ΑΣΚΗΣΕΙΣ ΣΤΟ Θ.ROLLE-ΘΜΤ-ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ

- 2. An oi f,g είναι συνεχείς συναρτήσεις στο $[0,\frac{\pi}{2}]$ και παραγωγίσιμες στο $(0,\frac{\pi}{2})$ και $g(0)=f(\frac{\pi}{2})$, να δείξετε ότι: i) Για την $F(x)=f(x)\cdot \eta\mu x+g(x)\cdot \sigma$ υνx, ισχύει το θεώρημα Rolle στο $[0,\frac{\pi}{2}]$
- ii) Υπάρχει τουλάχιστον ένα ξ \in $(0,\frac{\pi}{2})$ τέτοιο ώστε $[g(\xi)-f'(\xi)]\cdot \epsilon \varphi \xi = f(\xi)+g'(\xi)$
- 3. An f,g είναι συνεχείς συναρτήσεις στο $[\alpha,\beta]$ και παραγωγίσιμες στο (α,β) και $f(x)\neq 0$, $x\in [\alpha,\beta]$ και αν $g(\alpha)-g(\beta)=\ln[\frac{f(\alpha)}{f(\beta)}]$ να δείξετε ότι υπάρχει τουλάχιστον ένα $x_o\in (\alpha,\beta)$ τέτοιο ώστε: $\frac{f'(x_o)}{f(x_o)}=g'(x_o)$
- 4. Aν $f(x)=x^4+\mu^2\cdot x^2+(\mu^4+1)\cdot x^2+\mu^3$, να δείξετε ότι για κάθε μ \in \mathbb{R} το f(x) δεν μπορεί να έχει όλες τις ρίζες του πραγματικές και άνισες
- 5. Αν η f είναι 2 φορές παραγωγίσιμη στο [1,2] και $f''(x) \neq 0$ για κάθε $x \in [1,2]$ και $f(2) = 2 \cdot f(1)$
- i) Να δείξετε ότι υπάρχει μοναδικό x_o \in (1,2) τέτοιο ώστε: $f'(x_o) = \frac{f(x_o)}{x_o}$
- ii) Να δείξετε ότι υπάρχει $x_o \in (1,2)$, ώστε η εφαπτομένη της C_f στο σημείο $(x_o, f(x_o))$ να περνά από την αρχή των αξόνων
- 6. Αν η f είναι 2 φορές παραγωγίσιμη στο [1,3] και $2 \cdot f(2) = f(1) + f(3)$ να αποδείξετε ότι υπάρχει τουλάχιστον ένα $x_o \in (1,3)$ τέτοιο ώστε: $f''(x_o) = 0$
- 7. Αν η f είναι συνεχής στο [1,4], παραγωγίσιμη στο (1,4) και η f' γνησίως φθίνουσα στο (1,4) να συγκρίνετε τους αριθμούς: f(2)+f(3) και f(1)+f(4)

