第5章 机械振动

由运动特征求解简谐振动方程

1. 简谐振动方程

· 若物体的运动方程满足以下形式(x 为物体相对平衡位置的位移),则称物体作简谐振动

简谐振动 位移	简谐振动 速度	简谐振动 加速度			
$x = A\cos(\omega t + \varphi)$	$v = -\omega A \sin(\omega t + \varphi)$	$a = -\omega^2 A \cos(\omega t + \varphi) = -\omega^2 x$			
·振幅 A 物体的最大位移					

周期、频率间的关系

角频率 ω 物体相位的变化速率,单位:弧度/秒

初相位 φ t=0时的相位 (通常取 $-\pi \sim \pi$)

- · 相位 $\omega t + \varphi$ 弧度制,以 2π 的周期性影响x
- · **周期** T 物体做一次完整振动(相位变化 2π)所需时间
- · 频率 ν 物体每秒钟作完整振动的次数
- · 在简谐振动的每个周期中, 都有以下 4 个相位, 使物体的位移、速度、加速度具有特殊性

相位	时间	位移	速度	加速度
$0 + 2k\pi$	$t_{_{ m O}}$	正向最大值	0(负斜率)	负向最大值
$\frac{\pi}{2} + 2k\pi$	$t_0 + \frac{T}{4}$	0(负斜率)	负向最大值	0(正斜率)
$\pi + 2k\pi$	$t_0 + \frac{T}{2}$	负向最大值	0(正斜率)	正向最大值
$\frac{3}{2}\pi + 2k\pi$	$t_0 + \frac{3T}{4}$	0(正斜率)	正向最大值	0(负斜率)
φ	0	$A\cos\varphi$		

· 不要硬记这个表格, 要结合图象理解

求解振动方程的一般思路

- ① 收集题给信息,通过公式转化为 ω 、A 和 φ ,然后得到方程
- ② 注意速度的最大值(幅值)为ωA
- ③ φ 可能会得到两组解 ($\varphi_0 + 2k\pi$),要根据题给信息排除一组,剩下取合适的k让 φ 位于 $-\pi \sim \pi$
- **例 1** (20—21, 2)—质点作简谐运动,速度最大值 $v_{\rm m}=6\,{\rm cm/s}$,振幅 $A=2\,{\rm cm}$ 。若取速度具有正向最大值的那—时刻为 t=0,则振动方程表达式为 m。
- 解 可获得的信息: ① $A=0.02 \mathrm{m}$ ② $v_{\mathrm{m}}=\omega A=6 \mathrm{cm/s}$ → ①②得 $\omega=3 \mathrm{rad/s}$ ③ t=0 时速度具有正向最大值 → 对应相位 $\omega t+\varphi=\frac{3}{2}\pi+2k\pi$,取k=-1得到 $\varphi=-\frac{\pi}{2}$ 综上所述,振动方程表达式为 $x=0.02 \mathrm{cos}(3t-\frac{\pi}{2})\,\mathrm{m}$

2. 简谐振动的 x-t 图象

t=0 处斜率大于 0 时,取 $-\pi < \varphi < 0$

t=0 处斜率小于 0 时,取 $0<\varphi<\pi$

- 例 2 (19-20, 8) 一简谐振动曲线如图所示,则其振动周期为
- 读图可得: ① A = 4cm ② $A\cos \varphi = 2$ cm ③ t = 0处斜率为正 解

$$\therefore \varphi = \arccos \frac{1}{2} = \pm \frac{\pi}{3} \rightarrow \varphi = -\frac{\pi}{3}$$

④ t=1s 对应位移 0 (负斜率), 且 0~1s 相位差小于 π

∴ 对应相位
$$\frac{\pi}{2} + 2k\pi$$
 → $t = 1s$ 时的相位为 $\frac{\pi}{2}$ → $\omega t + \varphi = \frac{2\pi}{T}t + \varphi = \frac{\pi}{2}$

联立,代入
$$t=1s$$
, $\varphi=-\frac{\pi}{3}$,解得 $T=2.4s$

- 例 3 (16-17, 1) 一质点作简谐振动,周期为T。当它由平衡位置向x轴正方向运动时,从二分之一 最大位移处到最大位移处这段路程所需要的最短时间为
- 解 把图象画出来,要求的就是这个时间"?" 同例 2 可以得到起点的相位 $\varphi = -\pi/3$, 终点的相位为 0

