black-friday-sales-eda-analysis

September 4, 2024

1 Rahul Manjhi

1.0.1 Black Friday Sales Analysis

1.1 Import Libraries:

```
[5]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

1.2 Load the Dataset:

```
[6]: # Load the dataset
file_path = 'BlackFridaySales.csv'
df = pd.read_csv(file_path)
```

```
[3]: df.head()
```

[3]:		User_ID	${\tt Product_ID}$	Gender	Age	Occupation	City_Category	\
	0	1000001	P00069042	F	0-17	10	A	
	1	1000001	P00248942	F	0-17	10	A	
	2	1000001	P00087842	F	0-17	10	A	
	3	1000001	P00085442	F	0-17	10	A	
	4	1000002	P00285442	М	55+	16	C	

Stay_In_Current_Cit	ty_Years	Marital_Status	Product_Category_1	,
0	2	0	3	
1	2	0	1	
2	2	0	12	
3	2	0	12	
4	4+	0	8	

	Product_Category_2	Product_Category_3	Purchase
0	NaN	NaN	8370
1	6.0	14.0	15200
2	NaN	NaN	1422
3	14.0	NaN	1057
4	NaN	NaN	7969

2 Data Cleaning:

2.0.1 Missing Values:

```
[4]: # Check for missing values
missing_values = df.isnull().sum()

# Display missing values
missing_values
```

```
[4]: User_ID
                                          0
    Product_ID
                                          0
     Gender
                                          0
                                          0
     Age
     Occupation
                                          0
     City_Category
                                          0
     Stay_In_Current_City_Years
                                          0
     Marital_Status
                                          0
     Product_Category_1
                                          0
     Product_Category_2
                                    173638
     Product_Category_3
                                    383247
     Purchase
                                          0
```

dtype: int64

```
[8]: User ID
                                    0
     Product_ID
                                     0
     Gender
                                     0
     Age
                                     0
     Occupation
                                    0
     City_Category
                                    0
     Stay_In_Current_City_Years
                                    0
     Marital_Status
                                     0
     Product_Category_1
                                     0
     Product_Category_2
                                     0
     Product_Category_3
                                     0
```

Purchase 0 dtype: int64 [10]: data_types = df.dtypes # Display data types data_types [10]: User_ID int64 Product_ID object Gender object Age object Occupation int64City_Category object Stay_In_Current_City_Years object Marital_Status int64 Product_Category_1 int64 Product_Category_2 float64 Product_Category_3 float64 Purchase int64 dtype: object []:

3 Data Understanding:

[12]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067

Data columns (total 12 columns):

Column	Non-Null Count	Dtype
User_ID	550068 non-null	int64
Product_ID	550068 non-null	object
Gender	550068 non-null	object
Age	550068 non-null	object
Occupation	550068 non-null	int64
City_Category	550068 non-null	object
Stay_In_Current_City_Years	550068 non-null	object
Marital_Status	550068 non-null	int64
Product_Category_1	550068 non-null	int64
Product_Category_2	550068 non-null	float64
Product_Category_3	550068 non-null	float64
Purchase	550068 non-null	int64
	User_ID Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_3	User_ID

dtypes: float64(2), int64(5), object(5)

memory usage: 50.4+ MB

```
[13]: df.describe()
[13]:
                  User_ID
                               Occupation
                                            Marital_Status Product_Category_1
             5.500680e+05
                            550068.000000
                                             550068.000000
                                                                  550068.000000
      count
      mean
             1.003029e+06
                                 8.076707
                                                  0.409653
                                                                       5.404270
      std
                                 6.522660
                                                                       3.936211
             1.727592e+03
                                                  0.491770
      min
             1.000001e+06
                                 0.000000
                                                  0.000000
                                                                       1.000000
      25%
             1.001516e+06
                                 2.000000
                                                  0.000000
                                                                       1.000000
      50%
             1.003077e+06
                                 7.000000
                                                  0.000000
                                                                       5.000000
      75%
             1.004478e+06
                                14.000000
                                                  1.000000
                                                                       8.000000
             1.006040e+06
                                20.000000
                                                  1.000000
                                                                      20.000000
      max
             Product_Category_2 Product_Category_3
                                                             Purchase
                    550068.00000
                                        550068.000000
                                                       550068.000000
      count
                         6.41977
                                             3.145215
                                                         9263.968713
      mean
      std
                         6.56511
                                             6.681039
                                                         5023.065394
      min
                        -1.00000
                                            -1.000000
                                                            12.000000
      25%
                        -1.00000
                                            -1.000000
                                                         5823.000000
      50%
                         5.00000
                                            -1.000000
                                                         8047.000000
      75%
                        14.00000
                                             8.000000
                                                        12054.000000
                                                        23961.000000
                        18.00000
                                            18.000000
      max
[14]: df['Gender'].value_counts()
      df['Age'].value_counts()
      df['City_Category'].value_counts()
      df['Marital Status'].value counts()
[14]: Marital_Status
      0
           324731
      1
           225337
      Name: count, dtype: int64
[]:
```

4 Data Exploration and Visualization

4.1 1. Numerical Feature Distribution: Histograms

