STAT.614.01

Course Project

Abstract

To get hands on experience analysing student performance dataset using techniques learned in this course

Contents

1. Introduction:	1
1.1. Description of the dataset	1
1.2. Objective	1
1.3. Predictor Variables	1
1.4. Response Variables	1
2. Statistical Tests Used	1
2.1. Multi-factor ANOVA	
2.1.1. Analysis for Math score	1
2.1.2. Practical Interpretation	2
2.1.3. Analysis for reading score	2
2.1.4. Practical Interpretation	3
2.1.5. Analysis for writing score	
2.1.6. Practical Interpretation	4
2.2. Linear Regression	4
2.2.1. Conclusion	5
2.3. Recommendation	5

1. Introduction:

1.1. Description of the dataset: This dataset contains the score of the students about math, reading and writing. Along with this, the data includes different categorical variables of the students such as ('gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course').

StudentPerformace.c

- **1.2. Objective:** To determine the most significant factors involved in affecting the scores of the students and to explore if some of the urban myths ('gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course') has statistical influence or not.
- **1.3. Predictor Variables**: Test preparation of the course, parental level of education, gender, race, lunch.
- **1.4. Response Variables**: math score, reading score, writing score.
- 2. Statistical Tests Used: 2.1. Multi-factor ANOVA 2.2. Linear regression

2.1. Multi-factor ANOVA

Factor A: Gender

Levels for factor A: 2 (Male/Female)

Factor B: Race/ethnicity

Levels for factor B: 5 (A, B, C, D, E)

Factor C: Parental level of education

Levels for factor C: 6 (associate's degree/bachelor's degree/ high school/master's degree/ some college/some high school)

Factor D: Lunch

Levels for factor D: 2 (standard/free-reduced)

Factor E: Test preparation course

Levels for factor E: 2 (none/completed)

2.1.1. Analysis for Math score: From the fig. 2 we can conclude that since the p-values for gender, race/ethnicity, parental level of education, lunch and test preparation course is small. We can conclude that all the factors affect the math score of students on the test.

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	62	63371.80	1022.13	5.7585		
Error	937	166317.28	177.50	Prob > F		
C. Total	999	229689.08		0.000000		

Fig. 1

Effect Tests					
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
gender	1	1	4884.382	27.5177	<.0001*
race/ethnicity	4	4	6000.365	8.4512	<.0001*
parental level of education	5	5	5365.201	6.0453	<.0001*
lunch	1	1	16425.931	92.5406	<.0001*
test preparation course	1	1	5935.268	33.4382	<.0001*
gender*race/ethnicity	4	4	212.358	0.2991	0.8786
gender*parental level of education	5	5	1268.127	1.4289	0.2112
gender*lunch	1	1	333.485	1.8788	0.1708
gender*test preparation course	1	1	13.270	0.0748	0.7846
race/ethnicity*parental level of education	20	20	1333.759	0.3757	0.9944
race/ethnicity*lunch	4	4	340.744	0.4799	0.7505
race/ethnicity*test preparation course	4	4	481.645	0.6784	0.6070
parental level of education*lunch	5	5	788.610	0.8886	0.4880
parental level of education*test preparation course	5	5	323.503	0.3645	0.8730
lunch*test preparation course	1	1	4.650	0.0262	0.8715

Fig. 2

- **2.1.2. Practical Interpretation:** From the interaction profiles we can conclude the following for the math score.
 - 1. Male performed better compared to females
 - 2. Group D students performed better.
 - 3. Students with parental level of education with Master's degree performed better.
 - 4. Students with standard lunch performed better.
 - 5. Students who completed their test preparation before the taking the test performed better.

Fig. 3

2.1.3. Analysis for reading score: From the fig. 5, we can conclude that since the p-values for gender, race/ethnicity, parental level of education, lunch and test preparation course is small. We can conclude that all the factors affect the reading score of students on the test.

