决策树 实验记录

11月4日

特征提取的思考:

离散特征时,使用matplot画图,寻找更加的中间值(如有不同的label)(尚未完成)

建决策树之前, 先定义一些用来计算的函数:

- 1. 计算权重
- 2. 计算众数
- 3. 计算信息熵
- 4. 计算信息增益
- 5. 计算信息增益率
- 6. 计算Gini值

先试着建一棵能跑的简单树 (没有剪枝)

第一次用的是Gini,输出数据有329个无效的,827个0,820个1,准确率0.5354。将无效数据预测为0后,正确率为0.6169。(及格了,狗头.jpg)

Total: 1976

method	accuracy	# invalid	1	0	correct	Accuracy without invalid (让自己 开心开 心)
Gini	0.5354	329	820	827	1058	0.6423
Info Gain	0.5481	308	742	926	1083	0.6493
Gain Ratio	0.5481	308	742	926	1083	0.6493

需要改善的问题: 0log0 = 0

特征值离散改进 pre/post pruning

11月5日

关于特征值离散改进:

每个特征根据label分为两类,plot cumulative graph

C = e ^(1 - cwin/(close+1))/e 但不知道怎么写

取的参数: cwin或者close 0,0.001,0.01,0.05,0.1,0.2, 0.5, 0.75, 0.9, 0.99, 1

或者:去掉极值后(即 cwin<1%/close>99%,或者异常数值),中间部分等分划分(这个看上去比较简单?)

实现方法: sort list, 取list[int(0.01 * len(list))] / list[int(0.99 * len(list))], 中间分15?份

redKills, redDeaths 和blueDeaths, blueKills重复, 删除。

可能需要重新离散的数据: blueWardsPlaced (这个和输赢好像关系不大)

可调参数: lowerbound, upperbound, step

method	accurac y	# invalid	1	0	correct	Accurac y without invalid (好像 也没有 很开 心)	Invalid -> 0
Gini(original)	0.5354	329	820	827	1058	0.6423	0.6169
Gini (0.5506	312	812	852	1089	0.6544	0.6203

new)				

设置了max_depth = 20 和 min_samples_split = 10 后: (稍微开心一点了)

Gini (0.6204	109	846	1021	1226	0.6567	0.6442
new2)							

思考:要调整参数的话,需要从train里分一个val组出来

为什么还有那么多invalid?1. 特征离散的时候,有些组数据太少,树上没有对应的子叶(可以考虑每个节点增加一个default子叶);2.树是不是过拟合了?调整pre pruning;增加post pruning。

如何寻找更优的离散(寻找特征)方案?

考虑增加每个特征值的权重?考量特征值(x)和label(y)之间的关系,maybe r?解决方案:

- 1. 分出val组(training:7112, val:791, test:1976)
- 2. 调整离散方案:
 - a. 去极值后,从等分改为等比?可调参数:极值的定义,区间大小 Accuracy为0.5967,不理想。
- 3. 调整返回的值,从众数,改成1的概率,同时修改predict_函数(增加用来计算概率和根据概率预测1或0的函数)Accuracy: 0.6235
- 4. 调整返回的值, 当prob1 (y) > 0.9 返回1, <0.1返回0。Accuracy: 0.6280

准备剪枝:

用划分好的training先生成一棵"枝繁叶茂"的大树

先定义一些函数:

计算在val上的准确率

考虑问题:

怎么判断到达叶子:用for value in dict1.values(): isinstance(value, int or float) 怎么建新树:1. 在老树上找到下一个要尝试剪的结点(每次返回一个新树)

后剪枝遇到问题:为什么越剪越差了?

于是去调了一下pre的参数,当最大深度为2时,accuracy = 0.7171。(手动狗头,所以之前在干嘛??)

