

8位微控制器

KF8TS2716 数据手册

产品订购信息

芯片型号	订货号	封装	FLASH	RAM(Byte)	内部 HFOSC(Hz)	外部 HF/ LFOSC(Hz)	8位定时器	16位定时器	8位PWM	12位 ADC	内部参考	触摸按键	SSCI(SPI/I2C)	USART	LED	Vbias 偏压输出	工作电压(V)
	KF8TS2716SN	SOIC-28								14		18					
KF8TS2716	KF8TS2716TN	TSSOP-28	8Kx1	1040	1614	16M/	1	, ,	2	14	2/3/4V	18	1/1	4	8x8	16	26 5 5
	KF8TS2716UN	UQFN-28	6	1040	16M	32.768k		3	2	14	2/3/4V	18] 1/1	'	OXO	16	2.6~5.5
	KF8TS2716QP	LQFP-32								14		22					

版权所有@

上海芯旺微电子有限公司

本文档为上海芯旺微电子有限公司在现有数据资料基础上慎重且力求准确无误编制而成.确保应用符合技术规范,是您自身应负的责任。上海芯旺微电子有限公司不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。上海芯旺微电子有限公司对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将芯旺微电子有限公司的芯片用于生命维持和或生命安全应用,一切风险由使用方自负。使用方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障上海芯旺微电子有限公司免于承担法律责任,并加以赔偿。

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,可能有更新的信息所替代。上海芯旺微电子有限公司会不定期进行更新,恕不另行通知。使用方如需获得最新的产品信息,请及时访问上海芯旺微电子有限公司官网或与上海芯旺微电子有限公司联系。

KF8TS2716 芯片使用注意事项

芯片的 ESD 防护措施

KF8TS2716 芯片提供满足工业级 ESD 标准保护电路。建议用户根据芯片存储/应用的环境采取适当静电防护措施。应注意应用环境的湿度;建议避免使用容易产生静电的绝缘体;存放和运输应在抗静电容器、抗静电屏蔽袋或导电材料容器中;包括工作台在内的所有测试和测量工具必须保证接地;操作者应该佩戴静电消除手腕环手套,不能用手直接接触芯片等。

芯片的 EFT 防护措施

KF8TS2716 芯片提供满足工业级 EFT 标准的保护电路。当 MCU 芯片应用在 PCB 系统时,需要遵守 PCB 相关设计要求,包括电源线、地线(包括数字/模拟电源分离,单点/多点接地等)、复位管脚保护电路、电源和地之间的去耦电容、高低频电路单独分别处理以及单/多层板选择等。

芯片的 LATCH-UP 防护措施

为有效防护LATCH-UP损坏芯片,用户需保证在VDD引脚上不出现异常高压或者负压。 建议用户在 VDD 和 VSS 之间并接两个 105 和 102 大小的电容,电容尽量靠近芯片的 VDD 引脚。

芯片的焊接

KF8TS2716 芯片的焊接应按照工业标准的焊接要求,以免损坏芯片。手工焊接时注意焊接的温度和焊接时间。

芯片的上电/断电

KF8TS2716 芯片提供独立电源管脚。当 KF8TS2716 芯片应用在多电源供电系统时,应 先对 MCU 芯片上电,再对系统其他部件上电;反之,断电时,先对系统其他部件断电,再 对 MCU 芯片断电。若操作顺序相反则可能导致芯片内部元件过压或过流,从而导致芯片故障或元件退化。

芯片的复位

KF8TS2716 芯片提供内部上电复位。对于不同的快速上电/断电或慢速上电/断电系统,内部上电复位电路可能失效,建议用户使用外部复位、断电复位、看门狗复位等,确保复位电路正常工作。在系统设计时,若使用外部复位电路,建议采用三极管复位电路、RC 复位电路。若不使用外部复位电路,建议采用复位管脚接电阻到电源,或采取必要的电源抖动处理电路或其他保护电路。具体可参照芯片的数据手册说明。

芯片的内部时钟

KF8TS2716 芯片提供内部时钟源。内部时钟源会随着温度、电压变化而偏移,可能会影响时钟源精度。具体可参照芯片的数据手册说明。

芯片的初始化

KF8TS2716 芯片提供各种内部和外部复位。对于不同的应用系统,有必要对芯片寄存器、内存、功能模块等进行初始化,尤其是 I/O 管脚复用功能进行初始化,避免由于芯片上电以后,I/O 管脚状态的不确定情况发生。

芯片的管脚

KF8TS2716 芯片提供宽范围的输入管脚电平,用户输入高电平应大于 VIH 的最小值,低电平应小于 VIL 的最大值,以免波动噪声进入芯片。对于未使用的输入/输出管脚,建议用户设为输入状态,并通过电阻上拉至电源或下拉至地,或设置为输出管脚,输出固定电平并浮空。对未使用的管脚处理因应用系统而异,具体遵循应用系统的相关规定和说明。

VDD 和 VSS 之间需接 104 以上的电容,电容尽量靠近 MCU 芯片的 VDD 引脚。

芯片的低功耗设计

KF8TS2716 芯片提供低功耗设计模式,用户在实际应用中可根据应用系统的要求采用各种不同的低功耗模式,包括系统工作时钟的选择和休眠模式的选择等等。

芯片的开发环境

KF8TS2716 芯片提供完整的软/硬件开发环境,并受知识产权保护。选择上海芯旺微电子有限公司指定的的汇编器、编译器、编程器、硬件仿真器开发环境,必须遵循与芯片相关的规定和说明。

引脚示意图

28 引脚示意图 (SOIC 封装):

28 引脚示意图 (UQFN 封装):

32 引脚示意图:

注: 1、用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.2未用,应外接上拉电阻,并对地下拉一个电容。

2、KF8TS2716的28脚芯片需将TR2<7:6>和TR1<7:6>设置为0。

引脚功能说明

引脚名	I/O	引脚功能	引脚说明
		P2.0	带上拉功能的双向输入输出端口
		AN8	ADC 输入通道 8
	T/0	RX	USART 全双工异步数据接收端
1	I/O	DT	USART 半双工同步数据端
		CT8	电容触摸通道 8
		DIG5	LED 位选端/偏压输出端
		P2.1	带上拉功能的双向输入输出端口
		AN7	ADC 输入通道 7
		TX	USART 全双工异步数据发送端
2	I/O	CK	USART 半双工同步时钟端
		CT7	电容触摸通道 7
		DIG6	LED 位选端/偏压输出端
		P2.2	带上拉功能的双向输入输出端口
		CT6	电容触摸通道 6
3	I/O	AN6	ADC 输入通道 6
		DIG7	LED 位选端/偏压输出端
		P2.3	带上拉功能的双向输入输出端口
4	I/O	AN5	ADC 输入通道 5
		CT5	电容触摸通道 5
	I/O	P2.4	带上拉功能的双向输入输出端口
5		AN4	ADC 输入通道 4
		CT4	电容触摸通道 4
	I/O	P2.5	带上拉功能的双向输入输出端口
6		AN3	ADC 输入通道 3
		CT3	电容触摸通道 3
7	I/O	P2.6	带上拉功能的双向输入输出端口
7		CT14	电容触摸通道 14
0	I/O	P2.7	带上拉功能的双向输入输出端口
8	1/0	CT15	电容触摸通道 15
9	I/O	P1.7	带上拉功能的双向输入输出端口
9	1/0	CT13	电容触摸通道 3
10	I/O	P1.6	带上拉功能的双向输入输出端口
10	1/0	CT12	电容触摸通道 12
		P1.5	带上拉功能的双向输入输出端口
11	I/O	AN2	ADC 输入通道 2
		CT2	电容触摸通道 2
12	I/O	P1.4	带上拉功能的双向输入输出端口
12	1/0	CAP	触摸按键参考电容输入脚,接入范围为 0pF~10pF
		P1.3	带上拉功能的双向输入输出端口
13	I/O	INT2	外部中断 2 输入端
		CT1	电容触摸通道 1
14	I/O	P1.2	带上拉功能的双向输入输出端口
14	1/O	CT0	电容触摸通道 0
	I/O	P1.1	带上拉功能的双向输入输出端口

15		SDA	IIC 数据输入/输出
		SDI	SPI 数据输入
		AN1	ADC 输入通道 1
		P1.0	带上拉功能的双向输入输出端口
16	I/O	SCK	SPI 时钟脚
10	1/0	SCL	I2C 时钟脚
		AN0	ADC 输入通道 0
		P3.7	双向输入输出端口
1.7	I/O	SDO	SPI 数据输出端
17	I/O	SEG7	LED 段选端/偏压输出端
		CT19	电容触摸通道 19
		P3.6	双向输入输出端口
1.0	1/0	SS	SPI 模式从动选择输入
18	I/O	SEG6	LED 段选端/偏压输出端
		CT18	电容触摸通道 18
19	P	VSS	地, 0V 参考点
20	P	VDD	直流电源
		P3.5	双向输入输出端口
21	I/O	SEG5	LED 段选端/偏压输出端
		AN13	ADC 输入通道 13
		P3.4	双向输入输出端口
22	I/O	SEG4	LED 段选端/偏压输出端
		AN12	ADC 输入通道 12
	I/O	P3.3	双向输入输出端口
		INT1	外部中断 1 输入端
23		SEG3	LED 段选端/偏压输出端
		CT17	电容触摸通道 17
		P3.2	双向输入输出端口
24	I/O	SEG2	LED 段选端/偏压输出端
		CT16	电容触摸通道 16
		P3.1	双向输入输出端口
		SEG1	LED 段选端/偏压输出端
25	I/O	PWM2	8 位 PWM 输出口 2
		CT21	电容触摸通道 21
		P3.0	双向输入输出端口
_		SEG0	LED 段选端/偏压输出端
26	I/O	PWM1	8 位 PWM 输出口 1
		CT20	电容触摸通道 20
		P0.0	带上拉和电平变化中断功能的双向输入输出端口
27	I/O	SPCLK	编程时钟输入
	1,0	DIG0	LED 位选端/偏压输出端
		P0.1	带上拉和电平变化中断功能的双向输入输出端口
28	I/O	SPDAT	编程数据输入/输出
		DIG1	LED 位选端/偏压输出端
		P0.2	带电平变化中断功能的输入端口
29	I/O	MODE	编程模式选择
2)	1/0	RST	主复位信号输入
	1	1671	上久世旧 71111八

芯旺微电子 - 8/216 - Chip**○N**

		P0.3	带上拉和电平变化中断功能的双向输入输出端口	
		ADVRIN	AD 外部参考电压输入	
		INT0	外部中断 0 输入端	
30	I/O	DIG2	LED 位选端/偏压输出端	
		T0CK	TO 用作计数器时的外部计数脉冲输入端	
		AN11	ADC 输入通道 11	
		CT11	电容触摸通道 11	
		P0.4	带上拉和电平变化中断功能的双向输入输出端口	
		OSCB	外部振荡器输入引脚 B	
		T1G	T1 门控信号输入	
31	I/O	I/O	AN10	ADC 输入通道 10
31		CLKOUT	系统时钟输出	
		VREOUT	2V/3V/4V 参考电压输出	
		DIG3	LED 位选端/偏压输出端	
		CT10	电容触摸通道 10	
		P0.5	带上拉和电平变化中断功能的双向输入输出端口	
		OSCA	外部振荡器输入引脚 A	
32	I/O	T1CK	T1 时钟输入	
32	1/0	AN9	ADC 输入通道 9	
		CT9	电容触摸通道 9	
		DIG4	LED 位选端/偏压输出端	

目 录

产品	品订则	勾信息	2
KF	8TS2	716 芯片使用注意事项	3
引	却示意	图	5
引	却功育	长说明	7
目	录		10
1	系统	充概述	18
1	.1	芯片特征	19
1	.2	系统框图	21
1	.3	存储器	22
1	.4	系统时钟	23
	1.4.	1 时钟模块相关寄存器	24
	1	.4.1.1 系统频率控制寄存器 OSCCTL	24
	1	.4.1.2 系统时钟标志寄存器 OSCSTA	25
	1.4.	2 上电延时	25
		3 内部高频时钟 INTHF	
		4 内部低频振荡器 INTLF	
		5 外部高频振荡器 EXTHF	
		6 外部低频振荡器 EXTLF	
		7 时钟切换和时钟信号同步	
		8 双速启动模式	
		9 双速启动过程	
		10 外部时钟故障检测	
		11 时钟故障保护处理	
	.5	芯片初始化	
		配置位	
	.7	在线串行编程	
2	I/O	端口介绍	
2	2.1	I/O 端口的读写	
2	2.2	I/O 端口数字输入电平类型	
2	2.3	P0 🗆	
		1 P0 口相关的寄存器	
		2.3.1.1 P0 口状态寄存器(P0)	
		2.3.1.2 PO 口输出锁存寄存器(POLR)	
		2.3.1.3 PO 口方向控制寄存器(TR0)	
	2	2.3.1.4 P0 上拉功能控制寄存器(PUR0)	36

2.3.1.5 电平变化中断控制寄存器(IOCL)	37
2.3.2 P0 口各引脚内部原理功能框图	38
2.4 P1 🗆	39
2.4.1 P1 口相关的寄存器	39
2.4.1.1 P1 口状态寄存器(P1)	39
2.4.1.2 P1 口输出锁存寄存器(P1LR)	40
2.4.1.3 P1 口方向控制寄存器(TR1)	40
2.4.1.4 P1 口上拉功能控制寄存器(PUR1)	41
2.4.2 P1 口原理功能框图	41
2.5 P2 🗆	42
2.5.1 P2 口相关的寄存器	42
2.5.1.1 P2 口状态寄存器(P2)	43
2.5.1.2 P2 口输出锁存寄存器(P2LR)	43
2.5.1.3 P2 口方向控制寄存器(TR2)	43
2.5.1.4 P2 口上拉功能控制寄存器(PUR2)	44
2.5.2 P2 口原理功能框图	44
2.6 P3 □	45
2.6.1 P3 口相关的寄存器	45
2.6.1.1 P3 口状态寄存器(P3)	46
2.6.1.2 P3 口输出锁存寄存器(P3LR)	46
2.6.1.3 P3 口方向控制寄存器(TR3)	
2.6.2 P3 口原理功能框图	47
3 存储器	48
3.1 程序存储器(ROM)区	18
3.1.1 MOVP 指令	
3.1.2 JMP、CALL 指令	
3.2 数据存储器(RAM)区	
3.2.1 通用寄存器区	
3.2.2 特殊功能寄存器(SFR)区	
3.3 FLASH 自写	
3.3.1 寄存器 NVMDATAH/L	
3.3.2 寄存器 NVMADDRH/L	
3.3.3 写 Flash	
3.3.4 读 Flash	
3.4 寄存器组 RN	
3.5 ID 地址单元	56
4 汇编指令及寻址方式	57
4.1 寻址方式	
4.1.1 寄存器寻址	
4.1.2 直接寻址	
4.1.3 立即数寻址	
4.1.4 寄存器间接寻址	58

	4.1.5	位寻址	58
	4.2	汇编指令	58
5	中断		.59
	, ,,	中断相关的寄存器	
		中断拍关的奇仔器 中断控制寄存器 INTCTL	
		中断使能寄存器 EIE1	
		中断使能寄存器 EIE2	
		中断使能寄存器 EIE3	
		中断标志寄存器 EIF1	
		中断标志寄存器 EIF2	
		中断标志寄存器 EIF3	
		中断优先级控制寄存器 IP0	
		中断优先级控制寄存器 IP1	
) 中断优先级控制寄存器 IP2	
		1 中断优先级控制寄存器 IP3	
		2 电源控制寄存器 PCTL	
		3 INT 中断沿选择寄存器 INTEDGCTL	
		4 中断响应	
	5.2	INT 中断	.70
	5.2.1	INT0 中断	.70
	5.2.2	INT1中断	.70
	5.2.3	INT2 中断	70
	5.3	定时器中断	71
	5.4	P0 口中断	71
	5.5	PWM 中断	.71
	5.6	USART 中断	.71
	5.7	中断现场保护	71
6	定时	器/计数器	.72
		定时器/计数器 T0	72
		TO 原理框图	
		T0 相关的寄存器	
		2.1 OPTR 选择寄存器	
		定时模式	
		计数模式	
		T0 的使用	
		定时器/计数器T1	
		T1原理框图	
		T1时钟	
	6.2.3	T1相关的寄存器	.76
		2.3.1 T1控制寄存器	
		定时模式	
	6.2.5	计数模式	.77

ϵ	6.2.6 T1重载功能	77
6	6.2.7 T1在休眠模式下的运行	78
ϵ	6.2.8 T1分配给PWM1/2	78
6.3	3 定时器 T3	79
6	6.3.1 T3 原理框图	79
ϵ	6.3.2 T3 相关寄存器	79
	6.3.2.1 T3 控制寄存器 T3CTL	79
	6.3.2.2 电容触摸控制寄存器 0(CTCTL0)	80
6	6.3.3 T3 中断	80
6	6.3.4 T3 的使用	81
6.4	↓ 定时/计数器 T4	82
6	6.4.1 T4 原理框图	82
6	6.4.2 T4 相关寄存器	82
	6.4.2.1 T4 控制寄存器	82
	6.4.2.2 T4 预分频器	83
	6.4.2.3 T4 计数时钟选择	83
6	6.4.3 T4 重载功能	83
6	6.4.4 T4 中断	84
6	6.4.5 T4 工作在休眠模式	84
7 1	模数(A/D)转换模块	85
7.1	与 A/D 相关的寄存器	85
	7.1.1 A/D 控制寄存器 0(ADCCTL0)	
	7.1.2 A/D 控制寄存器 1(ADCCTL1)	
	7.1.3 模拟/数字口选择寄存器(ANSEL/H)	
7.2	·	
7.3		
7.4		
7	7.4.1 VREOUT 参考电压	
	7.4.2 参考电压寄存器(VRECTL)	
7.5		
7.6		
7.7		
7.8	B 复位的影响	89
7.9		
8 1	PWM 模块	
8.1		
8.2		
	8.2.1 PWM1/2 控制寄存器	
	8.2.2 PWM1/2 周期	
	8.2.3 PWM1/2 占空比	
8.3		
8.3 8.4		
0.4	r 1 vv 1V11/4 四月	

	8.5	休眠模式下的操作	93
	8.6	复位的影响	93
	8.7	PWM1/2 使用方法	94
9	电容	触摸模块	95
	9.1	电容触摸的原理	95
	9.2	电容触摸相关寄存器	96
	9.2.1	电容触摸控制寄存器 0(CTCTL0)	96
	9.2.2	电容触摸控制寄存器 1(CTCTL1)	97
	9.2.3	电阻分压比设置寄存器(VDAC)	97
	9.2.4	电阻分压源选择寄存器(VDACS)	98
	9.3	触摸中断	98
	9.4	触摸的使用	98
10	SSCI	[模块	99
	10.1	概述	99
	10.2	SSCI 相关寄存器	99
	10.2.	1 SSCI 控制寄存器 0(SSCICTL0)	99
	10.2.	2 SSCI 控制寄存器 1(SSCICTL1)	101
	10.2.	3 SSCI 状态寄存器(SSCISTA)	102
	10.2.	4 SSCI 屏蔽寄存器(SSCIMSK)	103
	10.2.	5 SSCI I2C 地址寄存器(SSCIADD)	104
	10.3	I2C 模式	105
		1 工作原理	
	10.3.	2 I2C 从动模式	106
	10	0.3.2.1 寻址	106
	10	0.3.2.2 接收	107
		0.3.2.3 发送	
).3.2.4 广播呼叫地址支持	
		3 I2C 主控模式	
		0.3.3.1 主控模式支持	
		0.3.3.2 I2C 主模式操作	
		0.3.3.3 波特率发生器	
		0.3.3.4 I2C 主控模式启动条件时序	
		0.3.3.5 I2C 主控模式重复启动条件时序	
).3.3.6 I2C 主控模式发送	
).3.3.7 I2C 主控模式接收	
).3.3.8 应答序列时序	
).3.3.9 停止条件序列	
).3.3.10 时钟仲裁	
		4 多主控器模式	
		0.3.4.1 多主机通信,总线冲突与总线仲裁	
).3.4.2 启动条件期间的总线冲突	
	10).3.4.3 重复启动条件期间的总线冲突	124

10.3.4.4 停止条件期间的总线冲突	125
10.3.4.5 SSCI 屏蔽寄存器	127
10.4 SPI 模式	128
10.4.1 工作原理	129
10.4.2 使能 SPI/IO 与外部链接	129
10.4.3 典型连接	130
10.4.4 主模式	130
10.4.5 从模式	131
10.4.5.1 从动模式	131
10.4.5.2 从动选择同步	132
10.4.6 休眠模式和复位	134
10.4.7 SPI 四种工作模式设置	134
10.4.7.1 主控发送工作流程	134
10.4.7.2 从动接收工作流程	135
10.4.7.3 主控接收工作流程	135
10.4.7.4 从动发送工作流程	136
11 通用全双工/ 半双工收发器(USART)	137
11.1 系统概述	
11.1.1 相关寄存器	
11.1.2 原理框图	
11.2 波特率发生器	
11.2.1 相关寄存器	
11.2.1.1 USART 波特率控制寄存器 BRCTL	
11.2.2 波特率的选择	
11.2.3 自动波特率检测	
11.2.4 接收间隔字符时自动唤醒	
11.2.5 间隔符时序	
11.2.5.1 间隔和同步发送序列	
11.2.5.2 接收间隔字符	
11.3 USART 全双工模式 11.3.1 USART 全双工发送操作	
11.3.1.1 发送和控制状态寄存器 TSCTL	
11.3.1.2 发送数据 11.3.1.3 全双工发送的设置	
11.3.1.3 至双工及运的页直	
11.3.2.1 接收状态和控制寄存器 RSCTL	
11.3.2.1 接收扒芯和拴制司付备 RSCIL	
11.3.2.2 接收数据	
11.3.2.4 地址检测 11.3.2.5 全双工接收的设置	
11.3.2.3 至双工按权的议直	
11.3.3 RS-485 及医/接收	
11.3.4 全双工操作时钟的精确性	
11.3.サ 主/久二.3木 [上町] 7m目7m間1 三	

11.4	USART 半双工模式	156
11	.4.1 USART 半双工主控模式	157
	11.4.1.1 半双工主控发送	157
	11.4.1.2 半双工主控接收	159
11	.4.2 USART 半双工从动模式	160
	11.4.2.1 USART 半双工从动发送	161
	11.4.2.2 USART 半双工从动接收	161
11	.4.3 USART 半双工 RS-485 模式	162
12 LI	ED 驱动模块	163
12.1	概述	163
12.2	工作原理	164
12	2.2.1 扫描时钟产生	164
12	2.2.2 扫描信号产生	164
12.3	LED 相关寄存器	165
12	2.3.1 LED 显示驱动控制寄存器(LEDCTL)	165
12	2.3.2 LED 显示驱动分频寄存器(LEDPRE)	166
12	2.3.3 LED 显示驱动数据寄存器(LEDDATAx)	
12.4	辉度调节	167
12.5		
	2.5.1 LED 显示驱动输出模式设置寄存器	
12	2.5.2 LED 开漏方式选择寄存器	
12.6	LED 显示驱动使用方法	169
13 VI	BIAS 偏压输出	170
13.1	相关寄存器	170
13	3.1.1 偏压输出控制寄存器(VBIASCTL)	170
13	3.1.2 偏压输出设置寄存器(VBIAS1/2EN)	171
13.2	偏压输出使用方法	172
14	复位	173
14.1	电源控制状态寄存器(PCTL)	174
14.2		
14.3	WDT 复位	175
14.4	RST 复位	175
14.5	欠压检测复位(LVR)	177
14.6	上电延时定时器	177
14.7	不同复位条件下对寄存器的影响	178
15	休眠模式	181
16	看门狗定时器	182
16.1	看门狗相关寄存器	
	5.1.1 WDT 预分频选择寄存器	
16.2		
	• • • • • • • • • • • •	

16.3	看门狗的清狗方式	183
16.4	看门狗 WDT 的周期	183
17	电气规范	184
17.1	极限参数值	184
17.2	HFINT 的频率精度与 VDD 和温度之间的关系	185
17.3	静态电流特性	186
17.4	外设电流特性	187
17.5	I/O 端口特性	188
17.6	芯片供电电压特性	188
17.7	A/D 转换器(ADC)特性	189
17.8	内部参考电压模块特性	189
18	直流特性图表	190
19	封装信息	196
附录 1	KF8TS2716 SFR 地址映射	199
附录 2	特殊功能寄存器(SFR)功能汇总	202
附录 3	汇编指令集	204
附录 4	寄存器全称表	206
附录 5	全双工异步模式的典型波特率和误差值	209
产品标	· 识体系	213
版本说		214
ROHS	认证	215
吉田五	,绺隹网纹	216

1 系统概述

KF8TS2716 为哈佛结构的精简指令 CPU。在这种结构中,程序和数据总线是相互独立的。指令字节长度为 16 位,大多数指令能在一个机器周期内执行完成。一共有 73 条指令,效率高,容易进行指令扩展。

KF8TS2716 芯片内集成了多种外设,包括 1 个 8 位定时器/计数器 T0、1 个 16 位定时器/计数器 T1、1 个 16 位的定时器 T3、一个 16 位定时/计数器 T4、1 个 12 位 10/14/14 通道 AD 模块、2 路 8 位的 PWM 模块、一个 14/18/22 通道的电容触摸模块、1 个 SSCI(I2C/SPI) 模块、1 个通用全双工串口(USART)模块、1 个 8×8 的 LED 驱动模块、1 个 16 路的 Vbias 偏压输出模块、硬件看门狗和低电压检测及低电压复位模块等。

芯片内集成了 1040(1024+16)×8 位的用户数据存储器和 8K×16 位的程序存储器。

KungFu®

KF8TS2716数据手册V1.4

1.1 芯片特征

• CPU

高性能哈佛结构的 RISC CPU

73 条精简指令

支持中断优先级处理,共18个中断源

复位向量位于 0000H

两级中断可选,用不同的入口地址(高 0004H,低 0014H)

支持 16 级硬件堆栈

工作频率默认内部高频,内部高频范围 62.5kHz~16MHz,软件可选时钟源及分频

● 存储器

16K 字节(8K×16 位)FLASH 程序存储器 (1024+16)×8 位的数据存储器 工作寄存器组 R0~R7 FLASH 可经受 100 000 次写操作

● 特殊功能

内嵌上电复位电路 低电压检测及低电压复位 硬件看门狗 内部高频时钟精度 16MHz±1%(常温) 内部可校正低频 32kHz 时钟 2/3/4V 可选内部参考电压 支持在线串行编程 低功耗休眠模式

● I/O 口配置

输入输出口:除 P0.2 只能作为输入口外其它端口均为双向输入输出口内置上拉功能:P0/P1/P2 口带有弱上拉功能(P0.2 除外)电平变化中断:P0 口均有电平变化中断功能IO 口数字输入类型:P0/P1/P2 口为 SMIT 型,P3 口为 TTL 型

● 定时器/计数器

定时器 0: 带有 8 位预分频器的 8 位定时器/计数器 定时器 1: 带门控和预分频器的 16 位定时器/计数器

定时器 3: 时钟源可选的 16 位定时器

定时器 4:带有重载功能、预分频及时钟源多选的 16 位定时器/计数器

● 其它外设

2路8位脉宽调制 PWM 模块

1 个 12 位 10/14/14 通道 ADC 模块

1 个 14/18/22 通道触摸模块

1个SSCI(I2C/SPI)模块

1个USART 模块

1 个 8×8 的 LED 驱动模块 1 个 16 路的 Vbias 偏压输出模块

● 工作条件

工作电压: 2.6V~5.5V 工作温度范围: -30℃~85℃

1.2 系统框图

图 1.1 KF8TS2716 系统框图

1.3 存储器

KF8TS2716单片机的存储器包含:程序存储器(ROM)和数据存储器(RAM)。

KF8TS2716 的程序存储器空间为 16K 字节(8K×16 位),寻址范围为 0000H~1FFFH,可擦写次数为 10 万次。数据存储器分为特殊寄存器区(SFR)和通用存储器区,其中通用存储器区包括通用存储器区 0 至通用存储器区 7。通用存储器区 0 至通用存储器区 7 有 128×8 位的存储单元,各区的地址请查阅第 3 章。

有关以上各种存储器的具体介绍请参考第3章。

1.4 系统时钟

系统时钟是由系统时钟源分频而来。本芯片中一个机器周期等于四个系统周期,如图 1.2 所示。本芯片除执行部分跳转指令需要两个机器周期外,其余指令仅需要一个机器周期。

图 1.2 机器周期

KF8TS2716系列单片机提供4个可选时钟源:

内部高频振荡器 INTHF:以内部高频振荡器为时钟源;

内部低频振荡器 INTLF:以内部低频振荡器为时钟源;

外部高频振荡器 EXTHF:标准晶振、陶瓷谐振器或外接 16MHz~125kHz 的时钟源工作; 外部低频振荡器 EXTLF:外接 32.768kHz 的钟表晶振。

图 1.3 时钟模块原理框图

KF8TS2716 系列单片机的系统时钟源可以配置为 EXTHF、EXTLF、INTHF 或者 INTLF。同时 4 个可选时钟源还可以作为定时器 T4 的计数时钟。

外部高频时钟和外部低频时钟共用外部时钟引脚,不能同时使用两个外部时钟源。

表 1-1 与时钟有关的名词表述

名称	定义即描述
Sosc	定义振荡器时钟源
SCLK	定义为系统时钟
SCLK/4	定义为机器时钟
T _{sys} 或 Tsys	定义为系统时钟周期
T _{mc} 或 Tmc	定义为机器周期
INTHF	定义为内部高频振荡器(或时钟源)
TINTHF	定义为内部高频振荡器周期
INTLF	定义为内部低频振荡器(或时钟源)
EXTHF	定义为外部高频振荡器(或时钟源)
EXTLF	定义为外部低频振荡器(或时钟源)
OSC	定义为 INTHF,INTLF,EXTHF 和 EXTLF 的集合

1.4.1 时钟模块相关寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
28H	OSCSTA	-	OSTS	HTS	LTS	-	-	SCF1	SCF0

1.4.1.1 系统频率控制寄存器 OSCCTL

寄存器1.2: OSCCTL系统频率控制寄存器(地址:2FH)

_	bit7							bit0
复位值 0010 0000	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CLKOE: 系统时钟输出使能位

1=使能系统时钟输出

0=禁止系统时钟输出

IRCS<2:0>: 时钟频率选择位

111=1:1 (选择内部高频时钟为 16MHz)

110=1:2(选择内部高频时钟为 8MHz)

101=1:4(选择内部高频时钟为 4MHz)

100=1:8 (选择内部高频时钟为 2MHz) 011=1:16 (选择内部高频时钟为 1MHz)

010=1:32 (默认,选择内部高频时钟为 500kHz)

001=1:64(选择内部高频时钟为 250kHz)

000=1:256 (选择内部高频时钟为 62.5kHz)

SCS<1:0>: 系统时钟选择位

00=选择内部高频时钟

01=选择内部低频时钟

10=选择外部低频时钟

11=选择外部高频时钟

IESO: 双速模式使能位

0=禁止双速功能

1=启动双速功能

FSCM: 外部时钟故障检测使能位

0=禁止故障检测功能

1=使能故障检测功能

图注: R=可读 W=可写 -=未用 U=未实现位

1.4.1.2 系统时钟标志寄存器 OSCSTA

寄存器1.2: OSCSTA系统时钟标志寄存器(地址:28H)

 复位值 0110 --00
 bit7
 bit0

 R
 R
 R
 R
 R
 R
 U
 U
 U
 R
 R

OSTS: 内外时钟标志位

0=系统时钟为外部时钟

1=系统时钟为内部时钟

HTS: 内部高频时钟稳定位

0=内部高频时钟未稳定

1=内部高频时钟稳定

LTS: 内部低频时钟稳定位

0=内部低频时钟未稳定

1=内部低频时钟稳定

SCF<1:0>: 系统时钟源标志位

00=当前系统时钟源为内部高频时钟

01=当前系统时钟源为内部低频时钟

10=当前系统时钟源为外部低频时钟

11=当前系统时钟源为外部高频时钟

图注: R=可读 W=可写 -=未用 U=未实现位

1.4.2 上电延时

KF8TS2716 系列单片机的上电延时可以通过配置位 PWRT 设置,上电延时计数时钟 PWRTCLK 为内部低频时钟。

当 PWRT =1 时,上电延时关闭;

当 \overline{PWRT} =0时,上电延时打开,延时时间如下: $Tpwrt = \frac{2^{10}}{PWRTCLK}$ 。

1.4.3 内部高频时钟 INTHF

KF8TS2716 系列单片机的内部高频时钟由系统内部高频振荡器提供,时钟频率为16MHz,精度为±1%(常温)。

1.4.4 内部低频振荡器 INTLF

LP振荡器 INTLF 为系统内部低频振荡器,其振荡器频率为 32kHz,它不仅可以为 SCLK 时钟提供时钟源,而且还可以独立作为 LPCLK 时钟信号供外设模块使用。也可以作为内部上电延时定时器和看门狗 WDT 定时器的时钟。

1.4.5 外部高频振荡器 EXTHF

如图 1.4 所示,引脚 OSCA 和引脚 OSCB 可以接外部标准晶体、陶瓷谐振器或外接 16MHz~125kHz 的时钟为时钟源。EXTHF 时钟源提供主系统时钟 SCLK。

图 1.4 EXTHF 振荡器原理图

1.4.6 外部低频振荡器 EXTLF

如图 1.5 所示,引脚 OSCA 和引脚 OSCB 接外部钟表石英晶体,主要是以 32.768kHz 的晶体提供时钟源。EXTLF 时钟源提供主系统时钟 SCLK。

图 1.5 EXTLF 振荡器原理图

1.4.7 时钟切换和时钟信号同步

通过设置 OSCCTL 寄存器的 SCS<1:0>位可以选择不同的时钟源作为系统时钟。SCS 位复位为 00, 即选择内部高频时钟源作为单片机的系统时钟。

当系统时钟由外部时钟源切换至内部时钟源时,系统时钟将在 SCS 配置后立即对时钟进行切换。

当配置 SCS 位将系统时钟切换至外部时钟源时(包括 EXTHF 和 EXTLF),振荡器起振定时器 OST 将启动,并以 SCS 位配置的外部时钟为计数时钟开始计数,OST 计数的时间内,系统仍以原来的时钟源作为系统时钟,直到 OST 计数器达到 1024 次计数,系统时钟源切换至 SCS 位配置的外部时钟。

图 1.6 时钟切换流程图

当系统时钟在一个时钟源切换到另一个时钟源时,切换必须同步以避免发生时间竞争。 当选择一个新的时钟源,会发生以下过程。

- (1) 写 SCS 位改变时钟源:如切换至外部时钟源则须经过 OST 计数器 1024 计数:
- (2) 时钟切换电路等待当前时钟的下降沿;
- (3) 时钟 CLK 保持为低电平,时钟切换电路等待新的时钟的上升沿;
- (4) CLK 与新的时钟连接,完成时钟切换。

图 1.8 切换至外部时钟源时时钟信号同步时序图

1.4.8 双速启动模式

当系统时钟选择外部时钟进入休眠后,唤醒时,外部时钟需要经过OST 计数器完成 1024 次计数后才会恢复系统时钟。

双速启动模式通过寄存器 OSCCTL 的 IESO 位设置,当使能双速模式时,MCU 会在唤醒后外部时钟进行 OST 计数期间,通过内部高频时钟作为系统时钟运行,当外部时钟完成 OST 计数后,MCU 会自动将系统时钟从内部高频时钟切换至外部时钟。

芯旺微电子 - 27/216 - Chip**○N**

1.4.9 双速启动过程

- 1. 从休眠状态唤醒;
- 2. 内部高频振荡器作为时钟源开始执行指令;
- 3. 使能 OST 计数器对外部时钟计数 1024 个时钟周期;
- 4. OST 超时, 等待内部时钟下降沿;
- 5. 系统时钟保持低电平直到新的时钟的下一个下降沿;
- 6. 系统时钟切换到外部时钟源。

1.4.10 外部时钟故障检测

故障保护时钟监视(FSCM)能使器件在振荡器发生故障时继续运行,其可以检测出振荡器起振定时器(OST)延时结束后的任何时刻发生的振荡器故障。

将 OSCCTL 寄存器的 FSCM 位置 1 使能 FSCM,适用于外部振荡器模式。

图 1.9 时钟故障检测原理图

FSCM 模块在采样时钟下降沿将第一个寄存器置 1,在外部时钟下降沿将该寄存器复位为 0,由于外部时钟频率远大于采样时钟频率,所以当第一个寄存器刚被采样时钟置 1 不久就被外部时钟复位,经过第二个寄存器(CLK 为采样时钟)后的 Q 值将保持为 0;当发生外部时钟故障时,第一个寄存器由于外部时钟故障而失去复位能力,当采样时钟下降沿到达置 1 后,将一直保持输出为 1,检测到故障。

图 1.10 时钟故障检测时序

注: 系统时钟频率实际比采样时钟大很多, 图示为方便分析起见将频率差异减小。

1.4.11 时钟故障保护处理

检测到时钟故障后,系统时钟将自动切换至内部高频时钟源继续工作,分频值由 OSCCTL 寄存器的 IRCS<2:0>设置,直到器件固件成功重启外部振荡器并使时钟重新切换 到外部振荡器为止。

在切换至内部高频时钟源后,时钟故障标志位置 1,如果打开时钟故障中断使能位,程序将进入中断行。

1.5 芯片初始化

用户需在初始化程序中,需要添加相关校准程序,以保证芯片稳定工作。初始化程序如例 1.1 所示。

例1.1 芯片初始化程序

MOVP #0X1F ;切换到PAGE1区

CALL 0XFFF

MOV OSCCALO, RO

NOPZ

NOPZ

CALL 0XFFE

MOV OSCCAL1, R0

NOPZ

NOPZ

CALL 0XFFD

MOV OSCCAL2, R0

NOPZ

NOPZ

CALL 0XFFC

MOV OSCCAL3, R0

NOPZ

NOPZ

CALL 0XFFB

MOV VRECAL1, R0

NOPZ

NOPZ

MOVB #0X01 ;切换到存储区1区

CALL 0XFFA

MOV VRECAL2, R0

NOPZ

NOPZ

CALL 0XFF9

MOV VRECAL3, R0

NOPZ

NOPZ

MOVB #0X00 :读取相关校准值后需切换回存储器 0 区

MOVP #0X00 ;切换回 PAGE0 区

1.6 配置位

如寄存器 1.3 所示,用户在烧写程序时,在编程器中通过对配置位进行设置,使单片机 启用诸如看门狗、程序代码保护、欠压检测等功能。

寄存器1.3 CONFIG: 配置字

	R	R	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R	R
	-	-	保留	保留	保留	DEBUG	SWRTEN	保留	CODEP	LVREN	RSTEN	PWRT	WDTEN	保留	-	-
1	bit15							bit8								bit()

注: R=编程器可读 P=编程时可写

DEBUG: 在线调试使能位

1 = 禁止在线调试 0 = 使能在线调试

SWRTEN: FLASH 自写保护使能位

ZV. ILMSII A J M J K R E

1 = 使能写保护,此时 FLASH 不能写操作,(可读)

0 = 禁止写保护,此时 FLASH 可写,(可读)

CODEP: 代码保护使能位

1 = 禁止程序存储器代码保护

0 = 使能程序存储器代码保护

LVREN: 欠压检测功能使能位

1 = 使能欠压检查功能

0 = 禁止欠压检查功能

RSTEN: P0.2/RST 引脚功能选择

1 = P0.2/RST 引脚配置为外部复位输入

0 = P0.2/RST 引脚功能为数字输入口

PWRT: 上电延时使能位

0 = 使能上电延时

1 = 禁止上电延时

WDTEN: 看门狗定时器(WDT)使能位

1 = 使能 WDT

0 = 禁止 WDT

1.7 在线串行编程

如图 1.11、1.12 所示,在最终应用电路中可对 KF8TS2716 单片机进行在线串行编程。 实现编程仅需要五根线包括:时钟线(SPCLK)、数据线(SPDAT)、电源线(VDD)、地线(Vss)、 编程模式选择线(MODE)。

开发人员和用户可以使用未编程的单片机来制造电路板,然后对其在线编程,调试等。只要有电脑、USB下载线和编程器,即可在任何时候,任何地点,对电路板上的单片机程序进行更新。

图 1.11 在线调试系统示意图

图 1.12 在线串行编程连接图

2 I/O端口介绍

KF8TS2716 单片机共有 32 个引脚, 20 脚接电源正极, 19 脚接电源负极, 其余管脚均为 I/O 端口, 包括 P0 口、P1 口、P2 口和 P3 口。P0 口共有 P0.0~P0.5 六个引脚, P1 口共有 P1.0~P1.7 八个引脚, P2 口共有 P2.0~P2.7 八个引脚, P3 口共有 P3.0~P3.7 八个引脚。

注: 1、用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.2未用,应外接上拉电阻,并对地下拉一个电容。

2、KF8TS2716的28脚芯片需将TR2<7:6>和TR1<7:6>设置为0。

2.1 I/O 端口的读写

读 P0/P1/P2/P3 口时实际为读端口电平,即读 Px(x=0/1/2/3),写 PxLR(x=0/1/2/3)寄存器可改变 IO 端口的输出状态。其原理框图如图 2.1 所示:

图 2.1 I/O 口读写原理图

注: I/O 口作为数字输入时, 需将对应的 ANSx 位清零。

IO 端口作为输出时,可对 PxLR(x=0/1/2/3)进行赋值(寄存器操作或位操作),以避免读-修改-写指令造成的其它口误操作。

2.2 I/O 端口数字输入电平类型

KF8TS2716 系列单片机的 I/O 端口数字输入电平类型如下:

I/O 端口	数字输入电平类型
P0	SMIT
P1	SMIT
P2	SMIT
P3	TTL

2.3 P0 口

如引脚示意图所示, P0 口共有 6 个引脚。在线编程时 P0 口的 MODE、SPCLK、SPDAT 作为编程脚使用。P0.2 只能作为输入口且没有上拉功能,其它端口均可作为普通 I/O 口且带有上拉功能,P0 口所有引脚都有电平变化中断功能。各引脚功能表 2-1 所示。

