

Cálculo 2

Lista de Exercícios - Módulo 1 - Lista 5

1) A descrição quântica dos fenômenos subatômicos é probabilística. Considere um oscilador harmônico quântico unidimensional, onde partícula subatômica de massa m se movimenta no eixo x sob a ação de um potencial da forma V(x) = mω²x²/2, que é o potencial do sistema massa-mola com frequência ω.

A probabilidade de encontrarmos a partícula no intervalo (x_1, x_2) é proporcional à integral

$$\int_{x_1}^{x_2} X(x)^2 dx$$

onde a função X(x) satisfaz a equação de Schrödinger

$$-\frac{\hbar^2}{2m}X''(x) + \frac{m\omega^2}{2}x^2X(x) = EX(x)$$

onde \hbar é a constante de Planck dividida por 2π e E é a energia do oscilador. Por simplicidade, vamos supor que $m=\hbar=\omega=1$ de modo que

$$X''(x) + (2E - x^2)X(x) = 0$$

- a) Escrevendo $X(x) = e^{-x^2/2}y(x)$, mostre que y(x) satisfaz $y''(x) 2xy'(x) + 2\lambda y(x) = 0$, conhecida como equação de Hermite, onde $\lambda = E 1/2$.
- b) Escrevendo a solução como o polinômio y(x) = ∑_{n=0}[∞] c_nxⁿ, determine, em função dos coeficientes c_n, os coeficientes p_n do polinômio −2xy'(x) = ∑_{n=0}[∞] p_nxⁿ. Use a equação de Hermite para obter a equação de recorrência satisfeita pelos c_n.
- c) Para λ = 6, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou impar?
- d) Para λ = 7, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou impar?
- 2) Pelo Exercício 5, para descrever a posição do elétron no átomo de hidrogênio, precisamos resolver a equação de Laguerre

$$xy''(x) + (1-x)y'(x) + (\nu + \lambda)y(x) = 0$$

O objetivo desse exercício é investigar as soluções dessa equação usando séries de potências.

- a) Escrevendo a solução como o polinômio $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n e q_n dos polinômios $(1-x)y'(x) = \sum_{n=0}^{\infty} p_n x^n$ e também $xy''(x) = \sum_{n=0}^{\infty} q_n x^n$.
- b) Use o item anterior e a equação de Laguerre para obter a equação de recorrência satisfeita pelos c_n.

- c) Verifique que, quando $\nu + \lambda$ é um inteiro, então y(x) é um polinômio de grau $\nu + \lambda$.
- d) Supondo y(0) = 1 e ν + λ = 1, determine y(x).
- e) Supondo y(0) = 6 e ν + λ = 3, determine y(x).
- 3) Pelo Exercício 6, para descrever a posição do elétron no átomo de hidrogênio, precisamos resolver a equação de Legendre

$$(1 - x^2)y''(x) - 2xy'(x) + \lambda(\lambda + 1)y(x) = 0$$

O objetivo desse exercício é investigar as soluções dessa equação usando séries de potências.

- a) Escrevendo a solução como o polinômio $y(x) = \sum_{n=0}^{\infty} c_n x^n$, determine, em função dos coeficientes c_n , os coeficientes p_n e q_n dos polinômios $-2xy'(x) = \sum_{n=0}^{\infty} p_n x^n$ e também $(1-x^2)y''(x) = \sum_{n=0}^{\infty} q_n x^n$.
- b) Use o item anterior e a equação de Legendre para obter a equação de recorrência satisfeita pelos c_n .
- c) Para λ = 6, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou ímpar?
- d) Para λ = 7, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou impar?
- 4) A temperatura de equilibrio T(P) em um ponto P de uma chapa elíptica feita com um material uniforme pode ser escrita em função das coordenadas elípticas confocais (x, t) de P dadas por

$$x = \frac{d_A - d_B}{d}$$
 $t = \frac{d_A + d_B}{d}$,

onde d é a distância entre os focos A e B da elipse, d_A é a distância entre P e A e d_B é a distância entre P e B.

Temos que x varia em [-1,1] e que t varia em [1,2R/d], onde R é o raio maior da elipse. Note que o conjunto dos pontos tais que t é constante formam uma elipse. Escrevendo a temperatura em P como produto de duas funções T(P) = y(x)z(t), é possível mostrar que as funções y(x) e z(t) satisfazem as seguintes equações diferenciais

$$\frac{(1-x^2)y''(x) - xy'(x)}{-y(x)} = \lambda^2 = \frac{(1-t^2)z''(t) - rz'(t)}{-z(t)}$$

onde λ é um inteiro positivo. Segue que y(x) satisfaz a equação Tchebychev

$$(1 - x^2)y''(x) - xy'(x) + \lambda^2 y(x) = 0$$

a) Escrevendo a solução como o polinômio y(x) = ∑_{n=0}[∞] c_nxⁿ, determine, em função dos coeficientes c_n, os coeficientes p_n e q_n dos polinômios −xy'(x) = ∑_{n=0}[∞] p_nxⁿ e também (1 − x²)y"(x) = ∑_{n=0}[∞] q_nxⁿ.

