Contents

1	problem description	1
2	methodologies 2.1 random walks 2.2 the topic model in our method	
3	related models	1
4	stochastic variational inference	1
5	experiment 5.1 evaluation metrics	

1 problem description

Network community detection.

2 methodologies

Randoms + Bayes Nonparametric Topic Model

2.1 random walks

treat vertexes as words, random walks as documents

2.2 the topic model in our method

HDP topic model

3 related models

SIP2-LDA:

BCD:

```
z \sim CRP(\alpha) clusterassingment \eta_{lm} \sim Beta(\beta, \beta) linkprobability A_{ij} \sim Bernoulli(\eta_{z_i z_j}) link
```

Walktrap:

4 stochastic variational inference

5 experiment

5.1 evaluation metrics

Given a subset S of V, let (S, S(E)) be the subgraph induced by S. Let n_S be the size of S, m_S be the number of edges inside S, and c_S be the number of edges with one end in S and the other outside S.

- 1. internal density: $D = \frac{2m_S}{n_S(n_S-1)}$
- 2. cut ratio: $CR = \frac{c_S}{n_S(n-n_S)}$
- 3. conductance: $C = \frac{c_S}{2m_S + c_S}$
- 4. modularity: $Q = \sum_{i=1} C(e_{ii} a_i^2)$, where e_{ij} is the fraction of edges with one end in community i and the other in community j, $a_i = \sum_j e_{ij}$. This index falls in [-0.5, 1). The larger the better. Modularity is the fraction of edges that fall within the given groups minus the expected fraction if edges were distributed at random.
- 5. perplexity: $\exp\{-\frac{\sum\limits_{d=1}^{M}\log w_d}{\sum\limits_{d=1}^{M}N_d}\}$, the exponential of the negative average log-likelihood or the geometric mean of $1/\log_i$. The lower the better.

5.2 data sets

Currently our method scales to network with million nodes and achieves highest performance compared to other generative models. It also outperforms other non-probabilistic based network community detection method such as Walktrap.