- 8. Αν η f είναι παραγωγίσιμη στο $\mathbb R$ με $f'(x)-2\cdot f(-x)=0$ για κάθε $x\in\mathbb R$, να δείξετε ότι η $g(x)=f^2(x)+f^2(-x)$ είναι σταθερή στο $\mathbb R$ και αν f(0)=4 , να βρεθεί ο τύπος της g
- 9. Να βρεθεί η συνάρτηση f για την οποία είναι: $f''(x)=6\cdot x$, $x\in\mathbb{R}$ και f(0)=f(2)=2
- 10. Αν η g είναι παραγωγίσιμη στο $\mathbb R$ και αν $g'(e^x) = \eta \mu x + \sigma v v x$, $x \in \mathbb R$ και g(1) = 1, να βρεθεί το $g(\pi)$
- 11. Αν η f είναι ορισμένη στο διάστημα $(0,+\infty)$ και για κάθε α , $\beta \in (0,+\infty)$ ισχύει: $f(\alpha \cdot \beta) = \alpha \cdot f(\beta) + \beta \cdot f(\alpha)$ να δείξετε ότι: i) f(1) = 0 , ii) Αν η f είναι παραγωγίσιμη στο $x_o = 1$, με f'(1) = 1993 τότε η f είναι παραγωγίσιμη στο $(0,+\infty)$ και για κάθε x > 0 είναι: $x \cdot f'(x) f(x) = 1993 \cdot x$. Μετά να βρεθεί η f.
- 12. Εφαρμόζοντας το ΘΜΤ σε κατάλληλη συνάρτηση , να δείξετε ότι: $(\beta-\alpha)\cdot \epsilon \varphi \alpha < \ln(\frac{\sigma \upsilon v \alpha}{\sigma \upsilon v \beta}) < (\beta-\alpha)\cdot \epsilon \varphi \beta$, όπου $0<\alpha<\beta<\frac{\pi}{2}$
- 13. Εφαρμόζοντας το ΘΜΤ σε κατάλληλη συνάρτηση , να δείξετε ότι $2 \cdot \ln(1+x) < 2 \cdot x + x^2$, x > 0
- 14. Αν η f είναι συνεχής στο [α,β] και παραγωγίσιμη στο (α,β) με $f(\alpha) \neq f(\beta)$, να δείξετε ότι i) η εξίσωση: $2 \cdot f(x) = f(\alpha) + f(\beta) \quad \text{έχει τουλάχιστον μία ρίζα στο (α,β)} \quad \text{ii) υπάρχουν 2 τουλάχιστον σημεία} \quad \xi_1, \xi_2 \in (\alpha, \beta) ,$ ώστε: $\frac{1}{f'(\xi_1)} + \frac{1}{f'(\xi_2)} = \frac{2 \cdot (\beta \alpha)}{f(\beta) f(\alpha)}$
- 15. Να δείξετε ότι η εξίσωση $x \cdot lnx = 1$ έχει μοναδική ρίζα στο [1, e]
- 16. Αν η f είναι συνεχής στο διάστημα [0, +00) και παραγωγίσιμη στο (0, +00) με την f' να είναι γνησίως αύξουσα στο (0,+00) και f(0) = 0 , να δείξετε ότι η συνάρτηση $\varphi(x) = \frac{f(x)}{x}$ είναι γνησίως αύξουσα στο (0,+00)
- 17. Αν η f είναι συνεχής στο [1,3] , παραγωγίσιμη στο (1,3) και αν: $f(1) = \frac{f(3)}{3} = 1$, να δείξετε ότι υπάρχουν α , $\beta \in (1,3)$ με $1 < \alpha < 2 < \beta < 3$, ώστε $f'(\alpha) + f'(\beta) = 2$

- 18. i) Να βρεθούν τα ακρότατα της $f(x) = \frac{e^x}{x^v}$, x > 0, $v \in \mathbb{N}/0$ ii) Να δείξετε ότι για κάθε x > 0: $e^x \ge \left(\frac{x \cdot e^x}{v}\right)^v$, $v \in \mathbb{N}/0$
- 19. Αν $f(x)=x^3+\alpha\cdot x^2+\beta\cdot x+\gamma$ με ρίζες $\rho_1<\rho_2<\rho_3$ στο $\mathbb R$ να δείξετε ότι: i) $\alpha^3>3\cdot\beta$ ii) η f έχει 2 τοπικά ακρότατα iii) Αν η f έχει στο ξ τοπικό ακρότατο τότε: $\frac{1}{\xi-\rho_1}+\frac{1}{\xi-\rho_2}+\frac{1}{\xi-\rho_3}=0$
- 20. Αν η f είναι παραγωγίσιμη στο Δ και με τιμές στο Δ όπου Δ = [0,1] και f(0) = 0 και f(1) = 1 , να δείξετε ότι: i) υπάρχει ένα τουλάχιστον γ \in (0,1) τέτοιο ώστε: $f(\gamma)$ = 1 $-\gamma$ ii) υπάρχουν α , β \in Δ , μ ε $\alpha \neq \beta$, ώστε $f'(\alpha) \cdot f'(\beta)$ = 1

