A109

```
A109
```

```
Simulation stochastique et méthode de Monte-Carlo
    Révisions de statistiques et de probabilités
        Probabilités
        Variable aléatoire
        Loi de probabilité, fonction de répartition, densité
        Espérance et moments
        Théorème (fondamental)
        Covariance
        Inégalités
             Inégalité de Bienaymé-Tchebychev
             Inégalité de Jensen
             Théorème de Cauchy-Schwarz
        Types de convergence
        Distributions conditionnelles dans \mathbb{R}^2
        Espérances conditionnelles dans \mathbb{R}^2:
Monte Carlo
    Processus de Monte Carlo
```

Abréviations:

• v.a. : variable aléatoire

• i.i.d.: indépendant et identiquement distribuées

• p.s.: presque sûr

Simulation stochastique et méthode de Monte-Carlo

Révisions de statistiques et de probabilités

Probabilités

Soit Ω l'ensemble des issues possibles d'une expérience; $\mathcal{F}:=\{A:A\subset\Omega\}$.

Une application $\mathbb{P}:\mathcal{F}\to[0,1]$ est appelée probabilité si les deux propriétés suivantes sont vérifiées :

1. $\mathbb{P}(\Omega) = 1$

2. Pour toute séquence $(A_n, n \ge 1) \subset \mathcal{F}$ d'évènements disjoints, c'est à dire $A_i \cap A_j = \emptyset$ pour tout $i \ne j$, on a :

$$\mathbb{P}(\cup_{n\geq 1}A_n)=\sum_{n\geq 1}\mathbb{P}(A_n)$$

Cette propriété est appelée σ -additivité de $\mathbb P$

Variable aléatoire

Une variable aléatoire est une modélisation :

$$X:\Omega o E$$

- Si E est un ensemble fini ou dénombrable, X est une variable aléatoire discrète.
- Si $E=\mathbb{R}$ (or $E=\mathbb{C}$), X est une variable aléatoire réelle (ou complexe).
- Si $E = \mathbb{R}^d$, d > 2, X est un vecteur aléatoire.
- ullet Si $E=\mathbb{R}^\mathbb{N}$, X est une séquence aléatoire.
- ullet Si $E=\mathbb{R}^{\mathbb{R}_+}$, X est un process aléatoire.

Loi de probabilité, fonction de répartition, densité

Loi de probabilité d'une variable aléatoire X

$$P_X(B) = \mathbb{P}(X \in B)$$

pour $B \subset \mathbb{R}$

Fonction de répartition d'une variable aléatoire *X*:

$$F(x) := \mathbb{P}(X \le x) = P_X(]-\infty, x]$$

pour tout $x \in \mathbb{R}$

Densité de probabilité d'une variable aléatoire X (si elle existe) :

$$f: \mathbb{R} o \mathbb{R}_+$$
 telle que $F(x) = \int_{-\infty}^x f(u) du$ pour tout $x \in \mathbb{R}$

Espérance et moments

$$\mathbb{E}(X) = \int_{\mathbb{R}} x dF(x) = \begin{cases} \sum_{i \geq 1} x_i \mathbb{P}(X = x_i) & \text{si X est une v.a. discrete} \\ \int_{\mathbb{R}} x f(x) dx & \text{si X est absolument continue} \end{cases}$$

$$\mathbb{E} X^k = \int_{\mathbb{R}} x^k dF(x)$$
 avec $k=1,2,\ldots$

$$Var(X) = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}X)^2$$

Propriétés de l'espérance :

- 1. Si $\mathbb{E}|X|<\infty$ et $\mathbb{E}|Y|<\infty$ alors $\mathbb{E}(aX=bY)=a\mathbb{E}X+b\mathbb{E}Y$ pour toutes constantes a et b
- 2. Si $X \leq Y$ alors $\mathbb{E} X \leq \mathbb{E} Y$
- 3. Si $\mathbb{E}|X|<\infty$ alors $\mathbb{E}X<\mathbb{E}|X|$
- 4. Si X quasiment égal à 0, alors $\mathbb{E} X = 0$
- 5. Si $\mathbb{E}|X|<\infty$ alors $\mathbb{E}[1_A]$ existe pour tout $A\in\mathcal{F}$
- 6. Si X quasiment égal à Y et $\mathbb{E}|X|<\infty$, alors $\mathbb{E}|Y|<\infty$ et $\mathbb{E}X=\mathbb{E}Y$
- 7. Si $X \geq 0$ et $\mathbb{E}X = 0$ alors X quasiment égal à 0

Théorème (fondamental)

Soit X une variable aléatoire dans \mathbb{R}^d . On dit que X a une densité f si et seulement si pour toute fonction mesurable et bornée $h:\mathbb{R}^d\to\mathbb{R}^m$ on a :

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^d} h(x) f(x) dx$$

ou a une loi P_X si et seulement si :

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^d} h(x) dP_X$$

Covariance

Pour toutes variables aléatoires X et Y dans L^2 , on définit leur covariance comme suit :

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)]$$

Propriétés:

- 1. $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- 2. Cov(X, X) = Var(X)
- 3. Cov(X, Y) = Cov(Y, X)
- 4. Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z), $(a, b \in \mathbb{R})$

