This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)								
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/50549						
C12N 15/12, C12Q 1/68, C07K 14/705, 16/28	A2	(43) International Publication Date: 12 November 1998 (12.11.98)						
(21) International Application Number: PCT/US (22) International Filing Date: 7 May 1998 (6)	(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).							
(30) Priority Data: 08/852,824 7 May 1997 (07.05.97)	ι	Published Without international search report and to be republished upon receipt of that report.						
(71) Applicant (for all designated States except US): GENOME SCIENCES, INC. [US/US]; 9410 K Avenue, Rockville, MD 20850 (US).								
(72) Inventors; and (75) Inventors/Applicants (for US only): RUBEN, Ste [US/US]; 18528 Heritage Hills Drive, Olney, M (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034 vale, CA 94086 (US).	D 2083	32						
(74) Agents: BROOKES, A., Anders et al.; Human Sciences, Inc., 9410 Key West Avenue, Rockv 20850 (US).								
(54) Title: TWO HUMAN G-PROTEIN COUPLED REC	CEPTO	RS: EBV-INDUCED GPCR 2 (EBI-2) AND EDG-1-LIKE GPCR						
(57) Abstract								
Two human G-protein coupled recentor polypentide	ec and	DNA (RNA) encoding each of such polymentides and a procedure for						

Two human G-protein coupled receptor polypeptides and DNA (RNA) encoding each of such polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptides for identifying antagonists and agonists to such polypeptides. Also disclosed are diagnostic methods for detecting a mutation in the nucleic acid sequence of each of the G-protein coupled receptors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BR	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil .	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	L	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

1

TWO HUMAN G-PROTEIN COUPLED RECEPTORS: EBV-INDUCED GPCR 2 (EBI-2) AND EDG-1-LIKE GPCR

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptides of the present invention are a human EBV-induced G-protein coupled receptor (EBI-2) and a human EDG-1-like G-protein coupled receptor, sometimes hereinafter referred to singularly as "GBR" or "GPCR" and collectively as "GBRs." The invention also relates to inhibiting the action of such polypeptides.

At lease nine genes have been identified that are apparently acitvated in response to an Epstein-Barr Virus (EBV) infection. One of two novel genes also identified in such studies of EBV infections was a novel GPCR-like cDNA molecule desingated EBV-induced G-protein coupled receptor (EBI)-1.

Additionally, previously identified was an endothelium-differentiation gene (EDG) that was obtained from PMA-simulated human endothelial cells. Rat and sheep homologs of EDG-1 have been identified, which are also G-protein coupled receptors.

It is well established that many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 351:353-354 (1991)). Herein these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins. Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamine (Kobilka, B.K., et al., PNAS, 84:46-50 (1987); Kobilka, B.K., et al., Science, 238:650-656 (1987); Bunzow, J.R., et al., Nature, 336:783-787 (1988)), G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M.I., et al., Science, 252:802-8 (1991)).

For example, in one form of signal transduction, the effect of hormone binding is activation of an enzyme, adenylate cyclase, inside the cell. Enzyme activation by hormones is dependent on the presence of the nucleotide GTP, and GTP also influences hormone binding. A G-protein connects the hormone receptors to adenylate cyclase. G-protein was shown to exchange GTP for bound GDP when activated by hormone receptors. The GTP-carrying form then binds to an activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G-protein to its basal, inactive form. Thus, the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls

10

15

20

25

30

2

the duration of the signal.

The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane α-helices connected by extracellular or cytoplasmic loops. A function G-protein is a trimer which consists of a variable alpha subunit coupled to a much more tightly-associated and constant beta and gamma subunits. A broad range of ligands (more than twenty) have been identified which function through GPCRs. In general, bind of an appropriate ligand to a GPCR leads to the activation of the receptor. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors. Such an activated receptor initiates the regulatory cycle of the G-protein. This cycle consists of GTP exchange for GDP, dissociation of the alpha and beta/gamma subunits, activation of the second messenger pathway by a complex of GTP and th alpha subunit of the G-protein and return to the resting state by GTP hydrolysis via the innate GTP-ase activity of the G-protein alpha subunit.A

G-protein coupled receptors have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops. The G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders. Other examples of members of this family include calcitonin, adrenergic, endothelin, cAMP, adenosine, muscarinic, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins and rhodopsins, odorant, cytomegalovirus receptors, etc.

Most GPRs have single conserved cysteine residues in each of the first two extracellular loops which form disulfide bonds that are believed to stabilize functional protein structure. The 7 transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7. TM3 is also implicated in signal transduction.

Phosphorylation and lipidation (palmitylation or farnesylation) of cysteine residues can influence signal transduction of some GPRs. Most GPRs contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus. For several GPRs, such as the β -adrenoreceptor, phosphorylation by protein kinase A and/or specific receptor kinases mediates receptor desensitization.

The ligand binding sites of GPRs are believed to comprise a hydrophilic socket formed by several GPR transmembrane domains, which socket is surrounded by hydrophobic residues of the GPRs. The hydrophilic side of each GPR transmembrane helix is postulated to face inward and form the polar ligand binding site. TM3 has been implicated in several GPRs as having a ligand

10

15

20

25

30

binding site, such as including the TM3 aspartate residue. Additionally, TM5 serines, a TM6 asparagine and TM6 or TM7 phenylalanines or tyrosines are also implicated in ligand binding.

GPRs can be intracellularly coupled by heterotrimeric G- proteins to various intracellular enzymes, ion channels and transporters (see, Johnson *et al.*, Endoc., Rev., 10:317-331 (1989)). Different G-protein α -subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of GPRs has been identified as an important mechanism for the regulation of G-protein coupling of some GPRs.

G-protein coupled receptors are found in numerous sites within a mammalian host, for example, dopamine is a critical neurotransmitter in the central nervous system and is a G-protein coupled receptor ligand.

In accordance with one aspect of the present invention, there are provided novel polypeptides, as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments and derivatives thereof. The polypeptides of the present invention are of human origin.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules, including mRNAs, DNAs, CDNAS, genomic DNA as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments thereof.

In accordance with a further aspect of the present invention, there is provided a process for producing such polypeptides by recombinant techniques which comprises culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence encoding a polypeptide of the present invention, under conditions promoting expression of said protein and subsequent recovery of said protein.

In accordance with yet a further aspect of the present invention, there are provided antibodies against such polypeptides.

In accordance with another embodiment, there is provided a process for using one or more of the receptors according to the invention to screen for receptor antagonists and/or agonists and/or receptor ligands.

In accordance with still another embodiment of the present invention there is provided a process of using such agonists to activate the polypeptide of the present invention for the treatment of conditions related to the underexpression of the polypeptide of the present invention.

In accordance with another aspect of the present invention there is provided a process of using such antagonists for inhibiting the polypeptide of the present invention for treating

10

15

20

25

30

conditions associated with overexpression of the polypeptide of the present invention.

In accordance with yet another aspect of the present invention there is provided non-naturally occurring synthetic, isolated and/or recombinant polypeptides which are fragments, consensus fragments and/or sequences having conservative amino acid substitutions, of at least one transmembrane domain, such that the polypeptides of the present invention may bind ligands, or which may also modulate, quantitatively or qualitatively, ligand binding to the polypeptide of the present invention.

In accordance with still another aspect of the present invention there are provided synthetic or recombinant polypeptides, conservative substitution derivatives thereof, antibodies, anti-idiotype antibodies, compositions and methods that can be useful as potential modulators of G-protein coupled receptor function, by binding to ligands or modulating ligand binding, due to their expected biological properties, which may be used in diagnostic, therapeutic and/or research applications.

In accordance with another object of the present invention, there is provided synthetic, isolated or recombinant polypeptides which are designed to inhibit or mimic various GPRs or fragments thereof, as receptor types and subtypes.

In accordance with yet another object of the present invention, there is provided a diagnostic assay for detecting a disease or susceptibility to a disease related to a mutation in a nucleic acid sequence encoding a polypeptide of the present invention.

These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

Figure 1 shows the cDNA sequence (SEQ ID NO:1) and the corresponding deduced amino acid sequence (SEQ ID NO:2) of the EBV-induced G-protein coupled receptor of the present invention. The polynucleotide sequence contains a 2249 nucleotide sequence which encodes a 342 amino acid ORF. In Figure 1, the standard one-letter abbreviation for amino acids is used to illustrate the deduced amino acid sequence. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.). Sequencing accuracy is predicted to be greater than 97% accurate.

Figure 2 is an amino acid sequence comparison between the EBV-induced (EBI-2) G-Protein Coupled Receptor (upper line, see SEQ ID NO:2) and the human EBI-1 G-Protein Coupled Receptor (lower line, SEQ ID NO:17). The standard one-letter abreviations are used to

10

15

20

25

30

represent the amino acid residues of the amino acid sequences illustrated. The EBI-2 polypeptide according to the invention shows approximately 25% identity and 49% similarity to the amino acid sequence of the EBI-1 gene over an approximately 350 amino acid stretch.

Figure 3 shows the cDNA sequence (SEQ ID NO:3) and the corresponding deduced amino acid sequence (SEQ ID NO:4) of the EDG-1-like G-protein coupled receptor of the present invention. The polynucleotide sequence contains a 1637 nucleotide sequence which encodes a 260 amino acid ORF. In Figure 3, the standard one-letter abbreviation for amino acids is used to illustrate the deduced amino acid sequence. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.). Sequencing accuracy is predicted to be greater than 97% accurate.

Figure 4 is an amino acid sequence comparison between the EDG-1-like G-Protein Coupled Receptor (upper line, see SEQ ID NO:4) and the human EDG-1 orphan G-Protein Coupled Receptor (lower line, SEQ ID NO:18). The standard one-letter abreviations are used to represent the amino acid residues of the amino acid sequences illustrated. The EDG-1-like polypeptide according to the invention shows approximately 54% identity and 73% similarity to the amino acid sequence of the human EDG-1 orphan G-protein Coupled Receptor gene over two regions totaling approximately 120 amino acids.

In accordance with an aspect of the present invention, there is provided an isolated nucleic acid (polynucleotide) which encode for the mature polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) or for the mature polypeptide encoded by the cDNA of the clone deposited as ATCC Deposit No. 209003 on 4/28/97.

A polynucleotide encoding a EBI-2 polypeptide of the present invention may be found in a cDNA library from umbilical vein endothelial cells, neutrophil leukocyte cells, and corpus colosum cells. The polynucleotide of this invention was discovered in a cDNA library derived from umbilical vein endothelial cells. As described above, it is structurally related to the G protein-coupled receptor family. It contains an open reading frame encoding a protein of 343 amino acid residues.

In accordance with an aspect of the present invention, there is provided an isolated nucleic acid (polynucleotide) which encode for the mature polypeptide having the deduced amino acid sequence of Figure 3 (SEQ ID NO:4) or for the mature polypeptide encoded by the cDNA of the clone deposited as ATCC Deposit No. 209004 on 4/28/97.

A polynucleotide encoding an EDG-1-like G-protein coupled receptor polypeptide of the present invention may be found in an activated neutrophil cDNA library, cyclohexamine-treated

10

15

20

25

30

Raji cells, the RSR;11 bone marrow cell line, activated T-cells, tonsils, and CD34-positive cord blood cells. Northern blot anlyses indicate that the EDG-1-like receptor gene is expressed primarily in leukocytes, but expression may also be observed in placenta, spleen, thymus, lung and pancreas tissue. The polynucleotide of this invention was discovered in a cDNA library derived from activated neutrophils. As described above, it is structurally related to the G protein-coupled receptor family. It contains an open reading frame encoding a protein of 261 amino acid residues.

As noted above a great deal of the importance attributed to GPCR molecules such as those of the presently claimed invention lies in the diversity of biological functions in which they participate. For example, it is thought that, upon release form the alpha subunit, the beta/gamma subunit may also play a functional role in the regulation of signal transduciton by activating the arachidonic acid signal transduction pathway via the activation of phospholipase A2. In addition. GPCR molecules and their associated G-proteins have been implicated in the coupling of vsisual pigments to cGMP phosphodiesterase, phosphatidyl inositol (PI) turnover, adenylyl cyclase signal channels and other integral membrane enzymes to transporter proteins. As a result, it is apparent that novel GPCR molecules may prove useful in a wide variety of pharmaceutical applications including research and development. For example, target based screens for small molecules and other such pharmacologically valuable factors may be based on activating a given GPCR. It has also been observed that short peptides may function by mimicking the GPCR (temed receptomimetics). Furthermore, monoclonal antibodies raised against such factors may prove useful as therapeutics in a number of capacities. Potential therapeutic and/or diagnositic applications for such a factor may include such diverse clinical presentations as heart disease, mental illness, cancer, atherosclerosis, restenosis, Alzheimer's Disease, Parkinson's Disease, and a number of others.

