Einführun g GIS

BA AI Angewandte Informatik

Funktionsweise von GIS

Technische Hochschule Deggendorf

Prof. Dr. Roland Zink roland.zink@th-deg.de

Wiederholung

W

GIS im Alltag?

Phototagging

Wetter

Geocaching

GPS und Tracking

Karten und Pläne

Navigation

GIS im Berufsleben Wiederholung **Geoinformation und Geoinformationssysteme** Ver-Raum-**Umwelt** Industrie Verwaltung planung messung Bodeninformationssystem Bauleitpläne Verwaltungsatlas Altlastenkataster Energieatlas Grabungsatlas Geothermie Archive Biotope

- Naturschutzgebiete
- Tierwanderung
- Bodenschätzung

- Bergbau
- Tourismus

- Dokumentation
- Luftbilder

- Katasterpläne
- Digitale Flurkarte
- Digitale Ortskarte
- Topographische Karte
- Orthofotos

- Logistik
- Geomarketing
- Kundenmanagement
- Ver- und Entsorgung
- Netzplanung

Geoinformation und Geoinformationssysteme Umwelt Vermessung Raumplanung Industrie Verwaltung ...

aktuell & zukünftig

sehr hohe Relevanz aktuell & zukünftig

sehr hohe Relevanz aktuell & zukünftig

sehr hohe Relevanz aktuell Relevanz

zukünftig stark steigend aktuell hohe Relevanz

zukünftig stark steigend

Berufliche Perspektive

Wiederholung

GIS in der Wissenschaft

Geographie

Naturwissenschaften

Kartographie

Wirtschaft

Informatik

. . . .

Stadtforschung Raumplanung

Architektur

Klimaforschung Risikoforschung Naturkatastrophen

Geomarketing Standortanalysen Landschaftsarchitektur

Umweltmodellierung

Geologie

Fernerkundung

Medien / Neue Medien

Kommunikation

Web-GIS

Navigation
Mobile Dienste
Location Based Services
Virtuelle Welten

Hausaufgabe

ESRI-Map Book Vol. 29 Wo kommt GIS zum Einsatz und welchen Mehrwert bieten die GI Systeme in den verschiedenen Anwendungen?

Inhalt

- 1. Funktionsweise von GIS
- 2. Abbildung der realen Welt
- 3. Layerprinzip
- 4. Geoobjekt(e)
- 5. GIS-Software
- 6. Übung: Geodaten in ArcGIS

Arbeitsablauf einer GIS-Arbeit

R + E

Recherchieren

Bayerisches Landesamt für Statistik und Datenverarbeitung

P

14

Modelle und Modellbildung in GIS

Modell = eine vereinfachte Darstellung der Wirklichkeit

Modelle und Modellbildung

Merkmale eines Modells (vgl. Bill 2010)

- Abbildung: Ein Modell ist ein Abbild der Realität bzw. eines Gegenstandes (der selbst ein Modell sein kann)
- Informationsverlust: Ein Modell erfasst nicht alle Attribute des Originals sondern nur diejenigen, die von Interesse sind
- 3. Pragmatismus (Nützlichkeit):

Warum?

Wozu?

Für Wen?

Eine Abbildung im Maßstab 1:1 ohne inhaltliche Reduktion hilft bei der Klärung von räumlichen Fragestellungen nicht weiter!

Modelle und Modellbildung in GIS

Modell = eine vereinfachte Darstellung der Wirklichkeit

Von der realen Welt zum digitalen Abbild (vgl. Bill 2010, S. 19)

Ausschnitt reale Welt

Objektklasse (die von Interesse ist)

Anwendungsschema

z.B. Gebäude Parzelle

Anwendungsschemata = konzeptuelles Schema für Daten einer Anwendung

- → Formale Beschreibung der Datenstruktur und des Dateninhalts
- → Einheitliche Datenstruktur und eindeutige Informationen über die Daten
- → Ergebnis der darstellenden und textlichen Beschreibung eines Modells mittels einer **normierten Modellierungssprache** (z.B. UML)

Von der realen Welt zum digitalen Abbild (vgl. Bill 2010, S. 19)

Ausschnitt reale Welt

Objektklasse (die von Interesse ist)

Anwendungsschema

Datenbank (logisches Schema)

z.B. Gebäude Parzelle

Datenbank(-architektur) (physische Infrastruktur)

Von der realen Welt zum digitalen Abbild (vgl. Bill 2010, S. 19)

Ausschnitt reale Welt

Objektklasse (die von Interesse ist)

Anwendungsschema

Datenbank (logisches Schema)

Digitales Abbild

z.B. Gebäude Parzelle

Layerprinzip

- → synonym: **Ebenenprinzip**
- → Geometriedaten werden streng nach ihrem thematischen Inhalt in verschiedenen Ebenen (Layern) gespeichert
- → Der Raumbezug jeder Ebene lässt eine Verknüpfung zu (Ebenen liegen passgenau "übereinander")
- → Die Ebenen lassen sich anwendungs- und problemorientiert hinzufügen bzw. wegschalten

Aufteilung der Realität in einzelne Ebenen

Gebäude

Straßen

Flächennutzung

Wirklichkeit / Realität = sehr komplex

Nutzer- und projektbezogene Auswahl an Informationsebenen

Mathematische Beschreibung R = E₁ U E₂ U E₃ U ... U E_n

Geoobjekt (auch räumliches Objekt)

