Introduction to Satisfiability Modulo Theories

Dejan Jovanović

SRI International

SAT/SMT/AR Summer School, Lisbon, 2016

Outline

- Introduction
- DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- Finish

Outline

- Introduction
- 2 DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- 5 Finish

what we're trying to solve

Problem

Check if a given (quantifier-free) formula is satisfiable modulo the union of background theories.

Example (QF_UFLRA)

$$(z = 1 \lor z = 0) \land (x - y + z = 1) \land (f(x) > f(y))$$

what we're trying to solve

Problem

Check if a given (quantifier-free) formula is satisfiable modulo the union of background theories.

Example (QF_UFLRA)

$$(z = 1 \lor z = 0) \land (x - y + z = 1) \land (f(x) > f(y))$$

Linear real arithmetic (LRA).

what we're trying to solve

Problem

Check if a given (quantifier-free) formula is satisfiable modulo the union of background theories.

Example (QF_UFLRA)

$$(z = 1 \lor z = 0) \land (x - y + z = 1) \land (f(x) > f(y))$$

- Linear real arithmetic (LRA).
- Uninterpreted functions (UF).

what we're trying to solve

Problem

Check if a given (quantifier-free) formula is satisfiable modulo the union of background theories.

Example (QF_UFLRA)

$$(z = 1 \lor z = 0) \land (x - y + z = 1) \land (f(x) > f(y))$$

- Linear real arithmetic (LRA).
- Uninterpreted functions (UF).
- **3** Satisfiable with $z \mapsto 0, x \mapsto 1, y \mapsto 0, f(1) \mapsto 1, f(0) \mapsto 0$

many applications

Example

Schedule *n* jobs, each composed of *m* consecutive tasks, on *m* machines.

Schedule in 8 time slots.

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

many applications

Example

Schedule *n* jobs, each composed of *m* consecutive tasks, on *m* machines.

Schedule in 8 time slots.

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

$$\begin{split} &(t_{1,1} \geq 0) \wedge (t_{1,2} \geq t_{1,1} + 2) \wedge (t_{1,2} + 1 \leq 8) \\ &(t_{2,1} \geq 0) \wedge (t_{2,2} \geq t_{2,1} + 3) \wedge (t_{2,2} + 1 \leq 8) \\ &(t_{3,1} \geq 0) \wedge (t_{3,2} \geq t_{3,1} + 2) \wedge (t_{3,2} + 3 \leq 8) \\ &((t_{1,1} \geq t_{2,1} + 3) \vee (t_{2,1} \geq t_{1,1} + 2)) \\ &((t_{1,1} \geq t_{3,1} + 2) \vee (t_{3,1} \geq t_{1,1} + 2)) \\ &((t_{2,1} \geq t_{3,1} + 2) \vee (t_{3,1} \geq t_{2,1} + 3)) \\ &((t_{1,2} \geq t_{2,2} + 1) \vee (t_{2,2} \geq t_{1,2} + 1)) \\ &((t_{1,2} \geq t_{3,2} + 3) \vee (t_{3,2} \geq t_{1,2} + 1)) \\ &((t_{2,2} \geq t_{3,2} + 3) \vee (t_{3,2} \geq t_{2,2} + 1)) \end{split}$$

many applications

Example

Schedule *n* jobs, each composed of *m* consecutive tasks, on *m* machines.

Schedule in 8 time slots.

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

$$(t_{1,1} \ge 0) \land (t_{1,2} \ge t_{1,1} + 2) \land (t_{1,2} + 1 \le 8)$$

$$(t_{2} \text{Run SMT solver (QF_IDL)}$$

$$t_{1,1} \mapsto 5, \quad t_{1,2} \mapsto 7$$

$$t_{2,1} \mapsto 2, \quad t_{2,2} \mapsto 6$$

$$t_{3,1} \mapsto 0, \quad t_{3,2} \mapsto 3$$

$$((t_{2,2} \ge t_{3,2} + 3) \lor (t_{3,2} \ge t_{2,2} + 1))$$

many applications

$$\begin{split} T_1^{\mathsf{X}}(t) &= -3.2484 + 270.7t + 433.12t^2 - 324.83999t^3 \\ T_1^{\mathsf{Y}}(t) &= 15.1592 + 108.28t + 121.2736t^2 - 649.67999t^3 \\ T_1^{\mathsf{Y}}(t) &= 38980.8 + 5414t - 21656t^2 + 32484t^3 \\ T_2^{\mathsf{X}}(t) &= 1.0828 - 135.35t + 234.9676t^2 + 3248.4t^3 \end{split}$$

$$T_2(t) = 16326^{-1} 168360^{-1} 254360^{-1} 2 + 624364^{-1}$$

$$T_2'(t) = 18.40759 - 230.6364t - 121.2736t^2 - 649.67999t^3$$

$$T_2'(t) = 40280.15999 - 10828t + 24061.9816t^2 - 32484t^3$$

$$D = 5 H = 1000 0 \le t \le \frac{1}{20}$$

$$|T_1^{z}(t) - T_2^{z}(t)| \leq H - (T_1^{x}(t) - T_2^{x}(t))^2 + (T_1^{y}(t) - T_2^{y}(t))^2 \leq D^2$$

Example from [NM12]

many applications

$$\begin{aligned} & \tau_{1}^{x}(t) = -3.2484 + 270.7t + 433.12t^{2} - 324.83999t^{3} \\ & \tau_{1}^{y}(t) = 15.1592 + 108.28t + 121.2736t^{2} - 649.67999t^{3} \\ & \tau_{1}^{z}(t) = 38980.8 + 5414t - 21656t^{2} + 32484t^{3} \end{aligned}$$

$$& \tau_{2}^{x}(t) = 1$$

$$& \tau_{2}^{y}(t) = 1$$

$$\begin{split} D = 5 & H = 1000 & 0 \le t \le \frac{1}{20} \\ |\mathcal{T}_1^{\mathsf{z}}(t) - \mathcal{T}_2^{\mathsf{z}}(t)| \le H & (\mathcal{T}_1^{\mathsf{x}}(t) - \mathcal{T}_2^{\mathsf{x}}(t))^2 + (\mathcal{T}_1^{\mathsf{y}}(t) - \mathcal{T}_2^{\mathsf{y}}(t))^2 \le D^2 \end{split}$$

