Name: Dmitry Landy

CMIS 310 HOMEWORK #4 – Week #4

This homework is worth 10% of your course grade.

Read each problem carefully. Failure to follow the instructions for a problem will result in a zero score for that problem.

Submit the completed Homework via Assignment in LEO.

- 1. Do Exercise 2 in Chapter 5 (A Closer Look at Instruction Set Architectures) of Null and Lobur
 - A. 456789A1₁₆ stored in big endian and little endian starting at address 10₁₆

Address	10 ₁₆	11 ₁₆	12 ₁₆	13 ₁₆
Big Endian	45	67	89	A1
Little Endian	A1	89	67	45

B. 0000058A₁₆ stored in big endian and little endian starting at address 10₁₆

Address	10 ₁₆	11 ₁₆	12 ₁₆	13 ₁₆
Big Endian	00	00	05	8A
Little Endian	8A	05	00	00

C. 14148888 $_{\mathrm{16}}$ stored in big endian and little endian starting at address 10_{16}

Address	10 ₁₆	11 ₁₆	12 ₁₆	13 ₁₆
Big Endian	14	14	88	88
Little Endian	88	88	14	14

- 2. Do Exercise 8 in Chapter 5 (A Closer Look at Instruction Set Architectures) of Null and Lobur

C.
$$(W \times (X + Y \times (U \times V)))/(U \times (X + Y))$$
 postfix is $W \times Y \cup V \times X + X \cup X \times Y + X / X = 0$

- 3. Do Exercise 9 in Chapter 5 (A Closer Look at Instruction Set Architectures) of Null and Lobur
 - A. W X Y Z + x infix is ((Y-Z)+X)*W
 - B. UVWXYZ+x+x+infix is (((((Y+Z)xX)+W)xV)+U)
 - C. X Y Z + V W x Z + + infix is (((Y+Z) x (V-W) + Z) + X)
- 4. Do Exercise 14 in Chapter 5 (A Closer Look at Instruction Set Architectures) of Null and Lobur

Mode	Value loaded in AC
Immediate	500
Direct	100
Indirect	600
Indexed	800

- 5. Do Exercise 19 in Chapter 5 (A Closer Look at Instruction Set Architectures) of Null and Lobur
- A. How large must the mode field be? $2^3 = 8 > 7$. 3 bits are needed for the modes
- B. How large must the register field be? $2^6 = 64 > 60$. 6 bits are needed for the registers
- C. How large must the address field be? $256K = 256 * K = 2^8 + 2^10 = 2^18$. **18 Bits** are needed for the address
- D. How large is the opcode field? 32 3 (modes) 6 (registers)-18 (address) = 5. **5 Bits** are needed for the opcode