Properties and Semantics of Cassowary

Athan Clark

July 12, 2015

Abstract

This paper details the entailed logical properties that a linear constraint solver, annotated with weights and error variables, should have. We hope to use this document as a paper implementation of the automated test suites accompanied with the Haskell and PureScript versions of Cassowary.

1 Equations

The generic form for a linear inequality in standard form consists of a unique set of variables summed together, and a constant value:

```
newtype LinVarMap\ \alpha = LinVarMap\ (Map\ LinVarName\ \alpha) (LINVARMAP-DEF) data IneqExpr\ \alpha = IneqExpr { coeffs: (LinVarMap\ \alpha) , const: Rational } (INEQEXPR-DEF)
```

We segregate the different forms of inequality expressions with newtypes:

```
newtype Equ \ \alpha = Equ \ (IneqExpr \ \alpha) (EQU-DEF)
newtype Lte \ \alpha = Lte \ (IneqExpr \ \alpha) (LTE-DEF)
newtype Gte \ \alpha = Gte \ (IneqExpr \ \alpha) (GTE-DEF)
```

Note that the equations are polymorphic in their coefficient type - this will be important when we introduce weights in section 3.

For general inequalities, we just combine the different forms with a sum type:

```
data IneqStdForm \ \alpha =
EquStd \ (Equ \ \alpha)
| \ LteStd \ (Lte \ \alpha)
| \ GteStd \ (Gte \ \alpha) 
(INEQSTDFORM-DEF)
```

A tableau is then the pair of general constraints, and constraints in basic feasible form:

```
type Tableau \ \sigma = (Map \ LinVarName \ \sigma, \ [\sigma]) (TABLEAU-DEF)
```

Where a tableau is polymorphic in the constraint type used - this will be important when discussing slack variables in section 2.1.

2 Simplex

There are several properties for dual and primal simplex method and Bland's ratio.

2.1 Slack Variables

To generate slack variables, we take our list of arbitrary inequalities and turn them into equations, annotated with the extra slack variable:

```
makeSlackVars :: [IneqStdForm \ \alpha] \rightarrow [Equ \ \alpha]
```

Pivots for both primal and dual simplex will look similar - they take an objective function and a constraint set, then refactor the equations depending on the goal:

```
pivotPrimal :: (Equ \ \alpha, \ Tableau \ (Equ \ \alpha)) \rightarrow (Equ \ \alpha, \ Tableau \ (Equ \ \alpha))
pivotDual :: (Equ \ \alpha, \ Tableau \ (Equ \ \alpha)) \rightarrow (Equ \ \alpha, \ Tableau \ (Equ \ \alpha))
```

2.2 Primal

In the primal simplex method, we first select a non-basic variable to become basic, and a constraint out of the set that satisfies the minimum Bland ratio for each pivot.

2.2.1 Next Variable

With primal simplex, first we need to select the next variable by selecting the **most negative** coefficient in the objective function:

```
nextBasicPrimal :: Equ \ \alpha \rightarrow Maybe \ LinVarName
```

2.3 **Dual**

3 Weights

Weights are implemented as a (non-empty) list of coefficients:

newtype
$$Weight \ \alpha = [\alpha]$$
 (WEIGHT-DEF)

When an equation using Rational values as coefficients gets augmented with a weight (usually with a natural number - $augment\ eq1\ 5$), the coefficients are pushed to that index in an empty stream of 0s; the example just mentioned would stream five 0s before containing the original coefficient.

3.1 Arithmetic

3.1.1 Addition

Instances:

$$(.+.)$$
 :: Weight Rational \rightarrow Weight Rational \rightarrow Weight Rational (ADD-SYM)

Addition in ADD-SYM is implemented with unionWith - leaving the larger of the two lists intact.

$$(.+.) = unionWith (+)$$

Lemma: The length of the resulting list, when using addition, is the maximum length of the two lists added.

length
$$(xs . + . ys) \equiv \max (length xs) (length ys)$$

3.1.2 Subtraction

Instances:

$$(.-.) :: Weight \ Rational \rightarrow Weight \ Rational \rightarrow Weight \ Rational \\ (SUB-SYM)$$

$$(.-.) \ :: \ Rational \ \rightarrow \ Weight \ Rational \ \rightarrow \ Rational \ (SUB-FORGET-1)$$

$$(.-.) \ :: \ Weight \ Rational \ \rightarrow \ Rational \ \rightarrow \ Rational \\ (SUB-FORGET-2)$$

For the first instance SUB-SYM, we use unionWith again:

$$(.-.) = unionWith (-)$$

For SUB-FORGET-1 and SUB-FORGET-2, we sum the list (and forget weight data) before subtracting:

$$x \cdot - \cdot ys = x - sum \ ys$$

 $xs \cdot - \cdot y = sum \ xs - y$

3.1.3 Multiplication

Instances:

- $(.*.) :: Weight \ Rational \rightarrow Rational \rightarrow Weight \ Rational$ (MUL-DIST-1)
- $(.*.) :: Rational \rightarrow Weight \ Rational \rightarrow Weight \ Rational \\ (MUL-DIST-2)$
- $(.*.) :: Weight \ Rational \rightarrow Weight \ Rational \rightarrow Weight \ Rational \\ (MUL-FORGET)$

MUL-DIST-1 and MUL-DIST-2 naturally distributes the Rational multiplied value to every element in the Weight list. In the MUL-FORGET instance, one of the arguments must be forgotten, and is therefore ambiguous for it's behaviour. We leave the implementation for this instance ambiguous, only necessary for implementing substitution.

$$xs .*. y = (* y) < $ > xs$$

 $x .*. ys = (x *) < $ > ys$

3.1.4 Division

Instances:

$$(./.)$$
 :: Rational \rightarrow Weight Rational \rightarrow Rational (DIV-FORGET)

We will need to divide a coefficient (Rational) by a coefficient (possibly a WeightRational) in blandRatioPrimal, where we have a forgetful instance - divide the constant by the sum of the error coefficients:

$$x$$
 ./. $ys = x / sum ys$

4 Conclusion

Write your conclusion here.