Paradigmas de Programación

Razonamiento ecuacional Inducción estructural

1er cuatrimestre de 2025 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Casos de estudio

Motivación

Queremos demostrar que ciertas expresiones son equivalentes. ¿Para qué?

Para justificar que un algoritmo es correcto

Por ejemplo, si logramos demostrar que:

```
\forall xs :: [Int]. quickSort xs = insertionSort xs
```

esto nos da confianza relativa de un algoritmo con respecto al otro.

Para posibilitar optimizaciones

¿Siempre es correcto hacer las siguientes optimizaciones?

En un lenguaje funcional sí.

En un lenguaje imperativo \mathbf{no} , ya que \mathbf{f} y \mathbf{g} pueden tener efectos.

Hipótesis de trabajo

Para razonar sobre equivalencia de expresiones vamos a asumir:

- 1. Que trabajamos con estructuras de datos **finitas**.
 - Técnicamente: con tipos de datos inductivos.
- 2. Que trabajamos con funciones totales.
 - Las ecuaciones deben cubrir todos los casos.
 - La recursión siempre debe terminar.
- 3. Que el programa **no depende del orden** de las ecuaciones.

```
vacia [] = True vacia [] = True vacia \_ = False vacia (\_:\_) = False
```

Relajar estas hipótesis es posible pero más complejo.

Igualdades por definición

Principio de reemplazo

Sea e1 = e2 una ecuación incluida en el programa. Las siguientes operaciones preservan la igualdad de expresiones:

- 1. Reemplazar cualquier instancia de e1 por e2.
- 2. Reemplazar cualquier instancia de e2 por e1.

Si una igualdad se puede demostrar usando sólo el principio de reemplazo, decimos que la igualdad vale **por definición**.

Ejemplo: principio de reemplazo

Le damos nombre a las ecuaciones del programa:

```
sucesor :: Int \rightarrow Int {SUC} sucesor n = n + 1
```

```
sucesor (factorial 10) + 1
= (factorial 10 + 1) + 1 por SUC
= sucesor (factorial 10 + 1) por SUC
```

Igualdades por definición

Ejemplo: principio de reemplazo

```
\{L0\} length [] = 0
\{L1\} length (\_:xs) = 1 + length xs
\{S0\} suma [] = 0
\{S1\} suma (x : xs) = x + suma xs
Veamos que length ["a", "b"] = suma [1, 1]:
              length ["a", "b"]
           = 1 + length ["b"] por L1
           = 1 + (1 + length []) por L1
                        por LO
           = 1 + (1 + 0)
           = 1 + (1 + suma []) por S0
           = 1 + suma [1] por S1
           = suma [1, 1] por S1
```

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Casos de estudio

Inducción sobre booleanos

El principio de reemplazo no alcanza para probar todas las equivalencias que nos interesan.

Ejemplo

está "trabada": no se puede aplicar ninguna ecuación.

Inducción sobre booleanos

Principio de inducción sobre booleanos

Si $\mathcal{P}(\text{True})$ y $\mathcal{P}(\text{False})$ entonces $\forall x :: Bool. <math>\mathcal{P}(x)$.

Ejemplo

```
\{NT\} not True = False \{NF\} not False = True
```

Para probar $\forall x :: Bool. not (not x) = x$ basta probar:

1. not (not True) = True.

2. not (not False) = False.

```
not (not False) = not True = False \uparrow NF NT
```

Inducción sobre pares

Cada tipo de datos tiene su propio principio de inducción.

Ejemplo

Inducción sobre pares

```
Principio de inducción sobre pares
```

```
Si \forall x :: a. \forall y :: b. \mathcal{P}((x, y))
entonces \forall p :: (a, b). \mathcal{P}(p).
Ejemplo
\{FST\} fst (x, _) = x
\{SND\} snd (_, y) = y
\{SWAP\} swap (x, y) = (y, x)
Para probar \forall p :: (a, b). fst p = \text{snd (swap p)}
basta probar:
  \blacktriangleright \forallx :: a. \forally :: b. fst (x, y) = snd (swap (x, y))
     fst (x, y) = x = snd (y, x) = snd (swap (x, y)) \uparrow
```

Inducción sobre naturales

data Nat = Zero | Suc Nat

Principio de inducción sobre naturales

$$\begin{array}{ll} \text{Si } \mathcal{P}(\texttt{Zero}) \; \text{y} \; \forall n \; :: \; \texttt{Nat.} \; \left(\begin{array}{c} \mathcal{P}(n) \\ \text{hipótesis inductiva} \end{array} \right) \Rightarrow \underbrace{\mathcal{P}(\texttt{Suc } n)}_{\text{tesis inductiva}}), \\ \text{entonces } \forall n \; :: \; \texttt{Nat.} \; \mathcal{P}(n). \end{array}$$

