Multimedia

§7 Audio compression

Prof. Dr. Georg Umlauf

Content

- §7.1 The ear
- §7.2 Psycho acoustics
- §7.3 Code formats

Sound (1)

- Vibrations of the air pressure in the audible frequency band are called sound.
- Pressure is the force, that is applied to a certain surface area.
 - The unit of pressure is Pascal [Pa], where 1 Pa is defined as a force
 of 1 N (Newton) applied to a surface of 1 m².
 - In acoustics the pressure is measured in Micro-Pascal (μPa) :

$$1 \, \mu Pa = 10^{-6} \, N/m^2$$
.

- English: Sound pressure = volume
- German: Schalldruck = Lautstärke

Sound (2)

- Perception of sound at optimal conditions:
 - Smallest sound pressure: 20

$$20 \mu Pa = 0 dB$$

- Largest sound pressure (pain level): $10^8 \, \mu Pa = 150 \, dB$
- **▶** Sound pressure level (SPL, German: Schalldruckpegel):

Logarithmize the sound pressure p relative to the threshold of hearing $p_0=20~\mu {\rm Pa}$ measured in dB~SPL

$$L(p) = 20 \cdot \log_{10}(p/p_0).$$

• Examples:

Sound	Sound pressure level [dB]		
Rustling of leaves	20		
Talk	60		
Subway	100		
Launching jet plane	140		

Outer ear

Components: Auricle and acoustic meatus.

Function: Sound conduction from the environment to the eardrum.

Properties: Sound conduction depends on frequency and direction.

Allows for spatial hearing.

Middle ear

- Components: Eardrum, tympanic cavity (filled with air), two middle ear muscles, auditory ossicles (malleus, incus, stapes).
- Functions: Transmission of vibrations from outer to inner ear.
 - Impedance adjustment between middle and inner ear.
 - Extension of the dynamic range of the ear.
 - Frequency dependent sensitivity shift of the ear.
 - Protection of the inner ear against excessive vibrations.

Inner ear

- Components: Cochlea, equilibrium organ (semicircular canal).
- Functions: Distribution of stimulus to sensory cells (traveling wave).
 - Transformation of stimulus from mechanical vibrations to nerve impulses.

Distribution of the stimulus (1)

- Movement of the stapes results in a fluid movement and pressure change in the cochlea.
- The **basilar membrane** oscillates.
- A travelling wave forms on the basilar membrane.
- It propagates from the oval window along the membrane and yields its maximal amplitude at a frequencydependent location on the membrane.
- Sounds with high frequencies are mapped to locations close to the oval window, sounds with small frequencies to locations close to the helicotrema.

Distribution of the stimulus (2)

Mapping of excitation frequency to the location on the basilar membrane with maximal amplitude.

Transformation of the stimulus

- This causes at the location of the maximal amplitude a relative movement of the basilar membrane to the tectorial membrane.
- Tangential shearing of the hair cells.
- This triggers the nerve impulse in the hair cells.
- Transmission via the acoustic nerve to the neural processing stages in the brain.

Conclusion

- The hearing organ transforms acoustic signals to the frequency domain.
 - The ear is a Fourier analyzer!
- This transformations of acoustic signals by the hearing organ yields a effective simplification of the acoustic pattern and reduces the amount of acoustic data.

Contents

§7.1 The ear

§7.2 Psycho acoustics

§7.3 Code formats

Perception of der acoustic intensity (1)

- The ear can perceive only acoustic stimuli within a certain frequency and sound pressure level range.
 - Frequencies in the range from 20 Hz to 20 kHz.
 - Sound pressure from 20 µPa or sound pressure level from 0 dB required.
 - Threshold in quiet (Ruhehörschwelle): Sound pressure level that is necessary to only just hear a sound depending on its frequency.