Accordingly, the polynucleotides of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature EBI-2 polypeptide may be identical to the coding sequence shown in Figure 1 (SEQ ID NO:1) or that of the deposited clone or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 1 (SEQ ID NO:1) or the deposited cDNA. Similarly, the coding sequence which encodes the mature EDG-1-like G-protein coupled receptor polypeptide may be identical to the

10

15

20

25

30

coding sequence shown in Figure 3 (SEQ ID NO:3) or that of the deposited clone or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 3 (SEQ ID NO:3) or the deposited cDNA.

The polynucleotides which encode either (a) the mature EBI-2 polypeptide of Figure 1 (SEQ ID NO:2) or the mature EBI-2 polypeptide encoded by the deposited cDNA, or (b) the mature EDG-1-like G-protein coupled receptor polypeptide of Figure 3 (SEQ ID NO:4) or the mature EDG-1-like G-protein coupled receptor polypeptide encoded by the deposited cDNA may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature polypeptide.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of (a) the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) or the polypeptide encoded by the cDNA of the deposited clone, or (2) the polypeptide having the deduced amino acid sequence of Figure 3 (SEQ ID NO:4) or the polypeptide encoded by the cDNA of the deposited clone, The variant of either of these two polynucleotides may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide.

Thus, the present invention includes polynucleotides encoding the same mature polypeptide as shown in Figure 1 (SEQ ID NO:2) or the same mature polypeptide encoded by the cDNA of the deposited clone as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) or the polypeptide encoded by the cDNA of the deposited clone. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

Likewise, the present invention includes polynucleotides encoding the same mature polypeptide as shown in Figure 3 (SEQ ID NO:4) or the same mature polypeptide encoded by the cDNA of the deposited clone as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 3 (SEQ ID NO:4) or the

polypeptide encoded by the cDNA of the deposited clone. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

As hereinabove indicated, the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure 1 (SEQ ID NO:1) or of the coding sequence of the deposited clone. Also, as hereinabove indicated, the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure 3 (SEQ ID NO:3) or of the coding sequence of the deposited clone. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

5

10

15

20

25

30

The present invention also includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also code for a proprotein which is the mature protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and is an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.

Thus, for example, the polynucleotide of the present invention may encode a mature protein, or a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence).

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al., Cell, 37:767 (1984)).

The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

Fragments of the full length gene of the present invention may be used as hybridization probes for a cDNA or a genomic library to isolate the full length DNA and to isolate other DNAs

10

15

20

25

30

which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 10, preferably at least 15, and even more preferably at least 30 bases and may contain, for example, at least 50 or more bases. In fact, probes of this type having at least up to 150 bases or greater may be preferably utilized. The probe may also be used to identify a DNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons and introns. An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary or identical to that of the gene or portion of the gene sequences of the present invention are used to screen a library of genomic DNA to determine which members of the library the probe hybridizes to.

It is also appreciated that such probes can be and are preferably labeled with an analytically detectable reagent to facilitate identification of the probe. Useful reagents include but are not limited to radioactivity, fluorescent dyes or enzymes capable of catalyzing the formation of a detectable product. The probes are thus useful to isolate complementary copies of DNA from other sources or to screen such sources for related sequences.

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences. (As indicated above, 70% identity would include within such definition a 70 bps fragment taken from a 100 bp polynucleotide, for example.) The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode enzymes which either retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Figures 1 and 3 (SEQ ID NOS:2 and 4, respectively. In referring to identity in the case of hybridization, as known in the art, such identity refers to complementarity of polynucleotide segments.

Alternatively, the polynucleotide may have at least 15 bases, preferably at least 30 bases, and more preferably at least 50 bases which hybridize to any part of a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides may be employed as probes for the

10

15

20

25

30

polynucleotides of SEQ ID NOS:1 and 3, for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.

Thus, the present invention is directed to polynucleotides having at least a 70% identity, preferably at least 90% identity and more preferably at least a 95% identity to a polynucleotide which encodes either the polypeptide of SEQ ID NO:2, or the polypeptide of SEQ ID NO:4, as well as fragments thereof, which fragments have at least 15 bases, preferably at least 30 bases, more preferably at least 50 bases and most preferably fragments having up to at least 150 bases or greater, which fragments are at least 90% identical, preferably at least 95% identical and most preferably at least 97% identical to any portion of a polynucleotide of the present invention.

The deposit(s) referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. 112. The sequence of the polynucleotides contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The present invention further relates to polypeptides which have the deduced amino acid sequences of Figures 1 and 3 (SEQ ID NOS:2 and 4, respectively) as well as fragments, analogs and derivatives of such polypeptides.

The terms "fragment," "derivative" and "analog" when referring to (a) the polypeptide of Figure 1 (SEQ ID NO:2) or that encoded by the deposited cDNA, or (b) the polypeptide of Figure 3 (SEQ ID NO:4), means a polypeptide which either retains substantially the same biological function or activity as such polypeptide, i.e. functions as a G-protein coupled receptor, or retains the ability to bind the ligand or the receptor even though the polypeptide does not function as a G-protein coupled receptor, for example, a soluble form of the receptor.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analog of either (a) the polypeptide of Figure 1 (SEQ ID NO:2) or that encoded by the deposited cDNA, (b) the polypeptide of Figure 3 (SEQ ID NO:4) may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in

10

15

20

25

30

which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, or (v) one in which a fragment of the polypeptide is soluble, i.e. not membrane bound, yet still binds ligands to the membrane bound receptor. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The polypeptides of the present invention include the polypeptides of SEQ ID NOS:2 and 4 (in particular the respective mature polypeptides) as well as polypeptides which have at least 70% similarity (preferably at least a 70% identity) to either the polypeptide of SEQ ID NO:2 or the polypeptide of SEQ ID NO:4 and more preferably at least a 90% similarity (more preferably at least a 90% identity) to the polypeptide of SEQ ID NO:2 or of SEQ ID NO:4 and still more preferably at least a 95% similarity (still more preferably a 90% identity) to the polypeptide of SEQ ID NO:2 or of SEQ ID NO:4 and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

As known in the art "similarity" between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.

Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.

10

15

20

25

30

The present invention also relates to a method for identifying and/or isolating cells, tissues, or classes of cells or tissues, by utilizing probes of the polynucleotides that encode the EBI-2 G-protein coupled receptor polypeptide or by utilizing an antibody specific for the EBI-2 G-protein coupled receptor, for example. Since the EBI-2 G-protein coupled receptor polypeptides according to the invention occur in vein endothelial cells, neutrophil leukocyte cells and corpus colosum cells, the above probes or antibodies, for example, may be utilized to identify and/or isolate such cells, tissues or classes of cells or tissues.

The present invention further relates to a method for identifying and/or isolating cells, tissues, or classes of cells or tissues, by utilizing probes of the polynucleotides that encode the EDG-1-like G-protein coupled receptor polypeptide or by utilizing an antibody specific for the EDG-1-like G-protein coupled receptor polypeptide, for example. Since the EDG-1-like G-protein coupled receptor polypeptides according to the invention occur in leukocyte, tonsil, placenta, thymus, lung and pancreas tissue, the above probes or antibodies, for example, may be utilized to identify and/or isolate such cells, tissues or classes of cells or tissues.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the G-protein coupled receptor genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by

10

15

20

25

30

procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the <u>E. coli. lac</u> or <u>trp</u>, the phage lambda P_L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells. such as <u>E. coli</u>, <u>Streptomyces</u>, <u>Salmonella typhimurium</u>; fungal cells, such as yeast; insect cells such as <u>Drosophila S2</u> and <u>Spodoptera Sf9</u>; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art. and are commercially available. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks. pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

10

15

20

25

30

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).

The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cisacting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of <u>E. coli</u> and <u>S. cerevisiae</u> TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is

PCT/US98/09048

5

10

15

20

25

30

assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include <u>E. coli</u>, <u>Bacillus subtilis</u>, <u>Salmonella typhimurium</u> and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and

also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

5

10

15

20

25

30

The G-protein coupled receptor polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

The G-protein coupled receptor of the present invention may be employed in a process for screening for antagonists and/or agonists for the receptor.

In general, such screening procedures involve providing appropriate cells which express the receptor on the surface thereof. In particular, a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the G-protein coupled receptor. Such transfection may be accomplished by procedures as hereinabove described.

One such screening procedure involves the use of the melanophores which are transfected to express the G-protein coupled receptor of the present invention. Such a screening technique is described in PCT WO 92/01810 published February 6, 1992.

Thus, for example, such assay may be employed for screening for a receptor antagonist by contacting the melanophore cells which encode the G-protein coupled receptor with both the receptor ligand and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.

The screen may be employed for determining an agonist by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e.,

17

activates the receptor.

10

15

20

25

30

Other screening techniques include the use of cells which express the G-protein coupled receptor (for example, transfected CHO cells) in a system which measures extracellular pH changes caused by receptor activation, for example, as described in Science, volume 246, pages 181-296 (October 1989). For example, potential agonists or antagonists may be contacted with a cell which expresses the G-protein coupled receptor and a second messenger response, e.g. signal transduction or pH changes, may be measured to determine whether the potential agonist or antagonist is effective.

Another such screening technique involves introducing RNA encoding the G-protein coupled receptor into xenopus oocytes to transiently express the receptor. The receptor oocytes may then be contacted in the case of antagonist screening with the receptor ligand and a compound to be screened, followed by detection of inhibition of a calcium signal.

Another screening technique involves expressing the G-protein coupled receptor in which the receptor is linked to a phospholipase C or D. As representative examples of such cells, there may be mentioned endothelial cells, smooth muscle cells, embryonic kidney cells, etc. The screening for an antagonist or agonist may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.

Another method involves screening for antagonists by determining inhibition of binding of labeled ligand to cells which have the receptor on the surface thereof. Such a method involves transfecting a eukaryotic cell with DNA encoding the G-protein coupled receptor such that the cell expresses the receptor on its surface and contacting the cell with a potential antagonist in the presence of a labeled form of a known ligand. The ligand can be labeled, e.g., by radioactivity. The amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the potential antagonist binds to the receptor as determined by a reduction of labeled ligand which binds to the receptors, the binding of labeled ligand to the receptor is inhibited.

The present invention also provides a method for determining whether a ligand not known to be capable of binding to a G-protein coupled receptor can bind to such receptor which comprises contacting a mammalian cell which expresses a G-protein coupled receptor with the ligand under conditions permitting binding of ligands to the G-protein coupled receptor, detecting the presence of a ligand which binds to the receptor and thereby determining whether the ligand binds to the G-protein coupled receptor. The systems hereinabove described for determining

WO 98/50549

5

10

15

20

25

30

agonists and/or antagonists may also be employed for determining ligands which bind to the receptor.

In general, antagonists for G-protein coupled receptors which are determined by screening procedures may be employed for a variety of therapeutic purposes. For example, such antagonists have been employed for treatment of hypertension, angina pectoris, myocardial infarction, ulcers, asthma, allergies, psychoses, depression, migraine, vomiting, stroke, eating disorders, migraine headaches, cancer and benign prostatic hypertrophy.

Agonists for G-protein coupled receptors are also useful for therapeutic purposes, such as the treatment of asthma, Parkinson's disease, acute heart failure, hypotension, urinary retention, and osteoporosis.

Examples of G-protein coupled receptor antagonists include an antibody, or in some cases an oligonucleotide, which binds to the G-protein coupled receptor but does not elicit a second messenger response such that the activity of the G-protein coupled receptor is prevented. Antibodies include anti-idiotypic antibodies which recognize unique determinants generally associated with the antigen-binding site of an antibody. Potential antagonists also include proteins which are closely related to the ligand of the G-protein coupled receptor, i.e. a fragment of the ligand, which have lost biological function and when binding to the G-protein coupled receptor, elicit no response.

A potential antagonist also includes an antisense construct prepared through the use of antisense technology. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes for the mature polypeptides of the present invention, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991)), thereby preventing transcription and the production of G-protein coupled receptor. The antisense RNA oligonucleotide hybridizes to the mRNA *in vivo* and blocks translation of the mRNA molecule into the G-protein coupled receptor (antisense - Okano, J. Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed *in vivo* to inhibit production of G-protein coupled receptor.

10

15

20

25

30

Another potential antagonist is a small molecule which binds to the G-protein coupled receptor, making it inaccessible to ligands such that normal biological activity is prevented. Examples of small molecules include but are not limited to small peptides or peptide-like molecules.

Potential antagonists also include a soluble form of a G-protein coupled receptor, e.g. a fragment of the receptor, which binds to the ligand and prevents the ligand from interacting with membrane bound G-protein coupled receptors.

The G-protein coupled receptor and antagonists or agonists may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the polypeptide, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the pharmaceutical compositions may be employed in conjunction with other therapeutic compounds.