Example from [NM12]

many applications

```
Example
  void swap(int* a, int* b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
```

Check if the swap is correct:

- Heap: array $BV_{32} \mapsto BV_{32}$
- Update heap line by line
- Check if correct

many applications

```
Example
  void swap(int* a, int* b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
```

Check if the swap is correct:

- Heap: array $BV_{32} \mapsto BV_{32}$
- Update heap line by line
- Check if correct

$$h_1 = \operatorname{store}(h_0, a, h_0[a] +_{32} h_0[b])$$

 $h_2 = \operatorname{store}(h_1, b, h_1[a] -_{32} h_1[b])$
 $h_3 = \operatorname{store}(h_2, a, h_2[a] -_{32} h_2[b])$
 $\neg (h_3[a] = h_0[b] \land h_3[b] = h_0[a])$

many applications

```
Example

void swap(int* a, int Run SMT solver (QF_ABV)

*a = *a + *b;

*b = *a - *b;

*a = *a - *b;

h_0[0] \mapsto 1, h_1[0] \mapsto 2

h_2[0] \mapsto 0, h_3[0] \mapsto 0
```

Check if the swap is correct:

- Heap: array $BV_{32} \mapsto BV_{32}$
- Update heap line by line
- Check if correct
- Incorrect: aliasing

$$h_1 = \text{store}(h_0, a, h_0[a] +_{32} h_0[b])$$

 $h_2 = \text{store}(h_1, b, h_1[a] -_{32} h_1[b])$
 $h_3 = \text{store}(h_2, a, h_2[a] -_{32} h_2[b])$
 $\neg (h_3[a] = h_0[b] \land h_3[b] = h_0[a])$

modeling and solving

Modeling

- Depending on the problem domain, select a fitting theory.
- Consider expressivity vs solving complexity.

Solving

- Get an SMT solver that supports the theory.
- Hope for the best.

common theories of interest

Uninterpreted Functions (QF_UF)

Simplest first-order theory, with equality, applications of uninterpreted functions, and variables of uninterpreted sorts.

Reflexivity: x = x

Symmetry: $x = y \Rightarrow y = x$

Transitivity: $x = y \land y = z \Rightarrow x = z$

Congruence: $x = y \Rightarrow f(x) = f(y)$

Example

$$f(f(f(x))) = x$$
 $f(f(f(f(x)))) = x$ $f(x) \neq x$

common theories of interest

Theory of Arrays [McC93]

Operates over sorts array, index, element and function symbols

$$_[_]$$
: array \times index \mapsto element

 $store: array \times index \times element \mapsto array \ \ .$

Read-Over-Write-1: store(a, i, e)[i] = e

Read-Over-Write-2: $i \neq j \Rightarrow \text{store}(a, i, e)[j] = a[j]$

Extensionality: $a \neq b \Rightarrow \exists i : a[i] \neq b[i]$

Example

 $\mathsf{store}(\mathsf{store}(a,i,a[j]),j,a[i]) = \mathsf{store}(\mathsf{store}(a,j,a[i]),i,a[j])$

common theories of interest

Arithmetic

Arithmetic constraints (inequalities, equalities) over arithmetic (real or integer) variables.

Difference logic (QF_RDL, QF_IDL):

$$x - y \le 1 \quad , \qquad \qquad x - y > 10 \quad .$$

Linear arithmetic (QF_LRA, QF_LIA):

$$2x - 3y + 4z \le 5 .$$

Non-linear arithmetic (QF_NRA, QF_NIA):

$$x^2 + 3xy + y^2 > 0 .$$

common theories of interest

Bitvectors (QF_BV)

Operates over fixed-size bit-vectors, with bit-vector operations:

- concatenation $a \circ b$, extraction a[i:j]
- bit-wise operators $\sim a, a \mid b, a \& b, \dots$
- shifts $a \ll k, b \gg k$ (logical, arithmetic)
- arithmetic a + b, a b, a * b, a/b, ...
- predicates =, <, \le , ... (signed and unsigned)

Semantics similar to programming languages.

Example (a is 32-bits)

$$(\sim a \& (a+1)) >_u a$$

some other interesting theories

Some other theories

- Floating point [BDG⁺14, ZWR14]
- Inductive data-types [BST07]
- Strings and regular expressions [LRT⁺14, KGG⁺09]
- Quantifiers [DMB07, RTG⁺13]
- Differential Equations [GKC13]
- ...

more information

Books and chapters [BSST09, BM07, KS08]

- Online
 - SMT-LIB at http://smtlib.cs.uiowa.edu
 - SMT-COMP at http://smtcomp.sourceforge.net

Outline

- Introduction
- 2 DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- Finish

how to solve it?

how to solve it?

Check T-satisfiability of a T-formula F

Convert to DNF

$$F \Leftrightarrow \bigvee_{i=1}^{D} (L_1^i \wedge L_2^i \wedge \cdots \wedge L_{n_i}^i) .$$

how to solve it?

Check T-satisfiability of a T-formula F

Convert to DNF

$$F \Leftrightarrow \bigvee_{i=1}^{D} (L_1^i \wedge L_2^i \wedge \cdots \wedge L_{n_i}^i) .$$

② If any of disjuncts is *T*-satisfiable, return SAT, else UNSAT.

how to solve it?

Check T-satisfiability of a T-formula F

Convert to DNF

$$F \Leftrightarrow \bigvee_{i=1}^{D} (L_1^i \wedge L_2^i \wedge \cdots \wedge L_{n_i}^i) .$$

② If any of disjuncts is *T*-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T

Procedure to decide satisfiability of a conjunction of *T*-literals.

sat solver instead of dnf?

