

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/600,797	06/20/2003	Eric D. Brill	MS303968.1 / MSFTP444US	9695
27195	7590	05/19/2006	EXAMINER	
AMIN & TUROCY, LLP 24TH FLOOR, NATIONAL CITY CENTER 1900 EAST NINTH STREET CLEVELAND, OH 44114			HICKS, MICHAEL J	
			ART UNIT	PAPER NUMBER
			2165	

DATE MAILED: 05/19/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/600,797	BRILL, ERIC D.
	Examiner	Art Unit
	Michael J. Hicks	2165

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 06 March 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-40, 42 and 43 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-40, 42 and 43 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 20 June 2003 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
 Paper No(s)/Mail Date _____

- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____
 5) Notice of Informal Patent Application (PTO-152)
 6) Other: _____

DETAILED ACTION

1. Claims 1-40 and 42-43 Pending.

Claim 41 Canceled.

Response to Arguments

2. Applicant's arguments with respect to the rejections of claims 1-43 under USC 102(b) have been fully considered and are persuasive. Therefore, the rejection has been withdrawn. However, upon further consideration, a new grounds of rejection is made in view of Hansen et al in view of Eitel.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

1. Claims 1-40 and 42-43 rejected under 35 U.S.C. 103(a) as being anticipated by Hansen et al. ("Using navigation data to improve IR functions in the context of Web search", Proceedings of the tenth international conference on Information and knowledge management; Atlanta, Georgia, USA; Pages 135-142; ACM Press, 2001 and referred to hereinafter as Hansen) in view of Eitel (U.S. Patent Number 7,043,521).

As per Claim 1, Hansen discloses a system that refines a general-purpose search engine, comprising (i.e. "*Traditional search engines like Lycos and Google now routinely return tens of thousands of resources per query...we propose narrowing search results by observing the browsing patterns of users during search tasks.*") The preceding text excerpt clearly indicates a system that narrows the search results of/refines a traditional search engines/a general purpose search engine (e.g. Lycos, Google).) (Page 135, Column 1, Paragraph 2) a tuning component that filters search query results of the general-purpose search engine based on criteria associated with the entry point (i.e. "*We capture the interesting part of the search path in a search session, which is the user's query together with the URLs of the Web pages they visit in response to their query...we also propose techniques for leveraging existing (manually derived) content hierarchies or labeled URLs to improve the relevance of identified resources...we consider improving search results by first forming groups of queries based on the similarity of their associated search sessions...This has the effect of reducing spurious associations between queries.*") The preceding text excerpt clearly indicates that search results from a search engine are improved/filtered based on criteria associated with the entry point (e.g. manually derived content hierarchies or labeled URLs.) (Page 135, Column 2, Paragraphs 2-3; Page 137, Column 1, Paragraphs 3-4).

Hansen fails to disclose a component that identifies an entry point to the general-purpose search.

Eitel discloses a component that identifies an entry point to the general-purpose search (i.e. "*Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As*

used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term." The preceding text excerpt clearly indicates that an entry point (e.g. a local website or computer that is used to generate context for a search to a search engine) is identified. Note that in combination with Hansen, this entry point and it's associated data would be used in the same way as the search sessions referenced throughout Hansen and the instant Action.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include a component that identifies an entry point to the general-purpose search with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

As per Claim 2, Hansen discloses the criteria comprising one or more of a document property, a context parameter, and a configuration (i.e. "...these schemes would involve the queries submitted by users together with the top L relevant pages returned by a given search engine." The preceding text excerpt clearly indicates that the criteria include queries submitted by users/keywords (e.g. a context parameter) and a URL (e.g. document property).) (Page 137, Column 1, Paragraph 4).

As per Claim 3, Hansen discloses the document property comprising one or more of a term that appears on a web page, a property of a Uniform Resource Locator

(URL) identifying the web page, a property of a plurality of URLs that link to the web page, a property of a plurality of web pages that link to the web page, and a layout (i.e.

