Day 1: Foundation & Setup Mastery

GitHub Spec Kit Intensive Training - Foundation Day

Duration: 6-8 hours

Objective: Master environment setup, understand SDD fundamentals, complete first spec-driven pro-

ject

Success Criteria: 100% environment validation, successful project initialization, basic workflow profi-

ciency

(iii) HX-Infrastructure Integration: Project setup, repository analysis, and initial knowledge base structure creation

Morning Session (3-4 hours)

Hour 1: Environment Validation & Setup

1.1 Complete Environment Validation (30 minutes)

```
# Run comprehensive validation
cd /home/ubuntu/github_spec_training
./validate_environment.sh

# If any failures, address immediately
./validate_environment.sh --install-help
```

Validation Checklist:

- -[] Python 3.11+ installed and accessible
- [] Git configured with your credentials
- [] UV package manager working
- -[] WSL2 properly configured (Windows 11)
- [] Al coding agent accessible (GitHub Copilot/Claude Code)
- [] Network connectivity to GitHub and PyPI
- [] HX-Infrastructure-Knowledge-Base repository cloned

1.2 GitHub Spec Kit Installation & Verification (30 minutes)

```
# Test Spec Kit installation
uvx --from git+https://github.com/github/spec-kit.git specify init test_foundation_pro
ject

# Verify installation success
cd test_foundation_project
ls -la
cat README.md
```

Expected Outputs:

- Project directory created with proper structure
- Configuration files present (.specify/, prompts/, etc.)

- Al agent integration working
- Slash commands accessible in your AI agent

Hour 2: Spec-Driven Development Fundamentals

2.1 Understanding the SDD Philosophy (45 minutes)

Core Concepts to Master:

- 1. Intent-First Development: Specifications capture "what" and "why" before "how"
- 2. Al-Assisted Implementation: Leverage Al agents for code generation from clear specs
- 3. Iterative Refinement: Specifications evolve through feedback loops
- 4. **Quality Through Clarity:** Better specs = better code = fewer bugs

@ HX-Infrastructure Practical Exercise:

```
# Clone and analyze the HX-Infrastructure Knowledge Base
cd /home/ubuntu/github_spec_training
git clone https://github.com/hanax-ai/HX-Infrastructure-Knowledge-Base.git
cd HX-Infrastructure-Knowledge-Base
# Create your first specification for knowledge base enhancement
uvx --from git+https://github.com/github/spec-kit.git specify init hx_kb_enhancement -
ai copilot
```

In your Al agent, use the /specify command to create a specification for:

Project: "HX-Infrastructure Knowledge Base Content Integration"

Specification Requirements:

- Analyze current knowledge base structure and content gaps
- Create systematic approach for integrating archived project learnings
- Establish documentation standards and templates
- Design validation workflows for content quality
- Plan progressive content population across training days

2.2 The Four Phases Deep Dive (30 minutes)

Phase 1: Specify

- Define clear, actionable requirements
- Establish success criteria and constraints
- Document assumptions and dependencies

Phase 2: Plan

- Break down specifications into implementable tasks
- Sequence work for optimal flow
- Identify potential risks and mitigation strategies

Phase 3: Implement

- Execute planned tasks with AI assistance
- Maintain quality through continuous validation
- Document decisions and learnings

Phase 4: Validate

- Test implementations against specifications
- Gather feedback and iterate
- Prepare for next development cycle

® HX-KB Application:

Apply these phases to analyze the current HX-Infrastructure Knowledge Base:

- 1. Specify: Document what content needs to be integrated
- 2. Plan: Create integration roadmap for training week
- 3. Implement: Begin with directory structure and templates
- 4. Validate: Ensure structure aligns with integration plan

Hour 3: First Real Project Implementation

3.1 HX-Infrastructure Knowledge Base Analysis (45 minutes)

Current State Assessment:

```
cd HX-Infrastructure-Knowledge-Base

# Analyze current structure
find . -type f -name "*.md" | head -20
cat README.md | head -50

# Review existing workflow
cat .github/workflows/connectivity-check.yml
```

Analysis Tasks:

1. Repository Structure Review:

- Document current directory layout
- Identify placeholder sections that need content
- Note existing documentation patterns

1. Content Gap Analysis:

- List sections marked as placeholders
- Identify missing documentation categories
- Assess integration opportunities

2. Workflow Assessment:

- Review existing GitHub Actions workflow
- Identify enhancement opportunities
- Plan additional validation workflows

Deliverable: Create docs/analysis/day1-assessment.md documenting findings

3.2 Initial Knowledge Base Enhancement (30 minutes)

Create Foundation Structure:

```
# Create initial directory structure for integration
mkdir -p docs/analysis
mkdir -p docs/integration
mkdir -p exercises/hx-kb
mkdir -p metrics/training

# Create first ADR for integration approach
mkdir -p docs/adrs
```

First ADR Creation:

Create docs/adrs/ADR-0001-training-integration.md with:

- Status: Proposed

- Context: Integration of HX-KB into training program
- **Decision:** Use progressive content development approach
- Consequences: Enhanced practical learning, real project outcomes

3.3 Specification Refinement (15 minutes)

Refine Your Specification:

Based on analysis, update your specification to include:

- Specific content integration priorities
- Training day milestone mapping
- Quality validation criteria
- Success measurement approaches

🌆 Afternoon Session (3-4 hours)

Hour 4: Advanced Specification Techniques

4.1 Multi-Stakeholder Specifications (45 minutes)

Understanding Stakeholder Perspectives:

- End Users: Team members who will use the knowledge base
- Contributors: Developers who will add content
- Maintainers: Those responsible for keeping content current
- **Trainers:** Instructors using the knowledge base for education

