Wine Data SAS Analysis: Rita Dicarlo, Katie Clewett, Chang Guo Classification

The HPSPLIT Procedure

Performance Information					
Execution Mode	Single-Machine				
Number of Threads	2				

Data Access Information							
Data Engine Role Path							
WORK.WINE	V9	Input	On Client				

Model Information						
Split Criterion Used	Entropy					
Pruning Method	Cost-Complexity					
Subtree Evaluation Criterion	Cost-Complexity					
Number of Branches	2					
Maximum Tree Depth Requested	10					
Maximum Tree Depth Achieved	10					
Tree Depth	9					
Number of Leaves Before Pruning	274					
Number of Leaves After Pruning	43					

Number of Observations Rea	ad 1599
Number of Observations Use	ed 1599

Wine Data SAS Analysis: Rita Dicarlo, Katie Clewett, Chang Guo Classification

10-Fold Cross Validation Assessment of Model											
		Average Square Error Number of Leaves				Misclassi	fication Rate)			
N Leaves	Min	Avg	Standard Error	Max	Min	Median	Max	Min	Avg	Standard Error	Max
34	0.0813	0.0918	0.00810	0.1088	29	34.5	53	0.3224	0.3870	0.0406	0.4882

10-Fold Cross Validation Confusion Matrix								
	Error							
Actual	3	4	5	6	7	8	Rate	
3	1	3	3	2	1	0	0.9000	
4	2	1	31	19	0	0	0.9811	
5	1	2	507	165	6	0	0.2555	
6	0	1	202	390	45	0	0.3887	
7	0	1	17	99	81	1	0.5930	
8	0	0	0	7	11	0	1.0000	

Wine Data SAS Analysis: Rita Dicarlo, Katie Clewett, Chang Guo Classification

Wine Data SAS Analysis: Rita Dicarlo, Katie Clewett, Chang Guo Classification

Confusion Matrices								
				Pre	dicted			Error
	Actual	3	4	5	6	7	8	Rate
Model Based	3	0	3	4	3	0	0	1.0000
	4	0	4	37	12	0	0	0.9245
	5	0	3	542	126	10	0	0.2041
	6	0	0	143	468	27	0	0.2665
	7	0	0	10	85	104	0	0.4774
	8	0	0	0	10	8	0	1.0000
Cross Validation	3	1	3	3	2	1	0	0.9000
	4	2	1	31	19	0	0	0.9811
	5	1	2	507	165	6	0	0.2555
	6	0	1	202	390	45	0	0.3887

Confusion Matrices								
		Predicted				Error		
	Actual	3	4	5	6	7	8	Rate
	7	0	1	17	99	81	1	0.5930
	8	0	0	0	7	11	0	1.0000

Fit Statistics for Selected Tree								
N Mis- Leaves ASE class Entropy Gini RS								
Model Based	43	0.0727	0.3008	1.1063	0.4363	697.7		
Cross Validation	34	0.0918	0.3870					

Variable Importance							
	Tra						
Variable	Relative	Importance	Count				
alcohol	1.0000	11.7329	8				
sulphates	0.6146	7.2115	7				
total_sulfur	0.5678	6.6624	7				
vol_acidity	0.5534	6.4936	9				
free_sulfur	0.4257	4.9947	5				
рН	0.4091	4.7998	5				
chlorides	0.2038	2.3910	1				

Wine Data SAS Analysis: Rita Dicarlo, Katie Clewett, Chang Guo Classification

The HPFOREST Procedure

Performance Information					
Execution Mode	Single-Machine				
Number of Threads	2				

Data Access Information							
Data Engine Role Path							
WORK.WINE	V9	Input	On Client				

Model Inf	ormation	
Parameter	Value	
Variables to Try	3	(Default)
Maximum Trees	100	
Actual Trees	100	
Inbag Fraction	0.3	
Prune Fraction	0	(Default)
Prune Threshold	0.1	(Default)
Leaf Fraction	0.00001	(Default)
Leaf Size Setting	1	(Default)
Leaf Size Used	1	
Category Bins	30	(Default)
Interval Bins	100	
Minimum Category Size	5	(Default)

Model Information					
Parameter	Value				
Node Size	100000	(Default)			
Maximum Depth	20	(Default)			
Alpha	1	(Default)			
Exhaustive	5000	(Default)			
Rows of Sequence to Skip	5	(Default)			
Split Criterion		Gini			
Preselection Method		BinnedSearch			
Missing Value Handling		Valid value			

