

Submitted by, VIDYA V

PGPDSBA.O.2023.B 11.11.2023

CONTENTS

Spar	kling Wine Sales Dataset	4
1	Read the data as an appropriate Time Series data and plot the data.	4
2	Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.	5
3	Split the data into training and test. The test data should start in 1991.	8
4	Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, and moving average models should also be built on the training data and check the performance on the test data using RMSE.	8
5	Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.	12
6	Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.	14
7	Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.	17
8	Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.	18
9	Comment on the model thus built, report your findings, and suggest the measures that the company should be taking for future sales.	19

List of Figures

Name	Page No.
Fig.1.1. Sparkling Dataset	4
Fig.1.2. Sparkling Dataset Description	4
Fig.1.3. Sparkling wine sales	5
Fig.1.4 Yearly boxplot- Sparkling Dataset	5
Fig.1.5. Monthly Boxplot- Sparkling wine sales	6
Fig.1.6. Month-plot- Sparkling wine sales	6
Fig.1.7. Monthly sales over the years	6
Fig.1.8. Yearly sales- Sparkling Wine	7
Fig.1.9. Additive Decomposition- Sparkling sales	7
Fig.1.10. Multiplicative Decomposition- Sparkling wine sales	8
Fig.1.11 Linear Regression model test forecast plot- Sparkling sales	8
Fig.1.12. Naive forecast of test data- Sparkling wine sales	9
Fig.1.13. Simple Average forecast of test data- Sparkling wine sales	9
Fig.1.14. Moving Average forecast of test data- Sparkling wine sales	10
Fig.1.15. Simple Exponential smoothing forecast of test data- Sparkling wine sales	10
Fig.1.16. Simple Exponential smoothing forecast of test data- Sparkling wine sales	11
optimized for lowest RMSE	
Fig.1.17. Holt forecast of test data- Sparkling wine sales	11
Fig.1.18. Holt forecast of test data- Sparkling wine sales - optimized for lowest RMSE	11
Fig.1.19. Holt Winters forecast of test data- Sparkling wine sales	12
Fig.1.20. Holt Winters smoothing forecast of test data- Sparkling wine sales - optimized	12
for lowest RMSE	
Fig.1.21. Sparkling dataset -Stationarity test rolling mean and Standard deviation plots	13
Fig.1.22. Dickey Fuller Test results- Sparkling Dataset	13
Fig.1.23. Differenced series -Stationarity test rolling mean and Standard deviation plots	14
Fig.1.24. Dickey Fuller Test results	14
Fig.1.25. ARIMA results Summary- Sparkling Dataset	15
Fig.1.26. ARIMA model forecast on test data- Sparkling Dataset	15
Fig.1.27. SARIMA results Summary- Sparkling Dataset	16
Fig.1.28. SARIMA model forecast on test data- Sparkling Dataset	16
Fig.1.29. Diagnostics and Correlogram- SARIMA Model	17
Fig.1.30. Sparkling Dataset model Results- Test RMSE	17
Fig.1.31. SARIMA Model forecast for next 12 months- Sparkling Dataset	18
Fig.1.32. Holt Winters Model forecast for next 12 months- Sparkling Dataset	18
Fig.1.33. Forecast for 12 months- SARIMA and HW	19

Sparkling Dataset

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

\$	Sparkling \$	month \$	year ‡
1980-01-01	1686	Jan	1980
1980-02-01	1591	Feb	1980
1980-03-01	2304	Mar	1980
1980-04-01	1712	Apr	1980
1980-05-01	1471	May	1980

Fig.1.1. Sparkling Dataset

\$	Sparkling \$	year ≑
count	187.000000	187.000000
mean	2402.417112	1987.299465
std	1295.111540	4.514749
min	1070.000000	1980.000000
25%	1605.000000	1983.000000
50%	1874.000000	1987.000000
75%	2549.000000	1991.000000
max	7242.000000	1995.000000

Fig.1.2. Sparkling Dataset Description

Fig.1.3. Sparkling wine sales

- The plot represents the Sparkling wine sales from Jan 1980 to July 1995, covering a span of 15.5 years- 187 values
- There seems to be some seasonality associated with this plot.
- The minimum sales was 1070, the maximum sales was 7242, with a mean of 2402
- There are no null values

