Devoir libre no 2'

Exercice 1

1. Soient a et b deux réels tels que : $2 \le a \le 5$ et $-4 \le b \le 1$. On pose $A = a^2 - 4b^2 + 2a - 4b - 1$ et $B = \frac{2a - 1}{a + 2}$.

- (a) Encadrer ab.
- (b) Vérifier que $A = (a+1)^2 (2b+1)^2 1$ et $B = 2 \frac{5}{a+2}$
- (c) En utilisant la question précédente , donner un encadrement de A et B.
- 2. Développer $(\sqrt{5}-2\sqrt{3})^2$ puis déduire la valeur de $A=\sqrt{17-4\sqrt{15}}$.
- 3. Soient $I =]-\infty; 2[$ et J = [-4; 5[.
 - (a) Représenter I et J sur une même droite graduée.
 - (b) Déterminer $I \cup J$ et $I \cap J$.
- 4. Soient x et y deux réels tels que : $|3x+2| \le 1$ et $\frac{1}{2}$ une valeur approchée par défaut du réel 2y - 1 à $\frac{1}{4}$ prés.

Montrer que : $-1 \le x \le \frac{-1}{3}$ et $\frac{3}{4} \le y \le \frac{7}{8}$.

Exercice 2

On considère le polynôme $P(x) = 2x^3 + x^2 - 13x + 6$.

- 1. Calculer P(-3), P(1) et P(2).
- 2. En utilisant la division euclidienne, montrer que : $P(x) = (x+3)(2x^2-5x+2)$.
- 3. Montrer que : P(x) = (x+3)(x-2)(2x-1).
- 4. Résoudre dans \mathbb{R} l'équation : P(x) = 0.
- 5. Déduire les solutions de l'équation $2x\sqrt{x} + x 13\sqrt{x} + 6 = 0$.

Exercice 3

Soit 0 < x < 1.On pose $A = \frac{\sqrt{x+1}}{2}$.

- 1. Montrer que : $A 1 = \frac{x 1}{2(1 + \sqrt{x})}$.
- 2. Montrer que : $0 < \frac{1}{1 + \sqrt{x}} < 1$.
- 3. Montrer que : $|A-1| < \frac{1}{2}|x-1|$.
- 4. Conclure que 1 est une valeur approchée du nombre $\frac{\sqrt{0,8+1}}{2}$ à 10^{-1} prés.

Exercice 4

Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$. On considère les points A(0; 2); B(1; 0) et C(2; -2). Soit (D) un droite d'équation :(D): 2x - y + 1 = 0.

- 1. Représenter les points A,B,C et la droite (D) dans le repère $(O;\vec{i};\vec{j})$.
- 2. (a) Déterminer les coordonnées de E tel que $:\overrightarrow{AE} = -2\overrightarrow{BC}$.
 - (b) Déterminer les coordonnées de I le milieu de [AB].
- 3. Montrer que les points A, B et C sont alignées.
- 4. Donner une équation cartésienne de la droite (AB).
- 5. Donner une représentation paramétrique de la droite (D).
- 6. Déterminer les coordonnées du point d'intersection de la droite (D) et l'axe des ordonnées.
- 7. Donner une équation cartésienne de la droite (Δ) passant par A et parallèle à (D).
- 8. Représenter la droite (Δ) dans le même repère.
- 9. Montrer que (D) et (Δ) sont sécantes en un point F.
- 10. Donner les coordonnées de F.

Année scolaire: 2023/2024 Mathématiques