

GROUP: ITBDA-1901

NAME: Dossymbekuly Iliyas

Walmart Sales Forecasting

PYTHON ANALYSIS

Introduction

- Walmart is an American company that operates the world's largest wholesale and retail chain
- For analysis and research, I chose the Wal Mart project. In the dataset, I researched the coverage of goods for sale.

About Data Set

What you need to know:

```
Data columns (total 8 columns):
    Column
                 Non-Null Count
 #
                                Dtype
                 6435 non-null
                                int64
    Store
              6435 non-null
                              object
    Date
                              float64
    Weekly_Sales 6435 non-null
    Holiday Flag 6435 non-null
                               int64
                              float64
    Temperature 6435 non-null
                              float64
    Fuel Price 6435 non-null
            6435 non-null float64
    CPI
    Unemployment 6435 non-null float64
dtypes: float64(5), int64(2), object(1)
memory usage: 402.3+ KB
```

Store

Store – the store number

Date

Date – the week of sales

Unemployment

• Prevailing unemployment rate

Weekly_Sales

Sales for the given store

Holiday_Flag

Whether the week is a special holiday week

1 – Holiday week

0 – Non-holiday week

Temperature

Temperature on the day of sale

Fuel_Price

Cost of fuel in the region

CPI

• Prevailing consumer price index

Methodology

The libraries I use for data analysis.

- 1. pandas
- 2. numpy
- 3. matplotlib
- 4. seaborn
- 5.sklearn

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error, r2_score
```


Data output

What our data looks like?

dataSet = pd.read_csv('Walmart.csv')

dataSet.dtypes	
Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI Unemployment dtype: object	int64 datetime64[ns] float64 int64 float64 float64 float64 float64

dataSet.nunique()		
Store	45	
Date	143	
Weekly_Sales	6435	
Holiday_Flag	2	
Temperature	3528	
Fuel_Price	892	
CPI	2145	
Unemployment	349	
dtype: int64		

dataSet.head(5)								
	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
0	1	05-02-2010	1643690.90	0	42.31	2.572	211.096358	8.106
1	1	12-02-2010	1641957.44	1	38.51	2.548	211.242170	8.106
2	1	19-02-2010	1611968.17	0	39.93	2.514	211.289143	8.106
3	1	26-02-2010	1409727.59	0	46.63	2.561	211.319643	8.106
4	1	05-03-2010	1554806.68	0	46.50	2.625	211.350143	8.106

dataSet.shape (6435, 8)

Data Type and visualization


```
dataSet['Date'] = pd.to_datetime(dataSet['Date'])
```

dataSet.dtypes	
Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI Unemployment dtype: object	int64 datetime64[ns] float64 int64 float64 float64 float64

Visualization

```
sales = dataSet.groupby('Date')['Weekly_Sales'].agg(sales=sum).reset_index()
```

```
plt.figure(figsize=(18,7))
plt.plot(sales['Date'], sales['sales'])
```

[<matplotlib.lines.Line2D at 0x132c938f370>]

print(sales);

	Date	sales
0	2010-01-10	42239875.87
1	2010-02-04	50423831.26
2	2010-02-07	48917484.50
3	2010-02-19	48276993.78
4	2010-02-26	43968571.13
138	2012-10-08	47403451.04

Visualization

```
holiday_week = dataSet[dataSet['Holiday_Flag'] == 1]
holiday_week = holiday_week.groupby('Date')['Weekly_Sales'].agg(sales=sum).reset_index()
```

```
plt.figure(figsize=(15,5))
plt.plot(holiday_week['Date'], holiday_week['sales'])
```

[<matplotlib.lines.Line2D at 0x185431d0700>]

Holiday weeks

holiday_week

	Date	sales
0	2010-10-09	45634397.84
1	2010-11-26	65821003.24
2	2010-12-02	48336677.63
3	2010-12-31	40432519.00
4	2011-09-09	46763227.53
5	2011-11-02	47336192.79
6	2011-11-25	66593605.26
7	2011-12-30	46042461.04
8	2012-07-09	48330059.31
9	2012-10-02	50009407.92

```
no_holiday_week = dataSet[dataSet['Holiday_Flag'] == 0]
no_holiday_week = no_holiday_week.groupby('Date')['Weekly_Sales'].agg(sales=sum).reset_index()
no_holiday_week
```

	Date	sales		
0	2010-01-10	42239875.87		
1	2010-02-04	50423831.26		
2	2010-02-07	48917484.50		
3	2010-02-19	48276993.78		
4	2010-02-26	43968571.13		
		•••		
128	2012-10-08	47403451.04		
129	2012-10-19	45122410.57		
130	2012-10-26	45544116.29		
131	2012-11-05	46925878.99		
132	2012-12-10	46128514.25		
133 r	133 rows × 2 columns			

SCATTER PLOT

Processes with data:

```
dataSet['Temperature'].value_counts().plot(kind='pie')
alpha_color=1

Hot

Cold

Warm

Cool
```

```
sns.catplot(x ="Temperature",
kind ="count", data = dataSet)
<seaborn.axisgrid.FacetGrid at 0x1f5de782a40>
   3000
   2500
   2000
1500
   1000
    500
                                Hot
           Cool
                                          Cold
                     Warm
                        Temperature
```

```
Print(dataSet.Temperature.value_counts

Hot 2939
Warm 2137
Cool 1141
Cold 218
Name: Temperature, dtype: int64
```

兴

Processes with data:

```
dataSet['day'] = dataSet['Date'].dt.weekday
dataSet['month'] = dataSet['Date'].dt.month
dataSet['year'] = dataSet['Date'].dt.year
```

```
# The Top 10 stores in total sales over all years
dataSet.groupby(['Store'])['Weekly_Sales'].sum().to_frame()
```

	Store	Weekly_Sales
0	20	3.013978e+08
1	4	2.995440e+08
2	14	2.889999e+08
3	13	2.865177e+08
4	2	2.753824e+08
5	10	2.716177e+08
6	27	2.538559e+08
7	6	2.237561e+08
8	1	2.224028e+08
9	39	2.074455e+08

Thank you for your attention!!!