Describing variants

"mutation nomenclature"

recommendations for the description of DNA changes

tinyurl.com/ Avans201904a

Johan den Dunnen chair SVD-WG

http://varnomen.HGVS.org

Q&A

scan QR code

or go to http://etc.ch/BbTP

Subjects

Reporting sequence variants

- who decides
- where do I find the rules varnomen.HGVS.org
- describing variants brief, basics only org
- HGVS in practice Q&A sessions exercises

your problem

Affiliations

get all variants/consequences shared

standards for variant description and databases

standards for cytogenetic variant descriptions

software for web-based gene databases

HGVS standard

The format

The format of a complete variant description is reference:description, e.g.;

*

NM_004006.2:c.4375C>T

NC_000011.9 : g.111548892del

NOTE: spaces added for clarity only

Standards

- essential to understand each other to exchange information
- preferably ONE standard used world-wide agreed by everybody
- ..but difficult
 everybody agrees
 ...when their standard is used
 how to agree on changes?
 which authority to decide?

Celsius / Fahrenheit kilometers / miles liter / gallon

Still a problem?

ACMG: follow the HGVS recommendations ...

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of

recommendation of the American College of Medical Genetics and Genomics and the

Association for Molecular Pathology

Sue Richards PhD, Nazneen Aziz PhD, Sherri Bale PhD, David Bick MD, Soma Das PhD, Castier-Foster PhD, Wayne W. Grody MD, PhD, Madhuri Hegde PhD, Elaine Lyon PhD, Ela Spector PhD, Karl Voelkerding MD & Heidi L. Rehm PhD; on behalf of the ACMG Laborat Quality Assurance Committee

but...

In addition, this ACMG recommendation supports three

specific exceptions to the HGVS nomenclature rules: 1)

"X" is still considered acceptable for use in reporting

nonsense variants in addition to the current HGVS

recommendation of "*" and "Ter"; 2) it is recommended

protein changes

historically the X used for "stop codon"

> IUPAC amino acid codes X = any amino acid

> NCBI amino acid codes

X = any amino acid, * = translation stop

>>> change X to */Ter

p.Arg321* p.Arg321Glufs*13 p.*535Glnext*17

The problem

alternative descriptions

• share & retrieve when alternative descriptions are accepted it becomes problematic to find previous reports

dbSNP Short Genetic Variations

NC_000007.13:g.117188660_117188661insTG NC_000007.13:g.117188660_117188661insTGTG NC_000007.14:g.117548606_117548607insTG NC_000007.14:g.117548606_117548607insTGTG NG_016465.4:g.87823_87824insTG NG_016465.4:g.87823_87824insTGTG NM_000492.3:c.1210-35_1210-34insTG NM_000492.3:c.1210-35_1210-34insTGTG

HGVS Names

HGVS Names

NC_000007.13:g.117188661_117188662TG[11][12 NC_000007.14:g.117548607_117548608TG[11][12 NG_016465.4:g.87824_87825TG[11][12] NM_000492.3:c.1210-34_1210-33TG[11][12]

HGVS Names

NC_000007.13:g.117188661_117188664delTGTG NC_000007.14:g.117548607_117548610delTGTG NG_016465.4:g.87824_87827delTGTG NM_000492.3:c.1210-34_1210-31delTGTG

HGVS Names

NC_000007.13:g.117188661_117188666delTGTG NC_000007.14:g.117548607_117548612delTGTG NG_016465.4:g.87824_87829delTGTGTG NM_000492.3:c.1210-34_1210-29delTGTGTG

HGVS Names

NC_000007.13:g.117188661_117188662delTG NC_000007.14:g.117548607_117548608delTG NG_016465.4:g.87824_87825delTG NM_000492.3:c.1210-34_1210-33del NM_000492.3:c.1210-34_1210-33delTG

HGVS Names

NC_000007.13:g.117188682delG NC_000007.14:g.117548628delG NG_016465.4:g.87845delG NM_000492.3:c.1210-13delG

HGVS Names

NC_000007.13:g.117188682G>T NC_000007.14:g.117548628G>T NG_016465.4:g.87845G>T NM_000492.3:c.1210-13G>T

HGVS Names

NC_000007.13:g.117188681_117188684delTGTT NC_000007.14:g.117548627_117548630delTGTT NG_016465.4:g.87844_87847delTGTT NM_000492.3:c.1210-14_1210-11delTGTT

