DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (**DGES**)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours GE2I session 2013

Composition : **Physique 3** (électricité)

Durée : 3 Heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les candidats doivent respecter les notations des énoncés et préciser, dans chaque cas, la numérotation de la question traitée.

Les calculatrices sont autorisées

Le problème suivant étudie l'effet Hall en régime statique, puis en régime dynamique.

Le référentiel d'étude est rapporté à trois axes orthogonaux Ox, Oy, Oz ; $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$ est la base orthonormée directe associée.

A / REGIME STATIQUE

Une plaquette parallélépipédique réalisée dans un semi-conducteur dopé n, d'épaisseur h, de largeur ℓ et de longueur finie L, est utilisée pour réaliser un capteur à effet Hall. Les seules charges libres sont des électrons de charge de q = -e; N_n représente leur nombre par unité de volume et σ désigne la conductivité électrique du matériau semi-conducteur.

La plaquette est traversée par un courant électrique d'intensité constante $I_o>0$, uniformément réparti sur la section transversale avec la densité volumique de courant $\vec{J}=J\,\vec{u}_y$, de sorte que $I_o=Jh\ell$, comme le montre la <u>figure</u> ci-dessous ; le champ électrique associé est noté $\vec{E}_0=E_0\,\vec{u}_y$ (l'alimentation extérieure n'est pas représentée pour simplifier le schéma).

Le capteur est placé au centre O du repère cartésien, dans un champ magnétique uniforme et indépendant du temps (créé par un dispositif extérieur non représenté) de vecteur $\vec{B} = B\vec{u}_z$ avec B > 0. Dans cette sous-partie, le champ magnétique créé par le courant I_0 dans la plaquette est supposé négligeable devant \vec{B} .

A.1 Exprimer la relation liant la densité de courant \vec{J} et la vitesse de déplacement \vec{V} des électrons dans la plaquette. Préciser les caractéristiques de \vec{V} .

- A.2 Ecrire, sous sa forme vectorielle, la force \vec{F}_{mag} à laquelle est soumis l'électron de la part du champ magnétique, en supposant qu'il est animé de la vitesse de dérive \vec{V} . En déduire la force de Laplace \vec{F}_L qui s'exerce sur la plaquette. Préciser l'effet du champ magnétique sur la trajectoire des électrons dans la plaquette.
- A.3 Montrer que, sous peine de voir disparaître le régime permanent d'écoulement des charges dans le conducteur, un champ électrique, appelé champ de Hall, apparaît et qu'il s'écrit $\vec{E}_H = k_E (\vec{J} \wedge \vec{B})$, où k_E est un coefficient à déterminer ; préciser la direction et le sens de ce champ à l'aide d'un schéma.
- A.4 En déduire l'existence d'une tension $V_H = V(P_1) V(P_2)$ dite tension de Hall, qui apparaît entre les deux faces opposées ① et ② de la plaquette, puis l'écrire sous la forme $V_H = \frac{R_H}{h} I_0 B$, où R_H est le coefficient de Hall qu'il conviendra d'expliciter en fonction de N_n et e. Analyser le signe de R_H .
- <u>A.6</u> En pratique, un capteur est caractérisé par sa sensibilité. Définir puis calculer la sensibilité S_B de ce capteur vis-à-vis du champ magnétique.

La constante de Hall varie avec la température – car la densité de charges libres en dépend – selon la loi : $R_H(t) = R_H(0) \cdot \exp(-at)$, où la température t s'exprime en degrés Celsius, avec a = 0.014 (°C)⁻¹ pour un capteur en InSb.

- **A.7** Evaluer la variation relative de la tension de Hall V_H quand la température au niveau du capteur s'élève de 10 degrés. Commenter cette valeur.
- A.8 Montrer qu'il existe une relation simple entre la force de Laplace \vec{F}_L et la tension de Hall, de la forme $V_H = \zeta \ \vec{F}_L \cdot \vec{u}_x$, où ζ est un coefficient à déterminer.

