What is claimed is:

1. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \end{bmatrix} X$$

$$R''$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R-or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; - $CONR_2'''$; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 "; - NH_2 "; - NH_2 "; -OH; -OR"; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

2. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \end{bmatrix} X$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

H; A"; or B";

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R-or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; - $CONR_2''''$; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 "; - NR_2 "; -OH; -OR"; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, and A' each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

A" independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; or halo;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR''', -O-, or -S-.

3. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & X' \\ B''_m & A''_n \\ R'' & A''_n \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

wherein Z is

or

n, m, q and r independently represent integers from zero to 4 provided that $n+m \le 4$ and $q+r \le 4$; p and s independently represent integers from zero to 5 provided that $p+s \le 5$; a, b and c represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R independently represents a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R'''; -NH₂; -NHR'''; -NR₂'''; -OH; -OR'''; -CONR₂''''; halogen atom; optionally substituted linear or branched C₁-C₂₀ alkyl; optionally substituted linear or branched C₂-C₂₀ alkenyl;

R' independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 '''; - NR_2 '''; -OR'''; - $CONR_2$ '''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

4. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A^{"}_{n} \\ B^{"}_{m} \end{bmatrix} X$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R-or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 "; - NH_2 "; - NH_2 "; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

5. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & X' \\ B''_m & A''_n \\ R'' & A''_n \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein Z is

H; A"; or B";

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R-or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 "; - NR_2 "; -OH; -OR"; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, and A' each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

A" independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; or halo;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

6. A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & A''_n$$

wherein Z is

or

$$A_p$$
 C
 R'
 B_s

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a, b and c represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 '''; - NR_2 '''; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R' independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 '''; - NR_2 '''; -OR'''; - $CONR_2$ '''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR''', -O-, or -S-.

- 7. The compound of claim 1 that is 3-(3,5-dimethoxyphenyl)-2-{4-[4-(2,4-dioxothiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylic acid.
- 8. The compound of claim 1 that is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylamide.
- 9. The compound of claim 1 that is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxyl-phenyl}-N,N-dimethyl-acrylamide.

10. A pharmaceutical composition comprising:

a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & X' \\ B''_m & A''_n \end{bmatrix}$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S-configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR''';

-CONR₂"; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or – $(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acylamino; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-; and

b) a physiologically acceptable carrier.

11. A pharmaceutical composition comprising:

a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & A''_n$$

wherein Z is

H; A"; or B";

n, m, q and r independently represent integers from zero to 4 provided that n + $m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S-configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; - $CONR_2''''$; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R'' independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, and A' each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

A" independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; or halo;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-; and

b) a physiologically acceptable carrier.

12. A pharmaceutical composition comprising:

a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & X' \\ B''_m & A''_n \\ & & & \\ & & \\ & &$$

wherein Z is

or

n, m, q and r independently represent integers from zero to 4 provided that n + $m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a, b and c represent double bonds which may be

present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 '''; - NH_2 ''''; - NH_2 '''; - NH_2 ''''

R' independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OR'''; - $CONR_2'''$; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

R'''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; optionally substituted C_1 - C_{20} alkoxy; optionally substituted C_2 - C_{20} alkenyl; optionally substituted C_6 - C_{10} aryl; or NR_2 ''' represents a cyclic moiety;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-; and

- b) a physiologically acceptable carrier.
- 13. A pharmaceutical composition comprising:
 - a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \end{bmatrix} X$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that n + $m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5

provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S-configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R'' independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acylamino; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-; and

b) a physiologically acceptable carrier.

14. A pharmaceutical composition comprising:

a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A^{"}_{n} \\ B^{"}_{m} \end{bmatrix} X$$

$$R^{"}$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

H; A"; or B";

n, m, q and r independently represent integers from zero to 4 provided that n + $m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S-configuration;

R and R' each independently represent a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R'''; -NH₂; -NHR'''; -NR₂'''; -OH; -OR'''; halogen atom; optionally substituted linear or branched C₁-C₂₀ alkyl; optionally substituted linear or branched C₂-C₂₀ alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, and A' each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

A" independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; or halo;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-; and

- b) a physiologically acceptable carrier.
- 15. A pharmaceutical composition comprising:
 - a) a compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \\ R'' \end{bmatrix} X$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

or A_p C R'

n, m, q and r independently represent integers from zero to 4 provided that n + $m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a, b and c represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z

configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R' independently represents a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R'''; -NH₂; -NHR'''; -NR₂'''; -OR'''; -CONR₂''''; halogen atom; optionally substituted linear or branched C₁-C₂₀ alkyl; optionally substituted linear or branched C₂-C₂₀ alkenyl;

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; or $-(CH_2)_x$ -Ar, where x represents an integer from 1 to 6 and Ar represents aryl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylcarboxylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; aralkanoyl; nitro; optionally substituted, linear or branched C_1 - C_{20} alkyl; or optionally substituted, linear or branched C_2 - C_{20} alkenyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR", -O-, or -S-; and

- b) a physiologically acceptable carrier.
- 16. The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxyphenyl)-2-{4-[4-(2,4-dioxothiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylic acid.
- 17. The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylamide.
- 18. The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxy]-phenyl}-N,N-dimethyl-acrylamide.