Perception of der acoustic intensity (2)

- The perception of the sound pressure depends on the frequency.
 - Physical quantity: Volume, sound pressure, sound pressure level.
 - Perceived quantity: Loudness.
 - German: Lautheit

Masking effects (1)

- In a mixed sound individual frequency components are perceived with different sensitivity.
 - Example: In the presence of loud bass sounds quite sound with middle or high frequencies cannot be perceived.
- The masking threshold (Mithörschwelle) is raised in the presence of background noise.
 - The masking threshold has a maximum at the location of the midfrequencies of the background noise.
 - → The masking signal has only little influence on the perception of sound, whose frequency differs significantly from the masking noise mid-frequency.
 - Sounds below the masking threshold can be omitted.

Masking effects (2)

- Audio example:
 - Reference: Sine wave at frequency 2kHz at threshold of quite ca. 0dB.
 - Original: Reference signal at 11 different sound levels, decreased by 3dB each.
 - **Example 1:** Original sequence distorted by band noise with mid-frequency 2kHz and band width 700Hz.
 - **Example 2:** As example 1 with band width 100Hz.
- In Example 2 fewer sounds are audible than in example 1.

Reference

Original

B=700Hz

B=100Hz

Masking effects (3)

Example: Masking thresholds of sine waves that are masked by a narrow-band noise with mid-frequency at 1 kHz and band width 160 Hz for varying sound pressure levels of the masking noise.

Masking effects (4)

- Frequency masking
 - A certain frequency component masks neighboring frequency components.
- Temporal masking
 - Two sounds, played in quick succession, can mask each other.

Virtual pitch level and residuum (1)

- The perceived pitch level of a sound corresponds usually to the pitch level of the fundamental oscillation (1st harmonic).
- The virtual pitch level arises, if from a broad-band line-spectrum only the high frequencies are transmitted.
- The resulting "residual sound", where the harmonic with low order are removed, is the so-called residuum.

Virtual pitch level and residuum (2)

- Audio example (1):
 - Remove from a sound of 15 harmonics at fundamental oscillation 200 Hz successively the first three harmonics.
 - After each removal of a spectral component a sine-sound at 200 Hz is played, in order to illustrate the constant pitch level.
 - The musical pitch level of the residuum does not change.

Virtual pitch level and residuum (3)

- Audio example (2):
 - The perception of the virtual pitch level is important for speech intelligibility at the phone or musical transmissions via channels, that transmit only a limited spectral range.

- The frequency range of the telephone is limited from 300 Hz to 3400 Hz.
 - The first two or three harmonics of a sound signal are suppressed.
- This has no influence on the perception of the pitch level.
 - → The sense of hearing generates a real pitch level corresponding to the virtual pitch level.

Directional hearing and sound source localization (1)

- Horizontal sound source localization is based on the difference of the sound signals in both ears.
- There are temporal and level differences in the ear signals.
- For spatial orientation of natural sound signals always both are used.
 - But each types of signal differences alone can also lead to a sound source localization.

Directional hearing and sound source localization (2)

- The differences between the individual ear signals is described by the interaural transmission function.
 - If a sound source is immediately in front of or behind a person, both eardrums perceive the same ear signal.
 - If a sound source in not immediately in front of a person each eardrum perceives a different ear signal, because
 - of the different geometric location of the ears relative to the sound source and
 - of the head, which is an acoustic obstacle.

Directional hearing and sound source localization (3)

Example

- Interaural transmission function of sound events between 500 Hz and 2500 Hz.
- For higher frequencies the transmission functions are inclined towards the low levels because of the acoustic shadow of the head.
- There is hardly any direction information in very low/high frequencies perceivable.
- Audio examples:

90°

180°

Contents

- §7.1 The ear
- §7.2 Psycho acoustics
- §7.3 Code formats
 - §7.3.1 Overview
 - §7.3.2 MP3
 - §7.3.3 MPEG-4 ALS

§7.3 Code formats §7.3.1 Overview

Parameters for audio coding

- Frequencies in the signal
- Number of possible channels
- Sampling rate
- Sampling depth: Quantization

