Daisy Seed

High-Fidelity Audio Platform

Features:

- Embedded platform for audio applications
- 96kHz / 24-bit audio hardware
- 64MB of SDRAM for up to 10 minute long audio buffers
- ARM Cortex-M7 MCU, running at 480MHz
- 31 total GPIO pins with configurable functionality
- 12-bit Digital to Analog Converters (x2)
- SD card interfaces
- PWM outputs
- Serial Protocols for connecting external sensors and devices (SPI, UART, I2s, I2C)
- Dedicated VIN pin for power
- Micro USB port, and additional USB pins for full OTG-support as host and device

Applications:

- Electronic Instruments (Eurorack modules, synthesizers, samplers, drum machines)
- Effects Units (Desktop Effects, Effects Pedals)
- Audio Playback (Sound Installations, Audio Feedback Devices)

Description:

Daisy is an embedded platform for music. It features everything you need for creating high fidelity audio hardware devices. Just plug in a USB cable and start making sound! No soldering required.

Programming the Daisy is a breeze with support for a number of languages including Arduino, and Max/ MSP Gen~. To get started, simply upload an example program over USB, and start tweaking!

Documentation, and examples are hosted on our Github repository for easy download. All firmware that we develop is released for free under a permissive open source license(MIT).

Colophon

Copyright (c) 2021 Electrosmith

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Daisy Seed"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: this device may not cause harmful interference, and this device must accept any interference received, including interference that may cause undesired operation.

WARNING

The connection of a non-shielded equipment interface cable to this equipment will invalidate the FCC Certification of this device and may cause interference levels which exceed the limits established by the FCC for this equipment. It is the responsibility of the user to obtain and use a shielded equipment interface cable with this device. If this equipment has more than one interface connector, do not leave cables connected to unused interfaces. Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

WARNING

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

Disclaimer: Electrosmith products should not be used in medical or life saving devices, or any uses requiring failsafe performance. Electrosmith reserves the right to change, add, or remove any information and assets included in the Daisy Seed datasheet at any time without prior notice.

Table of Contents

Pinout		1
Pinout Ta	bles	
•	Absolute Maximum Ratings Table 1	2
•	Pin Functions Table 2	3
•	Electrical Characteristics Table 3	<u>4</u>
Performa	ince	
•	Noise Floor	<u>5</u>
•	SNR : 1kHz Reference Sine Wave	<u>5</u>
Typical A	applications	
•	1.1 Stereo Audio Input	<u>6</u>
•	1.2 Potentiometers	<u>6</u>
•	1.3 CV Input	<u>6</u>
•	1.4 Gate Input	6 7 7 7
•	1.5 Tactile Switch	<u>7</u>
•	1.6 Toggle Switch	<u>Z</u>
•	1.7 Micro SD	8
•	1.8 Stereo Audio Output	8
•	1.9 CV Output	8
•	1.10 Gate Output	9
•	1.11 Power	<u>9</u>
•	1.12 LED	9
Technica	l Drawing	10
Landing	Pattern	<u>11</u>
The Fine	Print (Certifications/Compliances)	<u>12</u>

Pinout

^{* &}quot;D" for Digital GPIO or "A" for Analog I/O, depending on use case.

PIN TYPE	MIN	MAX	UNIT
VIN Range	+4	+17	V
ADC Input	0	+3V3	V
DAC Output	0	+3V3	V
GPIO Output	0	+5	V
GPIO Input	0	+5	V

All GPIO Pins are 5V tolerant I/O except for the following pins which are 3.3V tolerant I/O:

Pin 24 - (PB1, ADC2)

Pin 25 - (PA7, ADC3)

Pin 28 - (PC4, ADC6)

Pin 29 - (PA5, ADC7)

Pin 30 - (PA4, ADC8)

