Lecture 4: Lexical Analysis II: From REs to DFAs

(from last lecture) Lexical Analysis:

- Regular Expressions (REs) are formulae to describe a (regular) language.
- Every RE can be converted to a Deterministic Finite Automaton (DFA).
- DFAs can automate the construction of lexical analysers.

Today's lecture:

Algorithms to derive a DFA from a RE.

An Example (recognise r0 through r31)

Register $\rightarrow r ((0|1|2) (Digit|\varepsilon) | (4|5|6|7|8|9) | (3|30|31))$

State	'r'	0,1	2	3	4,5,,9
0	1	_	_	_	_
1	_	2	2	5	4
2(final)	_	3	3	3	3
3(final)	_	_	_	_	_
4(final)	_	_	_	_	_
5(final)	_	6	_	_	_
6(final)	_	_	_	_	_

- Same code skeleton (Lecture 3, slide 11) can be used!
- Different (bigger) transition table.
- Our <u>Deterministic</u>
 <u>Finite Automaton</u>
 (DFA) recognises
 only r0 through r31.

Non-deterministic Finite Automata

What about a RE such as $(a \mid b)*abb$?

- This is a Non-deterministic Finite Automaton (NFA):
 - S_0 has a transition on ε ; S_1 has two transitions on α (not possible for a DFA).
- A DFA is a special case of an NFA:
 - for each state and each transition there is at most one rule.
- A DFA can be simulated with an NFA (obvious!)
- A NFA can be simulated with a DFA (less obvious).
 - Simulate sets of possible states.

Why study NFAs? DFAs can lead to faster recognisers than NFAs but may be much bigger. Converting a RE into an NFA is more direct.

The Big Picture:

Automatic Lexical Analyser Construction

To convert a specification into code:

- Write down the RE for the input language.
- Convert the RE to a NFA (Thompson's construction)
- Build the DFA that simulates the NFA (subset construction)
- Shrink the DFA (Hopcroft's algorithm)

(for the curious: there is a full cycle - DFA to RE construction is all pairs, all paths)

Lexical analyser generators:

- lex or flex work along these lines.
- Algorithms are well-known and understood.
- Key issue is the interface to parser.

RE to NFA using Thompson's construction

Key idea (Ken Thompson; CACM, 1968): NFA pattern for each symbol and/or operator: join them in precedence order.

NFA for a*

Example: Construct the NFA of a (b|c)*

First: NFAs g_0 g_0

Of course, a human would design a simpler one... But, we can automate production of the complex one...

29-May-18

COMP36512 Lecture 4

6

NFA to DFA: two key functions

- $move(s_i,a)$: the (union of the) set of states to which there is a transition on input symbol a from state s_i
- ϵ -closure(s_i): the (union of the) set of states reachable by ϵ from s_i .

Example (see the diagram below):

- ε -closure(3)={3,4,7}; ε -closure({3,10})={3,4,7,10};
- move(ε -closure($\{3,10\}$),a)=8;

The Algorithm:

- start with the ε -closure of s_0 from NFA.
- Do for each unmarked state until there are no unmarked states:
 - for each symbol take their ε -closure(move(state,symbol))

NFA to DFA with subset construction

Initially, \(\varepsilon\)-closure is the only state in Dstates and it is unmarked.

while there is an unmarked state T in Dstates

mark T

for each input symbol a

U:=\varepsilon\)-closure(move(T,a))

if U is not in Dstates then add U as unmarked to Dstates

- Dstates (set of states for DFA) and Dtable form the DFA.
- Each state of DFA corresponds to a set of NFA states that NFA could be in after reading some sequences of input symbols.
- This is a fixed-point computation.

Dtable[T,a]:=U

It sounds more complex than it actually is!

Example: NFA for $(a \mid b)*abb$

- $A=\varepsilon$ -closure(0)={0,1,2,4,7}
- for each input symbol (that is, a and b):
 - B= ϵ -closure(move(A,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}
 - $C=\varepsilon$ -closure(move(A,b))= ε -closure({5})={1,2,4,5,6,7}
 - Dtable[A,a]=B; Dtable[A,b]=C
- B and C are unmarked. Repeating the above we end up with:
 - $C=\{1,2,4,5,6,7\}$; $D=\{1,2,4,5,6,7,9\}$; $E=\{1,2,4,5,6,7,10\}$; and
 - Dtable[B,a]=B; Dtable[B,b]=D; Dtable[C,a]=B; Dtable[C,b]=C;
 Dtable[D,a]=B; Dtable[D,b]=E; Dtable[E,a]=B; Dtable[E,b]=C;
 no more unmarked sets at this point!

Result of applying subset construction

Transition table:		
<u>state</u>	\underline{a}	\underline{b}
A	В	\mathbf{C}
В	\mathbf{B}	D
C	\mathbf{B}	C
D	\mathbf{B}	E
E(final)	В	\mathbf{C}

Another NFA version of the same RE

Apply the subset construction algorithm:

Iteration	State	Contains	ε -closure(move(s,a))	ε -closure(move(s,b))
0	A	N0,N1	N1,N2	N1
1	В	N1,N2	N1,N2	N1,N3
	C	N1	N1,N2	N1
2	D	N1,N3	N1,N2	N1,N4
3	E	N1,N4	N1,N2	N1

Note:

- iteration 3 adds nothing new, so the algorithm stops.
- state E contains N4 (final state)

Enough theory... Let's conclude!

- We presented algorithms to construct a DFA from a RE.
- The DFA is not necessarily the smallest possible.
- Using an (automatically generated) transition table and the standard code skeleton (Lecture 3, slide 11) we can build a lexical analyser from regular expressions automatically. But, the size of the table can be large...
- Next time:
 - DFA minimisation; Practical considerations; Lexical Analysis wrap-up.
- Reading: Aho2 Sections 3.6-3.7; Aho1 pp. 113-125; Grune 2.1.6.1-2.1.6.6 (different style); Hunter 3.3 (very condensed); Cooper1 2.4-2.4.3