Curriculum Vitae

Education

- 2018 **Doctor of Philosophy**, Georgia Institute of Technology, Atlanta, GA, USA Computational Science and Engineering
 - Thesis: Scalable and Resilient Sparse Linear Solvers
 - Advisor: Dr. Richard Vuduc
- 2016 Master of Science, Georgia Institute of Technology, Atlanta, GA, USA, GPA-4.0/4 Computational Science and Engineering
- 2011 Master of Technology, Indian Institute of Technology, Madras, India, GPA-8.5/10 Electrical Engineering, Specialization: Microelectronics and VLSI design
- 2011 **Bechelor of Technology**, *Indian Institute of Technology*, *Madras*, India, *GPA-8.5/10* Electrical Engineering, Minor: Theoretical Computer Science

Experience

- August Research Scientist , Computational Data Analytics Group, Oak Ridge National 2019–Present Laboratory, Oak Ridge, TN
- - 2011–2018 Graduate Reseach Assistant, Georgia Institute of Technology, Atlanta, GA
- May-August 2014 Summer Intern, Parallel Computing Lab, Intel Corporation, Santa Clara, CA
- May-August 2013 Summer Intern, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA

Awards & Honors

Professional Awards

- 2022 **ORNL Special Performance Award**, For outstanding research contributions in the Computer Science and Mathematics Division
- 2022 **SC22 Gorden-Bell Finalist**, (Media), Finalist for submission "Exaflops biomedical knowledge graph analytics"
- 2022 **SIAM PP22 Best Paper Prize**, (Link), Winner of the SIAM Activity Group on Supercomputing Best Paper Prize; (SIAM News), (ORNL News)
- 2021 R&D 100 Award Finalist, (Link)
- 2020 **SC20 Gorden-Bell Finalist**, (Link), Finalist for submission "Scalable Knowledge Graph Analytics at 136 PetaFlop/s"
- 2019 ORNL Outstanding Postdoctoral Research Associate, For outstanding research contributions in the Computer Science and Mathematics Division
- 2019 **Graph500**, (Link), Member of the technical team that placed the Summit Supercomputer at ORNL 4th in the prestigious Graph500 List

Conference Travel Awards

- 2016 **HPDC**, Travel award recipient
- 2014 **SIAM Parallel Processing**, Travel award recipient
- 2014 Copper-Mountain, Travel award recipient

2015 **IPDPS**, Travel award recipient

Academic Awards

- 2006 Indian National Mathematics Olympiad, Selected as one of 35 awardees (100th percentile)
- 2006 All India Rank 651 in IIT-JEE, Top 0.2 percent of 300,000 applicants
- 2006 National Standard Examination in Physics, (Link), Awarded to top 1 percent (99th percentile)

Undergraduate Scholarship

- 2009 **DAAD-WISE**, Recipient of German Academic Exchange Service-Working Internships in Science and Engineering Scholarship (awarded to approximately 300 undergraduate students in India)
- 2010 **CRUISE fellowship**, Awardee of CRUISE (Computing Research Undergraduate Computing Research Undergraduate Intern Summer Experience-CRUISE Program) fellowship Site: http://www.cse.gatech.edu/research/cruise

Publications

Google Scholar Profile https://scholar.google.com/citations?user=M3J5vrUAAAAJ, Accessed on Citations:793 (Since 2018: 319)

March 31, 2023, **h-index:** 9 (Since 2018: 8) **i10-index:**8 (Since 2018: 8)

