Eksamen i MAT 1110, 16/8-2007

Oppgave 1: Finn alle løsningene til ligningssystemet

$$x + 2y + z + 2u = 1$$

 $x + y - u = 2$
 $3x + 4y + z + 4u = 5$

Oppgave 2:

- a) Finn de stasjonære (kritiske) punktene til $f(x,y) = (x^2 + y^2)e^x$.
- b) Avgjør om de stasjonære punktene er lokale maksimumspunkt, lokale minimumspunkt eller sadelpunkt.

Oppgave 3:

a) Finn egenverdiene og egenvektorane til matrisen

$$A = \begin{pmatrix} 1.5 & -0.3 \\ 0.3 & 0.5 \end{pmatrix}$$

b) To dyreslag, et byttedyr og et rovdyr, lever i det samme området. Dersom det er x_n byttedyr og y_n rovdyr i området ett år, vil antall dyr året etter være

$$x_{n+1} = 1.5x_n - 0.3y_n$$
$$y_{n+1} = 0.3x_n + 0.5y_n$$

Finn x_n og y_n når $x_0 = 500$ og $y_0 = 700$. Finn også grenseforholdet $\lim_{n\to\infty}\frac{x_n}{y_n}$ mellom antall byttedyr og antall rovdyr.

Oppgave 4:

- a) Finn konvergensområdet til rekken $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n}$.
- b) Finn summen til rekken.

Oppgave 5: Finn $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ når

$$\mathbf{F}(x,y) = (2xy+2)\mathbf{i} + (x^2+2y)\mathbf{j}$$

og C er en stykkevis glatt kurve som starter i (0,0) og ender i (3,-1).

Oppgave 6: Finn volumet til området over xy-planet som ligger under kuleflaten $x^2 + y^2 + z^2 = 1$ og over kjegleflaten $z^2 = 3x^2 + 3y^2$

Oppgave 7: R er området i planet avgrenset av linjene y=x, y=2x, y=-x+1, y=-x+3. Lag en skisse av R og regn ut dobbeltintegralet $\iint_R \frac{x+y}{x^2} dA$.

1