RESUM DE PROGRAMACIÓ MATEMÀTICA

OSCAR BENEDITO

ApuntsFME

BARCELONA, OCTUBRE 2018

Índex

1	Introducció a la programació lineal no entera i símplex primal				
	Algorisme del símplex primal				
	Regla de Bland				
2	Teoria de dualitat				
	Teorema feble de dualitat				
	Teorema fort de dualitat				
	Teorema de folga complementària				
	Algorisme del símplex dual				
3	Programació lineal entera				
4	Programació no lineal sense restriccions				
	Mètode del Gradient				
	Mètode de Newton				
5	Programació no lineal amb restriccions				

1 Introducció a la programació lineal no entera i símplex primal

Definició 1.1. Una DBF sobre la SBF $x \in P_e$ associada a $q \in \mathcal{N}$ és $d = \begin{bmatrix} d_B \\ d_N \end{bmatrix} \in \mathbb{R}^n$ tal que:

•
$$d_{N(i)} \stackrel{\text{def.}}{=} \begin{cases} 1 & N(i) = q \\ 0 & N(i) \neq q \end{cases}, \forall i \in \{1, \dots, n-m\},$$

• $A(x + \theta d) = b$ per algun $\theta \in \mathbb{R}^+ \implies d_B \stackrel{\text{def.}}{=} -B^{-1}A_q$.

Proposició 1.2. Càlcul $de \ \theta^*$. Calculem $\theta^* \stackrel{\text{def.}}{=} \max \{\theta > 0 \mid y = x + \theta d \in P_e\}$:

1. $A(x + \theta d) = b, \forall \theta \text{ és cert.}$

2. $y = x + \theta d \ge 0$:

$$x_{B(i)} + \theta d_{B(i)} \ge 0 \iff \theta \ge -\frac{x_{B(i)}}{d_{B(i)}},$$

$$\theta^* = \min_{i \in \{1, \dots, m\} \mid d_{B(i)} < 0} \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \right\}.$$

Proposició 1.3. Sigui d una DBF sobre x, una SBF de P_e ,

- 1. Si P_e és no degenerat, d és factible:
 - a) $d_B \ngeq 0 \implies \theta^* > 0$.
 - b) $d_B \ge 0 \implies \theta^*$ no definida, $\forall \theta > 0, x + \theta d \in P_e, d$ és un raig extrem.
- 2. Si P_e degenerat $(\exists i \in \mathcal{B} \text{ tal que } x_{B(i)} = 0) d$ pot no ser factible:

$$\min \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \right\} = 0 \implies \nexists \theta > 0 \text{ t. q. } y = x + \theta d \implies d \text{ infactible.}$$

Proposició 1.4. Siguin q i B(p) les variables que entren i surten de la base, respectivament,

$$\bar{\mathcal{B}} := \{\bar{B}(1), \dots, \bar{B}(m)\}, \text{ on } \bar{B}(i) = \begin{cases} B(i) & i \neq p \\ q & i = p \end{cases}$$

i la nova base és

$$\bar{B} = [A_{B(1)}, \dots, A_{B(p-1)}, A_q, A_{B(p+1)}, \dots, A_{B(m)}].$$

Definició 1.5.

- d és una DBF de descens si $\forall \theta > 0, c'(x + \theta d) < c'x \iff c'd < 0$.
- Si d és DBF sobre x (SBF), $c'x + \theta^*c'd = c'x + \theta^*r_q$ i
 - $r_q = c'd.$
 - Si P_e no degenerat, llavors la DBF d associada a $q \in \mathcal{N}$ és de descens $\iff r_q < 0$.

Teorema 1.6. Condicions d'optimalitat de SBF.

- a) $r \ge [0] \implies x$ és SBF òptima.
- b) x SBF i no degenerada $\implies r \ge [0]$.

Algorisme 1.7. Algorisme del símplex primal.

- 1. Inicialització: Trobem una SBF $(\mathcal{B}, \mathcal{N}, x_B, z)$.
- 2. Identificació de la SBF òptima i selecció VNB entrant:
 - Calculem els costos reduïts: $r' = c'_N c'_B B^{-1} A_n$.

