Лекция 4

Кривые IPR и VLP. Узловой анализ

Кривая притока (IPR)

Кривая притока характеризует зависимость поступающего из пласта дебита, переведенного в стандартные условия, от забойного давления

$$Q = K\Delta P = K(P_r - P_{wf})$$

Где K – коэффициент продуктивности скважины

Кривая притока с учетом поправки Вогеля

IPR с поправкой Вогеля учитывает выделение газа из нефти в призабойной зоне пласта

• Уравнение Вогеля:

$$\frac{q_o}{(q_o^B)_{\text{max}}} = 1 - 0.2 \left(\frac{P_{wf}}{\overline{P}}\right) - 0.8 \left(\frac{P_{wf}}{\overline{P}}\right)^2 - 0.8 \left(\frac{P_{wf}}{\overline{P}}\right)^2$$

• Для сравнения, индикаторная кривая по формуле Дюпюи задается следующим уравнением:

$$\frac{\boldsymbol{q}_o}{(\boldsymbol{q}_o^{\scriptscriptstyle D})_{\max}} = 1 - \left(\frac{\boldsymbol{P}_{\scriptscriptstyle W\!f}}{\overline{\boldsymbol{P}}}\right)$$

Композитная кривая Дарси/Вогеля

Построение индикаторной кривой Вогеля

Кривая оттока (VLP)

Кривая VLP характеризует перепад давления в трубе при подъеме жидкости

По данной кривой можно оценить перепад давления в трубе при различных условиях эксплуатации:

- Диаметры труб
- Диаметр штуцера
- Расход газлифтного газа
- Обводненность
- Частота насоса
- Газовый фактор

Узловой анализ

• Метод оценки рабочей точки системы «пласт - скважина» с узлом на забое

Устойчивая равновесная работа скважины:

Неустойчивая равновесная работа скважины:

Узловой анализ скважины, работа которой невозможна:

Узловой анализ скважины, работа которой возможна только после разгрузки:

Изменение рабочей точки по мере снижения пластового давления:

Лекция 5. Часть 2 уэцн

Модель скважины, оборудованной УЭЦН

Надземная часть

1. ФА с кабельным вводом

Обладает дополнительным входом для ввода погружного кабеля

2. Станция управления

- 1. Обеспечение питания погружного оборудования
- 2. Мониторинг и управление погружным оборудованием
- 3. Защита погружного оборудования

3. Клеммная коробка

- Обеспечение питания погружного оборудования
- 2. Мониторинг и управление погружным оборудованием
- 3. Защита погружного оборудования

Ступень ЭЦН

Электроцентробежный насос (ЭЦН) состоит из ступеней.

Ступень – основной компонент ЭЦН, предназначенный для преобразования энергии вращения вала в кинетическую энергию жидкости за счёт использования центробежных сил.

Ступень ЭЦН состоит из рабочего колеса (impeller) и направляющей (diffuser)

Производительность насоса: определяется конструктивными особенностями рабочего колеса

Напор насоса: определяется количеством ступеней

Ступень ЭЦН

Рабочее колесо радиального типа:

- 1. Дебиты до 150 м³/сут
- 2. Содержание свободного газа до 10%
- 3. Меньший допустимый вынос мех. примесей
- 4. Компактнее, развивают больший напор
- 5. Дешевле

Рабочее колесо смешанного типа:

- 1. Дебиты более 150 м³/сут
- 2. Содержание свободного газа до 25%
- 3. Больший допустимый вынос мех. примесей
- 4. Менее компактны, развивают меньший напор
- 5. Дешевле

Приёмный модуль УЭЦН и газосепаратор

Доля газа на приеме до 25%

Доля газа на приеме до 50-70%

Приемный модуль – узел, через который жидкость попадает в насос

- Является базовым узлом
- Естественная сепарация составляет 10
- 20%

- УЭЦН способны работать с долей газа на приеме насоса 25%
- Если газа а приеме больше 25%, необходимо устанавливать газосепаратор

Газосепаратор представляет собой приемный модуль с возможностью динамического отделения газа

Отделяет свободный газ из перекачиваемой жидкости в поле центробежных сил с целью снижения количества газа, поступающего в насос ЭЦН.

