### Teoria dos Circuitos e Fundamentos de Electrónica

# Conceitos Básicos de Teoria dos Circuitos



#### Teresa Mendes de Almeida

TeresaMAlmeida@ist.utl.pt

**DEEC Área Científica de Electrónica** 

Fevereiro de 2008

## Matéria

- Conceitos elementares
  - Circuito eléctrico
  - Topologia, nó, ramo e malha
  - SI Unidades e prefixos
  - Condução e corrente eléctrica
- Corrente eléctrica
  - sentido convencional
- Tensão eléctrica
- Gamas de Tensões e Correntes
- Grandezas eléctricas
  - notação
  - DC e AC
- Energia e Potência
  - Convenção passiva sinal

- Geradores independentes
  - tensão e corrente
- Geradores dependentes
  - tensão e corrente
- Resistência
  - Lei de Ohm
  - Potência
  - Condutância
  - Curto-circuito
  - Circuito aberto

2

## Circuito Eléctrico

Lanterna





• Bateria do carro



Circuito eléctrico

- componentes eléctricos interligados
- representação simbólica
  - componentes
  - forma como estão ligados
- Circuito de parâmetros concentrados
  - pode desprezar-se propagação e radiação ondas electromagnéticas
  - parâmetros concentrados nos componentes
  - fios condutores não são considerados na análise
- Descrição matemática do circuito
  - resistivo equações algébricas
  - reactivo equações diferenciais

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Topologia, Nós, Ramos e Malhas

- 4
- Topologia forma como elementos estão interligados
  - não identifica os diferentes tipos de componentes do circuito
- Nó ponto de ligação entre dois ou mais elementos do circuito
- Ramo linha representativa do componente
  - N.º ramos = N.º componentes
- Malha caminho fechado através dos ramos
  - nó inicial e final é o mesmo
    - sem passar 2 vezes pelo mesmo nó
    - sentido de circulação horário ou anti-horário
  - malha elementar quando percorrida não abraça nenhum componente



 $R_3$ 

 $150 \Omega$ 

# Circuitos, ramos, nós e malhas

5

- Quantos componentes?
- Quantos ramos?
- Quantos nós?
- Quantas malhas?
- Quantas malhas elementares?





© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Sistema Internacional de Unidades (SI)

6

- Sistema métrico de unidades
  - Conjunto de:
    - unidades base
    - prefixos
    - unidades derivadas

Table 1 - SI base units

| Name     | Symbol | Quantity                  |
|----------|--------|---------------------------|
| metre    | m      | length                    |
| kilogram | kg     | mass                      |
| second   | s      | time                      |
| ampere   | Α      | electric current          |
| kelvin   | K      | thermodynamic temperature |
| mole     | mol    | amount of substance       |
| candela  | cd     | luminous intensity        |

#### MKSA

metro – quilograma – segundo – ampére

|  | Ta |
|--|----|

|        |                  |                  |                  | Table 2          | - SI Pr          | efixes            |                   |                   |                   |                 |
|--------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| Name   | yotta-           | zetta-           | еха-             | peta-            | tera-            | giga-             | mega-             | kilo-             | hecto-            | deca-           |
| Symbol | Y                | Z                | Е                | Р                | Т                | G                 | M                 | k                 | h                 | da              |
| Factor | 10 <sup>24</sup> | 10 <sup>21</sup> | 10 <sup>18</sup> | 10 <sup>15</sup> | 10 <sup>12</sup> | 10 <sup>9</sup>   | 10 <sup>6</sup>   | 10 <sup>3</sup>   | 10 <sup>2</sup>   | 10 <sup>1</sup> |
| Name   | deci-            | centi-           | milli-           | micro-           | nano-            | pico-             | femto-            | atto-             | zepto-            | yocto           |
| Symbol | d                | С                | m                | μ                | n                | р                 | f                 | а                 | Z                 | У               |
| Factor | 10 <sup>-1</sup> | 10 <sup>-2</sup> | 10 <sup>-3</sup> | 10 <sup>-6</sup> | 10 <sup>-9</sup> | 10 <sup>-12</sup> | 10 <sup>-15</sup> | 10 <sup>-18</sup> | 10 <sup>-21</sup> | 10-24           |

