Minimum Spanning Trees: Krushkal's Algorithm and Prim's Algorithm

Subhabrata Samajder

IIIT, Delhi Winter Semester, 31th May, 2023 Disjoint-set Forests (Cont.)

An Example: UNION(e, g) (Recap)

$$S_2 = \{d, f, g\}$$

An Example: UNION(e, g) (Recap)

$$S_2 = \{d, f, g\}$$

Union
$$(e,g) = S_1 \cup S_2$$

Heuristics 1: Union by Rank (Recap)

- **Idea:** During UNION operation, make the root of the tree with fewer nodes point to the root of the tree with more nodes.
- Rather than explicitly keeping track of the size of the subtree rooted at each node, we shall use an approach that eases the analysis.
- For each node, we maintain a rank that is an upper bound on the height of the node.
- Union: Point the root with smaller rank to the root with larger rank.

Heuristics 2: Path Compression (Recap)

• FIND-SET: Make each node on the FIND-PATH to point directly to the root.

Path compression does not change any ranks.

An Example: Before FIND-Set(a) (Recap)

An Example: After FIND-Set(a) (Recap)

Pseudocode for Disjoint-set Forests

- Each node x maintains an integer value rank[x].
- rank[x]: Is an upper bound on the height (the number of edges in the longest path between x and a descendant leaf) of x.
- After Make-Set the initial rank of the single node in the corresponding tree is 0.
- FIND-SET operation leaves all ranks unchanged.
- When applying Union to two trees, there are two cases, depending on whether the roots have equal rank.
 - Unequal rank: Make the root of higher rank the parent of the root of lower rank, but the ranks themselves remain unchanged.
 - Equal ranks: Arbitrarily choose one of the roots as the parent and increment its rank by 1.

Make-Set, Union and Link

```
Make-Set(x)

1. p[x] \leftarrow x; // p[x] denotes the parent of x

2. rank[x] \leftarrow 0;
```

Make-Set, Union and Link

```
Make-Set(x)

1. p[x] \leftarrow x; // p[x] denotes the parent of x

2. rank[x] \leftarrow 0;

Union(x, y)

1. Link(Find-Set(x), Find-Set(y));
```

MAKE-SET, UNION and LINK

```
Make-Set(x)

1. p[x] \leftarrow x; // p[x] denotes the parent of x

2. rank[x] \leftarrow 0;

UNION(x, y)

1. LINK(FIND-Set(x), FIND-Set(y));

LINK(x, y) // Takes pointers to the roots of x and y as inputs

1. if (rank[x] > rank[y])

2. p[y] \leftarrow x;

3. else

4. p[x] \leftarrow y;

5. if (rank[x] = rank[y])

6. rank[y] = rank[y] + 1;
```

FIND-SET

```
FIND-SET(x)

1. if (x \neq p[x])

2. p[x] \leftarrow \text{FIND-SET}(p[x]);

3. return p[x];
```

It is a two-pass method:

- Takes one pass up the find path to find the root.
- Second pass back down the find path to update each node so that it points directly to the root.
- **Note:** Line 2 updates node *x* to point directly to the root, and this pointer is returned in line 3.

Effect of the Heuristics on the Running Time

- Separately, either union by rank or path compression improves the running time of the operations on disjoint-set forests.
- The improvement is even greater when the two heuristics are used together.
- Alone, union by rank yields a running time of $\mathcal{O}(m \log n)$ and this bound is tight.
- If there are n Make-Set operations (and hence at most n-1 Union operations) and f Find-Set operations, the path-compression heuristic alone gives a worst-case running time of $\mathcal{O}(n+f\cdot\log_{2+f/n}n)$.
- Worst-case Complexity (Together): $\mathcal{O}(m \cdot \alpha(n))$, where $\alpha(n)$ is a *very* slowly growing function.
- In any conceivable application $\alpha(n) \leq 4$.
- \therefore in most practical situations the running time is linear in m.

Minimum Spanning Treee (MST)

Some Definitions

Definition (Weighted Graph)

A weighted graph G = (V, E, w) is a graph G = (V, E) with an associated function $w : E \to \mathbb{R}$, called the weight function.

Example: Let *H* be a subgraph of *G*.

Then w is easily extended to subgraphs in a natural way,

$$w(H) = \sum_{e \in H} w(e).$$

Some Definitions (Cont.)

Definition (Spanning Tree)

A spanning tree for G = (V, E) is a tree T whose vertex set is V.

Some Definitions (Cont.)

Definition (Spanning Tree)

A spanning tree for G = (V, E) is a tree T whose vertex set is V.

