This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-168892

(43) Date of publication of application: 22.06.2001

(51)Int.CI.

H04L 12/40

G06F 15/177

(21) Application number: 11-352515

(71)Applicant: CASIO COMPUT CO LTD

(22) Date of filing:

13.12.1999

(72)Inventor: MENJU YOSHITSUGU

(54) NETWORK CONSTRUCTING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To contribute to the spread of a home network by automatizing the assignment of authority of network equipment and facilitating a network construction. SOLUTION: The authority for equipment connected to a network (self equipment) is arbitrated on the basis of the level information of self equipment and on the level information of another piece of equipment on the network (S15). One of a master authority and a slave authority is dynamically imparted to the self equipment, in accordance with the arbitration result (S16 and S17).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-168892 (P2001-168892A)

(43)公開日 平成13年6月22日(2001.6.22)

(51) Int.Cl.7	識別記号	FΙ	5	7J}*(参考)
HO4L 12/40		G 0 6 F 15/177	676A	5B045
G06F 15/17	7 676	H04L 11/00	3 2 1	5 K 0 3 2

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出願番号	特願平11-352515	(71)出願人 000001443 カシオ計算機株式会社
(22) 出願日	平成11年12月13日(1999.12.13)	東京都渋谷区本町1丁目6番2号
		(72)発明者 毛受 尚嗣 東京都羽村市栄町3丁目2番1号 カシオ 計算機株式会社羽村技術センター内 (74)代理人 100096699
		弁理士 鹿嶋 英實
		Fターム(参考) 58045 BB42
		5K032 BA01 DA01 EC01

(54) 【発明の名称】 ネットワーク構築方法

(57)【要約】

【課題】 ネットワーク機器の権限割り当てを自動化してネットワーク構築の容易化を図り、家庭内ネットワークの普及に貢献する。

【解決手段】 ネットワークに接続された機器(自機器)のレベル情報と、そのネットワーク上の他機器のレベル情報とに基づいて自機器の権限を調停(S15)し、その調停結果に従って自機器にマスタ権限またはスレープ権限の一方を動的に付与する(S16、S17)。

【特許請求の範囲】

【請求項1】 ネットワーク機器の各々にあらかじめ権限判定用のレベル情報を保持させておき、自機器をネットワークに接続する際に、そのネットワーク上に他機器が存在する場合で且つその他機器のレベル情報が自機器のレベル情報よりも上位である場合に自機器にスレーブ権限を付与する一方、そうでない場合に自機器にマスタ権限を付与することを特徴とするネットワーク構築方法。

【請求項2】 前記他機器のレベル情報が自機器のレベ 10 ル情報と同位の場合、あらかじめ設定された優先モード に応じて自機器にマスタ権限を付与するか否かを決定することを特徴とする請求項1記載のネットワーク構築方法。

【請求項3】 前記自機器にマスタ権限が付与された場合にネットワーク上の他機器のうちマスタ権限を持つ機器の権限をスレーブ権限に変更することを特徴とする請求項1または請求項2いずれかに記載のネットワーク構築方法。

【請求項4】 自機器をネットワークに接続する際に、ネットワーク上の他機器の存在を調べ、他機器が存在しない場合に自機器にマスタ権限を付与することを特徴とする請求項1、請求項2または請求項3いずれかに記載のネットワーク格築方法。

【請求項5】 ネットワーク機器のそれぞれにグループ 属性を入力させ、同一のグループ属性を有する機器同士 によりネットワークを構築することを特徴とする請求項 1、請求項2、請求項3または請求項4いずれかに記載のネットワーク構築方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ネットワーク構築 方法に関し、特に、家庭内ネットワークなどに適用して 好ましいネットワーク構築方法に関する。

[0002]

【従来の技術】近年、AV(Audio Visua 1)機器を中心に家電製品のディジタル化が進んでおり、それに伴って家電製品をネットワーク化してパソコンなどで制御しようとする動き、いわゆる家庭内ネットワークの動きが題在化してきた。これは、家電製品がディジタルであると、映像や音声などの情報をディジタルデータでやり取りできるようになるため、相互にネットワーク化して遠隔操作を行なったり、製品間で情報の交換を行なったりできるためで、究極的には、例えば、パソコンでエアコンの温度を調節したり、テレビのリモコンでステレオを操作したりすることも夢でなくなるからである。

【0003】 こうした社会背景から、「Bluetooth」、「HomeRF」、「lrDA-Control」などの無線(または光通信)ネットワーク技術、

「ECHONET」などの電灯線利用ネットワーク技術、「IEEE1394」などのバスネットワーク技術、「HomePNA」などの電話線利用ネットワーク技術等、様々なインフラ技術が提案されており、これらの技術のいくつかは活線挿抜(プラグアンドプレイまたはホットプラグ機能)をサポートするなどして、新たな機器の接続や取り外しの際の設定を容易化している。

【0004】しかし、家庭内ネットワークの構築は、上記インフラ技術を利用したとしても、専門知識を持たない者(以下、便宜上「一般大衆」という)にとって容易なことではなく、今一つ普及が遅れていることも事実である。その原因の一つとして、ネットワークに接続することができる。すなわち、家庭内ネットワークを構築するには、特定のインフラ技術に対応した家電製品を購入し、その家電製品(以下「機器」という)を有線または無線のネットワーク媒体を介して接続したうえ、各機器に対して権限の割り当て等の設定作業を行なわなければならない。権限とは、例えば、ネットワーク上で他の端末を制御できるマスタ権限や被制御側のスレーブ権限のことである。