$$1\mu s = 10^{-6} s$$

$$30ms = 3 \times 10^{-2} s$$

$$20nA = 2 \times 10^{-8} A$$

$$0.45kA = 450A$$

# Sistema Internacional de Unidades (SI)

| Name      | Symbol | Quantity                                                      | Expression in terms of other units     | Expression in terms of SI base units                |
|-----------|--------|---------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
| hertz     | Hz     | frequency                                                     | 1/s                                    | s <sup>-1</sup>                                     |
| newton    | N      | force, weight                                                 | m·kg/s <sup>2</sup>                    | m·kg·s <sup>-2</sup>                                |
| pascal    | Pa     | pressure, stress                                              | N/m <sup>2</sup>                       | m <sup>-1</sup> ·kg·s <sup>-2</sup>                 |
| joule     | J      | energy, work, heat                                            | N·m                                    | m <sup>2</sup> ·kg·s <sup>-2</sup>                  |
| watt      | W      | power, radiant flux                                           | J/s                                    | m <sup>2</sup> ·kg·s <sup>-3</sup>                  |
| coulomb   | С      | electric charge or electric flux                              | s-A                                    | s-A                                                 |
| volt      | V      | voltage, electrical potential difference, electromotive force | W/A = J/C                              | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$            |
| farad     | F      | electric capacitance                                          | C/V                                    | $m^{-2}\cdot kg^{-1}\cdot s^4\cdot A^2$             |
| ohm       | Ω      | electric resistance, impedance, reactance                     | V/A                                    | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$            |
| siemens   | s      | electrical conductance                                        | 1/Ω                                    | $m^{-2}\cdot kg^{-1}\cdot s^3\cdot A^2$             |
| weber     | Wb     | magnetic flux                                                 | J/A                                    | $m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$            |
| tesla     | Т      | magnetic field                                                | $V \cdot s/m^2 = Wb/m^2 = N/A \cdot m$ | kg·s <sup>-2</sup> ·A <sup>-1</sup>                 |
| henry     | Н      | inductance                                                    | V·s/A = Wb/A                           | m <sup>2</sup> ·kg·s <sup>-2</sup> ·A <sup>-2</sup> |
| Celsius   | °C     | Celsius Temperature                                           | $t_{^{\circ}C} = t_K - 273.15$         | K                                                   |
| lumen     | lm     | luminous flux                                                 | cd·sr                                  | cd                                                  |
| lux       | lx     | illuminance                                                   | lm/m <sup>2</sup>                      | m <sup>-2</sup> ·cd                                 |
| becquerel | Bq     | radioactivity (decays per unit time)                          | 1/s                                    | s <sup>-1</sup>                                     |
| gray      | Gy     | absorbed dose (of ionizing radiation)                         | J/kg                                   | m <sup>2</sup> ·s <sup>-2</sup>                     |
| sievert   | Sv     | equivalent dose (of ionizing radiation)                       | J/kg                                   | m <sup>2</sup> ·s <sup>-2</sup>                     |
| katal     | kat    | catalytic activity                                            | mol/s                                  | s <sup>-1</sup> ·mol                                |

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Condução e corrente eléctrica

8

#### Material condutor

- electrões livres
- sujeitos a pequenas forças de atracção do núcleo
- ex: cobre e alumínio

### Sem influência externa

- comportamento aleatório
- Sob influência externa
  - electrões livres podem ter movimento ordenado numa direcção

#### Corrente eléctrica

- movimento de electrões
- analogia fluído que se desloca



Carga electrão

 $-1.6 \times 10^{-19} C$ 

#### Carga

quantidade mais elementar a considerar nos circuitos eléctricos

• Fluxo de carga eléctrica, que atravessa uma superfície, por unidade de tempo

$$i(t) = \frac{dq(t)}{dt}$$
  $[A] = \frac{[C]}{[s]}$   $[Ampere] = \frac{[Coulomb]}{[segundo]}$ 

