

Non-Invasive Blood Glucose Monitoring in Ears

Seminar Paper

by

Andrej Vladimirovič Ermoshkin

Chair of Pervasive Computing Systems/TECO
Institute of Telematics
Department of Informatics

First Reviewer: Eintragen
Second Reviewer: Eintragen

Supervisor: Supraja Ramesh

Project Period: 29/04/2025 – 30/09/2025

Abstract

TODO

Contents

Αľ	Ostract	I
1	Introduction (chapter) 1.1 Motivation	1 1 1
2	Background: Diabetes and Blood Glucose Monitoring	3
	2.1 Medical Context	3
	2.2 Traditional invasive measurement techniques	3
	2.3 Need for non-invasive approaches	3
3	Photoplethysmography	5
	3.1 Physical principle	5
	3.2 Transmission vs. reflection method	5
	3.3 Signal characteristics and challenges	5
4	Anatomical zones for measurement	7
	4.1 Anatomical zones overview	7
	4.2 Advantages and disadvantages of each zone	7
	4.3 Practical implications for wearable devices	7
5	Classical Machine Learning Models for BGL estimation	9
	5.1 Support Vector Machines (SVM)	9
	5.2 Random Forests	9
	5.3 Properties of these models	9
6	Deep Learning Approaches	11
	6.1 Convolutional Neural Networks (CNNs)	11
		11
	6.3 Benefits and challenges	11
7	Hybrid Models	13
	7.1 Architecture and workflow	13

	7.2	Step-by-step process										13
	7.3	Insights from recent literature										13
8	Cor	mparison of Methods	 									15
	8.1	When classical models are preferable										15
	8.2	When deep/hybrid models outperform										15
	8.3	State of the art and emerging trends .										15
Lis	st of	Figures										17
Lis	st of	Tables	 									19

1 Introduction (chapter)

- 1.1 Motivation
- 1.2 Drawbacks of invasive methods
- 1.3 Goal and Scope of This Paper

2 Background: Diabetes and Blood Glucose Monitoring

- 2.1 Medical Context
- 2.2 Traditional invasive measurement techniques
- 2.3 Need for non-invasive approaches

3 Photoplethysmography

- 3.1 Physical principle
- 3.2 Transmission vs. reflection method
- 3.3 Signal characteristics and challenges

4 Anatomical zones for measurement

- 4.1 Anatomical zones overview
- 4.2 Advantages and disadvantages of each zone
- 4.3 Practical implications for wearable devices

5 Classical Machine Learning Models for BGL estimation

- 5.1 Support Vector Machines (SVM)
- 5.2 Random Forests
- 5.3 Properties of these models

6 Deep Learning Approaches

- 6.1 Convolutional Neural Networks (CNNs)
- 6.2 Long Short-Term Memory (LSTM) networks
- 6.3 Benefits and challenges

7 Hybrid Models

- 7.1 Architecture and workflow
- 7.2 Step-by-step process
- 7.3 Insights from recent literature

8 Comparison of Methods

- 8.1 When classical models are preferable
- 8.2 When deep/hybrid models outperform
- 8.3 State of the art and emerging trends

List of Figures

List of Tables