

Computing the eigenvalue distribution of sums of random matrices

Part III Seminar Series

James Chen - jwc60@cam.ac.uk

Given independent real valued random variables X and Y, what can we say about the distribution of X + Y?

Given independent real valued random variables X and Y, what can we say about the distribution of X + Y?

Solution: just take the convolution of their distribution functions!

Given independent real valued random variables X and Y, what can we say about the distribution of X + Y?

Solution: just take the convolution of their distribution functions!

$$F_{X+Y}(z) = \int_{-\infty}^{\infty} F_X(z-t) dF_Y(t)$$

Given independent real valued random variables X and Y, what can we say about the distribution of X + Y?

Solution: just take the convolution of their distribution functions!

$$F_{X+Y}(z) = \int_{-\infty}^{\infty} F_X(z-t) \, \mathrm{d}F_Y(t)$$

Given large hermitian "independent" random matrices A and B, what can we say about the eigenvalue distribution of A + B?

Given independent real valued random variables X and Y, what can we say about the distribution of X + Y?

Solution: just take the convolution of their distribution functions!

$$F_{X+Y}(z) = \int_{-\infty}^{\infty} F_X(z-t) dF_Y(t)$$

Given large hermitian "independent" random matrices A and B, what can we say about the eigenvalue distribution of A + B?

Large? Independent? Eigenvalue distribution?

• Free probability spaces

- Free convolutions and Cauchy transforms
- Finding roots of analytic functions and Cauchy transforms
- Recovering measures and orthogonal polynomials
- Numerical examples

- Free probability spaces
- Free convolutions and Cauchy transforms
- Finding roots of analytic functions and Cauchy transforms
- Recovering measures and orthogonal polynomials
- Numerical examples

- Free probability spaces
- Free convolutions and Cauchy transforms
- Finding roots of analytic functions and Cauchy transforms
- Recovering measures and orthogonal polynomials
- Numerical examples

- Free probability spaces
- Free convolutions and Cauchy transforms
- Finding roots of analytic functions and Cauchy transforms
- Recovering measures and orthogonal polynomials
- Numerical examples

- Free probability spaces
- Free convolutions and Cauchy transforms
- Finding roots of analytic functions and Cauchy transforms
- Recovering measures and orthogonal polynomials
- Numerical examples

Free probability spaces

Classical probability space: $(\Omega, \mathcal{F}, \mathbb{P})$, random variables $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which are measurable, expectation $\mathbb{E}(\cdot)$...

Free probability spaces

Classical probability space: $(\Omega, \mathcal{F}, \mathbb{P})$, random variables $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which are measurable, expectation $\mathbb{E}(\cdot)$...

Definition (Free probability space)

A non-commutative probability space is a pair (A, ϕ) where

- A is a *-algebra of elements called random variables
- ullet ϕ is the expectation, which is *-linear, positive and normalised to $\phi(1_A)=1$

Free probability spaces

Classical probability space: $(\Omega, \mathcal{F}, \mathbb{P})$, random variables $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which are measurable, expectation $\mathbb{E}(\cdot)$...

Definition (Free probability space)

A non-commutative probability space is a pair (A, ϕ) where

- ullet $\mathcal A$ is a *-algebra of elements called random variables
- ullet ϕ is the expectation, which is *-linear, positive and normalised to $\phi(1_A)=1$

Examples: Space of scalar random variables, space of deterministic matrices, space of random matrices...

Free independence

Classical independence: X and Y independent if for all polynomials p,q such that $\mathbb{E}(p(X)) = \mathbb{E}(q(Y)) = 0$, then

$$\mathbb{E}(p(X)q(Y))=0$$

Free independence

Classical independence: X and Y independent if for all polynomials p,q such that $\mathbb{E}(p(X)) = \mathbb{E}(q(Y)) = 0$, then

$$\mathbb{E}(p(X)q(Y))=0$$

Definition (Free independence)

Random variables $a_1, a_2, \cdots a_n$ are said to be freely independent if for any m polynomials $p_1, p_2, \cdots p_m$ with $m \ge 2$, we have

$$\phi(p_1(a_{i_1})p_2(a_{i_2})\cdots p_m(a_{i_m}))=0$$

whenever $i_1 \neq i_2, i_2 \neq i_3, \cdots i_{m-1} \neq i_m$ and $\phi(p_j(a_{i_j})) = 0$ for all j.

Interpretation: The alternating product of centered random variables is also centered.

