Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof:

Since $a_n \to L$ as $n \to \infty$, we have the following true statement by the definition of limit of a sequence:

$$(\forall \epsilon > 0)(\exists n \in \mathcal{N})(\forall m \ge n) [|a_m - L| < \epsilon]$$
(1)

Let ϵ be an arbitrary real number and $\epsilon > 0$. Let $\epsilon' = \frac{1}{M}\epsilon$. Since M > 0, ϵ' is also a real number and $\epsilon' > 0$. Therefore, by statement (1), there exists a natural number n such that

$$(\forall m \ge n) \left[|a_m - L| < \epsilon' \right]$$

$$\Rightarrow (\forall m \ge n) \left[|a_m - L| < \frac{1}{M} \epsilon \right]$$
(2)

Let m be an arbitrary natural number and $m \geq n$, we have

$$|a_m - L| < \frac{1}{M} \epsilon \text{ (by 2)}$$

$$M |a_m - L| < M \frac{1}{M} \epsilon \text{ (mutiply both side by } M, M > 0)$$

$$|Ma_m - ML| < \epsilon \tag{3}$$

Therefore, for an arbitrary positive real number ϵ , there exists a natural number n such that, for an arbitrary natural number m and $m \ge n$ (3) is true, meaning

$$(\forall \epsilon > 0)(\exists n \in \mathcal{N})(\forall m \ge n)[|Ma_m - ML| < \epsilon]$$

This is the definition of of sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to limit ML as $n \to \infty$, as required.