progress

1.1.0

Generated by Doxygen 1.8.17

1 Testing the Progress library	1
1.1 Testing program for the progress library	. 1
1.1.1 To run the tests:	. 1
1.1.2 To run a single test:	. 1
1.1.3 To add a test:	. 2
2 Todo List	3
3 Module Index	5
3.1 Modules	. 5
4 Modules Index	7
4.1 Modules List	. 7
5 Data Type Index	9
5.1 Data Types List	. 9
6 File Index	11
6.1 File List	. 11
7 Module Documentation	13
7.1 (LATTE related routines)	. 13
7.2 (PROGRESS related routines)	
7.2.1 Detailed Description	. 15
7.3 (EXTERNAL related routines)	. 16
7.4 (High-level codes using PROGRESS/LATTE modules)	. 17
8 Module Documentation	19
8.1 prg_charges_mod Module Reference	. 19
8.1.1 Detailed Description	. 19
8.1.2 Function/Subroutine Documentation	. 19
8.1.2.1 prg_get_charges()	. 19
8.1.2.2 prg_get_hscf()	. 20
8.1.3 Variable Documentation	. 21
8.1.3.1 dp	. 21
8.2 prg_chebyshev_mod Module Reference	. 21
8.2.1 Detailed Description	. 22
8.2.2 Function/Subroutine Documentation	. 22
8.2.2.1 absmaxderivative()	. 22
8.2.2.2 fermi()	. 23
8.2.2.3 jackson()	. 24
8.2.2.4 prg_build_density_cheb()	. 24
8.2.2.5 prg_build_density_cheb_fermi()	. 25
8.2.2.6 prg_get_chebcoeffs()	. 27
8.2.2.7 prg_get_chebcoeffs_fermi_bs()	. 28

8.2.2.8 prg_get_chebcoeffs_fermi_nt()	. 29
8.2.2.9 prg_parse_cheb()	. 30
8.2.2.10 tr()	. 31
8.2.3 Variable Documentation	. 31
8.2.3.1 dp	. 31
8.2.3.2 pi	. 32
8.3 prg_densitymatrix_mod Module Reference	. 32
8.3.1 Detailed Description	. 32
8.3.2 Function/Subroutine Documentation	. 33
8.3.2.1 fermi()	. 33
8.3.2.2 prg_build_atomic_density()	. 34
8.3.2.3 prg_build_density_t()	. 34
8.3.2.4 prg_build_density_t0()	. 35
8.3.2.5 prg_build_density_t_fermi()	. 36
8.3.2.6 prg_build_density_t_fulldata()	. 37
8.3.2.7 prg_check_idempotency()	. 38
8.3.2.8 prg_get_eigenvalues()	. 39
8.3.2.9 prg_get_flevel()	. 39
8.3.2.10 prg_get_flevel_nt()	. 40
8.3.3 Variable Documentation	. 41
8.3.3.1 dp	. 41
8.4 prg_dos_mod Module Reference	. 41
8.4.1 Detailed Description	. 42
8.4.2 Function/Subroutine Documentation	. 42
8.4.2.1 lorentz()	. 42
8.4.2.2 prg_write_tdos()	. 43
8.4.3 Variable Documentation	. 44
8.4.3.1 dp	. 44
8.5 prg_ewald_mod Module Reference	. 44
8.5.1 Function/Subroutine Documentation	. 44
8.5.1.1 ewald_k_space_latte()	. 45
8.5.1.2 ewald_k_space_latte_single()	. 45
8.5.1.3 ewald_k_space_matrix_latte()	. 46
8.5.1.4 ewald_k_space_test()	. 46
8.5.1.5 ewald_real_space()	. 46
8.5.1.6 ewald_real_space_latte()	. 47
8.5.1.7 ewald_real_space_matrix_latte()	. 48
8.5.1.8 ewald_real_space_single()	. 48
8.5.1.9 ewald_real_space_single_latte()	. 49
8.5.1.10 ewald_real_space_test()	. 49
8.5.2 Variable Documentation	. 50
8.5.2.1 dp	. 50

8.6 prg_extras_mod Module Reference	50
8.6.1 Detailed Description	51
8.6.2 Function/Subroutine Documentation	51
8.6.2.1 mls()	51
8.6.2.2 prg_delta()	52
8.6.2.3 prg_get_mem()	53
8.6.2.4 prg_norm2()	54
8.6.2.5 prg_print_matrix()	55
8.6.2.6 prg_twonorm()	55
8.6.2.7 to_string_double()	56
8.6.2.8 to_string_integer()	56
8.6.2.9 to_string_long_long()	57
8.6.3 Variable Documentation	57
8.6.3.1 dp	57
8.7 prg_genz_mod Module Reference	57
8.7.1 Detailed Description	58
8.7.2 Function/Subroutine Documentation	58
8.7.2.1 prg_buildzdiag()	58
8.7.2.2 prg_buildzsparse()	59
8.7.2.3 prg_genz_sp_initial_zmat()	60
8.7.2.4 prg_genz_sp_initialz0()	62
8.7.2.5 prg_genz_sp_int()	63
8.7.2.6 prg_genz_sp_ref()	64
8.7.2.7 prg_init_zspmat()	65
8.7.2.8 prg_parse_zsp()	65
8.7.3 Variable Documentation	66
8.7.3.1 dp	66
8.8 prg_graph_mod Module Reference	66
8.8.1 Detailed Description	67
8.8.2 Function/Subroutine Documentation	67
8.8.2.1 prg_destroygraphpartitioning()	67
8.8.2.2 prg_destroysubgraph()	68
8.8.2.3 prg_equalgrouppartition()	69
8.8.2.4 prg_equalpartition()	70
8.8.2.5 prg_filepartition()	71
8.8.2.6 prg_fnormgraph()	71
8.8.2.7 prg_initgraphpartitioning()	72
8.8.2.8 prg_initsubgraph()	74
8.8.2.9 prg_printgraphpartitioning()	75
8.8.2.10 prg_readpart()	75
8.8.3 Variable Documentation	76
8.8.3.1 dp	76

8.9 prg_graphsolver_mod Module Reference	76
8.9.1 Detailed Description	76
8.9.2 Function/Subroutine Documentation	76
8.9.2.1 prg_build_densitygp_t0()	77
8.9.2.2 prg_build_zmatgp()	78
8.9.3 Variable Documentation	79
8.9.3.1 dp	79
8.10 prg_graphsp2parser_mod Module Reference	79
8.10.1 Detailed Description	79
8.10.2 Function/Subroutine Documentation	79
8.10.2.1 prg_parse_gsp2()	80
8.10.3 Variable Documentation	80
8.10.3.1 dp	80
8.11 prg_homolumo_mod Module Reference	80
8.11.1 Detailed Description	81
8.11.2 Function/Subroutine Documentation	81
8.11.2.1 prg_homolumogap()	81
8.11.2.2 prg_sp2sequence()	81
8.11.3 Variable Documentation	81
8.11.3.1 dp	81
8.12 prg_implicit_fermi_mod Module Reference	82
8.12.1 Function/Subroutine Documentation	82
8.12.1.1 fermi()	82
8.12.1.2 prg_conjgrad()	83
8.12.1.3 prg_finite_diff()	84
8.12.1.4 prg_get_density_matrix()	85
8.12.1.5 prg_implicit_fermi()	86
8.12.1.6 prg_implicit_fermi_first_order_response()	87
8.12.1.7 prg_implicit_fermi_response()	88
8.12.1.8 prg_implicit_fermi_save_inverse()	89
8.12.1.9 prg_implicit_fermi_zero()	90
8.12.1.10 prg_newtonschulz()	91
8.12.1.11 prg_pcg()	92
8.12.1.12 prg_setup_linsys()	93
8.12.1.13 prg_test_density_matrix()	93
8.12.2 Variable Documentation	94
8.12.2.1 dp	94
8.13 prg_initmatrices_mod Module Reference	94
8.13.1 Detailed Description	95
8.13.2 Function/Subroutine Documentation	95
8.13.2.1 prg_init_hsmat()	95
8 13 2 2 pro_init_ortho()	95

8.13.2.3 prg_init_pzmat()	96
8.13.3 Variable Documentation	96
8.13.3.1 dp	96
8.14 prg_kernelparser_mod Module Reference	96
8.14.1 Detailed Description	97
8.14.2 Function/Subroutine Documentation	97
8.14.2.1 prg_check_valid()	97
8.14.2.2 prg_parsing_kernel()	98
8.14.3 Variable Documentation	00
8.14.3.1 dp	00
8.15 prg_modelham_mod Module Reference	01
8.15.1 Detailed Description	01
8.15.2 Function/Subroutine Documentation	01
8.15.2.1 prg_parse_mham()	01
8.15.2.2 prg_twolevel_model()	02
8.15.3 Variable Documentation	02
8.15.3.1 dp	02
8.16 prg_nonortho_mod Module Reference	02
8.16.1 Detailed Description	03
8.16.2 Function/Subroutine Documentation	03
8.16.2.1 prg_deorthogonalize()	03
8.16.2.2 prg_orthogonalize()	04
8.16.3 Variable Documentation	04
8.16.3.1 dp	04
8.17 prg_normalize_mod Module Reference	05
8.17.1 Detailed Description	05
8.17.2 Function/Subroutine Documentation	05
8.17.2.1 prg_gershgorinreduction()	05
8.17.2.2 prg_normalize()	06
8.17.2.3 prg_normalize_cheb()	07
8.17.2.4 prg_normalize_fermi()	07
8.17.2.5 prg_normalize_implicit_fermi()	80
8.17.3 Variable Documentation	09
8.17.3.1 dp	09
8.18 prg_openfiles_mod Module Reference	09
8.18.1 Detailed Description	09
8.18.2 Function/Subroutine Documentation	10
8.18.2.1 get_file_unit()	10
8.18.2.2 prg_open_file()	10
8.18.2.3 prg_open_file_to_read()	12
8.19 prg_parallel_mod Module Reference	13
8.19.1 Detailed Description	14

8.19.2	Function/Subroutine Documentation	114
	8.19.2.1 allgatherintparallel()	115
	8.19.2.2 allgatherrealparallel()	115
	8.19.2.3 allgathervintparallel()	115
	8.19.2.4 allgathervrealparallel()	115
	8.19.2.5 getmyrank()	116
	8.19.2.6 getnranks()	116
	8.19.2.7 isendparallel()	117
	8.19.2.8 maxintparallel()	118
	8.19.2.9 maxrankrealparallel()	118
	8.19.2.10 maxrealparallel()	119
	8.19.2.11 minintparallel()	119
	8.19.2.12 minrankrealparallel()	119
	8.19.2.13 minrealparallel()	120
	8.19.2.14 prg_allgatherparallel()	120
	8.19.2.15 prg_allsumintreduceparallel()	121
	8.19.2.16 prg_allsumrealreduceparallel()	122
	8.19.2.17 prg_barrierparallel()	122
	8.19.2.18 prg_bcastparallel()	122
	8.19.2.19 prg_initparallel()	122
	8.19.2.20 prg_iprg_recvparallel()	123
	8.19.2.21 prg_maxintreduce2()	123
	8.19.2.22 prg_maxrealreduce()	124
	8.19.2.23 prg_minrealreduce()	124
	8.19.2.24 prg_recvparallel()	125
	8.19.2.25 prg_shutdownparallel()	125
	8.19.2.26 prg_sumintreduce2()	126
	8.19.2.27 prg_sumintreducen()	126
	8.19.2.28 prg_sumrealreduce()	127
	8.19.2.29 prg_sumrealreduce2()	127
	8.19.2.30 prg_sumrealreduce3()	128
	8.19.2.31 prg_sumrealreducen()	129
	8.19.2.32 prg_wait()	130
	8.19.2.33 printrank()	130
	8.19.2.34 saverequest()	131
	8.19.2.35 sendparallel()	132
	8.19.2.36 sendreceiveparallel()	132
	8.19.2.37 sumintparallel()	133
	8.19.2.38 sumrealparallel()	133
8.19.3	Variable Documentation	134
	8.19.3.1 dp	134
	8 19 3 2 jerr	134

8.19.3.3 myrank	134
8.19.3.4 nranks	135
8.19.3.5 reqcount	135
8.19.3.6 requestlist	135
8.19.3.7 rused	135
8.20 prg_partition_mod Module Reference	135
8.20.1 Detailed Description	137
8.20.2 Function/Subroutine Documentation	137
8.20.2.1 prg_accept_prob()	137
8.20.2.2 prg_check_arrays()	137
8.20.2.3 prg_costindex()	138
8.20.2.4 prg_costpartition()	139
8.20.2.5 prg_find_best_move()	140
8.20.2.6 prg_get_largest_hedge_in_part()	141
8.20.2.7 prg_kernlin()	142
8.20.2.8 prg_kernlin2()	144
8.20.2.9 prg_kernlin_queue()	145
8.20.2.10 prg_metispartition()	146
8.20.2.11 prg_rand_node()	147
8.20.2.12 prg_rand_shuffle()	148
8.20.2.13 prg_simannealing()	149
8.20.2.14 prg_simannealing_old()	150
8.20.2.15 prg_update_gp()	151
8.20.2.16 update_prg_costpartition()	152
8.20.3 Variable Documentation	153
8.20.3.1 dp	153
8.20.3.2 metis_index_kind	153
8.20.3.3 metis_real_kind	154
8.21 prg_progress_mod Module Reference	154
8.21.1 Detailed Description	154
8.21.2 Function/Subroutine Documentation	154
8.21.2.1 prg_progress_init()	155
8.21.2.2 prg_progress_shutdown()	155
8.21.3 Variable Documentation	156
8.21.3.1 dp	156
8.22 prg_ptable_mod Module Reference	156
8.22.1 Detailed Description	159
8.22.2 Function/Subroutine Documentation	159
8.22.2.1 element_atomic_number()	159
8.22.2.2 element_atomic_number_upper()	159
8.22.3 Variable Documentation	160
8.22.3.1 atom_en	160

8.22.3.2 dp	 160
8.22.3.3 element_covr	 160
8.22.3.4 element_ea	 161
8.22.3.5 element_econf	 161
8.22.3.6 element_ip	 161
8.22.3.7 element_mass	 162
8.22.3.8 element_maxbonds	 162
8.22.3.9 element_name	 163
8.22.3.10 element_numel	 163
8.22.3.11 element_symbol	 163
8.22.3.12 element_symbol_upper	 164
8.22.3.13 element_vdwr	 164
8.22.3.14 nz	 164
8.23 prg_pulaycomponent_mod Module Reference	 164
8.23.1 Detailed Description	 165
8.23.2 Function/Subroutine Documentation	 165
8.23.2.1 prg_get_pulayforce()	 165
8.23.2.2 prg_pulaycomponent0()	 165
8.23.2.3 prg_pulaycomponentt()	 166
8.23.3 Variable Documentation	 167
8.23.3.1 dp	 167
8.24 prg_pulaymixer_mod Module Reference	 167
8.24.1 Detailed Description	 167
8.24.2 Function/Subroutine Documentation	 168
8.24.2.1 prg_linearmixer()	 168
8.24.2.2 prg_parse_mixer()	 168
8.24.2.3 prg_qmixer()	 169
8.24.3 Variable Documentation	 170
8.24.3.1 dp	 170
8.25 prg_quantumdynamics_mod Module Reference	 170
8.25.1 Detailed Description	 171
8.25.2 Function/Subroutine Documentation	 171
8.25.2.1 prg_excitation()	 171
8.25.2.2 prg_get_sparsity_cplxmat()	 171
8.25.2.3 prg_get_sparsity_realmat()	 172
8.25.2.4 prg_getcharge()	 172
8.25.2.5 prg_getdipole()	 173
8.25.2.6 prg_kick_density()	 173
8.25.2.7 prg_kick_density_bml()	 175
8.25.2.8 prg_lvni_bml()	 176
8.25.3 Variable Documentation	 176
8.25.3.1 dp	 176

8.26 prg_response_mod Module Reference	176
8.26.1 Detailed Description	178
8.26.2 Function/Subroutine Documentation	178
8.26.2.1 prg_canon_response()	178
8.26.2.2 prg_canon_response_orig()	179
8.26.2.3 prg_canon_response_vector()	179
8.26.2.4 prg_compute_dipole()	181
8.26.2.5 prg_compute_polarizability()	181
8.26.2.6 prg_compute_response_fd()	182
8.26.2.7 prg_compute_response_rs()	183
8.26.2.8 prg_compute_response_sp2()	184
8.26.2.9 prg_parse_response()	184
8.26.2.10 prg_pert_constant_field()	185
8.26.2.11 prg_pert_cos_pot()	186
8.26.2.12 prg_pert_from_file()	186
8.26.2.13 prg_pert_sin_pot()	187
8.26.2.14 prg_project_response()	187
8.26.2.15 prg_write_dipole_tcl()	188
8.26.3 Variable Documentation	188
8.26.3.1 dp	189
8.26.3.2 pi	189
8.27 prg_sp2_fermi_mod Module Reference	189
8.27.1 Detailed Description	189
8.27.2 Function/Subroutine Documentation	190
8.27.2.1 absmaxderivative()	190
8.27.2.2 prg_sp2_entropy_function()	190
8.27.2.3 prg_sp2_fermi()	191
8.27.2.4 prg_sp2_fermi_init()	192
8.27.2.5 prg_sp2_fermi_init_norecs()	193
8.27.2.6 sp2_entropy_ts()	194
8.27.2.7 sp2_inverse()	195
8.27.3 Variable Documentation	195
8.27.3.1 dp	196
8.28 prg_sp2_mod Module Reference	196
8.28.1 Detailed Description	196
8.28.2 Function/Subroutine Documentation	197
8.28.2.1 prg_prg_sp2_alg1_seq_inplace()	197
8.28.2.2 prg_prg_sp2_alg2_seq_inplace()	197
8.28.2.3 prg_sp2_alg1()	198
8.28.2.4 prg_sp2_alg1_genseq()	199
8.28.2.5 prg_sp2_alg1_seq()	199
8.28.2.6 prg_sp2_alg2()	200

8.28.2.7 prg_sp2_alg2_genseq()	201
8.28.2.8 prg_sp2_alg2_seq()	201
8.28.2.9 prg_sp2_basic()	202
8.28.2.10 prg_sp2_basic_tcore()	203
8.28.2.11 prg_sp2_submatrix()	204
8.28.2.12 prg_sp2_submatrix_inplace()	204
8.28.3 Variable Documentation	205
8.28.3.1 dp	205
8.28.3.2 dp1	205
8.29 prg_sp2parser_mod Module Reference	205
8.29.1 Detailed Description	205
8.29.2 Function/Subroutine Documentation	206
8.29.2.1 prg_parse_sp2()	206
8.29.3 Variable Documentation	206
8.29.3.1 dp	206
8.30 prg_subgraphloop_mod Module Reference	206
8.30.1 Detailed Description	207
8.30.2 Function/Subroutine Documentation	207
8.30.2.1 prg_balanceparts()	207
8.30.2.2 prg_collectmatrixfromparts()	207
8.30.2.3 prg_getgrouppartitionhalosfromgraph()	208
8.30.2.4 prg_getpartitionhalosfromgraph()	209
8.30.2.5 prg_partordering()	209
8.30.2.6 prg_subgraphsp2loop()	210
8.30.3 Variable Documentation	211
8.30.3.1 dp	211
8.31 prg_syrotation_mod Module Reference	211
8.31.1 Detailed Description	211
8.31.2 Function/Subroutine Documentation	211
8.31.2.1 prg_parse_rotation()	212
8.31.2.2 prg_rotate()	212
8.31.3 Variable Documentation	213
8.31.3.1 dp	213
8.32 prg_system_mod Module Reference	213
8.32.1 Detailed Description	215
8.32.2 Function/Subroutine Documentation	215
8.32.2.1 prg_adj2bml()	215
8.32.2.2 prg_centeratbox()	215
8.32.2.3 prg_cleanuprepeatedatoms()	216
8.32.2.4 prg_collect_graph_p()	216
8.32.2.5 prg_destroy_subsystems()	217
8.32.2.6 prg_destroy_system()	217

8.32.2.7 prg_get_covgraph()	217
8.32.2.8 prg_get_covgraph_h()	218
8.32.2.9 prg_get_covgraph_int()	219
8.32.2.10 prg_get_dihedral()	219
8.32.2.11 prg_get_distancematrix()	220
8.32.2.12 prg_get_nameandext()	220
8.32.2.13 prg_get_origin()	221
8.32.2.14 prg_get_partial_atomgraph()	221
8.32.2.15 prg_get_recip_vects()	222
8.32.2.16 prg_get_subsystem()	222
8.32.2.17 prg_graph2bml()	223
8.32.2.18 prg_graph2vector()	223
8.32.2.19 prg_make_random_system()	223
8.32.2.20 prg_merge_graph()	225
8.32.2.21 prg_merge_graph_adj()	225
8.32.2.22 prg_molpartition()	226
8.32.2.23 prg_parameters_to_vectors()	227
8.32.2.24 prg_parse_system()	227
8.32.2.25 prg_replicate()	228
8.32.2.26 prg_replicate_system()	229
8.32.2.27 prg_sortadj()	229
8.32.2.28 prg_translateandfoldtobox()	229
8.32.2.29 prg_translatetogeomcandfoldtobox()	230
8.32.2.30 prg_vector2graph()	230
8.32.2.31 prg_vectors_to_parameters()	230
8.32.2.32 prg_wraparound()	231
8.32.2.33 prg_write_system()	232
8.32.2.34 prg_write_trajectory()	232
8.32.2.35 prg_write_trajectoryandproperty()	233
8.32.3 Variable Documentation	234
8.32.3.1 dp	234
8.33 prg_timer_mod Module Reference	234
8.33.1 Detailed Description	235
8.33.2 Function/Subroutine Documentation	236
8.33.2.1 int2char()	236
8.33.2.2 prg_print_date_and_time()	236
8.33.2.3 prg_timer_collect()	237
8.33.2.4 prg_timer_getid()	237
8.33.2.5 prg_timer_results()	238
8.33.2.6 prg_timer_shutdown()	238
8.33.2.7 prg_timer_start()	239
8.33.2.8 prg_timer_stop()	239

8.33.2.9 time2milliseconds()	1 0
8.33.2.10 timer_prg_init()	1 0
8.33.3 Variable Documentation	41
8.33.3.1 badd_timer	41
8.33.3.2 bmult_timer	41
8.33.3.3 buildz_timer	41
8.33.3.4 deortho_timer	41
8.33.3.5 dp	41
8.33.3.6 dyn_timer	12
8.33.3.7 genx_timer	12
8.33.3.8 graphsp2_timer	12
8.33.3.9 halfverlet_timer	12
8.33.3.10 loop_timer	12
8.33.3.11 mdloop_timer	12
8.33.3.12 nlist_timer	43
8.33.3.13 num_timers	43
8.33.3.14 ortho_timer	43
8.33.3.15 pairpot_timer	43
8.33.3.16 part_timer	43
8.33.3.17 pos_timer	43
8.33.3.18 ptimer	14
8.33.3.19 realcoul_timer	14
8.33.3.20 recipcoul_timer	14
8.33.3.21 sp2_timer	14
8.33.3.22 suball_timer	14
8.33.3.23 subext_timer	14
8.33.3.24 subgraph_timer	1 5
8.33.3.25 subind_timer	45
8.33.3.26 subsp2_timer	45
8.33.3.27 tclock_max	45
8.33.3.28 tclock_rate	1 5
8.33.3.29 tstart_clock	45
8.33.3.30 tstop_clock	46
8.33.3.31 zdiag_timer	46
8.34 prg_xlbo_mod Module Reference	46
8.34.1 Detailed Description	1 7
8.34.2 Function/Subroutine Documentation	47
8.34.2.1 prg_parse_xlbo()	1 7
8.34.2.2 prg_xlbo_fcoulupdate()	47
8.34.2.3 prg_xlbo_nint()	
8.34.3 Variable Documentation	1 8
8.34.3.1 alpha	1 8

8.34.3.2 c0	. 248
8.34.3.3 c1	. 248
8.34.3.4 c2	. 249
8.34.3.5 c3	. 249
8.34.3.6 c4	. 249
8.34.3.7 c5	. 249
8.34.3.8 cc	. 249
8.34.3.9 dp	. 249
8.34.3.10 kappa	. 250
8.35 prg_xlbokernel_mod Module Reference	. 250
8.35.1 Detailed Description	. 250
8.35.2 Function/Subroutine Documentation	. 25
8.35.2.1 invert()	. 25
8.35.2.2 prg_full_kernel()	. 25
8.35.2.3 prg_full_kernel_latte()	. 253
8.35.2.4 prg_kernel_matrix_multirank()	. 25
8.35.2.5 prg_kernel_multirank()	. 256
8.35.2.6 prg_kernel_multirank_latte()	. 25
8.35.2.7 prg_update_preconditioner()	. 259
8.35.3 Variable Documentation	. 260
8.35.3.1 dp	. 260
8.36 prg_xlkernel_mod Module Reference	. 260
8.36.1 Detailed Description	. 260
8.36.2 Function/Subroutine Documentation	. 26
8.36.2.1 prg_eig()	. 26
8.36.2.2 prg_fermi()	. 26
8.36.2.3 prg_get_deriv_finite_temp()	. 262
8.36.2.4 prg_inv()	. 262
8.36.2.5 prg_kernel_fermi_full()	. 262
8.36.2.6 prg_mmult()	. 263
8.36.2.7 prg_parse_xlkernel()	. 264
8.36.2.8 prg_rank1()	. 26
8.36.2.9 prg_v_kernel_fermi()	. 26
8.36.3 Variable Documentation	. 266
8.36.3.1 dp	. 266
9 Data Type Documentation	267
9.1 prg_chebyshev_mod::chebdata_type Type Reference	
9.1.1 Detailed Description	
9.1.2 Member Data Documentation	
9.1.2.1 atr	. 268
STAZOUU IVOE	/n/

	9.1.2.3 bndfil
	9.1.2.4 ef
	9.1.2.5 estep
	9.1.2.6 fermitol
	9.1.2.7 flavor
	9.1.2.8 getef
	9.1.2.9 jobname
	9.1.2.10 jon
	9.1.2.11 kbt
	9.1.2.12 mdim
	9.1.2.13 ncoeffs
	9.1.2.14 ndim
	9.1.2.15 npts
	9.1.2.16 threshold
	9.1.2.17 trkfunc
	9.1.2.18 verbose
9.2 prg_syste	em_mod::estruct_type Type Reference
9.2.1 D	etailed Description
9.2.2 M	lember Data Documentation
	9.2.2.1 coul_pot_k
	9.2.2.2 coul_pot_r
	9.2.2.3 eband
	9.2.2.4 fpul
	9.2.2.5 fscoul
	9.2.2.6 ham
	9.2.2.7 ham0
	9.2.2.8 hindex
	9.2.2.9 nel
	9.2.2.10 norbs
	9.2.2.11 oham
	9.2.2.12 orho
	9.2.2.13 over
	9.2.2.14 rho
	9.2.2.15 skforce
	9.2.2.16 zmat
9.3 prg_genz	_mod::genzspinp Type Reference
9.3.1 D	etailed Description
9.3.2 M	lember Data Documentation
	9.3.2.1 bml_type
	9.3.2.2 igenz
	9.3.2.3 integration
	9.3.2.4 mdim

9.3.2.5 nfirst
9.3.2.6 nreff
9.3.2.7 nrefi
9.3.2.8 numthresf
9.3.2.9 numthresi
9.3.2.10 verbose
9.3.2.11 zsp
9.4 prg_graph_mod::graph_partitioning_t Type Reference
9.4.1 Detailed Description
9.4.2 Member Data Documentation
9.4.2.1 ehomo
9.4.2.2 elumo
9.4.2.3 globalpartextent
9.4.2.4 globalpartmax
9.4.2.5 globalpartmin
9.4.2.6 localpartextent
9.4.2.7 localpartmax
9.4.2.8 localpartmin
9.4.2.9 maxeval
9.4.2.10 maxiter
9.4.2.11 mineval
9.4.2.12 myrank
9.4.2.13 nnodesinpart
9.4.2.14 nnodesinpartall
9.4.2.15 nparts
9.4.2.16 order
9.4.2.17 pname
9.4.2.18 pp
9.4.2.19 reorder
9.4.2.20 sgraph
9.4.2.21 totalnodes
9.4.2.22 totalnodes2
9.4.2.23 totalparts
9.4.2.24 totalprocs
9.4.2.25 vv
9.5 prg_graphsp2parser_mod::gsp2data_type Type Reference
9.5.1 Detailed Description
9.5.2 Member Data Documentation
9.5.2.1 bml_type
9.5.2.2 bndfil
9.5.2.3 covgfact
9.5.2.4 double_jump

9.5.2.5	errlimit		 	 	286
9.5.2.6 (graph_element		 	 	286
9.5.2.7	gthreshold		 	 	286
9.5.2.8 h	namfile		 	 	287
9.5.2.9 j	obname		 	 	287
9.5.2.10	maxsp2iter		 	 	287
9.5.2.11	mdim		 	 	287
9.5.2.12	minsp2iter		 	 	287
9.5.2.13	natoms		 	 	287
9.5.2.14	ndim		 	 	288
9.5.2.15	nlgcut		 	 	288
9.5.2.16	nodesperpart		 	 	288
9.5.2.17	parteach		 	 	288
9.5.2.18	partition_count		 	 	288
9.5.2.19	partition_refinement		 	 	288
9.5.2.20	partition_type		 	 	289
9.5.2.21	pdim		 	 	289
9.5.2.22	sdim		 	 	289
9.5.2.23	sp2conv		 	 	289
9.5.2.24	sp2tol		 	 	289
9.5.2.25	threshold		 	 	289
9.5.2.26	verbose		 	 	290
9.6 prg_modelham_m	od::mham_type Type Re	eference	 	 	290
9.6.1 Detailed D	escription		 	 	290
9.6.2 Member D	ata Documentation		 	 	290
9.6.2.1 k	oml_type		 	 	290
9.6.2.2	dab		 	 	291
9.6.2.3	daiaj		 	 	291
9.6.2.4	dbibj		 	 	291
9.6.2.5	dec		 	 	291
9.6.2.6	а		 	 	291
9.6.2.7	eb		 	 	291
9.6.2.8 j	obname		 	 	292
9.6.2.9 r	norbs		 	 	292
9.6.2.10	rcoeff		 	 	292
9.6.2.11	reshuffle		 	 	292
9.6.2.12	seed		 	 	292
9.7 prg_pulaymixer_m	od::mx_type Type Refer	ence	 	 	293
9.7.1 Detailed D	escription		 	 	293
9.7.2 Member D	ata Documentation		 	 	293
9.7.2.1 r	nixcoeff		 	 	293
9.7.2.2 r	mixeron		 	 	293

9.7.2.3 mixertype	94
9.7.2.4 mpulay	94
9.7.2.5 verbose	
9.8 prg_extras_mod::prg_memory_consumption Interface Reference	
9.8.1 Detailed Description	
9.8.2 Constructor & Destructor Documentation	
9.8.2.1 prg_memory_consumption()	
9.9 prg_parallel_mod::rankreducedata_t Type Reference	
9.9.1 Detailed Description	
9.9.2 Member Data Documentation	
9.9.2.1 rank	
9.9.2.2 val	
9.10 prg_response_mod::respdata_type Type Reference	
9.10.1 Detailed Description	
9.10.2 Member Data Documentation	
9.10.2.1 bmltype	
9.10.2.2 computedipole	
9.10.2.3 field	
9.10.2.4 fieldintensity	
9.10.2.5 getresponse	
9.10.2.6 mdim	
9.10.2.7 numthresh	
9.10.2.8 respmode	
9.10.2.9 typeofpert	
9.11 prg_syrotation_mod::rotation_type Type Reference	
9.11.1 Detailed Description	
	99
9.11.2.1 catom	
9.11.2.2 catom2	
9.11.2.3 jobname	
9.11.2.4 patom1	
9.11.2.5 patom2	
9.11.2.7 pq2	
9.11.2.8 rotate_atoms	
9.11.2.9 typeofrot	
9.11.2.10 v1	
9.11.2.11 v2	
9.11.2.12 vq	
9.12 prg_sp2parser_mod::sp2data_type Type Reference	
9.12.1 Detailed Description	
	02

9.12.2.1 bml_type	302
9.12.2.2 bndfil	302
9.12.2.3 flavor	302
9.12.2.4 jobname	302
9.12.2.5 maxsp2iter	302
9.12.2.6 mdim	303
9.12.2.7 minsp2iter	303
9.12.2.8 ndim	303
9.12.2.9 pdim	303
9.12.2.10 sdim	303
9.12.2.11 sp2conv	303
9.12.2.12 sp2tol	304
9.12.2.13 threshold	304
9.12.2.14 verbose	304
9.13 prg_graph_mod::subgraph_t Type Reference	304
9.13.1 Detailed Description	305
9.13.2 Member Data Documentation	305
9.13.2.1 core_halo_index	305
9.13.2.2 hsize	305
9.13.2.3 Ilsize	305
9.13.2.4 Isize	305
9.13.2.5 nodeinpart	306
9.13.2.6 part	306
9.14 prg_system_mod::system_type Type Reference	306
9.14.1 Detailed Description	308
9.14.2 Member Data Documentation	308
9.14.2.1 atomic_number	308
9.14.2.2 atomname	308
9.14.2.3 coordinate	308
9.14.2.4 estr	309
9.14.2.5 force	309
9.14.2.6 lattice_vector	309
9.14.2.7 mass	310
9.14.2.8 nats	310
9.14.2.9 net_charge	310
9.14.2.10 nsp	310
9.14.2.11 recip_vector	311
9.14.2.12 resindex	311
9.14.2.13 resname	311
9.14.2.14 spatnum	311
9.14.2.15 spindex	312
9.14.2.16 splist	312

9.14.2.17 spmass	
9.14.2.18 symbol	
9.14.2.19 userdef	
9.14.2.20 velocity	
9.14.2.21 volk	
9.14.2.22 volr	
9.15 prg_timer_mod::timer_status_t Type Reference	
9.15.1 Detailed Description	
9.15.2 Member Data Documentation	
9.15.2.1 maxrank	
9.15.2.2 maxvalue	. 315
9.15.2.3 minrank	
9.15.2.4 minvalue	
9.15.2.5 tavg	
9.15.2.6 tcount	. 316
9.15.2.7 tname	. 316
9.15.2.8 tpercent	. 316
9.15.2.9 tstart	. 316
9.15.2.10 tstdev	. 317
9.15.2.11 tsum	. 317
9.15.2.12 ttotal	. 317
9.16 prg_extras_mod::to_string Interface Reference	. 317
9.16.1 Detailed Description	. 317
9.16.2 Member Function/Subroutine Documentation	. 317
9.16.2.1 to_string_double()	. 317
9.16.2.2 to_string_integer()	. 318
9.16.2.3 to_string_long_long()	. 318
9.17 prg_xlbo_mod::xlbo_type Type Reference	. 319
9.17.1 Detailed Description	. 319
9.17.2 Member Data Documentation	. 319
9.17.2.1 cc	. 319
9.17.2.2 jobname	. 319
9.17.2.3 maxscfinititer	. 320
9.17.2.3 maxscfinititer	
	. 320
9.17.2.4 maxscfiter	. 320 . 320
9.17.2.4 maxscfiter	. 320 . 320 . 320
9.17.2.4 maxscfiter 9.17.2.5 minit 9.17.2.6 threshold	. 320 . 320 . 320 . 320
9.17.2.4 maxscfiter 9.17.2.5 minit 9.17.2.6 threshold 9.17.2.7 verbose	. 320 . 320 . 320 . 320 . 321
9.17.2.4 maxscfiter	. 320 . 320 . 320 . 320 . 321
9.17.2.4 maxscfiter	. 320 . 320 . 320 . 321 . 321

	9.18.2.3 scalecoeff	321
	9.18.2.4 verbose	321
10	File Documentation	323
	10.1 /tmp/qmd-progress/src/prg_charges_mod.F90 File Reference	323
	10.2 /tmp/qmd-progress/src/prg_chebyshev_mod.F90 File Reference	323
	10.3 /tmp/qmd-progress/src/prg_densitymatrix_mod.F90 File Reference	324
	10.4 /tmp/qmd-progress/src/prg_dos_mod.F90 File Reference	325
	10.5 /tmp/qmd-progress/src/prg_doxy_mod.F90 File Reference	326
	10.6 /tmp/qmd-progress/src/prg_ewald_mod.F90 File Reference	326
	10.7 /tmp/qmd-progress/src/prg_extras_mod.F90 File Reference	326
	10.8 /tmp/qmd-progress/src/prg_genz_mod.F90 File Reference	327
	10.9 /tmp/qmd-progress/src/prg_graph_mod.F90 File Reference	328
	10.10 /tmp/qmd-progress/src/prg_graphsolver_mod.F90 File Reference	329
	10.11 /tmp/qmd-progress/src/prg_graphsp2parser_mod.F90 File Reference	330
	10.12 /tmp/qmd-progress/src/prg_homolumo_mod.F90 File Reference	330
	10.13 /tmp/qmd-progress/src/prg_implicit_fermi_mod.F90 File Reference	330
	10.14 /tmp/qmd-progress/src/prg_initmatrices_mod.F90 File Reference	331
	10.15 /tmp/qmd-progress/src/prg_kernelparser_mod.F90 File Reference	332
	10.16 /tmp/qmd-progress/src/prg_modelham_mod.F90 File Reference	332
	10.17 /tmp/qmd-progress/src/prg_nonortho_mod.F90 File Reference	333
	10.18 /tmp/qmd-progress/src/prg_normalize_mod.F90 File Reference	333
	10.19 /tmp/qmd-progress/src/prg_openfiles_mod.F90 File Reference	334
	10.20 /tmp/qmd-progress/src/prg_parallel_mod.F90 File Reference	334
	10.21 /tmp/qmd-progress/src/prg_partition_mod.F90 File Reference	336
	10.22 /tmp/qmd-progress/src/prg_progress_mod.F90 File Reference	337
	10.23 /tmp/qmd-progress/src/prg_ptable_mod.F90 File Reference	337
	10.24 /tmp/qmd-progress/src/prg_pulaycomponent_mod.F90 File Reference	340
	10.25 /tmp/qmd-progress/src/prg_pulaymixer_mod.F90 File Reference	340
	10.26 /tmp/qmd-progress/src/prg_quantumdynamics_mod.F90 File Reference	341
	10.27 /tmp/qmd-progress/src/prg_response_mod.F90 File Reference	342
	10.28 /tmp/qmd-progress/src/prg_sp2_fermi_mod.F90 File Reference	343
	10.29 /tmp/qmd-progress/src/prg_sp2_mod.F90 File Reference	344
	10.30 /tmp/qmd-progress/src/prg_sp2parser_mod.F90 File Reference	345
	10.31 /tmp/qmd-progress/src/prg_subgraphloop_mod.F90 File Reference	345
	10.32 /tmp/qmd-progress/src/prg_syrotation_mod.F90 File Reference	346
	10.33 /tmp/qmd-progress/src/prg_system_mod.F90 File Reference	346
	10.34 /tmp/qmd-progress/src/prg_timer_mod.F90 File Reference	348
	10.35 /tmp/qmd-progress/src/prg_xlbo_mod.F90 File Reference	350
	10.36 /tmp/qmd-progress/src/prg_xlbokernel_mod.F90 File Reference	350
	10.37 /tmp/qmd-progress/src/prg_xlkernel_mod.F90 File Reference	351
	10.38 /tmp/qmd-progress/tests/README.md File Reference	352

	XX
Bibliography	353
land ave	355
Index	350

Testing the Progress library

1.1 Testing program for the progress library

1.1.1 To run the tests:

Go into the build folder and type:

```
make test
```

To run the tests in verbose mode:

```
make test ARGS="-V"
```

1.1.2 To run a single test:

To run a test on its own (in build) we just need to type:

```
/qmd-progress/build/main <test_name>
```

- , where "test_name" is the name of the test we want to run. Right now the keywords (test_name) we can pass are the following:
 - density: Tests the diagonalization routine to build the density.
 - sp2_short : Tests the first version of sp2
 - sp2_alg1 : Algorithm 1 for sp2
 - sp2_alg2 : Algorithm 2 for sp2
 - sp2_alg2_ellpack : Algorithm 2 for sp2 with ellpack
 - sp2_alg1_seq : See sp2_mod.F90 source file
 - sp2_alg2_seq : See sp2_mod.F90 source file
 - deorthogonalize_dense: See nonortho.F90 source file
 - orthogonalize_dense: See nonortho.F90 source file
 - buildzdiag: See genz_mod.F90 source file

1.1.3 To add a test:

- add the corresponding name of the test in /progress/tests/CMakeLists.txt
- add the corresponding keyword and test in /progress/tests/src/main.F90
- Copy any file that is necessary to run (data) in /progress/tests/tests_data/
- reconfigure and recompile

Todo List

Module prg_dos_mod

Add LDOS.

Subprogram prg_pulaycomponent_mod::prg_pulaycomponent0 (rho_bml, ham_bml, pcm_bml, threshold, M, bml_type, verbose)

M and bml_type will have to be removed from the input parameter.

Subprogram prg_pulaycomponent_mod::prg_pulaycomponentt (rho_bml, ham_bml, zmat_bml, pcm_bml, threshold, M, bml_type, verbose)

M and bml type will have to be removed from the input parameter.

Module prg_pulaymixer_mod

add the density matrix mixer.

Module prg_response_mod

Add the response scf

Change name response_SP2 to dm_prt_response

Change name response_rs to rs_prt_response

Subprogram prg_response_mod::prg_pert_from_file (prt_bml, norb)

Add read perturbation from file

Subprogram prg_system_mod::prg_parse_system (system, filename, extin)

Integrate this loop in the loop for building the splist.

4 Todo List

Module Index

3.1 Modules

Here is a list of all modules:

(LATTE related routines)	13
(PROGRESS related routines)	14
(EXTERNAL related routines)	16
(High-level codes using PROGRESS/LATTE modules)	17

6 Module Index

Modules Index

4.1 Modules List

Here is a list of all modules with brief descriptions:

prg_charges_mod	
A module to compute the Mulliken charges of a chemical system	19
prg_chebyshev_mod	
Module to obtain the density matrix by applying a Chebyshev polynomial expansion	21
prg_densitymatrix_mod	
Module to obtain the density matrix by diagonalizing an orthogonalized Hamiltonian	32
prg_dos_mod	
A module to compute the Density of state (DOS) and IDOS	41
prg_ewald_mod	44
prg_extras_mod	
Extra routines	50
prg_genz_mod	
To produce a matrix Z which is needed to orthogonalize H	57
prg_graph_mod	
The graph module	66
prg_graphsolver_mod	
Module for graph-based solvers	76
prg_graphsp2parser_mod	
Graph partitioning SP2 parser	79
prg_homolumo_mod	
The homolumo module	80
prg_implicit_fermi_mod	82
prg_initmatrices_mod	
Initialization module	94
prg_kernelparser_mod	
Some general parsing functions	96
prg_modelham_mod	404
The prg_hamiltonian module	101
prg_nonortho_mod	400
Module to prg_orthogonalize and prg_deorthogonalize any operator	102
prg_normalize_mod The prg_normalize module	105
· -	105
prg_openfiles_mod Module to handle input output files for the PROGRESS lib	109
Module to handle input output files for the PROGRESS lib	108
The parallel module	119

8 Modules Index

prg_	_partitionmod	
	The partition module	135
prg_	_progress_mod	
	The progress module	154
prg_	_ptable_mod	
	Periodic table of elements	156
prg_	_pulaycomponent_mod	
	Produces a matrix to get the Pulay Component of the forces	164
prg_	_pulaymixermod	
	Pulay mixer mode	167
prg_	_quantumdynamics_mod	
	A module to add in common quantum dynamical operations	170
prg_	_response_mod	4=0
	Module to compute the density matrix response and related quantities	176
prg_	_sp2_fermi_mod	400
	The SP2 Fermi module	189
prg_	_sp2_mod The SP2 module	196
nra	sp2parser_mod	196
prg_	SP2 parser	205
nra	subgraphloop_mod	203
prg_	_subgraphicop_module	206
pra	syrotation_mod	200
P. 9_	A module to rotate the coordinates of a sybsystem in chemical systems	211
pra	system_mod	
. 5_	A module to read and handle chemical systems	213
prg	timer mod	
	The timer module	234
prg_	_xlbo_mod	
	A module to perform XLBO integration	246
prg_	_xlbokernel_mod	
	Pre-conditioned O(N) calculation of the kernel for XL-BOMD	250
prg_	_xlkernel_mod	
	Add name	260

Data Type Index

5.1 Data Types List

Here are the data types with brief descriptions:

prg_chebyshev_mod::chebdata_type	
General Cheb solver type	267
prg_system_mod::estruct_type	
Electronic structure type	271
prg_genz_mod::genzspinp	
Input for the genz driver. This type controlls all the variables that are needed by genz	275
prg_graph_mod::graph_partitioning_t	
Trace per iteration	278
prg_graphsp2parser_mod::gsp2data_type	
General SP2 solver type	285
prg_modelham_mod::mham_type	
General ModelHam type	
prg_pulaymixer_mod::mx_type	293
prg_extras_mod::prg_memory_consumption	294
prg_parallel_mod::rankreducedata_t	
	295
prg_response_mod::respdata_type	296
prg_syrotation_mod::rotation_type	
Rotation type	298
prg_sp2parser_mod::sp2data_type	
General SP2 solver type	301
prg_graph_mod::subgraph_t	
Subgraph type	304
prg_system_mod::system_type	
System type	306
prg_timer_mod::timer_status_t	
Timer status type	314
prg_extras_mod::to_string	317
prg_xlbo_mod::xlbo_type	
General xlbo solver type	319
prg_xlkernel_mod::xlk_type	321

10 Data Type Index

File Index

6.1 File List

Here is a list of all files with brief descriptions:

/tmp/qmd-progress/src/prg_charges_mod.F90
/tmp/qmd-progress/src/prg_chebyshev_mod.F90 323
/tmp/qmd-progress/src/prg_densitymatrix_mod.F90
/tmp/qmd-progress/src/prg_dos_mod.F90
/tmp/qmd-progress/src/prg_doxy_mod.F90
/tmp/qmd-progress/src/prg_ewald_mod.F90
/tmp/qmd-progress/src/prg_extras_mod.F90
/tmp/qmd-progress/src/prg_genz_mod.F90
/tmp/qmd-progress/src/prg_graph_mod.F90
/tmp/qmd-progress/src/prg_graphsolver_mod.F90
/tmp/qmd-progress/src/prg_graphsp2parser_mod.F90
/tmp/qmd-progress/src/prg_homolumo_mod.F90 330
/tmp/qmd-progress/src/prg_implicit_fermi_mod.F90
/tmp/qmd-progress/src/prg_initmatrices_mod.F90
/tmp/qmd-progress/src/prg_kernelparser_mod.F90
/tmp/qmd-progress/src/prg_modelham_mod.F90 332
/tmp/qmd-progress/src/prg_nonortho_mod.F90
/tmp/qmd-progress/src/prg_normalize_mod.F90
/tmp/qmd-progress/src/prg_openfiles_mod.F90
/tmp/qmd-progress/src/prg_parallel_mod.F90
/tmp/qmd-progress/src/prg_partition_mod.F90
/tmp/qmd-progress/src/prg_progress_mod.F90
/tmp/qmd-progress/src/prg_ptable_mod.F90
/tmp/qmd-progress/src/prg_pulaycomponent_mod.F90
/tmp/qmd-progress/src/prg_pulaymixer_mod.F90 340
/tmp/qmd-progress/src/prg_quantumdynamics_mod.F90
/tmp/qmd-progress/src/prg_response_mod.F90
/tmp/qmd-progress/src/prg_sp2_fermi_mod.F90
/tmp/qmd-progress/src/prg_sp2_mod.F90
/tmp/qmd-progress/src/prg_sp2parser_mod.F90
/tmp/qmd-progress/src/prg_subgraphloop_mod.F90
/tmp/qmd-progress/src/prg_syrotation_mod.F90
/tmp/qmd-progress/src/prg_system_mod.F90
/tmp/qmd-progress/src/prg_timer_mod.F90
/tmp/qmd-progress/src/prg_xlbo_mod.F90
/tmp/qmd-progress/src/prg_xlbokernel_mod.F90
/tmp/qmd-progress/src/prg_xlkernel_mod.F90

12 File Index

Chapter 7

Module Documentation

7.1 (LATTE related routines)

7.2 (PROGRESS related routines)

Modules

· module prg_charges_mod

A module to compute the Mulliken charges of a chemical system.

· module prg_chebyshev_mod

Module to obtain the density matrix by applying a Chebyshev polynomial expansion.

module prg_densitymatrix_mod

Module to obtain the density matrix by diagonalizing an orthogonalized Hamiltonian.

• module prg_extras_mod

Extra routines.

module prg_genz_mod

To produce a matrix Z which is needed to orthogonalize H.

module prg_graph_mod

The graph module.

module prg_graphsolver_mod

Module for graph-based solvers.

• module prg_graphsp2parser_mod

Graph partitioning SP2 parser.

· module prg_homolumo_mod

The homolumo module.

· module prg initmatrices mod

Initialization module.

module prg_kernelparser_mod

Some general parsing functions.

• module prg_nonortho_mod

Module to prg_orthogonalize and prg_deorthogonalize any operator.

module prg_openfiles_mod

Module to handle input output files for the PROGRESS lib.

• module prg_parallel_mod

The parallel module.

• module prg_progress_mod

The progress module.

• module prg_ptable_mod

Periodic table of elements.

• module prg_pulaycomponent_mod

Produces a matrix to get the Pulay Component of the forces.

• module prg_pulaymixer_mod

Pulay mixer mode.

• module prg_quantumdynamics_mod

A module to add in common quantum dynamical operations.

• module prg_response_mod

Module to compute the density matrix response and related quantities.

• module prg_sp2_fermi_mod

The SP2 Fermi module.

module prg_sp2_mod

The SP2 module.

· module prg sp2parser mod

SP2 parser.

• module prg_syrotation_mod

A module to rotate the coordinates of a sybsystem in chemical systems.

module prg_system_mod

A module to read and handle chemical systems.

• module prg_timer_mod

The timer module.

• module prg_xlbo_mod

A module to perform XLBO integration.

module prg_xlbokernel_mod

Pre-conditioned O(N) calculation of the kernel for XL-BOMD.

• module prg_xlkernel_mod

Add name.

7.2.1 Detailed Description

7.3 (EXTERNAL related routines)

7.4 (High-level codes using PROGRESS/LATTE modules)

Chapter 8

Module Documentation

8.1 prg_charges_mod Module Reference

A module to compute the Mulliken charges of a chemical system.

Functions/Subroutines

- subroutine, public prg_get_charges (rho_bml, over_bml, hindex, charges, numel, spindex, mdimin, threshold)

 Constructs the charges from the density matrix.
- subroutine, public prg_get_hscf (ham0_bml, over_bml, ham_bml, spindex, hindex, hubbardu, charges, coulomb_pot_r, coulomb_pot_k, mdimin, threshold)

Constructs the SCF Hamiltonian given H0, HubbardU and charges. This routine does: $H = \sum_i U_i q_i + V_i$;, where U is the Hubbard parameter for every atom i. V is the coulombic potential for every atom i.

Variables

integer, parameter dp = kind(1.0d0)

8.1.1 Detailed Description

A module to compute the Mulliken charges of a chemical system.

This module contains routines that compute properties related to charges.

8.1.2 Function/Subroutine Documentation

8.1.2.1 prg_get_charges()

Constructs the charges from the density matrix.

Parameters

rho_bml	Density matrix in bml format.
over_bml	Overlap matrix in bml format.
hindex	Start and end index for every atom in the system.
charges	Output parameter that gives the vectorized charges.
threshold	Threshold value for matrix elements.

Definition at line 31 of file prg_charges_mod.F90.

Here is the call graph for this function:

8.1.2.2 prg get hscf()

Constructs the SCF Hamiltonian given H0, HubbardU and charges. This routine does: $H = \sum_i U_i q_i + V_i$;, where U is the Hubbard parameter for every atom i. V is the coulombic potential for every atom i.

Parameters

ham_bml	Hamiltonian in bml format.	
over_bml	Overlap in bml format.	
hindex	Start and end index for every atom in the system.	
hubbardu	Hubbard parameter for every atom.	
charges	Charges for every atom.	

Parameters

coulomb_pot←	Coulombic potential (r contribution)
_r	
coulomb_pot←	Coulombic potential (k contribution)
_k	
mdim	Maximum nonzeroes elements per row for every row.
threshold	Threshold value for matrix elements.

Definition at line 100 of file prg_charges_mod.F90.

8.1.3 Variable Documentation

8.1.3.1 dp

```
integer, parameter prg_charges_mod::dp = kind(1.0d0) [private]
```

Definition at line 17 of file prg_charges_mod.F90.

8.2 prg_chebyshev_mod Module Reference

Module to obtain the density matrix by applying a Chebyshev polynomial expansion.

Data Types

• type chebdata_type

General Cheb solver type.

Functions/Subroutines

• subroutine, public prg_parse_cheb (chebdata, filename)

Chebyshev parser. This module is used to parse all the input variables for the cheb electronic structure solver. Adding a new input keyword to the parser:

• subroutine, public prg_build_density_cheb (ham_bml, rho_bml, athr, threshold, ncoeffs, kbt, ef, bndfil, jon, verbose)

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion.

• subroutine, public prg_build_density_cheb_fermi (ham_bml, rho_bml, athr, threshold, ncoeffs, kbt, ef, bndfil, getef, fermitol, jon, npts, trkfunc, verbose)

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion. In this case the self-consistent recursion is applied to converge to the correct number of electrons and obtain the Fermi level.

real(dp) function jackson (ncoeffs, i, jon)

Evaluates the Jackson Kernel Coefficients.

subroutine prg_get_chebcoeffs (npts, kbt, ef, ncoeffs, coeffs, emin, emax)

Gets the coefficients of the Chebyshev expansion.

• subroutine prg_get_chebcoeffs_fermi_bs (npts, kbt, ef, tracesT, ncoeffs, coeffs, emin, emax, bndfil, norb, tol, jon, verbose)

Gets the coefficients of the Chebyshev expansion with Ef computation.

• subroutine prg_get_chebcoeffs_fermi_nt (npts, kbt, ef, tracesT, ncoeffs, coeffs, emin, emax, bndfil, norb, tol, jon, verbose)

Gets the coefficients of the Chebyshev expansion with Ef computation.

real(dp) function tr (r, x)

Chebyshev polynomial obtained by recursion.

• real(dp) function fermi (e, ef, kbt)

Gives the Fermi distribution value for energy e.

• real(dp) function absmaxderivative (func, de)

Gets the absolute maximum of the derivative of a function.

Variables

- integer, parameter dp = kind(1.0d0)
- real(dp), parameter pi = 3.14159265358979323846264338327950_dp

8.2.1 Detailed Description

Module to obtain the density matrix by applying a Chebyshev polynomial expansion.

See Amparo Gil 2007 [Amparo2007] , See Silver et al [Silver1996] , See Weisse et al [Weisse2006]

8.2.2 Function/Subroutine Documentation

8.2.2.1 absmaxderivative()

Gets the absolute maximum of the derivative of a function.

Parameters

func.	
de	Energy step.

Definition at line 802 of file prg_chebyshev_mod.F90.

Here is the caller graph for this function:

8.2.2.2 fermi()

Gives the Fermi distribution value for energy e.

Parameters

е	Energy.
ef	Fermi energy.

Definition at line 790 of file prg_chebyshev_mod.F90.

Here is the caller graph for this function:

8.2.2.3 jackson()

Evaluates the Jackson Kernel Coefficients.

Parameters

ncoeffs	Number of Chebyshev polynomial.
i	Coefficient number i.

Definition at line 532 of file prg_chebyshev_mod.F90.

Here is the caller graph for this function:

8.2.2.4 prg_build_density_cheb()

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion.

 $ho_{n+1}=b_{n+1}T_{n+1}+
ho_n$ Where, T_n is the nth Chebyshev polynomial and b_n is the nth coefficient of the expansion for the Fermi function. In the sparse version (when ellpack is used) the threshold can be varied linearly with the polynomial degree. The function is the following: $Thresh_0[a_{thr}(n-1)+(1-a_{thr})]$

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix.
athr	Threshold linear increasing constant.
threshold	Threshold for sparse matrix algebra.
ncoeffs	Number of Chebyshev coefficients.
kbt	Electronic temperature in the energy units of the Hamiltonian.
ef	Fermi level in the energy units of the Hamiltonian.
bndfil	Band filing factor.
verbose	Verbosity level.

Definition at line 143 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

8.2.2.5 prg_build_density_cheb_fermi()

```
real(dp), intent(in) bndfil,
logical, intent(in) getef,
real(dp) fermitol,
logical, intent(in) jon,
integer npts,
logical, intent(in) trkfunc,
integer, intent(in) verbose)
```

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion. In this case the self-consistent recursion is applied to converge to the correct number of electrons and obtain the Fermi level.

