Lecture 2: Example applications

COMP5930M Scientific Computation

Today

- Receiver calculates its position (x, y, z) based on signals sent by four GPS satellites and received at times t_i^R.
- ▶ Each satellite i = 1, 2, 3, 4 transmits messages that include the transmission time t_i^S and the satellite position (x_i, y_i, z_i) at the time of transmission.

▶ The clock error, $\Delta t = t_{\text{satellite}} - t_{\text{receiver}}$, is also unknown.

- Receiver calculates its position (x, y, z) based on signals sent by four GPS satellites and received at times t_i^R .
- ▶ Each satellite i = 1, 2, 3, 4 transmits messages that include the transmission time t_i^S and the satellite position (x_i, y_i, z_i) at the time of transmission.
- ► True range from satellite *i*:

$$d_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}$$

Pseudorange from satellite i:

$$p_i = c\left(t_i^R - t_i^S\right)$$

where c is the speed of light (assuming no clock error)

- Receiver calculates its position (x, y, z) based on signals sent by four GPS satellites and received at times t_i^R .
- ▶ Each satellite i = 1, 2, 3, 4 transmits messages that include the transmission time t_i^S and the satellite position (x_i, y_i, z_i) at the time of transmission.
- ► True range from satellite *i*:

$$d_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}$$

Pseudorange from satellite i:

$$p_i = c \left(t_i^R - t_i^S \right)$$

where c is the speed of light (assuming no clock error)

► True range from satellite *i*:

$$d_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}$$

Pseudorange from satellite i:

$$p_i = c \left(t_i^R - t_i^S \right)$$

where c is the speed of light (assuming no clock error)

▶ By incorporating the clock error, we can relate the true range with the pseudorange:

$$d_i = c \left(t_i^R - t_i^S + \Delta t \right)$$

► True range from satellite *i*:

$$d_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}$$

Pseudorange from satellite i:

$$p_i = c \left(t_i^R - t_i^S \right)$$

where c is the speed of light (assuming no clock error)

By incorporating the clock error, we can relate the true range with the pseudorange:

$$d_{i} = c\left(t_{i}^{R} - t_{i}^{S} + \Delta t\right)$$

Navigation equations (four satellites)

By collecting all four equations into one system, we can in theory solve for the four unknowns $(x, y, z, \Delta t)$:

$$\begin{cases} \sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2} - c\left(t_1^R - t_1^S + \Delta t\right) = 0\\ \sqrt{(x-x_2)^2 + (y-y_2)^2 + (z-z_2)^2} - c\left(t_2^R - t_2^S + \Delta t\right) = 0\\ \sqrt{(x-x_3)^2 + (y-y_3)^2 + (z-z_3)^2} - c\left(t_3^R - t_3^S + \Delta t\right) = 0\\ \sqrt{(x-x_4)^2 + (y-y_4)^2 + (z-z_4)^2} - c\left(t_4^R - t_4^S + \Delta t\right) = 0 \end{cases}$$

 \Rightarrow nonlinear equation system $F(\vec{x}) = 0$

Possible issues in solving the navigation equations

- ► The equations may have multiple solutions or no solutions¹
 - \Rightarrow Are the solutions **unique** (up to some conditions)?
- Receiver motion introduces uncertainty to the times t_i^R
 - ⇒ How **sensitive** are the solutions to the coefficients?

¹Abel J and Chauffe J. Existence and uniqueness of GPS solutions. IEEE Transactions on Aerospace and Electronic Systems 27:952956, 1991.

Possible issues in solving the navigation equations

- ► The equations may have multiple solutions or no solutions¹
 - \Rightarrow Are the solutions **unique** (up to some conditions)?
- ▶ Receiver motion introduces uncertainty to the times t_i^R
 - ⇒ How **sensitive** are the solutions to the coefficients?
- ▶ Nonlinear equation solution algorithms often iterative
 - ⇒ How to generate **initial solutions** for the location?

¹Abel J and Chauffe J. Existence and uniqueness of GPS solutions. IEEE Transactions on Aerospace and Electronic Systems 27:952956, 1991.

