Complexity Analysis II

Parinya Suwansrikham Software Engineering College of Arts, Media and Technology Chiang Mai University

Agenda

- Algorithms
 - Binary Search
- Complexity of Algorithms

Algorithm

- Binary Search Algorithm is used when the list has terms occurring in order of increasing size (list of number from smallest to largest)
- It proceeds by comparing the element to be located to the middle term of the list.
- The list is then split into two smaller sublists of the same size, or where one of these smaller lists has one fewer term than the other.

Binary Search Algorithm

Example 3. To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

Solution:

- 1. Split this list into 2 smaller lists
 - 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- 2. Compare 19 and the largest term in the first list (10). Since 10 < 19, the search is limited to second sublist.
- 3. Split this list, which has 8 terms, into the 2 smaller lists of 4 terms each.

12 13 15 16 18 19 20 22

Binary Search Algorithm

- 4. Compare 16 and 19. Since 16 < 19 the search is restricted to the second of these lists.
- 5. Split the list 18 19 20 22 into 2 lists 18 19 20 22
- 6. Since 19 is not greater than the largest term of the first of 2 lists, the search is restricted to the first list: 18 19,
- 7. Split the list 18 19 into 2 lists 18 19
- 8. Compare 18 and 19. Since 18 < 19, the search is restricted to the second list.

Binary Search Algorithm

```
ALGORITHM 1. The Binary Search Algorithm METHOD binary_search(x: integer, a_p, a_p, ..., a_{n-p}, a_n: increasing integers) SET i = 1 // i is left endpoint of search interval SET j = n // j is right endpoint of search interval WHILE i < j m = \lfloor (i+j)/2 \rfloor If x > a_m THEN i = m + 1 ELSE j = m ENDIF ENDWHILE IF x = a_i THEN location = i ELSE location = o //
```

- How can the efficiency of algorithm be analyzed?
 - Measure in time
 - Measure amount of computer memory
- This question involves computational complexity of the algorithm.
 - Time complexity: analysis of the time required to solve a problem.
 - Space complexity: analysis of the computer memory required to solve a problem.

- Space complexity is tied with particular data structures used to implement the algorithm.
- Time complexity can be expressed in term of the number of operations.
 - Comparison of integers
 - The addition of integers
 - The multiplication of integers
 - The division of integers
 - or any other basic operations

Example 2. Describe the time complexity of finding the maximum in a set

Solution:

ALGORITHM 1. Finding the Maximum Element in a Finite Sequence.

```
method findmax(a_i, a_2, ... a_{n-i}, a_n): integers)

max = a_i;

for i = 1 to n

if max < a_i then max = a_i
```

- 1. The number of comparison will be used as the measure of the time complexity of the algorithm.
- 2. Set temporary maximum to the first term in the list.
- 3. Comparison to determine the end of the list.
- 4. Comparison between temporary maximum and second term. Update the temporary maximum to the value of the second term if it is larger.

- 5. This procedure is continued, using 2 comparisons for each term of the list
 - 5.1 Comparison to determine that the end of the list
- 5.2 Comparison to determine whether to update the temporary maximum

For each of the 2nd through the nth elements

Then the number of comparison is 2(n-1) + 1 = 2n - 1.

The finding maximum algorithm is O(n).

```
Example 3. Describe the time complexity of the linear search algorithm Solution:
ALGORITHM 2. The Linear Search Algorithm
METHOD linear_search(x: integer, a_v, a_z, ... a_{n-v}, a_n: distinct integers)

SET i = 1

WHILE i \le n and x \ne a_i

SET i = i + 1

ENDWHILE

IF i \le n

location = i

ELSE

location = 0

ENDIF
```

- The number of comparison will be used as the measure of the time complexity of the algorithm.
- 2. Each step 2 comparisons are performed
 - 2.1 Determine the ending of the list
 - 2.2 Compare the element x with a term of the list
 - 2.3 One more comparison is made outside the loop
- 3. If $x = a_i$, there is 2i + 1 comparison.

The most comparison is 2n + 2, when the element is not in the list. This is call **worst-case analysis**.

Complexity of Algorithm

Example 4. Describe the time complexity of the binary search algorithm

Solution:

- 1. Assume $n = 2^k$ elements in the list a_v a_v ... a_{n-v} a_n where k is a positive integer.
- 2. At the first stage the search is restricted to a list with 2^{k-1} terms. Two comparisons have been used.
- 3. At most $2k + 2 = 2\log n + 2$ comparisons are required to perform a binary search.

The time complexity of the binary search algorithm is O(log n)

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms. Complexity Terminology O(1)Constant complexity $O(\log n)$ Logarithmic complexity O(n)Linear complexity $O(n \log n)$ $n \log n$ complexity Polynomial complexity $O(n^b)$ $O(b^n)$, where b > 1Exponential complexity O(n!)Factorial complexity

Problem Size	Bit Operations Used					
	log n	n	$n \log n$	n^2	2*	n!
10	3 × 10 ⁻⁹ s	10 ⁻⁸ s	$3 \times 10^{-8} \text{ s}$	10^{-7} s	10^{-6} s	3×10^{-3} s
10 ²	$7 \times 10^{-9} \text{ s}$	$10^{-7} \mathrm{s}$	$7 \times 10^{-7} \text{s}$	$10^{-5} \mathrm{s}$	$4 \times 10^{13} \text{ yr}$	*
10^{3}	$1.0 \times 10^{-8} \text{ s}$	$10^{-6} \mathrm{s}$	1×10^{-5} s	10^{-3}s	*	8
10 ⁴	1.3×10^{-8} s	$10^{-5} s$	$1 \times 10^{-4} \text{ s}$	$10^{-1} \mathrm{s}$	*	8
10 ⁵	1.7×10^{-8} s	$10^{-4} \mathrm{s}$	$2 \times 10^{-3} \text{ s}$	10 s	*	*
106	$2 \times 10^{-8} \text{ s}$	$10^{-3} s$	$2 \times 10^{-2} \text{s}$	17 min	*	*