- 1. For the exponential(λ) distribution, $\mu=1/\lambda$. Letting $\bar{X}=1/\lambda$, we can solve for the method of moment estimator for λ as $\hat{\lambda}=1/\bar{X}$. It is not unbiased estimator because $E(1/\bar{X})\neq 1/E(\bar{X})$.
- 3. For gamma(α , β) distribution, we have $\mu=\alpha\beta$ and $\sigma^2=\alpha\beta^2$. Thus, $\beta=\sigma^2/\mu$, and $\alpha=\mu^2/\sigma^2$. We get an estimator of $\hat{\alpha}=\bar{X}^2/S^2$ and $\hat{\beta}=S^2/\bar{X}$. For the given problem, $\hat{\alpha}=113.5^2/1205.55=10.686$ and $\hat{\beta}=1205.55/113.5=10.622$.
- 5. (a) Since $X \sim \text{Bin}(n, p)$, E(X) = np. Thus, we can estimate p by $\hat{p} = X/n$. It is unbiased because $E(\hat{p}) = E(X)/n = np/n = p$.

7. (a) There are X+5 helmets and the last one has flaw, among the rest X+4 helmets, there are 4 with flaw and X flawless, thus, we have the probability

$$P(X = x) = {x+4 \choose 4} p^5 (1-p)^x.$$

Therefore, the log-likelihood function is

$$\mathcal{L}(p) = \log \binom{X+4}{4} + 5\log p + X\log(1-p).$$

Setting the first derivative of the log-likelihood function to zero yields the equation

$$\frac{5}{p} - \frac{X}{1-p} = 0.$$

Solving this equation yields the MLE $\hat{p} = 5/(5+X)$.

- (b) The distribution of X is easily identified as Negative binomial with r=5 and parameter p (compare to formula (3.4.15)). Thus, E(X)=r/p=5/p. In method of moment estimation, set X=5/p, and we can solve for the estimator $\hat{p}=5/X$.
- (c) If X=47, the MLE (a) gives $\hat{p}=5/(5+47)=0.096$ and the method of moment formula in (b) gives $\hat{p}=5/47=0.106$.
- 9. (a) To get the moments estimator for θ , solve the equation $\hat{P} = E(P)$, that is $\hat{P} = \theta/(1+\theta)$, and we have the estimator

$$\hat{\theta} = \frac{\hat{P}}{1 - \hat{P}}.$$

- (b) For the given data, the estimate of θ is $\hat{\theta} = 0.202$.
- 1. (a) $\operatorname{Bias}(\hat{\theta}_1) = E(\hat{\theta}_1) \theta = 2E(\bar{X}) \theta = 2E(X) \theta = 2 \times \theta/2 \theta = 0$. The bias for $\hat{\theta}_2$ is $\operatorname{Bias}(\hat{\theta}_2) = E(\hat{\theta}_2) \theta = n\theta/(n+1) \theta = -\theta/(n+1)$. Thus, $\hat{\theta}_1$ is unbiased while $\hat{\theta}_2$ is biased.
 - (b) For $\hat{\theta}_1$, we have

$$MSE(\hat{\theta}_1) = Var(\hat{\theta}_1) + Bias(\hat{\theta}_1)^2 = Var(2\bar{X}) = 4Var(\bar{X}) = 4\frac{\sigma^2}{n} = \frac{4}{n}\frac{\theta^2}{12} = \frac{\theta^2}{3n}$$

For $\hat{\theta}_2$

$$MSE(\hat{\theta}_2) = Var(\hat{\theta}_2) + Bias(\hat{\theta}_2)^2 = \frac{n}{(n+1)^2(n+2)} \theta^2 + \left(-\frac{\theta}{n+1}\right)^2$$
$$= \frac{2\theta^2}{(n+1)(n+2)}.$$

- (c) When n=5 and true value of θ is 10, we have $\mathrm{MSE}(\hat{\theta}_1)=10^2/(3\times5)=6.67$, while $\mathrm{MSE}(\hat{\theta}_2)=2\times10^2/[((5+1)(5+2)]=4.76$. According to the MSE selection criterion, $\hat{\theta}_2$ is preferable.
- 2. From the distributions of X_1, \dots, X_{10} and Y_1, \dots, Y_{10} , we have $E(\bar{X}) = E(\bar{Y}) = \mu$, $Var(\bar{X}) = \sigma^2/10$, and $Var(\bar{Y}) = 4\sigma^2/10$. \bar{X} and \bar{Y} are also independent. Thus,
 - (a) For any $0 \le \alpha \le 1$, $E(\hat{\mu}) = E(\alpha \bar{X} + (1 \alpha)\bar{Y}) = \alpha E(\bar{X}) + (1 \alpha)E(\bar{Y}) = \alpha \mu + (1 \alpha)\mu = \mu$. Thus, $\hat{\mu}$ is unbiased for μ .
 - (b) Since $\hat{\mu}$ is unbiased,

$$\begin{aligned} \text{MSE}(\hat{\mu}) &= \text{Var}(\hat{\mu}) = \text{Var}(\alpha \bar{X} + (1 - \alpha)\bar{Y}) = \alpha^2 \text{Var}(\bar{X}) + (1 - \alpha)^2 \text{Var}(\bar{Y}) \\ &= \alpha^2 \frac{\sigma^2}{10} + (1 - \alpha)^2 \frac{4\sigma^2}{10} = (5\alpha^2 - 8\alpha + 4) \frac{\sigma^2}{10} \end{aligned}$$

(c) The estimator $0.5\bar{X}+0.5\bar{Y}$ corresponds to $\hat{\mu}$ with $\alpha=0.5$. The MSE is

$$MSE(0.5\bar{X} + 0.5\bar{Y}) = (5 \times 0.5^2 - 8 \times 0.5 + 4)\frac{\sigma^2}{10} = 1.25\frac{\sigma^2}{10}.$$

Since $\text{MSE}(\bar{X}) = \text{Var}(\bar{X}) = \sigma^2/10 < \text{MSE}(0.5\bar{X}+0.5\bar{Y}), \,\bar{X}$ is a preferable estimator.