This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-126286

(43)公開日 平成7年(1995)5月16日

(51) Int.Ci.4

識別配号

FΙ

技術表示箇所

C 0 7 K 5/03

8318-4H

庁内整理番号

A 6 1 K 38/55

,

ABE

ABU

A61K 37/64

ABE

ABU

審査請求 未請求 請求項の数2 OL (全14頁) 最終頁に続く

(21)出顧番号

(22)出願日

特願平5-277184

平成5年(1993)11月5日

(71)出願人 000006677

山之内製薬株式会社

東京都中央区日本橋本町2丁目3番11号

(72)発明者 平山 復志

茨城県つくば市二の宮2丁目5番9 ルー

ミー筑波319号

(72)発明者 相部 和彦

千葉県柏市布施新町3-5-3

(72)発明者 阿部 賢二

埼玉県上尾市大字小泉406-3

(74)代理人 弁理士 渡邉 一平 (外3名)

(54)【発明の名称】 新規なペプチド誘導体

(57)【要約】

【構成】 下記一般式(I)で示される新規なペプチド*

*誘導体又はその塩。

【化1】

(式中、 R^1 及び R^2 は、同一又は異なって、水素原子、カルポキシル基、又は、 $1\sim3$ 個の酸素原子で中断されてもよい炭素数が $1\sim1$ 0のアルコキシカルポニル基であり; R^3 は、水素原子、又は低級アルキル基であり; R^4 は、低級アルキル基であり; R^5 は、環骨格の炭素数が $4\sim8$ のシクロアルキル基であり; R^6 は、ヒドロキシ基で置換されてもよい低級アルキル基であり;R

'は、低級アルキル基である。)

【効果】 カンジダ・アルピカンスが生産する酸性プロテアーゼに対して阻害作用を有し、酸性プロテアーゼ阻 客剤として有用である。従って、抗真菌剤として有用であるのみならず、抗炎症剤、降圧剤、抗潰瘍剤、抗ウィルス剤等として有用である。

【特許請求の範囲】

【請求項1】 下記一般式(I)で示される新規なペプ* *チド誘導体又はその塩

【化1】

(式中、

R¹ 及びR² は、同一又は異なって、水素原子、カルボキ 10 もち、活性中心にアスパラギン酸が存在する。 シル基、又は、1~3個の酸素原子で中断されてもよい 炭素数が1~10のアルコキシカルポニル基であり、

Riは、水素原子、又は低級アルキル基であり、

R'は、低級アルキル基であり、

R⁵は、環骨格の炭素数が4~8のシクロアルキル基で

R®は、ヒドロキシ基で置換されてもよい低級アルキル 基であり、

R'は、低級アルキル基である。)

の塩を有効成分とするカンジダ・アルピカンスの酸性プ ロテアーゼ阻害剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明

は、酸性プロテアーゼ阻害作用を有する新規ペプチド誘 導体又はその塩に関する。

[0002]

【従来の技術】真菌症の起因菌の代表として、カンジダ ・アルピカンスが挙げられる。このカンジダ・アルピカ 30 ンスが生産する酸性プロテアーゼは、真菌培養用のサブ ロー培地での培養では分泌されないが、ヒト皮膚角質や 血清アルプミンを唯一の窒素源として加えて培養すると 菌体外に誘導生産されることが知られている(小川秀興 ら、日皮会誌、93巻、4号、463頁、1983 年)。なお、酸性プロテアーゼは、アスパラギン酸プロ※

※テアーゼともいい、pHが2~7の酸性で最適なpHを

2

【0003】しかもヒト皮膚角質を窒素源とする培地で 培養したとき、酸性プロテアーゼの非特異的阻害物質で あるペプスタチンAがアゾール系抗真菌剤より強力な抗 真菌活性を示すことも報告され(坪井良治ら、真菌誌、 25巻、4号、387頁、1984年)、カンジダ・ア ルピカンスの酸性プロテアーゼの特異的な阻害物質が新 しい作用機作を持った抗真菌剤となり得ることが期待さ れる.

【0004】さらに腎性高血圧症の起因酵素であるレニ 【請求項2】 請求項1に記載のペプチド誘導体又はそ 20 ン、炎症の起因酵素の一つであるカテプシンA、胃液中 に存在するペプシンA、HIVのウィルス粒子形成に、 ひいてはHIVの感染に重要なプロテアーゼも酸性プロ テアーゼなので、酸性プロテアーゼ阻害物質は新たな作 用機作の降圧剤、抗炎症剤、抗潰瘍剤、抗ウィルス剤と しての開発の可能性も期待される。

[0005]

【発明が解決しようとする課題】従って、本発明は、カ ンジダ・アルビカンスの酸性プロテアーゼを阻害作用を 作用機作とする抗真菌剤に有用な物質を提供することを 目的とする。

[0006]

【課題を解決するための手段】即ち、本発明は下記一般 式(I)で示される新規なペプチド誘導体又はその塩に 関する。

[0007]

(化2)

【0008】(式中、R1及びR2は、同一又は異なっ て、水素原子、カルポキシル基、又は、1~3個の酸素 原子で中断されてもよい炭素数が1~10のアルコキシ カルポニル基であり、R¹は、水素原子、又は低級アル キル基であり、Rfは、低級アルキル基であり、Rfは、 環骨格の炭素数が4~8のシクロアルキル基であり、R 『は、ヒドロキシ基で置換されてもよい低級アルキル基 であり、R'は、低級アルキル基である。) また、本発 50 明は、上記ペプチド誘導体又はその塩を有効成分とする カンジダ・アルピカンスの酸性プロテアーゼ阻害剤を提 供する。

【0009】更に、本発明は、上記のペプチド誘導体又 はその塩を油中水型乳剤の油相に含ませたことを特徴と する注射用乳剤を提供する。また、油成分として脂肪酸 トリグリセリドを用いることが好ましい。

【0010】更に、油成分として中鎖脂肪酸トリグリセ

リドを用いてもよい。更にまた、主要な乳化剤としてリ ン脂質を用いることが好ましい。

【0011】以下、本発明を更に詳述する。本発明化合 物(I)において、R1及びR2は、水素原子、カルポキ シル基、又はアルコキシカルボニル基である。カルボキ シル基とは、-COOHを意味する。また、R1の置換 基と、R2の置換基とは同一でもよければ、異なってい てもよい。しかし、R1及びR2の両者が水素原子でない ことが好ましい。

