Von Neumann 穩定性分析

KTHFAN

January 20, 2022

Contents

1	簡介	2
2	估計波方程	2
3	Upwind Scheme 3.1 波方程的數值計算格式	2 2 3
4	Downwind Scheme 4.1 波方程的數值計算格式	4 4
5	都做後差法 5.1 波方程的數值計算格式	5 5
6	對 t 後差、對 x 前差 6.1 波方程的數值計算格式	7 7
7	結論	9

1 簡介

本次報告的目的爲比較波方程在使用前插法或後差法進行估計時,穩定性的情況,其中在本報告要討論的波方程 u(x,t) 定義如下:

$$\frac{\partial u(x,t)}{\partial t} + \frac{\partial u(x,t)}{\partial x} = 0$$

$$u(x,0) = f(x)$$

$$u^{(p)}(0,t) = u^{(p)}(2\pi,t)$$
(1)

where $x \in [0, 2\pi], t \ge 0$.

2 估計波方程

使用差分法來估計(1)。首先,將(1)拆成兩個部分:

$$\frac{\partial u(x,t)}{\partial t} \tag{2}$$

$$\frac{\partial u(x,t)}{\partial x} \tag{3}$$

在接下來的章節裡,我們將對(2)、(3)兩式分別做前插法、後差法,並比較上述四種方法的穩定性。

3 Upwind Scheme

3.1 波方程的數值計算格式

此法是對 $\frac{\partial u(x,t)}{\partial t}$ 進行前差法估計,對 $\frac{\partial u(x,t)}{\partial x}$ 則是做後差法估計之。因此得到

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{v_j^n - v_{j-1}^n}{\Delta x} = 0$$
 (4)

where $v_j^0 = f(x_j), x_j = \frac{2\pi j}{N+1}, v_{-1}^n = v_N^n \ N \in \mathbb{N}, j = 0, 1, 2, \dots, N.$

3.2 Von Neumann 穩定性分析

假設 $v_j^n = \hat{v}_k^n e^{ikx_j}$, 則

$$(4) = \frac{\hat{v}_k^{n+1} e^{ikx_j} - \hat{v}_k^n e^{ikx_j}}{\Delta t} + \frac{\hat{v}_k^n e^{ikx_j} - \hat{v}_k^n e^{ikx_{j-1}}}{\Delta x} = 0$$

$$\Rightarrow \hat{v}_k^{n+1} = \hat{v}_k^n \left(1 - \lambda \left(1 - e^{-ik\Delta x} \right) \right) \Rightarrow \hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$$

其中 $\lambda = \frac{\Delta t}{\Delta x}$, $\hat{Q} = 1 - \lambda \left(1 - e^{-ik\Delta x}\right)$ °

根據上面推導,因爲 $\hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$,所以若要系統穩定,條件 $\left|\hat{Q}\right| \leq 1$ 需要滿足,因此我們計算

$$\left|\hat{Q}\right|^2 = \left|1 - \lambda \left(1 - e^{-ik\Delta x}\right)\right|^2$$
$$= \left|1 - \lambda \left(1 - \cos k\Delta x - i\sin k\Delta x\right)\right|^2$$
$$= 1 + 2\left(\lambda^2 - \lambda\right)\left(1 - \cos k\Delta x\right)$$

已知 λ 對 $\left|\hat{Q}\right|^2$ 的影響爲

$$\begin{cases} 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) > 1 & \text{if } \lambda > 1\\ 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) < 1 & \text{if } \lambda < 1\\ 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) = 1 & \text{if } \lambda = 1 \end{cases}$$

根據上面推導,可得出

$$\Rightarrow \begin{cases} 1 \le \left| \hat{Q} \right| \le \sqrt{1 + 2\lambda (\lambda - 1) (1 - \cos k \Delta x)} & \text{if } \lambda > 1 \\ \sqrt{1 + 2\lambda (\lambda - 1) (1 - \cos k \Delta x)} \le \left| \hat{Q} \right| \le 1 & \text{if } \lambda < 1 \\ \left| \hat{Q} \right| = 1 & \text{if } \lambda = 1 \end{cases}$$
 (5)

因此,當 $\lambda \le 1$ 成立,系統具穩定性。

Figure 1: λ 與 $|\hat{Q}|$ 之間的關係

4 Downwind Scheme

4.1 波方程的數值計算格式

此法是對 $\frac{\partial u(x,t)}{\partial t}$ 、 $\frac{\partial u(x,t)}{\partial x}$ 皆做前差法進行估計。因此得到

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{v_{j+1}^n - v_j^n}{\Delta x} = 0$$
 (6)

where $v_j^0 = f(x_j), x_j = \frac{2\pi j}{N+1}, v_{-1}^n = v_N^n \ N \in \mathbb{N}, j = 0, 1, 2, \dots, N.$

