推理引擎 OpenPPL 实战训练营

OpenPPL X86 技术解析

2022年2月18日星期五

课程安排

课程安排	主讲人	课程时间
第一期:商汤自研AI推理引擎 OpenPPL 的实践之路	高洋	2021年12月07日
第二期:编程工作坊:基于 OpenPPL 的模型推理与应用部署	欧国宇	2021年12月16日
第三期: OpenPPL之通用架构下的性能优化概要	许志耿	2021年12月29日
第四期:模型大小与推理速度的那些事儿	田子宸	2022年01月06日
第五期: OpenPPL CUDA技术解析	李天健	2022年01月13日
第六期:性能调优实战 (x86篇)	梁杰鑫	2022年02月17日
第七期: OpenPPL+RISC-V 指令集初探	焦明俊/杨阳	2022年02月24日
第八期:OpenPPL 在 ARM Server 上的技术实践	许志耿/邱君仪	2022年03月03日
第九期: 量化工具实践	纪喆	2022年03月10日

「商汤学术」公众号 可以回复"抽奖"试试哦

梁杰鑫

商汤科技异构计算工程师 OpenPPL X86 架构负责人

- 本科毕业于中山大学
- 目前在商汤科技高性能计算部门负责参与 CPU 方向的 PPL 研 发与优化

OpenPPL X86 技术解析

商汤 AI 推理引擎 OpenPPL 实战训练营

梁杰鑫 2022.02.17

Part 1 OpenPPL X86 概述
Part 2 X86 服务器架构特点
Part 3 OpenPPL X86 技术解析
Part 4 OpenPPL X86 性能

Outline

OpenPPL X86 概述

OpenPPL X86 是针对高性能X86服务器优化的深度学习推理引擎后端。同时也配了多种场景,兼容多厂商,系统,并在各种指令集进行了高度优化。

核心/非核心

算力/带宽

访存瓶颈

算法设计

X86服务器架构特点

核心微架构

- Skylake X/Cascade Lake资源配置
 - 5MOP前端 + 6uOP后端
 - 256-bit Vector x 4 (2可用) AVX2/FMA/SSE
 - 512-bit Vector x 2 (低至x1) AVX512
 - · 可能出现只有一个512-bit单元的情况
 - 2 Load + 1 Store + 2 FMA
 - 168 Vector 物理寄存器
 - 32KB L1-I Cache
 - 32KB L1-D Cache
 - 1MB L2 Cache

非核心结构——Intel

- Intel多核互联以及LLC分布
 - 核心之间,核心与其他部件通过Mesh总线连接
 - 每一条总线为半Ring总线
 - 路由逻辑: 先垂直方向, 后水平方向
 - 每个核心拥有一块LLC (LastLevelCache) (L3)
 - 分布式LLC, 1.375MB/核心
 - 不同核心的LLC通过Mesh总线全核共享
 - 非包含式淘汰缓存,缓存内容与L2 Cache互斥
 - 物理核心编号与操作系统核心编号不一致[1]
 - 操作系统各种核心编号相邻的核心物理上并不相邻

非核心结构——AMD

- AMD多核互联以及LLC分布
 - 每个核心拥有一块L3
 - 非包含式淘汰缓存, 4MB/核心
 - CCX内所有核心共享L3
 - CCX之间通过IF总线互联

算力/带宽

• 服务器平台的特点

- 算力高,扩展性相对线性
- 单核心带宽不高
- 多核心带宽很低,可扩展性弱
- Non-temporal Store
 - 绕过缓存系统直接写入内存
 - 减少不必要的缓存读写
 - 使用前提:地址对齐16Byte

Intel 10980XE 核心数/算力/带宽/LLC大小

- 浮点峰值测试: https://github.com/pigirons/cpufp
- 访存带宽测试: https://github.com/jeffhammond/STREAM (需要自行改写AVX512)

算力/带宽

Roofline

Scenes	Bandwidth GB/s	
L1 RD Per Core	250	
L1 WR Per Core	134	
L2 RD Per Core	124	
L2 WR Per Core	79	
L3 Triad 1 Core	21	
L3 Triad 18 Core	273	

