Universidade do Minho

LICENCIATURA EM ENGENHARIA INFORMÁTICA

Comunicações Por Computador

Grupo 45

TP3: Serviço de Resolução de Nomes (DNS)

Maria Eugénia Bessa Cunha (A93264)

Vicente Gonçalves Moreira (A93296)

Tânia Filipa Soares Teixeira (A89613)

Novembro 2021

1 Questões e Respostas

1.1 Parte I: Consultas ao serviço de nomes DNS.

a) Qual o conteúdo do ficheiro /etc/resolv.conf e para que serve essa informação?

O ficheiro resolv.conf contém as configurações necessárias para o sistema utilizar o DNS para determinar os hosts names e endereços IP.

```
coreexubuncore:-$ cat /etc/resolv.conf
# This file is managed by man:systemd-resolved(8). Do not edit.
# This is a dynamic resolv.conf file for connecting local clients to the
# internal DNS stub resolver of systemd-resolved. This file lists all
# configured search domains.
# Run "resolvectl status" to see details about the uplink DNS servers
# currently in use.
# Third party programs must not access this file directly, but only through the
# symlink at /etc/resolv.conf. To manage man:resolv.conf(5) in a different way,
# replace this symlink by a static file or a different symlink.
# See man:systemd-resolved.service(8) for details about the supported modes of
# operation for /etc/resolv.conf.

nameserver 127.00.053
options edns0 trust-ad
search eduroam.uminho.pt
coreexubuncore:-$
```

Conteúdo do ficheiro resolv.conf

b) Os servidores www.di.uminho.pt. e www.europa.eu. têm endereços IPv6? Se sim, quais?

Para esta questão recorremos ao comando dig especificando o pedido da query como AAAA. Descobrimos assim que o servidor www.di.uminho.pt. não contém endereços Ipv6, já o servidor www.europa.eu. possui 2 dois endereços Ipv6.

www.di.uminho.pt:

www.europa.eu:

2a01:7080:14:100::666:25 2a01:7080:24:100::666:25

```
vicshadow@ASUSVicshadow:-$ dig www.di.uminho.pt. AAAA

; <<>> DiG 9.16.1-Ubuntu <<>> www.di.uminho.pt. AAAA

; global options: +cmd
;; global options: +cmd
;; global options: +cmd
;; global options: +cmd
;; oot answer:
;; ->>HEADER<-- opcode: QUERY, status: NOERROR, td: 60449
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; DOPT PSEUDOSECTION:
;; QUESTION SECTION:
;; Www.di.uminho.pt. IN AAAA
;; ANSWER SECTION:
www.di.uminho.pt. 4174 IN CNAME www5.di.uminho.pt.
;; Query time: 99 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
; WHEN: qui nov 11 22:19:21 WET 2021
;; MSG SIZE rcvd: 64
vicshadow@ASUSVicshadow:-$
```

Dig Uminho AAAA

```
vicshadow@ASUSVicShadow:-$ dig www.europa.eu. AAAA

; <<>> DiG 9.16.1-Ubuntu <<>> www.europa.eu. AAAA

;; global options: +cnd
;; Got answer:
;; ->>HEADER<-> opcode: QUERY, status: NOERROR, ld: 35552
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;iwww.europa.eu. IN AAAA

;; ANSWER SECTION:
;www.europa.eu. 77 IN CNAME lp-europa.ec.europa.eu.
lp-europa.ec.europa.eu. 300 IN AAAA 2a01:7080:24:100::666:25
lp-europa.ec.europa.eu. 300 IN AAAA 2a01:7080:14:100::666:25
;; Query time: 119 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
;; WHEN: qui nov 11 22:18:08 WET 2021
;; MSG SIZE rcvd: 125

vicshadow@ASUSVicShadow:-$
```

Dig Europa AAAA

c) Quais os servidores de nomes definidos para os domínios: "gov.pt." e "."?

