- Calculus / 3D Geometry

The volume can be found by adding the volume of the 2 cylinders then subtracting the intersection volume.

We see that the intersection is a shape formed from squares.

$$\frac{1}{2}$$
 sidelength at height $x = \sqrt{(R^2 - x^2)}$

Volume of intersection: $\sum 4(R^2 - x^2)\Delta x$

Infinitesimal: $\int 4(R^2 - x^2) dx$

We can solve this analytically using calculus techniques, or since we know that we are solving from x = -R to x = R, we could use the integration function on most scientific calculators.

Volume =
$$16R^3/3 = 144$$

- Numerical integration

x	$2\sqrt{(r^2-x^2)}$	$4(r^2-x^2)\Delta x$		1	3
-3	0	0	Δx	r	
-2	2.236067977	20			
-1	2.828427125	32			
0	3	36			
1	2.828427125	32			
2	2.236067977	20			
3	0	0			
		Trapezoid rule sum:			
		140			

