

Krzysztof Meler Gustaw Walaś Wiktoria Wilman

Ekspresja mRNA i mikroRNA oraz ich wzajemne interakcje UPWr 2020/2021

1 Wstęp

Pęcherzyk jajnikowy zawiera początkowo komórkę jajową o jasnej cytoplazmie. Cykl dojrzewania pęcherzyków rozpoczyna się wraz z powstaniem oogonii, która, otoczona jedną warstwą komórek pęcherzykowych, zwanych też pęcherzykowatymi lub ziarnistymi, tworzy pęcherzyk pierwotny, leżący najbliżej powierzchni jajnika. W czasie dwukrotnego zwiększenia rozmiarów oogonii, zwanej od tego momentu oocytem I rzędu, komórki pęcherzykowe dokonują podziału, w wyniku którego tworzą nabłonek wielowarstwowy, który wraz z oogonią nosi nazwę oocytu II rzędu.

W porocesie ekspresji genów dotyczącyh komórek ziarnistych w pecherzykach jajnikowych w tych komórkach wykazano istotne różnice ekspresji pomiędzy pęcherzykiem dominującym a pęcherzykiem regresyjnym w komórkach ziarnistych oraz których poziom ekspresji podwyższony był w pęcherzykach dominujących. Wykazujące różnice mikroRNA zostały włączone do analizy in sillico interakcji miRNA-mRNA.

2 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z działaniem programu mirPath v3 poprzez wyszukanie odpowiednich szlaków sygnałowych przy użyciu odpowiednich mikroRNA - po znalezieniu odpowiednich miRNA przez przeprowadzenie analizy in silico interakcji miRNA-mRNA używając programu DIANA-microT-CDS.

3 Metodyka

Do wyszukania zostały wybrane sekwencje miRNA przedstawione w poniższej tabeli:

miRNA ID
hsa-miR-4524a-3p
hsa-miR-555
hsa-miR-1245a
hsa-miR-759
hsa-miR-3680-3p
hsa-miR-106a-5p
hsa-miR-3142
hsa-miR-190b
hsa-miR-3175
hsa-miR-873-5p
hsa-miR-4292
hsa-miR-194-5p
hsa-miR-125b-2-3p
hsa-miR- 374 b- 3 p
hsa-miR-876-3p
hsa-miR-18a-5p
hsa-miR-149-5p
hsa-miR-491-5p
hsa-miR-20a-3p

4 Wyniki

4.1 Wyszukiwanie indywidualne

Wyniki wyszukiwania przedstawiono na kolejnych stronach w tabeli (dla tych miRNA, które przypisano do większej ilości szlaków, zgodnie z instrukcją ograniczono się do 6 z najniższym p-value).

miRNA ID	KEGG pathway	p-value	genes	miRNAs
hsa-miR-4524a-3p	Endocytosis	0.000953024994405	3	П
	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	0.000953024994405	\vdash	П
	Phosphatidylinositol signaling system	0.0146442698501	\vdash	П
	Antigen processing and presentation	0.015398614298	\vdash	Н
	Amino sugar and nucleotide sugar metabolism	0.0432146900718	2	П
hsa-miR-555	No related pathways	NA	NA	NA
hsa-miR-1245a	No related pathways	NA	NA	NA
hsa-miR-759	No related pathways	NA	NA	NA
hsa-miR-3680-3p	No related pathways	NA	NA	NA
hsa-miR-106a-5p	Proteoglycans in cancer	4.66958336523e-07	27	П
	Hippo signaling pathway	1.63766247002e-06	22	П
	FoxO signaling pathway	4.02619805163e-05	27	П
	TGF-beta signaling pathway	4.02619805163e-05	12	П
	Focal adhesion	0.000389655043693	33	П
	ECM-receptor interaction	0.000389655043693	∞	П
hsa-miR-3142	No related pathways	NA	NA	NA
hsa-miR-190b	No related pathways	NA	NA	NA
hsa-miR-3175	Other types of O-glycan biosynthesis	0.00031973167632		П
	Signaling pathways regulating pluripotency of stem cells	0.00545217630192	9	1
hsa-miR-4292	No related pathways	NA	NA	NA
hsa-miR-194-5p	Hippo signaling pathway	0.000265638694517	∞	П
	Ubiquitin mediated proteolysis	0.000302773266792	12	П
	Steroid biosynthesis	0.000529936995529	\vdash	П
	Adherens junction	0.000963824893206	7	П
	Endocytosis	0.00924474555164	13	П
	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	0.028693650614	ರ	1