The pharmaceutical compositions may be administered in a convenient manner such as by the topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, the pharmaceutical compositions will be administered in an amount of at least about 10 g/kg body weight and in most cases they will be administered in an amount not in excess of about 8 mg/Kg body weight per day. In most cases, the dosage is from about 10 g/kg to about 1 mg/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The G-protein coupled receptor polypeptides and antagonists or agonists which are polypeptides, may be employed in accordance with the present invention by expression of such polypeptides *in vivo*, which is often referred to as "gene therapy."

Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient

20

to be treated with the polypeptide. Such methods are well-known in the art. For example, cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.

5

10

15

20

25

30

Similarly, cells may be engineered *in vivo* for expression of a polypeptide *in vivo* by, for example, procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells *in vivo* and expression of the polypeptide *in vivo*. These and other methods for administering a polypeptide of the present invention by such method should be apparent to those skilled in the art from the teachings of the present invention. For example, the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.

Retroviruses from which the retroviral plasmid vectors hereinabove mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. In one embodiment, the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.

The vector includes one or more promoters. Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller, et al., <u>Biotechniques</u>, Vol. 7, No. 9, 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and β-actin promoters). Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.

The nucleic acid sequence encoding the polypeptide of the present invention is under the control of a suitable promoter. Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter; or hetorologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral

LTRs (including the modified retroviral LTRs hereinabove described); the β -actin promoter; and human growth hormone promoters. The promoter also may be the native promoter which controls the gene encoding the polypeptide.

5

10

15

20

25

30

The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, ψ-2, ψ-AM, PA12, T19-14X, VT-19-17-H2, ψCRE, ψCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy, Vol. 1, pgs. 5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

The producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either *in vitro* or *in vivo*. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.

G-protein coupled receptors are ubiquitous in the mammalian host and are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds which stimulate a G-protein coupled receptor and compounds which antagonize a G-protein coupled receptor.

This invention further provides a method of identifying compounds which specifically interact with, and bind to, the human G-protein coupled receptors on the surface of a cell which comprises contacting a mammalian cell comprising an isolated DNA molecule encoding the G-protein coupled receptor with a plurality of compounds, determining those which bind to the mammalian cell, and thereby identifying compounds which specifically interact with and bind to a human G-protein coupled receptor of the present invention.

This invention also provides a method of detecting expression of the G-protein coupled receptor on the surface of a cell by detecting the presence of mRNA coding for a G-protein coupled receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 15

WO 98/50549

5

10

15

20

25

30

nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding a human G-protein coupled receptor under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the G-protein coupled receptor by the cell.

This invention is also related to the use of the G-protein coupled receptor gene as part of a diagnostic assay for detecting diseases or susceptibility to diseases related to the presence of mutated G-protein coupled receptor genes. Such diseases are related to cell transformation, such as tumors and cancers.

Individuals carrying mutations in the human G-protein coupled receptor gene may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine. saliva, tissue biopsy and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki et al., Nature, 324:163-166 (1986)) prior to analysis. RNA or cDNA may also be used for the same purpose. As an example, PCR primers complementary to the nucleic acid encoding the G-protein coupled receptor protein can be used to identify and analyze G-protein coupled receptor mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to radiolabeled G-protein coupled receptor RNA or alternatively, radiolabeled G-protein coupled receptor antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science, 230:1242 (1985)).

Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton *et al.*. PNAS, USA, 85:4397-4401 (1985)).

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization. RNase protection, chemical cleavage, direct DNA sequencing or the use of

restriction enzymes, (e.g., Restriction Fragment Length Polymorphisms (RFLP)) and Southern blotting of genomic DNA.

In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by *in situ* analysis.

5

10

15

20

25

30

The present invention also relates to a diagnostic assay for detecting altered levels of soluble forms of the receptor polypeptides of the present invention in various tissues. Assays used to detect levels of the soluble receptor polypeptides in a sample derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive-binding assays. Western blot analysis and preferably as ELISA assay.

An ELISA assay initially comprises preparing an antibody specific to antigens of the Gprotein coupled receptor polypeptides, preferably a monoclonal antibody. In addition a reporter
antibody is prepared against the monoclonal antibody. To the reporter antibody is attached a
detectable reagent such as radioactivity, fluorescence or in this example a horseradish peroxidase
enzyme. A sample is now removed from a host and incubated on a solid support, e.g. a
polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish
are then covered by incubating with a non-specific protein such as bovine serum albumin. Next,
the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies
attach to any G-protein coupled receptor proteins attached to the polystyrene dish. All unbound
monoclonal antibody is washed out with buffer. The reporter antibody linked to horseradish
peroxidase is now placed in the dish resulting in binding of the reporter antibody to any
monoclonal antibody bound to G-protein receptor proteins. Unattached reporter antibody is then
washed out. Peroxidase substrates are then added to the dish and the amount of color developed
in a given time period is a measurement of the amount of G-protein coupled receptor proteins
present in a given volume of patient sample when compared against a standard curve.

The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region is used to rapidly

10

15

20

25

30

select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers. sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include *in situ* hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.

Fluorescence *in situ* hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 50 or 60 bases. For a review of this technique, see Verma et al., Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).

The polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an

10

15

20

25

30

Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice may be used to express humanized antibodies to immunogenic polypeptide products of this invention.

The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight.

In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 µg of

plasmid or DNA fragment is used with about 2 units of enzyme in about 20 µl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., Nucleic Acids Res., 8:4057 (1980).

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

Unless otherwise stated, transformation was performed as described in the method of Graham, F. and Van der Eb, A., Virology, 52:456-457 (1973).

Example 1

25 Bacterial Expression and Purification of EBI-2

5

10

15

20

30

The DNA sequence encoding EBI-2, ATCC # 209003, is initially amplified using PCR oligonucleotide primers corresponding to the 5' sequences of the processed EBI-2 protein (minus the signal peptide sequence) and the vector sequences 3' to the EBI-2 gene. Additional nucleotides corresponding to EBI-2 were added to the 5' and 3' sequences respectively. The 5' oligonucleotide primer has the sequence 5' CCGAGGATCCATGCAAGCCGTCGACAAT 3' (SEQ ID NO:5) contains a BamHI restriction enzyme site followed by 18 nucleotides of the EBI-2 coding sequence starting from the presumed terminal amino acid of the processed protein codon. The 3' sequence 5' CCGAGGATCCTTACATTGGAGTCTCTTC 3' (SEQ ID NO:6)

contains complementary sequences to BamHI site and is followed by 18 nucleotides of EBI-2. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pQE-60. (Qiagen, Inc., Chatsworth, CA, 91311). pQE-60 encodes antibiotic resistance (Amp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. pQE-60 was then digested with BamhI. The amplified sequences were ligated into pQE-60 and were inserted in frame with the sequence encoding for the histidine tag and the RBS. The ligation mixture was then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989). M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan'). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysis. Clones containing the desired constructs were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-Dthiogalacto pyranoside") was then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells were grown an extra 3 to 4 hours. Cells were then harvested by centrifugation. The cell pellet was solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized hSca-2 was purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., J. Chromatography 411:177-184 (1984)). hSca-2 (95 % pure was eluted from the column in 6 molar guanidine HCl pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HCl. 100mM sodium phosphate, 10 mmolar glutathione (reduced) and 2 mmolar glutathione (oxidized). After incubation in this solution for 12 hours the protein was dialyzed to 10 mmolar sodium phosphate.

30

25

5

10

15

20

Example 2

Cloning and expression of EBI-2 using the baculovirus expression system

The DNA sequence encoding the full length EBI-2 protein, ATCC # 209003. was amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the

gene:

5

10

15

20

25

30

WO 98/50549

The 5' primer has the sequence 5' CCGAGGATCCGCCATCA-TGCAAGCCGTCGACAAT 3' (SEQ ID NO:7) and contains a BamHI restriction enzyme site (in bold) followed by 6 nucleotides resembling an efficient signal for the initiation of translation in eukaryotic cells (Kozak, M., J. Mol. Biol., 196:947-950 (1987) which is just behind the first 18 nucleotides of the EBI-2 gene (the initiation codon for translation "ATG" is underlined).

The 3' primer has the sequence 5' CCGAGGATCCT-TACATTGGAGTCTCTTC 3' (SEQ ID NO:8) and contains the cleavage site for the restriction endonuclease BamHI and 18 nucleotides complementary to the 3' translated sequence of the extracellular part of EBI-2. The amplified sequences were isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment was then digested with the endonucleases BamHI. and purified again on a 1% agarose gel. This fragment is designated F2.

The vector pA2 (modification of pVL941 vector, discussed below) is used for the expression of the EBI-2 protein using the baculovirus expression system (for review see: Summers, M.D. and Smith, G.E. 1987, A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experimental Station Bulletin No. 1555). This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by the recognition sites for the restriction endonucleases BamHI. The polyadenylation site of the simian virus (SV)40 is used for efficient polyadenylation. For an easy selection of recombinant virus the beta-galactosidase gene from E.coli is inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene. The polyhedrin sequences are flanked at both sides by viral sequences for the cell-mediated homologous recombination of co-transfected wild-type viral DNA. Many other baculovirus vectors could be used in place of pA2 such as pRG1 and pA2-GP in which case the 5' primer are changed accordingly, and pAc373, pVL941 and pAcIM1 (Luckow, V.A. and Summers, M.D., Virology, 170:31-39).

The plasmid was digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal phosphatase by procedures known in the art. The DNA was then isolated from a 1% agarose gel using the commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated V2.

Fragment F2 and the dephosphorylated plasmid V2 were ligated with T4 DNA ligase.

E.coli HB101 cells were then transformed and bacteria identified that contained the plasmid (pBacEBI-2) with the EBI-2 gene using the enzyme BamHI. The sequence of the cloned

fragment was confirmed by DNA sequencing.

5

10

15

20

25

30

5 μg of the plasmid pBacEBI-2 was co-transfected with 1.0 μg of a commercially available linearized baculovirus ("BaculoGold baculovirus DNA", Pharmingen, San Diego, CA.) using the lipofection method (Felgner et al. Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987)).

lμg of BaculoGold virus DNA and 5 μg of the plasmid pBacEBI-2 were mixed in a sterile well of a microtiter plate containing 50 μl of serum free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards 10 μl Lipofectin plus 90 μl Grace's medium were added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture was added drop-wise to the Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate was rocked back and forth to mix the newly added solution. The plate was then incubated for 5 hours at 27 C. After 5 hours the

transfection solution was removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum was added. The plate was put back into an incubator and cultivation continued at 27 C for four days.

After four days the supernatant was collected and a plaque assay performed similar as described by Summers and Smith (supra). As a modification an agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) was used which allows an easy isolation of blue stained plaques. (A detailed description of a "plaque assay" can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10).

Four days after the serial dilution, the virus was added to the cells and blue stained plaques were picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses was then resuspended in an Eppendorf tube containing 200 μ l of Grace's medium. The agar was removed by a brief centrifugation and the supernatant containing the recombinant baculovirus was used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes were harvested and then stored at 4 C.

Sf9 cells were grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells were infected with the recombinant baculovirus V-EBI-2 at a multiplicity of infection (MOI) of 2. Six hours later the medium was removed and replaced with SF900 II medium minus methionine and cysteine (Life Technologies Inc., Gaithersburg). 42 hours later 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S cysteine (Amersham) were added. The cells were further incubated for 16 hours before they were harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.

WO 98/50549

5

10

15

20

25

30

Example 3

Expression of Recombinant EBI-2 in COS cells

The expression of plasmid, EBI-2 HA is derived from a vector pcDNAI/Amp (Invitrogen) containing: 1) SV40 origin of replication, 2) ampicillin resistance gene, 3) E.coli replication origin, 4) CMV promoter followed by a polylinker region, an SV40 intron and polyadenylation site. A DNA fragment encoding the entire EBI-2 precursor and a HA tag fused in frame to its 3' end was cloned into the polylinker region of the vector, therefore, the recombinant protein expression is directed under the CMV promoter. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein as previously described (I. Wilson, H. Niman, R. Heighten, A Cherenson, M. Connolly, and R. Lerner, 1984, Cell 37:767, (1984)). The infusion of HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.

The DNA sequence encoding EBI-2, ATCC # 209003, was constructed by PCR using two

The plasmid construction strategy is described as follows:

primers: the 5' primer 5' CCGAGGATCCGCCATCATGCAAGCCGTCGACAAT 3' (SEQ ID NO:9) contains a BamHI site followed by EBI-2 coding sequence starting from the initiation 3' sequence the codon; 5' CCGATCTAGATTAATCCCATACGACGTCCCAGACTACGCTCATTGGAGTCTCTTC 3' (SEQ ID NO:10) contains complementary sequences to XbaI site, translation stop codon, HA tag and EBI-2 coding sequence (not including the stop codon). Therefore, the PCR product contains a BamHI site, EBI-2 coding sequence followed by HA tag fused in frame, a translation termination stop codon next to the HA tag, and an Xbal site. The PCR amplified DNA fragment and the vector, pcDNAI/Amp, were digested with BamHI and XbaI restriction enzyme and ligated. The ligation mixture was transformed into E. coli strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, CA 92037) the transformed culture was plated on ampicillin media plates and resistant colonies were selected. Plasmid DNA was isolated from transformants and examined by restriction analysis for the presence of the correct fragment. For expression of the recombinant EBI-2 COS cells were transfected with the expression vector by DEAE-DEXTRAN method (J. Sambrook, E. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989)). The expression of the EBI-2 HA protein was detected by radiolabelling and immunoprecipitation method (E. Harlow,

D. Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, (1988)). Cells were labelled for 8 hours with ³⁵S-cysteine two days post transfection. Culture media was then collected and cells were lysed with detergent (RIPA buffer (150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50mM Tris, pH 7.5) (Wilson, I. et al., Id. 37:767 (1984)). Both cell lysate and culture media were precipitated with an HA specific monoclonal antibody. Proteins precipitated were analyzed on 15% SDS-PAGE gels.

Example 4

Expression via Gene Therapy

5

10

15

20

25

30

Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. This is then incubated at 37 C for approximately one week. At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al, DNA, 7:219-25 (1988) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively. The 5' primer containing an EcoRI site and the 3' primer further includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is used to transform bacteria HB101, which are then plated onto agar-containing kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and

10

20

25

30

the packaging cells are transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.

The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product.

Example 5

15 Bacterial Expression and Purification of EDG-1-Like Polypeptide

The DNA sequence encoding EDG-1-like polypeptide, ATCC # 209004, is initially amplified using PCR oligonucleotide primers corresponding to the 5' sequences of the processed EDG-1-like polypeptide protein (minus the signal peptide sequence) and the vector sequences 3' to the EDG-1-like polypeptide gene. Additional nucleotides corresponding to EBI-2 were added to the 5' and 3' sequences respectively. The 5' oligonucleotide primer has the sequence 5' CCGAGGATC-CATGAACGCCACGGGGACC 3' (SEQ ID NO:11) contains a BamHI restriction enzyme site followed by 18 nucleotides of the EDG-1-like polypeptide coding sequence starting from the presumed terminal amino acid of the processed protein codon. The 3' sequence 5' CCGAGGATCCTCAGATGCTCCGCACGCT 3' (SEQ ID NO:12) contains complementary sequences to BamHI site and is followed by 18 nucleotides of EDG-1-like polypeptide. The restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pQE-60. (Qiagen, Inc., Chatsworth, CA, 91311). pQE-60 encodes antibiotic resistance (Amp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. pQE-60 was then digested with Bamhl. The amplified sequences were ligated into pQE-60 and were inserted in frame with the sequence encoding for the histidine tag and the RBS. The ligation mixture was then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook, J. et al., Molecular Cloning: A Laboratory Manual. Cold Spring

1.0

15

20

25

30

Laboratory Press, (1989). M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lacl repressor and also confers kanamycin resistance (Kan'). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysis. Clones containing the desired constructs were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranoside") was then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells were grown an extra 3 to 4 hours. Cells were then harvested by centrifugation. The cell pellet was solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized EBI-2 was purified from this solution by chromatography on a Nickel-Chelate column under conditions that allow for tight binding by proteins containing the 6-His tag (Hochuli, E. et al., J. Chromatography 411:177-184 (1984)). EBI-2 (95 % pure was eluted from the column in 6 molar guanidine HCl pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HCl, 100mM sodium phosphate, 10 mmolar glutathione (reduced) and 2 mmolar glutathione (oxidized). After incubation in this solution for 12 hours the protein was dialyzed to 10 mmolar sodium phosphate.

Example 6

Cloning and expression of EDG-1-like polypeptide using the baculovirus expression system

The DNA sequence encoding the full length EDG-1-like polypeptide protein. ATCC # 209004, was amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:

The 5' primer has the sequence 5' GCGAGGATCCGCCAT-CATGAACGCCACGGGACC 3' (SEQ ID NO:13) and contains a BamHI restriction enzyme site (in bold) followed by 6 nucleotides resembling an efficient signal for the initiation of translation in eukaryotic cells (Kozak, M., J. Mol. Biol., 196:947-950 (1987) which is just behind the first 18 nucleotides of the EDG-1-like polypeptide gene (the initiation codon for translation "ATG" is underlined).

The 3' primer has the sequence 5' CCGAGGATCCTC-AGATGCTCCGCACGCT 3' (SEQ ID NO:14) and contains the cleavage site for the restriction endonuclease BamHl and 18 nucleotides complementary to the 3' translated sequence of the extracellular part of EDG-1-like polypeptide. The amplified sequences were isolated from a 1% agarose gel using a commercially

5

10

15

20

25

30

available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment was then digested with the endonucleases BamHI, and purified again on a 1% agarose gel. This fragment is designated F2.

The vector pA2 (modification of pVL941 vector, discussed below) is used for the expression of the EDG-1-like polypeptide protein using the baculovirus expression system (for review see: Summers, M.D. and Smith, G.E. 1987, A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experimental Station Bulletin No. 1555). This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by the recognition sites for the restriction endonucleases BamHI. The polyadenylation site of the simian virus (SV)40 is used for efficient polyadenylation. For an easy selection of recombinant virus the beta-galactosidase gene from E.coli is inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene. The polyhedrin sequences are flanked at both sides by viral sequences for the cell-mediated homologous recombination of co-transfected wild-type viral DNA. Many other baculovirus vectors could be used in place of pA2 such as pRG1 and pA2-GP in which case the 5' primer are changed accordingly, and pAc373, pVL941 and pAcIM1 (Luckow, V.A. and Summers, M.D., Virology, 170:31-39).

The plasmid was digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal phosphatase by procedures known in the art. The DNA was then isolated from a 1% agarose gel using the commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated V2.

Fragment F2 and the dephosphorylated plasmid V2 were ligated with T4 DNA ligase. <u>E.coli</u> HB101 cells were then transformed and bacteria identified that contained the plasmid (pBacEDG-1-like polypeptide) with the EDG-1-like polypeptide gene using the enzyme BamHI. The sequence of the cloned fragment was confirmed by DNA sequencing.

 $5~\mu g$ of the plasmid pBacEDG-1-like polypeptide was co-transfected with 1.0 μg of a commercially available linearized baculovirus ("BaculoGold baculovirus DNA", Pharmingen, San Diego, CA.) using the lipofection method (Felgner et al. Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987)).

lµg of BaculoGold virus DNA and 5 µg of the plasmid pBacEDG-1-like polypeptide were mixed in a sterile well of a microtiter plate containing 50 µl of serum free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards 10 µl Lipofectin plus 90 µl Grace's medium were added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture was added drop-wise to the Sf9 insect cells (ATCC CRL 1711) seeded in a

35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate was rocked back and forth to mix the newly added solution. The plate was then incubated for 5 hours at 27 C. After 5 hours the transfection solution was removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum was added. The plate was put back into an incubator and cultivation continued at 27 C for four days.

After four days the supernatant was collected and a plaque assay performed similar as described by Summers and Smith (supra). As a modification an agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) was used which allows an easy isolation of blue stained plaques. (A detailed description of a "plaque assay" can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10).

Four days after the serial dilution, the virus was added to the cells and blue stained plaques were picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses was then resuspended in an Eppendorf tube containing 200 µl of Grace's medium. The agar was removed by a brief centrifugation and the supernatant containing the recombinant baculovirus was used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes were harvested and then stored at 4 C.

Sf9 cells were grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells were infected with the recombinant baculovirus V-EDG-1-like polypeptide at a multiplicity of infection (MOI) of 2. Six hours later the medium was removed and replaced with SF900 II medium minus methionine and cysteine (Life Technologies Inc., Gaithersburg). 42 hours later 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S cysteine (Amersham) were added. The cells were further incubated for 16 hours before they were harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.

25

30

20

5

10

15

Example 7

Expression of Recombinant EDG-1-like Polypeptide in COS cells

The expression of plasmid, EDG-1-like polypeptide HA is derived from a vector pcDNAI/Amp (Invitrogen) containing: 1) SV40 origin of replication, 2) ampicillin resistance gene, 3) E.coli replication origin, 4) CMV promoter followed by a polylinker region, an SV40 intron and polyadenylation site. A DNA fragment encoding the entire EDG-1-like polypeptide precursor and a HA tag fused in frame to its 3' end was cloned into the polylinker region of the vector, therefore, the recombinant protein expression is directed under the CMV promoter. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein as previously

5

10

15

20

36

described (I. Wilson, H. Niman, R. Heighten, A Cherenson, M. Connolly, and R. Lerner, 1984, Cell 37:767, (1984)). The infusion of HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.

The plasmid construction strategy is described as follows:

The DNA sequence encoding EDG-1-like polypeptide, ATCC # 209004, was constructed 5' 5' the primer primers: **PCR** using two by CCGAGGATCCGCCATCATGAACGCCACGGGGACC 3' (SEQ ID NO:15) contains a BamHI site followed by EDG-1-like polypeptide coding sequence starting from the initiation codon; the 5' CCGATCTAGATCAATCCCATACGACGTCCCAG-3' sequence ACTACGCTGATGCTCCGCACGCT 3' (SEQ ID NO:16) contains complementary sequences to Xbal site, translation stop codon, HA tag and EDG-1-like polypeptide coding sequence (not including the stop codon). Therefore, the PCR product contains a BamHI site, EDG-1-like polypeptide coding sequence followed by HA tag fused in frame, a translation termination stop codon next to the HA tag, and an XbaI site. The PCR amplified DNA fragment and the vector, pcDNAI/Amp, were digested with BamHl and XbaI restriction enzyme and ligated. The ligation mixture was transformed into E. coli strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, CA 92037) the transformed culture was plated on ampicillin media plates and resistant colonies were selected. Plasmid DNA was isolated from transformants and examined by restriction analysis for the presence of the correct fragment. For expression of the recombinant EDG-1-like polypeptide COS cells were transfected with the expression vector by DEAE-DEXTRAN method (J. Sambrook, E. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989)). The expression of the EDG-1-like polypeptide HA protein was detected by radiolabelling and immunoprecipitation method (E. Harlow, D. Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, (1988)). Cells were labelled for 8 hours with ³⁵S-cysteine two days post transfection. Culture media was then collected and cells were lysed with detergent (RIPA buffer (150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50mM Tris, pH 7.5) (Wilson, I. et al., Id. 37:767 (1984)). Both cell lysate and culture media were precipitated with an HA specific monoclonal antibody. Proteins precipitated were analyzed on 15% SDS-PAGE gels.

30

25

Example 8

Expression via Gene Therapy

Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in

tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin. is added. This is then incubated at 37 C for approximately one week. At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

5

10

15

20

25

30

pMV-7 (Kirschmeier, P.T. et al, DNA, 7:219-25 (1988) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively. The 5' primer containing an EcoRI site and the 3' primer further includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is used to transform bacteria HB101, which are then plated onto agar-containing kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells are transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.

5

WO 98/50549 PCT/US98/09048 38

The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product.

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.

