RBE 500 Homework #2

Arjan Gupta

Problem 3.5

Consider the three-link articulated robot of Figure 3.16. Derive the forward kinematic equations using the DH convention.

Figure 3.16: Three-link articulated robot.

Solution

First we assign coordinate frames 0 through 3 (links 0 through 3). This is done as per the following figure.

Now, we create a table for quantities $\alpha_i, a_i, \theta_i, d_i$ for links 1 through 3.

Link	α_i	a_i	θ_i	d_i
1	-90	0	θ_1	d_1
2	0	a_2	θ_2	0
3	0	a_3	θ_3	0

Next, we use the matrix obtained from equation 3.10 of the textbook to calculate A_1, A_2, A_3 . The equation 3.10 matrix is given as follows.

$$A_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \cos(-90^\circ) & \sin \theta_1 \sin(-90^\circ) & 0 \cdot \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 \cos(-90^\circ) & -\cos \theta_1 \sin(-90^\circ) & 0 \cdot \sin \theta_1 \\ 0 & \sin(-90^\circ) & \cos(-90^\circ) & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_1 & 0 & -s_1 & 0 \\ s_1 & 0 & c_1 & 0 \\ 0 & -1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where $s_1 = \sin \theta_1$ and $c_1 = \cos \theta_1$. Similarly,

$$A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \\ s_2 & c_2 & 0 & a_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} c_3 & -s_3 & 0 & a_3c_3 \\ s_3 & c_3 & 0 & a_3s_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem -1

Let $\Sigma = \{0,1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5. vspace

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Problem -1

Write part of Quick-Sort(list, start, end)

- 1: **function** QUICK-SORT(list, start, end)
- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow PARTITION(list, start, end)$
- 6: Quick-Sort(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

Algorithm 1: Start of QuickSort

Problem -1

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0$, $\forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta}_1$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta_1}$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$\begin{aligned} \mathbf{E}[\hat{\beta}_1] &= \mathbf{E}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i \mathbf{E}[Y_i]}{\sum x_i^2} \\ &= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} \\ &= \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \end{aligned}$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta_1}] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Problem -1

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

Proof. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$< c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Problem 18

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Problem -1

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.