Inducción sobre naturales

Ejemplo

```
\{SO\} suma Zero m = m

\{S1\} suma (Suc n) m = Suc (suma n) m

Para probar \forall n :: Nat. suma n Zero = n

basta probar:
```

- suma Zero Zero = Zero.
 Inmediato por SO.
- 2. $\underbrace{\text{suma n Zero} = n}_{\text{H.I.}} \Rightarrow \underbrace{\text{suma (Suc n) Zero} = \text{Suc n.}}_{\text{T.I.}}$

suma (Suc n) Zero = Suc (suma n Zero) = Suc n
$$\uparrow$$
 H.I.

Inducción estructural

En el caso general, tenemos un tipo de datos inductivo:

```
\begin{array}{rcl} \operatorname{data} & T & = & \operatorname{CBase}_1 \left\langle \operatorname{\textit{parámetros}} \right\rangle \\ & & \dots \\ & \mid & \operatorname{CBase}_n \left\langle \operatorname{\textit{parámetros}} \right\rangle \\ & \mid & \operatorname{CRecursivo}_1 \left\langle \operatorname{\textit{parámetros}} \right\rangle \\ & \dots \\ & \mid & \operatorname{CRecursivo}_m \left\langle \operatorname{\textit{parámetros}} \right\rangle \end{array}
```

Principio de inducción estructural

Sea \mathcal{P} una propiedad acerca de las expresiones tipo T tal que:

- \triangleright \mathcal{P} vale sobre todos los constructores base de T,
- P vale sobre todos los constructores recursivos de T, asumiendo como hipótesis inductiva que vale para los parámetros de tipo T,

entonces $\forall x :: T. \mathcal{P}(x)$.

Inducción estructural

Ejemplo: principio de inducción sobre listas

data [a] = [] | a : [a]

Sea $\mathcal P$ una propiedad sobre expresiones de tipo [a] tal que:

- **▶** P([])
- $\blacktriangleright \ \forall \mathtt{x} :: \mathtt{a.} \ \forall \mathtt{xs} :: \mathtt{[a].} \ \underbrace{(\underbrace{\mathcal{P}(\mathtt{xs})}_{\mathsf{H.I.}} \Rightarrow \underbrace{\mathcal{P}(\mathtt{x} : \mathtt{xs})}_{\mathsf{T.I.}})}$

Entonces $\forall xs :: [a]. \mathcal{P}(xs).$

Ejemplo: principio de inducción sobre árboles binarios

data AB a = Nil | Bin (AB a) a (AB a) Sea \mathcal{P} una propiedad sobre expresiones de tipo AB a tal que:

- ▶ P(Nil)
- $ightharpoonup \forall i :: AB a. \ \forall r :: a. \ \forall d :: AB a.$

$$(\underbrace{(\mathcal{P}(\mathtt{i}) \land \mathcal{P}(\mathtt{d}))}_{\mathsf{H.l.}} \Rightarrow \underbrace{\mathcal{P}(\mathtt{Bin} \ \mathtt{i} \ \mathtt{r} \ \mathtt{d})}_{\mathsf{T.l.}})$$

Entonces $\forall x :: AB a. \mathcal{P}(x)$.

Inducción estructural

Ejemplo: principio de inducción sobre polinomios

Sea ${\mathcal P}$ una propiedad sobre expresiones de tipo Poli a tal que:

- $\triangleright \mathcal{P}(X)$
- ightharpoonup orall k :: a. $\mathcal{P}(\texttt{Cte } k)$
- ightharpoonup orall p :: Poli a. orall q :: Poli a.

$$(\underbrace{(\mathcal{P}(\mathtt{p}) \land \mathcal{P}(\mathtt{q}))}_{\mathtt{H.l.}} \Rightarrow \underbrace{\mathcal{P}(\mathtt{Suma} \ \mathtt{p} \ \mathtt{q})}_{\mathtt{T.l.}})$$

ightharpoonup orall p :: Poli a. orall q :: Poli a.

$$(\underbrace{(\mathcal{P}(\mathtt{p}) \land \mathcal{P}(\mathtt{q}))}_{\mathsf{H.I.}} \Rightarrow \underbrace{\mathcal{P}(\mathtt{Prod} \ \mathtt{p} \ \mathtt{q})}_{\mathsf{T.I.}})$$

Entonces $\forall x :: Poli a. \mathcal{P}(x)$.

