Outline

Reference:

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Innovation:use binary weight filter(only 1 and -1) to replace the traditional weight filter.

Binary Network

 I_l : input for the l^{th} layer size: [c, w_{in} , h_{in}]

 W_{lk} : the k^{th} weight filter in the l^{th} layer

 K^{l} : the number of weight filter in the l^{th} layer

 \tilde{W} : binary weight filter

W: real – value weight filter

convolutional filters do not have bias terms

for each signal weight: $W \approx \alpha B$

$$\alpha : a \ scaling \ factor \in \mathbb{R}^+$$
 $B : binary \ filter \in \{+1, -1\}^{c \times w \times h}$

$$J(\mathbf{B}, \alpha) = ||W - \alpha B||^2$$

$$\alpha^*, B^* = \arg\min J(B, \alpha)$$

$$\tilde{W}_{lk} \approx A_{lk} B_{lk} \quad A_{lk} = \alpha \quad B_{lk} = B \qquad I * \tilde{W} \approx (I \oplus B) \alpha$$

⊕ indicates a convolution without any multiplication (XNOR)

$$J(\mathbf{B}, \alpha) = ||W - \alpha B||^2$$

Example:

$$W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$W^{T}W = \begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} w_{11}^{2} + w_{21}^{2} & * \\ * & w_{12}^{2} + w_{22}^{2} \end{bmatrix}$$

$$||A||_2^2 = a_{11}^2 + a_{12}^2 + \cdots + a_{nn}^2 = trac(A^T A) \triangleq A^T A \quad A \in \mathbb{R}^{n \times n}$$

$$A^T B = a_{11} b_{11} + \cdots + a_{nn} b_{nn}$$

$$J(B,\alpha) = \|W - \alpha B\|^{2} = \|\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} - \alpha \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \|^{2}$$

$$= (\sqrt{(w_{II} - ab_{II})^{2} + (w_{I2} - ab_{I2})^{2} + (w_{2I} - ab_{2I})^{2} + (w_{22} - ab_{22})^{2}})^{2}$$

$$= (w_{II}^{2} - 2aw_{II}b_{II} + a^{2}b_{II}^{2}) + \cdots + (w_{22}^{2} - 2\alpha w_{22}b_{22} + \alpha^{2}b_{22}^{2})$$

$$= (w_{II}^{2} + w_{I2}^{2} + w_{2I}^{2} + w_{22}^{2}) - 2\alpha (w_{II}b_{II} + w_{I2}b_{I2} + w_{2I}b_{2I} + w_{22}b_{22}) + \alpha^{2}(b_{II}^{2} + b_{I2}^{2} + b_{2I}^{2} + b_{2I}^{2})$$

$$= \|W\|^{2} - 2\alpha W^{T} B + \alpha^{2} \|B\|^{2}$$

$$= \alpha^{2} B^{T} B - 2\alpha W^{T} B + W^{T} W$$

$$J(B,\alpha) = \alpha^{2}B^{T}B - 2\alpha W^{T}B + W^{T}W \qquad B \in \{+1,-1\}^{n \times n}$$

$$= \alpha^{2}n - 2\alpha W^{T}B + c \qquad B^{T}B = (\pm 1)_{11}^{2} + (\pm 1)_{12}^{2} + \cdots + (\pm 1)_{nn}^{2} = n \times n$$
Weight: [3, 3] $n = 9$

$$B^* = \arg \max \{ \mathbf{W}^T \mathbf{B} \} \ s.t. \ B \in \{+1, -1\}^n$$

$$B^* = sign(\mathbf{W}) = \begin{cases} 1 & W \ge 0 \\ -1 & W < 0 \end{cases}$$

Variational inference:

if B is a function with parameter λ we can use this to find function B to replace complexity function W! Just in this demo,the B is simple +1,-1.----Bayesian neural networks

$$\frac{\partial J}{\partial \alpha} = 2n\alpha - 2W^T B = 0 \qquad \alpha^* = \frac{W^T B^*}{n} = \frac{W^T sign(W)}{n} = \frac{\sum |W_i|}{n} = \frac{1}{n} ||W||_{l_1}$$

a binary weight filter can be simply achieved by taking the sign of weight values. The optimal scaling factor is the average of absolute weight values.

Binary Network block

Convolution

Batch Normalization

Active function

hard _tanh(x) = max(-1, min(1, x)) = { x -1 ≤ x ≤ 1 -1 x < -1

Pooling

$$ReLu(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

ReLu_derivative(x) =
$$\begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$sigmoid(\mathbf{x}) = \frac{1}{1 + e^{-x}}$$

sigmoid _derivative(x) =
$$\frac{1}{1 + e^{-x}} (1 - \frac{1}{1 + e^{-x}})$$

$$Sign(\mathbf{x}) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

$$Sign_derivative(\mathbf{x}) = \begin{cases} 1 & -1 \le x \le 1 \\ 0 & others \end{cases}$$

$$hard _sigmoid(x) = \max(0, \min(1, \frac{x+1}{2})) = \{\frac{x+1}{2} - 1 \le x \le 1, 0 \le x \le$$

hard
$$_sigmoid _derivative(x) = \begin{cases} 0.5 & -1 \le x \le 1 \\ 0 & others \end{cases}$$

$$hard _tanh _derivative(x) = \begin{cases} 1 & -1 \le x \le 1 \\ 0 & others \end{cases}$$

Cross entropy function:

$$\log(\frac{M}{N}) = \log M - \log N$$

$$t_{j} = \frac{e^{a_{j}}}{\sum_{i=1}^{n} e^{a_{j}}}$$

$$C = -\sum_{i} y_{i} \ln(t_{i})$$

$$C = -\{y_{1} \ln(\frac{e^{a_{1}}}{\sum_{i=1}^{n} e^{a_{i}}}) + y_{2} \ln(\frac{e^{a_{2}}}{\sum_{i=1}^{n} e^{a_{i}}}) + \dots + y_{j} \ln(\frac{e^{a_{j}}}{\sum_{i=1}^{n} e^{a_{i}}}) + \dots + y_{n} \ln(\frac{e^{a_{n}}}{\sum_{i=1}^{n} e^{a_{i}}})\}$$

$$= -\{y_{1} [\ln(e^{a_{1}}) - \ln(\sum_{i=1}^{n} e^{a_{i}})] + \dots + y_{j} [\ln(e^{a_{j}}) - \ln(\sum_{i=1}^{n} e^{a_{j}})] + \dots \}$$

$$= -\{y_{1} [a_{1} - \ln(\sum_{i=1}^{n} e^{a_{i}})] + \dots + y_{j} [a_{j} - \ln(\sum_{i=1}^{n} e^{a_{i}})] + \dots \}$$

$$= y_{1} [\ln(\sum_{i=1}^{n} e^{a_{i}}) - a_{1}] + \dots + y_{j} [\ln(\sum_{i=1}^{n} e^{a_{i}}) - a_{j}] + \dots \}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$\frac{\partial C}{\partial a_{j}} = \frac{\partial}{\partial a_{j}} \{ y_{1} [\ln(\sum_{i=1}^{n} e^{a_{i}}) - a_{1}] + \cdots y_{j} [\ln(\sum_{i=1}^{n} e^{a_{i}}) - a_{j}] + \cdots \}
= y_{1} [\frac{\partial \ln(e^{a_{1}} + \cdots + e^{a_{j}} + \cdots)}{\partial a_{j}} - 0] + \cdots y_{j} [\frac{\partial \ln(e^{a_{1}} + \cdots + e^{a_{j}} + \cdots)}{\partial a_{j}} - 1] + \cdots
= y_{1} \frac{1}{\sum_{i} e^{a_{i}}} e^{a_{j}} + y_{2} \frac{1}{\sum_{i} e^{a_{i}}} e^{a_{j}} + \cdots y_{j} [\frac{1}{\sum_{i} e^{a_{i}}} e^{a_{j}} - 1] + \cdots y_{n} \frac{1}{\sum_{i} e^{a_{i}}} e^{a_{j}}
= \frac{1}{\sum_{i} e^{a_{i}}} e^{a_{j}} (y_{1} + y_{2} + \cdots + y_{n}) - y_{j}
= Softmax(a_{j})(y_{1} + y_{2} + \cdots + y_{n}) - y_{j}$$

$$\begin{split} \tilde{W_i} &= \alpha B_i = \frac{\sum |W_i|}{n} * \operatorname{sign}(W_i) & \frac{\partial \operatorname{sign}(r)}{\partial r} = r \mathbf{1}_{|r| \le 1} = \mathbf{1}_{|r| \le 1} = \mathbf{1}_{0}, & |r| \le 1 \\ \frac{\partial C}{\partial W_i} &= \frac{\partial C}{\partial \tilde{W_i}} \frac{\partial \tilde{W_i}}{\partial W_i} = \frac{\partial C}{\partial \tilde{W_i}} \frac{\partial}{\partial W_i} [\frac{\sum |W_i|}{n} \operatorname{sign}(W_i)] \\ &= \frac{\partial C}{\partial \tilde{W_i}} [\frac{\partial}{\partial W_i} \frac{\sum |W_i|}{\partial W_i} \operatorname{sign}(W_i) + \frac{\sum |W_i|}{n} \frac{\partial \operatorname{sign}(W_i)}{\partial W_i}] \\ &= \frac{\partial C}{\partial \tilde{W_i}} [\frac{1}{n} \frac{\partial (c + |W_i|)}{\partial W_i} \operatorname{sign}(W_i) + \alpha W_i \mathbf{1}_{|W_i| \le 1}] \\ &= \frac{\partial C}{\partial \tilde{W_i}} \{\frac{1}{n} * \{\frac{1*1}{-1*-1} \frac{w \ge 0}{w < 0} + \alpha W_i \mathbf{1}_{|W_i| \le 1}\} \\ &= \frac{\partial C}{\partial \tilde{W_i}} [\frac{1}{n} + \alpha \frac{\partial \operatorname{sign}(W_i)}{\partial W_i}] \end{split}$$

$$\frac{\partial C}{\partial w_{ij}} = \frac{\partial C}{\partial \tilde{w}_{ij}} \frac{\partial \tilde{w}_{ij}}{\partial w_{ij}} = \frac{\partial C}{\partial \tilde{w}_{ij}} \frac{\partial}{\partial w_{ij}} \left\{ \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} |w_{ij}|}{n} \operatorname{sign}(w_{ij}) \right\}$$

$$= \frac{\partial C}{\partial \tilde{w}_{ij}} \left[\frac{1}{m * n} + \alpha \frac{\partial \operatorname{sign}(w_{ij})}{\partial w_{ij}} \right]$$

Update:
$$W^{new} = W^{old} - lr * \frac{\partial C}{\partial W^{old}}$$

Batch_Normalization(BN):

Reference: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

BN is norm the output, for each channel:
 if the output size:[weight, height, channel]
For each[weight, height] we use once BN.
Number of BN == number of output channel

$$u = \frac{1}{m} \sum_{i=1}^{m} x_{i}$$

$$var = \sigma^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{i} - u)^{2}$$

$$\hat{x}_{i} = \frac{x_{i} - u}{\sqrt{var + \varepsilon}}$$

$$y_{i} = \gamma \hat{x}_{i} + \beta$$

$$input : [x_{1}, x_{2}, x_{3}, \dots x_{m}]$$

$$\varepsilon = 10^{-6}$$

BN-BP: cost function: 1

$$\frac{\partial l}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}} \hat{x}_{i} \qquad \frac{\partial l}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}}$$

$$\frac{\partial l}{\partial var} = \sum_{i=1}^{m} \frac{\partial l}{\partial \hat{x}_{i}} \frac{\partial \hat{x}_{i}}{\partial var} = \sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}} \gamma (x_{i} - u)(-\frac{1}{2})(var + \varepsilon)^{-\frac{3}{2}}$$

$$\frac{\partial l}{\partial u} = (\sum_{i=1}^{m} \frac{\partial l}{\partial \hat{x}_{i}} \frac{-1}{\sqrt{var + \varepsilon}}) + \frac{\partial l}{\partial var} \frac{\sum_{i=1}^{m} -2(x_{i} - u)}{m}$$

$$\frac{\partial l}{\partial x_{i}} = \frac{\partial l}{\partial \hat{x}_{i}} \frac{1}{\sqrt{var + \varepsilon}} + \frac{\partial l}{\partial var} \frac{2(x_{i} - u)}{m} + \frac{\partial l}{\partial u} \frac{1}{m}$$

 $\gamma = \gamma - lr * \frac{\partial l}{\partial \gamma}$ $\beta = \beta - lr * \frac{\partial l}{\partial \beta}$

A typical block in cnn

Convolution

Add biases

Batch Normalization

Active function

Pooling

A block in XNOR-Net

Batch Normalization

Active function

Convolution

Pooling

Binary Network and XNOR Network 1.0 Why XNOR-Net has different block? Sign(x) 0.0 -0.5 -1.5 L Convolutio -5 Add biases Batch Normalization Active function Pooling Information loss! 13

0.3 0.3 -0.6 0.7 -0.5 0.2 0.4 0.1 -0.9 -0.8 -0.8 0.3 0.5 -0.7 0.4 -0.7

Batch Normalization

Active function

1	-1	1	1
-1	1	1	1
-1	-1	-1	1
1	-1	1	-1

Convolution

Pooling

-0.2	0.1	0.5	-0.3
-0.5	-0.4	-0.1	-0.8
0.7	-0.8	0.4	0.9
-0.5	0.1	0.2	0.7

 0.1
 0.5

 0.7
 0.9

Next Week

- One shot with Mul CNN
- Scene Parsing