МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы 4.3.2A

Дифракция света на ультразвуковой волне в жидкости

Автор: Победин Николай Константинович Б02-212

1 Цель работы

Изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

2 Оборудование

Оптическая скамья, осветитель, светофильтры, конденсор, цель, два длиннофокусных объектива, кювета с водой, кварцевый излучатель, с микрометрическим винтом, генератор УЗ-частоты, частотометр, линза, отсчетное устройство, микроскоп.

3 Теоретические сведения

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m \ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

Рис. 1: Дифракция света на решетке

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Этот эффект проиллюстрирован на рисунке 1.

4 Экспериментальная установка

Экспериментальная установка изображена на рисунке 2. Источник света Л через светофилтр Φ и конденсор K освещает щель S, которая расположена в фокусе объектива O_1 . Выходящий из объектива параллельный пучок света проходит через кювету C перпендикулярно направлению распространения УЗ-волн. Эти волны возбуждаются в жидкости пьезокварцевой пластинкой Q, прикрепленной к стенке кювета. На кварцевую пластинку подаётся синусоидальное напряжение ультразвуковой частоты от генератора. В результате взаимодействия света с ультразвуковой волной в фокальной плоскости второго объектива O_2 образуется дифракционная картина, наблюдаемая при помощи микроскопа M. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

Рис. 2: Схема наблюдения дифракции на акустической решетке

Для наблюдения акустической решетки в работе используется метод темного поля, основанный на устранении центрального дифракционного максимума с помощью специального экрана (проволочки). В поле зрения микроскопа наблюдается чередующиеся светлые и темные полосы, причем расстояние между темными полосами соответствует смещению в плоскости кюветы на $\Lambda/2$. Таким образом, наблюдается характерное для метода темного поля удвоение числа деталей рассматриваемого объекта.

Рис. 3: Наблюдение акустической решетки методом темного поля

5 Ход работы

5.1 Определение скорости ультразвука по дифракционной картине

Соберем схему согласно рисунку 2 и настроим генератор так, чтобы четко видеть дифракционные максимумы. Измерим их координаты для двух разных частот:

$f = 900 \pm 10 \ kHz$				
n	$x_n \pm 0.03 \ mm$			
-3	0.91			
-2	0.83			
-1	0.71			
0	0.59			
1	0.48			
2	0.35			
3	0.20			

$f = 2960 \pm 10 \ kHz$				
n	$x_n \pm 0.03 \ mm$			
-2	2.35			
-1	1.95			
0	1.60			
1	1.21			
2	0.80			

Фокусное расстояние объектива O_2 - F=30~cm, полоса пропускания светофильтра $\lambda=640\pm20~nm$ Построим соответствующие графики: Тогда по формулам(4) и (5) и учитывая, что $l_m/m=1$

Рис. 4: Зависимость координаты дифракционного максимума от номера

 $\Delta x_m/\Delta m$ посчитаем длины ультразвуковых волн.

$$\Lambda_{900kHz}^{(1)} = \frac{F\lambda}{k} = 1.62 \pm 0.05 \ mm \qquad \Lambda_{900kHz}^{(2)} = \frac{c}{f} = \frac{1435}{900 \cdot 10^3} = 1.59 \pm 0.02 \ mm \tag{6}$$

$$\Lambda_{2960kHz}^{(1)} = \frac{F\lambda}{k} = 500 \pm 20 \ \mu m \qquad \Lambda_{2960kHz}^{(2)} = \frac{c}{f} = \frac{1435}{2960 \cdot 10^3} = 484 \pm 10 \ \mu m \tag{7}$$

Значения совпали с точностью до погрешности.

5.2 Определение скорости звука методом темного поля

Соберем схему с рисунка 3. При применении метода темного поля мы сможем увидеть дифракционную решетку. Тогда расстояние между светлыми линиями равно $\Lambda/2$

$f \pm 10, kHz$	$x_1 \pm 0.01$, дел	$x_N \pm 0.01$, дел	$x_0 \pm 0.03, \ mm$	$x_N \pm 0.03, mm$	N
960	0.42	7.13	1.17	19.85	25
2810	0.97	2.72	2.70	7.57	20
1070	0.62	5.65	1.73	15.73	21

$$\Lambda_{960kHz}^{(1)} = 2\frac{x_n - x_0}{N - 1} = 1.55 \pm 0.05 \ mm \qquad \Lambda_{900kHz}^{(2)} = \frac{c}{f} = \frac{1435}{960 \cdot 10^3} = 1.49 \pm 0.02 \ mm \tag{8}$$

$$\Lambda_{2810kHz}^{(1)} = 2\frac{x_n - x_0}{N - 1} = 0.51 \pm 0.02 \ mm \qquad \Lambda_{2810kHz}^{(2)} = \frac{c}{f} = \frac{1435}{2810 \cdot 10^3} = 0.51 \pm 0.01 \ mm \qquad (9)$$

$$\Lambda^{(1)}_{1070kHz} = 2\frac{x_n - x_0}{N - 1} = 1.40 \pm 0.04 \ mm \qquad \Lambda^{(2)}_{1070kHz} = \frac{c}{f} = \frac{1435}{1070 \cdot 10^3} = 1.34 \pm 0.02 \ mm \qquad (10)$$

Данные совпадают с точностью до погрешности

6 Фотографии дифракции

(а) Дифракция на ультразвуковых волнах

(b) Дифракция методом темного поля

7 Вывод

В работе была измерена скорость ультразвуковых волн по дифракционной картине и методом темного поля. Оба метода дали результаты, которые совпадают с реальностью с точностью до погрешности.