デジタル信号処理の基礎-例題と Python による図で説く-

共立出版

正誤情報

最終更新: 2018年11月29日

ページ	行数, 図・表・式番号	誤	正
17	1 行目	時刻 0 のときだけ値 1 をとり, そのほかのすべて時刻	時刻 0 のときだけ値 1 をとり, そのほかのすべての時刻
44	図 3.19 (c)	$x[n]$ \xrightarrow{b} \xrightarrow{p} $y[n]$ $\xrightarrow{q^1}$ \xrightarrow{b} $\xrightarrow{q^1}$ \xrightarrow{b} $\xrightarrow{q^1}$ $\xrightarrow{q^1}$ $\xrightarrow{q^1}$ $\xrightarrow{q^1}$	$x[n] \xrightarrow{b} b \xrightarrow{\oplus} y[n]$ $q^1 \xrightarrow{b} b \xrightarrow{\oplus} q^1$ (c)
67	図 5.2	$f(x_k) \Delta x$ $x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$f(x_k) \Delta x$ $x_0 = a$ $x_k = a + k\Delta x$ $x_n = b$
71	下から9行目	信号処理では、(5.5) とともに その補足条件も成り立つとして 話をすすめるのがふつうである. そのときには、フーリエ変換の 反転公式により、連続時間非周 期信号 x(t) とその逆フーリエ変 換が 1 対 1 に対応する.	ところが、信号処理でよく出てくるディリクレ関数 $\frac{\sin x}{x}$ は (5.5) を満たさない. しかし、 $\frac{\sin x}{x}$ のような 2 乗可積分 * とよばれる関数に対しても、適切な距離を導入し、区間が有限な積分の極限を考えることによりフーリエ変換を定義できることが知られている. さらに、それらの関数とフーリエ変換には $1:1$ の対応がある.
71	脚注追加		$\int_{-\infty}^{\infty} f(x) ^2 dx < \infty \text{ のとき } f(x) \text{ は}$ 2 乗可積分とよばれる.
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \cdots$

ページ	行数, 図・表・式番号	誤	正
88	下から 5 行目	$= x[0] + x[1] + x[2]$ $\cdots + x[N-1],$	$= x[0] + x[1] + x[2] + \dots + x[N-1],$
89	下から5行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ \cdots + a_{N-2} u^{N-2} + \cdots	$f(u) = a_0 + a_2 u^2 + a_4 u^4 + \dots + a_{N-2} u^{N-2} + \dots$
116	6 行目	インパルス応答は右側系列で なければない.	インパルス応答は右側系列で なければならない.
136	8 行目	第5章で述べたように、絶対積分可能でない関数 $x(t)$ はフーリエ変換は、フーリエ変換は、同様できない、ラプラス変換は、に、指数関数的できない。 おりて変換する指数関数をかけて変換するにして、カーリエ変換(s は複次 $\sigma+j\omega$ であることに注意)は、 $X(s) = \int_{-\infty}^{\infty} x(\tau)e^{-(\sigma+j\omega)\tau}d\tau$ $= \int_{-\infty}^{\infty} x(\tau)e^{-(\sigma+j\omega)\tau}d\tau$ であり、 $x(t)e^{\sigma t}$ のフーリエ変換! であり、 $x(t)e^{\sigma t}$ のフーリエ変換をであることがわかる。 そのことがわかる。 そのことがわかる。 そのことがわかる。 ことがわかる。 ことがものであることがわかる。 ことがものであることがわかる。 ことがものであることがものである。 ことがものであることには、 ことがものである。 ことがものであることには、 ことがものである。 ことがものであることには、 ことがものである。 ことがものであることがものである。 ことがものである。 ことには、 ことがものである。 ことがものでなる。 ことがものでなる。 ことがものでなる。 ことがものでものでえる。	第5章で述べたように、絶対積分でない関数 $x(t)$ 、すなわち (5.5) を満たさない関数 $x(t)$ 、要数は、一般にはフーリエ変換をもたない。そのような $x(t)$ に近づく指数関数 $e^{-\sigma t}$ 、の、をかけた $x(t)e^{-\sigma t}$ が絶対であれば、その $x(t)e^{-\sigma t}$ にはフーリエ変換をを注意)は、 $X(s) = \int_{-\infty}^{\infty} x(\tau)e^{-\sigma t} \sigma \tau$ が絶対意とに注意)は、 $X(s) = \int_{-\infty}^{\infty} x(\tau)e^{-\sigma t} \sigma \tau$ が絶対であれば $x(t)e^{-\sigma t}$ が絶対であって、 $x(t)e^{-\sigma t}$ が絶対であれば $x(t)e^{-\sigma t}$ が絶対方ス変換をので、 $x(t)e^{-\sigma t}$ が絶対方ス変換をので、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)$ のうプラリエ変換をであれば $x(t)$ のうで、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)$ のうで、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)$ の方で、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)$ の方に、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)$ の方に、 $x(t)e^{-\sigma t}$ が絶対方ス変換をであれば $x(t)e^{-\sigma t}$ が絶対方ス $x(t)e^{-\sigma t}$ が絶対方な $x(t)e^{-\sigma t}$ がんかっと、 $x(t)e^$
142	下から 10 行目	が発散するので,フーリエ変換の 存在条件(5.5)が満たされず, 本来の意味での	が発散するので(5.5) が満 たされず,また,本来の意味 での
186	3 行目	本来の意味でのまた, ω_0 は	また、 ω_c は

ページ	行数, 図・表・式番号	誤	正
190	図 Ex.1 (3)	$ \begin{array}{c} 1 \\ & x[2n] \\ & \\ 0 & n \end{array} $	$ \begin{array}{ccc} 1 & & & \\ & $
191	図 Ex.7	0.250 0.125 0.000 -5 0 5 10 15	h[n] 1.00 0.50 0.25 0.00 0.4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
		$(1) \ a_0 = \frac{1}{2} \cdot \frac{2}{2\pi} \int_0^{2\pi} t dt$	$(1) \ a_0 = \frac{2}{2\pi} \int_0^{2\pi} t dt$
193	下から1行目	$= \frac{1}{2\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = \pi.$	$= \frac{1}{\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = 2\pi.$
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	$a_0 = \frac{2}{T} \int_0^T t dt = \frac{2}{T} \left[\frac{t^2}{2} \right]_0^T = T.$
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$