膜你赛

yhx-12243

December 20, 2020

题目名称	冠状病毒	传播者	医院
题目类型	传统型	传统型	传统型
目录	rna	quarantine	tree
可执行文件名	rna	quarantine	tree
输入文件名	rna.in	quarantine.in	tree.in
输出文件名	rna.out	quarantine.out	tree.out
每个测试点时限	1秒	2.5 秒	1 秒
内存限制	512 MiB	1024 MiB	512 MiB
子任务数目	28	25	30
测试点是否等分	否	否	否

提交源程序文件名

对于 C++ 语言	rna.cpp	quarantine.cpp	tree.cpp
对于 C 语言	rna.c	quarantine.c	tree.c
对于 Pascal 语言	rna.pas	quarantine.pas	tree.pas

编译选项

对于 C++ 语言	-02 -lm -std=c++11
对于 C 语言	-02
对于 Pascal 语言	-02

注意事项

- 1. 需要建立子文件夹。
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4. C/C++ 中函数 main() 的返回值类型必须是 int,值为 0。

第1页 共20页

冠状病毒 (rna)

【题目背景】

本题的故事发生在 S 星球, 在这里我们将为你介绍一些必要的设定。

众所周知,地球上生物体中常见的含 N 碱基有 5 种:腺嘌呤 (用 A 表示)、鸟嘌呤 (用 G 表示)、胞嘧啶 (用 C 表示)、胸腺嘧啶 (用 T 表示) 以及尿嘧啶 (用 T 表示)。

其中,在 DNA/RNA 复制以及转录等相关过程中,它们会遵循**碱基互补配对原则**:其中 A 和 \mathbb{T} (U) 配对,G 和 C 配对。

不过,在 S 星球上,一共**有** 2n **种含** N **碱基**,分别用 $b_0, b_1, b_2, \cdots, b_{2n-2}, b_{2n-1}$ 表示,在 S 星球上,也有对应的**碱基互补配对原则**:碱基 b_0 和 b_1 配对,碱基 b_2 和 b_3 配对,……,碱基 b_{2n-2} 和 b_{2n-1} 配对。

特别地,对于地球上的生物体,可以看作是 n=2 的特殊情形: 如,规定 $b_0 = A, b_1 = T(U), b_2 = G, b_3 = C$,下列关于地球上碱基序列的描述均按照此规则。

在下面,如果不加特殊说明,我们用一个 $0 \sim 2n-1$ 的数字 $i(0 \le i \le 2n-1)$ 来表示碱基 b_i 。

【题目描述】

公元 8224 年,S 星球的 Θ 国爆发了一种前所未有的冠状病毒,该病毒具有潜伏期长、致病率低的特性。

8224 年 2 月 29 日,该病毒已造成 12243 人死亡,998244353 人确诊。小 ω 作为 Θ 国的总统,觉得事情已刻不容缓。

经过 Θ 国珂学院的不懈努力,已经将该冠状病毒的基因组成功分离出来,并将其命名为 SARS-CoV-233。

已知 **SARS-CoV-233** 病毒第一代的碱基序列 (核苷酸序列) 的长度为 L, 且每个碱基为 $b_0, b_1, \dots, b_{2n-1}$ 之一。

Θ 国珂学院还得出,目前有一种细菌 ν 可以产生一种能对 SARS-CoV-233 的繁殖有着强烈的抑制作用的抗体。所以,小 ω 希望尽可能利用细菌 ν 来制造解药。

细菌 ν 是一种非常特殊的生物,它每繁殖一代,后代的 RNA 序列恰好为在母体的 RNA 序列 末尾增加一个碱基 $b_{\rm new}$ 组成,也就是说,后代的 RNA 序列的长度恰好比母体多 1,且母体的 RNA 序列是后代的 RNA 序列的一个前缀。

目前 Θ 国的科技还无法达到能控制 b_{new} 的能力,因此该种细菌在繁殖时, b_{new} 可以看成在 $b_0, b_1, \dots, b_{2n-1}$ 中等概率随机。

如果某一代细菌 ν 的 RNA 序列中,**存在某一个连续的段**,与某一代 SARS-CoV-233 病毒完整 的碱基序列遵循**碱基互补配对原则**,则它会产生**这一代的** SARS-CoV-233 病毒的抗体,从而对该代 SARS-CoV-233 病毒产生抑制作用,减弱它对 Θ 国人类的影响。