• Si $r' \geq [0]$, llavors és la SBF òptima. **STOP!**

Altrament seleccionem una q tal que $r_q < 0$ (VNB entrant).

- 3. Càlcul de DBF de descens:
 - $\bullet \ d_B = -B^{-1}A_a$
 - Si $d_B \ge [0]$, DBF de descens il·limitat $\implies (PL)$ il·limitat. **STOP!**
- 4. Càlcul de θ^* i B(p):
 - Càlcul de θ^* :

$$\theta^* = \min_{i \in \{1, \dots, m\} \mid d_{B(i)} < 0} \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \right\}.$$

- Variable bàsica de sortida: B(p) tal que $\theta^* = -\frac{x_{B(p)}}{d_{B(p)}}$.
- 5. Actualitzacions i canvi de base:
 - $x_B := x_B + \theta^* d_B,$ $x_q := \theta^*,$ $z := z + \theta^* r_q.$
 - $\mathcal{B} := \mathcal{B} \setminus \{B(p)\} \cup \{q\},\$ $\mathcal{N} := \mathcal{N} \setminus \{q\} \cup \{B(p)\}.$
- 6. **Anar** a 2.

Observació 1.8. Fase 1 del símplex. A la fase 1 del símplex resolem el problema:

$$(P_I) \begin{cases} \min \sum_{i=1}^m y_i \\ \text{s.a.:} \\ (1) \quad Ax + Iy = b \\ (2) \quad x, y \ge 0 \end{cases}$$

El resultat pot ésser:

- $z_I^* > 0 \implies (P)$ infactible.
- $z_I^* = 0 \implies (P)$ factible. Dos casos:
 - $-\mathcal{B}_I^*$ no conté variables $y \implies \mathcal{B}_I^*$ és SBF de (P).
 - $-\mathcal{B}_I^*$ conté alguna variable y. Tenim que $y_B^* = [0] \implies \mathcal{B}_I^*$ és SBF degenerada de (P_I) i per tant podem obtenir una SBF de (P) a partir de \mathcal{B}_I^* .

Proposició 1.9. Regla de Bland. Usem la regla de Bland per a no entrar en bucle al utilitzar el símplex per a resoldre un problema degenerat.

- 1. Seleccionem com VNB d'entrada la VNB d'índex menor que compleix $r_q < 0$.
- 2. Si al seleccionar la variable de sortida hi ha empat, seleccionem la VB amb índex menor.

2 Teoria de dualitat

Teorema 2.1. Teorema feble de dualitat.

Sigui x SBF de (P) i λ SBF del (D) associat, llavors

$$\lambda'b < c'x$$
.

Corol·lari 2.2.

- (P) il·limitat $\implies (D)$ infactible.
- (D) il·limitat $\implies (P)$ infactible.

Teorema 2.3. Teorema fort de dualitat.

Siguin x^*, λ^* solucions òptimes de (P) i el seu dual (D), respectivament, llavors

$$(\lambda^*)'b = c'x^*.$$

Corol·lari 2.4. Si $(P)_e$ de rang complet amb solució, llavors (D) té solució i òptim a $\lambda' = c_B' B^{-1}$.

Teorema 2.5. Teorema de folga complementària.

Siguin x, λ solucions factibles de (P) i (D), respectivament. x, λ són solucions òptimes si i només si

$$\lambda_j \left(a'_j x - b_j \right) = 0, \quad \forall j \in \{1, \dots, m\},$$

$$\left(c_i - \lambda' A_i \right) x_i = 0, \quad \forall i \in \{1, \dots, n\}.$$

Definició 2.6. Sigui $(P)_e$, una SBFD és tota SB de $(P)_e$ tal que $r \ge [0]$.

Algorisme 2.7. Algorisme del símplex dual.

- 1. Inicialització: Trobem una SBFD $(\mathcal{B}, \mathcal{N}, x_B, z)$.
- 2. Identificació de la SBF òptima i selecció VB sortint:
 - Si $x_B \ge [0]$, llavors és la SBF òptima. **STOP!**

Altrament selectionem VB p amb $x_{B(p)} < 0$ (VB sortint).