```
plt.title(f'Distribution of {feature}')
plt.xlabel(feature)
plt.ylabel('Frequency')
plt.show()
```


4.2 2. Categorical Feature Distribution: Bar Charts and Pie Charts

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\1913232349.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\1913232349.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\1913232349.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\1913232349.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

Gender Distribution


```
[]:
```

4.3 3. Boxplots: Purchase Distribution Across Groups

```
[22]: # Boxplots for Purchase across different categories
plt.figure(figsize=(12, 6))
sns.boxplot(df, x='Gender', y='Purchase', palette='Set3')
plt.title('Purchase Distribution by Gender')
plt.show()
```

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\1111442385.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.


```
[24]: plt.figure(figsize=(12, 6))
sns.boxplot(df, x='Age', y='Purchase', palette='Set3')
plt.title('Purchase Distribution by Age')
plt.show()
```

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\2150581432.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(df, x='Age', y='Purchase', palette='Set3')


```
[25]: plt.figure(figsize=(12, 6))
sns.boxplot(df, x='City_Category', y='Purchase', palette='Set3')
plt.title('Purchase Distribution by City Category')
plt.show()
```

C:\Users\manjh\AppData\Local\Temp\ipykernel_4992\3881002303.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(df, x='City_Category', y='Purchase', palette='Set3')

4.4 4. Correlation Analysis: Scatter Plots and Correlation Matrix

4.5 5. Advanced Visualizations with Seaborn

```
[7]: # Pairplot for detailed relationship analysis
sns.pairplot(df, hue='Gender', palette='coolwarm')
plt.show()
```



```
[10]: # Advanced heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='viridis', linewidths=0.5)
plt.title('Advanced Correlation Heatmap')
plt.show()
```


5 Analysis Questions:

6 Q1 Purchase Behavior Analysis:

6.1 1. Distribution of Purchase Amount

```
[11]: # Distribution of Purchase Amount
plt.figure(figsize=(10, 6))
sns.histplot(df['Purchase'], bins=30, kde=True, color='blue')
plt.title('Distribution of Purchase Amount')
plt.xlabel('Purchase Amount')
plt.ylabel('Frequency')
plt.show()
```


6.2 2. Purchase Behavior by Gender


```
[15]: # Mean Purchase Amount by Gender
gender_purchase = df.groupby('Gender')['Purchase'].mean()
print(gender_purchase)
```

Gender

F 8734.565765 M 9437.526040

Name: Purchase, dtype: float64

6.3 3. Purchase Behavior by Age Group


```
[17]: # Mean Purchase Amount by Age Group
      age_purchase = df.groupby('Age')['Purchase'].mean().sort_values(ascending=False)
      print(age_purchase)
     Age
     51-55
              9534.808031
     55+
              9336.280459
              9331.350695
     36-45
     26-35
              9252.690633
     46-50
              9208.625697
     18-25
              9169.663606
     0-17
              8933.464640
     Name: Purchase, dtype: float64
 []:
```

6.4 4. Purchase Behavior by City Category

7 Q2 Product Category Insights:

7.1 Product_Category_1

```
[26]: # Distribution of Product_Category_1
plt.figure(figsize=(10, 6))
sns.countplot(x='Product_Category_1', hue='Product_Category_1', data=df,__
palette='viridis', legend=False)
plt.title('Distribution of Purchases Across Product_Category_1')
plt.xlabel('Product Category 1')
plt.ylabel('Number of Purchases')
plt.show()
```


7.2 Product_Category_2

7.3 Product_Category_3

8 Q3 Customer Demographics:

8.1 Distribution by Age

```
[30]: # Distribution of customers by Age
plt.figure(figsize=(10, 6))
sns.countplot(x='Age', hue='Age', data=df, palette='Set2', legend=False)
plt.title('Distribution of Customers by Age Group')
plt.xlabel('Age Group')
plt.ylabel('Number of Customers')
plt.show()
```



```
[31]: # Calculate the number of customers in each age group

age_distribution = df['Age'].value_counts().sort_index()

print(age_distribution)
```

```
Age
0-17
          15102
18-25
          99660
26-35
         219587
36-45
         110013
46-50
          45701
51-55
          38501
55+
          21504
Name: count, dtype: int64
```

8.2 Distribution by Gender

```
plt.ylabel('Number of Customers')
plt.show()
```



```
[33]: # Calculate the number of customers for each gender
gender_distribution = df['Gender'].value_counts()
print(gender_distribution)

