

Punjab Engineering College (Deemed to be university) End-Term Examination

for any discrepancy and also ensure that they have been delivered the question paper of right

Year/Semester:22231

Time Allowed: 3 hrs

Course Code: EC 1351

Programme: B.E(ECE)

Course Name: Analog & Digital Communication

Maximum Marks; 50

Note:
All questions are compulsory.
The candidates, before starting to write the solutions, should please check the question paper

course code.

Sr. No.	Questions	Marks	Bloom's Level	Mapped CO
1	(a) Define mutual information of two random variables, X and Y. (b) Let us consider a binary source with source alphabet, S={S1,S2} with probabilities {7/16,9/16}, calculate the entropy for this source.	1+2	L1 & L4	CO-4
2	(a) Describe the block diagram of a digital communication system.(b) Illustrate the difference between digital baseband and passband communication.	3+1	L.2 & L.3	CO-3
3	Explain Phase locked loop for FM demodulation in detail. Also discuss lock range and capture range.	5	L3	CO-1
4	Describe the process of sampling and quantization for a continuous time band limited signal with a maximum frequency of f_m .	5	L2	CO-2
5	Discriminate AM and DSB-SC modulation. Give the percentage power saving in DSB-SC modulation as compared to AM.	5	1.5	CO-1
6	Explain Delta modulation. Comment on slope overload noise and granular noise.	5	L.3	CO-2
7	Explain Quadrature phase shift keying along with its constellation diagram. Determine its bandwidth requirement and energy per symbol.	5	L4	CO-3

8	Consider the random variable:	3+2	L5 & L6	CO-4
	$X = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ 0.50 & 0.26 & 0.11 & 0.04 & 0.04 & 0.03 & 0.02 \end{pmatrix}$			
	(a) Develop a binary Huffman code for X.(b) Evaluate the code efficiency.			
9	Examine the use of Minimum shift keying in eliminating phase discontinuities,	5	1.1	CO-3
10	Consider a (7,4) linear block code defined by the generator matrix:	2+1+3+1+1	L3 & L5	CO-4
	$\overrightarrow{G} - \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$			
	(a) Find all the possible codewords.			
	(b) Determine whether the given code is a hamming code or not.			
	(c) Estimate the minimum hamming distance for this code. Determine the error detecting and correcting capability of the code.			
	(d) Find the parity check matrix, H of the code.			
	(e) If the received codeword is r = [1 1 0 1 0 1 1], compute the syndrome and correct the error if any.			