【0005】マスタ権限を有する機器(以下「マスタ機 器」という)はネットワーク上に唯一つしか存在せず (但し同一グループ内)、このマスタ機器を用いて同一 グループ内のスレーブ権限を有する機器(以下「スレー ブ機器」という)を制御することが可能である。一般に マスタ機器はパソコン等のように高度な制御機能を有す る機器に割り当てられることが多いが、パソコンがない 場合は、例えば、ネットワーク対応のテレビジョン受信 30 機などに割り当てられることもある。そのような受信機 にはキーボードなどの入力装置としても利用できる高機 能なリモコンが付属しており、パソコンと同等かそれに 近い制御機能を有しているからである。また、近年では 冷蔵庫や電子レンジ等のいわゆる「白もの」と呼ばれる 家電製品の一部にも液晶ディスプレイや情報処理機能が 組み込まれていることがあり、これらの家電製品もマス 夕機器として使用可能である。

[0006]

【発明が解決しようとする課題】さて、このような様々なマスタ機器(またはマスタ機器として使用可能な機器)の一つを購入して家庭内ネットワークに接続しようとした場合、ネットワーク上に既存のマスタ機器がなければ、いい換えればスレーブ機器だけのネットワークをあれば、新たに接続されたマスタ機器がネットワーク上の唯一つのマスタ機器となるため、購入機器をそののましたがら、すでにマスタ機器が接続されている場合は、既存機器と購入機器のいずれか一方をマスタ機器とし、他方をスレーブ機器にしなければならず、その際に、いず50 れがマスタ機器に相応しいかを判断する必要があるもの

の、そのような判断は当然ながらある程度の技術知識を 要求されるから、一般大衆にとっては容易なことでな く、家庭内ネットワークの普及を妨げる要因の一つにな るという問題点があった。

【0007】したがって、本発明が解決しようとする課題は、ネットワーク機器の権限割り当てを自動化してネットワーク構築の容易化を図り、以って、家庭内ネットワークの普及に貢献するネットワーク構築方法を提供することにある。

[8000]

【課題を解決するための手段】 (1) 本発明に係るネットワーク構築方法は、ネットワーク機器の各々にあらかじめ権限判定用のレベル情報を保持させておき、自機器をネットワークに接続する際に、そのネットワーク上に他機器が存在する場合で且つその他機器のレベル情報が自機器のレベル情報よりも上位である場合に自機器にスレーブ権限を付与することを特徴とする。

- (2) または、本発明に係るネットワーク構築方法は、さらに、前記他機器のレベル情報が自機器のレベル 20情報と同位の場合、あらかじめ設定された優先モードに応じて自機器にマスタ権限を付与するか否かを決定することを特徴とする。
- (3) または、本発明に係るネットワーク構築方法 は、さらに、前記自機器にマスタ権限が付与された場合 にネットワーク上の他機器のうちマスタ権限を持つ機器 の権限をスレーブ権限に変更することを特徴とする。
- (4) または、本発明に係るネットワーク構築方法は、さらに、自機器をネットワークに接続する際に、ネットワーク上の他機器の存在を調べ、他機器が存在しな 30 い場合に自機器にマスタ権限を付与することを特徴とする。
- (5) または、本発明に係るネットワーク構築方法は、さらに、ネットワーク機器のそれぞれにグループ属性を入力させ、同一のグループ属性を有する機器同士によりネットワークを構築することを特徴とする。

[0009]

【作用】本発明に係るネットワーク構築方法では、ネッ e r) 4などが接続された内では接続された機器(自機器)のレベル情報と、そのネットワーク上の他機器のレベル情報とに基づいて 40 れている。自機器の権限が調停され、その調停結果に従って自機器 [0013]図1(bにマスタ権限またはスレーブ権限の一方が動的に付与される。すなわち、上記(1)では、他機器のレベル情報 位層から順に、物理層が自機器のレベル情報よりも上位である場合に自機器にスレーブ権限が付与される一方、そうでない場合に自機器にスタ権限が付与され、上記(2)では、さらに、他機器のレベル情報と自機器のレベル情報が同位の場合にあらかじめ設定された優先モードに応じて自機器にマスタ権限を付与するか否かが決定され、上記(3)で 層に相当し、上記物理は、さらに、自機器にマスタ権限が付与された場合にネ 50 夕規格等を定義する。

ットワーク上の他機器のうちマスタ権限を持つものがスレーブ権限に変更され、上記(4)では、ネットワーク上に他機器が存在しない場合に無条件に自機器にマスタ権限が付与され、上記(5)では、グループ属性によってネットワークが識別され、例えば、グループ属性を変えることによって排他的なネットワークが構成される。 【0010】

