Tech Giants Stock Trends Analysis Dashboard - Documentation

Project Overview

Objective:

The **Tech Giants Stock Trends Analysis** dashboard aims to analyse and compare the stock performance of major technology companies—**AAPL**, **GOOGL**, and **META**—using historical stock data. The dashboard provides interactive visualizations that help users track key stock metrics, identify trends, and make data-driven decisions in financial analysis.

Scope:

The dashboard focuses on visualizing key metrics such as:

- Yearly **Opening** and **Closing** Prices
- Highest and Lowest Stock Prices
- Adjusted Close Prices Additionally, it integrates DAX formulas, tooltips, and date range filters to allow users to drill deeper into the data and gain insights into stock trends over time.

STAR Method Implementation

Situation:

As a **Data Analytics enthusiast**, I wanted to explore stock trends for major technology companies like **AAPL**, **GOOGL**, and **META**. With the growing interest in understanding stock market behaviour and financial data, I sought to create a tool that would enable me to visualize and compare the performance of these tech giants over time.

Task:

The task was to develop an interactive dashboard using **Power BI** that could analyse historical stock data and provide meaningful insights. The challenge was to handle large datasets, clean and transform the data, and present it in a way that is both informative and visually engaging. Key goals included visualizing stock prices, identifying trends, and offering insights for decision-making.

Action:

- 1. **Data Collection**: I sourced historical stock data for **AAPL**, **GOOGL**, and **META** from reliable financial data sources such as Yahoo Finance and Alpha Vantage.
- 2. **Data Cleaning & Transformation**: I preprocessed the data, addressing issues like missing values and inconsistent formats. I used Python and Excel for cleaning, ensuring the dataset was accurate and reliable for analysis.
- 3. Visualization: Using Power BI, I created various visualizations:
 - A line chart for displaying stock trends (Opening, Closing, and Adjusted Close prices).
 - o **Bar charts** to compare the highest and lowest stock prices for each year.
 - A stacked column chart for comparing the overall performance of AAPL,
 GOOGL, and META.

4. Advanced Features:

- Integrated **DAX formulas** for calculating moving averages and yearly growth rates.
- Added tooltips for providing additional information when hovering over chart elements.
- Implemented date range filters to allow users to zoom in on specific periods and refine their analysis.
- 5. **Testing & Optimization**: Ensured smooth interactivity and optimized the performance by aggregating the data at the yearly level and creating efficient data models in Power BI.

Result:

The dashboard was successfully implemented and provided an insightful comparison of stock trends for **AAPL**, **GOOGL**, and **META**. It allowed users to:

- Track stock performance over different time periods.
- Compare key metrics like opening and closing prices, highest and lowest prices, and adjusted close prices.

• Make data-driven decisions using the interactive features.

This project resulted in:

• A fully functional **interactive dashboard** with easy-to-understand visualizations.

• Enhanced skills in data visualization, Power BI, DAX formulas, and financial

analytics.

• A deeper understanding of stock market data analysis, especially when handling and

visualizing large datasets.

Data Collection & Preprocessing

Data Source:

Historical stock data for AAPL, GOOGL, and META was sourced from publicly available

financial databases (e.g., Yahoo Finance, Alpha Vantage).

Data Cleaning & Transformation:

The raw data was cleaned and transformed to ensure consistency and accuracy:

• Missing or null values were addressed using **imputation** techniques.

• Inconsistent data formats were corrected, ensuring all dates were in a consistent format.

• Data points with missing or outlier values were identified and handled appropriately.

Key Columns in the Dataset:

1. **Date**: Date of stock trading.

2. **Open:** Stock opening price for the day.

3. **High:** Highest stock price during the day.

4. **Low**: Lowest stock price during the day.

5. Close: Closing stock price for the day.

6. Adj Close: Adjusted closing price that accounts for stock splits and dividends.

7. **Volume**: The number of shares traded.

Features of the Dashboard

Visualizations:

- 1. Stock Price Over Time (Line Chart):
 - Displays the Opening, Closing, and Adjusted Close prices for each stock over time.
 - o Users can filter the date range to zoom in on specific periods for better insights.

2. Yearly High and Low Stock Prices (Bar Chart):

- o Compares the highest and lowest stock prices for each year.
- Helps users identify stock volatility and trends over time.

3. Comparison of Stock Performance (Stacked Column Chart):

- o A visual comparison of the stock prices of AAPL, GOOGL, and META.
- Enables users to easily compare the performance of these companies side by side.

Interactive Features:

- **Date Range Filters**: Users can select specific date ranges (e.g., last year, last 6 months) to view the data accordingly.
- **DAX Measures**: Custom **DAX measures** were used to calculate and display:
 - Moving Averages: A smoother representation of stock performance over a specific period.
 - Yearly Growth Rates: Measures the percentage change in stock prices yearover-year.

Key Metrics Analyzed:

- 1. Yearly Opening & Closing Prices: Identifies overall stock performance over a year.
- 2. **Highest & Lowest Prices**: Analyzes stock volatility and market fluctuations.
- 3. **Adjusted Close Prices**: Accounts for stock splits and dividend payments, offering a more accurate view of stock value changes.

Technical Details & Implementation

Power BI Features Used:

- DAX Formulas: Used for calculating metrics such as Yearly Growth Rates and Moving Averages.
- **Visualizations**: Utilized various charts like **line**, **bar**, and **stacked column** charts to represent the data effectively.
- **Filters**: Date range filters were implemented to allow users to customize the time period for analysis.
- **Interactivity**: Click interactions between the charts, allowing users to filter and update data across the dashboard.

Performance Optimization:

- **Data Aggregation**: Data was aggregated at the yearly level to improve performance when displaying historical data.
- **Data Model Optimization**: Efficient use of Power BI's **data model** to ensure that visualizations load quickly without any lag.

Project Challenges

- 1. **Handling Missing Data**: The stock data often contained gaps or missing values. Various techniques, including interpolation, were used to handle these gaps.
- 2. **Data Inconsistencies**: Different stock data sources had slightly varying formats and data points, which required thorough cleaning and alignment.
- 3. **Ensuring Performance**: Given the large volume of historical data, optimizing the Power BI dashboard to ensure smooth interactivity was crucial.

Key Learnings & Insights

 Data Visualization for Financial Data: This project deepened my understanding of financial data visualization, especially when dealing with large datasets such as stock prices.

- 2. Power BI: I gained hands-on experience with Power BI's features, including DAX formulas, advanced visualizations, and interactive dashboards.
- 3. **Financial Analytics**: I developed a stronger understanding of how to analyze stock data and derive actionable insights that can drive business decision-making.

Conclusion

This project successfully delivered a functional and interactive **Power BI dashboard** that analyzes stock trends for **AAPL**, **GOOGL**, and **META**. It demonstrated my ability to work with large datasets, clean and transform data, build dynamic visualizations, and use **DAX** to generate business-relevant insights.

The dashboard empowers users to explore stock trends over time, compare the performance of major tech companies, and make data-driven decisions based on key metrics. This project is a testament to my growing expertise in **data analytics**, **business intelligence**, and **financial analysis**.

Future Enhancements:

- 1. **Predictive Analytics**: Implement predictive modelling to forecast stock prices based on historical trends.
- 2. **Sentiment Analysis**: Integrate news sentiment analysis to assess the impact of market news on stock performance.
- 3. **Mobile Optimization**: Ensure the dashboard is optimized for viewing on mobile devices.