$12a_{0636} \ (K12a_{0636})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{25} - 2u^{24} + \dots + b - 1, \ 7u^{25} + 15u^{24} + \dots + 2a + 11, \ u^{26} + 3u^{25} + \dots + 11u + 2 \rangle \\ I_2^u &= \langle -u^{13}a - 8u^{14} + \dots - a - 10, \ -2u^{13}a + 3u^{14} + \dots + a - 2, \\ u^{15} - u^{14} - 4u^{13} + 5u^{12} + 6u^{11} - 10u^{10} + 7u^8 - 8u^7 + 4u^6 + 6u^5 - 8u^4 + 2u^3 + 2u^2 - 2u + 1 \rangle \\ I_3^u &= \langle -u^9 + 2u^7 - u^5 - 2u^3 + b + u, \ -u^8 - u^7 + 3u^6 + 2u^5 - 3u^4 - u^3 - u^2 + a - u + 2, \\ u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 66 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{25} - 2u^{24} + \dots + b - 1, 7u^{25} + 15u^{24} + \dots + 2a + 11, u^{26} + 3u^{25} + \dots + 11u + 2 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{7}{2}u^{25} - \frac{15}{2}u^{24} + \dots - 31u - \frac{11}{2} \\ u^{25} + 2u^{24} + \dots + 8u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{25} - \frac{3}{2}u^{24} + \dots - 6u - \frac{1}{2} \\ -u^{24} - u^{23} + \dots - 5u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{41} = \begin{pmatrix} -\frac{9}{2}u^{25} - \frac{19}{2}u^{24} + \dots - 39u - \frac{13}{2} \\ u^{25} + 2u^{24} + \dots + 8u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{25} - \frac{1}{2}u^{24} + \dots - 2u - \frac{1}{2} \\ -u^{24} - u^{23} + \dots - 4u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} - 3u^{10} + 3u^{8} + 2u^{6} - 4u^{4} + u^{2} + 1 \\ u^{14} - 4u^{12} + 7u^{10} - 4u^{8} - 2u^{6} + 4u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-2u^{25} - 4u^{24} + 12u^{23} + 34u^{22} - 22u^{21} - 122u^{20} - 30u^{19} + 220u^{18} + 202u^{17} - 140u^{16} - 356u^{15} - 190u^{14} + 202u^{13} + 434u^{12} + 198u^{11} - 234u^{10} - 362u^{9} - 134u^{8} + 126u^{7} + 202u^{6} + 86u^{5} - 38u^{4} - 78u^{3} - 32u^{2} + 4u + 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{26} + 15u^{25} + \dots + 17u + 4$
c_2, c_6	$u^{26} - 3u^{25} + \dots - 11u + 2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^{26} + 18u^{24} + \dots - u + 1$
c_7, c_8, c_{12}	$u^{26} - 9u^{25} + \dots - 215u + 26$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{26} - 7y^{25} + \dots + 207y + 16$
c_{2}, c_{6}	$y^{26} - 15y^{25} + \dots - 17y + 4$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$y^{26} + 36y^{25} + \dots + 5y + 1$
c_7, c_8, c_{12}	$y^{26} + 29y^{25} + \dots - 257y + 676$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.956817 + 0.396091I		
a = -0.651697 + 0.991591I	-0.58961 + 3.47100I	5.92481 - 9.23773I
b = 0.487266 + 0.268935I		
u = -0.956817 - 0.396091I		
a = -0.651697 - 0.991591I	-0.58961 - 3.47100I	5.92481 + 9.23773I
b = 0.487266 - 0.268935I		
u = -0.751125 + 0.602479I		
a = -1.187320 - 0.581977I	-8.48939 + 2.35165I	0.61282 - 3.28103I
b = 0.03078 + 1.53000I		
