

Medical AI Research: Predicting perioperative blood transfusion for CABG patients

Capstone Final Presentation, May 2, 2024

Team: Jenny Tsai ¹ & Jichong Wu ¹ **Collaborator:** Dr. Puneet Gupta ² **Advisor:** Professor Amir Jafari ¹

¹George Washington University

² George Washington University Hospital

Overview

Introduction

Data Preprocessing

Analysis Strategy

Results

- Phase 1: Classical models
- Phase 2: Neural networks

Conclusions

Introduction

Coronary Artery Bypass Graft (CABG) is a common cardiac surgery

May cause major bleeding which needs blood transfusion

Blood transfusion is associated with:

- Higher risks of mortality after surgery
- Higher odds of readmission and heart failure within 30 days

Research Gap

Previous research*:

- A single cardiac surgery center in Austria
- N = 3782 (2010-2019)
- Random Forest:AUC: 0.76-0.86

In the current project:

- US national database <u>ACS NSQIP</u>
- N = 13534 (2015-2022)
- Classical models +
 Neural networks +
 Feature
 engineering/selection +
 data synthesis

^{*}Tschoellitsch et al. (2022)

Objectives

- 1. Develop models that can best predict which CABG patients need blood transfusion
- Improve patient selection and education
- Enhance physician preoperative awareness
- Inform periop guidelines for CABG patients
- Experiment with different DS techniques (e.g., feature selection, feature engineering, synthetic data) applied in classical and advanced models to achieve best outcomes
- Develop a full set of modules that can be reused in the future, which covers preprocessing, feature selection and feature engineering, and modeling

Data Preprocessing

Datasets

- Participant Use Data File (PUF) on the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP)
- Year 2015 2022 (N = 13534, # of features = 296)

Key preprocessing steps:

- Basic clean-up (e.g., recode values, correct data type)
- 2. Remove columns with over 50% missing values
- 3. Impute with mean (numeric) and most frequent values (categorical)
- 4. Standardize all numeric features
- 5. Remove post-operative and irrelevant features by expert

Final dataset size:

N = 13534, # of features = 41

Phase 1: Basic Models

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Analysis Strategy

Data

Modules and Utilities

clas	s - data pre-processing	class - baseline models			class - feature engineering	utility
			class name	methods		
datasci	.size()	DecisionTree	PCA	PCA_Reduced_Feature()	featurewiz	file_compare()
	.recode()	RandomForest		Reduced_Feature_Space_Plot()	featuretools	glossary()
	.missingReport()	SVM		Reduced_Feature_Space_Heatmap()		Model_Predict()
	.remove_all_nan_columns()	LogReg		Explained_Variance_Ratio()		Model_Report()
	.impute_all()	GradientBoosting		Reduced_Feature_Space_Plot()		Model_Accuracy()
	.imputation()	XGB		Reduced_Feature_Space_Heatmap()		Model_Mean_Accuracy()
	.standardize()	NaiveBayesGaussianNB		PCA_New_df()		Model_RMSE()
	.eda()	KNN				Model_F1()
	.featureSelection()	TPOT				Model_Confusion_Matrix()
						Plot_Confusion_Matrix()
						Plot_Decision_Tree()
						Model_ROC_AUC_Score()
						Plot_ROC_AUC()
						Plot_Random_Forest_Feature_Importances()
						Model_Results_Table()
						Plot_ROC_Combined()
						Calc_Plot_VIF()
						Calc_Top_Corr()
						Plot_Heatmap_Top_Corr

Model Results

Receiver Operating Characteristic (ROC) Plot - Comparison

False Positive Rate

Gradient Boosting n_estimators=300, learning_rate=0.05 OTHBLEED

 AUC-Decision Tree - gini=0.874 AUC-Decision Tree - entropy=0.872 AUC-SVM - linear=0.851 AUC-SVM - rbf=0.470 AUC-GaussianNB=0.814 — AUC-LogisticRegression=0.858 AUC-Gradient Boosting=0.934 — AUC-XGBoost=0.882 AUC-Random Forest=0.889 AUC-KNN=0.521