Gender
M 414259
F 135809
Name: count, dtype: int64
[]:
```

8.3 Distribution by City Category

```
[34]: # Distribution of customers by City Category
plt.figure(figsize=(8, 6))
sns.countplot(x='City_Category', hue='City_Category', data=df, palette='Set3',
legend=False)
plt.title('Distribution of Customers by City Category')
plt.xlabel('City Category')
plt.ylabel('Number of Customers')
plt.show()
```



```
[35]: # Calculate the number of customers in each city category
city_distribution = df['City_Category'].value_counts()
print(city_distribution)
City_Category
```

B 231173 C 171175 A 147720

Name: count, dtype: int64

9 Q4 Impact of Occupation:

```
[37]: # Updated plot to avoid the warning
   plt.figure(figsize=(12, 6))
   sns.barplot(x=occupation_purchase.index, y=occupation_purchase.values)
   plt.title('Average Purchase Amount by Occupation')
   plt.xlabel('Occupation')
   plt.ylabel('Average Purchase Amount')
   plt.show()
```


[]:

10 Q5 City-wise Purchase Behavior:

```
plt.ylabel('Average Purchase Amount')
plt.show()
```


11 Q6 Stay in Current City:

```
plt.title('Average Purchase Amount by Duration of Stay in Current City')
plt.xlabel('Years in Current City')
plt.ylabel('Average Purchase Amount')
plt.show()
```



```
[44]: print(stay_purchase)

Stay_In_Current_City_Years
2    9320.429810
3    9286.904119
4+   9275.598872
1    9250.145923
0    9180.075123
Name: Purchase, dtype: float64
```

12 Q7 Correlation Between Product Categories:

```
[46]: # Select the relevant product category columns

product_categories = df[['Product_Category_1', 'Product_Category_2',

→'Product_Category_3']]
```

```
# Calculate the correlation matrix
correlation_matrix = product_categories.corr()

# Plot the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the content of the correlation matrix and the content of the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the correlation matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(figsize=(8, 6))
sns.heatmap(figsize
```


[47]: print(correlation_matrix)

	Product_Category_1	Product_Category_2	Product_Category_3
Product_Category_1	1.000000	0.540583	0.229678
Product_Category_2	0.540583	1.000000	0.543649
Product_Category_3	0.229678	0.543649	1.000000

13 Q8 Outlier Analysis:

13.0.1 Identifying Outliers Using IQR

```
[56]: # Calculate Q1 (25th percentile) and Q3 (75th percentile)
Q1 = df['Purchase'].quantile(0.25)
Q3 = df['Purchase'].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = df[(df['Purchase'] < lower_bound) | (df['Purchase'] > upper_bound)]

num_outliers = outliers.shape[0]
print(f"Number of outliers in the Purchase data: {num_outliers}")
```

Number of outliers in the Purchase data: 2677

[]:

13.0.2 Assessing the Impact of Outliers

```
[59]: # Calculate mean and median before removing outliers
mean_before = df['Purchase'].mean()
median_before = df['Purchase'].median()
df_no_outliers = df[(df['Purchase'] >= lower_bound) & (df['Purchase'] <=_
upper_bound)]

# Calculate mean and median after removing outliers
mean_after = df_no_outliers['Purchase'].mean()
median_after = df_no_outliers['Purchase'].median()</pre>
```

```
[60]: # Display the results

print(f"Mean Purchase before removing outliers: {mean_before:.2f}")

print(f"Median Purchase before removing outliers: {median_before:.2f}")

print(f"Mean Purchase after removing outliers: {mean_after:.2f}")

print(f"Median Purchase after removing outliers: {median_after:.2f}")
```

Mean Purchase before removing outliers: 9263.97 Median Purchase before removing outliers: 8047.00 Mean Purchase after removing outliers: 9195.63 Median Purchase after removing outliers: 8038.00

13.0.3 Visualizing Outliers with a Boxplot

```
[61]: # Plot a boxplot to visualize outliers
plt.figure(figsize=(8, 6))
sns.boxplot(x=df['Purchase'])
plt.title('Boxplot of Purchase Amounts')
plt.show()
```

Boxplot of Purchase Amounts

[]:

14 Q9 Gender-wise Product Preferences:

14.0.1 Grouping and Calculating Preferences

14.0.2 Visualizing Gender-wise Preferences

```
[64]: # Plotting the preferences
gender_product_preferences.plot(kind='bar', figsize=(10, 6), colormap='Paired')
plt.title('Gender-wise Average Purchase in Product Categories')
plt.xlabel('Gender')
plt.ylabel('Average Purchase Amount')
plt.xticks(rotation=0)
plt.legend(title='Product Categories')
plt.show()
```


15 Q10 Advanced Insights:

