San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Non-Regular Languages (Part 2)

Lecture 25 Day 29/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 29

- Summary of Lecture 24
- Quiz 10
- Lecture 25: Teaching ...
 - Non-Regular Languages (Part 2)

Summary of Lecture 24: We learned ...

Non-Regular Languages

- The main question is: How to prove a language is non-regular?
- We introduced an important theorem called "pumping lemma".
- Pumping lemma is NOT applicable to "finite languages".
- Pumping lemma is an important property of infinite regular languages.

Pumping Lemma

If L is an infinite regular language,
Then

there exists an $m \ge 1$ such that If $w \in L$ and $|w| \ge m$ Then //P. L. guarantees that ...

> We must be able to divide w into xyz in such a way that all of the following conditions are satisfied:

 $|xy| \le m$, and $|y| \ge 1$, and $w_i = x y^i z \in L$ for i = 0, 1, 2, ...

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	10
DATE	05/03/2018	PERIOD	1/2/3

Quiz 10 No Scantron

Application of Pumping Lemma

① How to Prove a Language is Non-Regular?

- Use "proof by contradiction"
 - 1. Assume L is regular. So, the pumping lemma should hold for L.
 - 2. Apply pumping lemma
 - 3. Find a contradiction.
 - 4. Then, blame your assumption and conclude that L must be non-regular.
- Let's take some examples!

Applications of Pumping Lemma

Example 7

• Prove $L = \{a^nb^n : n \ge 0\}$ is non-regular language.

Proof

Applications of Pumping Lemma

Example 8

• Prove L = $\{ww : w \in \{a, b\}^*\}$ is non-regular language.

Proof

Homework

Prove that the following languages are non-regular:

```
1. L = \{ww^R : w \in \{a, b\}^*\}
```

2.
$$L = \{a^n b^n c^n : n \ge 0\}$$

3.
$$L = \{www : w \in \{a, b\}^*\}$$

4.
$$L = \{a^n b^k c^{n+k}: n \ge 0, k \ge 0\}$$

Pigeonhole Principle

Pigeonhole Principle

Example 9

 If we have 10 pigeons and 9 pigeonholes (boxes), then one pigeonhole must contain more than one pigeon.

Pigeonhole Principle

If we put n objects (pigeon) into m boxes (pigeonholes) &&

n > m

- At least one box must have more than one object in it.
- Reference: https://en.wikipedia.org/wiki/Pigeonhole_principle

???

Example 10

Given following DFA with 4 states.

- Consider the walk of w = aaaab. (|w| = 5)
- Can we conclude that:

At least one state must be visited more than once.

 Yes, because the size of the string is bigger than the number of states.

Example 10 (cont'd) w = aaaab

 Now, let's show the walk by one-dimensional projection method to investigate our guess.

q₂ and q₃ are visited twice.

What is Pigeon and what is Pigeonhole?

- Pigeons = the symbols of the string
- Pigeonholes = the transition plus next states
- To simplify the pigeonholes, it is easier to consider only the states.

In general

If a DFA has m states, and we process a string w with $|w| \ge m$, then by the pigeonhole principle, at least one state will be visited more than once.

- Consider L as an infinite regular language.
- Since L is regular, so, there exists a DFA M that accepts it.
- Let's assume this DFA has m states (that should be finite).
- Take a string $w = a_1 a_2 ... a_k \in L$ whose size is $|w| \ge m$.
- Since |w| ≥ m, therefore, in the walk of w,
 at least one state is visited more than once.

The following graph is the one-dimensional projection of w.

- Why is the last state "accepting state"?
 - Since w ∈ L, so, the last state should be an "accepting state".
- Can there be accepting states in the middle too?
 - Yes! It does not bother what we want to show.

- Note that between two q's, there is no nested repeated states.
 - We can always pick the first repeated state in which there is no nested repeated states.
 - Therefore, if we show the original graph, this portion must be a "simple cycle".

So, let's see the original graph ...

- Let's review the facts we have so far:
 - 1. From a₁ to a_i, we have unique states (visited once). because we assumed q is the first repeating state.
 - 2. From a_{i+1} to a_j , we have unique states because it is a simple cycle.
- Therefore, we have unique states from a₁ to a_i.

- Now, let's name different portions of the string:
- We split w as w = xyz.
- Note that y corresponds to substring between two q's.

Now let's see how x, y, and z looks in the original transition graph.

Important Questions

1. Is this true: $|xy| \le m$

Yes, because we learned a_1 to a_i (= xy) are unique states and there is no repeated states between them.

2. Is this true: $|y| \ge 1$

Yes, because y is a simple cycle and the smallest simple cycle is a loop.

y = a_{i+1} ... a_i

More Questions!

- 3. Is string $xz = a_1 a_2 ... a_i a_{j+1} ... a_k$ accepted by this DFA? Yes, so $xz \in L$
- 4. How about xyyz? Or, xyyyz?
- 5. Or in general: $x y^i z$, for i = 0, 1, 2, ...

 The answer is yes to all questions, so x yⁱ z ∈ L

y = a_{i+1} ... a_i

Conclusion

- We could pump any number of y and the resulting strings were accepted by the DFA.
- So, if $w = xyz \in L$, then $w_i = xy^iz \in L$ for i = 0, 1, 2, ...
- And this was the mysterious concept of "Pumping Lemma".

(1)

Notes About Pumping Lemma

Pumping lemma is difficult to understand! [Text book, P#121]
 NOT anymore!

- Pumping lemma is not applicable to finite languages.Because we need to pump infinite y's!
- 3. Pumping lemma cannot prove that a languages is regular.
 Because you'd need to verify infinite cases!

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Costas Busch's website: http://csc.lsu.edu/~busch/
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790