LUCRARE DE LABORATOR NR.2

Tema: Programarea algoritmilor cu structură ramificată și ciclică

Scopul: Însuşirea, folosirea şi obținerea deprinderii practice de elaborare şi depanare a programelor ciclice(if ... goto, for, while, do-while).

Sarcina:

1a. Să se elaboreze schema bloc și programul pentru calcularea valorii funcției conform condițiilor indicate în **Tabelul 1(col. 1-4)**, prin introducerea valorii argumentului de la tastatură și utilizarea instructiunii if/else.

1b. Să se elaboreze schemele bloc și programele pentru calcularea valorilor funcției conform condițiilor indicate în **Tabelul 1(col. 1-5)**, prin introducerea valorilor (inițială, finală și a pasului pentru modificare) ale argumentului de la tastatură și utilizarea instrucțiunilor: for, while, do while.

Tabelul 1

Nr. Variante	Funcția	Condiții	Coeficienți	DVA/restricții
1	$y = \begin{cases} at^2 \ln(t) \\ 1 \\ e^{at} \cos(bt) \end{cases}$	$ 1 \le t \le 2 \\ t < 1 \\ t > 2 $	a = -0.5 $b = 2$	$t \in [0; 3]$ $\Delta t = 0.15$
2	$y = \begin{cases} \pi x^2 - 7/x^2 \\ ax^3 + 7\sqrt{x} \\ \lg(x + 7\sqrt{x}) \end{cases}$	x < 1.3 x = 1.3 x > 1.3	a = 1.5	$x \in [0.8; 2]$ $\Delta x = 0.1$
3	$w = \begin{cases} ax^{2} + bx + c \\ \frac{a}{x} + \sqrt{x^{2} + 1} \\ (a + bx)/\sqrt{x^{2} + 1} \end{cases}$	x < 1.2 x = 1.2 x > 1.2	a = 2.8 $b = -0.3$ $c = 4$	$x \in [1; 2]$ $\Delta x = 0.05$
4	$Q = \begin{cases} \pi x^{2} - \frac{7}{x^{2}} \\ ax^{3} + 7\sqrt{x} \\ \ln(x + 7\sqrt{ x + a }) \end{cases}$	x < 1.4 $x = 1.4$ $x > 1.4$	a = 1.65	$x \in [0.7; 2]$ $\Delta x = 0.1$
5	$y = \begin{cases} 1.5 \cos^2 x \\ 1.8ax \\ (x-2)^2 + 6 \\ 3tgx \end{cases}$	x < 1 $x = 1$ $1 < x < 2$ $x > 2$	a = 2.3	$x \in [0.2; 2.8]$ $\Delta x = 0.2$

6	$w = \begin{cases} x\sqrt[3]{x - a} \\ x\sin(ax) \\ e^{-ax}\cos(ax) \end{cases}$	$ \begin{array}{c} x > a \\ x = a \\ x < a \end{array} $	a = 2.5	$x \in [1; 5]$ $\Delta x = 0.5$
7	$Q = \begin{cases} bx - \lg(bx) \\ 1 \\ bx + \lg(bx) \end{cases}$	bx > 1 $bx = 1$ $bx > 1$	b = 1.5	$x \in [0.1; 5]$ $\Delta x = 0.1$
8	$y = \begin{cases} \sin x * lgx \\ \cos^2 x \end{cases}$	$x > 3.5$ $x \le 3.5$	-	$x \in [2; 5]$ $\Delta x = 0.25$
9	$f = \begin{cases} \lg(x+1) \\ \sin^2 \sqrt{ ax } \end{cases}$	$ \begin{array}{c} x > 1 \\ x \le 1 \end{array} $	a = 20.3	$x \in [0.5; 2]$ $\Delta x = 0.1$
10	$z = \begin{cases} \frac{\ln^3 x + x^2}{\sqrt{x+t}} \\ \sqrt{x+t} + \frac{1}{x} \\ \cos x + t \sin^2 x \end{cases}$	x < 0.5 x = 0.5 x > 0.5	t = 2.2	$x \in [0.2; 2]$ $\Delta x = 0.2$
11	$s = \begin{cases} \frac{a+b}{e^x + \cos x} \\ \frac{a+b}{x+1} \\ e^x + \sin x \end{cases}$	$x < 2.8$ $2.8 \le x < 6$ $x \ge 6$	a = 2.6 b = -0.39	$x \in [0; 7]$ $\Delta x = 0.5$
12	$f = \begin{cases} a * lgx + \sqrt[3]{ x } \\ 2a * cosx + 3x^2 \end{cases}$	$ \begin{array}{c} x > 1 \\ x \le 1 \end{array} $	a = 0.9	$x \in [0.8; 2]$ $\Delta x = 0.1$
13	$w = \begin{cases} \frac{a}{i} + bi^2 + c \\ i \\ ai + bi^3 \end{cases}$	$i < 4$ $4 \le i \le 6$ $i > 6$	a = 2.1 $b = 1.8$ $c = -20.5$	$x \in [0; 12]$ $\Delta x = 1$

14	$z = \begin{cases} a * \sin(\frac{i^2 + 1}{n}) \\ \cos(i + \frac{1}{n}) \end{cases}$	$\sin\left(\frac{i^2+1}{n}\right) > 0$ $\sin\left(\frac{i^2+1}{n}\right)$ < 0	a = 0.3 $n = 10$	$i \in [1; 10]$ $\Delta x = 1$
15	$w = \begin{cases} \sqrt{at^2 + b * sint + 1} \\ at + b \\ \sqrt{at^2 + b * cost + 1} \end{cases}$	t < 0.1 t = 0.1 t > 0.1	a = 2.5 $b = 0.4$	$t \in [-1; 1]$ $\Delta x = 0.2$