Who needs semantic addressing, anyway?

Christian Jacquenet, Orange

christian.jacquenet@orange.com

Die-hard requirements, more services.

- Service continuity under various constraints
 - User is in motion, degraded communication environment
- Service-inferred traffic engineering
 - Route computation must accommodate various requirements and constraints
- Service-inferred performance and scalability
 - Deterministic network programmability, dynamic resource allocation and policy enforcement schemes to address various, flexible user/operator demands
- Privacy preservation and augmented robustness to attacks of any kind
 - Route computation to take the sensitive nature of data into account
- Sustainable designs and massive digital inclusion
 - Energy as a metric, ubiquitous connectivity with relevant QoS and security levels, ...

Information, please.

- What kind of traffic is this?
- What to do with incoming packets?
- Is there any route (that can accommodate traffic pattern)?
- Is such route safe?
- All paths lead to Rome: is this applicable? If so, how?

• ...

Who and where?

- IP addresses provide some indication about who (Identifier) you are and where (Locator) you are
 - Protocols like LISP or HIP explicitly distinguish both
- Identification schemes may vary, depending on the technology, e.g.,:
 - Geographic coordinates can be carried in the IPv6 header's Flow Label field or as a specific EH or use LISP's LCAF encoding, etc.

What to do with packets?

Service Function
 Chaining is conceived to enforce differentiated forwarding policies based upon instructions described by metadata

Such metadata can be can be carried in a specific header like the NSH or use IP or MPLS mechanics (e.g., an IPv6 EH)

Data Centers

Is there any route?

- Traffic-engineered paths can be computed by means of the CSPF/MPLS-TE/PCE alchemy or the IPv6 Flow Label field for that matter (see RFC 6294) or SR, etc.
- MPTCP option (and its forthcoming QUIC equivalent) can be used to establish communications over multiple paths

Of course, privacy matters.

- IDentity-EnAbled networkS (IDEAS) was one attempt to preserve privacy
 - An IP address is decomposed into an identity, an identifier and a locator
 - Identity is never revealed over the network
 - Identifiers are used as session IDs, and thus have a limited lifetime
 - The identity is unique per entity, whereas multiple identifiers can be associated with a single identity
- Introducing the Generic IDentity Services (GRIDS) architecture
 - See use cases in this <u>draft</u>

Identity services Mapping services ID/LOC split IDY/ID split Metadata services Policy services (e.g., forwarding (e.g., access control) instructions) **GRIDS** infrastructure GRIDS control plane

HIP, LISP, ILA,...

Who needs semantic addressing?

- Many (standard) design options already exist to accommodate current and foreseeable requirements
 - Reading "Security considerations for transient numeric identifiers employed in network protocols" draft and "Challenges in routing" draft might be a good start to apprehend the landscape and the issues
- Any change that may dramatically question decades of IP network operation will undoubtedly make operators pretty nervous
 - Need for graceful coexistence with legacy gear and robust standardization effort

Thank You!