Subjectul C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU

t <u>ai 0. i itt</u>	DOCEREA ŞI OTILIZAREA CORENTOLOI CONTINOO
II.a.	
	observația că panta dreptei (1) este numeric egală cu inversul rezistenței
	$R = \frac{\Delta U}{\Delta I}$
	$\frac{1}{\Delta I}$
	Rezultat final: $R = 20 \Omega$
b.	
	deducerea ecuației dreptei de sarcină (2): $I = \frac{E}{r} - \frac{1}{r}U$
	din grafic: $I = 0 \Rightarrow U_{gol} = E$
	Rezultat final: $E = 6 \text{ V}$
C.	
	din grafic $U = 0 \Rightarrow I_{sc} = \frac{E}{r} = 0.3 A$
	$r = \frac{E}{I_{SC}}$
	I_{sc}
	Rezultat final: $r = 20 \Omega$
d.	
	din grafic $U = 3 \text{ V} \Rightarrow I = 0.15 \text{ A}$
	A = A = A = A
	$I = \frac{\Delta N}{\Delta t} e$
	$\frac{\Delta N}{\Delta t} = \frac{I}{e}$
	Rezultat final: $\frac{\Delta N}{\Delta t} = 9.4 \cdot 10^{17} \text{ s}^{-1}$