Free independence and random matrices

For an $n \times n$ Hermitian random matrix A, we define

$$\phi(A) = \frac{1}{n} \mathbb{E}(\mathrm{Tr}(A))$$

Free independence and random matrices

For an $n \times n$ Hermitian random matrix A, we define

$$\phi(A) = \frac{1}{n} \mathbb{E}(\mathrm{Tr}(A))$$

Many classes of random matrices are asymptotically free i.e. Freely independent as $n \to \infty$, where n is the matrix size.

Free independence and random matrices

For an $n \times n$ Hermitian random matrix A, we define

$$\phi(A) = \frac{1}{n} \mathbb{E}(\mathrm{Tr}(A))$$

Many classes of random matrices are asymptotically free i.e. Freely independent as $n \to \infty$, where n is the matrix size.

- Gaussian Ensemble is asymptotically free with any other random matrix.
- Given any pair of random matrices A and B, the matrix QAQ^* is asymptotically free with B, where Q is a Haar-distributed unitary matrix.

Cauchy transform

Let μ be a (non-zero) finite measure with support Γ , which we assume is compact for simplicity.

Cauchy (Stieltjes) transform
$$G_{\mu}(z) = \int_{\Gamma} \frac{1}{z-x} \, \mathrm{d}\mu$$

• G_{μ} is analytic on $\mathbb{C} \setminus \Gamma$ and at ∞ .

Cauchy transform

Let μ be a (non-zero) finite measure with support Γ , which we assume is compact for simplicity.

Cauchy (Stieltjes) transform
$$G_{\mu}(z) = \int_{\Gamma} \frac{1}{z - x} d\mu$$

- G_{μ} is analytic on $\mathbb{C} \setminus \Gamma$ and at ∞ .
- $G_{\mu}(z) = \frac{m_0}{z} + \frac{m_1}{z^2} + \frac{m_2}{z^3} + \cdots$ as $z \to \infty$, where

$$m_n = \int_{\Gamma} x^n d\mu$$

Hence G_{μ} is univalent near ∞ .

lames Chen 7/21

Cauchy transform

Let μ be a (non-zero) finite measure with support Γ , which we assume is compact for simplicity.

Cauchy (Stieltjes) transform
$$G_{\mu}(z) = \int_{\Gamma} \frac{1}{z - x} d\mu$$

- G_{μ} is analytic on $\mathbb{C} \setminus \Gamma$ and at ∞ .
- $G_{\mu}(z) = \frac{m_0}{z} + \frac{m_1}{z^2} + \frac{m_2}{z^3} + \cdots$ as $z \to \infty$, where

$$m_n = \int_{\Gamma} x^n d\mu$$

Hence G_{μ} is univalent near ∞ .

• Plemelj's lemma: Suppose μ admits a density $\rho(x)$ which is Hölder continuous. Denote $G_u^\pm(x) = \lim_{\varepsilon \downarrow 0} G_\mu(x \pm i\varepsilon)$ for $x \in \Gamma$. Then we have

$$G^{+}(x) + G^{-}(x) = 2 \int_{\Gamma} \frac{\rho(u)}{x - u} du$$

$$G^{+}(x) - G^{-}(x) = -2\pi i \rho(x)$$

$$R$$
 - transform $R_{\mu}(z)$ satisfies $G_{\mu}\left(R_{\mu}(z)+rac{1}{z}
ight)=z$

Define the distribution of a random variable as a probability measure μ_a with moments $\phi(a^n)$.

$$R$$
 - transform $R_{\mu}(z)$ satisfies $G_{\mu}\left(R_{\mu}(z)+rac{1}{z}
ight)=z$

• R_{μ} is analytic on some region of $\mathbb C$ and if Γ is compact, then R_{μ} is analytic on a disc centered around 0.

Define the distribution of a random variable as a probability measure μ_a with moments $\phi(a^n)$.

lames Chen 8/2

$$R$$
 - transform $R_{\mu}(z)$ satisfies $G_{\mu}\left(R_{\mu}(z)+rac{1}{z}
ight)=z$

• R_{μ} is analytic on some region of $\mathbb C$ and if Γ is compact, then R_{μ} is analytic on a disc centered around 0.

Define the distribution of a random variable as a probability measure μ_a with moments $\phi(a^n)$.

