Assignment 5

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1 CARRY TWO MARKS EACH

1) A student performed X-rays diffraction experiment on a FCC polycrystalline pure metal. The following $\sin^2 \theta$ values were calculated from the diffraction peaks.

$$\sin^2 \theta = 0.136, 0.185, 0.504, 0.544$$

However, the student was negligent and missed noting one of the peaks. Which one of the following Miller indices corresponds to the missing peak?

(XE 2023)

- a) (200)
- b) (220)
- c) (311)
- d) (222)
- 2) Match the lattice planes and directions (in Column I) with the corresponding Miller indices (in Column I)

Column I	Column II
(P) a b	1. (1 11)
$(Q) \stackrel{a}{\longrightarrow} \stackrel{c}{\longrightarrow} \stackrel{c}{\longrightarrow}$	2. [112]
(R)	3. [221]
(S) a b	4. (110)

1

- a) P-2, Q-4, R-1, S-3
- b) P-3, Q-1, R-4, S-2
- c) P-2, Q-4, R-3, S-1
- d) P-3, Q-4, R-2, S-1
- 3) Match the hardness test (in Column I) with its indenter type (in Column II)

Column I	Column II
(P) Brinell	1. Diamond pyramidal
(Q) Rockwell	2. Diamond cone
(R) Vickers	3. Tungsten carbide sphere
	4. Steel sphere

(XE 2023)

- a) P-2, Q-4, R-1
- b) P-4, Q-2, R-3
- c) P-3, Q-4, R-2
- d) P-4, Q-2, R-1
- 4) TTT diagram of a eutectoid steel is shown below. Match the heat treatment cycle (in Column I) with its microstructure (in Column II)

Column I	Column II
P	1. Bainite only
Q	2. Pearlite only
R	3. Pearlite + Bainite + Martensite
	4. Pearlite + Martensite

- a) P-1, Q-2, R-4
- b) P-2, Q-3, R-2
- c) P-2, Q-4, R-1
- d) P-2, Q-3, R-1
- 5) Which of the following statement(s) is/are true for an optical microscope?

(XE 2023)

- a) Increasing the aperture of the objective lens deteriorates the resolution
- b) Reducing the wavelength of illuminating light improves the resolution
- c) Increasing the refractive index of the medium in between the sample and the objective lens improves the resolution
- d) Reducing the wavelength of illuminating light decreases the depth of field
- 6) Among the 14 Bravais lattices, there is no base centred cubic unit cell. Which of the following statement(s) is/are true?

(XE 2023)

- a) The base-centred cubic unit cell is same as the simple tetragonal unit cell
- b) The base-centred cubic unit cell is same as the body centred tetragonal unit cell
- c) The base-centred cubic unit cell is same as the simple orthorhombic unit cell
- d) The base-centred cubic unit cell does not have any 3-fold rotation axis
- 7) Specific heat (C_v) of a material was found to depend on temperature as shown below. Which of the following statement(s) is/are true

(XE 2023)

- a) The material is metallic
- b) The material is insulating
- c) The material is three dimensional
- d) The material is one dimensional
- 8) A pure Silicon wafer is doped with Boron by exposing it to B_2O_3 vapour

at an elevated temperature. It takes 1000 seconds to reach a Boron concentration of $10^{20} atoms - m^{-3}$ at a depth of $1\mu m$ is (in seconds):_____ (rounded off to nearest integer)

Given: Boron concentration on the wafer surface remains constant.

(XE 2023)

9) The Young's modulus of a quartz piezoelectric crystal is 100GPa. The uniaxial stress required to change its polarization by % is (give absolute value in GPa)_ (rounded off to nearest integer)

(XE 2023)

10) A one-dimensional nanowire has a linear electron density of $10^8 electrons - cm^{-1}$. The Fermi energy of the system is (in eV)_____ (rounded off to two decimal places) Given: $\frac{\hbar^2}{2m} = 0.24 (eV)^2 - s^2 - kg^{-1}$ where 'm' is the mass of an electron

(XE 2023)

11) Two moles of a monoatomic ideal gas at 10atm and 300K is expanded isothermally and reversibly to a pressure of 2atm. The absolute value of work done by the system is (in kJ) _____ (rounded off to two decimal places)

Given: $R = 8.31J - mol^{-1}K^{-1}$, 1atm = 101kPa

(XE 2023)

12) An electrochemical cell consists of pure Zn electrode (anode) and a hydrogen electrode (cathode) in dilute Zn^{+2} solution. The overall reaction:

$$Zn(s) + 2H^+ \rightleftharpoons H_2 + Zn^{+2}$$

If the overall cell potential is +0.690V, then the value of $\ln \frac{([Zn^{+2}])}{[H^{+}]^{2}}$ is _____ (rounded off to two decimal places) Given: Pressure of hydrogen gas = 1atm; Temperature = 298K; $\frac{RT}{F}$ = 0.0256V, where R is gas constant and F is Faraday constant The standard reduction potential of:

 $Zn^{+2} + 2e \rightarrow Zn(E^{\circ} = -0762V)$ versus Standard Hydrogen Electrode

$$2H^+ + 2e \rightarrow H_2\left(E^{\circ} = 0V\right)$$

(XE 2023)

13) In a Raman spectroscopy experiment done at 300K, a Raman line is observed at $200cm^{-1}(25meV)$. The ratio of the intensity of the Stokes line to that of the Anti-Stokes line is _____ (rounded off to two decimal places)

Given: Boltzmann constant, $k = 8.62 \times 10^{-5} eV - K^{-1}$ (XE 2023)