(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-19635

(43)公開日 平成9年(1997)1月21日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術家	支示值所
B01J 13/14			B01J 1	3/02		В	
CO8F 2/44	MCP		C08F	2/44	MCI	P	
220/12	MMD	_	22	0/12	MMI)	
220/42	MMY		22	0/42	MMY	7	
			審査	請求 有	発明の数1	OL (全	6 頁)
(21)出願番号	特膜平8 -153855		(71) 出願人	000188	951		
(62)分割の表示	特顧昭61-130602の	分割		松本油	馆製薬株式会社	ŧ	
(22)出顧日	昭和61年(1986)6月	4日		大阪府	八尾市波川町 2	丁目1番3号	}
			(72)発明者	横溝	摩正		
				大阪府	八尾市按川町 2	丁目1番3月	松本
				油脂製	菜株式会社内		
			(72)発明者	田中	計劃		
				大阪府	八尾市按川町 2	丁目1番3号	松本
				油脂製	菜株式会社内		
			(72)発明者	新智	首 人夫		
				大阪府	八尾市渋川町2	丁目1番3号	松本
				油脂製	集株式会社内		
			(74)代理人	弁理士	育山 葆	(外1名)	

(54) 【発明の名称】 耐熱性と耐溶剤性に優れた熱膨張性マイクロカブセル

(57)【要約】

【課題】 従来の製品に比べて耐熱性に優れ、140℃ 以下では発泡せず、しかも耐溶剤性にも優れている熱膨 張性マイクロカブセルを提供する。

【解決手段】 ニトリル系モノマー80重量%以上、非ニトリル系モノマー20重量%以下および架橋剤0.1~1重量%含有する成分から得られるポリマーを用いて、該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロカブセル化した熱膨張性マイクロカブセルであって、殼壁の軟化温度が135℃以上であり、かつ160℃1分の加熱における発泡倍率が3以上で、160℃4分の加熱における発泡倍率が3以上であることを特徴とする熱膨張性マイクロカブセル。

1

【特許請求の範囲】

【請求項1】 ニトリル系モノマー80重量%以上、非ニトリル系モノマー20重量%以下および架橋剤0.1~1重量%含有する成分から得られるポリマーを用いて、該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロカブセル化した熱膨張性マイクロカブセルにおいて、非ニトリル系モノマーがメタクリル酸エステル類およびアクリル酸エステル類からなる群から選択される1種または2種以上のモノマーであることを特徴とする熱膨張性マイクロカブセル。

【請求項2】 ポリマーの軟化点が135℃以上であり、且つ160℃1分の加熱における発泡倍率が7以上で、160℃4分の加熱における発泡倍率が3以上である請求項1記載の熱膨張性マイクロカブセル。

【請求項3】 ニトリル系モノマーがアクリロニトリル および/またはメタクリロニトリルであり、架橋剤が三 官能性架橋剤である第1項記載の熱膨張性マイクロカブ セル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は熱膨張性マイクロカプセル、特に耐熱性と耐溶剤性に優れた熱膨張性マイクロカブセルに関する。

[0002]

【従来の技術】熱可塑性ポリマーを用いて、該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロカブセル化して熱膨張性マイクロカブセルを製造する方法は既知である(例えば特公昭42-26524号 ペポリマーシェルの厚さが対象(均一)なマイクロカブ 30 たいを製造するのにアクリロニトリル系ポリマーでは約7~60重量%のビニリデンクロライドを共重合するとと、ジビニルベンゼンなどの架橋剤を使用してポリマーシェルの溶融または流動粘度を増大させることが開示されている。

【0003】しかしながら、従来の方法によっては耐熱性と耐溶剤性に優れた熱膨張性マイクロカプセルを得ることはできなかった。本発明者らは先に、重合性不飽和結合を有するモノマーとしてアクリロニトリルを少なくとも15重量%用いるとマイクロカプセルの耐溶剤性が40向上することを究明したが(特公昭60-21770号公報参照;この場合、アクリロニトリルの好適な使用量は該公報、第2頁、第4欄、第19行~第22行に記載のように、高々70重量%程度であり、それ以上の使用量は未反応アクリロニトリルの問題と相俟って全く意図されていなかった)、十分に満足すべきものではなく、しかも耐熱性が劣る(約80~130℃で発泡膨張し、高温・長時間で発泡倍率が低下する。)という点で改良の余地が残されていた。

