RECETTE GÉOMÉTRIQUE DES BEIGNETS

Problématique : Comment prouver l'existence des cercles de Villarceau? Possèdent-ils des propriétés remarquables? Comment les mettre en évidence ou les construire?

Table des matières

1	Préliminaires	2
	1.1 Construction du tore de \mathbb{R}^3	2
	1.2 Plan tangent	2
2	Etude analytique des cercles de Villarceau	3
	2.1 Présentation du problème	3
	2.2 Plan bitangent	
	2.3 Equation des cercles	
	2.4 Représentation dans l'espace	
3	Construction d'une épure	6
4	Démonstration algébrique	7
	4.1 Espace projectif	7
	4.2 Points cycliques	
	4.3 Preuve du théorème de Villarceau	8
5	Loxodromie du tore	10
	5.1 Mise en équation	10
	5.2 Résolution	
6	Construction réelle des cercles de Villarceau	12
	6.1 Note historique et exemples architecturaux	12
	6.2 Réalisation pratique	
7	Références	19

1 Préliminaires

1.1 Construction du tore de \mathbb{R}^3

Définition: Un tore est la surface $\sum_{a,R}$ engendrée par la rotation d'un cercle C de rayon R autour d'une droite affine située dans son plan à une distance a de son centre. On prendra R < a.

Cercle bleu :
$$\varphi \mapsto \begin{pmatrix} a + R\cos\varphi \\ 0 \\ R\sin\varphi \end{pmatrix}$$
. Par rotation : $(\varphi,\theta) \mapsto \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a + R\cos\varphi \\ 0 \\ R\sin\varphi \end{pmatrix}$. Donc $\sum_{a,R}$ paramétré par $(\varphi,\theta) \longmapsto M = O + (a + R\cos\varphi)\vec{u} + R\sin\varphi\vec{k}$ où $\begin{cases} \vec{u} = \cos\theta\vec{i} + \sin\theta\vec{j} \\ \vec{v} = \sin\theta\vec{i} - \cos\theta\vec{j} \end{cases}$.

1.2 Plan tangent

$$T_m: \underbrace{X\cos\varphi_0 + Z\sin\varphi_0 - (a\cos\varphi_0 + r)}_{\Phi(X,Y,Z)} = 0$$

$$F(\varphi,\theta) = \Phi(x(\varphi,\theta), y(\varphi,\theta), z(\varphi,\theta)) = \underbrace{(a + R\cos\varphi)\cos\theta\cos\varphi_0 + \underbrace{R\sin\varphi\sin\varphi_0 - (a\cos\varphi_0 + R)}_{z(\varphi,\theta)}}_{\varphi(x,Y,Z)}$$

$$\rho\tau - \sigma^2 = R\cos\varphi_0(a + R\cos\varphi_0)$$

 $-\frac{\pi}{2} < \varphi_0 < \frac{\pi}{2} : \text{points } elliptiques, \ \varphi_0 = \pm \frac{\pi}{2} : \text{points } paraboliques, \ \frac{\pi}{2} < \varphi_0 < \frac{3\pi}{2} : \text{points } hyperboliques.$

2 Etude analytique des cercles de Villarceau

2.1 Présentation du problème

2.2 Plan bitangent

Dans le plan x = 0:

$$\begin{cases} \alpha = \arcsin\left(\frac{R}{a}\right) \\ \mathcal{P}_{\alpha} : z = \tan(\alpha)y \end{cases} \begin{cases} (y-a)^2 + z^2 = R^2 (C_1) \\ (y+a)^2 + z^2 = R^2 (C_2) \end{cases} \begin{cases} A_1(a\cos^2\alpha, a\sin\alpha) \\ A_2(-a\cos^2\alpha, -a\sin\alpha\cos\alpha) \end{cases}$$
 dans $(O; \vec{j}, \vec{k})$