Use a SAT solver

- Instead of DNF: Apply a SAT solver.
- Check the literals selected by the SAT solver.
- If not *T*-satisfiable, add a blocking clause.

example

View Theory

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$

example

View Boolean

example

View

Boolean

example

View Boolean

```
\begin{array}{ccccc}
 & \neg & B_1 \\
( & B_2 & \lor & B_3 & ) \\
( & B_4 & \lor & B_5 & ) \\
( & B_6 & \lor & B_7 & ) \\
 & \neg & B_8
\end{array}
```

```
\llbracket \neg B_1 \ , \neg B_8 \ , \neg B_3 \ , B_2 \ , \neg B_5 \ , B_4 \ , \neg B_7 \ , B_6 \ \rrbracket
```

example

View

Theory

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$

$$[\![\neg a = b, \ \neg x = y, \ \neg x = b, \ x = a, \ \neg y = b, \ y = a, \ \neg z = b, \ z = a]\!]$$

example

View Theory

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$
Check with *T*-solver
$$x = a \land y = a \Rightarrow x = y$$

$$\llbracket \neg a = b, \neg x = y, \neg x = b, x = a, \neg y = b, y = a, \neg z = b, z = a \rrbracket$$

example

View Theory

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$

$$(x = y \lor \neg x = a \lor \neg y = a)$$
Block
Add clause

Check with SAT solver

 $\llbracket \neg a = b, \ \neg x = y, \ \neg x = b, \ x = a, \ \neg y = b, \ y = a, \ \neg z = b, \ z = a \rrbracket$

example

View

Boolean

example

View Boolean

Check with SAT solver

 $\llbracket \neg B_1 \ , \neg B_8 \ , \neg B_3 \ , B_2 \ , \neg B_4 \ , B_5 \ , \neg B_7 \ , B_6 \ \rrbracket$

example

View

Theory

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$

$$(x = y \lor \neg x = a \lor \neg y = a)$$

Check with SAT solver

$$[\![\neg a = b, \ \neg x = y, \ \neg x = b, \ x = a, \ \neg y = a, \ y = b, \ \neg z = b, \ z = a]\!]$$

example

View

Theory

Check with *T*-solver Satisfiable

 $a, x, z \mapsto c_1$

 $b, y \mapsto c_2$

$$\neg a = b$$

$$(x = a \lor x = b)$$

$$(y = a \lor y = b)$$

$$(z = a \lor z = b)$$

$$\neg x = y$$

$$(x = y \lor \neg x = a \lor \neg y = a)$$

Check with SAT solver

$$[\![\neg a = b, \ \neg x = y, \ \neg x = b, \ x = a, \ \neg y = a, \ y = b, \ \neg z = b, \ z = a]\!]$$

discussion

Properties

- SAT and *T*-solver only communicate via existing literals.
- Number of possible conflicts finite ⇒ termination.
- Reuse the improvements in SAT solving.
- SAT solver is "blind" and can get lost:(.

discussion

Properties

- SAT and *T*-solver only communicate via existing literals.
- Number of possible conflicts finite ⇒ termination.
- Reuse the improvements in SAT solving.
- SAT solver is "blind" and can get lost:(.

Integrate closely with the SAT solver: DPLL(T) [DMR02, NOT05]

Incremental: Check *T*-satisfiability along the SAT solver.

Backtrack: Backtrack with SAT solver and keep context.

Propagation: If existing literals are implied tell SAT solver

Conflict: Small conflict explanations.

great but not perfect

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

Example (E Exponential enumeration of paths.

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

great but not perfect

Example (L Can only use existing literals!

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

Outline

- Introduction
- DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- 5 Finish

the theory

- Literals are of the form $x = y, x \neq y, x = f(x, f(y, z))$.
- Can be decided in $O(n \log(n))$ based on congruence closure.
- Efficient theory propagation for equalities.
- Can generate:
 - small explanations [DNS05],
 - minimal explanations [NO07],
 - smallest explanations NP-hard [FFHP].
- Typically the core of the SMT solver and used in other theories.

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

 $g(x) \neq g(z)$

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

 $g(x) \neq g(z)$

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

 $g(x) \neq g(z)$

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

- 2 f(f(x,y),y) = z

congruence closure

Example

$$[f(x,y) = x, h(y) = g(y), f(f(x,y),y) = z, g(x) \neq g(z)]$$

Conflict:

- **2** f(f(x,y),y) = z
- **3** f(x, y) = x

Difference Logic

the theory

- Literals are of the form $x y \bowtie k$, where
 - $\bowtie \in \{ \leq, <, =, \neq, >, \geq \}$,
 - x and y are arithmetic variables (integer or real),
 - *k* is a constant (integer or real).
- We can rewrite x y = k to $(x y \le k) \land (x y \ge k)$.
- In integers, we can rewrite x y < k to $x y \le k 1$.
- In reals, we can rewrite x y < k to $x y \le k \delta$.
- Can assume: all literals of the form $x y \le k$.

Difference Logic the theory

- Any solution to a set of literals can be shifted:
 - if v is a satisfying assignment, so is v'(x) = v(x) + k.
- We can use this to also process simple bounds $x \le k$:
 - introduce fresh variable z (for zero),
 - rewrite each x < k to x z < k,
 - given a solution v, shift it so that v(z) = 0.
- If we allow (dis)equalities as literals, then:
 - in reals, satisfiability is polynomial;
 - in integers, satisfiability is NP-hard.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

from literals to graph

Example

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

Theorem

literals unsatisfiable $\Leftrightarrow \exists$ negative path.

from literals to graph

Example

$$[x \le 1, x - y \le 2, y - z \le 3, z - x \le -6]$$

- Construct a graph from literals.
- Check if there is a negative path.

Theorem

literals unsatisfiable $\Leftrightarrow \exists$ negative path.

Conflict:

$$(x - y \le 2), (y - z \le 3), (z - x \le -6).$$

the theory

Language:

- Atoms are of the form $a_1x_1 + \cdots + a_nx_n \leq b$.
- We can rewrite t = b to $(t \le b) \land (t \ge b)$.
- In integers, we can rewrite t < b to $t \le b 1$.
- In reals, we can rewrite t < b to $t \le b \delta$.

Variant of simplex designed for DPLL(T) [DDM06]:

- Incremental
- Cheap backtracking
- Can do theory propagation
- Can generate minimal explanations
- Worst case exponential (fast in practice)

tableau

- Rewrite each $\sum a_i x_i \le b$ to $s \le b$ with $s = \sum a_i x_i$.
- We get tableau of equations + simple bounds on variables.
 - Tableau is fixed.
 - Bounds can be asserted and retracted.

