Course on Proof Theory - Lecture 1

Exercises - Introduction to Propositional and First-order Logic

Gianluca Curzi, Marianna Girlando

University of Birmingham

Midlands Graduate School Nottingham, 10-14 April 2022

Part 1: Propositional logic

- 1. Show $\vdash \bot \rightarrow A$ (ex falso quodlibet)
- 2. Show $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow B \rightarrow A \rightarrow C$ (exchange).
- 3. We can extend HF to include conjunction \wedge by adding the following axioms:

HF8.
$$A \rightarrow B \rightarrow (A \land B)$$

HF9. $(A \land B) \rightarrow A$
HF10. $(A \land B) \rightarrow B$

Show
$$\vdash (A \rightarrow (B \rightarrow C)) \leftrightarrow ((A \land B) \rightarrow C)$$
, where

$$A \leftrightarrow B := (A \to B) \land (B \to A)$$

4. We haven't yet used the axiom (neg)! Show that HF proves:

(a)
$$\neg A \rightarrow (A \rightarrow B)$$

(b) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
(c) $((A \rightarrow B) \rightarrow A) \rightarrow A$

Hint for part 1: Use the deduction theorem to reduce any proof of $A \rightarrow B$ to a proof of B with hypothesis A.

Part 2: Predicate logic

1. We can extend HF to include existential quantifier \exists by adding the following axioms:

HF11.
$$A[t/x] \rightarrow \exists x.A$$

HF12. $\forall x.(A \rightarrow B) \rightarrow (\exists x.A \rightarrow B)$ $x \notin FV(B)$

Show the following equivalences:

- (a) $\mathcal{M}, \sigma \vDash \exists x. A \Longleftrightarrow \mathcal{M}, \sigma \vDash \neg \forall x. \neg A$
- (b) $\mathcal{M}, \sigma \vDash (\exists x.A \to B) \iff \mathcal{M}, \sigma \vDash \forall x.(A \to B) \quad x \notin FV(B)$
- (c) $\vdash (\exists x.A \rightarrow B) \leftrightarrow \forall x.(A \rightarrow B)$ $x \notin FV(B)$
- 2. Outline a first-order theory whose models are the partial orders. Adapt this theory to characterise
 - ▶ total orders e.g. (\mathbb{Z}, \leq)
 - ▶ total orders with a minimum element e.g. $(\mathbb{N}, \leq, 0)$
 - ▶ dense total orders e.g. (\mathbb{Q}, \leq)
 - Is it possible to characterise well-founded partial orders?