[0004]

2

【発明が解決しようとする課題】本発明は、従来の製品 に比べて耐熱性に優れ、140°C以下では発泡せず、しかも耐溶剤性にも優れている熱膨張性マイクロカブセルを提供せんとするものである。

[0005]

【課題を解決するための手段】本発明は、ニトリル系モノマー80重量%以上、非ニトリル系モノマー20重量%以下および架橋剤0.1~1重量%含有する成分から得られるポリマーを用いて、該ポリマーの軟化点以下の10温度でガス状になる揮発性膨張剤をマイクロカプセル化した熱膨張性マイクロカプセルであって、殻壁の軟化温度が135℃以上であり、かつ160℃1分の加熱における発泡倍率が7以上で、160℃4分の加熱における発泡倍率が3以上であることを特徴とする熱膨張性マイクロカプセルに関する。

【0006】本発明に使用するニトリル系モノマーとしてはアクリロニトリル、メタクリロニトリル、αークロルアクリロニトリル、αーエトキシアクリロニトリル、フマロニトリルまたはこれらの任意の混合物等が例示されるが、アクリロニトリルおよび/またはメタクリロニトリルが特に好ましい。ニトリル系モノマーの使用量は80重量%以上、特に85~97重量%であり、80重量%未満では本発明の所期の目的を達成することはできない。

【0007】非ニトリル系モノマーとしてはメタクリル酸エステル類、アクリル酸エステル類からなる群から選択される。これらの中メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチルが特に好ましい。非ニトリル系モノマーの使用量は20重量%以下、好ましくは15~3重量%である。

【0008】架橋剤としてはジビニルベンゼン、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、トリアクリルボルマール、トリメタクリル酸トリメチロールプロパン、メタクリル酸アリル、ジメタクリル酸1,3-ブチルグリコール、トリアリルイソシアネート等が例示されるが、トリアクリルホルマールやトリメタクリル酸トリメチロールプロパン等の三官能性架橋剤が特に好ましい。架橋剤の使用量は0.1~1重量%、好ましくは0.2~0.5重量%である。

【0009】本発明に係わるマイクロカブセルの壁材は上記の成分にさらに所望により重合開始剤を適宜配合することによって調製される。好適な重合開始剤としてはアゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルバーオキサイド、ジイソブロビルバーオキシジカーボネート、tーブチルパーオキサイド、2,2'ーアゾビス(2,4ージメチルワレロニトリル)等が例示される。

【0010】マイクロカプセル内に包含される揮発性膨 張剤は上記の配合成分から調製されるポリマーの軟化点 50 (一般的には約120~150℃)以下の温度でガス状に 3

なる物質であり、例えばプロバン、プロピレン、ブテン、ノルマルブタン、イソブタン、イソペンタン、ネオペンタン、ノルマルペンタン、ヘキサン、ヘプタン、石油エーテル、メタンのハロゲン化物(塩化メチル、メチレンクロリド、CC1、F、CC1、F、等)、テトラアルキルシラン(テトラメチルシラン、トリメチルエチルシラン等)等の低沸点液体、加熱により熱分解してガス状になるAIBN等の化合物が挙げられるが、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、石油エーテル等の低沸点液体が特に好適である。

【0011】上記の壁材を用いて揮発性膨張剤をマイクロカブセル化する方法は特に限定的ではなく、常法に従えばよい。特に好適な方法は、例えば特公昭42-26524号公報に記載のようにして、重合性モノマーおよび架橋剤を揮発性膨張剤および重合開始剤と混合し、該混合物を適宜の乳化分散助剤等を含む水性媒体中で懸濁重合させる方法である。懸濁重合をおとなう水性媒体の配合処方も特に限定的ではないが、通常は無機の添加剤、例えばシリカ、リン酸カルシウム、炭酸カルシウ

