# STA237: Probability, Statistics and Data Analysis I Section 0101 Lecture 2

Lijia Wang

Department of Statistical Sciences University of Toronto

#### Introduction to Lecture 2

#### Lecture 2 coverage:

- Events, Outcomes, and set operators (complements, unions, intersections)
- Define probability function and the probability axioms
- Inclusion-Exclusion Principle: 2 events

#### Lecture 2 learning outcomes:

- Use set notation and Venn disatrams to represent events in a given sample space
- Distinguish between mutually exclusive (i.e., disjoint) and independent events
- Understand the probability function
- State the three probability axioms and use axioms to relate probabilities of sets of events
- Apply inclusion-exclusion principle ('Addition Rule') to find probabilities involving unions of events

#### Outline

- Set and event operations
- 2 Probability function
- 3 Properties of probability function: the additive law
- Probability calculation for equally likely outcomes

## Discrete sample space

#### Definition (discrete sample space)

We say a sample space is discrete if it is either finite or countably infinite

Question: What does countably infinite mean?

# Countably infinite

#### Definition (Countably infinite)

A set is *countably infinite* if the elements of the set can be arranged as a sequence.

#### **Remark:**

 And all countably infinite sets can be put in one-to-one correspondence with the natural numbers.

## Example on countably infinite set

• **Example:** The natural numbers  $1, 2, 3, \ldots$  is the classic example of a countably infinite set.

#### Counter example:

- The set of all real numbers is an infinite set that is not countably infinite. It is called uncountable.
- An interval of real numbers, such as (0,1), the numbers between 0 and 1, is also uncountable.

## discrete sample space

We assume for the next several lectures that the sample space is discrete.

- If the sample space is finite, it can be written as  $\Omega = \{\omega_1, \dots, \omega_k\}$ .
- If the sample space is countably infinite, it can be written as  $\Omega = \{\omega_1, \omega_2, \ldots\}.$

**Remark:** Probability on uncountable spaces will require differential and integral calculus and will be discussed later on for this term.

## Properties of probabilities and event operations

We can conduct operations on probabilities / events like performing those with sets:

- Events can be combined together to create new events using the connectives "or", "and" and "not".
- These correspond to the set operations union, intersection, and complement.

Before that, we provide a brief review on set notations and operations.

## Set terminologies and notation

To begin, we need some terminologies and notation from the set theory.

- Capital letters denote the sets of objects: A, B, etc.
- If set A consists of objects  $a_1, a_2, a_3$ , we write  $A = \{a_1, a_2, a_3\}$
- S denotes the universal set which is the set of all possible objects.
  - $\phi$  denotes the null or empty set (  $\phi=\{\}$  ) which is the set without any object. Since in each operations.

## Set operation: subset

e.g. 
$$A = \{2\}$$

e.e.t  $A$  is a subset of event  $B$ 
 $B = \{even | numbers\}$ 

e.e.t  $A$  hoppen  $\Rightarrow$  event  $B$  must hoppen

the contrary may not hold.

#### Definition (Set operation: subset)

For any two sets A and B, A is a *subset* of B if every object in A is in B. Notation:  $A \subseteq B$ .

- Example: If  $B = \{a_1, a_2, a_3, a_4\}$  and  $A = \{a_1, a_2, a_3\}$  then A is a subset of B.
- Note: The null set is a subset of every set.

## Set operation: union

In event setting union either event 
$$A$$
 or  $B$  or both happens. A= { obtain | } B= { blain 2 } AVB= { blain either | or 2 }

#### Definition (Set operation: union)

The *union* of A and B is the set of all objects in A or B or both. Notation:  $A \cup B$ .

• Example: If  $A = \{a_1, a_2\}$  and  $B = \{b_1, b_2\}$  then  $A \cup B = \{a_1, a_2, b_1, b_2\}$ .

## Set operation: intersection

In set operations, ANB means event A and B must hoppen together in this experiment.

#### Definition (Set operation: intersection)

The *intersection* of sets A and B is the set of all objects in <u>both</u> A and B. Notation:  $A \cap B$  or just AB.

- Example: If  $B = \{a_1, a_2, a_3, a_4\}$  and  $A = \{a_1, a_2, a_3\}$  then  $A \cap B = \{a_1, a_2, a_3\}$ .
- The key word for union is or while the key word for intersection is <u>and</u>.

# Venn Diagram

The Venn Diagram is a very useful tool:









## Set operation: complement

#### **Definition**

If A is a subset of S, then the complement of A is the set of all objects in S that are not in A. It is denoted by  $A^c$ .