但是,SARS-CoV-233 病毒并不是一成不变的,它也会随着外界的环境而进行进化。具体地,每一次进化也是从**原来的某一代**病毒的碱基序列末尾**增加一个碱基** b_{new} 得到。

小 ω 想知道用细菌 ν 来制造解药的方案是否现实,于是想请你计算一些问题:

从 2 月 29 日起, Θ 国珂学院已基本预测出将来 q 天的**病毒进化情况**。

截止 2 月 29 日,SARS-CoV-233 只有一代 (我们下面称它为**第** 0 代),它的碱基序列的长度为 L,序列为 r_0, r_1, \dots, r_{L-1} 。

在接下来的q天,每天会发生如下两种事情之一:

- 1. SARS-CoV-233 病毒的某一代发生了进化。具体地,SARS-CoV-233 病毒第 f 代的碱基序列末尾增加了一个碱基 b_r ,作为 SARS-CoV-233 病毒第 tot 代,其中 tot 为当前病毒的总代数 (包含第 0 代,不包含新产生的一代)。
- 2. SARS-CoV-233 没有进行进化, Θ 国珂学院对其中的第 f 代病毒进行了研究,想知道细菌 ν 对该代病毒的抑制情况。

具体地,目前她们已经得到一个细菌 ν 的样本,这个样本的 RNA 序列的长度为 l,且恰好与该代病毒的**前** l 个碱基满足碱基互补配对原则。

她们想知道,期望再繁殖多少代后,才能产生对该代病毒的抗体。

注意:某一代病毒可能被研究多次,也可能一次都未被研究。

细菌 ν 的繁殖遵循链式原则,即第 k 代是由第 k-1 代的 RNA 序列末尾增加一个碱基,而 SARS-CoV-233 病毒的繁殖是树状的,一次进化是由前面某一代病毒末尾补充一个碱基而得。

【输入格式】

从文件 rna.in 中读入数据。

第一行包含一个正整数 id, 表示子任务编号。

第二行包含四个非负整数 n, L, q, enc, 分别表示碱基对的种数, SARS-CoV-233 病毒第 0 代的碱基序列长度, 需要处理的天数, 以及数据是否加密。

第三行包含 L 个非负整数 $r_0, r_1, r_2, \cdots, r_{L-1}$,描述 SARS-CoV-233 病毒第 0 代的碱基序列 (核苷酸序列)。

接下来 q 行,每行描述一天的事件,格式如下:

- 1. $\begin{bmatrix} A & f & r \end{bmatrix}$ 表示这一天 SARS-CoV-233 病毒发生了进化,即第 f 代的碱基序列末尾增加了碱基 b_r ,作为病毒的最新一代。
- 2. Q f l 表示 Θ 国珂学院在研究 SARS-CoV-233 病毒第 f 代,且已知某个细菌 ν 的样本的 RNA 序列长度为 l 且与该代病毒的前 l 个碱基遵循碱基互补配对原则,求期望再繁殖多少代 之后能产生对该代病毒的抗体。

注意 r,l (没有 f!) 是经过加密的,记输入的值为 r_0,l_0 ,且上次输出的答案为 ans (初始时为 0),则:

$$r = (r_0 + enc \cdot ans) \mod (2n)$$

$$l = (l_0 + enc \cdot ans) \mod (L_f + 1)$$

其中 L_f 表示 SARS-CoV-233 病毒第 f 代的碱基序列长度。

第 3 页 共 20 页

【输出格式】

输出到文件 rna.out 中。

对于每次 Q 事件,输出一行一个整数,表示期望再繁殖的代数在模 998244353 意义下的结果。可以证明,这个数值一定是一个有理数,且分母不为 998244353 的倍数。