简谐振动动力学

1. 动力学表达式

· 若物体所受合力具有如下形式(与位移成反比),则物体将作简谐振动,且

简谐振动动力学
$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + kx = 0$$

简谐振动角频率

· 若初速度为 v_0 , 初始位移为 x_0 , 则

1-3 /H 318- 13 318- 1H	
$A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$	

简谐振动振幅

$$\varphi = \arctan \frac{-v_0}{\omega x_0}$$

x_0	v_0	φ 所处象限
> 0	> 0	${ m IV}$
> 0	< 0	Ι
< 0	> 0	Π
< 0	< 0	\coprod

题型:由动力学求解振动方程

- ① 首先假设系统静止,对物体进行**受力分析**(**易错点:弹簧作用力的符号**),列出式子
- ② 然后设物体位移为 x , 再作受力分析, 列出式子(受力分析利用第 2、3 章的内容)
- ③ 联立以上所有式子,得到微分方程,检查是否具有对应形式,再按公式完成题目要求

(实际上更推荐后面介绍的能量法)

- 例 4 (20-21, 1)一劲度系数为k的轻弹簧下端固定,上端系一轻绳,轻绳绕过定滑轮和质量为m的物体连接,如图所示。这定滑轮可看作是半径为R、质量为M的圆盘,它可绕无摩擦的水平轴转动。试求这装置的振动周期
 - M FI

解 对物体和滑轮作受力分析:

物体:
$$mg - T_1 = ma$$
 ① 滑轮: $T_1R - T_2R = \frac{1}{2}MR^2\beta$ ②

弹簧:
$$T_2 = k\Delta x$$
 ③ 运动学规律: $a = R\beta$ ④

则当系统静止时:
$$a=0$$
, $\beta=0$, 设此时弹簧伸长量 $x_0 \rightarrow kx_0=mg$ ⑤

则以物体的平衡位置为x=0,向下为正,则弹簧相对伸长量 $\Delta x = x_0 + x$

联立 ①②③④⑤ &
$$a = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$
: 解得 $(\frac{1}{2}M + m)\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + kx = 0$, 符合微分方程的形式

因此直接得到
$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{M/2 + m}{k}} = 2\pi \sqrt{\frac{M + 2m}{2k}}$$

例 5 (18—19, 2)如图所示,质量为M、半径为R的均匀圆盘中心C系于一水平的轻弹簧上,圆盘可在水平面上作无滑滚动,弹簧的劲度系数为k。现将圆盘中心C从平衡位置向右平移 x_0 后,由静止释放,可以证明圆盘的质心将作简谐振动。

- (1) 求圆盘质心的振动周期;
- (2)如果以平衡位置为坐标原点,向右为x轴正方向建立坐标,并以释放这一时刻作为计时起点,试写出圆盘质心的振动方程。
- 解 (1)圆盘受力分析:

质心平动:
$$-kx-f=Ma_{C}$$
 转动: $fR=\frac{1}{2}MR^{2}\beta$ 纯滚动: $a_{C}=\beta R$

联立:
$$\frac{3}{2}Ma_C + kx = 0 \rightarrow \frac{3M}{2}\frac{d^2x}{dt^2} + kx = 0 \rightarrow T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{3M}{2k}}$$

(2) 由题意, t=0时, $x=x_0$ 静止释放 $\rightarrow v_0=0$

因此
$$\varphi = \arctan \frac{-v_0}{\omega x_0} = 0$$
, $A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2} = x_0$

∴ 振动方程
$$x = x_0 \cos(\sqrt{\frac{2k}{3M}}t)$$

- 解 设向右为正方向,则弹簧 k_1 伸长时产生的力向左,取负号, k_2 弹簧伸长时产生的力向右,取正号设平衡时的弹簧伸长量分别为 x_1 和 x_2 ,则 $-k_1x_1+k_2x_2=0$ 那么,物体位置为 x 时,弹簧 k_1 伸长量 x_1+x , k_2 伸长量 x_2-x 则 $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-k_1(x_1+x)+k_2(x_2-x)=-k_1x_1-k_1x+k_2x_2-k_2x=-(k_1+k_2)x$ 因此 $\omega=\sqrt{\frac{k_1+k_2}{m}}$,由于静止释放, $v_0=0$,因此 $A=x_0$, $\varphi=0$
 - \therefore 振动方程: $x = x_0 \cos\left(\sqrt{\frac{k_1 + k_2}{m}}t\right)$

