

Sumário

- 1. Conjunto dos Números Racionais
- 2. Operações: Multiplicação
- 3. Operações: Divisão
- 4. Operações: Adição

Conjunto dos Números Racionais

O conjunto de todos os números que podem ser escritos como quocientes $\frac{a}{b}$, com $b \neq 0$ e a, b números inteiros, é denominado **conjunto dos números racionais**. É representado por

$$\mathbb{Q} = \left\{ \frac{a}{b} | a, b \in \mathbb{Z} \operatorname{\mathsf{com}} b \neq 0 \right\}.$$

Na representação acima, dizemos que o número *a* é o **numerador** da fração e o número *b* o seu **denominador**.

Observação: Todo número inteiro x é um número racional, uma vez que podemos escrevê-lo da forma $\frac{x}{1}$.

As frações determinam a divisão de **partes iguais**, sendo que cada parte é uma fração do inteiro.

Vejamos o exemplo da pizza, que é, geralmente, dividida em 8 partes iguais:

Se você come 1 fatia da pizza, come 1 parte de um total de 8. Escrevemos $\frac{1}{8}$ para representar a parte da pizza pintada em azul.

Da mesma forma, restaram 7 partes de um total de oito. Escrevemos $\frac{7}{8}$ para representar a parte da pizza que não está pintada.

Se você come 3 fatias da pizza, come 3 partes de um total de 8. Escrevemos $\frac{3}{8}$ para representar a parte da pizza pintada em azul.

Da mesma forma, restaram 5 partes de um total de oito. Escrevemos $\frac{5}{8}$ para representar a parte da pizza que não está pintada.

Exercício

Exercício 1

Dada a figura abaixo, escreva as frações que correspondem à parte pintada em azul e à parte branca.

Operações: Multiplicação

Operações: multiplicação

A multiplicação entre frações é bem simples: basta multiplicar os numeradores e dividir pela multiplicação dos denominadores

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}.$$

Operações: multiplicação

Exemplo 1

Vamos calcular o produto $\frac{12}{11} \cdot \frac{1}{3}$.

Pela definição, basta calcular

$$\frac{12}{11} \cdot \frac{1}{3} = \frac{12 \cdot 1}{11 \cdot 3},$$

de onde obtemos que

$$\frac{12}{11} \cdot \frac{1}{3} = \frac{12}{33}$$

Quando você divide por um número, você está essencialmente perguntando "quantas vezes esse número cabe no outro?".

Digamos que queremos efetuar a divisão da fração $\frac{8}{3}$ pela fração $\frac{1}{3}$. Para melhor visualização, dividimos um bloco de $\frac{8}{3}$ em blocos de $\frac{1}{3}$:

Quantos blocos de $\frac{1}{3}$ cabem no bloco grande de $\frac{8}{3}$?

Facilmente, vemos que cabem 8 blocos de $\frac{1}{3}$:

$$=\frac{1}{3}$$

Isso está de acordo com a regra que aprendemos sobre a divisão de frações:

$$\frac{\frac{8}{3}}{\frac{1}{3}} = \frac{8}{3} \cdot \frac{3}{1} = 8.$$

Agora, se queremos efetuar a divisão da fração $\frac{8}{3}$ pela fração $\frac{2}{3}$, quantos blocos de $\frac{2}{3}$ cabem no bloco grande de $\frac{8}{3}$?

A resposta é dada por

$$\frac{\frac{8}{3}}{\frac{2}{3}} = \frac{8}{3} \cdot \frac{3}{2} = 4.$$

Da mesma forma, se queremos efetuar a divisão da fração $\frac{8}{3}$ pela fração $\frac{4}{3}$, quantos blocos de $\frac{4}{3}$ cabem no bloco grande de $\frac{8}{3}$?

A resposta é dada por

$$\frac{\frac{8}{3}}{\frac{4}{3}} = \frac{8}{3} \cdot \frac{3}{4} = 2.$$

Assim, para efetuar a divisão entre duas frações $\frac{a}{b}$ e $\frac{c}{d}$ (\neq 0), basta fazer:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a}{b} \cdot \left(\frac{c}{d}\right)^{-1}.$$

Inverso Multiplicativo

Definição 1

Dados o número não nulo a, o número a^{-1} é chamado **inverso multiplicativo** de a. Isso quer dizer que

$$a\cdot a^{-1}=1.$$

Inverso Multiplicativo

Definição 1

Dados o número não nulo a, o número a^{-1} é chamado **inverso multiplicativo** de a. Isso quer dizer que

$$a\cdot a^{-1}=1.$$

Exemplo 2

Verfique que $\left(\frac{c}{d}\right)^{-1}$ é o inverso multiplicativo de $\frac{c}{d}$.

