HelmholtzZentrum münchen German Research Center for Environmental Health

COMBINE16, Newcastle

AMICI: An ODE simulation framework for sensitivity analysis of large-scale models

Fabian Fröhlich^{1,2}, Jan Hasenauer^{1,2}

¹Helmholtz Zentrum München, Institute of Computational Biology

²Technische Universität München, Center for Mathematics

Forward/Inverse Problem

Simulation/Prediction (forward problem)

Mathematical Model (ODE)

Experimental Data

Parameter Optimization (inverse problem)

Optimization Algorithms

Global Optimization

Heuristics

Local Optimization

in our group: multi-start local

gradient based optimization

Model-data comparison

parameter 1

Model-data comparison

Model-data comparison

parameter 1

Model-data comparison

Model-data comparison

Objective function landscape

parameter 1

Bottleneck: gradient computation

Gradient Computation Schemes

computationally expensive

computationally cheap

Gradient Computation Schemes

How do they scale with the number of parameters?

Model:

BIOMD000000255 Chen2009 ErbB Signaling 219 parameters 500 state variables

Model: BIOMD000000255 Chen2009 ErbB Signaling 219 parameters

500 state variables

Does this translate to other models?

	B2	В3	B4	B5	BM1	ВМ2	ВМ3
#states	18	47	34	26	104	431	500
#parameters	116	178	117	86	383	1801	219
BIOM ID					474	235	255
	BioPre	DynBench, \	Villaverde et.				

	B2	В3	B4	B5	BM1	ВМ2	ВМ3
#states	18	47	34	26	104	431	500
#parameters	116	178	117	86	383	1801	219
BIOM ID					474	235	255

Speedup is almost universal.

Accuracy of Gradient Computation

absolute tolerance: 10⁻¹⁶ relative tolerance: 10⁻⁸

Model:
BIOMD0000000255
Chen2009 ErbB Signaling
219 parameters
500 state variables

Accuracy of Gradient Computation

absolute tolerance: 10⁻¹⁶ relative tolerance: 10⁻⁸

Model:
BIOMD0000000255
Chen2009 ErbB Signaling
219 parameters
500 state variables

Forward and adjoint sensitivities have similar accuracy.

Application: Cancer Signalling

Model properties

State variables: 1230

Parameters: 4256

Experimental

Conditions: 5500

Classification

Responder/Non-Responder to 7 different drugs

Application: Cancer Signalling

Model properties

State variables: 1230

Parameters: 4256

Experimental

Conditions: 5500

Classification

Responder/Non-Responder to 7 different drugs

Adjoint approach makes large-scale parametrization possible

Implementation: AMICI

AMICI: Key Features

- Forward and Adjoint sensitivity analysis
- Second order sensitivities analysis
- Directional second order sensitivities
- Stead state sensitivities
- Support for models with events
- Supports models with thousands of states and parameters

Summary

- Adjoint sensitivity analysis is more efficient and as accurate as forward sensitivity analysis for large scale models
- Modular Implementation in AMICI which generates simulation routines as native C code

Outlook

- HPC support
- Support for SED-ML
- Support for different ODE solvers?
- Rewrite of symbolic processing in C/python?
- Standard for model-data metric?

Acknowledgment

ICB, Helmholtz Zentrum München

Jan Hasenauer

Paul Stapor

Daniel Weindl

Fabian Theis

University of Klagenfurt

Barbara Kaltenbacher

Thank you for your attention!