PCI

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5 : C12N 15/48, 15/62, 15/86 C12N 5/10, A61K 39/21

(11) Numéro de publication internationale:

WO 92/19742

(43) Date de publication internationale: 12 novembre 1992 (12.11.92)

(21) Numéro de la demande internationale:

PCT/FR92/00394

A1

(22) Date de dépôt international:

30 avril 1992 (30.04.92)

(30) Données relatives à la priorité:

91/05392

ه تو د د څخ

2 mai 1991 (02.05.91)

FR

(71) Déposant (pour tous les Etats désignés sauf US): TRANS-GENE S.A. [FR/FR]; 11, rue de Molsheim, F-67000 Strasbourg (FR).

(72) Inventeur; et

(75) Inventeur/Déposant (US seulement): KIENY, Marie-Paule [FR/FR]; 7, rue Alois-Quintenz, F-67000 Strasbourg (FR).

(74) Mandataire: SCHRIMPF, Robert; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(81) Etats désignés: AT (brevet européen), BE (brevet européen), CA, CH (brevet européen), DE (brevet européen), DK (brevet européen), ES (brevet européen), FR (brevet européen), GB (brevet européen), GR (brevet européen), IT (brevet européen), JP, LU (brevet européen), MC (brevet européen), NL (brevet européen), SE (brevet européen), US.

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

(54) Title: NOVEL HYBRID, SOLUBLE AND UNCLEAVED gp160 VARIANT

(54) Titre: NOUVEAU VARIANT gp160 NON-CLIVABLE, SOLUBLE, DE FORME HYBRIDE

(57) Abstract

A novel method for building an expression cassette comprising a DNA unit which codes for a precursor of a hybrid, unrestricted and soluble gp160 variant, and the novel variant thereby obtained, are disclosed.

(57) Abrégé

L'invention se rapporte en particulier à une nouvelle méthode pour construire une cassette d'expression comportant une unité d'ADN codant pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, ainsi qu'au nouveau variant mentionné ci-dessus.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

TA	Autriche	FI	Finlande	MI.	Mali
AU	Australia	FR	France	MN	Mongolic
BB	Barbade	GA	Gabon	MR	Mauritanie
BE	Belgique	CB	Royaume-Uni	MW	Malawi
BF	Burkina Faso	GN	Guinée	NL	Pays-Bas
RG	Bulgarie	GR	Grêce	NO	Norvěge
BJ	Bůniu	HU	Hongrie	PL	Pologne
BR	Brésit	1E	Irlande	RO	Roumanie
CA	Canada	IΤ	Italie	RU	Fédération de Russie
CF	République Centraficaine	JP	Japon	SD	Soudan
CG	Congo	KP	République populaire démocratique	SE	Suède
CH	Suisse		de Corée	SN	Sénégal
CI	Côte d'Ivoire	KR	République de Corée	SU	Union soviétique
CM	Cameroun	LI	Licchtenstein	TD	Tchad
cs	Tchccoslovaquie	LK	Sri Lanka	TG	Togo
DE	Allemagne	LU	1.uxembourg	US	Etats-Unis d'Amérique
DK	Danemark	MC	Munaco		
ES	Espagne	MG	Madagascar		

WO 92/19742 PCT/FR92/00394

1

5

"Nouveau variant gp160 non-clivable, soluble, de forme hybride"

10

La présente invention concerne une méthode pour construire des moyens nécessaires à la production de nouvelles molécules capables d'induire une réponse immuno-protectrice à l'encontre d'un virus responsable du syndrome d'immunodéficience acquise (SIDA).

Chez un individu, cette maladie se développe à la suite d'une infection des lymphocytes T-helper par un rétrovirus HIV (human immunodeficiency virus). Jusqu'à présent on a répertorié ces rétrovirus en deux grand types: le type HIV-1 qui sévit essentiellement en Europe et en Amérique du Nord et le type HIV-2 caractéristique des infections africaines. A l'intérieur d'un même type, les rétrovirus HIV présentent entre eux un cerain degré de variabilité qui se caractérise par exemple par une différence de trophisme cellulaire ou par des protéines virales légèrement différentes les unes des autres. C'est pourquoi, lorsqu'on souhaite se référer à un rétrovirus HIV particulier, on emploie de préférence le terme de "souche virale".

D'une manière générale, les rétrovirus HIV ont la structure suivante : la molécule d'ARN génomique et diverses protéines associées sont encapsulés dans une capside de nature protéique (nucléocapside). L'ensemble est protégé par une membrane d'origine cellulaire ayant incorporé la protéine d'enveloppe d'origine virale.

Cette protéine d'enveloppe, sous des formes diverses, est à ce jour considéré comme 35 un élément thérapeutique potentiel d'un vaccin contre le Sida.

Dans les conditions naturelles, la protéine d'enveloppe (env) est initialement synthétisée sous forme d'un précurseur comportant à son extrémité N-terminale une séquence signal qui initie le passage du précurseur dans le réticulum endoplasmique (voie de secretion). Ce peptide signal est ensuite éliminé par clivage protéolytique. Le produit

de ce clivage est une protéine appelée gp160 qui est elle-même par la suite clivée en une petite sous-unité gp40 et une grande sous-unité gp120. L'extrémité N-terminale de la gp120 correspond à l'extrémité N-terminale de la gp160 tandis que l'extrémité C-terminale de la gp40 correspond à l'extrémité C-terminale de la gp160.

5

Chacune des sous-unités est sécrétée à l'extérieur de la cellule infectée. Toutefois, la gp40 reste ancrée dans la membrane cellulaire par son domaine transmembranaire. Sa partie C-terminale (domaine intra-cytoplasmique) reste en contact avec le cytoplasme tandis que sa partie N-terminale (domaine extra-cytoplasmique) se trouve à la surface de la cellule. La sous-unité gp120 est relarguée à l'extérieur de la cellule où elle interagit avec le domaine extracellulaire de la sous-unité gp40. Les deux sous-unités de la protéine d'enveloppe restent ainsi associées sous forme de complexe.

La séquence en acides aminés des précurseurs des protéines env de diverses souches virales sont maintenant connues. A titre d'exemple, la Figure 1 présente la séquence des précurseurs des gp160 des souches virales HIV-1 Bru, HIV-1 MN, HIV-1 ELI, HIV-1 RF, HIV-1 SF2C et HIV-1 SC. De même, la Figure 2 présente la séquence du précurseur de la gp160 de la souche virale HIV-2 Rod.

Par la suite et pour faciliter la compréhension, les séquences des gp160 autres que la gp160 de la souche HIV-1 Bru seront ci-après décrites par référence à la séquence de la gp160 de la souche HIV-1 Bru (ci-après appelée gp160-Bru) comme suit :

- a) La gp160-Bru possède 831 acides aminés, ceux-ci numérotés de 1 à 831. En outre
 25 la gp120-Bru correspond à la séquence des 486 premiers acides aminés de la gp160-Bru tandis que la gp40-Bru correspond à la séquence commençant avec l'acide aminé en position 487 et finissant avec l'acide aminé en position 831.
- b) La séquence d'une gp160 quelconque est alignée avec la séquence de la gp160-Bru de manière à présenter un maximum d'homologie. A cette fin, des emplacements vacants peuvent être introduits soit dans la séquence de la gp160-Bru, soit dans la séquence de la gp160 quelconque. Par définition, la position d'un acide aminé dans la gp160 quelconque sera spécifiée à l'identique par la position de l'acide aminé homologue dans la gp160-Bru.

35

c) En conséquence, lorsqu'un emplacement vacant est introduit dans la séquence de la gp160 quelconque, en face de l'acide aminé en position x, il n'existe pas d'acide aminé en position x dans la séquence de la gp160. Cependant, on considère que cet acide aminé jouit d'une présence virtuelle.

10

- d) Lorsqu'un ou plusieurs emplacement(s) vacant(s) est (sont) introduit(s) dans la séquence de la gp160-Bru entre l'acide aminé en position x et l'acide aminé en position x + 1, on considère que, dans la gp160 quelconque, la position recouvre au moins deux sous-positions x_a, x_b,, x_n, chacune occupée par un acide aminé. Par définition, la position d'aval x_n représente la position x.
- e) Lorsqu'un ou plusieurs emplacement(s) vacant(s) est (sont) introduit(s) dans la séquence de la gp160-Bru en amont de l'acide aminé en position 1, on considère que, dans la gp160 quelconque, la position 1 recouvre au moins deux sous-positions 1_a, 1_b,, 1_a, chacune occupée par un acide aminé. Par définition, la position d'amont NH₂-terminale 1_a représente la position 1.
- f) Lorsqu'un ou plusieurs emplacement(s) vacant(s) est (sont) introduit(s) dans la séquence de la gp160 quelconque en face du ou des acide(s) aminé(s) NH₂-terminal(aux) de la gp160-Bru, on indique que, par définition, l'acide aminé en position NH₂-terminale dans la gp160 quelconque cumule la position 1 et sa position d'acide aminé homologue.
- g) Lorsqu'un ou plusieurs emplacement(s) vacant(s) est (sont) introduit(s) dans la séquence de la gp160 quelconque en face du ou des acide(s) aminé(s) COOH-terminal(aux) de la gp160-Bru, on indique que, par définition, l'acide aminé en position COOH-terminale dans la gp160 quelconque cumule la position 841 et sa position d'acide aminé homologue.
- A ce jour, dans l'optique d'un vaccin, la protéine d'enveloppe est considérée comme un candidat potentiellement intéressant d'un point de vue thérapeutique. Toutefois, sa structure multichaîne d'origine constitue un handicap en terme de faisabilité. C'est pourquoi, il est apparu préférable d'utiliser une proteine simple chaîne qui conserverait la plupart des épitopes de la gp120 et ceux de la gp40. Ce type de protéine a déjà été proposé dans la demande de brevet WO 87/6260. Il s'agit plus particulièrement d'un variant gp160 non-clivable et soluble.

Toutes les gp160 des souches virales de type HIV-1 possèdent, en positions 483 - 486, un site de clivage dit majeur, reconnu par une ou des enzymes protéolytiques. Ce site de clivage est le même pour toutes les gp160 décrites à la Figure 1 et correspond à la séquence Arg-Glu-Lys-Arg (REKR). Les enzymes protéolytiques coupent immédiatement en aval de ce site de clivage pour libérer une gp120 et une gp40.

Lorsque ce site de clivage n'existe pas, on a démontré que les enzymes 40 protéolytiques reconnaîssent avec une efficacité toutefois moindre un site de clivage dit

mineur et d'effectuer une coupure immédiatement en aval de celui-ci. Là aussi, ce site de clivage est le même pour toutes les gp160 montrées à la Figure 1. Il correspond à la séquence Lys-Arg-Arg (KRR) en positions 477 - 479, selon certains auteurs ou selon d'autres, à la séquence Lys-Ala-Lys-Arg (KAKR) en positions 475 - 478.

5

En outre, on indique que les gp160 des souches virales de type HIV-2 possèdent uniquement un site de clivage majeur en positions 475 - 478 qui correspond à la séquence Lys-Glu-Arg-Lys (KEKR).

Un variant gp160 non-clivable est un analogue artificiel d'une gp160 native. Sa séquence en acides aminés correspond à celle d'une gp160 native dans laquelle le site de clivage majeur et/ou le site de clivage mineur a (ont) été supprimé(s).

Une tel variant gp160 peut être synthétisé grâce aux techniques de l'ADN recombinant. Il suffit d'isoler un fragment d'ADN codant pour une gp160 native puis de modifier la région codant pour le site de clivage majeur par mutagenèse dirigée, de manière à obtenir un fragment d'ADN codant pour un variant gp160 insensible à une action protéolytique. Par la suite ce dernier fragment d'ADN est exprimé dans des conditions appropriées pour donner ledit variant gp160. Un tel variant gp160 qui ne contient plus le site de clivage majeur est appelée ci-après un variant gp160 non-clivable de type A.

De manière préférée, la région codant pour le site de clivage mineur peut être en outre modifiée à des fins identiques. Dans ces conditions, on obtient un variant gp160 non-clivable de type A' qui ne contient ni de site le clivage majeur, ni le site de clivage mineur.

A cette fin, on indique à titre d'exemple que le site de clivage REKR, KEKR ou KAKR et le site de clivage KRR peuvent être respectivement remplacés par les séquences 30 Asn-Glu-His-Gln (NEHQ) et Gln-Asn-His (QNH).

D'autre part, il est aussi nécessaire qu'une gp160 soit obtenue sous forme soluble. Une telle gp160 correspond à une gp160 native dans laquelle la région transmembranaire de nature hydrophobe a été supprimée. Cette région transmembranaire est située dans la zone correspondant à la gp40, du résidu acide aminé en position 659 au résidu acide aminé en position 680 De manière additionnelle mais superflue, une autre région hydrophobe, allant du résidu acide aminé en position 487 au résidu acide aminé en position 514 pourrait être délétée.

WO 92/19742 PCT/FR92/00394

- 5 -

incluent bien évidemment le fragment d'ADN correspondant qui doit être obtenu par modification du fragment d'ADN original.

La comparaison des séquences des différentes gp160 déjà connues a mis en évidence 5 au moins trois domaines dont la séquence est hypervariable d'une gp160 à l'autre. Ces trois domaines sont couramment appelés les domaines (ou boucles) V₁, V₂ et V₃.

Les deux premiers domaines V₁ et V₂ sont situés entre le résidu cystéine en position 96 et le résidu cystéine en position 171 tandis que le troisième domaine V₃ est situé du 10 résidu cystéine en position 271 au résidu cystéine en position 306.

Il existe aussi un dernier domaine présentant un certain degré de variabilité, toutefois considéré comme moindre. Il s'agit du site de fixation au récepteur CD4 des lymphocytes T-helper; celui-ci étant situé approximativement du résidu acide aminé en position 340 au résidu acide aminé en position 440.

Quelque soit la gp160 considérée, des expériences de vaccination ont montré que le troisième domaine hypervariable est essentiel pour obtenir une immunité convenable. Toutefois, en raison de la nature hypervariable de ce domaine, la protection développée ne serait efficace qu'à l'encontre de la souche virale dont est issue la gp160 utilisée.

Enfin il semblerait que le premier et le deuxième domaines hypervariables ainsi que le site de fixation au récepteur CD4 influent sur le degré d'immunité que l'on pourrait obtenir.

25

Un vaccin d'un intérêt géneral devrait permettre de protéger les individus contre la majorité des souches virales HIV qui sévissent dans le monde. En conséquence, un vaccin à base de gp160 devrait contenir diverses gp160, chacune dérivée d'une souche virale différente. Afin de mettre en oeuvre un tel vaccin, il convient tout d'abord de construire les moyens destinés à la production du variant gp160 non-clivable et soluble, correspondant à chaque souche virale. En première approche, il s'agirait donc à chaque fois de cloner le fragment d'ADN codant pour la gp160 d'une souche virale déterminée, d'en déterminer sa séquence, de modifier ce fragment d'ADN afin de supprimer par substitution ou délétion des sites de clivage et des régions hydrophobes, puis enfin de placer ce fragment d'ADN ainsi modifié dans des conditions d'expression appropriées. Comme ce type d'opération devrait être renouvelée pour chaque gp160, la préparation d'un tel vaccin est prévue longue et coûteuse.

