Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Группа	P3215	К работе допущен
Студент	Барсуков М.А.	Работа выполнена
Преподаватель	Смирнов А.В.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.00

Изучение электрических сигналов с помощью лабораторного осциллографа

1. Цель работы.

Ознакомление с устройством осциллографа, изучение с его помощью процессов в электрических цепях.

2. Задачи, решаемые при выполнении работы.

- 1. Исследование сигналов различной формы.
- 2. Исследование предельных характеристик прибора.
- 3. Изучение сложения взаимно перпендикулярных колебаний кратных частот (Фигуры Лиссажу).
- 4. Изучение сложения однонаправленных колебаний мало отличающихся по частоте (биения).
- 5. Изучение сложения однонаправленных колебаний одинаковой частоты.

3. Объект исследования.

Электрические сигналы различной формы, колебания частот, биения генератора ГС АКИП-3409 и Осциллограф цифровой запоминающий GDS-71102B.

4. Метод экспериментального исследования.

Изучение с помощью осциллографа и подаваемых с него сигналов на ГС АКИП-3409 процессов в электрических цепях.

5. Рабочие формулы и исходные данные.

Амплитуда U результирующих колебаний равна: $U=\sqrt{U_1^2+U_2^2+2U_1U_2\cos(\alpha_2-\alpha_1)}$, где U_1 , U_2 – амплитуды складываемых колебаний; α_1 , α_2 – начальные фазы складываемых колебаний.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф цифровой запоминающий GDS-71102B	электронный	-	-
2	Генераторы сигналов произвольной формы АКИП-3409	электронный	-	-

7. Схема установки (перечень схем, которые составляют Приложение 1).

1- дисплей, 2 — кнопка сохранения, 3 — боковые кнопки меню, 4 — меню выкл., 5 — опции, 6 — нижние кнопки меню, 7 — регулирования и подтверждение заданных параметров, 8 - органы управления дополнительными возможностями, 9 — настройка отображения сигнала, 10 — горизонтальные регуляторы, 11 — система запуска, 12 — вертикальные 3 регуляторы, 13 - входное гнездо источника внешней синхронизации, 14 — функциональные кнопки, 15 - входные разъемы, 16 — разъем USB HOST, 17 — вкл./выкл. электропитания.

Стенд СЗ-ЭМ01(1-шина на 5 гнезд, 2 и 3-шина на 2 гнезда)

Блок схема

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Задание №1

Таблица 1. Сигнал синусоидальной формы

Канал 1	Автоматические	Измерения с	ГС АКИП-3409
	измерения	помощью курсора	
Частота сигнала, кГц			
	1.000 кГц	0.998 кГц	1.000 кГц
Амплитуда сигнала, В	0.98 B	1.01 B	1.00 B
Период, мс	1 мс	1 мс	1 мс

Таблица 2. Сигнал формы «меандр»

Taonaga 2. Gachan qopini	bi "wcariop"		
Канал 1	Автоматические	Измерения с	ГС АКИП-3409
	измерения	помощью курсора	
Частота сигнала, кГц			
	0.994 кГц	1.002 кГц	1.000 кГц
Амплитуда сигнала, В	0.98 B	1.01 B	1.00 B
Период, мс	0.9997 мс	1 мс	1 мс

Таблица 3. Сигнал формы пилообразная»

1 0.01.0.040. 01 0.01.001. 40.010	21 110010 0 0 p a.c.1.a.		
Канал 1	Автоматические	Измерения с	ГС АКИП-3409
	измерения	помощью курсора	
Частота сигнала, кГц			
	0.9995 кГц	1.000 кГц	1.000 кГц
Амплитуда сигнала, В	0.98 B	1.01 B	1.00 B
Период, мс	0.9995 мс	1 мс	1 мс

Задание №2

Сигнал «Меандр» отличается от теоретического при максимально возможной частоте прибора. Тем не менее, при любой частоте, сигнал не совпадает с теоретическим, так как имеет «прыжки» в сигнале.

Сигнал был проверен в диапазоне 1 Гц – 10МГц.

Задание №3

Фигуры Лиссажу, полученные при подаче разных соотношений частот и различных сдвигов фаз:

- φ сдвиг фазы;
- n:m соотношение частот.

Задание №4

При подаче на канал 1 и канал 2 осциллографа сигналов с одинаковой амплитудой 1 В, фазой 0° и частот, отличающихся на 7% (1.00 кГц и 1.07 кГц) получаем картину биений.

Амплитуда сигнала в максимуме приблизительно равна 1.94 В, период биений – 15 мс.

