SEQUENCE LISTING PCC'd PCC/PTO 21 JUN 2006

	SEQUENCE L.	POLTING		
<110>	Chugai Seiyaku Kabushiki Kaisha			
<120>	Anti-Glypican 3 Antibodies			
<130>	PCG-9009WO			
<150>	JP 2004-203637			
<151>	2004-07-09		•	
<160>	173			
<170>	PatentIn version 3.1			
<210>	1			•
<211>	31			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	PCR primer			
<400>	1			
gatato	catgg ccgggaccgt gcgcaccgcg t		31	
<210>	2			
<211>	31			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	PCR primer			
<400>	2			
gctago	ctcag tgcaccagga agaagaagca c		31	
<210>	3			
<211>	1743			
<212>	DNA			
<213>	homo sapiens			
<400>	3			
atggc	cggga ccgtgcgcac cgcgtgcttg gtggtg	gcga tgctgctcag	cttggacttc	60
ccggga	acagg cgcagcccc gccgccgccg ccggac	gcca cctgtcacca	agtccgctcc	120
ttcttc	ccaga gactgcagcc cggactcaag tgggtg	ccag aaactcccgt	gccaggatca	180
gattt	gcaag tatgtctccc taagggccca acatgc	gct caagaaagat	ggaagaaaaa	240
tacca	actaa cagcacgatt gaacatggaa cagctg	ettc agtctgcaag	tatggagctc	300
aagtto	cttaa ttattcagaa tgctgcggtt ttccaa	gagg cctttgaaat	tgttgttcgc	360
catgo	caaga actacaccaa tgccatgttc aagaac	aact acccaagcct	gactccacaa	420
gcttt	tgagt ttgtgggtga atttttcaca gatgtg	tete tetacatett	gggttctgac	480
atcaa	tgtag atgacatggt caatgaattg tttgac	agcc tgtttccagt	catctatacc	540
cagct	aatga acccaggeet geetgattea geettg	gaca tcaatgagtg	cctccgagga	600
	acgtg acctgaaagt atttgggaat ttcccc			660
aagto	actgc aagtcactag gatcttcctt caggct	ctga atcttggaat	tgaagtgatc	720
aacac	aactg atcacctgaa gttcagtaag gactgt	ggcc gaatgctcac	cagaatgtgg	780

			•	
tactgctctt actgccag	gg actgatgatg	gttaaaccct g	tggcggtta ctgcaatg	tg
gtcatgcaag gctgtatg	gc aggtgtggtg	gagattgaca a	gtactggag agaataca	tt
ctgtcccttg aagaactt				
cttggtctct tttcaaca				
ctgaccacca ctattggc			*******************	
tattatcctg aagatctc				
gaagaaacct tatccagc				
ttctatagtg ctttgcct				
ctttgctgga atggacaa				
atgaaaaacc agttcaat				
caaattattg acaaactg				
ggtagagttc tggataaa				
gatgaagatg agtgcatt				
cgcttccttg cagaactg				
caggcaactc cgaaggac				
ccgctgaagc ttctcacc	ag catggccatc	tcggtggtgt g		cac
tga			1743	
<210> 4				
<211> 580				
<212> PRT				
<213> homo sapiens				
<400> 4				
Met Ala Gly Thr Val	Arg Thr Ala (Cys Leu Val V	/al Ala Met Leu Le	1
1 5	10		15	
Ser Leu Asp Phe Pro	Gly Gln Ala G	in Pro Pro I	Pro Pro Pro Pro Asp	9
20	25	30		
Ala Thr Cys His Glr	n Val Arg Ser I	he Phe Gln A	arg Leu Gln Pro Gl	Y .
35	40	45		
Leu Lys Trp Val Pro	Glu Thr Pro \	/al Pro Gly S	Ser Asp Leu Gln Va	1.
50	55	60		
Cys Leu Pro Lys Gly	y Pro Thr Cys (Cys Ser Arg I	Lys Met Glu Glu Ly	S
65 70)	75	80	
Tyr Gln Leu Thr Ala	a Arg Leu Asn 1	Met Glu Gln 1	Leu Leu Gln Ser Al	a
. 85	90		95	
Ser Met Glu Leu Lys	s Phe Leu Ile	lle Gln Asn A	Ala Ala Val Phe Gl	n
100	105	1	.10	
Glu Ala Phe Glu Ile	e Val Val Arg I	His Ala Lys A	Asn Tyr Thr Asn Al	a
115	120	125		
Met Phe Lys Asn Asn	n Tyr Pro Ser I	Leu Thr Pro	Gln Ala Phe Glu Ph	е
130	135	140		
Val Gly Glu Phe Phe	e Thr Asp Val	Ser Leu Tyr	Ile Leu Gly Ser As	р
145 15	50	155	160	

Ile	Asn	Val	Asp	Asp	Met	Val	Asn	Glu	Leu	Phe	Asp	Ser	Leu	Phe	Pro
			165	5			17	0			1	75			
Val	Ile	Tyr	Thr	Gln	Leu	Met	Asn	Pro	Gly	Leu	Pro	Asp	Ser	Ala	Leu
		18	0			1	.85				190				
Asp	Ile	Asn	Glu	Cys	Leu	Arg	Gly	Ala	Arg	Arg	Asp	Leu	Lys	Val	Phe
	1	95			. :	200				205					
Gly	Asn	Phe	Pro	Lys	Leu	Ile	Met	Thr	Gln	Val	Ser	Lys	Ser	Leu	Gln
_ ;	210				215				220)					
Val	Thr	Arg	Ile	Phe	Leu	Gln	Ala	Leu	Asn	Leu	Gly	Ile	Glu	Val	Ile
225				230				23					40		
	Thr	Thr	Asp	His	Leu	Lys	Phe	Ser	Lys	Asp	Cys	Gly	Arg	Met	Leu
			24			-		50				255			
Thr	Arq	Met	Tro	Tyr	Cys	Ser	Tyr	Cys	Gln	Gly	Leu	Met	Met	Val	Lys
	5	26		•	•		265	_			270				
Pm	Cvs			Tyr	Cvs			Val	Met	Gln	Gly	Cys	Met	Ala	Gly
		75	_	•		280				·285					
Val			Ile	Asp			Tro	Arq	Glu	Tyr	Ile	Leu	Ser	Leu	Glu
	290	;			295		•	J	30	_					
•				Glv			Arq	Ile	Tyr	Asp	Met	Glu	Asn	Val	Leu
305	200			310			5		L5	-			320		
	Glv	Len	Phe	Ser		Ile	His			Ile	Gln	Tyr	Val	Gln	Lys
200	0-1		32					30				335			
Asn	λla	Glv		Leu	Thr	Thr			Gly	Lys	Leu	Cys	Ala	His	Ser
		_	40				345		_	-	350	_			
Gln	Gln			Tvr	Ara			Tvr	Tyr	Pro	Glu	Asp	Leu	Phe	Ile
		355	·	-1-	3	360			•	365		_			
λen			Val	T.e.ii	T.vs		Ala	His	Val	Glu	His	Glu	Glu	Thr	Leu
тэр	370		, v		375				38						
Sor		Δ	ייינע י	Arg			Tle	Gln			Lvs	Ser	Phe	Ile	Ser
385		ALG	, ALG	39		200			- <u>7</u> - 95				400	•	
		Ser	• מו			Glv	ጥህጉ			Ser	His			Val	Ala
LIIC	. TAT	Der	40		110	011		10	0,10			415			
Glu	Asn	Asp	Thr	Leu	Cys	Trp	Asn	Gly	Gln	Glu	Leu	Val	Glu	Arg	Tyr
			20		_		425				430				
Ser	Gln			Ala	Arg	Asn	Gly	Met	Lys	Asn	Gln	Phe	Asn	Leu	His
•		435				440				445					
Glu	Lev	Lys	Met	: Lys	Gly	Pro	Glu	Pro	Val	. Val	Ser	Gln	Ile	Ile	qaA
	450	-		-	455				46						
Lvs		LVS	: His	: Ile	Asn	Gli	. Leu	Leu	Arg	Thr	Met	Ser	Met	Pro	Lys
465		•			o .				75				480		
		val	Let			Ası	. Lev	ı Asp	Glu	ı Glu	Gly	Phe	Glu	Ser	Gly
1				35	-			90				495			

Asp Cy	_	sp Asp	Glu A	Asp Glu	Cys	Île	Gly		Ser	Gly	Asp	Gly		
	500			505				510						
Met Il	e Lys V	al Lys	Asn (Gln Leu	Arg	Phe	Leu	Ala	Glu	Leu	Ala	Tyr		
	515			20			525							
Asp Le	u Asp V	al Asp	Asp i	Ala Pro	Gly	Asn	Ser	Gln	Gln	Ala	Thr	Pro		
530)		535			54	0							
Lys As	p Asn G	lu Ile	Ser '	Thr Phe	His	Asn	Leu	Gl.y	Asn	Val	His	Ser		
545		55	0		55	55				560				
Pro Le	u Lys L	eu Leu	Thr	Ser Met	Ala	Ile	Ser	Val	Val	Cys	Phe	Phe		
		565		5	70			!	575					
Phe Le	u Val H	lis												
	580)												
<210>	5													
<211>	31													
<212>	DNA				ı									
	Artifi	cial S	equen	ce										
<220>														
	PCR pr	imer												
<400>	_												•	
		ccatggo	cg gg	gaccgtgo	g c								31	
<210>					_									
<211>														
<212>														
	Artifi	cial S	equen	ce										
<220>			-	•										
	PCR pr	rimer												
<400>	_													٠,
		tcagego	gg aa	atgaacg	tt c								31	
<210>					•			•		٠				٠
<211>	21													
<212>														
	Artifi	icial S	eauen	nce										
<220>					•									
	PCR pr	rimer												
<400>	_													
	agtgg a	tagacac	aat a									2	1	
⟨210⟩		ougure,	J J											
<211>														
<212>														
	Artif:	icial 9	Seauer	nce										
<220>				-										
	PCR p	rimer												
\4437	ECK D	بل ساء دست												

<400> 8		
caggggccag tggatagacc gatg	. 24	
<210> 9		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 9		
caggggccag tggatagact gatg	. 24	
<210> 10		
⟨211⟩ 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer	•	
<400> 10		
gctcactgga tggtgggaag atg	23	
<210> 11		
⟨211⟩ 1392		
<212> DNA		
<213> Mus musculus		
<400> 11		
•	cctt gtccttactt taaaaggtgt ccagtgtgag	60
•	ctta gtgaagcctg gaggatccct gaaactctcc	120
	tege tatgecatgt cttgggtteg ccagatteca	180
		240
		300
	caca gccttgtatt actgtgtaag acaggggggg	360
	cact gtctctgcag ctagcaccaa gggcccatcg	420
	gagc acctctgggg gcacagcggc cctgggctgc	480
•	ggtg acggtgtcgt ggaactcagg cgccctgacc	540
	ccta cagtcctcag gactctactc cctcagcagc	600
	gggc acccagacct acatctgcaa cgtgaatcac	660
	gaaa gttgagccca aatcttgtga caaaactcac	720
	actc ctggggggac cgtcagtctt cctcttcccc	780
-	ctcc cggacccctg aggtcacatg cgtggtggtg	840
	caag ttcaactggt acgtggacgg cgtggaggtg	900
	ggag cagtacaaca gcacgtaccg tgtggtcagc	960
_		1020
-		1080
		1140

ctgacctgcc tg	gtcaaagg (cttctatccc	agcgacatcg	ccgtggagtg	ggagagcaat	1200
gggcagccgg ag						1260
ttcctctaca gc						1320
tgctccgtga tg						1380
ccgggtaaat ga					1392	
<210> 12						
⟨211⟩ 342						
<212> DNA						
<213> Mus mus	sculus					
<400> 12						
gaggtgcacc tg	atagaatc	tgggggaggc	ttagtgaagc	ctggagggtc	cctgaaactc	60
tcctgtgcag cc						120
ccagagaaga gg						180
ttagacactg tg						240
ctgcaaatga gc						300
ggggcttact gg						42
⟨210⟩ 13	,5555	J				
⟨211⟩ 1413						
<212> DNA						
<213> Mus mu	sculus					
<400> 13						
atgggatgga ac	ctggatctt	tattttaatc	ctgtcagtaa	ctacaggtgt	ccactctgag	60
gtccagctgc ag						120
tgcaaggctt ct						180
gaaaagagcc tt						240
cagaagttca ag						300
cagctcaaga go						360
ttaactggga cg						.420
gctagcacca ag	gggcccatc	ggtcttcccc	ctggcaccct	cctccaagag	cacctctggg	480
ggcacagcgg co						540
tggaactcag go						600
ggactctact co	cctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	660
tacatctgca ac	cgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	agttgagccc	720
aaatcttgtg ad	caaaactca	cacatgccca	ccgtgcccag	cacctgaact	cctgggggga	780
ccgtcagtct to	cctcttccc	cccaaaaccc	aaggacaccc	tcatgatctc	ccggacccct	840
gaggtcacat go	cgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	900
tacgtggacg go	cgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	960
agcacgtacc g	tgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	1020
gagtacaagt go						1080
aaagccaaag g						1140
ctgaccaaga ad						
gccgtggagt g						

ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg	1320
cagcagggga acgtettete atgeteegtg atgeatgagg etetgeacaa ceactacaeg	1380
cagaagagcc tctccctgtc tccgggtaaa tga 1413	
⟨210⟩ 14	
⟨211⟩ 354	
<212> DNA	
<213> Mus musculus	
<400> 14	
caggicacte tgaaagagic tggccctggg atattgcage ceteccagae ceteagtetg	60
acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtagg ttggattcgt	120
cagccttcag ggatgggtct ggagtggctg gccaacattt ggtggtatga tgctaagtac	180
tataactctg acctgaagag ccggctcaca atctccaagg atacctccaa caaccaggtg	240
ttcctcaaga tctccagtgt ggacacttca gatactgcca catactactg tgctcaaatg	300
ggactggcct ggtttgctta ctggggccaa gggactctgg tcactgtctc tgca	354
⟨210⟩ 15	
⟨211⟩ 354	
<212> DNA	
<213> Mus musculus	
<400> 15	
caggtcactc tgaaagagtc tggccctggg atattgcagc cctcccagac cctcagtctg	60
acttgttctt tototgggtt ttoactgagc atttatggta tgggtgtagg ttggattcgt	120
cagcetteag ggaagggtet ggagtggetg geeaacattt ggtggaatga tgataagtae	. 180
tataactcag cootgaagag coggotcaca atotocaagg atacotccaa caaccaggta	240
ttcctcaaga tctccagtgt ggacactgca gatactgcca catactactg tgctcaaata	300
ggttacttct actttgacta ctggggccaa ggcaccactc tcacagtctc ctca	354
<210> 16	
<211> 1416	
<212> DNA	
<213> Mus musculus	
<400> 16	
atgaacttcg ggctcacctt gattttcctc gtccttactt taaaaggtgt ccagtgtgag	60
gtgcagctgg tggagtctgg gggagactta gtgaagcctg gagggaccct gaaactctcc	120
tgtgcagcct ctggatccac tttcagtaac tatgccatgt cttgggttcg ccagactcca	180
gagaagaggc tggagtgggt cgcagccatt gatagtaatg gaggtaccac ctactatcca	240
gacactatga aggaccgatt caccatttcc agagacaatg ccaagaacac cctgtacctg	300
caaatgaaca gtctgaggtc tgaagacaca gccttttatc actgtacaag acataatgga	360
gggtatgaaa actacggctg gtttgcttac tggggccaag ggactctggt cactgtctct	420
gcagetagea ccaagggeee ateggtette eccetggeae ecteeteaa gageaeetet	480
gggggcacag cggccctggg ctgcctggtc aaggactact tccccgaacc ggtgacggtg	540
tegtggaact caggegeect gaccagegge gtgcacacet teeeggetgt cetacagtee	600
tcaggactct actccctcag cagcgtggtg accgtgccct ccagcagctt gggcacccag	660
acctacatct gcaacgtgaa tcacaagccc agcaacacca aggtggacaa gaaagttgag	720