Туре	Frequency [Hz]	Sampling rate [Hz]	Sampling depth [bit]	Channels
Phone	200 - 3.400	8.000	8	1
Radio	50 - 11.000	22.050	8	2
CD	20 - 20.000	44.100	16	2
Studio	20 - 20.000	48.000	24	n

§7.3.1 Overview

Overview

- Un-compressed formats:
 - Linear Pulse-Code-Modulation (LPCM) in various forms
 - E.g.: wav
- Lossless compressed formats:
 - m4a (aka Apple Lossless, MPEG-4 ALS)
- Lossy compressed formats:
 - Adaptive Differential Pulse Code Modulation (ADPCM)
 - DECT (cordless phone)
 - mp3
 - m4a (aka MPEG-4 AAC)

§7.3.1 Overview

History

- MPEG Moving Picture Experts Group: workgroup of the ISO/IEC for audio- and video-coding, since 1988.
- MPEG-1 (1992): contains e.g. MPEG-1 audio layer III (MP3), video CD.
- MPEG-2 (1994): contains e.g. DVD, DVB (digital tv), DAB (digital radio)
- MPEG-4 (1998): Multimedia-Standard, object-oriented, scalable
 - MPEG-4 Part 2 (Video): H.263
 - MPEG-4 Part 10 (Video): AVC, H.264 → HD-DVD, Blu-ray Discs
 - MPEG-4 Part 3 (Audio): AAC, ALS

 MP3-sucessor (.m4a)
- MPEG-7 (2002): Multimedia Content Description (Meta-data "Bits about the bits")
- **MPEG-21 (2001):** "Framework for multimedia delivery and consumption"
- MPEG-DASH (2012): "Dynamic adaptive streaming over HTTP".
- MPEG-H (2013): "High efficiency coding and media delivery in heterogeneous environments", H.265

§7.3.1 Overview

MP4

Container format for MPG-4 contents

Video: MPG-4/Part 2 (Video) MPG-4/Part 10 (AVC), MPG-2, MPG-1

Audio: MPG-4/Part 3 (Audio), AAC, MP3, MP2, MP1

Image: PNG, JPG

Graphics: BIFS (BInary Format for Scences) (MPG-4 Part 11)

§7.3.1 Overview

QuickTime

Container format for multimedia contents by Apple:

Video: animated GIF, H.26x, etc.

Audio: AAC, MP3, Apple lossless (.m4a) etc.

Image: BMP, GIF, TIFF, PNG, JPG(2000), etc.

Flash Video

Container-Format for

Video: H.264

Audio: AAC, MP3

MPEG-1 (1)

- First international standard defined 1992 as ISO/IEC 11172-3 (1993).
- Bit rats up to 1.5 Mb/s for video with audio (Video-CD).
- Defines only the function of the decoder the format of the audio-bitstream, but not the encoder to allow for later improvements.
- Format suitable for speech and music.
- No assumptions about the source, but uses a psycho-acoustic model instead to use masking effects.
- The variants (layers), each in mono / stereo / joint stereo.
- Sampling rates 32, 44.1, 48 KHz.
- Bit rates 32 .. 224 kb/s/channel.

MPEG-1 (2)

- Layer 1: simplest algorithm
 - for bit rates larger than 128 kb/s per channel
- **Layer 2:** middle complexity
 - used for CD-I and Video-CD
 - for bit rates of 128 kb/s per channel
- **Layer 3:** Better quality, but significantly more complex
 - Starting at 64 kb/s per channel, good quality above 128 kb/s
 - "MP3", ISDN-Transmission

MP3 (1)

(MPEG-1 Audio Layer III)

- Sampling rates: 32kHz, 44.1kHz, 48 kHz
- Supports 2-channel stereo signals
- Supports CRC-checksum for error detection
- Compression rate around 10:1.
- A MP3-file has no explicit header, it is a list of subsequent data blocks, each having its own header and audio information
 - Streaming

MP3 (2)

- rate control loop: Control of chosen data rate
- distortion control loop: Control quantization noise below the hearing threshold.

