Features

- · Register and combinatorial outputs
- · Variety of speed/power options
- · Registers with feedback
- · Programmable three-state outputs
- · Security fuse prevents duplication of logic
- · Through-hole or surface mount device packaging
- Neutron fluence (permanent damage): 1x10¹³ N/cm²
- Dose rate (transient upset) junction isolated Bipolar processes: 2x10¹⁶ RADs (Si) per sec recovered in 50 to 70 µs from a 1 µs pulse

Benefits

- · Instant prototyping/zero NRE charge
- Low-cost programmable replacement for TTL logic
- · Reduces inventory by reducing chip count
- Programmable on standard PROM/PAL device programmers
- Several software programs available to assist in creating bit pattern design

Applications

- · High speed graphic controllers
- · High speed computers
- · High frequency state machines
- · High frequency counters
- · Microprocessor clock generation and Interface logic

20-Pin PAL Device Speed vs Power

503 102

Ţ

Military 20-Pin PAL Device Pinouts

Military 20-Pin PAL Device Pinouts

16L8D/B/B-2/B-4

CERDIP CERPACK

16R8D/B/B-2/B-4

Military 20-Pin PAL Device Pinouts

16R4D/B/B-2/B-4 16R4D/B/B-2/B-4 16X4 16X4 A/A-2/A-4 A/A-2/A-4 1 20 19 3 2 1 20 19 CLK 1 20 VCC CLK 1 20 VCC VCC vcc 1 2 19 VO 19 VO INPUT AND OR XOR LOGIC ARRAY INPUT AND OR LOGIC 3 4 5 6 7 8 18 3 18 17 C/I 4 17 CELLS CELLS AND OR XOR LOGIC 5 16 16 6 15 GND 7 14 C/1 13 8 LEADLESS CHIP CARRIER LEADLESS CHIP CARRIER 12 9 12 GND 10 GND 10 CERDIP CERPACK CERDIP CERPACK

Absolute Maximum Ratings

•	Operating
Supply voltage, VCC	–0.5 V to 7 V
Input voltage range	
Off-state output voltage	
Storage temperature	65°C to +150°C
Maximum junction temperature (T _i)	175°C
Lead temperature (soldering, 10 sec max)	300°C
Maximum current density 5x10-5 A/cm ² per Mil-M-38510	
Maximum θ _{sc} = 28°C/W for cerdips per Mil-M-38510	< 28°C/W
Maximum θ _c = 22°C/W for flatpacks per Mil-M-38510	
Maximum θ_{N}^{∞} = 20°C/W for leadless chip carrier per Mil-M-38510	

Military Standard 20-Pin PAL Series

PAL10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2

Can be purchased to standard military drawings 81035, latest revision in effect.

Military 20-Pin Half-Power PAL Series

PAL10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2, 16L2-2

Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply voltage	4.5	5.5	٧
T _A	Operating free-air temperature	-55		°C
T _c	Operating case temperature		125	°C
V,.*	Low-level input voltage		≤0.8	٧
V _{II} *	High-level input voltage	≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
V _K	Input clamp voltage	V _{cc} = MIN	I _i = -18 mA		-1.5	٧
i,L	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
I _{IH}	High-level input current	V _{cc} = MAX	V _i = 2.4 V		25	μА
l _i	Maximum input current	V _{cc} = MAX	V _i ≠ 5.5 V		1	mA
.,		V _{cc} = MIN	10H8, 12H6, 14H4, 16H2,16C1, 10L8, 12L6, 14L4, 16L2		0.5	v
V _{oL}	Low-level output voltage	I _{OL} = 4 mA I _{OH} = -2 mA	10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2, 16L2-2		0.5	•
.,	High-level output voltage High-level output voltage I _{DL} = -1 mA 10H8-2, 1	10H8, 12H6, 14H4, 16H2,16C1, 10L8, 12L6, 14L4, 16L2	2.4		v	
V _{oH}		10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2, 16L2-2	2.4			
l _{os} *	Output short-circuit current	V _{cc} = 5V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V 144V	10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2		90	
		V _{cc} = MAX	10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2, 16L2-2	•	45	⊢ mA

