

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
24. Oktober 2002 (24.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/084749 A2

- (51) Internationale Patentklassifikation⁷: **H01L 33/00**
- (21) Internationales Aktenzeichen: PCT/DE02/01306
- (22) Internationales Anmeldedatum:
9. April 2002 (09.04.2002)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
101 17 889.1 10. April 2001 (10.04.2001) DE
- (72) Erfinder und
Erfinder/Anmelder (nur für US): BOGNER, Georg
[DE/DE]; Am Sandbügel 12, 93138 Lappersdorf (DE),
BRUNNER, Heribert [DE/DE]; Winkergasse 16, 93047
Regensburg (DE). HIEGLER, Michael [DE/DE]; Killer-
mannstr. 45, 93049 Regensburg (DE). WAITL, Günter
[DE/DE]; Praschweg 3, 93049 Regensburg (DE).
- (75) (74) Anwalt: EPPING HERMANN & FISCHER; Ridler-
straße 55, 80339 München (DE).
- (81) Bestimmungstaaten (national): CN, JP, US.
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von
US): OSRAM OPTO SEMICONDUCTORS GMBH &
CO. OHG [DE/DE]; Wernerwerkstr. 2, 93049 Regensburg
(DE).
- (84) Bestimmungstaaten (regional): europäisches Patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

[Fortsetzung auf der nächsten Seite]

(54) **Title:** CONDUCTOR FRAME AND HOUSING FOR A RADIATION-EMITTING COMPONENT, RADIATION EMITTING
COMPONENT AND METHOD FOR PRODUCING THE SAME

(54) **Bezeichnung:** LEITERRAHMEN UND GEHÄUSE FÜR EIN STRAHLUNGSEMITTERENDES BAUELEMENT, STRAHL-
UNGSEMITTERENDES BAUELEMENT SOWIE VERFAHREN ZU DESSEN HERSTELLUNG

WO 02/084749 A2

(57) **Abstract:** The invention relates to a conductor frame (2) and a housing, in addition to a radiation-emitting component formed therewith and a method for the production thereof. The conductor frame has a support part with at least one binding wire connecting area (10) and at least one electric soldered connecting strip (3a,b), in which a separately built thermal connecting part (4) having a chip assembly area (11) is attached. In order to form the housing, the conductor frame (2) is enveloped with a molded material, wherein the thermal connecting part is embedded in such a way that it can be thermally connected from the outside.

(57) **Zusammenfassung:** Die Erfindung beschreibt einen Leiterrahmen (2) und ein Gehäuse sowie ein damit gebildetes strahlungs-
emittierendes Bauelement und ein Verfahren zu dessen Herstellung. Der Leiterrahmen weist dabei ein Trägerteil mit mindestens
einem Bondfrahrtanschlussbereich (10) und mindestens einem elektrischen Lötanschlussstreifen (3a,b) auf, in das ein separat gefertigtes thermisches Anschlussstück (4) eingeknüpft ist, das einen Chipmontagebereich (11) aufweist. Zur Bildung eines Gehäuses ist
der Leiterrahmen (2) vorzugsweise mit einer Formmasse umhüllt, wobei das thermische Anschlussstück so eingebettet wird, dass es
von außen thermisch anschließbar ist.

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichten nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("*Guidance Notes on Codes and Abbreviations*") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Leiterrahmen und Gehäuse für ein strahlungsemittierendes Bau-
element, strahlungsemittierendes Bauelement sowie Verfahren
5 zu dessen Herstellung

Die Erfindung betrifft einen Leiterrahmen nach dem Oberbe-
griff des Patentanspruchs 1, ein Gehäuse nach dem Oberbegriff
des Patentanspruchs 14, ein strahlungsemittierendes Bauele-
10 ment nach dem Oberbegriff des Patentanspruchs 23 sowie ein
Verfahren zu dessen Herstellung nach dem Oberbegriff des Pa-
tentanspruchs 33.

Leiterrahmen für strahlungsemittierende Halbleiterbauelemente
15 sind beispielsweise aus DE 196 36 454 bekannt. Die hierin be-
schriebenen Halbleiterbauelemente weisen einen Gehäusegrund-
körper mit darin eingebettetem Leiterrahmen sowie einen
strahlungsemittierenden Halbleiterkörper auf, der auf den
Leiterrahmen montiert ist. Der Leiterrahmen und der Gehäuse-
20 grundkörper sind zugleich als Reflektor für die erzeugte
Strahlung ausgebildet.

Weiterhin sind aus dem Gehäusegrundkörper ragende Teilberei-
che des Leiterrahmens als externe elektrische Anschlußstrei-
25 fen gebildet und ist das Gehäuse so geformt, daß das Bauele-
ment zur Oberflächenmontage geeignet ist. Um eine gute Ablei-
tung der entstehenden Verlustwärme, insbesondere bei Halblei-
terbauelementen mit hoher Leistung, zu erreichen, kann ein
Teil des Reflektors als thermischer Anschluß aus dem Gehäuse-
30 grundkörper herausgeführt sein.

Bei Bauelementen mit hohen optischen Leistungen und entspre-
chend großen Verlustleistungen ist eine noch effizientere Art
der Wärmeableitung wünschenswert beziehungsweise erforder-
lich.
35

Aufgabe der vorliegenden Erfindung ist es, bei strahlungs-emittierenden Bauelementen eine verbesserte Wärmeableitung zu schaffen, die insbesondere die Erzeugung hoher optischer Leistungen im Bauelement zuläßt. Weiterhin ist es Aufgabe der
5 Erfindung, ein Herstellungsverfahren hierfür anzugeben.

Diese Aufgabe wird durch einen Leiterrahmen gemäß Patentanspruch 1, ein Gehäuse gemäß Patentanspruch 14, ein strahlungsemittierendes Bauelement gemäß Patentanspruch 23 beziehungsweise 10 ein Verfahren gemäß Patentanspruch 33 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.

Erfindungsgemäß ist vorgesehen, einen Leiterrahmen für ein strahlungsemittierendes Bauelement, bevorzugt eine Lichtemissionsdiode, mit mindestens einem Chipmontagebereich, mindestens einem Drahtanschlußbereich und mindestens einem externen elektrischen Anschlußstreifen, beispielsweise zum Montieren und elektrischen Anschließen des Bauelements auf einer Leiterplatte, auszubilden, wobei ein Trägerteil vorgesehen ist, das den Drahtanschlußbereich und den elektrischen Anschlußstreifen aufweist und in das ein getrennt vom übrigen Leiterrahmen separat gefertigtes thermisches Anschlußteil eingeknüpft ist, auf dem der Chipmontagebereich angeordnet 20 ist. Bei einem Bauelement mit einem derartigen Leiterrahmen wird die im Betrieb entstehende Verlustwärme vor allem über das thermische Anschlußteil abgeführt. Vorzugsweise ist das thermische Anschlußteil mit dem Trägerteil elektrisch leitend verbunden und dient gleichzeitig als elektrischer Anschluß 25 für den Chip.

Das separat von dem übrigen Leiterrahmen gefertigte thermische Anschlußteil weist dabei den Vorteil auf, daß es wesentlich besser hinsichtlich Aufnahme und Ableitung größerer Verlustwärmemengen optimiert werden kann als ein einstückiger Leiterrahmen. So kann bei einem solchen thermischen Anschlußteil die Dicke, die Wärmeleitfähigkeit, der thermische Aus-

- dehnungskoeffizient und die thermische Anschlußfläche weitestgehend unabhängig von den Anforderungen an den übrigen Leiterrahmen optimiert werden. Insbesondere kann bei dem thermischen Anschlußteil vorteilhafterweise eine hohe Wärme-
5 kapazität erreicht werden, so daß das thermische Anschlußteil eine effiziente Wärmesenke bildet. Eine große thermische Anschlußfläche verringert den Wärmeübergangswiderstand und verbessert so die Wärmeleitung und die Wärmeabgabe an die Umgebung.
- 10 Bei einer bevorzugten Weiterbildung der Erfindung weist das Trägerteil eine Einlegeöffnung, beispielsweise in Form einer Klammer oder Öse, auf, in die das thermische Anschlußteil eingeknüpft ist. Hierunter ist zu verstehen, daß das thermische Anschlußteil in die Einlegeöffnung des Leiterrahmens
15 eingesetzt und umfangsseitig mit dem Leiterrahmen verbunden ist.
- Dazu kann das thermische Anschlußteil in das Trägerteil beispielsweise geklammert und/oder mit diesem verquetscht oder vernietet sein. Bevorzugt wird bei der Erfindung eine Quetschverbindung zwischen dem thermischen Anschlußteil und dem Trägerteil gebildet, die sich durch hohe mechanische Festigkeit und gute elektrische Leitfähigkeit auszeichnet.
20 Eine Quetschverbindung kann beispielsweise dadurch gebildet werden, daß das Trägerteil und das thermische Anschlußteil zueinander positioniert werden, beispielsweise durch Einlegen des Anschlußteils in eine Einlegeöffnung des Trägerteils, und dann das thermische Anschlußteil derart verformt wird, daß
25 ein mechanisch fester Sitz des Anschlußteils im Trägerteil entsteht. Zur Verformung kann ein hammer- oder stempelartiges Werkzeug verwendet werden.
- 30 Bevorzugt ist das Anschlußteil so geformt, daß es nach Art einer Niete mit dem Trägerteil verbunden werden kann. Gegebenenfalls genügt auch die Verformung einzelner Stege oder Streben des Anschlußteils, um eine Quetschverbindung

ausreichender Festigkeit zwischen dem Anschlußteil und dem Trägerteil zu bilden.

- Im Rahmen der Erfindung können zusätzlich oder alternativ
5 anderweitige Verbindungen zwischen dem Anschlußteil und dem Träger teil vorgesehen sein. Beispielsweise ist eine Löt- oder Schweißverbindung hierfür geeignet. Weiterhin kann das Anschlußteil mit dem Träger teil verklebt sein.
- 10 Mit Vorteil wird so ein mechanisch stabiles Gerüst für das Halbleiterbauelement gebildet, das mit vergleichsweise geringem technischem Aufwand herstellbar ist.

- Bevorzugt weist das thermische Anschlußteil eine Reflektorwanne auf. Bei einem damit gebildeten Bauelement verbessert
15 das thermische Anschlußteil die Strahlungsausbeute und die Strahlbündelung des Bauelements. Bei dieser Weiterbildung der Erfindung wird vorzugsweise ein metallisches thermisches Anschlußteil verwendet, da sich Metallflächen aufgrund geringer
20 Absorptionsverluste und einer stark gerichteten, gegebenenfalls spiegelnden Reflexion sehr gut als Reflektorflächen eignen.

- Zur Erhöhung der mechanischen Stabilität, insbesondere bei
25 einem im folgenden noch genauer erläuterten Gehäuse bzw. Bauelement, ist es vorteilhaft, die Höhe der Reflektorwanne des thermischen Anschlußteils so zu bemessen, daß sie die doppelte Höhe des zur Anordnung auf dem Chipmontagebereich vorgesehenen Chips nicht übersteigt.

- 30 Als Material für das thermische Anschlußteil eignen sich aufgrund der hohen Wärmeleitfähigkeit Metalle, insbesondere Kupfer oder Aluminium oder hieraus gebildete Legierungen. Weiterhin bevorzugte Materialien sind Molybdän, Eisen, Nickel und
35 Wolfram sowie Nickel-Eisen- und Kupfer-Wolfram-Legierungen, deren thermischer Ausdehnungskoeffizient gut an den thermischen Ausdehnungskoeffizienten von Halbleitermaterialien wie

beispielsweise GaAs, GaN und darauf basierenden Systemen, angepaßt ist. Weiter eignen sich als Material für das thermische Anschlußteil Keramiken und Halbleiter wie beispielsweise Silizium. Das thermische Anschlußteil kann
5 auch mehrlagig, beispielsweise als Metall-Keramik-Verbundsystem gebildet sein.

Bevorzugt ist die Chipmontagefläche des thermischen Anschlußteils mit einer Vergütung versehen, die die Oberflächeneigenschaften hinsichtlich der Aufbringung eines Chips (Bondeigenschaften) verbessert. Diese Vergütung kann beispielsweise 10 eine Silber- oder Goldbeschichtung umfassen.

