(1) Prove that if $G=\langle a \rangle$ and H is any group, then every homomorphism $J:G \to H$ is completely determined by $J(a) \in H$.

For $x \in f(G)$ we have x = f(G) for $G \in G = \{a\}$, so $G = a^m$. Hence $x = g(a^m)$.

Prove that $f(a^m) = f(a)^m$ for all $u \in \mathcal{H}$. There are three cases: u > 0, u = 0, and u < 0. For this last case, use $f(a^m) = f(a)^m$.

2) What is Aut (72) for additionry we 72+?

For $\alpha \in Aut$ ($\frac{72}{m\pi}$), by problem O it is determined by $\alpha(\overline{1}) \in \frac{72}{m\pi}$. Check that $\alpha(\overline{1})$ must be a unit (because $\overline{1}$ is a unit). For every unit $\overline{a} \in \frac{72}{m\pi}$, we can define: $\alpha : \frac{72}{m\pi} \longrightarrow \frac{72}{m\pi}$. Check that $\alpha : \overline{a} + \overline{a} + \overline{a} = \frac{72}{m\pi}$.

Then \overline{a} and $\overline{1} \longrightarrow \overline{a}$ and $\overline{1} \longrightarrow \overline{a}$ check that $\alpha : \overline{a} \in Aut$ ($\frac{72}{m\pi}$) for every unit $\overline{a} \in \frac{72}{m\pi}$.

Check that: $\alpha : (\frac{72}{m\pi})^{\times} \longrightarrow Aut$ ($\frac{72}{m\pi}$) is a bijective group homomorphism.

3 a) let G be a group and IHilieI a family of subgroups. State and prove a condition that will imply that UH; is a subgroup.

b) Give an example of a group G and a family of subgroups IHILIEI with

U Hi # < U Hi >.

ieI

- a) Suppose that SHifies contains its kast upper bound H. Then H= UHi.
- 5) Take G= 2/2, H1= <3>, H2 = <2>, then H1UH2 = \0,2,3,4\. Now:

 2+3=5 & H1UH2 but 5 \(\) (H1UH2).
- 4) Prove that Su has order u!.

Let $\sigma \in S_n$. We have n choices for $\sigma(1)$, n-1 choices for $\sigma(2)$, u-2 choices for $\sigma(3)$,..., 2 choices for $\sigma(u-1)$, 1 choice for $\sigma(n)$. Formalize this with induction.

- (5) a) From that the relation and ⇔ a-b∈7L is a congruence relation on Q.
 - b) Prove that the set 9/2 is an infinite abdian group.
 - a) Check that this is reflexive, symmetric, and transitive.

If a, waz and b, wbz, check that (a,+b,)~(az+bz).

b) We have seen in class that a) means that $\frac{1}{2}$ is well defined and abelian because Q is abelian. To see that $\frac{1}{2}$ is infinite, check that $\frac{1}{2}$ + 2 = $\frac{1}{2}$ and $\frac{1}{2}$ + 2 = $\frac{1}{2}$ are equal in $\frac{1}{2}$ if and only if m = m.

Then @ has infinitely many elements.

6) If G is a gray and a, be G with bab"= a for some rein, prove that

biabi=aci for all iem.

Use induction. This is true for i=0. Suppose that it is true for some i>0.

Then $b^{i+1} = b^{-(i+1)} = b(b^i - b^i)b^i = ba^i b^i$ by induction hypothesis. Now: $ba^i b^i = ba \cdots ab^i = ba(b^i b) a(b^i b) \cdots (b^i b) a(b^i b) ab^i = (bab^i)^i = (a^i)^i = a^{-i+1}$ we are told so

(2) Let $Q_8 = \langle 4.8 \rangle$ with $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Show that Q_8 is a <u>non-abelian</u> group of order 8.

Note that A, A^2, A^3 are different, and $A^4 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ the identity element in QR.

Now $BA = A^3B$, so we can move all the A^4 's to the left, all the B^4 's to the right, and every element in QR is af the form A^1R^3 for i, jet. Moreover BA + AB so QR is not abelian. Check that $B^2 = A^2$ and $B^3 = A^2B$, so every element in QR is af the form A^1 or A^1R , ie R^2 . Since A^2 has order 4, we at least have $QR = \{11, A, A^2, A^3, B, A^2R, A^2R, A^3B\}$. Check that these are all different.

To see that this is the same group as we defined in class, get A=i, B=j,

and AB = k.