Pn2=-2Cot $[\theta]$ dpn-n $(n+1)$ pn;	', opt={Direction→"FromAbove",Assumptions→{0<θ≤π}};	Wolfram code	$p1 = \frac{g[\varepsilon, \theta]}{\varepsilon}$	c] $p2 = \partial_{\varepsilon} (\varepsilon p1)$	c] $p3 = \partial_{\varepsilon} (\varepsilon p2)$	c] $p4 = \partial_{\varepsilon} (\varepsilon p3)$	$p5x = \int p1 d\varepsilon; p5 = \frac{p5x - \lim_{\varepsilon \to 0} p5x}{\varepsilon}$	$p6x = \int \frac{p1-1f1}{\epsilon} d\epsilon$; $p6 = p6x - \lim_{\epsilon \to 0} p6x$
s-Sin[A]· C-Cos[A]·	$g[\varepsilon_{-}, \theta_{-}] := -1 + \frac{1}{w};$	Expression	$\sum_{n=1}^{\infty} \varepsilon^{-1+n} P[n, 0, c]$	$\sum_{n=1}^{\infty} n \varepsilon^{-1+n} P[n, 0, c]$	$\sum_{n=1}^{\infty} n^2 \varepsilon^{-1+n} P[n, 0, c]$	$\sum_{n=1}^{\infty} n^3 \varepsilon^{-1+n} P[n, 0, c]$	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,0,c]}{n}$	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,0,c]}{-1+n}$

w=Sqrt[1+ ε^2 -2* ε *Cos[θ];

Var

ID

 $p7x = \int \varepsilon p1 d\varepsilon$; $p7 = \frac{p7x - \lim_{\varepsilon \to 0} p7x}{2}$

 $p8 = -\partial_{\theta}p3$

 $\sum_{n=1}^{\infty} n^2 \, \varepsilon^{-1+n} \, P[n, 1, c]$

α

0

 $\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,0,c]}{1+n}$

ဖ

4

2

7

 $\sum_{n=1}^{\infty} n \, \varepsilon^{-1+n} \, \mathsf{P}[\mathsf{n}, 1, \mathsf{c}]$

 $\sum_{n=1}^{\infty} \varepsilon^{-1+n} P[n, 1, c]$

10

 $\sum_{n=1}^{\infty} \frac{\epsilon^{-1+n} P[n,1,c]}{\epsilon^{-1+n}}$

11

 $p9 = -\partial_{\theta} p2$

p14f = Collect $[n \, \varepsilon^{n-1} \, Pn2, \{pn, dpn\}]$; p14 = - $(p4 + p3) - 2 \, Cot [\theta] \, \partial_{\theta} p2$

p13x = \int p11 d ε ; p13 = $\frac{p13x - \lim_{\varepsilon \to 0} p13x}{1}$

 $\sum_{n=2}^{\infty} n \, \varepsilon^{-1+n} \, P[n, 2, c]$

14

 $\sum_{n=2}^{\infty} \varepsilon^{-1+n} P[n, 2, c]$

15

 $\sum_{n=2}^{\infty} \frac{\epsilon^{-1+n} \, P[n,2,c]}{}$

16

 $p11 = -\partial_{\theta} p5$

 $p12 = -\partial_{\theta} p7$

 $\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} \, P[n,1,c]}{\cdot}$

12

1+n

 $\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,1,c]}{n^2}$

13

 $p10 = -\partial_{\Theta} p1$

p15f = Collect $\left[\varepsilon^{n-1} \text{ Pn2, } \{pn, dpn\}\right]$; p15 = $-(p3+p2)-2 \text{ Cot}[\theta] \partial_{\theta} p1$

pl6f = Collect $\left[\frac{\epsilon^{n-1} p_n 2}{n}$, $\{pn, dpn\}\right]$; pl6 = - $(p2 + p1) - 2 Cot [\theta] \partial_{\theta} p5$

 $p17x = \int \frac{p15}{\varepsilon} d\varepsilon$; $p17 = p17x - \lim_{\varepsilon \to 0} p17x$

p18x = \int p15 $\varepsilon d\varepsilon$; p18 = $\frac{p18x - \lim_{\varepsilon \to 0} p18x}{r}$

p19x = $\int p16 \, d\varepsilon$; p19 = $\frac{p19x - \lim_{\varepsilon \to 0} p19x}{1}$

 $\sum_{n=2}^{\infty} \frac{\epsilon^{-1+n} P[n,2,c]}{n^2}$

13

ε⁻¹⁺ⁿ P[n,2,c]

 $\sum_{n=2}^{\infty}$

18

ε⁻¹⁺ⁿ P[n,2,c]

Σα=2

17