

(E MARKING

ELECTROMAGNETIC COMPATIBILITY
ELECTRICAL SAFETY
LASER SPECTROSCOPY
ENVIRONMENTAL PHYSICS

G.S.D. S.r.l.

Certified in accordance with UNI EN ISO 9001:2008

by

TÜV Rheinland Italia S.r.l. Certificate N. 39 00 1850509

2.17 MO	TIME THE E	
G.S.D. Srl PISA - Italy	Test Report n. FCC-17366	Rev. 03
Manufacturer	ISD GEORADAR S.r.l.	
Address	Via Enrica Calabresi, 24 56121 Pisa (PI) Italy	
Test Family Name	IBIS Sensor Ku ETH	
Testing Laboratory Name	G.S.D. S.r.l.	
Address	Via Marmiceto, 8 56121 Pisa (PI) Italy	
Tel/Fax	+39 050 984254 / +39 050 984262	
P.IVA/VAT	01343950505	
http – e-mail	www.gsd.it - info@gsd.it FCC Listed. Registration Number: 424037.	
I C ID C	D: 2017 I 1 10	
Location and Date of Issue	Pisa, 2017 July 10	
	I	

G.S.D. s.r.l.
Via Marmiceto, 8
56121 OSPEDALETTO - PISA
Tel 050 984254 - Fax 050 984269

Tel. 050.984254 - Fax 050.984262 P. IVA 01343950505

SENIOR EMOTEST MANAGER
Dr. Gian Luca Genovesi

Quality manager Dr. David Pelliccia

INDEX 1. Manufacturer and Eut Identification 2. Reference Standards..... 3. Result, Condition, Measurement uncertainty..... 4. Conducted Emissions..... 5. Radiated emissions..... 6. Transmission Requirements 6.1. Antenna requirement. 6.7. Spurious Radiated Emissions 73 **Report Revision History** Revision details Date Page No.(s) Details 2017 June 30 Rev. 00 86 First issue 2017 June 30 86 Rev. 01 Second Issue 2017 June 30 77 Rev. 02 Third Issue 2017 July 10 74 Rev. 03 Forth Issue

Manufacturer	ISD GEORADAR S.r.l
Address	Via Enrica Calabresi, 24
	56121 Pisa (PI)
	Italy
Test Family Name	IBIS Sensor Ku ETH
Jan 10 J	IDIS SCHOOL IXU ETTI
Date of reception	2017 June 04
Bute of reception	2017 June VI
Sampling	Laboratory sample for certification
Test Item Description	Interferometric RADAR
•	
Nominal Input Voltage	12-24 Vdc
FCC ID	FCC ID: UFW-IBIS-KU-ETH

¹A detailed documentation is preserved in the internal fascicle.

2. Reference Standards

Tests and measurements are performed accordingly to the reference standards given in the table below:

TEST	Standard
Spectrum Emission Mask: 90.210 (c)	FCC Rules ad Regulations, Title 47 Part 90 – Sub part F
RF Output Power: Section 2.1046	FCC Rules ad Regulations, Title 47 Part 2
Occupied Bandwidth: Section 2.1049	FCC Rules ad Regulations, Title 47 Part 2
Conducted Spurious: Section 2.1051	FCC Rules ad Regulations, Title 47 Part 2
Frequency Stability: Section 2.1055	FCC Rules ad Regulations, Title 47 Part 2
Measurements required: Field strength of spurious radiation / Spurious emissions (radiated)	FCC 47 CFR § 2.1053 § 90.210
Antenna Requirement: §15.203	FCC Rules ad Regulations, Title 47 Part 15 – Sub part C