HGVS Names

NC_000007.13:g.117188662_117188663insTG NC_000007.13:g.117188662_117188663insTGTG NC_000007.14:g.117548608_117548609insTG NC_000007.14:g.117548608_117548609insTGTG NG_016465.4:g.87825_87826insTG NG_016465.4:g.87825_87826insTGTG NM_000492.3:c.1210-33_1210-32insTG NM_000492.3:c.1210-33_1210-32insTGTG

HGVS Names

NC_000007.13:g.117188682_117188683insT NC_000007.13:g.117188682_117188683insTGTT NC_000007.13:g.117188682_117188683insTT

HGVS Names

ttttgatgtgtgtgtgtgtgtgtttttttaacag

NC_000007.13:g.117188683delT NC_000007.14:g.117548629delT NG_016465.4:g.87846delT NM_000492.3:c.1210-12delT

HGVS Names

NC_000007.13:g.117188683_117188684delTT NC_000007.14:g.117548629_117548630delTT NG_016465.4:g.87846_87847delTT NM_000492.3:c.1210-12_1210-11delTT

HGVS Names

NC_000007.13:g.117188684T>G NC_000007.14:g.117548630T>G NG_016465.4:g.87847T>G NM_000492.3:c.1210-11T>G

HGVS Names

NC_000007.13:g.117188684_117188685insG NC_000007.14:g.117548630_117548631insG NG_016465.4:g.87847_87848insG NM_000492.3:c.1210-11_1210-10insG

HGVS Names

g.73678

c.1210-1

NC_000007.13:g.117188688T[5][7][9] NC_000007.14:g.117548634T[5][7][9] NG_016465.4:g.87851T[5][7][9]

HGVS Names

NC_000007.13:g.117188689_117188690insTT NC_000007.14:g.117548635_117548636insTT NG_016465.4:g.87852_87853insTT NM_000492.3:c.1210-6_1210-5insTT

© JT den Dunnen

Variant description

the basis

http://varnomen.HGVS.org

SPECIAL ARTICLE

Human Mutation

HGVS Recommendations for the Description of Sequence Variants: 2016 Update Hum Mutat (2016) 37:564-569

Johan T. den Dunnen, ** Raymond Dalgleish, ** Donna R. Maglott, ** Reece K. Hart, ** Marc S. Greenblatt, **
Jean McGowan-Jordan, ** Anne-Françoise Roux, ** Timothy Smith, ** Stylianos E. Antonarakis, ** and Peter E.M. Taschner ** on behalf of the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organisation (HUGO)

HUMAN MUTATION 15:7-12 (2000)

MDI SPECIAL ARTICLE

Mutation Nomenclature Extensions and Suggestions to Describe Complex Mutations: A Discussion

Johan T. den Dunnen^{1*} and Stylianos E. Antonarakis^{2*}

¹MGC-Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands ²Division of Medical Genetics, University of Geneva Medical School, Geneva, Switzerland

Consistent gene mutation nomenclature is essential for efficient and accurate reporting, testing, and curation of the growing number of disease mutations and useful polymorphisms being discovered in the human genome. While a codified mutation nomenclature system for simple DNA lesions has now been adopted broadly by the medical genetics community, it is inherently difficult to represent complex mutations in a unified manner. In this article, suggestions are presented for reporting just such complex mutations. Hum Mutat 15:7–12, 2000. © 2000 Wiley-Liss, Inc.

KEY WORDS: complex mutation; mutation detection; mutation database; nomenclature; MDI

HGVS / HVP / HUGO Sequence Variant Description working group

Working Group Members:

- Anne-Francoise Roux (EGT)
- Donna Maglott (NCBI/EBI)
- Jean McGowan-Jordan (ISCN)
- Peter Taschner (LSDBs)
- Raymond Dalgleish (LSDBs)
- Reece Hart (industry)
- Johan den Dunnen (chair)
- HGVS Marc Greenblatt
- HUGO Stylianos Antonarakis

varnomen.HGVS.org

Per variant type

Sequence Variant Nomenclature

Versioning

current version is 19.01 (Jan.2019)

Sequence Variant Nomenclature

Recommendations -

Background Materials -

Recent Additions

Contact Us

Version 19.01

Versioning

The current HGVS version number is shown in the top right corner of this web site ("Version xx.xx"). Note the version does not change when a typing error is corrected, an example added, an explanation clarified or a question answered. Outside the core HGVS recommendations, covered by the version number, the recommendations have "named extensions", i.e optional extensions for a specific use. Supporting named extensions is optional. A proper reference to the version of the HGVS nomenclature should mention the version number and the named extensions supported.

