Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 10:52:05 2021 Program finished at Tue Jun 1 17:59:30 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1856419417

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$\begin{array}{cc} M & [m] \\ M & [m] \end{array}$	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

```
\overline{\mathsf{M}}_{8->3} =
41
                                   M _{2->1} [m]
                 M _{9->3} =
42
                                   M_{2->1} [m]
                 M _{10->3} =
43
                                   M_{2->1} [m]
                 M _{11->3} =
44
                                   M _{2->1} [m]
                 M _{12->3} =
                                   M _{2->1} [m]
45
                 M_{1->4} =
46
                                   M_{2->1} [m]
                 M _{2\rightarrow 4} =
47
                                   M _{2->1} [m]
                 M_{3->4} =
48
                                   M_{2->1} [m]
49
                 M_{5->4} =
                                   M _{2->1} [m]
                 M _{6->4} =
50
                                   M_{2->1} [m]
                 M _{7->4} =
51
                                   M_{2->1} [m]
52
                 M_{8->4} =
                                   M_{2->1} [m]
53
                 M_{9->4} =
                                   M _{2->1} [m]
                 M _{10->4} =
54
                                   M_{2->1} [m]
55
                 M_{11->4} =
                                   M _{2->1} [m]
56
                 M_{12->4} =
                                   M _{2->1} [m]
                 \mathsf{M}_{1->5} \;\; = \;\;
                                   M _{2->1} [m]
57
                 M_{2->5} =
58
                                   M_{2->1} [m]
59
                 M_{3->5} =
                                   M_{2->1} [m]
                 M_{4->5} =
                                   M _{2->1} [m]
60
                 M _{6->5} =
61
                                   M_{2->1} [m]
                 M _{7->5} =
62
                                   M _{2->1} [m]
                 M_{8->5} =
                                   M _{2->1} [m]
63
64
                 M_{9->5} =
                                   M_{2->1} [m]
                 M _{10->5} =
65
                                   M_{2->1} [m]
                 M_{11->5} =
66
                                   M_{2->1} [m]
                 M _{12->5} =
                                   M _{2->1} [m]
67
                 M_{1->6} =
                                   M _{2->1} [m]
68
                 M_{2->6} =
69
                                   M_{2->1} [m]
                 M_{3->6} =
70
                                   M _{2->1} [m]
71
                 M_{4->6} =
                                   M_{2->1} [m]
                 M _{5->6} =
72
                                   M_{2->1} [m]
                 M _{7->6} =
73
                                   M _{2->1} [m]
74
                 M_{8->6} =
                                   M _{2->1} [m]
                 M _{9->6} =
75
                                   M _{2->1} [m]
                 M _{10->6} =
                                   M _{2->1} [m]
76
77
                 M_{11->6} =
                                   M_{2->1} [m]
78
                 M_{12->6} =
                                   M_{2->1} [m]
