Computer Science Logic Circuits

LOGIC CIRCUITS

COMPUTER SCIENCE

Topic: Logic Circuits

Duration: 1 hour 20 minutes

INSTRUCTIONS

- Carry out every instruction in each task.
- Answer all questions.
- Use a black or dark blue pen.
- You may use an HB pencil for any diagram, graphs or rough working.
- Calculator Not Allowed.
- Show your workings if relevant.

INFORMATION

- The total marks for this paper is **60 marks**.
- The number of marks for each question or part question is shown in brackets [].

Computer Science Logic Circuits

1. A system is monitored using sensors. The sensors output binary values corresponding to conditions, as shown in the table:

Parameter	Description of parameter	Binary value	Description of condition
P	Oil pressure	0	pressure >= 3 bar
		1	pressure < 3 bar
Т	Temperature	0	temperature >= 200 K
		1	Temperature < 200 K
R	Rotation	0	rotation <= 1000 rpm
		1	rotation > 1000 rpm

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following conditions are met:

- Oil pressure >= 3 bar and temperature >= 200 K
- oil pressure < 3 bar and rotation > 1000 rpm
- temperature >= 200K and rotation > 1000 rpm
- (a) Draw a logic circuit to represent the above system. [5]
- **(b)** Draw and fill the truth table for the logic circuit. [4]
- 2. For the given Logic circuit:

- (a) Create and fill truth table.
- **(b)** Write optimized SOP using K-Map for each output variable. [8]

[4]

Computer Science Logic Circuits

3. For the given logic circuit

- (a) Create and fill truth table. [4]
- **(b)** Write SOP using the truth table [3]
- (c) Simplify the SOP using Boolean Algebra [3]
- 4. For the given logic circuit

- (a) Create and fill truth table. [4]
- (b) Create simplified SOP using K-Map [6]
- **5.** Simplify the following Boolean Expressions. Show your workings.

(a)
$$\overline{(\overline{W} + X).(Y + \overline{Z})}$$
 (Use De Morgan's Theorem) [4]

(b)
$$\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D}$$

- **6.** Simplify the Boolean expression $\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D}$ using K-Map. [6]
- **7.** For X = (A'.B + (B' + C)).C'
 - (a) Draw the logic circuit. [4]
 - **(b)** Simplify the expression using K-Map. [5]