39 SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: HUMAN GENOME SCIENCES, INC., ET AL.
- (ii) TITLE OF INVENTION: G-Protein Coupled Receptor
- (iii) NUMBER OF SEQUENCES: 18
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: HUMAN GENOME SCIENCES, INC.
 - (B) STREET: 9410 KEY WEST AVENUE
 - (C) CITY: ROCKVILLE
 - (D) STATE: MARYLAND
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 INCH DISKETTE
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: MS-DOS
 - (D) SOFTWARE: WORD PERFECT 5.1
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US98/09048
 - (B) FILING DATE: 07-MAY-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/852,824
 - (B) FILING DATE: 07-MAY-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: A. ANDERS, BROOKES
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PF351PCT.LIC
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 301-309-8504
 - (B) TELEFAX: 301-309-8439
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 2249 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCACGAGGAA CAGAACACTT TCTCATGTCC AGGGTCAGAT TACAAGAGCA CTCAAGACTT 60
TACTGACGAA AACTCAGGAA ATCCTCTATC ACAAAGAGGT TTGGCAACTA AACTAAGACA 120

40

40	100
TTAAAAGGAA AATACCAGAT GCCACTCTGC AGGCTGCAAT AACTACTACT TACTGGATAC	180
ATTCAAACCC TCCAGAATCA ACAGTTATCA GGTAACCAAC AAGAA ATG CAA GCC GTC Met Gln Ala Val	237
GAC ATT CTC ACC TCT GCG CCT GGG AAC AAC AGT CTG TGC ACC AGA Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu Cys Thr Arg 5 10 15	282
GAC TAC AAA ATC ACC CAG GTC CTC TTC CCA CTG CTC TAC ACT GTC Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr Thr Val 20 25 30	327
CTG TTT TTT GTT GGA CTT ATC ACA AAT GGC CTG GCG ATG AGG ATT Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg Ile 35 40 45	372
TTC TTT CAA ATC CGG AGT AAA TCA AAC TTT ATT ATT TTT CTT AAG Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys 50 55 60	417
AAC ACA GTC ATT TCT GAT CTT CTC ATG ATT CTG ACT TTT CCA TTC Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe 65 70 75	462
AAA ATT CTT AGT GAT GCC AAA CTG GGA ACA GGA CCA CTG AGA ACT Lys Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr 80 85 90	507
TTT GTG TGT CAA GTT ACC TCC GTC ATA TTT TAT TTC ACA ATG TAT Phe Val Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr 95 100 105	552
ATC AGT ATT TCA TTC CTG GGA CTG ATA ACT ATC GAT CGC TAC CAG Ile Ser Ile Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln 110 115 120	597
AAG ACC ACC AGG CCA TTT AAA ACA TCC AAC CCC AAA AAT CTC TTG Lys Thr Thr Arg Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu 125 130 135	642
GGG GCT AAG ATT CTC TCT GTT GTC ATC TGG GCA TTC ATG TTC TTA Gly Ala Lys Ile Leu Ser Val Val Ile Trp Ala Phe Met Phe Leu 140 145 150	687
CTC TCT TTG CCT AAC ATG ATT CTG ACC AAC AGG CAG CCG AGA GAC Leu Ser Leu Pro Asn Met Ile Leu Thr Asn Arg Gln Pro Arg Asp 155 160 165	732
AAG AAT GTG AAG AAA TGC TCT TTC CTT AAA TCA GAG TTC GGT CTA Lys Asn Val Lys Lys Cys Ser Phe Leu Lys Ser Glu Phe Gly Leu 170 175 180	777
GTC TGG CAT GAA ATA GTA AAT TAC ATC TGT CAA GTC ATT TTC TGG Val Trp His Glu Ile Val Asn Tyr Ile Cys Gln Val Ile Phe Trp 185 190 195	822
ATT AAT TTC TTA ATT GTT ATT GTA TGT TAT ACA CTC ATT ACA AAA	867

41

Ile Asn Phe Leu Ile Val Ile Val Cys Tyr Thr Leu Ile Thr Lys 200 205 210	
GAA CTG TAC CGG TCA TAC GTA AGA ACG AGG GGT GTA GGT AAA GTC Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg Gly Val Gly Lys Val 215 220 225	912
CCC AGG AAA AAG GTG AAC GTC AAA GTT TTC ATT ATC ATT GCT GTA Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile Ile Ile Ala Val 230 235 240	957
TTC TTT ATT TGT TTT GTT CCT TTC CAT TTT GCC CGA ATT CCT TAC Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg Ile Pro Tyr 245 250 255	1002
ACC CTG AGC CAA ACC CGG GAT GTC TTT GAC TGC ACT GCT GAA AAT Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala Glu Asn 260 265 270	1047
ACT CTG TTC TAT GTG AAA GAG AGC ACT CTG TGG TTA ACT TCC TTA Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser Leu 275 280 285	1092
AAT GCA TGC CTG GAT CCG TTC ATC TAT TTT TTC CTT TGC AAG TCC Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser 290 295 300	1137
TTC AGA AAT TCC TTG ATA AGT ATG CTG AAG TGC CCC AAT TCT GCA Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala 305 310 315	1182
ACA TCT CTG TCC CAG GAC AAT AGG AAA AAA GAA CAG GAT GGT GGT Thr Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly 320 325 330	1227
GAC CCA AAT GAA GAG ACT CCA ATG TAA ACAAATTAAC TAAGGAAATA Asp Pro Asn Glu Glu Thr Pro Met 335 340	1274
TTTCAATCTC TTTGTGTTCA GAACTCGTTA AAGCAAAGCG CTAAGTAAAA ATATTAACTG	1334
ACGAAGAAGC AACTAAGTTA ATAATAATGA CTCTAAAGAA ACAGAAGATT ACAAAAGCAA	1394
TTTTCATTTA CCTTTCCAGT ATGAAAAGCT ATCTTAAAAT ATAGAAAACT AATCTAAACT	
GTAGCTGTAT TAGCAGCAAA ACAAACGACA TCCAATTGTC ATGCTGCATG CAAAACTACA	
CAGAATTCAT GTTTTGGCAG AGTTTTGGCA AAATGAGTAA TCATATAATA TTTACTGTAA	
TTTTTAAAAT ACATTATCGT TCACAATTTT ATTTTTTCAT AATCAACTAA GGAAGAACGA	
TCAATTGGAT ATAATCTTCT TACCAAAAAT GATAGTTAAA ATGTATATAT ATCCTAGTCC CCTAACCAAA TCCTGACCTA TTGGGATACT TATAAAAATT TAAGTAAGTG GGATACACAA	
AGAATAATAA CTATTAACTT TTCATTATTA GCCAAAAACC TAAGGGATTT AAACTAATT	
AAACTGTATT TGATTGGACT TAATTTTTTA TGTTTATTTA GAAGATAAAG ATTTATAGAA	

GACCTTTACA	ATAAAGAGAA	GAAATATCGA	AGTCATTAAA	ATAAGGAGAC	TTACTTTTAT	1934
GACATTCTAA	ТАСТААААА	TATAGAAATA	TTTCCTTAAT	TCTAGAGAAA	CTAGTTTTAC	1994
TAATTTTTTA	CAACTTCAAT	AATACCATCA	CTGACACTTA	CCTTTATTAA	TTAGCTTCTA	2054
GAAAATAGCT	GCTAATTAGG	TTAATGAACA	TTTTACCTTA	GTGAAAAAAA	ATTAATTAAA	2114
TATGATTACA	AAGTTGCACA	GCATAACTAC	TGAGAGGAAA	GTGATTGATC	TGTTTGTAAT	2174
TACTTGTTTG	TATTGGTGTG	ТАТААААТАС	AANATTTACA	TTAAACTCTA	AATCATTAAA	2234
АААААААА	AAAAA					2249

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 342 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

				5					10				Thr	15
Leu	Cys	Thr	Arg	Asp 20	Tyr	Lys	Ile	Thr	Gln 25	Val	Leu	Phe	Pro	Leu 30
Leu	Tyr	Thr	Val	Leu 35	Phe	Phe	Val	Gly	Leu 40	Ile	Thr	Asn	Gly	Leu 45
Ala	Met	Arg	Ile	Phe 50	Phe	Gln	Ile	Arg	Ser 55	Lys	Ser	Asn	Phe	Ile 60
Ile	Phe	Leu	Lys	Asn 65	Thr	Val	Ile	Ser	Asp 70	Leu	Leu	Met	Ile	Leu 75
Thr	Phe	Pro	Phe	Lys 80	Ile	Leu	Ser	Asp	Ala 85	Lys	Leu	Gly	Thr	Gly 90
Pro	Leu	Arg	Thr	Phe 95	Val	Cys	Gln	Val	Thr 100	Ser	Val	Ile	Phe	Tyr 105
Phe	Thr	Met	Tyr	Ile 110	Ser	Ile	Ser	Phe	Leu 115	Gly	Leu	Ile	Thr	11e 120
Asp	Arg	Tyr	Gln	Lys 125	Thr	Thr	Arg	Pro	Phe 130	Lys	Thr	Ser	Asn	Pro 135
Lys	Asn	Leu	Leu	Gly 140	Ala	Lys	Ile	Leu	Ser 145	Val	Val	Ile	Trp	Ala 150
Phe	Met	Phe	Leu	Leu 155		Leu	Pro	Asn	Met 160	Ile	Leu	Thr	Asn	Arg 165
Gln	Pro	Arg	Asp	Lys 170		Val	Lys	Lys	Cys 175		Phe	Leu	Lys	Ser 180
Glu	Phe	Gly	Leu	Val 185		His	Glu	Ile	Val 190		Туг	Ile	Cys	Gln 195
Val	Ile	Phe	Trp	11e 200		Phe	. Leu	Ile	Val 205		. Val	Суз	Tyr	Thr 210
Leu	Ile	Thr	Lys	Glu 215		Туг	Arg	Ser	Туr 220		. Arg	Thr	Arg	Gly 225

									43					
Val	Gly	Lys	Val	Pro	Arg	Lys	Lys	Val	Asn	Val	Lys	Val	Phe	Ile
				230					235					240
Ile	Ile	Ala	Val	Phe	Phe	Ile	Cys	Phe	Val	Pro	Phe	His	Phe	Ala
				245					250					255
Arg	Ile	Pro	Tyr	Thr	Leu	Ser	Gln	Thr	Arg	Asp	Val	Phe	Asp	Суя
_				260					265					270
Thr	Ala	Glu	Asn	Thr	Leu	Phe	Tyr	Val	Lys	Glu	Ser	Thr	Leu	Trp
				275					280					285
Leu	Thr	Ser	Leu	Asn	Ala	Cys	Leu	Asp	Pro	Phe	Ile	Tyr	Phe	Phe
				290					295					300
Leu	Cys	Lys	Ser	Phe	Arg	Asn	Ser	Leu	Ile	Ser	Met	Leu	Lys	Суя
	•	-		305					310					315
Pro	Asn	Ser	Ala	Thr	Ser	Leu	Ser	Gln	Asp	Asn	Arg	Lys	Lys	Gl
				320					325					330
Gln	Asp	Gly	Gly	Asp	Pro	Asn	Glu	Glu	Thr	Pro	Met			
	_	-		335					340					

INFORMATION FOR SEQ ID NO:3: (2)

- SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 1737 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	Ala		GCC Ala												43
GAG Glu	GCC Ala	ATG Met 1	AAC Asn	GCC Ala	ACG Thr	GGG Gly 5	ACC Thr	CCG Pro	GTG Val	GCC Ala	CCC Pro 10	GAG Glu	TCC Ser	TGC Cys	88

- CAA CAG CTG GCG GCC GGC GGG CAC AGC CGG CTC ATT GTT CTG CAC 133 Gln Gln Leu Ala Ala Gly Gly His Ser Arg Leu Ile Val Leu His 20 15
- TAC AAC CAC TCG GGC CGG CTG GCC GGG CGC GGG GGG CCG GAG GAT 178 Tyr Asn His Ser Gly Arg Leu Ala Gly Arg Gly Gly Pro Glu Asp 35 30
- 223 Gly Gly Leu Gly Ala Leu Arg Gly Leu Ser Val Ala Ala Ser Cys 50 45
- CTG GTG GTG CTG GAG AAC TTG CTG GTG CTG GCG GCC ATC ACC AGC 268 Leu Val Val Leu Glu Asn Leu Leu Val Leu Ala Ala Ile Thr Ser 65 60
- CAC ATG CGG TCG CAA CGC TGG GTC TAC TAT TGC CTG GTG AAC ATT 313 His Met Arg Ser Gln Arg Trp Val Tyr Tyr Cys Leu Val Asn Ile 85 80 75

44

WO 98/50549

ACG Thr	ATG Met 90	AGT Ser	GAC Asp	CTG Leu	CTC Leu	ACG Thr 95	GGC	GCG Ala	GCC Ala	TAC Tyr	CTG Leu 100	GCC Ala	AAC Asn	GTG Val	358
			GGG Gly												403
			AAG Lys												448
			CTC Leu												493
			GCC Ala									Arg			538
		Ile	GGC Gly									Leu		ATG Met	583
		Leu										Asn		TGC Cys	628
TCC Ser	AGC Ser 195	Leu	CTG Leu	CCC Pro	CTC Leu	TAC Tyr 200	TCC	AAG Arg	CGC	TAC	11e	Lev	TTC Phe	: TGC : Cys	673
CTG Leu	GTG Val 210	Ile	TTC Phe	GCC Ala	GGC Gly	GTC Val 215	Leu	GCC Ala	ACC Thr	ATC	ATC Met	: Gl	CTC Lev	TAT Tyr	718
		ılle					Glr					ı Lys		C CCA a Pro	763
		Ala					Ala					u Ly:		G GTG r Val	808
		t Il	C CTO				5	G GT	GTGC'	rggg	GAC	CÄCT	CTT	CGGGCTGCTG	862
CT	GGCC	GACG	TCT	TTGG	CTC (CAAC	CTCT	GG G	CCCA	GGAG	T AC	CTGC	GGGG	CATGGACTG	922
ТA	CCTG	GCCC	TGG	CCGT	CCT (CAAC	rcgg	CG G	TCAA	cccc	A TC	ATCT	ACTC	CTTCCGCAG	982
AG	GGAG	GTGT	GCA	GAGC	CGT	GCTC.	AGCT	TC C	TCTG	CTGC	G GG	TGTC	TCCG	GCTGGGCAT	3 1042
00	2000	~~~	ccc	א כיתיכ	CCT	CCCC	cccc	בר פ	ጥሮርል	ссст	יר אר	יחיריכים	GAGO	TTCCACCAC	1102