                 M_{1->7} =
79
                                   M_{2->1} [m]
                 M_{2->7} =
80
                                   M_{2->1} [m]
                 M_{3->7} =
81
                                   M _{2->1} [m]
                 M_{4->7} =
82
                                   M _{2->1} [m]
                 M _{5->7} =
83
                                   M_{2->1} [m]
                 M _{6\rightarrow7}
                                   M _{2->1} [m]
84
                 M _{8->7}
                                   M _{2->1} [m]
85
```

```
\overline{\mathsf{M}}_{9->7} =
                                    _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                 M_{2->1} [m]
                                 M_{2->1} [m]
88
                     11->7 =
                                 M _{2->1} [m]
89
                 M
                     12->7 =
                                 M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                 M_{2->1} [m]
                     2->8 =
92
                 M
                                 M_{2->1} [m]
                     3->8 =
                                 M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 M
                                 M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                 M_{2->1} [m]
97
                 M_{9->8} =
                                 M_{2->1} [m]
                 M _{10->8} =
98
                                 M _{2->1} [m]
                 M _{11->8} =
99
                                 M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                 M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                 M_{2->1} [m]
104
                                 M_{2->1} [m]
                 M
                     4->9 =
105
                 M
                                 M _{2->1} [m]
                     5->9 =
106
                 M
                                 M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                 M _{2->1} [m]
                 M
                     8->9 =
109
                 M
                                 M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                 M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                 M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                 M_{2->1} [m]
114
                 M
                                 M_{2->1} [m]
                     _{3->10} =
                                 M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                 M_{2->1} [m]
                                 M _{2->1} [m]
118
                     7->10
                                 M _{2->1} [m]
119
                     8->10 =
120
                 M
                                 M _{2->1} [m]
                    9->10
                                 M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                 M_{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

		Preim	ninary migrate ana	iysis or ivi. callion	lianus COT I	iapiotypes ioi i	Evolution 2 5
131	M ₉₋	->11	<0	lisplayed>			
132	NΛ)->11	<0	lisplayed>			
133	NΛ	2->11	<0	lisplayed>			
134	NΛ	->12	<0	lisplayed>			
135	N/I	->12	<0	lisplayed>			
136	N/I	->12	<0	lisplayed>			
137	NΛ	->12	<0	lisplayed>			
138	R A	->12	<0	lisplayed>			
139	LΛ	->12	<0	lisplayed>			