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を詳細に説明する。図1 (a) は家庭内ネット 10 ワークの概念図である。図において、ネットワーク媒体 1は有線、無線または光通信などの伝送媒体である。こ のネットワーク媒体1は、有線の場合、ケーブル等の伝 送路やその伝送路を介してやり取りされる電気信号の送 受信部等を含み、無線の場合、無線電波の送受信部や変 復調部等を含み、光通信の場合、光送受信部や変復調部 等を含むほか、いずれの場合も、これらの物理的構成要 素に加えて、例えば、「Bluetooth」、「Ho meRF」、「IrDA-Control」などの無線 (または光通信) ネットワーク技術、「ECHONE T」などの電灯線利用ネットワーク技術、「IEEE1 394」などのバスネットワーク技術、「HomePN A」などの電話線利用ネットワーク技術等のアーキテク チャに基づく論理的構成要素(後述)を含む。

【0011】この論理的構成要素は、特に、ホットプラギング(HotPlugging)、すなわち、ネットワークに新たに機器を接続したり接続済みの機器に電源を入れたりしたことを通知する機能と、アンプラギング(UnPlugging)、すなわち、ネットワークから機器を取り外したり電源を切断したりしたことを通知する機能とをサポートする。これにより、ネットワーク媒体1はプラグアンドプレイや上記ホットプラギング(またはホットプラグ;以下「ホットプラグ」で統一)と呼ばれる活線挿抜機能をネットワーク機器に提供する

【0012】ネットワーク媒体1にはいくつかのネットワーク機器、例えば、パソコン2、テレビジョン受信機3およびVTR(Video Tape Recorder)4などが接続されており、これらの機器とネットワーク媒体1とによって、家庭内ネットワークが構築されている。

【0013】図1(b)はネットワーク媒体1の階層構造(前記の論理的構成要素に相当)を示す図であり、下位層から順に、物理層5、通信制御層6、プレゼンテーション層7およびアプリケーション層8を積み重ねた構造になっている。この階層構造はOSI(Open Systems Interconnection:開放型システム相互接続)参照モデルの7階層モデルを簡略化したものであり、物理層5はOSI参照モデルの物理層に相当し、上記物理的構成要素の電気的条件やコネクタ相及等を定義する。

10

30

【0014】また、通信制御層6は〇SI参照モデルの データリンク眉、ネットワーク層、トランスポート層お よびセッション層に相当し、通信メッセージの識別、エ ラー訂正、通信開始と終了などの手順を規定するととも に、自機器の物理識別情報(あらかじめ割り当てられた 固定の情報であり以下「GID」という)、ネットワー ク上の論理識別情報(ネットワークへの接続順に動的に 割り当てられる可変の情報であり以下「PID」とい う)、自機器の権限判定用のレベル情報(後述)、およ び、ネットワーク上の他の機器(以下「他機器」とい う) に関する情報 (レジストリ情報) などを管理する。 【0015】また、プレゼンテーション層7およびアプ リケーション暦8はOSI参照モデルのプレゼンテーシ ョン暦およびアプリケーション暦に相当し、プレゼンテ ーション尼7はデータの表現形式等を規定するととも に、アプリケーション图8に対して下位層(物理图5お よび通信制御 后 6) の A P I (アプリケーション・プロ グラマブル・インターフェース)を提供し、アプリケー ション暦8はこのAPIを利用してネットワーク上の他 機器との間で通信を行ない、各種家電製品やパソコン等 20 に所要のネットワーク機能を提供する。

【0016】ここで、少なくとも、有線、無線又は光通 信によってデータ伝送を行なう物理層5の一部(典型的 には有線の場合の伝送路;以下説明の便宜上「伝送路」 とする)を除く各階間5~8は、ネットワーク機器の内 部に組み込まれている。すなわち、図1 (a)のパソコ ン2、テレビジョン受信機3およびVTR4は、その何 れも、物理图5(但し伝送路を除く)、通信制御層6、 プレゼンテーション層7およびアプリケーション層8に 対応する構成要素を含み、例えば、図2のような構成を 有している。

【0017】図2において、ネットワーク機器10は、 図1 (a) のパソコン2、テレビジョン受信機3または VTR4に相当するものであり、このネットワーク機器 10は、伝送路1aを流れるメッセージが自機器宛てで ある場合または宛先未指定(もしくは特定グループ指 定)のブロードキャストメッセージである場合にそのメ ッセージを取り込むアドレス処理部11と、受信メッセ ージのエラー訂正や送信メッセージの生成等を行なうと ともに、後述の「ホットプラグ処理」および「ホットプ 40 ラグ通知受信処理」を実行するメッセージ送受信部12 と、自機器の固有情報(GID、PID、機能情報およ び権限判定用のレベル情報など)を格納する固有情報格 納部13と、ネットワーク上の他機器に関するレジスト リ情報を格納するレジストリ情報格納部14とを備え、 これら各部11、12、13、14によって、前記階層 構造モデルの物理層5(但し伝送路1aを除く)および 通信制御層6を具現化する。

