

Sequence Listing

<110> de Sauvage, Frederic Carpenter, David A.

<120> Patched-2 Antibodies

<130> P1405R1C1

<140> US 09/293,505

<141> 1999-04-14

<150> US 60/081,884

<151> 1998-04-15

<160> 24

<210> 1

<211> 4030

<212> DNA

<213> Homo sapiens

<400> 1

gttatttcag gccatggtgt tgcgccgaat taattcccga tccagacatg 50 ataagataca ttgatgagtt tggacaaacc acaactagaa tgcagtgaaa 100 aaaatgcttt atttgtgaaa tttgtgatgc tattgcttta tttgtaacca 150 ttataagctg caataaacaa gttgggccat ggcggccaag cttctgcagg 200 tegaetetag aggateeeeg gggaatteeg geatgaeteg ategeegeee 250 ctcagagagc tgccccgag ttacacaccc ccagctcgaa ccgcagcacc 300 ccagatccta gctgggagcc tgaaggctcc actctggctt cgtgcttact 350 tocagggeet getettetet etgggatgeg ggatecagag acattgtgge 400 aaagtgetet ttetgggaet gttggeettt ggggeeetgg cattaggtet 450 ccgcatggcc attattgaga caaacttgga acagctctgg gtagaagtgg 500 qcaqccgqqt qaqccaqqaq ctqcattaca ccaaggagaa gctgggggag 550 gaggetgeat acacetetea gatgetgata cagacegeae gecaggaggg 600 agagaacate etcacaceeg aageaettgg cetecacete caggeageee 650 tcactgccag taaagtccaa gtatcactct atgggaagtc ctgggatttg 700 aacaaaatct gctacaagtc aggagttccc cttattgaaa atggaatgat 750 tgagtggatg attgagaagc tgtttccgtg cgtgatcctc accccctcg 800 actgcttctg ggagggagcc aaactccaag ggggctccgc ctacctgccc 850 ggccgcccgg atatccagtg gaccaacctg gatccagagc agctgctgga 900 ggagctgggt ccctttgcct cccttgaggg cttccgggag ctgctagaca 950

aggeacaggt gggeeaggee taegtgggge ggeeetgtet geaccetgat 1000 gacctccact gcccacctag tgcccccaac catcacagca ggcaggctcc 1050 caatgtggct cacgagctga gtgggggctg ccatggcttc tcccacaaat 1100 tcatgcactg gcaggaggaa ttgctgctgg gaggcatggc cagagacccc 1150 caaggagage tgctgaggge agaggeeetg cagageacet tettgetgat 1200 gagtececge cagetgtacg ageattteeg gggtgactat cagacacatg 1250 acattggctg gagtgaggag caggccagca cagtgctaca agcctggcag 1300 eggegetttg tgeagetgge ceaggaggee etgeetgaga aegetteeca 1350 gcagatccat gccttctcct ccaccaccct ggatgacatc ctgcatgcgt 1400 tetetgaagt cagtgetgee egtgtggtgg gaggetatet geteatgetg 1450 gcctatgcct gtgtgaccat gctgcggtgg gactgcgccc agtcccaggg 1500 ttccgtgggc cttgccgggg tactgctggt ggccctggcg gtggcctcag 1550 gccttgggct ctgtgccctg ctcggcatca ccttcaatgc tgccactacc 1600 caggtgctgc ctttcttggc tctgggaatc ggcgtggatg acgtattcct 1650 gctggcgcat gccttcacag aggctctgcc tggcacccct ctccaggagc 1700 gcatgggcga gtgtctgcag cgcacgggca ccagtgtcgt actcacatcc 1750 atcaacaaca tggccgcctt cctcatggct gccctcgttc ccatccctgc 1800 getgegagee ttetecetae aggeggeeat agtggttgge tgeacetttg 1850 tageegtgat gettgtette ceageeatee teageetgga eetaeggegg 1900 cgccactgcc agcgccttga tgtgctctgc tgcttctcca gtccctgctc 1950 tgctcaggtg attcagatcc tgccccagga gctgggggac gggacagtac 2000 cagtgggcat tgcccacctc actgccacag ttcaagcctt tacccactgt 2050 gaagecagea gecageatgt ggteaceate etgeeteece aageceacet 2100 ggtgccccca ccttctgacc cactgggctc tgagctcttc agccctggag 2150 ggtccacacg ggaccttcta ggccaggagg aggagacaag gcagaaggca 2200 gcctgcaagt ccctgccctg tgcccgctgg aatcttgccc atttcgcccg 2250 ctatcagttt gccccgttgc tgctccagtc acatgccaag gccatcgtgc 2300 tggtgctctt tggtgctctt ctgggcctga gcctctacgg agccaccttg 2350 gtgcaagacg gcctggccct gacggatgtg gtgcctcggg gcaccaagga 2400 gcatgccttc ctgagcgccc agctcaggta cttctccctg tacgaggtgg 2450 ccctggtgac ccagggtggc tttgactacg cccattccca acgcgccctc 2500

tttgatctgc accagegett cagtteeete aaggeggtge tgeeeceaee 2550 ggccacccag gcaccccgca cctggctgca ctattaccgc aactggctac 2600 agggaateca ggetgeettt gaccaggaet gggettetgg gegeateace 2650 cgccactcgt accgcaatgg ctctgaggat ggggccctgg cctacaagct 2700 gctcatccag actggagacg cccaggagcc tctggatttc agccagctga 2750 ccacaaggaa gctggtggac agagagggac tgattccacc cgagctcttc 2800 tacatgggge tgacegtgtg ggtgageagt gaceceetgg gtetggeage 2850 ctcacaggcc aacttctacc ccccacctcc tgaatggctg cacgacaaat 2900 acgacaccàc gggggagaac cttcgcatcc cgccagctca gcccttggag 2950 tttgcccagt tccccttcct gctgcgtggc ctccagaaga ctgcagactt 3000 tgtggaggcc atcgaggggg cccgggcagc atgcgcagag gccggccagg 3050 ctggggtgca cgcctacccc agcggctccc ccttcctctt ctgggaacag 3100 tatctgggcc tgcggcgctg cttcctgctg gccgtctgca tcctgctggt 3150 gtgcactttc ctcgtctgtg ctctgctgct cctcaacccc tggacggctg 3200 gcctcatagt gctggtcctg gcgatgatga cagtggaact ctttggtatc 3250 atgggtttcc tgggcatcaa gctgagtgcc atccccgtgg tgatccttgt 3300 ggcctctgta ggcattggcg ttgagttcac agtccacgtg gctctgggct 3350 tectgaceae ecagggeage eggaacetge gggeegeeca tgeeettgag 3400 cacacatttg cccccgtgac cgatggggcc atctccacat tgctgggtct 3450 geteatgett getggtteee aetttgaett eattgtaagg taettetttg 3500 cggcgctgac agtgctcacg ctcctgggcc tcctccatgg actcgtgctg 3550 ctgcctgtgc tgctgtccat cctgggcccg ccgccagagg tgatacagat 3600 gtacaaggaa agcccagaga teetgagtee accageteea cagggaggeg 3650 ggcttaggtg gggggcatcc tcctccctgc cccagagctt tgccagagtg 3700 actaceteca tgacegtgge catecaceca ecceeetge etggtgeeta 3750 catecateca geoectgatg ageoecettg gteceetget gecaetaget 3800 ctggcaacct cagttccagg ggaccaggtc cagccactgg gtgaaagagc 3850 agctgaagca cagagaccat gtgtggggcg tgtggggtca ctgggaagca 3900 ctgggtctgg tgttagacgc aggacggacc cctggagggc cctgctgctg 3950 ctgcatcccc tctcccgacc cagctgtcat gggcctccct gatatcgaat 4000

