

Patent
Attorney's Docket No. 033072-022

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Larry S. Barak, et al.) Group Art Unit: 1645
Application No.: 10/054,616) Examiner: Unassigned
Filed: January 22, 2002) Confirmation No.: 7096
For: Constitutively Desensitized G Protein-)
Coupled Receptors)

SUBMISSION OF SUBSTITUTE DRAWINGS

Box: MISSING PART
Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

In complete response to the Notice to File Missing Parts of Application filed under 37 C.F.R. § 1.53(b) dated April 16, 2002, enclosed please find 27 sheets of substitute drawings for review by the Patent and Trademark Office. Should the enclosed drawings require changes, it is respectfully requested that the Patent and Trademark Office notify the undersigned of same.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By: Melissa M. Hayworth
Melissa M. Hayworth
Registration No. 45,774

P.O. Box 1404
Alexandria, Virginia 22313-1404
(919) 941-9240

Date: June 17 2002

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to Commissioner of Patents and Trademarks, Washington, D.C. 20231, on 6-17-02

S. Payne

(Typed or printed name of person signing the certificate)

S. Payne

(Signature of person signing the certificate)

6-17-02

(Date of Signature)

FIG. 1A

Human G Protein Coupled Receptor Family
 (Receptors known as of January, 1999)

CLASS	LIGAND	NUMBER	TISSUE	PHYSIOLOGY	THERAPEUTICS
Class I Rhodopsin like	•Amine •Acetylcholine (muscarinic & nicotinic) •Adrenoceptors •Alpha Adrenoceptors •Beta Adrenoceptors •Dopamine •Histamine •Serotonin (5-HT) •Peptide •Angiotensin •Bradykinin •C5a anaphylatoxin •Fmet-leu-phe •Interleukin-8 •Chemokine •Orexin •Nociceptin •CCK (Gastrin) •Endothelin •Melanocortin •Neuropeptide Y •Neurotensin •Opioid •Somatostatin	5 6 3 5 2 16 2 1 1 3 1 6 2 1 2 5 5 1 3 5	Brain, Nerves, Heart Brain, Kidney, Lung Kidney, Heart Brain, Kidney, GI Vascular, Heart, Brain Most Tissues Vascular, Liver, Kidney Liver, Blood Blood Blood Blood Blood Blood Brain Brain Gastrointestinal Heart, Bronchus, Brain Kidney, Brain Nerves, Intestine, Blood Brain, Brain, Brain,	Neurotransmitter Gluconeogenesis Muscle Contraction Neurotransmitter Vascular Permeability Neurotransmitter Vasoconstriction Vasodilation, Immune System Chemoattractant Chemoattractant Chemoattractant Fat Metabolism Bronchodilator, Pain Motility, Fat Absorption Muscle Contraction Metabolic Regulation Neurotransmitter CNS CNS Neurotransmitter	Acuity, Alzheimer's Diabetes, Cardiovascular Cardiovascular, Respiratory Cardiovascular, Parkinson's Anti-inflammatory, Ulcers Depression, Insomnia, Analgesic Anti-inflammatory, Asthma Anti-inflammatory Anti-inflammatory Anti-inflammatory Anti-inflammatory Obesity Airway Diseases, Anesthetic Gastrointestinal, Obesity, Parkinson's Cardiovascular, Respiratory Anti-inflammatory, Analgesics Behavior, Memory, Cardiovascular Cardiovascular, Analgesic Depression, Analgesic Oncology, Alzheimer's