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$$

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

tableau

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$$

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

 $l_i \leq x_i \leq u_i$

tableau

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$$

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

• Variables can be basic and non-basic in the tableau.

tableau

Tableau $s_1 = a_{1,1} \cdot x_1 + \dots + a_{1,i} \cdot x_j + \dots + a_{1,n} \cdot x_n$ \vdots $s_i = a_{i,1} \cdot x_1 + \dots + a_{i,i} \cdot x_j + \dots + a_{i,n} \cdot x_n$ \vdots $s_m = a_{m,1} \cdot x_1 + \dots + a_{m,i} \cdot x_j + \dots + a_{m,n} \cdot x_n$

Bounds
$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_j \le x_j \le u_j$$

• Variables can be basic and non-basic in the tableau.

tableau

Tableau $s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$ \vdots $s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$ \vdots $s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$

Bounds
$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_j \le x_j \le u_j$$

• Variables can be basic and non-basic in the tableau.

tableau

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$$

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

- Variables can be basic and non-basic in the tableau.
- Keep an assignment *v* of all variables:
 - v satisfies the tableau,
 - *v* satisfies bounds on the non-basic variables.

tableau

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}
\vdots
s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}
\vdots
s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

- Variables can be basic and non-basic in the tableau.
- Keep an assignment *v* of all variables:
 - v satisfies the tableau,
 - *v* satisfies bounds on the non-basic variables.
- Initially v(x) = 0 and $-\infty \le x \le +\infty$.

tableau

Tableau

$$s_{1} = a_{1,1} \cdot x_{1} + \dots + a_{1,i} \cdot x_{j} + \dots + a_{1,n} \cdot x_{n}$$

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

Case 1:

- *v* satisfies bound on the basic variables too.
- Satisfiable, *v* is the model!

tableau

Tableau $s_1 = a_{1,1} \cdot x_1 + \dots + a_{1,i} \cdot x_j + \dots + a_{1,n} \cdot x_n$ \vdots $s_i = a_{i,1} \cdot x_1 + \dots + a_{i,i} \cdot x_j + \dots + a_{i,n} \cdot x_n$ \vdots

 $s_m = a_{m,1} \cdot x_1 + \cdots + a_{m,i} \cdot x_i + \cdots + a_{m,n} \cdot x_n$

Bounds
$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

Case 2:

- v doesn't satisfy bound on the basic variables s_i , and
- all x_j 's that s_i depends on are at their bounds (can't fix).
- Unsatisfiable, the row is the explanation.

tableau

Tableau

$$\vdots$$

$$s_{i} = a_{i,1} \cdot x_{1} + \dots + a_{i,i} \cdot x_{j} + \dots + a_{i,n} \cdot x_{n}$$

$$\vdots$$

$$s_{m} = a_{m,1} \cdot x_{1} + \dots + a_{m,i} \cdot x_{j} + \dots + a_{m,n} \cdot x_{n}$$

 $s_1 = a_{1,1} \cdot x_1 + \cdots + a_{1,j} \cdot x_j + \cdots + a_{1,n} \cdot x_n$

Bounds

$$-\infty \le x_1 \le u_1$$

$$l_2 \le x_2 \le +\infty$$

$$\vdots$$

$$l_i \le s_i \le u_i$$

$$l_i \le x_i \le u_i$$

Case 3:

- v doesn't satisfy bound on the basic variables s_i , and
- exists x_i 's that s_i depends on, with slack available.
- Pivot, update, and continue.

example

$$[[2y - x - 2 \le 0, -2y - x + 4 \le 0]]$$

example

$$[\![s_1 \le 2, s_2 \le -4]\!]$$

Tableau

$$s_1 = 2y - x$$
$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le +\infty$$

 $-\infty \leq s_2 \leq +\infty$

$$x \mapsto 0$$

$$y \mapsto 0$$

$$s_1 \mapsto 0$$

 $s_2 \mapsto 0$

example

$$[\![s_1 \leq 2, s_2 \leq -4]\!]$$

Tableau

$$s_1 = 2y - x$$
$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le +\infty$$

$$-\infty \le s_2 \le +\infty$$

$$x \mapsto 0$$
$$y \mapsto 0$$
$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

$$[\![s_1 \leq 2, s_2 \leq -4]\!]$$

Tableau

$$s_1 = 2y - x$$
$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le +\infty$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

$$[\![s_1 \le 2, s_2 \le -4]\!]$$

Tableau

$$s_1 = 2y - x$$
$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le +\infty$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

$$[s_1 \le 2, s_2 \le -4]$$

Tableau

$$s_1 = 2y - x$$

 $\mathsf{s}_2 = -2\mathsf{y} - \mathsf{x}$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

Tableau

$$s_1 = 2y - x$$

$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$
$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

Tableau

$$s_1 = 2y - x$$

$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

 $s_2 \mapsto 0$

example

Tableau

$$s_1 = 2y - x$$

$$s_2 = -2y - x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto 0$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 0$$

$$s_1 \mapsto 0$$

$$s_2 \mapsto -4$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

Assignment

$$x \mapsto 0$$
$$y \mapsto 0$$
$$s_1 \mapsto 0$$

 $s_2 \mapsto -4$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 2$$
$$s_1 \mapsto 4$$

$$s_2 \mapsto -4$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

Assignment

$$x \mapsto 0$$
$$y \mapsto 2$$
$$s_1 \mapsto 4$$

 $s_2 \mapsto -4$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 2$$
$$s_1 \mapsto 4$$

$$s_2 \mapsto -4$$

example

Tableau

$$s_1 = -s_2 - 2x$$
$$y = -\frac{1}{2}s_2 - \frac{1}{2}x$$

Bounds

$$-\infty \le x \le +\infty$$
$$-\infty \le y \le +\infty$$
$$-\infty \le s_1 \le 2$$
$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$