Definition (Minimum Spanning Tree (MST))

A minimum spanning tree for a weighted graph G = (V, E) is a spanning tree T, such that w(T) is the minimum among the weights of all spanning trees of G.

Note: There may be more than one MST's for G.

Motivation

Problem: Suppose there are n cities in a country. For each pair of cities c_1 and c_2 one can estimate the cost of connecting c_1 and c_2 by a direct highway. What is the minimum cost of connecting all the cities?

Motivation

Problem: Suppose there are n cities in a country. For each pair of cities c_1 and c_2 one can estimate the cost of connecting c_1 and c_2 by a direct highway. What is the minimum cost of connecting all the cities?

Solution: A MST for K_n with a suitable weight function.

Kruskal's Algorithm

Introduction

- Joseph Kruskal (1956). "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem". *Proceedings of the American Mathematical Society*.
- Uses a Greedy strategy.
- **Idea:** Finds an edge of the least possible weight connecting any two trees in the forest.
- Connected graphs: It finds a subset of the edges that forms a tree that includes every vertex, such that the total weight of all the edges in the tree is minimized.
- Disconnected graphs: It finds a minimum spanning forest.
- Other MST Algorithms: Prim's algorithm, Reverse-delete algorithm, and Boråvka's algorithm.

Introduction

- Joseph Kruskal (1956). "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem". *Proceedings of the American Mathematical Society*.
- Uses a Greedy strategy.
- **Idea:** Finds an edge of the least possible weight connecting any two trees in the forest.
- Connected graphs: It finds a subset of the edges that forms a tree that includes every vertex, such that the total weight of all the edges in the tree is minimized.
- Disconnected graphs: It finds a minimum spanning forest.
- Other MST Algorithms: Prim's algorithm, Reverse-delete algorithm, and Boråvka's algorithm.

I/P: A weighted undirected G = (V, E, w).

I/P: A weighted undirected G = (V, E, w).

O/P: An MST T = (V, E') of G.

1. $\mathcal{L} \leftarrow \mathbf{E}$

Sort $\mathcal L$ in ascending order.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

O/P: An MST T = (V, E') of G.

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

3. while
$$(|E'| < n-1)$$

4. Pick the next edge in \mathcal{L} .

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e, f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

while
$$(|E'| < n - 1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. if $T \cup \{e\}$ creates a cycle

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e, f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- $\begin{array}{ll} 1. & \mathcal{L} \leftarrow \textit{E} \\ & \text{Sort } \mathcal{L} \text{ in ascending order.} \end{array}$
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. if $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- $\begin{array}{ll} 1. & \mathcal{L} \leftarrow \textit{E} \\ & \text{Sort } \mathcal{L} \text{ in ascending order.} \end{array}$
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- $\begin{array}{ll} 1. & \mathcal{L} \leftarrow \textit{E} \\ & \text{Sort } \mathcal{L} \text{ in ascending order.} \end{array}$
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- $\begin{array}{ll} 1. & \mathcal{L} \leftarrow \textit{E} \\ & \text{Sort } \mathcal{L} \text{ in ascending order.} \end{array}$
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E'=\emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. if $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E'=\emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

b

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E'=\emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E'=\emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

initially
$$L = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E'=\emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c, h)	3	(c,g)	7
(h,i)	-1	(e, f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

3. while
$$(|E'| < n-1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}.$

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c, h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

8. while
$$(|E'| < n-1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else

8.
$$E' \leftarrow E' \cup \{e\}$$
.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a,b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

3. while
$$(|E'| < n-1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else

8.
$$E' \leftarrow E' \cup \{e\}$$
.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

3. while
$$(|E'| < n-1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else

8.
$$E' \leftarrow E' \cup \{e\}.$$

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}.$

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T=(V,E') into a tree) Initially $E'=\emptyset$

3. while
$$(|E'| < n-1)$$

- 4. Pick the next edge in \mathcal{L} .
- 5. if $T \cup \{e\}$ creates a cycle
- 7. else

8.
$$E' \leftarrow E' \cup \{e\}$$
.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject e.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c, h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c, h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. if $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c, h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b,e)	4		
(c,d)	0	(a, c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

O/P: An MST
$$T = (V, E')$$
 of G .

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

Edges	Weights	Edges	Weights	Edges	Weights	Edges	Weights
(g,h)	-2	(a, b)	1	(c,h)	3	(c,g)	7
(h,i)	-1	(e,f)	1	(b, e)	4		
(c,d)	0	(a,c)	2	(j,i)	5		
(h,j)	0	(b,d)	3	(c,f)	6		

I/P: A weighted undirected G = (V, E, w).

