

Table of Contents

Research

F

Frameworks

Tensorflow and Keras

Layers

Purpose of Layers in models

Activation

Sigmoid, Softmax, ReLU

Evaluation

How is a model evaluated

Model

Model Creation

Input Layers

Rescaling Layer (1.0/255)

Convolution (filters = 128)

Activation (ReLU)

Hidden Layers sizes (256,512,728)

Activation (ReLU)

SeperableConvolution2D (size)

BatchNormalization

Activation (ReLU)

SeperableConvolution2D (size)

BatchNormalization

Convolution (size)

Final Convolution

SeperableConvolution2D (1024)

BatchNormalization

Activation (ReLU)

GlobalAveragePooling

Output Layer

Dense(softmax)

Hidden Layers 😭

Training

Process

Data	Compile	Image
 All images are preprocessed to ensure the highest quality of image is present then it gets resized to 180x180 pixels Batch size of 64 Dataset gets split into 80% Training and 20% Validation. 	 The data gets then compiled a loss called Sparse Categorical Crossentropy. It uses callbacks such as early stopping to determine when the model is fully trained. These callbacks use Metrics to determine how well the model is learning. 	 The Model then gets brought through epochs which are run-throughs of the data. Once the early stopping function determines the model is satisfactory. This model then gets saved which can be used to predict images.

Results

X-ray Image of chest

CT Image of chest

MRI Image of brain

Prediction: COVID

Confidence: 0.3521873950958252

Prediction: SQUAMOUS CELL CARCINOMA

Confidence: 0.25303924083709717

Prediction: TUMOR

Confidence: 0.4037858843803406

Thank you

CREDITS: This presentation template was created by Slidesgo, and includes infographics & images by Freepik.