Protocolos de Redes de Computadores Camada de Transporte

Considerações Iniciais

- Na arquitetura TCP/IP, a camada de transporte encontra-se logo abaixo da camada de aplicação e diretamente provê um serviço para esta camada.
- A camada de Transporte oferece um serviço de circuito virtual fim-a-fim entre uma entidade (processo ou aplicação) na máquina de origem e outra entidade na máquina de destino.
- Um conceito importante introduzido na camada de transporte da arquitetura TCP/IP é o de portas.

Considerações Iniciais

- As portas provêm um mecanismo interessante para identificação e endereçamento correto dos pacotes aos processos correspondentes nas máquinas de origem e de destino.
- Cada aplicação, normalmente, está associada a uma porta conhecida pelas máquinas de origem e destino.

Considerações Iniciais

- Os dois principais protocolos da camada de transporte, o TCP
 (Transmission Control Protocol) e o UDP (User Datagram Protocol)
 oferecem as aplicações em diferentes níveis de serviço e
 confiabilidade.
- Normalmente cada aplicação usa um dos dois protocolos, conforme a necessidade de confiabilidade e desempenho, para transporte das mensagens geradas na aplicação do cliente e do servidor.

- Em redes de computadores, uma porta é um software de aplicação específica ou processo específico servindo de ponto final de comunicações em um sistema operacional hospedeiro de um computador.
- Uma porta tem associação com o endereço de IP do hospedeiro, assim como o tipo de protocolo usado para comunicação.

- O propósito das portas é para singularmente identificar aplicações e processos de um único computador e assim possibilitá-los a compartilhar uma única conexão física com uma rede de comutação de pacotes, como a internet.
- Note que é a combinação de endereço de IP e um número de porta, devem ser únicos, então, IP's e protocolos podem usar o mesmo número de porta para se comunicar.

- Dos milhares de portas numeradas, cerca de 250 das portas conhecidas são reservadas por convenção para identificar os tipos de serviços específicos em um host.
 - 20 & 21: File Transfer Protocol (FTP)
 - 22: Secure Shell (SSH)
 - 23: Telnet remote login service
 - 25: Simple Mail Transfer Protocol (SMTP)
 - 53: Domain Name System (DNS) service
 - 80. Hypertext Transfer Protocol (HTTP) used in the World Wide Web

- 110: Post Office Protocol (POP3)
- 119: Network News Transfer Protocol (NNTP)
- 143: Internet Message Access Protocol (IMAP)
- 161: Simple Network Management Protocol (SNMP)
- 443: HTTP Secure (HTTPS)
- Numerosos programas TCP/IP podem ser executados simultaneamente na Internet (pode, por exemplo, abrir vários navegadores e fazer o download de um arquivo.

- Cada um destes programas trabalha com um protocolo, contudo o computador deve poder distinguir as diferentes fontes de dados.
 - Assim, cada uma destas aplicações recebe um endereço único na máquina, codificada em 16 bits: uma porta (a combinação endereço IP + porta é então um endereço único no mundo, chamado socket).
- O endereço IP serve então para identificar de maneira única um computador na rede enquanto o número de porta indica a aplicação à qual os dados se destinam.

- Processo que consiste em permitir a circulação, numa ligação, de informações que provêm de diversas aplicações chama-se multiplexagem.
- Da mesma maneira, o fato de conseguir pôr em paralelo (e por conseguinte repartir nas diversas aplicações) o fluxo de dados chama-se desmultiplexagem.

- Estas operações são realizadas graças à porta.
- Existem milhares de portas (estas são codificadas em 16 bits, há por conseguinte, 65.536 possibilidades), é por isso que uma atribuição standard foi criada pelo IANA (Autoridade para Atribuição de Números da Internet), para ajudar à configuração das redes.

- As portas 0 a 1.023 são as "portas reconhecidas" ou reservadas ("Well Known Ports").
- Geralmente, estão reservadas para os processos sistema (daemon) ou aos programas executados por utilizadores privilegiados. Um administrador rede pode, no entanto, vincular serviços às portas da sua escolha.

- As portas 1.024 a 49.151 chama-se "portas registradas" ("Registered Ports").
- As portas 49.152 a 65.535 são as "portas dinâmicas e/ou privadas" ("Dynamic and/or Private Ports").