 $ho_{n+1}=b_{n+1}T_{n+1}+
ho_n$ Where, T_n is the nth Chebyshev polynomial and b_n is the nth coefficient of the expansion for the Fermi function. In the sparse version (when ellpack is used) the threshold can be varied linearly with the polynomial degree. The function is the following: $Thresh_0[a_{thr}(n-1)+(1-a_{thr})]$

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix.
athr	Threshold linear increasing constant.
threshold	Threshold for sparse matrix algebra.
ncoeffs	Number of Chebyshev coefficients.
kbt	Electronic temperature in the energy units of the Hamiltonian.
ef	Fermi level in the energy units of the Hamiltonian.
bndfil	Band filing factor.
npts	Number of energy points to compute the coefficients
verbose	Verbosity level.

Definition at line 309 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

8.2.2.6 prg_get_chebcoeffs()

Gets the coefficients of the Chebyshev expansion.

Parameters

npts	Number of points for discretization.
kbt	Electronic temperature.
ef	Fermi level.
ncoeffs	Number of Chebyshev coefficients.
coeffs	Output vector for the Chebyshev coefficients.
emin	lowest boundary for the eigenvalues of H.
emax	highest boundary for the eigenvalues of H.

Definition at line 568 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.2.2.7 prg_get_chebcoeffs_fermi_bs()

Gets the coefficients of the Chebyshev expansion with Ef computation.

In this case we are applying the bisection method to find the root.

Parameters

npts	Number of points for the discretization.
kbt	Electronic temperature.
ef	Fermi level.
tracesT	Input traces for matrix polynomials.
ncoeffs coeffs	Number of Chebyshev coefficients.
	Output vector for the Chebyshev coefficients.
emin	lowest boundary for the eigenvalues of H.
emax	highest boundary for the eigenvalues of H.
tol	Tolerance for the bisection method.
verbose	Verbosity level.

Definition at line 620 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

8.2.2.8 prg_get_chebcoeffs_fermi_nt()

Gets the coefficients of the Chebyshev expansion with Ef computation.

In this case the Newton-Raphson method is applied to find the root.

Parameters

Number of points for the discretization.
Electronic temperature.
Fermi level.
Input traces for matrix polynomials.
Number of Chebyshev coefficients.
Output vector for the Chebyshev coefficients.
lowest boundary for the eigenvalues of H.
highest boundary for the eigenvalues of H.
Band filing factor.
Number of orbitals.
Tolerance for NR method.
Verbosity level.

Definition at line 697 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

```
prg_chebyshev_mod::
prg_build_density_cheb_fermi

prg_chebyshev_mod::
prg_chebyshev_mod::
prg_chebyshev_mod::
prg_chebyshev_mod::
```

8.2.2.9 prg_parse_cheb()

Chebyshev parser. This module is used to parse all the input variables for the cheb electronic structure solver. Adding a new input keyword to the parser:

- If the variable is real, we have to increase nkey_re.
- Add the keyword (character type) in the keyvector_re vector.
- Add a default value (real type) in the valvector_re.
- Define a new variable and pass the value through valvector_re(num) where num is the position of the new keyword in the vector.

Definition at line 54 of file prg_chebyshev_mod.F90.

Here is the call graph for this function:

8.2.2.10 tr()

Chebyshev polynomial obtained by recursion.

Parameters

r	rth polynomial.	
Χ	argument the evaluate the polynomial.	Ī

Definition at line 777 of file prg_chebyshev_mod.F90.

Here is the caller graph for this function:

8.2.3 Variable Documentation

8.2.3.1 dp

```
integer, parameter prg_chebyshev_mod::dp = kind(1.0d0) [private]
```

Definition at line 23 of file prg_chebyshev_mod.F90.

8.2.3.2 pi

```
real(dp), parameter prg_chebyshev_mod::pi = 3.14159265358979323846264338327950_dp [private]
```

Definition at line 24 of file prg chebyshev mod.F90.

8.3 prg_densitymatrix_mod Module Reference

Module to obtain the density matrix by diagonalizing an orthogonalized Hamiltonian.

Functions/Subroutines

- subroutine, public prg_build_density_t0 (ham_bml, rho_bml, threshold, bndfil, eigenvalues_out) Builds the density matrix from H_0 for zero electronic temperature. $\rho = C\Theta(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. $\Theta()$ is the Heaviside function.
- subroutine, public prg_build_density_t (ham_bml, rho_bml, threshold, bndfil, kbt, ef, eigenvalues_out) Builds the density matrix from H_0 for electronic temperature T. $\rho = Cf(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.
- subroutine, public prg_build_density_t_fulldata (ham_bml, rho_bml, threshold, bndfil, kbt, ef, eigenvalues_
 out, evects bml, fvals)

Builds the density matrix from H_0 for electronic temperature T. $\rho = Cf(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.

- subroutine, public prg_build_density_t_fermi (ham_bml, rho_bml, threshold, kbt, ef, verbose)
 - Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I \epsilon) C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function. In this routine the Fermi level is passed as an argument.
- subroutine, public prg_build_atomic_density (rhoat_bml, numel, hindex, spindex, norb, bml_type)
 - Builds the atomic density matrix. $ho_{ii} = mathcal Z_{ii}$ Where, $mathcal Z_{ii}$ is the number of electrons for orbital i.
- subroutine, public prg_get_flevel (eigenvalues, kbt, bndfil, tol, Ef, err)
 - Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Bisection method over the function: $g(\mu) = \sum_k 2f(\epsilon_k \mu) N = 0$ Where $f(\epsilon_k \mu) = \frac{1}{1 + \exp{(\epsilon_k \mu)/(k_b T)}}$.
- subroutine, public prg_get_flevel_nt (eigenvalues, kbt, bndfil, tol, ef, err, verbose)
 - Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Newton-Raphson method over the function: $g(\mu) = \sum_k 2f(\epsilon_k \mu) N = 0$ Where $f(\epsilon_k \mu) = \frac{1}{1 + \exp{(\epsilon_k \mu)/(k_b T)}}$.
- subroutine, public prg get eigenvalues (ham bml, eigenvalues, verbose)

Gets the eigenvalues of the Orthogonalized Hamiltonian.

- subroutine, public prg_check_idempotency (mat_bml, threshold, idempotency)
 - To check the idempotency error of a matrix. This is calculated as the Frobenius norm of $(A A^2)$.
- real(dp) function fermi (e, ef, kbt)

Gives the Fermi distribution value for energy e.

Variables

integer, parameter dp = kind(1.0d0)

8.3.1 Detailed Description

Module to obtain the density matrix by diagonalizing an orthogonalized Hamiltonian.

8.3.2 Function/Subroutine Documentation

8.3.2.1 fermi()

Gives the Fermi distribution value for energy e.

Parameters

е	Energy.
ef	Fermi energy.

Definition at line 628 of file prg_densitymatrix_mod.F90.

Here is the caller graph for this function:

8.3.2.2 prg_build_atomic_density()

Builds the atomic density matrix. $\rho_{ii} = mathcal Z_{ii}$ Where, $mathcal Z_{ii}$ is the number of electrons for orbital i.

Parameters

rhoat	Output atomic diagonal density matrix,
hindex	Start and end index for every atom in the system.
numel	Number of electrons per specie. It runs over the specie index.
spindex	Specie index.
norbs	Number of orbitals.

Definition at line 341 of file prg_densitymatrix_mod.F90.

8.3.2.3 prg_build_density_t()

Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I - \epsilon) C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix,
threshold	Threshold for sparse matrix algebra.
bndfil	Filing factor.
kbt	Electronic temperature.
ef	Fermi level.
eigenvalues_out	Output the eigenvalues.

Warning

This does not solve the generalized eigenvalue problem. The Hamiltonian that comes in has to be preorthogonalized.

Definition at line 118 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

8.3.2.4 prg_build_density_t0()

Builds the density matrix from H_0 for zero electronic temperature. $\rho = C\Theta(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. $\Theta()$ is the Heaviside function.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix.
threshold	Threshold for sparse matrix algebra.
bndfil	Filing factor.
eigenvalues_out	Output the eigenvalues.

Warning

This does not solve the generalized eigenvalue problem. The Hamiltonian that comes in has to be preprg_← orthogonalized.

Definition at line 35 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

```
prg_response_mod::prg
_compute_response_fd

prg_densitymatrix_mod
::prg_build_density_t0
```

8.3.2.5 prg_build_density_t_fermi()

Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I - \epsilon) C^\dagger$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function. In this routine the Fermi level is passed as an argument.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix,
threshold	Threshold for sparse matrix algebra.

Warning

This does not solve the generalized eigenvalue problem. The Hamiltonian that comes in has to be preorthogonalized.

Definition at line 279 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

```
prg_graphsolver_mod
::prg_build_densitygp_t0
prg_densitymatrix_mod
::prg_build_density_t_fermi
```

8.3.2.6 prg_build_density_t_fulldata()

Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I - \epsilon) C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
rho_bml	Output density matrix,
threshold	Threshold for sparse matrix algebra.
bndfil	Filing factor.
kbt	Electronic temperature.
ef	Fermi level.
eigenvalues_out	Output the eigenvalues.
evects_bml	Output the eigenvectors.
fvals	Output the occupancies.

Warning

This does not solve the generalized eigenvalue problem. The Hamiltonian that comes in has to be preorthogonalized.

Definition at line 203 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

8.3.2.7 prg_check_idempotency()

To check the idempotency error of a matrix. This is calculated as the Frobenius norm of $(A-A^2)$.

Parameters

mat_bml	Some bml matrix
idempotency	(Output value of the idempotency error)

Definition at line 604 of file prg_densitymatrix_mod.F90.

8.3.2.8 prg_get_eigenvalues()

Gets the eigenvalues of the Orthogonalized Hamiltonian.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
eigenvalues	Output eigenvalues of the system.
verbose	Verbosity level.

Definition at line 559 of file prg_densitymatrix_mod.F90.

8.3.2.9 prg_get_flevel()

Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Bisection method over the function: $g(\mu) = \sum_k 2f(\epsilon_k - \mu) - N = 0$ Where $f(\epsilon_k - \mu) = \frac{1}{1 + \exp{(\epsilon_k - \mu)/(k_b T)}}$.

Parameters

eigenvalues	Eigenvalues of the system ($\{\epsilon_k\}$).
kbt	Temperature times the Boltzmann's constant (k_bT).
bndfil	Filing factor ($N_{el}/(2*N_{orbs})$).
tol	Tolerance for the bisection method.
Ef	Fermi level (μ).
err	Error logical variable

Definition at line 405 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.3.2.10 prg_get_flevel_nt()

Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Newton-Raphson method over the function: $g(\mu) = \sum_k 2f(\epsilon_k - \mu) - N = 0$ Where $f(\epsilon_k - \mu) = \frac{1}{1 + \exp{(\epsilon_k - \mu)}/(k_b T)}$.

Parameters

eigenvalues	Eigenvalues of the system ($\{\epsilon_k\}$).
kbt	Temperature times the Boltzmann's constant (k_bT).
bndfil	Filing factor ($N_{el}/(2*N_{orbs})$).
tol	Tolerance for the bisection method.
Ef	Fermi level (μ).
err	Error logical variable

Generated by Doxygen

Definition at line 477 of file prg_densitymatrix_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.3.3 Variable Documentation

8.3.3.1 dp

integer, parameter prg_densitymatrix_mod::dp = kind(1.0d0) [private]

Definition at line 14 of file prg_densitymatrix_mod.F90.

8.4 prg_dos_mod Module Reference

A module to compute the Density of state (DOS) and IDOS.

Functions/Subroutines

```
• subroutine, public prg_write_tdos (eigenvals, gamma, npts, emin, emax, filename) 
 Writes the total DOS into a file. DOS(\epsilon) = \sum_k L(\epsilon - \epsilon_k) Where \int_{-\infty}^{\infty} DOS(\epsilon) = Nstates. • real(dp) function lorentz (energy, eigenvals, loads, Gamma) 
 Lorentzian Function.
```

Variables

• integer, parameter dp = kind(1.0d0)

8.4.1 Detailed Description

A module to compute the Density of state (DOS) and IDOS.

This module will be used to compute DOS and IDOS.

Todo Add LDOS.

8.4.2 Function/Subroutine Documentation

8.4.2.1 lorentz()

Lorentzian Function.

```
Computes: L(\epsilon) = \sum_k \frac{\omega(k)\Gamma}{2\pi} \frac{1}{(\epsilon - \epsilon_k)^2 + (\Gamma/2)^2}
```

Parameters

energy	Energy point.
eigenvals	Eigenvalues of the system.
Gamma	Lorentz function broadening.

Definition at line 77 of file prg_dos_mod.F90.

Here is the caller graph for this function:

```
prg_dos_mod::prg_write_tdos prg_dos_mod::lorentz
```

8.4.2.2 prg_write_tdos()

Writes the total DOS into a file. $DOS(\epsilon) = \sum_k L(\epsilon - \epsilon_k)$ Where $\int_{-\infty}^{\infty} DOS(\epsilon) = Nstates$.

Note

DOS is NOT shifted respect to Ef.

Parameters

eigenvals	Eigenvalues of the system. \para gamma Lorentzian width.
npts	Number of energy points.
emin	Minimum energy value.
emax	Maximum energy value.
filename	Filename to write the DOS.

Definition at line 35 of file prg_dos_mod.F90.

Here is the call graph for this function:

8.4.3 Variable Documentation

8.4.3.1 dp

```
integer, parameter prg_dos_mod::dp = kind(1.0d0) [private]
```

Definition at line 17 of file prg_dos_mod.F90.

8.5 prg_ewald_mod Module Reference

Functions/Subroutines

• subroutine, public ewald_real_space_single_latte (COULOMBV, I, RXYZ, Box, Nr_elem, DELTAQ, J, U, Element_Pointer, Nr_atoms, COULACC, HDIM, Max_Nr_Neigh)

Find Coulomb potential on site I from single charge at site J.

- subroutine, public ewald_real_space_single (COULOMBV, FCOUL, I, RX, RY, RZ, LBox, DELTAQ, J, U, Element Type, Nr atoms, COULACC, TIMERATIO, HDIM, Max Nr Neigh)
- subroutine, public ewald_real_space_matrix_latte (E, RXYZ, Box, U, Element_Pointer, Nr_atoms, COULACC, nebcoul, totnebcoul, HDIM, Max_Nr_Neigh, Nr_Elem)
- subroutine, public ewald_real_space_latte (COULOMBV, I, RXYZ, Box, DELTAQ, U, Element_Pointer, Nr_
 atoms, COULACC, nebcoul, totnebcoul, HDIM, Max_Nr_Neigh, Nr_Elem)
- subroutine, public ewald_real_space_test (COULOMBV, I, RX, RY, RZ, LBox, DELTAQ, U, Element_Type, Nr_atoms, COULACC, nnRx, nnRy, nnRz, nrnnlist, nnType, Max_Nr_Neigh)
- subroutine, public ewald_real_space (COULOMBV, FCOUL, I, RX, RY, RZ, LBox, DELTAQ, U, Element_Type, Nr_atoms, COULACC, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, HDIM, Max_Nr_Neigh)
- subroutine, public ewald_k_space_latte (COULOMBV, RXYZ, Box, DELTAQ, Nr_atoms, COULACC, Max_
 —
 Nr Neigh)
- subroutine, public ewald_k_space_matrix_latte (E, RXYZ, Box, Nr_atoms, COULACC, Max_Nr_Neigh, neb-coul, totnebcoul)
- subroutine, public ewald_k_space_latte_single (COULOMBV, J, RXYZ, Box, DELTAQ, Nr_atoms, COULA←
 CC)
- subroutine, public ewald_k_space_test (COULOMBV, RX, RY, RZ, LBox, DELTAQ, Nr_atoms, COULACC, Max_Nr_Neigh)

Variables

integer, parameter dp = kind(1.0d0)

8.5.1 Function/Subroutine Documentation

8.5.1.1 ewald_k_space_latte()

Definition at line 745 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.2 ewald_k_space_latte_single()

Definition at line 999 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.3 ewald_k_space_matrix_latte()

Definition at line 871 of file prg_ewald_mod.F90.

8.5.1.4 ewald k space test()

Definition at line 1097 of file prg ewald mod.F90.

8.5.1.5 ewald_real_space()

```
subroutine, public prg_ewald_mod::ewald_real_space (
            real(prec), intent(out) COULOMBV,
             real(prec), dimension(3), intent(out) FCOUL,
            integer, intent(in) I,
            real(prec), dimension(nr_atoms), intent(in) RX,
            real(prec), dimension(nr_atoms), intent(in) RY,
            real(prec), dimension(nr_atoms), intent(in) RZ,
            real(prec), dimension(3), intent(in) LBox,
            real(prec), dimension(nr_atoms), intent(in) DELTAQ,
             real(prec), dimension(nr_atoms), intent(in) U,
            character(10), dimension(nr_atoms), intent(in) Element_Type,
            integer, intent(in) Nr_atoms,
            real(prec), intent(in) COULACC,
            real(prec), intent(in) TIMERATIO,
            real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRx,
            real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
             real(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnRz,
             integer, dimension(nr_atoms), intent(in) nrnnlist,
             integer, dimension(nr_atoms, max_nr_neigh), intent(in) nnType,
```

```
integer, intent(in) HDIM,
integer, intent(in) Max_Nr_Neigh )
```

Definition at line 623 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.6 ewald_real_space_latte()

Definition at line 389 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.7 ewald_real_space_matrix_latte()

Definition at line 265 of file prg ewald mod.F90.

8.5.1.8 ewald_real_space_single()

```
subroutine, public prg_ewald_mod::ewald_real_space_single (
             real (prec), intent (out) COULOMBV,
             real(prec), dimension(3), intent(out) FCOUL,
             integer, intent(in) I,
             real(prec), dimension(nr_atoms), intent(in) RX,
             real(prec), dimension(nr_atoms), intent(in) RY,
             real(prec), dimension(nr_atoms), intent(in) RZ,
             real(prec), dimension(3), intent(in) LBox,
             real(prec), dimension(nr_atoms), intent(in) DELTAQ,
             integer, intent(in) J,
             real (prec), dimension (nr_atoms), intent (in) U,
             character(10), dimension(nr_atoms), intent(in) Element_Type,
             integer, intent(in) Nr_atoms,
             real(prec), intent(in) COULACC,
             real (prec), intent (in) TIMERATIO,
             integer, intent(in) HDIM,
             integer, intent(in) Max_Nr_Neigh )
```

Definition at line 142 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.9 ewald_real_space_single_latte()

Find Coulomb potential on site I from single charge at site J.

Definition at line 30 of file prg_ewald_mod.F90.

Here is the caller graph for this function:

8.5.1.10 ewald_real_space_test()

```
subroutine, public prg_ewald_mod::ewald_real_space_test (
              real (prec), intent (out) COULOMBV,
              integer, intent(in) I,
              real(prec), dimension(nr_atoms), intent(in) RX,
              real(prec), dimension(nr_atoms), intent(in) RY,
              real(prec), dimension(nr_atoms), intent(in) RZ,
              real(prec), dimension(3), intent(in) LBox,
              real(prec), dimension(nr_atoms), intent(in) DELTAQ,
              {\tt real}\,({\tt prec}) , {\tt dimension}\,({\tt nr\_atoms}) , {\tt intent}\,({\tt in}) {\tt \it U} ,
              character(10), dimension(nr_atoms), intent(in) Element_Type,
              integer, intent(in) Nr_atoms,
              real (prec), intent (in) COULACC,
              real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRx,
              real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
              real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
              integer, dimension(nr_atoms), intent(in) nrnnlist,
              integer, dimension(nr_atoms, max_nr_neigh), intent(in) nnType,
              integer, intent(in) Max_Nr_Neigh )
```

Definition at line 506 of file prg_ewald_mod.F90.

8.5.2 Variable Documentation

8.5.2.1 dp

```
integer, parameter prg_ewald_mod::dp = kind(1.0d0) [private]
```

Definition at line 12 of file prg_ewald_mod.F90.

8.6 prg extras mod Module Reference

Extra routines.

Data Types

- interface prg_memory_consumption
- interface to_string

Functions/Subroutines

```
• character(len=:) function, allocatable to_string_integer (i)
```

Convert integer to string.

character(len=:) function, allocatable to_string_long_long (i)

Convert integer to string.

• character(len=:) function, allocatable to_string_double (x)

Convert double to string.

• subroutine, public prg_print_matrix (matname, amat, i1, i2, j1, j2)

To write a dense matrix to screen.

• real(dp) function, public mls ()

To get the actual time in milliseconds.

• subroutine, public prg_delta (x, s, nn, dta)

Delta function $||X^{\wedge}tSX - I||$.

• subroutine, public prg_get_mem (procname, tag)

Get proc memory.

• subroutine prg_twonorm (a, nn, norm2)

Gets the norm2 of a square matrix.

• real(dp) function, public prg_norm2 (a)

Gets the norm2 of a vector.

Variables

• integer, parameter dp = kind(1.0d0)

8.6.1 Detailed Description

Extra routines.

A module to add any extra routine considered necessary but which is NOT essential for any other PROGRESS routine

8.6.2 Function/Subroutine Documentation

8.6.2.1 mls()

real(dp) function, public prg_extras_mod::mls

To get the actual time in milliseconds.

Parameters

mls Output value with the machine time in milliseconds.

Definition at line 140 of file prg_extras_mod.F90.

Here is the caller graph for this function:

8.6.2.2 prg_delta()

```
subroutine, public prg_extras_mod::prg_delta (
    real(dp), dimension(nn,nn) x,
    real(dp), dimension(nn,nn) s,
    integer nn,
    real(dp) dta)
```

Delta function ||X^tSX - I||.

Parameters

X	input matrix.
s	overlap matrix.
dta	Delta output value.

Definition at line 156 of file prg_extras_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.6.2.3 prg_get_mem()

Get proc memory.

Parameters

procname	Process name to get the mem usage.
tag	Tag to pprint the processor mem usage.

Definition at line 192 of file prg_extras_mod.F90.

8.6.2.4 prg_norm2()

Gets the norm2 of a vector.

Parameters

Definition at line 241 of file prg_extras_mod.F90.

Here is the caller graph for this function:

8.6.2.5 prg_print_matrix()

To write a dense matrix to screen.

Parameters

matname	Matrix name.
amat	Matrix to be printed.
i1	Print from row i1.
i2	Print up to from row i2.
j1	Print from column j1.
j2	Print up to column j2.

Definition at line 101 of file prg_extras_mod.F90.

8.6.2.6 prg_twonorm()

Gets the norm2 of a square matrix.

Parameters

а	Square matrix.
nn	Matrix size.
norm2	Two-norm of matrix a.

Definition at line 216 of file prg_extras_mod.F90.

Here is the caller graph for this function:

8.6.2.7 to_string_double()

```
\label{local_character} \begin{tabular}{ll} character(len=:) & function, allocatable prg_extras_mod::to_string_double ( & double precision, intent(in) <math>x ) [private] \\ \end{tabular}
```

Convert double to string.

Parameters

x The double

Returns

The string

Definition at line 81 of file prg_extras_mod.F90.

8.6.2.8 to_string_integer()

```
\label{location}  \mbox{character(len=:)} \quad \mbox{function, allocatable prg_extras_mod::to_string_integer (} \\ \mbox{integer, intent(in) } i \mbox{)} \quad \mbox{[private]}
```

Convert integer to string.

Parameters

i The integer

Returns

The string

Definition at line 47 of file prg_extras_mod.F90.

8.6.2.9 to_string_long_long()

Convert integer to string.

Parameters

Returns

The string

Definition at line 63 of file prg_extras_mod.F90.

8.6.3 Variable Documentation

8.6.3.1 dp

```
integer, parameter prg_extras_mod::dp = kind(1.0d0) [private]
```

Definition at line 31 of file prg_extras_mod.F90.

8.7 prg_genz_mod Module Reference

To produce a matrix ${\cal Z}$ which is needed to orthogonalize ${\cal H}.$

Data Types

· type genzspinp

Input for the genz driver. This type controlls all the variables that are needed by genz.

Functions/Subroutines

• subroutine, public prg_parse_zsp (input, filename)

The parser for genz solver.

• subroutine, public prg_init_zspmat (igenz, zk1_bml, zk2_bml, zk3_bml, zk4_bml, zk5_bml, zk6_bml, norb, bml_type, bml_element_type)

Initiates the matrices for the XI integration of Z.

- subroutine, public prg_buildzdiag (smat_bml, zmat_bml, threshold, mdimin, bml_type, verbose)
 - Usual subroutine involving diagonalization. $Z=U\sqrt{s}U^{\dagger}$, where U = eigenvectors and s = eigenvalues. The purpose of this subroutine is to have an exact way of computing z for comparing with the sparse approach.
- subroutine, public prg_buildzsparse (smat_bml, zmat_bml, igenz, mdim, bml_type, zk1_bml, zk2_bml, zk3
 _bml, zk4_bml, zk5_bml, zk6_bml, nfirst, nrefi, nreff, thresholdi, thresholdf, integration, verbose)

Inverse factorization using Niklasson's algorithm.

- subroutine, public prg_genz_sp_initialz0 (smat_bml, zmat_bml, norb, mdim, bml_type_f, threshold)
 Initial estimation of Z.
- subroutine, public prg_genz_sp_initial_zmat (smat_bml, zmat_bml, norb, mdim, bml_type_f, threshold) Initial estimation of Z.
- subroutine prg_genz_sp_int (zmat_bml, zk1_bml, zk2_bml, zk3_bml, zk4_bml, zk5_bml, zk6_bml, igenz, norb, bml type, threshold)

Inverse factorization using Niklasson's algorithm.

subroutine, public prg_genz_sp_ref (smat_bml, zmat_bml, nref, norb, bml_type, threshold)
 Iterative refinement.

Variables

integer, parameter dp = kind(1.0d0)

8.7.1 Detailed Description

To produce a matrix Z which is needed to orthogonalize H.

```
H_{orth} = Z^{\dagger}HZ See Negre 2016 [2]
```

8.7.2 Function/Subroutine Documentation

8.7.2.1 prg_buildzdiag()

Usual subroutine involving diagonalization. $Z=U\sqrt{s}U^{\dagger}$, where U= eigenvectors and s= eigenvalues. The purpose of this subroutine is to have an exact way of computing z for comparing with the sparse approach.

Parameters

smat_bml	Overlap matrix in bml format.
zmat_bml	Congruence transform in bml format.
threshold	Threshold value to use, in this case, only in the backtransformation to ellpack format.
mdim	Maximun nonzero to use, in this case, only in the backtransformation to ellpack format.
bml_type	the bml type we are passing.

Definition at line 175 of file prg_genz_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.7.2.2 prg_buildzsparse()

```
integer nreff,
real(dp) thresholdi,
real(dp) thresholdf,
logical integration,
integer verbose )
```

Inverse factorization using Niklasson's algorithm.

Parameters

smat_bml	overlap matrix	
zmat_bml	congruence transform to be updated or computed. (bml format)	
igenz	counter to keep track of the calls to this subroutine.	
mdim	dimension of the maxnonzero per row.	
zk1_bml-zk6_bml	history of the past congruence transforms.	
nfirst	first pre septs with nrefi and thresholdi.	
nrefi	number of refinement iterations for the firsts "nfirst" steps.	
nreff	number of refinement iterations for the rest of the steps.	
integration	ion if we want to apply xl integration scheme for z (default is always .true.	
verbose	to print extra information.	

Definition at line 276 of file prg_genz_mod.F90.

Here is the call graph for this function:

8.7.2.3 prg_genz_sp_initial_zmat()

Initial estimation of Z.

Note

Most of the operations are done in pure dense format. The purpose of this subroutine is to have an exact way of computing z for comparing with the sparse approach.

Parameters

smat_bml	Overlap matrix in bml format.
zmat_bml	Congruence transform in bml format.
norb	Congruence transform in bml format.
mdim	Congruence transform in bml format.
bml_← type_f	The bml final type of zmat_bml.
threshold	Threshold value to use, in this case, only in the backtransformation to ellpack format.

Definition at line 479 of file prg_genz_mod.F90.

8.7.2.4 prg_genz_sp_initialz0()

Initial estimation of Z.

Note

Most of the operations are done in pure dense format. The purpose of this subroutine is to have an exact way of computing z for comparing with the sparse approach.

Parameters

smat_bml	Overlap matrix in bml format.
zmat_bml	Congruence transform in bml format.
norb	Congruence transform in bml format.
mdim	Congruence transform in bml format.
bml_← type_f	The bml final type of zmat_bml.
threshold	Threshold value to use, in this case, only in the backtransformation to ellpack format.

Definition at line 339 of file prg_genz_mod.F90.

Here is the caller graph for this function:

8.7.2.5 prg_genz_sp_int()

Inverse factorization using Niklasson's algorithm.

Parameters

smat_bml	overlap matrix
zmat_bml	congruence transform to be updated or computed. (bml format)
mdim	dimension of the maxnonzero per row.
zk1_bml-zk6_bml	history of the past congruence transforms.
igenz	counter to keep track of the calls to this subroutine.
norb	Congruence transform in bml format.
bml_type_f	The bml final type of zmat_bml.
threshold	Threshold value to use.

Definition at line 636 of file prg_genz_mod.F90.

Here is the caller graph for this function:

8.7.2.6 prg_genz_sp_ref()

Iterative refinement.

Parameters

smat_bml	overlap matrix
zmat_bml	congruence transform to be updated or computed. (bml format)
nref	Number of refinement iterations.
bml_←	The bml final type of zmat_bml.
type_f	
threshold	Threshold value to use.
verbose	to print extra information.

Definition at line 720 of file prg_genz_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.7.2.7 prg_init_zspmat()

```
subroutine, public prg_genz_mod::prg_init_zspmat (
    integer igenz,
    type(bml_matrix_t) zk1_bml,
    type(bml_matrix_t) zk2_bml,
    type(bml_matrix_t) zk3_bml,
    type(bml_matrix_t) zk4_bml,
    type(bml_matrix_t) zk5_bml,
    type(bml_matrix_t) zk6_bml,
    integer norb,
    character(20) bml_type,
    character(20), optional bml_element_type)
```

Initiates the matrices for the XI integration of Z.

Parameters

self	input zsp variables
zk1_bml-zk6_bml	history record of the previous Z matrices.
norb	number of orbitals.
bml_type	the bml format we are passing.

Definition at line 135 of file prg genz mod.F90.

8.7.2.8 prg_parse_zsp()

The parser for genz solver.

Definition at line 68 of file prg_genz_mod.F90.

Here is the call graph for this function:

8.7.3 Variable Documentation

8.7.3.1 dp

```
integer, parameter prg_genz_mod::dp = kind(1.0d0) [private]
```

Definition at line 18 of file prg_genz_mod.F90.

8.8 prg_graph_mod Module Reference

The graph module.

Data Types

· type graph_partitioning_t

Trace per iteration.

• type subgraph_t

Subgraph type.

Functions/Subroutines

• subroutine, public prg_initsubgraph (sg, pnum, hsize)

Initialize subgraph.

• subroutine, public prg_destroysubgraph (sg)

Destroy subgraph.

• subroutine, public prg_initgraphpartitioning (gp, pname, np, nnodes, nnodes2)

Initialize graph partitioning.

subroutine, public prg_destroygraphpartitioning (gp)

Destroy graph partitioning.

• subroutine, public prg printgraphpartitioning (gp)

Print graph partitioning structure data.

• subroutine, public prg_equalpartition (gp, nodesPerPart, nnodes)

Create equal graph partitions, based on number of rows/orbitals.

• subroutine, public prg_equalgrouppartition (gp, hindex, ngroup, nodesPerPart, nnodes)

Create equal group graph partitions, based on number of atoms/groups.

• subroutine, public prg_filepartition (gp, partFile)

Read graph partitions from a file, based on number of rows/orbitals.

• subroutine prg_readpart (gp, partFile)

Read parts (core) from part file.

• subroutine, public prg_fnormgraph (gp)

Accumulate trace norm across all subgraphs.

Variables

• integer, parameter dp = kind(1.0d0)

8.8.1 Detailed Description

The graph module.

8.8.2 Function/Subroutine Documentation

8.8.2.1 prg_destroygraphpartitioning()

Destroy graph partitioning.

Parameters

Definition at line 263 of file prg_graph_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.8.2.2 prg_destroysubgraph()

Destroy subgraph.

Parameters

sg Subgraph

Definition at line 159 of file prg_graph_mod.F90.

Here is the caller graph for this function:

8.8.2.3 prg_equalgrouppartition()

Create equal group graph partitions, based on number of atoms/groups.

Parameters

gp	Graph partitioning
hindex	Node indeces that represent ranges of atoms/groups
ngroup	Number of group nodes
nodesPerPart	Number of core nodes per partition
nnodes	Total nodes in Hamiltonian matrix

Definition at line 402 of file prg_graph_mod.F90.

Here is the call graph for this function:

8.8.2.4 prg_equalpartition()

Create equal graph partitions, based on number of rows/orbitals.

Parameters

gp	Graph partitioning`
nodesPerPart	Number of core nodes per partition
nnodes	Total nodes in Hamiltonian matrix

Definition at line 355 of file prg_graph_mod.F90.

Here is the call graph for this function:

8.8.2.5 prg_filepartition()

Read graph partitions from a file, based on number of rows/orbitals.

Parameters

partFile	File containing core nodes for each partition
gp	Graph partitioning

Definition at line 463 of file prg_graph_mod.F90.

Here is the call graph for this function:

8.8.2.6 prg_fnormgraph()

Accumulate trace norm across all subgraphs.

Parameters

gp Graph partitioning

Definition at line 516 of file prg_graph_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.8.2.7 prg_initgraphpartitioning()

Initialize graph partitioning.

Parameters

gp	Graph partitioning
pname	Partitioning name
np	Number of partitions
nnodes	Number of groups/nodes
nnodes2	Number of nodes

Definition at line 175 of file prg_graph_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.8.2.8 prg_initsubgraph()

Initialize subgraph.

Parameters

sg	Subgraph
pnum	Part number
hsize	Size of full matrix

Definition at line 143 of file prg_graph_mod.F90.

Here is the caller graph for this function:

8.8.2.9 prg_printgraphpartitioning()

Print graph partitioning structure data.

Parameters

```
gp Graph partitioning
```

Definition at line 292 of file prg graph mod.F90.

8.8.2.10 prg_readpart()

Read parts (core) from part file.

Parameters

gp	Graph partitioning
partFile	Partition file

Definition at line 475 of file prg_graph_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.8.3 Variable Documentation

8.8.3.1 dp

```
integer, parameter prg_graph_mod::dp = kind(1.0d0) [private]
```

Definition at line 16 of file prg_graph_mod.F90.

8.9 prg_graphsolver_mod Module Reference

Module for graph-based solvers.

Functions/Subroutines

- subroutine, public prg_build_densitygp_t0 (ham_bml, g_bml, rho_bml, threshold, bndfil, Ef, nparts, verbose)

 Builds the density matrix from H₀ using a graph-based approach.
- subroutine, public prg_build_zmatgp (over_bml, g_bml, zmat_bml, threshold, nparts, verbose)

 Builds the inverse overlap factor matrix from S using a graph-based approach.

Variables

• integer, parameter dp = kind(1.0d0)

8.9.1 Detailed Description

Module for graph-based solvers.

8.9.2 Function/Subroutine Documentation

8.9.2.1 prg_build_densitygp_t0()

Builds the density matrix from H_0 using a graph-based approach.

Parameters

ham_bml	Input Orthogonalized Hamiltonian matrix.
g_bml	Matrix to extract the graph from.
rho_bml	Density matrix.
threshold	Threshold for sparse matrix algebra.
bndfil	Filing factor.
Ef	Fermi level or chemical potential.
nparts	Number of parts to be used in graph partitioning.
verbose	Verbosity level.

Definition at line 41 of file prg_graphsolver_mod.F90.

Here is the call graph for this function:

8.9.2.2 prg_build_zmatgp()

Builds the inverse overlap factor matrix from S using a graph-based approach.

Parameters

over_bml	Input Overlap matrix.
g_bml	Matrix to extract the graph from.
zmat_bml	Overlap matrix.
threshold	Threshold for sparse matrix algebra.
nparts	Number of parts to be used in graph partitioning.
verbose	Verbosity level.

Definition at line 183 of file prg_graphsolver_mod.F90.

Here is the call graph for this function:

8.9.3 Variable Documentation

8.9.3.1 dp

```
integer, parameter prg_graphsolver_mod::dp = kind(1.0d0) [private]
```

Definition at line 23 of file prg_graphsolver_mod.F90.

8.10 prg_graphsp2parser_mod Module Reference

Graph partitioning SP2 parser.

Data Types

type gsp2data_type
 General SP2 solver type.

Functions/Subroutines

subroutine, public prg_parse_gsp2 (gsp2data, filename)
 The parser for SP2 solver.

Variables

• integer, parameter dp = kind(1.0d0)

8.10.1 Detailed Description

Graph partitioning SP2 parser.

This module is used to parse all the neccesary input variables for graph-based SP2 electronic structure solver. Adding a new input keyword to the parser:

- If the variable is real, we have to increase nkey_re.
- Add the keyword (character type) in the keyvector_re vector.
- Add a default value (real type) in the valvector_re.
- Define a new variable and pass the value through valvector_re(num) where num is the position of the new keyword in the vector.

8.10.2 Function/Subroutine Documentation

8.10.2.1 prg_parse_gsp2()

The parser for SP2 solver.

Definition at line 62 of file prg_graphsp2parser_mod.F90.

Here is the call graph for this function:

8.10.3 Variable Documentation

8.10.3.1 dp

```
integer, parameter prg_graphsp2parser_mod::dp = kind(1.0d0) [private]
```

Definition at line 22 of file prg_graphsp2parser_mod.F90.

8.11 prg_homolumo_mod Module Reference

The homolumo module.

Functions/Subroutines

- subroutine, public prg_homolumogap (vv, imax, pp, mineval, maxeval, ehomo, elumo, egap, verbose)
- subroutine, public prg_sp2sequence (pp, imax, mineval, maxeval, ehomo, elumo, errlimit, verbose)

Variables

integer, parameter dp = kind(1.0d0)

8.11.1 Detailed Description

The homolumo module.

8.11.2 Function/Subroutine Documentation

8.11.2.1 prg_homolumogap()

Definition at line 24 of file prg homolumo mod.F90.

8.11.2.2 prg sp2sequence()

```
subroutine, public prg_homolumo_mod::prg_sp2sequence (
    integer, dimension(:), intent(inout) pp,
    integer, intent(inout) imax,
    real(dp), intent(in) mineval,
    real(dp), intent(in) maxeval,
    real(dp), intent(in) ehomo,
    real(dp), intent(in) elumo,
    real(dp), intent(in) errlimit,
    integer, intent(in), optional verbose)
```

Definition at line 98 of file prg homolumo mod.F90.

8.11.3 Variable Documentation

8.11.3.1 dp

```
integer, parameter prg_homolumo_mod::dp = kind(1.0d0) [private]
```

Definition at line 14 of file prg_homolumo_mod.F90.

8.12 prg implicit fermi mod Module Reference

Functions/Subroutines

subroutine, public prg_implicit_fermi_save_inverse (Inv_bml, h_bml, p_bml, nsteps, nocc, mu, beta, occErr
 Limit, threshold, tol, SCF_IT, occiter, totns)

Recursive Implicit Fermi Dirac for finite temperature.

• subroutine, public prg_implicit_fermi (h_bml, p_bml, nsteps, k, nocc, mu, beta, method, osteps, occErrLimit, threshold, tol)

Recursive Implicit Fermi Dirac for finite temperature.

• subroutine, public prg_implicit_fermi_zero (h_bml, p_bml, nsteps, mu, method, threshold, tol)

Recursive Implicit Fermi Dirac for zero temperature.

• subroutine, public prg_implicit_fermi_first_order_response (H0_bml, H1_bml, P0_bml, P1_bml, Inv_bml, nsteps, mu0, beta, nocc, threshold)

Calculate first order density matrix response to perturbations using Implicit Fermi Dirac.

subroutine, public prg_implicit_fermi_response (H0_bml, H1_bml, H2_bml, H3_bml, P0_bml, P1_bml, P2_
 bml, P3 bml, nsteps, mu0, mu, beta, nocc, occ_tol, lin_tol, order, threshold)

Calculate density matrix response to perturbations using Implicit Fermi Dirac.

• subroutine, public prg finite diff (H0 bml, H list, mu0, mu list, beta, order, lambda, h, threshold)

Calculate density matrix response from perturbations in the Hamiltonian.

- subroutine prg_setup_linsys (p_bml, A_bml, b_bml, p2_bml, y_bml, aux_bml, aux1_bml, k, threshold) Set up linear system for Implicit Fermi Dirac.
- subroutine prg_newtonschulz (a_bml, ai_bml, r_bml, tmp_bml, d_bml, I_bml, tol, threshold, num_iter)

Find the inverse of the matrix A with Newton-Schulz iteration.

• subroutine prg_pcg (A_bml, p_bml, p2_bml, d_bml, wtmp_bml, cg_tol, threshold)

Solve the system AX = B with conjugate gradient.

subroutine prg_conjgrad (A_bml, p_bml, p2_bml, tmp_bml, d_bml, w_bml, cg_tol, threshold)

Solve the system AX = B with conjugate gradient.

subroutine prg_get_density_matrix (ham_bml, p_bml, beta, mu, threshold)

Calculate the density matrix with diagonalization.

- subroutine, public prg_test_density_matrix (ham_bml, p_bml, beta, mu, nocc, osteps, occErrLimit, threshold)

 Calculate the density matrix with diagonalization and converge chemical.
- real(dp) function fermi (e, mu, beta)

Gives the Fermi distribution value for energy e.

Variables

• integer, parameter dp = kind(1.0d0)

8.12.1 Function/Subroutine Documentation

8.12.1.1 fermi()

Gives the Fermi distribution value for energy e.

Parameters

e	Energy.
mu	Fermi energy.
beta	Inverse temperature

Definition at line 1193 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.1.2 prg_conjgrad()

Solve the system AX = B with conjugate gradient.

Parameters

A_bml	Coefficient matrix A
p_bml	Output solution X
p2_bml	Right side matrix B
d_bml	Auxillary matrix
w_bml	Auxillary matrix
cg_tol	Convergence condition (OBS squared Frobenius norm of residual matrix)
threshold	Threshold for matrix algebra

Definition at line 1007 of file prg_implicit_fermi_mod.F90.

Here is the caller graph for this function:

8.12.1.3 prg_finite_diff()

Calculate density matrix response from perturbations in the Hamiltonian.

Definition at line 727 of file prg implicit fermi mod.F90.

Here is the call graph for this function:

8.12.1.4 prg_get_density_matrix()

Calculate the density matrix with diagonalization.

Parameters

ham_bml	Input hamiltonian
p_bml	Output density matrix
beta	Inverse temperature
ти	Chemical potential
threshold	Threshold for matrix algebra

Definition at line 1057 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.12.1.5 prg_implicit_fermi()

Recursive Implicit Fermi Dirac for finite temperature.

Parameters

h_bml	Input Hamiltonian matrix.
p_bml	Output density matrix.
nsteps	Number of recursion steps.
k	Expansion order
nocc	Number of occupied states.
ти	Shifted chemical potential
beta	Input inverse temperature.
method	0 - conjugate gradient, 1 - newton-schultz
osteps	Outer loop steps to converge chemical potential
occErrLimit	Occupation error limit.
threshold	Threshold for multiplication.
tol	Tolerance for linear system solver See

Definition at line 211 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.1.6 prg_implicit_fermi_first_order_response()

Calculate first order density matrix response to perturbations using Implicit Fermi Dirac.

Parameters

H0_bml	Input Hamiltonian matrix.
H1_bml	Input First order perturbation of H0.
P0_bml	Output density matrix.
P1_bml	Output First order density matrix response.
nsteps	Number of recursion steps.
mu0	Shifted chemical potential.
beta	Input inverse temperature.
посс	Number of occupied states.
threshold	Threshold for matrix algebra. See

Definition at line 441 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.12.1.7 prg_implicit_fermi_response()

```
subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi_response (
            type(bml_matrix_t), intent(in) H0_bml,
            type(bml_matrix_t), intent(in) H1_bml,
            type(bml_matrix_t), intent(in) H2_bml,
            type(bml_matrix_t), intent(in) H3_bml,
            type(bml_matrix_t), intent(inout) P0_bml,
            type(bml_matrix_t), intent(inout) P1_bml,
            type(bml_matrix_t), intent(inout) P2_bml,
            type(bml_matrix_t), intent(inout) P3_bml,
            integer, intent(in) nsteps,
            real(dp), intent(inout) mu0,
            real(dp), dimension(:), intent(inout), allocatable mu,
            real(dp), intent(in) beta,
            real(dp), intent(in) nocc,
            real(dp), intent(in) occ_tol,
            real(dp), intent(in) lin_tol,
            integer order,
            real(dp) threshold)
```

Calculate density matrix response to perturbations using Implicit Fermi Dirac.

Parameters

H0_bml	Input Hamiltonian matrix.
H1_bml,H2_bml,H3_bml	Input First to third order perturbations of H0.
P0_bml	Output density matrix.
P1_bml,P2_bml,P3_bml	Output First to third order density matrix response.
nsteps	Number of recursion steps.
mu0	Shifted chemical potential.
mu	Pre-allocated array of length order.
beta	Input inverse temperature.
nocc	Number of occupied states.
occ_tol	Occupation error tolerance.
lin_tol	Linear solver tolerance.
order	Calculate response up to this order.
threshold	Threshold for matrix algebra. See

Definition at line 549 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.1.8 prg_implicit_fermi_save_inverse()

Recursive Implicit Fermi Dirac for finite temperature.

Parameters

Inv_bml	Inverses generated by algorithm.
h_bml	Input Hamiltonian matrix.
p_bml	Output density matrix.
nsteps	Number of recursion steps.
nocc	Number of occupied states.
mu	Shifted chemical potential
beta	Input inverse temperature.
occErrLimit	Occupation error limit.
threshold	Threshold for multiplication.
tol	Tolerance for linear system solver.
SCF_IT	The current SCF iteration.
occiter	Counts the total nr of DM calculations during MD. See

Definition at line 48 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.1.9 prg_implicit_fermi_zero()

Recursive Implicit Fermi Dirac for zero temperature.

Parameters

h_bml	Input Hamiltonian matrix.
p_bml	Output density matrix.
nsteps	Number of recursion steps.

Parameters

mu	Shifted chemical potential
beta	Input inverse temperature.
method	0 - conjugate gradient, 1 - newton-schultz
threshold	Threshold for multiplication.
tol	Tolerance for linear system solver

Definition at line 348 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.1.10 prg_newtonschulz()

Find the inverse of the matrix A with Newton-Schulz iteration.

Parameters

a_bml	Input matrix A
ai_bml	Input starting guess and output inverse
r_bml	Auxillary matrix
tmp_bml	Auxillary matrix
tol	Convergence criterion (Frobenius norm of residual matrix)
threshold	Threshold for matrix algebra

Definition at line 889 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.12.1.11 prg_pcg()

Solve the system AX = B with conjugate gradient.

Parameters

A_bml	Coefficient matrix A
p_bml	Output solution X
p2_bml	Right side matrix B
d_bml	Auxillary matrix
w_bml	Auxillary matrix
cg_tol	Convergence condition (OBS squared Frobenius norm of residual matrix)
threshold	Threshold for matrix algebra

Definition at line 935 of file prg_implicit_fermi_mod.F90.

8.12.1.12 prg_setup_linsys()

Set up linear system for Implicit Fermi Dirac.

Parameters

p_bml	Input X_i matrix.
p2_bml	Output X_i^k matrix.
A_bml	Output $[X_i^k + (I - X_i)^k]$ matrix.
y_bml	Auxillary matrix.
aux_bml	Auxillary matrix
aux1_bml	Auxillary matrix.
k	Expansion order (an even number)
threshold	Threshold for multiplication. OBS this routine can be numerically unstable for $\ensuremath{k}\xspace > 4$

Definition at line 845 of file prg_implicit_fermi_mod.F90.

Here is the caller graph for this function:

8.12.1.13 prg_test_density_matrix()

```
type(bml_matrix_t), intent(inout) p_bml,
real(dp), intent(in) beta,
real(dp), intent(inout) mu,
real(dp), intent(in) nocc,
integer, intent(in) osteps,
real(dp), intent(in) occErrLimit,
real(dp), intent(in) threshold)
```

Calculate the density matrix with diagonalization and converge chemical.

Definition at line 1113 of file prg_implicit_fermi_mod.F90.

Here is the call graph for this function:

8.12.2 Variable Documentation

8.12.2.1 dp

```
integer, parameter prg_implicit_fermi_mod::dp = kind(1.0d0) [private]
```

Definition at line 20 of file prg_implicit_fermi_mod.F90.

8.13 prg_initmatrices_mod Module Reference

Initialization module.

Functions/Subroutines

- subroutine, public prg_init_hsmat (ham_bml, over_bml, bml_type, mdim, norb)

 Initialize Hamiltonian and Overlap Matrix.
- subroutine, public prg_init_pzmat (rho_bml, zmat_bml, bml_type, mdim, norb)

 Initialize Density matrix and Inverse square root Overlap.
- subroutine, public prg_init_ortho (orthoh_bml, orthop_bml, bml_type, mdim, norb)

 Initialize The orthogonal versions of Hamiltonian and Density Matrix.

Variables

• integer, parameter dp = kind(1.0d0)

8.13.1 Detailed Description

Initialization module.

Routines in this module are used to initialize several matrices that will be used in the code.

8.13.2 Function/Subroutine Documentation

8.13.2.1 prg_init_hsmat()

Initialize Hamiltonian and Overlap Matrix.

Allocation of the Hamiltonian and Overlap matrix into bml formats.

Parameters

ham_bml	Hamiltonian in bml format.
over_bml	Overlap in bml format.
threshold	Threshold value for matrix elements.
mdim	Max nonzero elements per row for every row see [1] .
norb	Total number of orbitals.

Definition at line 29 of file prg initmatrices mod.F90.

8.13.2.2 prg_init_ortho()

Initialize The orthogonal versions of Hamiltonian and Density Matrix.

Allocation of the orthogonal Hamiltonian and Density matrix into bml formats.

Parameters

orthoh_bml	Orthogonal Hamiltonian in bml format.
orthop_bml	Orthogonal Density Matrix in bml format.
threshold	Threshold value for matrix elements.
mdim	Max nonzero elements per row for every row see [1] .
norb	Total number of orbitals.

Definition at line 73 of file prg_initmatrices_mod.F90.

8.13.2.3 prg_init_pzmat()

Initialize Density matrix and Inverse square root Overlap.

Allocation of the Density matrix and Inverse square root Overlap matrix into bml formats.

Parameters

rho_bml	Density matrix in bml format.
zmat_bml	Inverse square root Overlap in bml format.
threshold	Threshold value for matrix elements.
mdim	Max nonzero elements per row for every row see [1] .
norb	Total number of orbitals.

Definition at line 51 of file prg_initmatrices_mod.F90.

8.13.3 Variable Documentation

8.13.3.1 dp

```
integer, parameter prg_initmatrices_mod::dp = kind(1.0d0) [private]
```

Definition at line 14 of file prg_initmatrices_mod.F90.

8.14 prg_kernelparser_mod Module Reference

Some general parsing functions.

Functions/Subroutines

• subroutine, public prg_parsing_kernel (keyvector_char, valvector_char, keyvector_int, valvector_int, keyvector_re, valvector_log, valvector_log, filename, startstop)

The general parsing function. It is used to vectorize a set of "keywords" "value" pairs as included in a general input file.

• subroutine prg_check_valid (invalidc)

Check for valid keywords (checks for an = sign)

Variables

• integer, parameter dp = kind(1.0d0)

8.14.1 Detailed Description

Some general parsing functions.

8.14.2 Function/Subroutine Documentation

8.14.2.1 prg_check_valid()

Check for valid keywords (checks for an = sign)

Parameters

invalidc Keyword to check.

Definition at line 393 of file prg_kernelparser_mod.F90.

Here is the caller graph for this function:

8.14.2.2 prg_parsing_kernel()

The general parsing function. It is used to vectorize a set of "keywords" "value" pairs as included in a general input file.

Note

This parsing strategy can only parse a file of 500 lines by 500 words.

	rn	

If the length of variable vect is changed, this could produce a segmentation fault.

Definition at line 30 of file prg_kernelparser_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.14.3 Variable Documentation

8.14.3.1 dp

integer, parameter prg_kernelparser_mod::dp = kind(1.0d0) [private]

Definition at line 13 of file prg_kernelparser_mod.F90.

8.15 prg modelham mod Module Reference

The prg_hamiltonian module.

Data Types

• type mham_type

General ModelHam type.

Functions/Subroutines

- subroutine, public prg_parse_mham (mham, filename)
 Model Ham parse.
- subroutine, public prg_twolevel_model (ea, eb, dab, daiaj, dbibj, dec, rcoeff, reshuffle, seed, h_bml, verbose)

 Construct a two-level model Hamiltonian.

Variables

• integer, parameter dp = kind(1.0d0)

8.15.1 Detailed Description

The prg_hamiltonian module.

This module will create a model Hamiltonian for benchmarking purposes.

8.15.2 Function/Subroutine Documentation

8.15.2.1 prg_parse_mham()

Model Ham parse.

Definition at line 37 of file prg_modelham_mod.F90.

Here is the call graph for this function:

8.15.2.2 prg_twolevel_model()

```
subroutine, public prg_modelham_mod::prg_twolevel_model (
    real(dp), intent(in) ea,
    real(dp), intent(in) eb,
    real(dp), intent(in) dab,
    real(dp), intent(in) daiaj,
    real(dp), intent(in) dbibj,
    real(dp), intent(in) rcoeff,
    logical, intent(in) reshuffle,
    integer, intent(in) seed,
    type(bml_matrix_t), intent(inout) h_bml,
    integer, intent(in) verbose)
```

Construct a two-level model Hamiltonian.

Parameters

ea	First onsite energy
eb	Second onsite energy
dab	Onsite Hamiltonian element
daiaj	Intersite first level Hamiltonian elements
dbibj	Intersite second level Hamiltonian elements
dec	Decay constant
rcoeff	Random coefficient
reshuffle	If rows needs to be reshuffled
seed	Random seed
h_bml	Output hamiltonian matrix
verbose	Verbosity level

Definition at line 120 of file prg_modelham_mod.F90.

8.15.3 Variable Documentation

8.15.3.1 dp

```
integer, parameter prg_modelham_mod::dp = kind(1.0d0) [private]
```

Definition at line 15 of file prg_modelham_mod.F90.

8.16 prg_nonortho_mod Module Reference

Module to prg_orthogonalize and prg_deorthogonalize any operator.

Functions/Subroutines

- subroutine, public prg_orthogonalize (A_bml, zmat_bml, orthoA_bml, threshold, bml_type, verbose) This routine performs: $A_{ortho} = Z^{\dagger}AZ$.
- subroutine, public prg_deorthogonalize (orthoA_bml, zmat_bml, a_bml, threshold, bml_type, verbose) This routine performs: $A = ZA_{ortho}Z^{\dagger}$.

Variables

• integer, parameter dp = kind(1.0d0)

8.16.1 Detailed Description

Module to prg_orthogonalize and prg_deorthogonalize any operator.

Typically the Hamiltonin needs to be prg_orthogonalized: $H_{\mathrm{ortho}} = Z^{\dagger}HZ$

Also, if the density matrix was obtained from the prg_orthogonalized Hamiltonian, it can be prg_deorthogonalized as: $\rho=Z\rho_{\rm ortho}Z^{\dagger}$

8.16.2 Function/Subroutine Documentation

8.16.2.1 prg_deorthogonalize()

This routine performs: $A = ZA_{ortho}Z^{\dagger}$.

Parameters

orthoA_bml	Matrix to be prg_deorthogonalized.
zmat_bml	Congruence transform to be used.
A_bml	Matrix resulting from the prg_deorthogonalized in bml format.
threshold	Threshold value to be used in the matrix-matrix operations.
bml_type	bml format to be used.
verbose	Verbosity level.

Definition at line 82 of file prg_nonortho_mod.F90.

Here is the call graph for this function:

8.16.2.2 prg_orthogonalize()

This routine performs: $A_{ortho} = Z^{\dagger}AZ$.

Parameters

A_bml	Matrix to be prg_orthogonalized in bml format.
zmat_bml	Congruence transform to be used.
orthoA_bml	Matrix resulting from the orthogonalization.
threshold	Threshold value to be used in the matrix-matrix operations.
bml_type	bml format to be used.
verbose	Verbosity level.

Definition at line 36 of file prg_nonortho_mod.F90.

8.16.3 Variable Documentation

8.16.3.1 dp

```
integer, parameter prg_nonortho_mod::dp = kind(1.0d0) [private]
```

Definition at line 19 of file prg_nonortho_mod.F90.

8.17 prg normalize mod Module Reference

The prg_normalize module.

Functions/Subroutines

• subroutine, public prg normalize (h bml)

Normalize a Hamiltonian matrix prior to running the SP2 algorithm.

• subroutine, public prg_normalize_fermi (h_bml, h1, hN, mu)

Normalize a Hamiltonian matrix prior to running the truncated SP2 algorithm.

