METAMATERIAL ANTENNA

Problem Statement 1

To design a Metamaterial Unit Cell on a FR-4 (Lossy) substrate. The frequency is 7 GHz to 13 GHz and the thickness is 0.25 mm, dielectric constant = 4.3.

Parameter	Value(mm)	Description	Parameter	Value(mm)	Description
g	0.3	gap	h	0.25	substrate height
L1	2.2	outer ring width	L2 h freque	1.5 CCY	inner ring width
Ls	2.5	sub length	Lw	0.14	wire length
S	0.15	split wid	t	0.017	thickness
w	0.2	ring width			

USAGE: ELECTROMAGNETIC CLOAKING, NOVEL ANTENNAS HIDING AN OBJECT, NOVEL FILTERS, NEW MW DEVICES

STEP1 Modelling of Substrate Plane Brick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-Ls/2	Ls/2	-Ls/2	Ls/2	-h	0

Material: FR-4 (Lossy)

STEP2 Modelling of Ring 1 Brick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-L1/2	L1/2	-L1/2	L1/2	0	t

Material: Copper Annealed

STEP3 Modelling of Cut 1 Prick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-(L1/2)+w	(L1/2)-w	-(L1/2)+w	(L1/2)-w	0	t

Material: Copper Annealed

STEP4 Modelling of Slot 1 Brick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-g/2	g/2	-W	0	0	t

Material: Copper Annealed

STEP5 Transform: Translate Slot 1 to **upper** portion on Ring 1

Perform Boolean Substraction [Ring 1 – Slot 1] to form SPLIT RING 1

STEP6 Modelling of Ring 2 Brick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-(L1/2)+w+s	(L1/2)-w-s	-(L1/2)+w+s	(L1/2)-w-s	0	t

Material: Copper Annealed

STEP7 Modelling of Cut 2 → Brick → Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-(L1/2)+w+s+w	(L1/2)-w-s-w	-(L1/2)+w+s+w	(L1/2)-w-s-w	0	t

Material: Copper Annealed

STEP4 Modelling of Slot 2 → Brick → Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-g/2	g/2	-W	0	0	t

Material: Copper Annealed

STEP8 Transform: Translate Slot 2 to **bottom** portion on Ring 2

Perform Boolean Substraction [Ring 2 – Slot 2] to form SPLIT RING 2

STEP9 Pick Back Face of Substrate

Align Local Coordinate System

Modelling of Wire Brick Esc

Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
-Lw/2	Lw/2	-Ls/2	Ls/2	0	t

Material: Copper Annealed

STEP9 Boundary Conditions

STEP10 Edit Background

STEP11 Create Port1 and Port2.

STEP12 Simulate

Problem Statement 2

To design a Complementary Split-Ring Resonator-Loaded. The frequency is 1 GHz to 10 GHz and the thickness is 0.25 mm, dielectric constant = 4.3

USAGE: Microfluidic Ethanol Chemical Sensor

Parameter	Value(mm)	Parameter	Value(mm)
L	12	_tMe life	6.75 igh 4
W	11.3	С	0.3
d	0.3	r	0.75
LSUB	27	WQT	0.4
LQT	4.1	g	0.3
WSUB	33	b	3.8
а	5	WM	2.38

