

Northern Illinois University

Review

Dr. Maoyuan Sun - smaoyuan@niu.edu

Final Exam Schedule

Date: **December 11, 2024**

Time: 10:00 - 11:15 am (75 mins)

Location: PM 110

Topics: B-tree, Hash, Graph

- We choose a v that has the smallest d_v from all unknown vertices and is adjacent to s
- This path is declared the shortest path from s to v and marked known
- The remaining step is updating d_w (we didn't track d_w before, as we just were thinking $d_w = dv + 1$ if $d_w = \infty$) and $d_w = dv + c_{v,w}$ if this new value for d_w would be an improvement
- The algorithm decides if it's a good idea or not to use v on path to w given known cost and new cost

V	known	d_{v}	p_{v}
V_1	F	0	0
V_2	F	∞	0
V_3	F	∞	0
V_4	F	∞	0
V ₅	F	∞	0
V ₆	F	∞	0
V ₇	F	∞	0

Pick s to be v_1 , the path to v_1 is 0

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	F	2	V_1
V_3	F	∞	0
V_4	F	1	V_1
V ₅	F	∞	0
V ₆	F	∞	0
V ₇	F	∞	0

From v_1 we have path to v_2 and v_4 , we choose v_4 (why?)

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	F	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V_5	F	3(1+2)	V_4
V_6	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_4 we have path to v_3 , v_5 , v_6 , v_7 , we choose v_2 (new cheapest)

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V_5	F	3(1+2)	V_4
V_6	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_2 we have path to v_4 , v_5 we look at v_5 (since v_4 is already known) none of the paths are better, v_1 to v_2 to v_5 costs 2 + 10 = 12 > 3

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	F	3(1+2)	V_4
V_4	Т	1	V_1
V_5	Т	3(1+2)	V_4
V_6	F	9 (1 + 8)	V_4
V ₇	F	5 (1 + 4)	V_4

From v_5 we have path to v_7 none of the paths are better v_1 to v_4 to v_5 , 1 + 2 + 6 = 9 > 5 back to selecting the smallest unvisited node which is v_3

V	known	d_{v}	p _v
V ₁	Т	0	0
V_2	Т	2	V_1
V_3	Т	3(1+2)	V_4
V_4	Т	1	V_1
V_5	Т	3(1+2)	V_4
V_6	F	8(1+2+5)	V_3
V ₇	F	5 (1 + 4)	V_4

From v_3 we have path to v_1 , v_6 with v_1 cost is 1 + 2 + 4 = 7 > 0 but v_6 is 1 + 2 + 5 = 8 < 9, so we update, v_7 is now selected as the smallest

V	known	d_{v}	p _v
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	3 (1 + 2)	V_4
V_4	T	1	V_1
V_5	Т	3 (1 + 2)	V_4
V_6	F	6(1+4+1)	V_7
V ₇	Т	5 (1 + 4)	V_4

From v_7 we have path to v_6 with cost is 1 + 4 + 1 = 6 < 8, so we update and v_6 is the last one for us to visit

V	known	d_{v}	p _v
V ₁	Т	0	0
V_2	Т	2	V_1
V_3	Т	3 (1 + 2)	V_4
V_4	Т	1	V_1
V_5	Т	3 (1 + 2)	V_4
V_6	Т	6(1+4+1)	V ₇
V ₇	Т	5 (1 + 4)	V_4

v₆ no where to visit

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	3	V_4
V_4	Т	1	V_1
V ₅	Т	3	V_4
V ₆	Т	6	V ₇
V ₇	Т	5	V_4

What is the shortest path from:

$$\begin{array}{c} \text{V}_1 \text{ to V}_1 \to \text{V}_1 \\ \text{V}_1 \text{ to V}_2 \to \text{V}_1 - \text{V}_2 \\ \text{V}_1 \text{ to V}_3 \to \text{V}_1 - \text{V}_4 - \text{V}_3 \\ \text{V}_1 \text{ to V}_3 \to \text{V}_1 - \text{V}_4 - \text{V}_3 \\ \text{V}_1 \text{ to V}_4 \to \text{V}_1 - \text{V}_4 \\ \text{CSCI 340 - Data Structures} \end{array} \quad \begin{array}{c} \text{V}_1 \text{ to V}_5 \to \text{V}_1 - \text{V}_4 - \text{V}_5 \\ \text{V}_1 \text{ to V}_6 \to \text{V}_1 - \text{V}_4 - \text{V}_7 - \text{V}_6 \\ \text{V}_1 \text{ to V}_7 \to \text{V}_1 - \text{V}_4 - \text{V}_7 \\ \text{CSCI 340 - Data Structures} \end{array}$$

