Задачи анализа временных рядов, теория метода «Анализ Сингулярного Спектра» SSA

Яковлев Денис Михайлович, гр.21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

3 курс (бак.) «Производственная практика (научно-исследовательская работа)» (Семестр 6)

Санкт-Петербург, 2024

Введение

- Цель работы решение теоретических и прикладных задач анализа временных рядов с применением метода SSA.
- Используемый метод SSA (Singular Spectrum Analysis),
 или «Анализ Сингулярного Спектра» (сокращенно, АСС).
- Задача исследование поведения ошибок восстановления ряда в асимптотическом случае.

Определение 1 (Сигнал)

Вещественный сигнал $H = (h_0, h_1, \dots, h_n, \dots)$, управляется линейной рекуррентной формулой (ЛРФ) порядка d

$$h_n = \sum_{k=1}^d a_k h_{n-k}, \ n \geqslant d, \ a_d > 0.$$

$$H_N = (h_0, h_1, \dots, h_N).$$

Определение 2 (Помеха)

Помеха — $E_N = (e_0, ..., e_N)$.

Определение 3 (Траекторная матрица)

Пусть $1 \leqslant L < N$ — длина окна, K = N - L + 1. Тогда траекторной матрицей сигнала $H_N = (h_0, h_1, \dots, h_N)$ называется матрица ${f H}$ размера L imes K вида:

$$\begin{pmatrix} h_0 & h_1 & h_2 & \dots & h_{K-1} \\ h_1 & h_2 & h_3 & \dots & h_K \\ h_2 & h_3 & h_4 & \dots & h_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{L-1} & h_L & h_{L+1} & \dots & h_{N-1} \end{pmatrix}$$

Замечание 1 (Размеры матриц)

Считаем, что все рассматриваемые матрицы размера $L \times K$, если не оговорено иначе.

Замечание 2 (Ранг матрицы)

 $d=\mathrm{rank}\,\mathbf{H}<\mathrm{min}(L,K)$ — ранг траекторной матрицы \mathbf{H} , образованной от сигнала H , управляемого ЛРФ порядка d.

Определение 4 (Матрица возмущённого сигнала $\mathbf{H}(\delta)$)

Пусть $\delta \in \mathbb{R}$ — формальный параметр возмущения, \mathbf{E} — траекторная матрица \mathbf{E}_N , $\mathbf{H} - \mathbf{H}_N$ соответственно. Тогда $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$ — матрица возмущённого сигнала.

Замечание 3

 $\mathbf{H}(0) = \mathbf{H}.$

Определение 5 (Возмущённая матрица для сингулярного разложения $A(\delta)$)

$$\mathbf{A}(\delta) = \mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} = \mathbf{H}\mathbf{H}^{\mathrm{T}} + \delta(\mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}) + \delta^{2}\mathbf{E}\mathbf{E}^{\mathrm{T}},$$

 $\mathbf{A}(\delta)$ — возмущённая матрица размера $L \times L$.

Замечание 4

$$\mathbf{A}(0) = \mathbf{A} = \mathbf{H}\mathbf{H}^{\mathrm{T}}.$$

Определение 6 (Наименьшее и наибольшее ненулевые собственные числа μ_{\min}, μ_{\max}

Пусть $\{\mu_n\}_{n=1}^L$ — собственные числа **A**. Тогда μ_{\min}, μ_{\max} наименьшее и наибольшее ненулевые собственные числа.

Определение 7 (Собственные подпространства матрицы А)

Пусть $\{U_n\}_{n=1}^L$ — собственные вектора размера $L \times 1$ матрицы А. Тогда \mathbb{U}_0 — собственное подпространство, соответствующее нулевым собственным числам, а \mathbb{U}_0^{\perp} — соответствует ненулевым собственным числам.

Определение 8 (Ортогональные проекторы собственных подпространств $\mathbf{P}_0^{\perp}, \mathbf{P}_0$)

Пусть I — единичная матрица размера $L \times L$. Тогда P_0 ортогональный проектор на \mathbb{U}_0 , а $\mathbf{P}_0^{\perp} = \mathbf{I} - \mathbf{P}_0$ ортогональный проектор на \mathbb{U}_0^{\perp} . \mathbf{P}_0 , \mathbf{P}_0^{\perp} — матрицы размера $L \times L$.

Замечание 5

$$\mathbf{P}_0^{\perp}\mathbf{H} = \mathbf{H}.$$

Замечание 6 (Про матричные нормы)

Полагаем $\|\cdot\|$ — спектральная норма. В иных случаях явно указываем норму.

Например, максимальная норма $\left\| \cdot \right\|_{\max}$.

Определение 9 (Псевдообратная матрица \mathbf{S}_0)

Пусть \mathbf{S}_0 — матрица размера $L \times L$, псевдообратная к $\mathbf{H}\mathbf{H}^{\mathrm{T}}$. Положим $\mathbf{S}_0^{(0)} = -\mathbf{P}_0$ и $\mathbf{S}_0^{(k)} = \mathbf{S}_0^k$ для $k \geqslant 1$, $\left\|\mathbf{S}_0^{(k)}\right\| = 1/\mu_{min}^k$.