^{*} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

5

Military Standard 20-Pin PAL Series

PAL10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2

Military 20-Pin Half-Power PAL Series

PAL10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2, 16L2-2

Switching Characteristics Over Operating Conditions

SYMBOL		PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
	Input or feedback	10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2	$R_1 = 560 \Omega$ $R_2 = 1.1 \text{ K}\Omega$		45	ns
L _{PD}	to output	10H8-2, 12H6-2, 14H4-2, 16H2-2, 16C1-2, 10L8-2, 12L6-2, 14L4-2,16L2-2	$R_1 = 1.12 \text{ K}\Omega$ $R_2 = 2.2 \text{ K}\Omega$		80	ns

Programmed devices conform to Mil-Std-883, Method 5005, Group A, Subgroups 1, 2, 3, 7, 8, 9, 10, and 11.

Military Ultra High Speed 20-Pin PAL Series

PAL16L8D, 16R8D, 16R6D, 16R4D

Can be purchased to standard military drawing 5962-85155, latest revision in effect.

Military Very High Speed 20-Pin PAL Series

PAL16L8B, 16R8B, 16R6B, 16R4B

Can be purchased to standard military drawing 5962-85155, latest revision in effect.

Military High Speed 20-Pin PAL Series

PAL16L8A, 16R8A, 16R6A, 16R4A

Can be purchased to standard military drawing 81036, latest revision in effect.

Operating Conditions

SYMBOL	PARAMETER			20 D		20 B		20 A	
STWIBOL	PANAMEIEN		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _∞	Supply voltage	Supply voltage		5.5	4.5	5.5	4.5	5.5	٧
T _A	Operating free-air temperature		-55		-55		-55		°C
T _c	Operating case temperature			125		125		125	°C
	Mr. III. A. I. A.	Low	12		12		20		
Ų,	Width of clock (except 16L8)	High	8		12		20		ns
t _{eu} †	Set up time from input or feedback to clock (except 16L8)		15		20		30		ns
ţ,†	Hold time		0		0		0		ns
V _{IL} *	Low-level input voltage			≤0.8		≤0.8		≤0.8	ν
V _{IH} *	High-level input voltage		≥2.0		≥2.0		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

SYMBOL	PARAMETER	TI	EST CONDITIONS	MIN	MAX	UNIT
· V _{IC}	Input clamp voltage	V _{cc} = MIN	I, = -18 mA		-1.5	٧
l _k *	Low-level input current	V _{cc} = MAX	V, = 0.4 V		-0.25	mA
1,,*	High-level input current	V _{cc} = MAX	$V_{i} = 2.4 \text{ V}$		25	μΑ
I,	Maximum input current	V _{cc} = MAX	V ₁ ≈ 5.5 V		1	mA
V _{OL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	V
V _{oh}	High-level output voltage	V _{cc} = MIN	I _{oн} = −2 mA	2.4		V
l _{ozt} *			V _o = 0.4 V		-100	μА
l ₀₂₁ *	Off-state output current	V _{cc} = MAX	V _o = 2.4 V		100	μА
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V _{cc} = MAX			180	mA

^{*} I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*}These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

[†]These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Ultra High Speed 20-Pin PAL Series PAL16L8D, 16R8D, 16R6D, 16R4D

Military Very High Speed 20-Pin PAL Series PAL16L8B, 16R8B, 16R6B, 16R4B

Military High Speed 20-Pin PAL Series PAL16L8A, 16R8A, 16R6A, 16R4A

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST	2	:0 D	7	20 B	20 A		UNIT
STMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PD}	Input or feedback to output (except 16R8)		;	15		20		30	ns
t _{cux}	Clock to output or feedback (except 16L8)			12		15		20	ns
t _{PZx}	Pin 11 to output enable (except 16L8)			12		20		25	ns
t _{PXZ}	Pin 11 to output disable (except 16L8)			10		20		25	ns
t _{PZX}	Input to output enable (except 16R8)	$R_1 = 390 \Omega$ $R_2 = 750 \Omega$		17		25		30	ns
t _{exz}	Input to output disable (except 16R8)			13		20		30	ns
aa	State machine maximum operating frequency (except 16L8)		37		28.5		20		
fMAX*	Data path register maximum operating frequency (except 16L8)		50		41.6		25		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{CLK}]$

fMAX (data path register) = $1/[t_{WL} + t_{WH}]$ or $1/t_{BU} + t_h$, whichever is smaller.

