40

HotBits Statistical Testing

Introduction

While it's essential that the theory behind a random number generator be well understood, and that its hardware and software realisation be carefully verified to implement the theoretical design, there is no substitute for detailed statistical testing of the actual output of the generator against the expectation for genuinely random data. Although a generator's design may be simple, its implementation on a complex computer and software environment makes it vulnerable to a multitude of potential problems ranging from simple programming errors to subtle bias introduced by the behaviour of instruction and data caches in the microprocessor, interference from interrupts (if not prevented), and metastability in the logic gates which receive events from the generator.

A large data set produced by the HotBits generator has been subjected to the scrutiny of three different randomness test suites, whose results are presented below. You can download this large data set (which took almost two days to create with the HotBits generator running continuously) and subject it to your own analyses, if you are so inclined.

There are many different ways to test for randomness, but all of them, in essence, boil down to computing a mathematical metric from the data stream being tested and comparing the result with the expectation value for an infinite sequence of genuinely random data. For a truly random sequence, *any* value is equally probable. The sequence of bits "000000000000000" is just as likely to occur in a random data stream as "1100100100001111", and is no less "random". (The latter sequence is, in fact, the first sixteen bits of the mathematical constant π in binary, whose algorithmic complexity is only modestly greater than the all zero sequence!)

Randomness can be defined only statistically over a long sequence, which is why it is essential to test a large data set. Data can fail to be random in many ways. For example, one of the most obvious tests one can apply to a sequence of binary data is to count the number of ones and zeroes: as the length of the sequence increases, the difference in these values can be used to calculate the probability the sequence is random. But this test, used in isolation, would consider a sequence of alternating zero and one bits ("010101010101010101...") perfectly random. Hence, it must be used as part of a test battery, including other measures which are sensitive to repeating patterns, improbably long runs of zeroes and ones, and other, more subtle, deviations from randomness.

Speaking as a programmer and not a mathematician or statistician, the two widely-used randomness test batteries: Diehard and the NIST SP 800-22 Statistical Test Suite, whose results are reported below, are quite messy and fragile programs. When using them, it is wise to use data sets of the same size

as those employed in the examples supplied with the programs, and to select test parameters identical to those of the examples. In my experience, deviating from the domain in which the programs are known to have been tested may yield surprising and dismaying results. Also, before testing your own data with one of these test batteries, be sure to re-run the examples in the documentation and verify that you're able to reproduce the published results; changes in compilers and libraries, file formats, and operating system compatibility issues may have to be resolved before you can obtain reliable results from these tests.

Tests with the Fourmilab ENT Utility

The Fourmilab ENT program is a public domain utility which tests binary data sequences, either as a series of 8 bit bytes, or as a bit stream, with five standard tests for randomness which are described in the document linked to above. These are all straightforward mathematical metrics, and while they identify major departures from randomness, may miss subtle forms of bias identified by the more comprehensive test suites. The following are the results of an ENT test of the same 11,468,800 data set used for the Diehard test battery in the next section.

```
Entropy = 7.999975 bits per byte.

Optimum compression would reduce the size of this 11468800 byte file by 0 percent.

Chi square distribution for 11468800 samples is 402.53, and randomly would exceed this value 0.01 percent of the times.

Arithmetic mean value of data bytes is 127.5423 (127.5 = random).

Monte Carlo value for Pi is 3.141486168 (error 0.00 percent).

Serial correlation coefficient is -0.000053 (totally uncorrelated = 0.
```

- Download ENT test results (ent_results.zip 448 bytes)
- Download data set for ENT and Diehard tests (FourmilabHotBits_Diehard.zip 11 Mb)

Tests with the Marsaglia Diehard Battery of Tests of Randomness

Professor George Marsaglia of Florida State University published the "Diehard Battery of Tests of Randomness" in 1995, as part of the Marsaglia Random Number CDROM; these programs may now be downloaded from the link above. The Diehard tests are rather "quirky" measurements of randomness compared to the mathematical properties tested by ENT. Diehard tests include items such as a spacings between birthdays in a random population, monkeys pounding on keyboards, and games of craps. These tests, however, can be exquisitely sensitive to subtle departures from randomness, and their results can all be expressed as the probability the results obtained

would be observed in a genuinely random sequence. Probability values close to zero or one indicate potential problems, while probabilities in the middle of the range are expected for random sequences. Please read the "NOTE" at the top of the results presented below about interpreting the reported probability values: with hundreds of probability values computed, some may be expected, purely by chance, to be close to one or zero.

The Diehard test suite was run on a 11,468,800 byte data set extracted from the beginning of the 16,779,776 HotBits test data set. I limited the data set length to that used by other Diehard examples to avoid possible problems in the code dependent upon the size of the data set.

NOTE

Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1) if the input file contains truly independent random bits. Those p-values are obtained by p=1-F(X), where F is the assumed distribution of the sample random variable X---often normal. But that assumed F is often an asymptotic approximation, for which the fit will be worst in the tails. Thus you should not be surprised with occasional p-values near 0 or 1, such as .0012 or .9983. When a bit stream really FAILS BIG, you will get p`s of 0 or 1 to six or more places. By all means, do not, as a Statistician might, think that a p < .025 or p> .975 means that the RNG has "failed the test at the .05 level". Such p`s happen among the hundreds that DIEHARD produces, even with good RNGs. So keep in mind that "p happens"

Enter the name of the file to be tested. This must be a form="unformatted",access="direct" binary file of about 10-12 million bytes. Enter file name:

FourmilabHotBits.32

HERE ARE YOUR CHOICES:

- 1 Birthday Spacings
- 2 Overlapping Permutations
- 3 Ranks of 31x31 and 32x32 matrices
- 4 Ranks of 6x8 Matrices
- 5 Monkey Tests on 20-bit Words
- 6 Monkey Tests OPSO, OQSO, DNA
- 7 Count the 1`s in a Stream of Bytes
- 8 Count the 1`s in Specific Bytes
- 9 Parking Lot Test
- 10 Minimum Distance Test
- 11 Random Spheres Test
- 12 The Sqeeze Test
- 13 Overlapping Sums Test
- 14 Runs Test
- 15 The Craps Test
- 16 All of the above

To choose any particular tests, enter corresponding numbers. Enter 16 for all tests. If you want to perform all but a few

tests, enter corresponding numbers preceded by "-" sign. Tests are executed in the order they are entered.

Enter your choices.

16

|-----

This is the BIRTHDAY SPACINGS TEST |Choose m birthdays in a "year" of n days. List the spacings |between the birthdays. Let j be the number of values that |occur more than once in that list, then j is asymptotically |Poisson distributed with mean $m^3/(4n)$. Experience shows n |must be quite large, say $n \ge 2^18$, for comparing the results to the Poisson distribution with that mean. This test uses $|n=2^24$ and $m=2^10$, so that the underlying distribution for j is taken to be Poisson with $lambda=2^30/(2^26)=16$. A sample |of 200 j''s is taken, and a chi-square goodness of fit test |provides a p value. The first test uses bits 1-24 (counting |from the left) from integers in the specified file. Then the |file is closed and reopened, then bits 2-25 of the same inte-|gers are used to provide birthdays, and so on to bits 9-32. |Each set of bits provides a p-value, and the nine p-values |provide a sample for a KSTEST.

RESULTS OF BIRTHDAY SPACINGS TEST FOR FourmilabHotBits (no_bdays=1024, no_days/yr=2^24, lambda=16.00, sample size=500

ed me	an	chisqr	p-value
4 15	.86	23.2107	0.142517
5 15	.81	13.7843	0.682308
6 15	.76	13.6039	0.694917
7 15	.55	18.6599	0.348401
8 15	.63	25.9381	0.075596
9 15	.83	15.1730	0.583021
0 16	.18	20.5640	0.246401
1 15	.95	13.3762	0.710659
2 15	.92	11.0928	0.851700
	4 15 5 15 6 15 7 15 8 15 9 15 0 16 1 15	4 15.86 5 15.81 6 15.76 7 15.55 8 15.63 9 15.83 0 16.18 1 15.95	4 15.86 23.2107 5 15.81 13.7843 6 15.76 13.6039 7 15.55 18.6599 8 15.63 25.9381 9 15.83 15.1730 0 16.18 20.5640 1 15.95 13.3762

degree of freedoms is: 17

p-value for KStest on those 9 p-values: 0.915681

THE OVERLARDING 5-DERMITATION TEST

THE OVERLAPPING 5-PERMUTATION TEST
|This is the OPERM5 test. It looks at a sequence of one mill|ion 32-bit random integers. Each set of five consecutive
|integers can be in one of 120 states, for the 5! possible or|derings of five numbers. Thus the 5th, 6th, 7th,...numbers
|each provide a state. As many thousands of state transitions
|are observed, cumulative counts are made of the number of
|occurences of each state. Then the quadratic form in the
|weak inverse of the 120x120 covariance matrix yields a test
|equivalent to the likelihood ratio test that the 120 cell
|counts came from the specified (asymptotically) normal dis|tribution with the specified 120x120 covariance matrix (with
|rank 99). This version uses 1,000,000 integers, twice.

