

Cambridge International **A Level**

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
FURTHER MATI	HEMATICS	1				9231/01
Paper 1				For E	Examinatio	n from 2017
SPECIMEN PAP	ER					3 hours
Candidates answ	ver on the (Question I	Paper.			
Additional Mater	ials: Li	st of Form	nulae (MF10))		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1	The curve	C is	defined	parametrically	by

$$x = 2\cos^3 t$$
 and $y = 2\sin^3 t$, for $0 < t < \frac{1}{2}\pi$.

Show that, at the point with parameter t,

d^2v	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{6}\sec^4 t \csc t.$	[4]
dx^2 6 sec 100 sec.	[.]

 	 	••••••

2

$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4$	$\frac{\mathrm{d}x}{\mathrm{d}t} + 4x =$	$7-2t^2.$				[6]
 ••••••	••••••			••••••		
 •••••						•••••
 	••••••			•••••••		•••••
 •••••	•••••		•••••			•••••
 ••••••	•••••			•••••	•••••	•••••
••••••	••••••		•••••			•••••
 				•••••		
•••••						•••••
 •••••				•••••••••••		
 						•••••

3

$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(x\mathrm{e}^{ax}) = na^n$	$a^{n-1}e^{ax} + a^n x e^{ax}$.	[4

4 The sequence a_1, a_2, a_3, \dots is such that, for all positive integers n,

$$a_n = \frac{n+5}{\sqrt{(n^2-n+1)}} - \frac{n+6}{\sqrt{(n^2+n+1)}}.$$

The sum $\sum_{n=1}^{N} a_n$ is denoted by S_N .

(1)	Find the value of S_{30} correct to 3 decimal places.	[3]
		•••••
		•••••
(ii)	Find the least value of N for which $S_N > 4.9$.	[4]
		•••••
		•••••
		•••••

5	The cubic equation $x^3 + px^2 + qx + r = 0$, where p, q and r are integers, has roots α , β and γ , such that
	$\alpha + \beta + \gamma = 15$,
	$\alpha^2 + \beta^2 + \gamma^2 = 83.$

(i)	Write down the value of p and find the value of q .	[3]
(ii)	Given that α , β and γ are all real and that $\alpha\beta + \alpha\gamma = 36$, find α and hence find the value of γ	·. [5]
		•••••
		•••••
		•••••
		••••••
		•••••

	•••••		 •••••	•••••
••••••	•••••	••••••	 	••••••
••••••	••••••	••••••	 	••••••
•••••			 	
	•••••		 	
	•••••		 	
•••••	•••••	•••••	 •••••	•••••
			 •••••	

6 The matrix **A**, where

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 10 & -7 & 10 \\ 7 & -5 & 8 \end{pmatrix},$$

has eigenvalues 1 and 3.

Find corresponding eigenvectors.	
given that $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ is an eigenvector of A .	
Find the corresponding eigenvalue.	

Find a diagonal matrix D and matrices P and P^{-1} such that $P^{-1}AP = D$.	
	••••••
	•••••••
	••••••
	•••••

7	The linear to	ransformation	1 T :	$\mathbb{R}^4 \to$	\mathbb{R}^4 is	represe	nted by	the m	atrix M .	where

$$\mathbf{M} = \begin{pmatrix} 1 & -2 & -3 & 1 \\ 3 & -5 & -7 & 7 \\ 5 & -9 & -13 & 9 \\ 7 & -13 & -19 & 11 \end{pmatrix}$$
.

(i) Find the rank of M and a basis for the null space of T.	[6]

9231/01/SP/17 © UCLES 2016

The vector $\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$ is denoted by e . Show that there is a solution of the equation $\mathbf{M}\mathbf{x} = \mathbf{M}\mathbf{e}$ of the
form $\mathbf{x} = \begin{pmatrix} a \\ b \\ -1 \\ -1 \end{pmatrix}$, where the constants a and b are to be found. [4]

8	The	curve C has equation $y = \frac{2x^2 + kx}{x+1}$, where k is a constant.	
	(i)	Find the set of values of k for which C has no stationary points.	[5]
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			••••••
			•••••
			••••••
			••••••
			•••••
			••••••
			••••••
			••••••
			••••••

(ii)	For the case $k = 4$, find the equations of the asymptotes of C and sketch C , indicating to coordinates of the points where C intersects the coordinate axes.											
		••••										
		••••										
		••••										