					•	
cccaaatctt	gtgacaaaac	tcacacatgc	ccaccgtgcc	cagcacctga	actcctgggg	780
ggaccgtcag	tcttcctctt	cccccaaaa	cccaaggaca	ccctcatgat	ctcccggacc	840
cctgaggtca	catgcgtggt	ggtggacgtg	agccacgaag	accctgaggt	caagttcaac	900
tggtacgtgg	acggcgtgga	ggtgcataat	gccaagacaa	agccgcggga	ggagcagtac	960
aacagcacgt	accgtgtggt	cagcgtcctc	accgtcctgc	accaggactg	gctgaatggc	1020
aaggagtaca	agtgcaaggt	ctccaacaaa	gccctcccag	ccccatcga	gaaaaccatc	1080
tccaaagcca	aagggcagcc	ccgagaacca	caggtgtaca	ccctgccccc	atcccgggat	1140
gagctgacca	agaaccaggt	cagcctgacc	tgcctggtca	aaggcttcta	tcccagcgac	1200
atcgccgtgg	agtgggagag	caatgggcag	ccggagaaca	actacaagac	cacgcctccc	1260
gtgctggact	ccgacggctc	cttcttcctc	tacagcaagc	tcaccgtgga	caagagcagg	1320
tggcagcagg	ggaacgtctt	ctcatgctcc	gtgatgcatg	aggctctgca	caaccactac	1380
acgcagaaga	gcctctccct	gtctccgggt	aaatga		1416	5
<210> 17						
⟨211⟩ 366						
<212> DNA			•			
<213> Mus	musculus					
<400≻ 17						
.gaggtgcagc	tggtggagtc	tgggggagac	ttagtgaagc	ctggagggtc	cctgaaactc	60
tcctgtgcag	cctctggatt	cactttcagt	agctatgcca	tgtcttgggt	tcgccagact	120
ccagagaaga	ggctggagtg	ggtcgcagcc	attaatagta	atggaggtac	cacctactat	180
ccagacacta	tgaaggaccg	attcaccatc	tccagagaca	atgccaagaa	caccctgtac	240
ctgcaaatga	gcagtctgag	gtctgaagac	tcagccttgt	attactgtac	aagacataat	300
ggagggtatg	aaaactacgg	ctggtttgct	tactggggcc	aagggactct	ggtcactgtc	360
tctgca				•	366	
<210> 18						
<211> 1413	3					
<212> DNA						
<213> Mus	musculus					
<400> 18			•			•
					ctactcagag	60
					gaagatgtcc	120
					acagaggcct	180
					aacatacaac	240
					tgcctacatg	300
					atcgggggac	360
					tacagccaaa	420
-					cacctctggg	480
					gacggtgtcg	540
					acagtcctca	600
					cacccagacc	660
					agttgagccc	720
aaatcttgtg	g acaaaactca	cacatgccca	ccgtgcccag	r cacctgaact	cctgggggga	780

							•	
C	cgtcag	gtct	tcctcttccc	cccaaaaccc	aaggacaccc	tcatgatctc	ccggacccct	840
g	aggtca	acat	gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	900
t	acgtg	gacg	gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	960
a	gcacg	tacc	gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	1020
g	agtac	aagt	gcaaggtctc	caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	1080
a	aagcc	aaag	ggcagccccg	agaaccacag	gtgtacaccc	tgccccatc	ccgggatgag	1140
C	tgacc	aaga	accaggtcag	cctgacctgc	ctggtcaaag	gcttctatcc	cagcgacatc	1200
g	ccgtg	gagt	gggagagcaa	tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	1260
·c	tggac	tccg	acggctcctt	cttcctctac	agcaagctca	ccgtggacaa	gagcaggtgg	1320
C	agcag	ggga	acgtcttctc	atgctccgtg	atgcatgagg	ctctgcacaa	ccactacacg	1380
C	agaag	agcc	tctccctgtc	tccgggtaaa	tga		1413	•
<	210>	19			•			
<	211>	357						
<	212>	DNA						
<	213>	Mus	musculus		1			
	400>	19						
						ctggggcttc		60
						tgcactgggt		120
						gaaatagtga		180
						catctgccag		240
						atcactgtac		300
9	jaccta	actg	gggggcttgc	ttactggggc	caagggactc	tggtcactgt	ctctgca	357
<	(210>	20						
<	(211>	372						
<	(212>	DNA						
<	(213>	Mus	musculus					
	(400>	20						
						ctggggcttc		60
						tgcattgggt		120
						ctgatagtta		180
						aatcctccaa		240
							aagatcaaat	300
				gtttcctgcg	tttccttact	ggggccaagg	gactctggtc	360
	actgto		ca				372	
	(210>							
	(211)	372						
	(212>							
			musculus					
	<400>							
							agtgaagctg	60 120
							gaaacagagg	120
•	cctgga	acaag	gccttgaatg	gattggtaca	attgaccett	. ctgatagtga	aactcactac	180

															t
		-													cctac
_	_	-	_												gcgcc
ttct	atag	tt c	ctat	agtt	a ct	gggc	ctgg	ttt	gctt	act	9999	ccaa	gg g		tggtc
actg	tctc	tg c	a											3	72
<210	> 2	2													
<211	> 4	63													•
<212	> P	RT													
<213	> M	us m	uscu	lus											
·<400															
Met	Asn	Phe	Gly	Leu	Thr	Leu	Ile	Phe	Leu	Val	Leu	Thr	Leu	Lys	Gly
1			5				10				1	5			
Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Lys
		20)			2	5			:	30				
Pro	Gly	Gly	Ser	Leu	Lys	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
	3	5				40		•		45					
Ser	Arg	Tyr	Ala	Met	Ser	Trp	Val	Arg	Gln	Ile	Pro	Glu	Lys	Ile	Leu
. !	50				55				60						
Glu	Trp	Val.	Ala	Ala	Ile	Asp	Ser	Ser	Gly	Gly	Asp	Thr	Tyr	Tyr	Leu
65				70				75				8	0		
Asp	Thr	Val	Lys	Asp	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Asn	Asn
_			85				90)			9	5			
Thr	Leu	His	Leu	Gln	Met	Arg	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Leu
		10					.05				110				
Tyr	Tyr	Cys	Val	Arg	Gln	Gly	Gly	Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Leu
•	_	.15				120				125					
Val	Thr	Val	Ser	Ala	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu
	130				135			_	14						
		Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys
145				150					55				160		
	Val	Lvs	Asp	Tyr		Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser
200	•	_1_	16	_				70				175			
Glw	λla	T.e11		Ser	Glv	Val.			Phe	Pro	Ala	Val	Leu	Gln	Ser
GLI	27.1.1.4		30	502	0-1		.85				190				
Sor	Clar			Ser	T.011			Val	Val	Thr		Pro	Ser	Ser	Ser
SET	_		TÄT	SCL	Dea	200	501	V (L.).	•	205					
T		L95	C1~	Thr	th:		Case	λen	۲eV			T.vc	Pro	Ser	Asn
		THE	GTU	TITE			Cys	upii	22		تبدد	Lys			*****
	210	17-7	3	Y	215		01	D			المدي	700	Lare	արտ	Hic
	_	vai	ASD	Lys		val	GIU			oer.	Cys		ப்தக 240	TIIL	1175
225		_	_	23			D-		35	T	C1			Ca	₹7 ~1
Thr	Cys	Pro		Cys	Pro	ALa			ьeu	Leu			PIO	ser	AgT
			24		_	_		50		_		255	0		m.
Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	met	тте	ser	Arg	Thr

270 260 265 pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 280 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 300 290 295 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 310 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 330 335 325 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 345 350 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 360 Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 375 380 370 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 390 395 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 410 405 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 425 430 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu . 435 440 445 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 455 460 450 ⟨210⟩ 23 <211> 114 <212> PRT <213> Mus musculus <400> 23 Glu Val His Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 5 10 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 25 Ala Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 40 45 Ala Ala Ile Asn Asn Asn Gly Asp Asp Thr Tyr Tyr Leu Asp Thr Val 55 Lys Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 70 75 Leu Gln Met Ser Ser Leu Arg Ser Glu Asp Thr Ala Leu Tyr Tyr Cys

Val Arg Gln Gly Gly Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 100 105 110 Ser Ala ⟨210⟩ 24 <211> 470 <212> PRT <213> Mus musculus <400> 24 Met Gly Trp Asn Trp Ile Phe Ile Leu Ile Leu Ser Val Thr Thr Gly 10 5 Val His Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys 25 Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe 40 . 45 Thr Gly Tyr Tyr Met His Trp Val Lys Gln Ser Pro Glu Lys Ser Leu 55 Glu Trp Ile Gly Glu Ile Asn Pro Ser Thr Gly Gly Thr Thr Tyr Asn 70 75 Gln Lys Phe Lys Ala Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser 90 Thr Ala Tyr Met Gln Leu Lys Ser Leu Thr Ser Glu Asp Ser Ala Val 110 105 100 Tyr Tyr Cys Ala Arg Arg Gly Gly Leu Thr Gly Thr Ser Phe Phe Ala 120 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys 140 135 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 155 160 150 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 170 165 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 190 185 180 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 205 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 215 210 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro 230 235 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 250 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

265 270 260 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 285 280 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 295 300 290 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 315 310 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 335 330 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro . 345 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 360 365 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 380 375 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 390 395 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 410 405 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 445 440 435 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 460 Ser Leu Ser Pro Gly Lys 470 465 <210> 25 <211> 118 <212> PRT <213> Mus musculus <400> 25 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 10 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Tyr 25 Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Met Gly Leu Glu Trp Leu Ala Asn Ile Trp Trp Tyr Asp Ala Lys Tyr Tyr Asn Ser Asp 60 50 Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Asn Asn Gln Val 70 75

Phe Leu Lys Ile Ser Ser Val Asp Thr Ser Asp Thr Ala Thr Tyr Tyr 90 95 85 Cys Ala Gln Met Gly Leu Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr 105 110 Leu Val Thr Val Ser Ala 115 <210> 26 <211> 118 <212> PRT <213> Mus musculus <400> 26 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 10 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Ile Tyr 25 ' 30 Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 40 Trp Leu Ala Asn Ile Trp Trp Asn Asp Asp Lys Tyr Tyr Asn Ser Ala 60 Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Asn Asn Gln Val 75 70 Phe Leu Lys Ile Ser Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 95 90 Cys Ala Gln Ile Gly Tyr Phe Tyr Phe Asp Tyr Trp Gly Gln Gly Thr 105 110 100 Thr Leu Thr Val Ser Ser 115 <210> 27 <211> 471 <212> PRT <213> Mus musculus <400> 27 Met Asn Phe Gly Leu Thr Leu Ile Phe Leu Val Leu Thr Leu Lys Gly 10 Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys 25 30 Pro Gly Gly Thr Leu Lys Leu Ser Cys Ala Ala Ser Gly Ser Thr Phe Ser Asn Tyr Ala Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 55 50 Glu Trp Val Ala Ala Ile Asp Ser Asn Gly Gly Thr Thr Tyr Tyr Pro

75

70

Asp	Thr	Met	Lys	Asp	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
			85				90				9	5			
Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Phe
		10	0			1	05				110				
Tyr	His	Cys	Thr	Arg	His	Asn	Gly	Gly	Tyr	Glu	Asn	Tyr	Gly	Trp	Phe
_	1	15				120				125					
Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala	Ala	Ser	Thr
	130	_	-		135				140						
		Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser
145				150				15					.60		
	Glv	Thr	Ala		Leu	Glv	Cvs	Leu	Val.	Lys	Asp	Tyr	Phe	Pro	Glu
0_1	0-1		16				17			-		- L75			
Pro	Val	ጥክድ			Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His
			30				.85	•			190		_		
Шhт	Phe			Val.	Leu			Ser	Glv	Leu	Tyr	Ser	Leu	Ser	Ser
•		.95				200		_	•	205					
Val			Val	Pro	Ser		Ser	Leu	Glv			Thr	Tyr	Ile	Cys
	210		742		215				220				•		-
		λen	Hie	Taye	Pro		Asn	Thr			Asp	Lvs	Lvs	Val	Glu
225		11111	1110	23					- <u>-</u> - 35				240		
		Ser	Case		Lys	Фhr	His			Pro	Pro	Cvs	Pro	Ala	Pro
FIO	шуз	Dear	24		270			50	-2-			255			
Glu	T.e.11	T.011		Glv	Pm	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lvs	Pro	Lys
Glu	Leu		Gly	Gly	Pro			Phe	Leu	Phe		Pro	Lys	Pro	Lys
		2	Gly 60				265				270				
	Thr	2 Leu	Gly 60		Pro	Arg	265			Val	270 Thr				
Asp	Thr.	2: Leu 275	Gly 60 Met	Ile	Ser	Arg 280	265 Thr	Pro	Glu	Val 285	270 Thr	Cys	Val	Val	Val
Asp	Thr 7 Val	2: Leu 275	Gly 60 Met	Ile	Ser Asp	Arg 280 Pro	265 Thr	Pro	Glu	Val 285 Phe	270 Thr	Cys	Val	Val	Val
Asp Asp	Thr Z Val 290	Leu 275 Ser	Gly 60 Met	Ile	Ser Asp 295	Arg 280 Pro	265 Thr Glu	Pro Val	Glu Lys 30	Val 285 Phe 0	270 Thr	Cys Trp	Val Tyr	Val	Val. Asp
Asp Asp Gly	Thr Val 290 Val	Leu 275 Ser	Gly 60 Met	Ile Glu His	Ser Asp 295	Arg 280 Pro	265 Thr Glu	Pro Val	Glu Lys 30 Lys	Val 285 Phe 0	270 Thr	Cys Trp	Val Tyr	Val	Val. Asp
Asp Gly 305	Thr Val 290 Val	Leu 275 Ser	Gly 60 Met His	Ile Glu His	Ser Asp 295 Asn	Arg 280 Pro	265 Thr Glu Lys	Pro Val Thr	Glu Lys 30 Lys 15	Val 285 Phe 0 Pro	270 Thr Asn Arg	Cys Trp Glu	Val Tyr Glu 320	Val Val Gln	Val Asp Tyr
Asp Gly 305	Thr Val 290 Val	Leu 275 Ser	Gly 60 Met His Val	Ile Glu His 31 Arg	Ser Asp 295	Arg 280 Pro	265 Thr Glu Lys	Pro Val Thr 3	Glu Lys 30 Lys 15	Val 285 Phe 0 Pro	270 Thr Asn Arg	Cys Trp Glu	Val Tyr Glu 320	Val Val Gln	Val Asp Tyr
Asp Gly 305 Asn	Val 290 Val	Leu 275 Ser Glu	Gly 60 Met His Val	Ile Glu His 31 Arg	Ser Asp 295 Asn 0	Arg 280 Pro Ala Val	265 Thr Glu Lys Ser 3	Pro Val Thr 3 Val 30	Glu Lys 30 Lys 15 Leu	Val 285 Phe 0 Pro	270 Thr Asn Arg	Cys Trp Glu Leu 335	Val Tyr	Val Val Gln	Val Asp Tyr Asp
Asp Gly 305 Asn	Val 290 Val	Leu 275 Ser Glu Thr	Gly 60 Met His Val Tyr 32 Gly	Ile Glu His 31 Arg	Ser Asp 295 Asn	Arg 280 Pro Ala Val	265 Thr Glu Lys Ser 3	Pro Val Thr 3 Val 30	Glu Lys 30 Lys 15 Leu	Val 285 Phe 0 Pro	270 Thr Asn Arg	Cys Trp Glu Leu 335	Val Tyr	Val Val Gln	Val Asp Tyr Asp
Asp Gly 305 Asn	Thr 290 Val Ser	Leu 275 Ser Glu Thr Asn	Gly 60 Met His Val Tyr 32 Gly 40	Glu His 31 Arg	Ser Asp 295 Asn 0 Val	Arg 280 Pro Ala Val	265 Thr Glu Lys Ser 3 Lys 345	Pro Val Thr 3 Val 30 Cys	Glu Lys 30 Lys 15 Leu Lys	Val 285 Phe 0 Pro Thr	270 Thr Asn Arg Val Ser 350	Cys Trp Glu Leu 335	Val Tyr Glu 320 His	Val Val Gln Gln	Val Asp Tyr Asp
Asp Gly 305 Asn	Thr Val 290 Val Ser Leu	Leu 275 Ser Glu Thr Asn 3	Gly 60 Met His Val Tyr 32 Gly 40	Glu His 31 Arg	Ser Asp 295 Asn 0	Arg 280 Pro Ala Val Tyr	265 Thr Glu Lys Ser 3 Lys 345	Pro Val Thr 3 Val 30 Cys	Glu Lys 30 Lys 15 Leu Lys	Val 285 Phe 0 Pro Thr	270 Thr Asn Arg Val Ser 350 Lys	Cys Trp Glu Leu 335	Val Tyr Glu 320 His	Val Val Gln Gln	Val Asp Tyr Asp
Asp Gly 305 Asn Trr	Thr Val 290 Val Ser Leu	Leu 275 Ser Glu Thr Asn 3 Pro	Gly 60 Met His Val Tyr 32 Gly 40 Ile	Glu His 31 Arg	Ser Asp 295 Asn 0 Val	Arg 280 Pro Ala Val Tyr Thr 360	265 Thr Glu Lys Ser 3 Lys 345	Pro Val Thr 3. Val 30 Cys	Glu Lys 30 Lys 15 Leu Lys	Val 285 Phe 0 Pro Thr Val Ala 365	270 Thr Asn Arg Val Ser 350 Lys	Cys Trp Glu Leu 335 Asn	Val Tyr Glu 320 His	Val Val Gln Gln Ala	Val. Asp Tyr Asp
Asp Gly 305 Asn Trr	Thr 290 Val Ser Leu Ala	Leu 275 Ser Glu Thr Asn 3 Pro	Gly 60 Met His Val Tyr 32 Gly 40 Ile	Glu His 31 Arg	Ser Asp 295 Asn 0 Val Glu Lys	Arg 280 Pro Ala Val Tyr 360 Leu	265 Thr Glu Lys Ser 3 Lys 345	Pro Val Thr 3. Val 30 Cys	Glu Lys 30 Lys 15 Leu Lys	Val 285 Phe 0 Pro Thr Val Ala 365 Arg	270 Thr Asn Arg Val Ser 350 Lys	Cys Trp Glu Leu 335 Asn	Val Tyr Glu 320 His	Val Val Gln Gln Ala	Val. Asp Tyr Asp
Asp Gly 305 Asn Trp	Thr Val 290 Val Ser Leu Ala Pro 370	Leu 275 Ser Glu Thr Asn Pro 355	Gly 60 Met His Val 32 Gly 40 Ile	Glu His 31 Arg	Ser Asp 295 Asn 0 Val Glu Lys	Arg 280 Pro Ala Val Tyr 360 Leu	265 Thr Glu Lys Ser 3 Lys 11e	Pro Val Thr 3. Val 30 Cys Ser	Lys 30 Lys 15 Leu Lys Sex 38	Val 285 Phe 0 Pro Thr Val Ala 365 Arg	270 Thr Asn Arg Val Ser 350 Lys	Cys Trp Glu 335 Asn Gly	Val Tyr Glu 320 His Lys	Val Val Gln Gln Ala Pro	Val. Asp Tyr Asp Leu Arg
Asp Gly 305 Asn Trr	Thr 290 Val Ser Leu Ala Pro 370	Leu 275 Ser Glu Thr Asn Pro 355	Gly 60 Met His Val 32 Gly 40 Ile	Glu His 31 Arg Lys	Ser Asp 295 Asn O Val Glu Lys Thr	Arg 280 Pro Ala Val Tyr 360 Leu	265 Thr Glu Lys Ser 3 Lys 11e	Pro Val Thr 3 Val 30 Cys Ser Pro Val	Lys 30 Lys 15 Leu Lys Sex 38	Val 285 Phe 0 Pro Thr Val Ala 365 Arg	270 Thr Asn Arg Val Ser 350 Lys	Cys Trp Glu Leu 335 Asn Gly Glu	Val Tyr Glu 320 His Lys	Val Val Gln Gln Ala Pro	Val. Asp Tyr Asp Leu Arg
Asp Gly 305 Asn Trr Pro	Thr Val 290 Val Ser Leu Ala Pro 370 n Gln	Leu 275 Ser Glu Thr Asn 355 Gln	Gly 60 Met His Val 32 Gly 40 Ile	Glu His 31 Arg 5 Lys Glu Tyr	Ser Asp 295 Asn O Val Glu Lys Thr 375	Arg 280 Pro Ala Val Tyr 360 Leu	265 Thr Glu Lys Ser 3 Lys 345 The	Pro Val Thr 3 Val 30 Cys Ser Pro	Lys 30 Lys 15 Leu Lys Ser 38 Lys	Val 285 Phe 0 Pro Thr Val Ala 365 Arg	270 Thr Asn Arg Val Ser 350 Lys Asp	Cys Trp Glu 335 Asn Gly Glu	Val Tyr Glu 320 His Lys Gln Leu Pro 400	Val. Gln Gln Ala Thr	Val Asp Tyr Asp Leu Arg
Asp Gly 305 Asn Trr Pro	Thr Val 290 Val Ser Leu Ala Pro 370 n Gln	Leu 275 Ser Glu Thr Asn 355 Gln	Gly 60 Met His Val 32 Gly 40 Ile	Glu His 31 Arg Lys Glu Tyr	Ser Asp 295 Asn O Val Glu Lys Thr	Arg 280 Pro Ala Val Tyr 360 Leu	265 Thr Glu Lys Ser 3 Lys 345 Ile	Pro Val Thr 3 Val 30 Cys Ser Pro	Lys 30 Lys 15 Leu Lys Ser 38 Lys	Val 285 Phe 0 Pro Thr Val Ala 365 Arg	270 Thr Asn Arg Val Ser 350 Lys Asp	Cys Trp Glu 335 Asn Gly Glu	Val Tyr Glu 320 His Lys Gln Leu Pro 400	Val. Gln Gln Ala Thr	Val Asp Tyr Asp Leu Arg

```
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
         420
                          425
                                           430
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
                      440
                                       445
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
                                     460
                   455
Leu Ser Leu Ser Pro Gly Lys
                470
⟨210⟩ 28
<211> 122
<212> PRT
<213> Mus musculus
<400> 28
Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Gly
                              10 '
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                          25
Ala Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val
                       40
                                        45
Ala Ala Ile Asm Ser Asm Gly Gly Thr Thr Tyr Tyr Pro Asp Thr Met
                                     60
                    55
Lys Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
                70.
                                 75
Leu Gln Met Ser Ser Leu Arg Ser Glu Asp Ser Ala Leu Tyr Tyr Cys
                                              95
                              90
Thr Arg His Asn Gly Gly Tyr Glu Asn Tyr Gly Trp Phe Ala Tyr Trp
          100
                           105
Gly Gln Gly Thr Leu Val Thr Val Ser Ala
                        120
<210> 29
<211> 470
<212> PRT
<213> Mus musculus
<400> 29 .
Met Glu Ser Asn Trp Ile Leu Pro Phe Ile Leu Ser Val Ala Ser Gly
                              10
             5
Val Tyr Ser Glu Val Gln Leu Gln Gln Ser Gly Thr Val Leu Ala Arg
                           25
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
                     . 40
                                        45
Thr Gly Tyr Trp Met Arg Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
                    55
                                     60
```

