1 1	duction
しんてひひ	W/HUW

Ref. L7: copen., V, cm.

- The & produt in Pals is bad. Ex. $\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{R}$, $\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Z}_p \mathbb{Z}_p$.
- · What we will do is a Boudield localisal.
- 1 We wish to first full subjects. (Thm 5.8:)

Stil E+ Ceb. Der: D(SLil) E+ D(Pal).

Con. @ be mon. functors. Indoe sym, man. Sur. The 6.2.

 $M \otimes_{\mathcal{O}} \mathcal{V} := (M \otimes \mathcal{V})_{\mu}, \quad G \otimes_{\mathbb{T}_{\mathbf{U}}} G_{1} := (G \otimes_{\mathbb{C}})_{\mu}$

- O Suffice: 14 on prog.gen. 22(5),5 € Ed. Require: 22" · ~ 74
 - Cor: Z[[[T]], Z/p are M Solid.

 Pf: Thm S.8: + O as Z/2 = Z/
- ② We know: YS mofn S~1in Si 2 map.
 Sissie.

ZTSJ - Lizzzsij = Lin zzsij.

Dustin: we define ma in the "most rompleted" sende.

Detn: ZCSI := Lim ZCSi) VS ~ Lim Si S prot.

- · Ue have defined this funtr on ept. 1000; dry.
- · Cos. Cab

 i Cos (Use).

Nota.

Cas := Cand (Ah), e:= Cand (Sut).

Top := 1-cat of top. spcs

D(Cas) := Deived (Ox) cat of. Cab.

K= a st (juit. Un. Cord.

Kcg:=Kcotlo gen.

- - ofwrie.

 7.3. SAL.: Provided that

 we prove (man) = 5 (m 8 n).

 and Similary for 8 ll.

 "Induced" -5 via forcing.

 Localisation. Str. nomidal.
- · Sens spc are pulite spcs.
- · 14 X & Top
 - Pro(Full) Topicon

 (T) tech

 (S,) is 2 His Si.

· Par := cp proj. obj of Pas = f. sw of zeros, sers.

سخ

. Solid abolian Cups.		
ZCS] := Lim ZCSi] AS = Lim Si S prot.		
• Leternines our counit: $\frac{1}{2LCS}$ $\frac{1}{2LCS}$ $\frac{1}{2LCS}$ $\frac{1}{2LCS}$ $\frac{1}{2LCS}$ $\frac{1}{2LCS}$ $\frac{1}{2LCS}$		
Detn: A & Color A' & D(Cal) is solid iff it is local with		
ie. Homens (2(5), A) = Harel (2(5), A). 45 pfur RHmens (2(75), A) = RHmel (2(75), A). "	· Negard. X & Pal	n Tilas) y xTo]
(2/75), A) - RHAMEL (2/75), A). "		
hoal: • Understad ZZZSJ**:	. 5 1 10	د . به
hoal : · Understad ZZCSI* : "I mease are of s" it is sulid.	· > profite	<u>3</u>
· it is solid. • It has a geometric Interptation.	· Cas	
· Ideas behind the arguments.		
· Reduction to finte core. · Importance of Thm 1.7:		