De plus, les souches virales peuvent varier au cours du temps e.g. par mutation.

40 Telle souche, cause majeure de l'infection dans telle région du globe à tel moment, peut

régresser en tant qu'agent infectieux et telle autre souche apparaître en remplacement. Il est donc important de pouvoir adapter rapidement un vaccin aux conditions épidémiologiques et, dans le cas présent, de disposer d'un variant gp160 dans les meilleurs délais.

5

A cette fin, on a maintenant trouvé une nouvelle méthode pour obtenir un variant gp160 approprié quelque soit la souche virale considérée. Dans la mesure où l'on dispose d'une cassette d'expression destinée à la production d'un variant gp160 non-clivable et soluble dérivé d'une première souche virale, cette méthode permet d'obtenir un variant similaire dérivé d'une deuxième souche virale en évitant le clonage complet du fragment d'ADN codant pour la gp160 de la deuxième souche virale et les modifications qui devraient s'en suivre.

En conséquence, l'invention propose une méthode pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride non-clivable et soluble, soit pour un variant gp160 hybride non-clivable et soluble; ledit variant ayant une séquence en acides aminés comprenant :

- i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
- quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

ladite méthode comprenant :

35

20

25

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région : et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :

WO 92/19742 PCT/FR92/00394

- 7 -

- m) en amont du site et en séquence :
 - i) un promoteur,
- 5 ii) un codon d'initiation de traduction,
 - iii) en option, une première région d'ADN codant pour un peptide signal, et
- iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
 - n) en aval du site et en séquence :

15

- quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
- 20 ii) un codon de terminaison de traduction;

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

Une telle cassette d'expression est l'outil indispensable qui permet de produire un variant gp160 hybride, soluble et non-clivable dans un système d'expression hétérologue.

Dans la méthode selon l'invention, le fragment d'ADN codant pour ladite première région peut être cloné selon n'importe quelle méthode en usage. On indique cependant que ce clonage peut être avantageusement effectué par la technique PCR à partir de l'ADN génomique de cellules infectées par ladite deuxième souche du virus HIV. L'insertion du fragment d'ADN cloné s'effectue dans des sites de restriction initialement présents dans la cassette ou créés à cet effet, par exemple en utilisant un polylinker de manière appropriée. Une illustration de cette méthode est présentée par la suite dans les exemples.

- Par "unité d'ADN codant pour un polypeptide quelconque", on entend un segment d'ADN dont le premier codon en position 5' et le dernier codon en position 3' codent respectivement pour le premier acide aminé en position N-terminale et le dernier acide aminé en position C-terminale du polypeptide.
- Selon un mode préféré, la méthode selon l'invention est mise en oeuvre pour

PCT/FR92/00394

15

35

40

construire une cassette d'expression comportant une unité d'ADN codant pour un précurseur d'un variant gp160 hybride non-clivable et soluble.

Par "précurseur d'un variant gp160 selon l'invention", on signifie un polypeptide 5 comportant un peptide signal et un variant gp160 mature ; l'extrémité N-terminale dudit variant étant associée à l'extrémité C-terminale du peptide signal par liaison peptidique. Ce précurseur est le produit initial de l'expression de l'unité d'ADN. Il est en particulier présent dans le cytoplasme de la cellule hôte, associé en position N-terminale avec un résidu methionine d'initiation de traduction. Le peptide signal permet d'initier le transfert 10 du variant gp160 dans le réticulum endoplasmique. Lors de ce transfert, le peptide signal est abandonné par clivage protéolytique pour donner la forme mature du variant gp160. Dans la suite du texte, le terme "variant gp160" fait exclusivement référence à sa forme mature.

Le peptide signal peut être n'importe quel peptide signal en usage. Il doit être cependant choisi en tenant compte de l'organisme-hôte destiné à la production du variant gp160 selon l'invention. Par exemple, si l'organisme-hôte est une cellule de mammifère, le peptide signal peut être avantageusement sélectionné parmi les peptides signal des précurseurs des gp160 des différentes souches du virus HIV, indépendamment de l'origine 20 des première, deuxième et troisième régions du variant selon l'invention. De manière alternative, on peut utiliser des peptides signal synthétiques. De tels peptides signal sont par exemple, des peptides signal hybrides dont l'extrémité N-terminale dérive du précurseur de la gp160 de ladite deuxième souche du virus HIV et dont l'extrémité Cterminale dérive du précurseur de la gp160 de ladite première souche du virus HIV. A 25 titre indicatif, on mentionne de plus, que le peptide signal du précurseur de la glycoprotéine d'une souche du virus de la rage peut être aussi utilisé. Enfin, l'homme du métier doit comprendre que cette liste est non-limitative.

L'invention propose de même un variant gp160 hybride, non-clivable et soluble, qui 30 comprend:

- une première région dérivée de la gp160 d'une première souche du virus HIV i) et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
- une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type ii) A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et

quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus.

5

La première, ainsi que la deuxième et troisième régions du variant gp160 selon l'invention peuvent être dérivées de la gp160 de n'importe quelle souche du virus HIV, à condition que la première souche soit différente de la deuxième. De manière préférée, la première région dérive de la gp160 d'une souche virale sélectionnée parmi les souches HIV-2 Rod, HIV-1 Eli, HIV-1 RF, HIV-1 SF2C, HIV-1 SC et HIV-1 MN, cette dernière étant plus particulièrement préférée. De même, la deuxième et troisième régions ont de préférence pour origine la gp160 de la souche HIV-1 Bru.

Par "variant gp160 non-clivable de type A", on entend un variant gp160 :

- soit dérivé d'une gp160 d'une souche virale de type HIV-1 et ne contenant plus le site de clivage majeur,
 - soit dérivé d'une gp160 d'une souche virale de type HIV-2 et ne contenant plus le site de clivage.

Lorsque le variant gp160 dérive d'une gp160 d'une souche virale de type HIV-1, ce variant est de préférence de type A'; c'est-à-dire ne contenant ni le site de clivage majeur, ni le site de clivage mineur.

Par "variant gp160 soluble", on entend un variant gp160 dérivé d'une gp160 native qui ne contient plus de région transmembranaire ou dont la région transmembranaire native a été mutée de manière à ne plus pouvoir assurer sa fonction d'ancrage dans la membrane. De plus, un tel variant soluble peut avantageusement ne plus contenir de région hydrophobe.

Par "cassette d'expression", on entend un segment d'ADN comprenant une unité d'ADN à exprimer ainsi que les éléments nécessaires à l'expression de cette dernière. L'expression d'une unité d'ADN est obtenue par transcription de cette unité d'ADN en ARN messager et par traduction de cet ARN messager en protéine. Par conséquent, les éléments indispensables sont un promoteur constitutif ou inductible (initiation de la transcription), un codon d'initiation de traduction (codon ATG) et un codon de fin de traduction (codon TAG, TAA ou TGA). En outre, une cassette d'expression peut aussi contenir d'autres éléments; par exemple, un terminateur de transcription.

L'homme du métier sait bien évidemment choisir le promoteur et le terminateur appropriés en fonction de l'organisme-hôte dans lequel on souhaite exprimer l'unité d'ADN et en fonction du vecteur dans lequel la cassette d'expression doit être insérée

35

pour assurer sa réplication.

En accord avec ce qui précède, l'invention propose de même, une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 selon l'invention, soit pour un variant gp160 selon l'invention ainsi que les éléments nécessaires à expression de ladite unité d'ADN.

Afin d'assurer sa réplication autonome dans un organisme hôte, une cassette d'expression selon l'invention peut être insérée dans différents types de vecteur ayant une origine de réplication adaptée à l'organisme hôte; par exemple un plasmide ou un virus. Les vecteurs de type viral ont en particulier la capacité d'intégrer dans leur génome une quantité substantielle d'ADN étranger sans nuire à leur capacité de réplication. Parmi ceux-ci, on compte par exemple, les poxvirus, tels que le virus de la vaccine, le poxvirus du canari et la poxvirus de la variole aviaire; les baculovirus tels que et les adénovirus tel que l'Adénovirus-2 ou l'Adénovirus-5.

Outre leur utilisation dans un système de production hétérologue, certains de ces vecteurs de type viral peuvent être fonctionnels à titre d'agent de vaccination. Il s'agit en particulier des poxvirus et des adénovirus.

C'est pourquoi, l'invention concerne de même un vecteur viral dans le génome duquel est inséré une cassette d'expression selon l'invention.

Sous un autre aspect de l'invention, on procure aussi une cellule transformée par une cassette d'expression selon l'invention. La cassette d'expression qui transforme la cellule peut être véhiculée par un plasmide ou, de manière alternative, être intégrée dans le génome de la cellule hôte.

L'organisme-hôte destiné à la production du variant gp160 selon l'invention peut 30 être n'importe quel type de cellule, de préférence eucaryote. Ceci inclut par exemple : des champignons tels que les levures, des cellules d'insectes et des cellules de mammifères.

L'invention propose, en outre, deux procédés alternatifs visant à la production d'un variant gp160 selon l'invention :

- le premier procédé comprend l'acte de cultiver une cellule selon l'invention et l'acte de récolter ledit variant à partir de la culture,

- le second procédé comprend l'acte d'infecter une culture de cellules avec un 40 vecteur viral selon l'invention et l'acte de récolter ledit variant à partir de la culture.

Un variant gp160 ainsi qu'un vecteur viral selon l'invention possèdent une activité vaccinale à l'encontre d'un virus HIV et, par conséquent, sont utiles à titre de produits pharmaceutiques en particulier destinés au traitement ou à la prévention du Sida.

5 En conséquence, l'invention propose :

- i) une composition pharmaceutique destinée au traitement curatif ou préventif du Sida qui comprend à titre d'agent thérapeutique au moins un variant gp160 ou un vecteur viral selon l'invention,
- ii) une méthode de traitement curatif ou préventif du Sida qui comprend l'acte d'administrer une quantité thérapeutiquement effective d'un variant gp160 ou d'un vecteur viral selon l'invention à un patient ayant besoin d'un tel traitement.
- iii) l'usage d'un variant gp160 ou d'un vecteur viral selon l'invention à titre d'agent thérapeutique destiné au traitement curatif ou préventif du Sida.

De manière préférée, une composition pharmaceutique selon l'invention peut contenir plusieurs variants gp160 selon l'invention; chaque variant gp160 possédant au 20 moins un troisième domaine hypervariable (boucle V₃) différent des autres variants présents dans la composition. Une telle composition pharmaceutique devrait donc permettre de protéger correctement un individu vis-à-vis de diverses souches HIV.

Une composition pharmaceutique selon l'invention peut contenir en outre d'autres agents thérapeutiques comme, par exemple, un peptide correspondant essentiellement au troisième domaine hypervariable d'une gp160 (ci-après appelé peptide V₃). De préférence, un tel peptide a une séquence substantiellement identique à la séquence du troisième domaine d'un variant gp160 contenu dans la composition pharmaceutique selon l'invention. De manière similaire, plusieurs peptides V₃ peuvent être présents dans la composition. En particulier, si la composition pharmaceutique selon l'invention contient différents variants gp160, on peut bien évidemment y ajouter les peptides V₃ correspondants.

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier, on associe un variant gp160 selon l'invention avec un diluant ou un support acceptable d'un point de vue pharmaceutique. Enfin, une composition selon l'invention peut contenir un adjuvant de vaccination tel que l'alun. De manière alternative, cet adjuvant peut être ajouté à une composition selon l'invention juste avant usage.

10

Une composition selon l'invention peut être administrée par n'importe quelle voie conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par exemple sous forme de solution ou de suspension injectable. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

De manière alternative, une composition pharmaceutique selon l'invention peut être présentée comme partie d'un kit de traitement. A titre d'exemple, on indique qu'un tel kit peut contenir :

- d'une part, une composition pharmaceutique contenant au moins un variant gp160 selon l'invention et,
- d'autre part, une composition pharmaceutique contenant au moins un peptide V₃,
 - ainsi qu'une notice spécifiant les instructions relatives à l'administration séquentielle ou concomitante des compositions pharmaceutiques contenues dans le kit.

20

L'invention est illustrée ci-après par référence aux figures suivantes:

La Figure 1 présente la séquence des acides aminés des précurseurs des gp160 natives des souches virales HIV-1 Bru (a), HIV-1 MN (b), HIV-1 Eli (c), HIV-1 RF (d), 25 HIV-1 SC (e) et HIV-1 SF2C (f). Les résidus acides aminés des séquences signal sont numérotés de la position -1 à -29. Le résidu méthionine en position -30 correspond au codon d'initiation de traduction. Les résidus acides aminés des gp160 matures sont numérotés de la position 1 à 841. L'astérisque (*) symbolise l'identité des résidus acides aminés à une position donnée tandis que le point (.) indique un changement conservatif (acides aminés différents, mais apartenant à une même classe).

La Figure 2 présente la séquence des acides aminés des précurseurs des gp160 natives des souches virales HIV-1 Bru (a) et HIV-2 Rod (b). Les résidus acides aminés des séquences signal sont numérotés de la position -1 à -29. Le résidu méthionine en position -30 correspond au codon d'initiation de traduction. Les résidus acides aminés des gp160 matures sont numérotés de la position 1 à 841. L'astérisque (*) symbolise l'identité des résidus acides aminés à une position donnée tandis que le point (.) indique un changement conservatif (acides aminés différents, mais apartenant à une même classe).

pTG1163 qui comporte la séquence codant pour un précurseur d'un variant gp160-Bru non-clivable soluble (domaine transmembranaire absent) ainsi que la séquence en acides aminés de ce précurseur.

La Figure 4 shématise les étapes de la construction des bactériophages M13TG4168 et M13TG4174.

La Figure 5 présente la séquence nucléotidique codant pour le précurseur de la gp120-MN ainsi que la séquence en acides aminés de ce précurseur. Les oligonucléotides OTG2624 et OTG2625 destinés à l'amplification d'un fragment d'ADN codant au moins pour le troisième domaine hypervariable de la gp120-MN sont représentés au dessus de leur région d'hybridation.

La Figure 6 présente la séquence nucléotidique codant pour le précurseur de la gp120-Eli ainsi que la séquence en acides aminés de ce précurseur. Les oligonucléotides OTG2624 et OTG2625 destinés à l'amplification d'un fragment d'ADN codant au moins pour le troisième domaine hypervariable de la gp120-MN sont représentés au dessus de leur région d'hybridation.

La Figure 7 présente la séquence nucléotidique codant pour le précurseur de la gp120-RF ainsi que la séquence en acides aminés de ce précurseur. Les oligonucléotides OTG2624 et OTG2625 destinés à l'amplification d'un fragment d'ADN codant au moins pour le troisième domaine hypervariable de la gp120-RF sont représentés au dessus de leur région d'hybridation.

