Gabarito P2

Álgebra Linear I – 2008.2

- 1) Decida se cada afirmação a seguir é verdadeira ou falsa.
- Se $\{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ é um conjunto de vetores linearmente dependente então se verifica $\overrightarrow{v}_1 = \sigma \overrightarrow{v}_2$ para algum número real σ .

Falso. É suficiente considerar os vetores de \mathbb{R}^2 , $\overrightarrow{v}_1 = (1,2)$, $\overrightarrow{v}_2 = \overrightarrow{0} = (0,0)$. Estes vetores são linearmente dependentes: $0 \overrightarrow{v}_1 + 1 \overrightarrow{v}_2 = \overrightarrow{0}$. Obviamente, para todo número real σ se verifica $\sigma \overrightarrow{v}_2 = \overrightarrow{0} \neq \overrightarrow{v}_1$.

• Considere os subespaços vetorias de \mathbb{R}^3

$$\mathbb{V} = \{ \overrightarrow{v} = (x, y, z) \colon x - y - z = 0 \}, \qquad \mathbb{U} = \{ \overrightarrow{v} = (x, y, z) \colon x + y - z = 0 \},$$

e uma transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ tal que

$$T(\mathbb{V}) = \mathbb{U}$$
 e $T(\mathbb{U}) = \mathbb{V}$.

A imagem de T é todo o espaço \mathbb{R}^3 .

Verdadeiro. Considere o vetor $\overrightarrow{v}_{=}(1,0,1)$ que pertence à interseção dos sub-espaços \mathbb{V} e \mathbb{U} e os vetores $\overrightarrow{v}_{2}=(1,1,0)$ de \mathbb{V} e $\overrightarrow{v}_{3}=(0,1,1)$ de \mathbb{U} . Estes três vetores formam uma base de \mathbb{R}^{3} . Por hipótese, $T(\mathbb{V})=\mathbb{U}$ e $T(\mathbb{U})=\mathbb{V}$, portanto estes três vetores são imagens de vetores $\overrightarrow{w}_{1}, \overrightarrow{w}_{2}$ e \overrightarrow{w}_{3} :

$$T(\overrightarrow{w}_i) = \overrightarrow{v}_i, \quad i = 1, 2, 3.$$

Isto automaticamente implica que a imagem de $T \in \mathbb{R}^3$. Completaremos o argumento com detalhe. Dado qualquer vetor \overrightarrow{u} de \mathbb{R}^3 temos que, como os vetores $\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3$ formam uma base e T é linear,

$$\overrightarrow{u} = \lambda_1 \overrightarrow{v}_1 + \lambda_2 \overrightarrow{v}_2 + \lambda_3 \overrightarrow{v}_3 = = \lambda_1 T(\overrightarrow{w}_1) + \lambda_2 T(\overrightarrow{w}_2) + \lambda_3 T(\overrightarrow{w}_3) = = T(\lambda_1 \overrightarrow{w}_1 + \lambda_2 \overrightarrow{w}_2 + \lambda_3 \overrightarrow{w}_3) = T(\overline{w}),$$

onde

$$\overrightarrow{w} = \lambda_1 \overrightarrow{w}_1 + \lambda_2 \overrightarrow{w}_2 + \lambda_3 \overrightarrow{w}_3.$$

Logo a imagem de T é todo o \mathbb{R}^3 .

• Considere as retas r_1 que contém o ponto P e é paralela ao vetor \overrightarrow{v} e a reta r_2 que contém o ponto Q e é paralela ao vetor \overrightarrow{w} . Se

$$\overline{PQ} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = 0$$

então as retas r_1 e r_2 são concorrentes.

Falso. Duas retas paralelas r_1 e r_2 diferentes sempre verificam

$$\overline{PQ} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = 0.$$

Note que nesse caso temos $\overrightarrow{w} = \sigma \overrightarrow{v}$ e portanto $\overline{PQ} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = 0$.

• Considere os planos

$$\pi: x + y + z = 1, \qquad \rho: x + y + z = 0.$$

A distância entre π e ρ é 1.

Falso. Para calcular a distância consideramos qualquer ponto A de π , por exemplo A=(1,0,0), e a reta r perpendicualar aos planos que contém o ponto A,

$$r = (1 + t, t, t), \quad t \in \mathbb{R}.$$

Determinanos o ponto B de interseção de r e ρ :

$$1 + t + t + t = 0$$
, $t = -1/3$, $B = (2/3, -1/3, -1/3)$.

A distância entre os planos é o módulo do vetor $\overline{BA} = (1/3, 1/3, 1/3)$. Este vetor tem módulo $\sqrt{3}/3 = 1/\sqrt{3} \neq 1$.

