Package 'Homework1'

November 8, 2013

Type Package

Title Advanced Statistics Computing HW1 Fast Algorithm					
Version 1.0					
Date 2013-11-08					
Author Yu Du <ydu@jhsph.edu></ydu@jhsph.edu>					
Maintainer Yu Du <ydu@jhsph.edu></ydu@jhsph.edu>					
Description Homework 1 in Advanced Statistics Computing Class which includes two functions. One function is to fit a fast linear model and the other function is to calculate multivariate normal densities.					
License GPL					
R topics documented:					
Homework1-package 1 dmvnorm 2 fastlm 3					
Index 6					
Homework1-package Homework 1					
Description					
Advanced Statistics Computing Homework 1 which includes fastlm() and dmvnorm() two functions.					
Details					
Package: Homework1 Type: Package Version: 1.0 Date: 2013-11-08 License: GPL					

2 dmvnorm

run fastlm() to fit a linear model and dmvnorm() to evaluate mvn density.

Author(s)

Yu Du

Maintainer: Yu Du<ydu@jhsph.edu>

References

Advanced Statistics Computing Class. Dr. Peng.

d	m	V	n	O	rı	m

Fast Multivariate Normal Density

Description

Evaluates the k-dimensional multivariate Normal density with mean mu and covariance matrix S.

Usage

```
dmvnorm(x, mu, S, log = TRUE)
```

Arguments

X	x is a n-by-k matrix with each row is a sample from a k-dimensional multivariate normal distribution
mu	mu is the mean vector of length k for the given multivariate normal distribution.
S	S is the p-by-p variance covariance matrix for the given multivariate normal distribution.
log	if log=TRUE which is the default value, the logged density values will be returned otherwise the original density value will be returned.

Details

This function evaluates the k-dimensional multivariate Normal density with mean mu and covariance matrix S.

Value

A vector of length n of density values will be returned. n is the number of rows of input matrix x.

Author(s)

Yu Du

References

Advanced Statistics Computing Class, Dr. Peng.

fastlm 3

Examples

```
## Create the covariance matrix
n <- 100
n2 <- n^2
xg \leftarrow seq(0, 1, length = n)
yg <- xg
g <- data.matrix(expand.grid(xg, yg))</pre>
D <- as.matrix(dist(g))</pre>
phi <- 5
S <- exp(-phi * D)
mu \leftarrow rep(0, n2)
set.seed(1)
x <- matrix(rnorm(n2), byrow = TRUE, ncol = n2)</pre>
dmvnorm(x, mu, S, log = TRUE)
\#\# The function is currently defined as
function (x, mu, S, log = TRUE)
        k = length(mu)
        n = nrow(x)
        R = tryCatch({
                 chol(S)
        }, error = function(e) {
                message("S is not positive definite")
        })
        logdetS = 2 * sum(log(diag(R)))
        T = x - rep(1, n) %*% t(mu)
        C = forwardsolve(t(R), t(T))
        term3 = diag(crossprod(C))
        fx = (-k/2) * log(2 * pi) - (1/2) * logdetS - (1/2) * term3
        if (log == TRUE) {
                 fx = fx
        }
        else {
                 fx = exp(fx)
        return(fx)
}
```

fastlm

Fast Linear Model Fitting

Description

fit a linear regression model to outcome data y and predictor data in a matrix X.

Usage

```
fastlm(X, y, na.rm = FALSE)
```

4 fastlm

Arguments

X X is a design matrix including predictor data and intercept.

y y is a vector of outcome data.

na.rm na.rm=TRUE to remove NA values otherwise the default value is FALSE.

Details

This function fits a linear regression model to outcome data y and predictor data in a matrix X. Matrix X also includes the intercept, i.e. the design matrix. This is faster than lm.fit().

Value

coefficients The coefficients returned are the fitted regression coefficient to the input dataset.

vcov The vcov returned is the variance-covariance matrix of the estimated coeffi-

anto

cients.

Author(s)

Yu Du

References

Advanced Statistics Computing Class, Dr. Peng.

Examples

```
set.seed(2)
## Generate predictor matrix
n <- 100000
p <- 500
X \leftarrow cbind(1, matrix(rnorm(n * (p - 1)), n, p - 1))
## Coefficents
b <- rnorm(p)
## Response
y <- X %*% b + rnorm(n)
fit <- fastlm(X, y)</pre>
str(fit)
## The function is currently defined as
function (X, y, na.rm = FALSE)
        if (na.rm == TRUE) {
                r = cbind(X, y)
                X = X[complete.cases(r), ]
                y = as.matrix(y[complete.cases(r), ])
        }
        A = crossprod(X)
        B = crossprod(X, y)
        R = chol(A)
        Rbeta = forwardsolve(t(R), B)
        coefficients = backsolve(R, Rbeta)
```

fastlm 5

```
n = length(y)
p = ncol(X)
sigmahat2 = crossprod(y - X %*% coefficients)/(n - p)
Ainv = chol2inv(R)
vcov = as.numeric(sigmahat2) * Ainv
return(list(coefficients = coefficients, vcov = vcov))
}
```

Index

```
*Topic package
Homework1-package, 1

dmvnorm, 2

fast.linear (fastlm), 3
fastlm, 3

Homework1 (Homework1-package), 1
Homework1-package, 1

mvn.density (dmvnorm), 2
```