

Data Mining with R part 1

Veerasak Kritsanapraphan March 10, 2017

Slide and Sample Data

https://github.com/vkrit/chula_datamining.

Agenda

- 1. Overview and data visualization
- 2. Data Preparation
- 3. Predictive Data Mining
 - Decision Tree
 - K-Nearest Neighbor
 - Naive Bayes Classifier
 - · Neural Network

Overview

Predictive Data Mining: two phases of processing

- 1. Training Phase: Create a model from traning data
- 2. Predicting phase (Testing): Deploy the model to production and use that to predict the future outcome

Data

Iris Data Set from UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/iris

Iris Data - Atrribute Information

Column	Data Description
1	Sepal Length in cm
2	Sepal Width in cm
3	Petal Length in cm
4	Petal Width in cm
5	Classes

Iris Data - Class (Label)

Column	Data		
	· Iris Setosa		
Class	· Iris Versicolor		
	· Iris Verginica		

Getting Data

```
iris <- read.csv("iris.data.csv", header = TRUE)
summary(iris)</pre>
```

```
Sepal.Length Sepal.Width
                                  Petal.Length
                                                    Petal.Width
##
   Min.
          :4.300
                          :2.000
##
                   Min.
                                   Min.
                                          :1.000
                                                   Min.
                                                          :0.100
   1st Qu.:5.100
                                   1st Qu.:1.600
                   1st Qu.:2.800
                                                   1st Qu.:0.300
##
##
   Median :5.800 Median :3.000
                                   Median :4.350
                                                   Median :1.300
          :5.843 Mean
                          :3.054
                                   Mean
                                          :3.759
                                                          :1.199
   Mean
                                                   Mean
   3rd Qu.:6.400 3rd Qu.:3.300
                                   3rd Qu.:5.100
                                                   3rd Qu.:1.800
##
           :7.900
                   Max.
                          :4.400
                                   Max. :6.900
                                                          :2.500
##
   Max.
                                                   Max.
##
              Species
   Iris-setosa
                  :50
   Iris-versicolor:50
##
   Iris-virginica:50
##
##
##
##
```

Exploring Data

```
nrow(iris)

## [1] 150

table(iris$Species)

##

##

Iris-setosa Iris-versicolor Iris-virginica
##

50

50

50
```

Data Visualization

- Visualizing existing data is a very useful way to come up with ideas about what features should be included.
- "Dataframe" in R is a common way where data samples are organized in a tabular structure.

Plot data according to their types

Let's start with numberic type first

```
# PLot the histogram
hist(iris$Sepal.Length, breaks = 10, prob = T)
# PLot the density curve
lines(density(iris$Sepal.Length))
```

Histogram of iris\$Sepal.Length

Next data in categorical type

```
categories <- table(iris$Species)
barplot(categories, col = c("red", "white", "blue"))</pre>
```

Let cross data between numeric and categorical

boxplot(Sepal.Length ~ Species, data = iris, col = c("pink"))

Next, let do correlation in charts using "pairs"

Scatter plot for all pairs
pairs(iris[, c(1, 2, 3, 4)])

Compute the correlation matrix

```
# Compute the correlation matrix
cor(iris[, c(1, 2, 3, 4)])
```

```
##
               Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length
                  1.0000000 -0.1093692
                                         0.8717542
                                                     0.8179536
## Sepal.Width
                 -0.1093692
                           1.0000000
                                        -0.4205161
                                                    -0.3565441
## Petal.Length
               0.8717542 -0.4205161
                                         1.0000000
                                                   0.9627571
## Petal.Width
                 0.8179536 -0.3565441
                                         0.9627571
                                                     1.0000000
```

Draw regression line for suspect attribute to see relationship

```
plot(Petal.Width ~ Sepal.Length, data = iris)
model <- lm(Petal.Width ~ Sepal.Length, data = iris)
abline(model)
model2 <- lowess(iris$Petal.Width ~ iris$Sepal.Length)
lines(model2, col = "red")</pre>
```

Preparing Training Data

At this step, the purpose is to transform the raw data in a form that can fit into the data mining model.

