Билет 7. Замкнутость класса ограниченно-детерминированных функций относительно операций суперпозиции и обратной связи. Конечная порожденность этого класса.

Маткурбанов Алишер, Симонов Дмитрий 19 апреля 2018 г.

- 1. Детерминированные функции.
- 2. Ограниченно-детерминированные функции.
- 3. Канонические уравнения о-д функций.
- 4. Определение суперпозиции и операции обратной связи.
- 5. Замкнутость и конечная порождаемость класса о-д функций.

1. Детерминированные функции

Пусть $A=\{a_1,...,a_m\}$ — алфавит входных символов, а $B=\{b_1,...,b_n\}$ — алфавит выходных символов. Алфавиты A и B конечны. Функция $f\colon A^*\to B^*$ используется для описания дискретных процессов в дискретный момент времени t=1,2,..., при этом слово α , $\alpha\in A^*$, последовательность входных символов, а слово $\beta,\beta\in B^*$, последовательность выходных символов. Функция $f\colon A^*\to B^*$ называется детерминированной, если выполняются следующие условия:

- а) Если $\alpha \in A^*$, то $|\alpha| = |f(\alpha)|$, т.е. длина входного слова равна длине выходного слова.
- б) Если $\alpha_1 = a(1)...a(k)$, $\alpha_2 = a'(1)...a'(k)$, $f(\alpha_1) = b(1)...b(k)$, $f(\alpha_2) = b'(1)...b'(k)$, причем a(1) = a'(1),...a(s) = a'(s) при $1 \le s \le k$, то b(1) = b'(1),...,b(s) = b'(s) (a(i), здесь $a'(i) \in A, b(i), b'(i) \in B$, т.е. каждый выходной сигнал определяется однозначно последовательностью входных символов и не зависит от символов, поступающих в последующие моменты времени.

1.1. Информационное дерево и остаточные функции

Детерминированные (д-функции) функции удобно задавать информационными деревьяем. Информационное дерево - бексконечный ориентированный граф G, каждому ребру которого приписана пара $(a,b), a \in A, b \in B$, причем выполняются условия:

- 1) Существует корень дерева, из которого достижимы все вершины. Для каждой вершины $v \in G$ существует единственная последовательность вида $v_1, p_1, v_2, p_2, ..., p_i, v_i+1=v$, где $i \geq 0, v_1, v_2, ..., v_{i+1}$ вершины G, p_j ребро, ведущее от v_j к $v_{j+1}, j=1, ..., i$.
- 2) Из каждой вершины v графа G выходит ровно m ребер, которым сопоставлены пары вида $(a_1,b_{i1}),...,(a_m,b_{im}), \{i_1,...,i_m\} \subseteq \{1,...,n\}.$

На следующем рисунке показан примерный вид информационного дерева.

Пусть G — информационное дерево в алфавитах A, B, v_1 — корень дерева, v — произвольная вершина. Подграф графа G, образованный вершинами, достижимыми из v (включая v), тоже является информационным деревом. Обозначим его G(v). Установим связь между функциями $f = f_G$ и $f' = f_G(v)$, которые реализуют деревья G и G(v) соответственно. Рассмотрим путь π из корня v_1 дерева G, соответствующий такому слова α , $\alpha \in A^*$, что концом пути π служит вершина v. Определяемое путем π слово в алфавите B обозначим β . По определению функции f имеем $f(\alpha) = \beta$. Пусть γ — произвольное слово в алфавите A. Рассмотрим путь π_1 из корня v_1 дерева G, соответстующий слову $\alpha\gamma$, а также путь π_2 из корня v дерева G(v), соответствующий слово γ . Обозначим δ_1 и δ_2 определяемые путями π_1 и π_2 слова в алфавите B. Путь π_2 представляет собой концевой отрезок пути π_1 , а слово δ_2 является концом слова δ_1 . Так как соответстующий слову α начальный отрезок пути π_1 есть путь π , то получаем представление слова δ_1 в виде $\beta\delta_2$, при этом $\delta_1 = f(\alpha\gamma)$, $\delta_2 = f'(\gamma)$. Таким образом, получаем тождество $f(\alpha\gamma) = f(\alpha)f'(\gamma)$, где α — фиксированное слово из A^* , а γ — произвольное слово из A^* . Функции f', которые удовлетворяют этому тождеству для различных α из A^* , называются остаточными функциями д. функции f.

