Chapter 1, Exercise 1

- 1: Write a routine that declares a one-dimensional array *A* of length 10, reads in the values of the components of *A* from an input file, computes the sum of the components of *A*, and outputs the sum.
- 2: Write a routine that declares a two-dimensional array A with 5 rows and 3 columns, reads in the values of the components of A from an input file, computes the row sums and the column sums of A.

Mathematica comments

The solutions below use Mathematica commands that extract rows, extract columns, compute row sums, and transposes a matrix. Other languages have similar commands.

Mathematica note: this initial command clears all definitions of variables and prints out the time. It does so in the European fashion:

{year, month, day, hour, minute, second}

```
In[*]:= x = 0; Remove["Global`*"]; DateList[Date[]]
Out[*]= {2020, 2, 18, 17, 39, 24.255890}
```

Solution for problem 1

Mathematica note: The next command joins the path of this notebook with the file you want to import, imports it, and converts the text input to a Mathematica vector. The Import command also causes the file contents to be displayed. The notebook and the txt-file have to be in the same folder for the code to work.

```
Out[*]:= A = Import[FileNameJoin[{NotebookDirectory[], "Avector.txt"}]] // ToExpression
```

We now write some simple code to do the summation.

```
In[*]:= sum = 0;
    Do[sum = sum + A[[i]], {i, 1, 10}]
    sum

Out[*]= 55
    The fancier Mathematica way is

In[*]:= Plus @@ A

Out[*]= 55
```

Solution for problem 2

```
input = Import[FileNameJoin[{NotebookDirectory[], "Amatrix.txt"}]]
 In[•]:=
        Amatrix = input // ToExpression
 Out[\circ]=\{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},\
       \{2, 3, 4, 5, 6, 7, 8, 9, 10,11\}, \{3, 4, 5, 6, 7, 8, 9, 10,11,12\}\}
Out[ • ]//MatrixForm=
         1 2 3 4 5 6 7 8 9 10
        2 3 4 5 6 7 8 9 10 11
       Row 1 is the first element of Amatrix
  In[*]:= row1 = Amatrix[[1]]
 Out[\circ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
       Compute the row sum
  ln[\circ]:= sum = 0;
       Do[sum = sum + row1[[i]], {i, 1, 10}]
 Out[•]= 55
       We could do the same for the other rows.
       In Mathematica, we can do row sums using the Plus command
  In[*]:= Plus@@ Amatrix[[1]]
 Out[ • ]= 55
  In[*]:= Plus@@ Amatrix[[2]]
 \textit{Out[o]}=~65
  In[o]:= Plus @@ Amatrix[[3]]
 Out[*]= 75
       The following command will compute the row sums
  In[*]:= Plus @@@ Amatrix
 Out[\bullet] = \{55, 65, 75\}
       We can compute column sums by first computing the transpose
```

In[*]:= AmatrixT = Transpose[Amatrix]; AmatrixT // MatrixForm

Out[*]//MatrixForm=

The column sums of Amatrix are the row sums of AmatrixT

```
In[*]:= Plus @@@ AmatrixT
```

```
Out[\circ]=\{6, 9, 12, 15, 18, 21, 24, 27, 30, 33\}
```