

MODULE-3
DISTRIBUTIONS AND REGRESSION MODELING

Objectives

edureka!

At the end of this module, you will be able to:

- → Understand what is Normal distribution
- → Interpreting z-scores and calculating percentiles
- → Binomial Distribution
 - » Definition, properties, conditions
 - » Calculating probabilities
 - » Mean and standard deviation
- → Understand the Milgram Experiment

Course Topics

edureka!

- → Module 1
 - » Statistics and Basic Probability
- → Module 2
 - » Conditional Probability and Bayesian Inference
- → Module 3
 - » Probability Distributions and Regression Modelling

edureka!

Normal Distribution

- \rightarrow Unimodal and symmetric
 - » Shape is Bell curve
- → Adheres to some guidelines about how variably the data is distributed around the mean

A HR manager has consolidated the appraisal feedback obtained from various managers and has given ratings for a large number of employees at a corporate. If the HR manager reports the mean ratings as 60, the minimum as 30, and the maximum as 90, what could be the (approx.) standard deviation?

i. 1 ii. 10

iii. 30

iv. 45

In India, different universities and colleges have different grading methods. Few students from across the country has applied for a software engineering position at a company.

The manager wants to determine which of the two applicants scored better on their standardized test with respect to the other test takers: Anto, who earned an 80 on her Maharashtra University Exams, or Paul who scored a 24 on his University Exam at Bhopal?

 $Maharastra\ scores \approx N(Mean=50, SD=30)$

Bhopal scores $\approx N(Mean = 21, SD = 5)$

www.edureka.co/statistics-essentials-for-analytics

Anto:
$$\frac{80-50}{30}=1$$

Paul:
$$\frac{24-21}{5}=0.6$$

Standardizing with Z scores

- → number of standard deviations above or below the mean
- \rightarrow Z score of mean = 0
- \rightarrow Rare observations: |Z| > 2

$$Z = \frac{Observation - Mean}{SD}$$

edureka!

Percentiles

- → Percentile is the percentage of observations that fall below a given data point
- → The area below the probability distribution curve to the left of that observation
- \rightarrow R command (pnorm(val, mean, sd))

Employees salary in a company are distributed normally with mean 50,000 Rs and standard deviation 30,000 Rs. Ram earns 70,000 Rs. How many percent of employees is Ram earn higher than their salaries?

A friend of you say that he is the top 5% of the salary provided in that company. What is the lowest salary that he could be getting (the same parameters in the previous problem apply here \rightarrow mean : 50000, standard deviation = 30000)

edureka!

Binomial Distribution

- → Definition, properties, conditions
- → Calculating probabilities
- → Mean and standard deviation

$$P(fail) = 0.65$$

edureka!

Bernouilli Random Variables

- → Each student in the experiment can be thought of as a trial
- → A person is labeled a success if he/she passes the exam
- \rightarrow Since only 35% of people pass the exam, probability of success is p = 0.35
- → When an individual trial has only two possible outcomes, it is called a Bernouilli random variable

edureka!

Suppose we randomly select four individuals to participate in this experiment. What is the probability that exactly 1 of them will pass the exam?

- → Four individuals
 - A. Anto
 - B. Binto
 - C. Cinto
 - D. Dinto
- → Multiple scenarios where "exactly 1 passes"

Scenario 1: OR

Scenario 2:

OR

Scenario 3: OR

Scenario 4:

$$\frac{0.35}{(A) \text{ pass}} \times \frac{0.65}{(B) \text{ fail}} \times \frac{0.65}{(C) \text{ fail}} \times \frac{0.65}{(D) \text{ fail}} = 0.0961$$

$$\frac{0.65}{(A) \text{ fail}} \times \frac{0.35}{(B) \text{ pass}} \times \frac{0.65}{(C) \text{ fail}} \times \frac{0.65}{(D) \text{ fail}} = 0.0961$$

$$\frac{0.65}{(A) \text{ fail}} \times \frac{0.65}{(B) \text{ fail}} \times \frac{0.35}{(C) \text{ fail}} \times \frac{0.65}{(D) \text{ pass}} = 0.0961$$

$$\frac{0.65}{(A) \text{ fail}} \times \frac{0.65}{(B) \text{ fail}} \times \frac{0.65}{(C) \text{ fail}} \times \frac{0.35}{(D) \text{ pass}} = 0.0961$$

$$\frac{0.65}{(A) \text{ fail}} \times \frac{0.65}{(B) \text{ fail}} \times \frac{0.65}{(C) \text{ fail}} \times \frac{0.35}{(D) \text{ pass}} = 0.0961$$

$$\frac{0.65}{(A) \text{ fail}} \times \frac{0.65}{(B) \text{ fail}} \times \frac{0.65}{(C) \text{ fail}} \times \frac{0.35}{(D) \text{ pass}} = 0.0961$$

edureka!

