COL362 Project

Ankit Kangale 2019CS10363

Rayyan Shahid 2019CS10392

Parth Gupta 2019CS10380

March 2023

1 ER Diagram

Figure 1: ER diagram

2 Transformation to Relational Schema

For each of the entities and relations in the above diagram we have the following relations:

- 1. Cities (CityId, CityName, State)
- 2. Hotels (<u>CityId</u>, <u>HotelName</u>, <u>Locality</u>, StarRating, Rent, FreeBreakfast, FreeWifi, HotelPincode, HasSwimmingPool, HotelDescription)
- 3. Places (CityId, Place, Rating, num_rating)
- 4. Restaurants (CityId, Name, Locality, Cost, Cuisine, Votes, Rating)
- 5. Stations (CityId, Station_code, Station_name)
- 6. Flights (CityId, Flight_number, Airline)
- 7. Trains (Station_code, train_no, Source_Station_code, Destination_Station_code,train_name, seq)

3 Functional Dependencies

For each relation we have the following FDs:

• CityId \rightarrow CityName, State

- CityId, HotelName, Locality → StarRating, Rent, FreeBreakfast, FreeWifi, HotelPincode, HasSwimmingPool, HotelDescription
- CityId, Place → Rating, num_rating
- CityId, Name, Locality \rightarrow Cost, Cuisine, Votes, Rating
- CityId, Station_Code \rightarrow Station_name
- CityId, FlightNumber \rightarrow Airline
- Station_Code, train_no → Source_Station_code, Destination_Station_code, train_name, seq

These FDs are of the form $X \to Y$ where X is primary key and Y is the rest of attributes for each relation.

Apart from these, we have the following non-trivial FDs which cannot be inferred from the above FDs:

- train_no → train_name, Source_Station_code, Destination_Station_code
- CityName, State \rightarrow CityId

4 FD Preserving Normalization

We observe that the relation Trains violates BCNF due to the FD:

train_no → train_name, Source_Station_code, Destination_Station_code

This is because train_no does not form a superkey for the Train relation. To convert this into BCNF, we divide this relation into 2 separate relations:

- TrainPath (<u>train_no</u>, <u>Station_code</u>, seq)
- TrainInfo (<u>train_no</u>, train_name, Source_Station_code, Destination_Station_code)

5 Final Relational Schema

After normalization, we have the following relations:

- 1. Cities (CityId, CityName, State)
- 2. Hotels (<u>CityId</u>, <u>HotelName</u>, <u>Locality</u>, StarRating, Rent, FreeBreakfast, FreeWifi, HotelPincode, HasSwimmingPool, HotelDescription)
- 3. Places (CityId, Place, Rating, num_rating)
- 4. Restaurants (CityId, Name, Locality, Cost, Cuisine, Votes, Rating)
- 5. Stations (CityId, Station_code, Station_name)
- 6. Flights (CityId, Flight_number, Airline)
- 7. TrainPath (<u>train_no</u>, <u>Station_code</u>, seq)
- 8. TrainInfo (train_no, train_name, Source_Station_code, Destination_Station_code)

6 Github Repository link

Team Name: Not Random

link: https://github.com/kankits/Not-Random