## Lógica de Primeira Ordem

Alexandre Rademaker

March 14, 2017

# Linguagem

### Símbolos lógicos:

- $\bullet$  "(", ")",  $\rightarrow$ ,  $\neg$ ,  $\land$ ,  $\lor$ .
- Variáveis
- Símbolo de igualdade

#### Parâmetros:

- Símbolos quantificadores: ∀ e ∃
- Símbolos predicativos de aridade n. Exemplo: pai<sup>2</sup>.
- Símbolos de constantes (aridade zero). Exemplo: z<sup>0</sup>
- Símbolos de funções de aridade n. Exemplo:  $+^2$ .

### **Exemplos**

Linguagem dos conjutos:

$$L=\langle \in ^2, =^2, \emptyset \rangle$$

Linguagem da teoria elementar dos números:

$$L=\langle 0^0,<^2,S^1,+^2,\times^2,E^2\rangle$$

Pura predicativa:

$$L = \langle A_1^n, A_2^m, \dots, a_1, a_2, \dots \rangle$$

- Uma expressão é qualquer sequência de símbolos.
- Expressões interessantes: termos e fórmulas bem formadas (wff).
- Termos são entendidos como os nomes e pronomes da linguagem, dão nomes à objetos.
- Fórmulas atômicas não têm quantificadores nem conectivos.
- Fórmulas são afirmações sobre objetos.

- Uma expressão é qualquer sequência de símbolos.
- Expressões interessantes: termos e fórmulas bem formadas (wff).
- Termos são entendidos como os nomes e pronomes da linguagem, dão nomes à objetos.
- Fórmulas atômicas não têm quantificadores nem conectivos.
- Fórmulas são afirmações sobre objetos.

- Uma expressão é qualquer sequência de símbolos.
- Expressões interessantes: termos e fórmulas bem formadas (wff).
- Termos são entendidos como os nomes e pronomes da linguagem, dão nomes à objetos.
- Fórmulas atômicas não têm quantificadores nem conectivos.
- Fórmulas são afirmações sobre objetos.

- Uma expressão é qualquer sequência de símbolos.
- Expressões interessantes: termos e fórmulas bem formadas (wff).
- Termos são entendidos como os nomes e pronomes da linguagem, dão nomes à objetos.
- Fórmulas atômicas não têm quantificadores nem conectivos.
- Fórmulas são afirmações sobre objetos.

- Uma expressão é qualquer sequência de símbolos.
- Expressões interessantes: termos e fórmulas bem formadas (wff).
- Termos são entendidos como os nomes e pronomes da linguagem, dão nomes à objetos.
- Fórmulas atômicas não têm quantificadores nem conectivos.
- Fórmulas são afirmações sobre objetos.

#### **Termos**

Podem ser construídos a partir de **constantes** e **variáveis** sob os quais são aplicados um ou mais símbolos funcionais.

$$+(v_1, S(0))$$
  
 $S(S(S(0)))$   
 $+(E(v_1, S(S(0))), E(v_2, S(S(0))))$ 

### Fórmulas

Fórmulas atômicas tem função similar aos símbolos sentênciais na Lógica Proposicional. Tem a forma:

$$P(t_1,\ldots,t_n)$$

onde P é um símbolo predicativo de aridade n e  $t_1, \ldots, t_n$  são termos.

Por exemplo,  $v_1 = v_2$  (ou =  $(v_1, v_2)$ ) são fórmulas. Ou ainda,  $\in (v_5, v_3)$  na linguagem dos conjuntos.

Se  $\alpha$  e  $\beta$  são fórmulas atômicas, então são WFF:  $\alpha \wedge \beta$ ,  $\alpha \vee \beta$ ,  $\neg \alpha$ ,  $\alpha \to \beta$ ,  $\forall v_i \alpha$  e  $\exists v_i \alpha$ .

- Não é WFF:  $\neg v_3$  ou  $v_1 \rightarrow v_2$
- É WFF:  $\forall v_1((\neg \forall v_3(\neg (v_3 \in v_1))) \rightarrow (v_1 \in v_4))$



### Variáveis

$$\forall v_2(v_2 \in v_1) \qquad \exists v_1 \forall v_2 v_2 \in v_1$$

A segunda, formaliza a frase "existe um conjunto que todo conjunto é membro dele". A primeira, "todo conjunto é membro de . . . ".