25

La Figure 8 présente la séquence nucléotidique codant pour le précurseur de la gp120-SF2C ainsi que la séquence en acides aminés de ce précurseur. Les oligonucléotides OTG2624 et OTG2625 destinés à l'amplification d'un fragment d'ADN codant au moins pour le troisième domaine hypervariable de la gp120-SF2C sont représentés au dessus de leur région d'hybridation.

Dans les exemples suivants, pour faciliter l'écriture et la compréhension, on entend par "séquence signal", une séquence signal incluant le résidu méthionine d'initiation de traduction.

35

Construction d'une cassette d'insertion porté par le bactériophage Exemple 1: M13TG4168.

Tel que montré à la Figure 3, le fragment d'ADN Pstl-Pstl du plasmide pTG1163 décrit dans la demande de brevet EPA 245 136 comporte une séquence d'ADN codant pour un précurseur d'un variant gp160-Bru non-clivable et soluble. Ce fragment d'ADN PstI-PstI est inséré dans le bactériophage M13mp701 (décrit par M.P. Kieny et al. Gene (1983) 26: 91) préalablement digéré par Pstl pour donner le bactériophage M13TG4137 10 (Figure 4). La numérotation des nucléotides du fragment PstI-PstI telle que indiquée à la Figure 3 sert de référence dans la suite de l'exemple 1.

Le plasmide pTG1163 est coupé par Psil et Kpnl et le fragment d'ADN correspondant aux nucléotides 1 à 138 (Figure 3) est inséré dans le bactériophage 15 M13TG130 (décrit par M.P. Kieny et al. (1983), supra) préalablement digéré par PstI et KpnI. On obtient ainsi le bactériophage M13TG4147 (Figure 4).

Le bactériophage M13TG4137 est coupé par BgUI, traité par l'enzyme klenow (Boehringer Mannheim) pour obtenir des extrémités franches, puis coupé par EcoRI. Le 20 fragment EcoRI-BgIII° issu de cette digestion et comportant la séquence correspondant aux nucléotides 1424 à 2644 (Figure 3) est inséré dans le bactériophage M13TG4147 préalablement digéré par EcoRV et EcoRI. On obtient ainsi le bactériophage M13TG4158 qui comporte:

- un fragment d'ADN correspondant aux nucléotides 1 à 138, 25 i)
 - la séquence restante du polylinker du bactériophage M13TG4147 c'est à dire ii) ATCGCATGCG,
- un fragment d'ADN correspondant aux nucléotides 1424 à 2644. 30 iii)

Le bactériophage M13TG4158 simple brin anti-sens, sert de matrice pour une mutation-délétion effectuée en utilisant la trousse Amersham et l'oligonucléotide OTG2623 dont la séquence est la suivante :

_SphI ___SmaI

GGGGGTGGAAATGGGGCA GCATGC AT CCCGGG CACAGAATCACGTGGTGC.

Cette mutagénèse permet simultanément de déléter un fragment de 184 paires de 40

bases qui comporte les nucléotides 67 à 138, la séquence ATCGCATGCG et les nucléotides 1424 à 1525 et de créer les sites de coupure pour les enzymes *SphI* en 5' et *SmaI* en 3' qui sont insérés entre les nucléotides 66 et 1526. On obtient ainsi le bactériophage M13TG4168 qui comprend :

5

- i) un fragment d'ADN correspondant aux nucléotides 1 à 66,
- ii) la séquence d'ADN GCATGCATCCCG comportant les sites de clivage des enzymes SphI et SmaI, et

10

iii) un fragment d'ADN correspondant aux nucléotides 1526 à 2644.

Exemple 2: Construction d'une cassette d'expression destinée à la synthèse d'un variant gp160 hybride Bru-MN.

Tel que montré à la Figure 5, le fragment d'ADN codant pour la majeure partie d'un précurseur de la gp120-MN est cloné par la technique d'amplification génique PCR (Polymérase Chain Reaction) mise en oeuvre à partir de l'ADN génomique de cellules humaines CEM infectées par la souche virale HIV1-MN. Ce clonage est effectué à l'aide des oligonucléotides OTG2624 et OTG2625 qui introduisent respectivement un site de coupure pour l'enzyme Sphl en 5' du fragment d'ADN amplifié et un site de coupure pour l'enzyme Smal en 3' du fragment d'ADN amplifié. Les séquences de ces oligonucléotides sont les suivantes :

25

___SphI

OTG2624 : GGCA GCATGC TCCTTGGGATATTGATGATCTG

30

___Smal

OTG2625 : CTTTG CCCGGG TGGGTGCTACTCCTAATGGTTC

Le fragment d'ADN Sphl-Smal amplifié correspond aux nucléotides 53 à 1505 représentés à la Figure 5, compte tenu des modifications de séquence apportées par les oligonucléotides OTG2624 et OTG2625. Ce fragment est inséré dans le bactériophage M13TG4168 coupé par Sphl et Smal. On obtient ainsi le bactériophage M13TG4174 qui comporte un fragment d'ADN codant pour un précurseur d'une protéine gp160 hybride Bru-MN. Le fragment Pstl du bactériophage M13TG4174 qui code pour le variant gp160 hybride Bru-MN est inséré dans le plasmide de transfert pTG186poly (décrit par M.P. Kieny et al., Biotechnology, (1986) 4: 790), en aval du promoteur E7.5k et à l'intérieur

du gène du virus de la vaccine codant pour la thymidine kinase. On obtient ainsi le plasmide pTG5156.

Le plasmide pTG5156 est utilisé par la suite pour transférer le bloc d'expression de 5 la protéine gp160 hybride Bru-MN dans le génome du virus de la vaccine, souche Copenhagen, selon la méthode décrite par M.P. Kieny et al. Nature (1984), 312, 163-166). On obtient ainsi le vecteur de la vaccine VVTG5156.

10 <u>Exemple 3</u>: Construction d'une cassette d'expression destinée à la synthèse d'un variant gp160 hybride Bru-Eli.

Le plasmide pTG186poly est coupé par BamHI, traité par l'enzyme Klenow, coupé par SmaI pour déléter la majeure partie du polylinker, puis religué sur lui-même pour donner le plasmide pTG186PE. Le polylinker ne conserve plus que les sites de clivage pour les enzymes PstI, SalI et EcoRI.

Le fragment d'ADN *PstI-PstI* du bactériophage M13TG4168 décrit, ci-dessus, qui comporte :

20

- i) un fragment d'ADN correspondant aux nucléotides 1 à 66 du fragment d'ADN représenté sur la Figure 3,
- ii) la séquence d'ADN GCATGCATCCCG comportant les sites de clivage des enzymes SphI et SmaI, et
 - iii) un fragment d'ADN correspondant aux nucléotides 1526 à 2644 du fragment d'ADN représenté à la Figure 3,
- 30 est inséré dans le plasmide pTG186PE prélablement coupé par *PstI*, en aval du promoteur E7.5k et à l'intérieur du gène du virus de la vaccine codant pour la thymidine kinase. On obtient ainsi le plasmide pTG5160.

Tel que montré à la Figure 6, le fragment d'ADN codant pour la majeure partie d'un précurseur de la gp120-Eli est cloné par la technique d'amplification génique PCR mise en oeuvre à partir de l'ADN génomique de cellules humaines CEM infectées par du virus HIV1-Eli. Ce clonage est effectué à l'aide des oligonucléotides OTG2624 et OTG2625 qui introduisent respectivement un site coupure pour l'enzyme SphI en 5' du fragment d'ADN amplifié et un site de coupure pour l'enzyme SmaI en 3' du fragment d'ADN amplifié.

40 Le fragment d'ADN Sphl-Smal amplifié correspond aux nucléotides 53 à 1490 représentés

à la Figure 6, compte tenu des modifications de séquence apportées par les oligonucléotides OTG2624 et OTG2625. Ce fragment est inséré dans le bactériophage M13TG131 (décrit par M.P. Kieny et al. (1983), supra) préalablement coupé par Sphl et Smal pour donner le bactériophage M13TG4197. Puis le fragment Sphl-Smal du bactériophage M13TG4197 est inséré dans le plasmide de transfert pTG5160 (décrit cidessus) préalablement coupé par Sphl et Smal. On obtient ainsi le pTG5193.

Le plasmide pTG5193 est utilisé par la suite pour transférer le bloc d'expression de la protéine gp160 hybride Bru-Eli dans le génome du virus de la vaccine, souche Copenhagen, selon la méthode décrite par M.P. Kieny et al. (1984) supra. On obtient ainsi le vecteur de la vaccine VVTG5193.

Exemple 4: Construction d'une cassette d'expression destinée à la synthèse d'un variant gp160 hybride Bru-RF.

Tel que montré à la Figure 7, le fragment d'ADN codant pour la majeure partie d'un précurseur d'une protéine gp120-RF est cloné par la technique d'amplification génique PCR mise en oeuvre à partir de l'ADN génomique de cellules humaines CEM infectées par du virus HIV1-RF. Ce clonage est effectué à l'aide des oligonucléotides OTG2624 et OTG2625 qui introduisent respectivement un site de coupure pour l'enzyme Sphl en 5' du fragment d'ADN amplifié et un site de coupure pour l'enzyme Smal en 3' du fragment d'ADN amplifié. Le fragment d'ADN Sphl-Smal amplifié correspond aux nucléotides 53 à 1523 représentés à la Figure 7, compte tenu des modifications de séquence apportées par les oligonucléotides OTG2624 et OTG2625. Ce fragment est inséré dans le bactériophage M13TG131 préalablement coupé par Sphl et Smal pour donner le bactériophage M13TG4198. Puis le fragment Sphl-Smal du bactériophage M13TG4198 est inséré dans le plasmide de transfert pTG5160 (décrit à l'exemple 3) préalablement coupé par Sphl et Smal. On obtient ainsi le pTG5194.

30

Le plasmide pTG5194 est utilisé par la suite pour transférer le bloc d'expression de la protéine gp160 hybride Bru-RF dans le génome du virus de la vaccine, souche Copenhagen, selon la méthode décrite par M.P. Kieny et al. (1984) supra. On obtient ainsi le vecteur de la vaccine VVTG5194.

35

Exemple 5 : Construction d'une cassette d'expression destinée à la synthèse d'un variant gp160 hybride Bru-SF2C.

Tel que montré à la Figure 8, le fragment d'ADN codant pour la majeure partie d'un

précurseur de la gp120-SF2C est cloné par la technique d'amplification génique PCR mise en oeuver à partir de l'ADN génomique de cellules humaines CEM infectées par du virus HIV1-SF2C. Ce clonage est effectué à l'aide des oligonucléotides OTG2624 et OTG2625 qui introduisent respectivement un site de coupure pour l'enzyme Sphl en 5' du fragment d'ADN amplifié et un site de coupure pour l'enzyme Smal en 3' du fragment d'ADN amplifié. Le fragment d'ADN Sphl-Smal amplifié correspond aux nucléotides 53 à 1493 représentés à la Figure 8, compte tenu des modifications de séquence apportées par les oligonucléotides OTG2624 et OTG2625. Puis ce fragment est inséré dans le bactériophage M13TG131 préalablement coupé par Sphl et Smal pour donner le bactériophage M13TG4199. Le fragment Sphl-Smal du bactériophage M13TG4199 est inséré dans le plasmide de transfert pTG5160 (décrit à l'exemple 3) préalablement coupé par Sphl et Smal. On obtient ainsi le pTG5195.

Le plasmide pTG5195 est utilisé par la suite pour transférer le bloc d'expression de la protéine gp160 hybride Bru-SF2C dans le génome du virus de la vaccine, souche Copenhagen, selon la méthode décrite par M.P. Kieny et al. (1984) supra. On obtient ainsi le vecteur de la vaccine VVTG5195.

20 Exemples 6 à 9 : Production et purification des gp160 hybrides Bru-MN, Bru-Eli, Bru-RF et Bru SF2C :

Des cellules BHK-21 sont cultivées dans un milieu GMEM (Gibco) supplémenté avec 10% de sérum de veau foetal (SVF). Lorsque les cellules sont à confluence (5,8x106cellules/ml), le milieu de culture est enlevé et le tapis cellulaire est lavé 2 fois avec 50 ml de PBS (Dubelcco's phosphate buffer salt; Seromed). Puis du milieu GMEM frais sans SVF est rajouté. On ajoute alors un des virus de la vaccine VVTG5156, VVTG5193, VVTG5194 et VVTG5195 décrits ci-dessus dans les exemples 2 à 5, à une infectivité de 1 ufp/cellule (unité formant plages), et l'infection est poursuivie pendant 72 h. Le lysat est alors centrifugé 20 min. à 10 000 g pour éliminer les débris cellulaires et on récupère le surnageant contenant entre autre une gp160 hybride et des virions.

A 20 ml de surnageant de culture obtenu comme précédemment décrit, on ajoute 1,3 ml d'une solution de chlorure de zinc (ZnCl₂) à 1 M pour avoir une concentration finale en ZnCl₂ de 60 mM. Le mélange est laissé 1 h dans de la glace; puis le surnageant de précipitation est récupéré après centrifugation à 3000 t/min. pendant 20 min. dans une centrifugeuse Minifuge RF Heraeus. Cette méthode élimine par précipitation les virions ainsi que la majorité des protéines contaminantes. Dans chaque cas, on obtient ainsi une solution purifiée du variant gp160 hybride.