- A minimum spanning tree of an undirected graph G is a formed from the graph edges that connects all the vertices of G at the lowest total cost.
- A minimum spanning tree exists if and only if G is connected
- Reminder: an undirected graph is connected if there is a path from every vertex to every other vertex

- The number of edges in the minimum spanning tree is the number of vertices – 1 (|V| - 1)
- It is a tree because the graph has become acyclic, spanning because it covers all vertices and minimum by the defined goal

- Programmatically we can leverage the table like approach we saw with Dijkstra's algorithm for shortest path
- We will keep track of d_v and p_v for each vertex, will also keep track if the vertex is known or not
- d_v is the weigh of the shortest path connecting v to a known vertex
- p_v is the last vertex that caused a change in d_v
- Algorithm proceeds as it did in the case of the shortest path with an exception of the update (its simpler); a vertex v is selected for each unknown w adjacent to v such that the $d_w = \min(dw, c_{w,v})$

- In Dijkstra's algorithm d_v represented the tentative distance, the shortest distance from s (starting point) to v using only known vertices as intermediates
- Here we are only looking at the single edge (not path)

V	known	d_{v}	p_{v}
V_1	F	0	0
V_2	F	∞	0
V_3	F	∞	0
V_4	F	∞	0
V ₅	F	∞	0
V_6	F	∞	0
V ₇	F	∞	0

v₁ is the starting point

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	F	2	V_1
V_3	F	4	V ₁
V_4	F	1	V_1
V ₅	F	∞	0
V ₆	F	∞	0
V ₇	F	∞	0

update v_2 , v_3 , v_4 , select v_4 , lowest cost

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	F	2	V_1
V ₃	F	2	V ₄
V_4	Т	1	V_1
V ₅	F	7	V_4
V_6	F	8	V_4
V ₇	F	4	V_4

given v_4 , lowest cost can be updated to v_3 and fill out the rest we select v_2 next, could have selected v_2 or v_3 given same cost

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	F	2	V_4
V_4	Т	1	V_1
V ₅	F	7	V_4
V ₆	F	8	V_4
V ₇	F	4	V_4

 v_2 the only unknown v_2 can reach is v_5 with a cost of 10 now we select v_3

V	known	d_{v}	p_v
V ₁	Т	0	0
V_2	Т	2	V ₁
V_3	Т	2	V_4
V_4	Т	1	V_1
V ₅	F	7	V_4
V ₆	F	5	V ₃
V ₇	F	4	V_4

 v_3 the only unknown v_3 can reach is v_6 with a better cost, we select v_7 next as lowest cost

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	2	V_4
V_4	Т	1	V_1
V ₅	F	6	V ₇
V ₆	F	1	V ₇
V ₇	Т	4	V_4

 v_7 which can get to v_6 at lower cost and v_5 at lower cost choose v_6 as next unknown to visit

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	2	V_4
V_4	Т	1	V_1
V ₅	F	6	V ₇
V_6	Т	1	V ₇
V ₇	Т	4	V_4

v₆ can not reach any unknowns, v₅ left

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V_1
V_3	Т	2	V_4
V_4	Т	1	V_1
V ₅	Т	6	V ₇
V ₆	Т	1	V ₇
V ₇	Т	4	V_4

v₅ can get no where new either

V	known	d_{v}	p_{v}
V_1	Т	0	0
V_2	Т	2	V ₁
V_3	Т	2	V_4
V_4	Т	1	V ₁
V ₅	Т	6	V ₇
V_6	Т	1	V ₇
V ₇	Т	4	V_4

m-ary Tree

- m-ary search tree allows m-way branching (m children)
- A node in a m-ary tree stores m-1 keys (K1, K2, K3, ...) in order
- Each piece of data stored is called a key (unique, only in one location)
- The keys in a node serve as dividing points
- Each node also has m pointers

B-tree of Order m Properties

- Developed by Bayer and McCreight in 1972
- Properties of a B-tree:
 - 1. The root has at least two subtrees unless it is a leaf.
 - 2. Each nonroot and each nonleaf node holds k-1 keys and k pointers to subtrees where $\left[\frac{m}{2}\right] \le k \le m$.
 - 3. Each leaf node holds k-1 keys where $\left\lfloor \frac{m}{2} \right\rfloor \leq k \leq m$.
 - 4. All leaves are on the same level.
- According to these conditions, a B-tree is always at least half full, has a few levels, and is perfectly balanced.

