Math 417 Problem Set 2 Solutions

(*) 12. Find the inverse of the element
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 5 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
 in $GL_3(\mathbb{Z}_7)$.

We can find the inverse either by using a formula for the entries of the inverse of the 3×3 matrix (which involves the inverse of the determinant of A, computed mod 7), or by solving the (implied) system of linear equations, in the equation $A \cdot A^{-1} = I$ (again, solved mod 7), or we can use the shorthand for esssentially solving this system of equations, via the super-augmented matrix and row reduction. (Below we take the approach of adding a multiple of one row to another to make an entry equal to 0 mod 7, rather than subtracting to make it 0; many different routes work.)

$$(A|I) = \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 5 & 1 & | & 0 & 1 & 0 \\ 3 & 1 & 2 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 5 & 1 & | & 0 & 1 & 0 \\ 7 & 1 & 14 & | & 4 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 5 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 0 & | & 4 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 4 & 0 & 1 \\ 0 & 5 & 1 & | & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 4 & 0 & 1 \\ 0 & 5 & 1 & | & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 7 & | & 5 & 4 & 8 \\ 0 & 1 & 0 & | & 4 & 0 & 1 \\ 0 & 0 & 1 & | & 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & | & 5 & 4 & 1 \\ 0 & 1 & 0 & | & 4 & 0 & 1 \\ 0 & 0 & 1 & | & 1 & 1 & 1 & 2 \end{pmatrix}$$

and so $A^{-1} = \begin{pmatrix} 5 & 4 & 1 \\ 4 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. And we can check this by direct computation!

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 5 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 4 & 1 \\ 4 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 7 & 7 \\ 21 & 1 & 7 \\ 21 & 14 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(again, the equalities hold modulo 7).

(*) 14. (Gallian, p.57, #34) Prove that if G is a group and $a,b \in G$ then $(ab)^2 = a^2b^2$ if and only if ab = ba.

By definition, $(ab)^2 = (ab)(ab) = abab$ and $a^2b^2 = (aa)(bb) = aabb$. If the two are equal, abab = aabb, then multiplying by a^{-1} on the left yields

$$bab = (a^{-1}a)bab = a^{-1}(abab) = a^{-1}(aabb) = (a^{-1}a)abb = abb.$$

Then multiplying by b^{-1} on the right yields

$$ba = ba(bb^{-1}) = (bab)b^{-1} = (abb)b^{-1} = (ab)(bb^{-1}) = ab,$$

and so ba = ab, as desired. On the other hand, if we know that ba = ab, then

$$aba = a(ba) = a(ab) = aab$$
, and so

$$(ab)^2 = abab = (aba)b = (aab)b = (aa)(bb) = a^2b^2.$$

(*) 16. (Gallian, p.69, #4) Show that if G is a group and $a \in G$, then $|a| = |a^{-1}|$.

There are at least two ways to approach this (and probably more?). If $|a| < \infty$, then setting n = |a| for notational simplicity, we know that $a^n = e$, so $(a^{-1})^n = a^{-1} \cdots a^{-1} = (a \cdots a)^{-1} = (a^n)^{-1} = e^{-1} = e$ (where this 'used' that $(ab)^{-1} = b^{-1}a^{-1}$ and induction), and so we know that $|a^{-1}| \le n$ (by definition) or $|a^{-1}|$ divides n (from results from class), depending on your viewpoint. In particular, we have $|a^{-1}| < \infty$, as well.

But then, since $(a^{-1})^{-1} = a$ and we know that $m = |a^{-1}| < \infty$ (introducing the notation again for simplicity), the same argument above shows that $n = |a| = |(a^{-1})^{-1}| \le m$ (or n divides m, if you take that viewpoint). So we have established that $m \le n$ and $n \le m$ (or m|n and n|m, with $m, n \ge 1$), which (both) imply that n = m. So $m = |a^{-1}| = |a| = n$, as desired.

For completeness, we should mention that if $|a| = \infty$ then we must also have $|a^{-1}| = \infty$, since otherwise $|a^{-1}| = m < \infty$, and then our argument above implies that $|a| = |(a^{-1})^{-1}|$ must be finite as well (and $|a| \le m$), a contradiction! So $|a^{-1}| = \infty$, and in particular $|a^{-1}| = |a|$. So whether |a| is finite or infinite, we always have $|a| = |a^{-1}|$.

A selection of further solutions

10. Use the Euclidean algorithm to find the inverses of the elements 2, 3, and 7 in the group $G = (\mathbb{Z}_{137}^*, \cdot, 1)$.

 $137 = 68 \cdot 2 + 1$, and so $1 = 1 \cdot 137 + (-68) \cdot 2$, so $1 \equiv_{137} (-68)(2) \equiv_{137} (69)(2)$, and so $2^{-1} = 69$ in \mathbb{Z}_{137} .

137 = (45)(3) + 2, so 2 = (1)(137) + (-45)(3), and 3 = (1)(2) + 1, so 1 = (1)(3) + (-1)(2). Then 1 = (1)(3) + (-1)[(1)(137) + (-45)(3)] = (-1)(137) + (46)(3), so $1 \equiv_{137} (46)(3)$, and so $3^{-1} = 46$ in \mathbb{Z}_{137} .

137 = (19)(7) + 4, so 4 = (1)(137) + (-19)(7). Then 7 = (1)(4) + 3, so 3 = (1)(7) + (-1)(4). Then 4 = (1)(3) + 1, so 1 = (1)(4) + (-1)(3). Unwinding this,

1 = (1)(4) + (-1)(3) = (1)(4) + (-1)[(1)(7) + (-1)(4)] = (-1)(7) + (2)(4), and so 1 = (-1)(7) + (2)(4) = (-1)(7) + (2)[(137) + (-19)(7)] = (2)(137) + (-39)(7). So $1 \equiv_{137} (-39)(7) \equiv_{137} (98)(7)$, and so $7^{-1} = 98$ in \mathbb{Z}_{137} .