Programmed devices conform to Mil-Std-883, Method 5005, Group A, Subgroups 1,2,3,7,8,9,10 and 11.

Military Half-Power 20B-Pin Series

PAL16L8B-2, 16R8B-2, 16R6B-2, 16R4B-2

Can be purchased to standard military drawing 5962-85155, latest revision in effect.

Military Half-Power 20A-Pin Series

PAL16L8A-2, 16R8A-2, 16R6A-2, 16R4A-2

Can be purchased to standard military drawing 81036, latest revision in effect.

Operating Conditions

SYMBOL	PARAMETER		20	20 B-2		20 A-2	
STMBUL	PARAI	WEIER	MIN	MAX	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5.5	4.5	5.5	٧
TA	Operating free-air temperature		55		-55	125	°C
T _c	Operating case temperature			125			°C
		Low	20		25		
Ų.	Width of clock (except 16L8)	High	20		25		ns
t _{eu} †	Set up time from input or feedback to clock (except 16L8)	30		50		ns
t,†	Hold time		0		0		ns
V _{IL} *	Low-level input voltage			≤0.8		≤0.8	V
V _{IM} *	High-level input voltage		≥2.0		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	I, = -18 mA		-1.5	V
l _{i.} *	Low-level input current	V _{cc} = MAX	V, = 0.4 V		-0.25	mA
I _{IH} *	High-level input current	V _{cc} = MAX	V _i = 2.4 V		25	μА
l,	Maximum input current	V _{cc} = MAX	V, = 5.5 V		1	mA
Vor	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	V
V _{oH}	High-level output voltage	V _{cc} = MIN	I _{OH} = -2 mA	2.4		V
l _{ozL} *			V _o = 0.4 V		-100	μА
l _{ozh} *	Off-state output current	V _{cc} = MAX	V _o = 2.4 V		100	μА
		V _{cc} = 5 V	16L8B-2, 16R8B-2, 16R6B-2, 16R4B-2		-250	
l _{os} **	Output short-circuit current	V _o = 0.5 V	16L8A-2, 16R8A-2, 16R6A-2, 16R4A-2	-30	-130	m A
l _{cc}	Supply current	V _{cc} = MAX			90	mA

I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Half-Power 20B-Pin Series

PAL16L8B-2, 16R8B-2, 16R6B-2, 16R4B-2

Can be purchased to standard military drawing 5962-85155, latest revision in effect.

Military Half-Power 20A-Pin Series

PAL16L8A-2, 16R8A-2, 16R6A-2, 16R4A-2

Can be purchased to standard military drawing 81036, latest revision in effect.

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST	20 B-2		20 A-2		UNIT
STMBUL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	ONLI
t _{PD}	Input or feedback to output (except 16L8)			30		50	ns
t _{cux}	Clock to output or feedback (except 16L8)			20		25	ns
t _{ezx}	Pin 11 to output enable (except 16L8)	Fl, = 390 Ω		25		25	ns
t _{exz}	Pin 11 to output disable (except 16L8)	R ₂ = 750 Ω		25		25	ns
t _{PZX}	Input to output enable (except 16R8)			30		45	ns
t _{exz}	Input to output disable (except 16R8)			30		45	ns
214AV**	State machine maximum operating frequency (except 16L8)		20		13.3		3411-
fMAX** -	Data path register maximum operating frequency (except 16L8)		25		20		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{cLR}]$ fMAX (data path register) = $1/[t_{wL} + t_{wH}]$ or $1/t_{su} + t_{h}$, whichever is smaller.

Programmed devices conform to Mil-Std-883, Method 5005, Group A, Subgroups 1,2,3,7,8,9,10 and 11.

