BIOS 6312: Modern Regression Analysis

Andrew J. Spieker, Ph.D.

Assistant Professor of Biostatistics Vanderbilt University Medical Center

Set 14: Bootstrap Methods

Version: 04/18/2023

TABLE OF CONTENTS

Ordinary inference

The nonparametric bootstrap

Confidence intervals and inverting the test:

• Consider the following general quantity, which follows a familiar form:

$$S = \frac{\widehat{\theta} - \theta}{\widehat{\mathsf{SE}}(\widehat{\theta})}$$

- When using this quantity to construct CIs, we often rely on two particular properties:
 - ▶ S is *pivotal* in large samples, meaning its asymptotic distribution does not depend upon θ .
 - ► S possesses a distribution that is approximately symmetric about zero in large samples.

Confidence intervals and inverting the test:

• Consider a coefficient, β , from a regression model:

$$rac{\widehat{eta}-eta}{\widehat{\mathsf{SE}}(\widehat{eta})}\stackrel{\cdot}{\sim} t_{d\!f}$$
.

Note that the pivotal property is embedded above. Further,

$$\begin{split} t_{\alpha/2,\mathit{df}} \leq & \quad \frac{\widehat{\beta} - \beta}{\widehat{\mathtt{SE}}(\widehat{\beta})} & \leq t_{1 - \alpha/2,\mathit{df}} \\ \iff t_{\alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \leq & \widehat{\beta} - \beta & \leq t_{1 - \alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \\ \iff -t_{1 - \alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \leq & \beta - \widehat{\beta} & \leq -t_{\alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \\ \iff \widehat{\beta} - t_{1 - \alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \leq & \beta & \leq \widehat{\beta} - t_{\alpha/2,\mathit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \end{split}$$

From symmetry property, further derive the following:

$$\widehat{eta} - t_{1-lpha/2,df} \, \widehat{\mathsf{SE}}(\widehat{eta}) \! \leq \! eta \! \leq \! \widehat{eta} + t_{1-lpha/2,df} \, \widehat{\mathsf{SE}}(\widehat{eta})$$

• These properties are the basis for forming symmetric CIs based on large sample theory.

Confidence intervals and inverting the test:

- When no such pivotal quantity exists, confidence intervals can be obtained by directly inverting the test.
- "Find all $\beta^{(0)}$ such that $H_0: \beta = \beta^{(0)}$ cannot be rejected."

Confidence intervals and inverting the test:

- In linear regression, an *exact* distribution for $\widehat{\beta}$ based on the *t*-distribution depends upon normality of the errors.
- That distribution is approximately correct for large samples even if normality does not hold.
- In smaller samples, the nonparametric bootstrap can be used to obtain CIs that do not rely on large sample theory.

TABLE OF CONTENTS

Ordinary inference

2 The nonparametric bootstrap

Preliminaries: \mathbb{F}_N , approximates $F(x) = P(X \le x)$

Preliminaries: \mathbb{F}_N , approximates $F(x) = P(X \le x)$

Main ideas:

- Let F denote cdf for (X, Y) or (Y|X), depending on context; let \mathbb{F}_N denote empirical cdf based on N observations.
 - $m{eta} = T(F)$, and hence $\widehat{m{eta}} = T(\mathbb{F}_N)$.
 - ▶ Absent parametric form, \mathbb{F}_N is our best estimate of F.
- Repeat-sample of \mathbb{F}_N with replacement gives information on distribution of $\widehat{\boldsymbol{\beta}}^* = \mathcal{T}(\mathbb{F}_N^*)$; asterisk denotes fixed \mathbb{F}_N .
- Let $\{\widehat{\beta}_b^*\}_{b=1}^B$ denote the (bootstrap) samples.
- Note two layers of variation:
 - ▶ How well \mathbb{F}_N approximates F (better as $N \nearrow \infty$ by Glivencko-Cantelli: $\sup_{t \in [0,1]} |F(t) \mathbb{F}_N(t)| \longrightarrow_{\text{a.s.}} 0$).
 - ▶ How well $\{\widehat{\boldsymbol{\beta}}_b^*\}_{b=1}^B$ approximates $T(\mathbb{F}_N^*)$ (better as $B \nearrow \infty$).
- Which source of variation can we better control?

