

Mathematical Formulation of Transformer Attention

Transformer attention uses **queries**, **keys**, and **values** to compute weighted sums of values. Given an input sequence of \$N\$ tokens represented by row vectors in a matrix $X\in \mathbb{R}^{n}$ we first project \$X\$ into query, key, and value spaces by learned matrices. Concretely, for one attention head we use weight matrices $W^Q,W^K\in \mathbb{R}^{d}_{\text{wodel}}\times d_k$ and $W^V\in \mathbb{R}^{d}_{\text{wodel}}\times d_k$ to form:

- \$Q = XW^Q \in \mathbb{R}^{N\times d_k}\$ (queries),
- $K = XW^K \in \mathbb{R}^{N\times d_k}$ (keys),
- $V = XW^V \in \mathbb{R}^{N\times d_v}$ (values).

Each row \$q_i\$ of \$Q\$ is the **query vector** for token \$i\$, each row \$k_j\$ of \$K\$ is a **key vector** for token \$j\$, and each row \$v_j\$ of \$V\$ is a **value vector** for token \$j\$ 1. Intuitively, each query \$q_i\$ "asks" how much attention to pay to each key \$k_j\$, and these attention weights are used to form a weighted sum of the corresponding values \$v_j\$. This projection step is summarized by Jurafsky & Martin (2025):

"For one head we multiply \$X\$ by the query, key, and value matrices W^Q , W^K , W^K , W^V to produce matrices Q, K, V containing all the key, query, and value vectors: $Q=XW^Q$, V, $Y=XW^K$, $V=XW^V$.

Throughout, \$d_k\$ is the dimensionality of the key/query vectors and \$d_v\$ is the dimensionality of the value vectors. In self-attention typically \$N\$ (sequence length) equals the number of queries and keys.

Scaled Dot-Product Attention

The core of the Transformer's attention mechanism is **scaled dot-product attention**. We compute raw similarity scores between every query and every key by a matrix dot-product. Let $\$\$S = QK^\infty R^{N\times N},\$\$$ so that $\$S_{ij}=q_i\cdot k_j\$$ is the dot product between query \$i\$ and key \$j\$. To convert these scores into normalized weights, we apply the following steps 2 :

1. **Scale:** Divide the score matrix by \$\sqrt{d_k}\$:

 $$$S' = \frac{QK^{\infty}}{\sqrt{d_k}},. $$$

The factor $1/\sqrt{d_k}$ prevents the dot products from growing too large in magnitude (for high-dimensional q_i,k_j), which would make the softmax saturate with very small gradients 3. Vaswani *et al.* (2017) note that without this scaling the variance of q_i 0 grows with d_k 0, so dividing by q_i 0 here.

 scores into a probability distribution over keys for each query. It ensures all weights A=1 4 . In effect, the largest dot-products get larger weights, but in a $\sin[0,1]$ and $\sin[0,1]$ and $\arcsin[0,1]$ and $\arcsin[0,1]$ differentiable way (unlike a hard $\arcsin[0,1]$ 4 .

3. **Weighted sum:** Multiply the weight matrix by \$V\$:

 $$\star (Q,K,V) = A\,V\,,\quad O = AV\in\mathbb{R}^{N\times d_v}\,. $$$ Here each output row o_i is a weighted sum of value vectors:

 $$5_i = \sum_{j=1}^N A_{ij}\,v_j\,. $$

In other words, query \$i\$ attends to all values \$v_j\$ in proportion to the weight \$A_{ij}\$. Jurafsky & Martin (2025) describe this procedure:

"Once we have the QK^{\top} matrix, we can scale these scores, take the softmax, and then multiply the result by V resulting in a matrix of shape $N\times \mathbb{C}$.

Putting this together, the **matrix formula** for scaled dot-product attention is given in Vaswani *et al.* (2017) as:

\$\$ \text{Attention}(Q,K,V) \;=\; \text{softmax}!\Biql(\frac{QK^\top}{\sqrt{d_k}}\Biqr)\,V\,. \$\$

This compact equation encapsulates the above steps ². Note that the softmax is applied independently to each query's row of scores, so each \$q_i\$ produces its own weight vector over all keys ⁷.

Scaled Dot-Product Attention (Vaswani et al., 2017) – For query matrix Q and key matrix K, compute raw scores QK^{\top} . Scale by $1/\sqrt{d_k}$, apply softmax row-wise to get weights, then multiply by V: $\frac{d_k}{\pi}QK^{\cot Q(K/\cot Q(K^{2} P)})$ = $\frac{d_k}{\pi}QK^{\cot Q(K^{\cot Q(K)})}$

Calculating Attention Weights

More explicitly, for each query vector \$q_i\$ (row \$i\$ of \$Q\$) the attention weight \$\alpha_{ij}\$\$ on value \$v_j\$ is given by:

 $\$ \alpha_{ij} \;=\; \frac{\exp!\bigl(q_i\cdot k_j/\sqrt{d_k}\bigr)}{\sum_{j'=1}^N \exp!\bigl(q_i\cdot k_{j'}/ \sqrt{d_k}\bigr)},. \$\$

Then the output for query $i = \sum_{j=1}^N \alpha_{ij}\,v_j\,.$ \$\$ In matrix form this is exactly the \$i\$th row of \$AV\$. Thus the **attention weight matrix** \$A=\mathbb{G}(QK^\star)\ has entries \$A_{ij}=\alpha_{ij}\$. In summary:

- Compute score vector \$s_i = q_i K^\top\$ (dot products with all keys).
- Scale $s i' = s i/\sqrt{d k}$.
- Normalize $\alpha_i = \mathrm{Softmax}(s_i')$, so $\alpha_i = \mathrm{Softmax}(s_i')$.
- Form output \$o i = \alpha i V\$.