- b) Use o item anterior e a equação de Tchebychev para obter a equação de recorrência satisfeita pelos c_n.
- c) Para λ = 6, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou ímpar?
- d) Para λ = 7, determine os coeficientes das soluções canônicas y₁(t) e y₂(t) e decida qual delas é polinômio. Essa solução é uma função par ou ímpar?
- 5) (Desafio) No átomo de hidrogênio, a posição do elétron é dada em coordenadas esféricas por (r, θ, φ), onde r é a distância do elétron ao núcleo, θ é o ángulo polar e φ é o añgulo azimutal. A probabilidade do elétron estar na região de coordenadas (r, θ, φ) com r ∈ (r₁, r₂), θ ∈ (θ₁, θ₂) e φ ∈ (φ₁, φ₂) é proporcional a

$$\int_{r_1}^{r_2} R(r)^2 dr \int_{\theta_1}^{\theta_2} \Theta(\theta)^2 d\theta \int_{\phi_1}^{\phi_2} \Phi(\phi)^2 d\phi$$

onde R(r) satisfaz a equação

$$\frac{1}{R(r)} \left(r^2 R'(r)\right)' - \frac{2mr^2}{\hbar^2} \left(-\frac{e^2}{4\pi\epsilon_0} \frac{1}{r} - E\right) = \lambda(\lambda + 1)$$

onde m é a massa do elétron, \hbar é a constante de Planck dividida por 2π , e é a carga elétrica do próton, ϵ_0 é a permissividade no vácuo, E < 0 é a energia do elétron e λ é um inteiro denominado número quântico orbital. O objetivo desse exercício é mostrar que R(r) é determinada pela equação de Laguerre, que será resolvida por séries de potências no próximo exercício.

a) Seja S(x) solução da equação

$$x^{2}S''(x) + 2xS'(x) + (2\nu x - x^{2} - \lambda(\lambda + 1))S(x) = 0$$

Mostre que $R(r) = S(\kappa r)$ é solução da equação do enunciado, onde

$$\kappa = \frac{\sqrt{-2mE}}{\hbar}$$
 e $\nu = \frac{me^2}{4\pi\epsilon_0\hbar^2\kappa}$

b) Seja z(x) solução da equação de Laguerre associada

$$xz''(x) - 2(\lambda - x + 1)z'(x) + 2(\nu - \lambda - 1)z(x) = 0$$

Mostre que $S(x) = x^{\lambda}e^{-x}z(x)$ é solução da equação do item anterior.

c) Mostre que

$$(xy'' + (1-x)y' + py)^{(q)} = xy^{(q+2)} + (1-x+q)y^{(q+1)} + (p-q)y^{(q)}$$

onde p é uma constante, q é um inteiro positivo e $y^{(q)}$ é a derivada q-ésima de y(x).

d) Seja y(x) solução da equação de Laguerre

$$xy''(x) + (1-x)y'(x) + (\nu + \lambda)y(x) = 0$$

Use o item anterior com $p = \nu + \lambda$ e $q = 2\lambda + 1$, para mostrar que

$$z(x) = y^{(2\lambda+1)}(2x)$$

é solução da equação de Laguerre associada.

Página 17 de 18

6) (Desafio) No átomo de hidrogênio, a posição do elétron é dada em coordenadas esféricas por (r, θ, φ), onde r é a distância do elétron ao núcleo, θ é o ângulo polar e φ é o angulo azimutal. A probabilidade do elétron estar na região de coordenadas (r, θ, φ) com r ∈ (r₁, r₂), θ ∈ (θ₁, θ₂) e φ ∈ (φ₁, φ₂) é proporcional a

$$\int_{r_1}^{r_2} R(r)^2 dr \int_{\theta_1}^{\theta_2} \Theta(\theta)^2 d\theta \int_{\phi_1}^{\phi_2} \Phi(\phi)^2 d\phi$$

Temos que $\Theta(\theta)$ satisfaz a equação

$$\Theta(\theta) \left(\operatorname{sen}(\theta) \left(\operatorname{sen}(\theta) \Theta'(\theta) \right)' \right) + \lambda(\lambda + 1) \operatorname{sen}^{2}(\theta) = \mu^{2}$$

onde λ e μ são inteiros denominados números quânticos, respectivamente, orbital e magnético.