【样例 1 输入】

5

1 1 5 0

0

Q 0 0

A 0 0

Q 1 0

A 0 1

Q 2 0

【样例 1 输出】

2

6

4

【样例1解释】

S 星球只有两种碱基,不妨设为 A 和 U。

SARS-CoV-233 病毒第 0 代的碱基序列为 A。

第一天, Θ 国珂学院在研究 SARS-CoV-233 病毒第 0 代,它的碱基序列为 Δ o

而目前,它们得到 ν 样本的RNA序列的长度为0(可以为0),即还没有任何碱基对。

然后细菌 ν 进行随机繁殖,每次在末端等概率添加 A 或 U。

当细菌 ν 的 RNA 序列中出现U 时,它和第 0 代病毒的 A 满足碱基互补配对原则,从而产生第 0 代病毒的抗体。

不难证明,在一个空序列中等概率添加 A 或 U,期望 2 次后就能出现 U。

于是第一个问题的答案就是 2。

第二天, SARS-CoV-233 病毒第 0 代末尾增加了碱基 A, 作为病毒第 1 代, 即病毒第 1 代的碱基序列为 AA。

第三天, Θ 国珂学院在研究 SARS-CoV-233 病毒第 1 代,它的碱基序列为 AA。

而目前 ν 样本仍为空,需要进行随机繁殖,即每一次在母体后等概率添加 A 或 U。

而当 RNA 序列中出现连续的 UU 时,才能产生对第 1 代病毒的抗体。

不难证明,需要期望添加6次。

第四天,SARS-CoV-233 病毒第 0 代末尾增加了碱基 U,作为病毒第 2 代,即病毒第 2 代的碱基序列为 AU。

第五天, Θ 国珂学院在研究 SARS-CoV-233 病毒第 2 代,它的碱基序列为 AU。

而目前 v 样本仍为空,需要进行随机繁殖,即每一次在母体后等概率添加 A 或 U。

而当 RNA 序列中出现连续的 UA 时,才能产生对第 1 代病毒的抗体。

我们把整个过程分为两步:

第一步,随机添加,直到出现U,这个过程期望2代。

第二步,随机添加,**直到出现**A。因为在出现 A 之前,前面的所有碱基均为 U,故不影响第一步的成果,这个过程期望还是 2 代。

由期望的线性性知,总共期望2+2=4代。

【样例 2 输入】

6

1 1 5 1

0

Q 0 0

A 0 0

Q 1 1

A 0 1

0 2 0

【样例 2 输出】

2

6

4

【样例 2 解释】

该组样例为样例一的加密版本。

【样例 3 输入】

5

2 16 8 0

0 1 2 3 0 1 0 1 2 3 0 1 0 1 2 3

Q 0 0

Q 0 8

Q 0 16

A 0 0

A 1 1

Q 2 0

Q 2 9

Q 2 18

【样例3输出】

303038716

302973164

0

855642060

855379852

0

【样例3解释】

注意 l 可以等于 L_f ,说明此时细菌 ν 已产生 SARS-CoV-233 病毒第 f 代的抗体,故期望**再**繁殖 0 代。

【样例 4 输入】

6

2 16 8 1

 $0 \ 1 \ 2 \ 3 \ 0 \ 1 \ 0 \ 1 \ 2 \ 3 \ 0 \ 1 \ 0 \ 1 \ 2 \ 3$

Q 0 0

Q 0 11

Q 0 2

A 0 0

A 1 1

Q 2 0

Q 2 16

Q 2 14

【样例 4 输出】

303038716

302973164

0

855642060

855379852

0

【样例4解释】

该组样例为样例三的加密版本。

【样例 5】

见选手目录下的 rna/rna5.in 与 rna/rna5.ans。

该组样例保证出现的碱基序列来源于 $Severe\ acute\ respiratory\ syndrome\ related\$ 病毒的 RNA 序列。

【样例 6】

见选手目录下的 rna/rna6.in 与 rna/rna6.ans。该组样例为样例五的加密版本。

【数据范围】

对于所有的测试点,均满足 $1 \le n, L, q \le 3 \times 10^5; enc \in \{0,1\}; 1 \le id \le 28; 0 \le r, r_i \le 2n-1; 0 \le l \le L_f; 0 \le f < tot$, 其中 tot 为当前病毒的总代数,初始时为 1 (包含第 0 代),但不包含将要产生的那一代。此外,无论是解密前还是解密后,所有变量均满足上述限制。

具体的子任务的数据规模见下表:

膜你赛 冠状病毒 (rna)