Weitergehend ist es vorteilhaft, auch den Lötanschlußsteifen 15 bzw. den Bonddrahtanschlußbereich mit einer die Löt- bzw. Bondeigenschaften verbessernden Oberflächenvergütung, beispielsweise einer Au-, Ag-, Sn- oder Zn-Beschichtung, zu versehen.

20 Das Trägerteil enthält vorzugsweise Kupfer oder Weicheisen und kann beispielsweise aus entsprechenden Folien gestanzt werden. Mit Vorteil dient das Trägerteil bei der Erfindung nicht der Wärmeableitung und kann daher für die Funktion der Stromversorgung sowie hinsichtlich seiner Biegeeigenschaften 25 und Haftung einer im folgenden noch genauer beschriebenen Formmasse optimiert werden.

Dies umfaßt beispielsweise, daß das Trägerteil in seiner Dicke so ausgeführt ist, daß es aus einem Trägerband von der 30 Rolle gefertigt, leicht gestanzt und in Form gebogen werden kann. Derartige Verarbeitungseigenschaften erlauben mit Vorteil eine automatisierte Fertigung und eine dichte Anordnung (geringer Pitch) der Einzelkomponenten auf dem Trägerband.

35 Die hierfür erforderliche geringe Dicke des Trägerteils erschwert in der Regel eine ausreichende Kühlung des Chips. Insbesondere ist aus Gründen der mechanischen Stabilität der

Querschnitt eines thermischen Anschlusses begrenzt. Dieser Nachteil wird bei der Erfindung durch das eingeknüpfte thermische Anschlußteil behoben.

- 5 Bevorzugt ist bei der Erfindung zur Ausbildung eines Gehäuses für ein strahlungsemittierendes Bauelement der Leiterrahmen von einem Gehäusegrundkörper umschlossen. Vorzugsweise ist dazu der Leiterrahmen in eine den Gehäusegrundkörper bildende Formmasse, beispielsweise eine Spritzguß- oder Spritzpreß-
10 masse eingebettet. Dies erlaubt eine kostengünstige Herstellung des Gehäuses im Spritzguß- oder Spritzpressgußverfahren. Die Formmasse besteht beispielsweise aus einem Kunststoffmaterial auf der Basis von Epoxidharz oder Acrylharz, kann aber auch aus jedem anderen für den vorliegenden Zweck geeigneten
15 Material bestehen. Zur Wärmeableitung ist es vorteilhaft, das thermische Anschlußteil so einzubetten, daß es teilweise aus dem Gehäusegrundkörper ragt oder einen Teil von dessen Oberfläche bildet und somit von außen thermisch anschließbar ist.
20 Vorzugsweise ist in dem Gehäusegrundkörper eine Ausnehmung in Form eines Strahlungstrittsfensters gebildet und das thermische Anschlußteil derart in den Gehäusegrundkörper eingebettet, daß der Chipmontagebereich innerhalb des Strahlungsaustrittsfensters angeordnet ist. Beispielsweise kann der Chipmontagebereich eine Begrenzungsfläche des Strahlungsaustrittsfensters bilden.
25

Diese Gehäuseform eignet sich insbesondere für oberflächenmontierbare Bauelemente, wobei die dem Strahlungsaustrittsfenster gegenüberliegenden Seite oder eine Seitenfläche des Gehäusegrundkörpers eine Auflagefläche des Bauelements bildet. Bevorzugt erstreckt sich das eingebettete thermische Anschlußteil bis zu dieser Auflagefläche, so daß über die Auflagefläche zugleich die Verlustwärmе, beispielsweise an einen
30 Kühlkörper oder ein PCB (printed circuit board, Leiterplatte) abgeführt wird. Dabei ist es vorteilhaft, das thermische An-
35

schlußteil so auszuführen, daß ein Teil seiner Oberfläche zugleich die Auflagefläche oder eine Teilfläche hiervon bildet.

- Zur Steigerung der Strahlungsausbeute kann das Strahlungsaus-
5 trittsfenster in dem Gehäusegrundkörper konisch geformt sein,
so daß dessen Seitenwände einen Reflektor bilden. Durch die-
sen Reflektor können von einer auf dem Chipmontagebereich be-
findlichen Strahlungsquelle zur Seite emittierte Strahlungs-
anteile zur Hauptabstrahlungsrichtung hin umgelenkt werden.
10 Damit wird eine Erhöhung der Strahlungsausbeute und eine ver-
besserte Bündelung der Strahlung erreicht.

Vorteilhaft ist bei dem Reflektor eine Formgebung, bei der
das thermische Anschlußteil einen ersten Teilbereich des Re-
flektors bildet, an den sich ein zweiter, von den Seitenwän-
den des Strahlungsaustrittsfensters geformter Reflektorteil-
bereich anschließt. Bevorzugt ist die Gesamthöhe des Reflek-
tors geringer als die vierfache Höhe eines zur Befestigung
20 auf dem Chipmontagebereich vorgesehenen Chips. Dies gewähr-
leistet eine hohe mechanische Stabilität und limitiert die
aufgrund von Temperaturänderungen auftretenden Spannungen,
wie sie beispielsweise bei Lötprozessen entstehen, auf ein
tolerables Maß.

25 Bei der Erfindung ist weiter vorgesehen, mit einem erfin-
dungsgemäßen Leiterrahmen oder Gehäuse ein strahlungsemittie-
rendes Bauelement mit verbesserter Wärmeableitung zu bilden.
Ein solches Bauelement weist einen strahlungsemittierenden
Chip, vorzugsweise einen Halbleiterchip, auf, der auf dem
30 Chipmontagebereich des thermischen Anschlußteils angeordnet
ist.

Bevorzugt ist der Chip zumindest teilweise von einer Verguß-
masse umhüllt. Besonders bevorzugt ist diese Ausführungsform
35 für Gehäuse mit einem in einem Strahlungsaustrittsfenster an-
geordneten Chip, wobei das Strahlungsaustrittsfenster ganz
oder teilweise mit der Vergussemasse gefüllt ist. Als Verguß

- eignen sich insbesondere Reaktionsharze wie beispielsweise Epoxidharze, Acrylharze oder Siliconharze oder Mischungen hiervon. Weitergehend können dem Verguß Leuchtstoffe zugesetzt sein, die die von dem Chip erzeugte Strahlung in einen 5 anderen Wellenlängenbereich konvertieren. Diese Ausführungsform eignet sich insbesondere für mischfarbiges oder weißes Licht abstrahlende Bauelement.