Погружной электродвигатель и кабель

Электродвигатель предназначен для преобразования электрической энергии тока в механическую энергию вращающегося вала

Схема обвязки статора

Виды кабелей

Гидрозащита

Протектор

Функции протектора:

- •Не допускать проникновения скважинной жидкости в двигатель;
- •Передача крутящего момента от двигателя к насосу;
- •Восприятие осевой нагрузки;

Компенсатор

Основные функции компенсатора:

- Выравнивание давления масла в двигатели с давлением жидкости
- Пополнение объема масла в двигателе

Потребность в мех. добыче

Распределение давления в заглушенной скважине

Распределение давления в скважине с насосом

Напорно-расходная характеристика (НРХ). Законы подобия

Характеристика ступени ЭЦНД5-45

при частоте вращения 2910 об/мин на воде плотностью p=1000 кг/м³

Характеристики ступени ЭЦНД5-45

Параметры	при 50 Гц
Номинальная подача	45 м³/сут
Рабочий диапазон	35 – 60 м³/сут
Hanop	4,8 м
Мощность	0,058 кВт
Номинальный КПД	42 %

$$Q_{f2} = Q_{f1} \left(\frac{f_2}{f_1} \right)$$

$$H_{f2} = H_{f1} \left(\frac{f_2}{f_1}\right)^2$$

$$Q_{f2} = Q_{f1} \left(\frac{f_2}{f_1}\right) \qquad P_{\text{потр } f2} = P_{\text{потр} f1} \left(\frac{f_2}{f_1}\right)^3$$

$$H_{f2} = H_{f1} \left(\frac{f_2}{f_1}\right)^2 \qquad \eta_{max \, f2} = \eta_{max \, f1}$$

$$\eta_{max\,f2} = \eta_{max\,f1}$$

Учет влияния вязкости на НРХ

$$Q^* = \exp\left(\frac{39.5276 + 26.5605 \ln(\nu) - y}{51.6565}\right)$$

$$y = -7.5946 + 6.6504 \ln(H_{\text{wBEP}}) + 12.8429 \ln(Q_{\text{wBEP}})$$

$$C_O = 1.0 - 4.0327 \ 10^{-3} \ Q^* - 1.724 \ 10^{-4} \ (Q^*)^2$$

$$C_{\eta} = 1.0 - 3.3075 \ 10^{-2} \ Q^* + 2.8875 \ 10^{-4} \ (Q^*)^2$$

$$Q_{\text{visc}} = C_Q \ Q_w$$
 $H_{\text{visc}} = C_H \ H_w$

$$H_{\rm visc} = C_H H_{\rm v}$$

$$\eta_{\mathrm{visc}} = C_{\eta} \ \eta_{w}$$

Учет влияния газа на НРХ

FIGURE 4.9 The Turpin correlation.

$$\Phi = \frac{2000 \frac{q_{ing}'}{q_{l}'}}{3 PIP}$$

$$K_{\text{deg}} = -9\beta_{ex}^{2} + 0.6\beta_{ex} + 1$$

Расчет давления в насосе

$$rac{dp_{ ext{cтуп}}}{d ext{cтуп}} =
ho_{ ext{rжc}} \cdot H_{ ext{kopp}} \cdot g$$

- 1. По известному давлению и температуре рассчитываются свойства фаз: $\rho_{\rm H} = f(P(i),T),$ $\rho_{\rm B} = f(P(i),T),$ $\rho_{\rm F} = f(P(i),T),$ $b_{\rm F} = f(P(i),T),$ $b_{\rm H} = f(P(i),T),$ $b_{\rm B} = f(P(i),T),$ $\mu_{\rm H} = f(P(i),T),$
- 2. Определяются свойства ГЖС: $ho_{
 m rжc}$, $Q_{
 m rжc}$, $\mu_{
 m rжc}$
- 3. Определяется напор, H, развиваемый 1 ступенью насоса
- 4. Определяются поправочные коэффициенты влияния вязкости и газа, которые затем домножаются на дебит и напор, -> получаем скорректированную HPX
- 5. $dp_{\text{ступ}} = \rho_{\text{гжс}} \cdot H_{\text{корр}} \cdot g$
- 6. $P_{\text{cT}}(i+1) = P(i) + dp_{\text{ступ}}$

Сепарация флюида на приеме насоса и изменение свойств флюида

•
$$k_{sep_tot} = k_{sep_nat} + (1 - k_{sep_nat}) * k_{gas_sep}$$

•
$$R_{p_new} = R_p - (R_p - R_s(P)) * k_{sep}$$

- Пересчитываем давление насыщения, и также калибруем газосодержание, объемный коэффициент и вязкость на эти значения
- Свойства во всех гидравлических элементах выше сепарации считаются по измененным зависимостям

Алгоритм гидравлического расчета скважины, оборудованной УЭЦН

*Для расчета забойного давления нужно минимизировать отклонение в устьевом давлении подбором забойного

- 6. Рассчитываем перепад давления на штуцере, определяем линейное давление
- 5. Рассчитываем распределение давления в НКТ и определяем давление на буфере
- 4. Рассчитываем распределение давления в насосе и определяем давление на выкиде
- 3. Изменяем зависимости PVT-свойств с учетом сепарации
- 2. Рассчитываем коэффициент естественной, искусственной и общей сепарации на приеме насоса
- 1. Рассчитываем распределение давления в ЭК, определяем давление на приеме

Спасибо за внимание!