	Gender	Age	income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
•••			
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

```
In [5]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[5]: Text(0, 0.5, 'Income(\$)')


```
In [6]: from sklearn.cluster import KMeans
```

In [7]: km=KMeans()

In [8]: y_predicted=km.fit_predict(df[["Age","Income(\$)"]])
y_predicted

C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn \cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

```
In [9]: df["cluster"]=y_predicted
    df.head()
```

Out[9]:		Gender	Age	Income(\$)	cluster
	0	Male	19	15	1
	1	Male	21	15	1
	2	Female	20	16	1
	3	Female	23	16	1
	4	Female	31	17	1

```
In [10]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[10]: Text(0, 0.5, 'Income(\$)')


```
In [11]: from sklearn.preprocessing import MinMaxScaler
In [12]: scaler=MinMaxScaler()
In [13]: scaler.fit(df[["Income($)"]])
    df["Income($)"]=scaler.transform(df[["Income($)"]])
    df.head()
```

```
Out[13]:
            Gender Age Income($) cluster
         0
              Male
                     19
                          0.000000
                                        1
         1
              Male
                     21
                          0.000000
         2
           Female
                     20
                          0.008197
                                        1
                          0.008197
         3 Female
                     23
            Female
                     31
                          0.016393
                                        1
In [14]: | scaler.fit(df[["Age"]])
         df["Age"]=scaler.transform(df[["Age"]])
         df.head()
Out[14]:
            Gender
                       Age Income($) cluster
         0
              Male 0.019231
                              0.000000
                                           1
              Male 0.057692
                              0.000000
         1
                                           1
         2 Female 0.038462
                              0.008197
                                           1
         3 Female 0.096154
                              0.008197
                                           1
         4 Female 0.250000
                              0.016393
                                           1
In [15]: km=KMeans()
In [16]: y_predicted=km.fit_predict(df[["Age","Income($)"]])
         y_predicted
       C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
       \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
       from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
       rning
        warnings.warn(
Out[16]: array([7, 7, 7, 7, 4, 7, 4, 7, 0, 4, 0, 4, 3, 7, 4, 7, 4, 7, 3, 4, 4, 7,
                3, 4, 3, 4, 3, 4, 4, 7, 0, 7, 3, 7, 3, 7, 3, 4, 4, 7, 0, 7, 3, 4,
                3, 7, 3, 4, 4, 4, 3, 4, 4, 0, 3, 3, 3, 0, 2, 3, 0, 2, 0, 3, 0, 2,
                3, 0, 2, 4, 0, 3, 0, 0, 0, 2, 3, 3, 2, 3, 0, 1, 0, 3, 2, 3, 5, 2,
                1, 5, 0, 2, 5, 1, 1, 2, 5, 2, 5, 2, 5, 0, 2, 5, 2, 0, 5, 0, 0,
                0, 2, 1, 2, 2, 2, 0, 5, 5, 5, 2, 1, 1, 1, 2, 1, 5, 1, 5, 1, 5, 1,
                2, 1, 2, 1, 5, 1, 2, 1, 5, 1, 1, 1, 2, 1, 5, 1, 1, 1, 5, 1, 5, 1,
                5, 1, 1, 1, 1, 1, 5, 1, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1,
                6, 6])
In [17]: df["New cluster"]=y_predicted
         df.head()
```

Out[17]:		Gender	Age	Income(\$)	cluster	New cluster
	0	Male	0.019231	0.000000	1	7
	1	Male	0.057692	0.000000	1	7
	2	Female	0.038462	0.008197	1	7
	3	Female	0.096154	0.008197	1	7
	4	Female	0.250000	0.016393	1	4

```
In [18]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[18]: Text(0, 0.5, 'Income(\$)')


```
In [20]: df1=df[df["New cluster"]==0]
    df2=df[df["New cluster"]==1]
    df3=df[df["New cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",mar
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[20]: Text(0, 0.5, 'Income(\$)')


```
In [21]: k_rng=range(1,10)
    sse=[]
    for k in k_rng:
        km=KMeans(n_clusters=k)
        km.fit(df[["Age","Income($)"]])
        sse.append(km.inertia_)
    sse
```

```
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
       C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
         warnings.warn(
        C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
        C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
       C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
       C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
        C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
       C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
        C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn
        \cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will change
        from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the wa
        rning
         warnings.warn(
Out[21]: [23.583906150363603,
          13.02893842801829,
          7.49302484330499,
          6.055824667599624,
          4.713416604872824,
          3.859055754701023,
          3.054717436369359,
          2.64269394692181,
          2.3399905319062966]
In [22]:
         plt.plot(k rng,sse)
         plt.xlabel("k")
         plt.ylabel("sum of squared Error")
```

Out[22]: Text(0, 0.5, 'sum of squared Error')