总结

虽然平衡时弹簧可能已经有弹力了,但不管物体位移到哪,这部分弹力都是存在且被抵消的,因此可以忽略这一组相互抵消的力。

2. 能量

简谐振动能量

$$E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2$$

求解振动方程的另一种方法

列出机械能守恒表达式,对时间求导,看得到的微分方程形式是否满足

- 例 4 (20-21, 1)一劲度系数为k的轻弹簧下端固定,上端系一轻绳,轻绳绕过定滑轮和质量为m的物体连接,如图所示。这定滑轮可看作是半径为R、质量为M的圆盘,它可绕无摩擦的水平轴转动。试求这装置的振动周期
- 解 使用能量法求解: 首先依然求出平衡状态时的受力情况: $mg = kx_0$ 设向下为正方向, 平衡位置为重力势能零点, 则物体位移x时:
 - · 物块动能: $\frac{1}{2}mv^2$
 - ・滑轮动能: $\frac{1}{2}J\omega^2 = \frac{1}{2}\frac{1}{2}MR^2\omega^2 = \frac{1}{4}Mv^2$
 - · 物块重力势能: -mgx
 - · 弹簧弹性势能: $\frac{1}{2}k(x+x_0)^2 = \frac{1}{2}kx^2 + kx\frac{mg}{k} + \frac{1}{2}\left(\frac{mg}{k}\right)^2 = \frac{1}{2}kx^2 + mgx + \frac{1}{2}\frac{m^2g^2}{k}$

因此系统的机械能
$$E = \frac{1}{2} \left(m + \frac{1}{2} M \right) v^2 - mgx + \frac{1}{2} kx^2 + mgx + \frac{1}{2} \frac{m^2 g^2}{k}$$

$$= \frac{1}{2} \left(m + \frac{1}{2} M \right) v^2 + \frac{1}{2} kx^2 + \frac{1}{2} \frac{m^2 g^2}{k}$$
 该守恒式对时间求导: $\left(m + \frac{1}{2} M \right) v \frac{\mathrm{d}v}{\mathrm{d}t} + kx \frac{\mathrm{d}x}{\mathrm{d}t} = 0$ 约掉 $v = \frac{\mathrm{d}x}{\mathrm{d}t}$, 且有 $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$: $\left(m + \frac{1}{2} M \right) \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + kx = 0$ 符合振动微分方程形式 因此直接得到 $T = \frac{2\pi}{w} = 2\pi \sqrt{\frac{M/2 + m}{k}} = 2\pi \sqrt{\frac{M + 2m}{2k}}$

讨论

当物块悬挂在弹簧下面时,弹簧需要伸长 x_0 使得 $mg=kx_0$ 以达到平衡,而我们用的弹簧伸长量 x 是相对于 x_0 的,那么弹簧的实际伸长量为 $x+x_0$,弹性势能为 $\frac{1}{2}k(x+x_0)^2$ 。

这是否意味着用 $\frac{1}{2}kx^2$ 是错误的?实际上把 $\frac{1}{2}k(x+x_0)^2$ 拆分开来: $\frac{1}{2}kx^2+kxx_0+\frac{1}{2}kx_0^2$,代人 $mg=kx_0$: $\frac{1}{2}kx^2+mgx+\frac{1}{2}kx_0^2$ 。也就是实际的弹簧弹性势能分成了 3 个部分:

- $\frac{1}{2}kx_0^2$ 是弹簧平衡状态时的弹性势能,这部分**不参与能量转换**
- · mgx等于物体运动x时的重力势能,也就是在振动中**与物体的重力势能相互转换**
- $\frac{1}{2}kx^2$ 是**与物体动能相互转换**的部分