【0018】さらに、ネットワーク機器10は、プレゼ ンテーション部15および機器依存部16を備え、機器 50

依存部16はネットワーク機器10の本来の機能、例え ば、パソコン2であれば信号処理機能、テレビジョン受 信機3であればテレビジョン放送の受像機能や再生画像 の表示機能、VTR4であれば録画/再生機能、を実現 するためのハードウェアリソースおよびソフトウェアリ ソースを含み、プレゼンテーション部15は、メッセー ジ送受信部12と機器依存部16との間を仲介して、例 えば、自機器がパソコン2やテレビジョン受信機3であ れば、パソコン2の入力装置またはテレビジョン受信機 3のリモコン装置 (これらは機器依存部16に含まれる ハードウェアリソースの一つである)からの制御信号を ネットワーク上の例えばVTR4に伝え、パソコン2な いしはテレビジョン受信機3からの録画/再生の遠隔操 作を可能にする。プレゼンテーション部15は前記階層 構造モデルのおよびプレゼンテーション層?に相当し、 機器依存部16は同モデルのアプリケーション局8に相 当する。

【0019】以上の構成を有するネットワーク機器10 は、その機器依存部16において、パソコン2、テレビ ジョン受信機3またはVTR4としての基本機能を実現 するとともに、例えば、パソコン2やテレビジョン受信 機3であれば、その機器依存部16において、ネットワ ーク上の他機器の遠隔制御機能を実現するほか、特にホ ットプラグ時に後述の「ホットプラグ処理」をそのメッ セージ送受信部12で実行し、さらに、ネットワーク上 の他機器からのホットプラグ通知受信時にそのメッセー ジ送受信部12で後述の「ホットプラグ通知受信処理」 を実行する。

【0020】<ホットプラグ処理>まず、ホットプラグ 処理について説明する。図3はホットプラグ処理の概略 的なフローチャートを示す図である。このフローチャー トは、ホットプラグ時、すなわち、自機器をネットワー クに接続したとき、または、ネットワークに接続済みの 自機器の電源を入れたときに実行される。フローチャー トを実行すると、最初に、ネットワーク上に他機器が存 在しているか否かを調べる(ステップS11)。なお、 "存在"とは、ネットワーク媒体1によってデータ通信 が可能な状態(アクティブな状態またはネットワークに ログオンしている状態)で存在していることを意味す る。もし、ネットワーク上に他機器が存在しなければ、 自機器のみの存在であるため、無条件に自機器にマスタ 権限を付与し(ステップS17)、ネットワーク上にブ ロードキャストメッセージとしてホットプラグ通知を送 出する(ステップS18)。なお、このときのホットプ ラグ通知は、ネットワーク上に他機器が存在しないた め、単に送出されるだけである。このように、図3のホ ットプラグ処理によれば、ネットワーク上に他機器が存 在しない場合は、自機器に無条件にマスタ権限を付与す ることができる。

【0021】一方、ネットワーク上に他機器が存在する

場合(ステップS11の"YES")は、他機器に関す るレジストリ情報を取得し(ステップS12)、取得し たレジストリ情報を自機器のレジストリ情報格納部14 に格納する(ステップS13)。なお、上記レジストリ 情報は、他機器の固有情報格納部13に格納されている 情報、すなわち、GID、PID、機能情報および権限 判定用のレベル情報などである。GIDは各機器に固有 の識別情報(例えば、製造者コードと製造者ごとの一連 番号コードとを組み合わせたもの)であり、PIDはネ ットワーク上の各機器の位置を示す識別情報であり、機 10 能情報はその機器がどのような機能を持っているかを示 す情報であるが、権限判定用のレベル情報(以下単に 「レベル情報」という) は本実施の形態に特有の情報で ある。好ましい例によれば、レベル情報は「1」、

「2」、「3」などの数値であり、各数値にマスタ権限 の付与優先度を示す上下の関係を与える。例えば、

「1」を最上位のレベル(最も優先度が高い)とし、 「2」をそれに次ぐレベルとし、「3」を最下位のレベ ル(最も優先度が低い)とする。なお、数値以外の記号 やコードなどであってもよいことはもちろんであり、ま 20 た、レベルの段階も上記例示の三つに限定されないこと はいうまでもない。

・【0022】以下、レベル情報を上記3段階の数値と し、その上下関係を上記のとおりとして説明を進める。 今、ホットプラグされた機器(自機器)のレベルが 「1」であり、且つ、ネットワーク上の他機器のレベル が「2」または「3」であると仮定する。この場合、自 機器の固定情報格納部13から読み出されたレベルは

「1」であり(ステップS14)、しかも、レジストリ 情報格納部14に格納されたレジストリ情報中のレベル 30 は「2」または「3」であるため、レジストリ情報中に 自機器のレベルよりも上位のレベルは存在しない。した がって、「レジストリ情報中に自機器のレベルよりも上 位のレベル有り?」(ステップS15)の判定結果が

"NO"となるので、この場合は、自機器にマスタ権限 を付与し(ステップS17)、自機器にマスタ権限を付 与した旨の情報を含むホットプラグ通知をプロードキャ ストメッセージとしてネットワーク上に送出する(ステ ップS18)。なお、このホットプラグ通知はネットワ ーク上の他機器によって受信され、その他機器で実行さ れるホットプラグ通知受信処理の中で参照される。この ように、ネットワーク上に他機器が存在した場合は、他 機器のレベル情報と自機器のレベル情報を比較し、自機 器のレベル情報が上位レベルの場合に自機器にマスタ権 限を付与するとともに、その旨をホットプラグ通知によ ってネットワーク上に送出することができる。

