ACM Template

DUT ACM Lab

2021 年 9 月 25 日

目录

为 早	STL 使用	1
1.1	set 与 multiset 与 unordered_set	1
1.2	map 与 unordered_map	1
第二章		2
	二分图	
	2.1.1 二分图最大匹配	
2.2	树上问题	
	2.2.1 树的重心	
		4
	2.2.3 边分治	_
	2.2.4 点分树	
	2.2.5 树上启发式合并	
		_
第三章		8
3.1	逆元	8
	3.1.1 实现	8
	3.1.2 成立性	9
労川辛	计算几何	
第四章	计算几何	L0
		L0 L1
第五章	博弈理论	l1
第五章	博弈理论 数据结构	L1 L2
第五章	博弈理论	L1 L2
第五章 第六章 6.1	博弈理论 数据结构 树状数组	L1 L2
第五章 第六章 6.1 第七章	博弈理论 数据结构 树状数组	L1 L2 L2
第五章 第六章 6.1 第七章	博弈理论 数据结构 树状数组	L1 L2 L3
第五章 第六章 6.1 第七章	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论	L1 L2 L3 L3
第五章 第六章 6.1 第七章	博弈理论 数据结构 树状数组	L1 L2 L3 L3
第五章 第六章 6.1 第七章 7.1	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论 7.1.2 恒等式	L1 L2 L3 L3
第五章 第六章 6.1 第七章 7.1	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论 7.1.2 恒等式	L1 L2 L3 L3 L3
第五章 第六章 6.1 第七章 7.1	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论 7.1.2 恒等式 典型题型	L1 L2 L3 L3 L3
第五章 第六章 6.1 第七章 7.1 第八章	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论 7.1.2 恒等式 典型题型 最长上升子序列 8.1.1 做法	L1 L2 L3 L3 L3 L4 L4
第五章 第六6.1 第七章 7.1 第八8.1	博弈理论 数据结构 树状数组 组合统计 常见的恒等式与组合结论 7.1.1 结论 7.1.2 恒等式 典型题型 最长上升子序列 8.1.1 做法	L1 L2 L3 L3 L3 L4 L4 L4

第一章 STL 使用

- 1.1 set 与 multiset 与 unordered_set
 - 1.2 map 与 unordered_map

第二章 图论

2.1 二分图

2.1.1 二分图最大匹配

const int mx_n = 1005;

2.1.1.1 实现

第一种做法 匈牙利算法,复杂度 $\Theta(nm)$

```
bool mp[mx_n][mx_n];
   bool vis[mx_n];
   int pre[mx_n];
 5
   bool dfs(cint loc) {
 6
 7
        for(int i=n+1; i<=n+m; i++) {</pre>
 8
             if(mp[loc][i] && !vis[i]) {
 9
                 vis[i] = 1;
                 if(!pre[i] || dfs(pre[i])) {
10
11
                      pre[i] = loc;
                      return 1;
12
13
                 }
            }
14
15
        }
        return 0;
16
   }
17
18
   int main() {
19
        int ans = 0;
20
        for(int i=1; i<=n; i++) {</pre>
21
            memset(vis, 0, sizeof vis);
22
            ans += dfs(i);
23
24
        }
        cout << ans << endl;</pre>
25
        return 0;
26
27
```

第二种做法

转化为网络流,复杂度依赖选择

2.2 树上问题 3

2.1.1.2 性质

最大独立集 = n -最大匹配 最小点覆盖 = n -最大独立集

2.2 树上问题

2.2.1 树的重心

2.2.1.1 实现

对于树上的每一个点,计算其所有子树中最大的子树节点数,这个值最小的点就是这棵树的重心。

```
void dfs(cint loc, cint fa) {
2
       int pre = 0;
       son[loc] = 1;
3
       for(int v: to[loc]) {
4
           if(v != fa) {
5
                dfs(v, loc);
6
7
                pre = max(pre, son[v]);
8
                son[loc] += son[v];
           }
9
       }
10
       pre = max(pre, n-son[loc]);
11
       if(pre < st) {</pre>
12
           st = pre; # 最大儿子的最小值
13
           ans = loc; # 最大儿子的编号
14
       }
15
16
```

2.2.1.2 性质

- 1. 一棵树最多有两个重心, 且相邻
- 2. 以树的重心为根时,所有子树的大小都不超过整棵树大小的一半
- 3. 在一棵树上添加或删除一个叶子,那么它的重心最多只移动一条边的距离
- 4. 把两棵树通过一条边相连得到一棵新的树,那么新的树的重心在连接原来两棵树的重心的路径上
- 5. 树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么到它们的距离和一样

