Web Mining

Analisa data dimensi tinggi dan Data Praproses

Prodi Teknik Informatika

Universitas Trunojoyo Madura

2024

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

 Menggabungkan dua atau lebih atribut (atau objek) menjadi satu atribut (atau objek)

- Purpose
 - Data reduction
 - Mengurangi jumlah atribut atau obyek
 - Change of scale
 - Cities di agregasi kedalam regions, states, countries, etc.
 - Days di agregasi kedalam weeks, months, or years
 - More "stable" data
 - Data agregat cenderung memiliki variabilitas yang lebih sedikit

Example: Precipitation in Australia

- Contoh ini berdasarkan curah hujan di Australia dari periode 1982 hingga 1993.
- Slide berikutnya menunjukkan
 - Histogram untuk deviasi standar rata-rata curah hujan bulanan untuk 3.030 sel grid 0,5° dengan 0,5° di Australia, dan
 - Histogram untuk deviasi standar curah hujan tahunan rata-rata untuk lokasi yang sama.
- Curah hujan tahunan rata-rata memiliki variabilitas yang lebih kecil daripada curah hujan bulanan rata-rata.
- Semua pengukuran curah hujan (dan simpangan bakunya) dalam sentimeter.

Example: Precipitation in Australia ... Variation of Precipitation in Australia

Standar Deviasi dari rerata Curah hujan bulanan

Standar Deviasi dari rerata curah hujan tahunan

Sampling

- Pengambilan sampel adalah teknik utama yang digunakan untuk reduksi data.
 - Sering digunakan untuk investigasi awal data dan analisis data akhir.
- Para ahli statistik sering kali mengambil sampel karena memperoleh keseluruhan rangkaian data yang diinginkan terlalu mahal atau memakan waktu.
- Pengambilan sampel biasanya digunakan dalam penambangan data karena pemrosesan seluruh rangkaian data yang diinginkan terlalu mahal atau memakan waktu.

Sampling ...

 Prinsip utama untuk pengambilan sampel yang efektif adalah sebagai berikut:

- Penggunaan sampel akan bekerja hampir sama baiknya dengan penggunaan seluruh set data, jika sampel tersebut representatif
- Suatu sampel bersifat representatif jika sampel tersebut memiliki sifat-sifat (yang menarik) yang hampir sama dengan kumpulan data asli.

Sample Size

Types of Sampling

- Simple Random Sampling
 - Ada kemungkinan yang sama untuk memilih item tertentu
 - Pengambilan sampel tanpa penggantian
 - Ketika setiap item dipilih, item tersebut dikeluarkan dari populasi
 - Pengambilan sampel dengan penggantian
 - Objek tidak dikeluarkan dari populasi karena dipilih untuk sampel.
 - Dalam pengambilan sampel dengan penggantian, objek yang sama dapat diambil lebih dari satu kali
- Stratified sampling
 - Membagi data menjadi beberapa partisi; lalu mengambil sampel acak dari setiap partisi

Sample Size

• Berapa ukuran sampel yang diperlukan untuk mendapatkan setidaknya satu objek dari setiap 10 kelompok berukuran sama.

Curse of Dimensionality

- Ketika dimensionalitas meningkat, data menjadi semakin jarang di ruang yang ditempatinya
- Definisi kepadatan dan jarak antar titik, yang penting untuk pengelompokan dan deteksi outlier, menjadi kurang bermakna

- Hasilkan 500 poin secara acak
- •Hitung perbedaan antara jarak maksimum dan minimum antara pasangan titik mana pun

Dimensionality Reduction

• Purpose:

- Hindari kutukan dimensionalitas
- Mengurangi jumlah waktu dan memori yang dibutuhkan oleh algoritma penambangan data
- Memungkinkan data divisualisasikan dengan lebih mudah
- Dapat membantu menghilangkan fitur yang tidak relevan atau mengurangi kebisingan

Techniques

- Analisis Komponen Utama (PCA)
- Dekomposisi Nilai Singular
- Lainnya: teknik pengawasan dan non-linier

Dimensionality Reduction: PCA

 Tujuannya adalah untuk menemukan proyeksi yang menangkap jumlah variasi data terbesar