"...these schemes would involve the queries submitted by users together with the top L relevant pages returned by a given search engine." The preceding text excerpt clearly indicates that the document property includes queries submitted by users/a term that appears on a web page and the name/property of a URL.) (Page 137, Column 1, Paragraph 4).

As per Claim 4, Hansen discloses the context parameter comprising one of a word probability and a probability distribution (i.e. *"The group relation is captures by the triple (q_i, k, w_{ik}), where k denotes a group ID and w_{ik} is the probability that q_i belongs to group k. Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k."* The preceding text excerpt clearly indicates that a relevancy weight/probability distribution is used.) (Page 137, Column 2, Paragraph 4).

As per Claim 5, Hansen discloses the tuning component provided with training data to learn what properties of a document are indicative of the document being relevant to a user executing a search query from the entry point (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)."* The preceding text excerpt clearly indicates that training data is provided to help guide the cluster process (e.g. indicate what properties of a document are indicative of that document being relative to a user).) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 6, Hansen discloses the tuning component configured to differentiate between a query result that is relevant to a search query context for a group of users and a query result that is non-relevant to the search query context for the group of users (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k .*" The preceding text excerpt clearly indicates that each URL/query result is given a relevance weight associated with the group used for the search. If the URL is relevant, it is assigned a high relevancy score, and if the URL is non-relevant, it is assigned a low relevancy score.) (Page 137, Column 2, Paragraph 4).

As per Claim 7, Hansen discloses the tuning component employs statistical analysis in connection with filtering the search query results (i.e. *"As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings."* The preceding text excerpt clearly indicates that statistical modeling/analysis is used in connection with page ranking/filtering of the search results.) (Page 138, Column 1, Paragraph 2).

As per Claim 8, Hansen discloses the tuning component generates one or more context parameters for a received query result (i.e. *"The group relation is captured by the triple (q_i, k, w_{ik}) , where k denotes a group ID and w_{ik} is the probability that q_i belongs to group k . Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k .*" The preceding text excerpt clearly indicates that a relevancy weight/context parameter is generated for a received query result.) (Page 137, Column 2, Paragraph 4), and then compare the generated

context parameters with a relevant context parameter and a non-relevant context parameter to determine whether the query result is relevant (i.e. *"The group relation is captures by the triple (q_i, k, w_{ik}) , where k denotes a group ID and w_{ik} is the probability that q_i belongs to group k . Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k .*" The preceding text excerpt clearly indicates that in order to determine if the query result is associated with a group (e.g. group k) the relevancy weight/context parameter is examined. Note that a high relevancy weight constitutes a relevant context parameter and a low relevancy weight constitutes a non-relevant context parameter. Further note that in order to determine if the query result is related to the group, the relevancy weight/context parameter for the query result must be compared to low and high relevancy weights.) (Page 137, Column 2, Paragraph 4).

As per Claim 9, Hansen discloses the tuning component further ranks the query results (i.e. *"Our clustering can also be used to modify the rankings of results from a traditional search engine.*" The preceding text excerpt clearly indicates that the clustering/filtering is used to improve ranking/rank query results.) (Page 138, Column 1, Paragraph 3).

As per Claim 10, Hansen discloses the ranking determined by the degree of relevance of the query result to a relevant data set and a non-relevant data set, the relevance is determined via one of a similarity measure and a confidence interval (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k ...As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings."* The preceding text excerpt clearly indicates that that ranking is determined by a relevancy score/similarity

Art Unit: 2165

measure assigned to the URL by comparing it to a group of queries (e.g. group k). Note that not all of the pages in the group that the URL is being compared to are relevant as some may have a low relevancy score in the set, therefore the group (e.g. group k) constitutes both a set of relevant data, and a set of non-relevant data.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 2).

