

Facultad de Ingeniería Universidad de Cuenca Grado en Ingeniería de Sistemas Curso 2020-2021

Calidad de Software

Capítulo 4: Construcción de Modelos de Calidad de Software

Departamento de Ciencias de la Computación Universidad de Cuenca, Ecuador email: priscila.cedillo@ucuenca.edu.ec

- Introducción
- Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- Factores no técnicos (proveedor, políticos, económicos, etc.)
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métricas del software
- Métodos de construcción de modelos de calidad

- Introducción
- Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- Factores no técnicos (proveedor, políticos, económicos, etc.)
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métricas del software
- Métodos de construcción de modelos de calidad

- La calidad no es una propiedad fija de un sistema de software.
- Esta depende de las necesidades y objetivos de los stakeholders.
- Se deben mapear esas necesidades a propiedades técnicas.
- No solamente planearemos que calidad queremos tener sino adicionalmente cómo la construiremos y la aseguraremos.

- Introducción
- · Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- Factores no técnicos (proveedor, políticos, económicos, etc.)
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métricas del software
- Métodos de construcción de modelos de calidad

- Los requisitos no-funcionales describen las propiedades que no representan la funcionalidad primaria del sistema
- Son características que hacen al producto atractivo, usable, rápido, confiable
- El problema es cómo elicitar y evaluar los requisitos de calidad en una forma estructurada y comprensible
- Los principales enfoques para elicitar requisitos de calidad son:
 - Chequear diferentes tipos de requisitos y construir prototipos
 - Usar escenarios positivos y negativos (Casos de Uso)
 - Refinar metas de calidad por gráficos de objetivos

- Un ejemplo para chequear tipos de requisitos son los checklists para SLAs.
- En los casos de uso, los requisitos de calidad son adjuntados como información adicional (ej. máximo tiempo de respuesta del sistema en tal caso de uso)
- Gráficos de meta son a menudo descompuestos de metas de calidad a sentencias lógicas para luego operacionalizarlas como requisitos funcionales.

- Especificar requisitos de calidad y construir modelos de calidad pueden fusionarse en un solo proceso.
- Mientras añadimos nueva información a un modelo de calidad cuando lo construimos, especificamos requisitos y escogemos las partes necesarias de modelos existentes.

- Introducción
- Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- · Factores no técnicos (proveedor, políticos, económicos, etc.)
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métricas del software
- Métodos de construcción de modelos de calidad

- Descomposición de factores en factores de más bajo nivel de abstracción
- Sólo ocasionalmente a la eliminación o modificación de algún factor ya existente
- Los factores técnicos se refieren a la calidad intrínseca del producto de software.

- Carvallo, Franch y Quer destacan que se pueden incluir en los modelos de calidad factores no-técnicos, y ellos así lo hacen; como ejemplo tenemos:
 - <u>Proveedor</u>: Características del proveedor que pueden influenciar en la calidad del producto de software
 - <u>Negocio</u>: Características del contrato entre proveedor y cliente que pueden influenciar la calidad del producto del software
 - <u>Producto</u>: Características de los aspectos comerciales del producto que pueden influenciar su calidad.

- Introducción
- Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- Factores no técnicos (proveedor, políticos, económicos, etc.)
- Métricas del software
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métodos de construcción de modelos de calidad

- Las métricas son un buen método para medir, entender, monitorizar, predecir y probar el desarrollo de software y los proyectos de mantenimiento (Briand et al., 1996)
- La medición persigue tres objetivos fundamentales:
 - Entender qué ocurre durante el desarrollo y el mantenimiento.
 - Controlar qué es lo que ocurre en los proyectos de desarrollo.
 - Mejorar los procesos y productos.
- Se pueden ver a las medidas como medios para asegurar la calidad en los producto de software.

Problemas

- Todavía se falla en dar objetivos medibles cuando desarrollamos productos de software.
 - Ejm. Se dice que será usable sin especificar esa usabilidad en términos medibles.
- Fallamos en medir diferentes componentes para calcular costes reales de proyectos.
 - Ejm. No sabemos cuánto tiempo fue invertido en el diseño comparado con las pruebas.
- No intentamos cuantificar la calidad de los productos que producimos.
 - Ejm. No podemos decir a un usuario cómo de fiable va a ser un producto en términos de fallos en un período de uso dado.

