최신컴퓨터특강

모바일 소프트웨어 플랫폼과 실시간 데이터 전달 기술

최 훈

2016.4.6

IT Evolution

Contents

- 1. Ubiquitous Computing
- 2. Ubiquitous Computing Infrastructure
 - 1) Home Network
 - 2) Telematics (Car Network+ITS)
 - 3) Sensor Network
 - 4) 웨어러블 컴퓨터(Wearable Computer)
- 3. Ubiquitous Computing 을 위한 소프트웨어 기술
 - 1) 모바일 컴퓨팅 플랫폼
 - 2) Android 스마트폰용 Middleware
 - 3) 웨어러블 미들웨어
 - 4) IoT Platform
- 4. 실시간 데이터 전달 기술

Ubiquitous Computing

Ubiquitous Computing Infrastructure

- Ubi. Computing: Intelligent, Mobile, Distributed Computing
- Intelligent Software + Embedded System + Network
 - ◆ 사무실, 집, 길거리 등에 임베드된 컴퓨터 이용
 - ◆ 초고속 wired, wireless network
 - 비전문가를 대신한 지능적 소프트웨어
 - 스스로 정보를 찾고
 - 스스로 판단하고
 - 스스로 관리하는 소프트웨어
- IoT (Internet of Things)
- Sensor network
- Home network
- Telematics (Car network+ITS)
- **■** Wearable computers

홈 네트워크 (Home Network-home automation)

- 집안의 모든 것들을 리모컨 혹은 원격으로 제어하는 것이 목표이며, 상호 통신을 보장함
- 가정 내 모든 장치들은 네트워크에 연결되고, 각종 자동화 기능 및 기 기 별 특정 기능을 수행하기 위해 임베디드 시스템이 탑재되어 있음

BILE DISTRIBUTED COMPUTING LAB

Telematics (Car Network+ITS)

■ ITS (Intelligent Transportation Systems)

Sensor Networks

- Wireless Sensor and Actuator Networks (WSAN)
 - ◆ 센싱과 제어가 동시에 발생하는 무선센서 네트워크를 구성하는 센서노드 와 액추에이터 노드 사이의 협업을 통해 이벤트를 네트워크 내부에서 자율 처리하는 기술

웨어러블 컴퓨터(Wearable Computer)

Ubiquitous Computing 소프트웨어 기술

- 실시간 운영체제
- Software 플랫폼(Mobile Platform, IoT Platform)
- 임베디드용 경량 분산 미들웨어
- 인공지능 기반 자율 컴퓨팅(Autonomous Computing)
 - ◆ 자율적 시스템 관리
 - ◆ 장애 자동 복구, 자유적 시스템 최적화 및 동적 재구성
- 인간친화적 사용자 인터페이스 기술
- IPSec 지원 글로벌 IP 주소 공유 기술
 - ◆ 데이터 플로우 식별 기술, IPSec VPN 및 Firewall
 - ◆ IPv4/IPv6 주소 변환, 프로토콜 변환 기술
- 보안

모바일 컴퓨팅 플랫폼

- 분산시스템 미들웨어 (Middleware)
- Mobile, embedded device용 분산시스템 미들웨어
 - WIPI
 - SyncML
 - ◆ 웨어러블 컴퓨터용 분산컴퓨팅 미들웨어
 - ◆ 실시간 데이터 분배 미들웨어(DDS)
 - ♦ Android 플랫폼

Android 스마트폰 HCI

- 차세대 휴대폰용 지능형 사용자 인터페이스 플랫폼 기술개발
 - ◆ 스마트폰을 통해 모든 전자기기 연동하여 QoS 향상
 - ◆ 환경 적응형 QoS를 고려한 UI 플랫폼
 - ◆ 미래 적응형 디바이스 인터페이스 프레임워크

Human Evolution?

Wearable Computer

스마트 웨어

스마트폰

애플 i와치'

삼성 스마트 와치

구글 프로젝트 글래스

웨어러블 컴퓨팅 환경에서의 컴포년트 기반 미들웨어

Internet of Things

■ IoT 플랫폼

Healthcare System on IoT

OBILE DISTRIBUTED COMPUTING LAB

DDS: 실시간 데이터 전달 기술

Data Distribution Service

- Data Distribution Service (DDS)
 - ◆ 실시간 데이터 중김 발간-구독 통신 미들웨어 표준
 - 🔷 Object Management Group (OMG)에 의해 표준화