tcaatcgata gaaccgaggt gcagttggac 4030

<210> 2 <211> 1203 <212> PRT <213> Homo sapiens														
<400> Met 1		Arg	Ser	Pro 5	Pro	Leu	Arg	Glu	Leu 10	Pro	Pro	Ser	Tyr	Thr 15
Pro	Pro	Ala	Arg	Thr 20	Ala	Ala	Pro \	Gln	11e 25	Leu	Ala	Gly	Ser	Leu 30
Lys	Ala	Pro	Leu	Trp 35	Leu	Arg	Ala	Tyr	Phe 40	Gln	Gly	Leu	Leu	Phe 45
Ser	Leu	Gly	Cys	Gly 50	Ile	Gln	Arg	His	Cys 55	Gly	Lys	Val	Leu	Phe 60
Leu	Gly	Leu	Leu	Ala 65	Phe	Gly	Ala	Leu	Ala 70	Leu	Gly	Leu	Arg	Met 75
Ala	Ile	Ile	Glu	Thr 80	Asn	Leu	Glu	Gln	Leu 85	Trp	Val	Glu	Val	Gly 90
Ser	Arg	Val	Ser	Gln 95	Glu	Leu	His	Tyr	Thr 100	Lys	Glu	Lys	Leu	Gly 105
Glu	Glu	Ala	Ala	Tyr 110	Thr	Ser	Gln	Met	Leu 115	Ile	Gln	Thr	Ala	Arg 120
Gln	Glu	Gly	Glu	Asn 125	Ile	Leu	Thr	Pro	Glu 130	Ala	Leu	Gly	Leu	His 135
Leu	Gln	Ala	Ala	Leu 140	Thr	Ala	Ser	Lys	Val 145	Gln	Val	Ser	Leu	Tyr 150
Gly	Lys	Ser	Trp	Asp 155	Leu	Asn	Lys	Ile	Cys 160	Tyr	Lys	Ser	Gly	Val 165
Pro	Leu	Ile	Glu	Asn 170	Gly	Met	Ile	Glu	Trp 175	Met	Ile	Glu	Lys	Leu 180
Phe	Pro	Суѕ	Val	Ile 185	Leu	Thr	Pro	Leu	Asp 190	Cys	Phe	Trp	Glu	Gly 195
Ala	Lys	Leu	Gln	Gly 200	Gly	Ser	Ala	Tyr	Leu 205	Pro	Gly	Arg	Pro	Asp 210
Ile	Gln	Trp	Thr	Asn 215	Leu	Asp	Pro	Glu	Gln 220	Leu	Leu	Glu	Glu	Leu 225
Gly	Pro	Phe	Ala	Ser 230	Leu	Glu	Gly	Phe	Arg 235	Glu	Leu	Leu	Asp	Lys 240
Ala	Gln	Val	Gly	Gln 245	Ala	Tyr	Val	Gly	Arg 250	Pro	Cys	Leu	His	Pro 255
Asp	Asp	Leu	His	Cys 260	Pro	Pro	Ser	Ala	Pro 265	Asn	His	His	Ser	Arg 270

Gln Ala Pro Asn Val Ala His Glu Leu Ser Gly Gly Cys His Gly 275 Phe Ser His Lys Phe Met His Trp Gln Glu Glu Leu Leu Gly 295 290 Gly Met Ala Arg Asp Pro Gln Gly Glu Leu Leu Arg Ala Glu Ala Leu Gln Ser Thr Phe Leu Leu Met Ser Pro Arg Gln Leu Tyr Glu His Phe Arg Gly Asp Tyr Gln Thr His Asp Ile Gly Trp Ser Glu Glu Gln Ala Ser Thr Val Leu Gln Ala Trp Gln Arg Arg Phe Val 350 Gln Leu Ala Gln Glu Ala Leu Pro Glu Asn Ala Ser Gln Gln Ile 370 His Ala Phe Ser Ser Thr Thr Leu Asp Asp Ile Leu His Ala Phe 380 Ser Glu Val Ser Ala Ala Arg Val Val Gly Gly Tyr Leu Leu Met Leu Ala Tyr Ala Cys Val Thr Met Leu Arg Trp Asp Cys Ala Gln Ser Gln Gly Ser Val Gly Leu Ala Gly Val Leu Leu Val Ala Leu Ala Val Ala Ser Gly Leu Gly Leu Cys Ala Leu Leu Gly Ile Thr Phe Asn Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu Gly 455 460 Ile Gly Val Asp Asp Val Phe Leu Leu Ala His Ala Phe Thr Glu 475 Ala Leu Pro Gly Thr Pro Leu Gln Glu Arg Met Gly Glu Cys Leu 485 Gln Arg Thr Gly Thr Ser Val Val Leu Thr Ser Ile Asn Asn Met 500 Ala Ala Phe Leu Met Ala Ala Leu Val Pro Ile Pro Ala Leu Arg 515 520 Ala Phe Ser Leu Gln Ala Ala Ile Val Val Gly Cys Thr Phe Val 540 530 535 Ala Val Met Leu Val Phe Pro Ala Ile Leu Ser Leu Asp Leu Arg Arg Arg His Cys Gln Arg Leu Asp Val Leu Cys Cys Phe Ser Ser 560 565

