NOIp2023 模拟赛题解

myee

题目名称	First Snow	Paradise	nέο κόsmo	Nirv lucE
题目类型	传统型	传统型	传统型	传统型
目录	firstsnow	paradise	neokosmo	nirvluce
可执行文件名	firstsnow	paradise	neokosmo	nirvluce
输入文件名	firstsnow.in	paradise.in	neokosmo.in	nirvluce.in
输出文件名	firstsnow.out	paradise.out	neokosmo.out	nirvluce.out
每个测试点时限	5.0 秒	5.0 秒	5.0 秒	5.0 秒
内存限制	1024 MB	512 MB	2048 MB	2048 MB
测试点数目	100	20	50	100
测试点是否等分	是	是	是	是

提交源程序程序名

对于 C++ 语言 firstsnow.cpp	paradise.cpp	neokosmo.cpp	nirvluce.cpp
-------------------------	--------------	--------------	--------------

编译选项

注意事项

- 1. 文件名(包括程序名,后缀名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须为 0。
- 3. 提交的程序代码文件的放置位置请参照考场具体要求。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 评测在当前最新公布的 NOI Linux 信友队评测机下进行**,各语言的编译器版本** 以你提交时选择的语言为准,请勿错选!
- 8. 最终评测时所用的编译命令中不含编译选项之外的任何优化开关。
- 9. 本次比赛各题时限均较长,请不要卡评测。
- 10. 题目背景中的概念可能比较模糊,建议阅读题目描述来获得相对准确的题意。

引言

大家好啊! 不知道大家对这场模拟赛观感怎样。

这次模拟赛的四道题均为我本人原创,难度大致接近 CSP-S2022 和 NOIp2021。

四道题目正解均未采用大纲上超出提高级的知识点,而又有一定的难度,非常合适大家练习。

考察内容比较全面,从枚举到位并行,从贪心到容斥,从动态规划到图论,从字符串到数据结构,可以考察你对知识点掌握的熟练程度。

四道题目均给出了大量的部分分,可以模拟真实考试情况。

时限上则为了避免卡常,我放的非常宽松。希望没有低素质选手卡评测机。

最初的 T3 与 T4 并不是现在这两道,现在这两道是经过慎重考虑而换上的,以力求更好的模拟效果。

题目背景为出题人根据 Arcaea 支线剧情相关内容二次创作而来,文笔不佳请多见谅。 希望大家会喜欢这套题目。

First Snow (firstsnow)

预估难度: NOIp T1。 zak 觉得这题比后面几道难,我不好说。 本题基本没啥好给的部分分,这里直接介绍正解了。

O(poly(n)) 暴力

直接枚举其中几个点的行 / 列坐标,推出剩下的信息。 直接这么做起码也要 $O(n^4)$ 。 注意不要计重。

另一个 $O(n^4)$ 做法

我们观察到,一个正方形存在唯一的**中心**。 我们观察中心的形态。

我们发现,一个格点正方形的中心,一定是形如格点 (x,y),或者是某个格点两维坐标均加上 0.5。

也就是中心的数目也是 $O(n^2)$ 的。

我们枚举这个中心,统计有多少个以当前点为中心的正方形即可。

我们考虑枚举中心右上方(不包括正上方)的那个点,然后就可以推出剩下三个点。

这样直接做是 $O(n^4)$ 的,根据常数实现可以获得不同分数。

优化

考虑优化。

假设中心是 (x,y), 那么对任一正方形, 一定存在唯一的 $a > 0, b \ge 0$ 满足四个点形如

$$(x + a, y + b)(x - b, y + a)(x - a, y - b)(x + b, y - a)$$

我们考虑枚举a,然后一个b合法当且仅当四个对应位置上有点。

容易发现可以直接用 bitset 快速统计这份信息。

由于实际就是在枚举当前正方形的外接正方形(外弦图?),枚举的次数大约带个 1/3 左右的的常数。

然后由于每轮有取与和右移操作,以及一次 .count() 操作,又带来了 8 的常数,总共对 bitset 的操作次数是 $\frac{8}{3}n^3+O(n^2)$ 次的。

从而这样的总复杂度即为常数不算太大的 $O(n^4/w)$,松一松可以通过。

Paradise (paradise)

预估难度: NOIp T2。

一道相对简单的题目,相信大家都能做出来。

介绍几档主要的部分分做法吧。

朴素算法

显然可以直接做背包。

复杂度 O(nm+q), 可以获得 40pts。

优化

注意到虽然 m 很大,但由于数据保证 $a_i|a_{i+1}$,本质不同的 a 其实只有 $O(\log v)$ 个。对每个相同的 a,我们保留 b 最小的一份即可。