10

15

20

30

35

REVENDICATIONS

- 1. Une méthode pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble ; ledit variant gp160 ayant une séquence en acides aminés comprenant :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

ladite méthode comprenant :

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :
 - i) un promoteur,
 - ii) un codon d'initiation de traduction,
 - iii) en option, une première région d'ADN codant pour un peptide signal, et
 - iv) quand X est tel que défini ci-dessus mais différent de 1, une

. 15

20

deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et

- n) en aval du site et en séquence :
 - i) quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
 - ii) un codon de terminaison de traduction;
- pour obtenir une cassette d'expression comportant ladite unité d'ADN.
 - 2. Une méthode selon la revendication 1, pour construire une cassette d'expression comportant une unité d'ADN codant pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
- iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;
- ladite méthode comprenant :
 - a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :

PCT/FR92/00394

5

10

15

20

25

- m) en amont du site et en séquence :
 - i) un promoteur,
 - ii) un codon d'initiation de traduction,
 - iii) une première région d'ADN codant pour un peptide signal, et
 - iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et

n) en aval du site et en séquence :

- i) quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
- ii) un codon de terminaison de traduction;

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

- 3. Une méthode selon la revendication 1, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble; ledit variant gp160 ayant une séquence en acides aminés comprenant :
- i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 476;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type
 A' ayant pour origine une deuxième souche du virus HIV et située dans ce
 dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
 position C-terminale, Y étant tel que défini ci-dessus; et
- quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide

15

20

25

30

35

aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus ;

ladite méthode comprenant :

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :

i) un promoteur,

- ii) un codon d'initiation de traduction,
- iii) en option, une première région d'ADN codant pour un peptide signal, et
- iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
- n) en aval du site et en séquence :
 - quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
 - ii) un codon de terminaison de traduction;

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

4. Une méthode selon la revendication 1 ou 3, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble ; ledit variant ayant une séquence en acides aminés comprenant :

WO 92/19742 PCT/FR92/00394

- 23 -

i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;

ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type

A ayant pour origine une deuxième souche du virus HIV et située dans ce
dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
position C-terminale, Y étant tel que défini ci-dessus et ladite deuxième

souche étant la souche HIV1-Bru; et

iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus;

ladite méthode comprenant :

10

15

20

25

30

35

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :
 - i) un promoteur,
 - ii) un codon d'initation de traduction,
 - iii) en option, une première région d'ADN codant pour un peptide signal, et
 - iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
 - n) en aval du site et en séquence :
- i) quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides

aminés dudit variant gp160 hybride et

ii) un codon de terminaison de traduction;

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

5

10

15

- 5. Une méthode selon n'importe laquelle des revendications 1, 3 et 4, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble; ledit variant ayant une séquence en acides aminés comprenant:
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482 et ladite première souche étant sélectionnée parmi les souches HIV-1 MN, HIV-1 Eli, HIV-1 RF, HIV-1 SF2C et HIV-1 SC;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

25

20

ladite méthode comprenant:

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :
- 35

i) un promoteur,

10

25

30

35

- ii) un codon d'initiation de traduction,
- iii) en option, une première région d'ADN codant pour un peptide signal, et
- iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
- n) en aval du site et en séquence :
 - quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
 - ii) un codon de terminaison de traduction;
- pour obtenir une cassette d'expression comportant ladite unité d'ADN.
- 6. Une méthode selon la revendication 5, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble ; ledit variant ayant une séquence en acides aminés comprenant :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482 et ladite première souche étant la souche HIV-1 MN;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

PCT/FR92/00394

5

10

15

20

25

30

ladite méthode comprenant :

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :
 - i) un promoteur,
 - ii) un codon d'initiation de traduction,
 - iii) en option, une première région d'ADN codant pour un peptide signal, et
 - iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
 - n) en aval du site et en séquence :
 - i) quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
 - ii) un codon de terminaison de traduction;
- pour obtenir une cassette d'expression comportant ladite unité d'ADN.
- 7. Une méthode selon n'importe laquelle des revendications 1 et 3 à 6, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble; ledit variant ayant une séquence en acides aminés comprenant:
- i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de

450 à 482;

ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A' ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et

5

quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus;

10

ladite méthode comprenant :

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région ; et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :

20

15

- i) un promoteur,
- ii) un codon d'initiation de traduction.
- iii) en option, une première région d'ADN codant pour un peptide signal, et

25

v) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et

30

- n) en aval du site et en séquence :
 - quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et

35

ii) un codon de terminaison de traduction;

PCT/FR92/00394

5

10

15

20

30

35

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

- 8. Une méthode selon n'importe laquelle des revendications 1 et 3 à 7, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble; ledit variant ayant une séquence en acides aminés comprenant:
- i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 97 et Y étant un nombre de 306 à 482;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A' ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus ; et
 - quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

ladite méthode comprenant :

- a) l'acte de cloner un fragment d'ADN codant pour ladite première région : et
- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :
 - i) un promoteur,
 - ii) un codon d'initiation de traduction,
 - iii) en option, une première région d'ADN codant pour un peptide signal, et

- iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
- n) en aval du site et en séquence :

- i) quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
- ii) un codon de terminaison de traduction;

10

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

- 9. Une méthode selon n'importe laquelle des revendications 1 et 3 à 8, pour construire une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 hybride, non-clivable et soluble, soit pour un variant gp160 hybride, non-clivable et soluble ; ledit variant ayant une séquence en acides aminés comprenant :
- une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 97 et Y étant un nombre de 306 à 482;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type

 A' ayant pour origine une deuxième souche du virus HIV et située dans ce
 dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
 position C-terminale, Y étant tel que défini ci-dessus ; et
- quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus;

ladite méthode comprenant :

a) l'acte de cloner un fragment d'ADN codant pour ladite première région par la technique PCR à partir de l'ADN génomique de cellules infectées par ladite

10

15

20

30

35

deuxième souche du virus HIV; et

- b) l'acte d'insérer le fragment d'ADN cloné en a) dans un site d'une cassette qui comprend :
 - m) en amont du site et en séquence :

i) un promoteur,

- ii) un codon d'initiation de traduction,
- iii) en option, une première région d'ADN codant pour un peptide signal, et
- iv) quand X est tel que défini ci-dessus mais différent de 1, une deuxième région d'ADN codant pour ladite troisième région de la séquence en acides aminés dudit variant gp160 hybride; et
- n) en aval du site et en séquence :
 - quand Y est tel que défini ci-dessus, une troisième région d'ADN codant pour ladite deuxième région de la séquence en acides aminés dudit variant gp160 hybride et
 - ii) un codon de terminaison de traduction;

pour obtenir une cassette d'expression comportant ladite unité d'ADN.

- Un variant gp160 hybride, non-clivable et soluble, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type
 A ayant pour origine une deuxième souche du virus HIV et située dans ce
 dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
 position C-terminale, Y étant tel que défini ci-dessus; et

15

20

25

- iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus.
- Un variant gp160 hybride, non-clivable et soluble selon la revendication 10, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 476;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A' ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus.
 - 12. Un variant gp160 hybride, non-clivable et soluble selon la revendication 10 ou 11, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type
 A ayant pour origine une deuxième souche du virus HIV et située dans ce
 dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
 position C-terminale, Y étant tel que défini ci-dessus et ladite deuxième
 souche étant la souche HIV-1 Bru; et
 - iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite

20

25

deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus.

- 13. Un variant gp160 hybride, non-clivable et soluble selon n'importe laquelle des revendications 10 à 12, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482 et ladite première souche étant sélectionnée parmi les souches HIV-1 MN, HIV-1 Eli, HIV-1 RF, HIV-1 SF2C et HIV-1 SC;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus.
 - 14. Un variant gp160 hybride, non-clivable et soluble selon la revendication 13, qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 306 à 482 et ladite première souche étant la souche HIV-1 MN;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type
 A ayant pour origine une deuxième souche du virus HIV et située dans ce
 dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en
 position C-terminale, Y étant tel que défini ci-dessus; et
- quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide

01

20

30

35

aminé en position 1 à l'acide aminé en position X - 1, X étant tel que défini ci-dessus.

- 15. Un variant gp160 hybride, non-clivable et soluble selon n'importe laquelle des revendications 10 à 14, ayant une séquence en acides aminés qui comprend :
 - i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 271 et Y étant un nombre de 450 à 482;
- ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A' ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus ; et
- iii) quand X est différent de 1, une troisième région dérivée de la gp160 de ladite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus.
 - 16. Un variant gp160 hybride, non-clivable et soluble selon n'importe laquelle des revendications 10 à 15, ayant une séquence en acides aminés qui comprend :
- i) une première région dérivée de la gp160 d'une première souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position X à l'acide aminé en position Y, X étant un nombre de 1 à 97 et Y étant un nombre de 306 à 482;
 - ii) une deuxième région dérivée d'un variant gp160 soluble, non-clivable de type A' ayant pour origine une deuxième souche du virus HIV et située dans ce dernier variant gp160 de l'acide aminé en position Y + 1 à l'acide aminé en position C-terminale, Y étant tel que défini ci-dessus; et
 - iii) quand X est différent de 1, une troisième région dérivée de la gp160 de l'adite deuxième souche du virus HIV et située dans cette dernière gp160 de l'acide aminé en position 1 à l'acide aminé en position X 1, X étant tel que défini ci-dessus.

25

30

35

- 17. Une cassette d'expression obtenue par une méthode selon n'importe laquelle des revendications 1 à 9.
- 18. Une cassette d'expression comportant une unité d'ADN codant soit pour un précurseur d'un variant gp160 selon n'importe laquelle des revendications 10 à 16 soit pour un variant gp160 selon n'importe laquelle des revendications 10 à 16 et les éléments nécessaires à expression de ladite unité d'ADN.
- 19. Une cellule transformée par une cassette d'expression selon la revendication 17 ou 18.
- 20. Un vecteur viral dans le génome duquel est inséré une cassette d'expression selon la revendication 17 ou 18.
 - 21. Un procédé pour produire un variant gp160 selon n'importe laquelle des revendications 10 à 16, qui comprend l'acte de cultiver une cellule selon la revendication 19 et l'acte de récolter ledit variant à partir de la culture.
 - 22. Un procédé pour produire un variant gp160 selon n'importe laquelle des revendications 10 à 16, qui comprend l'acte d'infecter une culture de cellules avec un vecteur viral selon la revendication 20 et l'acte de récolter ledit variant à partir de la culture.
 - 23. Une composition pharmaceutique destinée à la prévention ou au traitement du Sida, qui comprend, à titre d'agent thérapeutique, un variant gp160 selon n'importe laquelle des revendications 10 à 16.
 - 24. Une composition pharmaceutique destinée à la prévention ou au traitement du Sida, qui comprend, à titre d'agent thérapeutique, un vecteur viral selon la revendication 20.

	-30	-25	-20	-15	-10	- 5	1	5	10	15	20	25
	:	-	:			:		:		:	:	:
a)	MRVKE	KY	(QHLWF	WGWK	WGTML:	LGILM	CSATI	EKLW	TVYY	GVPVWI	(EATTI	LFCASD
_ b)	MRVKG	IRRNY	-W-HQ	WG	WGTML:	LGLLM	CSATI	EKLW	TVYY	GVPVWI	(EATTI	LFCASD
c)	MRARG	IERNO	:QN-W-	WK	WGIML	LGILM	CSAAI	ONLW	TVYY	GVPVWI	(EATTT	LFCASD
d)	MRVME	MRKNO	OHLWK	W	-GTML	LGMLMI	CSAAI	EDLW	TVYY	GVPVWI	EATTT	LFCASE
e)	MRVKG	SGRNY	CHLWR	WG	TML	LGILMI	CSAAI	OLW	TVYY(GVPVW	EATTT	LFCASD
f)	MKVKG	TRRNY	CHLWR	W	-GTLLI	LGMLMI	CSATI	EKLW	TVYY	GVPVWK	(EATTT	LFCASD
	*		*. *		* :	**.**.	***.	. ***	***	*****	****	****
												-
	30	35	40	45	50	55	60	65	70	75	80	85
	:	:	:	:	:	:	:	:	:	:	:	:
a)	AKAYD	TEVHN	VWATH	ACVPI	DPNP	DEVVLV	NVTEN	IFNMW	KNDM	/EOMHE	DIISL	WDQSLK
b)	AKAYD	TEVHN	${f VWATQ}$	ACVPI	DPNPC	EVELV	NVTEN	FNMW	KNNM	/EOMHE	DIISL	WDOSLK
c)	AKSYE	TEAHN	IWATH	ACVPI	DPNPC	EIALE	NVTEN	IFNMW	KNNM	/EOMHE	DIISL	WDOSLK
d)	AKAYK	TEVHN	VWAKH	ACVPI	DPNPC	EVLLE	NVTEN	FNMW	KNNM	/EOMHE	DIISL	WDQSLK
e)	AKAYD	TEVHN	IWATH	ACVPI	DPNPC	EVVLG	NVTEN	FNMW	KNNM	ZEOMHE	DIISL	WDQSLK
f)	ARAYD	TEVHN	VWATH	ACVPI	DPNPC	EVVLG	NVTEN	FNMW	KNNM	EOMOE	DIISL	WDQSLK
·	**.	**.**	.**	****	****	* *	****	***	**.**	***	****	****
									, -	·	•	
											•	
	90	95	100	105	110	115	120	125	130	135	140	145
	:	:	:	:	:	:	:	:			:	:
a)	PCVKL'	TPLCV	SLKCT	DLGNA	TNTN-	SSNTN	SSSGE	MMME	KGEIK	NCSFN	ISTSI	RGKVQK
b)	PCVKL:	TPLCV'	TLNCT	DLRNT	TNTNN	STANN	NSNSE	GTIK	GGEMK	NCSFN	ITTSI	RDKMQK
C)	PCVKL'	PLCV:	TLNCS	DELRN	NGTMG	NNVTT	EEKG-		MK	NCSFN	VTTVLI	KDKKOO
d)	PCVKL	TPLCV:	TLNCT	D	-ANLN	GTNVT	SSSGG	TMME	NGEIK	NCSFO	VTTSRI	RDKTQK
e)	PCVKL	rplcv:	PLNCTI	NLRND	TSTN-	ATNTT	SSNRG	KM-E	GGEMT	NCSFN	ITTSI	RSKVQK
f)	PCVKL	PLCV:	LINCT	OLGKA	TNTN-	SSNWK	EET		KGETK	NCSFN	ITTSI	RDKIOK
·	****	****	*.*.		• •		•••			****.		* *.
										·		
	150	155	160		1	65 .	1	70	175	180	185	190
	:		:			:		:		:		:
a)	EYAFFY	KLDII	PID		NDT	TS	YTL	TSCN'	rsvit	OACPKY	VSFEPI	PIHYC
b)	EYALLY	KLDIV	/SID		NDS	TS	YRL	ISCN'	TSVIT	OACPK:	ISFEPI	PIHYC
c)	VYALFY	RLDIV	PIDNI	S		-STNS	INYRL	INCN	TSAIT	OACPKY	JSFEP1	PIHYC
ď)	KYALFY	KLDVV	PIEKO	NISP	KNNTS	NNTSY	SNYTL	IHCN:	SSVIT	OACPKY	/SFEPI	PIHYC
e)	EYALFY	KLDVV	PID		N	TS	-YTL	INCN	CSVIT	OACPKY	SFEPI	PIHYC
fj	ENALFR	NLDVV	PID		NAS	TTTNY	NYRL	IHCNI	RSVIT	OACPKY	SFEPT	PIHYC
•	*	**	*				* *	**	* **	****	****	****
						-		-	-			

