Math 444/539 Lecture 2

Def (gluing): X, Y spaces

A \subseteq X subspace

f: A \rightarrow Y map.

Then X glued to Y using f is quotient of X \sqcup Y by $X = \{E_a \mid a \in A\}$ $w / E_a = \{a, f(a)\}$.

Denoted (X \sqcup Y) $\{a \in A\}$ $\{a \in$

Thm (gluing fons). X,Y spaces, ASX, fiA->Y.

Asm have fons 9,iX->Z and 9,iY->Z

St. diagram...

A Marrion X P.

Commuter. Then 3!4: (XUY)/aGA~f(a) >Z

S.t.

(Xuy) (AAfa)

Commates

Immediate from which univ

Ex; X=Y=D2

ACX +he bdry S' fiA-y "obvious" identification of bodry Claim: XUY/acA~f(a) = 52 Define Ψ:X→52 9, (x,y)=(x,y, \1-x2-y2) 4º11→2g $\varphi_{a}(x,y) = (x,y,-\sqrt{1-x^{2}-y^{2}})$ Clearly

 $A \xrightarrow{\varphi_2} S^2$

Commutes, Glaing for lemma giver for HANDER Y'(XUY)/unfa) > 52. Easy to check: 4 homeo.

Defin! A <u>CW-complex</u> is a space X

X(0) <u>CX</u>(1) <u>CX</u>

St. a) $\bigcup_{n} X^{(n)} = X$

6) USX open (UnX open 4n.

() X (n) constructed inductively
i) X (o) = discrete set of pts

(ii) For n71, In-dires (Da) and fons Phi3Dh X (n-1) 5-1.

 $\chi^{(n)} = (\chi^{(n-1)} \cup (\bigcup_{\alpha} D_{\alpha}^{n})) / \rho e \partial D_{\alpha}^{n} \sim \varphi_{\alpha}^{n}(\rho)$

Vocabulary

a) X is <u>n-skeleton</u>

6) D_{α}^{n} is $\underline{n-cell}$

C) Pa is attaching Map

Rmk: Char. maps injective on In+(Dn), but

NOT NOT NOT NECESSARILY injective on DD

4

f) Subspace YEX is subcomplex if Y union of cells

RmK: Subspx inherits CW-cpx structure

Ex: X(n) EX always a subspx.

Ex! CW-cpx structure on 5"

one n-cell D_{i}^{n} W attaching map Ψ_{i}^{n} : $D_{i}^{n} \rightarrow X^{(o)}$ $\Psi_{i}^{n}(x) = X$

no m-cells for mton.

RMK! W/ this CW-Structure, 5mcSn for m<n not a subcpx.

Ex! CW-cpx structure on 5" II. (cf example on Will define & CW-cpx X st., p. a)

b) X has a K-cells for 0 < K < n

SG+ X(0) = 9 6+2

For 15KCN, asm $X^{(k)} \cong S^k$ constructed. Let $X^{(k+1)} = X^{(k)} + 2$ (k+1) cells $D_i^k + D_s^k$ w/

attaching maps obvious homeomorphisms $p_k^k : D_i^k \longrightarrow \mathcal{D}_i^{(k-1)}$ $p_k^k : D_i^k \longrightarrow \mathcal{D}_i^{(k-1)}$

(D' "upper hemisphere") D_{a}^{k} "lower hemisphere") Like in ex on p. a, can then prove that ex = S.

K=0 :

K=1 '

K=2 ;

 $E_{X'}$, $S^{\infty} = (W-cex W/(S^{\infty})^{(n)} = CW-structure)$ on S^{n} from previous example.

=> As space, So= 5ⁿ

W/ 5° = 5° (lequator" and topology () = 5° open () Un5° open Vn.

= square w/ sides glued together!

All vertices of square identified!

Above gives CW-cpx structure W/

0-0011:

2 1-cell; a + 6

2-cell : Madelist De Isagages

Exi RP = "lines in Rn+1 through, 0" ine determined

line determined
by a autipedal
pts on 5"