3. Result, Condition, Measurement uncertainty		
J. RESULI, CONDITION, MEASUREMENT UNCERTAI	NI Y	
Summary of Test Results		
Test		RESULT
Emissions: conducted		N/A
Emissions: radiated Section 90.210 Section 2.1053		Pass
RF Output Power Section 2.1046		Pass
Occupied bandwidth Section 2.1049		Pass
Spectrum Emission Mask Section 90.210 (c)		Pass
Conducted Spurious Emissions Section 2.1051 Radiated Spurious Emissions		Pass
Radiated Spurious Emissions Section 2.1053 Frequency Stability	Pass	
Section 2.1055		Pass
Measurement uncertainty		
TEST		EXPANDED UNCERTAINTY
		± 3.5 dB ± 4.7 dB
<u>Climatic Conditions</u>		
PARAMETER		VALUE
Temperature Relative humidity	(293 ± 3) K (50 ± 5) %	
Auxiliary apparatus		
Equipment uses two differente antenna: 13.3 dBi	and 22 dBi gains.	
Extensions		
The results refer only to the sampled EUT and un	der the specified c	conditions.

4. Conducted Emissions

In the following table you can find the limits established by the reference standard:

Frequency range	Q UASI-PEAK LIMIT	Average Limit
(MHz)	$[dB(\mu V)]$	$[dB(\mu V)]$
0.15 - 0.50	66 – 56 (*)	56 – 46 (*)
0.50 - 5	56	46
5 – 30	60	50

^(*) Decreases with the logarithm of the frequency.

Test Equipment

EQUIPMENT	Manufacturer	Model	NEXT CALIBRATION
EMI Receiver	Agilent	E4440	01/2018
LISN	GSD	GSDA01	01/2018
Screened Room	GSD	CSC01	01/2018

Method

The EUT was switched on and allowed to warm up to its normal operating condition.

All possible modes of operation were investigated.

Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.

Result:

Not applicable. The EUT was powered by battery.

5. RADIATED EMISSIONS

In the following table you can find the limits established by the reference standard:

FREQUENCY RANGE (MHz)	Field Strength QUASI-PEAK LIMITS [dB (\(\muV/m\)]
0.009 - 0.490	48.15 – 13.8 @ 300m
0.490 - 1.705	33.8 – 23 @ 30m
1.705 - 30	29.5 @ 30m
30 – 88	40
88 – 216	43.5
216 – 960	46
Above 960	54

Test Equipment

EQUIPMENT	Manufacturer	Model	CAL. DUE
MXE EMI Receiver	Agilent/Keysight	N9038A	01/2018
EMI Receiver	Agilent	E4440	01/2018
Harmonic mixer	HP	11971A	01/2018
Harmonic mixer	Keysight	11970U	07/2020
EXA Signal Analyzer	Keysight	N9010B	01/2018
Waveguide Harmonic Mixer	Keysight	M1970E	11/2017
Anechoic Chamber	Comtest	CSA01	01/2018
Bilog Antenna	Schaffner	CBL6112B	01/2018
Horn Antenna	EMCO	3115	01/2018
Horn Antenna	Alpha Industries	61932500	01/2018
Standard Gain Horn Antenna	A-INFOMW	LB-19-20-A	01/2018
Standard Gain Horn Antenna	A-INFOMW	LB-12-20-A	01/2018
Controller	Deisel	HD100	01/2018
Turn Table	Deisel	MA240	01/2018
LISN	GSD	NTW06	01/2018

Test procedure: RE22R02

Notes

Azimuth position EUT-Antenna corresponding to 0° identifies the rotating table orientation (TT) in which the instrument to be tested shows the front part turned towards the antenna. Positive grades individuate clockwise rotations of TT when this one is observed from the top. For negative degrees, TT rotation is counter-clockwise.

Antenna height respect to the mass plane is conventionally individuated with: MA=XXX where XXX indicates the height (always positive and greater than 100) expressed in cm.

Antenna horizontal polarisation is indicated by POL=H.

Antenna vertical polarisation is indicated by POL=V.

EUT was tested in the three orthogonal planes.

Note:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Results and conclusions

In all the operative conditions, equipment complied with the standard limits. Graphics in following figures show the most significant registrations of the performed measurements.