• subroutine, public prg_normalize_implicit_fermi (h_bml, cnst, mu)

Normalize a Hamiltonian matrix prior to running the implicit fermi dirac algorithm.

subroutine, public prg_gershgorinreduction (gp)

Determine gershgorin bounds across all parts, local and distributed.

• subroutine, public prg_normalize_cheb (h_bml, mu, emin, emax, alpha, scaledmu)

Normalize a Hamiltonian matrix prior to running the Chebyshev algorithm.

Variables

integer, parameter dp = kind(1.0d0)

8.17.1 Detailed Description

The prg normalize module.

8.17.2 Function/Subroutine Documentation

8.17.2.1 prg_gershgorinreduction()

Determine gershgorin bounds across all parts, local and distributed.

Definition at line 98 of file prg_normalize_mod.F90.

Here is the call graph for this function:

8.17.2.2 prg_normalize()

```
subroutine, public prg_normalize_mod::prg_normalize ( \label{eq:condition} \texttt{type}\,(\texttt{bml\_matrix\_t})\,,\,\,\texttt{intent}\,(\texttt{inout})\,\,\, h\_\textit{bml}\,\,)
```

Normalize a Hamiltonian matrix prior to running the SP2 algorithm.

$$X0 = (e_max * I - H) / (e_max - e_min)$$

where e_max and e_min are obtained sing the Gershgorin circle theorem.

Parameters

Definition at line 33 of file prg_normalize_mod.F90.

Here is the caller graph for this function:

8.17.2.3 prg_normalize_cheb()

Normalize a Hamiltonian matrix prior to running the Chebyshev algorithm.

```
X0 = 2*(H - e_min*I) / (e_max - e_min) - I
```

where e_max and e_min are obtained sing the Gershgorin circle theorem.

Parameters

```
h_bml Input/Output Hamiltonian matrix
```

Definition at line 127 of file prg_normalize_mod.F90.

Here is the caller graph for this function:

8.17.2.4 prg_normalize_fermi()

Normalize a Hamiltonian matrix prior to running the truncated SP2 algorithm.

```
X0 = ((hN-mu) * I - H) / (hN - h1) \text{ or } X0 = (hN*I-H0-mu*I)/(hN-h1)
```

where h1 and hN are scaled Gershgorin bounds.

Parameters

H_bml	Hamiltonian matrix
h1	Scaled minimum Gershgorin bound.
hN	Scaled maximum Gershgorin bound.
ти	Chemical potential

Definition at line 60 of file prg_normalize_mod.F90.

Here is the caller graph for this function:

8.17.2.5 prg_normalize_implicit_fermi()

Normalize a Hamiltonian matrix prior to running the implicit fermi dirac algorithm.

```
X0 = 0.5*II - cnst*(H0-mu0*II) \text{ or } X0 = (0.5 + cnst * mu0)*II - cnst* H0
```

Parameters

H_bml	Hamiltonian matrix
cnst	Constant based on beta and steps
mu	Chemical potential

Definition at line 84 of file prg_normalize_mod.F90.

Here is the caller graph for this function:

8.17.3 Variable Documentation

8.17.3.1 dp

integer, parameter prg_normalize_mod::dp = kind(1.0d0) [private]

Definition at line 15 of file prg_normalize_mod.F90.

8.18 prg_openfiles_mod Module Reference

Module to handle input output files for the PROGRESS lib.

Functions/Subroutines

integer function, public get_file_unit (io_max)

Returns a unit number that is not in use.

• subroutine, public prg_open_file (io, name)

Opens a file to write.

• subroutine, public prg_open_file_to_read (io, name)

Opens a file to read.

8.18.1 Detailed Description

Module to handle input output files for the PROGRESS lib.

8.18.2 Function/Subroutine Documentation

8.18.2.1 get_file_unit()

Returns a unit number that is not in use.

Parameters

io_max	Maximum units to search.	
get_file_unit	Unit return to use for the file.	

Definition at line 19 of file prg_openfiles_mod.F90.

Here is the caller graph for this function:

8.18.2.2 prg_open_file()

Opens a file to write.

Parameters

io	Unit for the file.
name	Name of the file.

Definition at line 38 of file prg_openfiles_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.18.2.3 prg_open_file_to_read()

Opens a file to read.

Parameters

io	Unit for the file.
name	Name of the file.

Definition at line 54 of file prg_openfiles_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.19 prg_parallel_mod Module Reference

The parallel module.

Data Types

• type rankreducedata_t

Data structure for rection over MPI ranks.

Functions/Subroutines

- integer function, public getnranks ()
- integer function, public getmyrank ()
- integer function, public printrank ()
- subroutine, public prg_initparallel ()
- subroutine, public prg_shutdownparallel ()
- integer function saverequest (irequest)
- subroutine, public prg_barrierparallel ()
- subroutine, public sendreceiveparallel (sendBuf, sendLen, dest, recvBuf, recvLen, source, nreceived)

- subroutine, public isendparallel (sendBuf, sendLen, dest)
- subroutine, public sendparallel (sendBuf, sendLen, dest)
- subroutine, public prg_iprg_recvparallel (recvBuf, recvLen, rind)
- subroutine, public prg recvparallel (recvBuf, recvLen)
- subroutine, public sumintparallel (sendBuf, recvBuf, icount)
- subroutine, public sumrealparallel (sendBuf, recvBuf, icount)
- subroutine, public maxintparallel (sendBuf, recvBuf, icount)
- subroutine, public maxrealparallel (sendBuf, recvBuf, icount)
- subroutine, public minintparallel (sendBuf, recvBuf, icount)
- subroutine, public minrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg minrealreduce (rvalue)
- subroutine, public prg_maxrealreduce (rvalue)
- subroutine, public prg maxintreduce2 (value1, value2)
- subroutine, public prg_sumintreduce2 (value1, value2)
- subroutine, public prg_sumrealreduce (value1)
- subroutine, public prg_sumrealreduce2 (value1, value2)
- subroutine, public prg_sumrealreduce3 (value1, value2, value3)
- subroutine, public prg_sumrealreducen (valueVec, N)
- subroutine, public prg_sumintreducen (valueVec, N)
- subroutine, public minrankrealparallel (sendBuf, recvBuf, icount)
- subroutine, public maxrankrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg bcastparallel (buf, blen, root)
- subroutine, public allgatherrealparallel (sendBuf, sendLen, recvBuf, recvLen)
- subroutine, public allgatherintparallel (sendBuf, sendLen, recvBuf, recvLen)
- subroutine, public allgathervrealparallel (sendBuf, sendLen, recvBuf, recvLen, recvDispl)
- subroutine, public allgathervintparallel (sendBuf, sendLen, recvBuf, recvLen, recvDispl)
- subroutine, public prg_allsumrealreduceparallel (buf, buflen)
- subroutine, public prg_allsumintreduceparallel (buf, buflen)
- subroutine, public prg_allgatherparallel (a)
- subroutine, public prg_wait ()

Variables

- integer, parameter dp = kind(1.0d0)
- integer myrank
- integer nranks
- · integer ierr
- · integer regcount
- integer, dimension(:), allocatable requestlist
- integer, dimension(:), allocatable rused

8.19.1 Detailed Description

The parallel module.

8.19.2 Function/Subroutine Documentation

8.19.2.1 allgatherintparallel()

```
subroutine, public prg_parallel_mod::allgatherintparallel (
    integer, dimension(*), intent(in) sendBuf,
    integer, intent(in) sendLen,
    integer, dimension(*), intent(out) recvBuf,
    integer, intent(in) recvLen)
```

Definition at line 660 of file prg_parallel_mod.F90.

8.19.2.2 aligatherrealparallel()

```
subroutine, public prg_parallel_mod::allgatherrealparallel (
    real(dp), dimension(*), intent(in) sendBuf,
    integer, intent(in) sendLen,
    real(dp), dimension(*), intent(out) recvBuf,
    integer, intent(in) recvLen)
```

Definition at line 644 of file prg_parallel_mod.F90.

8.19.2.3 allgathervintparallel()

```
subroutine, public prg_parallel_mod::allgathervintparallel (
    integer, dimension(*), intent(in) sendBuf,
    integer, intent(in) sendLen,
    integer, dimension(*), intent(out) recvBuf,
    integer, dimension(*), intent(in) recvLen,
    integer, dimension(*), intent(in) recvDispl)
```

Definition at line 696 of file prg_parallel_mod.F90.

8.19.2.4 aligathervrealparallel()

```
subroutine, public prg_parallel_mod::allgathervrealparallel (
    real(dp), dimension(*), intent(in) sendBuf,
    integer, intent(in) sendLen,
    real(dp), dimension(*), intent(out) recvBuf,
    integer, dimension(*), intent(in) recvLen,
    integer, dimension(*), intent(in) recvDispl)
```

Definition at line 676 of file prg parallel mod.F90.

8.19.2.5 getmyrank()

integer function, public prg_parallel_mod::getmyrank

Definition at line 99 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.6 getnranks()

integer function, public prg_parallel_mod::getnranks

Definition at line 88 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.7 isendparallel()

Definition at line 230 of file prg_parallel_mod.F90.

8.19.2.8 maxintparallel()

```
subroutine, public prg_parallel_mod::maxintparallel (
    integer, dimension(*), intent(in) sendBuf,
    integer, dimension(*), intent(out) recvBuf,
    integer, intent(in) icount )
```

Definition at line 337 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.9 maxrankrealparallel()

Definition at line 607 of file prg parallel mod.F90.

Here is the caller graph for this function:

8.19.2.10 maxrealparallel()

Definition at line 358 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.11 minintparallel()

Definition at line 379 of file prg_parallel_mod.F90.

8.19.2.12 minrankrealparallel()

Definition at line 584 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.13 minrealparallel()

Definition at line 400 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.14 prg_allgatherparallel()

Definition at line 744 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.15 prg_allsumintreduceparallel()

Definition at line 729 of file prg_parallel_mod.F90.

8.19.2.16 prg_allsumrealreduceparallel()

Definition at line 714 of file prg parallel mod.F90.

8.19.2.17 prg_barrierparallel()

```
subroutine, public prg_parallel_mod::prg_barrierparallel
```

Definition at line 196 of file prg_parallel_mod.F90.

8.19.2.18 prg bcastparallel()

Definition at line 630 of file prg parallel mod.F90.

8.19.2.19 prg initparallel()

```
subroutine, public prg_parallel_mod::prg_initparallel
```

Definition at line 127 of file prg_parallel_mod.F90.

8.19.2.20 prg_iprg_recvparallel()

Definition at line 261 of file prg_parallel_mod.F90.

Here is the call graph for this function:

8.19.2.21 prg_maxintreduce2()

Definition at line 453 of file prg_parallel_mod.F90.

8.19.2.22 prg_maxrealreduce()

Definition at line 437 of file prg_parallel_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.19.2.23 prg_minrealreduce()

Definition at line 421 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

```
prg_normalize_mod::
prg_gershgorinreduction

prg_parallel_mod::prg
_minrealreduce
```

8.19.2.24 prg_recvparallel()

Definition at line 279 of file prg_parallel_mod.F90.

8.19.2.25 prg_shutdownparallel()

```
subroutine, public prg_parallel_mod::prg_shutdownparallel
```

Definition at line 154 of file prg_parallel_mod.F90.

8.19.2.26 prg_sumintreduce2()

Definition at line 471 of file prg_parallel_mod.F90.

Here is the call graph for this function:

8.19.2.27 prg_sumintreducen()

```
subroutine, public prg_parallel_mod::prg_sumintreducen ( integer, dimension(n), intent(inout) valueVec, integer, intent(in) N)
```

Definition at line 564 of file prg_parallel_mod.F90.

8.19.2.28 prg_sumrealreduce()

Definition at line 489 of file prg_parallel_mod.F90.

Here is the call graph for this function:

8.19.2.29 prg_sumrealreduce2()

Definition at line 505 of file prg_parallel_mod.F90.

```
prg_parallel_mod::prg
_sumrealreduce2

prg_parallel_mod::sumrealparallel
```

Here is the caller graph for this function:

8.19.2.30 prg_sumrealreduce3()

Definition at line 523 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.31 prg_sumrealreducen()

```
subroutine, public prg_parallel_mod::prg_sumrealreducen ( real\,(dp)\,,\;dimension\,(n)\,,\;intent\,(inout)\,\;valueVec, integer,\;intent\,(in)\,\;N\,\,)
```

Definition at line 543 of file prg_parallel_mod.F90.

8.19.2.32 prg_wait()

subroutine, public prg_parallel_mod::prg_wait

Definition at line 758 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.33 printrank()

integer function, public prg_parallel_mod::printrank

Definition at line 111 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.34 saverequest()

Definition at line 170 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

```
prg_parallel_mod::prg
_iprg_recvparallel prg_parallel_mod::saverequest
```

8.19.2.35 sendparallel()

Definition at line 246 of file prg_parallel_mod.F90.

8.19.2.36 sendreceiveparallel()

```
subroutine, public prg_parallel_mod::sendreceiveparallel (
    real(dp), dimension(*), intent(in) sendBuf,
    integer, intent(in) sendLen,
    integer, intent(in) dest,
    real(dp), dimension(*), intent(out) recvBuf,
    integer, intent(in) recvLen,
    integer, intent(in) source,
    integer, intent(out) nreceived)
```

Definition at line 207 of file prg_parallel_mod.F90.

8.19.2.37 sumintparallel()

Definition at line 295 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.2.38 sumrealparallel()

Definition at line 316 of file prg_parallel_mod.F90.

Here is the caller graph for this function:

8.19.3 Variable Documentation

8.19.3.1 dp

```
integer, parameter prg_parallel_mod::dp = kind(1.0d0) [private]
```

Definition at line 26 of file prg_parallel_mod.F90.

8.19.3.2 ierr

```
integer prg_parallel_mod::ierr [private]
```

Definition at line 29 of file prg_parallel_mod.F90.

8.19.3.3 myrank

```
integer prg_parallel_mod::myrank [private]
```

Definition at line 28 of file prg_parallel_mod.F90.

8.19.3.4 nranks

integer prg_parallel_mod::nranks [private]

Definition at line 28 of file prg_parallel_mod.F90.

8.19.3.5 reqcount

```
integer prg_parallel_mod::reqcount [private]
```

Definition at line 29 of file prg_parallel_mod.F90.

8.19.3.6 requestlist

```
integer, dimension(:), allocatable prg_parallel_mod::requestlist [private]
```

Definition at line 30 of file prg_parallel_mod.F90.

8.19.3.7 rused

```
integer, dimension(:), allocatable prg_parallel_mod::rused [private]
```

Definition at line 30 of file prg_parallel_mod.F90.

8.20 prg_partition_mod Module Reference

The partition module.

Functions/Subroutines

• subroutine, public prg_metispartition (gp, ngroups, nnodes, xadj, adjncy, nparts, part, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm)

Create graph partitions minizing number of cut edges.

subroutine, public prg_costpartition (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sum
 — Cubes, maxCH, smooth_maxCH, pnorm)

Compute cost of a partition.

• subroutine, public update_prg_costpartition (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_← count, sumCubes, maxCH, smooth maxCH, pnorm, node, new part)

Update cost of partition and the different parameters node is moves into new_part For each neighbor of node, the following cases hold: Case 1: neighbor is in old_part Case 2: neighbor is in new_part Case 3: neighbor is neither in old_or new_part.

• subroutine prg_accept_prob (it, prg_delta, r)

Compute acceptance probability for simulated annealing.

• subroutine prg_costindex (cost, sumCubes, maxCH, smooth_maxCH, obj_fun)

Choose objective function to work with.

• subroutine prg_rand_node (gp, node, seed)

Pick a random node.

• subroutine, public prg_simannealing (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, niter, seed)

Graph partitioning based on Simulated Annealing.

• subroutine, public prg_kernlin (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, nconverg, seed)

Graph partitioning based on inspired by Kernighan-Lin Review METiS manual for description of k-way implementation of KL Pick a core together with its halos Place free vertices on a priority queue with (key, value) =(prg_delta, best_\circ part), with prg_delta = change in obj_value Dequeue and allow hill climbing.

- subroutine, public prg_update_gp (gp, partNumber, core_count)
- subroutine prg_rand_shuffle (array, seed)

Randomly shuffle array.

• subroutine, public prg_check_arrays (gp, core_count, CH_count, Halo_count)

Error checking Checking that core_count, CH_count, Halo_count match.

• subroutine, public prg_kernlin_queue (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm)

Greedy algorithm. At each step it chooses the (vertex, new_part) pair with highest gain Currently implementation is very slow.

subroutine prg_find_best_move (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sum
 Cubes, maxCH, smooth_maxCH, pnorm, best_node, best_part)

For kerlin_queue to find (vertex, new_part) pair with highest gain.

- subroutine, public prg_kernlin2 (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sum
 —
 Cubes, maxCH, smooth maxCH, pnorm)
- subroutine prg_get_largest_hedge_in_part (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_
 count, sumCubes, maxCH, smooth_maxCH, pnorm, search_part, largest_Hedge)
- subroutine, public prg_simannealing_old (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, niter, seed)

Variables

- integer, parameter dp = kind(1.0d0)
- integer, parameter metis_index_kind = METIS_INDEX_KIND

From /usr/include/metis.h.

integer, parameter metis_real_kind = kind(METIS_REAL_KIND)

From /usr/include/metis.h.

8.20.1 Detailed Description

The partition module.

Contains different partitioning algorihms such as Metis, Simulated Annealing etc. Also contains optimization routines to improve upon existing partitioning, such as simulated annealing, etc.

8.20.2 Function/Subroutine Documentation

8.20.2.1 prg_accept_prob()

Compute acceptance probability for simulated annealing.

Parameters

it	iteration
prg_delta	(new_obj_value - old_obj_value)
r	acceptance probability

Definition at line 489 of file prg_partition_mod.F90.

Here is the caller graph for this function:

8.20.2.2 prg_check_arrays()

```
integer, dimension(:), intent(inout), allocatable core_count,
integer, dimension(:), intent(inout), allocatable CH_count,
integer, dimension(:,:), intent(inout), allocatable Halo_count)
```

Error checking Checking that core_count, CH_count, Halo_count match.

Definition at line 1146 of file prg_partition_mod.F90.

8.20.2.3 prg costindex()

Choose objective function to work with.

Parameters

cost	output according to chosen obj_fun
sumCubes	Sum of cubes obj value
maxCH	maximum core-halo part size obective value
obj_fun	0=sumcubes, 1=maxCH

Definition at line 507 of file prg_partition_mod.F90.

8.20.2.4 prg_costpartition()

Compute cost of a partition.

Parameters

gp	Graph partitioning
xadj	CSR array of graph nodes
adjncy	CSR array of graph neighbors
nparts	Number of Parts
partNumber	Partition vector
core_count	Array: number of core vertices in each part
CH_count	Array: number of core+halo vertices in each part
Halo_count	2D Array of size nparts by totalNodes: Halo_count(i,j) = k, node j is a halo of part i\ with k connections
sumCubes	Sum of cubes objective value
maxCh	maximum core-halo part size obective value

prg_initialize

Definition at line 327 of file prg_partition_mod.F90.

Here is the caller graph for this function:

8.20.2.5 prg_find_best_move()

For kerlin_queue to find (vertex, new_part) pair with highest gain.

Definition at line 1209 of file prg_partition_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.20.2.6 prg_get_largest_hedge_in_part()

i can be viewed as a hyperedge for all hyperedges in search_part, pick the one with largest size

Definition at line 1421 of file prg_partition_mod.F90.

Here is the caller graph for this function:

8.20.2.7 prg_kernlin()

Graph partitioning based on inspired by Kernighan-Lin Review METiS manual for description of k-way implementation of KL Pick a core together with its halos Place free vertices on a priority queue with (key, value) =(prg_delta, best_part), with prg_delta = change in obj_value Dequeue and allow hill climbing.

Parameters

gp	Graph partitioning
xadj	CSR array of graph nodes
adjncy	CSR array of graph neighbors
nparts	Number of Parts
partNumber	Partition vector
core_count	Array: number of core vertices in each part
CH_count	Array: number of core+halo vertices in each part
Halo_count	2D Array of size nparts by totalNodes: Halo_count(i,j) = k, node j is a halo of part i\ with k connections
sumCubes	Sum of cubes objective value
maxCh	maximum core-halo part size obective value
nconverg	number of before convergence
seed	random number generator seed

Allocate arrays

Initialize variables

Initialize array of nodes

Randomize nodes

Compute current cost of partition

Choose objective function to minimize

iterate over the columns of the matrix, ie the hyperedges

KL iteration

let min_part be the smallest CH_part

Try and move free nodes to min_part

lock vertices (climb_counter) vertices have been accepted need to lock (climb_counter) vertices Last vertex to be moved is node_backup(climb_counter)

reset

If all vertices locked, go to next iteration

If empty parts exit, place a vertex in max_part there

Place j and it's neighbors that are in the max part into the empty part

Check Convergence

Check empty part exist move nodes from maxpart to empty part

move it neighbor in the max parts to the newpart

Update graph structure

Allocate subgraph structure

Assign node ids to sgraph

Definition at line 758 of file prg partition mod.F90.

8.20.2.8 prg_kernlin2()

Allocate arrays

Pick hyperedge with largest size or random hyperedge with probability 0.5 We will change it to pick hyperedge with highest priority, where priority will be defined according to different metrics

Find part with smalles size (should be included in update_prg_costPartition

if current part is max, move to min part then move subsets (neighbors)

Move hyperedges to minCH part

Try and move intersecting hyperedges

Move k number of vertices. k should be small i.e k <=20, k set in prg_Kernlin_queue Only use this for small systems

Check empty part exist move nodes from maxpart to empty part

move it neighbor in the max parts to the newpart

Update graph structure

Allocate subgraph structure

Assign node ids to sgraph

Definition at line 1257 of file prg_partition_mod.F90.

Here is the call graph for this function:

8.20.2.9 prg_kernlin_queue()

Greedy algorithm. At each step it chooses the (vertex, new_part) pair with highest gain Currently implementation is very slow.

Definition at line 1173 of file prg_partition_mod.F90.

Here is the call graph for this function:

8.20.2.10 prg_metispartition()

Create graph partitions minizing number of cut edges.

Parameters

gp	Graph partitioning`
ngroups	Number of groups/nodes
nnodes	Number of nodes
xadj	CSR array of graph nodes
adjncy	CSR array of graph neighbors
nparts	Number of Parts
part	Partition vector
core_count	Array: number of core vertices in each part
CH_count	Array: number of core+halo vertices in each part
Halo_count	2D Array of size nparts by totalNodes: $Halo_count(i,j) = k$, node j is a halo of part i\ with k connections
sumCubes	Sum of cubes objective value
maxCh	maximum core-halo part size obective value

prg_initialize

Partition graph into nparts'

Compute cost of partition

Definition at line 217 of file prg_partition_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.20.2.11 prg_rand_node()

Pick a random node.

Parameters

gp	graph partitioning structure
node	output node
seed	random seed

Definition at line 527 of file prg_partition_mod.F90.

Here is the caller graph for this function:

8.20.2.12 prg_rand_shuffle()

Randomly shuffle array.

Random seed

Shuffle array

Definition at line 1123 of file prg_partition_mod.F90.

8.20.2.13 prg_simannealing()

Graph partitioning based on Simulated Annealing.

Parameters

gp	Graph partitioning
xadj	CSR array of graph nodes
adjncy	CSR array of graph neighbors
nparts	Number of Parts
partNumber	Partition vector
core_count	Array: number of core vertices in each part
CH_count	Array: number of core+halo vertices in each part
Halo_count	2D Array of size nparts by totalNodes: Halo_count(i,j) = k, node j is a halo of part i\ with k connections
sumCubes	Sum of cubes objective value
maxCh	maximum core-halo part size obective value
niter	Number of iterations
seed	Random seed

Compute current cost of partition

Choose objective function to minimize

Perform SA

Find part with smalles size (should be included in update_prg_costPartition

if part(node) == max ch part, try to move node and it's neighbors to min ch part else move neighbors to part(node)

Check empty part exist move nodes from maxpart to empty part

move it neighbor in the max parts to the newpart

Update graph structure

For debuging

Definition at line 552 of file prg_partition_mod.F90.

Here is the call graph for this function:

8.20.2.14 prg simannealing old()

Compute current cost of partition

Choose objective function to minimize

Perform SA

Update graph structure

For debuging

Definition at line 1454 of file prg_partition_mod.F90.

Here is the call graph for this function:

8.20.2.15 prg_update_gp()

Update graph structure

Allocate subgraph structure

Assign node ids to sgraph

Definition at line 1082 of file prg_partition_mod.F90.

Here is the call graph for this function:

8.20.2.16 update_prg_costpartition()

Update cost of partition and the different parameters node is moves into new_part For each neighbor of node, the following cases hold: Case 1: neighbor is in old_part Case 2: neighbor is in new_part Case 3: neighbor is neither in old_ or new_part.

Parameters

gp	Graph partitioning
xadj	CSR array of graph nodes
adjncy	CSR array of 1043365660.0000000graph neighbors
nparts	Number of Parts
partNumber	Partition vector
core_count	Array: number of core vertices in each part
CH_count	Array: number of core+halo vertices in each part
Halo_count	2D Array of size nparts by totalNodes: Halo_count(i,j) = k, node j is a halo of part i\ with k connections
sumCubes	Sum of cubes objective value
maxCh	maximum core-halo part size obective value
node	Vertex that has moved to new_part
new_part	new part that node has moved to

Generated by Doxygen

Definition at line 401 of file prg_partition_mod.F90.

Here is the caller graph for this function:

8.20.3 Variable Documentation

8.20.3.1 dp

integer, parameter prg_partition_mod::dp = kind(1.0d0) [private]

Definition at line 18 of file prg_partition_mod.F90.

8.20.3.2 metis_index_kind

integer, parameter prg_partition_mod::metis_index_kind = METIS_INDEX_KIND [private]

From /usr/include/metis.h.

IDXTYPEWIDTH = 32 --> metis_index_kind = 4 IDXTYPEWIDTH = 64 --> metis_index_kind = 8

Definition at line 24 of file prg_partition_mod.F90.

8.20.3.3 metis_real_kind

```
integer, parameter prg_partition_mod::metis_real_kind = kind(METIS_REAL_KIND) [private]
```

From /usr/include/metis.h.

```
REALTYPEWIDTH = 32 --> metis_real_kind = kind(0e0) REALTYPEWIDTH = 64 --> metis_real_kind = kind(0d0)
```

Definition at line 30 of file prg_partition_mod.F90.

8.21 prg_progress_mod Module Reference

The progress module.

Functions/Subroutines

- subroutine, public prg_progress_init ()
 Initialize progress.
- subroutine, public prg_progress_shutdown ()
 Shutdown progress.

Variables

• integer, parameter dp = kind(1.0d0)

8.21.1 Detailed Description

The progress module.

8.21.2 Function/Subroutine Documentation

8.21.2.1 prg_progress_init()

subroutine, public prg_progress_mod::prg_progress_init

Initialize progress.

Definition at line 25 of file prg_progress_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.21.2.2 prg_progress_shutdown()

subroutine, public prg_progress_mod::prg_progress_shutdown

Shutdown progress.

Definition at line 37 of file prg_progress_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.21.3 Variable Documentation

8.21.3.1 dp

integer, parameter prg_progress_mod::dp = kind(1.0d0) [private]

Definition at line 16 of file prg_progress_mod.F90.

8.22 prg ptable mod Module Reference

Periodic table of elements.

Functions/Subroutines

- integer function, public element_atomic_number (symbol)
- integer function element_atomic_number_upper (symbol)

Variables

- integer, parameter nz = 103
- integer, parameter, private dp = kind(1.0d0)
- character(2), dimension(nz), parameter element_symbol = [character(2) :: "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "TI", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr"]

Element symbol.

character(2), dimension(nz), parameter element_symbol_upper = [character(2) :: "H", "HE", "LI", "BE", "B", "C", "N", "O", "F", "NE", "NA", "MG", "AL", "SI", "P", "S", "CL", "AR", "K", "CA", "SC", "TI", "V", "CR", "MN", "FE", "CO", "NI", "CU", "ZN", "GA", "GE", "AS", "SE", "BR", "KR", "RB", "SR", "Y", "ZR", "NB", "MO", "TC", "RU", "RH", "PD", "AG", "CD", "IN", "SN", "SB", "TE", "II", "XE", "CS", "BA", "LA", "CE", "PR", "ND", "PM", "SM", "EU", "GD", "TB", "DY", "HO", "ER", "TM", "YB", "LU", "HF", "TA", "W", "RE", "OS", "IR", "PT", "AU", "HG", "TL", "PB", "BI", "PO", "AT", "RN", "FR", "RA", "AC", "TH", "PA", "U", "NP", "PU", "AM", "CM", "BK", "CF", "ES", "FM", "MD", "NO", "LR"]

Element symbol upper.

character(20), dimension(nz), parameter element_name = [character(20) :: "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron", "Carbon", "Nitrogen", "Oxygen", "Fluorine", "Neon", "Sodium", "Magnesium", "Aluminium", "Silicon", "Phosphorus", "Sulfur", "Chlorine", "Argon", "Potassium", "Calcium", "Scandium", "Titanium", "Vanadium", "Chromium", "Manganese", "Iron", "Cobalt", "Nickel", "Copper", "Zinc", "Gallium", "Germanium", "Arsenic", "Selenium", "Bromine", "Krypton", "Rubidium", "Strontium", "Yttrium", "Zirconium", "Niobium", "Molybdenum", "Technetium", "Ruthenium", "Rhodium", "Palladium", "Silver", "Cadmium", "Indium", "Tin", "Antimony", "Tellurium", "Iodine", "Xenon", "Caesium", "Barium", "Lanthanum", "Cerium", "Praseodymium", "Neodymium", "Promethium", "Samarium", "Europium", "Gadolinium", "Terbium", "Dysprosium", "Holmium", "Erbium", "Thulium", "Ytterbium", "Lutetium", "Hafnium", "Tantalum", "Tungsten", "Rhenium", "Osmium", "Iridium", "Platinum", "Gold", "Mercury", "Thallium", "Lead", "Bismuth", "Polonium", "Astatine", "Radon", "Francium", "Radium", "Actinium", "Thorium", "Protactinium", "Uranium", "Neptunium", "Plutonium", "Americium", "Curium", "Berkelium", "Californium", "Einsteinium", "Fermium", "Mendelevium", "Nobelium", "Lawrencium"]

Element name.

• real(dp), dimension(nz), parameter element_mass = (/1.007825032, 4.002603254, 7.01600455, 9.0121822, 11.0093054, 12.0, 14.003074005, 15.99491462, 18.99840322, 19.992440175, 22.989769281, 23. \leftarrow 9850417, 26.98153863, 27.976926532, 30.97376163, 31.972071, 34.96885268, 39.962383123, 38. \leftarrow 96370668, 39.96259098, 44.9559119, 47.9479463, 50.9439595, 51.9405075, 54.9380451, 55.9349375, 58.933195, 57.9353429, 62.9295975, 63.929142, 68.925573, 73.921177, 74.921596, 79.916521, 78. \leftarrow 918337, 83.911507, 84.911789, 87.905612, 88.905848, 89.904704, 92.906378, 97.905408, 97.907216, 101.904349, 102.905504, 105.903486, 106.905097, 113.903358, 114.903878, 119.902194, 120. \leftarrow 903815, 129.906224, 126.904473, 131.904153, 132.905451, 137.905247, 138.906353, 139.905438, 140.907652, 141.907723, 144.912749, 151.919732, 152.92123, 157.924103, 158.925346, 163.929174, 164.930322, 165.930293, 168.934213, 173.938862, 174.940771, 179.94655, 180.947995, 183.950931, 186.955753, 191.96148, 192.962926, 194.964791, 196.966568, 201.970643, 204.974427, 207.976652, 208.980398, 208.98243, 209.987148, 222.017577, 223.019735, 226.025409, 227.027752, 232.038055, 231.035884, 238.050788, 237.048173, 244.064204, 243.061381, 247.070354, 247.070307, 251.079587, 252.08298, 257.095105, 258.098431, 259.10103, 262.10963/)

Element mass in atomic mass units (1.66 x 10-27 kg)

• real(dp), dimension(nz), parameter element_vdwr = (/ 1.1 , 1.4 , 1.81 , 1.53 , 1.92 , 1.7 , 1.55 , 1.52 , 1.47 , 1.54 , 2.27 , 1.73 , 1.84 , 2.1 , 1.8 , 1.8 , 1.75 , 1.88 , 2.75 , 2.31 , 2.3 , 2.15 , 2.05 , 2.05 , 2.05 , 2.05 , 2.0 , 2.0 , 2.0 , 2.0 , 2.1 , 1.87 , 2.11 , 1.85 , 1.9 , 1.83 , 2.02 , 3.03 , 2.49 , 2.4 , 2.3 , 2.15 , 2.1 , 2.05 , 2.05 , 2.0 , 2.05 , 2.1 , 2.2 , 2.2 , 1.93 , 2.17 , 2.06 , 1.98 , 2.16 , 3.43 , 2.68 , 2.5 , 2.48 , 2.47 , 2.45 , 2.43 , 2.42 , 2.4 , 2.38 , 2.37 , 2.35 , 2.33 , 2.32 , 2.3 , 2.28 , 2.27 , 2.25 , 2.2 , 2.1 , 2.05 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 1.96 , 2.02 , 2.07 , 1.97 , 2.02 , 2.2 , 3.48 , 2.83 , 2.0 , 2.4 , 2.0 , 2.3 , 2.0

van der Waals radius (in Angstroms)

Covalent radius (in Angstroms)

real(dp), dimension(nz), parameter element_ip = (/ 13.5984, 24.5874, 5.3917, 9.3227, 8.298, 11.2603, 14.5341, 13.6181, 17.4228, 21.5645, 5.1391, 7.6462, 5.9858, 8.1517, 10.4867, 10.36, 12.9676, 15.7596, 4.3407, 6.1132, 6.5615, 6.8281, 6.7462, 6.7665, 7.434, 7.9024, 7.881, 7.6398, 7.7264, 9.3942, 5.9993, 7.8994, 9.7886, 9.7524, 11.8138, 13.9996, 4.1771, 5.6949, 6.2173, 6.6339, 6.7589, 7.0924, 7.28, 7.3605, 7.4589, 8.3369, 7.5762, 8.9938, 5.7864, 7.3439, 8.6084, 9.0096, 10.4513, 12.1298, 3.8939, 5.2117, 5.5769, 5.5387, 5.473, 5.525, 5.582, 5.6437, 5.6704, 6.1498, 5.8638, 5.9389, 6.0215, 6.1077, 6.1843, 6.2542, 5.4259, 6.8251, 7.5496, 7.864, 7.8335, 8.4382, 8.967, 8.9588, 9.2255, 10.4375, 6.1082, 7.4167, 7.2855, 8.414, 0.0, 10.7485, 4.0727, 5.2784, 5.17, 6.3067, 5.89, 6.1941, 6.2657, 6.026, 5.9738, 5.9914, 6.1979, 6.2817, 6.42, 6.5, 6.58, 6.65, 4.9/)

Ionization energy (in eV)

• real(dp), dimension(nz), parameter element_ea = (/ 0.75420375 , 0.0 , 0.618049 , 0.0 , 0.279723 , 1.262118 , -0.07 , 1.461112 , 3.4011887 , 0.0 , 0.547926 , 0.0 , 0.43283 , 1.389521 , 0.7465 , 2.0771029 , 3.612724 , 0.0 , 0.501459 , 0.02455 , 0.188 , 0.084 , 0.525 , 0.67584 , 0.0 , 0.151 , 0.6633 , 1.15716 , 1.23578 , 0.0 , 0.41 , 1.232712 , 0.814 , 2.02067 , 3.363588 , 0.0 , 0.485916 , 0.05206 , 0.307 , 0.426 , 0.893 , 0.7472 , 0.55 , 1.04638 , 1.14289 , 0.56214 , 1.30447 , 0.0 , 0.404 , 1.112066 , 1.047401 , 1.970875 , 3.059038 , 0.0 , 0.471626 , 0.14462 , 0.47 , 0.5 ,

Electron affprg_inity (in eV)

Last shell number of electrons.

• real(dp), dimension(nz), parameter atom_en = (/ 2.2 , 0.0 , 0.98 , 1.57 , 2.04 , 2.55 , 3.04 , 3.44 , 3.98 , 0.0 , 0.93 , 1.31 , 1.61 , 1.9 , 2.19 , 2.58 , 3.16 , 0.0 , 0.82 , 1.0 , 1.36 , 1.54 , 1.63 , 1.66 , 1.55 , 1.83 , 1.88 , 1.91 , 1.9 , 1.65 , 1.81 , 2.01 , 2.18 , 2.55 , 2.96 , 3.0 , 0.82 , 0.95 , 1.22 , 1.33 , 1.6 , 2.16 , 1.9 , 2.2 , 2.28 , 2.2 , 1.93 , 1.69 , 1.78 , 1.96 , 2.05 , 2.1 , 2.66 , 2.6 , 0.79 , 0.89 , 1.1 , 1.12 , 1.13 , 1.14 , 0.0 , 1.17 , 0.0 , 1.2 , 0.0 , 1.22 , 1.23 , 1.24 , 1.25 , 0.0 , 1.27 , 1.3 , 1.5 , 2.36 , 1.9 , 2.2 , 2.2 , 2.28 , 2.54 , 2.0 , 1.62 , 2.33 , 2.02 , 2.0 , 2.2 , 0.0 , 0.7 , 0.9 , 1.1 , 1.3 , 1.5 , 1.38 , 1.36 , 1.28 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 0.0 /)

The Pauling electronegativity for this element.

The maximum expected number of bonds to this element.

- integer, dimension(nz), parameter element_numel = (/1,2,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17/)
- character(50), dimension(nz), parameter element_econf = [character(50) :: "1s", "1s2", "1s22s", "1s22s2", "1s22s2", "1s22s22p2", "1s22s22p3", "1s22s22p4", "1s22s22p5", "1s22s22p6", "[Ne]3s", "[Ne]3s2", "[Ne]3s23p2", "[Ne]3s23p2", "[Ne]3s23p3", "[Ne]3s23p4", "[Ne]3s23p5", "[Ne]3s23p6", "[Ar]4s", "[Ar]4s2", "[Ar]3d4s2", "[Ar]3d24s2", "[Ar]3d34s2", "[Ar]3d54s2", "[Ar]3d54s2", "[Ar]3d64s2", "[Ar]3d74s2", "[Ar]3d104s24p3", "[Ar]3d104s24p4", "[Ar]3d104s24p5", "[Ar]3d104s24p6", "[Kr]5s2", "[Kr]4d5s2", "[Kr]4d5s2", "[Kr]4d25s2", "[Kr]4d45s", "[Kr]4d55s2", "[Kr]4d75s", "[Kr]4d85s", "[Kr]4d10", "[Kr]4d105s", "[Kr]4d105s2", "[Cd]5p7", "[Cd]5p7", "[Cd]5p6", "[Xe]4f36s2", "[Xe]4f36s2", "[Xe]4f36s2", "[Xe]4f166s2", "[Xe]4f166s2", "[Xe]4f166s2", "[Xe]4f145d6s2", "[Xe]4f145d106s2", "[Xe]4f145d

"[Rn]5f36d7s2", "[Rn]5f46d7s2", "[Rn]5f67s2", "[Rn]5f77s2", "[Rn]5f76d7s2", "[Rn]5f97s2", "[Rn]5f107s2", "[Rn]5f117s2", "[Rn]5

8.22.1 Detailed Description

Periodic table of elements.

This data was generated with pybabel and openbable packages Openbabel: http://openbabel.⇔ org/dev-api/index.shtml Pybel: https://openbabel.org/docs/dev/UseTheLibrary/⇔ Python_Pybel.html# Other sources includes NIST: http://www.nist.gov/pml/data/ion_⇔ energy.cfm

8.22.2 Function/Subroutine Documentation

8.22.2.1 element atomic number()

Definition at line 394 of file prg_ptable_mod.F90.

Here is the caller graph for this function:

8.22.2.2 element_atomic_number_upper()

Definition at line 408 of file prg_ptable_mod.F90.

Here is the caller graph for this function:

8.22.3 Variable Documentation

8.22.3.1 atom en

```
real(dp), dimension(nz), parameter prg_ptable_mod::atom_en = (/ 2.2 , 0.0 , 0.98 , 1.57 , 2. \leftarrow 04 , 2.55 , 3.04 , 3.44 , 3.98 , 0.0 , 0.93 , 1.31 , 1.61 , 1.9 , 2.19 , 2.58 , 3.16 , 0.0 , 0.82 , 1.0 , 1.36 , 1.54 , 1.63 , 1.66 , 1.55 , 1.83 , 1.88 , 1.91 , 1.9 , 1.65 , 1.81 , 2.01 , 2.18 , 2.55 , 2.96 , 3.0 , 0.82 , 0.95 , 1.22 , 1.33 , 1.6 , 2.16 , 1.9 , 2.2 , 2.28 , 2.2 , 1.93 , 1.69 , 1.78 , 1.96 , 2.05 , 2.1 , 2.66 , 2.6 , 0.79 , 0.89 , 1.1 , 1.12 , 1.13 , 1.14 , 0.0 , 1.17 , 0.0 , 1.2 , 0.0 , 1.22 , 1.23 , 1.24 , 1.25 , 0.0 , 1.27 , 1.3 , 1.5 , 2.36 , 1.9 , 2.2 , 2.2 , 2.28 , 2.54 , 2.0 , 1.62 , 2.33 , 2.02 , 2.0 , 2.2 , 0.0 , 0.7 , 0.9 , 1.1 , 1.3 , 1.5 , 1.38 , 1.36 , 1.28 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 0.0 /)
```

The Pauling electronegativity for this element.

Definition at line 266 of file prg ptable mod.F90.

8.22.3.2 dp

```
integer, parameter, private prg_ptable_mod::dp = kind(1.0d0) [private]
```

Definition at line 13 of file prg_ptable_mod.F90.

8.22.3.3 element covr

```
real(dp), dimension(nz), parameter prg_ptable_mod::element_covr = (/ 0.31 , 0.28 , 1.28 , 0.96 , 0.84 , 0.76 , 0.71 , 0.66 , 0.57 , 0.58 , 1.66 , 1.41 , 1.21 , 1.11 , 1.07 , 1.05 , 1.02 , 1.06 , 2.03 , 1.76 , 1.7 , 1.6 , 1.53 , 1.39 , 1.39 , 1.32 , 1.26 , 1.24 , 1.32 , 1.22 , 1.22 , 1.2 , 1.19 , 1.2 , 1.2 , 1.16 , 2.2 , 1.95 , 1.9 , 1.75 , 1.64 , 1.54 , 1.47 , 1.46 , 1.42 , 1.39 , 1.45 , 1.44 , 1.42 , 1.39 , 1.39 , 1.38 , 1.39 , 1.4 , 2.44 , 2.15 , 2.07 , 2.04 , 2. \leftarrow 03 , 2.01 , 1.99 , 1.98 , 1.98 , 1.96 , 1.94 , 1.92 , 1.92 , 1.89 , 1.9 , 1.87 , 1.87 , 1.75 , 1.7 , 1.62 , 1.51 , 1.44 , 1.41 , 1.36 , 1.36 , 1.32 , 1.45 , 1.46 , 1.48 , 1.4 , 1.5 , 1.5 , 2.6 , 2.21 , 2.15 , 2.06 , 2.0 , 1.96 , 1.9 , 1.87 , 1.87 , 1.69 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6
```

Covalent radius (in Angstroms)

Definition at line 173 of file prg_ptable_mod.F90.

8.22.3.4 element_ea

```
real(dp), dimension(nz), parameter prg_ptable_mod::element_ea = (/ 0.75420375 , 0.0 , 0.618049 , 0.0 , 0.279723 , 1.262118 , -0.07 , 1.461112 , 3.4011887 , 0.0 , 0.547926 , 0.0 , 0.43283 , 1.389521 , 0.7465 , 2.0771029 , 3.612724 , 0.0 , 0.501459 , 0.02455 , 0.188 , 0.084 , 0.525 , 0.67584 , 0.0 , 0.151 , 0.6633 , 1.15716 , 1.23578 , 0.0 , 0.41 , 1.232712 , 0.814 , 2.02067 , 3.363588 , 0.0 , 0.485916 , 0.05206 , 0.307 , 0.426 , 0.893 , 0.7472 , 0.55 , 1.04638 , 1. \leftarrow 14289 , 0.56214 , 1.30447 , 0.0 , 0.404 , 1.112066 , 1.047401 , 1.970875 , 3.059038 , 0.0 , 0.471626 , 0.14462 , 0.47 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0
```

Electron affprg inity (in eV)

Definition at line 235 of file prg_ptable_mod.F90.

8.22.3.5 element econf

```
\texttt{character(50), dimension(nz), parameter prg\_ptable\_mod::element\_econf = [character(50) \ \leftrightarrow \ ]
:: "1s" , "1s2" , "1s22s" , "1s22s2" , "1s22s22p" , "1s22s22p2" , "1s22s22p3" , "1s22s22p4" ,
"1s22s22p5", "1s22s22p6", "[Ne]3s", "[Ne]3s2", "[Ne]3s23p", "[Ne]3s23p2", "[Ne]3s23p3",
"[Ne]3s23p4", "[Ne]3s23p5", "[Ne]3s23p6", "[Ar]4s", "[Ar]4s2", "[Ar]3d4s2", "[Ar]3d24s2"
, "[Ar]3d34s2", "[Ar]3d54s", "[Ar]3d54s2", "[Ar]3d64s2", "[Ar]3d74s2", "[Ar]3d84s2",
"[Ar]3d104s", "[Ar]3d104s24p", "[Ar]3d104s24p", "[Ar]3d104s24p4", "[Ar]3d104s24p4"
, "[Ar]3d104s24p5" , "[Ar]3d104s24p6" , "[Kr]5s" , "[Kr]5s2" , "[Kr]4d5s2" , "[Kr]4d25s2" ,
"[Kr]4d45s", "[Kr]4d55s", "[Kr]4d55s2", "[Kr]4d75s", "[Kr]4d85s", "[Kr]4d10", "[Kr]4d105s"
, "[Kr]4d105s2", "[Cd]5p", "[Cd]5p2", "[Cd]5p3", "[Cd]5p4", "[Cd]5p5", "[Cd]5p6", "[Xe]6s"
, "[Xe]6s2", "[Xe]5d6s2", "[Xe]4f5d6s2", "[Xe]4f36s2", "[Xe]4f46s2", "[Xe]4f56s2", "[Xe]4f56s2", "[Xe]4f56s2",
, "[Xe]4f76s2" , "[Xe]4f75d6s2" , "[Xe]4f96s2" , "[Xe]4f106s2" , "[Xe]4f116s2" , "[Xe]4f126s2"
, "[Xe]4f136s2" , "[Xe]4f146s2" , "[Xe]4f145d6s2" , "[Xe]4f145d26s2" , "[Xe]4f145d36s2" ,
"[Xe]4f145d46s2", "[Xe]4f145d56s2", "[Xe]4f145d66s2", "[Xe]4f145d76s2", "[Xe]4f145d96s",
"[Xe]4f145d106s" , "[Xe]4f145d106s2" , "[Hg]6p" , "[Hg]6p2" , "[Hg]6p3" , "[Hg]6p4" , "[Hg]6p5"
, "[Hg]6p6", "[Rn]7s", "[Rn]7s2", "[Rn]6d7s2", "[Rn]6d27s2", "[Rn]5f26d7s2", "[Rn]5f36d7s2"
, "[Rn]5f46d7s2" , "[Rn]5f67s2" , "[Rn]5f77s2" , "[Rn]5f76d7s2" , "[Rn]5f97s2" , "[Rn]5f107s2"
, "[Rn]5f117s2", "[Rn]5f127s2", "[Rn]5f137s2", "[Rn]5f147s2", "[Rn]5f147s27p"]
```

The electronic configuration.

Definition at line 360 of file prg_ptable_mod.F90.

8.22.3.6 element ip

```
real(dp), dimension(nz), parameter prg_ptable_mod::element_ip = (/ 13.5984 , 24.5874 , 5.3917 , 9.3227 , 8.298 , 11.2603 , 14.5341 , 13.6181 , 17.4228 , 21.5645 , 5.1391 , 7.6462 , 5.9858 , 8.1517 , 10.4867 , 10.36 , 12.9676 , 15.7596 , 4.3407 , 6.1132 , 6.5615 , 6.8281 , 6.7462 , 6.7665 , 7.434 , 7.9024 , 7.881 , 7.6398 , 7.7264 , 9.3942 , 5.9993 , 7.8994 , 9.7886 , 9. \leftarrow 7524 , 11.8138 , 13.9996 , 4.1771 , 5.6949 , 6.2173 , 6.6339 , 6.7589 , 7.0924 , 7.28 , 7. \leftarrow 3605 , 7.4589 , 8.3369 , 7.5762 , 8.9938 , 5.7864 , 7.3439 , 8.6084 , 9.0096 , 10.4513 , 12. \leftarrow 1298 , 3.8939 , 5.2117 , 5.5769 , 5.5387 , 5.473 , 5.525 , 5.582 , 5.6437 , 5.6704 , 6.1498 ,
```

```
5.8638 , 5.9389 , 6.0215 , 6.1077 , 6.1843 , 6.2542 , 5.4259 , 6.8251 , 7.5496 , 7.864 , 7. \leftrightarrow 8335 , 8.4382 , 8.967 , 8.9588 , 9.2255 , 10.4375 , 6.1082 , 7.4167 , 7.2855 , 8.414 , 0.0 , 10.7485 , 4.0727 , 5.2784 , 5.17 , 6.3067 , 5.89 , 6.1941 , 6.2657 , 6.026 , 5.9738 , 5.9914 , 6.1979 , 6.2817 , 6.42 , 6.5 , 6.58 , 6.65 , 4.9 /)
```

Ionization energy (in eV)

Definition at line 204 of file prg_ptable_mod.F90.

8.22.3.7 element_mass

```
\texttt{real(dp), dimension(nz), parameter prg\_ptable\_mod::element\_mass = (/ 1.007825032 \text{, } 4.002603254)}
, 7.01600455 , 9.0121822 , 11.0093054 , 12.0 , 14.003074005 , 15.99491462 , 18.99840322 ,
19.992440175 , 22.989769281 , 23.9850417 , 26.98153863 , 27.976926532 , 30.97376163 , 31.\leftrightarrow
972071 , 34.96885268 , 39.962383123 , 38.96370668 , 39.96259098 , 44.9559119 , 47.9479463 ,
50.9439595 , 51.9405075 , 54.9380451 , 55.9349375 , 58.933195 , 57.9353429 , 62.9295975 ,
63.929142 , 68.925573 , 73.921177 , 74.921596 , 79.916521 , 78.918337 , 83.911507 , 84.911789
, 87.905612 , 88.905848 , 89.904704 , 92.906378 , 97.905408 , 97.907216 , 101.904349 , 102. \leftrightarrow
905504 , 105.903486 , 106.905097 , 113.903358 , 114.903878 , 119.902194 , 120.903815 , 129.\leftrightarrow
906224 , 126.904473 , 131.904153 , 132.905451 , 137.905247 , 138.906353 , 139.905438 , 140.\leftrightarrow
907652 , 141.907723 , 144.912749 , 151.919732 , 152.92123 , 157.924103 , 158.925346 , 163. \leftarrow
929174 , 164.930322 , 165.930293 , 168.934213 , 173.938862 , 174.940771 , 179.94655 , 180. \!\!\leftarrow
947995 , 183.950931 , 186.955753 , 191.96148 , 192.962926 , 194.964791 , 196.966568 , 201. \leftrightarrow
970643 , 204.974427 , 207.976652 , 208.980398 , 208.98243 , 209.987148 , 222.017577 , 223.↔
019735 , 226.025409 , 227.027752 , 232.038055 , 231.035884 , 238.050788 , 237.048173 , 244.\leftrightarrow
064204 , 243.061381 , 247.070354 , 247.070307 , 251.079587 , 252.08298 , 257.095105 , 258.↔
098431 , 259.10103 , 262.10963 /)
```

Element mass in atomic mass units (1.66 x 10-27 kg)

Definition at line 110 of file prg_ptable_mod.F90.

8.22.3.8 element_maxbonds

The maximum expected number of bonds to this element.

Definition at line 297 of file prg_ptable_mod.F90.

8.22.3.9 element_name

```
character(20), dimension(nz), parameter prg_ptable_mod::element_name = [character(20) :: "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron", "Carbon", "Nitrogen", "Oxygen", "Fluorine", "Neon", "Sodium", "Magnesium", "Aluminium", "Silicon", "Phosphorus", "Sulfur", "Chlorine", "Argon", "Potassium", "Calcium", "Scandium", "Titanium", "Vanadium", "Chromium", "Manganese", "Iron", "Cobalt", "Nickel", "Copper", "Zinc", "Gallium", "Germanium", "Arsenic", "Selenium", "Bromine", "Krypton", "Rubidium", "Strontium", "Yttrium", "Zirconium", "Niobium", "Molybdenum", "Technetium", "Ruthenium", "Rhodium", "Palladium", "Silver", "Cadmium", "Indium", "Tin", "Antimony", "Tellurium", "Iodine", "Xenon", "Caesium", "Barium", "Lanthanum", "Cerium", "Praseodymium", "Neodymium", "Promethium", "Samarium", "Europium", "Gadolinium", "Terbium", "Dysprosium", "Holmium", "Erbium", "Thulium", "Ytterbium", "Lutetium", "Hafnium", "Tantalum", "Tungsten", "Rhenium", "Osmium", "Iridium", "Platinum", "Gold", "Mercury", "Thallium", "Lead", "Bismuth", "Polonium", "Astatine", "Radon", "Francium", "Radium", "Actinium", "Thorium", "Protactinium", "Uranium", "Neptunium", "Plutonium", "Americium", "Curium", "Berkelium", "Californium", "Einsteinium", "Fermium", "Mendelevium", "Nobelium", "Lawrencium"]
```

Element name.

Definition at line 79 of file prg_ptable_mod.F90.

8.22.3.10 element numel

```
integer, dimension(nz), parameter prg_ptable_mod::element_numel = (/ 1 , 2 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 /)
```

Last shell number of electrons.

Definition at line 329 of file prg ptable mod.F90.

8.22.3.11 element_symbol

```
character(2), dimension(nz), parameter prg_ptable_mod::element_symbol = [character(2) :: "H"
, "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si", "P",
"S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu"
, "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo",
"Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba"
, "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm",
"Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm",
"Bk", "Cf", "Es", "Fm", "Md", "No", "Lr"]
```

Element symbol.

Definition at line 17 of file prg_ptable_mod.F90.

8.22.3.12 element_symbol_upper

```
character(2), dimension(nz), parameter prg_ptable_mod::element_symbol_upper = [character(2) ←
:: "H", "HE", "LI", "BE", "B", "C", "N", "O", "F", "NE", "NA", "MG", "AL", "SI"
, "P", "S", "CL", "AR", "K", "CA", "SC", "TI", "V", "CR", "MN", "FE", "CO", "NI"
, "CU", "ZN", "GA", "GE", "AS", "SE", "BR", "KR", "RB", "SR", "Y", "ZR", "NB",
"MO", "TC", "RU", "RH", "PD", "AG", "CD", "IN", "SN", "SB", "TE", "II", "XE", "CS", "BA", "LA", "CE", "PR", "ND", "PM", "SM", "EU", "GD", "TB", "DY", "HO", "ER",
"TM", "YB", "LU", "HF", "TA", "W", "RE", "OS", "IR", "PT", "AU", "HG", "TL", "PB", "BI", "PO", "AT", "RN", "FR", "RA", "AC", "TH", "PA", "U", "NP", "PU", "AM",
"CM", "BK", "CF", "ES", "FM", "MD", "NO", "LR"]
```

Element symbol upper.

Definition at line 48 of file prg ptable mod.F90.

8.22.3.13 element vdwr

```
real(dp), dimension(nz), parameter prg_ptable_mod::element_vdwr = (/ 1.1 , 1.4 , 1.81 , 1.53 , 1.92 , 1.7 , 1.55 , 1.52 , 1.47 , 1.54 , 2.27 , 1.73 , 1.84 , 2.1 , 1.8 , 1.8 , 1.75 , 1.88 , 2.75 , 2.31 , 2.3 , 2.15 , 2.05 , 2.05 , 2.05 , 2.05 , 2.0 , 2.0 , 2.0 , 2.1 , 1.87 , 2.11 , 1.85 , 1.9 , 1.83 , 2.02 , 3.03 , 2.49 , 2.4 , 2.3 , 2.15 , 2.1 , 2.05 , 2.05 , 2.05 , 2.0 , 2.05 , 2.1 , 2.2 , 2.2 , 1.93 , 2.17 , 2.06 , 1.98 , 2.16 , 3.43 , 2.68 , 2.5 , 2.48 , 2.47 , 2.45 , 2.43 , 2.42 , 2.4 , 2.38 , 2.37 , 2.35 , 2.33 , 2.32 , 2.3 , 2.28 , 2.27 , 2.25 , 2.2 , 2.1 , 2.05 , 2.0 , 2.0 , 2.0 , 2.05 , 2.1 , 2.05 , 1.96 , 2.02 , 2.07 , 1.97 , 2.02 , 2.2 , 3.48 , 2.83 , 2.0 , 2.4 , 2.0 , 2.3 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.0 , 2.
```

van der Waals radius (in Angstroms)

Definition at line 141 of file prg_ptable_mod.F90.

8.22.3.14 nz

```
integer, parameter prg_ptable_mod::nz = 103
```

Definition at line 12 of file prg ptable mod.F90.

8.23 prg_pulaycomponent_mod Module Reference

Produces a matrix to get the Pulay Component of the forces.

Functions/Subroutines

- subroutine, public prg_pulaycomponent0 (rho_bml, ham_bml, pcm_bml, threshold, M, bml_type, verbose) AtT = 0K, $P = \rho H \rho$.
- subroutine, public prg_pulaycomponentt (rho_bml, ham_bml, zmat_bml, pcm_bml, threshold, M, bml_type, verbose)

```
At T > 0K, P = \rho H S^{-1} + S^{-1} H \rho.
```

subroutine, public prg_get_pulayforce (nats, zmat_bml, ham_bml, rho_bml, dSx_bml, dSy_bml, dSz_bml, hindex, FPUL, threshold)

Pulay Force FPUL from $2Tr[ZZ'HD\frac{dS}{dR}]$.

Variables

• integer, parameter dp = kind(1.0d0)

8.23.1 Detailed Description

Produces a matrix to get the Pulay Component of the forces.

For a further explanation please see Niklasson 2008 [3]

8.23.2 Function/Subroutine Documentation

8.23.2.1 prg_get_pulayforce()

```
subroutine, public prg_pulaycomponent_mod::prg_get_pulayforce (
    integer, intent(in) nats,
    type(bml_matrix_t), intent(in) zmat_bml,
    type(bml_matrix_t), intent(in) ham_bml,
    type(bml_matrix_t), intent(in) rho_bml,
    type(bml_matrix_t), intent(in) dSx_bml,
    type(bml_matrix_t), intent(in) dSy_bml,
    type(bml_matrix_t), intent(in) dSz_bml,
    integer, dimension(:,:), intent(in) hindex,
    real(dp), dimension(:,:), intent(inout), allocatable FPUL,
    real(dp), intent(in) threshold)
```

Pulay Force FPUL from $2Tr[ZZ'HD\frac{dS}{dR}]$.

Parameters

nats	Number of atoms.
zmat_bml	Congruence transform in bml format.
rho_bml	Density matrix.
dSx_bml	x derivative of S.
dSy_bml	y derivative of S.
dSz_bml	z derivative of S.
hindex	Contains the Hamiltonian indices for every atom (see get_hindex).

Definition at line 152 of file prg_pulaycomponent_mod.F90.

8.23.2.2 prg_pulaycomponent0()

```
type(bml_matrix_t), intent(in) ham_bml,
type(bml_matrix_t), intent(inout) pcm_bml,
real(dp), intent(in) threshold,
integer, intent(in) M,
character(20), intent(in) bml_type,
integer verbose)
```

At
$$T = 0K$$
, $P = \rho H \rho$.

Parameters

rho_bml	Density matrix in bml format.
ham_bml	Hamiltonian matrix in bml format.
pcm_bml	Pulay matix output in bml format.
threshold	Threshold for the matrix elements.
М	Maximum nonzero values per row.
bml_type	Bml format type.
verbose	Verbosity level.

Todo M and bml_type will have to be removed from the input parameter.

Definition at line 32 of file prg_pulaycomponent_mod.F90.

8.23.2.3 prg_pulaycomponentt()

At
$$T > 0K$$
, $P = \rho H S^{-1} + S^{-1} H \rho$.

rho_bml	Density matrix in bml format.
ham_bml	Hamiltonian matrix in bml format.
Z_bml	Congruence transform in bml format.
pcm_bml	Pulay matrix output in bml format.
threshold	Threshold for the matrix elements.
М	Maximum nonzero values per row.
bml_type	Bml format type.
verbose	Verbosity level.

Todo M and bml_type will have to be removed from the input parameter.

Definition at line 83 of file prg_pulaycomponent_mod.F90.

8.23.3 Variable Documentation

8.23.3.1 dp

```
integer, parameter prg_pulaycomponent_mod::dp = kind(1.0d0) [private]
```

Definition at line 13 of file prg pulaycomponent mod.F90.

8.24 prg_pulaymixer_mod Module Reference

Pulay mixer mode.

Data Types

type mx_type

Functions/Subroutines

- subroutine, public prg_parse_mixer (input, filename)
 - The parser for the mixer routines.
- subroutine, public prg_qmixer (charges, oldcharges, dqin, dqout, scferror, piter, pulaycoef, mpulay, verbose)

 Mixing the charges to acelerate scf convergence.
- subroutine, public prg_linearmixer (charges, oldcharges, scferror, linmixcoef, verbose)

 Routine to perform linear mixing.

Variables

• integer, parameter dp = kind(1.0d0)

8.24.1 Detailed Description

Pulay mixer mode.

Gets the best coefficient for mixing the charges during scf.

Todo add the density matrix mixer.

8.24.2 Function/Subroutine Documentation

8.24.2.1 prg_linearmixer()

Routine to perform linear mixing.

Parameters

charges	Actual charges of the system.
oldcharges	Previous scf charges.
scferror	SCF error.
linmixcoef	Mixing coefficient.
verbose	Verbosity level.

Definition at line 238 of file prg_pulaymixer_mod.F90.

Here is the call graph for this function:

8.24.2.2 prg_parse_mixer()

The parser for the mixer routines.

Definition at line 43 of file prg_pulaymixer_mod.F90.

Here is the call graph for this function:

8.24.2.3 prg_qmixer()

Mixing the charges to acelerate scf convergence.

Parameters

charges	System charges.
oldcharges	Old charges of the system.
dqin	Matrix for charges history in.
dqout	Matrix for charges history out.
scferror	SCF error.
piter	scf iteration number.
pulaycoef	Coefficient for pulay mixing (generally between 0.01 and 0.1).
mpulay	Number of matrices stored (generally 3-5).
verbose	Different levels of verbosity.

Definition at line 104 of file prg_pulaymixer_mod.F90.

Here is the call graph for this function:

8.24.3 Variable Documentation

8.24.3.1 dp

integer, parameter prg_pulaymixer_mod::dp = kind(1.0d0) [private]

Definition at line 15 of file prg pulaymixer mod.F90.

8.25 prg_quantumdynamics_mod Module Reference

A module to add in common quantum dynamical operations.

Functions/Subroutines

• subroutine, public prg_kick_density (kick_direc, kick_mag, dens, norbs, mdim, S, SINV, which_atom, r, bml-type, thresh)

Provides perturbation to initial density matrix in the form of an electric field kick. This routine does: $\rho_{\hat{k}\hat{i}ck} = \exp{\frac{-i}{\hbar}\hat{V}\hat{\rho}\hat{S}}\exp{\frac{i}{\hbar}\hat{V}\hat{S}^{-1}}$ where \hat{V} is the field disturbance.

• subroutine, public prg_get_sparsity_cplxmat (matrix_type, element_type, thresh, a_dense)

This computes the sparsity of a complex matrix given a threshold value This routine does: $f = \frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

subroutine, public prg_get_sparsity_realmat (matrix_type, element_type, thresh, a_dense)

This computes the sparsity of a real matrix given a threshold value This routine does: $f = \frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

subroutine, public prg_kick_density_bml (kick_direc, kick_mag, rho_bml, s_bml, sinv_bml, mdim, which_
 atom, r, matrix_type, thresh)

Provides perturbation to initial density matrix in the form of an electric field kick given input matricies in BML format. This routine does: $\rho_{\hat{kick}} = \exp{\frac{-i}{\hbar}\hat{V}\hat{\rho}\hat{S}} \exp{\frac{i}{\hbar}\hat{V}\hat{S}^{-1}}$ where \hat{V} is the field disturbance.

subroutine, public prg_lvni_bml (h1_bml, sinv_bml, dt, hbar, rhoold_bml, rho_bml, aux_bml, matrix_type, mdim, thresh)

Performs Liouville-von Neumann integration using leap-frog method. This routine does: $\hat{\rho}(t+\Delta t)=\hat{\rho}(t-\Delta t)+2\Delta t \frac{\partial \hat{\rho}(t)}{\partial t}$ where the time derivative of the density matrix is defined as follows: $\frac{\partial \hat{\rho}(t)}{\partial t}=\frac{-i}{\hbar}\left(S^{-1}\hat{H}(t)\hat{\rho}(t)-\hat{\rho}(t)\hat{H}(t)S^{-1}\right)$.

- subroutine, public prg_getcharge (rho_bml, s_bml, charges, aux_bml, z, spindex, N, nats, thresh)

 Constructs the charges from the density matrix.
- subroutine, public prg getdipole (charges, r, mu)

This routine computes the dipole moment of the system with units determined by the units of the coordinate matrix and charges given.

• subroutine, public prg_excitation (fill_mat, orbit_orig, orbit_exci)

Produce an excitation in the initially calculated density matrix to.

Variables

• integer, parameter dp = kind(1.0d0)

8.25.1 Detailed Description

A module to add in common quantum dynamical operations.

This module contains routines that perform the following tasks: apply an excitation or perturbation to the initial density matrix, compute the comutator of two two matricies, calculate the sparsity of a real or complex matrix, and time evolve a density matrix using Liouville-von Neumann equation with the leap-frog method of integration.

8.25.2 Function/Subroutine Documentation

8.25.2.1 prg_excitation()

Produce an excitation in the initially calculated density matrix to.

Definition at line 307 of file prg quantum dynamics mod. F90.

8.25.2.2 prg_get_sparsity_cplxmat()

This computes the sparsity of a complex matrix given a threshold value This routine does: $f = \frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

Parameters

matrix_type	the BML matrix type
element_type	the BML element type
thresh	the threshold for sparsity evaluation
a_dense	the dense complex matrix to be evaluated for sparsity

Definition at line 98 of file prg_quantumdynamics_mod.F90.

8.25.2.3 prg_get_sparsity_realmat()

This computes the sparsity of a real matrix given a threshold value This routine does: $f = \frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

Parameters

matrix_type	the BML matrix type
element_type	the BML element type
thresh	the threshold for sparsity evaluation
a_dense	the dense real matrix to be evaluated for sparsity

Definition at line 122 of file prg_quantumdynamics_mod.F90.

8.25.2.4 prg_getcharge()

Constructs the charges from the density matrix.

Parameters

rho_bml	Density matrix in BML format.
over_bml	Overlap matrix in BML format.
charges	the array of charges.
aux_bml	the auxiliary matrix in BML format.
spindex	Start and end index for every atom in the system.
Z	
nats	the number of atoms
N	
thresh	threshold for the BML matrix

Definition at line 247 of file prg_quantumdynamics_mod.F90.

8.25.2.5 prg_getdipole()

This routine computes the dipole moment of the system with units determined by the units of the coordinate matrix and charges given.

Parameters

charges	Charge on each atom.
r	Coordinate matrix of the atoms.
р	Dipole moment vector.

Definition at line 282 of file prg_quantumdynamics_mod.F90.

8.25.2.6 prg_kick_density()

```
subroutine, public prg_quantumdynamics_mod::prg_kick_density (
    integer, intent(in) kick_direc,
    real(dp) kick_mag,
    complex(dp), dimension(:,:), intent(inout), allocatable dens,
    integer, intent(in) norbs,
    integer, intent(in) mdim,
    complex(dp), dimension(:,:), allocatable S,
    complex(dp), dimension(:,:), allocatable SINV,
    integer, dimension(:), intent(in), allocatable which_atom,
    real(dp), dimension(:,:), allocatable r,
    character(len=*), intent(in) bmltype,
    real(dp) thresh)
```

Provides perturbation to initial density matrix in the form of an electric field kick. This routine does: $\rho_{\hat{kick}} = \exp \frac{-i}{\hbar} \hat{V} \hat{\rho} \hat{S} \exp \frac{i}{\hbar} \hat{V} \hat{S}^{-1}$ where \hat{V} is the field disturbance.

Parameters

kick_direc	the direction of the kick in the electric field
kick_mag	the magnitude of the kick in the electric field
dens	the initial density matrix to be kicked.
norbs	the number of orbitals in the density matrix
S	the overlap matrix
SINV	the inverse of the overlap matrix
which_atom	vector containing atom identification
r	direction vector for kick based on atom and kick_direc
bmltype	type of BML matrix desired for faster computation
thresh	threshold for BML matrix conversion

Definition at line 43 of file prg_quantumdynamics_mod.F90.

8.25.2.7 prg_kick_density_bml()

```
subroutine, public prg_quantumdynamics_mod::prg_kick_density_bml (
    integer, intent(in) kick_direc,
    real(dp) kick_mag,
    type(bml_matrix_t) rho_bml,
    type(bml_matrix_t) s_bml,
    type(bml_matrix_t) sinv_bml,
    integer mdim,
    integer, dimension(:), intent(in), allocatable which_atom,
    real(dp), dimension(:,:), allocatable r,
    character(len=*), intent(in) matrix_type,
    real(dp) thresh)
```

Provides perturbation to initial density matrix in the form of an electric field kick given input matricies in BML format. This routine does: $\rho_{\hat{kick}} = \exp{\frac{-i}{\hbar}\hat{V}\hat{\rho}\hat{S}} \exp{\frac{i}{\hbar}\hat{V}\hat{S}^{-1}}$ where \hat{V} is the field disturbance.

Parameters

kick_direc	the direction of the kick in the electric field
kick_mag	the magnitude of the kick in the electric field
rho_bml	the initial density matrix to be kicked in BML format.
s_bml	the overlap matrix
sinv_bml	the inverse of the overlap matrix
mdim	maximum number of nonzero values per row in BML matrix
which_atom	vector containing atom identification
r	position vector for kicked atom
matrix_type	the type of BML format
thresh	the threshold for the BML matrix

Definition at line 154 of file prg_quantumdynamics_mod.F90.

8.25.2.8 prg_lvni_bml()

Performs Liouville-von Neumann integration using leap-frog method. This routine does: $\hat{\rho}(t+\Delta t)=\hat{\rho}(t-\Delta t)+2\Delta t \frac{\partial \hat{\rho}(t)}{\partial t}$ where the time derivative of the density matrix is defined as follows: $\frac{\partial \hat{\rho}(t)}{\partial t}=\frac{-i}{\hbar}\left(S^{-1}\hat{H}(t)\hat{\rho}(t)-\hat{\rho}(t)\hat{H}(t)S^{-1}\right)$.

Parameters

Н	the Hamiltonian matrix at time t
sinv_bml	the inverse overlap matrix
dt	the timestep for integration
hbar	the Dirac constant (generally taken to be 1 in simulation units)
rho_old	the density matrix at previous time-step
rho_bml	the density matrix at current time-step
aux_bml	the temp matrix used for value storage during computation
matrix_type	the type of BML matrix
thresh	the threshold for the BML matrix

Definition at line 211 of file prg_quantumdynamics_mod.F90.

8.25.3 Variable Documentation

8.25.3.1 dp

```
integer, parameter prg_quantumdynamics_mod::dp = kind(1.0d0) [private]
```

Definition at line 14 of file prg_quantumdynamics_mod.F90.

8.26 prg_response_mod Module Reference

Module to compute the density matrix response and related quantities.

Data Types

· type respdata type

Functions/Subroutines

• subroutine, public prg parse response (RespData, filename)

The parser for the calculation of the DM response.

• subroutine, public prg_compute_dipole (charges, coordinate, dipoleMoment, factor, verbose)

To compute the dipole moment of the system. The units of the dipole moment are determined by the units of the coordinates and charges that are given.

subroutine, public prg_write_dipole_tcl (dipoleMoment, file, factor, verbose)

To visualize a dipole moment using VMD. This will prg_generate a .tcl script that could be run using VMD To visualize with VMD: \$ vmd -e dipole.tcl.

• subroutine, public prg_compute_polarizability (rsp_bml, prt_bml, polarizability, factor, verbose)

To compute the polarizability of the system. The units of the directional polarizability are determined by the units of the perturbation and Hamiltonian. This equation can be found in [5] equation 4a. Note that in equation 4a of the reference there is a 2 that account for the double occupancy which is not present in this case cause the density matrix construction is done by taking the occupancy into account.

subroutine, public prg pert from file (prt bml, norb)

Read perturbation from file.

subroutine, public prg_compute_response_rs (ham_bml, prt_bml, rsp_bml, lambda, bndfil, threshold, ver-bose)

Computes the first order response density matrix using Rayleigh Schrodinger Perturbation theory The transformation hereby performed are:

subroutine, public prg_compute_response_fd (ham_bml, prt_bml, rsp_bml, prg_delta, bndfil, threshold, ver-bose)

Computes the first order response density matrix using finite differences. The transformation hereby performed are:

• subroutine, public prg_pert_constant_field (field, intensity, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over_bml)

Apply a constant field perturbation through the dipole moment operator ($\hat{\mu} = e\hat{r}$). In the matrix representation, this is: $H^{(1)} = \lambda \frac{1}{2} (S \, e r \cdot E + e r \cdot E S)$. The symmetrization is done in order to preserve the Hermiticity of H. In this case the whole system will be affected by the field. In a latter version we will add the possibility of applying this field to a region of the system. In this implementation e=1 and units can be transformed by using the parameter λ .

• subroutine, public prg_pert_sin_pot (direction, lx, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over bml)

Apply a sinusoidal length dependent potential $(\sin(\tilde{r}_x))$ where r_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{r}_x) + \sin(\tilde{r}_x)S)$. $\tilde{r}_x = 2\pi(r/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

• subroutine, public prg_pert_cos_pot (direction, lx, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over bml)

Apply a cosine length dependent potential $(\cos(\tilde{\textbf{r}}_x))$ where \textbf{r}_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{\textbf{r}}_x) + \sin(\tilde{\textbf{r}}_x)S)$. $\tilde{\textbf{r}}_x = 2\pi(\textbf{r}/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

• subroutine, public prg_compute_response_sp2 (ham_bml, prt_bml, rsp_bml, rho_bml, lambda, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, threshold, verbose)

Finds the first order response matrix from a Hamiltonian matrix.

• subroutine, public prg_project_response (rsp_bml, over_bml, spindex, norbi, coordinates, rspfunc, verbose)

Project the response onto atomic positions. First order response to the perturbation ($\rho^{(1)}$) projected onto the atomic position. Basically: $rsp(i) = \sum_{\alpha \in i} \rho_{\alpha\alpha}^{(1)}$, where orbital α belong to atom i.

• subroutine, public prg_canon_response_vector (P1_bml, H1_bml, Nocc, beta, evals, mu0, m, thresh, HDIM) First-order Canonical Density Matrix Perturbation Theory.

• subroutine, public prg canon response (P1 bml, H1 bml, Nocc, beta, evals, mu0, m, HDIM)

First-order Canonical Density Matrix Perturbation Theory.

• subroutine, public prg_canon_response_orig (P1_bml, H1_bml, Nocc, beta, evals, mu0, m, thresh, HDIM) First-order Canonical Density Matrix Perturbation Theory.

Variables

- integer, parameter dp = kind(1.0d0)
- real(dp), parameter pi = 3.14159265358979323846264338327950_dp

8.26.1 Detailed Description

Module to compute the density matrix response and related quantities.

Todo Add the response scf

```
Change name response_SP2 to dm_prt_response
Change name response_rs to rs_prt_response
```

More information about the theory can be found at [4] and Niklasson2015

8.26.2 Function/Subroutine Documentation

8.26.2.1 prg_canon_response()

First-order Canonical Density Matrix Perturbation Theory.

Assuming known mu0 and representation in H0's eigenbasis Q, where H0 and P0 become diagonal. (mu0, eigenvalues e and eigenvectors Q of H0 are assumed known) Based on PRL 92, 193001 (2004) and PRE 92, 063301 (2015).

P1_bml	First-order canonical response output.
H1_bml	Perturbative hamiltonian input.
Nocc	Number of ocupied orbitals.
beta	Inverse electronic temperature.
evals	Eigenvalues of the system.
mu0	Chemical potential.
m	Number of recursive steps.
HDIM	Number of orbitals - Hamiltonina zise.

Definition at line 948 of file prg_response_mod.F90.

8.26.2.2 prg canon response orig()

First-order Canonical Density Matrix Perturbation Theory.

Assuming known mu0 and representation in H0's eigenbasis Q, where H0 and P0 become diagonal. Original routine. (mu0, eigenvalues e and eigenvectors Q of H0 are assumed known) Based on PRL 92, 193001 (2004) and PRE 92, 063301 (2015).

Parameters

P1_bml	First-order canonical response output.
H1_bml	Perturbative hamiltonian input.
Nocc	Number of ocupied orbitals.
beta	Inverse electronic temperature.
evals	Eigenvalues of the system.
mu0	Chemical potential.
m	Number of recursive steps.
HDIM	Number of orbitals - Hamiltonina zise.

Definition at line 1039 of file prg_response_mod.F90.

8.26.2.3 prg_canon_response_vector()

First-order Canonical Density Matrix Perturbation Theory.

Assuming known mu0 and representation in H0's eigenbasis Q, where H0 and P0 become diagonal. (mu0, eigenvalues e and eigenvectors Q of H0 are assumed known) Based on PRL 92, 193001 (2004) and PRE 92, 063301 (2015).

Parameters

P1_bml	First-order canonical response output.
H1_bml	Perturbative hamiltonian input.
Nocc	Number of ocupied orbitals.
beta	Inverse electronic temperature.
evals	Eigenvalues of the system.
mu0	Chemical potential.
m	Number of recursive steps.
HDIM	Number of orbitals - Hamiltonina zise.

Definition at line 850 of file prg_response_mod.F90.

8.26.2.4 prg_compute_dipole()

```
subroutine, public prg_response_mod::prg_compute_dipole (
    real(dp), dimension(:), intent(in) charges,
    real(dp), dimension(:,:), intent(in) coordinate,
    real(dp), dimension(3), intent(inout) dipoleMoment,
    real(dp), intent(in) factor,
    integer verbose )
```

To compute the dipole moment of the system. The units of the dipole moment are determined by the units of the coordinates and charges that are given.

Parameters

charges	Charges on each atomic position.
coordinate	Coordinates of the atoms.
nats	Number of atoms.
dipoleMoment	Dipole moment vector.
factor	Unit conversion factor (use 1.0 is no conversion is required).
verbose	To give different verbosity levels. If coordinates are in and charges are in fractions of electron, then transformation ea2debye form LATTE lib can be used to change units to Debye.

Definition at line 123 of file prg response mod.F90.

8.26.2.5 prg_compute_polarizability()

To compute the polarizability of the system. The units of the directional polarizability are determined by the units of the perturbation and Hamiltonian. This equation can be found in [5] equation 4a. Note that in equation 4a of the reference there is a 2 that account for the double occupancy which is not present in this case cause the density matrix construction is done by taking the occupancy into account.

Parameters

charges	Charges on each atomic position.
coordinate	Coordinates of the atoms.
nats	Number of atoms.
dipoleMoment	Dipole moment vector.
factor	Unit conversion factor (use 1.0 is no conversion is required).
verbose	To give different verbosity levels. If coordinates are in and charges are in fractions of electron, then transformation ea2debye form LATTE lib can be used to change units to Debye.

Definition at line 201 of file prg_response_mod.F90.

8.26.2.6 prg_compute_response_fd()

Computes the first order response density matrix using finite differences. The transformation hereby performed are:

```
• H^+ = H^{(0)} + \delta H^{(1)}
```

•
$$H^- = H^{(0)} - \delta H^{(1)}$$

•
$$\rho^+ = f(H^+)$$

•
$$\rho^- = f(H^-)$$

• $\rho^{(1)} = (\rho^+ - \rho^-)/(2\delta)$. Where f denotes the Fermi function (construction of the density matrix)

ham_bml	Hamiltonian in bml format ($H^{\left(0\right)}$).
prt_bml	Perturbation in bml format ($H^{(1)}$).
rsp_bml	First order response to the perturbation ($ ho^{(1)}$).
bndfil	Filing factor.
threshold	Threshold value for matrix elements.
verbose	Different levels of verbosity.

Warning

This works only for the prg_orthogonalized form of ham_bml.

The response must be in the prg_orthogonalized form.

Definition at line 382 of file prg_response_mod.F90.

Here is the call graph for this function:

8.26.2.7 prg_compute_response_rs()

Computes the first order response density matrix using Rayleigh Schrodinger Perturbation theory The transformation hereby performed are:

```
• V = C^{\dagger}H^{(1)}C
```

•
$$ilde{V}_{ij}=rac{V_{ij}}{\epsilon_j-\epsilon_i}$$
, with $ilde{V}_{ii}=0\, orall i$.

•
$$C^{(1)} = C\tilde{V}$$

• And finally:
$$\rho^{(1)} = C f(C^{(1)})^\dagger + C^{(1)} f C^\dagger$$

ham_bml	Hamiltonian in bml format ($H^{\left(0\right)}$).
prt_bml	Perturbation in bml format ($H^{(1)}$).
rsp_bml	First order response to the perturbation ($ ho^{(1)}$).
bndfil	Filing factor.
threshold	Threshold value for matrix elements.
verbose	Different levels of verbosity.

Warning

This works only for the prg_orthogonalized form of ham_bml. The response must be in the prg_orthogonalized form.

Definition at line 252 of file prg_response_mod.F90.

8.26.2.8 prg_compute_response_sp2()

Finds the first order response matrix from a Hamiltonian matrix.

Definition at line 655 of file prg_response_mod.F90.

8.26.2.9 prg_parse_response()

The parser for the calculation of the DM response.

Parameters

RespData	Response data type.
filename	Name of the file to parse.

Definition at line 46 of file prg_response_mod.F90.

Here is the call graph for this function:

8.26.2.10 prg_pert_constant_field()

```
subroutine, public prg_response_mod::prg_pert_constant_field (
    real(dp), dimension(3), intent(in) field,
    real(dp) intensity,
    real(dp), dimension(:,:), intent(in) coordinate,
    real(dp) lambda,
    type(bml_matrix_t), intent(inout) prt_bml,
    real(dp) threshold,
    integer, dimension(:), intent(in) spindex,
    integer, dimension(:), intent(in) norbi,
    integer, intent(in) verbose,
    type(bml_matrix_t), intent(in), optional over_bml)
```

Apply a constant field perturbation through the dipole moment operator ($\hat{\mu}=e\hat{\mathbf{r}}$). In the matrix representation, this is: $H^{(1)}=\lambda \frac{1}{2}(\, S\, e\mathbf{r}\cdot \mathbf{E}+\, e\mathbf{r}\cdot \mathbf{E}S)$. The symmetrization is done in order to preserve the Hermiticity of H. In this case the whole system will be affected by the field. In a latter version we will add the possibility of applying this field to a region of the system. In this implementation e=1 and units can be transformed by using the parameter λ .

Note

If the Hamiltonian is already in the prg_orthogonalized form, then parameter over_bml can be omitted.

field	Direction of the applied field ($\hat{\mathbf{E}}$).
intensity	Intensity of the field ($ \mathbf{E} $)
coordinate	Coordinates of the system (r).
lambda	Constant to premultiply the perturbation (λ).
prt_bml	Perturbation in bml format ($H^{(1)}$).
threshold	Threshold value for bml format matrices.
spindex	Species index. It gives the species index of a particular atom.
norbi	Number of orbitals for each atomic site.
verbose	Different levels of verbosity.
over_bml	It has to be present for a nonorthogonal representation (S).

Definition at line 449 of file prg_response_mod.F90.

8.26.2.11 prg pert cos pot()

Apply a cosine length dependent potential ($\cos(\tilde{\mathbf{r}}_x)$) where \mathbf{r}_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{\mathbf{r}}_x) + \sin(\tilde{\mathbf{r}}_x)S)$. $\tilde{\mathbf{r}}_x = 2\pi(\mathbf{r}/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

Note

If the Hamiltonian is already in the prg orthogonalized form, then parameter over bml can be omitted.

Parameters

direction	Direction of the potential gradient (x,y or z).
lx	Lenght of the box in x direction.
coordinate	Coordinates of the system (r).
lambda	Constant to premultiply the perturbation (λ).
prt_bml	Perturbation in bml format ($H^{(1)}$).
threshold	Threshold value for bml format matrices.
norbi	Number of orbitals for each atomic site.
verbose	Different levels of verbosity.
over_bml	It has to be present for a nonorthogonal representation (S).

Definition at line 594 of file prg response mod.F90.

8.26.2.12 prg_pert_from_file()

Read perturbation from file.

Todo Add read perturbation from file

Definition at line 226 of file prg_response_mod.F90.

8.26.2.13 prg_pert_sin_pot()

Apply a sinusoidal length dependent potential ($\sin(\tilde{\mathbf{r}}_x)$) where \mathbf{r}_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{\mathbf{r}}_x) + \sin(\tilde{\mathbf{r}}_x)S)$. $\tilde{\mathbf{r}}_x = 2\pi(\mathbf{r}/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

Note

If the Hamiltonian is already in the prg orthogonalized form, then parameter over bml can be omitted.

Parameters

direction	Direction of the potential gradient (x,y or z).
lx	Length of the box in x direction.
coordinate	Coordinates of the system (r).
lambda	Constant to premultiply the perturbation (λ).
prt_bml	Perturbation in bml format ($H^{(1)}$).
threshold	Threshold value for bml format matrices.
norbi	Number of orbitals for each atomic site.
verbose	Different levels of verbosity.
over_bml	It has to be present for a nonorthogonal representation (S).

Definition at line 526 of file prg_response_mod.F90.

8.26.2.14 prg_project_response()

Project the response onto atomic positions. First order response to the perturbation ($\rho^{(1)}$) projected onto the atomic position. Basically: $rsp(i) = \sum_{\alpha \in i} \rho_{\alpha\alpha}^{(1)}$, where orbital α belong to atom i.

Parameters

rsp_bml	First order response density matrix.
spindex	It gives the species index of a particular atom.
norbi	Number of orbitals of species i.
coordinates	Atomic coordinates.
rspfunc	Response function at atomic positions.
verbose	Different levels of verbosity.

Definition at line 798 of file prg_response_mod.F90.

8.26.2.15 prg_write_dipole_tcl()

To visualize a dipole moment using VMD. This will prg_generate a .tcl script that could be run using VMD To visualize with VMD: \$ vmd -e dipole.tcl.

Parameters

dipoleMoment	Dipole moment vector.
file	PDB/XYZ file to load for visualization.
factor	Arbitrary scale for visualization.
verbose	To give different verbosity levels.

Definition at line 161 of file prg_response_mod.F90.

Here is the call graph for this function:

8.26.3 Variable Documentation

8.26.3.1 dp

```
integer, parameter prg_response_mod::dp = kind(1.0d0) [private]
```

Definition at line 18 of file prg_response_mod.F90.

8.26.3.2 pi

```
real(dp), parameter prg_response_mod::pi = 3.14159265358979323846264338327950_dp [private]
```

Definition at line 19 of file prg_response_mod.F90.

8.27 prg sp2 fermi mod Module Reference

The SP2 Fermi module.

Functions/Subroutines

• subroutine, public prg_sp2_fermi_init (h_bml, nsteps, nocc, tscale, threshold, occErrLimit, traceLimit, x_bml, mu, beta, h1, hN, sgnlist)

Truncated SP2 prg_initialization.

• subroutine, public prg_sp2_fermi_init_norecs (h_bml, nsteps, nocc, tscale, threshold, occErrLimit, traceLimit, x_bml, mu, beta, h1, hN, sgnlist, verbose)

Truncated SP2 prg_initialization. This routine also gives back the Number of SP2 recursive steps that gets a Pseudo-Fermi distribution with a temperature close to the target temperature which is entered using parameter beta = (1/KbT).

• subroutine, public prg_sp2_fermi (h_bml, osteps, nsteps, nocc, mu, beta, h1, hN, sgnlist, threshold, eps, traceLimit, x bml)

Calculate Truncated SP2.

• subroutine, public prg_sp2_entropy_function (mu, h1, hN, nsteps, sgnlist, GG, ee)

Calculate SP2 entropy function using gaussian quadrature. Note that GG and ee are allocated and returned from this routine.

real(dp) function, public sp2_entropy_ts (D0_bml, GG, ee)

Test SP2 entropy. Get the entropy contribution TS to the total free energy.

real(dp) function, public sp2_inverse (f, mu, h1, hN, nsteps, sgnlist)

Calculate the SP2 inverse.

• real(dp) function absmaxderivative (func, de)

Gets the absolute maximum of the derivative of a function.

Variables

integer, parameter dp = kind(1.0d0)

8.27.1 Detailed Description

The SP2 Fermi module.

This subroutine implements Niklasson's truncated SP2 density matrix purification algorithm.

8.27.2 Function/Subroutine Documentation

8.27.2.1 absmaxderivative()

Gets the absolute maximum of the derivative of a function.

Parameters

func.	
de	Energy step.

Definition at line 618 of file prg_sp2_fermi_mod.F90.

Here is the caller graph for this function:

```
prg_sp2_fermi_mod::
prg_sp2_fermi_init_norecs

prg_sp2_fermi_mod::
absmaxderivative
```

8.27.2.2 prg_sp2_entropy_function()

```
subroutine, public prg_sp2_fermi_mod::prg_sp2_entropy_function (
    real(dp), intent(in) mu,
    real(dp), intent(in) h1,
    real(dp), intent(in) hN,
    integer, intent(in) nsteps,
    integer, dimension(:), intent(in) sgnlist,
    real(dp), dimension(:), intent(inout), allocatable GG,
    real(dp), dimension(:), intent(inout), allocatable ee )
```

Calculate SP2 entropy function using gaussian quadrature. Note that GG and ee are allocated and returned from this routine.

mu	Shifted chemical potential
h1	Minimum scaled Gershgorin bound

Parameters

hN	Maximum scaled Gershgorin bound
nsteps	Number of SP2 steps
sgnlist	SP2 sequence
GG	Entropy function
ee	1D mesh

Definition at line 483 of file prg_sp2_fermi_mod.F90.

Here is the call graph for this function:

8.27.2.3 prg_sp2_fermi()

Calculate Truncated SP2.

h_bml	Hamiltonian matrix
osteps	Outer loop steps
nsteps	Number of sequence branches
посс	Number of occupation states
ти	Shifted chemical potential
beta	Inverse temperature

Parameters

h1	Minimum scaled Gershgorin bound.
hN	Maximum scaled Gershgorin bound.
sgnlist	SP2 sequence
threshold	Threshold for multiplies
eps	Occupation error limit
traceLimit	Trace limit
x_bml	Output density matrix

Definition at line 390 of file prg_sp2_fermi_mod.F90.

Here is the call graph for this function:

8.27.2.4 prg_sp2_fermi_init()

Truncated SP2 prg_initialization.

h_bml	Input Hamiltonian matrix.
nsteps	Number of sp2 iterations.
nocc	Number of occupied states.
tscale	Temperature rescaling factor.

Parameters

threshold	Threshold for multiplication.
occErrLimit	Occupation error limit.
traceLimit	Trace limit.
x_bml	Output prg_initial matrix.
ти	Shifted chemical potential
beta	Output inverse temperature.
h1	Output temperature-scaled minimum gershgorin bound.
hN	Output temperature-scaled maximum gershgorin bound.
sgnlist	SP2 sequence

Calculate Gershgorin bounds and rescale

Determine sequence branching first time through

Definition at line 45 of file prg_sp2_fermi_mod.F90.

Here is the call graph for this function:

8.27.2.5 prg_sp2_fermi_init_norecs()

Truncated SP2 prg_initialization. This routine also gives back the Number of SP2 recursive steps that gets a Pseudo-Fermi distribution with a temperature close to the target temperature which is entered using parameter beta = (1/KbT).

Parameters

h_bml	Input Hamiltonian matrix.
nsteps	Output number of sp2 iterations.
посс	Number of occupied states.
tscale	Temperature rescaling factor.
threshold	Threshold for multiplication.
occErrLimit	Occupation error limit.
traceLimit	Trace limit.
x_bml	Output prg_initial matrix.
mu	Shifted chemical potential
beta	Input guess and output inverse temperature.
h1	Output temperature-scaled minimum gershgorin bound.
hN	Output temperature-scaled maximum gershgorin bound.
sgnlist	SP2 sequence
verbose	Optional parameter for verbosity.

Calculate Gershgorin bounds and rescale

Determine sequence branching first time through

Definition at line 200 of file prg_sp2_fermi_mod.F90.

Here is the call graph for this function:

8.27.2.6 sp2_entropy_ts()

Test SP2 entropy. Get the entropy contribution TS to the total free energy.

Parameters

D0_bml	BML matrix
GG	Entropy function
ee	1D mesh
TS	Energy contribution

Definition at line 541 of file prg_sp2_fermi_mod.F90.

8.27.2.7 sp2_inverse()

Calculate the SP2 inverse.

Parameters

f	Occupation factor
mu	Shifted chemical potential
h1	Minimum scaled Gershgorin bound
hN	Maximum scaled Gershgorin bound
nsteps	Numbers of SP2 iterations
sgnlist	SP2 sequence
ee	Energy value

Definition at line 593 of file prg_sp2_fermi_mod.F90.

Here is the caller graph for this function:

8.27.3 Variable Documentation

8.27.3.1 dp

```
integer, parameter prg_sp2_fermi_mod::dp = kind(1.0d0) [private]
```

Definition at line 18 of file prg_sp2_fermi_mod.F90.

8.28 prg sp2 mod Module Reference

The SP2 module.

Functions/Subroutines

• subroutine, public prg_sp2_basic (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)

Calculates the density matrix from a Hamiltonian matrix by purification. The method implemented here is the very first verion of the SP2 method.

- subroutine, public prg_sp2_basic_tcore (h_bml, rho_bml, rhofull_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_alg2 (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_alg2_genseq (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, pp, icount, vv, verbose)
- subroutine, public prg_sp2_alg2_seq (h_bml, rho_bml, threshold, pp, icount, vv, verbose)
- subroutine, public prg_prg_sp2_alg2_seq_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval, verbose)
- subroutine, public prg_sp2_alg1 (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_alg1_genseq (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, pp, icount, vv)
- subroutine, public prg_sp2_alg1_seq (h_bml, rho_bml, threshold, pp, icount, vv)
- subroutine, public prg_prg_sp2_alg1_seq_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval)
- subroutine, public prg_sp2_submatrix (ham_bml, rho_bml, threshold, pp, icount, vv, mineval, maxeval, core
 — size)

Perform SP2 algorithm using sequence and calculate norm for a submatrix.

subroutine, public prg_sp2_submatrix_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval, core_
 size)

Variables

- integer, parameter dp = kind(1.0d0)
- integer, parameter dp1 = kind(1.0)

8.28.1 Detailed Description

The SP2 module.

This subroutine implements Niklasson's SP2 density matrix purification algorithm.

8.28.2 Function/Subroutine Documentation

8.28.2.1 prg_prg_sp2_alg1_seq_inplace()

Definition at line 1099 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.2 prg_prg_sp2_alg2_seq_inplace()

Definition at line 640 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.3 prg_sp2_alg1()

Definition at line 736 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.4 prg_sp2_alg1_genseq()

Definition at line 879 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.5 prg_sp2_alg1_seq()

Definition at line 1008 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.6 prg_sp2_alg2()

Definition at line 265 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.7 prg_sp2_alg2_genseq()

Definition at line 397 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.8 prg_sp2_alg2_seq()

Definition at line 544 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.9 prg_sp2_basic()

Calculates the density matrix from a Hamiltonian matrix by purification. The method implemented here is the very first verion of the SP2 method.

Parameters

h_bml	Input Hamiltonian matrix
rho_bml	Output density matrix
threshold	Threshold for sparse matrix algebra
bndfil	Bond
minsp2iter	Minimum sp2 iterations
maxsp2iter	Maximum SP2 iterations
sp2conv	Convergence type
idemtol	Idempotency tolerance
verbose	A verbosity level

Definition at line 51 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.10 prg_sp2_basic_tcore()

Definition at line 140 of file prg_sp2_mod.F90.

Here is the call graph for this function:

8.28.2.11 prg_sp2_submatrix()

Perform SP2 algorithm using sequence and calculate norm for a submatrix.

Parameters

rho_bml	Input Hamiltonian/Output density matrix
threshold	Threshold for sparse matrix algebra
рр	Vector containing sequence of 0s and 1s
icount	Sequence count
VV	Vector of sum of squares per iteration
mineval	Min value used for normalization (optional)
maxeval	Max value used for normalization (optional)
core_size	Number of core rows

Definition at line 1189 of file prg_sp2_mod.F90.

8.28.2.12 prg_sp2_submatrix_inplace()

Definition at line 1258 of file prg_sp2_mod.F90.

Here is the caller graph for this function:

8.28.3 Variable Documentation

8.28.3.1 dp

```
integer, parameter prg_sp2_mod::dp = kind(1.0d0) [private]
```

Definition at line 18 of file prg_sp2_mod.F90.

8.28.3.2 dp1

```
integer, parameter prg_sp2_mod::dp1 = kind(1.0) [private]
```

Definition at line 19 of file prg_sp2_mod.F90.

8.29 prg_sp2parser_mod Module Reference

SP2 parser.

Data Types

type sp2data_type
 General SP2 solver type.

Functions/Subroutines

subroutine, public prg_parse_sp2 (sp2data, filename)
 The parser for SP2 solver.

Variables

• integer, parameter dp = kind(1.0d0)

8.29.1 Detailed Description

SP2 parser.

This module is used to parse all the input variables for the SP2 method electronic structure solver. Adding a new input keyword to the parser:

- If the variable is real, we have to increase nkey_re.
- Add the keyword (character type) in the keyvector_re vector.
- Add a default value (real type) in the valvector_re.
- Define a new variable and pass the value through valvector_re(num) where num is the position of the new keyword in the vector.

8.29.2 Function/Subroutine Documentation

8.29.2.1 prg_parse_sp2()

The parser for SP2 solver.

Definition at line 50 of file prg_sp2parser_mod.F90.

Here is the call graph for this function:

8.29.3 Variable Documentation

8.29.3.1 dp

```
integer, parameter prg_sp2parser_mod::dp = kind(1.0d0) [private]
```

Definition at line 22 of file prg_sp2parser_mod.F90.

8.30 prg_subgraphloop_mod Module Reference

The subgraphloop module.

Functions/Subroutines

- $\bullet \ \ \text{subroutine, public } \textbf{prg_subgraphsp2loop} \ (\textbf{h_bml}, \ \textbf{g_bml}, \ \textbf{rho_bml}, \ \textbf{gp}, \ \textbf{threshold})$
- subroutine, public prg_collectmatrixfromparts (gp, rho_bml)

Collect distributed parts into same matrix.

- subroutine, public prg_balanceparts (gp)
- subroutine, public prg_partordering (gp)

Set row ordering bases on parts.

• subroutine, public prg_getgrouppartitionhalosfromgraph (gp, g_bml, hnode, djflag)

Get core+halo indeces for all partitions only using the graph.

• subroutine, public prg_getpartitionhalosfromgraph (gp, g_bml, djflag)

Get core+halo indeces for all partitions only using the graph.

Variables

• integer, parameter dp = kind(1.0d0)

8.30.1 Detailed Description

The subgraphloop module.

8.30.2 Function/Subroutine Documentation

8.30.2.1 prg balanceparts()

Renumber parts Handle unbalanced numbers of parts.

Definition at line 165 of file prg_subgraphloop_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.30.2.2 prg_collectmatrixfromparts()

Collect distributed parts into same matrix.

Parameters

gp	Graph partitioning
rho_bml	Matrix to be collected into

Definition at line 133 of file prg_subgraphloop_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.30.2.3 prg_getgrouppartitionhalosfromgraph()

Get core+halo indeces for all partitions only using the graph.

Parameters

gp	Graph partitioning
g_bml	Graph
hnode	Group start indeces
djflg	Double jump flag (true/false)

Determine halo elements for each subgraph

Definition at line 292 of file prg_subgraphloop_mod.F90.

8.30.2.4 prg_getpartitionhalosfromgraph()

Get core+halo indeces for all partitions only using the graph.

Parameters

gp	Graph partitioning
g_bml	Graph
djflg	Double jump flag (true/false)

Determine halo elements for each subgraph

Definition at line 337 of file prg_subgraphloop_mod.F90.

8.30.2.5 prg_partordering()

Set row ordering bases on parts.

Parameters

```
gp Graph partitioning
```

Definition at line 263 of file prg_subgraphloop_mod.F90.

Here is the caller graph for this function:

8.30.2.6 prg_subgraphsp2loop()

Definition at line 37 of file prg_subgraphloop_mod.F90.

Here is the call graph for this function:

8.30.3 Variable Documentation

8.30.3.1 dp

```
integer, parameter prg_subgraphloop_mod::dp = kind(1.0d0) [private]
```

Definition at line 18 of file prg_subgraphloop_mod.F90.

8.31 prg_syrotation_mod Module Reference

A module to rotate the coordinates of a sybsystem in chemical systems.

Data Types

type rotation_type
 Rotation type.

Functions/Subroutines

- subroutine, public prg_parse_rotation (rot, filename)
 The parser for rotation.
- subroutine, public prg_rotate (rot, r, verbose)
 Rotation routine.

Variables

• integer, parameter dp = kind(1.0d0)

8.31.1 Detailed Description

A module to rotate the coordinates of a sybsystem in chemical systems.

It works by specifying two orientations and a rotation point.

8.31.2 Function/Subroutine Documentation

8.31.2.1 prg_parse_rotation()

The parser for rotation.

Definition at line 46 of file prg_syrotation_mod.F90.

Here is the call graph for this function:

8.31.2.2 prg rotate()

Rotation routine.

It works by indicating the orientations (v1 and v1) and a rotation center. The orientation can be passed either directly by setting v1 and v2 or by indicating two points pQ1 and pQ2. Orientation can also be specified with an atom position if patom1 and patom2 indices are not zero this atoms are used to determine the initial and final orientation.

Parameters

rot	Rotation type
r	Coordinates to be rotated
verbose	Verbosity level

Example:

```
rot%patom1 = 4
rot%patom2 = 0
rot%catom2 = 6
rot%v2 = 0.0; rot%v2(1) = 1
call prg_rotate(rot,r)
```

The latter will orient the system such that atom 4 points to the (1,0,0) direction.

Definition at line 139 of file prg_syrotation_mod.F90.

8.31.3 Variable Documentation

8.31.3.1 dp

```
integer, parameter prg_syrotation_mod::dp = kind(1.0d0) [private]
```

Definition at line 11 of file prg_syrotation_mod.F90.

8.32 prg system mod Module Reference

A module to read and handle chemical systems.

Data Types

· type estruct_type

Electronic structure type.

type system_type

System type.

Functions/Subroutines

• subroutine, public prg_get_nameandext (fullfilename, filename, ext)

Get the name and extension of a file.

subroutine, public prg_parse_system (system, filename, extin)

The parser for the chemical system.

• subroutine, public prg_destroy_system (sy)

Deallocates all the arrays within a system.

subroutine, public prg_write_system (system, filename, extin)

Write system in .xyz, .dat or pdb file.

• subroutine, public prg_write_trajectory (system, iter, each, prg_deltat, filename, extension)

Write trajectory in .xyz, .dat or pdb file.

subroutine, public prg_write_trajectoryandproperty (system, iter, each, prg_deltat, scalarprop, filename, extension)

Write trajectory and atomic properties. Only pdb file.

• subroutine, public prg_make_random_system (system, nats, seed, lx, ly, lz)

Make random Xx system.

• subroutine, public prg_parameters_to_vectors (abc_angles, lattice_vector)

Transforms the lattice parameters into lattice vectors.

• subroutine, public prg_vectors_to_parameters (lattice_vector, abc_angles)

Transforms the lattice vectors into lattice parameters.

subroutine, public prg_get_origin (coords, origin)

Get the origin of the coordinates.

• subroutine, public prg get distancematrix (coords, dmat)

Get the distance matrix.

• subroutine, public prg_translateandfoldtobox (coords, lattice_vectors, origin, verbose)

Translate and fold to box.

• subroutine, public prg_centeratbox (coords, lattice_vectors, verbose)

Translate geometric center to the center of the box.

• subroutine, public prg_wraparound (coords, lattice_vectors, index, verbose)

Wrap around atom i using pbc.

• subroutine, public prg_translatetogeomcandfoldtobox (coords, lattice_vectors, origin)

Translate to geometric center.

• subroutine, public prg_replicate (coords, symbols, lattice_vectors, nx, ny, nz)

Extend/replicate system along lattice vectors.

• subroutine, public prg_replicate_system (sy, syf, nx, ny, nz)

Extend/replicate a system type along the lattice vectors.

subroutine, public prg_cleanuprepeatedatoms (nats, coords, symbols, verbose)

Cleanup repeated atoms we might have in the system.

• subroutine, public prg_get_recip_vects (lattice_vectors, recip_vectors, volr, volk)

Get the volume of the cell and the reciprocal vectors: This soubroutine computes:

subroutine, public prg get dihedral (coords, id1, id2, id3, id4, dihedral)

Get the dihedral angle given four atomic positions.

subroutine, public prg_get_covgraph (sy, nnStructMindist, nnStruct, nrnnstruct, bml_type, factor, gcov_bml, mdimin, verbose)

Get the covalency graph in bml format.

- subroutine prg_get_covgraph_int (sy, nnStructMindist, nnStruct, nrnnstruct, bml_type, factor, gcov_bml, mdimin, verbose)
- subroutine, public prg_get_covgraph_h (sy, nnStructMindist, nnStruct, nrnnstruct, rcut, graph_h, mdimin, verbose)

Get the covanlency graph.

• subroutine, public prg get subsystem (sy, Isize, indices, sbsy, verbose)

Get a subsystem out of the total system.

• subroutine, public prg destroy subsystems (sbsy, verbose)

Destroy allocated subsystem.

- subroutine, public prg_molpartition (sy, npart, nnStructMindist, nnStruct, nrnnstruct, hetatm, gp, verbose)

 *Partition by molecule.
- subroutine, public prg_get_partial_atomgraph (rho_bml, hindex, gch_bml, threshold, verbose)

Get partial subgraph based on the Density matrix.

• subroutine, public prg_collect_graph_p (rho_bml, nc, nats, hindex, chindex, graph_p, threshold, mdimin, verbose)

Collect the small graph to build the full graph.

subroutine, public prg_merge_graph (graph_p, graph_h)

Get partial subgraph based on the Density matrix.

• subroutine, public prg_merge_graph_adj (graph_p, graph_h, xadj, adjncy)

Get partial subgraph based on the Density matrix.

• subroutine, public prg_adj2bml (xadj, adjncy, bml_type, g_bml)

prg_adj2bml

• subroutine, public prg_graph2bml (graph, bml_type, g_bml)

Graph2bml.

subroutine, public prg_graph2vector (graph, vector, maxnz)

Vectorize graph.

subroutine, public prg_vector2graph (vector, graph, maxnz)

Back to graph.

• subroutine, public prg_sortadj (xadj, adjncy)

Sort adj NOTE: this might not be needed anymre since the bml_get_adj routine is sorting the values.

Variables

• integer, parameter dp = kind(1.0d0)

8.32.1 Detailed Description

A module to read and handle chemical systems.

This module will be used to build and handle a molecular system.

8.32.2 Function/Subroutine Documentation

8.32.2.1 prg_adj2bml()

```
subroutine, public prg_system_mod::prg_adj2bml (
    integer, dimension(:), intent(in) xadj,
    integer, dimension(:), intent(in) adjncy,
    character(20), intent(in) bml_type,
    type(bml_matrix_t), intent(inout) g_bml)
```

prg_adj2bml

Parameters

xadj	CSR start values for the adjacency matrix.
adjncy	CSR positions of adjacency matrix.
bml_type	bml format.
g_bml	graph in bml format.

Definition at line 2551 of file prg_system_mod.F90.

8.32.2.2 prg_centeratbox()

Translate geometric center to the center of the box.

Parameters

coords	Coordinates of the system (see system_type).
lattice_vectors	System lattice vectors.
verbose	Verbosity level.

Definition at line 1354 of file prg_system_mod.F90.

8.32.2.3 prg_cleanuprepeatedatoms()

```
subroutine, public prg_system_mod::prg_cleanuprepeatedatoms (
    integer, intent(inout) nats,
    real(dp), dimension(:,:), intent(inout), allocatable coords,
    character(len=*), dimension(:), intent(inout), allocatable symbols,
    integer, intent(in), optional verbose )
```

Cleanup repeated atoms we might have in the system.

Parameters

nats	Number of atoms in the system.
coords	Coordinates of the system (see system_type).
symbols	Atomic symbols (see system_type). \verbose Verbosity level.

Definition at line 1634 of file prg_system_mod.F90.

8.32.2.4 prg_collect_graph_p()

Collect the small graph to build the full graph.

Parameters

rho_bml	Density matix in bml format.
nc	Number of core atoms.
nats	Number of atoms.
hindex	Hindex for the small part (see haindex)
chindex	Core-hallo index for the small part.
graph_p	Graph in an "ellpack" format.
threshold	Threshold to buil the density based atom projected graph.
verbose	Verbosity level.

Definition at line 2334 of file prg_system_mod.F90.

8.32.2.5 prg destroy subsystems()

Destroy allocated subsystem.

This routine will deallocate all the arrays of the structures.

Parameters

```
sy System to de deallocated (see system_type).
```

Definition at line 2115 of file prg_system_mod.F90.

8.32.2.6 prg_destroy_system()

Deallocates all the arrays within a system.

Parameters

```
sy System type
```

Definition at line 644 of file prg_system_mod.F90.

8.32.2.7 prg_get_covgraph()

Get the covalency graph in bml format.

This is the graph composed by the covalent bonds (edges) that are determined with the VDW radius.

Parameters

sy	System structure (see system_type).
nnStructMindist	Minimun distance between atoms.
nnStruct	The neigbors J to I within Rcut that are all within the box.
nrnnstruct	Number of neigbors to I within Rcut that are all within the box.
bml_type	The bml type for constructing the graph.
gconv_bml	Covanlency graph in bml format.
verbose	Verbosity level.

Definition at line 1820 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.8 prg_get_covgraph_h()

Get the covanlency graph.

This is the graph composed by the covalent bonds (edges) that are determined with the VDW radius.

Parameters

sy	System structure (see system_type).
nnStructMindist	Minimun distance between atoms.
nnStruct	The neigbors J to I within Rcut that are all within the box.
nrnnstruct	Number of neigbors to I within Rcut that are all within the box.
bml_type	The bml type for constructing the graph.
gconv_bml	Covanlency graph in bml format.
verbose	Verbosity level.

Definition at line 1957 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.9 prg_get_covgraph_int()

Definition at line 1896 of file prg_system_mod.F90.

8.32.2.10 prg_get_dihedral()

Get the dihedral angle given four atomic positions.

Parameters

sy	System structure
id1	Atom index 1
id2	Atom index 1
id3	Atom index 1
id4	Atom index 1
dihedral	Output dihedral angle

Generated by Doxygen

Definition at line 1764 of file prg_system_mod.F90.

8.32.2.11 prg_get_distancematrix()

Get the distance matrix.

Parameters

coords	Coordinates of the system (see system_type).
dmat	Distance matrix (nats x nats).

Definition at line 1276 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.12 prg_get_nameandext()

Get the name and extension of a file.

Parameters

fullfilename	Full filename.
filename	Filename of the system.
extension	Extension of the file.

Definition at line 211 of file prg_system_mod.F90.

Here is the caller graph for this function:

8.32.2.13 prg_get_origin()

Get the origin of the coordinates.

Parameters

coords	Coordinates of teh system (see system_type).
origin	(min(x),min(y),min(z)) set as the origin of the system.

Definition at line 1243 of file prg_system_mod.F90.

8.32.2.14 prg_get_partial_atomgraph()

Get partial subgraph based on the Density matrix.

Parameters

rho_bml	Density matix in bml format.
hindex	Start and end index for every atom in the system.
gch_bml	Atom based graph in bml format.
threshold Generated by Do	Threshold value for constructing the graph.
verbose	Verbosity levels.

Definition at line 2268 of file prg_system_mod.F90.

8.32.2.15 prg_get_recip_vects()

Get the volume of the cell and the reciprocal vectors: This soubroutine computes:

```
• b_1 = \frac{1}{V_c} a_1 \times a_2
```

•
$$b_2 = \frac{1}{V_c} a_2 \times a_3$$

•
$$b_3 = \frac{1}{V_c} a_3 \times a_1$$

•
$$V_c = ||a_1 \cdot (a_2 \times a_3)||$$

•
$$V_{BZ} = ||b_1 \cdot (b_2 \times b_3)||$$

Parameters

lattice_vectors	Lattice vectors for the system.
recip_vectors	Reciprocal vectors of the system.
volr	Volume of the cell.
volk	Volume of the reciprocal cell.

Definition at line 1715 of file prg_system_mod.F90.

8.32.2.16 prg_get_subsystem()

Get a subsystem out of the total system.

This will get a subsystem from the total system guided by a partition.