【0023】他方、ネットワーク上に他機器が存在する 場合 (ステップS11の "YES") であって、且つ、 他機器のレベル情報が自機器のレベル情報よりも上位レ ベルの場合 (ステップS15の"YES") は、自機器 50 ラグされた機器) からプロードキャストメッセージとし

にスレーブ権限を付与し(ステップS16)、自機器に スレープ権限を付与した旨の情報を含むホットプラグ通 知をプロードキャストメッセージとしてネットワーク上 に送出する(ステップS18)。なお、このホットプラ グ通知はネットワーク上の他機器によって受信され、そ の他機器で実行されるホットプラグ通知受信処理の中で 参照される。このように、ネットワーク上に他機器が存 在し、且つ、他機器のレベル情報が自機器のレベル情報 より上位レベルの場合には、自機器にスレーブ権限を付 与するとともに、その旨をホットプラグ通知によってネ ットワーク上に送出することができる。

【0024】したがって、以上の三つのケース、すなわ ち、①ネットワーク上に他機器が存在しない場合、②他 機器が存在し且つその他機器のレベル情報が自機器のレ ベル情報よりも上位レベルでない場合、③他機器が存在 し且つその他機器のレベル情報が自機器のレベル情報よ りも上位レベルである場合の三つのケースについて、自 機器の権限を動的に設定することができ、特に、②と③ については、ネットワーク上の他機器とのレベル情報比 較によって自機器に付与すべき権限を決定するようにし ているので、各機器にあらかじめ割り当てるレベル情報 を適正にしておくことにより、ネットワーク上でマスタ 権限を持つに相応しい唯一つの機器にそのマスタ権限を 付与し、他の機器にスレーブ権限を付与することができ

【0025】例えば、パソコン2に「1」を、テレビジ ョン受信機3に「2」を、VTR4に「3」を割り当て ておき、まず、何も接続されていないネットワークにV TR4を接続する場合を考えると、上記①のケースよ り、VTR4にはマスタ権限が与えられる。次に、VT R4を接続したネットワークにテレビジョン受信機3を 接続する場合を考えると、上記②のケースより、テレビ ジョン受信機3にはマスタ権限が与えられる(このと き、VTR4の権限は後述のホットプラグ通知受信処理 によってスレーブ権限に変更される)。同様に、テレビ ジョン受信機3とVTR4を接続したネットワークにパ ソコン2を接続する場合を考えると、上記2のケースよ り、パソコン2にはマスタ権限が与えられる(このと き、テレビジョン受信機3の権限は後述のホットプラグ 通知受信処理によってスレーブ権限に変更される)。ま たは、パソコン2とVTR4を接続したネットワークに テレビジョン受信機3を接続する場合を考えると、上記 ③のケースより、テレビジョン受信機3にはスレープ権 限が与えられる(このとき、パソコン2の権限は変更さ れない)。

【0026】<ホットプラグ通知受信処理>次に、ホッ トプラグ通知受信処理について説明する。図4はホット プラグ通知受信処理の概略的なフローチャートを示す図 である。このフローチャートは、前記自機器(ホットプ て送出されたホットプラグ通知(図3のステップS18 参照) の受信イベントに応答して実行される。フローチ ャートを実行すると、まず、レジストリ情報格納部14 に格納されているレジストリ情報を更新する(ステップ S21)。更新情報には新たに接続された機器のGI D、PID、機能情報および権限判定用のレベル情報が 含まれる。

【0027】次に、受信したホットプラグ通知の中から ホットプラグされた機器の権限情報を取り出し、その権 限情報がマスタ権限を示しているか否かを判定する(ス 10 テップS22)。そして、マスタ権限を示していなけれ ば、フローチャートを終了し、マスタ権限を示している 場合は、自機器(ここでいう自機器とはホットプラグ通 知受信処理を実行中の機器のことである)の権限がマス 夕権限であるか否かを判定し(ステップS23)、マス 夕権限でなければ、フローチャートを終了し、マスタ権 限であれば、スレーブ権限に変更(ステップS24)し た後、フローチャートを終了する。

【0028】したがって、このホットプラグ通知受信処 理によれば、ホットプラグされた機器にマスタ権限が付 20 与された場合は、すでにマスタ権限を持っていた機器の 権限がスレーブ権限に変更されるので、ネットワーク上 に唯一つのマスタ機器とすることができ、前述のホット プラグ処理と協調し合ってネットワーク機器の権限割り 当ての自動化を達成できる。その結果、ネットワーク構 築の容易化を図ることができ、家庭内ネットワークの普 及に貢献する有益な技術を提供することができる。