u = -0.751125 - 0.602479I		
a = -1.187320 + 0.581977I	-8.48939 - 2.35165I	0.61282 + 3.28103I
b = 0.03078 - 1.53000I		
u = 0.904845 + 0.273734I		
a = 0.298839 + 0.531776I	-1.42636 - 1.11233I	0.498012 + 0.385891I
b = 0.141020 + 0.376831I		
u = 0.904845 - 0.273734I		
a = 0.298839 - 0.531776I	-1.42636 + 1.11233I	0.498012 - 0.385891I
b = 0.141020 - 0.376831I		
u = -0.069667 + 0.918847I		
a = 0.772660 + 0.797604I	-18.8709 - 8.2243I	-1.19263 + 3.34279I
b = -0.33361 + 1.64747I		
u = -0.069667 - 0.918847I		
a = 0.772660 - 0.797604I	-18.8709 + 8.2243I	-1.19263 - 3.34279I
b = -0.33361 - 1.64747I		
u = -0.006971 + 0.822667I		
a = -0.236714 - 0.504478I	-4.02599 - 1.44616I	4.11158 + 4.76185I
b = 0.401873 - 0.547293I		
u = -0.006971 - 0.822667I		
a = -0.236714 + 0.504478I	-4.02599 + 1.44616I	4.11158 - 4.76185I
b = 0.401873 + 0.547293I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.341936 + 0.725717I		
a = -0.612752 + 0.286096I	-10.39290 - 4.06497I	0.32404 + 2.28928I
b = 0.14424 - 1.56542I		
u = -0.341936 - 0.725717I		
a = -0.612752 - 0.286096I	-10.39290 + 4.06497I	0.32404 - 2.28928I
b = 0.14424 + 1.56542I		
u = -1.068130 + 0.547532I		
a = 2.11393 - 1.03569I	-12.4889 + 8.8626I	-2.32670 - 6.75099I
b = -0.20016 - 1.55835I		
u = -1.068130 - 0.547532I		
a = 2.11393 + 1.03569I	-12.4889 - 8.8626I	-2.32670 + 6.75099I
b = -0.20016 + 1.55835I		
u = 1.201580 + 0.188741I		
a = -0.30204 - 2.23637I	-15.2170 + 1.3980I	-5.67569 - 0.13534I
b = -0.11408 - 1.65028I		
u = 1.201580 - 0.188741I		
a = -0.30204 + 2.23637I	-15.2170 - 1.3980I	-5.67569 + 0.13534I
b = -0.11408 + 1.65028I		
u = 1.223020 + 0.456500I		
a = -0.578173 - 0.689340I	-7.67362 - 3.10658I	0.75309 - 1.41288I
b = -0.367731 - 0.587274I		
u = 1.223020 - 0.456500I		
a = -0.578173 + 0.689340I	-7.67362 + 3.10658I	0.75309 + 1.41288I
b = -0.367731 + 0.587274I		
u = -1.225690 + 0.460987I		
a = 0.339499 - 1.317720I	-7.64611 + 6.04329I	0.84178 - 7.93478I
b = -0.447158 - 0.574007I		
u = -1.225690 - 0.460987I		
a = 0.339499 + 1.317720I	-7.64611 - 6.04329I	0.84178 + 7.93478I
b = -0.447158 + 0.574007I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.288060 + 0.430073I		
a = 0.67479 + 2.08726I	16.3921 + 3.4886I	-4.76966 - 0.45734I
b = 0.32678 + 1.67472I		
u = 1.288060 - 0.430073I		
a = 0.67479 - 2.08726I	16.3921 - 3.4886I	-4.76966 + 0.45734I
b = 0.32678 - 1.67472I		
u = -1.258780 + 0.509888I		
a = -1.71248 + 2.27956I	16.9890 + 13.3492I	-4.07199 - 6.35165I
b = 0.35659 + 1.64288I		
u = -1.258780 - 0.509888I		
a = -1.71248 - 2.27956I	16.9890 - 13.3492I	-4.07199 + 6.35165I
b = 0.35659 - 1.64288I		
u = -0.438383 + 0.308301I		
a = 0.831459 - 0.008336I	0.801816 - 0.109645I	12.97054 + 1.47787I
b = -0.425812 + 0.076831I		
u = -0.438383 - 0.308301I		
a = 0.831459 + 0.008336I	0.801816 + 0.109645I	12.97054 - 1.47787I
b = -0.425812 - 0.076831I		