Parameters

sy	System structure (see system_type).
Isize	Core+Hallo subsystem size.
indices	Partition indices.
sbsy	Subsystem to be extracted.

Definition at line 2026 of file prg_system_mod.F90.

8.32.2.17 prg_graph2bml()

```
subroutine, public prg_system_mod::prg_graph2bml (
    integer, dimension(:,:), intent(inout), allocatable graph,
    character(20), intent(in) bml_type,
    type(bml_matrix_t), intent(inout) g_bml)
```

Graph2bml.

Parameters

graph	Atom based graph in "ellpack" like format.
bml_type	Bml type (usually ellpack for graph starage)
g_bml	Graph in bml format.

Definition at line 2585 of file prg_system_mod.F90.

8.32.2.18 prg_graph2vector()

Vectorize graph.

Parameters

graph	Ellpack graph.
vector	Vector to store the graph.

Definition at line 2628 of file prg_system_mod.F90.

8.32.2.19 prg_make_random_system()

```
real(dp) ly, real(dp) lz)
```

Make random Xx system.

Parameters

system	System to be construucted.
nats	Number of atoms.
lx	length of the box for the x coordinate.
ly	length of the box for the y coordinate.
lz	length of the box for the z coordinate.

Definition at line 1119 of file prg_system_mod.F90.

8.32.2.20 prg_merge_graph()

Get partial subgraph based on the Density matrix.

Parameters

graph⊷	Density matix based graph in bml format.
_p	
graph←	Hamiltonian matix based graph in bml format.
_h	

Definition at line 2426 of file prg_system_mod.F90.

8.32.2.21 prg_merge_graph_adj()

```
subroutine, public prg_system_mod::prg_merge_graph_adj (
    integer, dimension(:,:), intent(inout), allocatable graph_p,
    integer, dimension(:,:), intent(inout), allocatable graph_h,
    integer, dimension(:), intent(inout), allocatable xadj,
    integer, dimension(:), intent(inout), allocatable adjncy)
```

Get partial subgraph based on the Density matrix.

Parameters

graph⇔	Density matix based graph in "ellpack type format".
_p	
graph⇔	Hamiltonian matix based graph in "ellpack type format".
_h	
xadj	CSR start values for the adjacency matrix.
adjncy	CSR positions of adjacency matrix.

Definition at line 2477 of file prg_system_mod.F90.

8.32.2.22 prg_molpartition()

Partition by molecule.

Parameters

sy	System structure.	
npart	Number of parts.	
nnStructMindist	Minimum distance between neighbors.	
nnStruct	The neighbors J to I within Rcut that are all within the box.	
nrnnstruct	Number of neighbors to I within Rcut that are all within the box.	
hetatm	Atom to be taken as the "center" of the by molecule partition.	
gp	Graph partition structure.	
verbose	Verbosity level.	

Definition at line 2179 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.23 prg_parameters_to_vectors()

Transforms the lattice parameters into lattice vectors.

Parameters

abc_angles	2x3 array containing the lattice parameters. abc_angles(1,1) = a, abc_angles(1,2) = b, and abc_angles(1,3) = c abc_angles(2,1) = α , abc_angles(2,2) = β and abc_angles(2,3) = γ
lattice_vector	3x3 array containing the lattice vectors. lattice_vector(1,:) = $\overrightarrow{\alpha}$

Definition at line 1165 of file prg_system_mod.F90.

Here is the caller graph for this function:

8.32.2.24 prg_parse_system()

The parser for the chemical system.

Parameters

system	System to be constructed.
filename	Filename of the system.
extin	Extension of the file.

Assignment of species index for every atom.

Todo Integrate this loop in the loop for building the splist.

Definition at line 234 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.25 prg_replicate()

Extend/replicate system along lattice vectors.

Parameters

coords	Coordinates of the system (see system_type).
symbols	Symbols for elements.
lattice_vectors	System lattice vectors.
nx	Number of lattice points in the v1 direction.
ny	Number of lattice points in the v2 direction.
nz	Number of lattice points in the v2 direction.

Definition at line 1480 of file prg_system_mod.F90.

8.32.2.26 prg_replicate_system()

Extend/replicate a system type along the lattice vectors.

Parameters

sy	System type.	
syf	syf System type output.	
nx	Number of lattice points in the v1 direction.	
ny	Number of lattice points in the v2 direction.	
nz	Number of lattice points in the v2 direction.	

Definition at line 1537 of file prg_system_mod.F90.

8.32.2.27 prg_sortadj()

Sort adj NOTE: this might not be needed anymre since the bml_get_adj routine is sorting the values.

Definition at line 2685 of file prg_system_mod.F90.

8.32.2.28 prg_translateandfoldtobox()

```
subroutine, public prg_system_mod::prg_translateandfoldtobox (
    real(dp), dimension(:,:), intent(inout), allocatable coords,
    real(dp), dimension(:,:), intent(in) lattice_vectors,
    real(dp), dimension(:), intent(inout), allocatable origin,
    integer, intent(in), optional verbose )
```

Translate and fold to box.

Parameters

coords	Coordinates of the system (see system_type).
lattice_vectors	System lattice vectors.
origin	$(\min(x), \min(y), \min(z))$ set as the origin of the system.

Definition at line 1301 of file prg_system_mod.F90.

8.32.2.29 prg_translatetogeomcandfoldtobox()

Translate to geometric center.

Parameters

coords	Coordinates of the system (see system_type).
lattice_vectors	System lattice vectors.
origin	(min(x),min(y),min(z)) set as the origin of the system.

Definition at line 1441 of file prg_system_mod.F90.

8.32.2.30 prg_vector2graph()

Back to graph.

Parameters

vector	Vector to store the graph.
graph	Ellpack graph.

Definition at line 2657 of file prg_system_mod.F90.

8.32.2.31 prg_vectors_to_parameters()

Transforms the lattice vectors into lattice parameters.

Parameters

lattice_vector	3x3 array containing the lattice vectors. lattice_vector(1,:) = \overrightarrow{a}	
abc_angles 2x3 array containing the lattice parameters. abc_angles(1,1) = a, abc_angles(1,2) = b and		
	abc_angles(1,3) = c abc_angles(2,1) = α , abc_angles(2,2) = β , and abc_angles(2,3) = γ .	

Definition at line 1207 of file prg_system_mod.F90.

Here is the caller graph for this function:

8.32.2.32 prg_wraparound()

Wrap around atom i using pbc.

Parameters

coords	Coordinates of the system (see system_type).
lattice_vectors	System lattice vectors.
index	Index atom to wrap around

Definition at line 1396 of file prg_system_mod.F90.

8.32.2.33 prg_write_system()

Write system in .xyz, .dat or pdb file.

Parameters

system	System to be constructed.
filename	File name.
extension	Extension of the file.

Definition at line 674 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.34 prg_write_trajectory()

Write trajectory in .xyz, .dat or pdb file.

Parameters

system	System to be appended to the trajectory file.	
iter Simulation step.		
each	Writing frequency.	
filename	File name for the trajectory.	
extension Extension of the file.		

Definition at line 886 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.2.35 prg_write_trajectoryandproperty()

Write trajectory and atomic properties. Only pdb file.

Parameters

system	tem System to be appended to the trajectory file.	
iter Simulation step.		
each	Writing frequency.	
prg_deltat	Integration step.	
scalarprop	Scalar property to plot on atoms.	
filename File name for the trajectory.		
extension Extension of the file.		

Definition at line 1009 of file prg_system_mod.F90.

Here is the call graph for this function:

8.32.3 Variable Documentation

8.32.3.1 dp

```
integer, parameter prg_system_mod::dp = kind(1.0d0) [private]
```

Definition at line 17 of file prg_system_mod.F90.

8.33 prg_timer_mod Module Reference

The timer module.

Data Types

· type timer_status_t

Timer status type.

Functions/Subroutines

• subroutine, public timer prg init ()

Initialize timers.

• subroutine prg_timer_getid ()

Get timer id.

• subroutine, public prg_timer_shutdown ()

Done with timers.

• subroutine, public prg_timer_start (itimer, tag)

Start Timing.

• subroutine, public prg_timer_stop (itimer, verbose)

Stop timing.

- subroutine, public prg_timer_collect ()
- subroutine, public prg_timer_results ()
- real(8) function, public time2milliseconds ()
- subroutine, public prg_print_date_and_time (tag)
- character(2) function, private int2char (ival)

Variables

- integer, parameter dp = kind(1.0d0)
- integer, public loop timer
- integer, public sp2_timer
- integer, public genx_timer
- integer, public part_timer
- integer, public subgraph_timer
- integer, public deortho_timer
- integer, public ortho_timer
- integer, public zdiag_timer
- integer, public graphsp2_timer
- integer, public subind_timer
- integer, public subext_timer
- integer, public subsp2_timer
- · integer, public suball timer
- integer, public bmult_timer
- integer, public badd_timer
- integer, public dyn_timer
- integer, public mdloop_timer
- integer, public buildz_timer
- integer, public realcoul_timer
- · integer, public recipcoul_timer
- integer, public pairpot_timer
- integer, public halfverlet_timer
- integer, public pos_timer
- integer, public nlist_timer
- integer tstart_clock
- integer tstop_clock
- integer tclock_rate
- integer tclock_max
- integer num_timers
- type(timer_status_t), dimension(:), allocatable ptimer

8.33.1 Detailed Description

The timer module.

Sets up timers that can be used to time other routines.

Example use of dynamic timing:

```
call timer_prg_init()
call prg_timer_start(dyn_timer,"timer_tag")
.... code lines ...
call prg_timer_stop(dyn_timer,1)
```

This will write the time it takes to execute "code lines" and it will name it "timer_tag"

8.33.2 Function/Subroutine Documentation

8.33.2.1 int2char()

Definition at line 394 of file prg_timer_mod.F90.

Here is the caller graph for this function:

```
prg_timer_mod::prg
_print_date_and_time prg_timer_mod::int2char
```

8.33.2.2 prg_print_date_and_time()

Definition at line 371 of file prg_timer_mod.F90.

Here is the call graph for this function:

8.33.2.3 prg_timer_collect()

subroutine, public prg_timer_mod::prg_timer_collect

Definition at line 253 of file prg_timer_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.33.2.4 prg_timer_getid()

subroutine prg_timer_mod::prg_timer_getid [private]

Get timer id.

Definition at line 200 of file prg_timer_mod.F90.

8.33.2.5 prg_timer_results()

subroutine, public prg_timer_mod::prg_timer_results

Definition at line 317 of file prg_timer_mod.F90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.33.2.6 prg_timer_shutdown()

 $\verb|subroutine, public prg_timer_mod::prg_timer_shutdown|\\$

Done with timers.

Definition at line 205 of file prg_timer_mod.F90.

Here is the caller graph for this function:

8.33.2.7 prg_timer_start()

Start Timing.

Parameters

itimer	The index of the timer to start.
tag	Optional parameter to retag the timer on the fly.

Definition at line 215 of file prg_timer_mod.F90.

Here is the caller graph for this function:

8.33.2.8 prg_timer_stop()

Stop timing.

Parameters

itimer	The index of the timer to stop.
verbose	Optional parameters to print partial times.

Definition at line 233 of file prg_timer_mod.F90.

Here is the caller graph for this function:

8.33.2.9 time2milliseconds()

real(8) function, public prg_timer_mod::time2milliseconds

Definition at line 360 of file prg_timer_mod.F90.

Here is the call graph for this function:

8.33.2.10 timer_prg_init()

subroutine, public prg_timer_mod::timer_prg_init

Initialize timers.

Definition at line 132 of file prg_timer_mod.F90.

Here is the caller graph for this function:

8.33.3 Variable Documentation

8.33.3.1 badd_timer

integer, public prg_timer_mod::badd_timer

Definition at line 48 of file prg_timer_mod.F90.

8.33.3.2 bmult_timer

integer, public prg_timer_mod::bmult_timer

Definition at line 48 of file prg_timer_mod.F90.

8.33.3.3 buildz_timer

integer, public prg_timer_mod::buildz_timer

Definition at line 49 of file prg_timer_mod.F90.

8.33.3.4 deortho_timer

integer, public prg_timer_mod::deortho_timer

Definition at line 45 of file prg_timer_mod.F90.

8.33.3.5 dp

integer, parameter prg_timer_mod::dp = kind(1.0d0) [private]

Definition at line 32 of file prg_timer_mod.F90.

8.33.3.6 dyn_timer

```
integer, public prg_timer_mod::dyn_timer
```

Definition at line 49 of file prg_timer_mod.F90.

8.33.3.7 genx_timer

```
integer, public prg_timer_mod::genx_timer
```

Definition at line 44 of file prg_timer_mod.F90.

8.33.3.8 graphsp2_timer

```
integer, public prg_timer_mod::graphsp2_timer
```

Definition at line 46 of file prg_timer_mod.F90.

8.33.3.9 halfverlet_timer

```
integer, public prg_timer_mod::halfverlet_timer
```

Definition at line 51 of file prg_timer_mod.F90.

8.33.3.10 loop_timer

```
integer, public prg_timer_mod::loop_timer
```

Definition at line 44 of file prg_timer_mod.F90.

8.33.3.11 mdloop_timer

integer, public prg_timer_mod::mdloop_timer

Definition at line 49 of file prg_timer_mod.F90.

8.33.3.12 nlist_timer

integer, public prg_timer_mod::nlist_timer

Definition at line 51 of file prg_timer_mod.F90.

8.33.3.13 num_timers

integer prg_timer_mod::num_timers [private]

Definition at line 122 of file prg_timer_mod.F90.

8.33.3.14 ortho_timer

integer, public prg_timer_mod::ortho_timer

Definition at line 46 of file prg_timer_mod.F90.

8.33.3.15 pairpot_timer

integer, public prg_timer_mod::pairpot_timer

Definition at line 50 of file prg_timer_mod.F90.

8.33.3.16 part_timer

integer, public prg_timer_mod::part_timer

Definition at line 45 of file prg_timer_mod.F90.

8.33.3.17 pos_timer

integer, public prg_timer_mod::pos_timer

Definition at line 51 of file prg_timer_mod.F90.

8.33.3.18 ptimer

```
type (timer_status_t), dimension(:), allocatable prg_timer_mod::ptimer [private]
```

Definition at line 124 of file prg_timer_mod.F90.

8.33.3.19 realcoul_timer

```
integer, public prg_timer_mod::realcoul_timer
```

Definition at line 50 of file prg_timer_mod.F90.

8.33.3.20 recipcoul_timer

```
integer, public prg_timer_mod::recipcoul_timer
```

Definition at line 50 of file prg_timer_mod.F90.

8.33.3.21 sp2_timer

```
integer, public prg_timer_mod::sp2_timer
```

Definition at line 44 of file prg_timer_mod.F90.

8.33.3.22 suball_timer

```
integer, public prg_timer_mod::suball_timer
```

Definition at line 48 of file prg_timer_mod.F90.

8.33.3.23 subext_timer

integer, public prg_timer_mod::subext_timer

Definition at line 47 of file prg_timer_mod.F90.

8.33.3.24 subgraph_timer

integer, public prg_timer_mod::subgraph_timer

Definition at line 45 of file prg_timer_mod.F90.

8.33.3.25 subind_timer

integer, public prg_timer_mod::subind_timer

Definition at line 47 of file prg_timer_mod.F90.

8.33.3.26 subsp2_timer

integer, public prg_timer_mod::subsp2_timer

Definition at line 47 of file prg_timer_mod.F90.

8.33.3.27 tclock_max

integer prg_timer_mod::tclock_max [private]

Definition at line 121 of file prg_timer_mod.F90.

8.33.3.28 tclock_rate

integer prg_timer_mod::tclock_rate [private]

Definition at line 121 of file prg_timer_mod.F90.

8.33.3.29 tstart_clock

integer prg_timer_mod::tstart_clock [private]

Definition at line 121 of file prg_timer_mod.F90.

8.33.3.30 tstop_clock

```
integer prg_timer_mod::tstop_clock [private]
```

Definition at line 121 of file prg_timer_mod.F90.

8.33.3.31 zdiag_timer

```
integer, public prg_timer_mod::zdiag_timer
```

Definition at line 46 of file prg_timer_mod.F90.

8.34 prg_xlbo_mod Module Reference

A module to perform XLBO integration.

Data Types

type xlbo_type

General xlbo solver type.

Functions/Subroutines

```
• subroutine, public <a href="mailto:prg_parse_xlbo">prg_parse_xlbo</a> (xlbo, filename)
```

The parser for XLBO parser.

• subroutine, public prg_xlbo_nint (charges, n, n_0, n_1, n_2, n_3, n_4, n_5, mdstep, xl)

This routine integrates the dynamical variable "n".

• subroutine, public prg_xlbo_fcoulupdate (fcoul, charges, n)

Adjust forces for the linearized XLBOMD functional.

Variables

```
• integer, parameter dp = kind(1.0d0)
```

• real(dp), parameter c0 = -6.0_dp

Coefficients for modified Verlet integration.

- real(dp), parameter c1 = 14.0 dp
- real(dp), parameter c2 = -8.0_dp
- real(dp), parameter c3 = -3.0_dp
- real(dp), parameter c4 = 4.0_dp
- real(dp), parameter c5 = -1.0_dp
- real(dp), parameter kappa = 1.82_dp

Coefficients for modified Verlet integration.

- real(dp), parameter alpha = 0.018_dp
- real(dp), parameter cc = 0.9_dp

8.34.1 Detailed Description

A module to perform XLBO integration.

This module will be used to compute integrate the dynamical variable "n" in xlbo.

8.34.2 Function/Subroutine Documentation

8.34.2.1 prg_parse_xlbo()

The parser for XLBO parser.

Definition at line 62 of file prg_xlbo_mod.F90.

Here is the call graph for this function:

8.34.2.2 prg_xlbo_fcoulupdate()

Adjust forces for the linearized XLBOMD functional.

Parameters

```
charges
```

Definition at line 158 of file prg_xlbo_mod.F90.

8.34.2.3 prg_xlbo_nint()

This routine integrates the dynamical variable "n".

Parameters

charges

Definition at line 118 of file prg_xlbo_mod.F90.

8.34.3 Variable Documentation

8.34.3.1 alpha

```
real(dp), parameter prg_xlbo_mod::alpha = 0.018_dp [private]
```

Definition at line 28 of file prg_xlbo_mod.F90.

8.34.3.2 c0

```
real(dp), parameter prg_xlbo_mod::c0 = -6.0_dp [private]
```

Coefficients for modified Verlet integration.

Definition at line 19 of file prg_xlbo_mod.F90.

8.34.3.3 c1

```
real(dp), parameter prg_xlbo_mod::c1 = 14.0_dp [private]
```

Definition at line 20 of file prg_xlbo_mod.F90.

8.34.3.4 c2

```
real(dp), parameter prg_xlbo_mod::c2 = -8.0_dp [private]
```

Definition at line 21 of file prg_xlbo_mod.F90.

8.34.3.5 c3

```
real(dp), parameter prg_xlbo_mod::c3 = -3.0_dp [private]
```

Definition at line 22 of file prg_xlbo_mod.F90.

8.34.3.6 c4

```
real(dp), parameter prg_xlbo_mod::c4 = 4.0_dp [private]
```

Definition at line 23 of file prg_xlbo_mod.F90.

8.34.3.7 c5

```
real(dp), parameter prg_xlbo_mod::c5 = -1.0_dp [private]
```

Definition at line 24 of file prg_xlbo_mod.F90.

8.34.3.8 cc

```
real(dp), parameter prg_xlbo_mod::cc = 0.9_dp [private]
```

Definition at line 29 of file prg_xlbo_mod.F90.

8.34.3.9 dp

```
integer, parameter prg_xlbo_mod::dp = kind(1.0d0) [private]
```

Definition at line 16 of file prg_xlbo_mod.F90.

8.34.3.10 kappa

```
real(dp), parameter prg_xlbo_mod::kappa = 1.82_dp [private]
```

Coefficients for modified Verlet integration.

Definition at line 27 of file prg xlbo mod.F90.

8.35 prg xlbokernel mod Module Reference

Pre-conditioned O(N) calculation of the kernel for XL-BOMD.

Functions/Subroutines

- subroutine invert (A, AI, N)
- subroutine, public prg_kernel_multirank_latte (KRes, KK0_bml, Res, FelTol, L, LMAX, NUMRANK, HO_
 bml, mu, beta, RXYZ, Box, Hubbard_U, Element_Pointer, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc,
 nebcoul, totnebcoul, Hinxlist, S_bml, Z_bml, Nocc, Inv_bml, H1_bml, DO_bml, D1_bml, m_rec, threshold,
 Nr_elem, mdstep, update)

Compute low rank approximation of $(K0*J)^{\wedge}(-1)*K0*(q[n]-n)$ (for LATTE)

- subroutine prg_update_preconditioner (K0, v, fv, Nr_atoms, threshold)
- subroutine, public prg_kernel_multirank (KRes, KK0_bml, Res, FelTol, L, LMAX, HO_bml, mu, beta, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERATIO, nn← Rx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, S_bml, Z_bml, Nocc, Znuc, Inv_bml, H1_bml, X_bml, Y_bml, DO_bml, D1_bml, m_rec, threshold)
- subroutine, public prg_full_kernel_latte (KK, DO_bml, mu0, RXYZ, Box, Hubbard_U, Element_Pointer, Nr
 _atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, Hinxlist, S_bml, Z_bml, Inv_bml, D1_bml, H1_bml, HO_bml,
 Nocc, m rec, threshold, beta, Nr elem, nebcoul, totnebcoul)

Compute full inverse Jacobian of q[n]-n (for LATTE)

subroutine, public prg_full_kernel (KK, DO_bml, mu0, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_
 atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDE
 X_START, H_INDEX_END, S_bml, Z_bml, Inv_bml, D1_bml, H1_bml, HO_bml, Y_bml, X_bml, Nocc, Znuc,
 m_rec, threshold, beta, diagonal)

Compute full inverse Jacobian of q[n]-n (for development code)

subroutine, public prg_kernel_matrix_multirank (KRes, KK0_bml, Res, FelTol, L, LMAX, HO_bml, mu, beta, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMER← ATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, S_bml, Z_bml, Nocc, Znuc, Inv_bml, H1_bml, X_bml, Y_bml, DO_bml, D1_bml, m_rec, threshold)

Variables

• integer, parameter dp = kind(1.0d0)

8.35.1 Detailed Description

Pre-conditioned O(N) calculation of the kernel for XL-BOMD.

Here are subroutines implementing Niklasson's scheme for low-rank, Krylov subspace approximation of the kernel.

8.35.2 Function/Subroutine Documentation

8.35.2.1 invert()

Definition at line 31 of file prg_xlbokernel_mod.F90.

Here is the caller graph for this function:

8.35.2.2 prg_full_kernel()

```
real(prec), dimension(nr_atoms), intent(in) RZ,
real(prec), dimension(3), intent(in) LBox,
\verb|real(prec)|, & \verb|dimension(nr_atoms)|, & \verb|intent(in)| & \verb|Hubbard_U|, \\
character(10), dimension(nr_atoms), intent(in) Element_Type,
integer, intent(in) Nr_atoms,
integer, intent(in) HDIM,
integer, intent(in) Max_Nr_Neigh,
real(prec), intent(in) Coulomb_acc,
real (prec), intent (in) TIMERATIO,
real(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnRx,
real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
integer, dimension(nr_atoms), intent(in) nrnnlist,
integer, dimension(nr_atoms,max_nr_neigh), intent(in) nnType,
integer, dimension(nr_atoms), intent(in) H_INDEX_START,
integer, dimension(nr_atoms), intent(in) H_INDEX_END,
type(bml_matrix_t), intent(in) S_bml,
type(bml_matrix_t), intent(in) Z_bml,
type(bml_matrix_t), dimension(m_rec), intent(in) Inv_bml,
type(bml_matrix_t), intent(inout) D1_bml,
type (bml_matrix_t), intent(inout) H1_bml,
type(bml_matrix_t), intent(in) HO_bml,
type(bml_matrix_t), intent(inout) Y_bml,
type(bml_matrix_t), intent(inout) X_bml,
integer, intent(in) Nocc,
real(prec), dimension(nr_atoms), intent(in) Znuc,
integer, intent(in) m_rec,
real (prec), intent (in) threshold,
real(prec), intent(in) beta,
real(prec), dimension(hdim), intent(inout) diagonal )
```

Compute full inverse Jacobian of q[n]-n (for development code)

Parameters

KK	The inverse Jacobian.
DO bml	Orthogonalized density matrix.
mu0	The chemical potiential.
RX,RY,RZ	Nuclear coordinates.
Lbox	Box dimensions.
Hubbard_U	Hubbard U list.
Element_Type	List to keep track of elements.
Nr_atoms	The number of atoms.
HDIM	Hamiltonian matrix dimension.
Max_Nr_Neigh	Max neighbours for Ewald.
Coulomb_acc	Coulomb accuracy
TIMERATIO	Parameter for Ewald
nnRx,nnRy,nnRz	Neighbour lists.
nrnnlist	Number of neighbours list.
nnType	Refers to original order of atoms.
H_INDEX_START,H_INDEX_END	Lists to keep track of atomic positions in the Hamiltonian.
S_bml	The S matrix.
Z_bml,The	Z matrix.
Inv_bml,Inverses	generated by prg_implicit_fermi_save_inverse.
HO_bml,Orthogonalized	Hamiltonian matrix.

Parameters

D1_bml,H1_bml,Y_bml,X_bml	Auxillary matrices.
Nocc	Occupation.
Znuc	List of nuclear charges.
m_rec	Number of recursion steps.
threshold	Threshold value for matrix truncation.
beta	Scaled inverse temperature.
diagonal	Auxillary vector.

Definition at line 684 of file prg xlbokernel mod.F90.

Here is the call graph for this function:

8.35.2.3 prg_full_kernel_latte()

```
subroutine, public prg_xlbokernel_mod::prg_full_kernel_latte (
            real(prec), dimension(nr_atoms,nr_atoms), intent(out) KK,
             type(bml_matrix_t), intent(inout) DO_bml,
             real(prec), intent(inout) mu0,
             real(prec), dimension(3,nr_atoms), intent(in) RXYZ,
             real(prec), dimension(3,3), intent(in) Box,
             real(prec), dimension(nr_elem), intent(in) Hubbard_U,
             integer, dimension(nr_atoms), intent(in) Element_Pointer,
             integer, intent(in) Nr_atoms,
             integer, intent(in) HDIM,
             integer, intent(in) Max_Nr_Neigh,
             real(prec), intent(in) Coulomb_acc,
             integer, dimension(hdim), intent(in) Hinxlist,
             type(bml_matrix_t), intent(in) S_bml,
             \label{type bml_matrix_t), intent(in) $Z\_bml$,}
             type(bml_matrix_t), dimension(m_rec), intent(in) Inv_bml,
             type(bml_matrix_t), intent(inout) D1_bml,
             type(bml_matrix_t), intent(inout) H1_bml,
             type(bml_matrix_t), intent(in) HO_bml,
             real(prec), intent(in) Nocc,
             integer, intent(in) m_rec,
```

```
real(prec), intent(in) threshold,
real(prec), intent(in) beta,
integer, intent(in) Nr_elem,
integer, dimension(4,max_nr_neigh,nr_atoms), intent(in) nebcoul,
integer, dimension(nr_atoms), intent(in) totnebcoul)
```

Compute full inverse Jacobian of q[n]-n (for LATTE)

Parameters

KK	The inverse Jacobian.
DO_bml	Orthogonalized density matrix.
mu0	The chemical potiential.
RXYZ	Nuclear coordinates.
Box	Box dimensions.
Hubbard_U	Hubbard U list.
Element_Pointer	List to keep track of elements.
Nr_atoms	The number of atoms.
HDIM	Hamiltonian matrix dimension.
Max_Nr_Neigh	Max neighbours for Ewald.
Coulomb_acc	Coulomb accuracy
Hinxlist	List to keep track of atomic positions in the Hamiltonian.
S_bml	The S matrix.
Z_bml,The	Z matrix.
Inv_bml,Inverses	generated by prg_implicit_fermi_save_inverse.
HO_bml,Orthogonalized	Hamiltonian matrix.
D1_bml,H1_bml,Y_bml,X_bml	Auxillary matrices.
Nocc	Occupation.
m_rec	Number of recursion steps.
threshold	Threshold value for matrix truncation.
beta	Scaled inverse temperature.
Nr_elem	Number of elements in Hubbard list.

Definition at line 515 of file prg_xlbokernel_mod.F90.

Here is the call graph for this function:

8.35.2.4 prg_kernel_matrix_multirank()

```
subroutine, public prg_xlbokernel_mod::prg_kernel_matrix_multirank (
            real(dp), dimension(nr_atoms), intent(out) KRes,
            type(bml_matrix_t), intent(inout) KKO_bml,
            real(dp), dimension(nr_atoms), intent(in) Res,
            real(dp), intent(in) FelTol,
            integer, intent(out) L,
            integer, intent(in) LMAX,
            type(bml_matrix_t), intent(in) HO_bml,
            real(dp), intent(in) mu,
            real(dp), intent(in) beta,
            real(dp), dimension(nr_atoms), intent(in) RX,
            real(dp), dimension(nr_atoms), intent(in) RY,
             real(dp), dimension(nr_atoms), intent(in) RZ,
            real(dp), dimension(3), intent(in) LBox,
            real(dp), dimension(nr_atoms), intent(in) Hubbard_U,
            character(10), dimension(nr_atoms), intent(in) Element_Type,
            integer, intent(in) Nr_atoms,
            integer, intent(in) HDIM,
            integer, intent(in) Max_Nr_Neigh,
            real(dp), intent(in) Coulomb_acc,
             real(dp), intent(in) TIMERATIO,
            real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRx,
            real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
            real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
            integer, dimension(nr_atoms), intent(in) nrnnlist,
            integer, dimension(nr_atoms, max_nr_neigh), intent(in) nnType,
            integer, dimension(nr_atoms), intent(in) H_INDEX_START,
            integer, dimension(nr_atoms), intent(in) H_INDEX_END,
            type(bml_matrix_t), intent(in) S_bml,
            type(bml_matrix_t), intent(in) Z_bml,
            real(dp), intent(in) Nocc,
            real(dp), dimension(nr_atoms), intent(in) Znuc,
            type(bml_matrix_t), dimension(m_rec), intent(in) Inv_bml,
            type(bml_matrix_t), intent(inout) H1_bml,
            type(bml_matrix_t), intent(inout) X_bml,
             type(bml_matrix_t), intent(inout) Y_bml,
             type(bml_matrix_t), intent(inout) DO_bml,
            type(bml_matrix_t), intent(inout) D1_bml,
            integer, intent(in) m_rec,
            real(dp), intent(in) threshold )
```

Definition at line 789 of file prg_xlbokernel_mod.F90.

Here is the call graph for this function:

8.35.2.5 prg_kernel_multirank()

```
subroutine, public prg_xlbokernel_mod::prg_kernel_multirank (
             real(dp), dimension(nr_atoms), intent(inout) KRes,
             type(bml_matrix_t), intent(in) KKO_bml,
             real(dp), dimension(nr_atoms), intent(in) Res,
             real(dp), intent(in) FelTol,
             integer, intent(out) L,
             integer, intent(in) LMAX,
             type(bml_matrix_t), intent(in) HO_bml,
             real(dp), intent(in) mu,
             real(dp), intent(in) beta,
             real(dp), dimension(nr_atoms), intent(in) RX,
             real(dp), dimension(nr_atoms), intent(in) RY,
             real(dp), dimension(nr_atoms), intent(in) RZ,
             real(dp), dimension(3), intent(in) LBox,
             real(dp), dimension(nr_atoms), intent(in) Hubbard_U,
             character(10), dimension(nr_atoms), intent(in) Element_Type,
             integer, intent(in) Nr_atoms,
             integer, intent(in) HDIM,
             integer, intent(in) Max_Nr_Neigh,
             real(dp), intent(in) Coulomb_acc,
             real(dp), intent(in) TIMERATIO,
             real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRx,
             real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
             real(dp), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
             integer, dimension(nr_atoms), intent(in) nrnnlist,
             integer, dimension(nr_atoms, max_nr_neigh), intent(in) nnType,
             integer, dimension(nr_atoms), intent(in) H_INDEX_START,
             integer, dimension(nr_atoms), intent(in) H_INDEX_END,
             type(bml_matrix_t), intent(in) S_bml,
             type(bml_matrix_t), intent(in) Z_bml,
             integer, intent(in) Nocc,
             real(dp), dimension(nr_atoms), intent(in) Znuc,
             type(bml_matrix_t), dimension(m_rec), intent(in) Inv_bml,
             type(bml_matrix_t), intent(inout) H1_bml,
             type(bml_matrix_t), intent(inout) X_bml,
```

```
type(bml_matrix_t), intent(inout) Y_bml,
type(bml_matrix_t), intent(inout) DO_bml,
type(bml_matrix_t), intent(inout) D1_bml,
integer, intent(in) m_rec,
real(dp), intent(in) threshold)
```

Definition at line 337 of file prg_xlbokernel_mod.F90.

Here is the call graph for this function:

8.35.2.6 prg_kernel_multirank_latte()

```
subroutine, public prg_xlbokernel_mod::prg_kernel_multirank_latte (
             real(dp), dimension(nr_atoms), intent(inout) KRes,
             type(bml_matrix_t), intent(inout) KKO_bml,
             real(dp), dimension(nr_atoms), intent(in) Res,
             real(dp), intent(in) FelTol,
             integer, intent(out) L,
             integer, intent(in) LMAX,
             integer, intent(in) NUMRANK,
             type(bml_matrix_t), intent(inout) HO_bml,
             real(dp), intent(in) mu,
             real(dp), intent(in) beta,
             real(dp), dimension(3, nr_atoms), intent(in) RXYZ,
             real(dp), dimension(3,3), intent(in) Box,
             real(dp), dimension(nr_elem), intent(in) Hubbard_U,
             integer, dimension(nr_atoms), intent(in) Element_Pointer,
             integer, intent(in) Nr_atoms,
             integer, intent(in) HDIM,
             integer, intent(in) Max_Nr_Neigh,
             real(dp), intent(in) Coulomb_acc,
             integer, dimension(4, max_nr_neigh, nr_atoms), intent(in) nebcoul,
             integer, dimension(nr_atoms), intent(in) totnebcoul,
             integer, dimension(hdim), intent(in) Hinxlist,
             type(bml_matrix_t), intent(inout) S_bml,
             type (bml_matrix_t), intent(inout) Z_bml,
             real(dp), intent(in) Nocc,
             type(bml_matrix_t), dimension(m_rec), intent(inout) Inv_bml,
             type(bml_matrix_t), intent(inout) H1_bml,
```

```
type(bml_matrix_t), intent(inout) DO_bml,
type(bml_matrix_t), intent(inout) D1_bml,
integer, intent(in) m_rec,
real(dp), intent(in) threshold,
integer, intent(in) Nr_elem,
integer, intent(in) mdstep,
integer, intent(in) update)
```

Compute low rank approximation of $(K0*J)^{\wedge}(-1)*K0*(q[n]-n)$ (for LATTE)

Parameters

KRes	The low rank approximation
KK0_bml	The pre-conditioner K0.
Res	The residual q[n]-n
FelTol	Relative error tolerance for approximation
L	Number of vectors used.
LMAX	Maximum nr of vectors to use.
NUMRANK	Nr of vectors to use.
HO_bml,Orthogonalized	Hamiltonian matrix.
mu	The chemical potiential.
beta	Scaled inverse temperature.
RXYZ	Nuclear coordinates.
Вох	Box dimensions.
Hubbard_U	Hubbard U list.
Element_Pointer	List to keep track of elements.
Nr_atoms	The number of atoms.
HDIM	Hamiltonian matrix dimension.
Max_Nr_Neigh	Max neighbours for Ewald.
Coulomb_acc	Coulomb accuracy.
nebcoul	Neighbour lists.
totnebcoul	Number of neighbours list.
Hinxlist	List to keep track of atomic positions in the Hamiltonian.
S_bml	The S matrix.
Z_bml,The	Z matrix.
Nocc	Occupation.
Inv_bml,Inverses	generated by prg_implicit_fermi_save_inverse.
DO_bml,D1_bml,H1_bml,Y_bml,X_bml	Auxillary matrices.
m_rec	Number of recursion steps.
threshold	Threshold value for matrix truncation.
Nr_elem	Number of elements in Hubbard list.
·	

Definition at line 87 of file prg_xlbokernel_mod.F90.

Here is the call graph for this function:

8.35.2.7 prg_update_preconditioner()

Definition at line 266 of file prg_xlbokernel_mod.F90.

Here is the caller graph for this function:

```
prg_xlbokernel_mod
::prg_kernel_multirank_latte

prg_xlbokernel_mod
::prg_update_preconditioner
```

8.35.3 Variable Documentation

8.35.3.1 dp

```
integer, parameter prg_xlbokernel_mod::dp = kind(1.0d0) [private]
```

Definition at line 20 of file prg_xlbokernel_mod.F90.

8.36 prg xlkernel mod Module Reference

Add name.

Data Types

type xlk_type

Functions/Subroutines

- subroutine, public prg_parse_xlkernel (input, filename)

 The parser for the mixer routines.
- subroutine, public prg_fermi (D0, QQ, ee, gap, Fe_vec, mu0, H, Z, Nocc, T, OccErrLim, MaxIt, HDIM)
- subroutine, public prg_kernel_fermi_full (KK, JJ, D0, mu0, mu1, T, RX, RY, RZ, LBox, Hubbard_U, Element
 — Type, Nr_atoms, MaxIt, eps, m, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERATIO, nnRx, nnRy, nnRz,
 nrnnlist, nnType, H_INDEX_START, H_INDEX_END, H, S, Z, Nocc, Znuc, QQ, ee, Fe_vec)
- subroutine, public prg_v_kernel_fermi (D0, dq_dv, v, mu0, mu1, T, RX, RY, RZ, LBox, Hubbard_U, Element
 — Type, Nr_atoms, MaxIt, eps, m, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERATIO, nnRx, nnRy, nnRz,
 nrnnlist, nnType, H_INDEX_START, H_INDEX_END, H, S, Z, Nocc, Znuc, QQ, ee, Fe_vec)
- subroutine, private prg_get_deriv_finite_temp (P1, H0, H1, Nocc, T, Q, ev, fe, mu0, eps, HDIM)
- subroutine, private prg_mmult (alpha, A, B, beta, C, TA, TB, HDIM)
- subroutine, private prg_eig (A, Q, ee, type, HDIM)
- subroutine, private prg inv (X, XI, HDIM)
- subroutine, public prg_rank1 (verbose)

Rank1 kernel

Variables

• integer, parameter dp = kind(1.0d0)

8.36.1 Detailed Description

Add name.

XL kernel (To be integrated)

Note

This module is still not functional

8.36.2 Function/Subroutine Documentation

8.36.2.1 prg_eig()

```
subroutine, private prg_xlkernel_mod::prg_eig (
    real(prec), dimension(hdim,hdim), intent(in) A,
    real(prec), dimension(hdim,hdim), intent(out) Q,
    real(prec), dimension(hdim), intent(out) ee,
    character(1), intent(in) type,
    integer(prec), intent(in) HDIM) [private]
```

Definition at line 385 of file prg_xlkernel_mod.F90.

8.36.2.2 prg fermi()

Definition at line 89 of file prg_xlkernel_mod.F90.

Here is the call graph for this function:

8.36.2.3 prg_get_deriv_finite_temp()

Definition at line 307 of file prg_xlkernel_mod.F90.

Here is the call graph for this function:

8.36.2.4 prg_inv()

Definition at line 412 of file prg_xlkernel_mod.F90.

8.36.2.5 prg_kernel_fermi_full()

```
real(prec), dimension(nr_atoms), intent(in) RY,
real(prec), dimension(nr_atoms), intent(in) RZ,
real(prec), dimension(3), intent(in) LBox,
real(prec), dimension(nr_atoms), intent(in) Hubbard_U,
character(10), dimension(nr_atoms), intent(in) Element_Type,
integer(prec), intent(in) Nr_atoms,
integer(prec), intent(in) MaxIt,
real(prec), intent(in) eps,
integer(prec), intent(in) m,
integer(prec), intent(in) HDIM,
integer(prec), intent(in) Max_Nr_Neigh,
real(prec), intent(in) Coulomb_acc,
real (prec), intent (in) TIMERATIO,
real(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnRx,
real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
integer(prec), dimension(nr_atoms), intent(in) nrnnlist,
integer(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnType,
integer(prec), dimension(nr_atoms), intent(in) H_INDEX_START,
integer(prec), dimension(nr_atoms), intent(in) H_INDEX_END,
real (prec), dimension (hdim, hdim), intent (in) H,
real(prec), dimension(hdim,hdim), intent(in) S,
real (prec), dimension (hdim, hdim), intent (in) Z,
integer (prec), intent (in) Nocc,
real(prec), dimension(nr_atoms), intent(in) Znuc,
real(prec), dimension(hdim,hdim), intent(in) QQ,
real(prec), dimension(hdim), intent(in) ee,
real(prec), dimension(hdim), intent(in) Fe_vec )
```

Definition at line 145 of file prg_xlkernel_mod.F90.

Here is the call graph for this function:

8.36.2.6 prg_mmult()

```
character(1), intent(in) TB,
integer(prec), intent(in) HDIM ) [private]
```

Definition at line 367 of file prg_xlkernel_mod.F90.

Here is the caller graph for this function:

8.36.2.7 prg_parse_xlkernel()

The parser for the mixer routines.

Definition at line 40 of file prg_xlkernel_mod.F90.

Here is the call graph for this function:

8.36.2.8 prg_rank1()

Rank1 kernel

Parameters

param1	
verbose	Different levels of verbosity.

Definition at line 440 of file prg xlkernel mod.F90.

8.36.2.9 prg v kernel fermi()

```
subroutine, public prg_xlkernel_mod::prg_v_kernel_fermi (
            real (prec), dimension (hdim, hdim), intent (inout) DO,
             real(prec), dimension(nr_atoms), intent(out) dq_dv,
             real(prec), dimension(nr_atoms), intent(in) v,
             real (prec), intent (inout) mu0,
             real(prec), intent(inout) mul,
             real(prec), intent(in) T,
             real(prec), dimension(nr_atoms), intent(in) RX,
             real(prec), dimension(nr_atoms), intent(in) RY,
             real(prec), dimension(nr_atoms), intent(in) RZ,
             real(prec), dimension(3), intent(in) LBox,
             real(prec), dimension(nr_atoms), intent(in) Hubbard_U,
             character(10), dimension(nr_atoms), intent(in) Element_Type,
             integer(prec), intent(in) Nr_atoms,
             integer(prec), intent(in) MaxIt,
             real(prec), intent(in) eps,
             integer(prec), intent(in) m,
             integer (prec), intent (in) HDIM,
             integer(prec), intent(in) Max_Nr_Neigh,
             real (prec), intent (in) Coulomb_acc,
             real (prec), intent (in) TIMERATIO,
             real(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnRx,
             real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRy,
             real(prec), dimension(nr_atoms, max_nr_neigh), intent(in) nnRz,
             integer(prec), dimension(nr_atoms), intent(in) nrnnlist,
             integer(prec), dimension(nr_atoms,max_nr_neigh), intent(in) nnType,
             integer(prec), dimension(nr_atoms), intent(in) H_INDEX_START,
             integer(prec), dimension(nr_atoms), intent(in) H_INDEX_END,
             real (prec), dimension (hdim, hdim), intent (in) H,
             real(prec), dimension(hdim,hdim), intent(in) S,
             real (prec), dimension (hdim, hdim), intent (in) Z,
             integer(prec), intent(in) Nocc,
             real(prec), dimension(nr_atoms), intent(in) Znuc,
             real(prec), dimension(hdim,hdim), intent(in) QQ,
             real(prec), dimension(hdim), intent(in) ee,
             real(prec), dimension(hdim), intent(in) Fe_vec )
```

266 Module Documentation

Definition at line 236 of file prg_xlkernel_mod.F90.

Here is the call graph for this function:

8.36.3 Variable Documentation

8.36.3.1 dp

integer, parameter prg_xlkernel_mod::dp = kind(1.0d0) [private]

Definition at line 16 of file prg_xlkernel_mod.F90.

Chapter 9

Data Type Documentation

9.1 prg_chebyshev_mod::chebdata_type Type Reference

General Cheb solver type.

Public Attributes

- character(100) flavor
- character(100) bml_type
- character(100) jobname
- integer mdim
- integer ncoeffs
- integer ndim
- integer verbose
- integer npts
- real(dp) atr
- real(dp) bndfil
- real(dp) ef
- real(dp) estep
- real(dp) fermitol
- real(dp) kbt
- real(dp) threshold
- · logical getef
- logical jon
- logical trkfunc

9.1.1 Detailed Description

General Cheb solver type.

Definition at line 28 of file prg_chebyshev_mod.F90.

9.1.2 Member Data Documentation

9.1.2.1 atr

```
real(dp) prg_chebyshev_mod::chebdata_type::atr
```

Definition at line 33 of file prg_chebyshev_mod.F90.

9.1.2.2 bml_type

```
character(100) prg_chebyshev_mod::chebdata_type::bml_type
```

Definition at line 30 of file prg_chebyshev_mod.F90.

9.1.2.3 bndfil

```
real(dp) prg_chebyshev_mod::chebdata_type::bndfil
```

Definition at line 33 of file prg_chebyshev_mod.F90.

9.1.2.4 ef

```
real(dp) prg_chebyshev_mod::chebdata_type::ef
```

Definition at line 33 of file prg_chebyshev_mod.F90.

9.1.2.5 estep

```
real(dp) prg_chebyshev_mod::chebdata_type::estep
```

Definition at line 33 of file prg_chebyshev_mod.F90.

9.1.2.6 fermitol

```
\verb|real(dp)| prg\_chebyshev\_mod::chebdata\_type::fermitol|\\
```

Definition at line 34 of file prg_chebyshev_mod.F90.

9.1.2.7 flavor

character(100) prg_chebyshev_mod::chebdata_type::flavor

Definition at line 29 of file prg_chebyshev_mod.F90.

9.1.2.8 getef

logical prg_chebyshev_mod::chebdata_type::getef

Definition at line 35 of file prg_chebyshev_mod.F90.

9.1.2.9 jobname

character(100) prg_chebyshev_mod::chebdata_type::jobname

Definition at line 30 of file prg_chebyshev_mod.F90.

9.1.2.10 jon

 ${\tt logical prg_chebyshev_mod::chebdata_type::jon}$

Definition at line 35 of file prg_chebyshev_mod.F90.

9.1.2.11 kbt

 $\verb"real(dp)" prg_chebyshev_mod::chebdata_type::kbt"$

Definition at line 34 of file prg_chebyshev_mod.F90.

9.1.2.12 mdim

integer prg_chebyshev_mod::chebdata_type::mdim

Definition at line 31 of file prg_chebyshev_mod.F90.

9.1.2.13 ncoeffs

integer prg_chebyshev_mod::chebdata_type::ncoeffs

Definition at line 31 of file prg_chebyshev_mod.F90.

9.1.2.14 ndim

integer prg_chebyshev_mod::chebdata_type::ndim

Definition at line 31 of file prg_chebyshev_mod.F90.

9.1.2.15 npts

integer prg_chebyshev_mod::chebdata_type::npts

Definition at line 32 of file prg_chebyshev_mod.F90.

9.1.2.16 threshold

real(dp) prg_chebyshev_mod::chebdata_type::threshold

Definition at line 34 of file prg_chebyshev_mod.F90.

9.1.2.17 trkfunc

logical prg_chebyshev_mod::chebdata_type::trkfunc

Definition at line 35 of file prg_chebyshev_mod.F90.

9.1.2.18 verbose

integer prg_chebyshev_mod::chebdata_type::verbose

Definition at line 31 of file prg_chebyshev_mod.F90.

The documentation for this type was generated from the following file:

/tmp/qmd-progress/src/prg_chebyshev_mod.F90

9.2 prg_system_mod::estruct_type Type Reference

Electronic structure type.

Public Attributes

· integer norbs

Number of orbitals of the system.

integer nel

Number of electrons.

• integer, dimension(:,:), allocatable hindex

Hindex.

• type(bml_matrix_t) ham

SCC-Hamiltonian of the system.

• type(bml_matrix_t) ham0

Hamiltonian of the system.

• type(bml_matrix_t) oham

Orthogonalized Hamiltonian.

• type(bml_matrix_t) over

Overlap matrix of the system.

type(bml matrix t) rho

Density matrix of the system.

type(bml_matrix_t) orho

Orthogonalized density matrix.

• type(bml_matrix_t) zmat

Congruence transformation.

• real(dp), dimension(:), allocatable coul_pot_r

Real Coulombic contribution.

real(dp), dimension(:), allocatable coul_pot_k

Reciprocal Coulombic contribution.

• real(dp), dimension(:,:), allocatable skforce

Slater Koster force.

• real(dp), dimension(:,:), allocatable fpul

Pulay force.

real(dp), dimension(:,:), allocatable fscoul

Nonorthogonal Coulombic force.

real(dp) eband

Band energy.

9.2.1 Detailed Description

Electronic structure type.

The electronic structure type.

Definition at line 20 of file prg_system_mod.F90.

9.2.2 Member Data Documentation

9.2.2.1 coul_pot_k

```
real(dp), dimension(:), allocatable prg_system_mod::estruct_type::coul_pot_k
```

Reciprocal Coulombic contribution.

Definition at line 56 of file prg_system_mod.F90.

9.2.2.2 coul_pot_r

```
real(dp), dimension(:), allocatable prg_system_mod::estruct_type::coul_pot_r
```

Real Coulombic contribution.

Definition at line 53 of file prg_system_mod.F90.

9.2.2.3 eband

```
real(dp) prg_system_mod::estruct_type::eband
```

Band energy.

Definition at line 68 of file prg_system_mod.F90.

9.2.2.4 fpul

```
real(dp), dimension(:,:), allocatable prg_system_mod::estruct_type::fpul
```

Pulay force.

Definition at line 62 of file prg_system_mod.F90.

9.2.2.5 fscoul

```
real(dp), dimension(:,:), allocatable prg_system_mod::estruct_type::fscoul
```

Nonorthogonal Coulombic force.

Definition at line 65 of file prg_system_mod.F90.

9.2.2.6 ham

type(bml_matrix_t) prg_system_mod::estruct_type::ham

SCC-Hamiltonian of the system.

Definition at line 32 of file prg system mod.F90.

9.2.2.7 ham0

```
type(bml_matrix_t) prg_system_mod::estruct_type::ham0
```

Hamiltonian of the system.

Definition at line 35 of file prg_system_mod.F90.

9.2.2.8 hindex

integer, dimension(:,:), allocatable prg_system_mod::estruct_type::hindex

Hindex.

Definition at line 29 of file prg_system_mod.F90.

9.2.2.9 nel

```
\verb|integer prg_system_mod::estruct_type::nel|\\
```

Number of electrons.

Definition at line 26 of file prg_system_mod.F90.

9.2.2.10 norbs

```
integer prg_system_mod::estruct_type::norbs
```

Number of orbitals of the system.

Definition at line 23 of file prg_system_mod.F90.

9.2.2.11 oham

type(bml_matrix_t) prg_system_mod::estruct_type::oham

Orthogonalized Hamiltonian.

Definition at line 38 of file prg system mod.F90.

9.2.2.12 orho

type(bml_matrix_t) prg_system_mod::estruct_type::orho

Orthogonalized density matrix.

Definition at line 47 of file prg_system_mod.F90.

9.2.2.13 over

type(bml_matrix_t) prg_system_mod::estruct_type::over

Overlap matrix of the system.

Definition at line 41 of file prg_system_mod.F90.

9.2.2.14 rho

type(bml_matrix_t) prg_system_mod::estruct_type::rho

Density matrix of the system.

Definition at line 44 of file prg_system_mod.F90.

9.2.2.15 skforce

 $\verb|real(dp)|, | dimension(:,:)|, | allocatable | prg_system_mod::estruct_type::skforce|$

Slater Koster force.

Definition at line 59 of file prg_system_mod.F90.

9.2.2.16 zmat

```
type(bml_matrix_t) prg_system_mod::estruct_type::zmat
```

Congruence transformation.

Definition at line 50 of file prg_system_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_system_mod.F90

9.3 prg_genz_mod::genzspinp Type Reference

Input for the genz driver. This type controlls all the variables that are needed by genz.

Public Attributes

integer verbose

To have different levels of verbose.

· integer nfirst

!Lentgth of the "firsts iteration period".

integer nrefi

!Initial number of recursive refinements.

• integer nreff

!Initial number of recursive refinements.

• real(dp) numthresi

Initial threshold value.

real(dp) numthresf

Final threshold value.

· logical integration

If we want to do XL integration scheme for Z.

· integer igenz

To keep track of the genz iterations.

logical zsp

Logical variable to compute in sparse or dense mode.

• integer mdim

Max nonzero elements per row for every row see [1].

character(20) bml_type

Matrix format (Dense or Ellpack).

9.3.1 Detailed Description

Input for the genz driver. This type controlls all the variables that are needed by genz.

Definition at line 26 of file prg_genz_mod.F90.

9.3.2 Member Data Documentation

9.3.2.1 bml_type

```
character(20) prg_genz_mod::genzspinp::bml_type
```

Matrix format (Dense or Ellpack).

Definition at line 59 of file prg_genz_mod.F90.

9.3.2.2 igenz

```
integer prg_genz_mod::genzspinp::igenz
```

To keep track of the genz iterations.

Definition at line 50 of file prg_genz_mod.F90.

9.3.2.3 integration

```
logical prg_genz_mod::genzspinp::integration
```

If we want to do XL integration scheme for Z.

Definition at line 47 of file prg_genz_mod.F90.

9.3.2.4 mdim

```
integer prg_genz_mod::genzspinp::mdim
```

Max nonzero elements per row for every row see [1].

Definition at line 56 of file prg_genz_mod.F90.

9.3.2.5 nfirst

```
integer prg_genz_mod::genzspinp::nfirst
```

!Lentgth of the "firsts iteration period".

Definition at line 32 of file prg_genz_mod.F90.

9.3.2.6 nreff

integer prg_genz_mod::genzspinp::nreff

!Initial number of recursive refinements.

Definition at line 38 of file prg genz mod.F90.

9.3.2.7 nrefi

integer prg_genz_mod::genzspinp::nrefi

!Initial number of recursive refinements.

Definition at line 35 of file prg_genz_mod.F90.

9.3.2.8 numthresf

real(dp) prg_genz_mod::genzspinp::numthresf

Final threshold value.

Definition at line 44 of file prg_genz_mod.F90.

9.3.2.9 numthresi

real(dp) prg_genz_mod::genzspinp::numthresi

Initial threshold value.

Definition at line 41 of file prg_genz_mod.F90.

9.3.2.10 verbose

integer prg_genz_mod::genzspinp::verbose

To have different levels of verbose.

Definition at line 29 of file prg_genz_mod.F90.

9.3.2.11 zsp

logical prg_genz_mod::genzspinp::zsp

Logical variable to compute in sparse or dense mode.

Definition at line 53 of file prg_genz_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_genz_mod.F90

9.4 prg_graph_mod::graph_partitioning_t Type Reference

Trace per iteration.

Collaboration diagram for prg_graph_mod::graph_partitioning_t:

Private Attributes

• character(len=100) pname

Partition name.

• integer myrank

Local processor.

· integer totalprocs

Number of processors.

· integer totalparts

Total number of global partitions.

· integer totalnodes

Total number of global groups, nodes (or matrix rows)

integer totalnodes2

Total number of global nodes (or matrix rows)

• integer globalpartmin

Minimum global part number.

· integer globalpartmax

Maximum global part number.

· integer globalpartextent

Total global parts.

• integer, dimension(:), allocatable localpartmin

Minimum part per processor.

• integer, dimension(:), allocatable localpartmax

Maximum part per processor.

• integer, dimension(:), allocatable localpartextent

Number of parts per processor.

• integer, dimension(:), allocatable order

Original ordering if required.

· integer, dimension(:), allocatable reorder

Reordering if required.

integer nparts

Total number of local partitions.

• integer, dimension(:), allocatable nnodesinpart

Number of nodes in each local partition.

• integer, dimension(:), allocatable nnodesinpartall

Number of nodes in each partition.

• integer, dimension(100) pp

Sequence for SP2.

· integer maxiter

Number of SP2 iterations.

• real(dp) ehomo

Homo value.

• real(dp) elumo

Lumo value.

real(dp) mineval

Min eval for prg_normalize.

real(dp) maxeval

Max eval for prg_normalize.

• real(dp), dimension(100) vv

Trace per iteration.

• type(subgraph_t), dimension(:), allocatable sgraph

Subgraph details.

9.4.1 Detailed Description

Trace per iteration.

Graph partitioning type

Definition at line 57 of file prg_graph_mod.F90.

9.4.2 Member Data Documentation

9.4.2.1 ehomo

```
real(dp) prg_graph_mod::graph_partitioning_t::ehomo [private]
```

Homo value.

Definition at line 117 of file prg graph mod.F90.

9.4.2.2 elumo

```
real(dp) prg_graph_mod::graph_partitioning_t::elumo [private]
```

Lumo value.