Estimator-attributed bias:

• Let $\widehat{\boldsymbol{\beta}}_b^* = T(F_{N:b}^*)$ denote estimate based on b^{th} bootstrap sample. We may estimate bias as follows:

$$\widehat{\mathsf{Bias}} = \frac{1}{B} \sum_{b=1}^{B} (T(\mathbb{F}_{N:b}^{*}) - T(\mathbb{F}_{N}))$$
$$= \frac{1}{B} \sum_{b=1}^{B} \widehat{\boldsymbol{\beta}}_{b}^{*} - \widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}}^{*} - \widehat{\boldsymbol{\beta}} \approx \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}.$$

- Note that $\hat{\pmb{\beta}}^* = \frac{1}{B} \sum_{b=1}^B \hat{\pmb{\beta}}_b^*$ for simplicity.
- Correction won't catch external sources of bias; be warned.

Covariance:

• We may estimate the covariance as well:

$$\widehat{\mathsf{Cov}}\left(\widehat{oldsymbol{eta}}
ight) = rac{1}{B-1} \sum_{b=1}^{B} (\widehat{oldsymbol{eta}}_b^* - \widehat{oldsymbol{eta}}^*) (\widehat{oldsymbol{eta}}_b^* - \widehat{oldsymbol{eta}}^*)^T$$

• For the k^{th} coefficient, we have:

$$\widehat{\mathbf{v}}_k = \widehat{\mathsf{Var}}(\widehat{\boldsymbol{\beta}}_k) = \frac{1}{B} \sum_{b=1}^B ([\widehat{\boldsymbol{\beta}}_b^*]_k - \widehat{\boldsymbol{\beta}}_k^*)^2$$

Confidence intervals: Normal approximation (bias-correction)

• Symmetric $(1 - \alpha)$ CI:

$$(\widehat{eta}_k - \widehat{\mathsf{Bias}}_k) \pm \sqrt{\widehat{v}_k} z_{1-lpha/2}$$

- Assumptions:
 - $\hat{\beta}_k \beta_k \sim \mathcal{N}(\mathsf{Bias}_k, \sigma^2)$, which is symmetric and pivotal.
 - ightharpoonup Bias_k and \hat{v}_k are good estimates of Bias_k and σ^2 .
- Good for cases where *N* is large enough that normal approximation holds, but no known theoretical formula for asymptotic variance.
- Can use QQ-plots to evaluate departures from normality.

Confidence intervals: Pivot based

- Let $\widehat{\beta}_{k(p)}^*$ denote p^{th} quantile of k^{th} coefficient of $\{\widehat{\beta}_b^*\}_{b=1}^B$.
- Behavior of $\beta_k \widehat{\beta}_k$ approximately that of $\widehat{\beta}_k \widehat{\beta}_k^*$:

0.95
$$\approx P\left(\widehat{\beta}_{k(\alpha/2)}^* \le \widehat{\beta}_k^* \le \widehat{\beta}_{k(1-\alpha/2)}^*\right)$$

$$= P\left(\widehat{\beta}_k - \widehat{\beta}_{k(1-\alpha/2)}^* \le \widehat{\beta}_k - \widehat{\beta}_k^* \le \widehat{\beta}_k - \widehat{\beta}_{k(\alpha/2)}^*\right)$$

$$\approx P\left(\widehat{\beta}_k - \widehat{\beta}_{k(1-\alpha/2)}^* \le \beta_k - \widehat{\beta}_k \le \widehat{\beta}_k - \widehat{\beta}_{k(\alpha/2)}^*\right)$$

$$= P\left(2\widehat{\beta}_k - \widehat{\beta}_{k(1-\alpha/2)}^* \le \beta_k \le 2\widehat{\beta}_k - \widehat{\beta}_{k(\alpha/2)}^*\right)$$

- Assumptions:
 - $ightharpoonup \widehat{eta}_k eta_k$ asymptotically pivotal (not necessarily symmetric).

Confidence intervals:

- There are plenty of other of bootstrap-based confidence intervals.
 One simple one I did not cover is based on the quantiles of the bootstrap samples.
- The pivot-based confidence interval is generally understood to have better properties.
- See empirical process theory for all kinds of other generalizations, extensions, theoretical results.

Linear regression: Fixed design

- Re-sample residuals $\hat{\epsilon}_i^*$ from the existing residuals $\{\hat{\epsilon}_i\}_{i=1}^N$ with replacement.
- Keep \mathbf{x}_i intact and form N new outcomes as $y_i^* = \mathbf{x}_i^T \hat{\boldsymbol{\beta}} + \hat{\epsilon}_i^*$ for i = 1, ..., N.
- Estimate $\hat{\beta}_b^*$ for b = 1, ..., N; form estimates/confidence intervals of your choosing from prior methods.
- Assumptions:
 - Homoscedasticity of errors.
 - Correct mean-model.
- Example: designed experiment/block-randomized trial.
- If **X** is discrete, you can simply leave the **x**'s as they are and resample the outcomes separately within subgroup of **X**.