$$\text{II. } I_2^u = \\ \langle -u^{13}a - 8u^{14} + \dots - a - 10, \ -2u^{13}a + 3u^{14} + \dots + a - 2, \ u^{15} - u^{14} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.727273u^{14} + 0.0909091au^{13} + \dots + 0.0909091a + 0.909091 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.272727au^{14} - 0.363636u^{14} + \dots - 0.909091a + 0.727273 \\ -0.363636au^{14} - 0.181818au^{13} + \dots - 0.181818a - 0.909091 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.727273u^{14} - 0.0909091au^{13} + \dots + 0.909091a - 0.909091 \\ 0.727273u^{14} + 0.0909091au^{13} + \dots + 0.0909091a + 0.909091 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.727273au^{14} + 0.363636u^{14} + \dots + 0.909091a - 0.727273 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} - 3u^{10} + 3u^{8} + 2u^{6} - 4u^{4} + u^{2} + 1 \\ u^{14} - 4u^{12} + 7u^{10} - 4u^{8} - 2u^{6} + 4u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= 4u^{13} - 16u^{11} + 4u^{10} + 28u^9 - 12u^8 - 12u^7 + 16u^6 - 16u^5 + 24u^3 - 8u^2 + 6u^8 + 16u^8 + 16u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{15} + 9u^{14} + \dots - 4u^2 + 1)^2$
c_{2}, c_{6}	$(u^{15} + u^{14} + \dots - 2u - 1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^{30} + u^{29} + \dots + 54u + 17$
c_7, c_8, c_{12}	$(u^{15} + 3u^{14} + \dots + 8u^2 - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{15} - 5y^{14} + \dots + 8y - 1)^2$
c_2, c_6	$(y^{15} - 9y^{14} + \dots + 4y^2 - 1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$y^{30} + 27y^{29} + \dots + 4428y + 289$
c_7, c_8, c_{12}	$(y^{15} + 19y^{14} + \dots + 16y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.023100 + 0.900040I		
a = -0.360717 + 1.290430I	-11.31470 + 3.25615I	0.32867 - 2.40088I
b = 0.10773 + 1.57610I		
u = 0.023100 + 0.900040I		
a = 0.518581 - 0.298234I	-11.31470 + 3.25615I	0.32867 - 2.40088I
b = -0.988185 - 0.651753I		
u = 0.023100 - 0.900040I		
a = -0.360717 - 1.290430I	-11.31470 - 3.25615I	0.32867 + 2.40088I
b = 0.10773 - 1.57610I		
u = 0.023100 - 0.900040I		
a = 0.518581 + 0.298234I	-11.31470 - 3.25615I	0.32867 + 2.40088I
b = -0.988185 + 0.651753I		
u = -0.863978		
a = -1.75727 + 1.74904I	-4.54552	-4.48380
b = 0.234017 + 1.079020I		
u = -0.863978		
a = -1.75727 - 1.74904I	-4.54552	-4.48380
b = 0.234017 - 1.079020I		
u = -1.093890 + 0.311098I		
a = -0.115665 + 0.228205I	-6.68965 + 1.10849I	-3.51398 - 0.68443I
b = -0.603738 + 0.781085I		
u = -1.093890 + 0.311098I		
a = 0.99897 - 2.63611I	-6.68965 + 1.10849I	-3.51398 - 0.68443I
b = -0.061421 - 1.364080I		
u = -1.093890 - 0.311098I		
a = -0.115665 - 0.228205I	-6.68965 - 1.10849I	-3.51398 + 0.68443I
b = -0.603738 - 0.781085I		
u = -1.093890 - 0.311098I		
a = 0.99897 + 2.63611I	-6.68965 - 1.10849I	-3.51398 + 0.68443I
b = -0.061421 + 1.364080I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.747479 + 0.391613I		
a = 1.293270 - 0.129521I	-2.04760 - 1.75942I	6.85085 + 5.01461I
b = -0.046233 + 1.126590I		
u = 0.747479 + 0.391613I		
a = -0.75255 + 1.32580I	-2.04760 - 1.75942I	6.85085 + 5.01461I
b = 0.169565 - 0.296554I		
u = 0.747479 - 0.391613I		
a = 1.293270 + 0.129521I	-2.04760 + 1.75942I	6.85085 - 5.01461I
b = -0.046233 - 1.126590I		
u = 0.747479 - 0.391613I		
a = -0.75255 - 1.32580I	-2.04760 + 1.75942I	6.85085 - 5.01461I
b = 0.169565 + 0.296554I		
u = 1.070290 + 0.443484I		
a = 0.982216 + 0.740855I	-5.70338 - 5.68434I	-0.20490 + 7.47679I
b = -0.692609 + 0.458051I		
u = 1.070290 + 0.443484I		
a = -1.93478 - 1.79741I	-5.70338 - 5.68434I	-0.20490 + 7.47679I
b = 0.133299 - 1.346070I		
u = 1.070290 - 0.443484I		
a = 0.982216 - 0.740855I	-5.70338 + 5.68434I	-0.20490 - 7.47679I
b = -0.692609 - 0.458051I		
u = 1.070290 - 0.443484I		
a = -1.93478 + 1.79741I	-5.70338 + 5.68434I	-0.20490 - 7.47679I
b = 0.133299 + 1.346070I		
u = -1.268720 + 0.457284I		
a = 0.836002 - 0.171074I	-15.2659 + 1.5494I	-3.09602 - 0.66420I
b = 1.000150 - 0.693082I		
u = -1.268720 + 0.457284I		
a = -0.92571 + 2.56606I	-15.2659 + 1.5494I	-3.09602 - 0.66420I
b = -0.08422 + 1.59670I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.268720 - 0.457284I		
a = 0.836002 + 0.171074I	-15.2659 - 1.5494I	-3.09602 + 0.66420I
b = 1.000150 + 0.693082I		
u = -1.268720 - 0.457284I		
a = -0.92571 - 2.56606I	-15.2659 - 1.5494I	-3.09602 + 0.66420I
b = -0.08422 - 1.59670I		
u = 1.260410 + 0.482704I		
a = -0.16128 - 1.54115I	-15.0770 - 8.1923I	-2.69502 + 5.35870I
b = 1.020220 - 0.627490I		
u = 1.260410 + 0.482704I		
a = 1.45407 + 2.60668I	-15.0770 - 8.1923I	-2.69502 + 5.35870I
b = -0.13370 + 1.58929I		
u = 1.260410 - 0.482704I		
a = -0.16128 + 1.54115I	-15.0770 + 8.1923I	-2.69502 - 5.35870I
b = 1.020220 + 0.627490I		
u = 1.260410 - 0.482704I		
a = 1.45407 - 2.60668I	-15.0770 + 8.1923I	-2.69502 - 5.35870I
b = -0.13370 - 1.58929I		
u = 0.193328 + 0.557909I		
a = 0.736955 - 0.543574I	-3.31411 + 1.73642I	3.57231 - 4.08118I
b = -0.057344 - 1.272060I		
u = 0.193328 + 0.557909I		
a = -1.31209 - 0.67705I	-3.31411 + 1.73642I	3.57231 - 4.08118I
b = 0.502458 + 0.520559I		
u = 0.193328 - 0.557909I		
a = 0.736955 + 0.543574I	-3.31411 - 1.73642I	3.57231 + 4.08118I
b = -0.057344 + 1.272060I		
u = 0.193328 - 0.557909I		
a = -1.31209 + 0.67705I	-3.31411 - 1.73642I	3.57231 + 4.08118I
b = 0.502458 - 0.520559I		

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{8} + u^{7} - 3u^{6} - 2u^{5} + 3u^{4} + u^{3} + u^{2} + u - 2 \\ u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} - u^{7} - 2u^{6} + 2u^{5} + 2u^{4} - 2u^{3} + u^{2} - u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ 0 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u^{9} + u^{8} + 3u^{7} - 3u^{6} - 3u^{5} + 3u^{4} - u^{3} + u^{2} + 2u - 2 \\ u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{8} - u^{7} - 2u^{6} + 2u^{5} + 2u^{4} - 2u^{3} + u^{2} - 2u \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^8 8u^6 + 8u^4 + 4u^2 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$
c_{2}, c_{6}	$u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(u^2+1)^5$
c_7, c_8, c_{12}	$u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$
c_{2}, c_{6}	$(y^5 - 3y^4 + 4y^3 - y^2 - y + 1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(y+1)^{10}$
c_7, c_8, c_{12}	$(y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.822375 + 0.339110I		
a = -1.88547 - 1.25135I	-3.61897 + 1.53058I	-0.51511 - 4.43065I
b = 1.000000I		
u = -0.822375 - 0.339110I		
a = -1.88547 + 1.25135I	-3.61897 - 1.53058I	-0.51511 + 4.43065I
b = -1.000000I		
u = 0.822375 + 0.339110I		
a = 0.32986 + 1.50891I	-3.61897 - 1.53058I	-0.51511 + 4.43065I
b = 1.000000I		
u = 0.822375 - 0.339110I		
a = 0.32986 - 1.50891I	-3.61897 + 1.53058I	-0.51511 - 4.43065I
b = -1.000000I		
u = 0.766826I		
a = -0.821196 - 0.370286I	-5.69095	-1.48110
b = -1.000000I		
u = -0.766826I		
a = -0.821196 + 0.370286I	-5.69095	-1.48110
b = 1.000000I		
u = -1.200150 + 0.455697I		
a = 1.56305 - 1.07974I	-9.16243 + 4.40083I	-4.74431 - 3.49859I
b = -1.000000I		
u = -1.200150 - 0.455697I		
a = 1.56305 + 1.07974I	-9.16243 - 4.40083I	-4.74431 + 3.49859I
b = 1.000000I		
u = 1.200150 + 0.455697I		
a = -0.186244 - 1.292420I	-9.16243 - 4.40083I	-4.74431 + 3.49859I
b = -1.000000I		
u = 1.200150 - 0.455697I		
a = -0.186244 + 1.292420I	-9.16243 + 4.40083I	-4.74431 - 3.49859I
b = 1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{5} - 3u^{4} + 4u^{3} - u^{2} - u + 1)^{2})(u^{15} + 9u^{14} + \dots - 4u^{2} + 1)^{2}$ $\cdot (u^{26} + 15u^{25} + \dots + 17u + 4)$
c_2, c_6	$(u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1)(u^{15} + u^{14} + \dots - 2u - 1)^2$ $\cdot (u^{26} - 3u^{25} + \dots - 11u + 2)$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$((u^{2}+1)^{5})(u^{26}+18u^{24}+\cdots-u+1)(u^{30}+u^{29}+\cdots+54u+17)$
c_7, c_8, c_{12}	$(u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1)(u^{15} + 3u^{14} + \dots + 8u^2 - 1)^2$ $\cdot (u^{26} - 9u^{25} + \dots - 215u + 26)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2)(y^{15} - 5y^{14} + \dots + 8y - 1)^2$ $\cdot (y^{26} - 7y^{25} + \dots + 207y + 16)$
c_2, c_6	$((y^5 - 3y^4 + 4y^3 - y^2 - y + 1)^2)(y^{15} - 9y^{14} + \dots + 4y^2 - 1)^2$ $\cdot (y^{26} - 15y^{25} + \dots - 17y + 4)$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$((y+1)^{10})(y^{26} + 36y^{25} + \dots + 5y + 1)$ $\cdot (y^{30} + 27y^{29} + \dots + 4428y + 289)$
c_7, c_8, c_{12}	$((y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2)(y^{15} + 19y^{14} + \dots + 16y - 1)^2$ $\cdot (y^{26} + 29y^{25} + \dots - 257y + 676)$