Utilizando o comando dig com a query NS, verificamos que para o domínio gov.pt. contém 5 servidores de nomes definidos, já o domínio '.' (root) contém 13 servidores.

```
vicshadow@ASUSVicshadow:-$ dig gov.pt. NS
; <<>> DiG 9.16.1-Ubuntu <<>> gov.pt. NS
; global options: +cmd
;; Got answer:
;; ->>HEADER<- opcode: QUERY, status: NOERROR, id: 43642
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;gov.pt. IN NS
;; ANSWER SECTION:
gov.pt. 567 IN NS a.dns.pt.
gov.pt. 567 IN NS dns1.gov.pt.
gov.pt. 567 IN NS nsp.dnsnode.net.
;; Query time: 91 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
; WHEN: qui nov 11 22:21:00 WET 2021
;; MSG SIZE rcvd: 149
vicshadow@ASUSVicshadow:-$
```

Dig gov.pt. NS

Dig . NS

d) Existe o domínio efiko.academy.? Com base na informação obtida do DNS, nomeadamente os registos associados a esse nome, diga se o considera um host ou um domínio de nomes.

Verificamos através do comando $dig\ ANY$ que o endereço efiko.academy é um domínio pois possui um $SOA\ (Start\ of\ Authority)$, mas também verificamos que este contém endereços de IP, indicando-nos que também é um host.

Dig efiko.academy. ANY

e) Qual é o servidor DNS primário definido para o domínio gov.pt.? Este servidor primário (master) aceita queries recursivas? Porquê?

Executando o comando dig com a query SOA obtivemos o servidor de DNS primário do domínio dnssec.gov.pt., assim como podemos verificar, ao analisar as flags ra(recursive available) e 'rd'(recursive desired) na resposta, que este aceita queries recursivas.

```
vicshadow@ASUSVicshadow:-$ dig gov.pt SOA

; <<>> DiG 9.16.1-Ubuntu <<>> gov.pt SOA
;; global options: +cmd
;; Got answer:
;; ->>HEADER<-- opcode: QUERY, status: NOERROR, id: 47962
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;gov.pt. IN SOA
;; ANSWER SECTION:
gov.pt. 600 IN SOA dnssec.gov.pt. dns.ceger.gov.pt.
;; Query time: 36 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
;; WHEN: sâb nov 13 01:04:01 WET 2021
;; MSG SIZE rcvd: 88
vicshadow@ASUSVicshadow:-$
```

Dig gov.pt. SOA

f) Obtenha uma resposta "autoritativa" para a questão anterior.

Não conseguimos obter qualquer resposta autoritativa a partir do comando dig dns-sec.gov.pt, obtendo respostas com o erro NXDOMAIN (domínio não existente). Achamos que este problema ocorre pois ao listar os servidores de nome dig gov.pt NS, nenhuma das respostas corresponde ao servidor principal dnssec.gov.pt.

g) Onde são entregues as mensagens de correio eletrónico dirigidas a marcelo@presidencia.pt?

Para descobrir onde as mensagens são entregues, procuramos por servidores de correspondência de *email* utilizando o *resource record MX* aplicado ao domínio *presidencia.pt.*

```
vtcshadowdASUSVtcshadowi-$ atg presidencta.pt MX
; <<>> DLG 9.16.1-Ubuntu <<>> presidencta.pt MX
;; global options: +cnd
;; Got answer:
;; ->>HEADER<-- opcode: QUERY, status: NOERROR, id: 55792
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;presidencta.pt. IN MX
;; ANSMER SECTION:
presidencta.pt. 7197 IN MX 50 maill.presidencia.pt.
presidencia.pt. 7197 IN MX 10 maill.presidencia.pt.
;; Query time: 0 nsec
;; SerVer: 127.0.0.53#53(127.0.0.53)
;; WHEN: sab nov 13 01:17:05 MET 2021
;; MSG SIZE rcvd: 87
vtcshadow@ASUSVtcshadow:-5</pre>
```

Dig presidencia.pt. MX

h) Que informação é possível obter, via DNS, acerca de gov.pt?