As per Claims 11 and 20, Hansen discloses the ranking order comprising one of ascending and descending, from the most relevant result to the least relevant result (i.e. "Here, we arrange the query groups and the URLs by weight, with the most relevant appearing at the top." The preceding text excerpt clearly indicates that the results are sorted in descending order, with the most relevant results at the top.) (Page 138, Column 1, Paragraph 2).

As per Claim 12, Hansen discloses the tuning component configured for a plurality of entry points associated with one or more groups of users (i.e. "...we present three search sessions (each initiated by a different user)..." The preceding text excerpt clearly indicates that entry points for multiple groups of users may be defined.) (Page 137, Column 1, paragraph 3).

As per Claim 13, Hansen discloses a system that tunes a general-purpose search engine, comprising (i.e. "Traditional search engines like Lycos and Google now routinely return tens of thousands of resources per query...we propose narrowing search results by observing the browsing patterns of users during search tasks." The preceding text excerpt clearly indicates a system that narrows the search results of/tunes a traditional search engines/a general purpose search engine (e.g. Lycos, Google).) (Page 135, Column 1, Paragraph 2): a filter component that parses relevant and non-relevant general-purpose search engine content results based on training data (i.e. "To help guide the cluster process, we also introduce labeled data from an existing

Art Unit: 2165

topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4." The preceding text excerpt clearly indicates training data is used to parse general search engine results for related query groups/an entry point.) (Figure 4; Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2); and a ranking component that sorts the filtered results in accordance with the training data for presentation to a user (i.e. "To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...These triples can be used by a search engine to improve page rankings." The preceding text excerpt clearly indicates that a ranking component is present which ranks data based on/in accordance with the content hierarchy/training data. Note that Figure 4 illustrated the results being displayed to a user.) (Figure 4; Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2).

Hansen fails to disclose that the content results are for an entry point leading to the general purpose search engine.

Eitel discloses that the content results are for an entry point leading to the general purpose search engine (i.e. "*Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any*

feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term." The preceding text excerpt clearly indicates that the content results are for the entry point, which leads to a general purpose search engine.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include that the content results are for an entry point leading to the general purpose search engine, with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

As per Claim 14, Hansen discloses the filter component parsing the results as a function of one or more of a document property, a context parameter, and a configuration associated with the entry point (i.e. "*...we consider improving search results by first forming groups of queries based on the similarity of their associated search sessions... This has the effect of reducing spurious associations between queries...these schemes would involve the queries submitted by users together with the top L relevant pages returned by a given search engine.*" The preceding text excerpt clearly indicates that a filter component exists which parses the results using queries submitted by users/keywords (e.g. a context parameter) and a URL (e.g. document property).) (Page 137, Column 1, Paragraphs 3-4)

As per Claim 15, Hansen discloses the filter component trained to differentiate between a relevant and a non-relevant result via the training data (i.e. "*To help guide the*

cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k." The preceding text excerpt clearly indicates that, using training data, each URL/query result is given a relevance weight associated with the group used for the search. If the URL is relevant, it is assigned a high relevancy score, and if the URL is non-relevant, it is assigned a low relevancy score.) (Page 137, Column 2, Paragraph 4).

As per Claim 16, Hansen discloses the training data comprising a set of relevant data associated with a search context of a user for the entry point and a set of non-relevant data comprising random data unrelated to the search context of the user for the entry point (i.e. "*To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy).*" The preceding text excerpt clearly indicates that a set of training data, the portion of which that is associated with the search context of the user for the entry point constituting the set of relevant data, and the portion of which that is irrelevant to the search context of the user for the entry point constituting the set of non-relevant data, exists and are used to help determine the relevancy of a search result. Note that the set of unrelated data comes from an existing data hierarchy, and can therefore be considered random.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 17, Hansen discloses the filter component employs statistical analysis to determine whether a result is relevant or non-relevant to the entry point (i.e.