• Note that  $A \cup A^c = S$ 

A={1} A= {2,3,4,0,6}

• By definition,  $A \cap A^c = \phi$ 



## Set operation: disjoint

#### Definition

Two sets A and B are said to be disjoint or mutually exclusive if they have no object in common. That is, A and B are disjoint if  $A \cap B = \phi$ 



## Disjoint vs independent

#### Mutually exclusive / disjoint:

- Two events A and B are mutually exclusive / disjoint if the events cannot both occur or occur simultaneously as an outcome of the experiment.
- In a Venn Diagram, A and B would be disjoint if they have no overlapping

#### Independent:

• Two events A and B are <u>independent</u> if the occurrence of one event does not alter the probability of occurrence of the other in any way.

## Event operations

Event operations following the same logics as set operations:

Table: TABLE 1.2. Events and sets.

| Description                            | Set notation            |
|----------------------------------------|-------------------------|
| Either $A$ or $B$ or both occur        | $A \cup B$              |
| A and $B$                              | AB                      |
| Not A                                  | A <sup>c</sup>          |
| A implies $B$ ; $A$ is a subset of $B$ | $A \subseteq B$         |
| A but not $B$                          | AB <sup>c</sup>         |
| Neither $A$ nor $B$                    | $A^cB^c$                |
| At least one of the two events occurs  | $A \cup B$              |
| At most one of the two events occurs   | $(AB)^c = A^c \cup B^c$ |

## Important laws for set operations

Commutative Laws:

$$A \cap B = B \cap A$$
$$A \cup B = B \cup A$$

set operation as multiplication.

Associative Law :

$$(A \cup B) \cup C = A \cup (B \cup C)$$
  
 $(A \cap B) \cap C = A \cap (B \cap C)$ 

Distributive Laws:

$$= (a \times b) + (a \times C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$= (A \cap B) \cup (A \cap C)$$

$$= (A \cap B) \cup (A \cap C)$$

axcotc)

### Important laws for set operations

#### DeMorgan's Laws

DeMorgan's Laws (for two sets A and B):

$$(A \cup B)^{c} = A^{c} \cap B^{c} \qquad A^{c} \cap B^{c}$$

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

• DeMorgan's Laws (general case for the set  $\{A_1, A_2, \dots A_n\}$ ):

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{c} = \bigcap_{i=1}^{n} A_{i}^{c} \left(A_{i} \cup A_{i} \cup A_{3}\right)^{c}$$

$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

#### Outline

- Set and event operations
- Probability function
- 3 Properties of probability function: the additive law
- Probability calculation for equally likely outcomes

## Probability function

In a random experiment with sample space  $\Omega$ , the probability of an event A, denoted as P(A) is a function that assigns to event A a numerical value that measures the chance that event A will occur.

There are three axioms that must hold for probability functions:

- $\bullet$   $P(A) \geq 0$  negative value doesn't make since
- $extstyle extstyle P(\Omega) = 1$  Eventually , one of the outcomes must happen.
- $\odot$  For a set of disjoint (i.e. mutually exclusive) events  $A_1, A_2, \ldots, A_n$  in  $\Omega$ ,

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}P\left(A_{i}\right)$$

$$A_{1} = \left\{1\right\} A_{2} = \left\{2\right\}$$

$$A_{1} \cup A_{2} = \left\{1, 2\right\}$$

$$P\left(A_{1} \cup A_{2}\right) = P\left(A_{1}\right) + P\left(A_{2}\right)$$

$$A_{1} \cup A_{2} = \left\{1, 2\right\}$$

$$P\left(A_{1} \cup A_{2}\right) = P\left(A_{1}\right) + P\left(A_{2}\right)$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right)$$

## Probability function

#### Definition (Probability function)

Given a random experiment with discrete sample space  $\Omega$ , a *probability* function P is a function on  $\Omega$  with the following properties:

- $P(\omega) \geq 0$ , for all  $\omega \in \Omega$ .
- $\sum_{\omega \in \Omega} P(\omega) = 1$

$$A = \left\{ \text{obtain } 1, 2, 3 \right\} = \left\{ 1, 2, 3 \right\} \le \Omega$$

$$\rho(A) = \rho(\left\{ 1, 2, 3 \right\}) = \rho(1) + \rho(2) + \rho(3)$$

## Probability function on discrete sample space

• In the case of a finite sample space  $\Omega = \{\omega_1, \dots, \omega_k\}$ , the second condition becomes

$$\sum_{\omega \in \Omega} P(\omega) = P(\omega_1) + \dots + P(\omega_k) = 1$$

• And in the case of a countably infinite sample space  $\Omega = \{\omega_1, \omega_2, \ldots\}$ , this gives

$$\sum_{\omega \in \Omega} P(\omega) = P(\omega_1) + P(\omega_2) + \cdots = \sum_{i=1}^{\infty} P(\omega_i) = 1.$$

## Remark on probability function

#### **Remark:**

- The first axiom guarantees that the probability function is always non-negative
- The second axiom implies probabilities sum to 1
- The third axiom says that the probability of an event is the sum of the probabilities of all the outcomes contained in that event.

## Example on probability function

**Example:** Suppose that a college has six majors: biology, geology, physics, dance, art, and music. The percentage of students taking these majors are 20, 20, 5, 10, 10, and 35, respectively, with double majors not allowed. Choose a random student. What is the probability they are a science major?

#### Outline

- Set and event operations
- 2 Probability function
- Or Properties of probability function: the additive law
- Probability calculation for equally likely outcomes

#### The addition rules

#### Theorem (The Additive Law of Probability)

The probability of the union of two events A and B is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

#### **Remark:**

• Note that this theorem is also called the *Inclusion-Exclusion Principle*.



# The addition rules (general case)

The addition rules can be extended to more general cases:

#### Theorem (The Additive Law of Probability (general case))

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \dots + (-1)^{r+1} \sum_{i_{1} < i_{2} < \dots i_{r}} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{r}}) + \dots + (-1)^{n+1} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{n}})$$

Example:  $3 - way = A_1, A_2, A_3$   $p(A_1 \cup A_2 \cup A_3) = p(A_1) + p(A_2) + p(A_3)$   $- p(A_1 \cap A_2) - p(A_1 \cap A_3) - p(A_2 \cap A_3)$   $+ p(A_1 \cap A_2 \cap A_3)$ 

# The addition rules for disjoint events

If the two events are mutually exclusive / disjoint, we have the following:

#### Theorem (Addition rule for mutually exclusive events)

If A and B are mutually exclusive events, then

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B).$$



## Extention of the addition rule for mutually exclusive events

Suppose  $A_1, A_2, ...$  is a sequence of pairwise mutually exclusive events. That is,  $A_i$  and  $A_j$  are mutually exclusive for all  $i \neq j$ . Then

$$P$$
 ( at least one of the  $A_i$  's occurs ) =  $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$ .

## The complement rule and hierarchical rule

The following two important properties are derived from the aforementioned rules:

#### Theorem (The complement rule)

For an event A,

$$P(A) = 1 - P(A^c).$$

#### Theorem (The hierarchical rule)

If A implies 
$$B$$
 (i.e.,  $A \subseteq B$ ), then

larger event, larger probability

$$P(A) \leq P(B)$$
.

# Example on probability calculation

event B

#### event A

**Example:** In a city, suppose 75% of the population have brown hair, 40% have brown eyes, and 25% have both brown hair and brown eyes. A person is chosen at random from the city. What is the probability that they

- Have brown eyes or brown hair?
- Have neither brown eyes nor brown hair?



#### Outline

- Set and event operations
- 2 Probability function
- 3 Properties of probability function: the additive law
- Probability calculation for equally likely outcomes

## Equally likely outcomes

The simplest probability model for a finite sample space is that all outcomes are equally likely.

- If  $\Omega$  has k elements, then the probability of each outcome is 1/k, as probabilities sum to 1. That is,  $P(\omega)=1/k$ , for all  $\omega\in\Omega$ .
- Suppose A is an event with s elements, with  $s \le k$ . As P(A) is the sum of the probabilities of all the outcomes contained in A,

$$P(A) = \sum_{\omega \in A} P(\omega) = \sum_{\omega \in A} \frac{1}{k} = \frac{s}{k} = \frac{\text{Number of elements of } A}{\text{Number of elements of } \Omega}.$$

• In other words, probability with equally likely outcomes reduces to counting elements in A and  $\Omega$ .

polling a die  $\Omega = \{1,2,3,4,5,6\}$ event  $A = \{1,2,3\}$   $A = \{1,2,3,4,5,6\}$   $A = \{1,2,3,4,5\}$   $A = \{1,2,3,4,5\}$   $A = \{1,2,3,4,5\}$   $A = \{1,2,3,4,5\}$   $A = \{1,2,3,4,5\}$  A =

## Probability as Relative Frequency

The procedures described can be summarized into the following:

#### Theorem (Probability as Relative Frequency)

In cases where the sample space consists of equally likely elements, we can find this probability of event A by calculating the relative frequency of the event A in  $\Omega$ :

$$P(A) = \frac{\# \text{ of outcomes in } A}{Total \# \text{ of outcomes in the random experiment}} = \frac{n(A)}{n(\Omega)}$$

This is valid only if each element in  $\Omega$  is equally likely.



## The multiplication principle

#### The multiplication principle

- Breakfust (3) Dinner (4)

  Cereal Pice
  eggs pelling duch
  Domake steak • Consider a simple case: if there are m ways for on thing to happen, and n ways for a second thing to happen, there are  $m \times n$  ways for both things to happen.
- More generally-and more formally-consider an n-element sequence  $(a_1, a_2, \ldots, a_n)$ . If there are  $k_1$  possible values for the first element,  $k_2$ possible values for the second element, ..., and  $k_n$  possible values for the *n*th element, there are  $k_1 \times k_2 \times \cdots \times k_n$  possible sequences.

#### **Remark:**

Note that this is also called the fundamental principle of counting.