FIG. 1B

•Tachykinin (Substance P, NKA ₁)	3	Brain Nerves Platelets, Blood Vessels Arteries, Heart, Bladder Brain, Pancreas	Neurohormone Coagulation Water Balance Neurotransmitter	Depression, Analgesic Anti-coagulant, Anti-inflammatory Anti-diuretic, Diabetic Complications Analgesics, Alzheimer's
•Thrombin	3			
•Vasopressin-like	4			
•Galanin	1			
•Hormone protein				
•Follicle stimulating hormone	1	Ovary, Testis	Endocrine	Infertility
•Lutropin-choriogonadotrophic	1	Ovary, Testis	Endocrine	Infertility
•Thyrotropin	1	Thyroid	Endocrine	Thyroidism, Metabolism
•(Rhodopsin				
•Opsin	5	Eye	Photoreception	Ophthalmic Diseases
•Olfactory		4(~1000) Nose	Smell	Olfactory Diseases
•Prostanoid				
•Prostaglandin	5	Arterial, Gastrointestinal Vessels, Heart, Lung	Vasodilation, Pain	Cardiovascular, Analgesic
•Lysophosphatidic Acid	2	Most Cells	Inflammation	Cancer, Anti-Inflammatory
•Sphingosine-1-phosphate	2	White Blood Cells, Bronchus	Cell proliferation	Cancer
•Leukotriene	1	Arterial, Gastrointestinal Arterial, Bronchus	Inflammation Platelet Regulation Vasoconstriction	Asthma, Rheumatoid Arthritis Cardiovascular Cardiovascular, Respiratory
•Prostacyclin	1	Vascular, Bronchus	Multiple Effects	Cardiovascular, Respiratory
•Thromboxane	1	Vascular, Platelets	Relaxes Muscle	Cardiovascular, Respiratory
•Nucleotide-like				
•Adenosine	4	Brain	Sensory Perception	Analgesics, Memory
•Purinoceptors	4	Most Peripheral Tissues	Inflammation	Anti-inflammatory, Anti-asthmatic
•Cannabis	2			
•Platelet activating factor	1			
•Gonadotropin-releasing hormone like				
•Gonadotropin-releasing hormone	1	Reproductive Organs, Pituitary	Reproduction	Prostate Cancer, Endometriosis Thyroid Regulation
•Thyrotropin-releasing hormone	1	Pituitary, Brain		Metabolic Regulation
•Growth hormone-inhibiting factor	1	Gastrointestinal		Oncology, Alzheimer's
•Melatonin	1	Brain, Eye, Pituitary		Regulation of Circadian Cycle Neuroendocrine

FIG. 1C

● Class II	Secretin like	• Secretin	1	Gastrointestinal, Heart	Digestion	Obesity, Gastrointestinal
		• Calcitonin	1	Bone, Brain	Calcium Resorption	Osteoporosis
		• Corticotropin releasing factor/urocorin	1	Adrenal, Vascular, Brain	Neuroendocrine	Stress, Mood, Obesity
		• Gastric inhibitory peptide (GIP)	1	Adrenals, Fat Cells	Sugar/Fat Metabolism	Diabetes, Obesity
		• Glucagon	1	Liver, Fat Cells, Heart	Gluconeogenesis	Cardiovascular
		• Glucagon-like Peptide 1 (GLP-1)	1	Pancreas, Stomach, Lung	Gluconeogenesis	Cardiovascular, Diabetes, Obesity
		• Growth hormone-releasing hormone	1	Brain	Neuroendocrine	Growth Regulation
		• Parathyroid hormone	1	Bone, Kidney	Calcium Regulation	Osteoporosis
		• PACAP	1	Brain, Pancreas, Adrenals	Metabolism	Metabolic Regulation
		• Vasoactive intestinal polypeptide (VIP)	1	Gastrointestinal	Motility	Gastrointestinal
● Class III		• Metabotropic Glutamate	7	Brain		Hearing, Vision
		• GABA _B	1	Brain		Mood Disorders
		• Extracellular Calcium Sensing	1	Parathyroid, Kidney, GI Tract		Cataracts, GI Tumors

FIG. 2

(a)

Wild-type DRY motif

D = may also be, preferably, E, L, P, Q, T, I, C, G, N, V, H, or A.

Y = may also be, preferably, W, F, S, I, Q, H, G, C, L, D, or A.

R = may also be, preferably, H, or C, or another amino acid, wherein GPCR is not constitutively desensitized

(b)

Modified DRY motif

2nd amino acid = any amino acid other than R or K, preferably A, D, E, N, and H.

FIG. 3A

The mutated amino acid at the second position of the DRY motif is underlined.

