NAME:		index No	
Signature	School		
P525/1			
CHEMISTRY			
Paper 1			
July/Aug 2023			
2¾ hours			

BUGANDA EXAMINATION COUNCIL MOCKS 2023

UGANDA ADVANCED CERTIFICATE OF EDUCATION

CHEMISTRY PAPER 1

2 HOURS 45 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Answer ALL questions in Section A and SIX questions in Section B.
- All questions must be answered in the spaces provided.
- The Periodic Table, with relative atomic masses, is supplied at the end of the paper.
- Mathematical tables (3-figure tables) and adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.
- Molar gas constant, R = 8.31 JK⁻¹mol⁻¹
- Molar Volume of gas at s.t.p is 22.4 litres.

-

For Examiner's Use Only								Total									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	

SECTION A (46 MARKS)

Answer all questions in this section.

l.	The:	standard electrode potentials for some redox	systems are s	hown below.
		(4)	$E^{0} = +1.46V$ $E^{0} = +1.23V$	
	(a) W	/rite:		are combined (01 mark)
	 (i 	i) the overall equation for the reaction.	((1½ marks)
	(b) (i) Calculate the e.m.f of the cell in (a).	((01 mark)
	(ii)) State whether the cell reaction is feasible or answer.		eason for you (01 mark)
2.	Comp	olete the following equations and in each case nuct.		
	(a)	$(CH_3)_2CH_2Br \xrightarrow{Na} Dry \ ether$		
	(b)	Name of product $CH_3CH=CH_2+HBr(g)\xrightarrow{CH_3OOCH_3}$		
	(c)	Name of product $CH_3CHO \xrightarrow{H_2N-NH_2/H^+}$		(1½ marks)
		Name of product		

	(d)		CH2OH + ne of produ	uct	соон	$\stackrel{H^+}{\longrightarrow}$ heat			(1½ marks)
3.	(a) S	state							
			is meant b	by the	term co	mplex	ion?		(01 mark)
	•••								
	(ii) 	thre	e factors	that o	can favou	ır forn	nation of	complexes.	(1½ marks)
		Comple comple		le bel	ow by pr	oviding	the nam	e of each o	f following (02 marks)
			complex				Name o	f complex	(OZ IIIdi K3)
	[Fe(CN	1) ₆] ³⁻					•	
			1 ₃) ₄ (H ₂ O) ₂] ²⁺					
	(c)				tion of s	odium	carbonat	e was addec	to a solution of
		iron (i)	(III) chlo State wh		ıs observ	ed.			(01 mark)
		(ii)	Write eq	juatio	n for the	react	ion that 1	rook place.	(01 mark)
4.	(a)(i)) Brief	ly describ	e how	a sample	e of so	ap can be	prepared.	(2½ marks)
	•••								

(11) Write equation leading to the formation of soap.	(U1 mark)
(b)(i) Explain why soap cannot be effectively used in strong	ly acidified medium. (1½ marks)
(ii) State one advantage of soap as compared to soapless	detergents. (0½ marks)
(a) Beryllium like aluminium can react with aqueous sodium l whereas other group (II) elements in the Periodic Table do	•
(i) List three other properties in which beryllium shaluminium.	
(ii) State two reasons why beryllium behaves differently (II) elements.	from other group (01 mark)
(b) Write equation for the reaction between aqueous sodium (i) beryllium.	n hydroxide and $(1\frac{1}{2} \text{ marks})$

	(ii) aluminium.	(1½ marks)
5.	which occup	of a gaseous hydrocarbon \mathbf{Q} (C_xH_y) was exploded with 2 was in excess. On cooling to room temperature, the residued 155 cm ³ . When the residual gases were passed through the volume decreased by 120 cm ³ .	dual gases
	(a)	Calculate the molecular formula of \mathbf{Q} .	(03 marks)
	(b)	Q forms a red precipitate on treatment with a solution of chloride in aqueous ammonia. Write	of copper (I)
	(i)	the structural formula and IUPAC name of Q.	(01 mark)
	 (ii)	equation for the reaction between ${f Q}$ and solution of copin aqueous ammonia.	oper(I) chloride (01 mark)

following equation. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g);$	
a) Write an expression for the equilibrium constant, K_c .	$(0\frac{1}{2} \text{ mark})$
b) When 1 mole of phosphorus(V) chloride was placed in a 1 heated at 350°C and at a certain pressure, the equilibrium found to contain 38.4% of chlorine.	
(i) Calculate the equilibrium constant, K_c .	(03 marks)
(ii) The equilibrium constant for the above reaction at 2 be 1.54. State whether the reaction is exothermic or	r endothermic. Give
a reason for your answer.	(01 mark)

7. Phosphorus(V) chloride decomposes at high temperatures according to the

(c) State what would happen to the concentratio the vessel was decreased while temperature reason for your answer.	•
t	Name one reagent that can be used to distingui of compounds. In each case, state what would b the pairs is separately treated with the reagent	e observed if each member of
(0	a) C_6H_5CHO and CH_3CH_2CHO	(03 marks)
(b) (CH ₃) ₂ CHNH ₂ and (CH ₃) ₂ NH	(03 marks)

9.	(a) T	he thermo chemical data for some processes are	shown below:
	Proc	·	ergy(kJmol ⁻¹)
	Aton	nisation of calcium	+178
		ionisation energy of calcium	+590
		nd ionisation energy of calcium	+1146
	Form	nation of calcium fluoride	-1220
	Latti	ice energy of calcium fluoride	+2720.7
	Bond	dissociation of fluorine	+242.7
	(a)	Calculate the first electron affinity of fluorine.	(02 marks)
	 (b) 	Determine the enthalpy of solution of calcium floof Ca ²⁺ and F ⁻ ions are -1587 and -515kJmol ⁻¹)	uoride crystal (Enthalpies (02 <i>marks</i>)
	 (c) (i)	State the effect of temperature on the solubili	ty of calcium flouride (0½ mark)
	(i	i) Give a reason for your answer in b(i)	(0½ mark)

SECTION B (54 MARKS)

Answer six questions from this section.

O. State what would be observed and write equation for the r take place when:	eaction that would
(a) Solid sodium iodide is heated with concentrated sulphuri Observation	c acid. (02 marks)
Equation	
(b) propanal is boiled with Fehling's solution. Observation	(02 marks)
Equation	
(c) Sodium nitrite was added to acidified potassium dichrom Observation	nate(VI) solution. (2½ marks)
Equation	
(d) Chlorine water is added to aqueous solution of iron(II) so	ulphate. (2½ marks)
Equation	

d alkaline potassium manganate(VII) is added cyclohexene. (02 marks)		
Equation		
Carbon, silicon, germanium and tin are some of the elements of group IV of the Periodic Table.		
(a) Write the general outermost electronic configuration of the elements. $(0\frac{1}{2} \text{ mark})$		
(b) State the trend in the metallic nature and explain your answer. $(1\frac{1}{2} \text{ marks})$		
(b) State two		
(i) reasons why carbon shows differences in its properties from the rest of the elements in the same group. (01 mark)		
(ii) properties in which carbon differs from the other elements. (02 marks)		

(ii) Describe how each of the hydrides in (d)(i) red	
Write equations to show how the following convers a) Cyclohexanol from benzene and propene.	ions can be carried out. (03 marks)
b) $HC \equiv CH$ to	(03 marks)
c) Ethanol to 2-hydroxypropanoic acid.	(03 marks)

. (a) w	rite the electronic configuration of manganese.	(01 mark)
	assium manganate(VII) is commonly employed in vo	lumetric analysis.
	wever, it solution must be first standardized. State two advantages of using potassium mangana analysis.	ite(IV) in volumetric (O2 marks)
(ii)	Name one substance that can be used to standard manganate(VII).	dized potassium (01 mark)
wou (i) p	ate what would be observed and write equation for all take place when to acidified potassium mangana potassium iodide solution. servation	
Equ	iation(s)	
	servation	(2½ marks)
Equ	ıation	
.(a)De	fine the term common ion effect .	(01 mark)

