MACHINE LEARNING Assignment 8 Aakanksha Darekar 202200733 A1 09

Implement the K-Means algorithm using the Wine dataset

```
CODE:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
# Load the dataset
file_path = "wine_dataset.csv" # Update this with your actual dataset file path
df = pd.read_csv(file_path)
# Display basic info
display(df.head())
# Features selection (excluding 'quality' if present as it's categorical)
X = df.drop(columns=["quality"], errors='ignore')
# Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Determine optimal K using Elbow Method
inertia = []
k_range = range(1, 11)
for k in k_range:
  kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
  kmeans.fit(X_scaled)
  inertia.append(kmeans.inertia_)
# Plot Elbow Graph
plt.figure(figsize=(8, 5))
plt.plot(k_range, inertia, marker='o', linestyle='--')
plt.xlabel("Number of Clusters")
```

plt.ylabel("Inertia")

```
plt.title("Elbow Method for Optimal K")
plt.show()
# Fit K-Means with optimal K (assuming 3 for example)
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
df['Cluster'] = kmeans.fit_predict(X_scaled)
# Perform PCA for visualization
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
df['PCA1'] = X_pca[:, 0]
df['PCA2'] = X_pca[:, 1]
# Scatter plot of clusters
plt.figure(figsize=(8, 6))
plt.scatter(df['PCA1'], df['PCA2'], c=df['Cluster'], cmap='viridis', alpha=0.7)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.title("K-Means Clustering Visualization")
plt.colorbar(label='Cluster')
plt.show()
# Display cluster counts
print(df['Cluster'].value_counts())
```

OUTPUT:

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	 density	рΗ	sulphates	alcohol	quality
ı	0	7.4	0.70	0.00	1.9	0.076	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	0.9978	3.51	0.56	9.4	5
	4										

Cluster 0 722 1 502 2 375

Name: count, dtype: int64

