BUCK DAN BOOST KONVERTER (CHOOPER STEP UP DAN STEP DOWN)

A. TUJUAN

- 1. Menjelaskan fungsi dasar dari Mosfet Daya tipe *n-channel enchancement*
- 2. Mempelajari profit waktu tegangan input, tegangan dan arus output dalam rangkaian DC Chopper untuk berbagai waktu penyalaan ton.
- 3. Mempelajari karakteristik pengaturan dari buck dan boost konverter untuk beban Resistif dan beban Resistif Induktif.

B. ALAT DAN BAHAN

No	Nama Alat	Jumlah
1.	Beban Tahanan (220, 5W) dan Induktif (50mH)	1
2.	Dioda 2A (1N4002)	1
3.	Elco 220uF/35V	1
4.	DC Power Supply +/- 15V,3A	1
5.	Set Point Potentiometer	1
6.	Function Generator	1
7.	Probe	Sesuai kebutuhan
8.	Osiloskop	1
9.	Mosfet Daya (IRFZ44)	1

C. PROSEDUR PERCOBAAN

1. Gunakan peralatan trainer buck dan boost converter di Lab Elka

Gambar 8.1 Buck Konverter

Gambar 8.2 Boost Konverter

- 2. Tunjukkan pada asisten apakah peralatan yang telah dirangkai sudah benar.
- 3. Bila sudah benar, maka percobaan sudah bisa dilaksanakan.
- 4. Hubungkan rangkaian dengan beban Resistif R = 220Ω , 5Watt
- 5. Set harga ton = 0 ms dan ukur tegangan input (Vin) , arus input (lin) , tegangan output (Vout) , dan arus output (lout) . Masukan nilai-nilai terukur tersebut pada tabel 8.1.
- 6. Ulangi langkah di atas berturut-turut untuk nilai ton yang periodik sesuai dengan ketentuan asisten. Masukan parameter-parameter terukur pada tabel 8.1.

- 7. Ulangi langkah 6 8 untuk beban R = 220 Ω yang di seri dengan L=2x50mH (disesuaikan dg komponen di lab) . Masukan parameter terukur pada tabel 8.2.
- 8. Tampilkan pada layar osiloskop untuk tegangan sumber , tegangan beban dan arus beban Resistif dan Resistif Induktif untuk waktu penyalaan yang sesuai dengan instruksi Asisten. Catatlah nilai tegangan dan time/div dan faktor pengali yang ada pada isolation amplifier.
- D. Data hasil percobaan
- 1. Buck Konverter (Choper Step Down)

Tabel 8.1. Data hasil percobaan untuk beban R = 220 Ω , 5W

f = 1KHz, T = 1 ms, A = 5Vrms dan Vinput = 12V

D					ton	Vout	
(Duty Cycle)	ton	Vout	lin	lout	T	Vin	
	(ms)	(V)	(A)	(A)		Praktek	Teori
(%)							
0							
25							
50							
75							
100							

Tabel 8.2. Data hasil percobaan untuk beban R = 220Ω seri dengan L = 50mH (sesuai komponen yg ada di lab) pada berbagai ton.

f = 1KHz, T = 1 ms, A = 5V dan Vinput= 12V

D	ton	Vout	lin	lout	ton	Vout
(Duty	(ms)	(V)	(A)	(A)	T	<u>Vin</u>

Cycle)			Praktek	Teori
Cycle) (%)				
0				
25				
50				
75				
100				

2. Boost Konverter (Choper Step Up)

Tabel 8.3. Data hasil percobaan untuk beban R = 220 Ω

f = 1KHz, T = 1 ms, A = 5V dan Vinput=5V

D (Duty Cycle)	ton			lout	ton T	V _{out} Vin	
(%)	(ms)	(V)	(A)	(A)		Praktek	Teori
0							
25							
50							
75							
100							

Tabel 8.4. Data hasil percobaan untuk beban R = 220Ω seri dengan L = 50mH (sesuai komponen yg ada di lab) pada berbagai ton.

f = 1KHz, T = 1 ms, A = 5V dan Vinput=5V

D (Duty	ton Vout lin		lin	lout	ton T	V _{out} Vin	
(Duty Cycle)	(ms)	(V)	(A)	(A)	l	Praktek	Teori
0 (%)							
25							
50							
75							
100							

E. TUGAS

- 1. Dari tabel 8.1.; 8.2.; 8.3 dan 8.4 hitunglah ton/T dan Vout/Vin baik untuk beban Resistif maupun beban Resistif Induktif!
- 2. Buatlah grafik karakteristik pengaturan untuk $\frac{Vout}{Vin} = f(\frac{ton}{T})$ baik secara teori maupun praktek , kemudian beri komentar dan analisa !
- 3. Dari data hasil percobaan tersebut apa perbedaan dari rangkaian buck dan boost converter?

4. PENGEMBANGAN:

- a. Rancang dan simulasikan rangkaian buck konverter untuk tegangan masukan 400VDC dan keluaran menjadi 12VDC. Jelaskan prinsip kerjanya!
- b. Rancang dan simulasikan rangkaian boost konverter untuk tegangan masukan
 12VDC dan keluaran menjadi 400VDC. Jelaskan prinsip kerjanya!