線形代数学・同演習 B

10 月 4 日分 演習問題*1

- 1. (1) $\begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$ (2) 解なし.
- 2. (1) -1 (2) -12 (3) 223
- 3. 略.
- 4. $(1) \times (2) \bigcirc (3) \bigcirc (4) \times$
- 5. $(1) \times (2) \bigcirc$
- 6^{\dagger} \Rightarrow は明らか (W はベクトル空間であり,条件 (i) ~ (iii) はベクトル空間になるための条件に含まれるので).
 - (\Leftarrow) 確認することは教科書 p.63 の脚注にある条件であるが,今考えている和とスカラー倍はベクトル空間 V のものなので,それらは V の元として成り立つことは明らか.よってそれらの演算が W からはみ出ないことを示せばよいが,条件 (i) ~ (iii) より,それらはすべて W の元として成立することが分かる.よって,W は V の和とスカラー倍によりベクトル空間となるため,V の部分空間である.
- 7^{\dagger} (1) 命題 1.9 の三条件を確認すれば良い. $\lambda,\mu\in\mathbb{K},\ u,v\in W_1\cap W_2$ とする.このとき $u,v\in W_1$ かつ $u,v\in W_2$ である.i=1,2 に対して W_i は V の部分空間なので, $0\in W_i$ かつ $\lambda u+\mu v\in W_i$ である.したがって, $0\in W_1\cap W_2$ かつ $\lambda u+\mu v\in W_1\cap W_2$ なのでこれ は部分空間.
 - (2) (1) と同様に ${f 0}={f 0}+{f 0}\in W_1+W_2$ である.また, ${f u}_1+{f u}_2,\ {f v}_1+{f v}_2\in W_1+W_2$ $({f u}_i,{f v}_i\in W_i)$ とすれば,

$$\lambda(u_1 + u_2) + \mu(v_1 + v_2) = (\lambda u_1 + \mu v_1) + (\lambda u_2 + \mu v_2)$$

であり, W_1,W_2 は部分空間なので, W_1+W_2 も部分空間となる.

- (3) 部分空間にならない.例えば, $V=\mathbb{R}^2$ とし, $W_1=\{\left(\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right) \; ; \; x\in\mathbb{R}\}, \; W_2=\{\left(\begin{smallmatrix} 0 \\ y \end{smallmatrix} \right) \; ; \; y\in\mathbb{R}\}$ とすれば明らかに W_1,W_2 は部分空間であり, $W_1\cup W_2=\{\left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \; ; \; x=0 \; \mathsf{又は} \; y=0\}$ となる.しかしながら, $\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) \in W_1, \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) \in W_2$ であるが, $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) \not\in W_1 \cup W_2$ である.
- 8.* 部分空間になるのは (1),(2) で , ならないのは (3),(4) である .
- 9. * (1) $O\in\mathfrak{sp}(n,\mathbb{R})$ は明らかで, $X,Y\in\mathfrak{sp}(n,\mathbb{R})$ のとき,

$$^{t}(\lambda X + \mu Y)J + J(\lambda X + \mu Y) = \lambda (^{t}XJ + JX) + \mu (^{t}YJ + JY) = O$$

であることより

(2) $X=egin{pmatrix} X_1&Y_1\ Y_2&-^tX_1 \end{pmatrix}$, ただし X_1 は任意の n 次正方行列であり , Y_1,Y_2 は任意の n 次対称行列 .

(求め方は, $X=\left(egin{array}{c} X_1 & X_2 \\ X_3 & X_4 \end{array}
ight)$ と置いて, ${}^tXJ+JX=O$ をブロック行列として計算する.)

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.