Department of Information Systems and Technologies

CTIS 152 – Data Structures and Algorithms SPRING 2024 - 2025

Lab Guide #2 - Week 2 - 1

OBJECTIVE: Pointer Operations and Pointers as Function Parameters, One dimensional arrays

Instructors: Serpil TIN
Assistants: Berk ÖNDER & Hatice Zehra YILMAZ

Use pointer notation instead of subscript notation!

Q1. a) Suppose that a C program segment contains the following statements.

int x = 34, y;
int *ptrA = &x;
int *ptrB;
*ptrA = x + 2;
y = *ptrA + 5;
ptrB = ptrA;
*ptrA = x + y;

Write a C program including the above program segment in order to find the final values of:

- &x
- &y
- ptrA
- *ptrA
- X
- ptrB
- *ptrB
- (ptrA + 3)
- (*ptrA + 3)

Project Name: LG2_Q1a File Name: Q1a.cpp

b) Suppose that a C program contains the following statement:

int mat[8] = $\{6, 59, 81, 61, 1, 22, 41\}$;

According to this statement, examine the values of:

mat mat+2 *(mat+2) *mat+4

mat+5 *(mat+7)

Check the results by the program.

File Name: Q1a.cpp

Project Name: LG2_Q1b File Name: Q1b.cpp

Q2. Write a C program that will initialize a one-dimensional integer array of size 5 with the numbers like 2, 4, 8 ... When completed, the program should also give an output of these values to the text file **"result.txt"** in the format below, including their addresses and pointer iterations.

Example Run:

Successful! Please see the result.txt file for the output.

Content of the result.txt file

concent or the	resurc.	CXC IIIe
Element Name	Value	Address
*(nums + 0)	2	00E4F888
*(nums + 1)	4	00E4F88C
*(nums + 2)	8	00E4F890
*(nums + 3)	16	00E4F894
*(nums + 4)	32	00E4F898

Project Name: LG2_Q2 File Name: Q2.cpp **Q3.** Write a C program that reads the numbers from the user into a one-dim integer array with the size of 10 until -1 is entered. The program first finds the maximum number and calculates their average excluding the maximum number. Then, it writes the results into a text file named "result.txt".

Example Run #1: result.txt Enter a number: 25 Maximum number is 96 Enter a number: 36 Average is 43.40 Enter a number: 47 Enter a number: 85 Enter a number: 96 Enter a number: 24 Enter a number: -1 Result is printed!! result.txt Example Run #2: Enter a number: 1 Maximum number is 78 Enter a number: 2 Average is 33.78 Enter a number: 66 Enter a number: 36 Enter a number: 45 Enter a number: 78 Enter a number: 45 Enter a number: 52 Enter a number: 36 Enter a number: 21 10 number is entered. Array size will be exceeded!!

Example Run #3:

Enter a number: -1
Program terminated!

Result is printed!!

Project Name: LG2_Q3 File Name: Q3.cpp

Q4. Write a C program that reads an integer list from the text file named "numbers.txt" into an array with a size of 15. Then, find the product of numbers that are not divisible by 5.

Write the following functions;

- readList that reads a list of numbers from the text file and returns the size of the list.
- **findPro** that calculates the product of the numbers in the list excluding the numbers that are divisible by 5 and returns the result.

Example Run:

Product excluding the numbers that are divisible by 5: 483313536

<u>numbers.txt</u>

25 95 85 5 65 29 23 48 55 15 35 12 37 17 2

Project Name: LG2_Q4 File Name: Q4.cpp

Additional Questions

AQ1. There are rates of radio channels in the workdays (Monday to Friday). You will implement a program to do the followings;

- calculates and displays the average rate of the week,
- average rate for the radio channel which has got the average rate amount above the channel average,
- the channel number and the day for the maximum rate.

	М	Т	W	R	F
C1	40	51	70	18	120
C2	66	49	88	230	35
C3	26	75	41	30	142
C4	27	110	20	63	51
C5	10	58	45	178	101

rates.txt					
40	51	70	18	120	
66	49	88	230	35	
26	75	41	30	142	
27	110	20	63	51	
10	58	45	178	101	

Write the following functions;

- readFromFile that reads the channel rates from the rates.txt file into a two-dim array.
- **findAvg** that calculates and returns the average rate of the week.
- findChannelAvg that calculates and returns the average rate of the specified channel.
- **findMaxRate** that finds and returns the indexes of the channel number and the day of the week with the maximum rate.

Write a C program that will read the channel information from the file **rates.txt** into a two-dimensional integer array. The program will display the average rate of the channels, the channel number and the rate of that channel which has got the rate above the channel average on the screen.

Example Run:

```
The avg rate: 69.76

Channel info which has rate amount is above the avg: Channel No: 2, Rate: 93.60
Channel No: 5, Rate: 78.40

The Channel 2 has the maximum rate: 230
```

Project Name: LG2_AQ1 File Name: AQ1.cpp **AQ2.** Write a C program that reads the IDs of some cities and the number of tourists that have come to these cities in the past 5 years from a text file named "**tourism.txt**".

- The first row of the file contains the years to be stored in a one-dimensional array.
- The first column of the file contains the IDs of the cities to be stored in a one-dimensional array.
- The rest of the file contains the number of tourists to be stored in a two-dimensional array.

tourism.txt

06 42 27 07 35 50 34 77	2016 22000 44000 21000 130000 67000 90000 23000 80000	2017 56000 27000 89000 33000 54000 61200 76000 10000	2018 43000 10000 16500 30000 19000 13000 72000 11600	2019 70000 32000 65000 20000 17000 52000 56000 13000	2020 12000 80000 14000 62000 43000 74000 49000 79000
33 26	65000 20000	54000 40000	18100 15200	41000 23000	10100 40000

Write the following functions;

- **colMaxVal** that finds and returns the column index of the maximum value in a certain row of a 5-column two dimensional array.
- **rowMinVal** that finds and returns the row index of the minimum value in a certain column of a 5-column two dimensional array.
- **sumRow** that finds the sum of each row of a 5-column two dimensional array, and stores them into a one dimensional array.
- **sumCol** that finds the sum of each column of a 5-column two dimensional array, and stores them into a one dimensional array.

The program should find and display

- for each city:
 - o the year that the maximum number of tourists came,
 - o the total number of tourists came.
- for each year:
 - o the cities that the minimum number of tourists came,
 - o the total number of tourists came.

in the given format on the screen, as shown in the example run below .

Example Run:

4	Year with Max. Tourist	Total Tourists
6	2019	203000
42	2020	193000
27	2017	205500
7	2016	275000
35	2016	200000
50	2016	290200
34	2017	276000
77	2016	193600
17	2020	231600
33	2016	188200
26	2017	138200
Year ***	City with Min. Tourist	Total Tourists
2016	26	605000
2017	77	545200
2017	42	263400
2019	77	447000
2020	33	533700

Project Name: LG2_AQ2 File Name: AQ2.cpp