子任务 (id =)	分值	n	L	q	enc	其它性质		
1	1	$\leq 3 \times 10^5$	$\leq 3 imes 10^5$	$\leq 3 \times 10^5$	= 0	保证没有 0 事件		
2	1	≥ 3 × 10	≥ 9 × 10.	≤ 3 × 10°	≤ 1	水业X月 V 学计		
3	4	≤ 2	≤ 2	≤ 4	= 0			
4	4	3.2	2.2	≥*	≤ 1			
5	3	≤ 100	≤ 100	≤ 100	= 0			
6	3	3 200		_ 100	≤ 1	无		
7	3	= 1			= 0	70		
8	3	- •	≤ 2000	≤ 2000	≤ 1			
9	3	≤ 2000	3 2000	3 2000	= 0			
10	2	3 2000			≤ 1			
11	5				= 0	保证出现的碱基序列均来源于果蝇染色体		
12	4	=2			≤ 1	Morred Wild address 13.3 July 19.4 July 2. Membris 19.4.		
13	3		_					= 0
14	3		≤ 30000	≤ 30000	≤ 1	75		
15	5	≤ 30000	_ 30000		= 0	保证所有 0 事件在 A 事件之后		
16	4		≤ 30000			≤ 1	311 22 311 22	
17	4					= 0	无	
18	3				≤ 1	75		
19	6	= 2			= 0	保证出现的碱基序列均 <i>来源于果蝇染色体或人类染色体</i>		
20	5				≤ 1	The state of the s		
21	4				= 0	无		
22	3				≤ 1	70		
23	4	$\leq 3 imes 10^5$	$\leq 3 imes 10^5$	$\leq 3 \times 10^5$	= 0	保证没有 A 事件		
24	4				≤ 1	biographic and activities		
25	4				= 0	保证所有 0 事件在 A 事件之后		
26	4				≤ 1	Night to a getting a settlement		
27	4				= 0	无		
28	4				≤ 1	χι		

同时,保证编号为 2i 的子任务和 2i-1 的子任务的数据完全一致,除了 enc=1,以及对应的输入加密。换句话说,子任务 2i 为子任务 2i-1 的加密版本 $(1 \le i \le 14)$ 。

子任务的依赖规则满足: 子任务 a 直接或间接依赖子任务 b,当且仅当 $a \neq b$ 且一切满足子任务 b 限制的数据均满足子任务 a 的限制。

传播者(quarantine)

【题目描述】

研究完 SARS-CoV-233 病毒的性状后, S 星球开始转而处理因 SARS-CoV-233 而得病的人。 SHO (S-planet Health Organization) 规定,将 SARS-CoV-233 病毒感染的肺炎命名为 COVID-12243。

在 S 星球的这一时期, 有众多珂技和卫生会议需要召开。S 星球的会议召开是逐级进行的:

先由 S 星球的联合国在会议中提出若干问题及方法, 然后各国的总统将这些精神传达到各省, 这样逐级传下去, 最后落实到每个人, 再汇总起来。

但是,在 Θ 国的各级人民代表大会召开过程中,由于某些乡村的医疗水平不够发达,导致有些村民已经不知不觉地患上了 COVID-12243,然而试剂并不能检验出来。

小 ω 作为 Θ 国的总统,觉得这件事非常严重。于是,她将亲自下访整条路线,带上高超的试剂,并隔离这些患 COVID-12243 的病人。

形式化地,S 星球的行政区划分为 n 类 (相当于中国的国 - 省 - 市 - 县/区 - 乡等),从小到大分别称为 1 级行政单位,2 级行政单位,……,n 级行政单位(Θ 国)。

现在,我们考察一条特定的路线 (即某个乡 $\rightarrow \cdots \rightarrow \Theta$ 国),其中每一级行政单位中有 k 个人大代表,我们用 (i,j) 表示 i 级人大代表中的第 j 个。

已知**,相邻两级**的人大代表会有相互见面的机会,而**非相邻两级**的人大代表 (**即使是同级**) 没有相互见面的机会。

(ps: 同级人大代表在开会的时候有某些特殊的措施,导致即使相互见面也不会感染病毒)

对于相邻两级的人大代表,小 ω 已经调查清楚了: 对于 $\forall 1 \leq i \leq n-1, 1 \leq u, v \leq k$,(i,u) 和 (i+1,v) 是否有相互见面的机会。

现在在 Θ 国需要召开若干次人民代表大会,每次会议的要求如下:

首先,第l级行政单位召开人民代表大会,然后第l级人大代表和第l+1级人大代表依次见面,然后第l+1级行政单位开始开会,然后再与l+2级人大代表依次见面,……,最终到第r级会议开完为止,最后,r级人大代表需要向小 ω 汇报消息。