O-OR (Rはアルキル基を意味する。) を意味し、直 鎖状であっても又は分枝状であってもよい。アルコキシ カルポニル基とは、例えば、メトキシカルボニル基、エ トキシカルポニル基、プロポキシカルポニル基、1-メ チルエトキシカルポニル基、プトキシカルポニル基、1 - メチルプロポキシカルポニル基、2 - メチルプロポキ シカルポニル基、1、1-ジメチルエトキシカルポニル 基;ペンチルオキシカルポニル基、1-メチルブトキシ カルポニル基、2-メチルプトキシカルポニル基、3-メチルプトキシカルポニル基、1,1-ジメチルプロポ 20 キシカルポニル甚、1,2-ジメチルプロポキシカルボ ニル基、2, 2-ジメチルプロポキシカルポニル基、1 - エチルプロポキシカルポニル基、2-エチルプロポキ シカルポニル基: ヘキシルオキシカルポニル基、1-メ チルペンチルオキシカルポニル基、2-メチルペンチル オキシカルポニル基、3-メチルペンチルオキシカルボ ニル基、4-メチルペンチルオキシカルポニル基、1, 1-ジメチルプトキシカルポニル基、1,2-ジメチル プトキシカルポニル基、1、3-ジメチルプトキシカル ポニル基、2、2-ジメチルプトキシカルポニル基、 2, 3-ジメチルプトキシカルポニル基、3, 3-ジメ チルプトキシカルポニル基、1-エチルプトキシカルポ ニル基、2-エチルプトキシカルポニル基、3-エチル プトキシカルポニル基、1,1,2-トリメチルプロポ キシカルポニル基、1,2,2~トリメチルプロポキシ カルポニル基、1-エチル-1-メチルプロポキシカル ポニル基、1-エチル-2-メチルプロポキシカルポニ ル基、2-エチル-1-メチルプロポキシカルポニル 基、2-エチル-2-メチルプロポキシカルポニル基; ヘプチルオキシカルポニル甚、メチルヘキシルオキシカ 40 ルポニル基、ジメチルペンチルカルポニル基、エチルペ ンチルオキシカルポニル基、トリメチルプトキシカルボ ニル基、メチルエチルプトキシカルポニル基、プロビル プトキシカルポニル基;オクチルオキシカルポニル基、 メチルヘプチルオキシカルポニル基、ジメチルヘキシル カルポニル基、エチルヘキシルオキシカルポニル基、ト リメチルペンチルオキシカルポニル基、メチルエチルペ ンチルオキシカルポニル基、プロピルペンチルオキシカ ルポニル基、テトラメチルプトキシカルポニル基:ノナ

ニル基、ジメチルヘプチルカルポニル基、エチルヘプチ ルオキシカルポニル基、トリメチルヘキシルオキシカル ポニル基、メチルエチルヘキシルオキシカルポニル基、 プロピルヘキシルオキシカルポニル基、テトラメチルベ ンチルオキシカルボニル基: デカニルオキシカルボニル 基、メチルノナニルオキシカルポニル基、ジメチルオク チルカルポニル基、エチルオクチルオキシカルポニル 基、トリメチルヘプチルオキシカルポニル基、メチルエ チルヘプチルオキシカルポニル基、プロピルヘプチルオ 【0012】また、アルコキシカルボニル基とは、-C 10 キシカルボニル基、テトラメチルヘキシルオキシカルボ ニル基、ペンタメチルペンチルオキシカルポニル基等が 挙げられる。

> 【0013】低級アルコキシカルポニル基は、1~3個 の酸素原子で中断されてもよい。 1個の酸素原子で中断 された低級アルコキシカルポニル基としては、例えば、 メトキシメトキシカルポニル基、エトキシメトキシカル ポニル基、プロポキシメトキシカルポニル基、イソプロ ポキシメトキシカルポニル基、プトキシメトキシカルボ ニル基、2-メチルプロピルメトキシカルポニル基、1 -メチルプロポキシメトキシカルポニル基、1,1-ジ メチルエトキシメトキシカルポニル基、ペンチルオキシ メトキシカルポニル基、イソペンチルオキシメトキシカ ルポニル基、ネオペンチルオキシメトキシカルポニル 基、メチルプトキシメトキシカルポニル基、ヘキシルオ キシメトキシカルボニル基、ヘプチルオキシメトキシカ ルポニル基、オクチルオキシメトキシカルポニル基、ノ ナニルオキシメトキシカルポニル基:メトキシエトキシ カルポニル基、エトキシエトキシカルポニル基、プロポ キシエトキシカルポニル基、プトキシエトキシカルポニ 30 ル基、メチルプロポキシエトキシカルボニル基、ペンチ ルオキシエトキシカルボニル基、メチルプトキシエトキ シカルポニル基、ヘキシルオキシエトキシカルポニル 基、ヘプチルオキシエトキシカルポニル基、オクチルオ キシエトキシカルボニル基;メトキシプロポキシカルボ ニル基、エトキシプロポキシカルポニル基、プロポキシ プロポキシカルポニル基、プトキシプロポキシカルボニ ル基、ペンチルオキシプロポキシカルポニル基、ヘキシ ルオキシブロポキシカルポニル基、ヘプチルオキシブロ ポキシカルポニル基:メトキシプトキシカルポニル基、 エトキシブトキシカルポニル基、プロポキシブトキシカ ルポニル基、プトキシブトキシカルポニル基、ペンチル オキシプトキシカルポニル基、ヘキシルオキシプトキシ カルポニル基;メトキシペンチルオキシカルポニル基、 エトキシペンチルオキシカルポニル基、プロポキシペン チルオキシカルポニル基、ペンチルオキシペンチルオキ シカルポニル基、ペンチルオキシペンチルオキシカルボ ニル基:メトキシヘキシルオキシカルポニル基、エトキ シヘキシルオキシカルポニル基等が挙げられる。

【0014】2個の酸素原子で中断された低級アルコキ ニルオキシカルポニル基、メチルオクチルオキシカルポ 50 シカルポニル基としては、例えば、メトキシメトキシメ

トキシカルポニル基: エトキシメトキシメトキシカルポ ニル基、メトキシエトキシメトキシカルポニル基、メト キシメトキシエキシカルポニル基;プロポキシメトキシ メトキシカルポニル基、メトキシプロポキシメトキシカ ルポニル基、メトキシメトキシプロポキシカルポニル 基:エトキシエトキシメトキシカルポニル基、エトキシ メトキシエトキシカルポニル基、メトキシエトキシエキ シカルポニル基;プトキシメトキシメトキシカルポニル 基、メトキシプトキシメトキシカルポニル基、メトキシ メトキシブトキシカルポニル甚;プロポキシエトキシメ 10 基が好ましい。 トキシカルポニル基、プロポキシメトキシエトキシカル ポニル基、エトキシプロポキシメトキシカルポニル基、 エトキシメトキシプロポキシカルポニル基、メトキシブ ロポキシエトキシカルポニル基、メトキシエトキシプロ ポキシカルポニル基:エトキシエトキシエトキシカルポ ニル基;ペンチルオキシメトキシメトキシカルポニル 基、メトキシペンチルオキシメトキシカルポニル基、メ トキシメトキシペンチルオキシカルポニル基: ブトキシ エトキシメトキシカルポニル基、プトキシメトキシエト キシカルポニル基、エトキシブトキシメトキシカルポニ 20 ル基、エトキシメトキシプトキシカルポニル基、メトキ シプトキシエトキシカルポニル基、メトキシエトキシブ トキシカルポニル基;プロポキシエトキシエトキシカル ポニル基;プトキシエトキシメトキシカルポニル基、ペ ンチルオキシエトキシメトキシカルポニル基、ヘキシル オキシエトキシメトキシカルポニル基等を包含する。