Data Distribution Service

- 특징
 - ◆ 데이터 중심 통신 수행
 - ◆ 참여자 및 통신 단말의 자유로운 네트워크 참여/탈퇴 가능
 - 참여자 검색 프로토콜(Participant Discovery Protocol: PDP) 정의
 - 단말 검색 프로토콜(Endpoint Discovery Protocol: EDP) 정의
 - ◆ 이기종 장치들 사이의 상호운용성 제공
 - 단순(Simple) 참여자/단말 검색 프로토콜(SPDP & SEDP) 정의
 - ◆ 다양한 통신 환경에 적용 가능
 - 22종류의 서비스 품질(Quality of Service: QoS) 제공
 - 12종류의 하위 메시지(Submessage) 제공
 - ◆ 실시간성 지원을 위한 인터페이스 제공

국방 분야

[Thales]
Combat Management
Systems and Applications

[Boeing]US Air ForceOpen Mission Systems

[Rockwell Collins]
Networked Joint Fires(NJF)
Software

민수 분야 : 의료, 교통, 에너지

[MD PnP] Medical Device Plug and Play
 [DocBox] Clinical Decision Systems
 [MIRO Lab] Robotic Surgery Systems
 [Still River Systems] Mevion Proton Beam Therapy Systems

[Harbrick] Autonomous Vehicle
 [ProRail] Dutch Railway Network
 [Coflight] European Flight Data Processor
 [Volkswagen] Driver Assistance
 and Integrated Safety System

[Duke Energy] Smart Energy System [USACE] Grand Coulee Hydroelectric Dam [USACE] SCADA System of GC Dam [LocalGrid] Smart Grid Distribution [Siemens] Distributed Power Generation

민수 분야: 금융, IoT, 엔지니어링

[Think Trade] Automated Trading Systems [Eze Software] Distribution of Investment Data [PIMCO] Pre-trade Compliance System [Xuenn] AgileBet Sports Betting Platform

[B+B Smartworx] Industrial IoT Gateway
 [Fujisu] 1FINITY Networking Platform
 [Harmonic] Scalable Broadcast Switching
 [Cisco] SDN Networking Equipment
 [NASA] Human Exploration Telerobotics(HET)

[NASA] Holodeck Technologies[Audi] Hardware-in-the-Loop(HIL) Simulation[Teledyne Brown Engineering]Objective Simulation Framework

민수 분야: 로봇 (DLR MIRO)

충남대학교 DDS

충남대학교 DDS: DB-ReTiCom

- 국방과학연구소 지원으로 2010년 DDS 국산화
 - ◆ DCPS/RTPS, DDS-Database 연동 모듈
 - ♦ 2013년 4월 Version 3.0
- 2013.2. DB-ReTiCom 중 DDS 기술을 MDS테크놀로지㈜에 기술이전 (국방과학연구소)
- 운영체제 : Microsoft Windows, Linux
- 사용 언어 : C++
- Version 2.1 구현 상황

Category	Files	Lines
DCPS	54	10,231
RTPS	213	20,396
QoS	65	4,429
Total	332	35,056

충남대학교 DDS: EchoDDS

- 충남대학교 자체 개발 DDS
 - ◆ 2015년 11월 Version
 - ◆ 기능 수행 단순화: 이벤트 기반 기능 수행 구조
 - ◆ 처리 성능 향상: 메시지 송수신 상태 관리기법 적용
- 운영체제 : Microsoft Windows, Linux
- 사용 언어 : C++
- Version 1.0 구현 상황

Category	Files	Lines
DCPS	67	9,893
RTPS	136	11,333
QoS	55	1,119
Status	36	716
Utility	33	3,946
Total	327	27,007

EchoDDS 성능

■ 검색(Discovery) 성능 비교

(단위: ms)

No.	구분	검색 기능		송수신 지연시간		표준 지연	검색 소요 시간			
		재전송 발생 여부	Interactive PDP	Heartbeat Period	Heartbeat Response Delay	Nack Response Delay	시간 준수	PDP	EDP	Total
1	미국 R사 DDS	Х	0	Unknown	short	short	Х	738	8	747
2	2 +17 A 11 DDC	Х	0	Unknown	long	long	X	140	2,414	2,555
2	한국 A사 DDS	0	0	Unknown	long	long		183	5,822	6,005
3	EchoDDS	Х	0	100	100	100	Х	1	128	129
4	EchoDDS	Х	0	500	500	200	o	28	893	922

EchoDDS 성능

■ 데이터 전송 성능 비교: 10,000개 메시지 연속전송 시간(ms)

→ 한국 A사 DDS

➡ 한국 A사 DDS

충남대학교 DDS: DDS-IDE

- DDS 통합개발지원환경(DDS IDE) 개발 중
 - ◆ 민군기술협력사업의 지원
 - ◆ MDS테크놀로지㈜, ETRI, ㈜리얼타임테크,㈜유니맥스정보통신 공동
 - ◆ 실시간 토픽분석기, 시스템 모니터 개발 중

Q&A

Thank you!!

