Chapter 3 General Principles in Simulation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Outlines

- Concepts In Discrete-Event Simulation
- Able-Baker call center (an example)
- Event scheduling
- Event scheduling example

Concepts In Discrete-Event Simulation

System

 A collection of entities (people and machines..) that interact together over time for one or more goals

Model

 An abstract representation of a system, usually containing structural, logical or mathematical relationship that describe a system in term of state, entities and their attributes, sets, processes,...

System state

□ A collection of variables in any time that describe the system

Entity

Any object or component in system that require explicit representation (server, customer,...)

Attributes

□ The properties of a given customer

List

A collection of associated entities, ordered in some logical fashion (FIFO, priority,...)

Concepts In Discrete-Event Simulation (cont.)

- Event
 - An instantaneous occurrence that changes the state of a system
- Event Notice
 - ☐ A record of an event to occur at the current or future time (type and time)
- Event List
 - ☐ FEL (future event list)
- Activity (unconditional wait)
 - A duration time of specified length (service time or interarrival time,...)
 - Deterministic, Statistical and functional
- Delay (conditional wait)
 - A duration of time of unspecified indefinite length, which is not known until it ends (customer delay in waiting line)
- Clock
 - □ A variable representing simulated time

Able-Baker Call center

- System state
 - □ LQ(t): the number of callers waiting to serve
 - □ LA(t):0 or 1 indicate Able is idle or busy
 - □ LB(t):0 or 1 indicate Baker is idle or busy
- Entities
 - Caller
- Events
 - Arrival event, service completion by Able or Baker
- Activities
 - Service time by Able/Baker and Inter-arrival time
- Delay
 - A caller wait in queue until Able or Baker becomes free

Event scheduling

- How does each event affect system state, attributes?
- How activities are defined (deterministic, probabilistic,...)?
- Which events trigger the beginning of each delay?
- What is system state at time 0?

Event scheduling (cont.)

Clock	System state	Attributes	Future Event List (FEL)	Cumulative statistics and counters
t	(x,y,z ,)		(3,t1) (1,t2) 	
			(4,tn)	

t1<t2<...<tn

FEL is ordered by event time

Event scheduling/Time-advance algorithm

Clock	System state	89953	Future Event List (FEL)				
t _o	(5,1,6)		(3,t1) (1,t2) (5,t3) (4,tn)		t2	<t*<t3< td=""><td></td></t*<t3<>	
Clock	System state	+	Future Event List (FEL)	7	Cloc	System state	Future Event List
Sicol					k		(FEL)

Generation Arrival Stream by Bootstrapping

Two customer processes interaction in single server queue

The stop time of simulation

- At time 0 the simulation stop time is specified, T_E
- Run length T_E is determined by the simulation itself.
 - ☐ The time of occurrence of some specified events

Event Scheduling example (Grocery Center)

- \square LQ(t),LS(t)
- Entities
 - □ The server and customer are not explicitly modeled
- Events
 - □ Arrival (A), Departure (D), Stopping event (E=60)
- Event notices
 - \Box (A,t), (D,t), (E,60)
- Activities
 - Inter-arrival time, service time
- Delay
 - Customer time spent in waiting queue

Execution of the arrival event

Execution of the departure event

Simulation Table

clock	System state		Future Event List	Comment	Cumulativ	
LQ(t) LS(t)		LS(t)			e Statistics	
					В	MQ
0	0	1	(A,1)(D,4)(E,60)	First A occures (a*=1) schedule next A (s*=4) schedule first D	0	0
1	1	1	(A,2)(D,4)(E,60)	Second A occures:(A,1) (a*=1) schedule next A (Customer delayed)	1	1
2	2	1	(D,4) (A,8)(E,60)	Third A occures:(A,2) (a*=6) schedule next A (Two customer delayed)	2	2
4	1	1	(D,6) (A,8)(E,60)	First D occures:(D,4) (s*=2) schedule next D (Customer delayed)	4	2
6	0	1	000A	98	6	2

Computing Mean Response Time (cont.)

Entities

□ (Ci,t), representing customer Ci who arrives at time t

Event notices

- □ (A,t,Ci), the arrival of customer Ci at future time t
- □ (D,t,Cj), the departure of customer Cj at future time t

Set

 "CHECKOUT LINE" the set of all customers currently at the checkout counter, ordered by time of arrival

Response time

- □ CLOCK TIME-attribute "time of arrival"
- S:sum of customer response time
- ND: all number of customers that currently are departure
- F:Total number of customers that spend more than 5 minutes in system

Simulation Table

clock	System state		_	Future Event List	Cumulative Statistics		
	LQ(t)	LS(t)			S	N _D	F
0	0	1	(C1,0)	(A,1,C2)(D,4,C1)(E,60)	0	0	0
1	1	1	(C1,0)(C2,1)	(A,2,C3)(D,4,C1)(E,60)	0	0	0
2	2	1	(C1,0)(C2,1) (C3,2)	(D,4,C1) (A,8,C4)(E,60)	0	0	0
4	1	1	(C2,1) (C3,2)	(D,6,C2) (A,8,C4)(E,60)	4	1	0
6	0	1	500	76.72.7	9	2	1

Structure of a simulation system

