1)	
2)	
3)	
4)	
Nota:	

2ª Prova de F-328 - Noturno 22/10/2008

Nome:	RA:	Turma:

Questão 01

Um capacitor de placas paralelas, de área A e separação s, é originalmente carregado com carga Q_0 . Desligando-se a bateria, uma lâmina dielétrica de espessura d (d < s) e constante dielétrica κ é então inserida entre as placas do capacitor. Calcule:

- a) o vetor \vec{E} no interior do dielétrico; (1,0 ponto)
- b) a capacitância deste capacitor; (1,0 ponto)
- c) o valor da densidade superficial de carga σ' induzida nas paredes do dielétrico. (0,5 ponto)

Questão 02

A barra composta da figura abaixo é feita de dois materiais com a mesma área de seção transversal A=10 cm². Um material tem uma resistividade ρ_1 = 4,0 x 10⁻³ Ω . m e 25 cm de comprimento e o outro tem resistividade ρ_2 = 6,0 x 10⁻³ Ω . m e 40 cm de comprimento.

- a) calcule a resistência entre os extremos da barra; (1,0 ponto)
- b) se uma *ddp* de 10 V for aplicada às suas extremidades, que corrente fluirá na barra?; (0,5 ponto)
 - c) qual será o campo elétrico em cada material? (1,0 ponto)

Questão 03

O circuito da figura contém dois resistores R_1 e R_2 e dois capacitores C_1 e C_2 e o conjunto é ligado a uma bateria de fem ε . Antes de a chave S ser ligada, os capacitores estão descarregados.

- a) determine a constante de tempo deste circuito; (0,5 ponto)
- b) determine a corrente que atravessa a bateria em função do tempo após o fechamento de S; (1,0 ponto)
- c) com S fechada por um longo tempo, quais são as cargas nos capacitores C_1 e C_2 ? (1,0 ponto) . Sugestão: reconstrua o circuito de modo que ele tenha um único resistor e um único capacitor ligados em série.

Questão 04

Um fio, transportando uma corrente I, é dobrado de modo a formar uma espira semi-circular de raio R, conforme figura. O fio está no plano xy e o vetor \vec{B} é \vec{B} = $B\hat{y}$.

- a) calcule a força magnética que age sobre a parte reta do fio; (1,0 ponto)
- b) calcule a força magnética que age sobre a parte curva do fio; (1,0 ponto)
- c) calcule o vetor momento de dipolo magnético da espira. (0,5 ponto)