140	NΛ	->12	<0	lisplayed>			
141	M ₈₋	->12	<0	lisplayed>			
142	M ₉₋	->12	<0	lisplayed>			
143		0->12	<0	lisplayed>			
144	M ₁₁	1->12	<0	lisplayed>			
Mutation	rate among loc	i:				Mutation ra	te is constant
Analysis	strategy:					Bayes	sian inference
1 '	distributions fo	r parameter					
Paramet	er		Proposal				
Theta		Me	tropolis sampling				
M			Slice sampling				
Duio a dio	wik ution for nour						
Paramet	tribution for para er Prior		Mean*	Maximum	,	Delta	Bins
	Exp window	Minimum	0.010000		1.000		
Theta M	•	0.000010 0.000100	100000.000000	10.000000	100000.000		500 500
IVI	Exp window	0.000100	100000.000000	1000000.000000	100000.000	0000	500
Markova	chain settings:						Long chain
	of chains						Long chain
	ded steps [a]						1000
	nent (record eve	rv v etan [h]					1000
	er of concurrent		cates) [c]				3
	l (sampled) para	` •	,				300000
I	er of discard tre						1000
INGILIDA	or or discard file	co per criairi	(Dalli-III)				1000
Multiple	Markov chains:						
	heating scheme	1				4 chains with	temperatures
Static	neaning solietile	•		1000	000.00	3.00 1.5	· ·
				1000	200.00		g interval is 1
						Owapping	5 11101 Val 13 1

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00053
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00974
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01022
1	M _{2->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->1}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	$M_{4->2}$	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->2}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->3}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->4}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	8->5 M _{9->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	9->5 M _{10->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	10->5 M _{11->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	11->5 M _{12->5}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	12->5 M _{1->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	¹¹ 5->6 M _{7->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1		36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->6} M _{11->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	$M_{2->7}$	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	$M_{3->7}$	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{8->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->7}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->8}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	4->9 M _{5->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	5->9 M _{6->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	6->9 M _{7->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	7->9 M _{8->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	8->9 M _{10->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{10->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->9}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{2->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{3->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{4->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{5->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{6->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{7->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{9->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{11->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{12->10}	36000.0	56000.0	67000.0	82000.0	94000.0	69000.0	67021.0
