Modern Fizika Laboratórium

A Bell–CHSH-egyenlőtlenségek tesztelése jegyzőkönyv

Mérést végezte: Csák Szelina Fruzsina (UP5RJX) Koroknai Botond (AT5M0G) Mérés időpontja: 2023.09.26

Jegyzőkönyv leadásának időpontja: 2023.10.1

Tartalomjegyzék:

1	A mérés célja és menete	2
2	A mérőeszközök	2
3	Fontos összefüggések	2
4	Mérési adatok és kiértékelésük 4.1 Fotonszámok meghatározása	3 3 4
5	Diszkusszió	7

1 A mérés célja és menete

A kísérlet fő célja a kvantum-összefonódás vizsgálata volt, amelyet a Bell-CHSH-egyenlőtlenség használatával demonstráltunk. A vizsgálat során összefonódott fotonpárokat használtunk, és ezeket két polárszűrővel segítségével tanulmányoztuk.

2 A mérőeszközök

- · SPDC-forrás
- $\frac{\lambda}{2}$ -es lemez
- Polárszűrők
- Tükrök
- Detektor
- Vezérlőegység
- Számítógép

3 Fontos összefüggések

Detektorok tökéletlenségének kiküszöbölésére az alábbi korrelációt használjuk:

$$\mathbf{E}(AB) = \frac{N_{++} - N_{+-} - N_{-+} + N_{--}}{N_{++} + N_{+-} + N_{-+} + N_{--}} \tag{1}$$

ahol $N_{\pm\pm}$ azon beütésszámok, amikor Alice és Bob koincidenciában megszólalnak.

Bell-CHSH-egyenlőtlenség alakjai:

$$S = \mathbf{E}(AB) - \mathbf{E}(AB') + \mathbf{E}(A'B) + \mathbf{E}(A'B') \le 2$$
 (2)

$$\overline{S} = \mathbf{E}(AB) - \mathbf{E}(AB') - \mathbf{E}(A'B) - \mathbf{E}(A'B') \le 2 \tag{3}$$

Bell-egyenlőtlenség megsértésének erősségét az alábbi összefüggéssel jellemezhetjük:

$$n_{\Delta} = \frac{S - 2}{\Delta S} = \frac{\sqrt{S^2 + \overline{S}} - 2}{\Delta S} \tag{4}$$

ahol ΔS a mért S érték szórása. Ha n_Δ értéke negatív, akkor nincs sértés. A fotonok Poisson-eloszlás szerint érkeznek a forrásból, ezért egy adott N beütésszámra a szórás \sqrt{N} .

Teljesen összefont négy Bell-állapot:

$$\Phi_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \Phi_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \Psi_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \Psi_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}$$

A tetszőleges irányú polárszűrő hatását leíró Jones-mátrix:

$$P_{\alpha} = \begin{pmatrix} cos^{2}(\alpha) & sin(\alpha)cos(\alpha) \\ sin(\alpha)cos(\alpha) & sin^{2}(\alpha) \end{pmatrix}$$

A két megfelelő irányú polárszűrő hatását leíró Jones-mátrixok tenzorszorzatát kell felírnunk:

$$P_{\alpha,\beta} = P_{\alpha} \otimes P_{\beta}$$

4 Mérési adatok és kiértékelésük

4.1 Fotonszámok meghatározása

4.2 Beütésszám-eloszlások mérése

4.2.1 Sötétfotonok eloszlása

A mérés során kikapcsoltuk a lézert. Ez azt eredményezte, hogy a beütésszám nem lett nulla, mivel a mérőműszer körül továbbra is jelen voltak elektromágneses hullámok és egyéb fotonok, amelyek véletlenül ütközhettek a detektorral. Fontos megjegyezni, hogy a sötétfotonok száma lényegesen alacsonyabb volt, mint amikor a lézer be volt kapcsolva (lásd az 1. és 2. ábrákon szereplő beütésszámok nagyságát).

Az integrálási időt rövidítettük le $\tau=100~ms$ -re, és összesen 1000 adatot vettünk fel. Ahogyan az alábbi ábrán is látható, a sötétfotonok eloszlása nem követte a Poisson-eloszlást, hanem inkább Gauss-eloszlást mutatott.