2.3 Equation des cercles

• \mathcal{P}_{α} munit du repère orthonormé $\mathcal{R} = (O, \vec{i}, \sin \alpha \vec{j} + \cos \alpha \vec{k}).$

$$M(x, y, z) \in \mathcal{P}_{\alpha} \text{ dans } (O, \vec{i}, \vec{j}, \vec{k}) \iff (x, \frac{y}{\cos \alpha}) \text{ dans } \mathcal{R}; \text{ en effet:}$$

$$\overrightarrow{OM} = x\vec{i} + y\vec{j} + y \tan \alpha \vec{k} = x\vec{i} + \frac{y}{\cos \alpha} (\sin \alpha \vec{j} + \cos \alpha \vec{k})$$

$$M \in \mathcal{P}_{\alpha} \cap \Sigma_{a,R} \iff \begin{cases} z = y \tan \alpha \\ (x^2 + y^2 + z^2 + a^2 - R^2)^2 = 4a^2(x^2 + y^2) \end{cases}$$

$$\iff (X^2 + Y^2 + a^2 - R^2)^2 = 4a^2(X^2 + Y^2 \cos^2 \alpha)$$

$$\iff (X^2 + Y^2)^2 - 2(a^2 + R^2)X^2 + 2(a^2 - R^2 - 2a^2 \cos^2 \alpha)Y^2 + (a^2 - R^2)^2 = 0$$

$$\iff (X^2 + Y^2)^2 - 2(a^2 + R^2)X^2 + 2(-a^2 + R^2)Y^2 + (a^2 - R^2)^2 = 0$$

$$\iff (X^2 + Y^2)^2 - 2(a^2 + R^2)X^2 + 2(-a^2 + R^2)Y^2 + (a^2 - R^2)^2 = 0$$

$$\iff (X^2 + Y^2 + uX + vY + w)(X^2 + Y^2 + u'X + v'Y + w') = 0$$

 $\mathcal{P}_{\alpha} \cap \Sigma_{a,R}$ est la réunion dans \mathcal{R} de $(X-R)^2 + Y^2 = a^2$ et $(X+R)^2 + Y^2 = a^2$

▶ Paramétrisation des cercles de Villarceau :

Celle du tore : $\begin{cases} x = (a + R\cos\varphi)\sin\theta \\ y = (a + R\cos\varphi)\cos\theta \text{ et l'équation du plan } z = \tan\alpha y \Leftrightarrow z = \frac{R}{\sqrt{a^2 - R^2}}y, \text{ d'où : } z = R\sin\varphi \end{cases}$

$$R\sin\varphi\sqrt{a^2-R^2}-R(a+R\cos\varphi)\cos(\theta)=0 \Leftrightarrow \cos\theta=\frac{\sqrt{a^2-R^2}\sin\varphi}{a+R\cos\varphi}$$

$$\sin\theta = \varepsilon\sqrt{1-\cos^2\theta} = \varepsilon\sqrt{\frac{(a+R\cos\varphi)^2 - (a^2-R^2)\sin^2\varphi}{(a+R\cos\varphi)^2}} = \varepsilon\frac{a\cos\varphi + R}{a+R\cos\varphi}$$

$$\gamma_{\varepsilon}(\varphi) = \begin{cases} x = \varepsilon(a\cos\varphi + R) \\ y = \sqrt{a^2 - R^2}\sin\varphi \\ z = R\sin\varphi \end{cases}$$

2.4 Représentation dans l'espace

Intersection du tore avec les sphères de centres $\Omega_{\varepsilon}(\varepsilon R,0,0)$ et de rayon a.

En effet γ_ε appartient bien à ces shères :

$$\Omega_{\varepsilon}\gamma_{\varepsilon}(\varphi)^{2} = a^{2}\cos^{2}\varphi + (a^{2} - R^{2})\sin^{2}\varphi + R^{2}\sin^{2}\varphi^{2} = a^{2}$$

3 Construction d'une épure

Comment obtenir le cinquième point ?

4 Démonstration algébrique

4.1 Espace projectif

Définition: Soit E un \mathbb{K} -espace vectoriel non réduit à $\{0\}$. On définit sur $E - \{0\}$ la relation :

$$x\mathcal{R}y \Leftrightarrow \exists \lambda \in \mathbb{K}^*, x = \lambda y$$

L'espace projectif sur E est l'ensemble quotient de $E - \{0\}$ par la relation d'équivalence \mathcal{R} .

Exemple : l'espace projectif de \mathbb{R}^3 .

On se place dans l'espace projectif complexe quotient de \mathbb{C}^4 – $\{(0,0,0,0)\}$ par \mathcal{R} . On l'identifie à \mathbb{C}^3 (en associant à (x,y,z) la classe d'équivalence (x,y,z,1)), complété par un plan à l'infini ensemble des classes d'équivalence des vecteurs de la forme (X,Y,Z,0).