- Search for 71
- Almost the same process as binary tree

- Search for 71
- Almost the same process as binary tree

- Search for 71
- Almost the same process as binary tree

- Search for 71
- Almost the same process as binary tree

Insertion into a B-tree

- Incoming keys are added directly to a leaf if there is space available.
- When a leaf is full, the keys are divided between the leaves and one key is promoted to the parent.
- If the parent is full the process is repeated until the root is reached and a new root created.

• Insert(7)

• Insert 13

• Insert 13

Insertion Example B-tree Order 5

• Insert 13

B-tree Deletion

- Deletion is basically the reverse of insertion.
- Nodes can not become less than half full after a deletion
- If less than half full, nodes need to be merged.
- Two cases to look at:
 - Deleting from a leaf: If merging, include the splitting key as it may resplit
 - Deleting from a non-leaf:
 - If either child has more than minimum keys, promote the predecessor/ successor
 - If neither child has more, merge the nodes

Hash Table

- The ideal hash table data structure is an array of some fixed size containing items
- A key is used for the lookup
- The size of the hash table is known as the tablesize and common convention has the table run from 0 to (tablesize 1)
- Each key is mapped into some number in the range 0 to (tablesize 1) which corresponds to a cell in the array
- The mapping is called a hash function and has the properties:
 - it is easy to compute
 - ensures that any two keys result in a different cell location

Collisions

 If/when an element is inserted and it hashes to an index that is already in use, it is known as a collision.

Collisions (Separate Chaining)

- Keeps a list of all the elements that hash to the same value
- Example:
 - Let's assume the keys are the first 10 perfect squares
 - Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
 - Hashing Function: hash(x) = x%10, where 10 is tablesize
 - Then index looks like 0, 1, 4, 9, 6, 5, 6, 9,
 4, 1

Collisions (Probing)

- In probing, you look for alternative cells until an empty cell is found
- Given cells:

 $h_0(x)$, $h_1(x)$, $h_2(x)$, ... are tried in succession where:

 $h_i(x) = (hash(x) + f(i))\%tablesize with f(0) = 0$

The function f is the *collision resolution strategy*

- When using probing all elements go into the table so the table is generally larger
- Types of probing
 - Linear
 - Quadratic
 - Double hashing

Collisions (Linear Probing)

• In linear probing, f is a linear function of i

$$f(i) = i$$

- Cells are tried sequentially (with wrap around) in search of empty cell
- Example:
 - Keys: 89, 18, 49, 58, 69
 - Hashing Function: hash(x) = x%10, where 10 is tablesize

Collisions (Quadratic Probing)

• In quadratic probing, f is a quadratic function of i

$$f(i) = i^2$$

- Cells are tried sequentially (with wrap around) in search of empty cell
- Example:
 - Keys: 89, 18, 49, 58, 69
 - Hashing Function: hash(x) = x%10, where 10 is tablesize

Collisions (Double Hashing)

Double hashing uses a second hash function when a collision occurs.

$$f(i) = i * hash2(x)$$

which mean, we apply a second hash function to x probe at a distance hash₂(x), then 2*hash₂(x), then 3*hash₂(x), ...

- NOTE: Poor choice of hash₂ can be disastrous!
- Example:

$$hash_2(x) = x\%9$$

$$f(i) = i * hash2(x)$$

if building on our last example we inserted 99, it would conflict with 89 which when executed the second has would be i * 0 for all i's.

Take Away: hash₂ can **NEVER** return 0!!!!!

Rehashing

- What do you do if the table gets full?
- Build a new table that is twice as big (with a new hash function).
 - Scan the original table computing new key
 - Place element at new location based on key

0	6	6
1	15	15
2		23
3	24	24
4		
5		
6	13	13

$$h(x) = x\%7$$

insert 23, now the table is 70% full, time to create new table twice as big

Load Factor

- Load factor is the ratio of the number of elements in the hash table to the table size
- Ideal case is if load factor is less than 1
- As load factor approaches or is greater than 1 you might want to rehash