

Indira Gandhi Delhi Technical University For Women (Established by Govt. of Delhi vide Act 09 of 2012) Department of Electronics and Communication Engineering

M. Tech-ECE (VLSI Design)

First Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1.	MVD-101	CMOS Analog Circuit Design	3-0-2	4	DCC
2.	MVD-103	Semiconductor Devices for Digital Integrated Circuits	3-0-2	4	DCC
3.	MVD-105	Hardware Description Languages	3-0-2	4	DCC
4.	MVD-107	Advanced IC Processing	3-1-0	4	DCC
5	GEC-101	Generic Open Elective	2-0-0 1-1-0 0-0-4	2	GEC
6.	ROC-101	Research Methodology	3-0-0	3	ROC
		Total credits		21	

Second Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1.	MVD-102	Device Modeling & Circuit simulation	3-1-0	4	DCC
2.	MVD-104	Digital System Design with FPGA	3-0-2	4	DCC
3.	MVD-106	Analog Integrated Circuits	3-1-0	4	DCC
4.	DEC1 xx	Departmental Elective Course ó 1	3-0-2 3-1-0	4	DEC
5.	DEC1 xx	Departmental Elective Course - 2	3-0-2 3-1-0	4	DEC
6	ROC-102	Research Ethics	3-0-0	3	ROC
		Total credits		23	

Third Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1.	MVD-201	ASIC and SoC Design	3-0-2	4	DCC
2.	DEC-2xx	Departmental Elective-3	3-0-2 3-1-0	4	DEC
3.	DEC-2xx	Departmental Elective-4	3-0-2 3-1-0	4	DEC
4	GEC-201	General Open Elective	2-0-0 1-1-0 0-0-4	2	GEC
5.	MVD-251	Dissertation-1/Project Work	-	8	DCC
6.	MVD-253	Industrial Training/Internship	-	1	DCC
		Total credits		23	

Fourth Semester

S. No.	Code	Subject	L-T-P	Credits	Category
1.	MVD-252	Dissertation -2/Project Work	-	20	DCC
		Total credits		20	

List of Departmental Elective Courses

Category	Course Code	Subject	Credits
Departmental	MVD-108	Semiconductor Memory Design	3-0-2
Elective	MVD-110	Digital VLSI design	3-1-0
Course-1	MVD-112	Analog filter Design	3-0-2
	MVD-114	Digital Techniques for High Speed Design	3-1-0
	MVD-116	CMOS Mixed-Signal VLSI Design	3-0-2
Departmental	MVD-118	Advanced Embedded System Design	3-0-2
Elective	MVD-120	Deep Submicron CMOS ICs	3-1-0
Course-2	MVD-122	Digital System Design using Verilog	3-0-2
	MVD-124	MEMS & Microsystems	3-1-0
	MVD-126	Internet of Things	3-1-0
Departmental	MVD-203	Low Power VLSI Design	3-0-2
Elective	MVD-205	VLSI Design Verification and Test	3-1-0
Course-3	MVD-207	Advance Image Processing	3-0-2
	MVD-209	Neural Networks in Embedded Applications	3-1-0
	MVD-211	Nature Inspired VLSI Circuits	3-1-0
Departmental	MVD-213	VLSI Interconnects	3-1-0
Elective	MVD-215	VLSI design Algorithms	3-1-0
Course-4	MVD-217	VLSI Design Techniques for Analog IC	3-1-0
	MVD-219	Artificial Intelligence	3-0-2
	MCS-221	Data Structures	3-0-2

CMOS Analog Circuit Design			
Course Code: MVD-101 Contact Hours: L-3 T-0 P-2 Course Category: DCC	Credits: 4 Semester: 1		

Introduction: The course offers important topics for CMOS analog integrated circuits. It covers circuit operation, circuit analysis, design techniques and methodologies, implementation approaches and key building blocks for integrated circuit designs.

Course Objective:

- Understand, design, and model the CMOS analog circuits.
- Implement the design, simulate and analyse the circuit/results.
- Test the hand calculations using simple models.
- Understand the present hierarchical approach of sub-blocks, blocks, circuits, and systems.

Pre-requisite: Analog Electronics, Linear Integrated Circuits

Course Outcome: The student will be able to:

- Apply knowledge of mathematics, science, and engineering to design and analyse analog integrated circuits like current sources and voltage references for given specifications.
- Identify, formulate, and solve engineering problems in the area of analog integrated circuits.
- Analyse and design single stage MOS Amplifiers.
- Understand the techniques, skills, and modern programming tools such as Cadence, necessary for engineering practice.

Pedagogy: The class will be taught using theory and case based method. Students will be given problems based on design of CMOS integrated circuits. Technology Discussion sessions will be organized on current research challenges and various applications in microelectronics industry.

Contents

UNIT-I	10 Hours	
Introduction to MOSFET device structure and operation, MOS as an amplifier, Biasi	ng in MOS	
amplifier circuits, Small signal equivalent circuit model, Single stage MOS	amplifiers,	
Characterizing amplifiers, MOS internal capacitance and High frequency model,	Frequency	
response.		
UNIT-II	11 Hours	
IC biasing-current sources, Current mirrors and current-steering circuits, Cascade a	and Wilson	
current mirror, Common Source, Common gate and Common drain IC amplifiers, Lov	v frequency	
and High frequency response, noise performance, Multiple-Transistor IC amplifiers, Cascade		
configuration, Folded cascade and self cascade structure, Voltage follower, Flipp	ed voltage	
follower.		
UNIT-III	11 Hours	
MOS differential pair, Small signal operation, Differential gain, Common mode gain	n, Common	
mode rejection ration, Non ideal characteristics, Active loaded differential amplifier, Frequency		
response, Noise Spectrum - sources, types, Thermal and Flicker noise, Representation in circuits,		
Noise bandwidth, Noise figure.		
INIT-IV	10 Hours	

General feedback structure, Negative feedback, Four basic topologies, Loop gain, Stability, Effect

of fe	edback on amplifier poles, Single pole response, Two pole response, Frequency				
	compensation, Compensation Techniques, Pole splitting.				
Text l	Text Books:				
1	Sedra and Smith, õMicroelectronic circuitsö, 7 th Edition, Oxford University Press, 2017.				
2	Kenneth R. Laker and Willy M.C. Sansen, õDesign of Analog Integrated Circuits and				
	systemsö, 2 nd Edition, McGraw-Hill, 2010.				
3	Philip E. Allen and Douglas R. Holberg, õCMOS Analog Circuit Designö, 3 rd Edition,				
	Oxford University Press, 2012.				
Refer	Reference Books:				
1	Behzad Razavi, õDesign of Analog CMOS Integrated Circuitö, 2 nd Edition, Tata McGraw				
	Hill, 2017.				
2	Gray R.Paul, Hurst J. Paul, Lewis H. Stephen and Meyer G. Robert, õAnalysis and Design				
	of Analog Integrated Circuitsö, 5 th Edition, John Wiley and Sons, 2012.				
3	R. Jacob Baker,ö CMOS: Mixed-Signal Circuit Designö, 2 nd Edition, John Wiley and				
	Sons, 2009.				

Semiconductor Devices for Digital Integrated Circuits		
Course Code: MVD 103	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 1	
Course Category: DCC		

Introduction: Semiconductor fundamentals, PN junctions, metal-semiconductor contacts, metal-oxide semiconductor capacitors and field-effect transistors, bipolar junction transistors.

Course Objective:

- To acquire knowledge about different types of semiconductor memories.
- To study about architecture and operations of different semiconductor memories.
- To comprehend the low power design techniques and methodologies.
- To understand the principles and fundamentals of semiconductor electronic and photonic devices and their applications.
- To provide students with the necessary basic understanding and knowledge in semiconductors so that they understand various applications in discrete and integrated analogue electronic circuits.

