

Seminar Modellierung und Simulation biologischer Systeme

Hauptkomponentenanalyse: automatische Gesichtserkennung

Prof. Dr. Arne Nägel

Malaz al Mahdi Yasser Saadaoui

Einleitung

Die Gesichtserkennung hat sich zu einem beliebten Forschungsbereich in der Computer Vision entwickelt und ist eine der erfolgreichsten Anwendungen der Bildanalyse und des Bildverständnisses. Sie umfasst zwei Hauptaufgaben:

- •Gesichtsidentifikation: Bei einem gegebenen Gesichtsbild, das einer Person in einer Datenbank zugeordnet ist, muss bestimmt werden, wessen Bild es ist.
- •Gesichtsverifikation: Bei einem Gesichtsbild, das möglicherweise nicht zur Datenbank gehört, muss überprüft werden, ob es tatsächlich von der Person stammt, als die es angegeben wird.

Frage

Was ermöglicht uns die effektive Durchführung dieser beiden Hauptaufgaben von der Gesichtserkennung?

Hauptkomponentenanalyse

Die *Hauptkomponentenanalyse* (PCA) ist ein Werkzeug zur *Dimensionsreduktion*, das verwendet werden kann, um eine große Menge von Variablen auf eine kleine Menge zu reduzieren, die immer noch den *größten Teil der Informationen* aus der großen Menge enthält.

Vorgehen

- 1.Datenbank einrichten
- 2.Berechnung der Eigengesichter aus der Datenbank
- 3. Projektion der Gesichtsbilder auf den Gesichtsraum

Datenbank einrichten

Erwerb einer Anfangsmenge von Gesichtsbildern, die als Trainingsset dienen:

- Alle Bilder müssen auf dieselbe Auflösung geschnitten werden (M x N)
- Der vorherige Punkt sollte so bewerkstelligt werden, sodass das Gesicht möglichst das ganze Bild ausfüllt
- Alle Bilder müssen in schwarz-weiß Bild konvertiert werden

1. Alle Bilder von der Datenbank als Vektor repräsentieren (Γ1, Γ2, . . . , ΓΜ)

2. Durchschnittsgesicht

$$\Psi = \frac{1}{M} \sum_{n=1}^{M} \Gamma_n$$
, M = Anzahl der Bilder

3. Differenzgesichter

Jedes Bild von der Anfangsmenge unterscheidet sich von dem Durchschnittsgesicht durch

$$\Phi_n = \Gamma_n - \Psi_{,, n=1,..,M}$$

4. Kovarianzmatrix

Die Matrix wird durch die Formel berechnet

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = AA^T$$

Wobei
$$A = [\Phi_1, \Phi_2,, \Phi_M]$$

Die Matrix ist sehr schwer zu berechnen

Berechnung der Eigengesichter (Tafel Berechnung)

Bestimmung der Eigenvektoren und Eigenwerte der Kovarianzmatrix

Warum ist die Matrix L einfacher zu berechnen als C (die Kovarianzmatrix)?

Bestimmung der Eigenvektoren und Eigenwerte der Kovarianzmatrix

Angenommen L = ATA , mit den Eigenvektoren. V_n und den Eigenwerten λ_n

$$A^{T}A\nu_{n} = \lambda_{n}\nu_{n} = \lambda_{n}A\lambda_{n}^{T}A\nu_{n} = \lambda_{n}A\nu_{n}$$

 Av_n sind die Eigenvektoren von C. Daher $\mu_n = \sum_{k=1}^{N} v_{nk} \Phi_k = Av_n$

Gesichtsraum

- Die k besten Eigenvektoren (mit den k größten Eigenwerte)
- Bilder bekannter Personen werden durch eine einfache Operation $\omega_{ik} = \mu_k^T (\Gamma_i \Psi)$ in den "Gesichtsraum" projiziert.
- Jedes Bild kann durch einen Mustervektor repräsentiert.

$$\Omega_i = [\omega_{i1}, \omega_{i2}, \dots, \omega_{iM}]$$

AT&T Dataset: Facespace 5 Personen

Gehört ein neu erhaltenes Gesichtsbild zu einer der Personen in unserer bestehenden Datenbank?

