Aplicaciones lineales

Ejercicio 1. De las siguientes aplicaciones decide cuáles son lineales y cuáles no.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por

$$f_1(x, y, z) = (x + y, y + z, z - x)$$

2.
$$f_2: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por

$$f_2(x, y, z) = (xy, yz, -zx)$$

3.
$$f_3: \mathbb{R}^2 \to \mathbb{R}^3$$
 dada por

$$f_3(x,y) = (x+y, x-y, 2x+2y)$$

4.
$$f_4: \mathbb{R}^2 \to \mathbb{R}^3$$
 dada por

$$f_4(x,y) = (x+1,y,x)$$

5.
$$f_5: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por

$$f_5(x, y, z) = (x + 1, x + 2, x + 3)$$

6.
$$f_6: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por

$$f_6(x, y, z) = (x, z)$$

7.
$$f_7: \mathbb{R} \to \mathbb{R}^3$$
 dada por

$$f_7(x) = (x, 2x, 3x)$$

8.
$$f_8: \mathbb{R}^2 \to \mathbb{R}$$
 dada por

$$f_8(x,y) = x^2 + y^2$$

Ejercicio 2. Determina cuáles de las siguientes aplicaciones son lineales:

1.
$$f:(\mathbb{Z}_3)^2 \to (\mathbb{Z}_3)^2$$
, $f(x,y) = (x+1,y+2)$.

$$2. \ f:V\to V', f(\nu)=0.$$

3.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(r) = r^2$.

4.
$$f: (\mathbb{Z}_7)^3 \to (\mathbb{Z}_7)^2$$
, $f(x, y, z) = (x + y + z, 28x + 92z)$.

Ejercicio 3. Sea V un \mathbb{Q} -espacio vectorial de dimensión 4 y V' un \mathbb{Q} -espacio vectorial de dimensión 3. Sean $B = \{v_1, v_2, v_3, v_4\}$ y $B' = \{v_1', v_2', v_3'\}$ bases de V y V'. Se considera la única aplicación lineal $f: V \to V'$ que verifica:

$$f(v_1) = 4v'_1 + 7v'_2 + 2v'_3$$

$$f(v_2) = -v'_1 + 3v'_2 + 9v'_3$$

$$f(v_3) = v'_2 + 2v'_3$$

$$f(v_4) = 2v'_1 - v'_2 - 8v'_3$$

Se pide:

- 1. Escribe la matriz asociada a f respecto de las bases B y B'.
- 2. Calcula la dimensión de los subespacios núcleo e imagen de f.
- 3. ¿Es f una aplicación lineal inyectiva?¿Y sobreyectiva? Justifica las respuestas.

Ejercicio 4. Sea la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (3x + 2y - z, 5x - 2y, -9x + 10y - 2z)$$

- 1. ¿Pertenece el vector $(1, \sqrt{2}, \sqrt{3})$ a la imagen de f?
- 2. ¿Existe algún vector de la forma $(2,5,\lambda)$ que pertenezca al núcleo de f?
- 3. ¿Es f un isomorfismo de espacios vectoriales?

Ejercicio 5. Sea $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^2$ la aplicación lineal definida por f(x, y, z) = (x + 2y + z, 2z). Calcula las ecuaciones implícitas y paramétricas de N(f) y de im(f).

Ejercicio 6. Calcula la matriz asociada respecto de las bases canónicas de la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ que lleva

$$\begin{array}{lll} u_1 = (1,1,2) & en & \nu_1 = (1,0,1,2) \\ u_2 = (0,1,1) & en & \nu_2 = (0,1,-1,1) \\ u_3 = (1,1,0) & en & \nu_3 = (0,1,1,0) \end{array}$$

Calcula el núcleo y la imagen.

Ejercicio 7. Dada la aplicación lineal $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5^3$ que verifica

$$(1,1,1) \in N(f)$$

 $f(1,2,1) = (1,1,2)$
 $f(1,2,2) = (0,1,1)$

- 1. Calcula la matriz de f en la base canónica.
- 2. Calcula las dimensiones del núcleo y la imagen de f.

