PATENT ABSTRACTS OF JAPAN

特的文献

(11)Publication number:

.2000-351784

(43)Date of publication of application: 19.12.2000

(51)Int.Cl.

C07F C07F 7/28 C23C 16/40 C23C 16/448

(21)Application number: 2000-132543

(71)Applicant: POHANG ENG COLLEGE

(22)Date of filing:

01.05.2000

(72)Inventor: RI JIU

CHIN ZAIYO **RI SHOKEN** KIM DAE HWAN

(30)Priority

Priority number: 99 9915557

00 0003371

Priority date: 30.04.1999

Priority country: KR

25.01.2000

KR

(54) ORGANOMETALLIC COMPLEX AND ITS PRODUCTION, AND GROWTH OF ORGANOMETALLIC COMPOUND USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a new organometallic complex that has excellent thermal stability, is not so sensitive to moisture, is present in liquid form at room temperature, can manifest excellent step coverage and is useful as a precursor for forming a thin layer for semiconductor elements.

SOLUTION: This new compound is an organometallic complex represented by formula I (M is Ti or Zr; R1 to R4 are each H, or a 1-4C alkyl; m is 2-5), typically titanium tetra (dimethylaminopropoxide). The organometallic complex of formula I is prepared, for example, by mixing a metal compound of formula II or formula III (R and R' are each a 1-4C alkyl), [preferably titanium tetra(diethylamine) or the like] with an amine (preferably N.N-dimethylpropanolamine or the like) at a molar ratio of 1/4-1/5 in a organic solvent and refluxing the mixture. The organometallic complex of formula I is vaporized at 20-300° C and the formed vapor is brought into contact with a substrate heated at 300-600° C thereby growing thin layer of a metal oxide on the substrate.

M (NR) П

m((or())... 111

HO = (CRIRA) -- NRIRA

LEGAL STATUS

[Date of request for examination]

01.05.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3499804

[Date of registration]

05.12.2003

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-351784 (P2000-351784A)

最終頁に続く

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
C07F	7/00		C 0 7 F	7/00	4	A
	7/ 2 8			7/28	1	F
C 2 3 C	16/40		C 2 3 C	16/40		
	16/448			16/448		
				•		
			審査	請求 有	請求項の数8	OL (全 9 頁)

(21)出願番号	特願2000-132543(P2000-132543)	(71)出顧人	598057475
			學校法人浦項工科大學校
(22)出顧日	平成12年5月1日(2000.5.1)		大韓民国、慶尚北道浦項市南區孝子洞山31
			番地
(31)優先権主張番号	1999-15557	(72)発明者	李 時 雨
(32)優先日	平成11年4月30日(1999.4.30)		大韓民国、790-390慶尚北道浦項市南区芝
(33)優先権主張国	·韓国 (KR)		谷洞756番地 教授アパートメント 9-
(31)優先権主張番号	2000-3371		803
(32) 優先日	平成12年1月25日(2000.1.25)	(72)発明者	沈 在 鎔
(33)優先権主張国	韓国(KR)		大韓民国、769-860慶尚北道義城郡佳音面
			長1洞163番地
	·	(74)代理人	100058479
			弁理士 鈴江 武彦 (外5名)

(54) 【発明の名称】 有機金属錯体およびその製造方法並びにそれを用いた有機金属化学成長法

(57)【要約】

【課題】 熱安定性に優れ、湿気に敏感でなく、室温で液体として存在し、ステップカバレージに優れ、不純物によって汚染されていない金属化合物膜を製造するためのMOCVDに比較的低温で適用できる無毒な有機金属錯体を提供する。

【解決手段】 下記一般式(I)で表される有機金属錯体が提供される:

【化1】

(式中、MはT i またはZ r であり;R₁、R₂、R₃ およびR₄は各々独立にHまたはC₁₋₄ アルキルであり;m

は2~5の整数である)。

【特許請求の範囲】

下記一般式(I)で表される有機金属錯 【請求項1】 体:

1

【化1】

(式中、MはTiまたはZrであり; R₁、R₂、R₃お よびR,は各々独立にHまたはCi, アルキルであり;m は2~5の整数である)。

【請求項2】 前記有機金属錯体が、チタンテトラ(ジ メチルアミノプロポキシド)、チタンテトラ(ジメチル アミノエトキシド) およびジルコニウムテトラ (ジメチ ルアミノエトキシド) からなる群から選ばれることを特 20 徴とする請求項1記載の有機金属錯体。

【請求項3】 下記一般式(II)または(III)の金属 化合物を下記一般式(IV)のアミン化合物と1:4~ 1:5のモル比で有機溶媒中において混合する工程と、 前記混合物を還流する工程を含む請求項1記載の前記一 般式(I)の有機金属錯体の製造方法:

$$M(NR_2)_4$$

(II)

M(OR')

(III)

 $HO-(CR_3R_4).-NR_1R_2$ (IV)

(式中、RおよびR'は各々独立にC14 アルキルであ り;R₁、R₂、R₃、およびR₄は各々独立にHまたはC ₁₄ アルキルであり;mは2~5の整数である)。

【請求項4】 前記金属化合物が、チタンテトラ(ジエ チルアミン)、ジルコニウムテトラ(ジエチルアミ ン)、チタンテトラアルコキシドおよびジルコニウムテ トラアルコキシドからなる群から選ばれることを特徴と する請求項3記載の方法。

【請求項5】 前記アミン化合物が、N, Nージメチル プロパノールアミンまたはN, Nージメチルエタノール アミンであることを特徴とする請求項3記載の方法。

【請求項6】 請求項1の前記一般式(1)の有機金属 錯体を、任意選択的に他の有機金属前駆体とともに、2 0~300℃の温度で気化させる工程と、生成した蒸気 を300~600℃の温度に加熱した基板に接触させる 工程を含むことを特徴とする基板上に金属酸化物薄膜を 成長させる方法。

【請求項7】 前記金属酸化物が、酸化ジルコニウムま たは酸化チタンであることを特徴とする請求項6記載の 方法。

前記金属酸化物が、バリウムストロンチ 50 【請求項8】

ウムチタネート(BST)、鉛ジルコネートチタネート (PZT)、ストロンチウムビスマスチタネート(SB T)、ビスマスランタンチタネート(BLT)およびイ ットリウム安定化ジルコニア(YSZ)からなる群から 選ばれることを特徴とする請求項6記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体素子用薄膜 製造用前駆体として有用な有機金属錯体、その製造方法 10 およびそれを用いた有機金属化学成長法に関する。

[0002]

【従来の技術】最近、半導体素子が高集積化し、小型化 するにつれて、半導体素子の製造において薄膜形成に用 いられる先端材料および工程技術の開発が要求されてい る。このような要求に応じて、DRAM(dynamic rand om access memory) 用キャパシターに用いられるバリウ ムストロンチウムチタネート(BST)、強誘電体メモ リ (ferroelectric random access memory、FRAM) に応用される鉛ジルコネートチタネート(PZT)、ス トロンチウムビスマスチタネート(SBT)、ビスマス ランタンチタネート(BLT)などの強誘電材料および イットリウム安定化ジルコニア (YSZ)、TiOzお よびZrO2などの金属酸化物が開発されている。この ような材料の薄膜は、RFマグネトロンスパッタリン グ、イオンビームスパッタリング、反応性共蒸着法(re active co-evaporation)、有機金属分解法(MOD, Metal Organic Decomposition) , LSMCD (Liquid SourceMisted Chemical Decomposition)、レーザーア ブレーション、MOCVD (Metal Organic Chemical V apor Deposition) のような技術を用いて製造される。

【0003】これらのうち、有機金属化学気相成長法 (MOCVD) は、一つ以上の有機金属前駆体化合物を 気化した後、キャリアガスを用いて気化した前駆体を加 熱された半導体基板の表面に移動させて、化学反応によ り前記基板の表面に薄膜を形成する工程である。MOC V Dは、比較的に低温で行うことが可能であること、原 料物質の導入量とキャリアガス量を調節して薄膜の組成 と成長速度を制御することができること、基板の表面を 損傷することなく均一性が高くステップカバレージに優 れた薄膜が得られることなどの利点を有している。した がって、MOCVDはDRAMおよびFRAMのような 半導体素子の製造に広範囲に用いられている。

