Sobre la buena colocación del problema de Cauchy asociado a la ecuación con no linealidad modificada de Zakharov-Kusnetsov-Burgers en espacios de Sobolev $H^s(\mathbb{T}^n)$.

María Alejandra Rodríguez Ríos. 1

Mateo Andrés Manosalva Amaris.²

mrodriguezri@unal.edu.co

mmanosalva@unal.edu.co

Edgar Santiago Ochoa Quiroga

eochoaq@unal.edu.co

18 de septiembre de 2024

Resumen

Este trabajo se centra en el estudio de la ecuación no lineal modificada de Zakharov-Kusnetsov-Burgers en \mathbb{T}^n , el cual es un dominio periódico. Utilizando resultados de series de Fourier y espacios de Sobolev, se realiza la buena colocación local del problema en dichos espacios. El resultado principal demuestra que, para $n \geq 1$ y $s > \frac{n}{2}$, existe una solución única y local en el tiempo que depende del dato inicial en $H^s(\mathbb{T}^n)$, se realiza la demostración en base a la fórmula integral de Duhamel, lo que permite un análisis formal de la dependencia continua de las soluciones.

1. Introducción

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2. Preliminares

Definición 2.1. Sea $\{e_j:1\leq j\leq n\}$ la base canónica de \mathbb{R}^n , una función $f:\mathbb{R}^n\to\mathbb{C}$ se dice periódica de periodo $L\neq 0$, si

$$f(x + Le_i) = f(x)$$
, para todo $x \in \mathbb{R}^n$ y $1 \le j \le n$,

Algunas observaciones:

- Tenemos que dado $L \in \mathbb{R} \{0\}$, para todo $m \in \mathbb{Z}$, mL también es un periodo de f en el sentido que $f(x + mLe_j) = f(x)$, para cualquier $x \in \mathbb{R}^n$ y $1 \le j \le n$. En particular, -L también es un periodo para la función f. Por esta razón se puede asumir que L > 0.
- Si f es constante, entonces f es periódica de cualquier periodo. Si f es periódica no constante, existe un menor periodo L > 0, el cual se conoce como periodo fundamental.

Nota. Dado L>0 el conjunto $C_{per}([-L,L]^n)$ consiste de todas las funciones $f:\mathbb{R}^n\to\mathbb{C}$ continuas con periodo 2L. Similarmente, dado $k\in\mathbb{Z}^+, C^k_{per}([-L,L]^n)$ consiste de todas las funciones $f:\mathbb{R}^n\to\mathbb{C}$ periódicas con periodo 2L de clase C^k .

De manera equivalente, los espacios anteriores se pueden identificar como sigue:

$$C_{per}([-L,L]^n) := \{f \in C([-L,L]^n) : f(Le_j) = f(-Le_j), 1 \le j \le n\}.$$

Cuando $k \in \mathbb{Z}^+$, dado un multiíndice $\beta = (\beta_1, \dots, \beta_n)$,

$$\begin{split} C^k_{per}\left([-L,L]^n\right) := & \left\{ f \in C^k([-L,L]^n) : \partial^\beta f(Le_j) = \partial^\beta f(-Le_j), \text{ para todo } \beta \text{ tal que } |\beta| \leq k \\ & \text{y para todo } 1 \leq j \leq n \right\} \end{split}$$

Diremos que $f \in C^{\infty}_{per}([-L,L]^n)$, si $f \in C^k_{per}([-L,L]^n)$ para cualquier $k \in \mathbb{Z}^+$. Por consistencia en la notación, definimos $C^0_{per}([-L,L]^n) = C_{per}([-L,L]^n)$.

De la definición de los espacios $C^k_{\text{per}}([-L,L]^n)$ notamos que

$$2C_{per}([-L,L]^n)\supseteq C^1_{per}([-L,L]^n)\supseteq\cdots\supseteq C^k_{per}([-L,L]^n).$$

Dado L > 0, si f : $\mathbb{R}^n \to \mathbb{C}$ es una función periódica de periodo 2L, entonces

$$\widetilde{f}(x) := f\left(\frac{L}{\pi}x\right),$$

define una función periódica de periodo 2π . En particular, obtenemos que los espacios $C^k_{per}([-L,L]^n)$ y $C^k_{per}([-\pi,\pi]^n)$ son isomorfos como espacios vectoriales. De igual manera, la teoría de la transformada de Fourier se puede reescalar para pasar de la región $[-L,L]^n\alpha[-\pi,\pi]^n$. Por estas razones y sin pérdida de generalidad, en lo que sigue trabajaremos con funciones periódicas de periodo 2π .

