Extention: Other indicator

労働経済学 2

川田恵介

Table of contents

1		Beyond "Average"	1
	1.1	平均差 ∈ 格差指標	2
	1.2	例: 平均値	2
2		分位点の活用	2
	2.1	実例: Glass Ceiling	2
	2.2	累積密度関数と分位点	3
	2.3	条件付き	3
	2.4	例	3
	2.5	例	4
	2.6	分位点の差	4
	2.7	推定: quantreg の使用	4
3		Balancing comparison	5
	3.1	X の分布のバランス \dots	5
	3.2	Quantile comparison with balancing	5
	3.3	結果	6
	3.4	注意点: 因果推論への応用	6
	3.5	注意点: 因果推論への応用	6
	3.6	まとめ	7
	3.7	Reference	7

1 Beyond "Average"

- ここまで主に平均格差に焦点を当ててきた
 - 平均値は柔軟な枠組みであり、現代でも有効

• 平均以外の指標も議論されてきた

1.1 平均差 ∈ 格差指標

- 本来的には、格差 = 問題のある分布の差
 - 指標化する方法は、無数に存在する
 - 平均差はその一つであり、分布差の一部しかとらえられない

1.2 例: 平均值

2 分位点の活用

• 累積密度関数と密接な関係のある指標

2.1 実例: Glass Ceiling

- "ガラスの天井"
 - "上位層における" 男女間所得格差 (Albrecht, Björklund, and Vroman 2003)
 - * ≠ 平均格差

2.2 累積密度関数と分位点

- 累積密度 (Cumulative Distribution) : Yの値が一定の数値以下をとる事例の割合 $\Pr[Y \leq y] = q$
- 分位点 (Quantile $Q_q(Y)$) : 累積密度がある水準 q となる Yの値

2.3 条件付き

- ・ 条件付き累積密度 (Cumulative Distribution) : D=d 内で、Y の値が一定の数値 以下をとる事例の 割合 $\Pr[Y \leq y \mid D=d] = q$
- 条件付き分位点 (Quantile $Q_q(Y|D=d)$) : 条件付き累積密度がある水準 q となる Yの値

2.4 例

```
Fig = ggplot(
    Data,
    aes(
        y = Y, # 教育年数
        color = ethnicity # 人種
    )
) +
theme_bw() +
stat_ecdf(geom = "step") +
xlab("q") +
ylab("Q_q(Y|D)")
```

2.5 例

2.6 分位点の差

・
$$Q_q(Y|D=1) - Q_q(Y|D=0)$$

$$-1 - q$$
 番目に Y の値の差

2.7 推定: quantreg の使用

```
library(quantreg)

rq(Y ~ D,
    tau = seq(0.2,0.8,0.2), # q = {0.2,0.4,0.6,0.8}
    data = Data)
```

Call:

$$rq(formula = Y \sim D, tau = seq(0.2, 0.8, 0.2), data = Data)$$

Coefficients:

D -1 0 0 -2

Degrees of freedom: 9120 total; 9118 residual

• 中位層においては、大きな差がない

3 Balancing comparison

- 格差を定義するためには、しばしば X をバランスさせる必要がある
- ここでは Firpo (2007) の手法を紹介
 - 他にも Cheng and Li (2024), Koenker and Bassett Jr (1978)

3.1 X の分布のバランス

- Firpo (2007): 傾向スコアを推定して、Balancing. Weight を算出
 - Influence function を活用した Double Robustness を保証する Moment 条件に組み込む
 - * Double Robustness の一般論は、Hines et al. (2022) などを参照

3.2 Quantile comparison with balancing

```
library(qte)

Q = seq(0.2,0.8,0.2)

ModelNotBalance = ci.qtet(
    Y ~ D,
    data = Data,
    probs = Q,
    se=T,
    iters=10)

ModelBalance = ci.qtet(
    Y ~ D,
    xformla=~ age + year,
    data = Data,
    probs = Q,
    se=T,
```

3.3 結果

3.4 注意点: 因果推論への応用

- 因果推論にも、無論応用できるが、因果効果の分位点と分位点の「因果的」比較の混同に注意
- 因果推論の典型的目標: 個人因果効果 $\tau = Y(1) Y(0)$ を特徴づける
 - Y(d)=D=dに"変更した場合"の Yの潜在結果 (Potential Outcome)

3.5 注意点: 因果推論への応用

• 識別の仮定のもとで、Potential outcome の分位点の比較は容易

$$Q_q(Y(1)) - Q_q(Y(0)) \\$$

• 個人因果効果の分位点 $Q_q(au)$ の推定は困難

- 一般に

$$Q_q(Y(1)) - Q_q(Y(0)) \neq Q_q(\tau)$$

- 平均値については、 $E[Y(1)] - E[Y(0)] = E[\tau]$

3.6 **まとめ**

- Quantile についての他の応用
 - 周辺化した分位点の分解分析 (Firpo, Fortin, and Lemieux 2009)
 - 継続学習としては以下を推奨
 - * Klein (2024), Fortin, Lemieux, and Firpo (2011), Khadka et al. (2024)
- 他の指標もいろいろ提案されている (Zhou 2012)

3.7 Referene

- Albrecht, James, Anders Björklund, and Susan Vroman. 2003. "Is There a Glass Ceiling in Sweden?" Journal of Labor Economics 21 (1): 145–77.
- Cheng, Chao, and Fan Li. 2024. "Inverting Estimating Equations for Causal Inference on Quantiles." *Biometrika*, asae058.
- Firpo, Sergio. 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects." *Econometrica* 75 (1): 259–76.
- Firpo, Sergio, Nicole M Fortin, and Thomas Lemieux. 2009. "Unconditional Quantile Regressions." Econometrica 77 (3): 953–73.
- Fortin, Nicole, Thomas Lemieux, and Sergio Firpo. 2011. "Decomposition Methods in Economics." In *Handbook of Labor Economics*, 4:1–102. Elsevier.
- Hines, Oliver, Oliver Dukes, Karla Diaz-Ordaz, and Stijn Vansteelandt. 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions." *The American Statistician* 76 (3): 292–304.
- Khadka, Aayush, Jillian L Hebert, M Maria Glymour, Fei Jiang, Amanda Irish, Kate A Duchowny, and Anusha M Vable. 2024. "Quantile Regressions as a Tool to Evaluate How an Exposure Shifts and Reshapes the Outcome Distribution: A Primer for Epidemiologists." American Journal of Epidemiology, kwae246.
- Klein, Nadja. 2024. "Distributional Regression for Data Analysis." Annual Review of Statistics and Its Application 11.
- Koenker, Roger, and Gilbert Bassett Jr. 1978. "Regression Quantiles." Econometrica 46 (1): 33-50.
- Zhou, Xiang. 2012. "A Nonparametric Index of Stratification." Sociological Methodology 42 (1): 365–89.