

A-Level Mathematics

Predicted Paper 2023

Edexcel

Paper 1 – Pure Mathematics

Name	
Date	

2 hours allowed

Calculator Paper

Maximum Mark: 100

Grade boundaries

These are VERY rough guesses! Getting an A on this paper does not guarantee you the same mark in the exam.

- A* 75%
- A 55%
- B 45%
- C 35%
- D 25%
- E 15%

Members of my YouTube channel can get access to a full video walkthrough of the **2023** papers with lots of guidance and advice on how to answer the questions.

Just click the link here:

https://www.primrosekitten.com/pages/predicted-papers-walkthroughs-2023

Not yet a member? You can sign up today!

1 Pr	ove by contra	diction that the	ere is no grea	atest even in	teger.
					[3 marks]

02The daily world production of oil can be modelled using

$$V = 9 + 98\left(\frac{T}{28}\right)^3 - 49\left(\frac{T}{28}\right)^4$$

where V is the volume of oil in millions of barrels, and T is time in years since 1st January 2000.

a)	The	model	is	used	to	predict	the	time,	T,	when	oil
	production will fall to zero.										

Show that V satisfies the equation

$$T = \sqrt[3]{56T^2 + \frac{112896}{T}}$$

		[3 marks]			

Use the iterative formula $T_{n+1} = \sqrt[3]{56T_n^2 + \frac{112869}{T_n}}$, with $T_0 = 21$, to find the values of T_1 , T_2 and T_3 , giving your answers to three decimal places.

	[2 marks]

c)	Explain the relevance of using $T_0=21$.							
	[1 mark]							
٦.	France 1st January 2000 that daily was of all hy and							
d)	From 1 st January 2000 the daily use of oil by one							
	technological developing country can be modelled as							
	$V = 6 \times 1.05^{T}$							
	Use the models to show that the country's use of oil and							
	the world production of oil will be equal during the year							
	2050.							
	[4 marks]							

03A circle with centre *C* has equation $x^2 + y^2 + 6x - 8y = 24$ Find the coordinates of *C* and the radius of the circle. a) [3 marks] b) The points P and Q lie on the circle, the origin is the midpoint of the chord PQ. Show that PQ has length $n\sqrt{6}$, where n is an integer. [5 marks]

 $4\sin 2\theta = 6\tan \theta$

Deduce the smallest positive solution to the equation
$4\sin(2x - 40^{\circ}) = 6\tan(x - 20^{\circ})$
[2 marks]

05The diagram shows a rectangle *ABCD*. The point A lies on the y-axis and the points B and D lie on the x-axis.

Given that the straight line through the points A and B has equation 2y + 3x = 24

a) Show that the straight line through the points *A* and *D* has equation

$$3y - 2x = 36$$

		[4 marks]

b) Find the area of the rectangle *ABCD*.

	•	

[3 marks]

06 Solve the equation

$$sec^2\theta = 3 - tan \theta$$

for values of θ between $0^{\circ} \le \theta \le 360^{\circ}$

Give solutions to 2 decimal places where necessary.

		[5 marks]					
-	 						

07 The	depth	of	water,	D	meters,	in	а	harbour	on	а	particular	day	is
modelled by the formula					3								

$$D = 6 + 2\sin(20t)^{\circ}$$
 $0 \le t < 24$

where t is the number of hours after midnight.

A boat enters the harbour at 6:00 am and it takes 2 hours to load its cargo.

The boat requires the depth of water to be at least 5 metres before it can leave the harbour.

a)	Find the depth of water in the harbour when the boat enters
	the harbour.

Give your answer to 1 decimal place.

			[I iiidi		

b) Find, to the nearest minute, the latest time that day that the boat can leave the harbour.

[4 marks]

08The diagram shows a sketch of the curve C with equation $y=x^x$, x>0

a) Find by taking logarithms, the x-coordinate of the turning point of \mathcal{C} .

		[5 marks]

The point P(a,3) lies on C. Show that 1.8 < a < 1.9

					[2 marks]		

c)	A possible iteration formula that could be used in an attempt to find $\boldsymbol{\alpha}$ is
	$x_{n+1} = 3x_n^{1-x_n}$
	Using this formula with $x_1 = 1.8$, find x_4 to 3 decimal places.
	[2 marks]
d)	Describe the long-term behaviour of the iterative formula for
	x_n and comment on its suitability as an estimate.
	[2 marks]

use the trapezium rule, with two strips each of equal width, to show that $\int_0^4 \frac{1}{4+\sqrt{x}} \ dx \approx \frac{5}{12} + \frac{4-\sqrt{2}}{7}$

[5 marks	s]

Use the substitution $x=u^2$ to find the exact value of $\int\limits_{-4}^{4} \frac{1}{4+\sqrt{x}} \, dx$