表 2-1 P0 口各引脚功能介绍

引脚名 1/O 引脚功能 引脚功能 27 I/O SPCLK 编程时钟输入端 DIG0 LED 位选端/偏压输出端 P0.1 带上拉和电平变化中断功能的双向输入输出端口 P0.1 带上拉和电平变化中断功能的双向输入输出端口 SPDAT 编程数据输入/输出 DIG1 LED 位选端/偏压输出端 P0.2 带电平变化中断的输入端口 MODE 编程模式选择 RST 主复位信号输入 P0.3 带上拉和电平变化中断功能的双向输入输出端口 ADVRIN AD 外部参考电压输入 INTO 外部中断 0 输入端 ANII ADC 输入端端/偏压输出端 TOCK T0 用作计数器时的外部计数脉冲输入端 ANII ADC 输入通道 11 CTII 电容触摸通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CTIO 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A TICK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9 DIG4 LED 位选端/偏压输出端			1	2-110 百亩 加州为他并知
27 I/O SPCLK DIGO LED 位选端/偏压输出端 PO.1 带上拉和电平变化中断功能的双向输入输出端口 #上拉和电平变化中断功能的双向输入输出端口 SPDAT 编程数据输入/输出 PO.2 带电平变化中断的输入端口 MODE 编程模式选择	引脚名	I/O	引脚功能	引脚说明
DIGO LED 位选端/偏压输出端			P0.0	
28 I/O 帶上拉和电平变化中断功能的双向输入输出端口 编程数据输入/输出 DIG1 LED 位选端/偏压输出端 P0.2 带电平变化中断的输入端口 第日 P0.2 市电平变化中断的输入端口 MODE 编程模式选择 RST 主复位信号输入 P0.3 带上拉和电平变化中断功能的双向输入输出端口 ADVRIN AD 外部参考电压输入 INTO 外部中断 0 输入端 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9	27	I/O	SPCLK	
28 I/O SPDAT 编程数据输入/输出			DIG0	LED 位选端/偏压输出端
DIG1			P0.1	带上拉和电平变化中断功能的双向输入输出端口
29 I P0.2 带电平变化中断的输入端口 MODE 编程模式选择 RST 主复位信号输入 P0.3 带上拉和电平变化中断功能的双向输入输出端口 ADVRIN AD 外部参考电压输入 INTO 外部中断 0 输入端 INTO 外部中断 0 输入端 TOCK T0 用作计数器时的外部计数脉冲输入端 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B T1G T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9	28	I/O	SPDAT	
29 I MODE 编程模式选择 RST 主复位信号输入 P0.3 带上拉和电平变化中断功能的双向输入输出端口 ADVRIN AD 外部参考电压输入 INTO 外部中断 0 输入端 INTO 外部中断 0 输入端 TOCK T0 用作计数器时的外部计数脉冲输入端 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B TIG T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A TICK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9				
RST 主复位信号输入			P0.2	带电平变化中断的输入端口
PO.3	29	I	MODE	编程模式选择
ADVRIN			\overline{RST}	主复位信号输入
INTO 外部中断 0 输入端 DIG2 LED 位选端/偏压输出端 TOCK TO 用作计数器时的外部计数脉冲输入端 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B TIG T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			P0.3	带上拉和电平变化中断功能的双向输入输出端口
30 I/O DIG2 LED 位选端/偏压输出端 TOCK T0 用作计数器时的外部计数脉冲输入端 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B T1G T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			ADVRIN	AD 外部参考电压输入
TOCK		I/O	INT0	
31 AN11 ADC 输入通道 11 CT11 电容触摸通道 11 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B T1G T1 门控信号输入 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 T1CK 中2.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1CK T1 时钟输入 AN9 ADC 输入通道 9 AN9 ADC 输入通道 9 CT9 电容触摸通道 9	30		DIG2	LED 位选端/偏压输出端
To B容触摸通道 11 P0.4			T0CK	T0 用作计数器时的外部计数脉冲输入端
31 P0.4 带上拉和电平变化中断功能的双向输入输出端口 OSCB 外部振荡器输入引脚 B TIG T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9				ADC 输入通道 11
31 OSCB 外部振荡器输入引脚 B T1G T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			CT11	电容触摸通道 11
31 I/O TIG T1 门控信号输入 AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			P0.4	带上拉和电平变化中断功能的双向输入输出端口
31 I/O AN10 ADC 输入通道 10 VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口OSCA 外部振荡器输入引脚 A 外部振荡器输入引脚 A T1CK T1 时钟输入AN9 ADC 输入通道 9 CT9 电容触摸通道 9			OSCB	外部振荡器输入引脚 B
31 I/O VREOUT 2V/3V/4V 参考电压输出 2V/3V/4V 参考电压输出 系统时钟输出 5DIG3 LED 位选端/偏压输出端 5CT10 电容触摸通道 10 电容触摸通道 10 电容触摸通道 10 电容量 4DIG3 电容量 4DIG3 电容量 4DIG3 和电平变化中断功能的双向输入输出端口 5DIG3 STATE OSCA			T1G	T1 门控信号输入
VREOUT 2V/3V/4V 参考电压输出 CLKOUT 系统时钟输出 DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9	21	I/O	AN10	ADC 输入通道 10
DIG3 LED 位选端/偏压输出端 CT10 电容触摸通道 10 P0.5 带上拉和电平变化中断功能的双向输入输出端口OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入ADC 输入通道 9 CT9 电容触摸通道 9	31	1/0	VREOUT	2V/3V/4V 参考电压输出
CT10 电容触摸通道 10 32 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			CLKOUT	系统时钟输出
32 P0.5 带上拉和电平变化中断功能的双向输入输出端口 OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			DIG3	LED 位选端/偏压输出端
32 I/O OSCA 外部振荡器输入引脚 A T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9			CT10	电容触摸通道 10
T1CK T1 时钟输入 AN9 ADC 输入通道 9 CT9 电容触摸通道 9				
AN9 ADC 输入通道 9 CT9 电容触摸通道 9				外部振荡器输入引脚 A
AN9 ADC 输入通道 9 CT9 电容触摸通道 9	32	I/O	T1CK	1 1 100
	32	1/0	AN9	ADC 输入通道 9
DIG4 LED 位选端/偏压输出端				
			DIG4	LED 位选端/偏压输出端

2.3.1 P0 口相关的寄存器

表 2-2 与 P0 端口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
05H	P0	-	-	P05	P04	P03	P02	P01	P00
45H	P0LR	-	-	P0LR5	P0LR4	P0LR3	-	P0LR1	P0LR0
25H	TR0	1	1	TR05	TR04	TR03	TR02	TR01	TR00
36H	IOCL	-	-	IOCL5	IOCL 4	IOCL 3	IOCL2	IOCL1	IOCL0
35H	PUR0	-	1	PUR05	PUR04	PUR03	-	PUR01	PUR00

2.3.1.1 P0 口状态寄存器(P0)

寄存器 PO 各位对应 PO 口相应引脚当前的状态,如寄存器 2.1 所示:

寄存器2.1: P0: P0口状态寄存器(地址: 05H)

 复位值 --xx xxxx
 P05
 P04
 P03
 P02
 P01
 P00

 U
 U
 R/W
 R/W
 R/W
 R/W
 R/W

P0<5:0>: 读 P0 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读P0寄存器实际读P0引脚的电平状态。

2.3.1.2 P0 口输出锁存寄存器(P0LR)

寄存器 POLR 是 PO 口输出锁存寄存器。在 PO 口作为输出时,通过写 POLR 寄存器来设置输出 PO 口的状态。

寄存器2.2: POLR: PO口输出锁存寄存器(地址: 45H)

bit0 bit7 复位值 P0LR5 P0LR4 P0LR3 P0LR0 P0LR1 xxxx xxxx R/W R/W R/W R/W R/W R/W R/W

P0LR<5:3><1:0>: 写 P0 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注: P0.2 不能作输出用。

2.3.1.3 P0 口方向控制寄存器(TR0)

如寄存器 2.3 所示, TR0 为 P0 口方向控制寄存器, 当 TR0 某位置 1 时,将该引脚设置 为输入,此时引脚为三态(悬空),TR0 某位清零,对应引脚设置为输出。

寄存器2.3: TR0: P0口方向控制寄存器(地址: 25H)

	bit7							bit0
复位值 1111 1111	-	-	TR05	TR04	TR03	TR02	TR01	TR00
	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W

TR0<5:3><1:0>: P0 口各引脚方向控制位

TR02:

1 = 对应的引脚设置为输入 0 = 对应的引脚设置为输出 P0.2 引脚控制位,始终为 1

图注: R=可读 W=可写 -=未用 U=未实现位

2.3.1.4 P0 上拉功能控制寄存器(PUR0)

KF8TS2716 中除了 P0.2 口没有内部上拉功能外,其它引脚均带有上拉功能,可通过上拉功能控制寄存器和OPTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将 PUPH (上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.4 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.4: PUR0: 弱上拉控制寄存器(地址: 35H)

	bit7							bit0	
复位值 1111 1-11	-	-	PUR05	PUR04	PUR03	-	PUR01	PUR00	
_	R/W	R/W	R/W	R/W	R/W	U	R/W	R/W	

PUR0<5:3>: P0 上拉功能使能位 PUR0<1:0>: P0 上拉功能使能位

> 1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

图注: R=可读 W=可写 -=未用 U=未实现位

2.3.1.5 电平变化中断控制寄存器(IOCL)

P0 口每个引脚都具有电平变化中断功能,当引脚的当前电平与上次读 P0 寄存器时的电平不匹配时将产生电平变化中断。如寄存器 2.5 所示,IOCL 为电平变化中断控制寄存器,将 IOCL 某位置 1 将开启对应引脚的电平变化中断功能,如果该引脚电平发生变化,不管电平变化中断是否使能,电平变化中断标志位(P0IF)都会置 1,如果全局中断使能位(AIE)和电平变化中断使能位(P0IE)都已置 1,则会响应中断进入中断服务子程序。P0 口所有引脚的电平变化中断共用一个标志位 P0IF。

注: 1. 只有将引脚设置为数字输入口时才可开启电平变化中断功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的电平变化中断功能。

2. P0口各引脚的电平变化中断共用一个中断使能位和中断响应标志位。

寄存器2.5: IOCL: 电平变化中断控制寄存器(地址:36H)

	bit7							bit0
复位值 0000 0000	-	-	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IOCL<5:0>:

PO 端口引脚电平变化中断使能控制位

1 = 使能对应引脚的电平变化中断

0 = 禁止对应引脚的电平变化中断

图注: R=可读 W=可写 -=未用 U=未实现位

注: P0 口电平变化中断是在引脚的当前电平与上次读 P0 寄存器时的电平不匹配时产生的,所以每次中断标志位(P0IF)置 1 后都要更新 P0 寄存器的值。

电平变化中断参考:

JNB INTCTL,P0IF ;检测是否为P0电平变化中断

JMP P0INT

JMP INT_RET ;退出中断

P0INT

MOV P0;注意在处理电平变化中断前,这里一定要更新锁存器锁存的值,为了

下一次电平变化中断处理,

• • •

:接下来为P0电平变化中断的处理

2.3.2 P0 口各引脚内部原理功能框图

如图 2.2、2.3 所示,为 PO 口引脚原理功能框图。

图 2.2 引脚 PO.2 原理功能框图

图 2.3 P0.0~P0.1、P0.3~P0.5 口引脚原理框图

2.4 P1 口

如引脚示意图所示,P1 口具有 8 个引脚。所有管脚均可作为普通 I/O 口,部分引脚可作为 AD 输入通道、触摸输入通道等。引脚功能如表 2-3 所示。

I/O 引脚功能 引脚名 引脚说明 P1.7 带上拉功能的双向输入输出端口 9 I/O CT13 电容触摸通道 13 P1.6 带上拉功能的双向输入输出端口 I/O 10 CT12 电容触摸通道 12 P1.5 带上拉功能的双向输入输出端口 AN2 I/O 11 ADC 输入通道 2 CT2 电容触摸通道2 P1.4 带上拉功能的双向输入输出端口 12 I/O CAP 触摸按键参考电容输入脚,接入范围为 0pF~10pF P1.3 带上拉功能的双向输入输出端口 INT2 13 I/O 外部中断 2 输入 CT1 电容触摸通道1 P1.2 带上拉功能的双向输入输出端口 14 I/O CT0 电容触摸通道0 P1.1 带上拉功能的双向输入输出端口 **SDA** I2C 数据输入/输出脚 I/O SDI SPI 数据输入脚 15 AN1 ADC 输入通道1 P1.0 带上拉功能的双向输入输出端口 SCK IIC 数据输入/输出 16 I/O SCL SPI 数据输入 $AN\overline{0}$ ADC 输入通道 0

表 2-3 P1 口各引脚功能

2.4.1 P1 口相关的寄存器

表 2-4 与 P1 口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
07H	P1	P17	P16	P15	P14	P13	P12	P11	P10
47H	P1LR	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
60H	PUR1	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10

2.4.1.1 P1 口状态寄存器(P1)

寄存器 P1 对应端口 P1 引脚作为普通 I/O 口时的状态。如寄存器 2.6 所示

寄存器2.6: P1: P1口状态寄存器(地址: 07H)

_	bit7							bit0
复位值 xxxx xxxx	P17	P16	P15	P14	P13	P12	P11	P10
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

P1<7:0>: 读 P1 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读P1寄存器实际读P1引脚的电平状态。

2.4.1.2 P1 口输出锁存寄存器(P1LR)

寄存器 P1LR 是 P1 口输出锁存寄存器。在 P1 口作为输出时,通过写 P1LR 寄存器来设置输出 P1 口的状态。

寄存器2.7: P1LR: P1口输出锁存寄存器(地址: 47H)

	bit7							bit0
更位值 xxx xxxx	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0
	R/W							

P1LR<7:0>: 写 P1 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

2.4.1.3 P1 口方向控制寄存器(TR1)

如寄存器 2.8 所示,通过将寄存器 TR1 中的某位置 1,将对应管脚设置为输入口。清零设置为输出口,系统复位时,P1 口各引脚默认为输入口。

寄存器2.8: TR1: P1口方向控制寄存器(地址: 27H)

	bit7			,				bit0
复位值 1111 1111	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
·	R/W							

TR1<7:0>: P1 口引脚方向控制位

1=P1 口对应引脚被配置为输入端口 0=P1 口对应引脚被配置为输出端口

图注: R=可读 W=可写 -=未用 U=未实现位

2.4.1.4 P1 口上拉功能控制寄存器(PUR1)

KF8TS2716 中 P1 引脚均带有上拉功能,可通过上拉功能控制寄存器和 OPTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将PUPH(上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置1即可。寄存器2.9为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.9: PUR1: 弱上拉控制寄存器(地址: 60H)

	bit7							bit0	
复位值 1111 1111	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10	
	R/W								

PUR1<7:0>: P1 上拉功能使能位

1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

图注: R=可读 W=可写 -=未用 U=未实现位

2.4.2 P1 口原理功能框图

P1 口引脚原理功能如图 2.4 所示:

图 2.4 P1 口引脚原理功能框图

2.5 P2 口

如引脚示意图所示,P2 口共有 8 个引脚。所有管脚均可作为普通 I/O 口、部分引脚可作为 AD 输入通道和触摸输入口。

表 2-5 P2 口各引脚功能

1 I/O 帶上拉功能的双向输入输出端口 AN8 AD 模拟输入通道 8 RX USART 全双工异步串行数据接收端 DT USART 半双工同步串行数据接收端 DT USART 半双工同步串行数据接收端 DIG5 LED 位选端/偏压输出端 P2.1 带上拉功能的双向输入输出端口 AN7 AD 模拟输入通道 7 TX USART 全双工异步发送数据输出端 CK USART 半双工同步时钟信号发送端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ I/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 CT15 电容触摸通道 1	引脚名	I/O	引脚功能	引脚说明
I/O			P2.0	带上拉功能的双向输入输出端口
DT			AN8	AD 模拟输入通道 8
DT	1	I/O	RX	USART 全双工异步串行数据接收端
DIG5 LED 位选端偏压输出端 P2.1 带上拉功能的双向输入输出端口 AN7 AD 模拟输入通道 7 TX USART 全双工异步发送数据输出端 CK USART 半双工同步时钟信号发送端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 4 I/O AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口	1	I/O	DT	USART 半双工同步串行数据接收端
2 I/O 带上拉功能的双向输入输出端口 AN7 AD 模拟输入通道 7 TX USART 全双工异步发送数据输出端 CK USART 半双工同步时钟信号发送端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ I/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 TUO CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口			CT8	电容触摸通道 8
AN7 AD 模拟输入通道 7 TX USART 全双工异步发送数据输出端 CK USART 半双工同步时钟信号发送端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 4 I/O AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 CT5 电容触摸通道 4 CT4 电容触摸通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 T/O P2.6 带上拉功能的双向输入输出端口 T/O CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口			DIG5	LED 位选端/偏压输出端
2 I/O TX USART 全双工异步发送数据输出端 CK USART 全双工异步发送数据输出端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ 1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 CT3 电容触摸通道 3 CT3 电容触摸通道 3 CT0 带上拉功能的双向输入输出端口 TO CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口				带上拉功能的双向输入输出端口
CK USART 半双工同步时钟信号发送端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 T P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 R P2.7 带上拉功能的双向输入输出端口 R P2.7 带上拉功能的双向输入输出端口			AN7	AD 模拟输入通道 7
CK USART 平双上同步时钟信号友透端 CT7 电容触摸通道 7 DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ 1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 R P2.7 带上拉功能的双向输入输出端口 R P2.7 带上拉功能的双向输入输出端口	2	I/O	TX	USART 全双工异步发送数据输出端
DIG6 LED 位选端/偏压输出端 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ 1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口	2	I/O		USART 半双工同步时钟信号发送端
3 P2.2 带上拉功能的双向输入输出端口 AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/ 1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 TO P2.6 带上拉功能的双向输入输出端口 TO CT14 电容触摸通道 14 R I/O P2.7 带上拉功能的双向输入输出端口				电容触摸通道 7
AN6 AD 模拟输入通道 6 CT6 电容触摸通道 6 DIG7 LED 位选端/1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 8 I/O				LED 位选端/偏压输出端
3 I/O 电容触摸通道 6 DIG7 LED 位选端/1/偏压输出端 P2.3 带上拉功能的双向输入输出端口 AN5 AD 模拟输入通道 5 电容触摸通道 5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O 带上拉功能的双向输入输出端口 8 I/O 中2.6 带上拉功能的双向输入输出端口 8 I/O 中2.7 带上拉功能的双向输入输出端口				带上拉功能的双向输入输出端口
BY ME ANS E PE ANS (AD 模拟输入通道 5) 5 I/O AN5 (AD 模拟输入通道 5) 6 I/O AN4 (AD 模拟输入通道 3) 6 I/O AN3 (AD 模拟输入通道 3) 7 I/O P2.6 (T14) 电容触摸通道 14 8 I/O P2.6 (T14) 电容触摸通道 14 8 I/O P2.7 (带上拉功能的双向输入输出端口 8 I/O P2.7 (带上拉功能的双向输入输出端口 8 I/O P2.7 (带上拉功能的双向输入输出端口	3	I/O		AD 模拟输入通道 6
4 I/O P2.3 带上拉功能的双向输入输出端口 AN5 AD模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD模拟输入通道 3 CT3 电容触摸通道 3 7 I/O P2.6 带上拉功能的双向输入输出端口 8 I/O P2.7 带上拉功能的双向输入输出端口 8 I/O P2.7 带上拉功能的双向输入输出端口	3	1/0		
4 I/O AN5 AD 模拟输入通道 5 CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O P2.6 带上拉功能的双向输入输出端口 8 I/O P2.7 带上拉功能的双向输入输出端口 8 I/O P2.7 带上拉功能的双向输入输出端口				
CT5 电容触摸通道 5 P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 *** P2.7 带上拉功能的双向输入输出端口				The state of the s
P2.4 带上拉功能的双向输入输出端口 AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 R P2.7 带上拉功能的双向输入输出端口	4	I/O		2 *** - ****
5 I/O AN4 AD 模拟输入通道 4 CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 R I/O P2.7 带上拉功能的双向输入输出端口				
CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 *** P2.7 *** *** ** ** **				带上拉功能的双向输入输出端口
CT4 电容触摸通道 4 P2.5 带上拉功能的双向输入输出端口 AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口 T/O 电容触摸通道 14	5	I/O		
AN3 AD 模拟输入通道 3 CT3 电容触摸通道 3 7 I/O 中2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口	3			
CT3 电容触摸通道 3 7 I/O 中2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口				
CT3 电容触摸通道 3 7 P2.6 带上拉功能的双向输入输出端口 CT14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口	6	I/O		2 *** - *** = =
7 I/O CT14 电容触摸通道 14	Ü	1, 0		
ET14 电容触摸通道 14 P2.7 带上拉功能的双向输入输出端口	7	I/O		
X 1/()	,	1/ ()		
CT15 电容触摸通道 15	0	I/O		带上拉功能的双向输入输出端口
	O	I/O	CT15	电容触摸通道 15

2.5.1 P2 口相关的寄存器

表 2-6 与 P2 口相关的寄存器

	20 - 2 - 1 MHXCH2 4 11 HH											
地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0			
06H	P2	P27	P26	P25	P24	P23	P22	P21	P20			
46H	P2LR	P2LR7	P2LR6	P2LR5	P2LR4	P2LR3	P2LR2	P2LR1	P2LR0			
26H	TR2	TR27	TR26	TR25	TR24	TR23	TR22	TR21	TR20			
61H	PUR2	PUR27	PUR26	PUR25	PUR24	PUR23	PUR22	PUR21	PUR20			

2.5.1.1 P2 口状态寄存器(P2)

寄存器 P2 各位对应端口 P2 口各引脚作为普通 I/O 口时的状态。如寄存器 2.10 所示

寄存器2.10: P2: P2口状态寄存器(地址: 06H)

bit7 bit0 复位值 P27 P26 P25 P24 P23 P22 P21 P20 xxxx xxxx R/W R/W R/W R/W R/W R/W R/W R/W

P2<7:0>: 读 P2 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读 P2 寄存器实际读 P2 引脚的电平状态。

2.5.1.2 P2 口输出锁存寄存器 (P2LR)

寄存器 P2LR 是 P2 口输出锁存寄存器。在 P2 口作为输出时,通过写 P2LR 寄存器来设置输出 P2 口的状态。

寄存器2.11: P2LR: P2口输出锁存寄存器(地址: 46H)

bit0 复位值 P2LR6 P2LR5 P2LR3 P2LR2 P2LR1 P2LR7 P2LR4 P2LR0 xxxx xxxx R/W R/W R/W R/W R/W R/WR/W R/W

P2LR<7:0>: 写 P2 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.1.3 P2 口方向控制寄存器(TR2)

如寄存器 2.12 所示,通过将寄存器 TR2 中的某位置 1,将对应管脚设置为输入口。清零设置为输出口。

寄存器2.12: TR2: P2口方向控制寄存器(地址: 26H)

bit0 bit7 复位值 TR27 TR26 TR25 TR24 **TR23** TR22 TR21 TR20 1111 1111 R/W R/W R/W R/W R/W R/W R/W R/W

TR2<7:0>: P2 口各引脚方向控制位

1 = P2 口对应引脚被配置为输入端口 0 = P2 口对应引脚被配置为输出端口

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.1.4 P2 口上拉功能控制寄存器(PUR2)

KF8TS2716 中 P2 引脚均带有上拉功能,可通过上拉功能控制寄存器和 OPTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将 PUPH (上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.13 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.13: PUR2: P2口弱上拉控制寄存器(地址:61H)

	bit7							bit0
复位值 1111 1111	PUR27	PUR26	PUR25	PUR24	PUR23	PUR22	PUR21	PUR20
	R/W							

PUR2<7:0>: P2 上拉功能使能位

1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.2 P2 口原理功能框图

P2 口引脚原理功能如图 2.5 所示:

图 2.5 P2 口引脚原理功能框图

2.6 P3 口

如引脚示意图所示,P3 口共有 8 个引脚。所有管脚均可作为通用 I/O 口、部分引脚可作为 ADC 输入通道、PWM 输出口等。

表 2-7 P3 口各引脚功能

引脚名	I/O	引脚功能	引脚说明
		P3.0	双向输入输出端口
26	I/O	SEG0	LED 段选端/偏压输出端
26	1/0	PWM1	8 位 PWM 输出口 1
		CT20	电容触摸通道 20
		P3.1	双向输入输出端口
25	I/O	SEG1	LED 段选端/偏压输出端
23	1/0	PWM2	8 位 PWM 输出口 2
		CT21	电容触摸通道 21
		P3.2	双向输入输出端口
24	I/O	SEG2	LED 段选端/偏压输出端
		CT16	电容触摸通道 16
		P3.3	双向输入输出端口
23	I/O	INT1	外部中断 1 输入端
23	1/0	SEG3	LED 段选端/偏压输出端
		CT17	电容触摸通道 17
		P3.4	双向输入输出端口
22	I/O	SEG4	LED 段选端/偏压输出端
		AN12	AD 模拟输入通道 12
		P3.5	双向输入输出端口
21	I/O	SEG5	LED 段选端/ 1/2VDD 偏压输出端
		AN13	AD 模拟输入通道 13
		P3.6	双向输入输出端口
		SS	SPI 模式从动选择输入
18	I/O	SEG6	LED 段选端/偏压输出端
		AN14	ADC 输入通道 14
		CT18	电容触摸通道 18
		P3.7	双向输入输出端口
		SDO	SPI 数据输出端
17	I/O	SEG7	LED 段选端/偏压输出端
		CT19	电容触摸通道 19
		AN15	ADC 输入通道 15

2.6.1 P3 口相关的寄存器

表 2-8 与 P3 口相关的寄存器

	↑ 1 1 1 1 1 1 H											
地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0			
H80	P3	P37	P36	P35	P34	P33	P32	P31	P30			
48H	P3LR	P3LR7	P3LR6	P3LR5	P3LR4	P3LR3	P3LR2	P3LR1	P3LR0			
49H	TR3	TR37	TR36	TR35	TR34	TR33	TR32	TR31	TR30			

2.6.1.1 P3 口状态寄存器(P3)

寄存器 P3 各位对应端口 P3 口各引脚作为普通 I/O 口时的状态。如寄存器 2.14 所示。

寄存器2.14: P3: P3口状态寄存器(地址:08H)

bit7 bit0 复位值 P36 P34 P33 P32 P31 P30 $xxxx\;xxxx$ R/W R/W R/W R/W R/W R/W R/W R/W

P3<7:0>: 读 P3 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读 P3 寄存器实际读 P3 引脚的电平状态。

2.6.1.2 P3 口输出锁存寄存器(P3LR)

寄存器 P3LR 是 P3 口输出锁存寄存器。在 P3 口作为输出时,通过写 P3LR 寄存器来设置输出 P3 口的状态。

寄存器2.15: P3LR: P3口输出锁存寄存器(地址:48 H)

_	bit7							bit0
复位值 xxxx xxxx	P3LR7	P3LR6	P3LR5	P3LR4	P3LR3	P3LR2	P3LR1	P3LR0
	R/W							

P3LR<7:0>: 写 P3 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

2.6.1.3 P3 口方向控制寄存器(TR3)

如寄存器 2.16 所示,通过将寄存器 TR3 中的某位置 1,将对应管脚设置为输入口。清零设置为输出口。

寄存器2.16: TR3: P3口方向控制寄存器(地址: 49H)

_	bit/							bitO	
复位值 1111 1111	TR37	TR36	TR35	TR34	TR33	TR32	TR31	TR30	
•	R/W								

TR3<7:0>: P3 口各引脚方向控制位

1=P3 口对应引脚被配置为输入端口0=P3 口对应引脚被配置为输出端口

图注: R=可读 W=可写 -=未用 U=未实现位

2.6.2 P3 口原理功能框图

P3 口引脚原理功能如图 2.6 所示:

图 2.6 P3 口引脚原理功能框图

存储器 3

如图 3.1 所示, KF8TS2716 中存储器主要由程序存储器(ROM)和数据存储器(RAM)组成, 程序存储器和数据存储器地址空间相互独立。其中程序存储器为 16K 字节(8K×16 位)的 FLASH 存储器:数据存储器由特殊功能寄存器和通用寄存器组成,特殊功能寄存器空间为 256×8 位,通用数据寄存器空间为(1024+16)×8 位 另外 KF8TS2716 中还有一些其它存储器, 包括:寄存器组 R0~R7、16 级硬件堆栈、ID 地址单元等。

复位向量入口

0004H

图 3.1 存储器组织图

3.1 程序存储器(ROM)区

KF8TS2716 有一个 13 位的程序计数器,最大可寻址 8K×16 位的程序存储空间,地址 为 0000H~1FFFH, 复位向量入口地址为 0000H, 中断向量有两级入口地址, 高为 0004H, 低为 0014H。

如图 3.2 所示,程序计数器(PC)的低 8 位(PC<7:0>)来自特殊功能寄存器 PCL,高 5 位 (PC<12:8>)来自 PCH 寄存器。在任何复位发生后 PC 值将被清零。在有任何未屏蔽中断发生 后 PC 值将指向 0004H 或 0014H 地址。图 3.3 为程序存储器区的地址映射图。

在用户的程序中,每当执行一条汇编指令 PC 值会自动加 1,指向下一条要执行的指令。 当有子程序调用或响应中断时, CPU 会将 PC+1 后的值压入堆栈进行保存, 然后将子程序

或中断入口地址送到 PC 中, CPU 根据 PC 的值跳转到对应的地址执行命令。

PCH<7:5>	PCH<4:0>	PCL<7:0>

图 3.2 程序计数器 (PC)

图 3.3 KF8TS2716 程序存储器映射

3.1.1 MOVP 指令

当需要改变程序计数器到固定地址(包括跳页)时,可以通过写 PCH 寄存器确定高 5 位地址(写 PCH 寄存器不会改变 PC 的值),当写低 8 位地址数据到 PCL 寄存器时,程序计数器的 13 位地址数据将更新,变为 PCH 寄存器和 PCL 寄存器的数据,如例 3.1 所示。

例3.1 程序计数器从0000H开始执行跳转程序到1F55H

PC	指令	备注
0000	MOVP #0X1F	将 1FH 写入 PCH 寄存器
0001	MOV R0, #0X55	将 55H 赋给 R0
0002	MOV PCL, R0	将 R0 内数据写入 PCL, PC 内容变为 PCH/PCL 寄存器的值
1F55	•••	

3.1.2 JMP、CALL 指令

KF8F4158 系列单片机的 JMP、CALL 指令编码如下:

JMP #data12 1100_kkkk_kkkk_kkkk CALL#data12 1101_kkkk_kkkk_kkkk

在执行 JMP 或者 CALL 指令时,程序计数器 (PC)的值将变为 PCH.bit4 以及指令所带

立即数 (#data12), 如图 3.4 所示。

图 3.4 执行 JMP、CALL 指令时 PC 的变化图

执行 JMP 指令时将更新 PC; 而执行 CALL 指令在更新 PC 的同时,将 CALL 指令的下一条地址入栈,栈地址加 1; 在执行 RETURN 指令(IRET、RRET、CRET)时,将之前入栈的地址数据出栈并更新到 PC, 栈地址减 1, PCH 寄存器不受出栈入栈的影响。

3.2 数据存储器(RAM)区

如图 3.5 所示,KF8TS2716 中的数据存储器由 10 个区组成,每个区的空间都是 128 字节,其中 2 个区用作特殊功能寄存器区(SFR)使用;另外 8 个存储器区为通用寄存器区,由用户支配。SFR 地址空间为 $00H\sim6FH$ 、 $100H\sim16FH$;而 $70H\sim7FH$ 有 16 个字节为通用寄存器区,即当用户访问其他 BANK 区 $70H\sim7FH$ 的存储单元时,均是对 BANK 0 区的 $70H\sim7FH$ 操作。

图 3.5 数据存储器地址映射图

芯旺微电子 - 50/216 - Chip**○N**

3.2.1 通用寄存器区

如图 3.5 所示,通用寄存器的空间为 1040 字节,0 区至 7 区通过 BANK 寄存器中的 PR3~PR0 位进行选择,如表 3-1 所示。

寄存器3.1: BANK: 通用寄存器选区寄存器

复位值	bit7							bit0
0000	-	-	-	-	PR3	PR2	PR1	PR0
· ·	U	U	U	U	R/W	R/W	R/W	R/W

表 3-1 通用寄存区地址

PR<3:0>	通用寄存器区	地址
0000	通用寄存器 0 区	80H∼FFH
0001	通用寄存器1区	180H∼1FFH
0010	通用寄存器 2 区	$280 H \sim 2 FFH$
0011	通用寄存器 3 区	380H∼3FFH
0100	通用寄存器 4 区	480H∼4FFH
0101	通用寄存器 5 区	580H∼5FFH
0110	通用寄存器 6 区	680H∼6FFH
0111	通用寄存器7区	780H∼7FFH

图注: R=可读 W=可写 -=未用 U=未实现位

切换通用寄存区的指令如例 3.2 所示:

例3.2 切换BANK寄存器存储区

MOVB #0X01;切换到存储区1区MOVB #0X02;切换到存储区2区

3.2.2 特殊功能寄存器(SFR)区

KF8TS2716 内部的 I/O 口控制、定时/计数器、PWM、中断等各种控制寄存器和状态寄存器都称为特殊功能寄存器。附录 1 列出 SFR 的地址映射及复位初始值等。

状态字寄存器(PSW): 如寄存器 3.1 所示, PSW 的低三位是算术运算标志位, 在进行加、减等运算时对它们产生影响(具体请参考汇编指令部分)。 TO 和 PD 是复位状态位, 当单片机有复位或看门狗超时、执行休眠等指令时,会对这两位产生影响。

寄存器3.1: PSW: 状态字寄存器(地址: 03H)

	bit7							bit0
复位值 0001 1xxx	-	-	ı	TO	PD	Z	DC	CY
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TO: 超时标志位

1 = 在上电复位、CWDT 指令或 IDLE 指令执行之后

0=WDT 超时被清零

PD: 上电复位标志位

1 = 上电复位或执行 CWDT 指令后

0= 执行 IDLE 指令后被清零

Z: 零状态标志位

1= 算术运算或者逻辑运算的运行结果为0

0= 算术运算或者逻辑运算的运行结果不为 0

DC: 辅助进/借位标志位

1= 执行结果的低 4 位向高 4 位有进位(加指令)或没有借位(减指令)

0 = 执行结果的低 4 位向高 4 位没有进位(加指令)或有借位(减指令)

CY: 进位/借位标志位

1 = 执行结果(8位)向高位有进位时(加指令)或没有借位(减指令)

0 = 执行结果(8位)向高位无进位时(加指令)或有借位(减指令)

图注: R=可读 W=可写 -=未用 U=未实现位

注:对于借位的情况,当指令执行后,低四位(或高四位)向高位有借位时,DC(或CY)标志为0,当没有借位时其值为1。关于对标志位是否产生影响的指令请参考"汇编指令集"部分。

3.3 FLASH 自写

KF8TS2716 在程序存储区开辟了一个 6112×16 位的自写区域,地址范围从 800H~1FDFH。该区域在正常工作期间是可读写的,它并没有直接映射到寄存器空间,而 是通过特殊功能寄存器间接寻址。有 6 个特殊功能寄存器用于访问该区域。

	农3-2 与FLASH 相人的可行储											
地址	寄存器	位7 位6 位5 位4 位3 位2 位1 位0							位 0			
3AH	NVMADDRH	-	-	-	地址指针高 5 位							
3BH	NVMADDRL		地址指针低 8 位									
3CH	NVMCTL0				控制寄	存器 1						
3DH	NVMCTL1				控制寄	存器 2						
39H	NVMDATAL		数据寄存器低 8 位									
38H	NVMDATAH				数据寄存品	器高8位						

表 3-2 与 FLASH 相关的寄存器

如图 3.6 所示,写 FLASH 时,FLASH 中所有内存单元以连续的 16 个地址为一个数据块,2 个数据块为一页。

图 3.6 Flash 自写区域地址映射图

图 3.7 写操作

如图 3.7 所示,在写 Flash 时,有 16 个 16 位的缓冲寄存器,用来临时存放要写入 Flash中的数据。

3.3.1 寄存器 NVMDATAH/L

CPU 读写 Flash 时,用来存放要写入或者读出 Flash 的数据,NVMDATAL 存放数据的 低 8 位,NVMDATAH 存放数据的高 8 位。

芯旺微电子 - 53/216 - Chip**○N**

3.3.2 寄存器 NVMADDRH/L

如寄存器 3.2 所示, NVMADDRH/L 地址位于特殊功能寄存器区的 3AH/3BH。用来存 放要写入 Flash 的 13 位的地址信息, NVMADDRH 存放地址的高 5 位, NVMADDRL 存放 地址的低 8 位。

寄存器3.2: NVMADDRH: 数据指针高5位(地址: 3AH)

复位值 0 0000	-	-	-	bit4	bit3	bit2	bit1	bit0			
0 0000	U	U	U	R/W	R/W	R/W	R/W	R/W			
NVMADDRL: 数据指针低8位(地址: 3BH)											
复位值 0000 0000	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
	R/W										

图注: R=可读 W=可写 -=未用 U=未实现位

NVMCTL0/NVMCTL1 为写 Flash 控制寄存器,地址位于特殊功能寄存器区的 3CH/3DH。 用户在写 Flash 时,将 NVMDATAH/L 中送入要写入的数据,NVMADRRH/L 中送入要 写入的地址, 然后通过向 NVMCTL0 和 NVMCTL1 送入固定的写命令, 将要写入块的数据 存到对应的缓冲寄存器中。

在读 Flash 时,将要读的地址送到 NVMADDRH/L 中,然后向 NVMCTL0 写入固定的 读命令,把要读的数据送到 NVMDATAH/L 中。

3.3.3 写 Flash

写 Flash 时,只能对 Flash 成块写入数据,不允许跨区操作。不能单独将一个字节(或字) 的数据写入某块的一个字节(或字)中,如果实际上写入 Flash 中的数据没有 16 个字或不能被 16 整除(例如要写入一组 15 个字的数据),需要将块中不需要写入数据的单元写入 0 或者其 它值,否则可能会导致写入的数据出错。如果原来的 Flash 保存有数据,现在需要修改原数 据中的一个字或者几个字,其它单元的值不变,则需要先将其对应块中其它数据读出来保存, 然后再根据实际情况将需要修改的值和之前读出的值写入即可。

在写 Flash 时,必须先对每个页的第一块进行写操作,以擦除本页的数据,如果没有对 第一块进行写操作, 直接写后面块则本页的所有数据都不会被擦除。即只有对每个页的第一 块进行写操作才会擦除本页的数据,对其它块写操作不会擦除本页数据,可能导致写入数据 出错。

注: 1.写Flash时, 从Flash自写首800H地址开始处,连续的16个字作为一个数据块,连续的2 个数据块作为一个页。

- 2.写Flash时,不管其存储单元是否有数据,都要先执行一次擦除操作,且擦除操作只有在 写每页的第一个数据块时才会执行,将本页所有单元数据擦除。而对每页的其他数据块写操 作时不会有擦除操作发生。
- 3.将各页第一个数据块写完后,CPU将停止6ms执行擦除和写操作,写其他块时,停止3ms 执行写操作。
 - 4.配置位的SWRTEN需配置为0,才能对Flash进行写操作。

在写 FLASH 时,将要写入的数据送到 NVMDATAL/H,地址送到 NVMADDRH/L 后,通过执行以下指令完成写操作:

MOV R5,BANK ;保存当前寄存器存储区 CLR BANK ;切换到Bank0区

MOV DATA_BANK, R5 ;该样例要求DATA_BANK在0区,否则添加切区

MOV R5, INTCTL ;保存当前的中断状态

MOV DATA_INTCTL, R5 ;该样例要求DATA_INTCTL 在0区,否则添加切区

CLR INTCTL, 7 ;关闭总中断

JNB INTCTL, 7

JMP \$-2

MOV R5, OSCCTL ;保存当前的时钟状态

MOV DATA_OSCCTL,R5 ;该样例要求DATA_OSCCTL在0区,否则添加切区

MOV R5, #0X10 ;切换到250kHz

MOV OSCCTL, R5

;;以下时序不可更改 MOV R5,#0X84 MOV NVMCTL0,R5 MOV R5,#0X69 MOV NVMCTL1,R5 MOV R5,#0X96 MOV NVMCTL1,R5

SET NVMCTL0 , 1 NOPZ NOPZ NOPZ NOPZ NOPZ NOPZ

NOPZ NOPZ NOPZ NOPZ

NOPZ MOV R5,#0X80 ;关闭Flash的写操作,防止意外写

 $MOV\ NVMCTL0\ , R5$

MOV R5, DATA_OSCCTL ;恢复时钟状态

MOV OSCCTL,R5

JNB DATA_INTCTL,7 ;恢复中断状态

SET INTCTL, 7

MOV R5, DATA_BANK ;BANK区还原

MOV BANK, R5

以上指令中的立即数 0X80, 0X84, 0X69, 0X96 是固定不变的。如果未完全按照上述顺序(先将 0X69 写入 NVMCTL1, 再将 0X96 写入 NVMCTL1, 最后将 NVMCTL0.1 位置1) 执行指令,将不会启动写操作。

写 FLASH 的步骤为:

- 1. 将要写入的数据的送到 NVMDATAH/L;
- 2. 将对应的 FLASH 地址送到 NVMADDRH/L:
- 3. 执行上面的写命令,此时,CPU 将要写入数据的一个字保存到 FLASH 的数据缓冲器中:
- 4. 重复执行步骤 1、2、3 十六次,此时 CPU 自动将要写入第一块的数据分别存入对应的 FLASH 的数据缓冲器中:
- 5. 当上边第 16 次写命令执行完后, CPU 自动发出擦除本页的命令,将本页原来的数据

全部擦除,擦除完毕后,将数据缓冲器中的数据送到对应的地址中。在这个过程中 CPU 停止其它工作 6ms 用来执行擦除和写入数据的命令。

6. 重复执行步骤 1、2、3 十六次,将数据写入本页的第二块。当执行完第 16 次写命令后, 因本次写的不是页的第一块,CPU 不会执行擦除命令,仅将数据缓冲器中的数据写入 对应的存储单元,写操作耗时 3ms。

3.3.4 读 Flash

在读 FLASH 时,将要读取的地址送到 NVMADDRH/L 后,通过执行以下操作完成读操作:

MOV R5,#0X81 MOV NVMCTL0,R5 NOPZ NOPZ

上面指令中的立即数 0X81 是固定不变的。此时该地址的数据高 8 位被送 NVMDATAH,低 8 位送到 NVMDATAL。无论配置位 SWRTEN 为何值都不影响读 FLASH。

读 FLASH 是逐字读取的,不要求一块一块的读。读 FLASH 时通过向 NVMCTL0 写入 0X81 来执行读命令。

读 FLASH 的步骤如下:

- 1. 将要读的数据单元的地址送到 NVMADDRH/L 中;
- 2. 向 NVMCTL0 写入读命令;
- 3. 两个指令周期后该单元的数据被送到 NVMDATAH/L。

3.4 寄存器组 Rn

KF8TS2716 芯片中有一个工作寄存器组 R0~R7,可用做间接寻址的中间寄存器,存放操作数的地址;隐含目的操作数的指令中,默认 R0 作为目的操作数(如: RRCR 0X81);在读晶振校准值和参考电压校准值时,默认将读到的值送到 R0 中。

3.5 ID 地址单元

KF8TS2716 的程序存储器空间的最后 32 个地址单元被指定为 ID 地址单元,用于存放芯片信息,地址为 1FE0H~1FFFH。

KF8TS2716数据手册V1.4

4 汇编指令及寻址方式

4.1 寻址方式

KF8TS2716 机提供 5 种寻址方式,分别为:寄存器寻址、直接寻址、立即数寻址、寄存器间接寻址和位寻址。KF8TS2716 的指令可以没有操作数、一个操作数、两个操作数。

4.1.1 寄存器寻址

采用这种寻址方式的指令中的操作数为寄存器组 R0-R7 的一个。例:

CLR R0 ; R0←0 将寄存器 R0 清零 只有一个操作数(R0 的值), 寻址方式为寄存器寻址。

ADD R0, R1

两个操作数(R0和R1),寻址方式为寄存器寻址。

4.1.2 直接寻址

在指令中的操作数为某个寄存器的直接地址,该地址指出其参与运算的数据所在的地址。直接寻址可以是:特殊功能寄存器、通用数据存储器。

MOV R0,0X81 ; R0←(81H) 将 81H 单元的数据送到 R0 中指令中,源操作数寻址方式为直接寻址,目的操作数为寄存器寻址。

INC 0X3B ; 3BH←(3BH)+1 将地址 3BH 里的值加 1。

指令中含有一个操作数,寻址方式为直接寻址。

4.1.3 立即数寻址

在指令中的操作数为立即数。

例:

MOV R0,#0X20 ; R0←0X20 将立即数 0X20 送到寄存器 R0 中

ADD R0,#0X20 ; R0 \leftarrow (R0)+0X20 寄存器 R0 的值与 0X20 相加结果送到 R0 AND R0,#0X20 ; R0 \leftarrow (R0)&0X20 寄存器 R0 的值与 0X20 相与结果送到 R0 以上三条指令中源操作数都是#0X20,为立即数寻址,目的操作数为寄存器寻址。

KF8TS2716数据手册V1.4

4.1.4 寄存器间接寻址

这种寻址方式中,寄存器的内容指定操作数的地址,即寄存器中存放的是操作数的地址。间接寻址只有两条指令 LD 和 ST。

例:

LD R0, [R1] ; R0←((R1)) 将 R1 的内容所指地址单元的数据送到 R0 指令中源操作数的寻址方式为寄存器间接寻址,目的操作数为寄存器寻址。

ST [R0], R1 ; (R0)←(R1) 将 R1 的内容送到 R0 的内容所指向的地址单元指令中目的操作数的寻址方式为寄存器间接寻址,源操作数为寄存器寻址。

