По градиции на первых заседаниях научного семинара В. Н. Арнольда для студентов Московского университета его участникам предлагается несколько новых задач — точнее, тем
для исследования. Среди них иногда встречаются чрезвычайно красивые задачи, формулировки которых понятны даже школьнику.
Вот одна из этих тем.

МЕАНДРЫ

Академик В. АРНОЛЬД

Шоссе, идущее с запада на восток, пересекает несколько раз реку, текущую с юго-запада также на восток. Занумеруем мосты в порядке их следования вдоль шоссе (с запада на восток). Проплывая под мостами вниз по реке, мы будем встречать их, вообще говоря, в другом порядке. Так, например, река на рисунке 1 проходит мосты в порядке 3, 4, 5, 2, 1. Таким образом, эта река определяет перестановку чисел от 1 до 5: (3 4 5 2 1). Ясно, что другая река могла бы протекать иначе и задавать другую перестановку. Но далеко не любая перестановка чисел (мостов) может быть реализована таким образом. (Попробуйте, например, придумать реку, проходящую мосты в порядке 2, 1, 3, 4, 5.) Мы будем называть перестановку меандром, если ее можно задать с помощью подходящей реки.

Основной вопрос для нас будет такой: сколько существует различных меандров (т. е. сколько перестановок номеров реализуется), если общее число мостов равно n? Обозначим число различных меандров с n мостами через a(n). Легко видеть, что a(1) = a(2) = 1, a(3) = 2, a(4) = 3 (рис. 2).

Задача 1. Найдите следующие члены последовательности a(n).

Ответ: 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, 13820,...

Общая формула для a(n) неизвестна. Неизвестны даже асимптотики a(n) и a(n+1)/a(n) при $n\to\infty$.

Задача 2. Докажите, что река впервые пересекает шоссе под мостом, номер которого нечетен. Задача 3. Докажите, что номера 1-го, 3-го, 5-го,... мостов (вдоль реки) нечетны, если нумеровать мосты вдоль шоссе, а номера 2-го, 4-го,... мостов — четны.

Начнем классифицировать меандры с того, что зафиксируем первый вдоль реки мост. Обозначим через $a_i(n)$ число меандров с n мостами, для которых река впервые пересекает шоссе под i-м (вдоль шоссе) мостом. Согласно задаче 2,

Puc. 1.

Puc. 2.

 $a(n) = a_1(n) + a_3(n) + ... + a_{2k-1}(n),$

где n = 2k - 1 или n = 2k.

Задача 4. Составьте таблицу меандрических чисел $a_i(n)$ при небольших n.

Ответ: для i. $n \le 10$ см. таблицу.

a(n)	1	2	3	4	5	6	7	8	9	10
a (n)	1	1	2	3	8	14	42	81	262	538
a1 (n)	1	1	1	2	3	8	14	42	81	262
03 (n)			1	1	2	3	7	14	36	81
as (n)					3	3	7	11	28	57
at (n)				Г			14	14	36	57
a ₀ (n)	Г								81	81
a11 (n)										1
a13(n)										

Задача 5. Найдите в этой таблице закономерности. Случайно ли число 14 появилось пять раз?

Задача 6. Докажите, что

- 1) $a(n)=a_1(n+1)$,
- 2) $a_i(n)=a_j(n)$, ecau i+j=n+1 ver-
- 3) $a_i(n) = a_i(n)$, ecau i + j = n + 2 четно, $i \ge 3$, $j \ge 3$,
- 4) $a_1(2k-1)=a_3(2k)$, 5) a(2k+1) четно.

Задача 7. Четно ли а(16)?

Задача 8. Докажите, что a(n) нечетны только, если n=2'.

Задача 9. Исследуйте поведение при $k \to \infty$ распределений $a_i(2k+1)$, где $i \ge 3$.

Задача 10. Докажите, что всякая перестановка п мостов может быть реализована меандрирующей рекой, если шоссе и река находятся не на плоскости, а на подходящей поверхности, скажем на плоскости с приклеенными к ней ручками (рис. 3).

Puc. 3.

Puc. 4.

Минимальное число ручек такой поверхности назовем родом перестановки. Таким образом, все перестановки распределяются по родам. Обычные меандры — это перестановки рода нуль.

Задача 11. Исследуйте распределение перестановок из п элементов по родам при $n \to \infty$.

Задача 12. Перенесите предыдущие рассмотрения на меандры, образованные несколькими реками.

Замечания

1. Число таких обобщенных меандров, образованных системами замкнутых рек, на проективной плоскости при пересечении с бесконечно удаленным шоссе — это известные числа Каталана 1, 1, 2, 5, 14, 42....

Число Каталана c(n) проще всего определить как число способов расстановки скобок в произведении из n сомножителей. Например, c(3) = 2. Два способа расстановки скобок — это (ab)c и a(bc). В произведении четырех сомножителей скобки можно расставить пятью способами:

$$((ab)c)d$$
, $(ab)(cd)$, $(a(bc))d$, $a((bc)d)$, $a(b(cd))$.

Поэтому c(4) = 5 и т. д.

Числа Каталана обладают замечательным свойством неожиданно возникать в самых разных задачах. Подробнее об этом можно узнать из статьи М. Гарднера «Числа Каталана» («Квант», 1978, № 7, с. 20).

2. С задачей о меандрах связана следующая «задача о марках»: сколькими способами можно сложить в стопку ленту, состоящую из п марок (рис. 4; вверху показан один из способов складывания полоски). Об этой задаче рассказано в книге М. Гарднера «Математические досуги» (М.: Мир, 1972, с. 344—353).

(Окончание см. на с. 14)