1 Betingad sannolikhet

1.1 Definition

Låt E och F vara två händelser. Antag P(F) > 0. Sannolikheten för E betingat av F betecknas med P(E|F) och defineras som

$$P(E|F) = \frac{P(EF)}{P(F)}$$

1.2 Exempel

Kasta en tärning $E = \{ fått en etta \}, F = \{ fått ett ojämt antal ögon \}$

$$P(E) = \frac{1}{6}, P(F) = \frac{1}{2}, P(EF) = \frac{1}{6}$$

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{1}{3} \quad \blacksquare$$

1.3 Egenskaper

1.3.1 Sats (a) (Lagen om total sannolikhet)

Låt F_1, F_2, \ldots, F_n disjunkta händelser med $P(F_i) > 0, i = i, \ldots, n$, som uppfyller hela utfallsrummet (dvs $\bigcup_{i=1}^n F_i = S$). För varje händelse E gäller

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

1.3.2 Sats (b) (Bayes' formel)

Under samma villkor som (a)

$$P(F_i|E) = \frac{P(E|F_i)P(F_i)}{P(E)}$$

1.3.3 Bevis (a)

HL

$$\sum_{i=1}^{n} P(E|F_i) * P(F_i) = \sum_{i=1}^{n} \frac{P(EF_i)}{P(F_i)} * P(F_i) = \sum_{i=1}^{n} P(EF_i) = P(\bigcup_{i=n}^{n} EF_i) = P(E(P(\bigcup_{i=n}^{n} F_i))) = P(ES) = P(E)$$

1.3.4 Bevis (b)

 $_{\mathrm{HL}}$

$$\frac{P(E|F_i)P(F_i)}{P(E)} = \frac{\frac{P(EF_i)}{P(F_i)} * P(F_i)}{P(E)} = \frac{P(EF_i)}{P(E)} = P(F_i|E)$$

1.4 Exempel

I en fabrik tillverkas 25% av enheterna vid maskin 1, 35% vid maskin 2 och 40% vid maskin 3. Av produktionen är respektive 5%, 4% och 2% defekt.

Total sannolikhet

$$P(E) = P(E|F_1)P(F_1) + P(E|F_2)P(F_2) + P(E|F_3)P(F_3)$$

1.4.1 Fråga (a)

Hur stor är sannolikheten att en slumpmässigt vald enhet är defekt?

1.4.2 Fråga (b)

Antag att en kund påträffar en felaktig enhet. Hur stor är sannolikheten att den tillverkades av maskin 1?

$$\frac{P(E|F_i) * P(F_i)}{P(E)} = P(F_i|E)$$

1.4.3 Lösning (a)

Rimligt (i = 1, 2, 3)

 $F_i = \{ \text{ enhet var tillverkats vid maskin i } \}$

 $E_i = \{ \text{ enhet "ar felaktig"} \}$

Från text:

$$P(F_1) = 0.25, P(F_2) = 0.35, P(F_3) = 0.4$$

Efter "omformulering":

$$P(E|F_1) = 0.05, P(E|F_2) = 0.04, P(E|F_3) = 0.02$$

Total sannolikhet ger

$$P(E) = P(E|F_1)P(F_1) + P(E|F_2)P(F_2) + P(E|F_3)P(F_3) =$$

$$= 0.05 * 0.25 + 0.04 * 0.35 + 0.02 * 0.4 = 0.0345$$

1.4.4 Lösning (b)

"givet att enheten är felaktig"

"hur stor sannolikhet att enheten har tillverkats vid maskin 1?"

$$P(F_i|E) = \frac{P(E|F_i)P(F_i)}{P(E)} = \frac{0.05*0.25}{0.0345} = 0.36 \quad \blacksquare$$

1.5 Oberoende händelser

Om betingad sannolikhet

$$P(E|F) = P(E)$$

så påverkar F inte sannolikheten för E.

Vi säger att E och F är oberoende om

$$P(E|F) = P(E)$$

1.6 Definition

Två händelser E och F säges vara oberoende om

$$P(E \cap F) = P(E)P(F)$$

1.7 Exempel

Två enheter B_1 och B_2 är parallelkopplade. B_1 och B_2 fungerar oberoende av varandra (fysikaliskt). Vi antar att

$$P(\{enhet B_i fungerar\}) = 0.9$$

Vi säger att systemet fungerar om minst en av B_1 och B_2 fungerar. Besäm sannolikheten att systemet fungerar.

1.7.1 Lösning

$$A_1 = \{B_1 \ fungerar\}$$

$$A_2 = \{B_2 \ fungerar\}$$

Vi ska bestämma

$$P(A_1 \cup A_2)$$

Slut av föreläsning 2:

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2) = 0.9 + 0.9 + 0.81 = 0.99$$

2 Stokastiska variabler (= slumpvariabler)

2.1 Definition

En stokastisk variabel X är en funktion från utfallsrummet till den reella linjen \mathcal{R} , dvs $X:\Omega\to\mathcal{R}$.

2.2 Exempel

- X=pH-värdet i ett vattenprov.
- Y=antalet studenter som lyckas genomföra en viss laboration inom en utsatt tid.

2.3 Exempel

Kasta en tärning

$$E_1 = \{ \text{ fått en etta } \} \longrightarrow 1, X(E_1) = 1$$

$$E_6 = \{ \text{ fått en sexa} \} \longrightarrow 6, X(E_6) = 6$$

Man säger också $P(X = 1) = \frac{1}{6} \dots P(X = 6) = \frac{1}{6}$.

2.4 Definition (a)

En stokastisk variabel säges vara <u>diskret</u> om den kan anta ett ändligt eller uppräkneligt antal olika värden.

2.5 Definition (b)

För en diskrev stokastisk variabel defineras sannolikhetsfunktionen

$$p_X(k) = P(X = k), \forall k \in Image(X)$$

2.6 Exempel

Gör två kast med ett mynt. Låt

 $X: \#(antalet) \ kast \ som \ ger \ krona$

X kan anta värdena 0, 1, 2

2.6.1 Sannolikhetsfunktion

$$p_X(0) = P(X = 0) = P(\{kl, kl\}) = \frac{1}{4}$$

$$p_X(1) = P(X = 1) = P(\{kl, kr\} \cup \{kr, kl\})$$

$$= P(\{kl, kr\}) + P(\{kr, kl\}) = \frac{1}{2}$$

$$p_X(2) = P(X = 2) = P(\{kr, kr\}) = \frac{1}{4}$$

2.7 Exempel

Sannolikhetsfunktionen av en viss stokastisk variabel ges av

$$P(X = k) = c \frac{\lambda^k}{k!}, \ k = 0, 1, 2, \dots, \ \lambda > 0$$

Bestäm C så att summan av alla P = 1.

$$1 = \sum_{k=0}^{\inf} c \frac{\lambda^k}{k!} = c \sum_{k=0}^{\inf} \frac{\lambda^k}{k!} = c = e^{\lambda} \implies c = e^{-\lambda}$$