BDNR Course

BDNR · Non-Relational Databases

M.EIC · Master in Informatics Engineering and Computation

Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto

Today's Plan

- Context and motivation
- Course presentation
 - Topics
 - Evaluation
 - Students' Projects

Context and Motivation

Relational Databases

- > Relational databases are the default choice for data storage, a de facto standard.
- ➤ Recall the value of relational databases:
 - ➤ Persistence keeping large amounts of data store for quick and easy access;
 - Concurrency allow and control simultaneous accesses to the same data through transactions;
 - ➤ Integration share a single data store that allows for integration at application level;
 - > Standard an adopted standard for modeling and manipulating data that shares the same core concepts despite differences in implementation.

Figure 2-1. Representing a LinkedIn profile using a relational schema. Photo of Bill Gates courtesy of Wikimedia Commons, Ricardo Stuckert, Agência Brasil.

Why NoSQL?

Impedance Mismatch

- ➤ "Impedance mismatch", is an expression from electronics referring to the difference between the electrical resistance of two circuits, resulting in inefficient power transfer.
- In the context of information systems, refers to the difference between distinct data representations, most notably between the relational model and in-memory data structures.
- In the relational model, data is organized and manipulated using relations, i.e. sets of tuples (name-value pair), which only allow for simple structures, e.g. they cannot contain nested elements.
- This limitation is not true for in-memory data structures, e.g. arrays, lists).
- ➤ As a result, to use richer data structures a translation is necessary between to and from a relational representation.

Impedance Mismatch

Impedance mismatch exists when two different representations require translation.

Figure 1.1 An order, which looks like a single aggregate structure in the UI, is split into many rows from many tables in a relational database

Impedance Mismatch

Big Data

- ➤ Since the 2000s, we witness to an era of consolidation in web platforms (big tech).
- > Results in network effects, i.e. big platforms are more attractive to users.
- ➤ This large scale impacts many dimensions data collection, heterogeneity, storage.
- To handle this growth, computational infrastructures can scale up (i.e. bigger machines to handle more load) or scale out (i.e. more machines to spread the load).
- As infrastructures moved towards clusters, relational database solutions revealed scaling problems adapting as they rely on shared disk subsystems. Solutions exist to overcome these problems (e.g. sharding) but they are "unnatural".
- This mismatch between relational databases and clusters let to the development of alternative routes for data storage solutions.

NoSQL Solutions

- ➤ Google and Amazon have greatly influenced development in this area, leading early large-scale implementations of data storage solutions based on distributed low-cost components.
- Google BigTable [1] and Amazon Dynamo [2] landmark papers inspired projects and experiments to develop alternative data storage solutions.
- The name "NoSQL" was a convenient handle to group a diverse set of technologies, although a clear and coherent definition still lacks.
- ➤ The central characteristics commonly found in NoSQL solutions are: do not use the non-relational paradigm, have a relaxed consistency model, and adopt a schemaless data model.

Polyglot Persistence

- > Polyglot (adjective), knowing or using several languages.
- ➤ Polyglot persistence, using different data stores in different circumstances depending on the nature of the data and how we want to manipulate it.

- ➤ Relational databases are one option for data storage (not "the" option).
- > Other options exists and typically coexist in an organizational data infrastructure.

Summary

- ➤ Relational databases were, and still are, very successful technologies to provide data persistence, concurrency control, and an integration mechanism.
- Limitations of the relational model include the object-relational mismatch and the difficulty in scaling up or out.
- ➤ "NoSQL is an accidental neologism (i.e. new word)", whose characteristics include: non-relational, weaker consistency models (scale out is easier), and schemaless data models.
- ➤ One of the most important results is polyglot persistence, i.e. diverse data storage ecosystems one size does not fit all.

Course Presentation

BDNR

- First edition of BDNR.
- ➤ M.EIC 1st-year elective course from the area of Information Systems.

- ➤ Classes will be on Tuesdays, 14h00 (3h), at FEUP (B203).
 - Topic presentation and discussion;
 - Laboratorial activities;
 - Project development and discussion;

Course Objectives

- The BDNR curricular unit aims to prepare students to know, understand, design and develop solutions based on non-relational database paradigms and technologies to support information systems.
- ➤ Specific objectives:
 - Know and understand the main concepts and paradigms of non-relational databases;
 - ➤ Enable students to analyze, design, implement and evaluate non-relational databases;
 - Design the storage and interrogation component of systems based on nonrelational models.

