International Workshop on Energy Storage in the Grid Low, Medium and Large Scale Requirements

Barcelona, 8th - 10th January 2014

EV-Grid Concept

Electrical Architecture & Technologies, research tools

Gerard COQUERY
Laboratory of New Technologies
Department COSYS
IFSTTAR Versailles-Satory
France

Photographies Source: INRETS, IFSTTAR

Contents

- 1. Introduction: Why energy storage?

 Urban transportation mission profile,...Energy production profile...
- 2. State of art of the technologies
 Energy Storage Components and Systems,...,
- 3. Renewable energy vs. electromobility EV todays, Recharging station and ,...
- 4. Reliability & Safety, End of life
 Calendar, Power cycling, Thermal cycling, ...short-circuit fault
- 5. Transportation / Grid Examples...
- 6. Synthesis

Synergy between Renewable Energy and Transportation Systems

- Reduce energy consumption and pollutant emission
- Increase efficiency, reliability, durability and service quality

Why Energy Storage System Automotive driving in urban mission profile

Energy in City Mobile applications: Kinetic & Potential Energy

Car energy consumption in traffic city: 120Wh/km if 1 stop/start/km 244Wh/km if 5 stop/start/km 50 to 75% can be saved in theory 30 to 50% could be in practical by using regenerative braking (Leaf EV data: 155-212Wh/km)

Energy comsumption: $\Sigma E = R.V + D.V^2 + 1/2mV^2 + Mgh + Aux. & Comfort$

Tramway energy consumption in traffic city:

5,8kWh/km if 2 stop/start/km, 10m elevation 75% can be saved in theory about 40% in practical by using regenerative braking

Average trip distance (kms) By trip purpose

Source: Driving & parking patterns of EU drivers a mobility review, JRC-EU2012

Saturday

Figure 88: Distribution of trip lengths among the CarChip-logged data by trip

Source: I.Berry, Thesis-MIT-USA2010, National Household travel survey 2001 Sunday

Destinations vs. Time of Day (Weekdays)

Renewable energy, uncertain production and time gap between consumption and production require Energy Storage System

Why Energy Management from generation to electrical vehicle: traction and renewable conditions

- sizing of generator and infrastructure on average power: "down sizing"
- manage energy from renewable source to EV and to GRID
- reduction of consumption: regenerative energy

"Vehicle electrification Level...today status" From ICE to EV, impact on energy storage technology

Rated Electrical Parameters	Stop Start	Mild Hybrid	Full Hybrid	Recharg. Hybrid	Full Electric	Electric Range Extender
Energy storage	No 12V battery Reinforced Or SCap	100-150kJ 0,04kWh SCap?	1-2kWh	4-5kWh Batter i	20-30kWh i es	16kWh
Electrical Power	2kW peak	10-15kW	60kW	60kW	80kW	111kW
Vehicle Example	BMW, VW PSA, Nissan 	48V German Carmakers Agreement 2011	1,8kW (NIMH) Prius 2002 0,94kWh Insight	4,4kWh Prius3 2011 27kW-80kg 3kWh-25kms-85kmh	24kWh (li-ion) Leaf 90kW-	16kWh (li-ion) Ampera -198kg -60kms
Prospective Market 2020 Source: actus?	? ≠30%	? ≠10%	? ≠10%	? ≠10%	? ≠1-2%	?

Source: NREL, Toyota,...

To remember the market: 19Mcars-EU27 2011, 80Mv-Worlsd

Electric vehicles, today status! On board energy storage and recharging power

Vehicle		Battery		Fast	Motor		Weight
	Class	(kWh)	type	recharging	(kW)	type	No-load
Smart fortwo	2 seats	17,6	Li-ion-wc*	AC-22kVA	55	PM	1000
Fiat 500e	Mini-compact	24	Li-ion-wc	AC-7kVA	83		1000
Mitsub. i-MiEV	Compact	16	Li-ion-wc	DC-50kW	47	PM	1000
Nissan Leaf	Compact	24	Li-ion-la-wc	DC-50kw	80 / 109	SM	1474
Tesla S (85kWh)	Large car	85		DC-120kW			2108
Tesla S (60kWh)	Large Car	60		DC-120kW			
Honda Fit/Jazz	wagon	20	Li-ion-wc		100	PM	
Ford Focus e	Sub-compact		Li-ion-wc		107		1473
Renault ZOE	Compact	25	Li-ion-wc	AC-43kVA	65 / 88	Srwired	1562
Bolloré BlueCar	Compact	30	LMP	AC-7kVA	45		1120
Smith-Newton	Truck-Bus	80		AC-43kVA	120	Induction	4432/11990
NAL.	Truck-Bus	120	100	AC-43kVA	120	Induction	4432/11990

^{*}wc: water cooled assited

Urban Energy consumption close to 100Wh/km

Electric Vehicle Batteries: state of the art cathode chemistry

(Total 2011, about 29GWh produced including phone, labtop,...)

