

本 科 毕 业 论 文

论文题目: 暂时还不知道

学生姓名: 吴 鸿 毅

学 号: 2011151416

专业:核工程与核技术

指导老师: 无 名 氏

学院:核科学与技术学院

哈尔滨工程大学 2014年4月30日

目录

摘要.		1
1 引言		1
2 数列:	空间和函数空间的定义	1
3 六类	空间各自的性质	1
3.1	l^p 和 $L^p(\mathbf{E})$	1
4 六种	空间之间的一些联系	1
4.1	函数空间与函数空间、数列空间与数列空间之间的联系	1
4.2	函数空间与数列空间的联系	2

LATEX模板

吴鸿毅

2014年4月30日

摘要: 本文讨论了本科层次的泛函分析教材中函数空间和数列空间的实例,….

1 引言

在一般的本科生泛函分析教材中, …如 $L^p(\mathbf{E})$ 和 l^p

2 数列空间和函数空间的定义

以下给出六种典型的数列空间和函数空间的定义,文字叙述和符号表示依照文献[1].

定义 1(空间 l^p (p-1))一切满足 $(\bigcap_{i \neq 1} \ i^p)^{1/p} < +$ 的数列 $x = (\bigcap_{1 \neq 2} \)$ 的全体记为 l^p . 容易验证

$$x \quad p = \begin{pmatrix} 1 & i \\ i = 1 \end{pmatrix}^{1/p} < +$$

是 l^p 上的范数.

- 3 六类空间各自的性质
- 3.1 l^p 和 $L^p(\mathbf{E})$

 l^p 和 $L^p(\mathbf{E})$ 都可分.

- 4 六种空间之间的一些联系
- 4.1 函数空间与函数空间、数列空间与数列空间之间的联系

4.2 函数空间与数列空间的联系

引理 1(Riesz-Fiesher 定理)设 e_n 是 Hilbert 空间 \mathbf{H} 中一就范正交系, $(c_1\,c_2)$ l^2 ,则存在唯一的 x H 使 $(x\,e_n)=e_n$ n=1 2 并且 $(x\,x)=\sum_{n=1}^{\infty}c_n$ c_n 2.

文献 [2]给出了 1 p 2 时的 $L^p(\mathbf{E})$ 上的 Fourier 变换的构造过程,并指出当 p>2 时在广义函数的意义下 $L^p(\mathbf{E})$ 仍可导入 Fourier 变换. 问题在于 p=2 时 Fourier 变换能否构成 $L^p(\mathbf{E})$ 与 l^p 之间的保范同构.

问题 1 完备距离空间 $S(\mathbf{E})$ 与 s, Banach 空间 $M(\mathbf{E})$ 与 m 之间是否有同构关系?更进一步, Fourier 变换及其反演公式 能否推广到完备距离空间 $S(\mathbf{E})$ 与 s, Banach 空间 $M(\mathbf{E})$ 与 m

- 1. You can mix the list environments to your taste:
 - But it might start to look silly.
 - With a dash.
- 2. Therefore remember:

 \mathbf{Stupid} things will not become smart because they are in a list.

Smart things, though, can be presented beautifully in a list.

$$\lim_{n} \quad \left\backslash \begin{array}{c} n \\ k=1 \end{array} \right. \frac{1}{k^2} = \frac{2}{6}$$

$$\lim_{n} \frac{1}{k=1} \frac{1}{k^{2}} = \frac{2}{6}$$

$$\lim_{n} \frac{1}{k=1} \frac{1}{k^{2}} = \frac{x^{2}}{6}$$

$$x \quad \mathbf{R}: \quad x^{2} = 0 \tag{1}$$

 $c^2 = a^2 + b^2$ 30 C

参考文献

- [1] 那汤松. 实变函数论(第5版). 徐瑞云 译. 北京: 高等教育出版社, 2010.
- [2] A.H.柯尔莫戈洛夫, C.B.佛明. 函数论与泛函分析初步(第7版). 北京: 高等教育出版社, 2006.