4.2 Von Neumann 穩定性分析

假設
$$v_j^n = \hat{v}_k^n e^{ikx_j}$$
,則
$$(6) = \frac{\hat{v}_k^{n+1} e^{ikx_j} - \hat{v}_k^n e^{ikx_j}}{\Delta t} + \frac{\hat{v}_k^n e^{ikx_{j+1}} - \hat{v}_k^n e^{ikx_j}}{\Delta x} = 0$$

$$\Rightarrow \hat{v}_k^{n+1} = \hat{v}_k^n \left(1 - \lambda \left(e^{ik\Delta x} - 1\right)\right) \Rightarrow \hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$$

其中
$$\lambda = \frac{\Delta t}{\Delta x}, \, \hat{Q} = 1 - \lambda \left(e^{ik\Delta x} - 1\right)$$
。

根據上面推導,因爲 $\hat{v}_k^{n+1}=\hat{Q}^{n+1}\hat{v}_k^0$,若要系統穩定,條件 $\left|\hat{Q}\right|\leq 1$ 需要滿足,因此我們計算

$$\left|\hat{Q}\right|^2 = \left|1 - \lambda \left(e^{ik\Delta x} - 1\right)\right|^2$$
$$= \left|1 - \lambda \left(\cos k\Delta x + i\sin k\Delta x - 1\right)\right|^2$$
$$= 1 + 2\left(\lambda^2 + \lambda\right)\left(1 - \cos k\Delta x\right)$$

根據上面推導,可得出

$$1 \le \left| \hat{Q} \right| \le \sqrt{1 + 2\lambda \left(\lambda + 1\right) \left(1 - \cos k\Delta x\right)} \tag{7}$$

由於 $2\lambda\left(\lambda+1\right)\left(1-\cos k\Delta x\right)\geq 0$ 恆成立,因此,無論比例 λ 取多少,系統皆不具穩定性。

Figure 2: λ 與 $|\hat{Q}|$ 之間的關係

5 都做後差法

5.1 波方程的數值計算格式

此法是對 $\frac{\partial u(x,t)}{\partial t}$ 、 $\frac{\partial u(x,t)}{\partial x}$ 皆做後差法進行估計。 因此得到

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{v_j^{n+1} - v_{j-1}^{n+1}}{\Delta x} = 0$$
 (8)

where
$$v_j^0 = f(x_j), x_j = \frac{2\pi j}{N+1} v_{-1}^n = v_N^n \ N \in \mathbb{N}, j = 0, 1, 2, \dots, N.$$

5.2 Von Neumann 穩定性分析

假設
$$v_j^n = \hat{v}_k^n e^{ikx_j}$$
, 則

$$(8) = \frac{\hat{v}_k^{n+1} e^{ikx_j} - \hat{v}_k^n e^{ikx_j}}{\Delta t} + \frac{\hat{v}_k^{n+1} e^{ikx_j} - \hat{v}_k^{n+1} e^{ikx_{j-1}}}{\Delta x} = 0$$

$$\Rightarrow \hat{v}_k^n = \hat{v}_k^{n+1} \left(\lambda \left(1 - e^{-ik\Delta x} \right) + 1 \right) \Rightarrow \hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$$

其中
$$\lambda = \frac{\Delta t}{\Delta x}, \, \hat{Q} = \frac{1}{\lambda \left(1 - e^{-ik\Delta x}\right) + 1}$$
。

根據上面推導,因爲 $\hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$,因此若要系統穩定,條件 $\left|\hat{Q}\right| \leq 1$ 需要滿足。首先,我們證明 $\left|\lambda\left(1-e^{-ik\Delta x}\right)+1\right| \geq 1$ 是否成立,若成立,則表示其倒數 $\left|\hat{Q}\right|$ 將會小於等於 1。

$$\frac{1}{\left|\hat{Q}\right|^{2}} = \left|\lambda\left(1 - e^{-ik\Delta x}\right) + 1\right|^{2} = \left|\lambda\left(1 - \cos k\Delta x - i\sin k\Delta x\right) + 1\right|^{2}$$

$$=1+2(\lambda^2+\lambda)(1-\cos k\Delta x)$$

根據上面推導,由於 $2\lambda\left(\lambda+1\right)\left(1-\cos k\Delta x\right)\geq 1$ 恆成立,因此我們得到

$$1 \le \frac{1}{\left|\hat{Q}\right|^2} \le 1 + 2\lambda \left(\lambda + 1\right) \left(1 - \cos k\Delta x\right)$$

$$\Rightarrow \sqrt{1 + 2\lambda (\lambda + 1) (1 - \cos k\Delta x)}^{-1} \le \left| \hat{Q} \right| \le 1 \tag{9}$$

因此,無論比例 λ 取多少,系統皆具穩定性。

Figure 3: λ 與 $|\hat{Q}|$ 之間的關係

6 對 t 後差、對 x 前差

6.1 波方程的數值計算格式

此法是對 $\frac{\partial u(x,t)}{\partial t}$ 進行後差法估計,對 $\frac{\partial u(x,t)}{\partial x}$ 則是做前差法估計之。因此得到

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{v_{j+1}^{n+1} - v_j^{n+1}}{\Delta x} = 0$$
 (10)

where $v_j^0 = f(x_j), x_j = \frac{2\pi j}{N+1} v_{-1}^n = v_N^n \ N \in \mathbb{N}, j = 0, 1, 2, \dots, N.$

