A light elastic string of natural length a and modulus of elasticity λmg has one end attached to a fixed

point O on a smooth horizontal surface. When a particle of mass m is attached to the free end of the string, it moves with speed v in a horizontal circle with centre O and radius x. When, instead, a particle of mass 2m is attached to the free end of the string, this particle moves with speed $\frac{1}{2}v$ in a horizontal circle with centre O and radius $\frac{3}{4}x$. (a) Find x in terms of a. [5]

© UCLES 2023 9231/32/M/J/23

(b)	Given that $v = \sqrt{12ag}$, find the value of λ .	[2]