

HAMILTONIAN COMPLEXITY

			1
$\left(\mathbb{C}^2 ight)$ Kitaev '99	5-100	5-local, arbitrary graph	
		03	14/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/
${\Bbb C}^2$ Kempe, Kitaev, Regev	'06	2-local,	arbitrary
			OIT OOT
${\Bbb C}^2$ Oliveira, Terhal '08		2-local, 2	D planar
$ig(\mathbb{C}^{12} ig)$ Aharonov, Gottesmar	n, Irani, Kempe 'O	99 2-la	ocal, line
			1 /
C ^{huge} Gottesman, Irani '09	2-local, line, trans	lationally	invariant
${\Bbb C}^{41}$ Bausch, Cubitt, Ozols '16	2-local, line, trans	slationally	invariant

HAMILTONIAN COMPLEXITY

VERIFIER RUNTIME

HAMILTONIAN GAP

QMA

 $\operatorname{poly} \ln N$

$$\frac{1}{\operatorname{poly} \ln N}$$

UNDERSPECIFIED

spin chain of length N parameter N can encode input of size $\ln N$

we want this!

 QMA_{EXP}

 $\exp \, \operatorname{poly} \ln N \equiv \operatorname{poly} N$

$$\frac{1}{\text{poly}N}$$

CORRECT CLASS

COMPUTATIONAL MODEL

Quantum Ring Machine CONSTRUCTION

Quantum
Thue System

HAMILTONIAN GROUND STATE

Unitary Label Graph

QUANTUM RING MACHINES

Quantum Ring Machine. (S, n), S unitary operator on $(\mathbb{C}^d)^{\otimes 2}$, $n \in \mathbb{N}$.

 ${f S}$ acts cyclicly on two neighbouring spins of the $1{f D}$ spin chain $({\Bbb C}^d)^{\otimes n}$.

Start computation in some initial configuration q_i . Computation terminates in some final configuration q_f .

Runtime defined as for Turing Machines

QUANTUM RING MACHINES

Proof: embed a BQEXP-complete Turing Machine

Theorem. Let L be a promise problem in BQEXP.

Then there exists a polynomial p and a unitary \mathbf{U} such that for each $x \in L$, the quantum ring machine $(\mathbf{U}, p(\exp|x|))$ terminates in $p(\exp|x|)$ steps. On input $x \in L_{\text{YES}}$, it transitions to an accepting state with probability $\geq 2/3$, and analogously for NO instances.

COMPUTATIONAL MODEL

Quantum Ring Machine CONSTRUCTION

Quantum
Thue System

HAMILTONIAN GROUND STATE

Unitary Label Graph

QUANTUM THUE SYSTEMS

[tuː]

Thue System.

Finite alphabet Σ , set of length-preserving rules $\{(a_i \leftrightarrow b_i), i \in I\}$ with $a_i, b_i \in \Sigma^*$.

Example.

alphabet $\Sigma = \{a, b, c\}$ rules $\{(c \leftrightarrow b), (ab \leftrightarrow cc)\}.$

finite index set

QUANTUM THUE SYSTEMS

Quantum Thue System. classical quantum

Thue system (Σ, R) with $\Sigma = \Sigma_{cl} \dot{\cup} \Sigma_{q}$ invariant under rules R, Hilbert space \mathcal{H} , family of unitaries for each rule $\{\mathbf{U}_r\}_{r\in R}$ such that $\mathbf{U}_r\in\mathcal{B}(\mathcal{H}^{\otimes |r|_q})$.

> number of quantum symbols in rule

Example.
$$\Sigma = \{-, *, |\}$$
, $\Sigma_{q} = \{*\}$, $\mathcal{H} = \mathbb{C}^{2}$, $R = \{(*-\leftrightarrow -*, \sigma_{x} = |1\rangle\langle 0| + |0\rangle\langle 1|)\}$

$$*\underbrace{-\ldots-}_{n \text{ times}}| \mapsto -*\ldots-| \mapsto \cdots \mapsto -\ldots-*|$$

Starting on
$$|1\rangle$$
, end up in $\begin{cases} |1\rangle & \text{if } n \text{ is even} \\ |0\rangle & \text{otherwise.} \end{cases} \rightarrow \text{Decides whether } n$ is even or odd

is even or odd.

COMPUTATIONAL MODEL

Quantum Ring Machine

implements a BQEXP complete

Turing's Wheelbarrow

CONSTRUCTION

Quantum
Thue System

is a 2-local

HAMILTONIAN GROUND STATE

Unitary Label Graph

UNITARY LABEL GRAPHS

Definition (ULG).

- a directed graph G = (V, E)
- a family of Hilbert spaces $(\mathcal{H}_v)_{v \in V}$
- a family of unitary operators $(\mathbf{U}_e:\mathcal{H}_a\longrightarrow\mathcal{H}_b)_{e=(a,b)\in E}$

UNITARY LABEL GRAPHS

$$\mathbf{H} = \sum_{e=(a,b)\in E} \sum_{i} (|a\rangle \otimes |i\rangle - |b\rangle \otimes \mathbf{U}_{e} |i\rangle) (\text{h.c.})$$

ULG Hamiltonian

Definition. A ULG is called *semi-classical* if the product of unitaries around any loop is 1.

Theorem. Let \mathbf{H} be the Hamiltonian of a semi-classical ULG.

Then ${\bf H}$ is simple—unitarily equivalent to copies of a graph Laplacian Δ , i.e. \exists unitary ${\bf D}$ such that ${\bf H}={\bf D}(\Delta\otimes 1){\bf D}^{\dagger}$.

→ Spectral Analysis of Hamiltonian

HAMILTONIAN COMPLEXITY

Theorem.

The local Hamiltonian problem for translationally invariant interactions between neighbouring spins on a chain with local dimension 41 is QMA_{EXP} -complete.

THANKS!