Definition at line 120 of file prg_graph_mod.F90.

9.4.2.3 globalpartextent

integer prg_graph_mod::graph_partitioning_t::globalpartextent [private]

Total global parts.

Definition at line 84 of file prg_graph_mod.F90.

9.4.2.4 globalpartmax

integer prg_graph_mod::graph_partitioning_t::globalpartmax [private]

Maximum global part number.

Definition at line 81 of file prg_graph_mod.F90.

9.4.2.5 globalpartmin

integer prg_graph_mod::graph_partitioning_t::globalpartmin [private]

Minimum global part number.

Definition at line 78 of file prg_graph_mod.F90.

9.4.2.6 localpartextent

integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::localpartextent [private]

Number of parts per processor.

Definition at line 93 of file prg graph mod.F90.

9.4.2.7 localpartmax

 $integer, \ dimension (:), \ allocatable \ prg_graph_mod::graph_partitioning_t::localpartmax \ \ [private]$

Maximum part per processor.

Definition at line 90 of file prg_graph_mod.F90.

9.4.2.8 localpartmin

integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::localpartmin [private]

Minimum part per processor.

Definition at line 87 of file prg_graph_mod.F90.

9.4.2.9 maxeval

real(dp) prg_graph_mod::graph_partitioning_t::maxeval [private]

Max eval for prg_normalize.

Definition at line 126 of file prg graph mod.F90.

9.4.2.10 maxiter

integer prg_graph_mod::graph_partitioning_t::maxiter [private]

Number of SP2 iterations.

Definition at line 114 of file prg_graph_mod.F90.

9.4.2.11 mineval

```
real(dp) prg_graph_mod::graph_partitioning_t::mineval [private]
```

Min eval for prg_normalize.

Definition at line 123 of file prg_graph_mod.F90.

9.4.2.12 myrank

```
integer prg_graph_mod::graph_partitioning_t::myrank [private]
```

Local processor.

Definition at line 63 of file prg_graph_mod.F90.

9.4.2.13 nnodesinpart

```
integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::nnodesinpart [private]
```

Number of nodes in each local partition.

Definition at line 105 of file prg_graph_mod.F90.

9.4.2.14 nnodesinpartall

```
integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::nnodesinpartall [private]
```

Number of nodes in each partition.

Definition at line 108 of file prg graph mod.F90.

9.4.2.15 nparts

```
integer prg_graph_mod::graph_partitioning_t::nparts [private]
```

Total number of local partitions.

Definition at line 102 of file prg_graph_mod.F90.

9.4.2.16 order

integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::order [private]

Original ordering if required.

Definition at line 96 of file prg graph mod.F90.

9.4.2.17 pname

character(len=100) prg_graph_mod::graph_partitioning_t::pname [private]

Partition name.

Definition at line 60 of file prg_graph_mod.F90.

9.4.2.18 pp

integer, dimension(100) prg_graph_mod::graph_partitioning_t::pp [private]

Sequence for SP2.

Definition at line 111 of file prg_graph_mod.F90.

9.4.2.19 reorder

integer, dimension(:), allocatable prg_graph_mod::graph_partitioning_t::reorder [private]

Reordering if required.

Definition at line 99 of file prg_graph_mod.F90.

9.4.2.20 sgraph

type (subgraph_t), dimension(:), allocatable prg_graph_mod::graph_partitioning_t::sgraph [private]

Subgraph details.

Definition at line 132 of file prg_graph_mod.F90.

9.4.2.21 totalnodes

```
integer prg_graph_mod::graph_partitioning_t::totalnodes [private]
```

Total number of global groups, nodes (or matrix rows)

Definition at line 72 of file prg_graph_mod.F90.

9.4.2.22 totalnodes2

```
integer prg_graph_mod::graph_partitioning_t::totalnodes2 [private]
```

Total number of global nodes (or matrix rows)

Definition at line 75 of file prg_graph_mod.F90.

9.4.2.23 totalparts

```
integer prg_graph_mod::graph_partitioning_t::totalparts [private]
```

Total number of global partitions.

Definition at line 69 of file prg graph mod.F90.

9.4.2.24 totalprocs

```
integer prg_graph_mod::graph_partitioning_t::totalprocs [private]
```

Number of processors.

Definition at line 66 of file prg_graph_mod.F90.

9.4.2.25 vv

```
real(dp), dimension(100) prg_graph_mod::graph_partitioning_t::vv [private]
```

Trace per iteration.

Definition at line 129 of file prg_graph_mod.F90.

The documentation for this type was generated from the following file:

/tmp/qmd-progress/src/prg_graph_mod.F90

9.5 prg_graphsp2parser_mod::gsp2data_type Type Reference

General SP2 solver type.

Public Attributes

- character(20) jobname
- character(50) hamfile
- integer verbose
- integer minsp2iter
- integer maxsp2iter
- integer nodesperpart
- integer natoms
- integer partition_count
- real(dp) sp2tol
- · real(dp) threshold
- real(dp) bndfil
- real(dp) gthreshold
- real(dp) errlimit
- integer mdim
- integer ndim
- character, dimension(3) sdim
- real(dp), dimension(3) pdim
- character(20) bml_type
- character(10) sp2conv
- character(10) graph_element
- character(10) partition_type
- character(10) partition_refinement
- logical double_jump
- real(dp) covgfact
- real(dp) nlgcut
- integer parteach

9.5.1 Detailed Description

General SP2 solver type.

Definition at line 26 of file prg_graphsp2parser_mod.F90.

9.5.2 Member Data Documentation

9.5.2.1 bml_type

character(20) prg_graphsp2parser_mod::gsp2data_type::bml_type

Definition at line 44 of file prg_graphsp2parser_mod.F90.

9.5.2.2 bndfil

```
real(dp) prg_graphsp2parser_mod::gsp2data_type::bndfil
```

Definition at line 37 of file prg_graphsp2parser_mod.F90.

9.5.2.3 covgfact

```
real(dp) prg_graphsp2parser_mod::gsp2data_type::covgfact
```

Definition at line 50 of file prg_graphsp2parser_mod.F90.

9.5.2.4 double_jump

```
logical prg_graphsp2parser_mod::gsp2data_type::double_jump
```

Definition at line 49 of file prg_graphsp2parser_mod.F90.

9.5.2.5 errlimit

```
\verb|real(dp)| prg_graphsp2parser_mod::gsp2data_type::errlimit|\\
```

Definition at line 39 of file prg_graphsp2parser_mod.F90.

9.5.2.6 graph_element

```
character(10) prg_graphsp2parser_mod::gsp2data_type::graph_element
```

Definition at line 46 of file prg_graphsp2parser_mod.F90.

9.5.2.7 gthreshold

```
real(dp) prg_graphsp2parser_mod::gsp2data_type::gthreshold
```

Definition at line 38 of file prg_graphsp2parser_mod.F90.

9.5.2.8 hamfile

character(50) prg_graphsp2parser_mod::gsp2data_type::hamfile

Definition at line 28 of file prg_graphsp2parser_mod.F90.

9.5.2.9 jobname

character(20) prg_graphsp2parser_mod::gsp2data_type::jobname

Definition at line 27 of file prg_graphsp2parser_mod.F90.

9.5.2.10 maxsp2iter

integer prg_graphsp2parser_mod::gsp2data_type::maxsp2iter

Definition at line 31 of file prg_graphsp2parser_mod.F90.

9.5.2.11 mdim

 $\verb|integer prg_graphsp2parser_mod::gsp2data_type::mdim|\\$

Definition at line 40 of file prg_graphsp2parser_mod.F90.

9.5.2.12 minsp2iter

integer prg_graphsp2parser_mod::gsp2data_type::minsp2iter

Definition at line 30 of file prg_graphsp2parser_mod.F90.

9.5.2.13 natoms

integer prg_graphsp2parser_mod::gsp2data_type::natoms

Definition at line 33 of file prg_graphsp2parser_mod.F90.

9.5.2.14 ndim

integer prg_graphsp2parser_mod::gsp2data_type::ndim

Definition at line 41 of file prg_graphsp2parser_mod.F90.

9.5.2.15 nlgcut

real(dp) prg_graphsp2parser_mod::gsp2data_type::nlgcut

Definition at line 51 of file prg_graphsp2parser_mod.F90.

9.5.2.16 nodesperpart

integer prg_graphsp2parser_mod::gsp2data_type::nodesperpart

Definition at line 32 of file prg_graphsp2parser_mod.F90.

9.5.2.17 parteach

 $\verb|integer| prg_graphsp2parser_mod::gsp2data_type::parteach|$

Definition at line 52 of file prg_graphsp2parser_mod.F90.

9.5.2.18 partition_count

integer prg_graphsp2parser_mod::gsp2data_type::partition_count

Definition at line 34 of file prg_graphsp2parser_mod.F90.

9.5.2.19 partition_refinement

 $\verb|character(10)| prg_graphsp2parser_mod::gsp2data_type::partition_refinement|\\$

Definition at line 48 of file prg_graphsp2parser_mod.F90.

9.5.2.20 partition_type

character(10) prg_graphsp2parser_mod::gsp2data_type::partition_type

Definition at line 47 of file prg_graphsp2parser_mod.F90.

9.5.2.21 pdim

```
\verb|real(dp)|, | dimension(3) | prg\_graphsp2parser\_mod::gsp2data\_type::pdim|\\
```

Definition at line 43 of file prg_graphsp2parser_mod.F90.

9.5.2.22 sdim

character, dimension(3) prg_graphsp2parser_mod::gsp2data_type::sdim

Definition at line 42 of file prg_graphsp2parser_mod.F90.

9.5.2.23 sp2conv

character(10) prg_graphsp2parser_mod::gsp2data_type::sp2conv

Definition at line 45 of file prg_graphsp2parser_mod.F90.

9.5.2.24 sp2tol

```
real(dp) prg_graphsp2parser_mod::gsp2data_type::sp2tol
```

Definition at line 35 of file prg_graphsp2parser_mod.F90.

9.5.2.25 threshold

```
real(dp) prg_graphsp2parser_mod::gsp2data_type::threshold
```

Definition at line 36 of file prg_graphsp2parser_mod.F90.

9.5.2.26 verbose

 $\verb|integer| prg_graphsp2parser_mod::gsp2data_type::verbose|$

Definition at line 29 of file prg_graphsp2parser_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_graphsp2parser_mod.F90

9.6 prg_modelham_mod::mham_type Type Reference

General ModelHam type.

Public Attributes

- integer norbs
- · integer seed
- character(100) jobname
- character(100) bml_type
- real(dp) ea
- real(dp) eb
- real(dp) dab
- real(dp) daiaj
- real(dp) dbibj
- real(dp) dec
- real(dp) rcoeff
- logical reshuffle

9.6.1 Detailed Description

General ModelHam type.

Definition at line 18 of file prg_modelham_mod.F90.

9.6.2 Member Data Documentation

9.6.2.1 bml_type

character(100) prg_modelham_mod::mham_type::bml_type

Definition at line 21 of file prg_modelham_mod.F90.

9.6.2.2 dab

```
\verb"real(dp)" prg_modelham_mod::mham_type::dab"
```

Definition at line 24 of file prg_modelham_mod.F90.

9.6.2.3 daiaj

```
real(dp) prg_modelham_mod::mham_type::daiaj
```

Definition at line 25 of file prg_modelham_mod.F90.

9.6.2.4 dbibj

```
real(dp) prg_modelham_mod::mham_type::dbibj
```

Definition at line 26 of file prg_modelham_mod.F90.

9.6.2.5 dec

```
real(dp) prg_modelham_mod::mham_type::dec
```

Definition at line 27 of file prg_modelham_mod.F90.

9.6.2.6 ea

```
real(dp) prg_modelham_mod::mham_type::ea
```

Definition at line 22 of file prg_modelham_mod.F90.

9.6.2.7 eb

```
real(dp) prg_modelham_mod::mham_type::eb
```

Definition at line 23 of file prg_modelham_mod.F90.

9.6.2.8 jobname

```
character(100) prg_modelham_mod::mham_type::jobname
```

Definition at line 20 of file prg_modelham_mod.F90.

9.6.2.9 norbs

```
integer prg_modelham_mod::mham_type::norbs
```

Definition at line 19 of file prg_modelham_mod.F90.

9.6.2.10 rcoeff

```
real(dp) prg_modelham_mod::mham_type::rcoeff
```

Definition at line 27 of file prg_modelham_mod.F90.

9.6.2.11 reshuffle

```
logical prg_modelham_mod::mham_type::reshuffle
```

Definition at line 28 of file prg_modelham_mod.F90.

9.6.2.12 seed

```
integer prg_modelham_mod::mham_type::seed
```

Definition at line 19 of file prg_modelham_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_modelham_mod.F90

9.7 prg_pulaymixer_mod::mx_type Type Reference

Public Attributes

• character(20) mixertype

Type or mixing scheme to be used (Linear or Pulay)

• integer verbose

Verbosity level.

· integer mpulay

Pulay dimension for matrix.

real(dp) mixcoeff

Coefficient for mixing.

logical mixeron

Mixer on or off (Not implemented)

9.7.1 Detailed Description

Definition at line 17 of file prg_pulaymixer_mod.F90.

9.7.2 Member Data Documentation

9.7.2.1 mixcoeff

real(dp) prg_pulaymixer_mod::mx_type::mixcoeff

Coefficient for mixing.

Definition at line 29 of file prg_pulaymixer_mod.F90.

9.7.2.2 mixeron

logical prg_pulaymixer_mod::mx_type::mixeron

Mixer on or off (Not implemented)

Definition at line 32 of file prg_pulaymixer_mod.F90.

9.7.2.3 mixertype

character(20) prg_pulaymixer_mod::mx_type::mixertype

Type or mixing scheme to be used (Linear or Pulay)

Definition at line 20 of file prg pulaymixer mod.F90.

9.7.2.4 mpulay

integer prg_pulaymixer_mod::mx_type::mpulay

Pulay dimension for matrix.

Definition at line 26 of file prg_pulaymixer_mod.F90.

9.7.2.5 verbose

integer prg_pulaymixer_mod::mx_type::verbose

Verbosity level.

Definition at line 23 of file prg_pulaymixer_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg pulaymixer mod.F90

9.8 prg_extras_mod::prg_memory_consumption Interface Reference

Private Member Functions

• subroutine prg_memory_consumption (vm_peak, vm_size, pid, ppid)

9.8.1 Detailed Description

Definition at line 15 of file prg_extras_mod.F90.

9.8.2 Constructor & Destructor Documentation

9.8.2.1 prg_memory_consumption()

Definition at line 17 of file prg_extras_mod.F90.

The documentation for this interface was generated from the following file:

/tmp/qmd-progress/src/prg_extras_mod.F90

9.9 prg_parallel_mod::rankreducedata_t Type Reference

Data structure for rection over MPI ranks.

Private Attributes

```
real(dp) valData value.integer rank
```

MPI rank.

9.9.1 Detailed Description

Data structure for rection over MPI ranks.

Definition at line 72 of file prg_parallel_mod.F90.

9.9.2 Member Data Documentation

9.9.2.1 rank

```
integer prg_parallel_mod::rankreducedata_t::rank [private]
```

MPI rank.

Definition at line 78 of file prg_parallel_mod.F90.

9.9.2.2 val

```
real(dp) prg_parallel_mod::rankreducedata_t::val [private]
```

Data value.

Definition at line 75 of file prg_parallel_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_parallel_mod.F90

9.10 prg response mod::respdata type Type Reference

Public Attributes

- character(20) respmode
- character(20) typeofpert
- character(20) bmltype
- integer mdim
- real(dp) numthresh
- logical computedipole
- · logical getresponse
- · real(dp) fieldintensity
- real(dp), dimension(3) field

9.10.1 Detailed Description

Definition at line 21 of file prg_response_mod.F90.

9.10.2 Member Data Documentation

9.10.2.1 bmltype

```
character(20) prg_response_mod::respdata_type::bmltype
```

Definition at line 24 of file prg_response_mod.F90.

9.10.2.2 computedipole

```
logical prg_response_mod::respdata_type::computedipole
```

Definition at line 27 of file prg_response_mod.F90.

9.10.2.3 field

```
real(dp), dimension(3) prg_response_mod::respdata_type::field
```

Definition at line 30 of file prg_response_mod.F90.

9.10.2.4 fieldintensity

```
real(dp) prg_response_mod::respdata_type::fieldintensity
```

Definition at line 29 of file prg_response_mod.F90.

9.10.2.5 getresponse

```
logical prg_response_mod::respdata_type::getresponse
```

Definition at line 28 of file prg_response_mod.F90.

9.10.2.6 mdim

```
integer prg_response_mod::respdata_type::mdim
```

Definition at line 25 of file prg_response_mod.F90.

9.10.2.7 numthresh

```
real(dp) prg_response_mod::respdata_type::numthresh
```

Definition at line 26 of file prg_response_mod.F90.

9.10.2.8 respmode

```
character(20) prg_response_mod::respdata_type::respmode
```

Definition at line 22 of file prg_response_mod.F90.

9.10.2.9 typeofpert

```
character(20) prg_response_mod::respdata_type::typeofpert
```

Definition at line 23 of file prg_response_mod.F90.

The documentation for this type was generated from the following file:

/tmp/qmd-progress/src/prg_response_mod.F90

9.11 prg_syrotation_mod::rotation_type Type Reference

Rotation type.

Public Attributes

- character(20) jobname
- character(50) typeofrot
- integer patom1

Atomic point to determine the initial orientation.

integer patom2

Atomic point to determine initial orientation.

· integer catom

Atomic point to determine the rotation center.

integer catom2

Atomic point to determine a second rotation center.

real(dp), dimension(3) pq1

Point to determine initial orientation.

• real(dp), dimension(3) pq2

Point to determine final orientation.

real(dp), dimension(3) v1

Initial orientation.

• real(dp), dimension(3) v2

Final orientation.

real(dp), dimension(3) vq

Center of rotation.

integer, dimension(2) rotate_atoms

First and last rotated atom in the list.

9.11.1 Detailed Description

Rotation type.

Definition at line 14 of file prg_syrotation_mod.F90.

9.11.2 Member Data Documentation

9.11.2.1 catom

integer prg_syrotation_mod::rotation_type::catom

Atomic point to determine the rotation center.

Definition at line 22 of file prg_syrotation_mod.F90.

9.11.2.2 catom2

integer prg_syrotation_mod::rotation_type::catom2

Atomic point to determine a second rotation center.

Definition at line 24 of file prg_syrotation_mod.F90.

9.11.2.3 jobname

character(20) prg_syrotation_mod::rotation_type::jobname

Definition at line 15 of file prg_syrotation_mod.F90.

9.11.2.4 patom1

integer prg_syrotation_mod::rotation_type::patom1

Atomic point to determine the initial orientation.

Definition at line 18 of file prg_syrotation_mod.F90.

9.11.2.5 patom2

integer prg_syrotation_mod::rotation_type::patom2

Atomic point to determine initial orientation.

Definition at line 20 of file prg_syrotation_mod.F90.

9.11.2.6 pq1

```
real(dp), dimension(3) prg_syrotation_mod::rotation_type::pq1
```

Point to determine initial orientation.

Definition at line 26 of file prg_syrotation_mod.F90.

9.11.2.7 pq2

```
\verb|real(dp)|, | \verb|dimension(3)| | \verb|prg_syrotation_mod::rotation_type::pq2|
```

Point to determine final orientation.

Definition at line 28 of file prg_syrotation_mod.F90.

9.11.2.8 rotate_atoms

```
integer, dimension(2) prg_syrotation_mod::rotation_type::rotate_atoms
```

First and last rotated atom in the list.

Definition at line 36 of file prg_syrotation_mod.F90.

9.11.2.9 typeofrot

```
character(50) prg_syrotation_mod::rotation_type::typeofrot
```

Definition at line 16 of file prg_syrotation_mod.F90.

9.11.2.10 v1

```
real(dp), dimension(3) prg_syrotation_mod::rotation_type::v1
```

Initial orientation.

Definition at line 30 of file prg_syrotation_mod.F90.

9.11.2.11 v2

```
real(dp), dimension(3) prg_syrotation_mod::rotation_type::v2
```

Final orientation.

Definition at line 32 of file prg_syrotation_mod.F90.

9.11.2.12 vq

```
real(dp), dimension(3) prg_syrotation_mod::rotation_type::vq
```

Center of rotation.

Definition at line 34 of file prg_syrotation_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_syrotation_mod.F90

9.12 prg_sp2parser_mod::sp2data_type Type Reference

General SP2 solver type.

Public Attributes

- character(20) jobname
- integer verbose
- · integer minsp2iter
- integer maxsp2iter
- real(dp) sp2tol
- real(dp) threshold
- real(dp) bndfil
- integer mdim
- integer ndim
- character, dimension(3) sdim
- real(dp), dimension(3) pdim
- character(20) bml_type
- character(10) sp2conv
- character(10) flavor

9.12.1 Detailed Description

General SP2 solver type.

Definition at line 26 of file prg_sp2parser_mod.F90.

9.12.2 Member Data Documentation

9.12.2.1 bml_type

```
character(20) prg_sp2parser_mod::sp2data_type::bml_type
```

Definition at line 38 of file prg_sp2parser_mod.F90.

9.12.2.2 bndfil

```
real(dp) prg_sp2parser_mod::sp2data_type::bndfil
```

Definition at line 33 of file prg_sp2parser_mod.F90.

9.12.2.3 flavor

```
character(10) prg_sp2parser_mod::sp2data_type::flavor
```

Definition at line 40 of file prg_sp2parser_mod.F90.

9.12.2.4 jobname

```
character(20) prg_sp2parser_mod::sp2data_type::jobname
```

Definition at line 27 of file prg_sp2parser_mod.F90.

9.12.2.5 maxsp2iter

```
integer prg_sp2parser_mod::sp2data_type::maxsp2iter
```

Definition at line 30 of file prg_sp2parser_mod.F90.

9.12.2.6 mdim

integer prg_sp2parser_mod::sp2data_type::mdim

Definition at line 34 of file prg_sp2parser_mod.F90.

9.12.2.7 minsp2iter

integer prg_sp2parser_mod::sp2data_type::minsp2iter

Definition at line 29 of file prg_sp2parser_mod.F90.

9.12.2.8 ndim

integer prg_sp2parser_mod::sp2data_type::ndim

Definition at line 35 of file prg_sp2parser_mod.F90.

9.12.2.9 pdim

real(dp), dimension(3) prg_sp2parser_mod::sp2data_type::pdim

Definition at line 37 of file prg_sp2parser_mod.F90.

9.12.2.10 sdim

character, dimension(3) prg_sp2parser_mod::sp2data_type::sdim

Definition at line 36 of file prg_sp2parser_mod.F90.

9.12.2.11 sp2conv

character(10) prg_sp2parser_mod::sp2data_type::sp2conv

Definition at line 39 of file prg_sp2parser_mod.F90.

9.12.2.12 sp2tol

```
real(dp) prg_sp2parser_mod::sp2data_type::sp2tol
```

Definition at line 31 of file prg_sp2parser_mod.F90.

9.12.2.13 threshold

```
real(dp) prg_sp2parser_mod::sp2data_type::threshold
```

Definition at line 32 of file prg_sp2parser_mod.F90.

9.12.2.14 verbose

```
integer prg_sp2parser_mod::sp2data_type::verbose
```

Definition at line 28 of file prg_sp2parser_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_sp2parser_mod.F90

9.13 prg_graph_mod::subgraph_t Type Reference

Subgraph type.

Private Attributes

• integer part

Partition number.

• integer hsize

Size of original matrix (h x h)

· integer Isize

Size of full subgraph (I x I)

• integer Ilsize

Size of core subgraph.

• integer, dimension(:), allocatable core_halo_index

Indeces from original matrix for subgraph core+halo extraction.

• integer, dimension(:), allocatable nodeinpart

Nodes in this partition.

9.13.1 Detailed Description

Subgraph type.

Definition at line 31 of file prg_graph_mod.F90.

9.13.2 Member Data Documentation

9.13.2.1 core_halo_index

```
integer, dimension(:), allocatable prg_graph_mod::subgraph_t::core_halo_index [private]
```

Indeces from original matrix for subgraph core+halo extraction.

Definition at line 46 of file prg_graph_mod.F90.

9.13.2.2 hsize

```
integer prg_graph_mod::subgraph_t::hsize [private]
```

Size of original matrix (h x h)

Definition at line 37 of file prg_graph_mod.F90.

9.13.2.3 Ilsize

```
integer prg_graph_mod::subgraph_t::llsize [private]
```

Size of core subgraph.

Definition at line 43 of file prg_graph_mod.F90.

9.13.2.4 Isize

```
integer prg_graph_mod::subgraph_t::lsize [private]
```

Size of full subgraph (I x I)

Definition at line 40 of file prg_graph_mod.F90.

9.13.2.5 nodeinpart

```
integer, dimension(:), allocatable prg_graph_mod::subgraph_t::nodeinpart [private]
```

Nodes in this partition.

Definition at line 49 of file prg_graph_mod.F90.

9.13.2.6 part

```
integer prg_graph_mod::subgraph_t::part [private]
```

Partition number.

Definition at line 34 of file prg_graph_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_graph_mod.F90

9.14 prg_system_mod::system_type Type Reference

System type.

Collaboration diagram for prg_system_mod::system_type:

Public Attributes

• integer nats = 0

Number of atoms of the system.

character(2), dimension(:), allocatable symbol

Chemical Symbols for every atom of the system. Symbol can be recovered using ptable module and calling the following routine:

integer, dimension(:), allocatable atomic number

Atomic number for every atom in the system.

real(dp), dimension(:,:), allocatable coordinate

Coordinates of every atom in the system. Allocation:

real(dp), dimension(:,:), allocatable velocity

Velocities for every atom in the system. Allocation:

• real(dp), dimension(:,:), allocatable force

Forces acting on every atom in the system. Allocation:

real(dp), dimension(:), allocatable net_charge

Charges of every atom in the system. Allocation:

• real(dp), dimension(:), allocatable mass

Mass of every atom in the system. These can be automatically loaded by using the structures of the ptable mod:

real(dp), dimension(:,:), allocatable lattice_vector

Lattice vectors of the system. Use the prg_vectors_to_parameters and parameters_to_vector to transform from lattice vector to lattice parameters. Allocation:

real(dp), dimension(:,:), allocatable recip_vector

Reciprocal vectors of the system. Allocation:

real(dp) volr

Volume of the system (direct space).

real(dp) volk

Volume of the system (direct space).

integer nsp

Number of different species. Number of species or number of differet antom types (symbols) in the system. This integer is alwas less or equal than the total number of atoms (nsp <= nats). This information can also be found in tbparams structure and the following equality holds:

• integer, dimension(:), allocatable spindex

Species index. It gives the species index of a particulat atom. Allocation:

character(2), dimension(:), allocatable splist

Species symbol list. A list with the different species e.g. H, C, N, etc with the order corresponding to the appearence in systemsymbol. Allocation:

• integer, dimension(:), allocatable spatnum

Species atomic number list. A list with the atomic numbers for every species Allocation:

real(dp), dimension(:), allocatable spmass

Species mass list. A list with the atomic mass for every species Allocation:

• real(dp), dimension(:), allocatable userdef

User define field.

· integer, dimension(:), allocatable resindex

Residue index.

• character(3), dimension(:), allocatable resname

Residue name.

• character(3), dimension(:), allocatable atomname

Atom name (to distinguish atoms with same symbol)

type(estruct_type) estr

Electronic structure.

9.14.1 Detailed Description

System type.

The molecular system type.

Definition at line 73 of file prg_system_mod.F90.

9.14.2 Member Data Documentation

9.14.2.1 atomic_number

```
integer, dimension(:), allocatable prg_system_mod::system_type::atomic_number
```

Atomic number for every atom in the system.

Definition at line 87 of file prg_system_mod.F90.

9.14.2.2 atomname

```
character(3), dimension(:), allocatable prg_system_mod::system_type::atomname
```

Atom name (to distinguish atoms with same symbol)

Definition at line 188 of file prg_system_mod.F90.

9.14.2.3 coordinate

```
real(dp), dimension(:,:), allocatable prg_system_mod::system_type::coordinate
```

Coordinates of every atom in the system. Allocation:

```
coordinate(3,nats)
```

Definition at line 92 of file prg system mod.F90.

9.14.2.4 estr

```
type(estruct_type) prg_system_mod::system_type::estr
```

Electronic structure.

Definition at line 191 of file prg_system_mod.F90.

9.14.2.5 force

```
real(dp), dimension(:,:), allocatable prg_system_mod::system_type::force
```

Forces acting on every atom in the system. Allocation:

```
force(3, nats)
```

Definition at line 102 of file prg_system_mod.F90.

9.14.2.6 lattice_vector

```
real(dp), dimension(:,:), allocatable prg_system_mod::system_type::lattice_vector
```

Lattice vectors of the system. Use the prg_vectors_to_parameters and parameters_to_vector to transform from lattice vector to lattice parameters. Allocation:

```
lattice_vector(3,3)

v1 = lattice_vector(1,:)

v2 = lattice_vector(2,:)

v3 = lattice_vector(3,:)
```

Definition at line 124 of file prg_system_mod.F90.

9.14.2.7 mass

```
real(dp), dimension(:), allocatable prg_system_mod::system_type::mass
```

Mass of every atom in the system. These can be automatically loaded by using the structures of the ptable mod:

```
system%mass(i) = mass(mystem%atomic_number(i))
```

Allocation:

mass (nats)

Definition at line 114 of file prg_system_mod.F90.

9.14.2.8 nats

```
integer prg_system_mod::system_type::nats = 0
```

Number of atoms of the system.

Definition at line 76 of file prg_system_mod.F90.

9.14.2.9 net charge

```
real(dp), dimension(:), allocatable prg_system_mod::system_type::net_charge
```

Charges of every atom in the system. Allocation:

```
net_charge(nats)
```

Definition at line 107 of file prg system mod.F90.

9.14.2.10 nsp

```
integer prg_system_mod::system_type::nsp
```

Number of different species. Number of species or number of different antom types (symbols) in the system. This integer is alwas less or equal than the total number of atoms ($nsp \le nats$). This information can also be found in tbparams structure and the following equality holds:

```
system%nsp = tbparams%nsp
```

Definition at line 147 of file prg_system_mod.F90.

9.14.2.11 recip_vector

```
real(dp), dimension(:,:), allocatable prg_system_mod::system_type::recip_vector
```

Reciprocal vectors of the system. Allocation:

```
recip_vector(3,3)
v1 = recip_vector(1,:)
v2 = recip_vector(2,:)
v3 = recip_vector(3,:)
```

Definition at line 132 of file prg_system_mod.F90.

9.14.2.12 resindex

```
integer, dimension(:), allocatable prg_system_mod::system_type::resindex
```

Residue index.

Definition at line 182 of file prg_system_mod.F90.

9.14.2.13 resname

```
character(3), dimension(:), allocatable prg_system_mod::system_type::resname
```

Residue name.

Definition at line 185 of file prg_system_mod.F90.

9.14.2.14 spatnum

```
integer, dimension(:), allocatable prg_system_mod::system_type::spatnum
```

Species atomic number list. A list with the atomic numbers for every species Allocation:

```
spatnum(nsp)
```

Definition at line 170 of file prg_system_mod.F90.

9.14.2.15 spindex

```
integer, dimension(:), allocatable prg_system_mod::system_type::spindex
```

Species index. It gives the species index of a particulat atom. Allocation:

```
spindex(nats)
```

If we need the index of atom 30 then:

```
system%spindex(30)
```

Definition at line 155 of file prg system mod.F90.

9.14.2.16 splist

```
character(2), dimension(:), allocatable prg_system_mod::system_type::splist
```

Species symbol list. A list with the different species e.g. H, C, N, etc with the order corresponding to the appearence in systemsymbol. Allocation:

```
splist(nsp)
```

Definition at line 163 of file prg_system_mod.F90.

9.14.2.17 spmass

```
\verb|real(dp)|, | \verb|dimension(:)|, | \verb|allocatable|| | \verb|prg_system_mod::system_type::spmass||
```

Species mass list. A list with the atomic mass for every species Allocation:

```
spmass(nsp)
```

Definition at line 176 of file prg_system_mod.F90.

9.14.2.18 symbol

```
character(2), dimension(:), allocatable prg_system_mod::system_type::symbol
```

Chemical Symbols for every atom of the system. Symbol can be recovered using ptable module and calling the following routine:

```
system%symbol(i) = element_symbol(system%atomic_number(i))
```

Allocation:

symbol(nats)

Definition at line 84 of file prg_system_mod.F90.

9.14.2.19 userdef

```
real(dp), dimension(:), allocatable prg_system_mod::system_type::userdef
```

User define field.

Definition at line 179 of file prg_system_mod.F90.

9.14.2.20 velocity

```
real(dp), dimension(:,:), allocatable prg_system_mod::system_type::velocity
```

Velocities for every atom in the system. Allocation:

```
velocity(3, nats)
```

Definition at line 97 of file prg_system_mod.F90.

9.14.2.21 volk

```
real(dp) prg_system_mod::system_type::volk
```

Volume of the system (direct space).

Note

use prg_get_recip_vects in coulomb_latte_mod to compute this.

Definition at line 140 of file prg_system_mod.F90.

9.14.2.22 volr

```
real(dp) prg_system_mod::system_type::volr
```

Volume of the system (direct space).

Note

use prg_get_recip_vects in coulomb_latte_mod to compute this.

Definition at line 136 of file prg_system_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_system_mod.F90

9.15 prg_timer_mod::timer_status_t Type Reference

Timer status type.

Private Attributes

• character(len=20) tname

Timer name.

· integer tstart

Start time.

· integer ttotal

Current total time.

· integer tcount

Current call count.

• integer minrank

Rank with min value.

• integer maxrank

Rank with max value.

real(dp) tsum

Sum time - total time in secs.

• real(dp) minvalue

Minimum value over all ranks.

real(dp) maxvalue

Maximum value over all ranks.

real(dp) tavg

Average value over all ranks.

real(dp) tstdev

Stdev across all ranks.

real(dp) tpercent

Percent of time across all timers.

9.15.1 Detailed Description

Timer status type.

Definition at line 54 of file prg_timer_mod.F90.

9.15.2 Member Data Documentation

9.15.2.1 maxrank

```
integer prg_timer_mod::timer_status_t::maxrank [private]
```

Rank with max value.

Definition at line 72 of file prg_timer_mod.F90.

9.15.2.2 maxvalue

```
real(dp) prg_timer_mod::timer_status_t::maxvalue [private]
```

Maximum value over all ranks.

Definition at line 81 of file prg_timer_mod.F90.

9.15.2.3 minrank

```
integer prg_timer_mod::timer_status_t::minrank [private]
```

Rank with min value.

Definition at line 69 of file prg_timer_mod.F90.

9.15.2.4 minvalue

```
real(dp) prg_timer_mod::timer_status_t::minvalue [private]
```

Minimum value over all ranks.

Definition at line 78 of file prg_timer_mod.F90.

9.15.2.5 tavg

```
real(dp) prg_timer_mod::timer_status_t::tavg [private]
```

Average value over all ranks.

Definition at line 84 of file prg timer mod.F90.

9.15.2.6 tcount

```
integer prg_timer_mod::timer_status_t::tcount [private]
```

Current call count.

Definition at line 66 of file prg_timer_mod.F90.

9.15.2.7 tname

```
character(len=20) prg_timer_mod::timer_status_t::tname [private]
```

Timer name.

Definition at line 57 of file prg_timer_mod.F90.

9.15.2.8 tpercent

```
real(dp) prg_timer_mod::timer_status_t::tpercent [private]
```

Percent of time across all timers.

Definition at line 90 of file prg_timer_mod.F90.

9.15.2.9 tstart

```
integer prg_timer_mod::timer_status_t::tstart [private]
```

Start time.

Definition at line 60 of file prg_timer_mod.F90.

9.15.2.10 tstdev

```
real(dp) prg_timer_mod::timer_status_t::tstdev [private]
```

Stdev across all ranks.

Definition at line 87 of file prg timer mod.F90.

9.15.2.11 tsum

```
real(dp) prg_timer_mod::timer_status_t::tsum [private]
```

Sum time - total time in secs.

Definition at line 75 of file prg_timer_mod.F90.

9.15.2.12 ttotal

```
integer prg_timer_mod::timer_status_t::ttotal [private]
```

Current total time.

Definition at line 63 of file prg_timer_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_timer_mod.F90

9.16 prg_extras_mod::to_string Interface Reference

Private Member Functions

- character(len=:) function, allocatable to_string_integer (i)
 Convert integer to string.
- character(len=:) function, allocatable to_string_long_long (i)

Convert integer to string.

character(len=:) function, allocatable to_string_double (x)
 Convert double to string.

9.16.1 Detailed Description

Definition at line 25 of file prg extras mod.F90.

9.16.2 Member Function/Subroutine Documentation

9.16.2.1 to_string_double()

Convert double to string.

Parameters

x The double

Returns

The string

Definition at line 81 of file prg_extras_mod.F90.

9.16.2.2 to_string_integer()

```
\label{lem:character} \mbox{character(len=:)} \quad \mbox{function, allocatable prg_extras_mod::to_string::to_string_integer (} \\ \mbox{integer, intent(in) } i \mbox{)} \quad \mbox{[private]}
```

Convert integer to string.

Parameters

Returns

The string

Definition at line 47 of file prg_extras_mod.F90.

9.16.2.3 to_string_long_long()

Convert integer to string.

Parameters

i The integer

Returns

The string

Definition at line 63 of file prg_extras_mod.F90.

The documentation for this interface was generated from the following file:

• /tmp/qmd-progress/src/prg_extras_mod.F90

9.17 prg_xlbo_mod::xlbo_type Type Reference

General xlbo solver type.

Public Attributes

- character(20) jobname
- integer verbose
- integer maxscfiter

Max SCF iterations at every XLBO MD step.

· integer maxscfinititer

Max SCF iterations for the first minit steps.

- real(dp) threshold
- · integer minit

Use SCF the first M_prg_init MD steps.

real(dp) cc

Scaled prg_delta Kernel.

9.17.1 Detailed Description

General xlbo solver type.

Definition at line 33 of file prg_xlbo_mod.F90.

9.17.2 Member Data Documentation

9.17.2.1 cc

```
real(dp) prg_xlbo_mod::xlbo_type::cc
```

Scaled prg_delta Kernel.

Definition at line 51 of file prg_xlbo_mod.F90.

9.17.2.2 jobname

```
character(20) prg_xlbo_mod::xlbo_type::jobname
```

Definition at line 35 of file prg_xlbo_mod.F90.

9.17.2.3 maxscfinititer

```
integer prg_xlbo_mod::xlbo_type::maxscfinititer
```

Max SCF iterations for the first minit steps.

Definition at line 43 of file prg_xlbo_mod.F90.

9.17.2.4 maxscfiter

```
integer prg_xlbo_mod::xlbo_type::maxscfiter
```

Max SCF iterations at every XLBO MD step.

Definition at line 40 of file prg_xlbo_mod.F90.

9.17.2.5 minit

```
integer prg_xlbo_mod::xlbo_type::minit
```

Use SCF the first M_prg_init MD steps.

Definition at line 48 of file prg_xlbo_mod.F90.

9.17.2.6 threshold

```
real(dp) prg_xlbo_mod::xlbo_type::threshold
```

Definition at line 45 of file prg_xlbo_mod.F90.

9.17.2.7 verbose

```
integer prg_xlbo_mod::xlbo_type::verbose
```

Definition at line 37 of file prg_xlbo_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg_xlbo_mod.F90

9.18 prg_xlkernel_mod::xlk_type Type Reference

Public Attributes

• character(20) kerneltype

Kernel type.

· integer verbose

Verbosity level.

- integer nrank
- real(dp) scalecoeff

Coefficient for mixing.

9.18.1 Detailed Description

Definition at line 18 of file prg_xlkernel_mod.F90.

9.18.2 Member Data Documentation

9.18.2.1 kerneltype

```
character(20) prg_xlkernel_mod::xlk_type::kerneltype
```

Kernel type.

Definition at line 21 of file prg_xlkernel_mod.F90.

9.18.2.2 nrank

```
integer prg_xlkernel_mod::xlk_type::nrank
```

Definition at line 24 of file prg_xlkernel_mod.F90.

9.18.2.3 scalecoeff

```
real(dp) prg_xlkernel_mod::xlk_type::scalecoeff
```

Coefficient for mixing.

Definition at line 27 of file prg_xlkernel_mod.F90.

9.18.2.4 verbose

```
integer prg_xlkernel_mod::xlk_type::verbose
```

Verbosity level.

Definition at line 24 of file prg_xlkernel_mod.F90.

The documentation for this type was generated from the following file:

• /tmp/qmd-progress/src/prg xlkernel mod.F90

Chapter 10

File Documentation

10.1 /tmp/qmd-progress/src/prg_charges_mod.F90 File Reference

Modules

· module prg_charges_mod

A module to compute the Mulliken charges of a chemical system.

Functions/Subroutines

• subroutine, public prg_charges_mod::prg_get_charges (rho_bml, over_bml, hindex, charges, numel, spindex, mdimin, threshold)

Constructs the charges from the density matrix.

• subroutine, public prg_charges_mod::prg_get_hscf (ham0_bml, over_bml, ham_bml, spindex, hindex, hubbardu, charges, coulomb_pot_r, coulomb_pot_k, mdimin, threshold)

Constructs the SCF Hamiltonian given H0, HubbardU and charges. This routine does: $H = \sum_i U_i q_i + V_i$;, where U is the Hubbard parameter for every atom i. V is the coulombic potential for every atom i.

Variables

• integer, parameter prg_charges_mod::dp = kind(1.0d0)

10.2 /tmp/qmd-progress/src/prg_chebyshev_mod.F90 File Reference

Data Types

• type prg_chebyshev_mod::chebdata_type

General Cheb solver type.

Modules

· module prg_chebyshev_mod

Module to obtain the density matrix by applying a Chebyshev polynomial expansion.

Functions/Subroutines

• subroutine, public prg_chebyshev_mod::prg_parse_cheb (chebdata, filename)

Chebyshev parser. This module is used to parse all the input variables for the cheb electronic structure solver. Adding a new input keyword to the parser:

• subroutine, public prg_chebyshev_mod::prg_build_density_cheb (ham_bml, rho_bml, athr, threshold, nco-effs, kbt, ef, bndfil, jon, verbose)

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion.

• subroutine, public prg_chebyshev_mod::prg_build_density_cheb_fermi (ham_bml, rho_bml, athr, threshold, ncoeffs, kbt, ef, bndfil, getef, fermitol, jon, npts, trkfunc, verbose)

Builds the density matrix from H_0 for a Fermi function approximated with a Chebyshev polynomial expansion. In this case the self-consistent recursion is applied to converge to the correct number of electrons and obtain the Fermi level.

• real(dp) function prg_chebyshev_mod::jackson (ncoeffs, i, jon)

Evaluates the Jackson Kernel Coefficients.

• subroutine prg_chebyshev_mod::prg_get_chebcoeffs (npts, kbt, ef, ncoeffs, coeffs, emin, emax)

Gets the coefficients of the Chebyshev expansion.

• subroutine prg_chebyshev_mod::prg_get_chebcoeffs_fermi_bs (npts, kbt, ef, tracesT, ncoeffs, coeffs, emin, emax, bndfil, norb, tol, jon, verbose)

Gets the coefficients of the Chebyshev expansion with Ef computation.

• subroutine prg_chebyshev_mod::prg_get_chebcoeffs_fermi_nt (npts, kbt, ef, tracesT, ncoeffs, coeffs, emin, emax, bndfil, norb, tol, jon, verbose)

Gets the coefficients of the Chebyshev expansion with Ef computation.

real(dp) function prg_chebyshev_mod::tr (r, x)

Chebyshev polynomial obtained by recursion.

• real(dp) function prg_chebyshev_mod::fermi (e, ef, kbt)

Gives the Fermi distribution value for energy e.

• real(dp) function prg_chebyshev_mod::absmaxderivative (func, de)

Gets the absolute maximum of the derivative of a function.

Variables

- integer, parameter prg_chebyshev_mod::dp = kind(1.0d0)
- real(dp), parameter prg chebyshev mod::pi = 3.14159265358979323846264338327950 dp

10.3 /tmp/qmd-progress/src/prg densitymatrix mod.F90 File Reference

Modules

· module prg densitymatrix mod

Module to obtain the density matrix by diagonalizing an orthogonalized Hamiltonian.

Functions/Subroutines

subroutine, public prg_densitymatrix_mod::prg_build_density_t0 (ham_bml, rho_bml, threshold, bndfil, eigenvalues out)

Builds the density matrix from H_0 for zero electronic temperature. $\rho = C\Theta(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. $\Theta()$ is the Heaviside function.

• subroutine, public prg_densitymatrix_mod::prg_build_density_t (ham_bml, rho_bml, threshold, bndfil, kbt, ef, eigenvalues out)

Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I - \epsilon) C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.

subroutine, public prg_densitymatrix_mod::prg_build_density_t_fulldata (ham_bml, rho_bml, threshold, bnd-fil, kbt, ef, eigenvalues out, evects bml, fvals)

Builds the density matrix from H_0 for electronic temperature T. $\rho = C f(\mu I - \epsilon) C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function.

• subroutine, public prg_densitymatrix_mod::prg_build_density_t_fermi (ham_bml, rho_bml, threshold, kbt, ef, verbose)

Builds the density matrix from H_0 for electronic temperature T. $\rho = Cf(\mu I - \epsilon)C^{\dagger}$ Where, C is the matrix eigenvector and ϵ is the matrix eigenvalue. f is the Fermi function. In this routine the Fermi level is passed as an argument.

• subroutine, public prg_densitymatrix_mod::prg_build_atomic_density (rhoat_bml, numel, hindex, spindex, norb, bml_type)

Builds the atomic density matrix. $\rho_{ii} = mathcal Z_{ii}$ Where, $mathcal Z_{ii}$ is the number of electrons for orbital i.

• subroutine, public prg_densitymatrix_mod::prg_get_flevel (eigenvalues, kbt, bndfil, tol, Ef, err)

Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Bisection method over the function: $g(\mu) = \sum_k 2f(\epsilon_k - \mu) - N = 0$ Where $f(\epsilon_k - \mu) = \frac{1}{1 + \exp{(\epsilon_k - \mu)/(k_b T)}}$.

• subroutine, public prg densitymatrix mod::prg get flevel nt (eigenvalues, kbt, bndfil, tol, ef, err, verbose)

Routine to compute the Fermi level given a set of eigenvalues and a temperature. It applies the Newton-Raphson method over the function: $g(\mu) = \sum_k 2f(\epsilon_k - \mu) - N = 0$ Where $f(\epsilon_k - \mu) = \frac{1}{1 + \exp{(\epsilon_k - \mu)/(k_b T)}}$.

• subroutine, public prg_densitymatrix_mod::prg_get_eigenvalues (ham_bml, eigenvalues, verbose)

Gets the eigenvalues of the Orthogonalized Hamiltonian.

subroutine, public prg densitymatrix mod::prg check idempotency (mat bml, threshold, idempotency)

To check the idempotency error of a matrix. This is calculated as the Frobenius norm of $(A - A^2)$.

• real(dp) function prg_densitymatrix_mod::fermi (e, ef, kbt)

Gives the Fermi distribution value for energy e.

Variables

• integer, parameter prg_densitymatrix_mod::dp = kind(1.0d0)

10.4 /tmp/qmd-progress/src/prg_dos_mod.F90 File Reference

Modules

module prg_dos_mod

A module to compute the Density of state (DOS) and IDOS.

Functions/Subroutines

- subroutine, public prg_dos_mod::prg_write_tdos (eigenvals, gamma, npts, emin, emax, filename)
 - Writes the total DOS into a file. $DOS(\epsilon) = \sum_k L(\epsilon \epsilon_k)$ Where $\int_{-\infty}^{\infty} DOS(\epsilon) = Nstates$.
- real(dp) function prg_dos_mod::lorentz (energy, eigenvals, loads, Gamma)

Lorentzian Function.

Variables

integer, parameter prg_dos_mod::dp = kind(1.0d0)

10.5 /tmp/qmd-progress/src/prg_doxy_mod.F90 File Reference

10.6 /tmp/qmd-progress/src/prg ewald mod.F90 File Reference

Modules

· module prg_ewald_mod

Functions/Subroutines

• subroutine, public prg_ewald_mod::ewald_real_space_single_latte (COULOMBV, I, RXYZ, Box, Nr_elem, DELTAQ, J, U, Element_Pointer, Nr_atoms, COULACC, HDIM, Max_Nr_Neigh)

Find Coulomb potential on site I from single charge at site J.

- subroutine, public prg_ewald_mod::ewald_real_space_single (COULOMBV, FCOUL, I, RX, RY, RZ, LBox, DELTAQ, J, U, Element_Type, Nr_atoms, COULACC, TIMERATIO, HDIM, Max_Nr_Neigh)
- subroutine, public prg_ewald_mod::ewald_real_space_matrix_latte (E, RXYZ, Box, U, Element_Pointer, Nr
 atoms, COULACC, nebcoul, totnebcoul, HDIM, Max Nr Neigh, Nr Elem)
- subroutine, public prg_ewald_mod::ewald_real_space_latte (COULOMBV, I, RXYZ, Box, DELTAQ, U, Element_Pointer, Nr_atoms, COULACC, nebcoul, totnebcoul, HDIM, Max_Nr_Neigh, Nr_Elem)
- subroutine, public prg_ewald_mod::ewald_real_space_test (COULOMBV, I, RX, RY, RZ, LBox, DELTAQ, U, Element Type, Nr atoms, COULACC, nnRx, nnRy, nnRz, nrnnlist, nnType, Max Nr Neigh)
- subroutine, public prg_ewald_mod::ewald_real_space (COULOMBV, FCOUL, I, RX, RY, RZ, LBox, DELTAQ, U, Element_Type, Nr_atoms, COULACC, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, HDIM, Max_

 Nr_Neigh)
- subroutine, public prg_ewald_mod::ewald_k_space_latte (COULOMBV, RXYZ, Box, DELTAQ, Nr_atoms, COULACC, Max_Nr_Neigh)
- subroutine, public prg_ewald_mod::ewald_k_space_matrix_latte (E, RXYZ, Box, Nr_atoms, COULACC, Max_Nr_Neigh, nebcoul, totnebcoul)
- subroutine, public prg_ewald_mod::ewald_k_space_latte_single (COULOMBV, J, RXYZ, Box, DELTAQ, Nr
 _atoms, COULACC)
- subroutine, public prg_ewald_mod::ewald_k_space_test (COULOMBV, RX, RY, RZ, LBox, DELTAQ, Nr_
 atoms, COULACC, Max_Nr_Neigh)

Variables

integer, parameter prg_ewald_mod::dp = kind(1.0d0)

10.7 /tmp/qmd-progress/src/prg extras mod.F90 File Reference

Data Types

- interface prg_extras_mod::prg_memory_consumption
- interface prg_extras_mod::to_string

Modules

· module prg extras mod

Extra routines.

Functions/Subroutines

- character(len=:) function, allocatable prg_extras_mod::to_string_integer (i)
 Convert integer to string.
- character(len=:) function, allocatable prg_extras_mod::to_string_long_long (i)

Convert integer to string.

character(len=:) function, allocatable prg_extras_mod::to_string_double (x)

Convert double to string.

• subroutine, public prg_extras_mod::prg_print_matrix (matname, amat, i1, i2, j1, j2)

To write a dense matrix to screen.

real(dp) function, public prg_extras_mod::mls ()

To get the actual time in milliseconds.

• subroutine, public prg_extras_mod::prg_delta (x, s, nn, dta)

Delta function $||X^{\wedge}tSX - I||$.

• subroutine, public prg_extras_mod::prg_get_mem (procname, tag)

Get proc memory.

• subroutine prg_extras_mod::prg_twonorm (a, nn, norm2)

Gets the norm2 of a square matrix.

real(dp) function, public prg_extras_mod::prg_norm2 (a)

Gets the norm2 of a vector.

Variables

• integer, parameter prg extras mod::dp = kind(1.0d0)

10.8 /tmp/qmd-progress/src/prg genz mod.F90 File Reference

Data Types

• type prg_genz_mod::genzspinp

Input for the genz driver. This type controlls all the variables that are needed by genz.

Modules

• module prg_genz_mod

To produce a matrix Z which is needed to orthogonalize H.

Functions/Subroutines

• subroutine, public prg_genz_mod::prg_parse_zsp (input, filename)

The parser for genz solver.

• subroutine, public prg_genz_mod::prg_init_zspmat (igenz, zk1_bml, zk2_bml, zk3_bml, zk4_bml, zk5_bml, zk6_bml, norb, bml_type, bml_element_type)

Initiates the matrices for the XI integration of Z.

subroutine, public prg_genz_mod::prg_buildzdiag (smat_bml, zmat_bml, threshold, mdimin, bml_type, verbose)

Usual subroutine involving diagonalization. $Z=U\sqrt{s}U^\dagger$, where U= eigenvectors and s= eigenvalues. The purpose of this subroutine is to have an exact way of computing z for comparing with the sparse approach.

• subroutine, public prg_genz_mod::prg_buildzsparse (smat_bml, zmat_bml, igenz, mdim, bml_type, zk1_bml, zk2_bml, zk3_bml, zk4_bml, zk5_bml, zk6_bml, nfirst, nrefi, nreff, thresholdi, thresholdi, integration, verbose)

Inverse factorization using Niklasson's algorithm.

subroutine, public prg_genz_mod::prg_genz_sp_initialz0 (smat_bml, zmat_bml, norb, mdim, bml_type_
 f, threshold)

Initial estimation of Z.

• subroutine, public prg_genz_mod::prg_genz_sp_initial_zmat (smat_bml, zmat_bml, norb, mdim, bml_type_f, threshold)

Initial estimation of Z.

• subroutine prg_genz_sp_int (zmat_bml, zk1_bml, zk2_bml, zk3_bml, zk4_bml, zk5_bml, zk6_bml, igenz, norb, bml_type, threshold)

Inverse factorization using Niklasson's algorithm.

• subroutine, public prg_genz_mod::prg_genz_sp_ref (smat_bml, zmat_bml, nref, norb, bml_type, threshold)

Iterative refinement.

Variables

• integer, parameter prg_genz_mod::dp = kind(1.0d0)

10.9 /tmp/qmd-progress/src/prg_graph_mod.F90 File Reference

Data Types

type prg_graph_mod::subgraph_t

Subgraph type.

• type prg_graph_mod::graph_partitioning_t

Trace per iteration.

Modules

· module prg_graph_mod

The graph module.

Functions/Subroutines

• subroutine, public prg_graph_mod::prg_initsubgraph (sg, pnum, hsize)

Initialize subgraph.

subroutine, public prg_graph_mod::prg_destroysubgraph (sg)

Destroy subgraph.

• subroutine, public prg_graph_mod::prg_initgraphpartitioning (gp, pname, np, nnodes, nnodes2)

Initialize graph partitioning.

subroutine, public prg_graph_mod::prg_destroygraphpartitioning (gp)

Destroy graph partitioning.

subroutine, public prg_graph_mod::prg_printgraphpartitioning (gp)

Print graph partitioning structure data.

subroutine, public prg_graph_mod::prg_equalpartition (gp, nodesPerPart, nnodes)

Create equal graph partitions, based on number of rows/orbitals.

subroutine, public prg_graph_mod::prg_equalgrouppartition (gp, hindex, ngroup, nodesPerPart, nnodes)

Create equal group graph partitions, based on number of atoms/groups.

• subroutine, public prg_graph_mod::prg_filepartition (gp, partFile)

Read graph partitions from a file, based on number of rows/orbitals.

subroutine prg_graph_mod::prg_readpart (gp, partFile)

Read parts (core) from part file.

subroutine, public prg_graph_mod::prg_fnormgraph (gp)

Accumulate trace norm across all subgraphs.

Variables

• integer, parameter prg_graph_mod::dp = kind(1.0d0)

10.10 /tmp/qmd-progress/src/prg_graphsolver_mod.F90 File Reference

Modules

· module prg graphsolver mod

Module for graph-based solvers.

Functions/Subroutines

• subroutine, public prg_graphsolver_mod::prg_build_densitygp_t0 (ham_bml, g_bml, rho_bml, threshold, bnd-fil, Ef, nparts, verbose)

Builds the density matrix from H_0 using a graph-based approach.

• subroutine, public prg_graphsolver_mod::prg_build_zmatgp (over_bml, g_bml, zmat_bml, threshold, nparts, verbose)

Builds the inverse overlap factor matrix from S using a graph-based approach.

Variables

• integer, parameter prg_graphsolver_mod::dp = kind(1.0d0)

10.11 /tmp/qmd-progress/src/prg_graphsp2parser_mod.F90 File Reference

Data Types

type prg_graphsp2parser_mod::gsp2data_type
 General SP2 solver type.

Modules

 module prg_graphsp2parser_mod Graph partitioning SP2 parser.

Functions/Subroutines

• subroutine, public prg_graphsp2parser_mod::prg_parse_gsp2 (gsp2data, filename)

The parser for SP2 solver.

