Essential Probability

Brad Jacobs

January 2016

Brad Jacobs Essential Probability January 2016 1 / 49

Agenda

Today's plan:

- Combinatorics
- Probability
- 8 Random variables and probability distributions

Brad Jacobs Essential Probability January 2016 2 / 49

Review: sets

Some definitions:

- The set S that consists of all possible outcomes or events is called the sample space
- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A, \text{ and } x \in B\}$
 - ▶ Disjoint: $A \cap B = \emptyset$
- Complement: $A^c = \{x : x \notin A\}$
- Partition: a set of pairwise disjoint sets, $\{A_j\}$, such that $\bigcup_{j=1}^{\infty} A_j = S$
- Plus the commutative, associative, distributive, and DeMorgan's laws

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

3 / 49

Combinatorics

4 / 49

Factorial

Factorial counts the number of ways of ordering or picking something when order matters:

- We write $n! = n \times (n-1) \times ... \times 1$
- 0! = 1 by convention
- Example: how many ways can we shuffle a deck of cards?

Brad Jacobs Essential Probability January 2016 5 / 49

Permutation

Permutations are the number of ways to choose a group from a larger population where order matters:

- Select k representatives in order from a population of size n: $\frac{n!}{(n-k)!}$
- Example: In baseball a manager sets the batting order for 9 players out of a team of 25.

Brad Jacobs Essential Probability January 2016 6 / 49

Combination

Combination counts the number of ways of picking something when order doesn't matter:

$$\bullet \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

- We say 'n choose k'
- ullet This is the number of ways of choosing k items from n total items
- Example: In a class of 20 students how many pairs are there for afternoon sprints?

Brad Jacobs Essential Probability January 2016 7 / 49

Probability

January 2016

8 / 49

Introduction

Probability provides the mathematical tools we use to model randomness:

- Probability tells us how likely an event (Frequentist) is or how likely our beliefs are to be correct (Bayesian)
- Provides the foundation for statistics and machine learning
- Often our intuitions about randomness are incorrect because we live only one realization
- Enumerating all possible outcomes (using combinatorics) can help us compute the probability of an event

Brad Jacobs Essential Probability January 2016 9 / 49

Definition of probability

Given a sample space, S, a probability function, Pr, has three properties:

- $Pr[A] \ge 0, \forall A \subset S$
- $\Pr[S] = 1$
- For a set of pairwise disjoint sets $\{A_j\}$, $\Pr[\bigcup_j A_j] = \sum_j \Pr[A_j]$

Note: this means $Pr[A] = 1 - Pr[A^c]$

Brad Jacobs Essential Probability January 2016 10 / 49

Example: tossing a coin

Consider a coin toss:

$$S = \{H, T\}$$

•
$$S = \{H, T\}$$

• $Pr[H] = Pr[T] = \frac{1}{2} > 0$

•
$$\Pr[S] = 1$$

Brad Jacobs Essential Probability January 2016 11 / 49

Independence

Two events A and B are said to be independent if

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$$

or, equivalently, if

$$Pr[B|A] = Pr[B],$$

i.e., knowledge of A provides no information about B

12 / 49

Brad Jacobs Essential Probability January 2016

Multiplication rule

To compute the probability that two *independent* events occur, multiply their probabilities:

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$$

- What is the probability that A and B happen?
 - ▶ Under independence this joint probability is easy to calculate.

ロト 4回ト 4 恵ト 4 恵ト - 恵 - 夕久(で

Example: coin tosses

Take a moment to solve this question:

- Three types of fair coins are in an urn: HH, HT, and TT
- You pull a coin out of the urn, flip it, and it comes up H
- Q: what is the probability it comes up H if you flip it a second time?

Brad Jacobs Essential Probability January 2016 14 / 49

Conditional probability

We often care about whether one event provides information about another event. The *conditional probability* of B given A is:

$$\Pr[B|A] = \frac{\Pr[A \cap B]}{\Pr[A]}$$

- We say this is the 'probability of B conditional on A'
- I.e., if A has occurred, what is the probability B will occur?

(ロ) (国) (国) (国) (国) (日)

Probability chain rule

Can condition on an arbitrary number of variables:

• Simple example:

$$\Pr[A_3, A_2, A_1] = \Pr[A_3 | A_2, A_1] \cdot \Pr[A_2 | A_1] \cdot \Pr[A_1]$$

General case:

$$Pr[A_n, ..., A_1] = \prod_{j} Pr[A_j | A_{j-1}, ..., A_1]$$

or

$$\Pr[\bigcap_{j}^{n} A_{j}] = \bigcap_{j}^{n} \Pr[A_{j} | \bigcap_{k}^{j-1} A_{k}]$$

Brad Jacobs Essential Probability January 2016 16 / 49

Law of total probability

If $\{B_n\}$ is a partition of the sample space, the Law of total probability states:

$$\Pr[A] = \sum_{j} \Pr[A \cap B_j]$$

or

$$\Pr[A] = \sum_{j} \Pr[A|B_j] \cdot \Pr[B_j]$$

◆ロト ◆昼 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ◎

Bayes's Rule

Use Bayes's Rule when you need to compute conditional probability for B|A but only have probability for A|B:

$$\Pr[B|A] = \frac{\Pr[A|B] \cdot \Pr[B]}{\Pr[A]}$$

- Proof: use the definition of conditional probability
- For an arbitrary partition of event space, $\{A_j\}$, use the general form of Bayes's rule:

$$Pr[A_k|B] = \frac{Pr[B|A_k] \cdot Pr[A_k]}{\sum_{j} Pr[B|A_j] \cdot Pr[A_j]}$$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
<

Brad Jacobs Essential Probability January 2016 18 / 49

Example: drug testing

A test for EPO has the following properties:

Value
0.99
0.05
0.005

Q: What is the probability the cyclist is using EPO if the test is positive? I.e., what is Pr[doped|+]?

19 / 49

Solution: drug testing

Compute probability of being clean:

$$Pr[clean] = 1 - Pr[doped]$$

Use Bayes's Rule:

$$\begin{aligned} \Pr[doped|+] &= \frac{\Pr[+|doped] \cdot \Pr[doped]}{\Pr[+|doped] \cdot \Pr[doped] + \Pr[+|clean] \cdot \Pr[clean]} \\ &= \frac{0.99 \cdot 0.005}{0.99 \cdot 0.005 + 0.05 \cdot (1 - 0.005)} \\ &= 0.090 \end{aligned}$$

Based on this example

Brad Jacobs Essential Probability January 2016 20 / 49

Random variables and probability distributions

Brad Jacobs Essential Probability January 2016 21 / 49

Definition: random variable

Given a sample space S, a random variable, X, is a function such that $X(s): s \in S \mapsto \mathbb{R}$:

- Can think of r.v. as summary of an experiment.
 - ► Simplest experiment: Flip a coin *n* times.
 - ▶ If n = 3 there are 8 possible outcomes
 - ▶ One way to summarize: X = number of heads seen
 - ► Thus for each outcome X = 0, 1, 2 or 3
- By convention, capital letters to refer to a random variable and lower case to refer to a specific realization: X = x
 - ▶ $\Pr[X = x] = \Pr[\{s \in S : X(s) = x\}]$

Brad Jacobs Essential Probability January 2016 22 / 49

Cumulative distribution function (CDF)

Definition: the cumulative distribution function $F_X(x) = \Pr[X \le x]$:

- Properties:
 - ▶ $0 \le F_X(x) \le 1$
 - $\lim_{x \to -\infty} F_X(x) = 0$
 - $\lim_{x \to \infty} F_X(x) = 1$
 - $F_X(x)$ is monotonically increasing
- Applies to discrete and continuous random variables
- Note: $\Pr[a < X \le b] = F_X(b) F_X(a)$

Brad Jacobs Essential Probability January 2016 23 / 49

Discrete: probability mass function (PMF)

For a random variable, X, which takes discrete values $\{x_i\}$, use a PMF to determine the probability of an individual event:

- $f_X(x) = Pr[X = x], \forall x$
- We say there is probability mass p_i on x_i , where $p_i = \Pr[X = x_i]$
- Example: tossing coins

 - ► $X \in \{H, T\}$ ► $p_H = p_T = \frac{1}{2}$

Brad Jacobs Essential Probability January 2016 24 / 49

Continuous probability density function (PDF)

For a continuous random variable, X, use a PDF:

- $f_X(x)dx = \Pr[x < X < x + dx]$
- Going between CDF and PDF
 - $f_X(x) = \frac{dF_x(x)}{dx}$, assuming some regularity conditions
 - $F_X(x) = \int_{-\infty}^{X} f_X(s) ds$

