# 11. Geometria piana

# 1. Formule fondamentali

#### Rettangolo



h = altezza

b = based = diagonale

A = area

2p = perimetro

p = semiperimetro

#### Quadrato



$$A = l^{2} \qquad l = \sqrt{A}$$
$$d = l\sqrt{2} \qquad l = \frac{d}{\sqrt{2}}$$

1 = latoA = area d = diagonale

2p = perimetro

p = semiperimetro

#### Parallelogramma



b = base

h = altezza

a = lato obliquo

A = area

2p = perimetro

# $A = b \cdot h$ $b = \frac{A}{h}$ $h = \frac{A}{b}$ $2p = 2 \cdot (b+a)$ b = p-a a = p-b

 $A = b \cdot h \qquad b = \frac{A}{h} \qquad h = \frac{A}{b}$   $2p = 2 \cdot (b+h) \qquad p = b+h \qquad h = p-b \quad b = p-h$   $d = \sqrt{b^2 + h^2} \qquad b = \sqrt{d^2 - h^2} \qquad h = \sqrt{d^2 - b^2}$ 

I lati opposti sono paralleli e uguali.

Gli angoli opposti sono uguali.

Gli angoli adiacenti sono supplementari.

Le diagonali si tagliano reciprocamente a metà.

#### **Triangolo**



$$a, b, c = lati$$

A = area

p= semiperimetro

$$A = \frac{b \cdot h}{2} \qquad b = \frac{2 \cdot A}{h} \qquad h = \frac{2 \cdot A}{b}$$

$$A = \sqrt{p(p-a)(p-b)(p-c)} \text{ formula di Erone}$$

$$2p = a+b+c \qquad p = \frac{a+b+c}{2}$$

Mediana relativa al lato a è 
$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

Bisettrice relativa al lato a è  $l_a = \frac{2}{b+c} \sqrt{bcp(p-a)}$ 

h = altezza2p = perimetro

......www.matematicamente.it .....

Triangolo rettangolo



a = ipotenusa b = cateto c = cateto h = altezza relativa all'ipotenusa

AM = mediana relativa all'ipotenusa

$$A = area$$
  $2p = perimetro$ 

 $A = \frac{a \cdot h}{2} = \frac{c \cdot b}{2}$   $h = \frac{c \cdot b}{a}$  2p=a+b+c

Teorema di Pitagora

$$a = \sqrt{b^2 + c^2}$$
,  $c = \sqrt{a^2 - b^2}$ ,  $b = \sqrt{a^2 - c^2}$ 

1° teorema di Euclide  $\overline{AB}^2 = \overline{BC} \cdot \overline{HB}$ ,  $\overline{AC}^2 = \overline{BC} \cdot \overline{HC}$ 

 $2^{\circ}$  teorema di Euclide  $\overline{AH}^2 = \overline{BH} \cdot \overline{HC}$ 

Il triangolo rettangolo è sempre inscrivibile in una semicirconferenza di diametro l'ipotenusa e raggio AM.

$$\overline{AM} = \frac{a}{2}$$

Triangoli particolari



Rombo



$$2p = 4 \cdot l$$
  $A = \frac{d_1 \cdot d_2}{2}$   $d_1 = \frac{2A}{d_2}$   $d_2 = \frac{2A}{d_1}$ 

$$l = \sqrt{\frac{d_1^2}{4} + \frac{d_2^2}{4}} \qquad r = \frac{d_1 \cdot d_2}{4l}$$

l = lato d1, d2 = diagonali

A = area 2p = perimetro

r = raggio del cerchio inscritto

**Deltoide** 



d1, d2 = diagonali, A=area

$$A = \frac{d_1 \cdot d_2}{2}$$
  $d_1 = \frac{2A}{d_2}$   $d_2 = \frac{2A}{d_1}$ 

Il deltoide ha le diagonali perpendicolari e i lati uguali a due a due.

