Ecology - Interactions in Communities

Symbiotic Relationships ("living together")

- symbiosis dissimilar organisms living together
 - symbiont lives in /on a second species, host
- parasitism and mutualism influence community structure the most

Parasitism

- one organism benefits at the expense of another
 <u>parasite</u> obtains nutrients from living in/on <u>host</u> species
- specialized form of predation
- many parasites have adapted to a specific host

Parasitism

- endoparasites (internal)
 ex. tapeworms, hookworms
- ectoparasites (external)
 ex. mosquitoes

Mutualism

symbiosis that benefits both organisms

Trophic mutualism

- plants and nitrogen-fixing bacteria
 N₂ --> bacteria --> NH₃ --> used by plants
- animals and intestinal microbes termites, cows, humans

Trophic mutualism

between animals -- cleaner fish

<u>Dispersive mutualism</u>.

Plant pollinators (birds, insects and bats)

plants get gametes dispersed <---> pollinator gets energy

Defensive mutualism

- Ant and the swollen thorn Acacia
 - --> Acacias have thorns and foliar nectaries
 - --> Ants use acacias as nests and for food
 - --> Ants defend acacia against herbivores and competing plants

Commensalism

one organism benefits with no harm to the other

```
ex. "hitchhiker" species

(whale and the barnacle)

(algae growing on shells or backs of species)
```

Ecology - Interactions in Communities

Summary Interspecific Interactions

Interaction	Effect on Species	Effect on Population Density
Competition	-/-	Detrimental to both species
Predation (parasitism)	+/-	Beneficial to predator, harmful to prey
Mutualism	+/+	Beneficial to both species
Commensalism	+ / o	One species benefits the other is unaffected

Two major processes sustain all ecosystems:

<u>energy flow</u> - exchange of energy through ecosystem

- <u>chemical cycling</u> use and reuse of chemical elements
- organism interaction

Trophic Structure

determines path of energy flow and chemical cycling

<u>Trophic levels</u> - a step in the transfer of food or energy

Food chain - transfer of energy between trophic levels

Food chains

trophic level	<u>terrestrial</u>	<u>aquatic</u>
	carnivore	carnivore
3° consumers	carnivore	carnivore
2° consumers	carnivore	carnivore
1º consumers	herbivore	zooplankton
Producers	plants	phytoplankton
Detritivores	detritus from trophic levels	

Types of heterotrophs

- herbivore obtains energy by feeding on primary producers
- carnivore flesh-eating organism
- *omnivore* feed on both plants and animals

Food webs

- species usually have alternate food source
- this relationship is expressed with a web diagram

Efficiencies of ecosystems

solar radiation 35% reflected back into space
 14% absorbed by atmospheric gases
 51% absorbed by earth's surface

<u>Infrared absorption</u> ("greenhouse effect")

 the effect of heat retention in the lower atmosphere as a result of absorption and re-radiation of terrestrial radiation by clouds and gases

photosynthesis efficiency

```
<u>energy of sunlight captured</u> = 1.5% solar energy available
```

this low efficiency is do to:

reflection

low efficiency of chemicals (chlorophyll)

Biomass

the amount of living organic material in an ecosystem

Primary Productivity

 the rate at which biomass is produced by plants in the form of organic substances

Eltonian Pyramids

- a graphical representation of the trophic structure and function of an ecosystem
- the first trophic level of producer organisms (usually green plants) forms the base of the pyramid
- three types: of numbers, of biomass, and of energy

Energy Pyramids

efficiency of energy transfer between trophic levels

Ecological efficiency (Lindemann's efficiency)

energy assimilated by trophic level (N) energy assimilated by the next lower trophic level (N-1)

= 10%

Energy Pyramids

 this cumulative loss of energy from a food chain can be represented by an energy pyramid

Biomes

- major types of ecosystems that cover large geographic areas
- characterized by distinctive vegetation, organisms and climate

Aquatic Biomes

occupy the largest part of the biosphere

Freshwater biomes

lakes ponds

rivers streams

Marine biomes

estuaries

oceans

coral reefs

Aquatic Biomes

Terrestrial Biomes

distribution by latitude and / or altitude

Terrestrial Biomes

Ecology - Defining our Biome

Temperate deciduous forest

- deciduous trees (shed leaves)
- moderate rain and temperature
- mid-latitudes

Ecology - Defining our Biome

Wetlands / Estuaries

- estuary
 - a coastal body of water
 - free connection to the open sea
 - ocean water is diluted by fresh water