【0004】一般的にCVD用前駆体は、高い蒸気圧、 高純度、高い成長速度、取り扱いの容易さ、無毒性、低 コストおよび適切な蒸着温度などの性質を有することが 要求される。しかし、CVDに用いられる従来の有機金 属化合物、たとえば、金属アルキル、金属アルコキシ ド、βージケトネートは多くの問題点を有する。たとえ ば、Pb (C₂ H₅),のような金属アルキルは毒性およ び爆発性があり、金属アルコキシドは湿気に敏感であ

り、比較的高価なβ-ジケトネートは蒸気圧が低く室温 で固体であるため取扱いにくいという問題がある(文献 [Anthony C. Jones 5, Journal of the European Cera mic Society, 19(1999), 1431-1434] 参照)。

[0005] st. $Ti(O'Pr)_{4}(O'Pr=-7)$ プロポキシド) は室温で不安定であるという短所があ \mathfrak{D} , Ti (O'Pr) \mathfrak{p} (tmhd) \mathfrak{p} (tmhd=tetra methylheptanedionate、テトラメチルヘプタンジオネー ト)の場合は、Ti薄膜の製造時に温度変化によってT i 含有量が変化するという問題がある(イ・ジョンヒョ ン、Electrochemical and Solid-State Letters, 2(10) (1999), 507-509).

[0006]

【発明が解決しようとする課題】したがって、本発明の 目的は、熱安定性に優れ、湿気に敏感でなく、室温で液 体として存在し、ステップカバレージに優れ、不純物に よって汚染されていない金属化合物膜を製造するための MOCVDに比較的低温で適用できる無毒な有機金属錯 体を提供することにある。

[0007]

【課題を解決するための手段】本発明の一態様によれ ば、下記一般式(I)で表される有機金属錯体が提供さ れる:

[0008]

【化2】

【0009】(式中、MはTiまたはZrであり; R₁、R₂、R₃およびR₄は各々独立にHまたはC₁₄ア ルキルであり; mは2~5の整数である)。

【0010】本発明の他の態様によれば、下記一般式 (II) または(III) の金属化合物を下記一般式(IV) のアミン化合物と1:4~1:5のモル比で有機溶媒中 において混合する工程と、前記混合物を還流する工程を 含む請求項1記載の前記一般式(I)の有機金属錯体の 製造方法が提供される:

$$M(NR_2)_4$$

(II)

M (OR') 4

(III)

(IV)

 $HO-(CR_3R_4)_{\bullet}-NR_1R_2$

(式中、RおよびR'は各々独立にCia アルキルであ り; R_1 、 R_2 、 R_3 、および R_4 は各々独立にHまたはC=50 またはジルコニウム化合物を一般式(IV)のアミン化合

ロアルキルであり;mは2~5の整数である)。

【0011】本発明のさらに他の態様によれば、前記-般式(I)の有機金属錯体を、任意選択的に他の有機金 属前駆体とともに、20~300℃の温度で気化させる 工程と、生成した蒸気を300~600℃の温度に加熱 した基板に接触させる工程を含むことを特徴とする基板 上に金属化合物薄膜を成長させる方法が提供される。

[0012]

【発明の実施の形態】以下、本発明をさらに詳細に説明 する。本発明の一般式(I)の有機前駆体のうち特に好 ましいものは、それぞれ下記一般式(V)~(VII)で 表される、チタンテトラ(ジメチルアミノプロポキシ ド) (Ti(dmap),)、チタンテトラ(ジメチル アミノエトキシド)(Ti(dmae)。)およびジル コニウムテトラ (ジメチルアミノエトキシド) (2 r (dmae)₁) である。

[0.013]

【化3】 20

30

40

N(CH 3)2 (CH3)2N N(CH 3)2 (CH3)2N (V) N(CH 3)2 (CH3)2N N(CH 3)2 (CH3)2N

(VI)

N(CH 3)2 (CH3)2N N(CH 3)2 (CH3)2N (VII)

【0014】本発明の一般式(I)の化合物は、チタン

10

5

物と反応させて製造することができる。

【0015】本発明において用いられるチタンまたはジルコニウム化合物は、一般式(II)または(III)の化合物であり、好ましくは、チタンテトラ(ジエチルアミン)、ジルコニウムテトラ(ジエチルアミン)、チタンテトラアルコキシド、ジルコニウムテトラアルコキシドである。本発明において用いられる代表的なアミン化合物は、N,Nージメチルプロパノールアミン、N,Nージメチルエタノールアミンなどである。

【0016】本発明の化合物の製造に用いられる溶媒は、たとえば、ヘキサン、トルエン、ペンタンなどである。一般式(II)または(III)の金属化合物および一般式(IV)のアミン化合物は、1:4~1:5の範囲のモル比で使用される。生成した混合物は15~20時間還流すると、目的とする一般式(I)の化合物が90%以上の高い収率で得られる。

【0017】本発明の一般式(I)の有機金属化合物 は、室温で液体であり、低温で高い揮発性を有するた め、半導体素子用の金属を含む薄膜を製造するためのC VDに前駆体として用いることができる。たとえば、本 20 発明は、通常のMOCVD法を用いて、金属酸化物たと えばTiO2, ZrO2 (Anthony C. Jonesら、Chemical Vapor Deposition, 4(2)(1998), 46-49) およびイット リウム安定化ジルコニア (YSZ) (C. Dubourdieuら、 Thin Solid Films, 339(1999), 165-173) からなる薄 膜、または強誘電材料のたとえばバリウムストロンチウ ムチタネート(BST)(イ・ジョンヒョンら、Electr ochemical and Solid-State Letters, 2(10)(1999), 50 7-509)、鉛ジルコネートチタネート(PZT)(Anthon y C. Jones 5, Journal of the European Ceramic Soci 30 ety, 19(1999), 1431-1434) 、ストロンチウムビスマス チタネート (SBT) (C. Isobeら、Integrated Ferroe lectrics, 14(1999), 95-103) 、ビスマスランタンチタ ネート(BLT)からなる薄膜を製造するのに有用であ

【0018】本発明を実施するにあたり、本発明の有機 金属前駆体を用いて金属化合物薄膜を形成するためのC V D 工程は、20~300℃で本発明の前駆体を気化させ、生成した蒸気を減圧下、たとえば0.1~10torrで、300~600℃、より好ましくは400~5 4050℃に加熱した基板の表面にキャリアガスとともに輸送することによって行うことができる。

【0019】前駆体は通常のバブリング送出(bubbling delivery)または液体送出(liquid delivery)によって気化される。バブリング送出は容器に入れた液状前駆体にキャリアガスを通すことによってなされ、液体送出は適量の液体前駆体を気化器に注入することによってなされる。液体送出工程の場合には、前駆体をテトラヒドロフラン(THF)、nーブチルアセテートなどの有機溶媒で希釈してもよい。

【0020】本発明に用いられる基板は、通常のシリコン基板、およびPt, Ir, IrO_2 , Ru, RuO, $SrRuO_3$ などでコーティングされたシリコン基板を含む。

[0021]

(2)

【実施例】以下、本発明を下記実施例によってさらに詳細に説明する。ただし、下記実施例は本発明を例示するだけであり、本発明の範囲を限定しない。

【0022】実施例1:Ti (dmap)↓の製造 (1)

 $Ti(O^{1}Pr)$ (チタンテトライソプロポキシド) (18.45g、65mmol)を無水へキサン150 mlに加えた後、これにN, N-ジメチルプロパノールアミン(DPMA) (30.76ml、260mmol)を徐々に加えた。混合物を20時間還流した後、冷却した。減圧下で溶媒を除去して、オレンジ色の液体を得た。これを150℃で蒸留して、Ti(dmap)、を濃褐色液体として得た(収率>90%)。

【0023】このようにして得られたTi(dmap)4の熱重量分析(以下、TGAという)曲線を図1に示す。

【0024】 H NMR (CDCl3 300MHz): &4.61 (t, CH2, 8H), 2.43 (t, CH2, 8H), 2.20 (s, CH3, 24H), 2.90 (t, CH2, 8H)。 【0025】実施例2:Ti (dmap) +の製造

Ti (NE t_2) ι (チタンテトラジエチルアミン) (2 1.87g、65mmol)を無水へキサン150mlに加えた後、これにN, Nージメチルプロパノールアミン (DPMA) (30.76ml、260mmol)を徐々に加えた。混合物を20時間還流した後、冷却した。減圧下で溶媒を除去してTi (dmap) ι を濃褐色の液体として得た(収率>90%)。

[0026] H NMR (CDC13 300MH z): δ 4. 61 (t, CH2, 8H), 2. 43 (t, CH2, 8H), 2. 20 (s, CH3, 24 H), 2. 90 (t, CH2, 8H).

【0027】実施例3:Ti(dmae)。の製造 Ti(O'Pr)。(10g、35mmol)を無水へキ サン150mlに加えた後、これにN, N-ジメチルエ タノールアミン(DMEA)(12.5g、140mm ol)を徐々に加えた。混合物を20時間還流した後、 冷却した。溶媒を減圧下で除去してTi(dmae)。 を濃褐色の液体として得た(収率>90%)。

[0028] 1 H NMR (CDC1 $_{3}$ 300MH z): δ 4.34 (t, CH $_{2}$, 8H), 2.55 (t, CH $_{2}$, 8H), 2.28 (s, CH $_{3}$, 24H).

【0029】実施例4:Zr (dmae)₄の製造

7

Ti (NE tz) 、(ジルコニウムテトラ (ジエチルアミン)) (24.68g、65 mmol)を無水トルエン 150mlに加えた後、これにN、Nージメチルエタノールアミン (26 ml、260 mmol)を徐々に滴下した。混合物を20時間還流した後、冷却した。溶媒を減圧下で除去してZr (dmae)、を無色の液体として得た(収率>90%)。

【0030】このようにして得られたZr(dmae) ₄のTGA曲線を図2に示す。

[0031] H NMR (CDC1₃ 300MH z): δ 4. 09 (t, CH₂, 8H), 2. 48 (t, CH₂, 8H), 2. 16 (s, CH₃, 24 H).

【0032】試験例1:熱安定性試験

図3 (a) および図3 (b) は、それぞれ-25℃および60℃で測定したTi(dmae)4のNMRスペクトルを示す。図3 (a) および図3 (b) から分かるように、-25℃で測定したTi(dmae)4のNMRスペクトルは60℃で測定したものと同じである。したがって、本発明の有機金属錯体は60℃で熱定に安定で 20あることが分かる。

【0033】試験例2:質量分析

図4~図6はそれぞれTi(dmap),、Ti(dmae),およびZr(dmae),の質量スペクトルを示す。図4~図6から分かるように、それぞれTi(dmap), Ti(dmae),

の分子量に対応するピークである457、401および444の後にはピークが観察されなかった。したがって、本発明の化合物は単分子の形態で存在する。

8

【0034】試験例3:気化温度

一般的に、半導体素子用薄膜のCVDに用いられる有機 前駆体は、液体送出工程の場合、200~260℃で気 化することが要求される。図1および2から分かるよう に、本発明の有機金属錯体であるTi(dmap),お よびZr(dmae),は、200~260℃の温度領 10 域で気化する挙動を示しているため、薄膜製造用前駆体 として有効に用いることができる。

【0035】反面、図7において破線で表されているように、下記一般式(VIII)の Z_r (TMDH)、(ジルコニウムテトラキス-2、2、6、6-テトラメチル-3、5-ヘプタンジオン)は350 ℃以上の高温で気化するため CVD用として適していない。さらに、他の従来の前駆体である下記一般式(IX)の Z_r (TMDH)($O^{'}P_r$)。(ジルコニウム-2、2、6、6-テトラメチル-3、5-ヘプタンジオンートリイソポキシド)は250 ℃で気化するが(図7、実線)、室温で固体であるため、MOCVDに用いる場合には取り扱いが難しいという問題を有する。したがって、本発明の化合物は従来の前駆体より優れたMOCVD用の前駆体として用いる。

[0036]

[化4]

(VIII)

(IX)

