

Étude des effets d'inertie et de frottements dans les systèmes d'essuie-glace

Le 21/03/25

Présenté par:

Loubna TALEB et Zélie BESANCENET

Tuteur entreprise: Sébastien JALLET

Tuteur académique: Gilles LEBORGNE

L'entreprise Valeo

- Entreprise française d'équipement automobile
- Fondée en 1923 par Eugène Buisson
- Dirigé depuis 2022 par Christophe Périllat
- En 2021, Valeo emploie 103 300 salariés dans 31 pays
- Le système d'essuyage fait parti du 3e pôle d'activité: la division Light. (Autres divisions: Brain et Power)

Motivation du projet

 Actuellement, Valeo néglige les effets d'inertie dans la modélisation des essuie-glaces et considère seulement les frottements sur le pare-brise.

Objectif:

→ Montrer que les effets d'inertie ne sont pas négligeables.

Chronologie de la présentation

- I. Introduction et présentation du porte-balai
- II. Calculs analytiques et modélisations
 - A. Notions fondamentales de mécanique
 - B. Modélisation avec le cylindre et la sphère
 - C. Calcul de la matrice d'inertie
 - D. Application au cas du cylindre
- III. Comparaisons avec les résultats du simulateur SimCenter
 - A. Erreur logicielle du changement de masse
 - B. Calcul des moments d'inertie de chaque pièce
 - C. Mesures du couple sans frottements
 - D. Mesures du couple avec frottements
- IV. Conclusion

Équations de Newton

• Expression du couple et de la force au centre de masse dans un repère galiléen:

Présentation du porte-balai

Notions de mécanique

Moment d'inertie

$$I = \int_{S} r^2 dm$$

- I: moment d'inertie $(kg.m^2)$
- S: solide
- r: distance au centre de masse (m)

Couple de forces

$$\tau = I \times \alpha$$

- τ : couple de force (N.m)
- I: moment d'inertie $(kg.m^2)$
- α : accélération angulaire (rad/s^2) du solide par rapport à un axe fixe.

Théorème de Huygens

$$I_{\Delta} = I_{\Delta G} + md^2$$

- I_{Δ} : moment d'inertie par rapport à l'axe $\Delta (kg.m^2)$
- $I_{\Delta G}$: moment d'inertie par rapport à l'axe ΔG $(kg.m^2)$
- m: masse (kg)
- d: distance entre les axes Δ et ΔG (kg)

Matrice d'inertie dans le cas général:

$$I_{\Delta}(S) = \int_{P \in S} r^2 dm$$

$$I_{\Delta}(S) = \vec{i} \cdot \iiint_{P \in S} (\overrightarrow{OP} \wedge (\vec{i} \wedge \overrightarrow{OP})) dm$$

$$I_{\Delta}(S) = \begin{pmatrix} \int_{P \in S} (y^2 + z^2) dm & \int_{P \in S} -xy dm & \int_{P \in S} -xz dm \\ \int_{P \in S} -xy dm & \int_{P \in S} (x^2 + z^2) dm & \int_{P \in S} -yz dm \\ \int_{P \in S} -xy dm & \int_{P \in S} -yz dm & \int_{P \in S} (x^2 + y^2) dm \end{pmatrix}$$

Modélisation du cylindre

Expression de la matrice d'inertie dans le repère (0, x, y, z):

$$I_{\text{cylindre}} = \begin{bmatrix} \frac{1}{12} m_c (3R_c^2 + L^2) & 0 & 0\\ 0 & \frac{1}{12} m_c (3R_c^2 + L^2) & 0\\ 0 & 0 & \frac{1}{2} m_c R_c^2 \end{bmatrix}.$$

Avec:

- $m_c = 2,47g$: masse du cylindre
- L = 100mm: longueur du cylindre
- $R_c = 1$ mm: rayon du cylindre

Vidéo du couple du cylindre seul

Modélisation de la sphère

Expression de la matrice d'inertie dans le repère (0, x, y, z):

$$I_{
m sph\`ere} = egin{bmatrix} rac{2}{5} msR_s^2 & 0 & 0 \\ 0 & rac{2}{5} msR_s^2 & 0 \\ 0 & 0 & rac{2}{5} msR_s^2 \end{bmatrix}$$

Avec:

- $m_s = 1,24g$: masse de la sphère
- $R_s = 3.35$ mm: rayon de la sphère

Le moment d'inertie total

•
$$I_{cm} = I_{sphere} + I_{cylindre} + m_s L^2 + \frac{m_c L^2}{4}$$

$$I_{\rm cm} = \begin{bmatrix} \frac{2m_s R_s^2}{5} + L^2(m_s + \frac{m_c}{3}) & 0 & 0\\ 0 & \frac{2m_s R_s^2}{5} + L^2(m_s + \frac{m_c}{3}) & 0\\ 0 & 0 & \frac{2m_s R_s}{5} + L^2(m_s + \frac{m_c}{4}) \end{bmatrix}$$

Le couple :

$$\tau_{timonerie} = \left(\frac{2m_s R_s^2}{5} + L^2(m_s + \frac{m_c}{3})\right)\alpha + N \cdot R \cdot C_f$$

Vidéo du couple du cylindre avec la balle

Incohérence du logiciel

Expression du couple d'inertie du cylindre seul:

$$\tau_{\rm cylindre} = I_{\rm cylindre} \cdot \alpha = \left(\frac{m_c}{12}(3R_c^2 + L^2) + m_c \cdot \frac{L^2}{4}\right) \cdot \alpha$$
 Masse x10
$$\tau_{\rm cylindre_10} = 10 \cdot \left(\frac{m_c}{12}(3R_c^2 + L^2) + m_c \cdot \frac{L^2}{4}\right) \cdot \alpha = 10 \cdot \tau_{\rm cylindre}$$

Couple avec Masse x10

Un cylindre 10 fois plus lourd → Couple multiplié par 10 🗶

Calcul dans le logiciel: $\tau_{cylindre_10} = ?.I_{cylindre}.\alpha + 10.m_c.\frac{L^2}{4}$

Erreur logiciel du changement de masse

Multiplication de la masse par 10

Calcul des moments d'inertie de chaque pièce

Pièce	Moment d'inertie au centre de gravité de chaque pièce	Masse (g)	Distance (mm)	Moment d'inertie à l'axe de sortie (g.mm^2)
Axe de sortie	1,59 ^e 3	92,3	0	1,59 ^e 3
entraîneur	2,33 ^e 5	115,7	62,95	6,92°5
Tige	2,79 ^e 6	131,5 X 1	463,9 1	3,11e7
Balai (masse ponctuelle dans l'adaptateur)	5,45°3	130 x11	676,3 000	5,95 ^e 7

Calcul des parts des moments d'inertie de chaque pièce dans le moment total

Mouvement périodique du portebalai

Mesures expérimentales et théoriques des couples – sans frottements

Mesures expérimentales et théoriques des couples – avec frottements

Conclusion

• **Problématique** : Comment les effets d'inertie influencent-ils le couple d'un système d'essuie-glace ?

Réalisations :

- ✓ Analyse théorique et simulations sous SimCenter et Catia
- ✓ Validation de l'influence du moment d'inertie et des frottements sur le couple calculé autour de l'axe de sortie.

Conclusion

- **Perspectives**: oscillations du couple autour de l'axe de sortie, deux phénomènes:
 - Écrasement de la lame
 - Stick-slip