• Qual a corrente associada a um movimento de 10<sup>18</sup> electrões durante 10 segundos?

$$I = \frac{10^{18} \times 1,6 \times 10^{-19}}{10} = 1,6 \times 10^{-2} = 16 \, \text{mA}$$

- Sentido convencional da corrente
  - para além do valor numérico é sempre preciso indicar sentido

i(t)

- convenção
  - sentido do movimento de cargas positivas
  - embora se saiba que é um movimento de electrões



© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

## Sentido da corrente eléctrica

10

- Como saber qual o sentido?
  - se corrente é desconhecida não se sabe o sentido!
  - então arbitra-se um sentido
  - fazem-se os cálculos
    - resultado positivo sentido é o que foi arbitrado



• resultado negativo – sentido é contrário ao que foi arbitrado





11

- Movimento de cargas eléctricas
  - o que permite transferência de energia
- Para existir corrente
  - tem de existir uma fonte de energia
  - pilha fornece energia
  - lâmpada recebe energia



- Tensão eléctrica
  - energia necessária para mover uma carga eléctrica (electrão) do potencial mais elevado para o potencial mais baixo
  - diferença do nível de energia entre uma carga unitária colocada em cada um dos dois pontos
  - também chamada
    - diferença de potencial
    - força electromotriz
  - medida entre dois pontos (nós) do circuito



 $\bigcirc$ 

 $\bigcirc$ 

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

12

## Tensão eléctrica

Medida entre dois pontos

$$V_{AB} = V_A - V_B$$
 
$$V_{BA} = V_B - V_A = -(V_A - V_B) = -V_{AB}$$

- É sempre referenciada a um ponto
  - $\bullet \quad V_{AB}$ 
    - ullet tensão  $\boldsymbol{V}_{\boldsymbol{A}}$  medida relativamente à tensão  $\boldsymbol{V}_{\boldsymbol{B}}$
- Como saber o sentido (+/-)?
  - se tensão é desconhecida não se sabe o sentido!
  - então arbitra-se um sentido
  - fazem-se os cálculos
    - resultado positivo
      - sentido é o que foi arbitrado
  - resultado negativo
    - sentido é contrário ao que foi arbitrado
- Interpretar o resultado



# Gamas de Tensões e Correntes

#### • Tensão (V)

#### 108 106 Lightning bolt High-voltage transmission lines Voltage on a TV picture tube 106 104 102 104 Large industrial motors ac outlet plug in U.S. households 100 102 Car battery $10^{-2}$ Voltage on integrated circuits 100 Flashlight battery $10^{-4}$ $10^{-2}$ Voltage across human chest produced by the $10^{-6}$ heart (EKG) $10^{-4}$ 10-8 Voltage between two points on human scalp (EEG) $10^{-6}$ $10^{-10}$ Antenna of a radio receiver 10-8 10-12 10-10 10-14

#### Corrente (A)

| Lightning bolt                              |
|---------------------------------------------|
| Large industrial motor current              |
| Typical household appliance current         |
| Causes ventricular fibrillation in humans   |
| Human threshold of sensation                |
| Integrated circuit (IC) memory cell current |
| Synaptic current (brain cell)               |

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Grandezas eléctricas

14

- Tensão (V) e Corrente (I)
  - equações do circuito são escritas em termos destas duas grandezas
  - componentes eléctricos
    - descritos através das relações entre tensão e corrente
      - resistivos eq. algébricas
      - reactivos eq. diferenciais
- Notação
  - Maiúsculas
    - grandeza constante no tempo
      - grandeza contínua
    - DC direct current
  - Minúsculas
    - grandeza variável no tempo
    - AC alternating current





 $i(t)^{t}$ 

- 15
- Componente do circuito pode fornecer ou receber energia
- $I_{AB}=2A$ 
  - carga positiva de 2C move-se de A para B
    - através do componente
    - em cada segundo

$$i(t) = \frac{dq(t)}{dt}$$



- $V_{AB}=3V$ 
  - movimento de carga positiva
    - do potencial mais alto para o potencial mais baixo
    - 1C perde 3J de energia ao atravessar o componente

