Rejection Sampling, Accept-Reject Method

Mark M. Fredrickson (mfredric@umich.edu)

Computational Methods in Statistics and Data Science (Stats 406)

Rejection Sampling

Conditioning

When generating Laplace RVs we used conditioning by noting if

$$f(x) = \frac{1}{2}e^{-|x|}$$

then

$$X \mid X > 0 \sim Exp(1)$$
.

The reverse could also be useful, if we had a **a source of Laplace RVs** we could use it to **generate Exp(1)**.

Let's illustrate this by first getting the quantile function and then using the inversion method to make rlaplace.

$$f(x)$$
 to $F(x)$

As we did before, let's split up $f(x) = (1/2)e^{-|x|}$ when x < 0 and $x \ge 0$:

$$f(x) = \begin{cases} \frac{1}{2}e^{x} & : x < 0\\ \frac{1}{2}e^{-x} & x \ge 0 \end{cases}$$

Then we have a piece-wise CDF. For x < 0,

$$F(x) = \frac{1}{2} \left(\int_{-\infty}^{x} e^{t} dt \right) = \frac{1}{2} e^{x}$$

For $x \ge 0$ we can decompose F(x) as:

$$F(x) = F(0) + P(0 \le X \le x) = \frac{1}{2} + \frac{1}{2} \left(\int_0^x e^{-t} dt \right) = 1 - \frac{1}{2} e^{-x}$$

$$F(x)$$
 to $Q(u)$

The quantile function will also be piece-wise with the change at:

$$F(0) = 1/2 \Rightarrow Q(1/2) = 0$$

Solving the CDF leads to

$$F(x) = \begin{cases} \frac{1}{2}e^{x} & : x < 0 \\ 1 - \frac{1}{2}e^{-x} & : x \ge 0 \end{cases} \Rightarrow Q(u) = \begin{cases} \log(2u) : 0 \le u < \frac{1}{2} \\ \log\left(\frac{1}{2 - 2u}\right) : \frac{1}{2} \le u \le 1 \end{cases}$$

4

R implementation

```
Q(u) = \begin{cases} \log(2u) : 0 \le u < \frac{1}{2} \\ \log\left(\frac{1}{2-2u}\right) : \frac{1}{2} \le u \le 1 \end{cases} > rlaplace <- function(n) {  + \quad u <- \text{runif(n)} \\ + \quad \text{ifelse(u < 1/2, log(2 * u), log(1 / (2 - 2 * u)))} \\ + \}
```

Density plot

Rejection Sampling for Exp(1)

```
Suppose we have rlaplace but not rexp. We saw that if X \sim \text{Laplace}(0), then
X \mid X > 0 \sim \text{Exp}(1). Let's do that:
> x < - rlaplace(1000)
> x_positive <- keep(x, x > 0)
> mean(x_positive) # should be close to 1
[1] 0.9407
> t.test(x_positive, conf.level = 0.999)$conf.int
[1] 0.8021 1.0793
attr(, "conf.level")
[1] 0.999
```

Variance of the Estimator

The method worked fairly well, but had to throw away about 50% of RVs:

> length(x_positive)

[1] 485

Recall the variance of a the sample mean is:

$$\operatorname{Var}\left(\bar{X}\right) = \frac{1}{n}\operatorname{Var}\left(X\right)$$

by throwing away samples, we have increased the variance (relative to having a way to keep all the samples).

Rejection Sampling in General

The idea of **rejection sampling** can be used when our **target RV** can be expressed as a subset of another **candidate RV**.

Examples:

- Conditioning on the variable itself, $X \sim \text{Poisson}(\lambda)$, $Y = X \mid X$ is odd
- Truncated distributions, e.g. $X \sim N(0,1)$, $Y = X \mid a < X < b$
- Uniform points on the unit circle: $U_1,\,U_2\sim U(-1,1)$ (independent), $(V_1,\,V_2)=(U_1,\,U_2)\mid U_1^2+U_2^2\leq 1$

Procedure: generate from candidate, only keep results that meet criteria.

Example: Truncated Normal Distribution

A truncated distribution takes a given distribution and limits the support.

