Lecture 14 - Filters

Filters

- Circuit designed to retain certain frequency range but discard or attenuate others
 - Low-pass: pass low frequencies and reject high frequencies
 - High-pass: pass high frequencies and reject low frequencies
 - Band-pass: pass some particular range of frequencies, reject other frequencies outside that band
 - Band-reject (notch): reject a range of frequencies and pass all other frequencies

Filters - Realistic Curves

3

Passive Filters

- A filter is passive if it consists only of <u>passive</u> elements
 - R, L and C
- LC filters have been used in practical applications for decades
 - Very important circuits
 - many technological advances would not have been possible without the development of filters
 - LC filter technology feeds many areas
 - equalizers, impedance-matching networks, transformers, shaping networks, power dividers, attenuators, and directional couplers ...

First-Order RC Lowpass Filter

 A typical lowpass filter is formed when the output of a RC circuit is taken off the capacitor.

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{1}{1 + j\omega RC}$$

The -3dB (half power) frequency is:

$$\omega_c = \frac{1}{RC}$$

- Also referred as the <u>cutoff frequency</u>.
- Filter is designed to pass from DC up to ω_c.

First-Order RC Highpass Filter

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{1}{1 + \frac{1}{j\omega RC}}$$

 The cutoff frequency will be the same as the lowpass filter.

$$\omega_c = \frac{1}{RC}$$

• The difference being that the frequencies passed go from ω_c to infinity.

How about RL Circuits?

How about RLC Circuits?

Bandpass RLC Filter

$$\mathbf{H}_{\mathrm{BP}}(\omega) = \frac{\mathbf{V}_{\mathrm{R}}}{\mathbf{V}_{\mathrm{s}}} = \frac{R}{Z}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_{\rm c_1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c_2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}.$$

Example

(a) Design a series RLC bandpass filter with a center frequency $f_0=1\,\mathrm{MHz}$ and a quality factor Q=20, given that $L=0.1\,\mathrm{mH}$.

Bandstop (Bandreject) Filter

$$H_{BR} = V_{LC}/V_{s}$$

Example

 Determine what type of filter is shown below. Calculate the corner or cutoff frequency.

$$R = 2k\Omega$$
, $L = 2H$ and $C = 2\mu F$.

second-order lowpass filter $\omega_c = 0.742 \text{ krad/s} = 742 \text{ rad/s}$

Active Filters

- Passive filters have a few drawbacks.
 - Gain.
 - Impedance.

- It is possible, using <u>op-amps</u>, together <u>with resistors and capacitors</u>, to create all the common filters.
 - Their ability to isolate input and output also makes them very desirable.
 - Limited to frequency less than 1MHz.

Active Filters – Lowpass

(a) Inverting amplifier

$$H(\omega) = -\frac{Z_f}{Z_s}$$

(b) Phasor domain with impedances

Active Filters – Highpass

$$\mathbf{H}_{\mathrm{HP}}(\omega) = \frac{\mathbf{V}_{\mathrm{out}}}{\mathbf{V}_{\mathrm{s}}} =$$

Exercise

 Design a 1st order low-pass filter having a gain of 1 in the passband and a cutoff frequency 1 rad/s.

Bandpass

Cascading Active Filters

Active Bandpass Filter

Active Bandreject Filter