	THIT OHOLOGO					
PINOUT	DAISY PIN NAME*	STM32 PIN NAME	PRIMARY FUNCTION	ALT. FUNCTION 1	ALT. FUNCTION 2	ALT. FUNCTION 3
1	D0	PB 12	USB_HS_ID	UART5_RX	SPI2_NSS/I2S2_WS	TIM1_BKIN
2	D1	PC11	SDMMC1_D3	USART3_RX/UART4_RX	SPI3_MISO/ I2S3_SDI	HRTIM_FLT2
3	D2	PC10	SDMMC1_D2	USART3_TX/UART4_TX	SPI3_SCK/I2S3_CK	HRTIM_EEV1
4	D3	PC9	SDMMC1_D1	I2C3_SDA		MCO2
5	D4	PC8	SDMMC1_D0			TRACED1
6	D5	PD2	SDMMC1_CMD	UART5_RX		TRACED2
7	D6	PC12	SDMMC1_CK	UART5_TX	SPI3_MOSI/I2S3_SDO	TRACED3
8	D7	PG10	SPI1_NSS		SPI1_NSS/I2S1_WS	HRTIM_FLT5
9	D8	PG11	SPI1_SCK		SPI1_SCK/I2S1_CK	LPTIM1_IN2
10	D9	PB4	SPI1_MISO	UART7_TX	SPI1_MISO/I2S1_SDI/SPI3_MISO/ I2S3_SDI/SPI2_NSS/I2S2_WS/ SPI6_MISO	NJTRST
11	D10	PB5	SPI1_MOSI	UART5_RX	SPI1_MOSI/I2S1_SDO/SPI3_MOSI/ I2S3_SDO/SPI6_MOSI	TIM 17_BKIN
12	D11	PB8	I2C1_SCL	I2C1_SCL/I2C4_SCL	UART4_RX	TIM16_CH1
13	D12	PB9	I2C1_SDA	I2C1_SDA/I2C4_SDA	UART4_TX, SPI2_NSS/I2S2_WS	TIM17_CH1
14	D13	PB6	USART1_TX	USART1_TX/LPUART1_TX/ UART5_TX	12C1_SCL/12C4_SCL	TIM16_CH1N
15	D14	PB7	USART1_RX	USART1_RX/LPUART1_RX	I2C1_SDA/I2C4_SDA	TIM17_CH1N
16	NC	х	AUDIO IN L			
17	NC	х	AUDIO INR			
18	NC	х	AUDIO OUT L			
19	NC	x	AUDIO OUT R			
20	NC	х	AGND			
21	NC	x	+3V3A			
22	A0, D15	PC0	ADC0			DFSDM1_CKIN0
23	A1, D16	PA3	ADC1	USART2_RX		TIM2_CH4
24	A2, D17	PB1	ADC2			TIM1_CH3N
25	A3, D18	PA7	ADC3	SPI1_MOSI/I2S1_SDO/SPI6_ MOSI		TIM1_CH1N
26	A4, D19	PA6	ADC4	SPI1_MISO/I2S1_SDI/SPI6_ MISO		TIM1_BKIN
27	A5, D20	PC1	ADC5	SPI2_MOSI/I2S2_SDO		TRACED0
28	A6, D21	PC4	ADC6	_		DFSDM1_CKIN2
29	A7, D22	PA5	ADC7	DAC1_OUT2	SPI1_SCK/I2S1_CK/SPI6_SCK	D2PWREN
30	A8, D23	PA4	ADC8	DAC1_OUT1	SPI1_NSS/I2S1_WS/SPI3_NSS/I2S3_ WS/SPI6_NSS	DIPWREN
31	A9, D24	PA1	ADC9	SAI2_MCLK_B	UART4_RX	TIM2_CH2
32	A10, D25	PAO	ADC10	SAI2_SD_B	UART4_TX	TIM2_CH1/TIM2_ETR
33	D26	PD11	SAI2_SD_A	· ·		LPTIM2_IN2
34	D27	PG9	SAI2_FS_B	USART6_RX	SPI1_MISO/I2S1_SDI	
35	A11, D28	PA2	ADC11	SAI2_SCK_B	USART2_TX	TIM2_CH3
36	D29	PB 14	USB_HS_D	USART1_TX	SPI2_MISO/I2S2_SDI	TIM1_CH2N
37	D30	PB 15	USB_HS_D_+	USART1_RX	SPI2_MOSI/I2S2_SDO	RTC_REFIN
38	NC NC	X	+3V3D		5.12_MO5/1252_550	KIC_KEIIIY
39	NC	x	VIN			
40	PG3		GND			
40	1,03	х	GIND			

* The min/max rating in this table represents the expected operating range for the device. Signals outside of this range will not necessarily damage the Daisy Seed. See <u>Table 1</u> for Absolute min/max ratings.

