Theory of Computation (CS267)

End-Semester Examination Indian Institute of Technology, Patna MAY 02, 2023

Duration: 3 hrs Max mark: 100

Attempt All Questions

- X. A language is Turing recognizable if and only if some _____ Enumerates it. (1)
 - 2. Every t(n) time multi-tape Turing Machine has an equivalent _____ time single tape Turing Machine where t(n) be a function and t(n) > n (2)
 - 3. If G is a Context Free Grammar(CFG) in Chomsky Normal form, then any $w \in L(G)$ where |w| = n. Exactly _____ steps are required for any derivation of w. (2)
 - 4. Give a high-level description (i.e., algorithms) of the Turing Machine that decides to perform some elementary arithmetic for the $L = \{a^i b^j c^k \mid |i*j = k \text{ and } i, j, k \ge 1\}$ (5)
 - 5. Consider the following language L: $L = \{ \langle M \rangle : M \text{ is a TM, and M accepts some strings that end in '0'} \}$. Prove that L is not decidable
 - 6. Show that t(n) time Non-Deterministic single tape Turing machine has equivalent exponential time Deterministic Turing Machine. (5)
 - \mathcal{F} Give a high-level description of the Turing Machine that decides $A = \{\langle G \rangle \parallel G \text{ is the connected undirected graph} \}$ and also give TM Configuration for the given graph (Figure 1).

Figure 1:

8. Write down the formal description along with state diagrams of Turing Machine M which decide the language $L = \{a^n b^{n} a^{n+m} \mid \mid n,m \ge 1\}$ [Hints: Formal description is 7 tuples and state diagram for transition δ]

(8)

- Give the snapshot of Turing Machine tape while it is computing on input aabbbaaaaa is accepted by language $L = \{a^nb^na^{n+m} \mid |n,m\geq 1\}$ (5)
- Give the Formal description of the Turing Machine along with a state diagram which accepts the language $L = \{ww^R \mid w \in (0,1)^*\}$ [Hints: Formal description is 7 tuples and state diagram for transition δ] (8)
- 11. Construct a SPACE(logn) Turing Machine which decides the language $B = \{0^k 1^k \parallel k \ge 0\}$. Show that language $(B = \{0^k 1^k \parallel k \ge 0\})$ is in L SPACE space complexity. (8+7=15)
- \mathcal{Y} 2. Define Class P and deterministic time complexity class TIME (t(n)). Show that (5+5=10)
 - 1. RELPRIME = $\{\langle x, y \rangle \mid | x \text{ and } y \text{ are relatively prime}\} \in P$
 - 2. Every context-free language is a member of P.
- 13. Define NP-complete (NPC) Problem. Show that Clique problem∈ NPC. (5+10=15)
- Define Class P SPACE. Establish the relationship of P SPACE with P, NP, and EXPTIME, and also define The classes L and NL.

 (2+2+2=6)
- 15. Write down the details notes on following theorem:- (4x2=8)
 - 1. The Cook-Levin Theorem:
 - 2. Savitch's Theorem.