NAME: PRATHAPANI SATWIKA

REG.NO: 20BCD7160

Title of the experiment:

Measurement of Low dimensions by Laser Diffraction.

Objectives :-

- a) To determine the wavelength of the given laser source using a diffraction grating.
- b) To determine the particle size of the thin film coated on the glass slide.

 -Equipment List:
 - 1. Laser source
- 2. Diffraction grating
- 3. Low dimension particles coated thin film

H. Screens and graph sheets.

LASER DIFFRACTION
GRATING

LASER DE LASER

GRATING

Laboratory report: -

a) Determination of wavelength.

$V = 0.69 \times 10^{-1}$						
S. 40.	order of diffraction (n)	Distance between grating and	Distance between diffraction	0	〉(nm)	
estande de la composição		diffraction spot (D) meter	spot and the center maxima (y) meter			
4		10 cm	3.4cm	0.327	0.542	
2.	٤	18cm	7.8 cm	0.662	0.549	
3.	1	8 cm	2.7cm	0.325	0.539	
ц,	2	8 cm	6.5 cm	0.682	0.565	
3.		7 cm	2.5 cm	0.343	0.568	
6.	2	7cm	6.2 cm	0.882	0.723	

-Average wavelength 1= 0.58/x10m

we know that;

$$\Theta_1 = +\alpha n \left(\frac{\gamma_1}{D_1}\right) = +\alpha n \left(\frac{3 \cdot y}{10}\right) = 0.327$$

$$\theta_2 = \tan^2\left(\frac{v_2}{D_2}\right) = \tan^2\left(\frac{v_3}{10}\right) = 0.662$$

$$0_3 = \tan\left(\frac{43}{D_3}\right) = \tan\left(\frac{2.7}{8}\right) = 0.325$$

$$\Theta_{H} = +an^{2}\left(\frac{4y}{Dy}\right) = -4an^{2}\left(\frac{6.5}{8}\right) = 0.682$$

$$\theta_{\overline{s}} = \tan^{7}\left(\frac{4\overline{s}}{5\overline{t}}\right) = \tan^{7}\left(\frac{2.5}{7}\right) = 0.343$$

$$\theta_6 = +an^{\dagger} \left(\frac{4c}{D_6} \right) = +an^{\dagger} \left(\frac{6.2}{7} \right) = 0.885$$

$$\lambda_{1} = 1.69 \times 10^{9} \sin\left(\frac{0.329}{1}\right) = 1.69 \times 10^{9} \times 0.321 = 0.842 \times 10^{9}$$

$$\lambda_{2} = 1.69 \times 10^{9} \sin\left(\frac{0.662}{2}\right) = 1.69 \times 10^{9} \times \sin(0.331)$$

$$= 1.69 \times 10^{9} \times 0.324 = 0.549 \times 10^{9}$$

$$= 1.69 \times 10^{9} \times 0.324 = 0.549 \times 10^{9}$$

$$= 1.69 \times 10^{9} \times 0.319 = 0.539 \times 10^{9}$$

$$\lambda_{1} = 1.69 \times 10^{9} \times 0.319 = 0.539 \times 10^{9}$$

$$\lambda_{2} = 1.69 \times 10^{9} \times 0.319 = 0.539 \times 10^{9}$$

$$\lambda_{3} = 1.69 \times 10^{9} \times 0.319 = 0.539 \times 10^{9}$$

$$\lambda_{4} = 1.69 \times 10^{9} \times 0.324 = 0.563 \times 10^{9}$$

$$\lambda_{5} = 1.69 \times 10^{9} \times 0.324 = 0.563 \times 10^{9}$$

$$\lambda_{6} = 1.69 \times 10^{9} \times 0.325 = 1.69 \times 10^{9} \times 0.428$$

$$\lambda_{6} = 1.69 \times 10^{9} \sin\left(\frac{0.885}{2}\right) = 1.69 \times 10^{9} \times 0.428$$

$$= 1.69 \times 10^{9} \times 0.428$$

Average wavelength (1) = 0.542 + 0.549 + 0.539 + 0.565 + 0.568 + 0.723 = 3.486 = 0.581 nm $= 0.581 \times 10^{9} \text{ m}$

Results:-

- 1. The wavelength of the Laser = 0.581 × 10 m
- 2. The width of the single slit = 21.31 × 10 9 m Precautions:
- 1. The laser beam, either direct or reflected must never reach the eyes. It is extremely dangerous for the eyes. 2. The laser beam should be handled very carefully.