

ME6216

Low power consumption, Low ESR Cap. Compatible

General Description

ME6216 series are highly precise, low power consumption, positive voltage regulators manufactured using CMOS technologies .The series provides large currents with a significantly small dropout voltage.

The series is compatible with low ESR ceramic capacitors .The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

Features

- Output voltage range: 1.0V~5.0V
- Input voltage: up to 6 V
- Dropout Voltage:110mV@ I_{OUT} =100mA
 - 240mV@ I_{OUT} =200mA
- Highly Accuracy: ±1%
- Low power consumption: 6uA(TYP.)
- Large output current: 300mA (V_{IN}=4.3V,V_{OUT}=3.3V)
- Excellent Input Stability
- Be available to regulator and reference voltage

Typical Application

- Communication tools
- Mobile phones
- Portable games
- Portable AV systems
- Cameras, Video systems
- Reference voltage sources

Package

3-pin SOT89-3, SOT23-3, SOT23,
 TO92, DFN3L

Typical Application Circuit

Selection Guide

product series	product description
ME6216A10PG	V _{OUT} =1.0V; Package: SOT89-3
ME6216A28M3G	V _{OUT} =2.8V; Package: SOT23-3
ME6216A30XG	V _{OUT} =3.0V; Package: SOT23
ME6216A18TG	V _{OUT} =1.8V; Package: TO92
ME6216A18N3AG	V _{OUT} =1.8V; Package: DFN3L(2.0*2.0*0.55-1.30)

NOTE:

1. At present ,there are five kinds of voltage value: 1.0V \, 1.2V \, 1.3V \, 1.5V \, 1.8V \,

2.0V, 2.5V, 2.7V, 2.8V, 3.0V, 3.3V, 3.6V, 5.0V.

2. If you need other voltage and package, please contact our sales staff.

V04 <u>www.microne.com.cn</u> Page 2 of 14

Pin Configuration

Pin Assignment

ME6216Axx

		Pin				
M3	Р	X	Т	N3	Name	Function
SOT23-3	SOT89-3	SOT23	TO-92	DFN3L		
1	1	1	1	3	VSS	Ground
2	3	2	3	2	VOUT	Output
3	2	3	2	1	VIN	Input

Block Diagram

V04 <u>www.microne.com.cn</u> Page 3 of 14

Absolute Maximum Ratings

Parame	ter	Symbol	Description	Units
Input Volt	age	V _{IN}	6.5	V
Output Cu	rrent	I _{OUT}	390	mA
Output Vo	Itage	V _{OUT}	Vss-0.3 ~ Vout+0.3	V
	SOT23-3	Pd	300	mW
	SOT89-3	Pd	500	mW
Power Dissipation	SOT23	Pd	300	mW
	TO-92	Pd	500	mW
	DFN3L	Pd	500	mW
Operating Ambient	Temperature	T _{Opr}	-25 ~ +125	${\mathbb C}$
Storage Temp	perature	T _{stg}	-40 ~ +125	$^{\circ}$ C

Electrical Characteristics

ME6216 (Vout=1.2V)

(V_{IN}=V_{OUT}+1V,CIN=COUT=1uF,Ta=25^OC Unless otherwise stated)

V _{IN} -V _{OUT} +TV,CIN-COOT-TUP, Ia-25 C Offices officiwise stated)							
PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT	
Output Voltage (Vout=1.0~1.3V)	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =V _{OUT} +1V	V _{OUT} (T) -0.015	V _{OUT} (T) (Note 1)	V _{OUT} (T) +0.015	V	
Input Voltage	V_{IN}				6	V	
Maximum Output Current	I _{OUT} (max)	V _{IN} = V _{OUT} +1V		250	280	mA	
Load Regulation	ΔV_{OUT}	V _{IN} = V _{OUT} +1V 1mA≤I _{OUT} ≤100mA		8	12	mV	
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		320	350	mV	
(Note 3)	V_{dif2}	I _{OUT} =200mA		570	600	mV	
Supply Current	I _{SS}	V _{IN} = V _{OUT} +1V		6	8	μΑ	
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.05	0.2	%/V	
Power Supply Ripple Rejection Ratio	PSRR	$Vin= [V_{OUT} +1]V$ $+1Vp-pAC$ $I_{OUT} = 10mA, f=1kHz$		65		dB	
Short Circuit Current	I _{short}	Vin= V _{OUT} (T)+1V V _{OUT} =VSS		50	70	mA	
Over Current Protection	l _{limit}	V _{IN} = V _{OUT} +1V		310	340	mA	

ME6216 (Vout=1.8V)

 $(V_{IN}=V_{OUT}+1V,CIN=COUT=1uF,Ta=25^{O}C$ Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =V _{OUT} +1V	X 0.99	V _{OUT} (T) (Note 1)	X 1.01	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} = V _{OUT} +1V		300	350	mA
Load Regulation	ΔV_OUT	$V_{IN} = V_{OUT} + 1V$ $1 \text{mA} \le I_{OUT} \le 100 \text{mA}$		8	12	mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		190	210	mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		380	400	mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +1V		6	8	μΑ
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.05	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [V _{OUT} +1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		65		dB
Short Circuit Current	I _{short}	Vin= V _{OUT} (T)+1V V _{OUT} =VSS		50	70	mA
Over Current Protection	l _{limit}	V _{IN} = V _{OUT} +1V		380	420	mA

ME6216(Vout=2.8V)

(V_{IN}=V_{OUT}+1V,CIN=COUT=1uF,Ta=25^OC Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =V _{OUT} +1V	X 0.99	V _{OUT} (T) (Note 1)	X 1.01	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} = V _{OUT} +1V		300	350	mA
Load Regulation	ΔV_OUT	$V_{IN} = V_{OUT} + 1V$ $1 \text{mA} \le I_{OUT} \le 100 \text{mA}$		8	14	mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		120	140	mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		230	250	mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +1V		5	8	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.05	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [V _{OUT} +1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		65		dB
Short Circuit Current	I _{short}	Vin= V _{OUT} (T)+1V V _{OUT} =VSS		50	70	mA
Over Current Protection	l _{limit}	V _{IN} = V _{OUT} +1V		380	420	mA

ME6216(Vout=3.3V)

(V_{IN}=V_{OUT}+1V,CIN=COUT=1uF,Ta=25^OC Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =V _{OUT} +1V	X 0.99	V _{OUT} (T) (Note 1)	X 1.01	V
Input Voltage	V _{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} = V _{OUT} +1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} = V _{OUT} +1V 1mA≤I _{OUT} ≤100mA		14	18	mV
Dropout Voltage	V _{dif1}	I _{OUT} =100mA		100	120	mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		210	260	mV
Supply Current	I _{ss}	V _{IN} = V _{OUT} +1V		4	8	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.07	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	$Vin=[V_{OUT}+1]V$ $+1Vp-pAC$ $I_{OUT}=10mA,f=1kHz$		65		dB
Short Circuit Current	I _{short}	Vin= V _{OUT} (T)+1V V _{OUT} =VSS		50	70	mA
Over Current Protection	l _{limit}	V _{IN} = V _{OUT} +1V		380	420	mA

ME6216(Vout=5.0V)

(V_{IN}=V_{OUT}+1V,CIN=COUT=1uF,Ta=25^OC Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =V _{OUT} +1V	X 0.99	V _{OUT} (T) (Note 1)	X 1.01	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} = V _{OUT} +1V		500	550	mA
Load Regulation	ΔV_OUT	$V_{IN} = V_{OUT} + 1V$ $1 \text{mA} \le I_{OUT} \le 100 \text{mA}$		8	14	mV
Dropout Voltage	$V_{\rm dif1}$	I _{OUT} =100mA		90	110	mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		170	200	mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +1V		7	8	μA
Power Supply Ripple Rejection Ratio	PSRR	$Vin=[V_{OUT}+1]V$ $+1Vp-pAC$ $I_{OUT}=10mA,f=1kHz$		65		dB
Short Circuit Current	I _{short}	Vin= V _{OUT} (T)+1V V _{OUT} =VSS		50	70	mA
Over Current Protection	l _{limit}	V _{IN} = V _{OUT} +1V		550	600	mA

Note:

1. V_{OUT} (T): Specified Output Voltage

2.V_{OUT} (E): Effective Output Voltage (le. The output voltage when "V_{OUT} (T)+1.0V" is provided at the Vin pin while maintaining a certain I_{OUT} value.)

 $3.V_{dif}:V_{IN1}-V_{OUT}(E)$

 V_{IN1} : The input voltage when $V_{OUT}(E)$ ' appears as input voltage is gradually decreased.

 V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { V_{OUT} (T)+1.0V} is input.

Type Characteristics (ME6216A33)

(1) Output Voltage VS. Output Current (V_{IN}=V_{OUT}+1, **Ta = 25** °C)

(2) Output Voltage VS. Input Voltage (Ta = 25 °C)

(3) Dropout Voltage VS. Output Current (V_{IN}=V_{OUT}+1V,**Ta = 25** °C)

(4) Supply Current VS. Input Voltage (**Ta = 25 °C**)

(5) Output Voltage VS. Temperature ($V_{IN}=V_{OUT}+1V$, $I_{OUT}=10$ mA)

Packaging Information

• SOT89-3

		'			
DIM	Millime	eters	Inc	ches	
DIM	Min	Max	Min	Max	
А	1.4	1.6	0.0551	0.063	
b	0.32	0.52	0.0126	0.0205	
b1	0.4	0.58	0.0157	0.0228	
С	0.35	0.45	0.0138	0.01772	
D	4.4	4.6	0.1732	0.1811	
D1	1.55(T	YP)	0.061(TYP)		
D2	1.75(T	YP)	0.0689(TYP)		
e1	3(TY	(P)	0.1181(TYP)		
E	2.3	2.6	0.0906	0.1023	
E1	3.94	4.4	0.1551	0.1732	
E2	1.9(T`	YP)	0.074	8(TYP)	
е	1.5(T`	YP)	0.059	1(TYP)	
L	0.8	1.2	0.0315	0.0472	
θ	45°	0	45°		

● SOT23-3

DIM	Millimeters		Inch	nes
DIM	Min	Max	Min	Max
А	1	1.5	0.0394	0.0591
A1	0	0.15	0	0.0059
A2	0.9	1.3	0.0354	0.0512
A3	0.6	0.7	0.0236	0.0276
b	0.25	0.5	0.0098	0.0197
С	0.1	0.25	0.0039	0.0098
D	2.8	3.1	0.1102	0.122
Е	2.6	3.1	0.1023	0.122
E1	1.5	1.8	0.0591	0.0709
е	0.9	5(TYP)	0.0374	(TYP)
L	0.25	0.6	0.0098	0.0236
L1	0.5	9(TYP)	0.0232	(TYP)
θ	0	8°	0	8°
c1	0.2	2(TYP)	0.0079	(TYP)

• SOT23

DIM	Millin	neters	Inch	nes	
DIM	Min	Max	Min	Max	
Α	0.9	1.15	0.0354	0.0453	
A1	0	0.14	0	0.0055	
A2	0.9	1.05	0.0354	0.0413	
b	0.28	0.52	0.011	0.0205	
С	0.07	0.23	0.0028	0.0091	
D	2.8	3	0.1102	0.1181	
e1	1.8	2	0.0709	0.0787	
Е	1.2	1.4	0.0472	0.0551	
E1	2.25	2.55	0.0886	0.1004	
е	0.95	(TYP)	0.0374	(TYP)	
L	0.55	(TYP)	0.0217	(TYP)	
L1	0.25	0.55	0.0098	0.0217	
θ	0	8°	0	8°	
c1	0.25	(TYP)	0.0098(TYP)		

● TO-92

DIM	Millin	neters	Inches		
DIM	Min	Max	Min	Max	
Α	3.3	3.7	0.1299	0.1457	
A1	1.1	1.4	0.0433	0.0551	
b	0.38	0.55	0.015	0.0217	
С	0.36	0.51	0.0142	0.0201	
D	4.3	4.7	0.1693	0.185	
D1	3.43	_	0.135	_	
Е	4.3	4.7	0.1693	0.185	
е	1.	27	0.0	05	
e1	2.44	2.64	0.0961	0.1039	
L	14.1	14.5	0.5551	0.5709	
h	0	0.38	0	0.015	
Ф	_	1.6	_	0.063	

• DFN3L(2.0*2.0*0.55-1.30)

DIM	Millimeters		Inches	
	Min	Max	Min	Max
А	0.5	0.6	0.0197	0.0236
A1	0	0.05	0	0.002
С	0.152REF		0.006REF	
b	0.25	0.35	0.0098	0.0138
D	1.9	2.1	0.0748	0.0827
b1	0.2REF		0.0079REF	
E	1.9	2.1	0.0748	0.0827
E2	0.95	1.15	0.0374	0.0453
E3	0.2	0.4	0.0079	0.0157
е	1.3BSC		0.0512BSC	
L	0.35	0.45	0.0138	0.0177
L1	0.2	0.3	0.00787402	0.01181103
h	0.2REF		0.0079REF	
D2	1.4	1.6	0.0551	0.063
K	0.2	0.4	0.0079	0.01579

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.