|-----

OPERM5 test for file (For samples of 1,000,000 consecutive 5-tuples)

sample 1 chisquare=94.907067 with df=99; p-value= 0.597706

sample 2 chisquare=60.297852 with df=99; p-value= 0.999246

| This is the BINARY RANK TEST for 31x31 matrices. The leftmost | 31 bits of 31 random integers from the test sequence are used | to form a 31x31 binary matrix over the field {0,1}. The rank | is determined. That rank can be from 0 to 31, but ranks< 28 | are rare, and their counts are pooled with those for rank 28. | Ranks are found for 40,000 such random matrices and a chisquare test is performed on counts for ranks 31,30,28 and <=28.

l -----

Rank test for binary matrices (31x31) from FourmilabHo

RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=28 r=29	205 5155	211.4 5134.0	0.195 0.086	0.195
r=30	22974	23103.0	0.721	1.001
r=31	11666	11551.5	1.134	2.136

chi-square = 2.136 with df = 3; p-value = 0.545

| This is the BINARY RANK TEST for 32x32 matrices. A random 32x | 32 binary matrix is formed, each row a 32-bit random integer. | The rank is determined. That rank can be from 0 to 32, ranks | less than 29 are rare, and their counts are pooled with those | for rank 29. Ranks are found for 40,000 such random matrices | and a chisquare test is performed on counts for ranks 32,31, | 30 and <=29.

Rank test for binary matrices (32x32) from FourmilabHo

RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=29	206	211.4	0.139	0.139
r=30	5042	5134.0	1.649	1.788
r=31	23133	23103.0	0.039	1.827
r=32	11619	11551.5	0.394	2.221

chi-square = 2.221 with df = 3; p-value = 0.528

|-----|This is the BINARY RANK TEST for 6x8 matrices. From each of |six random 32-bit integers from the generator under test, a |specified byte is chosen, and the resulting six bytes form a |6x8 binary matrix whose rank is determined. That rank can be

|from 0 to 6, but ranks 0,1,2,3 are rare; their counts are |pooled with those for rank 4. Ranks are found for 100,000 |random matrices, and a chi-square test is performed on |counts for ranks 6,5 and (0,...,4) (pooled together). I-----Rank test for binary matrices (6x8) from FourmilabHotB bits 1 to 8 RANK OBSERVED EXPECTED (O-E)^2/E SUM 944.3 0.436 21743.9 0.683 0.436 r <= 4 924 r=5 21622 0.683 0.262 1.120 77311.8 77454 r=6 1.381 chi-square = 1.381 with df = 2; p-value = 0.501bits 2 to 9 RANK OBSERVED EXPECTED (O-E)^2/E SUM 944.3 0.073 21743.9 0.815 77311.8 0.201 0.073 r<=4 936 r=5 21877 r=6 77187 0.888 1.089 chi-square = 1.089 with df = 2; p-value = 0.580______ bits 3 to 10 RANK OBSERVED EXPECTED (O-E)^2/E SUM 0.121 944.3 0.121 21743.9 1.935 77311.8 0.602 r<=4 955 r=5 21949 2.056 77096 77311.8 0.602 r=6 chi-square = 2.658 with df = 2; p-value = 0.265bits 4 to 11 EXPECTED $(O-E)^2/E$ RANK OBSERVED r<=4 964 r=5 21689 944.3 21743.9 0.411 0.411 0.411 0.550 r=6 77347 77311.8 0.566 chi-square = 0.566 with df = 2; p-value = 0.754bits 5 to 12 RANK OBSERVED EXPECTED (O-E)^2/E SUM 0.001 0.101 0.028 944.3 21743.9 r<=4 945 0.001 r=5 21697 r=6 77358 0.102 77311.8 0.129

	chi-square =	= 0.129 with df = 2	; p-value = 0.9	937
		bits 6 to 13		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4	999	944.3	3.169	3.169
r=5 r=6	21929 77072	21743.9 77311.8	1.576 0.744	4.744 5.488
		= 5.488 with df = 2		
		bits 7 to 14		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4 r=5	956 21790	944.3 21743.9	0.145 0.098	0.145
r=6	77254	77311.8	0.043	0.246
	chi-square =	= 0.286 with df = 2	; p-value = 0.8	367
		bits 8 to 15		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4				0.034
	21435			4.423
1-0	77615	77311.8		5.612
	chi-square =	= 5.612 with df = 2	; p-value = 0.0	060
		bits 9 to 16		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4		944.3	0.034	0.034
	21739	21743.9	0.001	0.036
r=6	77311	77311.8	0.000	0.036
	chi-square =	= 0.036 with df = 2	; p-value = 0.9	982
		bits 10 to 17		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4		944.3	0.073	0.073
r=5	21681	21743.9	0.182	0.255
r=6	77383	77311.8	0.066	0.320
	chi-square =	= 0.320 with df $= 2$; p -value = 0.8	352

bits 11 to 18

RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4	892	944.3	2.897	2.897
r=5	21752	21743.9	0.003	2.900
r=6	77356	77311.8	0.025	2.925
	chi-square = 2.	925 with df = 2;	p-value = 0.23	32
	r	its 12 to 19		
	r.	103 12 00 19		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
	950	944.3	0.034	0.034
r=5	21614	21743.9	0.776	0.810
r=6	77436	77311.8	0.200	1.010
	chi-square = 1.	010 with df = 2;	p-value = 0.60) 4
	b	its 13 to 20		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4			0.001	0.001
	21658			
r=6	77397	77311.8	0.094	0.434
	chi-square = 0.	434 with df = 2;	p-value = 0.80)5
	b	its 14 to 21		
RANK		its 14 to 21	(O-E)^2/E	SUM
	OBSERVED			
r<=4	OBSERVED	EXPECTED	(O-E)^2/E 0.121 0.171	SUM 0.121 0.292
r<=4 r=5	OBSERVED	EXPECTED 944.3	0.121	0.121
r<=4 r=5	OBSERVED 955 21683 77362	EXPECTED 944.3 21743.9	0.121 0.171 0.033	0.121 0.292 0.324
r<=4 r=5	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033	0.121 0.292 0.324
r<=4 r=5	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8	0.121 0.171 0.033	0.121 0.292 0.324
r<=4 r=5	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;its 15 to 22	0.121 0.171 0.033	0.121 0.292 0.324
r<=4 r=5 r=6 	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;its 15 to 22	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324
r<=4 r=5 r=6 	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324 50 SUM 0.527 0.555
r<=4 r=5 r=6 	OBSERVED 955 21683 77362 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324 50 SUM 0.527
r<=4 r=5 r=6 	OBSERVED 955 21683 77362 chi-square = 0. b OBSERVED 922 21719 77359	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2; its 15 to 22 EXPECTED 944.3 21743.9 77311.8	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 RANK r<=4 r=5 r=6	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2; its 15 to 22 EXPECTED 944.3 21743.9 77311.8 584 with df = 2; its 16 to 23	0.121 0.171 0.033 p-value = 0.85 (O-E)^2/E 0.527 0.029 0.029 p-value = 0.74	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 RANK r<=4 r=5 r=6	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2; its 15 to 22 EXPECTED 944.3 21743.9 77311.8 584 with df = 2; its 16 to 23	0.121 0.171 0.033 p-value = 0.85 	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 RANK r<=4 r=5 r=6	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0.	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 (O-E)^2/E 0.527 0.029 0.029 p-value = 0.74 (O-E)^2/E	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 RANK r<=4 r=5 r=6 RANK r=5	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0. b OBSERVED 904	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 (O-E)^2/E 0.527 0.029 0.029 p-value = 0.74 (O-E)^2/E 1.720	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584
r<=4 r=5 r=6 RANK r<=4 r=5 r=6	OBSERVED 955 21683 77362 chi-square = 0. DBSERVED 922 21719 77359 chi-square = 0. b OBSERVED 904 21900	EXPECTED 944.3 21743.9 77311.8 324 with df = 2;	0.121 0.171 0.033 p-value = 0.85 (O-E)^2/E 0.527 0.029 0.029 p-value = 0.74 (O-E)^2/E	0.121 0.292 0.324 50 SUM 0.527 0.555 0.584