Métricas del Software

Problemas

- Solemos ver informes que hacen afirmaciones como que el 80% de los costes del software son de mantenimiento o que hay una media de 55 errores en cada 1.000 líneas de código.
- Pero no se dice
 - Cómo se han obtenido esos resultados
 - Cómo se han ejecutado los experimentos
 - Qué entidades fueron medidas y cómo
 - Los márgenes de error.

Atributos Medibles

En software hay tres clases de entidades cuyos atributos podemos medir:

- Procesos: actividades del desarrollo
- **Productos:** entregables, artefactos o documentos generados en el ciclo de vida del software
- Recursos: todos aquellos elementos que hacen de entrada a la producción de software.

Procesos:

- El tiempo (duración del proceso)
- El esfuerzo (asociado al proceso)
- El número de incidentes de un tipo específico

Productos:

- La fiabilidad del código
- La entendibilidad de un documento de especificación
- La mantenibilidad de un código fuente.
- La longitud, funcionalidad, modularidad o corrección sintáctica de los documentos de especificación

Recursos:

- El personal
- Los materiales
- Las herramientas y métodos
- El coste
- La productividad

- Estimación del esfuerzo
- Modelos y medidas de productividad
- Modelos y medidas de calidad
- Modelos de fiabilidad
- Modelos de evaluación y rendimiento
- Métricas de complejidad estructural

- Se quiere contratar software as a service (SaaS) de supermercados.
- El software debe estar disponible. La intensidad de fallos del software es 1 fallo por 100 CPU/hr. El sistema especializado ejecuta 20 CPU/hr por semana y hay 800 clientes que usarán el servicio.
- Se requiere proporcionar a los clientes un servicio de reparación.
- Cada empleado puede realizar 4 llamadas de servicio por día y el servicio estará disponible 5 días por semana.
- ¿Cuántos empleados necesitamos contratar?

- usando el valor de intensidad de fallos, cada sistema experimenta 0.2 fallos por 20 horas de operación o (0.2 fallos por semana en promedio)
- El total de fallos para 800 clientes es de 160 por semana o 32 por día.
- Cada empleado puede realizar 4 visitas por día. Así el número de empleados debería ser 32/4=8.

- Introducción
- Alternativas para abordar la construcción de modelos de calidad
- Factores técnicos (funcionales y no funcionales)
- Factores no técnicos (proveedor, políticos, económicos, etc.)
- Solapamiento de características
- Características de calidad internas y externas
- Interdependencias entre características de calidad
- Métricas del software
- Métodos de construcción de modelos de calidad

- Identificar a los stakeholders relevantes
- 2. Definir metas generales
- 3. Analizar documentos relevantes y elicitar nueva información
- Escoger y definir actividades
- Definir metas de calidad
- 6. Identificar artefactos afectados y escoger entidades
- 7. Escoger entidades y analizar material relevante
- Escoger factores y definir nuevas características de producto
- Especificar requisitos de calidad

- Por su complejidad se requiere de una guía para su construcción.
- Existen propuestas generales:

• Bohem-78: 6 pasos

• GQM: 5 pasos

• Dromey: 5 pasos

- Método IQMC (Individual Quality Model Construction)
 - Diseñado para producir modelos compatibles con el estándar ISO/IEC 9126-1

El método IQMC para la construcción de modelos de calidad

- Circunstancias que intervienen en la construcción de un modelo de calidad:
 - 1. El equipo realiza la construcción del modelo, en el caso de que este equipo no tenga experiencia en la construcción de modelos o en el contexto del dominio.
 - 2. El dominio para el que se construye el modelo, para el que en muchas ocasiones no existe una terminología común.
 - 3. Factores metodológicos, ya que es difícil conocer el nivel de profundidad hasta el que es necesario descomponer los modelos.

IQMC: Conjunto de guías y técnicas para la identificación de los factores de calidad apropiados que deben ser incluidos en un modelo de calidad que permita analizar la calidad de componentes pertenecientes a un cierto dominio de software.

Extensión del ISO 9126-1

ISO/IEC 9126-1:

- 6 Características
 Técnicas
- 27 Subcaract.
 Técnicas

ISO/IEC 9126-1-NT:

- 3 Características No Técnicas
- 15 Subcaract.
 No Técnicas

ISO/IEC 9126-1 Extendido:

 Agrega 60 nuevos elementos de calidad técnicos (Subcaracterísticas y Atributos)

ISO/IEC 9126-1-NT Extendido:

 Agrega 162 nuevos elementos de calidad no técnicos (Subcaracterísticas y Atributos)

ISO/IEC 9126-1 a medida:

 Refina el modelo ISO/IEC extendido para un proyecto particular

ISO/IEC 9126-1-NT a medida:

 Refina el modelo NT-ISO/IEC extendido para un proyecto particular

- El estándar IQMC consiste en 7 pasos que aunque se presentan como secuenciales, pueden ser simultáneos de ser necesario.
- Es importante hacer hincapié en la diferencia de detalle que existe en el catálogo entre los factores técnicos y no-técnicos.