Seja x uma variável, dizemos que x é livre em  $\alpha$  se:

- Se  $\alpha$  é atômica, x é livre em  $\alpha$  se x é um símbolo em  $\alpha$ .
- x é livre em  $\neg \alpha$  se é livre em  $\alpha$ .
- $x \in \text{livre em } \alpha \to \beta \text{ se } \in \text{livre em } \alpha \text{ e livre em } \beta.$
- x é livre em  $\forall v_i \alpha$  se é livre em  $\alpha$  e  $x \neq v_i$ .

Sentenças? Fórmulas sem variáveis livres!



### **Estruturas**

#### Nos dizem:

- A qual coleção de coisas os quantificadores ∀ e ∃ referem-se.
- O que os símbolos de predicados e funções denotam.

Formalmente, uma estrutura  $\mathfrak A$  para uma linguagem FOL associa:

- Ao quantificador  $\forall$  um conjunto não vazio  $|\mathfrak{A}|$  denominado **universo** ou **domínio.**
- A cada símbolo predicativo P de aridade n, uma relação de aridade n,  $P^{\mathfrak{A}} \subseteq |\mathfrak{A}|^n$ .
- A cada símbolo funcional f de aridade n, uma função  $f^{\mathfrak{A}}: |\mathfrak{A}|^n \to |\mathfrak{A}|.$
- A cada símbolo constante c, um membro  $c^{\mathfrak{A}} \in |\mathfrak{A}|$ .



### **Estruturas**

Seja a linguagem dos conjuntos  $L = \langle \in^2 \rangle$ . Podemos considerar a estrutura  $\mathfrak A$  que:

- $|\mathfrak{A}| = 0$  conjunto dos números naturais.
- $\in^{\mathfrak{A}}$  = o conjunto dos pares (m, n) tal que m < n.

Como a estrutura  $\mathfrak A$  nos permite interpretar (ler) a sentença:

$$\exists x \forall y \neg (y \in x)$$

#### **Estruturas**

Seja a linguagem  $L=\langle \in^2 \rangle$  (mesma) e o parâmetro  $\forall$ . Considere a estrutura finita  $\mathfrak B$  com universo  $|\mathfrak B|=\{a,b,c,d\}$ . Suponha a relação binária

$$E^{\mathfrak{B}} = \{(a,b), (b,a), (b,c), (c,c)\}$$

que pode ser desejada como um grafo



A sentença  $\exists x \forall y \neg y E x$  na estrutura  $\mathfrak B$  pode ser interpretada como? É verdadeira?

### Semântica

Se  $\sigma$  é uma sentença. Como dizer que " $\sigma$  é verdade em  $\mathfrak A$ "? Sem a necessidade de traduzir  $\sigma$  para português?

$$\models_{\mathfrak{A}} \sigma$$

Para uma WFF qualquer, precisamos de:

$$s: V \rightarrow |\mathfrak{A}|$$

Para então, informalmente definir " $\mathfrak A$  satisfaz  $\sigma$  com s" representado por:

$$\models_{\mathfrak{A}} \sigma[s]$$

se e somente se da tradução de  $\sigma$  determinada por  $\mathfrak{A}$ , onde a variável x é traduzida por s(x) se x é livre, é verdade.

### Semântica

Formalmente, precisamos definir a interpretação de termos e fórmulas por uma estrutura...

### Interpretação de termos

Definimos a função:

$$\overline{s}: T \to |\mathfrak{A}|$$

que mapea termos para elementos do universo de a. Como:

- **1** Para cada variável x,  $\overline{s}(x) = s(x)$ .
- Para cada constante c,  $\overline{s}(c) = c^{2}$ .
- **3** Se  $t_1, \ldots, t_n$  são termos e f é uma fução, então

$$\overline{s}(f(t_1,\ldots,t_n))=f^{\mathfrak{A}}(\overline{s}(t_1),\ldots,\overline{s}(t_n))$$

 $\overline{s}$  depende de  $\mathfrak{A}$  e s. Notação alternativa para  $\overline{s}(t)$  poderia ser  $t^{\mathfrak{A}}[s]$ .

