	1. Download data	um structures of 13 different stoichiometries of Mg and Si, whose energy was computed using DFT. Th
in [1]:	dataset was reported in [T. D. Hua (2018)]. It will be obtained from wo	ww.matsml.org. More information on the avaiable datasets can be found at www.matsml.org as well.
.n [1]:	<pre>from matsml.data import Da import os import pandas as pd # Load data ds_name='crystals_MgSi' data=Datasets(ds_name=ds_r data.load_dataset()</pre>	
	matsML, version 1.0.0 **** Load requested dataset(s Data saved in crystals file_name	n.join(os.getcwd(),str(ds_name),'summary.csv')))
	mg2si_struct_01.vasp mg2si_struct_02.vasp mg2si_struct_03.vasp mg2si_struct_04.vasp mg2si_struct_05.vasp mg2si_struct_30.vasp mgsi_struct_31.vasp mgsi_struct_31.vasp mgsi_struct_32.vasp mgsi_struct_32.vasp	-34.985707 -17.246812 -34.062642 -34.035175 -40.698471 -40.598719
	327 mgsi_struct_33.vasp 328 mgsi_struct_34.vasp [329 rows x 2 columns] 2. Fingerprint the obtain	-6.706034 -40.362384 ned data
•	learning models of formation	A. Lindmaa, O. Anatole von Lilienfeld, and R. Armiento. <i>Crystal structure representations for machine energies</i> Int. J. Quantum Chem., 115, 1094 (2015)] is an analogy to the Coulomb matrix for molecules, the number of atoms of the structure. We used a similar projection on a set of Gaussian. Keyword for the
	structural and alchemical spa Ewald sum matrix which is de are added up to make the fing	ositions (SOAP) [S. De, A. P. Bartók, G. Csányi, and M. Ceriotti, <i>Comparing molecules and solids acros</i> ce, Phys. Chem. Chem. Phys. 18 , 13754 (2016)] is a more sophisticated fingerprint. Different from the efined for the whole system, SOAP is defined for each atom. Herein, for simplicity, the atomic fingerprint gerprint for the whole system. In some ML potential, the SOAP fingerprints are used in a different way, The keyword for SOAP in matsML is soap_crystals .
n [2]:	data_loc=os.path.join(os.gn_atoms_max=28	etcwd(),'crystals_MgSi/summary.csv')
		<pre># Intended Tingerprint dimensionality # verbosity, 0 or 1 y':summary,'data_loc':data_loc,'fp_file':'fp_crystals_MgSi_pesm.csv', als','fp_dim':fp_dim,'verbosity':verbosity,'n_atoms_max':n_atoms_max,</pre>
	'fp_type':'soap_crysta' 'species':species}	y':summary,'data_loc':data_loc,'fp_file':'fp_crystals_MgSi_soap.csv', als','fp_dim':fp_dim,'verbosity':verbosity,'n_atoms_max':n_atoms_max,
	<pre>fp_pesm=Fingerprint(data_r fp_pesm.get_fingerprint() Atomic structure fingerprint summary data_loc species fp_type</pre>	rinting /home/huan/work/matsml_examples/ex3_crystals/crystals_MgSi/summary.csv /home/huan/work/matsml_examples/ex3_crystals/crystals_MgSi ['Mg', 'Si'] pesm_crystals
	<pre>fp_file fp_dim n_atoms_max verbosity Read input num_structs Computing Ewald sum Matri [==</pre>	<pre>fp_crystals_MgSi_pesm.csv 20 28 0 329 ix] 3%</pre>
	toms.cell.reciprocal() warnings.warn(warning) [===================================	
	summary data_loc species fp_type fp_file fp_dim n_atoms_max verbosity Read input	<pre>/home/huan/work/matsml_examples/ex3_crystals/crystals_MgSi/summary.csv /home/huan/work/matsml_examples/ex3_crystals/crystals_MgSi ['Mg', 'Si'] soap_crystals fp_crystals_MgSi_soap.csv 20 28 0</pre>
	num_structs Computing SOAP fingerprint [====================================	nt with DScribe