Binomial Distribution

The binomial distribution describes the probability of having exactly k successes in n independent Bernouilli trials with probability of success p

Probability of success to the power of number of successes

Probability of failure to the power of number of failures

edureka!

How many scenarios yield 1 success in 5 trials?

$$n = 5, \quad k = 1$$

$$\binom{5}{1} = \frac{5!}{1! \times (5-1)!}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{1 \times 4 \times 3 \times 2 \times 1} = 5$$

SSFFFFFFF SFSFFFFFF SFFSFFFFFF How many scenarios yield 2 success in 10 trials?

$$n = 10, \quad k = 2$$

$$\binom{10}{2} = \frac{10!}{2! \times 8!}$$

$$= \frac{10 \times 9 \times 8!}{2 \times 1 \times 8!} = 45$$

Binomial Distribution:

If p represents probability of success, (1-p) represents probability of failure, n represents number of independent trials, and k represents number of successes.

$$P(k \text{ successes in } n \text{ trials}) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

edureka!

Conditions

- 1. The trials must be independent.
- 2. The number of trials, n, must be fixed.
- 3. Each trial outcome must be classified as a success or a failure.

Suppose we randomly select four individuals to participate in this experiment. What is the probability that exactly 1 of them will pass the exam?

$$n = 10$$

 $p = 0.24$
 $1 - p = 0.76$
 $k = 8$

$$P(k = 8) = {10 \choose 8} 0.24^8 \times 0.76^2$$
$$= \frac{10!}{8! \times 2!} 0.24^8 \times 0.76^2$$
$$= 0.0002861078$$

dbinom(k, size, p)

Among a random sample of 100 women, how many would you expect to going work? p = 0.24

$$\mu = 100 \times 0.24 = 24$$

Expected value (mean) of binomial distribution: $\mu = np$

S tan dard deviation of binomial distribution: $\sigma = \sqrt{np(1-p)}$

$$\sigma = \sqrt{100 \times 0.24 \times 0.76} = 4.27$$

Project – Part 3

Variable Descriptions in the Data

In order to understand the data, one has to follow the following variable descriptions:

Serial No	Variable	Description
1	Year	1987-2008
2	Month	1-12
3	DayofMonth	1-31
4	DayOfWeek	1 (Monday) - 7 (Sunday)
5	DepTime	actual departure time (local, hhmm)
6	CRSDepTime	scheduled departure time (local, hhmm)
7	ArrTime	actual arrival time (local, hhmm)
8	CRSArrTime	scheduled arrival time (local, hhmm)
9	UniqueCarrier	unique carrier code
10	FlightNum	flight number
11	TailNum	plane tail number

Variable Descriptions in the Data (Contd.)

edureka!

Serial No	Variable	Description
13	CRSElapsedTime	in minutes
14	AirTime	in minutes
15	ArrDelay	arrival delay, in minutes
16	DepDelay	departure delay, in minutes
17	Origin	origin IATA airport code
18	Dest	destination IATA airport code
19	Distance	in miles
20	TaxiIn	taxi in time, in minutes
21	TaxiOut	taxi out time in minutes
22	Cancelled	was the flight cancelled?
23	CancellationCode	reason for cancellation (A = carrier, B = weather, C = NAS, D = security)

Variable Descriptions in the Data (Contd.)

Serial No	Variable	Description
24	Diverted	1 = yes, 0 = no
25	CarrierDelay	in minutes
26	WeatherDelay	in minutes
27	NASDelay	in minutes
28	SecurityDelay	in minutes
29	LateAircraftDelay	in minutes

Snapshot of the Dataset

edureka!

You can take any of the years and try to solve the following problems.

A screenshot containing the 25 first lines may look like this:

Module-3 Problem Statement

- 1. Suppose arrival delays of flights belonging to "AA" are normally distributed with mean 15 minutes and standard deviation 3 minutes. If the "AA" plans to announce a scheme where it will give 50% cash back if their flights are delayed by 20 minutes, how much percentage of the trips "AA" is supposed to loose this money. (Hint: pnorm)
- 2. Assume that 65% of flights are diverted due to bad weather through the Weather System. What is the probability that in a random sample of 10 flights, 6 are diverted through the Weather System. (Hint: dbinorm)
- 3. Do linear regression between the Arrival Delay and Departure Delay of the flights.
- 4. Find out the confidence interval of the fitted linear regression line.
- 5. Perform a multiple linear regression between the Arrival Delay along with the Departure Delay and Distance travelled by flights.

QUESTIONS

Your feedback is important to us, be it a compliment, a suggestion or a complaint. It helps us to make the course better!

Please spare few minutes to take the survey after the webinar.

Thank you.