$$r(\lambda) = Pr($$

$$Pr(x) = \lambda^x (1 - \lambda)^{1 - x}$$

Bernoulli Distribution
$$p(x) = \operatorname{Ber}(x|\lambda) \qquad Pr(x) = \lambda^x (1-\lambda)^{1-x}$$
 Categorical Distribution
$$p(x) = \operatorname{Cat}(x|\lambda) \qquad Pr(x = \mathbf{e}_k) = \prod_{j=1}^K \lambda_j^{\mathbf{e}_{kj}} = \lambda_k$$

$$y_{MAP} = rgmax p(y) p(x|y)$$

• Prior $p(y)$ is constant (uniform) \implies maximum likelihood (ML) estimate

 $y_{MAP} = rgmax p(x|y) \stackrel{\triangle}{=} y_{ML}$

$$y_{MAP} = \operatorname*{argmax}_{y} p(x|y) \stackrel{\triangle}{=} y_{ML}$$

$$p(y \mid x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y)$$

$$p(D|\theta) = \text{Bin}(N_1|N,\theta) = \binom{N}{N_1}\theta^{N_1}(1-\theta)^{N_0}$$
 (binomial likelihood)
 $p(\theta|a,b) = \text{Beta}(\theta|a,b) = \frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1}$

Posterior
$$p(\theta|D) = \text{Beta}(\theta|N_1 + a)N_0 + b)$$

Maximum-A-Posteriori (MAP) estimate

$$\hat{\theta}_{MAP} = \operatorname*{argmax}_{\theta} p(\theta|D) = \frac{N_1 + a - 1}{N + a + b - 2}$$

Maximum-likelihood (ML) estimate

$$\hat{\theta}_{ML} = \frac{N_1}{N} \;\; \text{by setting a} = \text{b} = 1 \; (\text{uniform prior})$$

For Dir(
$$x = \gamma_1, \dots, \gamma_K$$
), mode $x_k = \frac{\gamma_k - 1}{\sum_k \gamma_k - K}$

Posterior
$$p(\theta|D) = \text{Dir}(\theta|N_1 + \alpha_1, \dots, N_K + \alpha_K)$$

Maximum-A-Posteriori (MAP) estimate $\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta} p(\theta|D)$

$$\hat{\theta}_k^{MAP} = \frac{N_k + \alpha_k - 1}{N + \sum_k \alpha_k - K}$$

Maximum-likelihood (ML) estimate

$$\hat{\theta}_k^{ML} = \frac{N_k}{N}$$
 by setting $\alpha_k = 1$ (uniform prior)

- Strategy 1 (Maximum likelihood)
 - Step 1: Estimate θ_{ML} = argmax $_{\theta}$ p(D | θ)
 - Step 2: Plug in θ_{ML} into p(x, y | θ_{ML}) and find MAP estimate of y
- Strategy 2 (Maximum-A-Posteriori)
 - Step 1: Estimate θ_{MAP} = argmax_{θ} p(θ | D)
 - Step 2: Plug in θ_{MAP} into p(x, y | θ_{MAP}) and find MAP estimate of y

Strategy 1 (Maximum likelihood)

- Step 1: Estimate θ_{ML} = argmax_{θ} p(D | θ)
- Step 2: To predict label \tilde{y} of test data \tilde{x} , plug in θ_{ML} into posterior $p(\tilde{y} \mid \tilde{x}, \mathbf{\theta}) \propto p(\tilde{y} \mid \lambda_{ML}) p(\tilde{x} \mid \tilde{y}, \eta_{ML})$ and find MAP estimate of \tilde{y} Strategy 2 (Maximum-A-Posteriori)
- Step 1: Estimate θ_{MAP} = argmax_{θ} p(θ | D)
- Step 2: To predict label \tilde{y} of test data \tilde{x} , plug in θ_{MAP} into posterior $p(\tilde{y} | \tilde{x}, \theta) \propto p(\tilde{y} | \lambda_{MAP}) p(\tilde{x} | \tilde{y}, \eta_{MAP})$ and find MAP estimate of \tilde{y}

$$g = \frac{d}{dw} NLL(w) = \sum_{i=1}^{N} (\mu_i - y_i) x_i = X^T(\mu - y)$$

$$H = \frac{d}{dw}g(w)^{T} = \sum_{i=1}^{N} \mu_{i}(1 - \mu_{i})x_{i}x_{i}^{T} = X^{T}SX,$$