特别地,我们会给定两个集合 P_l , P_r ,表示 l 级行政单位中,只有 P_l 集合中的人参与整场会议,在 r 级行政单位中,只有 P_r 集合中的人参与整场会议。而对于 $\forall l < i < r$,i 级行政单位的**所有人**大代表都必须参加。

但是,目前已知**第** l **级的人大代表**具有潜在的患 COVID-12243 可能性,而其他人并没有。当两个人见面时,病毒会**从下级人大代表传播到上级人大代表**。这将导致小 ω 有一定的几率感染 SARS-CoV-233。

于是,她会选择**所有人大代表中的**若干个将其隔离,尤其是一些超级传播者。被隔离的人与任何 人都不能见面,可以通过特殊的方式传递信息。

但是,将一个人隔离的代价是很大的,所以,小 ω 希望隔离**尽可能少的人**,从而确保她不会被感染 (即使会议不能开成功)。

而且,由于某些原因,不同人之间是否有相互见面的机会,是在不断改变的,但始终保持**只有相 邻两级**的人才有相互见面的机会。

注意: 在两次不同的会议中,「第l级的人大代表具有潜在的患 COVID-12243 可能性」是相互独立的,互不影响。

【输入格式】

从文件 quarantine.in 中读入数据。

第一行包含三个正整数 n, k, q,表示行政单位的种数,每一级人大代表的个数和事件的个数。接下来 k(n-1) 行,分为 n-1 段,每段 k 行。

对于第 i $(1 \le i \le n-1)$ 段,第 u $(1 \le u \le k)$ 行包含一个长度为 k 的 0/1 串,其中第 v $(1 \le v \le k)$ 个字符为 1 表示 (i,u) 和 (i+1,v) 有相互见面的机会,否则表示没有相互见面的机会。接下来 q 行,每行描述一个事件,格式如下:

- 1. $|\underline{T} i u v|$ 表示 (i,u) 和 (i+1,v) 能否相互见面关系发生**改变**,即如果原先不能相互见面,则现在能相互见面,如果原先能相互见面,则现在不能相互见面。

【输出格式】

输出到文件 quarantine.out 中。

对于每次Q事件,输出一行一个整数,表示需要被隔离的人数的最小值。

【样例 1 输入】

2 5 13

11000

00100

00100

00100

00011

M 1 2 11111 11111

M 1 2 01110 11011

M 1 2 01010 01110

T 1 2 2

T 1 4 4

M 1 2 11111 11111

M 1 2 01110 11011

M 1 2 01010 01110

T 1 2 2

T 1 4 4

M 1 2 11111 11111

M 1 2 01110 11011

M 1 2 01010 01110

【样例 1 输出】

3

0

1

5

2

2

3

0

1

【样例1解释】

用第一行的点表 1 级人大代表,用第二行的点表示 2 级人大代表,如果两个人大代表能见面,则用一条线段相连,则所得的图形如下:

对于第 1 次人民代表大会,所有的人大代表都要参加,于是小 ω 为了防止自己被感染,需要至少隔离三个人 (隔离用黄圈表示):

对于第 2 次人民代表大会,只有如下 7 个人大代表需要参加会议,于是这个会议本身就无法成功,小 ω 不需要隔离任何人:

对于第 3 次人民代表大会,只有如下 5 个人大代表需要参加会议,于是为了防止感染小 ω ,只需隔离 (2,3) 即可:

然后,(1,2) 和 (2,2) 的见面关系发生改变,(1,4) 和 (2,4) 的见面关系发生改变,即新的关系图如下:

接下来对于第 4 次人民代表大会, 所有人大代表都要参加, 此时就需要隔离至少 5 个人了:

对于第5次人民代表大会,还是那时的7人参加,不过这回需要隔离2个人:

对于第6次人民代表大会,有5个人参加,这次也隔离2个人:

第 12 页 共 20 页

然后,(1,2) 和 (2,2),(1,4) 和 (2,4) 的见面关系又发生改变,于是她们又无法见面了,从而见面关系图又恢复为最初的形态:

于是接下来的3次人民代表大会,所需要隔离的人数和最开始的3次相同,为3,0,1。

【样例 2 输入】

3 2 10

01

10

01

10

M 1 3 10 10

M 1 3 10 01

M 1 3 01 10

M 1 3 01 01

M 1 3 11 11

M 1 2 10 10

M 1 2 10 01

M 1 2 01 10

M 1 2 01 01

M 1 2 11 11

【样例 1 输出】

1

0

0

【样例 2 解释】

注意中间级的所有人大代表都要参加会议。

【样例3输入】

4 4 1

M 1 4 1111 1111

【样例3输出】

【样例3解释】

注意病毒只会从下级人大代表传播到上级人大代表,如下图:

【样例 4】

见选手目录下的 quarantine/quarantine4.in 与 quarantine/quarantine4.ans。

【数据范围】

对于所有的测试点,均满足 $2 \le n \le 8192; 1 \le k \le 24; 1 \le q \le 8192; 1 \le i \le n-1; 1 \le u,v \le K; 1 \le l < r \le n$ 。

具体的子任务的数据规模见下表:

子任务	分值	k	n	q	其它性质			
1	3	= 1	≤ 8192					
2	4	≤ 2		< 0100				
3	4	≤ 3		≤ 8192				
4	3	≤ 5						
5	4		≤ 10	≤ 10	无			
6	3	≤ 7	≤ 100 ≤ 100	π				
7	3	>1	≤ 1000	≤ 1000				
8	2		≤ 8192	≤ 8192				
9	6		≤ 100	≤ 100				
10	5		≤ 1000	≤ 1000				
11	4	≤ 9			保证对所有会议,有 $l=1, r=n$			
12	4		≤ 8192	≤ 8192	保证所有人大代表的见面关系不改变,即没有 T 事件			
13	3							
14	6		≤ 100	≤ 100	无			
15	5			≤ 1000	≤ 1000			
16	4	≤ 16			保证对所有会议,有 $r=l+1$			
17	4		≤ 16	≤ 16	≤ 16	≤ 8192	≤ 8192	保证对所有会议,有 $l=1, r=n$
18	4							≤ 6192
19	3							
20	6		≤ 100	≤ 100	无			
21	5	- 04	≤ 1000	≤ 1000				
22	4			0100	保证对所有会议,有 $r=l+1$			
23	4	≤ 24	≤ 8192		保证对所有会议,有 $l=1, r=n$			
24	4		≥ 9192	≤ 8192	保证所有人大代表的见面关系不改变,即没有 T 事件			
25	3						无	

医院 (tree)

【题目描述】

S 星球的人们为了尽快让患 COVID-12243 的病人进入医院救治,准备建造一座「水神山医院」。 在设计图中,「水神山医院」分为 n 个房间 (包括病房和门诊室),标号为 1,2,···,n,某些房间 之间可以通过一条通道相连。定义一条路径由若干个不同的通道首尾相接而组成,由于某些特殊的 原因,每两个房间之间**有且仅有一条路径**使它们可以互相到达。

S 星球有 $10^{10^{10}}$ 个工人,她们被安排到「水神山医院」的建设中,每个人必须**恰好**负责一个房间的施工,每个房间**至少**需要派遣一个人来施工。

设 i 号房间分配了 w_i 个工人来施工。显然有 $\sum_{i=1}^n w_i = 10^{10^{10}}$ 。

小 ω 作为「水神山医院」工程的经理,为了尽造建完「水神山医院」,需要对每个房间分配合适数量的工人。具体地,一个分配方案的好坏由它的**合作指数与矛盾指数**来衡量。

对于医院中的每一个通道,它所连接的两个房间 u,v 的工人们可以促进交流,于是会产生 $c \cdot w_u \cdot w_v$ 的**合作指数**,其中 c 是依赖于这条通道的一个正常数。

而对于医院中的每一个房间,如果里面的工人太多,则会造成拥挤、竞争、咕咕咕等不利因素,反而办不成事 (三个和尚没水喝),于是一个有 w_i 人的房间会产生 $c \cdot w_i^2$ 的矛盾指数,其中 c 是依赖于房间 i 的一个正常数。

定义一个分配方案的**合作指数**为所有通道的**合作指数**之和,**矛盾指数**为所有房间的**矛盾指数**之和。

已知,如果 合作指数 的值越大,施工效率就会越高,人民就会越满意。

所以小 ω 希望让 $\frac{6作指数}{矛盾指数}$ 的数值尽可能大,然而人太多了,她的暴力程序无法在给定时间内得到结果,而上面又有规定,在 10 天内必须完成医院的所有施工,于是她找到了你,希望你帮她进行合理规划。