 $y \mapsto 2$

$$y \mapsto 2$$

 $s_1 \mapsto 4$

$$s_2 \mapsto -4$$

example

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$\mathbf{x}\mapsto 0$$

$$y \mapsto 2$$

$$s_1 \mapsto 4$$

$$s_2 \mapsto -4$$

example

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 2$$

$$s_1 \mapsto 4$$

$$s_2 \mapsto -4$$

example

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$

 $y \mapsto 2$

$$s_1 \mapsto 2$$

$$s_2 \mapsto -4$$

example

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 0$$
$$y \mapsto 2$$

$$s_1 \mapsto 2$$

$$s_2 \mapsto -4$$

example

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 1$$
$$y \mapsto \frac{3}{2}$$
$$s_1 \mapsto 2$$

$$s_2 \mapsto -4$$

example

$$[s_1 \le 2, s_2 \le -4]$$

Tableau

$$x = -\frac{1}{2}s_1 - \frac{1}{2}s_2$$
$$y = \frac{1}{4}s_1 - \frac{1}{4}s_2$$

Bounds

$$-\infty \le x \le +\infty$$

$$-\infty \le y \le +\infty$$

$$-\infty \le s_1 \le 2$$

$$-\infty \le s_2 \le -4$$

$$x \mapsto 1$$
$$y \mapsto \frac{3}{2}$$

$$s_1 \mapsto 2$$

$$s_2 \mapsto -4$$

integers

- Classic NP-complete problem [Pap81].
- Admits quantifier elimination [Coo72].
- Common approach:
 - Simplex + Branch-And-Bound [DDM06, Gri12, Kin14]
 - Use Simplex as if variables were real.
 - If UNSAT in reals, then UNSAT in integers too.
 - If SAT and solution is integral, then SAT (lucky).
 - If non-integral solution v(x), then refine:
 - Branch-and-Bound lemmas: $(x \le \lfloor v(x) \rfloor) \lor (x \ge \lceil v(x) \rceil)$.
 - Cutting plane lemmas: new implied inequality refuting v.
 - Additionally solve integer equalities.

integers

- Classic NP-complete problem [Pap81].
- Admits quantifier elimination [Coo72].
- Common approach:
 - Simplex + Branch-And-Bound [DDM06, Gri12, Kin14]
 - Use Simplex as if variables were real.
 - If UNSAT in reals, then UNSAT in integers too.
 - If SAT and solution is integral, then SAT (lucky).
 - If non-integral solution v(x), then refine:
 - Branch-and-Bound lemmas: $(x \le \lfloor v(x) \rfloor) \lor (x \ge \lceil v(x) \rceil)$.
 - Cutting plane lemmas: new implied inequality refuting v.
 - Additionally solve integer equalities.
 - Sad, but not guaranteed to terminate.

integers

- Classic NP-complete problem [Pap81].
- Admits quantifier elimination [Coo72].
- Common approach:
 - Simplex + Branch-And-Bound [DDM06, Gri12, Kin14]
 - Use Simplex as if variables were real.
 - If UNSAT in reals, then UNSAT in integers too.
 - If SAT and solution is integral, then SAT (lucky).
 - If non-integral solution v(x), then refine:
 - Branch-and-Bound lemmas: $(x \le |v(x)|) \lor (x \ge \lceil v(x) \rceil)$.
 - Cutting plane lemmas: new implied inequality refuting v.
 - Additionally solve integer equalities.
 - Sad, but not guaranteed to terminate.
- Alternatives [JdM13, BSW15] not yet mature.

Arrays the theory

$$\forall a, i, e : store(a, i, e)[i] = e$$

 $\forall a, i, j, e : i \neq j \Rightarrow store(a, i, e)[j] = a[j]$
 $\forall a, b : a \neq b \Rightarrow \exists i : a[i] \neq b[i]$

Common approach:

- UF + lemmas on demand [BB09, DMB09].
- Use UF as if store and _[_] were uninterpreted.
- If UNSAT in UF, then UNSAT in arrays too.
- If SAT and solution respects array axioms, then SAT (lucky).
- If not, then refine by instantiating violated axioms.

Bit-Vectors the theory

Common approach:

- Heavy preprocessing
- Encode into SAT (bit-blasting)
- Run a SAT solver

Alternatives [HBJ⁺14, ZWR16] not yet mature.

Bit-Vectors

bit-blasting

Translation to CNF

- Each node a new variables
- XOR introduces 4 clauses
- AND introduces 3 clauses
- OR introduces 3 clauses
- 17 new clauses
- 5 new variables

Bit-Vectors

bit-blasting

Outline

- Introduction
- DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- 5 Finish

DPLL(T) architecture

DPLL(T) pros and cons

Good

- Simple interface
- Only conjunctions of constraints

DPLL(T) pros and cons

Good

- Simple interface
- Only conjunctions of constraints

What can be improved?

- Simple interface can be restrictive
- Arbitrary conjunctions of constraints

DPLL(T)

simple interface issues

Example (Diamonds)

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

DPPL(T)

simple interface issues

How to fix this?

- Extensions of DPLL(T) can add new literals [BNOT06].
- Magic needed to discover these literals [BDdM08, HAMM14].
- More pragmatic approach would be desirable.

Rethink the Architecture!

- Why is SAT solver special?
- Why the restriction on the interface?
- Let's dig deeper into how SAT solvers work.

Boolean Satisfiability

history

$$x_n \vee \cdots \vee x_1 \vee \overline{y_m} \vee \cdots \vee \overline{y_1}$$

- Resolution procedure by Davis, Putnam [DP60]
- Search procedure by Davis, Logemann, Loveland [DLL62]

Resolution (DP)

- Find a proof
- Saturation
- Exponential

Search (DLL)

- Find a model
- Search and backtracking
- Exponential

Boolean Satisfiability

Marques-Silva, Sakallah [SS97] GRASP: A new search algorithm for satisfiabiliy

Moskewicz, Madigan, Zhao, Zhang, Malik [MMZ⁺01] снағғ: Engineering an efficient saт solver

Conflict-Directed Clause Learning

- Use the search to guide resolution
- Use resolution to guide the search

Boolean Satisfiability

cdcl mechanics

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, x, \ldots, \overline{y}, \ldots, z, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$(\bar{x} \lor y \lor \bar{z} \lor w)$$
.

Explain Conflicts

Explain conflicts using clausal reasons

$$(\overline{x} \lor y \lor \overline{z})$$
.

Linear Arithmetic

$$a_1x_1+\cdots+a_nx_n\geq b$$

$$a_1x_1+\cdots+a_nx_n=b$$

DPLL(T): Simplex

A model builder for a conjunction of linear constraints.

- Search for a model
- Escape conflicts through pivoting
- Built for the DPLL(T) framework

[DDM06] A fast linear-arithmetic solver for DPLL(T)

Linear Arithmetic

$$a_1x_1 + \cdots + a_nx_n \ge b$$
 $a_1x_1 + \cdots + a_nx_n = b$

Fourier-Motzkin Resolution

$$\frac{2x + 3y - z \ge -1}{6x + 9y - 3z \ge -3} \qquad \frac{-3x - 2y + 4z \ge 2}{-6x - 4y + 8z \ge 4}$$
$$5y + 5z \ge 1$$

- Feels like Boolean resolution (elimination).
- Behaves like Boolean resolution (exponential).

