

Introduction to CUDA

(6) Parallel Pattern: Convolution

Reference

- CUDA C Programming Guide,
 - https://docs.nvidia.com/cuda/cuda-c-programmingguide/index.html
- Programming Massively Parallel Processors,
 - A Hands-on Approach
 - Third Edition
 - Chapter 7

Content

- Convolution
 - An important parallel computation pattern
- Taking advance of
 - Constant memory and caching
- Tiled 1D convolution algorithms
 - Addressing memory bandwidth issue in accessing N
 - Algorithms and analysis
- Tiled 2D convolution with halo cells
 - Algorithms and analysis

Convolution Applications

- A popular array operation that is used in various forms in signal processing, digital recording, image processing, video processing, and computer vision.
- Convolution is often performed as a filter that transforms signals and pixels into more desirable values.
 - Some filters smooth out the signal values so that one can see the big-picture trend.
 - Others like Gaussian filters can be used to sharpen boundaries and edges of objects in images.

Convolution Computation

- An array operation where each <u>output data</u> element is a <u>weighted sum</u> of a collection of neighboring <u>input elements</u>
- The weights used in the weighted sum calculation are defined by an input mask array, commonly referred to as the convolution kernel
 - refer to these mask arrays as convolution <u>masks</u> to avoid confusion(with kernel in CUDA).
 - The same convolution mask is typically used for all elements of the array.

1D Convolution Example

- Commonly used for <u>audio processing</u>
 - Mask size is usually an odd number of elements for symmetry (5 in this example)
- Calculation of P[2]

1D Convolution Example

- more on inside elements
- Calculation of P[3]

1D Convolution Boundary Condition

- Calculation of output elements near the boundaries (beginning and end) of the input array need to deal with "ghost" elements
 - Different policies (0, replicates of boundary values, etc.)

A 1D Convolution Kernel with Boundary Condition Handling

 This kernel forces all elements outside the valid data index range to 0

```
__global___ void convolution_lD_basic_kernel( float *N, float *M, float *P,
    int Mask_Width, int Width) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    float Pvalue = 0;
    int N_start_point = i - (Mask_Width/2);

    for (int j = 0; j < Mask_Width; j++) {
        if (N_start_point + j >= 0 && N_start_point + j < Width) {
            Pvalue += N[N_start_point + j] * M[j];
        }
    }

    P[i] = Pvalue;
}</pre>
```

2D Convolution

_	_
- 10	
٠,١	•
- 1	7
_	٠,

1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	5	6
5	6	7	8	5	6	7
6	7	8	9	0	1	2
7	8	9	0	1	2	3

M

1	2	3	2	1
2	3	4	3	2
3	4	5	4	3
2	3	4	3	2
1	2	3	2	1

1	4	9	8	5
4	9	16	15	12
9	16	25	24	21
8	15	24	21	16
5	102	21	16	5

2D Convolution Boundary Condition

				ľ	V		
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	5	6
	5	6	7	8	5	6	7
	6	7	8	9	0	1	2
	7	8	9	0	1	2	3

M				
1	2	3	2	1
2	3	4	3	2
3	4	5	4	3
2	3	4	3	2
1	2	3	2	1

2D Convolution – Ghost Cells

Content

- Convolution
 - An important parallel computation pattern
- Taking advance of
 - Constant memory and caching
- Tiled 1D convolution algorithms
 - Addressing memory bandwidth issue in accessing N
 - Algorithms and analysis
- Tiled 2D convolution with halo cells
 - Algorithms and analysis

Access Pattern for M

- M is referred to as mask (a.k.a. kernel, filter, etc.)
 - Elements of M are called mask (kernel, filter) coefficients
- M features:
 - M is small in size
 - All threads need to access mask elements
 - M is not changed during kernel
- Bonus M elements are accessed in the same order when calculating all P elements
- M is a good candidate for Constant Memory

Programmer View of CUDA Memories (Review)

