МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук Кафедра системного программирования

Подготовка набора данных и настройки нейросетевой модели для компьютерного зрения

Выполнил:
студент группы КЭ-404
Емельянова А.Ю.
Проверил:
Доцент кафедры СП
Сухов М.В.
Дата:
Оценка:

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ						3
ПОДГОТОВКА	НАБОРА	ДАННЫХ	И	НАСТРОЙКА	НЕЙРОСЕТЕВО)Й
модели для к	СОМПЬЮТ	ЕРНОГО ЗІ	PEH	RNI		5
ЛИТЕРАТУРА	• • • • • • • • • • • • • • • • • • • •					6

ВВЕДЕНИЕ

В наше время, когда цифровые технологии развиваются и улучшаются каждый год, все более актуальным становится создание инструментов для эффективного анализа и обработки больших объемов визуальных данных. Компьютерное зрение — одна из важнейших сфер в этой области, а то есть наука, занимающаяся разработкой методов и алгоритмов для интерпретации изображений и видео. Основу этих технологий составляет машинное обучение, которое позволяет создавать гибкие системы с высокой точностью и способностью к непрерывному совершенствованию.

Задача проекта

В данной работе основной задачей является разработка модели глубокого обучения для классификации фотографий мусора, используя заранее подготовленный датасет. Данный датасет включает в себя изображения различных типов мусора, которые распределены по категориям, что позволяет более эффективно распределять данные для дальнейшего обучения модели нейронной сети и оценки ее точности.

Цель нейронной сети

Модель, разработанная в рамках данного проекта, представляет собой нейронную сеть, способную классифицировать фотографии мусора. Подобные модели могут использоваться в экологических целях, обнаруживая мусор в неподобающих местах, а затем сохраняя данные о них и передавая их в специальные службы экологического контроля, как например, муниципальные городские службы, группы экологов, заповедники, сельское хозяйство, а также в робототехнике, например, для робота пылесоса. Каждое из этих применений требует высокоточной классификации, учитывающей особенности изображений мусорных объектов, такие как различия в форме, цвете, текстуре и других визуальных признаках. Это позволяет корректно определять категории признаков и эффективно анализировать визуальные данные.

Подзадачи, которые решает нейросеть

Основной задачей, которую решает нейросеть, является классификация фотографий различных типов мусора по заданным признакам. Для выполнения этой цели, необходимо выполнить следующее:

- 1) предварительная обработка изображений. Этот этап включает масштабирование, поворот изображений и другие методы;
- 2) извлечение признаков изображений. На данном этапе модель выделяет наиболее информативные признаки из входных данных, которые затем используются для классификации;
- 3) классификация изображений. На основе выделенных признаков модель принимает решение о принадлежности изображения к определенной категории.

ПОДГОТОВКА НАБОРА ДАННЫХ И НАСТРОЙКА НЕЙРОСЕТЕВОЙ МОДЕЛИ ДЛЯ КОМПЬЮТЕРНОГО ЗРЕНИЯ

Используемый набор данных называется «Garbage Classification». Он представляет собой коллекцию фотографий типов мусора, предназначенную для их анализа, обработки, а в дальнейшем для обучения и тестирования моделей глубокого обучения, выполняющих классификацию изображений. Датасет включает в себя 15,5 тысяч файлов, размеченных по категориям: батареи, биологические отходы, коричневое стекло, картонные коробки, одежда, зеленое стекло, металл, бумага, пластик, обувь, мусор, белое стекло. Общий набор данных составляет около 268 Мб. Этот набор данных был загружен с платформы Kaggle [1].

Набор данных был переработан, чтобы убрать «тяжелые» категории файлов и оптимизировать обучение модели, позволяя получить работающую нейросеть в сжатые сроки и обработать файлы, не перегружая систему персонального компьютера.

Переработанный набор данных состоит из таких категорий как: батареи, биологические отходы, картонные коробки, металл, бумага, пластик. Общий набор данных составляет около 70 Мб.

Обучения модели и ее тестирование проводилось на переработанном наборе данных. Он был разделен на обучающую и тренировочную выборки в пропорциях 70 на 30 процентов соответственно. Обучающая выборка состоит из 3853 изображений, общий вес которых составляет 42 Мб. Тестовая выборка состоит из 1652 изображений, общий вес которых составляет 18 Мб.

ЛИТЕРАТУРА

1. Garbage Classification [Электронный ресурс] URL: https://www.kaggle.com/datasets/mostafaabla/garbage-classification