Probability and Random Processes (15B11MA301)

Lecture-30

Department of Mathematics

Jaypee Institute of Information Technology, Noida

Contents

- Stationary Process
- First and Nth order stationary process
- Strict sense stationary process
- Weak sense stationary process
- Examples
- Practice questions
- References

Stationary Processes

If certain probability distribution or averages do not depend on t, then the random process $\{X(t)\}$ is called stationary.

Generally, stationarity refers to the degree to which the probabilistic model of the time-indexed random variables is "constant" with time.

First-Order Stationary Random process $\{X(t)\}$ is first-order stationary if the first order pdf does not depend on time:

$$f_{X(t)}(x) = f_X(x) \quad \forall \ t \in \mathcal{T}. \tag{1}$$

For this type of stationarity, we cannot say anything about moments across two or more time instants, such as correlation and covariance.

Nth-Order Stationary Random process $\{X(t)\}$ is Nth-order stationary if the joint probability distribution of the process at N time instants does not change by any time shift ' τ' ' of all $\{t_1, t_2, ..., t_N\}$:

$$f_{X(t_1),X(t_2),\dots,X(t_N)}(x_1,x_2,\dots,x_N) = f_{X(t_1-\tau),X(t_2-\tau),\dots,X(t_N-\tau)}(x_1,x_2,\dots,x_N)$$
 (2)

This type of stationarity is obviously stronger than first-order stationarity.

Strict Sense Stationary (SSS)Random process X(t) is strictly stationary if it is Nth-order stationary for all N as $N \to \infty$.

This is the strongest form of stationarity: all statistics of the random process are constant for all time differences and all time shifts. A strictly stationary process implies (2) which in turn implies (1).

$$f(x,t) = f(x,t+h)$$

This is possible only when f(x,t) is independent of t. Therefore, first-order densities (and hence distribution function) of a SSS process are independent of time.

$$E\{X(t)\} = \mu = constant$$

$$f(x_1, x_2, t_1, t_2) = f(x_1, x_2, t_1 + h, t_2 + h)$$

This is possible only if $f(x_1, x_2, t_1, t_2)$ is function of $\tau = t_1 - t_2$.

Therefore, second-order densities (and hence distribution functions) of a SSS process are functions of $\tau = t_1 - t_2$.

 $R(t_1, t_2) = E\{X(t_1)X(t_2)\}$ is also a function of $\tau = t_1 - t_2$.

If $E\{X(t_1)\}$ is a constant and $R(t_1, t_2)$ is a function of $(t_1 - t_2)$, the random process $\{X(t)\}$ need not be a SSS process.

Example of SSS Process

Let X_n denotes the presence or absence of a pulse at the nth time instant in a digital communication system or digital data processing system. If $P\{X_n = 1\} = p$ and $P\{X_n = 0\} = 1 - p = q$, then the random process (sequence) $\{X_n, n \geq 1\}$, called the Bernoulli's Process, is a SSS process.

$X_n = r$	1	0
$P(X_n = r)$	p	q

X_r	X_s	
	1	0
1	p^2	pq
0	pq	q^2

It is interesting to observe that the mean and other statistical parameters in the adjoining example also remains the same for different values of parameter *n*. There are very few processes which satisfy this property.

The joint distribution is the same for the pair of members X_r and X_s and for the pair X_{r+p} and X_{s+p} of the process.

Similarly, the third order distribution of the process is same for X_r, X_s, X_t and for $X_{r+p}, X_{s+p}, X_{t+p}$ of the processand so on, i.e. distributions of all orders are invariant under translation of time.

Two real-valued random processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the strict sense, if the joint distribution of $\{X(t)\}$ and $\{Y(t)\}$ are invariant under translation of time.

The complex random process $\{Z(t)\}$, where Z(t) = X(t) + iY(t), is said to be jointly stationary in the strict sense, if $\{X(t)\}$ and $\{Y(t)\}$, are jointly stationary in the strict sense.

Wide-sense stationarity (weakly stationary or covariance stationary process or WSS process)

A random process $\{X(t)\}$ with finite first and second-order moments is called a WSS process if its mean is a constant and the autocorrelation depends only on the time difference, i.e.,

$$E\{X(t)\} = \mu; \quad E\{X(t)X(t-\tau)\} = R(\tau)$$

A random process that is not stationary in any sense is called an evolutionary process.

Two random processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the wide sense, if each process is individually a WSS process and $R_{XY}(t_1, t_2)$ is a function of $(t_1 - t_2)$ only.

Q. Prove that the random process $X(t) = A\cos(wt + \theta)$ is wide-sense stationary if it is assumed that A and w are constants and θ is uniformly distributed in $(0,2\pi)$.

$$E(X(t)) = \int_{-\infty}^{\infty} xf(x)dx.$$
Supiform distribution $f(x) = \int_{0}^{x} xf(x)dx$

$$E(X(t)) = \int_{-\infty}^{\infty} xf(x)dx.$$
for uniform distribution $f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$

$$E(X(t)) = \int_{0}^{2\pi} \frac{1}{2\pi} A\cos(wt + \theta)d\theta$$

$$= \frac{A}{2\pi} \int_{0}^{2\pi} A\cos(wt + \theta)d\theta = 0.$$

$$\begin{split} E(X(t_1)X(t_2)) &= E\left(A^2\cos(wt_1 + \theta)\cos(wt_2 + \theta)\right) \\ &= \frac{A^2}{2}E\{\cos\left((t_1 + t_2)w + 2\theta\right) + \cos(t_1 - t_2)w\} \\ &= \frac{A^2}{2}\int_0^{2\pi} \frac{1}{2\pi} \Big[\cos\left((t_1 + t_2)w + 2\theta\right) + \cos(t_1 - t_2)w\Big] d\theta \\ &= \frac{A^2}{2}\int_0^{2\pi} \frac{1}{2\pi} \Big[\cos(t_1 - t_2)w\Big] d\theta \\ &= \frac{A^2}{2}\Big[\cos(t_1 - t_2)w\Big] \end{split}$$

Hence the random process is a WSS random process.

Q. Consider the random process $V(t) = \cos(wt + \theta)$, where θ is a RV with probability density $P(\theta) = \begin{cases} \frac{1}{2\pi} & -\pi \leq \theta \leq \pi \\ 0 & otherwise \end{cases}$.

Show that the first and second moments of V(t) are independent of time. If $\theta = constant$, will the ensemble mean of V(t) be time independent?

Solution.
$$E(V(t)) = E[\cos(wt + \theta)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(wt + \theta) d\theta = 0.$$

$$E[V^{2}(t)] = E[\cos^{2}(wt + \theta)] = \frac{1}{2}.$$

If θ is constant, then $E(V(t)) = E[\cos(wt + \theta)] = \cos(wt + \theta)$.

Therefore, the ensemble mean of V(t) will not be time independent.

Practice questions

Consider the process $X(t) = A\cos wt + B\sin wt$, where A and B are uncorrelated random variables each with mean 0 and variance 1 and W is a positive constant. Show that the process $\{X(t)\}$ is covariance stationary (WSS).

References

- 1. Veerarajan, T., Probability, Statistics and Random Processes, 3rd Ed. Tata McGraw-Hill, 2008.
- 2. Ghahramani, S., Fundamentals of Probability with Stochastic Processes, Pearson, 2005.
- 3. Papoulis, A. and Pillai, S.U., Probability, Random Variables and Stochastic Processes, Tata McGraw-Hill, 2002.
- 4. Miller, S., Childers, D., Probability and Random Processes, Academic Press, 2012.