



## **Cambridge International Examinations**

Cambridge International Advanced Level

| CANDIDATE<br>NAME     |                         |                  |                     |
|-----------------------|-------------------------|------------------|---------------------|
| CENTRE<br>NUMBER      |                         | CANDIDATE NUMBER |                     |
| FURTHER MATHEM        | ATICS                   |                  | 9231/13             |
| Paper 1               |                         | Od               | tober/November 2017 |
|                       |                         |                  | 3 hours             |
| Candidates answer o   | n the Question Paper.   |                  |                     |
| Additional Materials: | List of Formulae (MF10) |                  |                     |

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

### Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.



1

| Find $\sum_{r=1}^{\infty} (4r-3)(4r+1)$ , giving your answer in its simplest form. | [4]   |
|------------------------------------------------------------------------------------|-------|
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    | ••••• |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |
|                                                                                    |       |

2

| $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 4$ | $-5t^2$ . | [6] |
|------------------------------------------------------------------------------------|-----------|-----|
| <br>                                                                               |           |     |
|                                                                                    |           |     |
|                                                                                    |           |     |
|                                                                                    |           |     |
| <br>                                                                               |           |     |

| (i) Show that $\frac{d^{n+1}}{dx^{n+1}}(x^{n+1}\ln x) = \frac{d^n}{dx^n}(x^n + (n+1)x^n\ln x).$                  |  |
|------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
| ii) Prove by mathematical induction that, for all positive integers $n$ ,                                        |  |
| $\frac{\mathrm{d}^n}{\mathrm{d}x^n}(x^n \ln x) = n! \left(\ln x + 1 + \frac{1}{2} + \dots + \frac{1}{n}\right).$ |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |
|                                                                                                                  |  |

| ) [ | Find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$ .               |       |
|-----|-------------------------------------------------------------------------|-------|
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         |       |
|     |                                                                         | ••••• |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     |                                                                         |       |
| -   |                                                                         |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |
|     | Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ . |       |

| = | The curve | Chas  | aquation | 223            | 2,2,        | 21,3           | 16 – 0 | `  |
|---|-----------|-------|----------|----------------|-------------|----------------|--------|----|
| • | The curve | C nas | equation | $2x^{\circ}$ + | $3x^{2}y -$ | $3y^{\circ}$ – | 10 = 0 | J. |

|        | coordinates of |           |         |            |                                         |                                        |                                         |
|--------|----------------|-----------|---------|------------|-----------------------------------------|----------------------------------------|-----------------------------------------|
|        |                |           | •••••   |            |                                         |                                        | • • • • • •                             |
|        |                |           |         |            |                                         |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  |                | ••••••    | ••••••  | ••••••     | •••••                                   | ······································ | · • • • • •                             |
| •••••  |                | •••••     | •••••   |            | •••••                                   |                                        | · • • • • • • • • • • • • • • • • • • • |
|        |                |           |         |            |                                         |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  |                | •••••     | ••••••  | ••••••     | •••••                                   | ••••••••                               | •••••                                   |
|        |                |           |         |            |                                         |                                        | · • • • •                               |
|        |                |           |         |            |                                         |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  | •••••          | ••••••••• | ••••••• | •••••••••• | ••••••                                  |                                        | • • • • •                               |
| •••••  |                | •••••     |         |            | •••••                                   | ••••••••••                             | •••••                                   |
|        |                |           |         |            |                                         | ,                                      | · • • • • •                             |
|        |                |           |         |            |                                         |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  |                | •••••     | •••••   |            | •••••                                   | •••••••••                              | · • • • •                               |
|        |                |           |         |            |                                         |                                        | · • • • • •                             |
|        |                |           |         |            |                                         |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  |                | ••••••    | •••••   | ••••••     | •••••                                   | ,                                      | , <b></b>                               |
|        |                |           |         |            | •••••                                   |                                        | · • • • •                               |
|        |                |           |         |            | ••••                                    |                                        |                                         |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••  |                | ••••••    | ••••••  | •••••••••• | • • • • • • • • • • • • • • • • • • • • | •••••••••••                            | •••••                                   |
| •••••  |                | •••••     | •••••   |            | •••••                                   |                                        | •••••                                   |
|        |                |           |         |            |                                         |                                        | . <b></b>                               |
|        |                |           |         |            |                                         |                                        |                                         |
| •••••• |                | ••••••    | ••••••  | ••••••     | •••••                                   | •••••••••                              | •••••                                   |
|        |                |           | •••••   | •••••      |                                         |                                        | · • • • •                               |

