Product Design

Team: 17

Katha Rohan Reddy, Venneti Sri Satya Vinay, Shubhankar Kamthankar, Rajarshi Ray

Design Overview

Architectural design

Our project is to recreate and improve the older simulations (made using Java which has now become obsolete) on the virtual lab's website using latest web technologies like HTML, CSS and JavaScript. The three modules for this project are

- Procedure
- Simulation
- Post test

Based on the Simulation we make we need to change the procedure. The post test is a set of questions based on the experiment.

System interfaces

User Interface

In the simulation part the user can select components from the tool bar and place them in the simulation workspace. After dragging and dropping all the components and connecting to complete the circuit. The user clicks on simulate button and then sees the graph or truth table of the output. In the procedure section he just sees the procedure, in the post test area the user gives a test based on the concept he learned. In mobile view graph goes below tool bar and workspace. The old UI looked like this.

The updated UI looks like this.

Model

jsPlumb library is used.

Components	Class state
	Size of each component
	Style of each component
	No of endpoints each component holds
	Class behavior
	Add new component
	Remove the existing component.
Canvas	Class state
	Size of the entire canvas
	• Color
	Information of all existing components
	Class behavior
	Drag and drop all components
	Delete the wire
	Add the wire
Wiring	Class state
	Type of endpoint connection
	Color of wire
	Class behavior
	Check if the given components are connectable or not
	Update information if wiring is changed

Graphical Analysis	Class state
	• X-axis
	• Y-axis
	Input Voltage
	Class behavior
	View the relation between X and Y and displays graph
	Update information if wiring is changed

Sequence Diagram(s)

Tool Bar:

Canvas:

Error Detection:

Simulate:

Graphical Analysis:

Design Rationale

We here are mentioning two design rationale even though both are close enough they serve entirely different purpose this is for the entire output after the user makes circuit an clicks simulate button

In this case we had two different scenarios when the users circuit is not right

Design rationale 1

If User's simulation is not correct, we can show error message and not render the graph in the graph section and guide them to make the correct solution by giving hints about how to make the circuit properly and render

Design rationale 2

If the user simulation is not right even, then we render the graph although not correct one and show him what the right graph looks like and motivate him to do the right simulation.

Initially, we chose to go with design rationale 1. The following is the reason for it.

In Order to do the second design we have to know the number of inputs and outputs of the entire circuit at the start of the experiment which is not the purpose (as the experiment output is graph to draw it we need to know the parameters initially)

But after discussing with the client we decided to make experiments 1, 2, 3 using design rationale 2 but use design rationale 1 for all the remaining experiments.