Relation & Function In-class Exercises

1. Prove Theorem 5.1 (d)

對任意集合 A , B , $C \subseteq \mathcal{U}$:

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

2. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{w, x, y, z\}$, how many elements are there in $\mathcal{P}(A \times B)$?

3. Consider the relation \Re on the set **Z** where we define $a \Re b$ when $ab \ge 0$.

Whether this binary relation \Re is reflexive, symmetric, or transitive?

4. For $x, y \in R$ define $x \Re y$ to mean that $x - y \in Z$. Prove that \Re is an equivalence relation on R. Please show all workings.

5. For each of the following functions, determine whether it is one-to-one and determine its range.

a)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x + 1$$

b)
$$f: \mathbf{R} \to \mathbf{R}, f(x) = e^x$$

c)
$$f: [0, \pi] \rightarrow \mathbf{R}, f(x) = \sin x$$

- 6. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$.
 - (a) How many functions are there from A to B?How many of these are one-to-one?How many are onto?
 - (b) How many functions are there from B to A?
 How many of these are onto?
 How many are one-to-one?

7.

Let $g: \mathbb{N} \to \mathbb{N}$ be defined by g(n) = 2n. If $A = \{1, 2, 3, 4\}$ and $f: A \to \mathbb{N}$ is given by

$$f = \{(1, 2), (2, 3), (3, 5), (4, 7)\},\$$

find $g \circ f$.

- 8. Let $f, g: \mathbb{Z}^+ \to \mathbb{Z}^+$ where for all $x \in \mathbb{Z}^+$, f(x) = x + 1 and $g(x) = \max\{1, x 1\}$, the maximum of 1 and x 1.
 - **a)** Is g an onto function?
 - **b**) Is the function g one-to-one?
 - c) Show that $g \circ f = 1_{\mathbf{Z}^+}$.

Relation & Function Suggested Exercises

1. Prove Theorem 5.1 (c)

對任意集合 A , B , $C \subseteq \mathcal{U}$:

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

- ² If $A = \{1, 2, 3, 4\}$, give an example of a relation \Re on A that is
 - a) reflexive and symmetric, but not transitive
 - b) reflexive and transitive, but not symmetric
 - c) symmetric and transitive, but not reflexive

- 3. a) Rephrase the definitions for the reflexive, symmetric, transitive, and antisymmetric properties of a relation \Re (on a set A), using quantifiers.
 - **b)** Use the results of part (a) to specify when a relation \Re (on a set A) is (i) *not* reflexive; (ii) *not* symmetric; (iii) *not* transitive; and (iv) *not* antisymmetric.

4. If $A = \{w, x, y, z\}$, determine the number of relations on A that are (a) reflexive; (b) symmetric; (c) reflexive and symmetric; (d) reflexive and contain (x, y); (e) symmetric and contain (x, y); (f) antisymmetric; (g) antisymmetric and contain (x, y); (h) symmetric and antisymmetric; and (i) reflexive, symmetric, and antisymmetric.

- 5. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$.
 - (a) List a possible function from A to B.
 - (b) How many functions $f: A \rightarrow B$ are there?
 - (c) How many functions $f: A \to B$ are one-to-one? (d) How many functions $g: B \to A$ are there? (e) How many functions $g: B \to A$ are one-to-one? (f) How many functions $f: A \to B$ satisfy f(1) = x? (g) How many functions $f: A \to B$ satisfy f(1) = f(2) = x? (h) How many functions $f: A \to B$ satisfy f(1) = x and f(2) = y?
- 6. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8, 9, 10, 11, 12\}$. How many functions $f: A \to B$ are such that $f^{-1}(\{6, 7, 8\}) = \{1, 2\}$?
- 7. Let $f: A \to B$, with $A_1, A_2 \subseteq A$. Then prove that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2);$