MATH 2016 (13177) STATISTICAL MODELLING

Matrix definitions and results

 $\mathbf{1}_n$ is a column vector consisting of n ones and n is the number of observations in the random sample. Note that $\mathbf{1}_n'\mathbf{1}_n=n$

 \mathbf{J}_n is the square matrix of order *n* whose elements are all 1 and $\mathbf{J}_n^2 = n\mathbf{J}_n$.

Lemma I.1: The transpose of a matrix displays the following properties:

- 1. $(\mathbf{A}')' = \mathbf{A}$.
- 2. **a** is a column vector and **a**' is the corresponding row vector.
- 3. $(c\mathbf{A} + d\mathbf{B})' = c\mathbf{A}' + d\mathbf{B}'$.
- 4. (AB)' = B'A'.
- 5. $\mathbf{A}' = \mathbf{A}$ provided \mathbf{A} is symmetric.
- 6. The product of two different symmetric matrices is not symmetric (AB)' = BA for **A** and **B** symmetric.
- 7. The product of any matrix with its transpose is symmetric $(\mathbf{A'A})' = \mathbf{A'}(\mathbf{A'})' = \mathbf{A'A}$ and $(\mathbf{AA'})' = (\mathbf{A'})' \mathbf{A'} = \mathbf{AA'}$.
- 8. A column vector premultiplied by a row vector is a scalar and so is symmetric $\mathbf{a}'\mathbf{b} = \sum_{i=1}^{n} a_i b_i$ and $\mathbf{a}'\mathbf{b} = \mathbf{b}'\mathbf{a} = (\mathbf{a}'\mathbf{b})'$.
- 9. $\mathbf{a}'\mathbf{a} = \sum_{i=1}^{n} a_i^2$, a scalar.
- 10. A column vector of order n post multiplied by its transpose is a symmetric matrix of order $n \times n$ from property 7 we have $(\mathbf{aa'})' = \mathbf{aa'}$.

Definition I.6: The **rank** of an $n \times q$ matrix **A** with $n \ge q$ is the number of linearly independent columns of the matrix. The matrix is said to be of **full rank**, or rank q, if, none of the columns in the matrix can be written as a linear combination of the other columns.

Lemma XI.1: Let **X** be an $n \times f$ matrix with $n \ge f$. Then $rank(\mathbf{X}) = rank(\mathbf{X}'\mathbf{X})$.

Definition XII.2: The trace of a square matrix is the sum of its diagonal elements. ■

Lemma XII.3: Let c be a scalar and **A**, **B** and **C** be matrices. Then, when the appropriate operations are defined, we have

- $trace(\mathbf{A}') = trace(\mathbf{A})$
- $trace(c\mathbf{A}) = c \times trace(\mathbf{A})$
- $trace(\mathbf{A} + \mathbf{B}) = trace(\mathbf{A}) + trace(\mathbf{B})$

- trace(AB) = trace(BA)
- trace(ABC) = trace(CAB) = trace(BCA)
- $trace(\mathbf{A} \otimes \mathbf{B}) = trace(\mathbf{A}) trace(\mathbf{B})$
- $trace(\mathbf{A}'\mathbf{A}) = 0$ if and only if $\mathbf{A} = \mathbf{0}$.

For **B** idempotent, $rank(\mathbf{B}) = trace(\mathbf{B})$.

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}' & \mathbf{D} \end{bmatrix} \text{ then } \mathbf{M}^{-1} = \begin{pmatrix} \mathbf{M}^{-1} \end{pmatrix}' = \begin{bmatrix} \mathbf{U} & \mathbf{V} \\ \mathbf{V}' & \mathbf{W} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{-1} - \mathbf{V} \mathbf{B}' \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B} \mathbf{W} \\ -\mathbf{W} \mathbf{B}' \mathbf{A}^{-1} & \left(\mathbf{D} - \mathbf{B}' \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \end{bmatrix}$$

Definition IX.3: The direct-product operator is denoted \otimes and, if \mathbf{A}_r and \mathbf{B}_c are square matrices of order r and c, respectively, then the direct product is given by

$$\mathbf{A}_r \otimes \mathbf{B}_c = \begin{bmatrix} a_{1,1} \mathbf{B} & \cdots & a_{1,r} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{r,1} \mathbf{B} & \cdots & a_{r,r} \mathbf{B} \end{bmatrix}$$