Variables

• integer, parameter prg_graphsp2parser_mod::dp = kind(1.0d0)

10.12 /tmp/qmd-progress/src/prg_homolumo_mod.F90 File Reference

Modules

module prg_homolumo_mod
 The homolumo module.

Functions/Subroutines

- subroutine, public prg_homolumo_mod::prg_homolumogap (vv, imax, pp, mineval, maxeval, ehomo, elumo, egap, verbose)
- subroutine, public prg_homolumo_mod::prg_sp2sequence (pp, imax, mineval, maxeval, ehomo, elumo, errlimit, verbose)

Variables

integer, parameter prg_homolumo_mod::dp = kind(1.0d0)

10.13 /tmp/qmd-progress/src/prg_implicit_fermi_mod.F90 File Reference

Modules

module prg_implicit_fermi_mod

Functions/Subroutines

• subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi_save_inverse (Inv_bml, h_bml, p_bml, nsteps, nocc, mu, beta, occErrLimit, threshold, tol, SCF_IT, occiter, totns)

Recursive Implicit Fermi Dirac for finite temperature.

• subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi (h_bml, p_bml, nsteps, k, nocc, mu, beta, method, osteps, occErrLimit, threshold, tol)

Recursive Implicit Fermi Dirac for finite temperature.

• subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi_zero (h_bml, p_bml, nsteps, mu, method, threshold, tol)

Recursive Implicit Fermi Dirac for zero temperature.

• subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi_first_order_response (H0_bml, H1_bml, P0_← bml, P1_bml, Inv_bml, nsteps, mu0, beta, nocc, threshold)

Calculate first order density matrix response to perturbations using Implicit Fermi Dirac.

• subroutine, public prg_implicit_fermi_mod::prg_implicit_fermi_response (H0_bml, H1_bml, H2_bml, H3_bml, P0_bml, P1_bml, P2_bml, P3_bml, nsteps, mu0, mu, beta, nocc, occ_tol, lin_tol, order, threshold)

Calculate density matrix response to perturbations using Implicit Fermi Dirac.

subroutine, public prg_implicit_fermi_mod::prg_finite_diff (H0_bml, H_list, mu0, mu_list, beta, order, lambda, h, threshold)

Calculate density matrix response from perturbations in the Hamiltonian.

• subroutine prg_implicit_fermi_mod::prg_setup_linsys (p_bml, A_bml, b_bml, p2_bml, y_bml, aux_bml, aux1_bml, k, threshold)

Set up linear system for Implicit Fermi Dirac.

• subroutine prg_implicit_fermi_mod::prg_newtonschulz (a_bml, ai_bml, r_bml, tmp_bml, d_bml, l_bml, tol, threshold, num iter)

Find the inverse of the matrix A with Newton-Schulz iteration.

- subroutine prg_implicit_fermi_mod::prg_pcg (A_bml, p_bml, p2_bml, d_bml, wtmp_bml, cg_tol, threshold)

 Solve the system AX = B with conjugate gradient.
- subroutine prg_implicit_fermi_mod::prg_conjgrad (A_bml, p_bml, p2_bml, tmp_bml, d_bml, w_bml, cg_tol, threshold)

Solve the system AX = B with conjugate gradient.

• subroutine prg implicit fermi mod::prg get density matrix (ham bml, p bml, beta, mu, threshold)

Calculate the density matrix with diagonalization.

• subroutine, public prg_implicit_fermi_mod::prg_test_density_matrix (ham_bml, p_bml, beta, mu, nocc, osteps, occErrLimit, threshold)

Calculate the density matrix with diagonalization and converge chemical.

• real(dp) function prg_implicit_fermi_mod::fermi (e, mu, beta)

Gives the Fermi distribution value for energy e.

Variables

integer, parameter prg implicit fermi mod::dp = kind(1.0d0)

10.14 /tmp/qmd-progress/src/prg initmatrices mod.F90 File Reference

Modules

· module prg_initmatrices_mod

Initialization module.

Functions/Subroutines

- subroutine, public prg_initmatrices_mod::prg_init_hsmat (ham_bml, over_bml, bml_type, mdim, norb)

 Initialize Hamiltonian and Overlap Matrix.
- subroutine, public prg_initmatrices_mod::prg_init_pzmat (rho_bml, zmat_bml, bml_type, mdim, norb)

 Initialize Density matrix and Inverse square root Overlap.
- subroutine, public prg_initmatrices_mod::prg_init_ortho (orthoh_bml, orthop_bml, bml_type, mdim, norb)

 Initialize The orthogonal versions of Hamiltonian and Density Matrix.

Variables

• integer, parameter prg_initmatrices_mod::dp = kind(1.0d0)

10.15 /tmp/qmd-progress/src/prg_kernelparser_mod.F90 File Reference

Modules

module prg_kernelparser_mod
 Some general parsing functions.

Functions/Subroutines

- subroutine, public prg_kernelparser_mod::prg_parsing_kernel (keyvector_char, valvector_char, keyvector_
 int, valvector_int, keyvector_re, valvector_re, keyvector_log, valvector_log, filename, startstop)
 - The general parsing function. It is used to vectorize a set of "keywords" "value" pairs as included in a general input file.
- subroutine prg_kernelparser_mod::prg_check_valid (invalidc)

Check for valid keywords (checks for an = sign)

Variables

• integer, parameter prg_kernelparser_mod::dp = kind(1.0d0)

10.16 /tmp/qmd-progress/src/prg_modelham_mod.F90 File Reference

Data Types

type prg_modelham_mod::mham_type
 General ModelHam type.

Modules

• module prg_modelham_mod

The prg_hamiltonian module.

Functions/Subroutines

- subroutine, public prg_modelham_mod::prg_parse_mham (mham, filename)

 Model Ham parse.
- subroutine, public prg_modelham_mod::prg_twolevel_model (ea, eb, dab, daiaj, dbibj, dec, rcoeff, reshuffle, seed, h_bml, verbose)

Construct a two-level model Hamiltonian.

Variables

• integer, parameter prg_modelham_mod::dp = kind(1.0d0)

10.17 /tmp/qmd-progress/src/prg_nonortho_mod.F90 File Reference

Modules

• module prg_nonortho_mod

Module to prg_orthogonalize and prg_deorthogonalize any operator.

Functions/Subroutines

This routine performs: $A_{ortho} = Z^{\dagger}AZ$.

subroutine, public prg_nonortho_mod::prg_deorthogonalize (orthoA_bml, zmat_bml, a_bml, threshold, bml
 —type, verbose)

This routine performs: $A = ZA_{ortho}Z^{\dagger}$.

Variables

• integer, parameter prg_nonortho_mod::dp = kind(1.0d0)

10.18 /tmp/qmd-progress/src/prg_normalize_mod.F90 File Reference

Modules

• module prg_normalize_mod

The prg_normalize module.

Functions/Subroutines

• subroutine, public prg_normalize_mod::prg_normalize (h_bml)

Normalize a Hamiltonian matrix prior to running the SP2 algorithm.

• subroutine, public prg_normalize_mod::prg_normalize_fermi (h_bml, h1, hN, mu)

Normalize a Hamiltonian matrix prior to running the truncated SP2 algorithm.

• subroutine, public prg_normalize_mod::prg_normalize_implicit_fermi (h_bml, cnst, mu)

Normalize a Hamiltonian matrix prior to running the implicit fermi dirac algorithm.

• subroutine, public prg_normalize_mod::prg_gershgorinreduction (gp)

Determine gershgorin bounds across all parts, local and distributed.

• subroutine, public prg_normalize_mod::prg_normalize_cheb (h_bml, mu, emin, emax, alpha, scaledmu)

Normalize a Hamiltonian matrix prior to running the Chebyshev algorithm.

Variables

integer, parameter prg_normalize_mod::dp = kind(1.0d0)

10.19 /tmp/qmd-progress/src/prg_openfiles_mod.F90 File Reference

Modules

module prg_openfiles_mod

Module to handle input output files for the PROGRESS lib.

Functions/Subroutines

integer function, public prg_openfiles_mod::get_file_unit (io_max)

Returns a unit number that is not in use.

• subroutine, public prg_openfiles_mod::prg_open_file (io, name)

Opens a file to write.

• subroutine, public prg_openfiles_mod::prg_open_file_to_read (io, name)

Opens a file to read.

10.20 /tmp/qmd-progress/src/prg_parallel_mod.F90 File Reference

Data Types

type prg_parallel_mod::rankreducedata_t

Data structure for rection over MPI ranks.

Modules

• module prg_parallel_mod

The parallel module.

Functions/Subroutines

- integer function, public prg_parallel_mod::getnranks ()
- integer function, public prg_parallel_mod::getmyrank ()
- integer function, public prg_parallel mod::printrank ()
- subroutine, public prg_parallel_mod::prg_initparallel ()
- subroutine, public prg_parallel_mod::prg_shutdownparallel ()
- integer function prg parallel mod::saverequest (irequest)
- subroutine, public prg_parallel mod::prg_barrierparallel()
- subroutine, public prg_parallel_mod::sendreceiveparallel (sendBuf, sendLen, dest, recvBuf, recvLen, source, nreceived)
- subroutine, public prg parallel mod::isendparallel (sendBuf, sendLen, dest)
- subroutine, public prg_parallel_mod::sendparallel (sendBuf, sendLen, dest)
- subroutine, public prg_parallel_mod::prg_iprg_recvparallel (recvBuf, recvLen, rind)
- subroutine, public prg_parallel_mod::prg_recvparallel (recvBuf, recvLen)
- subroutine, public prg parallel mod::sumintparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel_mod::sumrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel mod::maxintparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel_mod::maxrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel_mod::minintparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel mod::minrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel_mod::prg_minrealreduce (rvalue)
- subroutine, public prg_parallel_mod::prg_maxrealreduce (rvalue)
- subroutine, public prg_parallel_mod::prg_maxintreduce2 (value1, value2)
- subroutine, public prg_parallel_mod::prg_sumintreduce2 (value1, value2)
- subroutine, public prg_parallel_mod::prg_sumrealreduce (value1)
- subroutine, public prg_parallel mod::prg_sumrealreduce2 (value1, value2)
- subroutine, public prg_parallel_mod::prg_sumrealreduce3 (value1, value2, value3)
- subroutine, public prg_parallel_mod::prg_sumrealreducen (valueVec, N)
- subroutine, public prg_parallel_mod::prg_sumintreducen (valueVec, N)
- subroutine, public prg_parallel mod::minrankrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg_parallel_mod::maxrankrealparallel (sendBuf, recvBuf, icount)
- subroutine, public prg parallel mod::prg bcastparallel (buf, blen, root)
- subroutine, public prg_parallel_mod::allgatherrealparallel (sendBuf, sendLen, recvBuf, recvLen)
- subroutine, public prg_parallel mod::allgatherintparallel (sendBuf, sendLen, recvBuf, recvLen)
- subroutine, public prg_parallel_mod::allgathervrealparallel (sendBuf, sendLen, recvBuf, recvLen, recvDispl)
- subroutine, public prg_parallel_mod::allgathervintparallel (sendBuf, sendLen, recvBuf, recvLen, recvDispl)
- subroutine, public prg_parallel_mod::prg_allsumrealreduceparallel (buf, buflen)
- subroutine, public prg_parallel_mod::prg_allsumintreduceparallel (buf, buflen)
- subroutine, public prg_parallel_mod::prg_allgatherparallel (a)
- subroutine, public prg_parallel_mod::prg_wait ()

Variables

- integer, parameter prg_parallel_mod::dp = kind(1.0d0)
- integer prg parallel mod::myrank
- integer prg_parallel_mod::nranks
- integer prg_parallel_mod::ierr
- integer prg_parallel mod::regcount
- integer, dimension(:), allocatable prg_parallel mod::requestlist
- integer, dimension(:), allocatable prg_parallel_mod::rused

10.21 /tmp/qmd-progress/src/prg partition mod.F90 File Reference

Modules

· module prg partition mod

The partition module.

Functions/Subroutines

• subroutine, public prg_partition_mod::prg_metispartition (gp, ngroups, nnodes, xadj, adjncy, nparts, part, core count, CH count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm)

Create graph partitions minizing number of cut edges.

• subroutine, public prg_partition_mod::prg_costpartition (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm)

Compute cost of a partition.

• subroutine, public prg_partition_mod::update_prg_costpartition (gp, xadj, adjncy, partNumber, core_count, CH count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm, node, new part)

Update cost of partition and the different parameters node is moves into new_part For each neighbor of node, the following cases hold: Case 1: neighbor is in old_part Case 2: neighbor is in new_part Case 3: neighbor is neither in old_ or new_part.

subroutine prg_partition_mod::prg_accept_prob (it, prg_delta, r)

Compute acceptance probability for simulated annealing.

• subroutine prg_partition_mod::prg_costindex (cost, sumCubes, maxCH, smooth_maxCH, obj_fun)

Choose objective function to work with.

subroutine prg partition mod::prg rand node (gp, node, seed)

Pick a random node.

• subroutine, public prg_partition_mod::prg_simannealing (gp, xadj, adjncy, partNumber, core_count, CH_← count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm, niter, seed)

Graph partitioning based on Simulated Annealing.

• subroutine, public prg_partition_mod::prg_kernlin (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, nconverg, seed)

Graph partitioning based on inspired by Kernighan-Lin Review METiS manual for description of k-way implementation of KL Pick a core together with its halos Place free vertices on a priority queue with (key, value) =(prg_delta, best_← part), with prg_delta = change in obj_value Dequeue and allow hill climbing.

- subroutine, public prg_partition_mod::prg_update_gp (gp, partNumber, core_count)
- subroutine prg_partition_mod::prg_rand_shuffle (array, seed)

Randomly shuffle array.

subroutine, public prg_partition_mod::prg_check_arrays (gp, core_count, CH_count, Halo_count)

Error checking Checking that core_count, CH_count, Halo_count match.

subroutine, public prg_partition_mod::prg_kernlin_queue (gp, xadj, adjncy, partNumber, core_count, CH_←
count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm)

Greedy algorithm. At each step it chooses the (vertex, new_part) pair with highest gain Currently implementation is very slow.

• subroutine prg_find_best_move (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, best_node, best_part)

For kerlin_queue to find (vertex, new_part) pair with highest gain.

- subroutine, public prg_partition_mod::prg_kernlin2 (gp, xadj, adjncy, partNumber, core_count, CH_count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm)
- subroutine part (gp, xadj, adjncy, partNumber, core_count, CH count, Halo count, sumCubes, maxCH, smooth maxCH, pnorm, search part, largest Hedge)
- subroutine, public prg_partition_mod::prg_simannealing_old (gp, xadj, adjncy, partNumber, core_count, C← H_count, Halo_count, sumCubes, maxCH, smooth_maxCH, pnorm, niter, seed)

Variables

- integer, parameter prg_partition_mod::dp = kind(1.0d0)
- integer, parameter prg_partition_mod::metis_index_kind = METIS_INDEX_KIND

From /usr/include/metis.h.

• integer, parameter prg_partition_mod::metis_real_kind = kind(METIS_REAL_KIND)

From /usr/include/metis.h.

10.22 /tmp/qmd-progress/src/prg_progress_mod.F90 File Reference

Modules

• module prg_progress_mod

The progress module.

Functions/Subroutines

• subroutine, public prg_progress_mod::prg_progress_init ()

Initialize progress.

• subroutine, public prg_progress_mod::prg_progress_shutdown ()

Shutdown progress.

Variables

• integer, parameter prg_progress_mod::dp = kind(1.0d0)

10.23 /tmp/qmd-progress/src/prg_ptable_mod.F90 File Reference

Modules

• module prg_ptable_mod

Periodic table of elements.

Functions/Subroutines

- integer function, public prg_ptable_mod::element_atomic_number (symbol)
- integer function prg_ptable_mod::element_atomic_number_upper (symbol)

Variables

- integer, parameter prg_ptable_mod::nz = 103
- integer, parameter, private prg_ptable_mod::dp = kind(1.0d0)
- character(2), dimension(nz), parameter prg_ptable_mod::element_symbol = [character(2) :: "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "TI", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr"]

Element symbol.

character(2), dimension(nz), parameter prg_ptable_mod::element_symbol_upper = [character(2) :: "H", "HE", "LI", "BE", "B", "C", "N", "O", "F", "NE", "NA", "MG", "AL", "SI", "P", "S", "CL", "AR", "K", "CA", "SC", "TI", "V", "CR", "MN", "FE", "CO", "NI", "CU", "ZN", "GA", "GE", "AS", "SE", "BR", "KR", "RB", "SR", "Y", "ZR", "NB", "MO", "TC", "RU", "RH", "PD", "AG", "CD", "IN", "SN", "SB", "TE", "I", "XE", "CS", "BA", "LA", "CE", "PR", "ND", "PM", "SM", "EU", "GD", "TB", "DY", "HO", "ER", "TM", "YB", "LU", "HF", "TA", "W", "RE", "OS", "IR", "PT", "AU", "HG", "TL", "PB", "BI", "PO", "AT", "RN", "FR", "RA", "AC", "TH", "PA", "U", "NP", "PU", "AM", "CM", "BK", "CF", "ES", "FM", "MD", "NO", "LR"]

Element symbol upper.

character(20), dimension(nz), parameter prg_ptable_mod::element_name = [character(20) :: "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron", "Carbon", "Nitrogen", "Oxygen", "Fluorine", "Neon", "Sodium", "Magnesium", "Aluminium", "Silicon", "Phosphorus", "Sulfur", "Chlorine", "Argon", "Potassium", "Calcium", "Scandium", "Titanium", "Vanadium", "Chromium", "Manganese", "Iron", "Cobalt", "Nickel", "Copper", "Zinc", "Gallium", "Germanium", "Arsenic", "Selenium", "Bromine", "Krypton", "Rubidium", "Strontium", "Yttrium", "Zirconium", "Niobium", "Molybdenum", "Technetium", "Ruthenium", "Rhodium", "Palladium", "Silver", "Cadmium", "Indium", "Tin", "Antimony", "Tellurium", "Iodine", "Xenon", "Caesium", "Barium", "Lanthanum", "Cerium", "Praseodymium", "Neodymium", "Promethium", "Samarium", "Europium", "Gadolinium", "Terbium", "Dysprosium", "Holmium", "Erbium", "Thulium", "Ytterbium", "Lutetium", "Hafnium", "Tantalum", "Tungsten", "Rhenium", "Osmium", "Iridium", "Platinum", "Gold", "Mercury", "Thallium", "Lead", "Bismuth", "Polonium", "Astatine", "Radon", "Francium", "Radium", "Actinium", "Thorium", "Protactinium", "Uranium", "Neptunium", "Radon", "Francium", "Curium", "Berkelium", "Californium", "Einsteinium", "Fermium", "Mendelevium", "Nobelium", "Lawrencium"]

Element name.

real(dp), dimension(nz), parameter prg_ptable_mod::element_mass = (/ 1.007825032 , 4.002603254 , 7. ← 01600455 , 9.0121822 , 11.0093054 , 12.0 , 14.003074005 , 15.99491462 , 18.99840322 , 19.992440175 , 22.989769281 , 23.9850417 , 26.98153863 , 27.976926532 , 30.97376163 , 31.972071 , 34.96885268 , 39.962383123 , 38.96370668 , 39.96259098 , 44.9559119 , 47.9479463 , 50.9439595 , 51.9405075 , 54. ← 9380451 , 55.9349375 , 58.933195 , 57.9353429 , 62.9295975 , 63.929142 , 68.925573 , 73.921177 , 74. ← 921596 , 79.916521 , 78.918337 , 83.911507 , 84.911789 , 87.905612 , 88.905848 , 89.904704 , 92.906378 , 97.905408 , 97.907216 , 101.904349 , 102.905504 , 105.903486 , 106.905097 , 113.903358 , 114.903878 , 119.902194 , 120.903815 , 129.906224 , 126.904473 , 131.904153 , 132.905451 , 137.905247 , 138. ← 906353 , 139.905438 , 140.907652 , 141.907723 , 144.912749 , 151.919732 , 152.92123 , 157.924103 , 158.925346 , 163.929174 , 164.930322 , 165.930293 , 168.934213 , 173.938862 , 174.940771 , 179.94655 , 180.947995 , 183.950931 , 186.955753 , 191.96148 , 192.962926 , 194.964791 , 196.966568 , 201.970643 , 204.974427 , 207.976652 , 208.980398 , 208.98243 , 209.987148 , 222.017577 , 223.019735 , 226.025409 , 227.027752 , 232.038055 , 231.035884 , 238.050788 , 237.048173 , 244.064204 , 243.061381 , 247.070354 , 247.070307 , 251.079587 , 252.08298 , 257.095105 , 258.098431 , 259.10103 , 262.10963 /)

Element mass in atomic mass units (1.66 x 10-27 kg)

• real(dp), dimension(nz), parameter prg_ptable_mod::element_vdwr = (/ 1.1 , 1.4 , 1.81 , 1.53 , 1.92 , 1.7 , 1.55 , 1.52 , 1.47 , 1.54 , 2.27 , 1.73 , 1.84 , 2.1 , 1.8 , 1.8 , 1.75 , 1.88 , 2.75 , 2.31 , 2.3 , 2.15 , 2.05 , 2.05 , 2.05 , 2.05 , 2.0 , 2.0 , 2.0 , 2.1 , 1.87 , 2.11 , 1.85 , 1.9 , 1.83 , 2.02 , 3.03 , 2.49 , 2.4 , 2.3 , 2.15 , 2.1 , 2.05 , 2.05 , 2.0 , 2.05 , 2.1 , 2.2 , 2.2 , 1.93 , 2.17 , 2.06 , 1.98 , 2.16 , 3.43 , 2.68 , 2.5 , 2.48 , 2.47 , 2.45 , 2.43 , 2.42 , 2.4 , 2.38 , 2.37 , 2.35 , 2.33 , 2.32 , 2.3 , 2.28 , 2.27 , 2.25 , 2.2 , 2.1 , 2.05 , 2.0 , 2

van der Waals radius (in Angstroms)

• real(dp), dimension(nz), parameter prg_ptable_mod::element_covr = (/ 0.31 , 0.28 , 1.28 , 0.96 , 0.84 , 0.76 , 0.71 , 0.66 , 0.57 , 0.58 , 1.66 , 1.41 , 1.21 , 1.11 , 1.07 , 1.05 , 1.02 , 1.06 , 2.03 , 1.76 , 1.7 , 1.6 , 1.53 , 1.39 , 1.39 , 1.32 , 1.26 , 1.24 , 1.32 , 1.22 , 1.22 , 1.2 , 1.19 , 1.2 , 1.2 , 1.16 , 2.2 , 1.95 , 1.9 , 1.75 , 1.64 , 1.54 , 1.47 , 1.46 , 1.42 , 1.39 , 1.45 , 1.44 , 1.42 , 1.39 , 1.39 , 1.38 , 1.39 , 1.4 , 2.44 , 2.15 , 2.07 , 2.04 , 2.03 , 2.01 , 1.99 , 1.98 , 1.98 , 1.96 , 1.94 , 1.92 , 1.92 , 1.89 , 1.9 , 1.87 , 1.87 , 1.75 , 1.7 , 1.62 , 1.51 , 1.44 , 1.41 , 1.36 , 1.36 , 1.32 , 1.45 , 1.46 , 1.48 , 1.4 , 1.5 , 1.5 , 2.6 , 2.21 , 2.15 , 2.06 , 2.0 , 1.96 , 1.9 , 1.87 , 1.8 , 1.69 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6 , 1.6)

Covalent radius (in Angstroms)

• real(dp), dimension(nz), parameter prg_ptable_mod::element_ip = (/ 13.5984 , 24.5874 , 5.3917 , 9.3227 , 8.298 , 11.2603 , 14.5341 , 13.6181 , 17.4228 , 21.5645 , 5.1391 , 7.6462 , 5.9858 , 8.1517 , 10.4867 , 10.36 , 12.9676 , 15.7596 , 4.3407 , 6.1132 , 6.5615 , 6.8281 , 6.7462 , 6.7665 , 7.434 , 7.9024 , 7.881 , 7.6398 , 7.7264 , 9.3942 , 5.9993 , 7.8994 , 9.7886 , 9.7524 , 11.8138 , 13.9996 , 4.1771 , 5.6949 , 6.2173 , 6.6339 , 6.7589 , 7.0924 , 7.28 , 7.3605 , 7.4589 , 8.3369 , 7.5762 , 8.9938 , 5.7864 , 7.3439 , 8.6084 , 9.0096 , 10.4513 , 12.1298 , 3.8939 , 5.2117 , 5.5769 , 5.5387 , 5.473 , 5.525 , 5.582 , 5.6437 , 5.6704 , 6.1498 , 5.8638 , 5.9389 , 6.0215 , 6.1077 , 6.1843 , 6.2542 , 5.4259 , 6.8251 , 7.5496 , 7.864 , 7.8335 , 8.4382 , 8.967 , 8.9588 , 9.2255 , 10.4375 , 6.1082 , 7.4167 , 7.2855 , 8.414 , 0.0 , 10.7485 , 4.0727 , 5.2784 , 5.17 , 6.3067 , 5.89 , 6.1941 , 6.2657 , 6.026 , 5.9738 , 5.9914 , 6.1979 , 6.2817 , 6.42 , 6.5 , 6.58 , 6.65 , 4.9 /)

Ionization energy (in eV)

• real(dp), dimension(nz), parameter prg_ptable_mod::element_ea = (/ 0.75420375 , 0.0 , 0.618049 , 0.0 , 0.279723 , 1.262118 , -0.07 , 1.461112 , 3.4011887 , 0.0 , 0.547926 , 0.0 , 0.43283 , 1.389521 , 0.7465 , 2.0771029 , 3.612724 , 0.0 , 0.501459 , 0.02455 , 0.188 , 0.084 , 0.525 , 0.67584 , 0.0 , 0.151 , 0.6633 , 1.15716 , 1.23578 , 0.0 , 0.41 , 1.232712 , 0.814 , 2.02067 , 3.363588 , 0.0 , 0.485916 , 0.05206 , 0.307 , 0.426 , 0.893 , 0.7472 , 0.55 , 1.04638 , 1.14289 , 0.56214 , 1.30447 , 0.0 , 0.404 , 1.112066 , 1.047401 , 1.970875 , 3.059038 , 0.0 , 0.471626 , 0.14462 , 0.47 , 0.5 , 0

Electron affprg_inity (in eV)

• real(dp), dimension(nz), parameter prg_ptable_mod::atom_en = (/ 2.2 , 0.0 , 0.98 , 1.57 , 2.04 , 2.55 , 3.04 , 3.44 , 3.98 , 0.0 , 0.93 , 1.31 , 1.61 , 1.9 , 2.19 , 2.58 , 3.16 , 0.0 , 0.82 , 1.0 , 1.36 , 1.54 , 1.63 , 1.66 , 1.55 , 1.83 , 1.88 , 1.91 , 1.9 , 1.65 , 1.81 , 2.01 , 2.18 , 2.55 , 2.96 , 3.0 , 0.82 , 0.95 , 1.22 , 1.33 , 1.6 , 2.16 , 1.9 , 2.2 , 2.28 , 2.2 , 1.93 , 1.69 , 1.78 , 1.96 , 2.05 , 2.1 , 2.66 , 2.6 , 0.79 , 0.89 , 1.1 , 1.12 , 1.13 , 1.14 , 0.0 , 1.17 , 0.0 , 1.2 , 0.0 , 1.22 , 1.23 , 1.24 , 1.25 , 0.0 , 1.27 , 1.3 , 1.5 , 2.36 , 1.9 , 2.2 , 2.2 , 2.28 , 2.54 , 2.0 , 1.62 , 2.33 , 2.02 , 2.0 , 2.2 , 0.0 , 0.7 , 0.9 , 1.1 , 1.3 , 1.5 , 1.38 , 1.36 , 1.28 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 1.3 , 0.0 /)

The Pauling electronegativity for this element.

The maximum expected number of bonds to this element.

• integer, dimension(nz), parameter prg_ptable_mod::element_numel = (/ 1 , 2 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 /)

Last shell number of electrons.

character(50), dimension(nz), parameter prg_ptable_mod::element_econf = [character(50) :: "1s" , "1s2" , "1s22s" , "1s22s2" , "1s22s22p" , "1s22s22p2" , "1s22s22p3" , "1s22s22p4" , "1s22s22p5" , "1s22s22p6" , "[Ne]3s2" , "[Ne]3s23p" , "[Ne]3s23p3" , "[Ne]3s23p4" , "[Ne]3s23p5" , "[Ne]3s23p6" , "[Ar]4s" , "[Ar]4s2" , "[Ar]3d4s2" , "[Ar]3d24s2" , "[Ar]3d34s2" , "[Ar]3d54s2" , "[Ar]3d54s2" , "[Ar]3d64s2" , "[Ar]3d74s2" , "[Ar]3d84s2" , "[Ar]3d104s2" , "[Ar]3d104s24p0" , "[Ar]3d104s24p0" , "[Ar]3d104s24p4" , "[Ar]3d104s24p5" , "[Ar]3d104s24p6" , "[Kr]5s2" , "[Kr]4d5s2" , "[Kr]4d25s2" , "[Kr]4d45s" , "[Kr]4d55s" , "[Kr]4d55s2" , "[Kr]4d75s" , "[Kr]4d85s" , "[Kr]4d10" , "[Kr]4d105s" , "[Kr]4d105s2" , "[Kr]

 $\label{eq:continuous} $$ [Xe]4f145d6s2" \,, "[Xe]4f145d26s2" \,, "[Xe]4f145d36s2" \,, "[Xe]4f145d46s2" \,, "[Xe]4f145d56s2" \,, "[Xe]4f145d56s2" \,, "[Xe]4f145d56s2" \,, "[Xe]4f145d56s2" \,, "[Xe]4f145d106s2" \,, "[Xe]4f145d10$

The electronic configuration.

10.24 /tmp/qmd-progress/src/prg_pulaycomponent_mod.F90 File Reference

Modules

· module prg_pulaycomponent_mod

Produces a matrix to get the Pulay Component of the forces.

Functions/Subroutines

• subroutine, public prg_pulaycomponent_mod::prg_pulaycomponent0 (rho_bml, ham_bml, pcm_bml, threshold, M, bml_type, verbose)

At
$$T = 0K$$
, $P = \rho H \rho$.

subroutine, public prg_pulaycomponent_mod::prg_pulaycomponentt (rho_bml, ham_bml, zmat_bml, pcm_
 bml, threshold, M, bml_type, verbose)

At
$$T > 0K$$
, $P = \rho H S^{-1} + S^{-1} H \rho$.

• subroutine, public prg_pulaycomponent_mod::prg_get_pulayforce (nats, zmat_bml, ham_bml, rho_bml, d↔ Sx_bml, dSy_bml, dSz_bml, hindex, FPUL, threshold)

Pulay Force FPUL from $2Tr[ZZ'HD\frac{dS}{dR}]$.

Variables

integer, parameter prg_pulaycomponent mod::dp = kind(1.0d0)

10.25 /tmp/qmd-progress/src/prg_pulaymixer_mod.F90 File Reference

Data Types

type prg_pulaymixer_mod::mx_type

Modules

• module prg_pulaymixer_mod

Pulay mixer mode.

Functions/Subroutines

- subroutine, public prg_pulaymixer_mod::prg_parse_mixer (input, filename)
 - The parser for the mixer routines.
- subroutine, public prg_pulaymixer_mod::prg_qmixer (charges, oldcharges, dqin, dqout, scferror, piter, pulay-coef, mpulay, verbose)

Mixing the charges to acelerate scf convergence.

• subroutine, public prg_pulaymixer_mod::prg_linearmixer (charges, oldcharges, scferror, linmixcoef, verbose)

Routine to perform linear mixing.

Variables

integer, parameter prg_pulaymixer_mod::dp = kind(1.0d0)

10.26 /tmp/qmd-progress/src/prg_quantumdynamics_mod.F90 File Reference

Modules

· module prg_quantumdynamics_mod

A module to add in common quantum dynamical operations.

Functions/Subroutines

• subroutine, public prg_quantumdynamics_mod::prg_kick_density (kick_direc, kick_mag, dens, norbs, mdim, S, SINV, which_atom, r, bmltype, thresh)

Provides perturbation to initial density matrix in the form of an electric field kick. This routine does: $\rho_{\hat{k}ick} = \exp{\frac{-i}{\hbar}\hat{V}\hat{\rho}\hat{S}}\exp{\frac{i}{\hbar}\hat{V}\hat{S}^{-1}}$ where \hat{V} is the field disturbance.

• subroutine, public prg_quantumdynamics_mod::prg_get_sparsity_cplxmat (matrix_type, element_type, thresh, a_dense)

This computes the sparsity of a complex matrix given a threshold value This routine does: $f = \frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

• subroutine, public prg_quantumdynamics_mod::prg_get_sparsity_realmat (matrix_type, element_type, thresh, a dense)

This computes the sparsity of a real matrix given a threshold value This routine does: $f=\frac{N_0}{N_{tot}}$ where f is the sparsity, N_0 is the number of values less than the threshold, and N_{tot} is the total number of values. The sparsity and threshold are printed to the screen.

subroutine, public prg_quantumdynamics_mod::prg_kick_density_bml (kick_direc, kick_mag, rho_bml, s_← bml, sinv bml, mdim, which atom, r, matrix type, thresh)

Provides perturbation to initial density matrix in the form of an electric field kick given input matricies in BML format. This routine does: $\rho_{\hat{kick}} = \exp{\frac{-i}{\hbar}\hat{V}\hat{\rho}\hat{S}} \exp{\frac{i}{\hbar}\hat{V}\hat{S}^{-1}}$ where \hat{V} is the field disturbance.

subroutine, public prg_quantumdynamics_mod::prg_lvni_bml (h1_bml, sinv_bml, dt, hbar, rhoold_bml, rho
 _bml, aux_bml, matrix_type, mdim, thresh)

Performs Liouville-von Neumann integration using leap-frog method. This routine does: $\hat{\rho}(t+\Delta t)=\hat{\rho}(t-\Delta t)+2\Delta t \frac{\partial \hat{\rho}(t)}{\partial t}$ where the time derivative of the density matrix is defined as follows: $\frac{\partial \hat{\rho}(t)}{\partial t}=\frac{i}{\hbar}\left(S^{-1}\hat{H}(t)\hat{\rho}(t)-\hat{\rho}(t)\hat{H}(t)S^{-1}\right)$.

• subroutine, public prg_quantumdynamics_mod::prg_getcharge (rho_bml, s_bml, charges, aux_bml, z, spin-dex, N, nats, thresh)

Constructs the charges from the density matrix.

• subroutine, public prg_quantumdynamics_mod::prg_getdipole (charges, r, mu)

This routine computes the dipole moment of the system with units determined by the units of the coordinate matrix and charges given.

subroutine, public prg_quantumdynamics_mod::prg_excitation (fill_mat, orbit_orig, orbit_exci)

Produce an excitation in the initially calculated density matrix to.

Variables

integer, parameter prg_quantumdynamics_mod::dp = kind(1.0d0)

10.27 /tmp/qmd-progress/src/prg_response_mod.F90 File Reference

Data Types

type prg_response_mod::respdata_type

Modules

· module prg response mod

Module to compute the density matrix response and related quantities.

Functions/Subroutines

• subroutine, public prg_response_mod::prg_parse_response (RespData, filename)

The parser for the calculation of the DM response.

subroutine, public prg_response_mod::prg_compute_dipole (charges, coordinate, dipoleMoment, factor, verbose)

To compute the dipole moment of the system. The units of the dipole moment are determined by the units of the coordinates and charges that are given.

subroutine, public prg_response_mod::prg_write_dipole_tcl (dipoleMoment, file, factor, verbose)

To visualize a dipole moment using VMD. This will prg_generate a .tcl script that could be run using VMD To visualize with VMD: \$ vmd -e dipole.tcl.

• subroutine, public prg_response_mod::prg_compute_polarizability (rsp_bml, prt_bml, polarizability, factor, verbose)

To compute the polarizability of the system. The units of the directional polarizability are determined by the units of the perturbation and Hamiltonian. This equation can be found in [5] equation 4a. Note that in equation 4a of the reference there is a 2 that account for the double occupancy which is not present in this case cause the density matrix construction is done by taking the occupancy into account.

• subroutine, public prg_response_mod::prg_pert_from_file (prt_bml, norb)

Read perturbation from file.

• subroutine, public prg_response_mod::prg_compute_response_rs (ham_bml, prt_bml, rsp_bml, lambda, bndfil, threshold, verbose)

Computes the first order response density matrix using Rayleigh Schrodinger Perturbation theory The transformation hereby performed are:

• subroutine, public prg_response_mod::prg_compute_response_fd (ham_bml, prt_bml, rsp_bml, prg_delta, bndfil, threshold, verbose)

Computes the first order response density matrix using finite differences. The transformation hereby performed are:

• subroutine, public prg_response_mod::prg_pert_constant_field (field, intensity, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over_bml)

Apply a constant field perturbation through the dipole moment operator ($\hat{\mu} = e\hat{r}$). In the matrix representation, this is: $H^{(1)} = \lambda \frac{1}{2} (S \, e r \cdot E + e r \cdot E S)$. The symmetrization is done in order to preserve the Hermiticity of H. In this case the whole system will be affected by the field. In a latter version we will add the possibility of applying this field to a region of the system. In this implementation e=1 and units can be transformed by using the parameter λ .

• subroutine, public prg_response_mod::prg_pert_sin_pot (direction, lx, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over_bml)

Apply a sinusoidal length dependent potential $(\sin(\tilde{r}_x))$ where r_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{r}_x) + \sin(\tilde{r}_x)S)$. $\tilde{r}_x = 2\pi(r/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

• subroutine, public prg_response_mod::prg_pert_cos_pot (direction, lx, coordinate, lambda, prt_bml, threshold, spindex, norbi, verbose, over bml)

Apply a cosine length dependent potential $(\cos(\tilde{r}_x))$ where r_x is the x coordinate. The Hamiltonian gets modified as follows: $H^{(1)} = \frac{1}{2}\lambda(S\sin(\tilde{r}_x) + \sin(\tilde{r}_x)S)$. $\tilde{r}_x = 2\pi(r/l_x) - \pi$. The symmetrization is done in order to preserve the Hermiticity of H. Units can be transformed by using the parameter λ .

• subroutine, public prg_response_mod::prg_compute_response_sp2 (ham_bml, prt_bml, rsp_bml, rho_bml, lambda, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, threshold, verbose)

Finds the first order response matrix from a Hamiltonian matrix.

• subroutine, public prg_response_mod::prg_project_response (rsp_bml, over_bml, spindex, norbi, coordinates, rspfunc, verbose)

Project the response onto atomic positions. First order response to the perturbation ($\rho^{(1)}$) projected onto the atomic position. Basically: $rsp(i) = \sum_{\alpha \in i} \rho_{\alpha\alpha}^{(1)}$, where orbital α belong to atom i.

subroutine, public prg_response_mod::prg_canon_response_vector (P1_bml, H1_bml, Nocc, beta, evals, mu0, m, thresh, HDIM)

First-order Canonical Density Matrix Perturbation Theory.

• subroutine, public prg_response_mod::prg_canon_response (P1_bml, H1_bml, Nocc, beta, evals, mu0, m, HDIM)

First-order Canonical Density Matrix Perturbation Theory.

• subroutine, public prg_response_mod::prg_canon_response_orig (P1_bml, H1_bml, Nocc, beta, evals, mu0, m, thresh, HDIM)

First-order Canonical Density Matrix Perturbation Theory.

Variables

- integer, parameter prg_response_mod::dp = kind(1.0d0)
- real(dp), parameter prg_response_mod::pi = 3.14159265358979323846264338327950_dp

10.28 /tmp/qmd-progress/src/prg_sp2_fermi_mod.F90 File Reference

Modules

· module prg sp2 fermi mod

The SP2 Fermi module.

Functions/Subroutines

• subroutine, public prg_sp2_fermi_mod::prg_sp2_fermi_init (h_bml, nsteps, nocc, tscale, threshold, occErr ← Limit, traceLimit, x_bml, mu, beta, h1, hN, sgnlist)

Truncated SP2 prg_initialization.

• subroutine, public prg_sp2_fermi_mod::prg_sp2_fermi_init_norecs (h_bml, nsteps, nocc, tscale, threshold, occErrLimit, traceLimit, x_bml, mu, beta, h1, hN, sgnlist, verbose)

Truncated SP2 prg_initialization. This routine also gives back the Number of SP2 recursive steps that gets a Pseudo-Fermi distribution with a temperature close to the target temperature which is entered using parameter beta = (1/KbT).

• subroutine, public prg_sp2_fermi_mod::prg_sp2_fermi (h_bml, osteps, nsteps, nocc, mu, beta, h1, hN, sgn-list, threshold, eps, traceLimit, x_bml)

Calculate Truncated SP2.

• subroutine, public prg_sp2_fermi_mod::prg_sp2_entropy_function (mu, h1, hN, nsteps, sgnlist, GG, ee)

Calculate SP2 entropy function using gaussian quadrature. Note that GG and ee are allocated and returned from this routine.

• real(dp) function, public prg_sp2_fermi_mod::sp2_entropy_ts (D0_bml, GG, ee)

Test SP2 entropy. Get the entropy contribution TS to the total free energy.

real(dp) function, public prg_sp2_fermi_mod::sp2_inverse (f, mu, h1, hN, nsteps, sgnlist)
 Calculate the SP2 inverse.

real(dp) function prg sp2 fermi mod::absmaxderivative (func, de)

Gets the absolute maximum of the derivative of a function.

Variables

integer, parameter prg sp2 fermi mod::dp = kind(1.0d0)

10.29 /tmp/qmd-progress/src/prg_sp2_mod.F90 File Reference

Modules

· module prg sp2 mod

The SP2 module.

Functions/Subroutines

• subroutine, public prg_sp2_mod::prg_sp2_basic (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)

Calculates the density matrix from a Hamiltonian matrix by purification. The method implemented here is the very first verion of the SP2 method.

- subroutine, public prg_sp2_basic_tcore (h_bml, rho_bml, rhofull_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_mod::prg_sp2_alg2 (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_mod::prg_sp2_alg2_genseq (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, pp, icount, vv, verbose)
- subroutine, public prg_sp2 mod::prg_sp2 alg2 seq (h_bml, rho_bml, threshold, pp, icount, vv, verbose)
- subroutine, public prg_sp2_mod::prg_prg_sp2_alg2_seq_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval, verbose)
- subroutine, public prg_sp2_mod::prg_sp2_alg1 (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, verbose)
- subroutine, public prg_sp2_mod::prg_sp2_alg1_genseq (h_bml, rho_bml, threshold, bndfil, minsp2iter, maxsp2iter, sp2conv, idemtol, pp, icount, vv)
- subroutine, public prg_sp2_mod::prg_sp2_alg1_seq (h_bml, rho_bml, threshold, pp, icount, vv)
- subroutine, public prg_sp2_mod::prg_prg_sp2_alg1_seq_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval)
- subroutine, public prg_sp2_mod::prg_sp2_submatrix (ham_bml, rho_bml, threshold, pp, icount, vv, mineval, maxeval, core size)

Perform SP2 algorithm using sequence and calculate norm for a submatrix.

• subroutine, public prg_sp2_mod::prg_sp2_submatrix_inplace (rho_bml, threshold, pp, icount, vv, mineval, maxeval, core_size)

Variables

- integer, parameter prg_sp2_mod::dp = kind(1.0d0)
- integer, parameter prg_sp2_mod::dp1 = kind(1.0)

10.30 /tmp/qmd-progress/src/prg_sp2parser_mod.F90 File Reference

Data Types

type prg_sp2parser_mod::sp2data_type
 General SP2 solver type.

Modules

 module prg_sp2parser_mod SP2 parser.

Functions/Subroutines

subroutine, public prg_sp2parser_mod::prg_parse_sp2 (sp2data, filename)
 The parser for SP2 solver.

Variables

• integer, parameter prg_sp2parser_mod::dp = kind(1.0d0)

10.31 /tmp/qmd-progress/src/prg_subgraphloop_mod.F90 File Reference

Modules

module prg_subgraphloop_mod
 The subgraphloop module.

Functions/Subroutines

- $\bullet \ \ subroutine, public \ prg_subgraphloop_mod::prg_subgraphsp2loop \ (h_bml, \ g_bml, \ rho_bml, \ gp, \ threshold)$
- subroutine, public prg_subgraphloop_mod::prg_collectmatrixfromparts (gp, rho_bml)

Collect distributed parts into same matrix.

- subroutine, public prg_subgraphloop_mod::prg_balanceparts (gp)
- subroutine, public prg_subgraphloop_mod::prg_partordering (gp)

Set row ordering bases on parts.

- subroutine, public prg_subgraphloop_mod::prg_getgrouppartitionhalosfromgraph (gp, g_bml, hnode, djflag)

 Get core+halo indeces for all partitions only using the graph.
- subroutine, public prg_subgraphloop_mod::prg_getpartitionhalosfromgraph (gp, g_bml, djflag)

 Get core+halo indeces for all partitions only using the graph.

Variables

• integer, parameter prg_subgraphloop_mod::dp = kind(1.0d0)

10.32 /tmp/qmd-progress/src/prg_syrotation_mod.F90 File Reference

Data Types

type prg_syrotation_mod::rotation_type
 Rotation type.

Modules

• module prg_syrotation_mod

A module to rotate the coordinates of a sybsystem in chemical systems.

Functions/Subroutines

- subroutine, public prg_syrotation_mod::prg_parse_rotation (rot, filename)
 - The parser for rotation.
- subroutine, public prg_syrotation_mod::prg_rotate (rot, r, verbose)

Rotation routine.

Variables

• integer, parameter prg_syrotation_mod::dp = kind(1.0d0)

10.33 /tmp/qmd-progress/src/prg_system_mod.F90 File Reference

Data Types

• type prg_system_mod::estruct_type

Electronic structure type.

• type prg_system_mod::system_type

System type.

Modules

module prg_system_mod

A module to read and handle chemical systems.

Functions/Subroutines

• subroutine, public prg_system_mod::prg_get_nameandext (fullfilename, filename, ext)

Get the name and extension of a file.

subroutine, public prg_system_mod::prg_parse_system (system, filename, extin)

The parser for the chemical system.

subroutine, public prg_system_mod::prg_destroy_system (sy)

Deallocates all the arrays within a system.

• subroutine, public prg_system_mod::prg_write_system (system, filename, extin)

Write system in .xyz, .dat or pdb file.

- subroutine, public prg_system_mod::prg_write_trajectory (system, iter, each, prg_deltat, filename, extension) Write trajectory in .xyz, .dat or pdb file.
- subroutine, public prg_system_mod::prg_write_trajectoryandproperty (system, iter, each, prg_deltat, scalarprop, filename, extension)

Write trajectory and atomic properties. Only pdb file.

• subroutine, public prg_system_mod::prg_make_random_system (system, nats, seed, lx, ly, lz)

Make random Xx system.

• subroutine, public prg_system_mod::prg_parameters_to_vectors (abc_angles, lattice vector)

Transforms the lattice parameters into lattice vectors.

subroutine, public prg_system_mod::prg_vectors_to_parameters (lattice_vector, abc_angles)

Transforms the lattice vectors into lattice parameters.

subroutine, public prg_system_mod::prg_get_origin (coords, origin)

Get the origin of the coordinates.

• subroutine, public prg_system_mod::prg_get_distancematrix (coords, dmat)

Get the distance matrix.

• subroutine, public prg_system_mod::prg_translateandfoldtobox (coords, lattice_vectors, origin, verbose)

Translate and fold to box.

subroutine, public prg_system_mod::prg_centeratbox (coords, lattice_vectors, verbose)

Translate geometric center to the center of the box.

• subroutine, public prg_system_mod::prg_wraparound (coords, lattice_vectors, index, verbose)

Wrap around atom i using pbc.

• subroutine, public prg_system_mod::prg_translatetogeomcandfoldtobox (coords, lattice_vectors, origin)

Translate to geometric center.

• subroutine, public prg_system_mod::prg_replicate (coords, symbols, lattice_vectors, nx, ny, nz)

Extend/replicate system along lattice vectors.

• subroutine, public prg_system_mod::prg_replicate_system (sy, syf, nx, ny, nz)

Extend/replicate a system type along the lattice vectors.

• subroutine, public prg_system_mod::prg_cleanuprepeatedatoms (nats, coords, symbols, verbose)

Cleanup repeated atoms we might have in the system.

• subroutine, public prg_system_mod::prg_get_recip_vects (lattice_vectors, recip_vectors, volr, volk)

Get the volume of the cell and the reciprocal vectors: This soubroutine computes:

• subroutine, public prg_system_mod::prg_get_dihedral (coords, id1, id2, id3, id4, dihedral)

Get the dihedral angle given four atomic positions.

• subroutine, public prg_system_mod::prg_get_covgraph (sy, nnStructMindist, nnStruct, nrnnstruct, bml_type, factor, gcov_bml, mdimin, verbose)

Get the covalency graph in bml format.

- subroutine prg_system_mod::prg_get_covgraph_int (sy, nnStructMindist, nnStruct, nrnnstruct, bml_type, factor, gcov_bml, mdimin, verbose)
- subroutine, public prg_system_mod::prg_get_covgraph_h (sy, nnStructMindist, nnStruct, nrnnstruct, rcut, graph h, mdimin, verbose)

Get the covanlency graph.

subroutine, public prg_system_mod::prg_get_subsystem (sy, Isize, indices, sbsy, verbose)

Get a subsystem out of the total system.

• subroutine, public prg_system_mod::prg_destroy_subsystems (sbsy, verbose)

Destroy allocated subsystem.

• subroutine, public prg_system_mod::prg_molpartition (sy, npart, nnStructMindist, nnStruct, nrnnstruct, hetatm, gp, verbose)

Partition by molecule.

subroutine, public prg_system_mod::prg_get_partial_atomgraph (rho_bml, hindex, gch_bml, threshold, ver-bose)

Get partial subgraph based on the Density matrix.

subroutine, public prg_system_mod::prg_collect_graph_p (rho_bml, nc, nats, hindex, chindex, graph_
 p, threshold, mdimin, verbose)

Collect the small graph to build the full graph.

• subroutine, public prg_system_mod::prg_merge_graph (graph_p, graph_h)

Get partial subgraph based on the Density matrix.

• subroutine, public prg_system_mod::prg_merge_graph_adj (graph_p, graph_h, xadj, adjncy)

Get partial subgraph based on the Density matrix.

• subroutine, public prg_system_mod::prg_adj2bml (xadj, adjncy, bml_type, g_bml)

prg_adj2bml

subroutine, public prg_system_mod::prg_graph2bml (graph, bml_type, g_bml)

Graph2bml.

• subroutine, public prg_system_mod::prg_graph2vector (graph, vector, maxnz)

Vectorize graph.

• subroutine, public prg_system_mod::prg_vector2graph (vector, graph, maxnz)

Back to graph.

• subroutine, public prg_system_mod::prg_sortadj (xadj, adjncy)

Sort adj NOTE: this might not be needed anymre since the bml_get_adj routine is sorting the values.

Variables

• integer, parameter prg_system_mod::dp = kind(1.0d0)

10.34 /tmp/qmd-progress/src/prg_timer_mod.F90 File Reference

Data Types

type prg_timer_mod::timer_status_t

Timer status type.

Modules

module prg_timer_mod

The timer module.

Functions/Subroutines

- subroutine, public prg_timer_mod::timer_prg_init ()
 Initialize timers.
- subroutine prg_timer_mod::prg_timer_getid ()

Get timer id.

• subroutine, public prg_timer_mod::prg_timer_shutdown ()

Done with timers.

• subroutine, public prg_timer_mod::prg_timer_start (itimer, tag)

Start Timina.

• subroutine, public prg_timer_mod::prg_timer_stop (itimer, verbose)

Stop timing.

- subroutine, public prg_timer_mod::prg_timer_collect ()
- subroutine, public prg_timer_mod::prg_timer_results ()
- real(8) function, public prg_timer_mod::time2milliseconds ()
- subroutine, public prg_timer_mod::prg_print_date_and_time (tag)
- character(2) function, private prg_timer_mod::int2char (ival)

Variables

- integer, parameter prg_timer_mod::dp = kind(1.0d0)
- integer, public prg_timer_mod::loop_timer
- integer, public prg_timer_mod::sp2_timer
- · integer, public prg_timer_mod::genx_timer
- integer, public prg_timer_mod::part_timer
- integer, public prg_timer_mod::subgraph_timer
- integer, public prg_timer_mod::deortho_timer
- integer, public prg_timer_mod::ortho_timer
- integer, public prg_timer_mod::zdiag_timer
- integer, public prg_timer_mod::graphsp2_timer
- integer, public prg_timer_mod::subind_timer
- integer, public prg_timer_mod::subext_timer
- integer, public prg_timer_mod::subsp2_timer
- · integer, public prg_timer_mod::suball_timer
- · integer, public prg_timer_mod::bmult_timer
- integer, public prg_timer_mod::badd_timer
- integer, public prg_timer_mod::dyn_timer
- integer, public prg_timer_mod::mdloop_timer
- · integer, public prg_timer_mod::buildz_timer
- integer, public prg_timer_mod::realcoul_timer
- integer, public prg_timer_mod::recipcoul_timer
- integer, public prg_timer_mod::pairpot_timer
- integer, public prg_timer_mod::halfverlet_timer
- integer, public prg_timer_mod::pos_timer
- · integer, public prg_timer_mod::nlist_timer
- integer prg_timer_mod::tstart_clock
- integer prg_timer_mod::tstop_clock
- integer prg_timer_mod::tclock_rate
- integer prg_timer_mod::tclock_max
- integer prg_timer_mod::num_timers
- type(timer_status_t), dimension(:), allocatable prg_timer_mod::ptimer

10.35 /tmp/qmd-progress/src/prg xlbo mod.F90 File Reference

Data Types

type prg_xlbo_mod::xlbo_type
 General xlbo solver type.

Modules

• module prg_xlbo_mod

A module to perform XLBO integration.

Functions/Subroutines

- subroutine, public prg_xlbo_mod::prg_parse_xlbo (xlbo, filename)
 - The parser for XLBO parser.
- subroutine, public prg_xlbo_mod::prg_xlbo_nint (charges, n, n_0, n_1, n_2, n_3, n_4, n_5, mdstep, xl)

This routine integrates the dynamical variable "n".

• subroutine, public prg_xlbo_mod::prg_xlbo_fcoulupdate (fcoul, charges, n)

Adjust forces for the linearized XLBOMD functional.

Variables

- integer, parameter prg_xlbo_mod::dp = kind(1.0d0)
- real(dp), parameter prg xlbo mod::c0 = -6.0 dp

Coefficients for modified Verlet integration.

- real(dp), parameter prg_xlbo_mod::c1 = 14.0_dp
- real(dp), parameter prg_xlbo_mod::c2 = -8.0_dp
- real(dp), parameter prg_xlbo_mod::c3 = -3.0_dp
- real(dp), parameter prg_xlbo_mod::c4 = 4.0_dp
- real(dp), parameter prg_xlbo_mod::c5 = -1.0_dp
- real(dp), parameter prg_xlbo_mod::kappa = 1.82_dp

Coefficients for modified Verlet integration.

- real(dp), parameter prg_xlbo_mod::alpha = 0.018_dp
- real(dp), parameter prg_xlbo_mod::cc = 0.9_dp

10.36 /tmp/qmd-progress/src/prg_xlbokernel_mod.F90 File Reference

Modules

• module prg_xlbokernel_mod

Pre-conditioned O(N) calculation of the kernel for XL-BOMD.

Functions/Subroutines

- subroutine prg_xlbokernel mod::invert (A, AI, N)
- subroutine, public prg_xlbokernel_mod::prg_kernel_multirank_latte (KRes, KK0_bml, Res, FelTol, L, LMAX, NUMRANK, HO_bml, mu, beta, RXYZ, Box, Hubbard_U, Element_Pointer, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, nebcoul, totnebcoul, Hinxlist, S_bml, Z_bml, Nocc, Inv_bml, H1_bml, DO_bml, D1_bml, m_
 rec, threshold, Nr_elem, mdstep, update)

Compute low rank approximation of $(K0*J)^{\wedge}(-1)*K0*(q[n]-n)$ (for LATTE)

- subroutine prg_xlbokernel_mod::prg_update_preconditioner (K0, v, fv, Nr_atoms, threshold)
- subroutine, public prg_xlbokernel_mod::prg_kernel_multirank (KRes, KK0_bml, Res, FelTol, L, LMAX, HO
 _bml, mu, beta, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb
 _acc, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, S_bml, Z_bml, Nocc, Znuc, Inv_bml, H1_bml, X_bml, Y_bml, DO_bml, D1_bml, m_rec, threshold)
- subroutine, public prg_xlbokernel_mod::prg_full_kernel_latte (KK, DO_bml, mu0, RXYZ, Box, Hubbard_U, Element_Pointer, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, Hinxlist, S_bml, Z_bml, Inv_bml, D1_bml, H1 bml, HO bml, Nocc, m rec, threshold, beta, Nr elem, nebcoul, totnebcoul)

Compute full inverse Jacobian of q[n]-n (for LATTE)

subroutine, public prg_xlbokernel_mod::prg_full_kernel (KK, DO_bml, mu0, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, S_bml, Z_bml, Inv_bml, D1_bml, H1_bml, HO_bml, Y_bml, X _ bml, Nocc, Znuc, m_rec, threshold, beta, diagonal)

Compute full inverse Jacobian of q[n]-n (for development code)

subroutine, public prg_xlbokernel_mod::prg_kernel_matrix_multirank (KRes, KK0_bml, Res, FelTol, L, LM
 AX, HO_bml, mu, beta, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, HDIM, Max_Nr_Neigh,
 Coulomb_acc, TIMERATIO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, S_bml,
 Z_bml, Nocc, Znuc, Inv_bml, H1_bml, X_bml, Y_bml, DO_bml, D1_bml, m_rec, threshold)

Variables

• integer, parameter prg_xlbokernel_mod::dp = kind(1.0d0)

10.37 /tmp/qmd-progress/src/prg_xlkernel_mod.F90 File Reference

Data Types

• type prg_xlkernel_mod::xlk_type

Modules

· module prg_xlkernel_mod

Add name.

