

ATS-032 CON

6 a flywheel body secured to said elastic plate and
7 having an engageable surface [which is engageable] for
8 engaging with a clutch disc; and

9 a reinforcing member for reinforcing said elastic plate
10 at a portion of said elastic plate which is secured to said
11 crankshaft;

12 said elastic plate having an axial rigidity in the
13 range of 600 kg/mm to 2200 kg/mm so as to ensure
14 transmission of engine torque to said driven unit, while
15 decreasing noise produced by a bending vibration of said
16 crankshaft;

17 wherein each of said elastic plate, said flywheel body
18 and said reinforcing member comprises a first portion, said
19 first portion of said flywheel body being placed axially
20 between said first portions of said elastic plate and said
21 reinforcing member, and said first portions of said elastic
plate, said flywheel body and said reinforcing member
22 defining clearances for allowing said first portion of said
23 flywheel body [being] to move axially [movable] between said
24 first portions of said elastic plate and said reinforcing
25 member.

ATS-032 CON

1 14. (Twice Amended) A flywheel for a power
2 transmission system for transmitting engine torque to a
3 driven unit, comprising:
4 an elastic plate secured to a crankshaft to rotate
5 therewith; [and]
6 a flywheel body secured to said elastic plate and
7 having an engageable surface [which is engageable] for
8 engaging with a clutch disc; and
9 a reinforcing member for reinforcing said elastic plate
10 at a portion of said elastic plate which is secured to said
11 crankshaft; and
12 said engageable surface having an axial run-out which
13 is equal to or less than 0.1 mm [.].;
14 wherein each of said elastic plate, said flywheel body
15 and said reinforcing member comprises a first portion, said
16 first portion of said flywheel body being placed axially
17 between said first portions of said elastic plate and said
18 reinforcing member, and said first portions of said elastic
19 plate, said flywheel body and said reinforcing member
20 defining clearances for allowing said first portion of said
21 flywheel body to move axially between said first portions of
22 said elastic plate and said reinforcing member.

ATS-032 CON

Please amend claims 20 to 27 (previously misnumbered as claims 19 to 26) as follows:

1

4

2

20. [19.] (Amended) A flywheel according to Claim 11,

3

wherein said reinforcing member (4) and said elastic plate

4

(2) are fastened to said crankshaft (1) by a fastening means

5

(3), and said elastic plate is clamped between said

6

crankshaft and said reinforcing member.

1

5

2

21. [20.] (Amended) A flywheel according to Claim 20

3

[19], wherein said elastic plate is circular and comprises

4

an outer peripheral portion (2b) surrounding said first

5

portion of said elastic plate, so that said first portion of

6

said elastic plate is an inner portion of said elastic

7

plate, said flywheel body comprises an outer peripheral

8

portion (5a) which surrounds said first portion of said

9

flywheel body, so that said first portion of said flywheel

10

body is an inner portion of said flywheel body, said outer

11

peripheral portions of said elastic plate and said flywheel

12

body are fastened together by a second fastening means (6),

13

said inner portion of said flywheel body comprises an

14

inwardly facing inside cylindrical surface defining a

15

central circular hole (5b), said reinforcing member

comprises a cylindrical portion (4a) which is received in

ATS-032 CON

16 said circular hole (5b) of said flywheel body, and comprises
17 an outwardly facing outside cylindrical surface surrounded
18 by said inwardly facing cylindrical surface of said flywheel
19 body, said first portion of said reinforcing member is in
20 the form of an outward flange (4b), said first portion of
21 said flywheel body is slidably mounted on said cylindrical
22 portion of said reinforcing member so that said first
23 portion of said flywheel body is axially slid able between
24 said inner portion of said elastic plate and said outward
25 flange of said reinforcing member.

