令和5年度 単元テスト前演習 三角関数 (その1)

1 以下の表を埋めよ.

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
弧度									
$\sin \theta$									
$\cos \theta$									
$\tan \theta$									

θ	210°	225°	240°	270°	300°	315°	330°	360°
弧度								
$\sin \theta$								
$\cos \theta$								
$\tan \theta$								

 $oxed{2}$ $\theta=rac{100}{3}\pi$ のとき, $\sin\theta,\cos\theta, an\theta$ の値を求めよ.

3 以下の問いに答えよ.

(1) 半径 2, 中心角 $\frac{1}{4}\pi$ である扇形の面積と弧の長さを求めよ.

(2) θ の動径が第 4 象限にあり, $\sin\theta=\frac{4}{5}$ のとき, $\cos\theta$, $\tan\theta$ の値を求めよ.

(3) $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$, $\tan \theta$ の値を求めよ.

- 4 以下の問いに答えよ. $(0 \le \theta < 2\pi$ とする)
 - (1) $\sin \theta + \cos \theta = \sqrt{2}$ のとき, $\sin \theta \cos \theta$ の値を求めよ.
- (4) 方程式 $\sin\left(\theta \frac{1}{6}\pi\right) = \frac{1}{\sqrt{2}}$ を解け.

(2) 方程式 $\tan \theta = -\sqrt{3}$ を解け.

(5) 不等式 $\cos\left(\theta + \frac{1}{3}\pi\right) < -\frac{1}{\sqrt{2}}$ を解け.

(3) 不等式 $\cos \theta < \frac{\sqrt{3}}{2}$ を解け.

令和 5 年度 単元テスト前演習 三角関数 (その 3)

 $\boxed{\mathbf{5}}$ $\theta = \frac{1}{12}\pi$ について, $\sin \theta, \cos \theta, \tan \theta$ の値を求めよ.

R5. 6.9 直線 y=x とのなす角が $\frac{\pi}{6}$ である直線で, 原点を通るものの 方程式を求めよ.

 $oldsymbol{6}$ $\theta = rac{1}{8}\pi$ について, $\sin \theta, \cos \theta, \tan \theta$ の値を求めよ.

_NO.2

年_____組____番

 $\boxed{\mathbf{8}}$ $0 \le \theta < 2\pi$ のとき、方程式 $\sin 2\theta = \cos \theta$ を解け.

 $oldsymbol{9}$ $0 \le heta < 2\pi$ のとき, 方程式 $\sqrt{3}\sin heta + \cos heta = 1$ を解け.