Huffman 树实验要求

哈夫曼树实验要求的说明 (实验说明文件不太清楚,这里做一些解释)

1. 操作界面:应该是一个可以输入指令操作的界面,能输入的操作分别是I、E、D、P、T;

2. 操作解释:

- 操作I: 输入测试数据中的字符表,输出 hfmTree 文件。
- 操作E: 输入 hfmTree 文件和 ToBeTran 文件,输出 CodeFile 文件。
- 操作D: 输入 CodeFile 文件和输出 TextFile 文件。
- 操作P:将 CodeFile 文件显示在终端上,不需要输出 CodePrint 文件。
- 操作T: 将树以可视化的形式(凹入和横向输出等都行)显示在终端上,并且输出 TreePrint 文件。

3. 文件内容解释

- 。 事先准备的内容
 - **测试数据中的字符表:** 实验文档里的表(见附件),可以把这个表事先存储在一个.txt 文件里,检查实验可以复制粘贴。
 - ToBetran文件: 一串文本。
- 。 应当输出的内容
 - hfmTree 文件: hfmTree 的数组结构,应该尽可能简单,可以使用双亲节点的顺序数组存储。该文件的作用是可以直接通过读取这个文件在内存中重新建立 **Huffman**树。
 - CodeFile **文件:** 一个不含空格,只有01串的文件,即 ToBeTran 的编码结果。
 - TextFile **文件:** 跟 ToBeTran 文件一模一样的文本,即解码 CodeFile 后的结果。
 - TreePrint 文件: Huffman树的可视化结果。

4. 重要提醒

- 程序应当可以直接读取 hfmTree 文件就立刻建立好树,即关闭终端后重启终端,只需要一个E操作即可输出 CodeFile。
- o CodePrint 不用输出。
- 真实场景中使用Huffman编码通信的 CodeFile 不应当是01字符串,而是一个二进制文件(这样内存才真正减小了),实验要求的01字符串只是对二进制的文件进行模拟。

附表

字符	频度	字符	频度
	186	N	57
A	64	0	63
B	13	P	15
C	22	Q	1
D	32	R	48
$\mid E \mid$	103	S	51
F	21	T	80
G	15	U	23
H	47	V	8
I	57	W	18
J	1	X	1
K	5	Y	16
L	32	Z	1
M	20		