- 3. Càlcul de DBF de $(D)_e$:
 - $d_{r_N} = (\beta_p A_N)' (\beta_p \text{ és la fila } p\text{-èssima de } B^{-1}).$
 - Si $d_{r_N} \geq [0], (D)_e$ il·limitat. **STOP!**
- 4. Càlcul de θ^* i selecció de la VNB entrant:
 - Càlcul de θ_D^* :

$$\theta_D^* = \min_{j \in \mathcal{N} \mid d_{r_{N_j}} < 0} \left\{ -\frac{r_j}{d_{r_{N_j}}} \right\}.$$

4

- Variable no bàsica entrant: q tal que $\theta^* = -\frac{x_q}{d_{r_{N_q}}}$.
- 5. Actualitzacions i canvi de base:

$$\begin{aligned} \bullet & r_N := r_N + \theta_D^* d_{r_N}, \\ \lambda &:= \lambda - \theta_D^* \beta_p', \\ r_{B(p)} &:= \theta_D^*, \\ z &:= z - \theta^* x_{B(p)}. \end{aligned}$$

$$\bullet & \mathcal{B} := \mathcal{B} \setminus \left\{ B\left(p\right) \right\} \cup \left\{q\right\}, \\ \mathcal{N} &:= \mathcal{N} \setminus \left\{q\right\} \cup \left\{B\left(p\right)\right\}.$$

6. **Anar** a 2.

Proposició 2.8. Una SBFD òptima és degenerada $(\exists j \in \mathcal{N} \text{ tal que } r_j = 0)$ si i només si $(P)_e$ té òptims alternatius.

Proposició 2.9. Si $(P)_e$ no té cap SBFD degenerada, el símplex dual convergeix amb un nombre finit d'iteracions. Altrament, podem usar la regla de Bland (1.9) per a que convergeixi amb un nombre finit d'iteracions.

3 Programació lineal entera

Observació 3.1. La següent taula explica les relacions possibles entre un (PLE) i la seva relaxació lineal (RL).

$(PLE) \setminus (RL)$	Solució òptima	Infactible	Il·limitat
Solució òptima	Sí	No	Sí $(A \in \mathcal{M}_{n \times m}(\mathbb{R}))$ No $(A \in \mathcal{M}_{n \times m}(\mathbb{Q}))$
Infactible	Sí	Sí	Sí
Il·limitat	No	No	Sí

En aquest resum falta una part important de programació lineal entera, per a més informació, consulteu els apunts de classe!

4 Programació no lineal sense restriccions

Teorema 4.1. Condicions necessàries d'optimalitat.

Sigui $f: \mathbb{R}^n \to \mathbb{R}$ un problema d'optimització no lineal $\min_{x \in \mathbb{R}^n} f(x)$. Si x^* és un mínim local de f i $f \in \mathcal{C}^2$ en un entorn de x^* , llavors:

- i) $\nabla f(x^*) = 0$. (Condició de 1r ordre)
- ii) $\nabla^2 f(x^*) \ge 0$. (Condició de 2n ordre)

Teorema 4.2. Condicions suficients d'optimalitat.

Si $f \in \mathcal{C}^2$ en un entorn obert de x^* , $\nabla f(x^*) = 0$ i $\nabla^2 f(x^*)$ és definida positiva, llavors x^* és mínim local estricte de f.

Teorema 4.3. Condicions d'optimalitat en problemes convexos.

Si f és convexa i diferenciable, llavors $\nabla f(x^*) = 0 \iff x^*$ és mínim global de f.

Mètode 4.4. Mètode del Gradient.

$$x^{k+1} = x^k + \alpha^k d^k,$$
$$d^k = -\nabla f\left(x^k\right).$$

 α^k ha de complir les condicions d'Armijo-Wolfe (4.6).