HX-KB Stakeholder Analysis:

Create specifications that address each stakeholder's needs:

1. End User Specification:

- Quick access to relevant information
- Clear navigation and search capabilities
- Practical examples and templates

2. Contributor Specification:

- Simple contribution workflow
- Clear documentation standards
- Automated validation and feedback

3. Maintainer Specification:

- Content freshness monitoring
- Quality assurance processes
- Update notification systems

4. Trainer Specification:

- Progressive learning materials
- Practical exercises and examples
- Assessment and validation tools

4.2 Specification Validation Techniques (30 minutes)

Validation Methods:

- 1. Stakeholder Review: Get feedback from each stakeholder group
- 2. **Prototype Testing:** Build minimal viable implementations

- 3. **Scenario Walkthrough:** Test specifications against real use cases
- 4. **Constraint Validation:** Ensure specifications are achievable

(6) HX-KB Validation Exercise:

Validate your knowledge base specifications by:

- 1. Walking through a typical user journey
- 2. Testing the contribution workflow
- 3. Verifying maintenance procedures
- 4. Confirming training integration points

Hour 5: Implementation Planning

5.1 Task Breakdown and Sequencing (45 minutes)

Breaking Down Complex Specifications:

- Identify atomic, implementable tasks
- Establish dependencies between tasks
- Sequence for optimal development flow
- Estimate effort and complexity

(iii) HX-KB Implementation Plan:

Create detailed task breakdown for knowledge base integration:

Phase 1 Tasks (Day 1-2):

- [] Complete directory structure creation
- [] Develop documentation templates
- [] Create initial ADRs
- [] Set up basic validation workflows

Phase 2 Tasks (Day 2-3):

- [] Populate sprint summaries
- [] Create operational runbooks
- [] Integrate architecture documentation
- [] Enhance CI/CD workflows

Phase 3 Tasks (Day 3-4):

- -[] Add automation guides
- [] Create troubleshooting documentation
- [] Integrate security best practices
- [] Develop metrics and tracking

Phase 4 Tasks (Day 4-5):

- [] Complete content integration
- [] Validate all documentation
- [] Create training materials
- [] Establish maintenance procedures

5.2 Risk Assessment and Mitigation (30 minutes)

Common Implementation Risks:

- Scope creep and over-engineering
- Inconsistent documentation standards
- Integration complexity
- Time constraints

(6) HX-KB Risk Mitigation:

Identify and plan mitigation for:

- 1. Content Quality Risk: Establish review processes
- 2. Integration Complexity: Use incremental approach
- 3. **Time Management:** Prioritize high-value content
- 4. Stakeholder Alignment: Regular check-ins and feedback

Hour 6: Quality Assurance and Documentation

6.1 Specification Quality Checklist (30 minutes)

Quality Criteria:

- [] Clear and unambiguous language
- [] Measurable success criteria
- [] Realistic constraints and assumptions
- [] Comprehensive stakeholder coverage
- [] Implementable task breakdown
- [] Risk assessment and mitigation

® HX-KB Quality Review:

Review your specifications against quality criteria and refine as needed.

6.2 Documentation and Handoff (45 minutes)

Documentation Requirements:

- 1. **Specification Document:** Complete, validated specification
- 2. Implementation Plan: Detailed task breakdown and timeline
- 3. Risk Register: Identified risks and mitigation strategies
- 4. Stakeholder Map: Key contacts and responsibilities

@ Day 1 Deliverables:

Create and commit the following to your HX-KB repository:

- docs/analysis/day1-assessment.md
 Current state analysis
- docs/adrs/ADR-0001-training-integration.md Integration decision record
- docs/integration/implementation-plan.md Detailed implementation roadmap
- docs/integration/stakeholder-analysis.md Stakeholder needs and requirements

6.3 Day 1 Validation and Wrap-up (15 minutes)

Validation Checklist:

- [] Environment fully validated and working
- [] Spec Kit installation verified
- [] HX-KB repository analyzed and documented
- [] Initial specifications created and validated
- [] Implementation plan developed
- [] Day 1 deliverables committed to repository

Success Metrics:

- Specification quality score: Target 85%+
- Task breakdown completeness: 100%
- Stakeholder coverage: All groups addressed
- Documentation standards: Consistent formatting and structure

📚 Resources and References

Essential Reading

- GitHub Spec Kit Documentation (https://github.com/github/spec-kit)
- HX-Infrastructure Knowledge Base (https://github.com/hanax-ai/HX-Infrastructure-Knowledge-Base)
- Specification-Driven Development Guide (docs/sdd-guide.md)

Templates and Examples

- ADR Template (templates/adr-template.md)
- Specification Template (templates/specification-template.md)
- Implementation Plan Template (templates/implementation-plan-template.md)

Tools and Utilities

- UV Package Manager
- GitHub Spec Kit CLI
- Al Coding Assistants (Copilot/Claude)
- Validation Scripts

@ Day 1 Success Criteria

Technical Proficiency:

- -[] 100% environment validation passed
- [] Spec Kit commands working correctly
- [] HX-KB repository successfully analyzed
- [] Initial specifications created and validated

Project Outcomes:

- [] Current state assessment completed
- [] Integration approach documented
- [] Implementation plan created
- [] Foundation structure established

Knowledge Retention:

- -[] SDD philosophy understood and articulated
- [] Four-phase process demonstrated
- [] Stakeholder analysis completed
- -[] Quality validation performed

Next Day Preparation:

- -[] Day 2 objectives reviewed
- [] Required materials prepared
- [] Implementation environment ready
- -[] Team coordination confirmed