Linear Transformations, and matrices.

Def. Let V and V be the vector spaces. A function

T: V -> V is a linear transformation if, for all vi, vz & V

and co V, we have

$$T(\vec{v_1} + \vec{v_2}) = T(\vec{v_1}) + T(\vec{v_2})$$

$$T(\vec{v_1}) = cT(\vec{v_1}).$$

Examples with 122.

Define
$$T_1:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_2\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$T_2\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Drow pictures
$$T_3\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$$

$$T_4\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$$

$$T = T_{5}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} \frac{1}{2} \times + \frac{1}{2} \times \\ \frac{1}{2} \times + \frac{1}{2} \times \end{bmatrix}.$$

Can we draw a picture?

$$T_{S}(\begin{bmatrix} 0 \end{bmatrix}) = \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}$$

$$T_{S}(\begin{bmatrix} 0 \end{bmatrix}) = \begin{bmatrix} -\sqrt{2} \\ \sqrt{3}/2 \end{bmatrix}$$

$$T_{S}(\begin{bmatrix} -1 \\ 0 \end{bmatrix}) = \begin{bmatrix} -\sqrt{3}/2 \\ -1/2 \end{bmatrix}, \quad T_{S}(\begin{bmatrix} 0 \\ -1 \end{bmatrix}) = \begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix}$$

$$T_{S}(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = T_{S}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) + T_{S}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} \sqrt{3} - 1 \\ \sqrt{2} + 1 \end{bmatrix}$$

(2)
$$T(\vec{v}) \cdot \vec{v} = |T(\vec{v})| \cdot |\vec{v}| \cos(30^\circ)$$
.

$$|f|_{Y}^{2} = |Y|_{Y}^{2} + |Y|_{Y}^{2}$$

$$|T|_{Y}^{2} = |Y|_{Y}^{2} + |Y|_{Y}^{2} +$$

$$|0| \frac{19_{1} p.^{3}}{(2)} + \sqrt{(7)} \cdot \sqrt{2} = x \cdot \left(\frac{\sqrt{3}}{2} x - \frac{1}{2} y\right) + y \cdot \left(\frac{1}{2} x + \frac{\sqrt{3}}{2} y\right)$$

$$= \frac{\sqrt{3}}{2} x^{2} - \frac{1}{2} x y + \frac{1}{2} x y + \frac{\sqrt{3}}{2} y^{2} - \frac{\sqrt{3}}{2} (x^{2} + y^{2}).$$

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -y \\ x \end{bmatrix}.$$

Figure out what angle rotation they are and prove it in the same manner.

Extra Credit. Figure out the pattern and write down a matrix representing rotation by 0.

Example. Do the same for
$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y \\ y \end{bmatrix}$$

10/19, p.4. Proposition. Linear transformations : R2 -> P2 are those which we can write of the form T([Y]) = [ax + by] for some $a, b, c, d \in \mathbb{R}$. Notation. The associated motrix is [a b]. Write [a b] [x] for above. Observations. (1) If T: P2 -> 12? is any linear transformation, T([0]) = [0](2) what if T sends every vector to 0? Clearly, $\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Conversely: Suppose {ax + by = 0 for all [4]. Then plug in x=1, y=0: a=c=0. Plug in x=0, y=1: b=d=0. (3) Suppose T([o]) and T([i]) are nonzero and Dorallel. i.e. T([']) = w, T([']) = xw for some XFIR.

Then $T([x]) = xT([o]) = \overline{w}$, $T([o]) = \lambda \overline{w}$ for some $\lambda \in \mathbb{R}$ $= x \cdot \overline{w} + y \cdot \lambda \overline{w} = (x + y \lambda) \overline{w}$.

This means the image of T lies on a line

10/19, p.5.

(4) Suppose T([0]) and T([0]) are linearly independent.

Now T([Y]) = XT([0]) + YT([0]).

Three observations.

* What if this is 0? BY HNPOTHESIS X = Y = 0.

