## — COMBINATORICS FOR L4 —

— January Camp, 2022 — Permutations and Residues —

## WARM-UP.

- Suppose that p is prime. Find all integers n such that the p numbers  $1, 1+n, 1+n+n^2, \ldots, 1+n+n^2+\ldots+n^{p-1}$  are all different modulo p.
- 1. Find all positive integers n with the following property: there exists a permutation  $(a_1, a_2, \ldots, a_n)$  of the set  $\{1, 2, \ldots, n\}$  such that  $a_1 + a_2 + \ldots + a_k$  is divisible by k for  $k = 1, 2, \ldots, n$ .
- 2. For every positive integer n determine the number of permutations  $(a_1, a_2, ..., a_n)$  of the set  $\{1, 2, ..., n\}$  with the following property:  $2(a_1 + a_2 + ... + a_k)$  is divisible by k for k = 1, 2, ..., n.
- **3.** Find all positive integers n with the following property: there exists a permutation  $(a_0, a_1, \ldots, a_{n-1})$  of the set  $\{0, 1, 2, \ldots, n-1\}$  such that the residues of

$$a_0, a_0 + a_1, a_0 + a_1 + a_2, \dots, a_0 + a_1 + a_2 + \dots + a_{n-1}$$
  
form a permutation of this set as well

modulo n form a permutation of this set as well.

4. Let n be a positive integer. Prove that that the residues of

$$0, 0+1, 0+1+2, \dots, 0+1+2+\dots+(n-1)$$

modulo n form a permutation of the set  $\{0,1,2,\ldots,n-1\}$  if and only if n is a power of two.

**5.** On a circle of length  $2^n$   $(n \ge 2)$  given are points  $P_0, P_1, \ldots, P_{2^n-1}$  which are vertices of a regular  $2^n$ -gon, denoted in such a way that the length of the arc  $P_{k-1}P_k$  (measured clockwise) is equal to k for  $k = 1, 2, \ldots, 2^n - 1$ . Let

$$\mathcal{E} = \{ P_k \colon 2 \mid k \} \text{ and } \mathcal{F} = \{ P_k \colon k < 2^{n-1} \}.$$

Prove that sets  $\mathcal{E}$  and  $\mathcal{F}$  are congruent (treated as plane figures).