2.2.1.3 一点证明

首先证明如果树有两个重心,则它们必相邻

设两点分别为 a , b , 且它们之间的简单路径经过的点的个数不为 0 , 即它们不相邻

不妨认为 a 在树中的深度大于 b

那么, 点 a 向上的子树大小一定大于点 b 向上的子树, 同时大于点 b 向下不经过点 a 的子树

同理, 点 b 向下经过点 a 的子树一定大于点 a 向下的子树

所以,最大值仅由这两棵子树决定,而只要两点不相邻,上述总是成立的

不难发现,这两种子树,在 a 或 b 沿着两点间简单路径移动时会减小,不符合重心的定义 再证最多只有两个重心

显然,如果树的重心大于两个,至少有一对重心无法相邻

2.2.2 点分治

2.2.2.1 思路

如果在统计树上信息时,可以将子树内的信息单独统计,将多个子树的信息合并统计,那么可以考虑树分治。如果对于每一次分治,复杂度为 $\Theta(N)$,那么 \mathbf{k} 次递归的复杂度就是 $\Theta(kN)$

如果能保证递归次数为 \log 级别,那么复杂度就会是 $\Theta(N\log N)$,而从重心分治就可以保证最多递归 $\log N$ 次

同时可以发现,在递归时保存所有以重心为根的子树的信息的空间复杂度也是 $\Theta(N \log N)$ 的不会受到影响的信息有简单路径

会受到影响的信息有 LCA

如果题目需要求的信息会受到根节点选取的影响,还是不要使用点分治为好

2.2.2.2 实现

预定义部分

```
int h[10010], nx[20020], to[20020], w[20020], cnt_; // 链式前向星数组
  int son[10010]; // 经过处理后的每个点的儿子个数
  bool vis[10010]; // 该点是否在分治时作为子树的根
  int id; // 当前所处理的树的重心
   int snode; // 当前所处理树的节点数量
5
6
  void add(cint f, cint t, cint co) {
7
8
      nx[++cnt] = h[f];
      h[f] = cnt_;
9
      to[cnt_] = t;
10
      w[cnt_] = co;
11
12
  }
```

统计以某点为根且不跨越其余重心的子树大小

```
int gsiz(cint loc, cint fa) {
   int sum = 1;
   for(int i=h[loc]; i; i=nx[i])
       if(to[i] != fa && !vis[to[i]]) {
            sum += gsiz(to[i], loc);
       }
   return sum;
}
```

寻找树的重心

```
void gp(cint loc, cint fa) {
   int pre = 0;
   son[loc] = 1;
   for(int i=h[loc]; i; i=nx[i])
       if(to[i] != fa && !vis[to[i]]) {
            gp(to[i], loc);
            pre = max(pre, son[to[i]]);
            son[loc] += son[to[i]];
```

2.2 树上问题 5

```
9
               if(id) return;
10
       pre = max(pre, snode - son[loc]);
11
       // 树的重心可能有两个,此处任取了一个
12
       if(pre <= snode/2) {</pre>
13
           id = loc;
14
15
           return;
       }
16
17
```

统计跨越重心的答案

合并子树

解决问题

```
void sol(cint loc) {
1
 2
       vis[loc] = 1;
       // 初始化计算答案与合并子树时需要用到的东西
 3
       for(int i=h[loc]; i; i=nx[i]) {
           if(!vis[to[i]]) {
 5
               check(to[i], loc);
 7
               update(to[i], loc);
           }
9
       for(int i=h[loc]; i; i=nx[i]) {
10
           if(!vis[to[i]]) {
11
12
               snode = gsiz(to[i], loc);
               id = 0;
13
               gp(to[i], loc);
14
               sol(id);
15
           }
16
```

第二章 图论

```
17 | }
18 |}
```

主函数里的一点东西

```
1 int main() {
2    snode = n;
3    gp(1, 1);
4    sol(id);
5 }
```

- 2.2.3 边分治
- 2.2.4 点分树
- 2.2.5 树上启发式合并
- 2.2.5.1 思路

当子树可以单独处理,且子树信息转移到父节点较为容易时可以考虑

任意一条路径上轻边个数不超过 $\log N$

每一条轻边连接的轻子树会额外访问子树中所有的点一次,那么每个点至多被额外访问 $\Theta(\log N)$ 次理论复杂度 $\Theta(N\log N)$

2.2.5.2 实现

预定义部分

```
1 vector<int> to[100100]; // 邻接表
2 int son[100100]; // 子树大小
3 int bson[100100]; // 重儿子
```

寻找重儿子

```
void fd_son(cint loc, cint fa) {
 1
 2
        son[loc] = 1;
        for(int v: to[loc]) {
 3
            if(v != fa) {
                fd_son(v, loc);
 6
                son[loc] += son[v];
                if(son[v] > son[bson[loc]]) bson[loc] = v;
 7
 8
            }
 9
        }
10
   }
```

