# **Extracting Model Structure for Improved Semantic Modeling**

James Fairbanks, Georgia Tech Research Institute jpfairbanks.com/doc/aske 12/5/2018

#### Goals

- 1. Extract a knowledge graph from Scientific Artifacts (code, papers, datasets)
- 2. Represent scientific models as a high level abstraction, (code as data)
- 3. Build metamodels by combining models in hierarchical expressions using reasoning over KG (1).

#### Running Example: Influenza

Modeling the cost of treating a flu season taking into account weather effects.

- 1. Seasonal temperature is a dynamical system
- 2. Flu infectiousness is a function of temperature

## Running Example: Modeling types

Modeling the cost of treating a flu season taking into account weather effects.

- 1. Seasonal temperature is approximated by 2nd order linear ODE
- 2. Flu cases is an SIR model 1st order nonlinear ode
- 3. Mitigation cost is Linear Regression on vaccines and cases

#### Scientific Domain

We focus on Susceptible Infected Recovered model of epidemiology.

- 1. Precise, concise mathematical formulation
- 2. Diverse class of models, ODE vs Agent-based, determinstic vs stochastic
- 3. FOSS implementations are available in all three Scientific programming languages

## **Graph of SIR Model**



### **Knowledge Extraction Architecture**



### **Example Input Packages**

- 1. EMOD, Epimodels, NetLogo, and FRED are established packages, given their maturity and availability of published papers citing these packages.
- 2. Pathogen and NDLib are newer packages, we expect easier to work with and more future adoption.
- 3. Textbooks [Voit 2012] and lecture notes<sup>1</sup> will be a resource for these simple models that are well characterized.

<sup>&</sup>lt;sup>1</sup>http://alun.math.ncsu.edu/wp-content/uploads/sites/2/2017/01/epidemic\_notes.pdf

#### Model Representation and Execution

Representation of models occurs at four levels:

- Executable: the level of machine or byte-code instructions
- Lexical: the tradition code representation assignment, functions, and loops
- Semantic: a declarative language or computation graph representation with nodes linked to the knowledge graph
- Human: a description in natural language as in a research paper or textbook

#### Model Representation and Execution

Julia provides tools at every level:

- Executable: LLVM bytecode and compiler
- Lexical: metaprogramming, Lisp style macros, code as data
- **Semantic**: type inference + computation DAG
- Human: Text, Jupyter Notebooks, and Graphviz diagrams

### **Knowledge Graph Schema**

A preliminary design for types of knowledge in our knowledge graph.



## **Knowledge Graph Sample**



#### Flu Metamodel Pipeline

Here is the DAG for our running example. See FluModel Notebook for worked out example.



### **Knowledge Graph Reasoning**

- 1. Define Model representations / KG schema
- 2. Extract KG from artifacts
- 3. Reason over KG to build metamodel
- 4. CodeGen/Execution of Metamodel

## How do we get from Weather to Cost?



## How do we get from Weather to Cost?



### How do we get from Weather+Demographics to Cost?



### Knowledge Graph Reasoning Open Questions

- What rules for path/flow computations are necessary and sufficient for a metamodel?
- Can we implement those rules by choosing weights?
- How do we handle uncertainty and near matches?
- How do we determine "necessary dependencies" better than "connected component"
- What about supplying expert information?

#### Infectious Disease Metamodel

- A more ambitious example of a metamodel
- Requires Agent-based simulations of information diffuision and disease spread



### Static vs Dynamic Graph

- Inherent tradeoff between flexibility and static analysis
- We will build the computation graph through the execution of code
- Metaprogramming will be used to generate the executable codes

#### **Validation**

- Extraction of KG elements from artifacts
- Metamodel construction
- Metamodel quality

#### **Error and Residual**

- Analogize the metamodel construction error and the model quality to the error and residual in numerical solvers. Given f(x) = 0 solve for x
- Measure both the error and the residual.
- Error  $|x x^*|$ , the difference from the correct solution
- Residual  $| f(x) f(x^*) |$  or the difference from quality of optimal solution

#### **Next Steps**

- Incorporation of feedback today
  - the types of artifacts in scope
  - domain coverage and desired extensibility
  - inclusion/exclusion of particular package(s) and/or knowledge artifact(s)
- Construction of a proof-of-concept version of our knowledge graph and end-to-end pipeline
- Tailor running example to DARPA objectives
- A automatic transformation of models at the Semantic Level