Glu	Trp	Ile	Gly	Ala	Ile	Tyr	Pro	Gly	Asn	Ser	Asp			Tyr	Asn
65				70				75				80			
Gln	Lys	Phe	Lys	Gly	Lys	Ala	Lys	Leu	Thr	Ala	Val	Thr	Ser	Val	Ser
			85				90)			9	5			
Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Thr	Asn	Glu	Asp	Ser	Ala	Val
		10	00			1	.05				110				٠
Tvr	Tyr	Cvs	Ser	Arq	Ser	Gly	Asp	Leu	Thr	Gly	Gly	Phe	Ala	Tyr	Trp
•		15				120				125					
Glv			Thr	Leu	Val	Thr	Val.	Ser	Thr	Ala	Lys	Ala	Ser	Thr	Lys
_	130	2			135				140						
		Sor	Val	Phe		T.e.i	Ala	Pro		Ser	Lvs	Ser	Thr	Ser	Gly
_	FIO	261.	٧	150				15					.60		_
145	PTT	31-	77-			C	T 017			Asp	Upt 2.30			Glu	Pm
GIŢ	TILE	Ата			GTÄ	Cys		70	цуа	чэр		L75	110	014	110
			16		_				T	Mana			1707	ui c	шhж
Val	Thr			Trp	Asn			Ara	ren	Thr		GTĀ	var	UTS	TITT
			30				L85			_	190	_	_	_	
Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Тут		Leu	Ser	ser	val
•		95				200				205			•		•
Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn
	210				215				22	0	٠				
Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro
225				23	0				35			2	240		
	Ser	Cys	Asp				Thr	23			Cys		240		Glu
	Ser	Cys	Asp 24	Lys				23					240		Glu
Lys			24	Lys 5	Thr	His	2	2: Cys 50	Pro	Pro	:	Pro 255	240 Ala	Pro	
Lys		Gly	24 Gly	Lys 5	Thr	His Val	2	2: Cys 50	Pro	Pro	:	Pro 255	240 Ala	Pro	Glu
Lys Leu	Leu	Gly 2	24 Gly 60	Lys 5 Pro	Thr	His Val	2 Phe 265	2: Cys 50 Leu	Pro	Pro	Pro 270	Pro 255 Lys	240 Ala Pro	Pro	Asp
Lys Leu	Leu	Gly 2 Met	24 Gly 60	Lys 5 Pro	Thr	His Val	2 Phe 265	2: Cys 50 Leu	Pro	Pro Pro Thr	Pro 270 Cys	Pro 255 Lys	240 Ala Pro	Pro	
Lys Leu Thr	Leu Leu	Gly 2 Met 275	24 Gly 60 Ile	Lys 5 Pro Ser	Thr Ser Arg	His Val Thr 280	2 Phe 265 Pro	2: Cys 50 Leu Glu	Pro Phe Val	Pro Pro Thr 285	Pro 270 Cys	Pro 255 Lys Val	240 Ala Pro Val	Pro Lys Val	Asp Asp
Lys Leu Thr	Leu Leu Ser	Gly 2 Met 275	24 Gly 60 Ile	Lys 5 Pro Ser	Thr Ser Arg	His Val Thr 280 Glu	Phe 265 Pro	2: Cys 50 Leu Glu	Pro Phe Val	Pro Pro Thr 285	Pro 270 Cys	Pro 255 Lys Val	240 Ala Pro Val	Pro Lys Val	Asp
Lys Leu Thr	Leu Leu Ser 290	Gly 2 Met 275 His	24 Gly 60 Ile	Lys 5 Pro Ser Asp	Thr Ser Arg	His Val Thr 280 Glu	2 Phe 265 Pro	Cys 50 Leu Glu Lys	Pro Phe Val Phe 30	Pro Pro Thr 285 Asn	Pro 270 Cys	Pro 255 Lys Val	240 Ala Pro Val Val	Pro Lys Val Asp	Asp Asp Gly
Lys Leu Thr Val	Leu Leu Ser 290 Glu	Gly 2 Met 275 His	24 Gly 60 Ile	Lys 5 Pro Ser Asp	Ser Arg	His Val Thr 280 Glu	2 Phe 265 Pro	Cys 50 Leu Glu Lys	Pro Phe Val Phe 30 Pro	Pro Pro Thr 285 Asn	Pro 270 Cys	Pro 255 Lys Val Tyr	240 Ala Pro Val . Val Gln	Pro Lys Val Asp	Asp Asp
Lys Leu Thr Val Val 305	Leu Leu Ser 290 Glu	Gly 2 Met 275 His	24 Gly 60 Ile Glu	Lys 5 Pro Ser Asp Asn 31	Ser Arg Pro 295 Ala	Val Thr 280 Glu	2 Phe 265 Pro Val	Cys 50 Leu Glu Lys Lys	Pro Phe Val Phe 30 Pro	Pro Pro Thr 285 Asn 0	Pro 270 Cys Trp	Pro 255 Lys Val Tyr	240 Ala Pro Val . Val Gln 320	Pro Lys Val Asp	Asp Asp Gly Asn
Lys Leu Thr Val Val 305	Leu Leu Ser 290 Glu	Gly 2 Met 275 His	24 Gly 60 Ile Glu His	Lys 5 Pro Ser Asp Asn 31 Val	Ser Arg Pro 295 Ala	Val Thr 280 Glu	Phe 265 Pro Val	Cys 50 Leu Glu Lys Lys 3 Leu	Pro Phe Val Phe 30 Pro	Pro Pro Thr 285 Asn 0	Pro 270 Cys Trp Glu	Pro 255 Lys Val Tyr Glu	240 Ala Pro Val . Val Gln 320	Pro Lys Val Asp	Asp Asp Gly
Lys Leu Thr Val Val 305 Ser	Leu Leu Ser 290 Glu	Gly 2 Met 275 His Val	24 Gly 60 Ile Glu His Arg	Lys 5 Pro Ser Asp Asn 31 Val	Thr Ser Arg Pro 295 Ala 0	His Val Thr 280 Glu Lys	Phe 265 Pro Val Thr	Cys 50 Leu Glu Lys Lys 3 Leu 30	Pro Phe Val Phe 30 Pro 15	Pro Pro Thr 285 Asn O Arg	Pro 270 Cys Trp Glu	Pro 255 Lys Val Tyr Glu His 335	240 Ala Pro Val Val Gln 320 Gln	Pro Lys Val Asp	Asp Asp Gly Asn
Lys Leu Thr Val Val 305 Ser	Leu Leu Ser 290 Glu	Gly 2 Met 275 His Val	24 Gly 60 Ile Glu His Arg	Lys 5 Pro Ser Asp Asn 31 Val	Thr Ser Arg Pro 295 Ala 0	His Val Thr 280 Glu Lys	Phe 265 Pro Val Thr Val 3	Cys 50 Leu Glu Lys Lys 3 Leu 30	Pro Phe Val Phe 30 Pro 15	Pro Pro Thr 285 Asn O Arg	Pro 270 Cys Trp Glu Leu	Pro 255 Lys Val Tyr Glu His 335	240 Ala Pro Val Val Gln 320 Gln	Pro Lys Val Asp	Asp Asp Gly Asn
Lys Leu Thr Val Val 305 Ser	Leu Leu Ser 290 Glu Thr	Gly 2 Met 275 His Val	24 Gly 60 Ile Glu His Arg 32 Lys	Lys 5 Pro Ser Asp Asn 31 Val	Thr Ser Arg Pro 295 Ala 0 Val	His Val Thr 280 Glu Lys	Phe 265 Pro Val Thr Val 3 Cys 345	Cys 50 Leu Glu Lys Lys 3 Leu 30 Lys	Pro Phe Val Phe 30 Pro 15 Thr	Pro Pro Thr 285 Asn O Arg	Pro 270 Cys Trp Glu Leu Asn 350	Pro 255 Lys Val Tyr Glu His 335	240 Ala Pro Val Val Gln 320 Gln Ala	Pro Lys Val Asp Asp	Asp Asp Gly Asn Trp
Lys Leu Thr Val Val 305 Ser	Leu Leu Ser 290 Glu Thr	Gly 2 Met 275 His Val Tyr	24 Gly 60 Ile Glu His Arg 32 Lys	Lys 5 Pro Ser Asp Asn 31 Val	Thr Ser Arg Pro 295 Ala 0 Val	His Val Thr 280 Glu Lys	Phe 265 Pro Val Thr Val 3 Cys 345	Cys 50 Leu Glu Lys Lys 3 Leu 30 Lys	Pro Phe Val Phe 30 Pro 15 Thr	Pro Pro Thr 285 Asn O Arg	Pro 270 Cys Trp Glu Leu Asn 350	Pro 255 Lys Val Tyr Glu His 335	240 Ala Pro Val Val Gln 320 Gln Ala	Pro Lys Val Asp Asp	Asp Asp Gly Asn
Lys Leu Thr Val Val 305 Ser	Leu Ser 290 Glu Thr	Gly 2 Met 275 His Val Tyr	24 Gly 60 Ile Glu His Arg 32 Lys	Lys 5 Pro Ser Asp Asn 31 Val	Thr Ser Arg Pro 295 Ala 0 Val	His Val Thr 280 Glu Lys	Phe 265 Pro Val Thr Val 3 Cys 345	Cys 50 Leu Glu Lys Lys 3 Leu 30 Lys	Pro Phe Val Phe 30 Pro 15 Thr	Pro Pro Thr 285 Asn O Arg	Pro 270 Cys Trp Glu Leu Asn 350 Gly	Pro 255 Lys Val Tyr Glu His 335	240 Ala Pro Val Val Gln 320 Gln Ala	Pro Lys Val Asp Asp	Asp Asp Gly Asn Trp
Lys Leu Thr Val 305 Ser Leu Ala	Leu Ser 290 Glu Thr Asn	Gly 2 Met 275 His Val Gly 3 Ile	24 Gly 60 Ile Glu His Arg 32 Lys 40	Lys 5 Pro Ser Asp Asn 31 Val 5 Glu	Thr Ser Arg Pro 295 Ala 0 Val	His Val Thr 280 Glu Lys Lys Tle 360	Phe 265 Pro Val Thr Val Cys 345	Cys 50 Leu Glu Lys Lys 30 Lys	Pro Phe Val Phe 30 Pro 15 Thr	Pro Pro Thr 285 Asn O Arg Val Ser	Pro 270 Cys Trp Glu Leu Asn 350 Gly	Pro 255 Lys Val Tyr Glu His 335 Lys	240 Ala Pro Val Val Gln 320 Gln Ala	Pro Lys Val Asp Asp Leu Arg	Asp Asp Gly Asn Trp
Lys Leu Thr Val 305 Ser Leu Ala	Leu Ser 290 Glu Thr Asn	Gly 2 Met 275 His Val Gly 3 Ile	24 Gly 60 Ile Glu His Arg 32 Lys 40	Lys 5 Pro Ser Asp Asn 31 Val 5 Glu	Thr Ser Arg Pro 295 Ala 0 Val	His Val Thr 280 Glu Lys Ser Lys 360	Phe 265 Pro Val Thr Val Cys 345	Cys 50 Leu Glu Lys Lys 30 Lys	Pro Phe Val Phe 30 Pro 15 Thr	Pro Pro Thr 285 Asn 0 Arg Val Ser 148	Pro 270 Cys Trp Glu Leu Asn 350 Gly	Pro 255 Lys Val Tyr Glu His 335 Lys	240 Ala Pro Val Val Gln 320 Gln Ala	Pro Lys Val Asp Asp Leu Arg	Asp Asp Gly Asn Trp Pro
Lys Leu Thr Val 305 Ser Leu Ala	Leu Ser 290 Glu Thr Asn Pro	Gly 2 Met 275 His Val Gly 3 Ile 355	24 Gly 60 Ile Glu His Arg 32 Lys 40 Glu	Lys 5 Pro Ser Asp Asn 31 Val 5 Glu Lys	Thr Ser Arg Pro 295 Ala 0 Val Tyr Thr	His Val 280 Glu Lys Lys 116 360 Pro	Phe 265 Pro Val Thr Val 3 345 Ser	Cys 50 Leu Glu Lys Lys 30 Leu Su Lys	Pro Phe Val Phe 30 Pro 15 Thr Val Ala Arg	Pro Pro Thr 285 Asn O Arg Val Ser Asp 365	Pro 270 Cys Trp Glu Leu Asn 350 Gly	Pro 255 Lys Val Tyr Glu 335 Lys Gln	240 Ala Pro Val Val Gln 320 Gln Ala Pro	Pro Lys Val. Asp Asp Leu Arg	Asp Asp Gly Asn Trp Pro
Lys Leu Thr Val 305 Ser Leu Ala	Leu Leu Ser 290 Glu Thr Asn Pro Gln 370 Val	Gly 2 Met 275 His Val Gly 3 Ile 355	24 Gly 60 Ile Glu His Arg 32 Lys 40 Glu	Lys 5 Pro Ser Asp Asn 31 Val 5 Glu Lys	Ser Arg Pro 295 Ala 0 Val Tyr Thr Cys	His Val 280 Glu Lys Lys 116 360 Pro	Phe 265 Pro Val Thr Val 3 345 Ser	Cys 50 Leu Glu Lys Lys 30 Lys Lys Ser	Pro Phe Val Phe 30 Pro 15 Thr Val Ala Arg	Pro Pro Thr 285 Asn O Arg Val Ser Asp 365	Pro 270 Cys Trp Glu Leu Asn 350 Gly	Pro 255 Lys Val Tyr Glu His 335 Lys Gln	240 Ala Pro Val Val Gln 320 Gln Ala Pro	Pro Lys Val. Asp Asp Leu Arg	Asp Asp Gly Asn Trp Pro Glu Asn