Pro Cys Ser Ala Gln Val Ile Gln Ile Leu Pro Gln Glu Leu Gly 580 575 Asp Gly Thr Val Pro Val Gly Ile Ala His Leu Thr Ala Thr Val 590 595 Gln Ala Phe Thr His Cys Glu Ala Ser Ser Gln His Val Val Thr 610 Ile Leu Pro Pro Gln Ala His Leu Val Pro Pro Pro Ser Asp Pro Leu Gly Ser Glu Leu Phe Ser Pro Gly Gly Ser Thr Arg Asp Leu 635 Leu Gly Gln Glu Glu Glu Thr Arg Gln Lys Ala Ala Cys Lys Ser Leu Pro Cys Ala Arg Trp Asn Leu Ala His Phe Ala Arg Tyr Gln Phe Ala Pro Leu Leu Gln Ser His Ala Lys Ala Ile Val Leu Val Leu Phe Gly Ala Leu Leu Gly Leu Ser Leu Tyr Gly Ala Thr Leu Val Gln Asp Gly Leu Ala Leu Thr Asp Val Val Pro Arg Gly Thr Lys Glu His Ala Phe Leu Ser Ala Gln Leu Arg Tyr Phe Ser 725 Leu Tyr Glu Val Ala Leu Val Thr Gln Gly Gly Phe Asp Tyr Ala His Ser Gln Arg Ala Leu Phe Asp Leu His Gln Arg Phe Ser Ser 755 Leu Lys Ala Val Leu Pro Pro Pro Ala Thr Gln Ala Pro Arg Thr Trp Leu His Tyr Tyr Arg Asn Trp Leu Gln Gly Ile Gln Ala Ala Phe Asp Gln Asp Trp Ala Ser Gly Arg Ile Thr Arg His Ser Tyr 805 Arg Asn Gly Ser Glu Asp Gly Ala Leu Ala Tyr Lys Leu Leu Ile 815 Gln Thr Gly Asp Ala Gln Glu Pro Leu Asp Phe Ser Gln Leu Thr 835 Thr Arg Lys Leu Val Asp Arg Glu Gly Leu Ile Pro Pro Glu Leu Phe Tyr Met Gly Leu Thr Val Trp Val Ser Ser Asp Pro Leu Gly Leu Ala Ala Ser Gln Ala Asn Phe Tyr Pro Pro Pro Pro Glu Trp

		875			8.9	30				885
Leu His <i>l</i>	Asp Lvs		o Thr	Thr			Leu	Ara	Ile	
204		890				95		5		900
Pro Ala (Gln Pro	Leu Gl 905	u Phe	Ala		ne Pro 10	Phe	Leu	Leu	Arg 915
Gly Leu (Gln Lys	Thr Al 920	a Asp	Phe		lu Ala 25	Ile	Glu	Gly	Ala 930
Arg Ala A	Ala Cys	Ala Gl 935	u Ala	Gly		la Gly 40	Val	His	Ala	Tyr 945
Pro Ser (Gly Ser	Pro Ph 950	e Leu	Phe		lu Gln 55	Tyr	Leu	Gly	Leu 960
Arg Arg (Cys Phe	Leu Le 965	u Ala	Val		le Leu 70	Leu	Val	Cys	Thr 975
Phe Leu V	Val Cys	Ala Le 980	u Leu	Leu		sn Pro 85	Trp	Thr	Ala	Gly 990
Leu Ile V	Val Leu	Val Le 995	u Ala	Met	Met Th		Glu	Leu		Gly 1005
Ile Met (_	Leu Gl 1010	y Ile	Lys	Leu Se		Ile	Pro		Val 1020
Ile Leu '		Ser Va 1025	l Gly	Ile	Gly Va 103		Phe	Thr		His LO35
Val Ala 1	_	Phe Le 1040	u Thr	Thr	Gln Gl 104	_	Arg	Asn		Arg L050
Ala Ala I		Leu Gl 1055	u His	Thr	Phe Al		Val	Thr	-	Gly 1065
Ala Ile S		Leu Le 1070	u Gly	Leu	Leu Me		Ala	Gly		His 1080
Phe Asp		Val Ar 1085	g Tyr	Phe	Phe Al		Leu	Thr		Leu L095
Thr Leu l		Leu Le 1100	u His	Gly	Leu Va		Leu	Pro		Leu 1110
Leu Ser		Gly Pr 1115	o Pro	Pro	Glu Va 112		Gln	Met		Lys 1125
Glu Ser 1		Ile Le 1130	u Ser	Pro	Pro Al		Gln	Gly		Gly 1140
Leu Arg		Ala Se 1145	r Ser	Ser	Leu Pi		Ser	Phe		Arg L155
Val Thr		Met Th 1160	r Val	Ala	Ile H:		Pro	Pro		Pro 170
Gly Ala :	-	His Pr 1175	o Ala	Pro	Asp GI		Pro	Trp		Pro 1185

Ala Ala Thr Ser Ser Gly Asn Leu Ser Ser Arg Gly Pro Gly Pro 1190 1195 Ala Thr Gly <210> 3 <211> 228 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 20, 27, 135, 156, 210 <223> unknown base <400> 3 gctggggtgc acgcctaccn cagcggntcc cccttcctct tctgggaaca 50 gtatctgggc ctgcggcgct gcttcctgct ggccgtctgc atcctgctgg 100 tgtgcacttt cctcgtctgt gctctgctgc tcctnaaccc ctggacggct 150 ggcctnatag tgctggtcct ggcgatgatg acagtggaac tctttggtat 200 catgggtttn ctgggcatca agctgagt 228 <210> 4 <211> 153 <212> DNA <213> Homo sapiens <220> <221> Unsure <222> 143 <223> Unknown base <400> 4 ccgggcagca tgcgcagagg ccggccaggc tggggtgcac gcctacccca 50 gcggctcccc cttcctcttc tgggaacagt atctgggcct gcggcgctgc 100 ttcctgctgg ccgtctgcat cctgctggtg tgcactttcc tcntctgtgc 150 tct 153 <210> 5 <211> 228 <212> DNA <213> Homo sapiens <400> 5 ctggggctgt ccagttaccc caacggctac cccttcctct tctgggagca 50 qtacategge etecgecaet ggetgetget gtteateage gtggtgttgg 100 cctgcacatt cctcgtgtgc gctgtcttcc ttctgaaccc ctggacggcc 150 qqqatcattq tqatqqtcct qqcqctqatq acqqtcqaqc tqttcgqcat 200

```
gatgggcctc atcggaatca agctcagt 228
```

```
<210> 6
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 13-14
<223> unknown base
<400> 6
ccqqqcqqca tqnnqcqaag cqgaccacgc tggggggtgg ctcaggggag 50
<210> 7
<211> 1397
<212> PRT
<213> Homo sapiens
<400> 7
Met Ala Ser Ala Gly Asn Ala Ala Glu Pro Gln Asp Arg Gly Gly
 Gly Gly Ser Gly Cys Ile Gly Ala Pro Gly Arg Pro Ala Gly Gly
 Gly Arg Arg Arg Thr Gly Gly Leu Arg Arg Ala Ala Pro
 Asp Arg Asp Tyr Leu His Arg Pro Ser Tyr Cys Asp Ala Ala Phe
 Ala Leu Glu Gln Ile Ser Lys Gly Lys Ala Thr Gly Arg Lys Ala
 Pro Leu Trp Leu Arg Ala Lys Phe Gln Arg Leu Leu Phe Lys Leu
 Gly Cys Tyr Ile Gln Lys Asn Cys Gly Lys Ala Met Phe Asn Pro
 Gln Leu Met Ile Gln Thr Pro Lys Glu Glu Gly Ala Asn Val Leu
                 110
 Thr Thr Glu Ala Leu Leu Gln His Leu Asp Ser Ala Leu Gln Ala
                                     130
 Ser Arg Val His Val Tyr Met Tyr Asn Arg Gln Trp Lys Leu Glu
                 140
 His Leu Cys Tyr Lys Ser Gly Glu Leu Ile Thr Glu Thr Gly Tyr
                 155
Met Asp Gln Ile Ile Glu Tyr Leu Tyr Pro Cys Leu Ile Ile Thr
                 170
 Pro Leu Asp Cys Phe Trp Glu Gly Ala Lys Leu Gln Ser Gly Thr
 Ala Tyr Leu Leu Gly Lys Pro Pro Leu Arg Trp Thr Asn Phe Asp
```