Number of Observations	
Туре	N
Number of Observations Read	1599
Number of Observations Used	1599

Baseline Fit Statistics					
Statistic	Value				
Average Square Error	0.107				
Misclassification Rate	0.574				
Log Loss	1.185				

				Fit Statistics			
Number of Trees	Number of Leaves	Average Square Error (Train)	Average Square Error (OOB)	Misclassification Rate (Train)	Misclassification Rate (OOB)	Log Loss (Train)	Log Loss (OOB)
1	170	0.1059	0.1512	0.3177	0.454	7.315	10.44
2	338	0.0697	0.1248	0.2996	0.435	3.270	7.90
3	510	0.0587	0.1102	0.2364	0.419	1.832	6.15
4	680	0.0521	0.0996	0.2095	0.407	1.233	4.70
5	853	0.0488	0.0942	0.1870	0.398	0.876	3.98
6	1018	0.0464	0.0903	0.1795	0.381	0.738	3.38
7	1192	0.0453	0.0885	0.1595	0.386	0.644	2.91
8	1370	0.0440	0.0868	0.1595	0.387	0.536	2.64
9	1546	0.0427	0.0852	0.1457	0.378	0.493	2.39
10	1720	0.0423	0.0840	0.1401	0.372	0.491	2.25
11	1885	0.0417	0.0825	0.1426	0.366	0.461	2.04
12	2058	0.0413	0.0824	0.1338	0.367	0.459	2.01
13	2230	0.0409	0.0820	0.1382	0.360	0.445	1.96
14	2415	0.0404	0.0814	0.1295	0.357	0.442	1.92
15	2589	0.0402	0.0812	0.1238	0.356	0.441	1.84
16	2751	0.0401	0.0807	0.1238	0.360	0.441	1.75
17	2923	0.0399	0.0802	0.1232	0.353	0.439	1.73
18	3086	0.0398	0.0800	0.1257	0.357	0.440	1.70
19	3270	0.0397	0.0800	0.1232	0.354	0.440	1.67
20	3431	0.0395	0.0796	0.1207	0.354	0.439	1.63
21	3600	0.0395	0.0797	0.1176	0.352	0.440	1.59
22	3759	0.0394	0.0795	0.1238	0.355	0.439	1.56
23	3936	0.0392	0.0791	0.1151	0.355	0.439	1.55
24	4095	0.0392	0.0790	0.1213	0.355	0.438	1.50

Fit Statistics							
Number of Trees	Number of Leaves	Average Square Error (Train)	Average Square Error (OOB)	Misclassification Rate (Train)	Misclassification Rate (OOB)	Log Loss (Train)	Log Loss (OOB)
25	4265	0.0390	0.0787	0.1119	0.350	0.439	1.47
26	4456	0.0389	0.0786	0.1151	0.350	0.438	1.43
27	4631	0.0386	0.0781	0.1151	0.343	0.437	1.41
28	4793	0.0386	0.0780	0.1169	0.342	0.437	1.38
29	4958	0.0385	0.0777	0.1182	0.340	0.436	1.37
30	5125	0.0384	0.0774	0.1163	0.346	0.435	1.35
31	5301	0.0383	0.0774	0.1132	0.346	0.436	1.34
32	5482	0.0382	0.0772	0.1144	0.343	0.435	1.31
33	5656	0.0381	0.0770	0.1101	0.343	0.435	1.30
34	5833	0.0381	0.0768	0.1113	0.338	0.435	1.29
35	6004	0.0380	0.0767	0.1107	0.334	0.434	1.27
36	6167	0.0380	0.0767	0.1069	0.331	0.434	1.25
37	6339	0.0380	0.0768	0.1094	0.336	0.434	1.25
38	6503	0.0379	0.0766	0.1057	0.337	0.434	1.24
39	6685	0.0378	0.0764	0.1044	0.337	0.434	1.23
40	6843	0.0378	0.0763	0.1069	0.336	0.434	1.22
41	7012	0.0377	0.0763	0.1063	0.338	0.434	1.22
42	7190	0.0377	0.0762	0.1063	0.335	0.434	1.22
43	7367	0.0375	0.0760	0.1026	0.334	0.432	1.22
44	7525	0.0375	0.0760	0.1051	0.335	0.432	1.21
45	7689	0.0375	0.0759	0.1051	0.336	0.432	1.21
46	7867	0.0375	0.0758	0.1063	0.336	0.432	1.21
47	8041	0.0375	0.0758	0.1038	0.335	0.432	1.21
48	8207	0.0375	0.0760	0.1069	0.340	0.433	1.21
49	8363	0.0375	0.0759	0.1026	0.338	0.433	1.18
50	8533	0.0374	0.0758	0.1044	0.335	0.432	1.17
51	8700	0.0374	0.0758	0.1057	0.334	0.432	1.17
52	8870	0.0374	0.0757	0.1026	0.332	0.432	1.17
53	9036	0.0373	0.0756	0.1038	0.331	0.431	1.16
54	9201	0.0374	0.0756	0.1019	0.333	0.432	1.13
55	9368	0.0373	0.0756	0.1051	0.333	0.432	1.12
56	9539	0.0373	0.0755	0.1019	0.333	0.432	1.12
57	9715	0.0373	0.0756	0.1019	0.332	0.432	1.12
58	9878	0.0373	0.0756	0.0994	0.331	0.432	1.11
59	10045	0.0373	0.0756	0.1019	0.333	0.432	1.11
60	10219	0.0373	0.0755	0.1007	0.330	0.432	1.11
61	10374	0.0373	0.0755	0.1001	0.333	0.433	1.11
62	10533	0.0373	0.0755	0.1013	0.331	0.432	1.11
63	10708	0.0373	0.0755	0.1057	0.331	0.433	1.11
64	10883	0.0373	0.0755	0.1038	0.331	0.432	1.11
65	11061	0.0373	0.0754	0.1032	0.328	0.432	1.11
66	11229	0.0372	0.0754	0.1019	0.328	0.432	1.11
67	11395	0.0372	0.0753	0.1001	0.330	0.432	1.11
68	11572	0.0372	0.0753	0.0976	0.330	0.432	1.10
69	11746	0.0371	0.0753	0.0982	0.325	0.432	1.08
70	11922	0.0371	0.0753	0.1001	0.329	0.432	1.07