9	It is given that $I_n =$	$\int_{1}^{e} (\ln x)^{n} dx \text{ for } n \ge 0.$
	•	J1

	$I_n = (i$	$(n-1)[I_{n-2}-1]$	I_{n-1}] for $n \ge 2$	2.		
						•••••
		,				,
			•••••			
						· • • • • • • • • • • • • • • • • • • •
••••••	•••••		•••••	••••••		· • • • • • •
••••••				••••••	•••••	•••••
	•••••			•••••		
	•••••					•••••
••••••						•••••
						. .
						· • • • • • • • • • • • • • • • • • • •

				•••••												
				• • • • • • • • •												
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••	
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •												
		•••••		• • • • • • • • • • • • • • • • • • • •												
••••	•••••	•••••				•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	• • • • • • • • •	• • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • •	•••••
				• • • • • • • • •												
		•••••		• • • • • • • • • • • • • • • • • • • •												
••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	•••••
		• • • • • • • • • • • • • • • • • • • •		 .												
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••
• • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	•••••	•••••	•••••	•••••	•••••
••••	•••••	•					•••••	•••••	•••••		•••••			•••••	•••••	••••
				•••••												
••••		•••••		• • • • • • • • •				•••••						•••••		
• • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
																

	10	(i)	Using	de	Moivre'	's theorem	, show	tha
--	----	-----	-------	----	---------	------------	--------	-----

	$\tan 5\theta = \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + 5\tan^4\theta}.$	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
(ii)	Hence show that the equation $x^2 - 10x + 5 = 0$ has roots $\tan^2(\frac{1}{5}\pi)$ and $\tan^2(\frac{2}{5}\pi)$.	[4]
		•••••
		•••••

		••••
		••••
		• • • • •
		••••
		••••
		• • • • •
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{2}\pi)$ and $\sec^2(\frac{2}{2}\pi)$	[3]
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{5}\pi)$ and $\sec^2(\frac{2}{5}\pi)$.	[3]
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{5}\pi)$ and $\sec^2(\frac{2}{5}\pi)$.	[3]
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{5}\pi)$ and $\sec^2(\frac{2}{5}\pi)$.	[3]
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{5}\pi)$ and $\sec^2(\frac{2}{5}\pi)$.	[3]
(iii)		•••••
(iii)	Deduce a quadratic equation, with integer coefficients, having roots $\sec^2(\frac{1}{5}\pi)$ and $\sec^2(\frac{2}{5}\pi)$.	•••••
(iii)		

11 Answer only **one** of the following two alternatives.

EITHER

The points A, B and C have position vectors \mathbf{i} , $2\mathbf{j}$ and $4\mathbf{k}$ respectively, relative to an origin O. The point N is the foot of the perpendicular from O to the plane ABC. The point P on the line-segment ON is such that $OP = \frac{3}{4}ON$. The line AP meets the plane OBC at Q.

(i)	Find a vector perpendicular to the plane ABC and show that the length of ON is	$\frac{4}{\sqrt{(21)}}$.	[4]
			••••
			••••
			••••
		•••••	••••
			••••
		•••••	••••
			••••
(ii)	Find the position vector of the point Q .		[5]
		•••••	••••
			••••
		•••••	••••
			••••
		•••••	••••
			••••
			••••
			••••

(iii)	Show that the acute angle between the planes ABC and ABQ is $\cos^{-1}(\frac{2}{3})$. [5]

-	•	•	Т	
		п	ч	u

The curve C has polar equation $r = a(1 - \cos \theta)$ for $0 \le \theta < 2\pi$.	
(i) Sketch C.	[2]

(ii)	Find the area of the region enclosed by the arc of C for which $\frac{1}{2}\pi \le \theta \le \frac{3}{2}\pi$, the half-line $\theta = \frac{1}{2}\pi$ and the half-line $\theta = \frac{3}{2}\pi$.

(iii)	Show	that
-------	------	------

$\left(\frac{\mathrm{d}s}{\mathrm{d}\theta}\right)^2$	$^2 = 4a^2 \sin^2(\frac{1}{2}\theta)$
$\sqrt{d\theta}$	$= 4a \sin \left(\frac{\pi}{2}0\right)$

where s denotes arc length, and find the length of the arc of C for which $\frac{1}{2}\pi \le \theta \le \frac{3}{2}\pi$. [7]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.