Section 4. How Stan Works

Bob Carpenter

Columbia University

Part I

What Stan Does

Full Bayes: No-U-Turn Sampler

- Adaptive Hamiltonian Monte Carlo (HMC)
 - Potential Energy: negative log posterior
 - Kinetic Energy: random standard normal per iteration
- · Adaptation during warmup
 - step size adapted to target total acceptance rate
 - mass matrix estimated with regularization
- Adaptation during sampling
 - simulate forward and backward in time until U-turn
- · Slice sample along path

(Hoffman and Gelman 2011, 2014)

Posterior Inference

- Generated quantities block for inference (predictions, decisions, and event probabilities)
- · Extractors for draws in sample in RStan and PyStan
- Coda-like posterior summary
 - posterior mean w. MCMC std. error, std. dev., quantiles
 - split- \hat{R} multi-chain convergence diagnostic (Gelman/Rubin)
 - multi-chain effective sample size estimation (FFT algorithm)
- Model comparison with WAIC
 - in-sample approximation to cross-validation

Penalized MLE

- Posterior mode finding via L-BFGS optimization (uses model gradient, efficiently approximates Hessian)
- Disables Jacobians for parameter inverse transforms
- Standard errors on unconstrained scale (estimated using curvature of penalized log likelihood function
- Models, data, initialization as in MCMC
- Very Near Future
 - Standard errors on constrained scale (sample unconstrained approximation and inverse transform)

"Black Box" Variational Inference

- · Black box so can fit any Stan model
- Multivariate normal approx to unconstrained posterior
 - covariance: diagonal mean-field or full rank
 - not Laplace approx around posterior mean, not mode
 - transformed back to constrained space (built-in Jacobians)
- · Stochastic gradient-descent optimization
 - ELBO gradient estimated via Monte Carlo + autdiff
- · Returns approximate posterior mean / covariance
- · Returns sample transformed to constrained space

Posterior Analysis: Estimates

- · For each parameter (and 1p__)
 - Posterior mean
 - Posterior standard deviation
 - Posterior MCMC error esimate: sd/N_{eff}
 - Posterior quantiles
 - Number of effective samples
 - \hat{R} convergence statistic

· ... and much much more in ShinyStan

Stan as a Research Tool

- Stan can be used to explore algorithms
- · Models transformed to unconstrained support on \mathbb{R}^n
- Once a model is compiled, have
 - log probability, gradient (soon: Hessian)
 - data I/O and parameter initialization
 - model provides variable names and dimensionalities
 - transforms to and from constrained representation (with or without Jacobian)

Part II

How Stan Works

Model: Read and Transform Data

- · Only done once for optimization or sampling (per chain)
- · Read data
 - read data variables from memory or file stream
 - validate data
- · Generate transformed data
 - execute transformed data statements
 - validate variable constraints when done

Model: Log Density

- · Given parameter values on unconstrained scale
- · Builds expression graph for log density (start at 0)
- Inverse transform parameters to constrained scale
 - constraints involve non-linear transforms
 - e.g., positive constrained x to unconstrained $y = \log x$
- · account for curvature in change of variables
 - e.g., unconstrained y to positive $x = \log^{-1}(y) = \exp(y)$
 - e.g., add log Jacobian determinant, $\log \left| \frac{d}{dy} \exp(y) \right| = y$
- · Execute model block statements to increment log density

Model: Log Density Gradient

- · Log density evaluation builds up expression graph
 - templated overloads of functions and operators
 - efficient arena-based memory management
- · Compute gradient in backward pass on expression graph
 - propagate partial derivatives via chain rule
 - work backwards from final log density to parameters
 - dynamic programming for shared subexpressions
- · Linear multiple of time to evalue log density

Model: Generated Quantities

- · Given parameter values
- Once per iteration (not once per leapfrog step)
- · May involve (pseudo) random-number generation
 - Executed generated quantity statements
 - Validate values satisfy constraints
- · Typically used for
 - Event probability estimation
 - Predictive posterior estimation
- Efficient because evaluated with double types (no autodiff)

