Preparação do Exp. VI — Amplificador Operacional e Circuito Realimentado

Bianca Yoshie Itiroko - 164923, Luiz Eduardo Cartolano - 183012, Seong Eun Kim - 177143 EE534 - Turma Y - Grupo 2

Novembro de 2018

1 Para o circuito da Figura 1

1.1 a) Relacione V_a com V_{in} e com V_{pot}

$$\frac{V_{pot} - V_{in}}{Z_1} = \frac{V_a - V_{pot}}{Z_2}$$

$$V_a = \frac{V_{pot} \cdot (Z_1 + Z_2) - V_{in} \cdot Z_2}{Z_1}$$

Como $Z_1=Z_2=1k\Omega$:

$$V_a = 2 \cdot V_{pot} - V_{in}$$

1.2 b) Relacione V_c com V_a

$$\frac{V_a}{10K\Omega} = \frac{V_c - V_c}{100K\Omega}$$

$$10 \cdot V_a = V_c - V_a$$

Portanto:

$$V_a = \frac{V_c}{11}$$

1.3 c) Relacione V_{out} com V_c

A relação existente entre V_{out} e V_c é a mesma existente entre um sinal de saída e um sinal de entrada de um *circuito RC passa-alta* (como os vistos no primeiro laboratório), portanto:

$$V_{out} = \frac{R}{\frac{1}{j \cdot \omega \cdot C} + R} \cdot V_c$$

Como $R=8\Omega$ e $C=220\mu F$:

$$V_{out} = \frac{11 \cdot j \cdot \omega}{11 \cdot j \cdot \omega + 6250} \cdot V_c$$

1.4 d) Determine qual é o laço de realimentação

O láco de realimentação presente no circuito da Figura 1 existe entre a saída do circuito *push-pull* e a entrada negativa do segundo amplificador operacional (o que a entrada positiva está no topo).

1.5 e) Explique o funcionamento do circuito

A primeira parte do circuito da Figura 1, que podemos considerar como encerrada na saída V_A , tem a função de regular o nível DC, para isso, ela soma um valor ao sinal de entrada, o deslocando. Sua função é fazer com que o sinal de entrada do segundo amplificador operacional permita a operação de modo que seu sinal de saída seja capaz de polarizar o circuito push-pull a fim de que ele funcione.

A realimentação, por sua vez, terá função parecida com a exercida pelos diodos no último experimento (vide []), ou seja, ela é responsável por garantir a polarização constante dos transistores e, por conseguinte, evitar a distorção do sinal de saída (observado em V_{out}).

2 Faça a simulação do circuito para $V_{in} = 100mV_{pp}$ a 1kHz. Observe os sinais V_a , V_b e V_{out} . Considere $C = 220\mu F$ e o alto-falante como uma carga $R_L = 8\Omega$. Ajuste o potenciômetro para que o circuito funcione adequadamente.

A simulação pode ser observada em [1]. Para que o circuito apresenta-se o comportamento esperado ajustou-se o potenciômetro de modo que ele tivesse $R_1 = 975\Omega$ e $R_2 = 24\Omega$. E que, por ele, circule uma corrente de, aproximadamente, 12mA.

Referências

- [1] Simulação do circuito. Disponível em: http://tinyurl.com/yc6yqqos, Acesso em: 10-09-2018.
- [2] MASIERO Bruno. Pre relatorio 6. Disponível em: https://tinyurl.com/preRelatorio6, Acesso em: 06-11-2018.
- [3] Adel S. Sedra and Kenneth C. Smith. *Microelectronic Circuits*. Oxford University Press, fifth edition, 2004.

Figura 1: Circuito push-pull com alimentação não simétrica e realimentação.