The current version is HGVS nomenclature v19.01.

For issues currently discussed see Open for Community Consultation or Open Issues.

and "named extension": ISCN

Community Consultation

Community Consultation

HGVS nomenclature falls under the responsibility of the SVD-WG (Sequence Variant Description Working Group). The SVD-WG handles requests to change or extend HGVS nomenclature operating according to a charter defining its activities (see HVP website) which includes a Community Consultation step. Any proposal made by the SVD-WG will be published on this web page. When published, the proposal is open for comments for a 2-month period. Everybody interested is asked to study the proposal and send comments, positive or negative, to the SVD-WG. Comments to proposals should be addressed to "Varnomen @ variome.org", Subject: SVD-WGxxx (xxx the proposal number, e.g. SVD-WG001).

To ensure you **do not miss** a new proposal *please register for e-mail notification*). Those registered will also receive notification when the HGVS nomenclature version number changes. The latest version of the HGVS recommendations can be found at the *Versioning page*.

open soon

Sequence Variant Nomenclature F

Recommendations -

Background Materials -

Recent Additions

Community Consultation

Proposal SVD-WG007 (RNA fusion)

Status: open
proposal SVD-WG007 opened for Community Consultation on March 20 (2019), will closed May.31 (2019).

facebook & twitter

Emotions

Nomenclature

(describing DNA variants)

Stable

Meaningful

Memorable

computer

Unequivocal

Structural Variation (SV

Variant types

• change in sequence

ACATCAGGAGAAGATGTTC GAGACTTTGCCA ACATCAGGAGAAGATGTTT GAGACTTTGCCA ACATCAGGAGAAGATGTT GAGACTTTGCCA ACATCAGGAGAAGATGTTCCGAGACTTTGCCA

change in amount (Copy Number Variation)

change in position

DNA, RNA, protein

 unique descriptions prevent confusion

- DNA A, G, C, T g.957A>T, c.63-3T>C
- RNA a, g, c, u r.957a>u, r.(?), r.spl?

Basic rules

- report what is detected
 NOT what is predicted
 NOT p.Gly202Trp, but c.604G>T
 or c.604G>T (r.(?), p.(Gly202Trp))
- give a reference sequence accession. <u>version</u> number genomic (chromosomal) or LRG

• use the 3' rule shift change as far 3' as possible

Numbering residues


```
• exception: coding DNA
5' of ATG ..., -3, -2, -1, A, T, G, ...
no nucleotide 0
3' of stop *1, *2, *3, ...
no nucleotide 0
intron
position between nt's 654 and 655
c.654+1, +2, +3, ..., -3, -2, c.655-1
change + to - in middle
```


Reference Sequence

coding DNA reference sequence (c.)

non-coding DNA reference sequence (n.)

RefSeq files

e.g. www.LOVD.nl/CAV3

Caveolin-3 (CAV3) - coding DNA reference sequence

(used for mutation description)

(last modified January 5, 2011)

This file was created to facilitate the description of sequence variants in the CAV3 gene based on a coding DNA reference sequence following the HGVS recommendations. The sequence was taken from NG 008797.1, covering CAV3 transcript variant-1 (NM 033337.2). An alternatively spliced transcript has been reported, removing part of exon 2 (after the stop codon, NM 001234.3).

Please note that introns are available by clicking on the exon numbers above the sequence.