Dimensionality Reduction: PCA 256

Feature Subset Selection

- Cara lain untuk mengurangi dimensionalitas data
- Redundant features
 - Gandakan sebagian besar atau semua informasi yang terdapat dalam satu atau lebih atribut lainnya
 - Contoh: harga pembelian suatu produk dan jumlah pajak penjualan yang dibayarkan
- Irrelevant features
 - Tidak mengandung informasi yang berguna untuk tugas penambangan data yang sedang dilakukan
 - Contoh: ID siswa seringkali tidak relevan dengan tugas memprediksi IPK siswa.
- Banyak teknik yang dikembangkan, terutama untuk klasifikasi

Feature Creation

- Buat atribut baru yang dapat menangkap informasi penting dalam kumpulan data jauh lebih efisien daripada atribut asli
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier and wavelet analysis

Mapping Data to a New Space

Two Sine Waves + Noise

Frequency

Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - Jumlah nilai yang berpotensi tak terbatas dipetakan ke dalam sejumlah kecil kategori
 - Diskritisasi umumnya digunakan dalam klasifikasi
 - Banyak algoritma klasifikasi bekerja paling baik jika variabel independen dan dependen hanya memiliki beberapa nilai
 - Contoh ilustrasi tentang kegunaan diskritisasi menggunakan pada dataset Iris

Iris Sample Data Set

- Iris Plant data set.
 - Can be obtained from the UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.html
 - From the statistician Douglas Fisher
 - Three flower types (classes):
 - Setosa
 - Versicolour
 - Virginica
 - Four (non-class) attributes
 - · Sepal width and length
 - · Petal width and length

Virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland.

Discretization: Iris Example

Petal width low or petal length low implies Setosa.

Petal width medium or petal length medium implies Versicolour.

Petal width high or petal length high implies Virginica.

Discretization: Iris Example ...

- How can we tell what the best discretization is?
 - Unsupervised discretization: find breaks in the data values
 - Example: Petal Length

• Supervised discretization: Use class labels to find breaks

Data consists of four groups of points and two outliers. Data is onedimensional, but a random y component is added to reduce overlap.

Equal interval width approach used to obtain 4 values.

Equal frequency approach used to obtain 4 values.

K-means approach to obtain 4 values.

Binarization

- Binarisasi memetakan atribut kontinu atau kategorikal menjadi satu atau lebih variabel biner
- Biasanya digunakan untuk analisis asosiasi
- Sering mengubah atribut kontinyu menjadi atribut kategoris dan kemudian mengubah atribut kategoris menjadi sekumpulan atribut biner
 - Analisis asosiasi membutuhkan atribut biner asimetris
 - Contoh: warna mata dan tinggi badan diukur sebagai {rendah, sedang, tinggi}

Attribute Transformation

- Transformasi atribut adalah fungsi yang memetakan seluruh himpunan nilai atribut tertentu ke himpunan nilai pengganti baru sehingga setiap nilai lama dapat diidentifikasi dengan salah satu nilai baru.
 - Fungsi sederhana: x^k, log(x), e^x, |x|
 - Normalisasi
 - Mengacu pada berbagai teknik untuk menyesuaikan perbedaan antar atribut dalam hal frekuensi kemunculan, rata-rata, varians, rentang
 - Hapus sinyal umum yang tidak diinginkan, misalnya musim
 - Dalam statistik, standarisasi mengacu pada pengurangan rata-rata dan pembagian dengan standar deviasi.

Example: Sample Time Series of Plant Growth

Net Primary
Production (NPP)
adalah ukuran
pertumbuhan
tanaman yang
digunakan oleh
ilmuwan
ekosistem.

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.7591	-0.7581
Atlanta	0.7591	1.0000	-0.5739
Sao Paolo	-0.7581	-0.5739	1.0000

Seasonality Accounts for Much Correlation

Dinormalisasi menggunakan Skor Z bulanan:

Kurangi rata-rata bulanan dan bagi dengan deviasi standar bulanan

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.0492	0.0906
Atlanta	0.0492	1.0000	-0.0154
Sao Paolo	0.0906	-0.0154	1.0000