# Interpretação de fórmulas

#### Fórmulas atômicas. Definimos explicitamente, dois casos:

 Igualdade onde = significa =, não é um parâmetro aberto à interpretações.

$$\models_{\mathfrak{A}} t_1 = t_2 [s] \text{ sse } \overline{s}(t_1) = \overline{s}(t_2)$$

Para um predicado n-ário P:

$$\models_{\mathfrak{A}} P(t_1,\ldots,t_n) \ [s] \ \operatorname{sse} \ \langle \overline{s}(t_1),\ldots,\overline{s}(t_n) \rangle \in P^{\mathfrak{A}}$$

## Interpretação de fórmulas

#### Outras WFF. Definimos recursivamente:

- **③**  $\models_{\mathfrak{A}} \phi \wedge \psi$  [s] sse  $\models_{\mathfrak{A}} \phi$  [s] e  $\models_{\mathfrak{A}} \psi$  [s].
- **⑤**  $\models_{\mathfrak{A}} \forall x \psi$  [s] sse para todo  $d \in |\mathfrak{A}|$ , temos  $\models_{\mathfrak{A}} \psi$  [s(x|d)].

Onde s(x|d) é a função s com uma diferença, para a variável x, ela retorna d.

$$s(x|d)(y) = \begin{cases} s(y) & \text{se } y \neq x \\ d & \text{se } y = x \end{cases}$$



### Examples

 Dado um particular grafo, como uma interpretação, verificar se uma fórmula é válida, verdadeira etc.

### **Pragmatics**

- Em geral, não lidamos diretamente com a interpretação, mas com teorias que limitem as interpretações que estamos interessados.
- Seja  $\alpha$  e  $\beta$  duas sentenças quaisquer e  $\gamma$  a setença  $\neg(\beta \land \neg \alpha)$ . Suponha  $\mathcal I$  uma interpretação que torne  $\alpha$  verdadeira, em  $\mathcal I$  a fórmula  $\gamma$  também será verdadeira, por que?
- Não precisamos para isso entender nenhum dos símbolos não lógicos de  $\alpha$  ou  $\gamma$ .
- Dizemos que  $\alpha \models \gamma$  ( $\gamma$  é consequência lógica de  $\alpha$ ).
- As letras  $\alpha$ ,  $\gamma$  e  $\beta$  são 'esquemas' de fórmulas.

# Consequência Lógica

 $S \models \alpha$  onde S é um conjunto de sentenças. S <u>logically entails</u>  $\alpha$ . Se e somente se (sss)

para toda interpretação  $\mathcal{I}$  se  $\mathcal{I} \models \mathcal{S}$  então  $\mathcal{I} \models \alpha$ . Em outras palavras, todo modelo de S satisfaz  $\alpha$ .

De outra forma, não existe interpretação  $\mathcal{I}$  tal que  $\mathcal{I} \models \mathcal{S} \cup \{\neg \alpha\}$ . Dizemos que  $\mathcal{S} \cup \{\neg \alpha\}$  é insatisfatível (unsatisfiable) neste caso.

<u>Valid</u> é um caso especial de <u>entailment</u>: Uma sentença é <u>válida</u> quando  $\models \alpha$ , ou seja, é consequência lógica de um conjunto vazio. Neste caso, para toda interpretação  $\mathcal{I}$ , temos  $\mathcal{I} \models \alpha$ . Ou  $\neg \alpha$  é unsat.

Entailment se reduz para valid: if  $S = \{\alpha_1, \dots, \alpha_n\}$  então  $S \models \alpha$  sss a sentença  $s_1 \wedge \dots \wedge \alpha_n \rightarrow \alpha$  é válida.

## Why we care

What logical entailments gives to us?

We want to conclude *Mammal(fido)* from *Dog(fido)*. But this is not logical entailments. So?

If we add  $\forall x.Dog(x) \rightarrow Mammal(x)$  in our KB, what changed?

Sentenças filtram as interpretações indesejadas. Queremos a verdade para uma desejada interpretação.

Mas não é sempre trivial ir do conhecimento explícito para o implícito.