Um thermische Verspannungen zwischen Gehäuse, Chip und Verguß 10 gering zu halten und insbesondere eine Delamination der Vergußabdeckung zu vermeiden, ist es vorteilhaft, das Vergußvolumen V so zu wählen, daß bezüglich der Höhe H des Chips die Relation

15 $V \leq q \cdot H$

erfüllt ist. Dabei bezeichnet q einen Skalierungsfaktor, dessen Wert kleiner als 10 mm² ist und vorzugsweise 7 mm² beträgt.

20 Bei einer vorteilhaften Weiterbildung der Erfindung ist der Leiterrahmen in ein erstes und ein zweites elektrisches Anschlußteil gegliedert, wobei das thermische Anschlußteil in das erste elektrische Anschlußteil eingeknüpft und der Bond- 25 drahtanschlußbereich auf dem zweiten elektrischen Anschlußteil ausgebildet ist. Zur elektrischen Versorgung ist von einer Kontaktfläche des Chips eine Drahtverbindung zu dem Bonddrahtanschlußbereich geführt.

30 Ein Verfahren zur Herstellung eines erfindungsgemäßen Bauelements beginnt mit der Bereitstellung eines Trägerteiles, das beispielsweise zuvor aus einem Band oder einer Folie gestanzt wurde.

35 Im nächsten Schritt wird ein separat gefertigtes thermisches Anschlußteil in eine dafür vorgesehene Öffnung des Träger- teils eingeknüpft. Nachfolgend wird der Chip auf das thermi-

sche Anschlußteil montiert, beispielsweise durch Aufkleben mittels eines elektrisch leitfähigen Haftmittels oder durch Auflöten. Abschließend wird der so gebildete Leiterrahmen mit einer geeigneten Gehäuseformmasse zur Ausbildung des Gehäuses 5 umhüllt, beispielsweise in einem Spritzguß- oder Spritzpreßverfahren.

Die Montage des Chips auf den Leiterrahmen vor dem Umspritzen hat den Vorteil, daß hierfür auch Hochtemperaturverfahren, 10 beispielsweise Lötverfahren, angewendet werden können. Ange-spritzte Gehäuseteile könnten bei derartigen Temperaturen beschädigt werden. Falls dies nicht relevant ist, können die Verfahrensschritte selbstverständlich auch in anderer Reihenfolge durchgeführt werden.

15 Bei einer Montage des Chips auf den Leiterrahmen vor dem Umspritzen kann der Chip insbesondere bei Temperaturen über 260°C mittels eines Hartlötverfahrens aufgebracht werden. Damit wird ein besonders niedriger Wärmewiderstand zwischen 20 Chip und Leiterrahmen erreicht. Zudem wird eine sehr temperaturbeständige Verbindung zwischen Chip und thermischem Anschlußteil geschaffen und insbesondere beim Einlöten des Bau-elements bei typischen Temperaturen bis etwa 260°C die Gefahr einer Ablösung des Chips verringert.

25 Weitere Merkmale, Vorzüge und Zweckmäßigkeiten der Erfindung werden nachfolgend anhand von fünf Ausführungsbeispielen in Verbindung mit den Figuren 1 bis 5 erläutert.

30 Es zeigen

Figur 1a und 1b eine schematische Aufsicht bzw. Schnittansicht eines Ausführungsbeispiels eines erfindungsgemäßen Leiterrahmens,

35 Figur 2 eine schematische, perspektivische Schnittansicht eines ersten Ausführungsbeispiels eines erfindungs-

gemäßen Gehäuses,

Figur 3 eine schematische, perspektivische Ansicht eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Gehäuses,
5

Figur 4 eine schematische, perspektivische Ansicht eines ersten Ausführungsbeispiels eines erfindungsgemäßen Bauelements und
10

Figur 5 einen schematischen Querschnitt eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Bauelements.

15 Der in Figur 1a und 1b dargestellte Leiterrahmen 2 umfaßt ein in zwei elektrische Anschlußteile 12a,b gegliedertes Träger teil sowie ein thermisches Anschlußteil 4. Die beiden elek trischen Anschlußteile 12a,b enden jeweils in einem Lötan schlüßstreifen 3a,b.
20

Das eine elektrische Anschlußteil 12a weist eine Öffnung in Form einer Öse auf. In die Ösenöffnung ist das thermische An schlußteil 4 eingeknüpft. Dazu kann beispielsweise das ther mische Anschlußteil 4 paßgenau in die Ösenöffnung des elek trischen Anschlußteils 12a eingelegt und nachfolgend nach Art einer Niete mit dem elektrischen Anschlußteil 12a verquetscht werden. Alternative umfangsseitige Verbindungen zwischen dem thermischen 4 und dem elektrischen Anschlußteil 12a, bei spielsweise durch Vernieten, Verlöten oder Verschweißen, sind 25 ebenfalls möglich.
30

Das thermische Anschlußteil 4 ist im wesentlichen rotations symmetrisch und weist Vorsprünge 19 auf, die eine stabile Verankerung des Leiterrrahmens 2 in einem Gehäuse ermöglichen.
35 Weiterhin ist in dem thermischen Anschlußteil 4 eine zentri sche Einsenkung in Form einer Reflektorwanne 16 gebildet, auf deren Bodenfläche ein Chipmontagebereich 11 zur Aufnahme ei-

nes strahlungsemittierenden Chips vorgesehen ist. Die Seitenflächen der Einsenkung dienen als Reflektorträgerflächen.

Der Ösenring des elektrischen Anschlußteils 12a weist eine
5 Aussparung 13 auf, mit der ein zungenförmig gestalteter Bonddrahtanschlußbereich 10 des zweiten elektrischen Anschlußteils 12b überlappt. Dieser Bonddrahtanschlußbereich 10 ist höhenversetzt zu dem abstrahlungsseitigen Rand der Reflektorenwanne angeordnet. Dies ermöglicht bei der Chipmontage kurze
10 Drahtverbindungen zwischen Chip und Bonddrahtanschlußbereich 10, ohne daß hierfür eine Aussparung am Rand der Reflektorenwanne in dem thermischen Anschlußteil erforderlich ist.