- Resultado
  - componente recebe (absorve) 6J de energia por segundo
- Potência

$$v \times i = \frac{dw}{dq} \times \frac{dq}{dt} = \frac{dw}{dt} = p$$
  $p(t) = \frac{dw(t)}{dt}$   $[W] = \frac{[J]}{[s]}$   $[Watt] = \frac{[Joule]}{[segundo]}$ 

$$p(t) = \frac{dw(t)}{dt}$$

$$[W] = \frac{[J]}{[s]}$$

$$[Watt] = \frac{[Joule]}{[segundo]}$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

16

# Potência





Cálculo da potência

$$p(t) = v(t) \times i(t)$$

$$P = VI$$

- que sentidos considerar para v e i?
- Convenção passiva do sinal
  - no componente onde se quer calcular a potência
  - sentidos de tensão e corrente concordantes
    - corrente entra no terminal + marcado para a tensão
    - independentemente dos seus valores numéricos!
- Interpretação do resultado
  - P>0  $\rightarrow$  componente recebe (absorve) energia
  - $P<0 \rightarrow$  componente fornece energia



# Geradores independentes

17

### • Gerador de Tensão: V<sub>AB</sub>

- impõe valor da tensão aos seus terminais
- qual a corrente que passa no gerador?
  - é preciso analisar o circuito para saber
- fonte de tensão DC

### • Gerador de Corrente: I<sub>BA</sub>

- impõe valor de corrente que o percorre
- qual a tensão aos seus terminais?
  - é preciso analisar o circuito para saber









© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Geradores dependentes

#### • Gerador de Tensão

Controlado por tensão



Controlado por corrente



### • Gerador de Corrente

Controlado por tensão



Controlado por corrente



### • grandeza do gerador depende de tensão/corrente no circuito

 modelo que permite representar o funcionamento de determinados componentes (p. ex. amplificador operacional)

# Exemplos de Aplicação

19

Que componentes fornecem energia?

• Qual a soma de todas as potências?



• Quanto vale  $I_0$ ?

- calcular potência em todos componentes excepto no 1 (não se sabe I<sub>0</sub>)
- num circuito há sempre conservação da energia, logo a soma algébrica de todas as potências é sempre zero
- calcular potência no componente 1
- calcular I<sub>0</sub>



© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

## Resistência

20

### • Condutor cilíndrico homogéneo

- R = resistência
- $[\Omega]$
- $R = \rho \frac{l}{\Lambda}$



- $\rho$  = resistividade
- $[\Omega m]$
- l = comprimento
- [m] R
- $A = \sec \tilde{\alpha}$  transversal [m<sup>2</sup>]

#### Resistência

- componente eléctrico
- tensão é directamente proporcional à corrente
- a constante de proporcionalidade é a resistência



#### • Lei de Ohm

• sentidos V e I concordantes!



V = RI

$$R = \frac{V}{I}$$

$$I = \frac{V}{R}$$

$$[\Omega] = \frac{[V]}{[A]}$$
$$[Ohm] = \frac{[Volt]}{[Ampere]}$$



## Resistência

#### Condutância

$$G = \frac{1}{R}$$

$$G = \frac{1}{R}$$
 [S] [Siemens]  $I = \frac{V}{R} \rightarrow I = GV$ 

21

• inverso da resistência

#### Potência

- resistência recebe energia eléctrica
- por efeito de Joule dissipa-a sob a forma de calor
- $P = VI = \frac{V^2}{R} = RI^2 \quad P \ge 0$

### Curto-circuito

- resistência nula
- tensão nula
- v(t)v(t) = 0
- Circuito aberto
  - resistência infinita
  - corrente nula





© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Conceitos Básicos de Teoria dos Circuitos

Fevereiro de 2008

# Exemplos de aplicação

Qual a corrente e a potência absorvida na R?



• Qual a corrente e qual a potência fornecida pela fonte?



Quanto vale  $V_S$  e qual a potência fornecida pela fonte?



• Quanto vale V<sub>S</sub> e qual a potência fornecida pela fonte?



22