

Optimizing Prosumer Policies in Periodic Double Auctions Inspired by Equilibrium Analysis

Bharat Manvi, Sanjay Chandlekar, Easwar Subramanian

Aug 6, 2024

TCS Research

Motivation

Motivation

- The Periodic Double Auction¹ is made up of **Suppliers** and **Consumers**.
- **Objective** is to find **Policies** for the consumers to **Minimize the Cost**.
- Application of PDA is that it models a Day Ahead Electricity Market.
- Hence, the developed policies can be used in the Market.

Day Ahead Electricity market

- Day Ahead Electricity Market has two components: Suppliers and Cosumers.
- When Consumers are allowed to sell small quantities, they are called as **Prosumers**.

Introduction

Double Auction

- Double Auction is where the Suppliers and Prosumers are strategic.
- A Market Regulator matches the asks by supplier with the bids by the Prosumers.
- Both Asks and Bids are the pair of price and quantity.

PDA

The PDA is the sequence of Double Auctions and it has a finite horizon.

Problem Statement

Problem Statement

The goal is to find **policies** for the **Prosumers** to minimize the **procurement cost**.

Update the demand estimation Time in future Now **Until Horizon** Place bids Place bids is Reached for updated for estimated

demand

demand

Solution Approach

- The PDA is modeled as a **Markov game**.
- A Nash equilibrium (NE) is formulated in an ideal setting².
- Based on the NE analysis, an algorithm for the policy is developed.

Modeling PDA as a Markov Game

Modeling PDA as a Markov Game

The PDA is modeled as a **Markov Game** $\mathcal{M} = \langle N, A, S, P, C, H \rangle$

Procurement Cost

- The procurement cost is the **sum of costs** in each of the rounds.
- Starting from a state $s \in S$, the procurement cost is denoted as V(s).
- V(s) is also called as the Value function.

Nash Equilibrium

Nash Equilibrium

NE is a joint policy $a \in A$, in which no agent can **unilaterally** deviate from the alloted action.

Insights from the Equilibrium Policy

- If there are enough rounds for players, then they would want to utilize the rounds.
- If rounds are not enough, then the players would bid at maximum possible price to avoid paying very high price outside the auction.
- The policy suggests the players with higher requirement have more leverage.

MPNE-BBS : An Algorithm Based on Nash Equilibrium Analysis

Algorithm 1 MPNE-BBS

- 1: totalDmd[] ← **netDmdPredict**(time)
- 2: selfDmd[] ← indvDmdPredictor(time)
- 3: **for** hour in [1,...,23] **do**
- 4: deliverySlot ← time + hour
- 5: unclearedAsks[] ← **Auction**(time-1,deliverySlot)
- 6: estBidPrice = **getEstBidPrice**(time,deliverySlot,unclearedAks,selfDmd,totalDmd)
- 7: adjEstBidPrice = **getAdjEstBidPrice**(estBidPrice) To account for inaccurate SC
- 8: bidList = **getBids**(adjEstBidPrice)
- 9: **Auction**(time,deliverySlot) ← bidList

Algorithm 2 getEstBidPrice (time,deliverySlot,unclearedAks,selfDmd,totalDmd)

- 1: if unclearedAsks is not empty then
- 2: supplyQty ← sum(unclearedAsks.quant)
- 3: **if** supplyQty > totalDmdForDSlot **then**
- 4: $p_{u_h} \leftarrow \text{Lowest price at which totalDmd[deliverySlot] can be cleared}$
- 5: $qtyReqForOthers \leftarrow totalDmd[deliverySlot] selfDmd[deliverySlot]$
- 6: $p_{v_t^b} \leftarrow \text{Lowest price at which qtyReqForOthers can be cleared}$
- 7: else
- 8: $p_{u_h}, p_{v_h^b} \leftarrow \text{Maximum Ask Price}$
- 9: $v_h^0 \leftarrow \max\{1, u_h \text{hour} + 1\}$ To get remaining rounds
- 10: **return** estBidPrice = $\max\{p_{v_b^0}, p_{v_b^b}\}$ Adjust price to account for remaining rounds
- 11: **else**
- 12: clearedPrices[] \leftarrow Auction(t,t+hour) $\forall t$ < currentTime
- 13: **return** estBidPrice = max{cleredPrices}

Results

Figure 1: Wholesale Cost Comparison in 7-Player Games³

 $^{^3}$ Chandlekar et al. [2], Chandlekar et al. [1], Chowdhury et al. [3], Ghosh et al. [5], Cliff [4]

Conclusion

- A Nash Equilibrium for a PDA modeled as Markov game is devised.
- This Equilibrium helps in explaining the policy of the players in different scenarios.
- Devised an algorithm based on the Nash Equilibrium Analysis, results show that it works well in practice.
- In future work, aim is to extend the analysis to partial observable setting and see how it can help in devising algorithms.

For further discussion, please visit my poster presentation.

Thank You

Bharat Manvi

bharat.manvi@tcs.com

- Sanjay Chandlekar et al. "Multi-Unit Double Auctions: Equilibrium Analysis and Bidding Strategy Using DDPG in Smart-Grids". In: *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems.* AAMAS '22. Virtual Event, New Zealand, 2022, pp. 1569–1571. ISBN: 9781450392136.
- Sanjay Chandlekar et al. "VidyutVanika21: An Autonomous Intelligent Broker for Smart-grids". In: *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*. July 2022, pp. 158–164. DOI: 10.24963/ijcai.2022/23. URL: https://doi.org/10.24963/ijcai.2022/23.
- Moinul Morshed Porag Chowdhury et al. "Bidding in Periodic Double Auctions Using Heuristics and Dynamic Monte Carlo Tree Search". In: *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18*. July 2018, pp. 166–172. DOI: 10.24963/ijcai.2018/23. URL: https://doi.org/10.24963/ijcai.2018/23.

Susobhan Ghosh et al. "Bidding in Smart Grid PDAs: Theory, Analysis and Strategy". In: *Proceedings of the AAAI Conference on Artificial Intelligence* 34.02 (Apr. 2020), pp. 1974–1981. DOI: 10.1609/aaai.v34i02.5568. URL: https://ojs.aaai.org/index.php/AAAI/article/view/5568.

