Semaine 4 du 7 octobre 2024 (S41)

Il Rappels et compléments d'algèbre linéaire

Le chapitre II reste au programme, ainsi que les exercices à connaître suivants :

10. Exercices à connaître

10.5. Noyaux itérés

Soit f un endomorphisme d'un espace de dimension finie n non nulle. On définit, pour tout entier naturel p:

$$F_p = \operatorname{Ker}(f^p)$$
 et $G_p = \operatorname{Im}(f^p)$

(f^p désigne l'itérée d'ordre p de $f:f^0=\mathrm{Id}$ et, $f^{p+1}=f\circ f^p$).

- 1) Démontrer que, des deux suites de s.e.v. (F_p) et (G_p) , l'une est croissante et l'autre décroissante (pour l'inclusion).
- 2) Démontrer qu'il existe un plus petit entier naturel r tel que $F_r = F_{r+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à r, $F_p = F_{p+1}$.
- 3) Démontrer qu'il existe un plus petit entier naturel s tel que $G_s = G_{s+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à s, $G_p = G_{p+1}$. Y-a-t-il un lien entre r et s?
- 4) Démontrer que G_s et F_r sont supplémentaires dans E.

10.6. Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 1$. On dit que $f \in \mathcal{L}(E)$ est nilpotent lorsqu'il existe $k \ge 1$ tel que $f^k = 0$.

1) Montrer qu'il existe un unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq 0$ et $f^p = 0$. Cet entier est appelé *indice de nilpotence* de f.

Dans cet énoncé, on considère $f \in \mathcal{L}(E)$ nilpotent d'indice p.

- 2) Montrer qu'il existe $x \in E$ tel que $\mathscr{F} = (x, f(x), \dots, f^{p-1}(x))$ est une famille libre.
- 3) En déduire que $p \leq n$.
- 4) On suppose dans cette question que p = n. Déterminer $\operatorname{Mat}_{\mathscr{F}}(f)$ et $\operatorname{rg}(f)$.
- 5) Donner un exemple d'espace vectoriel E de dimension n et d'endomorphisme $f \in \mathcal{L}(E)$ nilpotent d'indice n.

10.7. Endomorphismes de rang 1

Soit $A \in \mathscr{M}_n(\mathbb{K})$ de rang 1.

- 1) Montrer qu'il existe $C \in \mathcal{M}_{n,1}(\mathbb{K})$ et $L \in \mathcal{M}_{1,n}(\mathbb{K})$ vérifiant A = CL.
- 2) Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que pour tout entier naturel non nul n, $A^n = \alpha^{n-1}A$.
- 3) Montrer que $A^2 = \operatorname{tr}(A)A$.
- 4) Après avoir calculé $(1 + \operatorname{tr} A)(A + \operatorname{I}_n) (1 + \operatorname{tr} A)\operatorname{I}_n$, déterminer une condition nécessaire et suffisante pour que $A + \operatorname{I}_n$ soit inversible. Le cas échéant, déterminer $(A + \operatorname{I}_n)^{-1}$.

10.9. Une caractérisation de la trace

Trouver toutes les formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), \ f(AB) = f(BA).$$

Indication : pour deux matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$, calculer le produit $E_{i,j}E_{k,\ell}$.

S'y ajoute:

III Intégrales généralisées

- 11. Fonctions continues par morceaux sur un segment
- 12. Rappels de première année
- 12.1. Le théorème fondamental
- 12.1a. Primitives
- 12.1b. Existence de primitives.
- 12.1c. Fonctions dont la variable intervient dans les bornes d'une intégrale (cas particulier d'intégrales dépendant d'un paramètre).
- 12.2. Intégration par parties
- 12.3. Changements de variable
- 13. Extension aux fonctions continues par morceaux sur un intervalle
- 14. Intégrales généralisées sur un intervalle de la forme $[a,+\infty[$
- 14.1. Définition
- 14.2. Cas des fonctions positives
- 14.3. Cas général

- 15. Intégrales généralisées sur un intervalle quelconque
- 16. Propriétés
- 17. Méthodes de calcul
- 17.1. Calcul par primitivation
- 17.2. Intégration par parties
- 17.3. Changement de variable
- 18. Intégrales absolument convergentes et fonctions intégrables
- 18.1. Définition
- 18.2. Un exemple de référence : les intégrales de Riemann
- 18.3. Théorèmes de comparaison
- 18.4. Étude de l'existence d'une intégrale
- 19. Exercices à connaître
- 19.1. Intégrales de Wallis

On pose, pour tout entier naturel n, $I_n = \int_0^{\pi/2} (\sin x)^n dx$.

- 1) Calculer I_0 et I_1 . Donner une relation de récurrence entre I_n et I_{n-2} . En déduire la valeur de I_n selon la parité de n.
- 2) Montrer que la suite (I_n) est décroissante. En déduire $\lim_{n\to+\infty} \frac{I_{n-1}}{I_n}$.
- **3)** Montrer : $\forall n \geq 1$, $nI_nI_{n-1} = \frac{\pi}{2}$. En déduire $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} I_n \sqrt{n}$.

4) Montrer que : $\lim_{n \to +\infty} 2n(I_{2n})^2 = \frac{\pi}{2}$. En déduire que : $\lim_{n \to +\infty} \left[n \left(\frac{1.3.5....(2n-1)}{2.4.6...2n} \right)^2 \right] = \frac{1}{\pi}$ (formule de Wallis).

19.2. Détermination de la nature d'une intégrale

Préciser la nature des intégrales suivantes :

1)
$$\int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$$

2)
$$\int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$$

3)
$$\int_1^{+\infty} \frac{\mathrm{d}t}{t^2\sqrt{1+t^2}}$$
 (et la calculer).

19.3. Intégration par parties et équivalent

Pour $n \in \mathbb{N}$, on note

$$I_n = \int_1^{+\infty} \frac{1}{x^n \left(1 + x^2\right)} \, \mathrm{d}x$$

- 1) Montrer l'existence de I_n , pour tout n.
- 2) Déterminer la limite de $(I_n)_n$.
- 3) À l'aide d'une intégration par parties, trouver un équivalent simple de I_n .

19.4. Intégrabilité de $x \mapsto \frac{\sin x}{x}$

- 1) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx$ est une intégrale convergente.
- 2) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx = \int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$.
- 3) Montrer que $\int_0^{+\infty} \frac{\sin^2 x}{x} dx$ est une intégrale divergente.
- 4) En déduire la nature de $\int_0^{+\infty} \frac{|\sin x|}{x} dx$. La fonction $x \mapsto \frac{\sin x}{x}$ est-elle intégrable sur $]0, +\infty[$?