Cathode active material name	Material	Abbrevi ation	Short form	Maturity for EV?
Lithium cobalt oxide	LiCoO ₂ (60%Co)	LCO	Li-cobalt	Used in the original Tesla car but rejected on safety concern grounds by series car OEMs
Lithium manganese oxide	LiMn ₂ O ₄	LMO	Li- manganese or spinel	Already in series car (e.g. Leaf, Volt, iMiEV)
Lithium iron phosphate	LiFePO₄	LFP	Li- phosphate	Already in series car (e.g. Fisker EV)
Lithium nickel manganese cobalt oxide	LiNiMnCoO₂ (10-20% Co)	NMC	NMC	Used in consumer goods and EV prototypes
Lithium nickel cobalt aluminium oxide LiNiCoAlO ₂ (10-20% Co)		NCA	NCA	Already in series car (e.g. plug-in Prius)

Source: Avicenne 2011

Electric Vehicle battery expected road map

Battery/Supercapacitor – Energy/Power – Efficiency/Reliability Status of the art

Choice of the energy storage technology Impact of charge-discharge cycles...on battery

Methodology for lifetime & reliability characterisation...no reliability model today ?

Summary of the general test plan proposed:

- -1 Initial measurements
 - -dimensions, weight,
- -2 -Static tests or stabilised conditions (vs U, T, I)
 - -Calendar tests, leakage current under static voltage (or floating conditions)
 - -DC method: discharge tests
 - -Z or impedance spectroscopy method
- -3 -Dynamic tests or cycling or pulse conditions (vs U, T, P, t)
 - -Thermal cycling test (based on environmental conditions)
 - -Current cycling tests (based on vehicle mission profile)
 - -Power cycling tests (repetition of the exact working conditions)
 - -Short-circuit tests (cell, module, bank with circuit protection)

Monitoring of the test conditions:

- external access: Isc, Ut, Tt, Tc (.t terminal, .c case)
- internal access: Uei, Tei (ei: electrode i…)

needs to be install by the manufacturer

Reliability: influence of the working conditions

Lifetime 10 years (at V_R = 2.5 VDC and T_{op} = 25 °C)

*) Note: The lifetime is shown up to 20 years. An expanded life is additionally influenced by deviations of lifetime parameter to fatigue mechanisms of capacitor materials.

Voltage & Temperature
At waiting status
(calendar ageing)
Homogenous temperature
Eyring model: td (T,U) = A. e^(U'/kT)

Voltage, Temperature, Current During operating time (cycling ageing)

Non-homogenous temperature
Thermal cycling
Current cycling

Electromobility: local energy delivering by high power way

- Fast recharge in stop station
 - Dynamic energy transfer

WATT system, PVI France

Proterra, USA

Capabus, USA/China

PRIMOVE -Bombardier

Fast charging station to EV AC 22kVA & 43kVA

The today normal mode is non reversible architecture Only Grid to EV

The EV converter assume the respect of the rules on Quality and Safety

Fast charging station to EV DC 50kW ... 120kW

Today the reversible mode is working... Grid to EV to Grid

The Charging station converter assume the respect of the rules on Quality and Safety

Plateform for test on fast charging station AC & DC Energy management ...grid - charging station - vehicle

Projet européen **FABRIC**

- Coordinateur : ICCS (Grêce) ; 26 partenaires dont VeDeCoM
- Pays: Italie, Belgique France, Allemagne, Grèce, Pays-Bas, Espagne, Suède, Royaume Uni
- VeDeCoM : Subvention 887 k€/ Coût total : 1182 k€

incluant

Electrical architecture for EV & HEV Urban Recharge Service Station Coupling to renewable energy generators

EV scenario to help Grid to solve winter peak days demand Power \(\Delta \) (Pmax-Pmin) is about 20GW during 24h00 Basic hypothesis...just to discuss

Data based on the French status:

- About 105GW installed, 80 to 95GW required peak power each winter day
- Hypothesis 1 million EV car 2020 ?

Solution1: 25kWh/car...∑25GWh... if free offer for Grid is 10% = 2,5GW during 1h

Solution2: 50kWh/car...∑50GWh... If free offer for Grid is 20% = 10GW during 1h

EV storage combined with hydraulic storage could contrubute to save the Grid stability and energy delivering

Electromobility in the City: EV Stations-service as energy storage

Energy Storage Technologies for EV-Grid concept Synergy electro-mobility to renewable energy and Grid Synthesis and prospective

- Energy status analysis □ ratio : Peak power / Average power
- > 10 for tramway (without climatic equipt.), > 3 for electrical substation
- > 3 to 5 due to car stop in urban traffic
- > Energy renewable production / power needs, PV production 100% day light /0% night

Electrical buffer storage devices will allow Energy Management

- efficiency improvement (braking regenerative energy, reduction of line losses),
- full electrical braking for LRT and LRV-EV/HEV to save energy and particles emission
- down sizing of electrical substation and grid connexion
- partial autonomy for infrastructure cost reduction (free crossroad, existing tunnel,...)

Key technologies and system approach:

- buffer energy storage devices,... reliability law is the key knowledge to get...
- integrated semiconductor functions (converter),
- appropriate software and high level data communication between grid and users
- -- local energy management in the frame of micro-smart grid
- reduce peak power on the grid for charging station

Efficiency+Reliability+Safety+Cost = Energy storage system required

Thank you for your attention

Electromobility: Battery interface voltage for traction

Power electronic converter assume:

Voltage-current adaptation for traction

And power sharing between Scap and Battery for highest reliability-efficiency