Computation of ZCS] S -> 1:m S; profinite	
inst live ps32	· There is an include of ritos.
Prop: ZCS) ~ Homeas (C(S,Z), Z).	Ed -> Pro Fu -> CHaus.
	whose associated to pos
Pt. Step 1: Reduce to finite care: lim C(Si, Zi) = C(S, ZL).	ar equidet.
· In general: let A have disc. top.	(Hore the acress, ones too).
· S is chaus: let f a CCS, A) In f is CPt, hence finite.	
so. f e C(s;,2) ex come i. In jectivity t topology: standard.	
· ths: Homeas (C(S, 24), Ze) & lim; Homeas (C(S;, Ze), Ze)	
· las! is by dutin Lin 2001;].	
Step 1: disc: PA & PA. Ventical map iam, Aut. coproduct.	· Disc. Cops & 1c. House C G. Alose
I frite.	· Top Set.
Thuite.	: columnes of discrepc. is.
to rehie to face. Als., the state.	ط:sc.
	· Colinit's and limits in.
NTS. C (T, ⊕A) ~ ⊕ C(T,A). A ⊂ DIS Set/Ab.	\$6(Bhu (Edx)) are CPE Pt use.
We con flist reduce to T fin:	· The suf condition is twish schieb as cod.
· As stepo. Godonan & discrete, unite both sides va lin	is alo. cet.: fin prod=copol
· Piltuch colin comm. fin. lim in Ab, Set.	
· · · · · · · · · · · · · · · · · · ·	· There is a monadic obj.
· For finite set 7, domin is disc. so	Alo Set
TI O A ~ O TI A. true in hoth Ab, set	
··· - 1 (· O priseres · filtred colint.
step2 Horizontal maps conte with Colints.	funte copolts
· adja with foful functor.	Here unfine coproduts.
Step 3 ZCED = QZ ~ ZKIS] For S Finite.	
Homer (S(E), A) = Hown g(S, A) = TT Home(*, A).	
Homens (\$7,A) = TI Hamen(22,A) = To Hune(*,A).	
Step? => Z/[s] & Han (C(5,2), ZL). for S finite. 12	

heometic Interpreted of Homeac (CCS, XL), ZL) = ZC(5)	
	· Car(AIB) = cus so how
· Reall from the 42. Here is the exicled emb.	with cost open topoly.
LCA Complete	
Hompas (A,B) ~ Cab(A,B).	
· So the varying set. of 20053 (*) = Cos (C(S, 14), 1/2).	· If XE Cab not news.
Prop: C(5,7/), 1/2 (C(5i,7/), 5 2 1/25;	
· ic gen. over 2 by idemports f= 2 f(s) f(1()) · By 1, 1 is chopen set. 11 = 5.	dopen = closed + open.
Pf: · finite : mage. · Preinge on each Valve is clopen. D	
Elevet in Hamory (C(S, ZL), ZL) is an add assignment	
· If U, V c> s disjoint cloper. 14 -> du. 14 -> du	A meure s on add assig
The furtly >> dutdy.	to the moosuable set.
· Regard The set as spee of ness M(S,XL)	
· Nat does it man if M is sulil?	
Haz(205], M) ~ Hugs(205], M).	
Ex: Let us tale & finte. M disc, ab. gg.	
· M(S, 1/2) ~ an assignment 1:1s > Ms E.M. weight	
· an element this is a fution.	
8 - 7 M f(s) eM	
8 - > M f(s) eM	
Euser as e 2.	
· An eleve the : is integration.	
IF: M >> JFM:= Zods f(s) Ms 12	

