

## Power setup:

| LPC1768                       | Motor Driver                  |  |
|-------------------------------|-------------------------------|--|
| GND                           | GND                           |  |
| Vin (power input for the LPC) | VM (motor power from battery) |  |
| Vout                          | Vcc (chip power input)        |  |

Essentially the battery plugs into the driver (4.2V to power the motors) and then linked to the LPC for its power. The LPC outputs 3.3V so we can connect the Vout from the LPC to the Vcc for the driver. This powers the chip and ensures that the LPC and driver use the same voltage logic (3.3V).

Now I ue separate power

## LPC1768 Pinout:



## Adafruit TB6612 1.2A DC/Stepper Motor Driver PINOUT



#### **Power Pins**

- **Vmotor** This is the voltage for the motors, not for the logic level. Keep this voltage between 4.5V and 13.5V. This power supply will get noisy so if you have a system with analog readings or RF other noise-sensitive parts, you may need to keep the power supplies seperate (or filtered!)
- **Vcc** this is the voltage for the logic levels. Set to the voltage logic you'll be using on your microcontroller. E.g. for Arduinos, 5V is probably what you want. Can be 2.7V to 5.5V so good for 3V or 5V logic
- GND This is the shared logic and motor ground. All grounds are connected

## Signal in Pins

These are all 'Vcc logic level' inputs

- INA1, INA2 these are the two inputs to the Motor A H-bridges
- **PWMA** this is the PWM input for the Motor A H-bridges, if you dont need PWM control, connect this to logic high.
- INB1, INB2 these are the two inputs to the Motor B H-bridges
- **PWMB** this is the PWM input for the Motor B H-bridges, if you dont need PWM control, connect this to logic high.
- **STBY** this is the standby pin for quickly disabling both motors, pulled up to Vcc thru a 10K resistor. Connect to ground to disable.

### Motor Out Pins

These are 'Vmotor level' power outputs

- Motor A these are the two outputs for motor A, controlled by INA1, INA2 and PWMA
- Motor B these are the two outputs for motor B, controlled by INB1, INB2 and PWMB

# Wiring:

| LPC | <b>Motor Driver</b> | Color           | Utility                      |
|-----|---------------------|-----------------|------------------------------|
| GND | GND                 | BLACK           | Ground                       |
| P5  | BIN1                | GREEN           |                              |
| P6  | BIN2                | YELLOW          |                              |
| P7  | AIN1                | BLUE            |                              |
| P8  | AIN2                | PURPLE          |                              |
| P9  | STBY                | GREEN W/ STRIPE | 1 = go, 0 = stop both motors |
| P21 | PWMA                | ORANGE          |                              |
| P22 | PWMB                | WHITE           |                              |

| Right Motor | Motor A |
|-------------|---------|
| Left Motor  | Motor B |

both motor plus have metal bits facing inwards

| LPC                | US Distance Sensor | Color          |
|--------------------|--------------------|----------------|
| P28(TX)            | ЕСНО               | WHITE          |
| P27(RX)            | TRIG               | PINK W/ STRIPE |
| P29(MUST SET TO 1) | VCC                | RED            |
| GND(ON MOTOR)      | GND                | BLACK          |

| INFRARED SENSOR        |           |       |
|------------------------|-----------|-------|
| $NEG \to Resistor \to$ | GND(USDS) | BLACK |
| POS (longer leg)       | P15       | RED   |