Brad Jacobs Essential Probability January 2016 25 / 49

Properties of distributions

Use these properties to characterize a distribution:

- Expectation/mean
- Variance/standard deviation
- Skew
- Kurtosis
- Correlation

We often compute sample analogs of these properties to compare the empirical distribution of our data to standard distributions

Expectation/mean

The *expectation*, *mean*, or *expected value* is a measure of what is a likely value of a random variable:

- $\mu_X = \mathbb{E}[X]$:
 - ► Continuous: $\mathbb{E}[X] = \int_{-\infty}^{\infty} s f_X(s) ds$
 - ▶ Discrete: $\mathbb{E}[X] = \sum_{s \in \{x_i\}} \widetilde{sf}_X(s)$
- Expectation is a linear operator
- The sample mean is $\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$

Brad Jacobs Essential Probability January 2016 27 / 49

Variance

Variance measures the spread of a distribution:

- $Var[X] = \mathbb{E}_X[(X \mu_X)^2]$
- Sometimes variance is written as $\sigma^2(X) = Var[X]$
- Often, we use standard deviation, $\sigma(X) = \sqrt{\text{Var}[X]}$ which has the same dimensions as X
- $\operatorname{Var}[X] = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ Note: the sample variance is $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$

Brad Jacobs Essential Probability 28 / 49

Skew and kurtosis

Skew and kurtosis are higher order moments:

- Skewness:

 - ► Measures asymmetry of a distribution
 - ► Sign of skewness tells whether distribution is left or right skewed
- Kurtosis:

 - Measures the 'fatness' of the tails of the distribution

Brad Jacobs Essential Probability

Multivariate Distributions

Often interested in a joint distribution between two (or more) random variables:

- Extend definitions of CDF, PDF/PMF, Mean
- New multivariate moments:

 - ► Covariance: $Cov[x, y] = \mathbb{E}[(x \mu_x) \cdot (y \mu_y)]$ ► Correlation: $\rho_{XY}(x, y) = \frac{Cov[x, y]}{\sigma(x) \cdot \sigma(y)}$

Brad Jacobs **Essential Probability** January 2016 30 / 49

Marginal and conditional distributions

To compute the marginal distribution from the joint (multivariate) distribution, just integrate (sum) over the other variable(s):

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,s) ds$$

For a bivariate distribution, conditional pdf is:

$$f(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$

Brad Jacobs Essential Probability January 2016 3

Example:

Covariance and correlation

To explore the relationship between variables compute:

- Covariance:
 - $\triangleright \operatorname{Cov}(x, y) = \mathbb{E}[(x \mu_x) \cdot (y \mu_y)]$
 - ► Size changes with scaling of variables
 - For random variables which are vectors, use $Cov[x, y] = \mathbb{E}[(x \mu_x) \cdot (y \mu_y)^T]$
- Correlation (Pearson):
 - ► Dimensionless measure relationship
 - $\rho_{XY}(x,y) = \frac{\operatorname{Cov}(x,y)}{\sigma(x) \cdot \sigma(y)}$
 - ▶ Thus, $\rho_{XY} \in [-1, 1]$
 - Other correlation coefficients, such as Spearman, use rank and are more robust
- Correlation is not causation!

Correlation and linearity

Correlation and linearity: r = 0.816.

Brad Jacobs Essential Probability January 2016 34 / 49

Correlation captures noisiness and direction

Figure 1:Correlation and non-linearity. From Wikipedia.

90 Q 35 / 49

Brad Jacobs Essential Probability January 2016

Common distributions

Brad Jacobs Essential Probability January 2016 36 / 49

Overview

We now review the properties of some common distributions:

- Discrete
 - ▶ Bernoulli
 - Binomial
 - Geometric
 - Poisson
- Continuous
 - Uniform
 - Exponential
 - ► Gaussian a.k.a. Normal
 - $\rightarrow \chi^2$
 - ► Student's t
 - ▶ F distribution

Distribution Notation

- We write $X \sim \mathtt{XYZ}(\alpha, \beta, ...)$ to mean X is distributed like the XYZ distribution with parameters $\alpha, \beta, ...$
- We say a series of random variables are i.i.d. if they are 'independent and identically distributed'
- Example: $X \sim \mathbb{N}(\mu, \sigma^2)$ or $X \sim \mathbb{U}(0, 1)$

Brad Jacobs Essential Probability January 2016 38 / 49

Bernoulli

Models a toss of an unfair coin or clicking on a website:

- $X \sim \text{Bernoulli}(p)$
- PMF: Pr[H] = p and Pr[T] = 1 p
- Mean: $\mathbb{E}[x] = p$
- Variance: $Var[x] = p \cdot (1 p)$

Brad Jacobs Essential Probability January 2016 39 / 49

Example: click through rate

Given N visitors of whom n click on the 'Buy' button:

- What is click through rate (CTR)?
- What is the variance of the click through rate?

