Interrogation écrite n°04

NOM: Prénom: Note:

1. Soit u un endomorphisme nilpotent d'un espace vectoriel E. Montrer que $Sp(u) = \{0\}$.

Soit p l'indice de nilpotence de u. Alors $u^{p-1} \neq 0$ et $u^p = 0$. En particulier, il existe un vecteur x tel que $u^{p-1}(x) \neq 0_E$. En posant $y = u^{p-1}(x)$, on a $u(y) = 0_E$ et donc $0 \in Sp(u)$.

Soit $\lambda \in \operatorname{Sp}(u)$ et x un vecteur propre associé. Alors $u^n(x) = \lambda^n x$ pour tout $n \in \mathbb{N}$. Or il existe $n \in \mathbb{N}^*$ tel que $u^n = 0$ donc $\lambda^n x = 0_E$. Comme $x \neq 0_E$, $\lambda^n = 0$ puis $\lambda = 0$. Ainsi $\operatorname{Sp}(u) = \{0\}$.

2. Soit $\lambda \in \mathbb{K}$. La matrice $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ est-elle diagonalisable ? Justifier.

On trouve $\chi_A = (X - \lambda)^2$ donc $Sp(A) = \{\lambda\}$. Si A était diagonalisable, elle serait semblable à λI_2 et donc égale à λI_2 , ce qu'elle n'est pas. Ainsi A n'est pas diagonalisable.

3. Soit $A = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$. Déterminer $P \in GL_2(\mathbb{R})$ et $D \in \mathcal{M}_2(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.

On calcule successivement:

- $\chi_A = X^2 tr(A)X + det(A) = X^2 5X + 6 = (X 2)(X 3)$;
- $E_2(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right);$
- $E_3(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$

Ainsi en posant $P = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, on a bien $A = PDP^{-1}$ et P inversible puisque $det(P) = 1 \neq 0$.

4. Calculer $\varphi(360)$.

Puisque $360 = 2^3 \cdot 3^2 \cdot 5$,

$$\varphi(360) = 360 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 96$$

5. Résoudre dans \mathbb{Z} le système $\begin{cases} x \equiv 10[15] \\ x \equiv 5[20] \end{cases}$.

Remarquons que 25 est solution particulière. Ainsi

$$\begin{cases} x \equiv 10[15] \\ x \equiv 5[20] \end{cases} \iff \begin{cases} x \equiv 25[15] \\ x \equiv 25[20] \end{cases} \iff \begin{cases} 15 \mid x - 25 \\ 20 \mid x - 25 \end{cases} \iff 15 \lor 20 \mid x - 25 \iff 60 \mid x - 25 \iff x \equiv 25[60]$$

L'ensemble des solutions est donc $25 + 60\mathbb{Z}$.

6. Résoudre dans \mathbb{Z}^2 l'équation 8x + 12y = 20.

L'équation équivaut à 2x+3y=5. On remarque que (1,1) est solution particulière. Ainsi l'équation équivaut à 2(x-1)=3(1-y). Comme $2 \wedge 3=1$, le lemme de Gauss montre que cette équation équivaut à l'existence de $k \in \mathbb{Z}$ tel que (x-1,1-y)=(3k,2k) i.e. (x,y)=(1+3k,1-2k). L'ensemble des solutions est donc $(1,1)+(3,-2)\mathbb{Z}$.

7. Donner la liste des inversibles de l'anneau $\mathbb{Z}/15\mathbb{Z}$.

On cherche donc les éléments de [0, 14] premiers avec 15. Ainsi

$$(\mathbb{Z}/15\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$$

8. Donner la décomposition en facteurs irréductibles de $X^4 + 1$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Les racines complexes de $X^4 + 1$ sont les racines quatrièmes de -1. Ainsi

$$X^4 + 1 = \left(X - e^{\frac{i\pi}{4}}\right) \left(X - e^{-\frac{i\pi}{4}}\right) \left(X - e^{\frac{3i\pi}{4}}\right) \left(X - e^{-\frac{3i\pi}{4}}\right) = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1)$$