- Estudio del <u>ámbito</u> del software.
- Paso opcional que puede soslayarse en caso de poseer el conocimiento suficiente.
- Puede ser necesario realizar algún tipo de <u>modelización</u> para realizar una unificación de la terminología identificada en las distintas fuentes de información de cara a los pasos siguientes.
- Tener <u>cuidado con la terminología</u> a ser empleada, muchas personas utilizan diferentes términos para un mismo concepto o lo que es peor el mismo término para diferentes conceptos.

Paso 1

- Determinación de <u>sub-características</u> de calidad. Teniendo en cuenta que partimos del catálogo ISO/IEC 9126-1 extendido, el añadido de subcaracterísticas no será muy habitual.
- Puede pasar que alguna sub-característica deba <u>reformularse</u> ligeramente para <u>adaptarla al dominio de interés</u>, o <u>eliminarse</u>.

- Refinamiento de la <u>jerarquía de sub-características</u>. Se descomponen las sub-características del más bajo nivel de abstracción formando <u>jerarquías de sub-características</u>.
- Al igual que en el paso anterior, el añadido de sub-características no será muy habitual, excepto en el caso de la descomposición de la sub-característica.
- En cuanto a sub-características no-técnicas, lo que se realizará es un purgado de las sub-características que no interesen al proyecto en cuestión.

Paso 3

- Refinamiento de sub-características en atributos.
- Descomposición de esos atributos de calidad en unos más concretos.
- Objetivos: llegar a tener descompuestas las subcaracterísticas en atributos medibles ya sea de forma directa o indirecta a través del valor de otro atributos básicos.
- Un atributo puede estar en más de una sub-característica.

- Atributos <u>básicos</u> y <u>derivados</u>
- Refinamiento de atributos derivados en básicos. Se descomponen los atributos derivados hasta obtener los atributos básicos.
- una vez realizado lo anterior <u>los atributos básicos</u> pueden ser medidos de forma directa.

- Determinar las <u>métricas</u> para los <u>atributos básicos</u>.
- Establecimiento de relaciones entre factores de calidad.
- Permiten conocer las dependencias entre los distintos factores de calidad del modelo.
- Colaboración, daño o dependencia

Determinación de métricas para los atributos. Se determinan las métricas para los atributos identificados.

Goal Question-Metric

Técnica definida por Basili y Weiss (1984) y Rombach (1990), para seleccionar y generar métricas tanto del proceso como de los resultados del proyecto.

Propone definir un <u>objetivo</u>, <u>refinarlo en preguntas</u> y <u>definir métricas</u> que intenten dar información para responder estas preguntas.

Planificación

• Se <u>selecciona</u>, <u>define</u>, <u>caracteriza</u> y <u>planifica</u> un proyecto para la aplicación de la medición, obteniéndose como resultado un <u>plan del proyecto</u>.

Definición

 Se define y documenta el programa de la medición (objetivos, preguntas, métricas e hipótesis).

Recopilación de Datos

• Se reúnen los datos reales de la medición.

Interpretación

• Se procesan los datos recopilados respecto a las métricas definidas en forma de resultados de medición, que proporcionan respuestas a las preguntas definidas a partir de las cuales se puede evaluar el logro del objetivo planteado.

- Recopilar toda la información necesaria para un inicio exitoso de un proyecto de medición.
- Motivación y preparación de los miembros de la organización para llevar a cabo el programa de medición.
- Plan de proyecto producto principal de esta fase.
- Incluye:
 - Documentos
 - Procedimientos
 - Calendarios
 - Objetivos del programa de medición.

El proceso GQM

El Proceso GQM (van Soligen y Berghout, 1999)

Establecer el equipo GQM

- Garantiza la continuidad de los programas de medición.
- Cuando existe apuro se descuida, por lo cual GQM debería tener las siguientes cualidades:
 - Ser independiente de los equipos del proyecto.
 - No ser "parte interesada"
 - Poseer conocimiento previo sobre los objetos de la medición.
 - Conciencia de su rol.
 - Mentalidad de orientación a la mejora.