n [3]:	<pre>from matsml.data import Da import os import pandas as pd # Load data data=Datasets(ds_soap='fp_data.load_dataset()</pre>	atasets _crystals_MgSi_soap', ds_pesm='fp_crystals_MgSi_pesm')
		als_MgSi_soap.csv.gz
n [4]:	<pre># data parameters for lear id_col=['id']</pre>	# this is id column in the fingerprint data
		<pre># this is y columns # other columns that are not id, not x, nor y columns # 90% for training, 15% for validating # way of train/test spliting. Random and more ile':'fp_crystals_MgSi_pesm.csv','id_col':id_col,'y_cols':y_cols,</pre>
	<pre>'n_trains':n_trains} data_params_soap={'data_fi 'comment_cols':comment 'n_trains':n_trains}</pre>	t_cols, 'y_scaling':y_scaling, 'x_scaling':x_scaling, 'sampling':sampling, ile':'fp_crystals_MgSi_soap.csv', 'id_col':id_col, 'y_cols':y_cols, t_cols, 'y_scaling':y_scaling, 'x_scaling':x_scaling, 'sampling':sampling,
In [5]:	3a. Fully-connected NeuralN from matsml.models import # Model parameters layers=[4,4] epochs=2000 nfold_cv=5	
	<pre>model_file='model_nn.pkl' verbosity=0 batch_size=32 loss='mse' activ_funct='selu'</pre>	<pre># Use bias term or not # Name of the model file to be created # Verbosity, 0 or 1 # Default = 32 # Options: "tanh", "relu", and more # options: "Nadam", "Adam", and more</pre>
	<pre>'optimizer':optimizer, 'batch_size':batch_siz # PESM</pre>	<pre>yers, 'activ_funct':activ_funct, 'epochs':epochs, 'nfold_cv':nfold_cv, , 'use_bias':use_bias, 'model_file':model_file, 'loss':loss, ze, 'verbosity':verbosity, 'rmse_cv':False} ta_params_pesm, model_params=model_params) se)</pre>
	# SOAP	ta_params_soap,model_params=model_params) se)
	<pre>algorithm layers activ_funct epochs optimizer nfold_cv Checking parameters</pre>	<pre>fully connected NeuralNet w/ TensorFlow [4, 4] selu 2000 nadam 5</pre>
	all passed Read data data file data size training size test size x dimensionality y dimensionality	<pre>True fp_crystals_MgSi_pesm.csv 329 296 (90.0 %) 33 (10.0 %) 19 1</pre>
	y label(s) Scaling x xscaler saved in Scaling y Prepare train/test sets Building model Training model w/ cross cov,rmse_train,rmse_test	['target'] minmax xscaler.pkl minmax random FCNN validation t,rmse_opt: 0 0.059275 0.072458 0.072458
	cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test Optimal ncv: 3; optimal FCNN trained, now make produced in the company of the com	t,rmse_opt: 1 0.055568 0.068262 0.068262 t,rmse_opt: 2 0.052195 0.066476 0.066476 t,rmse_opt: 3 0.053062 0.066252 0.066252 t,rmse_opt: 4 0.049476 0.075581 0.066252
		= (5.772 & 0.935)
	-20 -	
	edicted value	
	_80 -	
	-120 -120 -100	training, (rmse & R^2) = (5.772 & 0.935) test, (rmse & R^2) = (7.392 & 0.925) -80 -60 -40 -20 0 Reference value
	Learning fingerprinted/for algorithm layers activ_funct epochs optimizer	
	nfold_cv Checking parameters all passed Read data data file data size training size test size	5 True fp_crystals_MgSi_soap.csv 329 296 (90.0 %) 33 (10.0 %)
	<pre>x dimensionality y dimensionality y label(s) Scaling x xscaler saved in Scaling y Prepare train/test sets Building model</pre>	275 1 ['target'] minmax xscaler.pkl minmax random FCNN
	Training model w/ cross of cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test cv,rmse_train,rmse_test Optimal ncv: 3; optim	validation t,rmse_opt: 0 0.008504 0.009348 0.009348 t,rmse_opt: 1 0.009407 0.011897 0.009348 t,rmse_opt: 2 0.003605 0.005141 0.005141 t,rmse_opt: 3 0.003943 0.004369 0.004369 t,rmse_opt: 4 0.004335 0.006089 0.004369 mal NET saved