VASOPRESSIN V2 RECEPTOR - (Human)
accession P30518

R137H

1 MLMASTTSAV PGHPSLPSLP SNSSQERPLD TRDPLLARAE LALLSIVFVA VALSNGLVLA
61 ALARRGRRGH WAPIHVFIGH LCLADLAVAL FQVLPQLAWK ATDRFRGPDA LCRAVKYLOM
121 VGMYASSYMI LAMTLDHRRA ICRPMLAYRH GSGAHWNRPV LVAWAFSLLL SLPQLFIFAQ
181 RNVEGGSGVT DCWACFAEPW GRRTYVTWIA LMVFVAPTLG IAACQVLIFR EIHASLVPGP
241 SERPGGRRRG RRTGSPGEGA HVSAAVAKTV RMTLVIVVVY VLCWAPFFLV QLWAAWDPEA
301 PLEGAPFVLL MLLASLNSCT NPWIYASFSS SVSSELRSLL CCARGRTPPS LGPQDESCTT
361 ASSSLAKDTS S
(SEQ ID NO:1)

FIG. 3B

**ALPHA-1B ADRENERGIC RECEPTOR (ALPHA 1B-ADRENOCEPTOR).
(Golden hamster)**
ACCESSION P18841

R143E

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
121 WAAVDVLCCT ASILSLCAIS IDEYIGVRYS LQYPTLVTRR KAILALLSVW VLSTVISIGP
181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
241 VMKEMSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTL
421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF
(SEQ ID NO:2)

R143A

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
121 WAAVDVLCCT ASILSLCAIS IDAYIGVRYS LQYPTLVTRR KAILALLSVW VLSTVISIGP
181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
241 VMKEMSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTL
421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF
(SEQ ID NO:3)

R143H

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
121 WAAVDVLCCCT ASILSLCAIS ID~~N~~YIGVRYSLQYPTLVTRR KAILALLSVW VLSTVISIGP
181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
241 VMKEMSNNSKE LTLLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTL
421 SASPSPGYLG RGAQPPELC AYPEWKSGAL LSLPEPPGRR GRDLSGPLFT FKLLGEPE
481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF

(SEQ ID NO:4)

R143N

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
121 WAAVDVLCCCT ASILSLCAIS ID~~N~~YIGVRYSLQYPTLVTRR KAILALLSVW VLSTVISIGP
181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
241 VMKEMSNNSKE LTLLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTL
421 SASPSPGYLG RGAQPPELC AYPEWKSGAL LSLPEPPGRR GRDLSGPLFT FKLLGEPE
481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF

(SEQ ID NO:5)

FIG. 3C

angiotensin II receptor, type 1 (AT1A) [Rattus norvegicus].
ACCESSION NP_112247

R126H

1 MALNSSAEDG IKRIQDDCPK AGRHSYIFVM IPTLYSIIFV VGIFGNLSVV
IVIYFYMKLK
61 TVASVFLNL ALADLCFLLT CPLWAVYTAM EYRWPFGNHL CKIASASVTF
NLYASVFLLT
121 CLSID~~H~~YLAI VHPMKSRLRR TMLVAKVTCI IIWLMAGLAS LPAVIHRNVY
FIENTNITVC
181 AFHYESENST LPIGLGLTKN ILGFLFPFLI ILTSYTLIWK ALKKAYEIQK
NKPRNDDIFR
241 IIMAIVLFFF FSWVPHQIFT FLDVLIQLGV IHDKCKISDIV DTAMPITICI
AYFNNCLNPL
301 FYGFLGKKFK KYFLQLLKYI PPKAKSHSSL STKMSTLSYR PSDNMSSSAK
KPASCFEVE
(SEQ ID NO:6)

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 5

FIG. 6

β arrestin-GFP in the presence of dynamin(k44A)