Utilizando a query ANY podemos obter todas as informações relativas a um domínio. Verificamos então que este domínio contém ao todo 6 servidores de nome. Também verificamos no SOA, sendo esta uma das informações mais relevantes, que o servidor mestre é o dnssec.gov.pt., sendo gerido por dns.ceger.gov.pt. seguido de várias informações sobre o serial number, tempos de refresh, retry e expire.

```
vicshadow@ASUSVicShadow:-$ dig gov.pt ANY
; <<>> DiG 9.16.1-Ubuntu <<>> gov.pt ANY
; global options: +cmd
;; Got answer:
;; ->>HEADER<- opcode: QUERY, status: NOERROR, id: 39233
;; flags: qr dra; QUERY: 1, ANSWER: 18, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
gov.pt. IN ANY
;; ANSWER SECTION:
gov.pt. 3015 IN RRSIG NSEC3PARAM 10 2 3600 2021
jUqHksItjCM Zwn0oPzhWE1eveZWYCQffmgcOJNlbAefZEJdwgctnDDfauZBexQly1vB3 X9AW
gov.pt. 3015 IN NSEC3PARAM 1 0 1 A1019A7DA7ACAEFA
gov.pt. 3015 IN RRSIG TXT 10 2 600 202111261928
FDU 78SMHXZQtAU7fJNSRhvnMUNVY+PpSUtrXYYSJHkqaVycp53gKtxW0910 70AMXRQ19NAM
gov.pt. 15 IN RRSIG TXT 10 2 600 202111261928
FDU 78SMHXZQtAU7fJNSRhvnMUNVY+PpSUtrXYYSJHkqaVycp53gKtxW0910 70AMXRQ19NAM
gov.pt. 15 IN TXT "v=spf1 mx ip4:193.47.185
gov.pt. 15 IN RRSIG SOA 10 2 600 202111261928
FDW 76SMHXZQtAU7fJNSRhvnMUNVY+PpSUtrXYYSJHKqaVycp5agKtxW0910 70AMXRQ19NAM
gov.pt. 15 IN RRSIG SOA 10 2 600 202111261928
FS G/DznqjJRjtwg3zXYq9cR1WEAYB7wWHRMXCDXt3/gCOPzwOCp7QPbln3 NBgqHuVa+Izyv
gov.pt. 15 IN RRSIG NS 10 2 600 202111261928
FS G/DznqjJRjtwg3zXYq9cR1WEAYB7wWHRMXCDXt3/gCOPzwOCp7QPbln3 NBgqHuVa+Izyv
gov.pt. 8S815 IN RRSIG DNSKEY 10 2 86400 2021112
y8af39lU QPQDOU8hHNZt9gNH69uHDNc8/jHij9zylp3NKTL+6Y3001hc-Dt66kng OhwpTNB
MZVU4Pus/S8n4sb1HPTu0 pG3M9waenRZWHUYQkgs4kvynIGpgmVE7p8ebk16yyqpcDRF1/juC
gov.pt. 8S815 IN DNSKEY 256 3 10 AwEAACTLSXtSNGO
F01jEKqN39H5 IPn1ew7t0ygaM3RIUMbrkyueqUbou/G/nEZRJy29G+IblGc7bYsBPt+ enc
gov.pt. 4259 IN DNSKEY 256 3 10 AwEAACTLSXtGSNG
F01jEKqN39H5 IPn1ew7t0ygaM3RIUMbrkyueqUbou/G/nEZRJy29G+IblGc7bYsBPt+ enc
gov.pt. 4259 IN DNS 51381 10 2 380408804504F3
gov.pt. 4259 IN DNS 51381 10 2 380408804504F3
gov.pt. 15 IN NS snp.dnsnode.net.
gov.pt. 15 IN NS snp.d
```

Dig gov.pt. ANY

```
vicshadow@ASUSVicshadow:-$ dig gov.pt SOA

; <<>> DiG 9.16.1-Ubuntu <<>> gov.pt SOA

; global options: +cnd
; global options: +cnd
; global options: +cnd
; cot answer:
;; ort answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47962
;; flags: qr dr a; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; opt pseudosection:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;gov.pt. IN SOA

;; ANSWER SECTION:
gov.pt. IN SOA

;; ANSWER SECTION:
gov.pt. 600 IN SOA dnssec.gov.pt. dns.ceger.gov.pt.
;; Query time: 36 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
;; WHEN: sáb nov 13 01:04:01 WET 2021
;; MSC SIZE rcvd: 88
vicshadow@ASUSVicshadow:-5
```

