Harvard-MIT Division of Health Sciences and Technology HST.035: Principle and Practice of Human Pathology Dr. Badizadegan

Inflammation

HST.035

Spring 2003

The stimuli that cause cell injury also elicit a complex *inflammatory* reaction designed to (1) eliminate the cause of injury and (2) clean up the dead and the dying cells and tissues.

Inflammation and Repair

- Inflammation accomplishes its missions by trying to dilute, destroy or otherwise neutralize the offending agents.
- The inflammatory response is followed by a set of repair processes designed to regenerate the damaged tissue and/or fill the gaps with fibrous tissue (scar).
- Both the initial inflammatory reaction and the subsequent repair reactions can potentially cause harm.

Components of the Inflammatory Response

Basic Patterns of Inflammation

 Acute inflammation is of relatively short duration (hours to days) and is primarily characterized by exudation of fluid and plasma proteins, as well as a neutrophilic infiltration.

 Chronic inflammation is of longer duration (days to years) and is characterized by mononuclear infiltration, vascular proliferation and scarring.

In practice, these two patterns of inflammation often overlap.

Patterns of Inflammation

Normal Gastric Corpus

Acute Inflammation

- Acute inflammation has two major components:
 - 1. Vascular component
 - 2. Cellular (leukocytes) component
- Which result in the classic clinical triad of:
 - 1. Calor
 - 2. Rubor
 - 3. Tumor

Summary of Events in Acute Inflammation

- Arteriolar vasodilation results in locally increased blood flow, engorgement of the capillary bed, and increased transudation
- Exudation of protein-rich fluid from the lumen into the extracellular space results in
 - Outflow of water and ions into the interstitial space ("edema")
 - Increased blood viscosity and decreased flow ("stasis")
- Stasis helps leukocytes escape the flow and attach to the vascular endothelium ("margination")
- Margination leads to transmigration of leukocytes out of the vessel into the interstitial space

Mechanisms of Increase in Vascular Permeability

- 1. Endothelial gap formation
 - Endothelial cell contraction
 - Cytoskeletal reorganization
- 2. Endothelial cell injury
 - Direct
 - Leukocyte-mediated
- 3. Increased transcytosis (vesicular trafficking)
- 4. Angiogenesis

Overview of the Microcirculation

Arterioles and Venules

Please see Junqueira & Carneiro. *Basic Histology: Text and Atlas*. 10th edition. McGraw Hill. 2003. ISBN: 0071378294.

Gaps Due to Endothelial Cell Contraction

- The most common form of increased vascular permeability
- Limited to post-capillary venules
- Reversible process elicited by histamine, bradykinin, leukotrienes, and many other chemical mediators
- Rapid and short-lived reaction (minutes), hence immediate transient response
- ? Relationship to gaps due to "cytoskeletal reorganization" (which takes longer and lasts longer)

Direct Endothelial Injury

- Non-specific damage to vessels due to burns, infections, etc.
- Affects all small vessels
- Severe injury results in immediate increase in permeability and lasts until vessels are thrombosed or repaired, hence immediate sustained response
- Mild direct injury may result in a delayed prolonged leakage as endothelial injury evolves after exposure (e.g., sunburn)

Leukocyte-Mediated Endothelial Injury

- Endothelial damage resulting from the action of activated leukocytes
- Primarily restricted to the sites of leukocyte adhesion (venules)

Increased Transcytosis and Angiogenesis

The Sequence of Cellular Events

- Margination and rolling
- Adhesion and transmigration
- Migration in the interstitial space

Margination and Rolling

- Margination is a consequence of flow characteristics in small vessels
- Marginated leukocytes begin to roll on the endothelial surface by forming transient adhesions via the selectin family of proteins:
 - E-selectin on endothelial cells
 - P-selectin on endothelial cells and platelets
 - L-selectin on most leukocytes
- Selectins bind oligosaccharides that decorate mucin-like glycoproteins

Cell Adhesion Molecules

Adhesion and Transmigration

- Leukocytes firmly adhere to endothelial cells before diapedesis
- Adhesion is mediated by members of Ig superfamily on endothelial cells (ICAM-1, VCAM-1) that interact with leukocyte integrins (VLA-4, LFA-1)
- Diapedesis typically occurs in venules and is mediated by PECAM-1 (CD31), also of Ig superfamily

Chemotaxis and Activation

- Transmigrated leukocytes move to the site of injury along chemical gradients of chemotactic agents
- Chemotactic agent can be:
 - Soluble bacterial products (N-formylmethionine termini)
 - Components of the complement system (C5a)
 - Products of lipoxygenase pathway of arachidonic acid metabolism (leukotriene B4)
 - Cytokines (chemokines such as IL-8)
- Chemotactic molecules bind cell-surface receptors, resulting in activation of phospholipase C

Leukocyte Activation

Phagocytosis, Degranulation, and Oxygen-Dependent Antimicrobial Activity

Oxygen-Independent Antimicrobial Activity

- Bactericidal permeability increasing protein (BPI)
 causes phospholipase activation, phospholipid
 degradation and increased membrane permeability
- Lysozyme causes degradation of bacterial coat oliggosaccharides
- Major basic protein (MBP) is cytotoxic component of eosinophil granules
- Defensins are pore-forming antibacterial peptides

Defects in Leukocyte Function

<u>Category</u>	<u>Disease</u>	<u>Defect</u>
Defective adhesion	Leukocyte adhesion deficiency 1	β-chain of CD11/CD18
	Leukocyte adhesion deficiency 2	Sialylated oligosaccharide
Defective activation	Chronic granulomatous disease (X-linked)	NADPH oxidase membrane subunit
	Chronic granulomatous disease (AR)	NADPH oxidase cytoplasmic subunit
Defective phagocytosis	Chédiak-Higashi disease	Organelle docking and fusion

