Example 1:

Object identifier test-1 test-2 test-3

	Nomina	l ordinal	numeric
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code D	excellent	28

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$

We will have 3 matrices one for the Nominal attribute, one for the ordinal, one for numeric.

Nominal

0			
1	0		
1	1	0	
0	1	1	0

Ordinal

0			
1.	0		
1. 0			
0.	0.5	0	
0. 5			
0	1.0	0. 5	0
		5	

Let use look at the ordinal attribute, fair, good, and excellent. Mf = 3, three states. Let us replace each value by its rank, ranks. Fair is 1, good is 2 and excellent is 3. Let us use the following normalization formula Zif=(rif-1)/Mf-1.

1

A database may contain all attribute types

- Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

Object identifier	test-1	test-2	test-3	
	Nomina	l ordinal	numeric	
1	code A	excellent	45	
2	code B	fair	22	
3	code C	good	64maxh	axhf = 64 minhxhf = 22
4	code D	excellent	28	
				_

Let us compute the dissimilarity matrix for the numeric attribute

numeric

0			
0.55	0		
0.45	1	0	
0.40	0.14	0.86	0

$$d^{3}_{(1,2)} = |45-22|/42 = 0.55,$$

$$d^{3}_{(1,3)} = |45-64|/42 = 0.45,$$

$$d^{3}_{(1,4)} = |45-24|/42 = 0.40,$$

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

We can now use the formula compute dissimilarity matrix using the

$$d(3,1) = (1 * 1 + 1 * 0.50 + 1 * 0.45)/3 = 0.65$$

0			
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

Example 2: Given the following dataset

Object identifier **Symmetric**

Asymmetric

		-					-
name	gender	fever	cough	Test-1	Test-2	Test-3	Test-4
jack	M (1)	Y (1)	N (0)	P (1)	N (0)	N (0)	N (0)
jim	M (1)	Y (1)	Y (1)	N (0)	N (0)	N (0)	N (0)
mary	F (0)	Y (1)	N (0)	P (1)	N (0)	P (1)	N (0)
••••							
•••							

d(I,j) = r + s/q + r + s + t for symmetric binary, d(I,j) = r + s/q + r + s for asymmetric binary

Object j

Example #1

q=1 s=1

r=1

jack	Y (1)	N (0)	P (1)	N (0)	N (0)	N (0)
jim	Y (1)	Y (1)	<mark>N (0)</mark>	N (0)	N (0)	N (0)

Want to compute d(jack, Jim) = 1 + 1/1 + 1 + 1 = 0.67

Example # 2

q=1

q=1

jack	Y (1)	N (0)	P (1)	N (0)	N (0)	N (0)
mary	Y (1)	N (0)	P (1)	N (0)	P (1)	N (0)

d(Jack,Mary)= 0+ 1/2+0 + 1= 0.33

Example #3

d(Jim,Mary) = 1 + 2/1 + 1 + 2 = 0.75

Jim and Mary are unlikely to have similar disease because they have the highest dissimilarity.

Jack and Mary are the most likely to have a similar disease