Ejercicio 8. Construye una aplicación lineal $f: \mathbb{Q}^2 \to \mathbb{Q}^2$ de forma que f(0,1) = (28,92) y f(1,0) = (92,28).

Ejercicio 9. Construye una aplicación lineal $f: (\mathbb{Z}_3)^3 \to (\mathbb{Z}_3)^4$ de forma que

$$im(f) = L((1,2,0,2),(2,0,2,0)).$$

Ejercicio 10. Construye una aplicación lineal $f: (\mathbb{Z}_2)^3 \to (\mathbb{Z}_2)^3$ de forma que el vector (1,0,1) pertenezca al núcleo de f y los ectores (1,0,0),(0,1,0) a la imagen.

Ejercicio 11. Sea $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^3$, f(x, y, z) = (x + y + z, 2x + y, 3x + 2y + z). Calcula una base de N(f) y una base de im(f).

Ejercicio 12. Sea $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^3$ dada por $f(x_1, x_2, x_3) = (x_1 + x_2, x_3, x_1 + x_3)$. Encuentra la matriz de f respecto de la base canónica y respecto de la base $\{(1, 1, 0), (0, 0, 1), (1, 0, 1)\}$. Halla la imagen mediante f de los siguientes subespacios de $(\mathbb{Z}_5)^3$:

1.
$$V_1 = \{(x_1, x_2, x_3) \in \mathbb{Z}_5^3 \mid x_1 + x_2 + x_3 = 0\}$$

2.
$$V_2 = \{(x_1, x_2, 0) \mid x_1, x_2 \in \mathbb{Z}_5\}$$

3.
$$V_3 = \{(x_1, x_2, x_3) = t(1, -1, 1) \mid t \in \mathbb{Z}_5\}$$

Ejercicio 13. Dada la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ definida por

$$f(x, y, z) = (x + y + z, x - y - z, 2x, y + z)$$

- 1. Calcula una base del núcleo de f.
- 2. Calcula ecuaciones implícitas (o cartesianas) de la imagen de f.
- 3. Calcula la expresión matricial de f respecto de las bases

$$B = \{(1,0,0), (0,1,-1), (1,1,1)\}$$

$$B' = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$$

Ejercicio 14. Da una aplicación lineal $f: \mathbb{Q}^2 \to \mathbb{Q}^4$ tal que $(1,-1) \in N(f)$ y f(3,2) = (2,-1,3,-2). Describe explícitamente cuanto vale f(x,y) para cualquier vector $(x,y) \in \mathbb{Q}^2$.

Ejercicio 15. Da una aplicación lineal $f: \mathbb{Q}^3 \to \mathbb{Q}^3$ que verifique que el vector (1,2,-1) pertenezca al núcleo de f, que f(1,-1,0)=(3,1,2) y que Im(f) sea el subespacio de ecuación x-y-z=0. Calcula la matriz de f en la base $B=\{(1,0,0),(1,1,0),(1,1,1)\}$

Ejercicio 16. Prueba que las siguientes aplicaciones son lineales.

1. D: $\mathbb{R}_3[x] \to \mathbb{R}_3[x]$ dada por

$$D(\mathfrak{p}(x)) = \mathfrak{p}'(x)$$

2. $S: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por

$$S(A) = \frac{1}{2}(A + A^{t})$$

3. $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por

$$T(A) = \frac{1}{2}(A - A^{t})$$

4. $I_{[0,1]}: \mathbb{R}_3[x] \to \mathbb{R}$ dada por

$$I_{[0,1]}(p(x)) = \int_0^1 p(x) dx$$

5. $P: M_2(\mathbb{R}) \to M_{3\times 2}(\mathbb{R})$ dada por

$$P(A) = PA \text{ con } P \in M_{3 \times 2}(\mathbb{R})$$

Ejercicio 17. Para las aplicaciones lineales del ejercicio anterior calcula:

- 1. La matriz asociada respecto de las bases estándar adecuadas.
- 2. El núcleo y la imagen.

