

EE141-Spring 2009 Digital Integrated Circuits

Lecture 3 Metrics (Cntd) IC Manufacturing

EECS141 Lecture #3

Administrativia

- □ Discussions start this week (Tomorrow)
- □ TA office hours will be held in 514 Cory
- □ Labs start next week
 - Everyone should have an EECS instructional account
 - You should have card key access to 353 Cory be now
- □ Concerns about discussion session
- □ Homework #1 is due this Friday
- □ Homework #2 to be posted on Friday

Class Material

- □ Last lecture
 - Basic metrics for IC design (Started)
- □ Today's lecture
 - Metrics Continued
 - Design Rules
- □ Reading (1, 2.2, A)

EECS141 Lecture #3

Review: Cost

Key Reliability Properties

- □ Absolute noise margin values are not the only things that matter
 - e.g., floating (high impedance) nodes are more easily disturbed than low impedance nodes (in terms of voltage)
- Noise immunity (i.e., how well the gate suppresses noise sources) needs to be considered too
- □ Summary of some key reliability metrics:
 - Noise transfer functions & margin (ideal: gain = ∞, margin = V_{dd}/2)
 - Output impedance (ideal: R₀ = 0)
 - Input impedance (ideal: R_i = ∞)

EECS141 Lecture #3

Primary Performance Metric: Delay

How to define delay in a universal way?

A First-Order RC Network

$$v_{out}(t) = (1 - e^{-t/\tau}) V$$

$$\downarrow$$

$$t_{D} = \ln(2) \tau = 0.69 RC$$

Important model - matches delay of an inverter

EECS141 Lecture #3

Power Dissipation

Instantaneous power:

$$p(t) = v(t)i(t) = V_{supply}i(t)$$

Peak power:

$$P_{peak} = V_{supply} i_{peak}$$

Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t) dt$$

"Power-Delay" and Energy-Delay

- □ Want low power and low delay, so how about optimizing the product of the two?
 - So-called "Power-Delay Product"
- □ Power Delay is by definition Energy
 - Optimizing this pushes you to go as slow as possible
- □ Alternative gate metric: Energy-Delay Product
 - EDP = $(P_{av} \cdot t_p) \cdot t_p = E \cdot t_p$

EECS141 Lecture #3

Energy in CMOS

- \Box The voltage on C_I eventually settles to V_{DD}
- $\hfill\Box$ Thus, charge stored on the capacitor is $C_L V_{DD}$
 - This charge has to flow out of the power supply
- □ So, energy is just $Q \cdot V_{DD} = (C_1 V_{DD}) \cdot V_{DD}$

Energy (the harder way)

$$E_{0\to 1} = \int_{0}^{T} P_{DD}(t)dt = V_{DD} \int_{0}^{T} i_{DD}(t)dt = V_{DD} \int_{0}^{V_{DD}} C_{L}dv_{out} = C_{L}V_{DD}^{2}$$

$$E_{C} = \int_{0}^{T} P_{C}(t)dt = \int_{0}^{T} v_{out}i_{L}(t)dt = \int_{0}^{V_{DD}} C_{L}v_{out}dv_{out} = \frac{1}{2}C_{L}V_{DD}^{2}$$

EECS141 Lecture #3

Summary

- □ Understanding the design metrics that govern digital design is crucial
 - Cost
 - Robustness
 - Performance/speed
 - Power and energy dissipation

Design Rules

- □ Interface between designer and process engineer
- □ Guidelines for constructing process masks
- □ Unit dimension: Minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions (micron rules)

Design Rules

- □ Intra-layer
 - Widths, spacing, area
- □ Inter-layer
 - Enclosures, distances, extensions, overlaps
- □ Special rules (sub-0.25µm)
 - Antenna rules, density rules, (area)

Next Lecture

 $\hfill \square$ From simple to more complex gates ...