TD9 structures algébriques pour l'informatique

Exercice 1.

Remarque: $sgn(\alpha)$ est aussi noté $\varepsilon(\alpha)$. C'est le cas, dans le cours sur ecampus.

1. On sait que dans tout groupe (G, .), si $c_1, ..., c_k \in G$, alors $(c_1c_2..., c_{k-1}c_k)^{-1} = c_k^{-1}c_{k-1}^{-1}...c_2^{-1}c_1^{-1}$ et si $\alpha \in S_n$ est un cycle $c = (i_1 \ i_2 \ ... \ i_{r-1} \ i_r)$, alors $c^{-1} = (i_r \ i_{r-1} \ ... \ i_2 \ i_1)$. Enfin, on sait que la décomposition complète d'une permutation en produit de cycles à supports disjoints est unique. Si la décomposition complète de α en cycles à supports disjoints est $\alpha = c_1c_2...c_{t-1}c_t$ alors la décomposition complète de α^{-1} s'obtient aisément à partir de celle de α :

$$\alpha^{-1} = c_t^{-1} c_{t-1}^{-1} \dots c_2^{-1} c_1^{-1}.$$

Il n'est d'ailleurs pas nécessaire ici d'inverser l'ordre des facteurs dans le produit, car les cycles à supports disjoints commutent.

Les permutations α et α^{-1} ont donc exactement le même nombre de cycles dans leurs décompositions complètes et donc la même signature.

2. Le nombre t' de cycles dans la décomposition complète de σ' est t-1, où t est le nombre de cycles dans la décomposition complète de σ . Par ailleurs, $\sigma' \in S_{n-1}$. On a donc: $\operatorname{sgn}(\sigma') = (-1)^{(n-1)-t'} = (-1)^{(n-1)-(t-1)} = (-1)^{n-t} = \operatorname{sgn}(\sigma)$.

EXERCICE 2 . On note $\varepsilon(\sigma)$ la signature de la permutation σ . Soit $\sigma \in S_n$ un cycle de longueur $r \leq n$. La décomposition complète de σ a exactement n-r+1 cycles (un cycle de longueur r et exactement n-r cycles de longueur 1). Donc,

$$\varepsilon(\sigma) = (-1)^{n-(n-r+1)} = (-1)^{r-1}.$$

Pour que la signature de σ soit égale à 1, il faut et il suffit que r-1 soit pair, ou encore r impair.

Exercice 3.

1. On calcule les images de 0, 1, 2, ..., 10 par f et on vérifie que chaque élément de $\{0, 1, 2, ..., 10\}$ a exactement un antécédent. f est la permutation donnée par la table:

$$f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 1 & 6 & 9 & 5 & 3 & 10 & 2 & 8 & 4 & 7 \end{pmatrix}$$

2. On calcule la décomposition complète de f en cycles de supports disjoints:

$$f = (0) (1) (2 6 10 7) (3 9 4 5) (8).$$

On obtient donc $\varepsilon(f) = (-1)^{11-5} = (-1)^6 = 1$.

3.

$$f^{-1} = (0) (1) (7 10 6 2) (5 4 9 3) (8) = (7 10 6 2) (5 4 9 3) = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 1 & 7 & 5 & 9 & 4 & 2 & 10 & 8 & 3 & 6 \end{pmatrix}.$$

Exercice 4.

1. Non, on sait (cf. TD7) que l'ordre d'un cycle de longueur r est r. Par ailleurs, si x est un élément d'ordre r d'un groupe G, ordre $(x^k) = ppcm(r,k)/k$. Si r et k ne sont pas premiers entre eux, alors ppcm(r,k) < rk et ordre $(x^k) = ppcm(r,k)/k < r$. Donc si α est un cycle de longueur r et r et k ne sont pas premiers entre eux, α^k n'est pas un cycle de longueur r (sinon, il devrait être d'ordre r).

2. Soit r l'ordre de $\alpha = (i_1 \dots i_r)$. On a $\alpha^2(i_1) = i_3$, $\alpha^2(i_3) = i_5$, $\dots \alpha^2(i_{r-2}) = i_r$, $\alpha^2(i_r) = (i_2)$, $\alpha^2(i_2) = i_4, \dots, \alpha^2(i_{r-3}) = i_{r-1}$, et enfin $\alpha^2(i_{r-1}) = i_1$. Ainsi lorsque l'on calcule les images successives de i_1 par α^2 , on parcourt d'abord successivement tous les i d'indices impairs, puis tous les i d'indices pairs avant de retomber sur i_1 , au bout de la r-ième itération exactement. Donc dans la décomposition de α^2 en cycles de rapports disjoints, il y au moins un cycle de longueur r. Par ailleurs, les éléments invariants par α , le sont aussi par α^2 . On en déduit que α^2 est bien un cycle de longueur r.

Exercice 5.

- 1. Par définition de α^{-1} , on a : $\alpha(i) = j \iff \alpha^{-1}(j) = i$, d'où le résultat.
- 2. Supposons par l'absurde, que le support de β contient un élement i. On a alors $\beta(i) = j \neq i$ et j serait aussi dans le support de β (sinon $\beta(j) = j$ serait en contradiction avec $\beta(i) = j$, $i \neq j$ et l'injectivité de β)

Comme α et β sont de supports disjoints, j n'est pas dans le support de α et on a $\alpha(\beta(i)) = \alpha(j) = j$. Mais $\alpha\beta = id$ implique alors que i = j, ce qui contredit $i \neq j$.

On en déduit que le support de β est vide, ou encore $\beta = id$, et par la suite $\alpha\beta = \alpha = id$.

EXERCICE 6. Exercice déjà corrigé dnas le TD précédent.

Exercice 7.

1. On a $\alpha \sim \alpha$, car $\alpha = id \alpha id^{-1}$, donc \sim est réflexive.

Si $\alpha \sim \beta$, alors il existe $\gamma \in S_n$ tel que $\alpha = \gamma \beta \gamma^{-1}$. On a donc $\beta = \gamma^{-1} \alpha \gamma = \gamma^{-1} \alpha (\gamma^{-1})^{-1}$. Il existe donc $\gamma' = \gamma^{-1}$ tel que $\beta = \gamma' \beta \gamma'^{-1}$, donc $\beta \sim \alpha$ et \sim est bien symétrique.

Si $\alpha \sim \beta$ et $\beta \sim \delta$, il existe $\gamma, \gamma' \in S_n$, tels que $\alpha = \gamma \beta \gamma^{-1}$ et $\beta = \gamma' \delta \gamma'^{-1}$. On a alors $\alpha = \gamma \gamma' \delta \gamma'^{-1} \gamma^{-1} = \gamma \gamma' \delta (\gamma \gamma')^{-1}$. Il existe donc $\gamma'' = \gamma \gamma'$ tel que $\alpha = \gamma'' \delta \gamma''^{-1}$, donc $\alpha \sim \delta$ et \sim est bien transitive.

- 2. $\alpha = (2\ 1\ 5\ 3)\ (4\ 6\ 8)$.
- 3. oui $\alpha = \gamma \beta \gamma^{-1}$, avec par exemple $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 3 & 2 & 1 & 4 & 6 & 7 \end{pmatrix}$.
- 4. Non, α et β sont conjuguées si et seulement si leurs décompositions en cycles disjoints ont le même nombre de cycles de longueur r, pour tout $r \ge 1$, ce qui n'est pas le cas ici.