Basics

Introduction and Course Outline

Learning goals

- Understand the scope of the course
- Answers to all open question
- Get an impression of the workload

STRUCTURE OF THE COURSE

Central building blocks of the lecture

- Basic concepts (2 weeks)
- Transformer in-depth (1 week)
- BERT and subsequent models (2 weeks)
- T5 (1 week)
- GPT series and Prompting (2 weeks)
- More LLMs (1 week)
- Multilinguality (1 week)
- Math behind training LLMs (1 week)
- Current topics in research (1 week)

STRUCTURE OF THE COURSE

Central building blocks of the exercise

- Python essentials (week 1)
- Training an LSTM (week 2 − 3)
- Transformer (week 4 − 5)
- Fine-tuning T5 (week 6 − 7)
- GPT (week 8 9)
- ChatGPT / Multilinguality (week 10 − 11)

PREREQUISITES

Machine learning basics:

- A proper understanding of
 - linear algebra
 - loss functions
 - regularization
 - classification vs. regression
 - backpropagation and gradient descent
 - simple neural networks (MLPs)
- Great resource: I2ML course

MANAGING EXPECTIONS

What to expect

- A solid and proper unterstanding of
 - the central concepts and models of contemporary NLP
 - the capabilities and limitations of different models
- Challenging exercises that deepen your unterstanding, i.e.
 - you will have to invest quite some time in trying to solve them
 - just checking our solutions won't get you far
- An (inter)actively taught course with motivated lecturers, i.e.
 - we expect you to actively participate in the lecture and ask questions
 - you won't get much out of this course by just enrolling and not showing up

MANAGING EXPECTIONS

What not to expect

- A prompt engineering course
- Low workload and easy exercises (you will only learn this thoroughly be investing some time)
- Only the latest state-of-the-art LLMs (you also need to know the basics)

NOTATION (IMPORTANT!!)

- \mathcal{C} A corpus of M documents
- **C** The confusion matrix of a classification problem
- C Size of the context window
- E Embedding size // Size of the vector representation
- h Number of Attention heads in a Transformer-based architecture
- H Dimension of the hidden layer of a neural network
- Running index for observations in a data set, words/tokens in a sequence or documents in a corpus
- j Running index for covariates or levels of a categorical target variable
- *k* The number of classes of a categorical target variable
- \mathcal{L} A data generating process a.k.a. language
- \mathcal{M} A (language) model

NOTATION (IMPORTANT!!)

m	The number of words/tokens in a sequence s
М	The number of documents in a corpus $\ensuremath{\mathcal{C}}$
n	The number of observations in a data set
p	The number of features in a tabular data set
s	An ordered sequence of <i>m</i> words
θ	The parameters of a model
$V = \{w_1, \ldots, w_N\}$	The vocabulary of a corpus ${\mathcal C}$ or a language ${\mathcal L}$
V or N	The size of a vocabulary V
$w_{[t]}$	The word/token at the t -th position in a sequence
$ec{W}(word)$	vector representation of a word
W	The weight matrix of a neural network
X	Influential variable(s)
у	Target variable(s)

©

YOUR TURN

Any Questions?