Fit Statistics							
Number of Trees	Number of Leaves	Average Square Error (Train)	Average Square Error (OOB)	Misclassification Rate (Train)	Misclassification Rate (OOB)	Log Loss (Train)	Log Loss (OOB)
71	12093	0.0371	0.0753	0.0976	0.327	0.432	1.07
72	12254	0.0371	0.0754	0.0938	0.327	0.433	1.07
73	12421	0.0371	0.0753	0.0932	0.326	0.432	1.07
74	12582	0.0371	0.0753	0.0944	0.330	0.432	1.07
75	12748	0.0371	0.0754	0.0976	0.330	0.433	1.08
76	12916	0.0371	0.0753	0.0969	0.327	0.433	1.08
77	13082	0.0371	0.0753	0.0988	0.325	0.433	1.08
78	13253	0.0371	0.0753	0.0969	0.325	0.433	1.08
79	13424	0.0371	0.0752	0.0988	0.325	0.433	1.08
80	13586	0.0370	0.0752	0.0976	0.326	0.432	1.08
81	13771	0.0370	0.0751	0.0988	0.326	0.432	1.08
82	13936	0.0370	0.0751	0.0982	0.328	0.432	1.06
83	14088	0.0370	0.0751	0.0976	0.326	0.433	1.06
84	14261	0.0370	0.0750	0.0951	0.329	0.432	1.06
85	14429	0.0370	0.0750	0.0988	0.329	0.432	1.06
86	14597	0.0370	0.0750	0.1001	0.326	0.432	1.06
87	14771	0.0369	0.0749	0.0994	0.327	0.432	1.06
88	14948	0.0369	0.0749	0.1001	0.327	0.432	1.06
89	15125	0.0369	0.0749	0.0994	0.325	0.432	1.06
90	15294	0.0369	0.0750	0.0988	0.326	0.432	1.05
91	15462	0.0369	0.0749	0.0988	0.328	0.432	1.05
92	15632	0.0368	0.0748	0.1001	0.329	0.432	1.05
93	15799	0.0368	0.0748	0.0988	0.330	0.432	1.05
94	15972	0.0368	0.0749	0.1013	0.329	0.432	1.05
95	16148	0.0368	0.0749	0.1001	0.329	0.432	1.05
96	16315	0.0368	0.0749	0.1007	0.329	0.432	1.05
97	16482	0.0369	0.0749	0.1001	0.331	0.432	1.03
98	16646	0.0369	0.0749	0.1013	0.328	0.432	1.03
99	16814	0.0369	0.0750	0.1026	0.329	0.432	1.03
100	16994	0.0368	0.0749	0.0994	0.326	0.432	1.02