* ム、塩化ナトリウム、硫酸ナトリウム等のほかに有機添加剤、例えばジェタノールアミンーアジピン酸縮合物、ゼラチン、メチルセルロース、ポリビニルアルコール、ポリエチレンオキサイド、ジオクチルスルホサクシネート、ソルビタンエステル等を脱イオン水に適宜配合し、酸を用いて系のpHを約3~4に調整する。

[0012]本発明の熱膨張性マイクロカブセルの粒径は通常約5~50ミクロン、特に約12~25ミクロンであり、また揮発性膨張剤の包含量は約10~20重量10%、特に約13~17重量%である。

[0013]

【実施例】以下、本発明を実施例によって説明する。 実施例 1

次の配合処方によって調製した油性混合物および水性混合物をホモミキサー(特殊機化工業株式会社製)を用いて加圧下(窒素2kg/m²)、10000rpmで60秒間攪拌混合した後、窒素置換した加圧重合反応機(15L)内へ仕込み、加圧して(2kg/m²)、60℃で20時間反応させた。

重量部

油性混合物

成分

week 2m 42 mas on 3 12 12	0.450
アクリロニトリル	2 4 5 0
メタクリル酸メチル	400
トリアクリルホルマール	9
nーペンタン	550
アゾビスイソブチロニトリル	1 5
水性混合物(pH 3 .2)	
成分	重量部
脱イオン水	6300
シリカ分散液(固形分20%)¹᠈	1080
重クロム酸カリ(2.5%水溶液)	3 0
. ジエタノールアミンニアジピン酸縮合物*) (5	0%水溶液)
en er er jaren er er en	4 0
塩化ナトリウム	2200

1) 日産化学株式会社製コロイダルシリカ

2) 酸価100mgKOH/g

【0014】得られた反応生成物を遠心分離機を用いる 濾過と水洗処理に繰り返し付してケーキ状物とし(水分 32%)、これを一昼夜風乾して本発明による熱膨張性 マイクロカブセル(平均粒径約21.4ミクロン)を得 た。

塩酸

【0015】得られたマイクロカブセルの、各種の溶剤中に40℃で10日間浸漬した後の熱膨張性の良否を判定して、該マイクロカブセルの耐溶剤性を調らべた。結※

※果を表1に示す。また、該マイクロカブセルの種々の加 熱条件下における発泡倍率(塗膜厚比)を調べ、結果を 40 表2に示す。

1.5

【0016】実施例 2

次の配合処方によって油性混合物を調製する以外は実施例1と同様にして熱膨張性マイクロカプセル(平均粒径約18.7ミクロン)を製造した。

<u>成分</u>	重量部
アクリロニトリル	1900
メタクリロニトリル	900
メタクリル酸メチル	150
トリメタクリル酸トリメチロールプロパン	9

特開平9-19635

5		6
n -ペンタン		3 5 0
石油エーテル		200
【0017】得られたマイクロカプセルの耐溶剤性お	よ	* 次の配合処方によって油性混合物を調製する以外は実施
び耐熱性をそれぞれ以下の表 1 および表 2 に示す。		例1と同様にして熱膨張性マイクロカプセル(平均粒径
【0018】実施例_3_	*	約23.2ミクロン)を製造した。
成分		重量部
<u></u>		1750
メタクリロニトリル		8 0 0
アクリル酸メチル		300
ジピニルベンゼン		1 0
n −ヘキサン		350
石油エーテル		200
【0019】得られたマイクロカプセルの耐溶剤性お	よ	※油性混合物を次の配合処方によって調製する以外は実施
び耐熱性をそれぞれ以下の表 1 および表 2 に示す。		例1と同様にしてマイクロカブセル(平均粒径約20.
【0020】比較例_1_	*	5ミクロン)を製造した。
成分		重量部
<u></u>		900
塩化ビニリデン		2 1 0 0
ジビニルベンゼン		1 5
イソプタン		5 0 0
【0021】得られたマイクロカブセルの耐溶剤性お	よ	★油性混合物を次の配合処方によって調製する以外は実施
び耐熱性をそれぞれ以下の表 1 および表 2 に示す。		例1と同様にしてマイクロカブセル (平均粒径約24.
【0022】 <u>比較例 2</u>	*	7ミクロン)を製造した。
<u>成分</u>		重量部
アクリロニトリル		1700
メタクリル酸メチル		1300
ジピニルベンゼン		1 5
イソペンタン		3 5 0
石油エーテル		200
【0023】得られたマイクロカプセルの耐溶剤性お	よ 3	0☆油性混合物を次の配合処方によって調製する以外は実施
び耐熱性をそれぞれ以下の表 1 および表 2 に示す。		例1と同様にしてマイクロカブセル(平均粒径22.5
【0024】 <u>比較例 3</u>	众。	ミクロン)を調製した。
<u>成分</u> "		重量部
アクリロニトリル		2 4 0 0
塩化ビニリデン		600
ジピニルベンゼン		1 5
イソプタン		5 0 0
【0025】得られたマイクロカブセルの耐溶剤性お。	ょ	[0026]