Alguns Protocolos

Camada	Protocolo
Aplicação	WWW, HTTP, SMTP, Telnet, FTP, SSH, NNTP, RDP, IRC, SNMP, POP3, IMAP, SIP, DNS, PING
Transporte	TCP, UDP, RTP, DCCP, SCTP
Internet	IPv4, IPv6, IPsec, ICMP
Interface de Rede	Ethernet, Modem, PPP, FDDi

- Protocolo de Controle de Transmissão
- É o protocolo mais importante da camada de transporte e juntamente com o IP (Internet Protocol), da camada de rede, forma a dupla de protocolos mais importantes na arquitetura do TCP/IP.
- O TCP permite a criação de um canal virtual confiável, livre de erros, fim-a-fim, entre uma aplicação ou serviço na máquina origem e uma aplicação na máquina de destino.

- O TCP é um protocolo robusto e confiável, por isso um grande número de aplicações dos usuários faz uso deste para transferência de dados.
- Algumas características importantes do TCP são:
 - Orientado a conexão significa que antes que qualquer transmissão de mensagens ou dados da aplicação seja feita, a camada de transporte, por meio do TCP, deve estabelecer uma conexão.

- Basicamente, uma conexão é estabelecida após o envio de um pedido de conexão de uma das máquinas envolvidas e a confirmação de ambas.
- Somente após o estabelecimento da conexão é que as mensagens da aplicação começam a ser enviadas.
- Todos os pacotes de dados trafegados após o estabelecimento da conexão são associados com uma conexão específica.
- **Ponto-a-ponto** uma conexão é estabelecida entre duas entidades, mais especificamente, ligando um processo na máquina de origem e um processo na máquina de destino.

- Confiabilidade o TCP usa um mecanismo para tratar erros durante a transmissão, como pacotes perdidos ou pacotes com dados corrompidos.
- Todos os pacotes transmitidos devem ser confirmados pelo receptor.
- Simplificadamente, a falta de uma confirmação do receptor, significa que o pacote foi perdido no caminho e deve ser automaticamente retransmitido.

- O TCP usa uma soma de verificação (checksum) em campo de cabeçalho que é verificado pelo receptor.
- Se a soma de verificação não estiver correta, significa que os dados foram corrompidos no caminho, o pacote é descartado e a origem deve retransmitir o pacote.
- Full-duplex transferência simultânea em ambas as direções, envio e recebimento ao mesmo tempo.

- Entrega ordenada o TCP possui um campo de cabeçalho para identificação da sequência do pacote dentro da conexão.
- Mesmo que os pacotes cheguem fora de ordem no destino, a mensagem da aplicação é reconstruída na ordem correta.
- Controle de fluxo o TCP usa um campo Janela (ver figura) para determinar a quantidade de dados que o receptor pode receber e processar.

Transmission Control Protocol (TCP)

 Quando o emissor recebe uma confirmação de um pacote enviado, juntamente ele toma conhecimento do tamanho da janela de dados que o receptor pode trabalhar. Esse mecanismo de controle de fluxo evita que o emissor envie pacotes excessivamente, congestionando o receptor.

Transmission Control Protocol (TCP)

 Representação dos campos de cabeçalho de um pacote TCP.

- Para a criação de uma conexão TCP, normalmente são necessários um serviço (processo) rodando em uma máquina servidora, "escutando" em uma porta conhecida e uma aplicação (outro processo) em uma máquina cliente.
- Um serviço "escutando" em uma porta significa que o processo fica esperando um pedido de conexão nesta porta.
- Na outra ponta deverá haver uma aplicação no cliente desejando iniciar uma conexão usando uma porta de origem qualquer.

- As conexões estabelecidas no cliente ou no servidor são associadas a sockets, identificados por: endereço IP de origem (no cabeçalho do protocolo IP), porta TCP de origem (cabeçalho do protocolo TCP, Figura), endereço IP de destino e porta TCP de destino.
- Sockets permitem a ligação entre a camada de transporte, neste caso pelo protocolo TCP e um processo da camada de aplicação, para o envio e o recebimento de mensagens da aplicação.

- Tipicamente, uma conexão TCP envolve três fases:
 estabelecimento da conexão, transferência de dados e
 finalização da conexão.
- O estabelecimento de uma conexão TCP inicia-se com um cliente desejando estabelecer uma conexão em um servidor já esperando por um pedido de conexão.

- Uma conexão TCP bem sucedida envolve a troca de uma sequência de pacotes especiais, com flags especiais de cabeçalho setadas (bit igual a 01) (Figura)
- O cliente requisita uma conexão enviando um pacote TCP especial, com a flag SYN (synchronize) do cabeçalho setada ao servidor.
- Esse pacote é conhecido simplificadamente como pacote do tipo

- O servidor confirma esta requisição respondendo com um pacote do tipo SYN-ACK ao cliente, ou seja, um pacote TCP com as flags de cabeçalho SYN e ACK setadas.
- O cliente por sua vez responde com um pacote do tipo ACK, flag
 ACK setada, e a conexão é estabelecida.