Pre-requisite: Semiconductor fundamentals

Course Outcome: On successful completion of the course, the students will be able to

- Comprehend the properties of materials and its application in electronics
- Experiment the knowledge of semiconductors to illustrate the functioning of basic electronic devices.
- Analyse the application of the semiconductor devices.
- Construct the control applications using semiconductor devices.
- Define the fabrication methods of integrated circuits.
- Develop and construct the semiconductor devices for special applications.

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

Contents

UNIT-I	10 Hours	
Elemental and compound semiconductors, Narrow & wide energy gap semiconductors	s, Direct &	
Indirect semiconductors, Choice of semiconductors for specific applications, F		
semiconductor fundamentals, Energy band, Carrier transport phenomena, Recombin	nation and	
generation, surface effects, traps.		
UNIT-II	11Hours	
PN junction, Schottky junction, Ohmic contacts, BJT device design, nonideal effects, frequency		
limitations, MOSFET Operation, Subthreshold conduction, Mobility variation,		
saturation threshold voltage modifications, Threshold adjustment by ion implantation, Lightly		
doped drain MOS transistor, Breakdown voltage, Radiations and Hot electron effects.		
UNIT-III	11Hours	
Introduction to modern VLSI Devices, Polysilicon emitter transistors, Heterojuno	ctions, 2D	
electron gas, Band alignment, SOI MOSFETs, PDSOI, FDSOI, Source/drain enginee	ring, Brief	
Introduction to HEMTS, MESFET (Metal semiconductor FET) and MODFET (Modulation		
doped FET).		
UNIT IV	10Hours	
Navy VI CI daving atmospheres from halls to COI to multi-cate. Double cate MOCEET	P. D. DDD	

New VLSI device structures from bulk to SOI to multi-gate, Double gate MOSFET, FinFET, SiGe technology, Strain influence on electron mobility, Strain enhanced Si based transistors, Strained Si CMOS, SiGe HBTs, SiGe MODFETs, Nanowires.

Text B	ooks
1	Donald A. Neamen, õSemiconductor Physics and devicesö, 4 th Edition, Tata McGraw
	Hill, 2017.
2	Taur and Ning, õFundamental of Modern VLSI Devicesö, 2 nd Edition, Cambridge Press,
	2016.
3	Balbir Kumar, Shail B. Jain, õElectronic Devices and Circuitsö, PHI Publication, 2013.
Refere	nce Books
1	Ben G. Streetman & S. Banerjee, õSolid state electronic devicesö, 6 th Edition, Prentice Hall, 2010.
2	A. G. Milnes, õSemiconductor Devices and Integrated Electronicsö, Springer, 2012.
3	Jan M.Rabaeyö Digital Integrated Circuits: A design perspectiveö, Pearson, 2016.

Hardware Description Languages			
Course Code: MVD 105	Credits: 4		
Contact Hours: L-3 T-0 P-2	Semester: 1		
Course Category: DCC			

Introduction: This course teaches basics as well as advance topics of Verilog and basics of VHDL. The objective of this course is to introduce a hardware description language (HDL) for the specification, simulation, synthesis and implementation of digital logic systems. The students will have design practice sessions and will implement digital logic systems with electronic design automation (EDA) tools.

Course Objective:

- Understand a hardware description language (HDL) for the specification, simulation, synthesis and implementation of digital logic systems.
- Implement the design digital logic systems with commercial electronic design (EDA) tools.
- Understand the usage of digital systems.
- Develop the synthesis of digital systems for programmable logic VLSI.

Pre-requisite: Student must have studied

- Digital design fundamentals: Logic gates and boolean logic.
- Sequential circuit fundamentals: State machines and sequential logic.
- Basic programming skills as procedural programming in C.

Course Outcome:

- Implementation of logic fundamentals using hardware description languages.
- Comprehend the difference between procedural programming and hardware description languages.
- Develop synthesizable Verilog code for Combinational and Sequential logic circuits.
- Execute code state machines in a hardware description language.
- Analyse and develop basic logic pipelined machines.
- Understand basic programmable logic architectures.
- Synthesize working circuits using programmable logic.
- Understand sequential and combinatorial logic timing.
- Understand the impact of actual routing and circuit parasitics.

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I	10Hours
Introduction to VHDL, Behavioural, Data flow, Structural models, Simulation cycles, Process,	
concurrent & sequential statements, Loops, Delay models, Library, Packages,	Functions,
Procedures, Test bench, Design of digital circuits using VHDL.	
UNIT-II	11Hours
Introduction to Verilog HDL, Hierarchical modelling concepts, Lexical conven	tions, Data
types, System tasks and Compiler directives, Modulus and ports, Variable, Arra	ys, Tables,
operators, Expressions, Signal assignments, Nets, Registers, Concurrent &	Sequential
Constructs, Tasks & Functions.	
UNIT-III	11Hours
Gate-level Dataflow and behavioural modelling using Verilog HDL, Advanced Ver	rilog topics,
Timing and delays, Delay models, Path delay modelling, Timing checks, St	witch level
modeling, User defined primitives, Programming language interface.	

	UNIT-IV 10Hours		
Logic S	ynthesis with hardware description language, Impact of logic synthesis, Synthesis		
design fl	design flow, RTL description, Technology mapping and optimization, Technology library,		
Design c	onstraints, Introduction to System Verilog, Verification techniques		
Text Boo	oks		
1	J. Bhaskar, õVerilog HDL Synthesis ó A Practical Primerö, 3 rd Edition, Star Galaxy		
	Publishing 2008.		
2	S. Palnitkar, õVerilog HDL: A Guide to Digital Design and Synthesisö, 2 nd Edition,		
	Prentice Hall, 2006.		
3	Mintz, Mike, Ekendahl, Robert, õHardware Verification with System Verilog: An		
	Object-Oriented Framworkö, 1 st Edition, Springer, 2010.		
Reference	ce Books		
1	Peter J Ashenden, õThe Designerøs Guide to VHDLö, 3 rd Edition, Morgan Kaufmann		
	Publishers, 2011.		
2	Stefan Sjoholm&LennartLindth, õVHDL for Designersö, 2 nd Edition, Prentice Hall,		
	2008.		
3	Michael D. Ciletti,ö Advanced Digital Design with the Verilog HDLö, 2 nd Edition,		
	Prentice Hall, 2010.		

ADVANCED IC PROCESSING		
Course Code: MVD 107	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 1	
Course Category: DCC		

Introduction: This course will examine the process technology that has enabled the integrated circuit revolution and investigate new technologies and layout/circuit techniques aimed at sustaining the current rate of progress in integrated circuits. The course emphasizes the physical principles and mathematical models used to characterize fabrication and inspection processes in micro fabrication technology.

Course Objective:

- Integration density and performance of analog and digital integrated circuits have undergone an astounding revolution in the last couple of decades.
- To understand the clock frequencies of microprocessors
- To analyse both logic IC\(\phi\)s and memories, integration complexity and density.
- The goal is to achieve a working knowledge of the driving and limiting factors in circuit performance, of the fabrication and design techniques that influence performance, and of likely future trends.

Pre-requisite: Basic solid-state device design, operation, physics, diodes, bipolar junction transistors, and MOS field-effect transistors, and methods for their wafer-level fabrication. Familiarity with integrated circuit processing techniques, including oxidation diffusion, ion implantation, epitaxy, deposition, and etching.

Course Outcome: After successful completion of the course student will be able to

- Understand about various types of modern technologies.
- Identify the working knowledge of the driving and limiting factors in circuit performance of the fabrication and design techniques.
- Implement the fabrication process for designing digital ICs.
- Compare the various analog and digital circuits.

Pedagogy: The course Advanced IC Processing has been designed to enable the student to keep them in pace with the integrated circuit revolution and investigate new technologies and layout/circuit techniques provide a thorough exposure to the topic with the opportunity for flexible scheduling. The course materials consist of four basic elements: the lecture, course notes, problems and solutions, and the textbook. These elements have been carefully integrated, with each having an important role in the overall effectiveness of the course.