2

# Trapezio



 $b_1$  = base maggiore  $b_2$  = base minore A = area

$$A = \frac{(b_1 + b_2) \cdot h}{2} \qquad h = \frac{2A}{b_1 + b_2} \qquad b_1 = \frac{2A}{h} - b_2$$
$$b_2 = \frac{2A}{h} - b_1$$

# Trapezio isoscele



B = base maggiore, b = base minore, l = lato, h = altezzad = diagonale, A = area, 2p = perimetro

$$A = \frac{\left(B+b\right) \cdot h}{2} \qquad 2p = 2l+b+B \qquad l = \sqrt{h^2 + \left(\frac{B-b}{2}\right)^2}$$
$$h = \sqrt{l^2 - \left(\frac{B-b}{2}\right)^2} \qquad d = \sqrt{h^2 + \left(\frac{B+b}{2}\right)^2}$$

# Trapezio rettangolo



DC = base minore, AB = base maggiore, CB = lato obliquo, DA = CH = altezza, AC e DB diagonali

$$HB = AB - DC$$

$$\overline{DB} = \sqrt{\overline{DA}^2 + \overline{AB}^2}$$

$$\overline{CH} = \sqrt{\overline{CB}^2 - \overline{HB}^2}$$

$$\overline{CH} = \sqrt{\overline{CB}^2 - \overline{HB}^2}$$

$$\overline{CB} = \sqrt{\overline{CH}^2 + \overline{HB}^2}$$

# Poligono regolare



lato triangolo equilatero  $l_3 = r\sqrt{3}$ , lato quadrato  $l_4 = r\sqrt{2}$ 

lato pentagono regolare  $l_5 = r \frac{\sqrt{10 - 2\sqrt{5}}}{2}$ 

lato decagono regolare  $l_{10} = r \frac{\sqrt{5} - 1}{2}$ 

$$A = p \cdot a = \frac{1}{2} n \cdot l \cdot a = l^2 \cdot f$$

$$a = l \cdot N = \frac{A}{p}$$
  $2p = n \cdot l$   $r = \sqrt{a^2 + \left(\frac{l}{2}\right)^2}$ 

|           | N numero fisso apotema | f numero fisso area |
|-----------|------------------------|---------------------|
| Triangolo | 0.289                  | 0.433               |
| Quadrato  | 0.5                    | 1                   |
| pentagono | 0.688                  | 1.72                |
| esagono   | 0.866                  | 2.598               |
| ettagono  | 1.038                  | 3.634               |
| ottagono  | 1.207                  | 4.828               |
| ennagono  | 1.374                  | 6.182               |
| decagono  | 1.539                  | 7.694               |

Ha tutti gli angoli e tutti i lati uguali. l = lato del poligono, n = numero di lati <math>r = raggio del cerchio circoscritto, a = apotema = raggio del cerchio inscritto, <math>2p = perimetro, p = semiperimetro, A = area, f = numero fisso area, <math>N = numero fisso apotema

Circonferenza e cerchio

.....



C = Circonferenza

A = area d = diametro

$$\pi \approx 3.14159265359...$$

$$C = 2\pi r$$
  $r = \frac{C}{2\pi}$   $C = \pi d$   $\frac{C}{d} = \pi$ 

$$A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$$

 $\alpha$  = angolo del settore, l = lunghezza dell'arco

Settore circolare



$$l = \frac{\pi \cdot r \cdot \alpha}{180^{\circ}} \qquad r = \frac{l \cdot 180^{\circ}}{\pi \cdot \alpha} \qquad \alpha = \frac{l \cdot 180^{\circ}}{\pi \cdot r}$$
$$A = \frac{\pi \cdot r^{2}}{360^{\circ}} \cdot \alpha \qquad \alpha = \frac{A \cdot 360^{\circ}}{\pi \cdot r^{2}} \qquad r = \sqrt{\frac{A \cdot 360^{\circ}}{\pi \cdot \alpha}}$$

