

Dmitry Kan, Max Irwin
Open NLP Meetup

About me

- PhD in NI P
- 16+ years of experience in developing search engines for start-ups and multinational technology giants
- Expert in vector search engines and the host of the Vector Podcast
- Blogging about vector search on Medium:
 https://dmitry-kan.medium.com/
- Committer on search QA tool Quepid:
 https://github.com/o19s/guepid

Team Sisu: BigANN Competition @ NeurIPS'21

- Max Irwin
- Alex Semenov
- Aarne Talman
- Leo Joffe
- Alex Klibisz
- Dmitry Kan

Billion-Scale ANN Algorithm Challenge

Scope

- Vector search in a nutshell
- Main Vector DBs
- Neural search frameworks
- Get practical
- Demos

Google Trends

Vector search in a nutshell

Vector search is a way to represent and search your objects (documents, songs, images..) in a geometric space (usually of high-dimension) in the form of an embedding (a vector of numbers: [0.9, -0.1, 0.15, ...])

- At small scale you can apply exact KNN search
- At larger scale you need to use ANN search: trade some precision for speed

Credit: Weaviate V1.0 release - virtual meetup

Use cases

- Semantic search
- Image similarity
- Sound search
- Multimodality: searching images with text
- Recommenders
- E-commerce zero-hit long-tail (similarity search)

Big players in the game

- Spotify: ANNOY
- Microsoft (Bing team): Zoom, DiskANN, SPTAG
 - o Azure Cognitive Search
- Amazon: KNN based on HNSW in OpenSearch
- Google: ScaNN
- Yahoo! Japan: NGT
- Facebook: FAISS, PQ (CPU & GPU)
- Baidu: IPDG (Baidu Cloud)
- Yandex
- NVidia
- Intell

ANN algorithms

Related topics

https://bit.ly/3ApqYYQ

PQ (Product Quantization)

BuddyPQ: improving over FAISS

BIGANN dataset Kolmogorov-Smirnov dimension test matrix for the first 100000 points. A higher number indicates a less similar distribution

Variance Inflation Factor (Multicollinearity) (~2.25)

Not All Vector Databases Are Made Equal

A detailed comparison of Milvus, Pinecone, Vespa, Weaviate, Vald, GSI and Qdrant

While working on this blog post I had a privilege of interacting with all search engine key developers / leadership: Bob van Luijt and Etienne Dilocker (Weaviate), Greg Kogan (Pinecone), Pat Lasserre, George Williams (GSI Technologies Inc), Filip Haltmayer (Milvus), Jo Kristian Bergum (Vespa), Kiichiro Yukawa (Vald) and Andre Zayarni (Qdrant)

This blog is discussed on HN: https://news.ycombinator.com/item? id=28727816

Update: Vector Podcast launched!

Smaller Vector DB players: 71% are Open Source

Company	Product	Cloud	Open Source: Y/N	Algorithms
SeMI	Weaviate	Υ	Y (Go)	custom HNSW
Pinecone	Pinecone	Υ	N	FAISS + own
GSI	APU chip for Elasticsearch / Opensearch	N	N	Neural hashing / Hamming distance
Qdrant	Qdrant	N	Y (Rust)	HNSW (graph)
Yahoo!	Vespa	Υ	Y (Java, C++)	HNSW (graph)
Ziliz	Milvus	N	Y (Go, C++, Python)	FAISS, HNSW
Yahoo!	Vald	N	Y (Go)	NGT

Milvus

- milvus.io
- self-hosted vector database
- open source

- attention to scalability of the entire search engine: (re)indexing and search
- ability to index data with <u>multiple</u>
 <u>ANN algorithms</u> to compare their performance for your use case

Pinecone

managed vector database close source

- Fully managed vector database
- Single-stage filtering
 capability: search for your
 objects (sweaters) + filter by
 metadata (color, size, price) in
 one query

Vespa

vespa.ai/

managed / self-hosted

📩 Code: <u>open source</u>

- low-latency computation over large data sets
- stores and indexes your data so that queries, selection and processing over the data can be performed at serving time
- customizable functionality
- deep data structures geared towards deep-learning like data science, like Tensors

Weaviate

semi.technology/developers/weavia
te/current/

managed / self-hosted

open source

Value proposition:

- Expressive query syntax
- Graphql-like interface
- combo of vector search, object storage and inverted index
- Wow-effect: Has an impressive <u>question answering</u>
 <u>component</u> – esp for demos

Weaviate System Level Overview (Example with two modules)

Weaviate Core, stateful (database), horizontally scalable, CPU only.

Two modules (textzvec-transformers, qna-transformers) shown as an example. Other modules include vectorization for other media types, entity recognition, spell checking and others.

Persistence in Weaviate Core shows one shard as an example. Users can create any number of indices, each index can contain any number of shards. Shards can be distributed and/or replicated across nodes in the cluster. A shard always contains object, inverted and vector storage. Vector storage is not affected by LSM segmentation.