In Figur 2 ist perspektivisch ein Längsschnitt durch ein Ausführungsbeispiel eines erfindungsgemäßen Gehäuses dargestellt. Das Gehäuse weist einen Grundkörper 1 aus Kunststoffformmasse auf, der beispielsweise mittels eines Spritzguß- oder Spritzpreßverfahrens hergestellt sein kann. Die Formmasse besteht beispielsweise aus einem Kunststoffmaterial auf der Basis von Epoxidharz oder Acrylharz, kann aber auch aus jedem anderen für den vorliegenden Zweck geeigneten Material bestehen.
20

In den Grundkörper 1 ist ein im wesentlichen Figur 1 entsprechender Leiterrahmen 2 mit zwei elektrischen Anschlußteilen 12a,b und einem darin eingeknüpften thermischen Anschlußteil 4 sowie Lötanschlußstreifen eingebettet, wobei letztere aus dem Gehäusegrundkörper herausragen. Auf der Seite des Chipanschlußbereichs 11 ist das thermische Anschlußteil 4 weitgehend plan ohne Reflektorenwanne ausgebildet.
25

Das thermische Anschlußteil 4 ist dabei so innerhalb des Gehäusegrundkörpers 1 angeordnet, daß die Bodenfläche 6 des thermischen Anschlußteils 4 einen Teil der Grundkörperauflagefläche 7 bildet. Zur mechanisch stabilen Verankerung in dem Gehäusegrundkörper ist das thermische Anschlußteil mit umfangsseitig angeordneten Vorsprüngen 19 versehen.
35

Der Auflagefläche 7 gegenüberliegend ist als Strahlungsaustrittsfenster eine Ausnehmung 8 in dem Gehäusegrundkörper geformt, die zu dem Chipmontagebereich 11 auf dem thermischen
5 Anschlußteil 4 führt, so daß ein darauf zu befestigender strahlungsemittierender Chip sich innerhalb des Strahlungsaustrittsfensters 8 befindet. Die Seitenflächen 9 des Strahlungsaustrittsfensters 8 sind angeschrägt und dienen als Reflektor für die von einem solchen Chip im Betrieb erzeugte
10 Strahlung.

Figur 3 zeigt eine perspektivische Ansicht auf die Auflagefläche eines weiteren Ausführungsbeispiels eines erfundungsgemäßen Gehäuses. Wie bei dem zuvor beschriebenen Ausführungsbeispiel ist die Bodenfläche 6 des thermischen Anschlußteils 4 aus dem Gehäusegrundkörper 1 herausgeführt. Dabei ragt die Bodenfläche 6 des thermischen Anschlußteils 4 etwas aus dem Grundkörpers 1 hervor, so daß im eingebauten Zustand eine sichere Auflage und eine gute Wärmeübergang zwischen
15 dem thermischen Anschlußteil 4 und einem entsprechenden Träger wie beispielsweise einer Leiterplatte oder einem Kühlkörper gewährleistet ist.
20

Im Unterschied zu dem zuvor beschriebenen Ausführungsbeispiel weist der Gehäusegrundkörper 1 eine seitliche, von dem thermischen Anschlußteil 4 zu einer Seitenfläche des Gehäusegrundkörpers 1 verlaufende Nut 20 auf. Ist das Gehäuse auf einen Träger montiert, so erlaubt diese Nut 20 auch im eingebauten Zustand eine Kontrolle der Verbindung zwischen dem Gehäuse und dem Träger. Insbesondere kann damit eine Lötfübung zwischen dem Träger und dem thermischen Anschlußteil überprüft werden.
25
30

In Figur 4 ist eine schematische, perspektivische Ansicht eines Ausführungsbeispiels eines erfundungsgemäßen strahlungsemissierenden Bauelements gezeigt.
35

- Wie bei dem zuvor beschriebenen Ausführungsbeispiel ist ein Leiterrahmen 2 mit einem eingeknüpften thermische Anschlußteil 4 weitgehend in den Gehäusegrundkörper 1 eingebettet, so daß lediglich die Lötanschlußstreifen 3a,b seitlich aus dem
- 5 Gehäusegrundkörper 1 herausragen. Das thermische Anschlußteil 4 bildet in nicht dargestellter Weise einen Teil der Auflagefläche 7 des Gehäusegrundkörpers bildet und ist so von außen thermisch anschließbar.
- 10 Auf dem Chipmontagebereich 11 des thermischen Anschlußteils 4 ist ein strahlungsemittierender Chip 5 wie zum Beispiel eine Lichtemissionsdiode befestigt. Vorzugsweise ist dies ein Halbleiterchip, beispielsweise ein LED-Chip oder ein Laserchip, der mittels eines Hartlots auf das thermische Anschluß-
- 15 teil 4 aufgelötet ist. Alternativ kann der Chip mit einem Haftmittel, das eine ausreichende Wärmeleitfähigkeit aufweist und vorzugsweise auch elektrisch leitfähig ist, auf dem Chipmontagebereich 11 aufgeklebt sein.
- 20 Für effiziente Strahlungsquellen eignen sich insbesondere Halbleitermaterialien auf der Basis von GaAs, GaP und GaN wie beispielsweise GaAlAs, InGaAs, InGaAlAs, InGaAlP, GaN, GaAlN, InGaN und InGaAlN.
- 25 Das Gehäuse des Bauelements entspricht im wesentlichen dem in Figur 2 beziehungsweise 3 dargestellten Gehäuse. Im Unterschied hierzu weist das thermische Anschlußteil 4 eine den Chip 5 umgebende Reflektorwanne 16 auf. Deren Reflektorflächen gehen im wesentlichen nahtlos in die Seitenflächen 9 des
- 30 Strahlungsaustrittsfensters 8 über, so daß ein Gesamtrefflektor entsteht, der sich aus einem von dem thermischen Anschlußteil 4 gebildeten Teilbereich und einem von den Seitenflächen 9 des Strahlungsaustrittsfensters 8 gebildeten Teilbereich zusammensetzt.
- 35 Weiterhin ist das Strahlungsaustrittsfenster 8 in der Längsrichtung des Bauelements etwas erweitert und umfaßt einen

Bonddrahtanschlußbereich 10 auf dem nicht mit dem thermischen Anschlußteil verbundenen elektrischen Anschlußteil 12b des Leiterrahmens 2. Von diesem Bonddrahtanschlußbereich 10 ist eine Drahtverbindung 17 zu einer auf dem Chip 5 aufgebrachten 5 Kontaktfläche geführt.