genes miRNAs	10 1	5 1	8 1	10 1	1	11 1	5	16 1	9 1	17 1	11 1	3	2	1	2	2 1 5	0 2 2 1	2 1 5 1 6 1 12 1	2 1 5 1 6 1 12 1 15 1	2 1 5 1 6 1 12 1 15 1 12 1	2 1 5 1 6 1 12 1 15 1 12 1 6 1
p-value	2.40593971068e-06	0.00249180398778	0.0030054297479	0.00830762840057	0.0209555884806	0.044903558793	0.000326238755698	0.00193710868729	0.0143201538543	0.0478637302645	2.95009878091e-05	0.0016344579854	0.0376284564855	0.0376284564855	0.0376284564855	0.0376284564855	0.0376284564855 0.0376284564855 0.000725894591186	0.0376284564855 0.0376284564855 0.000725894591186 0.000725894591186	0.0376284564855 0.0376284564855 0.000725894591186 0.000725894591186 0.00314983203999	0.0376284564855 0.0376284564855 0.000725894591186 0.00314983203999 0.00364866028228	0.0376284564855 0.0376284564855 0.000725894591186 0.000725894591186 0.00314983203999 0.00364866028228 0.00814574651521
KEGG pathway	Lysine degradation	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	Gap junction	Estrogen signaling pathway	Steroid biosynthesis	Proteoglycans in cancer	N-Glycan biosynthesis	Protein processing in endoplasmic reticulum	Axon guidance	Focal adhesion	Proteoglycans in cancer	ECM-receptor interaction	Other types of O-glycan biosynthesis	Glycosaminoglycan biosynthesis - keratan sulfate	Base excision repair	Base excision repair Bladder cancer	Base excision repair Bladder cancer Adherens junction	Base excision repair Bladder cancer Adherens junction Proteoglycans in cancer	Base excision repair Bladder cancer Adherens junction Proteoglycans in cancer Focal adhesion	Base excision repair Bladder cancer Adherens junction Proteoglycans in cancer Focal adhesion Regulation of actin cytoskeleton	Base excision repair Bladder cancer Adherens junction Proteoglycans in cancer Focal adhesion Regulation of actin cytoskeleton Bacterial invasion of epithelial cells
miRNA ID	hsa-miR-873-5p						hsa-miR-125b-2-3p				hsa-miR-374b-3p						hsa-miR-876-3p	hsa-miR-876-3p	hsa-miR-876-3p	hsa-miR-876-3p	hsa-miR-876-3p

s miRNAs	П	П	₩	₩	₩	\vdash	П	\vdash	Н	\vdash	1					Н	П	\vdash	\vdash	\vdash	1
genes	19	2	18	11	2	9	9	-	10	11	6	17	20	10	15	22	17	11	ಬ	-	10
p-value	3.06106798964e-05	0.00969549072606	0.01082247931	0.016741225119	0.0234851989087	0.0234851989087	1.02928178956e-08	0.000203028347162	0.0228903431857	0.0490891572091	4.12460248523e-06	6.57941442599e-06	0.000229144778134	0.000695264809896	0.00119802816861	0.00160436903015	0.0100574288823	0.0100574288823	0.0100574288823	0.0138792949546	0.0175071207748
KEGG pathway	Hippo signaling pathway	Steroid biosynthesis	Endocytosis	p53 signaling pathway	Vitamin B6 metabolism	TGF-beta signaling pathway	Lysine degradation	Steroid biosynthesis	Transcriptional misregulation in cancer	Measles	Adherens junction	Thyroid hormone signaling pathway	Proteoglycans in cancer	Bacterial invasion of epithelial cells	Hippo signaling pathway	Regulation of actin cytoskeleton	RNA transport	$\operatorname{Spliceosome}$	Gap junction	Sulfur relay system	Oocvte meiosis
miRNA ID	hsa-miR-18a-5p						hsa-miR-491-5p				hsa-miR-20a-3p						hsa-miR-149-5p				

4.2 Wyszukiwanie grupowe

Po załadowaniu wszystkich otrzymanych do analizy miRNA, program znalazł 47 ścieżek sygnałowych. Udało się znaleźć aż 3 szlaki sygnałowe z przypisanymi wszystkimi 19 miRNA. Wszystkie znalezione szlaki znajdują się w tabli na kolejnych stronach.

