

Informatyka

Gry i zabawy

Opracował: Maciej Penar

Spis treści

Funkcje	3
Zadania	5
Mało realny problem: Paczkomat Kaczkomat	
Zadania	
Systemy liczbowe	

Funkcje

Z Wikipedii link:

Funkcja - dla danych dwóch zbiorów X i Y to przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu Y. W matematyce funkcja nie ma stanu (pamięci). Oznacza się ją na ogół f, g, h itd.

Przykładem funkcji jest np. funkcja kwadratowa: $f(x) = x^2, x \in Re$

To wszystko o funkcja to prawda, ... ale nie w informatyce LOL. Więc kilka info:

1) w informatyce będzie zależeć nam na czytelności, dlatego niczym nadzwyczajnym jest nazywanie funkcji np.:

 $KwadratLiczby(liczba) = liczba^2$ zamiast $f(x) = x^2$

2) w informatyce funkcje mogą operować na argumentach o **przeróżnym** typie (nie tylko Re, N, Z) i zwyczajowo typ podaje się po dwukropku ': po nazwie argumentu np.:

 $KwadratLiczby(liczba:Integer) = liczba^2 - argument liczba jest Z$

 $KwadratLiczby(liczba:Double) = liczba^2 - argument liczba jest Re$

Jeśli to nie jest oczywiste (np. nie wynika z ciała funkcji) to czasem (w praktyce zawsze) podaje się typ zwracany funkcji np.:

KwadratLiczby(liczba: Double): Integer – funkcja przyjmuje liczby rzeczywiste, a zwraca całkowite. Zauważmy że nie wiemy jakie dokładnie liczby całkowite zostaną zwrócone np. podłoga, sufit.

Przykłady realizacji (implementacji) tej funkcji:

```
KwadratLiczby(liczba:Double):Integer = [liczba^2]
KwadratLiczby(liczba:Double):Integer = [liczba^2]
```

- 3) te typy danych argumentów jak i wartości zwracanej mogą być przeróżne tutaj kilka przykładów funkcji:
 - Palindrom(tekst: String): String
 - o Palindrom('troll') = 'llort'
 - DługośćTekstu(tekst: String): Int
 - DługośćTekstu('studia') = 6
 - *IleZnaków(tekst: String, znak: Character): Int*
 - \circ IleZnaków('troll','l') = 2
 - \circ IleZnaków('troll','o') = 1
- 4) funkcje mogą być skomplikowane i mogą wymagać zmiennych pomocniczych np.:

```
KwadratLiczby(liczba:Double):Integer = \{ x = liczba^2 return[x] \}
```

Słowem return podkreślamy że jest to tzw. wartość zwracana z funkcji (wynik).

5) **sygnaturą funkcji** nazywamy zapis na który składają się: nazwa funkcji, argumenty oraz jej typ zwracany (wynikowy) np.:

```
KwadratLiczby(liczba:Double):Integer
```

Palindrom(tekst : String) : String

DługośćTekstu(tekst: String): Int

Ciało funkcji to jej definicja – czyli to co jest po znaku = lub w nawiasach {}.

ZADANIA

- 1. Napisać sygnaturę funkcji o nazwie *Bezwględna*, która zwraca wartość bezwzględną argumentu
- 2. Napisać sygnaturę funkcji o nazwie Dodaj, która zwraca sumę argumentów
- 3. Napisać ciało funkcji *Mnóż*, która zwraca mnożenie argumentów
- 4. Obliczyć:
 - a. Palindrom('cześć')
 - b. Palindrom(Palindrom('cześć'))
 - c. DługośćTekstu(Palindrom('cześć'))
 - d. KwadratLiczby(DługośćTekstu('hau'))
- 5. Wyjaśnij swoimi słowami dlaczego wyrażenie DlugośćTekstu(Palindrom('cześć')) ma sens

Mało realny problem: Paczkomat Kaczkomat

Załóżmy, że mamy firmę która umożliwia klientom wymianę kaczek pomiędzy urządzeniami zwanymi kaczkomatami™. Programiści w naszej firmie szukają pomocy w opracowaniu operacji na kaczkomatach™ które są pod naszą administracją. Na razie nasz start-up jest mały i obsługuje ograniczoną liczbę kaczkomatów™:

- Kaczkomat numer 0 na ulicy Dąbrowskiego w Rzeszowie
- Kaczkomat numer 1 na ulicy Hetmańskiej w Rzeszowie
- Kaczkomat numer 2 na ulicy Langiewicza w Rzeszowie
- Kaczkomat numer 3 na ulicy Cieplińskiego w Rzeszowie
- Kaczkomat numer 4 na ulicy Krakowskiej w Rzeszowie
- Kaczkomat numer 5 na ulicy Warszawskiej w Rzeszowie

Programiści wykombinowali że opiszą stan naszych kaczkomatów™ jako niekoniecznie "normalną" liczbę.

$$Kaczkomat := l_5 l_4 l_3 l_2 l_1 l_0$$
, $gdzie l_i \in < 0.9 >$

Gdy kaczkomat[™] na ulicy Dąbrowskiego ma 2 kaczki, a kaczkomat[™] na ulicy Krakowskiej 7 kaczek to stan kaczkomatu[™] to: **070002**

Gdy kaczkomat™ na ulicy Hetmańskiej ma 1 kaczkę, na Langiewicza ma 3 kaczki, a kaczkomat™ na ulicy Warszawskiej 5 kaczek to stan kaczkomatu™ to: **500310**