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ *creates a cycle*
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

$$w(G) = \sum_{e \in E'} w(e) = 8.$$

I/P: A weighted undirected G = (V, E, w).

O/P: An MST T = (V, E') of G.

- 1. $\mathcal{L} \leftarrow E$ Sort \mathcal{L} in ascending order.
- 2. (Grow a subgraph T = (V, E') into a tree)

Initially
$$E' = \emptyset$$

- 3. while (|E'| < n-1)
- 4. Pick the next edge in \mathcal{L} .
- 5. **if** $T \cup \{e\}$ creates a cycle
- 6. Reject *e*.
- 7. else
- 8. $E' \leftarrow E' \cup \{e\}$.

$$w(G) = \sum_{e \in E'} w(e) = 8.$$

Question: How to check whether $T \cup \{e\}$ creates a cycle or not?

Correctness

Theorem

The spanning tree returned by Kruskal's algorithm is a MST.

Let T be returned by the algorithm and let S be a MST of G.

If T is equal to S then there is nothing to prove.

So, let $T \neq S$.

Strategy: From S form a spanning tree S' s.t., $w(S') \le w(S)$ and S' has one more edge in common to T then S does.

Repeat the strategy at most n-1 times to obtain a tree S_0 which is equal to T and

$$w(T) = w(S_0) \leq \cdots \leq w(S') \leq w(S).$$

Since $S \neq T$, let $e_i \in \mathcal{L}$ be the first i, s.t., $e_i \in T$ but $e_i \notin S$. Consider $S \cup \{e_i\}$.

- This must have created a cycle in *S*.
- Then there must be an edge e_i on this cycle which is not in T.
- Modify *S*:

$$S' \leftarrow (S \setminus \{e_j\}) \cup \{e_i\}.$$

So S' has one more edge in common to T than S and

$$w(S') = w(S) - w(e_i) + w(e_i).$$

Can $e'_i s$ position in \mathcal{L} be earlier to e_i ?

Can $e_i's$ position in \mathcal{L} be earlier to e_i ? No.

- Notice that $e_j \notin T$ because it must have formed a cycle with edges in T which are earlier to e_j in \mathcal{L} .
- By definition of e_i , if j < i, then all these edges must be in S.
- Hence with e_i they form a cycle in $S! \implies$

 \therefore j > i, which implies that w(S') < w(S). Hence the theorem.

An Implementation Using Disjoint-set Data Structure

```
MST-Kruskal(G, w)
I/P: A connected, weighted undirected graph G = (V, E) and the corresponding
weight function w.
O/P: A list of edges of the MST.
     A \leftarrow \emptyset
1
     for each vertex v \in V
3.
       Make-Set(\nu)
     sort the edges of E into non-decreasing order of weight w
     for each edge (u, v) \in E, taken in non-decreasing order of weight
5.
       if (FIND-SET(u) \neq FIND-SET(v))
6.
          A \leftarrow A \cup \{(u, v)\}
8.
          Union(u, v)
9.
     return A
```

Time Complexity

• The running time depends on the implementation of the disjointset data structure.

• Assume the disjoint-set-forest implementation with the unionby-rank and path-compression heuristics.

Recall that it is the asymptotically fastest implementation known.

Time Complexity

- Line 1: Initializing the set A takes $\mathcal{O}(1)$ time.
- Line 4: Sort the list of edges takes $\mathcal{O}(|E| \log |E|)$ times.
- Lines 2-3: Performs |V| MAKE-SET operations.
- Lines 5-8: Performs $\mathcal{O}(|E|)$ FIND-SET and UNION operations.
- Lines 2-3 + Lines 5-8: Takes a total of

$$\mathcal{O}((|V| + |E|)\alpha(|V|))$$
= $\mathcal{O}(|E| \cdot \alpha(|V|))$ [:: $|E| \ge |V| - 1$ (*G* is connected)]

time, where α is the very slowly growing function.

• Moreover, since $\alpha(|V|) = \mathcal{O}(\log |V|)$ (slowly growing w.r.t. V), the running time of Kruskal's algorithms is

$$\mathcal{O}(|E|\log|V|)$$
.

Prim's Algorithm

History

- 1st developed in 1930 by Czech mathematician Vojtěch Jarník.
- Rediscovered and republished later by computer scientists
 - Robert C. Prim in 1957 and
 - Edsger W. Dijkstra in 1959.

Other Names:

- Jarník's algorithm,
- Prim-Jarník algorithm,
- Prim-Dijkstra algorithm or
- the DJP algorithm.