|        | value of | $\mathrm{d}x^{2}$                       |                                         |       |                                         |        |        |        |        |
|--------|----------|-----------------------------------------|-----------------------------------------|-------|-----------------------------------------|--------|--------|--------|--------|
|        |          | •••••                                   |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  |          |                                         | •                                       |       |                                         |        |        | •••••• |        |
| •••••  | •••••    | • • • • • • • • • • • • • • • • • • • • |                                         |       |                                         |        | •••••  | •••••  | •••••  |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  | •••••    | ••••••                                  | ••••••                                  | ••••• | ••••••                                  |        | •••••  | •••••• | •••••  |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••• |          |                                         |                                         | ••••• | •••••                                   |        | •••••• | •••••  |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••• | •••••    | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••••                                  | •      | •••••• | •••••• | •••••• |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  | •••••    |                                         |                                         | ••••• | •••••                                   |        | •••••  |        | •••••  |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  |          | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••• | ••••••                                  | •      | •••••• | •••••• | •••••• |
|        |          |                                         |                                         |       |                                         |        |        | •••••  |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  | •••••    | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••• | ••••••                                  | •••••• | •••••• | •••••• | •••••• |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         | •                                       |       |                                         |        |        |        | •      |
|        | •••••    |                                         |                                         |       |                                         |        | •••••  | •••••  |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
|        |          |                                         |                                         |       |                                         |        |        |        |        |
| •••••  | •••••    | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | ••••• | • • • • • • • • • • • • • • • • • • • • | •••••  | •••••  | •••••• | •••••• |
|        |          |                                         |                                         |       |                                         |        |        |        |        |

| Find the area of the triangle <i>ABC</i> . |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |

| (11)           | Find the perpendicular distance of the point $A$ from the line $BC$ . | [3]    |
|----------------|-----------------------------------------------------------------------|--------|
|                |                                                                       | •••••  |
|                |                                                                       |        |
|                |                                                                       | •••••  |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       | •••••• |
|                |                                                                       | •••••  |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
| ( <b>:::</b> ) | Find the cartesian equation of the plane through $A$ , $B$ and $C$ .  | F2     |
| (III <i>)</i>  | Find the cartesian equation of the plane through A, B and C.          |        |
|                |                                                                       | [2     |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |
|                |                                                                       |        |

| 7 | The linear tra | ansformation | ո $\mathrm{T}:\mathbb{R}^4$ | $\rightarrow \mathbb{R}^4$ i | s represented | by the | matrix A, | where |
|---|----------------|--------------|-----------------------------|------------------------------|---------------|--------|-----------|-------|
|---|----------------|--------------|-----------------------------|------------------------------|---------------|--------|-----------|-------|

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -2 & 3 \\ 5 & -3 & -4 & 25 \\ 6 & -4 & -6 & 28 \\ 7 & -5 & -8 & 31 \end{pmatrix}.$$

| (i) | Find the rank of <b>A</b> and a basis for the null space of T. | [7]   |
|-----|----------------------------------------------------------------|-------|
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |
|     |                                                                | ••••• |

| (ii) | Find the matrix product $\mathbf{A} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$ and hence find the general solution of the equation $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3 \\ 21 \\ 24 \\ 27 \end{pmatrix}$ . |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                        |

| (i)  | Find the value of $I_2$ .                       |  |
|------|-------------------------------------------------|--|
|      |                                                 |  |
| (ii) | Show that, for $n > 2$ ,                        |  |
|      | $(n-1)I_n = 2^{\frac{1}{2}n-1} + (n-2)I_{n-2}.$ |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |
|      |                                                 |  |