Ao definir as frações, dissemos que estas determinam a divisão de **partes iguais** de um todo. Abaixo temos duas pizzas: uma dividida em 3 partes e outra em duas. Se você come $\frac{1}{3}$ da pizza e depois come mais $\frac{1}{3}$ dela, a fração que representa a porção consumida da pizza é $\frac{2}{3}$.

Mas se você come $\frac{1}{3}$ da pizza e depois come mais $\frac{1}{2}$ dela, qual a fração que representa a porção consumida da pizza?

Ao definir as frações, dissemos que estas determinam a divisão de **partes iguais** de um todo. Como a pizza não está dividida em partes iguais, não conseguimos efetuar a soma diretamente.

Então vamos dividi-la em partes iguais. Temos a pizza dividida em 3 e 2 partes. Façamos as seguintes divisões:

Dividimos por 2 cada parte da pizza que já estava dividida em 3.

Assim, a parte pintada representa 3 partes de um total de 6, ou seja, $\frac{2}{6}$.

Dividimos por 3 cada parte da pizza que já estava dividida em 2.

Assim, a parte pintada representa 3 partes de um total de 6, ou seja, $\frac{3}{6}$.

Agora que estão divididas em 6 partes iguais, podemos representar a parte pintada como sendo a soma $\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$.

Para **somar** duas frações com denominadores iguais, basta somar seus numeradores:

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}.$$

- ► Se os denominadores são diferentes, devemos dividir o todo por um múltiplo comum entre os denominadores.
- ▶ A forma mais reduzida é encontrada ao se tomar o mínimo múltiplo comum (mmc), porém é bem mais rápido tomar o múltiplo obtido pelo produto dos denominadores. Por exemplo, no caso anterior, as pizzas estavam, inicialmente, divididas em 2 e 3 partes. Depois, ficaram divididas em 6 = 2 · 3 partes, ou seja, um múltiplo de 2 e de 3.

Assim, dada a soma $\frac{a}{b} + \frac{c}{d}$, devemos reescrever cada fração para representar a quantidade de partes de $b \cdot d$ que elas representam:

$$\frac{a}{b} = \frac{a}{b} \cdot 1 = \frac{a}{b} \cdot \frac{d}{d}$$

$$= \frac{a \cdot d}{b \cdot d}$$

$$e \qquad \frac{c}{d} = \frac{c}{d} \cdot 1 = \frac{c}{d} \cdot \frac{b}{b}$$

$$= \frac{c \cdot b}{b \cdot d}$$

Portanto,

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d}{b \cdot d} + \frac{c \cdot b}{b \cdot d}$$
$$= \frac{a \cdot d + c \cdot b}{b \cdot d}.$$

Exemplo

Exemplo 3

Vamos calcular a soma $\frac{5}{7} + \frac{2}{5}$. Como os denominadores são diferentes, vamos reescrever as frações para que cada uma represente a quantidade de partes de $5 \cdot 7 = 35$:

$$\frac{5}{7} = \frac{5}{7} \cdot \frac{5}{5} \qquad e \qquad \frac{2}{5} = \frac{2}{5} \cdot \frac{7}{7} \\
= \frac{25}{35} \qquad = \frac{14}{35}.$$

Agora, com os denominadores iguais, podemos efetuar a soma:

$$\frac{5}{7} + \frac{2}{5} = \frac{25}{35} + \frac{14}{35} = \frac{39}{35}.$$

Exemplo

Exemplo 4

Vamos calcular a soma $\frac{31}{2} + \frac{9}{14}$. Novamente, os denominadores são diferentes. Vamos reescrever as frações para que cada uma represente a quantidade de partes de $2 \cdot 14 = 28$:

$$\frac{31}{2} = \frac{31}{2} \cdot \frac{14}{14} \qquad e \qquad \frac{9}{14} = \frac{9}{14} \cdot \frac{2}{2}$$
$$= \frac{434}{28} \qquad = \frac{18}{28}.$$

Agora, com os denominadores iguais, podemos efetuar a soma:

$$\frac{31}{2} + \frac{9}{14} = \frac{434}{28} + \frac{18}{28} = \frac{452}{28}.$$

Referencias I

