Investigation on How to Accelerate Python on Both Multicore CPUs and Manycore GPUs

Dingjun Chen Calgary, Alberta

Make python fast with numba

1. Calculate PI with python

```
import random
def pi(npoints):
n_in_circle = 0
for i in range(npoints):
x = random.random()
y = random.random()
if (x**2+y**2 < 1):</li>
n_in_circle += 1
return 4*n_in_circle / npoints
%timeit pi(100000000)
*Run time cost: 44.2 s ± 228 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
*Note: I did this test on Google Colab.
```

Make python fast with numba

2. Calculate PI with python numba JIT

- from numba import njit
- @njit
- def fast_pi(npoints):
- n_in_circle = 0
- for i in range(npoints):
- x = random.random()
- y = random.random()
- if $(x^{**}2+y^{**}2 < 1)$:
- n_in_circle += 1
- return 4*n_in_circle / npoints
- %timeit fast_pi(100000000)
- *Run time cost: 1.25 s \pm 6.99 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
- Conclusion: Speedup= 44.2/1.25 =35.36, Numba can accelerate Python code about 35X via JIT compilation in terms of tests on the calculation of Pi.
- Cause: A Just-In-Time (JIT) compiler is a feature of the run-time interpreter, that instead of interpreting bytecode every time a method is invoked, will compile the bytecode into the machine code instructions of the running machine, and then invoke this object code instead.

What's difference between JIT and NJIT?

 NJIT means that the function is compiled in nopython mode. A dict, list and tuple are python objects and therefore not supported. Not as arguments and not inside the function.

```
from numba import jit
import numpy as np
def fast_pi(npoints):
 n in circle = 0
 for i in range(npoints):
  x = np.random.random()
  y = np.random.random()
  if (x^{**}2+y^{**}2 < 1):
   n in circle += 1
 return 4*n_in_circle / npoints
%timeit fast pi(100000000)
*Run time cost: 1.25 s \pm 17.1 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
Conclusion: There is no difference in run time cost in case of either JIT or NJIT in terms of tests on the
calculation of Pi.
*Note: @njit == @jit(nopython=True)
```

2023-03-15

*Note: I did this test on Google Colab.

Simultaneously using both Numba's prange and JIT compilation for accelerating Python? More investigation will need to be made soon.

- from numba import njit, prange
- @njit
- def fast_pi(npoints):
- $n_{in}_{circle} = 0$
- for i in prange(npoints):
- x = random.random()
- y = random.random()
- if $(x^{**}2+y^{**}2 < 1)$:
- n_in_circle += 1
- return 4*n_in_circle / npoints
- %timeit fast_pi(100000000)
- *Run time cost: 1.25 s \pm 9.31 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
- Conclusion: There is no performance improved in case of simultaneously using both JIT and prange in terms of tests on the calculation of Pi.
- *Note: I did this test on Google Colab.

2023-03-15 5

what is CuPy?

- CuPy is an open-source array library for GPU-accelerated computing with Python. CuPy utilizes CUDA Toolkit libraries including cuBLAS, cuRAND, cuSOLVER, cuSPARSE, cuFFT, cuDNN and NCCL to make full use of the GPU architecture.
- CuPy implements Numpy arrays on Nvidia GPUs by leveraging the CUDA GPU library. With that implementation, superior parallel speedup can be achieved due to the many CUDA cores GPUs have.
- Please see below performance comparison between NumPy and CuPy. Source codes are given in the next slide.
- CuPy Speedup: 3.906684/0.719115=5.432627
- *Note: I did this test on Kaggle notebook with its free GPU platform.

- ## Source codes for the performance comparison between Numpy and Cupy.
- import numpy as np
- import cupy as cp
- import time
- ## Numpy and CPU
- s = time.time()
- x_cpu = np.ones((1000,1000,1000))
- x_cpu *= 5
- x_cpu *= x_cpu
- x_cpu += x_cpu
- e = time.time()
- print("Numpy cost:",e s)
- ##CuPy and GPU
- s = time.time()
- x_gpu = cp.ones((1000,1000,1000))
- x_gpu *= 5
- x_gpu *= x_gpu
- x_gpu += x_gpu
- cp.cuda.Stream.null.synchronize()
- e = time.time()
- print("CuPy cost:",e s)
- Run Results: Numpy cost: 3.906684160232544

CuPy Speedup: 3.906684/0.719115=5.432627

2023-03-15

CuPy cost: 0.7191150188446045

Conclusions

- Numba can be used to accelerate Python on multicore CPU computing platform instead of Numpy.
- CuPy can be used to accelerate Python on many-core GPU computing platform instead of Numpy.
- More investigation will need to be done soon in order to further accelerate Python codes so that the Python codes can run as fast as Fortran and C/C++ codes.