Laboratório 8- CCI-22

Resolução de EDO's e sistemas de EDO'S

Alunos:

Andrei Albani

Vinicius Jose de Menezes Pereira

Q1.

Tabela 1. Comparação métodos Euler e Heun

h	Total iterações	Euler	Heun
0.5	2	5.5	5
0.25	4	5.25	5
0.1	10	5.1	5

A solução analítica fornecida pelo MatLab é y(t) = 2 - t(t-4). Então y(1) = 5 e pode-se notar que o método com passo de Heun obteve a resposta exata, mesmo para apenas duas iterações. É claro que se espera desse método um resultado melhor que o resultado fornecido por Euler, já que ele é o método de Euler porém melhorado. Nota-se ainda que, conforme aumenta o número de iterações (*i.e.*, diminui o valor de h), o valor calculado com o método passo de Euler se aproxima mais da resposta exata, como já era esperado (o erro é proporcional a h).

Q2.

y' = cos(x)+1, y(0) = -1. Achar y(2)

Tabela 2. Previsões do y(x) segundo os passos

h	Iterações	Euler	Heun	RK3	RK4
0.2	10	2.1646	2.1627	2.0085	2.0085
0.1	20	2.0377	2.0375	1.9632	1.9632
0.05	40	1.9737	1.9737	1.9374	1.9374
0.025	80	1.9415	1.9415	1.9236	1.9236

A solução encontrada pelo MATLAB para este problema foi $y(x) = x-1+\sin(x)$. Isso nos dá que y(2) = 1.9093. Vemos que os métodos utilizados conseguiram encontrar valores bem próximos do real, sendo os resultados de RK3 e RK4 melhores que os de Euler e Heun, pois tiveram um menor desvio em relação ao valor esperado. Isso acontece porque os métodos RK apresentados são mais sofisticados, pois seu erro decresce com h^n, com 0<h<1, já que são baseados nos erros da Série de Taylor. Além disso, percebemos que um menor 'h' e um maior número de iterações tende a melhorar o resultado encontrado, pois fazemos divisões mais precisas no intervalo, o que nos dá valores mais precisos do Yprox ao realizarmos os passos.

Q3.

(a)

Tabela 3. Solução obtida com previsor-corretor para h = 2

x (com h=2)	y (com previsor)	y (com 1º corretor)	y (com 2º corretor)
0	20	20	20
2	-	-	19.9000
4	-	-	19.5964
6	-	-	19.0796
8	18.3320	18.3311	18.3311
10	17.3230	17.3212	17.3211
12	16.0042	16.0003	16.0001
14	14.2915	14.2821	14.2817
16	12.0234	11.9959	11.9936

Tabela 4. Solução obtida com previsor-corretor para h = 1

x (com h=1)	y (com previsor)	y (com 1º corretor)	y (com 2º corretor)
0	20	20	20
1	-	-	19.9750
2	-	-	19.8998
3	-	-	19.7738

4	19.5960	19.5960	19.5660
5	19.3650	19.3650	19.3650
6	19.0789	19.0788	19.0788
7	18.7351	18.7350	18.7350
8	18.3304	18.3303	18.3303
9	17.8607	17.8606	17.8606
10	17.3206	17.3205	17.3205
11	16.7035	16.7033	16.7033
12	16.0002	16.0000	16.0000
13	15.1991	15.1986	15.1986
14	14.2835	14.2827	14.2827
15	13.2298	13.2285	13.2284
16	12.0021	11.9994	11.9993

Figura 1. Comparação entre os passos h = 1 e h = 2 com método previsor-corretor.

A função ode45 do MatLab obteve y(16) = 12.0000. De fato, integrando-se a função

f', determina-se $y(x) = \sqrt{400 - x^2}$, do que segue que y(16) = 12.

Assim, para h = 1, o erro relativo em y(16) é de $(12 - 11.9993)/12 = 6.10^{-3} \%$

E para h = 2, o erro relativo em y(16) é de $(12 - 11.9936)/12 = 5.10^{-2}$ %

Pode-se ver que o erro com h = 1 é menor. Isso já era esperado, dado que o erro para o método de quarta ordem é proporcional a h^5 .

Mesmo assim, como se nota na figura 1, as curvas das duas soluções praticamente se sobrepõem.

Ademais, é válido destacar que o corretor que mais faz diferença é o primeiro a ser aplicado. Como se vê na tabela 4, para h = 1 o segundo corretor praticamente não altera os valores. Para h = 2, a influência do segundo corretor é um pouco mais significativa, porém ainda é pequena, o que evidencia, por fim, a convergência rápida do método, *i.e.*, bastam apenas uma ou duas iterações. Isso concorda com outros resultados experimentais em que o previsor e o corretor são da mesma ordem e h se mostra suficientemente pequeno para a atingir a convergência.

(b)

Tabela 5. Comparação entre as soluções obtidas por diferentes métodos.

	y			
x (com h=2)	Previsor-corretor (com 2º corretor)	Adams-Bashfor th de 4ª ordem	Runge-Kutta de 4 ^a ordem	
0	20	20	20	
2	19.9000	19.9000	19.8997	
4	19.5964	19.5964	19.5959	
6	19.0796	19.0796	19.0788	
8	18.3311	18.3320	18.3303	
10	17.3211	17.3240	17.3205	
12	16.0001	16.0074	16.0000	
14	14.2817	14.2999	14.2828	
16	11.9936	12.0460	11.9998	

Figura 2. Comparação entre diferentes métodos de solução para 0 < x < 16.

Figura 3. Comparação entre diferentes métodos de solução para 15 < x < 16. Como se pode observar na Tabela 5, o método previsor-corretor tem vantagem clara sobre o método explícito. O erro relativo sai de 0,4% para 0,05 %, *i.e.* o resultado é muito mais preciso utilizando-se o método previsor-corretor. Agora, em comparação com o método Runge-Kutta, o previsor-corretor é menos preciso (há de se dizer, ainda, que o Runge-Kutta é mais simples de se utilizar!). A figura 3 apresenta de forma mais clara uma relação entre a precisão dos métodos. Nota-se uma grande vantagem do Runge-Kutta e previsor-corretor sobre o método explícito.

Q4.

Sistema de EDO.

$$\frac{dy}{dx} = -0.5x$$

$$\frac{dz}{dx} = 4 - 0.3z - 0.1y$$

y(0) = 4

z(0) = 6

Tabela 6. Soluções encontradas para o sistema pelos métodos indicados

x	y (Euler)	z (Euler)	y (RK4)	z (RK4)
0	4	6	4	6
0.5	3	6.9000	3.1152	6.8577

1	2.2500	7.7150	2.4262	7.6321
1.5	1.6875	8.4453	1.8895	8.3269
2	1.2656	9.0941	1.4716	8.9469

Figura 4: Resoluções do sistema de EDO pelo passo de Euler, RK4 e pelo MATLAB.

Esta questão foi um verdadeiro desafio para ser respondida. Nela, temos um sistema de equações diferenciais ordinárias (EDO's) que deve ser 'resolvido' pelo computador. Para isso, implementou-se as funções passo de Euler e passo RK4 para resolver um sistema de EDO de 3 variáveis, o que na verdade foi apenas uma adaptação das funções dos passos para resolver uma EDO de 2 variáveis e primeira ordem, as quais já haviam sido implementadas. De modo especial, na função passo RK4, para descobrir os k's relativos às funções f e g, que representam y'(x) e z'(x), foram realizadas atualizações simultâneas no kg e no kf.

Agora, saindo um pouco da implementação, vamos discutir os resultados. Percebe-se que o desempenho do passo RK4 é superior ao passo de Euler, pois a linha vermelha, que representa o resultado do MATLAB, que é mais preciso, se aproxima mais da linha verde, que representa o passo RK4, do que da azul, que representa o passo de Euler. Esse comportamento é percebido tanto para o resultado de y(x) quanto de z(x).

Tal fenômeno já era esperado, visto que os erros encontrados por RK4 são menores que os de Euler, pela própria dedução do algoritmo RK4, que utiliza erros com ordem de 0 < h <1 superiores, resultando num erro menor no final. Vemos também

que, conforme y e z se distanciam do ponto inicial, pior vai ficando o método do passo de Euler, pois seu erro vai aumentando.

Q5.

Utilizando uma mudança de variáveis adequada, a equação problema pode ser transformada no seguinte sistema de EDO's:

$$y' = z$$

 $z' = w$
 $w' = z'' = y''' = x^2y'' - y'^2y = x^2w - z^2y$

O sistema foi resolvido utilizando-se o método de Runge Kutta de 3^a ordem adaptado para funções de 4 variáveis. Nesse caso, tem-se f = y', g = z' e t = w' as funções e x, y, z, w as variáveis passadas como argumento. A tabela apresenta a solução encontrada.

Tabela 7. Solução obtida com Runge-Kutta de 3ª ordem.

X	y (RK3)
0	1
0.1	1.2143
0.2	1.4534
0.3	1.7095
0.4	1.9724
0.5	2.2293
0.6	2.4663
0.7	2.6695
0.8	2.8266
0.9	2.9280
1	2.9664

Figura 5: Comparação entre as soluções determinadas pelo Runge-Kutta de ordem 3 e a função ode45 do MatLab.

Como se pode observar na figura 5, a solução determinada pelo método escolhido se assemelha muito à curva obtida ao se utilizar a função ode45 do MatLab. Essa função fornece cada valor de y(i) com erro relativo inferior a 10^{-3} , o que indica, pela comparação dos gráficos, que o método Runge-Kutta de 3^a ordem foi capaz de resolver o sistema de EDO's com um erro relativo pequeno.

Como o vetor Yv retornado pela função ode45 do MatLab possuía 41 elementos, isso indica que o passo utilizado foi 0.025, o que possibilita comparar os valores de y desta função com os obtidos com o método RK, para cada valor de x no intervalo [0, 1] com passo 0.1. A figura 6 mostra a diferença entre os referidos valores.

```
D = 1.0e-03 * 0 0.0879 0.1889 0.2718 0.2882 0.1881 -0.0513 -0.3956 -0.7444 -0.9493 -0.8409
```

Figura 6. Diferença entre y(RK) e y(ode45) para cada x = 0, 0.1, 0.2, ..., 1

Como se pode observar, a diferença é da ordem de grandeza de 10^{-4} , o que indica quão próximos são os valores obtidos por cada solução.

Q6.

Recorrência encontrada:

$$T''(x) = -k(T_a - T)$$

$$(T_{i+1} - 2T_i + T_{i-1}) = 0.04 * (T_i - 20) = 0.04 * T_i - 0.8$$

$$-0.8 = T_{i+1} - 2.04T_i + T_{i-1}$$

Matrizes encontradas: A*T = b

 $b = [-40.8 - 0.8 - 0.8 - 200.8]^T$

 $T = [T(2),T(4),T(6),T(8)]^{T}$

A = [-2.04	1	0	0;
	1	-2.04	1	0;
	0	1	-2.04	1;
	0	0	1	-2.04]

Tabela 7. Resolução da EDO de temperatura

х	Aproximação O(h^2)	Função bvp4c do MATLAB	Analiticamente
2	65.9698	65.9518	67.1732
4	93.7785	93.7478	95.2396
6	124.5382	124.5036	126.3257
8	159.4795	159.4534	161.6790

Figura 6: Temperatura que varia com a distância.

Vemos que, mesmo utilizando grandes aproximações com erro O(h^2) para o cálculo de y"(x), obtivemos um ótimo resultado da aproximação da função temperatura, com erros muito pequenos e muito parecidos com os resultados obtidos pelo próprio MATLAB e se aproximando bastante do esperado pelo cálculo analítico. Isso nos mostra o grande poder que temos com simples algoritmos de aproximação para resolução de EDO's, que conseguem alcançar em vários casos, como é este em questão, resultados que se equiparam ao de uma equipe de engenheiros do MATLAB que dedicam suas vidas para desenvolver os melhores algoritmos de resolução de vários problemas matemáticos, entre eles, a solução de equações e sistemas de equações diferenciais ordinárias.

Agradecimentos: Professora Juliana, muito obrigado por suas aulas, seus materiais e sua disponibilidade em sala de aula na matéria de matemática computacional. Foi realmente uma boa experiência termos tido aulas com a senhora! Esperamos por mais!

Avaliação da dupla

Aluno	Atividades	Percentual
Andrei Albani	Ímpares: Q1, Q3 e Q5 revisando as do colega	100%
Vinícius Pereira	Pares: Q2, Q4 e Q6 revisando as do colega	100%