KEGG pathway	p-value	genes	miRNAs
Mucin type O-Glycan biosynthesis	3.68e-08	16	10
Hippo signaling pathway	4.57e-08	72	18
Endocytosis	7.91e-08	97	18
Prion diseases	2.87e-06	7	10
Viral carcinogenesis	8.63e-06	83	18
Proteoglycans in cancer	2.79e-05	88	18
TGF-beta signaling pathway	8.66e-05	33	16
Prolactin signaling pathway	9.19e-05	35	18
Protein processing in endoplasmic reticulum	0.0004	72	18
Pathways in cancer	0.0004	152	18
Ras signaling pathway	0.00061	94	19
Renal cell carcinoma	0.0006	34	18
Thyroid hormone signaling pathway	0.0006	53	18
Morphine addiction	0.0019	39	17
Wnt signaling pathway	0.0033	60	18
Nicotine addiction	0.0035	18	13
Colorectal cancer	0.0035	31	13
Lysine degradation	0.0035	21	16
Axon guidance	0.0035	55	16
Pancreatic cancer	0.0035	32	16
Rap1 signaling pathway	0.0035	84	18
Signaling pathways regulating pluripotency of stem cells	0.0043	56	16
GABAergic synapse	0.0049	35	17
Neurotrophin signaling pathway	0.0087	53	16
Retrograde endocannabinoid signaling	0.0096	44	17
Focal adhesion	0.011283	82	18
Chronic myeloid leukemia	0.01287	32	13
Phosphatidylinositol signaling system	0.01287	33	16
Adrenergic signaling in cardiomyocytes	0.01287	56	17
PI3K-Akt signaling pathway	0.01448	124	19
ErbB signaling pathway	0.0149	39	17
RNA degradation	0.0163	37	17
Platelet activation	0.01636	53	17
Hepatitis B	0.01725	54	17
Estrogen signaling pathway	0.0189	38	18

KEGG pathway	p-value	genes	miRNAs
Non-small cell lung cancer	0.0208	24	15
Amphetamine addiction	0.0226	27	17
Adherens junction	0.0227	32	15
Sphingolipid signaling pathway	0.0242	47	15
Ubiquitin mediated proteolysis	0.0277	55	16
Glioma	0.0281	26	15
cAMP signaling pathway	0.0281	77	17
cGMP-PKG signaling pathway	0.0291	65	18
Insulin signaling pathway	0.0346	56	16
mRNA surveillance pathway	0.0360	36	16
mTOR signaling pathway	0.0360	28	16

Najmniejsze p-value wśród szlaków o największej liczbie mi
RNA ma ścieżka Ras signaling pathway i to ją wybrano do dalszego opisu.

Targety miRNA	Ilość genów
hsa-miR-3680-3p—microT-CDS	19
hsa-miR-3142—microT-CDS	5
hsa-miR-106a-5p—microT-CDS	24
hsa-miR-20a-3p—microT-CDS	3
hsa-miR-125b-2-3p—microT-CDS	6
hsa-miR-18a-5p—microT-CDS	7
hsa-miR-873-5p—microT-CDS	10
hsa-miR-149-5p—microT-CDS	11
hsa-miR-194-5p—microT-CDS	5
hsa-miR-759—microT-CDS	6
hsa-miR-4524a-3p—microT-CDS	13
hsa-miR-1245a—microT-CDS	2
hsa-miR-374b-3p—microT-CDS	7
hsa-miR-190b—microT-CDS	5
hsa-miR-876-3p—microT-CDS	2
hsa-miR-491-5p—microT-CDS	7
hsa-miR-3175—microT-CDS	5
hsa-miR-4292—microT-CDS	3
hsa-miR-555—microT-CDS	1

4.3 Opis szlaku sygnałowego

Geny biorące udział w szlaku zostały przedstawione w poniższej tabeli (jest ich aż 94):

Gene Name	Gene Ensembl id	Gene Name	Gene Ensembl id
FGF12	ENSG00000114279	REL	ENSG00000162924
KSR2	ENSG00000171435	PRKACA	ENSG00000072062
PDGFRA	ENSG00000134853	GNG7	ENSG00000176533
GNG13	ENSG00000127588	FLT1	ENSG00000102755
LAT	ENSG00000213658	VEGFC	ENSG00000150630
RIN1	ENSG00000174791	PLA2G2F	ENSG00000158786
KSR1	ENSG00000141068	PIK3R1	ENSG00000145675
FGF14	ENSG00000102466	SOS1	ENSG00000115904
GNG11	ENSG00000127920	PIK3CG	ENSG00000105851
FGFR3	ENSG00000068078	RAC1	ENSG00000136238
STK4	ENSG00000101109	FGF2	ENSG00000138685
RASA2	ENSG00000155903	CDC42	ENSG00000070831
PIK3CB	ENSG00000051382	PLCG2	ENSG00000197943
PIK3R5	ENSG00000141506	PLA2G4D	ENSG00000159337
RAP1A	ENSG00000116473	NF1	ENSG00000196712
ETS2	ENSG00000157557	PLD2	ENSG00000129219
RASGRF2	ENSG00000113319	PRKCB	ENSG00000166501
ETS1	ENSG00000134954	IGF1	ENSG00000017427
PAK7	ENSG00000101349	GAB1	ENSG00000109458
GNG12	ENSG00000172380	SHC4	ENSG00000185634
ANGPT2	ENSG00000091879	BCL2L1	ENSG00000171552
RALA	ENSG00000006451	PAK6	ENSG00000259288
FGF10	ENSG00000070193	ANGPT1	ENSG00000154188
RAF1	ENSG00000132155	PLCE1	ENSG00000138193
PLD1	ENSG00000075651	PDGFD	ENSG00000170962
FGF4	ENSG00000075388	SYNGAP1	ENSG00000197283
TIAM1	ENSG00000156299	GAB2	ENSG00000033327
RASGRP2	ENSG00000068831	RGL1	ENSG00000143344
EFNA3	ENSG00000143590	HGF	ENSG00000019991
IGF1R	ENSG00000140443	RAB5C	ENSG00000108774
PAK3	ENSG00000077264	FGFR2	ENSG00000066468