For example, $X \sim N(0,1)$ and $Y = X \mid 0 \le X \le 1$. We can sample by drawing from X and only keeping those that fall in (0,1).

```
> x <- rnorm(10000)
> y <- keep(x, 0 < x & x < 1)
```

> length(y) # number of samples kept

[1] 3390

> mean(y) # use the samples to estimate E(Y)

[1] 0.4621

Computing π

Consider the following method for approximating the value of π :

- Initialize a = 0
- Generate U_1 and U_2 (independent) from U(0,1)

• If
$$\sqrt{U_1^2 + U_2^2} \le 1$$
 then $a = a + 1$

- Repeat k times.
- ullet Approximate π as

$$\pi = \frac{4a}{k}$$

Calculating in R

```
> approx_pi <- function(k) {
+    u1 <- runif(k)
+    u2 <- runif(k)
+    sqs <- sqrt(u1^2 + u2^2)
+    return(4 * sum(sqs <= 1) / k)
+ }</pre>
```

Approximation vs. k

Why does it work?

Recall: the circle centered at (0,0) and with radius 1, has area π .

We "throw darts" at the upper quadrant of the circle and see how many hit the circle.

This proportion should be about $\pi/4$

Accept-Reject Method

Another interpretation of Approximating π

Notice that the following is a valid **probability density function**:

$$f(x) = \frac{4}{\pi}\sqrt{1-x^2}, 0 \le x \le 1$$

This curve is just a scaled version of the unit circle.

Interpretation

- We started by drawing U_1 and U_2 , and then keeping U_2 if $U_1^2 + U_2^2 \leq 1$.
- This is equivalent to picking U_2 , and keeping U_1 if

$$\frac{4}{\pi}U_2 \leq \frac{4}{\pi}\sqrt{1-U_1^2} = f(U_1)$$

or written another way:

$$U_2 \leq \frac{\pi}{4} \frac{f(U_1)}{g(U_1)}, \quad g(x) = 1 \text{ (pdf of } U_1)$$

• This process generated samples from X (the variable with density f(x))!

Accept-Reject in General

Suppose we want to sample from density (or mass) function:

We know f(x), but can't easily sample from it directly (e.g., Normal distribution).

But what if we had another density g(y) such that

$$c imes rac{g(x)}{f(x)} \geq 1$$

for some c > 0 and for all x such that f(x) > 0.

In other words we need cg(x) to lie above f(x) for any x where f(x) is positive.

Accept-reject for f(x)

For the example we just did the target density was

$$f(x) = \frac{4}{\pi} \sqrt{1 - x^2}, 0 \le x \le 1$$

The candidate density was the uniform distribution $g(x) = 1, 0 \le x \le 1$

The constant was

$$c=rac{4}{\pi}$$

This ensures that:

$$cg(x) = \frac{4}{\pi} \ge \frac{4}{\pi} \sqrt{1 - x^2} = f(x)$$

(NB: c is not unique. We could have pick any $c \ge 4/\pi$.)

Example: Uniform and Beta

Suppose we want to sample from the Beta(2,2) distribution which is:

$$f(x) = 6x(1-x), \quad 0 \le x \le 1$$

but we only have the standard uniform g(x) = 1.

Observe that f(x) achieves its max at x = 0.5, the maximum value is f(0.5) = 6/4.

Therefore we have

$$\frac{6}{4}\frac{g(x)}{f(x)} \ge 1$$

for any point in [0,1].

Χ

Accept-Reject Algorithm

- Draw a Y from g(y)
- Draw $U \sim U(0,1)$
- If

$$U<\frac{f(Y)}{cg(Y)}$$

then accept X = Y

ullet Otherwise, reject Y as a candidate and repeat.

Example: Beta/Uniform

Say we generate Y = 0.3.

•
$$f(0.3) = 1.26$$

•
$$g(0.3) = 1$$

• We will accept if

$$U < \frac{1.26}{(6/4) \times 1} = 0.84$$

R implementation

```
> k < -10000
> ys <- runif(k)
> fys <- 6 * ys * (1 - ys)
> gys <- 1
> ratios <- fys / (gys * (6/4))
> us <- runif(k)</pre>
> accept <- us < ratios
> accepted <- ys[accept]</pre>
> rejected <- ys[!accept] ; mean(!accept)</pre>
[1] 0.3377
```


Proving the general case

When proving an algorithm generates X we need to show same cumulative distribution function (recall, we did this for inversion method, transformations, etc.).

Let V be the random variable produced by the AR algorithm, we need to show that

$$P(V \le x) = P(X \le x)$$

for any x in the support of X.