1 6
2 22. [21.] (Amended) A flywheel according to Claim 20⁴
3 [19], wherein said inner portion of said flywheel body
4 comprises a first surface (5f) which is substantially
5 parallel to said engageable surface (5g) and which faces
6 toward said elastic plate, and a second surface (5d) which
7 is substantially parallel to said engageable surface and
8 which faces toward said outward flange of said reinforcing
9 member, said inner portion of said elastic plate comprising
10 an abutting surface confronting said first surface of said
11 flywheel body and limiting an axial movement of said inner
12 portion of said elastic plate by abutting against said first
13 surface of said flywheel body, said outward flange of said
 reinforcing member comprises an abutting surface confronting

ATS-032 CON

14 said second surface of said flywheel body and limiting the
15 axial movement of said inner portion of said flywheel body
16 by abutting against said second surface of said flywheel
17 body, an axial distance between said first and second
18 surfaces of said flywheel body is smaller than an axial
19 distance between said abutting surfaces of said elastic
20 member and said reinforcing member.

1 ⁷
2 ~~23.~~ [22.] (Amended) A flywheel according to Claim ~~22~~⁶
3 [21], wherein said second surface (5d) of said inner portion
4 of said flywheel body is located axially between said first
5 surface (5f) and said engageable surface (5g) of said
flywheel body.

1 ⁹
2 ~~24.~~ [23.] (Amended) A flywheel assembly comprising:
3 a driving shaft (1) for transmitting torque;
4 a circular elastic member (2) comprising an outer
5 portion and an inner portion and extending radially inwardly
6 from said outer portion to said inner portion, said inner
7 portion of said elastic member being fastened to a shaft end
of said driving shaft;
8 an annular flywheel member (5) comprising an outer
9 portion and an inner portion and extending radially inwardly
10 from said outer portion to said inner portion of said

ATS-032 CON

11 flywheel member, said outer portion of said flywheel member
12 being fastened to said outer portion of said elastic member,
13 said inner portion of said flywheel member comprising a
14 central circular hole; and

15 a reinforcing member (4) comprising a cylindrical
16 portion (4a) axially extending from a first end to a second
17 end, an inner portion extending radially inwardly from said
18 first end of said cylindrical portion, and an outward flange
19 (4b) extending radially outwardly from said second end of
20 said cylindrical portion, said inner portion of said
21 reinforcing member being fastened to said shaft end of said
22 driving shaft, said cylindrical portion of said reinforcing
23 member being [loosely] fit in said circular hole of said
24 flywheel member with a clearance to form a loose fit;

25 wherein said inner portion of said elastic member is
26 fixedly clamped between said shaft end of said driving shaft
27 and said inner portion of said reinforcing member, said
28 inner portion of said flywheel member is loosely fit over
29 said cylindrical portion of said reinforcing member and
30 located axially between said inner portion of said elastic
31 member and said outward flange of said reinforcing member,
32 said outward flange is axially spaced from said inner
33 portion of said elastic member at an axial distance which
34 allows axial movement of said inner portion of said flywheel

ATS-032 CON

35 body between said inner portion of said elastic member and
36 said outward flange of said reinforcing member.

10

1 25. [24.] (Amended) A flywheel assembly according to
2 Claim 24 [23], wherein said elastic member has an axial
3 rigidity which is in the range of 600 kg/mm to 2200 kg/mm.

11

1 26. [25.] (Amended) A flywheel assembly according to
2 Claim 24 [23], wherein a wall thickness of said inner
3 portion of said reinforcing member is greater than a wall
4 thickness of each of said outward flanges of said
5 reinforcing member and said inner portion of said elastic
6 member, said wall thickness of each of said inner portion
7 and said outward flange of said reinforcing member and said
8 inner portion of said elastic member being a dimension
9 measured in an axial direction parallel to an axis of said
10 driving shaft.

12

1 27. [26.] (Amended) A flywheel assembly according to
2 Claim 24 [23], further comprising a first fastening means
3 for fastening said outer portions of said elastic member and
4 said flywheel member together, and a second fastening means
5 for fastening said inner portions of said elastic member and
6 said reinforcing member to said shaft end of said driving