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 405 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 425 430 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys . 440 445 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 460 455 Ser Leu Ser Pro Gly Lys 465 470 <210> 30 <211> 119 <212> PRT <213> Mus musculus <400> 30 Glu Val Gln Leu Gln Gln Ser Gly Thr Val Leu Ala Arg Pro Gly Ala 10 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr 25 30 Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Ser Asp Thr Asn Tyr Asn Gln Lys Phe **55**. 60 Lys Gly Lys Ala Lys Leu Thr Ala Val Thr Ser Ala Ser Thr Ala Tyr 70 75 Met Glu Leu Ser Ser Leu Thr Asn Glu Asp Ala Ala Val Tyr His Cys 85 90 Thr Arg Ser Gly Asp Leu Thr Gly Gly Leu Ala Tyr Trp Gly Gln Gly 105 110 Thr Leu Val Thr Val Ser Ala 115 <210> 31 <211> 124 <212> PRT <213> Mus musculus <400> 31 Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala 10 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 25 20 Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile

40

														-		
Gly	Glu	Ile	Asp	Pro		Asp	Ser	Tyr		Tyr	Tyr	Asn	Gln	Lys	Phe	
	50				55				60							
Arg	Gly	Lys	Ala	Thr	Leu	Thr	Val	Asp	Lys	Ser	Ser	Asn	Thr	Ala	Tyr	
65		•		70				75				8	0			
Met	${\tt Gln}$	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	Cys	
			85		•		90)			9	5				
Ser	Arg	Ser	Asn	Leu	Gly	Asp	Gly	His	Tyr	Arg	Phe	Pro	Ala	Phe	Pro	
		10	00			1	.05				110					
Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala					
	1	15				120										
<210	0> 3	32														
<21	1> 1	.24														
<21:	2> E	PRT														
<21	3> M	lus n	nuscu	ılus												
	0> 3															
			Leu	Gln	Gln	Pro	Gly	Ala	Glu	Leu	Val	Lys	Pro	Gly	Ala	
1			5				10					.5				
	Val	Lvs	Leu	Ser	Cvs	Lvs	Ala	Ser	Glv	Tyr	Thr	Phe	Thr	Ser	Tyr	
		20			-1-		25		-	•	30				_	
רייש	Met		Trp	Val	Lvs		-	Pro	Glv	Gln		Leu	Glu	Tro	Ile	
1-5		35		,		40	9		U —1	45	1					
Clar			Asp	Dm			Ser	Glu	Thr		ጥህጉ	Asn	Len	Gln	Phe	
GIY	50	116	цен	LIO	55	den		010	60	1120	-1-					
T ***		mb	λla	mb~		Thr	Val.	Δen		Ser	Ser	Ser	Thr	Ala	Tyr	
дуS 65	Asp	1111	ALC	70	neu	****	VUL	75 75			501		0		-1-	
	C1-	T 011	Ser		Ton	mb.s.	502			Sor	בות			Пет	Cas	
Met	GIII	Leu			Leu	1111	9		Asp	Ser		95	-77	-3-	CYS	
-1 -	3		85		m	Com			Com	M			m	Dho	פות	•
тте	Arg	_		Pne	TYL			TAT	Ser	TÄT		ATG	. i.r	FILE	Ala	
_			00	0 3			105	ma	17-7	Com	110					
лĀL	_	_	Gln	. СтХ	Thr		vaı	THE	var	Ser	ATa	•				
		115				120										
<21		33														
<21		717														
⟨21		DNA		_												
<21		Mus 1	musc	ulus									,			
<40		33														
															ggtgat	60
															tccatc	120
															tggttg	180
															gactct	240
gga	gccc	ctg	acag	gtto	ac t	ggca	gtgg	ra tc	aggg	acag	att	tcac	act	gaaa	atcagt	300
aga	gtgg	agg	ctga	ıggat	tt g	ggaa	ttta	it ta	ttgc	tggc	aag	gtac	aca	tttt	ccgctc	360

					•	
acgttcggtg	ctgggaccaa	gctggagctg	aaacgtacgg	tggctgcacc	atctgtcttc	420
atcttcccgc	catctgatga	gcagttgaaa	tctggaactg	cctctgttgt	gtgcctgctg	480
aataacttct	atcccagaga	ggccaaagta	cagtggaagg	tggataacgc	cctccaatcg	540
ggtaactccc	aggagagtgt	cacagagcag	gacagcaagg	acagcaccta	cagcctcagc	600
agcaccctga	cgctgagcaa	agcagactac	gagaaacaca	aagtctacgc	ctgcgaagtc	660
acccatcagg	gcctgagctc	gcccgtcaca	aagagcttca	acaggggaga	gtgttga	717
<210> 34						
⟨211⟩ 336						
<212> DNA						
<213> Mus	musculus					
<400> 34						
gatgttgtga	tgacccagtc	tccactcact	ttgtcgatta	ccattggaca	accagectec	60
atctcttgca	agtcaagtca	gagcctctta	gatagtgatg	gaaagacata	tttgaattgg	120
ttgttacaga	ggccaggcca	gtctccaaag	cgcctaatct	atctggtgtc	taaactggac	180
tctggagtcc	ctgacaggtt	cactggcagt	ggatcaggga	cagatttctc	actgaaaatc	240
agcagagtgg	aggctgagga	tttgggaatt	tattattgct	ggcaaggtac	acattttccg	300
ctcacgttcg	gtgctgggac	caagctggag	ctgaaa		336	
. ⟨210⟩ 35						
<211> 717						
<212> DNA						
<213> Mus	musculus					
<400> 35						
atgagtcctg	tccagttcct	gtttctgtta	atgctctgga	ttcaggaaac	caacggtgat	60
gttgtgatga	cccagactcc	actgtctttg	tcggttacca	ttggacaacc	agcctctatc	120
tcttgcaagt	caagtcagag	cctcttatat	agtaatggaa	agacatattt	gaattggtta	180
caacagaggc	ctggccaggc	tccaaagcac	ctaatgtatc	aggtgtccaa	actggaccct	240
ggcatccctg	acaggttcag	tggcagtgga	tcagaaacag	attttacact	taaaatcagc	300
agagtggagg	ctgaagattt	gggagtttat	tactgcttgc	aaagtacata	ttatccgctc	360
acgttcggtg	ctgggaccaa	gctggagctg	aaacgtacgg	tggctgcacc	atctgtcttc	420
atcttcccgc	catctgatga	gcagttgaaa	tctggaactg	cctctgttgt	gtgcctgctg	480
aataacttct	atcccagaga	ggccaaagta	cagtggaagg	tggataacgc	cctccaatcg	540
ggtaactccc	aggagagtgt	cacagagcag	gacagcaagg	acagcaccta	cagcctcagc	600
agcaccctga	cgctgagcaa	agcagactac	gagaaacaca	aagtctacgc	ctgcgaagtc	660
acccatcagg	gcctgagctc	gcccgtcaca	aagagcttca	acaggggaga	gtgttga	717
<210> 36						
⟨211⟩ 324						
<212> DNA						
<213> Mus	musculus .					
<400> 36						
gacatcaaga	tgacccagtc	tccatcttcc	atgtatgcat	ctctaggaga	gagagtcact	60
atcacttgca	aggcgagtca	ggacattaat	aactatttaa	gctggttcca	gcagaaacca	120
gggaaatctc	ctaagaccct	gatctatcgt	gcaaacagat	tggtagatgg	ggtcccatca	180

					•	
aggttcagtg	gcagtggatc	tgggcaagat	tattctctca	ccatcagcag	cctggagtat	240
gaagatatgg	gaattaatta	ttgtctacag	tgtgatgagt	ttcctccgtg	gacgttcggt	300
ggaggcacca	agctggaaat	caaa			324	
⟨210⟩ 37	•					
⟨211⟩ 336						
<212> DNA		•			•	
<213> Mus	musculus		,			
<400> 37						
	tgacccaaac					60
	gatctagtca					120
	agccaggcca					180
	cagacaggtt					240
	aggctgagga			ctcaaagtac		300
tggacgttcg	gtggaggcac	caagctggaa	atcaaa		336	•
<210> 38			•			
<211> 705				•		
<212> DNA						:
<213> Mus	musculus					
<400> 38						40
	ccattcagtt					60
					caaagtcacc	120
					acacaagcct	180
					catcccatca	240
					cctggagcct	300
					gttcggtgga	360
					cttcccgcca	420
					taacttctat	480
					taactcccag	540
					caccctgacg	600
					ccatcagggc	660
ctgagctcg	c ccgtcacaaa	gagetteaac	aggggagagt	gttga		705
<210> 39						
<211> 321	•		•			
<212> DNA						
<213> Mus	musculus					
<400> 39						
					caaagtcacc	60
					acacaagcct	120
					catcccatca	180
					cctggagcct	240
gaagatatt	g caacttatta	a ctgtctacag	g tatgataato	ttccacggad	gttcggtgga	300
ggcaccaag	c tggaaatca	a a			321	

						•	
<210>	40						
<211> '	720						
<212> 1	DNA						
<213> 1	Mus m	usculus					
	40					•	
					ggatccctgg		60
					ctcttggaac		120
					gcatcactta		180
					atcagatgtc		240
					ctgatttcac		300
					ctcaaaatct		360
					cggtggctgc		420
					ctgcctctgt		480
					aggtggataa		540
					aggacagcac		600
-					acaaagtcta		660
gtcacco	catc	agggcctgag	ctcgcccgtc	acaaagagct	tcaacagggg	agagtgttga	720
<210>	41						
<211>	336						
<212>	DNA						
<213>	Mus r	musculus					
<400>	41						
gatatt	gtga	tgacgcaggc	tgcattctcc	aatccagtca	ctcttggaac	atcagcttcc	60
atctcc	tgca	ggtctagtaa	gagtctccta	catagtaatg	gcatcactta	tttgtattgg	120
tttctg	caga	agccaggcca	gtctcctcag	ctcctgattt	atcagatgtc	caaccttgcc	180
tcagga	gtcc	cagacaggtt	cagtagcagt	gggtcaggaa	ctgatttcac	actgagaatc	240
agcaga	gtgg	aggctgagga	tgtgggtgtt	tattactgtg	ctcaaaatct	agaacttccg	300
tatacg	ttcg	gatcggggac	caagctggaa	ataaaa		336	
<210>	42			•		-	
<211>	321						
<212>	DNA						
<213>	Mus	musculus					
<400>				•			
					ctccaggaga		60
						acaaaaatca	120
						gatcccctcc	180
						tgtggagact	240
gaagat	tttg	gaatgtattt	ctgtcaacag	agtaacatct	ggtcgctcac	gttcggtgct	300
gggacc	caagc	tggagctgaa	a			321	
<210>	43		•				
<211>	333						
<212>	DNA				•		

														•		
<213	> Mu	ıs m	ıscu	lus												
<400																
_															tcacc	
															ggtac	
caac	agaa	ac c	agga	cago	c ac	ccaa	actc	ctc	atct	atg	gtgc	atcc	aa c	gtag	aatct	:
gggg	tccc	tg c	cagg	rttta	g tg	gcag	tggg	tct	ggga	cag	actt	cago	ct c	aaca	tccat	:
cctg	tgga	igg a	ggat	gata	t tg	caat	gtat	ttc	tgtc	agc	aaag	tagg	aa g	gttc	cgtat	:
acgt	tcgg	at c	9999	jacca	a go	tgga	aata	aaa	ı						33	33
<210	> 4	4														
<211	> 2	38														
<212	> P	RT														
<213	> M	us m	uscu	lus					•							
<400	> 4	4														
Met	Ser	Pro	Ala	Gln	Phe	Leu	Phe	Leu	Leu	Val	Leu	${\tt Trp}$	Ile	Arg	Glu	
1		•	5				10	, ,			1.	5				
Thr.	Asn	Gly	Asp	Val	Val	Met	Thr	Gln	Thr	Pro	Leu	Thr	Leu	Ser	Val	
		20)			2	5			:	30					
Thr	Ile	Gly	Gln	Pro	Ala	Ser	Ile	Ser	Cys	Lys	Ser	Ser	Gln	Ser	Leu	
	3	5				40				45						
Leu	Asp	Ser	Asp	Gly	Lys	Thr	Tyr	Leu	Asn	Trp	Leu	Leu	Gln	Arg	Pro	
5	50				55				60							
Gly	Gln	Ser	Pro	Lys	Arg	Leu	Ile	Tyr	Leu	Val	Ser	Lys	Leu	Asp	Ser	
65				70				75				8	0			
Gly	Ala	Pro	Asp	Arg	Phe	Thṛ	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	
			85				90)			9	5				
Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Leu	Gly	Ile	Tyr	Tyr	Cys	
		10	00			1	.05				110					
Trp	Gln	Gly	Thr	His	Phe	Pro	Leu	Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	
		115				120		•		125						
Glu	Leu	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	
	130				135				14	0						
Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	
145				15	0			1	55			:	160			
Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	
			16	5			1	70			:	175				
Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	
		18	80			:	L85				190					
Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	
	1	195				200				205	5					
Asp	Tyr	Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	
	210				215	5			22	0						

Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

235 225 230 <210> 45 ⟨211⟩ 112 <212> PRT <213> Mus musculus ⟨400⟩ 45 Asp Val Val Met Thr Gln Ser Pro Leu Thr Leu Ser Ile Thr Ile Gly 10 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Asp Ser 25 30 Asp Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser 40 Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 60 Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Ser Leu Lys Ile 75 70 Ser Arg Val Glu Ala Glu Asp Leu Gly Ile Tyr Tyr Cys Trp Gln Gly 90 85 Thr His Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 105 110 100 <210> 46 <211> 238 <212> PRT <213> Mus musculus <400> 46 Met Ser Pro Val Gln Phe Leu Phe Leu Leu Met Leu Trp Ile Gln Glu 10 Thr Asn Gly Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val 25 30 Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu 45 40 Leu Tyr Ser Asn Gly Lys Thr Tyr Leu Asn Trp Leu Gln Gln Arg Pro 60 Gly Gln Ala Pro Lys His Leu Met Tyr Gln Val Ser Lys Leu Asp Pro 75 Gly Ile Pro Asp Arg Phe Ser Gly Ser Glu Ser Glu Thr Asp Phe Thr 90 85 Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys 105 110 Leu Gln Ser Thr Tyr Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu 120 115 Glu Leu Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro

140 135 130 Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu 155 150 Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn 170 175 Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser 185 Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala 205 200 195 Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly 220 215 Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 235 230 225 <210> 47 <211> 108 <212> PRT <213> Mus musculus <400> 47 Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly 10 Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Asn Asn Tyr 25 30 Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile 40 Tyr Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly 55 60 Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Tyr 70 75 Glu Asp Met Gly Ile Asn Tyr Cys Leu Gln Cys Asp Glu Phe Pro Pro 90 85 Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys <210> 48 <211> 112 <212> PRT <213> Mus musculus <400> 48 Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 10 Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25

Asn Gly Asn Thr Tyr Leu Ris Trp Tyr Leu Gln Lys Pro Gly Gln Ser

40 45 35 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 90 Thr His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 105 110 100 <210> 49 ⟨211⟩ 234 <212> PRT <213≻ Mus musculus <400> 49 Met Arg Pro Ser Ile Gln Phe Leu Gly Leu Leu Phe Trp Leu His • 10 Gly Val Gln Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser 25 Ala Ser Leu Gly Gly Lys Val Thr Ile Thr Cys Lys Ala Ser Gln Asp 40 Ile Asn Lys Asn Ile Val Trp Tyr Gln His Lys Pro Gly Lys Gly Pro 60 Arg Leu Leu Ile Trp Tyr Thr Ser Thr Leu Gln Pro Gly Ile Pro Ser 70 75 Arg Phe Ser Gly Ser Gly Ser Gly Arg Asp Tyr Ser Phe Ser Ile Ser 90 Asn Leu Glu Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln Tyr Asp 110 Asn Leu Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 120 125 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 140 135 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 155 150 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 170 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 185 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 200 205 195 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro

220

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 230 225 <210> 50 <211> 107 <212> PRT <213> Mus musculus ... <400> 50 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Leu Gly 10 5 Gly Lys Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Asn Lys Asn 30 25 Ile Ile Trp Tyr Gln His Lys Pro Gly Lys Gly Pro Arg Leu Leu Ile 40 Trp Tyr Thr Ser Thr Leu Gln Pro Gly Ile Pro Ser Arg Phe Ser Gly 55 Ser Gly Ser Gly Arg Asp Tyr Ser Phe Ser Ile Ser Asn Leu Glu Pro 75 Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln Tyr Asp Asn Leu Pro Arg 95 90 85 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 51 <211> 239 <212> PRT <213> Mus musculus <400> 51 Met Arg Phe Ser Ala Gln Leu Leu Gly Leu Leu Val Leu Trp Ile Pro 10 Gly Ser Thr Ala Asp Ile Val Met Thr Gln Ala Ala Phe Ser Asn Pro 30 25 Val Thr Leu Gly Thr Ser Thr Ser Ile Ser Cys Arg Ser Ser Lys Ser 45 40 Leu Leu His Ser Asn Gly Ile Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys 60 55 Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Gln Met Ser Asn Leu Ala 80 75 70 Ser Gly Val Pro Asp Arg Phe Ser Ser Ser Gly Ser Gly Thr Asp Phe 90 Thr Leu Arg Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr 105 Cys Ala Gln Asn Leu Glu Leu Pro Tyr Thr Phe Gly Ser Gly Thr Lys 125· 120 115

Leu Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro

140 135 130 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu 155 150 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp 170 175 165 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp 185 190 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys 205 200 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln 220 215 210 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 235 230 ⟨210⟩ 52 <211> 112 <212> PRT <213> Mus musculus <400> 52 Asp Ile Val Met Thr Gln Ala Ala Phe Ser Asn Pro Val Thr Leu Gly Thr Ser Ala Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 30 25 Asn Gly Ile Thr Tyr Leu Tyr Trp Phe Leu Gln Lys Pro Gly Gln Ser · 40 Pro Gln Leu Leu Ile Tyr Gln Met Ser Asn Leu Ala Ser Gly Val Pro 60 55 Asp Arg Phe Ser Ser Ser Gly Ser Gly Thr Asp Phe Thr Leu Arg Ile 75 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ala Gln Asn 90 Leu Glu Leu Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys 105 110 100 ⟨210⟩ 53 <211> 107 <212> PRT <213> Mus musculus <400> 53 Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Val Thr Pro Gly 10 5 1 Asp Arg Val Ser Leu Ser Cys Arg Ala Ser His Ser Ile Ser Asn Phe 30 25 20

Leu His Trp Tyr Pro Gln Lys Ser His Glu Ser Pro Arg Leu Leu Ile 40 45 35 Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly 60 55 Asn Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Thr 75 70 Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ile Trp Ser Leu 90 Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 105 <210> 54 <211> 111 <212> PRT <213> Mus musculus <400> 54 Asp Ile Val Leu Thr Gln Ser Pro Thr Ser Leu Ala Val Ser Leu Gly 10 5 Gln Ser Val Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Glu Tyr Tyr 25 20 Gly Thr Ser Leu Met Gln Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 45 40 Lys Leu Leu Ile Tyr Gly Ala Ser Asn Val Glu Ser Gly Val Pro Ala 60 55 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Ser Leu Asn Ile His 75 70 Pro Val Glu Glu Asp Asp Ile Ala Met Tyr Phe Cys Gln Gln Ser Arg 90 85 Lys Val Pro Tyr Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys 105 110 <210> 55 · <211> 333 <212> DNA <213> Mus musculus <400> 55 cagatccagt tggagcagtc tggacctgag ctgaagaagc ctggagagac agtcaagatc 60 tcctgcaagg cttctggtta tattttcaga gactattcaa tgcactgggt gaagcaggct 120 ccaggaaagg gtttaaagtg gatgggctgg ataaacactg agacgggtga gccaacatat 180 gcagatgact tcaagggacg gtttgccttc tctttggaaa cctctgccag cactgcctat 240 ttgcagatca acaacctcaa aaatgaggac acggctacat atttctgtac tagcctttac 300 tggggccaag ggactctggt cactgtctct gca 333 <210> 56

⟨211⟩ 372

•	
<212> DNA	
<213> Mus musculus	
<400> 56 .	
caggtcactc tgaaagagtc tggccctggg atattgcagc cctcccagac cctcagtctg	60
acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtagg ttggattcgt	120
cagccttcag ggaagggtct ggagtggctg gccaacattt ggtggcatga tgataagtac	180
tataactcag ccctgaagag ccggctcaca atctccaagg atatctccaa caaccaggta	240
ttcctcaaga tctccagtgt ggacactgca gatactgcca catactactg tgctcaaata	300
gcccctcgat ataataagta cgaaggcttt tttgctttct ggggccaagg gactctggtc	360
actgtctctg ca 372	
<210> 57	
<211> 345	
<212> DNA	
<213> Mus musculus	
<400> 57	•
caggttcaac tgcagcagtc tggggctgag ctggtgaggc ctggggcttc agtgaagctg	60
tcctgcaagg cttcgggcta cacatttact gactatgaaa tgcactgggt gaagcagaca	120
cctgtgcatg gcctaaaatg gattggagct cttgatccta aaactggtga tactgcctac	180
agtcagaagt tcaagggcaa ggccacactg actgcagaca aatcctccag cacagcctac	240
atggagetee geageetgae atetgaggae tetgeegtet attactgtae aagattetae	300
tcctatactt actggggcca agggactctg gtcactgtct ctgca 34	45
<210> 58	
<211> 357	
<212> DNA	
<213> Mus musculus	
<400> 58	
gaggtgcagc ttgttgagac tggtggagga ctggtgcagc ctgaagggtc attgaaactc	60
tcatgtgcag cttctggatt cagcttcaat atcaatgcca tgaactgggt ccgccaggct	120
ccaggaaagg gtttggaatg ggttgctcgc ataagaagtg aaagtaataa ttatgcaaca	180
tattatggcg attcagtgaa agacaggttc accatctcca gagatgattc acaaaacatg	240
ctctatctac aaatgaacaa cttgaaaact gaggacacag ccatatatta ctgtgtgaga	300
gaggtaacta catcgtttgc ttattggggc caagggactc tggtcactgt ctctgca	357
<210> 59	
⟨211⟩ 369	
<212> DNA	
<213> Mus musculus	
<400> 59	
gaggtgcagc ttgttgagac tggtggagga ttggtgcagc ctaaagggtc attgaaactc	60
tcatgtgcag cctctggatt caccttcaat gccagtgcca tgaactgggt ccgccaggct	120
ccaggaaagg gtttggaatg ggttgctcgc ataagaagta aaagtaataa ttatgcaata	180
tattatgccg attcagtgaa agacaggttc accatctcca gagatgattc acaaagcatg	240
ctctatctgc aaatgaacaa cttgaaaact gaggacacag ccatgtatta ctgtgtgaga	300

gatccgggct actatggtaa cccctggttt gcttactggg gccaagggac tctggtcact 369 gtctctgca <210> 60 <211> 111 <212> PRT <213> Mus musculus <400> 60 Gln Ile Gln Leu Glu Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu 10 15 Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ile Phe Arg Asp Tyr 25 Ser Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met 40 Gly Trp. Ile Asn Thr Glu Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe 55 60 Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr 70 75 Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys 90 Thr Ser Leu Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 110. 100 105 <210> 61 <211> 124 <212> PRT <213> Mus musculus <400> 61 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Tyr . 25 20 Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu Trp Leu Ala Asn Ile Trp Trp His Asp Asp Lys Tyr Tyr Asn Ser Ala 55 Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Ile Ser Asn Asn Gln Val 75 70 Phe Leu Lys Ile Ser Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 90 Cys Ala Gln Ile Ala Pro Arg Tyr Asn Lys Tyr Glu Gly Phe Phe Ala 105 100 Phe Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 120

```
⟨210⟩ 62
⟨211⟩ 115
<212> PRT
<213> Mus musculus
<400> 62
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala
                             10
Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
                          25
                                           30
Glu Met His Trp Val Lys Gln Thr Pro Val His Gly Leu Lys Trp Ile
                      40
                                        45
Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe
                    55
                                    60
Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
                                 75
                70
Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
             85
                              90
Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr
                                           110
          100
                           105
Val Ser Ala
      115
<210> 63
<211> 119
<212> PRT
<213> Mus musculus
<400> 63
Glu Val Gln Leu Val Glu Thr Gly Gly Gly Leu Val Gln Pro Glu Gly
                              10
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Asn Ile Asn
                           25
          20
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                        45
                        40
Ala Arg Ile Arg Ser Glu Ser Asn Asn Tyr Ala Thr Tyr Tyr Gly Asp
Ser Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp Ser Gln Asn Met
                 70
                                  75
Leu Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Ile Tyr
                              90
Tyr Cys Val Arg Glu Val Thr Thr Ser Phe Ala Tyr Trp Gly Gln Gly
          100
                           105
                                            110
```

Thr Leu Val Thr Val Ser Ala

<210	> 6	4														
<211	> 1	.23														
<212	> I	PRT .				:										
<213	> 1	fus m	uscu	lus												
<400																
Glu	Val	Gln	Leu	Val	Glu	Thr	Gly	Gly	Gly	Leu	Val	Gln	Pro	Lys	Gly	
1			5				10				1					
Ser	Leu	Lys	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Asn	Ala	Ser	
		20					5				30					
Ala	Met	Asn	${\tt Trp}$	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	
		35				40				45					•	
Ala	Arg	Ile	Arg	Ser	Lys	Ser	Asn	Asn	Tyr	Ala	Ile	Tyr	Tyr	Ala	Asp	
	50				55				60							
Ser	Val	Lys	Asp	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asp	Ser	Gln	Ser	Met	
65				70				7 5				8				•
Leu	Туг	Leu	Gln	Met	Asn	Asn	Leu	Lys	Thr	Glu	Asp	Thr	Ala	Met	Tyr	
			85				90					5				
Tyr	Cys	Val	Arg	Asp	Pro	Gly	Tyr	Tyr	Gly	Asn	Pro	Trp	Phe	Ala	Tyr	
		10	00			1	L05				110					
${\tt Trp}$	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala						
		115				120					•					
<210)>	65														
<21	L>	336					•									
<212	2>	DNA														
<213	3>	Mus 1	nusci	ulus												
<40																
-	_														gcctcc	60
															aattgg	120
															ctggac	180
															aaaatc	240
agc	agag	gtgg	aggo	tgag	ga t	ttgg	gagt	t ta	ttat	tgct	gcc	aagg	tac	acat	tttcct	300
cgg	acg	ttcg	gtgg	gaggc	ac c	aggo	tgga	a at	caaa						330	6
<21	0>	66														
<21	1>	336														
<21	2>	DNA														
<21	3>	Mus	musc	ulus												
		66														
-															gcctcc	60
															igaatgg	120
															cgattt	180
		-													aagatc	240
ago	aga	gtgg	aggo	tgag	gga t	ctgg	gagt	t ta	ittac	tgct	·ttc	aagg	ttc	acat	gttccg	300

•	
tggacgttcg gtggaggcac caagctggaa atcaa	336
<210> 67	
⟨211⟩ 336	•
<212> DNA	
<213> Mus musculus	
<400> 67 .	
gatgttgtga tgacccaaac tccactctcc ctgc	
atctcttgca gatctagtca gagccttgta caca	
tacctgcaga agccaggcca gtctccaaag ctcc	
tctggggtcc cagacaggtt cagtggcagt ggat	
agcagagtgg aggctgagga tctgggagtt tatt	totgot otcaaaatac acatgttoot 300
cctacgttcg gatcggggac caagctggaa ataa	aa 336
<210> 68	
<211> 336	
<212> DNA	
<213> Mus musculus	·
<400> 68	
gatattgtga tgactcagtc tgcaccctct gtac	
atctcctgca agtctagtaa gagtctcctg cata	
ttcctgcaga ggccaggcca gtctcctcaa ctcc	
tcaggagtcc cagacaggtt cagtggcagt gggt	caggaa ctgctttcac actgagaatc 240
agtagagtgg aggctgagga tgtgggtgtt tatt	actgta tgcaacatat agaataccct 300
ttcacgttcg gcacggggac aaaattggaa ataa	18a 336
<210> 69	
<211> 336	•
<212> DNA	
<213> Mus musculus	
<400> 69	
gatattgtga tgacgcaggc tgcattctcc aatc	
atotoctgca ggtotagtaa gagtotocta cata	agttatg acatcactta tttgtattgg 120
tatctgcaga agccaggcca gtctcctcag ctc	etgattt atcagatgtc caaccttgcc 180
tcaggagtcc cagacaggtt cagtagcagt ggg	
agcagagtgg aggctgagga tgtgggtgtt tat	tactgtg ctcaaaatct agaacttcct 300
ccgacgttcg gtggaggcac caagctggaa atc	aaa 336
<210> 70	•
<211> 318	
<212> DNA	
<213> Mus musculus	
< 400> 70	
caaattgttc tcacccagtc tccagcaatc atg	tctgcat ttccagggga gaaggtcacc 60
atgacctgca gtgccagctc aagtgttagt tac	atgtact ggtaccagca gaagtcagga 120
tcctcccca gactcctgat ttatgacaca tcc	aacctgg cttctggagt ccctgttcgc 180

300

ttcagtggca gtgggtctgg gacctcttac tctctcacaa tcagccgaat ggaggctgaa gatgctgcca cttattactg ccagcagtgg agtagttacc cgctcacgtt cggtggtggg accgagctgg agctgaaa <210> 71 ⟨211⟩ 112 <212> PRT <213> Mus musculus <400> 71 Asp Val Val Met Thr Gln Thr Pro Leu Thr Leu Ser Val Thr Leu Gly 10 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu His Ser 20 30 Asp Gly Lys Thr Phe Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser 40 Pro Lys Arg Leu Ile Tyr Leu Val Ser Arg Leu Asp Ser Gly Val Pro 55 60 Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 70 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Cys Gln Gly 90 85 Thr His Phe Pro Arg Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys 110 105 ⟨210⟩ 72 <211> 112 <212> PRT <213> Mus musculus <400> 72 Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 10 15 Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 25 Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 90 Ser His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 110 105 100

<210> 73

<211> 112 <212> PRT <213> Mus musculus <400> 73 Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 5 10 Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 30 25 Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 70 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Asn 90 95 85 Thr His Val Pro Pro Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys 105 100 <210> 74 ⟨211⟩ 112 <212> PRT <213> Mus musculus <400> 74 Asp Ile Val Met Thr Gln Ser Ala Pro Ser Val Pro Val Thr Pro Gly 10 5 Glu Ser Val Ser Ile Ser Cys Lys Ser Ser Lys Ser Leu Leu His Ser 30 25 20 Asn Gly Asn Thr Tyr Leu Asn Trp Phe Leu Gln Arg Pro Gly Gln Ser 45 40 Pro Gln Leu Leu Ile Tyr Trp Met Ser Asn Leu Ala Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile . 75 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His 90 Ile Glu Tyr Pro Phe Thr Phe Gly Thr Gly Thr Lys Leu Glu Ile Lys 110 105 100 ⟨210⟩ 75 <211> 112 <212> PRT

