

Introducing Categorical Predictors

 So far we've assumed that our predictors are continuous valued when we've fit a regression.

 But there is no real problem if instead we have categorical values

Let's motivate this through an example...

 Data was collected on 507 adult participants with respect to height (in cm) and weight (in kg). You can find this in the gclus library as body.

	Weight	Height
1	65.60	174.00
2	71.80	175.30
3	80.70	193.50
4	72.60	186.50
÷	:	:

Scatterplot Weight vs height

• Weight = $b_o + b_1(Height)$

	Coefficient	t value	Sig
(Intercept)	-105.0113	-13.93	0.0000
Height	1.0176	23.13	0.0000

$$r^2 = 0.5145$$

Weight vs Height with Regression Line

We Know More Though!

Also, their gender was recorded.

Weight	Height	Gender
65.60	174.00	Male
71.80	175.30	Male
80.70	193.50	Male
72.60	186.50	Female
78.80	187.20	Male
:	:	:
	65.60 71.80 80.70 72.60	65.60 174.00 71.80 175.30 80.70 193.50 72.60 186.50

Weight vs Height coloured by Gender

Moving Forward

- The question now becomes: how do we incorporate categorical variables into this model?
- We need to create 'dummy' variables.
- A dummy variable is a variable created to assign numerical value to levels of categorical variables.
 Each dummy variable represents one category of the predictor variable.

Moving Forward

- For a binary (two-option) variable like Gender, it's easy.
- Gender: 1 male, 0 female
- Weight = $b_0 + b_1(Height) + b_2(Gender) + Error$
- b_0 is the average weight among females when Heights take on the value 0,
 - $b_0 + b_1$ is the average weight among males... and b_1 is the average difference in weight between males and females...

• Weight = $b_o + b_1(Height) + b_2(Gender)$

	Coefficient	t value	Sig
(Intercept)	-56.9495	-6.04	0.0000
Height	0.7130	12.49	0.0000
Gender	8.3660	7.80	0.0000

• Give the estimated equation of a line for females:

$$\hat{y} = -56.9495 + 0.7130(Height)$$

• Give the estimated equation of a line for males:

$$\hat{y} = -56.9495 + 8.3660 + 0.7130(Height)$$

Weight vs Height coloured by Gender with separate lines plotted (red=male, black=female)

Linear Regression with Interactions

• With a continuous response Y, and (at least) two predictors X_1, X_2 we assume that we can write the following model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

- Y is the response variable at i
- X_j is the j^{th} predictor variable
- β_0 is the true intercept (unknown)
- β_j are the true slopes (unknown)
- ϵ is the true error, assumed $\epsilon_i \sim N(0, \sigma^2)$.

Assumptions and Interpretation

 The assumptions of multiple linear regression with interactions are not different from simple linear regression or multiple linear regression.

• Interpretation of β_j becomes trickier than in 'regular' multiple regression.

Why?

The data give the selling price at auction of 32 antique grandfather clocks. Also recorded is the age of the clock and the number of people who made a bid.

It is available in https://drive.google.com/open?id= 1yvDDNzmpJrDfbLI744fNSgrlXwvY-bLm

	Age	Bidders	Price
1	127	13	1235
2	115	12	1080
:	:	÷	:

Scatterplot Matrix — shows all pairwise scatterplots.

Model	Coefficients	t	Sig.
(Intercept)	322.7544	1.10	0.2806
Age	0.8733	0.43	0.6688
Bidders	-93.4099	-3.14	0.0039
Age:Bidders	1.2979	6.15	0.0000

$$r_a^2 = 0.9495$$

Age is not considered significant (p-value = 0.6688) but the interaction effect is...can we remove Age as a predictor?

• Price = Age $(r_a^2 = 0.5177)$

Model	Coefficients	t	Sig.
(Intercept)	-191.6576	-0.73	0.4733
Age	10.4791	5.85	0.0000

• Price = Bidders $(r_a^2 = 0.1276)$

Model	Coefficients	t	Sig.
(Intercept)	806.4049	3.50	0.0015
Bidders	54.6362	2.35	0.0254

• Price = Age + Bidders $(r_a^2 = 0.8853)$

Model	Coefficients	t	Sig.
(Intercept)	-1336.7221	-7.71	0.0000
Age	12.7362	14.11	0.0000
Bidders	85.8151	9.86	0.0000

• Price = Bidders +Age*Bidders $(r_a^2 = 0.9509)$

Model	Coefficients	t	Sig.
(Intercept)	447.0965	7.841	0.0000
Bidders	-105.6312	-11.713	0.0000
Bidders:Age	1.3850	22.449	0.0000

Non-linearity

- Suppose we have a case where the response has a non-linear relationship with the predictor(s).
- We will treat these cases in more detail eventually...
- But for a first go-around, what if there's a quadratic relationship?

