"Архітектура обчислювальних систем та комп'ютерна схемотехніка".

Розділ 1. Теоретичні основи функціонування цифрових обчислювальних машин.

Тема лекції: Головні елементи та вузли ЕОМ.

План лекції

1.Регістри 2.Лічильники

Рекомендована література до теми

- 1. Злобін Г.Г, Рикалюк Р.Є. Архітектура та апаратне забезпечення ПЕОМ: Навч.посіб. –К., 2006, 2012.
- 2. Воробйова О. М., Іванченко В. Д. Основи схемотехніки: У двох частинах: <u>Навчальний посібник</u>. <u>Одеса</u>: <u>ОНАЗ ім. О. С. Попова</u>. 2004, Ч. 2. 172с.: іл.
- 3. Шеннон К. Работы по теории информации и кибернетике / Пер. с англ. М., 1963.
- 4. Хэмминг Р.В. Теория кодирования и теория информации / Пер. с англ. М., 1983.
- 5. Биркгоф Г., Барти Т. Современная прикладная алгебра / Пер.с англ. –М.; 1976.
- 6. Ланцов А.Л., Зворыкин Л.Н., Осипов И.Ф. Цифровые устройства на комплементарных МПД интегральных микросхемах. –М., 1983.
- 7. Горбунов В.Л., Панфилов Д.И., Преснухин Д.Л. Справочное пособие по микропроцессорам и микроЭВМ. –М., 1988.
- 8. Каган Б.М. Электронные вычислительные машины и системы: Учеб.пособие для вузов.—М., 1991.

Терміни і позначення:

- Регістром (від англ. register журнал запису) називається операційний вузол комп'ютера, що служить для запам'ятовування та перетворення слів і забезпечує в загальному випадку виконання наступних мікрооперацій:
- встановлення регістра в нуль (скидання, погашення);
- прийом слова з іншого регістра, суматора, лічильника і т. д.
- передача слова на інший регістр, суматор, лічильник і т. д.
- перетворення кодів збережуваних слів в інверсні коди;
- зсув слова вліво або вправо на потрібне число розрядів;
- перетворення послідовного коду в паралельний і навпаки;
- порозрядні операції кон'юнкції, диз'юнкції й додавання за mod 2.

Схеми конкретних регістрів в конкретних випадках можуть реалізувати лиш деякі з перерахованих мікрооперацій.

• *Регістри* будують на основі тригерних схем. Кількість тригерів визначає розрядність слів, які записують чи зберігають у регістрі.

Регістри є:

- послідовні і паралельні,
- одно- і двотактні,
- зсувні
- перетворювальні.

Розглянемо кілька прикладів схем регістрів. Побудуємо регістр, наприклад, трирозрядний паралельний. Очевидно, що для цього треба мінімум три тригери, які будемо використовувати для запису кожного розряду.

Використаємо звичайні *RS*-тригери.

Трохи добудуємо схему ліворуч і праворуч. Ліворуч організуємо синхронний запис інформації, а праворуч – формування прямого та оберненого коду. Перед записом інформації всі тригери сигналом керування R поставило в нуль ⇒ (Q=0). Запис у тригери виконується за тактовим імпульсом Ti_1 , Власне ці два сигнали $(R i Ti_1)$ визначають тип регістра, який називають двотактовим паралельної дії (див.рис.).

- Код регістра видають за допомогою другого і третього тактових імпульсів: *Ti*₂ прямий код, *Ti*₃ обернений код.
- Якщо на вхід можна подавати парафазний код (тобто вхідне значення подають у прямому й оберненому коді), то відпадає потреба у такті установлення в "0", тобто отримаємо однотактний паралельний регістр.

Регістри зберігання будують також з одноступеневих D- тригерів. З цією метою можна також застосовувати і ЈК-тригери, але їх можливості більші, ніж потрібно для регістру зберігання. Варіант чотирирозрядного регістра зберігання наведено на рис. Тут зображено IMC К155TM8, яка містить 4 D-тригери з об'єднаними входами установки нуля та синхронізації. Числа в тригери регістра записуються по входах D при сигналі дозволу С=1. Після зміни сигналу на вході С на 0 тригери переходять в режим зберігання. В цей час на входи D можна подати наступне число, яке при С=1 запишеться в регістр. Для обнулення регістра до входу R підводять від'ємний імпульс на час, який потрібний для переведення всіх тригерів в 0. Цей час вказують у довідниках. Поки регістр виконує свої функції, на вході R підтримується напруга високого рівня.

