Machine Learning, STOR 565 Overview of Matrix and Linear Algebra

Andrew Nobel

January, 2020

Orthogonality and Projections

Definition: Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal, written $\mathbf{u} \perp \mathbf{v}$, if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Let $\mathbf{v} \in \mathbb{R}^n$ be a vector with unit norm, $||\mathbf{v}|| = 1$.

• v determines 1-dim subspace $V = \{\alpha \mathbf{v} : \alpha \in \mathbb{R}\}$ of \mathbb{R}^n (direction)

Defn: The *projection* of $\mathbf{u} \in \mathbb{R}^n$ onto V is the vector $\mathbf{w} \in V$ closest to \mathbf{u} ,

$$\mathsf{proj}_V(\mathbf{u}) = \operatorname*{argmin}_{w \in V} ||u - w||$$

Fact: For $V = \{\alpha \mathbf{v} : \alpha \in \mathbb{R}\}$

- $\blacktriangleright \ \operatorname{proj}_V(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle \, \mathbf{v}$
- $(u \mathsf{proj}_V(\mathbf{u})) \perp \mathbf{v}$

Matrix Basics

Notation: $\mathbb{R}^{m \times n}$ denotes set of $m \times n$ matrices **A** with real entries

$$\mathbf{A} = \{a_{ij} : 1 \le i \le m, 1 \le j \le n\}$$

- ▶ Transpose of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is $\mathbf{A}^t \in \mathbb{R}^{n \times m}$ defined by $(\mathbf{A}^t)_{ij} = (\mathbf{A})_{ji}$.
- ▶ $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}^t = \mathbf{A}$.
- ▶ If $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ then product $\mathbf{A} \mathbf{B} \in \mathbb{R}^{m \times p}$
- ► In general, $\mathbf{A} \mathbf{B} \neq \mathbf{B} \mathbf{A}$
- $(\mathbf{A} \mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$

Determinants and Inverses

The determinant of an $n \times n$ matrix **A** is denoted by $det(\mathbf{A})$.

- $det(c\mathbf{A}) = c^n \det(\mathbf{A})$

The *inverse* of A is the unique matrix A^{-1} such that

$$\mathbf{A}^{-1}\,\mathbf{A} = \mathbf{A}\,\mathbf{A}^{-1} = \mathbf{I}$$

- ▶ \mathbf{A}^{-1} exists iff $\det(\mathbf{A}) \neq 0$.
- ▶ If A and B invertible, then $(AB)^{-1} = B^{-1}A^{-1}$

Eigenvalues and Eigenvectors

Each matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has n (possibly complex) eigenvalues $\lambda_1, \dots, \lambda_n$

For each eigenvalue λ_i there is a corresponding eigenvector $\mathbf{v}_i \neq 0$ s.t.

$$\mathbf{A} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- lacksquare $\lambda_1,\ldots,\lambda_n$ are the roots of the polynomial $p(\lambda)=\det(\lambda \mathbf{I}-\mathbf{A})$
- $\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$
- Eigenvalues can be repeated
- ▶ If A is symmetric then all of its eigenvalues are real

Orthogonal Matrices

Vectors $\mathbf{u}_1,\dots,\mathbf{u}_n$ are orthonormal if $\langle \mathbf{u}_i,\mathbf{u}_j\rangle=\mathbb{I}(i=j)$ for $1\leq i,j\leq n$

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *orthogonal* if $\mathbf{A}^t \mathbf{A} = \mathbf{I}$. If \mathbf{A} is orthogonal then

- $A^{-1} = A^t$
- $A A^t = I$
- ▶ The rows and columns of A are orthonormal
- ▶ The eigenvalues $\lambda_i(\mathbf{A}) \in \{+1, -1\}$
- ▶ $det(A) \in \{+1, -1\}$

Quadratic Forms

Each symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an associated *quadratic form* $q_A : \mathbb{R}^n \to \mathbb{R}$ defined by

$$q_A(\mathbf{u}) = \mathbf{u}^t \mathbf{A} \mathbf{u} = \sum_{i=1}^n \sum_{j=1}^n u_i a_{ij} u_j$$

- ▶ **A** is non-negative definite (**A** \geq 0) if $\mathbf{u}^t \mathbf{A} \mathbf{u} \geq 0$ for every \mathbf{u}
- ▶ **A** is *positive definite* (**A** > 0) if $\mathbf{u}^t \mathbf{A} \mathbf{u} > 0$ for every $\mathbf{u} \neq \mathbf{0}$

Fact: Let \mathbf{A} $n \times n$ be symmetric.

