MAT1120

Oskar Idland

4.1 Vector spaces and subspaces

Theory

Vector Space

Definition 1 A vector space is a nonempty set V of objects, called vectors, on which are fefined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u}, \mathbf{v} and \mathbf{W} in V and for all scalars c and d.

- 1. The sum of u and v, denoted by $\mathbf{u} + \mathbf{v}$, is in V
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. There is a zero vector $\vec{0}$ in V such that $\mathbf{u} + \mathbf{0} = u$
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$
- 6. The scalar multiple of u by c denoted by $c\mathbf{u}$ is in V
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

Definition 2 A subspace of a vector space V is a subset H of V that has three properties:

- The zero vector of V is in H
- H is closed under vector addition. That is, for each ${\bf u}$ and ${\bf v}$ in H, the sum ${\bf u}$ C ${\bf v}$ is in H
- H is closed under multiplication by scalars. That is, for each ${\bf u}$ in H and each scalar c, the vector $c{\bf u}$ is in H

Theorem 1 If $\vec{v_1}, \dots, \vec{v_n} \in V$ then $span\{\vec{v_1}, \dots, \vec{v_n}\}$ is a subspace of V

Exercises

12

Let W be the set of all vectors of the form $\begin{pmatrix} s+3t\\ s-t\\ 2s-t\\ 4t \end{pmatrix}$. Show that W is a subspace of \mathbb{R}^4 .

We can split W up into a sum of other vectors.

$$\begin{pmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \\ -1 \\ 4 \end{pmatrix}$$

$$W = span \left\{ \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\-1\\-1\\4 \end{pmatrix} \right\} \to \text{theorem 1 says } W \text{ is a subspace of } \mathbb{R}^4$$

40

Let H and K be subspaces of a vector space V. The intersection of H and K, written $H \cap K$ is a subspace of V. Give an example in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace

Figur 1

If you lift the H plane, higher and would by definition 2, not be a subspace as the intersection wouldn't go through origin. We can do the same for two lines in \mathbb{R}^2 . If they do not intersect in the origin, then their intersection can't be a subspace.

44

Determine if y is in the subspace of \mathbb{R}^4 spanned by the collumns of A, where

$$\mathbf{y} = \begin{pmatrix} -4 \\ -8 \\ 6 \\ -5 \end{pmatrix}, \quad A = \begin{pmatrix} 3 & -5 & -9 \\ 8 & 7 & -6 \\ -5 & -8 & 3 \\ 2 & -2 & -9 \end{pmatrix}$$

We can divide A into three vectors where each one is a column in A. If these three vectors can form a linear combination which can create \mathbf{y} (in other words, \mathbf{y} is in the span of these vectors), then \mathbf{y} will be in the subspace of \mathbb{R}^4 spanned by the columns of A. To test this we append the vector \mathbf{y} to the end of A and then reduce it to row echelon form. As seen above

Figur 2: Results using matlab

the equation has a solution which means \mathbf{y} is in the subspace of \mathbb{R}^4 spanned by the columns of A.

4.2 Null Spaces, Column Spaces, Row Spaces, and Linear Transformations

Theory

The Null Space of a Matrix

Definition 3 The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogenous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul
$$A = \{ \mathbf{x} : \mathbf{xis} \text{ in } \mathbb{R}^n \text{ and } A\mathbf{X} = \mathbf{0} \}$$

Figur 3: Visualization of the subspace (in this case a line) formed by the null space of A

Theorem 2 The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

The Column Space of a Matrix

Definition 4 The Column space of an $m \times n$ matrix A, written as Col A, is the set of all linear cominations of the collumns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then

$$Col\ A = Span = \{\mathbf{a}_1 \dots \mathbf{a}_n\}$$

Theorem 3 The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Exercises

4

Find the explicit definition of Nul A by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

We start by reducing it to echelon form multiplying by \mathbf{x} and set as equal to the zero vector.

$$A\mathbf{x} = \mathbf{0}$$

$$rref(A) = \begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$Nul \ A = span \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

52

Let $H = Span\{\mathbf{v}_1, \mathbf{v}_2\}$ and $K = Span\{\mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{pmatrix} 5 \\ 3 \\ 8 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} 0 \\ -12 \\ -28 \end{pmatrix}$$

Then H and K are subspaces of \mathbb{R}^3 . In fact, H and K are planes in \mathbb{R}^3 through origin, and they intersect in a line through $\mathbf{0}$. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To build \mathbf{w} , solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's]