Gesichtserkennung mit Eigengesichtern Neues Bild

 Projektion: Das neue Bild wird auf den Eigenface-Raum projiziert, um seinen Mustervektor zu erhalten

$$\Omega = [\omega_1, \omega_2, \dots, \omega_M]$$

Wobei $\omega_{ik} = \mu_k^T (\Gamma_i - \Psi)$

Grafische Darstellung des Eigenface-Raums mit neuem Bild Gesichtsdaten × Neues Bild

Gesichtserkennung mit Eigengesichtern Neues Bild

Gesichtsprüfung: Es wird geprüft, ob das Bild ein Gesicht darstellt, indem die Distanz zu einem vordefinierten Schwellenwert verglichen wird.

Gesichtserkennung mit Eigengesichtern Neues Bild

 Klassifizierung: Das Bild wird als bekanntes Individuum oder als unbekannt klassifiziert, basierend auf der minimalen Distanz zu den Mustervektoren bekannter Individuen.

$$\varepsilon_k^2 = \left\| (\Omega - \Omega_k)^2 \right\|$$

• Falls argmin(ei) < Schwellpunkt, ist das neue Gesicht erkannt. Sonst, ist es als unbekannt klassifiziert.

Implementierung

Trainingsbilder

Normalisierte Gesichter

Durchschnittsgesicht

Eigenfaces

Testbilder

banane.jpg

SteveJobs.jpg

ubject11.happy.jpg

donaldTrump.jpg

subject01.happy.jpg

subject12.normal.jpg

Elon_Musk.jpg

subject07.happy.jpg

subject14.happy.jpg

olafScholz.jpg

subject11.centerlight.j

subject14.sad.jpg

Unbekannte oder kein Gesicht

Kein Gesicht: banane.jpg

Unbekannt: donaldTrump.jpg Dist=99704566.41

Unbekannt: Elon_Musk.jpg Dist=71369427.56

subject11.normal.jpg

Unbekannt: olafScholz.jpg Dist=85741523.02

Erkannte Gesichter

Anwendung

- Sicherheits- und Überwachungsysteme
- Personalisierte Benutzererfahrung
- Forensik und Kriminalitätsbekämpfung
 Smartphone und Computer
 Personalisierte Anzeigen
- Medizinische Anwendung
 Diagnose genetischer Erkrankungen
 Psychiatrie und Neurologie

Danke für Ihre Aufmerksamkeit und Ihr Zuhören

Bei Fragen stehen wir gerne zur Verfügung

Quellen

Verwendete Quellen für die Gesichtserkennung:

- OpenCV Dokumentation f
 ür Gesichtserkennung und Zuschneiden:
 - https://github.com/opency/opency
- Verschiedene Implementierungen von Eigenfaces zur Gesichtserkennung:
 - https://github.com/agyorev/Eigenfaces/tree/master
 - https://github.com/vutsalsinghal/EigenFace/tree/master/Dataset
 - https://github.com/zwChan/Face-recognition-using-eigenfaces/blob/master/eigenFace.py

Quellen für die mathematische Theorie (PCA & Eigenfaces):

- Bücher & wissenschaftliche Arbeiten:
 - Turk & Pentland (1991) "Eigenfaces for Recognition"
 - Sirovich & Kirby (1987) "Low-dimensional Procedure for the Characterization of Human Faces
 - https://www.cs.hs-rm.de/~ulges/teaching/15MLSEM/files/folien/schmidt.pdf
 - https://de.slideshare.net/slideshow/eigenface-for-face-recognition-

presentation/758807?_gl=1*kkpo6c*_gcl_au*MTI3MTc1MDYwNS4xNzM4MDAwMDQz

Datenbank für Trainingsbilder:

https://github.com/vutsalsinghal/EigenFace/tree/master/Dataset