	unscaling y: minmax rmse training to unscaling y: minmax rmse test	
	test, (rmse & R2) = (0 showing target	
	0	
	-20 -40	
	Predicted value - 05 06 06	
	-20 -40	training, (rmse & R^2) = (0.416 & 1.000)
	-80 -	training, (rmse & R^2) = (0.416 & 1.000) test, (rmse & R^2) = (0.768 & 0.999)
	-20 -40 -40 -80 -120 -120 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] gamma = [-2,5]	test, (rmse & R^2) = (0.768 & 0.999) -80 -60 -40 -20
	-20 -40 -80 -120 -120 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.p} alpha = [-2,5] gamma = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR(data_params=data)	test, (rmse & R ²) = (0.768 & 0.999) -80 -60 -40 -20
	-20 -40 -80 -120 -120 -120 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.p} alpha = [-2,5] gamma = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR(data_params=damodel.train() model.plot(pdf_output=False) #SOAP	test, (rmse & R ²) = (0.768 & 0.999) -80 -60 -40 -20 0 Reference value KRR # Number of folds for cross validation # Name of the model file to be created rnel, 'nfold_cv':nfold_cv, 'model_file':model_file, 'alpha':alpha, s':n_grids} ata_params_pesm, model_params=model_params) se) ata_params_soap, model_params=model_params)
	-20 -40 -80 -120 -120 -120 -120 -120 -120 -120 -12	test, (rmse & R ²) = (0.768 & 0.999) -80
	-20 -40 -80 -80 -120 -120 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.p} alpha = [-2,5] gamma = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR (data_params=damodel.train() model.plot (pdf_output=Fals) #SOAP model = KRR (data_params=damodel.train() model.plot (pdf_output=Fals) #SOAP model = KRR (data_params=damodel.train() model.plot (pdf_output=Fals) #Checking parameters all passed Read data data file data size training size test size x dimensionality	test, (rmse & R ²) = (0.768 & 0.999) -80
	-20 -80 -80 -120 -120 -120 -120 -120 -120 -120 -12	test, (rmse & R ²) = (0.768 & 0.999) -80
	-20 -40 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR(data_params=damodel.train() model.plot(pdf_output=Fals) #SOAP model = KRR(data_params=damodel.train() model.plot(pdf_output=Fals) Learning fingerprinted/falgorithm kernel nfold_cv alpha gamma number of alpha/gamma checking parameters all passed Read data data file data size training size test size x dimensionality y dimensionality y dimensionality y dimensionality y clabel(s) Scaling y Prepare train/test sets Braining model Uraining model w/ cross of the company o	test, (rmse & R ²) = (0.768 & 0.999) -80
	-20 -40 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] gamma = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR((data_params=damodel.train()) model.plot(pdf_output=False) #SOAP model = KRR((data_params=damodel.train()) model.plot(pdf_output=False) #SOAP model = KRR(data_params=damodel.train()) model.plot(pdf_output=False) #SOAP model = KRR(data_params=damodel.train()) model.plot(pdf_output=False) #SOAP model = KRR(data_params=damodel.train() model.plo	test, (rmse & R²) = (0.768 & 0.999) -80
	-20 -40 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] gamma = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':kernel':kernel = 'rbf' model_params={'kernel':kernel':kernel = 'rbf' model_params={'kernel':kernel':kernel = 'rbf' model_params={'kernel':kernel':kernel = 'rbf' model_params=damodel.train() model.plot(pdf_output=False) #SOAP model = KRR(data_params=damodel.train() model.plot(pdf_output=False) #SOAP model = KRR(dat	test, (rmse & R²) = (0.768 & 0.999) -80
	#PCM model_parameters ndel_train() model.plot(pdf_output=Fals #SOAP model_train() m	test, (rmse & R²) = (0.768 & 0.999) -80
	-20 -40 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] gamma = [-2,5] gamma = [-2,5] n grids = 10 kernel = 'rbf' model_params=('kernel':k	test, (rmse & R²) = (0.768 & 0.999) -80
	-20 -40 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.pl alpha = [-2,5] n_grids = 10 kernel = 'rbf' model_params=('kernel':ker 'gamma':gamma, 'n_grids #PCM model = KRR(data_params=damodel.train() model.plot(pdf_output=False) #SOAP model = KRR(data_params=damodel.train() model.plot(pdf_output=False) #SOA	True
	-20 -40 -80 -80 -100 -120 -120 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold_cv = 5 model_file = 'model_krr.p) alpha = [-2,5] n_grids = 10 kernel = 'rbf' model_params={'kernel':ker 'gamma':gamma,'n_grids #PCM model = KRR(data_params=damodel.train()) model.plot(pdf_output=Fals) #SOAP model = KRR(data_params=damodel.train() model.plot(pdf_output=Fals) #PCM model = KRR(data_params=damodel.train() model.plot(pdf_output=Fals) #SOAP model = KRR(data_params=damodel.train() model.plot(pdf_output=Fals) #PCM model = K	training, (rmse & R2) = (7.546 & 0.897) test, (rmse & R2) = (7.546 & 0.897) test, (rmse & R2) = (3.46 & 0.823) Reference value real, "fold_ovistolo_ov, "mone_riletisendec_tite, talphalisipha, vis_ovis_lowers over, model_paramethodol_p
	ab. KRR from matsml.models import # Model parameters nfold ov = 5 model_file = 'model_krr.pl alpha = [-2,5] n_grids = 10 kernel = 'rbf' model_params=('kernel':ker' 'gamma':gamma,'n_grids #FCM model = KRR (data_params=damodel.train()) model.plot(pdf_output=False #SOAP model = kRR (data_params=damodel.train()) #SOAP model = kRR (data_params=damodel.train() #SOAP model = kRR (data_params=damodel.tr	test, (mase & R²) = (0.768 & 0.999) -80
	## Add	test, (mase & R ²) = (0.768 & 0.999) -80
	-20 -40 -80 -80 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold ov = 5 model file = 'model krr.pl alpha = [-2,5] gamma = [-2,5] gamma = [-2,5] gamma : [-2,5] model.plot(pdf_output=False #FOM model = KRR(data_paramed model.train() model.plot(pdf_output=False #FOAP model = KRR(data_paramed model.train() model.plot(pdf_output=False #FOAP model = KRR(data_paramed model.plot(pdf_output=False #FOAP model = KRR(data_paramed #FOAP model = KRR(data_	Training (rmse & R²) = (7.546 & 0.897) test, instance of passe someone variables and the fluorest passes and the passes of the model parameter of passes of the model parameter of the fluorest passes of the passe
	-20 -40 -80 -80 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters fold cv = 5 model file = 'model krr.pl alpha = [-2,5] gamma = [-2,5] gamma = [-2,5] gamma : 'canma, 'a grids #FCM model params=('kernel':ker 'gamma':gamma, 'a grids #FCM model = KRR(data_params=demodel.train() model.plot(pdf_output=Fals #FOAP #FOAP #FOAP #FOAP #FOAP	training, (rmse & R²) = (7.546 & 0.897) training, (rmse & R²) = (7.546 & 0.89
