EP2 - Relatório

Lucas Seiki Oshiro - 9298228 Marcos Vinicius do Carmo Sousa - 9298274

30 de outubro de 2016

1 Parte 0: O Laboratório

2 Parte 1: O Zoológico

Foram feitos experimentos com imagens coloridas e em tons de cinza. As funções escolhidas foram:

• Colorida:

a)
$$f(x,y)=(sen(x),\frac{sen(y)+sen(x)}{2},sen(x)$$
 (Fornecida no enunciado, função de classe C^2)

b)
$$f(x,y)=(sin(x),\frac{sin(\frac{y}{10})+sin(\frac{x}{10})}{2},sin(x))$$
 (Função de classe $C^2)$

c)
$$f(x,y)=(\frac{x}{150},\frac{x}{10} \text{ mod } 2,\frac{y}{300})$$
 (Função que não é de classe $C^2)$

d)
$$f(x,y)=(\frac{x}{150}+\frac{y}{600},\frac{x^2}{\sqrt{x^2+y^2}}*\frac{1}{151},\frac{x}{300}+\frac{y}{150})$$
 (Função de classe C^2)

• Tons de cinza:

e)
$$f(x,y) = cos(\frac{x}{151\pi}) + cos(\frac{y}{151\pi})$$
 (Função de classe $C^2)$

f)
$$f(x,y) = \frac{x}{10} \mod 2$$
 (Função que não é de classe C^2)

g)
$$f(x,y) = \frac{x^2}{\sqrt{x^2 + y^2}} * \frac{1}{151}$$
 (Função de classe C^2)

Os experimentos foram feitos para k = 1, 2, 3 e h = 0.1, 0.2, 1. O erro foi proporcional ao número k. No método com interpolação bilinear, as variações de h não produziram efeito; já no método com interpolação bicúbica, o h produziu algumas diferenças, porém, não foi possível encontrar um h ótimo universal, e nem uma regra que associe o valor de h a um erro maior ou menor, uma vez que cada imagem obteve um melhor resultado com um h diferente.

O programa funcionou melhor para imagens em tons de cinza, isso não foi um fator de grande relevância, uma vez que as imagens encontradas foram mais.

Funções mais suaves, de classe C^2 , causam menos erros, porém, se a imagem for gerada com amostragens em pontos cujo valor da função sejam muito diferentes, o programa será menos eficaz na interpolação. Prova disso é o resultado de a), que gerou erro na ordem de 26%, e de g), que gerou erro na ordem de 0.5%, na interpolação bicúbica, sendo as duas funções de ordem C^2 , em imagens coloridas, com k=1 e n=0.1. Em contrapartida, a função c) que não é classe C^2 gerou erro de 5%, levemente alto (acima de experimentos com imagens reais, feitos na parte 2), para os mesmos k e h, sendo que essa função possui grande amostragem de pontos em que a função tem valores próximos. Nota-se, assim, um comportamento melhor para as funções de classe C^2 .

Comprimindo a imagem gerada pela função d) com k = 7, e a descomprimindo com interpolação bicúbica, k = 7 e n = 1, ocasionou erro de 3.7%, e fazendo o mesmo processo, porem descomprimindo 3 vezes com k = 1, o erro foi de 2.8%, portanto, o segundo método se mostrou mais eficaz.

Figura 1: Imagem gerada pela função d)

Figura 2: A mesma imagem, comprimida e descomprimida com $k=7\,$

Figura 3: A mesma imagem, comprimida com k=7 e descomprimida 3 vezes com k=1

Figura 4: Imagem gerada pela função f)

Figura 5: A mesma imagem, comprimida com k=7 e descomprimida com k=7

Parte 2: A Selva

Foram realizadas testes em 4 imagens diferentes, sendo duas delas efeitos em tons de cinza das outras duas. As imagens escolhidas foram:

• Lua

Figura 6: Imagem formato jpg, tamanho p=145

Figura 7: Mesma imagem em tons de cinza, tamanho p=145

 \bullet Flor

Figura 8: Imagem formato jpg, tamanho p=145

Figura 9: Mesma imagem em tons de cinza, tamanho $p=145\,$

Conforme foi realizado na parte 1, os experimentos foram feitos com valores de k = 1, 2, 3 e h = 0.1, 0.5, 1 para os dois métodos, bilinear e bicubica.

BILINEAR	Н	K	1	2	3
Lua	1		3.16%	5.20%	7.05%
	0.5		3.16%	5.20%	7.05%
	0.1		3.16%	5.20%	7.05%
Lua Cinza	1		2.40%	4.77%	5.99%
	0.5		2.40%	4.77%	5.99%
	0.1		2.40%	4.77%	5.99%
Flor	1		3.28%	5.43%	7.52%
	0.5		3.28%	5.43%	7.52%
	0.1		3.28%	5.43%	7.52%
Flor Cinza	1		3.22%	5.22%	7.21%
	0.5		3.22%	5.22%	7.21%
	0.1		3.22%	5.22%	7.21%
BICUBICA	Н	K	1	2	3
Lua	1		2.87%	5.09%	6.93%
	0.5		2.94%	5.10%	6.97%
	0.1		2.96%	5.12%	6.99%
Lua Cinza	1		2.18%	4.50%	5.72%
	0.5		2.20%	4.63%	5.75%
	0.1		2.21%	4.68%	5.78%
Flor	1		3.14%	5.34%	7.43%
	0.5		3.18%	5.30%	7.38%
	0.1		3.19%	5.29%	7.36%
Flor Cinza	1		3.11%	5.16%	7.21%
	0.5		3.14%	5.13%	7.17%
	0.1		3.15%	5.12%	7.15%

Figura 10: Tabela com os erros de cada teste

Ao analisar o erro de cada um dos testes, é possível perceber que o erro de descompressão das imagens em tons de cinza comparado com as imagens normais, são menores sempre. Observa-se também que no método bilinear, a variação de h não altera o valor do erro, a unica referencia que se tem, é que quando aumentamos o valor de k, o erro cresce proporcionalmente.

No método de interpolação bicubica o erro varia conforme a variação de h, mas não há uma relação clara entre os dois. O que ocorre ainda, é a relação entre o erro e a variável k, quanto maior o k, maior o erro.

Realizando experimento de compressão com k=7 e descomprimir 3 vezes com k=1 e h=1 a imagem da Lua, com o método bilinear, obtivemos um erro de 14.25%, e com o método bicubica o erro foi de 12.8%. Realizando agora a descompressão direta com k=7, temos que na bilinear o erro foi de 14.29%, enquanto no bicubica o erro foi 14%. Nesse experimento realizando a descompressão em etapas, tornou-se um resultado melhor com um erro menor.