TEOREMA DE COINCIENCIA

EXPRESIONES ENTERAS
$$(\forall w \in FV (e). \sigma w = \sigma' w)$$
 entonces $[[e]]\sigma'$

LÓGICA DE PREDICADOS

Hipótesis (
$$\forall w \in FV(p)$$
. $\sigma w = \sigma' w$)

Tesis
$$[[p]]\sigma = [[p]]\sigma'$$

Prueba por inducción en la estructura de c. Los casos son todos directos excepto:

Caso
$$p = \forall v. p_0$$

$$[[\forall v. p_0]] \sigma = min\{[[p_0]][\sigma|v:n]: n \in Z\}$$

$$[[\forall v.\, p_{_{0}}]]\sigma' \ = \ \min\, \{\, [[p_{_{0}}]][\sigma'|v:n]: \, n \, \in Z \, \}$$

Hay que ver que $[[p_0]][\sigma|v:n] = [[p_0]][\sigma'|v:n]$ para todo n

Para concluir esto desde la HI aplicada a p_0 necesario verificar (\forall w \in FV (p_0). [σ |v: n] w = [σ ' |v: n] w) Hagamos esta verificación por casos:

$$\begin{split} \mathbf{w} &\in \mathsf{FV} \ (p_0) \quad \mathsf{y} \quad \mathsf{v} = \mathsf{w} \colon \quad [\sigma|v : n] \mathsf{w} = \ \mathsf{n} = [\sigma' \mid v : n] \mathsf{w} \\ \\ \mathbf{w} &\in \mathsf{FV} \ (p_0) \quad \mathsf{y} \quad \mathsf{v} / = \mathsf{w} \qquad (\mathsf{w} \in \mathsf{FV} \ (p)) \ \colon \ [\sigma|v : n] \mathsf{w} = \sigma \mathsf{w} = \sigma' \mathsf{w} = [\sigma' \mid v : n] \mathsf{w} \\ \\ \mathsf{Luego} \ \mathsf{por} \ \mathsf{HI} \qquad [[p_0]][\sigma|v : n] = [[p_0]][\sigma' \mid v : n] \quad \mathsf{para} \ \mathsf{todo} \ \mathsf{n} \end{split}$$

COMANDOS

Hipótesis ($\forall w \in FV(c)$. $\sigma w = \sigma' w$)

Tesis

1

- $[[c]]\sigma = \bot = [[c]]\sigma'$ o
- $[[c]]\sigma \neq \bot \neq [[c]]\sigma'$ y $\forall w \in FV(c)$. $[[c]]\sigma w = [[c]]\sigma' w$
- 2 $[[c]]\sigma \neq \bot \Rightarrow \forall w \notin FA(c)$ $[[c]]\sigma w = \sigma w$.

Inducción en la estructura de c, se prueba 1 y 2 simultáneamente

Caso c = (v = e) Recordamos: $[[c]]\sigma = [\sigma|v : [[e]]\sigma]$ Prueba de 1

Tenemos: $[[c]]\sigma \neq \bot \neq [[c]]\sigma'$. Para concluir 1 verificamos por casos todas las posibilidades para w:

v=w TC Intexp

 $[[c]]\sigma w = [\sigma|v:[[e]]\sigma]w = [[e]]\sigma' = [\sigma'|v:[[e]]\sigma']w = [[c]]\sigma'w$

v≠w Hipotesis

 $[[c]]\sigma w = [\sigma|v:[[e]]\sigma]w = \sigma w = \sigma'w = [\sigma'|v:[[e]]\sigma']w = [[c]]\sigma'w$

Prueba de 2: $w \notin FA(c) => w \neq v$

 $[[c]]\sigma w = [\sigma|v:[[e]]\sigma]w = \sigma w$

Caso $c = c_0$; c_1 Recordamos : $[[c]]\sigma = [[c_1]]_{++}([[c_0]]\sigma)$

Subcaso $[[c_0]]\sigma = \bot$

Por HI $[[c_0]]\sigma'=\bot$ por lo tanto 1 sale trivial, porque $[[c]]\sigma=[[c_1]]_{\bot\bot}([[c_0]]\sigma)=\bot$ Para 2 no hay nada que probar.

Subcaso $[[c_0]]\sigma = \sigma_0$ y $[[c_1]]\sigma_0 = \bot$

 $\text{Tenemos que } [[c]]\sigma \ = \ [[c_1]]_{\perp \perp}([[c_0]]\sigma) \ = \ [[c_1]]_{\perp \perp}(\sigma_0) \ = \ [[c_1]]\sigma_0 \ = \ \perp.$

Luego para 1 debemos demostrar que $[[c]]\sigma' = \perp$. Para 2 no hay nada que probar

Por HI aplicada a c_0 (note que $FVc_0 \subseteq FVc$) tenemos:

1
$$[[c_0]]\sigma' \neq \perp$$
 y $\forall w \in FV(c_0)$. $[[c_0]]\sigma w = [[c_0]]]\sigma' w$

2
$$\forall$$
 w \notin FA (c_0) . $[[c_0]]\sigma$ w = σ w

Sea $\sigma'_0 = [[c_0]]\sigma'$. Para aplicar la HI a c_1, σ_0, σ'_0 debemos verificar: $\forall w \in FV(c_1)$. $\sigma_0 w = \sigma'_0 w$

Verifiquemos por casos:

Si $w \in FVc_0$ entonces $\sigma_0 w = \sigma'_0 w$ por HI 1 sobre c_0

Si $w \notin FVc_0$ entonces $w \notin FAc_0$ entonces $\sigma_0 w = \sigma w = \sigma' w = \sigma'_0 w$ por HI 2 sobre c_0

Luego $[[c]]\sigma' = [[c_1]]_{\perp\perp}([[c_0]]\sigma') = [[c_1]]\sigma'_0 = \bot$ por HI aplicada a c_1

Subcaso
$$[[c_0]]\sigma = \sigma_0$$
 y $[[c_1]]\sigma_0 = \sigma_1$

La misma verificación hecha en el subcaso anterior nos permite aplicar HI sobre c_1 , σ_0 , σ'_0 . Entonces, Prueba de 1 : sea $w \in FVc$:

$$[[c]] \sigma w \ = \ [[c_1]]_{\perp \perp} ([[c_0]] \sigma) \ w \ = \ [[c_1]] \sigma_0 w \ = \ [[c_1]] \sigma'_0 w \ = \ [[c]] \sigma' w \ \text{ Por HI sobre } c_1$$

Prueba de 2: sea $w \notin FAc$ Entonces $w \notin FAc_0$ y $w \notin FAc_1$. Por HI 2 sobre c_0 y c_1

$$[[c]]\sigma w = [[c_1]]_{++}([[c_0]]\sigma) w = [[c_1]]\sigma_0 w = \sigma_0 w = [[c_0]]\sigma w = \sigma w$$

Caso
$$c = while \ e \ do \ c_0$$
. Recordemos: $[[while \ e \ do \ c]]\sigma = \bigcup_{i \ge 0} F^i \perp \sigma$

$$F \ w \ \sigma =$$

$$w \ ([[c]]\sigma) \ si \ [e]\sigma$$

$$w_{\perp\perp}([[c]]\sigma)$$
 $si [e]\sigma$
 σ cc

Realizamos una nueva inducción en i (reemplazamos $[[c]]\sigma$ por $F^{i}\perp\sigma$)

Hipótesis (
$$\forall w \in FV(c)$$
. $\sigma w = \sigma' w$)

Tesis

1

-
$$F^{i} \perp \sigma = \perp = F^{i} \perp \sigma'$$
 0
- $F^{i} \perp \sigma \neq \perp \neq F^{i} \perp \sigma'$ y $\forall w \in FV(c)$. $F^{i} \perp \sigma w = F^{i} \perp \sigma' w$
2 $F^{i} \perp \sigma \neq \perp \Rightarrow \forall w \in FA(c)$ $F^{i} \perp \sigma w = \sigma w$.

El caso i=0 es trivial.

Supongamos válido para n. Si $F^{n+1} \perp \sigma = \bot$ entonces es inmediato, ya que $F^{n} \perp \sigma = \bot$ Supongamos $F^{n+1} \perp \sigma = \sigma_1$. Si $[[b]]\sigma$ entonces es inmediato, ya que $\sigma = \sigma_1$. Supongamos que $\neg[[b]]\sigma$

Entonces
$$\sigma_1 = F^{n+1} \perp \sigma = F(F^n \perp) \sigma = F^n \perp ([[c_0]]\sigma)$$

Por HI sobre c_0 tenemos que $\sigma_0 = [[c_0]]\sigma$ y $\sigma'_0 = [[c_0]]\sigma'$ coinciden en FV c Por HI sobre n tenemos que $F^n \perp \sigma_0 F^n \perp \sigma'_0$ satisface 1 y 2.