オペレーションズ・リサーチⅡ(6)

田中 俊二

shunji.tanaka@okayama-u.ac.jp

本文書のライセンスは CC-BY-SA にしたがいます

スケジュール

No.	内容
1	導入 (非線形最適化問題,ゲーム理論,多目的最適化問題)
2	非線形計画 1 (勾配,ヘッセ行列,凸性,最適性条件,ニュートン法)
	非線形計画 2 (最急降下法,準ニュートン法,共役勾配法,信頼領域法)
4	非線形計画 3 (制約つき問題の最適性条件,KKT 条件,ペナルティ関数法,

- 2次計画法,逐次2次計画法)
 5 ゲーム理論1(種々のゲーム,標準形,純粋戦略,混合戦略,ナッシュ均衡)
- 6 ゲーム理論 2 (展開形ゲーム、繰り返しゲーム)
 - 7 多目的最適化 (パレート最適性,重み付け法, ϵ 制約法, 重み付きメトリック法)

展開形ゲーム

展開形ゲーム (extensive form game) とは?

- ゲームの表現方法の一つ
- 交代手番ゲームや不確定ゲーム, 完全情報ゲームなどを表すのに適している
- ゲームの木 (game tree) を用いる

完全情報ゲームの例:石取りゲーム(交代手番ゲーム)

4 個の石がある. プレイヤー 1, プレイヤー 2, プレイヤー 1, \cdots の順に 1 個または 2 個の石を取っていく. 最後に石を取ったプレイヤーが負け (利得 -1). 勝ったプレイヤーの利得は 1.

- 手番 (プレイヤー 1)
 - 手番 (プレイヤー 2)
 - 頂点 (プレイヤー 1 の勝利)
 - 頂点 (プレイヤー 2 の勝利)

展開形ゲーム:偶然手番

不確定ゲームの例:コイントスで先攻・後攻を決めるゲーム

先ほどの石取りゲームの先攻・後攻をコイントスで決める. 表が出たらプレイヤー 1 が先攻, 裏が出たらプレイヤー 2 が先攻.

偶然手番 (chance move)

結果が偶然により決まる手番

1\2	囚	人のジレン	ノマ改	
自白 (5, 0) (1, 1)		(4, 4)		

- 同時手番ゲームは交代手番ゲームに変換
- プレイヤー 2 がプレイヤー 1 の行動に応じて自分の行動を切り替えるのは不可能

囚人のジレンマ改			
_	1\2	黙秘	自白
_	黙秘	(4, 4)	(0, 5)
_	自白	(5, 0)	(1, 1)

- 同時手番ゲームは交代手番ゲームに変換
- プレイヤー 2 がプレイヤー 1 の行動に応じて自分の行動を切り替えるのは不可能

囚ノ	人のジ	レン	マ改
----	-----	----	----

1\2	黙秘	自白
黙秘	(4, 4)	(0, 5)
自白	(5, 0)	(1, 1)

- 同時手番ゲームは交代手番ゲームに変換
- プレイヤー 2 がプレイヤー 1 の行動に応じて自分の行動を切り替えるのは不可能

囚人のジレンマ	改
---------	---

1\2	黙秘	自白
黙秘	(4, 4)	(0, 5)
自白	(5, 0)	(1, 1)

- 同時手番ゲームは交代手番ゲームに変換
- プレイヤー 2 がプレイヤー 1 の行動に応じて自分の行動を切り替えるのは不可能

完全情報ゲーム

すべての情報集合がただ1つの手番からなるゲーム

展開形ゲームの要素

展開形ゲームの要素

- プレイヤー数:n
- ゲームの木
 - 節点 (node): 手番
 - 終端節点 (terminal node):ゲーム終了
 - 枝 (edge): 行動
- 各プレイヤー i の手番の集合: P_i (P₀ は偶然手番)
- 偶然手番 (存在するなら) における確率
- 各頂点におけるプレイヤー i の利得関数: $h_i(s_1,...,s_n)$ s_i はプレイヤー i の戦略 (プレイヤーの行動計画)
- 各プレイヤーの情報集合
 - 情報集合同士は交わりを持たない
 - 同じ情報集合に属する手番は同じ数の枝 (行動) を持つ

展開形ゲームにおける戦略

局所戦略 (local strategy)

各情報集合における純粋戦略 (行動)・混合戦略

戦略

局所戦略の組

不完全情報ゲームにおける戦略の例: 囚人のジレンマ

プレイヤー 1: u_1 における <mark>黙秘</mark>,自白 プレイヤー 2: u_2 における 黙秘,自白

展開形ゲームにおける戦略(続き)

完全情報ゲームにおける戦略の例:石取りゲーム

プレイヤー 1: $(u_{11}$ における 1 個・2 個, u_{12} における 1 個・2 個) の組

プレイヤー 2: $(u_{21} \text{ における 1 個 \cdot 2 個}, u_{12} \text{ における 1 個 \cdot 2 個})$ の組

展開形ゲームにおけるナッシュ均衡

期待利得

プレイヤーの純粋戦略の組 (s_1,\ldots,s_n) に対する期待利得: $H_i(s_1,\ldots,s_n)$

偶然手番がなければ $H_i(s_1,...,s_n) = h_i(s_1,...,s_n)$

ナッシュ均衡

プレイヤーの純粋戦略の組 (s_1^*,\ldots,s_n^*) が**ナッシュ均衡** (Nash equilibrium) であるとは,任意の i ($1 \le i \le n$) と任意の $s_i \in S_i$ に対して $H_i(s_i,s_{-i}^*) \le H_i(s_i^*,s_{-i}^*)$ が成り立つことをいう.

混合戦略の場合も同様

後退帰納法 (backward induction)

- 完全情報展開形ゲームに対する純粋戦略のナッシュ均衡の求め方
- 終端節点から逆方向に各手番の最適な行動を求めていく

後退帰納法の例:石取りゲーム

u₁₂: 1 個 ... 利得 1, 2 個 ... 利得 −1

u21: 1個... 利得 −1, 2個... 利得 1

u₂₂: 1 個 ... 利得 1, 2 個 ... 利得 -1

u11: 1 個 ... 利得 −1, 2 個 ... 利得 −1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

後退帰納法の例:石取りゲーム u₁₂: 1個... 利得 1, 2個... 利得 -1 u₂₁: 1個... 利得 -1, 2個... 利得 1 u₂₂: 1個... 利得 1, 2個... 利得 -1 u₁₁: 1個... 利得 -1, 2個... 利得 -1 純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ) プレイヤー 1: (u₁₁で 1個, u₁₂で 1個), (u₁₁で 2個, u₁₂で 1個)

後退帰納法の例:石取りゲーム

u₁₂: 1 個 ... 利得 1, 2 個 ... 利得 −1

u21: 1個... 利得 −1, 2個... 利得 1

u₂₂: 1 個 ... 利得 1, 2 個 ... 利得 -1

u11: 1 個 ... 利得 −1, 2 個 ... 利得 −1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

後退帰納法の例:石取りゲーム

*u*₁₂: **1** 個 ... 利得 1, 2 個 ... 利得 −1

u21: **1** 個 ... 利得 -1**,2** 個 ... 利得 1

u₂₂: 1個...利得1,2個...利得-1

u11: 1 個 ... 利得 -1, 2 個 ... 利得 -1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

プレイヤー 1: $(u_{11}$ で 1 個, u_{12} で 1 個), $(u_{11}$ で 2 個, u_{12} で 1 個) プレイヤー 2: $(u_{21}$ で 2 個, u_{22} で 1 個), $(u_{21}$ で 2 個, u_{22} で 1 個)

u₁₂: 1個... 利得 1, 2個... 利得 -1 u₂₁: 1個... 利得 -1, 2個... 利得 1 u₂₂: 1個... 利得 1, 2個... 利得 -1 u₁₁: 1個... 利得 -1, 2個... 利得 -1

プレイヤー 1: $(u_{11}$ で 1 個, u_{12} で 1 個), $(u_{11}$ で 2 個, u_{12} で 1 個) プレイヤー 2: $(u_{21}$ で 2 個, u_{22} で 1 個), $(u_{21}$ で 2 個, u_{22} で 1 個)

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

後退帰納法の例:石取りゲーム

後退帰納法の例:石取りゲーム

u₁₂: 1個... 利得 1, 2個... 利得 −1

u₂₁: 1個... 利得 −1, 2個... 利得 1

u₂₂: **1** 個 ... 利得 1, **2** 個 ... 利得 –1

u11: 1 個 ... 利得 -1, 2 個 ... 利得 -1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

後退帰納法の例:石取りゲーム

u₁₂: 1 個 ... 利得 1, 2 個 ... 利得 −1

u₂₁: 1個... 利得 −1, 2個... 利得 1

u₂₂: **1** 個 ... 利得 1, 2 個 ... 利得 –1

u11: 1 個 ... 利得 −1, 2 個 ... 利得 −1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

後退帰納法の例:石取りゲーム

u₁₂: 1 個 ... 利得 1, 2 個 ... 利得 −1

u₂₁: 1個...利得 −1, 2個...利得 1

*u*₂₂: **1** 個 ... 利得 1, 2 個 ... 利得 –1

u₁₁: 1個...利得 –1, 2個...利得 –1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

プレイヤー 1: (u11 で 1 個, u12 で 1 個), (u11 で 2 個, u12 で 1 個)

後退帰納法の例:石取りゲーム

u₁₂: 1個 ... 利得 1, 2 個 ... 利得 −1

u₂₁: 1個...利得 −1, **2個**...利得 1

*u*₂₂: **1** 個 ... 利得 1, 2 個 ... 利得 –1

u₁₁: **1** 個 ... 利得 –1, **2** 個 ... 利得 –1

純粋戦略のナッシュ均衡 (プレイヤー 2 が必ず勝つ)

プレイヤー 1: $(u_{11}$ で 1 個, u_{12} で 1 個), $(u_{11}$ で 2 個, u_{12} で 1 個)

チェーン店ゲーム (chainstore game)

- A 市の市場は、大手チェーンストア (プレイヤー 2) の支店が独占
- 同じ商品を販売する別の事業者 (プレイヤー 1) は、A 市に開店する (IN) か、他の小規模な市に開店する (OUT) かを決定
- 他の市に開店する場合,

プレイヤー 1: 利得 1

プレイヤー 2: A 市の市場独占による利得 5

- プレイヤー1がA市に開店する場合、プレイヤー2は、プレイヤー1と協調して価格を維持する(COOPERATIVE)か、値下げ競争を仕掛ける(AGGRESSIVE)かを決定
- 協調する場合,

プレイヤー 1: 利得 2 プレイヤー 2: 利得 2

● 競争する場合,

プレイヤー 1: 利得 0 プレイヤー 2: 利得 0

後退帰納法:チェーン店ゲーム

 u_2 :

 u_1 :

ナッシュ均衡は , そのときの利得は

後退帰納法:チェーン店ゲーム

u₂: CO... 利得 2, AG... 利得 0

 u_1 :

ナッシュ均衡は , そのときの利得は

後退帰納法:チェーン店ゲーム

*u*₂: **CO**... 利得 2, AG... 利得 0

u₁: **IN**... 利得 2, OUT... 利得 1

ナッシュ均衡は , そのときの利得は

後退帰納法:チェーン店ゲーム

*u*₂: **CO**... 利得 2, AG... 利得 0

u₁: **IN**... 利得 2, OUT... 利得 1

ナッシュ均衡は (IN, CO), そのときの利得は (2, 2)

標準形ゲームへの変換

展開形ゲームの標準形ゲームへの変換

純粋戦略は各情報集合における行動の組合せ ⇒ すべて列挙

男女の争い(レディーファースト版)

- 同時手番ゲームではなく女 (プレイヤー 2) が先に選択する逐次手番ゲーム
- 他は男女の争いと同じ

利得行列

男 \ 女	ボ	バ		
(ボ, ボ)	(4, 1)	(0, 0)		
(ボ, バ)	(4, 1)	(0, 0)		
(バ, ボ)	(0, 0)	(1, 4)		
(バ, ボ)	(0, 0)	(1, 4)		

標準形ゲーム・展開形ゲームにおけるナッシュ均衡

チェーン店ゲームのナッシュ均衡

展開形ゲーム: (IN, CO)

標準形ゲーム: (IN, CO), (OUT, AG)

(OUT, AG) がナッシュ均衡であることの確認

- プレイヤー 1 が OUT ⇒ IN に変更:利得 1 ⇒ 0
- プレイヤー 2 が AG ⇒ CO に変更:利得 5 ⇒ 5

いずれも最適応答

利得行列

		-
1\2	CO	AG
IN	(2, 2)	(0, 0)
OUT	(1, 5)	(1, 5)

- プレイヤー 1 の行動が OUT の場合, プレイヤー 2 の手番には到達しない
- 到達しない手番についても最適な行動を想定するのが望ましいが,(OUT, AG) ではそうなっていない \Rightarrow より条件の厳しい均衡の定義が必要

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

部分ゲーム (subgame)

- ゲームの木の一部でゲームとして完結しているもの
- 情報集合を分割してはだめ
- ゲームの木全体も部分ゲームの一つ
- 後退帰納法:部分ゲームににおけるナッシュ均衡

- 展開形ゲームに対するナッシュ均衡よりも強い条件
- すべての妥当な (proper) 部分ゲームに対してナッシュ均衡

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が 1 つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

プレイヤー 1 が同意すれば囚人のジレンマをプレイ. そうでなければ終了

妥当な部分ゲーム

不完全情報ゲームの部分ゲーム完全均衡

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

不完全情報ゲームの部分ゲーム完全均衡

妥当な部分ゲーム

部分ゲームのうち、開始点の手番が1つだけのもの

妥当な部分ゲームの例:囚人のジレンマ改2

練習問題:ボランティアのジレンマ

ボランティアのジレンマ (volunteer's dilemma)

- プレイヤーのいずれかがコスト 1 を負担すれば, 全員がより大きな利得 3 を得るコストを負担したプレイヤーの利得は 3-1=2
- コストを負担する人数が増えても利得は変わらない
- 誰もコストを負担しなければ利得は0

利得行列

C は協調 (cooperation)・負担, D は裏切り (defection)・負担しない

1\2	C_2	D_2
C_1	(2,2)	(2,3)
D_1	(3, 2)	(0,0)

ナッシュ均衡

練習問題:ボランティアのジレンマ

ボランティアのジレンマ (volunteer's dilemma)

- プレイヤーのいずれかがコスト 1 を負担すれば、全員がより大きな利得 3 を得るコストを負担したプレイヤーの利得は 3-1=2
- コストを負担する人数が増えても利得は変わらない
- 誰もコストを負担しなければ利得は0

利得行列

C は協調 (cooperation)・負担, D は裏切り (defection)・負担しない

1\2	C_2	D_2
C ₁	(2, 2)	(2, 3)
D_1	(3, 2)	(0,0)

ナッシュ均衡

 (D_1,D_2) : D_1 から C_1 に変更すると、利得は 0 から 2 に増加 \Rightarrow D_1 は最適応答ではない

 (C_1, D_2) : C_1 から D_1 に変更すると、利得は 2 から 0 に減少. D_2 から C_2 に変更すると、利得は 3 から 2 に減少.ty2 コ均衡

(D₁, C₂): (C₁, D₂) と同様. ナッシュ均衡

 (C_1, C_2) : C_1 から D_1 に変更すると、利得は 2 から 3 に増加. C_1 は最適応答ではない.

練習問題:ボランティアのジレンマ

ボランティアのジレンマ (volunteer's dilemma)

- プレイヤーのいずれかがコスト 1 を負担すれば、全員がより大きな利得 3 を得るコストを負担したプレイヤーの利得は 3-1=2
- コストを負担する人数が増えても利得は変わらない
- 誰もコストを負担しなければ利得は0

利得行列

C は協調 (cooperation)・負担, D は裏切り (defection)・負担しない

1\2	C_2	D_2
C_1	(2,2)	(2,3)
D_1	(3, 2)	(0,0)

ナッシュ均衡

 (D_1,D_2) : D_1 から C_1 に変更すると、利得は 0 から 2 に増加 \Rightarrow D_1 は最適応答ではない

 (C_1, D_2) : C_1 から D_1 に変更すると、利得は 2 から 0 に減少. D_2 から C_2 に変更すると、利得は 3 から 2 に減少.ty2 に対衡

(D₁, C₂): (C₁, D₂) と同様. ナッシュ均衡

 (C_1,C_2) : C_1 から D_1 に変更すると、利得は 2 から 3 に増加. C_1 は最適応答ではない.

タダ乗りするのが得 (n 人の場合は n-1 人がタダ乗りするのがナッシュ均衡!)

ボランティアのジレンマ×2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

利得行列 (1 回目) $1 \setminus 2$ C_{21} D_{21} C_{11} (2,2)(2,3) D_{11} (3,2)(0,0)

利得	行列 (2	回目)
1\2	C ₂₂	D ₂₂
C ₁₂	(1, 1)	(1, 3)
D_{12}	(3, 1)	(0,0)

ゲームの木

ボランティアのジレンマ x2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ゲームの木

ボランティアのジレンマ×2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ボランティアのジレンマ×2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ゲームの木

ボランティアのジレンマ x2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ゲームの木

ボランティアのジレンマ×2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ゲームの木

ボランティアのジレンマ x2

1回目のプレイでいずれも D ならば 2回目をプレイ. 2回目はコストが 1 から 2 に増加

ゲームの木

部分ゲーム完全均衡

(C₁₁, D₂₁), (D₁₁, C₂₁) と (C₁₂, D₂₂), (D₁₂, C₂₂) の組合せ (4 通り)

繰り返しゲーム

繰り返しゲーム (repeated game)

同一のゲームを繰り返しプレイ

割引因子 (discount factor)

- ・将来得られるであろう利得は、すぐに得られる利得より価値が低い ⇒ 利得を割り引いて考える
- 現在から t 回先に得られる利得は δ^t 倍
- δ (0 < δ < 1) : 割引因子 (discount factor)

繰り返し囚人のジレンマ

以下の囚人のジレンマの一般形を無限回プレイ. 黙秘は協力 (coorperation; C), 自白は裏切り (defection; D) とする. ただし, P > Q > R > S.

	利停仃列	
1\2	C_2	D_2
C_1	(Q,Q)	(S, P)
D_1	(P,S)	(R,R)

繰り返し囚人のジレンマの展開形

ゲームの木が無限に大きくなるので, 別の方法で解析

繰り返し囚人のジレンマにおける戦略

繰り返し囚人のジレンマにおける戦略

以下の4通りを考える

常に協力する戦略 (all-C): 常に協力

常に裏切る戦略 (all-D): 常に裏切り

トリガー戦略 (trigger): 初回は協力.2回目以降は、相手が過去一度でも

裏切っていれば裏切り、そうでなければ協力

しっぺ返し戦略 (tit-for-tat): 初回は協力.2回目以降は相手の直前の行動を真

似る

(all-C, all-C) における各プレイヤーの割引総利得 (1 回の利得 (Q,Q))

$$Q + \delta Q + \delta^2 Q + \dots = \sum_{t=0}^{\infty} \delta^t Q = \frac{Q}{1 - \delta}$$

(all-C, trigger), (all-C, tit-for-tat), (trigger, trigger), (tit-for-tat) も同じ

繰り返し囚人のジレンマにおける各戦略の割引総利得

利得行列

1\2	C_2	D_2
C_1	(Q,Q)	(S,P)
D_1	(P,S)	(R,R)

(all-D, trigger), (all-D, tit-for-tat) における各プレイヤーの割引総利得

1回目は (P,S), 2回目以降は (R,R) なので、プレイヤー 1 は

$$P + \frac{\delta R}{1 - \delta} = \frac{R}{1 - \delta} + (P - R)$$

プレイヤー2は

$$S + \frac{\delta R}{1 - \delta} = \frac{R}{1 - \delta} - (R - S)$$

各戦略に対する利得行列

1 \ 2	all-C	all-D	trigger	tit-for-tat
all-C	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{S}{1-\delta}, \frac{P}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$
all-D	$\left(\frac{P}{1-\delta}, \frac{S}{1-\delta}\right)$	$\left(\frac{R}{1-\delta}, \frac{R}{1-\delta}\right)$	$\left(P + \frac{\delta R}{1 - \delta}, S + \frac{\delta R}{1 - \delta}\right)$	$\left(P + \frac{\delta R}{1 - \delta}, S + \frac{\delta R}{1 - \delta}\right)$
trigger	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(S + \frac{\delta R}{1 - \delta}, P + \frac{\delta R}{1 - \delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$
tit-for-tat	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(S + \frac{\delta R}{1 - \delta}, P + \frac{\delta R}{1 - \delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$

繰り返し囚人のジレンマにおけるナッシュ均衡

各戦略に	対する	利得	行列
------	-----	----	----

1 \ 2	all-C	all-D	trigger	tit-for-tat
all-C	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{S}{1-\delta}, \frac{P}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$
all-D	$\left(\frac{P}{1-\delta}, \frac{S}{1-\delta}\right)$	$\left(\frac{R}{1-\delta}, \frac{R}{1-\delta}\right)$	$\left(P + \frac{\delta R}{1 - \delta}, S + \frac{\delta R}{1 - \delta}\right)$	$\left(P + \frac{\delta R}{1 - \delta}, S + \frac{\delta R}{1 - \delta}\right)$
trigger	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(S + \frac{\delta R}{1 - \delta}, P + \frac{\delta R}{1 - \delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$
tit-for-tat	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(S + \frac{\delta R}{1 - \delta}, P + \frac{\delta R}{1 - \delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$	$\left(\frac{Q}{1-\delta}, \frac{Q}{1-\delta}\right)$

ナッシュ均衡

- (all-D, all-D) (ワンショット囚人のジレンマと同様)
- (trigger, trigger), (trigger, tit-for-tat), (tit-for-tat, trigger), (tit-for-tat, tit-for-tat)

$$P + \frac{\delta R}{1 - \delta} = (P - R) + \frac{R}{1 - \delta} \le \frac{Q}{1 - \delta}$$

のときナッシュ均衡. 整理して, $\delta \geq \frac{P-Q}{P-R}$ のときナッシュ均衡

- 割引因子 δ が大きければ、プレイヤー間の協調が生まれる
- 割引因子 $\delta = 0$ のときは、将来の利得を無視するため協調は生まれない
- 任意の戦略を許しても、(δ が大きければ) (triger, triger) や (tit-for-tat, tit-for-tat) などは ナッシュ均衡となることを示せる

アクセルロッドの実験

アクセルロッド (Robert Axelrod) の実験 (1980)

- 繰り返し囚人のジレンマに対するコンピュータプログラムの競技大会
- 反復回数 200 回
- 14 のプログラム + 行動をランダムに選択するプログラムの総当たり戦
- 優勝はしっペ返し戦略, 最下位は (さすがに) ランダム
- しっぺ返し戦略のプログラム (FORTRAN) はたった4行!
- 一番長い 77 行のプログラムは 14 位
- 2 位もしっぺ返し戦略 (41 行) だが, 相手が 2 回目に裏切り始めると, 相手より 1 回多く裏切り返す戦略. そして, 3 回目は 2 回, 4 回目は 3 回と増やしていく. さらに, ある条件を満たすとこの回数をリセット.

フォーク定理

標準形ゲームにおけるミニマックス利得 (minmax payoff)

$$v_i = \min_{q_{-i} \in Q_{-i}} \max_{q_i \in Q_i} f(q_i, q_{-i})$$

プレイヤーiが (混合戦略も含めて) 最適行動を取るなら、最低でも v_i の利得が得られる

割引平均利得 (discounted average payoff)

割引総利得 V に対して $(1-\delta)V$

毎回一定の利得 c が得られるとすると、割引総利得は $\frac{c}{1-\delta}$. $\frac{c}{1-\delta} = V$ とおいて、 $c = (1-\delta)V$ が平均を表すと考える

フォーク定理 (folk theorem)

無限回繰り返しゲームにおいて,割引因子 δ を十分大きくとれば,各プレイヤー δ の割引平均利得がミニマックス利得 δ より大きいナッシュ均衡を (実行可能な範囲で) 達成可能

「folk」は民間伝承 (folklore) から来ている. 研究者の間では知られた定理だったが, 誰も証明を出版しようとしなかったため

繰り替し囚人のジレンマに対するフォーク定理

村得行列				
	1\2	C ₂	D_2	
		(Q,Q)	(S, P)	
	D_1	(P,S)	(R,R)	

ミニマックス利得 v1 = v2

- プレイヤー 1 の D_1 は C_1 を支配 \Rightarrow プレイヤー 2 の行動にかかわらず最適応答は D_1
- プレイヤー 1 の利得を最小化するプレイヤー 2 の行動は D₂
- ミニマックス利得 $v_1 = v_2 = R$

- 実行可能な範囲は純粋戦略の組 (Q,Q), (S,P), (R,R), (P,S) で囲まれた領域
- $x > v_1$ かつ $y > v_2$ と重なる領域が,ナッシュ 均衡で達成可能な割引平均利得
- (trigger, trigger) の割引平均利得

$$\left((1 - \delta) \frac{Q}{1 - \delta}, (1 - \delta) \frac{Q}{1 - \delta} \right) = (Q, Q)$$