CO 250: Introduction to Optimization

Module 1: Formulations (Shortest Paths)

© University of Waterloo 1/

Recap: Shortest Paths

Input:

- Graph G = (V, E)
- Non-negative edge lengths c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of smallest total length.

Recall: P is an s,t-path if it is of the form

$$v_1v_2, v_2v_3, \ldots, v_{k-1}v_k$$

and

- 1. $v_i v_{i+1} \in E$ for all $i \in \{1, \dots, k-1\}$,
- 2. $v_i \neq v_j$ for all $i \neq j$, and
- 3. $v_1 = s \text{ and } v_k = t$.

E.g., P = sa, ab, bt

©University of Waterloo 2 /

Recap: Shortest Paths

Shortest Path Problem: Given $G=(V,E),\ c_e\geq 0$ for all $e\in E$, and $s,t\in V$, compute an s,t-path of smallest total length.

Now: Formulate the problem as an IPI

Useful Observation: Let $C \subseteq E$ be a set of edges whose removal disconnects s and t.

 \longrightarrow Every s,t-path P must have at least one edge in C.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

$$\delta(S) = \{ uv \in E : u \in S, v \notin S \}$$

©University of Waterloo 3/1

Cuts

Examples:

1.
$$S = \{s\} \to \delta(S) = \{sa, sb\}$$

2.
$$S = \{s, a\} \rightarrow \delta(S) = \{ab, at, sb\}$$

3.
$$S = \{a, b\} \rightarrow \delta(S) = \{sa, sb, at, bt\}$$

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., 1 and 2 are s, t-cuts, 3 is not.

Definition

For $S \subseteq V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S.

$$\delta(S) = \{uv \in E : u \in S, v \not\in S\}$$

©University of Waterloo 4/1

Cuts

Definition

 $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$.

E.g., $\delta(\{s,a\}) = \{sb,ab,at\}$ is an s,t-cut.

Remark

If P is an s,t-path and $\delta(S)$ is an s,t-cut, then P must have an edge from $\delta(S)$.

E.g., P = sa, ab, bt.

©University of Waterloo 5/1

Cuts

Remark

If $S\subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

Proof: (by contradiction)

- Suppose S has an edge from every s, t-cut, but S has no s, t-path.
- Let R be the set of vertices reachable from s in S:

$$R = \{u \in V \,:\, S \text{ has an } s, u\text{-path}\}.$$

 $\bullet \ \, \delta(R) \text{ is an } s,t\text{-cut since } s \in R \text{ and } \\ t \not \in R.$

• Note: There cannot be an edge $uv \in E$ with $u \in R$ and $v \notin R$. Otherwise: v should have been in R!

$$\longrightarrow \delta(R) \cap S = \emptyset$$
.
Contradiction!

©University of Waterloo 6/

Variables: We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \left\{ \begin{array}{l} 1 : e \in P \\ 0 : \text{otherwise} \end{array} \right.$$

Constraints: We have one constraint for each s,t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$.

$$\sum (x_e : e \in \delta(U)) \ge 1 \tag{1}$$

for all s, t-cuts $\delta(U)$.

Objective:
$$\sum (c_e x_e : e \in E)$$

Remark

If $S \subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

©University of Waterloo 7/1

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

min
$$(3,4,1,2,2)x$$

©University of Waterloo 8/12

$$\begin{split} & \min \ \sum (c_e x_e \ : \ e \in E) \\ & \text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ & x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{split}$$

Suppose: $c_e > 0$ for all $e \in E$

Then: In an optimal solution, $x_e \leq 1$ for all $e \in E$. Why?

Suppose $x_e > 1$.

Then let $x_e = 1$. This is cheaper and maintains feasibility!

For a binary solution x, define

$$S_x = \{ e \in E : x_e = 1 \}.$$

©University of Waterloo 9 /

Note: If x is feasible for an IP, then S_x satisfies the remark, but S_x may contain more than just an s,t-path!

E.g., $x_e = 1$ for all blue edges in the figure and $x_e = 0$ otherwise. Then,

$$S_x = \{sa, ab, at\}$$

Note: x cannot be optimal for the IP!

Why?

Remark

If $S \subseteq E$ contains at least one edge from every s,t-cut, then S contains an s,t-path.

©University of Waterloo

$$\begin{aligned} &\min \ \sum (c_e x_e \ : \ e \in E) \\ &\text{s.t.} \ \sum (x_e \ : \ e \in \delta(U)) \geq 1 \ (U \subseteq V, s \in U, t \not\in U) \\ &x_e \geq 0, x_e \ \text{integer} \quad (e \in E) \end{aligned}$$

Remark

If x is an optimal solution for the above IP and $c_e>0$ for all $e\in E$, then S_x contains the edges of a shortest s,t-path.

© University of Waterloo

Shortest Paths

Recap

• Given G = (V, E) and $U \subseteq V$, we define

$$\delta(U)=\{uv\in E\,:\,u\in U,v\not\in U\}.$$

- $\delta(U)$ is an s, t-cut if $s \in U$ and $t \notin U$.
- If $S \subseteq E$ intersects every s,t-cut $\delta(U)$, then S contains an s,t-path.
- Feasible solutions to the shortest path LP correspond to edge-sets that intersect every s,t-cut; optimal solutions are minimal in this respect if $c_e>0$ for all $e\in E$.

©University of Waterloo 12/