FIG. 7A

FIG. 7B

FIG. 8A

Rhodamine Anti-HA Labeling

FIG. 8B

FIG 9A

FIG 9B

β arrestin-GFP Distribution

FIG. 10A

FIG. 10B

FIG. 11

FIG. 12A

Receptor-GFP distribution

FIG. 12B

FIG. 13A

β arrestin-GFP distribution

FIG. 13B

FIG. 14A

Receptor-GFP distribution

FIG. 14B

FIG. 15A

FIG. 15B

FIG. 16A

βarrestin-GFP distribution

FIG. 16B

FIG. 16C

Fig. 17A

Homo sapiens arginine vasopressin receptor 2
ACCESSION NM_000054

R137H

atgct
6 catggcgtcc accacttccg ctgtgcctgg gcatccctct ctgcccagcc
tgcccagcaa
66 cagcagccag gagaggccac tggacaccccg ggaccggctg
ctagccccgg cggagctggc
126 gctgctctcc atagtctttg tggctgtggc cctgagcaat
ggcctggtgc tggccggccct
186 agctcggcgg gcccgccggg gccactgggc acccatacac
gtcttcattg gccacttgtg
246 cctggccgac ctggccgtgg ctctgttcca agtgcgtgccc
cagctggcct ggaaggccac
306 cgaccgcttc cgtgggccag atgccctgtg tcggccgtg
aagtatctgc agatggtggg
366 catgtatgcc tcctcctaca tgatcctggc catgacgctg
gaccaccacc gtgccatctg
426 ccgtcccattt ctggcgtacc gccatggaag tggggctcac
tggAACCGGC CGGTGCTAGT
486 ggcttggggcc ttctcgctcc ttctcagcct gccccagctc
ttcatcttcg cccagcgc当地
546 cgtggaaagggt ggcagcgggg tcactgactg ctggccgtc
tttgcggagc cctggggccg
606 tcgcacctat gtcacctgga ttgccctgat ggtgttcgtg
gcacctaccc tgggtatcgc
666 cgccctgcccag gtgctcatct tccggagat tcattccag
ctggtgccag gcccattcaga
726 gaggcctggg gggcgccgca ggggacgccc gacaggcagc
cccggtgagg gagcccacgt
786 gtcagcagct gtggccaaga ctgtgaggat gacgctagtg
attgtggtcg tctatgtgct
846 gtgctgggca cccttcttcc tggcgtcagct gtggccgcg
tgggacccgg aggcacctct
906 ggaaggggcg ccctttgtgc tactcatgtt gctggccagc
ctcaacagct gcaccaaccc
966 ctggatctat gcatcttca gcagcagcgt gtcctcagag
ctgcgaagct tgctctgctg
1026 tgcccgaaaa cgacacccac ccagcctggg tccccaaagat
gagtcctgca ccaccggccag
1086 ctccctccctg gccaaggaca cttcatcgtg a
(SEQ ID NO:7)

FIG. 17B

Syrian golden hamster alpha-1B adrenergic receptor mRNA
ACCESSION J04084

R143H

1 atgaat cccgatctgg acaccggcca caacacatca
gcacacctggcc
47 aatggggaga gttgaaagat gccaacttca ctggccccaa
ccagacctcg agcaacttca
107 cactgccccca gctggacgtt accagggccca tctctgtggg
cctggtgctg ggcccttca
167 tcctctttgc cattgtgggc aacatcctgg tcattcctgtc
agtggcctgc aatcgccacc
227 tgccgacgcc caccaactac ttcatgtca acctggccat
tgctgacccctg ctgttgagtt
287 tcacagtctt gccccttc gctacccttag aagtgtttgg
ctactgggtt ctggggcgca
347 tcttctgtga catctggca gcgggtggacg tcctgtgt
tacggcctcc atcctgagcc
407 tatgtgccat ctccattgtat cactacattt gggtgcgcta
ctctctgcag taccccaactc
467 tggtcacccg caggaaggcc atcttggcac tcctcagtgt
gtgggttttg tccacggtca
527 tctccatcg gccccttc ggtatggaaag aaccagcgcc
caacgacgac aaggaatgca
587 gagtcacccga agaaccccttc tatgccctct tttccctcc
gggctccctc tacatcccac
647 tcgcggcat tctggtcatg tactgccggg tctacatcgt
ggccaagagg accaccaaga
707 acctggaggc tggagtcatg aaggagatgt ccaactccaa
ggagctgacc ctgaggatcc
767 actccaagaa cttcatgag gacaccctca gcagtaccaa
ggccaagggc cacaacccca
827 ggagttccat agctgtcaaa ctttttaagt tctccaggga
aaagaaaagca gccaaaacct
887 tggcattgt ggtcggaatg ttcattttgt gttggctccc
cttcttcatac gctctccac
947 ttggctccct gttctccact ctcaagcccc cggacgcccgt
gttcaagggtg gtattctggc
1007 tgggctactt caacagctgc ctcaacccca tcatttaccc
gtgctccagc aaggagttca
1067 agcgccctt catgcgtatc cttgggtgcc agtgcgttag
tggccgtcgc cgccgccc
1127 gccgtcgct gggcggtgc gcttacaccc atcgccgtg
gacgcccggc ggctcgctgg
1187 agcgatcgca gtcgcggaaag gactccctgg acgacagcgg
cagctgcattt agtggcagcc
1247 agaggaccc gcccctggc tcgcccagcc cgggctaccc
gggtcgccga gcgccac