Conference papers

- [1] Prokopenko, Andrey; **Sao, Piyush**; Lebrun-Grandie, Damien: A single-tree algorithm to compute the Euclidean minimum spanning tree on GPUs. In: *Proceedings of the 51st International Conference on Parallel Processing*, 2022, S. 1–10
- [2] Kannan, Ramakrishnan; **Sao, Piyush**; Lu, Hao; Kurzak, Jakub; Schenk, Gundolf; Shi, Yongmei; Lim, Seung-Hwan; Israni, Sharat; Thakkar, Vijay; Cong, Guojing u.a.: Exaflops biomedical knowledge graph analytics. In: 2022 SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC) IEEE Computer Society, 2022, S. 61–71
- [3] Sao, Piyush; Lu, Hao; Kannan, Ramakrishnan; Thakkar, Vijay; Vuduc, Richard; Potok, Thomas: Scalable All-pairs Shortest Paths for Huge Graphs on Multi-GPU Clusters. In: Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing, 2020, S. 121–131
- [4] Schuman, Catherine D.; Kay, Bill; Date, Prasanna; Kannan, Ramakrishnan; **Sao, Piyush**; Potok, Thomas E.: Sparse Binary Matrix-Vector Multiplication on Neuromorphic Computers. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) IEEE, 2021, S. 308–311
- [5] Kannan, Ramakrishnan; **Sao, Piyush**; Lu, Hao; Herrmannova, Drahomira; Thakkar, Vijay; Patton, Robert; Vuduc, Richard; Potok, Thomas: Scalable knowledge graph analytics at 136 petaflop/s. In: *SC20: International Conference for High Performance Computing, Networking, Storage and Analysis* IEEE, 2020, S. 1–13
- [6] Sao, Piyush; Kannan, Ramakrishnan; Gera, Prasun; Vuduc, Richard: A supernodal all-pairs shortest path algorithm. In: *Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*, 2020, S. 250–261
- [7] Sao, Piyush; Kannan, Ramakrishnan: Multifrontal Non-negative Matrix Factorization. In: International Conference on Parallel Processing and Applied Mathematics Springer, 2019, S. 543–554

- Sao, Piyush; Engelmann, Christian; Eswar, Srinivas; Green, Oded; Vuduc, Richard: [8] Self-stabilizing Connected Components. In: 2019 IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS) IEEE, 2019, S. 50–59 [9] Sao, Piyush; Kannan, Ramakrishnan; Li, Xiaoye; Vuduc, Richard: A Communicationavoiding 3D Sparse Triangular Solve Algorithm. In: International Conference on Supercomputing. Phoenix AZ, Accepted, June 26-28 2019 [10] Sao, Piyush; Li, Xiaoye S.; Vuduc, Richard: A communication-avoiding 3D LU factorization algorithm for sparse matrices. In: Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS). Vancouver, BC, Canada, May 2018 [11] Sao, Piyush; Liu, Xing; Vuduc, Richard; Li, Xiaoye: A Sparse Direct Solver for Distributed Memory Xeon Phi-accelerated Systems. In: Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International IEEE, 2015, S. 71–81 [12]Sao, Piyush; Vuduc, Richard; Li, Xiaoye S.: A distributed CPU-GPU sparse direct solver. In: European Conference on Parallel Processing Springer, 2014, S. 487–498 [13] Sao, Piyush; Vuduc, Richard: Self-stabilizing iterative solvers. In: Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ACM, 2013, S. 4 [14]Sao, Piyush; Green, Oded; Jain, Chirag; Vuduc, Richard: A Self-Correcting Connected Components Algorithm. In: Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale ACM, 2016, S. 9–16 Journal Articles [1] Li, Xiaoye S.; Lin, Paul; Liu, Yang; Sao Piyush: Newly Released Capabilities in Distributed-memory SuperLU Sparse Direct Solver. In: ACM Transactions on Mathematical Software (2022) [2] Gera, Prasun; Kim, Hyojong; Sao Piyush; Kim, Hyesoon; Bader, David: Traversing large graphs on GPUs with unified memory. In: Proceedings of the VLDB Endowment 13 (2020), Nr. 7, S. 1119–1133 [3] Sao Piyush; Li, Xiaoye S.; Vuduc, Richard: A communication-avoiding 3D algorithm for sparse LU factorization on heterogeneous systems. In: Journal of Parallel and Distributed Computing (2019) [4] Lee, Dongryeol; Sao Piyush; Vuduc, Richard; Gray, Alexander G.: A distributed kernel summation framework for general-dimension machine learning. In: Statistical Analysis and Data Mining: The ASA Data Science Journal 7 (2014), Nr. 1, S. 1–13 Thesis Book chapters and Extended reports [1] Sao, Piyush: Model Order Reduction Techniques for VLSI Circuit Simulation, IIT Madras, Diplomarbeit, 5 2011 [2] Sao, Piyush: Scalable and Resilient Sparse Linear Solvers, Georgia Institute of Technology, Diss., 8 2018. https://smartech.gatech.edu/handle/1853/60233
- [4] Graves, Jeffrey A.; Blum, Thomas F.; **Sao, Piyush**; Chi, Miaofang; Kannan, Ramakrishnan: FUNNL: Fast Nonlinear Nonnegative Unmixing for Alternate Energy Systems. In: *Knowledge-Guided Machine Learning*. Chapman and Hall/CRC, 2023, S.