Theorem (Voiculescu, 1986)

Let μ_a and μ_b be the distributions of freely independent random variables a and b, the there is a unique probability measure $\mu_b \boxplus \mu_b$ satisfying

$$R_{\mu_a \boxplus \mu_b}(z) = R_{\mu_a}(z) + R_{\mu_b}(z)$$

 $\mu_a \boxplus \mu_b$ is the distribution of a + b when a and b are freely independent.

$$R$$
 - transform $R_{\mu}(z)$ satisfies $G_{\mu}\left(R_{\mu}(z)+rac{1}{z}
ight)=z$

• R_{μ} is analytic on some region of $\mathbb C$ and if Γ is compact, then R_{μ} is analytic on a disc centered around 0.

Define the distribution of a random variable as a probability measure μ_a with moments $\phi(a^n)$.

Theorem (Voiculescu, 1986)

Let μ_a and μ_b be the distributions of freely independent random variables a and b, the there is a unique probability measure $\mu_b \boxplus \mu_b$ satisfying

$$R_{\mu_a \boxplus \mu_b}(z) = R_{\mu_a}(z) + R_{\mu_b}(z)$$

 $\mu_a \boxplus \mu_b$ is the distribution of a + b when a and b are freely independent.

Interpretation: Eigenvalue distribution of A+B is given by the free convolution of the eigenvalue distributions of A and B, if the matrices are asymptotically freely independent.

Theorem

Given $y \in \mathbb{C} \setminus \mathbb{R}$, the following are equivalent for all $z \in \mathbb{C} \setminus \mathbb{R}$:

•

$$G_{\mu_a \boxplus \mu_b}(z) = y$$

• $\operatorname{sgn}(\operatorname{Im}(z)) \neq \operatorname{sgn}(\operatorname{Im}(y))$ and there exist z_1 and z_2 such that $z_1 + z_2 - \frac{1}{y} = z$ and

$$G_{\mu_a}(z_1) = G_{\mu_b}(z_2) = y$$

Finding all solutions to $G_{\mu_a}(z)=y$ and $G_{\mu_b}(z)=y$ allows us to find all solutions to $G_{\mu_a\boxplus\mu_b}(z)=y$.

Inverses of Cauchy transforms

Computing free convolution motivates finding inverses of G_{μ}

Inverses of Cauchy transforms

Computing free convolution motivates finding inverses of G_{μ}

Problem

Given a probability measure μ supported on Γ and its associated Cauchy transform G_{μ} , for any $y \in \mathbb{C}$, find **all** $z \in \mathbb{C} \setminus \Gamma$ such that $G_{\mu}(z) = y$.

$$G_{\mu}(z) = \int_{\Gamma} \frac{1}{z - x} d\mu$$

Inverses of Cauchy transforms

Computing free convolution motivates finding inverses of G_{μ}

Problem

Given a probability measure μ supported on Γ and its associated Cauchy transform G_{μ} , for any $y \in \mathbb{C}$, find **all** $z \in \mathbb{C} \setminus \Gamma$ such that $G_{\mu}(z) = y$.

$$G_{\mu}(z) = \int_{\Gamma} \frac{1}{z - x} d\mu$$

All inverses important! Needs upper bound of some kind!

Given μ and the associated Cauchy transform G_{μ} , upper bounds on the number of solutions are necessary for stopping criteria for root-finding algorithms.

Given μ and the associated Cauchy transform G_{μ} , upper bounds on the number of solutions are necessary for stopping criteria for root-finding algorithms.

Theorem

Let $\rho(x)$ be a density function such that $d\mu = \rho(x) dx$, with compact support and $\rho(x) \in W^{1,p}(\mathbb{R})$ for some $p \in (1,\infty)$

Then the number of solutions to $G_{\mu}(z) = y$ is bounded above by

$$N = \frac{1}{2} \sup_{v>0} C\left(\left\{x \in \mathbb{R} : \rho(x) = v\right\}\right)$$

where $C: \mathcal{P}(\mathbb{R}) \to \mathbb{N} \cup \{\infty\}$

C(A) = The number of connected components in the set A

Sketch of proof: Define the image of $\Gamma = \operatorname{supp}(\mu)$ under G by the union of the upper and lower limits $G^+(\Gamma)$ and $G^-(\Gamma)$.

• $G(\Gamma)$ is a bounded continuous curve.

Sketch of proof: Define the image of $\Gamma = \operatorname{supp}(\mu)$ under G by the union of the upper and lower limits $G^+(\Gamma)$ and $G^-(\Gamma)$.

- $G(\Gamma)$ is a bounded continuous curve.
- For y not on $G(\Gamma)$, the number of solutions to G(z)=y is given by the winding number of $G(\Gamma)$ around y due to the argument principle. Denote the number of solutions as N.

Sketch of proof: Define the image of $\Gamma = \operatorname{supp}(\mu)$ under G by the union of the upper and lower limits $G^+(\Gamma)$ and $G^-(\Gamma)$.

- G(Γ) is a bounded continuous curve.
- For y not on $G(\Gamma)$, the number of solutions to G(z) = y is given by the winding number of $G(\Gamma)$ around y due to the argument principle. Denote the number of solutions as N.
- Plemelj's lemma: parametrise $G(\Gamma)$ into real and imaginary parts, which are the Hilbert transform up to some constant scaling factor and the density $\frac{\sigma(x)}{\pi}$.

Sketch of proof: Define the image of $\Gamma = \operatorname{supp}(\mu)$ under G by the union of the upper and lower limits $G^+(\Gamma)$ and $G^-(\Gamma)$.

- G(Γ) is a bounded continuous curve.
- For y not on $G(\Gamma)$, the number of solutions to G(z) = y is given by the winding number of $G(\Gamma)$ around y due to the argument principle. Denote the number of solutions as N.
- Plemelj's lemma: parametrise $G(\Gamma)$ into real and imaginary parts, which are the Hilbert transform up to some constant scaling factor and the density $\frac{\sigma(x)}{x}$.
- The curve $G(\Gamma)$ must cross the ray $\{y+x:x\in(-\infty,0)\}$ at least N times. Similar for $\{y+x:x\in(0,\infty)\}$.

Example: Jacobi measure

Absolutely continuous measure $d\mu = \rho(x) dx$ where

$$\rho(x) = \frac{15}{32}(1+7x^2)(1-x^2)^2\mathbf{1}_{[-1,1]}$$

Consider points $y_1 = G(1+2i)$ and $y_2 = G(0.14+0.06i)$. $G(z) = y_1$ has one solution, whilst $G(z) = y_2$ has two solutions.

Figure 1: Left: density of μ with Jacobi weights. Right: image of ${\it G}_{\mu}^{+}$ and ${\it G}_{u}^{-}$.

James Chen 13/21

Computing all zeros of analytic functions

Consider an open set $\Omega \subset \mathbb{C}$ and an analytic function $f: \Omega \to \mathbb{C}$.

Goal: find all the roots of f inside a given closed contour γ , denoted by z_i .

James Chen 14/21

Computing all zeros of analytic functions

Consider an open set $\Omega \subset \mathbb{C}$ and an analytic function $f:\Omega \to \mathbb{C}$.

Goal: find all the roots of f inside a given closed contour γ , denoted by z_i .

Define the moments s_n as follows.

$$s_n = \frac{1}{2\pi i} \oint_{\gamma} z^n \frac{f'(z)}{f(z)} dz = \sum_{z_i} z_i^n v_i$$

where in the last equality the generalised argument principle was used (v_i denotes multiplicity).

James Chen 14/21

Computing all zeros of analytic functions

Consider an open set $\Omega \subset \mathbb{C}$ and an analytic function $f: \Omega \to \mathbb{C}$.

Goal: find all the roots of f inside a given closed contour γ , denoted by z_i .

Define the moments s_n as follows.

$$s_n = \frac{1}{2\pi i} \oint_{\gamma} z^n \frac{f'(z)}{f(z)} dz = \sum_{z_i} z_i^n v_i$$

where in the last equality the generalised argument principle was used (v_i denotes multiplicity).

Theorem (Kravanja, Sakurai, Van Barel, 1999)

Suppose there are N roots of f. Then every root $z_i, i = 1, ..., N$ is an eigenvalue of the pencil $H_1 - \lambda H_0$ with Hankel matrices

$$H_0 = [s_{k+l}]_{k,l=0}^{N-1}$$
 $H_1 = [s_{k+l+1}]_{k,l=0}^{N-1}$

James Chen 14/21

Application to Cauchy transforms

Assumption: Γ is compact and is a finite union of disjoint closed intervals $[A_i^-,A_i^+], j=1,\ldots,N.$

Given a $y \in \mathbb{C}$, consider $f : \mathbb{D} \to \mathbb{C}$ where $f(z) = G(\zeta(z)) - y$ where ζ is a suitably chosen conformal mapping.

James Chen 15/21

Application to Cauchy transforms

Assumption: Γ is compact and is a finite union of disjoint closed intervals $[A_i^-, A_i^+], j = 1, \dots, N$.