On désigne par \vec{E} le champ électrique résultant dans la plaquette traversée par la densité de courant \vec{J} , en présence du champ magnétique \vec{B} .

- **A.9** Montrer que \vec{E} , \vec{J} et \vec{B} vérifient la loi d'Ohm locale : $\vec{J} = \sigma \left[\vec{E} k_J \left(\vec{J} \wedge \vec{B} \right) \right]$, où k_J est un coefficient à déterminer. En déduire l'expression de \vec{E} en fonction de \vec{J} et \vec{B} .
- A.10 Représenter, dans le plan Oxy, les vecteurs $\frac{J}{\sigma}$, \vec{E} et $k_J(\vec{J} \wedge \vec{B})$. Tracer les lignes de courant, les lignes de champ et les surfaces équipotentielles associées, en distinguant deux cas : absence du champ magnétique, puis présence du champ magnétique.
- A.11 Montrer que les lignes de champ électrique et les lignes de courant font un angle ψ qui sera exprimé en fonction de B, σ et R_H. Calculer cet angle ψ pour un champ B = 1 T, sachant que σ = 2.10⁴ Ω^{-1} .m⁻¹.

Les deux fils conducteurs sont soudés à la plaquette aux points P_1 et P_2 , de coordonnées respectives $(\ell/2, y_1, 0)$ et $(-\ell/2, y_2, 0)$ avec, théoriquement, $y_2 = y_1$.

- A.12 Estimer le décalage maximum admissible $\delta = |y_2 y_1|$ par rapport à leur position théorique, sachant que la mesure doit fournir une tension de Hall V_H à 1% près. Commenter le résultat ; proposer un montage complémentaire pour compenser ce décalage et préciser le protocole de réglage.
- **A.13** Etablir, qu'en présence du champ magnétique, la conductivité du conducteur devient :

 $\sigma' = \frac{\sigma}{\sqrt{1 + \lambda^2 \, B^2}} \; , \; \text{puis expliciter le coefficient λ. Calculer numériquement σ'} \; .$

B/REGIME DYNAMIQUE

La plaquette est maintenant placée dans un champ magnétique extérieur variable dans le temps $\vec{b}_{ext} = b_{ext}(t)\vec{u}_z$. Elle possède désormais une longueur L extrêmement grande devant les autres dimensions, si bien qu'elle sera considérée comme infinie selon l'axe Oy.

En l'absence de toute alimentation ($I_0=0$), il apparaît dans la plaquette une densité volumique de courant électrique induit $\vec{j}=j(x,t)\vec{u}_y$ et un champ magnétique $\vec{b}=b(x,t)\vec{u}_z$. La densité volumique de charges électriques dans la plaquette est nulle et les propriétés diélectriques et magnétiques du matériau constituant la plaquette seront assimilées à celles du vide ($\varepsilon_0=8,85.10^{-12}~\mathrm{F.m^{-1}}$, $\mu_0=4\pi$.10⁻⁷ H.m⁻¹).

- **B.1** Rappeler les équations de Maxwell au sein de la plaquette, en se plaçant dans l'approximation des régimes quasi stationnaires (ARQS).
- **B.2** Calculer div \vec{j} , puis écrire \overrightarrow{rot} en fonction d'une dérivée temporelle de \vec{b} , en supposant vérifiée la loi d'Ohm locale établie en A.9.
- $\underline{\textbf{B.3}} \qquad \text{Etablir la relation liant } j(x,t) \text{ à } \frac{\partial b(x,t)}{\partial x}, \text{ puis celle entre } \frac{\partial j(x,t)}{\partial x} \text{ et } \frac{\partial b(x,t)}{\partial t}.$

En déduire que j(x,t) vérifie l'équation aux dérivées partielles suivante : $\frac{\partial^2 j}{\partial x^2} = k_D \frac{\partial j}{\partial t}$, où k_D est un coefficient à déterminer. De quel type d'équation s'agit-il ?