MP3 (3)

- 1. Filter bank Analysis (sub-band-coding)
 - FIFO-Buffer of 512 samples, adding only 32 new samples per step.
 - Audio spectrum is partitioned by filter bank into 32 uniform and overlapping frequency bands.
- 2. MDCT for each frequency band
 - Dynamic window adjustment (block length switching): Dependent on temporal variation of the signal.
 - Stationary signals: One time frame for 36 samples, yielding 18 DCT-coefficients each.
 - Highly varying signals: Three time frames of 12 samples, yielding 6 DCT-coefficients each.

MP3 (4)

3. Psycho-acoustic model

- a) Fourier-transformation of the signal.
- b) Computation of der masking thresholds:
 - Between frequency bands (frequency/temporal) masking occurs.
 - Almost all frequency bands carry less relevant information than the loudest frequency band.
 - Yields control parameters for the non-uniform quantization.

4. Scaling & Quantization

- Non-uniform quantization of groups of frequency bands.
- Lossy compression step!
- 5. Huffman coding using a fixed code table.
- 6. Multiplexer

§7.3 Code formats §7.3.2 MP3

MP3 (5)

Coding of stereo channels

- Intensity Stereo: Coding of certain frequency ranges only mono and enrich these with "direction information" from the other frequency bands.
 - Phase differences are neglected.
 - Only amplitude differences are coded.
- Mid/Side-Stereo: If left L and right channel R are very similar, transmit L + R and L R instead of L and R.
 - Switch transmission depending on coding efficiency.

§7.3 Code formats §7.3.2 MP3

MP3 development

MPEG 2 AAC (Advanced Audio Coding)

- Improved prediction algorithms in the psycho acoustic model.
- Up to 48 regular channels + 16 low frequency channels.
- Sampling rate up to 96 kHz.
- Frame size up to 2048 samples: improved temporal and frequency resolution.
- Temporal Noise Shaping: Control of the quantization noise.
- Quality like MP3 with only 70% of necessary bit rate.

MPEG 4 AAC

- Specialized for Mobile Computing and voice transmission.
- From 4 kbps on intelligible voice transmission.
- Perceptual Noise Substitution (PNS) and Long Term Prediction (LTP).

MPEG-4 ALS (1) (Audio Lossless Coding)

- Audio-Compression with perfect (bit-identical) reconstruction.
- But: Universal compression methods fail for audio signals.

MPEG-4 Audio Lossless Coding

- Lossless coding of audio signals with very large resolutions (16 to 24 bit, 44,1 to 192 kHz)
- Random access (direct access) to individual code segments.

Applications

- Professional: archiving, recording studios, distributed sound editing, ...
- Private users: high-resolution disks, online music shops, ...

MPEG-4 ALS (2)

- Typical approach
 - Decorrelation of the audio signal (Prediction / Transformation) using linear prediction (LPC=linear predictive coding).
 - Entropy-coding of the de-correlated samples.

MPEG-4 ALS (3)

MPEG-4 ALS (4)

- 1. Buffer
 - Input buffer for one frame of samples
- 2. LPC-coefficient-estimation (see page §7/43)
 - Compute the optimal LPC-coefficients
- 3. Quantization of the LPC-coefficients (see page §7/47)
- 4. LPC (linear predictive coding)
 - Compute the residual error signal (Restfehlersignal)
- 5. Entropy-Coding: Use various Rice-codes
- 6. Multiplexer: residual error signal, code-indices and coefficients

Linear predictive coding (1)

The actual value x(n) is estimated from the previous values x(n-i), i = 1, ..., K, from then past

$$\widehat{x}(n) = \sum_{i=1}^{K} h_i \cdot x(n-i).$$

The residual error signal (residual) is

$$e(n) = x(n) - \hat{x}(n).$$

- Which predictor coefficients h_i yield a minimal residual?
- The previous values and the actual value are highly correlated.
- Minimize e.g. the mean square error $E[e^2(n)]$ (MSE).

