

Introduction to Cost Modeling, Template Overview for Performers

ARPA-E Tech-to-Market

Outline

- Context for Cost Modeling
 - Motivation, Definitions, and Examples
- Template Description
 - Scope, Overview, Worksheet Details
- Final Remarks

Part I

- Context for Cost Modeling
 - Motivation, Definitions, and Examples
- Template Description
 - Scope, Overview, Worksheet Details
- Final Remarks

Cost & Value

- Production cost (necessary but not sufficient by itself)
 - + Willingness to pay (customer value)
 - → Value creation potential of product

Economic Modeling for Technology

Full Business Financial Model

Cash flow, dynamics of ramping production and varying sales, investments timing

Similar information for other projects competing for resources → decision-making

Production / Operation Cost Model

Determine resources (and \$\$) required for at-scale production/operation

Tabulate material/component flow, labor & energy use, equipment, etc

Basic Materials & Process

Bill of Materials (BOM) – list of "ingredients" Simple block diagram of production steps

Most performers aim for basic form of "Production Cost Model"

Cost Modeling Enables Research & Development

Integrates calculations together for holistic consideration

Identify cost drivers → steer research

- Communicate results with stakeholders
 - Internal: R&D, Management, Marketing
 - External: Industry Advisors, Investors, Customers, Licensing Partners

Modeling Benefits, Despite Uncertainty

Possible concern:

"It's too early—there is too much uncertainty to calculate exactly how profitable this company/product would be."

- Make uncertainties explicit
- Identify most valuable improvements
- Develop targets, metrics
- Bound with theoretical limits
- Create thought framework for reducing uncertainties

Example Techno-Economic Analysis

Wave Energy Converters

(Courtesy of Sea Engineering, Inc.)

Outline

- Context for Cost Modeling
 - Motivation, Definitions, and Examples
- Template Description
 - Scope, Overview, Worksheet Details
- Final Remarks

Template Scope

MODEL INCLUDES

All major cost factors for production of saleable product

Production model for bottom-up calculation of labor, material, and capital requirements to meet production volume

Cost sensitivity and scaling analyses

Estimated value of production project using sale price

MODEL DOES NOT INCLUDE

Operational details (e.g. schedule of work shifts)

Minute product details

Growth dynamics of business, production, or sales

Company financial model (debt, equity, taxes, etc.)

Template Worksheets

#	Sheet Name	Description		
1	Process Diagram	"Hand-drawn" block diagram		
2	Results Summary	Displays key model inputs, outputs, essential analysis		
3	Production Model & OpEx	Step-by-step calculations: materials, labor, and production requirements (core of whole spreadsheet)		
4	CapEx	Building, equipment, tools, etc.		
5	Product Performance	i oriorinarios metros, tied to production mederni peccisio,		
6	Financial	"Fully loaded" product cost, price, margin, payback period		
7	Cost Analysis	Sensitivity analysis, step-by-step breakdown, scaling		
8	Mass & Energy	Supporting calculations regarding materials and processes		

February 18, 2016 Cost Modeling

Sheet 1: Process Diagram

- Capture the entire production process in easily understood format
 - Descriptive step names and step-wise material inputs and outputs
 - Establish modeling level of detail: each step to receive its own treatment in production model
 - Overall inputs and output define position in value chain

Sheet 2: Results Summary

- Provides a quick-look at key model inputs and outputs
 - May choose to link inputs from this page to quickly run and show multiple scenarios

Sheet 3: Production Model & OpEx (1/3)

Builds up quantitative operating requirements for reaching desired production volume

- Calculate backwards: [production volume] → [throughput of last step] →
 [throughput of second-to-last step] → ... → [throughput of first step]
- Requires definition of:
 - <u>Process-Step Properties</u>: Batch Size; Cycle Time; Usage of Labor, Materials, Utilities; Yield, etc.
 - Operational Availability: Days per Year, etc.