Thu , f Nobling: C(S, ZL) is free abelian sp.	dechoc.
Forcits.	Defri: A set 2. is an ardial.
Thm. 97.2. Prop: let RECALS. idehing 1. Autin go At tousin free.	i) it & transtruction.
If R is generated as a ing by a set E. of indusports.	i) it is transtrue: every what of T is salt
Rtis a free abelian gp. geri. elements ove fin- grod of cle of E.	A liner orb en a set ? c
70	in our on it and we can in the
Pf: Step 1. Pide a well only of E. i.e. E = X an ordinal	a lint.
i.e. we given a well order SEOSE, < L = SEN: Mch.S.	d . xep. o price we also vegue to be a linea orde.
•	
ef elevese of E. • Et of all finite produts: Ex Ex. is ordered lexicocycles.	
1 is minimal elect.	trasporto induction: let & be ours of and.
	ii) of a cesaulec.
Step ? Claim: The produte &, & that are not 2-liner combine of.	The C is clear if all which.
Smaller produte, form a hatic.	·
To under the lexicographic orderies.	· Trans ind usually with
Step 3: prove by transf. Induction. Easy rases.	
λ=6: Then E is empty. so R is Z or 0.	axiom of choice.
I is limit brdinal: stitlered edich by propule of ordina.	Ceneral Procedure:
. The R - lim Ro, Rr is granded by Eget, with ex	σ. • εσ, εσ _k > ετ, ετ;
Since if reR, thr. 3 some finder ordinal Zcx. St. reRz.	۱۴ ح ، > ح ،
· Also Ex = lim Er, Er is base deflood by (*1.	. Then about Perzy?. At one pt. Okry
	· Example. < 8, < 8, < 8, 8, < 82 < 8, 8, < 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
Stapk > is a successor ordinal. >= e+1 e is oxidad; >= e u fe3.	2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×
· let Re subring gen. by. Er, PCP Haing hasis Ee. [Ee]	
· · · · · · · · · · · · · · · · · · ·	•
" let Ee=E. Then: ERp = ER. is a signiff with the.	rtit
There is a go sur ER-> Bree.	us a set by طارا = طال علاد.
0.0	
Hare indus nener ~ Pre ~ R.	
	henry thy:
4a: R is tusia free: this is proven by show Rener & pure in ER.	Thm: Quotia of tf. ap. is tf.
	precisely use its subject to pure.
· Collect the facts.	Pure sulgp Vol 1. of he Book.
Re is gen. by (Eq.) oze. Basis.: Eq Ear.	Pota: a sulap & A & pure.
R is gan. by (\overline{ce}) = e. Basis: \overline{ce} = \overline{ce}	if alg in A => alg w B.
Inductive Lypothus applies. Ex is preeded, lift of bus of R.	geh n×=9 KeA 2 xeh
· We have exact seq. of ab.gps.	Ex. Re is pure in R.
$\sigma \rightarrow R_{\ell} \longrightarrow R \longrightarrow \overline{R} \longrightarrow \sigma$	
Stategy: apply indutive 1500- to the, R. = MB B is pure.	ER. is pure in R. (15)
sartagy appropriately stop of the same is true.	lem: linter set in of pure subject.
Kon step in strig R is torsion, freq: we can vedore	are ogin pro. In tf.
a SE,, E e 3 es a orthogol ideproports	Pf: solin is rige.
~ <1, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Induces lea

··· - Ti, RHum (C, 24) -> Ti, RHum (A, 26)

Thin Rite (C, Z) -> ...

The B(L) has +8+1.

B(L) no = Ha(N =0 + 1 < 0

B(L) 70 = Ha(N =0 + 1 > 0

B(L) 20 = L.

1.3.2-19: to at cat. with engl proj.

RHan (Ty 7/2).	
Step 2: lhs. chose 160 Tyze = zasja	
" We use our knowlege of IR, Trak/2, " Exists stid exact seque. 0727111110	· From Thy 4R.
lemma: The embelding LCA Completed Constraints Sends skickly exact seques 40 exact seques 0 -> Thy 24 -> Thy R -> That on the constraints of the c	condensed moths, 4.8
RHan(TyT, 74) ← RHan(TyR, 2) ← RHan(Ty2).	e des led slig.
Cab a Ca Ca CR Homper	
· RHuz (Typ, x) = Rhonp (Typ, Rtonz (R, ZL))	· Th 4,3 RHaz, (R, 1/) 20.
2b. RHan (TlyTl, 12) 2 \$ 12 [-1] Now apply les. which shifts degree 2.	· Thu 4.3 RHun(Tly T(2) 20,

· A rendensed set. is TE e = 1:x ex.

CK := Shu (Pro(Think)

· It is a slif on profinite. site. that is the on K-profinite site for some 14.

· Top yond, Shu (Pro (Tu),

- · In CHAus to proj obj. are Ed Sets.
- · Fullwis of Pas (A,B) en be choded at x.
- · all most all spee of wherese: loc. cpe. (2) aplex. are egtz.
- · Ex:1.9. explains how Lab Sus" K-LCAS.