Processes (2)

Dr. Jun Zheng
CSE325 Principles of Operating
Systems
9/4/2019

Process State

☐ As a process executes, it changes state ☐ new: The process is being created ☐ running: Instructions are being executed ☐ waiting: The process is waiting for some event to occur ☐ ready: The process is waiting to be assigned to a processor ☐ terminated: The process has finished execution

Diagram of Process State

Process Execution State

Example:

```
void main(){
    printf("Hello World");
}
```

State Sequence:

```
new
ready
running
waiting (I/O)
ready
running
terminated
```


Process Scheduling

- Maximize CPU use, quickly switch processes onto CPU for time sharing
- Process scheduler selects among available processes for next execution on CPU
- ☐ Maintains scheduling queues of processes
 - Job queue set of all processes in the system
 - Ready queue set of all processes residing in main memory, ready and waiting to execute
 - Device queues set of processes waiting for an I/O device
 - ☐ Processes migrate among the various queue

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

Schedulers

	Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU
	☐ Sometimes the only scheduler in a system
	$\hfill \Box$ Short-term scheduler is invoked frequently (milliseconds) \Rightarrow (must be fast)
	Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue
	□ Long-term scheduler is invoked infrequently (seconds, minutes) ⇒ (may be slow)
	☐ The long-term scheduler controls the degree of multiprogramming
	Processes can be described as either:
	I/O-bound process – spends more time doing I/O than computations, many short CPU bursts
	□ CPU-bound process – spends more time doing computations; few very long CPU bursts
	Long-term scheduler strives for good process mix NEW MEXICO TECH

Addition of Medium Term Scheduling

- Medium-term scheduler can be added if degree of multiple programming needs to decrease
 - Remove process from memory, store on disk, bring back in from disk to continue execution: swapping

Context Switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a context switch
- Context of a process represented in the PCB
- Context-switch time is overhead; the system does no useful work while switching
 - □ The more complex the OS and thePCB → the longer the context switch
- ☐ Time dependent on hardware support
 - Some hardware provides multiple sets of registers per CPU → multiple contexts loaded at once

Operations on Processes

- ☐ System must provide mechanisms for:
 - process creation
 - process termination