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

2.1. EDA

Fig.1.4 Yearly boxplot- Sparkling Dataset

Fig.1.5. Monthly Boxplot- Sparkling wine sales

Fig.1.6. Month-plot- Sparkling wine sales

Fig.1.7. Monthly sales over the years

Fig.1.8. Yearly sales- Sparkling Wine

- The sales remains low for the first half of the year, and increases in the second half
- Peak sales is in the month of December
- The variability also changes from Jan to Dec. Seasonality is indicated
- No trend can be discerned from the plots

2.2. Decomposition

Fig.1.9. Additive Decomposition- Sparkling sales

Fig.1.10. Multiplicative Decomposition- Sparkling wine sales

- Clear seasonality component observed in both types of decomposition
- The residual plots of both the decompositions look similar. Hence, we can adopt the simpler of the two- additive seasonality.
- 3. Split the data into training and test. The test data should start in 1991.

Observations:

- After the split, the train dataset contains 132 values
- The test dataset contains 55 values, starting from Jan 1991
- 4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naïve forecast models and simple average models. should also be built on the training data and check the performance on the test data using RMSE.

4.1. Simple Models

4.1.1. Linear Regression

Fig.1.11 Linear Regression model test forecast plot- Sparkling sales

4.1.2. Naïve Forecast

Fig.1.12. Naive forecast of test data- Sparkling wine sales

4.1.3. Simple Average

Fig.1.13. Simple Average forecast of test data- Sparkling wine sales

4.1.4. Moving Average

Fig.1.14. Moving Average forecast of test data- Sparkling wine sales

Observations:

Best fit occurs in MA trail 2 model

4.2. Exponential Smoothing Models

4.2.1. Simple Exponential Smoothing

Fig.1.15. Simple Exponential smoothing forecast of test data- Sparkling wine sales

Fig.1.16. Simple Exponential smoothing forecast of test data- Sparkling wine sales optimized for lowest RMSE

RMSE is the lowest for alpha=0.01

4.2.2. Holt Double Exponential Smoothing

Fig.1.17. Holt forecast of test data- Sparkling wine sales

RMSE is the lowest for alpha=0.1, beta=0.1

4.2.3. Holt-Winters Triple Exponential Smoothing

Fig. 1.19. Holt Winters forecast of test data- Sparkling wine sales

Fig.1.20. Holt Winters smoothing forecast of test data- Sparkling wine sales - optimized for lowest RMSE

- RMSE is the lowest for alpha=0.07, and gamma=0.2, irrespective of beta value
- We noticed that the given series has no trend, and hence the results obtained are consistent with the assumptions
- 5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be

non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

The stationarity of the data can be ascertained by the Dickey-Fuller test. The Null and alternate hypothesis are as follows:

- H0: The series is non-stationary
- Ha: The series is stationary

Fig.1.21. Sparkling dataset -Stationarity test rolling mean and Standard deviation plots

Results of Dickey-Fuller Test:	
Test Statistic	-1.360497
p-value	0.601061
#Lags Used	11.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Fig.1.22. Dickey Fuller Test results- Sparkling Dataset

Fig.1.23. Differenced series -Stationarity test rolling mean and Standard deviation plots

Results of Dickey-Fuller Test:	
Test Statistic	-45.050301
p-value	0.000000
#Lags Used	10.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Fig.1.24. Dickey Fuller Test results- Differenced series

- The given series was originally non- stationary, as evidenced by the Dickey Fuller test, with resulted in a p-value of 0.6
- After performing a first order differencing, stationarity was established. The Dickey fuller test on the differenced series resulted in a p-value of 0.0, which is less than the critical value of 0.05.
- 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