Learning Outcomes

- ➤ Recognize the situations in which relational databases are not the adequate solution for the storage and interrogation of data.
- ➤ Identify and describe the different models of non-relational databases and the typical situations of use of each one of them.
- Design, implement and interrogate databases built according to different non-relational approaches.
- Analyze the challenges associated with complex large-scale scenarios (big data), propose solutions based on non-relational models and understand the limits of each one of them.
- ➤ Combine relational and non-relational models in information systems.

Prior Knowledge

- Programming
 - > knowledge and practice with programming languages for application development.

- Databases
 - knowledge and practice of data modeling in UML;
 - relational model;
 - > SQL language.

Course Syllabus

- ➤ Non-relational databases:
 - ➤ Introduction and motivation;
 - Current data challenges: size, variability, different paradigms;
 - ➤ ACID properties and limits of relational databases;
 - ➤ Historical perspective of database management systems.
- ➤ Properties of non-relational databases:
 - ➤ The CAP theorem and design choices;
 - ➤ BASE properties;
 - Consistency and distribution techniques;
 - ➤ Joint treatment.

- ➤ Paradigms:
 - ➤ Key-value databases;
 - ➤ Column-based;
 - ➤ Document databases;
 - ➤ Graph databases;
- ➤ Hybrid model databases.

>

Technologies

- ➤ Git for version control
- Docker for labs and projects
- ➤ NoSQL technologies
 - ➤ Redis
 - ➤ MongoDB
 - Cassandra
 - ➤ Neo4j

Evaluation

- Distributed evaluation with final exam
- Exam: 40% (multiple-choice with open questions)
- ➤ Distributed evaluation: 60%
 - ➤ Group project (2 ~ 3 students)
 - Select and explore a NoSQL technology
 - ➤ Implement and test the system
 - Report and presentation

- ➤ Minimum grade of 40% in each component (required but not enough!)
- > Herero-evaluation, plus teacher assessment, may result in different grades for each project member.

Class	Date	Topic (Tuesday 14h00, B203, 3h)	Lab / Project
1	8 Mar	Course Presentation; Introduction to NoSQL.	
2	17 Mar	NoSQL	Groups + Tech Overview
3	24 Mar	Key-Value Databases (1)	Redis Lab / Project Topic Discussion
4	31 Mar	Key-Value Databases (2)	Redis Lab / Project Topic Selection
5	7 Apr	Document Databases (1)	MongoDB Lab
	14 Apr	//Easter Holiday//	
6	21 Apr	Document Databases (2)	MongoDB Lab
7	28 Apr	Column-Oriented Databases (1)	Cassandra Lab
	5 May	//Queima das Fitas//	
8	12 May	Column-Oriented Databases (2)	Cassandra Lab
9	19 May	Graph Databases (1)	Neo4j Lab
10	26 May	Graph Databases (2)	Neo4j Lab / Project Reports Submission
11	2 Jun	Student Projects (1)	
12	9 Jun	Student Projects (2)	

Main Bibliography

- Dan Sullivan NoSQL For Mere Mortals Addison-Wesley, 2015
- ➤ Pramod J. Sadalage, Martin Fowler

 NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence

 Pearson Education, 2013

➤ Luc Perkins with Eric Redmond, Jim R. Wilson Seven databases in seven weeks: a guide to modern databases and the NoSQL movement Pragmatic Bookshelf, 2018 Group Project

Group Project

- ➤ Study and explore a NoSQL technology
- ➤ Developed in groups of 2 ~ 3 students
- Roadmap (tentative)
 - Setup groups
 - Select a NoSQL technology (e.g. https://db-engines.com/en/ranking)
 - > Study the technology and implement use cases
 - ➤ Write report on the findings
 - ➤ Present in the last two classes

