Probabilidades e Aplicações (LCC, 3º ano)

17.12.2021 às 12:00

1. (10 pontos) Seja (X,Y) um par aleatório com a seguinte f.m.p. conjunta

$X \setminus Y$	0	1	2
0	0	$\frac{1}{8}$	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$
2	$\frac{1}{8}$	$\frac{1}{8}$	0

(a) Represente as f.m.p. marginais de X e de Y e identifique-as pelo nome usual.

(b) X e Y são independentes? Justifique.

Não são independentes. P(X=0,Y=0)=0 e $P(X=0)P(Y=0)=\frac{1}{4}\frac{1}{4}\neq 0$, donde a fórmula $p_{ij}=p_{i\bullet}p_{\bullet j}$ falha pelo menos num caso, donde X e Y não são independentes.

(c) Calcule E(XY) (mostre os cálculos)

$$E(XY) = \sum_{i,j} x_i y_j p_{ij} = 1 \times 1 \times \frac{2}{8} + 1 \times 2 \times \frac{1}{8} + 2 \times 1 \times \frac{1}{8} = \frac{6}{8} = \frac{3}{4}$$

(d) Calcule Cov(X, Y) (mostre os cálculos)

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{3}{4} - 1 = -\frac{1}{4}$$
, porque $E(X) = E(Y) = 2 \times \frac{1}{2} = 1$, uma vez que X e Y têm distribuição $bi(2, \frac{1}{2})$ e atendendo a que o valor médio de uma v.a. $bi(n,p)$ é np .

(e) No contexto de 3 lançamentos de uma moeda equilibrada, dê exemplo de um par aleatório (X,Y) que tenha esta lei de probabilidade conjunta e explique a razão do sinal da correlação.

X = "número de caras nos dois primeiros lançamentos"

Y = "número de coroas nos dois últimos lançamentos"

De facto, temos o seguinte esquema para os 3 lançamentos, que levam à f.m.p. dada.

$$egin{array}{cccc} \omega & X & Y \\ {
m CCC} & 2 & 0 \\ {
m CCE} & 2 & 1 \\ {
m CEC} & 1 & 1 \\ {
m CEE} & 1 & 2 \\ {
m ECC} & 1 & 0 \\ {
m ECE} & 1 & 1 \\ {
m EEC} & 0 & 1 \\ {
m EEE} & 0 & 2 \\ \hline \end{array}$$

- 2. (10 pontos) Suponha que o peso (Kg) de um homem (adulto) escolhido ao acaso numa grande cidade é uma v.a. $Y \cap N(\mu, \sigma), \mu = 75 \ Kg, \sigma = 10 \ Kg$. Considere uuma amostra aleatória de 9 homens dessa cidade.
 - (a) Calcule o valor médio e o desvio padrão do peso total dos 9 homens (justifique)

A soma dos pesos é a v.a. $S = Y_1 + \ldots + Y_9$, sendo Y_1, \ldots, Y_9 v.a. i.i.d. com $Y \frown N(75, 10)$.

O valor médio da soma de v.a. é a soma dos seus valores médios, donde $E(S) = 9 \times 75 = 765 \, Kg$.

A variância da soma de v.a. independentes é a soma das variâncias das mesmas, logo var $(S) = 9 \times 10^2$, donde decorre o desvio padrão da soma, $\sigma_S = \sqrt{\text{var}(S)} = 30$

- (b) Justifique a afirmação "a distribuição do peso total dos 9 homens é normal"
 - A soma de v.a. independentes $N(\mu_i, \sigma_i)$, i = 1, ..., n, tem distribuição normal com valor médio $\sum_i \mu_i$ e variância $\sum_i \sigma_i^2$. Como a amostra é aleatória (recolhida ao acaso, com reposição), os pesos são v.a. independentes, donde S tem distribuição normal (com valor médio e variância obtidos em (a)).
- (c) Calcule a probabilidade de nessa amostra haver exactamente um homem leve e um pesado ("leve" significa que tem peso inferior a 60 Kg e "pesado" que tem peso acima de 95 Kg), recorrendo a um par aleatório discreto (explique o raciocínio e identifique a lei de probabilidade desse par discreto; mostre a fórmula numérica para o cálculo da probabilidade ou o código R)

Seja p_1 a probabilidade de um homem escolhido ao acaso na população ser leve, e p_2 a de ser pesado. Então p_1 e p_2 são dados por

```
p1 <- pnorm(60,75,10)
p2 <- pnorm(95,75,10,lower=F).</pre>
```

Seja X_1 o número de homens leves na amostra e X_2 o número de pesados. Então o par aleatório (X_1, X_2) tem distribuição multinomial, $M(9; p_1, p_2)$. Logo

$$P(X_1 = 1, X_2 = 1) = \frac{9!}{1! \ 1! \ 7!} \ p_1 \ p_2 \ (1 - p_1 - p_2)^7,$$

com resultado 0.05674, que pode ser calculado com o código

```
dmultinom(c(1,1,7), prob = c(p1,p2,1-p1-p2)) pelo que a probabilidade pedida é 0.05674.
```

- (d) (i) Qual o valor do peso, c, abaixo do qual estão 1% dos pesos dos homens da cidade? (ii) Que nome se dá usualmente a c? (iii) Qual a distribuição aproximada do "número de homens com peso abaixo de c", numa amostra aleatória de 200 homens dessa cidade? (justifique)
 - (i) Esse valor c é dado por qnorm(0.01,75,10), com resultado 51.73652 Kg.
 - (ii) Os nomes usuais são: quantil de probabilidade 0.01, quantil-0.01, ou 1º percentil.
 - (iii) Seja X a v.a. que representa o nº de homens com peso abaixo de c numa amostra aleatória de n=200 homens da cidade. Então $X \frown bi(200,0.01)$. A aproximação da binomial à Poisson estabelece que se $X \frown bi(n,p)$, então P(X=k), quando $n \to \infty$ e $p \to 0$, sendo $np = \lambda$ constante, converge para P(W=k), sendo $W \frown Poisson(\lambda)$. Como n=200 é grande e p=0.01 é próximo de 0, conclui-se que a distribuição de X é aproximada pela lei Poisson(np), ou seja, Poisson(2).