

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 8

По дисциплине «Функциональное и логическое программирование»

Студент: Тимонин А. С.

Группа <u>ИУ7-626</u>

Преподаватель Толпинская Н. Б.

Практическая часть

Ответить на вопросы:

- Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?
- Какое первое состояние резольвенты?
- В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат работы алгоритма унификации?
- В каких пределах программы переменные уникальны?
- Как применяется подстановка, полученная с помощью алгоритма унификации?
- Как изменяется резольвента?
- В каких случаях запускается механизм отката?

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!,
- 2. п-е число Фибоначчи.

Убедиться в правильности результатов.

Для одного из вариантов **ВОПРОСА** и каждого задания составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: <u>вершина – сверху!</u> Новый шаг надо начинать с нового состояния резольвенты!

Листинг 1. Реализация программы

```
domains
    num, res = integer.
    n, f = integer.

predicates
    nondeterm fact(integer, integer).
    nondeterm fib(integer, integer).
```

```
clauses
     fact(0, Result) :- Result = 1,!.
     fact(N,F) :- N1 = N - 1,
                fact(N1,F1),
                F=N*F1.
     fib(0, Result) :- Result = 0, !.
     fib(1, Result) :- Result = 1, !.
     fib(N, Result) :- N1 = N-1,
                   N2 = N-2,
                   fib(N1, N1Result),
                   fib(N2, N2Result),
                   Result = N1Result + N2Result.
goal
     % Factorial
     write("Factorial(3)\n"),
     fact(3, Result);
     write("\nFactorial(4)\n"),
     fact(4, Result);
     write("\nFactorial(5)\n"),
fact(5, Result).
     % Fibbonachi
     write("Fibbonachi(4)\n"),
     fib(4, Result);
     write("\nFibbonachi(6)\n"),
     fib(6, Result);
     write("\nFibbonachi(8)\n"),
     fib(8, Result);
     write("\nFibbonachi(10)\n"),
     fib(10, Result);
     write("\n").
```


Рисунок 1. Тестирование fact(integer, integer).

Рисунок 2. Тестирование fib(integer, integer).

Формирование ответа

Таблица 1. fact(5, Result)

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат	Дальнейшие действия: прямой ход или откат
1	fact(5, Result)	Подстановка N = 5, Result = Result	Прямой ход
2	N1 = N - 1, fact(N1,F1), F=N*F1	Подстановка N1 = 4	Прямой ход
3	fact(N1, F1) F=N*F1	Подстановка N1 = 4, F = F1	Прямой ход
4	N1 = N - 1 fact(N1, F1) F=N*F1 F=N*F1	Подстановка N1 = 3	Прямой ход
5	fact(N1, F1) F=N*F1 F=N*F1	Подстановка N1 = 3, F = F1	Прямой ход
6	N1 = N - 1 fact(N1, F1) F=N*F1 F=N*F1 F=N*F1	Подстановка N1 = 2	Прямой ход
7	fact(N1, F1) F=N*F1 F=N*F1 F=N*F1	Подстановка N1 = 2, F = F1	Прямой ход
8	N1 = N - 1 fact(N1, F1) F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка N1 = 1	Прямой ход
9	fact(N1, F1) F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка N1 = 1, F = F1	Прямой ход
10	N1 = N - 1 fact(N1, F1) F=N*F1 F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка N1 = 0	Прямой ход
11	fact(0, F1) F=N*F1 F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка F1 = 1	Прямой ход
12	F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка F = 1	Прямой ход
13	F=N*F1 F=N*F1 F=N*F1 F=N*F1	Подстановка F = 2	Прямой ход

14	F=N*F1 F=N*F1 F=N*F1	Подстановка F = 6	Прямой ход
15	F=N*F1 F=N*F1	Подстановка F = 24	Прямой ход
16	F=N*F1	Подстановка F = 120	Прямой ход
17	Пусто	Результат Result = 120	Откат

Таблица 2. fib(4, Result)

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат	Дальнейшие действия: прямой ход или откат
1	fib(4, Result)	Подстановка N = 4, Result = Result	Прямой ход
2	N1 = N-1 N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1 = 3	Прямой ход
3	N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2 = 2	Прямой ход
4	fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N = 3, Result = N1Result	Прямой ход
5	N1 = N-1 N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1 = 2	Прямой ход
6	N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2 = 1	Прямой ход
7	fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N = 2, Result = N1Result	Прямой ход
8	N1 = N-1 N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1 = 1	Прямой ход