Linear regression: Random design

- Re-sample pairs (\mathbf{x}_i^*, y_i^*) from existing observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$ with replacement.
- Estimate $\hat{\beta}_b^*$ for b = 1, ..., N; form estimates/confidence intervals of your choosing from prior methods.
- Design changes with each sample.
- Consistent with an observational study with random sampling irrespective of exposure/outcome.
- Consistent with fully/purely randomized experiment (like a coin toss).

Linear regression: Fixed vs. random design

- Assume homoscedastic errors.
- If the mean model is correct, either version of the bootstrap should perform well regardless of whether **X** is fixed by design or random.
- If X is fixed by design, mean-model misspecification will tend to result in an overstated variance if you treat X as random.
- If **X** is random by design, mean-model misspecification will tend to result in an understated variance if you treat **X** as fixed.

Stata: Example (MRI)

- regress height age, robust (recall)
- regress height age, vce(bs, reps(500))
- regress height age, vce(bs, reps(500) nodots)
- estat bootstrap, all

Stata: Example (MRI)

. regress height age, robust

Linear regression Number of obs = 735 F(1, 733) 9.21 Prob > F = 0.0025 R-squared = 0.0120 Root MSE

height	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
age	1953694	.0643711	-3.04	0.002	3217432	0689956
_cons	180.3453	4.805937	37.53	0.000	170.9103	189.7804

9.6581

Stata: Example (MRI)

```
. regress height age, vce(bs, reps(500))
(running regress on estimation sample)
Bootstrap replications (500)
1 2 3 4 5
                                                   100
                                                   150
                                                   200
                                                   250
                                                   300
                                                   350
                                                   400
                                                   500
Linear regression
                                              Number of obs
                                                                        735
                                              Replications
                                                                        500
                                              Wald chi2(1)
                                              Prob > chi2
                                                                     0.0038
                                              R-squared
                                                                      0.0120
                                              Adj R-squared
                                                                      0.0107
                                              Root MSE
                                                                      9.6581
                Observed
                           Bootstrap
                                                            Normal-based
                                                        [95% Conf. Interval]
      height
                   Coef.
                           Std. Err.
                                              P>|z|
               -.1953694
                           .0674101
                                      -2.90
                                              0.004
                                                       -.3274907
                                                                   -.0632481
        age
       _cons
                180.3453
                           5.000509
                                      36.07
                                              0.000
                                                        170.5445
                                                                    190.1461
```

Stata: Example (MRI)

. regress height age, vce(bs, reps(500) nodots)

Linear regression

Number of obs = 735
Replications = 500
Wald chi2(1) = 8.97
Prob > chi2 = 0.0027
R-squared = 0.0120
Adj R-squared = 0.0107
Root MSE = 9.6581

height	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal-based [95% Conf. Interval]		
age	1953694	.0652377	-2.99	0.003	323233	0675058	
_cons	180.3453	4.874817	37.00	0.000	170.7909	189.8998	

Stata: Example (MRI)

. estat bootstrap, all

Linear regression Number of obs = 735Replications = 500

height	Observed Coef.	Bias	Bootstrap Std. Err.	[95% Conf.	Interval]	
age	19536938	0014101	.06523773	323233	0675058	(N)
				3367485	0664426	(P)
				3296939	0654481	(BC)
_cons	180.34533	.1100677	4.8748171	170.7909	189.8998	(N)
				170.8138	190.7536	(P)
				170.6618	190.2488	(BC)

- (N) normal confidence interval
- (P) percentile confidence interval
- (BC) bias-corrected confidence interval

Stata: Example (MRI)

- N: Normal CI
- P: Percentile CI
- BC: Bias-corrected CI

SUMMARY

Notes: Topics in this unit

- Reminder of typical inference procedures.
- The bootstrap.
 - A powerful tool that allows you to conduct inference and form confidence intervals in settings where you may not be able to trust model-based or sandwich standard errors.
- There is plenty more to say about the bootstrap. Take advanced regression courses to learn more! :)

SUMMARY

Notes: Next unit

Bayesian methods!