

National Institute of Technology Delhi

End Semester Examinations November 2016

Name of Specialization: EEE/ ECE

Course Name: Network Analysis & Synthesis

Course Code: EEL-201

Note:

· All Questions are compulsory.

• Assume data where ever required.

Year: 2nd/ Semester: III Maximum Marks – 50 Total Time: 3:00 Hours

- Section A (01 mark each and all parts are compulsory)
- Q1) Draw the pole-zero diagram for the network function

(1)

$$Z(s) = \frac{(5s+4)}{(s-1)(s^2+2s+4)}$$

Q2) What is the condition of reciprocity for T and g parameters.

(1)

Q3) Express ABCD parameters in terms of h parameters.

(1)

Q4) Find the y and z parameters for the network shown.

(1)

Q5) Derive the relationship between line current and phase current for delta connection.

(1)

- **Q6)** Power in a balanced 3-phase system is measured by the two-wattmeter method and it is found that the ratio of the two readings is 2:1. What is the power factor of the system? (1)
- Q7) Maximum power transfer occurs at a
- (a) 100% efficiency
- (b) 50% efficiency
- (c) 25% efficiency
- (d) 75% efficiency

(1)

Q8) State compensation theorem.

(1)

- **Q9)** Write the expression for Millman's equivalent source of n number of parallel connected sources.
- (1) (1)

- Q10) An L-C impedance or admittance function

 (a) has simple poles and zeros in the left half of s-plane
- (b) has no zero or pole at the origin or infinity

- (c) is an odd rational function
- (d) has all poles on the negative real axis of the s-plane

Section B (Any four (04) are to be attempted)

Q11) Two networks have general ABCD parameters as shown:

Parameter	Network-1	Network-2
A	1.50	5/3
В	11Ω	4Ω
C	0.25 siemens	1 siemens
D	2.5	3.0

If the two networks are connected with their inputs and outputs in parallel, obtain the admittance matrix of the resulting network. (5)

Q12) Determine the h-parameters for the network shown

(5)

Q13)How the power factor of 3-phase balanced load can be determined using two wattmeter method. Discuss the effects of power factor on wattmeter reading when measuring 3-phase power using two wattmeter method. (5)

Q14) Write down the driving point impedance Z (s) of the network shown, locate the poles & zeros of Z (s) on the splane. If $V(t) = e^{-5t}$ is applied to the network at t = 0, calculate $I_2(t)$, while $R_1 = R_2 = 1\Omega$, $L_1 = \frac{1}{2}$ H & $C_2 = \frac{1}{2}$ F.(5)

Q15) In the circuit shown, determine the branch currents and voltages and hence verify Tellegen's theorem.

(5)

Section C (Any two (02) are to be attempted)

Q16) For a given function, determine Foster Form-I & II.

(10)

$$Z(s) = \frac{(s+1)(s+3)(s+5)}{s(s+2)(s+4)(s+6)}$$

Q17) Find Cauer form-I & II of the following

(10)

$$Z(s) = \frac{s(s^2+3)(s^2+5)}{(s^2+2)(s^2+4)}$$

Q18) (a) Find the limits of K so that the polynomial $s^3+14s^2+56s+K$ may be Hurwitz.

(5)

(5)