Менее формально — любое поддерево дерева G с корнем в вершине, отличной от v_0 , определяет остаточную функцию. Если ввести отношение изоморфизма (похожести) на всех поддеревьях G (а их всего бесконечно), то можно разделить все поддеревья на классы эквивалентности. Отношение изоморфизма введем так: два поддерева изоморфны, если "наложив" корни этих поддеревьев друг на друга, "совпадут" и ребра и метки на ребрах у этих поддеревьев. Разобьем все поддеревья (остаточные функции) на классы эквивалентности все изоморфные деревья попадают в один класс.

2. Ограниченно-детерминированные функции

Д. функция называется ограниченно-детерминированной (о.д.-функцией), если множество ее остаточных функций конечно. Отношение изоморфизма, введенное выше, разбивает множество поддеревьев G(v) информационного дерева G на классы эквивалентности - Q_1, Q_2, \ldots Очевидно, любые два дерева G(v) из одного и того же класса Q_i определяют одну и ту же д.функцию, а из разных классов Q_i - различные д.функции. Определим функции φ и ψ таким образом: $\varphi(Q_i, a) = Q_j, \ \psi(Q_i, a) = b_j.$ Функция φ определена на множестве $Q_1, Q_2, \ldots \times A$ и принимает значения из $\{Q_1, Q_2, \ldots\}$, а ψ на множестве $\{Q_1, Q_2, \ldots\} \times A$ и принимает значения из B. Рассмотрим произвольное слово $\alpha, \alpha = \alpha(1)...\alpha(p), \alpha \in A^*$. Пусть $v_1, \rho_1, v_2, \rho_2, \ldots, \rho_p, v_{p+1}$ — путь из корня v_1 инф. дерева G, соответствующий слову α . Обозначим (a(i), b(i)) отметку ребра $\rho_i, i = 1, \ldots, p, q(i)$ — такой класс Q_{j_i} , что $G(v_i) \in Q_{j_i}, i = 1, \ldots p + 1$. Согласно определению функций φ и ψ выполняются соотношения:

$$\begin{cases} q(1) = 0, \\ q(t+1) = \varphi(q(t), a(t)), \\ b(t) = \psi(q(t), a(t)), t = 1, ..., p \end{cases}$$
 (1)

Если множество $\{Q_1,Q_2,...\}$ конечно, то рассматриваемая д. функция является конечно автоматной функцией, реализуемой инициальным конечным абстрактным автоматом $V=\{A,Q,B,\varphi,\psi,Q_{j_1}\}$. Получается с каждым инициальным конечным автоматом можно

связать о -д. функцию $F_V: A^* \to B^*, F_V(\alpha) = \psi(q_0, \alpha)$. Здесь A и B - произвольные конечные алфавиты. На практике, однако, удобно иметь дело не с буквами этих алфавитов, а с некоторыми их кодами.

2.1. Канонические уравнения о-д. функций

Таким образом, с самого начала можно считать, что имеется некоторый основной алфавит $T=\{t_1,...,t_k\}$, который используется для кодирования букв алфавитов A,Q,B. Сначала $T=\{0,1\},A=\{0,1\}^n,Q=\{0,1\}^r,B=\{0,1\}^m$. Графически это будет выглядеть так:

Однако для задачи синтеза схем не важно сколько выходов у автомата, т.к мы можем использовать m автоматов, у каждого из которых по n входов и 1 выходу:

Таким образом мы можем считать, что у автомата V имеется n входов и 1 выход.

Множество всех функций, вычисляемых автоматами со многими входами, обозначим через P.

С учетом нововведений канонические уравнения запишутся в виде:

Итак, о.-д. функция $f(x_1,...,x_n)$, вычисляемая автоматом $V = (\{0,1\}^n,\{0,1\}^r,\{0,1\},\phi,\psi,q_0)$, может быть задана с помощью кононических уравнений, где все функции в правых частях функции алгебры логики.

