

11.06.2024 Computer Vision Seminar 23/24

Detekcja obiektów

Podział:

- Jednoetapowe
- Dwuetapowe

One and two stage detectors

V7 Labs

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

Jak działa YOLO?

 $IoU = \frac{\text{area of the intersection between } B_1 \text{ and } B_2}{\text{area of the union between } B_1 \text{ and } B_2},$

Architektura YOLOv1

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Funkcja straty

$$\begin{split} \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Metryki

- Średnia precyzja (AP)
- mAP mean Average Precision

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

YOLOv10

Dual label assignment

Figure 2: (a) Consistent dual assignments for NMS-free training. (b) Frequency of one-to-one assignments in Top-1/5/10 of one-to-many results for YOLOv8-S which employs α_{o2m} =0.5 and β_{o2m} =6 by default [20]. For consistency, α_{o2o} =0.5; β_{o2o} =6. For inconsistency, α_{o2o} =0.5; β_{o2o} =2.

YOLOv10

Materialy

- YOLO Explained. What is YOLO? | by Ani Aggarwal | Analytics Vidhya | Medium
- https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb
- YOLOv10: Instant Real-Time Object Detection with YOLO (You Only Look Once) | by Al TutorMaster | May, 2024 | Level
 Up Coding