- Each thread can:
 - Read/write per-thread registers (~1 cycle)
 - Read/write per-block shared memory (~5 cycles)
 - Read/write per-grid global memory (~500 cycles)
 - Read/only per-grid constant memory (~5 cycles with caching)

Memory Hierarchies

- If we had to go to global memory (DRAM) to access data all the time, the execution speed of GPUs would be limited by the global memory bandwidth
- But Constant memory variables also located in DRAM which is known as slow to access.
- How can we benefit from constant memory?
- One solution: Caches

Memory Hierarchies

• Simplified view of the cache hierarchy of modern processors:

Cache

- A cache is an "array" of cache lines
 - A <u>cache line</u> can usually hold data from several consecutive memory addresses
- When data is requested from the global memory:
 - an entire cache line that includes the data being accessed is loaded into the cache, in an attempt to reduce global memory requests;
 - The data in the cache is a "copy" of the original data in global memory;

Caches - Cont'd

Some definitions:

- Spatial locality: when the data elements stored in consecutive memory locations are access consecutively
- Temporal locality: when the same data element is access multiple times in short period of time
- Both spatial locality and temporal locality improve the performance of caches

Scratchpad vs. Cache

- Scratchpad (shared memory in CUDA) is another type of temporary storage used to relieve main memory contention.
 - In terms of distance from the processor, scratchpad is similar to L1 cache.
- Unlike cache, scratchpad <u>does not necessarily hold a</u> <u>copy of data</u> that is also in main memory
 - Scratchpad requires explicit data transfer instructions into locations in the scratchpad, whereas cache doesn't

Constant Cache in GPUs

- Modification to cached data needs to be (eventually) <u>reflected back</u> to the original data in global memory
 - Requires logic to track the modified status, etc.
- Constant cache is a special cache for constant data:
 - Data declared in the constant memory will not be modified during kernel execution.
 - Constant cache can be accessed with higher throughput than L1 cache for some common patterns

How to Use Constant Memory

 Host code allocates, initializes variables the same way as any other variables that need to be copied to the device

- Use cudaMemcpyToSymbol(dest, src, size) to copy the variable into the device memory
- This copy function tells the device that the variable will not be modified by the kernel and can be safely cached.

A 1D Convolution Kernel using constant memory

 This kernel forces all elements outside the valid data index range to 0

```
__global___ void convolution_1D_basic_kernel( float *N, float *P,
int Mask_Width, int Width) {

  int i = blockIdx.x*blockDim.x + threadIdx.x;

  float Pvalue = 0;
  int N_start_point = i - (Mask_Width/2);
  for (int j = 0; j < Mask_Width; j++) {
    if (N_start_point + j >= 0 && N_start_point + j < Width) {
        Pvalue += N[N_start_point + j] * M[j];
     }
    }
    P[i] = Pvalue;
}</pre>
```

Host Code

```
// global variable, outside any kernel/function
  constant float Mc[MASK WIDTH][MASK WIDTH];
// allocate N, P, initialize N elements, copy N to Nd
 Matrix M;
     = AllocateMatrix(MASK WIDTH, MASK WIDTH, 1);
  // initialize M elements
  cudaMemcpyToSymbol(Mc, M.elements,
     MASK WIDTH*MASK WIDTH*sizeof(float));
  ConvolutionKernel << dimGrid, dimBlock >>> (Nd, Pd);
```

Content

- Convolution
 - An important parallel computation pattern
- Taking advance of
 - Constant memory and caching
- Tiled 1D convolution algorithms
 - Addressing memory bandwidth issue in accessing N
 - Algorithms and analysis
- Tiled 2D convolution with halo cells
 - Algorithms and analysis