				200					205					210
Pro	Leu	Glu	Phe	Leu 215	Glu	Glu	Leu	Lys	Lys 220	Ile	Asn	Tyr	Gln	Val 225
Asp	Ser	Trp	Glu	Glu 230	Met	Leu	Asn	Lys	Ala 235	Glu	Val	Gly	His	Gly 240
Tyr	Met	Asp	Arg	Pro 245	Cys	Leu	Asn	Pro	Ala 250	Asp	Pro	Asp	Cys	Pro 255
Ala	Thr	Ala	Pro	Asn 260	Lys	Asn	Ser	Thr	Lys 265	Pro	Leu	Asp	Met	Ala 270
Leu	Val	Leu	Asn	Gly 275	Gly	Cys	His	Gly	Leu 280	Ser	Arg	Lys	Tyr	Met 285
His	Trp	Gln	Glu	Glu 290	Leu	Ile	Val	Gly	Gly 295	Thr	Val	Lys	Asn	Ser 300
Thr	Gly	Lys	Leu	Val 305	Ser	Ala	His	Ala	Leu 310	Gln	Thr	Met	Phe	Gln 315
Leu	Met	Thr	Pro	Lys 320	Gln	Met	Tyr	Glu	His 325	Phe	Lys	Gly	Tyr	Glu 330
Tyr	Val	Ser	His	Ile 335	Asn	Trp	Asn	Glu	Asp 340	Lys	Ala	Ala	Ala	Ile 345
Leu	Glu	Ala	Trp	Gln 350	Arg	Thr	Tyr	Val	Glu 355	Val	Val	His	Gln	Ser 360
Val	Ala	Gln	Asn	Ser 365	Thr	Gln	Lys	Val	Leu 370	Ser	Phe	Thr	Thr	Thr 375
Thr	Leu	Asp	Asp	Ile 380	Leu	Lys	Ser	Phe	Ser 385	Asp	Val	Ser	Val	Ile 390
Arg	Val	Ala	Ser	Gly 395	Tyr	Leu	Leu	Met	Leu 400	Ala	Tyr	Ala	Cys	Leu 405
Thr	Met	Leu	Arg	Trp 410	Asp	Cys	Ser	Lys	Ser 415	Gln	Gly	Ala	Val	Gly 420
Leu	Ala	Gly	Val	Leu 425	Leu	Val	Ala	Leu	Ser 430	Val	Ala	Ala	Gly	Leu 435
Gly	Leu	Cys	Ser	Leu 440	Ile	Gly	Ile	Ser	Phe 445	Asn	Ala	Ala	Thr	Thr 450
Gln	Val	Leu	Pro	Phe 455	Leu	Ala	Leu	Gly	Val 460	Gly	Val	Asp	Asp	Val 465
Phe	Leu	Leu	Ala	His 470	Ala	Phe	Ser	Glu	Thr 475	Gly	Gln	Asn	Lys	Arg 480
Ile	Pro	Phe	Glu	Asp 485	Arg	Thr	Gly	Glu	Cys 490	Leu	Lys	Arg	Thr	Gly 495
Ala	Ser	Val	Ala	Leu 500	Thr	Ser	Ile	Ser	Asn 505	Val	Thr	Ala	Phe	Phe 510

Met	Ala	Ala	Leu	Ile 515	Pro	Ile	Pro		Leu 520	Arg	Ala	Phe	Ser	Leu 525
Gln	Ala	Ala	Val	Val 530	Val	Val	Phe	Asn	Phe 535	Ala	Met	Val	Leu	Leu 540
Ile	Phe	Pro	Ala	Ile 545	Leu	Ser	Met	Asp	Leu 550	Tyr	Arg	Arg	Glu	Asp 555
Arg	Arg	Leu	Asp	Ile 560	Phe	Cys	Cys	Phe	Thr 565	Ser	Pro	Cys	Val	Ser 570
Arg	Val	Ile	Gln	Val 575	Glu	Pro	Gln	Ala	Tyr 580	Thr	Asp	Thr	His	Asp 585
Asn	Thr	Arg	Tyr	Ser 590	Pro	Pro	Pro	Pro	Tyr 595	Ser	Ser	His	Ser	Phe 600
Ala	His	Glu	Thr	Gln 605	Ile	Thr	Met	Gln	Ser 610	Thr	Val	Gln	Leu	Arg 615
Thr	Glu	Tyr	Asp	Pro 620	His	Thr	His	Val	Tyr 625	Tyr	Thr	Thr	Ala	Glu 630
Pro	Arg.	Ser	Glu	Ile 635	Ser	Val	Gln	Pro	Val 640	Thr	Val	Thr	Gln	Asp 645
Thr	Leu	Ser	Cys	Gln 650	Ser	Pro	Glu	Ser	Thr 655	Ser	Ser	Thr	Arg	Asp 660
Leu	Leu	Ser	Gln	Phe 665	Ser	Asp	Ser	Ser	Leu 670	His	Cys	Leu	Glu	Pro 675
Pro	Cys	Thr	Lys	Trp 680	Thr	Leu	Ser	Ser	Phe 685	Ala	Glu	Lys	His	Tyr 690
Ala	Pro	Phe	Leu	Leu 695	Lys	Pro	Lys	Ala	Lys 700	Val	Val	Val	Ile	Phe 705
Leu	Phe	Leu	Gly	Leu 710	Leu	Gly	Val	Ser	Leu 715	Tyr	Gly	Thr	Thr	Arg 720
Val	Arg	Asp	Gly	Leu 725	Asp	Leu	Thr	Asp	11e 730	Val	Pro	Arg	Glu	Thr 735
Arg	Glu	Tyr	Asp	Phe 740	Ile	Ala	Ala	Gln	Phe 745	Lys	Tyr	Phe	Ser	Phe 750
Tyr	Asn	Met	Tyr	Ile 755	Val	Thr	Gln	Lys	Ala 760	Asp	Tyr	Pro	Asn	Ile 765
Gln	His	Leu	Leu	Tyr 770	Asp	Leu	His	Arg	Ser 775	Phe	Ser	Asn	Val	Lys 780
Tyr	Val	Met	Leu	Glu 785	Glu	Asn	Lys	Gln	Leu 790	Pro	Lys	Met	Trp	Leu 795
His	Tyr	Phe	Arg	Asp 800	Trp	Leu	Gln	Gly	Leu 805	Gln	Asp	Ala	Phe	Asp 810

