15. Treatments in many time periods

Ian Lundberg
Cornell Info 6751: Causal Inference in Observational Settings
Fall 2022

13 Oct 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Present treatments that unfold over time in DAGs
- 2. Reason about the sequential ignorability assumption
- 3. Apply inverse probability weighting to treatments over time

Suppose you teach second grade

Suppose you teach second grade

► Every month, you assess children's ability to sound out words

Suppose you teach second grade

- ► Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle

Suppose you teach second grade

- ► Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle
- ▶ In December, you hope every child can read a picture book

Suppose you teach second grade

- ▶ Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle
- ▶ In December, you hope every child can read a picture book

Task: Draw this in a DAG

Child cannot sound out words in September

Assign parent volunteer to read with child in September

Child cannot sound out words in September

Treatments in many time periods: A general problem

Treatments in many time periods: A general problem

This causal structure occurs

- ▶ when a policymaker targets treatment A_k at time k given confounders L_k measured at that time
- ▶ in observational settings where treatments unfold over time

Treatments in many time periods: A general problem

This causal structure occurs

- \blacktriangleright when a policymaker targets treatment A_k at time k given confounders L_k measured at that time
- in observational settings where treatments unfold over time

Goal: Study the outcome Y would be realized on average if A_0, \ldots, A_k are set to the values a_0, \ldots, a_k .

Treatments in many time periods: The curse of dimensionality

Each A_k is binary. How many potential outcomes are there?

Treatments in many time periods: The curse of dimensionality

Each A_k is binary. How many potential outcomes are there?

- $ightharpoonup \bar{a} = (0,0)$: No reading with a parent
- ightharpoonup $\bar{a}=(1,0)$: Read in September, not October
- ightharpoonup $\bar{a}=(0,1)$: Read in October, not September
- ightharpoonup $\bar{a}=(1,1)$: Always read with a parent

Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year

$$A_0,\ldots,A_8$$

Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year $\frac{1}{2}$

$$A_0, \ldots, A_8$$

There are then $2^9 = 512$ potential outcomes $Y^{a_0,...,a_8}$ for each child

Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year

$$A_0,\ldots,A_8$$

There are then $2^9 = 512$ potential outcomes $Y^{a_0,...,a_8}$ for each child

This is why we focus on treatment strategies

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

Example:

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

Example:

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k)=\mathbb{I}(L_k=0)$$

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

Example:

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k) = \mathbb{I}(L_k = 0)$$

We would then assign treatment $A_k = g(L_k)$

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

Example:

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k) = \mathbb{I}(L_k = 0)$$

We would then assign treatment $A_k = g(L_k)$

This involves many treatments, but only one strategy.

Treatment strategy: Exercise

Use math to define the following strategy:

Assign a parent volunteer to read with a child $A_k=1$ if and only if the child struggles sounding out words $L_k=0$ and the child did not receive this support last month $A_{k-1}=0$

Treatment strategy: Exercise

Use math to define the following strategy:

Assign a parent volunteer to read with a child $A_k=1$ if and only if the child struggles sounding out words $L_k=0$ and the child did not receive this support last month $A_{k-1}=0$

$$g(L_k, A_{k-1}) = \mathbb{I}(L_k = 0, A_{k-1} = 0)$$

Treatment strategy: Static and dynamic

A **static** strategy assigns treatments in advance

► Example: Always treat. g() = 1

Treatment strategy: Static and dynamic

A static strategy assigns treatments in advance

▶ Example: Always treat. g() = 1

A **dynamic** strategy assigns treatments as a function of the changing values of confounding variables

► Example: Treat if has difficulty sounding out words. $g(L_k) = \mathbb{I}(L_k = 0)$

1. What is the sufficient adjustment set to identify

1. What is the sufficient adjustment set to identify a) The total effect of A_0 on Y

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A} = (A_0, A_1)$ on Y

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

(2) has no solution!

- 1. What is the sufficient adjustment set to identify
 - a) The total effect of A_0 on Y
 - b) The total effect of A_1 on Y
- 2. We want to identify the effect of $\bar{A}=(A_0,A_1)$ on Y Can we jointly block all backdoor paths between \bar{A} and Y?

A joint adjustment set for \bar{A} is doomed

A joint adjustment set for \bar{A} is doomed

▶ What happens if you adjust for L_1 ?

