DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA 321 (Optimization)

Mid-semester Examination

Time: 2 pm - 4 pm September 22, 2022 Maximum marks: 30

Notation: \mathbf{a}_k^T denotes the k-th row of A and $\tilde{\mathbf{a}}_k$ denotes the k-th column of A.

1. For a linear programming problem (P) of the form,

Maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to
$$\mathbf{A}_{2\times 3}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0},$$

where
$$\tilde{\mathbf{a}}_1 = [1, 2]^T$$
, $\tilde{\mathbf{a}}_2 = [2, -2]^T$, $\tilde{\mathbf{a}}_3 = [3, 3]^T$, $\mathbf{b} = [4, 2]^T$, $\mathbf{c} = [1, 2, 4]^T$.

(a) Give all the entries of the simplex table for the BFS corresponding to the basis $\{\tilde{\mathbf{a}}_1, \tilde{\mathbf{a}}_2\}$.

	$c_j - z_j$	0	0	1	
Solution:		$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}}_2$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\mathbf{b}$
Solution.	$\overline{x_1}$	1	0	2	2
	x_2	0	1	$\frac{1}{2}$	1

(b) Find an optimal solution of (P) by using the simplex algorithm. Hence give an optimal solution of the Dual of (P).

Solution: In the previous table x_3 is the entering and x_1 is the leaving variable. The optimal table is given by:

$c_j - z_j$	$-\frac{1}{2}$	0	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\mathbf{b}$
x_3	$\frac{1}{2}$	0	1	1
x_2	$-\frac{1}{4}$	1	0	$\frac{1}{2}$

An optimal solution of (P) is $x_1 = 0, x_2 = \frac{1}{2}, x_3 = 1$.

An optimal solution of the Dual is given by

$$\mathbf{c}_B^T B^{-1} = [4, 2]^T \frac{1}{12} \begin{bmatrix} 3 & -3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{7}{6}, \frac{1}{6} \end{bmatrix}.$$
 [3.5 + 3.5 + 2]

2. Consider the following linear programming problem (P) given below:

Maximize
$$2x_2 + 3x_3$$

subject to
$$x_1 - x_2 - x_3 \ge a$$

 $4x_1 + x_2 + 3x_3 \le b$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

(a) Write the dual of (P).

Solution: The Primal can be rewritten as:

Maximize
$$2x_2 + 3x_3$$

subject to
$$-x_1 + x_2 + x_3 \le -a$$

$$4x_1 + x_2 + 3x_3 \le b$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

The dual is given by:

Minimize
$$-ay_1 + by_2$$

subject to $-y_1 + 4y_2 \ge 0$
 $y_1 + y_2 \ge 2$
 $y_1 + 3y_2 \ge 3$
 $y_1 \ge 0, y_2 \ge 0$.

(b) Is the feasible region of the Dual unbounded? If yes, give a direction of Fea(D). If no, justify.

Solution: The feasible region of the Dual is unbounded with $[0,1]^T$ as a direction of Fea(D).

(c) If $[0, r, s]^T$ is an optimal solution of (P) (where $r \neq 0, s \neq 0$), then if possible give an optimal solution of the Dual of (P). Also, if possible give the number of optimal solutions (P) has, with proper justification.

Solution: Since $r, s \neq 0$, by complementary slackness any optimal solution **y** of the Dual will satisfy $y_1 + y_2 = 2$ and $y_1 + 3y_2 = 3$, solving which we get the unique optimal solution of the Dual, $y_1 = \frac{3}{2}$ and $y_2 = \frac{1}{2}$.

Since $y_1 = \frac{3}{2}$, $y_2 = \frac{1}{2}$ is optimal for the Dual, by complementary slackness any optimal solution **x** of primal (P) must satisfy

$$-x_1 + x_2 + x_3 = -a$$
$$4x_1 + x_2 + 3x_3 = b$$

.

Since $-y_1 + 4y_2 > 0$ for the optimal solution $y_1 = \frac{3}{2}$ and $y_2 = \frac{1}{2}$ of the Dual, for any optimal solution of the primal, $x_1 = 0$.