So then T([0]) = 0 and $T([Y]) \neq 0$ if [Y] = 1[0]+ Saw before, T([0]) and T([0]) span IR^2 .

This means, the range of T is all of IR^2 .

* Now, suppose $T(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}) = T(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix})$.

Then $T(\begin{bmatrix} x_1 - x_2 \\ y_1 - y_2 \end{bmatrix}) = T(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}) + T(\begin{bmatrix} -x_2 \\ -y_2 \end{bmatrix})$ $= T(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}) - T(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}) = \sigma$ By linear independence, $x_1 - x_2 = \sigma$ i.e. $x_1 = x_2$ $x_1 = x_2$ $x_1 = x_2$

This means T is one - to- one and outo.

If T has metrix [ab], its inverse has motrix

\[\lambda d - bc \left(-ca \right). \]

10/21, p.1.

suppose we have an mxn motrix

This represents a linear transformation from IR" to IR".

If we write T for it,

$$T\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} a_{1,1} \\ a_{m,1} \end{bmatrix}$$

Cu entries

$$\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} a_{1,2} \\ a_{m,2} \end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\i\\0\end{bmatrix}\right) = \begin{bmatrix}a_{i},u\\i\\a_{m},n\end{bmatrix}$$

Therefore,

$$T\left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}\right) = x_1 T\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) + \cdots + x_n T\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$$

$$= \begin{bmatrix} x_1 a_{1,1} + \cdots + x_n a_{1,n} \\ \vdots \\ x_1 a_{m,1} + \cdots + x_n a_{m,n} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

$$T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 3 \\ 2 \\ 0 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 4 \\ 5 \\ 3 \\ 1 \end{bmatrix}.$$

And,
$$T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = \begin{bmatrix}5\\1\\4\\2\\9\\3\end{bmatrix} \begin{bmatrix}2\\0\\3\end{bmatrix} = \begin{bmatrix}22\\21\\13\\15\end{bmatrix}$$

Example. Compute all V for which
$$T(V) = 0$$
.
This is the nullspace or kernel of T.

$$\begin{bmatrix} 5 & 14 \\ 3 & 15 \\ 2 & 93 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} 5x_1 + x_2 + 4x_3 = 0 \\ 3x_1 + x_2 + 5x_3 = 0 \\ 2x_1 + 9x_2 + 3x_3 = 0 \end{cases}$$

$$5x_1 + x_2 + 4x_3 = 0$$

 $3x_1 + x_2 + 5x_3 = 0$
 $2x_1 + 9x_2 + 3x_3 = 0$
 $6x_1 + 8x_2 + x_3 = 0$

[5 | 4 | 0] 3 | 5 | 0 2 9 3 | 0]. You know how to do this!

0/21, p. 3. Nore Hw: 6.1 A (11a-c), 12-14. Multiplying motrices. Given: nxr matrix $\begin{bmatrix} a_{i,1} & \cdots & a_{i,n} \\ \vdots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix}$ The result is the mxr matrix. Entry in row i and column jo (column j). Note that if you regard a vector in IR" as an ux) motrix, matches above. Nese stand for functions

of columns

of rows

Till To IR

To IR

To IR

To IR These stand for functions and the product of the metrices corresponds to the composite function T, . T2: 12 -> 12" $T_1 \circ T_2(\vec{v}) = T_1(T_2(\vec{v}))$ in IR m

10/24 P-2, Matrices and probability. spoce:
If one day is sunny, testossed will be Schooldy (20%, charce)
(Sunny (80%, charce) Spece: If one day is cloudy, next day is Scloudy (50% chance) sunny (50% chance) Ex. Suppose there is a 70% chance Saturday will be sunny. What is the probability Sunday is? 0.7.0.8 + 0.3.0.5 = 0.71. Prob Sat and Prob Set cloudy Sun both sunny Sun sunny Ex. Today is cloudy? Prob it will be cloudy in too days? Figure toworrow first (0.5) Then the days: 0.5.0.5 + 0.5.0.2 = 0.35. tomorrow, tomorrow is sunny both sunny two days from now cloudy two days from now both sunny To keep trock of this, write down a stochastic transition matrix 0.8 0.5 Sunny
Tomorrow
0.2 0.5 Cloudy

Columns sum to 1, because no mother what today is, prob 100% that something hoppens tomorrow.