Otra notación frecuente para funciones periódicas y transformada de Fourier es considerar funciones sobre el toro \mathbb{T}^n . El toro \mathbb{T}^n es el intervalo $[0,2\pi]^n$ donde los lados opuestos se identifican. De manera más precisa, el toro es el conjunto de clases de equivalencia en \mathbb{R}^n dada por la relación $x \sim y$ si y solo si $x - y \in 2\pi\mathbb{Z}^n$, es decir $\mathbb{T}^n = \mathbb{R}^n/2\pi\mathbb{Z}^n$. Adicionalmente el toro es un grupo aditivo por lo que será útil hacerle una traslación a $[-\pi,\pi]^n$

Por las propiedades anteriores, funciones $f: \mathbb{T}^n \to \mathbb{C}$ se pueden identificar como funciones periódicas $f: \mathbb{R}^n \to \mathbb{C}$ con periodo 2π . De esta manera, $C^k_{per}([-\pi,\pi]^n)$ es isomorfo a $C^k(\mathbb{T}^n)$ por lo que por comodidad trabajaremos sobre este espacio. [1]

Nota. Dado que podemos identificar \mathbb{T}^n como $[-\pi,\pi]^n$, vemos que la integración de funciones sobre el toro resulta de restringir la medida de Lebesgue en $[\pi,\pi]^n$ y por la periodicidad de las funciones en \mathbb{T}^n tenemos que:

$$\int_{\mathbb{T}^n} f(x) dx = \int_{[-\pi,\pi]^n} f(x) dx = \int_{[0,2\pi]^n} f(x) dx = \int_{[a_1,2\pi+a_1] \times \cdots \times [a_n,2\pi+a_n]} f(x) dx.$$

para cualesquiera $a_1, \ldots, a_n \in \mathbb{R}$, en efecto:

$$\int_{[\pi,\pi]^n} f(x) dx = \int_{[-\pi,0]^n} f(x) dx + \int_{[0,\pi]^n} f(x) dx
= \int_{[\pi,2\pi]^n} f(y - (2\pi, \dots, 2\pi)) dy + \int_{[0,\pi]^n} f(x) dx
= \int_{[\pi,2\pi]^n} f(x) dx + \int_{[0,\pi]^n} f(x) dx
= \int_{[0,2\pi]^n} f(x) dx.$$

Para la última propiedad note que:

$$\int_{[0,2\pi]^n} f(x) dx = \int_{[0,2\pi]} \int_{[0,2\pi]} \dots \int_{[0,2\pi]} f(x) dx_1 \dots dx_n,$$

dado que f(x) es integrable entonces vale el teorema de fubini, dicho esto, basta ver que el resultado se tiene para una de las integrales, a saber:

$$\int_{[0,2\pi]} f(x) dx = \int_{[\alpha,2\pi+\alpha]} f(x) dx.$$

Si $a > 2\pi$, en efecto:

$$\begin{split} \int_{0}^{2\pi} f(x) dx &= \int_{0}^{\alpha} f(x) dx - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{2\pi}^{2\pi + \alpha} f(y - 2\pi) dy - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{2\pi}^{2\pi + \alpha} f(x) dx - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{0}^{2\pi + \alpha} f(x) dx, \end{split}$$

los casos $a \in [0, 2\pi]$ y a < 0 son análogos.