CALM2	ENSG00000143933	VEGFA	ENSG00000112715
RRAS2	ENSG00000133818	HTR7	ENSG00000148680
FASLG	ENSG00000117560	MAPK1	ENSG00000100030
EFNA5	ENSG00000184349	FGF1	ENSG00000113578
EFNA4	ENSG00000243364	ABL2	ENSG00000143322
PLA2G2D	ENSG00000117215	KDR	ENSG00000128052
RAB5A	ENSG00000144566	CSF1	ENSG00000184371
AKT2	ENSG00000105221	GRB2	ENSG00000177885
PLA2G3	ENSG00000100078	RAP1B	ENSG00000127314
RASA1	ENSG00000145715	BAD	ENSG00000002330
MAPK9	ENSG00000050748	RAB5B	ENSG00000111540
PIK3R3	ENSG00000117461	ELK1	ENSG00000126767
RASGRP1	ENSG00000172575	RAPGEF5	ENSG00000136237
MAPK8	ENSG00000107643	GNB5	ENSG00000069966
EFNA1	ENSG00000169242	MAPK10	ENSG00000109339
GRIN2B	ENSG00000273079	PRKACB	ENSG00000142875

Poniżej znajduje się schemat szlaku sygnałowego Ras signaling pathway - geny zostały oznaczone w następujący sposób: na żółto - gen występujący na liście 1 raz, na pomarańczowo - gen występujący więcej niż raz, pozostałe - nie występują na liście.

Ras jest kluczowym regulatorem wzrostu komórek we wszystkich komórkach eukariotycz-

nych. Badania genetyczne, biochemiczne i molekularne na komórkach Caenorhabditiselegans, Drosophila i ssaków umiejscowiły Ras centralnie w szlakach transdukcji sygnału, które odpowiadają na różne bodźce zewnątrzkomórkowe, w tym peptydowe czynniki wzrostu, cytokiny, i hormony. Jednym z kłopotliwych aspektów szlaku sygnałowego Ras jest to, że Ras może promować zarówno śmierć komórki, jak i przeżycie komórki poprzez interakcje z różnymi białkami efektorowymi. (Vojtek et al, 1998)

Dowody kliniczne wskazują, że niektóre z najsilniejszych wewnątrzjajnikowych regulatorów rozwoju pęcherzyków obejmują m.in. szlag Ras (Richards et al, 2010). Wśród genów obecnych w szlaku Ras wybrano kilka genów, które następnie wyszukano w bazie PubMed. Angiotensyna (Ang)-(1-7) jest aktywnym peptydem układu renina-angiotensyna (RAS), który stymuluje wzrost pęcherzyków jajnikowych i uwalnianie testosteronu in vitro (Perreira et al, 2020), wśród genów stymulowanych przez nasze miRNA znajuduje się ANGPT1. Znaleziono również sugestie dotyczące uczestnictwa FGFR4 w rozwoju pęcherzyka jajnikowego(Buratini et al,2005).

5 Bibliografia

- Wprowadzenie o pęcherzykach jajnikowych (https://pl.wikipedia.org/wiki/Pecherzyk-jajnikowy)
- Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998 Aug 7;273(32):19925-8. doi: 10.1074/jbc.273.32.19925. PMID: 9685325.
- Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010 Apr;120(4):963-72. doi: 10.1172/JCI41350. Epub 2010 Apr 1. PMID: 20364094; PMCID: PMC2846061.
- Pereira VM, Reis FM, Casalechi M, Reis AM. Angiotensin-(1-7), angiotensin-converting enzyme 2 and Mas receptor in rat polycystic ovaries. Protein Pept Lett. 2020 Aug 25. doi: 10.2174/0929866527666200826104410. Epub ahead of print. PMID: 32851948
- Buratini J Jr, Teixeira AB, Costa IB, Glapinski VF, Pinto MG, Giometti IC, Barros CM, Cao M, Nicola ES, Price CA. Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction. 2005 Sep;130(3):343-50. doi: 10.1530/rep.1.00642. Erratum in: Reproduction. 2005 Dec;130(6):947. PMID: 16123241.