1	M _{1->11}	20000.0	38000.0	59000.0	0.00088	204000.0	81000.0	98401.0
1	M _{2->11}	0.0	0.0	21000.0	38000.0	48000.0	143000.0	358983.8
1	M _{3->11}	0.0	2000.0	21000.0	38000.0	54000.0	101000.0	116354.8
1	M _{4->11}	4000.0	20000.0	37000.0	82000.0	188000.0	75000.0	109965.3
1	M _{5->11}	0.0	0.0	9000.0	28000.0	34000.0	113000.0	114128.6
1	M _{6->11}	114000.0	130000.0	169000.0	200000.0	336000.0	191000.0	209746.4
1	M _{7->11}	80000.0	100000.0	129000.0	172000.0	314000.0	163000.0	180933.5
1	M _{8->11}	18000.0	48000.0	89000.0	122000.0	148000.0	109000.0	175428.2
1	M _{9->11}	30000.0	46000.0	79000.0	104000.0	320000.0	151000.0	165514.5
1	M _{10->11}	160000.0	198000.0	235000.0	256000.0	342000.0	239000.0	243061.4
1	M _{12->11}	34000.0	44000.0	65000.0	92000.0	160000.0	119000.0	146515.7
1	M _{1->12}	2000.0	30000.0	49000.0	60000.0	74000.0	45000.0	41458.7
1	M _{2->12}	56000.0	74000.0	99000.0	120000.0	212000.0	111000.0	121513.5
1	$M_{3->12}$	74000.0	96000.0	113000.0	128000.0	162000.0	117000.0	116214.3
1	M _{4->12}	2000.0	0.0008	25000.0	66000.0	170000.0	69000.0	79376.3
1	M _{5->12}	16000.0	28000.0	47000.0	72000.0	138000.0	65000.0	71898.2
1	M _{6->12}	26000.0	36000.0	55000.0	72000.0	166000.0	67000.0	81509.3
1	M _{7->12}	6000.0	20000.0	39000.0	58000.0	140000.0	51000.0	62558.6
1	M _{8->12}	78000.0	96000.0	113000.0	130000.0	154000.0	105000.0	92758.0
1	M _{9->12}	28000.0	42000.0	57000.0	70000.0	0.00088	169000.0	147565.6
1	M _{10->12}	8000.0	18000.0	33000.0	52000.0	140000.0	75000.0	73493.3
1	M _{11->12}	70000.0	92000.0	109000.0	124000.0	148000.0	99000.0	85514.2

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 600.00 400.00 -400.00 200.00 -200.00 0.00 -0.00 Θ_1 8 2 2 8 6 Freq Freq 600.00 100.0 400.00 50.0 200.00 0.00 0.0 Φ₁₂ 200000 400000 600000 800000 8 M _{2->1} Freq Freq 60.0 60.0 40.0 -40.0 20.0 20.0 0.0 0.0 200000 400000 600000 800000 200000 400000 600000 800000 M _{2->11} M $_{1->11}$

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 10:52:05]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2371.070383	(1a)
	-2257.418795	(1b)
Harmonic mean	-2004.922741	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	9/1046	0.00860
Θ_2^{-}	9/1046	0.00860
Θ_3^2	9/1046	0.00860
$\Theta_4^{^3}$	9/1046	0.00860
Θ_5^{T}	9/1046	0.00860
Θ_6°	9/1046	0.00860
Θ_7°	9/1046	0.00860
$\Theta_{8}^{'}$	9/1046	0.00860
Θ_9°	9/1046	0.00860
Θ_{10}	9/1046	0.00860
Θ_{11}^{10}	731/1010	0.72376
Θ_{12}^{11}	624/1075	0.58047
M ¹² _{2->1}	1056/1056	1.00000
$M_{3\rightarrow 1}^{2\rightarrow 1}$	1056/1056	1.00000
M _{4->1}	1056/1056	1.00000
$M_{5->1}$	1056/1056	1.00000
M _{6->1}	1056/1056	1.00000
M 7->1	1056/1056	1.00000
M _{8->1}	1056/1056	1.00000
$M_{9->1}^{8->1}$	1056/1056	1.00000
$M_{10\rightarrow 1}^{9\rightarrow 1}$	1056/1056	1.00000
M 11->1	1056/1056	1.00000
$VI_{12->1}^{11->1}$	1056/1056	1.00000
$M_{1->2}^{12->1}$	1056/1056	1.00000
$M_{3\rightarrow 2}$	1056/1056	1.00000
$M_{4\rightarrow 2}^{3\rightarrow 2}$	1056/1056	1.00000
$M_{5->2}$	1056/1056	1.00000
$M_{6\rightarrow 2}^{3\rightarrow 2}$	1056/1056	1.00000
M _{7->2}	1056/1056	1.00000
$M_{8->2}$	1056/1056	1.00000
$M_{9->2}^{8->2}$	1056/1056	1.00000
$\sqrt{10->2}$	1056/1056	1.00000
$M_{11->2}^{10->2}$	1056/1056	1.00000
$M_{12->2}^{11->2}$	1056/1056	1.00000
12->2 M	1056/1056	1.00000
1->3	1056/1056	1.00000
VI 2->3 VI 4 2	1056/1056	1.00000

		1 71
M _{5->3}	1056/1056	1.00000
