$$V_{P} = \sqrt{\frac{\lambda+2\mu}{\rho}} = \sqrt{\frac{K+\frac{4}{3}\mu}{\rho}} \cdot (I) \quad V_{S} = \sqrt{\frac{\mu}{\rho}} \cdot (IV)$$

$$V_{P} = \sqrt{\frac{\lambda+2\mu}{\rho}} = \sqrt{\frac{K+\frac{4}{3}\mu}{\rho}} \cdot (IV)$$

HW #1 - Solutions

(a) From (I):
$$\chi + Z\mu = K + \frac{2}{3}\mu \Rightarrow K = \chi + \frac{2}{3}\mu$$
 (IV)
(b) From (II): $\chi = \mu(\frac{2\nu}{1-2\nu})$ (II)
 $-\text{plugsing}(II) \text{ into }(IV)$: $\chi = \mu(\frac{2\nu}{1-2\nu} + \frac{2}{3}) = \frac{\mu}{3(1-2\nu)}(6\nu + 2-4\nu)$

RAVI KANDA

01/16/2020 1/8

- plugging (
$$\forall$$
) into (\forall): $K = \mu$ $\frac{2}{1-2\nu} + 3$ $\frac{1}{3} = 3(1-2\nu)^{2\nu}$
- So, $K = \frac{2}{3}\mu\left(\frac{1+2\nu}{1-2\nu}\right) \Rightarrow \left[\mu = \frac{3}{2}K\left(\frac{1-2\nu}{1+2\nu}\right)\right] \dots (\nabla I)$
(C) From (\forall): $\mu = 0 \Rightarrow 1-2\nu = 0 \Rightarrow \nu = \frac{1}{2}$ (\forall I)

(d) From (t):
$$\mu = \rho V_s^2$$

From (t): $\lambda = \rho V_\rho^2 - 2\mu = \rho (V_\rho^2 - 2V_s^2)$

From (I):
$$\lambda = \rho V_{\rho}^2 - 2\mu = \rho (V_{\rho}^2 - 2V_{s}^2)$$

from (I) $\mathcal{S}(I)$: $\frac{V_{\rho}}{V_{s}} = \sqrt{\frac{\lambda + 2\mu}{\mu}} = \sqrt{\frac{\lambda}{\mu} + 2\mu}$
 $\lambda = 2\nu \Rightarrow V_{\rho} = \sqrt{\frac{2\nu}{\mu} + 2\mu}$

(e) from (I)
$$SU$$
: $\frac{\sqrt{p}}{\sqrt{s}} = \int \frac{\lambda + 2\mu}{\mu} = \int \frac{\lambda}{\mu} + 2$

From (II): $\frac{\sqrt{p}}{\sqrt{s}} = \frac{2\nu}{1-2\nu} \Rightarrow \frac{\sqrt{p}}{\sqrt{s}} = \frac{2\nu}{1-2\nu} + 2$

From (III): $\nu = \frac{1}{2} \frac{2\nu}{\mu} + \frac{2\nu}{\nu} \Rightarrow \frac{\sqrt{p}}{\sqrt{s}} \Rightarrow \frac{2\nu}{1-2\nu} \Rightarrow \frac{2\nu}{\nu} \Rightarrow \frac{2\nu}{\nu}$

From (VI):
$$y = \frac{1}{2}B + \lim_{N \to \frac{1}{2}} \left(\frac{V_F}{V_S}\right) \to \infty$$

or $\lim_{N \to \frac{1}{2}} \left(\frac{V_S}{V_F}\right) \to 0$

Flot: See Solution Spread-sheet "HW1.xls".

(f) Plot: See Solution Spread-sheet "HW1.xls".

If
$$\nu = 0.25$$
, from (E), $\frac{\nu_P}{\nu_S} = \sqrt{\frac{2(0.75)}{(0.5)}} = \sqrt{3} \approx 1.73$

AB 2→0, Vr = 2(1) = 52 = 1.41 2<0.35, & 1.45 1/2 52.1 most Enouth materials

Vp/Vs ratio as a function of Poisson's ratio, v:

For most rocks, $0.01 \le v \le 0.35$, and $1.4 \le (Vp/Vs) \le 2.1$

For P-Waves [from (a)]:
$$e^{-\frac{1}{2}} = \frac{\sqrt{1+2\mu}}{p}$$
; $w = \frac{2\pi}{T}$; $k = \frac{2\pi}{2\pi}$

For P-Waves [from (a)]: $e^{-\frac{1}{2}} = \frac{2\pi}{4}$

Grive || $e^{-\frac{1}{2}} = \frac{10^{8} \times 10^{4}}{2\pi} = \frac{2\pi}{4}$

Grive || $e^{-\frac{1}{2}} = \frac{10^{8} \times 10^{4}}{2\pi} = \frac{2\pi}{4}$

Or $e^{-\frac{1}{2}} = \frac{10^{8} \times 10^{4}}{2\pi} = \frac{10^{8} \times 10^$

NW#1 SOLUTIONS

2(C) Recall:

HW#1 Solutions

From the previous page:
$$2rOrr + r^2 \frac{\partial Orr}{\partial r} = r^2 \rho \frac{\partial^2 Ur}{\partial t^2}$$

But LHS = $\frac{\partial}{\partial r} \left[r^2 Orr \right]!$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right]!$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right]!$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right] = \rho \frac{\partial^2 Ur}{\partial t^2}$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right] = \rho \frac{\partial^2 Ur}{\partial t^2}$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right] = \rho \frac{\partial^2 Ur}{\partial t^2}$

