Über Rocket: Calculus Problem

Description:

One calm afternoon Calculus Cam decides to launch Hamster Huey into the air using a model rocket. The rocket is launched straight up off the ground, from rest. The rocket engine is designed to burn for specified time while producing non-constant net acceleration given by the equations below. After the engine stops the rocket continues upward in free-fall. A parachute opens after the rocket falls a specified vertical distance from its maximum height. When the parachute opens, assume the rocket instantly stops, and then increases speed to a terminal velocity given by the equation below. Assume the air resistance affects the rocket only during the parachute stage.

Diagram:

Givens:

$$a_{BC} = -9.8 \ m/s^{2} \qquad a_{CD} = -9.8 \ m/s^{2}$$

$$t_{E} = \Delta t_{AB} = 4.2s \qquad y_{C} = 0m$$

$$a_{y}[t]_{AB} = -1.3t^{2} + 19 \qquad v_{C} = 0 \ m/s$$

$$v_{A} = 0 \ m/s \qquad h = \Delta y_{CD} = 100m$$

$$y_{A} = 0m \qquad v_{p}[t] = v_{DE}[t] = -12\left(1 - e^{-\frac{t}{8}}\right)m/s$$

Strategy:

To solve Über Rocket, I split the problem into 5 letter points with 4 stages. In stage AB, the acceleration is variable and represented by an equation. Since the object starts at rest, I knew both initial position and velocity were zero, meaning that I could derive both Δ pos. and Δ vel. functions in terms of time. Since time was already given, I didn't need to calculate time but I needed to find the final

position and velocity at point B to proceed. In stage BC, acceleration was a constant g and using the both the pos. and vel. I previously found I could calculate Δt_{BC} at max height which is when velocity was equal to zero. In stage CD, acceleration was also constant g and I set Δpos equal to h to find Δt_{CD} . In the final stage DE, the rocket instantly changes velocity from neg. to 0 and velocity is calculated by the function $v_p[t]$. I found the integral of that function and set it equal position at point D to solve for Δt_{CD} when the rocket returned to ground. The final step was just to add up the four Δt values and \mathbf{bam} , I got the total flight time.

Stage AB: Lift Off

Found the equation for $\Delta v_{AB}[t]$ and used that equation to find $\Delta y_{AB}[t]$. Calculated $\Delta y_{AB}[\Delta t_{AB}]$ to get y_{B} .

$$\begin{split} \frac{\Delta t_{AB} = 4.2s}{y_A = 0m} \\ v_A &= 0 \frac{m}{s} \\ a_y[t]_{AB} = -1.3t^2 + 19 \\ \Delta v_y[t]_{AB} &= \int_0^t a_y[t]_{AB} dt + \rlap/v_A \, 0 \\ \Delta v_y[t]_{AB} &= \int_0^t -1.3t^2 + 19 dt \\ \Delta v_y[t]_{AB} &= -\frac{1.3}{3}t^3 + 19t \\ \Delta y[t]_{AB} &= \int_0^t v_y[t]_{AB} dt + \rlap/x_A \, 0 \\ \Delta y[t]_{AB} &= \int_0^t -\frac{1.3}{3}t^3 + 19t dt \\ \Delta y[t]_{AB} &= -\frac{1.3}{12}t^4 + \frac{19}{2}t^2 \\ \Delta y_B &= y_B[4.2]_{AB} = -\frac{1.3}{12}(4.2)^4 + \frac{19}{2}(4.2)^2 \\ \Delta y_B &= y_B = 133.86996m \end{split}$$

Stage BC: Engine Switch-Off

Since object is in free fall, acceleration is at a constant g or $-9.8~m/s^2$. Calculated v_B using eq. from Stage AB. Found Δt_{BC} using Fund. EQ. 2. Found y_C using Fund. EQ. 3.

$$v_B = ?$$

$$t_B = 4.2s$$

$$a_B = -9.8 \text{ m/s}^2$$

$$\Delta v_y[t]_{AB} = -\frac{1.3}{3}t^3 + 19t$$

$$\Delta v_B = \Delta v_y[4.2]_{AB} = -\frac{1.3}{3}(4.2)^3 + 19(4.2)$$

$$\Delta v_B = v_B = 47.6952 \text{m/s}$$

Rocket will fall when velocity is 0 so...

$$v_C = 0 \text{ m/s}$$

 $(EQ \ 2) \ p_C \ 0 = a\Delta t_{BC} + v_B$
 $0 = -9.8\Delta t_{BC} + 47.6952$
 $9.8\Delta t_{BC} = 47.6952$
 $\Delta t_{BC} = 4.866857s$

$$y_{C} = ?$$

$$(EQ 3) y_{C} = \frac{1}{2} a\Delta t^{2} + v_{B} \Delta t + y_{B}$$

$$y_{C} = \frac{1}{2} (-9.8)(4.8669)^{2} + (47.6952)(4.8669) + 133.86996$$

$$y_{C} = 249.93282m$$

Stage CD: Free-Fall

Since object is in free fall, acceleration is also at a constant g or $-9.8 \ m/s^2$. Calculated Δy_{CD} from h and found y_D . Used $v_C = 0 \ m/s$ and Δy_{CD} to calculate v_D using Fund. EQ. 4. Found Δt_{CD} using Fund. EQ. 2.

