

- 5.1 概述
- 5.2 触发器的电路结构与动作特点

5.3 触发器的逻辑功能及其描述方法

5.1 概述

触发器: 能够存储1位二值信号的基本单元电路统称为触发器。

具有记忆功能的基本逻辑单元

基本特性

第一,具有两个能自行保持的稳定状态,用来表示逻辑状态的**0**和**1**,或二进制数的**0**和**1**。

第二,根据不同的输入信号可以置成1或0状态。

一个触发器可存储1位二进制数码

触发器的作用

触发器和门电路是构成数字电路的基本单元。

触发器有记忆功能,由它构成的电路在某时刻的输 出不仅取决于该时刻的输入,还与电路原来状态有关。

门电路无记忆功能,由它构成的电路在某时刻的输 出完全取决于该时刻的输入,与电路原来状态无关。

触发器的类型

根据电路结构不同分为:基本RS触发器、同步触发器、主从触发器、维持阻塞触发器、CMOS边沿触发器

根据逻辑功能不同分为: RS触发器、JK触发器、T触发器、D 触发器等几种类型。

根据存储数据原理不同分为: 动态触发器和静态触发器

5.2.1 基本RS触发器的电路结构与动作特点

电路结构与工作原理

输出随着输入的改变而改变

用或非门组成的基本RS触发器 图4.2.1 (a) 电路结构

由于G1和G2在电路中作用完全相同,习惯上将电路画 成对称形式

图5.2.1 用或非门组成的基本RS触发器

(b) 电路结构

(c) 图形符号

Q=1, $\overline{Q}=0$ 时,称为触发器的 1 状态,记为 Q=1; Q=0, $\overline{Q}=1$ 时,称为触发器的 0 状态,记为 Q=0。

状态变量

初态(Qⁿ): 触发器在接收信号之前状态

次态(Qⁿ⁺¹): 触发器在接收信号之后所建立的新的稳定状态

触发器的特性表(或功能表):含有状态变量的真值表

触发器新的状态不仅与输入状态有关,而且与触发器原来的状态有关。

表5.2.1 用或非门组成的基本 PS触发器的特性表

	RS肥及	益的特性农	
$S_{\scriptscriptstyle D}$	$R_{\scriptscriptstyle D}$	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	
1	0	0	
1	0	1	
0	1	0	
0	1	1	
1	1	0	
1	1	1	9

功能: 触发器保持原状态

表5.2.1 用或非门组成的基本 PS触发器的熔燃素

	KS肥及	益的特性农	
$S_{\scriptscriptstyle m D}$	R_{D}	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	
1	0	1	
0	1	0	
0	1	1	
1	1	0	
1	1	1	10

功能: 触发器置1

表5.2.1 用或非门组成的基本

	RS触发	器的特性表	
$S_{\scriptscriptstyle \mathrm{D}}$	R_{D}	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	
0	1	0	
0	1	1	
1	1	0	
1	1	1	11

演示

功能: 触发器置1

表5.2.1 用或非门组成的基本 PS触发器的特性表

	RS触发	器的特性表	
S_{D}	R_{D}	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	
0	1	1	
1	1	0	
1	1	1	12

功能: 触发器置0

表5.2.1 用或非门组成的基本 DCM 华 职 始 杜 本

	RS触发	器的特性表	
S_{D}	$R_{\scriptscriptstyle D}$	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	
1	1	0	
1	1	1	13

功能: 触发器置0

表5.2.1 用或非门组成的基本 DC栅尖岛的桉州主

S_{D}	$R_{\rm D}$	器的特性表 Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	
1	1	1 14	

*S。和R。的1状态同时消失 后状态不定

表5.2.1 用或非门组成的基本 DC栅尖岛的棕州丰

S_{D}	R_{D}	器的特性表 Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	0*
1	1	1	15

演示	
R_{D} G_{1} $\geqslant 1$)*
	- ₩
S_{D} G_{2} $\geqslant 1$	0 − <i>Q</i>
在正常工作时输	
入信号应遵守	
$S_D R_D = 0$ 的约束	
条件	

表5.2.1 用或非门组成的基本 RS触发器的特性表

$S_{\scriptscriptstyle m D}$	R_{D}	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	0*
1	1	1	0*

Q=1, Q=0 时,称为触发器的 1 状态,记为 Q=1; Q=0, $\overline{Q}=1$ 时,称为触发器的0状态,记为Q=0。

输	入	输	出	功能说明
$\overline{R}_{\mathrm{D}}$	$\overline{S_{\mathbf{D}}}$	Q^{n+1}	$\overline{Q^{n+1}}$	27 110 60 71
0	0			
0	1	0	1	触发器置 0
1	0			
1	1			

输	入	输出		功能说明
$\overline{R}_{\mathrm{D}}$	$\overline{S_{\mathbf{D}}}$	Q^{n+1}	$\overline{\mathbf{Q}}^{\mathbf{n+1}}$	27 DB 27
0	0			
0	1	0	1	触发器置 0
1	0	1	0	触发器置1
1	1			