• A transformação

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad T(x,y) = (|x|, y),$$

verifica T(0,0) = (0,0) e é linear.

Falso. Considere, por exemplo, T(1,1)=(1,1) e T(-1,-1)=(1,-1). Se T fosse linear

$$T((1,1) + (-1,-1)) = T(0,0) = (0,0),$$

e também

$$T((1,1)+(-1,-1)) = T(1,1)+T(-1,-1) = (1,1)+(1,-1) = (2,0) \neq (0,0).$$

Obtemos uma contradição.

Prova tipo A

Itens	\mathbf{V}	\mathbf{F}	N
1.a		х	
1.b	X		
1.c		х	
1.d		х	
1.e		х	

Prova tipo B

Itens	\mathbf{V}	\mathbf{F}	N
1.a	X		
1.b		х	
1.c		х	
1.d		х	
1.e		х	

Prova tipo C

Itens	V	\mathbf{F}	N
1.a		х	
1.b		х	
1.c		х	
1.d		х	
1.e	Х		

Prova tipo D

Itens	\mathbf{V}	\mathbf{F}	N
1.a		х	
1.b		х	
1.c		х	
1.d	Х		
1.e		х	

2)

Prova tipo A:

a) Considere a base

$$\beta = \{\overrightarrow{u}_1 = (1,0,1), \overrightarrow{u}_2 = (2,1,1), \overrightarrow{u}_3 = (a,b,c)\}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (4,1,2)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (2,1,1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3=(a,b,c)$ na base canônica.

b) Considere uma transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1\\ -1 & -1 & a\\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v}=(x,y,z)$ verificam x+y+z=0. Determine **explicitamente** valores para a,b,c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x + y - z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(1, 1, 2), (0, 1, 1)\}$$

e o vetor $\overrightarrow{v} = (3, 1, 4)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (3, 1, 4)$ na base γ .

Prova tipo B:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (0, 1, 1), \overrightarrow{u}_2 = (1, 2, 1), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (1,4,2)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1, 2, 1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a,b,c)$ na base canônica.

b) Considere uma transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & a \\ b & c & d \end{pmatrix}$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v}=(x,y,z)$ verificam x-y+z=0. Determine **explicitamente** valores para a,b,c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x + y - z = 0 \},\$$

a base de W

$$\gamma = \{(1, 1, 2), (1, 0, 1)\}$$

e o vetor $\overrightarrow{v} = (1, 3, 4)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (1,3,4)$ na base γ .

Prova tipo C:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (1, 0, 1), \overrightarrow{u}_2 = (1, 1, 2), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}}=(2,1,4)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1, 1, 2)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a, b, c)$ na base canônica.

b) Considere uma transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & -1 & a \\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v}=(x,y,z)$ verificam x-y+z=0. Determine **explicitamente** valores para a,b,c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y - z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(2, 1, 1), (1, 1, 0)\}$$

e o vetor $\overrightarrow{v}=(4,1,3)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (4, 1, 3)$ na base γ .

Prova tipo D:

a) Considere a base

$$\beta = \{\overrightarrow{u}_1 = (1,1,0), \overrightarrow{u}_2 = (2,1,1), \overrightarrow{u}_3 = (a,b,c)\}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (4,2,1)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (2,1,1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a, b, c)$ na base canônica.

b) Considere uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & -1 & a \\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v} = (x, y, z)$ verificam x - y - z = 0. Determine **explicitamente** valores para $a, b, c \in d$.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y + z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(1,2,1), (0,1,1)\}$$

e o vetor $\overrightarrow{v}=(3,4,1)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (3, 4, 1)$ na base γ .

Respostas:

(a)

(Prova tipo A)
$$\overrightarrow{u}_3 = (0,0,-1).$$

(Prova tipo A)
$$\overrightarrow{u}_3 = (0, 0, -1).$$

(Prova tipo B) $\overrightarrow{u}_3 = (-1, -1, -1).$

(Prova tipo C)
$$\overrightarrow{u}_3 = (0, 0, 1/2).$$

(Prova tipo D)
$$\overrightarrow{u}_3 = (0, -1, 0).$$

(b)

(Prova tipo A)
$$b = 0, c = 0, a + d = -1 e d \neq 0.$$

(Prova tipo B)
$$b = 0, c = 0, a - d = 1 e d \neq 0.$$

(Prova tipo C)
$$b = -2, c = -2, a - d = 1 e d \neq 2.$$

(Prova tipo D)
$$b = 2, c = 2, a + d = 1 e d \neq 2.$$

(c)