10980XE 各级缓存的大致速度

10980XE 单核各级存储结构的大小/延迟/Roofline

访存瓶颈

- 实际程序的访存瓶颈
 - Roofline模型的理想条件是计算访存完全掩盖,并不能完全反映实际情况
 - 有空间局部性, 拐点与芯片缓存结构强相关, 在各级Cache都有可能发生
 - 有时间局部性,瓶颈往往只发生在某一段时间,可以具体到某个代码段
- VTune抓取的DDR带宽(test_conv2d 18-thread Winogard on VGG16)

上图为整个程序的带宽直方图 下图为内存带宽占用的时间轴

已经很好了 但是对于细致调优来说 还是比较粗略

访存瓶颈

• 实际程序的运行时间

- 例子: 一种GEMM写法
- 访存密集
 - Pack B, 1次
 - Pack A, [M/mb]次
 - Unpack C, [M/mb] x [N/nb]次
- 计算密集
 - A^ x B j, [M/mb] x [N/nb]次

Fig. 8. Optimized implementation of GEPP (left) via calls to GEBP_OPT1 (right).

- 计算时间
 - Total Pack B + Total Pack A + Total Unpack C + Total A^ x B_j
 - · 数据有多大?数据在哪一级存储?更优的写法? (可以复习《通用架构下的性能优化概要》)

数据排布

OpenPPL X86 算法设计

卷积算法

数据排布

• 输入输出: N16CHW (nChw16c)

NCHW: [N, C, H, W]

NHWC: [N, H, W, C]

N16CHW: [N, [C/16], H, W, 16]

- 介于NCHW与NHWC之间,一定程度规避维度之间跨度过长
- 天然的Packing和数据对齐, 512-bit Vector 可以容纳16个float数据
- 在行主元矩阵乘中,B矩阵几乎无法避免做Packing
 - NCHW: w x in(ic, ih*iw) = out(oc, oh*ow), 无法预处理B, C不对齐
 - NHWC: in(ih*iw, ic) x w = out(oh*ow, oc),可以预处理B,可能需要Pack A矩阵,AC不对齐
 - N16CHW: in([ic/16], ih*iw, 16) x w = out([oc/16], oh*ow, 16), A天然Packing, AC对齐

数据排布

- 数据排布选择策略
 - 不进行全局的数据排布优化
 - 贪心策略:选择每一个算子根据【输入数据排布】来选择局部最优的【输出数据排布】
 - 数据排布转换:插入Reorder算子

卷积算法——直接卷积

• 相比于IM2COL GEMM卷积,更利于多核计算,更容易提高效率

- 同样的空间占用下, 计算访存比高
- 一定条件下可以免除数据Packing
- N16CHW下的直接卷积
 - 以3x3卷积为例
 - 汇编优化:
 - 高叔叔的《关于sgemm_hsw的一点解释说明》

https://zhuanlan.zhihu.com/p/426127316

input

(0,0),(0:15)	(0,1),(0:15)	(0,2),(0:15)	(0,3),(0:15)
(1,0 <u>),(0:15)</u>	(1,1),(0:15)	(1,2),(0:15)	(1,3),(0:15)
(2,0),(0:15)	(2,1),(0:15)	(2,2),(0:15)	(2,3),(0:15)
(3,0),(0:15)	(3,1),(0:15)	(3,2),(0:15)	(3,3),(0:15)

	KH=0,KW=0,IC=0,OC=0:15
	KH=0,KW=0,IC=1,OC=0:15
l	KH=0,KW=0,IC=2,OC=0:15
l	KH=0,KW=0,IC=3,OC=0:15
l	KH=0,KW=0,IC=4,OC=0:15
l	KH=0,KW=0,IC=5,OC=0:15
l	KH=0,KW=0,IC=6,OC=0:15
l	KH=0,KW=0,IC=7,OC=0:15
ı	KH=0,KW=0,IC=8,OC=0:15
l	KH=0,KW=0,IC=9,OC=0:15
l	KH=0,KW=0,IC=10,OC=0:15
l	KH=0,KW=0,IC=11,OC=0:15
l	KH=0,KW=0,IC=12,OC=0:15
l	KH=0,KW=0,IC=13,OC=0:15
	KH=0,KW=0,IC=14,OC=0:15
•	KH=0,KW=0,IC=15,OC=0:15

