Local Probabilistic Models: Deterministic CPDs

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Local Probabilistic Models
 - 1. Tabular CPDs
 - 2. Deterministic CPDs
 - 3. Context-Specific CPDs
 - (1)Tree CPD (Printer Diagnosis), (2) Rule CPD
 - 4. Independence of Causal Influence
 - (1) Noisy-OR, (2) Generalized Linear Models
 - 5. Continuous Variables: Robotics
 - Hybrid Models: Thermostat
 - 6. Conditional BNs: Computer Network

Deterministic CPDs

- Simplest non-tabular CPD
- A variable X is a deterministic function of its parents pa_X.
 - i.e., there is a function f such that
 - $-f: Val(pa_X) \rightarrow Val(X)$

$$P(x \mid pa_x) = \begin{cases} 1 & x = f(pa_x) \\ 0 & \text{otherwise} \end{cases}$$

- Example of binary-valued variables: X is "or" of parents:
 f: P(X|Y,Z)=Y V Z
- Example of Continuous domain: We want to assert in P(X|Y,Z)
 - that X is sum of parent values

Ex of Deterministic CPD: Modeling a car

- Tire variables T_1, T_2, T_3, T_4
 - Effects of flat: Steering, Ride,...
- Instead of effects having as parents all T_i s, have them depend on single variable T
 - Which is a deterministic Or of its parents $T=T_1 \vee T_2 \vee T_3 \vee T_4$
- Advantages
 - Reduced indegree (8 vs 2)
 - Each effect has 1 instead 4
 - If there are more dependencies, considerable savings

Deterministic CPDs & Independencies

- Determining Independencies in a BN are slightly different with deterministic CPDs
- Recall that conditional independence is a numeric property
- Although defined using equality of probabilities graph structure allows us to deduce some independencies without looking at the numbers
- Need to modify D-separation for determinism

Ex: Modifying D-separation

- If C is a deterministic function of A and B, what new independencies exist?
- If A and B are known, C is known, so D and E are independent: (D\(\begin{aligned} E | A, B \end{aligned})
- Not necessarily true if C were not deterministic

More Complex Example with Deterministic CPDs

- C is exclusive or of A and B
- If B and C are known, A is known.
 - Therefore D and E are independent: $(D \perp E|B,C)$