Week 4 Quiz

Quiz, 10 questions

10/10 points (100%)

✓ Congratulations! You passed!

Next Item

1/1 point

1.

What is produced at the end of this snippet of R code?

```
1 set.seed(1)
2 rpois(5, 2)
```

A vector with the numbers 1, 1, 2, 4, 1

Correct

Because the `set.seed()' function is used, `rpois()' will always output the same vector in this code.

1, 5

It is impossible to tell because the result is random

A vector with the numbers 3.3, 2.5, 0.5, 1.1, 1.7

Quiz,

eK 4 Qu1 10 questions	point	10/10 points (100%)
	2. What R function can be used to generate standard Normal random variables?	
	pnorm	
	rnorm	
	Correct Functions beginning with the `r' prefix are used to simulate random variates.	
	qnorm	
	dnorm	

1/1

Week 4 Quiz Quiz, 10 questions	Z	1/1 point	10/10 points (100%)
		imulating data, why is using the set.seed() function important ll that apply.	?
		It can be used to specify which random number generating algorithm R should use, ensuring consistency and reproducibility.	
	Corre	ct	
		It can be used to generate non-uniform random numbers.	
	Un-se	lected is correct	
		It ensures that the sequence of random numbers is truly random.	
	Un-se	lected is correct	
	_	It ensures that the random numbers generated are within specified boundaries.	

Week 4 Quiz	1 / 1 point	10/10 points (100%)
	function can be used to evaluate the inverse cumulative ution function for the Poisson distribution?	
	dpois	
	rpois	
	qpois	
are	rect bability distribution functions beginning with the `q' prefix used to evaluate the quantile (inverse cumulative ribution) function.	
	ppois	

Week 4 Quiz Quiz, 10 questions	Z	1 / 1 point	10/10 points (100%)
	5.		
		oes the following code do?	
		set.seed(10) x <- rep(0:1, each = 5)	
	3	e <- rnorm(10, 0, 20)	
	4	y <- 0.5 + 2 * x + e	
	\bigcirc	Generate data from a Normal linear model	
	Corre	ect	
		Generate random exponentially distributed data	
		•	
	\bigcirc	Generate uniformly distributed random data	
		Generate data from a Poisson generalized linear model	
		Ç	
		1/1	
		point	
	6		
	6. What R	function can be used to generate Binomial random variables?)
	Wilder	Tanedon can be used to generate binomial random variables.	
		qbinom	
	\bigcirc	pbinom	
	\bigcirc	rbinom	
	Corre	ect	
	\bigcirc	dbinom	

Week 4 Qui Quiz, 10 questions	Z	point	10/10 points (100%)
		aspect of the R runtime does the profiler keep track of when ansision is evaluated?	n R
		the function call stack	
	Corre	ect	
		the global environment	
	\bigcirc	the working directory	
		the package search list	

1/1 point

10/10 points (100%)

8.

Consider the following R code

1 library(datasets)
2 Rprof()
3 fit <- lm(y ~ x1 + x2)
4 Rprof(NULL)</pre>

(Assume that y, x1, and x2 are present in the workspace.) Without running the code, what percentage of the run time is spent in the 'lm' function, based on the 'by.total' method of normalization shown in 'summaryRprof()'?

100%

Correct

When using `by.total' normalization, the top-level function (in this case, `lm()') always takes 100% of the time.

- 50%
- 23%
- It is not possible to tell

Week 4 Quiz Quiz, 10 questions	Z	1 / 1 point	10/10 points (100%)
	9.		
	When u	ising 'system.time()', what is the user time?	
		It is the time spent by the CPU waiting for other tasks to finish	
	\bigcirc	It is a measure of network latency	
	0	It is the time spent by the CPU evaluating an expression	
	Corre	ect	
		It is the "wall-clock" time it takes to evaluate an expression	
	~	1 / 1 point	
	take ad	nputer has more than one available processor and R is able to vantage of that, then which of the following is true when using a time()'?	
		elapsed time is 0	
	\bigcirc	user time is always smaller than elapsed time	
	\bigcirc	user time is 0	
		elapsed time may be smaller than user time	
	Corre	ect	

Week 4 Quiz

Quiz, 10 questions

10/10 points (100%)