Laboratory. 2016. – Forschungsbericht

261 - 286

Li, Xiaoye S.; Demmel, James W.; Gilbert, John R.; Grigori, Laura; **Sao, Piyush**; Shao, Meiyue; Yamazaki, Ichitaro: SuperLU Users' Guide / Lawrence Berkeley National

[3]

[5]

Engelmann, Christian; Ashraf, Rizwan; Hukerikar, Saurabh; Kumar, Mohit; **Sao, Piyush**: Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale (Version 2.0) / Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). 2022. – Forschungsbericht

Patents and Inventions disclosure

2022 Knowledge graph analytics kernels in high performance computing, Kannan, R., Sao, P. K., Lu, H., Herrmannova, D., Thakkar, V., Patton, R. M., Vuduc, R. W., & Potok, T. E., US Patent App. 17/389,862, Feb 3

Google Patents

https://patents.google.com/patent/US20220035832A1/en

Application filed by UT Battelle LLC: Jul 30, 2021

Status: Pending

2022 U.S. Copyright Registration Certificate, Title: DSNAPSHOT, Registration Number: TXu 2-314-193, Effective Date: 2022-05-05, ORNL

Authors:

- O Drahomira Herrmannova
- O Ramakrishnan Kannan
- O Hao Lu
- O Robert M Patton
- O Thomas E Potok
- o Piyush K Sao

Research Grants and Funding

- 2020–2023 **Principal Investigator**, Next generation sparse solvers STRUMPACK/SUPERLU, Exascale Computing Project, Department of Energy, \$480,000 USD
- 2022–2027 **Co-Principal Investigator**, Sparsitute: Mathematical Multifaceted Integrated Capability Center (MMICC), Office of Advanced Scientific Computing Research, Department of Energy, \$2.5 million USD https://sparsitute.lbl.gov/people
- 2020–2024 **Co-Principal Investigator**, ASCENDS-II (Advances in Machine Learning to Improve Scientific Discovery at Exascale and Beyond), Department of Energy, \$1,200,000 Contributing to the development of advanced machine learning techniques to enable scientific discovery on exascale computing systems.

Talks and Posters

- SPAA'23 Communication Optimal Sparse LU Factorization for Planar Graphs, Orlando, FL, Jun. 16-19, 2023, **Scheduled
- ICIAM'23 Avoiding Communication in Sparse Graph All Pair Shortest Path Problem, **Scheduled, Tokyo, Japan
- SIAM CSE'23 Communication-Avoiding Algorithms for Sparse Triangular Matrices, Feb. 26-Mar. 3, 2023, Amsterdam, Netherlands
- SIAM PP'22 A Communication-Avoiding 3D Algorithm for Sparse LU Factorization on Heterogeneous Systems, Invited Plenary Talk; Winner, SIAG Supercomputing Best Paper Award 2022, Virtual (Seattle, WA)
 - HPDC'21 Scalable All-pairs Shortest Paths for Huge Graphs on Multi-GPU Clusters, Accepted, Virtual
- SIAM PP'20 Communication-Avoiding Sparse Direct Solvers for Linear Systems & Graph Problems, Feb. 12-15, 2020
 - PPoPP'20 A Supernodal All-pairs Shortest Path Algorithm, San Diego, CA, Feb. 2020
 - PPAM'19 Multifrontal Non-negative Matrix Factorization, Bialystok, Poland, Sep. 8-11, 2019
 - FTXS'19 Self-stabilizing Connected Components, Denver, CO