UNIT-I	10 Hours		
Overview of modern CMOS technology, Substrate selection, Active region formati	on, Device		
isolation, Well formation, Gate and source/drain formation, Contact and local int	terconnects,		
Multilevel metal formation, Comparison between bulk and SOI CMOS technologies.	Multilevel metal formation, Comparison between bulk and SOI CMOS technologies.		
UNIT-II	11 Hours		
Crystal growth, Crystal structure, Crystal defects, Raw materials and purification, Electronic grade			
silicon, Czochralski and float-zone crystal growth methods, Wafer preparation and specifications,			
SOI wafer manufacturing clean rooms, Wafer cleaning and gettering, Basic	concepts,		
Manufacturing methods and equipment, Measurement methods.			
UNIT-III	10 Hours		
Photolithography, Light sources, Photoresists, Wet and Dry oxidation, growth kinetics	, Diffusion,		

Fickøs laws, Ion implantation, Chemical and physical vapour deposition, Epitaxial growth, Deposition of dielectrics and metals commonly used in VLSI, Wet etching, Plasma etching, Etching of materials used in VLSI, Contacts, Vias, Multi-level Interconnects, Silicided gates and S/D regions, Reflow & planarization

UNIT-IV 10 Hours

Functions of packaging, Rentøs Rule, Packaging techniques, Through hole, Surface mount, Types of single chip packaging, Bond wire, Flip chip technology, Tape automated Bonding, Thermal Management, Interconnection topology, Introduction to system packaging, System-in-package, Multi-Chip Module, 3D Packaging, Future Trends

Text Books

- James D. Plummer, M.D. Deal and P.B.Griffin, õSilicon VLSI Technology, Fundamentals, Practice and Modelingö, 1st Edition, Pearson Education, 2009.
- 2 Sorab Ghandhi, õVLSI Fabrication Principlesö, 2nd Edition, John Wiley and Sons, 2008.
- 3 Yasuo Tarui, ö VLSI Technology: Fundamentals and Applicationsö, Springer, 2011.

Reference Books

- H. B. Bakoglu, õCircuits, Interconnections, and Packaging for VLSIö, 1st Edition, Addison Wesley Longman Publishing, 1990.
- 2 S.M.Sze, õVLSI Technologyö, 2nd Edition, McGraw-Hill, 2017.

Device Modeling & Circuit Simulation		
Course Code: MVD 102	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 2	
Course Category: DCC		

Introduction: The course deals with the study of device models that are used in the design and analysis of circuits using any simulator.

Course Objective:

- To explain the fundamental knowledge of semiconductor devices.
- To provide an introduction to the basic semiconductor physics/solid-state physics needed to understand device modelling of electronic devices.
- To understand the operation of several basic semiconductor devices: p-n junctions, metal-semiconductor junctions, Diodes, metal oxide semiconductor field effect transistors (MOSFETs), Complementary MOSFETs (CMOS).
- To provide fundamental understanding of device modeling and numerical simulation techniques.

Pre-requisite: Basic course of VLSI design

Course Outcome: After successful completion of the course student will be able to

- Understand concepts of MOSFET modelling.
- Implement the device models on software.
- Design and implement the codes for device modelling.
- Implement the analog and digital circuit simulation.

Pedagogy: Learning modes will be Power Point slides, assignments and research paper discussion. Use of ICT modes and classroom teaching.

Contents		
UNIT-I	10 Hours	
Introduction to SPICE modelling, Growth of fables design industry, SPICE modelling	of resistor,	
Capacitor, Inductor, Semiconductor devices such as Diode, BJT, FET, MOSFET.MOSFET model		
parameters, Introduction to MOSFET SPICE Level 1, Level 2 and Level 3 models. CAD tools,		
Introduction to Device simulators, Tools for simulating device performance, Introduction to		
Circuit simulators		
UNIT-II	10 Hours	
Circuit simulation techniques ,DC analysis, AC analysis, Transient analysis, Modelling of Process		
Variation, Process corners, Monte Carlo simulation, and Sensitivity/worst cas	e analysis,	
Simulation of digital and analog circuits, Transfer function, Frequency response, Noise analysis,		
Distortion and Spectral analysis.		
UNIT-III	10 Hours	
MOSFET DC model, Static model and dynamic model, MOSFET Models for Digital Mosfet Mosfet Models for Digital Mosfet	tal Design,	
	1.000	

MOSFET DC model, Static model and dynamic model, MOSFET Models for Digital Design, performance considering short channel and narrow width effects, Mechanical stress etc. MOSFET Models for Analog Design, Long Channel MOS model, Short Channel MOS model. Large signal and Small signal model. Analog Circuit Performance Parameters: Impact of parasitic effects, Process /temperature variation, Device reliability effects. Effect of temperature on model parameters.

	UNIT-IV	11 Hours	
Data A	Acquisition and model parameter measurements, MOSFET models for n	nixed Analog-	
Digital	Digital circuit design, MOSFET models for Radio frequency circuit design, Deep submicron		
MOSF	MOSFET models, Power MOSFET Simulation Models, Advanced MOSFET Models for Circuit		
Simula	ators, Brief overview of BSIM and EKV model.		
Text B	Books		
1	Tor A. Fjeldly, Trond Ytterdal, Michael S. Shur, õIntroduction to Device	Modeling and	
	Circuit Simulationö Wiley, Latest Edition.		
2	Paul W. Tuinenga, õSPICE: A Guide to Circuit Simulation and Analysis U	Jsing PSpiceö,	
	3 rd Edition, Pearson, 2006.		
3	Paolo Antognetti and Giuseppe Massobrio, õSemiconductor Device M	Modeling with	
	SPICEÖ, 2 nd Edition, McGraw-Hill, 2010.		
Refere	ence Books		
1	Y. Tsividis, õOperation and Modeling of MOS transistorsö, 3 rd Edition, Oxf	ord University	
	Press, 2010.		
2	Jacob Millman, õMillman's Electronic Devices and Circuitsö, 4 th Edition,	McGraw Hill,	
	2015.		
3	Muhammad H. Rashid, õIntroduction to PSpice Using OrCAD for	Circuits and	
	Electronicsö, Pearson, 2015.		

Digital System Design with FPGA		
Course Code: MVD-104	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DCC		

Introduction: Digital Systems Design with FPGAs and CPLDs explains how to design and develop digital electronic systems using programmable logic devices (PLDs). This deals with case study designs using a variety of Field Programmable Gate Array (FPGA) and Complex Programmable Logic Devices (CPLD). The also involves the study of ASM chart and Arbiter Design for a range of applications.

Course Objective:

- To understand various complex programmable Logic devices of different families.
- To study Field programmable gate arrays and realization techniques.
- To study various architecture of combinational/ sequential circuits.

Pre-requisites: Basic knowledge of Programmable logic devices, combinational and sequential logic circuit design and memories.

Course Outcome: After successful completion of the course student will be able to

- Demonstrate the use and application of Boolean algebra in the areas of digital circuit reduction, expansion, and factoring.
- Design and analysis of combinational and sequential digital systems.
- Simulate and debug digital systems described in VHDL.
- Apply complex digital circuits at several level of abstractions.
- Implement logic on an FPGA.
- Understand different memory types and technologies.
- Design and implement hardware digital systems incorporating memory modules.

Pedagogy: Classroom teaching will be supported by Learning Management System (LMS) and multimedia. Learning modes will include PowerPoint slides, assignments and research paper discussion.

UNIT-I	11 Hours
Introduction to VLSI Design, Review of Latch and Flip-Flops, Design of Combinati	onal circuit
and AOI Logic Implementation, Design of Adders, Multipliers, Code Convertors,	Magnitude
Comparator, Multiplexer and Demultiplexer, CMOS Adder Architectures, ALI	U, Verilog
Modeling of Combinational Circuits.	
UNIT-II	11 Hours
Design of sequential circuits (Various Shift Registers and Counters), Review of stat	e table and
State diagram, Mealy and Moore state machines, Implementation of Sequentia	al Circuits,
Modeling of Verilog Sequential Circuits, Analysis and Synthesis of Sequential Circuits.	
UNIT-III	10 Hours
RTL coding guidelines, Coding organization- complete realization, Writing a test ber	ich, System
design using ASM chart, Micro programmed design, Design flow of VLSI Circuits, Simulation of	
combinational and sequential Circuits, Analysis of waveforms, Optimizing data paths.	
UNIT-IV	10 Hours
PCI Arbiter Design using ASM Chart, Semiconductor Memories- ROM, RAM, SRAM, EPROM,	
Memory classification, Organization and technologies, Design, Architecture, Implementation of	
ROM chip, HDL based memory design examples. Programmable logic devices, Programmable	
array logic, CPLD and FPGA.	

Text Books		
1	Ian Grout, õDigital Systems Design with FPGAs and CPLDsö, 1st Edition Newnes, 2011.	
2	Manjita Srivastava, Mahesh C. Srivastava, and Atul K. Srivastava,öDigital Design- HDL	
	Based Approachö, Cengage Learning, 2010.	
3	Kevin Skahill, õ VHDL for Programmable Logicö, Pearson Education, 2006.	
Reference Books		
1	A. Anand Kumar, õFundamentals of Digital Circuitsö, 3 rd Edition, PHI publication, 2014.	
2	Roth Kinney, õFundamentals of Logic Designö, 7 th Edition, CengagE Learning, 2015.	
3	Wayne Wolf, õFPGA-Based System Designö, Pearson Education, 2004	

Analog Integrated Circuits		
Course Code: MVD-106 Contact Hours: L-3 T-1 P-0	Credits: 4 Semester: 2	
Course Category: DCC		

Introduction: Analog integrated circuit design is used for designing operational amplifiers, linear regulators, oscillators, active filters, and phase locked loops. The semiconductor parameters such as power dissipation, gain, and resistance are more concerned in the designing of analog integrated circuit.

Course Objective:

- To understand the theoretical & circuit aspects of Op-amp, which is the backbone for the basics of Linear integrated circuits.
- To perform analysis of circuits based on linear integrated circuits.
- To design circuits and systems for particular applications using linear integrated circuits.
- Fundamentals of analog and digital integrated circuits.

Pre-requisite: Knowledge of mathematics on secondary education level (operations with fractions, solving system of the linear equations, algebraic handling with equations) and electronics (principles of the passive elements, describe simple circuit by using differential equations).

Course Outcome: After successful completion of the course student will be able to

- Understand fundamental properties of the electronic filters in time and frequency domain.
- Design passive as well as active filter for particular application including calculation of the values of circuit elements.
- Understand the differences between theoretical, practical & simulated results in integrated circuits.
- Interpret function of the crystal filters and structures with switched capacitors
- Analyse and design filtering networks.

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I	10 Hours
Signals, Information, Interference and noise, signal classification, Dynamic range,	S/N ratio,
Functions in analog signal processing, Linear non-linear functions, Impedance	adaptation,
Amplitude and level matching, Terminal matching, Buffering filtering, Linearization	on, Domain
conversions, Errors in analog signal processing,	
UNIT-II	11 Hours
Voltage amplification, Practical voltage amplifiers, Effects of finite input impedance	s, Building
blocks for voltage amplifiers, Current to voltage and voltage to current conversion	on, Current
Integrators, Mirrors, Amplifiers, Conveyors.	
UNIT-III	11 Hours
CMOS analog integrated circuits, Analog building blocks, Op-amp design, Pract	ical opamp
characteristics and model, DC offset and DC bias currents, Gain, bandwidth and slew	rate, Noise,
Input stage, Output stage, CMOS OTA, Ideal model, OTA building block circuits,	Design of
simple OTA.	
UNIT-IV	10 Hours

Signa	Signal rectifications, AC/DC conversion, CMOS implementation of Adder, Subtractor, Squarer,		
Analo	Analog Multiplier, Analog Dividers, Differentiator and Integrator circuits, Impedance		
transf	transformation and conversion, Analog multiplexers.		
Text	Text Books		
1	Pallas Areny and John G.Webster, õAnalog Signal Processingö, Student Edition, John		
	Wiley, 2011.		
2	Tlelo-Cuautle and Esteban, õIntegrated Circuits for Analog Signal Processingö, 1st Edition,		
	Springer, 2013.		
3	Behzad Razavi, õDesign of Analog CMOS Integrated Circuitsö, 2 nd Edition, McGraw Hi		
	2017.		
Refer	rence Books		
1	Ismail, Mohammed and Sawan, Mohamad, õAnalog Circuits and Signal Processingö, The		
	Springer International Series in Engineering and Computer Science, 2012.		
2	M.Ismail and T. Fiez, õAnalog VLSI Signal and Information Processingö, 2 nd Edition,		
	McGraw Hill, 2000.		
3	Tahira Parveen, õTextbook of Operational Transconductance Amplifier and Analog		
	Integrated Circuitsö, I.K International Publishing house Pvt. Ltd, 2013.		

Semiconductor Memory Design		
Course Code: MVD 108	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DEC		

Introduction: This course gives basics of RAM, ROM etc in semiconductor field. Semiconductor memory design is an essential course of today's electronics and is used in any equipment that uses a processor of one form or another.

Course Objective:

- To acquire knowledge about different types of semiconductor memories.
- To study about architecture and operations of different semiconductor memories.
- To comprehend the low power design techniques and methodologies.
- To verify the theoretical concepts through laboratory and simulation experiments.

Pre-requisite: Basic SRAM, ROM memory knowledge

Course Outcome: After successful completion of the course student will be able to

- Analyze different types of RAM, ROM designs.
- Analyze different RAM and ROM architecture and interconnects.
- Analyze the design and characterization technique.
- Understand different memory testing and design for testability.
- Identify new developments in semiconductor memory design.

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I	10Hours	
MOS RAM technologies, SRAMs, architecture, SRAM cell and peripheral, Circuit operation,		
SRAM Technologies, SOI Technology, advanced SRAM architectures and technologies,		
DRAM technology development, CMOS SRAMs cell, Theory and advanced cell structures.		
UNIT-II	11Hours	
Nonvolatile memories, MOS ROMs, PROMs, EPROMs, One-Time Programmable EPROMS,		
Electrically erasable PROMs, EEPROM technology and architecture, Nonvolatile SRA	AM-Flash	
Memories, advanced Flash Memory architecture.		
UNIT-III	10Hours	
Memory failure modes, Reliability modelling, Prediction design for reliability, Reliability test Structure, Reliability screening and qualification, Radiation effects, Radiation hardening,		
Process and techniques, Radiation hardened memory characteristics, Soft errors.		
UNIT IV	11Hours	
Ferroelectric random access memories (FRAMs), Gallium arsenide FRAMs, Analog memories,		
resistive RAMs, Experimental memory devices, Memory hybrids and MCMs (2D), Memory		
stacks and MCMs(3D), Memory cards, High density memory packaging.		
Text Books		
Ashok K. Sharma, õAdvanced Semiconductor Memories: Architectures, Des Applicationsö, 2 nd Edition, John Wiley, 2009.	signs, and	
A.K Sharma, õSemiconductor Memories Technology, Testing and Reliabilityö, 1 IEEE Press, 2003.	1 st Edition	
3 Santosh K. Kurinec and KrzysztolIniewski, õNanoscalesemiconducter Memori Press, 2017.	esö, CRC	
Reference Books		
1 Luecke Mire Care, õSemiconductor Memory Design and Applicationö, 1st Edi	tion, Mc-	

	Graw Hill, 1999. Belty Prince, õSemiconductor Memory Design Handbookö, 1 st Edition, IEEE Computer	
2		
	Society, 2001.	
3	William D. Brown, and Joe E.Brewer, õNonvolatile Semiconductor Memory	
	Technologyö, IEEE Press, 2018.	

Digital VLSI Design		
Course Code: MVD-110	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 2	
Course Category: DEC		

Introduction: This course brings circuit and system level views on design on the same platform. The course starts with basic device understanding and then deals with complex digital circuits keeping in mind the current trend in technology. The course aims at covering the important problems/algorithms/tools so that students get a comprehensive idea of the whole digital VLSI design flow. VLSI Design: High level Synthesis, Combinational and Sequential Synthesis Logic Synthesis.

Course Objective:

- To introduce digital integrated circuits
- To provide an understanding of CMOS devices and manufacturing technology.
- To provide an understanding of CMOS logic gates and their layout.
- To design Combinational and sequential circuit.
- To provide an understanding of memory design.

Pre- requisites: Basic knowledge of MOSFET, CMOS, Digital design and Memory elements.

Course Outcome: After successful completion of the course student will be able to

- Analyse the CMOS layout levels, understand CMOS fabrication.
- Implement digital logic designs of various circuits.
- Analyse performance issues and the inherent trade-offs involved in system design

Pedagogy: The course materials consist of four basic elements: the lecture, course notes, problems and solutions, and the textbook. These elements have been carefully integrated, with each having an important role in the overall effectiveness of the course. Learning modes will be PowerPoint slides, assignments and research paper discussion.

	UNIT-I	11 Hours	
Revie	Review of micro electronics, MOS structure and operation, Introduction, Structure and operation		
of M	of MOSFET, Threshold voltage, Inversion region, Current-voltage characteristics, CMOS		
Techn	Technology, MOS capacitance, CMOS fabrication process.		
	UNIT-II	11 Hours	
MOS	inverter and its characteristics, Inverter, Static CMOS Inverter, Propagation de	elay, Power	
dissip	dissipation, Parasitic capacitances and resistances- input capacitance, Interconnect Line/ Wire,		
Parasi	tic resistance, Impact of resistance, RC delay model.		
	UNIT-III	10 Hours	
Combinational static logic circuits, MOS logic, Complementary logic, AOI and OAI gates,			
Pseudo- nMOS Logic, Sequential logic circuits, Introduction, Sequential logic circuit, Latch and			
Flip-flop, Registers and counters, Dynamic logic gates.			
	UNIT-IV	10 Hours	
Semiconductor Memory, RAM, SRAM, Non Volatile memory, Adder and Multiplier circuits,			
Adderøs Circuit, CMOS adder architecture, Subtractor, Multiplier, ALU.			
Text Books			
1	1 Ajay Kumar Singh, õDigital VLSI Designö, Eastern Economy Edition, PHI publication,		
	2010.		
2	Partha Pratim Sahu,ö VLSI Designö, 1st Edition, McGraw Hill Education, 2013		
3	Randall L.Geiger, Phillip E. Allen, and Noel R. Strader, õVLSI Design Tec	hniques for	

	Analog and Digital Circuitsö, Indian Edition, McGraw Hill Education.	
Reference Books		
1	Weste and Eshraghian, õPrinciples of CMOS VLSI Designö Addison Wesley, 3 rd Edition.	
2	Bushnell and Agrawal, õEssentials of VLSI Testing for Digital, Memory and Mixed-	
	Signal VLSI Circuitsö, Kluwer Academic Publishers, 2002.	
3	Debaprasad Das, õVLSI Designö, Oxford, 2 nd Edition, 2016.	

Course Code: MVD-112 Contact Hours: L-3 T-0 P-2 Course Category: DEC Credits: 4 Semester: 2

Introduction: This course covers the techniques of modern signal processing that are fundamental to a wide variety of application areas. Special emphasis is placed on the architectures and design techniques for active and passive filters.

Course Objective:

- To understand the active filter design
- To explain the normalization, Frequency and impedance scaling.
- Determination of the transfer functions of filters.
- Frequency transformations, design of highpass, bandpass and band reject filters
- Active RC realizations of the transfer function of the filter
- To analyse the Elliptic (Cauer) approximation and filter design
- Introduction of passive filter design
- Design of doubly terminated passive LC ladder Cauer approximations
- Active RC simulation of passive doubly terminated LC filters

Pre-requisite: Signals, Systems and Circuits, Operational amplifiers

Course Outcome: After successful completion of the course student will be able to

- Understand the operation of electronic filters and describe them in the frequency domain from their magnitude characteristics
- Design lowpass, highpass, bandpass and band reject passive and active RC filters with all pole and rational approximations using the appropriate mathematics or filter tables.
- Implement the software system simulation tools to verify filter specifications in the frequency domain
- Analyse software tools to design frequency selective electronic circuits.
- Collaborate with fellow students in a team, in order to solve complex filter design and implementation problems

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I		
Monolithic filters, Digital filters, Analog discrete-time filters, Analog continous-time filters,		
Introduction to analog filters, CMOS filters descriptive terminology, Filter transmiss	sion, Types	
and specifications, Filter transfer function, Relationship among the time domain,	Frequency	
domain, s domain.		
UNIT-II 11 Hours		
Active and passive filter synthesis. Standard low-pass approximations, Butterworth, Chebyshev,		
Inverse Chebyshev, Cauer, Bessel, Elliptical, Frequency transformations, First-order and Second		
order filter functions, Active filters, Inductor based filter, Two Integrator loop topology.		
UNIT-III 11 Hours		
Switched capacitor filters. Basic principle and practical circuits, Continuous type filters MOSFET-		

C, OTA-C filters, Implementation techniques towards low power supply voltages and low distortion, Frequency and time domain relationship, Pole and Zero locations.

UNIT-IV

10 Hours

Filter synthesis for very high frequencies, Synthesis methods, Biquads, Gyrators, Generalized immittance converter (GIC), Inductor simulation using GIC, Introduction to Log-domain filters, Analog adaptive filters, Low voltage Analog filters in nanometer CMOS.

Text Books

- M. E. Van Valkenburg and Mac Elwyn Van Valkenburg, õAnalog Filter Designö 1st Edition, Oxford University Press, 2000.
- 2 Lawrence P. Huelsman, õActive and Passive Analog Filter Design: An Introduction, volume 1ö, 1st Edition, McGraw-Hill, 1993.
- Williams and Fred Taylor, õElectronics Filter Designö, McGraw-Hill Education, 4th Edition, 2006.

Reference Books

- Larry D. Paarmann, õDesign and Analysis of Analog Filters: A Signal Processing Perspectiveö, 1st Edition, Kluwer Academic Publishers, 2001.
- Arthur B. Williams, õAnalog Filter and Circuit Design Handbookö McGraw- Hill Education, 2014.
- Rolf Schaumann, Haiqiao Xiao, Mac E. Van Valkenburg, õDesign of Analog Filtersö, 2nd Edition, Oxford University Press, 2009.

Digital Techniques for High Speed Design			
Course Code: MVD 114	Credits: 4		
Contact Hours: L-3 T-1 P-0	Semester: 2		
Course Category: DEC			

Introduction: Digital techniques for high speed design, is a subject that deals with the basic theory of different trends in high-speed design, backplane configurations, signal integrity and signaling technologies. Further this course will give some idea of memory signaling technologies, differential and mixed-mode parameters, simulation, verification and layout of high speed designs and advances in their modelling and design.

Course Objective:

- To enhance the knowledge about the real challenges faced by the designers while preparing high speed designs.
- To meet the signaling technologies of high speed devices as well as circuits.
- To provide some idea of good design principles, and to simplify the process for simulation, verification and layout of high speed designs.
- To understand the in-depth knowledge of effects of various parameter s variations on the designed circuit.
- To utilize the knowledge to design high speed designs as per the given specifications.

