Two problems concerning Hausdorff measures and the Lebesgue measure

Tatsuya Goto

Kobe University

July 6, 2022 at IMS Logic Summer School 2022

Introduction of me

- Tatsuya Goto
- a doctoral student 1st year at Kobe University in Japan
- Twitter: @goto_math
- web page: https://t-goto.jp/

Table of contents

1 Cardinal invariants on Hausdorff measures

2 Goldstern's theorem

1 Cardinal invariants on Hausdorff measures

2 Goldstern's theorem

Motivation

Cardinal invariants defined by the null ideal and the meager ideal have been well studied for a long time and are summarized in Cichoń's diagram:

We would like to consider cardinal invariants defined by Hausdorff measures, which do not appear in Cichoń's diagram, and investigate their relationships.

Ideals defined by Hausdorff measures

We consider the Cantor space $(2^{\omega}, d)$, where

$$d(x, y) = 2^{-\min\{n: x(n) \neq y(n)\}}$$
 (for $x \neq y$).

For a gauge function f, we define the f-Hausdorff measure 0 ideal by

$$\mathcal{N}^f = \{A \subseteq 2^\omega : \mathcal{H}^f(A) = 0\}.$$

And we put

$$\mathrm{HDZ} := \{A \subseteq 2^{\omega} : \dim_{\mathrm{H}}(A) = 0\} = \bigcap_{s>0} \mathcal{N}^{\mathsf{pow}_s},$$

where the gauge function pow_s (s > 0) is given by

$$pow_s(x) = x^s.$$

Expansion of Cichoń's diagram

Relations with Yorioka ideals

- There are ideals called Yorioka ideals, which are parametrized by reals and have a combinatorial definition.
 We showed a relation between Hausdorff measure 0 ideals and Yorioka ideals:
 - $\forall f \exists g \ (\mathcal{I}_g \subseteq \mathcal{N}_f)$
 - $\forall g \; \exists f \; (\mathcal{N}_f \subseteq \mathcal{I}_g)$
- Using prior studies on Yorioka ideals and this fact, we got the following:

Theorem (G.)

 \aleph_1 many cardinals of the form $cov(\mathcal{N}_f)$ can be separeted and \aleph_1 many cardinals of the form $non(\mathcal{N}_f)$ can be separated.

Also we showed $\mathcal{I}_{id} \subseteq HDZ$.

Further results

Shelah and Steprāns showed for every s>0, $\operatorname{non}(\mathcal{N}_s)$ and $\operatorname{non}(\mathcal{N})$ can be separated. Here $\mathcal{N}^s=\mathcal{N}^{\operatorname{pow}_s}$ is s-dimensional Hausdorff measure 0 ideal.

We showed the following:

Theorem (G.)

This separation can be done by iterated Mathias forcing.

And we also showed that cov(HDZ) and non(HDZ) are stable under changing underlying space from 2^{ω} into n-dimensional Euclidean space \mathbb{R}^n for each n.

Open questions

- Can we generalize the underlying spaces of HDZ further?
- Does ZFC prove that $cov(HDZ) = cov(\mathcal{I}_{id})$ and $non(HDZ) = non(\mathcal{I}_{id})$?
- Does ZFC prove that $add(HDZ) \le \mathfrak{b}$ and $\mathfrak{d} \le cof(HDZ)$?
- Does ZFC prove that add(HDZ) = add(N) and cof(HDZ) = cof(N)?
- Does ZFC prove that for every 0 < s < t < 1, $non(\mathcal{N}_s) = non(\mathcal{N}_t)$? (Shelah–Steprāns)

1 Cardinal invariants on Hausdorff measures

2 Goldstern's theorem

Goldstern's theorem

(full domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq x'$ by $(\forall n \in \omega)(x(n) \leq x'(n))$.

In 1993, Martin Goldstern proved the following theorem.

Goldstern's theorem (ZF + CC)

Let (Y, μ) be a Polish probability space. Let $A \subseteq \omega^{\omega} \times Y$ be a Σ_1^1 set. Assume that for each $x \in \omega^{\omega}$,

$$A_{\times} := \{ y \in Y : (x, y) \in A \}$$

has measure 0. Also, assume $(\forall x, x' \in \omega^{\omega})(x \leq x' \Rightarrow A_x \subseteq A_{x'})$. Then $\bigcup_{x \in \omega^{\omega}} A_x$ has also measure 0.

The principle $GP(\Gamma)$

Definition

Let Γ be a pointclass. Then $\operatorname{GP}(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has μ -measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also μ -measure 0.

Goldstern's theorem says that $GP(\Sigma_1^1)$ holds.

Main Result

The symbol "all" denotes the class of all subsets of Polish spaces.

Theorem (G.)

GP(all) is independent from ZFC.

Consistency of $\neg GP(all)$

In fact, the consistency of the negation follows from:

Theorem (G.)

Assume CH. Then $\neg GP(all)$ holds.

Consistency of $\neg GP(all)$

Refining the last theorem, we get the following theorem.

