MACM day 6 - Graphs

Summary

Graphs can be pipartite graphs. A graph can have subgraphs. These subgraphs can be spanning meaning they include every vertice. An induced subgraph must have all the edges connecting the vertices that the original graph has.

Terminology

Bipartite graph

A graph G=(V,E) is bipartitie if we can partition the vertices into two sets V1 and V2 such that

- 1. V1 n V2 = empty set
- 2. V1 union V2 = V

Subgraph

Let G = (V,E) and G' = (V',E') be two graphs. G is a Subgraph of G if V' is a subset of V' and E' is a subset of E' if V'=V' then we call G' a spanning subgraph of G

A spanning tree has all edges connected Note: A spanning subgraph can have no edges G is a subgraph of itself

Path

• if P is a subgraph of G that is a path we call P a path of G

Cycle

• if C is a subgraph of G that is a cycle we call C a cycle of G

Induced subgraph

• if the edge exists between the vertices you plot it in the induced subgraph