Ser	Asp	Trp	Glu	Thr 815	Gly	Lys	Ile	Met	Pro 820	Asn	Asn	Tyr	Lys	Asn 825
Gly	Ser	Asp	Asp	Gly 830	Val	Leu	Ala	Tyr	Lys 835	Leu	Leu	Val	Gln	Thr 840
Gly	Ser	Arg	Asp	Lys 845	Pro	Ile	Asp	Ile	Ser 850	Gln	Leu	Thr	Lys	Gln 855
Arg	Leu	Val	Asp	Ala 860	Asp	Gly	Ile	Ile	Asn 865	Pro	Ser	Ala	Phe	Tyr 870
Ile	Tyr	Leu	Thr	Ala 875	Trp	Val	Ser	Asn	Asp 880	Pro	Val	Ala	Tyr	Ala 885
Ala	Ser	Gln	Ala	Asn 890	Ile	Arg	Pro	His	Arg 895	Pro	Glu	Trp	Val	His 900
Asp	Lys	Ala	Asp	Tyr 905	Met	Pro	Glu	Thr	Arg 910	Leu	Arg	Ile	Pro	Ala 915
Ala	Glu	Pro	Ile	Glu 920	Tyr	Ala	Gln	Phe	Pro 925	Phe	Tyr	Leu	Asn	Gly 930
Leu	Arg	Asp	Thr	Ser 935	Asp	Phe	Val	Glu	Ala 940	Ile	Glu	Lys	Val	Arg 945
Thr	Ile	Cys	Ser	Asn 950	Tyr	Thr	Ser	Leu	Gly 955	Leu	Ser	Ser	Tyr	Pro 960
Asn	Gly	Tyr	Pro	Phe 965	Leu	Phe	Trp	Glu	Gln 970	Tyr	Ile	Gly	Leu	Arg 975
His	Trp	Leu	Leu	Leu 980	Phe	Ile	Ser	Val	Val 985	Leu	Ala	Cys	Thr	Phe 990
Leu	Val	Cys	Ala	Val 995	Phe	Leu	Leu	Asn	Pro L000	Trp	Thr	Ala		Ile 1005
Ile	Val	Met		Leu 10 1 0		Leu		Thr			Leu	Phe		Met 1020
Met	Gly	Leu		Gly 1025	Ile	Lys	Leu	Ser	Ala L030	Val	Pro	Val		Ile 1035
Leu	Ile	Ala		Val 1040	Gly	Ile	Gly	Val	Glu 1045	Phe	Thr	Val		Val 1050
Ala	Leu	Ala		Leu 1055	Thr	Ala	Ile	Gly	Asp 1060	Lys	Asn	Arg		Ala 1065
Val	Leu	Ala		Glu 1070	His	Met	Phe	Ala	Pro 1075	Val	Leu	Asp		Ala 1080
Val	Ser	Thr		Leu 1085	Gly	Val	Leu	Met	Leu 1090	Ala	Gly	Ser		Phe 1095
Asp	Phe	Ile		Arg 1100	Tyr	Phe	Phe	Ala	Val 1105	Leu	Ala	Ile		Thr 1110
Ile	Leu	Gly	Val	Leu	Asn	Gly	Leu	Val	Leu	Leu	Pro	Val	Leu	Leu

.

1115 1120 1125

Ser Phe Phe Gly Pro Tyr Pro Glu Val Ser Pro Ala Asn Gly Leu 1130 1135 Asn Arg Leu Pro Thr Pro Ser Pro Glu Pro Pro Pro Ser Val Val 1150 1145 Arg Phe Ala Met Pro Pro Gly His Thr His Ser Gly Ser Asp Ser 1160 1165 Ser Asp Ser Glu Tyr Ser Ser Gln Thr Thr Val Ser Gly Leu Ser 1180 Glu Glu Leu Arg His Tyr Glu Ala Gln Gln Gly Ala Gly Pro 1190 1195 Ala His Gln Val Ile Val Glu Ala Thr Glu Asn Pro Val Phe Ala His Ser Thr Val Val His Pro Glu Ser Arg His His Pro Pro Ser 1220 Asn Pro Arg Gln Gln Pro His Leu Asp Ser Gly Ser Leu Pro Pro 1235 Gly Arg Gln Gly Gln Pro Arg Arg Asp Pro Pro Arg Glu Gly 1250 Leu Trp Pro Pro Leu Tyr Arg Pro Arg Arg Asp Ala Phe Glu Ile Ser Thr Glu Gly His Ser Gly Pro Ser Asn Arg Ala Arg Trp Gly 1280 Pro Arg Gly Ala Arg Ser His Asn Pro Arg Asn Pro Ala Ser Thr 1300 Ala Met Gly Ser Ser Val Pro Gly Tyr Cys Gln Pro Ile Thr Thr 1310 1315 Val Thr Ala Ser Ala Ser Val Thr Val Ala Val His Pro Pro 1325 1330 Val Pro Gly Pro Gly Arg Asn Pro Arg Gly Gly Leu Cys Pro Gly 1340 Tyr Pro Glu Thr Asp His Gly Leu Phe Glu Asp Pro His Val Pro 1355 1360 Phe His Val Arg Cys Glu Arg Arg Asp Ser Lys Val Glu Val Ile 1370 1375 Glu Leu Gln Asp Val Glu Cys Glu Glu Arg Pro Arg Gly Ser Ser 1385 1390

