

RESEARCH INTEREST

- Optimization: Federated Learning, Distributed Optimization, SGD Analysis
- . Machine Learning and Deep Learning: Efficient LLM, Machine Learning System, Deep Learning Theory

EDUCATION

Peking University

Beijing, China

B.A. in Mathematics, School of Mathematical Sciences

Sep. 2022-Jul. 2026 (Expected)

- Mathematics Courses: Mathematical Analysis, Advanced Algebra, Complex Analysis, Probability Theory, Mathematical Statistics, Stochastic Processes, Stochastic Analysis, Basic Numerical Method, Basic Optimization Method.
- Computer Science Courses: Basic Artificial Intelligence and Deep Learning, Parallel and Distributed Computing, Introduction to Computer Vision, Introduction to Multi-model (auditor).
- Honors and Awards: Applied Mathematics Elite Program (The program accepted only 15 people this year)

Research Experience

Convergence and Speedup Analysis of Distributed Optimization Algorithms

Peking University

Nov. 2023 - Present

o **Advisor**: Kun Yuan

 $Undergraduate\ Research\ Assistant$

- Project 1: Analysis of Push-Pull Algorithm
 - * Push-Pull Algorithm Provably Achieves Linear Speedup Over Arbitrary Network Topologies Liyuan Liang*, <u>Gan Luo</u>*, Kun Yuan (*Equal contribution) [coming soon to Arxiv]
 - * Currently finalizing this paper for submission to SIOPT.
 - * Conducted research on the Push-Pull Algorithm, focusing on convergence and linear speedup properties in non-convex and stochastic settings on arbitrary topology.
 - * First to prove convergence and linear speedup properties of the Push-Pull Algorithm under non-convex and stochastic settings on arbitrary topology.
 - * Validated the proposed theoretical results by conducting distributed optimization numerical experiments on the MNIST and CIFAR10 datasets.
- o Project 2: Analysis on Decentralized Optimization over Row-stochastic Networks
 - * Achieving Linear Speedup and Optimal Complexity for Decentralized Optimization over Row-stochastic Networks

Liyuan Liang*, Xinyi Chen*, <u>Gan Luo</u>*, Kun Yuan (*Equal contribution) [Arxiv]

- * Acceped to ICML2025, Spotlight
- * Introduced effective metrics to capture the influence of row-stochastic mixing matrices
- * Established the first convergence lower bound for decentralized learning over row-stochastic networks
- * Incorporated a multi-step gossip (MG) protocol, to attain the lower bound, achieving optimal complexity.
- * Proposed a novel analysis framework demonstrating that PULL-DIAG-GT achieves linear speedup, which is the first such result for row-stochastic decentralized optimization.
- * Conducted numerical experiments to validate theoretical results.

Online Scheduling on LLM Inference

Massachusetts Institute of Technology

Oct. 2024 - Present

Undergraduate Research Assistant

o Advisor: David Simchi-Levi

- o Project 1: Online Batching Algorithm on LLM Inference
 - * Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints $(\alpha-\beta)$ Ruicheng Ao*, <u>Gan Luo</u>*, David Simchi-Levi, Xinshang Wang, available on [SSRN] and [Arxiv]
 - * This paper is submitted to Operations Research.
 - * Formulated the LLM inference as a multi-stage online scheduling task with stochastic queueable requests.
 - * Proposed a novel online batching algorithm for LLM inference.
 - * Proved that the algorithm achieves near-optimal throughput while controlling latency and Time to First Token (TTFT).
 - * Conducted numerical experiments on synthetic and real-world datasets with Llama-7B on A100 GPU to validate theoretical results.