Possible issues in solving the navigation equations

- ► The equations may have multiple solutions or no solutions¹
 - \Rightarrow Are the solutions **unique** (up to some conditions)?
- ▶ Receiver motion introduces uncertainty to the times t_i^R
 - ⇒ How **sensitive** are the solutions to the coefficients?
- Nonlinear equation solution algorithms often iterative
 - ⇒ How to generate **initial solutions** for the location?

¹Abel J and Chauffe J. Existence and uniqueness of GPS solutions. IEEE Transactions on Aerospace and Electronic Systems 27:952956, 1991.

Predator-prey -model in computational ecology:

"Assume we have an ecological system with two species: prey and predator. The prey reproduce without limits due to large quantities of food. The predator needs to eat the prey to reproduce."

Objective: describe the dynamics of the two populations

- t is our time variable
- \triangleright x(t) is the number of animals in the prey species
- \triangleright y(t) is the number of animals in the predator species
- ▶ The initial populations are $x(0) = x_0$ and $y(0) = y_0$
- ► The change in time of the populations are $\frac{dx}{dt}$ and $\frac{dy}{dt}$

Lotka-Volterra model:

$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = \alpha x(t) - \beta x(t)y(t)
\frac{dy}{dt} = \delta x(t)y(t) - \gamma y(t)$$
(1)

where $\alpha, \beta, \gamma, \delta$ are positive constants

Interpretation of terms in the equation:

• $\alpha x(t)$ is the reproduction rate of new prey species

Since $\frac{dx}{dt} = \alpha x(t)$ has solution $x(t) = C \exp(\alpha t)$, the prey population grows exponentially when there are no predators

- ho $\alpha x(t)$ is the reproduction rate of new prey species Since $\frac{dx}{dt} = \alpha x(t)$ has solution $x(t) = C \exp(\alpha t)$, the prey population grows exponentially when there are no predators
- $-\beta x(t)y(t)$ is the predation rate, i.e. how many prey are being eaten by the predators. Note this is a non-linear term.

- ho $\alpha x(t)$ is the reproduction rate of new prey species

 Since $\frac{dx}{dt} = \alpha x(t)$ has solution $x(t) = C \exp(\alpha t)$, the prey population grows exponentially when there are no predators
- ▶ $-\beta x(t)y(t)$ is the predation rate, i.e. how many prey are being eaten by the predators. Note this is a non-linear term.
- $\delta x(t)y(t)$ is the growth rate of predators, which depends on how much prey is available. Another non-linear term.

- ho $\alpha x(t)$ is the reproduction rate of new prey species Since $\frac{dx}{dt} = \alpha x(t)$ has solution $x(t) = C \exp(\alpha t)$, the prey population grows exponentially when there are no predators
- ▶ $-\beta x(t)y(t)$ is the predation rate, i.e. how many prey are being eaten by the predators. Note this is a non-linear term.
- ▶ $\delta x(t)y(t)$ is the growth rate of predators, which depends on how much prey is available. Another non-linear term.
- $-\gamma y(t)$ is the the natural death rate of the predator species Predators will die off exponentially if there is no prey

- $\underline{\alpha x(t)}$ is the <u>reproduction rate of new prey species</u> Since $\frac{dx}{dt} = \alpha x(t)$ has solution $x(t) = C \exp(\alpha t)$, the prey population grows exponentially when there are no predators
- ▶ $-\beta x(t)y(t)$ is the predation rate, i.e. how many prey are being eaten by the predators. Note this is a non-linear term.
- ▶ $\delta x(t)y(t)$ is the growth rate of predators, which depends on how much prey is available. Another non-linear term.
- $-\gamma y(t)$ is the the natural death rate of the predator species

 Predators will die off exponentially if there is no prey

In many cases, the solution can be shown to approach a <u>periodic</u> orbit where the number of predators/prey behave cyclically:

Phase-space plot in the (x, y) space tracks the solution from a given initial solution (x_0, y_0)

In practice, differential equations are often discretised in time on a numerical grid with discrete time step $\Delta t = t_j - t_{j-1}$:

$$X_j = x(t_j) \text{ for } t_0 < t_1 < \ldots < t_N$$

by applying difference approximations for the derivatives, e.g.

$$\frac{\partial x}{\partial t}(t_j) \approx \frac{X_j - X_{j-1}}{\Delta t}.$$

This leads to a system $F(\vec{X}) = 0$ of algebraic nonlinear equations for the X_j to be solved at each time step $t_{j-1} \to t_j$.

