

# **DATA STRUCTURES** & ALGORITHMS **Course Outline**

Lecturer: Dr. Nguyen Hai Minh



# CONTENT

- 1. Overview
- 2. Goals
- 3. Teaching Plan
- 4. Grading
- 5. Resources
- 6. Course Policies





# 1. Overview

- ☐ This course contents 2 sections:
  - 1. Data Structures:
    - □ Linked list
    - Stack
    - Queue
    - ☐ Hash Table
    - □ Tree
    - □ Graph





### 1. Overview

- ☐ This course contents 2 sections:
  - 2. Algorithms:
    - Some basic algorithms:
      - Sorting algorithms
      - Searching algorithms
      - Graph algorithms
    - Analysis of the Algorithms





# 1. General

■ Lecturer Info:

■ Email: ctduc@fit.hcmus.edu.vn





# 2. Goals

### No. Goal

- 1 Understand the role of data structure organizing in a computing project, the relationship between algorithms and data structures.
- 2 Understand the characteristics, pros and cons of each type of data structures.
- Understand and analyze the complexity of the algorithms based on those data structures.
- 4 Design a data structure that fits in real life applications (apply known data structures and/or designing new data structures based on known ones).



# 2. Goals (cont.)

| No. | Goal                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------|
| 5   | Implement the learned data structures and algorithms using C/C++.                                   |
| 6   | Comprehend the provided textbooks and references in English.                                        |
| 7   | Work independently or in groups to solve problems using appropriate data structures and algorithms. |





# 3. Teaching Plan

| Week | Topic                                                        | Activities |
|------|--------------------------------------------------------------|------------|
| 1    | Course outline                                               |            |
|      | Chapter 1. Introduction to Data Structures 1. Basic Concepts |            |
|      | 2. Linked List, Stack, Queue Review                          |            |
|      | 3. Sequential Search, Binary Search Review                   |            |
| 2    | Chapter 2. Introduction to Algorithm & Algorithm Analysis:   | I1, HW1    |
|      | 1. The Role of Algorithms in Computing                       |            |
|      | 2. Algorithms Analysis Framework                             |            |
|      | 3. Asymptotic notation                                       |            |
|      | 4. Mathematical Analysis of Algorithm                        |            |
|      | 5. Sort: Selection Sort, Insertion Sort                      |            |



# 3. Teaching Plan

| No. | Topic                                                                                                             | Activities   |
|-----|-------------------------------------------------------------------------------------------------------------------|--------------|
| 3   | Chapter 3. Advanced Sorts 1. Heap Sort 2. Merge Sort 3. Quick Sort 4. Counting Sort 5. Radix Sort                 |              |
| 4   | Chapter 4. Hash 1. Hash function 2. Collision resolving by Chaining 3. Probing: linear, quadratic, double hashing | I2, HW2, HW3 |
| 5   | Chapter 5. Tree Data Structures 1. Trees 2. Binary Search Tree                                                    | I3, HW4      |
| 6   | Midterm Examination                                                                                               |              |



# 3. Teaching Plan

| No.   | Topic                                                                                                                                                 | Activities      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 7, 8  | Chapter 5. (cont) 4. AVL-Tree 5. Red-Black Tree 6. B-Tree, 2-3 Tree, 2-3-4 Tree                                                                       | I4, HW5,<br>HW6 |
|       | 7. Priority Queue                                                                                                                                     |                 |
| 9, 10 | Chapter 6. Graphs 1. Introduction 2. Graph Representation 3. Graph Traversal: BFS, DFS, Dijsktra 4. Spanning Tree 5. Finding Shortest Path - Dijkstra | I5, HW7         |
| 11    | Final Review                                                                                                                                          |                 |



# 4. Grading

| No. | Assessment         | Description                                            | Rate |
|-----|--------------------|--------------------------------------------------------|------|
| 1   | 05 quizzes (Q1—Q5) | Small in-class quizzes for each topic                  | 15%  |
| 2   | Mid term           | Closed book exam.                                      | 10%  |
| 3   | Final term         | Limited open book exam                                 | 40%  |
| 4   | Lab work           | Practice part.<br>HW, project, mid term and final term | 35%  |
| 5   | Bonus              | For giving solution, contributing to lectures.         | 10%  |
|     |                    | Total credits                                          | 110% |



# 5. Resources

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms (4<sup>th</sup> Edition), The MIT Press, 2022



2. Frank M. Carrano, Timothy Henry, **Data Abstraction and Problem Solving with C++**, Wall and Mirrors (7<sup>th</sup> Edition), Pearson, 2016





### 5. Resources

3. Anany Levitin, Introduction to the Design and Analysis of Algorithms, (3<sup>rd</sup> Edition), Pearson, 2011







### 5. Resources

- Language:
  - C++ (Console mode)
- Integrated Development Environment (IDE):
  - Any C/C++ IDE
  - Visual Studio is preferred.















# 6. Course Policies

■ What you should do:















# 6. Course Policies

■ What you are prohibited:



