即ち、本発明では、YAGやエキシマ等に よる紫外線レーザを輸帯状のビームに変えて基板に照射 することにより、図2(A)に示すような所期の形状を 有する突起部を形成でき、磁気ヘッド/HD間の起動-摺動ー浮上ー摺動ー停止を繰り返す所謂CSS特性に優 れたテクスチャ処理を基板に施すものである。図3に は、本発明で用いられる輪帯状のレーザビームと従来の スポット状レーザビームで加工されたガラス表面の図2 (A), (B) で示される凹凸形状の出現頻度を示す。 レーザビームのエネルギー密度が一定の値を越えると、 突起部〔図2(A)〕の出現頻度が急減する。スポット 状レーザビームを照射して基板に加工を施す場合、エネ ルギーの集中が一定でないために凹凸の形成が不安定 で、本発明で求める所期の突起部を選択的に形成するこ とが困難である。一方、本発明では、エネルギー密度の 分布が輪帯状となったレーザビームを基板に照射するた 40 め、形成される突起部の広がりがコントロールされる 上、爆蝕による堆積物が中央に集まり易くなって、より 高く、より形状ムラの少ない突起部が形成されるという 利点がある。レーザ光をこのような輪帯状ビームに整形 するには幾つかの手法がありそれぞれに長所を有する が、総合的見地からアキシコンプリズムによる方法、マ スクによる方法、グレーティングによって収束光を作る 方法等が本発明の場合に有用であることが判った。特に 前2者の場合にはアキシコンプリズムやマスクの選択、 ビーム照射の幾何学的条件、レーザエネルギ密度等の調 50

整により、形成される突起部の大きさやの形状制御を適 宜に行うことができる。突起部の加工は、輪帯状ビーム の照射間隔が重ならない範囲で行うことが望ましい。ビ ームが重なりあうと不定形の凹凸が形成され易くHDの 摺動耐久性が低下する。逆に、ビームの照射間隔を一定 以上に広げた場合、凹凸の形成されない領域が拡大し磁 気ヘッドとHDとの接触面積増加をもたらし摺動耐久性 が悪化する。同様に、突起部高さを一定以上の高さとし た場合、磁気ヘッドとHDとの衝突が生じ易くなり、摺 動耐久性が悪化する。実用上(磁気記録媒体の基板表面 のテクスチャとして) に適した突起部の大きさは、外半 $径1\sim50\mu$ m、高さ $1\sim100$ nmが好ましく、この 突起部の基板表面に対する占有面積の割合は0.1~9 9. 9%であることが望ましい。尚、本発明はガラス基 板、珪素基板等を対象とするものであるが、このような テクスチャ処理は磁性層或いは炭素保護層に対する粗面 化に応用することも可能である。また、従来のNi-P 被覆AI基板にも適用することができる。

【0008】上記のようにガラス基板や珪素基板等に紫 外線レーザを輪帯状のビームに変えて基板に照射してテ クスチャを施した後、下地層、磁性層等を順次成膜して 形成した磁気記録媒体は、優れた摺動耐久性を有し、高 い耐久性を求められるその使用に際してもクラック等を 生ずることがないので、高い信頼性を有する磁気ディス ク装置等の磁気記録装置の作製に貢献することができ る。尚、ガラス基板や珪素基板等の上に成膜する各層、 下地膜、磁性膜、保護膜、潤滑膜などは、特にその材質 や組成、成膜方法等を限定するものではなく、公知の材 料、公知の方法を適宜に選定、組み合わせて使用するこ とができる。

[0009]