6.2 Von Neumann 穩定性分析

假設
$$v_j^n = \hat{v}_k^n e^{ikx_j}$$
,則
$$(10) = \frac{\hat{v}_k^{n+1} e^{ikx_j} - \hat{v}_k^n e^{ikx_j}}{\Delta t} + \frac{\hat{v}_k^{n+1} e^{ikx_{j+1}} - \hat{v}_k^{n+1} e^{ikx_j}}{\Delta x} = 0$$

$$\Rightarrow \hat{v}_k^n = \hat{v}_k^{n+1} \left(\lambda \left(e^{ik\Delta x} - 1\right) + 1\right) \Rightarrow \hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$$
 其中 $\lambda = \frac{\Delta t}{\Delta x}$, $\hat{Q} = \frac{1}{\lambda \left(e^{-k\Delta x} - 1\right) + 1} \circ$

根據上面推導,因爲 $\hat{v}_k^{n+1} = \hat{Q}^{n+1} \hat{v}_k^0$,因此若要系統穩定,條件 $\left|\hat{Q}\right| \leq 1$ 需要滿足。首先,我們證明 $\left|\lambda\left(e^{-k\Delta x}-1\right)+1\right| \geq 1$ 是否成立,若成立,則表示其倒數 $\left|\hat{Q}\right|$ 將會小於等於 1。

$$\frac{1}{\left|\hat{Q}\right|^{2}} = \left|\lambda\left(e^{-k\Delta x} - 1\right) + 1\right|^{2} = \left|\lambda\left(\cos k\Delta x + i\sin k\Delta x - 1\right) + 1\right|^{2}$$
$$= 1 + 2\left(\lambda^{2} - \lambda\right)\left(1 - \cos k\Delta x\right)$$

又因爲

$$\begin{cases} 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) > 1 & \text{if } \lambda > 1\\ 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) < 1 & \text{if } \lambda < 1\\ 1+2\left(\lambda^2-\lambda\right)\left(1-\cos k\Delta x\right) = 1 & \text{if } \lambda = 1 \end{cases}$$

因此得到

$$\begin{cases} 1 \le \frac{1}{|\hat{Q}|^2} \le 1 + 2(\lambda^2 - \lambda)(1 - \cos k\Delta x) & \text{if } \lambda > 1 \\ 1 + 2(\lambda^2 - \lambda)(1 - \cos k\Delta x) \le \frac{1}{|\hat{Q}|^2} \le 1 & \text{if } \lambda < 1 \\ \frac{1}{|\hat{Q}|^2} = 1 & \text{if } \lambda = 1 \end{cases}$$

$$\Rightarrow \begin{cases} \sqrt{1+2(\lambda^2-\lambda)(1-\cos k\Delta x)}^{-1} \le \left|\hat{Q}\right| \le 1 & \text{if } \lambda > 1 \text{ and } \lambda \ne 0.5 \\ 1 \le \left|\hat{Q}\right| \le \sqrt{1+2(\lambda^2-\lambda)(1-\cos k\Delta x)}^{-1} & \text{if } \lambda < 1 \\ \left|\hat{Q}\right| = 1 & \text{if } \lambda = 1 \end{cases}$$

$$(11)$$

因此,當 $\lambda \ge 1$ 成立,系統具穩定性。

Figure 4: λ 與 $|\hat{Q}|$ 之間的關係

7 結論

在推導過程中,我們發現「Downwind Scheme」與「都做後差法」、「Upwind Scheme」與「對 t 後差、對 x 前差」之 $\left|\hat{Q}\right|^2$ 互爲倒數,因此出現「Upwind Scheme」在 $\left|\hat{Q}\right|^2 > 1$ 時不穩定、而「對 t 後差、對 x 前差」則是在 $\left|\hat{Q}\right|^2 < 1$ 時會不穩定。

其中值得注意的是,在使用「Upwind Scheme」並且設 $\lambda=0.5$ 時,根據式子(5)以及圖1,看似會產生當 $\cos k\Delta x$ 靠近 -1 時, $|\hat{Q}|\approx 0$ 的情形,導致估計函數快速收斂到 y=0 上。但是因爲我們習慣將 Δx 取的夠小,因此實際情況上入與 $|\hat{Q}|$ 之間的關係應該會類似圖1上、 $\cos k\Delta x=\frac{1}{4}\pi$ 所顯示之 $|\hat{Q}|$ 非常接近 1的情形。

我們可以利用上述的觀點判斷「都做後差法」與「Upwind Scheme」設入<1下,何者的估計函數會更快收斂到y=0上。首先假設 Δx 取得夠小,接著比較圖 1 以及 3 可以發現,「都做後差法」之圖 3 ,其 $|\hat{Q}|$ 會隨著 λ 的增加快速遞減;至於在「Upwind Scheme」之圖 1 上,我們看到只要 λ <1,其 $|\hat{Q}|$ 值都會很接近 1,因此根據假設「 $\hat{v}_k^{n+1}=\hat{Q}^{n+1}\hat{v}_k^0$ 」,「都做後差法」之估計函數會比「Upwind Scheme」的估計函數更快收斂到y=0上。