M _{6->3}	1056/1056	1.00000
M _{7->3}	1056/1056	1.00000
M _{8->3}	1056/1056	1.00000
M _{9->3}	1056/1056	1.00000
M 10->3	1056/1056	1.00000
M 11->3	1056/1056	1.00000
$M_{12->3}$	1056/1056	1.00000
M _{1->4}	1056/1056	1.00000
$M_{2\rightarrow 4}$	1056/1056	1.00000
$M_{3->4}$	1056/1056	1.00000
$M_{5->4}$	1056/1056	1.00000
M _{6->4}	1056/1056	1.00000
M _{7->4}	1056/1056	1.00000
$M_{8\rightarrow4}$	1056/1056	1.00000
M _{9->4}	1056/1056	1.00000
M 10->4	1056/1056	1.00000
M 11->4	1056/1056	1.00000
M _{12->4}	1056/1056	1.00000
M _{1->5}	1056/1056	1.00000
M _{2->5}	1056/1056	1.00000
M _{3->5}	1056/1056	1.00000
M _{4->5}	1056/1056	1.00000
M _{6->5}	1056/1056	1.00000
M 7->5	1056/1056	1.00000
M _{8->5}	1056/1056	1.00000
M _{9->5}	1056/1056	1.00000
M _{10->5}	1056/1056	1.00000
M _{11->5}	1056/1056	1.00000
M _{12->5}	1056/1056	1.00000
M _{1->6}	1056/1056	1.00000
M _{2->6}	1056/1056	1.00000
M 3->6	1056/1056	1.00000
M 4->6	1056/1056	1.00000
M 5->6	1056/1056	1.00000
M 7->6	1056/1056	1.00000
M 8->6	1056/1056	1.00000
M 9->6	1056/1056	1.00000
M 10->6	1056/1056	1.00000
M 11->6	1056/1056	1.00000
M 12->6	1056/1056	1.00000
M 1->7	1056/1056	1.00000
M 2->7	1056/1056	1.00000
M 3->7	1056/1056	1.00000
M _{4->7}	1056/1056	1.00000

		1 31
M _{5->7}	1056/1056	1.00000
M _{6->7}	1056/1056	1.00000
M _{8->7}	1056/1056	1.00000
M _{9->7}	1056/1056	1.00000
M 10->7	1056/1056	1.00000
M 11->7	1056/1056	1.00000
M _{12->7}	1056/1056	1.00000
M _{1->8}	1056/1056	1.00000
$M_{2->8}$	1056/1056	1.00000
$M_{3->8}$	1056/1056	1.00000
M _{4->8}	1056/1056	1.00000
$M_{5->8}$	1056/1056	1.00000
M _{6->8}	1056/1056	1.00000
M _{7->8}	1056/1056	1.00000
$M_{9->8}$	1056/1056	1.00000
$M_{10->8}^{9->8}$	1056/1056	1.00000
$M_{11->8}^{10->8}$	1056/1056	1.00000
$M_{12->8}^{11->6}$	1056/1056	1.00000
$M_{1->9}^{12->6}$	1056/1056	1.00000
$M_{2->9}$	1056/1056	1.00000
M _{3->9}	1056/1056	1.00000
M _{4->9}	1056/1056	1.00000
M _{5->9}	1056/1056	1.00000
M _{6->9}	1056/1056	1.00000
M _{7->9}	1056/1056	1.00000
M _{8->9}	1056/1056	1.00000
M 10->9	1056/1056	1.00000
M _{11->9}	1056/1056	1.00000
M _{12->9}	1056/1056	1.00000
M _{1->10}	1056/1056	1.00000
M _{2->10}	1056/1056	1.00000
M _{3->10}	1056/1056	1.00000
M _{4->10}	1056/1056	1.00000
M _{5->10}	1056/1056	1.00000
M _{6->10}	1056/1056	1.00000
M _{7->10}	1056/1056	1.00000
M _{8->10}	1056/1056	1.00000
M _{9->10}	1056/1056	1.00000
M _{11->10}	1056/1056	1.00000
M _{12->10}	1056/1056	1.00000
M 1->11	1004/1004	1.00000
M 2->11	1010/1010	1.00000
M 3->11	1029/1029	1.00000
M _{4->11}	1010/1010	1.00000
M _{5->11}	1030/1030	1.00000

M _{6->11}	986/986	1.00000
M _{7->11}	1058/1058	1.00000
M _{8->11}	1000/1000	1.00000
M _{9->11}	1044/1044	1.00000
$M_{10->11}$	1048/1048	1.00000
M _{12->11}	1011/1011	1.00000
$M_{1->12}$	1104/1104	1.00000
$M_{2->12}$	1041/1041	1.00000
$M_{3->12}$	1080/1080	1.00000
$M_{4\rightarrow 12}$	1078/1078	1.00000
$M_{5->12}$	1051/1051	1.00000
$M_{6->12}$	1025/1025	1.00000
M _{7->12}	1062/1062	1.00000
$M_{8->12}$	1085/1085	1.00000
$M_{9->12}$	1040/1040	1.00000
$M_{10->12}$	1086/1086	1.00000
$M_{11->12}^{10 > 12}$	1102/1102	1.00000
Genealogies	22433/149864	0.14969

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99194	12.13
$\Theta_2^{^1}$	0.99194	12.13
Θ_3^2	0.99194	12.13
$\Theta_4^{\mathcal{I}}$	0.99194	12.13
Θ_{5}	0.99194	12.13
96	0.99194	12.13
) ₇	0.99194	12.13
) ₈	0.99194	12.13
09	0.99194	12.13
910	0.99194	12.13
) ₁₁	0.77667	383.25
12	0.86004	225.67