Tabulates consumption and production

- Materials/Components, Labor, Utilities, Product
- Calculates and implements required parallel production stations, step-wise
- Using cost rates, calculates all operating expenses

February 18, 2016 Cost Modeling

Sheet 3: Production Model & OpEx (2/3)

Batch definition grants flexibility

- Allows realistic, convenient units and conversion of units during steps
 - Units must match between steps; convert units from input to output within a step
- For continuous process: maintain proportions, absolute values of materials and time can be arbitrarily small as needed

Sheet 3: Production Model & OpEx (3/3)

(1) Step-wise Required Gross
$$GPV_i = GPV_{i+1} \times \frac{1}{Y_i} \times \frac{1$$

(2) Parallel Production Required

$$\left(\text{Min Req'd Prod Lines} \right)_{i} = \frac{GPV_{i}}{\left[\frac{\text{Operating Hours}}{\text{Operating Day}} \right]} \times \frac{1}{Util_{MAX}}$$

$$\frac{\left(\frac{\text{Hours}}{\text{Batch}} \right)_{i}}{\left(\frac{\text{Hours}}{\text{Batch}} \right)_{i}}$$

$$\text{maximum allowed utilization (e.g. 85\%)}$$

(3) Labor Required

$$Direct Labor = \frac{Workers}{Line} \times \#Lines \times \frac{Operating Hours}{Operating Day} \times Utilization$$
(person-hrs/day)

Sheet 4: CapEx

Calculate capital expenditures

- Equipment/machinery/tooling totals from per item price and number of stations
- Estimated floor space needed from equipment sizes (rent is in OpEx)

February 18, 2016 Cost Modeling

Sheet 5: Product Performance

Calculate/capture quantitative performance metrics

- Tied to production model if possible
- Metrics selected based on customer needs and segmentation of market >
 supports target price and production volume

May expand sheet to model product operation → estimate value, willingness

to pay

February 18, 2016 Cost Modeling

Sheet 6: Financial

Production project value calculation

- Capital Depreciation + OpEx → "Fully Loaded" Unit Production Cost
- Price, Margin → Revenue → Profit → Payback Period

February 18, 2016 Cost Modeling

Sheet 7: Cost Analysis

A closer look at cost factors and uncertainties

- Single-variable sensitivity analysis: automatically calculate and display changes in fully loaded cost due to variation in model input variables
- Scaling of unit cost with production volume (including automatic re-calculation of OpEx and CapEx based on production requirements)
- Cost breakdown by production step and resource category

February 18, 2016 Cost Modeling

Sheet 8: Mass & Energy

- Calculations to provide or support values used in production model or product performance
 - e.g. balancing chemical equations, thermodynamics, part count/mass derivation
 - Housing calculations here maintains focus and clarity in other sheets
 - (not populated in template)

February 18, 2016 Cost Modeling

Outline

- Context for Cost Modeling
 - Motivation, Definitions, and Examples
- Template Description
 - Scope, Overview, Worksheet Details
- Final Remarks

February 18, 2016 Cost Modeling

Final Remarks

- Get started modeling cost early, and refine as knowledge advances
 - guess as placeholder to get framework in place (and make note of it)
 - work on larger factors first (getting first significant digit right is a challenge)
- Use, manipulate, and adapt the template spreadsheet to suit your needs, but
 - be guided by its scope (deliberate)
 - don't dodge necessary considerations because of difficulty to validate or seemingly unfavorable results
- Full business financial model (cash flow, debt, timing, etc.) also needed before pitching for external financing (not shown here)
- Send any cost modeling questions & comments to your ARPA-E Tech-to-Market Advisor

END

February 18, 2016 Cost Modeling

Appendix: Matching Uncertainties (old)

Increasing Technology Readiness Level

· i—				
Data Inputs	Small-scale experimental data / conceptual prototype	Small-scale process unit s data / "Minimum Viable Product"	Pilot plant data / Scale Product	Demonstration scale data / For Sale Production
Process Model	Block Flow Diagram / Bill of Materials	Process Flow Diagram / BOM + rough scematic	Process Simulation / Computer Aided Design	Simulation verified with operating data / Detailed CAD
Price Inputs	Published prices, estimates based on similar products / processes	Vendor discussions to inform major costs, estimates on others	Vendor quotes for most equipment	Negotiated contract data
Level of Detail	Major cost drivers only	Estimates of majority of operating costs and capital equipment	90% of equipment and operating costs included as a line item	98% included and verified by an independent 3rd party
Capital Costing	Recognizing that it will have a required return	"Rule of 72" - 10% discount rate	Discount rate based on variability of free cash flow with market	Full Weighted Average Cost of Capital with all Tax Shields included
Approximate effort	40 man-nours	200 man-hours	2,000 man-hours	5,000+ man-hours
Review/Input	Co-Worker Review	Several co-workers from varying disciplines	Input from a potential investor under a NDA	Fully shared with EPC and bank, open to modification/scrutiny
Cost Model Use	Focusing Research and Development Effort	Developing research targets/goals	Understanding long-term viability of the technology, pitching VC's	Securing Bank Financing, projecting earnings, activity-based costing

February 18, 2016 Cost Modeling