Analysis of Variance						
		Sum of				
Source	DF	Squares	Mean Square	F Ratio		
Model	62	53918.41	869.652	5.1238		
Error	937	159034.03	169.727	Prob > F		
C. Total	999	212952.44		0.000000		

Fig. 4

Effect Tests						
			Sum of			
Source	Nparm	DF	Squares	F Ratio	Prob > F	
gender	1	1	4881.8492	28.7630	<.0001*	
race/ethnicity	4	4	1704.3193	2.5104	0.0404*	
parental level of education	5	5	6485.8749	7.6427	<.0001*	
lunch	1	1	6584.5885	38.7952	<.0001*	
test preparation course	1	1	8389.6650	49.4304	<.0001*	
gender*race/ethnicity	4	4	319.5168	0.4706	0.7573	
gender*parental level of education	5	5	980.8597	1.1558	0.3292	
gender*lunch	1	1	187.2351	1.1032	0.2938	
gender*test preparation course	1	1	0.0086	0.0001	0.9943	
race/ethnicity*parental level of education	20	20	1876.1783	0.5527	0.9437	
race/ethnicity*lunch	4	4	350.1013	0.5157	0.7242	
race/ethnicity*test preparation course	4	4	644.4186	0.9492	0.4347	
parental level of education*lunch	5	5	814.6108	0.9599	0.4414	
parental level of education*test preparation course	5	5	730.0189	0.8602	0.5073	
lunch*test preparation course	1	1	13.8248	0.0815	0.7754	

Fig. 5

- **2.1.4. Practical Interpretation:** From the interaction profiles fig. 6 we can conclude the following for the reading score.
 - 1. Female performed better compared to females
 - 2. Group E students performed better.
 - 3. Students with parental level of education with Master's degree performed better.
 - 4. Students with standard lunch performed better.
 - 5. Students who completed their test preparation before the taking the test performed better.

Fig. 6

2.1.5. Analysis for writing score: From the fig. 8, we can conclude that since the p-values for gender, race/ethnicity, parental level of education, lunch and test preparation course is small. We can conclude that all the factors affect the writing score of students on the test.

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	62	82026.58	1323.01	8.3394		
Error	937	148650.50	158.65	Prob > F		
C. Total	999	230677.08		0.000000		

Fig. 7

Effect Tests						
			Sum of			
Source	Nparm	DF	Squares	F Ratio	Prob > F	
gender	1	1	7844.635	49.4477	<.0001*	
race/ethnicity	4	4	2575.184	4.0581	0.0029*	
parental level of education	5	5	9994.831	12.6002	<.0001*	
lunch	1	1	8252.008	52.0155	<.0001*	
test preparation course	1	1	15526.235	97.8677	<.0001*	
gender*race/ethnicity	4	4	171.939	0.2709	0.8968	
gender*parental level of education	5	5	1236.619	1.5590	0.1691	
gender*lunch	1	1	342.339	2.1579	0.1422	
gender*test preparation course	1	1	14.966	0.0943	0.7588	
race/ethnicity*parental level of education	20	20	1596.808	0.5033	0.9662	
race/ethnicity*lunch	4	4	337.303	0.5315	0.7126	
race/ethnicity*test preparation course	4	4	288.693	0.4549	0.7688	
parental level of education*lunch	5	5	873.084	1.1007	0.3584	
parental level of education*test preparation course	5	5	317.944	0.4008	0.8484	
lunch*test preparation course	1	1	112.058	0.7063	0.4009	

Fig. 8

- **2.1.6. Practical Interpretation:** From the interaction profiles fig. 9, we can conclude the following for the writing score.
 - 1. Female performed better compared to females
 - 2. Group E students performed better.
 - 3. Students with parental level of education with bachelor's degree performed better.
 - 4. Students with standard lunch performed better.
 - 5. Students who completed their test preparation before the taking the test performed better.

Fig. 9

2.2. Linear Regression: To find if a student who performs good at reading is likely to perform good at reading as well.

Fig. 10

The fitted regression equation is

writing score = -0.667554 + 0.9935311*reading score

 $b_0 = -0.667554$

 $b_1 = 0.9935311$

Hypothesis Test in Simple Linear Regression

Hypothesis: H_0 : $\beta_1=0$ H_1 : $\beta_1\neq 0$

Test statistic: $t_0 = \frac{0.9935311}{0.009814} = 101.23$

p-value: 2. P ($t_{998} > 101.23$) < 0.001

2.2.1. Conclusion: To reject H₀.

There is strong evidence to support the claim that the regression model reading score is statistically significant to the writing score. Thus, a student who performs good at reading is likely to do well in writing as well.

2.3. Recommendation: Thus, from the above statistical analysis, we can say that standard lunch and test preparation for the test are the two factors which can be standardized to improve the student's score. Also, the statistical test gives us the evidence that reading and writing are statistically significant to each other. A student who performs good in reading is likely to score good in the writing section as well.