$\int_{0}^{\infty} \frac{1}{4 + \sqrt{x}} dx$				
0	[6 marks]			

c) Find the percentage difference between the exact value found in (b) and the estimate found from the trapezium rule in (a) for:

$$\int_0^4 \frac{1}{4 + \sqrt{x}} \ dx$$

	$J_0 4 + \sqrt{3}$		
[2 marks			

a)	Three consecutive terms in an arithmetic sequence are $4e^{-p}$, 4, $4e^{p}$.
	Find the value of p . Give your answers in an exact form.
	[6 marks]
b)	Prove that there are possible values of p for which $4e^{-p}$,
	4, $4e^p$ are consecutive terms of a geometric sequence.
	[4 marks]

11A curve is given by the equation

$$x^3 + 3y^2 = 11$$

By using implicit differentiation find $\frac{dy}{dx}$ in terms of x and y.

						[4 marks]	

Show that $\frac{2x}{(x-1)(x-3)^2} = \frac{A}{(x-1)} + \frac{B}{(x-3)} + \frac{C}{(x-3)^2}$ where A, B and C are constants to be found.

[3 marks]

b) Evaluate

$$\int_{4}^{6} \frac{1}{2(x-1)} - \frac{1}{2(x-3)} + \frac{3}{(x-3)^2} \ dx$$

Giving your answer in an exact simplified form.

			[5 marks]

	ntial equation $\frac{dx}{dt} = \frac{6\sin 2t}{3\sqrt{x}}$, where t is the time in seconds after the begins.
a)	Solve the differential equation, given that initially the firework have zero height. Express your answer in the form $x=f(t)$. [7 marks
b)	Find the maximum height of the fireworks, giving your answer to the nearest cm.

END OF QUESTIONS

MARKING GUIDANCE

1	A1M for assuming that there is a greatest positive even integer
	n=2m
	A1M for looking for a larger even integer
	n+2=2m+2
	n+2=2(m+1)
	A1M for stating that $n+2$ is even because 2 is a factor and also that
	n+2 > n which shouldn't be possible.
2 (a)	A1M for $0 = 9 + 98 \left(\frac{T}{28}\right)^3 - 49 \left(\frac{T}{28}\right)^4$
	A1M for
	$49\left(\frac{T}{28}\right)^4 = 9 + 98\left(\frac{T}{28}\right)^3$
	$\frac{T^4}{12544} = 9 + \frac{T^3}{224}$
	$\frac{T^4}{12544} = \frac{9}{T} + \frac{T^3}{224}$
	A1M for
	$T = \sqrt[3]{\frac{112896}{T} + 56T^2}$
2 (b)	A1M for $T_1 = 31.097$
	A1M for $T_2 = 38.660$ and $T_3 = 44.245$
2 (c)	A1M for stating that $T_0 = 21$ represents the year 2021

2 (d)	A2M for using $9 + 98 \left(\frac{T}{28}\right)^3 - 49 \left(\frac{T}{28}\right)^4 = 6 \times 1.05^T$ with $T = 50$
	A1M for $T = 49.9985$
	A1M for stating that this is close to 50 years which would give 2050
3 (a)	A1M for finding circle equation $(x + 3)^2 + (y - 4)^2 = 49$
	A1M for Centre (-3, 4)
	A1M for Radius 7
3 (b)	A1M for $OC^2 = (-3)^2 + (4)^2 = 25$
	A2M for $OP^2 = r^2 - OC^2 = 49 - 25 = 24$
	A1M for $PQ = 2OP = 2\sqrt{24}$
	A1M for $PQ = 4\sqrt{6}$
4 (5)	sinθ
4 (a)	A1M for use of trig identities $8sin\theta cos\theta = 6\frac{sin\theta}{cos\theta}$
	A1M for rearrangement $8\cos^2\theta - 6 = 0$
	A1M for $\cos \theta = \pm \sqrt{\frac{3}{4}}$
	A1M for $\sin \theta = 0$, $\theta = 0^{\circ}$, 180° , 360° , -180° , -360°
	A1M for $\cos \theta = \sqrt{\frac{3}{4}}$, $\theta = 30^{\circ}, 330^{\circ}, -30^{\circ}, -330^{\circ}$
	A1M for $\cos \theta = -\sqrt{\frac{3}{4}}$, $\theta = 150^{\circ}, 210^{\circ}, -150^{\circ}, -210^{\circ}$
4 (b)	A1M for $x - 20^{\circ} = 0^{\circ}$
	A1M for $x = 20^{\circ}$
5 (a)	A1M for gradient of $AB = -\frac{3}{2}$
	A1M for y intercept of AB at (0, 12)
	A1M for equation of AD $y = \frac{2x}{3} + 12$
	A1M for rearrangement $3y = 2x + 36$
I	l

