4 Spojové struktury

Wednesday, 19 January 2022

Spojové struktury, seznamy, stromy.

- spojová struktura
 - struktura obsahující soubor uzlů propojených pomocí referencí (odkazů) relativní umístění vůči ostatním uzlům
 - a. zřetězená
 - uzel má referenci na další uzel ve struktuře
 - b. nezřetězená
 - přístup k dalšímu uzlu pomocí dopočítávání adresy v paměti
- spojový seznam
 - o spojová struktura dynamické délky
 - vstupní uzel = head (první prvek)
 - prázdný seznam → head = null
 - o využití u zásobníků, front, dynamického alokování paměti
 - a. jednosměrný
 - uzel má referenci na další
 - další uzel posledního uzlu = null
 - b. dvousměrný
 - uzel má referenci na další a předchozí
 - předchozí uzel prvního uzlu = null
 - c. cyklický
 - poslední uzel ukazuje na první
 - další uzel posledního uzlu = head
 - složitost
 - přidání
 - □ na začátek: O(1)
 - □ na konec: O(1) pokud je uložená reference konce, jinak O(n)
 - □ na index: O(n)
 - odebrání
 - □ headu: O(1)
 - □ libovolného uzlu: O(n)
 - indexace: O(n)
 - vyhledávání: O(n)
- graf
 - uzly propojeny hranami
 - a. kružnice
 - N uzlů, N hran
 - b. cesta
 - N uzlů, N-1 hran
 - c. strom
 - cesta, kde může mít uzel více sousedů, bez kružnic
 - d. úplný graf
 - N uzlů, (N²-N)/2 hran (každý s každým)
- strom
 - výchozí uzel = root (nejvyšší prvek)
 - o uzly mají několik následníků (v binárním stromu dva)
 - využití v třídících a vyhledávacích algoritmech, routovacích tabulkách, kompresních algoritmech a blockchainu
 - o přirozený model rekurze
 - list (leaf)
 - uzel bez potomků

 vyvážený binární strom pro každý uzel platí, že jeho rodič nese stejnou nebo vyšší hodnotu b. BST (binary search tree - binární vyhledávací strom) efektivní práce s daty pravá větev vždy obsahuje prvky větší než hodnota uzlu s vyvažováním: AVL strom (hloubka levého a pravého stromu se liší max. o 1) c. B-strom v uzlech lze uložit více hodnot o vlastnosti: N-arita □ kolik může mít uzel maximálně potomků (binární - max. 2) hloubka □ délka cesty od kořene k uzlu výška (hloubka stromu) ¬ maximální hloubka šířka □ počet uzlů na stejné úrovni (se stejnou hloubkou) pravidelnost □ každý uzel má 0 nebo N následníků vvváženost □ hloubka stromu se liší max. o 1 úplná pravidelnost □ strom, který má všechny hloubky plné tj. všechny listy jsou v hloubce h a je jich přesně 2h složitost u BST přidání, odebrání, vyhledávání: O(log n) až O(n) o akce: mazání □ uzel bez potomků (list) smazání odkazu u předka uzlu □ uzel s jednou větví (X, potomek L/R) posunutí větve tak, že rodič prvku X nastaví hodnotu left/right na referenci na potomka L/R □ uzel se dvěma větvemi (X, potomci L a R): posunutí levé větve • rekurzivně se jede doprava, dokud se nenajde uzel L, který nemá pravého potomka pravým potomkem tohoto uzle L se nastaví pravý následník P mazaného uzle X procházení □ do hloubky □ do šířky □ pre-order (uzel, levý podstrom, pravý podstrom) □ in-order (levý podstrom, uzel, pravý podstrom) □ post-order (levý podstrom, pravý podstrom, uzel)

a. halda (heap)