Outline

- 1. What is a Query? Query Language?
- 2. Example Database Tables
- 3. SQL Overview: 3 Components
- 4. SELECT statement with 1 table
- Multi-table SELECT statements
- 6. Why spatial extensions are needed?
- 7. 1-table spatial queries
- 8. Multi-table spatial queries
- 9. Trends

Learning Objectives

- After this segment, students will able to
 - Explain why spatial extensions were added to SQL
 - Illustrate Semantic Gap between old SQL & Spatial Query
 - Also called Impedance Mismatch

Why Extend SQL for Spatial Data?

- Original SQL had simple atomic data types
 - Examples: integer, dates, string, currency
- Not convenient for spatial applications
 - Spatial Data: points, edges, rectangles, ...
 - Example Queries:
 - Q1: List all rectangle with point(x = 0, y = 0) as a corner point.
 - Q2: List all rectangle with point(x = 0, y = 0) as an inside point.
 - •

How old SQL modeled Spatial Data?

- Recall spatial data had
 - Points, Edges, Rectangles
- Old Table Design (3rd Normal Form)
 - Point (<u>Pid</u>, x, y)
 - Edge (<u>Eid</u>, Length)
 - Rectangle (<u>Rid</u>, Rname)
 - Starts_or_Ends (<u>Eid</u>, <u>Pid</u>)
 - Boundary (<u>Rid</u>, <u>Eid</u>)

Old Tabular Representation of Unit Square!

<u>Eid</u>	<u>Pid</u>
E1	P1
E1	P2
E2	P2
E2	P3
E3	P3
E3	P4
E4	P4

P1

E4

Point

Pid

P1

P2

P3

P4

X

0

0

0

Edge Eid Length E1 1 E2 1 E3 1

E4

Boundary		
Rid	<u>Eid</u>	
R1	E1	
R1	E2	
R1	E3	
R1	E4	

List all rectangles with origin as a corner point.

You may be able to compose this SQL query

- However, joining 5 tables is challenging for average programmer
- Also, joining 5 tables to retrieve a simple object is costly!

SELECT R.Rid, R.Rname

FROM Rectangle R, Edge E, Point P, Boundary B, Starts_Or_Ends S

WHERE (R.Rid=B.Rid) AND (B.Eid=E.Eid)

AND (E.Eid=S.Eid) AND (S.Pid=P.Pid)

AND (P.x = 0) AND (P.y = 0)

List rectangles with origin as an inside point.

Steps: A. Gather properties of each rectangle in a row!

B. Compare x- and y-coordinates of query point and each rectangle

SELECT R.Rid, R.Rname, MIN(P.x), MIN(P.y), MAX(P.x), MAX(P.y)

FROM Rectangle R, Edge E, Point P, Boundary B, Starts_Or_Ends S

WHERE (R.Rid=B.Rid) AND (B.Eid=E.Eid)

AND (E.Eid=S.Eid) AND (S.Pid=P.Pid)

GROUP BY R.Rid

HAVING (0 BETWEEN MIN(P.x) AND MAX(P.x))

AND (0 BETWEEN MIN(P.y) AND (P.y))

Semantic Gap, Impedance Mismatch between Old SQL and Spatial Applications!

If you found last query hard to code in SQL,

- You have just experienced the pain many felt in last century
- And forced SQL to support user-defined data-types!

Simpler code with user-defined spatial data-types

SELECT Rid, Rname

FROM Rectangle R

WHERE within (Point(0,0), R.Shape_Polygon)

- New Table Design
 - Rectangle(Rid, RName, Shape_Polygon)
 - Point (Pid, x, y)