	John Straining fingerprinted/final parameters all passed model. plot (pdf_output=False) and straining y dimensionality y dimensionality y label(a) scaling y respace training size test size x dimensionality y label(a) scaling y Prepare training model x raining model x raining model x raining model x raining size test size x dimensionality y label(a) scaling y Prepare training size test size x dimensionality y label(a) scaling y Prepare training size test size x dimensionality y label(a) scaling y Prepare training size test size x dimensionality y label(a) scaling y Prepare training size test size x dimensionality y label(a) scaling y Prepare training size test size x dimensionality y label(a) scaling x model training model x raining model x raining x rase test in the x raining x rase test in the x raining	training, (rmse & R²) = (7.546 & 0.897) training, (rmse & R²) = (7.546 & 0.89
	-20 -40 -30 -80 -80 -80 -80 -100 -120 -120 -100 -120 -120 -100 -120 -12	Training (rmse & R²) = (7.546 & 0.897) test, instance of passe someone variables and the fluorest passes and the passes of the model parameter of passes of the model parameter of the fluorest passes of the passe
	-20 -40 -40 -40 -80 -80 -80 -80 -80 -100 -120 -120 -100 3b. KRR from matsml.models import from matsml.models.mode	training, (rmse & R²) = (7.546 & 0.897) training, (rmse & R²) = (7.546 & 0.89
n [6]:	-20 -40 -80 -80 -80 -100 -120 -120 -100 3b. KRR from matsml.models import # Model parameters nfold or = 5 nfold or = 5 nfold results nfold	training, (rmse & R*) = (0.754 & 6.0.897) bost, (rmse &
n [6]:	## Add	### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) ### Training (from 6 AP) = (0.723 & 0.899) #### Training (from 6 AP) = (0.723 & 0.899) #### Training (from 6 AP) = (0.723 & 0.899) #### Training (from 6 AP) = (0.723 & 0.899) #### Training (from 6 AP) = (0.723 & 0.899) ##### Training (from 6 AP) = (0.723 & 0.899) ##### Training (from 6 AP) = (0.723 & 0.899) ##################################
n [6]:	## Add Part Part Part Part ## Add Parameters Part Part ## Add Part ## Add Part Part ## Add Pa	Training (mass 6 R*) = (0.788 6 0.099)
n [6]:	## A Company of the control of the c	Training (rimes 6, R*) = (0.786 & 0.099) Section Se
n [6]:	Jacob Parameters and the paramet	Teach Common Co
n [6]:	## And	Training (rms 6 RP) = (0.756 6 0.097)
n [6]:	### Adding parameters and the parameters are parameters and the parameters and the parameters are parameters ar	Training (mase 8 R) = (0.736 8 0.039)
n [6]:	### ADD ### AD	### Common Commo
n [6]:	-4080808080808080-	### Common Commo
n [6]:	-40 -40 -60 -60 -80 -80 -120 -120 -100 -80 -80 -80 -120 -120 -120 -120 -100 -80 -80 -80 -80 -80 -80 -80 -80 -80 -	### Common Commo
n [6]:	-200 -800 -800 -800 -800 -800 -800 -800	### Common Commo
n [6]:	-100 -120 -100 -100 -120 -100 -100 -100	Teaching, times 6 AP = 10.789 & 0.0993 Bell Service of Section of Section 10.000 and 10.0000 and 10.0
n [6]:	### Adding parameters and cold or = 5 most parameters and cold parameters	### Table
n [6]:	## Add Parameters Parameter	Teach Foreign Control of Control
n [6]:	### Page 100	### Company of Part of 1998 & 1999 ### Company of 1
n [6]:	### And The Proposed Control of the Proposed Control o	Teach (1996 - 6.87) - (1.786 - 6.99) Teach (1996 - 6.97) - (1.786 - 6
n [6]:	## Addition of the property of	Teaching, process, 627 - (0.273 & 0.093) Teaching, process, 627 - (0.27
n [6]:	### And Provided State of the Common	The control of the co
n [6]:	### And Provided Interpretation of the provided parameters of the provided	The state of the control of the cont
n [6]:	38. KRR From start imports import from the control of the control	Table 1