【0015】3個の酸素原子で中断された低級アルコキ シカルポニル基としては、例えば、メトキシメトキシメ トキシメトキシカルポニル基:エトキシメトキシメトキ トキシカルポニル基、メトキシメトキシメトキシエトキ シカルポニル基:プロポキシメトキシメトキシメトキシ カルポニル基、メトキシブロポキシメトキシメトキシカ ルポニル基、メトキシメトキシメトキシプロポキシカル ポニル基等が挙げられる。

【0016】本明細書において、低級アルキル基とは、 炭素数1~6個の直鎖状又は分枝状のアルキル基を意味 する。低級アルキル基としては、具体的には例えば、メ チル基、エチル基、プロビル基、イソプロビル基、プチ ル基、イソプチル基、secープチル基、tertープ 40 チル基、ペンチル基、イソペンチル基、ネオペンチル 基、tert-ペンチル基、1-メチルプチル基、2-メチルプチル基、1,2-ジメチルプロピル基、ヘキシ ル基、イソヘキシル基、1-メチルペンチル基、2-メ チルペンチル基、3-メチルペンチル基、1,1-ジメ チルプチル基、1,2-ジメチルプチル基、2,2-ジ メチルプチル基、1,3-ジメチルプチル基、2,3-ジメチルプチル基、3、3-ジメチルプチル基、1-エ チルプチル基、2-エチルプチル基、1,1,2-トリ

メチルプロピル基、1,2,2-トリメチルプロピル

基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基等が挙げられる。

【0017】R3の低級アルキル基では、メチル基、エ チル基、プロビル基、イソプロビル基、プチル基などの 炭素数が1~4のアルキル基が好ましく、メチル基及び エチル基がより好ましく、メチル基が更に好ましい。

【0018】一方、R'、R6、及びR'の低級アルキル 基では、炭素数が2~5の直鎖状又は分枝状のアルキル

【0019】R⁶の低級アルキル基は、ヒドロキシ基 (-OH) で置換されてもよい。ヒドロキシ基で置換す るとき、当該ヒドロキシ基は、低級アルキル基の1位の 炭素と結合することが好ましい。ヒドロキシ基で置換さ れた低級アルキル基としては、例えば、ヒドロキシメチ ル基、ヒドロキシエチル基、1-ヒドロキシブロビル 基、1-ヒドロキシ-1-メチルエチル基、1-ヒドロ キシブチル基、1-ヒドロキシ-1-メチルプロピル 基、1-ヒドロキシベンチル基、1-ヒドロキシ-1-メチルプチル基、1-ヒドロキシ-1-エチルプロピル 基、1-ヒドロキシヘキシル基、1-ヒドロキシ-1-メチルペンチル基、1-ヒドロキシ-1-エチルプチル 基が挙げられる。

【0020】R⁵は、環骨格の炭素数が4~8のシクロ アルキル基であり、具体的には、シクロプチル基、シク ロヘキシル基、シクロヘブチル基、シクロオクチル基が 挙げられる。

【0021】さらに、本発明化合物は、塩を形成するこ とができる場合があり、それらの塩も同様にカンジタ・ シメトキシカルポニル基、メトキシエトキシメトキシメ 30 アルピカンスの酸性プロテアーゼを阻害する作用を有す る。例えば、薬学的に許容されるナトリウム、カリウム 等のアルカリ金属、又は、マグネシウム、カルシウム等 のアルカリ土類金属との塩、アンモニウム塩、ジメチル アミン、トリエチルアミン等との有機アミンとの塩、ア ルギニン、リジン等の塩基性アミノ酸との塩が挙げられ る.

> 【0022】本発明化合物(I)のペプチド誘導体に は、少なくとも2個の不斉炭素原子を有し、光学異性体 及びジアステレオ異性体が存在する。本発明には、これ らの各種異性体の単離されたもの及びこれら異性体の混 合物が含まれる。

> 【0023】また、本発明化合物は、各種の水和物、各 種溶媒和物、互換異性体、結晶多形等も存在するが、本 発明化合物には、これら化合物の単離されたもの及びそ の混合物全ての化合物が含まれる。

> 【0024】(製造法)本発明化合物及びその塩の製造 法を以下説明する。まず、第一工程を次式に示す。

[0025]

【化3】

7
$$P_{a} \longrightarrow \begin{matrix} R^{4} \\ P_{a} \longrightarrow \begin{matrix} R^{5} \\ P_{a} \longrightarrow \begin{matrix} CO_{2}H \\ H \end{matrix} \qquad \begin{matrix} CO_{2}H \\ H \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \begin{matrix} R^{5} \\ H \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} CONHR^{7} \\ H \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \qquad$$

【0026】(式中、Paは、アミンの保護基を意味 し、R¹、R⁴、R⁶、R⁶、及びR⁷は、前記の意味を有 する。) アミノ基が保護基Paで保護されたアミン(I II)を脱保護し、次いで、カルボン酸(II)と反応 させ、アミド化することにより、ペプチド(IV)を製* *造できる。なお、アミン(III)において、アミンが 保護されていることは必ずしも必須ではない。次に、第 二工程を次式に示す。

[0027]

(化4)

$$R^2$$
 CO_2H $+$ R^3 O CH_2 $CONHR^7$ R^1 (V)

[0028] (式中、R1、R2、R3、R4、R5、R6、 R'、及びPaは、前配の意味を有する。) 第二工程で は、アミノ基が保護基Paで保護されたペプチド(I V) を、第一工程と同様に脱保護し、次いで、カルボン 酸誘導体(V)と反応させ、アミド化することにより、 本発明のペプチド誘導体(I)を製造できる。

【0029】また、カルポン酸誘導体(V)をアミン (11) とまず縮合させ、次いで、アミン(111)と 縮合させて、本発明化合物(I)を合成してもよい。

【0030】カルボン酸誘導体(V)の代わりに、活性 エステルを用いて縮合してもよい。p-ニトロフェノー ル等のフェノール系、N-ヒドロスクシンイミド、1-ヒドロキシベンゾトリアゾール等のN-ヒドロキシルア ミン系の化合物と反応させて得られる活性エステル;炭 酸モノアルキルエステル、又は有機酸と反応させて得ら れる混合酸無水物や塩化ジフェニルホスホリル、N-メ 50 オキサン、テトラヒドロフラン、エーテル、ジクロロエ

チルモルホリンとを反応させて得られるリン酸系混合酸 無水物:エステルをヒドラジン、亜硝酸アルキルと反応 させて得られる酸アジド:酸クロライド、酸プロマイド 等の酸ハライド:対称型酸無水物、等のC端活性体を用 いるC端活性化法を適用して製造できる。

【0031】また、縮合剤の存在下で反応させるカップ リング法を適用してもよく、この場合のカップリング試 薬としては、N, N-ジシクロヘキシルカルポジイミド (DCC)、1-エチル-3-(3-(N, N-ジメチ ルアミノ) プロピル) カルポジイミド、カルポニルジイ ミダゾール、ジフェニルホスホリルアジド (DPPA) やジエチルホスホリルシアニド等が好適である。