Lemma XI.8: Let A, B, C and D be square matrices and a, b and c be scalar constants. Then,

 $(A \otimes B)(C \otimes D) = AC \otimes BD$ provided A and C, as well as B and D, are conformable.

$$(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$$

 $a\mathbf{A} = a \otimes \mathbf{A}$
 $a\mathbf{A} \otimes b\mathbf{B} = ab\mathbf{A} \otimes \mathbf{B}$

$$\mathbf{A} \otimes (b\mathbf{B} + c\mathbf{C}) = b\mathbf{A} \otimes \mathbf{B} + c\mathbf{A} \otimes \mathbf{C}$$

$$trace(\mathbf{A} \otimes \mathbf{B}) = trace(\mathbf{A}) trace(\mathbf{B})$$

Definition V.5: Two columns of a matrix \mathbf{X} , say \mathbf{x}_i and \mathbf{x}_j , are said to be **orthogonal** if $\mathbf{x}_i'\mathbf{x}_i = 0$.

Definition XI.5: Let **A** be an $n \times q$ matrix. A $q \times n$ matrix **A**⁻ such that

$$AA^{-}A = A$$

is called a generalised inverse (g-inverse for short) for A.

Any matrix **A** has a generalized inverse but it is not unique unless **A** is nonsingular, in which case $\mathbf{A}^- = \mathbf{A}^{-1}$.

To find a generalized inverse \mathbf{A}^- for an $n \times q$ matrix \mathbf{A} of rank m:

- 1. Find any $m \times m$ minor **H** of **A** i.e. the matrix obtained by selecting any m rows and any m columns of **A**.
- 2. Find **H**⁻¹.

- 3. Replace **H** in **A** with $(\mathbf{H}^{-1})'$.
- 4. Replace all other entries in A with zeros.
- 5. Transpose the resulting matrix.

Properties of generalized inverses

Let **A** be an $n \times q$ matrix of rank m with $n \ge q \ge m$. Then

- 1. **A**⁻**A** and **AA**⁻ are idempotent.
- 2. $rank(\mathbf{A}^{-}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{-}) = m$.
- 3. If \mathbf{A}^- is a generalized inverse of \mathbf{A} , then $\left(\mathbf{A}^-\right)'$ is a generalized inverse of \mathbf{A}' ; that is, $\left(\mathbf{A}^-\right)' = \left(\mathbf{A}'\right)^-$.
- 4. $(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}'$ is a generalized inverse of \mathbf{A} so that $\mathbf{A} = \mathbf{A}(\mathbf{A}'\mathbf{A})^{-}(\mathbf{A}'\mathbf{A})$ and $\mathbf{A}' = (\mathbf{A}'\mathbf{A})(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}'$.
- 5. $\mathbf{A}(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}'$ is unique, symmetric and idempotent as it is invariant to the choice of a generalized inverse. Furthermore $rank(\mathbf{A}(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}') = m$.

$$\mathbf{H} = \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}' & \mathbf{D} \end{bmatrix} \text{ then } \mathbf{H}^{-1} = \begin{pmatrix} \mathbf{H}^{-1} \end{pmatrix}' = \begin{bmatrix} \mathbf{U} & \mathbf{V} \\ \mathbf{V}' & \mathbf{W} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{-1} - \mathbf{V}\mathbf{C}'\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{C}\mathbf{W} \\ -\mathbf{W}\mathbf{C}'\mathbf{A}^{-1} & \left(\mathbf{D} - \mathbf{C}'\mathbf{A}^{-1}\mathbf{C}\right)^{-1} \end{bmatrix}.$$

Definition I.9: A matrix **E** is idempotent if $\mathbf{E}^2 = \mathbf{E}$.

Theorem I.5: Given that the matrix \mathbf{E} is symmetric and idempotent, then the matrix $\mathbf{R} = \mathbf{I} - \mathbf{E}$ is also symmetric and idempotent. In addition, $\mathbf{E}\mathbf{R} = \mathbf{R}\mathbf{E} = \mathbf{0}$.

For **B** idempotent, $rank(\mathbf{B}) = trace(\mathbf{B})$.

