

Spin-Stabilization System for Hoisted Payloads (SpinStop) | Engineering Capstone

Controls Scheme

Goal: Build a system to stabilize uncontrolled spinning of helicopter-hoisted payloads during rescue operations (and applicable to other cases).

Remote E-STOP Remote Controller ESP32, Physical Buttor Remote start, stop, DAQ Heartbeat Signal Battery Gyro Sensors 2x 6s LiPo DC Regulator Microcontroller LV Switch (>2500mAh and ~200A (2+ for redundancy and ESP32 continuous discharge better state estimation) Remote E-STOP Activation Control Signal Normally Open Relay Motor Controller Flycolor X Cross HV3 Motor Torque (should have regen/resistor Reaction Wheel Neumotor network braking feature) 6521/4.5/281 BLDC Inertia baby (should have current sensing Onboard (rigidly fixed to housing) feature to estimate battery E-STOP Housing With upper cable attachments to helicopter hoist and lower cable attachments to payload (maybe aluminum or plastic sheet with keylar coating)

Bothery + electronics

Reaction Wheel Sizing The fair View Insert Tools Destatop Window Help File fair View Insert To

Jerry Lu | Engineering Portfolio

4 647-233-1684

Cont'd: Spin-Stabilization System for Hoisted Payloads (SpinStop) | Engineering Capstone

Enough designing, let's machine some parts!

And test the electrical system!

Reaction wheel – motor adaptor shrink fit using liquid nitrogen!

Shoutout to Brent's Welding for making our system housing!

Initial mechanical assembly check, it looks beautiful! (To be continued)

Jerry Lu | Engineering Portfolio

647-233-1684

2nd-Gen Oxidizer Vent Valve for 2023 Hybrid Rocket | Waterloo Rocketry

Goal: Build a pneumatically-actuated, normally-open, light & compact valve to control oxidizer venting from the launch vehicle.

First, lots of design calcs:

Force balance on valve piston

Dynamic friction due to O-ring seals

Stresses on valve components

O-ring groove sizing (Shoutout to Parker's Handbook)

Torque spec for fasteners

Initial design!

4 647-233-1684

Cont'd: 2nd-Gen Oxidizer Vent Valve for 2023 Hybrid Rocket | Waterloo Rocketry

It's machining time!

Hydrostatically tested to spec and now strapped atop the engine testing container prior to static fire test.

Assembled, tested, sanitized, and ready to fly!

New and prettier body for easier integration of pilot solenoid valve and thermistor.

High Pressure Oxidizer Venting System for 2023 Hybrid Rocket | Waterloo Rocketry

Goal: Integrate the oxidizer vent valve, pilot solenoid valve, pressure-relief valve, pressure transducer, actuator control board, sensor measurement board, and two Raspberry Pi cameras into a 5.5" by 10" cylindrical space atop the oxidizer tank.

Look, there's the vent valve!

Awaiting systems test in front of a beautiful sunset.

Post-launch and -recovery in the New Mexico desert!
Welcome back ©

High Pressure Oxidizer Venting System for 2022 Hybrid Rocket | Waterloo Rocketry

Goal: Same as the 2023 system from last page, but plus a rupture disc assembly, a pneumatic reservoir, and a larger, legacy oxidizer vent valve with a larger pilot solenoid valve instead of the 2nd-Gen one.

Oh also, there is only one fluid port to interface with the oxidizer tank (for two valves, one rupture disc, and one pressure transducer).

Oh also, there's a pandemic so you can't actually touch any hardware until much, much later in the design phase ©

The result: a tube and fittings jungle that drastically enhanced my skillset in systems integration, design for assembly, fluid systems, and how to bend tubes.

G 647-233-1684

Airframe Couplers for 2023 Hybrid Rocket | Waterloo Rocketry | May – June 2023

Goal: Machine three critical airframe couplers to ensure timely assembly of the launch vehicle airframe.

The couplers holding the rocket together:

Recovery bay coupler:

Parachute bay coupler:

Nose cone coupler:

8-bit Breadboard Computer | Personal Project | July 2023 – On Hold for Now

Goal/Motivation: Computers are very cool and I want to learn something out of my comfort zone, so I'm following online tutorials to build a first-principles digital computer from low-level IC components.

Jerry Lu | Engineering Portfolio

647-233-1684

Autonomous Wall-Climbing Robot (Wall-e) | 3rd Year Course Project

Goal: Build a system capable of autonomously getting over a steel wall and locating a target on the other side.

Reality

Wall-e in action:

It is evident from these hands that we were not too confident in Wall-e

Wall-e needed some human help to get over the top of the wall. This project taught me the importance of rapidly testing drastically different proofs-ofconcepts before making minuscule improvements to a particular design (we only did the latter).

Wall-e in retirement:

