

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА

ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ

09.03.04 Программная инженерия

ОТЧЕТ

По практикуму № 2

«Обработка и визуализация графов в вычислительном комплексе Тераграф»

Дисциплина: Архитектура ЭВМ

Вариант: 17

Студент	ИУ7-51Б	Савинова М. Г.
· · · · · · · · · · · · · · · · · · ·	(Группа)	(Ф. И. О)
Преподаватель	Ибрагимов С. В.	

Оглавление

Пример 4	3
Пример 5	3
Пример 6	
Индивидуальное задание	
Заключение	

Пример 4

Пример демонстрирует основные механизмы инициализации гетерогенных ядер *gpc* и взаимодействие хост-подсистемы с *Graph Processor Core*, используются аппаратные очереди. Для хост подсистемы используется библиотека gpc64io.

1. Установка

```
git clone --recursive
https://latex.bmstu.ru/gitlab/hackathon2023/lab1/lab1.git
cd lab1
```

2. Сборка проекта:

```
make
```

3. Запуск:

Запуск проекта осуществляется в ноутбуке *lab4.ipynb*.

4. Результат работы:

Инициализированное ядро *дрс*.

Пример 5

Пример демонстрирует варианты анализа графов знаний и их визуализацию.

1. Установка репозитория:

```
git clone --recursive
https://latex.bmstu.ru/gitlab/hackathon2023/lab5.git
cd lab5
```

2. Сборка проекта:

```
make
```

3. Запуск:

Запуск проекта осуществляется в ноутбуке *lab5.ipynb*.

- 4. Результат работы:
 - Визуализация на основе силового алгоритма Фрухтерамана-Рейнгольда:

• Визуализация графа-решетки на основе центральности:

Пример 6

Пример демонстрирует визуализацию графа гармоний музыкального произведения. Для формирования графа знаний используется запись музыкального произведения в формате **midi.** По последовательности аккордов строится граф ДеБрюйна с размером окна L, задаваемого параметрически в программе.

1. Установка репозитория:

```
git clone --recursive
https://latex.bmstu.ru/gitlab/hackathon2023/lab6.git
cd lab6
```

2. Сборка проекта:

make

3. Запуск:

Запуск проекта осуществляется в ноутбуке *lab6.ipynb*.

4. Результат работы:

4. April - Snowdrop_D_minor - Спиральная визуализация на основе центральности

Индивидуальное задание

Стилизовать изображение для полученного графа.

• Исходное изображение:

• Результат стилизации:

Заключение

Были рассмотрено использование микропроцессора Леонарда Эйлера для анализа графа знаний, а также было получено стилизованное изображения для выбранного музыкального произведения - **4. April - Snowdrop_D_minor**.