# Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs

Prepared by the student of group 192: Pozdeev Dmitrii Mikhailovich

#### Introduction

- Loss Surfaces are complicated
- Loss is high along a segment connecting two models



[https://arxiv.org/pdf/1802.10026.pdf]

## Plan

- Mode Connectivity
- Fast Geometric Ensembling
- Recent Work



[https://arxiv.org/pdf/1802.10026.pdf]

## Mode connectivity

Let  $\hat{w}_1, \hat{w}_2 \in \mathbb{R}^{|net|}$  - two independently trained networks.

We want to find a path  $\phi_{\theta}(t)$ :  $\phi_{\theta}(0) = \hat{w}_1$ ,  $\phi_{\theta}(1) = \hat{w}_2$ 

$$\phi_{\theta}(t) = \begin{cases} 2(t\theta + (0.5 - t)\hat{w}_1), & 0 \le t \le 0.5 \\ 2((t - 0.5)\hat{w}_2 + (1 - t)\theta), & 0.5 \le t \le 1. \end{cases}$$

Polygonal chain

$$\phi_{\theta}(t) = (1-t)^2 \hat{w}_1 + 2t(1-t)\theta + t^2 \hat{w}_2, \ \ 0 \le t \le 1.$$

**Bezier Curve** 

# Connection procedure

$$\hat{\ell}(\theta) = \frac{\int \mathcal{L}(\phi_{\theta})d\phi_{\theta}}{\int d\phi_{\theta}} = \frac{\int_{0}^{1} \mathcal{L}(\phi_{\theta}(t))\|\phi_{\theta}'(t)\|dt}{\int_{0}^{1} \|\phi_{\theta}'(t)\|dt} = \int_{0}^{1} \mathcal{L}(\phi_{\theta}(t))q_{\theta}(t)dt = \mathbb{E}_{t \sim q_{\theta}(t)} \Big[\mathcal{L}(\phi_{\theta}(t))\Big], \quad (1)$$

Fair Loss Formula

where the distribution  $q_{\theta}(t)$  on  $t \in [0,1]$  is defined as:  $q_{\theta}(t) = \|\phi_{\theta}'(t)\| \cdot \left(\int\limits_{0}^{1} \|\phi_{\theta}'(t)\| dt\right)^{-1}$ 

On practice Fair Loss loss is intractable.

$$\ell(\theta) = \int_0^1 \mathcal{L}(\phi_{\theta}(t))dt = \mathbb{E}_{t \sim U(0,1)} \mathcal{L}(\phi_{\theta}(t))$$

Our Loss

# Connection procedure

#### Require:

weights  $\hat{w}_1, \hat{w}_2 \in \mathbb{R}^{|net|}$ 

#### While not converge:

Sample  $\hat{t} \sim U(0,1)$ 

Make gradient step for  $\theta$  with respect to the  $L(\phi_{\theta}(\hat{t}))$ 

## Results



Left: Bezier Curve, Right: Polygonal chain

[https://arxiv.org/pdf/1802.10026.pdf]

#### Ensembles

**Ensemble learning** - combines several individual models to obtain better performance.

Intuition: diverse models form an efficient ensemble.

Independent ensembles: combine independently trained networks (from different random initialisations)

## Intuition behind FGE



[https://arxiv.org/pdf/1802.10026.pdf]

# FGE Learning rate



[https://arxiv.org/pdf/1802.10026.pdf]

# FGE Algorithm

#### Algorithm 1 Fast Geometric Ensembling

```
Require:
  weights \hat{w}, LR bounds \alpha_1, \alpha_2,
  cycle length c (even), number of iterations n

Ensure: ensemble
  w \leftarrow \hat{w} {Initialize weight with \hat{w}}
  ensemble \leftarrow []
  for i \leftarrow 1, 2, \ldots, n do
    \alpha \leftarrow \alpha(i) {Calculate LR for the iteration}
    w \leftarrow w - \alpha \nabla \mathcal{L}_i(w) {Stochastic gradient update}
  if \operatorname{mod}(i, c) = c/2 then
    ensemble \leftarrow ensemble + [w] {Collect weights}
  end if
  end for
```

#### FGE Results

Table 1: Error rates (%) on CIFAR-100 and CIFAR-10 datasets for different ensembling techniques and training budgets. The best results for each dataset, architecture, and budget are **bolded**.

|                  |                   | CIFAR-100                                             |                            |                                | CIFAR-10                                          |                                                |                            |
|------------------|-------------------|-------------------------------------------------------|----------------------------|--------------------------------|---------------------------------------------------|------------------------------------------------|----------------------------|
| DNN (Budget)     | method            | 1B                                                    | 2B                         | 3B                             | 1B                                                | 2B                                             | 3B                         |
| VGG-16 (200)     | Ind<br>SSE<br>FGE | $27.4 \pm 0.1  26.4 \pm 0.1  25.7 \pm 0.1$            | 25.28 $25.16$ <b>24.11</b> | 24.45 $24.69$ $23.54$          | $6.75 \pm 0.16 \ 6.57 \pm 0.12 \ 6.48 \pm 0.09$   | 5.89<br>6.19<br><b>5.82</b>                    | 5.9<br>5.95<br><b>5.66</b> |
| ResNet-164 (150) | Ind<br>SSE<br>FGE | $21.5 \pm 0.4$ $20.9 \pm 0.2$ $20.2 \pm 0.1$          | 19.04 $19.28$ $18.67$      | 18.59 $18.91$ $18.21$          | $4.72 \pm 0.1  4.66 \pm 0.02  4.54 \pm 0.05$      | $egin{array}{c} 4.1 \ 4.37 \ 4.21 \end{array}$ | 3.77 $4.3$ $3.98$          |
| WRN-28-10 (200)  | Ind<br>SSE<br>FGE | $19.2 \pm 0.2$ $17.9 \pm 0.2$ $\mathbf{17.7 \pm 0.2}$ | 17.48 $17.3$ $16.95$       | 17.01<br>16.97<br><b>16.88</b> | $3.82 \pm 0.1 \ 3.73 \pm 0.04 \ {f 3.65 \pm 0.1}$ | 3.4<br>3.54<br><b>3.38</b>                     | 3.31<br>3.55<br>3.52       |

## Recent Works



[https://arxiv.org/pdf/2102.13042.pdf]

#### Recent Work



Figure 1. Schematic for learning a line of neural networks compared with standard training. The midpoint outperforms standard training in terms of accuracy, calibration, and robustness. Models near the endpoints enable high-accuracy ensembles in a single training run.

[https://arxiv.org/pdf/2102.10472.pdf]

#### Conclusions

- Independent networks are connected by very simple curves
- There are methods that find such paths
- Using this insight we can build Fast Geometric Ensemble, which outperforms ensemble of independent models (if computational budget is fixed)

#### References

- https://arxiv.org/pdf/1802.10026.pdf (main)
- https://arxiv.org/pdf/2102.13042.pdf
- https://arxiv.org/pdf/2102.10472.pdf