递归主体

```
void clear() {
// do somethings
}

void sol(cint loc, cint fa) {
```

2.2 树上问题 7

```
6
       for(int v: to[loc]) {
7
           if(v != fa && v != bson[loc]) {
               sol(v, loc);
8
               clear(); // 清空函数
9
10
           }
       }
11
       if(bson[loc]) sol(bson[loc], loc);
12
       for(int v: to[loc]) {
13
           if(v != fa && v != bson[loc]) {
14
               check(v, loc, a[loc]);
15
               update(v, loc);
16
17
           }
18
       // 此处注意插入当前节点
19
20
```

统计答案

```
void cacu(cint r, cint x) {
2
        // do somethings
3
   }
4
   void check(cint loc, cint fa, cint co) {
5
        // cacu
6
 7
        for(int v: to[loc]) {
            if(v != fa) check(v, loc, co);
8
9
        }
10
   }
```

合并子树

```
void ins(cint r, cint x) {
1
2
        // do somethings
3
   }
4
   void update(cint loc, cint fa) {
6
        // ins
        for(int v: to[loc]) {
 7
            if(v != fa) update(v, loc);
8
9
        }
10
   }
```

主函数的一些部分

```
1 int main() {
2   fd_son(1, 1);
3   sol(1, 1);
4 }
```

第三章 数论

3.1 逆元

3.1.1 实现

注意,不是所有时候都有逆元

3.1.1.1 单个数的逆元

```
ll ksm(ll m, int c) {
 2
        ll ans = 1;
 3
        while(c) {
             if(c&1) ans = (ans_{\star}m) % mod;
 5
             c >>= 1;
             m = (m_{\star}m) \% \mod;
 6
 7
        return ans;
 8
 9
    }
10
    ll inv(ll x) { return ksm(x, mod-2); }
11
```

3.1.1.2 阶乘的线性逆元

```
ll ksm(ll m, int c) {
        ll ans = 1;
 2
 3
        while(c) {
            if(c&1) ans = (ans_{\star}m) % mod;
 4
 5
            c >>= 1;
            m = (m_{\star}m) \% \mod;
 6
 7
 8
        return ans;
 9
   void sol_inv() {
10
11
        fac[0] = 1;
        for(int i=1; i<=mx_n; i++) fac[i] = fac[i-1] * i % mod;</pre>
12
        inv[mx_n] = ksm(fac[mx_n], mod-2);
13
14
        for(int i=mx_n-1; i; i--) inv[i] = inv[i+1] * (i+1) % mod;
15
   }
```

3.1 逆元

3.1.1.3 1 到 n 的线性逆元

```
inv[1] = 1;
for(int i=2; i<=n; i++) inv[i] = (mod-mod/i) * inv[mod%i] % mod;</pre>
```

3.1.2 成立性

3.1.2.1 p 与 b 不互质

逆元不存在

3.1.2.2 模数 p 为质数

根据费马小定理,数 b 的逆元为 b^{p-2}

3.1.2.3 模数 p 不为质数

如果 p 与 b 互质,数 b 的逆元为 $b^{\varphi(p)-1}(mod\ p)$

第四章 计算几何

第五章 博弈理论

第六章 数据结构

6.1 树状数组

```
int bnode[mx_n];
 2
   int lowbit(int &x) { return x&-x; }
 3
 4
   void add(int x, cint co) {
 6
        while(x <= mx_n) {</pre>
            bnode[x] += co;
 7
            x += lowbit(x);
 8
        }
 9
   }
10
11
   int query(int x) {
12
        int ans = 0;
13
14
        while(x) {
            ans += bnode[x];
15
            x -= lowbit(x);
16
        }
17
        return ans;
18
19
```

注意,树状数组无法直接处理 0 ,需要处理一下

第七章 组合统计

7.1 常见的恒等式与组合结论

7.1.1 结论

- 1. K_n 的生成数的个数为 n^{n-2}
- 2. n 个点的凸多边形对角线的交点最多为 C_n^4 ,其中不超过两条对角线在内部的任何一点相交

7.1.2 恒等式

1. $\Sigma_{i=1}^n C_i^x = C_{n+1}^{x+1}$

第八章 典型题型

8.1 最长上升子序列

8.1.1 做法

第一种:

dp,复杂度 $\Theta(N^2)$,优点是可以记录子序列

```
1 // Nope
```

第二种:

贪心,复杂度 $\Theta(N \log N)$, 优点是复杂度低

```
1 int mx[mx_n];
int r = 0;
3 memset(mx, 0x3f, sizeof mx);
4 mx[0] = 0;
5 for(int i=1; i<=m; i++) {
    int id = lower_bound(mx, mx+r+1, c[i]) - mx;
7    mx[id] = c[i];
8    r = max(r, id);
9 }
6 # 最后 mx 数组合法的最大的下标就是答案</pre>
```

第九章 杂项

9.1 cdq 分治