	chi-square =	= 3.014 with df =	2 ;	p-value =	0.22	2
		bits 17 to 24				
RANK	OBSERVED	EXPECTED		(O-E)^2/E		SUM
	924 21714 77362	944.3 21743.9 77311.8		0.436 0.041 0.033		0.436 0.478 0.510
		= 0.510 with df =	2;		0.77	5
		hi+a 10 +a 25				
		bits 18 to 25				
RANK	OBSERVED	EXPECTED		(O-E)^2/E		SUM
r<=4 r=5 r=6	935 21747 77318	944.3 21743.9 77311.8		0.092 0.000 0.000		0.092 0.092 0.093
	chi-square =	= 0.093 with df =	2 ;	p-value =	0.95	5
		bits 19 to 26				
RANK	OBSERVED	EXPECTED		(O-E)^2/E		SUM
r<=4 r=5 r=6	950 21716 77334	944.3 21743.9 77311.8		0.034 0.036 0.006		0.034 0.070 0.077
	chi-square =	= 0.077 with df =	2;	p-value =	0.96	2
		bits 20 to 27				
RANK	OBSERVED	EXPECTED		(O-E)^2/E		SUM
	923 21745 77332	944.3 21743.9 77311.8		0.480 0.000 0.005		0.480 0.481 0.486
	chi-square =	= 0.486 with df =	2;	p-value =	0.78	4
		bits 21 to 28				
RANK	OBSERVED	EXPECTED		(O-E)^2/E		SUM
	889 21903 77208	944.3 21743.9 77311.8		3.238 1.164 0.139		3.238 4.403 4.542
	chi-square =	= 4.542 with df =	2;	p-value =	0.10	3

bits 22 to 29

RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
	952 21753	944.3 21743.9	0.063 0.004	0.063
	77295		0.004	0.070
	chi-square =	0.070 with df = 2	; p-value = 0.	965
		bits 23 to 30		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
	986			1.841
	22062	21743.9		6.495
r=6	76952	77311.8	1.674	8.170
	chi-square =	8.170 with df = 2	; p-value = 0.	017
		bits 24 to 31		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4	977	944.3	1.132	1.132
r=5	21823	21743.9	0.288	1.420
r=6	77200	77311.8	0.162	1.582
	chi-square =	1.582 with df = 2	; p-value = 0.	453
		bits 25 to 32		
RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM
r<=4	968	944.3	0.595	0.595
r=5	21885	21743.9	0.916	1.510
r=6	77147	77311.8	0.351	1.862
	chi-square =	1.862 with df = 2	; p-value = 0.	394
	-			
	 ST SUMMARY, 25	tests on 100,000		ices
	 ST SUMMARY, 25	5 uniform [0,1] r	andom variates:	ices
The	ST SUMMARY, 25 ese should be 2	5 uniform [0,1] r 088 0.2647	andom variates: 13 0.753	662
The 0.50124	ST SUMMARY, 25 ese should be 2 40 0.580 10 0.866	5 uniform [0,1] r 088 0.2647 791 0.0604	andom variates: 13	662 397
The 0.50124 0.06431 0.23166	ST SUMMARY, 25 ese should be 2 40 0.580 10 0.866 66 0.603	5 uniform [0,1] r 088	andom variates: 13	662 397 268
The 0.50124 0.06431 0.23166 0.2215	ST SUMMARY, 25 ese should be 2 40 0.580 10 0.866 66 0.603 76 0.774	5 uniform [0,1] r 088 0.2647 791 0.0604 516 0.8050 874 0.9547	andom variates: 13	662 397 268 434
The 0.50124 0.06431 0.23166	ST SUMMARY, 25 ese should be 2 40 0.580 10 0.866 66 0.603 76 0.774 10 0.965	5 uniform [0,1] r 088	andom variates: 13	662 397 268 434 440
The 0.50124 0.06431 0.23166 0.2215	ST SUMMARY, 25 ese should be 2 40 0.580 10 0.866 66 0.603 76 0.774 10 0.965 The KS test f	5 uniform [0,1] r 088 0.2647 791 0.0604 516 0.8050 874 0.9547	andom variates: 13	662 397 268 434 440
The 0.50124 0.06431 0.23166 0.2215	ST SUMMARY, 25 ese should be 2 40	5 uniform [0,1] r 088	andom variates: 13	662 397 268 434 440

|The file under test is viewed as a stream of bits. Call them |b1,b2,... Consider an alphabet with two "letters", 0 and 1 |and think of the stream of bits as a succession of 20-letter | "words", overlapping. Thus the first word is b1b2...b20, the |second is b2b3...b21, and so on. The bitstream test counts

| the number of missing 20-letter (20-bit) words in a string of | 2^2 1 overlapping 20-letter words. There are 2^2 0 possible 20 | letter words. For a truly random string of 2^2 1+19 bits, the | number of missing words j should be (very close to) normally | distributed with mean 141,909 and sigma 428. Thus | (j-141909)/428 should be a standard normal variate (z score) | that leads to a uniform [0,1) p value. The test is repeated | twenty times.

THE OVERLAPPING 20-TUPLES BITSTREAM TEST for Fourmila (20 bits/word, 2097152 words 20 bitstreams. No. missing words should average 141909.33 with sigma=428.00.)

BITSTREAM	tact	raculte	for	Fourmi	lahHo+Bi+e	32
	LESL	TESUTES	$\perp \cup \perp$		Lannolbilo) /

Bitstream	No. missing words	z-score	p-valu
1	142235	0.76	0.2233
2	141920	0.02	0.4900
3	142064	0.36	0.3589
4	142338	1.00	0.1582
5	141548	-0.84	0.8007
6	141988	0.18	0.4270
7	141888	-0.05	0.5198
8	141930	0.05	0.4807
9	141610	-0.70	0.7578
10	142059	0.35	0.3632
11	142442	1.24	0.1066
12	142265	0.83	0.2029
13	142704	1.86	0.0316
14	141658	-0.59	0.7214
15	141818	-0.21	0.5844
16	141810	-0.23	0.5917
17	142139	0.54	0.2957
18	142066	0.37	0.3571
19	141959	0.12	0.4538
20	141860	-0.12	0.5458

OPSO means Overlapping-Pairs-Sparse-Occupancy | The OPSO test considers 2-letter words from an alphabet of | 1024 letters. Each letter is determined by a specified ten | bits from a 32-bit integer in the sequence to be tested. OPSO | generates 2^21 (overlapping) 2-letter words (from 2^21+1 | "keystrokes") and counts the number of missing words---that | is 2-letter words which do not appear in the entire sequence. | That count should be very close to normally distributed with | mean 141,909, sigma 290. Thus (missingwrds-141909)/290 should | be a standard normal variable. The OPSO test takes 32 bits at | a time from the test file and uses a designated set of ten | consecutive bits. It then restarts the file for the next de-| signated 10 bits, and so on.

OPSO test for file FourmilabHotBits.32

Bits used	No. missing words	z-score	p-valu
23 to 32	141580	-1.1356	0.8719
22 to 31	141827	-0.2839	0.6117

21 to 30	141592	-1.0942	0.8630
20 to 29	141567	-1.1804	0.8810
19 to 28	141530	-1.3080	0.9045
18 to 27	141664	-0.8460	0.8012
17 to 26	141445	-1.6011	0.9453
16 to 25	141851	-0.2011	0.5797
15 to 24	141327	-2.0080	0.9776
14 to 23	141867	-0.1460	0.5580
13 to 22	141517	-1.3529	0.9119
12 to 21	141589	-1.1046	0.8653
11 to 20	141630	-0.9632	0.8322
10 to 19	141897	-0.0425	0.5169
9 to 18	141473	-1.5046	0.9337
8 to 17	141741	-0.5804	0.7191
7 to 16	141697	-0.7322	0.7679
6 to 15	142348	1.5127	0.0651
5 to 14	141311	-2.0632	0.9804
4 to 13	141515	-1.3598	0.9130
3 to 12	141648	-0.9011	0.8162
2 to 11	141756	-0.5287	0.7015
1 to 10	141559	-1.2080	0.8864

OQSO means Overlapping-Quadruples-Sparse-Occupancy
The test OQSO is similar, except that it considers 4-letter
words from an alphabet of 32 letters, each letter determined
by a designated string of 5 consecutive bits from the test
file, elements of which are assumed 32-bit random integers.
The mean number of missing words in a sequence of 2^21 fourletter words, (2^21+3 "keystrokes"), is again 141909, with
sigma = 295. The mean is based on theory; sigma comes from
lextensive simulation.

