Logo Suche in Massendaten mit Deep-Learning

Andras Tüzkö

Masterarbeit Abschlusspräsentation am 20. Juni 2017

Karlsruher Institut für Technologie (KIT) Institut für Anthropomatik Lehrstuhl für Interaktive Echtzeitsysteme (IES)

in Kooperation mit

Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)

Betreuer: Dipl.-Inform. Christian Herrmann, Dipl.-Inform. Daniel Manger

Gliederung

- 1 Motivation und Aufgabenstellung
- 2 Logo Retrieval
- 3 Das vorgestellte Logo Retrieval System
- 4 Logo Datensätze
- **5** Evaluation
- **6** Ausblick

Motivation

Statische Werbungen sind einer der wichtigsten Werbemethoden im Sport Bereich

- Sponsoring von Teams
- Kauf von Werbeflächen

Die Werbeflächen bedeuten große Ausgaben für die Firmen.

Messung der Effektivität ist gewünscht:

- Die Gesamtfläche eines Logos von einer Firma während einer Sendung,
- Zeit, das Logo zu sehen ist.

Verwendung der gemessenen Daten um die Kosteneffizienz zu beurteilen.

Aufgabenstellung

Anfragebilder in den Einzelbildern von Sport Videos zu suchen

Search Set

Herausforderungen

Logos haben oft schlechtes Aussehen

- Teilsichtbarkeit
- Unschärfe
- Perspektivische Transformation, Rotation
- Unschärfe

Aussehenvielfalt innerhalb Firmen

Die Herausforderungen umwandeln das Problem in einer Open-Set Wiedererkennungsproblem

Logo Retrieval

Lösungsalternativen

Sliding window method

- Langsam
- Nicht skalierungsinvariant

SIFT oder HOG Feature Extraktion

• Keine Detektion von unbekannten Logos nur Wiedererkennung

CNN-basierter globaler Deskriptor

- Von dem ganzen Bild z.B. Szene Wiedererkennung
- Ungeeignet für kleinere Objekte

Logo Retrieval

Gewählte Lösung

Entwicklung der Proposal-basierten CNNs

- Regionen mit CNN
 - Vorschläge für Objektpositionen von externen Systemen
 - Berechnung der Deskriptoren von Regionen mit CNN individuell voneinander
- Fast R-CNN
 - Berechnung der Deskriptoren von Regionen gemeinsam mit Fully Convolutional Netzwerk
 - ► Ausschneiden von Regionen aus dem Feature-Map mit RolPooling Schicht
- Faster R-CNN
 - Vorschläge für Objektpositionen von netzinternen Mini-Netz (RPN)
 - ► Das ganze System kann End-to-End trainiert werden

State-of-the-Art Lösungen verwenden Proposal-basierten CNN Systeme für Closed-Set Logo Retrieval

Die Lösung ist in zwei Teilen aufgeteilt

- Logo Detektion
 - Der Detektor is trainiert alle Arten von Logo-Bilder zu erkennen
 - ► Funktioniert ohne Anfragebilder
- Logo Vergleich
 - ► Die Feature Vektoren von Reigonen werden extrahiert
 - Vergleich miteinander

Logo Detektion

RPN Logo Detektion

- Wird gleichzeitig mit dem Faster R-CNN Netz trainiert
- Aus einem schon trainierten Netz extrahierbar
- Sucht auf dem Feature Map wie die Sliding-Window-Methode
- Vordefiniere Anzahl von Anchor-Boxen
- Die sind mit Regression finegetuned

Logo Detektion

Klassenagnostischer Logo Detektor

- Faster R-CNN, trainiert für zwei Klassen
- RPN Teil kann als schwacher Klassifikator betrachtet werden
- Zusammen ergeben eine Kaskade von Detektoren

Logo Vergleich

Faster-Logos - Baseline

- Faster R-CNN Feature Extraktion sowohl von der Anfrage- als auch von der Suchbildern
- Klassen-wahrscheinlichkeiten werden nur für Features benutzt.
- Die Wahrscheinlichkeiten sind nicht geeignet um Logo auszusuchen
- Die Score Ausgabe von RPN wird dafür benutzt
- Für Anfragebild der Bounding-Box mit der höchsten Wahrscheinlichkeit

Logo Vergleich

Fast&Faster-Logos

- Oft falsche Bounding-Box-Vorhersage von Anfragebild
- Fast R-CNN Inferenz auf das gesamte Anfragebild

Logo Vergleich

Fast-Logos

- Vorherige Lösungen benutzten nur RPN Logo Detektor
- Verwenden des besten vorgeschlagenen Logo-Detektors für externe Generierung von Objektpositionsvorschlägen

Logo Vergleich

Siam-Logos

- Siamesisches Netz, trainiert gemeinsam sowohl für Detektion als auch für Klassifikation
- Gewichte von ECN und RPN sind geteilt zwischen die Äste des Netzes
- Die Ausgabe des Detektors ist für Objektness Score benutzt
- Das Netz kann weitertrainiert. werden, wenn es noch zusätzliche Logo-Daten ohne spezifische Brand Label gibt

Logo Vergleich

R-CNN-Logos

- Feature Extraktion mit Klassifikator Netzwerk
- Alle Arten von CNNs einsetzbar

Logo Datensätze

Öffentliche Datensätze

 BelgaLogos-32, FlickrBelgaLogos, Flickr Logos 27, FlickrLogos-32, Logos-32Plus, TopLogo-10

Selbst-annotierte Datensätze - SportLogos

 Football-1, Football-2, Ski, IceHockey

Verwendeter Test Set

SportLogos: Football-2

Anfragebilder

• Von dem Video ausgeschnitten

Detektion und Identifikation Rate Kurve

- Gibt einen holistischen Überblick über Leistung des gesamten Retrieval-Systems
- Dargestellt über die Durchschnittsanzahl von falschen Klassifikationen

Lösungen vs. Baseline

R-CNN-Logos vs. Baseline

Verarbeitungszeit pro Bilder und beste DIR Werte

Ausblick

Textbasierte Logos

- Überwiegende Mehrheit der Logos ist textbasiert
- Erweiterung des Systems mit Texterkennung Subsystem

Logo Tracking

- Ergänzung bei fehlender Detektion
- Reduzierung einmaliger Fehlklassifikation der getrackten Objekte

Mehr Daten

Die Größe der fusionierten Logo Datensätzen zu klein für Deep Learning

MAC - Maximum Activation of Convolutions

- Gängige Feature Extraction Methode für Objekt- und Szene Retrieval
- Gesucht wird der maximum Wert von allen Channels, der Vektor wird als Feature benutzt

Ende

Anhang

Siam-Logos Train Phase