Dig gov.pt. SOA

i) Consegue interrogar o DNS sobre o endereço IPv6 2001:690:2080:8005::38 usando algum dos clientes DNS? Que informação consegue obter? Supondo que teve problemas com esse endereço, consegue obter um contacto do responsável por esse IPv6?

Utilizando o comando dig com a flag -x podemos fazer uma reverse query, ou seja, obter um nome a partir de um endereço IP. Depois de executada a query e descobrirmos o nome responsável por esse endereço é smtp01.fccn.pt., executamos a query novamente com a flag SOA, aplicada ao domínio fccn.pt. e assim verificamos que o contacto responsável pelo Ipv6 original seria hostmaster.fccn.pt..

Dig -x 2001:690:2080:8005::38

Dig fccn.pt. SOA +multiline

j) Os secundários usam um mecanismo designado por "Transferência de zona" para se atualizarem automaticamente a partir do primário, usando os parâmetros definidos no Record do tipo SOA do domínio. Descreve sucintamente esse mecanismo com base num exemplo concreto (ex: uminho.pt).

Os domínios devem ter um registo de Ínicio de Autoridade (SOA) que será o ponto de transição entre os domínio pai e o "ínicio" do domínio. Este contém informação relevante às transferências de zona:

```
SUSVicShadow:~$ dig uminho.pt SOA +multiline
  <>>> DiG 9.16.1-Ubuntu <<>> uminho.pt SOA +multiline
 ; global options: +cmd
  Got answer:
  ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3263 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
 EDNS: version: 0, flags:; udp: 65494
; QUESTION SECTION:
uminho.pt.
                          IN SOA
;; ANSWER SECTION:
minho.pt.
                          7193 IN SOA dns.uminho.pt. servicos.scom.uminho.pt. (
                                   2021110101 ; serial
                                   14400
                                                 refresh (4 hours)
                                   7200
                                               ; retry (2 hours)
                                   1209600
                                               ; expire (2 weeks)
                                                 minimum (5 minutes)
                                   300
;; Query time: 0 msec
   SERVER: 127.0.0.53#53(127.0.0.53)
  WHEN: sáb nov 13 01:45:36 WET 2021
  MSG SIZE rcvd: 92
 .cshadow@ASUSVicShadow:~$
```

Dig fccn.pt. SOA +multiline

serial - Última atualização do Domínio refresh - Segundos para a atulização da zona retry - Segundos a esperar após uma tentativa de atualizar falhar expire - Número de segundos para o qual o registo da zona é válido

Cada domínio é constituido por um servidor *DNS* primário e por servidores secundários que se irão conectar ao primário para utilizar a sua base de dados. Quando o servidor secundário pertende conectar-se ao primário, este compara os *serial numbers* para verificar se este está atualizado. Caso esta comparação falhe, significa que o servidor secundário está desatualizado e esta comparação é feita novamente após *retry* segundos passarem. Se passados expire segundos, o servidor secundário continuar desatualizado, este deixa de responder a *queries*.

2 Configuração de um Domínio - cc.pt

2.1 Ficheiros de configuração

Para a configuração inicial do nosso domínio, começamos por acrescentar as nossas zonas *cc.pt* e o seu *reverse* no ficheiro *named.conf* do servidor primário, acresentanto os campos *type master* e *allowtransfers10.3.3.2.* (O nome da pasta foi adaptada para "primario1".)

```
///
// Please read /usr/share/doc/bind9/README.Debian.gz for information on the
// structure of BIND configuration files in Debian, "BEFORE" you customize
// this configuration file.
//
// If you are just adding zones, please do that in /etc/bind/named.conf.local
include "/home/core/primariol/named.conf.local";
include "/home/core/primariol/named.conf.local";
include "/home/core/primariol/named.conf.default-zones";
zone "cc.pt" {
    type master;
    file "/home/core/primariol/db.cc.pt";
    allow-transfer{10.3.3.2;};
};
zone "2.2.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.2-2-10.rev";
    allow-transfer{10.3.3.2;};
};
```