45

GACAGCTCTC	TGAGGCCAAG	GGACAGCTTT	CGCGGCTCCC	GCTCGCTCAG	CTTTCGGATG	1162
CGGGAGCCCC	TGTCCAGCAT	CTCCAGCGTG	CGGAGCATCT	GAAGTTGCAG	TCTTGCGTGT	1222
GGATGGTGCA	ACCACCGGGT	GCGTGCCAGG	CAGGCCCTCC	TGGGGTACAG	GAAGCTGTGT	1282
GCACGCAACC	TCGCCCTGTA	TGGGGAGCAG	GGAACGGGAC	AGGCCCCCAT	GGACTTGCCC	1342
GGTGGCCTCT	CGGGGCTTCT	GACGCCATAT	GGACTTGCCC	ATTGCCTATG	GCTCACCCTG	1402
GACAAGGAGG	CAACCACCCC	ACCTCCCCGT	AGGAGCAGAG	AGCACCCTGG	TGTGGGGGCG	1462
AGTGGGTTCC	CCACAACCCC	GCTTCTGTGT	GATTCTGGGG	AAGTCCCGGC	CCCTCTCTGG	1522
GCCTCAGTAG	GGCTCCCAGG	CTGCAAGGGG	TGGACTGTGG	GATGCATGCC	CTGGCAACAT	1682
TGAAGTTCGA	TCATGGTAAA	АААААААА	АААААААА	ААААААААА	AAAAA	1737

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 276 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Arg Ala His Pro Ala Ser Gly Leu Ser Gln Pro Pro Gly Glu -10 Ala Met Asn Ala Thr Gly Thr Pro Val Ala Pro Glu Ser Cys Gln Gln Leu Ala Ala Gly Gly His Ser Arg Leu Ile Val Leu His Tyr 20 Asn His Ser Gly Arg Leu Ala Gly Arg Gly Gly Pro Glu Asp Gly 30 Gly Leu Gly Ala Leu Arg Gly Leu Ser Val Ala Ala Ser Cys Leu 50 Val Val Leu Glu Asn Leu Leu Val Leu Ala Ala Ile Thr Ser His 70 65 Met Arg Ser Gln Arg Trp Val Tyr Tyr Cys Leu Val Asn Ile Thr 80 Met Ser Asp Leu Leu Thr Gly Ala Ala Tyr Leu Ala Asn Val Leu 100 95 Leu Ser Gly Ala Arg Thr Phe Arg Leu Ala Pro Ala Gln Trp Phe 110 115 Leu Arg Lys Gly Leu Leu Phe Thr Ala Leu Ala Ala Ser Thr Phe 130 125 Ser Leu Leu Phe Thr Ala Gly Leu Arg Phe Ala Thr Met Val Arg 145 140 Pro Val Ala Glu Ser Gly Ala Thr Lys Thr Ser Arg Val Tyr Gly 155 160 Phe Ile Gly Leu Cys Trp Leu Leu Ala Ala Leu Leu Gly Met Leu 175 170 Pro Leu Leu Gly Trp Asn Cys Leu Cys Ala Phe Asn Arg Cys Ser

									46					
180					185					190				
Ser	Leu	Leu	Pro	Leu	Tyr	Ser	Arg	Arg	Thr	Ile	Leu	Phe	Cys	Leu
195					200					205				
Val	Ile	Phe	Ala	Gly	Val	Leu	Ala	Thr	Ile	Met	Gly	Leu	Tyr	Gly
210					215					220				
Ala	Ile	Phe	Arg	Leu	Val	Gln	Ala	Ser	Gly	Gln	Lys	Ala	Pro	Arg
225					230					235				
Pro	Ala	Ala	Arg	Arg	Lys	Ala	Arg	Arg	Leu	Leu	Lys	Thr	Val	Leu
240					245					250				

(2) INFORMATION FOR SEQ ID NO:5:

Met Ile Leu Leu Ala Ser

255

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 28 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: Oligonucleotide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCGAGGATCC ATGCAAGCCG TCGACAAT

28

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 28 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: Oligonucleotide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CCGAGGATCC TTACATTGGA GTCTCTTC

28

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 34 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: Oligonucleotide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCGAGGATCC GCCATCATGC AAGCCGTCGA CAAT

34

		47		
(2)	INFORM	LATION FOR SEQ ID NO:8:		
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 28 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR		
	(ii)	MOLECULE TYPE: Oligonucleotide		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:		
CCGAG	GATCC 1	TTACATTGGA GTCTCTTC	28	
(2)	INFOR	MATION FOR SEQ ID NO:9:		
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 34 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR		
	(ii)	MOLECULE TYPE: Oligonucleotide		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:9:		
CCGAG	GATCC	GCCATCATGC AAGCCGTCGA CAAT	34	
(2)	INFOR	MATION FOR SEQ ID NO:10:		
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 55 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR		
	(ii)	MOLECULE TYPE: Oligonucleotide		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:10:		
CCGA	rctaga	TTAATCCCAT ACGACGTCCC AGACTACGCT CATTGGAGTC	TCTTC	55
(2)	INFOR	RMATION FOR SEQ ID NO:11:		
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 28 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR		
	(ii)	MOLECULE TYPE: Oligonucleotide		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:		
CCGA	GGATCC	ATGAACGCCA CGGGGACC	28	

CCGAGGATCC ATGAACGCCA CGGGGACC

(2)	INFORM	ATION FOR SEQ ID NO:12:	
		SEQUENCE CHARACTERISTICS (A) LENGTH: 28 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CCGA	GGATCC I	CAGATGCTC CGCACGCT	28
(2)	INFORM	MATION FOR SEQ ID NO:13:	
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 34 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GCGA	GGATCC (GCCATCATGA ACGCCACGGG GACC	34
(2)	INFOR	MATION FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 28 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CCG	AGGATCC	TCAGATGCTC CGCACGCT	28
(2)	INFOR	RMATION FOR SEQ ID NO:15:	
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 34 BASE PAIRS (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: Oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	

49

CCGAGGATCC GCCATCATGA ACGCCACGGG GACC 34

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 55 BASE PAIRS
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: Oligonucleotide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCGATCTAGA TCAATCCCAT ACGACGTCCC AGACTACGCT GATGCTCCGC ACGCT 55

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 348 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: PROTEIN

185

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ile Gln Met Ala Asn Asn Phe Thr Pro Pro Ser Ala Thr Pro Gln Asn Asp Cys Asp Leu Tyr Ala His His Ser Thr Ala Arg Ile Val Met Pro Leu His Tyr Ser Leu Val Phe Ile Ile Gly Leu Val Gly 35 Asn Leu Leu Ala Leu Val Val Ile Val Gln Asn Arg Lys Lys Ile 50 Asn Ser Thr Thr Leu Tyr Ser Thr Asn Leu Val Ile Ser Asp Ile 70 65 Leu Phe Thr Thr Ala Leu Pro Thr Arg Ile Ala Tyr Tyr Ala Met 85 80 Gly Phe Asp Trp Arg Ile Gly Asp Ala Leu Cys Arg Ile Thr Ala 95 100 Leu Val Phe Tyr Ile Asn Thr Tyr Ala Gly Val Asn Phe Met Thr 110 115 Cys Leu Ser Ile Asp Arg Phe Ile Ala Val Val His Pro Leu Arg 130 125 Tyr Asn Lys Ile Lys Arg Ile Glu His Ala Lys Gly Val Cys Ile 145 Phe Val Trp Ile Leu Val Phe Ala Gln Thr Leu Pro Leu Leu Ile 160 Asn Pro Met Ser Lys Gln Glu Ala Glu Arg Ile Thr Cys Met Glu 175 170 Tyr Pro Asn Phe Glu Glu Thr Lys Ser Leu Pro Trp Ile Leu Leu

Gly Ala Cys Phe Ile Gly Tyr Val Leu Pro Leu Ile Ile Lys

190

50 205 210 200 Ile Cys Tyr Ser Gln Ile Cys Cys Lys Leu Phe Arg Thr Ala Lys 220 215 Gln Asn Pro Leu Thr Glu Lys Ser Gly Val Asn Lys Lys Ala Leu 235 230 Asn Thr Ile Ile Leu Ile Ile Val Val Phe Val Leu Cys Phe Thr 250 245 Pro Tyr His Val Ala Ile Ile Gln His Met Ile Lys Lys Leu Arg 260 265 Phe Ser Asn Phe Leu Glu Cys Ser Gln Arg His Ser Phe Gln Ile 280 275 Ser Leu His Phe Thr Val Cys Leu Met Asn Phe Asn Cys Cys Met 295 Asp Pro Phe Ile Tyr Phe Phe Ala Cys Lys Gly Tyr Lys Arg Lys 305 Val Met Arg Met Leu Lys Arg Gln Val Ser Val Ser Ile Ser Ser 325 320 Ala Val Lys Ser Ala Pro Glu Glu Asn Ser Arg Glu Met Thr Glu 340 Thr Gln Met

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH: 381 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Gly Pro Thr Ser Val Pro Leu Val Lys Ala His Arg Ser Ser Val Ser Asp Tyr Val Asn Tyr Asp Ile Ile Val ARg His Tyr Asn 20 25 Tyr Thr Gly Lys Leu Asn Ile Ser Ala Asp Lys Glu Asn Ser Ile 35 40 Lys Leu Thr Ser Val Val Phe Ile Leu Ile Cys Cys Phe Ile Ile 55 50 Leu Glu Asn Ile Phe Val Leu Leu Thr Ile Trp Lys Thr Lys Lys 65 70 Phe His Arg Pro Met Tyr Tyr Phe Ile Gly Asn Leu Ala Leu Ser 80 85 Asp Leu Leu Ala Gly Val Ala Tyr Thr Ala Asn Leu Leu Leu Ser 100 95 Gly Ala Thr Thr Tyr Lys Leu Thr Pro Ala Gln Trp Phe Leu Arg 115 Glu Gly Ser Met Phe Val Ala Leu Ser Ala Ser Val Phe Ser Leu 130 Leu Ala Ile Ala Ile Glu Arg Tyr Ile Thr Met Leu Lys Met Lys 145 Leu His Asn Gly Ser Asn Asn Phe Arg Leu Phe Leu Leu Ile Ser 160 155 Ala Cys Trp Val Ile Ser Leu Ile Leu Gly Gly Leu Pro Ile Met 175 170

Gly Trp Asn Cys Ile Ser Ala Leu Ser Ser Cys Ser Thr Val Leu Pro Leu Tyr His Lys His Tyr Ile Leu Phe Cys Thr Thr Val Phe Thr Leu Leu Leu Ser Ile Val Ile Leu Tyr Cys Arg Ile Tyr Ser Leu Val Arg Thr Arg Ser Arg Arg Leu Thr Phe Arg Lys Asn Ile Ser Lys Ala Ser Arg Ser Ser Glu Asn Val Ala Leu Leu Lys Thr Val Ile Ile Val Leu Ser Val Phe Ile Ala Cys Trp Ala Pro Leu Phe Ile Leu Leu Leu Leu Asp Val Gly Cys Lys Val Lys Thr Cys Asp Ile Leu Phe Arg Ala Glu Tyr Phe Leu Val Leu Ala Val Leu Asn Ser Gly Thr Asn Pro Ile Ile Tyr Thr Leu Thr Asn Lys Glu Met Arg Arg Ala Phe Ile Arg Ile Met Ser Cys Cys Lys Cys Pro Ser Gly Asp Ser Ala Gly Lys Phe Lys Arg Pro Ile Ile Ala Gly Met Glu Phe Ser Arg Ser Lys Ser Asp Asn Ser Ser His Pro Gln Lys Asp Glu Gly Asp Asn Pro Glu Thr Ile met Ser Ser Gly Asn Val Asn Ser Ser Ser

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page 8 . line 17	l to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Colle	ection
Address of depositary institution (including postal code and country 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit April 28, 1997	Accession Number 209004
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the international learning of Deposit's	Bureau later (specify the general nature of the indications, e.g., Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page 8 . line 2	ed to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	llection
Address of depositary institution (including postal code and count 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	יעי)
Date of deposit April 28, 1997	Accession Number 209003
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International Number of Deposit*)	Bureau tater (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

PCT/US98/09048 WO 98/50549

WHAT IS CLAIMED IS:

An isolated polynucleotide comprising a polynucleotide having at least a 95% identity 1. to a member selected from the group consisting of:

54

- a polynucleotide encoding a polypeptide comprising amino acids 2 to (a) 342 of SEQ ID NO:2;
- a polynucleotide encoding a polypeptide comprising amino acids 1 to (b) 260 of SEQ ID NO:4; and
 - the complement of (a) or (b). (c)
- The isolated polynucleotide of claim 1 wherein said member is (a). 2.
- The isolated polynucleotide of claim 1 wherein said member is (b). 3.
- The isolated polynucleotide of claim 1, wherein the polynucleotide is DNA. 4.
- The isolated polynucleotide of claim 1, wherein said polynucleotide is RNA. 4.
- A method of making a recombinant vector comprising inserting the isolated 5. polynucleotide of claim 1 into a vector, wherein said polynucleotide is DNA.
- A recombinant vector comprising the polynucleotide of claim 1, wherein said 6. polynucleotide is DNA.
- A recombinant host cell comprising the polynucleotide of claim 1, wherein said 7. polynucleotide is DNA.
- A method for producing a polypeptide comprising expressing from the recombinant 8. cell of claim 11 the polypeptide encoded by said polynucleotide.