Lemma XI.4: The inverse of
$$a(\mathbf{I}_m - \frac{1}{m}\mathbf{J}_m) + b(\frac{1}{m}\mathbf{J}_m)$$
 is $\frac{1}{a}(\mathbf{I}_m - \frac{1}{m}\mathbf{J}_m) + \frac{1}{b}(\frac{1}{m}\mathbf{J}_m)$.

Definition XI.10: A set of idempotents $\left\{\mathbf{Q}_{F}; F \in \mathcal{F}\right\}$ forms a **complete set of mutually-orthogonal idempotents** (CSMOI) if $\mathbf{Q}_{F}\mathbf{Q}_{F'} = \mathbf{Q}_{F'}\mathbf{Q}_{F} = \delta_{FF'}\mathbf{Q}_{F}$ for all $F, F' \in \mathcal{F}$ and $\sum_{F \in \mathcal{F}}\mathbf{Q}_{F} = \mathbf{I}_{n}$ where $\delta_{FF'} = 1$ if F = F' and $\delta_{FF'} = 0$ otherwise.

Lemma XI.7: For a matrix that is the linear combination of a complete set of mutually-orthogonal matrices, such as $\mathbf{V} = \sum_{F \in \mathcal{F}} \lambda_F \mathbf{Q}_F$, its inverse is $\mathbf{V}^{-1} = \sum_{F \in \mathcal{F}} \lambda_F^{-1} \mathbf{Q}_F$.

Expectation and variance definitions and results

Theorem I.2: $E[a \times v(Y) + b] = aE[v(Y)] + b$

Definition I.2: The **variance**, $var[Y] = \sigma_Y^2$, of any random variable Y is defined to be

$$var[Y] = E[(Y - \psi_Y)^2] = E[(Y - E[Y])^2]$$

Definition I.3: The covariance of two random variables, X and Y, is defined to be cov[X,Y] = E[(X-E[X])(Y-E[Y])]

Lemma XI.6: Let *U* and *V* be random variables and *a* and *b* be constants. Then

$$var(aU+bV) = a^{2} var(U) + b^{2} var(V) + 2abcov(U,V).$$

Definition I.4: Let **Y** be a vector of *n* jointly-distributed random variables with $E[Y_i] = \psi_i$, $var[Y_i] = \sigma_i^2$ and $cov[Y_i, Y_j] = \sigma_{ij} (= \sigma_{ji})$. Then, the **random vector** is

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

The **expectation vector** giving the expectation of **Y** is

$$E[\mathbf{Y}] = \begin{bmatrix} E[Y_1] \\ E[Y_2] \\ \vdots \\ E[Y_n] \end{bmatrix} = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{bmatrix} = \mathbf{\Psi}$$

The variance matrix, V, giving the variance of Y is

$$\mathbf{V} = E \left[(\mathbf{Y} - E[\mathbf{Y}]) (\mathbf{Y} - E[\mathbf{Y}])' \right] = \begin{bmatrix} \sigma_{12}^{2} & \sigma_{12} & \cdots & \sigma_{1i} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2i} & \cdots & \sigma_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ \sigma_{1i} & \sigma_{2i} & \cdots & \sigma_{i}^{2} & \cdots & \sigma_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_{in} & \cdots & \sigma_{n}^{2} \end{bmatrix}$$

Lemma XI.5: Let

a be a k×1 vector of constants,
A an s×k matrix of constants and
Y a k×1 vector of random variables or random vector.

11.
$$E[a] = a$$
 and $var[a] = 0$;

12.
$$E[\mathbf{a}'\mathbf{Y}] = \mathbf{a}'E[\mathbf{Y}]$$
 and $var[\mathbf{a}'\mathbf{Y}] = \mathbf{a}'var[\mathbf{Y}]\mathbf{a}$;

13.
$$E[AY] = AE[Y]$$
 and $var[AY] = Avar[Y]A'$.

$$E[AYY'] = AE[YY']$$

 $E[trace(A)] = trace(E[A])$

Theorem XII.1: Let **Y** be an $n \times 1$ vector of random variables with

$$E[Y] = \psi$$
 and $var[Y] = V$,

where ψ is a $n \times 1$ vector of expected values and \mathbf{V} is an $n \times n$ matrix.

Let **A** an $n \times n$ matrix of real numbers.

Then

$$E[Y'AY] = trace(AV) + \psi'A\psi$$
.