Mètode 4.5. Mètode de Newton.

$$\begin{split} x^{k+1} &= x^k + \alpha^k d^k, \\ d^k &= -\left(\nabla^2 f\left(x^k\right)\right)^{-1} \nabla f\left(x^k\right). \end{split}$$

 α^k ha de complir les condicions d'Armijo-Wolfe (4.6), normalment $\alpha^k=1$.

Proposició 4.6. Condicions d'Armijo-Wolfe.

- i) Condició de descens suficient (AW-1): $g(\alpha) \leq g(0) + \alpha c_1 g'(0), c_1 \in (0, 1).$ $f(x^k + \alpha d^k) \leq f(x^k) + \alpha c_1 \nabla f(x^k)^t d^k, c_1 \in (0, 1).$
- ii) Condició de corbatura (AW-2): $g'(\alpha) \ge c_2 g'(0)$, $0 < c_1 < c_2 < 1$. $\nabla f(x^k + \alpha d^k)^t d^k \ge c_2 \nabla f(x^k) d^k$, $0 < c_1 < c_2 < 1$.

5 Programació no lineal amb restriccions

Donat el problema:

$$(P) \begin{cases} \min f(x) \\ \text{s.a.:} \\ (1) \quad h(x) = 0 \\ (2) \quad g(x) \le 0 \end{cases}$$

amb $\mathcal{L}(x, \lambda, \mu) = f(x) + \lambda^t h(x) + \mu^t g(x)$.

Proposició 5.1. Condicions necessàries. Sigui x^* òptim local. Si és punt regular, llavors $\exists \lambda^* \in \mathbb{R}^m$ i $\mu^* \in \mathbb{R}^p$ tals que:

- i) $h(x^*) = 0, g(x^*) \le 0.$
- ii) $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \nabla f(x^*) + \nabla h(x^*) \lambda^* + \nabla g(x^*) \mu^* = 0.$
- iii) $\mu^* \geq 0$ i $(\mu^*)^t g(x^*) = 0$ (si $g_i(x^*)$ és inactiva, llavors $\mu_j^* = 0$).

iv)
$$d^t \nabla^2_{x_i x_j} \mathcal{L}\left(x^*, \lambda^*, \mu^*\right) d \ge 0, \forall d \in M = \begin{cases} \left(\nabla h_i\left(x^*\right)\right)^t d = 0 & i \in \{1, \dots, m\} \\ \left(\nabla g_j\left(x^*\right)\right)^t d = 0 & j \in \mathcal{A}\left(x^*\right) \end{cases}$$

Els punts i), ii) i iii) són les condicions de 1r ordre del KKT i el punt iv) és la condició de 2n ordre.

Nota: $\mathcal{A}(x^*) = \{j \in \{1, \dots, p\} \mid g_j(x) = 0\}$ és el conjunt d'index de desigualtats actives a x.

Proposició 5.2. Condicions suficients. Sigui x^* , és òptim local si satisfà:

- i) $h(x^*) = 0$, $q(x^*) < 0$.
- ii) $\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \nabla f(x^*) + \nabla h(x^*) \lambda^* + \nabla g(x^*) \mu^* = 0.$

iii)
$$\mu^* \ge 0$$
 i $(\mu^*)^t g(x^*) = 0$ $(g_i(x^*) < 0 \implies \mu_j^* = 0)$.

iv)
$$d^{t}\nabla_{x_{i}x_{j}}^{2}\mathcal{L}(x^{*},\lambda^{*},\mu^{*})d > 0, d \in M' = \begin{cases} (\nabla h_{i}(x^{*}))^{t}d = 0 & i \in \{1,\ldots,m\} \\ (\nabla g_{j}(x^{*}))^{t}d = 0 & j \in \mathcal{A}(x^{*}) \cap \{j \mid \mu^{*} > 0\} \end{cases}$$

Els punts i), ii) i iii) són les condicions de 1r ordre del KKT i el punt iv) és la condició de 2n ordre.

Nota: $\mathcal{A}(x^*) = \{j \in \{1, \dots, p\} \mid g_j(x) = 0\}$ és el conjunt d'índex de desigualtats actives a x.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

