Amendments to the Claims

The listing of claims below will replace all prior versions and listings of claims in the present application.

Claim Listing

1	1. (Original) A method of verifying correct operation of a forward error
2	correction decoder, comprising the steps of:
3	programmably selecting a desired number of errors for insertion into a plurality of
4	data signals;
5	defining a plurality of code words of the data signals;
6	inserting into one of the data signals the desired number of errors using an error
7	insertion circuit;
8	repeating said inserting step in an iterative fashion to insert into different data
9	signals the desired number of errors wherein the errors are placed within
10	the code words of the data signals at different location permutations for
11	each data signal;
12	transmitting the data signals with the inserted errors to a receiver; and
13	determining that the data signals received at the receiver contain the inserted
14	errors.
1	2. (Original) The method of Claim 1 wherein said repeating step cycles through
2	all possible permutations of all the code word locations.
1	3. (Original) The method of Claim 1 wherein the error insertion circuit operates
2	in one of a plurality of modes, including a short frame mode for shorter permutation
3	cycles, and further comprising the steps of:
4	selecting the short frame mode for operation; and
5	in response to said selecting step, limiting said repeating step to cycle through less
6	than all possible permutations of all the code word locations.

- 4 - Serial No.: 09/821,948

1	4. (Original) The method of Claim I wherein:
2	the data signal is a SONET data signal having nine rows; and
3	said repeating step results in the insertion of errors in 32 code words defined
4	within each of the nine SONET rows.
1	5. (Original) The method of Claim 1 wherein said repeating step stops after one
2	permutation cycle in response to the further step of programming the error insertion
3	circuit for single cycle operation.
1	6 (Original) The method of Claim 1 wherein said determining stem includes the
1	6. (Original) The method of Claim 1 wherein said determining step includes the step of examining an error accumulator count in the receiver to match a number of
2	
3	accumulated errors with the number of inserted errors.
1	7. (Original) The method of Claim 6 wherein said examining step matches the
2	number of accumulated errors with the number of inserted errors using a modulo
3	function.
1	8. (Original) The method of Claim 1 wherein:
2	the error insertion circuit includes an error mask for selectively preventing
3	insertion of one or more of the errors; and
4	said repeating step is limited to inserting errors in selected code words based on
5	the error mask.
1	9. (Original) The method of Claim 1 wherein said repeating step includes the step
2	of tracking the location of a current code word in which an error is being inserted.
_	of maxing the focusion of a current code word in which an error is come morrous.
1	10. (Original) The method of Claim 9 wherein said tracking step includes the step
2	of incrementing one or more registers in a location counter having at least first, second,
3	and third registers, the first register corresponding to a column location, the second
4	register corresponding to an index location, and the third register corresponding to a byte
5	location.

- 5 - Serial No.: 09/821,948

I	11. (Original) A method of injecting a plurality of errors into a SONE 1 data
2	stream, comprising the steps of:
3	programming an error insertion circuit to select a desired number of errors for
4	insertion into a plurality of successive SONET data signals each having a
5	plurality of rows;
6	defining a plurality of forward error correction (FEC) code words within each of
7	the rows of the SONET data signals;
8	inserting the desired number of errors into a first one of the SONET data signals
9	at a first code word permutation location, using the error insertion circuit;
10	tracking the first code word permutation location in response to said step of
11	inserting the desired number of errors into the first SONET data signal;
12	and
13	inserting the desired number of errors into a second one of the SONET data
14	signals at a second code word permutation location, using the error
15	insertion circuit, and in response to said tracking step.
1	12. (Original) The method of Claim 11 further comprising the step of
2	programming the error insertion circuit for single cycle operation.
1	13. (Original) The method of Claim 11 further comprising the step of
2	programming the error insertion circuit for short frame mode operation.
1	14. (Original) The method of Claim 11 wherein said tracking step includes the
2	step of incrementing one or more registers in a location counter having at least first,
3	second, and third registers, the first register corresponding to a SONET column location,
4	the second register corresponding to an index location, and the third register
5	corresponding to a byte location, the index and byte locations together representing a
6	SONET byte location.
1	15. (Original) The method of Claim 11 wherein said inserting steps occur after
2	the further step of scrambling the SONET data signals.

a

1	16. (Original) An error injection circuit comprising:
2	means for selectively programming a desired number of errors for insertion into a
3	plurality of data signals;
4	means for defining a plurality of code words of the data signals; and
5	means for repeatedly inserting the desired number of errors into different ones of
6	the data signals at different code word permutation locations.
1	17. (Original) The error injection circuit of Claim 16 wherein said inserting
2	means cycles through all possible permutations of all the code word locations.
1	18. (Original) The error injection circuit of Claim 16 further comprising means
2	for selecting a short frame mode of operation, wherein said inserting means limits
3	insertion of the errors to cycle through less than all possible permutations of all the code
4	word locations when the short frame mode of operation is selected.
1	19. (Original) The error injection circuit of Claim 16 wherein:
2	the data signal is a SONET data signal having nine rows; and
3	said inserting means inserts errors in 32 code words defined within each of the
4	nine SONET rows.
1	20. (Original) The error injection circuit of Claim 16 further comprising means
2	for selecting single cycle operation, wherein said inserting means stops inserting errors
3	after one permutation cycle when the single cycle operation is selected.
1	21. (Original) The error injection circuit of Claim 16 further comprising error
2	mask means for selectively preventing insertion of one or more of the errors, wherein
3	said inserting means inserts errors in selected code words based on said error mask
4	means.