What kind variable is V?

We know the distribution of Y and U, but what can we say about V?

Notice that V is set to Y, when $U \leq f(Y)/(cg(Y))$, a conditional distribution:

$$V = Y \mid U \leq \frac{f(Y)}{c \, g(Y)}$$

For events A and B, recall the definition of conditional probability:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(V \le x) = P\left(Y \le x \mid U \le \frac{f(Y)}{c g(Y)}\right) = \frac{P\left(Y \le x, U \le \frac{f(Y)}{c g(Y)}\right)}{P\left(U \le \frac{f(Y)}{c g(Y)}\right)}$$

We'll take the numerator and denominator separately.

In both cases, think of writing P(...) = E(I(...), e.g.:

$$P\left(Y \le x, U \le \frac{f(Y)}{c g(Y)}\right) = E\left(I\left(Y \le x, U \le \frac{f(Y)}{c g(Y)}\right)\right)$$

Numerator

Notice (a) by independence, the joint density is $1 \times g(y)$ and (b) I(A, B) = I(A)I(B).

$$P\left(Y \le x, U \le \frac{f(Y)}{c g(Y)}\right) = \int_{-\infty}^{\infty} \int_{0}^{1} I(y \le x) I(u \le f(y)/(cg(y))g(y) du dy$$

$$= \int_{-\infty}^{\infty} I(y \le x)g(y) \left[\int_{0}^{1} I(u \le f(y)/(cg(y)) du\right] dy$$

$$= \int_{-\infty}^{x} g(y) \left[\int_{0}^{f(y)/(cg(y))} 1 du\right] dy$$

$$= \int_{-\infty}^{x} g(y) \frac{f(y)}{cg(y)} dy$$

$$= \frac{1}{c} \int_{-\infty}^{x} f(y) dy = \frac{1}{c} P(X \le x)$$

Denominator

$$P\left(U \le \frac{f(Y)}{c g(Y)}\right) = E\left(I\left(U \le \frac{f(Y)}{c g(Y)}\right)\right)$$

By similar logic,

$$P\left(U \le \frac{f(Y)}{c g(Y)}\right) = \int_{-\infty}^{\infty} g(y) \left[\int_{0}^{f(y)/(cg(y))} 1 \, du \right] \, dy$$
$$= \int_{-\infty}^{\infty} g(y) \frac{f(y)}{cg(y)} \, dy$$
$$= \int_{-\infty}^{\infty} \frac{1}{c} f(y) \, dy = \frac{1}{c}$$

Taking the ratio, the (1/c) cancels, so $P(V \le x) = P(X \le x)$.

Example: Truncated Normal

We've used rejection sampling algorithm for the Truncated Normal before:

$$Y = Z \mid 0 \le Z \le 1, Z \sim N(0, 1)$$

To use AR, we need the density function. To get this, start with the CDF:

$$F_Y(y) = P(Y \le y) = P(Z \le y \mid 0 \le Z \le 1) = \frac{P(Z \le y, 0 \le Z \le 1)}{P(0 \le Z \le 1)}$$
$$= \frac{1}{P(Z \le 1) - P(Z \le 0)} \int_0^y \phi(x) \, dx$$

where ϕ is the PDF of the standard Normal distribution.

By definition, the PDF is the derivative of the CDF, so for $0 \le y \le 1$,

$$f(y) = \frac{\phi(y)}{P(Z \le 1) - P(Z \le 0)}$$

Implementing in R

```
> (scaling_const <- pnorm(1) - pnorm(0))</pre>
[1] 0.3413
Then we compute the density function as:
> truncated <- function(x) {</pre>
   ifelse(x >= 0 \& x <= 1,
            dnorm(x) / scaling_const,
            0)
```

Picking a candidate density: Uniform

Implementing

```
> ys <- runif(1000)
> const <- truncated(0)</pre>
> ratios <- truncated(ys) / (const * 1) # g(y) = 1
> us <- runif(1000)
> accept_uniform <- us < ratios
> accepted_uniform <- ys[accept_uniform]</pre>
> rejected_uniform <- ys[!accept_uniform]</pre>
Estimating E(X):
> mean(accepted_uniform)
[1] 0.4684
```


We rejected 15.1% of the candidate draws. Can we do better?