Figure 1 (suite)

a) b) c) d) e) f)	APA APA APA TPA ARW	: GFAIL GFAIL GFAIL GFAIL GFAIL	: KCNNK KCNDK KCRDK KCNDK NCNNK KCNNK	: TFNGT KFSGK KFNGT KFNGT TFNGK	: GPCTN GSCKN GPCTN GPCTN GPCTN	VSTVQ VSTVQ VSTVQ VSTVQ VSTVQ VSTVQ	CTHGII CTHGII CTHGII CTHGII CTHGII CTHGII	: RPVVS: RPVVS: RPVVS: RPVVS: RPVVS: RPVVS:	TQLLLN TQLLLN TQLLLN TQLLLN THLLLN TQLLLN	: IGSLAE IGSLAE IGSLAE IGSLAE IGSLAE	EEVVII EEVVII EEVVII EEVVLI EEVVLI	250 : RSANFT RSENFT RSENFT RSENFT RSENFT RSDNFT **.*.*
a) b) c) d) e) f)	: DNAI DNAI NNAI DNVI DNAI NNAI	: KTIIV KTIIV KNIIA KTIIV KTIIV KTIIV	: QLNQS HLNES' QLNAS' QLKEA' QLKEA'	VEINC VQINC VKITC VQINC VEINC VAINC	: TRPNNI TRPNYI ARPYQI TRPNNI TRPNNI	NTRKS: NKRKR: NTRQR' NTRKS: NTTRS: NTRKS:	: IRIQRO IHIO IPIO ITKO IHIO	: EPGRAF EPGRAF EPGRVI EPGRAF EPGRAF	: VTIGK YTTKN YTT-R YATGQ YATGD	: I-GNM IIGTI SRSII SRSII IIGDII IIGDII	305 : RQAHCN RQAHCN GQAHCN RKAHCN RQAHCN . * * * *	: NISRAK NISRAQ NISRAQ NISRAK NISRAO
a) b) c) d) e) f)	WNAT WNDT WSKT WNNT WNNT	LKQIA LKQVA LKQVV LKQIV LKQIV	SKLRI SKLKI KKLGI TKLRI IKLRI KKLRI	EQFGNI EQF-KI FLLI EQF-DI EQF-EI EQFGNI	NKTII- NKTIV- NKTII- NKTIV- NKTII- NKTIV-	-FKQSS -FNQSS (FKPSS -FTSSS -FNRSS -FNQSS	GGDPE GGDPE GGDPE GGDPE GGDPE	IVTHS IVMHS ITTHS IVLHS IVMHS IVMHS	FNCGGI FNCGGI FNCGGI FNCGGI FNCGGI FNCRGI	: EFFYC1 EFFYC1 EFFYC1 EFFYC1 EFFYC1	365 STQLF STSPLF STGLF STQLF STQLF STQLF STCLF STCLF	: NSTWF NSTWN NSTWN NSTWN SSTWN NN
a) b) c) d) e) f)	-NST GNNT I-SA S	: WSTEG WN WNNIT TEG -GTEG	: SNNTE -NTTG ESNNS SNNTG SNNTG TEGTK	: GSDTI SNNNI TNTNI GNDTI GNDTI GNDTI	: TLPCR TLQCK TLQCR TLPCR	: IKQFI IKQII IKQII IKQIV IKEII IKQII	: NMWQE' NMWQE NMWQE	: VGKAM VGKAM GRKAI VGKAM VGKAM	: YAPPIS YAPPIE YAPPIS YAPPIS	GQIRC GQIRC RNILC GQIKC GQVKC	SSNITC	: GLLLT GLLLT GLLLT GLLLT GLLLT

Figure 1 (suite)

•			435	440		445	450	455	460	465	470	475	480	485
			:	:		:		:	• :	:	:	4,5	:	703
	a)	R	DGGNN	nngs-	E	IFRPG	GGDMR	DNWRS	ELYKY	KVVKI	EPLGV.	APTKA	KRRVV	OREK
	b)	R	DGGKD	TD	TNDTE	IFRPG	GGDMR	DNWRS	ELYKY	KVVTI	EPLGV.	APTKA	KRRVV	DREK
	C)	R	DGGIN	N	-STNE	TFRPG	GGDMR	DNWRSI	ELYKY	KVVQI:	EPLGV.	APTRA	KRRVV	EREK
	d)	R	DGGED	T	TNTTE	IFRLG	GGNMR	DNWRSI	ELYKY:	KVVRI:	EPLGV.	APTRA	KRRVV	QREK
	e)	R	DGGNS	KNGSK	NENTE:	IFRPG	GGDMR	DNWRSI	ELYKY	KVVKI	EPLGV	APTKA	KRRVV(DREK
	f)		DGGTN ***	V	TNDTE	VFRPG	GGDMR	DNWRSI	ELYKY	KVIKI	EPLGI.	APTKAI	KRRVV(QREK
		-			*	. ×× ×	**, **	*****	****	**. *	****	****	****	, * * *
			490	495	500	505	510	515	520	525	530	535	540	
			:	. :	:	:		:		:	:	:	:	
	a)	R.	AVG-I	GALFL(GFLGA	AGSTM	GARSM'	TLTVQ <i>I</i>	RQLLS	GIVQQ	DONNLI	LRAIE	AQQHLI	QLT
	b)	RA	AAI	GALFL(GFLGA!	AGSTMO	GAASV'	TLTVQ <i>I</i>	RLLLS	GIVQÇ	DONNLI	LRAIE	LOOHMI	QLT
	C)	R.A	TIG-TI	SAMPL(SFLGAA	AGSTMO	SARSV	rltvQ <i>a</i>	RQLMS	GIVQ	ONNLI	LRAIE?	IQQHLI	.QLT
	d) e)	IC.	MCTT(SAMPL(SELGA!	AGSTMO	AGSI.	rltvo.	RHLLS	GIVQ	MIND	RAIE	QQHLI	QLT
	·f)	R	VCTV	SVALIL TI	SELUGAY SELUGAY	CCUM(ATOM:	LTVQA LTVQA	MULT C	CTAOC	SONNTI	RAIEA	OOHLI	QLT
	· */	**	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * ' * * * 3UML TIC	* * * * * * *	*****	A A	*****	KOTTS	PETAGE	ONNTI	RAILA	OGHEL	QLT
•			•	•			•							***
					•									
The state of the s	•	545	550	555	560	565	570	575	580	585	590	595	600	
		:	:	:		. :		. :				:	:	
	a)	VW	GIKQI	LOARII	LAVERY	LKDQC	LLGIV	IGCSGK	LICTI	'AVPWN	aswsn	KSLEQ	IWNNM	TWM
	b)	VW	GIKQI	JOARVI	AVERY	LKDQC	LLGFV	GCSGK	LICTI	'TVPWN	ASWSN	KSLDD	IWNNM	TWM
	c') d)	VW	GIKQI	OYBIT	AVERY	TRUÇÇ	LLGIV	GCSGK	HICTT	NVPWN	SSWSN	RSLNE	IWQNM	TWM
	e)	VW.	GIKOI	OYBIT.	.AVEDV	TEDOO	TICIN	IGCSGK IGCSGK	PICLL	I.A.B.M.V	ASWSN	KSLNM	IWNNM	TWM
	f)	V 11	GINGI	UY BALL TANKAT	raeur Vaeur	TYDQQ	TIGIN	<i>MDCDGN</i>	LICIT	LALMU	.T.2M2V	KSLDK	IWGNM	TWM
		VW				תמיד	エエクエな	たってってい	ፒ ተረጣጥ	A TITICIDE	ス ぐじさごい			TWM
	- /	V W	****	*** *	*****	LRDQQ	LLGIW	GCSGK	LICTT	AVPWN	'ASWSN	KSLED	TMDNW	+++
	- ;	∨w **	****	****	****	LRDQQ *.**	LLGIW	IGCSGK *****	LICTT ****	AVPWN .****	ASWSN .****	.**.	** ** TMDNW	***
	Ι,	**	****	***.*	****	*.***	***.*	*****	LICTT ****	AVPWN .****	ASWSN .****	.**.	** **	***
	Ξ,	** 605	***** 610	615	620	ERDQQ *.*** 625	LLGIW ***.* 630	GCSGK ***** 635	**** 640	AVPWN •**** 645	ASWSN •**** 650	.**. 655	** ** 660	***
		** 605 :	610	615	620 620	*.*** 625	***.* 630	635 •	**** 640	.**** 645	.**** 650	.**. 655	** ** 660	***
	a)	** 605 :	***** 610 : DREIN	615 NYTSL	620 : ::::::::::::::::::::::::::::::::::	*.*** 625 EESQN	***.* 630 : QQEKN	635 EQELL	**** 640 : ELDKW	.**** 645 : ASLWN	.**** 650 : WFNIT	.**. 655 : NWLWY	** ** 660 : IKIFI	*** MIV
	a) b)	** 605 : EW. QW.	***** 610 : DREIN EREID	615 NYTSL	620 : : : : : : : : : :	*.*** 625 EESQN EKSQT	***.* 630 : QQEKN	635 EQELL EQELL	**** 640 : ELDKW	.**** 645 : ASLWN ASLWN	.**** 650 : WFNIT	.**. 655 : NWLWY NWLWY	** ** 660 : IKIFI	*** MIV
	a) b) c)	** 605 : EW QW EW	***** 610 : DREIN EREID EREID	615 : NYTSL NYTGL	620 : : : : : : : : : : : : : : : : : : :	625 EESQN EKSQT EESQT	***.* 630 QQEKN QQEKN QQEKN	635 EQELLE EQELLE EKELLE	**** 640 ELDKW ELDKW	.**** 645 : ASLWN ASLWN ASLWN	.**** 650 WFNIT WFDIT WFSIT	.**. 655 : NWLWY NWLWY QWLWY	** ** 660 : IKIFI IKIFI IKIFI	*** MIV MIV MII
	a) b) c) d)	** 605 EW. QW. EW. QW.	610 EREIN EREID EREID EREID	615 NYTSL NYTSL NYTGL NYTGI	620 : IHSLI IYSLL IYSLI IYNLL	625 EESQN EKSQT EESQT EESQN	***.* 630 QQEKN QQEKN QQEKN QQEKN	635 EQELL EQELL EKELL EQELL	**** 640 : ELDKW. ELDKW. ELDKW.	645 : ASLWN ASLWN ASLWN ANLWN	650 : WFNIT WFDIT WFSIT WFDIT	*** 655 NWLWY NWLWY QWLWY OWLWY	** ** 660 : IKIFI IKIFI IKIFI IKIFI	MIV MIV MII MIV
	a) b) c)	** 605 EWI QWI EWI QWI EWI	610 EREID EREID EREID EREID	615 NYTSL NYTSL NYTGL NYTGI NYTSL	620 : IHSLI IYSLL IYSLI IYNLL IYTLI	625 EESQN EKSQT EESQN EESQN EESQN	***.* 630 QQEKN QQEKN QQEKN QQEKN QQEKN	635 EQELLE EQELLE EKELLE	**** 640 : ELDKW. ELDKW. ELDKW. ELDKW.	645 : ASLWN ASLWN ASLWN ANLWN	.**** 650 WFNIT WFDIT WFSIT WFDIT WFNIT	*** 655 NWLWY NWLWY QWLWY QWLWY NWLWY	** ** 660 : IKIFI IKIFI IKIFI IKIFI IKIFI	*** MIV MIV MIV MIV MIV

Figure 1 (suite)

a) b) c) d)	GGI GGI GGI	: LVGLR LVGLR LIGLR LVGLK LVGLR	IVFAV IVFAV IVFAV IVFAV IVFTV	: LSIVN LSIVN LSIVN LSIVN	RVRQG RVRQG RVRQG RVRQG RVRQG	YSPLS YSPLS YSPLS YSPLS YSPLS	FQTHI LQTRE FQTLI FQTHI FQTRI	PPVPRG PAPRG PAPRG PSORG	: PDRPE PDRPE PDRPE PDRPE	GIEEE GIEEE GIEGE GIEGE	GGERD GGERG GGERD GGERD	720 : PRDRSIRLV PRDTSGRLV RDRSVRLL RDRSGGAV RDRSGRLV
a) b) c)	725 : NGS HGF	730 : : : : : : : : :	***.* 735 : WDDLR: WVDLR:	**.** 740 : SLCLF: SLFLF:	***** 745 : SYHRLE	750 : RDLLL:	.** 755 : IVTRI	* .** 760 : VELLGI	****. 765 : RRGWE	*.*.* 770 : ALKYWI	****. 775 : WNLLO:	
d) e) f)	NGF DGF DGF .*	LATLIV LALIV **	VDDLW VVD-R VEDLR * * •	TLCSF: SLCLF: * * * * * * * * * * * * * * * * * * *	SYHRLE SYHRLE SYRRLE ***	RDLLLI RDLLLI ***.**	VVRI VTRI AART 815	VELLGF VELLGF **.**.	RRGWEI RRGWEI IRGWEI ***.	ALKYW ALKYW ALKYW	VNLLQY VNLLQY VS.L.OY	YWSQELRN YWSQELKN YWSQELRN YWIQELKN
a) b) c) d) e)	SAV: SAV: SAV: SAV:	SLLNA SLLNA SLFDA SLLNT SFVNA SWLNA	YAIAT VAIAT VAIAT VAIAT	/AEGTI /AEGTI /AEGTI /AEGTI /AEGTI /TEGTI	ORVIEV ORVIEV ORVIEI ORIIEV ORVIEL	VQGAC LQRAG IQRAC AQRIL LQRAF AQRAY	RAILI RAVLI RAFLI RAILI RAILI	HIPRRI HIPTRI	ROGLE ROGLE ROGLE ROGLE ROGLE	RALL- RSLLN RALL- RALQ- RLLL-	GWQMV	7KKYSGMA
a) b) c) d) e)	CYK	 3KN 										

a) b)	-30 - : MRVK MM	: EKYQ N	: HLWRW(QLLI	: GWKWG'	: TMLLG AILLA	: ILM SACLV	ICS! YC	: ATEK -TQ-	-YVT	: VYYG\ VFYG\	: /PVWKE /PTWKN	: ATTTI	25 FCASDA FCATRN
a) b)	30 : KAYD R	TEVH	: NVWATH DTWGT]	[QCLPI	: TDPNP YDDNO	QEVVL QEITL	: IVNV IVN-	ENFI EAFI	: NMWKI DAWNI	: NDMVE NTVTE	: QMHED QAIED	: IISLW VWHLF	85 EDQSLKP ETSIKP
a) b)	CVKL	: TPLC\ TPLC\	100 : /SLKCT /AMKCS	: DLGNA STESS	: TNTN: TGNN'	アヤスドス	SSSG	EMM-	2 0 0 0 0	PTRO	שמשתם	זגם גם ג	125 : MEK CSGLGE
a) b)	GEIKI EETII	NCSFN NCQFN	: ISTSI	RGKVQ RDK-K	KEYA- KOYNI	TWYS	: LDII: KDVV	: PIDN CETN	: DTTS NSTN	YT OTOC	: -LTSCI YMNHCI	NTSVI	
a) b)	: VSFEI HYWDA	: PIPIH AIRFR	YCAPP	: GFAIL GYALL	: KCNNI RCNDI	TFNGT NYSGI	GP-C	: CTNV CSKV	: STVQ VAST	: CTHG: CTRM	METOTS	: STQLLI STWFGE	240 : LNGSLA TNGTRA
a) b)	ENRTY	IRSA	: NFTDN YWHGRI	AKTII ONRTI	: VQLNQ ISLNK	SVE	LHCF	: TRPN KRPG	NNTR NKTV	: KSIRI KQIMI	QRGPC MSGHV	FHSHY	295 : VTIGK VQPINK • * • *
a) b)	: IGNMRQ RPRQ	: AHCN: AWCW]	310 : ISRAKW F-KGKW	: VNATLI VKDAM(: (QIAS)EVKE	KLR TLAKH	: EQF- PRYR	GI	: NNKT: DTRN:	: LIFKO LSFAA	: SS-GG PGKGS	: DPEIV DPEVA	: THSFN YMWTN

Figure 2 (suite)