1	22. (Original) The error injection circuit of Claim 16 wherein said insertion
2	means includes means for tracking the location of a current code word in which an error
3	is being inserted.
1	23. (Original) The error injection circuit of Claim 16 wherein said tracking means
2	increments one or more registers in a location counter having at least first, second, and
3	third registers, the first register corresponding to a column location, the second register
4	corresponding to an index location, and the third register corresponding to a byte
5	location.
1	24. (Cancelled)
4	
1	25. (Currently Amended) The OC-192 input/output card of Claim 24-wherein
2	said verifying means includes: An OC-192 input/output card comprising:
3	four OC-48 processors; and
4	an OC-192 front-end application-specific integrated circuit (ASIC) connected to
5	said four OC-48 processors, said OC-192 front-end ASIC including
6	a transmitter having means for interleaving four OC-48 signals to create
7	an OC-192 signal, and means for encoding forward error
8	correction (FEC) codes in each of the four OC-48 signals,
9	a receiver having means for de-interleaving an OC-192 signal to create
10	four OC-48 signals, and means for decoding FEC codes in the OC-
11	192 signal, and
12	means for verifying correct operation of said encoding means and said
13	decoding means, wherein said verifying means includes:
14	means for selectively programming a desired number of errors for
15	insertion into a plurality of successive SONET data signals;
16	means for defining a plurality of FEC code words of the SONET

data signals;

17

8	means for repeatedly inserting the desired number of errors into
9	different ones of the SONET data signals at different code
20	word permutation locations;
21	means for routing the SONET data signals with the inserted errors
22	from said transmitter to said receiver; and
23	means for determining that the SONET data signals received at
24	said receiver contain the inserted errors.
1	26. (Original) The OC-192 input/output card of Claim 25 wherein said inserting
2	means cycles through all possible permutations of all the FEC code word locations.
1	27. (Original) The OC-192 input/output card of Claim 25 further comprising
2	means for selecting a short frame mode of operation, wherein said inserting means limits
3	insertion of the errors to cycle through less than all possible permutations of all the code
4	word locations when the short frame mode of operation is selected.
1	28. (Original) The OC-192 input/output card of Claim 25 further comprising
2	means for selecting single cycle operation, wherein said inserting means stops inserting
3	errors after one permutation cycle when the single cycle operation is selected.
1	29. (Original) The OC-192 input/output card of Claim 25 further comprising
2	error mask means for selectively preventing insertion of one or more of the errors,
3	wherein said inserting means inserts errors in selected code words based on said error
4	mask means.
1	30. (Original) The OC-192 input/output card of Claim 25 wherein said insertion
2	means includes means for tracking the location of a current code word in which an error
3	is being inserted.
1	31. (Currently Amended) The OC-192 input/output card of Claim 24 25 wherein
2	said programming means allows from one to four errors to be inserted in a given SONET
3	data signal.

- 9 - Serial No.: 09/821,948

1	32. (Currently Amended) An OC-192 input/output card comprising:
2	four OC-48 processors; and
3	an OC-192 front-end application-specific integrated circuit (ASIC) connected to
4	said four OC-48 processors, said OC-192 front-end ASIC including
5	a transmitter having means for interleaving four OC-48 signals to create
6	an OC-192 signal, and means for encoding forward error
7	correction (FEC) codes in each of the four OC-48 signals,
8	a receiver having means for de-interleaving an OC-192 signal to create
9	four OC-48 signals, and means for decoding FEC codes in the OC-
10	192 signal, and
11	means for verifying correct operation of said encoding means and said
12	decoding means, The OC 192 input/output card of Claim 24
13	wherein said encoding means and said decoding means use a
14	triple-error correcting Bose-Chaudhuri-Hocquenghem (BCH)
15	code.
1	33. (Original) The OC-192 input/output card of Claim 25 wherein said
2	determining means includes an error accumulator located in said receiver, and means for
3	examining an error accumulator count of the error accumulator to match a number of
4	accumulated errors with the number of inserted errors.
1	34. (Original) The OC-192 input/output card of Claim 30 wherein said tracking
2	means increments one or more registers in a location counter having at least first, second,
3	and third registers, the first register corresponding to a SONET column location, the
4	second register corresponding to an index location, and the third register corresponding to
5	a byte location, the index and byte locations together representing a SONET byte
6	location.
1	35. (Original) The OC-192 input/output card of Claim 34 wherein said tracking
2	means contains 10 location counters, including:
3	a first location counter for tracking a location of a first error bit;

- 10 - Serial No.: 09/821,948

4	second and third location counters nested together for tracking a location of a
5	second error bit;
6	fourth, fifth and sixth location counters nested together for tracking a location of a
7	third error bit; and
8	seventh, eighth and ninth location counters nested together for tracking a location
9	of a fourth error bit.
1	36. (Original) The OC-192 input/output card of Claim 33 wherein said error
2	accumulator accumulates both corrected errors and uncorrectable errors.
1	37. (Original) An error injection circuit comprising:
2	an error selection interface which programs a desired number of errors for
3	insertion into a plurality of data signals;
4	an encoding circuit which defines a plurality of code words of the data signals;
5	and
6	a location counter which increments through a plurality of locations in each of
7	the code words and inserts the desired number of errors into different ones
8	of the data signals at different code word permutation locations.
1	38. (Original) The error injection circuit of Claim 37 wherein said location
2	counter means cycles through all possible permutations of all the code word locations.
1	39. (Original) The error injection circuit of Claim 37 wherein:
2	the data signal is a SONET data signal having nine rows; and
3	said inserting means inserts errors in 32 code words defined within each of the
4	nine SONET rows.
1	40. (Original) The error injection circuit of Claim 37 further comprising an error
2	mask which selectively prevents insertion of one or more of the errors in selected code
3	words

- 11 - Serial No.: 09/821,948