Elevia Manual

Haoyu Lin (1801110300)

June 9, 2019

1 The Hartree-Fock-Roothaan Method (SCF LCAO MO)

1.1 The Self-Consistent Field Method

The SCF procedure is carried out as follows:

- 1. Specify a system (a set of nuclear coordinates $\{\mathbf{R}_a\}$, atomic numbers $\{Z_a\}$, and the total number of electrons N) and a basis set $\{\chi_s\}$.
- 2. Calculate all required molecular integrals S_{rs} , h_{rs} , and (rp|sq), (rp|qs).
- 3. Diagonalize the overlap matrix S and obtain a transformation matrix $X = Us^{-1/2}$.
- 4. Assume an initial bond-order matrix P (often in the first iteration, we put P = 0, as if there were no electron repulsion).
- 5. Find the \mathcal{F} matrix using matrix **P**.
- 6. Calculate the transformed Fock matrix $\mathcal{F}' = \mathbf{X}^{\dagger} \mathcal{F} \mathbf{X}$.
- 7. Diagonalize \mathcal{F}' to obtain \mathbf{C}' and $\boldsymbol{\epsilon}$.
- 8. Calculate C = XC'.
- 9. Form a new **P** from **C**.
- 10. Calculate the total energy E.
- 11. Determine whether the procedure has converged, i.e., determine whether the difference between two successive total energy is less than a threshold (10⁻⁸). If the procedure has not converged, return to step (5) with the new bond-order matrix. If the procedure has converged, then calculate and output the quantities of interest.

References