6. Transmission Requirements
An intentional radiator must be designed to guarantee specific requirements.
6.1. Antenna requirement
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna requirement must meet at least one of the following:
 Antenna must be permanently attached to the device.
 Antenna must use a unique type of connector to attach to the device.
• Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
Note:
Antenna use a wave guide port to attach to the device.
Result
<u>Result</u>
Pass

6.2. Peak Output Power

EUT was set for low, mid, and high channel with modulated mode and highest RF output power. Two antennas with lowest and highest gains was imposed.

The spectrum analyzer was connected to the antenna terminal.

Measurement (conducted)

The measured values are:

Channel Output A

Encourage	Output Power (dBm)	
Frequency	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)
Low (17.1 GHz)	19.9	13.6
Mid (17.2 GHz)	20.5	13.9
High (17.3 GHz)	19.1	12.3

Channel Output B

Engayory	Output Power (dBm)	
Frequency	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)
Low (17.1 GHz)	20.4	13.8
Mid (17.2 GHz)	19.6	12.9
High (17.3 GHz)	19.7	12.9

Procedures:

The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi frequency channels. Peak detector was set to measure the power output.

The lowest antenna gain is 13.3 dBi, and highest antenna gain is 22 dBi.

Result

Pass

Notes:

The following figures show the acquired graphics.

6.3. 99% Occupied Bandwidth

EUT was set for chirp sweep with modulated mode and highest RF output power.

Two antennas with lowest and highest gains was imposed.

The spectrum analyzer was connected to the antenna terminal.

The lowest antenna gain is 13.3 dBi, and highest antenna gain is 22 dBi.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper

frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by

a given emission shall be measured.

Measurement (conducted)

The measured values are:

Cumara	Bandwidth (MHz)		
CHANNELS	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)	
Output A	198.4	198.1	
Output B	198.6	198.6	

Result
Pass
Notes:
The following figures show the acquired graphics.
• •

6.4. Spectrum Emission Mask

EUT was set for low, mid, high channel with modulated mode and highest RF output power Two antennas with lowest and highest gains was imposed.

The spectrum analyzer was connected to the antenna terminal.

The lowest antenna gain is 13.3 dBi, and highest antenna gain is 22 dBi.

Requirements

For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: at least 83 log(fd/5) dB;
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: at least 29 log (fd²/11) dB or 50 dB, whichever is the lesser attenuation;
- On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least 43 + 10log(P) dB.

Measurement (conducted)

The single result are:

Channel Output A

Engoveryou	Results				
Frequency	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)			
Low (17.1 GHz)	Pass	Pass			
Mid (17.2 GHz)	Pass	Pass			
High (17.3 GHz)	Pass	Pass			

Channel Output B

Ennovery	Results				
Frequency	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)			
Low (17.1 GHz)	Pass	Pass			
Mid (17.2 GHz)	Pass	Pass			
High (17.3 GHz)	Pass	Pass			

Result		
Pass		•

Notes:

The following figures show the acquired graphics.

6.5. Frequency Stability

EUT was set for mid channel with modulated mode and highest RF output power

The spectrum analyzer was connected to the antenna terminal.

Requirements

The frequency stability shall be measured with variation of ambient temperature as follows:

- from -30° to $+50^{\circ}$ centigrade;
- frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range.