55

- 9. The isolated polynucleotide of claim 1 comprising a polynucleotide, which includes nucleotides 226 to 1251 of SEQ ID NO:1.
- 10. The isolated polynucleotide of claim 1 comprising a polynucleotide, which includes nucleotides 2 to 827 of SEQ ID NO:3.
- 11. An isolated polynucleotide comprising a polynucleotide having at least a 95% identity to a member selected from the group consisting of:
- (a) a polynucleotide encoding the same polypeptide encoded by the human cDNA in ATCC Deposit No. 209003;
- (b) a polynucleotide encoding the same polypeptide encoded by the human cDNA in ATCC Deposit No. 209004; and
 - (c) the complement of (a) or (b).
- 12. The isolated polynucleotide of claim 17, wherein the member is (a).
- 13. The isolated polynucleotide of claim 17, wherein the member is (b).
- 14. A method of making a recombinant vector comprising inserting the isolated polynucleotide of claim 11 into a vector, wherein said polynucleotide is DNA.
- 15. A recombinant vector comprising the polynucleotide of claim 11, wherein said polynucleotide is DNA.
- 16. A recombinant host cell comprising the polynucleotide of claim 11, wherein said polynucleotide is DNA.
- 17. A method for producing a polypeptide comprising expressing from the recombinant cell of claim 16 the polypeptide encoded by said polynucleotide.
- 18. An isolated polypeptide comprising:

56

a mature polypeptide having an amino acid sequence encoded by a polynucleotide which is at least 95% identical to member selected from the group consisting of:

- (a) a polynucleotide encoding a polypeptide comprising amino acids 2 to 342 of SEQ ID NO:2;
- (b) a polynucleotide encoding a polypeptide comprising amino acids 1 to 260 of SEQ ID NO:4; and
 - (c) the complement of (a) or (b).
- 19. An antibody against the polypeptide of claim 18.
- 20. An antagonist against the polypeptide of claim 18.
- 21. A process for diagnosing a disease or a susceptibility to a disease related to an underexpression of the polypeptide of claim 18 comprising:

determining a mutation in a nucleic acid sequence encoding said polypeptide.

GCACGAGGAA CAGAACACTT TCTCATGTCC AGGGTCAGAT TACAAGAGCA CTCAAGACTT 60 TACTGACGAA AACTCAGGAA ATCCTCTATC ACAAAGAGGT TTGGCAACTA AACTAAGACA 120 TTAAAAGGAA AATACCAGAT GCCACTCTGC AGGCTGCAAT AACTACTACT TACTGGATAC 180 ATTCAAACCC TCCAGAATCA ACAGTTATCA GGTAACCAAC AAGAA ATG CAA GCC GTC 237 Met Gln Ala Val GAC ATT CTC ACC TCT GCG CCT GGG AAC AAC AGT CTG TGC ACC AGA 282 Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu Cys Thr Arg 10 GAC TAC AAA ATC ACC CAG GTC CTC TTC CCA CTG CTC TAC ACT GTC 327 Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr Thr Val CTG TTT TTT GTT GGA CTT ATC ACA AAT GGC CTG GCG ATG AGG ATT 372 Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg Ile 417. TTC TTT CAA ATC CGG AGT AAA TCA AAC TTT ATT ATT TTT CTT AAG Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys AAC ACA GTC ATT TCT GAT CTT CTC ATG ATT CTG ACT TIT CCA TTC 462 Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe 507 AAA ATT CTT AGT GAT GCC AAA CTG GGA ACA GGA CCA CTG AGA ACT Lys Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr 552 TTT GTG TGT CAA GTT ACC TCC GTC ATA TTT TAT TTC ACA ATG TAT Phe Val Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr 100 597 ATC AGT ATT TCA TTC CTG GGA CTG ATA ACT ATC GAT CGC TAC CAG The Ser The Ser Phe Leu Gly Leu The Thr Ile Asp Arg Tyr Gin 115 AAG ACC ACC AGG CCA TTT AAA ACA TCC AAC CCC AAA AAT CTC TTG 642 Lys Thr Thr Arg Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu 125 GGG GCT AAG ATT CTC TCT GTT GTC ATC TGG GCA TTC ATG TTC TTA 687 Gly Ala Lys Ile Leu Ser Val Val Ile Trp Ala Phe Met Phe Leu 145 CTC TCT TTG CCT AAC ATG ATT CTG ACC AAC AGG CAG CCG AGA GAC 732 Leu Ser Leu Pro Asn Met Ile Leu Thr Asn Arg Gln Pro Arg Asp 160 777 AAG AAT GTG AAG AAA TGC TCT TTC CTT AAA TCA GAG TTC GGT CTA Lys Asn Val Lys Lys Cys Ser Phe Leu Lys Ser Glu Phe Gly Leu 170 180

FIG.1A

2/7 GTC TGG CAT GAA ATA GTA AAT TAC ATC TGT CAA GTC ATT TTC TGG 822 Val Trp His Glu Ile Val Asn Tyr Ile Cys Gln Val Ile Phe Trp 190 ATT AAT TTC TTA ATT GTT ATT GTA TGT TAT ACA CTC ATT ACA AAA 867 Ile Asn Phe Leu Ile Val Ile Val Cys Tyr Thr Leu Ile Thr Lys 205 210 912 GAA CTG TAC CGG TCA TAC GTA AGA ACG AGG GGT GTA GGT AAA GTC Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg Gly Val Gly Lys Val 215 220 225 957 CCC AGG AAA AAG GTG AAC GTC AAA GTT TTC ATT ATC ATT GCT GTA Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile Ile Ile Ala Val 230 235 240 TTC TIT AIT TGT TIT GTT CCT TTC CAT TIT GCC CGA ATT CCT TAC 1002 Phe Phe Tle Cys Phe Val Pro Phe His Phe Ala Arg Ile Pro Tyr 250 ACC CTG AGC CAA ACC CGG GAT GTC TTT GAC TGC ACT GCT GAA AAT 1047 Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala Glu Asn 270 265 260 ACT CTG TTC TAT GTG AAA GAG AGC ACT CTG TGG TTA ACT TCC TTA 1092 Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser Leu 275 280 285 275 1137 AAT GCA TGC CTG GAT CCG TTC ATC TAT TTT TTC CTT TGC AAG TCC Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser 295 300 TTC AGA AAT TCC TTG ATA AGT ATG CTG AAG TGC CCC AAT TCT GCA 1182 Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala 310 ACA TCT CTG TCC CAG GAC AAT AGG AAA AAA GAA CAG GAT GGT GGT 1227 Thr Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly 330 320 1274 GAC CCA AAT GAA GAG ACT CCA ATG TAA ACAAATTAAC TAAGGAAATA Asp Pro Asn Glu Glu Thr Pro Met 340 TTTCAATCTC TTTGTGTTCA GAACTCGTTA AAGCAAAGCG CTAAGTAAAA ATATTAACTG 1334 ACGAAGAAGC AACTAAGTTA ATAATAATGA CTCTAAAGAA ACAGAAGATT ACAAAAGCAA 1394 TTTTCATTTA CCTTTCCAGT ATGAAAAGCT ATCTTAAAAT ATAGAAAACT AATCTAAACT 1454 GTAGCTGTAT TAGCAGCAAA ACAAACGACA TCCAATTGTC ATGCTGCATG CAAAACTACA 1514 CAGAATTCAT GTTTTGGCAG AGTTTTGGCA AAATGAGTAA TCATATAATA TTTACTGTAA 1574 TTTTTAAAAT ACATTATCGT TCACAATTIT ATTTTTTCAT AATCAACTAA GGAAGAACGA 1634 TCAATTGGAT ATAATCTTCT TACCAAAAAT GATAGTTAAA ATGTATATAT ATCCTAGTCC 1694

FIG.1B

3/7

CCTAACCAAA TCCTGACCTA TTGGGATACT TATAAAAATT TAAGTAAGTG GGATACACAA 1754
AGAATAATAA CTATTAACTT TTCATTATTA GCCAAAAACC TAAGGGATTT AAACTAATTG 1814
AAACTGTATT TGATTGGACT TAATTTTTTA TGTTTATTTA GAAGATAAAG ATTTATAGAA 1874
GACCTTTACA ATAAAGAGAA GAAATATCGA AGTCATTAAA ATAAGGAGAC TTACTTTTAT 1934
GACATTCTAA TACTTAAAAA TATAGAAATA TTTCCTTAAT TCTAGAGAAA CTAGTTTTAC 1994
TAATTTTTTA CAACTTCAAT AATACCATCA CTGACACTTA CCTTTATTAA TTAGCTTCTA 2054
GAAAATAGCT GCTAATTAGG TTAATGAACA TTTTACCTTA GTGAAAAAAA ATTAATTAAA 2114
TATGATTACA AAGTTGCACA GCATAACTAC TGAGAGGAAA GTGATTGATC TGTTTGTAAT 2174
TACTTGTTTG TATTGGTGTG TATAAAAATAC AAXATTTACA TTAAACTCTA AATCATTAAA 2234
AAAAAAAAAAA AAAAA

FIG.1C

1	MQAVDNLTSAPGNTSLCTRDYKITQVLFPLLYTVLFFVGLITNGLA : .: : .: . .	46
3	IQMANNFTPPSATPQGNDCDLYAHHSTARIVMPLHYSLVFIIGLVGNLLA	52
47	MRIFFQIRSKSN.FIIFLKNTVISDLLMILTFPFKILSDAKLGTGPLRTF : ::. .:: .	95
53	LVVIVQNRKKINSTTLYSTNLVISDILFTTALPTRIAYYAMGFDWRIGDA	102
96	VCQVTSVIFYFTMYISISFLGLITIDRYQKTTRPFKTSNPKNLLGAKILS : .: .: : :: : : : : :	145
103	LCRITALVFYINTYAGVNFMTCLSIDRFIAVVHPLRYNKIKRIEHAKGVC	152
146	<pre>VVIWAFMFLLSLPNMILTNRQPRDKNVKKCSFLKSEFGLVWHEIVNYI ::: :: :: :: ::: ::: ::: ::: :::::::</pre>	193
153	IFVWILVFAQTLPLLINPMSKQEAERITCMEYPNFEETKSLPWILLGACF	202
194	CQVIFWINFLIVIVCYTLITKELYRSYVRTRGVGKVPRKKVNVKVFII::::::::::::::::::::::::::::::::::	241
203	IGYVLPLIIILICYSQICCKLFRTAKQNPLTEKSGVNKKALNTIILII	250
242	IAVFFICFVPFHFARIPYTLSQTRDVFDCTAENTLFYVKESTLWLTSL: .: . : .:	289
251	V.VFVLCFTPYHVAIIQHMIKKLRFSNFLECSQRHSFQISLHFTVCLMNF	299
290	NACLDPFIYFFLCKSFRNSLISMLKCPNSATSLSQDNRKKEQDGGDPNEE	339
300	NCCMDPFIYFFACKGYKRKVMRMLKRQVS.VSISSAVKSAPEENSREMTE	348
340	TPM 342	
349	9 TOM 351	