Course Outcomes: After successful completion of the course student will be able to

- Understand the knowledge of different trends in high speed design.
- Understand the memory signalling technologies.
- Analyse all the differential and mixed mode S parameters needed to be considered in time domain.
- Understand the Advances in design, Modeling, Simulation and measurement validation of high performance interconnects.

Pedagogy: Classroom teaching which focuses upon relating the textbook concepts with real world phenomena, along with periodic tutorial classes to enhance the problem-solving ability.

UNIT-I	10 Hours	
Trends in High-Speed Design, backplane configurations, SerDes technology, Signal integrity,		
Signaling technologies and devices, Gunning transceiver Logic, Low voltage	differential	
signaling(LVDS), Bus LVDS, LVDS multipoint, High-speed transceiver logic and	Stub-series	
terminated logic, ECL, Current-mode logic, FPGAs - 3.125 Gbps rocket IOs and	Hard copy	
devices, Fiber optic components, High speed interconnects and cabling.		
UNIT-II	11 Hours	
Memory device overview, memory signaling technologies, double data rate SDRAM (DDR,		
DDR2), GDDR3, ZBT, FCRAM, SigmaRAM, RLDRAM, DDR SRAM, Flash, FeRAM, and		
MRAM, Quad data rate SRAM, Direct Rambus DRAM(DRDRAM), Xtreme data rate DRAM,		
Flex Phase and ODR.		
UNIT-III	10 Hours	
Differential and mixed-mode S parameters, Time domain reflectometry (TDR), Time domain		
transmission(TDT) and VNAs, Modeling with IBIS, Overview of EDA Tools for	high-speed	
design, simulation, verification and layout.		
UNIT-IV	11 Hours	
Advances in design, Modeling, Simulation and measurement validation of high p	erformance	
Board-to-Board 5-to-10 Gbps Interconnects, High-Speed Fiber-Optic transceive	ers. SerDes	

transce	transceivers, serializers and deserializers, WarpLinkSerDes system, Emerging protocols and		
techno	technologies, Electrical Optical Circuit Board, Rapid IO, PCI Express and express card.		
Text B	Text Books		
1	Tom Granberg, õHandbook of Digital Techniques for High-Speed Designö, 1st Edition,		
	Prentice hall, 2012		
2	Stephen H. Hall and Howard L. Heck, õ Advance Signal Integrity for High speed Digital		
	Designsö, Willy, IEEE Press, 2009.		
Refere	nce Books		
1	Howard Johnson and Martin Graham, õHigh Speed Digital Design: A Handbook of Black		
	Magicö, 2 nd Edition, Prentice Hall, 2000		
2	Stephen H. Hall, Garrett W. Hall, & James A. McCall, õHigh speed Digital system		
	Designö, WILLY -IEEE Press, 2000.		

CMOS Mixed-Signals VLSI Design		
Course Code: MVD 116	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DEC		

Introduction:The course will give practical aspect of mixed signal VLSI blocks such as comparators, data converters, oscillators and phase locked loop. As a part of this course, the students will use industry standard softwares and tools such as Cadence's Virtuoso schematic, Spectre simulator and MentorGraphics' Eldo and Calibre for post layout simulations along with the parasitic extractions. The design problems given in the form of assignments will be designed and simulated in a standard CMOS technology by students. The study will cover design issues on the PVT variations and statistical mismatches in temperature and process (MonteCarlo).

Course Objective:

- To understand the basic theory of analog circuits, design principles and techniques for analog ICs blocks implemented in CMOS technology.
- To explain the theory and design skills of CMOS op-amps, voltage reference circuits, switched capacitor circuits, sample-and- hold circuits, and A/D & D/A converters used in modern communication systems and consumer electronic products.
- To understand the design of core mixed-signal IC blocks: comparators and data converters and system level design flow: top-down and bottom-up design methodologies

Pre-requisite: Analog VLSI Design, VLSI Design

Course Outcome: After successful completion of the course student will be able to

- Understand analog and discrete-time signal processing
- Undersated the basics of Analog to digital converters (ADC) and Digital to analog converters (DAC).
- Analyse High-speed ADCs (e.g. flash ADC, pipeline ADC and related architectures) and successive approximation ADCs.
- Understand the concept of High-resolution ADCs (e.g. delta-sigma converters).
- Analyse Mixed-Signal layout and Interconnects.
- Understand the Phase locked loops.
- Demonstrate the ability to design practical circuits that perform the desired operations.

Pedagogy: The class will be taught using theory and case based method. Since this is design course, students are given problems based on design of CMOS mixed signal circuits. Technology Discussion sessions are organized on current research challenges in design, their relevance and applications in microelectronics industry. Design using CAD tools in CMOS design will also be done.

UNIT-I	10 Hours
Analog and discrete-time signal processing, analog integrated continuous-time and d	iscrete-time
filters, Analog continuous-time filters, passive and active filters, basics of analog discrete-tim	
filters and Z-transform.	
UNIT-II	11 Hours
Switched-capacitor filters, Nonidealities in switched-capacitor filters, switched cap	acitor filter

architectures, switched capacitor filter applications, Basics of data converters, Successive approximation ADCs, Dual slope ADCs, Flash ADC, Pipeline ADC. UNIT-III 11 Hours Hybrid ADC structures, high resolution ADC, DAC, Mixed signal layout, Interconnects and data transmission, Voltage-mode signaling and data transmission, Current-mode signaling and data transmission. UNIT-IV 10 Hours Introduction to frequency synthesizers and synchronization, basics of (Phase Locked Loop)PLL, PLL implementation techniques, Digital and Analog PLL, performance parameters, Delay Locked Loop(DLL), characteristics, advantages over PLL, implementation techniques. **Text Books** R. Jacob Baker, õCMOS mixed-signal circuit designö, 2ndEdition, John Wiley, 2009 2 BehadRazavi, õDesign of analog CMOS integrated circuitsö, McGraw-Hill, 2003. R. Jacob Baker, õCMOS circuit design, layout and simulationö 2ndEdition, IEEE press, 2008. **Reference Books** Phillip E. Allen, Douglas R. Holberg, öCMOS Analog Circuit Designö, 2nd Edition, Oxford University Press, 2002. Gray, Hurst, Lewis, and Meyer, õAnalysis and Design of Analog Integrated Circuitsö, 2 5thEdition Wiley, 2009. Willy M.C. Sansen, õ Analog Design Essentialsö, International Edition, Springer, 2006. 3

Advanced Embedded System Design		
Course Code: MVD 118	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DEC		

Introduction of machine learning course: Embedded system design needs knowledge of hardware as well as software concepts. This course will pay attention to introduce some of the basic concepts of hardware and software designing of embedded systems with a well motivated perspective. The course will cover embedded hardware architecture, design process and approaches, interfacing techniques, buses and protocols, hardware and software interrupts, embedded software programming, modelling of programs, inter-process synchronization and real time operating systems.

Course Objective:

- To develop the ability of solving real world problems.
- To develop background knowledge and core expertise of microprocessor.
- To know the importance of different peripheral devices and their interfacing to microcontrollers.
- To understand the concept of embedded systems.
- To design various projects using the embedded system applications.
- Tounderstand the knowledge of machine learning concepts and various methods.

Course outcomes: After successful completion of the course student will be able to

- Understand the fundamental concepts that form the basis of hardware and software designing of embedded systems.
- Understands the widely used real time operating systems
- Design and program a system, interfacing techniques.
- Execute programs and software engineering practices of system design

Pedagogy: Classroom teaching which focuses upon relating the textbook concept with real world phenomenon, along with periodic lecture to enhance the problem-solving ability.

