Modules - Practical Computer Vision with PyTorch

This is a practical online course that will be offered through OpenHPI in May 2025. Learners will gain hands-on experience with modern deep learning techniques for solving computer vision problems, including image classification, object detection, and image generation.

Trailer Video

An overview of the course's content Trailer video

Prerequisites

A basic knowledge of programming and high-school level math is sufficient to follow the course. The following resources serve as helpful references:

Programming Prerequisites

- Python Fundamentals
 - Basic knowledge of Python
 - Writing functions and classes

Mathematics Prerequisites

- Statistics and Probability
 - Mean, median, and mode
 - Probability
 - Variance and standard deviation
- Linear Algebra
 - Dot product
 - Matrix multiplication
- Calculus
 - Derivatives

Course Modules

Each module is paired with at least one practical programming notebook.

Module 1: Foundations

- 1. Intro to Common Computer Vision Tasks
 - Slides
 - Video
- 2. Digital Image Representation in PIL and NumPy
 - Slides
 - Video
- 3. Image Tensors in PyTorch
 - Slides
 - Video

Module 2: Neural Networks Fundamentals

- 4. Introduction to Neural Networks
 - Slides
 - Video
- 5. Building a Multilayer Perceptron for Regression in PyTorch
 - Slides
 - Video
- 6. Matrix Multiplication and Network Shape
 - Slides
 - Video

Module 3: Training and Evaluation

- 7. Training a Feedforward Network for Classification in PyTorch
 - Slides
 - Video
- 8. Performance Metrics for Classification and Experiment tracking
 - Slides
 - Video
- 9. PyTorch Datasets and DataLoaders
 - Slides
 - Video

Module 4: Convolutional Neural Networks

- 10. Fundamentals of Convolutions
 - Slides
 - Video

- 11. Pooling in Neural Networks
 - Slides
 - Video
- 12. Upsampling and Channel Mixing with Convolutions
 - Slides
 - Video

Module 5: Training Techniques for Image Classification

- 13. Normalizing Input Values, and Inference with Pretrained Models
 - Slides
 - Video
- 14. Usage of Binary Cross Entropy Loss
 - Slides
 - Video
- 15. Skip Connections
 - Slides
 - Video

Module 6: Model Optimization

- 16. Data Augmentation
 - Slides
 - Video
- 17. Regularization with Dropout and Batch Normalization
 - Slides
 - Video
- 18. Transfer Learning and Fine Tuning Pre-trained Models
 - Slides
 - Video

Module 7: Image Embeddings

- 19. Image Embeddings
 - Slides
 - Video
- 20. Vision Transformers
 - Slides
 - Video

- 21. CLIP (Contrastive Language-Image Pretraining)
 - Slides
 - Video

Module 8: Object Detection and Image Segmentation

- 22. Approaches to Object Detection
 - Slides
 - Video
- 23. Approaches to Image Segmentation
 - Slides
 - Video

Module 9: Image Generation

- 24. Image Generation with Diffusion Models
 - Slides
 - Video

Module 10: Interpretability

- 25. Interpretability with Class Activation Mapping
 - Slides
 - Video

GitHub Repository

Notebooks will be extended and published on Kaggle before May 2025 https://github.com/andandandandand/practical-computer-vision