Hashing Classification for charged particle tracking

Luiza Adelina Ciucu (ATLAS)

03 July 2020

Introduction

- o 100 events. For each group of 10: 7 train, 3 test.
- o If nbPositiveHit<10, set nbPositiveHit=0 and output made only of -1.
- o For Train used Balanced (130k), for Test use Unbalanced (3.2M).
- o Balancing Train in two steps, as shown last time.
 - Make peak flat between 10-17 (with value of 17).
 - Reduce nbPositiveHit=0 until 50% Pos, 50% Neg.
- New studies today
 - Last time Test was also Balanced. Now Test is Unbalanced.
 - With constraint of our output of -1 and 1:
 - Try other output layer activation functions: tanh, squared non linear, soft sign.
 - Try other loss functions: squared hinge and hinge.
 - Try 120 epochs vs 50 epochs.

Balancing results N=17

o For Train used Balanced (130k), for Test use Unbalanced (3.2M).

Study 1: varying output layer activation functions

o Tanh, Squared non linear, Soft Sign.

Accuracy and Loss from training

Metrics for each VolumeID.

o Three activation functions quite similar.

Accuracy	Precision	Recall
TP+TN	TP	TP
$\overline{\text{TP+FP+FN+TN}}$	$\overline{\text{TP+FP}}$	$\overline{\mathrm{TP}+\mathrm{FN}}$

2D plots TANH SH 120

2D plots SQNL SH 120

2D plots SOSI SH 120

Study 1: varying output layer activation functions

- o Conclusions:
- o They are very similar.
- o But it looks like that after 50 epochs they start to over-train.
- o So ran again with 50 epochs.
- o But as you will see, the results look a bit worse, including for Test.

Study 2: 120 vs 50 epochs

o For same activation function, same colour, different nuances for 120 and 50 epochs.

Accuracy and Loss from training

Metrics for each VolumeID.

o 50 epochs slightly worse than 120 epochs.

Accuracy	Precision	Recall
TP+TN	TP	TP
$\overline{\text{TP+FP+FN+TN}}$	$\overline{\text{TP+FP}}$	$\overline{\mathrm{TP}+\mathrm{FN}}$

2D plots TANH SH 50

2D plots SQNL SH 50

2D plots SOSI SH 50

Study 2: varying number of epochs

- o Conclusions:
- o 120 vs 50 epochs.
- Looking at 120 epochs it appeared that from 50 epochs it started to overtrain.
- So ran again with 50 epochs.
- But results look a bit worse, including for Test.

Conclusion

- o 100 events. For each group of 10: 7 train, 3 test.
- o If nbPositiveHit<10, set nbPositiveHit=0 and output made only of -1.
- o For Train used Balanced (130k), for Test use Unbalanced (3.2M).
- o Balancing Train in two steps, as shown last time.
 - Make peak flat between 10-17 (with value of 17).
 - Reduce nbPositiveHit=0 until 50% Pos, 50% Neg.
- New studies today
 - Last time Test was also Balanced. Now Test is Unbalanced.
 - With constraint of our output of -1 and 1:
 - Very similar with various layer activation functions: tanh, squared non linear, soft sign.
 - Very similar with various loss functions: squared hinge and hinge.
 - Overtrain at 50 epochs maybe a false alarm? As 50 epochs slight worse than 120 epochs. Try 120 epochs vs 50 epochs.

Study 3: for 120 epochs, vary loss function

Squared hinge, Hinge.

Accuracy and Loss from training

Metrics for each VolumeID.

Squared hinge vs hinge quite similar.

Accuracy	Precision	Recall
TP+TN	TP	TP
$\overline{\text{TP+FP+FN+TN}}$	$\overline{\text{TP+FP}}$	$\overline{\mathrm{TP}+\mathrm{FN}}$

2D plots TANH RH 120

2D plots SQNL RH 120

2D plots SOSI RH 120

Study 3: for 120 epochs, vary loss function

- Conclusions
- o Results are similar for squared hinge and hinge.