Given a $y \in \mathbb{C}$, consider $f : \mathbb{D} \to \mathbb{C}$ where $f(z) = G(\zeta(z)) - y$ where ζ is a suitably chosen conformal mapping. Define the following maps:

$$J:\mathbb{D} o \mathbb{C} \setminus [-1,1]$$
 $J(z)=rac{1}{2}\left(z+rac{1}{z}
ight)$ (Joukowski map)
$$M_{a,b}(z)=rac{b+a}{2}+rac{b-a}{2}z$$
 (Affine map from $[-1,1]$ to $[a,b]$)

James Chen 15/21

Conformal maps

Locating zeros on $\mathbb{C}\setminus I$ where $I=[a,b]=[\min(\Gamma),\max(\Gamma)]$, the convex hull of Γ

Choose
$$\zeta(z) = M_{a,b}(J(z))$$
.

Then the region where inverses can be recovered is the outside of an ellipse whose size depends on r.

As $r \to 1$, the ellipse shrinks towards I. However, G_{μ} generally has singularities on Γ so the size of the annulus on which the integrand of A_n is analytic decreases, slowing convergence.

Figure 2: Red: support of μ . Blue: region where inverses can be recovered.

James Chen 16/21

Conformal maps

Figure 2: Red: support of μ . Blue: region where inverses can be recovered.

Locating zeros on $\mathbb{C}\setminus I$ where $I=[a,b]=[\min(\Gamma),\max(\Gamma)]$, the convex hull of Γ

Choose $\zeta(z) = M_{a,b}(J(z))$.

Then the region where inverses can be recovered is the outside of an ellipse whose size depends on r.

As $r \to 1$, the ellipse shrinks towards I. However, G_{μ} generally has singularities on Γ so the size of the annulus on which the integrand of A_n is analytic decreases, slowing convergence.

Locating zeros on $(c,d) \subset I \setminus \Gamma$ Choose $\zeta(z) = M_{c,d}(z)$

James Chen 16/21

Recovery of measures: Regularity

We can now compute all solutions of $G_{\mu_a\boxplus\mu_b}(z)=y$ for fixed y. How to recover?

James Chen 17/21

Recovery of measures: Regularity

We can now compute all solutions of $G_{\mu_a \boxplus \mu_b}(z) = y$ for fixed y. How to recover? Free convolution has remarkably strong regularisation properties:

James Chen 17/21

Recovery of measures: Regularity

We can now compute all solutions of $G_{\mu_a \boxplus \mu_b}(z) = y$ for fixed y. How to recover? Free convolution has remarkably strong regularisation properties:

Theorem (Bao, Erdös, Schnelli, 2018)

Let μ_a and μ_b be measures supported on single intervals with power-law behaviour at the boundary of the supports, such that all exponents are in (-1,1). Then $\mu_a \boxplus \mu_b$ is a measure supported on a single interval with square-root behaviour at the boundary.

James Chen 17/21

Let μ have density $\rho(x)$ and support on a compact set Γ . Assume that $\rho(x) = r(x)w(x)$, where r(x) is a non-negative function and w(x) is the weight of some sequence of orthogonal polynomials $p_n(x)$.

James Chen 18/21

Let μ have density $\rho(x)$ and support on a compact set Γ . Assume that $\rho(x) = r(x)w(x)$, where r(x) is a non-negative function and w(x) is the weight of some sequence of orthogonal polynomials $p_n(x)$.

$$q_n(z) = \int_{\Gamma} \frac{p_n(x)w(x)}{z - x} dx$$

James Chen 18/2

Let μ have density $\rho(x)$ and support on a compact set Γ . Assume that $\rho(x) = r(x)w(x)$, where r(x) is a non-negative function and w(x) is the weight of some sequence of orthogonal polynomials $p_n(x)$.

$$q_n(z) = \int_{\Gamma} \frac{p_n(x)w(x)}{z - x} dx$$

 q_n satisfy a similar three-term recurrence relation to the orthogonal polynomials.

$$\begin{split} zq_0(z) &= a_0q_0(z) + b_0q_1(z) + \int_{\Gamma} p_0(x)w(x)\,\mathrm{d}x \\ zq_n(z) &= c_{n-1}q_{n-1}(z) + a_nq_n(z) + b_nq_{n+1}(z), \qquad n \geq 1, \end{split}$$

lames Chen 18/21

Let μ have density $\rho(x)$ and support on a compact set Γ . Assume that $\rho(x) = r(x)w(x)$, where r(x) is a non-negative function and w(x) is the weight of some sequence of orthogonal polynomials $p_n(x)$.

