Name: SOLUTIONS

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. K-maps may be used to double check your work, but may NOT be used as your actual work. Point values are as indicated.

1. (5 points) Draw an example of an analog and a digital signal on the axes below. Clearly indicate which is which.

label: onalog

label: digital

2. (5 points) Label which of the circuits is sequential, and which is combinational.

label: Combinational

bel: <u>Sequential</u>

- 3. Express the following decimal numbers as 8-bit signed binary numbers. Use 2's complement for all negative numbers.
 - (a) (5 points) 106

$$\frac{3}{26}$$
 r0 $\frac{13}{213}$ r0 $\frac{1}{253}$ r0 (LSB) $\frac{3}{21}$ $\frac{1}{210}$ $\frac{$

 $\frac{3}{2\sqrt{7}}$ rl $2\sqrt{7}$ rl $2\sqrt{5}$ ro $2\sqrt{60}$ ro $2\sqrt{1}$ rl $2\sqrt{3}$ (c) (5 points) 110

3 ro 26 rl 213 rl 2255 ro LSB 2 [1 rl 00101110] 2110 23

351

4. Express the following decimal numbers as **unsigned** binary numbers, rounding the non-integer component to fit into the spaces below.

5. Express the following as 5-bit signed binary numbers and then add them, using 1's complement for negative numbers. Indicate if there is an overflow in any of the answers.

(a) (5 points) 1 + 13

(b) (5 points)
$$-13 + 5$$

(c) (5 points)
$$-9 + -5$$

$$\frac{1 \ 0 \ 0 \ 0}{\longrightarrow \ | \ end-around carry}$$

- 6. Express the following as 4-bit signed binary numbers and then multiply them, using 2's complement for negative numbers. Indicate if there is an overflow in any of the answers.
 - (a) (5 points) 4×4

overflow be cause bits are not identical!

(b) (5 points) -7×5

overflow: bits are not identical!

X 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 X 0 k!

11111000

7. Use the truth table to answer the following questions.

	F	C	В	A
A'B'C'	1	0	0	0
	0	1	0	0
A'BC'	1	0	1	0
A'BC	1	1	1	0
	0	0	0	1
AB'C	1_	1	0	1
	0	0	1	1
	0	1	1	1

(a) (5 points) Find the reduced sum of products equation.

$$A'B'C'+A'B+AB'C$$

 $A'(B+B'C')+AB'C$
elimination: $A'B+A'C'+AB'C=F$

(b) (5 points) Draw the simplified circuit diagram.

8. Use the truth table to answer the following questions.

A	B	C	F	
0	0	0	0	(A+B+C)
0	0	1	1	•
0	1	0	1	
0	1	1	1	
1	0	0	0	(A'+B+C)
1	0	1	1	
1	1	0	0	(A'+B'+C)
1	1	1	0	(A'+B'+C')

(a) (5 points) Find the reduced product of sums equation.

(a) (5 points) Find the reduced product of sums equation.

$$(A+B+C)(A'+B+C)(A'+B'+C)(A'+B'+C')$$

$$(B+C) \leftarrow \frac{1}{2} \quad \text{uniting} \quad \text{unit$$

(b) (5 points) Draw the simplified circuit diagram.

9. Use the circuit diagram to answer the following questions.

(a) (5 points) Fill out the truth table.

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	

see next
page for
expanded
truthtable!

(b) (5 points) Find the reduced sum of products equation.

A'BC' + A'BC + ABC
Tuniting
$$\rightarrow$$
 BC

B(A'C'+C) = A'B+BC = F

(c) (5 points) Draw the simplified circuit diagram.

								·
		101	0	0 1 1	0	0 0 -	0 0 0	ABC
		. 0	0	0	0	0	0	AB
	0 -	0	0	0		0	0	ВС
	- (0 0	0	0		0	0	AB()BC
	0 (0 0	0		0	Property	0	A'C
	(0				0	AIC+
1	<u> </u>	0	0			0	0	B
							-	

10. Use the circuit diagram to answer the following questions.

(a) (5 points) Fill out the truth table.

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	0
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	1

see next
page for
expanded
truth table

(b) (5 points) Find the reduced product of sums equation.

(A+B+C) (A+B+C') (A+B'+C')

(A+B) < Tuniting T

(c) (5 points) Draw the simplified circuit diagram.

(A+B) (A+B'+C')

= A + B (B'+c') 2nd dis

= A+BC1

= (A+B) (A+C') 2nd dis

V30

357

* indicates use of 2nd distributive law

	- 0	101	000	0 -	0 1 0	000	000	ABC
0	0	0	0		0		0	A ¹ C
0	-		0	0		(0	В⊕С
0			0				0	A'C+(BOC)
0		0	0	0		0	0	ÚK.
	_	-		0		0	0	+ A

- 11. Use the minterm expression $F(A, B, C) = \sum m(0, 1, 3, 4, 5)$ to answer the following questions.
 - (a) (5 points) Fill out the truth table.

A	В	C	F
0	0	0	
0	0	1	
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	ı
1	1	0	0
1	1	1	0

(b) (5 points) Find the reduced sum of products equation.

A'B'C' + A'B'C + A'BC + AB'C' + AB'C } uniting

A'B' + A'BC + AB'

A' (B'+BC) + AB'

= A'B' + A'C + AB'

(c) (5 points) Draw the simplified circuit diagram. F = B' + A'C

- 12. Use the maxterm expression $F(A, B, C) = \prod M(2, 3, 5, 7)$ to answer the following questions.
 - (a) (5 points) Fill out the truth table.

F	C	B	A
1	0	0	0
	1	0	0
0	0	1	0
0	1	1	0
1	0	0	1
0	1	0	1
1	0	1	1
0	1	1	1

(b) (5 points) Find the reduced sum of products equation.

$$\frac{A'B'c' + A'B'c + AB'c' + ABC'}{F = A'B' + AC'}$$
 uniting

(c) (5 points) Draw the simplified circuit diagram.

Exam 1

Fall 2016

360 V30