Ejercicio 18. Estudia cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados. Halla las matrices respecto de las bases estándar de las que lo sean:

1.
$$M_B: M_2(\mathbb{Z}_3) \to M_{2\times 1}(\mathbb{Z}_3)$$
 dada por $M_B(A) = AB$ con $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

2.
$$S_B: M_2(\mathbb{Q}) \to M_2(\mathbb{Q})$$
 dada por $S_B(A) = A + B$ con $B \in M_2(\mathbb{Q})$ fija.

3.
$$C_B: M_2(\mathbb{Z}_5) \to M_2(\mathbb{Z}_5)$$
 dada por $C_B(A) = AB - BA$ con $B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

4. A: $\mathbb{R}_2[x] \to \mathbb{R}^4$ dada por A(p(x)) = (p(0), p(1), p(2), p(3))

Ejercicio 19. Se considera la aplicación det : $M_2(\mathbb{Q}) \to \mathbb{Q}$ que asocia a cada matriz su determinante. Responde a las siguientes cuestiones y justifica la respuesta:

- 1. ¿Es det una aplicación lineal?
- 2. ¿Es f una aplicación inyectiva?
- 3. ¿Es f una aplicación sobreyectiva?

Ejercicio 20. Sea la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ definida por

$$f(x, y, z) = (x + y + z, x - y - z, 2x, y + z)$$

- 1. Calcula una base del núcleo de f
- 2. Calcula las ecuaciones cartesianas de la imagen de f
- 3. Calcula la expresión matricial de f respecto de las bases B y B', donde

$$B = \{(1,0,0), (0,1,-1), (1,1,1)\}$$

$$B' = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$$

Ejercicio 21. Para la aplicación lineal $f_{\alpha}: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$\begin{array}{lll} f_{\mathfrak{a}}(1,1,1) &=& (\mathfrak{a},\mathfrak{a},\mathfrak{a}) \\ f_{\mathfrak{a}}(0,1,1) &=& (-\mathfrak{a},0,0) & \text{para un parámetro } \mathfrak{a} \in \mathbb{R} \\ f_{\mathfrak{a}}(1,0,1) &=& (1,1-\mathfrak{a},0) \end{array}$$

se pide:

- 1. La matriz de f_a respecto de la base canónica.
- 2. Según los valores de a, estudia las dimensiones del núcleo y la imagen de f_a.
- 3. La matriz de f_a respecto de la base $B = \{(1, 1, 1), (0, 1, 1), (1, 0, 1)\}.$

Ejercicio 22. Dadas $f: \mathbb{R}^3 \to \mathbb{R}^3$ mediante $f(x_1, x_2, x_3) = (x_2, x_3, 0)$ y $g: \mathbb{R}^3 \to \mathbb{R}^2$ dada por $g(x_1, x_2, x_3) = (x_1 + x_3, x_2)$ calcular $f^n = f \circ \cdots \circ f$ y $g \circ f$. [Sugerencia: calcula las matrices de f y g].

Ejercicio 23. Construye una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ de manera que $(0,1,0) \in N(f)$ y que dim(Im(f)) = 2.

Ejercicio 24. Se consideran los subespacios de $(\mathbb{Z}_3)^4$

$$U = \begin{cases} x - y - z = 0 \\ t = 0 \end{cases} \qquad W = \langle (1, 1, 1, 1), (0, 1, 0, 1) \rangle$$

- 1. Da una aplicación lineal no nula f de W en U y calcula f(1,0,1,0).
- 2. ¿Cuántas aplicaciones lineales sobreyectivas hay de W a U + W?

Ejercicio 25. Sabiendo que la aplicación f lleva los vectores

$$B_1 = \{u_1 = (1,0,0), u_2 = (1,1,0), u_3 = (1,1,1)\}$$

de \mathbb{Z}_7^3 en los vectores

$$B_2 = \{w_1 = (2, 1, 2), w_2 = (3, 1, 2), w_3 = (6, 2, 3)\}$$

relativamente, encontrar las matrices $M(f; B_c)$, $M(f; B_1B_2)$, $M(f; B_1)$, $M(f; B_2, B_c)$, donde B_c es la base canónica.