Inégalités

Inégalité de Bienaymé-Tchebychev

Si $\mathbb{E}(X^2)<\infty$ alors, pour tout $\epsilon>0$:

$$\mathbb{P}(|X - \mathbb{E}(X)| < \epsilon) \leq rac{Var(X)}{\epsilon^2}$$

Inégalité de Jensen

Soit ϕ une fonction réelle convexe définie sur un ensemble de réalisations d'une variable aléatoire X. Si X et $\phi(X)$ sont intégrables, alors :

$$\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$$

Théorème de Cauchy-Schwarz

Si $\mathbb{E}(X^2)<\infty$ et $\mathbb{E}(Y^2)<\infty$, alors

$$\mathbb{E}(XY) \leq \sqrt{\mathbb{E}(X^2)} \sqrt{\mathbb{E}(Y^2)}$$

Types de convergence

On considère une séquence de variables aléatoires réelles X_n , $n=1,2,\ldots$ et une variable aléatoire X, toutes définies sur le même espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$

Définition: convergence presque sûre

On dit que X_n converge presque sûrement (ou avec une probabilité 1) vers la variable aléatoire X quand $n\to\infty$, si $\mathbb{P}(\{\omega:X_n(\omega)\to X(\omega) \text{ quand } n\to\infty\})=1$. On l'écrit comme suit :

$$X_n \xrightarrow{\text{presque sur}} X$$

Définition : convergence dans L^p

On dit que X_n converge dans L^p , $p\geq 1$ vers la variable aléatoire X quand $n\to\infty$, si $\mathbb{E}[|X_n|^p]<\infty$ et $\mathbb{E}[|X_n-X|^p]\to 0$ quand $n\to\infty$. On l'écrit comme suit :

$$X_n \stackrel{Lp}{\longrightarrow} X$$

Définition: convergence en probabilité

On dit que la séquence de variables aléatoires X_n converge en probabilité vers la variable aléatoire X quand $n\to\infty$, si pour tout $\epsilon>0$ on a :

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0 \text{ quand } n \to \infty$$

On l'écrit comme suit :

$$X_n\stackrel{p}{ o} X$$

Définition : convergence en loi

Soit F_n la fonction de répartition de X_n et F la fonction de répartition de X.

On dit qu'une séquence de variables aléatoires X_n converge en loi ou en distribution vers la variable aléatoire X quand $n\to\infty$ si $F_n(x)\to F(x)$ pour tous les points de continuité x de F. On l'écrit comme suit :

$$X_n \stackrel{loi}{\longrightarrow} X$$
 $rac{\sqrt{n}}{\sigma} (rac{S_n}{n} - \mu) \stackrel{d}{ o} N(0,1)$

Distributions conditionnelles dans \mathbb{R}^2

Considérons un vecteur aléatoire (X,Y) dans \mathbb{R}^2 de fonction de répartition F(x,y) et de densité de probabilité f(x,y) si elle existe. Nous avons les propriétés suivantes :

1. Densité de probabilité marginale de X et de Y:

$$f_X(x) = \int_{\mathbb{R}} f(x,y) dy, \;\; f_Y(y) = \int_{\mathbb{R}} f(x,y) dx$$

2. Densité de probabilité de X avec $\{Y = y\}$:

$$f_{X|Y}(x|y) = rac{f(x,y)}{f_Y(y)}$$

3. Fonction de répartition marginale :

$$F_X(x) = F(x, \infty), \quad F_Y(y) = F(\infty, y)$$

4. Fonction de répartition marginale de X avec $\{Y = y\}$:

$$F_{X|Y}(x|y) = \mathbb{P}(X \leq x|Y=y) = \int_{-\infty}^x f_{X|Y}(u|y) du$$

Espérances conditionnelles dans \mathbb{R}^2 :

Considérons un vecteur aléatoire (X,Y) dans \mathbb{R}^2 de fonction de répartition F(x,y) et de densité de probabilité f(x,y) si elle existe. Nous avons les propriétés suivantes :

1. Espérance conditionnelle de X avec $\{Y = y\}$:

$$\mathbb{E}(X|Y=y) = \int_{\mathbb{R}} x d_x F_{X|Y}(x|y) = \int_{\mathbb{R}} x f_{X|Y}(x|Y) dx$$

2. Espérance conditionnelle de h(X) avec $\{Y = y\}$:

$$\mathbb{E}(h(X)|Y=y) = \int_{\mathbb{R}} h(x) d_x F_{X|Y}(x|y) = \int_{\mathbb{R}} h(x) f_{X|Y}(x|y) dx$$

3. Espérance conditionnelle de h(X) sur Y:

$$\mathbb{E}(h(x)|Y) = \int_{\mathbb{R}} h(x) f_{X|Y}(x|Y) dx$$

4. Variance conditionnelle de X avec $\{Y = y\}$:

$$Var(X|Y=y) = \mathbb{E}[(X - \mathbb{E}(X|Y=y)^2|Y=y)]$$

Monte Carlo

$$egin{aligned} h:[0,1]& o\mathbb{R}\ I&=\int_0^1h(x)d(x)\ &=\int_\mathbb{R}h(x)1_{[0,1]}d(x)\ &=\int_\mathbb{R}h(x)f(x)dx\ &=\underbrace{\mathbb{E}[h(X)]}_{ ext{probleme stochastique}} \end{aligned}$$

Processus de Monte Carlo

- 1. Réalisation de variables aléatoires (sampling)
- 2. Précision
- 3. Calcul de n_min
- 4. Accélération