Corona circolare



r = raggio del cerchio interno,

R = raggio del cerchio esterno,

A = area

$$A = \pi \left( R^2 - r^2 \right)$$

Poligono circoscritto a una circonferenza



2p = perimetro del poligono, p = semiperimetro

A = area del poligono

r = raggio del cerchio inscritto

$$A = p \cdot r$$
  $r = \frac{A}{p}$   $2p = \frac{2A}{r}$ 

Triangolo inscritto e cricoscritto a una circonferenza



A = area del triangoloa, b, c lati del triangolo

R = raggio del cerchio circoscritto

r = raggio del cerchio inscritto

p = semiperimetro

$$A = \frac{a \cdot b \cdot c}{4 \cdot R}$$
  $R = \frac{a \cdot b \cdot c}{4 \cdot A}$   $r = \frac{A}{p}$ 

# 2. Prime definizioni di geometria razionale

Enti primitivi. Gli enti primitivi della geometria sono punto, retta, piano.

**Semiretta**. Si chiama semiretta la parte di retta costituita da un punto di essa, detto origine della semiretta, e da tutti i punti che stanno dalla stessa parte rispetto all'origine.

**Semipiano**. Si dice semipiano di origine la retta r la figura formata dalla retta r e da una delle due parti in cui essa divide il piano.

**Segmento**. Si chiama segmento AB l'insieme dei punti A e B e di tutti quelli che stanno tra A e B.

**Segmenti consecutivi**. Due segmenti si dicono consecutivi se hanno in comune soltanto un estremo.

**Segmenti adiacenti**. Due segmenti si dicono adiacenti se sono consecutivi ed appartengono alla stessa retta.



Figura 1. AB e BC sono segmenti consecuti; DE e EF sono segmenti adiacenti.

**Punto medio.** Si chiama punto medio di un segmento il punto interno al segmento che lo divide in due parti congruenti.

#### Angolo

Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi l'origine in comune; le semirette si dicono lati dell'angolo; l'origine comune alle due semirette si dice vertice dell'angolo.

**Angolo concavo**. Un angolo si dice concavo se contiene i prolungamenti dei suoi lati.

**Angolo convesso**. Un angolo si dice convesso se non contiene i prolungamenti dei suoi lati.



**Angolo piatto** è quello che ha i lati che sono uno il prolungamento dell'altro.

**Angolo nullo** è quello costituito solo da due semirette sovrapposte.

Angolo giro è quello che ha per lati due semirette sovrapposte e che contiene tutti i punti del piano.

Angolo retto è l'angolo metà dell'angolo piatto.

**Angoli consecutivi**. Due angoli si dicono angoli consecutivi se hanno il vertice e un lato comune e giacciono da parte opposta rispetto al lato comune.

**Angoli adiacenti**. Due angoli si dicono angoli adiacenti se sono consecutivi e se i lati non comuni giacciono sulla stessa retta.

.....



Figura 2. Gli angoli  $\alpha$  e  $\beta$  sono consecutivi; gli angoli  $\gamma$  e  $\delta$  sono adiacenti

**Angoli opposti al vertice**. Due angoli convessi si dicono angoli opposti al vertice se i lati del primo sono i prolungamenti dei lati dell'altro.

**Bisettrice**. Si dice bisettrice di un angolo la semiretta che ha origine nel vertice dell'angolo e divide l'angolo in due angoli congruenti.

Angoli complementari. Due angoli si dicono complementari se la loro somma è un angolo retto.

Angoli supplementari. Due angoli si dicono supplementari se la loro somma è un angolo piatto.

Angoli esplementari. Due angoli si dicono esplementari se la loro somma è un angolo giro.

Angolo acuto. Un angolo si dice acuto se è minore di un angolo retto.

Angolo ottuso. Un angolo si dice ottuso se è maggiore di un angolo retto.