5 (b)	A1M for x intercepts $(8,0)$ and $(-18,0)$
	A1M for lengths $\sqrt{12^2 + 8^2} = 4\sqrt{13}$ and $\sqrt{12^2 + -18^2} = 6\sqrt{13}$
	A1M for $4\sqrt{13} \times 6\sqrt{13} = 312$
6	A1M for $(tan^2\theta + 1) = 3 - tan \theta$
	A1M for $tan^2\theta + tan \theta - 2 = 0$
	A1M for $(\tan \theta - 1)(\tan \theta + 2) = 0$ and $\tan \theta = 1$, $\tan \theta = -2$
	A1M for $\theta = 45^{\circ}$, 225°
	A1M for $\theta = 116.57^{\circ}$, 296.57°
7 (a)	A1M for $D = 6 + 2sin(20 \times 6)^{\circ} = 7.7m$
7 (b)	A1M for $6 + 2sin(20t)^{\circ} = 5m$
	A1M for $sin(20t)^{\circ} = -0.5$
	A1M for $t = 10.5$ and 16.5
	A1M for 16.30 (or 4:30pm)
8 (a)	A1M for converting $y = x^x$ to $\ln y = x \ln x$
	A2M for $\frac{1}{y} \frac{dy}{dx} = 1 + \ln x$
	A1M for using $\frac{dy}{dx} = 0$ to find $1 + \ln x = 0$ and $\ln x = -1$
	A1M for $x = e^{-1}$
8 (b)	A1M for $1.8^{1.8} = 2.88065$ and $1.9^{1.9} = 3.38557$
	A1M for stating that these results are on either side of 3

8 (c)	A1M for
	$x_1 = 1.8$
	$x_2 = 3(1.8)^{1-(1.8)} = 1.87457$
	$x_3 = 3(1.87458)^{1-(1.87458)} = 1.73159$
	$x_4 = 3(1.73159)^{1-(1.73159)} = 2.00758$
	A1M for $x_4 = 2.008$
8 (d)	A1M for the answers are oscillating up and down
	A1M for the equation seems unsuitable as the answers are not converging between 1.8 and 1.9
9 (a)	A1M for correct form of the trapezium rule with h=2
	A1M for $\frac{2}{2} \left(\frac{1}{4 + \sqrt{0}} + \frac{1}{4 + \sqrt{4}} + 2 \left(\frac{1}{4 + \sqrt{2}} \right) \right)$
	A1M for
	$\frac{1}{4} + \frac{1}{6} + \frac{2}{4 + \sqrt{2}}$
	A1M for
	$\frac{1}{4} + \frac{1}{6} + \frac{4 - \sqrt{2}}{7}$
	A1M for
	$\frac{5}{12} + \frac{4 - \sqrt{2}}{7}$

9 (b)	A1M for $x = u^2$ differentiated to $dx = 2u du$
	A1M for $\int_0^4 \frac{dx}{4+\sqrt{x}} = \int_0^2 \frac{2u}{4+u}$
	A1M for $2 \int_0^2 \frac{4+u-4}{4+u} du = 2 \int_0^2 1 - \frac{4}{4+u}$
	A1M for $2[u - 4ln(u + 4)]_0^2$
	A1M for $2([2-4ln(6)]-[0-4ln(4)])$
	A1M for $-8\ln(6) + 8\ln(4) + 4$
9 (c)	A1M for $\frac{(-8\ln(6) + 8\ln(4) + 4) - \left(\frac{5}{12} + \frac{4 - \sqrt{2}}{7}\right)}{(-8\ln(6) + 8\ln(4) + 4)} \times 100$
	A1M for -3.94%
10 (a)	A2M for the difference between two terms
	$4e^p - 4 = 4 - 4e^{-p}$
	A1M for rearrangement
	$4e^{2p} - 8e^p + 4 = 0$
	A2M for solving quadratic
	$e^{p} = 1$
	A1M for $p = ln 1 = 0$

13 (a)	A1M for $3\sqrt{x}\frac{dx}{dt} = 6\sin 2t$		
	A1M for $\int 3\sqrt{x} dx = \int 6\sin 2t dt$		
	A1M for $\int 3x^{\frac{1}{2}} dx = \int 6\sin 2t \ dt$		
	A1M for integration $2x^{\frac{3}{2}} = -3\cos 2t + c$		
	A1M for substitution of initial conditions		
	$2(0)^{\frac{3}{2}} = -3\cos(2(0)) + c$		
	c = 3		
	A1M for $2x^{\frac{3}{2}} = -3\cos 2t + 3$		
	A1M for = $(\frac{3}{2} - \frac{3}{2}\cos 2t)^{\frac{2}{3}}$		
13 (b)	A1M for $\cos 2t = -1$ $x = \left(\frac{3}{2} + \frac{3}{2}\right)^{\frac{2}{3}} = 208cm$		