

CST8390 - Lab 5

Clustering by k-Means

- Id:	

Due Date: Week 6 in corresponding lab sessions (after 1st Assignment)

Introduction

The goal of this lab is to perform clustering on wine dataset using kMeans.

Steps:

- 1. Load the Wine dataset that we used for **Lab 4** to **Weka**.
- 2. Check how various attributes are converted in **Weka**. Make sure that **class** attribute is **nominal** and all **other** attributes are **numeric**. If not, convert them using filters (refer **Labs 3, 4**).
- 3. Now, we need to perform clustering using k-Means method. For that, click on "Cluster" tab. To select k-Means, select SimpleKMeans from weka \rightarrow clusterers.

4. Click on the selected k-Means textbox to open the window with **parameter list**. As we know that wine dataset has 3 classes (1, 2 and 3), set numClusters to 3 (marked in red). As we need to see the **standard deviation**, set displayStdDevs to **True** (marked in blue). Close the window.

For "Cluster mode", select "Classes to clusters evaluation" and select (Nom) Class (or name that you used for the first attribute which is the class). Now click "Start" to run the algorithm.						
a. H	low many iterations were needed for the centroid convergence?					
b. W	What method was used to replace missing values globally?					
c. H	low many instances are there in clusters 0, 1, and 2?					
th	What are the average Alcohol levels and the corresponding standard deviations for all the clusters? For each cluster, write in the format "average +/- sd". Example: 13.7193 +/- 0.4921					
e. C	compare the full data column with clustered data. Which cluster has below average cloohol level?					
	ook at the bottom of the result window and find the number of incorrectly classified astances					
g. W	Which classes of wine were misclassified?					
h. W	Which classes (1, 2, 3) of wine are represented by clusters 0, 1 and 2?					
	Class 1 –					
	Class 2 –					
	Class 3 –					
	e initial centroids of all clusters for attributes Malic Acid and Magnesium in the table. Repeat clustering for seeds 5, 10, 15, 20, and 25.					

6.	Record the	<u>initial</u>	centroids	of all	l clusters	for a	ttributes	Malic A	Acid	and Magnesia	um in the
	following ta	able. R	Repeat clust	tering	for seed	ls 5, 1	0, 15, 20	0, and 2:	5		

Attrib	ute	Seed = 5	Seed = 10	Seed = 15	Seed = 20	Seed = 25
Malic Acid	Cluster 0					
	Cluster 1					
	Cluster 2					
Magnesium	Cluster 0					
	Cluster 1					
	Cluster 2					

Show your answers to the lab professor when you are done.

5.

REMEMBER:

Show your answers to the lab professor when you are done (in Weka and document).

FOR YOUR ANALYSIS:

- * Option 1: Explain with your own words the algorithm k-Means and in which situations you should choose it.
- * Option 2: Change one (or more property) and describe how they can affect the results.

Ottawa, Feb 2020.