- Регістр є дуже зручним пристроєм для "зсування" інформації праворуч чи ліворуч або перетворення послідовного коду у паралельний (рис.).
- Зсув можна робити як праворуч, так і ліворуч. Такі регістри називають реверсивними.

Схема чотирирозрядного регістра для зсування вправо, яка забезпечує перетворення кодів, побудована на ЈК-тригерах. Старший розряд регістра за допомогою інвертора на К-вході працює в режимі D-тригера. На вхід К старшого розряду тригера Q4 по лінії D надходить послідовний код, наприклад, 1101 (код передається в напрямку від старших розрядів коду до молодших). Значення розрядів слова поступає одночасно із синхроімпульсами, які забезпечують як приймання коду в старший розряд, так і одночасний зсув вмісту регістра вправо. Після приходу чотирьох синхроімпульсів на виходах регістра Q4 - Q1 встановиться код 1101. В такий спосіб здійснюється перетворення послідовного коду в паралельний, яке часто називають послідовним введенням слова в регістр.

• Регістр для "зсування" інформації праворуч чи ліворуч (рис.).

Нехай у регістрі є код **1011**. Стан тригерів після кожного імпульсу зсуву t_i буде змінюватися відповідно до таблиці:

Імпульс	t ₁	$\mathbf{t_2}$	t ₃	t ₄
T ₄	1	Ö	0	0
Т ₃	0	1	0	0
$\mathbf{T_2}$	1	Ö	1	0
$\mathbf{T_1}$	1	1	0	1

Лічильник — пристрій, призначений для підрахунку кількості імпульсів. Лічильники бувають підсумовувальні, віднімальні та реверсивні. Реверсиний лічильник залежно від перекомутації може бути підсумовувальним або віднімальним. Будують лічильники на основі тригерів, використовують у пристроях керування та в арифметичних пристроях для рахунку номерів команд, кількості циклів програми, кількості тактів у разі множення і ділення, а також як суматори. Приклад 4-розрядного підсумовувального двійкового лічильника, зібраного на синхронних јк-тригерах, які працюють у режимі Ттригерів, показано на рис.

Такий лічильник порахує до 16 (1111) і знову стане в "0". Максимальна кількість імпульсів, яку може підрахувати двійковий лічильник, що складається з n розрядів, дорівнює 2^n -1.

- Віднімальний лічильник отримаємо тоді, коли сигнал знімати з інверсного виходу тригера.
- Лічильники, які однаково можна використовувати як для додавання, так і для віднімання імпульсів, називають реверсивними.

Максимальна кількість імпульсів, яку може підрахувати двійковий лічильник, що складається з n розрядів, дорівнює 2^n-1 .

• Іноді потрібно отримати значення К ≠ 2ⁿ. Тоді будують спеціальні перерахункові схеми, де від певних розрядів уводять обернений зв'язок. Перерахункові схеми з К=10 називають декадними лічильниками, які застосовують для побудови десяткових лічильників (рис.). На схемі показано, що вихідний сигнал тригера Т₄, потрапляє на входи Т₂ і Т₃. Завдяки цьому після надходження на вхід лічильника восьмого імпульсу на виході тригера Т4 з'являється сигнал "1", який переводить тригери Т3, Т2, із стану "0" в стан "1"

Номер вхідного імпульсу	Стан Т4	три Т3	ге Т2	рів T1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0(1)	0(1)	0
9	1	1	1	1
10	0	0	0	0

Вихідний сигнал тригера T_4 , потрапляє на входи T_2 і T_3 . Завдяки цьому після надходження на вхід лічильника восьмого імпульсу на виході тригера **Т4** з'являється сигнал "1", який переводить тригери **Т3, Т2**, із стану "0" в стан "1"

Номер вхідного імпульсу	Стан Т4	три Т3	re T2	рів T1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0(1)	0(1)	0
9	1	1	1	1
10	0	0	0	0

