Summer Research School Symposium 2021

Primality Testing

Author:

Emilie Ma University of British Columbia kewbish@gmail.com

Scientific Advisor:

Pressiana Marinova Occado Technology Sofia pressiana.marinova@gmail.com

Abstract

Abstract

1 Introduction

Introduction

2 Methods

2.1 Euler's Primality Test

The results over three trials of Euler's Primality Test are shown in Table 3. Each trial tested a different k value, and consisted of:

- Generating a random set (S) of 10^3 integers such that $10^6 < x < 2 * 10^6$
- \bullet Using SageMath's is_prime to check for primality for each integer in S
- \bullet Running Euler's primality test with k bases tried on each integer in S
- Counting all pseudoprimes which passed Euler's but not Sage's primality test
- \bullet Repeat for three sub-trials, average results and return lowest number of bases tried (lowest k) that returned the lowest number of pseudoprimes passed

Each trial was timed with the Linux time command, recording the real, or total elapsed wall time, spent.

3 Results

Table 1: Raw data for Euler's Primality Test Trials

	All Random Bases		
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 13.086s 2 0 1 0 Base 2	Trial 2 12.602s 1 0	Trial 3 13.797s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 14.591s 1 0 0 0 0 Base 3	Trial 2 11.157s 1 0	Trial 3 11.129s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 12.373s 1 0 0 0 0 Base 5	Trial 2 11.691s 1 0	Trial 3 10.930s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 12.429s 1 0 0	Trial 2 11.693s 1 0	Trial 3 12.065s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 19.873s 1 0 0	Trial 2 18.805s 1 0 and Base 5	Trial 3 22.055s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 19.517s 1 0 0 0	Trial 2 21.474s 1 0	Trial 3 21.526s 1 0
Running Time Lowest k required Pseudoprimes passed at lowest k Range of lowest k required Range of number of pseudoprimes passed	Trial 1 21.338s 1 0 0	Trial 2 19.868s 1 0	Trial 3 19.840s 1 0

4 Discussion

Discussion of results

5 Conclusion

Conclusion

References