【输入格式】

从文件 tree.in 中读入数据。

第一行包含一个正整数 n,表示医院的房间个数。

第二行包含 n 个正整数 a_1, a_2, \cdots, a_n ,表示每个房间的**矛盾指数**的系数。

接下来 n-1 行,每行三个正整数 u_i, v_i, b_i ,分别表示房间 u_i 和房间 v_i 之间有一条通道相连,且它的**合作指数**的系数为 b_i 。

【输出格式】

输出到文件 tree.out 中。 为了方便,你只需要输出 $\frac{\text{合作指数}}{\text{矛盾指数}}$ 的最大值即可,显然这个最大值存在。

第 17 页 共 20 页

膜你赛 医院 (tree)

输出一行一个实数,表示 合作指数 的最大值。答案被认为正确当且仅当相对或绝对误差不超过

我们保证给出的参考答案与真实答案的相对或绝对误差不超过 10-11。

【样例 1 输入】

1 1

1 2 1

【样例 1 输出】

0.5

【样例1解释】

在两个房间分别分配 $5\times 10^{9\,999\,999}$ 个工人,则合作指数为 $2.5\times 10^{19\,999\,999\,999}$,矛盾指数为 $5\times 10^{19\,999\,999}$,于是 $\frac{\text{合作指数}}{\text{矛盾指数}}$ 的值为 $\frac{1}{2}=0.5$ 。 可以证明,这是使得 $\frac{\text{合作指数}}{\text{矛盾指数}}$ 的值最大的方案。

【样例 2 输入】

1 1 1 1 1

1 2 1

1 3 1

1 4 1

1 5 1

【样例 2 输出】

1

【样例 2 解释】

 $10^{9\,999\,999\,999}$ 个工人,计算可知 $\frac{合作指数}{矛盾指数}$ 的值约为 $1-2\times10^{-17}$ 。

而另一方面,可以证明在这个例子下,**合作指数**不会超过**矛盾指数**,因而最大值不会超过 1。 于是 $\frac{6 + 12}{7}$ 的最大值介于 $(1 - 2 \times 10^{-17}, 1)$ 之间,于是只需输出 1 即可。

第 18 页 共 20 页

【样例3输入】

5

4 2 7 5 6

1 2 3

1 3 8

2 4 1

2 5 9

【样例3输出】

1.44877936767

【样例 4】

见选手目录下的 tree/tree4.in 与 tree/tree4.ans。 该组样例满足 $a_i = 1$,通道结构为 P。

【样例 5】

见选手目录下的 tree/tree5.in 与 tree/tree5.ans。 该组样例满足 $b_i = 1$,通道结构为 S。

【样例 6】

见选手目录下的 tree/tree6.in 与 tree/tree6.ans。 该组样例满足 $a_i = b_i = 1$ 。

【数据范围】

对于所有的测试点,均满足 $2 \le n \le 10^5; 1 \le a_i, b_i \le 100; 1 \le u_i, v_i \le n; u_i \ne v_i$,且如果将 (u_i, v_i) 看成边,则所有n-1条边恰好构成一棵树。

具体的子任务的数据规模见下表:

膜你赛 医院(tree)

子任务	分值	n	a_i	b_i	通道结构
1	4	= 2 = 3 = 4			
2	3				
3	3				
4	3	= 6	≤ 100	≤ 100	无
5	3	= 9			
6	2	= 12			
7	2	= 16			
8	4		= 1	≤ 100	P
9	4	≤ 50		= 1	S
10	2		≤ 100	≤ 100	无
11	4			= 1	P
12	4	≤ 400	= 1	≤ 100	S
13	2		≤ 100	≥ 100	无
14	4				P
15	4		= 1	= 1	S
16	2	≤ 3000			无
17	3		≤ 100	≤ 100	P
18	3			_ 100	S
19	4				P
20	4		= 1	= 1	S
21	3	≤ 20000			无
22	4	_ 20000			P
23	4		≤ 100	≤ 100	S
24	3				无
25	4				P
26	4	$\leq 10^5$	= 1	= 1	S
27	3				无
28	4				P
29	4		≤ 100	≤ 100	S
30	3				无

表中"通道结构"一栏,变量的含义如下:

• P (path): 所有通道满足 $u_i = i, v_i = i + 1$ 。

• S (star): 所有通道满足 $u_i = 1, v_i = i + 1$ 。