Ser Asn

<210> 8 <211> 1182

<400> 8 Met Val Arg Pro Leu Ser Leu Gly Glu Leu Pro Pro Ser Tyr Thr 10 Pro Pro Ala Arg Ser Ser Ala Pro His Ile Leu Ala Gly Ser Leu Gln Ala Pro Leu Trp Leu Arg Ala Tyr Phe Gln Gly Leu Leu Phe Ser Leu Gly Cys Arg Ile Gln Lys His Cys Gly Lys Val Leu Phe Leu Gly Leu Val Ala Phe Gly Ala Leu Ala Leu Gly Leu Arg Val Ala Val Ile Glu Thr Asp Leu Glu Gln Leu Trp Val Glu Val Gly Ser Arg Val Ser Gln Glu Leu His Tyr Thr Lys Glu Lys Leu Gly Glu Glu Ala Ala Tyr Thr Ser Gln Met Leu Ile Gln Thr Ala His 115 Gln Glu Gly Gly Asn Val Leu Thr Pro Glu Ala Leu Asp Leu His Leu Gln Ala Ala Leu Thr Ala Ser Lys Val Gln Val Ser Leu Tyr Gly Lys Ser Trp Asp Leu Asn Lys Ile Cys Tyr Lys Ser Gly Val Pro Leu Ile Glu Asn Gly Met Ile Glu Arg Met Ile Glu Lys Leu Phe Pro Cys Val Ile Leu Thr Pro Leu Asp Cys Phe Trp Glu Gly 185 Ala Lys Leu Gln Gly Gly Ser Ala Tyr Leu Pro Gly Arg Pro Asp 205 Ile Gln Trp Thr Asn Leu Asp Pro Gln Gln Leu Leu Glu Glu Leu 215 Gly Pro Phe Ala Ser Leu Glu Gly Phe Arg Glu Leu Leu Asp Lys 230 235 Ala Gln Val Gly Gln Ala Tyr Val Gly Arg Pro Cys Leu Asp Pro 245 Asp Asp Pro His Cys Pro Pro Ser Ala Pro Asn Arg His Ser Arg 265 Gln Ala Pro Asn Val Ala Gln Glu Leu Ser Gly Gly Cys His Gly Phe Ser His Lys Phe Met His Trp Gln Glu Glu Leu Leu Gly 295 290 Gly Thr Ala Arg Asp Leu Gln Gly Gln Leu Leu Arg Ala Glu Ala 305 310 Leu Gln Ser Thr Phe Leu Leu Met Ser Pro Arg Gln Leu Tyr Glu 325 His Phe Arg Gly Asp Tyr Gln Thr His Asp Ile Gly Trp Ser Glu 340 Glu Gln Ala Ser Met Val Leu Gln Ala Trp Gln Arg Arg Phe Val 355 350 Gln Leu Ala Gln Glu Ala Leu Pro Ala Asn Ala Ser Gln Gln Ile His Ala Phe Ser Ser Thr Thr Leu Asp Asp Ile Leu Arg Ala Phe Ser Glu Val Ser Thr Thr Arg Val Val Gly Gly Tyr Leu Leu Met 395 Leu Ala Tyr Ala Cys Val Thr Met Leu Arg Trp Asp Cys Ala Gln Ser Gln Gly Ala Val Gly Leu Ala Gly Val Leu Leu Val Ala Leu Ala Val Ala Ser Gly Leu Gly Leu Cys Ala Leu Leu Gly Ile Thr Phe Asn Ala Ala Thr Thr Gln Val Leu Pro Phe Leu Ala Leu Gly 455 Ile Gly Val Asp Asp Ile Phe Leu Leu Ala His Ala Phe Thr Lys Ala Pro Pro Asp Thr Pro Leu Pro Glu Arg Met Gly Glu Cys Leu 485 Arg Ser Thr Gly Thr Ser Val Ala Leu Thr Ser Val Asn Asn Met 500 Val Ala Phe Phe Met Ala Ala Leu Val Pro Ile Pro Ala Leu Arg 515 Ala Phe Ser Leu Gln Ala Ala Ile Val Val Gly Cys Asn Phe Ala 530 Ala Val Met Leu Val Phe Pro Ala Ile Leu Ser Leu Asp Leu Arg 545 550 Arg Arg His Arg Gln Arg Leu Asp Val Leu Cys Cys Phe Ser Ser 560 Pro Cys Ser Ala Gln Val Ile Gln Met Leu Pro Gln Glu Leu Gly Asp Arg Ala Val Pro Val Gly Ile Ala His Leu Thr Ala Thr Val

				590					595					600	
Gln	Ala	Phe	Thr	His 605	Cys	Glu	Ala	Ser	Ser 610	Gln	His	Val	Val	Thr 615	
Ile	Leu	Pro	Pro	Gln 620	Ala	His	Leu	Leu	Ser 625	Pro	Ala	Ser	Asp	Pro 630	
Leu	Gly	Ser	Glu	Leu 635	Tyr	Ser	Pro	Gly	Gly 640	Ser	Thr	Arg	Asp	Leu 645	
Leu	Ser	Gln	Glu	Glu 650	Gly	Thr	Gly	Pro	Gln 655	Ala	Ala	Cys	Arg	Pro 660	
Leu	Leu	Cys	Ala	His 665	Trp	Thr	Leu	Ala	His 670	Phe	Ala	Arg	Tyr	Gln 675	
Phe	Ala	Pro	Leu	Leu 680	Leu	Gln	Thr	Arg	Ala 685	Lys	Ala	Leu	Val	Leu 690	
Leu	Phe	Phe	Gly	Ala 695	Leu	Leu	Gly	Leu	Ser 700	Leu	Tyr	Gly	Ala	Thr 705	
Leu	Val	Gln	Asp	Gly 710	Leu	Ala	Leu	Thr	Asp 715	Val	Val	Pro	Arg	Gly 720	
Thr	Lys	Glu	His	Ala 725	Phe	Leu	Ser	Ala	Gln 730	Leu	Arg	Tyr	Phe	Ser 735	
Leu	Tyr	Glu	Val	Ala 740	Leu	Val	Thr	Gln	Gly 745	Gly	Phe	Asp	Tyr	Ala 750	
His	Ser	Gln	Arg	Ala 755	Leu	Phe	Asp	Leu	His 760	Gln	Arg	Phe	Ser	Ser 765	
Leu	Lys	Ala	Val	Leu 770	Pro	Pro	Pro	Ala	Thr 775	Gln	Ala	Pro	Arg	Thr 780	
Trp	Leu	His	Tyr	Tyr 785	Arg	Ser	Trp	Leu	Gln 790	Gly	Ile	Gln	Ala	Ala 795	
Phe	Asp	Gln	Asp	Trp 800	Ala	Ser	Gly	Arg	Ile 805	Thr	Cys	His	Ser	Tyr 810	
Arg	Asn	Gly	Ser	Glu 815	Asp	Gly	Ala	Leu	Ala 820	Tyr	Lys	Leu	Leu	Ile 825	
Gln	Thr	Gly	Asn	Ala 830	Gln	Glu	Pro	Leu	Asp 835	Phe	Ser	Gln	Leu	Thr 840	
Thr	Arg	Lys	Leu	Val 845	Asp	Lys	Glu	Gly	Leu 850	Ile	Pro	Pro	Glu	Leu 855	
Phe	Tyr	Met	Gly	Leu 860	Thr	Val	Trp	Val	Ser 865	Ser	Asp	Pro	Leu	Gly 870	
Leu	Ala	Ala	Ser	Gln 875	Ala	Asn	Phe	Tyr	Pro 880	Pro	Pro	Pro	Glu	Trp 885	
Leu	His	Asp	Lys	Tyr 890	Asp	Thr	Thr	Gly	Glu 895	Asn	Leu	Arg	Ile	Pro 900	