Brad Jacobs Essential Probability January 2016 40 / 49

Binomial

Models repeated tosses of a coin:

- $X \sim \mathtt{Binomial}(n, p)$ for n tosses of a coin where $\mathsf{Pr}[H] = p$
- PMF: $\Pr[X = k] = \binom{n}{k} p^k \cdot (1-p)^{(n-k)}, \forall 0 \le k \le n$
- Mean: $n \cdot p$
- Variance: $n \cdot p \cdot (1 p)$
- Approaches Gaussian for limit of large n

Brad Jacobs Essential Probability January 2016 41 / 49

Geometric

Models probability succeeding on the k-th try:

- $X \sim \text{Geometric}(p, k)$
- PMF: $Pr[X = k] = p \cdot (1-p)^{(k-1)}$
- Mean: $\frac{1}{p}$
- Variance: $\frac{1-p}{p^2}$

Brad Jacobs Essential Probability January 2016 42 / 49

Poisson

Models number of events in a period of time, such as number of visitors to website:

- $X \sim ext{Poisson}(\lambda)$
- PMF: $\Pr[X = k] = \exp(-\lambda) \cdot \frac{\lambda^k}{k!}, \forall k = 0, 1, 2, ...$
- Mean = variance = λ
- ullet λ is the number of events during the interval of interest
- Note: Pr[X = k] is just one term in the Taylor's series expansion of exp(x) when suitably normalized

Brad Jacobs Essential Probability January 2016 43 / 49.

Exponential

Models survival, such as the fraction of uranium which has not decayed by time t or time until a bus arrives:

- $T \sim \text{Exp}(\lambda)$
- $1/\lambda$ is the half-life
- CDF: $Pr[T \le t] = 1 exp(-\lambda \cdot t), x \ge 0, \lambda \ge 0$
- Mean: $1/\lambda$
- Variance: $1/\lambda^2$
- 'Memory-less'

Brad Jacobs Essential Probability January 2016 44 / 49

Uniform

Models a process where all values in an interval are equally likely:

•
$$X \sim U(a, b)$$

•
$$X \sim U(a, b)$$

• PDF: $f(x) = \frac{1}{b-a}, \forall x \in [a, b]$ and 0 otherwise

• Mean:
$$\frac{a+b}{2}$$

• Mean:
$$\frac{a+b}{2}$$
• Variance: $\frac{(b-a)^2}{12}$

Brad Jacobs Essential Probability January 2016 45 / 49

Gaussian a.k.a. Normal

A benchmark distribution:

•
$$X \sim N(\mu, \sigma^2)$$

• PDF:
$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

- ullet Mean: μ
- Variance: σ^2
- 'Standard normal' is N(0,1):

This is the famous 'Bell-curve' distribution and is the *most* important due to its connection with the Central Limit Theorem (tomorrow).

Brad Jacobs Essential Probability January 2016 46 / 49

Other distributions

Some other distributions:

- χ^2 :
 - Models sum of k squared, independent, normally-distributed random variables
 - Use for goodness of fit tests
- Student's t: distribution of the *t-statistic*:
 - t-statistic: $t = \frac{\overline{x} \mu}{s/\sqrt{n}}$, where s is the standard error
 - ▶ Perform a 't-test' to check probability of observed value
 - ▶ Has fatter tails than normal distribution
- F-distribution:
 - ▶ Distribution of the ratio of two χ^2 random variables
 - ▶ Use to test restrictions and ANOVA

Questions

Brad Jacobs Essential Probability January 2016 48 / 49

Questions

Q: When do you use factorial vs. combination?

Q: What is independence?

Q: What is conditional probability? How do I use Bayes's rule?

Q: What are the PDF and CDF?

Q: What are moments should you use to characterize a distribution? How do you calculate them?

Q: What are some common distributions? What type of processes do they model?

Brad Jacobs Essential Probability January 2016 49 / 49