因此,如果使用 $\frac{1}{2}k(x+x_0)^2$,就要把物体的重力势能考虑进来,如果使用 $\frac{1}{2}kx^2$,则只需要考虑动能。所以上面的例题如果使用 $\frac{1}{2}kx^2$,整道题会变得简单很多。但考虑到解题过程的严谨性,还是建议使用 $\frac{1}{2}k(x+x_0)^2$

例7 (17-18, 7(节选)) 一物块悬挂在弹簧下方作简谐振动,设平衡位置处势能为零,总能量为 E。 当这物块相对于平衡位置的位移等于振幅的一半时,其动能为_____。

解 总能量 $E = \frac{1}{2}kA^2$, 弹簧弹性势能 $E_p = \frac{1}{2}k\left(\frac{A}{2}\right)^2 = \frac{1}{4}\left(\frac{1}{2}kA^2\right) = \frac{1}{4}E$ 动能 $E_k = E - \frac{1}{4}E = \frac{3}{4}E$

三 稳定平衡位置附近的近似简谐振动

稳定平衡位置近似简谐振动求解

- · 与真正的简谐振动求法一模一样: 受力分析/能量法得到微分方程
- ·不同点在于,此时的微分方程中,原来的"kx"会变成如" $k\sin x$ "的形式
- ・此时只要对x做出范围限制,让这一项能近似于"kx" (最常见: $x \to 0$, $\sin x \approx x$)
- · 单摆和复摆的公式不在此列出, 也没必要记, 要记的是公式的推导过程

例 7 (14-15, 7)如图所示,一轻杆的一端固定一质量为m、半径为R的均匀圆环,杆沿直径方向;杆的另一端固定在o点,使圆环绕通过o点的水平光滑轴摆动。已知杆长为l,圆环绕o点的转动惯量 $J=m[R^2+(R+l)^2]$ 。今使该装置在圆环所在的竖直平面内作简谐振动,则其周期为

解 本题中为重力势能和动能相互转化。可得到质心位置距离 o 点 l+R,设偏转角 θ 重力势能:设圆环最低点处为 0,则 $E_{\rm p}=mg(l+R)(1-\cos\theta)$

动能:
$$E_{\mathbf{k}} = \frac{1}{2}J\omega^2 = \frac{1}{2}m[R^2 + (R+l)^2]\omega^2$$

因此机械能
$$E = E_k + E_p = \frac{1}{2}m[R^2 + (R+l)^2]\omega^2 + mg(l+R)(1-\cos\theta)$$

两边同时对
$$t$$
求导: $m[R^2 + (R+l)^2]\omega \frac{d\omega}{dt} + mg(l+R)\sin\theta \cdot \frac{d\theta}{dt} = 0$

$$\rightarrow \left[R^2 + (R+l)^2\right] \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + g(l+R)\sin\theta = 0$$

只要令 $\theta \to 0$,则 $\sin \theta \approx \theta$,近似为简谐振动 → 由公式立即推 $T = 2\pi \sqrt{\frac{R^2 + (R+l)^2}{g(l+R)}}$

(用受力分析法也是可以的,本题中两者性能差不多)

例 8 (14—15, 7)如图所示,一轻杆的一端固定一质量为m、半径为R的均匀圆环,杆沿直径方向;杆的另一端固定在o点,使圆环绕通过o点的水平光滑轴摆动。已知杆长为l,圆环绕o点的转动惯量 $J=m[R^2+(R+l)^2]$ 。今使该装置在圆环所在的竖直平面内作简谐振动,则其周期为_____。

解 本题中为重力势能和动能相互转化。可得到质心位置距离0点l+R.设偏转角 θ

四 振动合成

1. 同方向同频率的谐振动合成

- 解 注意到一个是 cos, 一个是 sin, 先把 sin 换成 cos:

$$x_2 = 2 \times 10^{-2} \sin(\pi - 5t) = 2 \times 10^{-2} \cos\left[\frac{\pi}{2} - (\pi - 5t)\right] = 2 \times 10^{-2} \cos(5t - \frac{\pi}{2})$$

用旋转矢量图表示可以轻松得到振幅 A = 0.06 - 0.02 = 0.04 m , 初相 $\varphi = \frac{\pi}{2}$