vector16 OUT = {0}
vector16 W = {0}
scalar IN = 0
FOR kh = 0:2
FOR kw = 0:2
FOR ic = 0:15
 k = kh*3+kw
 IN = input(ih+kh,iw+kw,ic)
 W = weight(k*16*16,ic*16,0:16)
 OUT += IN * W
output(oh,ow,0:16) = OUT

output

(0,0),(0:15)	(0,1),(0:15)	(0,2),(0:15)
(1,0),(0:15)	(1,1),(0:15)	(1,2),(0:15)
(2,0),(0:15)	(2,1),(0:15)	(2,2),(0:15)

卷积算法——直接卷积

边界处理

行边界Kernel

- 参数: kh start, kh end
- 参数: kw start, kw end
- 一次计算一个点

非行边界Kernel

- 参数: kh start, kh end
- 一次计算多个点,循环展开

卷积算法——直接卷积

• 不同输入图片尺寸下的调度设计

```
Big Input Image HxW
FOR gb 0:group-1 by Gb
FOR bb 0:batch-1 by Bb
FOR icb 0:IC-1 by ICb
  #OMP PARALLEL COLLAPSE(4)
  FOR g in Gb
  FOR b in Bb
  FOR ocb 0:0C-1 by OCb
  FOR oh 0:0H-1
    FOR oc in OCb by OCr
      compute ow border left
      compute ow by Wr
      compute ow border right
```

May use non-temporal store

```
Small Input Image HxW

FOR gb 0:group-1 by Gb

FOR bb 0:batch-1 by Bb

FOR icb 0:IC-1 by ICb

#OMP PARALLEL COLLAPSE(4)

FOR g in Gb

FOR b in Bb

FOR ic in ICb by 16

FOR ih 0:IH-1

make padding width input

Hold data in Global I
```

#OMP PARALLEL COLLAPSE(4)

```
FOR g in Gb
FOR b in Bb
FOR ocb 0:OC-1 by OCb
FOR oh 0:OH-1
FOR oc in OCb by OCr
compute ow by Wr
```

卷积算法——Winograd

- Winograd卷积是什么
 - Andrew Lavin, Scott Gray, Fast Algorithms for Convolutional Neural Network, 2015
 - 灵感: Winograd, 一种特殊的FFT变换; FFT卷积: 时域卷积->频域乘积

- 直接卷积: y = w * X
- 二维Winograd卷积:
 - 变换: $\nabla(a,A) = AaA^T$
 - 常数变换矩阵: *y, X, w* 分别对应 *A, B, G*
 - 卷积过程: $y = \nabla(\nabla(w,G) \times \nabla(X,B^T),A^T)$

常数变换矩阵推导: https://github.com/andravin/wincnn

卷积算法——Winograd

• 以Winograd F(2x2, 3x3)为例

- 图文参考高叔叔的文章: 《"远超"理论浮点峰值》 https://zhuanlan.zhihu.com/p/465739282
- 直接卷积计算量: OH * OW * 3 * 3 * IC * OC * 2
- Winograd F(2x2, 3x3) 计算量:

 $\frac{IH}{4} * \frac{IW}{4} * 4^3 * IC * 2 + \frac{OH}{2} * \frac{OW}{2} * (4^2 * 2 * OC + 16 * IC * OC * 2)$

卷积算法——Winograd

调度设计, TILES=batch* [OH/out_blk]*[OW/out_blk]

```
Big Input BLKs per thread
#OMP PARALLEL COLLAPSE(3)
FOR g 0:group-1
FOR ocb 0:0C-1 by OCb
FOR tb in 0:TILES-1 by Tb
  FOR icb 0:IC-1 by ICb
      TRANS_IN = TRANSFORM(IN[icb,tb])
      FOR oc in OCb by OCr
        FOR i 0:(in_blk*in_blk)-1
          TRANS_OUT(i,oc) += GEMM(i,oc)
        IF is last icb
          OUT[oc,tb] = TRANSFORM(TRANS_OUT)
```