#### Misura degli angoli

**Sistema sessagesimale (DEG).** L'unità di misura per gli angoli è il **grado**, definito come la 360<sup>a</sup> parte dell'angolo giro. I sottomultipli del grado sono il **primo** che è la sessantesima parte di un grado (60'=1°) e il **secondo** che è la sessantesima parte del primo (60"=1').

**Sistema sessadecimale (GRAD)**. Nel sistema sessadecimale l'unità è sempre il grado ma i suoi sottomulpli sono il decimo di grado, il centesimo di grado, ecc.

Esempio. Passare da gradi sessadecimali a sessagesimali:

$$35,12^{\circ} = 35^{\circ} \ 0,12 \cdot 60' = 35^{\circ} \ 7,2' = 35^{\circ} \ 7' \ 0,2 \cdot 60'' = 35^{\circ} \ 7' 12''$$

Radianti (RAD). Un'altra unità di misura per i gradi è il radiante, definito come angolo al centro di una circonferenza tale che la misura dell'arco da esso individuato è uguale alla misura del raggio della circonferenza.

Per passare da gradi a radianti e viceversa si usa questa proporzione

180: 
$$gr = \pi : rad$$

Dove gr è la misura in gradi dell'angolo, rad è la misura inradianti dello stesso angolo.

1 rad = 
$$\frac{180^{\circ}}{\pi}$$
 = 57,29578° = 57° 17' 45"

Esempio. Trasformare 135° in radianti.  $180:135 = \pi: rad \rightarrow rad = \frac{135^3 \pi}{180_A} = \frac{3}{4}\pi$ 

**Rette complanari**. Due rette si dicono complanari se appartengono a uno stesso piano.

**Rette sghembe**. Due rette si dicono sghembe se non appartengono a uno stesso piano.

Rette incidenti. Due rette complanari si dicono incidenti se hanno uno, e uno solo, punto in comune.

**Rette parallele**. Due rette complanari che non hanno nessun punto in comune si dicono parallele.

Rette perpendicolari. Due rette si dicono perpendicolari se incontrandosi formano quattro angoli retti.

**Distanza punto-retta**. La distanza di un punto P da una retta r è il segmento di perpendicolare condatta dal punto alla retta.

**Asse di un segmento**. Si dice asse di un segmento la retta perpendicolare al segmento e passante per il punto medio.

**Figura concava o convessa**. Una figura si dice convessa se, considerati due qualsiasi suoi punti, il segmento che li unisce è contenuto nella figura. Si dice concava se esistono almeno due punti per i quali il segmento che li unisce non è interamente contenuto nella figura.



**Figura 2**. La figura F è concava perché il segmento che unisce i suoi punti A e B cade in parte esternamente a F; G è convessa perché tutti i suoi punti sono uniti da segmenti che cadono sempre internamente a G

**Figure congruenti**. Due figure si dicono congruenti quando esiste un movimento rigido che le sovrappone perfettamente.

# Rette parallele tagliate da un trasversale.

Due rette parallele tagliate da una traversale formano le seguenti coppie di angoli



- alterni interni congruenti:  $\gamma = \alpha'$ ;  $\beta = \delta'$
- alterni esterni congruenti:  $\gamma'=\alpha$ ;  $\beta'=\delta$
- corrispondenti congruenti:  $\alpha = \alpha'$ ;  $\beta = \beta$  ';  $\gamma = \gamma$  ';  $\delta = \delta$ '
- coniugati interni supplementari:  $\gamma + \delta' = 180^{\circ}$ ;  $\alpha' + \beta = 180^{\circ}$
- coniguati esterni supplementari:  $\gamma'+\delta=180^{\circ}$ ;  $\alpha+\beta'=180^{\circ}$

# 3. Triangoli

Si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto.

Si dice **mediana** relativa a un lato il segmento che unisce il punto medio del lato con il vertice opposto.

Si dice **bisettrice** di un angolo la semiretta uscente dal vertice dell'angolo e che divide a metà l'angolo stesso.

Si dice **asse** di un lato la retta perpendicolare al lato e passante per il suo punto medio.

