

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 2

Название: <u>Исследование дешифраторов</u> Дисциплина: <u>Архитектура ЭВМ</u>

Студент	ИУ7-45Б		А.А. Шиленков	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподавател				
Ь				
		(Подпись, дата)	(И.О. Фамилия)	

Москва, 2020

МГТУ им. Н.Э. Баумана

Цель работы — изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов. **Исследование линейного двухвходового дешифратора с**

 VCC
 5V
 U1
 X1

 S4
 U2
 V2

 AND3
 5X2
 V3

 NOT
 U4
 5X4

 NOT
 U4
 5X4

 NOT
 AND3
 5 X4

 NOT
 AND3
 5 X4

E	A	В	F_{0}	F_{1}	F_2	F_3
0	A	A	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Линейный трехвходовый дешифратор

E	A	В	С	F_0	F_1	F_2	F_3	F_4	$F_{\scriptscriptstyle 5}$	F_6	F_7
0	A	A	\forall	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Исследование дешифраторов ИС К155ИД4 (74LS155),

Исследовать работоспособность дешифраторов ИС 533ИД7

Контрольные вопросы

1. Что называется дешифратором?

Дешифратором называется комбинационныйузел с n входами и N выходами, преобразующий каждый набор двоичных входных сигналов в активный сигнал на выходе, соответствующий этому набору.

- 2.Какой дешифратор называется полным (неполным)? Дешифратор, имеющий 2_пвыходов, называется полным, при меньшем числе выходов-неполным.
- 3.Определите закон функционирования дешифратора аналитически и таблично. (см. выше)
- 4.Поясните основные способы построения дешифраторов. По способу построения дешифраторы разделяют на линейные и каскадные. Разновидностями последних являются пирамидальные иступенчатые дешифраторы.
- Линейный дешифратор строится в соответствии с системой функцией (1) и представляет собой 2-конъюнкторов или логических элементов (ЛЭ) ИЛИ-НЕ с n-входами каждый при отсутствии стробирования и с (n+1) входами -при его наличии.

Пирамидальный дешифратор.Строится на основе последовательной (каскадной) реализации выходных функций.

Пирамидальные дешифраторы независимо от числа их входов строятся на основе только двухвходовых конъюнкторов.

5. Что называется гонками и как устраняются ложные сигналы, вызванные гонками?

Вследствие переходных процессов и временных задержек сигналов в цепях логических элементов могут возникнуть так называемые гонки (состязания), приводящие к появлению ложных сигналов на выходах схемы. Основным средством, позволяющим исключить гонки, является стробирование (выделение из информационного сигнала той части, которая свободна от искажений, вызываемых гонками).

- 6.Каковы способы наращивания дешифраторов по количеству входов и выходов и как они реализуются схемотехнически? Пусть для построениясложного дешифратора DCn-Nиспользуются простые дешифраторы DCn₁-N₁, причем n₁n, следовательно и N₁N.
- 1)Число каскадов равно K= n/n₁. Если K –целое число, то во всех каскадах используются полные дешифраторы DCn₁-N₁. Если K –

правильная или смешанная дробь, то во входном каскаде используется неполный дешифратор DCn₁-N₁.

- 2)Количество простых дешифраторов DCn₁-N₁в выходном каскаде равно N/N₁, в предвыходном -N/N₁₂, в предпредвыходном -N/N₁₃и т.д.; во входном каскаде -N/N₁к. Если N/N₁к—правильная дробь, то это означает, что во входном каскаде используется неполный простой дешифратор.
- 3)В выходном каскаде дешифрируются n₁младших разрядов адреса сложного дешифратора, в предвыходном –следующие n₁младших разрядов адреса сложного дешифратора и т.д. Во входном каскаде дешифрируется полная или неполная группа старших разрядов адреса. Поэтому n₁младших разрядов адреса сложного дешифратора подаются параллельно на адресные входы всех дешифраторов выходного каскада, следующие n₁младших разрядов адреса –на адресные входы всех дешифраторов предвыходного каскада и т.д.; группа старших разрядов адреса подается на адресные входы дешифратора.
- 4)Выходы дешифраторов предвыходного каскада соединяются с входами разрешения простых дешифраторов выходного каскада, выходы дешифраторов предпредвыходного каскада –с входами разрешения простых дешифраторов предвыходного каскада и тд

Стробирующий вход используется также для наращивания дешифратора.

Схемы представлены выше.

Вывод:

Мы изучили принципы построения и методы синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов.

Мы собрали два типа линейных дешифраторов и научились пользоваться уже готовыми схемами.

Так же мы научились моделировать примитивный шифратор на основе Дтриггеров, чтобы реализовать дешифрацию.