But since $y_1 = \frac{3}{2}$, $y_2 = \frac{1}{2}$ is optimal for the Dual, by complementary slackness

$$x_2 + x_3 = -a$$

$$x_2 + 3x_3 = b$$

for any optimal solution of the Primal. The above system has a unique solution, hence (P) also has a unique optimal solution.

$$[2+2+4]$$

3. Consider a linear programming problem (P) of the form,

Minimize
$$\mathbf{c}^T \mathbf{x}$$
, $(\mathbf{c} \neq \mathbf{0})$
subject to $A_{3\times 2}\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.

such that $[0,2]^T$, $[4,0]^T$ and $[p,q]^T$ (where p>0,q>0) are the **only** extreme points of Fea(P) and $[1,2]^T$, $[0,1]^T$ are extreme directions of Fea(P). Let the extreme point $[p,q]^T$ lie on the hyperplanes corresponding to \mathbf{a}_1^T , \mathbf{a}_2^T . Add variables s_i , i=1,2,3, (s_i) corresponding to \mathbf{a}_i^T) to convert all the inequality constraints (except the non negativity constraints) to equality constraints.

(a) Draw the region Fea(P) satisfying the above conditions.

Solution: There are two types of feasible region possible:

- (i) The extreme direction is given by the constraint $s_3 = 0$.
- (ii) The extreme direction is given by either the constraint $s_1 = 0$ or $s_2 = 0$.
- (b) Give the basic and non basic variables of the BFS of (P) corresponding to $[0,2]^T$.

Solution:

- (i) If Fea(P) is as in (i) then basic variables are x_2, s_3 and one of s_1, s_2 (depending on your picture). The rest, x_1 and **one** of s_1, s_2 are non basic variables.
- (ii) If Fea(P) is as in (ii) then basic variables are x_2, s_1 and s_2 . The rest, x_1 and s_3 are non basic variables.
- (c) If possible give the signs (either +, or ≤ 0) of all the entries possible in the non basic columns (not the $c_j - z_j$ values) of the simplex table corresponding to $[p,q]^T$. Give brief justification.

Solution:								
		$B^{-1}\tilde{\mathbf{e}_1}$	$B^{-1}\tilde{\mathbf{e}_2}$					
(i)	x_1	-	+					
	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	+	-					
	s_3	+	_					
(ii)		$B^{-1}\tilde{\mathbf{e}_1}$	$B^{-1}\tilde{\mathbf{e}_2}$					
			_					
(ii)	$\overline{x_1}$	+	_					
(ii)	x_1 x_2 s_3	+ +	_ _ _					

Depending on the choice of s_1, s_2 the columns may get interchanged.

(d) If $[0,2]^T$ is the optimal solution of (P) then in the corresponding optimal simplex table of the Dual of (P) will there be any non negative row (not the $c_j - z_j$ row)? If yes, then it is the row corresponding to which variable of the Dual? If no, justify.

Solution:

(i) In the simplex table corresponding to $[0,2]^T$ there will be a non positive column in $B^{-1}s_1$ (or $B^{-1}s_2$) because of the extreme direction $[0,1]^T$.

The corresponding optimal BFS of the dual will have basic variables s'_1 and **one** of y_1 or y_2 .

The non negative row will correspond to y_1 or y_2 .

(ii) In the simplex table corresponding to $[0,2]^T$ there will be a non positive column in $B^{-1}s_3$ because of the extreme direction $[0,1]^T$.

The corresponding optimal BFS of the dual will have basic variables s'_1 and y_3 .

The non negative row will correspond to y_3 .

- (e) If $[4,0]^T$ is the optimal solution of (P) and b_3 (the third component of **b**) is changed to $b_3 + t$ (everything else remaining same as (P)), then if possible give a value of t (t > 0), such that the optimal solution of the new (P) has basic variables x_2, s_1, s_2 . If not, justify.
- (f) If b_3 is changed to $b_3 + t$ (0 < t < 1) (everything else remaining same as (P)) then can there exist an optimal solution of the Dual of the new (P) with $y_1 > 0, y_2 > 0, y_3 > 0$?
- (g) If $[p,q]^T$ is the optimal solution for (P) and **c** (the cost vector) is changed to **c'** (everything else remaining same as (P)) such that $[p,q]^T$ is no longer optimal for the new (P), then can $[0,2]^T$ be the unique optimal solution for the new (P)? Justify. **Solution:** True statement but **c'** needs to be given.

$$[1+2+4+2+3+3+1]$$

The parts (d), (e), (f), (g) in the above question are independent, that is, conditions assumed for one part may not be valid for the other parts

END