Problem 1 (7.14). 1. Let R be a commutative ring with $1 \neq 0$ and I_1, \ldots, I_n pairwise comaximal ideals of R. Prove that

$$(R/(I_1 \dots I_n))^X \cong (R/I_1)^X \times \dots \times (R/I_n)^X$$

as groups.

2. Let m, n be relatively prime positive integers. Prove that

$$(\mathbb{Z}_{mn})^X \cong (\mathbb{Z}_m)^X \times (\mathbb{Z}_n)^X$$

as groups.

3. Solve the system of congruences:

$$x \equiv 2 \mod 9$$

$$x\equiv 3\mod 5$$

$$x \equiv 1 \mod 7$$

$$x \equiv 5 \mod 11$$

Proof. 1. By the Chinese Remainder Theorem we know that

$$(R/(I_1 \dots I_n)) \cong (R/I_1) \times \dots \times (R/I_n)$$

as rings. As such there is an isomorphism $\varphi: R \to S$ and since ring isomorphisms send units to units we have a bijection $\varphi|_{R^X}: R^X \to S^X$. However since φ is an isomorphism it will send identity to identity and preserve multiplication.

Thus $\varphi|_{R^X}$ is a group homomorphism and

$$(R/(I_1 \dots I_n))^X \cong (R/I_1)^X \times \dots \times (R/I_n)^X$$

are isomorphic as groups.

2. From a prior homework we have that (n)(m) = (nm). Therefore $\mathbb{Z}_{mn} \cong \mathbb{Z}/m\mathbb{Z}n\mathbb{Z}$ in addition to $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z}$. Finally note that since $\gcd(n,m) = 1$ there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha a + \beta b = 1$ and therefore $(n) + (m) = \mathbb{Z}$. Thus we can apply part 1 of this problem to get that

$$\mathbb{Z}_{mn}^X \cong \mathbb{Z}_m^X \times \mathbb{Z}_n^X$$

3. Setup the system of equations

$$2 = x + 9a$$

$$3 = x + 5b$$

$$1 = x + 7c$$

$$5 = x + 11d$$

We can solve this system of equations using the usual methods from linear algebra to get a solution for x in terms of another variable 533 = x + 3465y. This implies that $x \cong 533 \mod 3465$.

Problem 2 (8.1). Prove that the division algorithm holds for any polynomial ring over a field.

Proof. Let $f, g \in k[x]$ where k is a field. We will prove the division algorithm holds via induction over the degree of f.

Let $\deg(f) = 0$. Then $f = 0 \cdot g + f$ and since $\deg(f) = 0 < \deg(g)$ this is a valid choice for the division algorithm.

Assume that the division algorithm holds for polynomials $f \in k[x]$ when $\deg(f) = n$. Then given $g \in k[x]$ we have f = qg + r where $\deg(g) > \deg(r)$. However we can form any given a polynomial $f' = \sum_{0}^{n+1} a_i x^i$ let $f := \sum_{0}^{n} a_{i+1} x^i + a_0$. Then $f' = x \cdot f + a_0$. Apply the division algorithm to f and we get

$$f' = x(qg + r) = (q \cdot x)g + x \cdot r$$

which shows that the division algorithm holds for deg = k + 1 if we assume it for deg = k. Therefore the division algorithm holds for any polynomial ring over a field.

Problem 3 (8.2). 1. Prove that a|b iff $b \in (a)$ iff $(b) \subseteq (a)$.

- 2. If a|b and a|c, prove that a|(bx+cy) for all $x,y \in R$.
- 3. Suppose $b \neq 0$. If a|b and b|c, then a|c.
- 4. If d is a greatest common divisor of a, b then du is also a greatest common divisor of a, b for any unit u of R.

Proof. 1. Suppose that a|b. Then there exists a c such that ac = b which implies that $b \in (a)$.

Next suppose that $b \in (a)$ and let $d \in (b)$. Then d = fb. However b = ca, since $b \in (a)$, which implies that $d = fca \in (a)$.

Finally suppose that $(b) \subseteq (a)$. Then $b \in (a)$ which implies that b = ca for some c. This is the definition of a|b.

Therefore a|b iff $b \in (a)$ iff $(b) \subseteq (a)$.

2. Suppose that a|b and that a|c. Then there exist $\beta, \gamma \in R$ such that $a\beta = b$ and $a\gamma = c$. If we have (bx + cy) we can substitute b, c to get

$$bx + cy = a\beta x + a\gamma c = a(\beta x + \gamma y)$$

which implies that a|(bx+cy).

Therefore if a|b and a|c then a|(bx+cy) for all $x,y \in R$.