- Data sampling
- Data validation and handle missing data
- Normalize numeric value into a uniform range
- Compute aggregated value (a special case is to compute frequency counts)
- Expand categorical field to binary fields
- Discretize numeric value into categories
- Create derived fields from existing fields
- Reduce dimensionality
- Power and Log transformation

Data Sampling

```
# Select 10 records out from iris with replacement
index <- sample(1:nrow(iris), 10, replace = T)
index
## [1] 90 107 115 62 26 16 1 116 87 60</pre>
```

Subset iris to irissample from index
irissample <- iris[index,]
irissample</pre>

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	90	5.5	2.5	4.0	1.3	Iris-versicolor
##	107	4.9	2.5	4.5	1.7	Iris-virginica
##	115	5.8	2.8	5.1	2.4	Iris-virginica
##	62	5.9	3.0	4.2	1.5	Iris-versicolor
##	26	5.0	3.0	1.6	0.2	Iris-setosa
##	16	5.7	4.4	1.5	0.4	Iris-setosa
##	1	5.1	3.5	1.4	0.2	Iris-setosa
##	116	6.4	3.2	5.3	2.3	Iris-virginica
##	87	6.7	3.1	4.7	1.5	Iris-versicolor
##	60	5.2	2.7	3.9	1.4	Iris-versicolor

Impute missing data

- Discard the whole record
- Infer missing data with Average or Median

```
# Create some missing data
irissample[10, 1] <- NA
irissample</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	90	5.5	2.5	4.0	1.3	Iris-versicolor
##	107	4.9	2.5	4.5	1.7	Iris-virginica
##	115	5.8	2.8	5.1	2.4	Iris-virginica
##	62	5.9	3.0	4.2	1.5	Iris-versicolor
##	26	5.0	3.0	1.6	0.2	Iris-setosa
##	16	5.7	4.4	1.5	0.4	Iris-setosa
##	1	5.1	3.5	1.4	0.2	Iris-setosa
##	116	6.4	3.2	5.3	2.3	Iris-virginica
##	87	6.7	3.1	4.7	1.5	Iris-versicolor
##	60	NA	2.7	3.9	1.4	Iris-versicolor

Fix using Mean

```
library(e1071)
fixiris1 <- impute(irissample[, 1:4], what = "mean")
fixiris1</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	90	5.500000	2.5	4.0	1.3
##	107	4.900000	2.5	4.5	1.7
##	115	5.800000	2.8	5.1	2.4
##	62	5.900000	3.0	4.2	1.5
##	26	5.000000	3.0	1.6	0.2
##	16	5.700000	4.4	1.5	0.4
##	1	5.100000	3.5	1.4	0.2
##	116	6.400000	3.2	5.3	2.3
##	87	6.700000	3.1	4.7	1.5
##	60	5.666667	2.7	3.9	1.4

Fix using Median

library(e1071)

fixiris2 <- impute(irissample[, 1:4], what = "median")
fixiris2</pre>

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	90	5.5	2.5	4.0	1.3
##	107	4.9	2.5	4.5	1.7
##	115	5.8	2.8	5.1	2.4
##	62	5.9	3.0	4.2	1.5
##	26	5.0	3.0	1.6	0.2
##	16	5.7	4.4	1.5	0.4
##	1	5.1	3.5	1.4	0.2
##	116	6.4	3.2	5.3	2.3
##	87	6.7	3.1	4.7	1.5
##	60	5.7	2.7	3.9	1.4

Normalize numeric value

```
# Scale the colums x-mean(x)/standard deviation
scaleiris <- scale(iris[, 1:4])
head(scaleiris)</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
##
         -0.8976739 1.0286113
## [1,]
                                -1.336794 -1.308593
## [2,] -1.1392005 -0.1245404 -1.336794 -1.308593
## [3,]
        -1.3807271 0.3367203
                               -1.393470 -1.308593
## [4,] -1.5014904 0.1060900
                               -1.280118 -1.308593
## [5,] -1.0184372 1.2592416
                                -1.336794 -1.308593
## [6,]
        -0.5353840 1.9511326
                                -1.166767 -1.046525
```

Reduce dimension

There are two ways to reduce the number of input attributes.