Non-linearity

Easy. Fit a model of the form

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$

- Basically, if we square (or otherwise transform) the original predictor, we can still fit a 'linear' model for the response.
- Though it's important to keep in mind the change in interpretation for β_1 and β_2 , for example.

Example: Quadratic Simulation

We simulate 30 values from the following model

$$Y = 15 + 2.3x - 1.5x^2 + \epsilon$$

• Where x and ϵ are standard normally distributed.

Example: Quadratic Simulation


```
Call: lm(formula = y ~ x)
```

Residuals:

Min 1Q Median 3Q Max -4.5110 -1.3096 -0.1721 1.7138 3.0435

Coefficients:

Signif. codes: 0'***', 0.001 '**', 0.01 '*' 0.05 '.', 0.1 '', 1

Residual standard error: 1.967 on 28 degrees of freedom Multiple R-squared: 0.5194, Adjusted R-squared: 0.5023 F-statistic: 30.26 on 1 and 28 DF, p-value: 7.059e-06

Example: Quadratic Simulation


```
Note: x^2 = x^2
```

Call:
$$lm(formula = y ~ x + x2)$$
 or $lm(formula = y ~ x + I(x^2))$

Residuals:

Min 1Q Median 3Q Max -1.73833 -0.49510 -0.09868 0.58328 1.66181

Coefficients:

Signif. codes: 0'***', 0.001'**', 0.01'*', 0.05'.', 0.1'', 1

Residual standard error: 0.8829 on 27 degrees of freedom Multiple R-squared: 0.9067, Adjusted R-squared: 0.8998 F-statistic: 131.2 on 2 and 27 DF, p-value: 1.244e-14

Example: Quadratic Simulation


```
xx <- seq(-2,2, length.out=250)
lines(xx, predict(lm(y~x+x+I(x^2)),
data.frame(x=xx)), col='red')</pre>
```


 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots.

•
$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \varepsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \varepsilon_i & \text{if } x_i \ge c \end{cases}$$

• *c* is the knot or breakpoint/changepoint.


```
x=rnorm(60)
e=rnorm(60,0,0.1)
y=(15+5*x-1.5*x^2)*I(x<=0)
+(10+1*x+1.5*x^2)*I(x>0)+e
fit=lm(y~ I(x>0)+I(x*(x<=0))+I(x*(x>0))
+I(x^2*(x<=0))+I(x^2*(x>0)))
```



```
summary(fit)
```

Coefficients:

	Estimate	t value	Pr(> t)
(Intercept)	14.97680	316.56	< 2e-16
I(x > 0)TRUE	-4.99958	-81.08	< 2e-16
I(x * (x <= 0))	4.93112	51.95	< 2e-16
I(x * (x > 0))	1.14078	10.56	9.68e-15
$I(x^2 * (x \le 0))$	-1.51413	-38.04	< 2e-16
$I(x^2 * (x > 0))$	1.41463	28.45	< 2e-16


```
plot(x,y)
xx <- seq(-3,3, length.out=250)
lines(xx, predict(fit, data.frame(x=xx)), col='re</pre>
```


Fitting splines


```
library(npreg);ordering <- order(x);</pre>
xs=x[ordering]; ys=y[ordering]
mod.ss \leftarrow ss(xs, ys, nknots = 6)
mod.smsp < - smooth.spline(x, y, nknots = 6)
plot(xs, ys,xlab="x",ylab="y")
lines(xx,predict(fit,data.frame(x=xx)),col=1)
lines(xs,mod.ss\$y, lty = 2, col = 2, lwd = 2)
lines(xs, mod.smspy, lty = 3, col = 3, lwd = 2)
legend("bottomright",legend = c("Piecewise",
"ss", "smooth.spline"), lty = 1:3, col = 1:3,
1wd = 2, btv = "n")
```

Xiaoping Shi

Fitting splines