Ejemplo: inducción sobre listas

2. Caso inductivo, $\forall x :: a. \forall xs :: [a]. (\mathcal{P}(xs) \Rightarrow \mathcal{P}(x : xs)).$ con $\mathcal{P}(xs) := (\text{map f } (xs ++ ys) = \text{map f } xs ++ \text{map f } ys).$

Ejemplo: inducción sobre listas

Caso base:

```
map f ([] ++ ys)

= map f ys por AO

= [] ++ map f ys por AO

= map f [] ++ map f ys por MO
```

Caso inductivo:

Ejemplo: relación entre foldr y foldl

Propiedad. Si $f :: a \rightarrow b \rightarrow b, z :: b, xs :: [a], entonces:$

$$\underbrace{\text{foldr f z xs = foldl (flip f) z (reverse xs)}}_{\mathcal{P}(xs)}$$

Por inducción en la estructura de xs. El caso base $\mathcal{P}([])$ es fácil. Caso inductivo, $\forall x :: a. \ \forall xs :: [a]. \ (\mathcal{P}(xs) \Rightarrow \mathcal{P}(x :: xs))$:

Para justificar el paso faltante (???), se puede demostrar:

Lema. Si $g :: b \rightarrow a \rightarrow b$, z :: b, x :: a, xs :: [a], entonces:

```
foldl g z (xs ++ [x]) = g (foldl g z xs) x
```

Lemas de generación

Usando el principio de inducción estructural, se puede probar:

Lema de generación para pares

Si p :: (a, b), entonces
$$\exists x :: a. \exists y :: b. p = (x, y).$$

data Either a b = Left a | Right b

Lema de generación para sumas

Si e :: Either a b, entonces:

- ▶ o bien ∃x :: a. e = Left x
- ▶ o bien ∃y :: b. e = Right y

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Casos de estudio

Puntos de vista intensional vs. extensional

¿Vale la siguiente equivalencia de expresiones?

Depende del punto de vista:

Punto de vista intensional.

(va con "s")

Dos valores son iguales si están construidos de la misma manera.

Punto de vista extensional.

Dos valores son iguales si son indistinguibles al observarlos.

Ejemplo

quickSort e insertionSort

- no son intensionalmente iguales;
- sí son extensionalmente iguales: computan la misma función.

Principio de extensionalidad funcional

```
Sean f, g :: a -> b.
```

Propiedad inmediata

Sif = g entonces $(\forall x :: a. f x = g x)$.

Principio de extensionalidad funcional

Si $(\forall x :: a. f x = g x)$ entonces f = g.

Principio de extensionalidad funcional

Ejemplo: extensionalidad funcional

```
{I} id x = x {C} (g . f) x = g (f x) {S} swap (x, y) = (y, x)
```

Veamos que swap . swap = id :: (a, b) -> (a, b).

Por extensionalidad funcional, basta ver:

```
\forall p :: (a, b). (swap . swap) p = id p
```

Por inducción sobre pares, basta ver:

```
\forall x :: a. \forall y :: b. (swap . swap) (x, y) = id (x, y)
```

```
En efecto: (swap . swap) (x, y)

= swap (swap (x, y)) (por C)

= swap (y, x) (por S)

= (x, y) (por S)

= id (x, y) (por I)
```

Resumen: razonamiento ecuacional

Razonamos ecuacionalmente usando tres principios:

1. Principio de reemplazo

Si el programa declara que e1 = e2, cualquier instancia de e1 es igual a la correspondiente instancia de e2, y viceversa.

2. Principio de inducción estructural

Para probar \mathcal{P} sobre todas las instancias de un tipo T, basta probar \mathcal{P} para cada uno de los constructores (asumiendo la H.I. para los constructores recursivos).

3. Principio de extensionalidad funcional

Para probar que dos funciones son iguales, basta probar que son iguales punto a punto.

Corrección del razonamiento ecuacional

Cuidado: no necesariamente dan el mismo resultado Por ejemplo, se puede demostrar:

quickSort = insertionSort

pero quickSort e insertionSort no dan el mismo resultado.

Corrección con respecto a observaciones

Si demostramos e1 = e2 :: A, entonces:

obs e1 \leadsto True si y sólo si obs e2 \leadsto True para toda posible "observación" obs :: A -> Bool.

Demostración de desigualdades

¿Cómo demostramos que **no** vale una igualdad e1 = e2 :: A?

Por la contrarrecíproca de la anterior, basta con encontrar una observación obs :: A -> Bool que las distinga.

Ejemplo

Demostrar que no vale la igualdad:

```
id = swap :: (Int, Int) -> (Int, Int)

obs :: ((Int, Int) -> (Int, Int)) -> Bool

obs f = fst (f (1, 2)) == 1

obs id \leadsto True
```

obs swap \rightsquigarrow False

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Casos de estudio

Misma información, distinta forma

¿Qué relación hay entre los siguientes valores?

