Prompts for Mathematics for Machine Learning: Linear Algebra

Aaron Garcia

July 2025

- System of linear equations definition.
- The number of solutions to a system of linear equations in terms of the number of linear equations in the system.
- Matrix definition.
- Matrix row definition.
- Matrix column definition.
- Long vector representation of a matrix.
- Sum of two matrices.
- Multiplication of two matrices.
- Multiplication of two matrices in terms of the dot product of rows and columns.
- Necessary and sufficient conditions for two matrices to be conformable for multiplication.
- Properties of matrix multiplication and addition with respect to commutativity, associativity, and distributivity.
- Hadamard product of two matrices.
- Identity matrix definition.
- Multiplication of a matrix with the identity matrix.
- Inverse matrix definition.
- Names of matrices that possess an inverse.
- Names of matrices that do not possess an inverse.
- Is the inverse matrix for a non-singular matrix unique?

- Inverse of a 2×2 -matrix.
- Transpose of a matrix definition.
- Properties of the inverse and transpose of matrices (refer to notes).
- Symmetric matrix definition.
- Square matrix definition.
- Sum and product of symmetric matrices.
- Multiplication of a matrix by a scalar.
- Properties of multiplication of matrices with scalars with respect to associativity, distributivity, and the transpose of the matrix.
- Representation of a system of linear equations in matrix form.
- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. Describe the product $\mathbf{A}\mathbf{x}$ in terms of linear combinations.
- General approach for solving the matrix equation $\mathbf{A}x = \mathbf{b}$.
- Are the general solutions and particular solutions to matrix equations in the form $\mathbf{A}x = \mathbf{b}$ unique?
- Elementary row operations.
- The effect of elementary row operations on the solution set of a matrix equation.
- Pivot element of a matrix definition.
- Row echelon form of a matrix.
- Basic variables and free variables of a matrix in row echelon form.
- How to obtain a particular solution by using row echelon form.
- Reduced row echelon form of a matrix.
- How to obtain a particular solution by using reduced row echelon form.
- Gaussian elimination.
- The minus-1 trick for reading out the solutions \boldsymbol{x} of a homogeneous system of linear equations $\mathbf{A}\boldsymbol{x} = \mathbf{0}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{x} \in \mathbb{R}^n$. Why does this work?
- Calculating the inverse of a matrix using reduced row echelon form.
- Group definition.

- Abelian group definition.
- General linear group definition.
- Real-valued vector space definition.
- Outer product of two vectors.
- Inner product of two vectors.
- Vector subspace definition.
- How to determine whether a vector space is a vector subspace of another vector space.
- Let $U = (\mathcal{U}, +, \cdot)$ be a vector space. Describe the relationship between every subspace $U \subseteq (\mathbb{R}^n, +, \cdot)$ and the solution space of a homogeneous system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ for $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n$.
- Linear combination definition.
- Linear independence definition.
- Properties which can be used to determine whether vectors are linearly independent (refer to notes).
- Consider a vector space V with k linearly independent vectors $\boldsymbol{b}_1, \dots, \boldsymbol{b}_k$ and m linear combinations

$$egin{aligned} oldsymbol{x}_1 &= \sum_{i=1}^k \lambda_{i,1} oldsymbol{b}_i, \ &dots \ &$$

$$oldsymbol{x}_m = \sum_{i=1}^k \lambda_{i,m} oldsymbol{b}_i.$$

Defining $\mathbf{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_k]$ as the matrix whose columns are the linearly independent vectors $\boldsymbol{b}_1, \dots, \boldsymbol{b}_k$, we can write

$$m{x}_j = \mathbf{B}m{\lambda}_j, \quad m{\lambda}_j = egin{bmatrix} \lambda_{1,j} \ dots \ \lambda_{k,j} \end{bmatrix}, \quad j = 1, \dots, m.$$

How can you test whether x_1, \ldots, x_m are linearly independent? Explain whether x_1, \ldots, x_m are linearly independent if m > k.

- Generating set definition.
- Span definition. Notation for span.

- Relationship between generating sets and vector subspaces.
- Basis definition.
- Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and let a basis of V be \mathcal{B} , where $\mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset$. Describe and explain the properties of basis with respect to the following.
 - $-\mathcal{B}$ as the minimal generating set of V.
 - \mathcal{B} as the maximal linearly independent set of vectors in V.
 - Linear combinations.
- Does every vector space possess a basis?
- Relate the number of basis vectors for different bases for the same vector space.
- Dimension (for finite-dimensional vector spaces) definition. Notation for dimension of a vector space.
- Let U, V be vector spaces and $U \subseteq V$. Describe necessary and sufficient conditions for U = V in terms of $\dim(U)$ and $\dim(V)$.
- Intuition of dimension as the number of independent directions in a vector space.
- How to find a basis of a subspace $U = \text{span}[x_1, \dots, x_m] \subseteq \mathbb{R}^n$.
- Rank of a matrix definition. Notation for rank of a matrix.
- Relationship between $rk(\mathbf{A})$ and $rk(\mathbf{A}^{\mathsf{T}})$.
- Describe the subspace spanned by the columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Names for this subspace.
- Describe the subspace spanned by the rows of $\mathbf{A} \in \mathbb{R}^{m \times n}$. How can the basis of this subspace be found?
- Necessary and sufficient conditions for a matrix to possess an inverse in terms of the rank.
- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Describe necessary and sufficient conditions for solutions to exist to the linear equation system $\mathbf{A}\mathbf{x} = \mathbf{b}$ in terms of rank.
- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. What does dim(ker(\mathbf{A})) equal to?
- Full rank definition.
- Rank deficient definition.
- Map definition.