Univariate Gaussian Distribution $Pr(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-0.5(x-\mu)^2/\sigma^2\right] \left[p(x) = \mathcal{N}(x|\mu,\sigma^2)\right]$

$$\underset{\mu,\sigma^{2}}{\operatorname{argmax}} \sum_{n=1}^{N} \left[-\frac{(x_{n} - \mu)^{2}}{2\sigma^{2}} - \log \sqrt{2\pi\sigma^{2}} \right] \qquad \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_{n} \qquad \hat{\sigma}^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - \mu)^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - \hat{\mu})^{2} \qquad g_{reg}(\mathbf{w}) = g(\mathbf{w}) + \lambda \mathbf{w}$$

 λ are parameters of class prior: $p(y \mid \theta) = p(y \mid \lambda)$

 $H_{reg}(\mathbf{w}) = H(\mathbf{w}) + \lambda I$.

η are parameters of feature likelihood: $p(x \mid y, \theta) = p(x \mid y, η)$

$$\log \lambda_c^{MAP} \prod_{i=1}^{D} p(\tilde{x}_j | \eta_{jc}^{MAP}) = \log \lambda_c^{MAP} + \sum_{i=1}^{D} \log p(\tilde{x}_j | \eta_{jc}^{MAP}) \qquad p(x) = \frac{k(x)/N}{V}$$

$$NLL(w) = -\sum_{i=1}^{N} \log p(y_i|x_i, w) = -\sum_{i=1}^{N} [y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)]$$

$$NLL_{reg}(\mathbf{w}) = NLL(\mathbf{w}) + \frac{1}{2}\lambda \mathbf{w}^T \mathbf{w}$$

If **w** is big, then $\frac{1}{2}\lambda \mathbf{w}^T \mathbf{w}$ is big, so $NLL_{reg}(\mathbf{w})$ is big. Since we are minimizing $NLL_{reg}(\mathbf{w})$, this means big **w** is discouraged

Consider a 3-class naive Bayes classifier with one binary feature and one Gaussian feature. More specifically, class label y follows a categorical distribution parametrized by π , i.e., $p(y=c)=\pi_c$. The first feature x_1 is binary and follows a Bernoulli distribution: $p(x_1|y=c)=\text{Bernoulli}(x_1|\theta_c)$. The second feature x_2 is univariate Gaussian: $p(x_2|y=c)=\mathcal{N}(x_2|\mu_c,\sigma_c^2)$. Let $\pi=[0.5\ 0.25\ 0.25],\ \theta=[0.5\ 0.5\ 0.5],\ \mu=[-1\ 0\ 1]$ and $\sigma^2=[1\ 1\ 1]$.

- (i) Compute $p(y|x_1=0)$. Note that result is a vector of length 3 that sums to 1.
- (ii) Compute $p(y|x_2=0)$. Note that result is a vector of length 3 that sums to 1.
- (iii) Compute $p(y|x_1=0,x_2=0)$. Note that result is a vector of length 3 that sums

$$\begin{split} p(y|x_1=0) &= \frac{p(y)p(x_1=0|y)}{p(x_1=0)} \\ &\propto p(y)p(x_1=0|y) \\ &\propto p(y) \quad \text{because feature is uninformative.} \\ &= [0.5\ 0.25\ 0.25] \end{split}$$

 x_1 is uninformative because $\theta = [0.5 \ 0.5]$, i.e., the probability of getting a head is the same for all classes. Note that x_1 will also be uninformative if $\theta = [0.4 \ 0.4 \ 0.4]$.

$$\begin{split} p(y|x_2=0) &= \frac{p(y)p(x_2=0|y)}{p(x_2=0)} \\ &\propto p(y)p(x_2=0|y) \\ &= \pi_y \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{1}{2\sigma_y^2}(0-\mu_y)^2} \\ &\propto \pi_y e^{-0.5\mu_y^2} \\ &= [0.5e^{-0.5}\ 0.25e^0\ 0.25e^{-0.5}] \\ &= [0.3033\ 0.25\ 0.1516] \end{split}$$

Therefore

$$\begin{split} p(y|x_2=0) &= [0.3033 \;\; 0.25 \;\; 0.1516]/(0.3033 + 0.25 + 0.1516) \\ &= [0.4302 \;\; 0.3547 \;\; 0.2151] \end{split}$$