$$y_C = 249.93282m$$
$$h = 100m$$

Object is falling so change in height is negative.

$$\frac{\Delta y_{CD} = -100m}{\Delta y_{CD} = y_D - y_C}$$

$$-100 = y_D - 249.93282$$

$$y_D = 149.93282m$$

$$v_D = ?$$

$$(EQ 4) v_D^2 = p_C^2 0 + 2a\Delta y_{CD}$$

$$v_D^2 = 2(-9.8)(-100)$$

$$\sqrt{v_D^2} = \sqrt{1960}$$

Since object is falling, velocity will be negative.

$$v_{D^-} = -44.271887 \, m/s$$

$$\Delta t_{CD} = ?$$

$$(EQ \ 2) \ v_D = a\Delta t + p_C \ 0$$

$$-44.272 = (-9.8)\Delta t_{CD}$$

$$\Delta t_{CD} = 4.517540s$$

Stage DE: Parachute

Although v_D was previously calculated, careful to note the exp. -. This means that the velocity from the left *changes* at the right. The reason is because the speed during this stage is *instantly* affected by function $v_{DE}[t]$. Next, I found the integral $v_{DE}[t]$ to get indefinite $y_{DE}[t]$ function, set that function to height at point D which was 149.93m, found C which was 245.93, and then solved for

 Δt_{DE} when the function was equal to zero or when the rocket returned to ground. You only take the positive value since time can only return at a positive time in this instance.

$$v_p[t] = v_{DE}[t] = -12\left(1 - e^{-\frac{t}{8}}\right)m/s$$

 $v_{DE}[t] = -12 + 12e^{-\frac{t}{8}}m/s$

Since object instantly changes velocity when par. opens,

$$v_{D^+} = 0 \, m/s$$

$$\Delta y_{DE} = |y_E - y_D|$$

 $\Delta y_{DE} = |0 - 149.93282|$
 $\Delta y_{DE} = 149.93282m$

$$\Delta y_{DE}[t] = \int v_{DE}[t]dt$$

$$\Delta y_{DE}[t] = \int -12 + 12e^{-\frac{t}{8}}dt$$

$$\Delta y_{DE}[t] = -12t + 12/-\frac{1}{8}e^{-\frac{t}{8}} + C$$

$$\Delta y_{DE}[t] = -12t - 96e^{-\frac{t}{8}} + C$$

$$149.93282 = -12(0) - 96e^{-0} + C$$

$$C = 245.93282m$$

$$\Delta y_{DE}[t] = -12t - 96e^{-\frac{t}{8}} + 245.93282$$

$$-12t - 96e^{-\frac{t}{8}} + 245.93282 = 0 \text{ (eval. graphically)}$$

$$\Delta t_{DE} = -10.95031s \text{ or } \Delta t_{DE} = 19.823s$$

Final:

Just add up the 4 Δt values and some you get the total time.

$$t_{tot} = \Delta t_{AB} + \Delta t_{BC} + \Delta t_{CD} + \Delta t_{DE}$$

$$t_{tot} = 4.2 + 4.8669 + 4.5175 + 19.823$$

$$t_{tot} = 1s$$

$$t_{tot} = 33.41s$$

t	y	v	a
(s)	(m)	(m/s)	(m/s ²)
0.0	0.0	0.0	19.0
1.0	9.4	18.6	17.7
2.0	36.3	34.5	13.8
3.0	76.7	45.3	7.3
4.2	133.9	47.7	-3.9
4.2	133.9	47.7	-9.8
5.0	168.9	39.9	-9.8
6.0	203.8	30.1	-9.8
7.0	229.0	20.3	-9.8
8.0	244.4	10.5	-9.8
9.1	249.9	0.0	-9.8
9.1	249.9	0.0	-9.8
10.0	245.7	-9.1	-9.8
11.0	231.6	-18.9	-9.8
12.0	207.8	-28.7	-9.8
13.6	149.9	-44.3	-9.8
13.6	149.9	0.0	-1.5
14.0	149.8	-0.6	-1.4
15.0	148.5	-1.9	-1.3
17.0	142.3	-4.2	-1.0
19.0	132.2	-5.9	-0.8
21.0	119.0	-7.2	-0.6
23.0	103.4	-8.3	-0.5
25.0	86.0	-9.1	-0.4
27.0	67.1	-9.8	-0.3
29.0	47.0	-10.3	-0.2
31.0	26.1	-10.6	-0.2
33.4	0.1	-11.0	-0.1