Der Bonddrahtanschlußbereich 10 ist höhenversetzt zum abstrahlungsseitigen Rand der Reflektorwanne 16 des thermischen Anschlußteils angeordnet. Dies ermöglicht eine kurze und da- 10 mit mechanisch stabile Drahtverbindung zwischen Chip 5 und Bonddrahtanschlußbereich 10, da letzterer nahe an den Chip 5 herangeführt werden kann. Weiterhin wird dadurch die Höhe des entstehenden Drahtbogens gering gehalten und so die Gefahr eines Kurzschlusses, der beispielsweise bei einer Abdeckung 15 des Chips mit einem Verguß durch seitliches Umklappen der Drahtverbindung auf das thermische Anschlußteil entstehen könnte, reduziert.

In Figur 5 ist der Querschnitt eines weiteren Ausführungsbe- 20 spiels eines erfindungsgemäßen Bauelements dargestellt. Der Schnittverlauf entspricht der in Figur 4 eingezeichneten Linie A-A.

Wie bei dem in Figur 3 gezeigten Ausführungsbeispiel ist das 25 thermische Anschlußteil auf der Montageseite für den Chip 5 mittig eingesenkt, so dass eine Reflektorwanne 16 für die von dem Chip 5 erzeugte Strahlung entsteht, an die sich die Reflektorseitenwände 9 des Strahlungsaustrittsfensters 8 anschließen.

30 Im Unterschied zu dem vorigen Ausführungsbeispiel weist der so gebildete Gesamtreflektor 15 an der Übergangsstelle zwischen den Teilreflektoren 9,16 einen Knick auf. Durch diese Formgebung wird eine verbesserte Annäherung des Gesamtreflek- 35 tors 15 an ein Rotationsparaboloid und somit eine vorteil- hafte Abstrahlcharakteristik erreicht. Das vom Chip in einem steileren Winkel zur Bodenfläche der Wanne abgestrahlte Licht

wird stärker zur Hauptabstrahlrichtung 27 des Bauelements hin umgelenkt.

- Zum Schutz des Chips ist das Strahlungsaustrittsfenster 8 mit
5 einem Verguß 14, beispielsweise ein Reaktionsharz wie Epoxid-
harz oder Acrylharz, gefüllt. Zur Bündelung der erzeugten
Strahlung kann der Verguß 14 nach Art einer Linse mit einer
leicht gewölbten Oberfläche 18 geformt sein.
- 10 Um eine mechanisch stabile Verbindung von Verguß 14, Gehäuse-
grundkörper 1 und Leiterrahmen 2 zu erzielen, ist es vorteil-
haft, die Höhe A der Reflektorwanne 16 des thermischen An-
schlußteils geringer als die doppelte Höhe H des Chips 5 zu
wählen. Die Höhe B des gesamten von dem thermischen Anschluß-
15 teil 4 und dem Gehäusegrundkörper 1 gebildeten Reflektors 15
sollte kleiner als die vierfache Höhe H des Chips 5 sein.
Schließlich ist es vorteilhaft, das Strahlungsaustrittsfen-
ster 8 so zu formen, daß für das Volumen V des Vergusses die
obengenannte Relation

20

$$V \leq q \cdot H$$

- erfüllt ist, wobei q etwa 7mm^3 beträgt. Durch Erfüllung die-
ser Maßgaben wird die mechanische Stabilität und damit die
25 Belastbarkeit und Lebensdauer des Bauelements vorteilhaft er-
höht. Die Verankerung des thermischen Anschlußteils 4 mittels
der Vorsprünge 19 in dem Gehäusegrundkörper 1 trägt ebenfalls
hierzu bei.
- 30 Zur Herstellung eines solchen Bauelements wird zunächst für
den Leiterrahmen 2 ein Trägerteil, das beispielsweise aus ei-
nem Trägerband ausgestanzt wird, mit einer Öffnung bereitge-
stellt. Nachfolgend wird das thermische Anschlußteil 4 in die
Öffnung des Trägerteils eingesetzt und mit dem Trägerteil
35 verquetscht.

Im nächsten Schritt wird auf dem thermischen Anschlußteil 4 der strahlungsemittierende Chip 5 aufgebracht, beispielsweise aufgelötet oder aufgeklebt. Zur Ausbildung des Gehäusegrundkörpers 1 wird der aus dem Trägerteil und dem thermischen Anschlußteil 4 gebildete Leiterrahmen 2 mit dem vormontierten Chip 5 von einer Formmasse umhüllt, wobei der den Chip 5 umgebende Bereich sowie der Bonddrahtanschlußbereich 10 ausgespart wird. Dies kann beispielsweise in einem Spritzguß- oder Spritzpreßverfahren erfolgen. Von dem Bonddrahtanschlußbereich 10 wird abschließend eine Drahtverbindung 17 zu einer Kontaktfläche des Chips 5 geführt.

Alternativ kann nach der Verbindung von Trägerteil und thermischem Anschlußteil 4 der so gebildete Leiterrahmen 2 zuerst von der Formmasse umhüllt und der Chip 5 danach auf dem Chipanschlußbereich 11 befestigt, vorzugsweise aufgeklebt, und kontaktiert werden.

Die Erläuterung der Erfindung anhand der beschriebenen Ausführungsbeispiele stellt selbstverständlich keine Einschränkung der Erfindung auf dieses Ausführungsbeispiel dar. Weitergehend können erfindungsgemäße Leiterrahmen und Gehäuse auch für andere Bauelemente, die eine effiziente Wärmeableitung erfordern, bzw. als Chip auch anderweitige Halbleiterkörper verwendet werden.

Das oben beschriebene Verfahren, umfassend die Schritte Bereitstellen eines Leiterrahmens und Aufbringen des Chip, vorzugsweise durch Auflöten, vor einer Umhüllung des Leiterrahmens mit einer Formmasse, wobei die Umgebung des Chips ausgespart bleibt, ist auch auf andere Gehäusebauformen ohne thermisches Anschlußteil übertragbar und stellt für sich schon eine Erfindung dar.