# Criteri di congruenza dei triangoli

Dati due triangoli come in figura





1° criterio: i due triangoli sono congruenti se hanno congruenti due lati e l'angolo compreso a=a'; b=b';  $\gamma=\gamma'$ 

2° criterio: i due triangoli sono congruenti se hanno congruenti un lato e i due angoli a esso adiacenti  $\alpha=\alpha'$ ;  $\beta=\beta'$ ; c=c'

3° criterio: i due triangoli sono congruenti se hanno congruenti rispettivamente i tre lati a=a'; b=b'; c=c'

# Criteri di congruenza dei triangoli rettangoli

Due triangoli rettangoli sono congruenti se hanno ordinatamente congruenti:

- due cateti;
- un cateto e un angolo acuto;
- l'ipotenusa e un angolo acuto;
- l'ipotenusa e un cateto.

#### Proprietà di angoli e lati di un triangolo

- In un triangolo ogni angolo esterno è maggiore di ciascuno degli angoli interni ad esso non adiacenti.
- In un triangolo un angolo esterno è congruente alla somma dei due angoli interni a esso non adiacenti.



- In un triangolo la somma degli angoli interni è un angolo piatto.
- In un triangolo la somma degli angoli esterni vale 360°.
- In un triangolo con due lati disuguali, a lato maggiore è opposto angolo maggiore.
- In un triangolo con due angoli disuguali, all'angolo maggiore è opposto il lato maggiore.
- In un triangolo ciascun lato è minore della somma degli altri due e maggiore della loro differenza.

.....



- In un triangolo rettangolo gli angoli acuti sono complementari.
- Se per il punto medio di un lato si traccia la parallela ad un altro lato, essa taglia il terzo lato nel suo punto medio.
- Congiungendo due punti medi di due lati di un triangolo si ottiene un segmento parallelo al terzo lato e congruente alla sua metà.

# Proprietà del triangolo isoscele

Definizione. Un triangolo che ha due lati congruenti si dice isoscele.

- In un triangolo isoscele gli angoli adiacenti alla base sono congruenti.
- In un triangolo isoscele la bisettrice dell'angolo al vertice è mediana e altezza.

#### Punti notevoli di un triangolo

Gli assi dei lati di un triangolo si incontrano in uno stesso punto detto **circocentro**. Le bisettrici degli angoli interni di un triangolo passano per uno stesso punto detto **incentro**. Le altezze di un triangolo si incontrano in uno stesso punto detto **ortocentro**. Le mediane di un triangolo si incontrano in uno stesso punto detto **baricentro**.



**Figura 2**. Il punto D è l'intersezione delle altezza, quindi è l'ortocentro. Il punto E è l'incontro delle bisettrici, quindi è l'incentro. Il punto I è l'intersezione delle mediane, quindi il baricentro.

#### Teoremi sul triangolo rettangolo

**Teorema di Pitagora**. In un triangolo rettangolo la somma dei quadrati costruiti sui cateti è equivalente al quadrato costruito sull'ipotenusa.

**1° teorema di Euclide**. In un triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo avente per lati l'ipotenusa e la proiezione di quel cateto sull'ipotenusa.

**2º teorema di Euclide**. In ogni triangolo rettangolo il quadrato costruito sull'altezza relativa all'ipotenusa è equivalente al rettangolo avente per lati le proiezioni dei cateti sull'ipotenusa.

**Teorema di Talete**. Un fascio di rette parallele tagliate da due trasversali determina su di esse due insiemi di segmenti direttamente proporzionali.



**Teorema della bisettrice dell'angolo interno**. La bisettrice di un angolo interno di un triangolo divide il lato opposto in parti proporzionali agli altri due lati.



**Teorema della bisettrice dell'angolo esterno**. La bisettrice di un angolo esterno di un triangolo, se non è parallela al lato opposto, incontra il prolungamento del lato opposto in un punto le cui distanze dagli estremi del lato stanno fra loro come i lati adiacenti.