This procedure ensures each output is a convex combination of the rows of \$V\$, weighted by how "relevant" each key is to the query.

Softmax and Scaling Insights

The **softmax** function is crucial because it converts raw dot-product scores into a differentiable probability distribution. By exponentiating and normalizing, softmax emphasizes the largest scores while keeping all

weights positive and summing to 1 ⁴. The Transformer authors note that softmax is a *continuous, differentiable* alternative to a hard max operation ⁵. This smoothness is essential for gradient-based optimization. Moreover, applying softmax row-wise means each query independently attends to keys.

The **scaling factor** $1/\sqrt{d_k}$ arises from variance considerations. Vaswani *et al.* show that if the components of query and key vectors are independent with variance 1, then the dot-product $q_i \cdot d_k \le 1$ has variance $d_k \le 1$. Without scaling, large $d_k \le 1$ would push $q_i \cdot d_k \le 1$ to large magnitudes, driving the softmax into regions with extremely small gradients (saturating the softmax). To avoid this, we divide by $c_i \cdot d_k \le 1$ so that the dot products have unit variance on average. In practice, this normalization keeps the softmax inputs at a scale where the exponential function is well-behaved and gradients are stable $c_i \cdot d_k \le 1$.

In summary, **softmax** ensures a proper probability weighting over keys, and the **\$\sqrt{d_k}\$** scaling prevents very large or very small softmax inputs for high-dimensional vectors ³ ⁴.

Multi-Head Attention

The Transformer improves representational power by using **multi-head attention** ⁸ . Instead of one attention, we run \$h\$ parallel "heads," each with its own projection of queries, keys, and values. Concretely:

- We choose \$h\$ attention heads. For head \$i=1,\dots,h\$, we have separate learned projections \$W_i^Q,W_i^K\in\mathbb{R}^{d_{\text{model}}\times d_k}\$ and \$W_i^V\in\mathbb{R}^{d_{\text{model}}\times d_v}\$.
- Compute head-specific queries/keys/values: \$Q_i = XW_i^Q,\;K_i = XW_i^K,\;V_i = XW_i^V\$, each of size \$N\times d_k\$ (for \$Q_i,K_i\$) and \$N\times d_v\$ (for \$V_i\$).
- Each head \$i\$ independently performs scaled dot-product attention: $$\star \text{Attention}(Q_i,K_i,V_i) = \text{Softmax}\Big(\frac{Q_iK_i^{top}_{sqrt_{d_k}}}{Bigr_i^{i}} \right) $$$
- This yields \$h\$ output matrices \$\text{head}_i\in\mathbb{R}^{\N\times d_v}\$ 8.
- Concatenate the heads along the feature dimension: \$\$H = [\text{head}_1;\,\dots;\,\text{head}_h] \in\mathbb{R}^{N\times (h\,d v)}.\$\$
- Apply a final linear projection $W^O\in R}^{(h,d_v)\times d_{v}}$ to combine heads:
- $\$ \text{MultiHead}(X) = HW^O \in \mathbb{R}^{N\times d_{\text{model}}},. \$\$

Jurafsky & Martin summarize this as: "we linearly project the queries, keys and values \$h\$ times with different learned projections... perform the attention function in parallel... concatenate and once again project, resulting in the final values" ⁹ . In formula form, Vaswani *et al.* give:

$$\mathrm{head}_i = \mathrm{Attention}(QW_i^Q,\ KW_i^K,\ VW_i^V) \quad (i=1,\ldots,h), \ \mathrm{MultiHead}(X) = [\mathrm{head}_1;\ldots;\mathrm{head}_h]\ W^O \ .$$

More compactly, with \$\oplus\$ denoting concatenation:

\$\$ \text{MultiHead}(X) = (\text{head}1 \oplus \text{head}_2 \oplus \cdots \oplus \text{head}_h)\,W^O\,. \$\$
This formula is given in Jurafsky & Martin (2025) as Equation (8.37) 10. Multi-head attention allows the model to attend to information from different representation subspaces; each head can focus on different patterns or

relations in the input ⁹. After concatenation and projection, the output has the same shape as a single-head output (\$N\times d\$), ready to be fed into the next layer of the transformer. }

References: The above formulations follow Vaswani *et al.* (2017) ² ³ and Jurafsky & Martin (2025) ¹ ¹⁰ . The use of softmax and scaling is discussed in both sources, with [26] explaining the scaling rationale and [38] providing the standard softmax formulation.

1 6 10 web.stanford.edu

https://web.stanford.edu/~jurafsky/slp3/8.pdf

2 3 8 9 Attention is All you Need

https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf

4 7 An Intuition for Attention | Jay Mody

https://jaykmody.com/blog/attention-intuition/

5 Transformer: Attention Is All You Need | Learning-Deep-Learning

 $https://patrick-llgc.github.io/Learning-Deep-Learning/paper_notes/transformer.html\\$