- An AVL tree is a Binary Search Tree
 - Everything about BST applies.
 - The heights of the left and right subtree of every node differ by at most 1.

Structural Possibilites an AVL Tree Allows

- Equal heights
- Right is 1 level taller
- Left is 1 level taller

Balance Factors

- Every node in an AVL tree has a balance factor
 - \circ bf = h_r h_l
 - Remember to subtract heights, not bf
 - sometimes they are counted left right

Rebalancing

- a bf of +/- 2 means that the subtree rooted node is out of balance
- Balance will be restored by subtree rotations
- All rotations will occur in the context of a 3-node neighborhood.

Rebalancing operations for Add

- Straight line right (positive positive) using a left rotation
- Straight line left (negative negative) using a right rotation
- Zig-zag to the left (positive negative) uses a right rotation then left rotation
- Zig-zag to the right (negative positive) uses a left rotation then right rotation

Coding rotations

```
t = rotateLeft(t);
public BTN rotateLeft(BTN n) {
    BTN m = n.right;
    n.right = m.left;
    m.left = n;
    return m;
}
```

Inserting a New Element

- Use the standard BST insertion algorithm to insert the new node.
- Beginning with the node just inserted, walk the revers path back toward the root, recalculating balance factors.
- Stop at the first(lowest) node that has a balance factor of +/- 2. This node roots the 2-node neighborhood that will be rotated.
- · At most one rebalancing operation will be required per insertion.

Deleting an Element

- Use the standard BST deletion algorithm to delete the element.
- Beginning at the point of deletion, walk the reverse path back toward the root, recalculating the BF.
- Stop at the first(lowest) node that has a balance factor of +/- 2. This node roots the 2-node neighborhood that will be rotated.
 - These repairs might have to occur more than once unlike in the add case.
 - Basically in the case of the height of the subtree being deleted from changing.
 - Or when rebalancing changes the height of the subtree.
- See the notes to practice deleting nodes.

- Balanced BSTs are like a structural implementation of the binary search algorithm
 So, now we can use binary search on a structure built with linked nodes.