Определение 10 (Возмущение матрицы $\mathbf{A}(\delta)$)

Зависящую от δ часть матрицы $\mathbf{A}(\delta)$ будем обозначать $\mathbf{B}(\delta)$. Тогда $\mathbf{B}(\delta) = \delta(\mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}) + \delta^2\mathbf{E}\mathbf{E}^{\mathrm{T}}$.

Определение 11 (Ошибка восстановления $r_i(N)$)

Пусть $\widetilde{\mathrm{H}}_N(\delta) = (\widetilde{h}_0(\delta), \widetilde{h}_1(\delta), \dots, \widetilde{h}_N(\delta))$ — восстановленный сигнал из $\mathrm{H}_N(\delta) = (h_0 + \delta e_0, h_1 + \delta e_1, \dots, h_N + \delta e_N)$, полученный методом SSA.

Тогда $r_i(N) = \widetilde{h}_i(\delta) - h_i, \ 0 \leqslant i < N$ — ошибка восстановления.

Определение 12 (Оператор ганкелевизации \mathcal{S})

 \mathcal{S} — оператор диагонального усреднения (ганкелевизации).

Замечание 7 (Оператор ганкелевизации для траекторной матрицы сигнала)

SH = H.

Постановка общей задачи

Постановка 1 (Общая задача)

Пусть ${f N}$ — некоторая матрица размера $L \times L$. Так как $\|\mathcal{S}\mathbf{A}\|_{\max} \leqslant \|\mathbf{A}\|_{\max}$ и $\|\mathbf{A}\|_{\max} \leqslant \|\mathbf{A}\|$ для любой конечномерной матрицы A:

$$\max_{0 \leq n < N} |r_i(N)| = \|\mathcal{S}\Delta_{\delta}(\mathbf{H})\|_{\max} \leq \|\Delta_{\delta}(\mathbf{H})\|_{\max}$$

$$\leq \|(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N})\mathbf{H}(\delta)\| + \|\mathbf{N}\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max}, \quad (1)$$

где $\Delta_{\delta}(\mathbf{H}) = \mathbf{P}_{0}^{\perp}(\delta)\mathbf{H}(\delta) - \mathbf{P}_{0}^{\perp}\mathbf{H}.$ Общая задача: подобрать такую N, чтобы правая часть (1)стремилась к нулю.

Формулировка

Формулировка 1 (Оценка нормы)

Оценить выражение сверху

$$orall n\in\mathbb{N}: \left\|\mathbf{P}_0^\perp(\delta)-\mathbf{P}_0^\perp-\sum\limits_{p=1}^n\mathbf{W}_p(\delta)
ight\|,\ \mathbf{W}_p(\delta)$$
 — матрицы размера $L imes L$ такие, что

$$\mathbf{W}_{p}(\delta) = (-1)^{p} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{i} \geqslant 0} \mathbf{W}_{p}(l_{1}, \dots, l_{p+1}; \delta),$$

a

$$\mathbf{W}_{p}(l_{1},\ldots,l_{p+1};\delta) = \mathbf{S}_{0}^{(l_{1})}\mathbf{B}(\delta)\mathbf{S}_{0}^{(l_{2})}\ldots\mathbf{S}_{0}^{(l_{p})}\mathbf{B}(\delta)\mathbf{S}_{0}^{(l_{p+1})}.$$

Известные результаты

Воспользуемся вспомогательными теоремами и леммами из [2].

Теорема 1 (Теорема 2.1)

Пусть $\delta_0 > 0$ и

$$\|\mathbf{B}(\delta)\| < \mu_{min}/2$$

для всех $\delta \in (-\delta_0, \delta_0)$. Тогда для возмущённого проектора $\mathbf{P}_0^{\perp}(\delta)$ верно представление:

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{p=1}^{\infty} \mathbf{W}_p(\delta).$$

Известные результаты

Теорема 2 (Теорема 2.3)

Если
$$\delta_0>0$$
 и $\dfrac{\|\mathbf{B}(\delta)\|}{\mu_{min}}<\dfrac{1}{4}$ для всех $\delta\in(-\delta_0,\delta_0)$, то проектор $\mathbf{P}_0^\perp(\delta)$ существует и

$$\left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} \right\| \leqslant 4C \frac{\left\| \mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0 \right\|}{1 - 4 \left\| \mathbf{B}(\delta) \right\| / \mu_{min}},$$

где
$$C = e^{1/6}/\sqrt{\pi} \approx 0.667$$
.

Лемма 1 (Лемма 6.1)

Если
$$0<\beta<1/4$$
, $k\geqslant 0$, то $\sum_{p=k}^{\infty}{2p\choose p}\beta^p\leqslant C\frac{(4\beta)^k}{1-4\beta}$, где $C=e^{1/6}/\sqrt{\pi}$.

