CMPE 314 Midterm Exam 2

(November 10, 2016)

Problem 1 (10 points)

For the transistor shown, draw the internal structure and show power supply connections and conditions on polarity and magnitude in the forward-active mode. Describe actions of carriers (specify types and directions) in different regions.

Problem 2 (15 points)

Assume the transistor has its properties β , $V_{BE}(\text{on})$, and $V_{CE}(\text{sat})$, and V^{\dagger} is fixed. Determine the output V_O as a function of the input V_I for a large range of V_I . Express results in terms of symbols.

and a ss
$$R_B = 150 \text{ k}\Omega$$

$$Q_n$$

Problem 3 (20 points) Values

For the transistor shown in the circuit, β =80, V_{BE} (on)=0.7 V, V_{CE} (sat)=0.2 V. Let I_E =1.2 mA. Determine the power dissipated by the transistor. Is the transistor in the forward-active mode? Why or why not?

Problem 4 (25 points)

- (a) Find the DC load-line.
- (b) Assume finite V_A . Draw the small-signal circuit with the transistor hybrid- π model.
- (c) Find the AC load-line. Plot the Q-point, DC loadline and AC loadline (indicate loadline slopes) in the i_C vs v_{CE} diagram.
- (d) Find the maximum and minimum possible values of v_{CE} without distortion for small-signal amplification. (Work with symbols for Problem 4)