

Please replace Paragraph [0019] with the following paragraph:

[0019] The first interlayer insulating film of this invention is composed of a polymer in which a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the three-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group groups and polymerizable in the two-dimensional direction are three-dimensionally polymerized.

Please replace Paragraph [0021] with the following paragraph:

[0021] In the first interlayer insulating film, the first monomer can be an adamantane derivative having a-four substituted acetylenyl group-groups or a methane derivative having a-two substituted acetylenyl group groups.

Please replace Paragraph [0022] with the following paragraph:

[0022] In the first interlayer insulating film, the second monomer can be an aromatic derivative having a-two substituted cyclopentanonyl groupgroups.

Please replace Paragraph [0023] with the following paragraph:

[0023] The second interlayer insulating film of this invention is composed of a polymer in which a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the two-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group groups and polymerizable in the three-dimensional direction are three-dimensionally polymerized.

2

Please replace Paragraph [0025] with the following paragraph:

[0025] In the second interlayer insulating film, the first monomer can be an aromatic derivative having a-four substituted acetylenyl groupgroups.

Please replace Paragraph [0026] with the following paragraph:

[0026] In the second interlayer insulating film, the second monomer can be an adamantane derivative having a-two substituted cyclopentanonyl group-groups or a methane derivative having a-two substituted cyclopentanonyl group groups.

Please replace Paragraph [0027] with the following paragraph:

[0027] The first method for forming an interlayer insulating film of this invention includes the steps of preparing an oligomer by polymerizing, in a liquid phase, a first monomer having a four substituted acetylenyl group groups and polymerizable in the three-dimensional direction and a second monomer having a two substituted cyclopentanonyl group groups and polymerizable in the two-dimensional direction; and causing polymerization after applying the oligomer on a substrate, whereby forming an interlayer insulating film made from a polymer in which the first monomer and the second monomer are three-dimensionally polymerized.

Please replace Paragraph [0029] with the following paragraph:

[0029] The second method for forming an interlayer insulating film of this invention includes the steps of preparing an oligomer by polymerizing, in a gas phase, a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the three-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in

the two-dimensional direction; and causing polymerization after depositing the oligomer on a substrate, whereby forming an interlayer insulating film made from a polymer in which the first monomer and the second monomer are three-dimensionally polymerized.

Please replace Paragraph [0032] with the following paragraph:

[0032] In the first or second method for forming an interlayer insulating film, the first monomer can be an adamantane derivative having a four substituted acetylenyl group or a methane derivative having a substituted acetylenyl group.

Please replace Paragraph [0033] with the following paragraph:

[0033] In the first or second method for forming an interlayer insulating film, the second monomer can be an aromatic derivative having a-two substituted cyclopentanonyl groupgroups.

Please replace Paragraph [0037] with the following paragraph:

[0037] The third method for forming an interlayer insulating film of this invention includes the steps of preparing an oligomer by polymerizing, in a liquid phase, a first monomer having a four substituted acetylenyl group groups and polymerizable in the two-dimensional direction and a second monomer having a two substituted cyclopentanonyl group groups and polymerizable in the three-dimensional direction; and causing polymerization after applying the oligomer on a substrate, whereby forming an interlayer insulating film made from a polymer in which the first monomer and the second monomer are three-dimensionally polymerized.

Please replace Paragraph [0039] with the following paragraph:

[0039] The fourth method for forming an interlayer insulating film of this invention includes the steps of preparing an oligomer by polymerizing, in a gas phase, a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the two-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in the three-dimensional direction; and causing polymerization after depositing the oligomer on a substrate, whereby forming an interlayer insulating film made from a polymer in which the first monomer and the second monomer are three-dimensionally polymerized.

Please replace Paragraph [0042] with the following paragraph:

[0042] In the third or fourth method for forming an interlayer insulating film, the first monomer can be an aromatic derivative having a-four substituted acetylenyl groupgroups.

Please replace Paragraph [0043] with the following paragraph:

[0043] In the third or fourth method for forming an interlayer insulating film, the second monomer can be an adamantane derivative having a-two substituted cyclopentanonyl groups or a methane derivative having a-two substituted cyclopentanonyl groups.

Please replace Paragraph [0047] with the following paragraph:

[0047] The first polymer composition of this invention is composed of a first monomer having a four substituted acetylenyl group-groups and polymerizable in the three-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in the two-dimensional direction that are three-dimensionally polymerized.

Please replace Paragraph [0049] with the following paragraph:

[0049] In the first polymer composition, the first monomer can be an adamantane derivative having a-four substituted acetylenyl group-groups or a methane derivative having a-four substituted acetylenyl group-groups.

Please replace Paragraph [0050] with the following paragraph:

[0050] In the first polymer composition, the second monomer can be an aromatic derivative having a-two substituted cyclopentanonyl groupgroups.

