

1882. Process Tasks Using Servers

Medium Topics Companies Hint

You are given two 0-indexed integer arrays servers and tasks of lengths n and m respectively. servers [i] is the weight of the i^{th} servers [i] is the weight servers [i] in [i] servers [i] is the weight servers [i] in [i] servers [i] servers [i] is the [i] servers [i

Tasks are assigned to the servers using a task queue. Initially, all servers are free, and the queue is empty.

At second j, the jth task is **inserted** into the queue (starting with the 0th task being inserted at second 0). As long as there are free serve

If there are no free servers and the queue is not empty, we wait until a server becomes free and immediately assign the next task. If multiple

A server that is assigned task j at second t will be free again at second t + tasks[j].

Build an array ans of length m, where ans [j] is the index of the server the jth task will be assigned to.

Return the array ans.

Example 1:

Input: servers = [3,3,2], tasks = [1,2,3,2,1,2]

Output: [2,2,0,2,1,2]

Explanation: Events in chronological order go as follows:

- At second 0, task 0 is added and processed using server 2 until second 1.
- At second 1, server 2 becomes free. Task 1 is added and processed using server 2 until second 3.
- At second 2, task 2 is added and processed using server 0 until second 5.
- At second 3, server 2 becomes free. Task 3 is added and processed using server 2 until second 5.
- At second 4, task 4 is added and processed using server 1 until second 5.
- At second 5, all servers become free. Task 5 is added and processed using server 2 until second 7.

Example 2:

Input: servers = [5,1,4,3,2], tasks = [2,1,2,4,5,2,1]

Output: [1,4,1,4,1,3,2]

Explanation: Events in chronological order go as follows:

- At second 0, task 0 is added and processed using server 1 until second 2.
- At second 1, task 1 is added and processed using server 4 until second 2.
- At second 2, servers 1 and 4 become free. Task 2 is added and processed using server 1 until secor
- At second 3, task 3 is added and processed using server 4 until second 7.
- At second 4, server 1 becomes free. Task 4 is added and processed using server 1 until second 9.
- At second 5, task 5 is added and processed using server 3 until second 7.
- At second 6, task 6 is added and processed using server 2 until second 7.

Constraints:

- servers.length == n
- tasks.length == m
- 1 <= n, m <= $2 * 10^5$
- 1 <= servers[i], tasks[j] <= 2 * 10⁵

Seen this question in a real interview before? 1/4

Yes No

Accepted 30.3K Submissions 76.1K Acceptance Rate 39.9%

Topics

Companies

O Hint 1