

International workshop on RISC-V for HPC at ISC 2025 13th June 2025

Evaluating RISC-V processor as an alternative for High Performance Computing

Authors: Aniket P. Garade, Ashish Bisht, Deepika H.V, Haribabu P, S.A.Kumar, S.D. Sudarsan

Centre for Development of Advance Computing, Bengaluru, India

Outline

Motivation

Objective

Methodology

Hardware Setup

Application Used

Performance Analysis

Conclusion

Motivation

Dominance of x86

x86 processors (Intel, AMD) dominate HPC due to performance and software maturity.

Entry of RISC-V

RISC-V offers an open, modular ISA enabling innovation via hardware-software co-design

Rise of ARM

ARM is preferred for its energy efficiency and offering Competitive HPC performance

Need for Evaluation

A detailed performance and scalability analysis is essential to determine RISC-V's readiness for real-world HPC workloads

Objectives

Analyze the performance of the SOPHGO SG2042, a 64-core RISC-V processor

Benchmark comparison with Intel Sapphire Rapids, AMD Genoa, and Fujitsu A64FX

Employ applications based on Berkeley Dwarfs for diverse workload coverage

Evaluate scalability, memory bandwidth, and network communication efficiency

Methodology

Applications

12 computational kernels from the Berkeley Dwarfs classification

Compilation

Compiled using GCC v12.2 with -O3 optimization.

Parallelism

OpenMP v5.0 for threading, OpenMPI v5.0.6 for network performance tests.

Thread Setup

Used 48-thread baseline and architecture-specific max threads.

Hardware Setup

Catagony	Processors				
Category	Fujitsu A64FX	Intel SPR	AMD Genova	SOPHGO SG2042	
Architecture	ARM	X86	X86	RISC-V	
Number of Cores	48	64	192	64	
Frequency	2 GHz	3.4GHz	2.4GHz	2GHz	

क्ष्मान विकास केंद्र प्राप्ति डेक CDAC अज्ञानावेव त् केवल्यम्॥	Application Used	Problem Size
ि । ज्ञानादेव तु केवल्यम्॥ हैं	DGEMM using OpenBLAS	32k x 32k
	SpMM	2 million rows and column
	FFT(Cooley-Tukey Radix-2 Decimation)	2^{25}
	Nbody	40000
	Convolution	32k x 32k
	Laplace Equation	102400 x 204800
	Pi Calculation	1 billion
	Encryption	163 MB
	Knapsack(DP)	500k
	BFS	50 million

64

2048

100MB

Knapsack(backtracing+ branch& bound)

Hidden Markov Models

MPI

Performance Analysis of DGEMM

Dwarf Covered: Dense Linear Algebra

Performance Analysis of SpMM

Dwarf Covered: Sparse Linear Algebra

Performance Analysis of FFT

Dwarf Covered: Spectral Methods

Performance Analysis of Nbody

Dwarf Covered: N-body Simulation

Performance Analysis of Convolution

Dwarf Covered: Structure Grid

Performance Analysis of Laplace Equation

Dwarf Covered: Unstructured Grid

Performance Analysis of Pi Calculation

Dwarf Covered: Map Reduce

Performance Analysis of Encryption

Dwarf Covered: Combinational Logic

Performance Analysis of Knapsack(DP)

Dwarf Covered: Dynamic Programming

Performance Analysis of BFS

Dwarf Covered: Graph Traversal

Performance Analysis of Knapsack_bb

Dwarf Covered: Backtracking & Branch and Bound

Performance Analysis of HMM

Dwarf Covered: Construct Graphical Models

Performance Analysis of MPI

Performance of SOPHGO with Increasing Thread Count

Applications

Performance gains after increasing thread count

Application Used	Intel SPR	SOPHGO SG2042
Dense Linear Algebra	1.09x	1.07x
Sparce Linear Algebra	1.271x	1.272x
Spectral Methods	1.44x	1.38x
Structured Grids	1.03x	1.34x
Unstructured Grids	1.27x	1.29x
N-body Simulations	1.12x	1.17x
Map Reduce	1.13x	2.33x
Combination Logic	1.08x	1.25x
Dynamic programming	2.87x	2.91x
Graph Traversal	1.10x	1.25x
Backtracking + Branch and Bound	1.45x	1.34x
Construct Graphical Models	1.07x	1.22x

Advantages of SOPHGO SG2042

Scales effectively with increasing thread count.

Delivers notable performance in combinational logic and dynamic programming.

Built on an open and customizable RISC-V ISA.

Low Power Design: Energy-efficient for light and mid-range compute workloads.

Bottlenecks of SOPHGO SG2042

Memory bandwidth utilization remains low, with ~43% STREAM benchmark efficiency

Insufficient architectural and compiler support for advanced SIMD vectorization

Inefficient inter-node communication, with MPI operations considerably slower than on A64FX

Software Ecosystem Gaps

Future Improvements

Adopt enhanced vector support in next-generation hardware to improve vectorization performance.

Leverage MPI across nodes and OpenMP within nodes to optimize memory usage and parallel performance.

Improve RISC-V HPC readiness by porting OpenMP to LLVM and tuning performance-critical libraries including math and communication Libraries.

Apply low-level kernel optimizations through RVV intrinsic, loop unrolling, prefetching, and cache-aware blocking techniques.

Conclusion

Evaluation Framework

Benchmarked SOPHGO SG2042 (RISC-V) using Berkeley Dwarfs against high-performance ARM and x86 processors.

Identified Strengths:

SG2042 excelled in combination logic and dynamic programming workloads.

Scaling Advantage:

Demonstrated better scalability compared to Intel Sapphire Rapids in nearly half of the evaluated dwarfs.

Future Outlook:

With advancing software support and ongoing optimization efforts, RISC-V is poised to become a competitive HPC architecture.

Thank You