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, C_1, C_2, \ldots, x \mapsto 1/2, \ldots, y \mapsto 1/2, \ldots, z \mapsto -1, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x + y + z + w \ge 0)$$
 $C_2 \equiv (x + y + z - w > 0)$.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x + y + z > 0)$$
.

$$\underbrace{2y - x - 2 < 0}^{C_1} \land \underbrace{-2y - x + 4 < 0}^{C_2}$$

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{[[c_1, c_2]]} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{[[c_1, c_2]]}$$

$$\underbrace{2y - x - 2 < 0}^{C_1} \wedge \underbrace{-2y - x + 4 < 0}^{C_2}$$

$$\begin{bmatrix} C_1, C_2, x \mapsto 0.5 \end{bmatrix}$$

example

Unit Constraint Reasoning

$$2y - x - 2 < 0 \Rightarrow (y < 1.25)$$

$$-2y - x + 4 < 0 \Rightarrow (y > 1.75)$$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto 0.5 \rrbracket$$

example

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[[C_1, C_2, x \mapsto 0.5]]$$

Explanation $C_1 \wedge C_2 \Rightarrow x \neq 0.5$

example

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[[c_1, c_2, x \mapsto 0.5]]$$

Explanation $C_1 \wedge C_2 \Rightarrow$

example

Fourier-Motzkin

$$\frac{2y - x - 2 < 0 \qquad -2y - x + 4 < 0}{-2x + 2 < 0}$$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto 0.5 \rrbracket$$

Explanation $C_1 \wedge C_2 \Rightarrow$

example

Fourier-Motzkin

$$\frac{2y - x - 2 < 0 \qquad -2y - x + 4 < 0}{-2x + 2 < 0}$$

$$\llbracket \textit{\textbf{C}}_1, \textit{\textbf{C}}_2, \textit{\textbf{x}} \mapsto 0.5 \rrbracket$$

Explanation $C_1 \wedge C_2 \Rightarrow x > 1$

example

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{-2y - x + 4 < 0}_{C_2}$$

$$[c_1, c_2, x \mapsto 0.5]$$

Explanation $\overline{C_1} \vee \overline{C_2} \vee (x > 1)$

example

$$\underbrace{2y - x - 2 < 0}_{C_1} \wedge \underbrace{-2y - x + 4 < 0}_{C_2}$$

$$[[C_1, C_2]]$$

Explanation $\overline{C_1} \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\frac{c_1}{2y-x-2<0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y-x+4<0}}_{C_2}$$

$$\underbrace{[c_1,c_2,x>1]]}_{C_2} \vee \underbrace{c_2}_{C_2} \vee \underbrace{(x>1)}_{C_2}$$

$$\begin{array}{c} \underbrace{c_1} \\ 2y-x-2<0 \end{array} \wedge \underbrace{-2y-x+4<0} \\ \\ \llbracket c_1,c_2,x>1, x\mapsto 2 \rrbracket \\ \\ \text{Explanation } \overline{c_1} \vee \overline{c_2} \vee (x>1) \end{array}$$

$$\underbrace{\begin{array}{c} c_1 \\ 2y-x-2<0 \end{array}}_{C_1} \wedge \underbrace{\begin{array}{c} c_2 \\ -2y-x+4<0 \end{array}}_{C_2}$$

$$\underbrace{ \begin{bmatrix} C_1, C_2, x > 1, x \mapsto 2, y \mapsto 1.5 \end{bmatrix}}_{C_2} \vee \underbrace{ (x > 1)}_{C_2}$$
Explanation $C_1 \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\frac{c_1}{2y-x-2<0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y-x+4<0}}_{C_2}$$

$$\underbrace{\begin{bmatrix} C_1, C_2, x > 1, x \mapsto 2, y \mapsto 1.5 \end{bmatrix}}_{C_2}$$
Explanation $C_1 \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\frac{c_1}{2y-x-2<0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y-x+4<0}}_{C_2}$$

$$\underbrace{[C_1,C_2,x>1,x\mapsto 2,y\mapsto 1.5]}_{\text{Explanation }C_1} \vee \underbrace{\overline{C_2}}_{C_2} \vee (x>1)$$

comparison to dpll(t)

Example (Diamonds)

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

comparison to dpll(t)

Example (Diamonds)

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

comparison to dpll(t)

	mcsat		cvc4		z3		mathsat5		yices	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
clocksynchro (36)	36	123.11	36	1166.55	36	1828.74	36	1732.59	36	1093.80
DTPScheduling (91)	91	31.33	91	72.92	91	100.55	89	1980.96	91	926.22
miplib (42)	8	97.16	27	3359.40	23	3307.92	19	5447.46	23	466.44
sal (107)	107	12.68	107	13.46	107	6.37	107	7.99	107	2.45
sc (144)	144	1655.06	144	1389.72	144	954.42	144	880.27	144	401.64
spiderbenchmarks (42)	42	2.38	42	2.47	42	1.66	42	1.22	42	0.44
TM (25)	25	1125.21	25	82.12	25	51.64	25	1142.98	25	55.32
ttastartup (72)	70	4443.72	72	1305.93	72	1647.94	72	2607.49	72	1218.68
uart (73)	73	5244.70	73	1439.89	73	1379.90	73	1481.86	73	679.54
	596	12735.35	617	8832.46	613	9279.14	607	15282.82	613	4844.53

comparison to dpll(t)

```
DPLL(T) Simplex (CVC4)

Total Physical Source Lines of Code (SLOC) = 22,597

Development Effort Estimate, Person-Years (Person-Months) = 5.28 (63.38)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 1.01 (12.10)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 5.24

Total Estimated Cost to Develop = $ 713,502
(average salary = $56,286/year, overhead = 2.40).
```

```
MCSAT Fourier-Motzkin (CVC4)

Total Physical Source Lines of Code (SLOC) = 1,966

Development Effort Estimate, Person-Years (Person-Months) = 0.41 (4.88)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.38 (4.57)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 1.07

Total Estimated Cost to Develop = $ 54,942

(average salary = $56,286/year, overhead = 2.40).
```

