

Índice

- ¿Quiénes somos?
- 2 NTT DATA
- 3 Data & Intelligence
- Reto EDEM

¿Quiénes somos?

Araceli Muñoz Martínez

Technical Manager *Data & Analytics*

Ingeniera Técnica Informática de Gestión

+ 20 años de experiencia en Consultaría (DnA)

2015 Inicio carrera en NTT DATA

Proyectos de Datos en Banca, Seguros, Sanidad y Tecnologías Cloud

Mauricio Santoro

Executive Manager
Data & Analytics

Ingeniero Superior en Telecomunicación

+ 11 años de experiencia en Consultoría (DnA)

2016 Inicio carrera en NTT DATA

Proyectos de Datos en Sector Banca, Seguros DataWarehouse | Business Intellingence

Javier Sánchez Gómez

Project Manager
Data & Analytics

Ingeniero en Telemática

+ 11 años de experiencia en Consultoría (DnA)

2018 Inicio carrera en NTT DATA

Proyectos de Datos en Banca, Seguros y Telecomunicaciones

Pilar Moreno Alfaro

Project Manager
Data & Analytics

Ingeniera Superior en Telecomunicación

+ 9 años de experiencia en Consultoría (DnA)

2016 Inicio carrera en NTT DATA

Proyectos de Datos en Sector Banca y Automoción

NTTData

Generamos el cambio con nuestra visión estratégica y nuestra avanzada tecnología

+600

DnA España professionals

+120

DnA VLC professionals

+30

Internationals professionals

Countries

Countries

DNA Oficina de Valencia

+120
Profesionales

85% Certificados

30 Clientes +50
Proyectos

El compromiso y el continuo aprendizaje de nuestros profesionales es una de nuestras ventajas competitivas

Knowledge & Technologies

Architecture

python

AZURE Machine Learning

ORACLE CLOUD

Problema

Modelos Machine Learning & IA Generativa

Recursos (cpu, almacenamiento..)

15 - 30%

anual

45 TB año

CDO CTO CFO

Datos sin Uso

60 - 80%

100 TB - 60 - 80 TB sin uso

Escenario

Se propone el **diseño** y la **implementación** de una **metodología** para calcular el **impacto energético y la huella de carbono** asociada al uso de modelos de Machine Learning (ML) y modelos de IA Generativa. El trabajo se desarrollará utilizando datos sintéticos, generados específicamente para simular procesos de entrenamiento e inferencia.

El objetivo es construir una arquitectura de cálculo de indicadores clave (KPIs) para analizar modelos desde una perspectiva de sostenibilidad, eficiencia energética, aprovechamiento de datos y su visualización.

Los datos generados servirán para construir un *chatbot* que asesore y recomiende prácticas para construir modelos más eficientes.

❖ Diseñar arquitectura Cloud de cálculo reproducible que de soporte a estos requerimientos.

❖ Aplicar técnicas de DataQuality de la información.

* Diseño y construcción de modelo de datos.

* Construcción de indicadores que cuantifiquen el impacto energético y la huella de carbono de modelos ML y GenAl

❖ Diseñar y construcción del asistente virtual que proponga las mejores practicas.

Al GreenMetrics – Indicadores propuestos

Indicadores propuestos

- ❖ El conjunto de datos es un dataset integral que incluye diversas tablas con información sobre logs, consumo, tablas de sistemas con información sobre modelos.
- ❖ A continuación, algunas preguntas y tareas propuestas:

Indicador	Descripción	Fórmula				
Energy per Training (EPT)	Energía consumida por entrenamiento completo	EPT (kWh) = Σ(energy_per_epoch) [energy * num_epocas]				
CO ₂ Emissions per Training (CPT)	Emisiones de CO ₂ asociadas al entrenamiento	CPT (kg CO ₂) = EPT * emission_factor_location				
Energy per Prediction (EPP)	Energía usada para hacer una predicción	EPP (Wh) = total_inference_energy / num_predictions				
Carbon Efficiency (CE)	Precisión del modelo por kg de CO ₂ emitido	CE = model_accuracy / CPT				
Data Waste Ratio (DWR)	Porcentaje de datos no usados en el modelo	DWR = (total_data - data_used) / total_data				
Model Footprint Score (MFS)	Puntuación que combina impacto energético y rendimiento	MFS = CPT * (1 - accuracy)				
Energy/CO ₂ per MB	Huella por tamaño del modelo	EPT/ model_size_mb, CPT/ model_size_mb				

Fórmulas adicionales base:

- energy_epoch = power_usage (W) * duration_epoch (h)
- ❖ CO₂ (kg) = kWh_consumed * emission_factor (kg CO₂/kWh)
- data_unused_percent = (rows_ingested rows_used) / rows_ingested

- Seguimiento Semanal del Plan de Proyecto.
- Diagrama de Arquitectura de la solución: pipelines, almacenamiento, flujo de datos, ...
- Diseño técnico de la solución: modelo de datos.
- Software Implementado: Pipelines, código fuente, modelo de ML y cuadro de mandos generados
- 5 Validación y plan de pruebas

AI GreenMetrics - Entregables

- Seguimiento Semanal del Plan de Proyecto.
 - Documento donde se detalle:
 - Fechas planteadas desde el inicio del reto
 - Cronograma
 - Hitos principales
 - Porcentajes de avance
 - Riesgos
 - Bloqueos
 - Próximos pasos

					Diciembre Enero			Febrero								
					49		51	52	01	02	03				08	09
ID	Actividad	Progeso	Inicio	Fin												
1		100%	01/12/2024	14/04/2025												
2		97%	20/01/2025	22/04/2025												
3		35%	03/03/2025	23/04/2025												

#	Criticidad	Riesgo	Plan acción	Fecha apertura	Fecha objetivo	Fecha Limite	Estado
33	•	Conectividades en PRE	Bloqueo usuarios	17/02/2025	05/03/2025 27/03/2025 09/04/2025	05/03/2025 18/03/2025 28/03/2025 10/04/2025 21/04/2025	En curso
34		Monitorización BBDD	Implantación Arquitectura (COE)	03/30/2025	13/04/2025	30/04/2025	En curso

- 2 Diagrama de Arquitectura de la solución: Pipelines, almacenamiento, flujo de datos, ...
 - Documento donde se expliquen las necesidades técnicas para poder llevar a cabo la solución del reto propuesto:
 - Infraestructura
 - Entornos
 - Recursos técnicos

Al GreenMetrics - Entregables

- 3 Diseño técnico de la solución: modelo de datos
 - Definición de cómo se estructurarán y procesarán los datos para satisfacer los objetivos del proyecto.
 - Detalle de esquemas de modelos de bases de datos, flujos de datos, y algoritmos analíticos para la integración y transformación de los datos.
- 4 Software Implementado
 - Pipelines, código fuente, modelo de ML y cuadro de mandos
- 5 Plan de Pruebas y Validaciones
 - Resultado de las pruebas en el software implementando que garanticen el correcto funcionamiento de la aplicación.

¿Dudas?