【表1】

び耐熱性をそれぞれ以下の表1および表2に示す。

7

			実施例		比較例		
		1	2	3	1	2	3
	ペンゼン	0	0	0	0	0	0
	メタノール	×	×	×	×	×	×
耐"	IPA ·	0	0	0	0	0	0
78	n-ヘキサン	0	0	0	0	0	0
湘	CHCI:	0	0	Δ	×	×	×
性	スチレン	0	0	.0	×	Δ	Δ
	DOP	0	0	0	Δ	Δ	Δ
	MEK	×	×	×	×	×	×
	酢酸エチル	0	0	Δ	×	×	Δ
穀壁の軟化温度21		140	150	135	80	120	110

- 1) $\lceil O \rfloor$, $\lceil \Delta \rfloor$ π \sharp σ $\lceil \times \rfloor$ π ξ η η η ξ η ξ 熱慶張性が変化しないもの」、「熱膨張性が低下す るもの」および「熱膨張しなくなるもの」を示す。
- 2)1分間の加熱で膨張し始める温度(℃)。

[0027]

* *【表2】

加熱温度	加熱時間	実施例				比較例	y
(%)	(分)	1	2	3	1	2	3
	1	_	_	-	4.8	2.5	1. 0
	2	-	-	-	5.3	3.0	1.0
120	3	-	-	-	5. 1	3.5	1.1
	4		_	_	- 5. 5	3. 5	1.2
. 0	1	1.1	1.0	1.5	6. 7	6.5	1.7
	2	1.3	1.0	3. 5	7.3	8.1	2.2
140	3	1.3	1.0	4. 0	6. 9	-7.9	2.5
	4	1.5	1. 2	2. 5	6. 3	7. 2	2.3
	1	7. 3	7.5	8. 0	3. 2	7. 0	2. 5
	2	8. 3	8.5	7.9	2. 1	4. 8	3.1
160	3	8. 7	8.8	6. 3	1. 1	2. 3	2. 6
	4	6. 5	8.3	3. 1	1. D	1.6	2. 0
	1	7. 8	8.8	5. 7	_	4. 1	3. 0
	2	6.5	7.5	4. 6	-	2. 6	2. 5
180	3	5. 7	6. 3	3. 1	-	2. 1	2. 0
	4	4. 8	6. 3	2. 7	_	1.8	1. 5

[0028]

ロカプセルは従来のこの種の製品に比べて耐熱性に優 【発明の効果】本発明によって得られる熱膨張性マイク 50 れ、140℃以下では発泡せず、しかも耐溶剤性にも優・

特開平9-19635

れているために、従来の製品では使用が困難であった分野(例えばポリ塩化ビニル、塩ビゾル、不飽和ポリエステル、エポキシ樹脂、ウレタン樹脂、ゴム、熱可塑性樹

脂、溶剤型バインダーなどと混合し、加熱発泡すること により軽量化、クッション性付与、剛性向上、発泡イン キとするなどの分野)でも利用することができる。

10