[Check! $(7)(98) = 686 = (5)(137) + 1 \equiv_{137} 1$.]

13. (Gallian, p.57, #42) Suppose that $F_1 = F(\theta)$ and $F_2 = F(\psi)$ (to adopt Gallian's notation) are reflections in lines of slope θ and ψ , with $\theta \neq \psi$, and $F_1 \circ F_2 = F_2 \circ F_1$. Show that then $F_1 \circ F_2 = R(\pi)$ is rotation by angle π .

[Your results from Problem #1 might help!]

From Problem #1 we know that $F_1 \circ F_2 = F(\theta) \circ F(\psi) = R(2\theta - 2\psi)$, and (so) $F_2 \circ F_1 = F(\psi) \circ F(\theta) = R(2\psi - 2\theta)$. If these two rotations are equal, then their rotation angles must be equal, up to a multiple of 2π . (That is, their difference is a multiple of 2π .) If we interpret the question as saying that θ and ψ are between 0 and 2π and unequal, then $0 < |(2\theta - 2\psi) - (2\psi - 2\theta)| < 4\pi$, so $|(2\theta - 2\psi) - (2\psi - 2\theta)| = |4(\theta - \psi)| = 2\pi$, and $2\theta - 2\psi = \pm \pi$. So $F_1 \circ F_2 = R(\pm \pi)$ is rotation by π (which is equal to rotation by $-\pi$).

15. Give an example of a group G and $a, b \in G$ so that $(ab)^4 = a^4b^4$, but $ab \neq ba$.

[Hint: Problem #13 might help? Slightly bigger challenge: try the same thing with the 4's replaced by 3's !]

The cheapest way to arrange this is to (first) try making $(ab)^4 = e = a^4 = b^4$, that is, find elements a and b with order (dividing) 4 whose product ab also has order (dividing) 4, and then check to see if ab = ba. Problem #13 suggests a way to do this: try $a = F(\theta)$ and $b = F(\psi)$ with ab not equal to $R(\pi)$ (which, we can note, has order 2), but (rather) having order 4. Note that in this case $a^2 = b^2 = e = R(0)$, and so $a^4 = b^4 = e^2 = e$, and so $a^4b^4 = e = (ab)^4$. And to get what we want, we set $\theta - \psi = \pi/4$, so $ab = R(2(\pi/4)) = R(\pi/2)$, which does have order 4. Specifically, we can choose $F_1 = R(\pi/4)$ and $F_2 = R(0)$. And we can choose any group G that contains these reflections, like the symmetries of a circle, or the symmetries of a square.

Other examples can (with some experimentation!) be constructed in other non-abelian groups. For example, in $G = \mathbb{Z}_5 \times \mathbb{Z}_5^*$, with the multiplication (a, b)*(c, d) = (a+bc, bd) (mod 5), we can work out that

 $(a,b)^4=[(a,b)^2]^2=[(a,b)(a,b)]^2=(a+ba,bb)^2=(a+ba,bb)(a+ba,bb)=(a+ba+bb)(a+ba),b^4)=(a(1+b+b^2+b^3),b^4)$. But in \mathbb{Z}_5^* , $1^4=2^4=3^4=4^4\equiv_5 1$ (they are 1, 16, 81, and 256), and $1+1^1+1^2+1^3=4=-1$, $1+2+2^2+2^3=15=0$, $1+3+3^3+3^3=40=0$, and $1+4+4^2+4^3=85=0$. So $(a,b)^4=(0,1)=e$ so long as $b\neq 1$.

So, for example, $(1,2)^4=(2,2)^4=(0,1)=e$, so $(1,2)^4(2,2)^4=ee=e$, while $(1,2)(2,2)=(1+2\cdot 2,2\cdot 2)=(0,4)$, so setting a=(1,2) and b=(2,2) we have $(ab)^4=(0,4)^4=e=(1,2)^4(2,2)^4=a^4b^4$, but ab=(0,4) and ba=(2,2)(1,2)=(4,4), so $ab\neq ba$.

An example involving $(ab)^3 = a^3b^3$ can be built along the same lines, the key fact above was that in \mathbb{Z}_5^* every element satisfied $x^4 = 1$ (and this tended to make $1+x+x^2+x^3 = (x^4-1)(x-1)^{-1}$ equal 0 (except when x=1)). We can search for other \mathbb{Z}_n^* where something similar happens, since in $\mathbb{Z}_n \times \mathbb{Z}_n^*$ we similarly have $(a,b)^3 = (a(1+b+b^2),b^3)$. So we would like to find elements x=b,d, and bd (none equal to 1) in a \mathbb{Z}_n^* so that $x^3=1$ and (so) $1+x+x^2=0$. The delicate point is that we can't make this happen for every x in a \mathbb{Z}_n^* , it turns out. But on the other hand, by changing the first coordinate we can let b=d (since then $(bd)^3=(b^2)^3=(b^3)^2=1^2=1$). So, for example, in \mathbb{Z}_7^* we have $2^3=1$, and so a=(1,2), b=(2,2), and ab=(1,2)(2,2)=(5,4) all have cube equal to (0,1)=(0,1)(0,1), and so $(ab)^3=a^3b^3,$ but $ba=(2,2)(1,2)=(4,4)\neq(5,4)=ab.$