Tiled 1D Convolution Basic Idea

Loading the left halo

Loading the internal elements

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

Shift n, number of left halo

Loading the right halo


```
global___void convolution_1D_tiled_kernel(float *N, float *P, int Mask_Width,
int Width) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];
int n = Mask_Width/2;
int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;
if (threadIdx.x >= blockDim.x - n) {
  N_ds[threadIdx.x - (blockDim.x - n)] =
    (halo index left < 0) ? 0 : N[halo index left];</pre>
N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];
int halo index right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {</pre>
  N ds[n + blockDim.x + threadIdx.x] =
    (halo_index_right >= Width) ? 0 : N[halo_index_right];
syncthreads();
float Pvalue = 0;
for(int j = 0; j < Mask_Width; <math>j++) {
  Pvalue += N_ds[threadIdx.x + j]*M[j];
P[i] = Pvalue;
                                      30
```

Shared Memory Data Reuse

- Element 2 is used by thread 4 (1X)
- Element 3 is used by threads 4, 5 (2X)
- Element 4 is used by threads 4, 5, 6 (3X)
- Element 5 is used by threads 4, 5, 6, 7 (4X)
- Element 6 is used by threads 4, 5, 6, 7 (4X)
- Element 7 is used by threads 5, 6, 7 (3X)
- Element 8 is used by threads 6, 7 (2X)
- Element 9 is used by thread 7 (1X)

Shared Memory Data Reuse

A Small 1D Example

TILE_SIZE = 8, Mask_Width=5

Mask_Width is 5

- output and input tiles for block 1
- For Mask_Width = 5, each block loads 8+5-1 = 12 elements (12 memory loads)

Each output P element uses 5 N elements (in N_ds)

 N_ds

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- P[10] uses N[8], N[9], N[10], N[11], N[12]
- ...
- P[14] uses N[12], N[13], N[14], N[15],N[16]
- P[15] uses N[13], N[14], N[15], N[16], N[17]
 A Total of 8 * 5 N elements are used for the output tile.

A simple way to calculate tiling benefit

- For internal tiles:
 - (8+5-1)=12 elements loaded
 - 8*5 global memory accesses replaced by shared memory accesses
 - This gives a bandwidth reduction of 40/12=3.3
- For a boundary tile:
 - (8+(5-1)/2)=10 elements loaded
 - Total accesses is 40-3= 37

In General for 1D, internal tiles

 The total number of global memory accesses to the (TILE_SIZE+Mask_Width-1) N elements replaced by shared memory accesses is

In General, for 1D convolution kernel

 For internal thread blocks, the ratio of memory accesses between the basic and the tiled 1D kernel:

```
(blockDim. x*(2n+1)) / (blockDim. x+2n)
```

whereas the ratio for boundary blocks is:

```
(blockDim. x*(2n+1) - n(n+1)/2) / (blockDim. x+n)
```

• For most situations, blockDim.x is much larger than n.

```
(blockDim. x*(2n+1)/ blockDim. x = 2n+1 = Mask_Width
```

Bandwidth Reduction for 1D

The reduction is

Mask_Width * (TILE_SIZE)/(TILE_SIZE+Mask_Width-1)

TILE_SIZE	16	32	64	128	256
Reduction Mask_Width = 5	4.0	4.4	4.7	4.9	4.9
Reduction Mask_Width = 9	6.0	7.2	8.0	8.5	8.7

Simpler Tiled 1D convolution

- Using general caching:
 - Modern GPU like Fermi has L1 and L2 caches:
 - L1 is private to each SM
 - L2 is shared among all SMs

- Blocks can take advantages of the fact that their <u>halo cells</u> maybe available in L2 cache.
- Simpler version that <u>only load the internal elements</u> of each tile into the shared memory.

```
global void convolution 1D tiled cache kernel(float *N, float *P,
int Mask_Width, int Width) {
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  shared float N ds[TILE SIZE];
 N_ds[threadIdx.x] = N[i];
  __syncthreads();
  int This_tile_start_point = blockIdx.x * blockDim.x;
  int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;
  int N_start_point = i - (Mask_Width/2);
 float Pvalue = 0;
  for (int j = 0; j < Mask_Width; j ++) {</pre>
     int N_index = N_start_point + j;
     if (N_index >= 0 && N_index < Width) {</pre>
       if ((N index >= This tile start point)
         && (N_index < Next_tile_start_point)) {
        Pvalue += N ds[threadIdx.x+j-(Mask Width/2)]*M[j];
       } else {
        Pvalue += N[N index] * M[j];
 P[i] = Pvalue;
```