1 2->1	0.98956	15.72
1 3->1	0.98956	15.72
1 _{4->1}	0.98956	15.72
1 5->1	0.98956	15.72
1 6->1	0.98956	15.72
1 7->1	0.98956	15.72
1 _{8->1}	0.98956	15.72
1 9->1	0.98956	15.72
10->1	0.98956	15.72
11->1	0.98956	15.72
11->1	0.98956	15.72
1 1->2	0.98956	15.72
$1 \frac{1->2}{3->2}$	0.98956	15.72
1 4->2	0.98956	15.72
1 5->2	0.98956	15.72
1 6->2	0.98956	15.72
1 7->2	0.98956	15.72
1 8->2	0.98956	15.72
1 9->2	0.98956	15.72
1 10->2	0.98956	15.72
1 10->2 11->2	0.98956	15.72
11->2	0.98956	15.72
12->2 1	0.98956	15.72
1->3 1	0.98956	15.72
1 2->3 1 _{4->3}	0.98956	15.72

		1 71
M _{5->3}	0.98956	15.72
M 6->3	0.98956	15.72
M 7->3	0.98956	15.72
$M_{8->3}$	0.98956	15.72
I N /I	0.98956	15.72
NA 9->3	0.98956	15.72
M 10->3	0.98956	15.72
11->5	0.98956	15.72
M 12->3	0.98956	15.72
1->4	0.98956	15.72
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98956	15.72
M 5 3->4		
J 3->4	0.98956	15.72
M 6->4	0.98956	15.72
M 7->4	0.98956	15.72
M 8->4	0.98956	15.72
M _{9->4}	0.98956	15.72
M _{10->4}	0.98956	15.72
M _{11->4}	0.98956	15.72
M _{12->4}	0.98956	15.72
M _{1->5}	0.98956	15.72
M _{2->5}	0.98956	15.72
M _{3->5}	0.98956	15.72
M _{4->5}	0.98956	15.72
M 6->5	0.98956	15.72
M 7->5	0.98956	15.72
M _{8->5}	0.98956	15.72
M _{9->5}	0.98956	15.72
M _{10->5}	0.98956	15.72
$M_{11->5}^{10>5}$	0.98956	15.72
$M_{12->5}$	0.98956	15.72
M 1->6	0.98956	15.72
$M_{2->6}^{1->0}$	0.98956	15.72
$M_{3->6}^{2->6}$	0.98956	15.72
NA 3->0	0.98956	15.72
4->0	0.98956	15.72
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98956	15.72
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98956	15.72
NA 0->0	0.98956	15.72
9->0 NA	0.98956	15.72
10->0	0.98956	15.72
11->0 NA	0.98956	15.72
M 12->6	0.98956	15.72
1->/	0.98956	15.72
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98956	15.72
N/ 3->/	0.98956	15.72
4->7		10.72

		1 71
M _{5->7}	0.98956	15.72
M _{6->7}	0.98956	15.72
M _{8->7}	0.98956	15.72
M _{9->7}	0.98956	15.72
M 10->7	0.98956	15.72
M 11->7	0.98956	15.72
M 12->7	0.98956	15.72
I M	0.98956	15.72
M 1->8 M 2->8	0.98956	15.72
$M_{3->8}^{2->8}$	0.98956	15.72
I N /I	0.98956	15.72
4->8	0.98956	15.72
NA 3->8	0.98956	15.72
NA 0->0	0.98956	15.72
NA /->0	0.98956	15.72
1 NA 9->8	0.98956	15.72
10->8	0.98956	15.72
NA 11->8	0.98956	15.72
M 12->0	0.98956	15.72
1->9 NA	0.98956	15.72
M 2->9 M _{3->9}	0.98956	15.72
NA 3->9	0.98956	15.72
M 4->9 M 5->9	0.98956	15.72
1 NA	0.98956	15.72
M 6->9 M _{7->9}	0.98956	15.72
M _{8->9}	0.98956	15.72
M 10->9	0.98956	15.72
M 11->9	0.98956	15.72
M _{12->9}	0.98956	15.72
M _{1->10}	0.98956	15.72
M _{2->10}	0.98956	15.72
M 3->10	0.98956	15.72
M _{4->10}	0.98956	15.72
M _{5->10}	0.98956	15.72
M _{6->10}	0.98956	15.72
M _{7->10}	0.98956	15.72
M _{8->10}	0.98956	15.72
M _{9->10}	0.98956	15.72
M _{11->10}	0.98956	15.72
M _{12->10}	0.98956	15.72
M 1->11	0.89798	161.79
M 2->11	0.83929	268.44
M 3->11	0.86075	225.11
M _{4->11}	0.91454	135.09
M _{5->11}	0.87793	194.85
L		

1 6−>11	0.90200	154.42
7->11	0.90973	142.40
8->11	0.88194	189.67
9->11	0.90591	148.40
1 10->11	0.88478	185.70
1 12->11	0.92527	118.51
1 1->12	0.84164	258.07
A 2->12	0.90616	148.64
3->12	0.86982	208.68
1 _{4->12}	0.90475	150.21
5->12	0.92709	113.88
6->12	0.89668	164.02
7->12	0.90861	143.84
8->12	0.86172	222.73
9->12	0.87334	204.39
1 10->12	0.89031	173.96
1 11->12	0.83282	275.20
n[Prob(D G)]	0.98410	24.03

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

	_
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
·	