				383 systems in	ranking, Fe	ebruar	y 2022
	Rank			B-1-1 11-1-1	S	core	
Feb 2022	Jan 2022	Feb 2021	DBMS	Database Model	Feb 2022	Jan 2022	Feb 2021
1.	1.	1.	Oracle	Relational, Multi-model 🕡	1256.83	-10.05	-59.84
2.	2.	2.	MySQL 🚦	Relational, Multi-model 🕡	1214.68	+8.63	-28.69
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 👔	949.05	+4.24	-73.88
4.	4.	4.	PostgreSQL 🛅 📵	Relational, Multi-model 👔	609.38	+2.83	+58.42
5.	5.	5.	MongoDB 0	Document, Multi-model	488.64	+0.07	+29.69
6.	6.	↑ 7.	Redis	Key-value, Multi-model 📳	175.80	-2.18	+23.23
7.	7.	4 6.	IBM Db2	Relational, Multi-model 🕡	162.88	-1.32	+5.26
8.	8.	8.	Elasticsearch	Search engine, Multi-model 🔞	162.29	+1.54	+11.29
9.	9.	1 1.	Microsoft Access	Relational	131.26	+2.31	+17.09
10.	10.	4 9.	SQLite	Relational	128.37	+0.94	+5.20
11.	11.	4 10.	Cassandra 👩	Wide column	123.98	+0.43	+9.36
12.	12.	12.	MariaDB 🛅	Relational, Multi-model 🕡	107.11	+0.69	+13.22
13.	13.	13.	Splunk	Search engine	90.82	+0.37	+2.28
14.	14.	↑ 15.	Microsoft Azure SQL Database	Relational, Multi-model 🕡	84.95	-1.37	+13.67
15.	↑ 17.	↑ 35.	Snowflake 📴	Relational	83.18	+6.36	+64.96
16.	4 15.	4 14.	Hive 5	Relational	81.88	-1.57	+9.56
17.	4 16.	17.	Amazon DynamoDB 0	Multi-model 🔃	80.36	+0.50	+11.21
18.	18.	4 16.	Teradata 🛅	Relational, Multi-model 🕡	68.57	-0.56	-2.33
19.	19.	↑ 20.	Solr	Search engine, Multi-model 📵	58.53	+0.00	+7.84
20.	20.	4 19.	Neo4j	Graph	58.25	+0.21	+6.08
21.	21.	21.	SAP HANA	Relational, Multi-model 🕡	56.31	-0.61	+6.09
22.	22.	22.	FileMaker	Relational	54.14	-1.72	+7.94
23.	23.	4 18.	SAP Adaptive Server	Relational, Multi-model 🕡	49.54	-1.52	-2.71
24.	24.	24.	Google BigQuery	Relational	45.10	-0.52	+9.21
25.	25.	4 23.	HBase 🛅	Wide column	43.62	-0.37	-0.87
26.	26.	4 25.	Microsoft Azure Cosmos DB	Multi-model 🕡	39.95	-0.09	+8.29
27.	27.		PostGIS	Spatial DBMS, Multi-model	31.02	-0.85	
28.	↑ 29.	4 26.	Couchbase	Document, Multi-model	30.07	+1.21	-0.59
29.	4 28.	4 27.	InfluxDB 👩	Time Series, Multi-model 🕡	29.34	-0.74	+3.09
30.	30.	4 29.	Firebird	Relational	26.36	-0.91	+3.02
31.	↑ 32.	4 28.	Memcached	Key-value	25.77	+0.43	+0.10
32.	4 31.	4 31.	Amazon Redshift	Relational	25.41	-0.44	+3.69
33.	↑ 34.	↑ 34.	Spark SQL a	Relational	23.28	+0.34	+4.83
34.	4 33.	4 30.	Informix	Relational, Multi-model 👔	22.31	-0.63	-0.03
35.	↑ 38.	1 42.	Microsoft Azure Synapse Analytics	Relational	19.80	+1.31	+9.44
36.	↑ 37.	4 33.	Netezza	Relational	19.51	+0.24	+0.86
37.	4 35.	4 32.	Vertica 👩	Relational, Multi-model	19.29	-0.61	-1.27
38.	4 36.	4 37.	Firebase Realtime Database	Document	19.15	-0.21	+3.15
39.	39.	4 36.	Impala	Relational, Multi-model	18.91	+0.45	+2.84
40.	40.	4 38.	CouchDB	Document, Multi-model	17.45	+0.81	+1.84
41	41	JL 20	ABACE	Relational	14 70	+0.22	+1.41