6.1. ARIMA model

SARIMAX Results

========			======	====	========	=======	========	
Dep. Varia	ble:	Spark	ling N	lo.	Observations:		132	
Model:		ARIMA(2, 1	, 2) L	og	Likelihood		-1101.755	
Date:	Fr	i, 10 Nov	2023 A	AIC			2213.509	
Time:		22:0	9:17 B	BIC			2227.885	
Sample:		01-01-	1980 H	4QIC			2219.351	
		- 12-01-	1990					
Covariance	Type:		opg					
========	:========			-===	=========	:=======	========	
	coef	std err		Z	P> z	[0.025	0.975]	
ar.L1	1.3121	0.046	28.7	781	0.000	1.223	1.401	
ar.L2	-0.5593	0.072	-7.7	741	0.000	-0.701	-0.418	
ma.L1	-1.9917	0.109	-18.2	218	0.000	-2.206	-1.777	
ma.L2	0.9999	0.110	9.1	L09	0.000	0.785	1.215	
sigma2	1.099e+06	1.99e-07	5.51e+	⊦12	0.000	1.1e+06	1.1e+06	
========						========		====
Ljung-Box	(L1) (Q):		0.1	19	Jarque-Bera	(JB):	1	4.46
Prob(Q):			0.6	57	Prob(JB):			0.00
	lasticity (H):		2.4	13	Skew:			0.61
Prob(H) (t	wo-sided):		0.0	90	Kurtosis:			4.08
========				===	========	========		====

Fig.1.25. ARIMA results Summary- Sparkling Dataset

Fig.1.26. ARIMA model forecast on test data- Sparkling Dataset

- Lowest AIC obtained for (p,d,q)=(2,1,2)
- This is consistent with the d=1 obtained during stationarity check

6.2. SARIMA model

______ Dep. Variable: No. Observations: Sparkling 132 Model: SARIMAX(1, 1, 2)x(0, 1, 2, 12)Log Likelihood -685.174 Date: Sat, 11 Nov 2023 AIC 1382.348 Time: 07:29:54 BIC 1397.479 Sample: 01-01-1980 HQIC 1388.455 - 12-01-1990 Covariance Type: opg

SARIMAX Results

	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.5507	0.287	-1.922	0.055	-1.112	0.011	
ma.L1	-0.1612	0.235	-0.687	0.492	-0.621	0.299	
ma.L2	-0.7218	0.175	-4.132	0.000	-1.064	-0.379	
ma.S.L12	-0.4062	0.092	-4.401	0.000	-0.587	-0.225	
ma.S.L24	-0.0274	0.138	-0.198	0.843	-0.298	0.243	
sigma2	1.705e+05	2.45e+04	6.956	0.000	1.22e+05	2.19e+05	
Ljung-Box	(L1) (Q):	=======	0.00	Jarque-Bera	 n (JB):	13.48	
Prob(Q):			0.95	Prob(JB):		0.00	
Heteroskedasticity (H):			0.89	Skew:		0.60	
Prob(H) (two-sided):			0.75	Kurtosis:		4.44	

Fig.1.27. SARIMA results Summary- Sparkling Dataset

Fig.1.28. SARIMA model forecast on test data- Sparkling Dataset

Fig.1.29. Diagnostics and Correlogram- SARIMA Model

- Lowest AIC obtained for (p,d,q)x(P,D,Q,F)=(1,1,2)x(0,1,2,12)
- This is consistent with the d=1 obtained during stationarity check
- 7. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

+	Test RMSE ♦
HoltWintersalpha0.07gamma0.2	302.41
HoltWintersAutofit	378.95
SARIMA	382.58
MA_trail2	813.40
MA_trail3	1028.61
MA_trail12	1267.93
SimpleAvgForecast	1275.08
SimpExpSmoothingAlpha0.01	1281.03
MA_trail6	1283.93
ARIMA	1299.98
SimpleExpSmoothing	1304.93
LinearRegression	1389.14
HoltBestAlphaBeta	1778.56
HoltAutofit	2007.24
NaiveForecast	3864.28

Fig.1.30. Sparkling Dataset model Results- Test RMSE

- Lowest RMSE is obtained for Holt winters model having alpha=0.07 and gamma=0.2
- And SARIMA model for the above said parameters
- 8. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Fig.1.31. SARIMA Model forecast for next 12 months- Sparkling Dataset

Fig.1.32. Holt Winters Model forecast for next 12 months- Sparkling Dataset

9. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

Fig.1.33. Forecast for 12 months- SARIMA and HW

Observations:

- The wine sales peaks during the months of November and december, probably due to the holiday season.
- The sales data does not exhibit any trend
- The forecast replicates the existing seasonality

Insights:

- The seasonality component of sales can be capitalized, and can try to push sales in the peak months
- The trend component needs improvement. The company can adopt different marketing strategies by customer segmentation in order to increase the overall trend