30

【実施例】以下、本発明の実施例を示す。尚、表面粗さ の測定には触針式粗さ計を用い、スタイラス 0. 5 μ m、カットオフ0.25mmにて行なった。

【0010】〈実施例1〉YAGレーザの第四高調波 (266 nm) とアキシコンプリズムとを用い、ソーダ ライムガラス基板表面にエネルギー密度 0.2 J/cm 、パルス幅20nsにて50パルス照射した。輪帯状 ビームの外径10μm、輪帯幅2μmであった。この結 果、Rp (突起部高さ) 25nm、Rv (凹部深さ) ≧ -1 n m、外半径 7 μ m、S m (突起部平均間隔) ~ 2 5μmの表面突起が95%の割合で得られた。引き続 き、基板温度200℃にて下地層としてCr100n m、磁性層としてCon Cri Ta合金20nm、保護 層としてカーボン20nmを逐次スパッタ成膜し、さら にPFPE(パーフルオロポリエーテル)系潤滑剤を塗 布成膜して実施例1の磁気記録媒体を作製した。

【0011】〈実施例2〉KrFエキシマレーザ(24 8 nm) とマスクとを用い、ソーダライムガラス基板表 面にエネルギー密度 0.1 J/c m 、輪帯状ビームの

nm、外半径5. $5\mu m$ 、 $Sm\sim35\mu m$ の表面突起は 40%の割合で得られたが、残部はRv-150nmの 凹形状であった。引き続き、前記実施例1と同様にして 比較例2の磁気記録媒体を作製した。

6

外径 $10 \mu m$,輪帯幅 $2 \mu m$ の条件で、パルス幅 15 n sのパルスビームを 80回照射した結果、Rp23nm、 $Rv \ge -1 nm$ 、外半径 $6 \mu m$ 、 $Sm \sim 35 \mu m$ の表面突起を 90%の割合で得た。引き続き、前記実施例 1と同様にして実施例 2の磁気記録媒体を作製した。

【0016】〈比較例3〉KrFエキシマレーザ(248nm)とマスクとを用い、ソーダライムガラス基板表面にエネルギー密度0.2 J/c m^2 、直径10 μ m、パルス幅15 nmのレーザビームで80回照射した結果、Rp27nm、Rv \ge -1nm、外半径6 μ m、Sm~40 μ mの表面突起は40%の割合で得られたが、残部はRv-150 nmの凹形状であった。。引き続き、前記実施例1と同様にして比較例3の磁気記録媒体を作製した。

【0012】〈実施例3〉YAGレーザの第四高調波(266nm)とアキシコンプリズムとを用い、基板を珪素基板とし、レーザ光のエネルギー密度を0.02 J/c m^2 とした以外は前記実施例1と同様にしてレーザ光照射を行った結果、Rp27nm、 $Rv \ge -1.5nm$ 、外半径5.5 μ m、 $Sm \sim 40 \mu$ mの表面突起を85%の割合で得た。引き続き、前記実施例1と同様にして実施例3の磁気記録媒体を作製した。

【0017】〈比較例4〉KrFエキシマレーザ(248nm)とマスクとを用い、珪素基板表面にエネルギー密度0.03 J/cm^2 、直径 10μ m、パルス幅15nmにて80回照射した結果、Rp23nm、Rv \ge -1nm、外半径5. 5μ m、Sm \sim 40 μ mの表面突起は30%の割合で得られたが、残部はRv-100nmの凹形状であった。引き続き、前記実施例1と同様にして比較例4の磁気記録媒体を作製した。

【0013】〈実施例4〉KrFエキシマレーザ(248nm)とマスクとを用い、基板を珪素基板とし、エネルギー密度を0.03 J/c m^2 とした以外は前記実施例2 と同様にしてレーザ光照射を行った結果、Rp30nm、 $Rv \ge -2nm$ 、外半径 $5.5\mu m$ 、 $Sm < 40\mu m$ の表面突起を80%の割合で得た。引き続き、前記実施例1 と同様にして実施例4の磁気記録媒体を作製し 20た。

【0018】〈比較例5〉アルミ基板に従来の機械的テスクスチャを施し、Rp25nm、Rv-30nm以上、 $Sm2.2\mu$ mとなるようにし、引き続き実施例1と同様にして比較例5の磁気記録媒体を作製した。