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow |L_1| \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?
 - ▶ A backdoor path remains: $A_1 \leftarrow L_1 \rightarrow Y$

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 o L_1$ ← U o Y
- ▶ What happens if you don't adjust for L_1 ?
 - ▶ A backdoor path remains: $A_1 \leftarrow L_1 \rightarrow Y$

To proceed, we need a different adjustment set in each time period

Notation

- $\blacktriangleright \ \bar{A}_k = (A_0, A_1, \dots, A_k)$
- $\blacktriangleright \ \bar{L}_k = (L_0, L_1, \dots, L_k)$
- ► g()
- Yg

treatments up to time k confounders up to time k

treatment strategy potential outcome under that strategy

for all assignment rules g and time periods $k = 1, \dots, K$

for all assignment rules g and time periods $k = 1, \dots, K$

for all assignment rules g and time periods $k=1,\ldots,K$

for all assignment rules g and time periods $k=1,\ldots,K$

for all assignment rules g and time periods $k = 1, \dots, K$

Estimation: Two strategies

- 1. Inverse probability weighting (+ marginal structural models)
- 2. Structural nested mean models (coming next class)

Inverse probability weighting: DAG motivation

We observe data from this model

Inverse probability weighting: DAG motivation

We observe data from this model

We want this

Inverse probability weighting: DAG motivation

We observe data from this model

We want this

- 1. How would you weight to estimate the effect of A_0 ?
- 2. How would you weight to estimate the effect of A_1 ?

We will combine these

In time 0, define an inverse probability of treatment weight

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

such that A_0 does not depend on L_0 after weighting

In time 0, define an inverse probability of treatment weight

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

such that A_0 does not depend on L_0 after weighting

In time 1, do it again

$$W^{A_1} = \frac{1}{\mathsf{P}(A_0 \mid \bar{A}_{k-1}, \bar{L}_1)}$$

In time 0, define an inverse probability of treatment weight

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

such that A_0 does not depend on L_0 after weighting

In time 1, do it again

$$W^{A_1} = \frac{1}{\mathsf{P}(A_0 \mid \bar{A}_{k-1}, \bar{L}_1)}$$

Continue through all time periods.

In time 0, define an inverse probability of treatment weight

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

such that A_0 does not depend on L_0 after weighting

In time 1, do it again

$$W^{A_1} = rac{1}{\mathsf{P}(A_0 \mid ar{A}_{k-1}, ar{L}_1)}$$

Continue through all time periods.

Define the overall weight as the product

$$W^{\bar{A}} = \prod_{k=0}^K \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

$$W^{\bar{A}} = \prod_{k=0}^{K} \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

Takes us from this

to this pseudo-population

Inverse probability weighting with marginal structural models

Finally, we can put a model on top of the weighting.

$$\mathsf{E}(Y^{\bar{a}}) = \mathsf{E}(Y \mid \bar{A} = \bar{a}) = h(\bar{a})$$

for some function h() that pools information.

Example: Outcomes depend on the proportion of periods treated

$$h(\bar{a}) = \frac{1}{K+1} \sum_{k=0}^{K} a_k$$

Learning goals for today

At the end of class, you will be able to:

- 1. Present treatments that unfold over time in DAGs
- 2. Reason about the sequential ignorability assumption
- 3. Apply inverse probability weighting to treatments over time

Real example: Neighborhood disadvantage

Wodtke, G. T., Harding, D. J., & Elwert, F. (2011). Neighborhood effects in temporal perspective: The impact of long-term exposure to concentrated disadvantage on high school graduation. American Sociological Review, 76(5), 713-736.

Real example: Neighborhood disadvantage Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

Real example: Neighborhood disadvantage Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

► Define a neighborhood as a Census tract

Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

- ► Define a neighborhood as a Census tract
- ► Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ▶ welfare receipt
 - ► female-headed households
 - ► education
 - occupational structure

Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

- ► Define a neighborhood as a Census tract
- Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ▶ welfare receipt
 - ► female-headed households
 - education
 - occupational structure
- ► Scale by the first principle component

Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

- ► Define a neighborhood as a Census tract
- ► Score that neighborhood along several dimensions
 - poverty
 - unemployment
 - ▶ welfare receipt
 - ► female-headed households
 - education
 - occupational structure
- ► Scale by the first principle component
- ► Categorize in 5 quintiles

Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

- ► Define a neighborhood as a Census tract
- Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ▶ welfare receipt
 - ► female-headed households
 - ► education
 - occupational structure
- ► Scale by the first principle component
- ► Categorize in 5 quintiles

This 5-value treatment is "neighborhood disadvantage"

Wodtke et al. 2011

Neighborhoods are experienced over time:

ā

is a trajectory of neighborhood disadvantage over ages $2,3,\ldots,17$

The authors study the effect of neighborhood disadvantage,

$$E(Y_{\bar{a}} - Y_{\bar{a}'}) = E(Y_{\bar{a}}) - E(Y_{\bar{a}'})$$

= $P(Y_{\bar{a}} = 1) - P(Y_{\bar{a}'} = 1),$ (1)

Example:

 \bar{a} is residence in the most advantaged neighborhood each year and

 $\bar{a'}$ is residence in the most disadvantaged neighborhood each year

Wodtke et al. 2011

Problem: Neighborhoods A_1 shape family characteristics L_2 , which confound where people live in the future A_2

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of Follow-up

 $Note: A_k = \text{neighborhood context}, L_k = \text{observed time-varying confounders}, U = \text{unobserved factors}, Y = \text{outcome}.$

Table 2. Time-Dependent Sample Characteristics

Variable	Blacks $(n = 834)$			Nonblacks ($n = 1,259$)		
	Age 1	Age 10	Age 17	Age 1	Age 10	Age 17
NH disadvantage index, percent						
1st quintile	3.48	3.60	3.48	13.34	19.14	20.65
2nd quintile	3.24	3.72	6.00	19.46	18.67	21.84
3rd quintile	5.28	5.88	7.79	26.13	23.27	22.48
4th quintile	14.87	18.11	18.47	26.13	23.99	21.13
5th quintile	73.14	68.71	64.27	14.93	14.93	13.90
FU head's marital status, percent						
Unmarried	33.93	44.84	52.04	5.88	11.36	15.09
Married	66.07	55.16	47.96	94.12	88.64	84.91
FU head's employment status, percent						
Unemployed	27.22	32.61	33.09	8.10	8.02	9.69
Employed	72.78	67.39	66.91	91.90	91.98	90.31
Public assistance receipt, percent						
Did not receive AFDC	81.06	75.66	82.37	96.27	96.19	97.93
Received AFDC	18.94	24.34	17.63	3.73	3.81	2.07
Homeownership, percent						
Do not own home	69.66	53.48	50.12	40.19	22.32	20.73
Own home	30.34	46.52	49.88	59.81	77.68	79.27
FU income in \$1,000s, mean	19.68	25.04	27.45	32.59	46.65	57.50
FU head's work hours, mean	30.08	26.82	27.51	42.65	40.84	40.68
FU size, mean	5.75	5.32	4.81	4.22	4.69	4.33
Cum. residential moves, mean	.32	2.48	3.64	.32	2.16	3.02

Note: NH = neighborhood; FU = family unit. Statistics reported for children not lost to follow-up before age 20 (first imputation dataset).

Wodtke et al. 2011

Problem: Neighborhoods A_1 shape family characteristics L_2 , which confound where people live in the future A_2

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of Follow-up

 $Note: A_k = \text{neighborhood context}, L_k = \text{observed time-varying confounders}, U = \text{unobserved factors}, Y = \text{outcome}.$

Solution: MSM-IPW

$$w_{i} = \prod_{k=1}^{K} \frac{1}{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, \overline{L}_{k} = \overline{l}_{ki})} \cdot (4)$$

Also with stabilized weights

$$sw_{i} = \prod_{k=1}^{K} \frac{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, L_{0} = l_{0})}{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, \overline{L}_{k} = \overline{l}_{ki})}, (5)$$

Marginal structural model: Logit

- ► 5-category treatment entered numerically
- ► Baseline covariates included due to stabilized weights
- Weights adjust for time-varying confounding

Wodtke et al. 2011

 ${\bf Figure~3.~Predicted~Probability~of~High~School~Graduation~by~Neighborhood~Exposure~History}$

Note: NH = Neighborhood

Learning goals for today

At the end of class, you will be able to:

- 1. Present treatments that unfold over time in DAGs
- 2. Reason about the sequential ignorability assumption
- 3. Apply inverse probability weighting to treatments over time

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!