Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Computer programmers are those who write computer software. Code-breaking algorithms have also existed for centuries. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. It is very difficult to determine what are the most popular modern programming languages. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Scripting and breakpointing is also part of this process. There are many approaches to the Software development process. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. It affects the aspects of quality above, including portability, usability and most importantly maintainability. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Ideally, the programming language best suited for the task at hand will be selected. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs.