Arithmetic for Computers

Objectives

- To understand how does hardware multiply or divide numbers
- To understand floating number representation, SW and HW implementation

Arithmetic Overflow

Example: 7 + 6

Overflow: the result of an operation cannot be represented by the rightmost hardware bits

- Adding +ve and –ve operands, no overflow
- Adding two +ve operands
 - Overflow if result sign is 1
- Adding two –ve operands
 - Overflow if result sign is 0

2's complemnt signed representation simplifies HW design

Handling Overflow

MIPS add, addi, sub instructions raise an exception

- On overflow, invoke exception handler
 - Save P1 in exception program counter (EPC) register
 - Jump to predefined handler address (KERNEL code)
 - mfc0 (move from coprocessor reg) instruction can retrieve EPI value, to return after corrective action
 - More on that in Lab #5

MIPS addu, subu, ... instructions does not generate exception

 You need to have additional code to handle overflow in this case if you expect it.

(OS) Kernel code

Power fault → code

Divide by zero → handling code Overflow → handling code

Integer Multiplication

Multiplication

- Example: Multiply 1000 by 1001
- Start with long-multiplication approach

multiplicand 1000 multiplier 1000 0000 0000 1000 product 1001000 Length of product is the sum of operand

lengths

Multiplication can be calculated as addition of shifted versions of the multiplicand

Multiplication has different itterative and non-itterative implementations that have cost-speed tradeoff.

Multiplication Hardware Implementation (1)

2 x 64 bit registers & 64-bit ALU

32 clock cycles to complete the multiplication operation

Optimised Multiplier Implementation (2)

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier (implementation 3)

Uses multiple adders [Cost/performance tradeoff]

MIPS Multiplication Instructions

- Two 32-bit **registers** for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Test HI value to see if product overflows 32 bits

Multiple ISA HW implementations of distinct cost and performance exist

Integer Division

example:

Division

n-bit operands yield *n*-bit quotient and remainder

- Example divide 1001010₂ by 1000₂
- Iheck for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Do not use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers generate multiple quotient bits per step
 - Still require multiple steps
 - Solution currently uses future prediction and correction strategy

MIPS Division Instructions

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating point number Representation

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Types float and double
- Like scientific notation
 - -2.34×10^{56}
 - +0.002 × 10-4
 - +987.02 × 109
- In binary
 - labeled binary point

- 5.25 = - 101.01

Floating Point Standard

- Defined by IEEE Std 754-1985
 - Historically: different companies had different implementations leading to Portability issues
 - Now almost universally adopted
- Two key representations
 - Single precision (32-bit) (Float) [single]
 - Double precision (64-bit) [Double]

IEEE Floating-Point Format

$$X = \pm 1.xxxxxxxx_2 * 2^{yyyy}$$

- 5.25 = - 101.01 = -1.0101 * 2²

S: sign bit

- 1 non-negative,
- 2 ^ negative

S Exponent

Fraction

single(32 bits): 8 bits double(64 bits): 11 bits

single: 23 bits double: 52 bits

Excess representation
Exponent = yyyy + Bias - 1023 for Double

- Biased exponent is unsigned, is that good?
- Exponents 00...0000 and 1111...11 reserved

Normalized significand: 1.0 ≤ |significand| < 2.0 Significand = 1.Fraction Always has a leading prebinary-point 1 bit, so no need to represent it explicitly (hidden bit)

Floating-Point Example

Represent – 0.75

$$\bullet$$
 -0.75 = (-1)¹ × 1.1₂ × 2⁻¹

- S = 1
- Fraction = $1000...00_2$
- Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1 01111110 1000...00
- Double: 1 0111111110 1000...00

Remember $100.0 = 1.0 \times 10^{2}$ $0.01 = 1.0 \times 10^{-2}$

$$0.75 = 0.5 + 0.25$$

= 0.11_2
= $1.1 * 2^{-1}$

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

•
$$x = (-1)^1 \times (1 + .01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Single-Precision Range

- Smallest value
 - Exponent: 0000001
 - Fraction: 000...00 ***** *significand* = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2_{10} \times 10^{-38}$
- Largest value
 - exponent: 11111110

 - Fraction: 111...1[↑] *significand* ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4_{10} \times 10^{+38}$

Double-Precision Range

Smallest value

- Exponent: 0000000001
- Fraction: 000...00 **↑** significand = 1.0
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2_{10} \times 10^{-308}$

Largest value

- Exponent: 1111111110
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8_{10} \times 10^{+308}$

Accurate Arithmetic

- Different between computer number and number in real world
 - Computer numbers have limited data unit size → limited precision
 - <u>Programmers must remember these limits and write programs</u> accordingly
- IEEE Std 754 specifies five rounding control

- Not all FP processors implement all options
 - Most programming languages and FP libraries just use defaults

Floating-Point Precision

- Relative precision
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 7 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Precision-range tradeoff

- fraction field controls precision while exponent field controls range
- fraction bits + exponent bits = fixed number (e.g., 31 bits in single precision)

Floating-point MIPS Instruction

FP Instructions in MIPS

- Separate FP processor (CP1)
- Separate FP registers
 - **32** *single-precision*: \$f0, \$f1, ...\$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's

• FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

MIPS FP Instructions

• Arithmetic

- SINGLE add.s, sub.s, mul.s, div.s
 - e.g., *add.s* \$f0, \$f1, \$f6
- **DOUBLE:** add.d, sub.d, mul.d, div.d
 - e.g., *mul.d* \$f4, \$f4, \$f6

MIPS floating-point instructions do not have immediate operands.

Load and store instructions

SINGLE: lwc1, swc1

DOUBLE: ldc1, sdc1

e.g., *ldc1* \$f8, 32(\$sp)

Register Transfer

TO cp1: *mtc1* \$t0, \$f0

FROM cp1: *mfc1* \$t0, \$f0

MIPS FP Instructions

Comparison

c.xx.s, c.xx.d (xx is eq, lt, le, ...)
Sets or clears *FP condition-code bit*e.g. c.lt.s \$f3, \$f4

Branching bc1t label

Conversion

cvt.**x.y** \$f0,\$f1 #cvt.**to.from** x & y could be {s, d, w}

e.g., cvt.d.w \$f0, \$f2 #int_to_double

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
 - Note that fahr is obtained using syscall 6 for single

NOTE: The code above does not follow good programming practice as it uses magic numbers!

• MIPS code:

```
# the constants are defined using .float
f2c: lwc1 $f16, const5

lwc1 $f18, const9

div.s $f16, $f16, $f18

lwc1 $f18, const32

sub.s $f18, $f12, $f18

mul.s $f0, $f16, $f18

jr $ra
```


Coding for performance

- Smaller data units (e.g., Int vs. long or single vs. double)
 require smaller storage and are processed faster
- Floating point operations are slower than integer operations
- The choice of data type significantly impact the performance and this is evident in data intensive applications, such as data science and game development.

Floating-point MIPS HW

Floating-Point Addition

Consider a 4-digit decimal example

$$9.999 \times 10^{1} + 1.610 \times 10^{-1}$$

1. Align decimal points (Shift number with smaller exponent)

$$9.999 \times 10^{1} + 0.016 \times 10^{1}$$

2. Add significands

$$9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$$

3. Normalize result & check for over/underflow

$$1.0015 \times 10^{2}$$

- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition (binary)

- Now consider a 4-digit binary example
 - Add 0.5_{10} and -0.4375_{10}

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$$

1. Align binary points (Shift number with smaller exponent)

$$1.000_{2} \times 2^{-1} + -0.111_{2} \times 2^{-1}$$

2. Add significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

3. Normalize result & check for over/underflow

$$1.000_2 \times 2^{-4}$$
, with no over/underflow

4. *Round* and renormalize if necessary

$$1.000_2 \times 2^{-4}$$
 (no change) = 0.0625_{10}

FP Adder oardware

Step 1

Step 2

Step 3

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. **Add** exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. **Multiply** significands
 - $1.110 \times 9.200 = 10.212 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. **Determine** *the sign* of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication (binary)

- Now consider a 4-digit binary example
 - Multiply 0.5₁₀ and -0.4375₁₀
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. *Round* and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. **Determine sign**: +ve × –ve ◆ –ve
 - $-1.110_2 \times 2^{-3} = -0.21875_{10}$

FP Arithmetic oardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, squareroot
 - FP integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Multidimensional Arithmetic

What multi-dimension?

Addition and subtraction: Element wise

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 3 & 15 \end{bmatrix}$$

Multiplication

$$= 1x10 + 2x20 + 3x30 1x11 + 2x21 + 3x31 4x10 + 5x20 + 6x30 4x11 + 5x21 + 6x31$$

$$= \begin{bmatrix} 10+40+90 & 11+42+93 \\ 40+100+180 & 44+105+186 \end{bmatrix} = \begin{bmatrix} 140 & 146 \\ 320 & 335 \end{bmatrix}$$

Matrix storage

Storing two-dimensional data in one dimensional (linear) memory

	Column major				Row major				
Î	0	5	10	15		0	1	2	3
	1	6	11	16		4	5	6	7
1	2	7	12	17		8	9	10	11
	3	8	13	18		12	13	14	15
	4	9	14	19		16	17	18	19
	Fortran								
				PYT	HC	N?	?		

Questions

- Explain what is the meant by the design principal "make the common case fast." lonsidering MIPS processor, identify a design choice that uses this principal. Identify a special case (an uncommon case) and explain how MIPS handle it.
- Floating point number representation involves splitting the data unit (e.g., word) into multiple fields. What are these fields? How the stored value is calculated? How would changing the size of these fields affect the number precision and range?
- The principal of "performance by prediction" is used in computer design.
 Identify one case for which this principal is used to improve the
 performance. Explain how this principal is used to improve the
 performance.
- It is well-known that the design of computer has a cost-performance tradeoff. Identify two scenarios that confirm this tradeoff and explain the tradeoff aspects.