4.1.5 位寻址

指令中的操作数是寄存器的某位,这样的寻址方式称为位寻址。

例:

CLR INTCTL,1 ; 将 INTCTL 的第 1 位清零 CLR 0X80,1 ; 将 80H 的第 1 位清零

JNB 0X80.1 : 如果 80H 的第 1 位为 0 则跳过下一条指令执行后面的程序

4.2 汇编指令

KF8TS2716 系列单片机汇编指令共有 73 条,除子程序调用、子程序返回、中断返回、部分跳转指令为双周期指令外,其余指令均为单周期指令。所有指令都占两个字节。

按照指令的功能可将其分为:数据传送指令、算术运算指令、逻辑运算指令、位操作指令和转移指令和特殊指令。具体指令集请参考附录 2。

KF8TS2716数据手册V1.4

5 中断

KF8TS2716 单片机的中断源有:

- INT0/1/2
- T0 溢出中断
- T1/3/4 中断
- P0 口引脚电平变化中断
- A/D 中断
- PWM1/2 中断
- ●电容触摸(CT)中断
- I2C 中断
- SPI 中断
- ●SSCI 模块 I2C 总线冲突(BCL)中断
- ●通用串行通讯接口 USART 的发送和接收中断
- ●外部时钟故障(OSCFAIL)中断

在本单片机中有两个中断优先级,其中高优先级向量位于 0X0004H,低优先级向量位于 0X0014H。在中断服务程序里可通过 PCTL 的 IPEN(PCTL<3>)进行中断优先级设置。在中断服务子程序中通过检测相应的中断标志位来确定具体是哪个中断源触发发生。

KF8TS2716 中的 INT1/2、T1、T3、T4、ADC、PWM1/2、SPI、I2C、CT、BCL 和 OSCFAIL 都属于外设,因此对应的中断称作外设中断,其它中断源产生的中断属于内部中断。中断逻辑如图 5.2 所示。在中断逻辑框图中,每个中断源有 3 个位用于控制其操作。这些位的功能分别是:

写标志位表明发生了中断事件;

☞中断允许位允许程序跳转到中断向量地址处执行;

☞中断优先级位用于选择高优先级及还是低优先级;

通过将 IPEN 位 (PCTL<3>) 置 1,可使能中断优先级功能。

当 IPEN 置 1 时,有两个中断允许位,分别是 AIEH 和 AIEL。将 AIEH(INTCTL<7>)置 1,可允许所有中断优先级位已置 1 的中断,即高优先级的中断。将 AIEL(INTCTL<6>)置 1,可允许所有中断优先级位已清零的中断,即低优先级的中断。当中断标志位、中断允许位和中断优先级位都被置 1 时,中断将根据设置的中断优先级立即跳转到地址 0x0004H 或者 0x0014H。进低优先级中断时清零 AIEL,退出中断时置 1 AIEL;进高优先级中断时清零 AIEH,退出中断时置 1 AIEH;(AIEH=0 时禁止所有中断)。高优先级中断事件可以中断正在处理的低优先级中断事件。

其原理框图如图 5.1 下:

图 5.1 中断优先级工作原理图

当 IPEN 位清零时,就会禁止中断优先级,即为普通模式。所有中断都跳转到 0x0004H 开始执行。在普通模式下,没有中断优先级,各个中断源的中断优先级控制寄存器 IP0、IP1 和 IP2 均无效。AIE(INTCTL<7>)为全局中断使能位,PUIE(INTCTL<6>)为外设中断使能位。

图 5.2 中断逻辑

5.1 中断相关的寄存器

表 5-1 与中断相关的寄存器

200 - 4 1 WILLIAM OF 14 HR										
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
0BH	INTCTL	AIE/ AIEH	PUIE/ AIEL	TOIE	INT0IE	POIE	TOIF	INT0IF	POIF	
2CH	EIE1	-	ADIE	INT2IE	INT1IE	-	PWM2IE	-	T1IE	
2DH	EIE2	T3IE	-	RCIE	TXIE	-	-	BCLIE	SSCIIE	
4AH	EIE3	T4IE	-	OSCFAILIE	-	-	-	-	-	
0СН	EIF1	-	ADIF	INT2IF	INT1IF	-	PWM2IF	-	T1IF	
0DH	EIF2	T3IF	-	RCIF	TXIF	-	-	BCLIF	SSCIIF	
4BH	EIF3	T4IF	-	OSCFAILIF	-	-	-	-	-	
22H	IP0	-	-	-	-	-	PT0	PINT0	PP0	
23H	IP1	-	PADC	PINT2	PINT1	-	PPWM2	-	PT1	
24H	IP2	PT3	-	PRC	PTX	-	-	PBCL	PSSCI	
29H	IP3	PT4	-	POSCFAIL	-	-	-	-	-	
2EH	PCTL	-	-	-	SLVREN	IPEN	SWDTEN	POR	BOD	
67H	INTEDGCTL	INT2SE	INT1SE	-	-	-	-	-	TICLKEN	

5.1.1 中断控制寄存器 INTCTL

普通模式下,AIE 为全局中断使能位,当其被清零时,禁止所有中断。PUIE 为外设中断使能位,当其被清零时禁止所有外设中断。具体的中断逻辑如图 5.1 所示。

在优先级中断中,AIEH 为全局优先级中断使能位,当其被清零时,禁止所有中断。AIEL 为低优先级中断使能位,当其被清零时禁止所有低优先级中断。具体的中断逻辑如图 5.1 所示。

注: 1. 当中断条件满足时,无论相应的中断使能位或者全局中断使能位AIE的状态如何,中断标志位将被硬件置1。

2. 中断条件满足时,中断标志位通过硬件置1,而清零则需要软件完成。

寄存器5.1: INTCTL: 中断控制寄存器(地址: 0BH)

	D1t /							DILO	_
复位值 0000 0000	AIE/AIEH	PUIE/AIEL	TOIE	INT0IE	POIE	TOIF	INT0IF	POIF	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_

AIE/AIEH: 全局中断使能位/优先级中断使能位

当 IPEN=0

1=使能所有未屏蔽的中断

0=禁止所有中断

当 IPEN=1

1=允许所有高优先级的中断

0=禁止所有中断

PUIE/AIEL: 外设中断使能位/低优先级中断使能位

当 IPEN=0

1=使能所有未屏蔽的外设中断

0=禁止所有外设中断

当 IPEN=1

1=允许所有低优先级的中断 0=禁止所有低优先级的中断

TOIE: TO 溢出中断使能位

1=使能 T0 中断

0=禁止 T0 中断

INTOIE: INTO 中断使能位

1=使能 INT0 中断 0=禁止 INT0 中断

POIE: PO 口电平变化中断使能位

1=使能 P0 口电平变化中断

0=禁止 P0 口电平变化中断

TOIF: TO 溢出中断标志位

1=T0 寄存器溢出 0=T0 寄存器未溢出

INTOIF: INTO 中断标志位

1=INT0/P0.3 产生外部中断 0=INT0/P0.3 未产生外部中断

POIF: PO 口电平变化中断标志位

1=引脚 P0.0~P0.5 至少有一个电平状态发生变化

0=引脚 P0.0~P0.5 电平状态未发生变化

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.2 中断使能寄存器 EIE1

寄存器5.2: EIE1: 中断使能寄存器(地址: 2CH)

	bit7							bit0	_
复位值 0000 0000	-	ADIE	INT2IE	INT1IE	-	PWM2IE	-	T1IE	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

ADIE: AD 中断使能位

1 = 使能 AD 中断

0 = 禁止 AD 中断

INT2IE: INT2 中断使能位

1 = 使能 INT2 中断

INT1 中断使能位

0 = 禁止 INT2 中断

INT1IE:

1 = 使能 INT1 中断

0 = 禁止 INT1 中断

PWM2IE: PWM2 中断使能位

1 = 使能 PWM2 中断 0 = 禁止 PWM2 中断

T1IE: T1 中断使能位

1 = 使能 T1 中断 0 = 禁止 T1 中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.3 中断使能寄存器 EIE2

寄存器5.3: EIE2: 中断使能寄存器(地址: 2DH)

	bit7							bit0
复位值 0000 0000	T3IE	-	RCIE	TXIE	=	-	BCLIE	SSCIIE
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

T3IE: T3 中断使能位/触摸中断使能位

1 = 允许 T3 中断/触摸中断 0 = 禁止 T3 中断/触摸中断

RCIE: USART 接收中断使能位

1 = 允许 **USART** 接收中断 0 = 禁止 **USART** 接收中断

U = 示正 USAKI 技权下

TXIE: USART 发送中断使能位

1 = 允许 **USART** 发送中断 0 = 禁止 **USART** 发送中断

BCLIE: BCL 中断使能位

1 = 允许 BCL 中断

0 = 禁止 BCL 中断

SSCIIE: SSCI 中断使能位

1= 允许 SSCI 中断 0= 禁止 SSCI 中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.4 中断使能寄存器 EIE3

寄存器5.4: EIE3: 中断使能寄存器(地址: 4AH)

	bit7							bit0	
复位值 000	T4IE	-	OSCFAIL IE	ı	-	-	1	-	
	R/W	R/W	R/W	U	U	U	U	U	•

T4IE: T4 中断使能位

1 = 允许 T4 中断 0 = 禁止 T4 中断

OSCFAILIE: 外部时钟故障中断使能位

1 = 允许外部时钟故障中断 0 = 禁止外部时钟故障中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.5 中断标志寄存器 EIF1

寄存器5.5: EIF1: 外设中断标志寄存器(地址0CH)

	bit7							bit0
复位值 0000 0000	-	ADIF	INT2IF	INT1IF	-	PWM2IF	-	T1IF
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADIF: AD 完成中断标志位

1 = AD 转换完成

0=AD 转换没有完成

INT2F: INT2 中断标志位

1 = INT2/P1.3 产生外部中断

0 = INT2/P1.3 未产生外部中断

INT1IF: INT1 中断标志位

1 = INT1/P3.3 产生外部中断

0 = INT1/P3.3 未产生外部中断

PWM2IF: PWM2 中断标志位

1 = PWM2 使能时, T1H 和 PP2 匹配

0 = PWM2 使能时, T1H 和 PP2 不匹配

T1IF: T1 寄存器溢出标志位

1=T1寄存器溢出

0=T1 寄存器未溢出

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.6 中断标志寄存器 EIF2

寄存器5.6: EIF2: 外设中断标志寄存器(地址: 0DH)

	bit7							bit0	_
复位值 0000 0000	T3IF	-	RCIF	TXIF	-	-	BCLIF	SSCIIF	
	R/W	R/W	R	R	R/W	R/W	R/W	R/W	-

T3IF: T3 中断标志位/触摸中断标志位

1=T3 溢出/触摸产生了中断

0=T3 未溢出/触摸未产生中断

RCIF: USART 接收中断标志位

1 = USART 接收缓冲器满(通过 RXSDR 清零)

0 = USART 接收缓冲器空

TXIF: USART 发送中断标志位

0 = USART 发送缓冲器满

1 = USART 发送缓冲器空(通过 TXSDR 清零)

BCLIF: BCL 中断标志位

1=BCL产生了中断

0=BCL 未产生中断

SSCIIF: SSCI 中断标志位

1 = **SSCI** 产生了中断 0 = **SSCI** 未产生中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.7 中断标志寄存器 EIF3

寄存器5.7: EIF3: 中断标志寄存器(地址: 4BH)

	bit7							bit0
复位值 000	T4IF	·	OSCFAIL IF	-	-	-	-	-
	R/W	R/W	R/W	U	U	U	U	U

T4IF: **T4** 中断标志位

1=T4 溢出或者发生重载

0=T4 未溢出且未发生重载

OSCFAILIF:外部时钟故障中断标志位

1 = 外部时钟发生故障

0 = 外部时钟未发生故障

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.8 中断优先级控制寄存器 IP0

当 IPEN=1 时,中断优先级控制寄存器 IPO 才有效。

寄存器5.8: IPO: 中断优先级控制寄存器0(地址: 22H)

	bit7							bit0
复位值 000	-	-	-	-	-	PT0	PINT0	PP0
	U	U	U	U	U	R/W	R/W	R/W

PT0: T0 中断优先级控制位

1=T0中断为高优先级

0=T0中断为低优先级

PINT0: INT0 中断优先级控制位

1 = INT0 中断为高优先级 0 = INT0 中断为低优先级

PP0: P0 电平变化中断优先级控制位

1 = P0 电平变化中断为高优先级 0 = P0 电平变化中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.9 中断优先级控制寄存器 IP1

当 IPEN=1 时,中断优先级控制寄存器 IP1 才有效。

寄存器5.9: IP1: 中断优先级控制寄存器1(地址: 23H)

	bit7							bit0
复位值 0000 0000	-	PADC	PINT2	PINT1	ı	PPWM2	-	PT1
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PADC: AD 中断高优先级控制位

1 = AD 中断为高优先级

0=AD 中断为低优先级

PINT2: INT2 中断高优先级控制位

1 = INT2 中断为高优先级

0 = INT2 中断为低优先级

PINT1: INT1 中断高优先级控制位

1 = INT1 中断为高优先级

0= INT1 中断为低优先级

PPWM2: PWM2 中断高优先级控制位

1 = PWM2 中断为高优先级

0=PWM2 中断为低优先级

PT2: T2 中断高优先级控制位

1=T2 中断为高优先级

0=T2中断为低优先级

PT1: T1 中断高优先级控制位

1 = T1 中断为高优先级 0 = T1 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.10 中断优先级控制寄存器 IP2

当 IPEN=1 时,中断优先级控制寄存器 IP2 才有效。

寄存器5.10: IP2: 中断优先级控制寄存器2(地址: 24H)

	bit7							bit0	
复位值 0000 0000	PT3	-	PRC	PTX	-	-	PBCL	PSSCI	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

PT3: T3 中断高优先级控制位/触摸中断高优先级控制位

1=T3中断为高优先级/触摸中断为高优先级

0=T3 中断为低优先级/触摸中断为低优先级

PRC: USART 接收中断高优先级控制位

1 = USART 接收中断为高优先级

0 = USART 接收中断为低优先级

PTX: USART 发送中断高优先级控制位

1 = USART 发送中断为高优先级

0 = USART 发送中断为低优先级

PBCL: BCL 中断高优先级控制位

1=BCL 中断为高优先级

0=BCL 中断为低优先级

PSSCI: SSCI 中断高优先级控制位

1 = SSCI 中断为高优先级 0 = SSCI 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.11 中断优先级控制寄存器 IP3

当 IPEN=1 时,中断优先级控制寄存器 IP3 才有效。

寄存器5.11: IP3: 中断优先级控制寄存器3(地址: 29H)

	R/W	R/W	R/W	U	U	U	U	U	_
Ī	PT4	-	POSCFAL IF	-	-	-	-	-]
	bit'/							bitU	

PT4: T4 中断高优先级控制位

复位值

1 = T4 中断为高优先级

0=T4 中断为低优先级

POSCFAIL: OSCFAIL 中断高优先级控制位

1 = OSCFAIL 中断为高优先级 0 = OSCFAIL 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.12 电源控制寄存器 PCTL

寄存器5.12:PCTL: 电源控制寄存器(地址:2EH)

	bit7							bit0
复位值 1 000x	-	-	-	SLVREN	IPEN	SWDTEN	POR	LVR
	U	U	U	R/W	R/W	R/W	R/W	R/W

SLVREN: 软件欠压检测使能位

1 = 使能欠压检测

0 = 禁止欠压检测

IPEN: 中断优先级控制位

1 = 使能中断优先级功能,即为优先级模式

0=禁止中断优先级,即为普通模式

SWDTEN: 软件看门狗定时器使能位

当配置字的 WDTEN=0 时 1 = 软件使能看门狗定时器 0 = 软件禁止看门狗定时器

当配置字的 WDTEN=1 时,为无关位

POR: 上电复位状态位

1 = 未发生上电复位 0 = 发生了上电复位

LVR: 欠压复位状态位

1 = 未发生欠压复位 0 = 已发生欠压复位

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.13 INT 中断沿选择寄存器 INTEDGCTL

寄存器5.13:INTEDGCTL:INT中断沿选择寄存器(67H)

有片片	<u>bit7</u>							bit0
复位值 110	INT2SE	INT1SE	-	-	-	-	-	T1CLKEN
	R/W	R/W	U	U	U	U	U	R/W

INT2SE: INT2 触发脉冲边沿选择位

1 = 上升沿触发0 = 下降沿触发

INT1SE: INT1 触发脉冲边沿选择位

1 = 上升沿触发 0 = 下降沿触

T1CLKEN: T1 定时模式时钟源选择位

当 T1CS=0 时:

1=T1 时钟为内部高频振荡器时钟 INTHF

0 = T1 时钟为系统时钟 4 分频 SCLK/4

当 T1CS=1 时,为计数模式,T1CLKEN 位不起作用,T1 时钟为外部时钟

图注: R=可读 W=可写 -=未用 U=未实现位

KF8TS2716数据手册V1.4

5.1.14 中断响应

当 IPEN=1 时,为优先级模式,中断被响应后:

- 1. 返回地址压入堆栈;
- 2. 中断入口地址载入 PC;
- 3. 在中断被响应前, AIEH 和 AIEL 位的设置会影响到中断响应的过程:
- ➤ 将 AIEH 和 AIEL 均置 1,可进入高优先级或优先级中断。进入的是高或低优先级中断时,AIEH或 AIEL 由硬件自动清零,执行高或低优先级中断服务程序,执行指令 IRET 退出高或低优先级中断,硬件自动将 AIEH或 AIEL 置 1;
- ▶ 只将 AIEH 置 1,则直接进入高优先级中断,AIEH 由硬件自动清零,继续执行中断服务子程序,执行指令 IRET 退出中断服务子程序并由硬件自动将 AIEH 置 1,重新使能未屏蔽的中断:
- 4. 跳转到中断发生处继续执行下面的程序。
- 注: 中断的响应有一定的响应时间:
 - 1.如果已经进入了低优先级中断,再有高优先级中断,此时为中断嵌套;
- 2.如果还没有进入低优先级中断,同时有高优先级中断产生,则直接进入高优先级中断,相当于两个中断同时产生。

当 IPEN=0 时,为普通模式,中断被响应后:

- 1. 返回地址压入堆栈;
- 2. 中断入口地址载入 PC;
- 3. AIE 位将被硬件清零以禁止其它中断;
- 4. 执行该中断服务子程序;
- 5. 执行指令 IRET 退出中断服务子程序,同时硬件自动将将 AIE 置 1,重新使能未屏蔽的中断;
- 6. 跳转到中断发生处继续执行下面的程序。

7.

进入中断服务程序后,首先保存 PSW 和其它寄存器的值,然后通过查询中断标志位确定中断源。在重新使能中断之前,应在软件中将相应的中断标志位清零,以避免出错。

- 注 1: 中断条件满足时,无论相应的中断使能位或AIE位的状态为何,中断标志位都将被置1。
- 2: 当执行一条清除AIE位的指令后,任何在下一周期等待响应的中断都将被忽略。当AIE位重新置1时,被忽略的中断请求将继续等待被响应。
- 3: 当对中断进行响应,进入中断服务子程序的时候硬件会将AIE位清零关闭总中断,当中断程序执行完,中断返回指令跳出中断子程序时,硬件将AIE位置1打开总中断。

KF8TS2716数据手册V1.4

5.2 INT 中断

INT 中断有三个中断源: INT0、INT1 和 INT2,都采用边沿触发方式,如果触发边沿选择位(INTxSE)置 1,则采用上升沿触发:如果触发边沿选择位清零,则采用下降沿触发。

5.2.1 INT0 中断

INTO 中断通过寄存器 INTCTL 中的 INTOIE 位置 1 使能 INTO 中断。通过 OPTR 中的 INTOSE 位设置触发边沿, INTOSE 置 1,将 INTO 设置为上升沿触发, 清零设置为下降沿触发。INTCTL 中的 INTOIF 为 INTO 的中断标志位。如果 IPEN 和 PINTO 位均置 1,则 INTO 为高优先级中断。

INTO 引脚有触发脉冲时,INTOIF 被自动置 1, 如果 INTOIE 和 AIE 位为 1, 则响应 INTO 中断。

5.2.2 INT1 中断

INT1 中断通过寄存器 EIE1 中的 INT1IE 位置 1 使能 INT1 中断。通过 INTEDGCTL 中的 INT1SE 位设置触发边沿,INT1SE 置 1,将 INT1 设置为上升沿触发,清零设置为下降沿触发。EIF1 中的 INT1IF 为 INT1 的中断标志位。如果 IPEN 和 PINT1 位均置 1,则 INT1 为高优先级中断。

INT1 引脚有触发脉冲时,INT1IF 被自动置 1,如果 INT1IE、PUIE 和 AIE 位为 1,则响应 INT1 中断。

5.2.3 INT2 中断

INT2 中断通过寄存器 EIE1 中的 INT2IE 位置 1 使能 INT2 中断。通过 INTEDGCTL 中的 INT2SE 位设置触发边沿,INT2SE 置 1,将 INT2 设置为上升沿触发,清零设置为下降沿触发。EIF1 中的 INT2IF 为 INT2 的中断标志位。如果 IPEN 和 PINT2 位均置 1,则 INT2 为高优先级中断。

INT2 引脚有触发脉冲时,INT2IF 被自动置 1,如果 INT2IE、PUIE 和 AIE 位为 1,则响应 INT2 中断。

使用 INT 中断时的设置:

- 1. 将对应的 INTx 引脚设置为数字输入口。
- 2. 选择触发脉冲边沿时上升沿还是下降沿(INT0/1/2SE 置 1 为上升沿触发);
- 3. 将相应的外部中断使能位置 1(IN-),如果为高优先级,则 IPEN 和 PINTx 均置 1。 注:x=0/1/2

5.3 定时器中断

T0/1 寄存器发生溢出时,T0IF/T1IF 位将会被置 1。通过将 T0IE/T1IE 位置 1/清零可使能/禁止该中断。T3 与触摸模块共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PCT。有关定时/计数器模块中断的操作,请参考定时/计数器部分。

5.4 P0 口中断

P0口引脚的输入电平变化将使POIF(INTCTL.0)位置1。通过设置/清除POIE(INTCTL.3)位,可使能/禁止该中断。且该端口各引脚可通过IOCL寄存器来对每个引脚进行配置。当IPEN和PPO均置1时,P0口中断配置为高优先级中断。

有关 P0 口的操作,请参考 P0 口部分。

5.5 PWM 中断

使能 PWM1/2 后,T1L 分配给 PWM1 进行计数,T1H 分配给 PWM2 进行计数,当 T1L/H 与 PP1/2 匹配时,会触发相应的中断标志位 T1IF和 PWM2IF。如果使能 T1IE 或者 PWM2IF,则会触发中断(AIE、PUIE 置 1)。当 IPEN 和 PT1 均置 1 时,PWM1 中断配置为高优先级中断。当 IPEN 和 PPWM2 均置 1 时,PWM2 中断配置为高优先级中断。

详见 PWM 部分。

5.6 USART 中断

通用串行通讯模块 USART 的中断分为接收中断和发送中断。详见通用串行通讯模块部分。

5.7 中断现场保护

在中断响应时,硬件会把当前 PC 值加 1 入栈保存,中断结束后,硬件在将本次中断入栈时的值弹出载入 PC,继续执行后面的程序。通常,用户可能希望在中断时对一些关键寄存器的内容进行保存(例如, Rn 和 PSW),这些都需通过软件方式实现。

6 定时器/计数器

KF8TS2716 单片机提供一个 8 位的定时器/计数器 T0、1 个 16 位的定时器/计数器 T1、1 个 16 位定时器 T3 和 1 个 16 位定时器/计数器 T4。

6.1 定时器/计数器T0

T0 是一个 8 位的定时器/计数器, 当 T0 寄存器值加到 255 时, 再加 1, 则会产生溢出, T0 寄存器的值返回到 0 开始重新计数。

6.1.1 T0 原理框图

图 6.1 为 T0 的结构框图。T0 模块使用一个 8 位计数器作为预分频器,如寄存器 6.1 所示,通过软件设定 PSA 位(OPTR.3)的状态可对预分频器的分配进行控制, PSA 位清零可将预分频器分配给 T0 模块。通过设置 PS<2:0>位可选择预分频器的分频比。预分频器是不可读写的。

图 6.1 原理框图

6.1.2 T0 相关的寄存器

表 6-1 与 T0 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
01H	T0		8 位计数器						
21H	OPTR	PUPH	INT0SE	T0CS	T0SE	PSA	PS2	PS1	PS0

芯旺微电子 - 72/216 - Chip**○N**

6.1.2.1 OPTR 选择寄存器

寄存器6.1: OPTR: 选择寄存器(地址: 21H)

bit7 bit0 复位值 PUPH INT0SE T0CS TOSE PS0 PSA PS2 PS1 1111 1111 R/W R/W R/W R/W R/W R/W R/W R/W

PUPH IO (P0/P1/P2) 端口上拉功能总使能位

1 = 禁止所有 IO 端口上拉功能 0 = 允许 IO 端口使用上拉功能

INTOSE INTO 中断触发脉冲边沿选择位

1 = INT0/P0.3 为上升沿触发 0 = INT0/P0.3 为下降沿触发

TOCS: TO 模式选择位

1 = 计数模式, T0 的时钟为外部时钟 T0CK/P0.2 0 = 定时模式, T0 的时钟为机器时钟 SCLK/4

TOSE: TO 计数脉冲信号边沿选择位

1= 下降沿触发

0 = 上升沿触发

PSA: 预分频器分配控制位

1 = 预分频器用于 WDT

0 = 预分频器用于 T0

PS<2:0>: 预分频器分频比选择位

PS<2:0>	WDT 分频比	T0 分频比
000	1:1	1:2
001	1:2	1:4
010	1:4	1:8
011	1:8	1:16
100	1:16	1:32
101	1:32	1:64
110	1:64	1:128
111	1:128	1:256

图注: R=可读 W=可写 -=未用 U=未实现位

6.1.3 定时模式

通过将 TOCS 位(OPTR.5)清零可选择定时器模式。在定时模式中,如果不使用预分频器,每一个机器周期 TO 寄存器的值加 1。如果 TO 寄存器被写入初始值,则在接下来的两个机器周期将不执行递增操作,用户可通过将校正值写入 TO 寄存器进行修正。

KungFu®

KF8TS2716数据手册V1.4

6.1.4 计数模式

通过将 TOCS 位(OPTR.5)置 1 可选择计数模式。在该模式下,T0 模块在 TOCK 引脚信号的每一次上升沿(TOSE 位清零)或下降沿(TOSE 位置 1)递增计数。

当不使用预分频器时,要求 TOCK 的高电平状态和低电平状态分别保持至少 2T_{sys} 的时间,以实现 TOCK 与内部相位时钟的同步。

6.1.5 T0 的使用

T0 在使用时通过以下步骤进行设置:

- 1. 通过将 TOCS 位清零/置 1 选择定时/计数模式(如果是计数模式,再设置 TOSE 选择脉冲触发边沿,将对应的计数脉冲输入脚 TOCK 设置为输入);
- 2. 如果需要分频,则将预分频器分配给 T0,并设置分频比(OPTR);
- 3. 给 T0 寄存器设置初始值;
- 4. 如果使用中断方式则将 TOIE 和 AIE 位置 1。

6.2 定时器/计数器 T1

T1 是一个 16 位的定时器/计数器,T1 的低 8 位在寄存器 T1L 中,高 8 位在寄存器 T1H 中,当 T1 计数值达到 65535 后,T1 的值再加 1 就会产生溢出,将 T1 中断标志位置 1。T1 属于外部单元,因此在使用 T1 中断时,需将 PUIE 位置 1,使能外设中断。如图 6.2 所示为 T1 的原理框图。

6.2.1 T1 原理框图

T1 的原理框图如图 6.2 所示, T1 是一个带有门控和预分频的 16 位定时器/计数器, 计数时钟可选择外部时钟或者内部时钟, 当 T1 与内部时钟一起使用时, T1 用作定时器, 当 T1 与外部时钟一起使用时, T1 工作在计数器模式, 通过对 T1SY 位(T1CTL<2>)设置可使 T1 工作在异步计数器模式。

该 T1 模块还带有四个预分频器选择项,允许对时钟输入进行 1、2、4 或 8 倍分频。 T1CKS 位(T1CTL<5:4>)对预分频计数器进行控制,T1 预分频计数器不能直接进行读写操作,可通过写入 T1H 或 T1L 使预分频计数器清零。

此外, T1 还带有重载功能, 重载寄存器利用 PP2/PP1 设置。当使能 T1 重载功能时, T1 计数器计数到 T1 重载寄存器中设置的值时, T1 计数器将清零重新开始计数, 且将 T1 中断标志位置 1。

图 6.2 T1 原理框图

6.2.2 T1 时钟

当 T1CTL 寄存器的 T1CS 位置 1 时,T1 工作在计数模式下,T1 的工作时钟源通过 T1OSCEN 位来选择: 当 T1OSCEN=1 时,T1 时钟为外部低频时钟;当 T1OSCEN=0 时,T1 时钟为 T1CK;当 T1CTL 寄存器的 T1CS 位清零时,T1 工作在定时模式下,T1 的工作时钟源通过 INTEDGCTL 寄存器的 T1CLKEN 位来选择:当 T1CLKEN=1 时,T1 时钟为内部高频振荡器时钟 INTHF;当 T1CLKEN=0 时,T1 时钟为机器时钟 SCLK/4。

6.2.3 T1 相关的寄存器

表 6-2 与 T1 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0		
0EH	T1L		T1 低 8 位								
0FH	T1H		T1 高 8 位								
10H	T1CTL	T1RLD	T1GC	T1CKS1	T1CKS0	T1OSCEN	TISY	T1CS	T1ON		

6.2.3.1 T1 控制寄存器

如寄存器 6.2 所示,T1 控制寄存器(T1CTL)用于启动/禁止 T1 以及选择 T1 模块的不同功能特性。

寄存器6.2: T1CTL: T1控制寄存器(地址: 10H)

64 N 41.	bit7							bit0
复位值 0000 0000	T1RLD	T1GC	T1CKS1	T1CKS0	T1OSCEN	T1SY	T1CS	T1ON
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

T1RLD: T1 重载功能使能位

1 = 使能 T1 重载功能 0 = 禁止 T1 重载功能

T1GC: T1 门控使能位

如果 T1ON=0 则该位被忽略

如果 T1ON=1 则:

1 = 使能 T1G 引脚控制(如果 T1G 引脚为低电平, 启动 T1, 为高电平, 关闭 T1)

0 = 禁止TIG 引脚控制

T1CKS<1:0>: T1 输入时钟预分频比选择位

11 = 1/8 倍预分频比

10 = 1/4 倍预分频比

01 = 1/2 倍预分频比

00 = 1/1 倍预分频比

T1OSCEN: T1 外部低频时钟使能位

1 = 使能外部低频时钟源作为 T1 计数时钟 0 = 禁止外部低频时钟源作为 T1 计数时钟

TISY: T1 计数模式外部触发脉冲输入同步控制位

T1CS=1:

1 = 外部触发脉冲输入不与系统时钟同步 0 = 外部触发脉冲输入与系统时钟同步

T1CS=0: 该位被忽略, T1 使用内部时钟

T1CS: T1 定时/计数模式选择

1 = 计数模式, T1 时钟为外部时钟

当 T1OSCEN=1 时 T1 时钟为外部低频时钟

当 T1OSCEN=0 时 T1 时钟为 T1CK

0 = 定时模式, T1 时钟可选择内部高频时钟或指令时钟

当 T1CLKEN=1 时 T1 时钟为内部高频振荡器时钟 INTHF

当 T1CLKEN=0 时 T1 时钟为机器时钟 SCLK/4

T1ON: **T1** 启动控制位

1 = 启动 T1

0 = 停止 T1

图注: R=可读 W=可写 -=未用 U=未实现位

6.2.4 定时模式

通过将 T1CS 位清零将 T1 设定为定时模式, T1 工作在定时模式时, 对单片机内部时钟进行计数, 当计数时钟选择为内部时钟且不使用预分频器时, 每个时钟周期 T1 寄存器自加1, 加到 0FFFFH 后再加1, T1 溢出,将 T1 中断标志位 T1IF 置 1。

如果使能 T1 门控引脚,且 T1ON=1,则在 $\overline{T1G}$ 引脚为低电平时,启动 T1,如果 $\overline{T1G}$ 引脚为高电平,禁止 T1。使用该方式可粗略的对 $\overline{T1G}$ 引脚的低电平持续时间进行计算。

6.2.5 计数模式

通过将T1CS 位置 1 将T1 设定为计数模式,通过设置T1OSCEN 位选择计数时钟为T1CK 或者外部低频时钟。当T1OSCEN 为 0 时,T1 在计数脉冲T1CK 的上升沿进行递增计数,当T1OSCEN 为 1 时,每个外部低频时钟周期,T1 寄存器自动加 1。

T1的计数模式又有同步计数和异步计数两种方式。如果控制位TISY (T1CTL.2)置 1,则 T1工作在异步计数模式。计数器根据 T1CK(当 T1OSCEN=0 时)引脚的脉冲进行递增计数。在休眠模式下,计数器将继续递增并在溢出时产生中断以唤醒处理器。

如果控制位TISY (T1CTL.2)清零,则T1工作在同步计数模式。在内部相位时钟的Q2和Q4周期对T1CK引脚电平进行采样,可以实现T1CK与内部相位时钟的同步。

6.2.6 T1 重载功能

置位 T1CTL 寄存器的 T1RLD 位使能 T1 重载功能。通过设置 PP2/PP1 寄存器来设置 T1 的重载点。当设置完 PP2/PP1 寄存器且使能重载功能后,T1 计数器从 0 开始计数,当 计数到 PP2/PP1 寄存器设置的值时,T1 计数器清零并重新开始计数,T1IF 置 1。

T1RLD 位置 1 时会载入一次 PP2/PP1 寄存器的值,当置位 T1RLD 且在 T1 计数过程中对 PP2/PP1 寄存器写入新值时,T1 模块会在下一次重载时载入新的重载点。

6.2.7 T1 在休眠模式下的运行

只有设定在异步计数器模式时,T1 才能在休眠模式下工作。在该模式下,计数脉冲T1CK 使计数器递增。通过如下步骤设定定时器以唤醒器件:

- 使能 T1(T1ON/T1CTL.0 置 1)
- 将 T1IE 位(EIE1.0)置 1
- 将 PUIE 位(INTCTL.6)置 1

器件将在溢出时被唤醒。如果 AIE 位(INTCTL.7)置 1,器件将被唤醒并跳转至中断服务程序。

6.2.8 T1 分配给 PWM1/2

当使用 PWM1/2 时需要用到 T1,单片机将 T1L、T1IE 和 T1IF 分配给 PWM1, T1H 分配给 PWM2,具体使用方法参见 PWM1/2 部分。

6.3 定时器T3

T3 为 16 位定时器,时钟源为振荡器时钟源(Sosc)或内部高频振荡器源可选;通过 T3CTL 寄存器的 T3EN 位控制定时器启动。

当使用触摸功能时,T3作为触摸转换计时器,不可作为普通定时器使用。

6.3.1 T3 原理框图

图 6.4 定时器 T3 原理框图

6.3.2 T3 相关寄存器

表 6-4 与 T3 相关的寄存器

地址	寄存器	位7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
4EH	T3CTL	T3EN	T3CKS1	T3CKS0	T3CS	-	-	-	-
53H	CTCTL0	CTEN	CTSTART	T3CLR	CTCHSEL <4:0>				
4FH	T3L		T3 低位寄存器						
5FH	Т3Н	T3 高位寄存器							

6.3.2.1 T3 控制寄存器 T3CTL

寄存器6.3: T3CTL: T3控制寄存器(地址: 4EH)

	bit7							bit0
复位值 0000 0000	T3EN	T3CKS1	T3CKS0	T3CS	保留	保留	保留	保留
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

T3EN: 定时器 T3 使能位

1 = 使能定时器 T3

0 = 禁止定时器 T3

T3CKS<1:0>: 定时器 T3 时钟分频位

00 = 1/1 倍预分频比

01 = 1/2 倍预分频比

10 = 1/4 倍预分频比

11 = 1/8 倍预分频比

T3CS: 定时器 T3 时钟源选择位

0=T3 时钟源为系统时钟源

1=T3 时钟源为内部高频振荡器时钟源 INTHF

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

6.3.2.2 电容触摸控制寄存器 0 (CTCTL0)

寄存器6.4: CTCTL0: 电容触摸控制寄存器(地址: 53H)

bit0 bit7 复位值 CTCHSEL CTCHSEL CTCHSEL CTCHSEL CTCHSEL T3CLR CTEN CTSTART 0000 0000 0 R/W R/W R/W R/W R/W R/W

CTEN: 电容触摸使能位

1 = 电容触摸使能 0 = 电容触摸禁止

CTSTART: 电容触摸通道检测启动位

1 = 启动电容触摸计数器 T3(16 位)计数。电容触摸专用比较器输出为低电平

时,该位自动清零,计数器停止计数。

T3CLR: T3 计数寄存器清零位

0=T3 计数寄存器在复位状态

1=T3 计数寄存器退出复位状态

CTCHSEL<4:0>:14 个电容触摸按键输入选择位

00000 = P0.5 作为电容触摸输入

00001 = P2.0 作为电容触摸输入

00010 = P2.1 作为电容触摸输入

00011 = P2.2 作为电容触摸输入

00100 = P2.3 作为电容触摸输入

00101 = P1.7 作为电容触摸输入

00110 = P1.6 作为电容触摸输入

00111 = P1.5 作为电容触摸输入

01000 = P1.4 作为电容触摸输入

01001 = P1.3 作为电容触摸输入

01010 = P1.2 作为电容触摸输入

01011 = P1.1 作为电容触摸输入

01100 = P1.0 作为电容触摸输入

01101 = P0.2 作为电容触摸输入

其他 = 系统保留

图注: R=可读 W=可写 -=未用 U=未实现位

注: T3 计数寄存器能够实现正常计数必须把 T3CLR 置 1。

6.3.3 T3 中断

T3 模块和触摸模块共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PT3。

T3 单独用作定时器时,T3 溢出后会使中断标志位 T3IF 置 1,如果使能位 T3IE 为 1,且全局中断和外设中断允许位为 1,将会相应 T3 中断。如果 IPEN 和 PT3 位均置 1,则 T3 为高优先级中断。

6.3.4 T3 的使用

T3 在使用时通过以下步骤进行设置:

- 1. 通过 OSCCTL 的 SCS<1:0>和 T3CTL 的 T3CS 位设置定时器 T3 的时钟源,通过 T3CKS<1:0>位设置定时器 T3 的分频比;
- 2. 将 CTCTL0 的 T3CLR 置 1, T3 计数寄存器 T3H/T3L 退出复位状态;
- 3. 给 T3 寄存器 T3H/T3L 设置初始值;
- 4. 将 T3CTL 的 T3EN 位置 1 使能定时器 T3 开始计数; 当 T3 计数溢出时,将会使 T3IF 置 1,如果此时 T3IE 和 AIE 位置 1 允许中断,将响应中断进入相应的中断子程序。
- 注: 1. T3CLR 清零状态下计数器一直处于复位状态,任何的赋值操作都是无效的。
 - 2. T3CLR 置 1 状态下计数器正常计数,此时可以对 T3L/T3H 进行赋初值操作。

6.4 定时/计数器T4

T4 是一个 16 位的定时/计数器, T4 的低 8 位在寄存器 T4L 中, 高 8 位在寄存器 T4H中, 当 T4 计数值达到 65535 后, T4 的值再加 1 就会产生溢出,将 T4 中断标志位置 1。

T4 带有重载功能。当使能 T4 重载功能时, T4 计数器计数到 T4 重载寄存器中设置的值时, T4 计数器将清零重新开始计数, 且将 T4 中断标志位置 1。

T4 属于外部单元,因此在使用 T4 中断时,需将 PUIE 位置 1,使能外设中断。

6.4.1 T4 原理框图

图 6.5 T4 原理框图

6.4.2 T4 相关寄存器

表 6.5 与 T4 相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
164H	T4CTL	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON	
161H	T4H		T4 高 8 位							
160H	T4L		T4 低 8 位							
163H	T4REH		T4 重载寄存器高 8 位							
162H	T4REL		T4 重载寄存器低 8 位							

6.4.2.1 T4 控制寄存器

如寄存器 6-1 所示, T4 控制寄存器 (T4CTL) 用于启动/禁止 T4 以及选择 T4 模块的不同功能特性。

寄存器6.5: T4CTL: T4控制寄存器(地址: 164H)

	bit7							bit0	_
复位值 0000 0000	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

T4REN: T4 重载功能使能位

0 = 禁止 T4 重载功能

1 = 使能 T4 重载功能

HSPEN: 外部高频时钟工作使能位

0 = 禁止 T4 通过外部高频时钟工作 1 = 允许 T4 通过外部高频时钟工作

T4CKS<1:0>: T4 输入时钟预分频比选择位

11 = 1/8 倍预分频比 10 = 1/4 倍预分频比 01 = 1/2 倍预分频比 00 = 1/1 倍预分频比

LSPEN: 外部低频时钟工作使能位

0 = 禁止 T4 通过外部低频时钟工作 1 = 允许 T4 通过外部低频时钟工作

T4CS<1:0>: T4 定时/计数模式选择

00 = T4 时钟为内部高频时钟 INTHF 01 = T4 时钟为内部低频时钟 INTLF 10 = T4 时钟为外部高频时钟 EXTHF 11 = T4 时钟为外部低频时钟 EXTLF

T4ON: **T4** 启动控制位

1 = 启动 T4 0 = 停止 T4

|图注: R=可读 W=可写 -=未用 U=未实现位

6.4.2.2 T4 预分频器

如寄存器 6.5 所示, T4 具有四个预分频器选择项,允许对时钟输入进行 1、2、4、或 8 倍分频。T4CKS 位(T4CTL<5:4>)对预分频计数器进行控制。T4 预分频计数器不能直接进行读写操作,可通过写入 T4H 或 T4L 使预分频计数器清零。

6.4.2.3 T4 计数时钟选择

用户可以通过 T4CTL 寄存器的 T4CS<1:0>位来选择 T4 的计数时钟, K8TS2716 系列提供 4 个时钟源, 分别为内部高频时钟、内部低频时钟、外部高频时钟以及外部低频时钟。

6.4.3 T4 重载功能

置位 T4CTL 寄存器的 T4REN 位使能 T4 重载功能。通过设置 T4REH/T4REL 寄存器来设置 T4 的重载点。当设置 T4REH/T4REL 寄存器且使能重载功能后,T4 计数器从 0 开始计数,当计数到 T4REH/T4REL 寄存器设置的值时,T4 计数器清零并重新开始计数,T4IF置 1。

T4REN 位置 1 时会载入一次 T4REH/T4REL 寄存器的值,当置位 T4REN 且在 T4 计数过程中对 T4REH/T4REL 寄存器写入新值时,T4 模块会在下一次重载时载入新的重载点。

6.4.4 T4 中断

在两种情况下会使 T4 中断标志位置 1:

- 1. 当 T4 计数值达到 65535 后, T4 的值再加 1 就会产生溢出,将 T4 中断标志位置 1;
- 2. 当 T4 重载时, T4 中断标志位置 1。

6.4.5 T4 工作在休眠模式

当选择外部时钟信号作为 T4 的计数时钟时, T4 模块可以工作在休眠模式下。当使能 T4 中断时,系统会在 T4 溢出或者重载时唤醒。

7 模数(A/D)转换模块

模数(A/D)转换模块可将模拟输入信号转换为 12 位二进制值。KF8TS2716 拥有 14 路 IO 模拟输入通道和 2 路内部通道。转换器通过逐次逼近法将模拟输入信号转换为二进制值,并将转换结果存放到 12 位寄存器中。可通过软件方式选择 VDD、VREOUT 或施加在 ADVRIN 引脚上的电压作为转换使用的参考电压。图 7.1 显示了 KF8TS2716 中 A/D 转换模块的结构框图。