- 1. Removing irrelevant input variables.
- 2. Removing redundant input variables.

```
# Use iris data set
cor(iris[, -5])
               Sepal.Length Sepal.Width Petal.Length Petal.Width
##
                             -0.1093692
                                           0.8717542
                                                       0.8179536
## Sepal.Length 1.0000000
## Sepal.Width
                 -0.1093692 1.0000000
                                          -0.4205161
                                                      -0.3565441
## Petal.Length 0.8717542 -0.4205161
                                           1.0000000
                                                      0.9627571
## Petal.Width
                  0.8179536 -0.3565441
                                           0.9627571
                                                       1.0000000
# Compute PCA Notice that PC1 and PC2 covers most variation
pca <- prcomp(iris[, -5], scale = T)</pre>
summary(pca)
## Importance of components:
##
                            PC1
                                   PC2
                                           PC3
                                                   PC4
## Standard deviation
                         1.7061 0.9598 0.38387 0.14355
## Proportion of Variance 0.7277 0.2303 0.03684 0.00515
## Cumulative Proportion 0.7277 0.9580 0.99485 1.00000
```

PLot PCA
plot(pca)

pca\$rotation

```
## Sepal.Length 0.5223716 -0.37231836 0.7210168 0.2619956 ## Sepal.Width -0.2633549 -0.92555649 -0.2420329 -0.1241348 ## Petal.Length 0.5812540 -0.02109478 -0.1408923 -0.8011543 ## Petal.Width 0.5656110 -0.06541577 -0.6338014 0.5235463
```

```
predict(pca)[1:2, ]

## PC1 PC2 PC3 PC4

## [1,] -2.256981 -0.5040154 0.1215362 0.02299628

## [2,] -2.079459 0.6532164 0.2264921 0.10286364

biplot(pca)
```

Add derived attributes

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species ratio
##
## 1
             5.1
                        3.5
                                    1.4
                                               0.2 Iris-setosa 1.46
## 2
            4.9
                        3.0
                                    1.4
                                               0.2 Iris-setosa 1.63
## 3
            4.7
                        3.2
                                    1.3
                                               0.2 Iris-setosa 1.47
## 4
            4.6
                       3.1
                                    1.5
                                               0.2 Iris-setosa 1.48
                                               0.2 Iris-setosa 1.39
## 5
            5.0
                       3.6
                                    1.4
                                    1.7
                                               0.4 Iris-setosa 1.38
## 6
            5.4
                        3.9
```

Discretize numeric value into categories

```
# Equal width cuts
segments = 10
maxL <- max(iris$Petal.Length)</pre>
minL <- min(iris$Petal.Length)</pre>
theBreaks <- seq(minL, maxL, by = (maxL - minL)/segments)
cutPetalLength <- cut(iris$Petal.Length, breaks = theBreaks,</pre>
    include.lowest = T)
newdata <- data.frame(origin.Petal.Len = iris$Petal.Length,</pre>
    cut.Petal.Len = cutPetalLength)
head(newdata)
##
     origin.Petal.Len cut.Petal.Len
## 1
                  1.4
                           [1,1.59]
## 2
                  1.4 [1,1.59]
                  1.3 [1,1.59]
## 3
                  1.5
                           [1,1.59]
## 4
## 5
                  1.4 [1,1.59]
                        (1.59, 2.18]
                  1.7
## 6
```

```
# Constant frequency / height
myBreaks <- quantile(iris$Petal.Length, probs = seq(0, 1, 1/segments))</pre>
cutPetalLength2 <- cut(iris$Petal.Length, breaks = myBreaks,</pre>
   include.lowest = T)
newdata2 <- data.frame(orig.Petal.Lens = iris$Petal.Length,</pre>
   cut.Petal.Len = cutPetalLength2)
head(newdata2)
    orig.Petal.Lens cut.Petal.Len
##
               [1,1.4]
## 1
               [1,1.4]
## 2
## 3
               1.3 [1,1.4]
     1.5 \qquad (1.4, 1.5)
## 4
## 5
           [1,1.4]
           1.7 (1.7,3.9]
## 6
```

Binarize categorical attributes

```
cat <- levels(iris$Species)
binarize <- function(x) {
    return(iris$Species == x)
}
newcols <- sapply(cat, binarize)
colnames(newcols) <- cat
data <- cbind(iris[, c("Species")], newcols)</pre>
```

Binarize categorical attributes (cont)

data[**45:55**,]

##			Iris-setosa	Iris-versicolor	Iris-virginica
##	[1,]	1	1	0	0
##	[2,]	1	1	0	0
##	[3,]	1	1	0	0
##	[4,]	1	1	0	0
##	[5,]	1	1	0	0
##	[6,]	1	1	0	0
##	[7,]	2	0	1	0
##	[8,]	2	0	1	0
##	[9,]	2	0	1	0
##	[10,]	2	0	1	0
##	[11,]	2	0	1	0

Data Mining Techniques

Iris Data Preparation

Decision Tree

Libray name -> party

Function name -> ctree

Installation

install.packages("party")

Decision Tree - Create Model