【0032】反応は、通常溶媒中冷却下乃至室温下に行 われる。用いられる溶媒は、反応に関与しない有機溶 媒、例えばジメチルホルムアミド、ジメチルアミド、ジ

タン、クロロホルム、四塩化炭素、ジメトキシメタン、 ジメトキシエタン、酢酸エチル、ペンゼン、アセトニト リル、ジメチルスルホキシド等やこれらの混合溶媒など が挙げられるが、これらの有機溶媒は適用される方法に 応じて適宜選択される。また、C端活性体の種類によっ ては、無水の条件下に実施しなければならない場合があ

【0033】また、適用される方法によっては、N-メ チルモルホリン、トリエチルアミン、トリメチルアミン 等の塩基の存在下に反応させるのが反応を円滑に進行さ 10 せる上で好ましい場合がある。

【0034】Paは、ペプチド分野で通常用いられる保 護基がよい。例えば具体的には、ペンジルオキシカルボ ニル基、p-ニトロペンジルオキシカルポニル基、p-メトキシペンジルオキシカルポニル基、p-クロロペン ジルオキシカルポニル基、1,1-ジメチルエトキシカ ルポニル基、イソポルニルオキシカルポニル基、p-ビ フェニルイソプロピルオキシカルポニル基、3,5-ジ メトキシーα、αージメチルペンジルオキシカルポニル 基、9-フルオレニルメチルオキシカルポニル基、メチ 20 示される方法に従って製造することができる。 ルスルホニルエトキシカルポニル基等が挙げられる。

【0035】本発明では、ペプチド誘導体(I)がエス テル残基を有する場合には、好ましくは水酸化ナトリウ*

$$CO_2H$$
 R^8O_2C
 R^8O_2C
 R^8O_2C

【0040】(式中、R®は、酸素原子で中断されても よい低級アルキル基を意味し、Pcは、カルポキシル基 の保護基を意味する。) ペンゼントリカルポン酸無水物 (VI)を所望によりカルポン酸保護基で保護し、NaHC Oa, NaOH等のアルカリ性で加水分解をした後、R®と置 換反応をすることにより、保護された安息香酸誘導体 (VII) を製造することができる。 更に保護基Pcを 脱保護し、安息香酸誘導体(VIII)を製造すること ができる。Pcは、ペプチド分野で通常用いられる保護 基がよい。例えば具体的にはペンジル基、p-ニトロペ ンジル基、p-メトキシペンジル基、ジフェニルメチル 基、ペンズヒドリル基等の置換ペンジル基類、tert -プチル基、メチル基、エチル基、フェナシル基、トリ クロロエチル基等が挙げられる。

[0041]

【実施例】以上、本発明化合物及びその製造法について 50

10

*ム、水酸化カリウム若しくはこれらのアルコラート、又 は炭酸ナトリウム、炭酸カリウム等のアルカリ条件下で 加水分解することにより、対応するカルポン酸を得るこ とができる。

【0036】このようにして製造された本発明に従う化 合物は、遊離のまま又はその塩として単離され、精製さ れる。単離、精製は、抽出、結晶化、再結晶、各種クロ マトグラフィー等の通常の化学操作を適宜適用して行わ れる.

【0037】また、ラセミ化合物は適当な原料化合物を 用いることにより、あるいは一般的なラセミ分割法(例 えば、一般的な光学活性酸(酒石酸等)とのジアステレ オマー塩に導き、光学分割する方法等)により、立体化 学的に純粋な異性体に導くことができる。また、ジアス テレオマー混合物は常法、例えば分別結晶化又はクロマ トグラフィー等により分離できる。

【0038】カルボン酸誘導体(V)は、ピス(アルコ キシカルポニル)安息香酸誘導体(VIII)を包含す る。この安息香酸誘導体(VIII)は、下記反応式で

[0039]

【化5】

説明したが、以下、実施例により更に詳細に説明する。 但し、本発明化合物はこれらの実施例により何等制限さ れるものではない。まず、実施例で用いる出発原料の合 成方法を参考例で示す。

(VIII)

(VII)

CO₂H

【0042】 (参考例) アミノ基が保護されたアミンで ある、(2S, 4S, 5S) -N-プチル-5-t-プ チルオキシカルポニルアミノー6-シクロヘキシルー4 ーヒドロキシー2ーイソプロピルヘキサンアミドは、ジ ャーナル・オヴ・オーガニック・ケミストリー(J. Org. Chem.) 51 4823~4833(1986)、ケミストリー・レター (Chem. Lett.) 1993~1996 (1989)、及び、テトラヒド ロン・レター(Tetrahedron Lett.)30(4) 415~418 (198 9)の合成方法に従って、合成することができる。

【0043】 (実施例1)

[0044]

【化6】

【0045】第一工程

前記参考例で得られた(2S, 4S, 5S)-N-プチ ル-5-t-プチルオキシカルポニルアミノ-6-シク ロヘキシルー4ーヒドロキシー2ーイソプロピルヘキサ ンアミド1gに、4N塩酸-1, 4-ジオキサン溶液4 0mlを加え、0℃で1.5時間撹拌した。反応液を減 圧留去した後、N. N-ジメチルホルムアミド20ml と、トリエチルアミンO. 49mlと、N-t-プチル オキシカルポニル-L-ロイシン814mgと、1-エ チル-3-(3-(N, N-ジメチルアミノ) プロビ キシベンゾトリアゾール317mgとを加え、室温で5 時間撹拌した。反応液に酢酸エチルを加え、10%クエ ン酸水溶液と飽和炭酸水素ナトリウム水溶液で順次洗 い、酢酸エチル層に存在する沈澱を濾過し、白色固体の (2S, 4S, 5S) -N-プチル-5- [N (.alph a.) - (t-プチルオキシカルポニル)-L-ノルロイ シルアミノ] -6-シクロヘキシル-4-ヒドロキシー 2-イソプロピルヘキサンアミド529mgを得た。さ らに濾液を無水硫酸ナトリウムで乾燥後、溶媒を留去 し、エーテルより再結晶して515mgの目的化合物 (XVI) を得た。

【0046】質量分析值(m/z):540(M+H) *. 562 (M+Na) *

核磁気共鳴スペクトル (500MHz, CDC1:, T MS内部標準): 8:0. 75~2. 1 (50H, m), 2. 45 (1H, bs), 3. $12\sim3$. 2 (1 H, m), 3. $25\sim3$. 37 (1H, m), 3. 56 (1 H, d, J=8. 4 Hz), 3. 84 (1 H, b)s), 4. 02 (1H, bd, J=4.8), 5. 03 (1H, bs), 5. 98 (1H, bs), 6. 34 (1H, bs).