Non-Linear Arithmetic

$$f(\vec{y}, x) = a_m \cdot x^{d_m} + a_{m-1} \cdot x^{d_{m-1}} + \dots + a_1 \cdot x^{d_1} + a_0$$

f is in $\mathbb{Z}[\vec{y}, x]$, a_i are in $\mathbb{Z}[\vec{y}]$

Examples

$$f(x,y) = (x^2 - 1)y^2 + (x + 1)y - 1 \in \mathbb{Z}[x,y]$$
$$g(x) = 16x^3 - 8x^2 + x + 16 \in \mathbb{Z}[x]$$

Polynomial Constraints

$$f(x,y) > 0 \land g(x) < 0$$

Non-Linear Arithmetic history

Tarski [Tar48] Quantifier elimination Decidable, non-elementary

Collins [Col75] Cylindrical Algebraic Decomposition Doubly-exponential

complexity

Canny [Can88], Grigor'ev [Gri88]

cylindrical algebraic decomposition

$$p_1 > 0 \lor (p_2 = 0 \land p_3 < 0)$$
 $p_1, p_2, p_3 \in \mathbb{Z}[x_1, \dots, x_n]$

Projection (Saturation)

Project polynomials using a projection P

$$\{p_1, p_2, p_3\} \mapsto \{p_1, p_2, p_3, p_4, \dots, p_n\}$$
.

Lifting (Model construction)

For each variable x_k

- Isolate roots of $p_i(\alpha, x_k)$.
- ② Choose a cell C and assign $x_k \mapsto \alpha_k \in C$, continue.
- If no more cells, backtrack.

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, \mathsf{C}_1, \mathsf{C}_2, \ldots, \mathsf{x} \mapsto \sqrt{2}/2, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1) .$$

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

$$x^3 - 2x^2 + 1 > 0$$

$$x^3 - 2x^2 + 1 > 0 \qquad -3x^3 + 8x^2 - 4x > 0$$

$$x^3 - 2x^2 + 1 > 0 -3x^3 + 8x^2 - 4x > 0$$

$$x^3 - 2x^2 + 1 > 0 \qquad -3x^3 + 8x^2 - 4x > 0$$

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, \mathsf{C}_1, \mathsf{C}_2, \ldots, \mathsf{x} \mapsto \sqrt{2}/2, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1) .$$

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{\textit{\textbf{C}}_1} \vee \overline{\textit{\textbf{C}}_2} \vee \textit{\textbf{x}} \leq 0 \vee \textit{\textbf{x}} \geq 1)$$
 .

example

Unit Constraint Reasoning

$$x^{2} + y^{2} < 1 \Rightarrow -\sqrt{3/2} < y < \sqrt{3/2}$$

 $-2y - x + 4 < 0 \Rightarrow y > \sqrt{2}$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto \sqrt{2}/2 \rrbracket$$

example

Explanation $C_1 \wedge C_2 \Rightarrow x \neq \sqrt{2}/2$

example

CAD Projection

$$\mathsf{P} = \{x, -4 + 4x^2, 1 - x^2 + x^4\}$$

Explanation $c_1 \wedge c_2 \Rightarrow$

example

CAD Projection

$$P = \{x, -4 + 4x^2, 1 - x^2 + x^4\}$$

Explanation $c_1 \wedge c_2 \Rightarrow$

Explanation
$$C_1 \wedge C_2 \Rightarrow x \leq 0 \lor x \geq 1$$

Explanation
$$\overline{\textit{C}_1} \lor \overline{\textit{C}_2} \lor \textit{x} \leq 0 \lor \textit{x} \geq 1$$

Explanation
$$\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1$$

Explanation
$$\overline{C_1} \vee \overline{C_2} \vee x < 0 \vee x > 1$$

Explanation
$$\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1$$

Non-Linear Real Arithmetic

smt-comp 2015

Model-Based Procedures

Linear Real Arithmetic

- Generalizing DPLL to Richer Logics [MKS09]
- Conflict Resolution [KTV09]
- Natural Domain SMT [Cot10]

Linear Integer Arithmetic

• Cutting to the Chase: Solving Linear Integer Arithmetic [JdM13]

Non-Linear Real Arithmetic

Solving Non-Linear Arithmetic [JDM12, Jov12]

General Framework

Model-Constructing Satisfiability Calculus [DMJ13, JBdM13]

MCSAT simple architecture

Each plugins reasons about their domain:

- Track when a constraint becomes unit [MMZ⁺01].
- Unit constraints imply feasible sets of individual variables.
- Propagate any constraints/variables whose value is implied.
- Explain any unit conflicts with clausal explanations.
- When asked, decide unassigned variable to feasible value.

MCSAT implementations

- NRA + NIA + UF in Yices2
- ▶ Link
- QF_NRA in Z3
- QF_UFLRA in CVC4

Outline

- Introduction
- DPLL(T) Framework
- Decision Procedures
- MCSAT Framework
- 5 Finish

todo

- Extensible and simple SMT solver ala MiniSAT.
- Integer arithmetic: a complete and practical procedure.
- Bit-vectors: other than bit-blasting [HBJ⁺14, ZWR16].
- Proofs: can we have them without too much trouble.
- Quantifiers: push-button, with model generation.
- MCSAT: arrays, bit-vectors.

Homework

for the practical

Download and install the following solvers

- CVC4 Link
- MathSAT5
- Yices2Link
- Z3
 Link

Homework

for the practical

Download and install the following solvers

- CVC4 Link
- MathSAT5
- Yices2 Link
- Z3 Link

THE END

References I

[BB09]	Robert Brummayer and Armin Biere.
	Lemmas on demand for the extensional theory of arrays.
	Journal on Satisfiability, Boolean Modeling and Computation, 6:165–201, 2009

- [BDdM08] Nikolaj Bjørner, Bruno Dutertre, and Leonardo de Moura. Accelerating lemma learning using joins-dppl (join). Proceedings of short papers at LPAR, 8, 2008.
- [BDG+14] Martin Brain, Vijay D'Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening. Deciding floating-point logic with abstract conflict driven clause learning. Formal Methods in System Design, 45(2):213–245, 2014.
- [BM07] Aaron R Bradley and Zohar Manna. The calculus of computation: decision procedures with applications to verification. Springer Science & Business Media, 2007.
- [BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in sat modulo theories. In Logic for Programming, Artificial Intelligence, and Reasoning, pages 512–526, 2006.
- [BSST09] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability modulo theories. Handbook of satisfiability, 185:825–885, 2009.