ups	tre	ım s	equ	lenc	e)																	_			
																	99 8	G.			500				
																caa	gta	t		c.	-61				
									23			40								g.	506	7			
to	agco	cca	gco	ggc	cac	aca	gct	cgg	atct	cct	cct	gtg	gato	ccc	ccaç	ctc	tgc	g		c.	-1				
																				a.	512	7			
GA	TGG	CAGA	AGA	GCF	CAC	AGA	TCT	CGA	GGCC	CAG	ATC	GTC	AAGG	ATA	TCCA	CTG	CAA	G			60				
M	A	E	E	H	T	D	L	E	Α	Q	I I	V	K D	I	H	C	K			p.	20				
					-				28					38		1	02			σ.	167	22			
AGA	TTG	CCT	GGT	GAZ	ACCG	AGA	ccc	CAA	GAAC	ATT	AACC	GAG	GACA	TAG	TCAA	G			т						
													DI			i		D		p.					
		20							oc:			De-								σ.	167	82			
TTG	AAG	ACG1	GAT	CGC	AGA	GCC	TGT	GGG	CACC	TAC	AGC	ГТТ	GACG	GCG	TGTO	GAA	GGT	G			180				
F	D	V																1 3	22						g.67798
			AC	CAT	CAA	CAG	CT	ACG	AGAT	rgco	AAA	ATG	CAGI	CAP	CGA	CGC	AG		GATI	CCA	CCI	CA	ACA	AAC	c.2280
			T	I	N	S	Y	E	М	R	N	A	v	N	D	A	G	î.			L				p.760
3.8	ACA																								
Y	т	т				-			- 6										- 1						g.67858
			CA	GCT	CTA	TGA	CA	TCA'	TTAC	CCAT	rgco	GT	ACGC	AGA	CAA	ACA	CAT	rga.	ACAT	CGA	CTT	TG	AC		c.2340
													A									D			p.780
			×	-	ै	-	-	-	•	••	••			-	•	**	••	•	-	-	-	-			pirou
																	1 :	23							g.68204
			AG	TTT	CAT	CTG	CT	GCT'	rcg:	TTAC	GCT	rgg	AGGG	CAT	GTT	CA	1	GAG	CTTT	TCA	TGC	ATT	TTO	GAC	c.2400
			s		I				V				G						F						p.800
																	24								- (0((
				~~~	-		-	-								.		200000							g.68665
			10000				776756						ACGI	1	1	G			TGCA				0.000		c.2460
			K	D	G	D	G	Ι	1	K	L	N	V	L	E	I	W	L	Q	L	T	M	1	Z	p.820
																									g.68671
			GC	CTG	A																				c.2466
			A	X																					p.821
																									g.68731
			20	<b>Ca</b>	raa+		a+.	cat			1004	- 00	agga	+0-	ata			++0	94+	+0-	000	+ ~ +			c.*60
			ac	cag	get	ggc		Laci	Lua	age	.cat	.gc	ayya	LCO	CLC	ayg	act	LLC	ayıı	LUE	CCC	LUI	La		C.~00
									,							•									g.68791
			tt	tcc	aaa	gcc	at	tta	ccto	caaa	igga	icc	cago	ago	tac	acc	cct	tac	aggo	tto	cag	gca	ac		c.*120

exon	c.startExon	c.endExon	g.startExon	g.endExon	lengthExon	lengthIntron
1	-197	75	5001	5272	272	3360
2	76	224	8633	8781	149	1852
3	225	438	10634	10847	214	6124
4	439	542	16972	17075	104	1763
5	543	670	18839	18966	128	14963
6	671	789	33930	34048	119	912
7	790	970	34961	35141	181	8363
8	971	1065	43505	43599	95	360
9	1066	1261	43960	44155	196	2204
10	1262	1337	46360	46435	76	1460
11	1338	*2768	47896	50886	2991	

#### Calpain-3 (CAPN3) - 313 nt intron 11

(intronic numbering for coding DNA Reference

gtgtgcagtcctgattggctccagcccaggaaacatactttcccagggaggacgcttcca	g.58768 c.1524+60
ggggcttctagaggggccctctggcttcctcaatacccagtgacccacagagctcctggt	g.58828 c.1524+120
g.58865 atcaggaccacttgtgtttgtaacaagcaaaaatac c.1524+157	
g.58866 c.1525-156 cagggggggcattagagaggcagtggagcgggcctg	g.58901 c.1525-121
	g.58961 c.1525-61
	g.59021 c.1525-1







## Computer prefered

• g.12158663A>G

hint chr.11 (hg19)





## Computer prefered

- g.12158663A>G
- g.23669859>C
- g.89112396G>A
- g.112775623C>G
- g.56569443A>T
- g.12741333T>G
- g.188153979G>C



no relation to RNA & protein



## Numbering - coding DNA

• c.2396-6G>A

in the 3' half of an intron, 6 nucleotides 5' of the splice acceptor site

splitting amino acid 799

## Human prefered

- c.1637A>G protein coding region
- c.859+12T>C in intron (5' half)
- c.2396-6G>A in intron (3' half)



- c.*143A>T 3' of protein coding region (3' of stop)
- c.-89-12T>G intron in 5' UTR (5' of ATG)
- c.*649+79G>C intron in 3' UTR (3' of stop)



relation to RNA & protein





## Types of variation

simple

substitution

deletion

duplication

insertion

other

c.123A>G

c.123del

c.123dup

c.123_124insC

conversion, inversion, translocation, transposition

complex delins

c.123delinsGTAT



combination of variants

two alleles

>1 per allele

c.[123A>G];[456C>T]

c.[123A>G;456C>T]