- 3. Suppose that a|b and b|c. Then there exist $\alpha, \beta \in R$ such that $\alpha a = b$ and $\beta b = c$. Thus $\beta \alpha a = c$ and therefore a|c.
- 4. Let d be a greatest common divisor of a, b. Then d|a, d|b and if d'|a, b then d'|d. Consider ud where u is a unit. Then du divides a, b as $\alpha d = a$ and $\beta d = b$ which implies that $\alpha u^{-1}(ud) = a$ and $\beta u^{-1}(ud) = b$. Thus ud|a and ud|b. Now suppose that f|a and f|b. Then f|d which implies that $\gamma f = d$. It then follows that $u\gamma f = ud$ and thus f|ud.

Therefore ud is a greatest common divisor of a and b.

Problem 4 (8.3). An element p in an integral domain R is prime if, and only if, p|ab implies p|a or p|b for any $a, b \in R$.

Proof. Let $p \in R$ be prime. Suppose that p|ab. Then $\alpha p = ab$ which implies that $ab \in (p)$. However since p is prime, (p) is a prime ideal. This means that either $a \in (p)$, in which case p|a, or $b \in (p)$ with p|b.

Otherwise suppose that when p|ab then p|a or p|b. Let $ab \in (p)$. Then p|ab which implies that p|a, in which case $a \in (p)$, or p|b and $b \in (p)$ which shows that (p) is prime.

Therefore an element p in an integral domain R is prime if, and only if, p|ab implies that p|a or p|b for any $a, b \in R$.

Problem 5 (8.4). Let R be a UFD and $a, b \in R \setminus \{0\}$. Then a, b has a greatest common divisor in R. If a, b are relatively prime and a|bc for some $c \in R$, then a|c.

Proof. Let $a, b \in R \setminus \{0\}$. Since R is a UFD we have unique factorizations $a = p_1 \cdots p_s$ and $b = q_1 \cdots q_t$ which are unique up to associates and permutations. Define $f: R \to \mathbb{N}$ by f(r) as the minimum number of occurrences of r in the factorization of a or b up to associates. Then define $d := \prod_{r \in \{p_i, q_i\}/\text{associates}} r^{f(r)}$. We know that d|a and d|b since d contains only factors of a and b. Moreover if d'|a and d'|b then d'|d as d was defined to contain the maximal amount of each factor while still dividing a, b. Thus d is a gcd of a, b.

Therefore if $a, b \in R \setminus \{0\}$ and R is a UFD, then a, b have a greatest common divisor. \square

Problem 6 (G1). Let H be a normal subgroup of a group G, and let K be a subgroup of H.

- 1. Give an example of this situation where K is not a normal subgroup of G.
- 2. Prove that if the normal subgroup H is cyclic, then K is normal in G.

Proof. 1. Consider S_5 and A_5 . We know that $A_5 \subseteq S_5$ however the subgroup $\langle (1\ 2\ 3) \rangle$ is not normal in S_5 .

2. Since $H = \langle h \rangle$ is cyclic we know that $K = \langle h^a \rangle$ as well. Thus if we consider $ghg^{-1} = h^k \in H$. Then if we raise both sides to the power ap we get $(ghg^{-1})^{ap} = gh^{ap}g^{-1} = h^{(kp)a} \in K$. Since K is cyclic this will hold for any element of K by varying p.

Therefore $K \subseteq G$.

Problem 7 (G2). Prove that every finite group of order at least three has a nontrivial automorphism.

Proof. Suppose that G is abelian with at least one element that is not of order two. Then the map $a \mapsto a^{-1}$ is a nontrivial automorphism. If all elements of G are of order two then $G = \bigoplus \mathbb{Z}_2$ and permuting and two of the generators would be a nontrivial automorphism.

Otherwise if G is not abelian then exists $gh \neq hg$. Then the map $f \mapsto gfg^{-1}$ will be an automorphism that is not trivial.

Therefore every finite group of order at least three has a non-trivial automorphism. \Box

Problem 8 (R1). Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} | a, b \in \mathbb{Z}\}.$

- 1. Why is R an integral domain?
- 2. What are the units in R?
- 3. Is the element 2 irreducible in R?
- 4. If $x, y \in R$, and 2|xy, does it follow that 2 divides either x or y? Justify your answer.
- *Proof.* 1. Note that $\sqrt{-3} = i\sqrt{3}$. As such R is a subring of $\mathbb C$ which is a field. As such R cannot contain any zero divisors.
 - 2. The units of R will be the elements $a + b\sqrt{-3}$ such that $a^2 + 3b^2 = \pm 1$. The negative case cannot happen and any nonzero value for b will make it too large. Therefore the only units of R are ± 1 .
 - 3. Since the norm is multiplicative if rs=2 then $4=N(r)N(s)=(ac)^2+3b^2c^2+3a^2d^2+9b^2d^2$. There are three was this can be fulfilled up to swapping r and s. Either r=2 and $s=\pm 1$ or $r=(1+\sqrt{3}), s=1$. However the latter doesn't fulfill rs=2 so we can discard it. Therefore 2 is irreducible in R
 - 4. The number 2 is not prime in R as $2|(4=(1+\sqrt{-3})(1-\sqrt{-3}))$ however $2\nmid (1\pm\sqrt{-3})$.