- Define the following with respect to mappings.
 - Domain.
 - Codomain.
- Linear mapping definition.
- Interpretation of a matrix as a collection of vectors.
- Interpretation of a matrix as a linear mapping.
- Injective mapping definition.
- Surjective mapping definition.
- Bijective mapping definition.
- What kind of mappings possess an inverse mapping?
- Isomorphism definition.
- Endomorphism definition.
- Automorphism definition.
- Identity mapping definition.
- Let V, W be finite-dimensional isomorphic vector spaces. Describe necessary and sufficient conditions for V and W to be isomorphic in terms of $\dim(V)$ and $\dim(W)$.
- Justify the representation of $\mathbb{R}^{m \times n}$ with \mathbb{R}^{mn} .
- Consider vector spaces V, W, X.
 - Let $\Phi: V \to W$ and $\Psi: W \to X$ be linear mappings. Describe what kind of mapping $\Psi \circ \Phi$ is.
 - Let $\Phi: V \to W$ be an isomorphism. Describe what kind of mapping Φ^{-1} is
 - Let $\phi: V \to W$ and $\Psi: V \to W$ be linear mappings and $\lambda, \mu \in \mathbb{R}$. Describe what kind of mapping $\lambda \Phi + \mu \Psi$ is.
- Ordered basis (of a finite-dimensional vector space) definition.
- Ordered list (tuple) notation.
- Unordered list (set) notation.
- Notation for a matrix with column vectors x_1, \ldots, x_n .
- Coordinate representation of vectors given an ordered basis.
- Transformation matrix definition.

• Consider the linear mapping $\Phi: V \to W$, ordered bases

$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n), \quad \tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n)$$

of V, ordered bases

$$C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m), \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_m)$$

of W, and the transformation matrix A_{Φ} that maps coordinates with respect to B onto coordinates with respect to C.

Describe how the transformation matrix \tilde{A}_{Φ} that maps coordinates with respect to \tilde{B} onto coordinates with respect to \tilde{C} can be found.

- Equivalent matrices definition. What does it mean for matrices to be equivalent?
- Similar matrices definition. What does it mean for matrices to be similar?
- Equal linear transformations definition.
- Image definition.
- Kernel definition.
- Consider a linear mapping $\Phi: V \to W$, where V, W are vector spaces.
 - Explain why $ker(\Phi)$ is never empty.
 - What is $Im(\Phi)$ a subspace of?
 - What is $ker(\Phi)$ a subspace of?
 - Necessary and sufficient conditions for Φ to be injective in terms of $\ker(\Phi)$.
- Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a linear mapping $\Phi : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$.
 - Column space definition. Relate the column space of **A** with \mathbb{R}^m .
 - Relate $rk(\mathbf{A})$ with $Im(\Phi)$.
- Rank-nullity theorem.
- Consider vector spaces V, W and a linear mapping $\Phi: V \to W$.
 - Describe $\ker(\Phi)$ if $\dim(\operatorname{Im}(\Phi)) < \dim(V)$.
 - Let \mathbf{A}_{Φ} be the transformation matrix of Φ with respect to an ordered basis and $\dim(\operatorname{Im}(\Phi)) < \dim(V)$. How many solutions does the system of linear equations $\mathbf{A}_{\Phi}x = \mathbf{0}$ have under these conditions?
 - Under what conditions does the equivalence statement

 Φ is injective \iff Φ is surjective \iff Φ is bijective

hold?

- Affine subspace definition.
- Direction space (of an affine subspace) definition.
- Support point (of an affine subspace) definition.
- Hyperplane definition.
- Consider two affine subspaces $L = x_0 + U$ and $\tilde{L} = \tilde{x}_0 + \tilde{U}$ of a vector subspace V. Describe necessary and sufficient conditions for $L \subseteq \tilde{L}$.
- Representation of affine subspaces using parametric equations.
- Describe the relationship between every affine subspace and the solutions to the system of linear equations $\mathbf{A}\boldsymbol{\lambda} = \boldsymbol{x}$ for $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{\lambda} \in \mathbb{R}^n$, and $\boldsymbol{x} \in \mathbb{R}^m$.
- Describe the relationship between k-dimensional affine subspaces and solutions to inhomogeneous systems of linear equations in the form $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathrm{rk}(\mathbf{A}) = n k$.
- Affine mapping definition.
- Translation vector (of an affine mapping) definition.
- Consider two vector spaces V, W, a linear mapping $\Phi : V \to W$, $\boldsymbol{a} \in W$, and the affine mapping

$$\phi: V \to W$$

 $\boldsymbol{x} \mapsto \boldsymbol{a} + \Phi(\boldsymbol{x})$

from V to W.

- An affine mapping is the composition of a linear mapping and a translation. Are the components of the equivalent composite mapping uniquely determined?
- Let $\phi':W\to X$ be an affine mapping. Is the composition $\phi'\circ\phi$ affine?
- Describe some properties that would be preserved by ϕ if the mapping is bijective.