【0047】第二工程

上記第一工程で得た(25,45,55)-N-プチル -5- [N (.alpha.) - (t-プチルオキシカルポニ ルーレーノルロイシルアミノ] -6-シクロヘキシルー

10 4-ヒドロキシ-2-イソプロピルヘキサンアミド (X VI) 471mgに、ジクロロメタン12mlとアニソ ール600μ1とトリフルオロ酢酸12m1とを加え、 0℃で1時間撹拌した。反応液を減圧留去した後、ヘキ サンを加え、ヘキサンに溶解する化合物を除いた。酢酸 エチルを加え、飽和炭酸水素ナトリウム水溶液で洗い、 無水硫酸ナトリウムで乾燥後、溶媒を留去した。残留物 に、ジクロロメタン20m1と、モノメチルテレフタレ ート186mgと、1-エチル-3-(3-(N, N-ジメチルアミノ) プロピル) -カルポジイミド塩酸塩1 ル) -カルポジイミド塩酸塩677mgと、1-ヒドロ 20 98mgと、1-ヒドロキシベンゾトリアゾール116 mgとを加え、室温で16時間撹拌した。反応液に酢酸 エチル60mlを加え、10%クエン酸水溶液と飽和炭 酸水素ナトリウム水溶液で順次洗い、無水硫酸ナトリウ ムで乾燥した後、溶媒を留去した。残留物を酢酸エチル -メタノールより再結晶し、(2S, 4S, 5S)-N ープチルー6ーシクロヘキシルー4ーヒドロキシー2ー イソプロピル-5-[N (,alpha.) - (4-メトキシ カルポニルペンゾイル) - L - ノルロイシルアミノ] へ キサンアミド390mgを得た。

> 【0048】質量分析值 (m/z):602 (M+1) *, 624 (M+Na) *

核磁気共鳴スペクトル(400MHz、DMSOds. TMS内部標準): 8:0.65~1.85(3 8 H, m), 2. $0 \sim 2$. 1 (1 H, m), 2. $9 \sim$ 3. 1 (2 H, m), 3. $15 \sim 3$. 25 (1 H, m), 3. $7 \sim 3$. 8 (1 H, m), 4. $35 \sim 4$. 5 (2 H, m), 7. 34 (1 H, d, J = 2. 3 H)z), 7. 6~7. 65 (1 H, m), 8. 00 (2 H, d, J=8.3Hz), 8.04 (2H, d, J=40 8. 3 Hz), 8. 6 2 (2 H, d, J = 7. 8 Hz).

【0049】(実施例2)

[0050]

【化7】

【0051】実施例1で得た(2S, 4S, 5S)-N 10* ープチルー6ーシクロヘキシルー4ーヒドロキシー2ー イソプロピルー5- [N (.alpha.) - (4-メトキシ カルポニルベンゾイル) - L - ノルロイシルアミノ] へ キサンアミド25mgに、メタノール5m1と、1,4 -ジオキサン5m1と、1N水酸化ナトリウム水溶液 0. 5 m l とを加え、室温で2日間撹拌した。水10 m 1を加え、反応液を約10m1まで減圧留去した。1N 塩酸を添加して反応液を酸性にした後、酢酸エチルで抽 出し、無水硫酸ナトリウムで乾燥後、減圧留去し(2) S, 4S, 5S) -N-プチル-5- [N (.alpha.) - (4-カルボキシペンゾイル) -L-ノルロイシルア ミノ] -6-シクロヘキシル-4-ヒドロキシ-2-イ

【0052】質量分析值(m/z):586(M-H)*

ソプロピルヘキサンアミド21mgを得た。

核磁気共鳴スペクトル (500MHz, CDsOD, T MS内部標準):δ:0.75~1.85 (37H, m), 1. $85 \sim 1$. 98 (1 H, m), 2. $12 \sim$ 2. 2 (1 H, m), 3. $0.8 \sim 3$. 1.5 (1 H, m), 3. $1.7 \sim 3$, 2.4 (1 H, m), 3. $3.7 \sim$ 3. 41 (1H, m), 3. $87 \sim 3$. 95 (1H, m), 4. 52 (1H, dd, J=6. 7Hz, 8. 6 Hz), 7. 93 (2H, dd, J=1. 8Hz, 6. 7 Hz), 8. 1 (2H, dd, J=1. 9Hz, 6. 20 7 Hz).

【0053】(実施例3) [0054] (化8)

【0055】第一工程

1-プチルアミン14mgの無水ジクロロメタン溶液1 m1にトリメチルアルミニウムのヘキサン溶液97m1 をゆっくりと加え、室温で15分間撹拌した。反応液 に、(3S, 5S) - 5 - ((1S) - 1 - t - プチル オキシカルポニルアミノ-2-シクロヘキシルエチル) フラン-2-オン(XII)60mgの無水ジクロロメ タン溶液1m1を加え、室温で17時間撹拌した。反応 液に10%クエン酸水溶液を加え、酢酸エチルで抽出し た。飽和塩化ナトリウム水溶液で洗った後、無水硫酸ナ トリウムで乾燥し、溶媒を留去した。残留物をシリカゲ ルカラムクロマトグラフィーで精製した。 ヘキサン-酢 酸エチル (70:30) で溶出される画分より、(2 S, 4S, 5S) -N-プチル-5-t-プチルオキシ カルポニルアミノー6ーシクロヘキシルー4ーヒドロキ シー2-(1-ヒドロキシ-1-メチルエチル) ヘキサ 50 た。反応液を留去した後、飽和炭酸水素ナトリウム水溶

ンアミド59mgを得た。

【0056】質量分析值(m/z):443(M+H) *, 465 (M+Na) *

核磁気共鳴スペクトル (500MHz. CDCla. T MS内部標準) : 8:0.75~1.9 (37H. m), 2. 39 (1H, d, J=11.5Hz), 2. -3-(1-ヒドロキシ-1-メチルエチル) ジヒドロ 40 96 (2 H, bs), 3.15~3.25 (2 H, m), 3. 38 (1H, d, J=11.0), 3. 48 (1H, bs), 4. 67 (1H, d, J=9.1H)z), 6. 58 (1H, s).

第二工程

第一工程で得た (2S, 4S, 5S) - N-プチル-5 -t-ブチルオキシカルポニルアミノ-6-シクロヘキ シルー4ーヒドロキシー2ー(1ーヒドロキシー1ーメ チルエチル) ヘキサンアミド58mgに4N塩酸-1, 4-ジオキサン溶液1m1を加え、0℃で1時間撹拌し

液を加え、酢酸エチルで抽出した。無水硫酸ナトリウム で乾燥後、溶媒を留去した。N, N-ジメチルホルムア ミド 0.5 m 1 と N - t - プチルオキシカルポニルー L -ロイシン45mgと1-ヒドロキシベンゾトリアゾー ル21mgと1-エチル-3-(3-(N. N-ジメチ ルアミノ) プロピル) -カルポジイミド塩酸塩75mg とを、0℃で残留物に加え、次いで室温で13時間撹拌 した。反応液に酢酸エチルを加え、10%クエン酸水溶 液、飽和炭酸水素ナトリウム水溶液で順次洗い、無水硫 ジエチルエーテルより沈毅させ、(25,45,55) -N-プチル-5-[N(.alpha.)-(t-プチルオ キシカルボニル) - L - ノルロイシルアミノ] - 6 - シ クロヘキシルー4ーヒドロキシー2ー(1ーヒドロキシ -1-メチルエチル) ヘキサンアミド51mgを得た。

【0057】質量分析值(m/z):556(M+H)

核磁気共鳴スペクトル (500MHz, CD₁OD, T MS内部標準): 8:0.75~1.9 (46H, m), 2. 45 (1H, dd, J=3. 0, 6. 9H 20 z), 3. $1\sim3$. 25 (2H, m), 3. $3\sim3$. 4 (1 H, m), 3. $85 \sim 3$. 95 (1 H, m), 3. $95\sim4.0$ (1H, m).

