Introduction to Data Science

Hung-Hsuan Chen 陳弘軒
Computer Science and Information Engineering
National Central University
hhchen@ncu.edu.tw

Many slides are obtained from Prof. Shou-De Lin (NTU)

Traditional algorithm vs data driven algorithm

- · How to detect a face?
 - Traditional algorithm
 - Round shape, with two black circles (eyes), ...
 - Solve a problem based on your knowledge (prior information)
 - Data driven algorithm
 - Show many face/non-face photos to the machine, and let the machine identifies their differences
 - Solve the problem based on the data (and maybe some of the prior knowledge)

Examples of machine learning today

Types of Machine Learning

- Based on the input-output structure, ML can be categorized as:
 - Supervised Learning
 - Unsupervised Learning
 - Semi-supervised Learning
 - Reinforcement Learning

We will mostly discuss

the first type in this

have no poticular good

2020/9/16 Prof. Shou-de Lin 4

2020/9/16 Prof. Shou-de Lin

Supervised Learning

- Given: a set of <input, output> pairs
- Goal: given an unseen input, predict the corresponding output
- · For example:
 - 1. Input: X-ray photo of chests, output: whether it is cancerous
 - 2. Input: a sentence, output: whether a sentence is grammatical
 - 3. Input: some indicators of a company, output: whether it will make profit next year
- · Two typical types of outputs an ML system generates
 - Categorical: classification problem
 - Ordinal outputs: small, medium, large
 - · Non-ordinal outputs: blue, green, orange conect or incorrect
 - Real values: regression problem
- There are several other variations

2020/9/16

Terminology

- Training data: a set of data used to discover potentially predictive relationships
- Test data: the data that has been specifically identified for use in tests
- Features (a.k.a. attributes, independent variables)
 - We usually use X to represent features
 - Features are the "input" of a prediction task
- Target variable (a.k.a. outputs, dependent variables)
 - In classification, target variables are also called classes
 - We usually use y to represent target variables
 - Targets are the "output" of a prediction task

Different types of outputs

· Speech Recognition

2020/9/16

Source: Hung-Yi Lee https:// www.slideshare.net/ tw_dsconf/

<u>tw_dsconf/</u> <u>ss-62245351</u>

Example

Prof. Shou-de Lin

 Weight
 Wingspan
 Webbed feet?
 Back color

 1000.1
 125.0
 No
 Brown

 3000.7
 200.0
 No
 Gray

Species
Buteo jamaicensis
Sagittarius serpentarius

Target variable

Unsupervised Learning

- Learning without teachers (presumably harder than supervised learning)
 - Learning "what normally happens"
 - Think of how babies learn their first language (unsupervised) comparing with how people learn their 2nd language (supervised).
- Given: a bunch of input X (there is no output y)
- Goal: depending on the tasks, for example
 - Estimate $P(X) \rightarrow$ then we can find augmax P(X)
 - = Finding Sim(X_1, X_2) → then we can group similar X's
 - − Finding $P(X_2|X_1)$ → we can know whether some items can occur together.

2020/9/16 Prof. Shou-de Lin 9

A variety of ML Tasks

- 1. Classification
- 2. Regression number
- 3. Clustering group mg
- 4. Transfer learning
- Multi-label learning
- 6. Multi-instance learning
- 7. Cost-sensitive leering
- 8. Active learning
- 9. Semi-supervised learning
- 10. Reinforcement learning

2020/9/16 Prof. Shou-de Lin

Classification (1/2)

- It is a supervised learning task that, given a feature vector x, predicts which class in C may be associated with x.
- |C|=2 → Binary Classification
 - $|C| > 2 \rightarrow Multi-class Classification$
- Training and predicting of a binary classification problem: Training set (Binary Classification)

Classification (2/2)

- A classifier can be either linear or non-linear
- · The geometric view of a linear classifier

- · Famous classification models:
 - k-nearest neighbor (kNN)
 - Decision Tree (DT)
 - Support Vector Machine (SVM)
 - ...

2020/9/16 Prof. Shou-de Lin

12

10

Real example: E-mail spam check

· Blocking the junk email and passing the normal email

Regression (1/2)

- A supervised learning task that, given a feature vector x, predicts the target value $y \in R$.
- Training and predicting of a regression problem:

Regression (2/2)

The geometric view of a linear regression function

• Some types of regression: linear regression, support vector regression, ...

2020/9/16 Prof. Shou-de Lin

Real Example: Stock price prediction

· Predicting the price of stock

An example: click-through rate prediction

- Assuming you want to predict quality of an advertisement by estimating its click-ratio (i.e. how likely a person would buy the product after viewing this ad)
 - Since this click-ratio is a real number between 0 and 1, a natural way is to model it as a regression problem.
 - However, an experienced machine learning person would suggest decomposing this into a binary classification problem (i.e. 3/8 will be decomposed into 3 positive instances and 5 negative instances)

2020/9/16 Prof. Shou-de Lin 1

Overfitting vs underfitting Appropriate-fitting (too simple to explain the variance) Over-fitting Appropriate-fitting Over-fitting (forcefitting – too good to be true) befree Appropriate-fitting Over-fitting Appropriate-fitting Over-fitting Appropriate-fitting Over-fitting Appropriate-fitting Over-fitting Over-fitting Appropriate-fitting Over-fitting Over-fit

Quiz

- Explain the difference between a supervised and an unsupervised algorithm
- Explain the difference between classification and regression
- Blocking the junk email and passing the normal email based on the labeled datasets
 - Supervised or unsupervised?
- Predicting the price of stock
 - Classification or regression?