That $\frac{\partial}{\partial r} \left[r^2 Orr \right] = \rho \frac{\partial^2 Ur}{\partial r}$

Using this in(III), we obtain after dividing throughout by (42)/1

$$\frac{1}{72} \frac{\partial}{\partial r} \left[r^2 \frac{\partial Ur}{\partial r} \right] = \frac{\rho}{(\lambda + 2\mu)} \frac{\partial^2 Ur}{\partial r^2} = \frac{1}{r} \frac{\partial^2 Ur}{\partial r}$$

Using this in(III), we obtain after dividing throughout by (42)/1

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial Ur}{\partial r} \right] = \frac{\rho}{(\lambda + 2\mu)} \frac{\partial^2 Ur}{\partial r^2} = \frac{1}{r} \frac{\partial^2 Ur}{\partial r}$$

Using the in(III), we obtain after dividing throughout by (42)/1

$$\frac{1}{r^2} \frac{\partial^2}{\partial r} \left[r^2 \frac{\partial Ur}{\partial r} \right] = \frac{\rho}{(\lambda + 2\mu)} \frac{\partial^2 Ur}{\partial r^2} = \frac{1}{r} \frac{\partial^2 Ur}{\partial r}$$

Using the in(III), we obtain after dividing throughout by (42)/1

$$\frac{1}{r^2} \frac{\partial^2}{\partial r} \left[r^2 \frac{\partial Ur}{\partial r} \right] = \frac{\rho}{(\lambda + 2\mu)} \frac{\partial^2 Ur}{\partial r^2} = \frac{1}{r} \frac{\partial^2 Ur}{\partial r} = \frac{1}{r} \frac{\partial^2 Ur}{\partial r}$$

3 (d) Using (Ib) in (ID), o well-plying thoughout by r. we get

Ran Kowo A 6/8 EMHULOS 1#WH 3 (e) We thus have, repeating (I) from previous page: $\frac{\partial^2 (rur)}{\partial r^2} = \frac{1}{C^2} \frac{\partial^2 (rur)}{\partial t^2}, \text{ the same Equ. }$ * General Solutions are (ag for Greenin Gop discussed in class): $vur = f(kr \pm \omega t)$ \Rightarrow ' $u_r = \frac{f(kr \pm \omega t)}{r}$ * If we consider only the outward propagating solutione, we have:

$$ur = \frac{f(kr - \omega t)}{\gamma}$$

4 (a) DIRECT WAVE:

$$\frac{2}{8} = 2$$
 $\frac{2}{4} = \frac{2}{4}$
 $\frac{2}{4} = \frac{2}$

24017UNS 1#WH

14WHI SOUTHING

Travel Time Curves

V1 = 5000 m/s V2 = 8000 m/s z = 30000 m

x	t_D	t_RFL	t_RFR
0	0.00	8.49	9.37
5000	1.00	8.54	9.99
10000	2.00	8.72	10.62
15000	3.00	9.00	11.24
20000	4.00	9.38	11.87
25000	5.00	9.85	12.49
30000	6.00	10.39	13.12
35000	7.00	11.00	13.74
40000	8.00	11.66	14.37
45000	9.00	12.37	14.99
50000 55000	10.00 11.00	13.11 13.89	15.62
60000	12.00	14.70	16.24 16.87
65000	13.00	15.52	17.49
70000	14.00	16.37	18.12
75000	15.00	17.23	18.74
80000	16.00	18.11	19.37
85000	17.00	19.00	19.99
90000	18.00	19.90	20.62
95000	19.00	20.81	21.24
100000	20.00	21.73	21.87
105000	21.00	22.65	22.49
110000	22.00	23.58	23.12
115000	23.00	24.52	23.74
120000	24.00	25.46	24.37
125000	25.00	26.40	24.99
130000	26.00	27.35	25.62
135000 140000	27.00	28.30 29.26	26.24
145000	28.00 29.00	30.22	26.87 27.49
150000	30.00	31.18	28.12
155000	31.00	32.14	28.74
160000	32.00	33.11	29.37
165000	33.00	34.07	29.99
170000	34.00	35.04	30.62
175000	35.00	36.01	31.24
180000	36.00	36.99	31.87
185000	37.00	37.96	32.49
190000	38.00	38.94	33.12
195000	39.00	39.91	33.74
200000	40.00	40.89	34.37
205000	41.00	41.87	34.99
210000	42.00	42.85	35.62
215000	43.00	43.83 44.81	36.24
220000 225000	44.00 45.00	45.79	36.87 37.49
230000	46.00	46.78	38.12
235000	47.00	47.76	38.74
240000	48.00	48.74	39.37
245000	49.00	49.73	39.99
250000	50.00	50.71	40.62
255000	51.00	51.70	41.24
260000	52.00	52.69	41.87
265000	53.00	53.67	42.49
270000	54.00	54.66	43.12
275000	55.00	55.65	43.74
280000	56.00	56.64	44.37
285000	57.00	57.63	44.99
290000 295000	58.00 59.00	58.62 59.61	45.62 46.24
300000	60.00	59.61 60.60	46.24 46.87
305000	61.00	61.59	46.87 47.49
310000	62.00	62.58	48.12
315000	63.00	63.57	48.74
320000	64.00	64.56	49.37
325000	65.00	65.55	49.99

$-t_D - t_RFL - t_RFR$

X (m)