- - - - -
1307 cactggagct gtgcgcctac cccgaatgga aatccggggc
tctgctcagt ctgccagagc
1367 ctccgggtcg ccgcggtcgc ctgcactctg ggcccctctt
cactttcaag ctctgggag
1427 agccggagag cccgggcacc gagggcgatg ccagcaatgg
gggctgcgac gcaacgaccg
1487 acctggccaa tggcagccc ggtttcaaga gcaacatgcc
tctggcaccc gggcacttt
1547 ag
(SEQ ID NO:8)

FIG. 17C

R143A

1 atgaat cccgatctgg acaccggcca caacacatca
gcacctgccc
47 aatggggaga gttgaaagat gccaaacttca ctggcccaa
ccagacctcg agcaacttca
107 cactgccccca gctggacgtt accagggccca tctctgtggg
cctggtgctg ggcgccttca
167 tcctctttgc cattgtggc aacatcctgg tcattcctgtc
agtggcctgc aatcggcacc
227 tgccggacgcc caccactac ttcatgtca acctggccat
tgctgacctg ctgttgagtt
287 tcacagtct gccttctcc gctaccctag aagtgttgg
ctactgggtt ctggggcgca
347 tcttctgtga catctggca gcgggtggacg tcctgtgctg
tacggcctcc atcctgagcc
407 tatgtgccat ctccattgtat gctacattt gggtgcgcta
ctctctgcag taccccaactc
467 tggtcacccg caggaaggcc atcttggcac tcctcagtgt
gtgggttttg tccacggtca
527 tctccatcgg gcctctcctt ggtggaaag aaccagcgcc
caacgacgac aaggaatgcg
587 gagtcaccga agaacccttc tatgccctct tttcctccct
gggctccttc tacatcccac
647 tcgcggtcat tctggtcatg tactgccggg tctacatcgt
ggccaagagg accaccaaga
707 acctggaggc tggagtcatg aaggagatgt ccaactccaa
ggagctgacc ctgaggatcc
767 actccaagaa cttdcatgag gacaccctca gcagtaccaa
ggccaagggc cacaacccca
827 ggagttccat agctgtcaaa cttttaagt tctccaggga
aaagaaaagca gccaacccat
887 tggcattgt ggtcggaatg ttcatcttgc gttggctccc
cttcttcatac gctctccac
947 ttggctccact gttctccact ctcaagcccc cggacgcccgt
gttcaagggtg gtattctggc
1007 tggcattttt caacagctgc ctcaacccca tcatttaccc

gtgctccagc aaggagttca
1067 agcgccctt catgcgtatc cttgggtgcc agtgcgttag
tggccgtcgc cgccgccc
1127 gccgtcgtct gggcgctgc gcttacacct atcggccgtg
gacgcgcggc ggctcgctgg
1187 agcgatcgca gtcgcggaaag gactccctgg acgacagcgg
cagctgcatg agtggcagcc
1247 agaggaccct gcctcggcg tcgcccagcc cgggctaccc
gggtcgcgga gcgcaaggcac
1307 cactggagct gtgcgcctac cccgaatgga aatccggggc
tctgctcagt ctgcccagac
1367 ctccgggtcg ccgcggtcgc ctgcactctg ggcccttctt
cactttcaag ctcttgggag
1427 accggagag cccgggcacc gagggcgatg ccagcaatgg
gggctgcgac gcaacgaccg
1487 acctggccaa tggcagccc ggttcaaga gcaacatgcc
tctggcaccc gggcaacttt
1547 ag
(SEQ ID NO:9)

