Guía Práctica de Laboratorio Sesión 6: INTRODUCCIÓN A LA PROGRAMACIÓN MLBC - VACJ - CJFV

En esta sesión,

• debes modelar una alternativa de solución a los problemas planteados

Docente de la UMSS

• implementar los métodos REQUERIDOS del modelo de tal manera de cumplir con los requerimientos dados en cada problema

TAREA

1. Cartas En el mundo corporativo/institucional las comunicaciones con personas ya sea naturales y/o no naturales, internas y/o externas a la institución, se realiza a través de medios formales como las cartas.

Las cartas tienen un objetivo claro que se desea transmitir, en la figura 1 se muestra un ejemplo de una carta

1 de abril del 2019
INTPRO 01/2019

Señor
Lic. Desiderio Chaves
Director de la Dirección Seguimiento Académico
UNIVERSIDAD MAYOR DE SAN SIMON
Presente.

Ref: Informe de actividades

De mi consideración:
Adjunto a la presente el informe de actividades en el primer concurso de programación, actividades que se realizaron en fechas 23 al 28 de febrero del año en curso.

Sin otro particular y deseándole éxito en sus funciones, saludo a Ud.

Atentamente

Mgr. Ma. Leticia Blanco Coca

Figura 1: Ejemplo de una carta

Como se puede observar las cartas tienen componentes que no se pueden obviar, como por ejemplo: la fecha, el codigo de la carta, el destinatario, el remitente, etc.

En una institución es muy común que el destinatario también a veces juegue el rol de remitente y viceversa. Considerando el ejemplo: el *Lic. Desiderio Chaves* en algunas ocasiones también oficiara de remitente.

Si es una carta al exterior de la institución, usualmente, además del cargo que unge una persona se requiere saber la dirección a donde se debe entregar la carta.

Cuando una persona juega el rol de remitente en un carta, solo se muestra su nombre, titulo, cargo e institución. Por ejemplo:

Lic. Luis Lopez Gerente General TuSolucionSoft SRL

En cambio cuando la persona juega el rol de destinatario, se debe mostrar el nombre, titulo, el cargo que ostenta, la institución a la que pertenece, la dirección y la ubicación. Por ejemplo:

Lic. Luis Lopez Gerente General TuSolucionSoft SRL Av. Aniceto Arce # 645 La Paz. Tu tarea es modelar las partes de una carta de tal manera que se pueda responder a las siguientes requerimientos:

- a) dado un código codigo verificar si la carta se corresponde con codigo
- b) mostrar la carta, considerando las condiciones descritas arriba
- c) verificar si la carta tiene como remitente a la persona persona
- d) verificar si el asunto de la carta corresponde a tema
- 2. Ecuaciones Las ecuaciones son un tema básico dentro la matemática, ocupan un lugar especial las ecuaciones de segundo grado que tienen la forma:

$$ax^2 + bx + c = 0$$

Para cualesquier coeficiente a, b y c. Considerando esta ecuación se puede encontrar las raices que de x, de acuerdo a la siguiente fórmula:

$$-b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

En esta versión del problema, siempre es posible:

- a) calcular las raices de la ecuación
- b) obtener la raiz1 de la ecuación
- c) obtener la raiz2 de la ecuación

En un sentido muy general se puede decir que las raices de la ecuacion siempre existen y son números Complejos, ya sea con ambas partes o con alguna de ellas.

Por ejemplo, si se tiene la ecuación $1x^2 + 2x + 20 = 0$, la raiz
1 será: -1 + 4,358898943540674i y la raiz
2 será: -1 - 4,358898943540674i

3. **MELMAC** En MELMAC todos los compuestos digeribles por los Melmaquianos, están conformados por uno, dos o tres elementos químicos simples. La diferencia entre un compuesto y otro es la cantidad de veces que aparece un elemento y obviamente los elementos. Por ejemplo, los Melmaquianos adoran beber agua oxigenada cuyo compuesto es H_2O_2 , es decir 2 hidrógenos y 2 oxigenos. En sus fiestas que son alocadas, les encanta consumir ácido sulfúrico cuya composición es H_2SO_4 , es decir, 2 hidrogenos, 1 azufre y 4 oxigenos.

A su vez cada digerible tiene un peso atómico conjunto que depende de los elementos y de las cantidades de cada elemento. Por ejemplo, el azúcar es el compuesto $C_{12}H_{22}O_{11}$, y su peso atómico es calculado de la siguiente manera: la suma del peso atómico de cada elemento en el componente. A su vez el peso atomico total del elemento en el componente se calcula multiplicando el peso atómico del elemento por la cantidad de este elemento en el compuesto.

Elemento	Peso Atómico	Cantidad	Total
С	12,0	12	144,0
Н	1,0	22	22.0
O	16,0	11	176.0

por lo que el peso atómico del azúcar es 342,0. Para variar el azúcar es una alucinógeno en MELMAC:P.

Para darte una idea, cada elemento tiene un nombre, símbolo y peso atómico. Cada digerible tiene un nombre, su descripción (alucinógeno, alimento, bebida, bebida alcoholica, etc), elemento1, elemento2 y elemento3, además de las cantidades por cada elemento.

Modela una solución al problema, que permita:

- a) al compuesto informar su nombre
- b) al compuesto calcular su peso atómico
- c) al compuesto dar su nomenclatura, por ejemplo el azúcar C12H22O11