Σειρές (Ερωτήσεις)

		Σωστό	Λάθος
1.	Αν μια σειρά είναι συγκλίνουσα, τότε η ακολουθία των μερ. αθροισμάτων της είναι φραγμένη. Απ: $\sum_{n=1}^{\infty} a_n$ συγκλίνει $\Leftrightarrow \lim_{n \to \infty} S_n = S \in \mathbb{R}$, άρα αφού είναι συγκλίνουσα, είναι και φραγμένη.	ι ένη.	
2.	Αν η ακολουθία των μερ. αθροισμάτων μιας σειράς, δεν είναι φραγμένη, τότε η σειρά αποκλίνει. Απ: είναι το αντιθετοαντίστροφο της παραπάνω πρότασης.	•	
3.	$ \text{Aν} \sum_{n=1}^\infty a_n \text{ συγκλίνει, τότε } (a_n)_{n\in\mathbb{N}} \text{ είναι φραγμένη.} $ $ \text{Aπ:} \sum_{n=1}^\infty a_n \text{ συγκλίνει} \Rightarrow \lim_{n\to\infty} a_n = 0, \text{ δηλ. } (a_n)_{n\in\mathbb{N}} \text{ συγκλίνει, άρα φραγμένη} $		
4.	Αν η $(a_n)_{n\in\mathbb{N}}$ είναι μηδενική, τότε η σειρά $\sum_{n=1}^\infty a_n$ συγκλίνει. Απ: π.χ. $\lim_{n\to\infty}\frac{1}{n}=0$ όμως $\sum_{n=1}^\infty\frac{1}{n}$ αποκλίνει		•
5.	Αν $a_n \geq 0, \ \forall n \in \mathbb{N}$, τότε η σειρά $\sum_{n=1}^\infty a_n$ απειρίζεται θετικά. Απ: θεώρημα: αν $a_n \geq 0, \ \forall n \in \mathbb{N}$, τότε η σειρά $\sum_{n=1}^\infty a_n$ συγκλίνει ή απειρίζεται θετικά.		-
6.	Aν $a_n>0, \ \forall n\in\mathbb{N}$ και $(S_n)_{n\in\mathbb{N}}$ φραγμένη, τότε η σειρά $\sum_{n=1}^\infty a_n$ συγκλίνει. Απ: είναι το παραπάνω θεώρημα, (ενώ αν δεν είναι φραγμένη, απειρίζεται θετικά).		
7.	Οι $\sum_{n=1}^{\infty}a_n$ και $\sum_{n=1}^{\infty}a_{n+n_0},\ n_0\in\mathbb{N}$ παρουσιάζουν ίδια συμπεριφορά ως προς τη σύγκλιση. Απ: πρόταση: $\sum_{n=1}^{\infty}a_n$ συγκλίνει $\Leftrightarrow \sum_{n=n_0}^{\infty}a_n$ συγκλίνει (είναι αν και μόνον αν πρόταση).	•	
8.	Αν $a_n<0,\ \forall n\in\mathbb{N},$ τότε $\sum_{n=1}^\infty a_n=-\infty.$ Απ: αν $(S_n)_{n\in\mathbb{N}}$ είναι φραγμένη, θα συγκλίνει, αλλιώς, θα απειρίζεται αρνητικά		•
9.	$\sum_{n=1}^\infty a_n = a \ \text{kai} \ \sum_{n=1}^\infty b_n = b, \Rightarrow \sum_{n=1}^\infty (\kappa a_n + \lambda b_n) = ka + \lambda b.$ Απ: είναι πρόταση.	•	
10.	αν $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$ σειρές, με $a_n=b_n$, $\forall n\geq n_0$, τότε ίδια συμπεριφορά ως προς τη σύγκλιο Απ: η σύγκλιση της σειράς δεν επηρεάζεται από την προσθήκη πεπερασμένου πλήθους αρχικών		
11.	Αν $\sum_{n=1}^\infty a_n$ συγκλίνει και $\sum_{n=1}^\infty b_n$ αποκλίνει, τότε η $\sum_{n=1}^\infty (a_n+b_n)$ αποκλίνει. Απ: είναι πρόταση	•	
12.	$ \text{Aν} \sum_{n=1}^{\infty} a_n \text{ συγκλίνει, τότε} \sum_{n=1}^{\infty} \frac{1}{a_n} \text{ αποκλίνει.} $ $ \text{Aπ:} \sum_{n=1}^{\infty} a_n \text{ συγκλ.} \Rightarrow \lim_{n \to \infty} a_n = 0 \Rightarrow \lim_{n \to \infty} \frac{1}{a_n} = \infty \neq 0 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{a_n} \text{ αποκλίνει.} $	•	
13.	Αν $\sum_{n=1}^{\infty}a_n$ συγκλίνει τότε $\sum_{n=1}^{\infty} a_n $ συγκλίνει απολύτως. Απ: θεώρημα: $\sum_{n=1}^{\infty} a_n $ συγκλίνει $\Rightarrow\sum_{n=1}^{\infty}a_n$ συγκλίνει απολύτως.		۰
14.	Αν μια σειρά έχει θετικούς όρους, τότε σύγκλιση και απόλυτη σύγκλιση είναι το ίδιο. Απ: προφανώς, γιατί $\sum_{n=1}^\infty a_n = \sum_{n=1}^\infty a_n $	•	
15.	η $\sum_{n=1}^\infty a^n$ αποκλίνει $\Leftrightarrow a \geq 1$. Απ: η γεωμετρική σειρά $\sum_{n=1}^\infty a^n$ συγκλίνει $\Leftrightarrow a < 1$ και αποκλίνει αν $ a \geq 1$	•	
16.	$\eta \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ συγκλίνει. Απ: είναι γενικ. αρμονική σειρά, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ αποκλίνει, γιατί $p=1/3<1$.		•
١7.	Το άθροισμα της σειράς $\sum_{n=0}^{\infty} \frac{1}{(1+\mathrm{e})^n} = \mathrm{e}.$		
	Απ: είναι γεωμετρική με $\lambda = \frac{1}{1+e} < 1$, άρα $\sum_{n=1}^{\infty} \frac{1}{(1+e)^n} = \sum_{n=1}^{\infty} \left(\frac{1}{1+e}\right)^n = \frac{1+e}{e}$		

Φοιτητικό Πρόσημο