8/16/25, 1:27 AM gb2.ipynb - Colab

(table_booking станет 1, вместо 0) размер чека в нем тоже может вырасти (avg_receipt), или что если цены в ресторане вырастут (avg_receipt станет больше), то может появиться возможность бронировать столик (table_booking станет 1, вместо 0).

Глава 8. Линейная регрессия

8.1 Что такое регрессия?

Регрессия представляет собой мощный статистический инструмент, позволяющий выявлять и анализировать взаимосвязи между явлениями. Эта методика незаменима, когда необходимо установить, каким образом изменение одной величины влияет на другую величину. Регрессия помогает исследователю строить прогнозы, оценивать последствия различных воздействий и находить скрытые закономерности в данных. Применение регрессионного анализа широко востребовано в маркетинге, социологии и многих других областях науки и практики, обеспечивая глубокое понимание сложных процессов и принятие обоснованных решений.

Регрессия - уравнение, которое показывает как один или несколько факторов оказывают влияние на другой **целевой** признак.

Предположим, у нас есть выборка по семи ресторанам. Про каждый из этих ресторанов нам известен средний размер чека (avg_receipt), рейтинг (rate) и местоположение (area; *0* - центр, *1* - не центр):

```
import pandas as pd

df = pd.DataFrame()

df['avg_receipt'] = [50, 100, 200, 200, 150, 350, 350]
```

df['rate'] = [0.5, 1.5, 1.5, 2.5, 3.5, 3.5, 4.5]
df['area'] = [1, 1, 0, 0, 0, 0]
df

→ ▼		avg_receipt	rate	area
	0	50	0.5	1
	1	100	1.5	1
	2	200	1.5	0
	3	200	2.5	0
	4	150	3.5	0
	5	350	3.5	0
	6	350	4.5	0

РИС 27

Мы хотим выяснить, как рейтинг ресторана (rate) влияет на средний размер чека (avg_receipt) в нем. Запишем это в чуть более математической форме:

$$\widehat{\text{avg_receipt}} = w_0 + w_1 * \text{rate}$$

Мы хотим предсказать размер чека (avg_receipt). С точки зрения регрессии этот признак называется целевой или зависимой переменной. В уравнении линейной регрессии целевой переменной может выступать только количественный признак.

Рейтинг ресторана (rate) - фактор, оказывающий влияние на размер чека (avg_receipt). В модели регрессии рейтинг (rate) - это предиктор или независимая переменная. В отличие от целевой, предиктором может быть выступать и количественный, и категориальный признак.

На вопрос, $\kappa a \kappa$ рейтинг (${f rate}$) влияет на размер чека (${f avg_receipt}$), отвечают параметры (коэффициенты) регрессии w_0 и w_1 . w_0 называют ${f csofoghim}$ коэффициентом. Он

стоит в одиночестве, без пары, в отличие от w_1

- коэффициента независимой переменной.

Регрессия, в которой только один предиктор (в нашем случае это рейтинг (rate)), называется однофакторной.

Но мы понимаем, что в реальной жизни не только рейтинг (rate) влияет на размер чека (avg_receipt). На него может влиять тип кухни, количество сотрудников и многое другое. Такая регрессия, с более чем одним предиктором, называется многофакторной. В наших данных, помимо рейтинга, есть еще местоположение (area). Если мы хотим добавить этот фактор в модель, то с точки зрения математики регрессию можно записать так:

$$avg$$
_receipt = $w_0 + w_1 * rate + w_2 * area$

rate, **area** - это независимые переменные регрессии.

 w_1 , w_2 - коэффициенты независимых переменных

 w_0 - свободный коэффициент

	ОДНОФАКТОРНАЯ	МНОГОФАКТОРНАЯ	
Уравнение регрессии	$\widehat{\mathbf{Y}} = w_0 + w_1 * \mathbf{X}$	$\widehat{\mathbf{Y}} = w_0 + w_1 * \mathbf{X}_1 + \ldots + w_k * \mathbf{X}_k$	
Целевая (зависимая) переменная только количественная	$\widehat{\mathrm{Y}}$	$\widehat{\mathrm{Y}}$	
Предикторы/независмые переменные	X	$\mathrm{X}_1, \dots, \mathrm{X}_k$	
Параметры:			
Коэффициенты независимой переменной	w_1	w_1,\dots,w_k	
Свободный коэффициент	w_0	w_0	

8.2 Как обучить линейную регрессию?

После формализации модели нужно обучить ее. Обучить модель - значит рассчитать её параметры (w_0,\ldots,w_k) . Параметры модели вычисляются по формулам, выведенным из метода наименьших квадратов (МНК), или на английском ordinary least squares (OLS).

