Assignment#6

Chapter 6

1. (5 points)Let $\mathbf{p} = x$ and $\mathbf{q} = x^2$ and the stated sample points are given :

$$x_0 = -2$$
, $x_1 = 0$, $x_2 = 2$

- (a) Find $\| \mathbf{p} \|$ relative to the evaluation inner product on P_{2} . (2.5 points)
- (b)Show that the vectors \mathbf{p} and \mathbf{q} are orthogonal with respect to this inner product.(2.5 points)
- 2. (5 points) Find a basis for the orthogonal complement of the subspace of R^n spanned by the vectors.

$$\mathbf{v_1} = (1, 4, 5, 2), \mathbf{v_2} = (2, 1, 3, 0), \mathbf{v_3} = (-1, 3, 2, 2)$$

3. (5 points)The vectors $\mathbf{v_1}$, $\mathbf{v_2}$, and $\mathbf{v_3}$ are **orthonormal** with respect to the Euclidean inner product on R^4 . Find the orthogonal projection of $\mathbf{b} = (1, 2, 0, -1)$ onto the subspace W spanned by these vectors.

$$\mathbf{v_1} = \left(\begin{array}{c} \frac{1}{2} \end{array}, \frac{1}{2} \end{array}, \frac{1}{2} \end{array}, \frac{1}{2} \right), \mathbf{v_2} = \left(\begin{array}{c} \frac{1}{2} \end{array}, \frac{1}{2} \end{array}, -\frac{1}{2} \end{array}, -\frac{1}{2} \end{array}, -\frac{1}{2} \end{array}), \mathbf{v_3} = \left(\begin{array}{c} \frac{1}{2} \end{array}, -\frac{1}{2} \end{array}, \frac{1}{2} \end{array}, -\frac{1}{2} \end{array})$$

4. (15 points)Consider

$$A = \begin{bmatrix} 1 & -6 \\ 3 & 6 \\ 4 & 8 \\ 5 & 0 \\ 7 & 8 \end{bmatrix}$$

- (a) Find an orthonormal basis for the column space of A .(5 points)
- (b) Write A as **QR**-decomposition , where **Q** has **orthonormal** columns and **R** is upper triangular.(5 points)
- (c) Find the least square solution to $\mathbf{A}x = \mathbf{b}$, if $\mathbf{b} = [-3, 7, 1, 0, 4]^T$. (5 points)
- **5.** (10 points)Let **W** be the plane with equation 5x 3y + z = 0.
 - a. Find a basis for **W**. (5 points)
 - b. Find the standard matrix for the orthogonal projection onto W.(5 points)
- 6. (20 points)Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

- (a) Find the projection matrix P onto the row space of A, and the projection matrix Q onto the nullspace of A. (10 points)
- (b) Find **P+Q. Explain your result.** (5 points)
- (c) Find **PQ**. Explain your result.(5 points)
- 7. (10 points) Find parametric equations for all least squares solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$,

Where column vectors of **A** are **not** linear independent.

$$\mathbf{A} = \begin{bmatrix} -1 & 3 & 2 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$$

8. (10 points) Find the least squares straight line fit

$$y = ax + b$$

to the data points:

and show that the result is reasonable by graphing the fitted line and plotting the data in the same coordinate system.

9. (20 points)Given the following set of data points:

$$(-5, -133), (-4, -71), (0, -3), (3, 27)$$

- (a) Find the parabola $y=ax^2+bx+c$ which best fits these points. (10 points)
- (b) Find the parabola $y=ax^2+c$ with no linear term which best fits these points. (10 points)

評分標準:

每題配分已標注,答錯即 0 分。

本次作業無需每題寫心得,請選擇你認為需要的,不單獨算分,但完全不寫心得最多-20.

! 如果不會請去請教同學,並在作業裡說明你請教了誰。如未說明 且被發現答案相似度過高(包括過程,心得,結果),則按抄襲處理!

截止日期: 12/8 00:00(週四)