"As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings." The preceding text excerpt clearly indicates that statistical modeling/analysis is used in connection with page ranking/filtering of the search results which determine relevancy. Note from above that the triple referred to contain a relevancy score.) (Page 138, Column 1, Paragraph 2).

As per Claim 18, Hansen discloses the ranking component employs a technique to determine the degree of relevance of the query results with respect to a relevant data set and a non-relevant data set (i.e. "To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)." The preceding text excerpt clearly indicates that a set of, the portion of which that is associated with the search context of the user for the entry point constituting the set of relevant data, and the portion of which that is irrelevant to the search context of the user for the entry point constituting the set of non-relevant data, exists and are used to help determine the relevancy of a query result.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 19, Hansen discloses the technique comprising one of a similarity measure and a confidence interval (i.e. "Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k ...As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings." The preceding text excerpt clearly indicates that that ranking/relevancy is determined by a relevancy score/similarity measure assigned to the URL by

comparing it to a group of queries (e.g. group k.)(Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 2).

As per Claim 21, Hansen discloses the ranking performed on the relevant query results, wherein the non-relevant results are discarded (i.e. "*For each group, we select the most relevant URLs arranged in a display like that in Figure 4. Here, we arrange the query groups and the URLs by weight, with the most relevant appearing at the top.*" The preceding text excerpt clearly indicates that only the most relevant URLs/results are displayed, while the less or non-relevant results are discarded.) (Page 138, Column 1, Paragraph 2).

As per Claim 22, Hansen discloses a method to filter and rank general-purpose search engine results associated with an entry point, comprising (i.e. "*These triples can be used by a search engine to improve page rankings. When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4.*" The preceding text excerpt clearly indicates a method for filtering and ranking of general-purpose search engine results associated with an entry point. Note that the entry point is associated with the groups mentioned in the quotation and as referenced above.) (Page 138, Column 1, Paragraph 2): filtering the general-purpose search engine results by tuning the general purpose search engine for the entry point (i.e. "*When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4.*" The preceding text excerpt clearly search engine results are filters.) (Figure 4; Page 138, Column 1, Paragraphs 1-2); and ranking the general-purpose search engine results (i.e. "*These triples can be used by a search engine to improve page rankings. When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we*

select the most relevant URLs arranged in a display like that in Figure 4." The preceding text excerpt clearly indicates that the general-purpose search engine results are ranked.) (Page 138, Column 1, Paragraph 2).

Hansen fails to disclose executing a query search with the general purpose search engine through the entry point.

Eitel discloses executing a query search with the general purpose search engine through the entry point (i.e. "*Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term.*" The preceding text excerpt clearly indicates that a search query is executed through the entry point at a general purpose search engine.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include executing a query search with the general purpose search engine through the entry point with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

As per Claim 23, Hansen discloses employing a statistical hypothesis to determine whether a result is relevant or non-relevant to a search context of the entry point (i.e. *"As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings."* The preceding text excerpt clearly indicates that statistical modeling/a statistical hypothesis is used in connection with page ranking of the search results, which determines relevancy. Note from above that the triple referred to contain a relevancy score.) (Page 138, Column 1, Paragraph 2).

As per Claim 24, Hansen discloses the statistical hypothesis employing a threshold in connection with a probability distribution for relevant data and a probability distribution for non-relevant data (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k..." As mentioned above, sets of such triples constitute the parameters in a statistical model for the search session..." For each such group, we select the most relevant URLs..."* The preceding text excerpt clearly indicates that a threshold to determine which are the most relevant URLs exists and that a relevancy weight/probability distribution of a document is calculated for each group, some of which are relevant to the search, and some of which are not.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2), wherein respective word probabilities are generated for the search query results and compared to the threshold (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k..." For each such group, we select the most relevant URLs..."* The preceding text excerpt clearly indicates that in order for a URL/result to be considered most relevant it's relevancy weight/probability distribution must be first calculated, then compared to the

threshold.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2), the probability distribution for relevant data and the probability distribution for non-relevant data to determine whether the results are relevant or non-relevant (i.e. "Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k ." The preceding text excerpt clearly indicates that the relevancy score/probability distribution is used to determine which results are relevant and which results are non-relevant.) (Page 137, Column 2, Paragraph 4).

