Foundations of Robotics (ROB-GY 6003)

Homework Assignment | Chapter 3

Homework Problems: 3.1, 3.4 (regard {*S*} as {0}, and {*T*} as {3}), 3.8, 3.12, 3.16, 3.17

FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).

FIGURE 3.30: Two views of a 3*R* manipulator (Exercise 3.4).

EXAMPLE 3.3

Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute, this manipulator is sometimes called an *RRR* (or *3R*) mechanism. Fig. 3.6(b) is a schematic representation of the same manipulator. Note the double hash marks

70 Chapter 3 Manipulator kinematics

3.1 [15] Compute the kinematics of the planar arm from Example 3.3.

3.4 [22] The arm with three degrees of freedom shown in Fig. 3.30 has joints 1 and 2 perpendicular, and joints 2 and 3 parallel. As pictured, all joints are at their zero location. Note that the positive sense of the joint angle is indicated. Assign link frames {0} through {3} for this arm—that is, sketch the arm, showing the attachment of the frames. Then derive the transformation matrices ${}_{1}^{0}T$, ${}_{2}^{1}T$, and ${}_{3}^{2}T$.

3.8 [13] In Fig. 3.31, the location of the tool, W_TT , is not accurately known. Using force control, the robot feels around with the tool tip until it inserts it into the

FIGURE 3.31: Determination of the tool frame (Exercise 3.8).

00 Chapter 3 Manipulator Kinematics

socket (or Goal) at location S_GT . Once in this "calibration" configuration (in which $\{G\}$ and $\{T\}$ are coincident), the position of the robot, B_WT , is figured out by reading the joint angle sensors and computing the kinematics. Assuming B_ST and S_GT are known, give the transform equation to compute the unknown tool frame, W_TT .

3.12 [08] Can an arbitrary rigid-body transformation always be expressed with four parameters (a, α, d, θ) in the form of equation (3.6)?

FIGURE 3.36: RPR planar robot (Exercise 3.16).

FIGURE 3.37: Three-link *RRP* manipulator (Exercise 3.17).

NEW YORK UNIVERSITY TANDON SCHOOL OF ENGINEERING Department of Mechanical and Aerospace Engineering

- **3.16** [15] Assign link frames to the *RPR* planar robot shown in Fig. 3.36, and give the linkage parameters.
- **3.17** [15] Show the attachment of link frames on the three-link robot shown in Fig. 3.37.