Big Brain Benchmarks

Contents

1	I Introduction		2	
2	Prel	minaries		
	2.1	Pre-processing	2	
	2.2	Notation		
	2.3	Reproducibility and Extensibility		
3	Infe	rence Tasks	2	
	3.1	Testing	2	
	3.2	Classification		
	3.3		3	
	3.4		3	
	3.5		4	
4	Resi	ults	4	
	4.1	Testing	4	
	4.2		4	
	4.3		4	
	4.4		4	
	4.5		4	
5	Disc	ussion	4	

Abstract

1 Introduction

2 Preliminaries

2.1 Pre-processing

- 2.1.1 CPAC
- 2.1.2 NIAK
- 2.1.3 Something else
- 2.2 Notation

2.3 Reproducibility and Extensibility

Website for this work including leaderboards: www.bigbrainbenchmarks.org.

Python package for download data and running all algorithms:

Direct link to download data:

3 Inference Tasks

3.1 Testing

3.1.1 Data

We use the data from [1] for testing, which is the 1000 Functional Connectome Project Data.

3.1.2 Algorithms

- t-test:
- rank-sum test:
- wilcoxon:
- Lq-test:

3.1.3 Performance Metrics

False positive and false negative rates as well as computational time.

3.2 Classification

3.2.1 Data

ABIDE [2], autistic or not.

3.2.2 Algorithms

- Linear Discriminant Analysis (LDA) o embedding:
- Quadratic Discriminant Analysis (QDA) o embedding:
- Support Vector Machine (SVM):
- Random Forest (RF):
- k-Nearest Neighbor:

For embeddings, we consider:

- PCA:
- Random Projections:
- Iterative Denoising Trees:

3.2.3 Performance Metrics

- Area Under Curve (AUC): Though see [3]
- Npairs:

3.3 Regression

3.3.1 Data

ABIDE [2] age.

3.3.2 Algorithms

- Ridge Regression (RR):
- Linear with Total Variation Penalty (LTV): for spatial and temporal smoothing
- Support Vector Regression (SVR):
- k-Nearest Neighbor Regression:

3.3.3 Performance Metrics

3.4 Time-Series Prediction

3.4.1 Data

3.4.2 Algorithms

- Vector Auto-Regression (VAR):
- Kalman Filter-Smoother (KFS):
- Support Vector Regression (SVR):

3.5 Clustering 5 DISCUSSION

3.4.3 Performance Metrics

• Integrated L2 error for t time steps ahead:

3.5 Clustering

Cameron wanted some unsupervised something in here.

3.5.1 Data

NKI Test-Retest Data. We clustering time-series of each individual to parcellate the brain.

3.5.2 Algorithms

- k-means:
- Spectral Clustering:
- METIS:

3.5.3 Performance Metrics

Something like reliability, e.g.:

- 1. run each clustering algorithm separately on each scan
- 2. compute cluster similarity metric to compare each scan $(2 \times n)$, where n is the number of subjects
- 3. rank each scan according to its ordering relative to the other scan for that individual
- 4. cluster performance is the sum of ranks for each algorithm

4 Results

- 4.1 Testing
- 4.2 Classification
- 4.3 Regression
- 4.4 Time-Series Prediction
- 4.5 Clustering
- 5 Discussion

REFERENCES REFERENCES

References

[1] A. Eklund, M. Andersson, C. Josephson, M. Johannesson, and H. Knutsson, "Does parametric fMRI analysis with SPM yield valid results?-An empirical study of 1484 rest datasets." *NeuroImage*, vol. 61, no. 3, pp. 565–578, Apr. 2012. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/22507229

- [2] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts, J. S. Anderson, M. Assaf, S. Y. Bookheimer, M. Dapretto, B. Deen, S. Delmonte, I. Dinstein, B. Ertl-Wagner, D. A. Fair, L. Gallagher, D. P. Kennedy, C. L. Keown, C. Keysers, J. E. Lainhart, C. Lord, B. Luna, V. Menon, N. J. Minshew, C. S. Monk, S. Mueller, R.-A. Müller, M. B. Nebel, J. T. Nigg, K. O'Hearn, K. A. Pelphrey, S. J. Peltier, J. D. Rudie, S. Sunaert, M. Thioux, J. M. Tyszka, L. Q. Uddin, J. S. Verhoeven, N. Wenderoth, J. L. Wiggins, S. H. Mostofsky, and M. P. Milham, "The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism," *Molecular Psychiatry*, Jun. 2013. [Online]. Available: http://dx.doi.org/10.1038/mp.2013.78
- [3] D. J. Hand, "Measuring classifier performance: acoherent alternative to the area under the ROC curve," *Machine Learning*, vol. 77, no. 1, pp. 103–123, Jun. 2009. [Online]. Available: http://www.springerlink.com/index/10.1007/s10994-009-5119-5