图 7.1 AD 模块结构框图

7.1 与 A/D 相关的寄存器

表 7-1 与 A/D 转换相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
1FH	ADCCTL0	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN
3FH	ADCCTL1	ADCALE N	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	-	ADCIM
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
1DH	ANSEH	-	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8
1EH	ADCDATA0H		AD 数据寄存器 0 高 8 位						
3EH	ADCDATA0L	AD 数据寄存器 0 低 8 位							

7.1.1 A/D 控制寄存器 0(ADCCTL0)

寄存器7.1: ADCCTL0: A/D控制寄存器0(地址: 1FH)

	bit7							bit0	
复位值 0-00 0000	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

ADLR: A/D 转换结果输出格式选择位

1 = 结果右对齐

0 = 结果左对齐

CHS<3:0>: 模拟通道选择位

0000 = 通道 00(AN0)

0001 = 通道 01(AN1)

0010 = 通道 02(AN2)

0011 = 通道 03(AN3)

0100 = 通道 04(AN4)

0101 = 通道 05(AN5)

0110 = 通道 06(AN6)

0111 = 通道 07(AN7)

1000 = 通道 08(AN8)

1001 = 通道 09(AN9)

1010 = 通道 10(AN10)

1011 = 通道 11(AN11)

1100 = 通道 12 (AN12)

1101 = 通道 13(AN13)

1110 = 通道 14 (OP1OUT)

1111 = 通道 15 (VREOUT)

START: A/D 转换状态位

1 = A/D 转换正在进行,该位置 1 将启动 A/D 转换, 在转换结束后该位将被硬

件自动清零

0 = A/D 转换结束或者未进行

ADEN: A/D 模块工作使能位

1 = 使能 A/D 转换模块工作

0=A/D 转换器关闭且不消耗工作电流

图注: R=可读 W=可写 -=未用 U=未实现位

7.1.2 A/D 控制寄存器 1(ADCCTL1)

寄存器7.2: ADCCTL1: A/D控制寄存器1(地址: 3FH)

	bit7							bit0
复位值 0000 0000	ADCALE N	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	-	ADCIM
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADCALEN: A/D 失调校准使能位

0 = 关闭 A/D 校准

1 = 打开 A/D 校准

注: 1、自校准时间典型值为 5us。

2、ADEN 清零时需将 ADCALEN 位清零, 关闭 AD 失调校准。

ADCS<2:0>: A/D 转换时钟选择位

000 = Fad = SCLK/2

001 = Fad = SCLK / 8

010 = Fad = SCLK / 32

x11= 系统保留

100 = Fad = SCLK / 4

101 = Fad = SCLK / 16

110 = Fad= SCLK /64

KungFu®

KF8TS2716数据手册V1.4

VCFG<1:0>: A/D 转换参考电压选择位

00= 断开

01 = VDD 作为 ADC 参考电压

10 = ADVRIN 作为 ADC 参考电压

11 = VREOUT 作为 ADC 参考电压

ADCIM: A/D 工作电流选择位

0=A/D 工作电流较大

1=A/D工作电流较小(建议配置为1,此时工作电流最小)

注: Fad 为 A/D 转换时钟频率。

图注: R=可读 W=可写 -=未用 U=未实现位

7.1.3模拟/数字口选择寄存器(ANSEL/H)

寄存器7.3: ANSEH: 模拟/数字口设置寄存器(地址: 1DH)

	bit7							bit0	
复位值 0000 0000	-	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

寄存器7.4: ANSEL: 模拟/数字口设置寄存器(地址: 31H)

6 N H	<u>bit7</u>							bit0	
复位值 0000 0000	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

ANS<13:0>: 引脚 AN13~AN0 分别配置为模拟或数字 I/O 口的控制位

1 = 将对应引脚配置为模拟口

0 = 将对应引脚配置为数字 I/O 口或者特殊功能引脚

图注: R=可读 W=可写 -=未用 U=未实现位

7.2 通道的选择

如图 7.1 所示, KF8TS2716 中的 A/D 转换模块的输入可以选择 16 路来自外部的模拟信号和 2 路内部通道,通过寄存器 ADCCTL0(如寄存器 7.1 所示)进行通道的选择。

7.3 模拟输入口的配置

当选择 AN0~AN13 作为 A/D 转换的输入时,需要将对应的引脚配置为模拟输入口。通过将寄存器 ANSEL 的某位置 1 将对应的引脚配置为模拟口,然后把寄存器 TRx 的对应位置 1 把该引脚配置为输入口,此时该引脚被设置为模拟输入口。

注:如果某引脚被配置为模拟输入口,将会自动禁止有效地数字I/O、上拉电阻和电平变化中断。

KungFu®

KF8TS2716数据手册V1.4

7.4 A/D 转换参考电压的选择

KF8TS2716 中 ADC 模块的参考电压可以选择 3 种分别为: 电源电压(VDD)、VREOUT 参考电压和外部参考电压(ADVRIN)。通过寄存器 ADCCTL1 的 VCFG<1:0>设置参考电压。

7.4.1 VREOUT 参考电压

KF8TS2716 内部有一个参考电压模块,使能该功能后,通过引脚 P0.4/VREOUT 可输出稳定的 2V/3V/4V 参考电压(VREOE=1)。如果内部使用参考电压 VREOUT 时(用作 AD 参考电压和触摸专用比较器参考电压),不需要将寄存器 VRECTL 的 VREOE 位置 1。

参考电压模块通过参考电压控制寄存器的高两位进行控制(VRECTL<1,3>),将 VREEN(VRECTL.1)位置 1 将打开参考电压模块,此时的 2V/3V/4V 参考电压可供芯片内部使用,再将 VREOE(VRECTL.3)位置 1 可使能内部 2V/3V/4V 参考电压输出,相应的引脚输出 2V/3V/4V 参考电压。

7.4.2 参考电压寄存器 (VRECTL)

寄存器7.5: VRECTL: 参考电压寄存器1(地址:2BH)

	bit7							bit0
复位值 0000 0000	VRESEL1	VRESEL0	保留	VRECKE N	VREOE	保留	VREEN	保留
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

VRESEL<1:0>:内部参考电压 VREOUT 选择位

00=保留

01 = 2V

10 = 3V

11=4V

VRECKEN:参考电压工作时钟使能位

1 = 参考电压工作时钟使能

0 = 参考电压工作时钟禁止

注:内部参考电压模块工作时 VRECKEN 必须置 1

VREOE: 参考电压输出使能位

1= 允许参考电压输出

0=禁止参考电压输出

VREEN: 参考电压使能位

1 = 使能参考电压

0 = 关闭参考电压

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位必须配置为0

7.5 转换时钟的选择

完成一次 A/D 转换所需要的时间为 13Tad。如寄存器 7.2 所示,可通过软件方式设置 ADCS 位(ADCCTL1<6:4>)选择转换时钟源,共有 7 种时钟选项。

完成一次 AD 转换所需时间最快选择 SCLK/2,为 2us。

7.6 输出格式

KF8TS2716 中 A/D 转换的结果为 12 位二进制数, A/D 转换结果寄存器为两个 8 位的寄存器。用户可以通过 ADLR(ADCCTL0.7)设置转换结果输出格式, ADLR 置 1 输出为右对齐, ADLR 清零输出为左对齐。如图 7.2 所示。

图 7.2 ADC 输出对齐方式

7.7 A/D 转换的启动和完成

先将 ADEN 位置 1, 然后将 START 位(ADCCR0.1)置 1 即可启动 A/D 转换。当转换结束时, A/D 模块将:

- 1. 将 START 位清零
- 2. 将 ADIF 位置 1
- 3. 如果使能 A/D 转换中断,则响应中断

可以采取在程序中将 START 位清零的方法中止当前的转换操作。在 A/D 转换采样全部结束之前,ADCDATA0H:ADCDATA0L 寄存器中的内容将不会被更新,而是仍旧保留前一次的转换结果。A/D 转换被中止后,需至少等待 2Tad 的延时时间后才能开始下一次数据采集。

7.8 复位的影响

器件复位将强制所有寄存器进入复位状态。因此,A/D 模块将被关闭,任何进行中的转换操作被中止,ADCDATA0H:ADCDATA0L 寄存器中的值不变。

7.9 使用 A/D 转换器的设置

启动 A/D 转换器时的设置:

- 1. 选择 A/D 采样输入通道,设置 A/D 转换结果对齐方式(ADCCTL0);
- 2. 将对应的 A/D 采样输入通道设置为模拟输入模式 (ANSEH/ANSEL);
- 3. 如果需要使能 AD 的失调校准,将 ADCCTL1 寄存器的 ADCALEN 位置 1,清零禁止;
- 4. ADCCTL1的 ADCIM 位置 1,选择工作小电流模式;
- 5. 选择参考电压和 A/D 采样时钟频率(ADCCTL1), ADEN 置 1 打开 A/D 转换;
- 6. 如果采用中断方式, 使能 A/D 转换中断;
- 7. 等待 A/D 所需的采集时间;
- 8. START 置 1 启动 A/D 转换;
- 9. 查询 A/D 是否转换完成(START=0)或进入 A/D 中断;
- 10. ADCDATA0H: ADCDATA0L 存放转换结果。

8 PWM模块

KF8TS2716 单片机具有 2 路 8 位的 PWM 模块 PWM1/PWM2。其中 PWM1 和 PWM2 结构相同。

8.1 工作原理

启动 PWM 后,在对应的 PWM1(或 PWM2)引脚输出 PWM 脉冲。PWM 脉冲的频率和占空比通过 PP1(或 PP2)和 PWM1L(或 PWM2L)设置。

图 8.1 显示了 PWM逻辑框图。其中 PP1 为 PWM1 模块的周期寄存器,PWM1L 为 PWM1 模块占空比设置寄存器,使用 PWM 时需要将定时器 1 配置给 PWM 做定时用,其中 T1L、T1IE 和 T1IF 分配给 PWM1,T1H 分配给 PWM2。启动 PWM1 后,当 T1L 计数值和 PP1 相等时,P3.0 引脚被置 1,此时 T1L 被清零,重新开始计数,当 T1L 的计数值和 PWM1L 相等时,P3.0 引脚清零(如图 8.2 所示)。改变 PP1 和 PWM1L 的值可产生不同的 PWM1 周期和 PWM1 占空比。PWM2 模块的工作原理和 PWM1 模块完全一致。

图 8.1 PWM1/2 逻辑框图

图 8.2 PWM1 输出波形图

8.2 PWM1/2 相关的寄存器

表 8-1 与 PWM 相关的寄存器

地址	寄存器	位7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
13H	PWM1L		PWM1 占空比寄存器							
16H	PP1		PWM1 周期寄存器							
32H	PP2		PWM2 周期寄存器							
33H	PWM2L		PWM2 占空比寄存器							
15H	PWMCTL	-	-	-	PWM2ON	-	-	-	PWM1ON	

8.2.1 PWM1/2 控制寄存器

寄存器8.1: PWMCTL: PWM启动控制寄存器(地址: 15H)

有片法 -	bit7							bit0
复位值 0000 0000	保留	保留	保留	PWM2ON	保留	保留	保留	PWM1ON
-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PWM2ON: PWM2 启动控制位

1 = 启动 PWM2

0 = 禁止 PWM2

PWM1ON: PWM1 启动控制位

1 = 启动 PWM1 0 = 禁止 PWM1

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

8.2.2 PWM1/2 周期

PWM 周期通过 PP1/2 (地址: 16H/32H)进行设置,PP1/2 是一个 8 位的寄存器,其值可设置为 $0\sim255$ 。PWM 周期通过式 8.1 进行计算。

★式 8.1: PWMx周期 = (PPx+1)·Tpwm (x=1、2) 注: 当T1CLKEN=0时 Tpwm = 4·Tsys·(T1预分频比) 当T1CLKEN=1时 Tpwm = Tinthf·(T1预分频比)

8.2.3 PWM1/2 占空比

PWM 占空比通过 PWM1/2L(地址: 13H/33H)设置,可写入一个 8 位的值到 PWM1/2L 来设置占空比。脉冲宽度和占空比通过式 8.2 和式 8.3 计算:

★ 式8.2: 脉冲宽度 = PWMxL·Tpwm (x=1、2) 注: 当T1CLKEN = 0时, Tpwm = 4·Tsys·(T1预分频比) 当T1CLKEN = 1时, Tpwm = Tinthf·(T1预分频比)

★ 式8.3: 占空比=
$$\frac{脉冲宽度}{PWM$$
周期 = $\frac{PWMxL}{PPx+1}$ (x=1、2)

8.3 PWM1/2 分辨率

分辨率决定在给定周期内的占空比数。例如,10位分辨率将产生1024个离散的占空比,8位分辨率产生256个离散的占空比。KF8TS2716中当PP1/2为255时,PWM的最大分辨率为8位。分辨率的计算公式如式8.4所示。

★ 式8.4: 分辨率=
$$\frac{\text{Log}[(PPx+1)]}{\log 2}$$
 位 $(x=1, 2)$

8.4 PWM1/2 中断

PWM2 有一个专门的中断使能位 PWM2IE 和中断标志位 PWM2IF, 而 PWM1 和定时器 T1 共用中断使能位 T1IE 和中断标志位 T1IF。

在PWM1/2 启用后,当 T1L/H 的计数值与PWM1L/2L 的值匹配后,其对应的输出引脚变为低电平。当 T1L/H 的计数值与PP1/2 的值匹配后,其对应的输出引脚变为高电平,同时将 T1L/H 清零,将 T1IF/PWM2IF 置 1,如果允许 T1 或 PWM2 中断,将会转入对应的中断子程序中。

8.5 休眠模式下的操作

在休眠模式下,T1 寄存器将不会递增并且模块的状态将保持不变。PWM1/2 输出引脚电平保持不变(如果输出为高电平,则保持高电平,如果为低电平保持低电平)。当器件被唤醒时,T1 将从原来的状态继续工作。

8.6 复位的影响

任何复位都会将所有端口强制为输入模式,并强制 PWM1/2 使用的寄存器进入其复位状态。

8.7 PWM1/2 使用方法

PWM1/2 工作的设置应按照以下步骤:

- 1. 将 TR30 或 TR31 置 1,禁止引脚 P3.0/PWM1 或 P3.1/PWM2 的输出驱动器。
- 2. 赋 PP1 或 PP2 寄存器的初值以设置 PWM1 或 PWM2 的 PWM 周期。
- 3. 赋 PWM1L 或 PWM2L 寄存器的初值以设置 PWM1 或 PWM2 的占空比。
- 4. 配置并启动定时器/计数器 T1:
 - 配置 T1CS 位和 T1CLKEN 位选择 T1 的计数时钟(一般选择内部时钟);
 - 配置 T1CTL 寄存器的 T1CKS1 和 T1CKS0 以选择 T1 的预分频比;
 - 将 T1L/H 清零;
 - 将 T1CTL 寄存器的 T1ON 位置 1 以启动 T1。
- 5. 将 PWMCTL 寄存器的 PWM1ON 或 PWM2ON 置 1 以启动 PWM1 或 PWM2。
- 6. 将 TR30 或 TR31 清零使能引脚 P3.0/PWM1 或 P3.1/PWM2 的输出驱动器。

9 电容触摸模块

KF8TS2716内建触摸按键功能模块,最大能连接22个按键,可通过寄存器CTCTL寄存器的CTCHSEL<4:0> 来选择,每次仅能选择一个通道。如果不用做触摸按键功能,可通过寄存器设置作为I/O 端口。

KF8TS2716內建触摸按键功能模块工作电路精简,应用时仅需在CAP引脚外接一个Cx电容 b。Cx 电容值选择1nF~10nF之间,要求使用10%或以上精度的涤纶电容、X7R 材质电容或NPO 材质贴片电容。Cx 电容可根据实际电路板材质以及触摸按键介质调节合适的灵敏度,电容值越小,灵敏度越低,电容值越大,灵敏度越高。

电容传感电路有四种工作频率,可通过寄存器CTCLKSEL1 位和CTCLKSEL0 位选择,建议工作频率选择系统时钟源/8或系统时钟源/16。触摸按键模块内建基准电压,可通过 VSEL位选择。

9.1 电容触摸的原理

电容触摸模块是通过采样传感电压值到达电容触摸基准电压值的时间,来判断是否有电容按键被触摸。

当有电容按键被触摸时,电容触摸触摸专用计数器 T3 开始计数,一旦传感电压到达电容触摸基准,读取 T3 计数器的计数值。由于当有电容按键被触摸时,触摸传感电压更快到达基准电压,所以用户可通过比较读取 T3 计数值的大小来判断有无按键触摸(用户需自己调试),框图如下图 9.1 所示:

图 9.1 电容触摸原理

◎注释:外接电容端口需设置成模拟口

9.2 电容触摸相关寄存器

表 9-1 电容触摸相关寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
53H	CTCTL0	CTEN	CTSTART	T3CLR	CTCHSEL<4:0>电容触摸按键输入选择位					
112H	VDAC	VDAC3	VDA2	VDAC1	VDAC0	-	-	-	-	
64H	CTCTL1	CTCLKSEL1	CTCLKSEL1 CTCLKSEL0						VSEL	
4FH	T3L		T3 低位寄存器							
5FH	ТЗН		T3 高位寄存器							

9.2.1 电容触摸控制寄存器 0 (CTCTL0)

寄存器9.1: CTCTL0: 电容触摸控制寄存器(地址: 53H)

有比比	bit7							<u>bit0</u>
复位值	CTEN	CTSTART	T3CLR	CTCHSEL	CTCHSEL	CTCHSEL	CTCHSEL	CTCHSEL
0000 0000	CIEN	CISTAKI	ISCLK	4	3	2	1	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CTEN: 电容触摸使能位

1 = 电容触摸使能

0 = 电容触摸禁止

CTSTART: 电容触摸通道检测启动位

1 = 启动电容触摸计数器 T3(16 位)计数。电容触摸专用比较器输出为低电平

时,该位自动清零,计数器停止计数。

T3CLR: T3 计数寄存器清零位

0=T3 计数寄存器在复位状态

1=T3 计数寄存器退出复位状态

CTCHSEL<4:0>:22 个电容触摸按键输入选择位

00000 = P1.2 作为电容触摸输入

00001 = P1.3 作为电容触摸输入

00010 = P1.5 作为电容触摸输入

00011 = P2.5 作为电容触摸输入

00100 = P2.4 作为电容触摸输入

00101 = P2.3 作为电容触摸输入

00110 = P2.2 作为电容触摸输入

00111 = P2.1 作为电容触摸输入

01000 = P2.0 作为电容触摸输入

01001 = P0.5 作为电容触摸输入

01010 = P0.4 作为电容触摸输入

01011 = P0.3 作为电容触摸输入

01100 = P1.6 作为电容触摸输入

01101 = P1.7 作为电容触摸输入 01110 = P2.6 作为电容触摸输入

01111 = P2.7 作为电容触摸输入

10000 = P3.2 作为电容触摸输入

10001 = P3.3 作为电容触摸输入

10010 = P3.6 作为电容触摸输入

10011 = P3.7 作为电容触摸输入

10100 = P3.0 作为电容触摸输入

10101 = P3.1 作为电容触摸输入

其他 = 系统保留

图注: R=可读 W=可写 -=未用 U=未实现位

- 注: 1、一旦检测到有触摸按键按下后,CTSTART 位将自动清零,用户在进行下一个触摸按键扫描时,需重新设置 CTSTART 位。
 - 2、T3 计数寄存器能够实现正常计数必须把 T3CLR 置 1。

9.2.2 电容触摸控制寄存器 1 (CTCTL1)

如寄存器 9.2 所示,CTCLKSEL<1:0>为电容触摸时钟预分频比选择位,可以选择 4 种分频比,分别是系统时钟源/4、系统时钟源/8、系统时钟源/16 和系统时钟源/32。VSEL 为电容触摸基准电压选择位,可选择 2 种,分别为 V_{DD} 和内部参考电压 V_{REF} 。

寄存器9.2: CTCTL1: 控制寄存器(地址: 64H)

与	bit7							bit0
复位值	CTCLKSE	CTCLKSE	_	_		_	_	VSEL
000	L1	L0	_	_	-	-	_	VSLL
	R/W	R/W	U	U	U	U	U	R/W

CTCLKSEL<1:0>: 电容触摸时钟预分频比选择位

00 = 系统时钟源/4

01 = 系统时钟源/8

10 = 系统时钟源/16

11 = 系统时钟源/32

VSEL: 输入电容充电电压源选择位

0= 输入电容充电电压源为 VREE

1 = 输入电容充电电压源为 VDD

图注: R=可读 W=可写 -=未用 U=未实现位

9.2.3 电阻分压比设置寄存器 (VDAC)

寄存器9.3: VDAC: 电阻分压比设置寄存器(地址: 112H)

有片齿	D1t /							bitu	_
复位值 0000 0000	VDAC3	VDAC2	VDAC1	VDAC0	保留	保留	保留	保留	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

VDAC<3:0>:电阻分压比设置位

0000 = 0.05VDAC

0001 = 0.15 VDAC

0010 = 0.15 VDAC

0011 = 0.2 VDAC

0100 = 0.25 VDAC

0101 = 0.3 VDAC

0110 = 0.35 VDAC

0111 = 0.4 VDAC

1000 = 0.45 VDAC

1001 = 0.5 VDAC

1010 = 0.55 VDAC

1011 = 0.6VDAC

1100 = 0.65 VDAC

1101 = 0.7VDAC

1110 = 0.75 VDAC

1111 = 0.8 VDAC

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

9.2.4 电阻分压源选择寄存器(VDACS)

寄存器9.4: VDACS: 电阻分压源选择寄存器(地址: 1AH)

有比法	bit7							bit0
复位值 00000	保留	VCEN	-	-	-	-	-	-
	R/W	R/W	U	U	U	R	R	R

VCEN: 电阻分压源选择位

0 = VDD作为电阻分压电路VDAC的电压源 1 = VREF作为电阻分压电路VDAC的电压源

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

9.3 触摸中断

电容触摸模块与定时器 T3 共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PT3。当传感电压值达到阈值电压值时,触摸专用比较器开始翻转,此时触摸采样完成,T3IF 会被置 1,如果 AIE 位(INTCTL.7)、PUIE 位(INTCTL.6)和 T3IE 位(EIE2.7)都为 1,则进入相应的触摸中断子程序。

当 IPEN=1 时,用户还可通过IP2 寄存器的 PT3 位设置触摸中断的优先级。

9.4 触摸的使用

触摸按键在使用时通过以下步骤进行设置:

- 1. 通过CTCTL1的CTCLKSEL<1:0>位选择工作时钟频率;
- 2. 通过CTCTL1的VSEL位选择基准电压源;
- 3. 通过VDAC寄存器的VDAC<3:0>设置基准电压;
- 4. 通过CTCTL0的CTCHSEL<4:0>选择需要的通道;
- 5. 给寄存器CTCTL0的CTEN置1,使能电容触摸;
- 6. 延时一定时间,给寄存器CTCTL0的CTSTART置1启动计数器(T3);
- 7. 延迟等待检查CTSTART位为0时,读出计数器的值即可。

10 SSCI模块

10.1 概述

KF8TS2716 包含一个 SSCI (Synchronous Serial Communication interface) 同步串行端口。它是用于其他外设或单片机进行通信的串行接口。SSCI 包含两种工作模式:

- ◆ I2C(Inter Intergrated Circuit)接口模式。
- ◆ 串行外设接口(Serial Peripheral Interface, SPI)模式。

10.2 SSCI相关寄存器

表 10-1 与 SSCI 相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
128H	SSCICTL0	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD3	SSCIMOD2	SSCIMOD1	SSCIMOD0	
12AH	SSCICTL1	SSCICALL EN	SSCIACK STA	SSCIACK DAT	SSCIACK EN	SSCIRC EN	STOPEN	RESTART EN	STARTEN	
12BH	SSCISTA	SAMPLE	CKEGE	SSCIDA	SSCIP	SSCISTOP	SSCISTART	SSCIUA	SSCIBUF	
12CH	SSCIBUFR			SS	CI 数据接收约	缓冲/发送寄存	字器			
12EH	SSCIADD		SSCI 的 I2C 地址寄存器							
12111	SSCIMSK	SSCIMSK7	SSCIMSK6	SSCIMSK5	SSCIMSK4	SSCIMSK3	SSCIMSK2	SSCIMSK1	SSCIMSK0	

10.2.1 SSCI 控制寄存器 0(SSCICTL0)

寄存器10.1:SSCICTL0: SSCI控制寄存器0(地址:128H)

- n n.	D11.7							DITU
复位值	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD	SSCIMOD	SSCIMOD	SSCIMOD
0000 0000	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	3	2	1	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SSCIWCFL: 写冲突检测位

1 = 正在发送前一个字时,又有数据写入SSCIBUFR寄存器(必须用软件清零)

0 = 无冲突

SSCIOV: 接收溢出指示位

在SPI 模式下:

1 = 当SSCIBUFR中仍保存前一数据时,又接收到一个新的字节。如果溢出,移位寄存器SSCISR中的数据会丢失。溢出只会在从动模式下发生。即使只是发送数据,用户也必须读SSCIBUFR,以避免将溢出标志位置1。 在主控模式下,溢出位不会被置1,因为每次接收(和发送)新数据都是通过写入SSCIBUFR寄存器启动。

0= 无溢出

在I²C模式下:

1 = SSCIBUFR中仍保存前一数据时,又接收到一个新的字节。SSCIOV 在发送模式下被忽略。两种模式下都必须用软件将SSCIOV 清零。

0= 无溢出

SSCIEN: 同步串行端口使能位

在SPI模式下:

1 = 使能串行端口并将SCK、SDO 和SDI 配置为串行端口引脚

0 = 禁止串行端口并将这些引脚配置为I/O 端口引脚

在I²C模式下:

1 = 使能串行端口并将SDA 和SCL 引脚配置为串行端口引脚

0 = 禁止串行端口并将这些引脚配置为I/O 端口引脚

在两种模式下, 当使能时, 这些引脚必须被正确配置为输入或输出。

SSCICKP: 时钟极性选择位

在SPI 模式下:

1 = 空闲状态时,时钟为高电平

0 = 空闲状态时,时钟为低电平

在I2C模式下:SCK 释放控制

1= 使能时钟

0=保持时钟为低电平(时钟低电平时间延长)。(用于确保数据建立时间。)

SSCIMOD<3:0>: 同步串行端口模式选择位

0000 = SPI 主控模式, 时钟 = SCLK/4

0001 = SPI 主控模式, 时钟 = SCLK/16

0010 = SPI 主控模式, 时钟 = SCLK /64

0011 = 保留

0100 = SPI 从动模式, 时钟 = SCK引脚。使能 \overline{SS} 引脚控制。

0101 = SPI 从动模式,时钟 = SCK引脚。禁止 \overline{SS} 引脚控制。 \overline{SS} 可作

为I/O 引脚使用。

0110 = I2C从动模式, 7 位地址

0111 = I2C从动模式, 10 位地址

1000 = I2C主控模式, 时钟=SCLK/(4*(SSCIADD+1))

1001 = 允许SSCIMSK寄存器读写操作

1010 = 保留

1011 = I2C固件控制主控模式(从动空闲模式)

1100 = 保留

1101 = 保留

1110 = I2C从动模式, 7 位地址,并允许启动位和停止位中断

1111 = I2C 从动模式, 10 位地址,并允许启动位和停止位中断

图注: R=可读 W=可写 -=未用 U=未实现位

10.2.2 SSCI 控制寄存器 1 (SSCICTL1)

寄存器10.2: SSCICTL1: SSCI控制寄存器1(地址:12AH)

bit0 复位值 SSCIACK SSCIRCE SSPCALL SSCIACK SSCIACK RESTART STOPEN STARTEN EN STA DAT EN N EN 0000 0000 R/W R/W R/W R/W R/W

SSCICALLEN:广播呼叫使能位(仅限 I2C 从动模式)

1=允许在SSCISR 中接收到广播呼叫地址(0000h)时产生中断

0=禁止广播呼叫地址

SSCIACKSTA:应答状态位(仅限于I2C主控模式)

在主控发送模式下:

1=未接收到来自从动器件的应答。

0=已接收到来自从动器件的应答

SSCIACKDAT:应答数据位(仅限于I2C主控模式)

在主控接收模式下:用户在接收完成后发送的应答序列的值

1 = 不应答

0 = 应答

SSCIACKEN: 应答序列使能位(仅限I2C主控模式)

在主控接收模式下:

1 = 在SDA 和SCL 引脚启动应答序列,发送SSCIACKDAT 数据位。由硬件 自动清零

0 = 应答序列空闲

SSCIRCEN: 接收使能位(仅限I2C主控模式)

1 = 使能I2C接收模式

0 = 接收空闲

STOPEN: 停止条件使能位(仅限 I2C 主控模式)

SCK 释放控制:

1 = 在SDA 和SCL 引脚启动停止条件。由硬件自动清零。

0 = 停止条件空闲

RESTARTEN:重复启动条件使能位(仅限I2C主控模式)

1=在SDA 和SCL 引脚启动重复启动条件。由硬件自动清零。

0=重复启动条件空闲

STARTEN: 启动条件使能位(仅限I2C主控模式)

在主控模式下:

1=在SDA 和SCL引脚启动条件。由硬件自动清零。

0=启动条件空闲

图注: R=可读 W=可写 -=未用 U=未实现位

注:对于SSCIACKEN、SSCIRCEN、STOPEN、RESTARTEN和STARTEN位:如果I2C模块不处在空闲模式,此位可能无法被置1(没有假脱机(spooling))且可能无法对SSCIBUFR进行写操作(禁止写SSCIBUFR)。

10.2.3 SSCI 状态寄存器 (SSCISTA)

寄存器10.3: SSCISTA: SSCI状态寄存器(地址:12BH)

bit7 bit0 复位值 SSCISTA SAMPLE CKEGE SSCIDA SSCISTOP SSCIRW SSCIUA SSCIBUF 0000 0000 RT R/W R/W R R R R R

SAMPLE: SPI数据输入采样相位

SPI 主控模式:

1 = 在数据输出时间结束时采样输入数据

0 = 在数据输出时间中间采样输入数据

SPI 从动模式:

当SPI 用于从动模式时,必须将SAMPLE 清零

I2C模式:

此位必须保持清零

CKEGE: SPI 时钟边沿选择位

SPI模式, SSCICKP = 0:

1 = 在SCK 的下降沿发送数据

0 = 在SCK 的上升沿发送数据

SPI 模式, SSCICKP = 1:

1 = 在SCK 的上升沿发送数据

0 = 在SCK 的下降沿发送数据

I2C模式:

此位必须保持清零

SSCIDA: 数据/地址位(I2C模式)

1= 表示上次接收或发送的字节是数据

0 = 表示上次接收或发送的字节是地址

SSCISTOP: 停止位(仅I2C模式)

当禁止SSCI 模块或上次检测到启动位时,该位被清零。

SSCIEN 被清零。

1 = 表示上次检测到了停止位(此位在复位时为0)

0 = 表示上次没有检测到停止位

SSCISTART: 启动位(仅I2C模式)

当禁止SSCI 模块或上次检测到停止位时,该位被清零。

SSCIEN 被清零。

1 = 表示上次检测到了启动位(此位在复位时为0)

0 = 表示上次没有检测到启动位

SSCIRW: 读/写信息位(仅I2C模式)

该位用来保存在上次地址匹配后的SSCIRW 位信息。此位仅在地址匹配与遇

到下一个启动位、停止位或SSCIACK 位之间有效。

I2C主模式下

1 = 读

0 = 写

I2C从模式下

1 = 发送正在进行

0 = 发送未进行

该位与STARTEN、RESTARTEN、STOPEN、SSCIRCEN或SSCIACKEN位的或运算结果指示SSCI是否处于空闲状态。

SSCIUA: 更新地址位(仅10位I2C模式)

1 = 表示用户需要更新SSCIADD 寄存器中的地址

0 = 不需要更新地址

SSCIBUF: 缓冲器满状态位

接收(SPI和I2C模式):

1 = 接收完成, SSCIBUFR满

0 = 接收未完成, SSCIBUFR空

发送(仅I2C模式):

1 = 正在发送, SSCIBUFR满

0 = 发送完成, SSCIBUFR空

图注: R=可读 W=可写 -=未用 U=未实现位

10.2.4 SSCI 屏蔽寄存器 (SSCIMSK)

寄存器9.4: SSCIMSK: SSCI屏蔽寄存器(地址:12EH)

	bit7							bit0
复位值	SSCIMSK							
1111 1111	7	6	5	4	3	2	1	0
	R/W							

SSCIMSK<7:1>:屏蔽位

1 = 接收到的地址的bit n 与SSCIADD<n> 比较以检测I²C的地址匹配情况

0 = 接收到的地址的bit n 不用于检测I2C的地址匹配情况

SSCIMSK<0>: 在I²C从动模式下,10位地址的屏蔽位

在I2C 从动模式, 10位地址(SSCIMOD<3:0>=0111或1111)条件下:

1 = 将接收到的地址的bit 0位与SSCIADD<0> 相比较以检测I2C的地址匹配情况

0 = 接收到的地址的bit 0位不用于检测I2C的地址匹配情况

在I2C从动模式,7位地址条件下,该位为无关位

图注: R=可读 W=可写 -=未用 U=未实现位

注: SSCIADD与SSCIMSK共用一个地址,当SSCICTL0位SSCIMOD<3:0>=1001时,SFR 地址对应SSCIMSK寄存器;当SSCICTL0位SSCIMOD<3:0>不为1001时,SFR地址对应SSCIADD寄存器。

10.2.5 SSCI I2C 地址寄存器(SSCIADD)

在10位I2C从动模式下,该地址寄存器是复用的。

寄存器12.5: SSCIADD: I2C地址寄存器(地址:12EH)

	bit/							b1t0
复位值	SSCIADD							
0000 0000	7	6	5	4	3	2	1	0
	R/W							

10位从动模式下——高地址字节:

SSCIADD<7:3>: 未使用,SSCIADD存放高地址字节时,未使用这5位,为无关位。主器件发送的位模式由I2C规范制定必须等于11110,但是这这些位由硬件进行比较且不受该寄存器中的值的影响

SSCIADD<2:1>: 保存10位地址的高两位。

SSCIADDO: 未使用,为无关位,初始化时写0

10位从动模式下——低地址字节:

SSCIADD<7:0>: 10位地址的低8位

7位从动模式下:

SSCIADD<7:1>: 7位地址

SSCIADD0: 未使用,为无关位,初始化时写0

图注: R=可读 W=可写 -=未用 U=未实现位

注: (1)在I2C主控模式下,波特率计算公式=SCLK/(4*(SSCIADD+1)); (2)在I2C模式下,不支持SSCIADD寄存器的值为0、1或2的情况。

10.3 I2C 模式

- ◆ 多主机模式:可用作主设备或者从设备
- ◆ I2C 主设备产生时钟, 起始和停止信号
- ◆ 检测7位和10位地址

10.3.1 工作原理

I2C模式下的SSCI 能实现全部从动功能(除广播呼叫支持外),且硬件支持启动位和停止位中断,以便于固件实现主控功能。SSCI模式实现标准模式规范以及7位和10位寻址。有两个引脚用于数据传输: P1.0/SCK/SCL引脚作为时钟线(SCL),而P1.1/SDI/SDA引脚作为数据线(SDA)。通过将SSCI使能位SSCIEN(SSCICTL0<5>)置1以使能SSCI模块的功能。

图10.1 **I2C**模式方框图

SSCI模块有8个寄存器用于I2C操作,这7个寄存器是:

- SSCI控制寄存器 (SSCICTL0)
- SSCI控制寄存器1(SSCICTL0)
- SSCI状态寄存器(SSCISTA)
- 串行接收/发送缓冲器(SSCIBUFR)
- SSCI 移位寄存器 (SSCISR) ——不可直接访问
- SSCI 地址寄存器 (SSCIADD)
- SSCI 屏蔽寄存器 (SSCIMSK)

SSCICTL0 寄存器用于控制I2C 的工作。可通过设置四个模式选择位(SSCICTL0<3:0>) 选择以下I2C 模式之一:

- ▶ I2C 从动模式(7 位地址)
- ▶ I2C 从动模式(10 位地址)
- ▶ I2C 从动模式(7 位地址),允许启动位和停止位中断以支持固件主控模式
- ▶ I2C 从动模式(10 位地址),允许启动位和停止位中断以支持固件主控模式
- ▶ 允许I2C 启动位和停止位中断以支持固件主控模式而从动模式空闲

任何I2C 模式的选择,在SSCIEN置1后都会强制SCL和SDA引脚为漏极开路(假定通过编程将相应的TR1位置1,使这些引脚成为输入引脚)。必须在SCL和SDA引脚上外接上拉电阻,才能使I2C模块正常工作。

10.3.2 I2C 从动模式

在从动模式下,SCL 引脚和SDA 引脚必须被配置为输入(TR1<1:0> 置1)。必要时 SSCI 模块将用输出数据改写输入状态(从发送器)。

当地址匹配或在地址匹配后发送的数据被接收时,硬件会自动产生一个应答(ACK)脉冲,并把当时SSCISR寄存器中接收到的值装入SSCIBUFR寄存器。

某些条件会使SSCI 模块不发出此ACK(低电平有效)脉冲。这些条件包括(之一或全部):

- 1) 在接收到数据前,缓冲器满标志位SSCIBUF(SSCISTA<0>)置1。
- 2) 在接收到数据前,溢出标志位SSCIOV(SSCICTL0<6>)置1。

在这些情况下,SSCISR寄存器的值不会载入SSCIBUFR,但是SSCIIF位会置1。表10-2显示了当已知SSCIBUF位和SSCIOV位的状态时,接收到数据发送字节时产生的结果。阴影单元显示了当用户软件没有正确将溢出状态清零时的情况。当SSCIOV位通过软件清零时,通过读SSCIBUFR寄存器可以将标志位SSCIBUF清零。

接收到传输数据时的状态位		SSCISR 数据存	产生 ACK 脉	SSCIIF 位置 1(如 果允许 SSCI 中断,
SSCIBUF	SSCIOV	入 SSCIBUFR	冲	还将产生 SSCI 中 断)
0	0	有	有	有
1	0	无	无	有
1	1	无	无	有
0	1	无	无	有

表 10-2 接收数据后的动作

注:阴影单元显示了当用户软件没有正确将溢出状态清零时的情况。

10.3.2.1 寻址

- 一旦SSCI模块被使能,它就会等待启动条件发生。在7位地址模式下,当启动条件发生后,8位数据被移入SSCISR寄存器。在时钟(SCL)线的上升沿采样所有的输入位。在第8个时钟(SCL)脉冲的下降沿寄存器SSCISR<7:1>的值会和SSCIADD地址寄存器的值比较。如果地址匹配,并且SSCIBUF和SSCIOV都被清零,会发生下列事件:
 - 1) SSCISR寄存器的值被装入SSCIBUFR寄存器。
 - 2)缓冲器满标志位SSCIBUF被置1。
 - 3)产生ACK脉冲。

4) 在第9个SCL脉冲的下降沿,SSCI中断标志位SSCIIF被置1(如果允许中断,则产生中断)。

在10位地址模式下,从控制器需要收到两个地址字节(图10.3)。第一个地址字节的高5位将指定这是否是一个10位地址。SSCIRW位(SSCISTA<2>)必须指定写操作,这样从控制器才能接收到第二个地址字节。对于10位地址,第一个字节等于"1111 0 A9 A8 0",其中A9和A8是该地址的两个最高有效位。

10位地址的工作步骤如下,其中7-9步是针对从动发送器而言的:

- 1)接收地址的第一个(高)字节(SSCIIF位、SSCIBUF位和SSCIUA位置1)。
- 2) 用地址的第二个(低)字节更新SSCIADD寄存器(SSCIUA位清零并释放SCL线)。
- 3) 读SSCIBUF寄存器(SSCIBUF位清零),并将标志位SSCIIF清零。
- 4)接收地址的第二个(低)字节(SSCIIF位、SSCIBUF位和SSCIUA位置1)。
- 5) 用地址的第一个(高)字节更新SSCIADD寄存器;如果匹配,则释放SCL线,此时将会清零SSCIUA位。
- 6) 读SSCIBUFR寄存器(SSCIBUF位清零)并将标志位SSCIIF清零。
- 7) 接收重复启动条件。
- 8) 接收地址的第一个(高)字节(SSCIIF位和SSCIBUF位置1)。
- 9) 读SSCIBUFR寄存器(SSCIBUF位清零)并将标志位SSCIIF清零。

10.3.2.2 接收

当地址字节的SSCIRW状态位清零并发生地址匹配时,SSCISTA寄存器中的SSCIRW位清零。接收到的地址被装入SSCIBUFR寄存器。

当发生地址字节溢出时,则不会产生应答脉冲(ACK)。溢出条件是指SSCIBUF位置1,或者SSCIOV位(SSCICTL0<6>)置1。这是一个由于用户固件导致的错误状态。

每个数据传输字节都会产生SSCI中断。标志位SSCIIF必须用软件清零。通过SSCISTA 寄存器可以确定该字节的状态。

图10.2 从动模式时序(接收,7位地址)

图 10.3 从动模式时序(接收,10位地址)

从动接收设置:

- 1、通过 SSCIMOD<3:0>位选择 I2C 工作模式
 - 0110 = I2C 从动模式, 7 位地址
 - 0111 = I2C 从动模式, 10 位地址
 - 1011 = I2C 固件控制主控模式(从动空闲模式)
 - 1110 = I2C 从动模式, 7 位地址,并允许启动位和停止位中断
 - 1111 = I2C 从动模式, 10 位地址,并允许启动位和停止位中断
- 2、设置SSCIADD寄存器,设置从机地址,仅高七位有效;
- 3、清零SSCISTA寄存器的各标志,包括SSCIDA、SSCIRW、SSCIBUF等。
- 4、设置SDA引脚为输入,SCL为输入;
- 5、清零SSCIIF标志,如果需要中断打开各终端使能位;
- 6、使能SSCIEN,开始接收数据,等待地址匹配;如果地址匹配,则SSCISTA寄存器的SSCIRW位清零。SSCISR寄存器的值被装入SSCIBUFR寄存器;
- 7、缓冲器满标志位SSCIBUF被置1;产生ACK脉冲信号;在第9个SCL脉冲的下降沿,SSCI中断标志位SSCIIF被置1,软件清零。

10.3.2.3 发送

当输入地址字节的SSCIRW位置1 并发生地址匹配时,SSCISTA寄存器的SSCIRW位被置1。接收到的地址被装入SSCIBUFR寄存器。 ACK脉冲在第9位上发送, SCL引脚保持低电平。发送数据必须被装入SSCIBUFR寄存器,同时也装入SSCISR寄存器。然后,应该通过将SSCICKP位(SSCICTL0<4>)置1来使能SCL引脚。主控制器必须在发出另一个时钟脉冲前监视SCL引脚。从控制器可以通过延长时钟低电平时间不与主控制器同步。8个数据位在SCL输入的下降沿被移出。这可以确保在SCL为高电平期间SDA信号是有效的。

每个数据传输字节都会产生SSCI中断。标志位SSCIIF必须用软件清零,SSCISTA寄存器用于确定字节的状态。标志位SSCIIF在第9个时钟脉冲的下降沿被置1。对于从发送器,来自主接收器的ACK脉冲将在第9个SCL输入脉冲的上升沿被锁存。若SDA线为高电平(无

芯旺微电子 - 108/216 - Chip**○N**

ACK应答信号),则表示数据传输已完成。在这种情况下,如果从控制器锁存了ACK,将复位从动逻辑(复位SSCISTA寄存器),同时从控制器监视下一个启动位的出现。如果SDA线为低电平(ACK),则必须将下一个要发送的数据装入SSCIBUFR寄存器。 然后,通过将SSCICKP位(SSCICTL0<4>)置1使能SCL引脚。

图 10.4 从动模式时序(发送,7位地址)

图 10.5 从动模式时序(发送,10位地址)

从动发送设置:

- 1、 通过 SSCIMOD<3:0>位选择 I2C 工作模式
 - 0110 = I2C 从动模式, 7 位地址
 - 0111 = I2C 从动模式, 10 位地址
 - 1011 = I2C 固件控制主控模式(从动空闲模式)
 - 1110 = I2C 从动模式, 7 位地址,并允许启动位和停止位中断
 - 1111 = I2C 从动模式, 10 位地址, 并允许启动位和停止位中断
- 2、设置SSCIADD寄存器,设置从机地址,仅高七位有效;
- 3、清零SSCISTA寄存器的各标志,包括SSCIDA、SSCIRW、SSCIBUF等。
- 4、设置SDA引脚为输出,SCL为输入;
- 5、清零SSCIIF标志,如果需要中断打开各终端使能位:

芯旺微电子 - 109/216 - Chip**○N**

- 6、使能 SSCIEN, 当输入地址字节的 SSCIRW 位置 1 并发生地址匹配时, SSCISTA 寄存器的 SSCIRW 位被置 1。接收到的地址被装入 SSCIBUFR 寄存器。
- 7、ACK 脉冲在第 9 位上发送,SCL 引脚保持低电平。发送的数据装载到 SSCIBUFR 寄存器。
- 8、置 1SSCICKP 位使能 SCL 引脚。主控制器必须再发送另一个时钟脉冲前件事 SCL 引脚。从控制器可以通过延长时钟低电平时间不予主控制器同步。
 - 9、标志位 SSCIIF 在第 9 个时钟脉冲的下降沿被置 1。软件清零
- 10、对于从发送器,来自主接收器的ACK脉冲将在第9个SCL输入脉冲的上升沿被锁存。若SDA线为高电平(无ACK应答信号),则表示数据传输已完成。在这种情况下,如果从控制器锁存了ACK,将复位从动逻辑(复位SSCISTA寄存器),同时从控制器监视下一个启动位的出现。如果SDA 线为低电平(ACK),则必须将下一个要发送的数据装入SSCIBUFR寄存器。 然后,通过将SSCICKP位(SSCICTL0<4>)置1使能SCL引脚。

10.3.2.4 广播呼叫地址支持

在I2C 总线的寻址过程中,通常由启动条件后的第一个字节决定主器件将寻址哪个从器件。但广播呼叫地址例外,它能寻址所有器件。当使用这个地址时,理论上所有的器件都应该发送一个应答响应。

广播呼叫地址是根据I2C协议为特定目的保留的八个地址之一。它由全0组成,且SSCIRW=0。广播呼叫使能位SSCICALLEN(SSCICTL1<7>寄存器使能时,即可识别广播呼叫地址。检测到起始位后,8位数据会移入SSCISR,同时将该地址与SSCIADD进行比较。它还会与广播呼叫地址进行比较并用硬件设定。

如果与广播呼叫地址匹配, SSCISR的值将传输到SSCIBUFR, SSCIBUF标志位(第8 位)置1,并且SSCIIF中断标志位在第9 位(ACK位)的下降沿置1。

当响应中断时,可以通过读取SSCIBUFR的内容来判断中断源。该值可以用于判断地址 是特定器件的还是一个广播呼叫地址。

在10 位模式下,需要更新SSCIADD 以使地址的后半部分匹配,同时SSCIUA 位 (SSCISTA 寄存器) 置1。如果SSCICALLEN位置1 时采样到广播呼叫地址,同时从器件被配置为10 位地址模式,则不再需要地址的后半部分,也不会将SSCIUA 位置1,从器件将在应答后开始接收数据如下图10.6所示。

图10.6 从动模式广播呼叫地址时序(7或10位地址模式)

芯旺微电子 - 110/216 - Chip**○N**

KungFu®

KF8TS2716数据手册V1.4

10.3.3 I2C 主控模式

主控模式通过固件在检测到启动条件和停止条件时产生中断来工作。停止(SSCISTOP)位和启动(SSCISTART)位在复位时或禁止SSCI模块时清零。停止(SSCISTOP)位和启动(SSCISTART)位会根据启动和停止条件翻转。当SSCISTOP位置1时,可以获得I2C总线的控制权;否则,停止(SSCISTOP)位和启动(SSCISTART)位都清零,总线处于空闲状态。

在主控模式下,SCL和SDA线通过清零相应的TR1<1:0>位来控制。输出电平始终为低电平,而与P1.<1:0>的值无关。因此当发送数据时,对于SDA线,必须将TR11置0(输出),对于SCL线,也要将TR1<0>位置0(输出)。同时SCL和SDA引脚上必须外接上拉电阻,才能使I2C模块正常工作。

下列事件会使SSCI中断标志位SSCIIF置1 (如果允许SSCI中断,则产生中断): 启动条件

- 停止条件
- 发送/接收到数据传输字节
- 应答发送
- 重复启动条件

可用从动模式空闲(SSCIMOD<3:0>=1011)或从动模式活动完成主控模式操作。当同时使能主控模式和从动模式时,需要使用软件区分中断源。

10.3.3.1 主控模式支持

通过设置SSCICTL0中的SSCIMOD<3:0>并将SSCIEN位置1可使能主控模式。一旦使能主控模式,

用户即可选择以下6 项操作:

- 1) 在SDA 和SCL 上发出一个启动条件。
- 2) 在SDA 和SCL 上发出一个重复启动条件。
- 3) 写入SSCIBUFR寄存器,开始数据/地址的发送。
- 4) 在SDA 和SCL 上产生停止条件
- 5) 将I2C 端口配置为接收数据。
- 6) 在接收到数据字节后产生应答条件。

注:

当配置为I2C主控模式时, SSCI模块不允许事件排队。例如,在启动条件结束前,不允许用户发出另一个启动条件并立即写SSCIBUFR寄存器以发起传输。这种情况下,将不会写入SSCIBUFR,SSCIWCFL 位将被置1,这表明没有发生对SSCIBUFR的写操作。图10.7 为I2C主模式框图。

图10.7 I2C主模式框图

10.3.3.2 I2C 主模式操作

所有串行时钟脉冲和启动/停止条件均由主器件产生。停止条件或重复启动条件能结束传输。因为重复启动条件也是下一次串行传输的开始,因此不会释放I2C总线。在主控发送器模式下,串行数据通过SDA输出,而串行时钟由SCL输出。发送的第一个字节包括接收器件的地址(7位)和读/写(SSCIRW)位。在这种情况下,SSCIRW位将是逻辑0。串行数据每次发送8位。每发送一个字节,会收到一个应答位。启动和停止条件的输出表明串行传输的开始和结束。

在主控接收模式下,发送的第一个字节包括发送器件的地址(7 位)和SSCIRW位。在这种情况下,SSCIRW位将是逻辑1。因此,发送的第一个字节是一个7 位从器件地址,后面跟1 表示接收。串行数据通过SDA 接收,而串行时钟由SCL 输出。每次接收8 位串行数据。每接收到一个字节,都会发送一个应答位。启动和停止条件分别表明发送的开始和结束。

在I2C模式下,在SPI 模式中使用的波特率发生器被用于将SCL时钟频率设置为100 kHz、400 kHz或1 MHz。波特率发生器的重载值位于SSCIADD寄存器的低7 位。当发生对SSCIBUFR的写操作时,波特率发生器将自动开始计数。如果指定操作完成(即,发送的最后一个数据位后面跟着ACK),内部时钟将自动停止计数,SCL 引脚将保持在其最后的状态。下面是一个典型的发送事件序列:

1) 用户通过将启动使能位STARTEN (SSCICTL1寄存器)置1产生启动条件。

芯旺微电子 - 112/216 - Chip**○N**

- 2) SSCIIF 位置1。在进行任何其他操作前, SSCI模块将等待所需的启动时间。
- 3) 用户将从器件地址装入SSCIBUFR进行发送。
- 4) 地址从SDA 引脚移出,直到发送完所有8 位为止。
- 5) SSCI模块移入来自从器件的ACK位,并将它的值写入SSCICTL1 寄存器的 SSCIACKSTA位。
- 6) SSCI模块在第9 个时钟周期的末尾将SSCIIF位置1,产生一个中断。
- 7) 用户将8 位数据装入SSCIBUFR。
- 8) 数据从SDA 引脚移出,直到发送完所有8 位为止。
- 9) SSCI模块移入来自从器件的ACK位,并将它的值写入SSCICTL1 寄存器的 SSCIACKSTA 位。
- 10) SSCI 模块在第9个时钟的末尾将SSCIIF位置1,产生一个中断。
- 11) 用户通过将停止使能位(STOPEN)位(SSCICTL1寄存器)置1产生停止。
- 12) 一旦停止条件完成,将产生一个中断。

10.3.3.3 波特率发生器

在I2C主控模式下,波特率发生器的重载值位于SSCIADD 寄存器的低7位。当装载了该值后,波特率发生器将自动开始计数并递减至0,然后停止直到下次重载为止。BRG 会在每个指令周期(TCY)中的Q2 和Q4 时钟周期上进行两次减计数。在I2C 主控模式下,会自动重载BRG。例如,在发生时钟仲裁时,BRG 将在SCL 引脚采样到高电平时重载。如图10.8和图10.9 所示。

图 10.8 波特率发生器框图

图 10.9 带有时钟仲裁的波特率发生器时序

芯旺微电子 - 113/216 - Chip**○N**

KungFu®

KF8TS2716数据手册V1.4

10.3.3.4 I2C 主控模式启动条件时序

要发起启动条件,用户应将SSCICTL1寄存器的启动条件使能位STARTEN置1。当SDA和SCL引脚都采样为高电平时,波特率发生器重新装入SSCIADD<6:0>的内容并开始计数。当波特率发生器发生超时(TBRG)时,如果SCL和SDA都采样为高电平,则SDA引脚被驱动为低电平。当SCL为高电平时,将SDA驱动为低电平就是启动条件,将使SSCISTART位(SSCISTA寄存器)置1。随后波特率发生器重新装入SSCIADD<6:0>的内容并恢复计数。当波特率发生器超时(TBRG)时,SSCICTL1寄存器的STARTEN位将自动被硬件清零。波特率发生器暂停工作,SDA线保持低电平,启动条件结束。注意:

如果在启动条件开始时,SDA和SCL引脚已经采样为低电平,或者在启动条件期间,SCL在SDA线被驱动为低电平之前已经采样为低电平,则会发生总线冲突。总线冲突中断标志位BCLIF置1,启动条件中止,I2C模块复位到空闲状态。

SSCIWCFL状态标志

当启动序列进行时,如果用户写SSCIBUFR,则SSCIWCFL被置1,同时缓冲器内容不变(未发生写操作)。

注:

由于不允许事件排队,在启动条件结束之前,不能对SSCICTL1 的低5 位进行写操作。

10.3.3.5 I2C 主控模式重复启动条件时序

将RESTARTEN位(SSCICTL1寄存器)编程为高电平,并且I2C逻辑模块处于空闲状态时,就会产生重复启动条件。当RESTARTEN位置1时,SCL引脚被拉为低电平。当SCL引脚采样为低电平时,波特率发生器装入SSCIADD<6:0>的内容,并开始计数。在一个波特率发生器计数周期(TBRG)内SDA引脚被释放(其引脚电平被拉高)。当波特率发生器超时时,如果SDA 采样为高电平,SCL引脚将被拉高。当SCL引脚采样为高电平时,波特率发生器将被重新装入SSCIADD<6:0>的内容并开始计数。SDA和SCL必须在一个计数周期TBRG内采样为高电平。随后将SDA引脚拉为低电平(SDA = 0)并保持一个计数周期TBRG,同时SCL为高电平。然后RESTARTEN位(SSCICTL1 寄存器)将自动清零,波特率发生器不会重载,SDA引脚保持低电平。一旦在SDA和SCL引脚上检测到启动条件,SSCISTART位(SSCISTA寄存器)将被置1。直到波特率发生器超时后,SSCIIF位才会置1。注:

芯旺微电子 - 114/216 - Chip**○N**

- 1) 有任何其他事件进行时,对RESTARTEN的编程无效。
- 2) 在重复启动条件期间,下列事件将会导致总线冲突:
 - 当SCL 由低电平变为高电平时,SDA 采样为低电平。
 - 在SDA 被拉低之前, SCL 变为低电平。这表示可能有另一个主器件正尝试发送数据1。
- 一旦SSCIIF 位被置1,用户便可以在7 位地址模式下将7 位地址写入SSCIBUFR,或者在10 位地址模式下写入默认的第一个地址字节。当发送完第一个8 位并接收到一个ACK后,用户可以发送另外8 位地址(10 位地址模式下)或8 位数据(7 位地址模式下)。

SSCIWCFL 状态标志

当重复启动序列进行时,如果用户写SSCIBUFR,则SSCIWCFL 被置1,同时缓冲器内容不变(未发生写操作)。

注:由于不允许事件排队,在重复启动条件结束之前,不能对SSCICTL1 的低5位进行写操作。

图10.11 I2C协议复合数据帧格式

图10.12 重复启动条件时序波形

10.3.3.6 I2C 主控模式发送

I2C 协议中 SDI 引脚上的数据不仅来源于 SSCIBUFR 寄存器,还需要按 I2C 协议的规定发送起始位、停止位、应答位等信号。图 10.13 所示是 I2C 协议典型写数据帧格式。

图 10.13 I2C 协议典型写数据帧格式

发送一个数据字节、一7位地址或一10位地址的另一半,都可以直接通过写一个值到 SSCIBUFR 寄存器来实现。该操作将使缓冲器满标志位 SSCIBUF 置 1,并且波特率发生器 开始计数,同时启动下一次发送。

在 SCL 的下降沿有效后,地址/数据的每一位将被移出至 SDA 引脚。在一个波特率发生器计满返回计数周期(TBRG)内,SCL 保持低电平。数据应该在 SCL 释放为高电平前保持有效。当 SCL 引脚被释放为高电平时,它将在整个 TBRG 中保持高电平状态。在此期间以及下一个 SCL 下降沿之后的一段时间内,SDA 引脚上的数据必须保持稳定。在第 8 位被移出(第 8 个时钟周期的下降沿)之后,SSCIBUF标志位清零,同时主器件释放 SDA。此时如果发生地址匹配或是数据被正确接收,被寻址的从器件将在第 9 位的时间以一个ACK 位响应。ACK 的状态在第 9 个时钟周期的下降沿写入 SSCIACKDAT 位。主器件接收到应答之后,应答状态位 SSCIACKSTA 会被清零;如果未收到应答,则该位被置 1。第 9个时钟之后,SSCIIF 位会置 1,主控时钟(波特率发生器)暂停,直到下一个数据字节装入SSCIBUFR 为止,SCL 引脚保持低电平,SDA 保持不变。

在写 SSCIBUFR 之后,地址的每一位在 SCL 的下降沿被移出,直至地址的所有 7 位和 SSCIRW 位都被移出为止。在第 8 个时钟的下降沿,主器件将 SDA 引脚拉为高电平以允许 从器件发出应答响应。在第 9 个时钟的下降沿,主器件通过采样 SDA 引脚来判断地址是否被从器件识别。ACK 位的状态被装入 SSCIACKSTA 状态位(SSCICTL1 寄存器)。在发送 地址的第 9 个时钟下降沿之后,SSCIIF 置 1,SSCIBUF 标志位清零,波特率发生器关闭直到下一次写 SSCIBUFR,且 SCL 引脚保持低电平,允许 SDA 引脚悬空。

SSCIBUF 状态标志

在发送模式下,SSCIBUF 位(SSCISTA 寄存器)在 CPU 写 SSCIBUFR 时置 1,在所有 8 位数据移出后清零。

SSCIWCFL 状态标志位

如果用户在发送过程中(即,SSCISR 仍在移出数据字节时)写 SSCIBUFR,则 SSCIWCFL 置 1 且缓冲器的内容保持不变(未发生写操作)SSCIWCFL 必须由软件清零。

SSCIACKSTA 状态标志

在发送模式下,当从器件发送应答响应(ACK = 0)时,SSCIACKSTA 位(SSCICTL1 寄存器)清零;当从器件没有应答(ACK = 1)时,该位置 1。从器件在识别出其地址(包括广播呼叫地址)或正确接收数据后,会发送一个应答。

注:若主机发送完一个字节后收到的应答标志位 SSCIACKSTA=1,则应及时停止传输(通过发送停止信号 STOPEN 位来实现)。

图 10.14 所示为 I2C 协议的典型写数据帧格式在单片机硬件 I2C 上的实现过程时序图。

芯旺微电子 - 116/216 - Chip**○N**

图 10.14 硬件 I2C 主模式发送数据时序图 (7 位地址)

10.3.3.7 I2C 主控模式接收

I2C主模式数据接受的系统结构与主模式数据发送系统结构相同,但是数据接收流程与数据发送流程不同。如图10.15为I2C协议典型读数据帧格式。

图10.15 I2C协议典型读数据帧格式 通过编程接收使能位SSCIRCEN(SSCICTL1寄存器)使能主控模式接收。

注: SSCIRCEN位被置1前, SSCI模块必须处于空闲状态, 否则SSCIRCEN 位将被忽略。

波特率发生器开始计数,每次计满返回时,SCL引脚的状态都发生改变(由高变低或由低变高),且数据被移入SSCISR。第8个时钟的下降沿之后,接收使能标志位自动清零,SSCISR的内容装入SSCIBUFR,SSCIBUF标志位置1,SSCIIF标志位置1,波特率发生器暂停计数,SCL保持为低电平。此时SSCI处于空闲状态,等待下一条命令。当CPU读缓冲器时,SSCIBUF标志位将自动清零。通过将应答序列使能位SSCIACKEN(SSCICTL1寄存器)置1,用户可以在接收结束后发送应答位。

芯旺微电子 - 117/216 - Chip**○N**

SSCIBUF 状态标志

接收时,当将地址或数据字节从SSCISR装入SSCIBUFR时, SSCIBUF位置1; 在读SSCIBUFR寄存器时SSCIBUF位清零

注:当读操作完成时若SSCIBUF还是1(说明SSCIBUFR上次读到的数据未被读走),会使SSCIIF接收溢出信号SSCIOV自动置位。SSCIOV必须软件清零。

SSCIOV 状态标志

接收时,当SSCISR 接收到8位数据时, SSCIOV位置1, SSCIBUF标志位已经在上一次接收时置1。

SSCIWCFL 状态标志

如果用户在接收过程中(即,SSCISR仍在移入数据字节时)写SSCIBUFR,则SSCIWCFL位置1,缓冲器内容不变(未发生写操作)

图10.16 为典型读数据帧格式在单片机硬件I2C上的实现接收过程时序图。

图10.16 I2C主模式接收数据时序图(7位地址)

10.3.3.8 应答序列时序

将应答序列使能位SSCIACKEN(SSCICTL1寄存器)置1即可使能应答序列。当该位被置1 时,SCL引脚被拉低,应答数据位的内容出现在SDA引脚上。如果用户希望产生一个应答,则应该将SSCIACKDAT位清零;否则,用户应该在应答序列开始前将SSCIACKDAT位置1。然后波特率发生器进行一个计满返回周期(TBRG)的计数,随后SCL引脚电平被拉高。当SCL引脚采样为高电平时(时钟仲裁),波特率发生器再进行一个TBRG周期的计数。然后SCL引脚被拉低。在这之后,SSCIACKEN位自动清零,波特率发生器关闭,SSCI 模块进入空闲模式。

SSCIWCFL 状态标志位

如果用户在应答序列正在进行时写SSCIBUFR, SSCIWCFL 将被置1 且缓冲器的内容保持不变(未发生写操作)。

芯旺微电子 - 118/216 - Chip**○N**

10.3.3.9 停止条件序列

在接收/发送结束时,通过置停止序列的使能位,STOPEN(SSCICTL1寄存器),SDA引脚将产生一个停止位。在接收/发送结束时,SCL引脚在第9个时钟的下降沿后保持低电平。当STOPEN位置1时,主控器件将SDA置为低电平。当SDA线采样为低电平时,波特率发生器被重新装入值并递减计数至0。波特率发生器发生超时时,SCL引脚被拉到高电平,且一个TBRG(波特率发生器计满回零)后,SDA引脚被重新拉到高电平。当SDA引脚采样为高电平且SCL也是高电平时,SSCISTOP位(SSCISTA寄存器)置1。一个TBRG周期后,STOPEN位清零且SSCIIF位置1。

SSCIWCFL 状态标志

如果用户在停止序列进行过程中试图写SSCIBUFR,则SSCIWCFL 位将置1,缓冲器的内容不会改变(未发生写操作)。

注: TBRG=一个波特率发生器周期

图10.17 应答序列时序波形

图10.18 停止条件接收或发送模式

10.3.3.10 时钟仲裁

如果在任何接收、发送或重复启动/停止条件期间,主器件拉高了 SCL 引脚(允许 SCL 引脚悬空为高电平),就会发生时钟仲裁。如果允许 SCL 引脚悬空为高电平,波特率发生器 (BRG)将暂停计数,直到实际采样到 SCL 引脚为高电平为止。当 SCL 引脚采样为高电平时,波特率发生器中将被重新装入 SSCIADD<6:0> 的内容并开始计数。这可以保证当外部器件将时钟拉低时,SCL 始终保持至少一个 BRG 计满返回周期的高电平。

图 10.19 主控发送模式下的时钟仲裁时序

KungFu®

KF8TS2716数据手册V1.4

10.3.4 多主控器模式

在多主控制器模式下,在检测到启动条件和停止条件时产生的中断可用于判断总线是否空闲。停止(SSCISTOP)位和启动(SSCISTART)位在复位时或禁止SSCI模块时被清零。停止(SSCISTOP)位和启动(SSCISTART)位会根据启动和停止条件翻转。当SSCISTOP位(SSCISTA<4>)置1时,可以获得I2C总线的控制权;否则,SSCISTOP位和SSCISTART位都清零,总线处于空闲状态。当总线处于忙状态且允许SSCI中断时,一旦发生停止条件便产生中断。

在多主控制器操作中,必须监视SDA线以确定信号电平是否为所需的输出电平。此检查 仅需在输出为高电平时进行。如果期望输出高电平,但检测到的是低电平,器件就需要释放 SDA和SCL线(TR1<1:0> 位置1)。此仲裁在以下状态可能会失败:

- 地址传输
- 数据传输
- 启动条件
- 重复启动条件
- 应答条件

当使能从动逻辑电路时,从控制器将继续接收数据。如果在地址传输阶段仲裁失败,可能表示与器件的通信正在进行中。如果寻址到器件,则将会产生一个ACK脉冲。如果在数据传输阶段仲裁失败,则器件需要在以后重新传输数据。

10.3.4.1 多主机通信,总线冲突与总线仲裁

多主机模式是通过总线仲裁来支持的。

当主器件将地址/数据位输出到 SDA 引脚时,如果一个主器件通过将 SDA 引脚悬空为高电平以在 SDA 上输出 1,而另一个主器件输出 0,就会发生总线仲裁。

如果 SDA 引脚上期望的数据是 1,而实际在 SDA 引脚上采样到的数据是 0,则发生了总线冲突。主器件将把总线冲突中断标志位 BCLIF 置 1,并将 I2C 端口复位到空闲状态。如果在发送过程中发生总线冲突,则发送停止,SSCIBUF 标志位清零, SDA 和 SCL 线被拉高,并且允许对 SSCIBUFR 进行写操作。当执行完总线冲突中断服务程序后,如果 I2C 总线空闲,用户可通过发出启动条件恢复通信。

如果在启动、重复启动、停止或应答条件的进行过程中发生总线冲突,则该条件被中止,SDA 和 SCL 线被拉高, SSCICTL1 寄存器中的对应控制位清零。当执行完总线冲突中断服务程序后,如果 I2C 总线空闲,用户可通过发出启动条件恢复通信。主器件将继续监视 SDA 和 SCL 引脚。如果出现停止条件, SSCIIF 位将被置 1。无论发生总线冲突时发送的进度如何,写 SSCIBUFR 都会从第一个数据位开始发送数据。在多主机模式下,通过在检测到启动和停止条件时产生中断可以确定总线何时空闲。SSCISTOP 位置 1 时,可以获取 I2C 总线的控制权,否则总线空闲且 SSCISTART 和 SSCISTOP 位清零。

图 10.20 发送和应答时的总线冲突时序

10.3.4.2 启动条件期间的总线冲突

启动条件期间,以下事件将导致总线冲突:

- 1) 在启动条件开始时, SDA 或 SCL 被采样为低电平。
- 2) SDA 被拉低之前, SCL 采样为低电平。

在启动条件期间, SDA 和 SCL 引脚都会被监视。如果 SDA 引脚已经是低电平,或 SCL 引脚已经是低电平,则:

- 中止启动条件,
- BCLIF 标志位置 1,
- 并将 SSCI 模块复位为空闲状态。

启动条件从 SDA 和 SCL 引脚被拉高开始。当 SDA 引脚采样为高电平时,波特率发生器装入 SSCIADD<6:0>的值并递减计数到 0。如果在 SDA 为高电平时,SCL 引脚采样为低电平,则发生总线冲突,因为这表示另一个主器件在启动条件期间试图发送一个数据 1。

如果 SDA 引脚在该计数周期内采样为低电平,则 BRG 复位,同时 SDA 线保持原值。但是,如果 SDA 引脚采样为 1。如果 SDA 引脚将在 BRG 计数结束时被置为低电平。随后波特率发生器被重新装入值并递减计数至 0。在此期间,如果 SCL 引脚采样到 0,则没有发生总线冲突。在 BRG 计数结束时, SCL 引脚被拉为低电平。

注:

在启动条件期间不会发生总线冲突是因为两个总线主器件不可能精确地在同一时刻发出启动条件。因此总是有一个主器件先于另一个主器件将SDA拉低。但是这一情况不会引起总线冲突,因为允许两个主器件对启动条件后的第一个地址进行仲裁。如果地址是相同的,将继续对数据部分、重复启动条件或停止条件进行仲裁。

芯旺微电子 - 122/216 - Chip**○N**

10.22 启动条件期间的总线冲突(SCL=0)

图10.23 启动条件期间由SDA仲裁引起的BRG复位

10.3.4.3 重复启动条件期间的总线冲突

在下列情况中, 重复启动条件期间会发生总线冲突:

- 1) 在SCL 由低电平变为高电平的过程中, SDA 采样到低电平。
- 2) 在SDA 被拉为低电平之前, SCL 变为低电平,表示另一个主器件正试图发送一个数据1。

当用户拉高SDA 并允许该引脚悬空时, BRG 中装入SSCIADD<6:0> 中的值并递减计数至0。接着SCL 引脚被置为高电平,当SCL 采样到高电平时,对SDA 引脚进行采样。

如果 SDA 为低电平,则已发生了总线冲突(即,另一个主器件正试图发送一个数据 0)。如果 SDA 采样为高电平,则 BRG 被重新装入值并开始计数。如果 SDA 在 BRG 超时之前从高电平变为低电平,则没有发生总线冲突,因为两个主器件不可能精确地在同一时刻将 SDA 拉低。

如果 SCL 在 BRG 超时之前从高电平变为低电平,且 SDA 尚未变为低电平,表示发生了总线冲突。在此情况下,在重复启动条件期间另一个主器件正试图发送一个数据 1。

如果在 BRG 超时结束时 SCL 和 SDA 都仍然是高电平,则 SDA 引脚被拉低, BRG 重新装入值并开始计数。在计数结束时,无论 SCL 引脚的状态如何, SCL 引脚都被拉低,重复启动条件结束。

芯旺微电子 - 124/216 - Chip**○N**

图 10.24 重复启动条件期间的总线冲突(情形 1)

图 10.25 重复启动条件期间的总线冲突(情形 2)

10.3.4.4 停止条件期间的总线冲突

以下事件会导致停止条件期间的总线冲突:

- 1) SDA已被拉高并允许悬空为高电平之后,SDA在BRG 超时后被采样到低电平。
- 2) SCL 引脚被拉高之后, SCL 在SDA 变成高电平之前被采样到低电平。

停止条件从SDA被拉低开始。当SDA采样为低电平时,SCL 引脚就可以悬空为高电平。 当引脚被采样到高电平时(时钟仲裁),波特率发生器中装入SSCIADD<6:0>的内容并递减 计数到0。BRG 超时后,采样SDA。如果SDA 采样到低电平,则已发生总线冲突。这是因

芯旺微电子 - 125/216 - Chip**○N**

为另一个主器件正试图发送一个数据0。如果SCL 引脚在允许SDA 悬空为高电平前被采样到低电平,也会发生总线冲突。这是另一个主器件正试图发送一个数据0 的又一种情况。

图10.26 停止条件期间的总线冲突(情形1)

图10.27 停止条件期间的总线冲突(情形2)

10.3.4.5 SSCI 屏蔽寄存器

在I2C 从动模式下,SSCI 屏蔽 (SSCIMSK)寄存器用于在地址比较操作下屏蔽SSCISR 寄存器中的值。SSCIMSK 寄存器中某位为0会使SSCISR寄存器中相应的位成为"无关位"。

此寄存器在任何复位条件发生时均复位为全1,因此,在写入屏蔽值前,它对标准SSCI操作没有影响。

必须在通过设置SSCIMOD<3:0> 位以选择I2C 从动模式(7位或10 位地址)之前对此寄存器进行初始化。只有通过SSCICTL0 的SSCIMOD<3:0> 位选择了适当的模式后才可访问此寄存器。SSCI 屏蔽寄存器在以下情况下有效:

- 7 位地址模式:与SSCIADD <7:1> 进行地址比较。
- 10 位地址模式: 仅与SSCIADD <7:0> 进行地址比较。SSP 屏蔽在接收到地址的第一个(高)字节期间无效。

10.4 SPI 模式

SPI 是一种应用很广泛的串口总线技术, 其特点主要表现在:

- ◆ 3线或者4线数据传输
- ◆ 8位传输帧格式
- ◆ 主从模式
- ◆ 时钟频率可设
- ◆ 可编程的时钟极性和相位
- ◆ 可触发中断的发送和接收标志

SPI 的原理框图如图 10.28 所示:

图 10.28 SPI 原理框图

在 SPI 模式下允许同时同步发送和接收 8 位数据。通常使用以下三个引脚来完成通信:

- ◆ 串行数据输出(Serial Data Out , SDO) ——P3.7/SDO/SEG7
- ◆ 串行数据输入(Serial Data In, SDI) ——P1.1/SDI/SDA
- ◆ 串行时钟(Serial Clock, SCK) ——P1.0/SCK/SCL
- ◆ 此外,当工作在从动模式下时可以使用第4个引脚:
- ◆ 从动选择(SS)——P3.6/SS

注意:

1) 如果使用SPI 从动模式,且CKEGE = 1,则必须使能 SS 引脚控制 (SSCICTL0<3:0>

KungFu®

KF8TS2716数据手册V1.4

= 0100) .

- 2) 当SPI 处于从动模式时,如果SS引脚设为VDD,那么SPI模块将复位。
- 3) 当SPI 处于从动模式时,SS 引脚的状态会影响从TR3<7> 位读回的状态。从SSCI 模块向P3口发送的外设输出使能信号控制从TR3<7>位读回的状态。

10.4.1 工作原理

在用户初始化SPI时,需要先通过对相应的控制位(SSCICTL0<5:0> 和 SSCISTA<7:6>) 编程来指定几个选项。这些控制位用于设置以下选项:

- ◆ 主控模式 (SCK 作为时钟输出)
- ◆ 从动模式(SCK 作为时钟输入)
- ◆ 时钟极性(SCK 的空闲状态)
- ◆ 输入数据的采样相位(数据输出时间的中间或末端)
- ◆ 时钟边沿(在 SCK 的上升沿/下降沿输出数据)
- ◆ 从动选择模式(仅用于从动模式)

SSCI 模块由一个发送/ 接收移位寄存器 SSCISR(SSCISR 是内部寄存器,程序无法直接访问)和数据缓冲寄存器(SSCIBUFR)组成。SSCISR 对要发送和接收的数据进行移位,最高有效位在前。

1) 当在接收数据时,一旦 8 位数据接收完毕,该字节就被移入 SSCIBUFR 寄存器。缓冲器满检测位 SSCIBUF (SSCISTA<0>) 和中断标志位 SSCIIF 将会被置 1,而在新数据接收完毕前,SSCIBUFR 寄存器保存的是上次写入 SSCISR 的数据。

这是一种双重缓冲数据接收方式 (SSCIBUF),它允许在 CPU 读取刚接收的数据之前,就开始接收下一个字节。但在数据发送/接收期间,任何试图写 SSCIBUFR 寄存器的操作都会被忽略,并且写冲突检测位 SSCIWCFL (SSCICTL0<7>) 会置 1。此时用户必须用软件将 SSCIWCFL 位清零,否则无法判别以后对 SSCIBUF 的写操作是否成功。

2) 当在发送数据时,为了确保应用软件能有效地接收数据,应该在要发送的下一数据字节被写入SSCIBUFR 之前,读取SSCIBUFR中现有的数据。

缓冲器满标志位SSCIBUF(SSCISTA<0>)指出将接收到的数据装入SSCIBUFR(发送完成)的时间。当SSCIBUFR中的数据被读取后,SSCIBUF位即被清零。如果SPI仅仅作为一个发送器,则不必理会接收的数据。通常,可用SSCI中断来判断发送和接收完成的时间。必须读取/写入SSCIBUFR。如果不打算使用中断,用软件查询的方法同样可确保不会发生写冲突。

注:不能直接读写SSCISR寄存器,只能通过寻址SSCIBUFR寄存器来访问。此外,SSCI 状态寄存器(SSCISTA)指示各种状态条件。

10.4.2 使能 SPI/IO 与外部链接

要使能串行端口, SSCI 使能位 SSCIEN (SSCICTL0<5>)必须置 1。如果要复位或

重新配置 SPI 模式,要先将 SSCIEN 位清零,重新初始化 SSCICTLO 寄存器,然后将 SSCIEN 位置 1。这将把 SDI、SDO、SCK 和 SS 引脚配置为串行端口引脚。要让上述引脚用于串行端口功能,必须正确设置它们的数据方向位(在 TR3 寄存器中)。即:

- ◆ SDI , 必须将 TR1<1>置 1 (由 SPI 模块自动控制)
- ◆ 对于SDO,必须将TR3<7>清零
- ◆ 对于SCK (主控模式),必须将TR1<0>清零
- ◆ 对于SCK (从动模式),必须将TR1<0>置1
- ◆ 对于**SS**, 必须将TR3<6>置1。

对于不需要的任何串行端口功能,可通过将对应的数据方向 TRx 寄存器设置为相反值来屏蔽。

10.4.3 典型连接

下图10.29给出了两个单片机之间的典型连接。主控制器(处理器1)通过发送SCK信号来启动数据传输。在两个处理器的移位寄存器之间,数据在编程设定的时钟边沿被传送,并在相反的时钟边沿被锁存。必须将两个处理器的时钟极性(SSCICKP)设置为相同,这样两个处理器就可以同时收发数据。数据是否有效,取决于应用软件。这就导致以下三种数据传输情形:

- ◆ 主控制器发送数据 从控制器发送无效数据
- ◆ 主控制器发送数据 从控制器发送数据
- ◆ 主控制器发送无效数据 从控制器发送数据

图 12.29 SPI 主从控制器连接

10.4.4 主模式

因为由主控制器控制 SCK 信号,所以它可以在任意时刻启动数据传输。主控制器根据软件协议确定从控制器(图 10.29 中的处理器 2)应在何时广播数据。在主控模式下,数据一旦写入 SSCIBUFR 寄存器就开始发送或接收。如果只打算将 SPI 作为接收器,则可以禁

芯旺微电子 - 130/216 - Chip**○N**

止 SDO 输出(将其编程设置为输入)。SSCISR 寄存器按设置的时钟速率,对 SDI 引脚上的信号进行连续移位输入。每收到一个字节,就将其装入 SSCIBUFR 寄存器,就像接收到普通字节一样(中断和状态位相应置 1)。

可通过对SSCICKP位(SSCICTL0<4>)进行适当的编程来选择时钟极性。图10.30、图 10.31、图10.32 和图10.33将给出SPI通信的时序图,其中首先发送的是最高有效位。在主控模式下,SPI 时钟速率(波特率)可由用户编程设定为下面几种方式之一:

- SCLK/2
- SCLK/4
- SCLK/16
- SCLK/64

下图10.30 给出了主控模式的波形图。当CKEGE位置1 时,SDO数据在SCK出现时钟边沿前一直有效。图中所示的输入采样的变化由SAMPLE(SSCISTA<7>)状态位反映。图中给出了将接收到的数据装入SSCIBUFR的时间。

图 10.30 SPI 主控模式时序图

10.4.5 从模式

10.4.5.1 从动模式

在从动模式下,当SCK引脚上出现外部时钟脉冲时发送和接收数据。当最后一位数据被锁存后,中断标志位SSCIIF置1。在从动模式下,外部时钟由SCK引脚上的外部时钟源提供。

芯旺微电子 - 131/216 - Chip**○N**

外部时钟必须满足电气规范中规定的高电平和低电平的最短时间要求。在休眠状态下,从控制器仍可发送/接收数据。当接收到一个字节时,器件从休眠状态唤醒。当有接收数据送到SSCIBUFR后,SSCIBUF信号也会置1。当读取SSCIBUFR后SSCIBUF会自动清零。但有SSCIIF信号,一般情况下就不使用SSCIBUF来判断SSCIBUFR是否有数据了。当SSCIIF置1且SSCIBUF置1时,应立即读取SSCIBUFR中的数据,否则会出现数据丢失。

10.4.5.2 从动选择同步

SS 引脚允许器件工作于同步从动模式。SPI必须处于从动模式,并使能SS 引脚控制 (SSCICTL0<3:0>=0100)。要让 SS 引脚充当输入端,则不能将此引脚驱动为低电平。数据锁存器必须为高电平。当 SS 引脚为低电平时,使能数据的发送和接收,同时驱动SDO引脚。当SS 引脚变为高电平时,即使是在字节的发送过程中,SDO引脚也不再被驱动,而是变成悬空输出状态。根据应用的需要,可在SDO引脚上外接上拉/下拉电阻。注意:

- 1) 当**SPI**处于从动模式,并且**SS**引脚控制使能(**SSCICTL**0<3:0> = 0100)时,如果 **SS**引脚置为**VDD**电平将使**SPI**模块复位。
- 2) 如果SPI工作在从动模式下并且CKEGE置1,则必须使能^{SS}引脚控制。

当SPI模块复位时,位计数器被强制为0。这可以通过强制将 SS 引脚拉为高电平或将 SSCIEN位清零实现。将SDO引脚和SDI引脚相连,可以仿真二线制通信。当SPI需要作为接收器工作时, SDO引脚可以被配置为输入端。这样就禁止了从SDO发送数据。因为SDI不会引起总线冲突,因而总是可以将其保留为输入(SDI功能)。

芯旺微电子 - 132/216 - Chip**○N**

图10.31 从动时序图

图10.32 SPI模式时序图(从动模式且CKEGE=0)

图 10.33 SPI 模式时序图 (从动模式且 CKEGE=1)

10.4.6 休眠模式和复位

休眠模式下的工作

在主控模式下,进入休眠模式后所有模块的时钟都停振,在器件被唤醒前,发送/接收 也将保持原先的状态。在器件恢复正常工作模式后,模块将继续发送/接收数据。

在从动模式下, SPI发送/接收移位寄存器与器件异步工作。这可以使器件在休眠状态时,仍可使数据被移入SPI发送/接收移位寄存器。当接收完8位数据后,SSCI中断标志位将置1,如果此时该中断是允许的,还将唤醒器件。

复位的影响

复位会禁止SSCI模块并终止当前的数据传输。

10.4.7 SPI 四种工作模式设置

10.4.7.1 主控发送工作流程

主要步骤:

- 1、通过 SSCIMOD<3:0>确定 SPI 主控方式
 - 0000:SPI 主控方式, 时钟=SCLK/4
 - 0001:SPI 主控方式, 时钟=SCLK/16
 - 0010:SPI 主控方式, 时钟=SCLK/64
 - 0011: 保留
- 2、 通过寄存器 SSCICTLO 的 SSCICKP 和寄存器 SSCISTA 的 CKEGE 选择时钟与数据的时

KungFu®

KF8TS2716数据手册V1.4

序关系:

- 3、将相应的引脚 SDO 引脚设置为输出, SCK 引脚设置为输出;
- 4、置1 SSCIEN 位,使能 SSCI 模块;
- 5、此时 SSCIIF 清零,将要发送的数据写到 SSCIBUFR 寄存器;
- 6、当一个字节发送完毕 SSCIIF 自动置 1 (软件清零),如果需要中断,则使能相应中断使能位;

10.4.7.2 从动接收工作流程

主要步骤:

- 1、通过 SSCIMOD<3:0>确定 SPI 从动方式;
 - 0100:SPI 从动模式,时钟由 SCK 引脚输入,使能 SS 引脚功能,此时要设置 SS 引脚为输入口
 - 0101:SPI 从动模式,时钟由 SCK 引脚输入,关闭 SS 引脚功能, SS 被用作普通 I/O 引脚
- 2、通过寄存器 SSCICTL0 的 SSCICKP 和寄存器 SSCISTA 的 CKEGE 选择时钟与数据的时序关系;与主控方的时钟时序要一致;

注意:当 CKEGE 为 1 时,只有信号 SS 为低电平,从动端才会接收数据,否则从动端不工作: SS 信号都来源于主控方。

将相应的引脚 SDI 引脚设置输入,SCK 引脚设置为输入;使能 SS 引脚功能,此时要设置 SS 引脚为输入口;

- 3、置1 SSCIEN 位, 使能 SSCI 模块;
- 4、当接受到一个字节的数据后, SSCIIF 自动置 1 (软件清零), SSCIBUF 置 1, 应立即读取 SSCIBUFR 的值;
- 5、如果需要中断,则使能相应的中断使能位;

10.4.7.3 主控接收工作流程

主要步骤:

- 1、通过 SSCIMOD<3:0>确定 SPI 主控方式
 - 0000:SPI 主控方式, 时钟=SCLK/4
 - 0001:SPI 主控方式, 时钟=SCLK/16
 - 0010:SPI 主控方式, 时钟=SCLK/64
 - 0011:SPI 主控方式,时钟=T2 输出/2
- 2、通过寄存器 SSCICTL0 的 SSCICKP 和寄存器 SSCISTA 的 CKEGE 选择时钟与数据的时序关系:

- 3、将相应的引脚 SDI 引脚设置输入, SCK 引脚设置为输出;
- 4、置1 SSCIEN 位, 使能 SSCI 模块:
- 5、当接受到一个字节的数据后,SSCIIF 自动置 1 (软件清零),SSCIBUF 置 1,应立即读取 SSCIBUFR 的值;
- 6、如果需要中断,则使能相应的中断使能位;

10.4.7.4 从动发送工作流程

主要步骤:

- 1、通过 SSCIMOD<3:0>确定 SPI 主控方式;
 - 0100:SPI 从动模式,时钟由 SCK 引脚输入,使能 SS 引脚功能,此时要设置 SS 引脚为输入口
 - 0101:SPI 从动模式,时钟由 SCK 引脚输入,关闭 SS 引脚功能, SS 被用作普通 I/O 引脚
- 2、通过寄存器 SSCICTL0 的 SSCICKP 和寄存器 SSCISTA 的 CKEGE 选择时钟与数据的时序关系;
- 3、将相应的引脚 SDO 引脚设置为输出,SCK 引脚设置为输入;如果使能 SS 引脚功能,此时要设置 SS 引脚为输入口;
- 4、置1 SSCIEN 位,使能 SSCI 模块;
- 5、此时 SSCIIF 清零,将要发送的数据写到 SSCIBUFR 寄存器;
- 6、当一个字节发送完毕 SSCIIF 自动置 1 (软件清零),如果需要中断,则使能相应中断使能位;

芯旺微电子 - 136/216 - Chip**○N**

11 通用全双工/ 半双工收发器 (USART)

11.1 系统概述

KF8TS2716包含1个通用全双工/半双工收发器USART。

USART 是 Universal Synchronous /Asynchronous Receive & Transmit 的缩写,它的中文名称是通用同步/异步收发器,又称通用全双工/半双工收发器。本文称作通用全双工/半双工收发器。这是一个串口通信的 I/O 外设,也可作为串行通信接口。它可被配置为与个人计算机等外设通信的全双工异步系统。也可以被配置为与外设或其它单片机通信的半双工同步系统,与之通信的单片机通常不具有产生波特率的内部时钟,它需要主控同步器件提供外部时钟信号。