Return to these techniques later in the module...

In practice, differential equations are often discretised in time on a numerical grid with discrete time step $\Delta t = t_j - t_{j-1}$:

$$X_j = x(t_j) \text{ for } t_0 < t_1 < \ldots < t_N$$

by applying difference approximations for the derivatives, e.g.

$$\frac{\partial x}{\partial t}(t_j) \approx \frac{X_j - X_{j-1}}{\Delta t}.$$

This leads to a system $F(\vec{X}) = 0$ of algebraic nonlinear equations for the X_j to be solved at each time step $t_{j-1} \to t_j$.

Return to these techniques later in the module...

Nonlinear equations for continuous Lotka-Volterra model:

$$\frac{dx}{dt} = \alpha x(t) - \beta x(t)y(t)$$

$$\frac{dy}{dt} = \delta x(t)y(t) - \gamma y(t)$$
(2)

Nonlinear equations for discrete Lotka-Volterra model:

$$\frac{X_{j} - X_{j-1}}{\Delta t} = \alpha X_{j} - \beta X_{j} Y_{j}$$

$$\frac{Y_{j} - Y_{j-1}}{\Delta t} = \delta X_{j} Y_{j} - \gamma Y_{j}$$
(3)

for
$$j = 1, 2, ..., N$$

Replace derivatives with discrete difference approximations

Nonlinear equations for discrete Lotka-Volterra model:

$$X_{j} - X_{j-1} = \Delta t \left[\alpha X_{j} - \beta X_{j} Y_{j} \right]$$

$$Y_{j} - Y_{j-1} = \Delta t \left[\delta X_{j} Y_{j} - \gamma Y_{j} \right]$$

$$I$$

$$(4)$$

for j = 1, 2, ..., N

Multiply both sides by Δt

Nonlinear equations for discrete Lotka-Volterra model:

$$X_{j} - X_{j-1} - \Delta t \left[\alpha X_{j} - \beta X_{j} Y_{j} \right] = 0$$

$$Y_{j} - Y_{j-1} - \Delta t \left[\delta X_{j} Y_{j} - \gamma Y_{j} \right] = 0$$
for $j = 1, 2, \dots, N$

Move all terms to the left-hand side

Nonlinear equations for discrete Lotka-Volterra model:

$$F_{1}(X_{j}, Y_{j}) = X_{j} - X_{j-1} - \Delta t \left[\alpha X_{j} - \beta X_{j} Y_{j}\right] = 0$$

$$F_{2}(X_{j}, Y_{j}) = Y_{j} - Y_{j-1} - \Delta t \left[\delta X_{j} Y_{j} - \gamma Y_{j}\right] = 0$$
for $j = 1, 2, ..., N$

Identify the non-linear equations

- ▶ Depending on application, number of equations can be large
 - \Rightarrow Do our algorithms **scale** for large problems?
- ▶ Does the approximate solution *U* approach *u* as $N \to \infty$?
 - ⇒ What are the criteria for **convergence**?

- ▶ Depending on application, number of equations can be large
 - \Rightarrow Do our algorithms **scale** for large problems?
- ▶ Does the approximate solution U approach u as $N \to \infty$?
 - ⇒ What are the criteria for **convergence**?
- ightharpoonup Time-dependent problems require choice of time step Δt
 - \Rightarrow How to choose time step Δt that is **stable**?

- ▶ Depending on application, number of equations can be large
 - \Rightarrow Do our algorithms **scale** for large problems?
- ▶ Does the approximate solution *U* approach *u* as $N \to \infty$?
 - ⇒ What are the criteria for **convergence**?
- ightharpoonup Time-dependent problems require choice of time step Δt
 - \Rightarrow How to choose time step Δt that is **stable**?