复杂度 $O(n \log v + m + q)$, 可以获得 60pts。

正解

考虑在刚刚的基础上继续做。

我们注意到,如果 $a_{i+1}/a_i \leq b_{i+1}/b_i$,那我们肯定不必去选择 a_{i+1} 这个元素,而是能替换成若干 a_i ,故直接删除 (a_{i+1},b_{i+1}) 即可。

这样, 我们最终的序列一定保证有

$$a_i/b_i < a_{i+1}/b_{i+1}$$

或者说性价比递增。

在此基础上我们考虑一个贪心,每次优先选取最大元素,一直取到不能取为止。容易证明 这么做是对的。

假设剩下的选法为 $(a_1,b_1)(a_2,b_2)\dots(a_m,b_m)$, 则我们也就有

$$f(n) = b_m \lfloor \frac{n}{a_m} \rfloor + \sum_{j=1}^{m-1} b_j \lfloor \frac{n \bmod a_{j+1}}{a_j} \rfloor$$

稍微改写一下

$$f(n) = b_m \lfloor \frac{n}{a_m} \rfloor + \sum_{j=1}^{m-1} b_j \lfloor \frac{n - a_{j+1} \lfloor \frac{n}{a_{j+1}} \rfloor}{a_j} \rfloor = \sum_{j=1}^m (b_j - [j > 1] \frac{b_{j-1} a_j}{a_{j-1}}) \lfloor \frac{n}{a_j} \rfloor$$

设 $c_j = b_j - [j > 1] \frac{b_{j-1}a_j}{a_{j-1}}$,即

$$f(n) = \sum_{j=1}^{m} c_j \lfloor \frac{n}{a_j} \rfloor$$

而答案即为

$$\sum_{i=0}^{n-1} f(i) = \sum_{j=1}^{m} c_j \sum_{i=0}^{n-1} \lfloor \frac{i}{a_j} \rfloor$$

而我们有

$$\sum_{i=0}^{n-1} \lfloor \frac{i}{a} \rfloor = \lfloor n/a \rfloor (2n - a \lfloor n/a \rfloor - a)/2$$

(由于对 2^{64} 取模,可能还要对 $\lfloor n/a \rfloor$ 的奇偶性讨论一下) 这样我们就可以做到 $O(\log v)$ 解决单组询问了! 总复杂度 $O(m+q\log v)$,可以通过。

nέο κόsmo (neokosmo)

预估难度: NOIp T2/T3。 比较简单的图论与状压 dp 题? 因为没想好整个数据具体怎么造,数据可能不是很强。QwQ 部分分其实是给那些正解写挂 / 实现的不够优秀的人的。

c=1 的 4pts 做法

虽然感觉几乎没人会这么干但还是来说一下: 直接以关键点为起点,不移动,可以过掉其中两个点。 骗分选手素质很差,看出题人不是很会造数据就来骗!来偷袭! 不过起码还是卡了一个点。

$1 \le c \le 3$

c=1 时容易发现只用最小化走过的边权和 + 起点点权。 注意到环相当于就是重复两遍起点到关键点的最短路,直接跑从关键点开始的最短路即可。 c=2/3 时类似上面的做法,手玩分类讨论一下就好了。

