

Implicit Surfaces & Solid Representations

COS 426, Spring 2020 Felix Heide Princeton University

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - > Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - etc.

Large Geometric Model Repository Georgia Tech

3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - etc.

Large Geometric Model Repository Georgia Tech

Represent surface with function

over all space

Surface defined implicitly by function

- Surface defined implicitly by function:
 - f(x, y, z) = 0 (on surface)
 - f(x, y, z) < 0 (inside)
 - f(x, y, z) > 0 (outside)

Turk

- Normals defined by partial derivatives
 - Normal $N(x, y, z) = normalize\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = normalize(\vec{\nabla}f)$
 - Example: circle $x^2 + y^2 3^2 = 0$
 - Proof: straight forward with an arbitrary curve $\Gamma(t)$ and the chain rule
 - Max change rate direction of f perpendicular to iso-surface direction
 - Intuition in 2D: skiing downhill on a topo-map

- Normals defined by partial derivatives
 - Normal $N(x, y, z) = normalize\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = normalize(\vec{\nabla}f)$

Bloomenthal

- Tangent $T = N_P \times N$
 - on specific plane P, with normal N_P
 - Otherwise infinite directions

- Normals defined by partial derivatives
 - Normal $N(x, y, z) = normalize\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = normalize(\vec{\nabla}f)$
 - Tangent $T = N_P \times N$
 - Curvature change of rate N
 - Computation more involved
 - Principal directions min and max curvature

- (1) Efficient check for whether point is inside
 - Evaluate f(x,y,z) to see if point is inside/outside/on
 - Example: ellipsoid

$$f(x, y, z) = \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1$$

(2) Efficient surface intersections

Substitute to find intersections

Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$$|P_0 + tV - O|^2 - r^2 = 0$$

Solve quadratic equation:

$$at^2 + bt + c = 0$$

where:

a = 1
b = 2 V •
$$(P_0 - O)$$

c = $|P_0 - C|^2 - r^2 = 0$

Example: Rendering

Display Signed Distance Field Slices

Example: Simulation

Hierarchical *hp*-Adaptive Signed Distance Fields

Dan Koschier, Crispin Deul and Jan Bender

- (3) Efficient boolean operations (CSG later in this lecture)
 - How would you implement: Union? Intersection? Difference?

Union

Difference

(4) Efficient topology changes

• Surface is not represented explicitly!

Bourke

- (4) Efficient topology changes
 - Surface is not represented explicitly!

Bloomenthal

Example: Modeling

[olivelarouille on Youtube]

(5) Computations in the volume

- Allows for continuity and smoothness
- Suitable for tasks such as reconstruction

1G sample points \rightarrow 8M triangles

Example: Surface reconstruction

Online Reconstruction of 3D Objects from Arbitrary Cross-Sections [Bermano et al. 2011]

Comparison to Parametric Surfaces

- Implicit
 - Efficient intersections & topology changes
- Parametric
 - Efficient "marching" along surface & rendering

- How do we define implicit function?
 - f(x,y,z) = ?

- How do we define implicit function?
 - Algebraics
 - Voxels
 - Basis functions
 - Others

- How do we define implicit function?
 - ➤ Algebraics
 - Voxels
 - Basis functions
 - Others

- Implicit function is polynomial
 - $f(x,y,z)=ax^d+by^d+cz^d+dx^{d-1}y+dx^{d-1}z+dy^{d-1}x+...$

$$f(x, y, z) = \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1$$

- Most common form: quadrics
 - $f(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fxz+2gx+2hy+2jz+k$
- Examples
 - Sphere
 - Ellipsoid
 - Paraboloid
 - Hyperboloid

http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx

• Higher degree algebraics

Quartic

Degree six

- Equivalent parametric surface
 - Tensor product patch of degree m and n curves yields algebraic function with degree 2mn

Bicubic patch has degree 18!

- Intersection
 - Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324!

- Function extends to infinity
 - Must trim to get desired patch (this is difficult!)

- How do we define implicit function?
 - Algebraics
 - ➤ Voxels
 - Basis functions

- Regular array of 3D samples (like image)
 - Samples are called voxels ("volume pixels")

• Example isosurfaces

SUNY Stoney Brook

Princeton University

- Regular array of 3D samples (like image)
 - Applying reconstruction filter (e.g. trilinear) yields f(x,y,z)
 - Isosurface at f(x,y,z) = 0 defines surface

- Iso-surface extraction algorithm
 - e.g., Marching cubes

- Iso-surface extraction algorithm
 - e.g., Marching cubes (15 cases)

Example: Marching Cubes

Voxel Storage

- $O(n^3)$ storage for $n \times n \times n$ grid
 - 1 billion voxels for 1000 x 1000 x 1000

Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Voxels
 - ➤ Basis functions

Basis functions

- Implicit function is sum of basis functions
 - Example:

$$f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \dots - \tau$$

Blobby Models

• Implicit function is sum of Gaussians

$$f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \dots - \tau$$

Blobby Models

Sum of two blobs

Blobby Models

Sum of four blobs

Blobby Model of Head

(a) N = 1

(b) N = 2

Blobby Model of Head

(d) N = 60

Blobby Model of Face

(a) N = 1

(b)
$$N = 2$$

Blobby Model of Face

(d) N = 35

Blobby Model of Face

(e)
$$N = 70$$

(f) N = 243

Implicit function is sum of basis functions

Implicit Surface Summary

Advantages:

- Easy to test if point is on surface
- Easy to compute intersections/unions/differences
- Easy to handle topological changes

Disadvantages:

- Indirect specification of surface
- Hard to describe sharp features
- Hard to enumerate points on surface
 - Slow rendering

Summary

Feature	Polygonal Mesh	Implicit Surface	Parametric Surface	Subdivision Surface
Accurate	No	Yes	Yes	Yes
Concise	No	Yes	Yes	Yes
Intuitive specification	No	No	Yes	No
Local support	Yes	No	Yes	Yes
Affine invariant	Yes	Yes	Yes	Yes
Arbitrary topology	Yes	No	No	Yes
Guaranteed continuity	No	Yes	Yes	Yes
Natural parameterization	No	No	Yes	No
Efficient display	Yes	No	Yes	Yes
Efficient intersections	No	Yes	No	No

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Solid Modeling

Represent solid interiors of objects

www.volumegraphics.com

Motivation 1

• Some acquisition methods generate solids

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)

Motivation 2

- Some applications require solids
 - Examples: medicine, CAD/CAM

SUNY Stoney Brook

Intergraph Corporation

Motivation 3

- Some operations are easier with solids
 - Example: union, difference, intersection

Union

Difference

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Return to Voxels

Regular array of 3D samples (like image)

Voxels

- Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - etc.

Engine Block
Stanford University

Visible Human (National Library of Medicine)

Voxel Processing

- Signal processing (just like images)
 - Reconstruction
 - Resampling
- Typical operations
 - Blur
 - Edge detect
 - Warp
 - etc.
- Often fully analogous to image processing

Voxel Boolean Operations

- Compare objects voxel by voxel
 - Trivial

- Isosurface rendering
 - Interpolate samples stored on regular grid
 - Isosurface at f(x,y,z) = 0 defines surface

- Slicing
 - Draw 2D image resulting from intersecting voxels with a plane

Visible Human (National Library of Medicine)

- Ray casting
 - Integrate density along rays: compositing!

Engine Block Stanford University

- Extended ray-casting
 - Transfer functions:
 Map voxel values to opacity and material
 - Normals (for lighting) from density gradient

Bruckner et al. 2007

Voxels

Advantages

- Simple, intuitive, unambiguous
- Same complexity for all objects
- Natural acquisition for some applications
- Trivial boolean operations

Disadvantages

- Approximate
- Not affine invariant
- Expensive display
- Large storage requirements

Voxels

• What resolution should be used?

Quadtrees & Octrees

- Refine resolution of voxels hierarchically
 - More concise and efficient for non-uniform objects

Quadtree Processing

- Hierarchical versions of voxel methods
 - Finding neighbor cell requires traversal of hierarchy: expected/amortized O(1)

Quadtree Boolean Operations

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - > BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

BSP Trees

Naylor

BSP Trees

- Key properties
 - visibility ordering (later)
 - hierarchy of convex regions (useful for collision)

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - > CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Constructive Solid Geometry (CSG)

 Represent solid object as hierarchy of boolean operations

- Union
- Intersection
- Difference

CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects

CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects

CSG Boolean Operations

- Create a new CSG node joining subtrees
 - Union
 - Intersection
 - Difference

CSG Display & Analysis

Ray casting

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - > Sweep
- High-level structures
 - Scene graph
 - Application specific

Sweeps

Swept volume

• Sweep one curve along path of another curve

Demetri Terzopoulos

Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis

Demetri Terzopoulos

Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis

Wolfram

Summary

Feature	Voxels	Octree	BSP	CSG
Accurate	No	No	Some	Some
Concise	No	No	No	Yes
Affine invariant	No	No	Yes	Yes
Easy acquisition	Some	Some	No	Some
Guaranteed validity	Yes	Yes	Yes	No
Efficient boolean ops	Yes	Yes	Yes	Yes
Efficient display	No	No	Yes	No