

Med luftmotstand

Frilegenediagrams $\vec{F}_{0} = Dv^{2}$ $\vec{G} = -mg$

$$\int_{C} \vec{F} = -Di\vec{\sigma} \vec{G}$$

$$a = -g - \frac{D}{m} \cdot |U| \cdot U$$

$$\frac{D}{m} = 1.0 \text{ m}^{-1}$$

$$\frac{D}{m} = 1.0 \text{ m}^{-1}$$

$$\frac{D}{m} = 1.0 \text{ m}^{-1}$$

$$2-\text{former}$$

$$7 \text{ Fa} = Dv^2$$

$$G = -2mg$$

N.2.100 8

$$1 \text{ form } - \text{mg} - D \cdot 1 \cup 1 \cdot \cup \sigma = \text{mal} \cdot \text{m}$$

$$-g - \frac{D}{m} \cdot 1 \cup 1 \cdot \cup \sigma = \alpha$$

2 formers - 2 mg - DIUI·U = 2 ma
$$\left| \frac{1}{2m} \right|$$

- $g - \frac{D}{2m} \left| U \right| \cdot U = a$

1 form
$$9m = 16 \text{ [m'1]}$$

2 form $9m = 5.0 \text{ [m-1]}$

Vi autor at formene noir terminalhastighet med en gang.

1 form
$$\int_{\overline{G}} \overline{F}_0 = Du^2$$
 2 former $\int_{\overline{G}} \overline{F}_0 = Du^2$ $\int_{\overline{G}} \overline{F}_0 = Du^2$

N. 1. 100
$$F_D = G$$

1 form $mg = Dv^2$ $2mg = Dv^2$

$$\frac{Mq}{D} = \sigma^2$$

$$\frac{2mq}{D} = \sigma^2$$

$$\sigma = \sqrt{2} \cdot \sqrt{\frac{mq}{D}}$$

2 former faller J2 ganger vestere en 1 form.

Kast 20

$$500 = 20 \text{ m/s i} + 15 \text{ m/s i}$$
 $500 = 20 \text{ m/s i} + 15 \text{ m/s i}$

Luttmotstand ?

Frilegewediagram
$$\vec{c}$$
 $\vec{c} = -mg\vec{s}$ $\vec{c} = -D \cdot |\vec{s}| \cdot \vec{v}$

11. 2.100 3

$$\vec{G} + \vec{F_0} = m\vec{a}$$

$$-mg\vec{j} - D\vec{J}\vec{J}\cdot\vec{U} = m\vec{a}$$

$$-93 - \frac{1}{m} \cdot 131 \cdot 3 = 3$$