PIN NAME	PRIMARY NAME	Min	Max	Typical
1	USB_HS_ID	ov	+3V3	0 to +3V3
2	SDMMC1_D3	ov	+3V3	0 to +3V3
3	SDMMC1_D2	OV	+3V3	0 to +3V3
4	SDMMC1_D1	OV	+3V3	0 to +3V3
5	SDMMC1_D0	OV	+3V3	0 to +3V3
6	SDMMC1_CMD	OV	+3V3	0 to +3V3
7	SDMMC1_CK	ov	+3V3	0 to +3V3
8	SPI1_NSS	ov	+3V3	0 to +3V3
9	SPI1_SCK	ov	+3V3	0 to +3V3
10	SPI1_MISO	ov	+3V3	0 to +3V3
11	SPI1_MOSI	OV	+3V3	0 to +3V3
12	I2C1_SCL	0	+3V3	0 to +3V3
13	I2C1_SDA	0	+3V3	0 to +3V3
14	USART1_TX	0	+3V3	0 to +3V3
15	USART1_RX	0	+3V3	0 to 3V3
16	AUDIO IN L	0	+3V3	0 to 3V3
17	AUDIO INR	-3V	+3V	-3V to +3V
18	AUDIO OUT L	-3V	+3V	-3V to +3V
19	AUDIO OUT R	-3V	+3V	-3V to +3V
20	AGND			GND
21	+3V3A			+3V3 (output only)
22	ADC0	OV	+3V3	0 to +3V3
23	ADC1	OV	+3V3	0 to +3V3
24	ADC2	ov	+3V3	0 to +3V3
25	ADC3	ov	+3V3	0 to +3V3
26	ADC4	ov	+3V3	0 to +3V3
27	ADC5	ov	+3V3	0 to +3V3
28	ADC6	OV	+3V3	0 to +3V3
29	ADC7	OV	+3V3	0 to +3V3
30	ADC8	OV	+3V3	0 to +3V3
31	ADC9	OV	+3V3	0 to +3V3
32	ADC10	OV	+3V3	0 to +3V3
33	SAI2_SD_A	0	+3V3	0 to +3V3
34	SAI2_FS_B	0	+3V3	0 to +3V3
35	ADC11	0	+3V3	0 to +3V3
36	USB_HS_D	0	+3V3	0 to 3V3
37	USB_HS_D_+	0	+3V3	0 to 3V3
38	+3V3D			+3V3 (output only)
39	VIN	+4V	+17V	+4V to +17V
40	DGND			GND

Performance

Frequency (Hz)

ELECTROSMITH

Typical Applications

Technical Drawing

Landing Pattern

Dimensions in mm (inches)

Find the EAGLE part here.

Schematic

Pricing/Availabillity

Availability

The Daisy Seed is guaranteed to be available and supported until _.

Support

For Daisy support, submit an email inquiry with hello@electro-smith.com, or reach out on the Daisy Forum.

Volume Price List

MODEL	SKU	MINIMAL ORDER QUANTITY	PRICE PER UNIT
Daisy Seed	ES_Daisy_Seed	1	US\$29.95
		50	US\$28.45
		100	US\$26.96
		250	US\$26.21
		500	US\$25.46
		1000	US\$23.96
		2500	US\$22.46

Why The Daisy Seed?

Made In The USA

The Daisy Seed is built by the Electrosmith team in San Clemente, CA. We take pride in knowing that each stage of our manufacturing process is handled in house so that we can provide the best quality, lead time, and pricing.

RoHS Compliant

Electrosmith manufacturing is 100% RoHS compliant. All Electrosmith products are free from RoHS defined hazardous materials.

FCC Certification

The Daisy Seed is currently undergoing testing for FCC certification. The associated paperwork will be available for download on our website once the certification is obtained.

CE/REACH Compliant

The Daisy Seed is assembled with parts and materials that are compliant with CE/REACH standards. Design with the Patch SM knowing that it upholds the highest environmental standards for electronic products.

