Example of Distance Vector Routing

In the network shown below, there are three routers, A, C, and D, with the following weights -AC = 8, CD = 4, and DA = 3.

Step 1 – Each router in this DVR(Distance Vector Routing) network shares its routing table with every neighbor. For example, A will share its routing table with neighbors C and D, and neighbors C and D will share their routing table with A.

Form A	Α	С	D
Α	0	8	3
С			
D			
Form C	Α	С	D
Α			
С	8	0	4
D			
Form D	Α	С	D
Α			
С			
D	3	4	0

Step 2 – If the path via a neighbor is less expensive, the router adjusts its local table to send packets to the neighbor. In this table, the router updates the lower cost for A and C by updating the new weight from 8 to 7 in router A and from 8 to 7 in router C.

Form A	Α	С	D
FOITH A			
Α	0	7	3
С			
D			
Form C	Α	С	D
Α			
С	7	0	4
D			
Form D	Α	С	D
Α			
С			
D	3	4	0

Step 3 – The final revised routing table with the reduced cost distance vector routing protocol for all routers A, C, and D is shown below-

Router A

Form A	Α	С	D
Α	0	7	3
С	7	0	4
D	3	4	0

Router C

Form C	Α	С	D
Α	0	7	3
C	7	0	4
D	3	4	0

Router D

Form D	Α	C	D
Α	0	7	3
C	7	0	4
D	3	4	0

DIJKSTRA EXAMPLE

To understand the dijkstra's concept better, let us analyze the algorithm with the help of an example graph -

Step 1 Initialize the distances of all the vertices as ∞ , except the source node S.

Vertex	S	A	В	C
Distance	0	∞	∞	∞

Now that the source vertex S is visited, add it into the visited array.

 $visited = \{S\}$

Step 2

The vertex S has three adjacent vertices with various distances and the vertex with minimum distance among them all is A. Hence, A is visited and the dist[A] is changed from ∞ to 6.

$$S \rightarrow A = 6$$

$$S \rightarrow D = 8$$

$$S \rightarrow E = 7$$

Vertex	S	A	В	C
Distance	0	6	∞	∞

 $Visited = \{S, A\}$

There are two vertices visited in the visited array, therefore, the adjacent vertices must be checked for both the visited vertices.

Vertex S has two more adjacent vertices to be visited yet: D and E. Vertex A has one adjacent vertex B.

Calculate the distances from S to D, E, B and select the minimum distance –

$$S \rightarrow D = 8$$
 and $S \rightarrow E = 7$.

$$S \rightarrow B = S \rightarrow A + A \rightarrow B = 6 + 9 = 15$$

Vertex	S	A	В	C
Distance	0	6	15	∞

 $Visited = \{S, A, E\}$

Calculate the distances of the adjacent vertices - S, A, E - of all the visited arrays and select the vertex with minimum distance.

$$S \rightarrow D = 8$$

$$S \rightarrow B = 15$$

$$S \rightarrow C = S \rightarrow E + E \rightarrow C = 7 + 5 = 12$$

Vertex	S	A	В	C
Distance	0	6	15	12

 $Visited = \{S, A, E, D\}$

Recalculate the distances of unvisited vertices and if the distances minimum than existing distance is found, replace the value in the distance array.

$$S \rightarrow C = S \rightarrow E + E \rightarrow C = 7 + 5 = 12$$

$$S \rightarrow C = S \rightarrow D + D \rightarrow C = 8 + 3 = 11$$

dist[C] = minimum (12, 11) = 11

$$S \rightarrow B = S \rightarrow A + A \rightarrow B = 6 + 9 = 15$$

$$S \rightarrow B = S \rightarrow D + D \rightarrow C + C \rightarrow B = 8 + 3 + 12 = 23$$

dist[B] = minimum (15,23) = 15

Vertex	S	A	В	С
Distance	0	6	15	11

 $Visited = \{ S, A, E, D, C \}$

The remaining unvisited vertex in the graph is B with the minimum distance 15, is added to the output spanning tree.

 $Visited = \{S, A, E, D, C, B\}$

The shortest path spanning tree is obtained as an output using the dijkstra's algorithm.