Fitting a closer candidate distribution

Consider the density:

$$g(y) = \frac{2}{3}(2-y), \quad 0 \le y \le 1$$

with quantile function

$$Q_y(p)=2-\sqrt{4-3p}$$

Need to find a c such that

$$c \times \frac{g(x)}{f(x)} \ge 1 \Rightarrow c \ge \frac{f(x)}{g(x)}, 0 \le x \le 1$$

Notice that the **ratio** f(x)/g(x) **is increasing**:

Then the maximum ratio is at x = 1.

$$c = f(1)/g(1) = 0.363 \Rightarrow \frac{cg(x)}{f(x)} \ge 1, 0 \le x \le 1$$

```
> g \leftarrow function(y) \{ (2/3) * (2 - y) \}
> qg <- function(p) { 2 - sqrt(4 - 3 * p)}
> ys <- qg(runif(1000))</pre>
> const <- truncated(1) / g(1)</pre>
> ratios <- truncated(ys) / (const * g(ys))</pre>
> us <- runif(1000)
> accept_g <- us < ratios
> accepted_g <- vs[accept_g]</pre>
> rejected_g <- ys[!accept_g]</pre>
```


Now we reject only 5.1% of the candidate draws.

Comparing Efficiency

Recall, we define the efficiency of an estimator as the variance of the sampling distribution for that estimator.

For both the uniform and tuned candidates, the variance is given by:

$$\frac{1}{n}$$
Var (Y)

. The Var(Y) term is the same in both cases, so when calculating the **relative efficiency** we only consider the resulting (non-rejected) sample size:

Interpretation: the method using g is 10% more efficient than the uniform method.

A bimodal density

Suppose we have a density of the form:

$$f(x) = 0.25\phi(x+2) + 0.75\phi(x-1), -\infty < x < \infty$$

where ϕ is the standard Normal PDF.

$$> f \leftarrow function(x) \{ 0.25 * dnorm(x + 2) + 0.75 * dnorm(x - 1) \}$$

A density like is this called **bimodal** because it contains two local maxima.

What candidate distribution?

Our initial thought might be to use $\phi(x)$ (standard Normal) as the candidate.

The only problem with that is that

$$\lim_{x \to \pm \infty} f(x)/\phi(x) = \infty$$

(i.e., no c exists that uniformly bounds f).

We saw that the Cauchy distribution has fat tails, perhaps that would be useful?

$$g(x) = \frac{1}{\pi(1+x)^2}$$

Ratio of $f(x)/\phi(x)$

Ratio of f(x)/g(x)

Lazy mode: find c by evaluation

```
> h <- function(x) { f(x) / dcauchy(x)}
> xs <- seq(-4, 4, length.out = 1000)
> (const <- max(h(xs)))
[1] 2.898</pre>
```

Plotting Distributions

Putting it together

```
> k <- 10000
> ys <- rcauchy(k)
> ratios <- f(ys) / (const * dcauchy(ys))
> us <- runif(k)
> accept <- us < ratios
> x <- ys[accept] ; mean(accept)
[1] 0.3526</pre>
```


What if we got *c* wrong?

We found c=2.898. What if we were wrong? How would the distribution change? Too large, too small?

```
> wrong_consts <- c(2 * const,
+ const,
+ 0.75 * const,
+ 0.25 * const,
+ 0.1 * const,
+ 0)</pre>
```

Functions to handle AR

For numerical reasons, we'll rewrite $U \leq f(Y)/(cg(Y))$ as

$$cg(Y)U \leq f(Y)$$

```
> accept_reject <- function(n, f, g, rg, const) {
+     ys <- rg(n)
+     us <- runif(k)
+     accept <- us * const * g(ys) <= f(ys)
+     data.frame(y = ys, accept = accept)
+ }</pre>
```

Using the bad constants

```
> bimodal <- function(const) {
+    accept_reject(1000, f, dcauchy, rcauchy, const)
+ }
> wrong <- map_dfr(wrong_consts, .id = "constant", bimodal)
> wrong$constant <- wrong_consts[as.numeric(wrong$constant)] # get the orig</pre>
```


Accept-Reject Summary

- For a density f, use a density g for the sampling.
- Draw uniform values to decided to accept or reject draws for g.
- Need to figure out the scaling constant c to make $cg(y)/f(y) \ge 1$
- Generally, we accept about $100 \times (1/c)\%$ for the candidates, so making c small is useful.
- Picking c too large is ok, too small leads to draws from g.