UNCLASSIFIED

AD 283 054

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Best Available Copy

FTDM-1886 26 March 1958

CHIIII) 283054 GIIIIIII)

MATERIAL - ZINC-TREATED MAGNESIUM -METAL PLAING - PHYSICAL PROPERTIES EVALUATION OF

Contract No. AF33 (657)=7248

GENERAL DYNAMICS FORT WORTH

GIIIIIII)

GIIIIIIII

CIIIIIII)

GIIIIIII)

GIIIIIII)

GIIIIIII)

CONVAIR FORT WORTH

TEST DATA MEMORANDUM

F TOM NO	1886
MODEL _	B-58
TEST NO	F-7228

TEST: MATERIAL - ZINC-TREATED MAGNESIUM - METAL PLATING - PHYSIOAL PROPERTIES - EVALUATION OF

OBJECT: To investigate the physical properties of tin and tin-zinc alloy electroplates on Dow Chemical Co. zinc-treated HK-31 and AZ-31 magnesium alloys.

TEST SPECIMENS AND PROCEDURE: The specimens, materials and equipment used during this test are given in Table I. The magnesium specimens were zinc-treated by the Dow Chemical Co. prior to the application of platings at this facility. Specimens were cleaned and electroplated with 0.0005" of tin or tin-zinc alloy by the various procedures outlined in Tables II and III. Specimens were then visually examined for defective platings as outlined in Table IV. Specimens which exhibited no defects were given adhesion, heat cycling, and calt spray exposure tests according to the procedures listed in Table IV.

RESULTS: The results and visual evaluation of the various electroplating procedures are listed in Table V. The results of tests to evaluate the physical properties of platings produced by successful procedures are given in Table VI.

DISCUSSION: The suggested procedures outlined in the test request were followed but gave noon results. Certain deviations from those procedures were then made. These are listed in Table VII.

Table V shows that none of the procedures produced a successfice of the plate on the AZ-31 alloy. It also shows attractive platings a sobvained on the HK-31 alloy by Methods 6 and 7. Table VI shows that these platings exhibited excellent adhesion and thermal shock properties but poor salt spray resistance.

CONCLUSION: The physical properties of tin and tin-zinc alloy electroplates on Dow zinc-treated magnesium alloys were investigated. The results of

this test lead to the following conclusions:

1) Dow zinc-treated AZ-31 alloy is not successful electroplated by any

of the procedures investigated.

2) Procedures 6 and 7 will produce attractive platings on HK-31 alloy that exhibit good adhesion and thermal shock properties.

3) The platings produced by these procedures exhibit poor corrosion resistance to salt spray.

The tests described in this report were conducted between 3 February 1958 and 13 March 1958.

DATE: 26 March 1958 Jgw

CHECKED J. E. Hallings

A DIVISION OF GENERAL DYNAMICS CORPORATION (FORT WORTH)

PAGE 2

REPORT NO FTDM 1886

MODEL B-58

DATE 26 March 1958

TABLE I

MATERIALS AND EQUIPMENT

A. MATERIALS

A. MATERIALS				
ITEM	QUANTITY	USE		SOURCE
Dow Zinc-Treated HK-31 Magnesium- Thorium Alloy Coupons (FMS 0046) * **	16 Each 2.0"x 3.0"x .060"	Specimens	Dow C	hemical Co.
Dow Zinc-Treated AZ-31 Magnesium Alloy Coupons (QQ-M-44a) *	18 Each 2.0"x 2.0" x .060"	Specimens	Dow Ch	emical Co.
Copper Strike Plating Solution	7.6 Liters	Strike Plating	Chem.	Lab. Stock
Fluoborate Tin Plating Solution	7.6 Liters	Tin Plating	Ħ	
Tin Metal Anodes	1.0 Lb.	Tin Plating	11	11 11
80% Tin - 20% Zinc Plating Solution	4.0 Liters	Tin-Zinc Alloy Plating	J 11	11 11
80% Tin -20% Zinc Alloy Anodes	1.0 Lb.	Tin-Zinc Alloy Plating	/ ¹¹ ·	11 11
Copper Plating Solution(Rochelle Salt)	7.6 Liters	Copper Plating	5 11	# II
Copper Anodes	1 lb.	Copper Plating	5 "	11 11
Zinc Plating Solution	7.6 Liters	Zinc Striking and Plating	II	11 11
Methyl Ethyl Ketone (TT-M-261)	2.0 Liters	Specimen Cleaning	11	11 11
3M Masking Tape No. 250		Adhesion Tests		ota Mining nufacturing

^{*} Temper H24

^{**} Convair specification FMS-0046 has the same requirements as MIL-M-26075 for the thickness used.