|    | $\pi$ radians about the x-axis. |
|----|---------------------------------|
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
| •• |                                 |
| •• |                                 |
| •• |                                 |
| •• |                                 |
| •• |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
|    |                                 |
| •• |                                 |
| •• |                                 |

| 9 | The curve | C has | equation |
|---|-----------|-------|----------|
|   |           |       |          |

$$y = \frac{3x - 9}{(x - 2)(x + 1)}.$$

| (i)  | ) Find the equations of the asymptotes of $C$ .                    | [2] |
|------|--------------------------------------------------------------------|-----|
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
| (ii) | Show that there is no point on C for which $\frac{1}{3} < y < 3$ . | [4] |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |
|      |                                                                    |     |

| (iii) | Find the coordinates of the turning points of $C$ . | [3] |  |
|-------|-----------------------------------------------------|-----|--|
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
|       |                                                     |     |  |
| (iv)  | Sketch C.                                           | [3] |  |

| 4.0 | <b>/</b> • > |        |        |          |         |      |      |
|-----|--------------|--------|--------|----------|---------|------|------|
| 10  | (i)          | Use de | : Moix | re's the | orem to | show | that |

| $\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta.$ | [5]   |
|--------------------------------------------------------------------|-------|
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    | ••••• |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    | ••••• |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    |       |
|                                                                    | ••••• |
|                                                                    |       |
|                                                                    |       |

| (ii)  | Hence explain why the roots of the equation $16x^4$                                                                                             | $-20x^2 + 5 = 0$ are $x = \pm \sin \frac{1}{5}\pi$ and $x = \pm \sin \frac{2}{5}\pi$ . [3] |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
| (111) | Without using a calculator, find the exact values $\sin \frac{1}{5}\pi \sin \frac{2}{5}\pi \sin \frac{3}{5}\pi \sin \frac{4}{5}\pi  \text{and}$ |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |
|       |                                                                                                                                                 |                                                                                            |

11 Answer only **one** of the following two alternatives.

# **EITHER**

| (i)  | The vector $\mathbf{e}$ is an eigenvector of the matrix $\mathbf{A}$ , with corresponding eigenvalue $\lambda$ , and is also ar eigenvector of the matrix $\mathbf{B}$ , with corresponding eigenvalue $\mu$ . Show that $\mathbf{e}$ is an eigenvector of the matrix $\mathbf{AB}$ with corresponding eigenvalue $\lambda\mu$ . |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                  |
| (ii) | Find the eigenvalues and corresponding eigenvectors of the matrix <b>A</b> , where                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                  |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. \tag{6}$                                                                                                                                                                                                                                       |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. \tag{6}$                                                                                                                                                                                                                                       |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |
|      | $\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]                                                                                                                                                                                                                                          |

| <br> |
|------|
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |

| (iii)  | The  | matrix   | В. | where    |
|--------|------|----------|----|----------|
| ( ***/ | 1110 | 11144117 | ., | ** 11010 |

|            | 13 | 0  | 1 \ |
|------------|----|----|-----|
| <b>B</b> = | 1  | -2 | -1  |
|            | 6  | 6  | -2  |

| has eigenvectors $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ , $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ . Find the eigenvalues of the matrix <b>AB</b> , and state |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| corresponding eigenvectors. [4]                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |

| 4 | $\neg$ | ١. |  |
|---|--------|----|--|
|   |        |    |  |
|   |        |    |  |

The polar equation of a curve C is  $r = a(1 + \cos \theta)$  for  $0 \le \theta < 2\pi$ , where a is a positive constant. (i) Sketch C. [2] (ii) Show that the cartesian equation of C is  $x^2 + y^2 = a(x + \sqrt{(x^2 + y^2)}).$ [2] 

| Find the area of the sector of C between $\theta = 0$ and $\theta = \frac{1}{3}\pi$ . | [4] |
|---------------------------------------------------------------------------------------|-----|
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |

|   | Find the arc length of C between the point where $\theta = 0$ and the point where $\theta = \frac{1}{3}\pi$ . |
|---|---------------------------------------------------------------------------------------------------------------|
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
| • |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |
|   |                                                                                                               |

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.