输	入	输出		功能说明
$\overline{R}_{\mathrm{D}}$	$\overline{S_{\mathrm{D}}}$	$oxed{Q^{n+1} ar{Q}^{n+1}}$		-24 HG PG -24
0	0			
0	1	0	1	触发器置 0
1	0	1	0	触发器置1
1	1	不	变	触发器保持原状态不变

输出既非0状态, 也非1状态。当 $\overline{R_D}$ 和 $\overline{S_D}$ 同时由0变1时, 输出状态可能为0,也 可能为1,即输出状态 不定。因此,这种情况 禁用。

输	λ	输	出	功能说明	
$\overline{R}_{\mathrm{D}}$	$\overline{S_{\mathbf{D}}}$	Q^{n+1}	\bar{Q}^{n+1}	->2 UC 90 ->1	
0	0	不	定	输出状态不定(禁用)	
0	1	0	1	触发器置 0	
1	0	1	0	触发器置1	
1	1	不	变	触发器保持原状态不变	

与非门组成的基本 RS 触发器特性表

$\overline{R}_{ m D}$	$\overline{S}_{\mathbf{D}}$	Q^n	Q^{n+1}	说明
0	0	0	×	触发器状态不定
0	0	1	X	
0	1	0	0	触发器置 ()
0	1	1	0	
1	0	0	1	触发器置1
1	0	1	1	
1	1	0	0	触发器保持原状态不变
1	1	1	1	

基本RS触发器特 性表的简化表示

$\overline{R}_{\mathrm{D}}$	$\overline{S}_{\mathbf{D}}$	Q^{n+1}
0	0	不定
0	1	0
1	0	1
1	1	Q^n

置0端 R_D 和置1端 S_D 低电平有效。

禁用
$$\overline{R_{\rm D}} = \overline{S_{\rm D}} = 0$$
。

二、动作特点

在基本RS触发器中,输入信号直接加在输出门上,所以输入信号在全部作用时间里,都能直接改变输出端 Q和Q 的状态。

即 S_D 或 R_D 为1的 全部时间

$$S_D(S_D)$$
直接置位端

$$R_D(R_D)$$
直接复位端

基本RS触发器叫做直接置位、复位触发器

己知电路图和输入波形,画出输出端波形 【例5.2.1】

解:

(b)

(a)

24

图5.2.3 例5.2.1的电路和电压波形 (a) 电路结构 (b)电压波形图

5.2.2 同步RS触发器的电路结构与动作特点

在数字系统中,为协调各部分的动作,常常要求某些触发器于同一时刻动作。为此,必须引入同步信号,使这些触发器只有在同步信号到达时才按输入信号改变状态。因此,需要增加一个时钟控制端 *CP*。

CP 即 Clock Pulse,它是一串周期和脉宽一定的矩形脉冲。

具有时钟脉冲控制的触发器称为时钟触发器,又称钟控触发器。

同步触发器是其中最简单的一种,而基本 RS 触发器称异步触发器。

电路结构与工作原理

(a)

(b)

图5.2.4 同步RS触发器 (a) 电路结构 (b) 图形符号

- ★ CP = 0 时, G_3 、 G_4 被封锁,输入信号 R、S不起作用基本 RS触发器的输入均为1,触发器状态保持不变。
- CP = 1 时, G_3 、 G_4 解除封锁,将输入信号R 和 S 取非后送至基 本RS触发器的输入端。

表5.2.3 同步RS触发器的特性表								
CP	S	R	Q ⁿ	Q^{n+1}				
0	X	X	0	0				
0	X	×	1	1				
1	0	0	0	0				
1	0	0	1	1				
1	1	0	0	1				
1	1	0	1	1				
1	0	1	0	0				
1	0	1	1	0				
1	1	1	0	1*				
1	1	1	1	1*				

当CP=0时,输入信号S、R不 会影响输出端的状态,触发器 保持原来状态不变。

当CP=1时触发器输出端的状态才受输入信号的控制,而且在CP=1时特性表和基本RS触发器的特性表相同。

输入信号同样要遵守SR=0的约束条件

*CP回到低电平后状态不定

有时还需要在CP信号到来之 在使用同步RS触发器的过程中, 前将触发器预先置成指定的状态,为此在同步RS触发器电路上 往往还设置有专门的异步置位输入端和异步复位输入端。

图5.2.5 带异步置位、复位端的基本同步RS触发器

(a) 电路结构

(b) 图形符号

触发器在时钟信号控制下正常工作时应使 Sp和R b 处于高电平

二、动作特点

在CP=1的全部时间里S和R的变化都将引起触发器输出端

图5.2.6 例5.2.2的电压波形图

图5.2.7 D型锁存器 (a) 电路结构 (b) 7475采用的电路 当CP=1时,输出端的状态随输入端的状态改变而改变,当CP=0时输出端状态保持不变。

图5.2.7(b)是4位D型锁存器7475中每个触发器的逻辑图,它的逻辑功能和图5.2.7(a)电路完全相同。