A DIVISION OF GENERAL DYNAMICS CORPORATION
(FORT WORTH)

TABLE I (Continued)

MATERIALS AND EQUIPMENT

B. EQUIPMENT		and the state of t
ITEM	USE	SOURCE
Electroplating Apparatus	Specimen Plating	Convair Built
Vapor Degrease Cabinet	Cleaning	11 11
500°F Furnace	Thermal Heat Cycl- ing	Blue M. Electric Co. Blue Island, Ill.
Salt Spray Cabinet	Corrosion Environ- ment	Industrial Filter and Pump Mfg. Co. Type CH-1 Chicago, Ill.
Standard Laboratory Equipment	As needed	Chem. Lab. Stock

A DIVISION OF ORNERAL DYNAMICS CORPORATION (PORT WORTH)

REPORT NO. FTDM 1886 MODEL B-58 DATE 26 March 1958

TABLE_II

CLEANING AND PLATING PROCEDURES

Specimens of Dow Zinc-Treated AZ-31 magnesium and HK-31 magnesium-thorium alloys were cleaned and plated as outlined below:

A. Specimen Cleaning:

- 1. Trichloroethylene vapor degrease for 3 minutes
- 2. Methyl Ethyl Ketone clean
- 3. Air dry at room temperature

B. Specimen Plating:

				p =
PROCEDURE NO.		EN NUMBER LOY HK-31	PLATING PROCEDURES (See Table III For Solution. Conc. And Operating Conditions)	PLATE THICKNESS (INCHES)
1	1	1	a. Copper Strike b. Tin Plate from Fluoborate Bath	.00001* .0005
2	2	2	a. Copper Strike b. 80% Tin-20% zinc Alloy Plate	.00001*
3	3	3	a. Copper Strike b. Tin Plate from Sodium Stannate Bath	. (((((((((((((((((((
4	4 5	4 5	a. Copper Strike b. Copper Plate c. 80% Tin-20% Zinc Alloy Plate	.00001* .0001 .0005
5 ·	6 7	6 7	a. Zinc Strike b. Copper Strike c. Copper Plate d. 80% Tin-20% Zinc Alloy Plate	.00001* .00001* .0001

C O N V A I R

REPORT NO. FTDM 1886

MODEL B-58

DATE 26 March 1958

TABLE II - (Continued)

B. Specimen Plating (Continued)

}	·	-		The part of the second of the
PROCEDURE NO.	SPECIME ALLO AZ-31	EN NUMBER OY HK-31	PLATING PROCEDURES (See Table III for Sol'n. Conc. and Operating Conditions)	PLATE THICKNESS (INCHES)
6	8 9 10	8 9 10	a. Zinc Strike b. Zinc Plate c. Copper Strike d. Copper Plate e. 80% Tin-20% Zinc Alloy Plate	.00001* .0001 .00001* .0001
7	11 12 13	11 12 13	a. Zinc Strike b. Zinc Plate c. Copper Strike d. Copper Plate e. Tin Plate From Sodium Stannate Bath	.00001* .0001 .00001* .0001

^{*} Thickness Estimated

ø

0

(PORT WORTH)

PAGE_ FTDM 1886 REPORT NO. B-58 MODEL 26 March 1958

TABLE III

PLATING SOLUTION COMPOSITIONS AND OPERATING CONDITIONS

The procedures used during this test incorporated plating solutions having the following compositions and operating conditions:

COPPER STRIKE

Composition:

a. Copper Cyanideb. Sodium Cyanidec. Caustic Soda

Anodes Voltage Temperature Strike Time

3.0 oz/gal.4.5 oz/gal.

0.25-0.50 oz/gal.

Stainless Steel 6 Volts Room Temperature 2 minutes

2. COPPER PLATE

Composition:

a. Copper Cyanideb. Sodium Cyanide c. Rochelle Salt d. Caustic Soda

Anodes Temperature Current Density

3.5 oz/gal. 4.7 oz/gal. 4.0 oz/gal. 0.5 oz/gal.

Copper Metal Room Temperature 0.1 amps/sq. in.

3. ZINC STRIKE AND ZINC PLATE

Composition:

Sodium Cyanide b. Zinc Cyanide c. Caustic Soda

Anodes Temperature Voltage (Strike) Voltage (Plate) Strike Time Plate Time

5.0 oz/gal. 10.6 oz/gal. 15.0 oz/gal.