Ejercicio 26. Prueba que si $\dim(V) > \dim(V')$, entonces no existe ninguna aplicación lineal inyectiva de V en V'.

Preguntas test.

Ejercicio 27. Consideremos la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x,y,z) = (x+y,x+z,2x+y+z). Entonces

- a) La dimensión de la imagen de f es 2.
- b) La dimensión del núcleo de f es 2.
- c) f es sobreyectiva.
- d) f es inyectiva.

Ejercicio 28. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal definida por f(x,y,z) = (x+y,2x+2y). La dimensión del núcleo de f es

a) 0 b) 1 c) 2 d) 3

Ejercicio 29. Se considera la aplicación lineal $f:\mathbb{Q}^3\to\mathbb{Q}^3$ que tiene como matriz asociada en la base canónica

$$\left(\begin{array}{ccc}
1 & 4 & 2 \\
3 & 3 & -3 \\
0 & 2 & 2
\end{array}\right)$$

entonces:

- a) una base de la imagen de f es $\{(1,3,0),(4,3,2)\}$ y una base del núcleo de f es $\{(2,-1,1),(-6,2,9)\}$.
- b) una base de la imagen de f es $\{(1,4,2),(3,3,-3)\}$ y una base del núcleo de f es $\{(2,-1,1),(-6,2,9)\}$.
- c) una base de la imagen de f es $\{(1,3,0),(4,3,2)\}$ y una base del núcleo de f es $\{(2,-1,1)\}$.
- d) una base de la imagen de f es $\{(1,3,0),(4,3,2)\}$ y una base del núcleo de f es $\{(-6,2,9)\}$.

Ejercicio 30. Consideremos la aplicación lineal $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por f(x,y) = (3x+2y, x-y, x+2y). Entonces la matriz asociada a f respecto de las bases canónicas es

a)
$$\begin{pmatrix} 3 & 1 & 1 \\ 2 & -1 & 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & -1 & 2 \end{pmatrix}$$

$$d) \left(\begin{array}{cc} 2 & 3 \\ -1 & 1 \\ 2 & 1 \end{array} \right)$$

Ejercicio 31. Sea la aplicación lineal $f:(\mathbb{Z}_5)^2\to\mathbb{Z}_5$ determinada por f(2,0)=3 y f(1,3)=1. Entonces

a) f(1,1) = 2,

- b) f(1,1) = 3,
- c) para tener una aplicación lineal necesitamos que el dominio y el codominio sean espacios vectoriales, cosa que no ocurre con \mathbb{Z}_5 ,
- d) las condiciones del enunciado no determinan ninguna aplicación lineal, así que no puede calcularse f(1,1).

Ejercicio 32. Consideremos la aplicación lineal $f: \mathbb{Q}^2 \to \mathbb{Q}^3$ definida por f(x,y) = (x+y, -x-y, 0). Entonces la dimensión de la imagen de f es:

a) 0 b) 1 c) 2 d) 3

Ejercicio 33. Consideremos la aplicación lineal $f: \mathbb{Q}^2 \to \mathbb{Q}^3$ definida por f(x,y) = (x+y, -x-y, 0). Entonces la dimensión del núcleo de f es:

a) 0 b) 1 c) 2 d) 3

Ejercicio 34. Sea $f: V \to V'$ una aplicación lineal inyectiva $y \{v_1, v_2, \dots, v_n\}$ una base para V. Entonces $\{f(v_1), f(v_2), \dots, f(v_n)\}$

- a) es una base para V'.
- b) es un sistema de generadores para V'.
- c) es un conjunto de vectores linealmente independientes.
- d) es un conjunto de vectores linealmente dependientes.

Ejercicio 35. Sea $f: (\mathbb{Z}_3)^4 \to (\mathbb{Z}_3)^2$ una aplicación lineal **no sobreyectiva** tal que $(1,0,0,0) \in N(f)$, $(0,1,2,0) \in N(f)$ y $(1,1) \in Im(f)$. Indica cuál de las siguientes afirmaciones es necesariamente falsa.