USART 模块可以实现如下功能:自动波特率检测和校准、接收单个字符时唤醒和发送13 位间隔字符,从而保证该模块可以用于居于互联网络(Local Interconnect Newxork,LIN)总线系统。

11.1.1 相关寄存器

地址 寄存器 位 7 位 6 位 5 位 4 位 3 位 2 位 1 位 0 AIE/ PUIE/ 0BH INTCTL T0IE INT0IE P0IE T0IF INT0IF P0IF AIEH AIEL EIF2 0DH T3IF **RCIF** TXIF **BCLIF** SSCIIF 2DH EIE2 T3IE RCIE TXIE **BCLIE** SSCIIE 24H IP2 PT3 PRC PTX **PBCL PSSCI** RSCTL SPEN ADREN **OVFER** RX9D 120H RX9 SRXEN **CRXEN FRER** TXSDR 121H USART 发送数据寄存器 122H **RXSDR** USART 接收数据寄存器 123H BRCTL ABRDOVF RCIDLF **SCKPS** BRG16 WUEN ADRBEN 124H **TSCTL CSRS** TX9 TXEN SYNC SENDB **HBRG** TXSRS TX9D 125H **EUBRGL** USART 波特率数据寄存器低字节 126H **EUBRGH** USART 波特率数据寄存器高字节

表 11-1 相关寄存器

11.1.2 原理框图

图 11.1 USART 模块框图

从图 13.1 中可以看出,通用全双工/半双工收发器(USART)模块包括波特率发生器 (BRG)、数据发送和数据接收这三部分,每个部分都有相应的寄存器设置,主要包括波特率控制寄存器 BRCTL、发送状态和控制寄存器 TSCTL、接收状态和控制寄存器 RSCTL。

在波特率发生器这部分,通过设置 SYNC、HBRG 和 BRG16 位来进行选择设置 {EUBRGH: EUBRGL}寄存器的值来配置波特率。详细见"11.2 波特率发生器"。

在数据发送部分,包括全双工异步发送和半双工同步发送,通过发送状态和控制寄存器 TSCTL 来控制实现相应的功能。详见"11.3 及 11.4"。

在数据接收部分,包括全双工异步接收和半双工同步接收,通过接收状态和控制寄存器 RSCTL 来控制实现相应的功能。详见"11.3 及 11.4"。

USART 有如下功能特点:全双工异步发送和接收、RS485 检测、双字节输入缓冲器、单字节输出缓冲器、可将字符长度编程为 8 位或 9 位、输入缓冲溢出错误检测、接收到字符的帧错误检测、半双工同步主控/从动模式和半双工同步模式下可编程时钟极性。

USART 模块还可实现如下附加功能,从而使其成为局域互联网络总线系统的理想选择:自动波特率检测、校准和 13 位间隔字符发送。

芯旺微电子 - 138/216 - Chip**○N**

11.2 波特率发生器

波特率发生器(BRG)是 8 位或者 16 位定时器,专用于支持全双工和半双工 USART 操作,默认情况下,BRG工作在 8 位模式。波特率发生器选用 SCLK 作为工作时钟。将 BRCTL 寄存器的 BRG16 位置 1 可选择 16 位模式。

{EUBRGH: EUBRGL}寄存器决定运行波特率定时器的周期。在全双工模式下,波特率周期的乘数由 TSCTL 寄存器的 HBRG 位和 BRCTL 寄存器的 BRG16 位决定。在半双工同步模式下,HBRG 位被忽略。

图 11.2 USART 目标波特率产生原理框图

11.2.1 相关寄存器

11.2.1.1 USART 波特率控制寄存器 BRCTL

寄存器11.1: BRCTL: 波特率控制寄存器(地址:123H)

ABRDOVF: 自动波特率检测溢出位

全双工异步模式:

1 = 自动波特率定时器溢出 0 = 自动波特率定时器没有溢出

半双工同步模式:

无关位

RCIDLF: 接收空闲标志位

全双工异步模式: 1 = 接收器空闲

0 = 已接收到起始位且接收器正在接收

半双工同步模式:

无关位

SCKPS: 半双工同步时钟极性选择位

全双工异步模式:

无关位

半双工同步模式:

1 = 数据在时钟上升沿同步 0 = 数据在时钟下降沿同步

BRG16: 16 位波特率发生器位

1 = 使用 16 位波特率发生器 0 = 使用 8 位波特率发生器

WUEN: 唤醒使能位

全双工异步模式:

1 = 接收器正在等待下降沿,不会接收字符, RCIF 将被置 1,当 RCIF 置 1 后

WUEN 将被自动清零。 0 = 接收器正常工作 半双工同步模式:

无关位

ABRDEN: 自动波特率检测使能位

全双工异步模式:

1 = 使能自动波特率模式(完成自动波特率后清零)

0 = 禁止自动波特率模式

半双工同步模式:

无关位

图注: R=可读 W=可写 -=未用 U=未实现位

注: WUEN、ABDREN 这两位必须在 RSCTL 寄存器的 SPEN 位置 1 后才能写入。

11.2.2 波特率的选择

波特率的选择与状态位 SYNC、BRG16 和 HBRG 有关,还与工作定时器 8 位或 16 位、 半双工同步或全双工都有关系。

波特率的计算公式为:

目标波特率 =
$$\frac{SCLK}{m \times ([EUBRGH : EUBRGL] + 1)}$$

其中 m 为倍频器选择,分别为 4、16 和 64,它与状态位 SYNC、BRG16 和 HBRG 有关,并且与工作的定时器 8 位还是 16 位,半双工或全双工有一定的关系。表 13-2 列出了 m 选

择表。

表 11-2 倍频器 m 选择表

配置位			BRG/USART 模式	倍频器 m
SYNC	BRG16	HBRG		
0	0	0	8 位/异步	64
0	0	1	8 位/异步	16
0	1	0	16 位/异步	
0	1	1	16 位/异步	
1	0	X	8 位/同步	1
1	1	X	16 位/同步	T

注: x 为无关位

例 11.1 是确定波特率和波特率误差的计算示例。

例 11.1: 计算波特率误差

器件工作在时钟频率 = 16MHz, 目标波特率 = 9600, 全双工异步模式, 8 位 BRG:

目标波特率 =
$$\frac{\text{SCLK}}{m \times ([\text{EUBRGH}: \text{EUBRGL}]+1)}$$
, 求解 EUBRGH:EUBRGL。

$$X = \frac{\text{SCLK}}{\frac{1}{64}} - 1$$

$$=\frac{\frac{16000000}{9600}}{64}-1$$

= 25.042

= 25 十进制数

= 19H 十六进制数

计算波特率 =
$$\frac{16000000}{64(25+1)}$$

= 9615

$$=\frac{(9615-9600)}{9600}$$
$$=0.16\%$$

各种全双工异步模式的典型波特率和误差值已经计算出来,见<u>附录 5</u>的表格所示。 使用高波特率(HBRG = 1)或 16 位 BRG(BRG16 = 1)有助于降低波特率误差。16 位 BRG 模式用于在高速振荡器频率下取得较缓慢的波特率。

将新值写入{EUBRGH:EUBRGL}寄存器对将导致 BRG 定时器复位(或清零)。这可以确保 BRG 无需等待定时器溢出就可以输出新的波特率。

如果在有效接收操作过程中更改工作时钟,可能会导致接收错误或数据丢失。为避免此问题,应检查 RCIDLF 位的状态,以确保在更改工作时钟前接收操作处于空闲状态。

11.2.3 自动波特率检测

USART 模块支持自动波特率检测和校准。

在自动波特率检测(Auto-Baud Rate Detect, ABRD)模式下,BRG 不为 RX 输入提供时钟信号,而是由 RX 为 BRG 定时。波特率发生器用于为接收的 0X55("U"的 ASCII 码)定时,0X55 是 LIN 总线的同步字符。此字符的特殊之处在于它具有包括停止位边沿在内的5 个上升沿。

将 BRCTL 寄存器的 ABRDEN 位置 1 将启动自动波特率校验序列(图 11.3)。当发生 ABRD 序列时,USART 状态机保持在空闲状态。在接收线的第一个上升沿(起始位之后),EUBRGL 使用 BRG 计数器时钟递增计数,如表 11-4 所示。在第 8 位周期的末尾将在 RX 引脚上出现第 5 个上升沿。此时,对正确的 BRG 周期的累计值被留在 EUBRGH 和 EUBRGL 寄存器中,ABRDEN 位被自动清零而 RCIF 中断标志被置 1。要清除 RCIF 中断,需要读取 RXSDR 中的值。RXSDR 的内容应该被丢弃。校准不使用 EUBRGH 寄存器的模式时,用户可通过查询 EUBRGH 寄存器中的 0X00 验证 EUBRGL 寄存器是否未溢出。

BRG 自动波特率时钟由 BRG16 和 HBRG 位决定,如表 13-4 所示。在 ABRD 期间,EUBRGH 和 EUBRGL 寄存器共同用作 16 位计数器,这与 BRG16 位的设置无关。在校准波特率周期时,EUBRGH 和 EUBRGL 寄存器的定时频率为 BRG 基时钟频率的 1/8。得到的字节测量结果为全速下的平均位时间。

- 注: 1、如果WUEN位和ABRDEN位都置1,自动波特率检测将发生在间隔字符之后的字节处
 - 2、需要由用户来判断输入字符的波特率是否处于所选BRG时钟源范围内。某些振荡器频率和USART波特率组合不可能实现。
 - 3、在自动波特率过程中,自动波特率计数器从1开始计数。自动波特率序列完成后,为了得到最准确的结果,应从EUBRGH:EUBRGL寄存器对的值中减去1。

BRG16	HBRG	BRG 基时钟	BRG ABRD 时钟
0	0	工作时钟/64	工作时钟/512
0	1	工作时钟/16	工作时钟/128
1	0	工作时钟/16	工作时钟/128
1	1	工作时钟/4	工作时钟/32

表 11-4 BRG 计数器时钟速率

注: 在ABRD序列期间,EUBRGL和EUBRGH寄存器都用作16位计数器,与BRG16的设置无关。

图 11.3 自动波特率检测

11.2.4 接收间隔字符时自动唤醒

在休眠模式下,USART 的所有时钟都会停止,此时波特率发生器处于无效状态,无法进行正确的字符接收。自动唤醒功能允许在 RX/DT 线上活动时唤醒控制器。只有 USART 工作在异步模式下时才可以使用该功能。

通过将 BRCTL 寄存器的 WUE 位置 1,使能自动唤醒功能,置 1 后,将禁止 RX/DT 上的正常序列的接收,并且 USART 保持在空闲状态,监视唤醒事件,监视行为与 CPU 的工作模式无关。唤醒事件是指 RX/DT 线上从高电平到低电平的转换,这与同步间隔字符或与 LIN 协议唤醒信号字符的启动条件一致。

在检测到唤醒事件时,将会产生一个 RCIF 中断。在 CPU 正常工作的模式下,中断会与 Q 时钟同步产生;如果器件处于休眠模式,则两者不同步。可通过读 RXSDR 寄存器清除中断条件。

当 RX 线从低电平向高电平转换时, WUE 会被清零,这就意味着"同步间隔"事件结束。 此时, USART 会处于空闲模式,等待接收下一字符。

为避免错误,需要注意以下事项。

(1) 间隔字符

为了避免唤醒事件期间的字符错误或字符分段,唤醒字符必须为全零。

如果使能唤醒功能,无论数据的低电平持续时间的长短,该功能都可以起作用。如果将 WUE 位置 1,且收到一个有效的非零字符,则从起始位到第一个上升沿之间的低电平时间 被解释为唤醒事件,而后续的字符将会当被接收,导致帧错误或溢出错误。

因此,使用唤醒功能时,发送的初始字符必须全为 0,且持续时间必须为 10 个或更多数据位的发送时间。针对 LIN 总线建议为 13 个位时间,而对于标准的 RS-232 器件可为任

芯旺微电子 - 143/216 - Chip**○N**

意数量的位时间。

(2) 振荡器的起振时间

在使用自动唤醒时还需要考虑振荡器的起振时间。"同步间隔"(或唤醒信号)字符必须足够长,并且跟由足够长的时间间隔,使选定的振荡器有足够的时间起振并使 USART 正确初始化。

(3) WUE 位

唤醒事件会产生接收中断,将 RCIF 位置 1。在 RX/DT 的上升沿,由硬件清零 WUE 位。通过在软件中读 RXSDR 寄存器清除中断条件。

要保证没有丢失数据,在将 WUE 位置 1 前,应检查 RCIDL 位,以验证是否正在进行接收。如果不是在进行接收,则可将 WUE 置 1,时器件立即进入休眠模式。

图 11.4 正常工作下的自动唤醒时序

图 11.5 休眠模式下的自动唤醒时序

11.2.5 间隔符时序

USART 模块能够发送符合 LIN 总线标准的特殊间隔字符序列。发送的间隔字符包括 1 个起始位,后面跟着 12 个 0 位和一个停止位。

要发送间隔字符,要先将 TXEN 值 1,然后再将 SENDB 位置 1(SENDB 位需要在 TXEN 位为 1 的时候才能写入),之后对 TXSDR 寄存器的写操作将会启动间隔字符的发送。此时写入 TXSDR 的数据会被忽略,并会发送全 0.

在发送了相应的停止位之后,硬件会自动将 SENDB 位清零。这样用户可以在发送完间隔字符(在 LIN 规范中通常时同步字符)后将下一个要发送的字节预先装入发送 FIFO 中。

芯旺微电子 - 144/216 - Chip**○N**

TXCTL 寄存器中的 TXSRS 位则表明发送正在进行还是处于空闲状态。

11.2.5.1 间隔和同步发送序列

以下序列会发送一个报文帧头,包含一个间隔字符和其后的自动波特率同步字节。此序列适用于典型的 LIN 总线器件。

- 1、将 USART 配置为所需的模式
- 2、将TXEN位置1
- 3、将 SENDB 位置 1,设置间隔字符(SENDB 需要在 TXEN 为 1 的时候才能写入)
- 4、将无效字符装入 TXSDR 寄存器, 启动发送(该值会被忽略)
- 5、将55H写入TXSDR中,以便把同步字符装入发送FIFO缓冲中
- 6、间隔字符发送后,硬件会将 SENDB 位复位。开始发送同步字符

当 TXIF 指示 TXSDR 为空时,下一个数据会写入 TXSDR 中。

11.2.5.2 接收间隔字符

USART 接收间隔字符有两种方法。

第一种检测间隔字符的方法是使用 RXCTL 寄存器的 FRER 位和 RXSDR 指示接收的数据。假设已将波特率发生器初始化成预期的波特率。当

- RCIF 位置 1
- FRER 位置 1
- RXSDR 为 00H 时

表明接收到了间隔字符

第二种方法是使用自动唤醒功能。通过使能此功能,USART将采样RX/DT上电平的下两个跳变,产生一个RCIF中断,接收下一个数据字节,之后产生另一个中断。

注意,在间隔字符后,用户通常希望使能自动波特率检测功能。无论使用哪种方法,用户都可以在 USART 进入休眠模式之前,将 BRCTL 寄存器的 ABDEN 位置 1.

图 11.6 发送间隔字符时序

11.3 USART 全双工模式

在全双工异步通信中,数据是一帧一帧传送的,每一帧的数据格式如图 11.7 所示。

图 11.7 全双工异步通信数据结构图

在帧格式中,一个字符由4部分组成:起始位,数据位,奇偶校验位和停止位。

起始位:通常情况下是逻辑 0,占用一位,用来通知接收设备一个等待接收字符的开始。数据位:8位。

奇偶校验位: bit8,占用一位,但在字符中可以规定不用奇偶校验位,则这一位可以省去。

停止位:一定为逻辑 1,用来表征字符的结束。停止位可以是 1 位、1.5 位或 2 位。接收端收到停止位后,知道上一字符已经传送完毕,同时,也为接收下一字符作好准备——只要在接收到 0,就是新字符的起始位。若停止位以后不再紧接着传送下一个字符,则使线路电平保持为高电平(逻辑 1),处于空闲状态。这也是全双工异步通信的一大特点。

最常用的数据格式为 8 位。每个发送位的持续时间为 1/(波特率)。片上专用 8 位/16 位 波特率发生器可用于三种时钟信号和四种时钟源。请参见表 11-2 了解波特率配置示例。

USART 首先发送和接收低位。USART 的发送器和接收器在功能上是相互独立的,但采用相同的数据格式和波特率。硬件不支持奇偶校验,但可以用软件实现(奇偶校验位是第9个数据位)。

图 11.8 串口通信原理框图

KungFu®

KF8TS2716数据手册V1.4

11.3.1 USART 全双工发送操作

USART 全双工异步发送操作通过 USART 发送器完成。发送器的核心是串行发送移位 寄存器(发送移位),该寄存器不能由软件直接访问。发送移位寄存器从 TXSDR 发送缓冲寄存器获取数据。

通过配置如下三个控制位使能 USART 发送器,以用于全双工异步操作:

- 1) TXEN= 1
- 2) SYNC = 0
- 3) SPEN= 1

假设所有其它 USART 控制位处于其默认状态。将 TSCTL 寄存器的 TXEN 位置 1,使能 USART 发送器电路。将 TSCTL 寄存器的 SYNC 位清零,将 USART 配置用于全双工异步操作。将 RSCTL 寄存器的 SPEN 位置 1,使能 USART 并自动将 TX/CK 的 I/O 引脚配置为输出引脚。如果与模拟外设共用 TX/CK 引脚,必须清零相应的 ANSEL 位禁止模拟 I/O 功能。

注: 1、 将SPEN位置1 会自动将RX/DT I/O

引脚配置为输入引脚时,无论相关的TR位的状态如何以及USART接收器使能与否。可以通过普通端口读RX/DT

引脚数据,但却无法使用该端口锁存输出数据。

2、 如果TXEN 使能位置1, TXIF 发送器中断标志位会置1。

11.3.1.1 发送和控制状态寄存器 TSCTL

寄存器13.2:TSCTL: 发送状态和控制寄存器(地址:124H)

	bit7							bit0	_
复位值 0000 0010	CSRS	TX9	TXEN	SYNC	SENDB	HBRG	TXSRS	TX9D	
•	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	

CSRS: 时钟源选择位

全双工异步模式:

无关位

半双工同步模式:

1 = 主模式(由 BRG 内部产生时钟)

0 = 从模式(时钟源来自外部)

TX9: RS485 发送使能位

1 = 选择 RS485 发送

0 = 选择 8 位发送

TXEN: 发送使能位

1 = 使能发送

0 = 禁止发送

SYNC: 串行通信模式选择位

1 = 半双工同步模式

0 = 全双工异步模式

SENDB: 发送间隔字符位

全双工异步模式:

1 = 在下一次发送时发送同步间隔字符(完成后由硬件清零)

0 = 同步间隔字符发送完成

半双工同步模式:

无关位

HBRG: 高波特率选择位

全双工异步模式:

1= 高速

0 = 低速

半双工同步模式: 在此模式下不使用

TXSRS: 发送移位寄存器状态位

及及砂位司行船状态 1 = 发送移位空

0 = 发送移位满

TX9D: 发送数据的第9位

可以是地址/数据位或奇偶校验位。

图注: R=可读 W=可写 -=未用 U=未实现位

注: 在同步模式下, SRCEN/CRCEN 可改写 TREN。

11.3.1.2 发送数据

向 TXSDR 寄存器写入一个字符,以启动发送。如果这是第一个字符,或者前一个字符已经完全从发送移位寄存器中移出,TXSDR 中的数据会立即发送给发送移位寄存器。如果发送移位寄存器中仍保存全部或部分前一字符,新的字符数据将保存在 TXSDR 中,直到发送完前一字符的停止位为止。然后,在停止位发送完毕后经过一个发送周期,TXSDR 中待处理的数据将被传输到发送移位寄存器。当数据从 TXSDR 传输至发送移位寄存器后,立即开始进行起始位、数据位和停止位序列的发送。

只要使能 USART 发送器且 TXSDR 中没有待发送数据,就将 EIF2 寄存器的 TXIF 中断标志位置 1。换句话说,只有当发送移位寄存器忙于处理字符和 TXSDR 中有排队等待发送的新字符时,TXIF 位才处于清零状态。写 TXSDR 时,不立即清零 TXIF 标志位。TXIF 在写指令后的第 2 个指令周期清零。在写 TXSDR 后立即查询 TXIF 会返回无效结果。TXIF 为只读位,不能由软件置 1 或清零。

可通过将 EIE2 寄存器的 TXIE 中断允许位置 1 允许 TXIF 中断。然而,只要 TXSDR 为空,不管 TXIE 允许位的状态如何都会将 TXIF 标志位置 1。

如果要在发送数据时使用中断,只在有待发送数据时,才将 TXIE 位置 1。当将待发送的最后一个字符写入 TXSDR 后,将 TXIE 中断允许位清零。

TSCTL 寄存器的 TXSRS 位指示发送移位寄存器的状态。TXSRS 位为只读位。当发送移位寄存器为空时,TXSRS 位被置 1,当有字符从 TXSDR 传输到发送移位寄存器时,TXSRS 被清零。TXSRS 位保持清零状态,直到所有位从发送移位寄存器移出为止。没有任何中断逻辑与该位有关,所以用户必须查询该位来确定发送移位寄存器的状态。

11.3.1.3 全双工发送的设置

- 1. 初始化EUBRGH和EUBRGL这对寄存器以及HBRG和BRG16位,以获得所需的波特率(见第13.2节"波特率发生器(BRG)")。
- 2. 通过将SYNC位清零并将SPEN位置1使能全双工异步串口。
- 3. 如果需要9位发送,将TX9控制位置1。当接收器被设置为进行地址检测时,将数据位的第9位置1,指示8个最低数据位为地址。
- 4. 将TXEN控制位置1, 使能发送; 这将导致TXIF中断标志位置1。
- 5. 如果需要中断,将EIE2寄存器中的TXIE中断允许位置1;如果 INTCTL寄存器的AIE和PUIE 位也置1将立即产生中断。
- 6. 若选择发送9位数据, 第9位应该被装入TX9D数据位。
- 7. 将8位数据装入TXSDR寄存器开始发送数据。

```
例11.2 发送数据
SET TSCTL,TXEN
MOV R1, UART_TEMP
MOV TXSDR, R1
NOP
NOP
NOP
JB TSCTL,TXSRS;判断是否发生完毕?
JMP $-3
```


图 13.9 全双工异步发送(两字符间有空闲位)

图 13.10 全双工异步发送(一字符接一字符)

11.3.2 USART 全双工接收操作

全双工异步接收模式通常用于 RS-232 系统。图 11.1 给出了接收器的框图。在 RX/DT 引脚上接收数据和驱动数据恢复电路。数据恢复电路实际上是一个以 16 倍波特率为工作频率的高速移位器,而串行接收移位寄存器(ReceiveShift Register,RSR)则以波特率工作。当字符的全部 8 位或 9 位数据位被移入后,立即将它们传输到一个 2 字符的先入先出(FIFO缓冲器)缓冲器。FIFO缓冲器允许接收 2 个完整的字符和第 3 个字符的起始位,然后必须由软件将接收到的数据提供给 USART 接收器。FIFO 缓冲器和 RSR 寄存器不能直接由软件访问。通过 RXSDR 寄存器访问接收到的数据。

通过配置如下三个控制位使能 USART 接收器,以用于全双工异步接收操作。

- ◆ CRXEN= 1
- ightharpoonup SYNC = 0
- **♦** SPEN= 1

假设所有其它 USART 控制位都处于默认状态。将 RSCTL 寄存器的 CRXEN 位置 1,使能 USART 接收器电路。将 TSCTL 寄存器的 SYNC 位清零,配置 USART 以用于全双工异步操作。将 RSCTL 寄存器的 SPEN 位置 1,使能 USART 并自动将 RX/DT 引脚配置为输入引脚。如果 RX/DT 引脚与模拟外设共用,必须清零相应的 ANSEL 位禁止模拟 I/O 功能。

注: 当将SPEN 位置1,TX/CK I/O 引脚被自动配置为输出引脚时,无需考虑相应TR 位的状态以及USART发送器使能与否。端口锁存器与输出驱动器是断开的,从而不能 将TX/CK 引脚用作通用输出引脚。

芯旺微电子 - 151/216 - Chip**○N**

11.3.2.1 接收状态和控制寄存器 RSCTL

寄存器13.3: RSCTL: 接收状态和控制寄存器1(地址:120H)

	bit7							bit0
复位值 0000 000x	SPEN	RX9	SRXEN	CRXEN	ADREN	FRER	OVFER	RX9D
	R/W	R/W	R/W	R/W	R/W	R	R	R

SPEN: 串行口使能位

1 = 使能串行口(将 RX/DT 和 TX/CK 引脚配置为串行口引脚)

0 = 禁止串行口(保持为复位状态)

RX9: 9 位接收使能位

1=选择9位接收

0=选择8位接收

SRXEN: 单字节接收使能位

全双工异步模式:

无关位

半双工同步模式——主:

1 = 使能单字节接收

0 = 禁止单字节接收

此位在接收完成后清零。

半双工同步模式——从:

无关位

CRXEN: 连续接收使能位

全双工异步模式:

1= 使能接收器

0 = 禁止接收器

半双工同步模式:

1 = 使能连续接收,直到使能位 CRXEN 清零(CRXEN 改写 SRXEN)

0 = 禁止连续接收

ADREN: 地址检测使能位

RS-485 全双工异步模式(RX9 = 1):

1 = 使能地址检测、允许中断, 当 RSR<8>置 1 时装入接收缓冲区

0=禁止地址检测,接收所有字节并且第9位可作为奇偶校验位

8 位异步模式(RX9=0):

无关位

FRER: 帧错误位

1 = 帧错误(可通过读 RXSDR 寄存器刷新该位,并接收下一个有效字节)

0 = 无帧错误

OVFER: 溢出错误位

1 = 溢出错误(可通过清零 CRXEN 位来清零该位)

0= 无溢出错误

RX9D: 接收数据的第9位

该位可以是地址/数据位或奇偶校验位,并且必须由用户固件计算得到。

图注: R=可读 W=可写 -=未用 U=未实现位

11.3.2.2 接收数据

接收器数据恢复电路在第一个位的下降沿开始接收字符。第一个位,通常称为起始位,始终为 0。由数据恢复电路计数半个位时间,到起始位的中心位置,校验该位是否仍为零。如果该位不为零,数据恢复电路放弃接收该字符,而不会产生错误,并且继续查找起始位的下降沿。如果起始位零校验通过,则数据恢复电路计数一个完整的位时间,到达下一位的中心位置。由数据检测电路对该位进行采样,将相应的采样结果 0 或 1 移入 RSR。重复该过程,直到完成所有数据位的采样并将其全部移入 RSR 寄存器。测量最后一个位的时间并采样其电平。此位为停止位,总是为 1。如果数据恢复电路在停止位的位置采样到 0,则该字符的帧错误标志将置 1,反之,该字符的帧错误标志会清零。详见 第 13.3.2.3 节"接收帧错误"获得有关帧错误描述。

当接收到所有数据位和停止位后,RSR 中的字符会被立即传输到 USART 的接收 FIFO 缓冲器并将 EIE2 寄存器的 RCIF 中断标志位置 1。通过读 RXSDR 寄存器将 FIFO 缓冲器最顶端的字符移出 FIFO 缓冲器。

注:如果接收FIFO溢出,则不能再继续接收其他字符,直到溢出条件被清除。请参见第11.3. 2.3 节"接收错误"获得有关溢出错误的更多相关信息。

只要使能 USART 接收器且在接收 FIFO 缓冲器中没有未读数据, EIF2 寄存器中的 RCIF 中断标志位就会清零。RCIF 中断标志位为只读,不能由软件置 1 或清零。通过将下列所有位均置 1 来允许 RCIF 中断:

- ◆ EIE2 寄存器的 RCIE 中断允许位
- ♦ INTCTL 寄存器的 PUIE 外设中断允许位或低优先级中断允许位 AIEL
- ♦ INTCTL 寄存器的 AIE 全局中断允许位或高优先级中断允许位 AIEH

如果 FIFO 缓冲器中有未读数据,无论中断允许位的状态如何,都会将 RCIF 中断标志 位置 1。

11.3.2.3 接收错误

接收 FIFO 缓冲器中的每个字符都有一个相应的帧错误状态位。帧错误指示未在预期的时间内接收到停止位。由 RSCTL 寄存器的 FRER 位获取帧错误状态。FRER 位代表接收 FIFO 缓冲器最顶端未读字符的状态。因此,必须在读 RXSDR 寄存器之前读 FRER 位。

FRER 位为只读位,且只能用于接收 FIFO 缓冲器的最顶端未读字符。帧错误(FRER = 1)并不会阻止接收更多的字符。无需清零 FRER 位。从 FIFO 缓冲器读下一字符会使 FIFO 缓冲器指针前进至下一字符和下一个相应的帧错误。

清零 RSCTL 寄存器的 SPEN 位会复位 USART,并强制清零 FRER 位。清零 RSCTL 寄存器的 CRXEN 位不影响 FRER 位。帧错误本身不会产生中断。

注: 如果接收FIFO缓冲器中所有接收到的字符都有帧错误,重复读RCSDR不会清零FRER。

接收 FIFO 缓冲器可以保存 2 个字符。但如果在访问 FIFO 缓冲器之前,接收到完整的第 3 个字符,则会产生溢出错误。此时,RSCTL 寄存器的 OVFER 位会置 1。可以读取 FIFO 缓冲器内的字符,但是在错误清除之前,不能再接收其它字符。可以通过清零 RSCTL 寄存器的 CRXEN 位或通过清零 RSCTL 寄存器的 SPEN 位使 USART 复位来清除错误。

11.3.2.4 地址检测

当多个接收器共享同一传输线时(如在 RS-485 系统中),可使用特殊地址检测模式。将 RSCTL 寄存器的 ADREN 位置 1,使能地址检测模式。地址检测要求接收 9 位字符。使能地址检测后,只有第 9 位数据位被置 1 的字符可以被传输到接收 FIFO 缓冲器,从而使 RCIF 中断标志位置 1。所有其它字符将被忽略。

由用户软件判断接收到的地址字符是否与其匹配。如果匹配,用户软件必须在下一个停止位产生之前,清零 ADREN 位以禁止地址检测。当用户软件检测到信息的末尾(由所使用的信息协议判断)时,由软件将 ADREN 位置 1,从而使接收器返回地址检测模式。

11.3.2.5 全双工接收的设置

- 1.初始化{EUBRGH:EUBRGL}这对寄存器以及HBRG和BRG16位,以获得所需的波特率(见第 13.2 节"波特率发生器 (BRG)")。
- 2. 将 SPEN 位置 1, 使能串行端口。必须清零 SYNC 位以执行全双工异步操作。
- 3. 如果需要中断,将 EIE2 寄存器中的 RCIE 位和 INTCTL 寄存器的 AIE 和 PUIE 位置 1。 如果使用中断优先级则将 IPEN 和 PTX 均置 1
- 4. 如果需要接收9位数据,将RX9位置1。
- 5. 将 CRXEN 位置 1 使能接收。
- 6. 当一个字符从 RSR 传输到接收缓冲器时,将 RCIF 中断标志位置 1。如果 RCIE 中断允许位也置 1 还将产生中断。
- 7. 读 RSCTL 寄存器获取错误标志位和第 9 位数据位(如果使能 9 位数据接收)。
- 8. 读 RXSDR 寄存器,从接收缓冲器获取接收到的 8 个低数据位。
- 9. 如果发生溢出,通过清零 CRXEN 接收器使能位清零 OVFER 标志。

例13.3 接收 LOOP_USART **NOP** NOP **SET** RSCTL, CRXEN ;使能接收器 ;检测溢出错误 JNB RSCTL,OVFER CLR RSCTL, CRXEN :接收数据的标志 JB EIF2, RCIF **JMP** LOOP_USART EIF2, RCIF CLR MOV R0, RXSDR MOV UART_TEMP, R0 ;存储接收到的数据

图 13.11 全双工异步接收

11.3.3 RS-485 发送/接收

USART 支持 RS-485 模式 9 位发送。当 TSCTL 寄存器的 TX9 位置 1 时,USART 将移出每个待发送字符的 9 位。TSCTL 寄存器的 TX9D 位为发送数据第 9 位,即最高数据位。当发送 9 位数据时,必须在将 8 个最低位写入 TXSDR 之前,写 TX9D 数据位。在写入 TXSDR 寄存器后会立即将 9 个数据位传输到发送移位寄存器。

使用多个接收器时可使用特殊的 9 位地址模式。请参见第 13.3.5.1 节"地址检测"获得有 关地址模式的更多信息。

USART 支持 RS-485 模式 9 位接收。将 RSCTL 寄存器的 RX9 位置 1 时,USART 将接收到的每个字符的 9 位移入 RSR。RSCTL 寄存器的 RX9D 位是接收 FIFO 缓冲器顶端未读字符的第 9 位,同时也是最高数据位。当从接收 FIFO 缓冲器读取 9 位数据时,必须在读RXSDR 中的低 8 位之前,读取 RX9D 数据位。

芯旺微电子 - 155/216 - Chip**○N**

11.3.3.1 RS-485 9 位地址检测模式设置

要设置使能地址检测的全双工异步接收:

- 1. 初始化 EUBRGH 和 EUBRGL 这对寄存器以及 HBRG 和 BRG16 位,以获得所需的波特率(见第 13.2 节"波特率发生器(BRG)")。
- 2. 将 SPEN 位置 1, 使能串行端口。必须清零 SYNC 位以执行全双工异步操作。
- 3. 如果需要中断,将 EIE2 寄存器中的 RCIE 位和 INTCTL 寄存器的 AIE 和 PUIE 位置 1。 如果使用优先级中断,则将 IPEN 和 PRC 均置 1。
- 4. 将 RX9 位置 1, 使能 9 位数据接收。
- 5. 将 ADREN 位置 1, 使能地址检测。
- 6. 将 CRXEN 位置 1 使能接收。
- 7. 当一个第 9 位置 1 的字符从 RSR 传输到接收缓冲器时,将 RCIF 中断标志位置 1。如果 RCIE 中断允许位也置 1 还将产生中断。
- 8. 读 RSCTL 寄存器获取错误标志位。第 9 个数据位始终置 1。
- 9. 读 RXSDR 寄存器,从接收缓冲器获取接收到的 8 个低数据位。由软件判断此地址是否为本地器件的地址。
- 11. 如果发生溢出,通过清零 CRXEN 接收器使能位清零 OVFER 标志。
- 11. 如果是对当前器件寻址,将 ADREN 位清零以允许所有接收到的数据进入接收缓冲器并产生中断。

11.3.4 全双工操作时钟的精确性

内部振荡器模块输出 (OSCCTL) 在出厂时做了校准。但是, V_{DD} 或温度变化时 OSCCTL 频率有可能漂移,这将直接影响全双工异步波特率。下面的方法可用来调整波特率时钟,但要某种参考时钟源。

这种方法是调整波特率发生器的值。自动波特率检测可自动完成这种调整(见第 13.2.3 节"自动波特率检测")。调整波特率发生器以补偿外设时钟频率的逐渐变化时,可能分辨率精度不够。

11.4 USART 半双工模式

半双工同步串行通信通常用在具有一个主控器件和一个或多个从动器件的系统中。主控器件包含产生波特率时钟所必需的电路,并为系统中的所有器件提供时钟。从动器件可以使用主控时钟,因此无需内部时钟发生电路。

在半双工同步模式下,有2条信号线:双向数据线和时钟线。从动器件使用主控器件提供的时钟,将数据串行移入或移出相应的接收和发送移位寄存器。半双工是指:主控器件和从动器件都可以接收和发送数据,但是不能同时进行接收或发送。USART 既可以作为主控器件,也可以作为从动器件。

半双工同步模式发送无需使用起始位和停止位。

KungFu®

KF8TS2716数据手册V1.4

11.4.1 USART 半双工主控模式

下列位用来将 USART 配置为半双工同步主控操作:

- SYNC = 1
- CSRS = 1
- SRXEN = 0 (用于发送); SRXEN = 1 (用于接收)
- CRXEN = 0 (用于发送); CRXEN = 1 (用于接收)
- SPEN= 1

将 TSCTL 寄存器的 SYNC 位置 1,可将 USART 配置用于半双工同步操作。将 TSCTL 寄存器的 CSRS 位置 1,将器件配置为主控器件。将 RSCTL 寄存器的 SRXEN 和 CRXEN 位 清零,以确保器件处于发送模式,否则器件配置为接收模式。将 RSCTL 寄存器的 SPEN 位置 1,使能 USART。如果 RX/DT 或 TX/CK 引脚与模拟外设共用,必须清零相应的 ANSEL 位禁止模拟 I/O 功能。

半双工同步数据传输使用独立的时钟线半双工同步传输数据。配置为主控器件的器件在TX/CK引脚发送时钟信号。当USART被配置为半双工同步发送或接收操作时,TX/CK输出驱动器自动使能。串行数据位在每个时钟的上升沿发生改变,以确保它们在下降沿有效。每个数据位的时间为一个时钟周期,有多少数据位就只能产生多少个时钟周期。

由 BRCTL 寄存器的 SCKPS 位选择时钟极性。将 SCKPS 位置 1 将时钟空闲状态设置为高电平。当 SCKPS 位置 1 时,数据在每个时钟的下降沿发生改变。清零 SCKPS 位,将时钟空闲状态设置为低电平。当清零 SCKPS 位时,数据在每个时钟的上升沿发生改变。

11.4.1.1 半双工主控发送

由器件的 RX/DT 引脚输出数据。当 USART 配置为半双工同步主控发送操作时,器件的 RX/DT 和 TX/CK 输出引脚自动使能。

向 TXSDR 寄存器写入一个字符开始发送。如果发送移位寄存器中仍保存全部或部分前一字符,新的字符数据保存在 TXSDR 中,直到发送完前一字符的停止位为止。如果这是第一个字符,或者前一个字符已经完全从发送移位中移出,则 TXSDR 中的数据会被立即传输到发送移位寄存器。当字符从 TXSDR 传输到发送移位后会立即开始发送数据。

每个数据位在主控时钟的上升沿发生改变,并保持有效,直至下一个时钟的上升沿为止。

注: 发送移位寄存器并未映射到数据存储器中,因此用户不能直接访问它。

半双工主控发送设置:

- 1. 初始化 EUBRGH 和 EUBRGL 这对寄存器以及 HBRG 和 BRG16 位,以获得所需的波特率(见第 13.2 节"波特率发生器")。
- 2. 将 SYNC、SPEN 和 CSRS 位置 1,使能半双工同步主控串行端口。
- 3. 将 SRXEN 和 CRXEN 位清零,禁止接收模式。
- 4. 将 TXEN 位置 1 使能发送模式。
- 5. 如果需要发送 9 位字符,将 TX9 置 1。
- 6. 若需要中断,将 EIE2 寄存器中的 TXIE 位,以及 INTCTL 寄存器中的 AIE 和 PUIE 位置
- 1。如果使用优先级中断,则将 IPEN 和 PTX 均置 1。
- 7. 如果选择发送9位字符,应该将第9位数据装入TX9D位。
- 8. 通过将数据装入 TXSDR 寄存器启动发送。(请参考例 13.2)

图 13.12 半双工同步发送(SCKPSx=0)

图 13.13 半双工同步发送(SCKPS=1)

图 13.14 半双工同步发送(通过 TXEN)

KungFu®

KF8TS2716数据手册V1.4

11.4.1.2 半双工主控接收

在RX/DT 引脚接收数据。当 USART 配置为半双工同步主控接收时,自动禁止器件的RX/DT 引脚的输出驱动器。在半双工同步模式下,将单字接收使能位(RSCTL 寄存器的SRXEN 位)或连续接收使能位(RSCTL 寄存器的CRXEN 位)置 1 使能接收。

当将 SRXEN 置 1, CRXEN 位清零时,一个单字符中有多少数据位就只能产生多少时钟周期。一个字符传输结束后,自动清零 SRXEN 位。当 CRXEN 置 1 时,将产生连续时钟,直到清零 CRXEN 为止。如果 CRXEN 在一个字符的传输过程中清零,则 CK 时钟立即停止,并丢弃该不完整的字符。如果 SRXEN 和 CRXEN 都置 1,则当第一个字符传输完成时,SRXEN 位被清零,CRXEN 保持。

将 SRXEN 或 CRXEN 位置 1, 启动接收。在 TX/CK 时钟引脚信号的下降沿采样 RX/DT 引脚上的数据,并将采样到的数据移入接收移位寄存器 (RSR)。当 RSR 接收到一个完整字符时,将 RCIF 位置 1,字符自动移入 2 字节接收 FIFO 缓冲器。接收 FIFO 缓冲器中最顶端字符的低 8 位可通过 RXSDR 读取。只要接收 FIFO 缓冲器中仍有未读字符,则 RCIF 位就保持置 1 状态。

半双工同步数据传输使用与数据线通读的独立时钟线。配置为从器件的器件接收 TX/CK 线上的时钟信号。当器件被配置为半双工同步从发送或接收操作时,TX/CK 引脚的输出驱动器自动被禁止。串行数据位在时钟信号的前沿改变,以确保其在每个时钟的后沿有效。每个时钟周期只能传输一位数据,因此有多少数据位要传输就必须接收多少个时钟。

接收 FIFO 缓冲器可以保存 2 个字符。在读 RXSDR 以访问 FIFO 缓冲器之前,若完整 地接收到第 3 个字符,则产生溢出错误。此时,RSCTL 寄存器的 OVFER 位会置 1。FIFO 缓冲器中先前的数据不会被改写。可以读取 FIFO 缓冲器内的 2 个字符,但是在错误被清除前,不能再接收其它字符。只能通过清除溢出条件,将 OVFER 位清零。如果发生溢出时,SRXEN 位为置 1 状态,CRXEN 位为清零状态,则通过读 RXSDR 寄存器清除错误。如果溢出时,CRXEN 为置 1 状态,则可以清零 RSCTL 寄存器的 CRXEN 位或清零 SPEN 位以复位 USART,从而清除错误。

半双工主控接收设置:

- 1. 用正确的波特率初始化 EUBRGH:EUBRGL 寄存器。按需要将 HBRG 和 BRG16 位置 1 或清零,以获得所需的波特率。
- 2. 将 SYNC、SPEN 和 CSRS 位置 1 使能半双工同步主控串行端口。
- 3. 确保将 CRXEN 和 SRXEN 位清零。
- 4. 如果使用中断,将 INTCTL 寄存器的 AIE 和 PUIE 位置 1,并将 EIE2 寄存器的 RCIE 位 也置 1。如果使用优先级中断,则将 IPEN 和 PRC 均置 1。
- 5. 如果需要接收 9 位字符,将 RX9 位置 1。
- 6. 将 SRXEN 位置 1, 启动接收,或将 CRXEN 位置 1 使能连续接收。
- 7. 当字符接收完毕后,将 RCIF 中断标志位置 1。如果允许位 RCIE 置 1,还会产生一个中断
- 8. 读 RSCTL 寄存器以获取第 9 个数据位 (使能 9 位接收时),并判断接收过程中是否产生错误。
- 9. 读 RXSDR 寄存器获取接收到的 8 位数据。
- 11. 如果产生溢出错误,清零 RSCTL 寄存器的 CRXEN 位或清零 SPEN 以复位 USART 来清除错误。(请参考第 13.3.2.5 节例 13.3)

图 13.15 半双工同步接收(主控模式, SRXEN=1, SCKPS=0)

图 13.16 半双工同步接收(主控模式, SRXEN=1, SCKPS=1)

11.4.2 USART 半双工从动模式

下列位用来将 USART 配置为半双工同步从动操作:

- SYNC=1
- CSRS=0
- SRXEN=0 (用于发送); SRXEN=1 (用于接收)
- CRXEN=0 (用于发送); CRXEN = 1 (用于接收)
- SPEN=1

将 TSCTL 寄存器的 SYNC 位置 1,可将器件配置用于半双工同步操作。将 TSCTL 寄存器的 CSRS 位置 1,将器件配置为从动器件。将 RSCTL 寄存器的 SRXEN 和 CRXEN 位清