Пример - уравнения о. д. функции, которая реализуется *задержкой с нулевым начальным* состоянием - G_0 (в первый момент времени выдает 0, дальше выдает предыдущий символ, который подали на вход).

$$\begin{cases} q(1) = 0, \\ q(t+1) = x(t), \\ y(t) = q(t) \end{cases}$$
 (3)

3. Операция суперпозиции и обратной связи.

С каждым автоматом (получается и с о -д. функцией) мы можем связать схему, которая реализует этот автомат.

Операции суперпозиции: отождествление переменных, перестановка переменных, добавление фиктивной переменной, удаление фиктивной переменной, подстановка функции вместо переменной. Удобно интерпретировать эти операции графически.

Рис. 1: Отождествление.

Рис. 2: Перестановка.

Рис. 3: Добавление фиктивной.

Рис. 5: Подстановка функции.

Рис. 4: Удаление фиктивной.

Операция обратной связи: Пусть $n \geq 2$ и $f(x_1, \dots, x_n)$ - о.-д. функция, которая задается канонической системой:

$$\begin{cases}
q_1(1) = q_1^0, \dots, q_r(1) = q_r^0, \\
q_i(t+1) = \varphi_i(q_1(t), \dots, q_r(r), x_1(t), \dots, x_n(t)), i = 1, \dots, r \\
y(t) = \psi(q_1(t), \dots, q_r(t), x_1(t), \dots, x_n(t))
\end{cases}$$
(4)

Пусть f зависит фиктивно он какий-нибудь переменной, допустим x_1 . Получим ψ' из ψ изъятием фиктивной переменной $x_1(t)$. Тогда о-д. функция $f(x_1,...,x_n)$ задается системой:

$$\begin{cases}
q_1(1) = q_1^0, \dots, q_r(1) = q_r^0, \\
q_i(t+1) = \varphi_i(q_1(t), \dots, q_r(r), x_1(t), \dots, x_n(t)), i = 1, \dots, r \\
y(t) = \psi'(q_1(t), \dots, q_r(t), x_2(t), \dots, x_n(t))
\end{cases}$$
(5)

Теперь вместо фиктивной x_1 в φ_i , i=1,...,r подставим ψ' (мы можем это сделать, т.к. ψ' не зависит от x_1). Получится следующая система:

$$\begin{cases}
q_1(1) = q_1^0, \dots, q_r(1) = q_r^0, \\
q_i(t+1) = \varphi_i(q_1(t), \dots, q_r(r), \psi'(q_1(t), \dots, q_r(t), x_2(t), \dots, x_n(t)), x_2(t), \dots, x_n(t)), i = 1, \dots, r \\
y(t) = \psi'(q_1(t), \dots, q_r(t), x_2(t), \dots, x_n(t))
\end{cases}$$
(6)

Эта система задает некоторую функцию f' которая получилась из функции f применением операции обратной связи.

5. Замкнутость и конечная порожденность класса о-д функций

 $One pamop \Sigma$ - замыкание относительно операций суперпозиции.

Оператор K - замыкание относительно операций суперпозиции и операции обратной связи. Функция Шеффера на множестве о-д функций: о.-д. функция, у которой в канонических уравнениях функцией выходов является функция Шеффера:

$$\begin{cases}
q(1) = 0, \\
q(t+1) = q(t), \\
y(t) = \overline{x_1(t)} \vee \overline{x_2(t)}
\end{cases}$$
(7)

Она является аналогом функции Шеффера из алгебры логики на множестве о-д функций.

Теорема 1. Конечным применением оператора К к системе функций, состоящей из функции нулевой задержки и функции Шеффера можно построить все о-д функции.

Доказательство:

Построим схему, которая реализует произвольную о-д функцию по определению канонических уравнений (2) произвольной о-д функции. Для синтеха схемы нам потребуется реализовать функции из системы (2) — все q_i, φ_i, ψ и $x_j, i=1,\ldots,r, j=1,\ldots,n$. Все функции кроме q_i построим из функции Шеффера, q_i построим из задержек нуля и единицы. Сначала построим задержку единицы из задержки нуля таким образом:

Используем задержки для построения q_i . Далее построим следующую схему:

Эта схема реализует произвольную о.-д. по определению канонических уравнений.