Machine Learning – COMS3007

Linear Regression

Benjamin Rosman

Based heavily on course notes by Chris Williams and Victor Lavrenko, Amos Storkey, Eric Eaton, and Clint van Alten

Regression

- Data $X = \{x^{(0)}, ..., x^{(n)}\}$, where $x^{(i)} \in R^d$ Labels $\mathbf{y} = \{y^{(0)}, ..., y^{(n)}\}$, where $y^{(i)} \in R$
- Want to learn function $y = f(x, \theta)$ to predict y for a new x

Linear regression — model

What is this noise? Where might it come from?

- Assume model: $y = a + bx + \eta$
 - η is Gaussian noise (don't model explicitly)
- Higher dimensions:
 - Iigner dimensions: Treat 0^{th} dimension of x• $y = f(x, \theta) = \sum_{i=0}^{d} \theta_i x_i$ as 1 (i.e. the "intercept")
 - $y = \boldsymbol{\theta}^T \boldsymbol{x}$
- Note: we call them weights w and parameters θ interchangably
- This is linear regression: the model is linear in the parameters

- Infinitely many choices of heta
 - Learning = finding the best ones
- · To choose among them, we need a cost function

"weight space"

Every point here defines a regression line in the original problem

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

Basis functions

- What makes it linear?
 - $y = f(x, \theta) = \sum_{i=0}^{d} \theta_i x_i$
 - Linear in θ , NOT x

These basis functions are the features: good features are needed for regression to work!

- So: we can use different functions of x
 - "Basis functions" $\phi_j(x)$
 - Still linear regression
- Example: let $x \in R^3$, i.e. $x = (x_1, x_2, x_3)^T$
 - Possible basis functions:
 - x_1 , x_1^5 , x_1x_2 , $x_3^2x_2$, $\sin(x_2)$, $\log(x_3)$, $e^{-\frac{1}{2\sigma^2}(x_1-\mu)^2}$,...
- Rewrite: $y = f(x, \theta) = \sum_{i=0}^{d} \theta_i \phi_i(x)$

Basis functions

- How to choose basis functions $\phi_i(x)$?
 - Assumptions about the data
 - Try as many as possible
- Polynomial basis functions:
 - $\phi_i(x) = x^j$
 - Can include cross-terms
 - e.g. $x_3^2 x_2$
 - Global: any change in x affects all basis functions
- Gaussian basis functions:
 - Radial basis functions (RBF)
 - $\bullet \ \phi_j(x) = e^{-\frac{1}{2\sigma^2}(x-\mu_j)^2}$
 - Local: change in x affects nearby basis functions
 - μ_i = location, σ = scale/width

Design matrix

- Structure data in a design matrix X
- Let there be n data points (vectors): $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$
- And d+1 basis functions: $\phi_0, \phi_1, ..., \phi_d$

• Design matrix
$$\Phi = \begin{bmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_d(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_d(\mathbf{x}^{(2)}) \\ \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(n)}) & \phi_1(\mathbf{x}^{(n)}) & \dots & \phi_d(\mathbf{x}^{(n)}) \end{bmatrix}$$

- So far, we've had: $\phi_0(x) = 1$, $\phi_1(x) = x_1$, $\phi_2(x) = x_2$, etc...
- Now we can work with the data in matrix form!

Closed form solution

- How do we learn the function?
- We want to minimise the error:

•
$$E(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}, \theta))^2$$

- Rewrite: $E(\theta) = \frac{1}{2}(y X\theta)^2$
- $E(\theta) = \frac{1}{2} (\mathbf{y} \mathbf{X}\theta)^T (\mathbf{y} \mathbf{X}\theta)$ $E(\theta) = \frac{1}{2} (\mathbf{y}^T \mathbf{y} 2\theta^T \mathbf{X}^T \mathbf{y} + \theta^T \mathbf{X}^T \mathbf{X}\theta)$
- For minimum: differentiate wrt θ and set to zero

•
$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

The Moore-Penrose pseudo-inverse

Vector notation with design matrix

Example

- True function: $f(x) = 0.2x^3 0.8x^2 x + 1 + \eta$
 - Unknown to algorithm
- Training data:

\boldsymbol{x}	y	
0	1.1	
1	-0.7	
2	-2.6	
3	-3.7	
4	-2.9	
5	1	

Example

• Choose model: $f(x,\theta) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$ • Error: $E(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}, \theta))^2$

