High accuracy and low computational requirement define a novel heuristic method for selecting the optimal order in hidden semi-Markov models ***

Selection of the number of states in Hidden semi-Markov models

RENTE, Filipa¹; MARINHO, Zita²; FIGUEIREDO, Mário³

1 Instituto Superior Técnico (IST), Universidade de Lisboa (ULisboa), Portugal
2 Instituto de Sistemas e Robótica, IST & Priberam Labs, Lisboa, Portugal
3 Instituto de Telecomunicações, IST, ULisboa, Portugal

HIDDEN SEMI-MARKOV MODEL (HSMM)

INTRODUCTION

- HSMMs are powerful probabilistic models used in several fields, e.g., speech, health and genetics.
- More expressive extension of hidden Markov models (HMMs) with explicit state duration.
- Order selection problem: find the optimal hyperparameters \mathbf{k} (no states of the model) and \mathbf{d}_{max} (maximum allowed state duration).

SOLUTION

Single HSMM selection criterion for both the number of states and the maximum allowed state duration.

METHODS

- \triangleright Empiric estimation of \mathbf{d}_{max} :
- 1. Find θ_j (parameter of the state duration distribution) that corresponds to the highest duration amongst all states $s_j \theta_j^*$;
- 2. $\mathbf{d_{max}}$ is the (first) integer duration for which the cumulative state duration probability, with parameter θ_j^* , is smaller than $\varepsilon = 0.01$.
- Estimation of **k**:
 Sequential pruning
 strategy
 +
 Mixture minimum
 description length (MMDL)

criterion

VS Standard BIC criterion

CRITERIA ADAPTATION FOR HSMMs

BIC criterion for HSMMs

$$BIC_{HSMM}(k) = LL - \frac{k^2 + k}{2} log(n)$$

k: number of states.

n: total number of samples.

LL: log-likelihood of the observations.

MMDL criterion for HSMMs

$$\begin{aligned} & \mathsf{MMDL}_{\mathsf{HSMM}}(k) \\ &= \mathsf{LL} - \frac{k^2 - k}{2} log(n) - \sum_{m=1}^{k} log(np_{\infty}(m)) \end{aligned}$$

 $p_{\infty}(m)$: stationary probability distribution for HSMMs.

Sequential pruning strategy

 $\hat{\mu}_k = (\mathbf{s}, A, \pi, B, D)$: predicted model parameters. $\mathbf{s} = \{s_1, \dots, s_k\}$: set of k states.

 $A \in \mathbb{R}^{k \times k}$: transition matrix.

 $\pi \in \mathbb{R}^k$: initial state probability distribution.

 $B \in \mathbb{R}^{k \times m}$: emission matrix, for m different observation symbols.

 $D \in \mathbb{R}^{k \times d_{max}}$: duration probability matrix.

RESULTS with synthetic data

Pruning MMDL vs. BIC

Method	No states	No iter.
BIC	4.4 ± 0.7	38.6 ± 34.2
MMDL	5.2 ± 0.6	5.8 ± 2.9

- Accuracy in the estimation of the number of states (*Nostates* field; true value is 5);
- Computational requirement reflected in the number of required iterations in the EM algorithm (*Noiter* field).

DISCUSSION

Comparison between the pruning MMDL for HSMMs and the standard BIC criterion:

- Higher accuracy in the selection of the optimal number of states;
- Less demanding computational requirement;
- The sequential pruning strategy guarantees a **lower sensitivity** to the initialization of the EM algorithm.

FUTURE WORK

- ** Compare with other standard methods;
- Pemonstrate the effectiveness in a more substantial application study using real data;
- Design feature conditioned state transitions or add latent variables to the HSMM model so that external information can be captured.

