Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

<u>∧</u> Integrais trigonométricas

1. Calcule as integrais das potências de seno e cosseno abaixo.

(a)
$$\int \sin x \cos^2 x \ dx$$

(e)
$$\int_0^{\pi/2} \sin^4 x \ dx$$

(b)
$$\int_{-\pi/2}^{\pi/2} \cos^2 \theta \ d\theta$$

(f)
$$\int 16 \sin^2 x \cos^2 x \ dx$$

(c)
$$\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^2 x \ dx$$

(g)
$$\int \sin^5 x \cos^2 x \ dx$$

(d)
$$\int_0^{2\pi} \cos^3 x \ dx$$

(h)
$$\int \sin^3 x \sqrt{\cos x} \ dx$$

2. Calcule as integrais das potências de secante e tangente abaixo.

(a)
$$\int \sec^2 x \tan x \ dx$$

(c)
$$\int \sec^4 x \ dx$$

(b)
$$\int \sec^3 x \tan x \ dx$$

(d)
$$\int \tan^4 x \ dx$$

3. Um pêndulo com comprimento L forma um ângulo máximo de θ_0 com a vertical. Usando a $Segunda\ Lei\ de\ Newton$, pode ser mostrado que o período T (o tempo para um ciclo completo) é

dado por

$$T = 4\sqrt{\frac{L}{g}} \int_0^{\pi/2} \frac{dx}{\sqrt{1 - a^2 \operatorname{sen}^2 x}},$$

onde $a = \operatorname{sen}(\theta_0/2)$ e g é a aceleração da gravidade.

Considerando a aproximação $(1 - a^2 \operatorname{sen}^2 x)^{-1/2} \approx 1 + \frac{a^2 \operatorname{sen}^2 x}{2}$, mostre que

$$g \approx L \left[\omega \left(1 + \frac{a^2}{4} \right) \right]^2$$

onde $\omega = 2\pi/T$ é a frequência angular do movimento e $a^2/4$ é o primeiro termo de correção no cálculo de g para oscilações ligeiramente maiores do que as consideradas em um $p\hat{e}ndulo$ simples ($\theta_0 \approx 0$).

4. Seja $A(x,t) = A_0 \cos(kx - \omega t)$ a função que descreve a posição x no instante t de uma onda com amplitude máxima A_0 , número de onda k e frequência angular ω . Mostre que a média temporal de $|A(x,t)|^2$ (intensidade) dentro de um período de oscilação $T = 2\pi/\omega$ é igual a $\frac{1}{2}A_0^2$, isto é, $\frac{1}{T}\int_0^T |A(x,t)|^2 dt = \frac{1}{2}A_0^2$. (Dica: considere kx constante em relação a t.)

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. **Data máxima de entrega: 24/04/2025 até 14:00 horas**

Ciência da Computação

Prof. Tiago J. Arruda

- 5. Calcule $\int \sin x \cos x \ dx$ por quatro métodos:
 - (a) a substiuição $u = \cos x$;
- (c) a identidade $\sin 2x = 2 \sin x \cos x$;
- (b) a substituição $u = \operatorname{sen} x$;
- (d) integração por partes.

Explique os aspectos diferentes de suas respostas.

- 6. Calcule as integrais de produtos de funções trigonométricas com arcos diferentes.
- (a) $\int \sin 8x \cos 5x \, dx$ (c) $\int \sin 5x \sin x \, dx$ (e) $\int \cos \pi x \cos 4\pi x \, dx$

- (b) $\int \sin 2x \cos 3x \, dx$ (d) $\int_{-\pi/2}^{\pi} \sin 2x \sin 3x \, dx$ (f) $\int_{-\pi/2}^{\pi/2} \cos x \cos 7x \, dx$

∧ Substituição trigonométrica

7. Calcule a integral usando a substituição trigonométrica indicada. Esboce o triângulo retângulo associado, indicando o ângulo θ e os comprimentos dos lados.

(a)
$$\int x^3 \sqrt{9 - x^2} dx$$
 (b) $\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$ (c) $\int \frac{x^3}{\sqrt{x^2 + 9}} dx$ $(x = 3 \sec \theta)$ $(x = 3 \tan \theta)$

(b)
$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$
$$(x = 3 \sec \theta)$$

(c)
$$\int \frac{x^3}{\sqrt{x^2 + 9}} dx$$
$$(x = 3\tan\theta)$$

8. Calcule a integral usando substituição trigonométrica.

(a)
$$\int_0^{3/2} \frac{dx}{\sqrt{9-x^2}}$$
 (e) $\int \frac{dx}{x^2\sqrt{4+x^2}}$

(e)
$$\int \frac{dx}{x^2\sqrt{4+x^2}}$$

(i)
$$\int \frac{x}{\sqrt{x^2 + 4x - 5}} dx$$
[Dica: $x^2 + 4x - 5 = (x+2)^2 - 9$]

(b)
$$\int_0^3 \frac{x}{\sqrt{36 - x^2}} dx$$
 (f) $\int \frac{x^2}{\sqrt{x^2 - 4}} dx$

$$(f) \int \frac{x^2}{\sqrt{x^2 - 4}} dx$$

(j)
$$\int \sqrt{x^2 + 2x} \ dx$$

(c)
$$\int_0^1 x^3 \sqrt{1-x^2} dx$$
 (g) $\int \frac{x^2}{\sqrt{9-25x^2}} dx$

$$(g) \int \frac{x^2}{\sqrt{9 - 25x^2}} dx$$

(k)
$$\int \frac{dx}{\sqrt{x^2 - 6x + 13}}$$

(d)
$$\int_{\sqrt{2}}^{2} \frac{1}{t^3 \sqrt{t^2 - 1}} dt$$
 (h) $\int \frac{dx}{\sqrt{16 - 9x^2}}$

$$\text{(h)} \int \frac{dx}{\sqrt{16 - 9x^2}}$$

(1)
$$\int \sqrt{8-2x-x^2} \ dx$$

- $\mathbf{9}$. Uma circunferência de raio R centrada na origem do plano cartesiano tem equação $x^2 + y^2 = R^2$. Mostre que a área da região delimitada pela circunferência é πR^2 .
- **10.** Resolva a integral $\int \frac{\tan \left[\ln \left(x + \sqrt{1 + x^2}\right)\right]}{\sqrt{1 + x^2}} dx$.