Pour résoudre cette équation différentielle en régime harmonique, écrivons le champ magnétique extérieur $\vec{b}_{\text{ext}} = b_{\text{Oext}} \cos \omega t \ \vec{u}_z$ avec $b_{\text{Oext}} \cos \omega t = \Re e \left\{ b_{\text{Oext}} \ e^{i\omega t} \right\}$ et la densité de courant induit $\vec{j} = j(x) \cos \left(\omega t + \varphi(x)\right) \vec{u}_y$ avec $j(x) \cos \left(\omega t + \varphi(x)\right) = \Re e \left\{ j(x) \ e^{i\varphi(x)} \ e^{i\omega t} \right\}$.

- **B.4** Ecrire l'équation différentielle vérifiée par la densité complexe de courant $\underline{j}(x) = j(x) e^{i\varphi(x)}$. Soient $k = \alpha(1+i)$ avec $i^2 = -1$ et $2\alpha^2 = \mu_0 \omega \sigma$.
- <u>B.5</u> Justifier, en raisonnant sur les symétries, que j(x,t) est une fonction impaire par rapport à la variable x, puis écrire la relation entre $\underline{j}(-x)$ et $\underline{j}(x)$. Vérifier que $\underline{j}(x)$ peut s'écrire sous la forme $\underline{j}(x) = \underline{A} \cdot f(\underline{k}x)$, où \underline{A} est une constante complexe et $f(\underline{k}x)$ est une fonction à expliciter.
- **B.6** En déduire l'expression de $\underline{b}(x)$. Préciser la parité de cette fonction. Justifier qualitativement la condition aux limites : $\underline{b}(\pm \ell/2) = b_{0ext}$. Ecrire les expressions complètes de $\underline{j}(x)$ et de $\underline{b}(x)$ en fonction de b_{0ext} , \underline{k} , ℓ , ω et σ .

La plaquette est de nouveau traversée par un courant constant d'intensité I_0 , de densité uniforme $\vec{J}_0 = J_0 \vec{u}_y$, se superposant à la densité de courant induit $\vec{j} = j(\mathbf{x},t)\vec{u}_y$; ce courant constant crée dans la plaque un champ magnétique \vec{B}_0 .

B.7 Montrer, grâce à des considérations de symétrie, que pour un point M $(x,y,z \, \Box \, h)$ le champ \vec{B}_0 s'écrit : $\vec{B}_0 = B_0(x) \, \vec{u}_z$. Préciser la parité de la fonction $B_0(x)$, ainsi que la valeur de $B_0(0)$. Etablir l'expression du champ $\vec{B}_0 = k_B \, x \, \vec{u}_z$, où k_B est un coefficient à expliciter.

Il sera admis que le potentiel vecteur \vec{A} est de la forme $\vec{A} = A(x,t) \vec{u}_y$ et qu'il n'intervient pas dans la tension de Hall instantanée $V_H(t)$ entre les faces opposées de la plaquette.

- **<u>B.8</u>** Ecrire la superposition des champs magnétiques $(\vec{B}_0 \text{ et } \vec{b})$ et des densités de courant $(\vec{J}_0 \text{ et } \vec{j})$ dans la plaquette. En déduire le champ de Hall total, \vec{E}_H .
- **B.9** En examinant la parité des fonctions J_0B_0 , jb, J_0b et j B_0 , établir que :

$$\int\limits_{-\ell/2}^{\ell/2} \vec{E}_H \cdot \vec{u}_x \, dx = \int\limits_{-\ell/2}^{\ell/2} \frac{R_H}{\mu_0} \frac{\partial}{\partial x} \Big[B_0 \left(x, t \right) b \left(x, t \right) \Big] \, dx \; . \label{eq:energy_energy}$$

En déduire l'expression de $V_H(t)$. L'amplitude de cette tension de Hall dépend-elle ou non de l'existence des courants induits dans la plaque ?

B.10 Déterminer la force de Laplace \vec{F}_L qui s'exerce sur la plaquette. En admettant que la relation $V_H = \zeta \cdot \vec{F}_L \cdot \vec{u}_x$ établie en A.8 reste valable, retrouver simplement le résultat de la question B.9.