Optimize: L-BFGS

- · Initialize unconstrained parameters and Hessian
 - Random values on unconstrained scale uniform in (-2,2)
 - * or user specified on constrained scale, transformed
 - Hessian approximation initialized to unit matrix
- While not converged
 - Move unconstrained parameters toward optimum based on Hessian approximation and step size (Newton step)
 - If diverged (arithmetic, support), reduce step size, continue
 - else if converged (parameter change, log density change, gradient value), return value
 - else update Hessian approx. based on calculated gradient

Sample: Hamiltonian Flow

- Generate random kinetic energy
 - random Normal(0,1) in each parameter
- Use negative log posterior as potential energy
- · Hamiltonian is kinetic plus potential energy
- Leapfrog Integration: for fixed stepsize (time discretization), number of steps (total time), and mass matrix,
 - update momentum half-step based on potential (gradient)
 - update position full step based on momentum
 - update momentum half-step based on potential
- Numerical solution of Hamilton's first-order version of Newton's secondorder diff-eqs of motion (force = mass × acceleration)

Sample: Leapfrog Example

• Trajectory of 25 leapfrog steps for correlated 2D normal (ellipses at 1 sd from mean), stepsize of 0.25, initial state of (-1,1), and initial momentum of (-1.5,-1.55).

Radford Neal (2013) MCMC using Hamiltonian Dynamics. In *Handbook of MCMC*. (free online at http://www.mcmchandbook.net/index.html)

Sample: No-U-Turn Sampler (NUTS)

- · Adapts Hamiltonian simulation time
 - goal to maximize mixing, maintaining detailed balance
 - too short devolves to random walk
 - too long does extra work (i.e., orbits)
 - · For exponentially increasing number of steps up to max
 - Randomly choose to extend forward or backward in time
 - Move forward or backward in time number of steps
 - * stop if any subtree (size 2, 4, 8, ...) makes U-turn
 - * remove all current steps if subtree U-turns (not ends)
 - · Randomly select param with density above slice (or reject)

Sample: NUTS Binary Tree

 Example of repeated doubling building binary tree forward and backward in time until U-turn.

Hoffman and Gelman. 2014. The No-U-Turn Sampler. *JMLR*. (free online at http://jmlr.org/papers/v15/hoffman14a.html)

Sample: NUTS U-Turn

- Example of trajectory from one iteration of NUTS.
- Blue ellipse is contour of 2D normal.
- Black circles are leapfrog steps.
- Solid red circles excluded below slice
- U-turn made with blue and magenta arrows
 - Red crossed circles excluded for detailed balance

Sample: HMC/NUTS Warmup

- · Estimate stepsize
 - too small requires too many leapfrog steps
 - too large induces numerical inaccuracy
 - need to balance
- Estimate mass matrix
 - Diagonal accounts for parameter scales
 - Dense optionally accounts for rotation

Sample: Warmup (cont.)

- · Initialize unconstrained parameters as for optimization
- · For exponentially increasing block sizes
 - for each iteration in block
 - generate random kinetic energy
 - * simulate Hamiltonian flow (HMC fixed time, NUTS adapts)
 - * choose next state (Metroplis for HMC, slice for NUTS)
 - update regularized point estimate of mass matrix
 - * use parameter draws from current block
 - * shrink diagonal toward unit; dense toward diagonal
 - tune stepsize (line search) for target acceptance rate

Sample: HMC/NUTS Sampling

- · Fix stepsize and and mass matrix
- · For sampling iterations
 - generate random kinetic energy
 - simulate Hamiltonian flow
 - apply Metropolis accept/reject (HMC) or slice (NUTS)

NUTS vs. Gibbs and Metropolis

- · Two dimensions of highly correlated 250-dim normal
- · 1,000,000 draws from Metropolis and Gibbs (thin to 1000)
- · 1000 draws from NUTS; 1000 independent draws

NUTS vs. Basic HMC

- · 250-D normal and logistic regression models
- Vertical axis is effective sample size per sample (bigger better)
- · Left) NUTS; Right) HMC with increasing $t = \epsilon L$

NUTS vs. Basic HMC II

- · Hierarchical logistic regression and stochastic volatility
- · Simulation time t is ϵ L, step size (ϵ) times number of steps (L)
- NUTS can beat optimally tuned HMC (latter very expensive)

