lpha, subtraction, 1/lpha, division: Let lpha, $eta \in \mathbf{C} \cdot \mathrm{Let} - lpha$ denote the additive inverse of α . Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0$$

· Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

· For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that

$$\alpha(1/\alpha) = 1$$

Division on C is defined by

$$\beta/\alpha = \beta(1/\alpha)$$

 $\emph{list}, \emph{length} :$ Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length $\,n\,$ looks like this:

$$(x_1,\ldots,x_n)$$

Two lists are equal if and only if they have the same length and the same elements

 \mathbb{F}^n : \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} :

$$\mathbf{F}^{n} = \{(x_{1}, \dots, x_{n}) : x_{j} \in \mathbf{F} \text{ for } j = 1, \dots, n\}$$

For $(x_1,\ldots,x_n)\in \mathbf{F}^n$ and $j\in\{1,\ldots,n\}$, we say that x_j

is the $j^{ ext{th}}$ coordinate of (x_1,\ldots,x_n) addition in \mathbb{F}^n : Addition in \mathbb{F}^n : Addition in \mathbb{F}^n

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

Commutativity of addition in \mathbb{F}^n : If $x, y \in \mathbf{F}^n$, then x + y =

o: Let o denote the list of length n whose coordinates are all o:

$$0 = (0, \dots, 0)$$

additive inverse in \mathbb{F}^n : For $x\in \mathbf{F}^n$, the additive inverse of x, denoted -x, is the vector $-x\in \mathbf{F}^n$ such that x+(-x)=0 In other words, if $x = (x_1, \dots, x_n)$, then $-x = (-x_1, \dots, -x_n)$ scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbb{F}^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

here $\lambda \in \mathbf{F}$ and $(x_1, \ldots, x_n) \in \mathbf{F}^n$

Section 1.B - Definition of Vector Space

addition, scalar multiplication: \cdot An addition on a set V is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V \cdot A$ scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$

Vector Space: A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity

$$u + v = v + u$$
 for all $u, v \in V$

associativity (u+v)+w=u+(v+w) and (ab)v=a(bv)for all $u, v, w \in V$

and all
$$a$$
 , $b \in \mathbf{F}$

additive identity there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$ additive inverse for every $v \in V$, there exists $w \in V$ such that v + w = 0 multiplicative identity v = v for all $v \in V$ distributive properties

a(u+v)=au+av and (a+b)v=av+bv for all $a,b\in \mathbf{F}$ and

all
$$u, v \in V$$

vector, point: Elements of a vector space are called vectors or points. real vector space, complex vector space: • A vector space over **R** is called a real vector space. · A vector space over **C** is called a complex vector space.

 \mathbb{F}^S : \cdot If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} \cdot For $f, g \in \mathbf{F}^S$, the sum $f + g \in \mathbf{F}^S$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S$ ullet For $\lambda \in {f F}$ and $f \in {f F}^S$, the product $\lambda f \in {f F}^S$ is the function defined by

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in S$

Unique Additive Identity: A vector space has a unique additive identity Unique additive inverse: Every element in a vector space has a unique additive

The number o times a vector: 0v = 0 for every $v \in V$

A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$ The number -1 times a vector: (-1)v = -v for every $v \in V$

Section 1.C - Subspaces