Zinc Metal Room Temperature 3.0 volts 2.0 volts 3.0 minutes 15.0 minutes

A DIVISION OF GENERAL DYNAMICS CORPORATION (FORT WORTH)

PAGE 7
REPORT NO FTDM 1886
MODEL B-58
DATE 26 March 1958

TABLE III (Continued)

4. FLUOBORATE TIN PLATE

Composition:

a.	Stannous Fluoborate		gms/liter gms/liter
	Fluoboric Acid		
	Boric Acid		gms/liter
d.	Beta Napthol	1.0	gms/liter
e.	Gelatin	6.0	gms/liter
f.	Tin (by analysis)		gms/liter

Temperature
Current Density (amps/sq. ft.)
Ratio of Anode to Cathode Area
Anode

Room Temperature
25-125
2:1
Tin Metal

5. SODIUM STANNATE TIN PLATE

Composition:

a. Sodium Stannateb. Sodium Hydroxidec. Sodium Acetated. Tin (by analysis)	105.0 gms/liter 9.0 gms/liter 15.0 gms/liter 40.0 gms/liter
emperature	150 ↓ 5 ⁰ F 10-25

Current Density (amps/sq.ft.) 10-25
Ratio Anode to Cathode Area 1:1
Anodes Tin Metal

6. 80% TIN - 20% ZINC ALLOY PLATE

Composition:

b. c.	Potassium Stannate Zinc Cyanide Potassium Cyanide Free Potassium Cyanide	120.0 gms/liter 9.0 gms/liter 21.0 gms/liter 6.5 gms/liter
2000	·	800 min 200 71

Anodes	80% Tin, 20% Zinc
	Alloy
Ratio of Anode to Cathode Area	2:1
Temperature	150 ∔ 5°₽
Voltage	3.5 -

A DIVISION OF GENERAL DYNAMICS CORPORATION (FORT WORTH)

PAGE 8
REPORT NO. FTDM 1886
MODEL B-58
DATE 26 March 1958

TABLE IV

PLATE EVALUATION METHODS

VISUAL INSPECTION:

Before exposure to the test procedures given below, the plated specimens were visually inspected for pitting, blistering, burning, poor adhesion, and poor coverage of the plating. Specimens failing this preliminary examination were not subjected to further test procedures. These results are given in Table V.

MECHANICAL ADHESION TESTS:

One specimen from each successful plating procedure was tested for plate adhesion by the standard 3M 250 tape stripping test. This test was followed by probe examination and bending until fracture of the base material occurred. After fracture, the adhesion was checked at the interface of the electroplate and base material. Results of these examinations are given in Table VI.

THERMAL HEAT CYCLING:

One specimen from each successful plating method was tested to determine its resistance to thermal heat cycling. These tests were conducted by exposing the specimen to a temperature of 400°F for 3 minutes and then immediately immersing it in 70°F water. This cycle was repeated a total of 3 times, with specimens being examined for burning, blistering, or peeling of the plating. Results of this test are given in Table VI.

SALT SPRAY EXPOSURE:

Two specimens from each successful plating procedure were exposed to salt spray in accordance with Federal Test Method Standard 151, Method 811, for 48 hours or until failure of plate, whichever occurred first. Following exposure, the specimens were visually examined for pitting, with more than 3 pits/sq." considered as failure of plate. These results are given in Table VI.

* 20% salt spray.

A DIVISION OF GENERAL DYNAMICS CORPORATION (FORT WORTH)

PAGE 9
REPORT NO. FTDM 1886
MODEL B-58
DATE 26 March 1958

TABLE V

RESULTS AND VISUAL EVALUATION OF PLATING PROCEDURES

PLATING PROCEDURE	SPECIMEN	PLATING OBSERVATIONS	COVERAGE	PLATE CON- DITIONS	RESULTS
l.a. Copper Strikeb. Fluoborate Tin Plate	1	High Fluoride Content Causes Speci- men Etching	Poor	Poor	Fail
2.a.Copper Strike b. Tin-Zinc Alloy Plate	2	Copper Strike not uniform	Poor	Poor	Fail
3.a.Copper Strike b.Sodium Stannate Tin	3	Copper Strike not uniform	Poor	Poor	Fail
4.a. Copper Strike b. Copper Plate c. Tin-Zinc Alloy Plate	4 & 5	Copper Plate gives fair coverage	Poor	Poor	Fall
5.a. Zinc Strike b. Copper Strike c. Copper Plate d. Tin-Zinc Alloy Plate	6 & 7	Copper Plate gives full coverage	Fair	Blistered	Fa.13
6.a. Zinc Strike b. Zinc Plate c. Copper Strike d. Copper Plate e. Tin-Zinc Alloy Plate	8,9& 10	Copper Plate gives full coverage	Good	Blistered	Fail
i.a. Zinc Strike b. Zinc Plate c. Copper Strike d. Copper Plate e. Sodium Stannate Tin	11,12 &	Copper Plate gives full coverage	Good	Blistered	Fail