【0058】第三工程

上記第二工程で得た(2S, 4S, 5S) - N-プチル -5-[N(. alpha.)-(t-プチルオキシカ ルポニル) -L-ノルロイシルアミノ] -6-シクロへ キシルー4ーヒドロキシー2ー(1ーヒドロキシー1-メチルエチル) ヘキサンアミド45mgに4N塩酸-*

*1. 4-ジオキサン溶液2mlを加え室温で30分撹拌 した。反応液を留去した後、ジクロロメタン1m1とト リエチルアミン27mlとテレフタル酸モノメチルエス テルクロライド20mgとを加え、室温で18時間撹拌 した。反応液に酢酸エチル20mlを加え、10%クエ ン酸水溶液と飽和炭酸水素ナトリウム水溶液で洗い、無 水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。残留 物にジエチルエーテルを加え、沈澱物をさらに分取TL Cで精製した。クロロホルム-メタノール(9:1)で 酸ナトリウムで乾燥後、溶媒を減圧留去した。残留物を 10 展開し、Rf値が0.36の画分より、(2S,4S, 5S) -N-プチル-6-シクロヘキシル-4-ヒドロ キシ-2-(1-ヒドロキシ-1-メチルエチル)5-[N (. alpha.) - (4-メトキシカルポニルペ

16

【0059】質量分析値(m/z):619 (M+H) *, 641 (M+Na) *

ンゾイル) - L - ノルロイシルアミノ] ヘキサンアミド

核磁気共鳴スペクトル(400MHz, CD₃OD, T MS内部標準): 8:0.7~2.0 (37H, m), 2. 46 (1H, dd, J=3. 2, 11. 5Hz), 3. $1 \sim 3$. 2 (2 H, m), 3. $35 \sim 3$. 4 (1 H, m), 3. $9 \sim 3$. 95 (1 H, m), 3. 93 (3 H, s), 4. 52 (1 H, dd, J=6.1,8. 6 Hz), 7. 94 (2 H, d, J = 8. 6 Hz), 8. 10 (2H, d, J=8.6Hz).

【0060】(実施例4)

[0061]

29mgを得た。

【化9】

【0062】第一工程

1, 2, 4-ペンゼントリカルボン酸無水物 1. 92g ジメチルホルムアミド溶液30m1に、ペンジルプロマ イド1. 78mlとセシウムフルオライド2. 28gを 加え、室温で24時間撹拌した。反応液に飽和炭酸水素 ナトリウム水溶液60m1を加え、2時間撹拌した後、 反応液を酢酸エチルで洗い、1 N塩酸を反応液に加えて 酸性にし、酢酸エチルで抽出した。無水硫酸ナトリウム で乾燥後、溶媒を留去した。残留物に、ジクロロメタン 80mlと2-メトキシエトキシメチルクロリド5.7 50 【0063】質量分析値(m/z):477 (M+H)

1mlとジイソプロピルエチルアミン10.45mlと を加え、室温で20時間撹拌した。反応液を減圧留去 し、酢酸エチル100mlを加え、10%クエン酸水溶 液と飽和炭酸水素ナトリウム水溶液で順次洗った後、無 水硫酸ナトリウムで乾燥し、次いで溶媒を留去した。残 留物をシリカゲルカラムクロマトで精製した。ヘキサン - 酢酸エチル (75:25) で溶出された画分より、ペ ンジルー3, 4-ピス(2-メトキシエトキシメトキシ カルポニル) ペンゾエート2. 15gを得た。

'. 499 (M+Na) '

核磁気共鳴スペクトル (400MHz, CDCl₁, TMS内部標準): δ: 3. 36~3. 40 (6H, m), 3. 55~3. 59 (4H, m), 3. 86~3. 89 (4H, m), 5. 40 (2H, s), 5. 56 (2H, s), 5. 57 (2H, s), 7. 35~7. 46 (5H, m), 7. 80 (1H, d, J=8. 24Hz), 8. 25 (1H, dd, J=8. 24, 1. 47Hz), 8. 47 (1H, d, J=1. 47Hz),

【0064】第二工程

上記第一工程で得たペンジルー3,4ーピス(2-メトキシエトキシメトキシカルボニル)ペンゾエート160mgをメタノール5mlに溶解し、水素雰囲気下15分間撹拌した。反応混合物を濾過し、濾過液から溶媒を留去し、3,4ーピス(2-メトキシエトキシメトキシカルボニル)安息香酸の粗品115mgを得た。得られた3,4ーピス(2-メトキシエトキシメトキシカルボニル)安息香酸を、実施例1の第二工程と同様に縮合させて、(2S,4S,5S)-Nープチルー5-[N(.a*20)

18

* Ipha.) - [3, 4, - ピス(2-メトキシエトキシメトキシカルポニル) ベンゾイル] - L - ノルロイシルアミノ] - 6 - シクロヘキシル-4-ヒドロキシ-2-イソプロピルヘキサンアミドを得た。

【0065】質量分析值 (m/z):808 (M+H)
[↑].830 (M+Na) [↑]

核磁気共鳴スペクトル(400MHz, CDCl₃, T MS内部標準): δ: 0.75~2.15(39H, m), 3.15~3.3(2H, m), 3.38(610H, s), 3.55~3.65(5H, m), 3.85~3.9(4H, m), 3.9~4.0(1H, m), 3.75~3.8(1H, m)5.55(2H, s), 5.56(2H, s), 6.47(1H, bs), 6.84(1H, bs), 7.40(1H, bs), 7.78(1H, d, J=7.8), 8.19(1H, s).

【0066】(実施例5)

[0067]

(化10]

【0068】実施例4で得た(2S, 4S, 5S) -N 30 -プチル-5- [N(.alpha.) - [3, 4, -ピス (2-メトキシエトキシメトキシカルポニル) ペンゾイル] -L-ノルロイシルアミノ] -6-シクロヘキシル-4-ヒドロキシ-2-イソプロピルヘキサンアミド40mgに4N塩酸-1, 4-ジオキサン溶液1mlを加え、室温で1時間撹拌した。溶媒を留去後、0.1N水酸化ナトリウム水溶液を加え、次いで、酢酸エチルで洗った。水層を1N塩酸水溶液を加えて酸性とした後、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥後、溶媒を留去し(2S, 4S, 5S) -N-プチル-6-シク 40ロヘキシル-5- [N(.alpha.) - [3, 4-ジカルポキシベンゾイル) -L-ノルロイシルアミノ] -4-ヒドロキシ-2-イソプロピルヘキサンアミド18mgを得た。

【0069】質量分析值(m/z):630 (M-H)

核磁気共鳴スペクトル (500 MHz, CDiOD, T MS内部標準): δ : 0.7~2.0 (38 H, m), 2.1~2.2 (1 H, m), 3.05~3.15 (1 H, m), 3.15~3.25 (1 H, m), 3.35~3.4 (1 H, m), 3.85~3.95 (1 H, m), 4.5~4.55 (1 H, m) 7.80 (1 H, d, J=7.9 Hz), 8.05 (1 H, dd, J=7.9, 1.8 Hz), 8.26 (1 H, d, J=1.8 Hz).

