SMA-BRB 应用指导书

版本V1.0 版权©2019

关于本手册

本手册介绍了SMA-BRB 应用指导书产品参数,包含以下章节

章	标题	内容
第一章	产品简介	概述SMA-BRB的特点和功能应用
第二章	电气特性	介绍模块的电气性能基本参数
第三章	模块类型及管脚定义	提供模块类型、管脚定义功能说明
第四章	功能描述	描述模块功能及具体说明
第五章	WIFI射频指标	介绍模块的射频指标
第六章	PCB设计	提供了模块布局及PCB layout注意事项
第七章	封装信息	提供模块封装尺寸图
第八章	参考设计	提供模块外部电路的参考设计

一、产品简介

SMA-BRB 是深圳酷宅科技有限公司(简称: 酷宅科技)于乐鑫ESP8285开发的智能门铃模块,主要包含本地按键功能、通过家庭网关接、入网络与云端数据交互功能、局域网内通信功能、OTA功能,基于上述功能,用户可以实现本地切换门铃音乐、APP远程接收门铃及报警触发记录、设置模式、配置参数和查询状态等功能。

主要应用领域:智能家居、控制场合

产品特性

- 内置 32 位 MCU,可兼作应用处理器
- 支持无线802.11 b/g/n 标准
- Wi-Fi @2.4 GHz, 支持WPA/WPA2安全模式
- 802.11b 模式下+20.5dBm的最大输出功率
- UMA认证标准
- 支持定时器操作
- 支持对 433MHZ 载波门磁键值的学习, 收发功能
- 支持 Wi-Fi 远程控制
- 支持兼容配对模式 / 快速配对模式
- 支持OTA升级

二、电气特性

2.1 额定参数

条件: VDD=3.3V±10%, GND=0V; 室温25°C下测试。

型号	类型
型号	SMA-BRB
主芯片	ESP8285
硬件接口	UART, GPIO
工作电压	2.7V~3.6V
GPIO驱动能力	Max: 12mA
工作电流	平均电流:≈80mA, 最大工作电流:210mA 待机: <200uA
工作温度	0°C~45°C
存储环境	温度: -10℃~75℃,相对湿度: 20%RH~80%RH
无线网络类型	STA/AP/STA+AP
安全机制	WEP/WPA-PSK/WPA2-PSK
加密类型	WEP64/WEP128/TKIP/AES
固件升级	OTA 远程升级

2.2 Wi-Fi 参数

条件: VDD=3.3V±10%, GND=0V; 室温 25°C 下测试。

类型	参数
无线标准	IEEE 802.11b/g/n
频率范围	2.412GHz-2.484GHz
发射功率	802.11b: 20±2dBm (@11Mbps) 802.11g: 17±2dBm (@54Mbps) 802.11n: 14±2dBm (@HT20,MCS7)
接收灵敏度	802.11b: -91 dBm (@11Mbps ,CCK) 802.11g: -75 dBm (@54Mbps, OFDM) 802.11n: -72 dBm (MCS7)
天线类型	SMA-BRB:陶瓷贴片天线

三、模块类型及管脚定义

3.1 脚位排列顺序

SMA-BRB模块提供配对按键,铃声切换按键,Wi-Fi指示灯接口,软件UART串口,UART串口,铃声控制io口。

模块引脚顶视图

模块引脚低视图

3.2 管脚定义

管脚定义及功能说明表

管脚	名称	功能
1	ANT	Wi-Fi Antenna
2	ADC	ADC接口,输入范围:0 – 1V
3	EN	芯片使能端高电平:有效;低电平:关闭。注:外部上拉1~10K电阻,接 100nF电容到地。
4	GPIO16	NC
5	GPIO14	NC
6	GPIO12	通用GPIO,控制铃声2
7	GPIO13	Wi-Fi状态指示灯,接LED灯串联限流电阻到3V3
8	GPIO15	注:芯片配置脚,需要下拉 (1~4.7K) 电阻到地
9	GPIO2	NC
10	GPIO0	1、配网按键引脚,低电平有效 2、双击配网按键进入RF433学习状态,默认添加为门铃设备(不使用APP添加),最多学习16个。
11	GPIO4	软串口RX,工厂模式用。
12	GND	GND
13	GPIO9	通用GPIO,控制铃声1
14	GPIO10	切换铃声按键输出入,低有效。
15	GPIO11	NC
16	GPIO6	NC
17	GPIO7	NC
18	GPIO8	NC
19	GPIO5	软串口TX,工厂模式用。
20	GND	GND
21	RX	模块UART RX,与EFM8BB10F通信
22	TX	模块UART TX,与EFM8BB10F通信
23	3V3	电源
24	RST	外置复位信号: 低电平有效