0.8

XGBoost

Random Forest

1.0

0.8

n_estimators=100, eta=0.3 OTHBLEED

n_estimators=100, 20_features OTHBLEED

n_neighbors=3 OTHBLEED

OTHBLEED

OTHBLEED

Model Name

SVM - linear

Random Forest

SVM - rbf GaussianNB

KNN

Decision Tree - gini

LogisticRegression

Decision Tree - entropy

69.491525 0.552345

0.25 55.528652 0.666868

0.25 52.945924 0.685960

0.25 71.751412 0.531494

0.25 73.930589 0.510582

0.25 72.558515 0.523846

0.25 59.967716 0.632711

0.25 73.930589 0.510582

Parameters

C=1.0, gamma=auto OTHBLEED

C=1.0, gamma=0.2 OTHBLEED

n_neighbors=3 OTHBLEED

OTHBLEED

OTHBLEED

max_depth=3, min_samples_leaf=5 OTHBLEED

max_depth=3, min_samples_leaf=5 OTHBLEED

n_estimators=100, eta=0.3 OTHBLEED

n_estimators=100, 20_features OTHBLEED

Gradient Boosting n_estimators=300, learning_rate=0.05 OTHBLEED

0.721558

1.0

0.8

0.2

86.9 0.409878

86.9 0.409878

86.0 0.363318

83.9 8.394968

79.5 0.529150

86.7 0.357771

90.7 0.322490

88.6 0.384708

81.6 0.464758

85.4 0.346410

0.4

Receiver Operating Characteristic (ROC) Plot - Comparison

— AUC-Decision Tree - gini=0.724 — AUC-Decision Tree - entropy=0.724

— AUC-Gradient Boosting=0.801 — AUC-XGBoost=0.789 AUC-Random Forest=0.793

8.0

— AUC-SVM - linear=0.746

— AUC-GaussianNB=0.686 — AUC-LogisticRegression=0.768

— AUC-SVM - rbf=0.500

AUC-KNN=0.620

RMSE F1-score (macro avg) ROC-AUC score

0.737500

0.737500

0.735331

0.457701

0.628639

0.751738

0.789071

0.737775

0.502872

0.874408

0.872159

0.851136

0.469741

0.814315

0.858306

0.933649

0.881638

0.521388

0.888747

0.6

False Positive Rate

0.724499

0.767803 0.801463

0.685814

0.789397

0.619534

Target Test Size Accuracy Mean Accuracy (10 folds)

83.2

83.2

86.8

84.4

72.0

87.2

89.6

85.2

78.4

88.0

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

Post-training Analysis

Phase 1 modeling summary

- 1. PUFYEAR, ASACLAS, RACE_NEW may cause multicollinearity.
- 2. **Gradient Boosting**, XGBoost, Random Forest perform the best.
- 3. **Synthetic data generation** techniques (DataSynthesizer using Bayesian networks) significantly improve model performance.
- 4. **Race, days from preoperative labs to operation, operation time**, other procedure, BMI, sex, length of hospital stay, shortness of breath, age, preoperative blood test measures
- 5. days from preoperative labs to operation, operation time may have a negative impact on model results while other procedure, BMI have a positive effect.

Phase 2: Neural Networks

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Major Types of Artificial Neural Networks

- **FNNs** are simpler type of neural network where data and information flows in one direction from input layer to output layer.
- **RNNs** are designed for sequential data processing, where the output at each step depends not only on the current input but also on previous inputs in the sequence. They are commonly used for tasks like natural language processing (NLP), time series analysis, and speech recognition.
- **CNNs** are designed for processing grid-like data such as images. They use convolutional layers to detect patterns and features in the input data, making them highly effective for tasks like image recognition and object detection.
- **LSTMs** are a type of RNN designed to address the vanishing gradient problem and handle long-term dependencies in sequential data. They are particularly effective for tasks that require capturing long-term patterns and dependencies, such as machine translation, sentiment analysis, and time-series modeling.
- **GANs** consist of two neural networks, the generator and the discriminator, that are trained together in a competitive setting to create new data from a given training dataset. The generator creates new data samples, while the discriminator distinguishes between real and generated samples. GANs are typically used for image generation and data augmentation.
- **RBFNs** use radial basis functions as activation functions and are distinguished from other neural networks due to their universal approximation and faster learning speed.