Die Vorteile dieses Verfahrens bestehen insbesondere darin, daß die Befestigung des Chips weitgehend unabhängig von den Eigenschaften der Formmasse optimiert werden kann. Ein Lötz-

- prozeß kann beispielsweise in einem erweiterten Temperaturbereich stattfinden. Dabei können Lote, vorzugsweise mit einer Schmelztemperatur über 260° C wie beispielsweise Hartlote, verwendet werden, die eine Verbindung mit sehr geringem Wärmeleitwiderstand zwischen Chip und Leiterrahmen ausbilden. Weiterhin wird damit die Gefahr verringert, daß sich beim Auflöten eines entsprechenden Bauelements auf eine Leiterplatte der Chip ablösen könnte.

Patentansprüche

1. Leiterrahmen (2) für ein strahlungsemittierendes Bauelement, vorzugsweise ein Lichtemissionsdiodenbauelement, mit mindestens einem Chipmontagebereich (11), mindestens einem Drahtanschlußbereich (10) und mindestens einem externen elektrischen Anschlußstreifen (3a,b),
dadurch gekennzeichnet, daß ein Trägerteil vorgesehen ist, das den Drahtanschlußbereich (10) und den Anschlußstreifen (3a,b) aufweist und in das ein separat gefertigtes thermisches Anschlußteil (4) eingeknüpft ist, das den Chipmontagebereich (11) aufweist.
2. Leiterrahmen (2) nach Anspruch 1,
dadurch gekennzeichnet, daß das Trägerteil eine Klammer oder Öse aufweist, in die das thermische Anschlußteil (4) eingeknüpft ist.
3. Leiterrahmen (2) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß zwischen dem thermischen Anschlußteil (4) und dem Trägerteil eine Quetsch-, Niet-, Löt- oder Schweißverbindung vorgesehen ist.
4. Leiterrahmen (2) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß das thermische Anschlußteil (4) eine Reflektorwanne (16) aufweist, die den Chipmontagebereich (11) umfaßt.
5. Leiterrahmen (2) nach Anspruch 4,
dadurch gekennzeichnet, daß der Drahtanschlußbereich (10) gegenüber dem Chipmontagebereich (11) von diesem aus gesehen erhöht angeordnet ist.
6. Leiterrahmen (2) nach Anspruch 5,
dadurch gekennzeichnet, daß

der Drahtanschlußbereich (10) vom Chipmontagebereich (11) gesehen über dem Rand der Reflektorwanne (16) angeordnet ist.

7. Leiterrahmen (2) nach Anspruch 4, 5 oder 6,

d a d u r c h g e k e n n z e i c h n e t, daß

5 die Höhe (A) der Reflektorwanne (16) die zweifache Höhe (H) eines zur Montage auf den Chipmontagebereich (11) vorgesehnen Chips (5) nicht übersteigt.

8. Leiterrahmen (2) nach einem der Ansprüche 1 bis 7,

10 d a d u r c h g e k e n n z e i c h n e t, daß das thermische Anschlußteil (4) Cu, Al, Mo, Fe, Ni oder W enthält.

9. Leiterrahmen (2) nach einem der Ansprüche 1 bis 8,

15 d a d u r c h g e k e n n z e i c h n e t, daß der Chipmontagebereich (11) mit einer Oberflächenvergütung zur Verbesserung der Chipmontage versehen ist.

10. Leiterrahmen (2) nach Anspruch 9,

20 d a d u r c h g e k e n n z e i c h n e t, daß die Oberflächenvergütung für die Chipmontage eine Ag- oder Au-Beschichtung umfaßt.

11. Leiterrahmen (2) nach einem der Ansprüche 1 bis 10,

25 d a d u r c h g e k e n n z e i c h n e t, daß der Leiterrahmen (2) Cu oder Fe enthält.

12. Leiterrahmen (2) nach einem der Ansprüche 1 bis 11,

d a d u r c h g e k e n n z e i c h n e t, daß

30 der externe elektrische Anschlußstreifen (3a,b) eine Oberflächenvergütung zur Verbesserung der Bauelement-Montageeigenschaften aufweist.

13. Leiterrahmen (2) nach Anspruch 12,

35 d a d u r c h g e k e n n z e i c h n e t, daß

die Oberflächenvergütung zur Verbesserung der Bauelement-Montageeigenschaften eine Ag-, Au-, Sn- oder Zn-Beschichtung umfaßt.

- 5 14. Gehäuse für strahlungsemittierende Bauelemente, vorzugsweise Lichtemissionsdioden,
d a d u r c h g e k e n n z e i c h n e t , daß
es einen Leiterrahmen (2) nach einem der Ansprüche 1 bis 13
enthält.

10

15. Gehäuse nach Anspruch 14,
d a d u r c h g e k e n n z e i c h n e t , daß
das Gehäuse (1) einen Gehäusegrundkörper (1) aufweist, der
aus einer Formmasse gebildet ist und in den der Leiterrahmen
15 (2) derart eingebettet ist, daß der elektrische Anschluß-
streifen (3a,b) aus dem Gehäusegrundkörper herausgeführt ist
und eine thermische Anschlußfläche des thermischen Anschluß-
teiles (4) von außen thermisch anschließbar ist.

- 20 16. Gehäuse nach Anspruch 14 oder 15,
d a d u r c h g e k e n n z e i c h n e t , daß
der Gehäusegrundkörper (1) ein Strahlungsaustrittsfenster (8)
aufweist und das thermische Anschlußteil (4) derart in den
Gehäusegrundkörper eingebettet ist, daß der Chipmontagebe-
25 reich (11) im Strahlungsaustrittsfenster (8) angeordnet ist.

- 30 17. Gehäuse nach Anspruch 16,
d a d u r c h g e k e n n z e i c h n e t , daß
die Seitenwände (9) des Strahlungsaustrittsfensters (8) als
Reflektorflächen geformt sind.

18. Gehäuse nach Anspruch 17,
d a d u r c h g e k e n n z e i c h n e t , daß
das thermische Anschlußteil (4) eine Reflektoranwanne (16) auf-
35 weist, die einen ersten Teilbereich eines Reflektors (15)
bildet, der in einen zweiten, von den Seitenwänden (9) des

21

Strahlungsaustrittsfensters (8) gebildeten Teilbereich des Reflektors (15) übergeht.

