Estimation of Time Delay in Gravitationally Lensed Photon Stream Pairs

Michał Staniaszek Supervisor: Peter Tiňo

The University of Birmingham

March 21, 2013

Outline

- 1 The Problem
- **2** Why?
- 3 How?
- 4 Progress

The Problem

- Two rays of photons are emitted from a star or guasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

The Problem

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

Lensed Photon Streams

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- ullet We want to find Δ

- Two rays of photons are emitted from a star or quasar
- Gravitational field of a massive object bends the rays
- Bent light means that we see two images of the source
- Capture arrival times of photons from each image (events)
- Stream s_A arrives at time t, stream s_B at $t + \Delta$
- We want to find Δ

000

What We Get

What We Want

- Estimate H_o
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter

- Many more proposed applications

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter
- Detect extrasolar planets
- Measure mass distribution
- Many more proposed applications

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter
- Detect extrasolar planets
- Measure mass distribution
- Many more proposed applications

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter

- Many more proposed applications

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter
- Detect extrasolar planets
- Measure mass distribution
- Many more proposed applications

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter
- Detect extrasolar planets
- Measure mass distribution

- Estimate H_0
- Improve accuracy of stellar distance measurements
- Probe the nature of dark matter
- Detect extrasolar planets
- Measure mass distribution
- Many more proposed applications

Previous Approaches

For estimation of the time delay from quasar Q0957+561, the following methods have been used:

- Structure-function based methods (PRH)
- Dispersion Spectra
- Cross correlation

Basic function estimation:

- Linear
- Piecewise linear

As a final goal:

Model-based estimators with maximum likelihood

- Photon event simulator (arrival time only)
- Linear and piecewise linear estimator
- Model based estimator
- ullet A method for calculation of Δ

- Photon event simulator (arrival time only)
- Linear and piecewise linear estimator
- Model based estimator
- ullet A method for calculation of Δ

- Photon event simulator (arrival time only)
- Linear and piecewise linear estimator
- Model based estimator
- A method for calculation of Δ

- Photon event simulator (arrival time only)
- Linear and piecewise linear estimator
- Model based estimator
- ullet A method for calculation of Δ

Estimation Methods

Implementation

- Photon event simulator (arrival time only)
- Linear and piecewise linear estimator
- Model based estimator
- A method for calculation of Δ

Current State

- Photon arrival time simulation complete
- Linear estimator complete
- Piecewise estimator in progress

Current State

- Photon arrival time simulation complete
- Linear estimator complete
- Piecewise estimator in progress

- Photon arrival time simulation complete
- Linear estimator complete
- Piecewise estimator in progress

- Photon arrival time simulation complete
- Linear estimator complete
- Piecewise estimator in progress

Photon Simulation

We use a non-homogeneous poisson process (NHPP) to simulate arrival times.

- Rate parameter λ is the expected number of arrivals per unit time
- Waiting time until the next event has an exponential distribution
- Time to next event in homogeneous process $t = -\frac{1}{5} \ln(U)$

Poisson Generation Algorithm

Algorithm 1 Simulating T Time Units of a NHPP by Thinning

Require: $\lambda \geq \lambda(t)$, $0 \leq t \leq T$

- 1: $E = \emptyset$, t = 0, T = interval length
- 2: while t < T do
- 3: Generate $U_1 \sim U(0, 1)$
- 4: $t = t \frac{1}{\lambda} \ln(U_1)$
- 5: Generate $U_2 \sim U(0, 1)$, independent of U_1
- 6: if $U_2 \leq \frac{\lambda(t)}{\lambda}$ then
- 7: $E \leftarrow t$
- 8: end if
- 9: end while
- 10: **return** *E*

Linear Estimation

As a first step, attempt to estimate linear functions of the form y = a + bx using Iterative Weighted Least Squares (IWLS)

- Extension of Optimum Least Squares (OLS) method.
- Find

$$\min_{\alpha,\beta} \sum_{k=1}^{n} w_k (Y_k - [\alpha + \beta x])^2$$

- α and β are estimators for a and b, w_k is the weight assigned to each value Y_k , which is the event count for the kth bin. x is the midpoint of the sub-interval.
- Update weights at each iteration by using estimated values of λ in each sub-interval.

Other Simple Methods

- Piecewise estimation
 - Split the interval into sub-intervals and find an estimate for each one separately.
- 2 Baseline estimation
 - Extension of the piecewise method. Find midpoint between two function estimates at breakpoints.

Piecewise Estimate Example

Baseline Estimate vs Piecewise Estimate

Model Based Estimation

- Attempt to impose an explicit model on how λ changes in time.
- Two streams of photons, S_A and S_B have models $\lambda_A(t)$ and $\lambda_B(t)$ respectively.
- If the two streams come from the same source, then $\lambda_B(t) = \lambda_A(t \Delta)$, as both streams will have the same model.
- To calculate the time delay, we vary Δ and attempt to maximise the value of

$$Pr(S_A, S_B | \lambda_A, \Delta)$$

Code Structure

The code is intended to be as modular as possible. Libraries are available to all modules and provide basic utilities that do not belong elsewhere. Current code is split as follows:

- Libraries (math, file, general)
- Generators
- Estimators
- Plotting scripts

Projected Schedule

Projected Schedule

- Over Christmas:
 - Complete piecewise estimators
 - Code experiment harness, write unit tests, polish current code base
 - Reading about ML, Latent Variable Models
 - Implementing parts of ML estimator
- End of January: Prototype ML estimator complete
- Mid February: ML estimator complete
- End of February: Estimation of Δ
- Mid March: Experimentation complete

Summary

- We want to find the value of Δ , the time delay between photon stream arrival times
- Currently have linear and piecewise linear estimators
- Final goal is to use a model-based estimator