Vector Space over $\mathbb R$

Vector Space over $\mathbb R$

A **vector space** is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- **4.** There is a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- **5.** For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

A Subspace Spanned by a Set

```
For v_1, v_2, \ldots, v_p \in V
Span\{v_1, v_2, \ldots, v_p\} = set of all linear combinations of v_1, v_2, \ldots, v_p.
```

A Subspace Spanned by a Set

```
For v_1, v_2, \ldots, v_p \in V
Span\{v_1, v_2, \ldots, v_p\} = set of all linear combinations of v_1, v_2, \ldots, v_p.
```

Let V_1, V_2 be two vector spaces over \mathbb{R} . A function $\mathcal{T}: V_1 \to V_2$ is called linear transformation if

$$T(u+v) = T(u) + T(v)$$
$$T(c.u)=c.T(u)$$

for all $u, v \in V_1$ and $c \in \mathbb{R}$.

Let V_1, V_2 be two vector spaces over \mathbb{R} . A function $\mathcal{T}: V_1 \to V_2$ is called linear transformation if

$$T(u + v) = T(u) + T(v)$$
$$T(c.u)=c.T(u)$$

for all $u, v \in V_1$ and $c \in \mathbb{R}$.

Kernel of $T = \{u \in V_1 | T(u) = 0\}$

Range of $T = \{v \in V_2 | v = T(u) \text{ for some } u \in V_1\}$

Let V_1, V_2 be two vector spaces over \mathbb{R} . A function $\mathcal{T}: V_1 \to V_2$ is called linear transformation if

$$T(u+v) = T(u) + T(v)$$
$$T(c.u)=c.T(u)$$

for all $u, v \in V_1$ and $c \in \mathbb{R}$. Kernel of $T = \{u \in V_1 | T(u) = 0\}$

Range of $T = \{v \in V_2 | v = T(u) \text{ for some } u \in V_1\}$

Both are subspaces.

Let V_1, V_2 be two vector spaces over \mathbb{R} . A function $\mathcal{T}: V_1 \to V_2$ is called linear transformation if

$$T(u + v) = T(u) + T(v)$$
$$T(c.u)=c.T(u)$$

for all $u, v \in V_1$ and $c \in \mathbb{R}$.

Kernel of $T = \{u \in V_1 | T(u) = 0\}$

Range of $T = \{v \in V_2 | v = T(u) \text{ for some } u \in V_1\}$

Both are subspaces.

 V_1, V_2 -two vector spaces over $\mathbb R$ are said to be isomorphic if there exists a linear transformation $T: V_1 \to V_2$ such that T is bijective.

A set of vectors $B = \{v_1, v_2, \dots, v_p\}$ is said to be basis of a vector space V if B is linearly independent and Span(B) = V.

A set of vectors $B = \{v_1, v_2, \dots, v_p\}$ is said to be basis of a vector space V if B is linearly independent and Span(B) = V.

Theorem

Every vector space has a basis.

A set of vectors $B = \{v_1, v_2, \dots, v_p\}$ is said to be basis of a vector space V if B is linearly independent and Span(B) = V.

Theorem

Every vector space has a basis.

The Spanning Set Theorem

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set in V, and let $H = \operatorname{Span} {\mathbf{v}_1, \dots, \mathbf{v}_p}$.

- a. If one of the vectors in S—say, \mathbf{v}_k —is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

A set of vectors $B = \{v_1, v_2, \dots, v_p\}$ is said to be basis of a vector space V if B is linearly independent and Span(B) = V.

Theorem

Every vector space has a basis.

The Spanning Set Theorem

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set in V, and let $H = \operatorname{Span} {\mathbf{v}_1, \dots, \mathbf{v}_p}$.

- a. If one of the vectors in S—say, \mathbf{v}_k —is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

Dimension of a vector space V is the number of elements in any basis of V.

