3. Consider the following matrix A:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 4 & 2 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 4 & 2 & 2 \end{bmatrix}$$

$$A = \left[\begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 4 & 2 & 2 \end{array} \right]$$

For each value of λ given below determine if it is an eigenvalue of A. $(-\lambda \cdot 1 - \lambda \cdot 2 - \lambda) + O + 4$

a)
$$\lambda = 0$$
b) $\lambda = -2$
yes

- $\lambda + 3$
 $\lambda + 7$
 $\lambda - 6 = 0$
yes

- $(-1)^3 + 3(-1)^2 + 7(-1) - 6 = 0$
 $(-2)^3 + 3(-2)^2 + 7(-2) - 6 = 0$
 $(-2)^3 + 3(-2)^2 + 7(-2) - 6 = 0$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$
 $(-2)^4 + (-14)^2 - 6$

$$(2 \cdot 4 \cdot 1 - \lambda) = 0 - (2 - \lambda)$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0 - (2 - \lambda)$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0 - (2 - \lambda)$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

$$(3 \cdot 4 \cdot 1 - \lambda) = 0$$

20/20