As per Claim 25, Hansen discloses the threshold employed to bias the decision to mitigate one of a result being deemed non-relevant when the result is relevant and a result being deemed relevant when the result is non-relevant (i.e. "We capture the interesting part of the search path in a search session, which is the user's query together with the URLs of the Web sites they visit in response to their query... Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k ... As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions." The preceding text excerpt clearly indicates that because the results are collected over many search sessions, and are collected from which URLs users visit, if one user visits a non-relevant URL in response to a search, this URL will only be determined as relevant in response to one search session. Unless the data from the collected search sessions also indicate the non-relevant URL, its relevancy weight will not be greatly affected, therefore mitigating/lessening the impact. Also note that, in much the same way, relevant URLs' relevancy weights will not be greatly affected as a result of being deemed non-relevant in one particular search session. The data from many collected search sessions is needed to markedly influence a relevancy

weight.) (Page 135, Column 2, Paragraph 2; Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 2).

As per Claim 26, Hansen discloses employing a probability distribution analysis or machine learning in connection with the filtering and ranking, wherein suitable probability distributions include a Bernoulli, a binomial, a Pascal, a Poisson, an arcsine, a beta, a Cauchy, a chi-square with N degrees of freedom, an Erlang, a uniform, an exponential, a gamma, a Gaussian-univariate, a Gaussian-bivariate, a Laplace, a log-normal, a rice, a Weibull and a Rayleigh distribution (i.e. "*The same kind of Poisson structure used for the collection of URLs in a search session is applied to the query terms.*" The preceding text excerpt clearly indicates that a poisson distribution is used.) (Page 11, Column 1, Paragraph 6), and the machine learning can classify based on one or more of a word occurrence, a distribution, a page layout, an inlink, and an outlink (i.e. "*A natural prior for our coefficients λ_{ij} (the relevance weights) is a Gamma distribution.*" The preceding text excerpt clearly indicates a distribution is used to classify the relevancies.) (Page 141, Column 1, Paragraph 5).

As per Claim 27, Hansen discloses employing a statistical analysis to rank search query results (i.e. "*As mentioned above, sets of such triples constitute the parameters in a statistical model for the search sessions. These triples can be used by a search engine to improve page rankings.*" The preceding text excerpt clearly indicates that statistical modeling/analysis is used in connection with page ranking of the search results.) (Page 138, Column 1, Paragraph 2).

As per Claim 28, Hansen discloses the ranking comprising one of generating word probabilities and employing a confidence interval to determine relevance, and generating a similarity measure comprising one of a cosine distance, the Jaccard coefficient, an entropy-based measure, a divergence measure and/or a relative separation measure to determine similarity (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k."* The preceding text excerpt clearly indicates that a weight is given to each site to identify how closely it is related to a group k, and which is used in ranking. Note that the weights are based on the search terms, as in Figures 3 and 4, which therefore indicates that word probabilities are used to assign the weights and ranks.) (Figures 3, 4; Page 137, Column 2, Paragraph 4).

As per Claim 29, Hansen discloses a method to manually customize a general-purpose search engine for an entry point, comprising (i.e. *"Traditional search engine...now routinely return tens of thousands of resources per query...it has typically required the user to report details of their search and manually tag pages according to their relevance..."* The preceding text excerpt clearly indicates that a general purpose search engine is manually customized to create an entry point (e.g. basis to narrow search results, and return more accurate results) by having users tag results for relevance.) (Page 135, Column 1, Paragraph 2; Page 137, Column 2, Paragraph 1): providing a set of relevant data to train a component to discern query results relevant to a search context of a user employing the entry point (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)."* The preceding text excerpt clearly indicates a set of data, the portion of which is

Art Unit: 2165

related to the query constituting the set of relevant data, which guides the cluster process/is used to discern query results relevant to a search context of a user employing the entry point. Note that URLs relevance will be measured by a relevancy score which pertains to how relevant the data is to the groups in the training set. A high relevancy score indicates a relevant URL.) (Page 137, Column 2, Paragraph 3); providing a set of non-relevant data to train the component to discern query results unrelated to the search context (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy).*") The preceding text excerpt clearly indicates a set of data, the portion of which is unrelated to the query constituting the set of non-relevant data, which guides the cluster process/is used to discern query results non-relevant to a search context of a user employing the entry point. Note that URLs relevance will be measured by a relevancy score which pertains to how relevant the data is to the groups in the training set. A low relevancy score indicates an unrelated URL.) (Page 137, Column 2, Paragraph 3), the set of relevant data and the set of non-relevant data are manually provided; and determining whether a query result is relevant to the search context based on the set of non-relevant data (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy).*") The preceding text excerpt clearly indicates that the set of relevant data and the set of non-relevant data are manually provided and employed to guide the clustering process/determine whether a query result is relevant to a search context.) (Page 137, Column 2, Paragraph 3).

Hansen fails to disclose the entry point being a gateway to the general purpose search engine.

Eitel discloses the entry point being a gateway to the general purpose search engine (i.e. *"Under the embodiment, a searcher may locate and access information from the remote*

websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term." The preceding text excerpt clearly indicates that an entry point (e.g. a local website or computer that is used to generate context and act as a gateway for a search to a search engine) is identified.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include the entry point being a gateway to the general purpose search engine with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

As per Claim 30 and 35, Hansen discloses the set of relevant data comprising data associated with the search context of the user for the entry point. (i.e. "To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)." The preceding text excerpt clearly indicates that a set of data, the portion of which that is associated with the search context of the user for the entry point constituting the set of relevant data, exists.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 31 and 36, Hansen discloses the set of non-relevant data comprising random data unrelated to the search context of the user for the entry point (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)." The preceding text excerpt clearly indicates that a set of data, the portion of which that is unrelated with the search context of the user for the entry point constituting the set of non-relevant data, exists.*) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 32 and 37, Hansen discloses providing information to associate respective query results with the entry point (i.e. *"Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k...For each such group, we select the most relevant URLs..." The preceding text excerpt clearly indicates that the relevancy weight is used to associate query results with the relevant group/the entry point*) (Page 138, Column 1, Paragraph 2).

As per Claim 33 and 38, Hansen discloses the set of relevant data and the set of non-relevant data employed to train the component to learn the features that differentiate relevant data from non-relevant data (i.e. *"To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)." The preceding text excerpt clearly indicates that the set of relevant data and*

the set of non-relevant data are used as a set of training data to identify relevant data.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraph 1).

As per Claim 34, Hansen discloses a method to automatically customize a general-purpose search engine for an entry point, comprising (i.e. "*Traditional search engine...now routinely return tens of thousands of resources per query...we propose narrowing search results by observing browsing patterns of users during search tasks.*") The preceding text excerpt clearly indicates that a general purpose search engine is automatically customized to create an entry point (e.g. basis to narrow search results, and return more accurate results) by observing users during search tasks.) (Page 135, Column 1, Paragraph 2); recording a query result selected by a user as relevant (i.e. "*We capture the interesting part of the search path in a search session, which is a user's query together with the URLs of the Web pages they visit in response to their query...by combining search sessions with queries in a given group, we can better identify relevant URLs.*") The preceding text excerpt clearly indicates that URLs/query results selected by a user are used as data to identify relevant URLs, therefore some of them will be marked as relevant.) (Page 135, Column 2, Paragraph 2; Page 137, Column 1, Paragraph 3); recording a higher ranked query results, wherein a lower ranked result is selected by the user, as non-relevant (i.e. "...*PageRank is based on the amount of time a "random surfer" would spend on each page.*" The preceding text excerpt clearly indicates that if the browser spends time on a given web page, it increases the relevancy of that web page (e.g. marks it as relevant) and decreases the relevancy of other pages, which may be considered more relevant (e.g. marks a relevant page as non-relevant).) (Page 137, Column 2, Paragraph 2); and providing the recorded results to automatically train the filter to discriminate between results relevant to a search context of the user for the entry point and results non-relevant to the search context (i.e. "*We capture the interesting part of the search path in a search session, which is a user's*