Named.conf Primário Inicial

Posteriormente, acrescentamos no ficheiro o resto das zonas reversas correspondente a cada *LAN*. Para o servidor secundário, modificamos o *type* destas para *slave*, adicionando também a *flag masters* com o *IP* do servidor primário.

```
include "/home/core/primariol/named.conf.options";
include "/home/core/primariol/named.conf.local";
include "/home/core/primariol/named.conf.default-zones";

zone "cc.pt" {
    type master;
    file "/home/core/primariol/db.cc.pt";
    allow-transfer{10.3.3.2;};

};

zone "1.1.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.1-1-10.rev";
    allow-transfer{10.3.3.2;};

};

zone "2.2.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.2-2-10.rev";
    allow-transfer{10.3.3.2;};

};

zone "3.3.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.3-3-10.rev";
    allow-transfer{10.3.3.2;};

};

zone "4.4.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.4-4-10.rev";
    allow-transfer{10.3.3.2;};

};

zone "4.4.10.in-addr.arpa" {
    type master;
    file "/home/core/primariol/db.4-4-10.rev";
    allow-transfer{10.3.3.2;};

};
```

Named.conf Primário Completo

```
include "/home/core/secundario1/named.conf.options";
include "/home/core/secundario1/named.conf.local";
include "/home/core/secundario1/named.conf.default-zones";

zone "cc.pt" {
    type slave;
    file 'db.cc.pt";
    masters {10.2.2.1;};
};

zone "1.1.10.in-addr.arpa" {
    type slave;
    file "db.1-1-10.rev";
    masters {10.2.2.1;};
};

zone "2.2.10.in-addr.arpa" {
    type slave;
    file "db.2-2-10.rev";
    masters {10.2.2.1;};
};

zone "3.3.10.in-addr.arpa" {
    type slave;
    file 'db.3-3-10.rev";
    masters {10.2.2.1;};
};

zone "4.4.10.in-addr.arpa" {
    type slave;
    file 'db.4-4-10.rev";
    masters {10.2.2.1;};
};
```

Named.conf Secundário Completo

2.2 Criação das Bases de Dados

De seguida criamos as bases de dados db.cc.pt e a suas reverses de acordo com o requirido no enunciado.

Exemplo de uma das Reverse DataBases "db.2-2-10.rev

DataBase do servidor Primário

Mais tarde, modificamos os parâmetros do SOA em todas as bases de dados de forma a reduzir o tempo de espera para a transeferência das bases de Dados.

```
$TTL 604800

@ IN SOA ns.cc.pt. g45pl4.cc.pt. (

2 ; Serial

60 ; Refresh

30 ; Retry

90 ; Expire

604800 ) ; Negative Cache TTL
```

Novo SOA

2.3 Testes e Resultados

Começamos por iniciar o servidor 1 no ambiente do CORE, e de seguida tentamos através do Portatil1 obter respostas às queries. De início não obtivemos sucesso com o comando $dig\ cc.pt\ ANY$, então decidimos especificar o endereço no comando, ou seja, $dig\ @10.2.2.1\ cc.pt\ ANY$. Com este comando já adquirimos uma resposta.

```
oot@Portatil1:/tmp/pycore.36169/Portatil1.conf# dig @10.2.2.1 cc.pt ANY
    OiG 9,16,1-Ubuntu <<>> @10,2,2,1 cc.pt ANY
  (1 server found)
   global options: +cmd
   Got answer:
->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53262
flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 3
WARNING: recursion requested but not available
 ; OPT PSEUDOSECTION:
EDNS: version: 0, flags:; udp: 4096
COOKIE: 53560692303a70e90100000061962ad4394b90e716a1c7aa (good)
; QUESTION SECTION:
                                             ΙN
                                                        ANY
cc.pt.
;; ANSWER SECTION:
                                 604800 IN
c.pt.
86400 2419200 604800
                                                        SOA
                                                                    ns.cc.pt. 945pl4.cc.pt. 2 604800
cc.pt.
                                                                    ns2.cc.pt.
cc.pt.
                                                                    ns.cc.pt.
;; ADDITIONAL SECTION:
                                 604800 IN
                                                                    10,2,2,1
                                 604800 IN
ns2.cc.pt.
   Query time: 0 msec
SERVER: 10.2.2.1#53(10.2.2.1)
WHEN: qui nov 18 10:28:36 WET 2021
```