|-----

OQSO test for file FourmilabHotBits.32

	1 1		-
Bits used	No. missing words	z-score	p-valu
28 to 32	141900	-0.0316	0.5126
27 to 31	141966	0.1921	0.4238
26 to 30	141500	-1.3876	0.9173
25 to 29	141357	-1.8723	0.9694
24 to 28	142099	0.6429	0.2601
23 to 27	141732	-0.6011	0.7261
22 to 26	141330	-1.9638	0.9752
21 to 25	141966	0.1921	0.4238
20 to 24	141817	-0.3130	0.6228
19 to 23	142012	0.3480	0.3639
18 to 22	142448	1.8260	0.0339
17 to 21	142369	1.5582	0.0595
16 to 20	141741	-0.5706	0.7158
15 to 19	141902	-0.0248	0.5099
14 to 18	142162	0.8565	0.1958
13 to 17	141921	0.0396	0.4842
12 to 16	142013	0.3514	0.3626
11 to 15	141955	0.1548	0.4384
10 to 14	141800	-0.3706	0.6445
9 to 13	141915	0.0192	0.4923
8 to 12	142330	1.4260	0.0769
7 to 11	142155	0.8328	0.2024

6 to 10	142132	0.7548	0.2251
5 to 9	142252	1.1616	0.1227
4 to 8	142121	0.7175	0.2365
3 to 7	142450	1.8328	0.0334
2 to 6	141697	-0.7198	0.7641
1 to 5	142027	0.3989	0.3449

The DNA test considers an alphabet of 4 letters: C,G,A,T, | determined by two designated bits in the sequence of random | integers being tested. It considers 10-letter words, so that | as in OPSO and OQSO, there are 2^20 possible words, and the | mean number of missing words from a string of 2^21 (over-lapping) 10-letter words (2^21+9 "keystrokes") is 141909. | The standard deviation sigma=339 was determined as for OQSO | by simulation. (Sigma for OPSO, 290, is the true value (to | three places), not determined by simulation.

DNA test for file FourmilabHotBits.32

Bits used	No. missing words	z-score	p-valu
31 to 32	142299	1.1495	0.1251
30 to 31	141702	-0.6116	0.7295
29 to 30	141705	-0.6027	0.7266
28 to 29	141910	0.0020	0.4992
27 to 28	141889	-0.0600	0.5239
26 to 27	141104	-2.3756	0.9912
25 to 26	142020	0.3265	0.3720
24 to 25	141725	-0.5437	0.7066
23 to 24	141376	-1.5732	0.9421
22 to 23	141444	-1.3727	0.9150
21 to 22	142121	0.6244	0.2661
20 to 21	141715	-0.5732	0.7167
19 to 20	141282	-1.8505	0.9678
18 to 19	141857	-0.1544	0.5613
17 to 18	141921	0.0344	0.4862
16 to 17	142055	0.4297	0.3337
15 to 16	142639	2.1524	0.0156
14 to 15	141865	-0.1308	0.5520
13 to 14	142382	1.3943	0.0816
12 to 13	141725	-0.5437	0.7066
11 to 12	141746	-0.4818	0.6850
10 to 11	141594	-0.9302	0.8238
9 to 10	142113	0.6008	0.2739
8 to 9	142013	0.3058	0.3798
7 to 8	141896	-0.0393	0.5156
6 to 7	141759	-0.4435	0.6712
5 to 6	141432	-1.4081	0.9204
4 to 5	141645	-0.7797	0.7822
3 to 4	142413	1.4858	0.0686
2 to 3	142099	0.5595	0.2879
1 to 2	141658	-0.7414	0.7707

This is the COUNT-THE-1''s TEST on a stream of bytes. |Consider the file under test as a stream of bytes (four per |32 bit integer). Each byte can contain from 0 to 8 1''s,

| with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let | the stream of bytes provide a string of overlapping 5-letter | words, each "letter" taking values A,B,C,D,E. The letters are | determined by the number of 1''s in a byte: 0,1,or 2 yield A, | 3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus | we have a monkey at a typewriter hitting five keys with various probabilities (37,56,70,56,37 over 256). There are 5^5 | possible 5-letter words, and from a string of 256,000 (over-lapping) 5-letter words, counts are made on the frequencies | for each word. The quadratic form in the weak inverse of | the covariance matrix of the cell counts provides a chisquare | test: Q5-Q4, the difference of the naive Pearson sums of | (OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts.

Test result for the byte stream from FourmilabHotBits. (Degrees of freedom: $5^4-5^3=2500$; sample size: 2560000)

chisquare	z-score	p-value
2493.54	-0.091	0.536401

I-----This is the COUNT-THE-1''s TEST for specific bytes. |Consider the file under test as a stream of 32-bit integers. |From each integer, a specific byte is chosen , say the left-|most: bits 1 to 8. Each byte can contain from 0 to 8 1''s, |with probabilitie 1,8,28,56,70,56,28,8,1 over 256. Now let |the specified bytes from successive integers provide a string |of (overlapping) 5-letter words, each "letter" taking values A, B, C, D, E. The letters are determined by the number of 1''s, | in that byte: 0,1,or 2 ---> A, 3 ---> B, 4 ---> C, 5 ---> D, | and 6,7 or $8 \longrightarrow E$. Thus we have a monkey at a typewriter | hitting five keys with with various probabilities: 37,56,70, |56,37 over 256. There are 5⁵ possible 5-letter words, and |from a string of 256,000 (overlapping) 5-letter words, counts |are made on the frequencies for each word. The quadratic form |in the weak inverse of the covariance matrix of the cell |counts provides a chisquare test: Q5-Q4, the difference of |the naive Pearson sums of (OBS-EXP)^2/EXP on counts for 5-|and 4-letter cell counts.

Test results for specific bytes from FourmilabHotBits. (Degrees of freedom: $5^4-5^3=2500$; sample size: 256000)

المحمد معالما	ala d a aa		1
bits used	chisquare	z-score	p-value
1 to 8	2370.17	-1.836	0.966830
2 to 9	2590.32	1.277	0.100746
3 to 10	2513.16	0.186	0.426206
4 to 11	2452.96	-0.665	0.747062
5 to 12	2598.68	1.396	0.081421
6 to 13	2462.08	-0.536	0.704108
7 to 14	2423.88	-1.076	0.859147
8 to 15	2596.54	1.365	0.086087
9 to 16	2501.68	0.024	0.490549
10 to 17	2475.61	-0.345	0.634949
11 to 18	2535.65	0.504	0.307060
12 to 19	2467.15	-0.465	0.678858
13 to 20	2484.22	-0.223	0.588298
14 to 21	2606.47	1.506	0.066070

15	to	22	2458.25	-0.590	0.722563
16	to	23	2546.29	0.655	0.256356
17	to	24	2531.40	0.444	0.328502
18	to	25	2519.09	0.270	0.393567
19	to	26	2526.07	0.369	0.356168
20	to	27	2595.14	1.346	0.089231
21	to	28	2443.93	-0.793	0.786095
22	to	29	2469.71	-0.428	0.665820
23	to	30	2485.01	-0.212	0.583966
24	to	31	2518.65	0.264	0.395996
25	to	32	2530.07	0.425	0.335318

THIS IS A PARKING LOT TEST

|In a square of side 100, randomly "park" a car---a circle of |radius 1. Then try to park a 2nd, a 3rd, and so on, each |time parking "by ear". That is, if an attempt to park a car |causes a crash with one already parked, try again at a new |random location. (To avoid path problems, consider parking |a crash or a success, the latter followed by an increment to |the list of cars already parked. If we plot n: the number of |attempts, versus k: the number successfully parked, we get a |curve that should be similar to those provided by a perfect |random number generator. Theory for the behavior of such a |random curve seems beyond reach, and as graphics displays are |not available for this battery of tests, a simple characteriz lation of the random experiment is used: k, the number of cars |successfully parked after n=12,000 attempts. Simulation shows |that k should average 3523 with sigma 21.9 and is very close to normally distributed. Thus (k-3523)/21.9 should be a st-|andard normal variable, which, converted to a uniform varia-|ble, provides input to a KSTEST based on a sample of 10. l-----

CDPARK: result of 10 tests on file FourmilabHotBits.32 (Of 12000 tries, the average no. of successes should be 3523.0 with sigma=21.9)

No.	succeses	z-score	p-value
	3543	0.9132	0.180558
	3506	-0.7763	0.781201
	3533	0.4566	0.323972
	3524	0.0457	0.481790
	3526	0.1370	0.445521
	3510	-0.5936	0.723613
	3543	0.9132	0.180558
	3532	0.4110	0.340551
	3533	0.4566	0.323972
	3533	0.4566	0.323972

Square side=100, avg. no. parked=3528.30 sample std.=11.70 p-value of the KSTEST for those 10 p-values: 0.002300