Military Quarter-Power 20B-Pin Series

PAL16L8B-4, 16R8B-4, 16R6B-4, 16R4B-4

Can be purchased to standard military drawing 5962-88515 latest revision in effect.

Military Quarter-Power 20A-Pin Series

PAL16L8A-4, 16R8A-4, 16R6A-4, 16R4A-4

Can be purchased to standard military drawing 85065 latest revision in effect.

Operating Conditions

SYMBOL	PARAMETER		20	20 B-4		20 A-4	
SIMBOL			MIN	MAX	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5.5	4.5	5.5	٧
T _A	Operating free-air temperature		-55		-55	125	•c
T _c	Operating case temperature			125			•c
	WE III C 1 1 4 1 4 1 4 1 1	Low	25		40		
Ų	Width of clock (except 16L8)	High	25		40		ns
t _{eu}	Set up time from input or feedb	ack to clock (except 16L8)	50		90		ns
ţ ,†	Hold time		0		0		ns
٧,٠	Low-level input voltage			≤0.8		≤0.8	٧
V _{II} *	High-level input voltage		≥2.0		≥2.0		٧

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

SYMBOL	PARAMETER		TEST CONDITIONS			UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	I _, = −18 mA		-1.5	٧
ţ, <u>,</u> *	Low-level input current	V _{cc} = MAX	V _i = 0.4 V		-0.25	mA
1,,*	High-level input current	V _{cc} = MAX	V ₁ = 2.4 V		25	μА
I,	Maximum input current	V _{cc} = MAX	V _i = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 4 mA		0.5	V
V _{OH}	High-level output voltage	V _{cc} = MIN	I _{oн} = −1 mA	2.4		٧
l _{ozt} *	0"	V MAY	V _o = 0.4 V		-100	μА
l _{ozh} *	Off-state output current	V _{cc} = MAX	V _o = 2.4 V		100	μА
		V _{cc} = 5 V	16L8B-4, 16R8B-4, 16R6 B-4, 16R4B-4		-250	
os	I _{cs} ** Output short-circuit current	V _o = 0.5 V	16L8A-4, 16R8A-4, 16R6A-4, 16R4A-4	-30	-130	mA
		V 144V	16L8A-4, 16R8A-4, 16R6A-4, 16R4A-4		50	
l _{cc}	Supply current	V _{cc} = MAX	16L8B-4, 16R8B-4, 16R6B-4, 16R4B-4		55	mA

I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Quarter-Power 20B-Pin Series PAL16L8B-4, 16R8B-4, 16R6B-4, 16R4B-4

Military Quarter-Power 20A-Pin Series PAL16L8A-4, 16R8A-4, 16R6A-4, 16R4A-4

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TECT	20 B-4		20 A-4		LINUT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
t _{PD}	Input or feedback to output (except 16R8)			50		75	ns
t _{oLK}	Clock to output or feedback (except 16L8)			25		45	ns
t _{exz}	Pin 11 to output enable(except 16L8)	R ₁ = 800 Ω		25		40	ns
t _{exz}	Pin 11 to output disable (except 16L8)	R ₂ = 1.56 KΩ		25		40	ns
t _{ezx}	Input to output enable (except 16R8)			45		65	ns
t _{PXZ}	Input to output disable (except 16R8)			45		65	ns
fMAX*	State machine maximum operating frequency (except 16L8)		13.3		7.4		
	Data path register maximum operating frequency (except 16L8)		20		12.5		MHz

^{*}fMAX is calculated and measured on initial qualifications only.

fMAX (state machine) = $1/[t_{su} + t_{cux}]$ fMAX (data path register) = $1/[t_{wL} + t_{wH}]$ or $1/t_{su} + t_{n}$, whichever is smaller.

Programmed devices conform to Mil-Std-883, Method 5005, Group A, Subgroups 1,2,3,7,8,9,10 and 11.

