Show and label your work with proper notation. Use complete math sentences. Rationalized, simplified, and factored answers.

1. The graph below is the function f defined on [0, 8] and consists of 3 line segments and a semicircle. Use the graph to answer questions (a) – (c), where $g(x) = \int_0^x f(t) dt$.

(a) Find g(4), g(7), g'(2), and g" (7).

(b) Find the x-coordinate of any relative extrema of g, if any, on [0, 8] and state whether it is a local maximum or local minimum. Justify your answer.

(c) What is the average rate of change of g on [0, 7]?

2. Write the following limit as a definite integral in 2 ways (not the same or opposite limits):

$$\lim_{n\to\infty} \sum_{i=1}^n \frac{3}{n} \left(\frac{3}{2} + \frac{3i}{n} \right) \cdot 2^{\frac{3}{2} + \frac{3i}{n}}$$

Explain your reasoning by finding f(x) and c_i for each of the integrals.

5. _____ Evaluate
$$\int \frac{x^3+x}{\sqrt{x}} dx =$$

6. _____ Find
$$y = \int (\tan 2x + \cot 2x)^2 dx$$

				2x + 21	
7		Find $v = 0$	ſ.	2X T Z I	dν
′	٠	 I mu y - J	١,	$1x^2 \pm 1x \pm 2$	ил

8. Consider the function $f(x) = \int_1^{2x} \ln(\ln t) dt$. It is known that f'''(a) = 0. Find a, where $a \in R$.