Digital health and computational epidemiology Lesson 9

Michele Tizzoni

Dipartimento di Sociologia e Ricerca Sociale Via Verdi 26, Trento Ufficio 6, 3 piano

Epidemics on networks

Models

Homogeneous mixing

Social structure

Contact network models

Multi-scale models

Agent Based models

Epidemics on networks

- Homogeneous mixing is not always realistic
- Contacts are not equal and not constant across groups.
- Real contact networks display high heterogeneities
- Pastor-Satorras et al. Epidemic processes in complex networks.
 Rev. Mod. Phys. 87, 925

References

- Pastor-Satorras et al. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)
- Pastor-Satorras, and Vespignani.
 Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 14 (2000)
- Barrat, Barthelemy, Vespignani.
 Dynamical processes on complex networks. Cambridge University Press

Epidemics on networks

- We consider a network of N nodes where each node can be in an epidemic state, S, I or R
- · We define the density of nodes in a given state, as:

$$\rho^{S}(t) = \frac{S(t)}{N}, \rho^{I}(t) = \frac{I(t)}{N}, \rho^{R}(t) = \frac{R(t)}{N}$$

Degree-based mean field

- \blacktriangleright Nodes with the same degree k are considered as statistically equivalent
- lacktriangle We focus on partial densities for each compartment: ho_k^{lpha} , lpha=S,I,R
- These variables are not independent: $\sum_{\alpha} \rho_k^{\alpha} = 1$
- The total fraction of individuals in compartment α is equal to $\rho^{\alpha}(t) = \sum_{k} P(k) \rho_{k}^{\alpha}(t)$

Degree-based mean field

- The network is considered in a mean-field perspective (annealed network approximation).
- The adjacency matrix is completely destroyed. Only the degree and the two-vertex correlations of each node are preserved.
- The adjacency matrix is replaced by its ensemble average.

$$\bar{A}_{ij} = \frac{k_j P(k_i | k_j)}{NP(k_i)}$$

The DBMF SIS model

happens over k links

be connected to an infected of degree k'

The DBMF SIS model

$$\frac{d\rho_k^I(t)}{dt} = \lambda k [1 - \rho_k^I(t)] \sum_{k'} P(k'|k) \rho_{k'}^I(t) - \mu \rho_k^I(t)$$

If we assume the network to be uncorrelated: $P(k'|k) = \frac{k'P(k')}{\langle k \rangle}$

then
$$\frac{d\rho_k^I(t)}{dt} = \lambda k[1 - \rho_k^I(t)]\Theta - \mu \rho_k^I(t)$$
 where $\Theta = \sum_{k'} \frac{k' P(k')}{\langle k \rangle} \rho_{k'}^I(t)$

Early stage approximation: $\rho_k^I(t) \ll 1$

then
$$\frac{d\Theta}{dt} = \left(\frac{\lambda}{\mu} \frac{\langle k^2 \rangle}{\langle k \rangle} - 1\right) \Theta$$

which implies that Θ will grow if:

$$\frac{\lambda}{\mu} > \frac{\langle k \rangle}{\langle k^2 \rangle}$$

Epidemic threshold

We look for the steady state solution $\rho_k^I(t), t \to \infty$

then:
$$\frac{d\rho_k^I}{dt} = 0$$

which implies that:
$$\rho_k^I = \frac{\lambda k \Theta}{\mu + \lambda k \Theta}$$

By plugging the above expression in the definition of Θ for uncorrelated networks:

$$\Theta = \sum_{k'} \frac{k'P(k')}{\langle k \rangle} \rho_{k'}^{I}(t) = \frac{1}{\langle k \rangle} \sum_{k} \frac{\lambda k^2 P(k)\Theta}{\lambda k \Theta + \mu}$$

$$\Theta = \frac{1}{\langle k \rangle} \sum_{k} \frac{\lambda k^2 P(k)\Theta}{\lambda k \Theta + \mu}$$

Self-consistent equation of the form x = F(x)With the following conditions:

$$F(0) = 0$$

 $F' > 0$
 $F'' < 0 \text{ (concave)}$

There is a non-zero solution if and only if F'(0)>1 which means

$$\frac{1}{\langle k \rangle} \sum_{k} \frac{\lambda k^2 P(k)}{\mu} > 1$$

$$\frac{\lambda}{\mu} > \frac{\langle k \rangle}{\langle k^2 \rangle}$$

Epidemic threshold

The DBMF threshold

$$\frac{\lambda}{\mu} > \frac{\langle k \rangle}{\langle k^2 \rangle}$$

In an infinite scale-free network, with $P(k) \sim k^{-\gamma}$, and $2 \le \gamma \le 3$, $\langle k^2 \rangle \to \infty$ which implies that **the epidemic threshold vanishes** in the thermodynamic limit.

There is a finite prevalence for any value of the spreading parameters.

Homogeneous networks

In the case of a homogeneous network with a regular (Poisson) degree distribution:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
$$\langle k^2 \rangle / \langle k \rangle \simeq \langle k \rangle$$

The epidemic threshold then becomes:

$$\frac{\lambda}{\mu} \gtrsim \frac{1}{\langle k \rangle}$$

which is finite and it does only depend on the average connectivity of the network.

Homogeneous networks

In the case of a homogeneous network the solution can be found also by considering the equation:

$$\frac{d\rho_k^I(t)}{dt} = \lambda \langle k \rangle [1 - \rho_k^I(t)] \rho_k^I(t) - \mu \rho_k^I(t)$$

In the early stage approximation, the epidemic threshold then becomes:

$$\frac{\lambda}{\mu} > \frac{1}{\langle k \rangle}$$

Immunization

In the case of complex networks, we can consider three different immunization strategies:

- uniform immunization
- proportional immunization
- targeted immunization

Uniform immunization

In the case of uniform immunization, individuals are randomly chosen to be vaccinated with a density of immune nodes g.

This corresponds to an effective rescaling of the spreading rate:

$$\lambda \rightarrow \lambda (1-g)$$

The threshold is affected in a uniform way:

$$\frac{\lambda}{\mu}(1-g) > \frac{\langle k \rangle}{\langle k^2 \rangle}$$

Uniform immunization

$$\frac{\lambda}{\mu}(1-g) > \frac{\langle k \rangle}{\langle k^2 \rangle}$$

In an infinite scale-free network, with $P(k) \sim k^{-\gamma}$, and $2 \le \gamma \le 3$, $\langle k^2 \rangle \to \infty$ which implies that the **uniform immunization is not effective** unless we immunize all the network: g=1

Proportional immunization

We can find a better solution through a proportional immunization.

Let us define the fraction of immune individuals with connectivity k: g_k

If we impose the condition:

$$\tilde{\lambda} \equiv \lambda k (1 - g_k) = const.$$

The system equation becomes:

$$\frac{d\rho_k^I(t)}{dt} = \tilde{\lambda}[1 - \rho_k^I(t)]\Theta - \mu \rho_k^I(t)$$

Proportional immunization

In the case of early stage approximation and low density of infectious individuals, we recover an epidemic threshold:

$$\lambda k(1-g_k)-\mu>0$$

which defines a threshold on density of immunized individuals:

$$g_k > 1 - \frac{\mu}{\lambda k}$$

for every class of degree k, to stop the epidemic.

Targeted immunization

Optimum approach: immunize a fraction of all nodes with the largest degree.

This way we introduce a cut-off in the degree distribution.

We need to immunize a fraction of nodes g such that:

$$\frac{\lambda}{\mu} < \frac{\langle k \rangle_g}{\langle k^2 \rangle_g}$$

In the case of the BA network, it is possible to show that: $g_c \simeq e^{-\frac{2\mu}{m\lambda}}$

The fraction of nodes to immunize is exponentially small with λ

How do we find the hubs?

- ► Targeted immunisation is very hard to achieve in practice, the full network structure is not known
- We need a strategy to find hubs based on a local knowledge of the network
- In scale-free networks, this can be done efficiently with the acquaintance immunisation (Cohen et al. Phys. Rev. Lett. 2003)
- Instead of immunizing nodes at random, we pick random nodes and for each we immunise one of their neighbours at random.

How do we find the hubs?

Instead of immunizing nodes at random, we pick random nodes and for each we immunise one of their neighbours at random.

$$k_{nn}^{\mathbf{unc}} = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

My neighbours are more probably hubs than myself! This is also known as the
 friendship paradox

Next... Spatial epidemic models