Protótipo de sensor para medição de temperatura e umidade.

Grupo: José Gabriel A. Pontes Thiago P. P. Sena Luis Guilherme N. L. De Oliveira Pedro Mendes Oliveira Docente: Thiago Cerqueira Jesus Disciplina: TEC499

Turma: TP02 (2023.2)

Introdução

- O que é o projeto:
 - Protótipo de sensor para medição de temperatura e umidade;.
- Requisitos:
 - Utilização do protocolo UART para a comunicação serial;
 - Código do computador em C e da FPGA em Verilog;
 - Capacidade de endereçamento com até 32 sensores;
 - Comandos são palavras de 8 bits;
 - Requisições 2 bytes;
 - Respostas 3 bytes.

Comandos de Requisição

Situação atual do sensor
Medida de temperatura atual
Medida de umidade atual
Sensoriamento contínuo de temperatura
Sensoriamento contínuo de umidade
Desativa o sensoriamento contínuo de temperatura
Desativa o sensoriamento contínuo de umidade

Comandos de Resposta

0x1F	Sensor com problema
0x07	Sensor funcionando normalmente
0x08	Medida de umidade atual
0x09	Medida de temperatura atual
0x1A (novo 0x0A)	Desativação do sensoriamento contínuo de temperatura
0x0B	Desativação do sensoriamento contínuo de umidade
0x0C	Ativação do sensoriamento contínuo de temperatura
0x0F	Ativação do sensoriamento contínuo de temperatura

Metodologia

- Ferramentas:
 - FPGA CYCLONE IV
 - Sensor(es) DHT11
 - Software Quartus
 - Editor de Texto para escrita do código em C e Terminal Linux para compilar e executar o código
 - Software Creately para modelagem do sistema e máquinas de estados.

Metodologia

- Esquema de modularização:
 - Feito pequenos circuitos que foram unidos para fazer o circuito completo.
- Módulos:
 - uart;
 - o dht:
 - stepper;
 - triState;
 - pulseSensorToTransmit;
 - baudRateGenerator;
 - geradorMicrossegundo;
 - o counter.

Produto Final

Protocolo UART

- Comunicação serial
 - Simplex, Half-Duplex e Full duplex
- Sincronização de protocolos UART
- Start bit e Stop bit
- Formato de frame UART

0

Baud Rate Generator

Baud rate	Time required to transfer 160 bytes over UART
9600	166msec.
19200	83.33msec.
38400	41.66msec.
57600	27.77msec.
115200	13.78msec.

Módulo UART

UART RX

Faz 2 ciclos para enviar endereço e o comando

UART TX

TRI STATE

DIRECTION = 1

Gerador de Microssegundos

Stepper (Unidade de controle)

choseninfo == sendHumConst && counter ==19200

Conclusão

- Conseguimos atender aos requisitos:
 - Escalável para até 32 sensores;
 - Temperatura e umidade contínua;
 - Temperatura e umidade atual;
 - Status do sensor.
- A unidade de controle poderia ser quebrada em módulos;
- Pontos de melhoria.