19. Gehäuse nach Anspruch 18,
5 durch gekennzeichnet, daß die Gesamthöhe (B) des Reflektors (15) die vierfache Höhe (H) eines zur Montage auf den Chipmontagebereich (11)vorgesehenen Chips (5) nicht übersteigt.
- 10 20. Gehäuse nach Anspruch 18 oder 19,
durch gekennzeichnet, daß Reflektorwände der Reflektorwanne (16) und die Reflektorflächen des Strahlungsaustrittsfensters (8) unterschiedliche Winkel mit der Hauptabstrahlungsrichtung (27) des Bauelements
15 einschließen.
21. Gehäuse nach Anspruch 20,
durch gekennzeichnet, daß der von den Reflektorwänden der Reflektorwanne (16) mit der
20 Hauptabstrahlungsrichtung (27) eingeschlossene Winkel größer ist als der Winkel, der von den Reflektorflächen des Strahlungsaustrittsfensters mit der Hauptabstrahlungsrichtung (27) eingeschlossen ist.
- 25 22. Gehäuse nach einem der Ansprüche 14 bis 21,
durch gekennzeichnet, daß es oberflächenmontierbar ist.
23. Strahlungsemittierendes Bauelement mit einem strahlungs-emittierenden Chip (5),
30 durch gekennzeichnet, daß es einen Leiterrahmen (2) nach einem der Ansprüche 1 bis 13 oder ein Gehäuse nach einem der Ansprüche 14 bis 22 aufweist.
- 35 24. Strahlungsemittierendes Bauelement nach Anspruch 23,
durch gekennzeichnet, daß der Chip (5) ein Halbleiterchip ist.

25. Strahlungsemittierendes Bauelement nach Anspruch 23 oder
24,

d a d u r c h g e k e n n z e i c h n e t, daß

5 der Chip (5) zumindest teilweise mit einer strahlungsdurch-
lässigen Masse (14), insbesondere einer Kunststoffmasse, wie
ein Gießharz oder eine Pressmasse umhüllt ist.

26. Strahlungsemittierendes Bauelement nach Anspruch 25,

10 d a d u r c h g e k e n n z e i c h n e t, daß
die Kunststoffmasse ein Epoxidharz, ein Acrylharz, ein Sili-
conharz oder eine Mischung dieser Harze enthält.

27. Strahlungsemittierendes Halbleiterbauelement nach An-

15 spruch 25 oder 26,

d a d u r c h g e k e n n z e i c h n e t, daß

für das Volumen (V) der strahlungsdurchlässigen Masse (14)
gilt:

20 $V \leq q \cdot H,$

wobei H die Höhe des Chips (5) und q ein Skalierungsfaktor
ist, dessen Wert kleiner als 10 mm² ist und vorzugsweise 7
mm² beträgt.

25

28. Strahlungsemittierendes Halbleiterbauelement nach einem
der Ansprüche 23 bis 27,

d a d u r c h g e k e n n z e i c h n e t, daß

der Chip (5) auf dem Chipmontagebereich (11) des thermischen
30 Anschlußteils (4) befestigt ist.

29. Strahlungsemittierendes Halbleiterbauelement nach An-
spruch 28,

d a d u r c h g e k e n n z e i c h n e t, daß

35 der Chip (5) auf den Chipmontagebereich (11) aufgeklebt oder
aufgelötet ist.

30. Strahlungsemittierendes Halbleiterbauelement nach An-
spruch 29,

d a d u r c h g e k e n n z e i c h n e t , daß
der Chip (5) mittels eines Hartlots auf dem Chipmontagebe-
reich (11) befestigt ist.

31. Strahlungsemittierendes Halbleiterbauelement nach An-
spruch 30,

d a d u r c h g e k e n n z e i c h n e t , daß
10 die Schmelztemperatur des Hartlots größer als 260° C ist.

32. Strahlungsemittierendes Halbleiterbauelement nach einem
der Ansprüche 23 bis 31,

d a d u r c h g e k e n n z e i c h n e t , daß
15 der Chip (5) mit dem Drahtanschlußbereich (10) mittels einer
Drahtverbindung (17) elektrisch leitend verbunden ist.

33. Verfahren zur Herstellung eines Halbleiterbauelements
nach einem der Ansprüche 23 bis 32,

20 g e k e n n z e i c h n e t d u r c h die Schritte

- Bereitstellen eines Trägerteils,
- Einknüpfen eines einen Chipmontagebereich (11) aufwei-
senden thermischen Anschlußteils (4) in das Trägerteil,
- Aufbringen eines strahlungsemittierenden Chips (5) auf
den Chipmontagebereich (11),
- Einbetten des Trägerteiles (2) und des thermische An-
schlußteils (4) in eine Gehäuseformmasse.

34. Verfahren nach Anspruch 33,

30 d a d u r c h g e k e n n z e i c h n e t , daß
das thermische Anschlußteil (4) durch Vernieten, Verquetschen
oder Verlöten mit dem Trägerteil verbunden wird.

35. Verfahren nach Anspruch 33 oder 34,

35 d a d u r c h g e k e n n z e i c h n e t , daß

der Chip (5) vor dem Einbetten des Trägerteils und des thermische Anschlußteils (4) in die Gehäuseformmasse auf den Chipmontagebereich (11) aufgebracht wird.

5

36. Verfahren nach einem der Ansprüche 33 bis 35,
d a d u r c h g e k e n n z e i c h n e t, daß
der Chip (5) auf den Chipmontagebereich (11) aufgelötet wird,
wobei die Löttemperatur größer als 260 °C ist.

10

37. Verfahren nach einem der Ansprüche 33 bis 36,
d a d u r c h g e k e n n z e i c h n e t, daß
der Chip (5) mittels eines Hartlots auf dem Chipmontagebe-
reich (11) befestigt wird.

15

38. Verfahren nach einem der Ansprüche 33 bis 37,
d a d u r c h g e k e n n z e i c h n e t, daß
das Einbetten des Trägerteils (2) und des thermische An-
schlußteils (4) in eine Gehäuseformmasse mittels eines
20 Spritzguß- oder Spritzpreßverfahrens erfolgt.

1/3

FIG 1a

FIG 1b

2/3

FIG 2

FIG 3

3/3

FIG 4

FIG 5