Contents

Contents	
UNIT-I	10 Hours
INTRODUCTION AND REVIEW OF EMBEDDED HARDWARE	
Terminology, Gates, Timing diagram, Memory, Microprocessor buses, Direct memory access,	
Interrupts, Built interrupts, Interrupts basis, Shared data problems, Interrupt latency, Embedded	
system evolution trends, Round-Robin, Round Robin with interrupt function, Rescheduling	
architecture, algorithm.	
UNIT-II	11 Hours
REAL TIME OPERATING SYSTEM	
Task and Task states, Task and data, Semaphore and shared data operating system services,	
Message queues timing functions, Events, Memory management, Interrupt routines in an RTOS	
environment, Basic design using RTOS.	
UNIT-III	10 Hours
EMBEDDED HARDWARE, SOFTWARE AND PERIPHERALS	
Custom single purpose processors: Hardware, Combination Sequence, Processor desig	n, RT level

Custom single purpose processors: Hardware, Combination Sequence, Processor design, RT level design, optimizing software: Basic Architecture, Operation, Programmers view, Development Environment, ASIP, Processor Design, Peripherals, Timers, counters and watch dog timers,

UART, Pulse width modulator, LCD controllers, Key pad controllers, Stepper motor controllers, A/D converters, Real time clock.

UNIT-IV 11 Hours

MEMORY AND INTERFACING

Memory write ability and storage performance, Memory types, composing memory, Advance RAM interfacing communication basic, Microprocessor interfacing I/O addressing, Interrupts, Direct memory access, Arbitration multilevel bus architecture, Serial protocol, Parallel protocols, Wireless protocols

PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN

Modes of operation, Finite state machine, HCFSL and state charts language, state machine models, Concurrent process model, Concurrent process, Communication among process, Synchronization among process, Implementation, Data Flow model, Design technology, Automation synthesis, Hardware & software co-simulation, IP cores, Design Process Model.

Text E	Text Books		
1	David. E.Simon, õAn Embedded Software Primerö, 1 st Edition, Pearson Education, 2002.		
2	Frank Vahid and Tony Gwargie, õEmbedded System Designö, Student Edition, John Wiley		
	& sons, 2006.		
3	W. Wolf, Computers as Components: Principles of Embedded Computing System Design,		
	2 nd Edition, Burlington, 2008.		
Refere	Reference Books		
1	Steve Heath, õEmbedded System Designö, Elsevier, 2 nd Edition, 2004		
2	T Noergaard, Embedded Systems Architecture: A comprehensive Guide for Engineers and		
	Prgrammers,2 nd Edition, Newness, 2013.		
3	Wireless communication Networks and internet of things ,AdamuMurtalaZungeru 2018.		

DEEP SUBMCRON CMOS ICs		
Course Code: MVD 120	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 2	
Course Category: DEC		

Introduction: The course provides a solid and fundamental engineering view of digital system operation and how to design systematically well performing digital VLSI systems exceeding consistently, customer expectations and competitor fears. The aim is to teach the critical methods and circuit structures to identify the key 1 % of the circuitry on-chip which dominates the performance, reliability, manufacturability, and the cost of the VLSI circuit. With the current utilisation of the deep submicron CMOS technologies (0.25 micron and below design rules) the major design paradigm shift is associated with the fact that the interconnections (metal Al or Cu wires connecting gates) and the chip communication in general is the main design object instead of active transistors or logic gates. The main design issues defining the make-or-break point in each project is associated with power and signal distribution and bit/symbol communication between functional blocks on-chip and off-chip.

Course Objective: In this course we provide a solid framework in understanding: -

- To understand the Scaling of technology and their impact on interconnects.
- To explain the Interconnects as design objects.
- To understand the noise in digital systems and its impact on system operation.
- Power distribution schemes for low noise
- Signal and signalling conventions for on-chip and off-chip communication
- Timing and synchronisation for fundamental operations and signalling

Pre-requisite: Analog VLSI Design, VLSI Design

Course Outcome: After successful completion of the course student will be able to

- Understand the Deep Submicron CMOS Technology.
- Understand the basic Process technology.
- Apply and implement the Modelling systems.
- Understand the basic Analog blocks.
- Design CMOS Analog Circuits.

and considerations.

• Understand the concepts of Computer Aided Design (CAD).

Pedagogy: The class will be taught using theory and case based method. Since this is design course, students are given problems based on design of Deep Submicron CMOS signal circuits. Technology Discussion sessions are organized on current research challenges in design, their relevance and applications in microelectronics industry. Design using CAD tools in CMOS design will also be done.

UNIT-I	10 Hours
MOS scaling, classification, DSM (Deep submicron) effects on devices, physical and a	geometrical
effects on the behaviour of MOS transistor, carrier mobility, channel length modula	ation, short
channel, narrow channel effects, drain feedback, hot carrier effects.	
UNIT-II	11 Hours
MOS transistor leakage mechanisms, weak inversion behaviour, gate oxide tunnelling	ng, reverse-
bias junction leakage, Gate induced drain leakage, Impact ionization, overall leakage	interactions

UNIT-III 1	1 Hours	
Signal integrity, cross talk and signal propagation, power integrity, supply and ground bounce,		
substrate bounce, EMC, soft errors, Variability, spatial and time based variations, global a	and local	
variations, transistor matching, parameter, process corners, causes for variations.		
UNIT-IV 1	10 Hours	
Deep submicron IC reliability, punch through, electromigration, hot carrier degradation,	negative	
bias temperature instability, Latch-up, Electro-static discharge, charge injection during fa	abrication	
process, Effects of scaling on MOS IC design and consequences for the technology road	dmap for	
Semiconductors.	_	
Text Books		
1 Harry Veendrick, õDeep-Submicron CMOS ICsö, 2 nd Edition, Kluwer A	Academic	
publishers,2000.		
John Paul Uyemura, õChip Design for Submicron VLSIö, 2 nd Edition., Thomson, 2	2006	
3 Digital integrated circuit Design from VLSI architecture to CMOS, Hubert Kaeslin	in 2008	
Reference Books		
1 Wolfgang nebel and Jean mermet, õLow power design in deep submicron elec	ctronicsö,	
NATO ASI series, Kluwer Academic publishers, 2012.		
Analysis and design of Digital integrated circuit ,David A. Hodges 2005.		

Digital System Design using Verilog		
Course Code: MVD-122	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester: 2	
Course Category: DEC		

Introduction: This course will teach the basics and advance topics of verilog digital system design

Course Objective: This course will enable students to:

- Understand the concepts of Verilog Language.
- Design the digital systems as an activity in a larger systems design context.
- Study the design and operation of semiconductor memories frequently used in application specific digital system.
- Inspect how effectively IC is are embedded in package and assembled in PCB is for different application.
- Design and diagnosis of processors and I/O controllers used in embedded systems.
- Design embedded systems using small microcontrollers, larger CPUs/DSPs, or hard or soft processor cores.
- Synthesize different types of processor and I/O controllers that are used in embedded system.

Pre-requisite: Any programming language.

Course outcomes: After successful completion of the course student will be able to

- Understand and construct the combinational circuits, using discrete gates and programmable logic devices.
- Design Verilog model for sequential circuits and test pattern generation.
- Design a semiconductor memory for specific chip design.
- Understand the memory designs.