Vald

Option Link: vald.vdaas.org/

Type: Self-hosted vector

database

code: open source

- Billion-scale
- Cloud-native architecture
- Fastest ANN Algo: NGT
- Custom reranking / filtering algorithm plugins

GSI APU

Link: <u>gsitechnology.com/APU</u>

🥊 Type: Vector search hardware backend

for your <u>Elasticsearch</u> / <u>OpenSearch</u>

Code: close source

Value proposition:

- Billion-scale
- Extends your Elasticsearch / OpenSearch capabilities to similarity search
- On-prem / hosted APU board hosted cloud backend

Gemini® APU Processor

- 48 million 10T SRAM cells
 - 2 million units of prog "bit-logic"
- L1 Cache 96Mb
- Algorithms
 - Similarity Search
 - Vector Processing
 - SAR BPA, Image Processing

Qdrant

- qdrant.tech/
- open source

Value proposition:

- The vector similarity engine with extended filtering support
- dynamic query planning and payload data indexing
- string matching, numerical ranges, geo-locations, and more
- Metric Deep Learning

Qdrant Architecture

- · Storage is split into Segments
- · Segments can be re-built by the optimizer
- · Segments are always available for search

Semantic frameworks / layers: 57% Open Source

Company	Product	Open Source: Y/N	Focus
Deepset.ai	Haystack	Y	NLP, neural search
Jina.Al	Jina, Hub, Finetuner	Y	NLP, CV, ASR
Featureform	Feature store, EmbeddingHub	Y	All Al verticals
ZIR.AI	Al search platform	N	NLP
Hebbia.Al	Knowledge Base	N	NLP -> Finance
Rasa.ai	Virtual assistants	Y	NLP
Muves.io	Multilingual vector search	N	Multilingual search, multimodality

user interface

Application business logic: neural / BM25, symbolic filters, ranking

Multi-modal encoder / single modality encoders

Neural frameworks: Haystack, Jina.Al, ZIR.Al, Muves, Hebbia.Al, Featureform

Vector Databases: Milvus, Weaviate, Pinecone, GSI, Qdrant, Vespa, Vald, Elastiknn

KNN / ANN algorithms: HNSW, PQ, IVF, LSH, Zoom, DiskANN, BuddyPQ, ...

How to pick a vector DB / framework

- Have own engineering?
 - Yes: go for the framework vendor / self-hosted DB
 - No: choose higher-level system, like Hebbia.Al
- Own embedding layer or OK with vector DB doing it?
 - Own: Qdrant, Milvus, Pinecone, GSI, Vespa, Vald
 - o In-DB: Weaviate, Vespa
- Heavy focus on NLP?
 - YES: Consider Haystack (deepset)
 - NO: Consider Jina.Al
- Want to quickly test before investing?
 - Yes: ZIR.AI, Hebbia.AI
 - No: Jina.AI, Haystack etc

How to pick a vector DB / framework

- Want to HOST or fine with MANAGED?
 - HOST: Vespa, Vald, Milvus, Qdrant
 - MANAGED: Pinecone, Weaviate, GSI, Hebbia.AI, ZIR.AI

Demo: Muves

demo.muves.io

Trends in ML at large

- Model hubs (e.g. Hugging Face) → ML community shares progress quickly (similar to what GitHub did to sharing code)
- Deep Learning → multimodal: CLIP (text from images), DALL-E (images from text)
- MLOps optimize experimentation and deployments: determined.ai,
 DVC, MLflow / Kubeflow

Get practical

- Code: https://github.com/DmitryKey/bert-solr-search
- Supported Engines: Solr, Elasticsearch, OpenSearch, GSI, [hnswlib]
- Supported LMs: BERT, SBERT, [theoretically any]

Q&A demo

Questions:

- 1. Why did Peloton shares fall?
- 2. How are articles created on TechCrunch?
- 3. What is ethical Al?

https://techcrunch.vectors.network/

Weaviate console

Thank you! 🧡

twitter.com/DmitryKan

youtube.com/c/VectorPodcast

https://spoti.fi/3sRXcdn

Links

- 1. Martin Fowler's talk on NoSQL databases: https://www.youtube.com/watch?v=ql_g07C_Q5l
- 2. Neural search vs Inverted search https://trends.google.com/trends/explore?date=all&q=neural%20search,inverted%20search
- 3. Not All Vector Databases Are Made Equal https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696
- 4. HN thread: https://news.ycombinator.com/item?id=28727816
- 5. A survey of PQ and related methods: https://faiss.ai/
- 6. Vector Podcast on YouTube: https://www.youtube.com/channel/UCCIMPfR7TXyDvIDRXjVhP1g
- 7. Vector Podcast on Spotify: https://open.spotify.com/show/13JO3vhMf7nAqcpvlIgOY6
- 8. Vector Podcast on Apple Podcasts: https://podcasts.apple.com/us/podcast/vector-podcast/id1587568733
- 9. BERT, Solr, Elasticsearch, OpenSearch, HNSWlib in Python: https://github.com/DmitryKey/bert-solr-search