# Q&A

#### scan QR code



or go to http://etc.ch/BbTP



## Substitution

- substitution designated by ">"not used on protein level
- examples

```
genomic g.54786A>T
cDNA c.545A>T
(NM_012654.3 : c.546A>T)
```

RNA r.545a>u

protein p.(Gln182Leu)



## Deletion

- deletion
   designated by "del"
   range indicated by "_"
- examples

```
c.546del
c.546delA (redundant information, can be conflicting)
```

```
c.586_591del
c.586_591delTGGTCA (not c.586_591del6)
```

RNA r.546del protein p.(Gln182del)

## Deleted...

Reference

Sample

**ATAGCTTTCAGGA** 

ATAGCT TCAGGA

Describe as

g.6del

g.8del



By definition this is described as g.8del

HGVS 3' rule

# Exon numbering

"Exon 0"



Baker, Nature 442: 916



# HGVS applied correctly?

# HGVS Nomenclature in Practice: An Example from the United Kingdom National External Quality Assessment Scheme



Zandra C. Deans, 1* Jennifer A. Fairley, 1 Johan T den Dunnen, 2 and Caroline Clark 3

¹UK NEQAS for Molecular Genetics, NHS Lothian, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK; ²Clinical Genetics and Human Genetics, Leiden University Medical Center, Leiden, Nederland; ³Department of Molecular Genetics, Medical Genetics, Polwarth Building, Aberdeen, UK

(both variants on same chromosome)

c.[2303_2311dup;2314C>G] / c.2312 2314delinsGCGTGGACAACG

or c.[2303_2311dup(;)2314C>G]

# HGVS applied correctly?

#### HGVS Nomenclature in Practice: An Example from the United Kingdom National External Quality Assessment Scheme



Zandra C. Deans, 1* Jennifer A. Fairley, 1 Johan T den Dunnen, 2 and Caroline Clark 3

¹ UK NEQAS for Molecular Genetics, NHS Lothian, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK; ² Clinical Genetics and Human Genetics, Leiden University Medical Center, Leiden, Nederland; ³ Department of Molecular Genetics, Medical Genetics, Polwarth Building, Aberdeen, UK

- 26 participating labs
- 21 different descriptions
   (DNA & protein combined)
   5 shared + unique 21x

6 correct HGVS, 12 DNA variant "correct", 8 not correct c.2303_2311dup c.2312_2314delinsGCGTGGACAACG c.2312 2314delACCtnsGCGTGGACAACG c.2311_2312insTGTCCACGC c.2300 2301 msCAGCGTGGA c.2300_2301msCAGCGTGGA c.2302_2310dup c.2303_2311dup c.2312_2320dupGCGTGGACA c.231Hns/dupGCGTGGACA c.2303_2311dup c.2300 2301 tnsCAGCGTGGA c.2300 2301tnsCAGCGTGGA c.2303_2311dup c.2303_2311dupGCGTGGACA c.2300 2301InsCAGCGTGGA c.2301_2302InsCAGCGTGGA c.2310_2311dupAGCGTGGAC c.2301_2302(ns9 c.2311_2312insGCGTGGACA c.2311_2312ins9 and c.2314C>G

# Support tools



# Support tools



#### ClinGen Allele Registry

Allele Registry

Pathogenicity Calculator Login Forgot Password?

