Tabela de Limites

$\int \lim f(x)$	$\lim g(x)$	h(x)	$\lim h(x)$	Simbolicamente
$\pm \infty$	$\pm \infty$	f(x) + g(x)	$\pm \infty$	$\pm \infty \pm \infty \to \pm \infty$
$+\infty$	$+\infty$	f(x) - g(x)	?	$(+\infty) - (+\infty)$
$+\infty$	k	f(x) + g(x)	$+\infty$	$+\infty + k \to +\infty$
$-\infty$	k	f(x) + g(x)	$-\infty$	$-\infty + k \to -\infty$
$+\infty$	$+\infty$	$f(x) \cdot g(x)$	$+\infty$	$(+\infty)\cdot(+\infty)\to +\infty$
$+\infty$	$-\infty$	$f(x) \cdot g(x)$	$-\infty$	$(+\infty)\cdot(-\infty)\to -\infty$
$+\infty$	k > 0	$f(x) \cdot g(x)$	$+\infty$	$+\infty \cdot k \to +\infty, k > 0$
$+\infty$	k < 0	$f(x) \cdot g(x)$	$-\infty$	$+\infty \cdot k \to -\infty, k < 0$
$\pm \infty$	0	$f(x) \cdot g(x)$?	$\pm \infty \cdot 0$
k	$\pm \infty$	f(x)/g(x)	0	$k/\pm\infty\to 0$
$\pm \infty$	$\pm \infty$	f(x)/g(x)	?	$\pm \infty / \pm \infty$
k > 0	0+	f(x)/g(x)	$+\infty$	$k/0^+ \to +\infty, k > 0$
$+\infty$	0+	f(x)/g(x)	$+\infty$	$+\infty/0^+ \to +\infty$
k > 0	0-	f(x)/g(x)	$-\infty$	$k/0^- \to -\infty, k > 0$
$+\infty$	0-	f(x)/g(x)	$-\infty$	$-\infty/0^- \to -\infty$
0	0	f(x)/g(x)	?	0/0

Limites Fundamentais

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$