query together with the URLs of the Web pages they visit in response to their query...Implicit in our approach is a form of query clustering that combines similar search terms on the basis of Web pages visited during a search session. These clusters are then used to improve the display of search engine results." The preceding text excerpt clearly indicates that previous query results and selections are recorded and added to the set of data used to discriminate between relevant results and non-relevant results.) (Page 135, Column 2, Paragraph 2).

Hansen fails to disclose executing a query search via the entry point that routes to the general purpose search engine.

Eitel discloses executing a query search via the entry point that routes to the general purpose search engine (i.e. "*Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term.*" The preceding text excerpt clearly indicates that a search query is executed through the entry point at a general purpose search engine.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include executing a query search via the entry point that routes to the general purpose search engine with the motivation of uploading a search agent (e.g. context) from a searching

terminal (e.g. entry point) to a website to be searched and returning the given results.

(Eitel, Abstract)

As per Claim 39, Hansen discloses the query results selected via a click thru technique employing a mouse to select a link associated with the query result by clicking on the link (i.e. "...users click through data to discover disjoint sets of similar URLs" The preceding text excerpt clearly indicates results and URLs are viewed using a click-through technique incorporating a mouse.) (Page 141, Column 1, Paragraph 2).

As per Claim 40, Hansen discloses generating a word probability distribution for the relevant recorded results and a word probability distribution for the non-relevant recorded results (i.e. "To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...Then, for each group, we identify a number of relevant URLs. This is described by the triple (k, u_j, λ_{kj}) where u_j is a URL and λ_{kj} is a weight that determines how likely it is that u_j is associated with the queries belonging to group k ." The preceding text excerpt clearly indicates that a weight is given to each site to identify how closely it is related to a group k , and which is used in ranking. Note that the weights are based on the search terms, as in Figures 3 and 4, which therefore indicates that word probabilities are used to assign the weights and ranks. Note that the weights are generated for each group and that the data set is comprised of a portion that is associated with the search context of the user for the entry point and constitutes the set of relevant data, and a portion that is irrelevant to the search context of the user for the entry point and constitutes the set of non-relevant data.) (Figures 3, 4; Page 137, Column 2, Paragraph 4).

As per Claim 42, Hansen discloses a computer readable medium storing computer executable components that tunes a general-purpose search engine to improve context search query results, comprising (i.e. "*Traditional search engines like Lycos and Google now routinely return tens of thousands of resources per query...we propose narrowing search results by observing the browsing patterns of users during search tasks.*" The preceding text excerpt clearly indicates a system that narrows the search results of/tunes a traditional search engines/a general purpose search engine (e.g. Lycos, Google.) (Page 135, Column 1, Paragraph 2): a component that filters the general-purpose search engine results based on training data sets associated with the search context of a user (i.e. "*To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4.*" The preceding text excerpt clearly indicates training data associated with the search context of a user is used to filter general purpose search engine results.) (Figure 4; Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2); and a component that ranks the general-purpose search engine results according to the similarity of the search engine results to the training data sets (i.e. "*To help guide the cluster process, we also introduce labeled data from an existing topic hierarchy that contains over 1.2 million Web sites...We let the index j range from 1 to the number of URLs seen in the training data, J (which might include URLs from a content hierarchy)...These triples can be used by a search engine to improve page rankings.*" The preceding text excerpt clearly indicates that a ranking component is present which ranks data based on/in accordance with similarity to the content hierarchy/training data.) (Page 137, Column 2, Paragraph 4; Page 138, Column 1, Paragraphs 1-2).