7 【0070】実施例1の第二工程と同様の方法により以下の実施例6~7の化合物を得た。

(実施例6)

[0071]

【化11】

【0072】 (2S, 4S, 5S) -N-プチル-5- 10*核磁気共鳴スペクトル (400MHz, CD:OD, T [N (.alpha.) - (t - ブチルオキシカルポニル) -L-ノルロイシルアミノ] -6-シクロヘキシル-4-ヒドロキシー2-イソプロピルヘキサンアミドと2,5 -ジメトキシカルポニル安息香酸とを縮合させ、(2) S, 4S, 5S) -N-プチル-6-シクロヘキシル-5-[N (.alpha.) - [2, 5-ジメトキシカルボニ ルベンゾイル) - L - ノルロイシルアミノ] - 4 - ヒド ロキシー2-イソプロピルヘキサンアミドを得た。

質量分析値 (m/z):660 (M+H) +, 682 (M+Na) +

MS内部標準) : 8:0.8~1.95 (38H, m), 2. $15\sim2$. 25 (1 H, m), 3. $05\sim$ 3. 25 (2 H, m), 3. $4 \sim 3$. 45 (1 H, m), 3. 92 (3H, s), 3. 95 (3H, s), 4. 44 (1H, dd, J = 5. 1, 8. 6Hz), 8. 06 (1H, d, J=7.8Hz), 8. 11 (1 H, s), 8. 17 (1H, d, J=7.8Hz). 【0073】(実施例7)

[0074]

【化12】

[0075] (2S, 4S, 5S) $-N-\mathcal{I}\mathcal{F}\mathcal{V}-5-30$ m), 2. 15~2. 25 (1H, m), 3. 05~ [N (.alpha.) - (t - プチルオキシカルボニル) -L-ノルロイシルアミノ]-6-シクロヘキシル-4-ヒドロキシー2-イソプロピルヘキサンアミドと2,4 -ジメトキシカルポニル安息香酸とを縮合させ、(2 S、4S、5S) - N - プチル-6 - シクロヘキシル-5- [N (.alpha.) - [2, 4-ジメトキシカルポニ ルペンゾイル) ーLーノルロイシルアミノ] ー4ーヒド ロキシー2-イソプロピルヘキサンアミドを得た。

質量分析值(m/2):660(M+H)+

核磁気共鳴スペクトル(400MHz, CD, OD, T 40 MS内部標準): 8:0.8~1.95 (38H,

3. 25 (2 H, m), 3. $4 \sim 3$. 45 (1 H, m), 3. 94 (3H, s), 3. 96 (3H, s), 4. 42 (1 H, dd, J = 4. 9, 8. 8 Hz), 7. 61 (1H, d, J = 7. 8Hz), 8. 26 (1 H, dd, J = 7. 8, 2. 0 Hz), 8. 58 (1 H, d, J=2.0Hz).

【0076】実施例1と同様の方法により以下の実施例 8の化合物を得た。

(実施例8)

[0077]

【化13】

【0078】 (2S, 4S, 5S) -N-プチル-5t-ブチルオキシカルボニルアミノ)-6-シクロヘキ シルー4-ヒドロキシー2-イソプロピルヘキサンアミ ドとN-t-プチルオキシカルポニル-N-メチル-L - ロイシンとを第一工程で縮合させ、更に、第二工程 で、2,4-ジメトキシカルポニル安息香酸を縮合さ せ、(2S, 4S, 5S) - N-プチル-6-シクロへ キシル-5-[N (.alpha.) - [2, 4-ジメトキシ カルポニルペンゾイル) -N (.alpha.) -メチル-L -ノルロイシルアミノ] -4-ヒドロキシ-2-イソプ *10* ロビルヘキサンアミドを得た。

【0079】質量分析值 (m/z):674 (M+H)

核磁気共鳴スペクトル (400MHz, CDC1s, T*

*MS内部標準): 8:0.75~1.85 (37H, m), 2. $0.5\sim2$. 1.5 (1H, m), 2. $2\sim2$. 35 (1 H, m), 2. 65 (3 H, s), $3. 1 \sim$ 3. 2 (1 H, m), 3. $25 \sim 3$. 35 (1 H, m), 3. $45 \sim 3$. 55 (1 H, m), 3. $85 \sim$ 4. 0 (2H, m), 3. 96 (1H, s), 3. 99 (1 H, s), 5. 31 (1 H, bs), 5. 75~ 5. 85 (1H, m), 7. 34 (1H, d, J=7. 8 Hz), 7. $25 \sim 7$. 4 (1 H, m), 8. 30 (1H, dd, J=1.5, 7.8Hz), 8.72(1H, d, J=1.5Hz).

【0080】 (実施例9)

[0081]

【化14】

【0082】実施例8で得た(25,45,55)-N - [2, 4-ジメトキシカルポニルベンゾイル)-N (.alpha.) -メチル-L-ノルロイシルアミノ] -4-ヒドロキシー2-イソプロピルヘキサンアミド10 0mgに、メタノール4mlと1N水酸化ナトリウム水 溶液325 µ 1 とを加え、室温で20時間撹拌した。1 30 Ν水酸化ナトリウム水溶液148μ1を更に加え、室温 で8時間撹拌した後、水を40m1加え、酢酸エチルで 洗った。1 N塩酸を加えて酸性にした後、酢酸エチルで 抽出し、無水硫酸ナトリウムで乾燥後、溶媒を留去し、 (2S, 4S, 5S) - N-プチル-6-シクロヘキシ ル-5-[N (.alpha.) - [2, 4-ジカルポキシベ ンゾイル)-N(.alpha.)ーメチル-L-ノルロイシ※

※ルアミノ] -4-ヒドロキシ-2-イソプロピルヘキサ ンアミド84mgを得た。

【0083】質量分析値(m/z):644(M-H)

核磁気共鳴スペクトル (500MHz, CD:OD, T MS内部標準):δ:0.8~1.9 (37H, m), 2. $0.5 \sim 2$. 2.5 (2 H, m), 2. 71 (3 H, s), 3. $1\sim3$. 25 (2H, m), 3. $4\sim3$. 4 5 (1H, m), 3. 9~4. 0 (1H, m), 7. 4 0 (1 H, d, J = 7.9 Hz), 8.31 (1 H,d, J=7.9Hz), 8.73 (1H, s).

【0084】(実施例10)

[0085]

【化15】

【0086】実施例9で得た(25,45,55)-N ープチルー6 -シクロヘキシルー5 - [N (.alpha.) - [2, 4-ジカルポキシペンゾイル) - N (.alph

キシー2-イソプロピルヘキサンアミド62mgに、水 1m1と1N水酸化ナトリウム水溶液192μ1とを加 え、室温で1分間撹拌した。その後、凍結乾燥し、ジソ

ロヘキシル-5-[N(.alpha.)-[2.4-ジカル ポキシラートペンゾイル) -N (.alpha.) -メチルー **レーノルロイシルアミノ】-4-ヒドロキシ-2-イソ** プロピルヘキサンアミド66mgを得た。

【0087】質量分析值(m/z):644(M+H-2Na), 666 (M-Na), 688 (M-H) 核磁気共鳴スペクトル (500MHz. D2O, DSS 内部標準) :δ:0.8~1.9 (37H, m), 2. $0 \sim 2.3$ (2H, m), 2.76 (3H, s), 3. $1 \sim 3.25$ (3 H, m), 3.45 (1 H, d, J = 10 11. 2Hz), 3. $9\sim4$. 0 (1H, m), 7. 3 0 (1 H, d, J = 7.8 Hz), 8.02 (1 H,d, J=7.8Hz), 8.31 (1H, s).