Please replace Paragraph [0051] with the following paragraph:

[0051] The second polymer composition of this invention is composed of a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the two-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in the three-dimensional direction that are three-dimensionally polymerized.

Please replace Paragraph [0053] with the following paragraph:

[0053] In the second polymer composition, the first monomer can be an aromatic derivative having a-four substituted acetylenyl groupgroups.

Please replace Paragraph [0054] with the following paragraph:

[0054] In the second polymer composition, the second monomer can be an adamantane derivative having a-two substituted cyclopentanonyl group-groups or a methane derivative having a-two substituted cyclopentanonyl group groups.

Please replace Paragraph [0060] with the following paragraph:

[0060] The interlayer insulating film or the polymer composition of Embodiment 1 is composed of a polymer represented by Chemical Formula 3, in which a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the three-dimensional direction as represented by Chemical Formula 1 and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in the two-dimensional direction as represented by Chemical Formula 2 are three-dimensionally polymerized:

Please replace Paragraph [0062] with the following paragraph:

[0062] The first monomer has the <u>four</u> substituted acetylenyl <u>group groups</u> represented by a general formula, RC≡C— (wherein R is a substituent), and the substituent R may be hydrogen or an aromatic derivative such as benzene, naphthalene, anthracene or biphenyl.

Please replace Paragraph [0063] with the following paragraph:

[0063] Specific examples of the first monomer are an adamantane derivative having a-two substituted acetylenyl groupgroups, such as 1,3,5,7-tetra(acetylenyl)adamantane, and a methane derivative having a-two substituted acetylenyl groupgroups, such as tetra(acetylenyl)methane.

Please replace Paragraph [0064] with the following paragraph:

[0064] The second monomer has the two substituted cyclopentanonyl group groups represented by a general formula, Chemical Formula 4:

Please replace Paragraph [0080] with the following paragraph:

[0080] In contrast, the interlayer insulating film of Embodiment 1 is composed of the polymer composition in which the first monomer having the substituted acetylenyl group-groups and polymerizable in the three-dimensional direction and the second monomer having the substituted cyclopentanonyl group-groups and polymerizable in the two-dimensional direction are three-dimensionally polymerized. Accordingly, the diamond structure having a pore of a molecular size can be realized.

<u>Please replace Paragraph [0083] with the following paragraph:</u>

[0083] The interlayer insulating film or the polymer composition of Embodiment 2 is composed of a polymer represented by Chemical Formula 8, in which a first monomer having a-two substituted acetylenyl group-groups and polymerizable in the two-dimensional direction as represented by Chemical Formula 6 and a second monomer having a-four substituted cyclopentanonyl group-groups and polymerizable in the three-dimensional direction as represented by Chemical Formula 7 are three-dimensionally polymerized:

Please replace Paragraph [0084] with the following paragraph:

[0084] The first monomer has the substituted acetylenyl group-groups represented by a general formula, RC=C— (wherein R is a substituent), and the substituent R may be hydrogen or an aromatic derivative such as benzene, naphthalene, anthracene or biphenyl.

Please replace Paragraph [0086] with the following paragraph:

[0086] The second monomer has the substituted cyclopentanonyl group groups represented by a general formula, Chemical Formula 9:

Please replace Paragraph [0102] with the following paragraph:

[0102] In contrast, the interlayer insulating film of Embodiment 2 is composed of the polymer composition in which the first monomer having the <u>four</u> substituted acetylenyl <u>group-groups</u> and polymerizable in the two-dimensional direction and the second monomer having the <u>two</u> substituted cyclopentanonyl <u>group-groups</u> and polymerizable in the three-dimensional direction are three-dimensionally polymerized. Accordingly, the diamond structure having a pore of a molecular size can be realized.

Please replace Paragraph [0105] with the following paragraph:

[0105] The interlayer insulating film or the polymer composition of Embodiment 3 is composed of a polymer in which a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the three-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group-groups and polymerizable in the two-dimensional direction are three-dimensionally polymerized in the same manner as in Embodiment 1. Accordingly, the description of the first monomer and the second monomer is omitted in this embodiment.

Please replace Paragraph [0121] with the following paragraph:

[0121] The interlayer insulating film or the polymer composition of Embodiment 4 is composed of a polymer in which a first monomer having a-four substituted acetylenyl group-groups and polymerizable in the two-dimensional direction and a second monomer having a-two substituted

cyclopentanonyl group-groups and polymerizable in the three-dimensional direction are three-dimensionally polymerized in the same manner as in Embodiment 2. Accordingly, the description of the first monomer and the second monomer is omitted in this embodiment.

Please replace the Abstract with the following:

The interlayer insulating film of this invention is composed of a polymer in which a first monomer having a-four substituted acetylenyl group groups and polymerizable in the three-dimensional direction and a second monomer having a-two substituted cyclopentanonyl group groups and polymerizable in the two-dimensional direction are three-dimensionally polymerized.