(Prova tipo A)
$$(\overrightarrow{v})_{\gamma} = (3, -2).$$

(Prova tipo B)
$$(\overrightarrow{v})_{\gamma} = (3, -2).$$

(Prova tipo C)
$$(\overrightarrow{v})_{\gamma} = (3, -2).$$

(Prova tipo D)
$$(\overrightarrow{v})_{\gamma} = (3, -2).$$

- 3) Considere uma base $\beta = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$ de \mathbb{R}^3 .
- a) Prove que

$$\gamma = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_1 + \overrightarrow{u}_2 + \overrightarrow{u}_3\}$$

também é uma base de \mathbb{R}^3 .

b) Suponha que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1, 2, 1).$$

Determine as coordenadas de $(\overrightarrow{v})_{\gamma} = (y_1, y_2, y_3)$ de \overrightarrow{v} na base γ .

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y - z = 0 \}$$

e o vetor $\overrightarrow{u} = (2, 1, 1)$ de \mathbb{W} (as coordenadas do vetor \overrightarrow{u} estão escritas na base canônica \mathcal{E}).

Determine uma base ϱ de \mathbb{W} tal que as coordenadas $(\overrightarrow{u})_{\varrho}$ de \overrightarrow{u} na base ϱ sejam $(\overrightarrow{u})_{\varrho} = (2,0)$ (as coordenadas dos vetores da base ϱ devem estar escritas na base canônica \mathcal{E}).

Resposta:

(a) É suficiente verificar que os vetores

$$\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_1 + \overrightarrow{u}_2 + \overrightarrow{u}_3$$

são linearmente independentes (três vetores linearmente independentes de \mathbb{R}^3 formam uma base). Para isso, veremos que a única combinação linear destes vetores dando o vetor nulo é a trivial. Escrevemos

$$\lambda_1 \overrightarrow{u}_1 + \lambda_2 \overrightarrow{u}_2 + \lambda_3 (\overrightarrow{u}_1 + \overrightarrow{u}_2 + \overrightarrow{u}_3) = \overrightarrow{0}.$$

Isto é equivalente a

$$(\lambda_1 + \lambda_3) \overrightarrow{u}_1 + (\lambda_2 + \lambda_3) \overrightarrow{u}_2 + \lambda_3 \overrightarrow{u}_3 = \overrightarrow{0}.$$

Como os vetores $\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3$ são linearmente independentes temos que

$$\lambda_1 + \lambda_3 = 0$$
, $\lambda_1 + \lambda_2 = 0$, $\lambda_3 = 0$.

Portanto, necessariamente, se verifica

$$\lambda_1 = \lambda_2 = \lambda_3 = 0$$

e os vetores são linearmente independetes.

(b) Da definição de coordenadas em uma base

$$\overrightarrow{v} = y_1 \overrightarrow{u}_1 + y_2 \overrightarrow{u}_2 + y_3 (\overrightarrow{u}_1 + \overrightarrow{u}_2 + \overrightarrow{u}_3).$$

Isto é equivalente a

$$\overrightarrow{v} = (y_1 + y_3) \overrightarrow{u}_1 + (y_2 + y_3) \overrightarrow{u}_2 + y_3 \overrightarrow{u}_3.$$

Da unicidade de coordenadas em uma base e de $(\overrightarrow{v})_{\beta} = (1,2,1)$ obtemos que

$$y_1 + y_3 = 1$$
, $y_2 + y_3 = 2$, $y_3 = 1$.

Portanto

$$y_1 = 0, \quad y_2 = 1, \quad y_3 = 1.$$

(c) Devemos encontrar dois vetores linearmente independentes \overrightarrow{w}_1 e \overrightarrow{w}_2 de $\mathbb W$ tais que

$$\overrightarrow{u} = 2\overrightarrow{w}_1 + 0\overrightarrow{w}_2.$$

Nesse caso a base é

$$\varrho = \{\overrightarrow{w}_1, \overrightarrow{w}_2\}.$$

Portanto,

$$\overrightarrow{w}_1 = \frac{1}{2} \overrightarrow{u} = (1, 1/2, 1/2).$$

Assim, \overrightarrow{w}_2 pode ser qualquer vetor de \mathbb{W} não nulo e não paralelo a \overrightarrow{w}_1 . Algumas possibilidades (há infinitas) são

$$\varrho = \{\overrightarrow{w}_1 = (1, 1/2, 1, 2), \overrightarrow{w}_2 = (1, 1, 0)\},\$$

$$\varrho \ = \{\overrightarrow{w}_1 = (1, 1/2, 1, 2), \overrightarrow{w}_2 = (0, 1, -1)\},$$

$$\varrho = \{ \overrightarrow{w}_1 = (1, 1/2, 1, 2), \overrightarrow{w}_2 = (1, 0, 1) \}.$$

