- Assignment-3

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('_/content/penguins_size.csv')

df

₽		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
	3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE
	339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN
	340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	FEMALE
	341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	MALE
	342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	FEMALE
	343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	MALE

344 rows × 7 columns

from matplotlib import $\operatorname{rcParams}$

rcParams['figure.figsize']=8,8

 $\verb|fig,axes=plt.subplots(2,2)|\\$

 $sns.histplot(data=df['body_mass_g'],ax=axes[0,0])\\$

sns.distplot(df['culmen_depth_mm'],ax=axes[1,1])

 $sns.barplot(x=df['culmen_length_mm'],y=df['culmen_length_mm'],ax=axes[0,1])$

sns.boxplot(data=df['flipper_length_mm'],ax=axes[1,0])

<ipython-input-3-5906f08a3de5>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df['culmen_depth_mm'],ax=axes[1,1])
```

sns.jointplot(x='flipper_length_mm',y='body_mass_g',data=df)
plt.show()

sns.heatmap(df.corr(),annot=True)

<ipython-input-5-8df7bcac526d>:1: FutureWarning: The default value of numeric_only ir sns.heatmap(df.corr(),annot=True) <Axes: >

- 1.0 registration - 1.0 registration - 0.6 registr

df.describe()

	culmen_length_mm	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000
δ.				

df.isnull().any()

df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)

 $\tt df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)$

df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)

df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)

most_frequent_category = df['sex'].mode()[0]

df['sex'].fillna(most_frequent_category, inplace=True)

df

	species	island	<pre>culmen_length_mm</pre>	culmen_depth_mm	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.10	18.7	181.0	3
1	Adelie	Torgersen	39.50	17.4	186.0	3
2	Adelie	Torgersen	40.30	18.0	195.0	3
3	Adelie	Torgersen	44.45	17.3	197.0	4
4	Adelie	Torgersen	36.70	19.3	193.0	3
339	Gentoo	Biscoe	44.45	17.3	197.0	4
340	Gentoo	Biscoe	46.80	14.3	215.0	4
341	Gentoo	Biscoe	50.40	15.7	222.0	5
342	Gentoo	Biscoe	45.20	14.8	212.0	5
343	Gentoo	Biscoe	49.90	16.1	213.0	5
344 rows × 7 columns						•

sns.boxplot(df.body_mass_g)

```
days: >
6000 -
5500 -
5500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
4500 -
450
```

 culmen_lengtn_mm
 44.45

 culmen_depth_mm
 17.30

 flipper_length_mm
 197.00

 body_mass_g
 4050.00

 dtype: float64

4

df['body_mass_g'] = np.where(df['body_mass_g']>upper_limit,30,df['body_mass_g'])
df

	species	island	<pre>culmen_length_mm</pre>	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.10	18.7	181.0	3
1	Adelie	Torgersen	39.50	17.4	186.0	3
2	Adelie	Torgersen	40.30	18.0	195.0	3
3	Adelie	Torgersen	44.45	17.3	197.0	4
4	Adelie	Torgersen	36.70	19.3	193.0	3
339	Gentoo	Biscoe	44.45	17.3	197.0	4
340	Gentoo	Biscoe	46.80	14.3	215.0	4
341	Gentoo	Biscoe	50.40	15.7	222.0	5
342	Gentoo	Biscoe	45.20	14.8	212.0	5
343	Gentoo	Biscoe	49.90	16.1	213.0	5
344 rows × 7 columns						>

sns.boxplot(df.body_mass_g)

```
<Axes: >
      6000
      5500
      5000
      4500
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.sex=le.fit_transform(df.sex)
df.species=le.fit_transform(df.species)
df.island=le.fit_transform(df.island)
correlation_matrix = df.corr()
correlation_with_target = correlation_matrix['species']
print(correlation_with_target)
     <ipython-input-13-d10675eb4f7d>:1: FutureWarning: The default value of numeric_only i
      correlation_matrix = df.corr()
                                               Traceback (most recent call last)
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in get_loc(self,
     key, method, tolerance)
        3801
     -> 3802
                             return self._engine.get_loc(casted_key)
                         except KeyError as err:
                                      4 frames
     pandas/_libs/hashtable_class_helper.pxi in
     pandas._libs.hashtable.PyObjectHashTable.get_item()
     pandas/_libs/hashtable_class_helper.pxi in
     pandas._libs.hashtable.PyObjectHashTable.get_item()
     KeyError: 'species'
     The above exception was the direct cause of the following exception:
     KeyError
                                               Traceback (most recent call last)
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in get_loc(self,
     key, method, tolerance)
                             return self._engine.get_loc(casted_key)
        3802
        3803
                         except KeyError as err:
     -> 3804
                             raise KeyError(key) from err
        3805
                         except TypeError:
        3806
                             # If we have a listlike key, _check_indexing_error will
     raise
X=df.drop('body_mass_g',axis=1)
y=df['body_mass_g']
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_scaled= pd.DataFrame(sc.fit_transform(X),columns =X.columns)
X_scaled.head()
```

Colab paid products - Cancel contracts here