THE MINIMUM DISTANCE TEST

|It does this 100 times: choose n=8000 random points in a |square of side 10000. Find d, the minimum distance between |the $(n^2-n)/2$ pairs of points. If the points are truly independent uniform, then d^2 , the square of the minimum distance |should be (very close to) exponentially distributed with mean

|.995 . Thus $1-\exp(-d^2/.995)$ should be uniform on [0,1) and |a KSTEST on the resulting 100 values serves as a test of uni-|formity for random points in the square. Test numbers=0 mod 5 |are printed but the KSTEST is based on the full set of 100 |random choices of 8000 points in the 10000x10000 square.

l -----

This is the MINIMUM DISTANCE test for file FourmilabHo

Sample no. 5	d^2 0.0066 3.0735	mean 0.7395 1.2046	equiv uni 0.006640 0.954449
15	0.1273	0.9023	0.120123
20	5.4762	1.1602	0.995928
25	0.9729	1.2054	0.623852
30	0.7707	1.1989	0.539084
35	0.0274	1.2205	0.027205
40	0.0148	1.1269	0.014762
45	1.8536	1.1399	0.844779
50	0.3695	1.1442	0.310181
55	0.4188	1.1592	0.343554
60	0.2675	1.1129	0.235763
65	3.1837	1.1337	0.959224
70	2.3059	1.1826	0.901478
75	1.0426	1.1678	0.649299
80	0.0274	1.1610	0.027178
85	3.4117	1.1430	0.967576
90	3.3879	1.1558	0.966792
95	0.4765	1.1227	0.380508
100	1.1551	1.1143	0.686808

Result of KS test on 100 transformed mindist^2's: p-value=0.29

I-----

THE 3DSPHERES TEST

|Choose 4000 random points in a cube of edge 1000. At each |point, center a sphere large enough to reach the next closest |point. Then the volume of the smallest such sphere is (very |close to) exponentially distributed with mean 120pi/3. Thus |the radius cubed is exponential with mean 30. (The mean is |obtained by extensive simulation). The 3DSPHERES test generlates 4000 such spheres 20 times. Each min radius cubed leads to a uniform variable by means of $1-\exp(-r^3/30.)$, then a | KSTEST is done on the 20 p-values.

l -----

The 3DSPHERES test for file FourmilabHotBits.32

0.316806

0.666098

sample no	r^3	equiv. uni.
1	95.178	0.958106
2	102.500	0.967178
3	0.896	0.029438
4	47.776	0.796592
5	31.541	0.650536
6	20.136	0.488897
7	20.419	0.493707
8	7.454	0.220000

11.429

32.907

10

11	10.626	0.298265
12	38.004	0.718272
13	6.657	0.199018
14	11.230	0.312259
15	47.004	0.791291
16	1.492	0.048505
17	0.666	0.021962
18	20.268	0.491147
19	0.664	0.021891
20	42.920	0.760853

p-value for KS test on those 20 p-values: 0.539573

p-value for No test on those 20 p-values. 0.333373

```
This is the SQUEEZE test
Random integers are floated to get uniforms on [0,1). Start-
ing with k=2^31=2147483647, the test finds j, the number of
iterations necessary to reduce k to 1, using the reduction
k=ceiling(k*U), with U provided by floating integers from
the file being tested. Such j''s are found 100,000 times,
then counts for the number of times j was <=6,7,...,47,>=48
are used to provide a chi-square test for cell frequencies.
```

RESULTS OF SQUEEZE TEST FOR FourmilabHotBits.3

```
Table of standardized frequency counts
(obs-exp)^2/exp for j=(1,...,6), 7,...,47,(48,...)
-0.1 0.5 -1.1 0.5 -1.3
                             0.4
-1.4
    -1.2
           0.6 \quad -0.9 \quad -1.2
   -1.8
                       0.6
0.7
           1.7 -2.2
   0.8
0.6
                             0.0
1.4
                            -1.6
    -0.1
                 0.4
1.2
           0.1
                       1.6
```

Chi-square with 42 degrees of freedom: 55.429856 z-score=1.465317, p-value=0.080144

```
The OVERLAPPING SUMS test | Integers are floated to get a sequence U(1),U(2),... of uni- | form [0,1) variables. Then overlapping sums, | S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed. | The S''s are virtually normal with a certain covariance mat- | rix. A linear transformation of the S''s converts them to a | sequence of independent standard normals, which are converted | to uniform variables for a KSTEST.
```

Results of the OSUM test for FourmilabHotBits.

Test no	p-value
1	0.222186
2	0.841877
3	0.064437
4	0.936267

5	0.676322
6	0.305676
7	0.679858
8	0.181487
9	0.992939
10	0.653249

p-value for 10 kstests on 100 kstests:0.642506

This is the RUNS test. It counts runs up, and runs down, in a sequence of uniform [0,1) variables, obtained by float-ling the 32-bit integers in the specified file. This example shows how runs are counted: .123, .357, .789, .425, .224, .416, .95 contains an up-run of length 3, a down-run of length 2 and an up-run of (at least) 2, depending on the next values. The covariance matrices for the runs-up and runs-down are well known, leading to chisquare tests for quadratic forms in the weak inverses of the covariance matrices. Runs are counted for sequences of length 10,000. This is done ten times. Then lanother three sets of ten.

|-----

The RUNS test for file FourmilabHotBits.32 (Up and down runs in a sequence of 10000 numbers) Set 1 $\,$

runs up; ks test for 10 p's: 0.157631 runs down; ks test for 10 p's: 0.668033

This the CRAPS TEST. It plays 200,000 games of craps, counts the number of wins and the number of throws necessary to end leach game. The number of wins should be (very close to) a normal with mean 200000p and variance 200000p(1-p), and lp=244/495. Throws necessary to complete the game can vary from 1 to infinity, but counts for all>21 are lumped with 21. A chi-square test is made on the no.-of-throws cell counts. Each 32-bit integer from the test file provides the value for the throw of a die, by floating to [0,1), multiplying by 6 and taking 1 plus the integer part of the result.

RESULTS OF CRAPS TEST FOR FourmilabHotBits.32
No. of wins: Observed Expected
98599 98585.858586
z-score= 0.059, pvalue=0.47657

Analysis of Throws-per-Game:

Throws	Observed	Expected	Chisq	Sum of $(O-E)^$
1	66719	66666.7	0.041	0.041
2	37257	37654.3	4.192	4.234
3	27201	26954.7	2.250	6.484
4	19333	19313.5	0.020	6.503
5	13682	13851.4	2.072	8.575
6	10159	9943.5	4.669	13.244

7	7134	7145.0	0.017	13.261
8	5036	5139.1	2.067	15.328
9	3669	3699.9	0.257	15.586
10	2741	2666.3	2.093	17.679
11	1948	1923.3	0.316	17.995
12	1423	1388.7	0.845	18.840
13	1048	1003.7	1.954	20.794
14	720	726.1	0.052	20.846
15	518	525.8	0.117	20.963
16	386	381.2	0.062	21.025
17	281	276.5	0.072	21.097
18	201	200.8	0.000	21.097
19	151	146.0	0.172	21.269
20	104	106.2	0.046	21.315
21	289	287.1	0.012	21.328

Chisq= 21.33 for 20 degrees of freedom, p= 0.37808

```
SUMMARY of craptest on FourmilabHotBits.32 p-value for no. of wins: 0.476565 p-value for throws/game: 0.378076
```

- Download Diehard test results (diehard_results.zip 13 Kb)
- Download data set for ENT and Diehard tests (FourmilabHotBits_Diehard.zip 11 Mb)

Tests with the NIST Statistical Test Suite (SP 800-22)

The following results were produced by testing a sequence of 16,779,776 bytes from the HotBits generator with version 1.8 of the U.S. National Institute of Standards and Technology Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications as described in NIST Special Publication 800-22 [PDF]. This test suite is supplied as source and executable binaries compiled with Microsoft Visual C++. In testing the program, I encountered numerous crashes due to buffer overflows in editing messages. I corrected these in the source code, rebuilt with Visual C++.NET, and used my patched version for the tests. Since the executable supplied by NIST crashed on my machine, even running the examples, I had no option but to rebuild it. If you're interested in building your own version that doesn't crash, you can download my patches to the source code.

The data set used in the following tests is identical in the first 11,468,800 bytes to that used in the ENT and Diehard tests above. This is the complete data set I generated for testing; due to the sensitivity of the Diehard tests to the data set size, I limited the data I tested to be the same as that used in the Diehard examples and tested that data set with ENT. The NIST tests seem to have no problems with large data sets, so I used the complete data set in these tests.