	355	360	365	370	375	380	385	390	395	400	405	410
a) b)	CGGEF CRGEF	FYCN: LYCN:	STQLFN MT	ISTWFN WFL	STWSI N-WIE	'EGSNI NKTHI	NTEGSI RNYA	TITLE	CRIKO	FINMW(QEVGKA HKVGRN	MYAPP WYLPP
											465 4	
a) b)	: ISGQI REGEL	: RCSSI SCNSI	: NITGLL IVTSII	: LTRDG ANMDW	: GNNNN QNNNQ	: GSEII TNITE	: FRPGGG FSAEVA	: DMRDN EL	: WRSELY YRLELO	: KYKV DYKL	VKIEPL VEITPI	: GVAPT GFAPT
	475 4 :	:	:	:	:	:	:	:	:	:	:	:
a) b)	KEKRY	SSAHG	RHTRG	VFVLG	FLGFL	ATAGS	AMGAA	SLTVS	AOSRTI	LAGIV	7QQQNN1 7QQQQQ1 * * * *	עעמיזיו
	535 54	10 5	45 55 :	50 55	5 56	i0 50	55 57	0 57	5 580	585	5 590 :	
: a) b)	EAQQHI KRQQEI	LQLT LRLT	VWGIKÇ	LQARI LOARV	LAVER	YLKDO	QQLLGI DARLNS	WGCSG WGCAF	KLICTI ROVCHI	'AVPWN	IASWSNI	KSLEO
	600		610	615	620	625	630	635	640	645	650	,
a) b)	: IWNNMT DWDNMT *.**	WQEW:	EKQVRY	YTSLI LEANI	HSLIE SKSLE	ESQNÇ OAOIC	QEKNE OEKNM	QELLE:	LNSWDT	LWNWF	NITNWI	7KYTO
	660 6 :	65		75 6	80 6	85	590		695	700		710
a) b)	IFIMIV YGVLII	GGLV(VAVI <i>l</i>	GLRIVF.	AVLSI' YVVQMI	VNRVR LSRLRI	QGYSP KGYRP	L VFSSPI	-SF(: OTHLPT OIHIHK *·*··	PRGPD	ANEETE	EEGG EDGG
	715 :										0 765 : :	
a) b)	ERDRD	R-SII RYWPV	RLVNGS:	LALIW HFLIR	DDLRS	LC-LE LTRLY	SYHR-	-LRDL LLSRS	LLIVT	RIVELI	LGRRGW	EALK LR

Figure 2 (suite')

a) b)	LR	TAFLQYO	780 : WSQEI GCEWIQEI * **	LKNSA AFQAA	: VSLLN ARATR	: NATAI <i>I</i> RETLAC	: VAEG: SACRGI	TDRVIE LWRVLE	: VVQGA RIG	: CRAIR -RGIL	: HIPRR AVPRR	IRŌG
a) b)	LE:	830 : RILL IALL										

Pst1	
CTGCAGTGACAATGAGAGTGAAGGAGAAATATCAGCACTTGTGGAGATGGGGG	53
MetArgValLysGluLysTyrGlnHisLeuTrpArgTrpGly	<i></i>
TGGAAATGGGGCACCATGCTCCTTGGGATATTGATGATCTGTAGTGCTACA	10
TrpLysTrpGlyThrMetLeuLeuGlyIleLeuMetIleCysSerAlaThr KpnI	10
GAAAAATTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAGGAA	15.
GluLysLeuTrpValThrValTyrTyrGlyValProValTrpLysGluAla	13.
ACCACCACTCTATTTTGTGCATCAGATGCTAAAGCATATGATACAGAGGTA	20
ThrThrThrLeuPheCysAlaSerAspAlaLysAlaTyrAspThrGluVal	20
CATAATGTTTGGGCCACACATGCCTGTGTACCCACAGACCCCAACCCACAA	25
HisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGln	20
GAAGTAGTATTGGTAAATGTGACAGAAAATTTTAACATGTGGAAAAATGAC	201
GluValValLeuValAsnValThrGluAsnPheAsnMetTrpLysAsnAsp	308
ordivative devaluation of the supplementation	
ATGGTAGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTA	359
MetValGluGlnMetHisGluAspIleIleSerLeuTrpAspGlnSerLeu	
AAGCCATGTGTAAAATTAACCCCACTCTGTGTTAGTTTAAAGTGCACTGAT	410
LysProCysValLysLeuThrProLeuCysValSerLeuLysCysThrAsp	4 T A
TTGGGGAATGCTACTAATACCAATAGTAGTAATACCAATAGTAGTAGCGGG	461
LeuGlyAsnAlaThrAsnThrAsnSerSerAsnThrAsnSerSerGly	401
GAAATGATGAGGAGAAAGGAGAGATAAAAAACTGCTCTTTCAATATCAGC	512
GluMetMetGluLysGlyGluIleLysAsnCysSerPheAsnIleSer	J12
ACAAGCATAAGAGGTAAGGTGCAGAAAGAATATGCATTTTTTTATAAACTT	563
ThrSerIleArgGlyLysValGlnLysGluTyrAlaPhePheTyrLysLeu	
GATATAATACCAATAGATAATGATACTACCAGCTATACGTTGACAAGTTGT	614
AspIleIleProIleAspAsnAspThrThrSerTyrThrLeuThrSerCys	
AACACCTCAGTCATTACACAGGCCTGTCCAAAGGTATCCTTTGAGCCAATT	665
AsnThrSerValIleThrGlnAlaCysProLysValSerPheGluProIle	003
CCCATACATTATTGTGCCCCGGCTGGTTTTGCGATTCTAAAATGTAATAAT	716
ProlleHisTyrCysAlaProAlaGlyPheAlaIleLeuLysCysAsnAsn	/16
AAGACGTTCAATGGAACAGGACCATGTACAAATGTCAGCACAGTACAATGT	
LysThrPheAsnGlyThrGlyProCysThrAsnValSerThrValGlnCys	767
2701mli mensingly initially flocys in LASH valser initial gincys	
ACACATGGAATTAGGCCAGTAGTATCAACTCAACTGCTGTTGAATGGCAGT	818
ThrHisGlyIleArgProValValSerThrGlnLeuLeuLeuAsnGlySer	
CTAGCAGAAGAAGAGGTAGTAATTAGATCTGCCAATTTCACAGACAATGCT	869
LeuAlaGluGluGluValValIleArqSerAlaAsnPheThrAspAsnAla	

Figure 3 (suite)

AAAACCATAATAGTACAGCTGAACCAATCTGTAGAAATTAATT	920	
CCCAACAACAATACAAGAAAAAGTATCCGTATCCAGAGGGGACCAGGGAGA ProAsnAsnAsnThrArgLysSerIleArgIleGlnArgGlyProGlyArg	971	
GCATTTGTTACAATAGGAAAAATAGGAAATATGAGACAAGCACATTGTAAC AlaPheValThrIleGlyLysIleGlyAsnMetArgGlnAlaHisCysAsn	1022	
ATTAGTAGAGCAAAATGGAATGCCACTTTAAAACAGATAGCTAGC	1073	
AGAGAACAATTTGGAAATAATAAAACAATAATCTTTAAGCAATCCTCAGGA ArgGluGlnPheGlyAsnAsnLysThrIleIlePheLysGlnSerSerGly	1124	
GGGGACCCAGAAATTGTAACGCACAGTTTTAATTGTGGAGGGGAATTTTTC GlyAspProGluIleValThrHisSerPheAsnCysGlyGlyGluPhePhe	1175	
TACTGTAATTCAACACAACTGTTTAATAGTACTTGGTTTAATAGTACTTGG TyrCysAsnSerThrGlnLeuPheAsnSerThrTrpPheAsnSerThrTrp	1226	Data and Septime. And the Septime
AGTACTGAAGGGTCAAATAACACTGAAGGAAGTGACACAATCACACTCCCA SerThrGluGlySerAsnAsnThrGluGlySerAspThrIleThrLeuPro	1277	n yakan mengularan Malamatan kepadalah
TGCAGAATAAAACAATTTATAAACATGTGGCAGGAAGTAGGAAAAGCAATG CysArgIleLysGlnPheIleAsnMetTrpGlnGluValGlyLysAlaMet	1328	anda que de la como de La como de la como de La como de la como de
TATGCCCCTCCCATCAGCGGACAAATTAGATGTTCATCAAATATTACAGGG TyrAlaProProIleSerGlyGlnIleArgCysSerSerAsnIleThrGly	1379	
BglII CTGCTATTAACAAGAGATGGTGGTAATAACAACAATGGGTCCGAGATCTTC LeuLeuLeuThrArgAspGlyGlyAsnAsnAsnAsnGlySerGluIlePhe	1430	·
AGACCTGGAGGAGAGATATGAGGGACAATTGGAGAAGTGAATTATAAAAAAGProGlyGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyrLys	1481	
TATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACC	1532	
AATCACGTGGTGCAGAATGAACACCAAGCAGTGGGAATAGGAGCTTTGTTC AsnHisValValGlnAsnGluHisGlnAlaValGlyIleGlyAlaLeuPhe	1583	
CTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCACGGTCAATGACG LeuGlyPheLeuGlyAlaAlaGlySerThrMetGlyAlaArgSerMetThr	1634	
CTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAAC LeuThrValGlnAlaArgGlnLeuLeuSerGlyIleValGlnGlnGlnAsn	1685	
AATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTC	1736	

Figure 3 (suite)

TGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTA TrpGlyIleLysGlnLeuGlnAlaArgIleLeuAlaValGluArgTyrLeu	
AAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGC LysAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIleCys	1838
ACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAG ThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluGln	
ATTTGGAATAACATGACCTGGATGGAGTGGGACAGAGAAATTAACAATTAC IleTrpAsnAsnMetThrTrpMetGluTrpAspArgGluIleAsnAsnTyr	1940
ACAAGCTTAATACATTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAG ThrSerLeulleHisSerLeulleGluGluSerGlnAsnGlnGlnGluLys	1991
AATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGG AsnGluGlnGluLeuLeuGluLeuAspLysTrpAlaSerLeuTrpAsnTrp	2042
TTTAACATAACAAATTGGCTGTGGTATATAAAAAATAGAGTTAGGCAGGGA PheAsnIleThrAsnTrpLeuTrpTyrIleLysAsnArgValArgGlnGly	2093
${\tt TATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGAC} \\ {\tt TyrSerProLeuSerPheGlnThrHisLeuProThrProArgGlyProAsp}$	2144
AGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAC	2195
ATTCGATTAGTGAACGGATCCTTAGCACTTATCTGGGACGATCTGCGGAGC IleArgLeuValAsnGlySerLeuAlaLeuIleTrpAspAspLeuArgSer	2246
CTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTACTCTTGATTGTAACG LeuCysLeuPheSerTyrHisArgLeuArgAspLeuLeuLeuIleValThr	2297
AGGATTGTGGAACTTCTGGGACGCAGGGGGTGGGAAGCCCTCAAATATTGG ArgIleValGluLeuLeuGlyArgArgGlyTrpGluAlaLeuLysTyrTrp	2348
TGGAATCTCCTACAGTATTGGAGTCAGGAACTAAAGAATAGTGCTGTTAGC TrpAsnLeuLeuGlnTyrTrpSerGlnGluLeuLysAsnSerAlaValSer	2399
TTGCTCAATGCCACAGCCATAGCAGTAGCTGAGGGGACAGATAGGGTTATA LeuLeuAsnAlaThrAlaIleAlaValAlaGluGlyThrAspArgValIle	2450
GAAGTAGTACAAGGAGCTTGTAGAGCTATTCGCCACATACCTAGAAGAATA GluValValGlnGlyAlaCysArgAlaIleArgHisIleProArgArgIle	2501
AGACAGGGCTTGGAAAGGATTTTGCTATAAGATGGGTGGCAAGTGGTCAAA ArgGlnGlyLeuGluArgIleLeuLeuTerAspGlyTrpGlnValValLys	2552

WO 92/19742

2644

11/20

Figure 3 (suite)

AAGTAGTGTGGTTGGATGGCCTACTGTAAGGGAAAGAATGAGACGAGCTGA LysTerCysGlyTrpMetAlaTyrCysLysGlyLysAsnGluThrSer***	2603
PstI	
GCCAGCAGCAGATGGGGTGGGAGCAGCATCTCGACCTGCAG	2644

FRUILLE DE REMPLACEMENT

, marchele Joy. Ionsa, mhachana

13/20

222	
GGC ATGAGAGTGAAGGGGATCAGGAGGAATTATCAGCACTGGTGGGGATGGGGC MetArgValLysGlyIleArgArgAsnTyrGlnHisTrpTrpGlyTrpGly	51
OTG2624	
AGCATGCTCCTTGGGATATTGATGATCTG	
ACGATGCTCCTTGGGTTATTAATGATCTGTAGTGCTACAGAAAAATTGTGG ThrMetLeuLeuGlyLeuLeuMetIleCysSerAlaThrGluLysLeuTrp	102
GTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAGCAACCACCACTCTA	153
ValThrValTyrTyrGlyValProValTrpLysGluAlaThrThrTheu	153
TTTTGTGCATCAGATGCTAAAGCATATGATACAGAGGTACATAATGTTTGG	204
PheCysAlaSerAspAlaLysAlaTyrAspThrGluValHisAsnValTrp	204
GCCACACAAGCCTGTGTACCCACAGACCCCAACCCACAAGAAGTAGAATTG	255
AlaThrGlnAlaCysValProThrAspProAsnProGlnGluValGluLeu	233
GTAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATGGTAGAACAG	306
ValAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGln	
ATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAAGCCATGTGTA	357
MetHisGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysVal	331.
AAATTAACCCCACTCTGTGTTACTTTAAATTGCACTGATTTGAGGAATACT	408
LysLeuThrProLeuCysValThrLeuAsnCysThrAspLeuArgAsnThr	
ACTAATACCAATAATAGTACTGCTAATAACAATAGTAATAGCGAGGGAACA	459
ThrAsnThrAsnAsnSerThrAlaAsnAsnAsnSerAsnSerGluGlyThr	
ATAAAGGGAGGAGAAATGAAAAACTGCTCTTTCAATATCACCACAAGCATA	510
IleLysGlyGlyGluMetLysAsnCysSerPheAsnIleThrThrSerIle	
AGAGATAAGATGCAGAAAGAATATGCACTTCTTTATAAACTTGATATAGTA	-561
ArgAspLysMetGlnLysGluTyrAlaLeuLeuTyrLysLeuAspIleVal	
TCAATAGATAATGATAGTACCAGCTATAGGTTGATAAGTTGTAATACCTCA	612
SerIleAspAsnAspSerThrSerTyrArgLeuIleSerCysAsnThrSer	~~~
GTCATTACACAAGCTTGTCCAAAGATATCCTTTGAGCCAATTCCCATACAC	663
ValIleThrGlnAlaCysProLysIleSerPheGluProIleProIleHis	
TATTGTGCCCCGGCTGGTTTTGCGATTCTAAAATGTAACGATAAAAAGTTC	714
TyrCysAlaProAlaGlyPheAlaIleLeuLysCysAsnAspLysLysPhe	
AGTGGAAAAGGATCATGTAAAAATGTCAGCACAGTACAATGTACACATGGA	765
SerGlyLysGlySerCysLysAsnValSerThrValGlnCysThrHisGly	
ATTAGGCCAGTAGTATCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAA	816
IleArgProValValSerThrGlnLeuLeuLeuAsnGlvSerLeuAlaGlu	