FIG. 17D

R143E

1 atgaat cccgatctgg acaccggcca caacacatca
gcacacctgccc
47 aatggggaga gttgaaagat gccaacttca ctggccccaa
ccagacacctcg agcaactcca
107 cactgccccca gctggacgtt accagggccca tctctgtggg
cctgggtctg ggcgccttca
167 tcctctttgc cattgtgggc aacatcctgg tcattctgtc
agtggcctgc aatcgccacc
227 tgcggacgcc caccaactac ttcatgtca acctggccat
tgctgacctg ctgttggat
287 tcacagtccct gccttctcc gctaccctag aagtgcttgg
ctactgggtt ctggggcgca
347 tcttctgtga catctggca gcggtggacg tcctgtgctg
tacggcctcc atcctgagcc
407 tatgtgccat ctccatttat gagtacatttgg gggtgcgcta
ctctctgcag taccccaactc
467 tggtcaccccg caggaaggcc atcttggcac tcctcagtgt
gtgggttttg tccacggtca
527 tctccatcggt gcctctcctt ggatggaaag aaccagcgcc

caacgacgac aaggaatgcg
587 gagtcacccga agaacccttc tatgcctct tttcctccct
gggctcccttc tacatcccac
647 tcgcggtcat tctggtcatg tactgccggg tctacatcggt
ggccaagagg accaccaaga
707 acctggagggc tggagtcatg aaggagatgt ccaactccaa

ggagctgacc ctgaggatcc
767 actccaagaa ctttcatgag gacaccctca gcagtaccaa
ggccaaggc cacaacccca
827 ggagttccat agctgtcaaa ctttttaagt tctccaggga
aaagaaaagca gccaaaaacct
887 tgggcattgt ggtcggaatg ttcatcttgt gttggctccc
cttcttcatac gctctccac
947 ttggctccct gttctccact ctcaagcccc cgacgccgt
gttcaaggtg gtattctggc
1007 tggctactt caacagctgc ctcaacccca tcatactaccc
gtgctccagc aaggagttca
1067 agcgccctt catgcgtatc cttgggtgcc agtgcgttag
tggccgtcgc cgccgccc
1127 gccgtcgct gggcggtgc gtttacacct atcgccgtg
gacgcgcggc ggctcgctgg
1187 agcgatcgca gtcgcggaag gactccctgg acgacagcgg
cagctgcattt agtggcagcc
1247 agaggaccct gcccctggcg tcgcccagcc cgggttacacct
gggtcgccga ggcgcagccac
1307 cactggagct gtgcgcctac cccgaatggaa aatccggggc
tctgctcagt ctgccagagc
1367 ctccgggtcg ccgcgggtcg ctcgactctg ggccctctt
cactttcaag ctcttgggag
1427 agccggagag cccgggcacc gagggcgatg ccagcaatgg
gggctgcgac gcaacgacccg
1487 acctggccaa tggcagccc gtttcaaga gcaacatgcc
tctggcaccc gggcacttt
1547 ag
(SEQ ID NO:10)

FIG. 17E

R143N

1 atgaat cccgatctgg acaccggcca caacacatca
gcacacctggccc
47 aatggggaga gttgaaagat gccaacttca ctggcccca
ccagacactcg agcaacttca
107 cactggccca gctggacgtt accaggccca tctctgtgg
cctgggtctg ggcgccttca
167 tcctcttgc cattgtggc aacatcctgg tcatacctgtc
agtggcctgc aatcgccacc
227 tgccggacgcc caccactac ttcatgtca acctggccat
tgctgacctg ctgttgagtt
287 tcacagtctt gcccattctcc gctaccctag aagtgccttgg
ctactgggtt ctggggcgca
347 tcttctgtga catctggca gcggtggacg tcctgtgctg
tacggcctcc atcctgagcc
407 tatgtgccat ctccattgtat aactacattg gggtgcgcta
ctctctgcag taccctactc

FIG. 17E (continued)