1. ábra: Sötétfotonok eloszlása

4.2.2 Koincidencia-fotonok eloszlása

A mérést megismételtük a lézer visszakapcsolásával. Különböző paramétereket állítottunk be a pumpalézeráram, az integrálási idő és a polárszűrők tekintetében annak érdekében, hogy a koincidencia csatornában 1-20 közötti beütésszámokat érjünk el. Ezt követően 1000 adatot rögzítettünk, ahol az integrálási idő $\tau=100~ms$ volt.

Ebben az esetben sikerült elérnünk az elvárt Poisson-eloszlást. Bob pozíciója változatlanul 90°-os állásban maradt, míg Alice szögét változtattuk, és a maximális beütésszámot 110°-os állásnál észleltük.

2. ábra: Koincidencia-fotonok eloszlása

4.2.3 Korrelációs-görbék mérése

A pumpalézer áramát I=45~mA-re állítottuk, és az integrálási időt $\tau=1~s$ -re állítottuk. Alice polárszűrőjét 4 különböző szögállásban vizsgáltuk $(0\circ,45\circ,90\circ,135\circ)$, míg Bob polárszűrőjét 10 fokonként állítottuk $0\circ$ -tól $180\circ$ -ig. Minden egyes állásnál rögzítettük a koincidencia csatornában mért beütésszámot. A mérést két állapotban végeztük el: klasszikus (1. táblázat) és Bell-állapotban (3. táblázat).

	Beütésszám				
Bob [°]	Alice [0°]	Alice [45°] Alice [90°]		Alice [135°]	
0	0	0	0	2	
10	1	2	6	7	
20	0	9	15	4	
30	0	24	50	18	
40	0	40	47	33	
50	0	42	59	35	
60	0	33	95	59	
70	1	46	98	63	
80	2	38	108	66	
90	0	32	95	69	
100	0	32	99	64	
110	1	34	82	43	
120	1	33	61	37	
130	1	22	39	35	
140	0	10	38	19	
150	2	14	36	17	
160	3	4	7	6	
170	1	1	4	4	
180	0	0	1	1	

1. táblázat: Klasszikus esetben a leolvasott beütésszámok a koincidencia csatornán

3. ábra: Klasszikus állapotban a beütésszám "Bob" polárszűrő változtatásával.

$E(0^{\circ}, 20^{\circ})$	E (45°, 20°)	E (0°, 70°)	$E(45^{\circ}, 70^{\circ})$	S	\overline{S}
0.673 ± 0.108	0.156 ± 0.179	-0.853 ± 0.075	$-0-126 \pm 0.152$	1.556 ± 0.514	1.497 ± 0.514

2. táblázat: A kiszámolt E értékek és ezekből meghatározott S és \overline{S} értékek. A 4.egyenlet alapján megadtuk a sértés erősségét: $n_{\Delta}=-0.977$

	Beütésszám				
Bob [°]	Alice [0°]	Alice [45°]	Alice [90°]	Alice [135°]	
0	40	34	6	17	
10	36	24	7	25	
20	40	11	6	39	
30	27	2	15	36	
40	33	5	21	44	
50	9	0	30	52	
60	8	3	42	37	
70	4	13	42	37	
80	3	19	47	40	
90	1	21	47	26	
100	0	22	40	21	
110	1	41	48	11	
120	8	22	30	9	
130	8	37	26	4	
140	19	28	18	4	
150	15	20	10	1	
160	19	22	9	4	
170	21	18	4	7	
180	4	6	1	1	

3. táblázat: Bell állapotban a leolvasott beütésszámok a koincidencia csatornán

4. ábra: Bell-állapotban a beütésszám "Bob" polárszűrő változtatásával

$E(0^{\circ}, 20^{\circ})$	E (45°, 20°)	$E(0^{\circ}, 70^{\circ})$	$E(45^{\circ}, 70^{\circ})$	S	\overline{S}
0.853 ± 0.085	-0.569 ± 0.149	-0.649 ± 0.155	-0.553 ± 0.169	0.380 ± 0.558	2.623 ± 0.558

4. táblázat: A kiszámolt E értékek és ezekből meghatározott S és \overline{S} értékek. A 4. egyenlet alapján megadtuk a sértés erősségét: $n_\Delta=1.165$

4.2.4 Bell-egyenlőtlenségek sértegetése

Lemértük a Bell-állapotban szükséges 16 különböző polárszűrő beállítást a Bell-méréshez, majd leolvastuk a koincidencia csatornában mért beütésszámokat (5. táblázat). A pumpalézer árama továbbra is I=45~mA volt, és az integrálási időt $\tau=15~s$ -ra állítottuk.