The Art of the Art of

14/20

Figure 5 (suite)

GAAGAGGTAGTAATTAGATCTGAGAATTTCACTGATAATGCTAAAACCATC GluGluValValIleArgSerGluAsnPheThrAspAsnAlaLysThrIle	867
ATAGTACATCTGAATGAATCTGTACAAATTAATTGTACAAGACCCAACTAC IleValHisLeuAsnGluSerValGlnIleAsnCysThrArgProAsnTyr	918
AATAAAAGAAAAAGGATACATATAGGACCAGGGAGAGCATTTTATACAACA AsnLysArgLysArgIleHisIleGlyProGlyArgAlaPheTyrThrThr	969
AAAAATATAATAGGAACTATAAGACAAGCACATTGTAACATTAGTAGAGCA LysAsnIleIleGlyThrIleArgGlnAlaHisCysAsnIleSerArgAla	102
AAATGGAATGACACTTTAAGACAGATAGTTAGCAAATTAAAAGAACAATTT LysTrpAsnAspThrLeuArgGlnIleValSerLysLeuLysGluGlnPhe	107
AAGAATAAAACAATAGTCTTTAATCAATCCTCAGGAGGGGACCCAGAAATT LysAsnLysThrIleValPheAsnGlnSerSerGlyGlyAspProGluIle	1122
GTAATGCACAGTTTTAATTGTGGAGGGGAATTTTTCTACTGTAATACATCA ValMetHisSerPheAsnCysGlyGlyGluPhePheTyrCysAsnThrSer	1173
CCACTGTTTAATAGTACTTGGAATGGTAATAATACTTGGAATAATACTACA ProLeuPheAsnSerThrTrpAsnGlyAsnAsnThrTrpAsnAsnThrThr	1224
GGGTCAAATAACAATATCACACTTCAATGCAAAATAAAACAAATTATAAAC GlySerAsnAsnAsnIleThrLeuGlnCysLysIleLysGlnIleIleAsn	1275
ATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCCTCCCATTGAAGGACAA MetTrpGlnGluValGlyLysAlaMetTyrAlaProProIleGluGlyGln	1326
ATTAGATGTTCATCAAATATTACAGGGCTACTATTAACAAGAGATGGTGGT IleArgCysSerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGly	1377
AAGGACACGGACACGACACCGAGATCTTCAGACCTGGAGGAGGAGAT LysAspThrAspThrAsnAspThrGluIlePheArgProGlyGlyGlyAsp	1428
ATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAACAATT MetArgAspAsnTrpArgSerGluLeuTyrLysTyrLysValValThrIle	1479
OTG2625	
CTTGGTAATCCTCATCGTGGGTGGGCCCGTTTC GAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGA GluProLeuGlyValAlaProThrLysAlaLysArgArgValValGlnArg	1530
GAAAAAAGA GluLysArg	1539

GGC		
ATGAGAGCGAGGGGATAGAGAGAAATTGTCAAAACTGGTGGAAATGGGGC MetArgAlaArgGlyIleGluArgAsnCysGlnAsnTrpTrpLysTrpGly	51	• •
OTG2624 AGCATGCTCCTTGGGATATTGATGATCTG ATCATGCTCCTTGGGATATTGATGACCTGTAGTGCTGCAGACAATCTGTGG	102	
IleMetLeuGlyIleLeuMetThrCysSerAlaAlaAspAsnLeuTrp		
GTCACAGTTTATTATGGGGTGCCTGTATGGAAGGAAGCAACCACCACTCTA ValThrValTyrTyrGlyValProValTrpLysGluAlaThrThrThrLeu	153	
TTTTGTGCATCAGATGCTAAATCATATGAAACAGAGGCACATAATATCTGG PheCysAlaSerAspAlaLysSerTyrGluThrGluAlaHisAsnIleTrp	204	
GCCACACATGCCTGTGTACCCACGGACCCCAACCCACAAGAAATAGCACTG AlaThrHisAlaCysValProThrAspProAsnProGlnGluIleAlaLeu	255	
GAAAATGTGACAGAAAACTTTAACATGTGGAAAAATAACATGGTGGAACAG GluAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGln	306	fow down was to often twist ta
ATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAAACCATGTGTA MetHisGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysVal	357	
AAATTAACCCCACTCTGTGTCACTTTAAACTGTAGTGATGAATTGAGGAAC LysLeuThrProLeuCysValThrLeuAsnCysSerAspGluLeuArgAsn	408	
AATGGCACTATGGGGAACAATGTCACTACAGAGGAGAAAGGAATGAAAAAC AsnGlyThrMetGlyAsnAsnValThrThrGluGluLysGlyMetLysAsn	459	• •
TGCTCTTTCAATGTAACCACAGTACTAAAAGATAAGAAGCAGCAAGTATAT CysSerPheAsnValThrThrValLeuLysAspLysLysGlnGlnValTyr	510	
GCACTTTTTTATAGACTTGATATAGTACCAATAGACAATGATAGTAGTACC AlaLeuPheTyrArgLeuAspIleValProIleAspAsnAspSerSerThr	561	
AATAGTACCAATTATAGGTTAATAAATTGTAATACCTCAGCCATTACACAG AsnSerThrAsnTyrArgLeulleAsnCysAsnThrSerAlalleThrGln	612	
GCTTGTCCAAAGGTATCCTTTGAGCCAATTCCCATACATTATTGTGCCCCA AlaCysProLysValSerPheGluProIleProIleHisTyrCysAlaPro	663	
GCTGGTTTTGCGATTCTAAAGTGTAGAGATAAGAAGTTCAATGGAACAGGC AlaGlyPheAlaIleLeuLysCysArgAspLysLysPheAsnGlyThrGly	714	
CCATGCACAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTG ProCysThrAsnValSerThrValGlnCysThrHisGlyIleArgProVal	765	
GTGTCAACTCAACTGCTGTTGAATGGCAGTCTAGCAGAAGAAGAGGTCATA ValSerThrGlnLeuLeuLeuAsnGlySerLeuAlaGluGluGluValIle	816	

Figure 6 (suite)

ATTAGATCCGAAAATCTCACAAACAATGCTAAAAACATAATAGCACATCTT IleArgSerGluAsnLeuThrAsnAsnAlaLysAsnIleIleAlaHisLeu	867
AATGAATCTGTAAAAATTACCTGTGCAAGGCCCTATCAAAATACAAGACAA	918
AsnGluSerValLysIleThrCysAlaArgProTyrGlnAsnThrArgGln	710
AGAACACCTATAGGACTAGGGCAATCACTCTATACTACAAGATCAAGATCA	969
ArgThrProIleGlyLeuGlyGlnSerLeuTyrThrThrArgSerArgSer	
ATAATAGGACAAGCACATTGTAATATTAGTAGAGCACAATGGAGTAAAACT IleIleGlyGlnAlaHisCysAsnIleSerArgAlaGlnTrpSerLysThr	1020
TTACAACAAGTAGCTAGAAAATTAGGAACCCTTCTTAACAAAACAATAATA	1071
LeuGlnGlnValAlaArgLysLeuGlyThrLeuLeuAsnLysThrIleIle	
AAGTTTAAACCATCCTCAGGAGGGGACCCAGAAATTACAACACACAGTTTT LysPheLysProSerSerGlyGlyAspProGluIleThrThrHisSerPhe	1122
AATTGTGGAGGGGAATTCTTCTACTGTAATACATCAGGACTGTTTAATAGT	1173
AsnCysGlyGlyGluPhePheTyrCysAsnThrSerGlyLeuPheAsnSer	11/3
ACATGGAATATTAGTGCATGGAATAATATTACAGAGTCAAATAATAGCACA	1224
ThrTrpAsnIleSerAlaTrpAsnAsnIleThrGluSerAsnAsnSerThr	
AACACAAACATCACACTCCAATGCAGAATAAAACAAATTATAAAGATGGTG	1275
AsnThrAsnIleThrLeuGlnCysArgIleLysGlnIleIleLysMetVal	
GCAGGCAGGAAAGCAATATATGCCCCTCTATCGAAAGAACATTCTATGT	1326
AlaGlyArgLysAlaIleTyrAlaProProIleGluArgAsnIleLeuCys	
TCATCAAATATTACAGGGCTACTATTGACAAGAGATGGTGGTATAAATAA	1377
· · · · · · · ·	
AGTACTAACGAGACCTTTAGACCTGGAGGAGGAGATATGAGGGACAATTGG SerThrAsnGluThrPheArgProGlyGlyGlyAspMetArgAspAsnTrp	1428
CTTGGTAATCCTCAT AGAAGTGAATTATATAAATATAAGGTAGTACAAATTGAACCACTAGGAGTA	1479
ArgSerGluLeuTyrLysTyrLysValValGlnIleGluProLeuGlyVal	14/7
OTG2625	
CGTGGGTGGGCCCGTTTC	
GCACCCACCAGGCCAAAGAGAGAGAGTGGTGGAAAGAGAGAAAAAAAA	1524
J J J J J J J-	

and the confidence of the second

17/20

GGC ATGAGAGTGATGGAGATGAGGAAGAATTGTCAGCACTTGTGGAAATGGGGC MetArgValMetGluMetArgLysAsnCysGlnHisLeuTrpLysTrpGly	51
OTG2624	
AGCATGCTCCTTGGGATATTGATGATCTG	
ACCATGCTCCTTGGGATGTTGATGATCTGTAGTGCTGCAGAGGACTTGTGG ThrMetLeuLeuGlyMetLeuMetlleCysSerAlaAlaGluAspLeuTrp	102
GTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAGCAACCACCACTCTA	153
ValThrValTyrTyrGlyValProValTrpLysGluAlaThrThrThrLeu	155
TTTTGTGCATCAGAAGCTAAAGCATATAAAACAGAGGTACATAATGTCTGG	204
PheCysAlaSerGluAlaLysAlaTyrLysThrGluValHisAsnValTrp	204
GCCAAACATGCTTGTGTACCTACAGACCCCAACCCACAAGAAGTACTATTG	255
AlaLysHisAlaCysValProThrAspProAsnProGlnGluValLeuLeu	233
of District Consideration and the control of the co	
GAAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATGGTAGAACAG	306
GluAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGln	
ATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAAGCCATGTGTA	357
MetHisGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysVal	<i>331</i>
AAATTAACCCCACTCTGTGTTACTTTAAATTGCACTGATGCTAACTTGAAT	408
LysLeuThrProLeuCysValThrLeuAsnCysThrAspAlaAsnLeuAsn	400
GGTACTAATGTCACTAGTAGTAGCGGGGGAACAATGATGGAGAACGGAGAA	459
GlyThrAsnValThrSerSerSerGlyGlyThrMetMetGluAsnGlyGlu	437
ATAAAAAACTGCTCTTTCCAAGTTACCACAAGTAGAAGAGATAAGACGCAG	510
IleLysAsnCysSerPheGlnValThrThrSerArgArgAspLysThrGln	310
AAAAAATATGCACTTTTTTATAAACTTGATGTGGTACCAATAGAGAAGGGT	561
LysLysTyrAlaLeuPheTyrLysLeuAspValValProIleGluLysGly	301
AATATTAGCCCTAAGAATAATACTAGCAATAATACTAGCTATGGTAACTAT	612
AsnIleSerProLysAsnAsnThrSerAsnAsnThrSerTyrGlyAsnTyr	012
ACATTGATACATTGTAATTCCTCAGTCATTACACAGGCCTGTCCAAAGGTA	663
ThrLeuIleHisCysAsnSerSerValIleThrGlnAlaCysProLysVal	005
TCCTTTGAGCCAATTCCCATACATTATTGCACCCCGGCTGGTTTTGCGATT	714
SerPheGluProIleProIleHisTyrCysThrProAlaGlyPheAlaIle	714
•	
CTAAAGTGTAATGATAAGAAGTTCAATGGAACAGGACCATGTAAAAATGTC	765
LeuLysCysAsnAspLysLysPheAsnGlyThrGlyProCysLysAsnVal	
AGCACAGTACAATGTACACATGGAATTAGGCCAGTAGTGTCAACTCAACTG	816
SerThrValGlnCysThrHisGlyIleArgProValValSerThrGlnLeu	010

Figure 7 (suite)

CTGTTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGAAAAT LeuLeuAsnGlySerLeuAlaGluGluGluValValIleArgSerGluAsn	867
TTCACGGACAATGTTAAAACCATAATAGTACAGCTGAATGCATCTGTACAA PheThrAspAsnValLysThrIleIleValGlnLeuAsnAlaSerValGln	918
ATTAATTGTACAAGACCCAACAACAATACAAGAAAAAGTATAACTAAGGGA IleAsnCysThrArgProAsnAsnAsnThrArgLysSerIleThrLysGly	969
CCAGGGAGAGTAATTTATGCAACAGGACAAATAATAGGAGATATAAGAAAA ProGlyArgVallleTyrAlaThrGlyGlnIleIleGlyAspIleArgLys	1020
GCACATTGTAACCTTAGTAGAGCACAATGGAATAACACTTTAAAACAGGTA AlaHisCysAsnLeuSerArgAlaGlnTrpAsnAsnThrLeuLysGlnVal	1071
GTTACAAAATTAAGAGAACAATTTGACAATAAAACAATAGTCTTTACGTCA ValThrLysLeuArgGluGlnPheAspAsnLysThrIleValPheThrSer	1122
TCCTCAGGAGGGGACCCAGAAATTGTACTTCACAGTTTTAATTGTGGAGGG SerSerGlyGlyAspProGluIleValLeuHisSerPheAsnCysGlyGly	1173
GAATTTTTCTACTGTAATACAACACAACTGTTTAATAGTACTTGGAATAGT GluPhePheTyrCysAsnThrThrGlnLeuPheAsnSerThrTrpAsnSer	1224
ACTGAAGGGTCAAATAACACTGGAGGAAATGACACAATCACACTCCCATGC ThrGluGlySerAsnAsnThrGlyGlyAsnAspThrIleThrLeuProCys	1275
AGAATAAAACAAATTGTAAACATGTGGCAGGAAGTAGGAAAAGCAATGTAT ArgIleLysGlnIleValAsnMetTrpGlnGluValGlyLysAlaMetTyr	1326
GCCCCTCCCATCAGTGGACAAATTAAATGTATATCAAATATTACAGGGCTA AlaProProIleSerGlyGlnIleLysCysIleSerAsnIleThrGlyLeu	1377
CTATTAACAAGAGATGGGGGTGAAGATACAACTAATACTACAGAGATCTTC LeuLeuThrArgAspGlyGlyGluAspThrThrAsnThrThrGluIlePhe	1428
AGACTTGGAGGAGGAAATATGAGGGACAATTGGAGAAGTGAATTATAAA ArgLeuGlyGlyAsnMetArgAspAsnTrpArgSerGluLeuTyrLys	1479
OTG2625 CTTGGTAATCCTCATCGTGGGTGGGCCCGTTTG	
ATAAAGTGGTAAGAATTGAGCCATTAGGAGTGGCACCACTAGGGCAAAG YrLysValValArgIleGluProLeuGlyValAlaProThrArgAlaLys	1530
GAAGAGTGGTGCAAAGAGAAAAAGA	1557

