

FIRST STEPS ON APACHE SPARK

Outline

- □ Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ■ML: API on top of DataFrame
- □SparkR & PySpark

Hadoop MapReduce	Aspect	Spark
MapReduce is difficult to program and needs abstractions.	Difficultly	Spark is easy to program and does not require any abstractions.
There is no in-built interactive mode except Pig and Hive.	Interactive mode	It has interactive mode.

Hadoop VS Spark

Hadoop MapReduce is used for generating reports that help in finding answers to historical queries.

Streaming

Spark makes it possible to perform Streaming, Batch Processing and Machine Learning all in the same cluster.

MapReduce does not leverage the memory of the Hadoop cluster to the maximum.

Performance

Spark has been said to execute batch processing jobs near about 10 to 100 times faster than Hadoop MapReduce

Hadoop MapReduce you just get to process a batch of stored data.

Streaming

Hadoop VS Spark

Hadoop MapReduce is used for generating reports that help in finding answers to historical queries.

Spark makes it possible to perform Streaming, Batch Processing and Machine Learning all in the same cluster.

MapReduce does not leverage the memory of the Hadoop cluster to the maximum.

Performance

Spark has been said to execute batch processing jobs near about 10 to 100 times faster than Hadoop MapReduce

Hadoop MapReduce you just get to process a batch of stored data.

Streaming

Hadoop MapReduce is used for generating reports that help in finding answers to historical queries.

Spark makes it possible to perform Streaming, Batch Processing and Machine Learning all in the same cluster.

MapReduce does not leveragup to 10× faster on disk, a pout 10 to 100 times faster

than Hadoop MapReduce

Hadoop MapReduce you just get to process a batch of stored data.

Streaming

Hadoop MapReduce is used for generating reports that help in finding answers to historical queries.

Spark makes it possible to perform Streaming, Batch Processing and Machine Learning all in the same cluster.

MapReduce does not leveragup to 10× faster on disk, a pout 10 to 100 times faster 100× in memory

than Hadoop MapReduce

Hadoop MapReduce you just get to process a batch of stored data.

MapReduce is disk oriented completely.

Spark ensures lower latency computations by caching the partial results across its memory of distributed workers.

Writing Hadoop MapReduce pipelines is complex and lengthy process.

Writing Spark code is always compact than writing Hadoop MapReduce code.

Outline

- □Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ■ML: API on top of DataFrame
- □SparkR & PySpark

Weaknesses of Hadoop^{Spo}

- Use of HDD disc
- □ Java programming
 - There is no interactive shell
- ■You can not iterate over the data
- □ However, it is widely used for its great advantages

Weaknesses of Hadoop

Spark

Open Source Community

- □ 1000+ meetup members
- □ 70+ contributors from 20 companies
- In use at Intel, Yahoo!, Adobe, etc.

Stock price: HDP (NASDAQ) \$18.99 +0.26 (+1.39%)

Mar 5, 12:19 PM EST - Disclaimer

Headquarters: Santa Clara, California, United States

Number of employees: ~1,110 (2017)

CEO: Rob Bearden

Founders: Arun C. Murthy, Suresh Srinivas, Alan Gates, MORE

Weaknesses of Hadoop Spark

A wide variety of Solutions:

Outline

- Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ■ML: API on top of DataFrame
- □SparkR & PySpark

Apache Spark

Retain the attractive properties of MapReduce

- Fault tolerance
- Data locality
- Scalability

Solution: augment data flow model with "resilient distributed datasets" (RDDs)

Apache Spark

What is a RDD?

- A RDD is an immutable, partitioned, logical collection of records
- Built using transformations over another RDDs
- Can be cached for future reuse
- Partitioning can be based on a key in each record

Apache Spark

Transformations (define a new RDD)

map flatMap mapPartition

filter repartition sample

union intersection distinct

aggregateByKey reduceByKey

Apache Spark

Actions (return a result to driver program)

count first take collect

reduce takeSample takeOrdered

saveAsTextFile saveAsSequenceFile

Apache Spark

Iterative Algorithms

Time per Iteration (s)

Apache Spark

HDFS

Hadoop DistributedFile System

Commodity Hardware

■ HDD disk

Apache Spark

HDFS

/home/antoniolopez/

/user/antoniolopez/

HDFS storage is different from user's local storage

Outline

- □Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ■ML: API on top of DataFrame
- □SparkR & PySpark

Mllib: Machine Learning on

Mllib is a scalable machine learning library

□ Easy to Deploy

□ Take advantage of hadoop environment

Contains many algorithms and utilities.

https://spark.apache.org/docs/latest/mllib-guide.html

Mllib: Machine Learning on

Algorithms and utilities

- Classification
 - Naive Bayes, Decision Tree classifier, Random Forest
- Regression
 - Linear regression, Decision Tree regression
- Clustering