【0029】<ホットプラグ処理の改良例>なお、上記 実施の形態では、図3のホットプラグ処理において、レ ジストリ情報中に自機器のレベルよりも上位のレベルが 30 ない場合(ステップS15の"NO")、無条件に自機 器にマスタ権限を付与(ステップS17)しているが、 同一レベルの存在も考慮して、次のように改良すること が望ましい。図5はその改良例であり、図3のホットプ ラグ処理のステップS15、ステップ16およびステッ プS17に相当する部分のフローチャートである。この 改良例において、レジストリ情報中に自機器のレベルよ りも上位のレベルがない場合(ステップS15の"N 〇")は、レジストリ情報中に自機器のレベルと同一の レベルが有るか否かを判定する(ステップS31)。そ 40 して、同一のレベルがなければ、図3のホットプラグ処 理と同様に自機器にマスタ権限を付与(ステップS1 7) するが、同一のレベルが有る場合は、さらに、同一 レベル機器の中にマスタ権限を有するものが有るか否か を判定し(ステップS32)、マスタ権限を有する機器 が有れば、自機器にスレーブ権限を付与し(ステップS 16)、マスタ権限を有する機器がなければ、自機器に マスタ権限を付与する(ステップS17)。

【0030】この改良例によれば、ネットワーク上にマ スタ権限を持つ機器が有り、しかもその機器のレベルが 50 の形態を適用したネットワーク構築例であり、ネットワ

ホットプラグされた機器と同一のレベルである場合は、 ホットプラグされた機器にマスタ権限が与えられること はない。この改良例は、同一レベルの機器ではどちらが マスタ権限を持っても大差ないという考え方の元、すで にマスタ権限を持っている機器の権限を変更しない方が むしろシステム構成の変更に伴うオーパヘッドを軽減で きる点で得策であるという思想に基づくものである。

10

【0031】 <ホットプラグ処理の更なる改良例>しか し、このような思想は必ずしも普遍的ではない。例え ば、ホットプラグされた機器が新型である場合、上記思 想は当てはまらないことがある。多くの場合、新型の機 器は新たな機能または機能の使い勝手が向上されている からであり、このような場合は、ネットワーク上にマス 夕権限を持つ機器が有り、しかもその機器のレベルがホ ットプラグされた機器と同一のレベルであっても、ネッ トワーク全体からみて、ホットプラグされた機器にマス 夕権限を与えた方が新機能または使い勝手を向上した機 能を活用する点で好ましいからである。

【0032】図6はその点を考慮して、図5を更に改良 した例であり、図3のホットプラグ処理のステップS1 5、ステップ16およびステップS17に相当する部分 のフローチャートである。この改良例において、同一レ ベル機器の中にマスタ権限を有するものが有る場合(ス テップS32の"YES")、「先行マスタ機器優先モ ード」であるか否かを判定し(ステップS33)、同優 先モードであれば、自機器にスレープ権限を付与(ステ ップS16) する一方、同優先モードでない場合は、自 機器にマスタ権限を付与(ステップS17)する。

【0033】先行マスタ機器優先モードとは、ネットワ ーク上にマスタ権限を持つ機器(先行マスタ機器)が有 り、しかもその先行マスタ機器のレベルがホットプラグ された機器と同一のレベルである場合に、その先行マス 夕機器の権限を優先させるか否かを指定するモードであ る。この優先モードを示す情報は、ホットプラグされる 機器にあらかじめ格納させておいてもよいし、システム 値としてマスタ権限を有する機器の間で引き継いでもよ いい。

【0034】この改良例によれば、先行マスタ機器優先 モードに従って、同一レベルの機器の間でどちらにマス 夕権限を付与するかが決定されるため、例えば、先行マ スタ機器優先モードを"有効" (True値) にしてお けば、図6のフローチャートは、実質的に図5のフロー チャートと同じになり、"無効" (False値)にし ておけば、図6のフローチャートは、ホットプラグされ た機器にマスタ権限を付与し、先行マスタ機器の権限を スレーブ権限に変更(但し、この変更は図4のホットプ ラグ通知受信処理によって行われる)することができ

【0035】 <ネットワーク構築例>図7は以上の実施

一ク機器21~34はそれぞれ図2のネットワーク機器 10に相当し、ネットワーク機器21~34の間を繋ぐ 実線は伝送路1a、ネットワーク機器21~34の内部 に記載された数字は各々に割り当てられたレベルを表 す。 (a) において、二つのネットワーク機器21、2 2のレベルは共に「1」である。したがって、図3のホ ットプラグ処理と図4のホットプラグ通知受信処理によ れば、後から接続されたネットワーク機器にマスタ権限 が付与され(図3のステップS17)、他方のネットワ ーク機器の権限がスレーブ権限に変更される(図4のス 10 テップS24)。(b)において、二つのネットワーク 機器23、24のレベルはそれぞれ「1」と「2」であ る。したがって、図3のホットプラグ処理と図4のホッ トプラグ通知受信処理によれば、例えば、ネットワーク 機器23が後から接続された場合、そのネットワーク機 器23にマスタ権限が付与され(図3のステップS1 7)、他方のネットワーク機器24の権限がスレープ権 限に変更される(図4のステップS24)。または、ネ ットワーク機器24が後から接続された場合、そのネッ トワーク機器24にスレープ権限が付与され(図3のス 20 テップS16)、他方のネットワーク機器23のマスタ 権限は変更されない。