**Teorema della parallela a un lato**. In un triangolo una qualsiasi parallela a un lato che interseca gli altri due lati determina su di essi segmenti in proporzione.



## Criteri di similitudine dei triangoli

**1° criterio**. Due triangoli sono simili se hanno due angoli ordinatamente congruenti, cioè disposti allo stesso modo rispetto all'angolo tra essi compreso.

**2º criterio**. Due triangoli sono simili se hanno due lati proporzionali e l'angolo tra essi compreso congruente.

3° criterio. Due triangoli sono simili se hanno i tre lati proporzionali.

## Proprietà dei triangoli simili

- In due triangoli simili le altezze, le mediane e le bisettrici che si corrispondono sono proporzionali ad una coppia di lati omologhi, il loro rapporto è uguale al rapporto di similitudine.
- In due triangoli simili i perimetri sono proporzionali a una coppia di lati omologhi, il loro rapporto è uguale al rapporto di similitudine.
- In due triangoli simili le aree sono proporzionali al quadrato di una coppia di lati omologhi, cioè il loro rapporto è uguale al quadrato del rapporto di similitudine.
- Due triangoli equilateri sono sempre simili.
- Due triangoli rettangoli, con un angolo acuto congruente, sono simili.
- Due triangoli isosceli, con gli angoli al vertice congruenti, sono simili.

# 4. Poligoni

# Proprietà degli angoli di un poligono

- La somma degli angoli interni di un poligono convesso di n lati è congruente a n-2 angoli piatti.
- La somma degli angoli esterni di un poligono è sempre congruente a due angoli piatti.



......www.matematicamente.it

#### Proprietà del parallelogramma

Definizione. Si dice parallelogramma un quadrilatero convesso che ha i lati opposti paralleli tra di loro.



Il parallelogramma ha

- Lati opposti congruenti: AB=DC; AD=BC
- Angoli opposti congruenti:  $\alpha = \gamma$ ;  $\beta = \delta$
- Angoli adiacenti allo stesso lato sono supplementari:  $\alpha+\delta=180^{\circ}$ ;  $\gamma+\beta=180^{\circ}$
- Le diagonali si incontrano nel loro punto medio AO=OC; DO=OB
- Il punto di incontro delle diagonali è il centro di simmetria

# Proprietà del rettangolo

*Definizione*. Si dice rettangolo un parallelogramma che ha tutti gli angoli congruenti. Il rettangolo ha le diagonali congruenti.

#### Proprietà del rombo

Definizione. Si chiama rombo il parallelogramma che ha tutti i lati congruenti Il rombo ha:

- le diagonali perpendicolari;
- le diagonali sono bisettrici degli angoli opposti.

#### Poligoni inscritti e circoscritti a una circonferenza

Un poligono si dice **inscritto** in una circonferenza se tutti i suoi vertici sono punti della circonferenza; la circonferenza si dice circoscritta al poligono; il raggio della circonferenza si dice anche raggio del poligono.

Un poligono si dice **circoscritto** a una circonferenza se tutti i suoi lati sono tangenti alla circonferenza; la circonferenza si dice inscritta nel poligono, il raggio della circonferenza si dice apotema del poligono.



Poligono inscritto



Poligono circoscritto

**Teorema**. Un poligono è inscrivibile in una circonferenza se gli assi dei suoi lati si incontrano tutti nello stesso punto.

**Teorema**. Un poligono è circoscrivibile ad una circonferenza se le bisettrici dei suoi angoli interni si incontrano tutte nello stesso punto.

......www.matematicamente.it .....

. omoting E. Burtotta, E. Eussard

**Teorema**. Un quadrilatero inscritto in una circonferenza ha gli angoli opposti supplementari; viceversa un quadrilatero con una coppia di angoli opposti supplementari è inscrivibile in una circonferenza.