Finalmente por la periodicidad, la integración por partes no nos deja términos de borde:

$$\begin{split} \int_{\mathbb{T}^n} \partial_j f(x) g(x) dx &= \int_{\partial \mathbb{T}^n} f(x) g(x) \eta_i dS(x) - \int_{\mathbb{T}^n} \partial_j g(x) f(x) dx \\ &= - \int_{\mathbb{T}^n} \partial_j g(x) f(x) dx. \end{split}$$

ya que $f(-\pi e_j)g(-\pi e_j)=f(\pi e_j)g(\pi e_j)$ para todo $1\leq j\leq n.$

Teorema 2.2. Si $k \in \mathbb{Z}^n$, sea $\Phi_k(x) := e^{ik \cdot x}$ entonces que para $k, m \in \mathbb{Z}^n$

$$\begin{split} (\Phi_k \mid \Phi_m) &= \int_{[-\pi,\pi]^n} \Phi_k(x) \overline{\Phi_m(x)} = 0, & \text{si } k \neq m, \\ (\Phi_k \mid \Phi_m) &= \int_{[-\pi,\pi]^n} \Phi_k(x) \overline{\Phi_m(x)} = (2\pi)^n, & \text{si } k = m. \end{split}$$

Demostración. En efecto, por el teorema de Tychonoff tenemos que el producto cartesiano de conjuntos compactos es compacto y como $\mathbb{T}^n = [-\pi, \pi] \times [-\pi, \pi] \dots [-\pi, \pi]$ entonces \mathbb{T}^n es compacto, por lo cual, como $\Phi_k(x)$ es una función continua en $[-\pi, \pi]$ podemos aplicar el teorema de Fubini como sigue:

$$\begin{split} (\Phi_k \mid \Phi_m) &= \int_{[-\pi,\pi]^n} e^{ik\cdot x} e^{-im\cdot x} dx \\ &= \int_{[-\pi,\pi]} \int_{[-\pi,\pi]} \dots \int_{[-\pi,\pi]} e^{i(k-m)\cdot x} dx_1 \dots dx_n \\ &= \int_{[-\pi,\pi]} \int_{[-\pi,\pi]} \dots \int_{[-\pi,\pi]} e^{i(k_1-m_1)x_1} e^{i(k_2-m_2)x_2} \dots e^{i(k_n-m_n)x_n} dx_1 \dots dx_n \\ &= \int_{[-\pi,\pi]} e^{i(k_1-m_1)x_1} dx_1 \int_{[-\pi,\pi]} e^{i(k_2-m_2)x_2} dx_2 \dots \int_{[-\pi,\pi]} e^{i(k_n-m_n)x_n} dx_n. \end{split}$$

y como:

$$\int_{-\pi}^{\pi} e^{i(k_i - m_i)x} dx = \begin{cases} 0, & \text{si } m_i \neq k_i, \\ 2\pi, & \text{si } m_i = k_i. \end{cases}$$

entonces se concluye que:

$$(\Phi_k|\Phi_m) = \begin{cases} 0, & \text{si } m \neq k, \\ (2\pi)^n & \text{si } m = k. \end{cases}$$

Dado el sistema ortogonal $\varphi_k(x)=e^{ik\cdot x}$ con $k\in\mathbb{Z}^n$ y $x\in\mathbb{R}^n$, queremos escribir a $f\in C(\mathbb{T}^n)$ como:

$$f(x) = \sum_{k \in \mathbb{Z}^n} c_k e^{ik \cdot x},$$

procedamos formalmente asumiendo que la serie anterior converge uniformemente, así, luego:

$$(f|\Phi_m) = \sum_{k \in \mathbb{Z}^n} c_k (\Phi_k | \Phi_m)$$

= $c_m (2\pi)^n$,

donde $c_{\mathfrak{m}}$, con $\mathfrak{m} \in \mathbb{Z}^n$ son los coeficientes de Fourier, esto es:

$$c_{\mathfrak{m}} = \frac{1}{(2\pi)^{\mathfrak{n}}} \left(f | \Phi_{\mathfrak{m}} \right) = \frac{1}{(2\pi)^{\mathfrak{n}}} \int_{\mathbb{T}^{\mathfrak{n}}} f(x) e^{-i\mathfrak{m} \cdot x} dx,$$

esto motiva la definición de la transformada y serie de Fourier en $C(\mathbb{T}^n)$.

Definición 2.3. Dada $f \in C(\mathbb{T}^n)$ la secuencia de números complejos $\{\widehat{f}(k)\}_{k \in \mathbb{Z}^n}$ se llama la transformada de Fourier de f y está definida como

$$\widehat{f}(k) = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) e^{-ik \cdot x} dx.$$

Al número complejo $\hat{f}(k)$ se le llama el coeficiente de Fourier. La serie (puede ser no convergente)

$$\sum_{k=\mathbb{Z}^n} \widehat{f}(k) e^{ik \cdot x}.$$

se llama la serie de Fourier de f.

Teniendo en cuenta lo anterior, veamos que se cumple lo siguiente,

Teorema 2.4. Si $f \in C(\mathbb{T}^n)$ entonces vale la identidad de Bessel, es decir,

$$\sum_{k\in\mathbb{Z}^n}|\widehat{f}(k)|^2\leq \frac{1}{(2\pi)^n}\|f\|_2^2=\frac{1}{(2\pi)^n}\int_{[-\pi,\pi]^n}|f(x)|^2\,dx.$$

Demostración.

$$\begin{split} 0 &\leq \|f(x) - \sum_{k \in \mathbb{Z}, |k| \leq \mathbb{N}} \widehat{f(k)} e^{ik \cdot x} \|_2^2, \\ &\leq \|f\|_2^2 + \|\sum_{k \in \mathbb{Z}, |k| < \mathbb{N}} \widehat{f(k)} e^{ik \cdot x} \|_2^2 \end{split}$$

Teorema 2.5. Si $f \in C^l(\mathbb{T}^n)$ y $\beta = (\beta_1, \ldots, \beta_n)$ es un multi-índice de orden l, es decir, $|\beta| = \beta_1 + \cdots + \beta_n = l$, entonces $\widehat{\delta^\beta f}(k) = \mathfrak{i}^{|\beta|} k^\beta \widehat{f}(k)$, para todo $k \in \mathbb{Z}^n$.

Teorema 2.6. Si $m > \frac{N}{2}$ con m entero, entonces la serie de Fourier de una función $f \in C^m(\mathbb{T}^n)$ converge absoluta y uniformemente a f, además, se tiene que $\|f\|_{\infty} \leq \|\widehat{f}\|_1$ donde $\|\cdot\|_1$ es la norma de $l^1(\mathbb{Z}^n)$. Más aún, vale la identidad de Parseval

$$\|\widehat{f}\|_2^2 = \sum_{k \in \mathbb{Z}^n} |\widehat{f}(k)|^2 = \frac{1}{(2\pi)^n} \int_{[-\pi,\pi]^n} |f(x)|^2 dx = \frac{1}{(2\pi)^n} \|f\|_2^2.$$

De manera equivalente, si f, $g \in C^{\mathfrak{m}}(\mathbb{T}^{\mathfrak{n}})$,

$$(\widehat{f}\mid \widehat{g}) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) \overline{\widehat{g}(k)} = \frac{1}{(2\pi)^n} \int_{[-\pi,\pi]^n} f(x) \overline{g(x)} dx = \frac{1}{(2\pi)^n} (f\mid g).$$

Definición 2.7. El espacio $L^2(\mathbb{T}^n) = L^2([-\pi,\pi]^n)$ consiste de funciones $f:[-\pi,\pi]^n \to \mathbb{C}$ medibles según Lebesgue tales que:

$$||f||_2^2 = \int_{[-\pi,\pi]^n} |f(x)|^2 dx < \infty.$$

Teorema 2.8. El espacio $C^{\infty}(\mathbb{T}^n)$ es denso en $L^2(\mathbb{T}^n)$.

3. Resultados de Buen Planteamiento

Consideremos el problema de valor inicial asociado a la ecuación con no linealidad modificada de Zakharov-Kusnetsov-Burgers

$$\begin{cases} u_t + \partial_{x_1} \Delta u - \Delta u + u^3 = 0, & (x,t) \in (-\pi,\pi)^n \times (0,\infty), \\ u(x,0) = u_0(x), & x \in [-\pi,\pi]^n. \end{cases}$$

Procedamos de manera formal en búsqueda de un candidato a solución, tomando la transformada de Fourier respecto a la variable espacial

$$\begin{split} (u_t + \vartheta_{x_1} \Delta u - \Delta u + u^3)^\wedge(k) &= \widehat{u}_t(k) + \widehat{\vartheta_{x_1} \Delta u}(k) - \widehat{\Delta u}(k) + \widehat{u^3}(k) \\ &= \vartheta_t \widehat{u}(k) + i k_1 \widehat{\Delta u}(k) - \widehat{\Delta u}(k) + \widehat{u^3}(k) \\ &= \vartheta_t \widehat{u}(k) + (i k_1 - 1) \sum_{i=1}^n \widehat{\vartheta_{x_i}^2 u}(k) + \widehat{u^3}(k) \\ &= \vartheta_t \widehat{u}(k) + (i k_1 - 1) \sum_{i=1}^n i^2 k_i^2 \widehat{u}(k) + \widehat{u^3}(k) \\ &= \vartheta_t \widehat{u}(k) + (1 - i k_1) |k|^2 \widehat{u}(k) + \widehat{u^3}(k). \end{split}$$

Así junto al hecho de que $\widehat{u}(k,0)=\widehat{u}_0(k)$ para todo $k\in\mathbb{Z}$ tenemos una ecuación diferencial ordinaria asociada a un problema de valor inicial respecto a la variable temporal

$$\begin{cases} \frac{d}{dt}\widehat{u}(k)+(|k|^2-ik_1|k|^2)\widehat{u}(k)=-\widehat{u^3}(k), & k\in\mathbb{Z}^n, t>0\\ \widehat{u}(k,0)=\widehat{u}_0(k), & k\in\mathbb{Z}. \end{cases}$$

Luego usando el factor integrante $e^{(|\mathbf{k}|^2-i\mathbf{k}_1|\mathbf{k}|^2)t}$, e integrando a ambos lados de 0 a t tenemos que

$$e^{(|k|^2 - ik_1|k|^2)t} \widehat{u}(k,t) - \widehat{u}_0(k) = -\int_0^t e^{(|k|^2 - ik_1|k|^2)t'} \widehat{u^3}(k,t') dt'.$$

Así despejando $\widehat{\mathfrak{u}}(k,t)$ llegamos a que

$$\widehat{u}(k,t) = e^{(ik_1|k|^2 - |k^2|)t} \widehat{u}_0(k) - \int_0^t e^{(ik_1|k|^2 - |k^2|)(t - t')} \widehat{u^3}(k,t') dt',$$

tomando la transformada inversa de Fourier tenemos que

$$\begin{split} u(x,t) &= (e^{(ik_1|k|^2 - |k^2|)t} \widehat{u}_0(k))^\vee - \int_0^t (e^{(ik_1|k|^2 - |k^2|)(t-t')} \widehat{u^3}(k,t'))^\vee \, dt' \\ &= \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2 - |k^2|)t + ik \cdot x} \widehat{u}_0(k) - \int_0^t \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2 - |k^2|)(t-t') + ik \cdot x} \widehat{u^3}(k,t') \, dt'. \end{split}$$

Teniendo en cuenta esto, es en cierta medida natural definir la familia de operadores $\{U(t)\}_{t\geq 0}$ tal que:

Preguntar pq es en todo R(typo?)

$$U(t)f(x) = \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2 - |k^2|)t + ik \cdot x} \widehat{f}(k).$$

Para f lo suficientemente regular. De esta manera, nuestro candidato a solución es la formula de Duhamel dada por

$$u(x,t) = U(t)u_0(x) - \int_0^t U(t-t')u^3(x,t') dt'.$$

Definición 3.1. Dado $s \ge 0$. Diremos que el problema esta localmente bien planteado en $H^s(\mathbb{T}^n)$ si:

- (Existencia y Unicidad). Dado $u_0 \in H_s(\mathbb{T}^n)$, existe T > 0 y una única solución de la formula de Duhamel con dato inicial u_0 en el espacio $C([0,T];H^s(\mathbb{T}^n))$.
- (Dependencia Continua). Dado $\mathfrak{u}_0 \in H^s(\mathbb{T}^n)$ existe una vecindad V de \mathfrak{u}_0 en $H^s(\mathbb{T}^n)$ y T > 0 tal que la aplicación dato inicial solución $\mathfrak{v}_0 \in H^s(\mathbb{T}^n) \to \mathfrak{v} \in C([0,T];H^s(\mathbb{T}^n))$ es continua.

Referencias

- [1] Riaño Oscar. Notas de clase : Series de Fourier. UNAL, 2024.
- [2] L Grafakos. Classical Fourier Analysis. Springer, 2008.