467 tggtcacccg caggaaggcc atcttggcac tcctcagtgt
gtgggttttg tccacggta
527 tctccatcg gcctctcctt ggatggaaag aaccagcgcc
caacgacgac aaggaatgcg
587 gagtcacccga agaacccttc tatgccctct tttccccc
gggctccctc tacatcccac
647 tcgcggtcat tctggtcatg tactgccggg tctacatcgt
ggccaagagg accaccaaga
707 acctggagggc tggagtcatg aaggagatgt ccaactccaa
ggagctgacc ctgaggatcc
767 actccaagaa ctttcatgag gacaccctca gcagtaccaa
ggccaagggc cacaacccca
827 ggagttccat agctgtcaaa cttttaagt tctccaggga
aaagaaaagca gccaaaaacct
887 tgggcattgt ggtcgaaatg ttcatcttgt gttggctccc
cttcttcatc gctctccac
947 ttggctccct gttctccact ctcaagcccc cggacgcccgt
gttcaagggtg gtattctggc
1007 tgggctactt caacagctgc ctcaacccca tcatactaccc
gtgctccagc aaggagtca
1067 agcgcgccctt catcgatc cttgggtgcc agtggcgtag
tggccgtcgc cgccgccc
1127 gccgtcgct gggcggtgc gcttacacct atcgccgtg
gacgcgcggc gctcgctgg
1187 agcgatcgca gtcgcggaaag gactccctgg acgacagcgg
cagctgcattt agtggcagcc
1247 agaggacctt gcctcgccg tcgcccagcc cgggctacct
gggtcgccga gcgcagccac
1307 cactggagct gtgcgcctac cccgaatgg aatccggggc
tctgctcagt ctgccagagc
1367 ctccgggtcg ccgcggtcgc ctgcactctg ggcccctt
cactttcaag ctcttggag
1427 agccggagag cccgggcacc gagggcgatg ccagcaatgg
gggctgcgac gcaacgaccg
1487 acctggccaa tggcagccc ggtttcaaga gcaacatgcc
tctggcaccc gggcacttt
1547 ag
(SEQ ID NO:11)

FIG. 17F

Rattus norvegicus Angiotensin II receptor, type 1 (AT1AR)
ACCESSION NM_030985

R126H

1 a tggcccttaa ctcttctgct gaagatggta tcaaaagaat
42 ccaagatgac tgccccaagg ctggcaggca cagttacata
tttgtcatga tccctaccct
102 ctacagcatac atctttgtgg tggaaatatt tggaaacagc
tggtggta ttgtcattta
162 cttttacatg aagctgaaga ctgtggccag cgtctttctt
ctcaatctcg ccttggctga
222 cttatgcttt ttgctgactt gtcccctgtg ggcagtctat
accgctatgg agtaccgcgt
282 gcccttcggc aatcacctat gtaagatcgc ttccggccagc
gtgacgttca acctctacgc
342 cagtgtgttc ctttcacgt gtctcagcat cgaccactac
ctggccatcg tccacccaaat
402 gaagtctcgc cttcgccgca cgatgctggg ggccaaagtc
acctgcatca tcatactgct
462 gatggctggc ttggccagtt tgccagctgt catccaccga
aatgtataact tcatacgagaa
522 caccaatatac acagtgtgcg cgtttcatta tgagtctcgg
aattcgcacgc tccccatagg
582 gctggccctt accaagaata ttctgggctt cttgttccct
ttccttatca ttctcaccag
642 ctataaccctt atttggaaag ctctaaagaa ggcttatgaa
attcaaaaaga acaaaccaaag
702 aaacgatgac atcttagga taattatggc gattgtgctt
ttcttcttct tttcctgggt
762 ccccccaccaa atattcactt tcctggatgt gctgattcag
ctgggggtca tccatgactg
822 taaaatttct gacatcgtgg acactgccat gcccattacc
atctgcatacgt cgtatTTAA
882 caactgcctg aaccctctgt tctacggctt tctggggaaag
aaatttaaaa agtatttctt
942 ccagctcctg aaatatattc ccccaaaggc caagtcccac
tcaagcctgt ctacgaaaaat
1002 gagcacgcctt tcttaccggc cttcgatata catgagctca
tcggccaaaa agcctgcgtc
1062 ttgttttagt gtggagtgaa

(SEQ ID NO:12)