Introduction

- Operates much like Dijkstra's algorithm for finding shortest paths in a graph.
- **Property:** The edges in the set A always form a single tree.
- Key Idea:
 - Starts from an arbitrary root vertex r.
 - ullet Grows until the tree spans all the vertices in V.

Strategy:

- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A = (V, A)$.
- Greedy: The tree is augmented at each step with an edge that contributes the minimum amount possible to the tree's weight.

The Algorithm

- **Efficiency:** Depends on how easy it is to select a new edge to be added to the tree formed by the edges in A.
- I/P: A connected graph G = (V, E) and the root r.
- All vertices that are not in the tree reside in a MIN-PRIORITY queue Q based on a key field.
- For each vertex v, key[v] is the minimum weight of any edge connecting v to a vertex in the tree.
- By convention, $key[v] = \infty$ if there is no such edge.
- The field $\pi[v]$ names the parent of v in the tree.
- During execution: $A = \{(\pi[v], v) : v \in \{V \setminus \{r\}\} \setminus Q\}.$
- **Termination:** When the MIN-PRIORITY queue Q is empty.
 - $A = \{(\pi[v], v) : v \in V \setminus \{r\}\}.$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

- 1. **for** each $u \in V$
- 2. $key[u] \leftarrow \infty$ 3. $\pi[u] \leftarrow NIL$ 4. $key[r] \leftarrow 0$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

- 1. **for** each $u \in V$
- 2. $key[u] \leftarrow \infty$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $key[r] \leftarrow 0$
- 5. $Q \leftarrow V$
- 6. while $(Q \neq \emptyset)$
- 7. $u \leftarrow \text{EXTRACT-MIN}(Q)$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

- 1. **for** each $u \in V$
- 2. $key[u] \leftarrow \infty$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $key[r] \leftarrow 0$
- 5. $Q \leftarrow V$
- 6. while $(Q \neq \emptyset)$
- 7. $u \leftarrow \text{Extract-Min}(Q)$
- 8. **for** each $v \in Adj[u]$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

- 1. **for** each $u \in V$
- 2. $key[u] \leftarrow \infty$
- 3. $\pi[u] \leftarrow \text{NIL}$ 4. $key[r] \leftarrow 0$
- 5. $Q \leftarrow V$
- 6. while $(Q \neq \emptyset)$
- 7. $u \leftarrow \text{Extract-Min}(Q)$
- 8. **for** each $v \in Adj[u]$
- 9. if $(v \in Q)$ and (w(u, v) <key[v]


```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V

2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
               if (v \in Q) and (w(u, v) <
9.
key[v]
                 \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V

2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
               if (v \in Q) and (w(u, v) <
9.
key[v]
                 \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
              if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
              if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
              if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
              if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
9.
             if (v \in Q) and (w(u, v) <
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
11.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
11.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{EXTRACT-MIN}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow ukey[v] \leftarrow w(u, v)
10.
```



```
I/P: A weighted connected undirected
graph G = (V, E, w) and a root vertex
r.
O/P: A MST T = (V, A) of G.
1. for each u \in V
2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow NIL

4. key[r] \leftarrow 0
5. Q \leftarrow V
6. while (Q \neq \emptyset)
7. u \leftarrow \text{Extract-Min}(Q)
8. for each v \in Adj[u]
             if (v \in Q) and (w(u, v) <
9.
key[v]
                \pi[v] \leftarrow u \\ key[v] \leftarrow w(u, v)
10.
```


I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.
O/P: A MST T = (V, A) of G.
// Constructing the MST T
12. T ← ∅
16. return T

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T12. $T \leftarrow \emptyset$ 13. for each $v \in V$ 14. if (v! = r)

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T12. $T \leftarrow \emptyset$ 13. for each $v \in V$ 14. if (v !=r)15. $T \leftarrow T \cup \{(\pi[v], v)\}$ 16. return T


```
I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T
12. T \leftarrow \emptyset
13. for each v \in V
14. if (v! = r)
15. T \leftarrow T \cup \{(\pi[v], v)\}
```


I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T


```
I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T
12. T \leftarrow \emptyset
13. for each v \in V
14. if (v! = r)
15. T \leftarrow T \cup \{(\pi[v], v)\}
```


I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T


```
I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T
12. T \leftarrow \emptyset
13. for each v \in V
14. if (v! = r)
15. T \leftarrow T \cup \{(\pi[v], v)\}
```


I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .
// Constructing the MST T