dig @10.2.2.1 cc.pt ANY

Decidimos então de seguida iniciar o servidor secundário *Golfinho* para testar se a conectividade deste. Depois do comando para a execução deste ter iniciado, verificamos que o servidor secundário recorreu à transferência das bases de dados do servidor primário e que está ocorreu com sucesso. Esta transferência automática deu-nos confiança que a configuração destes foram feita de forma correta.

```
| 1.500.0021 | 1155105.003 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 115510.50 | 1
```

LEFT - Servidor Primário / RIGHT - Servidor Secundário

Executamos assim a *query* ao servidor secundário, utilizando a referência direta do endereço novamente, e obtivemos uma resposta semelhante à anterior, sendo esta a que esperavamos.

```
root@Portatil1:/tmp/pycore.36169/Portatil1.conf# dig @10.3.3.2 cc.pt ANY
; <<>> DiG 9.16.1-Ubuntu <<>> @10.3.3.2 cc.pt ANY
; (1 server found)
; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65214
;; flags: qr aar d; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 3
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: 4251f1c7510e6da30100000061962c091fb430ab45b73feb (good)
;; QUESTION SECTION:
;cc.pt. IN ANY
;; ANSWER SECTION:
cc.pt. 604800 IN NS ns.cc.pt.
cc.pt. 604800 IN NS ns.cc.pt.
cc.pt. 604800 IN SOA ns.cc.pt. 945p14.cc.pt. 2 604800
;; ADDITIONAL SECTION:
ns.cc.pt. 604800 IN A 10.2.2.1
ns2.cc.pt. 604800 IN A 10.3.3.2
;; Query time: 0 msec
;; SERVER: 10.3.3.2#53(10.3.3.2)
;; WHEN: qui nov 18 10:333:45 WET 2021
;; MSG SIZE rcvd: 172
```

dig @10.3.3.2 cc.pt ANY

Para obter respostas diretas do dig, modificamos as configurações do CORE, em específico, o container do Portatil1 de forma a ler o etc/resolv.conf correto e assim pudemos executar comandos como dig com endereços diretos e ping.

dig cc.pt ANY

```
bash-5.0% ping wmw.cc.pt
PING Servidor2.cc.pt (10,2.2.2) 56(84) bytes of data.
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=1 ttl=61 time=1.31 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=2 ttl=61 time=0.414 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=2 ttl=61 time=0.417 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=3 ttl=61 time=0.452 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=5 ttl=61 time=0.404 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=5 ttl=61 time=0.411 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=5 ttl=61 time=0.416 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.488 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
65 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
66 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
67 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
68 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
68 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
69 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
60 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
60 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
60 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
60 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
61 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
62 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
62 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
62 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
62 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
64 bytes from Servidor2.cc.pt (10,2.2.2); icmp_seq=8 ttl=61 time=0.416 ms
64 bytes from Servidor3.60 ms
64 bytes from Servidor3.60 ms
64 bytes from Servidor3.60 ms
65 bytes from Servidor3.60 m
```

ping www.cc.pt

Testamos a seguir a conectividade do nosso domínio quando o servidor primário estiver offline. Para isto desligamos o servidor primário e executamos a query da mesma forma. Obtivemos com sucesso uma resposta do servidor secundário, sabemos que esta provém do Servidor2 pois podemos verificar o seu endereço de IP no final da query.