Version 1.8 of the NIST test suite has a rudimentary graphical user interface which runs only under Microsoft Windows. I performed these tests on my development machine, on which I booted Windows XP SP2. The test suite was compiled on a Windows 2000 machine using Microsoft Visual C++ .NET. The first configuration page of the test suite selects the data to be tested. You can choose from a variety of pseudorandom generators, data from a binary file, or a text file containing a sequence of bits represented as ASCII 0 and 1 characters.

The next page selects the tests to be performed and specifies the parameters to those tests which require them. I enabled all tests and used the parameters from the examples in the paper documenting the tests. Unless you really understand what you're doing, have studied the math underlying the test, and have read the code that implements it, it's a bad idea to get too creative changing these parameters. The LavaRnd people, for example, chose a block length of 14 for the Approximate Entropy test and discovered that with that setting even the "gold standard" Blum-Blum-Shub pseudorandom generator failed this test.

Please fill in the required fields in bits.	To perform all tests Click he
	To uncheck all Click he
Parameterized Test Selection Non-parameterized Test Selection	
▼ Block Frequency block length 128	
✓ Overlapping Templates	kimate Entropy lock length 10
Non-overlapping Templates	Complexity lock length 500
Serial block length 16 number of	sal block length 7 of initialization steps 1280
Number of bit streams generated 128	
Length of bit streams 104857	76

The tests selected and parameters are then displayed on confirmation page, and if accepted the tests begin. On my 3.4 GHz Pentium 4 machine, they run for a couple of hours.

After all the tests have completed, a summary report is written, which is reproduced below. The key values to look at for each test are the "P-value": the probability the results obtained were due to chance, and the "Proportion" of sequences generated which were deemed to pass the test. Extremal P-values (very close to zero or one), and Proportions which are significantly less than one are indicative of potential problems

 RESU	LTS	FOR	THE	UNIF	ORMI	TY 0	F P-	VAL	 UES <i>1</i>	AND THE PR	OPORTION OF	PASSING S
 C1			 C4	 C5	 Сб	 С7			 C10	 P-VALUE	 PROPORTION	STATISTI
15	15	14	16	9	10	8	10	9	22	0.090936	0.9766	frequenc
15	12	12	15	19	7	8	14	10	16	0.275709	1.0000	block-fr
14	16	17	14	8	11	17	6	10	15	0.232760	0.9766	cumulati
15	17	15	17	11	6	20	7	8	12	0.041438	0.9766	cumulati
28	17	8	16	9	8	11	12	10	9	0.000569	0.9609	runs
14	13	12	13	6	14	16	17	8	15	0.407091	1.0000	longest-
13	8	11	14	14	12	18	15	12	11	0.739918	0.9844	rank
10	17	18	10	13	12	14	10	12	12	0.689019	0.9922	fft
15	24	14	13	15	10	10	8	9	10	0.048716	0.9844	nonperio
15	12	17	6	12	13	14	15	12	12	0.637119	0.9766	nonperio

15	11	15	12	15	15	9	11	11	14	0.888137	0.9922	nonperio
4	7	14	14	10	15	13	12	23	16	0.014216	1.0000	nonperio
17	13	13	7	10	11	17	15	11	14	0.534146	0.9922	nonperio
14	14	10	17	16	9	13	11	9	15	0.654467	0.9922	nonperio
8	11	21	9	7	10	13	15	18	16	0.057146	1.0000	nonperio
12	12	16	14	15	14	14	10	8	13	0.848588	0.9922	nonperio
												-
10	15	10	10	15	18	16	9	15	10	0.468595	0.9844	nonperio
14	16	13	10	18	11	7	16	7	16	0.213309	0.9844	nonperio
17	16	15	12	8	9	14	11	11	15	0.585209	0.9922	nonperio
9	15	9	8	7	13	19	11	17	20	0.043745	1.0000	nonperio
13	11	11	12	13	13	10	17	14	14	0.941144	1.0000	nonperio
14	15	11	13	14	11	10	14	13	13	0.980883	0.9922	nonperio
10	15	12	6	10	18	12	17	16	12	0.287306	1.0000	nonperio
20	14	10	8	15	10	11	11	11	18	0.232760	0.9766	nonperio
												_
15	10	17	9	14	15	13	15	9	11	0.671779	0.9844	nonperio
12	13	12	11	14	14	13	15	15	9	0.957319	0.9844	nonperio
10	15	15	12	14	8	13	15	13	13	0.875539	0.9766	nonperio
14	10	17	15	7	16	8	11	14	16	0.350485	0.9844	nonperio
20	12	10	9	14	14	18	11	12	8	0.242986	0.9609	nonperio
14	11	15	9	14	17	9	14	9	16	0.585209	0.9766	nonperio
17	18	11	9	10	12	11	6	13	21	0.063482	0.9922	nonperio
13	10	9	15	15	21	8	7	18	12	0.070445	1.0000	nonperio
11	8	18	15	10	6	11	18	15	16	0.134686	1.0000	_
												nonperio
15	14	17	12	9	12	9	10	14	16	0.671779	0.9766	nonperio
17	10	18	11	16	10	10	11	9	16	0.378138	0.9844	nonperio
15	12	15	14	17	12	8	9	12	14	0.706149	1.0000	nonperio
12	10	14	12	14	8	16	13	12	17	0.756476	0.9922	nonperio
13	11	15	13	8	15	10	12	12	19	0.585209	1.0000	nonperio
13	14	14	16	11	12	16	10	11	11	0.911413	0.9766	nonperio
14	12	14	11	7	13	18	11	16	12	0.602458	0.9922	nonperio
13	11	12	15	7	11	11	16	17	15	0.602458	0.9688	nonperio
14	6	12	16	16	14	15	13	12	10	0.585209	1.0000	nonperio
12	9	10	10	14	14	15	10	15	19	0.534146	1.0000	nonperio
6	15	11	17	19	14	11	10	13	12	0.287306	0.9922	nonperio
12	16	9	13	13	14	11	11	13	16	0.900104	1.0000	nonperio
8	10	14	10	15	8	17	25	13	8	0.008879	0.9922	nonperio
9	6	25	8	19	8	14	12	15	12	0.003379	0.9844	
												nonperio
16	11	13	14	14	14	9	7	17	13	0.585209	0.9844	nonperio
16	10	13	15	7	14	14	13	8	18	0.378138	0.9844	nonperio
10	19	14	13	12	11	12	13	7	17	0.422034	0.9922	nonperio
17	10	9	13	11	10	13	14	16	15	0.723129	1.0000	nonperio
13	10	12	19	13	20	9	9	12	11	0.242986	0.9922	nonperio
6	18	11	11	11	11	17	19	12	12	0.186566	1.0000	nonperio
12	12	18	14	9	11	15	15	8	14	0.602458	0.9922	nonperio
23	10	12	10	12	12	11	17	8	13	0.110952	0.9766	nonperio
13	15	11	15	7	15	9	12	24	7	0.022503	0.9766	nonperio
8	8	13	17	16	10	15	9	18	14	0.253551	0.9922	nonperio
8	10	10	13	11	18	10	18	17	13	0.299251	1.0000	nonperio
13	10	13	15	13	10	14	17	9	14	0.819544	0.9922	nonperio
18	11	7	12	12	14	14	17	10	13	0.500934	0.9766	nonperio
16	16	14	11	16	8	12	14	11	10	0.689019	0.9844	nonperio
11	19	14	14	14	15	9	7	15	10	0.364146	0.9922	nonperio
18	15	13	14	6	10	16	16	12	8	0.242986	0.9922	nonperio
11	15	13	14	17	17	7	12	12	10	0.551026	1.0000	nonperio
12	17	11	14	17	12	7	12	14	12	0.637119	0.9844	nonperio
9	13	13	5	10	12	15	20	12	19	0.078086	0.9922	nonperio
11	11	11	17	18	16	15	6	9	14	0.242986	1.0000	nonperio
14	13	8	15	10	15	9	14	13	17	0.654467	0.9922	nonperio
18	7	12	15	7	16	15	13	10	15	0.264458	0.9844	nonperio
3	13	15	17	13	16	20	13 5	17	9	0.264436	1.0000	
3	тЭ	ΤĴ	Ι/	тЭ	Τ0	∠ ∪	J	Ι/	9	0.003490	1.0000	nonperio