Under Stan's Hood

Part III

Euclidean Hamiltonian

- Phase space: q position (parameters); p momentum
- Posterior density: $\pi(q)$
- Mass matrix: M
- Potential energy: $V(q) = -\log \pi(q)$
- Kinetic energy: $T(p) = \frac{1}{2}p^{T}M^{-1}p$
- Hamiltonian: H(p,q) = V(q) + T(p)
- Diff eqs:

$$\frac{dq}{dt} = +\frac{\partial H}{\partial p} \qquad \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial c}$$

Leapfrog Integrator Steps

- Solves Hamilton's equations by simulating dynamics (symplectic [volume preserving]; ϵ^3 error per step, ϵ^2 total error)
- · Given: step size ϵ , mass matrix M, parameters q
- Initialize kinetic energy, $p \sim \text{Normal}(0, \mathbf{I})$
- Repeat for L leapfrog steps:

$$p \leftarrow p - \frac{\epsilon}{2} \frac{\partial V(q)}{\partial q}$$
 [half step in momentum] $q \leftarrow q + \epsilon M^{-1} p$ [full step in position] $p \leftarrow p - \frac{\epsilon}{2} \frac{\partial V(q)}{\partial q}$ [half step in momentum]

Reverse-Mode Auto Diff

- Eval gradient in (usually small) multiple of function eval time
 - independent of dimensionality
 - time proportional to number of expressions evaluated
- · Result accurate to machine precision (cf. finite diffs)
- · Function evaluation builds up expression tree
- · Dynamic program propagates chain rule in reverse pass
- · Reverse mode computes ∇g in one pass for a function $f:\mathbb{R}^N \to \mathbb{R}$

Autodiff Expression Graph

Autodiff Partials

var	value	partials	
ν_1	У		
v_2	μ		
v_3	σ		
v_4	$v_1 - v_2$	$\partial v_4/\partial v_1=1$	$\partial v_4/\partial v_2 = -1$
ν_5	v_4/v_3	$\partial v_5/\partial v_4 = 1/v_3$	$\partial v_5/\partial v_3 = -v_4 v_3^{-2}$
ν_6	$(v_5)^2$	$\partial v_6/\partial v_5 = 2v_5$	
v_7	$(-0.5)v_6$	$\partial v_7/\partial v_6 = -0.5$	
ν_8	$\log v_3$	$\partial v_8/\partial v_3=1/v_3$	
v_9	$v_7 - v_8$	$\partial v_9/\partial v_7=1$	$\partial v_9/\partial v_8 = -1$
v_{10}	$v_9 - (0.5 \log 2\pi)$	$\partial v_{10}/\partial v_9=1$	

Autodiff: Reverse Pass

var	operation	adjoint	result
<i>a</i> _{1:9}	=	0	$a_{1:9} = 0$
a_{10}	=	1	$a_{10} = 1$
a_9	+=	$a_{10} \times (1)$	$a_9 = 1$
a_7	+=	$a_9 \times (1)$	$a_7 = 1$
a_8	+=	$a_9 \times (-1)$	$a_8 = -1$
a_3	+=	$a_8 \times (1/\nu_3)$	$a_3 = -1/v_3$
a_6	+=	$a_7 \times (-0.5)$	$a_6 = -0.5$
a_5	+=	$a_6 \times (2\nu_5)$	$a_5 = -v_5$
a_4	+=	$a_5 \times (1/\nu_3)$	$a_4 = -v_5/v_3$
a_3	+=	$a_5 \times (-\nu_4 \nu_3^{-2})$	$a_3 = -1/\nu_3 + \nu_5 \nu_4 \nu_3^{-2}$
a_1	+=	$a_4 \times (1)$	$a_1 = -\nu_5/\nu_3$
a_2	+=	$a_4 \times (-1)$	$a_2 = v_5/v_3$

Stan's Reverse-Mode

- · Easily extensible object-oriented design
- Code nodes in expression graph for primitive functions
 - requires partial derivatives
 - built-in flexible abstract base classes
 - lazy evaluation of chain rule saves memory
- Autodiff through templated C++ functions
 - templating on each argument avoids excess promotion

Stan's Reverse-Mode (cont.)

