Cálculo I: Límite de sucesiones y convergencia de series.

Límite de sucesiones

Criterios ante indeterminaciones.

• *Criterio de Stolz:* Se utiliza cuando tenemos una expresión de $x_n = \frac{a_n}{b_n}$, donde a_n y b_n divergen.

$$\lim_{n o\infty}x_n=L=\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

• *Criterio de Stolz:* Se utiliza cuando tenemos una expresión de $x_n = \sqrt[n]{a_n}$, donde a_n diverge.

$$\lim_{n o\infty}x_n=L=\lim_{n o\infty}rac{a_{n+1}}{a_n}$$

• Otras indeterminaciones:

$$egin{aligned} \{x_n^{y_n}\} &
ightarrow 1^\infty = e^L \implies \{y_n(x_n-1)\}
ightarrow L \ \{y_n(x_n-1)\}
ightarrow 0 \cdot \infty = \ln L \implies \{x_n^{y_n}\}
ightarrow L \ \{x_n-y_n\}
ightarrow \infty - \infty = L \implies \{(x_n-y_n)(rac{x_n+y_n}{x_n+y_n})\}
ightarrow L \end{aligned}$$

Convergencia de series

Dada, una serie $\sum_{n\geq 1} a_n$, primero debemos estudiar la convergencia de la suceción.

Si $\{a_n\} \to 0$: La serie puede converger, y se aplica uno de los criterios.

Si $\{a_n\} \to L \neq 0$: La serie no converge.

Criterios de convergencia.

• *Criterio del cociente:* Se aplica cuando a_n es un cociente.

$$\lim_{n o\infty}rac{a_{n+1}}{a_n}=L$$

- Si *L* < 1, entonces la serie converge.
- Si L > 1, entonces la serie no converge.
- Si L=1, entonces no sabemos si la serie converge o no y tenemos que aplicar Raabe.
- *Criterio de la raíz:* Se aplica cuando a_n es una expresión elevada a n.

$$\lim_{n o \infty} \sqrt[n]{a_n} = L$$

- Si L < 1, entonces la serie converge.
- Si L > 1, entonces la serie no converge.
- \circ Si L=1, entonces no sabemos si la serie converge o no y tenemos que aplicar Raabe.
- *Criterio de comparación:* Se trata de realizar el cociente de a_n y una serie de la que sepamos su convergencia.

$$\lim_{n o\infty}rac{a_n}{b_n}=L$$

- o b_n más comunes:
 - Serie armónica: $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ (normalmente $\alpha=$ diferencia de grados en a_n):
 - Si $\alpha \leq 1$, la serie es <u>divergente</u>.
 - Si $\alpha > 1$, la serie es <u>convergente</u>.
 - Serie geométrica: $\sum_{n\geq 1}a^n$
 - Si |a| < 1, la serie es <u>convergente</u>.
 - Si $|a| \ge 1$, la serie es <u>divergente</u>.
- o Si $L \neq 0, \infty$, entonces ambas series tienen el mismo carácter.
- o Si $L=0 \implies a_n \le b_n \implies$ Si b_n converge, entonces a_n también.
- o Si $L=\infty \implies b_n \le a_n \implies$ Si b_n diverge, entonces a_n también.
- *Criterio de Raabe:* Se aplica cuando en el criterio de la raíz y el del cociente L=1.

$$\lim_{n o\infty}n(1-rac{a_{n+1}}{a_n})=L$$

- \circ Si L < 1, entonces la serie no converge.
- Si $L \ge 1$, entonces la serie converge.
- *Criterio de Leibnitz:* Se aplica cuando la serie es de la forma $\sum_{n\geq 1} (-1)^n a_n$. Se deben cumplir las siguientes condiciones para poder afirmar que la serie es convergente:
 - 1. $\{a_n\} \rightarrow 0$
 - 2. a_n es decreciente.

Convergencia absoluta.

$$\sum_{n\geq 1} |a_n|$$
 converge $\Longrightarrow \sum_{n\geq 1} a_n$ converge absolutamente.

$$\sum_{n\geq 1} a_n$$
 converge absolutamente $\implies \sum_{n\geq 1} a_n$ converge.

Se aplican los criterios de convergencia para determinar la convergencia absoluta.