Задание №5

При подаче на каналы осциллографа сигналов одинаковой частоты, различными амплитудами и фазами ($U_1=const=1~{
m B}, U_2~{
m pазличноe})$ и включения режима сложения сигналов получаем:

Сигнал	Из	мерение	e 1	Из	мерени	e 2	Измерение 3				
Канал 1	1 кГц	1 B	0°	1 кГц	1 B	0°	1 кГц	1 B	0°		
Канал 2	1 кГц	1.2 B	37°	1 кГц	1.3 B	45°	1 кГц	1.3 B	30°		
Сложение		2.04 B			2.10 B		2.24 B				

9. Расчет результатов косвенных измерений и погрешностей измерений:

Задание №1

Синусоидальная:

Относительное отклонение частоты сигнала синусоидальной формы:

$$\mathcal{E} = \frac{\nu_{\text{ген}} - \nu_{\text{авт}}}{\nu_{\text{авт}}} * 100\% = \frac{1.000 - 1.000}{1.000} = 0\%$$
 $\mathcal{E} = \frac{\nu_{\text{авт}} - \nu_{\text{ручн}}}{\nu_{\text{ручн}}} * 100\% = \frac{1.000 - 0.998}{0.998} * 100\% = 0.2\%$

Относительное отклонение амплитуды сигнала синусоидальной формы:

$$\mathcal{E} = \frac{A_{\text{ген}} - A_{\text{авт}}}{A_{\text{авт}}} * 100\% = \frac{1.00 - 0.98}{0.98} * 100\% = 0.020408 * 100\% = 2.04\%$$

$$\mathcal{E} = \frac{A_{\text{авт}} - A_{\text{ручн}}}{A_{\text{ручн}}} * 100\% = \frac{0.98 - 1.01}{1.01} * 100\% = 0.0297 * 100\% = 2.97\%$$

Относительное отклонение периода сигнала синусоидальной формы:
$$\mathcal{E} = \frac{T_{\text{ген}} - T_{\text{авт}}}{T_{\text{авт}}} * 100\% = \frac{1.000 - 1.000}{1.000} * 100\% = 0\%$$

$$\mathcal{E} = \frac{T_{\text{авт}} - T_{\text{ручн}}}{T_{\text{ручн}}} * 100\% = \frac{1.000 - 1.000}{1.000} * 100\% = 0\%$$

Меандр:

Относительное отклонение частоты сигнала «меанд

$$\mathcal{E} = \frac{\nu_{\text{ген}} - \nu_{\text{авт}}}{\nu_{\text{авт}}} * 100\% = \frac{1.000 - 0.994}{0.994} * 100\% = 0.6\%$$
 $\mathcal{E} = \frac{\nu_{\text{авт}} - \nu_{\text{ручн}}}{\nu_{\text{ручн}}} * 100\% = \frac{0.994 - 1.002}{1.002} * 100\% = 0.8\%$

Относительное отклонение амплитуды сигнала «меандр»:

$$\mathcal{E} = \frac{A_{\text{\tiny TeH}} - A_{\text{\tiny aBT}}}{A_{\text{\tiny aBT}}} * 100\% = \frac{1 - 0.98}{0.98} * 100\% = 0.020408 * 100\% = 2.04\%$$

$$\mathcal{E} = \frac{A_{\text{\tiny aBT}} - A_{\text{\tiny pyyH}}}{A_{\text{\tiny nyyH}}} * 100\% = \frac{0.98 - 1.01}{1.01} * 100\% = 0.0297 * 100\% = 2.97\%$$

Относительное отклонение периода сигнала «меандр»:
$$\mathcal{E} = \frac{T_{\text{ген}} - T_{\text{авт}}}{T_{\text{авт}}} * 100\% = \frac{1.000 - 0.9997}{0.9997} * 100\% \approx 0.0003 * 100\% \approx 0.03\%$$

$$\mathcal{E} = \frac{T_{\text{авт}} - T_{\text{ручн}}}{T_{\text{ручн}}} * 100\% = \frac{0.9997 - 1.000}{1.000} * 100\% = 0.0003 * 100\% = 0.03\%$$

Пилообразная:

Относительное отклонение частоты сигнала пилообразной формы:

$$\mathcal{E} = \frac{\nu_{\text{ген}} - \nu_{\text{авт}}}{\nu_{\text{авт}}} * 100\% = \frac{1.000 - 0.9995}{0.9995} \approx 0.05\%$$

$$\mathcal{E} = \frac{\nu_{\text{авт}} - \nu_{\text{ручн}}}{\nu_{\text{ручн}}} * 100\% = \frac{0.9995 - 1.000}{1.000} * 100\% = 0.05\%$$

Относительное отклонение амплитуды сигнала пилообразной формы:

$$\mathcal{E} = \frac{A_{\text{ген}} - A_{\text{авт}}}{A_{\text{авт}}} * 100\% = \frac{1.00 - 0.98}{0.98} * 100\% = 0.020408 * 100\% = 2.04\%$$

$$\mathcal{E} = \frac{A_{\text{авт}} - A_{\text{ручн}}}{A_{\text{ручн}}} * 100\% = \frac{0.98 - 1.01}{1.01} * 100\% = 0.0297 * 100\% = 2.97\%$$

Относительное отклонение периода сигнала пилообразной формы:

$$\mathcal{E} = \frac{T_{\text{Ген}} - T_{\text{авт}}}{T_{\text{авт}}} * 100\% = \frac{1.000 - 0.9995}{0.9995} * 100\% \approx 0.0005 * 100\% \approx 0.05\%$$

$$\mathcal{E} = \frac{T_{\text{авт}} - T_{\text{ручн}}}{T_{\text{ручн}}} * 100\% = \frac{0.9995 - 1.000}{1.000} * 100\% = 0.0005 * 100\% = 0.05\%$$

Задание №3

Для соотношения частот 1:1; сдвига фазы 45°.