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. **return** *T*


```
I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST T = (V, A) of G.

// Constructing the MST T
12. T \leftarrow \emptyset
13. for each v \in V
14. if (v! = r)
15. T \leftarrow T \cup \{(\pi[v], v)\}
```


$$g(-2,h)$$

$$(3,c) h$$

$$j(0,h)$$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. **return** *T*

$$g(-2,h)$$

$$(3,c) h$$

$$j(0,h)$$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

// Constructing the MST T
12. $T \leftarrow \emptyset$
13. for each $v \in V$

- 14. **if** (v! = r)15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. **return** *T*

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. **return** *T*

$$(3,c) h$$

$$j(0,h)$$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v! = r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. **return** *T*

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

// Constructing the MST T
12. $T \leftarrow \emptyset$
13. for each $v \in V$
14. if $(v! = r)$
15. $T \leftarrow T \cup \{(\pi[v], v)\}$

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

// Constructing the MST T
12. $T \leftarrow \emptyset$
13. for each $v \in V$
14. if $(v! = r)$
15. $T \leftarrow T \cup \{(\pi[v], v)\}$

16. return T

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

$$O/P$$
: A MST $T = (V, A)$ of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T

I/P: A weighted connected undirected graph G = (V, E, w) and a root vertex r.

O/P: A MST
$$T = (V, A)$$
 of G .

- 12. $T \leftarrow \emptyset$
- 13. **for** each $v \in V$
- 14. **if** (v !=r)
- 15. $T \leftarrow T \cup \{(\pi[v], v)\}$
- 16. return T

$$w(G) = \sum_{e \in A} w(e) = 8.$$

Correctness

The correctness follows from the following 3-part loop invariant:

- $\bullet A = \{(v, \pi[v]) : v \in \{V \setminus \{r\}\} \setminus Q\}.$
- ullet The vertices already placed into the MST are those in $V\setminus Q$.
- For all vertices $v \in Q$, if $\pi[v] \neq \text{NIL}$, then $key[v] < \infty$ and key[v] is the weight of a light edge $(v, \pi[v])$ connecting v to some vertex already placed into the minimum spanning tree.

Cut: A *cut* $(S, V \setminus S)$ of an undirected graph G = (V, E) is a partition of V.

Light edge: An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut.

Note: There can be more than one light edge crossing a cut in the case of ties.

Correctness

The correctness follows from the following 3-part loop invariant:

- $\bullet A = \{(v, \pi[v]) : v \in \{V \setminus \{r\}\} \setminus Q\}.$
- ullet The vertices already placed into the MST are those in $V\setminus Q$.
- For all vertices $v \in Q$, if $\pi[v] \neq \text{NIL}$, then $key[v] < \infty$ and key[v] is the weight of a light edge $(v, \pi[v])$ connecting v to some vertex already placed into the minimum spanning tree.

Cut: A *cut* $(S, V \setminus S)$ of an undirected graph G = (V, E) is a partition of V.

Light edge: An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut.

Note: There can be more than one light edge crossing a cut in the case of ties.

Homework: Read the proof the correctness of Prim's algorithm!

Complexity

- ullet Depends on how the MIN-PRIORITY queue Q is implemented.
- ullet Assume that Q is implemented as a binary MIN-HEAP.
- Lines 1-5: Build-Min-Heap procedure can be used to perform the initialization in $\mathcal{O}(|V|)$ time.
- Note: The body of the while loop is executed |V| times.
 - Each Extract-Min operation takes $\mathcal{O}(\log |V|)$ time.
 - |V| calls to EXTRACT-MIN takes $\mathcal{O}(|V|\log|V|)$ time.

Complexity

- Lines 8-11: The for loop is executed $\mathcal{O}(|E|)$ times.
 - Recall that the sum of the lengths of all adjacency lists is 2|E|.
 - Line 9: Test for membership in Q takes constant time.
 - Keep a bit for each vertex v to denote whether $v \in Q$ or not.
 - Update the bit when the vertex is removed from Q.
 - Line 11: Involves an implicit Decrease-Key operation.
 - Takes $\mathcal{O}(\log |V|)$ time in a binary MIN-HEAP.

• Total time: $\mathcal{O}(|V| \log |V| + |E| \log |V|) = \mathcal{O}(|E| \log |V|)$.

Books and Other Materials Consulted

Definitions and Krushkal's Algorithm taken from Discrete Mathematics Lecture Notes (M. Tech (CS), Monsoon Semester, 2007) taught by Prof. Palash Sarkar (ASU, ISI Kolkata).

2 Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein. Thank You for your kind attention!

Questions!!