Hold Data in Local L2/L3

```
Small Input BLKs per thread
FOR g 0:group-1
FOR tb in 0:TILES-1 by Tb
                            Hold data in Global L2/L3
FOR icb 0:IC-1 by ICb
 #OMP PARALLEL
 TRANS_IN = TRANSFORM(IN[icb,tb])
 FOR ocb 0:0C-1 by OCb
    #OMP PARALLEL COLLAPSE(2)
    FOR i 0:(in_blk*in_blk)-1
    FOR oc in OCb by OCr
      TRANS_OUT(i, oc) += GEMM(i, oc)
    IF is last icb
     #OMP PARALLEL
     OUT[ocb,tb] = TRANSFORM(TRANS OUT)
```


Depthwise卷积融合

就地计算

其他融合

OpenPPL X86 图优化

Depthwise融合

- MobileNet中的常见结构
- 数据量大于LLC,可能因带宽受限加速不明显

Conv3x3 计算访存比

$$IC * OC * OH * OW * 3(KH) * 3(KW) * 2$$

(IC * IH * IW + OC * OH * OW + IC * OC * 3 * 3) * size of (float)

DwConv3x3 计算访存比

$$OC * 3 * 3 * OH * OW * 2$$

 $(2*OC*OH*OW+OC*3*3) \times size of(float)$

Conv1x1 2 计算访存比

$$IC * OC * OH * OW * 2$$

 $(IC*IH*IW+OC*OH*OW+IC*OC) \times size of(float)$

Depthwise融合

就地计算

• 应用场景

- 访存瓶颈
- 数据不会重复使用
- 输入+输出大小>LLC

Reshape, Squeeze, Unsqueeze, ReLU...

其他融合

- 后处理融合
 - Conv+BN+ReLU/ReLU6+Add
 - Gemm+ReLU
 - Add+ReLU
 - BN+ReLU
- 特殊结构融合
 - ChannelShuffle
 - Swish

OpenPPL X86 性能

INTEL 10980XE AVX512 单线程

■ PPL ■ PPL v0.1 ■ onnxruntime ■ OpenVINO

2 speed (higher is better)

INTEL 10980XE AVX512 16线程

团队介绍

- HPC 团队肩负着商汤最核心计算系统引擎的研发 重任,同时定义下一代计算系统的规格和方案。作 为「数据 - 算法 - 算力」的 AI 平台闭环中的算力环 节,为 AI 技术在行业落地的过程中提供高速度、 高效能、功能完善和稳定可靠的算力基础设施。
- 目前团队支持公司大量落地业务,产品部署量超数 亿,服务上亿用户; 同时承接国家重大科技创新项 目以及推进开源计划,欢迎同学们加入! 🝬

工作日常

- **①**【传统艺能】高性能计算、异构计算
- 【涉及的处理器体系结构】CPU, GPU, DSP, NPU
- 【日常玩具】
 - · GPU 和 CPU 管够
 - ・各种新架构开发板
 - 各种没上市的手机
- 【黑科技】
 - ・体系结构逆向工程
 - 面向极致性能调优的后端编译优化技术
- 【开源计划】OpenPPL
 - ·全自研深度学习推理引擎,挑战业内顶级性能
 - https://github.com/openppl-public
- **6**【学术成果】ISCA, ASPLOS, NIPS, DAC, IPDPS

岗位连接: https://zhuanlan.zhihu.com/p/429466308

https://scc.sysu.tech 也放一放我们中山大学超算队 (手动滑稽) 31

THANK YOU

Q&A

OpenPPL 微信公众号

OpenPPL QQ 交流群

- OpenPPL 官网主页: https://openppl.ai/
- OpenPPL GitHub 主页: https://github.com/openppl-public
- OpenPPL 知乎账号: https://www.zhihu.com/people/openppl