

IN THE CLAIMS

Please make the following claim substitutions:

- 1 1. (Canceled)
- 2 2. (Canceled)
- 1 3. (Canceled)
- 1 4. (Currently amended) A method of format detection for information received over a communication system, the method comprising the step of determining the format of the received information by decoding received information extracted from a defined guiding channel, wherein information size values obtained from a defined list of size values for the guiding channel are used in the decoding,
- 6 wherein the step of determining the format comprises the steps of:
- 7 extracting received information from other channels of the communications system;
- 9 performing decoding operations on the extracted guiding channel information M times where M is an integer that represents a total number of information size values in said list;
- 12 deciding which of the M decoding operations resulted in a correct decode; and
- 13 determining the format of the received information from the information size value of the guiding channel that yielded the correct decode, and
- 15 wherein the step of deciding which of the M decoding operations resulted in a correct decode comprises the steps of:
- 17 performing at least one decode operation on the extracted guiding channel information yielding at least one decode result; and
- 19 applying the at least one decode result to an algorithm for deciding whether there is a correct decode and which information size value yielded such correct decode.
- 22 ~~The method of claim 3 where wherein the communication system is a 3GPP compliant UMTS where the guiding channel is TrCh1 and the decoding operations comprise~~

24 convolutional decoding yielding a result on which a tail bit test and CRC decoding are
25 performed whereby wherein each such operation is performed M times.

1 5. (Original) The method of claim 4 where the format being determined are transport
2 formats of TrCh2 and TrCh3 based on a format detected for TrCh1.

1 6. (Currently amended) The method of claim 4 where the decoding operations yield
2 decoding results that

3 are used in the algorithm to decide the correct decode where the CRC decoding for the
4 i^{th} operation yields a value C_i , and the tail bit test yields values T_i and K_i where i is any
5 integer equal to M or less and, whereby wherein

6 (a) $C_i = 1$ indicates a CRC pass;

7 (b) $C_i = 0$ indicates a CRC fail;

8 (c) T_i is an integer value that represent a total number of "1" bits occurring in the tail bits
9 of the convolutional decoding result and further, T_0 is a defined threshold value that is
10 an integer equal to 1 or greater.

11 (d) $K_i = 1$ indicates a tail bit test pass condition where $T_i \leq T_0$; and

12 (e) $K_i = 0$ indicates a tail bit test fail;

1 7. (Original) The method of claim 6 where a correct decode is declared when any one of
2 the following conditions occurs from one of the M decoding operations:

3 (a) only one of the decoding operations yielded in a CRC pass;

4 (b) none of the decoding operations yielded a CRC pass, and of these, only one passed
5 the tail bit test;

6 (c) none of the decoding operations yielded a CRC pass, but more than one passed the
7 tail bit test, and of these, only one satisfies the condition $T_i = T_0$;

8 (d) none of the decoding operations yielded a CRC pass, but more than one passed the
9 tail bit test, and of these, only one satisfies the condition $T_i < T_0$;

10 (e) More than one decoding operation yielded a CRC pass, but none passed the tail bit
11 test, and of these, only one satisfies the condition $T_i = T_0 + 1$;

- 12 (f) More than one decoding operation yielded a CRC pass and passed the tail bit test,
13 but only one of these satisfy the condition $T_i < T_0$;
14 (g) More than one decoding operation yielded a CRC pass, and of these, only one
15 passed the tail bit test; and
16 (h) More than one decoding operation yielded a CRC pass and passed the tail bit test,
17 but only one satisfies the condition $T_i = T_0$.

1 8. (Original) The method of claim 6 where a BTFD failure is declared when any one of
2 the following sets of values or conditions occur from at least one of the M decoding
3 operations:

- 4 (a) none of the M decoding operations yielded either a CRC pass or a tail bit test pass
5 result;
6 (b) none of the M decoding operations yielded a CRC pass, but more than one passed
7 the tail bit test and none of these satisfy the condition $T_i = T_0$ condition;
8 (c) none of the M decoding operations yielded a CRC pass but more than one passed
9 the tail bit test, and of these, more than one decoding operation yielded the values $C_i =$
10 0 ; $K_i = 1$; $T_i = T_0$;
11 (d) none of the M decoding operations yielded a CRC pass, but more than one passed
12 the tail bit test, and of these, more than one yielded values of $C_i = 0$; $K_i = 1$; $T_i < T_0$;
13 (e) more than one of the M decoding operations yielded a CRC pass, but none passed
14 the tail bit test, and of these, none satisfy the condition $T_i = T_0 + 1$;
15 (f) more than one of the M decoding operations yielded a CRC pass, but none passed
16 the tail bit test, and of these, more than one yielded the values $C_i = 1$; $K_i = 1$; $T_i = T_0 + 1$;
17 (g) more than one of the M decoding operations yielded values of $C_i = 1$; $K_i = 1$; $T_i < T_0$;
18 (h) more than one of the decoding operations yielded a CRC pass and a tail bit pass
19 result, and of these, none satisfy the conditions $T_i < T_0$ or $T_i = T_0$; and
20 (i) more than one of the decoding operations yielded a CRC pass and a tail bit test pass
21 result, and of these, more than one yielded values of $C_i = 1$; $K_i = 1$; $T_i = T_0$.