- $ightharpoonup {f A} \geq 0$ iff all its eigenvalues are non-negative
- ▶ A > 0 iff all its eigenvalues are positive

Trace of a Matrix

Definition: The *trace* of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

- ightharpoonup tr(\mathbf{A}) = sum of eigenvalues of \mathbf{A}
- $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}^t)$
- If \mathbf{B} is $n \times n$ then $tr(\mathbf{AB}) = tr(\mathbf{BA})$

Frobenius Norm

Definition: The *Frobenius norm* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$||\mathbf{A}|| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$$

Basic Properties

- $ightharpoonup ||\mathbf{A}|| = 0$ if and only if $\mathbf{A} = 0$
- $||b\mathbf{A}|| = |b| \, ||\mathbf{A}||$
- $||A + B|| \le ||A|| + ||B||$
- $\blacktriangleright ||\mathbf{A}\mathbf{B}|| \leq ||\mathbf{A}|| \, ||\mathbf{B}||$
- $|\mathbf{A}| = \mathsf{tr}(\mathbf{A}^t \mathbf{A})$

Rank of a Matrix

Definition: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be an m x n matrix

- row-space of A = span of the rows of A (subspace of \mathbb{R}^m)
- ightharpoonup col-space of $\mathbf{A}=$ span of the cols of \mathbf{A} (subspace of \mathbb{R}^n)
- ightharpoonup row-rank(\mathbf{A}) := dim of the row-space of \mathbf{A} (at most m)
- ightharpoonup col-rank(\mathbf{A}) := dim of the col-space of \mathbf{A} (at most n)

 $\textbf{Fact:} \ \mathsf{row\text{-}rank}(\mathbf{A}) = \mathsf{col\text{-}rank}(\mathbf{A})$

Definition: The rank of A is the common value of the row and column ranks

Basic Properties of the Rank

- ▶ If $\mathbf{A} \in \mathbb{R}^{m \times n}$ then $\operatorname{rank}(\mathbf{A}) \leq \min\{m, n\}$
- $ightharpoonup rank(\mathbf{A} \mathbf{B}) \le \min\{rank(\mathbf{A}), rank(\mathbf{B})\}$
- $ightharpoonup rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- $ightharpoonup rank(\mathbf{A}^t) = rank(\mathbf{A}^t\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^t)$
- $oldsymbol{A} \in \mathbb{R}^{n imes n}$ has at most $\mathrm{rank}(oldsymbol{A})$ non-zero eigenvalues
- $f A \in \mathbb{R}^{n imes n}$ is invertible iff ${\rm rank}({f A}) = n,$ that is, ${f A}$ is of full rank

Outer Products

Definition: The *outer product* $\mathbf{u}\mathbf{v}^t$ of vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ is an $m \times n$ matrix with entries

$$(\mathbf{u}\mathbf{v}^t)_{ij} = u_i v_j$$

- $\qquad \qquad \mathbf{If} \ \mathbf{u}, \mathbf{v} \neq \mathbf{0} \ \mathsf{then} \ \mathsf{rank}(\mathbf{u}\mathbf{v}^t) = 1$
- $(\mathbf{u}\mathbf{v}^t)^t = \mathbf{v}\mathbf{u}^t$
- $||\mathbf{u}\mathbf{v}^t|| = ||\mathbf{u}|| \, ||\mathbf{v}||$
- If m = n then $tr(\mathbf{u}\mathbf{v}^t) = \langle \mathbf{u}, \mathbf{v} \rangle$

The Spectral Theorem

Spectral Theorem: If $A \in \mathbb{R}^{n \times n}$ is symmetric then there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

Spectral Decomposition: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then \mathbf{A} can be expressed as

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{D} \mathbf{\Gamma}^t$$

where $\Gamma \in \mathbb{R}^{n \times n}$ is orthogonal and $\mathbf{D} = \text{diag}(\lambda_1(A), \dots, \lambda_n(A))$.

Corollary: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then for $k \geq 1$ we have

$$\mathbf{A}^k = \mathbf{\Gamma} \mathbf{D}^k \mathbf{\Gamma}^t$$

Courant Fischer Theorem

Thm: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1(\mathbf{A}) \geq \cdots \geq \lambda_n(A)$.

$$egin{aligned} \lambda_1(\mathbf{A}) &= \max_{\mathbf{v}
eq 0} rac{\mathbf{v}^t \mathbf{A} \mathbf{v}}{\mathbf{v}^t \mathbf{v}} &= \max_{\mathbf{v} : ||\mathbf{v}|| = 1} \mathbf{v}^t \mathbf{A} \mathbf{v} \end{aligned}$$
 $egin{aligned} \lambda_n(\mathbf{A}) &= \min_{\mathbf{v}
eq 0} rac{\mathbf{v}^t \mathbf{A} \mathbf{v}}{\mathbf{v}^t \mathbf{v}} &= \min_{\mathbf{v} : ||\mathbf{v}|| = 1} \mathbf{v}^t \mathbf{A} \mathbf{v} \end{aligned}$
 $egin{aligned} \lambda_i(\mathbf{A}) &= \max_{V: \dim(V) = i} \min_{\mathbf{v} \in V, ||\mathbf{v}|| = 1} \mathbf{v}^t \mathbf{A} \mathbf{v} \end{aligned}$