סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

2	דברים חשובים מלינארית 1	1
2	1.1 מטריצות דומות	
2	לכסון	2
2	1.1 וקטורים עצמיים	
2	2.2 פולינום אופייני	
3	אינווריאנטיות	3
3	מרחב מנה	4
4	חוגים	5
4	5.1 הגדרות מלינארית 1	
4	חבורה 5.1.1	
4	חוג 5.1.2	
4	שדה 5.1.3	
5	5.2 הגדרות חדשות מלינארית 2	
5	הפולינומים והמטריצות	
5	5.2.2 הומומורפיזמים	
5	5.2.3 חילוק בחוגים	
5	חברים 5.2.4	
5	אידאלים	
6	חוג ראשי	

1 דברים חשובים מלינארית 1

1.1 מטריצות דומות

 $A=P^{-1}\cdot B\cdot P$ יהיו $A,B\in M_n\left(\mathbb{F}
ight)$ היו דומות אם קיימת מטריצה ו־B דומות כי $A,B\in M_n\left(\mathbb{F}
ight)$ משפט: נתון $A,B\in M_n\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

- .1 A,B דומות
- $[T]_C=A,[T]_{C'}=B$ של על כך ש־C,C' ובסיסים T:V o V פיימת .2
- $[T]_{C'}=B^{-}$ ע כך של C' סיים בסיס אז קיים על עכך של V כך של C כך של C סיים בסיס אז לכל .3

ואם A,B דומות אז:

- $\operatorname{Rank}(A) = \operatorname{Rank}(B), \mathcal{N}(A) = \mathcal{N}(B)$.1
- .tr $(A)=\sum_{i=1}^{n}{(A)_{i,i}}$ באשר $\operatorname{tr}(A)=\operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

2 לכסון

נגדיר מטריצה אלכסונית להיות מטריצה ריבועית $A\in M_n\left(\mathbb{F}\right)$ שבה עבור להיות מטריצה להיות מטריצה היבועית לחיות מטריצה ריבועית היבועית Diag $(\lambda_1,\dots,\lambda_n)$

מטריצה לכסינה היא מטריצה שדומה למטריצה אלכסונית, ו
העתקה לכסינה היא מטריצה שדומה למטריצה אלכסונית. בסי
ס $[T]^B_B$ אלכסונית.

אם T העתקה לכסינה (כלומר מטריצה מייצגת כלשהי לכסינה) אז כל מטריצה מייצגת שלה היא לכסינה.

1.1 וקטורים עצמיים

נגדיר באופן הפוך, ערך עצמי של A להיות היות \overline{v} כך ש־ $abla \lambda \overline{v}$ באופן הפוך, ערך עצמי של $abla \lambda$ הוא ל כך שקיים וקטור עצמי $abla \lambda \lambda$ לערך עצמי ל לערך עצמי $abla \lambda \lambda$

הערכים העצמיים הם האיברים שנמצאים על האלכסון במטריצה האלכסונית שדומה ל-A, עד כדי סידורם על האלכסון.

המרחב של הוקטורים העצמיים הוא א $V_\lambda=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של המרחב של הוקטורים העצמיים הוא $V_\lambda=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$

. הסכום של ה־ V_{λ} השונים הוא סכום ישר

2.2 פולינום אופייני

נסמן ב־ $|\lambda I - A|$ את הפולינום האופייני של $P_A(\lambda) = |\lambda I - A|$. מתקיים:

- זה פולינום מתוקן, כלומר המקדם המוביל הוא 1.
 - $P_A(\lambda)$ שורש של $\lambda \iff A$ שורש של $\lambda \bullet$
 - $.P_A=P_B$ אם A,B דומות אז

 $A\in M_n\left(\mathbb{F}
ight)$ משפט 1.2 המשפט המרכזי: תהא

נגדיר את הריבוי האלגברי של ρ_{α} (רו), להיות כמות הפעמים ש־ $(\lambda-\alpha)$ מופיע בפולינום (ρ_{α} , כלומר ρ_{α} , כלומר ρ_{α} אם הפולינום הוא ρ_{α} ($\lambda-\alpha$) אז ρ_{α} אז ρ_{α} אז ρ_{α} הפולינום הוא ρ_{α} ($\lambda-\alpha$)

 $\dim(V_{\lambda})$ להיות להיות , μ_{λ} , α להיות הגיאומטרי את בנוסף נגדיר את

:מעל \mathbb{F} אמ"ם: A

- \mathbb{F} מתפרק לגורמים לינאריים מעל $P_{A}\left(\lambda
 ight)$.1
 - $.
 ho_{\lambda}=\mu_{\lambda}$, A של λ ערך עצמי.

 $\mu_{\lambda} \leq \rho_{\lambda}$, משפט 2.2 לכל ערך עצמי,

משפט 3.2 עבור ρ_{λ_1} עבור $\lambda_1,\dots,\lambda_k$ הערכים העצמיים, $\lambda_1,\dots,\lambda_k$ ואם ואם $\lambda_1,\dots,\lambda_k$ מתפרק לגורמים אז $\lambda_1,\dots,\lambda_k$ אם $\lambda_1,\dots,\lambda_k$ אם $\lambda_1,\dots,\lambda_k$

A שמורכב מוקטורים עצמיים של בסיס $B\subseteq \mathbb{F}^n$ קיים בסיס A לכסינה לכסינה לכסינה

3 אינווריאנטיות

תהא T:V o U אם אם T:V o V נקרא נקרא נקרא נקרא תת מרחב עורית, תת מרחב או העתקה לינארית, תת מרחב עונך עוריאנטי ווריאנטי ווריאנטי לינארית.

. λ לכל V_{λ} ו ו
י $\ker\left(T\right),Im\left(T\right)$ הן לכל לכל לכל אינווריאנטים הן למרחבים

 $W_1,W_2
eq \{\overline{0}\}$ בנוסף נגדיר תת מרחב T־אינווריאנטי להיות תת פריק עוביק עוביק עוביע עוביע בנוסף נגדיר תת מרחב בנוסף נגדיר תת מקיימים עוביע ביישים $U=W_1\oplus W_2$

מטריצה מייצגת: אם $U\subseteq V$ אינווריאנטי, יהי B בסיס של U. יהי C השלמה לבסיס של U. אינווריאנטי, יהי U בסיס של U ולכן גם לא בתמונה של U (כי U ולכן גם לא בתמונה של U וה כי המקדמים שלמטה לא מופיעים בU ולכן גם לא בתמונה של U והיא מוכלת בU.

4 מרחב מנה

נגדיר את יחס השקילות הבא: $v\sim u\iff v-u\in W$ ו־ $u,v\in V$ עבור

את קבוצת המנה, v/w, שהיא הקבוצה של $[v] = \{u \in V \mid u \sim v\}$ שהיא הקבוצה של להגדיר לפי פעולת המנה, $\lambda \cdot [v] = [\lambda \cdot v]$ וכפל בסקלר [v] + [u] = [v + u]

 $\dim\left(V/W
ight)=\dim\left(V
ight)-\dim\left(W
ight)$ גם מרחב וקטורי, שמקיים גם

5 חוגים

1 הגדרות מלינארית 5.1

5.1.1 חבורה

:נקראת חבורה אם $\langle G, * \rangle$

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- ומסומן האיבר הזה האיבר . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, כלומר . פ e_G
- g של איבר החופכי, כלומר איבר החופכי של א $g\in G.\exists h\in G.g*h=h*g=e$ החופכי של .4 קיים איבר החופכי מסומן . g^{-1}

זות 5.1.2

:נקראת חוג אם $\langle R, *, + \rangle$

- . חבורה חילופית $\langle R, + \rangle$
- R פעולה אסוצייטיבית על R .2
 - 3. מתקיים חוג הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$
$$(b+c) * a = b * a + c * a$$

בנוסף יש <u>חוג חילופי,</u> (הכפל חילופי), <u>חוג עם יחידה</u> (קיים איבר ניטרלי לכפל), <u>ותחום שלמות</u> הוא חוג חילופי עם יחידה וללא מחלקי 0.

5.1.3

חוג חילופי עם יחידה כך ש־ $\langle R\setminus\{0\}\,,*\rangle$ חבורה חילופית. שדה הוא תחום שלמות שלמות סופי הוא שדה.

2. הגדרות חדשות מלינארית 2

5.2.1 חוגי הפולינומים והמטריצות

 $\deg\left(0
ight)=\infty, \deg\left(p
ight)=$ נגדיר את חוג הפולינומים מעל חוג $R\left[x
ight]\subseteq\mathbb{N}$ להיות $R\left[x
ight]\subseteq\mathbb{N}$

- $\deg\left(p+q\right) \leq \max\left(\deg\left(p\right), \deg\left(q\right)\right), \deg\left(p\cdot q\right) \leq \deg\left(p\right) + \deg\left(q\right)$ מתקיימת נוסחת המעלות:
 - . תחום שלמות אז $R\left[x\right]$ תחום שלמות $R\left[x\right]$

נגדיר את חוג המטריצות הריבועיות להיות $M_n\left(R\right)$ כאשר R חוג, לפי פעולות כפל וחיבור של מטריצות. זה חוג לא חילופי.

5.2.2 הומומורפיזמים

הומומורפיזם של חוגים זו פונקציה $\varphi\left(a+b\right)=\varphi\left(a\right)+\varphi\left(b\right)$, וד $\varphi\left(1_{R_{1}}\right)=1_{R_{2}}$ כך ש־ $\varphi:R_{1}\to R_{2}$ פונקציה זו פונקציה $\varphi\left(a+b\right)=\varphi\left(a\right)+\varphi\left(b\right)$ וד $\varphi\left(a+b\right)=\varphi\left(a\right)\cdot\varphi\left(b\right)$. ($\varphi\left(0_{R_{1}}\right)=0_{R_{2}}$ נולכן גם $\varphi\left(a\cdot b\right)=\varphi\left(a\right)\cdot\varphi\left(b\right)$

 $M_{n}\left(R\left[x\right]\right)$ לבין $M_{n}\left(R\right)\left[x\right]$ יש למשל הומומורפיזם בין

5.2.3 חילוק בחוגים

 $\exists c \in R.b = a \cdot c$ אם $a \mid b$ נאמר כי $a, b \in R$ יהי

בנוסף נקרא ל־ $a\in R$ הפיך ב־A אם קיים $b\in R$ כך ש־ $a\in B$. בנוסף ההופכי יסומן $a\in R$ והוא יחיד.

 R^x ונסמן את קבוצת האיברים ההפיכים ב־

5.2.4

נאמר ש־a,b אם קיים $u \in R^x$ כך ש־a,b אה יחס שקילות.

5.3 אידאלים

יהי R חוג חילופי עם יחידה, $I\subseteq R$ נקרא אידאל אם:

- $.I \neq \emptyset$.1
- I סגור לחיבור.
- Rסגור לכפל בNיבר מ־I .3

 \mathbb{Z}_{even} או באופן שקול R^1 תת מרחב וקטורי של מרחב הnיות של מרחב היא וועמה I תת מרחב וקטורי בי $\operatorname{sp}(X)$ האידאל שנוצר ע"י $X\subseteq R$ הוא $X\subseteq R$ הוא מתקיים:

- $a \mid b \iff \operatorname{sp}(b) \subseteq \operatorname{sp}(a) \bullet$
- $\operatorname{sp}(a) = \operatorname{sp}(b) \iff a, b$ חברים •

- $\operatorname{sp}(a) = R \iff \operatorname{ner}(a) \bullet$
 - $I\subseteq R$ •
- $\ker \varphi = I$ אידאל פך ש־ג (א חוג פיזם אידאל הומומורפיזם הומומורפיזם פיים הומומורפיזם •

הוג ראשי 5.4

 $a\in R$ לו קיים לו איבר, כלומר על ידי איבר ווצר על אידאל אם כל אידאל אם נקרא נקרא נקרא נקרא $I\subseteq R$ אידאל אם כל אידאל ווצר על ידי איבר, כלומר אים לו $I=\operatorname{sp}{(a)}$

 $r_1, \ldots, r_k \in R$ ואיברים ואשי ואיברים לתחום ראשי

$$gcd(r_1,...,r_k) = \{d \in R \mid sp(d) = (r_1,...,r_k)\}$$

בנוסף מתקיים:

- $\gcd\left(r_1,\ldots,r_k
 ight)=\{d\cdot u\mid u\in R^x\}$, $\gcd\left(r_1,\ldots,r_k
 ight)$ עבור $d\cdot u$
- $d \in \gcd(r_1, \dots, r_k) \iff (\forall 1 \le i \le k.d \mid r_i) \land (q \mid r_1, \dots, r_k \implies q \mid d) \bullet$
- a,b אם אירוף לינארי פול $\gcd(a,b)=1$ אם אירוף לינארי של $a,b\in R$
 - $(a \mid b \cdot c \implies (a \mid c \lor a \mid b)) \iff$ יקרא יקרא $0 \neq a \in R \bullet$

.lowest common multiplier ,lcm $(r_1,\ldots,r_k)=\{d\in R\mid {
m sp}\,(d)=igcap_{i=1}^r r_i\}$ נגדיר בנוסף