19/20

	GGC		
	ATGAAAGTGAAGGGGACCAGGAGGAATTATCAGCACTTGTGGAGATGGGGC MetLysValLysGlyThrArgArgAsnTyrGlnHisLeuTrpArgTrpGly	51	
	OTG2624 AGCATGCTCCTTGGGATATTGATGATCTG		
	ACCTTGCTCCTTGGGATGTTGATGATCTGTAGTGCTACAGAAAATTGTGG ThrLeuLeuCeuGlyMetLeuMetIleCysSerAlaThrGluLysLeuTrp	102	
	GTCACAGTTTATTATGGAGTACCTGTGTGGAAAGAAGCAACTACCACTCTA ValThrValTyrTyrGlyValProValTrpLysGluAlaThrThrThrLeu	153	
	TTTTGTGCATCAGATGCTAGAGCATATGATACAGAGGTACATAATGTTTGG PheCysAlaSerAspAlaArgAlaTyrAspThrGluValHisAsnValTrp	204	
	GCCACACATGCCTGTGTACCCACAGACCCCAACCCACAAGAAGTAGTATTG AlaThrHisAlaCysValProThrAspProAsnProGlnGluValValLeu	255	
	GGAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATGGTAGAACAG GlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGln	306	erte en
•	ATGCAGGAGGATATAATCAGTTTATGGGATCAAAGCCTAAAGCCATGTGTA MetGlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysVal	357	Albertania (j. 17 Haraja (j. 1800.)
	AAATTAACCCCACTCTGTGTTACTTTAAATTGCACTGATTTGGGGAAGGCT LysLeuThrProLeuCysValThrLeuAsnCysThrAspLeuGlyLysAla	408	a Bartonia (1921) Smothada (1921)
	ACTAATACCAATAGTAGTAATTGGAAAGAAGAAATAAAAGGAGAAATAAAA ThrAsnThrAsnSerSerAsnTrpLysGluGluIleLysGlyGluIleLys	459	
	AACTGCTCTTTCAATATCACCACAAGCATAAGAGATAAGATTCAGAAAGAA	510	
	AATGCACTTTTTCGTAACCTTGATGTAGTACCAATAGATAATGCTAGTACT AsnAlaLeuPheArgAsnLeuAspValValProIleAspAsnAlaSerThr	561	
	ACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCAGTCATT ThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSerValIle	612	
	ACACAGGCCTGTCCAAAGGTATCATTTGAGCCAATTCCCATACATTATTGT ThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCys	663	-
	ACCCCGGCTGGTTTTGCGATTCTAAAGTGTAATAATAAAACGTTCAATGGA ThrProAlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGly	714	
	AAAGGACCATGTACAAATGTCAGCACAGTACAATGTACACATGGAATTAGG LysGlyProCysThrAsnValSerThrValGlnCysThrHisGlyIleArg	765	
	CCAATAGTGTCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAG ProlleValSerThrGlnLeuLeuLeuAsnGlySerLeuAlaGluGluGlu	816	

Figure 8 (suite)

GTAGTAATTAGATCTGACAATTTCACGAACAATGCTAAAACCATAATAGTA ValVallleArgSerAspAsnPheThrAsnAsnAlaLysThrlleIleVal	867
CAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCCAACAACAATACA GlnLeuAsnGluSerValAlaIleAsnCysThrArgProAsnAsnAsnThr	918
AGAAAAAGTATCTATATAGGACCAGGGAGAGCATTTCATACAACAGGAAGA ArgLysSerlleTyrlleGlyProGlyArgAlaPheHisThrThrGlyArg	969
ATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGG IleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrp	1020
AATAACACTTTAGAACAGATAGTTAAAAAATTAAGAGAACAGTTTGGGAAT AsnAsnThrLeuGlüGlnIleValLysLysLeuArgGluGlnPheGlyAsn	1071
AATAAAACAATAGTCTTTAATCAATCCTCAGGAGGGGACCCAGAAATTGTA AsnLysThrIleValPheAsnGlnSerSerGlyGlyAspProGluIleVal	1122
ATGCACAGTTTTAATTGTAGAGGGGAATTTTTCTACTGTAATACAACACAA MetHisSerPheAsnCysArgGlyGluPhePheTyrCysAsnThrThrGln	1173
CTGTTTAATAATACATGGAGGTTAAATCACACTGAAGGAACTAAAGGAAAT LeuPheAsnAsnThrTrpArgLeuAsnHisThrGluGlyThrLysGlyAsn	1224
GACACAATCATACTCCCATGTAGAATAAAACAAATTATAAACATGTGGCAG AspThrIleIleLeuProCysArgIleLysGlnIleIleAsnMetTrpGln	1275
GAAGTAGGAAAAGCAATGTATGCCCCTCCCATTGGAGGACAAATTAGTTGT GluValGlyLysAlaMetTyrAlaProProIleGlyGlyGlnIleSerCys	1326
TCATCAAATATTACAGGGCTGCTATTAACAAGAGATGGTGGTACAAATGTA SerSerAsnIleThrGlyLeuLeuLhrArgAspGlyGlyThrAsnVal	1377
ACTAATGACACCGAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAAT ThrAsnAspThrGluValPheArgProGlyGlyGlyAspMetArgAspAsn	1428
CTTGGTAATCCT TGGAGAAGTGAATTATATAAATATAAAGTAATAAAAATTGAACCATTAGGA TrpArgSerGluLeuTyrLysTyrLysVallleLyslleGluProLeuGly	1479
OTG2625 CATCGTGGGTGGGCCCGTTTC ATAGCACCCACCAAGGCAAAGAGAGAGAGAGAGAGAGAGA	1527
IleAlaProThrLvsAlaLvsArgArgValValClnArgClutvsArg	

INTERNATIONAL SEARCH REPORT

International application No. PCT/FR 92/00394

	ASSIFICATION OF SUBJECT MATTER .Cl. 5 C12N15/48; C12N15/62;	C12N15/86; C12N5/10; A6	1K39/21			
According to International Patent Classification (IPC) or to both national classification and IPC						
	LDS SEARCHED					
Minimum	ocumentation searched (classification system follower	by classification symbols)				
	C1. ⁵ C12N; C07K					
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included in	the fields searched			
Electronic	ata base consulted during the international search (nan	ne of data base and, where practicable, search	terms used)			
C. DOCT	MENTS CONSIDERED TO BE RELEVANT	·				
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
Y	EP,A,0314534 (TRANSGENE S.A. the whole document	ET AL.) 3 May 1989,	1,10, 17-24			
γ "	WO,A,9102544 (INSTITUT PASTED the whole document	JR ET AL.) 7 March 1991,	1,10, 17-24			
Α	EP,A,0370458 (ABBOT LABORATOR	RIES) 30 May 1990	1,10,			
	the whole document		17-19, 21,23			
Y	EP,A,0245136 (TRANSGENE S.A. 11 November 1987, cited in the application the whole document	ET AL.)	1-3,10, 17-24			
Υ	WO,A,9012880 (APPLIED BIOTECH 1 November 1990, whole document	NOLOGY, INC.)	1-3,10. 17 ₇ 24			
Further	documents are listed in the continuation of Box C	. See patent family annex.	/			
Special of document to be of j	ategories of cited documents: t defining the general state of the art which is not considere particular relevance	"T" later document published after the intendate and not in conflict with the applic the principle or theory underlying the	ation but cited to understand invention			
"L" documen cited to	cument but published on or after the international filing dat t which may throw doubts on priority claim(s) or which is establish the publication date of another citation or othe ason (as specified)	considered novel or cannot be considered step when the document is taken alone	ered to involve an inventive			
"O" documen means	referring to an oral disclosure, use, exhibition or other	combined with one or more other such d	step when the document is			
the priori	published prior to the international filing date but later that by date claimed	"&" document member of the same patent i				
	Date of the actual completion of the international search Date of mailing of the international search report					
06 Au	gust 1992 (06.08.92)	07 September 1992 (07.09	9.92)			
Name and ma	iling address of the ISA/	Authorized officer				
EUROP	EAN PATENT OFFICE					
acsimile No.		Telephone No.				
m PCT/ISA	210 (second sheet) (July 1992)					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FR 92/00394

 -	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	D.1 44- 11 31
lategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	WO,A,9105864 (CONNAUGHT LABORATORIES LIMITED) 2 May 1991	1-6, 10-14, 17-19, 21,23
	whole document	
P,X	WO,A,9107664 (CAMBRIDGE BIOSCIENCE CORPORATION) 30 May 1991	1,10, 17-19, 21,23
	whole document	-
P,X	WO,A, 9115238 (GENENTECH, INC.) 17 October 1991	1,10, 17-19, 21,23
	whole document	
		•
1		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. FR SA

9200394 59743

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 06/08/92

Patent document cited in search report	Publication date	1	Patent family member(s)		lication date
EP-A-0314534	03-05-89	FR-A-	2620030	10-03-89)
		AU-A-	2190288	09-03-89)
		JP-A-	2000448	05-01-90)
WO-A-9102544	07-03-91	FR-A-	2650954	22-02-91	
		EP-A-	0439601	07-08-91	
EP-A-0370458	30-05-90		4545889	05-07 - 90	
		CA-A-	2003383	23-05-90	
		JP-A-	2273187	07-11-90	
EP-A-0245136	11-11-87	FR-A-	2596771	09-10-87	
		FR-A,B	2606029	06-05-88	
		AU-B-	604696	03-01-91	: .
	•	AU-A-	7234987	09-11-87	:
		WO-A-	8706260	22-10-87	
		JP-T-	1500161	26-01-89	
WO-A-9012880	01-11-90	EP-A-	0469089	05-02-92	- , .
WO-A-9105864	02-05-91	EP-A-	0495811	29-07-92	-
₩0-A-9107664	30-05-91	EP-A-	0453563	30-10-91	
WO-A-9115238	17-10-91	AU-A-	7584791	30-10-91	

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 92/00394

			cation sont applicables, les indiquer tous) 7	
Selon ia cla CIB	assification internation 5 C12N15/4 A61K39/2		la classification nationale et la CIB C12N15/86;	C12N5/10
II. DOMAII	NES SUR LESQUEL	S LA RECHERCHE A PORTE		
			on minimale consultée ⁸	
Système	de classification		Symboles de classification	
		, -	•	
CIB	5	C12N ; C07K		
		Documentation consultée autre que où de tels documents font partie des	la documentation minimale dans la mesure domaines sur lesquels la recherche a port $ heta$	
III. DOCUM		S COMME PERTINENTS ¹⁰		·
Catégorie °	Iden	itification des documents cités, avec in des passages pertinent	dication, si nècessaire 12 3 D	No. des revendications visées 14
Y	1989	314 534 (TRANSGENE S.	 	1,10, 17-24
Y	1991	.02 544 (INSTITUT PAS	TEUR ET AL.) 7 Mars	1,10, 17-24
A	* Docume	70 458 (ABBOT LABORA		1,10, 17-19, 21,23
r	Novembre cité dan	45 136 (TRANSGENE S.A 1987 s la demande nt éntier *	A. ET AL.) 11	1-3,10, 17-24
		· · · · · · · · · · · · · · · · · · ·	-/	
"A" docum consist docum tional "L" docum tional autre "O" docum une e "P" docum costérieuremen	déré comme particuliè uent antérieur, mais p i ou après cette date uent pouvant jeter un té ou cité pour déterm citation ou pour une ; ment se référant à une aposition ou tous autr pent publié avant la dat at à la date de priorité	général de la technique, non rement pertinent ublié à la date de dépôt interna- doute sur une revendication de iner la date de publication d'une aison spéciale (telle qu'indiquée) divulgation orale, à un usage, à es moyens tte de dépôt international, mais	"T" document ultérieur publié postériei international ou à la date de priori à l'état de la technique pertinent, i le principe ou la théorie constituar document particulièrement pertiner quée ne peut être considérée commimpliquant une activité inventive document particulièrement pertiner diquée ne peut être considérée com activité inventive lorsque le docum plusieurs autres documents de mên naison étant évidente pour une per document qui fait partie de la mêm	té et n'appartement pas mais cité pour comprendre it la base de l'invention it l'invention revendi- ie nouvelle ou comme it l'invention reven- me impliquant une ent est associé à un ou ae nature, cette combi- sonne du métier.
V. CERTIFIC	CATION		<u> </u>	
Date à laquelle		Jonale a été effectivement achevée	Date d'expédition du présent rappor	
dministration	chargée de la recherc	he internationale	Signature du fonctionnaire autorisé	07 SEP 1992'
	-	ROPEEN DES BREVETS	JULIA P.	

III DOCTING	OCUMENTS CONSIDERES COMME PERTINENTS 14 (SUITE DES RENSEIGNEMENTS I DEUXIEME FEUILLE)			
Catégorie °	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendication visées 18		
Y ,	WO,A,9 012 880 (APPLIED BIOTECHNOLOGY, INC.) 1 Novembre 1990 * Document éntier *	1-3,10, 17-24		
Р, Х	WO,A,9 105 864 (CONNAUGHT LABORATORIES LIMITED) 2 Mai 1991	1-6, 10-14, 17-19, 21,23		
	* Document éntier *			
,х	WO,A,9 107 664 (CAMBRIDGE BIOSCIENCE CORPORATION) 30 Mai 1991	1,10, 17-19, 21,23		
	* Document éntier *			
У, Х	WO,A,9 115 238 (GENENTECH, INC.) 17 Octobre 1991	1,10, 17-19, 21,23		
	* Document éntier *	1		
				
-		3		
		† †		
		: v		
-				
	-			

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

9200394 SA 59743

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets. 06/08/92

Document brevet cité au rapport de recherche	Date de publication			Date de publicatio	
EP-A-0314534	03-05-89	FR-A- AU-A- JP-A-	2620030 2190288 2000448	10-03-89 09-03-89 05-01-90	
WO-A-9102544	07-03-91	FR-A- . EP-A-	2650954 0439601		02-91 08-91
EP-A-0370458	30-05-90	AU-A- CA-A- JP-A-	4545889 2003383 2273187	23-	07-90 05-90 11-90
EP-A-0245136	11-11-87	FR-A- FR-A,B AU-B- AU-A- WO-A- JP-T-	2596771 2606029 604696 7234987 8706260 1500161	06-6 03-6 09-1 22-1	10-87 10-88 10-91 11-87 10-87
WO-A-9012880	01-11-90	EP-A-	0469089	05-0	2-92
WO-A-9105864	02-05-91	EP-A-	0495811	29-0	7-92
WO-A-9107664	30-05-91	EP-A-	0453563	30-1	0-91
WO-A-9115238	17-10-91	AU-A-	7584791	.30-1	0-91

Sec. 6 5 🍇