- Arena-based memory management
 - specialized C++ operator new for reverse-mode variables
 - custom functions inherit memory management through base
- Nested application to support ODE solver

Stan's Autodiff vs. Alternatives

- · Stan is fastest (and uses least memory)
 - among open-source C++ alternatives

Forward-Mode Auto Diff

- Evaluates expression graph forward from one independent variable to any number of dependent variables
- · Function evaluation propagates chain rule forward
- · In one pass, computes $\frac{\partial}{\partial x} f(x)$ for a function $f: \mathbb{R} \to \mathbb{R}^N$
 - derivative of N outputs with respect to a single input

Stan's Forward Mode

- · Templated scalar type for value and tangent
 - allows higher-order derivatives
- · Primitive functions propagate derivatives
- · No need to build expression graph in memory
 - much less memory intensive than reverse mode
- Autodiff through templated functions (as reverse mode)

Second-Order Derivatives

· Compute Hessian (matrix of second-order partials)

$$H_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(x)$$

- · Required for Laplace covariance approximation (MLE)
- Required for curvature (Riemannian HMC)
- · Nest reverse-mode in forward for second order
- · N forward passes: takes gradient of derivative

Third-Order Derivatives

Compute gradients of Hessians (tensor of third-order partials)

$$\frac{\partial^3}{\partial x_i \partial x_j \partial x_k} f(x)$$

- Required for SoftAbs metric (Riemannian HMC)
- N^2 forward passes: gradient of derivative of derivative

Jacobians

- · Assume function $f: \mathbb{R}^N \to \mathbb{R}^M$
- Partials for multivariate function (matrix of first-order partials)

$$J_{i,j} = \frac{\partial}{\partial x_i} f_j(x)$$

- · Required for stiff ordinary differential equations
 - differentiate is coupled sensitivity autodiff for ODE system
- Two execution strategies
 - 1. Multiple reverse passes for rows
 - 2. Forward pass per column (required for stiff ODE)

Autodiff Functionals

- · Functionals map templated functors to derivatives
 - fully encapsulates and hides all autodiff types
- · Autodiff functionals supported
 - gradients: $\mathcal{O}(1)$
 - Jacobians: $\mathcal{O}(N)$
 - gradient-vector product (i.e., directional derivative): O(1)
 - Hessian-vector product: $\mathcal{O}(N)$
 - Hessian: $\mathcal{O}(N)$
 - gradient of trace of matrix-Hessian product: $\mathcal{O}(N^2)$ (for SoftAbs RHMC)

Variable Transforms

- · Code HMC and optimization with \mathbb{R}^n support
- Transform constrained parameters to unconstrained
 - lower (upper) bound: offset (negated) log transform
 - lower and upper bound: scaled, offset logit transform
 - simplex: centered, stick-breaking logit transform
 - ordered: free first element, log transform offsets
 - unit length: spherical coordinates
 - covariance matrix: Cholesky factor positive diagonal
 - correlation matrix: rows unit length via quadratic stickbreaking

Variable Transforms (cont.)

- · Inverse transform from unconstrained \mathbb{R}^n
- · Evaluate log probability in model block on natural scale
- · Optionally adjust log probability for change of variables
 - adjustment for MCMC and variational, not MLE
 - add log determinant of inverse transform Jacobian
 - automatically differentiable

Parsing and Compilation

- Stan code parsed to abstract syntax tree (AST) (Boost Spirit Qi, recursive descent, lazy semantic actions)
- C++ model class code generation from AST (Boost Variant)
- C++ code compilation
- Dynamic linking for RStan, PyStan

Coding Probability Functions

- Vectorized to allow scalar or container arguments (containers all same shape; scalars broadcast as necessary)
- · Avoid repeated computations, e.g. $\log \sigma$ in

$$\begin{array}{lcl} \log \, \mathsf{Normal}(y|\mu,\sigma) & = & \sum_{n=1}^N \log \, \mathsf{Normal}(y_n|\mu,\sigma) \\ \\ & = & \sum_{n=1}^N -\log \sqrt{2\pi} \, -\log \sigma \, -\frac{y_n-\mu}{2\sigma^2} \end{array}$$

- recursive expression templates to broadcast and cache scalars, generalize containers (arrays, matrices, vectors)
- traits metaprogram to drop constants (e.g., $-\log\sqrt{2\pi}$ or $\log\sigma$ if constant) and calculate intermediate and return types

The End (Section 4)