

BATCH LESSON : NUMPY DATE

B150 Data Science

31.03.2023

SUBJECT: Session 2

NumPy Arrays & Methods

ZOOM GİRİŞLERİNİZİ LÜTFEN **LMS** SİSTEMİ ÜZERİNDEN YAPINIZ

Scalars, Vectors and Matrices

And when we include <u>matrices</u> we get this interesting pattern:

- A scalar is a number, like 3, -5, 0,368, etc,
- A vector is a list of numbers (can be in a row or column),
- A matrix is an array of numbers (one or more rows, one or more columns).

Scalar Vector Matrix
$$\begin{bmatrix} 2 & -8 & 7 \end{bmatrix} & \begin{bmatrix} 6 & 4 & 24 \\ 1 & -9 & 8 \end{bmatrix} \\ \text{row} & \begin{bmatrix} 2 \\ -8 \\ 7 \end{bmatrix} & \text{row}(s) \times \text{column}(s) \end{bmatrix}$$

In fact a **vector is also a matrix**! Because a matrix can have just one row or one column.

So the rules that work for matrices also work for vectors.

Neden NumPy Kullanılır?

- Daha hızlı
- Daha az döngü
- Daha açık kod
- Daha kaliteli kod

NumPy Neden Listelerden Daha Hızlı?

- Bellek yönetimi
- Vektörel işlemler
- Dahili fonksiyonlar
- C veya C ++ dilinde yazılmış alt yapı

Vectorization

Broadcasting

Setting axis=0 concatenates along the row axis

axis 0

1	1	1
1	1	1

np.concatenate(axis = 0)

9	9	9
9	9	9

1	1	1
1	1	1
9	9	9
9	9	9

Setting axis=1 concatenates along the column axis