42.	1 43.	4 0.	Presto	Relational	14.28	+0.91	+1.96
43.	4 2.	4 1.	Greenplum	Relational, Multi-model	13.52	-0.44	+1.31
44.	44.	↑ 54.	ClickHouse	Relational, Multi-model 🔞	12.82	+0.41	+5.16
45.	45.	1 46.	Amazon Aurora	Relational, Multi-model 🔞	12.23	+0.49	+3.26
46.	46.	1 48.	etcd	Key-value	11.71	+0.16	+3.07
47.	1 48.	47.	Datastax Enterprise [5]	Wide column, Multi-model 📳	10.75	+0.86	+1.95
48.	4 7.	4 4.	H2	Relational, Multi-model	10.11	+0.12	+0.80
49.	↑ 50.	↑ 50.	Hazelcast	Key-value, Multi-model 🔞	9.50	-0.03	+1.08
50.	↑ 51.	4 43.	MarkLogic	Multi-model 📆	9.46	+0.27	+0.00
51.	4 9.	4 5.	Realm 👩	Document	9.42	-0.17	+0.27
52.	↑ 53.	52.	Kdb+ ₫	Time Series, Multi-model 🔞	9.11	+0.34	+1.33
53.	4 52.	4 51.	Google Cloud Firestore	Document	9.06	+0.14	+1.01
54.	54.	4 53.	Algolia	Search engine	8.92	+0.55	+1.18
55.	↑ 57.	4 9.	Oracle Essbase	Relational	8.41	+0.99	-0.20
56.	56.	↑ 60.	Microsoft Azure Search	Search engine	7.90	+0.38	+1.63
57.	4 55.	57.	Sphinx	Search engine	7.63	-0.40	+1.07
58.	58.	4 56.	CockroachDB 6	Relational	7.47	+0.50	+0.87
59.	59.	↑ 65.	SingleStore 👩 🗑	Relational, Multi-model 🔞	7.33	+0.67	+2.12
60.	↑ 64.	↑ 72.	Riak KV	Key-value	6.92	+0.83	+1.93
61.	4 60.	↑ 74.	Microsoft Azure Data Explorer	Relational, Multi-model 🔞	6.79	+0.20	+2.05
62.	4 61.	↑ 71.	Jackrabbit	Content	6.54	+0.09	+1.55
63.	↑ 66.	↑ 75.	Ignite	Multi-model 🔃	6.50	+0.48	+1.77
64.	4 63.	4 59.	Interbase	Relational	6.47	+0.34	+0.12
65.	↑ 68.	4 58.	Ingres	Relational	6.44	+0.67	-0.05
66.	4 62.	4 62.	Prometheus	Time Series	6.39	+0.12	+0.63
67.	4 65.	4 55.	Ehcache	Key-value	6.38	+0.29	-0.50
68.	↑ 69.	4 61.	SAP SQL Anywhere	Relational	5.76	+0.10	-0.19
69.	↑ 71.	4 66.	HyperSQL	Relational	5.74	+0.21	+0.56
70.	↑ 72.	↑ 73.	Microsoft Azure Table Storage	Wide column	5.64	+0.22	+0.70
71.	4 67.	4 63.	Aerospike 👩	Key-value, Multi-model 🔞	5.61	-0.33	-0.06
72.	4 70.	1 79.	Graphite	Time Series	5.58	+0.00	+0.96
73.	↑ 78.	4 69.	ArangoDB 👩	Multi-model 🔃	5.40	+0.67	+0.33
74.	4 73.	↑ 111.	Virtuoso 5	Multi-model 📆	5.39	+0.02	+3.02
75.	↑ 76.	4 70.	Google Cloud Datastore	Document	5.25	+0.41	+0.23
76.	4 74.	4 64.	Derby	Relational	5.22	+0.25	-0.19
77.	4 75.	1 78.	SAP IQ	Relational	5.11	+0.26	+0.49
78.	4 77.	4 76.	Adabas	Multivalue	5.06	+0.32	+0.40
79.	↑ 80.	4 68.	OrientDB	Multi-model 🔃	5.03	+0.47	-0.10
80.	↑ 81.	80.	Oracle NoSQL	Multi-model 👔	4.84	+0.43	+0.33
81.	4 79.	4 67.	OpenEdge	Relational	4.67	+0.01	-0.47
82.	82.	1 00.	TimescaleDB [5]	Time Series, Multi-model	4.37	+0.15	+1.51
83.	83.	4 77.	MaxDB	Relational	4.23	+0.18	-0.41
84.	1 89.	1 85.	Google Cloud Bigtable	Wide column	4.17	+0.54	+0.46
85.	1 87.	4 84.	IBM Cloudant	Document	3.94	+0.18	+0.14
06	96	4. 82	Accumula	Wide column	2.02	+0.05	-0.20