ΑΣΚΗΣΕΙΣ ΣΤΟ 2.5-2.6-2.7

- 21. Να δείξετε ότι η εξίσωση $3 \cdot x^5 5 \cdot x^3 + 5 \cdot x + 1 = 0$ έχει μία ακριβώς ρίζα στο $\mathbb R$
- 22. Να δείξετε ότι η εξίσωση $4 \cdot x^3 + 3 \cdot (\alpha 1) \cdot x^2 + 2 \cdot \beta \cdot x = \alpha + \beta$, $\alpha, \beta \in \mathbb{R}$ έχει μία τουλάχιστον ρίζα στο (0,1)
- 23. Να δείξετε ότι για κάθε x>0 είναι: $\frac{1}{x+1} < \ln \frac{x+1}{x} < \frac{1}{x}$
- 24. Αν η f είναι συνεχής στο [α,β] και παραγωγίσιμη στο (α,β) , να δείξετε ότι υπάρχει $\gamma \in (\alpha,\beta)$ τέτοιο ώστε: $f'(\gamma) = \frac{f(\alpha) f(\gamma)}{\gamma \beta}$
- 25. Αν $f: \mathbb{R} \to \mathbb{R}$ με $f'(x) = \frac{2 \cdot x + 2}{x^2 + 2 \cdot x + 2}$, $x \in \mathbb{R}$ και f(-1) = 1 να βρεθεί ο τύπος της f
- 26. Αν η f είναι παραγωγίσιμη στο \mathbb{R} με f(0)=-2 και $f'(x^5+x)$ = $6\cdot x$, $x\in\mathbb{R}$, να βρεθεί η εξίσωση της εφαπτομένης της C_f στο σημείο A(2,f(2))
- 27. Αν $f:\mathbb{R} \to \mathbb{R}$ ώστε $f(x)\cdot f'(-x)=1$, για κάθε $x\in\mathbb{R}$ και f(0)=1 , να δείξετε ότι:

i)
$$f'(x) \cdot f(-x) = 1$$
, για κάθε $x \in \mathbb{R}$

ii)
$$f(x) \cdot f(-x) = 1$$
, για κάθε $x \in \mathbb{R}$

iii)
$$f(x)=e^x$$
, για κάθε $x \in \mathbb{R}$

28. Αν η
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 με $f(\frac{\pi}{2} - x) = f'(x)$, για κάθε $x \in \mathbb{R}$ και $f(0) = 0$, $f'(0) = 1$, να δείξετε ότι:

i)
$$f''(x) = -f(x)$$
, για κάθε $x \in \mathbb{R}$

ii) η
$$h(x) = [f'(x)]^2 + [f(x)]^2$$
, $x \in \mathbb{R}$ είναι σταθερή

iii)
$$f(x) = \eta \mu x$$
, $x \in \mathbb{R}$

- 29. Αν η συνάρτηση f είναι παραγωγίσιμη και $f:\mathbb{R} \to \mathbb{R}$ και αν ισχύει: $(x^2+1)\cdot f''(x)+4\cdot x\cdot f'(x)+2\cdot f(x)=0$, για κάθε $x\in\mathbb{R}$
- i) Να δείξετε ότι η $g(x)=2\cdot xcdot f(x)+(x^2+1)\cdot f'(x)$, $x\in\mathbb{R}$ είναι σταθερή
- ii) Αν η κλίσης της C_f στο σημείο M(1,2) είναι -2 , να βρεθεί ο τύπος της συνάρτησης f
- 30. Να λυθεί η εξίσωση $2^x+3^x+4^x=9^x$

31. Να δείξετε ότι
$$e^x > 1 + x + \frac{x^2}{2}$$
, $x > 0$

- 32. Να λυθεί η ανίσωση: $\alpha^{x^2-2x} \alpha^{x-2} < -x^2 + 3 \cdot x 2$, $\alpha > 1$. Πότε ισχύει η ισότητα?
- 33. Αν η f είναι παραγωγίσιμη στο [α,β] και αν f(α) = f(β) =1 και f''(x) > 0 , για κάθε $x \in [\alpha, \beta]$, να δείξετε ότι f(x)<1, για κάθε $x \in [\alpha, \beta]$
- 34. Αν $f(x)=2\cdot x^3+3\cdot x^2+6\cdot \sigma v x$, i) να μελετηθεί η μονοτονία της f , ii) να λυθεί η εξίσωση: f(x)=6
- 35. Αν $\alpha^x \ge x^\alpha$, για κάθε x > 0 , να δείξετε ότι: $\alpha = e$ (όπου $0 < \alpha \ne 1$)
- 36. Αν η παραγωγίσιμη συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ ικανοποιεί τη σχέση: $f^2(x)+x^2=1+2\cdot x\cdot f(x)$, για κάθε $x\in\mathbb{R}$, να δείξετε ότι η f δεν έχει τοπικά ακρότατα

- 37. Αν f , g : \mathbb{R} $\rightarrow \mathbb{R}$ με $f(x) = 6 \cdot x \cdot e^{-x} + 5 \cdot e^{-x} + 2 \cdot x 7$ και $g(x) = x^3 4 \cdot x + 5 7 \cdot e^{-x}$, τότε:
- i) Να δείξετε ότι οι C_f, C_g έχουν μοναδικό κοινό σημείο στο οποίο έχουν και κοινή εφαπτομένη
- ii) Να βρεθούν τα ακρότατα της h(x) = f(x) g(x), $x \in \mathbb{R}$