4.2 Points cycliques

Définition: Les points cycliques d'un plan sont les points à l'infini de tous ses cercles.

Propriété n°1: Les coordonnées (projectives) des points cycliques sont (1,i,0) et (1,-i,0).

Preuve:
$$(x-a)^2 + (y-b)^2 = R^2$$
. $x = \frac{X}{Z}$ et $y = \frac{Y}{Z}$: $(X-aZ)^2 + (Y-aZ)^2 = R^2Z^2$.

Définition: L'ensemble de tous les points cycliques de tous les plans est l'ombilicale.

Propriété n°2: L'ombilicale est la courbe du plan à l'infini d'équation $X^2 + Y^2 + Z^2 = 0$ (et T = 0).

$$Preuve : \text{De même } (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2 \Rightarrow (X-aT)^2 + (Y-bT)^2 + (Z-aT)^2 = R^2T^2.$$

Propriété n°3 : L'intersection d'un tore avec le plan à l'infini est l'ombilicale (comptée 2 fois).

 $Preuve: \text{On homogén\'eise et on obtient } (X^2+Y^2+Z^2+(a^2-R^2)T^2)^2-4a^2T^2(X^2+Y^2)=0.$

Propriété n°4: L'intersection d'un plan tangent en un point régulier à une surface algébrique et de cette surface est une courbe algébrique de même degré que la surface, admettant un point double au point de tangence.

Théorème de Bézout: L'intersection de deux courbes algébriques de degrés m et n (n'ayant pas de composante commune) se fait en mn points (en comptant les multiplicités).

4.3 Preuve du théorème de Villarceau

Théorème: L'intersection d'un tore avec un plan bitangent est la réunion de deux cercles.

Preuve :
ightharpoonup L'intersection est une quartique admettant quatre points doubles.

- ⊳ 2 points doubles réels d'après la propriété n°4.
- ▷ 2 points cycliques issue de l'intersection du plan bitangent (projectif) avec le tore (projectif).
- ▶ Une quartique admettant quatre points doubles est la réunion de deux coniques.
- $\triangleright M_1, M_2, M_3, M_4$ les 4 points doubles sus-cités. $M_5 \in \mathcal{Q}$. \mathcal{C} conique passant par ces cinq points. Tenant compte des multiplicités cela signifie que $\mathcal{C} \cap \mathcal{Q}$ contient au moins 9 points donc $\mathcal{C} \subset \mathcal{Q}$. \triangleright On recommence avec un point $M_5' \in \mathcal{Q} \setminus \mathcal{C}$ et une conique \mathcal{C}' passant par ces points.
- ▶ Une conique passant par les points cycliques est un cercle.

 $\Rightarrow aX^2 + bXY + cY^2 + dXZ + eYZ + fZ^2 = 0$ puis on Z = 0 on obtient : $aX^2 + bXY + cY^2 = 0$.

5 Loxodromie du tore

Définition : les loxodromies d'une surface sont les courbes \mathcal{C}^1 tracées sur celle-ci, qui coupent les parallèles selon un angle constant, $\overrightarrow{OM} = \overrightarrow{F}(\theta, \varphi(\theta))$.

5.1 Mise en équation

- ▶ Un vecteur tangent à la courbe $\overrightarrow{G}(\theta)$ est : $\frac{\overrightarrow{dG}}{d\theta} = (a + R\cos\varphi)\overrightarrow{v}(\theta) + \frac{d\varphi}{d\theta}(-R\sin\varphi\overrightarrow{u}(\theta) + R\cos\varphi\overrightarrow{k})$.
- ▶ Un vecteur tangent au parallèle de $\Sigma_{a,R}$ passant par M est: $(a + R\cos\varphi)\vec{v}(\theta)$.

