2201-MTL106: ASSIGNMENT-4

- **Q1.** Is the function $F(x,y) = 1 e^{-xy}$, $0 \le x,y < +\infty$ joint distribution function of some pair of random variables?
 - **Q2.** Suppose that the random variables X and Y have joint distribution function

$$F_{(X,Y)}(x,y) = \begin{cases} 0 & \text{if } x < 0\\ (1 - e^{-x}) \left(\frac{1}{2} + \frac{1}{\pi} \tan^{-1}(y) \text{if } x \ge 0. \right) \end{cases}$$

Show that X and Y are jointly continuous

Q3. Let (X,Y) be a two-dimensional discrete type random variables with joint pmf

$$p_{(X,Y)}(x,y) = \begin{cases} c\,xy, & x,y \in \{1,2,3\} \\ 0, & \text{otherwise.} \end{cases}$$

Find $\mathbb{P}(1 \leq X \leq 2, Y \leq 2)$ and $\mathbb{P}(Y = 3)$.

- **Q4.** Let X and Y be independent random variables. The range of X is $\{1,3,4\}$ and the range of Y is $\{1,2\}$. Partial information on the probability mass function is as follows: $p_X(3) = 0.5$, $p_Y(2) = 0.6$, and $p_{(X,Y)}(4,2) = 0.18$.
 - i) Determine $p_X(\cdot)$, $p_Y(\cdot)$ and $p_{(X,Y)}(\cdot,\cdot)$ completely.
 - ii) Determine $\mathbb{P}(|X Y| \ge 2)$.
- **Q5.** Let X and Y be independent random variable each taking values -1 and 1 with probability $\frac{1}{2}$, and let Z = XY.
 - a) Show that X, Y and Z are pairwise independent.
 - b) Are they independent? Justify your answer.
- **Q6.** Let X and Y be independent random variables such that $X \sim \mathcal{G}(\alpha), Y \sim \mathcal{G}(\beta)$ with $\alpha \neq \beta$. Show that

$$\mathbb{P}(X+Y=z) = \frac{\alpha\beta}{\alpha-\beta} \Big((1-\beta)^{z-1} - (1-\alpha)^{z-1} \Big).$$

- **Q7.** Amit and Supriya work independently on a problem in Tutorial Sheet 4 of MTL106. The time for Amit to complete the problem is exponential distributed with mean 5 minutes. The time for Supriya to complete the problem is exponential distributed with mean 4 minutes. Given that Amit requires more than 1 minutes, what is the probability that he finishes the problem before Supriya?
- **Q8.** The random variable X represents the amplitude of cosine wave; Y represents the amplitude of a sine wave. Both are independent and uniformly distributed over the interval (0,1). Let R represent the amplitude of their resultant, i.e., $R^2 = X^2 + Y^2$ and θ represent the phase angle of the resultant, i.e., $\theta = \tan^{-1}(\frac{Y}{X})$. Find the joint and marginal pdfs of θ and R.
- **Q9.** Let Z_1, Z_2, \ldots, Z_n be independent standard normal random variables. Show that $Y := \sum_{i=1}^n Z_i$ follows a chi-square distribution with *n*-degrees of freedom i.e., $Y \sim \chi^2_{(n)}$.
 - **Q10.** Let X and Y be jointly continuous random variables with joint pdf

$$f_{(X,Y)}(x,y) = \frac{1}{2}(x+y)e^{-(x+y)}, \quad x,y \ge 0.$$

Define Z := X + Y. Find the density function and mean of Z.

Q11. Let X and Y be independent random variables with $X \sim \mathcal{U}[0,1]$ and $Y \sim \mathcal{U}[0,1]$. Calculate Cov(U,V), where the random variables U and V are given by

$$U := \min\{X, Y\}, \quad V := \max\{X, Y\}.$$

- **Q12.** Let X and Y be the independent random variables with $X, Y \sim \text{Exp}(1)$.
 - a) Find the pdf of the random variables

$$X \pm Y, \ XY, \ \frac{X}{Y}, \ \min\{X, Y\}, \ \max\{X, Y\}, \ \frac{X}{X + Y}.$$

- ii) Let U := X + Y and V := X Y. Find the conditional pdf of V given U = u for some fixed u > 0.
- iii) Are U and $W := \frac{X}{X+Y}$ independent? Justify your answer.
- **Q13.** Let X and Y be random variables with zero mean and correlation ρ . Show that

$$\mathbb{E}\big[\mathrm{Var}(Y|X)\big] \le (1-\rho^2)\mathrm{Var}(Y).$$

Q14. Let X and Y be two random variables with joint density function

$$f_{(X,Y)}(x,y) = cx(y-x)e^{-y}, \quad 0 \le x \le y < +\infty.$$

- i) Find the conditional probability density functions $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$.
- ii) Show that $\mathbb{E}[X|Y] = \frac{Y}{2}$ and $\mathbb{E}[Y|X] = X + 2$.
- **Q15.** For **i.i.d** random variables X and Y, show that U := X + Y and V := X Y are uncorrelated but not necessarily independent. Are U and V independent if $X, Y \sim \mathcal{N}(0, 1)$? Give a proper reason.
 - **Q16.** Let X and Y have joint density function

$$f_{(X,Y)}(x,y) = 2e^{-x-y}, \quad 0 < x < y < +\infty.$$

Find their marginal density functions and covariance.

- **Q17.** Let X and Y be independent random variables with common density function f.
 - a) Show that $\tan^{-1}(\frac{Y}{X})$ has the uniform distribution on $(-\frac{\pi}{2}, \frac{\pi}{2})$ if and only if

$$\int_{-\infty}^{\infty} f(x)f(xy)|x| dx = \frac{1}{\pi(1+y^2)}, \quad y \in \mathbb{R}.$$

- b) Find one such f.
- **Q18.** Let X and Y be jointly distributed with density function

$$f_{(X,Y)}(x,y) = \begin{cases} x + y, & 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the Cov(X,Y) and correlation coefficient

Q19. Let X and Y be two random variables such that $\rho_{(X,Y)} = \frac{1}{2}$, Var(X) = 1 and Var(Y) = 4. Compute Var(X - 3Y).