- Info: Tutorial 1 Monday (200m) Tutorial 2 Tuesday 3pm

Optimization for Machine Learning

Lecture 3: Stochastic Gradient Descent

Sebastian Stich

CISPA - https://cms.cispa.saarland/optml24/ April 30, 2024

Quiz Week 2 (1)

$$O(\frac{1}{\epsilon})$$
 $O(\frac{1}{\tau})$

What does $f(n) \in \mathcal{O}(g(n))$ (for $n \to \infty$) mean? $O(), \Omega(\cdot), \Theta(\cdot)$

Examples:

►
$$10n^2 \in \mathcal{O}(n^2)$$
? \checkmark
► $n^2 \in \mathcal{O}(n^3)$? \checkmark

$$n^2 \in \mathcal{O}(n^3)$$
?

$$n^3 + n^2 + n + 1 \in \mathcal{O}(n^3)$$
?

$$f(n) \in O(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \to 0$$

Formally:

What about $\epsilon \to 0$?

$$\qquad \qquad \mathsf{Consider} \ n = \tfrac{1}{\epsilon}.$$

$$\frac{1}{\mathcal{E}^2} = \Re^2 \in \mathcal{O}(\mathsf{w}^3) = \mathcal{O}\left(\frac{1}{\mathcal{E}^3}\right)$$

Quiz Week 2 (2)

Consider gradient descent on a smooth and convex function $f \colon \mathbb{R}^d \to \mathbb{R}$,

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \,,$$

for a stepsize $\gamma > 0$.

The figure shows three runs of gradient descent, with the stepsizes $\{\gamma, \gamma/2, \gamma/4\}$, for a (fixed) value of γ . Which curve does correspond to which stepsize?

Chapter 6

Stochastic Gradient Descent

Stochastic gradient descent

Many objective functions are sum structured:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).$$

Example: f_i is the cost function of the i-th observation, taken from a training set of n observation.

Evaluating $\nabla f(\mathbf{x})$ of a sum-structured function is expensive (sum of n gradients).

$$\nabla f(x) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)$$

Stochastic gradient descent: the algorithm

choose
$$\mathbf{x}_0 \in \mathbb{R}^d$$

for iterations $t = 0, 1, \ldots$, and stepsizes $\gamma_t \geq 0$.

Only update with the gradient of f_i instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector $\mathbf{g}_t := \nabla f_i(\mathbf{x}_t)$ is called a stochastic gradient.

 \mathbf{g}_t is a vector of d random variables, but we will also simply call this a random variable.

Stochastic Optimization

The finite sum structure is not necessary. All results we discuss in this course do also hold for stochastic optimization problems:

$$f(\mathbf{x}) = \mathbb{E}_{\xi \sim \mathcal{D}} \left[F(\mathbf{x}, \xi) \right]$$

- D a distribution "real world data"
- for every ξ , access to stochastic gradients $\nabla F(\mathbf{x}, \xi)$
- ► finite-sum is a special case:

$$D = \underbrace{\{1, \dots, n\}}_{\text{verts}} \quad f(x) = \underbrace{E_{\text{sno}}}_{\text{probability}} F(x, \xi) = \underbrace{\frac{1}{2}}_{\text{err}} \underbrace{\frac{1}{n}}_{\text{prob}} \cdot f_i(x)$$

► algorithm:

sample
$$\xi_t \sim \mathcal{D}$$
 uniformly at random

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \nabla F(\mathbf{x}_t, \xi_t).$$

Unbiasedness

Consider a stochastic gradient \mathbf{g}_t , for a random index $i_t \in [n]$.

$$\mathbf{g}_t = \nabla f_{i_t}(\mathbf{x}_t) \,,$$

We cannot use our previous inequalities as they might not hold, depending on how the stochastic gradient \mathbf{g}_t turns out.

We will show (and exploit): many inequalities holds in expectation.

For this, we use that by definition, \mathbf{g}_t is an **unbiased estimate** of $\nabla f(\mathbf{x}_t)$:

$$\mathbb{E}[\mathbf{g}_t] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}_t) = \nabla f(\mathbf{x}_t).$$

Convexity in expectation

Note, for any fixed vector $\mathbf{y} \in \mathbb{R}^d$:

$$\mathbb{E}[\mathbf{g}_t^{ op}\mathbf{y}] = \mathbb{E}[\mathbf{g}_t]^{ op}\mathbf{y} = \nabla f(\mathbf{x}_t)^{ op}\mathbf{y}$$
 .

Hence, for a convex function $f: \mathbb{R}^d \to \mathbb{R}$:

$$\mathbb{E}\left[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\right] = \nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}).$$

Quadratic upper with stochastic updates?

Can we also use expectation with the quadratic upper bound?

Recall, a step of SGD: $\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \mathbf{g}_t$.

$$\mathbb{E}\left[f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2}\|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|^{2}\right]$$

$$= \mathbb{E}\left[f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top}(-\gamma \mathbf{g}_{t}) + \frac{L}{2}\|-\gamma \mathbf{g}_{t}\|^{2}\right]$$

$$= f(\mathbf{x}_{t}) - \gamma \nabla f(\mathbf{x}_{t})^{\top} \nabla f(\mathbf{x}_{t}) + \frac{\gamma^{2}L}{2} \mathbb{E}\left[\|\mathbf{g}_{t}\|^{2}\right]$$

What is $\mathbb{E}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]$? We need one more assumption!

Case 1: **Bounded Gradients**

Bounded Gradient Assumption

Assume that there exists a constant $B \ge 0$, such that:

$$\mathbb{E}\left[\|\mathbf{g}_t\|^2\right] \leq B^2$$

for all t.

- + This simplifies the proofs to a certain degree, while still comprehensively addressing most of the additional complexity presented by stochastic gradients...
- Might not hold. (Example: quadratic functions)

$$f(x) = \frac{1}{2}x^2$$
 $\nabla f(x) = x$

Bounded stochastic gradients: $\mathcal{O}(1/\varepsilon^2)$ steps

Theorem (Lecture-3).1

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, \mathbf{x}^* a global minimum; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$, and that $\mathbb{E}[\|\mathbf{g}_t\|^2] \le B^2$ for all t. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}}$$

stochastic gradient descent yields

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[f(\mathbf{x}_t)] - f(\mathbf{x}^*) \le \frac{RB}{\sqrt{T}}.$$

- we assume bounded stochastic gradients in expectation;
- error bound holds in expectation.

Proof I

$$\mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2}\right] = \mathbb{E}\left[\|\mathbf{x}_{t} - \gamma \mathbf{g}_{t} - \mathbf{x}^{\star}\|^{2}\right] \\
= \mathbb{E}\left[\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma \mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star}) + \gamma^{2}\|\mathbf{g}_{t}\|^{2}\right] \\
= \mathbb{E}\left[\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma \mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star}) + \gamma^{2}\|\mathbf{g}_{t}\|^{2}\right] \\
\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma \nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star}) + \gamma^{2}B^{2} \\
\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma (f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})) + \gamma^{2}B^{2}$$

$$(1)$$

Proof II

We re-arrange and prepare to apply the telescoping sum trick:

$$2\left(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})\right) \leq \frac{\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2}\right]}{\gamma} + \gamma B^{2}$$

This does not seem to work! However, we can take also take expectation over \mathbf{x}_t :

$$2\mathbb{E}[f(\mathbf{x}_t) - f(\mathbf{x}^*)] \le \frac{\mathbb{E}\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \mathbb{E}\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\gamma} + \gamma B^2$$

Note: this argument can be made more rigorous. See lecture notes or other sources for details.

Proof III

By telescoping (and dividing by T):

$$\frac{2}{T} \sum_{t=0}^{T-1} \mathbb{E} f(\mathbf{x}_t) - f(\mathbf{x}^\star) \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^\star\|^2}{\gamma T} + \gamma B^2 \leq \frac{R^2}{\gamma T} + \gamma B^2$$

$$\frac{R^2 B T}{R T} + \frac{R B^2}{B T} = \frac{2RB}{T}$$

We now observe that the choice $\gamma = \frac{R}{R\sqrt{T}}$ indeed implies the theorem.

min
$$\frac{R^2}{\chi T} + \chi B^2$$
 desirative $-\frac{R^2}{\chi^2 T} + B^2 \stackrel{!}{=} 0 \approx \chi = \frac{R}{BIT}$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps

Theorem (Lecture-3).2

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable and strongly convex with parameter $\mu > 0$; let \mathbf{x}^* be the unique global minimum of f and assume that $\mathbb{E} \big[\| \mathbf{g}_t \|^2 \big] \leq B^2$ for all t. With decreasing step size

$$\gamma_t := \frac{2}{\mu(t+1)}$$

stochastic gradient descent yields

$$\mathbb{E}\left[f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right)-f(\mathbf{x}^{\star})\right]\leq\frac{2B^{2}}{\mu(T+1)}.$$

weighted averaging puts more importance on recent iterates!

Proof I

The proof is starting in the same way. Except that we can use strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2$$

Equation (1) will change into:

$$\mathbb{E} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le (1 - \mu \gamma_{t}/2) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma_{t} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})) + \gamma_{t}^{2} B^{2}$$

And therefore

$$\mathbb{E}f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{\gamma_t B^2}{2} + \frac{1 - \mu \gamma_t / 2}{2\gamma_t} \mathbb{E} \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \frac{1}{2\gamma_t} \mathbb{E} \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2$$

Proof II

Plug in $\gamma_t^{-1} = \mu(1+t)/2$ and multiply with t on both sides:

$$t \cdot \mathbb{E}(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})) \leq \frac{B^{2}t}{\mu(t+1)} + \frac{\mu}{4} \left(t(t-1)\mathbb{E} \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - (t+1)t\mathbb{E} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2}\right)$$
$$\leq \frac{B^{2}}{\mu} + \frac{\mu}{4} \left(t(t-1)\mathbb{E} \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - (t+1)t\mathbb{E} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2}\right).$$

Now we get telescoping...

$$\sum_{t=0}^{T-1} t \cdot \mathbb{E} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{TB^2}{\mu} + \frac{\mu}{4} \left(0 - T(T+1) \mathbb{E} \left\| \mathbf{x}_{T+1} - \mathbf{x}^* \right\|^2 \right) \le \frac{TB^2}{\mu}.$$

Finally, use $\frac{2}{T(T+1)}\sum_{t=1}^{T}t=1$, and Jensen's inequality.

$$O\left(\frac{1}{1+}\right) < \varepsilon \rightarrow T \ge \frac{1}{\varepsilon^2}$$

strong convexity helps: $\mathcal{O}(\frac{1}{\epsilon})$ convergence, vs. $\mathcal{O}(\frac{1}{\epsilon^2}) \ll convex$

stochastic gradients make the convergence more difficult: $\mathcal{O}(\frac{1}{\epsilon})$ convergence vs. $\mathcal{O}(\log(\frac{1}{\epsilon}))$ in the deterministic setting for gradient descent! (recall Exercise Sheet 2) $\|\chi_{++} - \chi^{\star}\|^2 \leq (\lambda - \frac{\mu}{\epsilon})^{\frac{1}{\epsilon}} \|\chi_{*} - \chi^{\star}\|^2$

$$\log \frac{1}{\xi} \approx 3$$

- Note: The $\mathcal{O}(\frac{1}{\epsilon})$ convergence is optimal!
- ► Weighted averaging is a common & useful trick to adapt telescoping sum proofs ot the strongly-convex case!

Case 2: **Bounded Variance**

Bounded Variance Assumption

Assume that there exists a constant $\sigma \geq 0$, such that:

$$\mathbb{E}\left[\|\mathbf{g}_t - \nabla f(\mathbf{x}_t)\|^2\right] \le \sigma^2$$

for all t.

- + Standard and widely-accepted model in complexity theory.
- Might not hold on all (but much fewer) problems of interest.
- ► (Convergence proof: we will cover some examples next week—you could try yourself as an exercise!)

Mini-batch SGD

Instead of using a single element f_i , use an average of several of them:

$$\tilde{\mathbf{g}}_t := \frac{1}{m} \sum_{j=1}^m \mathbf{g}_t^j.$$

where \mathbf{g}_t^j denotes a stochastic gradient drawn uniformly and independently at random. m denotes the **batch size**.

Extreme cases:

 $m=1 \Leftrightarrow \mathsf{SGD}$ as originally defined $m=n \Leftrightarrow \mathsf{full}$ gradient descent

Benefit: Gradient computation can be naively parallelized

Mini-batch SGD

mili-batch size m

Variance Intuition: Taking an average of many independent random variables reduces the variance. So for larger size of the mini-batch m, $\tilde{\mathbf{g}}_t$ will be closer to the true gradient, in expectation:

$$\mathbb{E}\left[\left\|\frac{\mathbf{g}_{t}}{\mathbf{g}_{t}} - \nabla f(\mathbf{x}_{t})\right\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{m}\sum_{j=1}^{m}\mathbf{g}_{t}^{j} - \nabla f(\mathbf{x}_{t})\right\|^{2}\right]$$

$$\mathbb{E}\left\langle\frac{1}{m}\sum_{j=1}^{m}\mathbf{g}_{t}^{j} - \nabla f(\mathbf{x}_{t})\right\|^{2} + \mathbb{E}\left\|\frac{1}{m}\sum_{j=1}^{m}\mathbf{g}_{t}^{j} - \nabla f(\mathbf{x}_{t})\right\|^{2} + \mathbb{E}\left\|\frac{1}{m}\sum_{j=2}^{m}\mathbf{g}_{t}^{j} - \frac{1}{m}\nabla(G_{t})\right\|^{2}$$

$$= \frac{1}{m}\mathbb{E}\left[\left\|\mathbf{g}_{t}^{1} - \nabla f(\mathbf{x}_{t})\right\|^{2}\right] \leq \frac{\sigma^{2}}{m}.$$

 \triangleright variance reduction by a factor of at least m

Lecture 3 Recap

- ► SGD: the most important building block in ML/DL optimization!
 - low per-iteration cost
 - ▶ ideal if low-accuracy approximations suffice (say, $\epsilon \ge 0.01$)
- ► SGD convergence proof under the bounded gradient assumption
 - we will discuss next week a proof with the bounded variance assumption
- variance-reduction effect of mini-batches
- weighted averaging to make telescoping work