Quality control and characterization of long-read transcriptoms

Francisco J. Pardo-Palacios Lorena de la Fuente, PhD

Characterising LR transcriptomes

- After running IsoSeq3 pipeline, a *de novo* transcriptome is obtained
 - It will work as your own reference transcriptome
- Just like any reference transcriptome, it MUST be curated, compared and annotated.

Questions to be solved before using a de novo LR transcriptome

- How similar are the isoforms compared to the reference transcriptome?
 - Have we found known...
 - Isoforms?
 - Transcription Starting or Terminating Sites?
 - Splice-junctions?
 - Have we found novel isoforms?
 - How do they look like?
- Are there any artifacts due to library preparation or sequencing issues?
- Can we use complementary data to support novel events in detected isoforms?

Questions to be solved before using a de novo LR transcriptome

- How similar are the isoforms compared to the reference transcriptome?
 - Have we found known...
 - Isoforms?
 - Transcription Starting or Terminating Sites?
 - Splice-junctions?
 - Have we found novel isoforms?
 - How do they look like?
- Are there any artifacts due to library preparation or sequencing issues?
- Can we use complementary data to support novel events in detected isoforms?

Which isoforms are known? Which ones are novel?

Reference

De novo Transcriptome

Different TTS sites

- How far a detected TTS falls from the reference TTS?
- Is there any polyA motif found close to the detected TTS?

"polyA motifs tend to be 19 bases upstream of the poly(A) site"

Different TTS sites

- How far a detected TTS falls from the reference TTS?
- Is there any polyA motif found close to the detected TTS?

"polyA motifs tend to be 19 bases upstream of the poly(A) site"

Different TSS sites

- How far a detected TSS falls from the reference TSS?
 - Can we use complementary data to distinguish true from false TSS?

Different TSS sites

- How far a detected TSS falls from the reference TSS?
 - Can we use complementary data to distinguish true from false TSS?

Different TSS sites

- How far a detected TSS falls from the reference TSS?
 - Can we use complementary data to distinguish true from false TSS?
 - ✓ CAGE peaks

Splice Junctions

- Known or novel?
- Canonical or non-canonical motif?

Canonical motifs represent around 99% of mammalian splice junctions

 Can we use complementary data to distinguish between true and false Splice-Junctions?

Splice Junctions

- Known or novel?
- Canonical or non-canonical motif?

Canonical motifs represent around 99% of mammalian splice junctions

 Can we use complementary data to distinguish between true and false Splice-Junctions?

Splice Junctions

- Known or novel?
- Canonical or non-canonical motif?

Canonical motifs represent around 99% of mammalian splice junctions

- Can we use complementary data to distinguish between true and false Splice-Junctions?
- ✓ Matching RNA-Seq data

Splice Junctions

- Known or novel?
- Canonical or non-canonical motif?

Canonical motifs represent around 99% of mammalian splice junctions

- Can we use complementary data to distinguish between true and false Splice-Junctions?
- X Not matching RNA-Seq data

Possible library preparation artifacts

- RT-Switching
- Intrapriming

Intra-molecular template switching

Possible library preparation artifacts

- RT-Switching
- Intrapriming

SQANTI aims

We need of a tool that...

- Stablishes a classification system for novel isoforms regarding to the reference transcriptome.
- Describes and addresses quality issues associated to Long-Read Sequencing.
- Gathers supplementary evidence around detected isoforms.
- Helps to filter out all those isoforms suspicious of being an artifact.

SQANTI3 workflow

USER INPUT

SQANTI3 will map the new transcript models to the reference genome and transcriptome to assess their degree of quality and novelty,

ALL QC ATTRIBUTES BREAKDOWN IN DEFINED CATEGORIES

REFERENCE GENOME

OPTIONAL INPUT

- RNA-Seq CAGE peak data polyA motifs
- tappAS-like functional annotation ...

	Classification file							
	ID	Gene	Transcript	Category				
_	PB.1.1	Ctnnd1	ENSMUST000 00067232	FSM				
	PB.1.2	Ctnnd1	novel	NIC				
	PB.2.1	Novel	novel	Intergenic				

Junction file				
Junction	Isoform	Splice site	Known	
Junction1	PB.1.2	GT-AG	True	
Junction2	PB.1.2	GC-AG	True	
Junction3	PB.1.2	GT-AF	False	

Con-Coult-In Strukes Couldoke	Details in hondard francische für für 196 mig. 1986 mig. 1986 mille seiner debt. Nigder auszeitste destallen er seinem 199	n era huter alquie
	- 6 FF	
	in the second	
	100000000000000000000000000000000000000	

Complementary files

- Genome-corrected transcriptome
- ORF prediction (FASTA)
- CDS-annotated GTF
- tappAS-compatible GFF3

- **Classification file:** TSV file describing each isoform analyzed by SQANTI3.
- Junctions file: TSV file describing each splice junction found in each isoform.
- PDF report generated from classification and junctions files:
 - General plots to visualize how is the new transcriptome
 - Specific analyses at the structural category level

- Transcripts from **known** genes:
 - Full-Splice Match (FSM)
 - Incomplete-Splice Match (ISM)
 - Novel In Catalog (NIC)
 - Novel Not In Catalog (NNC)

- Transcripts from known genes:
 - Full-Splice Match (FSM)
 - Incomplete-Splice Match (ISM)
 - Novel In Catalog (NIC)
 - Novel Not In Catalog (NNC)

- Transcripts from **known** genes:
 - Full-Splice Match (FSM)
 - Incomplete-Splice Match (ISM)
 - Novel In Catalog (NIC)
 - Novel Not In Catalog (NNC)

- Transcripts from **known** genes:
 - Full-Splice Match (FSM)
 - Incomplete-Splice Match (ISM)
 - Novel In Catalog (NIC)
 - Novel Not In Catalog (NNC)

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

- Transcripts from "novel" genes:
 - Genic Intron
 - Genic Genomic
 - Antisense
 - Fusion
 - Intergenic

SQANTI3 workflow

USER INPUT

TRANSCRIPTOME CURATION

REFERENCE GENOME

OPTIONAL INPUT

RNA-Seq CAGE peak data polyA motifs tappAS-like functional

annotation ...

Classification file Gene Transcript Category Ctnnd1 ENSMUST000 00067232 PB.1.2 Ctnnd1 novel NIC Novel novel Intergenic

ı	Junction file						
	Junction	Isoform	Splice site	Known			
	Junction1	PB.1.2	GT-AG	True	_		
	Junction2	PB.1.2	GC-AG	True			
	Junction3	PB.1.2	GT-AF	False			
					_		

Complementary files

- Genome-corrected transcriptome ORF prediction (FASTA)
- CDS-annotated GTF
- tappAS-compatible GFF3

ML-based approach

SQANTI3 rules filter

Isoform-level filtering reasons

Quality control and characterization of LR transcriptomes

Francisco J. Pardo-Palacios Lorena de la Fuente