Design matrix X =

\boldsymbol{x}	y	
0	1.1	
1	-0.7	
2	-2.6	
3	-3.7	
4	-2.9	
5	1	

1	x	x^2	x^3
1	0	0	0
1	1	1	1
1	2	4	8
1	3	9	27
1	4	16	64
1	5	25	125

•
$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = [1.09, -1.3, -0.64, 0.18]^T$$

$$f(x) = 1 - x - 0.8x^2 + 0.2x^3$$

$$f(x) = 1 - x - 0.8x^2 + 0.2x^3$$

Example
$$f(x) = 1 - x - 0.8x^{2} + 0.2x^{3}$$
• $\theta = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y} = [1.09, -1.3, -0.64, 0.18]^{T}$

Gradient descent

- Closed form solutions are not always appropriate
 - Can be slow: computing $(\mathbf{X}^T\mathbf{X})^{-1}$ is roughly $O(n^3)$
 - Cannot learn incrementally (redo computation for a new data point)
 - Different error functions?
- Instead use iterative procedure: gradient descent (GD)
- Basic idea:
 - Choose initial θ
 - Until a minimum:
 - Update θ to reduce $J(\theta)$

Gradient descent

Cost function = E = J

- Initialise θ
- Repeat until convergence:

•
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

• Simultaneous update for j = 0, ..., d

Take a step of size α in the "downhill" direction (negative gradient)

 $0 < \alpha \le 1$ is the learning rate,

usually set quite small

Gradient descent

- Consider point i
- $J(\theta) = E(\theta) = \frac{1}{2} (y^{(i)} f(x^{(i)}, \theta))^2$
- For $f(x^{(i)}, \theta) = \sum_{j=0}^{d} \theta_j x_j^{(i)}$,
 - $\frac{\partial}{\partial \theta_j} J(\theta) = (f(x^{(i)}, \theta) y^{(i)}) x_j^{(i)}$

Stop when $\left|\left|\theta_{new}-\theta_{old}\right|\right|_2<\epsilon$

- So:
- Initialise θ
- Repeat until convergence:
 - For each datapoint *i*:
 - $\theta_j \leftarrow \theta_j \alpha(f(x^{(i)}, \theta) y^{(i)})x_j^{(i)}$
 - Simultaneous update for j = 0, ..., d

We will be taking downhill steps

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Example

•
$$\theta_0 \leftarrow \theta_0 - \alpha(f(x, \theta) - y^{(i)})$$

•
$$\theta_1 \leftarrow \theta_1 - \alpha (f(x, \theta) - y^{(i)}) x$$

•
$$\theta_2 \leftarrow \theta_2 - \alpha (f(x, \theta) - y^{(i)}) x^2$$

•
$$\theta_1 \leftarrow \theta_1 - \alpha (f(x,\theta) - y^{(i)})x$$

• $\theta_2 \leftarrow \theta_2 - \alpha (f(x,\theta) - y^{(i)})x^2$
• $\theta_3 \leftarrow \theta_3 - \alpha (f(x,\theta) - y^{(i)})x^3$

$$f(x,\theta) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

The effect of α

α too small

α too large

- May overshoot the minimum
- May fail to converge
- May even diverge

Overfitting and underfitting

- We don't just care about matching the training data, we want to generalise
- Too few (or the wrong) basis functions underfits
- But, too many overfits!
- Can we automate this?

Regularisation

•
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

• $\approx \theta_0 + \theta_1 x$ if $\theta_2, \theta_3 \approx 0$

- Idea: penalise large parameter values
 - Change the cost function

•
$$E(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}, \theta))^2 + \lambda \sum_{j=1}^{d} \theta_j^2$$

Fit the data regularise

- $\lambda \geq 0$ controls amount of regularisation
- Note: do not regularise θ_0

While minimising E, we want to fit the data AND not have large parameters: So, it will only grow parameters if the fit becomes much better!

The effect of λ

- $\lambda = 0$: no regularisation
 - Linear regression as normal
- As λ increases (no upper bound):
 - It acts as an increasing force keeping parameters small unless really necessary
 - Tends to a straight line

Closed-form with regularisation

•
$$\theta = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

No regularisation on θ_0

• $\theta = \begin{pmatrix} \mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$

Can derive this as before

GD with regularisation

- Initialise θ
- Repeat until convergence:

No regularisation on θ_0

•
$$\theta_0 \leftarrow \theta_0 - \alpha(f(x^{(i)}, \theta) - y^{(i)})$$

• $\theta_j \leftarrow \theta_j - \alpha \left[(f(x^{(i)}, \theta) - y^{(i)}) x_j^{(i)} + \lambda \theta_j \right]$

• Simultaneous update for j = 0, ..., d

Recap

- Model
- Cost function
- Basis functions
- Design matrix
- Closed-form solution
- Gradient descent
- Regularisation