【0037】試験例4:薄膜堆積

それぞれ実施例3および4で製造したTi(dmae)、およびZr(dmae)、を用いてMOC V Dにより基板上にTi O2 およびZr O2 薄膜を形成した。この際、前記有機金属錯体の気化温度(気化器温度)は250 \mathbb{C} 、Ar /O2は300/300(Sc Cm)、堆積時間は20分、前駆体の濃度は0.2M(THF中)であった。

【 0 0 3 8 】 図 8 (T i (d m a e) ₁) および図 9 (Z r (d m a e) ₁) は、基板温度を変化させながら 測定した堆積層の成長速度を示す。

【0039】図8から分かるように、Ti(dmae)。を用いて酸化チタン膜を製造する場合、基板温度が400℃で堆積速度が最大となるが、その後500℃まで 40の温度領域では蒸着速度がほぼ一定になる。したがって、Ti(dmae)。は酸化チタン薄膜を形成するためのCVD前駆体として有効に用いることができる。また、図9から分かるように、Zr(dmae)。を用いて酸化ジルコニウム膜を製造する場合、約425℃で高い堆積速度を示す。したがって、Zr(dmae)。も酸化ジルコニウム薄膜を形成するためのCVD前駆体として有効に用いることができる。

【0040】試験例5:BST薄膜の堆積 前駆体として実施例3で製造したTi(dmae),を 用いるMOC V DによりP t / T a O x / S i O $_2$ / S i 基板上にB S T 薄膜を形成した。この際、B a および S r の出発物質としては、B a (t h d) $_2$ L および S r (t h d) $_2$ L (t h d = 2, 2, 6, 6 - テトラメ チルー3, 5 - ヘプタンジオネート、L = PMD T) を 用い、B a : S r : T i のモル比を 1 : 1 : 2 になるように調節した。堆積は、気化器温度 2 7 0 $^{\circ}$ 、A r 2 0 0 s c c m、O $_2$ 4 0 0 s c c m、N $_2$ O 4 0 0 s c c m、および基板温度は 4 0 0 $^{\circ}$ ~ 5 0 0 $^{\circ}$ の条件下で行った。

【0041】図10は、基板の温度による全金属中のTi分率およびBST膜の成長速度の変化を示す。図10から分かるように、420~480℃の温度範囲で高い成長速度を示し、Ti含有量はこの温度範囲でおおよそ一定である。

【0042】したがって、本発明の化合物は、種々の半導体素子用強誘電体複合薄膜のCVDに用いることができる。

【図面の簡単な説明】

50

【図1】本発明の実施例1で製造したTi(dmap) 4のTGA曲線を示す図。

【図2】本発明の実施例4で製造したZr(dmae) 4のTGA曲線を示す図。

【図3】本発明の実施例3で製造したTi(dmae)

12

 \upsignatural のそれぞれ \upsignatural 2 5 \upsignatural C \upsignatural

【図4】本発明の実施例1で製造したTi (d m a p)
₄の質量スペクトルを示す図。

【図5】本発明の実施例3で製造したTi (d m a e)
₄の質量スペクトルを示す図。

【図6】本発明の実施例4で製造したZr (dmae)
₄の質量スペクトルを示す図。

【図7】従来の有機金属錯体のTGA曲線を示す図。

*【図8】本発明の実施例3で製造したTi(dmae)。を用いたCVD工程において、基板温度によるTiOz薄膜の堆積速度の変化を示す図。

【図9】本発明の実施例4で製造したZr(dmae) ・を用いたCVD工程において、基板温度によるZrO₂ 薄膜の堆積速度の変化を示す図。

【図10】本発明の実施例3で製造したTi(dmae)、を用いたCVD工程において、基板温度によるBST蒸着速度およびTi含有量の変化を示す図。

[図1]

[図2]

[図3]

【図4】

【図5】

【図8】

フロントページの続き

(72)発明者 李 正 賢 大韓民国、463-050京畿道城南市盆唐区ソ

人韓氏国、403-030京蔵垣城南市益唐区/ ヒョン洞 大字アパートメント 619-908

(72)発明者 金 大 煥

大韓民国、790-390慶尚北道浦項市南区芝 谷洞756番地 ポステックアパートメント 3-905