- Essa sequência é conhecida como aperto de mão em três etapas (Three-Way Handshake).
- Somente após esse processo inicial (Three-Way Handshake) a conexão está disponível para a transferência das mensagens das aplicações.
- Durante a fase de transferência de dados, cada pacote enviado é identificado com um número de sequência em um campo de cabecalho e um número de confirmação (ACK nowledgement).

- O número de confirmação serve para o receptor informar ao emissor os pacotes que já recebeu.
- O emissor providenciará a retransmissão do pacote se não receber uma confirmação dentro de um intervalo de tempo estabelecido (timeout).

Transmission Control Protocol (TCP)

 A finalização de uma conexão TCP, por sua vez, ocorre com uma das partes envolvidas enviando um pacote do tipo FIN, ou seja, com a flag de cabeçalho FIN setada, e normalmente com confirmação (ACK) do outro lado da conexão, em ambos as direções da conexão.

- Continuando a discussão da Figura 4.1, quanto ao cabeçalho TCP, os campos "Porta de origem" e "Porta de Destino" possuem tamanho de 16 bits, o que significa que existem 65.536 (0 a 65.535) portas.
- Os campos "Número de sequência" e "Número de confirmação" são usados para indicar a ordem do pacote que está sendo enviado e o último pacote recebido, respectivamente.
- Estes campos possuem tamanho de 32 bits cada.

- O campo "flags" (seis bits) possui um bit para cada flag, que é setado (1) ou permanece nulo (0) conforme a função usada durante o funcionamento da conexão no TCP.
- A "Soma de verificação" (ou checksum) é o resultado de uma soma especial nos dados dos cabeçalhos e é usada para verificar a integridade do cabeçalho.

- Trata-se de um protocolo simples da camada de transporte.
- Diferentemente do TCP, o UDP é um protocolo não confiável, sem controle de sequência em que não há garantia de entrega dos pacotes.
- Ainda comparando-se ao TCP, o UDP possui um cabeçalho simplificado como pode ser visto na Figura.
- O campo "Soma de verificação" tem função semelhante à função no TCP, porém é opcional.

User Datagram Protocol (UDP)

Com tantas limitações do UDP é normal nos perguntarmos: Qual a utilidade do UDP, sendo que o TCP faz tudo o que o UDP faz e ainda com confiabilidade?

- Apesar da falta de confiabilidade do UDP, ele possui um desempenho melhor que o TCP, pois não há gasto extra (overhead) de processamento e de bits extras trafegados na rede.
- Por sua simplicidade o UDP é mais eficiente e rápido.
- Aplicações em que a confiabilidade na entrega não é tão importante, porém o desempenho é essencial, geralmente, fazem uso do UDP.

- Exemplos de aplicação que usa o UDP como protocolo de transporte é o streaming de áudio e de vídeo.
- Nessas aplicações a falta de alguns dados durante a transmissão prejudica apenas a qualidade da imagem ou do áudio quando recebido, sem afetar completamente a transmissão.

- Na transmissão de áudio ou vídeo em tempo real, a agilidade na entrega dos dados é geralmente o fator mais importante.
- Outras aplicações podem fazer uso do UDP, por razões de desempenho e tratar dos possíveis erros de transmissão diretamente dentro da aplicação.

ТСР	UDP
Orientado a conexão	Não orientado a conexão
Ponto a ponto	Ponto a ponto
Confiável, controle de erros	Não confiável, sem controle de erros
Full duplex	Full duplex
Entrega ordenada	Não garante entrega ordenada
Controle de fluxo	Sem mecanismo de controle de fluxo

Considerações Finais

- O TCP e o UDP usam o protocolo IP, da camada de rede (internet) para a entrega dos pacotes.
- Os pacotes TCP ou os datagramas do UDP são encapsulados em datagramas IP e encaminhados (roteados) da origem até o destino.
- Após o encapsulamento, os roteadores usam basicamente os campos do IP.

Considerações Finais

- Vale ressaltar que o protocolo UDP possibilita além da comunicação ponto-a-ponto, realizar a comunicação de um para muitos, o que significa que um computador origem através do protocolo UDP pode entregar pacotes para diversos computadores destino em uma rede.
- Este é um diferencial bastante relevante do protocolo UDP.