

A B S T R A C T

A flexible substrate (110) having flexibility and a fixed substrate (120) disposed so as to oppose it are supported at their peripheral portions by a sensor casing (140). An oscillator (130) is fixed on the lower surface of the flexible substrate. Five lower electrode layers (F1 to F5: F1 and F2 are disposed at front and back of F5) are formed on the upper surface of the flexible substrate. Five upper electrode layers (E1 to E5) are formed on the lower surface of the fixed substrate so as to oppose the lower electrodes. In the case of detecting an angular velocity ω_x about the X-axis, an a.c. voltage is applied across a predetermined pair of opposite electrode layers (E5, F5) to allow the oscillator to undergo oscillation U_z in the Z-axis direction. Thus, a Coriolis force F_y proportional to the angular velocity ω_x is applied to the oscillator in the Y-axis. By this Coriolis force F_y , the oscillator is caused to undergo displacement in the Y-axis direction. As a result, the distance between opposite electrode layers (E3, F3) arranged in the positive direction of the Y-axis becomes smaller, and the distance between opposite electrode layers (E4, F4) arranged in the negative direction of the Y-axis becomes greater. Thus, capacitance value C_3 increases and capacitance value C_4 decreases. By change of the capacitance value, it is possible to detect the magnitude

of the Coriolis force F_y , and to determine angular velocity ω_x . Similarly, it is possible to detect an angular velocity ω_y about the Y-axis and an angular velocity ω_z about the Z-axis.