$$q_n(z) = \int_{\Gamma} \frac{p_n(x)w(x)}{z - x} dx$$

 q_n satisfy a similar three-term recurrence relation to the orthogonal polynomials.

$$zq_0(z) = a_0q_0(z) + b_0q_1(z) + \int_{\Gamma} p_0(x)w(x) dx$$

$$zq_n(z) = c_{n-1}q_{n-1}(z) + a_nq_n(z) + b_nq_{n+1}(z), \qquad n \ge 1,$$

$$r(x) = \sum_{n=0}^{\infty} \phi_n p_n(x) \implies G_{\mu}(z) = \sum_{n=0}^{\infty} \phi_n q_n(z)$$

lames Chen 18/21

Recovery of measures: Least squares

Assuming that we know the support of $\mu=\mu_a\boxplus\mu_b$, we consider the Chebyshev-U expansion of G_μ as follows, for the single interval [a,b] case:

James Chen 19/2

Recovery of measures: Least squares

Assuming that we know the support of $\mu = \mu_a \boxplus \mu_b$, we consider the Chebyshev-U expansion of G_{μ} as follows, for the single interval [a, b] case:

$$\rho(x) = r(x) \frac{2\sqrt{b-x}\sqrt{x-a}}{b-a} \mathbf{1}_{[a,b]}$$

$$G_{\mu}(z) = \sum_{n=0}^{\infty} \phi_n q_n(z) = \pi \sum_{n=0}^{\infty} \phi_n J_+^{-1} (M_{ab}^{-1}(z))^{n+1}$$

Here, $J_+^{-1}(z)=z-\sqrt{z-1}\sqrt{1+z}$ denotes an inverse of the Joukowski transform sending $\mathbb{C}\setminus[-1,1]$ to the unit disk, with $J_+^{-1}(\infty)=0$.

James Chen 19/3

Recovery of measures

We recover the first n coefficients of ϕ by solving a least-squares system $G_{\mu}(G_{\mu}^{-1}(y)) = y$, in the single interval case. Given that we can calculate $G_{\mu}^{-1}(y)$, we consider pairs (z_m, y_m) where $G_{\mu}(z_m) = y_m$.

James Chen 20/2

Recovery of measures

We recover the first n coefficients of ϕ by solving a least-squares system $G_{\mu}(G_{\mu}^{-1}(y)) = y$, in the single interval case. Given that we can calculate $G_{\mu}^{-1}(y)$, we consider pairs (z_m, y_m) where $G_{\mu}(z_m) = y_m$.

$$\pi \sum_{k=1}^{n} \phi_{k-1} \operatorname{Re} \left(J_{+}^{-1} (M_{ab}^{-1}(z_m))^k \right) = \operatorname{Re} (y_m)$$

$$\pi \sum_{k=1}^n \phi_{k-1} \mathrm{Im} \left(J_+^{-1} (M_{ab}^{-1}(z_m))^k \right) = \mathrm{Im}(y_m)$$

James Chen 20/3

Recovery of measures

We recover the first n coefficients of ϕ by solving a least-squares system $G_{\mu}(G_{\mu}^{-1}(y)) = y$, in the single interval case. Given that we can calculate $G_{\mu}^{-1}(y)$, we consider pairs (z_m, y_m) where $G_{\mu}(z_m) = y_m$.

$$\pi \sum_{k=1}^{n} \phi_{k-1} \operatorname{Re} \left(J_{+}^{-1} (M_{ab}^{-1}(z_{m}))^{k} \right) = \operatorname{Re} (y_{m})$$

$$\pi \sum_{k=1}^{n} \phi_{k-1} \operatorname{Im} \left(J_{+}^{-1} (M_{ab}^{-1}(z_{m}))^{k} \right) = \operatorname{Im} (y_{m})$$

Hence, we recover the coefficients of the density of $\mu_{a \boxplus b}!$

James Chen 20/21

Conclusion

- Describe algorithms to compute free convolutions for probability measures and use them in practice.
- Further reading:
 - Free Probability and Random Matrices, Mingo and Speicher.
 - Computing the Zeros of Analytic Functions, Kravanja and Barel
- Repository for Julia code is on Github at: https://github.com/dlfivefifty/NumericalFreeProbability.jl
- Special thanks to Sheehan Olver.

Thank you!

James Chen 21/21