零,以确保器件处于发送模式,否则器件将被配置为接收模式。将 RSCTL 寄存器的 SPEN 位置 1, 使能 USART。如果 RX/DT 或 TX/CK 引脚与模拟外设共用, 必须清零相应的 ANSEL 位禁止模拟 I/O 功能。

11.4.2.1 USART 半双工从动发送

除休眠模式外,半双工主控和从动模式的工作原理是相同的(见第 13.4.1.1 节"半双工 主控发送")。

如果向 TXSDR 写入 2 个字, 然后执行 IDLE 指令, 则会出现下列情况:

- 1. 第一个字立即传输到发送移位寄存器并进行发送。
- 2. 第二个字留在 TXSDR 寄存器中。
- 3. TXIF 中断标志位不会置 1。
- 4. 当第一个字符移出发送移位时,TXSDR 寄存器将把第二个字符传输到发送移位,然后标志位 TXIF 置 1。
- 5. 如果 PUIE 和 TXIE 位都置 1,则由中断将器件从休眠模式唤醒,然后执行下一条指令。如果 AIE 位也置 1,程序将调用中断服务程序。

USART 半双工从动发送设置:

- 1. 将 SYNC 和 SPEN 位置 1 并将 CSRSx 位清零。
- 2. 将 CRXEN 和 SRXEN 位清零。
- 3. 如果使用中断,将 INTCTL 寄存器的 AIE 和 PUIE 位置 1,并将 EIE2 寄存器的 TXIE 位也置 1。如果使用优先级中断,则将 IPEN 和 PTXx 均置 1。
- 4. 如果需要发送 9 位数据,将 TX9 位置 1。
- 5. 将 TXEN 位置 1 使能发送。
- 6. 若选择发送 9 位数据,将最高位写入 TX9D 位。
- 7. 将低 8 位数据写入 TXSDR 寄存器开始传输。(请参考例 13.2)

11.4.2.2 USART 半双工从动接收

除了以下不同外,半双工主控和从动模式的工作原理相同。(见第 13.4.1.2 节"半双工主 控接收")。

- 休眠模式
- CRXEN 位总是置 1,因此接收器不能进入空闲状态。
- SRXEN 位,在从动模式可为"任意值"。

如果在进入休眠模式之前,已经将 CRXEN 位置 1,则在休眠模式仍可接收字符。RSR 寄存器接收到字后,就会立即将接收到的数据传输到 RXSDR 寄存器。如果将 RCIE 允许位置 1,则产生的中断将使器件从休眠模式唤醒,然后执行下一条指令。如果 AIE 位也置 1,则程序将跳转到中断向量处执行。

半双工从动接收设置:

1. 将 SYNC 和 SPEN 位置 1 并将 CSRS 位清零。

- 2. 如果使用中断,将 INTCTL 寄存器的 AIE 和 PUIE 位置 1,并将 EIE2 寄存器的 RCIE 位 也置 1。如果使用优先级中断,则将 IPEN 和 PRC 均置 1。
- 3. 如果需要接收 9 位字符,将 RX9 位置 1。
- 4. 将 CRXEN 位置 1, 使能接收。
- 5. 当接收完成后,将 RCIF 位置 1。如果 RCIE 已置 1,还会产生一个中断。
- 6. 如果使能 9 位模式,从 RSCTL 寄存器的 RX9D 位获取最高位。
- 7. 读 RXSDR 寄存器,从接收 FIFO 缓冲器获取接收到的 8 个低数据位。
- 8. 如果产生溢出错误, 清零 RSCTL 寄存器的 CRXEN 位或清零 SPEN 位以复位 USART 来清除错误。(请参考例 13.3)

11.4.3 USART 半双工 RS-485 模式

请参考第 13.3.3 节 RS-485 发送/接收

12 LED驱动模块

12.1 概述

KF8TS2716 内含一个 8×8 的 LED 驱动模块,最多可驱动 8 位 LED 数码管,共阴共阳可调,且带有辉度调节功能和开漏或推免输出模式可选功能。

模块框图如下:

图 12.1 LED 驱动模块框图

当用户配置好 LED 驱动模块时,会在 DIGx 引脚产生一个扫描位选的信号,当 DIGx 为有效电平时,SEGx 引脚将相对应的数据寄存器 LEDDATAx 的内容对应输出,得以产生一个段选信号。图 12.2 为 LED 驱动模块与数码管连接示意图。

图 12.2 LED 驱动模块与数码管连接示意图

12.2 工作原理

12.2.1 扫描时钟产生

LED 显示电路扫描频率可调,时钟为系统时钟。LED 驱动模块提供两个可调分频, LEDPRE 寄存器的 LEDCKS1<3:0>和 LEDCKS0<3:0>,用户可通过 LEDPRE 寄存器对时钟 进行分频得到所需的扫描频率。

LED 扫描频率计算公式如下:

$$CLK_{LED} = \frac{SCLK}{32x2^{LEDCKS1<3:0>} \times (LEDCKS0<3:0>+1)} \, .$$

12.2.2 扫描信号产生

12.3 LED 相关寄存器

表 12-1 相关寄存器

tel. L.I	り が	/2. 5	Dr. c	/2. =	12. 4	/	/ a	/ 1	/ -
地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
140H	LEDCTL	LEDEN	-	-	DIGEN2	DIGEN1	DIGEN0	PNS1	PNS0
141H	LEDPRE	LEDCKS13	LEDCKS12	LEDCKS11	LEDCKS10	LEDCKS03	LEDCKS02	LEDCKS01	LEDCKS00
142H	LEDDATA0	DAT07	DAT06	DAT05	DAT04	DAT03	DAT02	DAT01	DAT00
143H	LEDDATA1	DAT17	DAT16	DAT15	DAT14	DAT13	DAT12	DAT11	DAT10
144H	LEDDATA2	DAT27	DAT26	DAT25	DAT24	DAT23	DAT22	DAT21	DAT20
145H	LEDDATA3	DAT37	DAT36	DAT35	DAT34	DAT33	DAT32	DAT31	DAT30
146H	LEDDATA4	DAT47	DAT46	DAT45	DAT44	DAT43	DAT42	DAT41	DAT40
147H	LEDDATA5	DAT57	DAT56	DAT55	DAT54	DAT53	DAT52	DAT51	DAT50
148H	LEDDATA6	DAT67	DAT66	DAT65	DAT64	DAT63	DAT62	DAT61	DAT60
149H	LEDDATA7	DAT77	DAT76	DAT75	DAT74	DAT73	DAT72	DAT71	DAT70
150H	LEDOMS1	LEDOM17	LEDOM16	LEDOM15	LEDOM14	LEDOM13	LEDOM12	LEDOM11	LEDOM10
155H	LEDODS0	LEDOD07	LEDOD06	LEDOD05	LEDOD04	LEDOD03	LEDOD02	LEDOD01	LEDOD00
157H	LEDOMS0	LEDOM07	LEDOM06	LEDOM05	LEDOM04	LEDOM03	LEDOM02	LEDOM01	LEDOM00
158H	LEDODS1	LEDOD17	LEDOD16	LEDOD15	LEDOD14	LEDOD13	LEDOD12	LEDOD11	LEDOD10
15CH	LEDLUM	LEDBR	-	-	-	FRAMEF	LUM2	LUM1	LUM0

12.3.1 LED 显示驱动控制寄存器(LEDCTL)

寄存器12.1: LEDCTL: LED显示驱动控制寄存器(140H)

	D1t /							DITU	
复位值 0000 0000	LEDEN	-	-	DIGEN2	DIGEN1	DIGEN0	PNS1	PNS0	
·	R/W	U	U	R/W	R/W	R/W	R/W	R/W	

LEDEN: LED 显示驱动使能位

1 = 使能 LED 模块

0 = 禁止 LED 模块

DIGEN<2:0>:LED 位使能数量选择位

000 = 使能 1 位, LEDDATA0 使能, LEDDATA1-7 禁止

001 = 使能 2 位, LEDDATA0-1 使能, LEDDATA2-7 禁止

010 = 使能 3 位, LEDDATA0-2 使能, LEDDATA3-7 禁止

011 = 使能 4 位,LEDDATA0-3 使能,LEDDATA4-7 禁止

100 = 使能 5 位, LEDDATA0-4 使能, LEDDATA5-7 禁止

101 = 使能 6 位, LEDDATA0-5 使能, LEDDATA6-7 禁止

110 = 使能 7 位, LEDDATA0-6 使能, LEDDATA7 禁止

111 = 使能 8 位, LEDDATA0-7 使能

PNS<1:0>: 共阴共阳选择位

00 = LED 驱动模块工作在共阴模式

01 = 系统保留

10 = LED 驱动模块工作在开漏输出模式

11 = LED 驱动模块工作在共阳模式

图注: R=可读 W=可写 -=未用 U=未实现位

注: 当 LED 模块选择在开漏输出模式时,必须使该位设为 01。

12.3.2 LED 显示驱动分频寄存器(LEDPRE)

寄存器12.2: LEDPRE: LED显示驱动分频寄存器(141H)

	bit /							bitU	
复位值	LEDCKS1	LEDCKS1	LEDCKS1	LEDCKS1	LEDCKS0	LEDCKS0	LEDCKS0	LEDCKS0	ı
0000 0000	3	2	1	0	3	2	1	0	ĺ
	R/W								

LEDCKS1<3:0>: LED 时钟源分频选泽位

000x=1:2

0010=1:4

0011=1:8

0100=1:16

0101=1:32

0110=1:64

0111=1:128

1000=1:256

1001=1:512

1010=1:1024

1011=1:2048

1100=1:4096

1101=1:8192 1110=1:16384

1111=1:32768

LEDCKS0<3:0>:LED 预分频比选择位

1111 = 1:16

1110 = 1:15

1101 = 1:14

1100 = 1:13

1011 = 1:12

1010 = 1:11

1001 = 1:10

1000 = 1:9

0111 = 1:8

0110 = 1:7

0101 = 1:6

0100 = 1:5

0011 = 1:4

0010 = 1:3

0001 = 1:2

0000 = 1:1

图注: R=可读 W=可写 -=未用 U=未实现位

12.3.3 LED 显示驱动数据寄存器(LEDDATAx)

寄存器11.3: LEDDATAx: LED显示驱动数字寄存器

	bit7							bit0
复位值 0000 0000	DATx7	DATx6	DATx5	DATx4	DATx3	DATx2	DATx1	DATx0
·	R/W							

DATx<7:0>: LED 显示驱动数据位(x=0~7)

1 = LED 熄灭 0 = LED 点亮

图注: R=可读 W=可写 -=未用 U=未实现位

LED 共有8个LED 数据寄存器,地址如下:

表 12-2 LED 数据寄存器地址

LEDDATA0	142H
LEDDATA1	143H
LEDDATA2	144H
LEDDATA3	145H
LEDDATA4	146H
LEDDATA5	147H
LEDDATA6	148H
LEDDATA7	149H

12.4 辉度调节

LED 驱动模块带有辉度调节功能。用户可以通过 LEDLUM 寄存器的 LUM<2:0>位来设置 LED 的辉度。

寄存器12.4: LEDLUM: LED显示驱动辉度调节设置寄存器(15CH)

	bit7							bit0
复位值 0 0000	LEDBR	-	-	-	FRAMEF	LUM2	LUM1	LUM0
	R/W	U	U	U	R	R/W	R/W	R/W

LEDBR: LED 波形输出控制位

1 = LED 驱动只输出 DIG 端波形, SEG 端相应 IO 口为通用 IO 口

0 = LED 驱动波形正常输出

FRAMEF: LED 显示标志位

1 = LED 完成 1 次周期扫描 0 = LED 未完成周期扫描

LUM<2:0>: LED 辉度调节设置位

000 = 15:16 001 = 14:16 010 = 12:16 011 = 10:16 100 = 8:16 101 = 6:16 110 = 4:16 111 = 2:16

图注: R=可读 W=可写 -=未用 U=未实现位

12.5 输出模式

LED 模块提供 2 种驱动信号输出方式: 推挽输出和开漏输出。在选择开漏输出模式同时还可以设置 P 管开漏或者 N 管开漏。

12.5.1 LED 显示驱动输出模式设置寄存器

寄存器12.4: LEDOMS0: LED显示驱动输出模式设置寄存器(157H)

	bit7							bit0	
复位值 0000 0000	LEDOM07	LEDOM06	LEDOM05	LEDOM04	LEDOM03	LEDOM02	LEDOM01	LEDOM00	
	R/W								

LEDOM0x: LED-DIGx 端输出模式设置位

1 = 输出方式为开漏输出 0 = 输出方式为推挽输出

图注: R=可读 W=可写 -=未用 U=未实现位

寄存器12.4:LEDOMS1: LED显示驱动输出模式设置寄存器1(150H)

	bit /							<u>bitu</u>
复位值 0000 0000	LEDOM17	LEDOM16	LEDOM15	LEDOM14	LEDOM13	LEDOM12	LEDOM11	LEDOM10
	R/W							

LEDOM1x: LED-SEGx 端输出模式设置位

1 = 输出方式为开漏输出 0 = 输出方式为推挽输出

图注: R=可读 W=可写 -=未用 U=未实现位

12.5.2 LED 开漏方式选择寄存器

共阳级时,将LEDODS0寄存器配置为P管开漏,LEDODS1寄存器配置位N管开漏;共阴级时,将LEDODS0寄存器配置为N管开漏,LEDODS1寄存器配置位P管开漏。

寄存器12.4: LEDODS0: LED显示驱动开漏方式选择寄存器0(155H)

	bit7							bit0
复位值 0000 0000	LEDOD07	LEDOD06	LEDOD05	LEDOD04	LEDOD03	LEDOD02	LEDOD01	LEDOD00
	R/W							

LEDODOx: LED-DIGx 端开漏方式选择位

1=P管开漏 0=N管开漏

图注: R=可读 W=可写 -=未用 U=未实现位

注: LEDOMS0 寄存器的 LEDOM0x 为 1 时, LEDODS0 寄存器对应的 LEDOD0x 位有效。

寄存器12.4: LEDODS1: LED显示驱动开漏方式选择寄存器1(158H)

	bit7							bit0
复位值 0000 0000	LEDOD17	LEDOD16	LEDOD15	LEDOD14	LEDOD13	LEDOD12	LEDOD11	LEDOD10
	R/W							

LEDOD1x: LED-SEGx 端开漏方式选择位

1 = P 管开漏 0 = N 管开漏

图注: R=可读 W=可写 -=未用 U=未实现位

注: LEDOMS1 寄存器的 LEDOM1x 为 1 时, LEDODS1 寄存器对应的 LEDOD1x 位有效。

12.6 LED 显示驱动使用方法

LED 驱动模块使用方法:

- 1. 通过 LEDPRE 寄存器选择时钟分频得到所需的扫描频率;
- 2. 设置 LEDCTL 寄存器来设置 DIG 数量;
- 3. 向相应的 LEDDATAx 寄存器中写入显示数据;
- 4. 设置 PNS<1:0>位来选择供阴或共阳的输出方式:
- 5. 设置 LEDOMS0/1 寄存器选择 LED 的输出模式,如果选择开漏输出模式,设置 LEDODS1/0 寄存器来选择 P 管开漏或者 N 管开漏;
- 6. 使能启动 LED 驱动模块。

13 Vbias偏压输出

KF8TS2716 系列提供 16 个通道的偏压输出。

用户使用偏压输出时,需要将相应 IO 口设置为输入,然后设置 VBSEL 位来选择偏压输出电压源,VDD 和 V_{REF} 可选,可以对电压源进行 1/2 分压。且必须先将 VBIASCTL 寄存器的 VBIASEN 位置 1 后,再将相应的 VBIAS1xSEN 和 VBIAS2xSEN 寄存器中的设置位打开以实现 1/2 分压的偏压输出,否则对 VBIAS1xEN 和 VBIAS2xEN 寄存器的操作无效。

图 13.1 偏压输出电路

13.1 相关寄存器

表 13-1 偏压输出相关寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
6BH	VBIASCTL	VBIASEN	VBSEL	-	-	-	-	ISEL1	ISEL0
6CH	VBIAS1EN	VBS17EN	VBS16EN	VBS15EN	VBS14EN	VBS13EN	VBS12EN	VBS11EN	VBS10EN
6DH	VBIAS2EN	VBS27EN	VBS26EN	VBS25 EN	VBS24SEN	VBS23EN	VBS22EN	VBS21EN	VBS20EN

13.1.1 偏压输出控制寄存器(VBIASCTL)

寄存器13.1: VBIASCTL: 偏压输出控制寄存器(6BH)

	<u>bit7</u>							bit0	
复位值 0000	VBIASEN	VBSEL	1	-	-	1	ISEL1	ISEL0	
	R/W	R/W	U	U	U	U	R/W	R/W	

VBIASEN: 偏压输出使能位

1 = 使能偏压输出 0 = 禁止偏压输出

BSEL: 电阻分压源选择位

1 = 内部参考电压 V_{REF} 作为电阻分压源

0=VDD 作为电阻分压源

ISEL<1:0>: 偏压电流选择位

00 = 25uA

01 = 50uA

10 = 83uA

11 = 250uA

图注: R=可读 W=可写 -=未用 U=未实现位

13.1.2 偏压输出设置寄存器(VBIAS1/2EN)

寄存器13.2: VBIAS1EN: 偏压输出设置寄存器1(6CH)

bit0 bit7 复位值 VBS17EN VBS16EN VBS15EN VBS14EN VBS13EN VBS12EN VBS11EN VBS10EN 0000 0000 R/W R/W R/W R/W R/W R/W R/W R/W

VBS1xEN: 偏置输出口状态设置位

0 = 偏置输出口对应IO口为数字口

1= 偏置输出口对应IO口为模拟口(偏压输出)

图注: R=可读 W=可写 -=未用 U=未实现位

寄存器13.3: VBIAS2EN:偏压输出设置寄存器1(6DH)

bit7 bit0 复位值 VBS27EN VBS23EN VBS20EN VBS26EN VBS25EN VBS22EN VBS21EN VBS24EN 0000 0000 R/W R/W R/W R/W R/W R/W R/W R/W

VBS2xEN: 偏置输出口状态设置位

0 = 偏置输出口对应IO口为数字口

1= 偏置输出口对应IO口为模拟口(偏压输出)

图注: R=可读 W=可写 -=未用 U=未实现位

注1: 必须先将VBIASCTL寄存器的VBIASEN位置1后,再将相应的VBIAS1xSEN和VBIAS2xSEN寄存器中的设置位打开以实现1/2分压的偏压输出,否则对VBIAS1xEN和VBIAS2xEN寄存器的操作无效。

注2: 表13-2 寄存器设置位与IO口对应表

设置位	对应IO口
VBS10EN	P0.0
VBS11EN	P0.1
VBS12EN	P0.3
VBS13EN	P0.4
VBS14EN	P0.5
VBS15EN	P2.0
VBS16EN	P2.1
VBS17EN	P2.2
VBS20EN	P3.0
VBS21EN	P3.1

VBS22EN	P3.2
VBS23EN	P3.3
VBS24EN	P3.4
VBS25EN	P3.5
VBS26EN	P3.6
VBS27EN	P3.7

13.2 偏压输出使用方法

偏压输出配置方法:

- 1. 配置VBSEL位来设置偏压输出电压源;
- 2. 配置ISEL<1:0>位来设置偏压输出电流大小;
- 3. 配置VBIAS1/2EN寄存器来设置偏压输出端

14 复位

KF8TS2716 具有:上电复位(POR)、WDT 复位、RST 复位和欠压检测复位(LVR)四种复位方式。

有些寄存器的状态在上电复位时它们的状态不定,而在其它复位发生时其状态将保持不变;其它大多数寄存器在复位事件发生时将被复位成"复位状态"。图 14.1 给出了片内复位电路的简化结构方框图。

图 14.1 片内复位电路简化框图

注:上电延时定时器只对上电复位(POR)和欠压复位(LVR)有效。

14.1 电源控制状态寄存器(PCTL)

如寄存器 14.1 所示, \overline{LVR} 位的状态在单片机上电复位时是不确定的。如果用户在使用中要用到该位,在程序初始化部分需将其置 1,随后如果有复位发生且 \overline{LVR} =0,则表示发生过欠压检测复位。 \overline{LVR} 状态位是"无关"位,如果欠压检测电路被关闭(通过设定配置字中的 \overline{LVR} 位和 \overline{POR} 是上电复位状态位,该位在上电复位时被清零,在其它情况下不受影响。

寄存器14.1: PCTL: 电源控制寄存器(地址:2EH)

	bit7							bit0
复位值 1 000x	-	-	ı	SLVREN	IPEN	SWDTEN	POR	LVR
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SLVREN: 软件欠压检测使能位

1 = 使能欠压检测

0 = 禁止欠压检测

IPEN: 中断优先级控制位

1= 使能中断优先级功能,即为优先级模式

0 = 禁止中断优先级,即为普通模式

SWDTEN: 软件看门狗定时器使能位

当配置字的 WDTEN=0 时

1 = 软件使能看门狗定时器

0 = 软件禁止看门狗定时器

当配置字的 WDTEN=1 时,为无关位

POR: 上电复位状态位

1= 未发生上电复位

0 = 发生了上电复位

LVR: 欠压复位状态位

1= 未发生欠压复位

0 = 已发生欠压复位

图注: R=可读 W=可写 -=未用 U=未实现位

14.2 上电复位(POR)

在 VDD 达到适合单片机正常工作的电平之前,片内上电复位电路使单片机保持在复位状态,直到 VDD 达到正常工作电平之后单片机才开始正常工作。KF8TS2716 的上电复位时间为 30ms 左右(PWRT=0, 上电延时使能)。

14.3 WDT 复位

看门狗定时器有一个独立的时钟源,因此单片机在正常工作和休眠模式下都可以正常工作。在单片机正常工作且打开看门狗后,当看门狗计数器计满后产生溢出,将使单片机复位。

在休眠模式下,WDT 也可以正常工作,当 WDT 定时器计满溢出后,将会使单片机从休眠模式唤醒转入正常工作模式,在休眠模式不会对各寄存器复位。

14.4 RST 复位

使能外部 RST 复位(配置位 RSTEN=1)后,当引脚 P0.2/ $\overline{\text{RST}}$ 输入复位信号,不管单片机工作在正常模式还是休眠模式,均会使单片机复位。通过在编程时将 P0.2 引脚配置为 $\overline{\text{RST}}$ 复位引脚,即可打开 $\overline{\text{RST}}$ 复位。

在 \overline{RST} 复位时, $\overline{KF8TS2716}$ 器件有一个噪声滤波器用于滤除 \overline{RST} 引脚上的噪声干扰,图 14.2 是建议 \overline{RST} 复位电路。

图 14.2 建议 RST 复位电路

KungFu®

KF8TS2716数据手册V1.4

14.5 欠压检测复位(LVR)

KF8TS2716 系列中的单片机具有片内欠压检测复位电路。通过编程时设定配置位中的LVREN位可以禁止/使能(清零/置1)欠压检测复位电路,当配置位中的LVREN位被使能后,用户还要在软件中设置PCTL中的SLVREN位来禁止/使能(清零/置1)欠压检测复位电路。

如果 VDD 跌落至 VLVR 以下且持续时间大于 TLVR (TLVR 大于 10us),欠压检测电路将使单片机复位,单片机保持复位状态直到 VDD上升到 VLVR 以上。如果上电延时使能(配置位 PWRT=0),此时上电延时定时器启动,使器件在随后 30ms 左右的延时时间处于延时复位 状态,过了 30ms 左右单片机开始正常工作。

如果 VDD 跌落至 VLVR 以下的时间小于规定参数(TLVR),将不保证可产生复位。

如果在上电延时定时器运行过程中发生 VDD 跌落至 VLVR 以下的情况,器件将返回欠压检测复位状态且上电延时定时器被重新初始化。直到 VDD 上升至 VLVR 以上时,上电延时定时器启动一个 30ms 左右的复位延时,如在延时期间没有欠压发生,单片机会退出复位状态开始正常工作。

14.6 上电延时定时器

上电延时定时器仅在器件上电复位或欠压检测复位发生后提供一个长度为约 30ms 的固定延时时间(配置位 PWRT=0)。上电延时定时器的定时时钟为系统内部低频振荡器。只要单片机产生上电复位或欠压检测复位,单片机就会在上电复位或欠压检测复位发生后保持复位状态约 30ms。上电延时定时器使单片机在 VDD 上升到适当电平后才投入正常运行。

由于 VDD、温度、制造工艺、内部震荡器频率等的变化,不同单片机的上电延时时间有 所差异。

14.7 不同复位条件下对寄存器的影响

表 14-1 寄存器在各种复位发生后的状态

				→ NaCnA 並且	
寄存器	地址	上电复位	RST 复位	中断唤醒	
, 4 14 HH			欠压检测	WDT 超时唤醒	
T0	01H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PCL	02H	0000 0000	0000 0000	PC+1	
PSW	03H	0001 1xxx	000q quuu	uuuq quuu	
P0	05H	XX XXXX	uu uuuu	uu uuuu	
P2	06H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
P1	07H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
P3	08H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PCH	0AH	0 0000	0 0000	u uuuu	
INTCTL	0BH	0000 0000	0000 0000	uuuu uuuu	
EIF1	0CH	0000 0000	0000 0000	uuuu uuuu	
EIF2	0DH	0000 0000	0000 0000	uuuu uuuu	
T1L	0EH	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1H	0FH	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CTL	10H	0000 0000	uuuu uuuu	uuuu uuuu	
T2L	11H	0000 0000	0000 0000	uuuu uuuu	
T2CTL	12H	-000 0000	-000 0000	-uuu uuuu	
PWM1L	13H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PWM1H	14H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PWMCTL	15H	0000 0000	0000 0000	uuuu uuuu	
PP1	16H	1111 1111	1111 1111	uuuu uuuu	
BANK	17H	0000	0000	uuuu	
ADSCANCTL	18H	0000 0000	0000 0000	uuuu uuuu	
VDACS	1AH	00000	00000	uuuuu	
ANSEH	1DH	0000 0000	0000 0000	uuuu uuuu	
ADCDATA0H	1EH	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ADCCTL0	1FH	0000 0000	0000 0000	uuuu uuuu	
OPTR	21H	1111 1111	1111 1111	uuuu uuuu	
IP0	22H	000	000	uuu	
IP1	23H	0000 0000	0000 0000	uuuu uuuu	
IP2	24H	0000 0000	0000 0000	uuuu uuuu	
TR0	25H	1111 1111	1111 1111	uuuu uuuu	
TR2	26H	1111 1111	1111 111	uuuu uuuu	
TR1	27H	1111 1111	1111 1111	uuuu uuuu	
OSCSTA	28H	011000	011000	uuuuuu	
IP3	29H	000	000	uuu	
VRECAL1	2AH	0111 0111	0111 0111	uuuu uuuu	
VRECTL	2BH	0000 0000	0000 0000	uuuu uuuu	
EIE1	2CH	0000 0000	0000 0000	uuuu uuuu	
EIE2	2DH	0000 0000	0000 0000	uuuu uuuu	
PCTL	2EH	1 000x	1 00uq	u uuuu	
OSCCTL	2FH	0010 0000	0010 0000	uuuu uuuu	
OSCCAL0	30H	1000 0000	1000 0000	uuuu uuuu	
ANSEL	31H	0000 0000	0000 0000	uuuu uuuu	
PP2	32H	1111 1111	1111 1111	uuuu uuuu	
PWM2L	33H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PWM2H	34H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PUR0	35H	1111 1-11	1111 1-11	uuuu u-uu	
IOCL	36H	0000 0000	0000 0000	uuuu uuuu	
OSCCAL1	37H	0000 -001	0000 -001	uuuu -uuu	
NVMDATAH	38H	0000 0000	0000 0000	uuuu uuuu	
NVMDATAL	39H	0000 0000	0000 0000	uuuu uuuu	
NVMADDRH	3AH	0000 0000	0000 0000	uuuu uuuu	
NVMADDRL	3BH	0000 0000	0000 0000	uuuu uuuu	
NVMCTL0	3CH	x000	q000	uuuu	
NVMCTL1	3DH				

			RST 复位	中断唤醒
寄存器	地址	上电复位	大压检测	WDT 超时唤醒
ADCDATA0L	3EH	0000 0000	0000 0000	uuuu uuuu
ADCCTL1	3FH	0000 0000	0000 0000	uuuu uuuu
P0LR	45H	XXXX XXXX	uuuu uuuu	uuuu uuuu
P2LR	46H	XXXX XXXX	uuuu uuuu	uuuu uuuu
P1LR	47H	XXXX XXXX	uuuu uuuu	uuuu uuuu
P3LR	48H	XXXX XXXX	uuuu uuuu	uuuu uuuu
TR3	49H	1111 1111	1111 1111	uuuu uuuu
EIE3	4AH	000	000	uuu
EIF3	4BH	000	000	uuu
OSCCAL2	4CH	0011 1111	0011 1111	uuuu uuuu
OSCCAL3	4DH	0011 1111	0011 1111	uuuu uuuu
T3CTL	4EH	0000 0000	0000 0000	uuuu uuuu
T3L CTCTL0	4FH 53H	0000 0000	0000 0000	uuuu uuuu
T3H	55H	0000 0000	0000 0000	uu-u uuuu
PUR1	60H	1111 1111	1111 1111	uuuu uuuu uuuu uuuu
PUR2	61H	1111 1111	1111 1111	uuuu uuuu
CTCTL1	64H	000	000	uuu
INTEDGCTL	67H	110	110	uuu
VBIASCTL	6BH	0000	0000	uuuu
VBIAS1EN	6CH	0000 0000	0000 0000	uuuu uuuu
VBIAS2EN	6DH	0000 0000	0000 0000	uuuu uuuu
T2CTL1	10FH	0000 00	0000 00	uuuu uu
VDAC	112H	0000 0000	0000 0000	uuuu uuuu
RSCTL	120H	0000 0000	0000 0000	uuuu uuuu
TXSDR	121H	0000 0000	0000 0000	uuuu uuuu
RXSDR	122H	0000 0000	0000 0000	uuuu uuuu
BRCTL	123H	0100 0000	0100 0000	uuuu uuuu
TSCTL	124H	0000 0010	0000 0010	uuuu uuuu
EUBRGL	125H	0000 0000	0000 0000	uuuu uuuu
EUBRGH	126H	0000 0000	0000 0000	uuuu uuuu
SSCICTL0 SSCICTL1	128H 12AH	0000 0000	0000 0000	uuuu uuuu
SSCICTLI	12AH 12BH	0000 0000	0000 0000	uuuu uuuu
SSCIBUFR	12BH 12CH	XXXX XXXX	uuuu uuuu	uuuu uuuu uuuu uuuu
SSCIADD		0000 0000	0000 0000	uuuu uuuu
SSCIMSK	12EH	1111 1111	1111 1111	uuuu uuuu
WDTPS	12FH	0100	0100	uuuu
LEDCTL	140H	0000 0000	0000 0000	uuuu uuuu
LEDPRE	141H	0000 0000	0000 0000	uuuu uuuu
LEDDATA0	142H	0000 0000	0000 0000	uuuu uuuu
LEDDATA1	143H	0000 0000	0000 0000	uuuu uuuu
LEDDATA2	144H	0000 0000	0000 0000	uuuu uuuu
LEDDATA3	145H	0000 0000	0000 0000	uuuu uuuu
LEDDATA4	146H	0000 0000	0000 0000	uuuu uuuu
LEDDATA5	147H	0000 0000	0000 0000	uuuu uuuu
LEDDATA6	148H	0000 0000	0000 0000	uuuu uuuu
LEDDATA7	149H	0000 0000	0000 0000	uuuu uuuu
LEDOMS1	150H	0000 0000	0000 0000	uuuu uuuu
LEDODS0	155H	0000 0000	0000 0000	uuuu uuuu
LEDOMS0	157H	0000 0000	0000 0000	uuuu uuuu
LEDODS1	158H 159H	0000 0000	0000 0000	uuuu uuuu
VRECAL2 VRECAL3	159H 15AH	1010 0000	1010 0000	uuuu uuuu
LEDLUM	15AH 15CH	0000	0000	uuuu uuuu uuuu
RC32KCAL	165H	0000 0000	0000 0000	
KC32KCAL	165H	0000 0000	0000 0000	uuuu uuuu

注: u =不变,x =未知,- =未实现位,读为 0; q =视具体条件而定。

表 14-2 不同复位条件下对标志位的影响

POR	LVR	TO	$\overline{\mathrm{PD}}$	复位方式
0	u	1	1	上电复位
1	0	1	1	欠压检测复位
u	u	0	u	WDT 复位
u	u	0	0	WDT 唤醒
u	u	u	u	正常操作中的RST复位
u	u	1	0	休眠模式中的RST复位

图注: u=未发生变化

KungFu®

KF8TS2716数据手册V1.4

15 休眠模式

当单片机空闲的时候,为使其功耗降到最低,可以将其转入休眠模式。通过执行一条 IDLE 指令即可进入休眠模式。

为使这种方式下的电流消耗降至最低,应使所有 I/O 口状态确定,如果有的端口没有使用,最好设置为输入,接到 VDD 或 VSS 上,如果没用的端口悬空,应设置为输出,以确保 I/O 引脚没有耗散电流产生,其他在休眠时不用的外设都要关闭。

注: 在单片机正常工作时,通常有些引脚用不到,有的用户可能会直接将其悬空。为了减小单片机的功耗,应该将不用的引脚设置为数字输出。如果是P0口的引脚则可打开上拉电阻或者设置为数字输出皆可。

单片机进入休眠模式一段时间后由于工作的需要,要将单片机从休眠模式唤醒,在 KF8TS2716中可通过以下方式将单片机从休眠模式唤醒:

- 1. **RST** 引脚上输入的外部复位
- 2. 看门狗定时器唤醒(如果 WDT 已被使能)
- 3. INTO/INT1/INT2 外部中断
- 4. T1 中断(T1 异步计数模式)
- 5. P0 口电平变化中断

RST 引脚输入的复位信号在唤醒单片机的同时也将导致单片机复位。其它唤醒时将单片机从休眠模式唤醒,并不会导致复位。可通过状态寄存器中的 \overline{TO} 和 \overline{PD} 位来确定单片机唤醒的原因。上电时 \overline{PD} 位将被置 1,而当器件从休眠模式唤醒时,该位将被清零。 \overline{TO} 位则在 WDT 唤醒发生时被清零。

在使用中断方式唤醒时,必须使能相应的中断使能位,唤醒与 AIE 位的状态无关。如果 AIE 位被清零,单片机被唤醒后将继续执行 IDLE 指令后面的指令。如果 AIE 位被置 1,单片机执行 IDLE 指令后面一条指令后进入中断子程序。如果不希望执行 IDLE 指令后面的那条指令直接进入中断子程序,在 IDLE 指令加一条 NOP 指令即可。

16 看门狗定时器

为了防止单片机在正常工作时程序跑飞, KF8TS2716 提供一个看门狗定时器, 单片机正常工作时, 当看门狗定时器定时时间达到超时时间后, 会使单片机产生复位。

看门狗定时器使用片内看门狗专用 RC 振荡器,因此它无需外接任何器件,在休眠模式仍能正常运行。在正常运行时,WDT 超时事件将使单片机产生一次复位。如果单片机处于休眠模式,WDT 超时事件将唤醒单片机并使其继续执行 IDLE 后面的指令。

16.1 看门狗相关寄存器

表 16-1 看门狗相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2EH	PCTL	-	1	1	SLVREN	IPEN	SWDTEN	POR	LVR
12FH	WDTPS	-	-	1	-	WDTP3	WDTP2	WDTP1	WDTP0

16.1.1 WDT 预分频选择寄存器

寄存器16.1 WDTPS: WDT预分频选择寄存器(地址:12FH)

	bit7							bit0
复位值 0100	-	=	-	=	WDTPS3	WDTPS2	WDTPS1	WDTPS0
	U	U	U	U	R/W	R/W	R/W	R/W

WDTPS<3:0>:看门狗定时器预分频比选择位

0000 = 1: 32

0001 = 1:64

0010 = 1: 128

0011 = 1: 256

0100 = 1: 512 (默认) 16ms

0101 = 1: 1024

0110 = 1: 2048

0111 = 1: 4096

1000 = 1: 8192

1001 = 1: 16384

1010 = 1: 32768

1011 = 1: 65536

11xx = 保留

图注: R=可读 W=可写 -=未用 U=未实现位

16.2 看门狗的开启关闭方式

看门狗的开启/关闭方式:

- 通过配置位 WDTEN, 打开/关闭看门狗;
- 通过寄存器 PCTL 的 SWDTEN 位,打开/关闭看门狗。

上述两种方式任意一种都可启动看门狗;配置位 WDTEN 一旦使能,看门狗将一直开启,软件配置位 SWDTEN 无效;配置位 WDTEN 未使能时,软件配置位 SWDTEN 允许用户在软件上根据实际需求打开/关闭看门狗。

16.3 看门狗的清狗方式

为了防止在正常工作时看门狗超时复位,要在固定的时间内对看门狗定时器进行清狗操作。执行 CWDT 指令进行清狗操作或者执行 IDLE 指令进入休眠模式后,将清零整个看门狗定时器(包括看门狗预分频器和后分频器)。当看门狗定时器出现超时时,状态字寄存器 PSW 中的 \overline{TO} 位将被清 0。

看门狗定时器使用内部低频振荡器作为工作时钟源,因此它无需外接任何器件,在休眠模式仍能正常运行。WDT 超时事件对单片机的动作:

- 在正常运行时, WDT 超时事件将使单片机产生一次复位;
- 在休眠模式下,WDT超时事件将唤醒单片机并使其继续执行IDLE后面的指令。

16.4 看门狗 WDT 的周期

图 16.1 看门狗定时器框图

如看门狗定时器框图所示:看门狗定时器的时钟源为内部低频时钟(带校正功能的32K),相关内容详见内部低频振荡器章节。

看门狗定时器的周期由两个分频器的配置决定,最短约 1ms,最长约 268s,默认配置时为 16ms。由于温度、电源电压和工艺等的差异,不同器件之间的超时周期稍有不同。

看门狗定时器带有两个分频器:

- 一个 16 位(11 位可编程) 预分频器;
- 一个 8 位可编程后分频器 (与 T0 共用)。

16位预分频器中有11位可编程,由WDTPS寄存器的WDTPS<3:0>位选择预分频比(1:32 到 1:65536),共 12 档。

后分频器为看门狗定时器和定时/计数器 T0 共用,通过 OPTR 寄存器的 PSA 位将后分频器分配给 WDT 或者 T0;, OPTR 寄存器的 PS<2:0>位选择后分频器的分频比(1/1 到 1/128)。

注:任何对OPTR寄存器的PSA位或者PS<2:0>位操作前和操作后,都须对看门狗定时器进行清狗操作(执行CWDT指令)。否则,可能引起芯片的异常复位。

芯旺微电子 - 183/216 - Chip**○N**

17 电气规范

17.1 极限参数值

17-1 芯片极限参数值

	极限参数值						
序号	参数说明	参数范围					
1	偏置电压下的环境温度	-30℃~85℃					
2	储存温度	-40°C~150°C					
3	VDD 相对于VSS 的电压	-0.3V~+6.0V					
4	MODE 相对于Vss 的电压	-0.3V~ +12.5V					
5	其它引脚相对于VSS 的电压	-0.3V~VDD+0.3V					
6	VSS 引脚的最大输出电流	80mA					
7	VDD 引脚的最大输入电流	80mA					
8	任一I/O 引脚的最大输出灌电流	15mA					
9	任一I/O 引脚的最大输出拉电流	15mA					
10	I/O口 的最大灌电流	80mA					
11	I/O口 的最大拉电流	80mA					

备注:如果器件的工作条件超过"最大值",可能会对器件造成永久性损坏。上述值仅为运行 条件极大值,建议不要使器件在该规范规定的范围以外运行。器件长时间工作在最大值条件 下,其稳定性会受到影响。

17.2 HFINT 的频率精度与 VDD 和温度之间的关系

17.3 静态电流特性

表17-2芯片静态电流(IDD)特性

		测试象	条件:25°C			
序号	测试条件		最小值	典型值	最大值	单位
万 5	振荡频率	VDD (V)	-			- 早世
1		5.0	-	1065	1900	
1	16MHz	4.0	-	1060	1900	
		3.0	-	1047	1900	
		2.6	-	1039	1900	
_		5. 0	-	766	1400	
2	8MHz	4.0	-	763	1400	
		3.0	-	750	1400	
		2.6	-	745	1400	
		5. 0	-	611	1100	
3		4.0	-	608	1100	
	4MHz	3.0	-	597	1100	
		2.6	-	591	1100	uA
		5. 0	-	533	1000	uA
4	2MHz	4.0	-	530	1000	
		3.0	-	519	1000	
		2.6	-	514	1000	
		5. 0	-	494	900	
5		4.0	-	493	900	
	1MHz	3.0	-	482	900	
		2.6	-	477	900	
		5. 0	-	475	900	
6		4.0	-	472	900	
	500 kHz	3.0	-	461	900	
		2.6	-	456	900	1
		5.0	-	465	850	1
7	1051.11	4.0	-	462	850	1
	125kHz	3.0	-	452	850	1
		2.6	-	447	850	1
		5.0	-	458	850	
8	00 FLH	4.0	-	455	850	
	62. 5kHz	3.0	-	445	850	1
		2.6	-	440	850	

- 注 1: 在正常的工作模式下, IDD 测量的条件为:所有I/O 引脚均设置为输出低, RST = Vss, 禁止WDT, 关闭时钟输出。
 - 2: 供电电流主要随工作电压和频率而变化。其它因素,如I/O 引脚负载和开关速率、内部代码执行模式和温度也会影响电流消耗。

17.4 外设电流特性

表17-3芯片外设电流特性

	测试条件:25°C							
序号	测试参数	测试条件		最小值	典型值	最大值	单位	
			VDD(V)					
1	休眠电流(IPD)	WDT、LVR 等外设被 禁止	5.0	-	2.03	3.12		
1	PARTE VILL (II D)	示止	4.0	-	1.46	2.34		
			3.0	-	0.93	1.69		
			2.6	-	0.74	1.43		
			5.0	-	2.71	3.9		
2	WDT 电流		4.0	-	2.05	3.12		
	(IWDT)		3.0	-	1.45	2.21		
			2.6	-	1.20	1.95		
			5.0	-	9.7	13.9	1	
3	欠电压复位电		4.0	-	7.3	10.7	uA	
	流 (ILVR)		3.0	-	5.0	7.7		
			2.6	-	3.9	6.2		
			4.0	-	36	48		
			3.0	-	24	24		
			2.6	-	18	18		

- 注 1: 外设电流是基本IDD 或IPD 电流以及相应外设使能时消耗的额外电流的总和。外设电流可以从此电流中减去基本IDD 或IPD 电流得出。
 - 2: 休眠电流与振荡器类型无关。掉电电流是在器件休眠时,所有I/O 引脚设置为输出低,RST = Vss;禁止WDT,关闭时钟输出时测得的。
 - 3: 外设电流还可能受到温度的影响。

17.5 I/O 端口特性

表 17-4 芯片 IO 端口特性

	ス 17→ 10/1 10 利用 10 圧							
	工作温度 -30℃≤TA≤+85℃							
符号	参数说明	测试条件	最小值	典型值	最大值	单位		
VIL	输入低电平 I/O引脚 采用TTL缓冲器		$V_{ m SS}$	-	0.15VDD	V		
	采用施密特缓冲触 发器		V_{SS}	-	0.2VDD	V		
Vih	输入高电平 I/O端口 采用TTL缓冲器		VDD-0.6	-	$V_{ m DD}$	V		
	采用施密特缓冲触 发器		0.8VDD	-	$V_{ m DD}$	V		
Vol	输出低电压		-	_	0.6	V		
Vон	输出高电压		VDD -0.6	_	-	V		
IIL	输入漏电流	VSS <vi<vdd< td=""><td>-1</td><td>_</td><td>1</td><td>μΑ</td></vi<vdd<>	-1	_	1	μΑ		

17.6 芯片供电电压特性

表 17-5 芯片供电电压特性

WI CON MENDEN						
工作温度 -30℃≤TA≤+85℃						
符号	参数说明	测试条件	最小值	典型值	最大值	单位
VDD	电源电压		2.6	-	5.5	V
VLVR	VDD 起始电压确保 能够产生欠压复位信 号		2.2	-	2.6	V
VPOR	VDD 起始电压确保 能够产生内部上电复 位信号		2.2	-	2.6	V

