Goal: The space between two parallel conducting plates each having an area S is filled with an inhomogeneous ohmic medium whose conductivity varies linearly from σ_1 at one plate (y=0) to σ_2 at the other plate (y=d). A d-c voltage V_o is applied across the plates as shown below. Find the resistance between the plates, the surface charge density on the plates, and the amount of charge between the plates.

Steps:

1. Write an expression for $\sigma(y)$. Solution:

$$\sigma(y) = \sigma_1 + (\sigma_2 - \sigma_1) \frac{y}{d}$$

2. Write an expression relating **E** and $\sigma(y)$. Solution:

$$\mathbf{E} = \frac{\mathbf{J}}{\sigma} = -\mathbf{a}_y \frac{J_o}{\sigma(y)}$$

3. Find the total resistance between the two plates.

Solution:

$$V_o = -\int_0^d \mathbf{E} \cdot \mathbf{a}_y dy = \frac{J_o d}{\sigma_2 - \sigma_1} \ln \frac{\sigma_2}{\sigma_1}$$

Then

$$R = \frac{V_o}{I} = \frac{V_o}{J_o S} = \frac{d}{(\sigma_2 - \sigma_1)S} \ln \frac{\sigma_2}{\sigma_1}$$

4. Find the surface charge densities on the two plates.

Solution: Upper plate:

$$\rho_s = \varepsilon_o E_y(d) = \frac{\varepsilon_o J_o}{\sigma_2} = \frac{\varepsilon_o (\sigma_2 - \sigma_1) V_o}{\sigma_2 d \ln(\sigma_2 / \sigma_1)}$$

Lower plate:

$$\rho_s = \varepsilon_o E_y(0) = \frac{\varepsilon_o J_o}{\sigma_1} = \frac{\varepsilon_o (\sigma_2 - \sigma_1) V_o}{\sigma_1 d \ln(\sigma_2 / \sigma_1)}$$

5. Find the volume charge density and the total amount of charge between the plates. Solution:

$$\rho = \nabla \cdot \mathbf{D} = \frac{d}{dy} (\varepsilon_o \mathbf{E}) = \varepsilon_o J_o \frac{(\sigma_2 - \sigma_1)}{d \left(\sigma_1 + (\sigma_2 - \sigma_1) \frac{y}{d}\right)^2}$$

Now, integrate the above expression from y=0 to y=d yields

$$Q_{\text{total}} = \varepsilon_o J_o \left(\frac{1}{\sigma_1} - \frac{1}{\sigma_2} \right)$$

Answer:

(a) $R = \frac{d}{(\sigma_2 - \sigma_1)S} \ln \frac{\sigma_2}{\sigma_1}$

(b) Upper plate: $\rho_s=\frac{\varepsilon_o J_o}{\sigma_2}=\frac{\varepsilon_o(\sigma_2-\sigma_1)V_o}{\sigma_2 d\ln(\sigma_2/\sigma_1)}$

Lower plate: $\rho_s=\frac{\varepsilon_o J_o}{\sigma_1}=\frac{\varepsilon_o(\sigma_2-\sigma_1)V_o}{\sigma_1 d\ln(\sigma_2/\sigma_1)}$

(c) $Q_{\text{total}} = \varepsilon_o J_o \left(\frac{1}{\sigma_1} - \frac{1}{\sigma_2} \right)$