Theorem (G.)

Assume that at least one of the following three conditions holds:

```
\operatorname{add}(\mathcal{N})=\mathfrak{b},\ \operatorname{non}(\mathcal{N})=\mathfrak{b}\ \operatorname{or}\ \operatorname{non}(\mathcal{N})=\mathfrak{d}. Then \neg\operatorname{GP}(\operatorname{all}) holds.
```

```
\begin{split} \operatorname{add}(\mathcal{N}) &:= \min\{\kappa : \text{the null ideal is not } \kappa\text{-additive}\} \\ \operatorname{non}(\mathcal{N}) &:= \min\{|A| : A \subseteq 2^\omega, A \text{ does not have measure } 0\} \\ \operatorname{\mathfrak{b}} &:= \min\{|F| : F \subseteq \omega^\omega, \neg(\exists g \in \omega^\omega)(\forall f \in F) \ f <^* \ g\} \\ \operatorname{\mathfrak{d}} &:= \min\{|F| : F \subseteq \omega^\omega, (\forall g \in \omega^\omega)(\exists f \in F) \ g <^* \ f\} \end{split}
```

Consistency of $\neg GP(all)$

Assume that at least one of the following three conditions holds: $add(\mathcal{N}) = \mathfrak{b}$, $non(\mathcal{N}) = \mathfrak{b}$ or $non(\mathcal{N}) = \mathfrak{d}$. Then $\neg GP(all)$ holds.

```
\begin{split} \operatorname{add}(\mathcal{N}) &:= \min\{\kappa : \text{the null ideal is not } \kappa\text{-additive}\} \\ \operatorname{non}(\mathcal{N}) &:= \min\{|A| : A \subseteq 2^\omega, A \text{ does not have measure } 0\} \\ \mathfrak{b} &:= \min\{|F| : F \subseteq \omega^\omega, \neg(\exists g \in \omega^\omega)(\forall f \in F) \ f <^* \ g\} \\ \mathfrak{d} &:= \min\{|F| : F \subseteq \omega^\omega, (\forall g \in \omega^\omega)(\exists f \in F) \ g <^* \ f\} \end{split}
```


$$V = L$$
 implies $\neg \operatorname{GP}(\Delta_2^1)$

Refining the last proof in another way again, we get the following theorem.

Theorem (G.)

V = L implies $\neg GP(\Delta_2^1)$.

Consistency of GP(all)

Theorem (G.)

If ZFC is consistent then so is ZFC + GP(all).

In fact, "The Laver model" satisfies GP(all).

equal to \aleph_2 in the Laver model

equal to \aleph_1 in the Laver model

Connections with Σ_2^1 regularity

Theorem (G.)

 Σ_2^1 -LM implies $GP(\Sigma_2^1)$. And $GP(\Delta_2^1)$ implies $(\forall a \in \mathbb{R})(\exists z \in \omega^\omega)(z \text{ is a dominating real over } L[a])$.

$$oldsymbol{\Sigma}_2^1$$
-LM \longrightarrow $oldsymbol{\Sigma}_2^1$ -BP \longrightarrow $(orall a \in \mathbb{R})(\exists z \in \omega^\omega)$ (z is a dominating real over $L[a]$)
$$GP(oldsymbol{\Sigma}_2^1) \longrightarrow GP(oldsymbol{\Delta}_2^1)$$

AD and the Solovay model

Theorem (G.)

Assume ZF + AD. Then GP(all) holds.

Theorem (G.)

In the Solovay model, GP(all) holds.

Open questions

- **1** Does V = L imply $\neg GP(\Pi_1^1)$?
- 2 Is $ZFC + (\mathfrak{c} > \aleph_2) + GP(all)$ consistent?
- 3 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- **4** Is there a model of ZF satisfying that every set of reals are measurable and $\neg GP(all)$?
- **6** Is it possible to separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ for some (or every) $n \geq 2$ (without large cardinals)?

References

[CM19]

[SS05]

pp. 43-56.

	pp. 170-199. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.201800034.
[Gol93]	Martin Goldstern. "An Application of Shoenfield's Absoluteness Theorem to the Theory of Uniform Distribution.". In: <i>Monatshefte für Mathematik</i> 116.3-4 (1993), pp. 237–244.
[KM19]	Lukas Daniel Klausner and Diego Alejandro Mejía. <i>Many Different Uniformity Numbers of Yorioka Ideals</i> . 2019. arXiv: 1805.11005 [math.LO].
[OK14]	Noboru Osuga and Shizuo Kamo. "Many different covering numbers of Yorioka's ideals". In: Archive for Mathematical Logic 53.1-2 (2014),

Saharon Shelah and Juris Steprāns. "Comparing the uniformity invariants of null sets for different measures". In: Advances in

Mathematics 192.2 (2005), pp. 403-426.

Miguel A. Cardona and Diego A. Mejía. "On cardinal characteristics of Yorioka ideals". In: Mathematical Logic Quarterly 65.2 (2019)