The frequency stability shall be measured with variation of primary supply voltage as follows:

• primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Measurement (conducted)

Channel Output A

Frequency stability versus temperature

Temperature (°C)	Meas. Freq. (MHz)	F re q. D rift (кHz)	Freq. Deviation Limit	RESULT
50	17199.999750	-0.051		Pass
40	17199.999722	-0.079		Pass
30	17199.999868	+0.067		Pass
20		Reference (MHz): 17199.999801	
10	17199.999721	-0.080		Pass
0	17199.999888	+0.087		Pass
-10	17200.000000	+0.199		Pass
-20	17200.000134	+0.333		Pass
-30	17200.000095	+0.294		Pass

Frequency stability versus input voltage

MEAS. VOLTAGE (VDC)	Meas. Freq. (MHz)	F re q. D rift (кHz)	Freq. Deviation (Limit: 0.01 %)	RESULT
10.20	17199.999940	+0.018	< 0.01	Pass
12.00	17199.999957	+0.035	< 0.01	Pass
24.00	17199.999922	0		Pass
27.66	17199.999932	+0.010	< 0.01	Pass

The frequency of the transmitter was measured at 85% and 115% of the rated power supply voltage at environmental temperature (20 °C).

Channel Output B

Frequency stability versus temperature

Temperature (°C)	Meas. Freq. (MHz)	F re Q. D rift (кHz)	Freq. Deviation Limit	RESULT
50	17199.999640	-0.145		Pass
40	17199.999642	-0.143		Pass
30	17199.999808	+0.023		Pass
20		Reference (MHz): 17199.999785	
10	17199.999721	-0.064		Pass
0	17199.999918	+0.133		Pass
-10	17199.999931	+0.146		Pass
-20	17199.999998	+0.213		Pass
-30	17199.999999	+0.214		Pass

Frequency stability versus input voltage

MEAS. VOLTAGE (VDC)	Meas. Freq. (MHz)	F re q. D rift (кHz)	Freq. Deviation (Limit: 0.01 %)	RESULT
10.20	17199.999941	+0.015	< 0.01	Pass
12.00	17199.999952	+0.026	< 0.01	Pass
24.00	17199.999926	0		Pass
27.66	17199.999931	+0.005	< 0.01	Pass

The frequency of the transmitter was measured at 85% and 115% of the rated power supply voltage at environmental temperature (20 °C).

Result

Pass

6.6. Conducted Spurious Emission at Antenna Port

EUT was set for chirp sweep with modulated mode and highest RF output power.

Two antennas with lowest and highest gains was imposed.

The spectrum analyzer was connected to the antenna terminal.

Requirements

For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: at least 83 log(fd/5) dB;
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: at least 29 log (fd²/11) dB or 50 dB, whichever is the lesser attenuation;
- On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least 43 + 10log(P) dB.

Measurement (conducted)

The single values are:

Cumura	Bandwie	dth (MHz)
Channels	Low Antenna Gain (13.3 dBi)	High Antenna Gain (22 dBi)
Output A	Pass	Pass
Output B	Pass	Pass

Result		
Pass		

Notes:

The following figures show the acquired graphics.

Fig. 6.29
Channel Output A; Chirp mode; Low Antenna Gain Frequency range: 30 MHz – 26.5 GHz

Fig. 6.33 Channel Output A; Chirp mode; High Antenna Gain Frequency range: 30 MHz – 26.5 GHz

Fig. 6.37 Channel Output B; Chirp mode; Low Antenna Gain Frequency range: 30 MHz – 26.5 GHz

Fig. 6.41 Channel Output B; Chirp mode; High Antenna Gain Frequency range: 30 MHz – 26.5 GHz

	1 36		G B
EQUIPMENT	Manufacturer	Model	CAL. DUE
MXE EMI Receiver	Agilent/Keysight	N9038A	01/2018
EMI Receiver	Agilent	E4440	01/2018
Attenuator	Narda	768-10	01/2018