```
library(party)
myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length +
    Petal.Width
iris ctree <- ctree(myFormula, data = trainData)</pre>
# Check the prediction
table(predict(iris ctree), trainData$Species)
##
##
                      Iris-setosa Iris-versicolor Iris-virginica
##
     Iris-setosa
                               40
                                                0
                                                                0
     Iris-versicolor
##
                                                37
     Iris-virginica
##
                                0
                                                               31
                                                 1
```

```
print(iris ctree)
##
##
    Conditional inference tree with 4 terminal nodes
##
## Response: Species
## Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
## Number of observations: 112
##
## 1) Petal.Length <= 1.9; criterion = 1, statistic = 104.637
    2)* weights = 40
## 1) Petal.Length > 1.9
    3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
   4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397
##
        5)* weights = 21
##
   4) Petal.Length > 4.4
   6)* weights = 19
##
##
    3) Petal.Width > 1.7
   7)* weights = 32
##
```

plot(iris_ctree)

plot(iris_ctree, type = "simple")

Decision Tree - Prediction

Predict on test data

testPred <- predict(iris_ctree, newdata = testData)
table(testPred, testData\$Species)</pre>

##				
##	testPred	Iris-setosa	Iris-versicolor	Iris-virginica
##	Iris-setosa	10	0	0
##	Iris-versicolor	0	12	2
##	Iris-virginica	0	0	14

K-Nearest Neighbor Classfication (k-NN)

Library -> class

Function -> knn

Installation

install.packages("class")

K-NN

```
library(class)
train input <- as.matrix(trainData[, -5])</pre>
train output <- as.vector(trainData[, 5])</pre>
test input <- as.matrix(testData[, -5])</pre>
prediction <- knn(train input, test input, train output, k = 5)</pre>
table(prediction, testData$Species)
##
Iris-setosa
##
                           10
                                          0
                                                        0
##
   Iris-versicolor
                            0
                                          12
                                                        0
    Iris-virginica
##
                            0
                                                       16
                                          0
```

Naive Bayes Classifier

Library -> e1071

Function -> naiveBayes

Installation

install.packages("e1071")

Naive Bayes

```
library(e1071)
# can handle both categorical and numeric input but output
# must be categorical
model <- naiveBayes(Species ~ ., data = trainData)</pre>
prediction <- predict(model, testData[, -5])</pre>
table(prediction, testData[, 5])
##
## prediction Iris-setosa Iris-versicolor Iris-virginica
     Iris-setosa
##
                               10
                                                                0
    Iris-versicolor
##
                                               12
    Iris-virginica
##
                                0
                                                               14
                                                0
```

Neural Network

Library -> neuralnet

Function -> neuralnet

Installation

install.packages('neuralnet')

Neural Network

```
library(neuralnet)
nnet trainData <- trainData
# Binarize the categorical output
nnet trainData <- cbind(nnet trainData, trainData$Species ==</pre>
    "Iris-setosa")
nnet trainData <- cbind(nnet trainData, trainData$Species ==</pre>
    "Iris-versicolor")
nnet trainData <- cbind(nnet trainData, trainData$Species ==</pre>
    "Iris-virginica")
names(nnet trainData)[6] <- "setosa"</pre>
names(nnet trainData)[7] <- "versicolor"</pre>
names(nnet trainData)[8] <- "virginica"</pre>
nn <- neuralnet(setosa + versicolor + virginica ~ Sepal.Length +
    Sepal.Width + Petal.Length + Petal.Width, data = nnet trainData,
    hidden = c(3)
```

Neural Network - Plot Model

plot(nn)

Error: 1.237788 Steps: 24462

nn

Neural Network - Prediction

```
mypredict <- compute(nn, testData[-5])$net.result</pre>
# put multiple binary output to categorical output
maxidx <- function(arr) {</pre>
   return(which(arr == max(arr)))
idx <- apply(mypredict, c(1), maxidx)</pre>
prediction <- c("Iris-setosa", "Iris-versicolor", "Iris-virginica")[idx]</pre>
table(prediction, testData$Species)
##
##
    Tris-setosa
                           10
                                           0
                                                         0
    Iris-versicolor
##
                                          12
##
    Iris-virginica
                                                        16
```

End of Part 1