TD 5 de processus stochastiques et mouvement brownien

Exercice 1 — Processus de Poisson

Soient W_1, W_2, \ldots , des variables i.i.d. de loi exponentiel de paramètre λ , définissons $T_0 = 0, \ T_1 = W_1$ et $T_n = T_{n-1} + W_n$, pour tout $t \ge 0$ soit

$$N_t = \max\{n, T_n < t\}.$$

- 1. Décrire l'espace des trajectoires de $(N_t)_{t\geq 0}$.
- 2. Montrer que N_t est Markov et stationnaire.
- 3. Calculer la densité de T_n , puis la densité de N_t .
- 4. Montrer que N_t est à incréments indépendants.
- 5. Calculer le noyau de transition de N_t .

Exercice 2 — Premier temps de passage

Soit $B_t, t \geq 0$ un mouvement brownien standard, posons, pour $a \geq 0$

$$T_a = \inf\{t, B_t = a\}.$$

- 1. Montrer que le processus $(T_a)_{a\geq 0}$ est Markov.
- 2. Montrer que $T_a = \frac{a^2}{B_1^2}$ en loi, en déduire le noyau de transition de $(T_a)_{a\geq 0}$.

Exercice 3 — Markov mais pas fortement Markov

Soit B un mouvement brownien unidimensionnel, calculer le noyau de transition de

$$X_t = \begin{cases} B_t & \text{si } B_0 \neq 0\\ 0 & \text{si } B_0 = 0. \end{cases}$$

Montrer que X_t est Markov mais il ne vérifie pas la propriété de Markov forte.

Exercice 4 — Processus de Cauchy

Soit $B_t = (B_t^{(1)}, B_t^{(2)})$ un mouvement brownien en dimension deux, on note

$$\tau_a = \inf\{t \ge 0, \ B_t^{(1)} = a\}.$$

- 1. Pour $t \ge 0$, calculer $\mathbb{P}(\tau_a < t)$, en déduire la densité de τ_a .
- 2. Soit $X_a = B_{\tau_a}^{(2)}$, calculer la loi de X_a .

3. Montrer que X_a est un processus de Markov et que son noyau de transition est

$$p(a, x, dy) = \frac{a}{\pi(a^2 + (x - y)^2)} dy.$$

Exercice 5 — Processus d'Ornstein-Uhlenbeck

Soit (B_t) un mouvement brownien standard, montrer que

$$X_t = e^{-t} B_{e^{2t}}$$

est un processus stationnaire et Markov, calculer son noyau de transition, montrer que $(X_t)_{t\geq 0}$ et $(X_{-t})_{t\geq 0}$ ont la même loi.

Exercice 6 — Théorème M-B de Levy

Soit B un mouvement brownien, soit $M_t = \sup_{0 \le s \le t} B_s$, soit $x \ge 0$,

- 1. Montrer que, $x \vee M_t B_t$ a la même loi que $|x + B_t|$.
- 2. Montrer que $X = (M_t B_t)_{t>0}$ est Markov.
- 3. Montrer que X est un mouvement brownien réfléchi.