#### Search Variants in ClinGen Allele Registry



#### NM 004006.2

-244	TCCTGGCATC	AGTTACTGTG	TTGACTCACT	CAGTGTTGGG	ATCACTCACT	TTCCCCCTAC	
-184	AGGACTCAGA	TCTGGGAGGC	AATTACCTTC	<b>GGAGAAAAAC</b>	GAATAGGAAA	AACTGAAGTG	
-124	TTACTTTTTT	TAAAGCTGCT	GAAGTTTGTT	GGTTTCTCAT	TGTTTTTAAG	CCTACTGGAG	
-64	CAATAAAGTT	TGAAGAACTT	TTACCAGGTT	TTTTTTTTTCG	CTGCCTTGAT	ATACACTTTT	
-4	CAAAATGCTT	TGGTGGGAAG	AAGTAGAGGA	CTGTTATGAA	AGAGAAGATG	TTCAAAAGAA	
57	AACATTCACA	AAATGGGTAA	ATGCACAATT	TTCTAAGTTT	GGGAAGCAGC	ATATTGAGAA	
117	CCTCTTCAGT	GACCTACAGG	ATGGGAGGCG	CCTCCTAGAC	CTCCTCGAAG	GCCTGACAGG	
177	GCAAAAACTG	CCAAAAGAAA	AAGGATCCAC	AAGAGTTCAT	GCCCTGAACA	ATGTCAACAA	
237	GGCACTGCGG	GTTTTGCAGA	ACAATAATGT	TGATTTAGTG	AATATTGGAA	GTACTGACAT	
297	CGTAGATGGA	AATCATAAAC	TGACTCTTGG	TTTGATTTGG	AATATAATCC	TCCACTGGCA	
357	GGTCAAAAAT	GTAATGAAAA	ATATCATGGC	TGGATTGCAA	CAAACCAACA	GTGAAAAGAT	
117	TCTCCTGAGC	TGGGTCCGAC	AATCAACTCG	TAATTATCCA	CAGGTTAATG	TAATCAACTT	
177	CACCACCAGC	TGGTCTGATG	GCCTGGCTTT	GAATGCTCTC	ATCCATAGTC	ATAGGCCAGA	
537	CCTATTTGAC	TGGAATAGTG	TGGTTTGCCA	GCAGTCAGCC	ACACAACGAC	TGGAACATGC	
597	ATTCAACATC	GCCAGATATC	AATTAGGCAT	AGAGAAACTA	CTCGATCCTG	AAGATGTTGA	
557	TACCACCTAT	CCAGATAAGA	AGTCCATCTT	AATGTACATC	ACATCACTCT	TCCAAGTTTT	
717	GCCTCAACAA	GTGAGCATTG	AAGCCATCCA	GGAAGTGGAA	ATGTTGCCAA	GGCCACCTAA	
777	AGTGACTAAA	GAAGAACATT	TTCAGTTACA	TCATCAAATG	CACTATTCTC	AACAGATCAC	
337	GGTCAGTCTA	GCACAGGGAT	ATGAGAGAAC	TTCTTCCCCT	AAGCCTCGAT	TCAAGAGCTA	
397	TGCCTACACA	CAGGCTGCTT	ATGTCACCAC	CTCTGACCCT	ACACGGAGCC	CATTTCCTTC	
957	ACAGCATTTG	GAAGCTCCTG	AAGACAAGTC	ATTTGGCAGT	TCATTGATGG	AGAGTGAAGT	
1017	AAACCTGGAC	CGTTATCAAA	CAGCTTTAGA	AGAAGTATTA	TCGTGGCTTC	TTTCTGCTGA	

# Applied correctly?

#### Lab

#### c.2303_2311dup c.2312_2314delinsGCGTGGACAACG c.2312 2314delACCtnsGCGTGGACAACG c.2311_2312insTGTCCACGC c.2300 2301 msCAGCGTGGA c.2300 2301msCAGCGTGGA c.2302_2310dup c.2303_2311dup c.2312_2320dupGCGTGGACA c.231Hns/dupGCGTGGACA c.2303_2311dup c.2300 2301 tnsCAGCGTGGA c.2300 2301tnsCAGCGTGGA c.2303_2311dup c.2303_2311dupGCGTGGACA c.2300 2301InsCAGCGTGGA c.2301_2302InsCAGCGTGGA c.2310_2311dupAGCGTGGAC c.2301_2302ins9 c.2311_2312insGCGTGGACA

c.2311_2312ins9 and c.2314C>G

#### Mutalyzer

c.[2303_2311dupx2314C>G] c.2312_2314delinsGCGTGGACAACG c.2312_2314delinsGCGTGGACAACG c.2311_2312InsTGTCCACGC c.2303_2311dup c.2303_2311dup c.2303_2311dup c,2303_2311dup c.2314C>G c.2312_2320dup reports error c.2303_2311dup c.2303_2311dup c.2303_2311dup c.2314C>G c.2303_2311dup c.2303_2311dup c.2314C>G c.2303_2311dup c.2301_2302tnsCAGCGTGGA c.2310_2311dup Reports error c.2314C>G c.[2303_2311dup:2316C>G] Reports error Reports error c.2314C>G

not corrected

error Mutalyzer

not corrected
error Mutalyzer
not corrected



"variant nomenclature"



www.socrative.com

Johan den Dunnen

student



VarNomen @ HGVS.org

#### www.socrative.com





# Q&A

#### scan QR code



or go to http://etc.ch/BbTP