Alice [o]	Bob [0]	Beütésszám
0	22.5	1342
0	112.5	989
90	22.5	1331
90	112.5	238
45	22.5	896
45	112.5	238
135	22.5	349
135	112.5	1214
0	67.5	422
0	157.5	844
90	67.5	492
90	157.5	844
45	67.5	1679
45	157.5	601
135	67.5	1679
135	157.5	601

5. táblázat: A 16 polárszűrő beállás mellett leolvasott beütésszámok a koincidencia csatornán

$E(0^{\circ}, 22.5^{\circ})$	$E(45^{\circ}, 22.5^{\circ})$	E (0°, 67.5°)	$E(45^{\circ}, 67.5^{\circ})$	S	\overline{S}
-0.190 ± 0.030	0.565 ± 0.030	-0.027 ± 0.040	0.020 ± 0.30	0.404 ± 0.127	-0.730 ± 0.127

6. táblázat: A kiszámolt E értékek és ezekből meghatározott S és \overline{S} értékek. A 4.egyenlet alapján megadtuk a sértés erősségét: $n_{\Delta}=-9.211$

Hibaszámításhoz használt képletek:

$$\Delta E = \left| \frac{\partial E}{\partial N_{++}} \right| \Delta N_{++} + \left| \frac{1}{2} \frac{\partial^2 E}{\partial N_{++}^2} \right| \Delta N_{++}^2 + \left| \frac{\partial E}{\partial N_{+-}} \right| \Delta N_{+-} + \left| \frac{1}{2} \frac{\partial^2 E}{\partial N_{+-}^2} \right| \Delta N_{+-}^2 + \left| \frac{\partial E}{\partial N_{-+}} \right| \Delta N_{-+} + \left| \frac{1}{2} \frac{\partial^2 E}{\partial N_{-+}^2} \right| \Delta N_{--}^2 + \left| \frac{\partial E}{\partial N_{--}} \right| \Delta N_{--} + \left| \frac{1}{2} \frac{\partial^2 E}{\partial N_{--}^2} \right| \Delta N_{--}^2$$

$$(5)$$

egy adott N beütésszám hibája \sqrt{N} .

$$\Delta S = \Delta \overline{S} = S = \Delta E(AB) + \Delta E(AB') + \Delta E(A'B) + \Delta E(A'B')$$
(6)

5. ábra: S - \overline{S} grafikon

A mérés során a kétfotonos esetet viszgáltuk úgy, hogy mindkét foton útjában volt egy-egy polárszűrő. Egy mérés eredményét így számolhatjuk ki:

$$\langle \Phi_{+}|P_{\alpha,\beta}|\Phi_{+}\rangle = \frac{\cos^{2}(\alpha-\beta)}{2},$$

$$\langle \Phi_- | P_{\alpha,\beta} | \Phi_- \rangle = \frac{\cos^2(\alpha + \beta)}{2},$$

$$\langle \Psi_+|P_{\alpha,\beta}|\Psi_+\rangle = \frac{\sin^2(\alpha+\beta)}{2},$$

$$\langle \Psi_{-}|P_{\alpha,\beta}|\Psi_{-}\rangle = \frac{\sin^2(\alpha-\beta)}{2},$$

Ezek alapján az alábbi 4 állapot lehetséges:

$$\Phi_{\perp} = S = 2\sqrt{2}, \overline{S} = 0$$

$$\Phi_{-} = S = 0, \overline{S} = 2\sqrt{2}$$

$$\Psi_+ = S = 0, \overline{S} = -2\sqrt{2}$$

$$\Psi_{-}=S=-2\sqrt{2}, \overline{S}=0$$

Ebből, és a 4. és a 6. táblázatokban található értékek alapján, arra következtettünk, hogy a mérés során az SPDC forrás Φ_- Bell-állapotban lőtte a fotonokat a rendszerbe.

5 Diszkusszió

Az első három feladat során sikeresen meghatároztuk az eloszlásokat és a korrelációs görbéket. Klaszzikus esetben a Bell-egyenlőtlenségek megsértésének erősségére negatív eredményt kaptunk. Így nem történt sértés.

Az utolsó feladatban több újraszámolás után is negatív értéket kaptunk. Itt valami hiba történhetett mérés közben.