Theorem XII.2: Let **Y** be an $n \times 1$ vector of random variables with

$$E[Y] = \psi$$
 and $var[Y] = V$,

where ψ is a $n \times 1$ vector of expected values and \mathbf{V} is an $n \times n$ matrix.

Let $\mathbf{Y}'\mathbf{QY}/\nu$ be the mean square where \mathbf{Q} is an $n \times n$ symmetric, idempotent matrix and $\nu = trace(\mathbf{Q})$ is the degrees of freedom of the sums of squares.

Then

$$E[Y'QY/v] = (trace(QV) + \psi'Q\psi)/v$$
.

Haven't updated from here on Least squares and ANOVA definitions and results

Theorem II.1: Let $\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{E}$ where \mathbf{X} is an $n \times q$ matrix of full rank, $\mathbf{\theta}$ is a $q \times 1$ vector of unknown parameters, \mathbf{E} is an $n \times 1$ vector of errors with mean $\mathbf{0}$ and variance $\sigma^2 \mathbf{I}_n$, q = p + 1 and $n \ge q$. The least squares estimator for $\mathbf{\theta}$ is denoted by $\hat{\mathbf{\theta}}$ and is given by

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}'\mathbf{Y}$$

Theorem II.7: Let **Y** be a normally distributed random vector representing a random sample with $E[\mathbf{Y}] = \mathbf{X}\mathbf{\theta}$ and $\mathrm{var}[\mathbf{Y}] = \mathbf{V}_{\mathbf{Y}} = \sigma^2 \mathbf{I}_n$ where **X** is an $n \times q$ matrix of full rank, $\mathbf{\theta}$ is a $q \times 1$ vector of unknown parameters and $n \ge q$. The maximum likelihood estimator for $\mathbf{\theta}$ is denoted by $\tilde{\mathbf{\theta}}$ and is given by

$$\tilde{\boldsymbol{\theta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Theorem V.19: Let **Y** be a random vector with $\psi = E[Y] = X\theta$ and var[Y] = V where **X** is an $n \times q$ matrix, θ is a $q \times 1$ vector of unknown parameters, **V** is an $n \times n$ positive definite matrix and $n \ge q$. Then the generalized least squares estimator for θ is denoted by $\hat{\theta}$ and is given by

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \right)^{-} \mathbf{X}' \mathbf{V}^{-1} \mathbf{Y}$$

Theorem II.2: Let $\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{\epsilon}$ where \mathbf{X} is an $n \times q$ matrix of full rank, $\mathbf{\theta}$ is a $q \times 1$ vector of unknown parameters, $\mathbf{\epsilon}$ is an $n \times 1$ vector of errors with mean $\mathbf{0}$ and variance $\sigma^2 \mathbf{I}_n$, q = p + 1 and $n \ge q$. The least squares estimator $\hat{\mathbf{\theta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ is an unbiased estimator for $\mathbf{\theta}$. Furthermore, $\mathrm{var} \Big[\hat{\mathbf{\theta}} \Big] = (\mathbf{X}'\mathbf{X})^{-1}\sigma^2$

Theorem II.5: Let $\mathbf{Y} = \mathbf{X}\mathbf{0} + \mathbf{\epsilon}$ where \mathbf{X} is an $n \times q$ matrix of full rank, $\mathbf{0}$ is a $q \times 1$ vector of unknown parameters, $\mathbf{\epsilon}$ is an $n \times 1$ vector of errors with mean $\mathbf{0}$ and variance $\sigma^2 \mathbf{I}_n$, q = p + 1 and $n \ge q$. Let ℓ' is a $1 \times q$ vector of real numbers. The best linear unbiased estimator for $\ell' \mathbf{0}$ is $\ell' \hat{\mathbf{0}}$ where $\hat{\mathbf{0}}$ is the least squares estimator.

Definition II.10: Let $\hat{\mathbf{\theta}}$ be the least squares estimates of $\mathbf{\theta}$ so that $\hat{\mathbf{\theta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ where \mathbf{y} is an $n \times 1$ vector of observations from a random sample, \mathbf{X} is an $n \times q$ matrix of full rank, $\mathbf{\theta}$ is a $q \times 1$ vector of unknown parameters and $n \geq q$. Then define $\mathbf{P}_{\mathbf{X}} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{R}_{\mathbf{X}} = \mathbf{I} - \mathbf{P}_{\mathbf{X}}$ so that the fitted values are $\mathbf{X}\hat{\mathbf{\theta}} = \mathbf{P}_{\mathbf{X}}\mathbf{y}$ and the residuals are $\mathbf{e} = \mathbf{R}_{\mathbf{X}}\mathbf{y}$.