- a) dimIm(f) = 1
- b) dim(N(f)) = 3
- c) $(0,0,1,1) \in N(f)$ y $(0,0,0,2) \in N(f)$
- d) $(2,2,1,0) \in N(f)$ y $(0,0,0,1) \in N(f)$

Ejercicio 36. Consideremos la aplicación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x, y, z) = (x - y + 2z, x + y - z, 4x - 2y + 5z). Entonces

- a) los subespacios núcleo e imagen de f son iguales,
- b) $f^*(\{(-1,1,-2)\}) = \emptyset$
- c) el subespacio núcleo de f tiene dimensión 0,
- d) el subespacio imagen de f tiene dimensión 2.

Ejercicio 37. Consideremos la aplicación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x,y,z) = (x+y,x+z,2x+y+z). Entonces una base de Im(f) es

- a) $\{(1,1,2),(0,0,1)\}$
- b) {(1,0,1),(0,0,1)}
- c) {(1,1,2),(2,1,3)}

d) {(1,1,2)}

Ejercicio 38. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ una aplicación lineal tal que $\dim(N(f)) = 1$. Entonces:

- a) f es inyectiva,
- b) f es sobreyectiva,
- c) f es biyectiva,
- d) f es un isomorfismo.

Ejercicio 39. Sea $V = (\mathbb{Z}_{11})_2[x]$, es decir, el espacio de los polinomios de grado menor o igual que 2 con coeficientes en \mathbb{Z}_{11} , y sea $D: V \to V$ la aplicación derivada. Entonces:

- (a) $\{7\}$ es una base del núcleo de D y $\{6+3x, 9+10x\}$ una base de la imagen.
- (b) $\{1\}$ es una base del núcleo de D y $\{1, x\}$ una base de la imagen.
- (c) $\{0\}$ es una base del núcleo de D y $\{1, x, x^2\}$ una base de la imagen.
- (d) $\{x\}$ es una base del núcleo de D y $\{1, x^2\}$ una base de la imagen.

Ejercicio 40. Dada la aplicación lineal $f: \mathbb{Q}^3 \to \mathbb{Q}^2$ definida por f(x, y, z) = (2x + 3y, 7x + z)

- (a) Una base de la imagen es $\{(1,0); (0,1)\}$.
- (b) f es inyectiva.
- (c) f no es sobreyectiva.
- (d) El núcleo de f tiene dimensión 2.

Ejercicio 41. Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal definida por f(x, y, z) = (x + y, x + z, 2x + y + z). Las ecuaciones cartesianas del subespacio Im(f) son:

1.
$$x + y - z = 0$$
.

$$2. \quad \begin{array}{l} x+y=0 \\ x+z=0 \end{array}.$$

$$x + y = 0$$

3.
$$x + z = 0$$

 $2x + y + z = 0$

4. Puesto que dim(Im(f)) = 3, no tiene ecuaciones cartesianas.

Ejercicio 42. Sea $f: (\mathbb{Z}_7)^2 \to (\mathbb{Z}_7)^4$ la aplicación lineal definida por las condiciones f(1,0) = (1,2,0,5) y f(0,1) = (2,2,4,2), y sea $g: (\mathbb{Z}_7)^4 \to (\mathbb{Z}_7)^2$ la aplicación lineal dada por g(x,y,z,t) = (x+4y+z+3t,2x+y+5t). Sea U el núcleo de g y V la imagen de f. Una base de f f v es

- 1. $\{(1,0,4,4), (1,0,3,1), (0,1,5,4)\}.$
- 2. $\{(1,2,0,5), (2,2,4,2), (1,0,3,1), (0,1,5,4)\}$.
- 3. $\{(1,2,0,5), (2,2,4,2), (1,4,1,3), (2,1,0,5)\}.$
- 4. $\{(1,2,0,5), (2,2,4,2), (1,1,2,3)\}.$

Ejercicio 43. Sea $f: V \to V'$ una aplicación lineal tal que dim(N(f)) = dim(Im(f)). Entonces podemos asegurar que:

- 1. V = V'
- 2. dim(V) es par.
- 3. $\dim(V')$ es par.
- 4. $\dim(V + V')$ es par.