四、功能描述

4.1 模块功能

SMA-BRA采用ESP8285高集成度物联网芯片,内置我司IoT协议,动态、实时的参与与云端服务器、移动终端APP的三方数据交互。本应用中,Wi-Fi模块作为Station加入无线局域网,通过Internet实现设备端事件上报和云服务器下发数据解析。

按键用于控制设备进入配置模式,与APP终端配合加入网络。Wi-Fi状态灯表征设备当前的网络状态,状态详解见4.2节。

以下功能是搭配酷宅门铃方案所实现的智能布防功能:

4.1.1 本地按键控制

1. 配网按键

长按:长按配网按键大于5S进入配网模式。

双击:双击配网按键进入RF433学习状态,默认添加为门铃按钮(不使用APP添加),不能超出16个。

注:如果设备已存有要学习的门铃或报警器键值,将会学习失败,设备不会再保存新学习的门铃或报警器键值。但蜂鸣器仍然会响两声。

2. 切换门铃声按键: 在非报警时段短按为切换门铃音乐功能, 报警时段短按为关闭报警声功能。

注: 2.1. 短按按键触发逻辑为抬起触发。

- 2.2. 按键短按:按下时长t1大于75ms、小于3S且抬起时长t2大于75ms。
 - a) OTA模式下,按键无效;
 - b) 配网模式下, 按键有效;
- 2.3. 按键操作频率不高于3次/S, 否则可能无效。

4.1.2 门铃音乐

- 1. 门铃音乐有两种:
 - a) 叮咚一声
 - b) 叮咚两声
- 2. 可短按切换铃声按键进行铃声切换。
- 3. 不论有无网络,已配对门铃都能正常操作,即离线情况下按下按钮门铃会响,门铃按钮在布防撤防模式下都正常使用。
- 4.3秒内多次触发门铃按钮只响一次。

4.1.3 报警提示声

- 1. 报警提示声优先级高于门铃,即报警声响起时,门铃触发不响只上报记录。
- 2. 报警提示声使用叮咚一声,采用连续周期400ms高频触发的方式制作报警声,持续报警直到 用户短按铃声切换按键或设置撤防模式。
- 3. 长按铃声切换按键只停止播放当前的报警声, 若之后报警器又触发, 报警声再次播放。
- 4. 配网时,若门铃或报警器触发,设备将播放门铃音乐或报警声。
- 5. 在布防状态下,报警声响起时,接收到的门铃和报警器触发信号记录都要上传至云端和局域 网。
- 6. 报警声响起时(报警器A触发的),若报警器A重复触发,不上报;若此时报警器B触发,触发的第1次上报,重复触发不上报,报警器C以此类推,避免重复多次上报增加服务器负担。

4.1.4 布防撤防状态设置

用户可以在APP上设置报警器布防撤防状态:

- 1. 开启布防状态后, 若报警器触发, 门铃设备应发出报警声并上报记录至云端与局域网;
- 2. 开启撤防状态后, 若报警器触发, 门铃设备应上报记录至云端与局域网, 但不发出报警声;

注意事项:门铃音乐播放及其记录上报不受布防撤防状态影响。

4.1.5 学习门铃按钮或报警器功能

- 1. 通过app选择门铃或报警器,并下发学习指令使设备进入学习模式。
- 2. 学习模式的退出条件:
 - a) 学习1分钟超时
 - b) app下发学习退出指令
 - c) 学习成功
- 3. 可以重复学习相同的门铃或报警器。

注意事项: 仅支持最多16个门铃或报警器的学习, 若已满16个, 设备将不会进入学习模式。

4.1.6 延时布防

软件支持延时设置布防和单次定时设置布防、撤防功能。

- 延时布防: 对布防的延时设置,可设置0-300s,0表示无延时,其它数值为延时时长。
- 单次定时设置布防,撤防功能:可以设置在某一天的某个时间点进行布防,撤防等操作。

4.2 Wi-Fi状态灯闪烁方式说明

设备端Wi-Fi状态灯的闪烁方式表征设备当前的网络工作状态,具体状态包括以下七种:

设备状态与Wi-Fi状态灯闪烁方式关系示意图

Wi-Fi状态灯的闪烁特征以2秒为一个周期,如图所示,低电平灯亮,高电平灯灭。各状态详解:

A. Normal:设备正常工作,与云服务器连接正常。此时可以通过APP操控设备。在其它任何模式下,都无法通过 APP操控设备。

B. NO Wifi:设备无法连接到无线路由器。

C. No Server:设备已经连接上无线路由器,但是无法连接到服务器(就是通常理解下的"无法上网")。

D. Unregistered: 表示设备还没有被绑定到任何账户下。一般的,设备需要与易微联账号绑定才可与服务器通信。在易微联APP"添加设备"可完成绑定操作。

E. Upgrade:表示设备正在固件升级。

F. Setting G1:表示设备正处于兼容配对模式。配置模式用于设备获取移动终端APP提供的加入服务网络比要信息,包括路由器ssid、password和服务器ip、端口号等。

G. Setting G2:表示设备正处于快速配对模式。配置模式用于设备获取移动终端APP提供的加入服务网络的必要信息,包括路由器ssid、password和服务器ip、端口号等。两种配置,设备获取相关信息的方式不同,详见下节所述。

4.3 Wi-Fi模块的基本工作流程

4.3.1 配置

设备模块在未加入局域网时就是一个"信息孤岛",设备端操作配合易微联APP设置,使设备获取加入服务网络的必要信息,包括路由器ssid、password和服务器ip、端口号等。模块内置两种配置方式:

1. 兼容配对模式:移动终端作为station加入该AP组成局域网实现数据交互。快速配对模式(G 状态,详情见4.2 Wi-Fi状态灯闪烁方式说明)下长按配置按键5S,设备进入兼容配对模式。 点击易微联APP添加设备(iOS移动终端需在"设置"菜单内手动连接ssid:ITEAD-

- 10000XXXX, password12345678的热Android终端无需此操作),输入家庭路由器的ssid和password,完成设备的上线准备工作。
- 2. 快速配对模式: 此方式Wi-Fi模块处于混杂模式 (Wi-Fi Promiscuous) ,通过空快速配对模式: 此方式Wi-Fi模块处于混杂模式 (Wi-Fi Promiscuous) ,通过空空抓包的形式获取移动终端发出的包含ssid和password等信息的加密报文。上节所述A~D任意一个状态内长按配置按键5S,设备进入快速配对模式。点击易微联APP添加设备,输入家庭路由器的ssid和password,完成设备的上线配置工作。

4.3.2 上线

设备模块从上电到连接服务器,需经历以下流程:

- 1. 加入所配置路由器,连接Internet。
- 2. 连接服务器。
- 3. 注册设备, 绑定至易微联账户。
- 4. 获取设备应用参数,保持在线。

以上各个步骤,当连接/获取失败时,均有相应的退避策略和重连接机制,确保设备稳定、实时在线。

4.3.3 OTA升级

模块设备连接升级服务器,下载更新至最新版本固件,实现设备的在线升级。

五、WIFI射频指标

条件: VDD=3.3V±10%, GND=0V; 室温25°C下测试。

描述	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输出阻抗	-	50	-	Ω
输入反射	-	-	-10	dB
72.2Mbps 下, PA 的输出峰值功率	15.5	16.5	17.5	dbm
802.11b 模式下, PA 的输出峰值功率	19.5	20.5	21.5	dbm

1. 灵敏度

描述	最小值	典型值	最大值	单位mA
CCK 1Mbps		-98		dBm
CCK 11Mbps		-91		dBm
6Mbps(1/2BPSK)		-93		dBm
54Mbps(3/4 64-QAM)		-75		dBm
HT20, MCS7 (65Mbps, 72.2Mbps)		-72		dBm

2. 邻频抑制

描述	最小值	典型值	最大值	单位mA
OFDM, 6Mbps		37		dB
OFDM, 54Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

注:

- 1、72.2Mbps是在802.11n模式下, MCS=7, GI=200uS时测得。
- 2、802.11b模式下最高可达+21.5dBm的输出功率。

六、PCB设计

PCB layout 与模块布局注意事项:

- 1. 在PCB layout时注意模块摆放位置,特别是模块的天线部分,尽可能远离干扰源:磁性元件(如马达、电感、变压器等)、高频信号器件(如晶振、高频时钟信号等)。
- 2. 模块摆放位置的PCB上下层尽可能不要走线,做覆铜包地处理,模块天线到模块最近引脚部分的PCB尽可能做挖空处理。
- 3. 模块PCB天线区域及外扩 15 mm 区域需净空 (严禁铺铜、走线、摆放元件)。
- 4. 模块的电源 (VCC) 引脚电容和模块其他引脚电容、电阻尽可能靠近模块引脚摆放,走线路径要短。

七、封装信息

封装尺寸图:

八、参考设计

本章节是于酷宅门铃方案的参考说明详解,包括使用的433芯片、433通信协议,SA-026的控制时序。

8.1 EFM8BB10F8G电气特性

项目	类型	测试条件	最小值	典型值	最大值	单位
硬 件	芯片型 号	EFM8BB10F	EFM8BB10F	EFM8BB10F	EFM8BB10F	EFM8BB10F
硬 件	工作电压		2.2	3.3	3.6	V
硬 件	工作电 流	Fsysclk=24.5MHZ		4.45	5.25	mA
硬 件	工作温度		-40		125	°C
硬 件	封装类 型	QFN20	QFN20	QFN20	QFN20	QFN20