<213> Mus musculus

<400> 75

Asp Ile Val Met Thr Gln Ala Ala Phe Ser Asn Pro Val Thr Leu Gly 10 15 Thr Ser Ala Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser 25 Tyr Asp Ile Thr Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Ser · 40 45 Pro Gln Leu Leu Ile Tyr Gln Met Ser Asn Leu Ala Ser Gly Val Pro 55 Asp Arg Phe Ser Ser Ser Gly Ser Gly Thr Asp Phe Thr Leu Arg Ile 75 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ala Gln Asn 90 95 85 Leu Glu Leu Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 105 100 <210> 76 <211> 106 <212> PRT <213> Mus musculus <400> 76 Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Phe Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met 25 30 Tyr Trp Tyr Gln Gln Lys Ser Gly Ser Ser Pro Arg Leu Leu Ile Tyr 40 Asp Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser 60 55 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu 75 80 70 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro Leu Thr 95 Phe Gly Gly Gly Thr Glu Leu Glu Leu Lys 105 100 <210> 77 . <211> 345 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Mouse-human chimeric antibody H chain <400> 77 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc

tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc

60

120

agtcagastt toagggcag agtcacgatt accgogacg aatccacgag cacagcotac 240 atggagctga goagcotgag atctgaggac acggocgtst attactgtge gagattctac 300 toctatactt actggggcac gggaaccctg gtcaccgtct cctca 345	agtcagazett toaagggcag agtcacgatt accgggacg aatccacgag cacagctcac 240 atggagctga gacagctgag atccacgag cacagctcac 300 2(210) 78 2(212) DNA 2(213) Artificial Sequence 2(220) 2(223) Mouse-human chimeric antibody H chain 4(400) 78 caggtgcagc teggggcctc agtgaaggtc 12<	cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18	0
300 100 78 78 79 79 79 79 79 79	Attoropy		0
tcctatactt actggggcca gggaacctg gtcaccgtc cctca 345 <pre> <pre></pre></pre>	tectatactt actggggca gggaacctg gtcaccgtct cetca 345 210) 78 2112) 345 2122) DNA 2213) Artificial Sequence 2220) 223) Mouse-human chimeric antibody H chain 400) 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggcc cetggacaag gettetggata caccttcacc gactatgaaa tgcactggt gegacaggcc cetggacagg gttgagg attcagcgga ctggtgagg attcagcgga cacgccggac agtcacgctg accgcggacg aatccacgag cacagcctac atggaagtt tcaaggggcag agtcacgctg accgcggacg aatccacgag cacagcctac atggagctga gaggacctg gtgaagaacctg gtcaccgtct cetca 3210) 79 2211) 345 2212) DNA 2213) Artificial Sequence 2220) 2223) Mouse-human chimeric antibody H chain 400) 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc cetggacaag cacagcctac agtcagaag ctctggacag gtgaggagct cttgatccta aaactggtg gagaaggc cctggacaag ggcttgagg gtgaggagct cttgatccta aaactggtg cacaggccc agtgaaggcc catggacaag ggcttgagg gatgaggagc accgggaca aatccacgag cacagcctac agtcagaagt tcaaggaggag agtcacgctg accgcggaca aatccacgag cacagcctac atggagctga gcagcctgag atctgaggac accgggaca aatccacgag cacagcctac atggagctga gagcaggag agtcagctg accgcggaca aatccacgag cacagcctac atggagctga gagcaggcag atctgaggac aggaaccctg gtcaccgtc cetca 345 66 67 67 68 69 69 60 60 60 60 60 60 60 60		0
<2110 78	<pre><210> 78 </pre> <pre><211> 345 </pre> <pre><212> NNA </pre> <pre><222> Mouse-human chimeric antibody H chain <pre><400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc cctgcaagg cttctggata caccttcacc gactatgaaa tgcactggtg gcgacaggcc cctggacaag ggcttgagtg gatggagagc cttgagag atccaggag aaccaggcagagc agtcagaggct gagacaggc ggacaggcg agtcagaggct acaggcctac agtcagaagt tcaagggcag atctgagag acggcggtg attactgctac aagtggagctg gagacaggc ggaaccagg ggaaccagg gtacaggtg gtaaccagga aaccacagag cacagcctac atggagctga gcagcctgag atctgagga acggcggtg attactgtac aagattcac agtcagaagt taatggggca gggaaccatg gtaaccgt cctoa</pre></pre>		
<pre><212> DNA </pre> <pre><213> Artificial Sequence </pre> <pre><220> </pre> <pre><223> Mouse-human chimeric antibody H chain </pre> <pre><400> 78 </pre> <pre>caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggcc 120 ctctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gegacaggc 120 ctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag atctgagga acggcggacg aatccacgag cacagcctac 240 atggagctga gcagctgag atctgagga acggcgtgt attactgtac aagattctac 240 atggagctga gcagctgag atctgaggac acggccgtgt attactgtac aagattctac 240 atggagctga gcagctgag atctgaggac acggccgtg attactgac aagattctac 240 atggagctga gcagctgag gggaaccctg gtcaccgtc cctca 345 </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre> <212> DNA <213> Artificial Sequence <220> <223* Mouse-human chimeric antibody H chain <400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc cctggacaag gctttagtg gatgggagct cttgatccta aaactggtg tactgcctac agtcagaagt tcaagggcag agtcacgctg accgcgacg aatccacgag cacagcctac atggagctga gcagcctgag atctgaggac acggccgtg attactgtac aagattcac ctcctatactt actggggcca gggaaccctg gtcaccgtct cctca</pre>		
<pre><213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc foctgcagg gttgagtg gatggagagc cttgatcac gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatggaggct cttgatcac aaactggtga tactgcctac 180 agtgagagctga gcagcctgag atctgaggag atccacgga aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 </pre> (210) 79 <211> 345 <212> DNA <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagagc ctggggcctc agtgaaggtc agtcacggag cacctgggggcgc agtcacggg ctctggagag gtgaagagc ctgggggcct agtgagggcc agtggaggagc agtcacggg gtgaagagc ctggggcctc agtgagggcc agtgagggc cacctgggag agtcacggg gtgaagaggc ctggggcctc agtgagggcc agtgagggcc ctggggcagagggggggggg	<pre> </pre> <pre> <pre> <220> <223> Mouse-human chimeric antibody H chain </pre> <pre> <223\ Mouse-human chimeric antibody H chain </pre> <pre> <pre> <223\ Mouse-human chimeric antibody H chain </pre> <pre> <pre> <pre> <223\ Mouse-human chimeric antibody H chain </pre> <pre> <pre> <pre> <pre> <pre> <223\ Mouse-human chimeric antibody H chain </pre> <pre> <p< td=""><td><211> 345</td><td></td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<211> 345	
<pre><220> <223> Mouse-human chimeric antibody H chain <400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc fcctggacaag gttctggata caccttcacc gactatgaaa tgcactggtg tgcgacaggcc lacagctaagagtc ctgaggagtgaggt cttgagtg gatggagact cttgatccta aaactggtga tactgcgctac agtgaaggctgagtcagtgaggcaggctgaggcaggcagg</pre>	<pre><220> <223> Mouse-human chimeric antibody H chain <400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcttggaacagg cttctggata caccttcacc gactatgaaa tgcactgggt gegacaggcc cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcotac agtgaaggtc atggaggctgag gatgagagct cttgatccta aaactggtga tactgoctac agtgagagctgag gatgaggagct acggcggacg aatccacgag cacagcctac atggagactga gcagcctgag atctgaggac acggcggtg attactgtac aagattctac atggagctga gatcagggca gggaaccctg gtcaccgtct cctca aagattctac acggggcac aggaaccctg gtcaccgtct cctca aagattctac actgaggac aggaaccctg gtcaccgtct cctca 345 </pre> <pre> </pre> <pre> <pre><210> 79 </pre> <pre> <211> 345 </pre> <pre> <212> DNA </pre> <pre> <223> Mouse-human chimeric antibody H chain </pre> <pre> <400> 79 <2213 Artificial Sequence <220> <223 Mouse-human chimeric antibody H chain <400 79 <a< td=""><td><212> DNA</td><td></td></a<></pre></pre>	<212> DNA	
<223> Mouse-human chimeric antibody H chain <400> 78 caggtgcage tygtggagtc tygagctgag gtgaagaagc ctggggcctc agtgaaggcc 60 tcctgcaagg ctcttggata cacetteacc gactatgaaa tycactggt gcgacaggcc 120 cctggacagg gygttgagtg gatggaggct cttgatccta aaactggtga tactgcaca 180 agtcagagctg gcagcctgag atctgaggac accgcgacg aacccacag cacagctac 240 atggagctga gcagcctgag atctgaggac acggccgtg attactgtac aagattctac 300 tcctatactt actggggcca aggaacctg gtcaccgtc cctca 345 <210> 79 60 60 60 60 60 60	<pre> <223> Mouse-human chimeric antibody H chain <400> 78 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg ctcttggata caccttcacc gactatgaaa tgcactggtg gcgacaggcc 12cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac agtgaaggtt tcaaggacga agtcacgctg accgcggacg aatccacgag cacagcctac atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattcacc 30cctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 </pre> line caccgagacgagacaccgggacgagacccgggacgagacgagacgagacgagacgagacgagacgagacgagacgagacga	<213> Artificial Sequence	
c400> 78 caggtgcage tggtggagte tggagctgag gtgaagaage ctggggcete agtgaagge 120 cctggacaag gtcttggata caccttcace gactatgaaa tgcactggg gcgacagge 120 cctggacaag ggettgagtg gatggaget cttgatecta aaactggtga tactgcetac 240 atggagetga gcagcctgag actggggcag actggggcag aaactggtga aagattetac 300 tcctatactt actggggca gggaaccctg gtcaccgte ctca 345 <210> 79 211> 345 345 345 345 <212> DNA Artificial Sequence 220> 223> Mouse-human chimeric antibody H chain 460 460 460 <222> C223> Mouse-human chimeric accttcacc gactatgaaa tggagctgag gtgaagage ggaagagge 120 cctggacaag gttttggagte tggaggage gtgaagage ctggagcag 120 cctgacaag tctttggagag gtgaggagaag cttgatecta aaactggtga 120 cctgacagagt tcaagggcag accgcgggaa aatcacaggg acagactac 240 a	caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc ctggacaag ggcttgagtg gatggagac cttgatccta aaactggtga tactgcatac atggagctga gcagcctgag atctgaggac acggcctgat attactgac aagattctac atggagctga gcagcctgag atctgaggac acggcctgt attactgtac aagattctac acggggcca gggaaccctg gtcaccgtct cctca aagattctac actggggcca gggaaccctg gtcaccgtct cctca aagattctac acggggcca gggaaccctg gtcaccgtct cctca aagattctac actggggcca gggaaccctg gtcaccgtct cctca aagattctac acggggcca gggaaccctg gtcaccgtct cctca aagattctac actggggcca gggaaccctg gtcaccgtct cctca aagattctac acggggccc acggggccc acggcctgal attactgtac aagattctac acggggccc acggggaccccaccgggcccccccccc	<220>	
caggtgcage tggtggagtc tggagctgag gtgagagcc agtgagagcc 120 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggg ggacaggcc 120 cctggacaag ggcttgagtg gatggagcc cttgatccta aaactggtga tactgcactac 240 atggagctga gcagcctgag accgggacg aatccacgag cacagcctac 345 ctctatactt actggggca ggaaccctg gtcaccgtct ccta 345 c210> 79 ccta acggcggtg ccta aagattctac 345 c212> DNA ccta acggcgg ccta acggcgg ccta acggaggc ccta acggaggcg ccta acggaggcg ccta acggaggcg ccta acggagtg ccta acggagttg ccta acggaggtg ccta acggaggggggggggggggggggggggggggggggggg	caggtgcage tggtggagte tggagctgag gtgaagaage etggggeete agtgaaggte tectgcaagg ettetggata cacetteace gactatgaaa tgcactggg gegacaggee 126 cetggacaag ggettgagtg gatggagget etgagegag aaceaggag aaceaggag aaceaggag acaaggetga teatggagagt teaagggeag agtcacgetg acegggaggagaggaggaggaggaggaggaggaggaggagga	<223> Mouse-human chimeric antibody H chain	
tectgeaagg ettetggata eacetteace gactatgaaa tgeaetgggt gegaeaggee 120 cetggacaag gettgagtg gatgggaget ettgateeta aaaetgggta tactgeetae 240 atggagetga geageetgag atetgaggae aeggeegtg attactgaae aagattetae 300 tectataeett aetggggeea gegaaecetg geaaecetge eete eete 210 79 240 atggagetga geageetgag atetgaggae aeggeegtgt attactgtae aagattetae 300 tectataeett aetggggeea gegaaecetg geaecegtet eetea 345 210> 79 79 221> DNA 213> Artificial Sequence 2223> Mouse-human chimeric antibody H chain 60 teetgeaagg ettetggatg gatggaget ettgaegag gtgaagaage ettggggeete aggeaggee 120 eetggacaag getttgagtg gatggagget ettgateeta aaaetggtga tactgeetae 180 agteagaagt teaagggeag agteaegetg aeegggaea aateeaegag eaeageete 240 atggagetga geageetgag atetgaggae aeeggeegtg attactgtae aagattetae 300 teetataett aeegggeea gggaaecetg gteaeegtet eetea 345 210> 80 211> 345 211> 345 345 220> Look aaggeega gggaaecetg gegaaeeetg geaeeggeetg attactgtae aagattetae 240 atggagetga geageetgag atetgaggae aeeggeegtg attactgtae aagattetae 300 teetataett aeeggggeea gggaaecetg gteaeegtet eetea 345 210> 80 345 211> 345 345 221> DNA 345 221> DNA 345 221> DNA 345 223> Mouse-human chimeric antibody H chain 400 80	tectgeaage ettetggata eacetteace gactatgaaa tgeaetgggt gegaeaggee 124 cetggaeaag gettggatg gatgggaget ettgateeta aaaetggtga tactgeetae 184 agteagaagt teaagggeag agteagggag accaggetga atecaegag eacageetae 244 atggagetga geageetgag atetgaggae acggeegtgt attactgtae aagattetae 336 cetataett actggggeea gggaaceetg gteaeegtet eetea 345 cetataeeta atggagete tggagetgag gtgaagaage etggggeete agtgaaggte 66 cetgeaagg ettetggata eacetteaee gactatgaaa tgeaetggg gegaeaggee 12 cetggaeaag ggettgagtg gatggagget ettgateeta aaaetggtga tactgeetae 188 agteagaagt teaagggeag agteaeggtg acegeggaea aateeaegag eacageetae 188 ateegaaagt teaagggeag agteaeggtg gteaeegtet eetea 345 cetataeett actggggeea gggaaceetg gteaeegtet eetea 345 cetataeeta actggggeea gggaaceetg gteaeegtet eetea 345 cetataeeta actggggeea gggaaceetg gteaeegtet eetea 345 cetataeeta actggggeea gggaaceetg gteaeegte eetea 345 cetataeetaetaeetae 340 cetataeetaeetaeetaeetaeetaeetaeetaeetaee		
cctggacaag ggcttgagtg gatgggagct cttacct gactragata tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggacg aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <pre> </pre> <pre> <pre></pre></pre>	cottgacaag gottgagtg gatggagot ottgatocta aaactggtga tactgoctac agtcagaagt toaagggcag agtcacgctga accgoggacg aatccacgag cacagcctac 244 atggagotga goagoctgag atctgaggac acggocgtgt attactgtac aagattctac 304 cottatactt actggggcoa gggaaccctg gtcaccgtot cotca 345 cottatactt actggggcoa gggaaccctg gtcaccgtot cotca agtgaaggto 66 cottatactt actgggagot toggagotgagot cottgatocta aaactgggg gegacaggoc cottgagoaag ggottgagtg gatggagot cottgatocta aaactggtga tactgoctac agtgaagat tocatgagaag totacggag agtcacgctg accgggaca aatccacgag cacagcctac atggagotga gcagoctgag atctgaggac acggcgggaa acggcgggaa aatccacgag cacagcctac atggagotga gcagcotgag atctgaggac acggcgggaa acggccgtg attactgtac aagattctac 345 cottatactt actggggcoa gggaaccctg gtcaccgtot cotca 345 cottatactcaccaccaccaccaccaccaccaccaccaccac	Caggigeage tggtggaget tggagetgag gradugaage craasses against against a	
agtcagaagt tcaagggcag agtcacgctg accgcggacg aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggca gggaaccctg gtcaccgtct cctca 345 240 345 211> 79 211> 345 2212> DNA 223> Mouse-human chimeric antibody H chain 400> 79 223> Mouse-human chimeric antibody H chain 400> 79 223> Mouse-human caccttcacc gactatgaaa tgcactgggt gcgacaggc 120 cctggacaag gtctaggtag gatggagct cttgatcata aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgagga accgcggaca accgccgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 221> BNA 221> DNA 221> DNA 221> DNA 221> DNA 221> DNA 222> 223> Mouse-human chimeric antibody H chain 220> 223> Mouse-human chimeric antibody H chain	agtcagaagt tcaagggcag agtcacgctg accgcggacg aatccacgag cacagcctac atggagctga gcagcctgag atctgaggac accgcggacg attactgtac aagattctac tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 (210> 79 (211> 345 (212> DNA (213> Artificial Sequence (220> (223> Mouse-human chimeric antibody H chain (400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggg gcgacaggcc agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac agtcagaagt tcaagggcag gtgaggagtc ttgatccta aaactggtga tactgcctac agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac atggagctga gcagcctgag atctgagaga acggccgtgt attactgtac aagattctac tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 (210> 80 (211> 345 (212> DNA (213> Artificial Sequence (220> (223> Mouse-human chimeric antibody H chain (400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 66 67 680 690 690 690 690 690 690 690	teetgeaagg ettetggata caeetteace gaetatgata tgeactgggt gegatatgg	
atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 210> 79 211> 345 212> DNA 213> Artificial Sequence 220> 223> Mouse-human chimeric antibody H chain 4400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatggaggct cttgatccta aaactggtga tactgcctac 180 agtgaaggtt tcaagggcgag agtcaccgtg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtg attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 210> 80 221> DNA 2213> Artificial Sequence 2220> 223> Mouse-human chimeric antibody H chain 240> 80 2213> Artificial Sequence 2220> 223> Mouse-human chimeric antibody H chain 2400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 60 60 60 60 60 60 60 60 6	atgagactga gcagcctgag atctgaggac acggccgtgt attactgtac aagattotac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cotca 345 (210) 79 (211) 345 (212) DNA (213) Artificial Sequence (220) (223) Mouse-human chimeric antibody H chain (200) 79 (200) (2	cctggacaag ggcttgagtg gatgggaget cttgatecta aaactggaga cartggaga	
tcctatactt actggggcca gggaacctg gtcaccgtct cctca 345 <210> 79 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcag ctctggata caccttcacc gactatgaaa tgcactggg ctaccggg ctaccggg cacacgctac gggaacctg accgcggaca aatccacgag cacacgctac agtgacggc ctctatgaaa tccacgggaca accgcggaca aatccacgag cacacgctac accttcac accgggaca aatccacgag cacacgctac accttcac accgggaca accgcggaca aatccacgag cacacgctac accgggaca accgcggaca accgcgaca accgcgacac accgcgaca accgcgacacacac	tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 79 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggcc 12 cctggacaag gcttctggata caccttcacc gactatgaaa tgcactggtg gcgacaggcc 12 cctggacaag ggcttgagtg gatggaggct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atotgaggac acggccgtgt attactgtac aagattotac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc ttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctcgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctcgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctcgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctgcaagg ctctctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctgaaggtc tggtggatc tggagctgag gtgaagaagc ctggggcctc agtgaggcc 12 cctgaaggtc tggtggatc tggagctgag gtgaagaagc ctggagcagct agtgaagacctgagcc 12 cctgaaggtc tggtgagatc tggagctgaagccagacacctgatacacctgataccacacaca	agtcagaagt tcaagggcag agtcacgctg acceptagacg acceptagacg	
<pre> <210> 79 <211> 345 </pre> <pre> <212> DNA </pre> <pre> <221> Artificial Sequence </pre> <pre> <220> <223> Mouse-human chimeric antibody H chain </pre> <pre> <400> 79 </pre> <pre> caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtg attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 </pre> <	<pre> <210> 79 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc fectggacaag gettetggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc lagtcagaag gtcacgctga accgcggaca aaccaggtga tactgcctac agtgaaggt ctggagagtc ttgagagctga accgcggaca aaccaggagacacacacacacacaca</pre>		00
<pre><211> 345 </pre> <pre><212> DNA </pre> <pre><213> Artificial Sequence </pre> <pre><220> <pre><223> Mouse-human chimeric antibody H chain </pre> <pre><400> 79 </pre> <pre>caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc</pre></pre>	<pre><211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc fectggacaag gettetggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc lagtgagaag cttgaggagat tcaagggagag cttgatccta aaactggtga tactgcctac lagtgagagt tcaagggagag agtcacgctg accgcggaca aatccacgag cacagcctac atggagctga gcagcctgag atctgaggac acggccgtga attactgtac aaagttctac lagtgagctga gcagcctgag atctgaggac acggccgtgt attactgtac aaagttctac lactgaggaca gggaaccctg gtcaccgtct cctca lagtgagctga acggcgaca aatccacgag cacagcctac lagtgagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac lactgagagac lactgaggac laccgggacacctg gtcaccgtct cctca lagtgagaccctg laccgacctgag laccggaccacgaccaccac lagtgaccacgacgaccacgacgacaccacgacgacaccacgacg</pre>	tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345	
<pre><212> DNA </pre> <pre><213> Artificial Sequence </pre> <pre><220> </pre> <pre><223> Mouse-human chimeric antibody H chain </pre> <pre><400> 79 </pre> <pre>caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc</pre>	<pre><212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc foctgaaag gcttctggata caccttcacc gactatgaaa tgcactggtg gcgacaggcc 12 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc fcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 </pre>	<210≻ 79	
<pre><213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60</pre>	<pre><213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc fectgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc lagtcagagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac lagtgaagctga gcagcctgag atctgaggac accgcggaca aatccacgag cacagcctac lagtgagctga gcagcctgag atctgaggac accgcggaca aatccacgag cacagcctac lagtgagctga gcagcctgag atctgaggac accgcggaca aatccacgag cacagcctac lagtgagctga gcagcctgag atctgaggac accgcgtgt attactgtac aagattctac lactgaggaca gggaaccctg gtcaccgtct cctca lagtgagctgagcagcaggacacctg gtcaccgtct cctca lagtgagctgagcagcaggacacctg gtcaccgtct cctca lagtgagctgagcagcaccaccacgagacaccacgagacaccacgagacaccac</pre>	<211> 345	
<pre><220> <223> Mouse-human chimeric antibody H chain </pre> <pre><400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 </pre> <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	<pre><220> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 66 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 12 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 </pre>	<212> DNA	
<pre><223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 60</pre>	<pre> <223> Mouse-human chimeric antibody H chain <400> 79 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 6 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 12 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 </pre>	<213> Artificial Sequence	
<pre>caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggaggtgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 </pre>	caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 66 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg ctcctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctcgaagg ctcctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12 cctcgcaagg ctctctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctcgaagg ctcctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctcgaagg ctcctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctcgaagg ctcctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctcgaaga cctctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctcgaaga cctctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12 cctgaagaagac ctgggagcacaggcc 12 cctcgaagaagac ctctgaagaagac ctggggcctc agtgaaggcc 12 cctgaagaagac ctcctgaagaaa tgcactgggt gcgacaggcc 12 cctgaagaagac ctctggaagaagac ctgggagcaagaccaggcc 12 cctgaagaagac ctgggacaagaccaggcc 12 cctgaagaagacaagacaagacaagacaagacaagacaa	<220>	
caggtgcage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte 60 tectgcaagg ettetggata cacetteace gactatgaaa tgeaetgggt gegaeaggee 120 cetggacaag ggettgagtg gatgggaget ettgateeta aaactggtga tactgeetae 180 agtcagagt teaagggeag agteaegetg acegeggaea aateeaegag eacageetae 240 atggagetga geageetgag atetgaggae acegeggaea aateeaegag eacageetae 300 tectatactt actggggeea gggaaeeetg gteaeegtet eetea 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgeage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte agtgaaggte 60	caggtgcage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte 66 teetgeaagg ettetggata eacetteace gactatgaaa tgeaetgggt gegaeaggee 12 cetggaeaag ggettgagtg gatgggaget ettgateeta aaaetggtga taetgeetae 18 agteagaagt teaagggeag agteaegetg aeegeggaea aateeaegag eacageetae 24 atggagetga geageetgag atetgaggae aeegeegtgt attaetgtae aagattetae 30 teetataett aetggggeea gggaaeeetg gteaeegtet eetea 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgeage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte 66 teetgeaagg ettetggata eacetteace gactatgaaa tgeaetgggt gegaeaggee 12	<223> Mouse-human chimeric antibody H chain	
tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210 > 80 <211 > 345 <212 > DNA <213 > Artificial Sequence <220 > <223 > Mouse-human chimeric antibody H chain <400 > 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	teetgeaagg ettetggata eacetteace gactatgaaa tgeactgggt gegacaggee 12 cetggacaag ggettgagtg gatgggaget ettgateeta aaactggtga tactgeetae 18 agteagaagt teaagggeag agteacgetg acegeggaca aateeacgag eacagcetae 24 atggagetga geageetgag atetgaggae aeggeegtgt attactgae aagattetae 30 teetataett aetggggeea gggaaceetg gteacegtet eetea 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgeage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte 66 cetgeaagg ettetggata eacetteace gactatgaaa tgeactggt gegacaggee 12		
cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 18 agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12	caggiggage tygiggagee tygageegag gegaagaaga eegggggeee tygiggee	
agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 300 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 24 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtac aagattctac 30 tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12	teetgeaagg ettetggata caccitoase guerargada igenerggge gegenegge	
atggagetga geageetgag atetgaggae aeggeegtgt attactgtae aagattetae 300 teetataett aetggggeea gggaaceetg gteacegtet cetea 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgeage tggtggagte tggagetgag gtgaagaage etggggeete agtgaaggte 60	atggagetga geageetgag atetgaggae aeggeegtgt attactgtae aagattetae 30 teetataett aetggggeea gggaaceetg gteacegtet cetea 345 <210> 80	Cotygadaay ggottgagtg gatgggagot ottgatoota aaaotgggaga taoogs	
tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactggt gcgacaggcc 12		
<pre><210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60</pre>	<pre> <210> 80 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12</pre>	atygagetga geageetgag atotgaggae abggoogtga attact at the section	00
<pre><211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60</pre>	<pre><211> 345 <212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc</pre> 12	tcctatactt actggggcca gggaaccctg gtcaccgtct cctca 345	
<pre><212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60</pre>	<pre><212> DNA <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12</pre>	<210> 80	
<pre><213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60</pre>	<pre><213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12</pre>	<211> 345	
<220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	<220> <223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12	<212> DNA	
<223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	<pre><223> Mouse-human chimeric antibody H chain <400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12</pre>	<213> Artificial Sequence	
<400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	<pre><400> 80 caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12</pre>	•	
caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60	caggtgcagc tggtggagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12	<223> Mouse-human chimeric antibody H chain	
	tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc 12		٠.
tectgeagg ettetggata cacetteace gaetatgaaa tgeactgggt gegacaggee 120	tootgeaagg cttotggata caccitonae gaetacgata cgeaceggae sesaresse		
		tootgoaagg ottotggata oacottoaco gaotatgata egoasegga geganagga	
cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac 180	CCLGGacaad agertagged agertagged ofference agertagged agertagged	Cocygadaa ggottgagtg gatgggagot ottgatoota aaabaggaga	
agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac 240	agicagaagi icaagggcag agicacgoig acceptagate acceptagate	agicagaagi icaagggcag agicacgoig acceptagas acceptagas	
atropactor congestors atchanges acqueentat attactatae aagattetae 300	atggagetga geageetgae atetgaggae aeggeegtgt attactgtae aagattetae 30	atggagetga geageetgae atetgaggae aeggeegtgt attactgtae aagattetae	JUU

