Answers: Introduction to simultaneous equations

Ollie Brooke

Summary

Answers to questions relating to the guide on introduction to simultaneous equations.

These are the answers to Questions: Introduction to simultaneous equations.

Please attempt the questions before reading these answers!

Q1

- 1.1. The second equation is a multiple of the first. This means there are infinitely many solutions.
- 1.2. The second equation is also a multiple of the first. Thus, there are infinitely many solutions.
- 1.3. The two lines are not parallel and not multiples of each other, so they intersect at one point. There is one unique solution.

Q2

2.1.
$$x = 4$$
 and $y = -3$.

2.2.
$$x = -2$$
 and $y = 13$.

2.3.
$$x = \frac{6}{13}$$
 and $y = \frac{69}{13}$.

2.4.
$$x = \frac{16}{5}$$
 and $y = \frac{12}{5}$.

2.5.
$$x = \frac{73}{25}$$
 and $y = \frac{93}{25}$.

2.6.
$$x = 1$$
 and $y = 5$.

2.7.
$$x = \frac{19}{10}$$
 and $y = \frac{17}{10}$.

Q3

- 3.1. x = 1 and y = -2.
- 3.2. x = -3 and y = -4.
- 3.3. $x = \frac{31}{24}$ and $y = -\frac{1}{12}$.
- 3.4. $x = 3 \text{ and } y = \frac{2}{3}$.
- 3.5. $x = \frac{127}{44}$ and $y = \frac{3}{44}$.
- 3.6. $x = -\frac{18}{49}$ and $y = \frac{39}{49}$.
- 3.7. $x = \frac{32}{15}$ and $y = -\frac{11}{5}$.

Q4

- 4.1. $x = \frac{5}{3}$ and $y = -\frac{2}{3}$.
- 4.2. x = 4 and y = 0.
- 4.3. $x = \frac{88}{19}$ and $y = -\frac{1}{19}$.
- 4.4. $x = \frac{47}{26}$ and $y = \frac{12}{13}$.
- 4.5. $x = \frac{52}{11}$ and $y = -\frac{1}{11}$.

Version history

v1.0: initial version created 12/24 by Ollie Brooke as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.