【0036】 (c) および (d) も (b) と同様であ る。(c)において、二つのネットワーク機器25、2 6のレベルはそれぞれ「2」と「3」である。したがっ て、図3のホットプラグ処理と図4のホットプラグ通知 受信処理によれば、例えば、ネットワーク機器25が後 から接続された場合、そのネットワーク機器25にマス 夕権限が付与され(図3のステップS17)、他方のネ ットワーク機器26の権限がスレーブ権限に変更される (図4のステップS24)。または、ネットワーク機器 26が後から接続された場合、そのネットワーク機器2 6にスレーブ権限が付与され(図3のステップS1 6)、他方のネットワーク機器25のマスタ権限は変更 されない。(d)においても同様に、二つのネットワー ク機器27、28のレベルはそれぞれ「1」と「3」で ある。したがって、図3のホットプラグ処理と図4のホ ットプラグ通知受信処理によれば、例えば、ネットワー ク機器27が後から接続された場合、そのネットワーク 機器27にマスタ権限が付与され(図3のステップS1 40 7)、他方のネットワーク機器28の権限がスレーブ権 限に変更される(図4のステップS24)。または、ネ ットワーク機器28が後から接続された場合、そのネッ トワーク機器28にスレープ権限が付与され(図3のス テップS16)、他方のネットワーク機器27のマスタ 権限は変更されない。

【0037】また、ネットワーク機器が三つ以上の場合は、例えば、(e)において、三つのネットワーク機器29、30、31のレベルはそれぞれ「1」と「2」と「3」である。したがって、図3のホットプラグ処理と50

図4のホットプラグ通知受信処理によれば、例えば、ネットワーク機器29が後から接続された場合、そのネットワーク機器29にマスタ権限が付与され(図3のステップS17)、他方のネットワーク機器30、31のうち上位レベルの方の権限がスレーブ権限に変更される(図4のステップS24)。または、ネットワーク機器30が後から接続された場合、そのネットワーク機器30だスレーブ権限が付与され(図3のステップS16)、上位レベルのネットワーク機器29のマスタ権限は変更されない。

【0038】または、(f)において、三つのネットワ

ーク機器32、33、34のレベルは一つが「1」、残 りの二つが「2」である。したがって、図3のホットプ ラグ処理と図4のホットプラグ通知受信処理によれば、 例えば、ネットワーク機器32が後から接続された場 合、そのネットワーク機器32にマスタ権限が付与され (図3のステップS17)、他方のネットワーク機器3 3、34のうちマスタ権限を持っているものの権限がス レーブ権限に変更される(図4のステップS24)。 【0039】なお、上記ホットプラグ処理の改良例(図 5または図6)によれば、ホットプラグされた機器と同 ーレベルを持つ機器が存在し、且つ、その機器がマスタ 権限を持っている先行マスタ機器の場合、例えば(a) のような場合に、上記基本的なホットプラグ処理(図 3) と異なる結果になる。すなわち、図5の改良例によ れば、先行マスタ機器の存在に関わらず、ホットプラグ された機器にマスタ権限を付与し、図6の改良例によれ ば、先行マスタ機器優先モードに従ってホットプラグさ れた機器にマスタ権限を付与するか否かを決定する。 【0040】 <グループ属性の考慮>なお、以上の説明 では、ネットワーク上のグループ属性に触れなかった が、家庭内ネットワークにおいても、一般的なLAN (Local Area Network) と同様に同 一のネットワーク内に異なるグループを存在させること ができる。マスタ権限は同一のグループ内に唯一つ存在 すればよく、この点において、上記実施の形態の図3の ホットプラグ処理と図4のホットプラグ通知受信処理 は、それぞれ図8 (a) および図8 (b) のように一部 を変更すべきである。すなわち、図8(a)はグループ 属性を判定するようにしたホットプラグ処理の要部フロ ーチャートであり、図3のステップS11の判定条件を 「ネットワーク上に同一グループに属する他の機器有り ?」に変更している。この変更後のステップ11(図で はダッシュを付して変更前と区別している)によれば、 グループ属性が同一の機器の存在だけを判定するので、 ホットプラグされた機器のグループ内だけで、図3のホ ットプラグ処理を実行することができる。

【0041】また、図8(b)は同一グループからのホットプラグ通知であるか否かを判定し(ステップS20)、同一グループからのホットプラグ通知の場合だけ

に、レジストリ情報を更新する(ステップS21)よう に改良したホットプラグ通知受信処理の要部フローチャ ートである。これによれば、同一グループからのホット プラグ通知を受信した場合にだけ、図4のホットプラグ 通知受信処理を実行することができる。

【0042】 <グループ属性を考慮したネットワーク構 築例>図9はグループ属性を有するネットワーク構築例 であり、ネットワーク機器35~42はそれぞれ図2の ネットワーク機器10に相当し、ネットワーク機器35 ~42の内部に記載された数字はレベルを表し、その隣 10 りに併記されたアルファベット(AまたはB)はグルー プ属性を表している。すなわち、(a)または(b)の ように同一グループ同士であれば、単にそのレベル比較 のみでマスタ機器の権限割り当てが行われるが、例え ば、(c)のように同一ネットワーク上にグループAの ネットワーク機器40~42とグループBのネットワー ク機器43が存在する場合、グループBのネットワーク 機器43をネットワークに接続しても、それは単に物理 的に接続されているだけであって、グループAのネット ワーク機器40~42から見た場合は、図示のようにネ 20 ットワークから切り離されているのと同じである。