Problem 9 (R2). 1. Give an example of an integral domain with exactly 9 elements.

- 2. Is there an integral domain with exactly 10 elements? Justify your answer.
- *Proof.* 1. The integral domain $\mathbb{Z}_3[\sqrt{2}]$ contains $3^2 = 9$ elements. The fact that $\mathbb{Z}_3[\sqrt{2}]$ is an integral domain follows directly from the fact that \mathbb{Z}_3 is a field.
 - 2. First we'll show that a field has prime power order. Let \mathbb{F}_p be a field. Then the characteristic of \mathbb{F}_k must be prime. If it were not then the characteristic would equal mn for some $m, n \in \mathbb{Z}_{>0}$. This would imply that $(\sum_{1}^{n} 1)(\sum_{1}^{m} 1) = \sum_{0}^{mn} 1 = 0$. It then follows that there are non-trivial zero divisors in \mathbb{F}_k which is a contradiction.

Let p be the characteristic of \mathbb{F}_k and suppose that q|k. Then there exists an element $x \in \mathbb{F}_k$ such that the order of x is q. Since p, q are both primes there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha p + \beta q = 1$. This implies that

$$\alpha p + \beta q x = x$$

However $\alpha(px) = 0$ since p is the characteristic. Thus $\beta qx = 0$. Then the only way the prior equation can hold is if x = 0 which is a contradiction as 0 does not have a nonzero order.

Since there is only one prime that can divide the order of \mathbb{F}_k it must be that $k=p^n$ for some n.

When a ring is finite it is an integral domain if and only if it is a field. However fields must have prime power order and since 10 is not a prime power there cannot exist a field, and thus an integral domain, of order 10.

Problem 10 (R3). Let

$$F = \left\{ \left(\begin{array}{cc} a & b \\ 2b & a \end{array} \right) | a, b \in \mathbb{Q} \right\}$$

- 1. Prove that F is a field under the usual matrix operations of addition and multiplication.
- 2. Prove that F is isomorphic to the field $\mathbb{Q}(\sqrt{2})$.

Proof. 1. First we will show that F is closed under matrix addition and multiplication. Let

$$\left(\begin{array}{cc}a&b\\2b&a\end{array}\right),\left(\begin{array}{cc}c&d\\2d&c\end{array}\right)\in F$$

Then

$$\left(\begin{array}{cc} a & b \\ 2b & a \end{array}\right) + \left(\begin{array}{cc} c & d \\ 2d & c \end{array}\right) = \left(\begin{array}{cc} a+c & b+d \\ 2(b+d) & a+c \end{array}\right)$$

and

$$\left(\begin{array}{cc} a & b \\ 2b & a \end{array}\right) \left(\begin{array}{cc} c & d \\ 2d & c \end{array}\right) = \left(\begin{array}{cc} ac + 2bd & bc + ad \\ 2(bc + ad) & ac + 2bd \end{array}\right)$$

Therefore F is a subring of $M_2(\mathbb{Q})$ and the only thing left to check is that all nonzero elements are units.

Suppose that we have an element $x \in F$ such that a, b are not both zero. Then $\det(x) \neq 0$ as that would require $a^2 - 2b^2 = 0$ which cannot happen in the rationals. Therefore x does indeed have an inverse. To show that the inverse is in F we can construct it explicitly as

$$\frac{1}{a^2 - 2b^2} \left(\begin{array}{cc} a & -b \\ -2b & a \end{array} \right)$$

Then

$$\left(\begin{array}{cc} a & b \\ 2b & a \end{array}\right) \cdot \frac{1}{a^2 - 2b^2} \left(\begin{array}{cc} a & -b \\ -2b & a \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Therefore F is a field.

2. Define $\varphi: F \to \mathbb{Q}(\sqrt{2})$ as

$$\varphi\left(\begin{array}{cc} a & b \\ 2b & a \end{array}\right) = a + b\sqrt{2}$$

Then we can define an inverse $\psi: \mathbb{Q}(\sqrt{2}) \to F$ as

$$\psi(a+b\sqrt{2}) = \left(\begin{array}{cc} a & b \\ 2b & a \end{array}\right)$$

Clearly φ and ψ are inverses and as such φ is a bijection.

To show that φ is a ring homomorphism note that in part 1 of the problem the top two lines coincide with the values of the rational part and the $\sqrt{2}$ part of addition and multiplication respectively. Therefore φ is a ring isomorphism and as such $F \cong \mathbb{Q}(\sqrt{2})$.