(b)	Zinc hydroxide is sparingly soluble in water. Write the expression for the solubility product, Ksp, for zinc hydroxide.									
	(0½ mark)									
	5.0 g of zinc hydroxide was shaken in 1 dm^3 of water and the mixture filtered at 25°C.									
(24.0 cm ³ of the filtrate required 5.6 cm ³ of a 0.1 M hydrochloric acid for complete reaction using phenolphthalein indicator.									
	Calculate the (i) solubility product constant, K_{sp} of zinc hydroxide at 25°C. (2 $\frac{1}{2}$ marks)									
	(ii) percentage of zinc hydroxide that dissolved at 25°C. (02 marks)									
	State how the solubility of zinc hydroxide would change if its saturated solution at 25°C is separately treated with.									
	(i) aqueous zinc sulphate. $(1\frac{1}{2} \text{ marks})$									

1) ammonia.	(1½ marks)					
cted.						
Benzene to phenylethanone.	(03 marks)					
Benzoic acid to 3-nitrobenzoic acid.	(03 marks)					
2-iodo-2-methylpropane to 2-methylpropan-2-ol.	(03 marks)					
	te a mechanism to show how each of the following convercted. Benzene to phenylethanone. Benzoic acid to 3-nitrobenzoic acid. 2-iodo-2-methylpropane to 2-methylpropan-2-ol.					

16. (a)) State:	
(b)	(i) Raoult's law.	(01 mark)
	(ii) three properties of an ideal solution.	(1½ marks)
(b)	An ideal solution of $m{A}$ and $m{B}$ is such that the mole fi	raction of A is 0.25 at
	25°C. Calculate the composition of the vapour above vapour pressure of pure $\bf A$ and pure $\bf B$ at 25°C are 8.0	e liquid mixture. (<i>The</i>
	respectively.)	(03 marks)
(c)	(i) Sketch a labeled boiling point-composition diagram	
	(b) above.	(2½ marks)

(ii) 	State what would be obtained as the distillate and the mixture in (b) containing 40% A is fractionally distilled	. (01 mark)
	(i) Write the formula and the name of one ore from whi	ch zinc can be (01 mark)
(ii)	State the method which can be used to concentrate named in a(i).	the ore you have (0½ mark)
	The concentrated ore in (a)(i) was converted to zinc oxi i) State how the conversion was carried out.	de. (01 mark)
(ii) Write the equation for the reaction that lead to the oxide.	formation of zinc

(c) The zinc oxide in (b) was mixed with limestone and coke and the mix heated in air in a blast furnace.						
(i) State the purpose of adding limestone.	(0½ mark)					
(ii) Write equation for the reaction leading to the	e formation of zinc. (1½ marks)					
Zinc powder was added to hot concentrated sodiu (i) State what was observed.	ım hydroxide solution. (1½ marks)					

END

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0																1.0	4.0
H 1																Н	Не
																1	2
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
Li	Be											В	C	N	О		Ne
3	4											5	6	7	8	F	10
																9	
23.0	24.3											27.0	28.1	31.0	32.1	35.4	40.0
Na	Mg											Al 13	Si	P	S	Cl	Ar
11	12	45.0	47.0	50.9	52.0	540	55.0	50.0	50.7	(2.5	(5.7		14	15	16	17	18
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.7 Zn	69.7 Ga	72.6 Ge	74.9	79.0 Se	79.9 Br	83.8 Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	As 33	34	35	36
85.5	87.6	88.9	91.2	92.9	95.9	98.9	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	209	210	222
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227															
Fr	Ra	Ac															
87	88	89	120	1.40	1.41	144	1.45	150	1.50	1.57	150	1.60	1.65	1.67	1.00	172	177
			139	140 Ce	141 Fr	144 Nd	145 Pm	150	152 Eu	157 Gd	159	162	165	167 Er	169 Tm	173 Yb	175
			La 57	58	59	1Na 60	61	Sm 62	63	64	Tb 65	- Dу 66	Но 67	68	69	70	Lu 71
			227	232	231	238	237	244	243	247	247	251	254	257	256	254	260
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Ea	Fm	Md	No	Lw
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103