МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №4

по дисциплине

"Функциональная схемотехника"

Вариант №9

Выполнила:

студентка группы Р33082

Савельева Диана Александровна

Преподаватель:

Кустарев Павел Валерьевич

1. Цель работы

Получить навыки разработки встроенных схем самотестирования (BIST, built-in self-test) для цифровых устройств, реализованных на базе программируемых логических интегральных схем (ПЛИС).

2. Задание (Вариант №9)

Вариант для лабораторной работы №3:

Вариант	Функция	Ограничения
9	$y = \sqrt[3]{a} + \sqrt{b}$	2 сумматора и 1 умножитель

Вариант для лабораторной работы №4:

Вариант	LFSR 1	LFSR 2	CRC8
9	$y = 1 + x^5 + x^6 + x^7 + x^8$	$y = 1 + x^1 + x^3 + x^5 + x^8$	$y = 1 + x^1 + x^3 + x^4 + x^8$

Порядок выполнения работы

- 1. Доработайте схему функционального блока, разработанного в лабораторной работе №3, в соответствии с рисунком 4.1. На рисунке данный блок обозначен как DUT (Design under Test). Необходимо добавить в схему возможность выполнять самотестирование по внешней команде по факту нажатия кнопки. Схема самотестирования должна удовлетворять следующим требованиям:
 - 1.1. Вход и выход из режима самотестирования должен выполняться по факту нажатия кнопки BTN.
 - 1.2. Модуль «BIST control logic» должен управлять коммутацией сигналов в режиме тестирования. Данный модуль также должен хранить количество переходов в режим самотестирования с момента подачи питания на схему.
 - 1.3. Должна быть поддержана возможность подавать вместо операндов функции значения с регистров сдвига с линейной обратной

связью LFSR (Linear-Feedback Shift Register). Регистры LFSR будут выполнять функции генераторов псевдослучайных чисел. Полиномы, на базе которых работают регистры LFSR, определяются в варианте задания.

- 1.4. Значение выхода функционального блока (DUT) в режиме тестирования должно проходить через модуль расчета циклического избыточного 8-битного кода CRC8 (Cyclic Redundancy Check). По значению CRC8 в конце тестирования определяется корректность работы схемы. Использование такого подхода позволяет сэкономить память для записи истории тестирования и для списка эталонных значений на каждой итерации тестирования. Полином для CRC8 определяется в варианте задания.
- 1.5. Результат работы блока в режиме самотестирования должен представлять собой значение кода CRC8 после 256 итераций тестирования. Одной итерацией тестирования называется расчет результата на одной комбинации входных операндов.
- 1.6. В режиме тестирования на светодиоды должно выводиться значение CRC8 и количество переходов схемы в режим самотестирования с момента подачи питания на схему. В режиме нормальной работы на светодиоды выводится результат расчета функционального блока (DUT).
- 2. Разработайте тестовое окружение и проведите моделирование схемы. Определите корректное значение CRC8 в конце процесса самотестирования, то есть после 256 итераций смены входных операндов.
- 3. Проведите синтез и размещение схемы для ПЛИС XC7A100T-1CSG324C, входящей в состав отладочной платы Nexys 4 DDR.
- 4. Определите количество и тип используемых ресурсов ПЛИС после размещения схемы.

- 5. Проверьте работоспособность схемы на отладочной плате Nexys 4 DDR в нормальном режиме и в режиме самотестирования.
- 6. Составьте отчет по результатам выполнения работы.

Рисунок 1 — Схема сопряжения функционального блока со схемой тестирования: BTN — тактовая кнопка, LEDS — светодиоды, DUT (Design under Test) — модуль из лабораторной работы №3, LFSR 1 и LFSR 2 (Linear-Feedback Shift Register) — регистры сдвига с линейной обратной связью, CRC8 (Cyclic Redundancy Check) — модуль расчета циклического избыточного 8-битного кода

3. Схемы (рисунки) устройства блока «BIST control logic», регистров LFSR и модуля расчета CRC

На рисунке 2 представлена схема модуля LFSR1 с полиномом $y = 1 + x^5 + x^6 + x^7 + x^8$.

Рисунок 2 — Схема модуля LFSR1 с полиномом $y = 1 + x^5 + x^6 + x^7 + x^8$

На рисунке 3 представлена схема модуля LFSR2 с полиномом $y = 1 + x^1 + x^3 + x^5 + x^8$.

Рисунок 3 — Схема модуля LFSR2 с полиномом $y = 1 + x^1 + x^3 + x^5 + x^8$

На рисунке 4 представлена схема модуля CRC8 с полиномом $y=1+x^1+x^3+x^4+x^8.$

Рисунок 4 — Схема модуля CRC8 с полиномом $y = 1 + x^1 + x^3 + x^4 + x^8$

На рисунке 5 представлена схема модуля BIST.

Рисунок 5 – Схема модуля BIST

4. Результат тестирования блока в симуляторе (временные диаграммы)

На рисунке 6 представлена временная диаграмма тестирования модуля LFSR1.

Рисунок 6 - Временная диаграмма тестирования модуля LFSR1

На рисунке 7 представлена временная диаграмма тестирования модуля LFSR2.

Рисунок 7 - Временная диаграмма тестирования модуля LFSR2

На рисунке 8 представлена временная диаграмма тестирования модуля CRC8.

Name	Value		1	1	23,0	00 ns			1	23,50	00 ns		1	1	24,00	00 ns		1	l	24,50	0 ns	1			25,0	00 ns		1	1
¼ clk	1																												
🛂 rst	0																												
¼ calc	1																												
> 💗 x[7:0	255	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
> W ans	45	□ / 2	7)	2 / 9	4	52 1	.3 3	5 2	16 1	55 16	51 7	6 4	7 /	18 5	2 18	39 (10	1 7	0 (1	1 2	5 21	0 (119	13	4 / 4	13 2:	10 1	67 3	3 (1	77)	i \
> W i[31:0	256	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Рисунок 8 - Временная диаграмма тестирования модуля CRC8

На рисунке 9 представлена временная диаграмма тестирования модуля BIST.

Рисунок 9 - Временная диаграмма тестирования модуля BIST

5. Время моделирования режима самотестирования в симуляторе

Для REQUEST режима (режим ввода данных пользователем) время моделирования режима составляет:

usermode check

Answer is 11

\$finish called at time : 1000200 ns : File

"C:/Users/diana/lab4/lab4.srcs/sim_1/new/bist_tb.v" Line 27

Для TEST режима (режим самотестирования) время моделирования режима составляет:

testmode check

Answer is 11

\$finish called at time : 5000200 ns : File

"C:/Users/diana/lab4/lab4.srcs/sim 1/new/bist tb.v" Line 26

6. График с плотностью распределения значений операндов, которые перебираются в режиме самотестирования, с указанием области допустимых значений

- Область допустимых значений для LFSR1 и LFSR2: [0;255].
- Выходное значение модулей LFSR значение 8 бит.

На рисунке 10 представлен график с плотностью распределения значений операндов для LFSR1 $y = 1 + x^5 + x^6 + x^7 + x^8$.

Рисунок 10 - График с плотностью распределения значений операндов для LFSR1 $y=1+x^5+x^6+x^7+x^8$

На рисунке 11 представлен график с плотностью распределения значений операндов для LFSR1 $y=1+x^5+x^6+x^7+x^8$.

Рисунок 11 - График с плотностью распределения значений операндов для LFSR1 $y=1+x^5+x^6+x^7+x^8$

7. Процент количества значений операндов, которые попали в область допустимых значений.

Процент количества значений операндов, попавших в область допустимых значений, по итогу разработки блока – 100%.

8. Таблица с используемыми ресурсами ПЛИС

Для заданной функции используется 32 устройств ввода/вывода:

- input [15:0] SW устройства ввода значений. С помощью данных устройств осуществляется ввод двух аргументов а и b. Аргумент а вводится для устройств SW [7:0]. Аргумент b вводится для устройств SW [15:8]. Верхнее положение переключателя соответствует логической 1, нижнее 0.
- input CLK устройство, посылающее синхроимпульсы.
- input BTNC устройство (кнопка), которое сообщает о начале вычислений в блоке. Сигнал старта расчета функции start_i подается по нажатию на BTNC (PIN N17).
- input BTNU– устройство (кнопка), которое сообщает о сбросе. Активируется нажатием на кнопку BTNU (PIN M18).
- input BTND устройство (кнопка), которое сообщает о смене режима REQUEST (ввод данных пользователем) на TEST (самотестирование).
- input BTNL устройство (кнопка), которое сообщает о смене функционала внутри режима TEST (показ количества переходов в режим самотестирования/показ рассчитанного CRC8).
- output BUSY устройство, сообщающее о занятости блока вычислениями (светодиод LED16).
- output MODE устройство, сообщающее о режиме работы блока (когда горит красным режим REQUEST, иначе режим TEST).
- output SHOW_COUNT устройство, сообщающее о режиме работы блока внутри режима TEST (когда горит зеленым режим показа количества переходов в режим самотестирования, иначе режим TEST).
- output [7:0] LEDS устройства, которые хранят и выводят результат вычислений блока.

На рисунках ниже представлены таблицы с используемыми ресурсами ПЛИС.

tilization		Post-Synthesis	Post-Implementation
			Graph Table
Resource	Utilization	Available	Utilization %
LUT	272	63400	0.43
FF	271	126800	0.21
Ю	32	210	15.24
BUFG	1	32	3.13

Рисунок 12 - Данные об использовании ресурсов ПЛИС

Рисунок 13 - Данные об использовании ресурсов ПЛИС

Рисунок 14 - Данные об использовании ресурсов ПЛИС

Рисунок 15 - Данные об использовании ресурсов ПЛИС

9. Выводы

В результате работы был доработан блок функции $y = \sqrt[3]{a} + \sqrt{b}$. Добавлен модуль самотестирования (BIST), который позволяет сменить режим самотестирования на режим расчета значения функции по заданным аргументам.

В ходе работы я столкнулась с несколькими проблемами.

Одна из проблем - разработка модуля для защиты от дребезгов контактов, а также изначально были некоторые сложности при связке модуля функции с устройствами.

Также возникли некоторые проблемы с имплементацией алгоритма CRC8 (полином $y = 1 + x^1 + x^3 + x^4 + x^8$) и LFSR (полиномы $y = 1 + x^5 + x^6 + x^7 + x^8$ и $y = 1 + x^1 + x^3 + x^5 + x^8$) на Verilog вследствие их сложности. Однако, модули имплементированы и протестированы.

При имплементации выяснилось, что теоретическое количество устройств ввода-вывода совпадает с практическим количеством.