CPSC 471

Homework 3

October 2021

Instructor: Reda Alhajj

Tutorial: 06

Student: Kai Wang(30002810)

e)

RESULT (empty)

Fname

Explanation:

PNUMBER_EMPLOYEE (Pno, Essn) <- π Pno,Essn(WORKS_ON)

PROJECT_NUMBER <- π Pnumber (Project)

EMPLOYEE_ALL_PROJECTS <- PNUMBER_EMPLOYEE ÷ PROJECT_NUMBER

g)

Explanation:

 ${\sf AVERAGE_SALARY}({\sf Dno}, {\sf Average_sal}) <- \rho({\sf Dno}, {\sf Average_sal})({\sf Dno}\ \mathfrak{I}, {\sf AVERAGE}\ {\sf Salary}$ (EMPLOYEE))

Dno	Average Salary		
5	33250		
4	31000		
1	55000		

RESULT <- π Dname, Average_sal (Average_Salary \bigcirc Dno = Dname Department)

Dname	Average Salary	
Research	33250	
Administration	31000	
Headquarters	55000	

i)

HOUSTON_PROJECT(Ssn) <- π Essn (WORKS_ON Pno = Pnumber (σ Plocation = 'Houston' (PROJECT)))

NO HOUSTON DEPS $<-\pi$ Dnumber (DEPARTMENT) $-\pi$ Dnumber (σ Dlocation = 'Houston' (DEPT_LOCATIONS))

NO_HOUSTON_SSN <- π Ssn (EMPLOYEE Dno = Dnumber NO_HOUSTON_DEPS)

RESULT <- π Fname, Lname, Address (EMPLOYEE * (HOUSTON_PROJECT - NO_HOUSTON_SSN))

Fname	Lname	Address
Jennifer	Wallace	291 Berry, Bellaire, TX

j)

DEPT_MANAGERS <- π Mgr_ssn (DEPARTMENT)

DEPENDENTS_SSN <- π Essn (DEPENDENT)

DEPT_MANAGERS_NO_DEPENDENTS <- DEPT_MANAGERS - DEPENDENTS_SSN

RESULT <- π Lname (EMPLOYEE * DEPT_MANAGERS_NO_DEPENDENTS)

Lname	
Borg	

```
Question 8.18
a)
BRANCH <- σ Branch_name = 'Sharpstown' (LIBRARY_BRANCH)
BOOK_NAME <- σ Title = 'The Lost Tribe' (BOOK)
BOOK_COPIES_IN_SHARPSTOWN <- π no_of_copies (BOOK_NAME
                                                                BOOK_COPIES
c)
BORROWER_ID <- π Card_no (BORROWER)
BOOK_LOANS_ID <- π Card_no (BOOK_LOANS)
NOT_BORROWED_BOOKS <- BORROWER_ID - BOOK_LOANS_ID
NAMES_NO_BOOKS \leftarrow \pi Name ( NOT_BORROWED_BOOKS*BORROWER)
d)
BRANCH <- σ Branch_name 'Sharpstown' (LIBRARY_BRANCH)
BRANCHES_ID <- π Branch_id (BRANCH)
DUE BOOKS < -\pi Book id, Card no ((\sigma Due date = 'today' (BOOK LOANS))* BRANCHES ID)
DUE INFORMATION <- π title, Name, Address (DUE BOOKS* BOOK *BORROWER)
f)
BORROWERS(Card_no,num_books) <- \rho(Card_no, num_books)(Card_no \Im COUNT Book_id
(BOOK_LOANS)
BORROWER_5PLUS <- σ num_books >5 (BORROWERS)
BORROWERS_INFO <- π Name, Address, num_books (BORROWER_5PLUS * BORROWER)
g)
BRANCH <- σ Branch_name 'Central' (LIBRARY_BRANCH)
BOOKS ID BY KING <-\pi Book id (\sigma Author name = 'Stephen King' (BOOK AUTHORS))
BOOKS BY KING \leftarrow \pi Book id, Title (BOOKS ID BY KING * BOOK)
```

BOOKS BY KING AT CENTRAL <- π Title, No of copies (BOOKS BY KING * BRANCH * BOOK COPIES)

c)

Left outer Join means adding data from the left table to the right. It joins based on attribute that is present in both relations. In this case, Salesperson_id is the attribute that is present in both. In the case of Left outer Join, every row on the left will be kept and will bring in any matching rows from the right table. If a salesperson does not make a sale, it will be assigned a NULL value. The example below describes the Left Outer Join operation using SALESPERSON and SALE.

For example

SALESPERSON

Salesperson_id	Name	Phone	
1000	John	403-000-0001	
1001	Jack	403-000-0002	
1002	Josh	403-000-0003	
1003	James	403-000-0004	

SALE

Salesperson_id	esperson_id Serial_no		Sale_price	
1000	100000	2021-10-30	20000	
1001	100001	2021-01-01	30000	
1002	100002	2021-02-01	40000	

After Left Outer Join

Salesperson_id	Name	Phone	Serial_no	Date	Sale_price
1000	John	403-000-0001	100000	2021-10-30	20000
1001	Jack	403-000-0002	100001	2021-01-01	30000
1002	Josh	403-000-0003	100002	2021-02-01	40000
1003	James	403-000-0004	Null	Null	Null

Part ii)

a)

FARMER1 <- ρ (SIN) π p1_sin (σ p1_sin != NULL (Kids))

FARMER2 <- ρ (SIN) π p2_sin (σ p2_sin != NULL (Kids))

FARMER_SIN <- FARMER1 U FARMER2

FARMER_WITH_KIDS_AT_SCHOOL <- π SIN (FARMER_SIN*Farmer)

```
b)
SCHOOL_VILLAGE <- \rho(s_name, vname) \pi sname, vname(School)
FARMER_PARENTS <- \rho(F_sin, name) \pi SIN, name (Farmer)
KIDS_AT_SCHOOL <- SIN, s_name, name (\sigma s_name != NULL ((Kids FARMER_PARENTS))) U (Kids p2_sin = F_SIN FARMER_PARENTS)))
KIDS_NOT_SAME_VILLAGE <- \pi s_name (\sigma s_name != vname(SCHOOL_VILLAGE * KIDS_AT_SCHOOL))
SCHOOL_SAME_VILLAGE <- π s_name (School – KIDS_NOT_SAME_VILLAGE)
c)
MAX_POPULATION <- \rho(population)(\Im MAX population (VILLAGE))
VILLAGE_NAME_MAX <- \pi name (Village * MAX_POPULATION)
d)
FARMER_SIN <- \rho (F_sin) \pi SIN (Farmer)
KIDS_AT_SCHOOL <- \pi F_sin, SIN, s_name (\sigma s_name != NULL ((Kids ) p1_sin = SIN FARMER_SIN) U
        p2_{sin} = SIN FARMER_SIN))
ALL_SCHOOLS <- <- \rho (s_name) \pi sname (School)
KIDS_AT_ALL_SCHOOLS <- \rho (SIN) \pi F_sin KIDS_AT_SCHOOL \div ALL_SCHOOLS
```