11月6日

进一步细化特征离散

画累积直方图,考量每个特征和标签的关联性。

参数: bins = 100, alpha = 0.5, histtype='step', cumulative = True,density=True

发现:有些特征和标签关联性不强(可以舍去),有些关联性较强

舍去的特征包括:

'blueWardsPlaced', 'blueWardsDestroyed', 'blueTotalJungleMinionsKilled', 'redWardsPlaced', 'redWardsDestroyed', 'redTowersDestroyed',

'redTotalJungleMinionsKilled', 'brWardsPlaced'

剩余特征数:33

离散之后,再画一次图,

等比或等区间划分, 感觉离散效果差不多。

Train: val: test = 7112: 791: 1976 约为 7:1:2

当label值不同时,用众数还是1的概率的思考:

在此次实验中, 输赢的概率各占一半

假设这个节点1的概率为0.8:(用概率的准确率, 众数的准确率)

实际概率为0.8: 0.8*0.8 + 0.2*0.2 = 0.68 < 0.8; 实际概率为0.5: 0.8*0.5 + 0.2*0.5 = 0.5 = 0.5; 实际概率为0.2: 0.8*0.2 + 0.2*0.8 = 0.32 > 0.2。

由此可见当实际概率大于0.5时,即接近模型预测的概率时,使用众数效果较好。

基于对自己建的模型的自信(不是),我决定用众数。

#寻找最佳深度

depth: 1 accuracy:0.7219

invalid 0 illusion accuracy:0.7219

depth: 2 accuracy:0.7130

invalid 0 illusion accuracy:0.7130

depth: 3 accuracy:0.6726

invalid 5 illusion accuracy:0.6776

depth: 4 accuracy:0.6397

invalid 18 illusion accuracy:0.6498

depth: 5 accuracy:0.6384

invalid 20 illusion accuracy:0.6498

depth: 6 accuracy:0.6384

invalid 20 illusion accuracy:0.6498

depth: 7 accuracy:0.6384

invalid 20 illusion accuracy:0.6498

在树长到4层以后,因为预剪枝的效果,不再继续生长。

Error reduction pruning

两层树后剪枝前: 0.7130, (测试集: 0.7100), 剪枝后在验证集上的accuracy: 0.7231

(测试集:0.7100)

三层树后剪之前:0.6726, (测试集:0.6888);剪枝后在验证集上的accuracy:

0.7408 (测试集: 0.6943)

四层树后剪之前: 0.6397, (测试集: 0.6579);剪枝后在验证集上的accuracy:

0.7826 (测试集: 0.6705)

三层树/四层树剪枝有效, 但可能在验证集上过拟合了。

想要尝试一下规则后剪枝,但是,对于怎么写代码毫无头绪,于是决定,手动剪枝。

准备:离散的时候,划分区间数减少为一共4个区间试试。

生成的树: {'#': 28,

0:0,

1: {'#': 24, 0: 0, 1: 0, 2: 1, -2: 0, -1: 0},

2: {'#': 30, 1: 1, 2: 1, 3: 1},

3: 1}

化简后: {'#': 28,

0: 0,

1: {'#': 24, 0: 0, 1: 0, 2: 1, -2: 0, -1: 0},

2: 1

3: 1}

存在的规则: f[28] f[24]

若先判断 f[28], 最优树已经生成了, accuracy 在val上0.7320 (test: 0.7120)。

如果先判断 f[24],

DT2.tree = {'#': 24,

2: 1,

0:{'#': 28, 0: 0, 1: 0, 2: 0, 3: 1},

1:{'#': 28, 0: 0, 1: 0, 2: 0, 3: 1},

-1:{'#': 28, 0: 0, 1: 0, 2: 0, 3: 1},

-2:{'#': 28, 0: 0, 1: 0, 2: 0, 3: 1}}

然后借用postpruning剪枝,得到: {'#': 24,

2: 1,

0: {'#': 28, 0: 0, 1: 0, 2: 0, 3: 1},

1: 1,

-1: {'#': 28, 0: 0, 1: 0, 2: 0, 3: 1},

-2: 0}

Accuracy在val上为0.6283 (test: 0.6215)