ZADANIA

- 1. Rozważyć:
 - a. na czym polega "nienormalność" liczby reprezentującej kaczkomaty™
 - b. ograniczenia kaczkomatu™
- 2. Napisać funkcję *DodajPaczkę(firma : Kaczkomat, kaczkomat : Int)* która dodaje 1 paczkę wskazaną przez argument kaczkomat. Rozważyć dziedzinę tego argumentu. <u>Na razie nie rozważać przypadków brzegowych.</u> Przykłady:
 - a. DodajPaczkę(500310, 0) = 500311
 - b. DodajPaczkę(500310, 4) = 510310
- 3. Policzyć:
 - a. DodajPaczke(110211, 5) = ?
 - b. DodajPaczkę(DodajPaczkę(110211, 5), 5) =?
 - c. DodajPaczke(000900, 2) = ?
- 4. Pomysł pyknął. Ludzie korzystają. Mamy nowy problem, klienci czasem proszą o przeniesienie kaczki z jednego kaczkomatu™ do drugiego kaczkomatu™. Napisać funkcję: PrzenieśPaczkę(firma: Kaczkomat, kaczkomatZ: Int, kaczkomatDo: Int). Rozważyć dziedzinę kaczkomatZ i kaczkomatDo. Na razie nie rozważać przypadków brzegowych. Przykłady:
 - a. PrzenieśPaczkę (500310, 1, 0) = 500301
 - b. PrzenieśPaczkę (005500, 2, 3) = 006400
- 5. Kaczkomaty™ rosną. Jak można obejść problem ograniczonej liczby kaczek? Podać dwa sposoby. Czy kaczkomat™ może trzymać nieograniczoną (nieznaną) liczbę kaczek?

- 6. ! Napisać bezpieczne wersje funkcji: DodajPaczkę() i PrzenieśPaczkę(). Przykłady:
 - a. DodajPaczke(900310, 5) = 900310
 - b. DodajPaczke(990310, 4) = 990310
 - c. PrzenieśPaczkę (500310, 0, 1) = 500310, bo źródłowy jest pusty
 - d. PrzenieśPaczkę (500319, 1, 0) = 500319, bo docelowy jest pełny

Systemy liczbowe

10 jednostek rzędu niższego tworzy jedną jednostkę rzędu wyższego.

Dla dowolnego systemu liczbowego o podstawie $p \ge 2$ możemy uogólnić powyższe stwierdzenie do;

p jednostek rzędu niższego tworzy jedną jednostkę rzędu wyższego.

Przykłady:

p = 10	p = 3	p = 16	p = 2
0	0	0	0
1	1	1	1
2	2	2	10
3	10	3	11
4	11	4	100
5	12	5	101
6	20	6	110
7	21	7	111
8	22	8	1000
9	100	9	1001
10	101	А	1010
11	102	В	1011
12	110	С	1100
13	111	D	1101
14	112	E	1110
15	120	F	1111
16	121	10	10000
17	122	11	10001

Mając liczbę zapisaną przy podstawie p wzór obliczający jej wartość w systemie 10 to:

$$x_n x_{n-1} \dots x_{0(p)} = x_n p^n + x_{n-1} p^{n-1} + \dots + x_{n0} p^0_{(10)} = \sum_{i=0}^n x_i p^i_{(10)}$$

Np.:

$$112_{(3)} = 1 * 3^{2} + 1 * 3^{1} + 2 * 3^{0} = 3^{2} + 3^{1} + 2 = 9 + 3 + 2 = 14_{(10)}$$

$$F1A_{(16)} = 16^{2} * 15 + 16^{1} * 1 + 16^{0} * 10 = 256 * 15 + 16 + 10 = 3866_{(10)}$$

ZADANIA

Obliczyć wartość w p=10:

21203	100102	562 ₈	1011 10102	F0 ₁₆
445	111103	1A0 ₁₆	83,	11108
A1 ₁₁	1237	0111 11102	221013	109 ₁₁
43 ₁₂	70 ₈	1 0001 111112	7E ₁₆	511 ₁₆
1000 10002	4208	<i>EF</i> ₁₆	101 ₁₆	K5 ₂₅

Obliczyć wartość w p=2:

127 ₍₁₀₎	50 ₍₁₀₎	89 ₍₁₀₎	101(10)	190 ₍₁₀₎
(10)	(10)	(10)	- (10)	(10)

Obliczyć wartość w p=4:

1		ſ	ſ	ſ	
	0111 1110	1111 0010	1010 1100	1110 0001	1010 1010
	$011111110_{(2)}$	$1111\ 0010_{(2)}$	$1010\ 1100_{(2)}$	$1110\ 0001_{(2)}$	$10101010_{(2)}$
	0(2)	11110010(2)	1 2 2 2 2 2 2 3 (2)	1 1 1 2 0 0 0 0 1 (2)	101010(Z)

Obliczyć wartość w p=8:

0111 1110(2)	1111 0010(2)	1010 1100(2)	1110 0001(2)	1010 1010(2)
$011111110_{(2)}$	1111 0010(2)	1010 1100(2)	1110 0001(2)	10101010(2)

Obliczyć wartość w p=16:

0111 1110(2)	$1111\ 0010_{(2)}$	$1010\ 1100_{(2)}$	$1110\ 0001_{(2)}$	$10101010_{(2)}$