Preparation for Saudi Arabia Team 2021

May/June Session: Level 4

Nikola Petrović

Lesson 1

The Method of Infinite Descent

Problems:

- 1. Find all integers x, y and z such that $x^3 + 2y^3 = 4z^3$.
- 2. Show that there are no natural numbers x, y and z such that $x^4 + y^4 = z^2$.
- 3. Determine all possible positive interger n such that $(x + y + z)^2 = nxyz$ has positive integer solutions (x, y, z).
- 4. Let a and b be two positive integers such that ab + 1 divides $a^2 + b^2$. Show that $\frac{a^2 + b^2}{ab + 1}$ is a perfect square.
- 5. Let a, b be natural numbers such that $a \cdot b$ divides $a^2 + b^2 + 3$. Prove that $\frac{a^2 + b^2 + 3}{ab} \in \{4, 5\}$
- 6. If m and n are numbers of equal parity such that m > n and $m^2 n^2 + 1 | m^2$ prove that $m^2 n^2 + 1$ is a perfect square.
- 7. Prove that if $P = \frac{x^2+1}{y^2} + 4$ is square number then P = 9.
- 8. Let a, b be two positive integers, such that $ab \neq 1$. Find all the integer values that f(a, b) can take, where

$$f(a,b) = \frac{a^2 + ab + b^2}{ab - 1}.$$

- 9. Do there exist positive integers m and n such that $\frac{n^2-1}{m^2-n^2-1}$ is also a positive integer?
- 10. If a, b, c are positive integers such that

$$0 < a^2 + b^2 - abc \le c,$$

show that $a^2 + b^2 - abc$ is a perfect square.