所以选择原本的树。

最终accuracy 0.7120。

1976个测试样本中,有570个被误分类

标准差 S = sqrt(1 * 570/1975) = 0.5372

标准误差 SEM = 0.537222/sqrt(1976) = 0.01208

 σ (error) = sqrt((15/52*(1-15/52)/1976) = 0.01019

实际accuracy为0.7115 +-1.96 * σ = 0.7115 +-0.0098的置信度为95%。

7个等区间,总共9个区间。

depth: 1 accuracy:0.7080

invalid 0 illusion accuracy:0.7080

depth: 2 accuracy:0.7332

invalid 0 illusion accuracy:0.7332

depth: 3 accuracy:0.6903

invalid 2 illusion accuracy:0.6915

depth: 4 accuracy:0.6662

invalid 12 illusion accuracy:0.6751

深度2, accuracy: val上0.7320->0.7358, test上: 0.7267 深度3, accuracy: val上0.6903 -> 0.7421, test上: 0.7120 明天可以继续考虑优化的地方:

- 1. Plot 区间划分
- 2. 看一下用信息增益或者信息增益率的效果
- 3. 把报告写了

11月7日

区间划分数量对val上accuracy的影响:基于最大深度为2的测试(过拟合可能性更

小)

midclass: 1

method: 1 accuracy:0.6321 method 2 accuracy:0.6384

midclass: 2

method: 1 accuracy:0.7219 method 2 accuracy:0.7244

midclass: 3

method: 1 accuracy:0.6966 method 2 accuracy:0.7118

midclass: 4

method: 1 accuracy:0.7269 method 2 accuracy:0.7282

midclass: 5

method: 1 accuracy:0.7370 method 2 accuracy:0.7257

midclass: 6

method: 1 accuracy:0.7244 method 2 accuracy:0.7269

midclass: 7

method: 1 accuracy:0.7332 method 2 accuracy:0.7231

midclass: 8

method: 1 accuracy:0.7332 method 2 accuracy:0.7092

midclass: 9

method: 1 accuracy:0.7105 method 2 accuracy:0.7067

midclass: 10

method: 1 accuracy:0.7130 method 2 accuracy:0.7206

midclass: 11

method: 1 accuracy:0.6966 method 2 accuracy:0.7067

midclass: 12

method: 1 accuracy:0.7042 method 2 accuracy:0.7042

midclass: 13

method: 1 accuracy:0.6915 method 2 accuracy:0.7016

midclass: 14

method: 1 accuracy:0.7244 method 2 accuracy:0.7042

midclass: 15

method: 1 accuracy:0.7168 method 2 accuracy:0.7016

midclass: 16

method: 1 accuracy:0.7080 method 2 accuracy:0.7042

midclass: 17

method: 1 accuracy:0.7054 method 2 accuracy:0.7118

midclass: 18

method: 1 accuracy:0.7118 method 2 accuracy:0.7054

midclass: 19

method: 1 accuracy:0.7118 method 2 accuracy:0.7029

midclass: 20

method: 1 accuracy:0.6915 method 2 accuracy:0.6928

midclass: 21

method: 1 accuracy:0.7054 method 2 accuracy:0.6865

midclass: 22

method: 1 accuracy:0.6890 method 2 accuracy:0.7092

midclass: 23

method: 1 accuracy:0.6953 method 2 accuracy:0.6814

midclass: 24

method: 1 accuracy:0.7004 method 2 accuracy:0.6903

(图片中x轴表示除了两个极值外的分界线数量k,实际组数为其+3) k = midclass -1 (图片中y轴表示accuracy, 蓝线等区间划分,橙线等比划分)

分析:

在验证集(791个样本)95%置信度的区间约为Accuracy+-0.03。

k = 0时, accuracy较低。

k > 1时,对着区间划分数量增多,accuracy呈下降趋势,但是并不显著。

但考虑到当区间大于10个的两层树,平均每个子叶的样本数量少于1%,可能会过拟合。

所以最终选择 k = 6, (midclass = 7), 总区间划分数为9。

结论:置信度为95%的置信区间为0.7267±0.0196。