PRACTICE EXAM

(1) List all the elements in the group D_4 as permutations in S_4 .

Solution. Recall that D_4 is the group of isometries of a square whose vertices are labeled $\{1, 2, 3, 4\}$. Therefore, we have four elements which arise as rotations by angles $\pi/2, \pi, 3\pi/2, 2\pi$; these give

$$A = \{\iota, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\}.$$

We also have reflections about the x and y axes, and about the two diagonals which give $B = \{(1, 2)(3, 4), (1, 4)(23), (2, 4), (1, 3)\}$. Now $D_4 = A \cup B$.

- (2) Let $\sigma = (1, 2, 3, 4, 5, 6) \in S_7$.
 - (a) Compute σ^{103} .
 - (b) Write σ^{14} as a product of disjoint cycles.

Solution.

(a) Recall that by a Lemma from class we have order of a cycle of length ℓ equals ℓ . Therefore, the order of σ is 6. Since $103=6\times 17+1$, we have

$$\sigma^{103} = \sigma^{102} \sigma = \sigma.$$

(b) As was observed in part (a) we have $\sigma^6 = \iota$. Therefore, we have

$$\sigma^{14} = \sigma^2 = (1, 3, 5)(2, 4, 6).$$

(3) Let $H = \{ \sigma \in S_5 \mid \sigma(3) = 3 \}$. Show that H is a subgroup of S_5 ; moreover, show that H is isomorphic to S_4 .

Solution. First we show that H is a subgroup. Indeed $\iota \in H$ since $\iota(3) = 3$. If $\sigma \in H$, then $\sigma(3) = 3$; hence, $\sigma^{-1}(3) = 3$. That is: $\sigma^{-1} \in H$. If $\sigma, \tau \in H$, then $\sigma\tau(3) = \sigma(\tau(3)) = \sigma(3) = 3$. Hence $\sigma\tau \in H$. We get that H is a subgroup.

Let $A = \{1, 2, 4, 5\}$. Since |A| = 4, a theorem from class implies that S_A is isomorphic to S_4 .

We now show that $H \simeq S_A$. Define $f: H \to S_A$ by $f(\sigma) = \sigma|_A$ (the restriction of σ to A). Note that since $\sigma(3) = 3$ and σ is a bijection, we have $\sigma(A) = A$. That is $\sigma|_A \in S_A$. So f is well-defined. Moreover, given $\sigma, \tau \in H$ and $a \in A$ we have $(\sigma\tau)|_A(a) = (\sigma \circ \tau)|_A(a) = \sigma(\tau(a))$. Hence, $(\sigma\tau)|_A = \sigma|_A \circ \tau|_A$. That is $f(\sigma\tau) = f(\sigma)f(\tau)$.

We now check that f is a bijection. Suppose $f(\sigma) = f(\sigma')$. Then $\sigma(a) = \sigma'(a)$ for all $a \in A$. Further, $\sigma(3) = \sigma'(3) = 3$ since $\sigma, \sigma' \in H$. So $\sigma = \sigma'$; hence, f is one-to-one. To see f is also onto, let $\tau \in S_A$. Define $\sigma \in S_5$ by $\sigma(a) = \tau(a)$ if $a \neq 3$ and $\sigma(3) = 3$. Then $\sigma \in H$ and $f(\sigma) = \sigma|_A = \tau$. So f is onto.

These show that $H \simeq S_A \simeq S_4$ as we wanted to show.

- (4) Let G be a group and let $H \leq G$ be a subgroup of G.
 - (a) Suppose (G: H) = 2. Prove that gH = Hg for every $g \in G$.

(b) Prove or disprove by an example: suppose (G:H)=3, then every right coset is a left coset.

Solution.

- (a) See HW 7, page 106, #39.
- (b) An example was discussed in class: let $G = S_3$ and $H = \{\iota, (1, 2)\}.$ Then (G:H)=3 and we showed in class that left cosets of H in G are not right cosets.
- (5) Let G be a group. Show that G is isomorphic to a subgroup of S_G .

Solution. See Theorem 8.16 in the book.

(6) Let $K \leq H \leq G$ and assume that (G:K) is finite. Prove that (G:H) and (H:K) are finite.

Solution. Let (G:K)=n and let $\{g_1K=K,g_2K,\ldots,g_nK\}$ be the set of all left cosets of K in G. Since $K \subset H$, we have $g_i K \subset g_i H$ for all $1 \le i \le n$. Therefore,

$$G = \bigcup_{i=1}^{n} g_i K = \bigcup_{i=1}^{n} g_i H$$

This implies that every $g \in G$ belongs to at least one g_iH . Recall that gHand g'H are either equal or disjoint for all $g, g' \in G$. Let $\{j_1, \ldots, j_s\} \subseteq$ $\{1,\ldots,n\}$ be so that for every $1 \leq i \leq n$ there exists exactly one j_{ℓ} so that $g_i H = g_{j_\ell} H$. Then $\{g_{j_1} H, \dots, g_{j_s} H\}$ is the set of all left cosets of H in G. Therefore, $(G:H) = s \le n$, in particular, (G:H) is finite.

To see (H:K) is also finite, we note again that $G=\bigcup_{i=1}^n g_i K$. Since $H \subseteq G$, we have $H \subseteq \bigcup_{i=1}^n g_i K$. Let $A = \{i \mid 1 \le i \le n, g_i K \cap H \ne \emptyset\}$. Then

$$H \subseteq \bigcup_{i \in A} g_i K.$$

Moreover, for every $i \in A$, there exists some $h_i \in H$ and some $k_i \in K$ so that $h_i = g_i k_i$. Hence $g_i = h_i k_i^{-1} \in H$. That is: $g_i H = h_i H$ and we get

$$\bigcup_{i\in A}g_iK=\bigcup_{i\in A}h_iK\subseteq H.$$
 Hence, $H=\bigcup_{i\in A}h_iK$ and $(H:K)=|A|\leq n$ is finite.