ICS'19	A Communication-Avoiding 3D Sparse Triangular Solver, Phoenix, AZ, Jun. 26-28
SIAM CSE'17	A Self-Correcting Connected Components Algorithm, Atlanta, GA
SIAM CSE'17	Scalable Sparse Direct Solver for Hybrid Architectures, Atlanta, GA
CM'16	Scalable Sparse Direct Solver for Hybrid Architectures, Copper Mountain, CO
FTXS'16	A Self-Correcting Connected Components Algorithm, Kyoto, Japan
IPDPS'15	A Sparse Direct Solver for Distributed Memory Xeon Phi-accelerated Systems, <i>Hyderabad</i> , <i>India</i>
SIAM LA'15	A Sparse Direct Solver for Distributed Memory GPU and Xeon-Phi Accelerated Systems, $Atlanta,\ GA$
SC'13	Self-stabilizing Iterative Solvers, Denver, CO
PMAA'14	Self-stabilizing Iterative Solvers, Lugano, Switzerland
CM'14	Self-stabilizing Iterative Solvers, Copper Mountain, CO
SIAM PP'14	Self-stabilizing Iterative Solvers, Portland, OR
EuroPar'14	A Distributed CPU-GPU Sparse Direct Solver, Porto, Portugal
IGWA'09	Discretization of Convection-Diffusion Type Equation, IIT-Roorkee, India

Professional Activities

Reviewer for

- o International Journal of High Performance Computing Applications (IJHPCA)
- o ACM Transactions on Parallel Computing
- o SIAM Journal on Scientific Computing (SISC)
- o Parallel Computing Journal (ParCO)
- o ACM Transactions on Mathematical Software (ACM TOMS)
- Journal of Computational Science (JoCS)

Program Committee Member

- o Supercomputing: SC20, SC22
- International Parallel and Distributed Processing Symposium: IPDPS 2021, IPDPS 2022, IPDPS 2023
- o International Conference on Parallel Processing: ICPP 2022
- o ACM International Conference on Supercomputing (ICS): ICS 2022, ICS 2023
- o International Conference on Supercomputing: ISC 2022 Posters
- o Smokey Mountain Conference: SMC 2021, SMC 2022, SMC 2022
- o High-Level Parallel Programming Models and Supportive Environments: HIPS 2022

Professional Society Memberships

- o Society for Industrial and Applied Mathematics (SIAM)
- Association for Computing Machinery (ACM)
- Institute of Electrical and Electronics Engineers (IEEE)

Computer skills

Language Proficient in C and Python, C + +

Parallel MPI, OpenMP, CUDA

Programming

Scientific Packages Matlab, NumPy (python), Pandas, LAPACK,

Visualization Matlab, Matplotlib, d3.js, GraphViz, Inkscape

General Purpose SQL, Latex, Git

References

Dr. Richard Vuduc

Associate Professor Georgia Institute of Technology 266 Ferst Drive Atlanta, GA 30332 email: richie@cc.gatech.edu

Tel: 404-385-3355 Web: vuduc.org

Dr. Xiaoye Sherry Li

Senior Scientist

Lawrence Berkeley National Laboratory

One Cyclotron Rd Berkeley, CA 94720

email: xsli@lbl.gov Tel: 510-486-6684

Fax: 510-486-5812

web: crd-legacy.lbl.gov/ \sim xiaoye