c < 8, c < 12

给一些 $O(m2^c \log m)$ 之类的做法的…… 直接状压 dp 搞一搞就可以了。具体做法类似正解。

$c \le 15, \ c \le 18$

给那些复杂度多带个 c 或者 $O^*(3^c)$ 之类的的做法的分······

n 比较小的情况

首先可以邻接矩阵存图,有用的边数也会减少。

同时,把正解的 Dijkstra 换成 SPFA 可以获得约 60pts 的好成绩。

定向卡了几种 SPFA, 虽然不太能全卡掉都是了······

不会吧不会吧不会真有人写 SPFA 吧。

c < 20

正解分为3个部分。

缩图

我们发现,由于整个路径是一个环,我们不妨考虑令起点可以为环上任一结点:容易发现 从这种视角来看,我们就不用单独枚举一个起点了。

我们考虑计算出从某一个关键点到达另一个关键点,中间不经过其他关键点时,此间所经过的最小边权总代价,以及中间经过了起点时的最小边权与起点总代价。

容易通过最短路实现:具体的,我们考虑拆点,把每个点拆成「还没经过起点」和「经过了起点」两部分,然后转移时不允许除了起点外的关键点向外松弛即可。

由于要跑 O(c) 轮单源最短路, 所以该部分复杂度朴素实现是 $O(cm \log m)$ 的。

这样我们就只用考察一个简化了的只有 c 个点的图了。

状压 dp

我们考虑从环上最大的关键点开始 dp。

状态中记录现在走到了哪个点,是否已经经过起点,当前走过的点集;权值记录当前经过 的边和起点带来的代价。

这样的状态数是 $O(c2^c)$ 级别的。

然后转移时,我们按照点集顺序枚举 dp。

然后我们先对未经过起点的状态,按照当前已有的贡献从小到大的顺序来松弛别的路径,然 后再对已经经过起点的状态同样松弛。

每次松弛到的关键点一定不能比开始 dp 的点大,由于开始 dp 的点已经记入状态(点集中最大一个)所以容易解决。

容易发现这就是一个 Dijkstra 的贪心过程,直接做即可。

暴力实现即为 $O(c^22^c)$ 的。

如果没有做上一步缩图,而是直接 Dijkstra 搞,那可以做到大约 $O(m2^c \log m)$ 左右的复杂度,也就是前面的部分分。

计算答案

我们枚举点集,然后令当前走到的点为当前点集中最大一个,且要求中间经过过起点,直 接计入答案即可。

总复杂度 $O(cm \log m + c^2 2^c)$, 可以通过。

Nirv lucE (nirvluce)

预估难度: NOIp T4 / NOI T1-T2。

这是一道想法不算很难,但对代码实现能力有一定要求的题目。

本题需要用到失配树的思想,属于 kmp 算法的自然延申;同时也需要使用树状数组和线段树合并快速统计贡献,具有一定的代码实现难度。

整体来说,本题思维层面并不算难,但综合考察了对 kmp 算法的理解,贡献统计的思想,以及简单数据结构维护信息的识别能力。

本题的部分分针对正解设计,一步步引导选手往正解方向思考,具有比较良好的区分效果。 这里介绍几档主要的部分分做法。

m = 1

很容易推出 / 大眼瞪出公式:

$$h_l(S) = \frac{(n-l-1)(n-l)(n-l+1)(n-l+2)}{12}$$

总复杂度 O(n), 期望得分 10pts。

实际得分可达 12pts。出题人下次再也不敢了。

o = 1/2

我也不知道有啥比较简单的做法。

不过如果你写过暴力的话,就会发现失配树高度和大约是 O(n) 的;对于 $7 \sim 8$ 更是甚至没有除了本身的 Border。

以及对于后面的一些高复杂度做法来说,由于失配树高度毛估估就很矮,可以直接拿个暴力冲上去。

$O(n^3)$ 做法

考虑暴力枚举 $O(n^2)$ 对后缀的贡献。

考虑怎么计算相对代价。

我们考虑对第一个后缀枚举其所有 Border,这个可以用字符串哈希 / kmp 快速找出。

然后对第二个串判断这是否也为其 Border,这个可以用字符串哈希快速判断。

绝对代价的计算就是计算正反两遍相对代价,可以在O(n)时间内解决。

最后差分统计贡献即可。

总复杂度 $O(n^3)$, 期望得分 30pts。

$O(n^2)$ 做法

之前的做法太暴力了,没有利用 Border 的良好性质。

我们把原串 S 翻转,那么所有 S 的所有后缀也依次翻转成了各个前缀,每个串的所有 Border 也得到了对应翻转。

那么我们就是对原串的每个前缀考虑其 Border 集合的性质。

因此我们引入失配树。

失配树

考虑 kmp 的过程是对原串 S 的每个前缀 $S_{0\sim p}$ 求出其最长的非本身的 Border $S_{0\sim \pi_p}$,其中 $-1 \le \pi_p < p$ 。 π_p 就是 kmp 数组, $\pi_p = -1$ 表示没有别的 Border。

而我们有结论,一个串 $S_{0\sim p}$ 的 Border 为

$$S_{0 \sim p}, S_{0 \sim \pi_p}, S_{0 \sim \pi_{\pi_p}}, S_{0 \sim \pi_{\pi_n}}, \dots$$

一直到某个位置 q 使得 $\pi_q = -1$ 为止。

证明是容易的: 只用证明原串任何一个前缀的任意两个 Border 一定满足其中较短一个一定是较长一个的 Border 即可。

因此,我们考虑建立一棵树,树的节点编号 $-1 \sim n-1$,其中 -1 为根节点,对 $p=0,1,2,\ldots,n-1$ 的每个节点的父亲规定为 π_p ,那么一个串的所有 Border 即为 **其到根的链上所有的节点所代表的的字符串!**(除了根节点代表空串外)