Hansen fails to disclose an entry point to the general-purpose search engine.

Eitel discloses an entry point to the general-purpose search engine (i.e. "*Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is defined as a physical or intellectual environment which imparts further meaning to a search term.*" The preceding text excerpt clearly indicates that an entry point (e.g. a local website or computer that is used to generate context and act as a gateway for a search to a search engine) is identified.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include an entry point to the general-purpose search engine with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

As per Claim 43, Hansen discloses a system that filters and ranks general-purpose search engine results, comprising (i.e. "*These triples can be used by a search engine to improve page rankings. When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4.*" The preceding text excerpt clearly indicates a method for filtering and ranking of general-purpose search engine results associated with an entry point. Note that

the entry point is associated with the groups mentioned in the quotation and as referenced above.) (Page 138, Column 1, Paragraph 2): means for filtering general-purpose search engine results to determine whether a query result is relevant to a search context of a group of users (i.e. *"...we consider improving search results by first forming groups of queries based on the similarity of their associated search sessions...This has the effect of reducing spurious associations between queries."*) The preceding text excerpt clearly indicates that search results from a search engine are improved/filtered based on search context associated with a group of users.) (Page 137, Column 1, Paragraphs 3-4), and means for ranking the general-purpose search engine results based on a relevance of the general-purpose search engine results to the search context of a group of users (i.e. *"These triples can be used by a search engine to improve page rankings. When a new user initiates a search, we present them with a display of query groups most related to their search terms. For each such group, we select the most relevant URLs arranged in a display like that in Figure 4."*) The preceding text excerpt clearly indicates that the general-purpose search engine results are ranked based on relevance to the search terms/context of the users.) (Page 138, Column 1, Paragraph 2).

Hansen fails to disclose an entry point leading to the general purpose search engine.

Eitel discloses an entry point leading to the general purpose search engine (i.e. *"Under the embodiment, a searcher may locate and access information from the remote websites 20, 24 manually (as under the prior art) or through use of a search agent transferred from the searcher's CPU 12 to the remote website 20, 24. The searcher may construct the search agent 30 (FIG. 4) and transmits it to the remote website 20, 24 as part of a search request. The search agent 30 may take many different forms, but in one of its embodiments, may include a number of search vectors. As used herein, a search vector is defined to include one or more search terms and one or more defining attributes (and/or contexts) of the search term(s). An attribute may be any feature of a search term which may be used to limit or further define the search term. A context may also be an attribute of the search term, but which is*

defined as a physical or intellectual environment which imparts further meaning to a search term." The preceding text excerpt clearly indicates that an entry point (e.g. a local website or computer that is used to generate context and act as a gateway for a search to a search engine) is identified. Note that the above methods of filtering and ranking used for the context for the users could also be used for the context of the entry point.) (Column 2, Lines 66-67; Column 3, Lines 1-14).

It would have been obvious to one skilled in the art at the time of Applicants invention to modify the teachings of Hansen with the teachings of Eitel to include an entry point leading to the general purpose search engine with the motivation of uploading a search agent (e.g. context) from a searching terminal (e.g. entry point) to a website to be searched and returning the given results. (Eitel, Abstract)

Points of Contact

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael J. Hicks whose telephone number is (571) 272-2670. The examiner can normally be reached on Monday - Friday 8:30a - 5:00p.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jeffrey Gaffin can be reached on (571) 272-4146. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Michael J Hicks
Art Unit 2165
Phone: (571) 272-2670
Fax: (571) 273-2670

JEFFREY GAFFIN
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100