18 12 6 12 12 9 13 24 12 10 0.023812 0.9922 nonperio 6 11 11 15 10 17 11 21 18 8 0.041438 0.9922 nonperio 7 13 14 14 12 14 4 16 18 16 0.116519 1.0000 nonperio 11 9 17 11 14 13 13 14 13 13 0.911413 1.0000 nonperio 15 9 11 16 15 5 19 13 12 13 0.213309 0.9688 nonperio 13 18 8 12 11 8 14 18 14 12 0.392456 0.9766 nonperio 17 11 16 10 13 14 9 14 12 0.804337 0.9844 nonperio	18 12 6 12 12 9 13 24 12 10 0.023812 0.9922 nonperio 6 11 11 15 10 17 11 21 18 8 0.041438 0.9922 nonperio 7 13 14 14 12 14 4 16 18 16 0.116519 1.0000 nonperio 15 9 17 11 14 13 13 14 13 0.914143 1.0000 nonperio 13 18 8 12 11 8 14 18 14 12 0.392456 0.9766 nonperio 17 11 16 10 13 14 9 14 12 0.804337 0.9844 nonperio 15 16 11 8 12 14 13 18 12 0.9944 nonperio 11 12 17	10 16 16 16 12 6 12 15 6 10 11 20 18 8 11 13 14 10 12 10 10 13 13 10 15 24 14 10 8 14 17 16 11 12 19 7 12 15 8 16 9 8	16 13 14 14 13 9 9	13 12 20 14 17 9 12 17 13 10 12 14 13 16 13 14 10 12 15 13	10 7 17 12 14 16 17 14 9 11 16 18 15 11 8 11 14 11 8 13 8	19 12 12 15 12 8 16 7 8 12 12 17 10 15 14 11 11 14 8 9	13 7 7 14 13 13 18 15 20 14 15 12 10 11 21 14 15 20 13 15 20 11 15 16	8 16 16 14 11 11 9 14 17 12 10 12 8 6 13 10 19 11 12 20 17	12 14 11 13 20 10 15 15 14 12 11 6 9 15 13 12 15 13 18 10 9	12 18 12 9 14 17 10 12 14 19 16 12 10 17 15 14 10 13 8 13	0.500934 0.222869 0.100508 0.931952 0.232760 0.242986 0.054199 0.654467 0.232760 0.689019 0.888137 0.422034 0.048716 0.452799 0.222869 0.772760 0.654467 0.141256 0.178278 0.337162 0.242986	0.9844 0.9844 0.9844 0.9766 0.9922 1.0000 1.0000 0.9922 0.9766 0.9844 0.9844 0.9922 0.9766 1.0000 0.9688 1.0000 0.9844 0.99844 0.99844 0.99844 0.99844 0.99844 0.99844 0.99842 0.99822 0.99922	nonperio
16 8 8 13 9 15 18 14 14 13 0.407091 0.9844 nonperio 10 14 15 12 9 12 12 12 20 12 0.585209 0.9844 nonperio 11 10 11 22 8 15 10 16 14 11 0.162606 0.9922 nonperio 13 18 11 9 16 16 15 8 12 10 0.437274 0.9922 nonperio 17 10 10 11 8 18 11 13 13 17 0.392456 0.9922 nonperio 11 15 14 12 17 8 13 13 17 8 0.517442 1.0000 nonperio 15 8 13 10 9 13 12 15 21 12 0.287306 1.0000 nonperio 9 8 9 20 17 12 7 15 17 </td <td>16 8 8 13 9 15 18 14 14 13 0.407091 0.9844 nonperio 10 14 15 12 9 12 12 12 20 12 0.585209 0.9844 nonperio 11 10 11 22 8 15 10 16 14 11 0.162606 0.9922 nonperio 13 18 11 9 16 16 15 8 12 10 0.437274 0.9922 nonperio 17 10 10 11 18 18 11 13 13 17 0.392456 0.9922 nonperio 11 15 14 12 17 8 13 13 17 8 0.517442 1.0000 nonperio 15 8 13 10 9 13 12 15 21 12 0.287306 1.0000 nonperio 16 15 13 10 12 15 10 8 17 14 0.078086 0.9922 nonperio 16 15 13 10 12 15 10 8 17 12 0.637119 0.9766 nonperio 11 16 6 13 15 5 15 17 11 15 15 0.422034 0.9844 nonperio 11 16 6 13 15 5 15 17 16 14 0.128379 1.0000 nonperio 14 10 16 12 9 9 10 17 18 13 0.437274 0.9766 nonperio 15 16 12 8 15 14 10 11 18 9 0.468595 1.0000 nonperio 16 17 18 12 17 7 9 14 12 17 10 0.311542 1.0000 nonperio 11 17 18 12 17 7 9 14 12 11 0.311542 1.0000 nonperio 11 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 15 16 16 11 11 19 10 11 8 0.392456 0.9766 nonperio 17 17 18 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 18 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 19 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 10 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 11 15 16 16 11 11 19 10 11 8 0.392456 0.9766 nonperio</td> <td>7 13 11 9 15 9 13 18 17 11 15 16 12 10 11 12 7 14</td> <td>14 17 11 8 16 11 9 17</td> <td>14 11 16 12 10 8 13 12</td> <td>12 14 15 11 13 12 17 11</td> <td>14 13 5 8 14 14 10 11</td> <td>4 13 19 14 9 13 14 14</td> <td>16 14 13 18 14 18 12 16 13</td> <td>18 13 12 14 12 6 18 9</td> <td>16 13 13 12 12 15 13 15 12</td> <td>0.116519 0.911413 0.213309 0.392456 0.804337 0.299251 0.637119 0.788728 0.739918</td> <td>1.0000 1.0000 0.9688 0.9766 0.9844 0.9766 0.9844 0.9844</td> <td>nonperio nonperio nonperio nonperio nonperio nonperio nonperio nonperio</td>	16 8 8 13 9 15 18 14 14 13 0.407091 0.9844 nonperio 10 14 15 12 9 12 12 12 20 12 0.585209 0.9844 nonperio 11 10 11 22 8 15 10 16 14 11 0.162606 0.9922 nonperio 13 18 11 9 16 16 15 8 12 10 0.437274 0.9922 nonperio 17 10 10 11 18 18 11 13 13 17 0.392456 0.9922 nonperio 11 15 14 12 17 8 13 13 17 8 0.517442 1.0000 nonperio 15 8 13 10 9 13 12 15 21 12 0.287306 1.0000 nonperio 16 15 13 10 12 15 10 8 17 14 0.078086 0.9922 nonperio 16 15 13 10 12 15 10 8 17 12 0.637119 0.9766 nonperio 11 16 6 13 15 5 15 17 11 15 15 0.422034 0.9844 nonperio 11 16 6 13 15 5 15 17 16 14 0.128379 1.0000 nonperio 14 10 16 12 9 9 10 17 18 13 0.437274 0.9766 nonperio 15 16 12 8 15 14 10 11 18 9 0.468595 1.0000 nonperio 16 17 18 12 17 7 9 14 12 17 10 0.311542 1.0000 nonperio 11 17 18 12 17 7 9 14 12 11 0.311542 1.0000 nonperio 11 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 15 16 16 11 11 19 10 11 8 0.392456 0.9766 nonperio 17 17 18 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 18 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 19 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 10 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 11 15 16 16 11 11 19 10 11 8 0.392456 0.9766 nonperio	7 13 11 9 15 9 13 18 17 11 15 16 12 10 11 12 7 14	14 17 11 8 16 11 9 17	14 11 16 12 10 8 13 12	12 14 15 11 13 12 17 11	14 13 5 8 14 14 10 11	4 13 19 14 9 13 14 14	16 14 13 18 14 18 12 16 13	18 13 12 14 12 6 18 9	16 13 13 12 12 15 13 15 12	0.116519 0.911413 0.213309 0.392456 0.804337 0.299251 0.637119 0.788728 0.739918	1.0000 1.0000 0.9688 0.9766 0.9844 0.9766 0.9844 0.9844	nonperio nonperio nonperio nonperio nonperio nonperio nonperio nonperio
	11 16 6 13 15 5 15 17 16 14 0.128379 1.0000 nonperio 14 10 16 12 9 9 10 17 18 13 0.437274 0.9766 nonperio 12 12 11 9 18 18 12 10 12 14 0.585209 0.9844 nonperio 12 12 14 16 12 12 11 21 7 11 0.299251 0.9922 nonperio 15 16 12 8 15 14 10 11 18 9 0.468595 1.0000 nonperio 11 17 18 12 17 7 9 14 12 11 0.311542 1.0000 nonperio 20 16 12 11 17 10 13 12 8 9 0.253551 0.9844 nonperio 14 17 14 8 15 13 11 9 14 13 0.723129 0.9922 nonperio 11 15 16 16 11 11 19 10 11 8 0.392456 0.9766 nonperio	16 8 10 14 11 10 13 18 17 10 11 15 15 8 9 8 16 15	8 15 11 11 10 14 13 9	13 12 22 9 11 12 10 20	9 8 16 8 17 9 17	15 12 15 16 18 8 13 12	18 12 10 15 11 13 12 7	14 12 16 8 13 13 15 15	14 20 14 12 13 17 21 17	13 12 11 10 17 8 12 14	0.407091 0.585209 0.162606 0.437274 0.392456 0.517442 0.287306 0.078086 0.637119	0.9844 0.9844 0.9922 0.9922 0.9922 1.0000 1.0000 0.9922 0.9766	nonperio nonperio nonperio nonperio nonperio nonperio nonperio nonperio

