Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A method of communicating data between a device and a host apparatus through a

USB interface comprising the steps of: transmitting a first packet from the device to the host

apparatus, the first packet being erroneously recognized by the host apparatus as a first type of

packet; receiving a second packet from the host apparatus at the device in response to the first

packet; and transmitting a third packet from the device to the host apparatus, the third packet

being the first type of packet, in response to receiving the second packet from the host apparatus.

2. (original) The method of claim 1, wherein the first type of packet is a STALL packet.

3. (original) The method of claim 2, wherein the second packet is a clear feature command

packet.

4. (original) The method of claim 3, wherein the method further comprises the step of: receiving

a fourth packet from the host apparatus at the device, the fourth packet being a clear feature

command packet, the fourth packet transmitted from the host apparatus in response to receiving

the third packet from the device..

Page 2 of 10

Filed: November 24, 2003

5. (original) The method of claim 4, wherein the method further comprises the step of:

transmitting status information from the device to the host apparatus, in response to receiving the

fourth packet from the host apparatus.

6. (original) The method of claim 5, wherein a type of the first packet transmitted from the

device is an ACK packet or a NAK packet.

7. (original) The method of claim 6, wherein the data communications is performed using USB

Mass Storage Class Bulk Only Mode.

8. (original) A method of communicating data between a device and a host apparatus through a

USB interface comprising the steps of: transmitting a first request for data from the host

apparatus to the device; receiving a first packet from the device at the host apparatus in response

to the first request for data;

transmitting a second request for data from the host apparatus to the device, in response

to receiving the first packet from the device; and

receiving a second packet from the device at the host apparatus in response to the second

request for data;

9. (original) The method of claim 8, wherein the first packet is transmitted from the device as an

ACK packet or a NAK packet, but

the host apparatus erroneously recognizes the first packet as a STALL packet.

Page 3 of 10

Filed: November 24, 2003

10. (original) The method of claim 9, wherein the second packet is a STALL packet.

11. (original) The method of claim 10, wherein the method further comprises the step of:

transmitting a clear feature command packet from the host apparatus to the device, in

response to receiving the second packet from the device..

12. (original) The method of claim 11, wherein the method further comprises the step of:

receiving status information from the device at the host apparatus, the status information

transmitted from the device in response to receiving the clear feature command packet from the

host apparatus.

13. (currently amended) The method of claim [[6]] 12, wherein the data communications is

performed using USB Mass Storage Class Bulk Only Mode.

14. (withdrawn) A method of communicating data between a device and a host apparatus

through a USB interface comprising the steps of: counting a number of STALL packets

transmitted from the device to the host apparatus; counting a number of clear feature command

packets received from the host apparatus; and determining a number of times a phase failure has

occurred based on the difference between the number of STALL packets transmitted from the

device to the host apparatus and the number of clear feature command packets received from the

host apparatus.

Patent Application No. 10/718,548

Filed: November 24, 2003

15. (withdrawn) The method of claim 14, further comprising the step of: using the number of

times a phase failure has occurred to perform self-diagnosis of the device.

16. (withdrawn) The method of claim 15, wherein the step of using the number of times a phase

failure has occurred to perform self diagnosis of the device comprises the step of: displaying an

alarm on the device based on the number of times a phase failure has occurred.

17. (withdrawn) The method of claim 15, wherein the step of using the number of times a phase

failure has occurred to perform self diagnosis of the device comprises the step of: displaying an

alarm on the host apparatus based on the number of times a phase failure has occurred.

18. (original) In a device operable to communicate data with a host apparatus through a USB

interface, apparatus comprising: a packet detector operable to detect a second packet from the

host apparatus, the second packet transmitted from the host device in response the host device

receiving a first packet from the device, the first packet being erroneously recognized by the host

apparatus as a first type of packet; and a packet transmitter operable to transmit a third packet to

the host apparatus, the third packet being the first type of packet, in 10 response to receiving the

second packet from the host apparatus.

19. (original) The apparatus of claim 18, wherein the first type of packet is a STALL packet.

20. (original) The apparatus of claim 19, wherein the second packet is a clear feature command

packet.

Page 5 of 10

Patent Application No. 10/718,548

Filed: November 24, 2003

21. (original) The apparatus of claim 20, wherein the packet detector is further operable to

receive a fourth packet from the host apparatus, the fourth packet being a clear feature command

packet, the fourth packet transmitted from the host apparatus in response to receiving the third

packet from the device.

22. (original) The apparatus of claim 21, further comprising: circuitry operable to transmit status

information to the host apparatus, in response to receiving the fourth packet from the host

apparatus.

23. (original) The apparatus of claim 22, wherein a, type of the first packet transmitted from the

device is an ACK packet or a NAK packet.

24. (original) The apparatus of claim 23, wherein the data communications is performed using

USB Mass Storage Class Bulk Only Mode.

25. (original) In a host apparatus operable to communicate data with a device through a USB

interface, apparatus comprising: .transmitting circuitry operable to transmit a first request for

data to the device; receiving circuitry operable to receive a first packet from the device in

response to the first request for data; transmitting circuitry operable to transmit a second request

for data to the device, in response to receiving the first packet from the device; and receiving

circuitry operable to receive a second packet from the device in response to the second request

for data.

Page 6 of 10

Patent Application No. 10/718,548

Filed: November 24, 2003

26. (original) The apparatus of claim 25, wherein the first packet is transmitted from the device

as an ACK packet or a NAK packet, but the host apparatus erroneously recognizes the first

packet as a STALL packet.

27. (original) The apparatus of claim 26, wherein the second packet is a STALL packet.

28. (original) The apparatus of claim 27, wherein the apparatus further comprises: transmitting

circuitry operable to transmit a clear feature command packet to the device, in response to

receiving the second packet from the device..

29. (original) The apparatus of claim 28, wherein the apparatus further comprises: receiving

circuitry operable to receive status information from the device, the status information

transmitted from the device in response to receiving the clear feature command packet from the

host apparatus.

30. (original) The apparatus of claim 29, wherein the data communications is performed using

USB Mass Storage Class Bulk Only Mode.

31. (withdrawn) In a device operable to communicate data with a host apparatus through a USB

interface, apparatus comprising: a counting unit operable to count a number of STALL packets

transmitted from the device to the host apparatus; a counting unit operable to count a number of

clear feature command packets received from the host apparatus; and a determining unit operable

Page 7 of 10

to determine a number of times a phase failure has occurred based on the difference between the number of STALL packets transmitted from the device to the host apparatus and the number of clear feature command packets received from the host apparatus.

32. (withdrawn) The apparatus of claim 14, further comprising:

a self-diagnosis unit operable to use the number of times a phase failure has occurred to perform self-diagnosis of the device.

33. (withdrawn) The method of claim 15, wherein the self-diagnosis unit comprises:

an alarm unit operable to display an alarm on the device based on the number of times a phase failure has occurred.

34. (withdrawn) The method of claim 15, wherein the self-diagnosis unit comprises:

an alarm unit operable to display an alarm on the host apparatus based on the number of times a phase failure has occurred.