8.2 EFM8BB10F8G管脚定义

8.2.1 EFM8BB10F8G 管脚分布图

EFM8BB108G管脚分布图

8.2.1 管脚定义

管脚	名称	功能
1	P0.1	NC
2	P0.0	遥控键值发射脚,向无线发射模块发射键值脉冲
3	GND	电源地
4	VDD	芯片工作电源输入
5	RSTb/C2CK	低电平有效复位脚/C2接口时钟(烧录用)
6	P2.0/C2D	C2接口数据脚(烧录用)
7	P1.6	蜂鸣器驱动脚 (高电平有效)
8	P1.5	NC
9	P1.4	NC
10	P1.3	遥控键值接收脚
11	P1.2	NC
12	GND	电压地
13	P1.1	关闭接收模块引脚。发射键值时MCU拉低该引脚用于关闭接收模块
14	P1.0	遥控状态灯 (高电平有效)
15	P0.7	NC
16	P0.6	NC
17	P0.5	串口RX (用于与ESP8285通信)
18	P0.4	串口TX (用于与ESP8285通信)
19	P0.3	NC
20	P0.2	NC

芯片功能为EFM8BB10F8G-BRB特定功能,非EFM8BB10F8G芯片原有功能。

8.3 EFM8BB10F8G封装信息

尺寸	最小值	典型值	最大值
А	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20REF		
b	0.18	0.25	0.30
С	0.25	0.30	0.35
D	3.00BSC		
D2	1.60	1.70	1.80
е	0.50BSC		
Е	3.00BSC		
E2	1.60	1.70	1.80
f	2.50BSC		
L	0.30	0.40	0.50
K	0.25REF		
R	0.09	0.125	0.15
aaa	0.15		
bbb	0.10		
ссс	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		

更多封装信息请访问MCU官方。

8.4 编码说明

SMA-BRB支持学习PT2260、PT2264、EV1527等系列固定码门磁感应设备的键值,不支持滚动码。其编码方式如下所示:

SMA-RBR编码单帧数据示意图

包括同步码和24bit数据码。其中:

定义: 1 LCK=8个OSC CLOCK

SMA-BRB遥控编码方式解析示意图

注: 不支持其他编码方式的遥控器。

8.5 协议说明

• SMA-BRB与EFM8BB10F8G之间采用串口通信,波特率为19200。

UART-TX(pin2) ----> EFM8BB10F8G RX(pin17)

UART-RX(pin3) <--- EFM8BB10F8G TX(pin18)

• 指令格式如下所示:

起始码 (0xAA固定) +指令类型码 (必选) +数据码 (可选) +终止码 (0x55) 每条指令都有 相应的应答,详细协议见附录(8.7): RF万能收发模块串口协议_v1.0。协议中Tsyn表示遥控器 波形中的同步码长(单位us), Tlow表示数据码段中的一个周期中"4LCK"段的实际脉冲时 间,Thigh表示数据码段中的一个周期中"12LCK"段的实际脉冲时(单位us)。

如图8.4 所示脉冲翻译成二进制表示 "00000010 10111011 11101000"即 24bit Data为 0x02,0xBB,0xE8。Tsyn、Tlow、Thigh、24bit Data 为学习到的门磁设备的键值属性,点击 APP对应的学习过的按钮

上述属性值会下发至MCU解析发送。用户可根据协议开发外部MCU。

8.6 SA-026发声控制

SA-026芯片支持两种发声方式: 单次触发以及报警声。

单次触发:可以由GPIO9和GPIO12触发:

报警声: GPIO9 400ms周期性触发

8.7 附录

8.7.1 RF万能收发模块串口协议

简介

RF万能收发模块串口协议适用于RF产品中ESP8285与EFM8BB10F8G之间。后者可以实现RF键值的接收、发送、学习。 串口参数: 19200,8位数据,1位停止,无校验。

8.7.2 协议

指令长度可变,每一条指令都有相应的返回值,具体如下。

Start	
0xAA:起始位	

Actionily	
0xA0:返回动作	
0xA1:学习动作>	
0xA2:超时退出	
0XA3:学习成功	

Tysnb uint16类型,表示同步码时间,单位us,MSB序(先发送高位)

Tlow

uint16类型,表示低电平时间,单位us,MSB序(先发送高位)

Thigh

uint16类型,表示高电平时间,单位us,MSB序(先发送高位)

#

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

版权归 © 2019 酷宅科技所有。保留所有利。