- = eine Einheit, " ... welche mittels Geodaten eindeutig beschreibbar, in der Realität identifizierbar und referenzierbar ist." (Bill 2010, S. 20)
- → d.h. Abbild einer konkreten physisch, geometrisch oder begrifflich begrenzten Einheit der realen Welt
- → oder ein identifizierbares Merkmal der Erdoberfläche
- → Quantitative Komponente: z.B. Geometrie
- → Qualitative Komponente: z.B. Thema, Attributinformation(en)

Geometrische Eigenschaften

Topologische Eigenschaften

Thematische Eigenschaften

Temporale Eigenschaften

- → Objektidentifikator
- → Metadaten
- → Graphische Ausprägung

Geometrische Eigenschaften

- → Beschreibung der Lage und Form von Objekten im Raum
- → Vektor- oder Rasterform
- → Einheitliches Bezugssystem ist definiert (Koordinatensystem)
- → ISO 19107 (Geographic Information Spatial Schema")
- → ISO 19137 (Geographic Infromation Core Profile of Spatial Schema)

Topologische Eigenschaften

- → Beschreibung der relativen r\u00e4umlichen Beziehungen (ABER: von der Geometrie abstrahiert!)
- → Topologie: Knoten, Kanten, Flächen, Nachbarschaftsbeziehungen
- → Aussagen zur relativen Lage
 - → Geometrien berühren sich
 - → Geometrien überschneiden sich
 - → Geometrien liegen innerhalb (z.B. Baum innerhalb eines Flurstückes)
- → ISO 19107 (Geographic Information Spatial Schema")
- → ISO 19137 (Geographic Infromation Core Profile of Spatial Schema)

Exkurs: Topologie

- → Modellierung topologischer Beziehungen (Lage der Objekte zueinander)
- → 3D: Topologie lässt sich in einem einfachen Schema auch aus den Geometrien erschließen

→ 2D: Topologie lässt sich i.d.R. nicht ableiten Kreuzung **Beispiel: Straßenkreuzung** → Höhengleichheit zwischen den beiden Straßen Brücke → Höhenunterschied zwischen den beiden Straßen

Thematische Eigenschaften (Semantik)

- → sind beschreibende Merkmale, Sachdaten und Attribute
- → Beispiel Baum
 - → Alter
 - → Baumart
 - → Eigentum
 - **→** ...

Temporale Eigenschaften

- → beschreibt den Zeitpunkt bzw. den Zeitraum für den die thematischen Eigenschaften gelten
- → Verändert sich die thematische Eigenschaft, so sind dynamische Abbildungen möglich
- → ISO 19108 (Geographic Information Temporal Schema)
- → Ånder sich die Geometrie oder Lage des Geoobjektes im Zeitverlauf, so spricht man auch von bewegten Geoobjekten
- → ISO 19141 (Geographic Information Schema for Moving Objekts)

Objektidentifikator (Schlüssel)

Eindeutige Identifikation des Geoobjektes in einem System

- → weißt ein Objekt in der Realität je ein Objekt in GIS zu
- → über den Objektidentifikator werden die anderen Informationen (Geometrie, Topologie, Thematik und Zeit) miteinander verbunden

Metadaten

Auskunft über die Hintergründe und Verwendbarkeit der Objektinformationen

→ ISO 1941 (Geographic Information – Metadata)

Graphische Ausprägung

Auskunft über die Darstellung des Objektes in einer Karte

→ Farbe, Füllung, Symbolik, Linienart, Fonts, Grauwerte, usw.

Klassifizierung von GIS

→ AutoCAD Map3D oder Civil3D

- Kostenpflichtig (kostenlose Testversion)
- Professionelles CAD- und GIS-Programm
- Sehr viele Schnittstellen und hohe Interoperabilität
- Zahlreiche und umfassende Analysefunktionen vorhanden
- 3D-Visualisierungen
 - Web: <u>www.autodesk.de/map3d</u>

→ Quantum GIS 2.2 (QGIS Valmiera)

- Ständig weiterentwickelte Freeware (GNU Public License)
- Linux, Unix, Mac OSX, Windows & Android
- Einfache Programmoberfläche und Bedienung
- Grundlegende Analysefunktionen vorhanden
 - Web: www.qgis.org/

→ gvSIG (2.0)

- Ständig weiterentwickelte Freeware (GNU Public License)
- Linux, Unix, Mac OSX, Windows & Android
- Umfangreiche Analysefunktionalitäten (sextante-toolbox)
- Programmoberfläche und Bedienung etwas kompliziert
 - Web: www.gvsig.org/

- → ESRI ArcGIS 10.2 (bzw. 10.X)
- Umfassendes und weltweit meistgenutzte GIS-Software
- Desktop-Lösung mit zahlreichen zusätzlichen Web-Applikationen
- kostenpflichtige Software

• für Studenten kostenlose Vollversionen (1 Jahr)

Laden Sie Geodaten der Europäischen Union in die Software ArcMap ein.

Prof. Dr. Roland Zink Fakultät Elektrotechnik und Medientechnik

Tel: +49 - 8551 - 91 764 - 28

Email: roland.zink@th-deg.de

Edlmairstr. 6+8 94469 Deggendorf

www.th-deg.de/