Sensitivity and Range Characterization of Optical Gyroscope using Controlled Rotation Stage

Reuben S Mathew*, Athira T S, Dinesh N Naik, Harikrishnan P

*National Institute of Technology, Calicut, Kerala

*Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology,
Thiruvananthapuram, Kerala

Objectives

- Design realization and testing of **rotating stage** for carrying out experiments on optical gyroscopes with following characteristics
 - High torque
 - Stability and accuracy at low speeds
- Testing with fiber optic gyroscope
- Study of higher order modes

Assembled Rotation Stage

Optical Gyroscopes

- Sagnac effect
 - Light passing in opposite directions through closed path
 - Path rotates one beam travels longer distance
 - Causes phase change interference
 - Angular velocity as function of intensity of interference pattern
- Advantages
 - Highly sensitive
 - No moving parts, no wear and tear
 - Opto-electronic system

Design and realization of rotation stage

- Motor
 - High Torque at Low Speeds
 - Stepper Motor NEMA34
- Motor Driver
 - Motor control using simple PWN signals
 - RMCS 1101 7A Peak draw stepper driver
- Micro-controller
 - Brains of setup
 - Arduino Uno
 - Written in C/C++
 - Sets motor speed throughPWM
 - Reads angular velocity from tachometer
- Tachometer
 - Feedback loop to set precise angular velocity
 - IR sensor module
 - Triggers everytime black strip on assembly passes over sensor
 - Interval betwen triggers measure angular velocity

Control Board

Tachometer

Testing and Data

- Fiber optic gyroscope mounted onto the rotation stage
- Multiple sets of data collected
 - Measure photo-diode voltage read by the multi-meter, as function of angular velocity
- Parameters of the gyroscope including area, number of loops, wavelength contained in a constant factor **k**.
 - Phase difference proportional to angular velocity
- Intensity (/) proportional to cosine squared of angular velocity (ω)

 $I \propto \cos^2(k\omega)$

- Sagnac effect validated using the setup
- Rotary stage design proven

Further scope

- Imaging the modes of the light received
 - Check for secondary modes providing any additional information that is lost by measuring intensity using a photo diode
- Short-Wave Infrared (SWIR) camera for 2-D imaging
 - Output image unstable and highly sensitive to ambient disturbances

Acknowledgment

We thank Prof Umesh R Khadane for his guidance, Dr. Priyadarshnam for the discussions and Small Satellites and Payloads Centre (SSPACE) for the support with FOG kit and related electronics

Reuben S Mathew: reuben_b200150ep@nitc.ac.in

Dr Dinesh N Naik : dineshnnaik@iist.ac.in