AI534 — Written Homework Assignment 1 (40 pts) Due Oct 15th 11:59pm, 2021

- 1. (Weighted linear regression) (15 pts) In class when discussing linear regression, we assume that the Gaussian noise is independently identically distributed. Now we assume the noises $\epsilon_1, \epsilon_2, \dots \epsilon_n$ are independent but each $\epsilon_i \sim N(0, \sigma_i^2)$, i.e., it has its own distinct variance.
 - (a) (3pts) Write down the log likelihood function of w.
 - (b) (4pts) Show that maximizing the log likelihood is equivalent to minimizing a weighted least square loss function $J(\mathbf{W}) = \frac{1}{2} \sum_{i=1}^{n} a_i (\mathbf{w}^T \mathbf{x}_i y_i)^2$, and express each a_i in terms of σ_i .
 - (c) (4 pts) Derive a batch gradient descent update rule for optimizing this objective.
 - (d) (4 pts) Derive a closed form solution to this optimization problem.
- 2. (14 pts) Consider the maximum likelihood estimation problem for multi-class logistic regression using the soft-max function defined below:

$$p(y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{i=1}^K \exp(\mathbf{w}_i^T \mathbf{x})}$$

We can write out the likelihood function as:

$$L(\mathbf{w}) = \prod_{i=1}^{N} \prod_{k=1}^{K} p(y = k | \mathbf{x}_i)^{I(y_i = k)}$$

where $I(y_i = k)$ is the indicator function, taking value 1 if y_i is k.

- (a) (2 pts) Compute the log-likelihood function.
- (b) (12 pts) Compute the gradient of the log-likelihood function w.r.t the weight vector \mathbf{w}_c of class c. (Precursor to this question, which terms are relevant for \mathbf{w}_c in the loglikelihood function? Also hint: Logistic regression slide provides the solution to this problem, just need to fill in what is missing in between.)
- 3. (11 pts) (Maximum A Posterior Estimation.) Suppose we observe the values of n IID random variables X_1, \ldots, X_n drawn from a single Bernoulli distribution with parameter θ . In other words, for each X_i , we know that $P(X_i = 1) = \theta$ and $P(X_i = 0) = 1 \theta$. In the Bayesian framework, we treat θ as a random variable, and use a prior probability distribution over θ to express our prior knowledge/preference about θ . In this framework, X_1, \ldots, X_n can be viewed as generated by:
 - First, the value of θ is drawn from a given prior probability distribution
 - Second, X_1, \ldots, X_n are drawn independently from a Bernoulli distribution with this θ value.

In this setting, Maximum A Posterior (MAP) estimation is a natural way to estimate the value of θ by choosing the most probable value given both its prior distribution and the observed data X_1, \ldots, X_n . Specifically, the MAP estimation of θ is given by

$$\hat{\theta}_{MAP} = \operatorname*{argmax}_{\hat{\theta}} P(\theta = \hat{\theta} | X_1, \dots, X_n)$$

$$= \operatorname*{argmax}_{\hat{\theta}} P(X_1, \dots, X_n | \theta = \hat{\theta}) P(\theta = \hat{\theta})$$

$$= \operatorname*{argmax}_{\hat{\theta}} L(\hat{\theta}) p(\hat{\theta})$$

where $L(\hat{\theta})$ is the data likelihood function and $p(\hat{\theta})$ is the density function of the prior. Now consider using a beta distribution for prior: θ Beta (α, β) , whose PDF function is

$$p(\hat{\theta}) = \frac{\hat{\theta}^{(\alpha-1)} (1 - \hat{\theta})^{(\beta-1)}}{B(\alpha, \beta)}$$

where $B(\alpha, \beta)$ is a normalizing constant to make it a proper probability density function.

- (a) (5 pts) Derive the posterior distribution $p(\hat{\theta}|X_1,\ldots,X_n,\alpha,\beta)$ and show that it is also a Beta distribution.
- (b) (6 pts) Suppose we use Beta(2,2) as the prior, What is the posterior distribution of θ after we observe 5 coin tosses and 2 of them are head? What is the posterior distribution of θ after we observe 50 coin tosses and 20 of them are head? Plot the pdf function of these two posterior distributions. Assume that $\theta = 0.4$ is the true probability, as we observe more and more coin tosses from this coin, what do you expect to happen to the posterior?