**Teorema**. In un quadrilatero circoscritto a una circonferenza la somma di due lati opposti è congruente alla somma degli altri due lati; viceversa se in un quadrilatero la somma di due lati opposti è congruente alla somma degli altri due lati esso è circoscrivibile a una circonferenza.



**Teorema di Tolomeo**. In un quadrilatero inscritto in una circonferenza risulta che: il rettangolo che ha per dimensioni le diagonali del quadrilatero è equivalente alla somma dei rettangoli che hanno per lati i lati opposti del quadrilatero.



**Definizione**. Un poligono si dice **poligono regolare** se ha tutti i lati congruenti e tutti gli angoli congruenti.

**Teorema**. Ogni poligono regolare è sia inscrivibile sia circoscrivibile a una circonferenza e le due circonferenze hanno lo stesso centro.

# Similitudine tra poligoni

Due poligoni di uguale numero di lati sono simili se hanno i lati omologhi in proporzione e gli angoli ordinatamente congruenti.

# 5. Circonferenza e cerchio

# Definizioni

Si chiama **circonferenza** il luogo dei punti del piano che hanno distanza costante da un punto fisso detto centro.

Si chiama **cerchio** l'insieme dei punti di una circonferenza e dei suoi punti interni.

Si chiama corda un qualsiasi segmento i cui estremi sono punti della circonferenza.

Si chiama **segmento circolare** di base una corda AB ciascuna delle due parti in cui la corda divide il cerchio.

Si chiama **segmento circolare a due basi** la parte di cerchio delimitata da due corde.

Si chiama arco di circonferenza la parte di circonferenza delimitata da due suoi punti.

Si chiama **angolo al centro** un angolo che ha il vertice nel centro della circonferenza.

Si chiama **angolo alla circonferenza** un angolo che ha il vertice sulla circonferenza e i lati entrambi secanti o uno secante e l'altro tangente alla circonferenza.

Si chiama **settore circolare** una parte di cerchio delimitata da due raggi.

**Teorema della tangente**. Se da un punto esterno a una circonferenza si mandano le tangenti alla circonferenza stessa, i segmenti di tangente sono congruenti e la semiretta di orgine il punto esterno e passante per il centro è bisettrice dell'angolo formato dalle tangenti.



PT e PT' sono tangenti

PT=PT'

$$TPO = OPT'$$

$$OTP = OTP = 90^{\circ}$$

Teorema dell'angolo al centro. Ogni angolo alla circonferenza è la metà del corrispondente angolo al centro.



**Teorema delle corde**. Se due corde di una circonferenza si intersecano, i segmenti dell'una sono i medi e i segmenti dell'altra sono gli estremi di una proporzione.



DK:AK=BK:CK

Torroma della sacanti. Sa da un nunto esterno a una circonferenza si tracciono due secanti una

**Teorema delle secanti**. Se da un punto esterno a una circonferenza si tracciano due secanti, una secante e la sua parte esterna sono i medi, l'altra secante e la sua parte esterna sono gli estremi di una proporzione.



**Teorema della secante e della tangente**. Se da un punto esterno a una circonferenza si conducono una secante e una tangente alla circonferenza, il segmento di tangente è medio proporzionale fra l'intera secante e la sua parte esterna.



**Sezione aurea**. La parte aurea di un segmento AB è il segmento AD che è medio proporzionale tra l'intero segmento e la parte rimanente BD, quindi AB:AD=AD:DB.

A D B 
$$\overline{AD} = \frac{\sqrt{5} - 1}{2} \overline{AB} = 0,618 \overline{AB}$$

**Rapporto aureo**. Si chiama rapporto aureo il rapporto tra un segmento e la sua parte aurea, questo rapporto vale  $\varphi = \frac{AB}{AD} = \frac{1+\sqrt{5}}{2} \approx 1,618$ .

**Rettangolo aureo**. Si dice rettangolo aureo un rettangolo nel quale il rapporto tra la base e l'altezza è il rapporto aureo.