17.7 A/D 转换器 (ADC) 特性

表 17-6 A/D 转换器 (ADC) 特性

	工作温度 -30℃≤TA≤+85℃							
符号	参数说明	测试条件	最小值	典型值	最大值	单位		
N _R *	分辨率		-	-	12	位		
E _{IL} *	积分误差	VREF = 5V, VDD=5.0V	-2	-	+2	LSB		
E _{DL} *	微分误差	VREF = 5V, VDD=5.0V	-1	-	+1	LSB		
E _{OFF} *	失调误差	VREF = 5V, VDD=5.0V	-	3	-	LSB		
E _{GN} *	增益误差	VREF = 5V, VDD=5.0V	-1.5	0.5	+1.5	LSB		
V _{REF} *	参考电压	保证1个LSb的精度	2	-	VDD	V		
V _{AIN} *	满量程范围		Vss	-	Vref	V		
TCNV *	AD转换时间		-	13	-	TAD		

^{*}该数据为设计值

17.8 内部参考电压模块特性

表 17-7 内部参考电压模块特性

	00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	工作温度: -30℃≤T _A ≤+85℃						
参数编号	符号	特性	最小值	典型值	最大值	单位	备注
1	1 Vout 输出电压 - 2 3 - V Vout≤VDD≤5.5 V						
2	Accuracy	精度	-5		+ 5	%	$Vout \le VDD \le 5.5 \text{ V}$

芯旺微电子 - 189/216 - Chip**○N**

18 直流特性图表

备注:某些图表中的数据超出了规定的工作范围(即超出了规定的VDD 范围),这些图表仅供参考,器件只有在规定的范围下工作才可以确保正常运行。

图18.1: 不同VDD 时典型IDD - SCLK 关系曲线图

图18.2: 不同VDD 时典型IPD - VDD 关系曲线图

图18.3: 弱上拉电流IPUR - VDD 关系曲线图

图18.4: 不同VDD时看门狗WDTCTL预分频比 一周期关系曲线图

图18.5:看门狗电流 - VDD关系曲线图

图 18.6:欠压复位电流 ILVR - VDD 关系曲线图

图18.7:不同温度时VOH - IOH 关系曲线图(VDD = 5.0V)

图18.8:不同温度时VOH - IOH 关系曲线图(VDD = 3.0V)

图18.9:不同温度时VOL - IOL 关系曲线图(VDD = 5.0V)

图18.10:不同温度时VOL - IOL 关系曲线图(VDD = 3.0V)

图18.11: 不同温度时VOP-IOP 关系曲线图 (VDD =5.0V)

图 18.12: 不同温度时 VOP-IOP 关系曲线图 (VDD =3.3V)

芯旺微电子 - 195/216 - Chip**○N**

19 封装信息

28 脚 SOIC 封装

28 脚 TSSOP 封装

28 脚 UQFN 封装

32 脚 LQFP 封装

附录 1 KF8TS2716 SFR地址映射

地址	Bank0	地址	Bank1
00H	_	100H	_
01H	T0	101H	T0
02H	PCL	102H	PCL
03H	PSW	103H	PSW
04H	-	104H	-
05H	P0	105H	-
06H	P2	106H	-
07H	P1	107H	-
08H	P3	108H	-
09H	-	109H	-
0AH	PCH	10AH	РСН
0BH	INTCTL	10BH	-
ОСН	EIF1	10CH	-
0DH	EIF2	10DH	-
0EH	T1L	10EH	-
0FH	T1H	10FH	T2CTL1
10H	T1CTL	110H	-
11H	-	111H	-
12H	-	112H	-
13H	PWM1L	113H	-
14H	PWM1H	114H	-
15H	PWMCTL	115H	-
16H	PP1	116H	-
17H	BANK	117H	BANK
18H	ADSCANCTL	118H	-
19H	-	119H	-
1AH	-	11AH	-
1BH	-	11BH	-
1CH	-	11CH	-
1DH	ANSEH	11DH	-
1EH	ADCDATA0H	11EH	-
1FH	ADCCTL0	11FH	-
20H	-	120H	RSCTL
21H	OPTR	121H	TXSDR
22H	IP0	122H	RXSDR
23H	IP1	123H	BRCTL
24H	IP2	124H	TSCTL
25H	TR0	125H	EUBRGL
26H	TR2	126H	EUBRGH
27H	TR1	127H	-
28H	OSCSTA	128H	SSCICTL0
29H	IP3	129H	-
2AH	VRECAL1	12AH	SSCICTL02
2BH	VRECTL	12BH	SSCISTA
2CH	EIE1	12CH	SSCIBUFR
2DH	EIE2	12DH	-
2EH	PCTL	12EH	SSCIMSK
2FH	OSCCTL	12FH	WDTPS
30H	OSCCAL0	130H	-

31H	ANSEL	131H	-
32H	PP2	132H	-
33H	PWM2L	133H	-
34H	PWM2H	134H	-
35H	PUR0	135H	-
36H	IOCL	136H	-
37H	OSCCAL1	137H	-
38H	NVMDATAH	138H	-
39H	NVMDATAL	139H	_
3AH	NVMADDRH	13AH	_
3BH	NVMADDRL	13BH	_
3CH	NVMCTL0	13CH	_
3DH	NVMCTL1	13DH	_
3EH	ADCDATA0L	13EH	_
3FH	ADCCTL1	13FH	_
40H	-	140H	LEDCTL
41H	_	141H	LEDPRE
42H	_	142H	LEDDATA0
43H	_	143H	LEDDATA1
44H	_	144H	LEDDATA2
45H	POLR	145H	LEDDATA3
46H	P2LR	146H	LEDDATA4
47H	P1LR	147H	LEDDATA5
48H	P3LR	147H	LEDDATA6
49H	TR3	149H	LEDDATA7
4AH	EIE3	14AH	LEDDAIA/
4BH	EIF3	14BH	-
4CH	OSCCAL2	14CH	-
4DH	OSCCAL3	14DH	-
4EH	T3CTL	14EH	-
4FH	T3L	14FH	-
50H	13L	150H	LEDOMS1
51H	-	151H	LEDOMST
52H	-	151H 152H	-
53H	CTCTL0	153H	-
54H	CICILO	154H	-
55H	-	155H	LEDODS0
	-	156H	LEDODS0
56H 57H	-	150H 157H	LEDOMS0
58H	ADCINTCTL	157H 158H	LEDOMS0 LEDODS1
59H	ADCINICIL	159H	VRECAL2
	-		
5AH	-	15AH	VRECAL3
5BH	-	15BH	- LEDI IIM
5CH	-	15CH	LEDLUM
5DH	-	15DH	-
5EH	-	15EH	-
5FH	T3H	15FH	-
60H	PUR1	160H	-
61H	PUR2	161H	-
62H	-	162H	-
63H	- OTTOTEL 1	163H	-
64H	CTCTL1	164H	- DC201/C+1
65H	-	165H	RC32KCAL
66H	-	166H	-

67H	INTEDGCTL	167H	-
68H	-	168H	-
69H	-	169H	-
6AH	-	16AH	-
6BH	VBIASCTL	16BH	-
6CH	VBIAS1EN	16CH	-
6DH	VBIAS2EN	16DH	-
6EH	-	16EH	-
6FH	-	16FH	-

注: "-"的存储单元代表系统保留。

附录 2 特殊功能寄存器 (SFR) 功能汇总

地址	名称	位 7	位 6	位 5	位 4	位3	位 2	位1	位 0	复位初值
01H	T0				定时/计数器 0					xxxx xxxx
02H	PCL			ı	程序计数器(I		ı	1	,	0000 0000
03H	PSW	-	-	-	TO	PD	Z	DC	CY	0001 1xxx
05H 06H	P0 P2	- P27	- P26	P05 P25	P04 P24	P03 P23	P02 P22	P01 P21	P00 P20	XX XXXX
07H	P2 P1	P17	P16	P15	P14	P13	P12	P11	P10	XXXX XXXX
08H	P3	P37	P36	P35	P34	P33	P32	P31	P30	XXXX XXXX
0AH	PCH	-	-	-		程序	序计数器(PC)高字	2节	•	0 0000
0BH	INTCTL	AIE/ AIEH	PUIE /AIEL	TOIE	INT0IE	P0IE	T0IF	INT0IF	POIF	0000 0000
0CH	EIF1	-	ADIF	INT2IF	INT1IF	-	PWM2IF	-	T1IF	0000 0000
0DH	EIF2	T3IF	-	RCIF	TXIF	-	-	BCLIF	SSCIIF	0000 0000
0EH	T1L				定时/计数器 T1 个					xxxx xxxx
0FH	T1H		定时/计数器 T1 高字节寄存器							
10H	T1CTL	T1RLD	T1GC	T1CKS1	T1CKS0	T1OSCEN	T1SY	T1CS	T1ON	0000 0000
13H	PWM1L				PWM1 占空比					XXXX XXXX
14H	PWM1H					F器(与用户无关		1		XXXX XXXX
15H 16H	PWMCTL PP1	-	-	-	PWM2ON	- 1-2-1-1-11	-	-	PWM10N	0000 0000
				1	PWM1 周期		DD2	DD 1	DD (1111 1111
17H	BANK ADSCANCTL	A DCC A NEN	- CMOD1	- CMODO	CTIMA	PR3 STIM3	PR2	PR1	PR0	0000 0000
18H 1AH	VDACS	ADSCANEN -	SMOD1 VCEN	SMOD0	STIM4	511013	STIM2	STIM1	STIM0	00000
1DH	ANSEH	-	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	0000 0000
1EH	ADCDATA0H				ADC 数据寄存					xxxx xxxx
1FH	ADCCTL0	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN	0000 0000
21H	OPTR	PUPH	INT0SE	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111
22H	IP0	rurn -	-	-	-	-	PT0	PINT0	PP0	000
23H	IP1	-	PADC	PINT2	PINT1	-	PPWM2	-	PT1	0000 0000
	IP1 IP2			PINTZ		-	PPWM2			
24H 25H	TR0	PT3	-	TR05	PTX TR04	TR03	TR02	PBCL TR01	PSSCI TR00	0000 0000
26H	TR2	TR27	TR26	TR25	TR24	TR23	TR22	TR21	TR20	1111 1111
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10	1111 1111
28H	OSCSTA	-	OSTS	HTS	LTS	-	-	SCF1	SCF0	000000
29H	IP3	PT4	-	POSCFAIL		-	-	-	-	000
2AH 2BH	VRECAL1 VRECTL	VRESEL1	VRESEL0	<u> </u>	内核电压校准 VRECKEN	t奇仔爺 I VREOE	_	VREEN	_	0111 0111
2CH	EIE1	VKESELI	ADIE	INT2IE	INT1IE	- VREUE	PWM2IE	VKEEN	T1IE	0000 0000
2DH	EIE2	T3IE	-	RCIE	TXIE	-	-	BCLIE	SSCIIE	0000 0000
2EH	PCTL	-	-	-	SLVREN	IPEN	SWDTEN	POR	LVR	1 000x
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM	0010 0000
30H	OSCCAL0				晶振校准值					1000 0000
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	0000 0000
32H	PP2				PWM2x 周期					1111 1111
33H	PWM2L			DWA	PWM2 占空比		`			XXXX XXXX
34H 35H	PWM2H PUR0	-	-	PUR05	2 百至瓦绫伊甸石 PUR04	F器(与用户无关 PUR03	-	PUR01	PUR00	1111 1-11
36H	IOCL	-	-	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0	0000 0000
37H	OSCCAL1				晶振校准值					0000 -001
38H	NVMDATAH				NVMDATAH 3					0000 0000
39H	NVMDATAL				NVMDATAL 3					0000 0000
3AH	NVMADDRH				NVMADDRH 地	址指针高8位				0000 0000
3BH	NVMADDRL				NVMADDRL 地:					0000 0000
3CH	NVMCTL0				NVM 控制					x000
3DH	NVMCTL1				NVM 控制					
3EH	ADCDATA0L		1 = ===		ADC 数据寄存		yyama:-	1		XXXX XXXX
3FH	ADCCTL1	ADCALEN -	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	- DOLD 1	ADCIM DOL DO	0000 0000
45H 46H	P0LR P2LR	P2LR7	P2LR6	P0LR5 P2LR5	P0LR4 P2LR4	P0LR3 P2LR3	P2LR2	P0LR1 P2LR1	P0LR0 P2LR0	XXXX XXXX
47H	P1LR	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0	XXXX XXXX
48H	P3LR	P3LR7	P3LR6	P3LR5	P3LR4	P3LR3	P3LR2	P3LR1	P3LR0	XXXX XXXX
49H	TR3	TR37	TR36	TR35	TR34	TR33	TR32	TR31	TR30	1111 1111
4AH	EIE3	T4IE	-	OSCFAILIE	-	-	-	-	-	000
4BH	EIF3	T4IF	-	OSCFAILIF	-	-	-	-		000

芯旺微电子 - 202/216 - Chip**○N**

地址	名称	位 7	位 6	位 5	位 4	位3	位 2	位1	位 0	复位初值		
4CH	OSCCAL2				晶振校准值	寄存器 2				0011 1111		
4DH	OSCCAL3				晶振校准值	寄存器 3				0011 1111		
4EH	T3CTL	T3EN	T3CKS1	T3CKS0	T3CS	-	-	-	-	0000 0000		
4FH	T3L			•	T3 低位智	子 存器				0000 0000		
53H	CTCTL0	CTEN	CTSTART	-	CTCHSEL4	CTCHSEL3	CTCHSEL2	CTCHSEL1	CTCHSEL0	0000 0000		
5FH	ТЗН		T3 高位寄存器 0									
60H	PUR1	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10	1111 1111		
61H	PUR2	PUR27	PUR26	PUR25	PUR24	PUR23	PUR22	PUR21	PUR20	1111 1111		
64H	CTCTL1	CTCLKSEL1	CTCLKSEL0	-	-	-	-	-	VSEL	000		
67H	INTEDGCTL	INT2SE	INT1SE	-	-	-	-	-	T1CLKEN	110		
6BH	VBIASCTL	VBIASEN	VBSEL	-	-	-	-	ISEL1	ISEL0	0000		
6CH	VBIAS1EN	VBS17EN	VBS16EN	VBS15EN	VBS14EN	VBS13EN	VBS12EN	VBS11EN	VBS10EN	0000 0000		
6DH	VBIAS2EN	VBS27EN	VBS26EN	VBS25EN	VBS24EN	VBS23EN	VBS22EN	VBS21EN	VBS20EN	0000 0000		
112H	VDAC	VDAC3	VDAC2	VDAC1	VDAC0	-	-	-	-	0000 0000		
120H	RSCTL	SPEN	RX9	SRXEN	CRXEN	ADREN	FRER	OVFER	RX9D	0000 000x		
121H	TXSDR		•	•	USART 发送数	数据寄存器		•	•	0000 0000		
122H	RXSDR				USART 接收数					0000 0000		
123H	BRCTL	ABRDOVF	RCIDLF	SCKPS	BRG16		_	WUEN	ABRDEN	0100 0000		
124H	TSCTL	CSRS	TX9	TXEN	SYNC	SENDB	HBRG	TXSRS	TX9D	0000 0010		
125H	EUBRGL		USART 波特率数据寄存器低字节									
126H	EUBRGH		USART 波特率数据寄存器高字节							0000 0000		
128H	SSCICTL0	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD3	SSCIMOD2	SSCIMOD1	SSCIMOD0	0000 0000		
12AH	SSCICTL1	SSCICALLEN	SSCIACKSTA	SSCIACKDAT	SSCIACKEN	SSCIRCEN	STOPEN	RESTARTEN	STARTEN	0000 0000		
12BH	SSCISTA	SAMPLE	CKEGE	SSCIDA	SSCISTOP	SSCISTART	SSCIRW	SSCIUA	SSCIBUF	0000 0000		
12CH	SSCIBUFR			,	SSCI 数据接收缓	冲/发送寄存器				xxxx xxxx		
10511	SSCIADD				SSCI 的 I2C					0000 0000		
12EH	SSCIMSK	SSCIMSK7	SSCIMSK6	SSCIMSK5	SSCIMSK4	SSCIMSK3	SSCIMSK2	SSCIMSK1	SSCIMSK0	1111 1111		
12FH	WDTPS	-	-	-	-	WDTPS3	WDTPS2	WDTPS1	WDTPS0	0100		
140H	LEDCTL	LEDEN	-	-	DIGEN2	DIGEN1	DIGEN0	PNS1	PNS0	0000 0000		
141H	LEDPRE	LEDCKS13	LEDCKS12	LEDCKS11	LEDCKS10	LEDCKS03	LEDCKS02	LEDCKS01	LEDCKS00	0000 0000		
142H	LEDDATA0	DAT07	DAT06	DAT05	DAT04	DAT03	DAT02	DAT01	DAT00	0000 0000		
143H	LEDDATA1	DAT17	DAT16	DAT15	DAT14	DAT13	DAT12	DAT11	DAT10	0000 0000		
144H	LEDDATA2	DAT27	DAT26	DAT25	DAT24	DAT23	DAT22	DAT21	DAT20	0000 0000		
145H 146H	LEDDATA3 LEDDATA4	DAT37 DAT47	DAT36 DAT46	DAT35 DAT45	DAT34 DAT44	DAT33 DAT43	DAT32 DAT42	DAT31 DAT41	DAT30 DAT40	0000 0000		
140H	LEDDATA5	DAT57	DAT56	DAT55	DAT54	DAT53	DAT52	DAT51	DAT50	0000 0000		
148H	LEDDATA6	DAT67	DAT66	DAT65	DAT64	DAT63	DAT62	DAT61	DAT60	0000 0000		
149H	LEDDATA7	DAT77	DAT76	DAT75	DAT74	DAT73	DAT72	DAT71	DAT70	0000 0000		
150H	LEDOMS1	LEDOM17	LEDOM16	LEDOM15	LEDOM14	LEDOM13	LEDOM12	LEDOM11	LEDOM10	0000 0000		
155H	LEDODS0	LEDOD07	LEDOD06	LEDOD05	LEDOD04	LEDOD03	LEDOD02	LEDOD01	LEDOD00	0000 0000		
157H	LEDOMS0	LEDOM07	LEDOM06	LEDOM05	LEDOM04	LEDOM03	LEDOM02	LEDOM01	LEDOM00	0000 0000		
158H	LEDODS1	LEDOD17	LEDOD16	LEDOD15	LEDOD14	LEDOD13	LEDOD12	LEDOD11	LEDOD10	0000 0000		
159H	VRECAL2				内部参考电压构					0000 0000		
15AH	VRECAL3				内部参考电压构					1010 0000		
15CH	LEDLUM	LEDBR	-	-	-	FRAMEF	LUM2	LUM1	LUM0	0 0000		
160H	T4L				T4 低 8	3位				0000 0000		
161H	T4H				T4 高 8	3位				0000 0000		
162H	T4REL				T4 重载寄存	器低8位				xxxx xxxx		
163H	T4REH				T4 重载寄存	器高8位				xxxx xxxx		
164H	T4CTL	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON	0000 0000		
165H	RC32KCAL			P	内部 32K 振荡器频	页率校验寄存器				0000 0000		

注:"-"表示未用的存储单元 "x"表示不定

芯旺微电子 - 203/216 - Chip**○N**

附录3 汇编指令集

助记符、操作数	指令格式	指令说明	周期	影响标志
NOP	0000_0000_0000_0000	空操作指令	1	
NOPZ	1111_1111_1111	空操作指令	1	
CRET	0000 0000 0000 1000	子程序返回指令	2	
RRET Rn,#data	1011_0rrr_kkkk_kkkk	立即数送到 Rn 中返回	2	
IRET	0000_0000_0000_1001	中断返回指令	2	
CWDT	0000_0000_0110_0100	WDT 清零	1	
IDLE	0000_0000_0110_0011	进入休眠模式	1	
IDLE	0000_0000_0110_0011	数据传送指令	1	
MOV dir	0000_1111_ffff_ffff	dir←(dir)	1	Z
MOV Rn,dir	0101_rrr0_ffff_ffff	Rn←(dir)	1	L
MOV dir,Rn	0101_rrr1_ffff_ffff	dir←(Rn)	1	
MOV Rn,#data	1001_1rrr_kkkk_kkkk	Rn←data	1	
MOV Rn,Rs	1111_1000_11ss_srrr	Rn←(Rs)	1	
LD Rn,[Rs]	1111_0111_00ss_srrr	$Rn\leftarrow(Rs)$	1	
ST [Rn],Rs	1111_0111_01ss_srrr	$(Rn)\leftarrow (Rs)$	1	
	0100_rrr0_ffff_ffff	, , , ,		
SWAPR Rn,dir		Rn<7:4>=dir<3:0> Rn<3:0>=dir<7:4>	1	
SWAP di r	0100_rrr1_ffff_ffff	dir<7:4>=dir<3:0> dir<3:0>=dir<7:4>	1	
MOVB #data	1110_0001_kkkk_kkkk	BANK←data	1	
MOVP #data	1110_0000_kkkk_kkkk	PCH←data	1	
		算术运算指令		
ADD Rm,dir	0010_0rr0_ffff_ffff	$Rm \leftarrow (Rm) + (dir)$	1	CY, DC, Z
ADD dir,Rm	0010_0rr1_ffff_ffff	dir←(Rm)+(dir)	1	CY, DC, Z
ADD Rn,#data	1000_0rrr_kkkk_kkkk	Rn←(Rn)+data	1	CY, DC, Z
ADD Rn,Rs	1111_1000_00ss_srrr	$Rn\leftarrow(Rn)+(Rs)$	1	CY, DC, Z
SUB Rm,dir	0011_1rr0_ffff_ffff	Rm←(dir)-(Rm)	1	CY, DC, Z
SUB dir,Rm	0011_1rr1_ffff_ffff	dir←(dir)-(Rm)	1	CY, DC, Z
SUB Rn,#data	1010_0rrr_kkkk_kkkk	Rn←data-(Rn)	1	CY, DC, Z
SUB Rn,Rs	1111_1000_01ss_srrr	$Rn\leftarrow(Rs)$ - (Rn)	1	CY, DC, Z
CMP Rn,#data	1111_0010_1kkk_krrr	-	1	CY, DC, Z
CMP Rn,Rs	1111_0001_10ss_srrr	-	1	CY, DC, Z
INC dir	0000_1011_ffff_ffff	dir←(dir)+1	1	Z
INCR dir	0000_1010_ffff_ffff	R0←(dir)+1	1	Z
INC Rn	1111_1111_0001_0rrr	Rn←(Rn)+1	1	Z
DEC dir	0000_0111_ffff_ffff	dir←(dir)-1	1	Z
DECR dir	0000_0110_ffff_ffff	R0←(dir)-1	1	Z
DEC Rn	1111_1111_0000_1rrr	Rn←(Rn)-1	1	Z
		逻辑运算指令		
AND Rm,dir	0010_1rr0_ffff_ffff	$Rm\leftarrow(Rm)\land(dir)$	1	Z
AND dir,Rm	0010_1rr1_ffff_ffff	$dir\leftarrow (dir) \land (Rm)$	1	Z
AND Rn,#data	1000_1rrr_kkkk_kkkk	Rn←(Rn)∧data	1	Z
AND Rn,Rs	1111_1000_10ss_srrr	$Rn\leftarrow(Rn)\land(Rs)$	1	Z
ORL Rm,dir	0011_0rr0_ffff_ffff	$Rm\leftarrow(Rm)\lor(dir)$	1	Z
ORL dir,Rm	0011_0rr1_ffff_ffff	dir←(dir)∨(Rm)	1	Z
ORL Rn,#data	1001_0rrr_kkkk_kkkk	Rn←(Rn)∨data	1	Z

助记符、操作数	指令格式	指令说明	周期	影响标志
ORL Rn,Rs	1111_1001_00ss_srrr	$Rn\leftarrow(Rn)\lor(Rs)$	1	Z
XOR Rm,dir	0001_1rr0_ffff_ffff	$Rm \leftarrow (Rm) \oplus (dir)$	1	Z
XOR dir,Rm	0001_1rr1_ffff_ffff	dir←(dir)⊕(Rm)	1	Z
XOR Rn,#data	1010_1rrr_kkkk_kkkk	Rn←(Rn) ⊕ data	1	Z
XOR Rn,Rs	1111_1001_01ss_srrr	$Rn \leftarrow (Rn) \oplus (Rs)$	1	Z
CLR Rn	0000_0010_xxxx_1rrr	Rn=0	1	Z
CLR dir	0000_0011_ffff_ffff	dir=0	1	Z
CPLR dir	0000_0100_ffff_ffff	R0←/(dir)	1	Z
CPL dir	0000_0101_ffff_ffff	dir←/(dir)	1	Z
CPL Rn	1111_1111_0000_0rrr	Rn←/(Rn)	1	Z
RRCR dir	0001_0000_ffff_ffff	R0←(dir) 带进位 C 循环右移 1 位	1	CY
RRC dir	0001_0001_ffff_ffff	dir←(dir) 带进位 C 循环右移 1 位	1	CY
RRC Rn	1111_1111_0010_0rrr	Rn←(Rn) 带进位 C 循环右移 1 位	1	CY
RLCR dir	0001_0010_ffff_ffff	R0←(dir)带进位 C 循环左移 1 位	1	CY
RLC dir	0001_0011_ffff_ffff	dir←(dir)带进位 C 循环左移 1 位	1	CY
RLC Rn	1111_1111_0001_1rrr	Rn←(Rn) 带进位 C 循环左移 1 位	1	CY
		位操作指令		
CLR dir,b	0110_0bbb_ffff_ffff	将 dir 的 b 位清零	1	
SET dir,b	0110_1bbb_ffff_ffff	将 dir 的 b 位置 1	1	
CLR Rn,b	1111_1110_00bb_brrr	将Rn的b位清零	1	
SET Rn,b	1111_1110_01bb_brrr	将 Rn 的 b 位置 1	1	
		转移指令		
DECRJZ dir	0000_1000_ffff_ffff	R0←(dir)-1,为 0 跳过下一条指令	1/2	
DECJZ dir	0000_1001_ffff_ffff	dir←(dir)-1,为 0 跳过下一条指令	1/2	
DECJZ Rn	1111_1111_0101_1rrr	Rn←(Rn)-1,为 0 跳过下一条指令	1/2	
INCRJZ dir	0000_1100_ffff_ffff	R0←(dir)+1,为 0 跳过下一条指令	1/2	
INCJZ dir	0000_1101_ffff_ffff	dir←(dir)+1,为 0 跳过下一条指令	1/2	
INCJZ Rn	1111_1111_0101_0rrr	Rn←(Rn)+1,为 0 跳过下一条指令	1/2	
JNB dir,b	0111_0bbb_ffff_ffff	dir 的 b 位为 0 跳过下一条指令	1/2	
JB dir,b	0111_1bbb_ffff_ffff	dir 的 b 位为 1 跳过下一条指令	1/2	
JNB Rn,b	1111_0111_10bb_brrr	Rn的b位为0跳过下一条指令	1/2	
JB Rn,b	1111_0111_11bb_brrr	Rn的b位为1跳过下一条指令	1/2	
JMP #data12	1100_kkkk_kkkk_kkkk	无条件转移指令	2	
CALL #data12	1101_kkkk_kkkk_kkkk	子程序调用指令	2	

注: dir 为通用寄存器或特殊功能寄存器;Rn、Rs 表示 R0~R7;Rm 表示 R0~R3;#data 表示 8 位立即数;#data12 表示 12 位立即数;b 表示寄存器的第 b 位;[Rn]表示 Rn 中的数值指向的地址中数据;()表示特殊功能寄存器、通用数据寄存器或寄存器组中的数据。

芯旺微电子 - 205/216 - Chip**○N**

附录 4 寄存器全称表

	BANK0								
		全称							
01H	T0	Timer 0 register							
02H	PCL	Program Counter Low register							
03H	PSW	Program Status Word register							
05H	P0	Port 0							
06H	P2	Port 2							
07H	P1	Port 1							
08H	P3	Port 3							
0AH	PCH	Program Counter High register							
0BH	INTCTL	Interrupt control register							
0CH	EIF1	Enable Interrupt Flag register 1							
0DH	EIF2	Enable Interrupt Flag register 2							
0EH	T1L	Timer 1 register Low							
0FH	T1H	Timer 1 register High							
10H	T1CTL	Timer 1 Control register							
11H	T2L	Timer 2 register Low							
12H	T2CTL0	Timer 2 register Control 0							
13H	PWM1L	Pulse-Width Modulation duty cycle register 1 Low							
14H	PWM1H	Pulse-Width Modulation duty cycle register 1 High							
15H	PWMCTL	Pulse-Width Modulation Control register							
16H	PP1	Pulse-Width Modulation Periods register 1							
17H	BANK	BANK							
18H	ADSCANCTL	Analog Digital Convert Scan control register							
1CH	VRECAL0	Core Voltage Calibration register 0							
1DH	ANSEH	Analog channel Selection register High							
1EH	ADCDATA0H	Analog Digital Convert Data 0 High register							
1FH	ADCCTL0	Analog Digital Convert Control register 0							
21H	OPTR	Option Register							
22H	IP0	Interrupt Priority 0 register							
23H	IP1	Interrupt Priority 1 register							
24H	IP2	Interrupt Priority 2 register							
25H	TR0	Tri Register 0							
26H	TR2	Tri Register 2							
27H	TR1	Tri Register 1							
28H	OSCSTA	Oscillator Status register							
29H	IP3	Interrupt Priority3 register							
2AH	VRECAL1	Reference Voltage Calibration register 1							
2BH	VRECTL	Reference Voltage Control register							
2CH	EIE1	Enable Interrupt Enable register 1							
2DH	EIE2	Enable Interrupt Enable register 2							
2EH	PCTL	Power Control register							
2FH	OSCCTL	Oscillator Control register							
30H	OSCCAL0	Oscillator Calibration register 0							
31H	ANSEL	Analog channel Selection register Low							
32H	PP2	Pulse-Width Modulation Periods register 2							
33H	PWM2L	Pulse-Width Modulation duty cycle register 2 Low							
34H	PWM2H	Pulse-Width Modulation duty cycle register 2 High							
35H	PUR0	Pull-Up Register 0							

-		
36H	IOCL	P0 Interrrupt on change register
37H	OSCCAL1	Oscillator Calibration register 1
38H	NVMDATAH	NVW Buffer Data register High
39H	NVMDATAL	NVM Buffer Data register Low
3AH	NVMADDRH	NVM Buffer Address register High
3BH	NVMADDRL	NVM Buffer Address register Low
3CH	NVMCTL0	Nonvolatile Memory control register 1
3DH	NVMCTL1	Nonvolatile Memory control register 2
3ЕН	ADCDATA0L	Analog Digital Convert Data 0 register Low
3FH	ADCCTL1	Analog Digital Convert Control register 1
45H	P0LR	Port 0 Latch Register
46H	P2LR	Port 2 Latch Register
47H	P1LR	Port 1 Latch Register
48H	P3LR	Port 3 Latch Register
49H	TR3	Tri Register 3
4AH	EIE3	Enable Interrupt register 3
4BH	EIF3	Enable Interrupt Flag register 3
4CH	OSCCAL2	Oscillator Calibration register 2
4DH	OSCCAL3	Oscillator Calibration register 3
4FH	T3L	Timer 3 register low
53H	CTCTL0	Capacitance Touch Control register 0
5FH	ТЗН	Timer 3 High register
60H	PUR1	Pull-Up Resistor 1
61H	PUR2	Pull-Up Resistor 2
64H	CTCTL1	Capacitance Touch Control register 1
67H	INTEDGCTL	Interrupt Edge Control register
6BH	VBIASCTL	Voltage Bias Control register
6CH	VBIASTEN VBIASTEN	Voltage Bias 1 Enable register
6DH	VBIASIEN VBIAS2EN	Voltage Bias 2 Enable register Voltage Bias 2 Enable register
ODII	VBITISZEIV	Voltage Blas 2 Emable register
		BANK1
	T	
地址	名称	全称
101H	T0	Timer 0 register
102H	PCL	Program Counter Low register
103H	PSW	Program Status Word register
10AH	PCH	Program Counter High
10FH	T2CTL1	Timer 2 Control register1
120H	RSCTL	Receive Status Control register
121H	TXSDR	Transmit Date Register
122H	RXSDR	Receive Date Reigster
123H	BRCTL	Baud Rate Control register
124H	TSCTL	Transmit Control register
125H	EUBRGL	Enhance Universal Baud Rate Generator register Low
126H	EUBRGH	Enhance Universal Baud Rate Generator register High
128H	SSCICTL0	Synchronous Serial Communication Interface Control register 0
12AH	SSCICTL1	Synchronous Serial Communication Interface Control register 0
12BH	SSCISTA	Synchronous Serial Communication Interface Status register
12CH	SSCIBUFR	Synchronous Serial Communication Interface Buffer register
12EH	SSCIMSK	Synchronous Serial Communication Interface Mask register
12FH	WDTPS	Watchdog Pre-divider Selection register
140H	LEDCTL	Light Emitting Diode Control register
141H	LEDPRE	Light Emitting Diode Control Pre-divider register
142H	LEDDATA0	Light Emitting Diode Data register 0
143H	LEDDATA1	Light Emitting Diode Data register 1
1 1011	LLDDIMI	Light Dilithing Diode Dam regions 1

144H	LEDDATA2	Light Emitting Diode Data register 2
145H	LEDDATA3	Light Emitting Diode Data register 3
146H	LEDDATA4	Light Emitting Diode Data register 4
146H	LEDDATA5	Light Emitting Diode Data register 5
147H	LEDDATA6	Light Emitting Diode Data register 6
148H	LEDDATA7	Light Emitting Diode Data register 7
150H	LEDOMS1	Light Emitting Diode Output Model Selection register 1
155H	LEDODS0	Light Emitting Diode Output Drain Selection register 0
157H	LEDOMS0	Light Emitting Diode Output Model Selection register 0
158H	LEDODS1	Light Emitting Diode Output Drain Selection register 1
159H	VRECAL2	Reference Voltage Calibration 2
15AH	VRECAL3	Reference Voltage Calibration 3
165H	RC32KCAL	RC32K Calibration

附录 5 全双工异步模式的典型波特率和误差值

	SYNC=0,HBRG=0,BRG16=0										
波特率 时钟频率		300	1200	2400	9600	10417	19.2K	57.6K	115.2K		
20.000MHz	实际波特率	-	-	2404	9615	10417	_	_	_		
	误差(%)	-	-	0.16	0.16	0.00	_	_	_		
	EUBRGL值(十六 进制)	-	-	81H	20H	1DH	_	_	_		
	实际波特率	_	1202	2404	9615	10417	19231	_	_		
16.000MHz	误差(%)	_	0.16	0.16	0.16	0.00	0.16	_	_		
10.00011112	EUBRGL值(十六 进制)	_	CFH	67H	19H	17H	0СН	_	_		
8.000MHz	实际波特率	_	1202	2404	9615	10417	_	_	_		
	误差(%)	_	0.16	0.16	0.16	0.00	_	_	_		
	EUBRGL值(十六 进制)	_	67H	33H	0СН	0BH	_	_	_		
	实际波特率	300	1202	2404	_	10417	_	_	_		
4.000MHz	误差(%)	0.16	0.16	0.16	_	0.00	_	_	_		
	EUBRGL值(十六 进制)	6ВН	33H	19H	_	05H	_	_	_		
	实际波特率	300	1202	2404	—	10417	_	_	_		
2.000MHz	误差(%)	0.16	0.16	0.16		0.00	_	_	_		
	EUBRGL值(十六 进制)	67H	19H	0СН	_	02H	_	_	_		
	实际波特率	300	1202	—	—	_	—	—	_		
1.000MHz	误差(%)	0.16	0.16	_	_	_	_	_	_		
	EUBRGL值(十六 进制)	33H	0СН	_		_	_	_	_		
	实际波特率	307	-	-	_	_	_	_	_		
512.00 kHz	误差(%)	2.33	-	-	_	_	_	_	_		
	EUBRGL值(十六 进制)	19H	-	-	_	_	_	_	_		

	SYNC=0,HBRG=1,BRG16=0									
波特率 时钟频率		300	1200	2400	9600	10417	19.2K	57.6K	115.2K	
	实际波特率	-	-	-	9541	10417	19230	56818	113.6K	
20.000MHz	误差(%)	-	-	-	-0.6	0.00	0.16	-1.35	0.03	
	EUBRGL值(十六 进制)	-	-	-	82H	77H	41H	15H	0AH	
	实际波特率	_	_	_	9615	10417	19231	58824	111.1K	
16.000MHz	误差(%)	_	_	_	0.16	0.00	0.16	2.12	3.55	
	EUBRGL值(十六 进制)	_	_	_	67H	5FH	33H	10H	08H	
8.000MHz	实际波特率	_	_	2404	9615	10417	19231	55556	_	
	误差(%)	_	_	0.16	0.16	0. 00	0.16	-3.55	_	
	EUBRGL值(十六 进制)	_	_	CFH	33H	2FH	19H	08H	_	
	实际波特率		1202	2404	9615	10417	19.23K	_	_	
4.000MHz	误差(%)	_	0.16	0.16	0.16	0. 00	0.16	_	_	
	EUBRGL值(十六 进制)	_	CFH	67H	19H	17H	0СН	_	_	
	实际波特率		1202	2404	9615	10417	_	_	_	
2.000MHz	误差(%)	_	0.16	0.16	0.16	0. 00	_	_	_	
	EUBRGL值(十六 进制)	_	67H	33H	0СН	0BH	_	_	_	
	实际波特率	300	1202	2404	_	10417	_	_	_	
1.000MHz	误差(%)	0.16	0.16	0.16	_	0.00	_		_	
	EUBRGL值(十六 进制)	CFH	33H	19H	_	05H	_	_	_	
	实际波特率	301	1231	2462	-	-	_	_	_	
512.000kHz	误差(%)	0.63	2.58	2.58	-	-	_	_	_	
	EUBRGL值(十六 进制)	69H	19H	0СН	-	-	_	_	_	

		SY	NC=0,HB	RG=0,B	RG16=1	L			
波特率 时钟频率		300	1200	2400	9600	10417	19.2K	57.6K	115.2K
	实际波特率	-	-	-	9541	10417	19230	56818	113.6K
20.000MHz	误差(%)	-	-	-	-0.6	0.00	0.16	-1.35	0.03
20.000	EUBRGL 值 (十六进制)	-	-	-	82H	77H	41H	15H	0AH
	实际波特率	_	_	_	9615	10417	19231	58824	111.1K
16.000MHz	误差(%)	_	_	_	0.16	0.00	0.16	2.12	3.55
10.000IVITIZ	EUBRGL 值 (十六进制)	_	_		67H	5FH	33H	10H	08H
8.000MHz	实际波特率	299.9	1999	2404	9615	10417	19231	55556	_
	误差(%)	-0.02	-0.08	0.16	0.16	0.00	0.16	-3.55	_
0.00011112	EUBRGL 值 (十六进制)	0682H	01A0H	CFH	33H	3FH	19H	08H	_
	实际波特率	300.1	1202	2404	9615	10417	19.23K	_	
4.000MHz	误差(%)	0.04	0.16	0.16	0.16	0.00	0.16	_	
1.00011112	EUBRGL 值 (十六进制)	0340H	CFH	67H	19H	17H	0СН	_	
	实际波特率	299.8	1202	2404	9615	10417	_	_	
2.000MHz	误差(%)	-0.18	0.16	0.16	0.16	0.00	_	_	
2.00011212	EUBRGL 值 (十六进制)	01A0H	33H	33H	0BH	0BH	_	_	_
	实际波特率	300	1202	2404		10417	_	_	
1.000MHz	误差(%)	0.16	0.16	0.16		0.00	_	_	
1.00011112	EUBRGL 值 (十六进制)	CFH	33H	19H	_	05H	_	_	_
	实际波特率	301	1231	2462	-	-	_	_	
512.000kHz	误差(%)	0.63	2.58	2.58	-	1			
DIE	EUBRGL 值 (十六进制)	69H	19H	0СН	-	-	_	_	_

	SYNC=0,HBRG=1,BRG16=1 或 SYNC=1,BRG16=1									
波特率 时钟频率		300	1200	2400	9600	10417	19.2K	57.6K	115.2K	
	实际波特率	300	1200	2399	9597	10417	19157	57.47K	113.6K	
20.000MHz	误差(%)	0.00	0.00	0.03	0.03	0.00	0.22	0.22	0.03	
20.00011112	EUBRGH: EUBRGL	411AH	1046H	0823H	0208H	01DFH	0104H	0056H	002BH	
	实际波特率	300	1200	2401	9615	10417	19.23K	57971	117.6K	
16.000MHz	误差(%)	0.00	0.01	0.04	0.16	0.00	0.16	0.64	2.12	
10.00011112	EUBRGH: EUBRGL	3414H	0D04H	0681H	019FH	017FH	00CFH	0044H	0021H	
8.000MHz	实际波特率	300.0	1200	2401	9615	10417	19.23K	57.14K	117.6K	
	误差(%)	0.00	-0.02	0.04	0.16	0.00	0.16	-0.79	2.12	
	EUBRGH: EUBRGL	1A0AH	0682H	0340H	00CFH	00BFH	0067H	0022H	0010H	
	实际波特率	300.0	1200	2398	9615	10417	19.23K	56.82K	111.1K	
4.000MHz	误差(%)	0.01	0.04	0.08	0.16	0.00	0.16	2.12	-3.55	
	EUBRGH: EUBRGL	0D04H	0340H	01A0H	0067H	005FH	0033H	0010H	0008H	
	实际波特率	299.9	1199	2404	9615	10417	19.23K	55.56K	_	
2.000MHz	误差(%)	-0.02	-0.08	0.16	0.16	0.00	0.16	-3.55		
	EUBRGH: EUBRGL	0682H	01A0H	00CFH	0033H	002FH	0019H	0008H	_	
	实际波特率	300.1	1202	2404	9615	10417	19.23K	_		
1.000MHz	误差(%)	0.04	0.16	0.16	0.16	0.00	0.16	_		
	EUBRGH: EUBRGL	0340H	00CFH	0067H	0019H	0017H	000CH	_	_	
	实际波特率	300.5	1208	2415	9846	10666			_	
512.000kHz	误差(%)	0.16	0.63	0.63	2.56	2.40	_	—	_	
	EUBRGH: EUBRGL	01A9H	0069H	0034H	000CH	000BH	_	_	_	

注: 以上表格中波特率寄存器的值均是十六进制的数值形式

产品标识体系

 XXXXXX
 XXXXX
 -XX

 |
 |
 |

 产品系列
 产品型
 封装形式

产品系列: KF8TS = KF系列触摸 8 位单片机

产品型号: 2716 = 2716型

封装形式: SN = SOIC-28

TN = TSSOP-28 UN = UQFN-28QP = LQFP-32

示例:

KF8TS2716SN 表示 KF 系列 SOIC28 封装单片机
 KF8TS2716QP 表示 KF 系列 LQFP32 封装单片机

版本说明

版本	更新描述	更新页码
V1.0	新的数据手册	
V1.1	更新已知的 bug	
V1.2	修改了文档中部分叙述	
V1.3	修改 PWM1/2 周期与占空比公式 更新定时器 T3 和 WDT 章节内容 增加芯片使用注意事项内容	
V1.4	修改 T4 章节的 T1 相关内容增加封装的订货号及相差内容去掉 SSOP-24 封装,增加 TSSOP/ UQFN -28 封装,修改订货号、引脚图和封装增加多余 IO 端口的第二点说明增加 AD 校准使能时关闭 ADC,需清零 ADCCALIEN 位说明IO 上拉功能说明修改IO 端口增加输出特性和漏电流去掉外设特性中的弱上拉项,直流特性图表增加 VOP-IOP 曲线图	

RoHS认证

本产品已通过 RoHS 检测。

声明及销售网络

销售及服务网点:

上海 TEL:021-50275927

地址 上海浦东张江集电港龙东大道 3000 号 1 幢 906 室 B1 座