CS 160 Compilers

Lecture 7: Revisiting DFA & NFA

Yu Feng Fall 2021

Outline

- Today: Revisiting RE & NFA & DFA
- High-level story: RegEx -> NFA -> DFA -> Table

Finite automata

- Regular Expressions

 ⇔ Specification
- Finite Automata ⇔ Implementation
- A finite automata formally consists of:
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow input state

Finite automata

- Transition $S_1 \rightarrow \alpha S_2$
- This means: In state S_1 and input character α , go to state S_2
- If end of input and in accepting state ⇒ accept
- Otherwise \Rightarrow reject

Finite Automata as State Graphs

A state:

The start state:

An accepting state:

A transition:

A simple example

• Here is an automaton that only accepts the string "1":

Another simple example

• A finite automaton accepting any number of 1's followed by a single 0

• Alphabet: {0,1}

Epsilon transitions

- A special kind of transition: ε-transitions
- Machine can move from state A to B without reading any input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - At most one transition per input on any state
 - No ε moves
- Nondeterministic Finite Automate (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

RE to NFA

In-class exercise

• Please draw the NFA for: a (b | c)*

NFA to DFA: The Algorithm

```
q_0 \leftarrow \epsilon-closure(\{n_0\});
Q \leftarrow q_0;
WorkList \leftarrow \{q_0\};
while (WorkList≠Ø) do
    remove q from WorkList;
                                                Apply NFA's
    for each character c \in \Sigma do
                                                 transition function to
         t \leftarrow \epsilon-closure(Delta(q,c)); each element of q
         T[q,c] \leftarrow t;
         if t ∉ Q then
             add t to Q and to WorkList;
    end:
end;
```


(a) NFA for " $a(b \mid c)$ " (With States Renumbered)

Set	DFA	NFA	ε -closure(Delta(q,*))		
Name	States	States	a	b	С
90	d_0	n_0	$ \begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases} $	– none –	– none –
q_1	d_1	$ \left\{ n_1, n_2, n_3, \\ n_4, n_6, n_9 \right\} $	– none –	$ \left\{ n_5, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	$ \begin{cases} n_7, n_8, n_9, \\ n_3, n_4, n_6 \end{cases} $
q_2	d ₂	$ \left\{ n_5, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	– none –	q_2	q_3
q ₃	d ₃	$ \left\{ n_7, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	– none –	q_2	q_3

(a) Resulting DFA

(b) Iterations of the Subset Construction

Engineering a compiler, C2.4

TODOs by next lecture

- Hw2 will be out. Get familiar with the Patina language
- Come to the discussion session if you have questions