Calculus (SMD001U1M)

Tutorial # 1

- 1. Let A and B be two nonempty sets. Let $f:A\mapsto B$ be a function and E and F are subsets of A. Then prove that
 - (a) $f(E \cup F) = f(E) \cup f(F)$
 - (b) $f(E \cap F) \subseteq f(E) \cap f(F)$.
- 2. Let A and B be two nonempty sets and $f: A \mapsto B$ be a function. For $H \subseteq B$, we define the inverse image of H under f is the subset $f^{-1}(H)$ of A given by $f^{-1}(H) := \{x \in A: f(x) \in H\}$. Now let G and H are subsets of B then prove the following
 - (a) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$
 - (b) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$.
- 3. Let x > 0 and $n \in \mathbb{N}$, then show that $x^{\frac{1}{n}} \leq \frac{x+n-1}{n}$.
- 4. Let $a_i \in \mathbb{R}$ for $1 \leq i \leq n$ and $b_j \in \mathbb{R}$ for $1 \leq j \leq n$ then show that

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \le \left(\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}\right)\left(\sqrt{b_1^2 + b_2^2 + \dots + b_n^2}\right).$$

- 5. What would you choose for m in $|\sqrt{3} 1.732| < 10^{-m}$, and why?
- 6. Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$, for all $n \in \mathbb{N}$ with n > 1.
- 7. Let $x_1 := 1$, $x_2 := 2$ and $x_{n+2} := \frac{1}{2}(x_{n+1} + x_n)$ for all $n \in \mathbb{N}$. Then show that $1 \le x_n \le 2$ for all $n \in \mathbb{N}$.
- 8. Bernoulli's Inequality: If x > -1, then $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 9. Recall from the class that for $a \in \mathbb{R}$ and $\epsilon > 0$ we defined the ϵ -neighborhood of a is the set $V_{\epsilon}(a) := \{x \in \mathbb{R} : |x a| < \epsilon\}$. Now solve the following problems:
 - (a) Let $\epsilon > 0$ and $\delta > 0$ and $a \in \mathbb{R}$. Show that $V_{\epsilon}(a) \cap V_{\delta}(a)$ and $V_{\epsilon}(a) \cup V_{\delta}(a)$ are γ -neighborhoods of a for some appropriate value of γ . Also find γ in each case.
 - (b) Let $\epsilon_n = \frac{1}{n}$ for $n \in \mathbb{N}$ and $a \in \mathbb{R}$. Let $V_{\epsilon_n}(a)$ be neighborhoods of a for $n \in \mathbb{N}$.

Then is it true that $\bigcap_{n=1}^{\infty} V_{\epsilon_n}(a)$ is a neighborhood of a? What about $\bigcup_{n=1}^{k} V_{\epsilon_n}(a)$?

(c) Let $a, b \in \mathbb{R}$ with $a \neq b$. Then can you find ϵ -neighborhoods $V_{\epsilon}(a)$ of a and $V_{\epsilon}(b)$ of b such that $V_{\epsilon}(a) \cap V_{\epsilon}(b) = \phi$?

- 10. Prove that a non-empty subset A of \mathbb{R} is bounded if and only if there is a positive real number M such that $-M \leq a \leq M$ for all $a \in A$ (i.e. $|a| \leq M$).
- 11. If A is a non-empty subset of \mathbb{R} which is bounded above then show that $-A := \{-x : x \in A\}$ is bounded below and $\sup(A) = -\inf(-A)$.
- 12. Let A and B be two nonempty bounded above subsets of \mathbb{R} then prove that $A + B := \{a + b : a \in A \text{ and } b \in B\}$ is also bounded above subset of \mathbb{R} and $\sup(A + B) = \sup A + \sup B$. How about $A B := \{a b : a \in A \text{ and } b \in B\}$? Is it bounded above?
- 13. Let $\alpha \in \mathbb{R}$ be non-negative and $n \in \mathbb{N}$. Then there exists a unique non-negative $x \in \mathbb{R}$ such that $x^n = \alpha$.
- 14. (Nested Interval Theorem) Let $J_n := [a_n, b_n]$ be intervals in \mathbb{R} such that $J_{n+1} \subseteq J_n$ for all $n \in \mathbb{N}$. Then $\bigcap_{n \in \mathbb{N}} J_n \neq \phi$.
- 15. Find the supremum (l.u.b.) and infimum (g.l.b) if they exist, of each of the following sets.

(a)
$$\left\{1 - \frac{1}{n^2} : n \in \mathbb{N}\right\}$$
 (b) $\left\{x \in \mathbb{R} : x^2 - 5x + 6 < 0\right\}$ (c) $\left\{x + x^{-1} : x > 0\right\}$

(d)
$$\left\{ \frac{m+n}{mn} : m, n \in \mathbb{N} \right\}$$
 (e) $\left\{ r \in Q : r < a, \right\}$ for $a \in \mathbb{R}$ fixed

$$(f) \bigcup_{n \in \mathbb{N}} [2n, 2n+1] \quad (g) \quad \left\{ n^{-1} : n \in \mathbb{N} \text{ and } n \text{ is prime} \right\} \quad (h) \quad \left\{ \sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \right\}$$

(i)
$$\bigcap_{n \in \mathbb{N}} \left(1 - \frac{1}{n}, 1 + \frac{1}{n} \right)$$
 (j) $\left\{ 1 - \frac{1}{3^n} : n \in \mathbb{N} \right\}$ (k) $\left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$

(l) $\{x \in \mathbb{R} : |x+1| + |x-2| = 7\}.$