	3 4 5
tootatactt adtggggcca gggaacootg gtoacogtot cotor	J4 J
<210> 81	
<211> 345	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse-human chimeric antibody H chain	
<400> 81	60
caggtgcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc	60
tectgeaagg ettetggata cacetteace gaetatgaaa tgeaetgggt gegaeaggee	
cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac	
agtcagaagt tcaagggcag agtcacgctg accgcggacg aatccacgag cacagcctac	
atggagetga geageetgag atetgaggae aeggeegtgt attactgtae aagattetae	
tcctatactt actggggcca gggaaccctg gtcaccgtct cctca	345
<210> 82	
<211> 345	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse-human chimeric antibody H chain	
<400> 82	
caggtgcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc	60
tcctgcaagg cttctggata caccttcacc gactatgaaa tgcactgggt gcgacaggcc	120
cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctac	180
agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac	240
atggagetga geageetgag atetgaggae aeggeegtgt attactgtae aagattetae	300
tcctatactt actggggcca gggaaccctg gtcaccgtct cctca	345
<210> 83 .	
⟨211⟩ 345	
<212> DNA	
<213> Artificial Sequence	
<220≻	
<223> Mouse-human chimeric antibody H chain	
<400≻ 83	
caggtgcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc	60
tectgeaagg ettetggata cacetteace gaetatgaaa tgeactgggt gegacaggee	
cctggacaag ggcttgagtg gatgggagct cttgatccta aaactggtga tactgcctad	
agtcagaagt tcaagggcag agtcacgctg accgcggaca aatccacgag cacagcctac	
atggagetga geageetgae atetgaggae aeggeegtgt attactgtae aagattetae	
tectatactt actggggcca gggaaccetg gtcaccgtct cetca	345
<210> 84	
<211> 115	
•	

<212> PRT <213> Artificial Sequence <223> Mouse-human chimeric antibody H chain <400> 84 Gln Val Gln Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 30 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 40 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 60 Lys Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 75 70 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 110 100 105 Val Ser Ser 115 <210> 85 <211> 115 <212> PRT <213> Artificial Sequence ⟨220⟩ <223> Mouse-human chimeric antibody H chain Gln Val Gln Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 5 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 30 25 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 45 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 75 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 95 85 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 110 100

Val Ser Ser 115 <210> 86 ⟨211⟩ 115 <212> PRT <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 86 Gln Val Gln Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 5 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 45 40 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 70 75 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 110 100 Val Ser Ser 115 <210> 87 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain Gln Val Gln Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 50 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 70 75

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 110 Val Ser Ser 115 <210> 88 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 88 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 ' 5 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 45 40 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 60 Lys Gly Arg Val Thr Leu Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 75 65 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 85 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 110 105 100 Val Ser Ser 115 <210> 89 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain <400> 89 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 30 25 20 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

45 ·

40

35

Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 60 50 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 75 70 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 95 90 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 Val Ser Ser 115 <210> 90 ⟨211⟩ 115 <212> PRT <213> Artificial Sequence <220> <223> Mouse-human chimeric antibody H chain Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 45 40 Gly Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe 55 Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr 75 70 Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 95 Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 105 110 100 Val Ser Ser 115 ⟨210⟩ 91 <211> 336 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Mouse-human chimeric antibody L chain <400> 91 gatgttgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc

atetectgea gatetagtea gageettgta cacagtaatg gaaacaceta tttacattgg

60

120

```
tacctgcaga agccagggca gtctccacag ctcctgatct ataaagtttc caaccgattt
                                                                    180
totggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc
                                                                    240
agcagagtgg aggctgagga tgttggggtt tattactgct ctcaaaatac acatgttcct
                                                                    300
cctacgtttg gccaggggac caagctggag atcaaa
<210> 92
<211> 112
<212> PRT
<213> Artificial Sequence
⟨220⟩
<223> Mouse-human chimeric antibody L chain
<400> 92
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
             5
                              10
                                              15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
                          25
                                           30
Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
                       40
Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
                    55
                                     60
    50
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
                 70
                                 75
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn
                              90
             85
Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
                           105
                                            110
 <210> 93
 <211> 14
 <212> PRT
 <213> homo sapiens
 <400> 93
Gly Asn Ser Gln Gln Ala Thr Pro Lys Asp Asn Glu Ile Ser
                              10
 <210> 94
 <211> 8
 <212> PRT
 <213> homo sapiens
 <400> 94
 Gly Asn Ser Gln Gln Ala Thr Pro
 <210>. 95
 <211> 8
 <212> PRT
```

```
<213> homo sapiens
<400> 95 ·
Gln Gln Ala Thr Pro Lys Asp Asn
          5
<210> 96
⟨211⟩ 8
<212> PRT
<213> homo sapiens
<400> 96
Thr Pro Lys Asp Asn Glu Ile Ser
<210> 97
⟨211⟩ 10
<212> PRT
<213> homo sapiens
<400> 97
Ala Thr Pro Lys Asp Asn Glu Ile Ser Thr
1 5
                           10
<210> 98
<211> 10
<212> PRT
<213> homo sapiens
<400> 98
Pro Lys Asp Asn Glu Ile Ser Thr Phe His
1 . 5
                            10
<210> 99
<211> 10
<212> PRT
<213> homo sapiens
<400> 99
Asp Asn Glu Ile Ser Thr Phe His Asn Leu
                            10
<210> 100
<211> 10
<212> PRT
<213> homo sapiens
<400> 100
Glu Ile Ser Thr Phe His Asn Leu Gly Asn
<210> 101
⟨211⟩ 27
<212> PRT
```

```
<213> homo sapiens
<400> 101
Gly Asn Ser Gln Gln Ala Thr Pro Lys Asp Asn Glu Ile Ser Thr Phe
1 5
                   10
His Asn Leu Gly Asn Val His Ser Pro Leu Lys
                · 25
<210> 102
<211> 14
<212> PRT
<213> homo sapiens
<400> 102
Ser Thr Phe His Asn Leu Gly Asn Val His Ser Pro Leu Lys
                            10
<210> 103
<211> 5
<212> PRT
<213> Mus musculus
<400> 103
Asn Tyr Ala Met Ser
            5 .
<210> 104
<211> 17
<212> PRT
<213> Mus musculus
<400> 104
Ala Ile Asn Asn Asn Gly Asp Asp Thr Tyr Tyr Leu Asp Thr Val Lys
1
             5
                            10
                                            15
Asp
<210> 105
 <211> 5
 <212> PRT
 <213> Mus musculus
 <400> 105
 Gln Gly Gly Ala Tyr
 <210> 106
 ⟨211⟩ 7
 <212> PRT
 <213> Mus musculus
 <400> 106
 Thr Tyr Gly Met Gly Val Gly
```

```
1
          5
<210> 107
<211> 16
<212> PRT
<213> Mus musculus
<400> 107
Asn Ile Trp Trp Tyr Asp Ala Lys Tyr Tyr Asn Ser Asp Leu Lys Ser
                                            15
                          10
<210> 108
<211> 8
<212> PRT
<213> Mus musculus
<400> 108
Met Gly Leu Ala Trp Phe Ala Tyr
           5
<210> 109
<211> 7
<212> PRT
<213> Mus musculus
<400> 109
Ile Tyr Gly Met Gly Val Gly
<210> 110
<211> 16
<212> PRT
<213> Mus musculus
<400> 110
Asn Ile Trp Trp Asn Asp Asp Lys Tyr Tyr Asn Ser Ala Leu Lys Ser
                            10
                                            15
<210> 111
<211> 8
<212> PRT
<213> Mus musculus
 <400> 111
Ile Gly Tyr Phe Tyr Phe Asp Tyr
 <210> 112
 ⟨211⟩ 5
 <212> PRT
 <213> Mus musculus
 <400> 112
 Gly Tyr Trp Met His
```

```
1
<210> 113
<211> 17
<212> PRT
<213> Mus musculus
<400> 113
Ala Ile Tyr Pro Gly Asn Ser Asp Thr Asn Tyr Asn Gln Lys Phe Lys
                            10
Gly
<210> 114
<211> 10
<212> PRT
<213> Mus musculus
<400> 114
Ser Gly Asp Leu Thr Gly Gly Leu Ala Tyr .
                             10
            5
<210> 115
<211> 5
<212> PRT
<213> Mus musculus
<400> 115
Ser Tyr Ala Met Ser
<210> 116
<211> 17
<212> PRT
<213> Mus musculus
<400> 116
Ala Ile Asn Ser Asn Gly Gly Thr Thr Tyr Tyr Pro Asp Thr Met Lys
                             10
1
Asp
 <210> 117
 <211> 13
 <212> PRT
 <213> Mus musculus
 <400> 117
 His Asn Gly Gly Tyr Glu Asn Tyr Gly Trp Phe Ala Tyr
                             10
             5
 <210> 118
 <211> 5
```

```
<212> PRT
<213> Mus musculus
<400> 118
Ser Tyr Trp Met His
<210> 119
<211> 17
<212> PRT
<213> Mus musculus
<400> 119
Glu Ile Asp Pro Ser Asp Ser Tyr Thr Tyr Tyr Asn Gln Lys Phe Arg
                             10
                                             15
             5
Gly
⟨210⟩ 120
⟨211⟩ 15
<212> PRT
<213> Mus musculus
<400> 120
Ser Asn Leu Gly Asp Gly His Tyr Arg Phe Pro Ala Phe Pro Tyr
             5
                             10
⟨210⟩ 121
<211> 17
<212> PRT
<213> Mus musculus
<400> 121
Thr Ile Asp Pro Ser Asp Ser Glu Thr His Tyr Asn Leu Gln Phe Lys
                                            15 .
1
Asp
 <210> 122
 <211> 15
 <212> PRT
 <213> Mus musculus
 <400> 122
 Gly Ala Phe Tyr Ser Ser Tyr Ser Tyr Trp Ala Trp Phe Ala Tyr
                              10
                                              15
             5
 <210> 123
 <211> 5
 <212> PRT
 <213> Mus musculus
 <400> 123
```

```
Asp Tyr Glu Met His
1
<210> 124
⟨211⟩ 17
<212> PRT
<213> Mus musculus ·
⟨400⟩ 124
Ala Leu Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe Lys
                                          15
1
           5
                           10
Gly
⟨210⟩ 125
<211> 6
<212> PRT
<213> Mus musculus
<400> 125
Phe Tyr Ser Tyr Thr Tyr
1
           5
<210> 126
<211> 5
<212> PRT
<213> Mus musculus
<400> 126
Ile Asn Ala Met Asn
<210> 127
<211> 19
<212> PRT
<213> Mus musculus
<400> 127
Arg Ile Arg Ser Glu Ser Asn Asn Tyr Ala Thr Tyr Tyr Gly Asp Ser
                                         15
                          10
Val Lys Asp
<210> 128
 <211> 8
 <212> PRT
 <213> Mus musculus
 <400> 128
Glu Val Thr Thr Ser Phe Ala Tyr
 1
 <210> 129
```

```
<211> 5
<212> PRT
<213> Mus musculus
<400> 129
Ala Ser Ala Met Asn
            5
<210> 130
<211> 19
<212> PRT
<213> Mus musculus
<400> 130
Arg Ile Arg Ser Lys Ser Asn Asn Tyr Ala Ile Tyr Tyr Ala Asp Ser
                            10
                                           15
1
Val Lys Asp
<210> 131
<211> 12
<212> PRT
<213> Mus musculus
<400> 131
Asp Pro Gly Tyr Tyr Gly Asn Pro Trp Phe Ala Tyr
1 5
<210> 132
<211> 5
<212> PRT
<213> Mus musculus
<400> 132
Asp Tyr Ser Met His
<210> 133
 <211> 17
 <212> PRT
 <213> Mus musculus
 <400> 133.
Trp Ile Asn Thr Glu Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe Lys
                             10
                                             15
 Gly
 <210> 134
 <211> 2
 <212> PRT
 <213> Mus musculus
```

```
<400> 134
Leu Tyr
⟨210⟩ 135
<211> 16
<212> PRT
<213> Mus musculus
⟨400⟩ 135 .
Asn Ile Trp Trp His Asp Asp Lys Tyr Tyr Asn Ser Ala Leu Lys Ser
                            10
<210> 136
<211> 14
<212> PRT
<213> Mus musculus
<400> 136
Ile Ala Pro Arg Tyr Asn Lys Tyr Glu Gly Phe Phe Ala Phe
           5
                            10
<210> 137
<211> 16
<212> PRT
<213> Mus musculus
<400> 137
Lys Ser Ser Gln Ser Leu Leu Asp Ser Asp Gly Lys Thr Tyr Leu Asn
                                            15
                             10
<210> 138
<211> 7
<212> PRT
<213> Mus musculus
 <400> 138
Leu Val Ser Lys Leu Asp Ser
1
 <210> 139
 <211> 9
 <212> PRT.
 <213> Mus musculus
 <400> 139
 Trp Gln Gly Thr His Phe Pro Leu Thr
 <210> 140
 <211> 11
 <212> PRT
 <213> Mus musculus
```

```
<400> 140
Lys Ala Ser Gln Asp Ile Asn Asn Tyr Leu Ser
                             10
<210> 141
<211> 7
<212> PRT
<213> Mus musculus
<400> 141
Arg Ala Asn Arg Leu Val Asp
             5
<210> 142
<211> 10
<212> PRT
<213> Mus musculus
<400> 142
Leu Gln Cys Asp Glu Phe Pro Pro Trp Thr
             5
                             10
<210> 143
<211> 16
<212> PRT
<213> Mus musculus
<400> 143
Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu His
             5
                     _ 10
                                              15
<210> 144
<211> 7
<212> PRT
<213> Mus musculus
 <400> 144
Lys Val Ser Asn Arg Phe Ser
1
 <210> 145
 <211> 9
 <212> PRT.
 <213> Mus musculus
 <400> 145
 Ser Gln Ser Thr His Val Pro Trp Thr
 <210> 146
 <211> 16
 <212> PRT
 <213> Mus musculus
```

```
<400> 146
Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Ile Thr Tyr Leu Tyr
                                             15
                            10
            5
<210> 147
<211> 7
<212> PRT
<213> Mus musculus
<400> 147
Gln Met Ser Asn Leu Ala Ser
            5
<210> 148
<211> 9
<212> PRT
<213> Mus musculus
<400> 148
Ala Gln Asn Leu Glu Leu Pro Tyr Thr
             5
<210> 149
<211> 11
<212> PRT
<213> Mus musculus
<400> 149
Lys Ala Ser Gln Asp Ile Asn Lys Asn Ile Ile
             5
                    . 10
<210> 150
<211> 7
<212> PRT
<213> Mus musculus
<400> 150
Tyr Thr Ser Thr Leu Gln Pro
             5
<210> 151
 <211> 6
 <212> PRT
 <213> Mus musculus
 <400> 151
 Leu Gln Tyr Asp Asn Leu
             5
 1
 <210> 152
 <211> 11
 <212> PRT
 <213> Mus musculus
```

```
<400> 152
Arg Ala Ser His Ser Ile Ser Asn Phe Leu His
                             10
⟨210⟩ 153
⟨211⟩ 7
<212> PRT
<213> Mus musculus
<400> 153
Tyr Ala Ser Gln Ser Ile Ser
            5
⟨210⟩ 154
⟨211⟩ 9
<212> PRT
<213> Mus musculus
<400> 154
Gln Gln Ser Asn Ile Trp Ser Leu Thr
             5
<210> 155
⟨211⟩ 15
<212> PRT
<213> Mus musculus
<400> 155
Arg Ala Ser Glu Ser Val Glu Tyr Tyr Gly Thr Ser Leu Met Gln
                             10
<210> 156
<211> 7
<212> PRT
<213> Mus musculus
⟨400⟩ 156
Gly Ala Ser Asn Val Glu Ser
<210> 157
 <211> 9
 <212> PRT
 <213> Mus musculus
 <400> 157
Gln Gln Ser Arg Lys Val Pro Tyr Thr
 <210> 158
 <211> 9
 <212> PRT
 <213> Mus musculus
```

```
<400> 158
Ser Gln Asn Thr His Val Pro Pro Thr
<210> 159
<211> 16
<212> PRT
<213> Mus musculus
<400> 159
Lys Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Asn
                                           15
           5
                            10
<210> 160
⟨211⟩ 7
<212> PRT
<213> Mus musculus
<400> 160
Trp Met Ser Asn Leu Ala Ser
           <sup>.</sup>5
⟨210⟩ 161
<211> 9
<212> PRT
<213> Mus musculus
<400> 161
Met Gln His Ile Glu Tyr Pro Phe Thr
           5
⟨210⟩ 162
⟨211⟩ 16
<212> PRT
<213> Mus musculus
<400> 162
Arg Ser Ser Lys Ser Leu Leu His Ser Tyr Asp Ile Thr Tyr Leu Tyr
                             10
 ⟨210⟩ 163
 <211> 9
 <212> PRT
 <213> Mus musculus
 <400> 163
 Ala Gln Asn Leu Glu Leu Pro Pro Thr
            5
 1
 <210> 164
 <211> 10
 <212> PRT
 <213> Mus musculus
```

```
<400> 164
Ser Ala Ser Ser Ser Val Ser Tyr Met Tyr
                            10
            5
<210> 165
<211> 7
<212> PRT
<213> Mus musculus
<400> 165
Asp Thr Ser Asn Leu Ala Ser
            5
<210> 166
<211> 9
<212> PRT
<213> Mus musculus
<400> 166
Gln Gln Trp Ser Ser Tyr Pro Leu Thr
            5
<210> 167
<211> 16
<212> PRT
<213> Mus musculus
<400> 167
Lys Ser Ser Gln Ser Leu Leu His Ser Asp Gly Lys Thr Phe Leu Asn
             5
                    . 10
                                             15
<210> 168
<211> 7
<212> PRT
<213> Mus musculus
<400> 168
Leu Val Ser Arg Leu Asp Ser
             5
<210> 169
<211> 6
 <212> PRT
 <213> Mus musculus
 <400> 169
Cys Gln Gly Thr His Phe
 1
 <210> 170
 <211> 16
 <212> PRT
 <213> Mus musculus
```

```
<400> 170
Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
                            10
                                             15
<210> 171
<211> 9
<212> PRT
<213> Mus musculus
<400> 171
Phe Gln Gly Ser His Val Pro Trp Thr
             5
⟨210⟩ 172
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 172
                                                             27
cttgtacaca gtgacggaaa cacctat
⟨210⟩ 173
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 173
                                                             27
ataggtgttt ccgtcactgt gtacaag
<210> 174
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 174
Arg Ser Ser Gln Ser Leu Val His Ser Asn Ala Asn Thr Tyr Leu His
                             10
                                             15
<210> 175
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
 <400> 175
```

```
Arg Ser Ser Gln Ser Leu Val His Ser Asn Asp Asn Thr Tyr Leu His
                                              15
             5
                             10
<210> 176
⟨211⟩ 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 176
Arg Ser Ser Gln Ser Leu Val His Ser Asn Glu Asn Thr Tyr Leu His
             5
                             10
<210> 177
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
·<400> 177
Arg Ser Ser Gln Ser Leu Val His Ser Asn Phe Asn Thr Tyr Leu His
             5
                             10
                                              15
<210> 178
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 178
Arg Ser Ser Gln Ser Leu Val His Ser Asn His Asn Thr Tyr Leu His
                              10
             5
                                              15
<210> 179
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 179
Arg Ser Ser Gln Ser Leu Val His Ser Asn Asn Asn Thr Tyr Leu His
                              10
                                              15
<210> 180
<211> 16
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> mutant antibody L chain
Arg Ser Ser Gln Ser Leu Val His Ser Asn Thr Asn Thr Tyr Leu His
   5
                            10
<210> 181
⟨211⟩ 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 181
Arg Ser Ser Gln Ser Leu Val His Ser Asn Gln Asn Thr Tyr Leu His
                            10
<210> 182
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 182
Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Ile Asn Thr Tyr Leu
1
            5
                             10
                                             15
His
<210> 183
⟨211⟩ 16
<212> PRT
<213> Artificial Sequence
⟨220⟩
<223> mutant antibody L chain
Arg Ser Ser Gln Ser Leu Val His Ser Asn Lys Asn Thr Tyr Leu His
                             10
                                             15
     . 5
<210> 184
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 184
Arg Ser Ser Gln Ser Leu Val His Ser Asn Leu Asn Thr Tyr Leu His
```

```
5
                           10
                                            15
1
⟨210⟩ 185
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
⟨400⟩ 185
Arg Ser Ser Gln Ser Leu Val His Ser Asn Ser Asn Thr Tyr Leu His
            5
                           10
1
                                            15
<210> 186
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
Arg Ser Ser Gln Ser Leu Val His Ser Asn Trp Asn Thr Tyr Leu His
1
            5
                            10
                                            15
<210> 187
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 187
Arg Ser Ser Gln Ser Leu Val His Ser Asn Tyr Asn Thr Tyr Leu His
                                            15
                            10
<210> 188
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> mutant antibody L chain
<400> 188
Arg Ser Ser Gln Ser Leu Val His Ser Asn Arg Asn Thr Tyr Leu His
                            10
<210> 189
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
```

<223> mutant antibody L chain ⟨400⟩ 189 Arg Ser Ser Gln Ser Leu Val His Ser Asn Val Asn Thr Tyr Leu His 5 10 ⟨210⟩ 190 ⟨211⟩ 16 <212> PRT <213> Artificial Sequence <223> mutant antibody L chain ⟨400⟩ 190 Arg Ser Ser Gln Ser Leu Val His Ser Asn Pro Asn Thr Tyr Leu His 10 15 ⟨210⟩ 191 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 191 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser Asn Ala Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 ⟨210⟩ 192 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 192

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 1 5 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 30 Asn Asp Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 193 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 193 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro. Val Thr Pro Gly 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Glu Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 194 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 194 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 15 1 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 30 Asn Phe Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 195 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence ₹220> <223> mutant antibody L chain <400> 195 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn His Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 105 110 <210> 196 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 196 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 15 1 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 30 Asn Asn Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 197 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 197 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Thr Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 198 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 198 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 15 1 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 30 Asn Gln Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 95 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 105 110 100 ⟨210⟩ 199 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 199 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Ile Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 110 100 105 <210> 200 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 200 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Lys Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 201 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 201 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Leu Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 95 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 202 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 202 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Ser Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 95 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 203 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain ⟨400⟩ 203 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Trp Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 204 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Tyr Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 205 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 205 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Arg Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 ⟨210⟩ 206 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 206

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

1 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 Asn Val Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 <210> 207 ⟨211⟩ 112 <212> PRT <213> Artificial Sequence <220> <223> mutant antibody L chain <400> 207 Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 25 30 Asn Pro Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 45 Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn 90 Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110