Вычисление сдвига фаз между сигналами:

$$\alpha = \arcsin\left(\frac{U_{Y1}}{U_{Y_{max}}}\right) = \arcsin\left(\frac{U_{Y1}}{U_{2}}\right) = \arcsin\left(\frac{5}{7}\right) = 0,795 \text{ рад } \approx 45,58^{\circ}$$

Сравним полученный результат с разностью фаз, установленной на генераторе (45°): $45.58^{\circ} - 45^{\circ} = 0.58^{\circ}$

Задание №4

Согласно формуле:

$$U_y = U_{y1} + U_{y2} = 2U_0 \cos\left[\frac{\Delta\omega}{2}t\right] \cos(\omega t)$$

Амплитуда суммы сигналов с одинаковой амплитудой U_0 равна:

$$A = |2U_0 \cos\left[\frac{\Delta\omega}{2}t\right]|, \ \Delta\omega = \pi(1070 - 1000)$$

Амплитуда биений определяется медленно изменяющимся членом $\cos(70\pi t)$ Максимальная теоретическая амплитуда биений будет равна удвоенной амплитуде исходных сигналов: 2B.

Относительная погрешность измерения составляет $\frac{2-1.94}{1.94} * 100\% \approx 3\%$

Совпадение не может быть идеальным так как каждый прибор имеет определенную погрешность, даже при идеальных условиях измерения будут немного отличаться от истинного значения.

Задание №5

Расчет амплитуд результирующих колебаний:

Теоретическое значение измерения 1:

$$U = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\alpha_2 - \alpha_1)} = \sqrt{1^2 + 1,2^2 + 2 * 1 * 1,2 * \cos(0^\circ - 37^\circ)} \approx 2,087 \text{ B}$$

Относительное отклонение: $\frac{2,04-2,087}{2,087}*100\% \approx -2.25\%$

Теоретическое значение измерения 2:

$$U = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\alpha_2 - \alpha_1)} = \sqrt{1^2 + 1,3^2 + 2 * 1 * 1,3 * \cos(0^\circ - 45^\circ)} \approx 2,128 \text{ B}$$

Относительное отклонение: $\frac{2,10-2,128}{2.128}*100\% \approx -1.32\%$

Теоретическое значение измерения 3:

$$U = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\alpha_2 - \alpha_1)} = \sqrt{1^2 + 1,3^2 + 2 * 1 * 1,3 * \cos(0^\circ - 30^\circ)} \approx 2,223 \text{ B}$$

Относительное отклонение: $\frac{2,24-2,223}{2,223}*100\%\approx0.76\%$

10. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были изучены основные принципы работы осциллографа и его использование для анализа электрических сигналов различной формы.

Были проведены измерения частоты, амплитуды и периода сигналов синусоидальной, квадратной и пилообразной формы. Погрешности данных характеристик для случаев измерения автоматическими измерениями были почти во всех случаях нулевыми, в то же время ручные измерения всегда имели погрешности, но они не превышали 3%.

В результате изучения сложения взаимно перпендикулярных колебаний кратных частот мы получили фигуры Лиссажу. При установлении сдвига фаз в 45° на генераторе и при вычислении сдвига фаз по данной формуле, мы получили очень близкие результаты.

Результаты измерения сложения однонаправленных колебаний одинаковой частоты, были сравнены с теоретическими значениями, и были вычислены относительные погрешности. В данной задаче наибольшая погрешность составила 2.25%.

Такие результаты показывают большую точность осциллографа и показало надежность инструмента для изучения и анализа электрических сигналов.

период мс	амплитуда сигнала В	частота сигнала кГц	канал 1 а	Сигнал формы «пилообразна»	период мс	амплитуда сигнала В	частота сигнала кГц	канал 1 а	Сигнал формы «меандр»	период мс	амплитуда сигнала В	частота сигнала кГц	канал 1 а	Сигнал синусоидальной формы		Bapcykob Makeum MKT 2.3-
0,9995	0,98	0,9995	автоматические измерения	образна»	0,9997	0,98	0,994	автоматические измерения	ндр»	1	0,98	1	автоматические измерения	ной формы		23
	1,01		измерения с помощью курсора			1,01	1,002	измерения с помощью курсора			1,01	0,998	измерения с помощью курсора			
J-4)1	1	гс акип - 3409		11	01	02	гс акип - 3409		1	01	98	гс акип - 3409			