Ala Ala Gln Pro Leu Glu Phe Ala Gln Phe Pro Phe Leu Leu His 905 Gly Leu Gln Lys Thr Ala Asp Phe Val Glu Ala Ile Glu Gly Ala 925 920 Arg Ala Ala Cys Thr Glu Ala Gly Gln Ala Gly Val His Ala Tyr 935 940 Pro Ser Gly Ser Pro Phe Leu Phe Trp Glu Gln Tyr Leu Gly Leu 950 955 Arg Arg Cys Phe Leu Leu Ala Val Cys Ile Leu Leu Val Cys Thr 970 Phe Leu Val Cys Ala Leu Leu Leu Ser Pro Trp Thr Ala Gly Leu Ile Val Leu Val Leu Ala Met Met Thr Val Glu Leu Phe Gly 1000 Ile Met Gly Phe Leu Gly Ile Lys Leu Ser Ala Ile Pro Val Val Ile Leu Val Ala Ser Ile Gly Ile Gly Val Glu Phe Thr Val His 1025 1030 Val Ala Leu Gly Phe Leu Thr Ser His Gly Ser Arg Asn Leu Arg 1040 Ala Ala Ser Ala Leu Glu Gln Thr Phe Ala Pro Val Thr Asp Gly 1060 Ala Val Ser Thr Leu Leu Gly Leu Leu Met Leu Ala Gly Ser Asn 1070 1075 Phe Asp Phe Ile Ile Arg Tyr Phe Phe Val Val Leu Thr Val Leu 1090 1085 Thr Leu Leu Gly Leu Leu His Gly Leu Leu Leu Pro Val Leu 1100 Leu Ser Ile Leu Gly Pro Pro Pro Gln Val Val Gln Val Tyr Lys 1120 1115 Glu Ser Pro Gln Thr Leu Asn Ser Ala Ala Pro Gln Arg Gly Gly 1135 1130 Leu Arg Trp Asp Arg Pro Pro Thr Leu Pro Gln Ser Phe Ala Arg 1145 1150 Val Thr Thr Ser Met Thr Val Ala Leu His Pro Pro Pro Leu Pro 1160 1165 Gly Ala Tyr Val His Pro Ala Ser Glu Glu Pro Thr 1175 1180

<400> 9 cccacgcgtc cgggagaagc tgggggagga ggctgcatac acctctcaga 50 tgctgataca gaccgcacgc caggagggag agaacatcct cacacccgaa 100 gcacttggcc tccacctcca ggcagccctc actgccagta aagtccaagt 150 atcactctat gggaagtcct gggatttgaa caaaatctgc tacaagtcag 200 gagttcccct tattgaaaat ggaatgattg agcggatgat tgagaagctg 250 tttccqtqcq tqatcctcac cccctcqac tgcttctggg agggagccaa 300 actccaaggg ggctccgcct acctgccgct cccaatgtgg ctcacgagct 350 gagtgggggc tgccatggct tctcccacaa attcatgcac tggcaggagg 400 aattgctgct gggaggcatg gccagagacc cccaaggaga gctgctgagg 450 gcagaggccc tgcagagcac cttcttgctg atgagtcccc gccagctgta 500 cgagcatttc cggggtgact atcagacaca tgacattggc tggagtgagg 550 agcaggccag cacagtgcta caagcctggc agcggcgctt tgtgcaggtc 600 ggtatggaca aggacagggg ggtgccctga ggccattccc tcctcctgcc 650 contentate caccetettt etccageteg cecaggagge cetgeetegag 700 aacgetteee ageagateea tgeettetee tecaceaeee tggatgaeat 750 cctgcatgcg ttctctgaag tcagtgctgc ccgtgtggtg ggaggctatc 800 tgctcatggt gggtcttgca cctggcacct tgccccacc ccacctccaa 850 ccagtgccca ccctggggag cccctgagac tgccctttcc ccccacagct 900 ggcctatgcc tgtgtgacca tgctgcggtg ggactgcgcc cagtcccagg 950 gttccgtggg ccttgccggg gtactgctgg tggccctggc ggtggcctca 1000 ggccttgggc tctgtgccct gctcggcatc accttcaatg ctgccactac 1050 ccaggtacgc caggactgca gggcagactc agtgccagtc accaggcttc 1100 acgggtcctc agctgcccgc tcctctgccc ctccaggtgc tgcccttctt 1150 gactetggga ateggegtgg atgacgtatt cetgetggeg catgeettea 1200 cagaggetet geetggeace cetetecagg tggggeettg teceecaggg 1250 ctcatctgag gcagctcagc ttactggtta agagcctctt ggttcaagtg 1300 accttgggct gctaatgaac ctcggtgcct cttgtcccca tgtgtaaaca 1350 ggggaaataa tagtgctgtg tcctaagggt tattgtttgg atcagtgaag 1400 taactcaagt tgaatgctta gaacagccca tcatacgtac atggtaccca 1450

ataaatgcta gccactgtgt tatgactgcc ccacctctgc accccaagtt 1500 cctgagcctc cccttcactc cactttgaca cggcccctcc cttgtgacct 1550 gagggcaggt ccccactctg tcctggcagg agcgcatggg cgagtgtctg 1600 cagcgcacgg gcaccagtgt tgtactcaca tccatcaaca acatggccgc 1650 cttcctcatg gctgccctcg ttcccatccc tgcgctgcga gccttctccc 1700 tacageetgg acetaeggeg gegeeactge eagegeettg atgtgetetg 1750 ctgcttctcc aggtactgcc tgcgccccag ccccttcctc ccgtgaccca 1800 cgccagcctg tecesteace ageattteaa ggcacagaee tgtcatecae 1850 tetetacete ttecagtece tgetetgete aggtgattea gateetgeee 1900 caggagetgg gggaegggae agtaceagtg ggeattgeee aceteactge 1950 cacagttcaa gcctttaccc actgtgaagc cagcagccag catgtggtca 2000 ccatcctgcc tccccaagcc cacctggtgc ccccaccttc tgacccactg 2050 ggctctgagc tcttcagccc tggagggtcc acacgggacc ttctaggcca 2100 ggaggaggag acaaggcaga aggcagcctg caagtccctg ccctgtgccc 2150 gctggaatct tgcccatttc gcccgctatc agtttgcccc gttgctgctc 2200 cagtcacatg ccaaggccat cgtgctggtg ctctttggtg ctcttctggg 2250 cctgagcctc tacggagcca ccttggtgca agacggcctg gccctgacgg 2300 atgtggtgcc tcggggcacc aaggagcatg ccttcctgag cgcccagctc 2350 aggtacttet ecetgtaega ggtggeeetg gtgaeeeagg gtggeetttga 2400 ctacgcccac tcccaacgcg ccctctttga tctgcaccag cgcttcagtt 2450 ccctcaaggc ggtgctgccc ccaccggcca cccaggcacc ccgcacctgg 2500 ctgcactatt accgcaactg gctacaggga atccaggctg cctttgacca 2550 ggactgggct tctgggcgca tcacccgcca ctcgtaccgc aatggctctg 2600 aggatggggc cctggcctac aagctgctca tccagactgg agacgcccag 2650 gagcctctgg atttcagcca ggttgggaga gggctggagg ggtccactag 2700 tacaggggct gcaggcctcc tgggcccagg ccttcagccc tctctgcctc 2750 tgcagctgac cacaaggaag ctggtggaca gagagggact gattccaccc 2800 gagetettet acatgggget gacegtgtgg gtgageagtg acceeetggg 2850 tetggeagee teacaggeea acttetacee eccaceteet gaatggetge 2900 acgacaaata cgacaccacg ggggagaacc ttcgcagtga gtcttggggg 2950 gageteggea agageeteag eetegeeeac acaageeetg ageetgagge 3000