- Statistics
 - Summary Statistics, Pearson's test for independence

Mllib: Read & Write

Reading from HDFS to main memory

Writing intermediate or final results to HDFS

Mllib: Cache

Algorithms and utilities

- "Cache" operation forces Spark to distribute the data
- Allocate the data in main memory
- Import for reuse of data

■ Iterative algorithm

Efficiently

Mllib: Web Ul

Web UI (http://hadoop.ugr.es:8079/cluster)

Sootk ... Spark Master at spark://hadoop-master:7077

URL: spark://hadoop-master:7077

REST URL: spark://hadoop-master:6066 (cluster mode)

Alive Workers: 12

Cores in use: 216 Total, 0 Used

Memory in use: 696.0 GB Total, 0.0 B Used Applications: 0 Running, 196 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id

worker-20180215102055-192.168.10.10-46841

worker-20180215102055-192.168.10.12-42638

worker-20180215102055-192.168.10.13-36695

Mllib: Web Ul

12 Workers

Workers

Worker Id	Address	State	Cores	Memory
worker-20180215102055-192.168.10.10-46841	192.168.10.10:46841	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.12-42638	192.168.10.12:42638	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.13-36695	192.168.10.13:36695	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.14-45594	192.168.10.14:45594	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.15-57199	192.168.10.15:57199	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.2-48898	192.168.10.2:48898	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.3-35475	192.168.10.3:35475	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.4-37059	192.168.10.4:37059	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.6-43786	192.168.10.6:43786	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.7-49501	192.168.10.7:49501	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.8-55894	192.168.10.8:55894	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)
worker-20180215102055-192.168.10.9-55781	192.168.10.9:55781	ALIVE	18 (0 Used)	58.0 GB (0.0 B Used)

Mllib: Web Ul

Run & completed applications

Running Applications

Appli	ication ID	Name	Cores	Memory per Executor	Submitted Time	User	State	Duration	
-------	------------	------	-------	---------------------	----------------	------	-------	----------	--

Completed Applications

Application ID	Name	Cores	Memory per Executor	Submitted Time	User	State	Duration
app-20180306192544-0755	Spark shell	216	48.0 GB	2018/03/06 19:25:44	diegogarcia	FINISHED	7.9 min
app-20180306191641-0754	SPARK	216	48.0 GB	2018/03/06 19:16:41	diegogarcia	FINISHED	8.7 min
app-20180306191250-0753	SPARK	216	48.0 GB	2018/03/06 19:12:50	diegogarcia	FINISHED	3.7 min
app-20180306190516-0752	SPARK	216	48.0 GB	2018/03/06 19:05:16	diegogarcia	FINISHED	40 s
app-20180306190240-0751	SPARK	216	48.0 GB	2018/03/06 19:02:40	diegogarcia	FINISHED	22 s
app-20180306095306-0750	SPARK	216	48.0 GB	2018/03/06 09:53:06	diegogarcia	FINISHED	5.8 min
app-20180306094202-0749	SPARK	216	48.0 GB	2018/03/06 09:42:02	diegogarcia	FINISHED	5.6 min
app-20180305204059-0748	SPARK	216	48.0 GB	2018/03/05 20:40:59	diegogarcia	FINISHED	6.3 min
app-20180305124644-0747	SPARK	216	48.0 GB	2018/03/05 12:46:44	diegogarcia	FINISHED	5.7 min
app-20180305123948-0746	SPARK	216	48.0 GB	2018/03/05 12:39:48	diegogarcia	FINISHED	6.2 min
app 2040020E422222 074E	CDADIA	246	40 0 CD	2040/02/05 42-22-22	diogogorojo	LINIIGHED	6 2 min

Outline

- □Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ML: API on top of DataFrame
- □SparkR & PySpark

ML: API on top of DataFrame Sc

"Spark ML standardizes APIs for machine learning algorithms to make it easier to combine multiple algorithms into a single pipeline, or workflow."

ML: API on top of DataFrame

"A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood"

ML: API on top of DataFrame

SQL Queries

- □ SQL queries using string
- Return the result as a new DataFrame

```
val sqlDF = spark.sql("SELECT * FROM people")
```


ML: API on top of DataFrame

Interoperating with RDDs

- Transforming a RDD into a DataFrame
- Build like a RDD with column names

Outline

- □Apache Hadoop VS Apache Spark
- Weaknesses of Hadoop
- ■Apache Spark
- MLlib: Machine Learning on Spark
- ■ML: API on top of DataFrame
- **□SparkR & PySpark**

SparkR & PySpark

https://spark.apache.org/docs/latest/api/python/index.html

FIRST STEPS ON APACHE SPARK