14

UTILITY REPORT SHEET

9

(PORT WORTH)

1886 REPORT NO. B-58 DATE 26 March 1958

TABLE V (Continued)

DOW ZINC-TREATED HK-31 MAGNESIUM-THORIUM ALLOY

PLA	TING PROCEDURE	SPECIMEN	PLATING OBSERVATIONS	COVERAG	E PLATE R CON- DITION	ESULTS
	Gopper Strike Fluoborate Tin Plate	1	Solution too acidic specimen etches	Poor	Poor	Fail
2.a. b.	Copper Strike Tin-Zinc Alloy Plate	2	Copper Strike is poor	Poor	Poor	Fail
3.a. b.	Copper Strike Sodium Stannate Tin	3	Copper Strike not Uniform	Poor	Poor	Fail
b.	Copper Strike Copper Plate Tin-Zinc Alloy Plate	4 & 5	Copper Plate Gives fair coverage	Poor	Blister- ed	Fall
b. c.	Zinc Strike Copper Strike Copper Plate Tin-Zinc Alloy Plate	6 & 7	Copper Strike gives fair coverage	Fair	Blister- ed	Fail
ъ. с. d.	Zinc Strike Zinc Plate Copper Strike Copper Plate Tin-Zinc Alloy Plate	8,9,& 10	Full Coverage after copper plate	1	Ad- herent	Pass
b. c. d.	Zinc Strike Zinc Plate Copper Strike Copper Plate Sodium Stannate Tin	11,12,& 13	Full Coverage after copper plate		Ad- herent	Pass

A DIVISION OF GENERAL DYNAMICS CORPORATION (FOR? WORTH)

REPORT NO. FTDM 1886
MODEL B-58
DATE 26 March 1958

TABLE RESULTS OF PHYSICAL EVALUATION TESTS FOR TITE	CAL EVALUATION	TABLE TABLE TESTS FOR TIME	IN	TIN-ZING ALLOY ELECTROPLATED ON DOW	ON DOW
A. MECHANICAL ADHESION TESTS PLATING PROCEDIRE I SPECIMEN NO	CON TESTS	ZING-INGALIA	Y Ed A	ADESTON FATTURE	SESTINE
		TAPE STRIPPING	TER	PROBE EXAMINATION	
#6 Tin-Zinc Alloy Piate	8	None	None	None	Pass
#7 Sodium Stannate Tin Plate	:	None	None	None	Pass
B. 400°R-TO-70°R THE PLATING PROCEDURE	THERMAL HEAT CYCLING SPECTHEN NO.	NG TEST BLISTERING	TYPS OF FAI	FAILUGAE PEELLING	RESULTS
#5 Tin-Zinc Alloy Plate	ω	None	None	None	Pass
$rac{\mu}{r}7$ Sodium Stannate Tin Plate	11	None	None	None	Pass
C. SALT SPRAY EXPOSURE PLATING PROCEDURE	TEST SPECIFEN NO.	EXPOSURE THE	CONDITION (PITS/SQ.	ION OF PLATE SQ. INCH)	RESULTS
#6 Tin-Zinc Alloy Plate	9 & 10	#	40-00		Fail
#7 Sodium Stannate Tin Plate	12 & 13	†į	09-04		Fall

C O N V A I R A DIVISION OF GENERAL DYNAMICS COMPORATION

(PORT WORTH)

REPORT NO FTDM 1886
MODEL B-58
DATE 26 March 1958

TABLE VII

TABULATION OF DEVIATIONS FROM SUGGESTED PROCEDURES GIVEN

IN TEST REQUEST

- (1) The alkaline cleaning step was omitted to prevent contamination of the zinc-treated surfaces.
- (2) The sodium stannate tin plating bath was used instead of the fluoborate bath. The latter was found to react with the specimens during the plating operation.
- (3) The proposed copper strike undercoat methods produced very poor deposits. For this reason, smaller specimens were prepared and a wider selection of plating procedures was evaluated as shown in Tables V and VI.

UTILITY BE-DET SHEET

Department 6