Def Let g be a function from A to B and f be a function from B to C.

The composition of f and g, denoted by the function fog from A to C, is

$$(f \circ g)(a) = f(g(a))$$

eg.
$$f(x) = x^2$$
, $f: \mathbb{Z} \to \mathbb{Z}$
 $g(x) = x - 2$, $g: \mathbb{Z} \to \mathbb{Z}$

$$f \circ g (x) = (x-2)^2$$
 $f \circ g : \mathbb{Z} \to \mathbb{Z}$
 $g \circ f (x) = x^2 - 2$ $g \circ f : \mathbb{Z} \to \mathbb{Z}$

eg.
$$f(x) = x^2$$
, $f: \mathbb{R} \to \mathbb{R}$
 $g(x) = -x$, $g: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = x^2$ domain $(f \circ g) = \mathbb{R}$
 $range(f \circ g) = \mathbb{R}^+ \cup \{0\}$
 $g \circ f(x) = -x^2$ domain $(g \circ f) = \mathbb{R}$
 $range(g \circ f) = \mathbb{R}^- \cup \{0\}$
 $eg. f(x) = x^2$, $f: \mathbb{R} \to \mathbb{R}$ $\mathbb{R}^{>0}$
 $g(x) = \sqrt{x}$, $g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$ $\mathbb{R}^{>0}$
 $h(x) = -x$, $h: \mathbb{R} \to \mathbb{R}$ \mathbb{R}
 $f \circ g(x) = (\sqrt{x})^2 = x$ $f \circ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$
 $range(f \circ g) = \mathbb{R}^+ \cup \{0\}$
 \mathbb{R} $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$
 $f \circ g(x) = \sqrt{x^2} = |x|$ $g \circ f: \mathbb{R} \to \mathbb{R}$

qoh (x) is undefined! $\frac{h}{-1} \rightarrow \frac{9}{?}$ g(h(1)) = g(-1) but g(-1) is undefined problem: $h(1) = -1 \notin domain(g)$ $\xrightarrow{h} \mathbb{R} \notin \mathbb{R}^{7,0} \xrightarrow{g} \mathbb{R}^{7,0}$ range domain range More generally, problem: range (h) ≠ domain (9) condition required: range (h) < domain (9) Note: q.h(x) is well-defined if we restrict domain $(h) = \mathbb{R}^{\leq 0}$ (as suggested by a student in class)

eg.

 $f: \{a, b, c\} \rightarrow \{1, 2, 3\}$ $g: \{1, 2\} \rightarrow \{a, b\}$

fog is clearly well-defined since range (g) \leq co-domain (g) \leq domain (f)

gof may not be well-defined since co-domain (f) & domain (9)

eg.
$$g(f(c)) = ?$$
 $c \rightarrow 3 \rightarrow ?$

gof is well-defined if range (f) \subseteq domain (g)

eg,
$$f(a) = 1$$
, $f(b) = 2$, $f(c) = 2$
 $g(1) = b$, $g(2) = a$

range
$$(f) = \{1, 2\}$$
 \Rightarrow range $(f) \subseteq domain (g)$ domain $(g) = \{1, 2\}$

Here, gof is well-defined

$$g(f(a)) = g(1) = b$$

 $g(f(b)) = g(2) = a$
 $g(f(c)) = g(2) = a$

1. $f: P(N) \times P(N) \rightarrow P(N), f(A,B) = AUB.$

as is f onto? Yes.

Let $C \in P(IN)$. We prove there exists

A, B \in P(IN) such that f(A, B) = AUB = C.

Given CEP(IN), we can pick

 $A = \emptyset$, B = C so, AUB = C

A = C, $B = \emptyset$ so, AUB = C

A = B = C so, AUB = C.

b) is fone-to-one? No.

The examples above show f is not one-to-one.

For any C, $f(\phi, C) = f(C, \phi) = C$ but $(\phi, C) \neq (C, \phi)$.

More specific example:

$$f(\phi, \{13\}) = f(\{13\}, \phi) = \{1\}$$

but $(\phi, \{1\}) \neq (\{13\}, \phi)$.

eg.
$$f(m, n) = (m+2, n-3)$$

 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$
(a) f is one-to-one

$$f(m_1, n_1) = f(m_2, n_2)$$

$$\Rightarrow (m_1+2, n_1-3) = (m_2+2, n_2-3)$$

$$\Rightarrow m_1+2 = m_2+2 \wedge n_1-3=n_2-3$$

$$\Rightarrow m_1 = m_2 \wedge n_1 = n_2$$

$$\Rightarrow (m_1, n_1) = (m_2, n_2)$$
(b) f is onto.

Given $(x, y) \in \mathbb{R} \times \mathbb{R}$ find (m, n)

such that $f(m, n) = (x, y)$

$$\Rightarrow (m+2, n-3) = (x, y)$$

$$\Rightarrow (m+2 = x, n-3 = y)$$

$$\Rightarrow m = x-2, n = y+3$$

$$\Rightarrow (m, n) = (x-2, y+3)$$
c) $f^{-1}(x, y) = (x-2, y+3)$.

Let $f: T \rightarrow U$, $q: S \rightarrow T$ and $h: S \rightarrow T$ a) If $f \circ g = f \circ h$ then g = h. True on false?

False

Here, $f \circ g = f \circ h$ but $g \neq h$. Note f is not l-1.

eg. f(x) = |x| g(x) = x h(x) = -x

 $f: \mathbb{R} \to \mathbb{R}$ $g: \mathbb{R} \to \mathbb{R}$ $h: \mathbb{R} \to \mathbb{R}$

Here, fog(x) = |x| and foh(x) = |-x|

Since |x| = |-x|, thus $f \circ g(x) = f \circ h(x)$,

However, $g(x) \neq h(x)$ since $x \neq -x$.

b) If f is one-to-one, then fog = foh implies g=h.

Proof: Let $x \in S$. We prove that g(x) = h(x).

 $f \circ g = f \circ h \implies f(g(x)) = f(h(x))$

 \Rightarrow g(x) = h(x) since f is 1-1.

So, for all $x \in S$, g(x) = h(x).

QED