Military Arithmetic 20-Pin PAL Series PAL16X4

Operating Conditions

SYMBOL		PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply voltage		4.5	5,5	٧
T _A	Operating free-air temperature		-55		°C
T _c	Operating case temperat	ure		125	۰c
	Width of clock	Low	25		ns
t, t		High	25		
t†	Set up time from input or feedback to clock		55		ns
t _h †	Hold time		0	_	ns
V _{IL} *	Low-level input voltage			≤0.8	٧
V _{iH} *	High-level input voltage		≥2.0		V

Note: Virgin array verify of unprogrammed PAL device is performed at 25°C only.

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
V _{ic}	Input clamp voltage	V _{cc} = MIN	I ₁ = -18 mA		-1.5	٧
ا _{ند} *	Low-level input current	V _{cc} = MAX	V ₁ = 0.4 V		-0.25	mA
l _{ii} *	High-level input current	V _{cc} = MAX	V ₁ = 2.4 V		25	μΑ
l,	Maximum input current	V _{cc} = MAX	V, = 5.5 V		1	mA
V _{oL}	Low-level output voltage	V _{cc} = MIN	I _{oL} = 12 mA		0.5	V
V _{oh}	High-level output voltage	V _{cc} = MIN	I _{oн} = -2 mA	2.4		٧
l _{ozi} *	Off-state output current		V _o = 0.4 V		-100	μА
l _{ozh} *		V _{cc} = MAX	V _o = 2.4 V		100	μА
l _{os} **	Output short-circuit current	V _{cc} = 5 V	V _o = 0.5 V	-30	-130	mA
I _{cc}	Supply current	V _{cc} = MAX	16X 4		225	mA

^{*} I/O pin leakage is worst case of IIX or IOZX; i.e., IIL and IOZH.

^{*} These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise.

[†] These are device set-up conditions, which are measured during initial qualification, and are not directly tested.

^{**} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Military Arithmetic 20-Pin PAL Devices PAL16X4

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t PO	Input or feedback to output			45	ns
t _{cux}	Clock to output or feedback			25	ns
t _{PZX}	Pin 11 to output enable	R ₁ = 200 Ω		25	ns
t _{PXZ}	Pin 11 to output disable	R ₂ = 390 Ω		25	ns
t _{PZX}	Input to output enable			45	ns
t _{exz}	Input to output disable			45	ns
fMAX	Maximum frequency		12.5		MHz

Programmed devices conform to Mil-Std-883, Method 5005, Group A, Subgroups 1,2,3,7,8,9,10 and 11.

J

Switching Waveforms

503 133

- Notes: 1. t_{pp} is tested with switch S₁ closed. C₁ = 50 pF and measured at 1.5 V output level.
 2. t_{pzx} is measured at the 1.5 V level with C₁ = 50 pF. S₁ is open for high impedance to "1" test, and closed for high impedance to "o" test.
 - t_{PXZ} is tested with C_L = 5 pF. S₁ is open for "1" to high impedance test, measured V_{OH} ~0.5 V output level. S₁ is closed for "0" to high impedance test measured to V_{OL} +0.5 V output level.
 - 4. Equivalent test loads may be used on automatic test equipment.

Test Load

Life Test/Burn-In Circuits

Complies with Mil-Std-883, Method 1005/1015, Condition D.

Circuit Configurations

Waveforms

A3 to Ax Follow in order

1. All Burn-In will be accomplished at 125° C +5/-0°C

2. $V_{cc} = 5.25 \text{ Volts} \pm 0.25 \text{ V}$

 All clocks (A0 to Ax) are square wave signals, 50±15% Duty Cycle, with:

a. "0" = -0.5 V to +0.7 V

b. "1" = +2.4 V to V_{cc} c. Rise Time (+0.7 V to +2.4 V) < 1 μ sec

d. Fall Time (+2.4 V to +0.7 V) < 1 μsec

4. Resistor Value

330 Ω or 470 Ω ±5%

 All Board Components to be compatible with 150°C Ambient (Min).

PAL12H6/H6-2 PAL12L6/L6-2

503 134

PAL14H4/H4-2 PAL14L4/L4-2

Life Test/Burn-In Circuits

Complies with Mil-Std-883, Method 1005/1015, Condition D.

Circuit Configurations