	SPURIOUS I	Radiated Em	ISSIONS					
Nr	AV Level (dBμV/m)						AV	Remark
Harmonics	Ch	Low	Ch	Mid	Ch 1	High	Limits	
	F (GHz)	(dBµV/m)	F (GHz)	(dBµV/m)	F (GHz)	(dBµV/m)	$(dB\mu V/m)$	
2	34.2		34.4		34.6		54.0	
3	51.3		51.6		51.9		54.0	
4	68.4		68.8		69.2		54.0	
5	85.5		86.0		86.5		54.0	
6							54.0	
7							54.0	
8							54.0	
9							54.0	
10							54.0	
Note: Level	c halow /		ite ara indi					
	S OCIOW 2	O GD OI IIII		cated with ().		AV	Remark
Nr			Peak Lev	el (dBµV/m)		. 40	AV Limits	Remark
		Ch O	Peak Lev	el (dBµV/m)		49 (dBμV/m)	AV Limits (dBµV/m)	Remark
Nr	(Peak Lev Ch	el (dBµV/m)	Ch		Limits	Remark
Nr Harmonics	F (MHz)	Ch 0 (dBμV/m)	Peak Lev Ch F (MHz)	el (dBμV/m) 24 (dBμV/m)	Ch F (MHz)	(dBµV/m)	Limits (dBµV/m)	Remark
Nr Harmonics	F (MHz) 34.2	Ch 0 (dBμV/m)	Peak Lev Ch F (MHz) 34.4	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6	(dBµV/m)	Limits (dBµV/m)	Remark
Nr Harmonics 2 3	F (MHz) 34.2 51.3	Ch 0 (dBμV/m) 	Peak Lev Ch F (MHz) 34.4 51.6	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6 51.9	(dBμV/m) 	Limits (dBµV/m) 74.0 74.0	Remark
Nr Harmonics 2 3 4	F (MHz) 34.2 51.3 68.4	Ch 0 (dBµV/m) 	Peak Lev Ch F (MHz) 34.4 51.6 68.8	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6 51.9 69.2	(dBµV/m)	Limits (dBµV/m) 74.0 74.0 74.0	Remark
Nr Harmonics 2 3 4 5	F (MHz) 34.2 51.3 68.4	Ch 0 (dBμV/m) 	Peak Lev Ch F (MHz) 34.4 51.6 68.8	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6 51.9 69.2	(dBµV/m)	Limits (dBµV/m) 74.0 74.0 74.0 74.0 74.0	Remark
Nr Harmonics 2 3 4 5 6	F (MHz) 34.2 51.3 68.4	Ch 0 (dBμV/m) 	Peak Lev Ch F (MHz) 34.4 51.6 68.8	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6 51.9 69.2	(dBµV/m)	Limits (dBµV/m) 74.0 74.0 74.0 74.0 74.0 74.0	Remark
Nr Harmonics 2 3 4 5 6 7	F (MHz) 34.2 51.3 68.4	Ch 0 (dBμV/m) 	Peak Lev Ch F (MHz) 34.4 51.6 68.8	el (dBµV/m) 24 (dBµV/m)	Ch F (MHz) 34.6 51.9 69.2	(dBµV/m)	Limits (dBμV/m) 74.0 74.0 74.0 74.0 74.0 74.0	Remark

G.S.D. S.r.l. – Via Marmiceto, 8 – 56121 Pisa (loc. Ospedaletto) – Italy

EQUIPMENT	Manufacturer	Model	CAL. DUE
MXE EMI Receiver	Agilent/Keysight	N9038A	01/2018
EMI Receiver	Agilent	E4440	01/2018
Harmonic mixer	HP	11971A	01/2018
Harmonic mixer	Keysight	11970U	07/2020
EXA Signal Analyzer	Keysight	N9010B	01/2018
Waveguide Harmonic Mixer	Keysight	M1970E	11/2017
Anechoic Chamber	Comtest	CSA01	01/2018
Bilog Antenna	Schaffner	CBL6112B	01/2018
Horn Antenna	EMCO	3115	01/2018
Horn Antenna	Alpha Industries	61932500	01/2018
Standard Gain Horn Antenna	A-INFOMW	LB-19-20-A	01/2018
Standard Gain Horn Antenna	A-INFOMW	LB-12-20-A	01/2018
Controller	Deisel	HD100	01/2018
Turn Table	Deisel	MA240	01/2018