Pedagogy: Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I	10Hours	
Digital Systems and Embedded Systems, Real-World Circuits, Models, Design Methodology.		
Combinational Basics: Combinational Components and Circuits, Verification of Comb	oinational	
CircuitsSequential Basics:Sequential Datapaths and ControlClocked Synchronous	Timing	
Methodology.		
UNIT-II	11Hours	
Memories: Concepts, Memory Types, Error Detection and Correction.		
UNIT-III	11Hours	
Implementation Fabrics: Integrated Circuits, Programmable Logic Devices, Packaging an	d Circuit	
boards, Interconnection and Signal integrityI/O interfacing: I/O devices, I/O controllers, Parallel		
Buses, Serial Transmission, I/O software.		
UNIT IV	10Hours	
Design Methodology: Design flow, Design optimization, Design for test, Nontechnical Issues.		
Text Books		
Peter J. Ashenden, õDigital Design: An Embedded Systems Approach Using VE Elesvier, 2010.	RILOGö,	

2	Samir palnitkar, õVerilog HDL, A Guide to Digital Design and Synthesisö, 2 nd edition,		
	Prentice Hall,2003		
Refere	Reference Books		
1	NazeihBotros ,öHDL Programming Fundamentals :VHDL and Verilogö , Dreamtech		
	Press,2006		
2	VaibbahTaraate ,öDigital logic design using Verilogö ,Springer,, 2016		
	John Williams ,öDigital VLSI design with Verilogö , 2 nd Edition, Springer, 2008		
3			

MEMS and Microsystems		
Course Code: MVD 124 Contact Hours: L-3 T-1 P-0 Course Category: DEC	Credits: 4 Semester:2	

Introduction: This course teaches basics of MEMS, with emphasis on MEMS sensors

Course Objective: The objective of this course is

biomedical application (Bio-MEMS).

- To understand basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.
- To study the design, analysis, fabrication and testing the MEMS based components.
- To understand various opportunities in the emerging field of MEMS.
- To study and implement various applications of MEMS.

Pre-requisite:Electronic circuits, basic knowledge of material science, Basic physics, chemistry, electronics and mechanics at the sophomore level. Understanding of basic physics. Understanding of engineering materials of basic level. Understanding of electronics and semiconductors to the basic semiconductors and electronics.

Course Outcome: After successful completion of the course student will be able to

- Understand new applications and directions of modern engineering.
- Apply the techniques for building microdevices in silicon, polymer, metal and other materials.
- Understand the physical, chemical, biological, and engineering principles involved in the design and operation of current and future micro devices.
- Analyze microsystems technology for technical feasibility as well as practicality.
- Describe the limitations and current challenges in microsystems technology.

Pedagogy:Learning modes will be PowerPoint slides, assignments and research paper discussion.

UNIT-I	10 Hours
Introduction to MEMS & Microsystems, Introduction to Microsensors, Evaluation	of MEMS,
Microsensors, Market survey, application of MEMS, MEMS Material, MEMS materials	properties,
microelectronics technology for MEMS, micromachining technology for MEMS.	
UNIT-II	11Hours
Micromachining process, Etch stop techniques and microstructure, surface a	nd quartz
Micromachining fabrication of micromachined microstructure, Microstereolithograpl	ny MEMS
microsensors, thermal micromachined microsensors, Mechanical MEMS, Pressure and flow sensor,	
Micromachined flow sensors, MEMS inertial sensors.	
UNIT-III	11Hours
Micromachined microaccelerometers for MEMS, MEMS accelerometers for avionics, Temperature	
drift and damping analysis, Piezoresistive accelerometer technology, MEMS	capacitive
accelerometer, MEMS capacitive accelerometer process.	_
UNIT IV	10Hours
MEMS gyro sensor, MEMS for space application, Polymer MEMS & car tubes(CNT), Wafer bonding & packaging of MEMS, Interface electronics for MEMS,	

Text Books				
1	Adams, Thomas M., Layton, Richard A.,ö Introductory MEMS: Fabrication and			
	Applicationsö, Springer, 2010.			
2	MinhangBao ,öAnalysis and design principles of MEMS deviceö, 1st Edition, Elsevier			
	Science, 2005.			
Reference Books				
1	Tai-Ran Hsu, õMEMS and Microsystems: Design and Manufactureö, 1st Edition, McGraw-			
	Hill, 2002.			
2	Ghodssi, Reza: Lin, Pinyen, õMEMS Materials and Processes Handbookö, 1st Edition,			
	Springer, 2011.			
3	Mohamed Gad-el-Hak, õMEMS: Introduction and Fundamentalsö, 1 st Edition, Taylor and			
	Francis, 2006.			
4	Jan Korvink and Oliver Paul, õMEMS: A Practical Guide to Design, Analysis and			
7	Applicationsö, 1 st Edition, Springer, 2006.			
	rippireutonso, i Edition, Springer, 2000.			

Internet Of Things			
Course Code: MVD 126	Credits: 4		
Contact Hours: L-3 T-1 P-0	Semester: 2		
Course Category: DEC			

Introduction: Internet of Things is currently a hot technology across the globe. It has a vast application domain which includes agriculture, space, healthcare and manufacturing. IoT based applications such as innovative shopping system, infrastructure management in both urban and rural areas, remote health monitoring and emergency notification systems and transportation systems are gradually relying on IoT based systems. Wide application domain necessitates learning of the emerging technology. The course covers the following areas Internet in general and Internet of Things: layers, protocols, packets, services, performance parameters of a packet network as well as applications

Course Objective: The purpose of this course is

- To understand the knowledge on IoT architecture and various protocols, study their implementations.
- To explain in a concise manner how the general Internet as well as Internet of Things work.
- To understand constraints and opportunities of wireless and mobile networks for Internet of Things.
- To use basic measurement tools to determine the real-time performance of packet based networks.
- Analyse trade-offs in interconnected wireless embedded sensor networks.

Pre-requisite:Basic programming knowledge

Course Outcome: After successful completion of the course student will be able to

- Understand the Architectural Overview of IoT.
- Understand the IoT Reference Architecture and Real World Design Constraints.
- Understand the various IoT Protocols (Data link, Network, Transport, Session, Service).
- Design and implement the security protocols on IoT based circuits.

Pedagogy: The course Internet of things has been designed to enable the student to understand constraints and opportunities of wireless and mobile networks for Internet of Things. A variety of teaching and learning tools may be employed including readings, videos, discussion, and simulations. Complete and actively participate in weekly discussions with timely initial posts and responses. Completion of other course assignments.

UNIT-I	11Hours	
T-An Architectural Overviewó Building an architecture, Main design principles and needed		
capabilities, An IoT architecture outline, standards considerations. M2M and IoT	Technology	
Fundamentals- Devices and gateways, Local and wide area networking, Data	management,	
Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge		
Management.		
UNIT-II	11Hours	
IoT Architecture-State of the Art ó Introduction, State of the art, Reference	Model and	
architecture, IoT reference Model - IoT Reference Architecture, Introduction, Fundamental Control of the Contro	ctional View,	
Information View, Deployment and Operational View, Other Relevant architectural	views. Real-	

*** 11					
	World Design Constraints- Introduction, Technical Design constraints-hardware is popular again,				
Data re	Data representation and visualization, Interaction and remote control.				
	UNIT-III	10Hours			
	PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless HART,Z-Wave, Bluetooth				
Low	Low Energy, Zigbee Smart Energy, DASH7 - Network Layer-IPv4, IPv6, 6LoWPAN,				
6TiSCH,ND, DHCP, ICMP, RPL, CORPL, CARP.					
	UNIT-IV	10Hours			
Transp	Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)-(TLS, DTLS) ó Session Layer-HTTP,				
CoAP, XMPP, AMQP, MQTT, Service layer Protocols & Security, Service Layer -oneM2M,					
ETSI M2M, OMA, BBF ó Security in IoT Protocols ó MAC 802.15.4, 6LoWPAN, RPL,					
Applic	Application Layer.				
Text Books					
1	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos,				
	David Boyle, õFrom Machine-to-Machine to the Internet of Things: Introduc	tion to a New			
	Age of Intelligenceö, 1st Edition, Academic Press, 2014.				
2	Peter Waher, õLearning Internet of Thingsö, PACKT publishing, 2015				
3	RajkumarBuyya, Amir VahidDastjerdi ,öInternet of Things:Pri	nciples and			
	paradigmsö,Elsevier, 2016	1			
Refere	ence Books				
1					
	World of M2M Communicationsö, Wiley Publications, 2013.	8			
2					
	Edition, Universities Press, 2015.	, ,			
3	Qusay F Hassan ,öInternet of Things A TO Z: Technologies and Applicat	ions õ, Wilev			
	Publication, 2018	,			