Linear predictive coding (2)

- Compute the minimum of $E[e^2(n)]$ depending on the coefficients $\mathbf{h} = (h_1, ..., h_K)^t$.
- $\Rightarrow \frac{\partial}{\partial h_j} E\left[\left(x(n) \hat{x}(n)\right)^2\right] = \frac{\partial}{\partial h_j} E\left[\left(x(n) \sum_{i=1}^K h_i \cdot x(n-i)\right)^2\right] = 0$ for $j = 1, \dots, K$.
- - ightharpoonup These are K equalities for K unknowns h_i .
- The values $E[x(n-i)x(n-j)] = R_{xx}(|i-j|)$ are the autocorrelation values of the signal x with itself.

Linear predictive coding (3)

→ The auto-correlation is computed within a window of width N

$$R_{xx}(k) = \sum_{n=n_0+k+1}^{n_0+N} x(n-k)x(n).$$

These K equations can be written in matrix form as $\mathbf{R} \cdot \mathbf{h} = \mathbf{P}$ with $P = (R_{\chi\chi}(1), ..., R_{\chi\chi}(K))^t$ and

$$\mathbf{R} = \begin{bmatrix} R_{\chi\chi}(0) & R_{\chi\chi}(1) & R_{\chi\chi}(2) & \cdots & R_{\chi\chi}(K-1) \\ R_{\chi\chi}(1) & R_{\chi\chi}(0) & R_{\chi\chi}(1) & \cdots & R_{\chi\chi}(K-2) \\ R_{\chi\chi}(2) & R_{\chi\chi}(1) & R_{\chi\chi}(0) & \cdots & R_{\chi\chi}(K-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{\chi\chi}(K-1) & R_{\chi\chi}(K-2) & R_{\chi\chi}(K-3) & \cdots & R_{\chi\chi}(0) \end{bmatrix}$$

The matrix R is a Toepliz-matriz, i.e. R^{-1} can be computed using the Levinson-Durbin-algorithm in $O(n^2)$.

Adaptation of the order of the predictor

- A larger order *K* yields a smaller bit rate for the residual error signal (i.e. better prediction), but a larger bit rate for its coefficients.
- The order is optimal, if the predictor minimizes the total bit rate.
- Adaption within the Levinson-Durbin-Algorithm is possible.

Quantization of the LPC-coefficients

Problem: Direct quantization of the LPC-coefficients is in-efficient, because small errors can lead to large spectral distortions.

Arcsine-coefficients

- Non-linear mapping $\alpha_k = \arcsin(h_k)$ expands the range by one.
- Linear quantization using 8 bit/coefficient for transmission.
- Predictor filter uses LPC-coefficients, computed from the quantized arcsine-coefficients (in fix-point-arithmetic).

Further properties

- Block length switching
- Joint Stereo Coding (German: Verbundcodierung)
- Random Access: Direct access to arbitrary segments of the coded audio signal, without decoding of preceding segments.
 - Minimal temporal resolution of 0.5 seconds
 - Realization
 - Generate random access (RA) frames every 0.5 seconds.
 - A RA frame contains the distance (in Bytes) to the next RA frame.
 - Submit the first K (= predictor order) original samples for prediction independent to the previous frame
 - Uses additionally 0.5 –2kbit/s, depending on the predictor order and resolution of the audio signal.

Bit-stream-format

Rate of compression

Rate of compression for maximal CPU-load

Sampling rate/ sampling depth	MPEG-4 ALS
48 kHz/ 16 bit	46,5
48 kHz/ 24 bit	64,0
92 kHz/ 16 bit	31,1
96 kHz/ 24 bit	47,1
192 kHz/ 16 bit	21,9
192 kHz/ 24 bit	38,2

Goals

- What is masking?
- What is the principle of directional hearing?
- What are the basic building blocks of MP3?
- What is block length switching?
- How is stereo information coded?
- What are the basic building blocks of MPEG-4-ALS?
- What is LPC and how does it work?