References II

[BST07] Clark Barrett, Igor Shikanian, and Cesare Tinelli.

An abstract decision procedure for satisfiability in the the

An abstract decision procedure for satisfiability in the theory of recursive data types.

Electronic Notes in Theoretical Computer Science, 174(8):23–37, 2007.

[BSW15] Martin Bromberger, Thomas Sturm, and Christoph Weidenbach. Linear integer arithmetic revisited.

In International Conference on Automated Deduction, pages 623–637. Springer, 2015.

[Can88] John Canny.

Some algebraic and geometric computations in pspace.

In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 460–467, 1988.

[Col75] George E Collins.

Quantifier elimination for real closed fields by cylindrical algebraic decomposition.

In Automata Theory and Formal Languages, pages 134–183, 1975.

[Coo72] David C Cooper.

Theorem proving in arithmetic without multiplication.

Machine Intelligence, 7(91-99):300, 1972.

References III

[Cot10] Scott Cotton. Natural domain SMT: A preliminary assessment. Formal Modeling and Analysis of Timed Systems, pages 77–91, 2010. Bruno Dutertre and Leonardo De Moura. [DDM06] A fast linear-arithmetic solver for DPLL(T). In International Conference on Computer Aided Verification, pages 81–94. Springer, 2006. [DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Communications of the ACM, 5(7):394–397, 1962. [DMB07] Leonardo De Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In International Conference on Automated Deduction, pages 183–198. Springer, 2007. [DMB09] Leonardo De Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures. In Formal Methods in Computer-Aided Design, pages 45–52. IEEE, 2009. [DMB11] Leonardo De Moura and Nikolaj Bjørner.

Satisfiability modulo theories: introduction and applications.

Communications of the ACM, 54(9):69–77, 2011.

References IV

[DMJ13] Leonardo De Moura and Dejan Jovanović. A model-constructing satisfiability calculus. In Verification, Model Checking, and Abstract Interpretation, pages 1–12, 2013. Leonardo De Moura and Harald Rueß. [DMR02] Lemmas on demand for satisfiability solvers. 2002. [DNS05] David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover for program checking. Journal of the ACM (JACM), 52(3):365-473, 2005. [DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM (JACM), 7(3):201-215, 1960. [FFHP] Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzenlogel Paleo. Np-completeness of small conflict set generation for congruence closure. [GKC13] Sicun Gao, Soonho Kong, and Edmund M Clarke. Satisfiability modulo ODEs. In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 105–112. IEEE, 2013. [Gri88] D Yu Grigor'ev. Complexity of deciding tarski algebra. Journal of symbolic Computation, 5(1):65–108, 1988.

References V

[Gri12] Alberto Griggio.

A practical approach to satisfiability modulo linear integer arithmetic. Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, 2012.

[HAMM14] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza.

How to compute worst-case execution time by optimization modulo theory and a clever encoding of program semantics.

In Proceedings of the 2014 SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems, pages 43–52. ACM, 2014.

[HBJ⁺14] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.

A tale of two solvers: Eager and lazy approaches to bit-vectors. In International Conference on Computer Aided Verification, pages 680–695.

Springer, 2014.

- [JBdM13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design and implementation of the model constructing satisfiability calculus. Formal Methods in Computer-Aided Design, 2013.
- [JDM12] Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. In International Joint Conference on Automated Reasoning, pages 339–354. Springer, 2012.

References VI

[JdM13]	Dejan Jovanović and Leonardo de Moura. Cutting to the chase. Journal of automated reasoning, 51(1):79–108, 2013.
[Jov12]	Dejan Jovanović. SMT Beyond DPLL(T): A New Approach to Theory Solvers and Theory Combination. PhD thesis, Courant Institute of Mathematical Sciences New York, 2012.
[KGG ⁺ 09]	Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst. HAMPI: a solver for string constraints. In <i>Proceedings of the eighteenth international symposium on Software testing and analysis</i> , pages 105–116. ACM, 2009.
[Kin14]	Tim King. Effective Algorithms for the Satisfiability of Quantifier-Free Formulas Over Linear Real and Integer Arithmetic. PhD thesis, Courant Institute of Mathematical Sciences New York, 2014.
[KS08]	Daniel Kroening and Ofer Strichman. Decision procedures: an algorithmic point of view. Springer Science & Business Media, 2008.
[KTV09]	Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. Conflict resolution. In <i>Principles and Practice of Constraint Programming</i> , pages 509–523. 2009.

References VII

[LRT+14] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. A DPLL(T) theory solver for a theory of strings and regular expressions. In International Conference on Computer Aided Verification, pages 646–662. Springer, 2014.

[McC93] John McCarthy. Towards a mathematical science of computation. In Program Verification, pages 35–56. Springer, 1993.

[MKS09] Kenneth L McMillan, Andreas Kuehlmann, and Mooly Sagiv. Generalizing DPLL to richer logics. In Computer Aided Verification, pages 462–476, 2009.

[MMZ+01] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver.

In *Proceedings of the 38th annual Design Automation Conference*, pages 530–535. ACM, 2001.

[NM12] Anthony Narkawicz and César A Munoz. Formal verification of conflict detection algorithms for arbitrary trajectories. Reliable Computing, 17(2):209–237, 2012.

[NO07] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Information and Computation, 205(4):557–580, 2007.

References VIII

[NOT05] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

In International Conference on Logic for Programming Artificial Intelligence and Reasoning, pages 36–50. Springer, 2005.

[Pap81] Christos H Papadimitriou.

Journal of the ACM (JACM), 28(4):765–768, 1981.

[RTG⁺13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.

In International Conference on Automated Deduction, pages 377–391. Springer, 2013.

[SS97] João P Marques Silva and Karem A Sakallah.

In Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design, pages 220–227. IEEE Computer Society, 1997.

[Tar48] Alfred Tarski.

1948.

References IX

[ZWR14] Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.

In International Joint Conference on Automated Reasoning, pages 344–359. Springer, 2014.

[ZWR16] Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.

In International Conference on Theory and Applications of Satisfiability Testing, pages 249–266. Springer, 2016.