【0088】 (実施例11;処方例) 精製卵黄レシチン 1. 265g及びコレステロール264mgを中鎖脂肪 酸トリグリセライド (パナセート800) 22g中で約 80℃に加熱して溶解させ、この溶液を約80℃に保ち つつ、前記実施例1で得られた化合物440mgを更に この溶液に溶解させた。この溶液21.79gを、グリ セリン2. 5% (W/V) 及び適当量の水酸化ナトリウ 20 ムが含有する注射用水に加え、ポリトロンホモジナイザ ーで撹拌し、祖乳化液を調整した。この祖乳化液をマイ クロフルイダイザーにより乳化し、極めて微細な脂肪粒 子が分散した注射剤を得た。この脂肪粒子に、前記実施 例1で得られた化合物が含まれていた。

[0089]

【発明の効果】本発明化合物(I)は、カンジダ・アル ビカンスが生産する酸性プロテアーゼに対して阻害作用 を有するので、酸性プロテアーゼ阻害剤として有用であ る。従って、本発明化合物は新しい作用機作を持った抗 30 真菌剤として有用である。また、本発明化合物は、抗真 菌剤に加えて、抗炎症剤、降圧剤、抗潰瘍剤、抗ウィル ス剤等として有用である。

【0090】(試験例)本発明化合物(1)のカンジダ ・アルピカンス酸性プロテアーゼの阻害能の測定に用い た方法は次ぎの通りである。

【0091】牛血清アルブミン(シグマ(株))が0. 05Mクエン酸緩衝液 (pH3.2) に1%になるよう に溶解したアルプミン溶液 0.8mlに、上記実施例1 乃至9で得られた化合物のうちのいずれかを含むメタノ ール溶液を最高0.05mlと、7単位のプロテアーゼ 活性を示す部分精製したプロテアーゼ溶液とを加え、 0. 05Mクエン酸緩衝液 (pH3. 2) で全容1ml とした後、37℃で1時間反応させた。この反応は、5 %トリクロール酢酸溶液2mlを加えて停止させた。次 いで、3000回転/分で15分間遠沈して上清を得 た。上述の組成から成る反応液を氷中に保持し、同様に 処理して得た遠沈上清を対照にして280 nmにおける 吸光度を測定して阻害活性を測定した。

は、当所保存の臨床分離株をフィルター滅菌した1.2 %イースト・カーボンペース (ディフコ) と、0.2% 牛血清アルプミン(シグマ)と、0.005%イノシト ールと、0.001%塩酸サイアミンと0.001%塩

24

酸ピリドキシンとからなる倍地に接種し、27℃で2~ 4日間培養した。この培養上清をPM10限外濾過膜 (アミコン)で4℃で濃縮した。この濃縮粗酵素液を、 sephadexG70 (ファルマシア 10.05M クエン酸緩衝液) カラムで 0. 05 Mクエン酸緩衝液 (pH3.2)で溶出し、ゲル濾過クロマトグラフィー を行い、即述の方法で活性を測定して活性面分を得た。 この活性画分をPM10限外濾過膜(アミコン)で再び 濃縮して酵素液を得た。酸性プロテアーゼの活性は、即

述の反応組成液で反応させ、37℃で60分間に280

nmでの吸光度を0.1だけ増加させる活性を1単位と

本発明化合物(I)の酸性プロテアーゼ活性

は、下配の表にまとめる。 [0093]

【表1】

1C.. (M)x10-8 実施例 5. 6 1 2 6. 5 2. 9 7. 6 2 4 6 16 7 6. 0 R 6.8

【0094】一般式(I)で示される化合物、その非毒 性の塩、またはその水和物を上配の目的で用いるには、 通常、経口または非経口で投与される。 投与量は年令、 体重、症状、治療効果、投与方法、処理時間等により異 なるが、通常成人ひとり当たり、1日につき0. 1mg ~100mg、好ましくは1mg~10mgの範囲で1 日1回から数回に分け経口投与されるか、若しくは、成 人ひとり当たり、1日につき0. 1mg~100mgの 範囲で、1日1回から数回に分け非経口投与されるか、 又は、1日1時間~24時間の範囲で静脈内持続投与さ れる。投与量は種々の条件で変動するので、上配投与量 範囲より少ない量で十分な場合もある。本発明による経 口投与のための固体組成物としては、錠剤、散剤、顆粒 剤等が用いられる。このような固体組成物においては、 一つまたはそれ以上の活性物質が、少なくとも一つの不 【0092】カンジダ・アルピカンス酸性プロテアーゼ 50 活性な希釈剤、例えば乳糖、マンニトール、プドウ糖、

Ų

ヒドロキシプロビルセルロース、微結晶セルロース、デ ンプン、ポリピニルピロリドン、メタケイ酸アルミン酸 マグネシウム等と混合される。組成物は、常法に従っ て、不活性な希釈剤以外の添加剤、例えばステアリン酸 マグネシウムのような潤滑剤や繊維素グリコール酸カル シウムのような崩壊剤、ラクトースのような安定化剤、 グルタミン酸またはアスパラギン酸のような溶解補助剤 を含有していてもよい。錠剤または丸剤は必要によりシ ョ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒド 性あるいは脳溶性物質のフィルムで被膜してもよい。

【0095】経口投与のための液体組成物は、薬剤的に 許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリ キシル剤等を含み、一般的に用いられる不活性な希釈 剤、例えば精製水、エタノールを含む。この組成物は不 活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘

味剤、風味剤、芳香剤、防腐剤を含有していてもよい。 非経口投与のための注射剤としては、無菌の水性又は非 水性の、溶液剤、懸濁剤、及び乳濁剤を包含する。水性 の溶液剤、懸濁剤としては、例えば注射剤用蒸留水及び 生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤とし ては、例えばプロピレングリコール、ポリエチレングリ コール、オリーブ油の様な植物油、エタノールのような アルコール類、ポリソルペート80(商品名)の様な界 面活性剤等がある。このような組成物は、さらに防腐 ロキシプロピルメチルセルロースフタレートなどの胃溶 10 剤、温潤剤、乳化剤、分散剤、安定化剤(例えば、ラク トース)、溶解補助剤(例えば、グルタミン酸、アスパ ラギン酸) のような補助剤を含んでもよい。これらは例 えばパクテリア保留フィルターを通す濾過、殺菌剤の配 **合、又は照射によって、無菌化される。これらはまた無** 菌の固体組成物を製造し、使用前に無菌水または無菌の 注射用溶媒に溶解して使用することもできる。

26

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 K 38/55

ACL ADY

ADZ

A 6 1 K 37/64

ACL

ADY

ADZ