【0014】〈比較例1〉 YAGレーザの第四高調波 (266 nm) の直径 10μ mのビームをソーダライム ガラス基板表面にエネルギー密度0.2 J/c m²、パルス幅20nsにて50パルス照射した。Rp28nm、Rv \ge -1nm、外半径 7μ m、Sm 35μ mの表面突起は50%の割合で得られたが、残部はRv-100nmの凹形状であった。引き続き、前記実施例1と同様にして比較例1の磁気記録媒体を作製した。

【0019】表1に前記実施例1,2,3,4及び比較例1,2,3,4,5の各磁気ディスクのCSS特性としてのCSS10000回後のスティクション値を示す。尚、CSS測定機は市販のCSSテスターを用い、30 磁気ヘッドにはAl2 O3-TiCスライダヘッドを用いた。

【0015】〈比較例2〉YAGレーザの第四高調波 (266nm)の直径10μmのビームを珪素基板表面 にエネルギー密度0.02J/cm²、パルス幅20n sにて50パルス照射した。Rp25nm、Rv≧-1

[0020]

【表1】

7		8
	CSSの10000回後のスティクション値	
実施例1	0.29	
実施例2	0.31	
実施例3	0.36	
実施例4	0.34	
比較例 1	0.45	
比較例2	0.54	
比較例3	0.55	
比較例4	0.60	:
比較例5	0.82	

【0021】表1より明らかなように本発明の実施例1 ~4の磁気記録媒体は比較例1~5の磁気記録媒体と比 較してスティクション値が格段に低下し、従来技術によ り作製されたディスクより優れたCSS特性を有してい ることがわかる。

【0022】以上本発明を実施例に基づいて説明した が、本発明は上記実施例に限定されるものではなく、特 許請求の範囲に記載の構成を変更しない限りどのように 30 でも実施することができる。

[0023]

【発明の効果】以上説明したように、本発明は、ガラス 基板、珪素基板等の上に下地層、磁性層、保護層、潤滑 層等を逐次成膜してなる磁気記録媒体(HD)の製造方 法に関し、レーザ光を用いて基板に所要形状の凹凸粗面 を形成するレーザテクスチャ技術を提供するものであ る。本発明では、従来の機械テクスチャで問題となって いた凹凸形状や深さの非制御性、バリの発生を完全に防 止できる。また、リソグラフィ技術のような多数の工程 40 とレジスト、洗浄液といった廃棄物の発生を伴わないた め、設備コストの低減につながる。他方、従来のレーザ 加工法であるスポット状レーザビームでは、ガラス基 板、珪素基板等へのエネルギー集中が一定でないために

凹凸形状が不安定で、所期の突起形状を選択的に形成す ることが困難であり、しばしば過大なアブレーションに よる窪みが発生して薄肉で高い耐久性が求められる基板 にクラックを生じさせる原因ともなったが、輪帯状レー ザビームを用いる本発明では、基板内のエネルギー密度 を輪帯状に分布させるため、形状むらの少ない突起形状 の卓越したテクスチャ加工が容易となる。この発明によ り、高記録密度/高耐久性を要求される次世代HDにお ける、高効率で制御性に優れたテクスチャ処理技術が得 られる。

【図面の簡単な説明】

【図1】 基板加工におけるレーザエネルギ密度と加工深 さとの関係を示す相関図である。

【図2】本発明において基板に形成されるテクスチャの 拡大側面図であり、(A)本発明において形成される突 起部の形状、(B)加工閾値以上のエネルギー密度で形 成される凹部の形状である。

【図3】輪帯状レーザビームとスポット状レーザビーム とでソーダライムガラス表面に形成されるテクスチャの 相違を示すもので、図2で示す凹凸形状の割合と基板に 照射されるレーザエネルギー密度との関係を示す相関図 である。