Theorem II.10: Let y'y be the Total sums of squares, $y'P_Xy$ be the Regression sums of squares and $y'R_Xy$ be the Residual sums of squares where y is an $n\times 1$ vector of

observed values from a random sample and P_X and R_X are as given in definition II.10. Then the degrees of freedom of y'y is n, of $y'P_Xy$ is q and of $y'R_Xy$ is n-q.

Theorem II.15: Let **A** be an $n \times n$ symmetric matrix and **Y** be an $n \times 1$ normally distributed random vector with $E[\mathbf{AY}] = \mathbf{0}$ and $var[\mathbf{Y}] = \sigma^2 \mathbf{I}_n$. Then $(1/\sigma^2)\mathbf{y}'\mathbf{Ay}$ follows a chi-squared distribution with r degrees of freedom if and only if **A** is idempotent of rank r.

Theorem II.16: Let **Y** be an $n \times 1$ normally distributed random vector with $E[Y] = X\theta$ and $var[Y] = \sigma^2 I_n$. Let $Y'A_1Y, Y'A_2Y, ..., Y'A_mY$ be a collection of m quadratic forms where, for each i = 1, 2, ..., m, A_i is symmetric, of rank r_i and $E[A_iY] = \mathbf{0}$. If any two of the following three statements are true, then for each i, $\left(1/\sigma^2\right)Y'A_iY$ follows a chisquared distribution with r_i degrees of freedom. Furthermore, $Y'A_iY$ are independent for $i \neq j$ and $\sum_{i=1}^m r_i = r$ where r denotes the rank of $\sum_{i=1}^m A_i$.

- 1. All A_i are idempotent
- 2. $\sum_{i=1}^{m} \mathbf{A}_{i}$ is idempotent
- 3. $\mathbf{A}_{i}\mathbf{A}_{i} = \mathbf{0}, i \neq j$

Theorem II.17: Let U_1 and U_2 be two random variables distributed as chi-squares with r_1 and r_2 degrees of freedom. Then, provided U_1 and U_2 , are independent, the random variable $W = \frac{U_1/r_1}{U_2/r_2}$ is distributed as Snedecor's F with r_1 and r_2 degrees of freedom.

Definition II.11: The estimator of the Residual sums of squares or **deviance** after fitting the model involving parameters $\boldsymbol{\theta}$ is denoted $D(\boldsymbol{\theta})$. The estimator for the Residual sum of squares after fitting the **null model** $E[\mathbf{Y}] = \mathbf{0}$ is $\mathbf{Y}'\mathbf{Y}$. The estimator of the **reduction in sum of squares** in going from one model that involves parameters, say $\boldsymbol{\theta}_2$, to a second model that involves more parameters, say $\boldsymbol{\theta}$ made up of $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$, is denoted $R(\boldsymbol{\theta}_1|\boldsymbol{\theta}_2) = D(\boldsymbol{\theta}_2) - D(\boldsymbol{\theta}_1,\boldsymbol{\theta}_2)$ and is read 'the reduction in the sums of squares for including the parameters $\boldsymbol{\theta}_1$ in the model given that the parameters $\boldsymbol{\theta}_2$ are already in the model'. The estimator of the reduction in the sum of squares for adding parameters $\boldsymbol{\theta}' = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2]'$ to the null model is denoted $R(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) = \mathbf{Y}'\mathbf{Y} - D(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$; that is, the model parameters $\boldsymbol{0}$ are not included.

Definition III.4: For two models, $\psi = \mathbf{X}_1 \mathbf{\theta}_1$ and $\psi = \mathbf{X}_2 \mathbf{\theta}_2$, the first model is **marginal** to the second if $\mathcal{C}(\mathbf{X}_1) \subseteq \mathcal{C}(\mathbf{X}_2)$, that is if the columns of \mathbf{X}_1 can be written as linear combinations of the columns of \mathbf{X}_2 .