dig cc.pt ANY

```
bash-5.0# ping www.cc.pt
PING Servidor2.cc.pt (10.2.2.2.2) 56(84) bytes of data.
84 bytes from mail.cc.pt (10.2.2.2.2): icmp_seq=1 ttl=61 time=1.03 ms
64 bytes from mail.cc.pt (10.2.2.2.2): icmp_seq=2 ttl=61 time=0.444 ms
64 bytes from mail.cc.pt (10.2.2.2.2): icmp_seq=3 ttl=61 time=0.433 ms
64 bytes from mail.cc.pt (10.2.2.2.2): icmp_seq=4 ttl=61 time=0.340 ms
64 bytes from mail.cc.pt (10.2.2.2.2): icmp_seq=4 ttl=61 time=0.340 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=4 ttl=61 time=0.419 ms
65 bytes from mail.cc.pt (10.2.2.2): icmp_seq=4 ttl=61 time=0.419 ms
66 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
67 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
68 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
69 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
60 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
60 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
60 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
61 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
62 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
62 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
62 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
62 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=0.419 ms
62 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=5 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt (10.2.2.2): icmp_seq=6 ttl=61 time=1.040 ms
64 bytes from mail.cc.pt
```

ping www.cc.pt

Por último, decidimos testar as queries reversas no nosso domínio. Começamos por reiniciar o nosso servidor principal e executamos uma query reversa para a LAN 3. De seguida, voltamos a desligar o servidor principal e executamos outra query reversa, desta vez obtendo resposta do servidor secundário.

```
bash-5.0# dig -x 10.3.3.3

; <<>> DiG 9.16.1-Ubuntu <<>> -x 10.3.3.3

; global options: +cmd

;; Got answer:

;; ->>HEADLERK<- opcode: QUERY, status: NOERROR, id: 3295

;; flags; gr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EINS: version: 0, flags:; udp: 4096
; COUNCIE: 51aa93549584644010000006196ca4256338bcbd4233671 (good)
;; QUESTION SECTION:
;3.3.3.10.in-addr.arpa. IN PTR

;; ANSWER SECTION:
3.3.3.10.in-addr.arpa. 504800 IN PTR Foca.cc.pt.
;; Query time: 0 msec
;; SERVER: 10.2.2.1#653(10.2.2.1)
;; WHEN: qui nov 18 21:48:50 UTC 2021
;; MSG SIZE rcvd: 102
```

dig -x 10.3.3.3

```
bash-5.0# dig -x 10.1.1.1

; <<>> DiG 9.16.1-Ubuntu <<>> -x 10.1.1.1

; global options; +cmd
;; Got answer:
;; ->>HEADER</- opcode: QUERY, status: NOERROR, id: 55775
;; flags: gr aa rd; QUERY: 1, ANSWER: 2, HUTHORITY: 0, ADDITIONAL: 1
;; WARNING; recursion requested but not available
;; OPT PSEUDOSECTION:
; EINS: version: 0, flags:; udp: 4096
; COUNKIE: 24ed17Fc49fis978010000006196ca6ebd43db06f9ae936b (good)
;; QUESTION SECTION:
;1.1.1.10.in-addr.arpa. IN PTR
;; ANSWER SECTION:
1.1.1.10.in-addr.arpa. 604800 IN PTR g77.cc.pt.
1.1.1.10.in-addr.arpa. 604800 IN PTR Portatil1.cc.pt.
;; Query time: 0 msec
;; SERVER: 10.3.3.2@53(10.3.3.2)
;; WHEN: qui nov 18 21:49:34 UTC 2021
;; MGS SIZE rowd: 125
bash-5.0# []
```

dig -x 10.1.1.1

3 Conclusão

Com a realização deste trabalho prático, foi possível aprofundarmos e aplicar os conhecimentos lecionados nas aulas teóricas, nomeadamente o que diz respeito ao sistema de gestão de nomes hierárquico e distribuído.

Apesar das dificuldades iniciais da equipa com a execução de algumas perguntas da parte 1, assim como com o *setup* do servidor de *DNS*, sentimos que conseguimos responder, justificar e cumprir todos as perguntas e objetivos de forma satisfatória.