Seleccionar Áreas de Mejora

- Problemas evidentes a los que se enfrenta la organización.
- Areas a mejorar identificadas, en base a los objetivos del negocio.
- Problemas que podrían ocurrir.
- Influencias externas.
- Tecnologías.
- Leyes.
- Procesos y productos.
- Experiencia en medición de las personas implicadas.

Planificación

- Seleccionar el proyecto de aplicación y establecer un equipo del proyecto.
 - Depende de la voluntad, motivación y entusiasmo de los miembros del equipo de proyecto.
 - Los objetivos de la medición deben estar alineados con las ideas de mejora del proyecto.

- Crear el plan del proyecto
 - Resumen ejecutivo: presentar en 20 líneas aprox. el programa de medición.
 - <u>Introducción</u>: Presenta el alcance del programa de medición. Relación entre los objetivos de la mejora y los objetivos del proyecto de desarrollo de software.
 - <u>Calendario</u>: incluye planificación temporal, entregables, asignación de recursos y análisis costebeneficio del programa de medición.
 - Organización: Estructuras organizacionales del proyecto y equipo GQM que son relevantes para el programa de medición.
 - <u>Procesos de gestión</u>: Contiene prioridades, procedimientos de generación de informes de gestión así como actividades de control de riesgos.
 - <u>Formación y promoción:</u> Plan para la formación de los miembros del equipo del proyecto y la comunicación de los resultados de la organización.

Definición

- Definir los objetivos de la medición
 - Se obtiene una definición formal y bien estructurada de los objetivos, para lo cual seutilizan plantillas como la que se muestra:

Analizar	el objeto bajo medición
Con el propósito de	entender, controlar, o mejorar el objeto
Con respecto a	el enfoque de calidad del objeto en el que se centra la medición
Desde el punto de vista de	las personas que miden el objeto
En el contexto de	el entorno en el que la medición tiene lugar

Definir preguntas e hipótesis

Definir las métricas

Con la respuesta a las preguntas planteadas, se deberá poder concluir si se cumple un determinado objetivo.

Deben proporcionar información cuantitativa que permita responder las preguntas planteadas.

Definición

Revisar o elaborar los modelos de proceso software

-Dan soporte a la definición de las mediciones

Realizar entrevistas GQM

-Se extrae del equipo toda la información relevante

Definir y revisar preguntas e hipótesis

Definir las métricas

Métricas para las BD Relacionales

Objetivo GQM:

• Analizar: Bd Relacionales

• Con el propósito de: Asegurar

• Con respecto a: La mantenibilidad

• Desde el punto de vista de: BD Relacional

Preguntas

- Cómo influye la complejidad de las tablas en la mantenibilidad de las BD Relacionales.
- Cómo influye la complejidad entre tablas en la mantenibilidad de las BD Relacionales

- Se consituyen 3 niveles dentro de esta técnica
 - Nivel Conceptual (Objetivos-Goals)
 - Nivel Operacional (Preguntas Questions)
 - Nivel Cuantitativo (Métricas Metrics)

_n Métricas

Pregunta 1

- NA(T) NÚMERO DE ATRIBUTOS DE UNA TABLA
- NFK(T) NÚMERO DE CLAVES AJENAS
- RFK(T) RATIO DE CLAVES AJENAS DE UNA TABLA

$$RFK \quad (T) = \frac{NFK \quad (T)}{NA \quad (T)}$$

Pregunta 2

- NT NÚMERO DE TABLAS
- NA NÚMERO DE ATRIBUTOS
- NFK NÚMERO DE CLAVES AJENAS (NFK)

- Galin D., Software Quality Assurance From theory to implementation, 2004
- Chappell, D. (2012). THE THREE ASPECTS OF SOFTWARE QUALITY: FUNCTIONAL, STRUCTURAL, AND PROCESS Sponsored by Microsoft Corporation. *David Chappel & Associates*, 1.0. Retrieved from http://www.davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
- O'Regan, G. (2014). *Introduction to Software Quality*. http://doi.org/10.1007/978-3-319-06106-1
- Software, D., Rosa, V., & Zepeda, V. (2012). Metodología para el Aseguramiento de la Calidad en la Adquisición del Software (proceso y producto) y servicios.
- Wagner, S. (2013). Software Product Quality Control. http://doi.org/10.1007/978-3-642-38571-1
- ⁿ Carvallo J. P., Presentaciones, 2014-2015.