Content

- Convolution
 - An important parallel computation pattern
- Taking advance of
 - Constant memory and caching
- Tiled 1D convolution algorithms
 - Addressing memory bandwidth issue in accessing N
 - Algorithms and analysis
- Tiled 2D convolution with halo cells
 - Algorithms and analysis

Padded format

 Images come in all size and shapes, and stored in row-major layout when reading from files to memory.

• If the width of the image in terms of bytes is not a multiple of DRAM burst size, poor utilization of DRAM band-width.

Padded format

Linearized 1D index = row * pitch + column

Input tiles need to be larger than output tiles.

← Input Tile

We will use a strategy where the input tile will be loaded into the shared memory.

Input v.s. Output tile

```
int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y * O_TILE_SIZE + ty;
int col_o = blockIdx.x * O_TILE_SIZE + tx;

int row_i = row_o - Mask_Width / 2;
int col_i = col_o - Mask_Width / 2;
```


Input v.s. Output tile

- Use a thread block that matches input tile
 - Each thread loads one element of the input tile
 - Some threads do not participate in calculating output

 There will be if statements and control divergence to make sure read in valid elements.

Load Input Tile

```
__shared__ float N_ds[TILE_SIZE +
MAX_MASK_WIDTH-1] [TILE_SIZE +
MAX_MASK_WIDTH-1]

if((row_i >= 0) && (row_i < height) &&
     (col_i >= 0) && (col_i < width) ) {
     N_ds[ty][tx] = data[row_i*pitch + col_i];
    }

else{
     N_ds[ty][tx] = 0.0f;
}
```


Threads that loads halos outside N should return 0.0

Some threads do not participate in calculating output.

```
float output = 0;
if(ty < O_TILE_SIZE && tx < O_TILE_SIZE)</pre>
  for(i = 0; i < MASK_WIDTH; i++) {
   for(j = 0; j < MASK_WIDTH; j++) {
     output += M[i][j] * N_ds[i+ty][j+tx];
  if(row_o < height && col_o < width)</pre>
    data[row_o * width + col_o] = output;
```

Analysis 2D Tile convolution

A Simple Analysis

- for a small 8X8 output tile example (Mask_Width =5)
 - 12X12=144 N elements need to be loaded into shared memory
 - The calculation of each P element needs to access 25 N elements
 - 8X8X25 = 1,600 global memory accesses are converted into shared memory accesses
- A reduction of 1,600/144 = 11X

In General

• Tiled:

 (O_TILE_SIZE+Mask_Width-1)² N elements need to be loaded into shared memory

• Basic:

- The calculation of each P element needs to access Mask_Width²
 N elements
- O_TILE_SIZE² * Mask_Width² global memory accesses are converted into shared memory accesses

The reduction is

O_TILE_SIZE² * Mask_Width² / (O_TILE_SIZE+Mask_Width-1)²

Bandwidth Reduction for 2D

The reduction is

O_TILE_SIZE² * Mask_Width² / (O_TILE_SIZE+Mask_Width-1)²

TILE_SIZE	8	16	32	64
Reduction Mask_Width = 5	11.1	16	19.7	22.1
Reduction Mask_Width = 9	20.3	36	51.8	64

9x9 = 81

Input size: 64+8 = 72;

Tile size: 72x72 = 5184 or 20,736 bytes, larger than shared memory available.

Summary

- Taking advance of
 - Constant memory and caching
- Tiled convolution algorithms
 - Addressing memory bandwidth issue in accessing N