25.00 Do obore computations ul natrices. eig. it Saturday is sunny ul prob. 0.7, cloudy ul prob 0.3 corresponds to a vector [0.7] So Sunday probabilities are [0.8 0.5][0.7]. Monday probabilities are [0.8 0.5][0.8 0.5][0.7] $= \begin{bmatrix} 0.36 & 0.74 & 0.65 \\ 0.26 & 0.35 \end{bmatrix} \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}.$ This is a transition matrix that predicts the days in advance. Predict three days in odurne: [0.74 0.05] [0.8 0.5]

= [0.722 0.695] [0.278 0.305] and so on.

This is a Markov chain: Consists of:

* A finite set of states. The "system" can be in exactly one

of A transition metrix, describing the chances that the system of the state is to state is as above.

+ Transitions are "memoryless".

e.g. Assume (wrongly) telespertonocron's weather depends only on today.

10/25 0.4. Further examples. Politics. Soy, Ese states: precise À certain district votes democratic or republican. [0.3 0.7]D To. Question. What is [0.3 0.7]? Con you guess? 0.49994... ludded, lim [0.7 0.3] = [0.5 0.5]. Stock market: A given week can be a bull market (prices up) flot. Transition metrix 0.15 0.075 0.025 0.075 0.05

10/25 p-5. (Really 10/27) Def. If T is a linear transformation, a steady state vector \vec{V} is a vector with $T(\vec{V}) = \vec{V}$. [Later we will be interested in eigenventors, satisfying] the more several property $T(\vartheta) = \lambda \vartheta$ for some real λ .] How to find them? w to find them.

Write down a matrix M cornes pouding to T.

Solve

Let I be the identity matrix $I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$ which satisfies IV = V for every V. So this is the same as solving $M\vec{v} = \vec{v}$ or $(M - \vec{v}) \vec{v} = \vec{o}$. Ex. With our weather Morkov chain we had M= [0.8 0.5] $M - I = \begin{bmatrix} -0.2 & 0.5 \\ 0.2 & -0.5 \end{bmatrix}$ (subtract | from diagonal) Solve $\begin{bmatrix} -0.2 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -0.2 & 0.5 & 0 \\ 0.2 & -0.5 & 0 \end{bmatrix} \xrightarrow{Add P1 + 0} \begin{bmatrix} -0.2 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ MUL BI PA [1 -5.5 | 0]

10/22 p-6. The solution is: X2 anything, X, -2,5 X2 = 0 X, = 2,5 X2 except we want $x_1 + x_2 = 1$. (we want a probability vector) S_0 , $2.5 \times_2 + \times_2 = 1$, $\times_2 = \frac{2}{7}$ $x_1 = 5/7$. Conclusion, $\begin{bmatrix} 0.8 & 0.5 \\ 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 3/7 \\ 1/7 \end{bmatrix} = \begin{bmatrix} 5/7 \\ 2/7 \end{bmatrix} \cdot \begin{bmatrix} .71428... \\ .28571... \end{bmatrix}$

Now, $\begin{bmatrix} 0.8 & 0.5 \\ 0.2 & 0.5 \end{bmatrix}^5 = \begin{bmatrix} .71498 & .71255 \\ .78502 & .28745 \end{bmatrix}$

[0. \(\cdot \) 0. \(\sigma \) \(\sigma \)

Conclusion: According to the Morkov model, today's neother doesn't have a significant long term effect.

Theorem. If a Markov chain is "irreducible" and "aperiodic" confficient condition: no zeroes or ones) then it converges to a matrix whose columns one all the unique cheedy state.