FIG.2

G	GCA Ala	CGA Arg -15	GCC Ala	CAC His	CCT Pro	Ala	TCG Ser -10	GGC Gly	CTC Leu	AGT Ser	CAG G1n	CCC Pro -5	CCG Pro	GGG Gly	43
GAG G1u	GCC Ala	ATG Met 1	AAC Asn	GCC Ala	ACG Thr	GGG Gly 5	ACC Thr	CCG Pro	GTG Va 1	GCC Ala	CCC Pro 10	GAG G1u	TCC Ser	TGC Cys	88
CAA Gln	CAG Gln 15	CTG Leu	GCG Ala	GCC Ala	GGC Gly	GGG Gly 20	CAC His	AGC Ser	CGG Arg	CTC Leu	ATT Ile 25	GTT Val	CTG Leu	CAC His	131
TAC Tyr	AAC Asn 30	CAC His	TCG Ser	GGC Gly	CGG Arg	CTG Leu 35	GCC Ala	GGG Gly	CGC Arg	GGG Gly	GGG Gly 40	CCG Pro	GAG G1u	GAT Asp	176
GGC Gly	GGC Gly 45	CTG Leu	GGG Gly	GCC Ala	CTG Leu	CGG Arg 50	GGG Gly	CTG Leu	TCG Ser	GTG Val	GCC Ala 55	Ala	AGC Ser	TGC Cys	221
CTG Leu	GTG Val 60	Val	CTG Leu	GAG Glu	AAC Asn	TTG Leu 65	CTG Leu	GTG Va 1	CTG Leu	GCG Ala	GCC Ala 70	Ile	ACC Thr	AGC Ser	266
CAC His	ATG Met 75	Arg	TCG Ser	CAA Gln	CGC Ars	TGG Trp 80	GTC Val	TAC Tyr	TAT Tyr	TGC Cys	CTG Leu 85	Val	AAC Asn	ATT Ile	311
ACG Thr	ATG Met 90	Ser	GAC Asp	CTG Leu	CTC Leu	ACG Thr 95	Gly	GCG Ala	GCC Ala	TAC Tyr	CTG Leu 100	ı Ala	AAC Asn	GTG Val	356
CTG Leu	CTG Leu 105	Ser	GGG Gly	GCC Ala	CGC Arg	ACC Thr 110	Phe	: CGT : Arg	CTG Leu	GCG Ala	CCC Pro 115) Ala	CAG Gln	TGG Trp	401
TT(Phe	CTA Leu 120	ı Arç	AAG J Lys	G GGC G Gly	CTG Leu	CTC Leu 125	ı Phe	ACC Thr	GCC Ala	CTG Leu	GC0 Ala 130	a Ala	TCC Ser	ACC Thr	446
TT(Phe	AGC Ser 135	· Lei	G CT(u Lei	TTO Phe	ACT Thr	GCA Ala 140	ıGly	TTO Let	G CGC I Arg	TTT Phe	GCC Ala 14!	a Thi	C ATO Met	GTG Val	491
CG(G CCC 9 Pro 150	o Va	G GCG	C GA(a Glu	a AG0 u Sei	C GG(r Gl) 159	/ Ala	C ACC a Thr	C AA(G ACC	C AG Se 16	r Ar	C GTO g Val	TAC Tyr	536
GG G1	C TTO y Pho 16	e Il	C GG e G1	C CTO y Leo	C TGG u Cy	C TGO S Tri 17	<u>e</u> Le	G CT(u Lei	G GCG	C GCC a Al	G CT a Le 17	G CT u Le 5	G GG(u Gly	ATG Met	581
CT Le	G CC u Pr 18	o Le	G CT u Le	G GG u G1	C TG y Tr	p Asi 18	n Cy 5	s Le	u Cy	C GC s A1	C TT a Ph 19	ie As	C CG(n Ar	C TGC g Cys	626
FIG.3A															

TCC AGC CTT CTG CCC CTC TAC TCC AAG CGC TAC ATC CTC TTC TGC Ser Ser Leu Leu Pro Leu Tyr Ser Arg Arg Thr Ile Leu Phe Cys 195 200 205	671
CTG GTG ATC TTC GCC GGC GTC CTG GCC ACC ATC ATG GGC CTC TAT Leu Val Ile Phe Ala Gly Val Leu Ala Thr Ile Met Gly Leu Tyr 210 215 220	716
GGG GCC ATC TTC CGC CTG GTG CAG GCC AGC GGG CAG AAG GCC CCA Gly Ala Ile Phe Arg Leu Val Gln Ala Ser Gly Gln Lys Ala Pro 225 230 235	761
CGC CCA GCG GCC CGC CGC AAG GCC CGC CGC	806
CTG ATG ATC CTG CTG GCC TCC TAG GTGTGCTGGG GACCACTCTT CGGGCTGCTG Leu Met Ile Leu Leu Ala Ser 255 260	860
CTGGCCGACG TCTTTGGCTC CAACCTCTGG GCCCAGGAGT ACCTGCGGGG CATGGACTGG	920
ATCCTGGCCC TGGCCGTCCT CAACTCGGCG GTCAACCCCA TCATCTACTC CTTCCGCAGC	980
AGGGAGGTGT GCAGAGCCGT GCTCAGCTTC CTCTGCTGCG GGTGTCTCCG GCTGGGCATG	1040
CGAGGGCCCG GGGACTGCCT GGCCCGGGCC GTCGAGGCTC ACTCCGGAGC TTCCACCACC	1100
GACAGCTCTC TGAGGCCAAG GGACAGCTTT CGCGGCTCCC GCTCGCTCAG CTTTCGGATG	1160
CGGGAGCCCC TGTCCAGCAT CTCCAGCGTG CGGAGCATCT GAAGTTGCAG TCTTGCGTGT	1220
GGATGGTGCA ACCACCGGGT GCGTGCCAGG CAGGCCCTCC TGGGGTACAG GAAGCTGTGT	1280
GCACGCAACC TCGCCCTGTA TGGGGAGCAG GGAACGGGAC AGGCCCCCAT GGACTTGCCC	1340
GGTGGCCTCT CGGGGCTTCT GACGCCATAT GGACTTGCCC ATTGCCTATG GCTCACCCTG	1400
GACAAGGAGG CAACCACCCC ACCTCCCCGT AGGAGCAGAG AGCACCCTGG TGTGGGGGCG	1460
AGTGGGTTCC CCACAACCCC GCTTCTGTGT GATTCTGGGG AAGTCCCGGC CCCTCTCTGG	1520
GCCTCAGTAG GGCTCCCAGG CTGCAAGGGG TGGACTGTGG GATGCATGCC CTGGCAACAT	1680
TGAAGTTCGA TCATGGTAAA AAAAAAAAAA AAAAAAAAAA	1735

FIG.3B

1	MNATGTPVAPESCQQLAAGGHSRLIVLHYNHSGRLAGRGGPEDGGLGALR	50
1	.: :. :: :: : : ::. : :: . MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKEN.SIKLTS	49
51	GLSVAASCLVVLENLLVLAAITSHMRSQRWVYYCLVNITMSDLLTGAAYL	100
50	.: : : ::: :: . : : : :. :.: . . VVFILICCFIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYT	99
101	ANVLLSGARTFRLAPAQWFLRKGLLFTALAASTFSLLFTAGLRFATMVRP	150
100	: :: . . : : :: ANLLLSGATTYKLTPAQWFLREGSMFVALSASVFSLLAIAIERYITMLKM	149
151	VAESGATKTSRVYGFIGLCWLLAALLGMLPLLGWNCLCAFDRCSSLLPLY	200
150	:: : : ::. : :: :: : .: KLHNGS.NNFRLFLLISACWVISLILGGLPIMGWNCISALSSCSTVLPLY	198
201	SKRYILFCLVIFAGVLATIMGLYGAIFRLVQASGQKAPRPAARRKARR	248
199	: :: : : : : :. ::: : : :	248
249	LLKTVLMILLAFLVCWGPLFGLLLADVFGSNLWAQEYLRGMDWILA	294
249	::: . :. : ::: :. ::: . ENVALLKTVIIVLSVFIACWAPLFILLLLDV.GCKVKTCDILFRAEYFLV	297
295	LAVLNSAVNPIIYSFRSREVCRAVLSFLCCGCLRLGMRGPGDCLARAVEA	344
298	:. ::: : .::: :.::: :: LAVLNSGTNPIIYTLTNKEMRRAFIRIMSCCKCPSGDSAGKFKRPIIA	345
345		
346	: : . :: .: GMEFSRSKSDNSSHPQKDEGDNPETIMSSGNVNSSS 381	

FIG.4

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERMITION IN LICITION CODIO		
(51) International Patent Classification 6:		(11) International Publication Number: WO 98/50549
C12N 15/12, C12Q 1/68, C07K 14/705, 16/28	A3	(43) International Publication Date: 12 November 1998 (12.11.98)
(21) International Application Number: PCT/USS (22) International Filing Date: 7 May 1998 (0		CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL
(30) Priority Data: 08/852,824 7 May 1997 (07.05.97)	τ	Published With international search report.
(71) Applicant (for all designated States except US): I GENOME SCIENCES, INC. [US/US]; 9410 Ko Avenue, Rockville, MD 20850 (US).		
(72) Inventors; and (75) Inventors/Applicants (for US only): RUBEN, Ste [US/US]; 18528 Heritage Hills Drive, Olney, MI (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034 vale, CA 94086 (US).	D 208	32
(74) Agents: BROOKES, A., Anders et al.; Human Sciences, Inc., 9410 Key West Avenue, Rockvi 20850 (US).		
		·
(54) Title: TWO HUMAN G-PROTEIN COUPLED REC	ЕРТО	RS: EBV-INDUCED GPCR 2 (EBI-2) AND EDG-1-LIKE GPCR
(57) Abstract		
Two human G-protein coupled receptor polypeptide DNA (RNA) encoding each of such polypeptides and a pro for producing such polypeptides by recombinant techniques.	cedure jues is	: .: : .: .:::: . :: : 3 IQMANNFTPPSATPQGNDCDLYAHHSTARIVMPLHYSLVFIIGLVGNLLA 52
disclosed. Also disclosed are methods for utilizing polypeptides for identifying antagonists and agonists to polypeptides. Also disclosed are diagnostic methods for de a mutation in the nucleic acid sequence of each of the G-1	such tecting	4/ MRIFFURSSSN.FIIFERNIVISULMILTEPPRILSUARLGIGPERTE 95 : ::. .::.
coupled receptors.		96 VCQVTSVIFYFTMYISISFLGLITIDRYQKTTRPFKTSNPKNLLGAKILS 145 : .: :: :: ::: ::: :::: :::: :::: :::: ::::
•		146 VVIWAFMFLLSLPNMILTNRQPROKNVKKCSFLKSEFGLVWHEIVNYI 193 :.: : : : ::::::::::::::::::::::::::::
		194 CQVIFWINFLIVIVCYTLITKELYRSYVRTRGVGKVPRKKVNVKVFII 241:: :: ::: : : : 203 IGYVLPLIIILICYSQICCKLFRTAKONPLTEKSGVNKKALNTIILII 250
· ·		242 IAVFFICFVPFHFARIPYTLSQTRDVFDCTAENTLFYVKESTLWLTSL 289 : .: . : . : :: : : :
		290 NACLDPFIYFFLCKSFRNSLISMLKCPNSATSLSQDNRKKEQDGGDPNEE 339 . :
		340 TPM 342 . 349 TQM 351

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Агтеліа	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazi)	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
/cc	Congo	KE	Келуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US 98/09048

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/12 C07K14/705 C12Q1/68 C07K16/28 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K C12Q Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х DATABASE EMBL - EMEST8 1,2,4-7, Entry Hs162g01b, Acc.No. D81412, 11,12, 7 February 1996 14-16 FUJIWARA T., ET AL.: "Human fetal brain cDNA 5'-end GEN-162G01." XP002076080 see the whole document Α WO 94 12519 A (BRIGHAM & WOMENS HOSPITAL) 9 June 1994 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the lart which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention *E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 6. 01. **99** 1 September 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 apo nl, Smalt, R Fax: (+31-70) 340-3016

Intern nal Application No PCT/US 98/09048

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DATABASE EMBL- EMEST3 Entry Aa810452, Acc.No. g2875724, 16 February 1998 STRAUSBERG, R.: "ob94e01.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1339032." XP002076081 see the whole document	1,2,4-7, 11,12, 14-16
P,X	NELSON, P.S. ET AL.: "An expressed-sequence-tag database of the human prostate: sequence analysis of 1168 cDNA clones." GENOMICS, vol. 47, no. 1, 1 January 1998, pages 12-25, XP002076079 see the whole document -& DATABASE EMBL - EMEST1 Entry AA447306, Acc.No. AA447306, 7 April 1998 NELSON, P.S. ET AL.: "BS.B12R PN001-Normal Human Prostate Homo sapiens cDNA clone BS.B12 5'." XP002076082 see the whole document	1,2,4-7, 11,12, 14-16

Intendication No. PCT/US 98/09048

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of Iirst sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
· .
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 2,9,12 and 1,4-8,11,14-19,21 partially
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 2,9,12 and 1,4-8,11,14-19,21 partially

An isolated polypeptide comprising a sequnce which is as least 95% homologous to seq. 2, a polynucleotide encoding it, a recombinant vector comprising the nucleic acid and method for making the vector, a recombinant host comprising said nucleic acid, a method of producing the encoded peptide using said host, an antibody against said peptide, an antagonist for said peptide, and a process for diagnosing a disease or susceptibility to a disease comprising determinating the presence of a mutation in said nucleic acid.

2. Claims: 3,10,13 and 1,4-8,11,14-19,21 partially

An isolated polypeptide comprising a sequnce which is as least 95% homologous to seq. 4, a polynucleotide encoding it, a recombinant vector comprising the nucleic acid and method for making the vector, a recombinant host comprising said nucleic acid, a method of producing the encoded peptide using said host, an antibody against said peptide, an antagonist for said peptide, and a process for diagnosing a disease or susceptibility to a disease comprising determinating the presence of a mutation in said nucleic acid.

Intern nal Application No PCT/US 98/09048

Patent document cited in search report	Publication	Patent family	Publication
	date	member(s)	date
WO 9412519 A	09-06-1994	AU 5325694 A US 5744301 A	22-06-1994 28-04-1998

Form PCT/ISA/210 (patent family annex) (July 1992)