

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

				CI	ass	ific	atio	on c	of th	ne E	Eler	ner	nts				
1 1A				Representative elements					Zinc Cadmium Mercury								18 8A
1 H	2 2A			Noble g	gases			Lantha	nides			13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be			Transit metals	ion			Actinid	les			5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(117)	118
			Ì	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
																3	

Electron Configurations of Cations and Anions Of Representative Elements

Na [Ne]3s¹ Na⁺ [Ne]

Ca [Ar] $4s^2$ Ca $^{2+}$ [Ar]

Al $[Ne]3s^23p^1$ Al^{3+} [Ne]

Atoms lose electrons so that cation has a noble-gas outer electron configuration.

Atoms gain electrons so that anion has a noble-gas outer electron configuration.

H $1s^1$ H⁻ $1s^2$ or [He]

 $F 1s^22s^22p^5 F^- 1s^22s^22p^6 or [Ne]$

O $1s^22s^22p^4$ O²⁻ $1s^22s^22p^6$ or [Ne]

 $N \ 1s^22s^22p^3 \ N^{3-} \ 1s^22s^22p^6 \ or \ [Ne]$

Isoelectronic: have the same number of electrons, and hence the same ground-state electron configuration

Na⁺: [Ne] Al^{3+} : [Ne] F^{-} : $1s^22s^22p^6$ or [Ne]

 O^{2-} : $1s^22s^22p^6$ or [Ne] N^{3-} : $1s^22s^22p^6$ or [Ne]

Na+, Al3+, F-, O2-, and N3- are all *isoelectronic* with Ne

What neutral atom is isoelectronic with H⁻?

H-: 1s² same electron configuration as He

Electron Configurations of Cations of Transition Metals

When a cation is formed from an atom of a transition metal, electrons are always removed first from the ns orbital and then from the (n-1)d orbitals.

Fe: $[Ar]4s^23d^6$ Mn: $[Ar]4s^23d^5$

Fe³⁺: [Ar]4s⁰3d⁵ or [Ar]3d⁵

7

Effective nuclear charge ($Z_{\rm eff}$) is the "positive charge" felt by an electron.

$$Z_{\text{eff}}$$
 = Z - σ 0 < σ < Z (σ = shielding constant)

 $Z_{\rm eff} \approx Z - \text{number of inner or core electrons}$

	<u>Z</u>	<u>Core</u>	$Z_{ m eff}$	Radius (pm)
Na	11	10	1	186
Mg	12	10	2	160
Al	13	10	3	143
Si	14	10	4	132

Cation is always **smaller** than atom from which it is formed.

Anion is always **larger** than atom from which it is formed.

Ionization energy is the minimum energy (kJ/mol) required to remove an electron from a gaseous atom in its ground state.

$$I_1 + X_{(g)} \longrightarrow X^+_{(g)} + e^ I_1$$
 first ionization energy

$$I_2 + X^+_{(g)} \longrightarrow X^{2+}_{(g)} + e^ I_2$$
 second ionization energy

$$I_3$$
 + $X^{2+}_{(g)}$ \longrightarrow $X^{3+}_{(g)}$ + $e^ I_3$ third ionization energy

$$I_1 < I_2 < I_3$$

Z	Element	First	Second	Third	Fourth	Fifth	Sixth
1	Н	1,312					
2	He	2,373	5,251				
3	Li	520	7,300	11,815			
4	Be	899	1,757	14,850	21,005		
5	В	801	2,430	3,660	25,000	32,820	
6	C	1,086	2,350	4,620	6,220	38,000	47,261
7	N	1,400	2,860	4,580	7,500	9,400	53,000
8	O	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	Ne	2,080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	Al	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1,580	3,230	4,360	16,000	20,000
15	P	1,012	1,904	2,910	4,960	6,240	21,000
16	S	999.5	2,250	3,360	4,660	6,990	8,500
17	Cl	1,251	2,297	3,820	5,160	6,540	9,300
18	Ar	1,521	2,666	3,900	5,770	7,240	8,800
19	K	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

Electron affinity is the negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion.

$$X_{(g)} + e^{-} \longrightarrow X_{(g)}^{-}$$

F
$$_{(g)}$$
 + $e^- \longrightarrow X^-_{(g)}$ $\Delta H = -328 \text{ kJ/mol}$ EA = +328 kJ/mol

$$O_{(g)} + e^- \longrightarrow O_{(g)}^ \Delta H = -141 \text{ kJ/mol}$$
 $EA = +141 \text{ kJ/mol}$

H 73 Li Be B C N O F 60 ≤ 0 27 122 0 141 328 Na Mg Al Si P S Cl 53 ≤ 0 44 134 72 200 349 K Ca Ga Ge As Se Br 48 2.4 29 118 77 195 325 Rb Sr In Sn Sb Te I	1A	24	3A	4A	5A	6A	7A	8A
The second results of	IA	2A	ЭА	44	JA	UA	/A	ОА
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H							He
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73							<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li	Be	В	C	N	O	F	Ne
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	≤ 0	27	122	0	141	328	<
K Ca Ga Ge As Se Br 48 2.4 29 118 77 195 325 Rb Sr In Sn Sb Te I	Na	Mg	Al	Si	P	S	C1	Ar
48 2.4 29 118 77 195 325 Rb Sr In Sn Sb Te I	53	≤ 0	44	134	72	200	349	<
Rb Sr In Sn Sb Te I	K	Ca	Ga	Ge	As	Se	Br	Kr
	48	2.4	29	118	77	195	325	<
47 47 29 121 101 190 295	Rb	Sr	In	Sn	Sb	Te	I	Xe
47 4.7 29 121 101 190 293	47	4.7	29	121	101	190	295	<
	15	14	30	110	110	?	?	<

*The electron affinities of the noble gases, Be, and Mg have not been determined experimentally, but are believed to be close to zero or negative.

Group 1A Elements (ns¹, n \geq 2)

$$M \longrightarrow M^{+1} + 1e^{-}$$

$$2M_{(s)} + 2H_2O_{(l)} \longrightarrow 2MOH_{(aq)} + H_{2(g)}$$

$$4\mathsf{M}_{(s)} + \mathsf{O}_{2(g)} \longrightarrow 2\mathsf{M}_2\mathsf{O}_{(s)}$$

23

Group 2A Elements (ns², n \geq 2)

$$M \longrightarrow M^{+2} + 2e^{-}$$

$$Be_{(s)} + 2H_2O_{(l)} \longrightarrow No$$
 Reaction

$$\mathsf{Mg}_{(s)} + 2\mathsf{H}_2\mathsf{O}_{(g)} \longrightarrow \mathsf{Mg}(\mathsf{OH})_{2(aq)} + \mathsf{H}_{2(g)}$$

$$M_{(s)} + 2H_2O_{(l)} \longrightarrow M(OH)_{2(aq)} + H_{2(g)} M = Ca$$
, Sr, or Ba

Group 6A Elements (ns^2np^4 , $n \ge 2$)

Selenium (Se₈) Tellurium (Te)

33

Group 7A Elements (ns^2np^5 , $n \ge 2$)

$$X + 1e^{-} \longrightarrow X^{-1}$$

$$X_{2(g)} + H_{2(g)} \longrightarrow 2HX_{(g)}$$

Group 8A Elements (ns^2np^6 , $n \ge 2$)

Completely filled *ns* and *np* subshells. Highest ionization energy of all elements. No tendency to accept extra electrons.

Compounds of the Noble Gases

A number of xenon compounds XeF_4 , XeO_3 , XeO_4 , $XeOF_4$ exist. A few krypton compounds (KrF_2 , for example) have been prepared.

37