cetgeceact etgeceegtg eteacegeee tgtecetete ectettetee 3050 cttcccctcc cctccacagt cccgccagct cagcccttgg agtttgccca 3100 gttccccttc ctgctgcgtg gcctccagaa gactgcagac tttgtggagg 3150 ccatcgaggg ggcccggca gcatgcgcag aggccggcca ggctggggtg 3200 cacgcctacc ccagcggctc ccccttcctc ttctgggaac agtatctggg 3250 cctgcggcgc tgcttcctgc tggccgtctg catcctgctg gtgtgcactt 3300 tectegtetg tgetetgetg etecteaace eetggaegge tggeeteata 3350 gtgagtgctt gcaggagtgg ggacagagac accccaccct tccctgccca 3400 gcctgtcatc cctcctgcca ggagccctct gtgagccctg tctccctcag 3450 gtgctggtcc tggcgatgat gacagtggaa ctctttggta tcatgggttt 3500 cctgggcatc aagctgagtg ccatccccgt ggtgatcctt gtggcctctg 3550 taggcattgg cgttgagttc acagtccacg tggctctggt gagcacgggc 3600 accccgggga gggaccaatc agctgattca gtattcaaca catattgttc 3650 aagcccctac tatgtgctag gtactattta agaatttggg ctgggtggac 3700 gtggtggctc attcctgtaa tcccagcact ttgggaggcc gaggcgggtg 3750 gatcacctga ggtcgggagt tcgaaaccag cctggccaac atggtgaaac 3800 cctgtcttta ctaaaaatac aaaaaattag ccaggcgtgg tggcacatgc 3850 cagtagtccc agctactttg gaggctgagg cagaattgct tgaacctggg 3900 aggcgaaggt tgcagtgagc tgagatcgtg ccattgcact ccagcctggg 3950 gcga 4004

<210> 10

<211> 2082

<212> DNA

<213> Homo sapiens

<400> 10

ttccggcatg actcgatcgc cgcccctcag agagctgccc ccgagttaca 50 cacccccagc tcgaaccgca gcaccccaga tcctagctgg gagcctgaag 100 gctccactct ggcttcgtgc ttacttccag ggcctgctct tctctctggg 150 atgcgggatc cagagacatt gtggcaaagt gctctttctg ggactgttgg 200 cctttggggc cctggcatta ggtctccgca tggccattat tgagacaaac 250 ttggaacagc tctgggtaga agtgggcagc cgggtgagcc aggagctgca 300

ttacaccaag gagaagctgg gggaggaggc tgcatacacc tctcagatgc 350 tgatacagac cgcacgccag gagggagaga acatcctcac acccgaagca 400 cttggcctcc acctccaggc agccctcact gccagtaaag tccaagtatc 450 actctatggg aagtcctggg atttgaacaa aatctgctac aagtcaggag 500 ttccccttat tgaaaatgga atgattgagt ggatgattga gaagctgttt 550 ccgtgcgtga tcctcacccc cctcgactgc ttctgggagg gagccaaact 600 ccaagggggc tccgcctacc tgcccggccg cccggatatc cagtggacca 650 acctggatee agageagetg etggaggage tgggteeett tgeeteeett 700 gagggettee gggagetget agacaaggea caggtgggee aggeetaegt 750 ggggcggccc tgtctgcacc ctgatgacct ccactgccca cctagtgccc 800 ccaaccatca cagcaggcag gctcccaatg tggctcacga gctgagtggg 850 ggctgccatg gcttctccca caaattcatg cactggcagg aggaattgct 900 gctgggaggc atggccagag acccccaagg agagctgctg agggcagagg 950 ccctgcagag caccttcttg ctgatgagtc cccgccagct gtacgagcat 1000 ttccggggtg actatcagac acatgacatt ggctggagtg aggagcaggc 1050 cagcacagtg ctacaagcct ggcagcggcg ctttgtgcag ctggcccagg 1100 aggecetgee tgagaacget teccageaga tecatgeett etectecace 1150 accetggata acatectgea tgcgttetet gaagteagtg etgeeegtgt 1200 ggtgggaggc tatctgctca tgctggccta tgcctgtgtg accatgctgc 1250 ggtgggactg cgcccagtcc cagggttccg tgggccttgc cggggtactg 1300 ctggtggccc tggcggtggc ctcaggcctt gggctctgtg ccctgctcgg 1350 catcacette aatgetgeea etacecaggt getgeeette ttggetetgg 1400 gaatcggcgt ggatgacgta ttcctgctgg cgcatgcctt cacagaggct 1450 ctgcctggca cccctctcca ggagcgcatg ggcgagtgtc tgcagcgcac 1500 gggcaccagt gtcgtactca catccatcaa caacatggcc gccttcctca 1550 tggctgccct cgttcccatc cctgcgctgc gagccttctc cttacagcca 1600 tecteageet ggacetaegg eggegeeact geeagegeet tgatgtgete 1650 tgctgcttct ccagtccctg ctctgctcag gtgattcaga tcctgcccca 1700 ggagetgggg gaegggaeag taccagtggg cattgeecae etcaetgeea 1750 cagttcaagc ctttacccac tgtgaagcca gcagccagca tgtggtcacc 1800 atcetgeete eccaageeea eetggtgeee ecacettetg acceaetggg 1850

```
ctctgagctc ttcagccctg gagggtccac acgggacctt ctaggccagg 1900
 aggaggagac aaggcagaag gcagcctgca agtccctgcc ctgtgcccgc 1950
 tggaatcttg cccatttcgc cccggaattc ctgcagcccg ggggatccac 2000
 tagttctaga gcggccgcca ccgcggtgga gctccagctt ttgttccctt 2050
tagtgagggt taattgcgcg cttgggtatc tt 2082
<210> 11
<211> 18
<212> DNA
<213> Homo sapiens
<400> 11
aggcggggga tcacagca 18
<210> 12
<211> 18
<212> DNA
<213> Homo sapiens
<400> 12
ataccaaaga gttccact 18
<210> 13
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 13
ctgcggcgct gcttcctgct ggccgtctgc atcctgctgg tgtgc 45
<210> 14
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 14
agagcacaga cgaggaaagt gcacaccagc aggatgcaga cggcc 45
<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 15
actcctgact tgtagcagat t 21
```

<210> 16

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 16
 aggetgeata caceteteag a 21
<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence
<223> sequence is synthesized
<400> 17
 gcttaggccc gaggagat 18
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 18
 aactcacaac tttctctcca 20
<210> 19
<211> 48
<212> DNA
<213> Artificial Sequence
<223> sequence is synthesized
<400> 19
 ggattctaat acgactcact atagggccca atggcctaaa ccgactgc 48
<210> 20
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 20
 ctatgaaatt aaccctcact aaagggaccc acggcctctc ctcaca 46
<210> 21
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
```

```
<400> 21
ggattctaat acgactcact atagggcccc taaactccgc tgctccac 48
<210> 22
<211> 48
<212> DNA
<213> Artificial Sequence
<223> sequence is synthesized
<400> 22
ctatgaaatt aaccctcact aaagggagct cccgtgagtc cctatgtg 48
<210> 23
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 23
tcgacaagca gggaacaccc aagtagaagc tc 32
<210> 24
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence is synthesized
<400> 24
```

tcgacaagca gggaagtggg aagtagaagc tc 32