这颗树我们就称为失配树,而 kmp 算法的过程其实就是在建失配树。

那么,我们发现,对两个前缀 $S_{0\sim a}$, $S_{0\sim b}$,设 a,b 在失配树上的 lca 为 lca(a,b),那么其共用的 Border 即为 $S_{0\sim \mathrm{lca}(a,b)}$ 的所有 Border $(\mathrm{lca}(a,b)=-1$ 时即为没有)。

因此设 $S_{0\sim p}$ 的 Border 总长为 A_p , 那么我们有

$$A_p = \begin{cases} A_{\pi_p} + p + 1 & p \neq -1 \\ 0 & p = -1 \end{cases}$$

而我们有

$$f(S_{0\sim a}, S_{0\sim b}) = \max(A_a, A_b) - A_{\operatorname{lca}(a,b)}$$

因此直接树上前缀和预处理,ST 表加速计算 lca 即可。 总复杂度 $O(n^2)$,期望得分 56pts。

c=1, $O(n\log n)$ 做法

紧接着上述做法,我们同样把原串翻转,考虑到当c=1时,我们只用计算

$$g(S) = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} f(S_{0 \sim i}, S_{0 \sim j})$$

也就是

$$g(S) = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} (\max(A_i, A_j) - A_{\text{lca}(i,j)})$$

我们考虑拆贡献,得到 $\sum_{i=0}^{n-1}\sum_{j=i+1}^{n-1}\max(A_i,A_j)$ 和 $\sum_{i=0}^{n-1}\sum_{j=i+1}^{n-1}A_{\mathrm{lca}(i,j)}$ 两部分。 对于第一个部分,我们考虑对 A 进行排序,设依次为 B_0,B_1,\ldots,B_{n-1} ,那么该部分贡献即为

$$\sum_{i=0}^{n-1} iB_i$$

这是简单的,考虑第二部分。

注意到第二部分的组合意义即为被容斥掉的贡献,因此我们考虑每个 Border 会被容斥掉几次:显然,设p对应的子树大小为 C_p ,那么其会被容斥 $C_p(C_p-1)/2$ 次,因此即为

$$\sum_{i=0}^{n-1} (i+1) \frac{C_i(C_i-1)}{2}$$

直接一遍 dp 即可得到所有 C,从而解完。

总复杂度 $O(n \log n)$ (使用基数排序可以优化到 O(n), 但没有必要),期望得分 42pts,如拼上上一档分则期望得分 70pts。

$O(nc\log n)$ 做法

注意到 c > 1 时,在翻转原串后,我们其实就是求

$$h_l(S) = g(S_{0 \sim n - l - 1})$$

对每个询问,都跑一遍上面 c=1 的做法。 总复杂度 $O(nc \log n)$,期望得分 $72 \sim 86$ pts。

$O(n \log n + nc)$ 做法

在刚刚这个做法的基础上,考虑我们按 n-l-1 从小到大枚举,统计贡献。

那么每次往后面增加一个字符, 就是给这颗树加一个叶子。

我们提前给整个 A 数组排好序,可以发现每次就是往 B 的中间某个位置插入一个数,可以直接 O(n) 统计贡献。

而对于第二部分,跳父亲更新完 C 之后也可以直接 O(n) 统计贡献。

总复杂度 $O(n \log n + nc)$, 期望得分 86pts。

$O(n \log n)$ 做法

接下来介绍正解。

我们注意到上一个做法要往失配树上逐个加入叶子,我们不妨考虑能否直接维护答案的变 化量而非答案本身。

对于第一部分贡献,我们考虑到往 B 数组中间插入元素时,除了该元素自身被枚举的次数外,在当前 B 之后的元素带来的贡献也会增加一次。

由于要插入元素,然后计算当前元素当前 rank 和后面元素的和,显然这可以用一个树状数组快速维护,做到 $O(n \log n)$ 。

对于第二部分贡献,我们注意到 C 所带来的贡献的变化仅会在子树内加入叶子时出现,当 p 子树内第 t 个点加入时会带来 (p+1)(t-1) 的变化量。

不妨考虑线段树合并,在失配树上从下往上对子树进行 dp,每个位置记录当前位置答案的变化量为多少。那我们就只用支持合并操作和全局加变化量(关于当前相对大小为一次函数),在线段树上打 tag 即可直接解决。这样复杂度也是 $O(n\log n)$ 的。

总复杂度 $O(n \log n)$, 期望得分 100pts, 可以通过此题。

如果把线段树合并换成树剖之类的东西或许也能过,没有特意卡,因为其实也不好卡。