Полученные результаты

Следствие 1

В условиях Теоремы 2, $\forall n \in \mathbb{N}$:

$$\left\| \mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \sum_{p=1}^{n} \mathbf{W}_{p}(\delta) \right\|$$

$$\leq 4^{n+1} C \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{min}} \right)^{n+1} \frac{1}{1 - 4 \|\mathbf{B}(\delta)\| / \mu_{min}},$$

где
$$C = e^{1/6}/\sqrt{\pi}$$
.

Постановка

Постановка 2 (Линейный сигнал с гармониками)

Рассмотрим при n = 0, 1, ..., N - 1 линейный сигнал $h_n= heta_1 n+ heta_0$, где $heta_1
eq 0$, и помеху, которая является линейной комбинацией гармоник

$$e_n = \sum_{l=1}^{r} \tau_l \cos(2\pi n\omega_l + \varphi_l),$$

где $au_l
eq 0, au_l
eq au_p$ и $\omega_l
eq \omega_p$ при l
eq p и $0 < \omega_l < 1/2$. Пусть $h_0(\delta), \ldots, h_{N-1}(\delta)$ — результаты восстановления ряда $\{h_n + \delta e_n\}_{n=0}^{N-1}$ с помощью метода SSA, а $r_n(N) = \widetilde{h}_n(\delta) - h_n$. Тогда теорема из [3] утверждает, что для любого $\delta \in \mathbb{R}$ при $N \to \infty$.

$$\max_{0 \le n < N} |r_n(N)| = O(N^{-1}).$$

Формулировка и известные результаты

Формулировка 2

Обобщить результат [3] с L=K при ${f N}={f W}_1$ до $L/N \to \alpha \in (0,1)$ с помощью выбора $N = W_1 + W_2$.

Воспользуемся вспомогательными теоремами и леммами из [3]

Лемма 2 (Лемма 1)

При $N \to \infty$ имеет место соотношение $\|\mathbf{H}\mathbf{E}^{\mathrm{T}}\|_{\max} = O(N)$.

Лемма 3 (Лемма 2)

При $N \to \infty$ имеет место соотношение $\|\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max} = O(N^{-1})$.

Лемма 4 (Лемма 3)

При $N \to \infty$ имеет место соотношение $\|\mathbf{S}_0\mathbf{E}\| = O(N^{-4})$.

Полученные результаты

Замечание 8

При $\mathbf{N} = \mathbf{W}_1 + \mathbf{W}_2$ рассматривается неравенство

$$\max_{0 \leq i < N} |r_i(N)| \leq \left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - (\mathbf{W}_1 + \mathbf{W}_2) \right) \mathbf{H}(\delta) \right\|$$

$$+ \left\| (\mathbf{W}_1 + \mathbf{W}_2) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\text{max}}.$$

Предложение 1

Пусть $L/N o lpha \in (0,1)$. Тогда для любого δ

$$\left\| \left(\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right) \mathbf{H}(\delta) \right\| = O(N^{-1}).$$

Предложение 2

В условиях Предложения 1

$$\|(\mathbf{W}_1(\delta) + \mathbf{W}_2(\delta))\mathbf{H}(\delta)\|_{\max} = O(N^{-1}).$$

Приложение. Результаты вычислительных экспериментов

Формулировка 3

Проиллюстрировать теоретический результат задачи №2 для ряда

$$\widetilde{h}_n = n + 3\cos(2\pi n\omega + \varphi),$$

где $\omega=1/4,\ \varphi=\pi/8,\ n=0,1,\dots,N-1,\ N=9\dots 200$, длина окна $L=\lfloor N/3 \rfloor$.

Приложение. Результаты вычислительных экспериментов

Максимальная ошибка восстановления ряда L ~ N/3

Figure 1: Максимальные ошибки восстановления ряда в зависимости от длины ряда при $h_n = n + 3\cos(\pi n/2 + \pi/8)$

Приложение. Результаты вычислительных экспериментов

Figure 2: Максимальные ошибки восстановления ряда, умноженные на N. в зависимости от длины ряда N для

Заключение

- Поставлена общая теоретическая задача;
- $oldsymbol{2}$ Дана оценка $\|\mathbf{P}_0^\perp(\delta) \mathbf{P}_0^\perp \sum\limits_{p=1}^n \mathbf{W}_p(\delta)\| \ orall n \in \mathbb{N};$
- ① Обобщён результат [3] асимптотической разделимости линейного сигнала с линейной комбинацией гармоник с L=K до $L/N o lpha \in (0,1);$
- Проведён вычислительный эксперимент, подтверждающий полученный результат.

Список литературы

- GOLYANDINA, N., NEKRUTKIN, V. AND ZHIGLJAVSKY, A. (2001). Analysis of Time Series Structure. SSA and Related Techniques. Champan & Hall/CRC, Boca Raton-London-New York-Washington D.C.
- NEKRUTKIN, V. (2010). Perturbation expansions of signal subspaces for long signals. Statistics and Its Interface. **3**, 297–319.