Literature Review on Related Work

- Deep neural networks models have shown excellent performance and especially when processing complex data such as image, text and sound. However, their adaptation to tabular data tasks remains highly challenging
- No sufficient evidence that neural networks are better than classical models such as gradient boosting decision trees
- Gradient boosting methods outperform NNs
- A hybrid approach of gradient boosting plus deep neural networks performs the best

Synthetic Data Tools

DataSynthesizer

- Based off Bayesian Networks, which represents a graphical model of the joint probability distribution for a set of attributes
- Probabilistic inference about one attribute in the network given the values of other attributes → missing data imputation, synthetic data generation
- Three modules: DataDescriber, DataGenerator, ModelInspector

REaLTabFormer (Realistic Relational and Tabular Data using Transformers)

- Relational data: A sequence-to-sequence (Seq2Seq) model
- Non-relational data: GPT-2

Feedforward Neural Networks (FNNs)

FNN Design

8 models varying in:

- Complexity (# of layers, # of neurons)
- Output activation function (sigmoid vs. softmax)
- Loss function (binary vs. categorical cross entropy)
- Optimizer (SGD vs. Adam)

Datasets

- Original
- REaLTabFormer
- DataSynthesizer

1. FNNs with Original Data

Model	accuracy	f1_score	rMSE	AUC
FNN-5layer-SGD-sigmoid	0.7215	0.6888	0.4794	0.7764
FNN-5layer-Adam-sigmoid	0.7218	0.6961	0.4928	0.7756
FNN-7layer-SGD-sigmoid	0.7174	0.6954	0.4850	0.7741
FNN-7layer-Adam-sigmoid	0.7174	0.6782	0.5735	0.7752
FNN-5layer-SGD-softmax	0.7229	0.7200	0.4643	0.7782
FNN-5layer-Adam-softmax	0.7218	0.7179	0.4975	0.7815
FNN-7layer-SGD-softmax	0.7181	0.7150	0.4780	0.7780
FNN-7layer-Adam-softmax	0.7185	0.7118	0.5587	0.7766

2. FNNs with Synthetic Data - REaLTabFormer

Model	accuracy	f1_score	rMSE	AUC
FNN-5layer-SGD-sigmoid	0.7362	0.7420	0.4789	0.8006
FNN-5layer-Adam-sigmoid	0.7359	0.7394	0.4650	0.8007
FNN-7layer-SGD-sigmoid	0.7303	0.7392	0.4819	0.7939
FNN-7layer-Adam-sigmoid	0.7351	0.7315	0.5577	0.7972
FNN-5layer-SGD-softmax	0.7381	0.7380	0.4506	0.8008
FNN-5layer-Adam-softmax	0.7355	0.7355	0.4698	0.7999
FNN-7layer-SGD-softmax	0.7362	0.7362	0.4787	0.7995
FNN-7layer-Adam-softmax	0.7303	0.7286	0.5575	0.7934

3. FNNs with Synthetic Data - DataSynthesizer

Model	accuracy	f1_score	rMSE	AUC
FNN-5layer-SGD-sigmoid	0.8718	0.8776	0.6790	0.9386
FNN-5layer-Adam-sigmoid	0.8689	0.8772	0.4340	0.9474
FNN-7layer-SGD-sigmoid	0.8685	0.8774	0.5853	0.9358
FNN-7layer-Adam-sigmoid	0.8626	0.8712	0.4222	0.9456
FNN-5layer-SGD-softmax	0.8751	0.8749	0.6119	0.9421
FNN-5layer-Adam-softmax	0.8696	0.8696	0.4286	0.9495
FNN-7layer-SGD-softmax	0.8762	0.8762	0.5596	0.9401
FNN-7layer-Adam-softmax	0.8670	0.8667	0.4513	0.9474

4. CNNs with Synthetic Data

Model	dataset	accuracy	
CNN-2D-2layer-noPooling-ReLU	synthetic dataset 2015-2022 from REaLTabFormer	0.6681	
	synthetic dataset 2015-2022 from DataSynthesizer	0.5785	

Conclusions

- For both basic models and neural networks, best performance was found in models (classical & NNs) using synthetic data from DataSynthesizer
- Bayesian networks might have some systematic influence on optimizers
- Compared with FNNs, CNNs might not be suitable for analyzing tabular data

Thank You!

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC