

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Álgebra Linear e Geometria Analítica — Avaliação P1

Matemática	28 de Junho de 2017

1	
2	
3	
4	
5	
Total	

(1) Mostre que se o sistema

$$\begin{cases} x+y+2z = a \\ x + z = b \\ 2x+y+3z = c \end{cases}$$

tem solução, então as constantes a, b e c devem satisfazer c = a + b.

(2) Sendo

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

- (a) Calcule $\operatorname{tr}(2C^T)$.
- (b) Calcule $\operatorname{tr}(B^{-1}A)$.
- (c) Calcule $\operatorname{tr}(2C^T + B^{-1}A)$, se possível. Justifique.

(3) Mostre que, para qualquer $\theta \in \mathbb{R}$,

$$\begin{vmatrix} \operatorname{sen}(\theta) & \cos(\theta) & 0 \\ -\cos(\theta) & \operatorname{sen}(\theta) & 0 \\ \operatorname{sen}(\theta) - \cos(\theta) & \operatorname{sen}(\theta) + \cos(\theta) & 1 \end{vmatrix} = 1$$

(4) Determine o valor de n para que o ângulo entre as retas seja $\frac{\pi}{6}$:

$$r_1: \frac{x-2}{4} = \frac{y}{5} = \frac{z}{3}$$
 e $r_2: \begin{cases} y = nx + 5\\ z = 2x - 2 \end{cases}$

(5) Encontre a equação implícita do plano que contém as retas
$$r_1: \left\{ \begin{array}{ll} y=2x-3 \\ z=-x+2 \end{array} \right. \text{ e } \quad r_2: \left\{ \begin{array}{ll} \frac{x-1}{3}=z-1 \\ y=-1 \end{array} \right.$$

Boa Prova!