Ejercicio 44. Sea $f: \mathbb{Q}^2 \to \mathbb{Q}^2$ la aplicación lineal cuya matriz en la base canónica es $\begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}$, y $g: \mathbb{Q}^2 \to \mathbb{Q}^2$ la única aplicación lineal que verifica que g(1,1)=(0,-2) y g(1,-1)=(2,4). Entonces:

- a) f + g es inyectiva.
- b) El núcleo de f + g está generado por el vector (-2, 2).
- c) f + g es sobreyectiva.
- d) La imagen de f + g está generada por el vector (-2, 2).

Ejercicio 45. Sea $f: (\mathbb{Z}_7)^2 \to (\mathbb{Z}_7)^2$ la aplicación lineal f(x,y) = (3x + 5y, x + y), y sea $B = \{(1,2); (1,1)\}$ una base de $(\mathbb{Z}_7)^2$. Entonces la matriz de f en la base B es:

- a) $\begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$.
- b) $\begin{pmatrix} 6 & 0 \\ 2 & 3 \end{pmatrix}$.
- c) $\begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix}$.
- d) $\begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix}$.

Ejercicio 46. Sea $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^4$ al aplicación lineal f(x,y,z) = (x+y,y+z,x+4z,2x+3y+z). Entonces:

a) N(f) = L[(3,2,3)] e Im(f) = L[(1,1,1,1), (2,1,3,4)].

b)
$$N(f) = \{0\} e \text{ Im}(f) \equiv \left\{ \begin{array}{ccccc} x & + & y & + & z & = & 0 \\ 2x & + & y & & + & 3t & = & 0 \end{array} \right.$$

c)
$$N(f) = L[(2,3,2)] e Im(f) \equiv \begin{cases} x + 4y + 4z & = 0 \\ 2x + y & + 4t = 0 \end{cases}$$
.

d) $N(f) = \{0\} e Im(f) = (\mathbb{Z}_5)^4$.

Ejercicio 47. Sea $A = \begin{pmatrix} 2 & 1 & 1 & 3 \\ 3 & 4 & 1 & 1 \\ 2 & 1 & 3 & 2 \end{pmatrix} \in M_{3\times 4}(\mathbb{Z}_5)$. Sea $f: (\mathbb{Z}_5)^4 \to (\mathbb{Z}_5)^3$ la aplicación lineal

cuya matriz en las bases canónicas de $(\mathbb{Z}_5)^4$ y $(\mathbb{Z}_5)^3$ es la matriz A. Entonces:

- a) El núcleo de f es el subespacio de ecuación x + y + 2z + t = 0.
- b) f es sobreyectiva.
- c) La imagen de f es el subespacio generado por (2, 3, 2) y (3, 1, 2).
- d) f es inyectiva.

Ejercicio 48. Sea $f:(\mathbb{Z}_3)^3\to(\mathbb{Z}_3)^4$ al aplicación lineal f(x,y,z)=(x+y+z,2x+z,x+2y+4z,y+z). Entonces:

a)
$$N(f) \equiv x + y + z = 0 \ e \ Im(f) \equiv \left\{ \begin{array}{ccccc} y & + & z & + & t & = & 0 \\ 2x & & + & 2z & & = & 0 \end{array} \right.$$

b)
$$N(f) = \{0\} e Im(f) = L[(1,2,1,0), (1,0,2,1), (2,2,1,1)].$$

c)
$$N(f) = \{0\} e Im(f) \equiv y + z + t = 0.$$

d)
$$N(f) = L[(1,1,1)] e Im(f) = L[(1,2,1,1), (0,1,1,1)].$$

Ejercicio 49. Sea A el conjunto de todas las aplicaciones lineales $f:(\mathbb{Z}_7)^3\to(\mathbb{Z}_7)^3$ que verifican que N(f)=Im(f). Entonces el cardinal del conjunto A es:

- a) 1.
- b) 7.
- c) 49.
- d) 0.