【0043】したがって、グループBのネットワーク機 器43をグループAのネットワーク機器40~42から 見えるようにするためには、(d)に示すように、グル ープBのネットワーク機器43のグループ属性をAに変 更して(またはグループ属性Aを追加して)、ホットプ ラグ処理を実行すればよい。この場合、ネットワーク機 器43のレベルは「3」であるので、グループAのスレ ープ権限が付与される。なお、一つのネットワーク機 ットワーク機器40をアンプラギングした場合、残され た他の機器でホットプラグ処理と同等の処理を実行し、 マスタ権限の再割り当てを動的に行なえばよい。この場 合、残された機器のレベルは全て同一であるため、先着 順またはランダムに割り当ててもよい。

【0044】なお、上記グループ属性は、入力装置(キ 一入力装置、指紋認証装置、音声認証装置、画像認証装 **置等)によりユニークな属性があたえられる。例えば、** 指紋認証装置でグループ属性Aを各端末に入力する。こ れにより、例えば父親のみのネットワークが簡単に構築 40 することができる。また、例えば家庭内で父親がネット ワークを構築しており(図9(b))、このネットワー クAに子供が端末を追加したい場合は、指紋認証装置で 父親のグループ属性Aを入力あるいは追加することによ り可能となる(図9(d))。

【0045】以上の説明における様々な細部の特定ない し実例および数値や文字列その他の記号は、本発明の思 想を明瞭にするための参考であつて、それらのすべてま たは一部によって本発明の思想が限定されないことは明 らかである。また、説明を簡潔にするために、周知の手 50

法、周知の手順、周知のアーキテクチャおよび周知の回 路構成等(以下「周知事項」)についての細部にわたる 説明を避けたが、これら周知事項のすべてまたは一部を 意図的に排除するものではない。上記周知事項は本発明 の出願時点で当業者の知り得るところであるので、以上 の説明に含まれている。

[0046]

【発明の効果】本発明に係るネットワーク構築方法によ れば、ネットワークに接続された機器(自機器)のレベ ル情報と、そのネットワーク上の他機器のレベル情報と に基づいて自機器の権限が調停され、その調停結果に従 って自機器にマスタ権限またはスレープ権限の一方が動 的に付与される。したがって、ネットワーク機器の権限 割り当てを自動化でき、ネットワーク構築の容易化を図 り、以って、家庭内ネットワークの普及に貢献するネッ トワーク構築方法を提供することができる。すなわち、 他機器のレベル情報が自機器のレベル情報よりも上位で ある場合に自機器にスレーブ権限が付与される一方、そ うでない場合に自機器にマスタ権限が付与されるので、 あらかじめ適切なレベルを各機器に与えておくことによ り、前記調停動作の正確性を向上できる。

【0047】また、他の態様によれば、他機器のレベル 情報と自機器のレベル情報が同位の場合にあらかじめ設 定された優先モードに応じて自機器にマスタ権限を付与 するか否かが決定されるので、同位レベルの場合にも前 記調停動作を支障なく行なうことができるとともに、優 先モードを切り換えることにより、同位レベルの場合に どちらの機器にマスタ権限を与えるかを自由に制御で き、ネットワークシステムの使い勝手を向上できる。ま 器、例えば、 (e) に示すように、マスタ権限を持つネ 30 た、他の態様によれば、自機器にマスタ権限が付与され た場合にネットワーク上の他機器のうちマスタ権限を持 つものがスレープ権限に変更されるので、ネットワーク 条件(唯一つのマスタ権限)を満たすことができる。ま た、他の態様によれば、ネットワーク上に他機器が存在 しない場合に無条件に自機器にマスタ権限が付与される ので、その機器よりも低位レベルを持つ他の機器を接続 する際の調停作業を簡素化することができる。また、他 の態様によれば、グループ属性を同一とする機器同士で 共通のネットワークを構成できるとともに、グループ属 性を変えることにより、排他的なネットワークも構成で きる。

【図面の簡単な説明】

【図1】家庭内ネットワークの概念図およびネットワー ク媒体の階層構造図である。

【図2】ネットワーク機器の構成図である。

【図3】ホットプラグ処理の概略的なフローチャートを 示す図である。

【図4】ホットプラグ通知受信処理の概略的なフローチ ャートを示す図である。

【図5】改良されたホットプラグ処理の概略的なフロー

チャートを示す図である。

【図6】さらに改良されたホットプラグ処理の概略的なフローチャートを示す図である。

【図7】実施の形態を適用したネットワーク構築例を示す図である。

【図8】グループ属性を考慮したホットプラグ処理およびホットプラグ通知受信処理の要部フローチャートを示す図である。

【図9】グループ属性を有するネットワーク構築例を示す図である。

【符号の説明】

- 1 ネットワーク媒体
- 2 パソコン

3 テレビジョン受信機

- 4 VTR
- 5 物理層
- 6 通信制御層
- 7 プレゼンテーション層
- 8 アプリケーション層
- 10 ネットワーク機器
- 11 アドレス処理部
- 12 メッセージ送受信部
- 10 13 固有情報格納部
 - 14 レジストリ情報格納部
 - 15 プレゼンテーション部
 - 16 機器依存部

(図1)

(a)

1

プレビジョン
安健後

VTR

(b)

[図2]

[図4]

