Kempe changes on Δ -colorings

Clément Legrand-Duchesne

ENS Rennes

July 12, 2021

Joint work with Marthe Bonamy and Vincent Delecroix at LaBRI in Bordeaux

Clément Legrand 1 /

Recoloring with Kempe changes

Kempe chain (1879)

Maximal bichromatic connected component in G

Recoloring with Kempe changes

Kempe chain (1879)

Maximal bichromatic connected component in G

Recoloring with Kempe changes

Kempe chain (1879)

Maximal bichromatic connected component in G

4 □ ▶

d-degenerate graphs

d-degenerate graph

G is d-degenerate if for any $H \subset G$, $\delta(H) \leq d$ Equivalently, G admits an elimination ordering $v_1 \prec v_2 \cdots \prec v_n$ such that

$$\forall i, |N^+(v_i)| \leq d$$

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for k > d+1

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \geq d+1$

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for k > d+1

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

Recoloring with Δ colors

Brook's theorem

All graphs but odd cycles and cliques are Δ -colorable

Mohar conjecture '07

For all G, for all $k \ge \Delta$, $R^k(G)$ is connected True if G is not regular

Feghali, Johnson, Paulusma '17 True for all cubic graphs but the 3-prism Bonamy, Bousquet, Feghali, Johnson '19 True for $\Delta \geq$ 4

Bonamy, Delecroix, L. '21+

For all graph G but the 3-prism, for $k \geq \Delta(G)$, $\operatorname{diam}(R^k(G)) = O(\Delta n^2)$

Recoloring with Δ colors

Bonamy, Delecroix, L. '21+

For all graph G but the 3-prism, for $k \geq \Delta(G)$,

$$\operatorname{diam}(R^k(G)) = O(\Delta n^2)$$

$$V(R^k(G)) \simeq \bigcup_{(v,w) \in N(u)^2 \setminus E} V(R^k(G_{v+w}))$$

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\dim(R^k(G')) = O(dn^2)$

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall \mathbf{v} \succ \mathbf{u}, \ \alpha(\mathbf{u}) = \beta(\mathbf{u})$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\dim(R^k(G')) = O(dn^2)$

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall \mathbf{v} \succ \mathbf{u}, \ \alpha(\mathbf{u}) = \beta(\mathbf{u})$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\dim(R^k(G')) = O(dn^2)$

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\dim(R^k(G')) = O(dn^2)$

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Key lemma

If G' is (d-1)-degenerate, with $\deg(v_i) \leq d$ for all i < n, then $\dim(R^k(G')) = O(dn^2)$

Induction

If $c \notin \alpha(N^+(u))$, then there exits β such that:

- $\forall v \succ u, \ \alpha(u) = \beta(u)$
- $\beta(u) = c$
- $\alpha \leadsto_K \beta$ by recoloring each vertex $w \prec u$ at most p times where $p = |\alpha^{-1}(c) \cup N^{-}(u)|$

Avoiding the Δ^2 factor: first case

G is 3-connected of diameter more than three

Let u and x be two vertices far away in G, let $(v, w) \in N(u)^2 \setminus E$ For all $(y, z) \in N(x)^2 \setminus E$, $\exists \alpha$ such that $\alpha(v) = \alpha(w)$ and $\alpha(y) = \alpha(z)$

Avoiding the Δ^2 factor: second case

G is not 3-connected

If G_1 and G_2 are d-1 degenerate, of degree a most d and $S=G_1\cup G_2$ is a complete graph, diam $(R^k(G_1\cap G_2))=O(dn^2)$ for $k\geq d$