4) Considere a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

que verifica

$$T(1,1,0) = (2,2,1), \quad T(1,0,1) = (3,4,2), \quad T(0,1,1) = (3,2,1).$$

- a) Determine a matriz de T na base canônica.
- b) Determine o conjunto $\mathbb U$ de vetores \overrightarrow{w} de $\mathbb R^3$ que verificam

$$T(\overrightarrow{w}) = (2, 2, 2).$$

c) Determine a imagem $\operatorname{im}(T(\mathbb{R}^3))$ de T,

$$\operatorname{im}(T(\mathbb{R}^3)) = \{\overrightarrow{v} \text{ tal que existe } \overrightarrow{w} \in \mathbb{R}^3 \text{ tal que } \overrightarrow{v} = T(\overrightarrow{w})\}.$$

Resposta:

(a) Devemos determinar T(1,0,0), T(0,1,0) e T(0,0,1). Para determinar T(1,0,0) escrevemos

$$(1,0,0) = x(1,1,0) + y(1,0,1) + z(0,1,1).$$

Obtemos o sistema linear de equações

$$1 = x + y$$
, $0 = x + z$, $0 = y + z$.

Escalonando obtemos,

$$1 = x + y$$
, $-1 = -y + z$, $0 = y + z$.

е

$$1 = x + y$$
, $-1 = -y + z$, $-1 = 2z$.

Portanto

$$z = -1/2$$
, $x = 1/2$, $y = 1/2$.

Logo

$$(1,0,0) = \frac{1}{2} ((1,1,0) + (1,0,1) - (0,1,1)).$$

Como T é linear,

$$T(1,0,0) = \frac{1}{2} (T(1,1,0) + T(1,0,1) - T(0,1,1)) =$$

$$= \frac{1}{2} ((2,2,1) + (3,4,2) - (3,2,1)) =$$

$$= \frac{1}{2} (2,4,2) = (1,2,1).$$

Da linearidade de T obtemos também

$$(2,2,1) = T(1,1,0) = T(1,0,0) + T(0,1,0) = (1,2,1) + T(0,1,0).$$

Logo

$$T(0,1,0) = (1,0,0).$$

Analogamente,

$$(3,2,1) = T(0,1,1) = T(0,1,0) + T(0,0,1) = (1,0,0) + T(0,0,1).$$

Logo

$$T(0,0,1) = (2,2,1).$$

Portanto, a matriz de T na base canônica é:

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}.$$

Verifique seu resultando aplicando esta matriz aos vetores (1, 1, 0), (1, 0, 1) e (0, 1, 1).

(b) Para determinar $\overrightarrow{w}=(x,y,z)$ devemos resolver o sistema linear de equações

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}.$$

Obtemos o sistema

$$x + y + 2z = 2$$
, $2x + 2z = 2$, $x + z = 2$.

As duas últimas equações implicam que o sistema é impossível (escalonando obtemos 0 = -1). Portanto o sistema é impossível e não existe nenhum vetor \overrightarrow{w} tal que $T(\overrightarrow{w}) = (2, 2, 2)$.

(c) A imagem $\operatorname{im}(T(\mathbb{R}^3))$ de T é gerada pelos vetores T(1,0,0), T(0,1,0) e T(0,0,1), ou seja, pelos vetores (1,2,1), (1,0,0) e (2,2,1). Observe que os dois primeiros vetores geram o plano vetorial \mathbb{W} cujo vetor normal é

$$(1,2,1) \times (1,0,0) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (0,1,-2).$$

Isto é,

$$W: y - 2z = 0.$$

Observe que T(0,0,1)=(2,2,1) pertence ao plano \mathbb{W} . Portanto, a imagem de T é

$$\operatorname{im}(T(\mathbb{R}^3)) = \{ \overrightarrow{v} = (x, y, z) \colon y - 2z = 0 \}.$$

Dois comentários:

- 1. V. pode responder ao item (b) usando este resultado: como o vetor (2,2,2) não pertence a imagem de T não existe nenhum vetor \overrightarrow{w} tal que $T(\overrightarrow{w})=(2,2,2)$.
- 2. Para resolver o item (c) v. não necessita usar a base canônica, pode usar as imagens de qualquer base, por exemplo as imagens da base $\beta = \{(1,1,0), (1,0,1), (0,1,1)\}$ que são dadas no enunciado.