O objetivo desse exercício é mostrar que $\Theta(\theta)$ é determinada pela equação de Legendre, que será resolvida por séries de potências no próximo exercício.

a) Desenvolva a equação do enunciado e obtenha que

$$\Theta''(\theta) + \frac{\cos(\theta)}{\sin(\theta)}\Theta'(\theta) + \left(\lambda(\lambda+1) - \frac{\mu^2}{\sin^2(\theta)}\right)\Theta(\theta) = 0$$

b) Seja z(x) solução da equação de Legendre associada

$$(1-x^2)z''(x) - 2xz'(x) + \left(\lambda(\lambda+1) - \frac{\mu^2}{1-x^2}\right)z(x) = 0$$

Mostre que $\Theta(\theta)=z(x),$ onde $x=\cos(\theta),$ é solução da equação do item anterior.

c) Seja y(x) solução da equação de Legendre

$$(1 - x^2)y'' - 2xy' + \lambda(\lambda + 1)y = 0$$

Mostre que

$$(1-x^2)y^{(\mu+2)} - 2(\mu+1)xy^{(\mu+1)} + (\lambda(\lambda+1) - \mu(\mu+1))y^{(\mu)} = 0$$

d) Seja y(x) solução da equação de Legendre. Use o item anterior para mostrar que

$$z(x) = (1 - x^2)^{\frac{\mu}{2}} y^{(\mu)}(x)$$

é solução da equação de Legendre associada.

(2)	,	ζ.	3,	(x)	+	(7	-x)	y'(x) +	- (٠ +	λ)	9(x)) =	0			
(C)	(1	-	x)	y)(x) =	6.1	- ×)	8 X	Cn	+1 (,	(+1)	×~						
						8 E 8	Cn	·7 (»	1+1	x ⁿ	+	200	>	c'. (n+1	(n=	L).	×n
						8 E	Cnf	7 (u	(+ 7)	x٨	+	8 W.	- 1	Cn+	1 (n	+ 7)	. x	,n+1
						N.	, Cr	+4 (n+1	L) x"	. +	8 N		Cn	(n)	χ'n		
		ļ			e	8W.	(C,	1+ L	(n	+ 1)	- C	n (n	١).	xn				
	x Y	٠(x)							e)(n +5)								
		ļ		*	0 E 0	Cn	+5 (n+ 1	.) n	. x ⁿ								
ы	N WS	((c,	1+1	(n+	r) (v).	- (c.	n+2 ⁽	(n+3	y)-((0,0	(n)	+ (V + N	.).(in))	(xn)) = (
	Cn	.4	۲ (n+	7)(n)	+ C	.n+4	(n	+L)	- C	n (I	+ (ر	C	1 + X) C	n :	0
) (n					رد	(V+	(۸)	Cn					
	Cn		. =	<u>n</u>	- C	V-2).(-n										

Zera quando . . . 20

$$3 \left(1 - x^{2}\right) y^{n}(x) - 2x y^{n}(x) + \lambda (\lambda + 1) y^{n}(x) = 0$$

$$\lambda(\lambda + 1) y^{n}(x) : \sum_{n=0}^{\infty} \lambda(\lambda + 1) C_{n}(x^{n})$$

$$-2x y^{n}(x) : \sum_{n=0}^{\infty} -2 x^{1} C_{n}(n) x^{n-2}$$

$$\vdots \underbrace{\mathcal{E}}_{n=0}^{\infty} -2 C_{n}(n) x^{n}$$

$$(1-x)^{2} y^{n}(x) = \underbrace{\mathcal{E}}_{n=0}^{\infty} (1-x)^{2} C_{n+2}(n+2)(n+3) x^{n}$$

```
n=0 Cn+2 (n+2) Cn+1). X P n=0 Cn+2 (n+2) (n+1) A
                = E Cn+2 (n+2) (n+1). x" + E - Cn. (n) (n-1). x"
                = E (Cn+2 (n+2)(n+1) - Cn(n)(n-1)) x"
b) 2(2+2) Cn -2. Cn(n) + Cn+2(n+2)(n+1)-Cn(n)(n-1) =0
Cn+2 = 2 Cn(h) + Cn(n)(n-1) - 2(2+1) Cn
               (n+2) (n+1)
Cn+2 = &n + n2 - n - 2(2+1) . Cn
            (n+2)(n+1)
Cn+2 = n(n+1) - x(x+1). Cn
         (n+2)(n+1)
```



```
y_{2}(x) = 0 + 1 + (2x^{2} + C_{3}.x^{3} + ...
C_{0} = 0 - A \quad C_{2} = 0 ... \quad 0
C_{1} = 1 - A \quad C_{2} = 0 ... \quad 0
C_{3} = C_{1+2} = \frac{n(n+2) - 6.7}{(n+2)(n+2)} \quad A = \frac{2-42}{6} \cdot 1 - A \quad A = \frac{-40}{6} = \frac{-20}{3}
3(4) \quad 3(
```

(1-x2) y"(x) - x y'(x) + x2 y(x) = 0 λ2 y(x) = = 2 λ2 cn. xn -x y(x) = & -Cn. (n) xn (1-x2) y" (x) = E Cn+2 (n+2)(n+3).x" - Cn(n-1)(n) x" = E (Cn+2(n+2)(n+1) - Cn(n)(n-1)) Xh b) Cn+z (n+z)(n+1) - Cn(n)(n-1) - Cn(h) + 22 Cn = 0 $C_{n+2} = \frac{n^2 - \lambda^2}{(n+2)(n+3)}$. Cn c) x=6 Cn+2: n2-36 Cn -> n=6 nb zera (h+2)(n+1) gicx) Co = 1 C1=0 - C3=0 ...