86.	86.	-	Accumulo	Wide column		+0.05	-0.20
87.	4 84.		SAP Advantage Database Server	Relational	3.92	-0.08	+0.33
88.	↑ 90.		UniData,UniVerse	Multivalue		+0.27	-0.26
89.	4 88.	_	RocksDB	Key-value	3.89	+0.19	+0.69
90.	4 85.	↑ 113.	ScyllaDB	Multi-model 📳	3.88	-0.03	+1.73
91.	1 96.	4 89.	RavenDB [Document, Multi-model	3.82	+0.57	+0.47
92.	92.	↑ 110.	Google Cloud Spanner	Relational	3.69	+0.23	+1.22
93.	4 91.	↑ 96.	EXASOL	Relational	3.60	+0.07	+0.47
94.	1 95.	↑ 115.	TIDB [Relational, Multi-model	3.51	+0.25	+1.38
95.	1 99.	4 88.	PouchDB	Document	3.46	+0.48	+0.08
96.	4 93.	1 04.	Apache Druid	Multi-model 👸	3.40	-0.04	+0.74
97.	4 94.	4 90.	Apache Phoenix	Relational	3.32	+0.06	+0.04
98.	1 02.	4 93.	InterSystems Caché	Multi-model 📵	3.26	+0.36	+0.03
99.	4 98.	4 92.	LevelDB	Key-value	3.25	+0.17	+0.01
100.	↑ 101.	4 91.	Infinispan	Key-value	3.23	+0.29	-0.03
101.	↑ 107.	4 87.	Oracle Berkeley DB	Multi-model 📳	3.11	+0.43	-0.29
102.	4 97.	4 83.	RethinkDB	Document, Multi-model	3.08	-0.06	-0.98
103.	4 100.	↑ 109.	4D	Relational	3.07	+0.11	+0.59
104.	↑ 105.	4 103.	Apache Drill	Multi-model 📳	3.03	+0.30	+0.31
105.	↑ 109.	4 98.	IMS	Navigational	3.01	+0.38	+0.02
106.	↑ 108.	↑ 118.	Amazon Neptune	Multi-model 📳	2.99	+0.36	+0.92
107.	4 103.	↑ 114.	GraphDB	Multi-model 👔	2.93	+0.07	+0.79
108.	4 104.	4 95.	Apache Jena - TDB	RDF	2.90	+0.06	-0.26
109.	4 106.	↑ 166.	Trino	Relational	2.88	+0.19	+1.87
110.	110.	4 101.	Oracle Coherence	Key-value	2.67	+0.12	-0.15
111.	111.	4 102.	Percona Server for MySQL	Relational	2.54	+0.03	-0.21
112.	↑ 115.	4 99.	LMDB	Key-value	2.53	+0.29	-0.34
113.	113.	4 107.	CloudKit	Document	2.41	+0.12	-0.10
114.	↑ 118.	4 97.	RRDtool	Time Series	2.40	+0.32	-0.60
115.	4 112.	4 105.	JanusGraph	Graph	2.36	-0.03	-0.17
116.	4 114.	↑ 119.	EDB Postgres	Relational, Multi-model	2.36	+0.09	+0.31
117.	↑ 121.	↑ 163.	YugabyteDB 📮	Relational, Multi-model	2.34	+0.39	+1.30
118.	4 116.	4 108.	Amazon CloudSearch	Search engine	2.31	+0.10	-0.18
119.	↑ 120.	1 47.	TigerGraph 5	Graph	2.24	+0.22	+0.91
120.	4 117.	4 112.	Amazon SimpleDB	Key-value	2.18	0.00	-0.03
121.	4 119.	↑ 124.	Tibero	Relational	2.04	+0.01	+0.16
		↑ 137.	Stardog 👨	Multi-model 👸		+0.09	
	4 122.		SpatiaLite	Spatial DBMS, Multi-model		+0.04	
		↑ 125.	IBM Db2 warehouse	Relational		+0.03	+0.07
		4 117.	GridGain	Multi-model 📆		+0.39	-0.14
		4 122.	jBASE	Multivalue		+0.30	-0.05
		4 120.	MonetDB	Relational, Multi-model		-0.02	-0.18
		_	-				

Materials

- ➤ Moodle will be adopted for:
 - ➤ Course information
 - ➤ Lecture and lab materials
 - Communication and discussions

Contact: office I229 / InfoLab (I123) / by email

Next steps

- ➤ Answer the 'BDNR Survey' (if you haven't done so)
- ➤ Prepare for the next lecture:
 - roganize groups before class (register in Moodle, you can change this later)
 - > explore NoSQL technologies to propose topic

- ➤ Prepare personal setup
 - ➤ Git
 - ➤ Docker

References

- NoSQL Distilled, Pramod J. Sadalage and Martin Fowler. Addison-Wesley, 2012
- ➤ Next Generation Databases, Guy Harrison. Apress, 2016

- ➤ Bigtable: A Distributed Storage System for Structured Data (2006)

 https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
- Dynamo: Amazon's Highly Available Key-value Store (2007) https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Student Survey

Previous Enrollment

Language Proficiency

NoSQL Experience

How do you classify your current knowledge in NoSQL concepts and technologies? 22 responses

- None (never heard of nor used)
- Some (familiar with some concepts and occasional and simple use in projects)
- Good (regularly use in somewhat complex projects)
- Very good (have lots of experience)

Experience with Technologies

Familiar with Concepts

Overall Interests