Functions/Subroutines

- subroutine, public prg_xlkernel_mod::prg_parse_xlkernel (input, filename)

 The parser for the mixer routines.
- subroutine, public prg_xlkernel_mod::prg_fermi (D0, QQ, ee, gap, Fe_vec, mu0, H, Z, Nocc, T, OccErrLim, MaxIt, HDIM)
- subroutine, public prg_xlkernel_mod::prg_kernel_fermi_full (KK, JJ, D0, mu0, mu1, T, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, MaxIt, eps, m, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERAT ← IO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, H, S, Z, Nocc, Znuc, QQ, ee, Fe_vec)
- subroutine, public prg_xlkernel_mod::prg_v_kernel_fermi (D0, dq_dv, v, mu0, mu1, T, RX, RY, RZ, LBox, Hubbard_U, Element_Type, Nr_atoms, MaxIt, eps, m, HDIM, Max_Nr_Neigh, Coulomb_acc, TIMERAT ← IO, nnRx, nnRy, nnRz, nrnnlist, nnType, H_INDEX_START, H_INDEX_END, H, S, Z, Nocc, Znuc, QQ, ee, Fe vec)
- subroutine, private prg_xlkernel_mod::prg_get_deriv_finite_temp (P1, H0, H1, Nocc, T, Q, ev, fe, mu0, eps, HDIM)
- subroutine, private prg_xlkernel_mod::prg_mmult (alpha, A, B, beta, C, TA, TB, HDIM)
- subroutine, private prg_xlkernel_mod::prg_eig (A, Q, ee, type, HDIM)
- subroutine, private prg_xlkernel mod::prg_inv (X, XI, HDIM)
- subroutine, public prg_xlkernel mod::prg_rank1 (verbose)

Rank1 kernel

Variables

• integer, parameter prg_xlkernel_mod::dp = kind(1.0d0)

10.38 /tmp/qmd-progress/tests/README.md File Reference

Bibliography

- [1] S. M. Mniszewski, M. J. Cawkwell, M. E. Wall, J. Mohd-Yusof, N. Bock, T. C. Germann, and A. M. N. Niklasson. Efficient parallel linear scaling construction of the density matrix for born–oppenheimer molecular dynamics. *Journal of Chemical Theory and Computation*, 11(10):4644–4654, 2015. PMID: 26574255. 95, 96, 275, 276
- [2] Christian F. A. Negre, Susan M. Mniszewski, Marc J. Cawkwell, Nicolas Bock, Michael E. Wall, and Anders M. N. Niklasson. Recursive factorization of the inverse overlap matrix in linear-scaling quantum molecular dynamics simulations. *Journal of Chemical Theory and Computation*, 12(7):3063–3073, 2016. PMID: 27267207. 58
- [3] Anders M. N. Niklasson. A note on the pulay force at finite electronic temperatures. *The Journal of Chemical Physics*, 129(24), 2008. 165
- [4] Anders M. N. Niklasson, Valéry Weber, and Matt Challacombe. Nonorthogonal density-matrix perturbation theory. *The Journal of Chemical Physics*, 123(4), 2005. 178
- [5] Valéry Weber, Anders M. N. Niklasson, and Matt Challacombe. Higher-order response in o(n) by perturbed projection. *The Journal of Chemical Physics*, 123(4), 2005. 177, 182, 342

354 BIBLIOGRAPHY

Index

(EXTERNAL related routines), 16	absmaxderivative
(High-level codes using PROGRESS/LATTE modules),	prg_chebyshev_mod, 22
17	prg_sp2_fermi_mod, 190
(LATTE related routines), 13	allgatherintparallel
(PROGRESS related routines), 14	prg_parallel_mod, 114
/tmp/qmd-progress/src/prg_charges_mod.F90, 323	allgatherrealparallel
/tmp/qmd-progress/src/prg_chebyshev_mod.F90, 323	prg_parallel_mod, 115
/tmp/qmd-progress/src/prg_densitymatrix_mod.F90,	allgathervintparallel
324	prg_parallel_mod, 115
/tmp/qmd-progress/src/prg_dos_mod.F90, 325	allgathervrealparallel
/tmp/qmd-progress/src/prg_doxy_mod.F90, 326	prg_parallel_mod, 115
/tmp/qmd-progress/src/prg_ewald_mod.F90, 326	alpha
/tmp/qmd-progress/src/prg_extras_mod.F90, 326	prg_xlbo_mod, 248
/tmp/qmd-progress/src/prg_genz_mod.F90, 327	atom_en
/tmp/qmd-progress/src/prg_graph_mod.F90, 328	prg_ptable_mod, 160
/tmp/qmd-progress/src/prg_graphsolver_mod.F90, 329	atomic_number
/tmp/qmd-progress/src/prg_graphsp2parser_mod.F90,	prg_system_mod::system_type, 308
330	atomname
/tmp/qmd-progress/src/prg_homolumo_mod.F90, 330	prg_system_mod::system_type, 308
/tmp/qmd-progress/src/prg implicit fermi mod.F90,	atr
330	prg_chebyshev_mod::chebdata_type, 267
/tmp/qmd-progress/src/prg_initmatrices_mod.F90, 331	
/tmp/qmd-progress/src/prg_kernelparser_mod.F90, 332	badd_timer
/tmp/qmd-progress/src/prg_modelham_mod.F90, 332	prg_timer_mod, 241
/tmp/qmd-progress/src/prg_nonortho_mod.F90, 333	bml_type
/tmp/qmd-progress/src/prg_normalize_mod.F90, 333	prg_chebyshev_mod::chebdata_type, 268
/tmp/qmd-progress/src/prg_openfiles_mod.F90, 334	prg_genz_mod::genzspinp, 276
/tmp/qmd-progress/src/prg_parallel_mod.F90, 334	prg_graphsp2parser_mod::gsp2data_type, 285
/tmp/qmd-progress/src/prg_partition_mod.F90, 336	prg_modelham_mod::mham_type, 290
/tmp/qmd-progress/src/prg_progress_mod.F90, 337	prg_sp2parser_mod::sp2data_type, 302
/tmp/qmd-progress/src/prg_ptable_mod.F90, 337	bmltype
/tmp/qmd-progress/src/prg_pulaycomponent_mod.F90,	prg_response_mod::respdata_type, 296
340	bmult_timer
/tmp/qmd-progress/src/prg_pulaymixer_mod.F90, 340	prg_timer_mod, 241
/tmp/qmd-progress/src/prg_quantumdynamics_mod.F90,	bndfil
341	prg_chebyshev_mod::chebdata_type, 268
/tmp/qmd-progress/src/prg_response_mod.F90, 342	prg_graphsp2parser_mod::gsp2data_type, 285
/tmp/qmd-progress/src/prg_sp2_fermi_mod.F90, 343	prg_sp2parser_mod::sp2data_type, 302
/tmp/qmd-progress/src/prg_sp2_mod.F90, 344	buildz_timer prg_timer_mod, 241
/tmp/qmd-progress/src/prg_sp2parser_mod.F90, 345	prg_timer_mod, 241
/tmp/qmd-progress/src/prg_subgraphloop_mod.F90,	c0
345	prg_xlbo_mod, 248
/tmp/qmd-progress/src/prg_syrotation_mod.F90, 346	c1
/tmp/qmd-progress/src/prg system mod.F90, 346	prg xlbo mod, 248
/tmp/qmd-progress/src/prg_timer_mod.F90, 348	c2
/tmp/qmd-progress/src/prg_xlbo_mod.F90, 350	prg_xlbo_mod, 248
/tmp/qmd-progress/src/prg_xlbokernel_mod.F90, 350	c3
/tmp/qmd-progress/src/prg_xlkernel_mod.F90, 351	prg_xlbo_mod, 249
/tmp/qmd-progress/tests/README.md, 352	c4
i i i i i i i i i i i i i i i i i i i	

	prg_xlbo_mod, 249	prg_quantumdynamics_mod, 176
с5		prg_response_mod, 188
	prg_xlbo_mod, 249	prg_sp2_fermi_mod, 195
cato		prg_sp2_mod, 205
	prg_syrotation_mod::rotation_type, 299	prg_sp2parser_mod, 206
cato		prg_subgraphloop_mod, 211
	prg_syrotation_mod::rotation_type, 299	prg_syrotation_mod, 213
CC	" 1040	prg_system_mod, 234
	prg_xlbo_mod, 249	prg_timer_mod, 241
	prg_xlbo_mod::xlbo_type, 319	prg_xlbo_mod, 249
com	putedipole	prg_xlbokernel_mod, 260
000	prg_response_mod::respdata_type, 296	prg_xlkernel_mod, 266
COOI	dinate	dp1
ooro	prg_system_mod::system_type, 308	prg_sp2_mod, 205
core	e_halo_index	dyn_timer
ادمما	prg_graph_mod::subgraph_t, 305	prg_timer_mod, 241
Coul	_pot_k	ea
ooul	prg_system_mod::estruct_type, 272	prg_modelham_mod::mham_type, 291
Coul	_pot_r	eb
001/0	prg_system_mod::estruct_type, 272	prg_modelham_mod::mham_type, 291
covo	prg_graphsp2parser_mod::gsp2data_type, 286	eband
	prg_graprispzparser_modgspzdata_type, 200	prg_system_mod::estruct_type, 272
dab		ef
	prg_modelham_mod::mham_type, 290	prg_chebyshev_mod::chebdata_type, 268
daia		ehomo
	prg_modelham_mod::mham_type, 291	prg_graph_mod::graph_partitioning_t, 279
dbib		element_atomic_number
	prg_modelham_mod::mham_type, 291	prg_ptable_mod, 159
dec		element_atomic_number_upper
	prg_modelham_mod::mham_type, 291	prg_ptable_mod, 159
deor	rtho_timer	element_covr
	prg_timer_mod, 241	prg_ptable_mod, 160
douk	ble_jump	element_ea
	prg_graphsp2parser_mod::gsp2data_type, 286	prg_ptable_mod, 160
dp		element_econf
	prg_charges_mod, 21	prg_ptable_mod, 161
	prg_chebyshev_mod, 31	element_ip
	prg_densitymatrix_mod, 41	prg_ptable_mod, 161
	prg_dos_mod, 44	element_mass
	prg_ewald_mod, 50	prg_ptable_mod, 162
	prg_extras_mod, 57	element_maxbonds
	prg_genz_mod, 66	prg_ptable_mod, 162
	prg_graph_mod, 76	element_name
	prg_graphsolver_mod, 79	prg_ptable_mod, 162
	prg_graphsp2parser_mod, 80	element_numel
	prg_homolumo_mod, 81	prg_ptable_mod, 163
	prg_implicit_fermi_mod, 94	element_symbol
	prg_initmatrices_mod, 96	prg_ptable_mod, 163
	prg_kernelparser_mod, 100	element_symbol_upper
	prg_modelham_mod, 102	prg_ptable_mod, 163
	prg_nonortho_mod, 104	element_vdwr
	prg_normalize_mod, 109	prg_ptable_mod, 164
	prg_parallel_mod, 134	elumo
	prg_partition_mod, 153	prg_graph_mod::graph_partitioning_t, 280
	prg_progress_mod, 156	errlimit
	prg_ptable_mod, 160	prg_graphsp2parser_mod::gsp2data_type, 286
	prg_pulaycomponent_mod, 167	estep
	prg_pulaymixer_mod, 170	prg_chebyshev_mod::chebdata_type, 268

estr	globalpartmin
prg_system_mod::system_type, 308	prg_graph_mod::graph_partitioning_t, 280
ewald_k_space_latte	graph_element
prg_ewald_mod, 44	prg_graphsp2parser_mod::gsp2data_type, 286
ewald_k_space_latte_single	graphsp2_timer
prg_ewald_mod, 45	prg_timer_mod, 242
ewald_k_space_matrix_latte	gthreshold
prg_ewald_mod, 45	prg_graphsp2parser_mod::gsp2data_type, 286
ewald_k_space_test	
prg_ewald_mod, 46	halfverlet_timer
ewald_real_space	prg_timer_mod, 242
prg_ewald_mod, 46	ham
ewald_real_space_latte	prg_system_mod::estruct_type, 272
prg_ewald_mod, 47	ham0
ewald_real_space_matrix_latte	prg_system_mod::estruct_type, 273
prg_ewald_mod, 47	hamfile
ewald_real_space_single	prg_graphsp2parser_mod::gsp2data_type, 286
prg_ewald_mod, 48	hindex
ewald_real_space_single_latte	prg_system_mod::estruct_type, 273
prg_ewald_mod, 48	hsize
ewald_real_space_test	prg_graph_mod::subgraph_t, 305
prg_ewald_mod, 49	1
formi	ierr
fermi	prg_parallel_mod, 134
prg_chebyshev_mod, 23 prg_densitymatrix_mod, 33	igenz
prg_implicit_fermi_mod, 82	prg_genz_mod::genzspinp, 276 int2char
fermitol	
prg_chebyshev_mod::chebdata_type, 268	prg_timer_mod, 236
field	integration
prg_response_mod::respdata_type, 296	prg_genz_mod::genzspinp, 276 invert
fieldintensity	prg_xlbokernel_mod, 251
prg_response_mod::respdata_type, 297	isendparallel
flavor	prg_parallel_mod, 117
prg_chebyshev_mod::chebdata_type, 268	pr <u>g_paranoi_moa</u> , ***/
prg_sp2parser_mod::sp2data_type, 302	jackson
force	prg_chebyshev_mod, 23
prg_system_mod::system_type, 309	jobname
fpul	prg_chebyshev_mod::chebdata_type, 269
prg_system_mod::estruct_type, 272	prg_graphsp2parser_mod::gsp2data_type, 287
fscoul	prg_modelham_mod::mham_type, 291
prg_system_mod::estruct_type, 272	prg_sp2parser_mod::sp2data_type, 302
	prg_syrotation_mod::rotation_type, 299
genx_timer	prg_xlbo_mod::xlbo_type, 319
prg_timer_mod, 242	jon
get_file_unit	prg_chebyshev_mod::chebdata_type, 269
prg_openfiles_mod, 110	
getef	kappa
prg_chebyshev_mod::chebdata_type, 269	prg_xlbo_mod, 249
getmyrank	kbt
prg_parallel_mod, 115	prg_chebyshev_mod::chebdata_type, 269
getnranks	kerneltype
prg_parallel_mod, 116	prg_xlkernel_mod::xlk_type, 321
getresponse	The state of the s
prg_response_mod::respdata_type, 297	lattice_vector
globalpartextent	prg_system_mod::system_type, 309
prg_graph_mod::graph_partitioning_t, 280	llsize
globalpartmax	prg_graph_mod::subgraph_t, 305
<pre>prg_graph_mod::graph_partitioning_t, 280</pre>	localpartextent

prg_graph_mod::graph_partitioning_t, 280	minsp2iter
localpartmax	prg_graphsp2parser_mod::gsp2data_type, 287
prg_graph_mod::graph_partitioning_t, 281	prg_sp2parser_mod::sp2data_type, 303
localpartmin	minvalue
prg_graph_mod::graph_partitioning_t, 281	prg_timer_mod::timer_status_t, 315
loop_timer	mixcoeff
prg_timer_mod, 242	prg_pulaymixer_mod::mx_type, 293
lorentz	mixeron
prg_dos_mod, 42	prg_pulaymixer_mod::mx_type, 293
Isize	mixertype
prg_graph_mod::subgraph_t, 305	prg pulaymixer mod::mx type, 293
h. 9 _ 9. mh	mls
mass	prg_extras_mod, 51
prg_system_mod::system_type, 309	mpulay
maxeval	prg_pulaymixer_mod::mx_type, 294
<pre>prg_graph_mod::graph_partitioning_t, 281</pre>	myrank
maxintparallel	prg_graph_mod::graph_partitioning_t, 282
prg_parallel_mod, 117	prg_parallel_mod, 134
maxiter	prg_paralici_mod; ro-
prg_graph_mod::graph_partitioning_t, 281	natoms
maxrank	prg_graphsp2parser_mod::gsp2data_type, 287
prg_timer_mod::timer_status_t, 315	nats
maxrankrealparallel	prg_system_mod::system_type, 310
prg_parallel_mod, 118	ncoeffs
maxrealparallel	prg_chebyshev_mod::chebdata_type, 269
prg_parallel_mod, 118	ndim
maxscfinititer	prg_chebyshev_mod::chebdata_type, 270
prg_xlbo_mod::xlbo_type, 319	prg_graphsp2parser_mod::gsp2data_type, 287
maxscfiter	prg_sp2parser_mod::sp2data_type, 303
prg_xlbo_mod::xlbo_type, 320	nel
maxsp2iter	prg_system_mod::estruct_type, 273
prg_graphsp2parser_mod::gsp2data_type, 287	net_charge
prg_sp2parser_mod::sp2data_type, 302	prg_system_mod::system_type, 310
maxvalue	nfirst
prg_timer_mod::timer_status_t, 315	prg_genz_mod::genzspinp, 276
mdim	nlgcut
prg_chebyshev_mod::chebdata_type, 269	prg_graphsp2parser_mod::gsp2data_type, 288
prg_genz_mod::genzspinp, 276	nlist timer
prg graphsp2parser mod::gsp2data type, 287	prg_timer_mod, 242
prg_response_mod::respdata_type, 297	nnodesinpart
prg_sp2parser_mod::sp2data_type, 302	prg_graph_mod::graph_partitioning_t, 282
mdloop_timer	nnodesinpartall
prg_timer_mod, 242	prg_graph_mod::graph_partitioning_t, 282
metis_index_kind	nodeinpart
prg_partition_mod, 153	prg_graph_mod::subgraph_t, 305
metis_real_kind	nodesperpart
prg_partition_mod, 153	prg graphsp2parser mod::gsp2data type, 288
mineval	norbs
prg_graph_mod::graph_partitioning_t, 281	prg_modelham_mod::mham_type, 292
minintparallel	prg_system_mod::estruct_type, 273
prg_parallel_mod, 119	nparts
minit	prg_graph_mod::graph_partitioning_t, 282
prg_xlbo_mod::xlbo_type, 320	npts
prg_xibo_modxibo_type, 320 minrank	prg_chebyshev_mod::chebdata_type, 270
prg_timer_mod::timer_status_t, 315	nrank
minrankrealparallel	prg_xlkernel_mod::xlk_type, 321
prg_parallel_mod, 119	
	nranks
minrealparallel prg_parallel_mod, 119	prg_parallel_mod, 134 nreff
DIU Dalaliti IIIUU. I I 🖰	IIIGII

prg_genz_mod::genzspinp, 276	pq2
nrefi	prg_syrotation_mod::rotation_type, 300
prg_genz_mod::genzspinp, 277	prg_accept_prob
prg_system_mod::system_type, 310	prg_partition_mod, 137 prg_adj2bml
num_timers	prg_system_mod, 215
prg_timer_mod, 243	prg_allgatherparallel
numthresf	prg_parallel_mod, 120
prg_genz_mod::genzspinp, 277	prg_allsumintreduceparallel
numthresh prg_response_mod::respdata_type, 297	prg_parallel_mod, 121
numthresi	prg_allsumrealreduceparallel prg_parallel_mod, 121
prg_genz_mod::genzspinp, 277	prg_balanceparts
nz	prg_subgraphloop_mod, 207
prg_ptable_mod, 164	prg_barrierparallel
oham	prg_parallel_mod, 122
oham prg_system_mod::estruct_type, 273	prg_bcastparallel
order	prg_parallel_mod, 122
prg_graph_mod::graph_partitioning_t, 282	prg_build_atomic_density
orho	prg_densitymatrix_mod, 33 prg_build_density_cheb
prg_system_mod::estruct_type, 274	prg_chebyshev_mod, 24
ortho_timer	prg_build_density_cheb_fermi
prg_timer_mod, 243	prg_chebyshev_mod, 25
over	prg_build_density_t
prg_system_mod::estruct_type, 274	prg_densitymatrix_mod, 34
pairpot_timer	prg_build_density_t0
prg_timer_mod, 243	prg_densitymatrix_mod, 35
part	prg_build_density_t_fermi
prg_graph_mod::subgraph_t, 306	prg_densitymatrix_mod, 36 prg_build_density_t_fulldata
part_timer	prg_densitymatrix_mod, 37
prg_timer_mod, 243	prg_build_densitygp_t0
parteach prg_graphsp2parser_mod::gsp2data_type, 288	prg_graphsolver_mod, 76
partition_count	prg_build_zmatgp
prg_graphsp2parser_mod::gsp2data_type, 288	prg_graphsolver_mod, 78
partition_refinement	prg_buildzdiag
prg_graphsp2parser_mod::gsp2data_type, 288	prg_genz_mod, 58
partition_type	prg_buildzsparse
prg_graphsp2parser_mod::gsp2data_type, 288	prg_genz_mod, 59 prg_canon_response
patom1	prg_response_mod, 178
prg_syrotation_mod::rotation_type, 299 patom2	prg_canon_response_orig
prg_syrotation_mod::rotation_type, 299	prg_response_mod, 179
pdim	prg_canon_response_vector
prg_graphsp2parser_mod::gsp2data_type, 289	prg_response_mod, 179
prg_sp2parser_mod::sp2data_type, 303	prg_centeratbox
pi	prg_system_mod, 215
prg_chebyshev_mod, 31	prg_charges_mod, 19
prg_response_mod, 189	dp, 21 prg_get_charges, 19
pname prg_graph_mod::graph_partitioning_t, 283	prg_get_hscf, 20
pos_timer	prg_chebyshev_mod, 21
prg_timer_mod, 243	absmaxderivative, 22
pp	dp, 31
prg_graph_mod::graph_partitioning_t, 283	fermi, 23
pq1	jackson, 23
<pre>prg_syrotation_mod::rotation_type, 299</pre>	pi, 31

prg build density cheb, 24	fermi, 33
prg_build_density_cheb_fermi, 25	prg_build_atomic_density, 33
prg get chebcoeffs, 26	prg_build_density_t, 34
prg_get_chebcoeffs_fermi_bs, 28	prg_build_density_t0, 35
prg_get_chebcoeffs_fermi_nt, 29	prg_build_density_t_fermi, 36
	• •
prg_parse_cheb, 30	prg_build_density_t_fulldata, 37
tr, 31	prg_check_idempotency, 38
prg_chebyshev_mod::chebdata_type, 267	prg_get_eigenvalues, 39
atr, 267	prg_get_flevel, 39
bml_type, 268	prg_get_flevel_nt, 40
bndfil, 268	prg_deorthogonalize
ef, 268	prg_nonortho_mod, 103
estep, 268	prg_destroy_subsystems
fermitol, 268	prg_system_mod, 217
flavor, 268	prg_destroy_system
getef, 269	prg_system_mod, 217
jobname, 269	prg_destroygraphpartitioning
jon, 269	prg_graph_mod, 67
kbt, 269	prg_destroysubgraph
mdim, 269	prg_graph_mod, 68
ncoeffs, 269	prg_dos_mod, 41
ndim, 270	dp, 44
npts, 270	lorentz, 42
threshold, 270	
	prg_write_tdos, 43
trkfunc, 270	prg_eig
verbose, 270	prg_xlkernel_mod, 261
prg_check_arrays	prg_equalgrouppartition
prg_partition_mod, 137	prg_graph_mod, 69
prg_check_idempotency	prg_equalpartition
prg_densitymatrix_mod, 38	prg_graph_mod, 70
prg_check_valid	prg_ewald_mod, 44
prg_kernelparser_mod, 97	dp, 50
prg_cleanuprepeatedatoms	ewald_k_space_latte, 44
prg_system_mod, 216	ewald_k_space_latte_single, 45
prg_collect_graph_p	ewald_k_space_matrix_latte, 45
prg_system_mod, 216	ewald_k_space_test, 46
prg_collectmatrixfromparts	ewald_real_space, 46
prg_subgraphloop_mod, 207	ewald_real_space_latte, 47
prg_compute_dipole	ewald real space matrix latte, 47
prg_response_mod, 181	ewald_real_space_single, 48
prg_compute_polarizability	ewald real space single latte, 48
prg_response_mod, 181	ewald_real_space_test, 49
prg_compute_response_fd	prg_excitation
prg_response_mod, 182	prg_quantumdynamics_mod, 171
prg_compute_response_rs	prg_extras mod, 50
prg_response_mod, 183	dp, 57
prg_compute_response_sp2	mls, 51
prg_response_mod, 184	prg_delta, 51
prg_conjgrad	prg_get_mem, 52
prg_implicit_fermi_mod, 83	prg_norm2, 54
prg_costindex	prg_print_matrix, 55
prg_partition_mod, 138	prg_twonorm, 55
prg_costpartition	to_string_double, 56
prg_partition_mod, 138	to_string_integer, 56
prg_delta	to_string_long_long, 57
prg_extras_mod, 51	prg_extras_mod::prg_memory_consumption, 294
prg_densitymatrix_mod, 32	prg_memory_consumption, 294
dp, 41	prg_extras_mod::to_string, 317

to_string_double, 317	prg_system_mod, 217
to_string_integer, 318	prg_get_covgraph_h
to_string_long_long, 318	prg_system_mod, 218
prg_fermi	prg_get_covgraph_int
prg_xlkernel_mod, 261	prg_system_mod, 219
prg_filepartition	prg_get_density_matrix
prg_graph_mod, 70	prg_implicit_fermi_mod, 84
prg_find_best_move	prg_get_deriv_finite_temp
prg_partition_mod, 140	prg_xlkernel_mod, 261
prg_finite_diff	prg_get_dihedral
prg_implicit_fermi_mod, 84	prg_system_mod, 219
prg_fnormgraph	prg_get_distancematrix
prg_graph_mod, 71	prg_system_mod, 220
prg_full_kernel	prg_get_eigenvalues
prg_xlbokernel_mod, 251	prg_densitymatrix_mod, 39
prg_full_kernel_latte	prg_get_flevel
prg_xlbokernel_mod, 253	prg_densitymatrix_mod, 39
prg_genz_mod, 57	prg_get_flevel_nt
dp, 66	prg_densitymatrix_mod, 40
prg_buildzdiag, 58	prg_get_hscf
prg_buildzsparse, 59	prg_charges_mod, 20
prg_genz_sp_initial_zmat, 60	prg_get_largest_hedge_in_part
prg_genz_sp_initialz0, 62	prg_partition_mod, 141
prg_genz_sp_int, 63	prg_get_mem
prg_genz_sp_ref, 64	prg_extras_mod, 52
prg_init_zspmat, 65	prg_get_nameandext
prg_parse_zsp, 65	prg_system_mod, 220
prg_genz_mod::genzspinp, 275	prg_get_origin
bml_type, 276	prg_system_mod, 221
igenz, <mark>276</mark>	prg_get_partial_atomgraph
integration, 276	prg_system_mod, 221
mdim, 276	prg_get_pulayforce
nfirst, 276	prg_pulaycomponent_mod, 165
nreff, 276	prg_get_recip_vects
nrefi, 277	prg_system_mod, 222
numthresf, 277	prg_get_sparsity_cplxmat
numthresi, 277	prg_quantumdynamics_mod, 171
verbose, 277	prg_get_sparsity_realmat
zsp, 277	prg_quantumdynamics_mod, 172
prg_genz_sp_initial_zmat	prg_get_subsystem
prg_genz_mod, 60	prg_system_mod, 222
prg_genz_sp_initialz0	prg_getcharge
prg_genz_mod, 62	prg_quantumdynamics_mod, 172
prg_genz_sp_int	prg_getdipole
prg_genz_mod, 63	prg_quantumdynamics_mod, 173
prg_genz_sp_ref	prg_getgrouppartitionhalosfromgraph
prg_genz_mod, 64	prg_subgraphloop_mod, 208
prg_gershgorinreduction	prg_getpartitionhalosfromgraph
prg_normalize_mod, 105	prg_subgraphloop_mod, 209
prg_get_charges	prg_graph2bml
prg_charges_mod, 19	prg_system_mod, 223
prg_get_chebcoeffs	prg_graph2vector
prg_chebyshev_mod, 26	prg_system_mod, 223
prg_get_chebcoeffs_fermi_bs	prg_graph_mod, 66
prg_chebyshev_mod, 28	dp, 76
prg_get_chebcoeffs_fermi_nt	prg_destroygraphpartitioning, 67
prg_chebyshev_mod, 29	prg_destroysubgraph, 68
prg_get_covgraph	prg_equalgrouppartition, 69

	prg_equalpartition, 70		mdim, 287
	prg_filepartition, 70		minsp2iter, 287
	prg_fnormgraph, 71		natoms, 287
	prg_initgraphpartitioning, 72		ndim, 287
	prg_initsubgraph, 73		nlgcut, 288
	prg_printgraphpartitioning, 74		nodesperpart, 288
	prg_readpart, 75		parteach, 288
pra	graph_mod::graph_partitioning_t, 278		partition count, 288
P 9_	ehomo, 279		partition refinement, 288
	elumo, 280		partition_type, 288
	globalpartextent, 280		pdim, 289
	globalpartmax, 280		sdim, 289
	globalpartmin, 280		sp2conv, 289
	localpartextent, 280		sp2tol, 289
	localpartmax, 281		threshold, 289
	localpartmin, 281		verbose, 289
	maxeval, 281	nra	homolumo_mod, 80
	maxiter, 281	prg_	dp, 81
	mineval, 281		prg_homolumogap, 81
	myrank, 282	D. C. C.	prg_sp2sequence, 81
	nnodesinpart, 282	prg_	_homolumogap
	nnodesinpartall, 282	D. C. C.	prg_homolumo_mod, 81
	nparts, 282	prg_	_implicit_fermi
	order, 282		prg_implicit_fermi_mod, 85
	pname, 283	prg_	_implicit_fermi_first_order_response
	pp, 283		prg_implicit_fermi_mod, 87
	reorder, 283	prg_	_implicit_fermi_mod, 82
	sgraph, 283		dp, 94
	totalnodes, 283		fermi, 82
	totalnodes2, 284		prg_conjgrad, 83
	totalparts, 284		prg_finite_diff, 84
	totalprocs, 284		prg_get_density_matrix, 84
	vv, 284		prg_implicit_fermi, 85
prg_	graph_mod::subgraph_t, 304		prg_implicit_fermi_first_order_response, 87
	core_halo_index, 305		prg_implicit_fermi_response, 88
	hsize, 305		prg_implicit_fermi_save_inverse, 89
	llsize, 305		prg_implicit_fermi_zero, 90
	Isize, 305		prg_newtonschulz, 91
	nodeinpart, 305		prg_pcg, 92
	part, 306		prg_setup_linsys, 93
prg_	_graphsolver_mod, 76		prg_test_density_matrix, 93
	dp, 79	prg_	_implicit_fermi_response
	prg_build_densitygp_t0, 76		prg_implicit_fermi_mod, 88
	prg_build_zmatgp, 78	prg_	_implicit_fermi_save_inverse
prg_	_graphsp2parser_mod, 79		prg_implicit_fermi_mod, 89
	dp, 80	prg_	_implicit_fermi_zero
	prg_parse_gsp2, 79		prg_implicit_fermi_mod, 90
prg_	_graphsp2parser_mod::gsp2data_type, 285	prg_	_init_hsmat
	bml_type, 285		prg_initmatrices_mod, 95
	bndfil, 285	prg_	_initortho
	covgfact, 286		prg_initmatrices_mod, 95
	double_jump, 286	prg_	_initpzmat
	errlimit, 286		prg_initmatrices_mod, 96
		nra	_initzspmat
	graph_element, 286	Pig_	
	gthreshold, 286	Pig_	prg_genz_mod, 65
	gthreshold, 286 hamfile, 286		
	gthreshold, 286 hamfile, 286 jobname, 287	prg_	prg_genz_mod, 65 _initgraphpartitioning prg_graph_mod, 72
	gthreshold, 286 hamfile, 286	prg_	prg_genz_mod, 65 _initgraphpartitioning

dp, 96	prg_parse_mham, 101
prg_init_hsmat, 95	prg_twolevel_model, 101
prg_init_ortho, 95	prg_modelham_mod::mham_type, 290
prg_init_pzmat, 96	bml_type, 290
prg_initparallel	dab, 290
prg_parallel_mod, 122	daiaj, 291
prg_initsubgraph	dbibj, 291
prg_graph_mod, 73	dec, <mark>29</mark> 1
prg_inv	ea, <mark>29</mark> 1
prg_xlkernel_mod, 262	eb, 291
prg_iprg_recvparallel	jobname, 291
prg_parallel_mod, 122	norbs, 292
prg_kernel_fermi_full	rcoeff, 292
prg_xlkernel_mod, 262	reshuffle, 292
prg_kernel_matrix_multirank	seed, 292
prg_xlbokernel_mod, 254	prg_molpartition
prg_kernel_multirank	prg_system_mod, 226
prg_xlbokernel_mod, 256	prg_newtonschulz
prg_kernel_multirank_latte	prg_implicit_fermi_mod, 91
prg_xlbokernel_mod, 257	prg_nonortho_mod, 102
prg_kernelparser_mod, 96	dp, 104
dp, 100	prg_deorthogonalize, 103
prg_check_valid, 97	prg_orthogonalize, 104
prg_parsing_kernel, 98	prg_norm2
prg_kernlin	prg_extras_mod, 54
prg_partition_mod, 142	prg_normalize
prg_kernlin2	prg_normalize_mod, 105
prg_partition_mod, 144	prg_normalize_cheb
prg_kernlin_queue	prg_normalize_mod, 106
prg_partition_mod, 145	prg_normalize_fermi
prg_kick_density	prg_normalize_mod, 107
prg_quantumdynamics_mod, 173	prg_normalize_implicit_fermi
prg_kick_density_bml	prg_normalize_mod, 108
prg_quantumdynamics_mod, 175	prg_normalize_mod, 105
prg_linearmixer	dp, 109
prg_pulaymixer_mod, 168	prg_gershgorinreduction, 105
prg_lvni_bml	prg_normalize, 105
prg_quantumdynamics_mod, 175	prg_normalize_cheb, 106
prg_make_random_system	prg_normalize_fermi, 107
prg_system_mod, 223	prg_normalize_implicit_fermi, 108
prg_maxintreduce2	prg_open_file
prg_parallel_mod, 123	prg_openfiles_mod, 110
prg_maxrealreduce	prg_open_file_to_read
prg_parallel_mod, 123	prg_openfiles_mod, 111
prg_memory_consumption	prg_openfiles_mod, 109
prg_extras_mod::prg_memory_consumption, 294	get_file_unit, 110
prg_merge_graph	prg_open_file, 110
prg_system_mod, 225	prg_open_file_to_read, 111
prg_merge_graph_adj	prg_orthogonalize
prg_system_mod, 225	prg_nonortho_mod, 104
prg_metispartition	prg_parallel_mod, 113
prg_partition_mod, 146	allgatherintparallel, 114
prg_minrealreduce	allgatherrealparallel, 115
prg_parallel_mod, 124	allgathervintparallel, 115
prg_mmult	allgathervrealparallel, 115
prg_xlkernel_mod, 263	dp, 134
prg_modelham_mod, 101	getmyrank, 115
dp, 102	getnranks, 116

ierr, 134	prg_system_mod, 227
isendparallel, 117	prg_parse_xlbo
maxintparallel, 117	prg_xlbo_mod, 247
maxrankrealparallel, 118	prg_parse_xlkernel
maxrealparallel, 118	prg_xlkernel_mod, 264
minintparallel, 119	prg_parse_zsp
minrankrealparallel, 119	prg_genz_mod, 65
minrealparallel, 119	prg_parsing_kernel
myrank, 134	prg_kernelparser_mod, 98
nranks, 134	prg_partition_mod, 135
prg_allgatherparallel, 120	dp, 153
prg_allsumintreduceparallel, 121	metis_index_kind, 153
prg_allsumrealreduceparallel, 121	metis_real_kind, 153
prg_barrierparallel, 122	prg_accept_prob, 137
prg_bcastparallel, 122	prg_check_arrays, 137
prg_initparallel, 122	prg_costindex, 138
prg_iprg_recvparallel, 122	prg_costpartition, 138
prg_maxintreduce2, 123	prg find best move, 140
prg_maxrealreduce, 123	prg_get_largest_hedge_in_part, 141
prg_minrealreduce, 124	prg_get_largest_nedge_m_part, 141
prg_rmmeaneduce, 124 prg_recvparallel, 125	prg_kernin1, 142 prg_kernlin2, 144
. —	prg_kerninz, 144 prg_kernlin queue, 145
prg_shutdownparallel, 125	. •
prg_sumintreduce2, 125	prg_metispartition, 146
prg_sumintreducen, 126	prg_rand_node, 147
prg_sumrealreduce, 126	prg_rand_shuffle, 148
prg_sumrealreduce2, 127	prg_simannealing, 148
prg_sumrealreduce3, 128	prg_simannealing_old, 150
prg_sumrealreducen, 129	prg_update_gp, 151
prg_wait, 129	update_prg_costpartition, 152
printrank, 130	prg_partordering
reqcount, 135	prg_subgraphloop_mod, 209
requestlist, 135	prg_pcg
rused, 135	prg_implicit_fermi_mod, 92
saverequest, 131	prg_pert_constant_field
sendparallel, 132	prg_response_mod, 185
sendreceiveparallel, 132	prg_pert_cos_pot
sumintparallel, 132	prg_response_mod, 186
sumrealparallel, 133	prg_pert_from_file
prg_parallel_mod::rankreducedata_t, 295	prg_response_mod, 186
rank, 295	prg_pert_sin_pot
val, 295	prg_response_mod, 186
prg_parameters_to_vectors	prg_prg_sp2_alg1_seq_inplace
prg_system_mod, 226	prg_sp2_mod, 197
prg parse cheb	prg_prg_sp2_alg2_seq_inplace
prg_chebyshev_mod, 30	prg_sp2_mod, 197
prg_parse_gsp2	prg_print_date_and_time
prg_graphsp2parser_mod, 79	prg_timer_mod, 236
prg_parse_mham	prg_print_matrix
prg_modelham_mod, 101	prg_extras_mod, 55
prg_parse_mixer	prg_printgraphpartitioning
prg_pulaymixer_mod, 168	prg_graph_mod, 74
prg_parse_response	prg_progress_init
prg_response_mod, 184	prg_progress_mod, 154
prg_parse_rotation	prg_progress_mod, 154
prg_syrotation_mod, 211	dp, 156
prg_parse_sp2	prg_progress_init, 154
prg_sp2parser_mod, 206	prg_progress_shutdown, 155
prg_parse_system	prg_progress_shutdown

prg_progress_mod, 155	prg_readpart
prg_project_response	prg_graph_mod, 75
prg_response_mod, 187	prg_recvparallel
prg_ptable_mod, 156	prg_parallel_mod, 125
atom_en, 160	prg_replicate
dp, 160	prg_system_mod, 228
element_atomic_number, 159	prg_replicate_system
element_atomic_number_upper, 159	prg_system_mod, 228
element_covr, 160	prg_response_mod, 176
element_ea, 160	dp, 188
element_econf, 161	pi, 189
element_ip, 161	prg_canon_response, 178
element_mass, 162	prg_canon_response_orig, 179
element_maxbonds, 162	prg_canon_response_vector, 179
element_name, 162	prg_compute_dipole, 181
element_numel, 163	prg_compute_polarizability, 181
element_symbol, 163	prg_compute_response_fd, 182
element_symbol_upper, 163	prg_compute_response_rs, 183
element_vdwr, 164	prg_compute_response_sp2, 184
nz, 164	prg_parse_response, 184
prg_pulaycomponent0	prg_pert_constant_field, 185
prg_pulaycomponent_mod, 165	prg_pert_cos_pot, 186
prg_pulaycomponent_mod, 164	prg_pert_from_file, 186
dp, 167	prg_pert_sin_pot, 186
prg_get_pulayforce, 165	prg_project_response, 187
prg_pulaycomponent0, 165	prg_write_dipole_tcl, 188
prg_pulaycomponentt, 166	prg_response_mod::respdata_type, 296
prg_pulaycomponentt	bmltype, 296
prg_pulaycomponent_mod, 166	computedipole, 296
prg_pulaymixer_mod, 167	field, 296
dp, 170	fieldintensity, 297
prg_linearmixer, 168	getresponse, 297
prg_parse_mixer, 168	mdim, 297
prg_qmixer, 169	numthresh, 297
prg_pulaymixer_mod::mx_type, 293	respmode, 297
mixcoeff, 293	typeofpert, 297
mixeron, 293	prg_rotate
mixertype, 293	prg_syrotation_mod, 212
mpulay, 294	prg_setup_linsys
verbose, 294	prg_implicit_fermi_mod, 93
prg_qmixer	prg_shutdownparallel
prg_pulaymixer_mod, 169	prg_parallel_mod, 125
prg_quantumdynamics_mod, 170	prg_simannealing
dp, 176	prg_partition_mod, 148
prg_excitation, 171	prg_simannealing_old
prg_get_sparsity_cplxmat, 171	prg_partition_mod, 150
prg_get_sparsity_realmat, 172	prg_sortadj
prg_getcharge, 172	prg_system_mod, 229
prg_getdipole, 173	prg_sp2_alg1
prg_kick_density, 173	prg_sp2_mod, 198
prg_kick_density_bml, 175	prg_sp2_alg1_genseq
prg_lvni_bml, 175	prg_sp2_mod, 198
prg_rand_node	prg_sp2_alg1_seq
prg_partition_mod, 147	prg_sp2_mod, 199
prg_rand_shuffle	prg_sp2_alg2
prg_partition_mod, 148	prg_sp2_mod, 200
prg_rank1	prg_sp2_alg2_genseq
prg_xlkernel_mod, 264	prg_sp2_mod, 200

prg_	_sp2_alg2_seq	threshold, 304
	prg_sp2_mod, 201	verbose, 304
prg_	_sp2_basic	prg_sp2sequence
	prg_sp2_mod, 202	prg_homolumo_mod, 81
prg_	_sp2_basic_tcore	prg_subgraphloop_mod, 206
	prg_sp2_mod, 203	dp, 211
prg_	_sp2_entropy_function	prg_balanceparts, 207
	prg_sp2_fermi_mod, 190	prg_collectmatrixfromparts, 207
prg_	_sp2_fermi	prg_getgrouppartitionhalosfromgraph, 208
	prg_sp2_fermi_mod, 191	prg_getpartitionhalosfromgraph, 209
prg_	_sp2_fermi_init	prg_partordering, 209
	prg_sp2_fermi_mod, 192	prg_subgraphsp2loop, 210
prg_	_sp2_fermi_init_norecs	prg_subgraphsp2loop
	prg_sp2_fermi_mod, 193	prg_subgraphloop_mod, 210
prg_	_sp2_fermi_mod, 189	prg_sumintreduce2
	absmaxderivative, 190	prg_parallel_mod, 125
	dp, 195	prg_sumintreducen
	prg_sp2_entropy_function, 190	prg_parallel_mod, 126
	prg_sp2_fermi, 191	prg_sumrealreduce
	prg_sp2_fermi_init, 192	prg_parallel_mod, 126
	prg_sp2_fermi_init_norecs, 193	prg_sumrealreduce2
	sp2 entropy ts, 194	prg_parallel_mod, 127
	sp2_inverse, 195	prg_sumrealreduce3
pra	sp2_mod, 196	prg_parallel_mod, 128
P. 9_	dp, 205	prg_sumrealreducen
	dp1, 205	prg_parallel_mod, 129
	prg_prg_sp2_alg1_seq_inplace, 197	prg_syrotation_mod, 211
	prg_prg_sp2_alg2_seq_inplace, 197	dp, 213
	prg_sp2_alg1, 198	prg_parse_rotation, 211
	prg_sp2_alg1_genseq, 198	prg_rotate, 212
	prg_sp2_alg1_seq, 199	prg_syrotation_mod::rotation_type, 298
	prg_sp2_alg2, 200	catom, 299
	prg_sp2_alg2_genseq, 200	catom2, 299
	prg_sp2_alg2_seq, 201	jobname, 299
	prg_sp2_basic, 202	patom1, 299
	prg_sp2_basic_tcore, 203	patom2, 299
	prg_sp2_submatrix, 203	pq1, 299
	prg_sp2_submatrix_inplace, 204	pq2, 300
prg_	_sp2_submatrix	rotate_atoms, 300
	prg_sp2_mod, 203	typeofrot, 300
prg_	_sp2_submatrix_inplace	v1, 300
	prg_sp2_mod, 204	v2, 300
prg_	_sp2parser_mod, 205	vq, 301
	dp, 206	prg_system_mod, 213
	prg_parse_sp2, 206	dp, 234
prg	sp2parser_mod::sp2data_type, 301	prg_adj2bml, 215
	bml_type, 302	prg_centeratbox, 215
	bndfil, 302	prg_cleanuprepeatedatoms, 216
	flavor, 302	prg_collect_graph_p, 216
	jobname, 302	prg_destroy_subsystems, 217
	maxsp2iter, 302	prg_destroy_system, 217
	mdim, 302	prg_get_covgraph, 217
	minsp2iter, 303	prg_get_covgraph_h, 218
	·	
	ndim, 303	prg_get_covgraph_int, 219
	pdim, 303	prg_get_dihedral, 219
	sdim, 303	prg_get_distancematrix, 220
	sp2conv, 303	prg_get_nameandext, 220
	sp2tol, 303	prg_get_origin, 221

	prg_get_partial_atomgraph, 221		userdef, 313
	prg_get_recip_vects, 222		velocity, 313
	prg_get_subsystem, 222		volk, 313
	prg_graph2bml, 223		volr, 313
	prg_graph2vector, 223	prg	_test_density_matrix
	prg_make_random_system, 223		prg_implicit_fermi_mod, 93
	prg_merge_graph, 225	prg	_timer_collect
	prg_merge_graph_adj, 225		prg_timer_mod, 236
	prg_molpartition, 226	prg	_timer_getid
	prg_parameters_to_vectors, 226		prg_timer_mod, 237
	prg_parse_system, 227	prg	_timer_mod, 234
	prg_replicate, 228		badd_timer, 241
	prg_replicate_system, 228		bmult_timer, 241
	prg_sortadj, 229		buildz_timer, 241
	prg_translateandfoldtobox, 229		deortho_timer, 241
	prg_translatetogeomcandfoldtobox, 230		dp, 241
	prg_vector2graph, 230		dyn_timer, 241
	prg_vectors_to_parameters, 230		genx_timer, 242
	prg_wraparound, 231		graphsp2_timer, 242
	prg_write_system, 231		halfverlet_timer, 242
	prg_write_trajectory, 232		int2char, 236
	prg_write_trajectoryandproperty, 233		loop_timer, 242
prg	system_mod::estruct_type, 271		mdloop_timer, 242
	coul_pot_k, 272		nlist timer, 242
	coul_pot_r, 272		num_timers, 243
	eband, 272		ortho_timer, 243
	fpul, 272		pairpot_timer, 243
	fscoul, 272		part_timer, 243
	ham, 272		pos_timer, 243
	ham0, 273		prg_print_date_and_time, 236
	hindex, 273		prg_timer_collect, 236
	nel, 273		prg_timer_getid, 237
	norbs, 273		prg_timer_results, 237
	oham, 273		prg timer shutdown, 238
	orho, 274		prg_timer_start, 239
	over, 274		prg_timer_stop, 239
	rho, 274		ptimer, 243
	skforce, 274		realcoul timer, 244
	zmat, 274		recipcoul_timer, 244
nra	_system_mod::system_type, 306		sp2_timer, 244
Pig_	atomic number, 308		suball timer, 244
	atomname, 308		subext timer, 244
	coordinate, 308		subgraph_timer, 244
	estr, 308		subind timer, 245
	force, 309		subsp2_timer, 245
			tclock_max, 245
	lattice_vector, 309 mass, 309		
	•		tclock_rate, 245 time2milliseconds, 240
	nats, 310		
	net_charge, 310		timer_prg_init, 240
	nsp, 310		tstart_clock, 245
	recip_vector, 310		tstop_clock, 245
	resindex, 311	,	zdiag_timer, 246
	resname, 311	prg	_timer_mod::timer_status_t, 314
	spatnum, 311		maxrank, 315
	spindex, 311		maxvalue, 315
	splist, 312		minrank, 315
	spmass, 312		minvalue, 315
	symbol, 312		tavg, 315

tcount, 316	dp, 249
tname, 316	kappa, <mark>249</mark>
tpercent, 316	prg_parse_xlbo, 247
tstart, 316	prg_xlbo_fcoulupdate, 247
tstdev, 316	prg_xlbo_nint, 247
tsum, 317	prg_xlbo_mod::xlbo_type, 319
ttotal, 317	cc, 319
prg_timer_results	jobname, 319
prg_timer_mod, 237	maxscfinititer, 319
prg_timer_shutdown	maxscfiter, 320
prg_timer_mod, 238	minit, 320
prg_timer_start	threshold, 320
prg_timer_mod, 239	verbose, 320 prg_xlbo_nint
prg_timer_stop	prg_xlbo_mod, 247
prg_timer_mod, 239	prg_xlbokernel_mod, 250
prg_translateandfoldtobox	dp, 260
prg_system_mod, 229	invert, 251
prg_translatetogeomcandfoldtobox	prg_full_kernel, 251
prg_system_mod, 230	prg_full_kernel_latte, 253
prg_twolevel_model	prg_kernel_matrix_multirank, 254
prg_modelham_mod, 101	prg kernel multirank, 256
prg_twonorm prg_extras_mod, 55	prg kernel multirank latte, 257
	prg_update_preconditioner, 259
prg_update_gp prg_partition_mod, 151	prg_xlkernel_mod, 260
prg_update_preconditioner	dp, 266
prg_xlbokernel_mod, 259	prg_eig, 261
prg_v_kernel_fermi	prg_fermi, 261
prg_xlkernel_mod, 265	prg_get_deriv_finite_temp, 261
prg_vector2graph	prg_inv, 262
prg_system_mod, 230	prg_kernel_fermi_full, 262
prg_vectors_to_parameters	prg_mmult, 263
prg_restero_te_parameters	prg_parse_xlkernel, 264
prg_wait	prg_rank1, 264
prg_parallel_mod, 129	prg_v_kernel_fermi, 265
prg_wraparound	prg_xlkernel_mod::xlk_type, 321
prg_system_mod, 231	kerneltype, 321
prg write dipole tcl	nrank, 321
prg_response_mod, 188	scalecoeff, 321
prg_write_system	verbose, 321
prg_system_mod, 231	printrank
prg_write_tdos	prg_parallel_mod, 130
prg_dos_mod, 43	ptimer
prg_write_trajectory	prg_timer_mod, 243
prg_system_mod, 232	rank
prg_write_trajectoryandproperty	prg_parallel_mod::rankreducedata_t, 295
prg_system_mod, 233	rcoeff
prg_xlbo_fcoulupdate	prg_modelham_mod::mham_type, 292
prg_xlbo_mod, 247	realcoul_timer
prg_xlbo_mod, 246	prg_timer_mod, 244
alpha, 248	recip_vector
c0, 248	prg_system_mod::system_type, 310
c1, 248	recipcoul_timer
c2, 248	prg_timer_mod, 244
c3, 249	reorder
c4, 249	<pre>prg_graph_mod::graph_partitioning_t, 283</pre>
c5, 249	reqcount
cc, 249	prg_parallel_mod, 135

requestlist	prg_timer_mod, 244
prg_parallel_mod, 135	subind_timer
reshuffle	prg_timer_mod, 245
prg_modelham_mod::mham_type, 292	subsp2_timer
resindex	prg_timer_mod, 245
prg_system_mod::system_type, 311	sumintparallel
resname	prg_parallel_mod, 132
prg_system_mod::system_type, 311	sumrealparallel
respmode	prg_parallel_mod, 133
prg_response_mod::respdata_type, 297	symbol
rho	prg_system_mod::system_type, 312
prg_system_mod::estruct_type, 274 rotate_atoms	tavg
prg_syrotation_mod::rotation_type, 300	prg_timer_mod::timer_status_t, 315
rused	tclock_max
prg_parallel_mod, 135	prg_timer_mod, 245
p.g_para.iooa, 100	tclock_rate
saverequest	prg_timer_mod, 245
prg_parallel_mod, 131	tcount
scalecoeff	prg_timer_mod::timer_status_t, 316
prg_xlkernel_mod::xlk_type, 321	threshold
sdim	prg_chebyshev_mod::chebdata_type, 270
prg_graphsp2parser_mod::gsp2data_type, 289	prg_graphsp2parser_mod::gsp2data_type, 289
prg_sp2parser_mod::sp2data_type, 303	prg_sp2parser_mod::sp2data_type, 304
seed	prg_xlbo_mod::xlbo_type, 320
prg_modelham_mod::mham_type, 292	time2milliseconds
sendparallel	prg_timer_mod, 240
prg_parallel_mod, 132	timer_prg_init
sendreceiveparallel	prg_timer_mod, 240
prg_parallel_mod, 132 sgraph	tname
prg_graph_mod::graph_partitioning_t, 283	prg_timer_mod::timer_status_t, 316 to_string_double
skforce	prg_extras_mod, 56
prg_system_mod::estruct_type, 274	prg_extras_mod::to_string, 317
sp2_entropy_ts	to_string_integer
prg_sp2_fermi_mod, 194	prg_extras_mod, 56
sp2_inverse	prg_extras_mod::to_string, 318
prg_sp2_fermi_mod, 195	to_string_long_long
sp2_timer	prg_extras_mod, 57
prg_timer_mod, 244	prg_extras_mod::to_string, 318
sp2conv	totalnodes
prg_graphsp2parser_mod::gsp2data_type, 289	prg_graph_mod::graph_partitioning_t, 283
prg_sp2parser_mod::sp2data_type, 303	totalnodes2
sp2tol	<pre>prg_graph_mod::graph_partitioning_t, 284</pre>
prg_graphsp2parser_mod::gsp2data_type, 289	totalparts
prg_sp2parser_mod::sp2data_type, 303	<pre>prg_graph_mod::graph_partitioning_t, 284</pre>
spatnum	totalprocs
prg_system_mod::system_type, 311	prg_graph_mod::graph_partitioning_t, 284
spindex	tpercent
prg_system_mod::system_type, 311	prg_timer_mod::timer_status_t, 316
splist	tr
prg_system_mod::system_type, 312	prg_chebyshev_mod, 31
spmass	trkfunc
prg_system_mod::system_type, 312	prg_chebyshev_mod::chebdata_type, 270 tstart
suball_timer prg_timer_mod, 244	prg_timer_mod::timer_status_t, 316
prg_timer_mod, 244 subext_timer	tstart_clock
prg_timer_mod, 244	prg_timer_mod, 245
subgraph_timer	tstdev
• 'T- <u>-</u>	

```
prg_timer_mod::timer_status_t, 316
tstop_clock
    prg_timer_mod, 245
tsum
    prg_timer_mod::timer_status_t, 317
ttotal
    prg_timer_mod::timer_status_t, 317
typeofpert
    prg response mod::respdata type, 297
typeofrot
    prg_syrotation_mod::rotation_type, 300
update_prg_costpartition
    prg_partition_mod, 152
userdef
    prg_system_mod::system_type, 313
٧1
    prg_syrotation_mod::rotation_type, 300
v2
    prg_syrotation_mod::rotation_type, 300
val
    prg parallel mod::rankreducedata t, 295
velocity
    prg_system_mod::system_type, 313
verbose
    prg_chebyshev_mod::chebdata_type, 270
    prg_genz_mod::genzspinp, 277
    prg_graphsp2parser_mod::gsp2data_type, 289
    prg_pulaymixer_mod::mx_type, 294
    prg_sp2parser_mod::sp2data_type, 304
    prg_xlbo_mod::xlbo_type, 320
    prg_xlkernel_mod::xlk_type, 321
volk
    prg_system_mod::system_type, 313
volr
    prg_system_mod::system_type, 313
νq
    prg_syrotation_mod::rotation_type, 301
VV
    prg_graph_mod::graph_partitioning_t, 284
zdiag_timer
    prg timer mod, 246
zmat
    prg_system_mod::estruct_type, 274
zsp
    prg_genz_mod::genzspinp, 277
```