La base $(\vec{v}(\theta), -\sin\varphi \vec{u}(\theta) + \cos\varphi \vec{k})$ est orthonormée, dans celle-ci :

$$\overrightarrow{V}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{V}_2 = \begin{pmatrix} a + R\cos(\theta) \\ R\frac{d\varphi}{d\theta} \end{pmatrix}$$

On veut que $(\overrightarrow{V_1}, \overrightarrow{V_2}) = \beta$. Posons $\overrightarrow{V_\beta} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$ et $\overrightarrow{V_\beta'} = \begin{pmatrix} -\cos \beta \\ \sin \beta \end{pmatrix}$. Deux situations possibles :

$$\frac{\overrightarrow{V_2}}{\overrightarrow{V_\beta}} \det(\overrightarrow{V_2}, \overrightarrow{V_\beta}) = 0 \Leftrightarrow \begin{vmatrix} a + R\cos\theta & \cos\beta \\ R\frac{d\varphi}{d\theta} & \sin\beta \end{vmatrix} = 0 \Leftrightarrow (a + R\cos\theta)\sin\beta = R\frac{d\varphi}{d\theta}\cos\beta$$

$$\frac{\overrightarrow{V_2}}{\overrightarrow{V_\beta}} \det(\overrightarrow{V_2}, \overrightarrow{V_\beta'}) = 0 \Leftrightarrow \begin{vmatrix} a + R\cos\theta & \cos\beta \\ R\frac{d\varphi}{d\theta} & \sin\beta \end{vmatrix} = 0 \Leftrightarrow (a + R\cos\theta)\sin\beta = -R\frac{d\varphi}{d\theta}\cos\beta$$

$$(a + R\cos\varphi)^2 \sin^2\beta = \left(R\frac{d\varphi}{d\theta}\right)^2 \cos^2\beta$$
$$\cos^2\beta \sin^2\alpha \left(\frac{d\varphi}{d\theta}\right)^2 = \sin^2\beta (1 + \sin\alpha\cos\varphi)^2$$

5.2 Résolution

▶ Choix : $\beta = \alpha$.

$$\cos\alpha \frac{d\varphi}{d\theta} = (1 + \sin\alpha\cos\varphi)$$

Changement de variable $t = \tan\left(\frac{\varphi}{2}\right)$, $dt = \frac{1}{2}(1+t^2)d\varphi$ on a:

$$\int \cos \alpha \frac{d\varphi}{1 + \sin \alpha \cos \varphi} = 2 \operatorname{Arctan} \left(t \sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} \right)$$

$$\theta = 2 \operatorname{Arctan} \left(\sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} \tan \frac{\varphi}{2} \right) \text{ puis } \varphi(\theta) = 2 \operatorname{Arctan} \left(\sqrt{\frac{1 + \sin \alpha}{1 - \sin \alpha}} \tan \frac{\theta}{2} \right)$$

Un système d'équations paramétriques dans \mathcal{R}_0 de L est:

$$\begin{pmatrix}
x = (a + R\cos(\varphi(\theta))\cos\theta \\
y = (a + R\cos(\varphi(\theta))\sin\theta \\
z = R\sin\varphi(\theta)
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
x = \frac{a\cos^{2}\alpha\cos\theta}{1 - \sin\alpha\cos\theta} \\
y = \frac{a\cos^{2}\alpha\sin\theta}{1 - \sin\alpha\cos\theta} \\
z = \frac{R\cos\alpha\sin\theta}{1 - \sin\alpha\cos\theta}
\end{pmatrix}$$
pour $\theta \in]-\pi,\pi]$

$$r(\theta) = \frac{a\cos^2\alpha}{1 - \sin\alpha\,\cos\theta}$$

- ▶ pour tout point M(x, y, z) de L, on a $z = y \tan \alpha$.
- ▶ L est inclus dans $\mathcal{P}_{\alpha} \cap \Sigma_{a,R}$.
- ▶ L est le cercle de $\mathcal{P}_{\alpha} \cap \Sigma_{a,R}$ d'équation dans \mathcal{R} : $(X R)^2 + Y^2 = a^2$.

Conclusion : les loxodromies d'angle α sont les cercles de Villarceau.

6 Construction réelle des cercles de Villarceau

6.1 Note historique et exemples architecturaux

6.2 Réalisation pratique

Premier marquage

Second marquage

7 Références

- [1] J-D. Eiden, Géométrie analytique classique, Calvage et Mounet, 2009.
- [2] D. Feldmann, http://denisfeldmann.fr/PDF/cercles.pdf.
- [3] M. Berger, http://www.bibnum.education.fr/files/villarceau-analyse.pdf, 2010.
- [4] Article Wikipédia, http://fr.wikipedia.org/wiki/Géométrie_projective.
- [5] Sujet de concours, Mathématiques MP II, TPE, 1996.