9	N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2 = 0	Прямой ход
10	fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1Result = 1	Прямой ход
11	fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2Result = 0	Прямой ход
12	Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка Result = 1	Прямой ход
13	fib(N2, N2Result) Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N = 2, Result = N2Result	Прямой ход
14	N1 = N-1 N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1 = 1	Прямой ход
15	N2 = N-2 fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2 = 0	Прямой ход
16	fib(N1, N1Result) fib(N2, N2Result) Result = N1Result+N2Result Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N1Result = 1	Прямой ход
17	fib(N2, N2Result) Result = N1Result+N2Result Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка N2Result = 0	Прямой ход
18	Result = N1Result+N2Result Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка Result = 1	Прямой ход
19	Result = N1Result+N2Result fib(N2, N2Result) Result = N1Result+N2Result	Подстановка Result = 2	Прямой ход
20	fib(N2, N2Result) Result = N1Result+N2Result	Подстановка Result = 0	Прямой ход

Ī	21	Result = N1Result+N2Result	Подстановка Result = 1 + 2 = 3	Прямой ход
	22	Пусто	Результат Result = 3	Откат

Теоретическая часть

Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия — это один из способов организации повторных вычислений. Т.к. логическое программирование — не операторное, то рекурсия — это способ заставить систему использовать многократно одну и ту же процедуру. Но этот процесс рано или поздно надо остановить. Поэтому в рекурсивных процедурах должна быть предусмотрена возможность выхода из рекурсии — специальное предложение процедуры. Эффективный способ организации рекурсии — это хвостовая рекурсия. Кроме этого, повысить эффективность рекурсивной процедуры можно отсекая неперспективные пути поиска решения. В целях выхода из рекурсии используется предикат отсечения («!»), который, при необходимости, включают в тело некоторых привил.

Какое первое состояние резольвенты?

Простой вопрос

В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат работы алгоритма унификации?

Если резольвента не пуста – запускается алгоритм унификации, а если – пуста, это значит, что получен один, однократный ответ «Да» на поставленный вопрос, после чего включается механизм отката, в попытке

найти другое решение с помощью другого знания. При этом, БЗ просматривается сверху вниз.

Алгоритм унификации связывает переменные из вопроса со значениями, с параметрами, которые содержатся в правилах и фактах.

Унификация — операция, которая позволяет формализовать процесс логического вывода. Алгоритм унификации сопоставляет подцель с заданной переменной.

Например, если в строке 2, в переменной а Name coпоставится с «Anton», а в строке 3, пременная Surname coпоставится с «Тimonin». Если бы в строке 2 мы поставили бы фамилию, например, «Кonin», тогда строка 3 выдала бы ошибку, так как «Konin» не равно «Timonin». Это связано с тем, что когда параметр в какой-либо переменной занят, он перестает сопоставлять переменные, а начинает их сравнивать.

В каких пределах программы переменные уникальны?

Именованные переменные уникальны в рамках предложения, а анонимная переменная – любая уникальна.

Как применяется подстановка, полученная с помощью алгоритма унификации?

В ходе алгоритма унификации может быть два варианта: унифицируемые термы успешны или нет. Если они успешны:

- 1. Т1 и Т2 одинаковые константы;
- 2. Т1 не конкретизированная переменная, а Т2 константа или составной терм, не содержащий в качестве аргумента Т1. Тогда унификация успешна, причем Т1 конкретизируется значением Т2.

Тогда применяется подстановка и переменные связываются со значениями.

Как изменяется резольвента?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью

В каких случаях запускается механизм отката?

Когда в программе возможен выбор нескольких вариантов, Пролог заносит в стек точку возврата, для последующего отката по этой точке возврата. Пролог унифицирует выбранный вариант, если унификация прошла успешно, тогда пролог подготавливает ответ, и далее по точке возврата происходит унификация с другими вариантами. Если пролог не видит дальнейшие варианты, которые он мог бы проунифицировать, тогда по точке возврата программа возвращается на еще более раннюю стадию.