("hola", (1, True)) :: (String, (Int, Bool))

((True, "hola"), 1) :: ((Bool, String), Int)

Representan la misma información, pero escrita de distinta manera.

Podemos transformar los valores de un tipo en valores del otro:

```
f :: (String, (Int, Bool)) -> ((Bool, String), Int)
f (s, (i, b)) = ((b, s), i)

g :: ((Bool, String), Int) -> (String, (Int, Bool))
g ((b, s), i) = (s, (i, b))
```

Se puede demostrar que:

$$g \cdot f = id$$
 $f \cdot g = id$

Isomorfismos de tipos

Definición

Decimos que dos tipos de datos A y B son isomorfos si:

- 1. Hay una función f :: A -> B total.
- 2. Hay una función g :: B -> A total.
- 3. Se puede demostrar que g . $f = id :: A \rightarrow A$.
- 4. Se puede demostrar que f . $g = id :: B \rightarrow B$.

Escribimos A \simeq B para indicar que A y B son isomorfos.

Ejemplo de isomorfismo: currificación

Ejemplo

```
Veamos que ((a, b) -> c) \simeq (a -> b -> c).

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (x, y) = f x y
```

Ejemplo de isomorfismo: currificación

```
Veamos que
uncurry . curry = id :: ((a, b) \rightarrow c) \rightarrow (a, b) \rightarrow c
Por extensionalidad funcional, basta ver que si f :: (a, b) -> c:
(uncurry . curry) f = id f :: (a, b) \rightarrow c
Por extensionalidad funcional, basta ver que si p :: (a, b):
(uncurry . curry) f p = id f p :: c
Por inducción sobre pares, basta ver que si x :: a, y :: b:
(uncurry . curry) f(x, y) = id f(x, y) :: c
En efecto:
          (uncurry . curry) f (x, y)
      = uncurry (curry f) (x, y) (Def. (.))
      = curry f x y
                                          (Def. uncurry)
      = f(x, y)
                                          (Def. curry)
                                          (Def. id)
      = id f (x, y)
(Y vale también curry . uncurry = id).
```

Más isomorfismos de tipos

(a, b)

$$\simeq$$
 (b, a)

 (a, (b, c))
 \simeq
 ((a, b), c)

 a -> b -> c
 \simeq
 b -> a -> c

 a -> (b, c)
 \simeq
 (a -> b, a -> c)

 Either a b -> c
 \simeq
 (a -> c, b -> c)

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Casos de estudio

Ejemplo — Necesidad de usar lemas auxiliares

Asumimos las definiciones usuales para (.) y (++) y la siguiente para reverse:

```
\{RO\} reverse [] = []
\{R1\} reverse (x : xs) = reverse xs ++ [x]
```

Consideremos además la siguiente definición:

```
ceros :: [a] -> [Int]
{Z0} ceros [] = []
{Z1} ceros (_ : xs) = 0 : ceros xs
```

Demostremos que ceros . reverse = reverse . ceros.

¿Qué ocurre?

Necesitamos un lema auxiliar:

```
\forall xs \ ys :: [a]. \ ceros (xs ++ ys) = ceros xs ++ ceros ys
```

Ejemplo — Necesidad de generalizar el predicado inductivo

Consideremos la siguiente definición, usando recursión iterativa:

¿ Qué ocurre?

Necesitamos **generalizar** el predicado inductivo de \mathcal{P} a \mathcal{Q} :

$$\mathcal{P}(xs) \equiv \boxed{\text{suma k (xs ++ ys) = suma (suma k xs) ys}}$$

$$\mathcal{Q}(xs) \equiv \boxed{\forall \texttt{k'} :: \text{Int. suma k' (xs ++ ys) = suma (suma k' xs) ys}}$$

Ejemplo — Necesidad de generalizar el predicado inductivo

Definimos funciones para acumular una lista, usando recursión iterativa y estructural:

```
{LO} acumL k [] = []
{L1} acumL k (x : xs) = (x + k) : acumL (x + k) xs

{RO} acumR [] = []
{R1} acumR (x : xs) = x : map (+ x) (acumR xs)
```

Demostremos que acumL 0 = acumR.

¿ Qué ocurre?

Necesitamos generalizar el predicado inductivo de \mathcal{P} a \mathcal{Q} :

$$\mathcal{P}(xs) \equiv \boxed{\text{acumL 0 xs = acumR xs}}$$
 $\mathcal{Q}(xs) \equiv \boxed{\forall k :: \text{Int. acumL k xs = map (+ k) (acumR xs)}}$

(La demostración completa requiere algunos lemas auxiliares más).

Lectura recomendada

Capítulo 6 del libro de Bird.

Richard Bird. *Thinking functionally with Haskell* Cambridge University Press, 2015.