Loss Reduction Variable Importance					
Variable	Number of Rules	Gini	OOB Gini	Margin	OOB Margin
alcohol	3524	0.157763	-0.01210	0.238010	0.06514
chlorides	1077	0.036705	-0.02801	0.063058	-0.00104
vol_acidity	1831	0.080796	-0.03610	0.124482	0.01138
total_sulfur	2509	0.096738	-0.04559	0.167776	0.02654
free_sulfur	1781	0.060638	-0.04641	0.106865	0.00134
sulphates	3296	0.117046	-0.04851	0.195679	0.02624
рН	2876	0.090969	-0.07045	0.159729	-0.00283

The LOGISTIC Procedure

Model Information				
Data Set	WORK.WINE			
Response Variable	high_quality			
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	1599
Number of Observations Used	1599

	Response Prof	ile
Ordered Value	high_quality	Total Frequency
1	0	1382
2	1	217

Probability modeled is high_quality=0.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion Intercept Only Intercept and Covariates					
AIC	1271.921	981.754			
SC	1277.298	997.886			
-2 Log L	1269.921	975.754			

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	294.1666	2	<.0001				
Score	307.2879	2	<.0001				
Wald	212.6273	2	<.0001				

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSc								
Intercept	1	15.8598	0.9942	254.4881	<.0001			
alcohol	1	-1.0903	0.0792	189.7042	<.0001			
sulphates	1	-3.1444	0.4262	54.4441	<.0001			

Odds Ratio Estimates						
Effect Point Estimate 95% Wald Confidence Limits						
alcohol	0.336	0.288 0.39				
sulphates 0.043 0.019 0.099						

Association of Predicted Probabilities and Observed Responses						
Percent Concordant 84.6 Somers' D 0.691						
Percent Discordant	15.4	Gamma	0.692			
Percent Tied	0.0	Tau-a	0.162			
Pairs	299894	С	0.846			

Performance Information				
Execution Mode Single-Machine				
Number of Threads	2			

Data Access Information						
Data Engine Role Path						
WORK.WINE	V9	Input	On Client			

Model Information					
Split Criterion Used	Entropy				
Pruning Method	Cost-Complexity				
Subtree Evaluation Criterion	Cost-Complexity				
Number of Branches	2				
Maximum Tree Depth Requested	10				
Maximum Tree Depth Achieved	10				
Tree Depth	7				
Number of Leaves Before Pruning	114				
Number of Leaves After Pruning	15				
Model Event Level	0				

Number of Observations Read	1599
Number of Observations Used	1599

The HPSPLIT Procedure

	10-Fold Cross Validation Assessment of Model										
	Average Square Error			Nun	nber of Le	aves	ı	Misclassi	fication Rate)	
N Leaves	Min	Avg	Standard Error	Max	Min	Median	Max	Min	Ava	Standard Error	Max
Leaves	IVIIII	Avg	LIIOI	IVIGA	IVIIII	Wedian	IVIGA	IVIIII	Avg	LITOI	IVIGA
14	0.0714	0.0948	0.0200	0.1387	7	14.5	24	0.0909	0.1216	0.0249	0.1694

10-Fold Cross Validation Confusion Matrix					
	Predic	Predicted			
Actual	0	1	Error Rate		
0	1315	67	0.0485		
1	130	87	0.5991		

High Quality Wine Classification

Confusion Matrices							
		Predicted					
	Actual	0	1	Error Rate			
Model Based	0	1325	57	0.0412			
	1	92	125	0.4240			
Cross Validation	0	1315	67	0.0485			
	1	130	87	0.5991			

Fit Statistics for Selected Tree									
	N Leaves	ASE	Mis- class	Sensitivity	Specificity	Entropy	Gini	RSS	AUC
Model Based	15	0.0729	0.0932	0.9588	0.5760	0.3702	0.1459	233.2	0.8611

Fit Statistics for Selected Tree									
	N Leaves	ASE	Mis- class	Sensitivity	Specificity	Entropy	Gini	RSS	AUC
Cross Validation	14	0.0948	0.1216	0.9515	0.4009				

Variable Importance						
	Tra					
Variable	Relative	Importance	Count			
alcohol	1.0000	7.9124	4			
sulphates	0.6735	5.3289	4			
vol_acidity	0.6397	5.0617	1			
total_sulfur	0.4852	3.8394	2			
chlorides	0.2784	2.2029	1			
рН	0.2388	1.8898	1			
free_sulfur	0.1820	1.4402	1			