

Lahore University of Management Sciences MATH 102 – Calculus II

Fall 2014-2015

Instructor	Masood H. Shah, Muhammad Ahsan		
Room No.	9-253A, SBASSE		
Office Hours	TBA		
Email	mshah@lums.edu.pk, mudassar.imran@lums.edu.pk		
Telephone	8250/2824		
Secretary/TA	Shazia Zafar/Noreen Irshad		
TA Office Hours	TBA		
	Math.lums.edu.pk/moodle		
Course URL (if any)	Click on course name, Login as guest		

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75min
Recitation/Lab (per week)	Nbr of Lec(s) Per Week		Duration	
Tutorial (per week)	Nbr of Lec(s) Per Week		Duration	

Course Distribution	
Core	Core for math majors
Elective	
Open for Student Category	All students
Close for Student Category	None

COURSE DESCRIPTION

This is the second of a two-semester Calculus sequence. This course covers, Sequences and Series, Vectors, Partial Derivatives and Linear Approximations, Maxima and Minima for functions of several variables, Lagrange Multipliers, Multiple Integrals, Vector Calculus, Green's, Gauss' and Stokes' theorem

COURSE PREREQUISITE(S)			
•	MATH 101 Calculus I or MATH 101A Calculus with Theory		
•			
•			

COURSE OBJECTIVES			
	Students should be able to:		
•	Work with limits in two and three dimensions		
•	Work with derivatives in two and three dimensions		
•	Work with integrals in two and three dimensions Work with power series		

Learning Outcom	es	
	Students will learn to:	
•	Work with sequences, series, and power series and determine their convergence and divergence	
•	Understand three dimensional Cartesian Co-ordinate system and make connections between sets of	
•	points and equations	
Be able to determine limits in two and three dimensions		

Lahore University of Management Sciences

Be able to determine partial derivatives in two and three dimensions by algorithms and by first principles

Find equations of tangent planes to surfaces

Give linear approximations to functions in two and three dimensions

Comprehend and be able to apply concepts of multivariable optimization

Use the method of Lagrange multipliers for constrained optimization

Be able to integrate in two and three dimensions

Be familiar with some applications of integration in higher dimensions. Evaluate vector and scalar surface integrals

Use the divergence theorem, Green's theorem, Stokes' theorem and fundamental theorem of calculus

for integration

Evaluate triple integrals in Cartesian, cylindrical, and spherical

coordinates Evaluate double integrals using Jacobians and changes of

coordinates Calculate gradients and directional derivatives

Grading Breakup and Policy

Assignment(s): 15% Midterm Examination: 30% Final Examination: 55%

Examination Detail			
Midterm Exam	Yes/No: Yes Combine/Separate: Combine Duration: 75min Preferred Date: Exam Specifications: No notes/No books/No calculators		
Final Exam	Yes/No: Yes Combine/Separate: Combine Duration: 180min Exam Specifications: No notes/No books/No calculators		

DURSE OVERVIEW			
Module	Topics	Recommended Readings	Objectives/ Application
1	Sequences and tests for convergence	10.1-10.5	Sequences and series
2	Series and tests for convergence	10.1-10.5	Sequences and series
3	Taylor series	10.1-10.5	Taylor series
4	Vectors in two and three dimensions	11.1-11.3	Vectors
5	Surfaces and level curves	13.1	Derivatives
6	Partial derivatives	13.2	Derivatives
7	Linear approximations	13.4	Derivatives
8	Directional derivatives	13.5	Derivatives
9	Chain rule	13.5	Derivatives
10	Optimization	13.6	Optimization
11	Constrained optimization by Lagrange multipliers	13.7	Optimization
12	Double integrals	14.1	Integrals
13	Double integrals by change of coordinates	14.2	Integrals

Lahore University of Management Sciences

14	Triple integrals	14.3-14.4	Integrals
15	Vector fields, div, grad, curl	15.1	Derivatives
16	Line integrals	15.2	Integrals
17	FTOC for line integrals	15.2	Integrals
18	Green's theorem	15.3	Integrals
19	Surface integrals of vector fields	15.4	Integrals
20	Surface integrals of scalar fields	15.4	Integrals
21	Divergence theorem	15.5	Integrals
22	Stokes' theorem	15.6	Integrals
23	Physical applications of the three big theorems	Handout	Integrals

Textbook(s)/Supplementary Readings

Text: James Stewart, 6th Edition

Calculus by Gilbert Strang (Also available as online text from MIT open courseware) http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm

Thomas' Calculus, 11/E George B. Thomas, Jr. or a similar text may also be used.