Формулы метода наименьших квадратов

Коэффициент независимой переменной (w_1):

$$w_1 = rac{(x_1 - ar{x}) * (y_1 - ar{y}) + \ldots + (x_n - ar{x}) * (y_n - ar{y})}{(x_1 - ar{x})^2 + \ldots + (x_n - ar{x})^2}$$

 $x_1, \dots x_n$ - каждое из значений предиктора

 $ar{x}$ - среднее арифметическое предиктора

 $y_1, \dots y_n$ - каждое значение целевой переменной

 $ar{y}$ - среднее арифметическое целевой переменной

n - количество наблюдений (в наших данных 7 наблюдений)

Свободный коэффициент (w_0):

$$w_0 = ar{y} - w_1 * ar{x}$$

 $ar{y}$ - среднее арифметическое целевой переменной

 w_1 - коэффициент независимой переменной

 $ar{x}$ - среднее арифметическое предиктора

Мы сконцертируемся на том, как обучить модель с помощью библиотеки statsmodels.api. Первое, что нам нужно сделать - импортировать библиотеку; при импорте дадим ей короткий псеводним sm:

import statsmodels.api as sm

Ошибка ModuleNotFoundError: No module named 'statsmodels'

Если при запуске кода вышла такая ошибка, это значит, что модуль Statsmodels еще не установлен на компьютере. Чтобы его установить, нужно перед импортом добавить строку:

```
!pip install statsmodels
```

В эту библиотеку уже зашиты формулы метода наименьших квадратов, поэтому нам не придется их учить, а нужно будет лишь написать несколько несложных команд, чтобы найти значения параметров:

1. Обозначаем целевую переменную:

```
Y = df['целевая']
```

2. Обозначем предиктор(ы) и добавляем константный признак с помощью функции sm.add_constant() для корректного рассчета коэффициентов регрессии:

```
X = sm.add_constant(df['предиктор']) # однофа
```

или

```
X = sm.add_constant(df[['предиктор 1', 'предик
```

3. Обучаем (.fit()) линейную регрессию с помощью метода наименьших квадратов (sm.OLS()):

```
модель = sm.OLS(Y, X).fit()
```

4. Выводим параметры регрессии с помощью атрибута .params:

модель.params

n

 const
 w_0 свободный коэффициент

 предиктор 1
 w_1 коэффициент независимой переменной

 предиктор 2
 w_2 коэффициент независимой переменной

 ...
 ...
 ...

Для начала обучим однофакторную модель, которая только на основе рейтинга ресторана (rate) будет предсказывать средний размер чека (avg_receipt):

$$avg_receipt = w_0 + w_1 * rate$$

Y = df['avg_receipt'] # целевая перемменая X1 = sm.add_constant(df['rate']) # предиктор

model1 = sm.OLS(Y, X1).fit() #обучаем модель model1.params # выводим параметры

dtype: float64

$$\widetilde{\text{avg_receipt}} = 33.33 + 66.67 * \text{rate}$$

Для обучения многофакторной регрессии, которая предскажет размер чека (avg_receipt) не только на основе рейтинга ресторана (rate), но и по местоположению (area), нужно написать следующий код:

$$avg_receipt = w_0 + w_1 * rate + w_2 * area$$

model2 = sm.OLS(Y, X2).fit() #обучаем модель model2.params # выводим параметры

dtype: float64

$$avg_{receipt} = 100.44 + 48.25 * rate - 73.68 * area$$

8.3 Как интерпретировать линейную регрессию?

В прошлом разделе мы обучили линейную регрессию, а теперь нужно выяснить, что значат эти параметры.

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ

Рассмотрим уравнение однофакторной регрессии:

$$\widehat{\mathbf{Y}} = w_0 + w_1 * \mathbf{X}$$
 $\widehat{\mathbf{avg_receipt}} = 33.33 + 66.67 * \mathrm{rate}$

Такая регрессия на самом деле является уравнением прямой, которое вы наверняка проходили в школьном курсе геометрии. Если мы нанесем ее на диаграмму рассеяния, то она будет описывать тренд наших данных:

РИС 28

Свободный коэффициент w_0 (33.33) - это место, где прямая пересекает ось Y, т.е. ось целевой переменной ($\operatorname{avg_receipt}$)

Коэффициент независимой переменной w_1 (66.67) регулирует угол наклона прямой. Если он положительный, как в нашем случае, это значит, признаки связаны прямой

зависимостью, а если угол отрицательный, то обратной.

ПРАКТИЧЕСКАЯ ИНТЕРПРеТАЦИЯ

Теперь рассмотрим, как можно объяснить практически полученные нами коэффициенты, и как можно интерепретировать регрессию в целом.

Для начала рассмотрим однофакторную регрессию:

$$avg_{receipt} = 33.33 + 66.67 * rate$$

• Интерпретация регрессии

Предположим, что в городе появился новый ресторан. Мы знаем, что его рейтинг 3.5 балла (rate). И нам нужно выяснить, какой там средний размер чека. Все что нам нужно сделать, это вместо rate подставить 3.5 и посчитать:

33.33+66.67*3.5

Получается, что в ресторане с рейтингом 3.5 (rate) средний размер чека (avg_receipt) будет составлять 266.675 у.е..

РИС 29

• Свободный коэффициент (w_0)

В однофакторной регрессии свободный коэффициент (w_0) показывает, чему будет