14	12	10	15	12	12	14	10	13	16	0.941144	1.0000	nonperio
12	14	10	16	9	10	17	12	12	16	0.689019	1.0000	nonperio
14	10	11	9	20	10	10	19	12	13	0.232760	1.0000	nonperio
12	15	17	9	11	11	12	12	17	12	0.756476	0.9844	nonperio
12	16	19	13	11	14	9	15	12	7	0.392456	0.9922	nonperio
16	10	11	13	11	11	16	20	10	10	0.407091	1.0000	nonperio
17	8	19	12	13	16	8	13	12	10	0.299251	0.9922	nonperio
15	15	12	12	16	9	19	14	4	12	0.148094	0.9922	nonperio
15	14	11	10	10	21	7	13	13	14	0.264458	0.9922	nonperio
16	16	13	14	13	10	10	9	18	9	0.500934	0.9844	nonperio
19	5	16	13	14	6	13	14	16	12	0.100508	0.9922	nonperio
13	13	17	11	13	12	11	14	12	12	0.970538	1.0000	nonperio
16	13	8	12	9	15	18	13	15	9	0.452799	1.0000	nonperio
14	13	11	9	19	14	10	12	10	16	0.568055	1.0000	nonperio
10	13	18	12	20	13	13	10	10	9	0.324180	1.0000	nonperio
9	18	9	12	13	12	13	14	12	16	0.706149	1.0000	nonperio
11	15	12	13	14	11	18	11	14	9	0.788728	0.9922	nonperio
11	19	12	14	10	10	17	14	10	11	0.534146	1.0000	nonperio
9	14	12	9	18	8	13	13	15	17	0.422034	1.0000	nonperio
11	13	8	13	17	8	12	18	18	10	0.253551	0.9922	nonperio
10	15	17	16	8	18	12	5	11	16	0.110952	0.9922	nonperio
7	14	11	10	10	25	16	11	14	10	0.022503	0.9922	nonperio
7	18	12	14	8	10	15	18	11	15	0.232760	1.0000	nonperio
16	17	11	16	11	14	15	12	8	8	0.468595	0.9844	nonperio
12	11	14	13	12	13	5	20	14	14	0.299251	0.9688	nonperio
13	10	15	13	18	17	12	12	6	12	0.407091	0.9922	nonperio
14	16	17	10	14	10	14	8	14	11	0.654467	0.9766	overlapp
17	10	16	11	16	9	13	11	9	16	0.517442	0.9609	universa
17	12	10	18	11	12	13	11	11	13	0.756476	1.0000	apen
7	5	10	9	11	9	7	8	7	8	0.947557	1.0000	random-e
7	13	5	5	6	12	4	10	11	8	0.235285	0.9877	random-e
3	4	7	14	8	7	9	9	7	13	0.146359	1.0000	random-e
11	6	6	9	8	9	7	10	6	9	0.934318	1.0000	random-e
6 7	6 16	9 4	9 6	5 5	10	8	8 11	8 12	12	0.845066	1.0000 0.9877	random-e
10	16	6	6	5 8	8 12	8 11	7	6	4 9	0.050710 0.752361	1.0000	random-e
6	10	7	6	10	7	9	11	10	5	0.732361		random-e
7	10	7	7	12	7	9 7	9	6	9	0.823278	1.0000 0.9877	random-e
8	5	8	10	12 7	11	4	13	7	8	0.919445	0.9877	random-e random-e
_	_	_	_	8	11		_	9	13			
8 8	7	8	8 9	8	10	4	6 10	10	7	0.624107	0.9877 1.0000	random-e random-e
7	10	7	6	7	5	11	13	7	8	0.650132	1.0000	random-e
7	5	12	9	11	5	3	7	7	15	0.087559	1.0000	random-e
7	8	5	13	8	7	10	11	5	7	0.598138	1.0000	random-e
5	8	7	8	6	14	11	5	8	9	0.472584	0.9753	random-e
5	6	9	10	6	9	11	9	8	8	0.902994	0.9753	random-e
6	7	11	9	9	8	7	6	10	8	0.959132	0.9877	random-e
5	8	14	10	9	7	5	12	4	7	0.235285	1.0000	random-e
9	10	7	10	6	6	9	8	8	8	0.984058	0.9877	random-e
12	6	3	17	7	3	6	9	7	11	0.013217	0.9877	random-e
11	5	6	7	14	7	11	7	5	8	0.360699	0.9753	random-e
5	9	8	10	9	8	3	8	13	8	0.521600	0.9630	random-e
5	8	8	10	13	3	7	11	8	8	0.425817	0.9753	random-e
5	7	13	9	11	6	10	8	9	3	0.360699	0.9877	random-e
5	10	10	7	13	9	8	2	10	7	0.302291	0.9877	random-e
11	19	13	16	12	12	10	14	10	11	0.671779	0.9922	serial
17	10	9	14	12	21	17	11	7	10	0.095617	0.9922	serial
15	10	13	12	12	14	11	18	8	15	0.671779	0.9922	linear-c

The minimum pass rate for each statistical test with the exception of excursion (variant) test is approximately = 0.963616 for a sample size binary sequences.

The minimum pass rate for the random excursion (variant) test is appro 0.956834 for a sample size = 81 binary sequences.

For further guidelines construct a probability table using the MAPLE p provided in the addendum section of the documentation.

For each test a chart is generated which shows the expectation for a random sequence as a solid line with the results from the data being tested plotted as a series of red dots for each sub-sequence tested. The following are the charts for the HotBits data.

Longest Run of Ones

Overlapping Template Matching

Maurer's "Universal Statistical" Test

Approximate Entropy

Random Excursions

Random Excursions Variant

In addition to the test summary and graphs, detailed results from the various tests are written to a number of data files. You can download a ZIPped archive containing all of these results, and the HotBits data stream which was tested to produce them from the links below.

- Download NIST test results (nist_results.zip 102 Kb)
- Download data set for NIST tests (FourmilabHotBits_NIST_SP_800-22.zip 17 Mb)

Generator Quality Monitoring

Each HotBits generator machine performs a continuous quality control check on the random data it produces. For each block of random data generated, a specified percentage (10% for the Fourmilab generators) of additional data is generated and subjected to the ENT tests described above. The results of these tests, both for all bytes produced since the HotBits generator was started and those generated since the last status report was requested, are reported in the server status report as shown below. This status report is available only on the Fourmilab local network—it is not accessible over the Internet.

Quality control testing is performed on bytes generated expressly for that purpose and discarded immediately after being tested. The random bytes produced for inventory and returned to requesters have not been examined by any program or human before being delivered.

Server hotbits0.dmz.fourmilab.ch up since Monday, 25

September 2006 15:12:14 CEST Inventory loaded from file: 7647232

Requests processed: 10006, 10001 OK, 5 rejected

Unauthorised access attempts: 0 Bytes returned: 10239757 Inventory length: 7103488

Inventory file (/server/var/hbproxy/inventory.dat) length:

7103488, valid.

Bytes in current buffer: 243 Bytes built for inventory: 9696256

Seconds spent building inventory: 92926, 104 bytes/second

Quota queue length: 0

Quality measurements on a sample of 965838 bytes generated since the server was started:

Entropy: 7.999825 bits per byte.

Chi-square distribution: 233.74 (random exceeds this

75.00% of the time).

Mean value: 127.5374 (expectation: 127.5).

Monte Carlo π value: 3.141470930 (error 0.00

percent).

Serial correlation coefficient: 0.000885 (expectation 0).

Quality measurements on a sample of 159018 bytes generated since Friday, 29 September 2006 13:39:55 CEST:

Entropy: 7.998742 bits per byte.

Chi-square distribution: 277.54 (random exceeds this

25.00% of the time).

Mean value: 127.8514 (expectation: 127.5).

Monte Carlo π value: 3.138663548 (error 0.09

percent).

Serial correlation coefficient: 0.002713 (expectation

0).

Release 3.0, September 2006 Built on Sep 25 2006 at 15:12:09

HotBits Main Page How HotBits Works HotBits Hardware Description

by John Walker September, 2006