(iii)

$$\begin{array}{ll} p(y|x_1=0,x_2=0) = p(y|x_2=0) & \text{because } x_1 \text{ is uninformative.} \\ = [0.4302 \ 0.3547 \ 0.2151] \end{array}$$

Q1: Parzen's Window

Consider data samples x_1, x_2, x_3, x_4 to be 1, 3, 4, 10. Using the Gaussian Parzen's window: $\frac{1}{\sqrt{2\pi h^2}}e^{-\frac{x^2}{2h^2}}$, what is the Parzen's window estimate of $p_h(x)$ at x=2 and x=5 for h=1?

Q2: KNN

Consider training data $x_1=\begin{pmatrix}1\\0\end{pmatrix},\ x_2=\begin{pmatrix}0\\1\end{pmatrix},\ x_3=\begin{pmatrix}-1\\0\end{pmatrix},\ x_4=\begin{pmatrix}0\\-1\end{pmatrix}$ with corresponding class labels $y_1=0,y_2=0,y_3=1,y_4=1.$ What is the 3-NN estimate of the class label posterior probabilities of datapoints $x_5=\begin{pmatrix}0\\0.5\end{pmatrix}$ and $x_6=\begin{pmatrix}-1\\-1\end{pmatrix}$, where the distance metric used is the Euclidean distance? What are the MAP classifications of data points x_5 and x_6 ?

a. Now consider the following prior, that believes the coin is fair, or is slightly biased towards tails:

$$p(\theta) = \begin{cases} 0.5 & \text{if } \theta = 0.5 \\ 0.5 & \text{if } \theta = 0.4 \\ 0 & \text{otherwise} \end{cases}$$

$$(4)$$

Derive the MAP estimate under the prior as a function of N_1 and N.

a. The posterior of the Bernoulli

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

if $\theta = 0.5$,

$$\begin{split} p(\mathcal{D}|\theta)p(\theta) &= 0.5^{N+1} \\ \Longrightarrow &\log p(\mathcal{D}|\theta)p(\theta) = (N+1)\log 0.5 \end{split}$$

if $\theta = 0.4$,

$$\begin{split} p(\mathcal{D}|\theta)p(\theta) &= 0.4^{N_1}0.6^{N-N_1}0.5\\ \Longrightarrow &\log p(\mathcal{D}|\theta)p(\theta) = N_1\log 0.4 + (N-N_1)\log 0.6 + \log 0.5 \end{split}$$

Consider a binary classification problem of predicting binary class y from features x. The cost of wrong prediction is \$6 and the cost of correct prediction is 0. Suppose the cost of asking a human to perform the manual classification is \$2. Therefore for a particular x, there are three possible decisions: (1) decision α_0 predicts y to be 0, (2) decision α_1 predicts y to be 1 and (3) decision α_h requires a human to perform the manual classification. Let $p_1 = p(y = 1|x)$

- (i) Assume the human is 100% accurate and suppose p₁ = 0.4, what should our decision be to minimize expected loss?
- (ii) Assume the human is 100% accurate and suppose $p_1=0.1,$ what should our decision be to minimize expected loss?
- (iii) Assume the human is 100% accurate. What is the general decision rule (as a function of p₁) in order to minimize expected loss?
- (iv) Assume the human is only 95% accurate. What is the general decision rule (as a function of p_1) in order to minimize expected loss?
- (i) Here are the expected loss

$$R(\alpha_0) = 0.4 * 6 = 2.4$$

 $R(\alpha_1) = 0.6 * 6 = 3.6$

 $R(\alpha_h) = 2$

Therefore we should choose α_h

• (ii) Here are the expected loss

$$R(\alpha_0) = 0.1 * 6 = 0.6$$

 $R(\alpha_1) = 0.9 * 6 = 5.4$
 $R(\alpha_h) = 2$

Therefore we should choose α_0

• (iii) The general expected loss is given by

$$R(\alpha_0) = 6p_1$$

$$R(\alpha_1) = 6(1 - p_1)$$

$$R(\alpha_h) = 2$$

We should choose α_0 if $R(\alpha_0) < R(\alpha_1) \implies p_1 < 0.5$ and $R(\alpha_0) < R(\alpha_h) \implies p_1 < 1/3$ We should choose α_1 if $R(\alpha_1) < R(\alpha_0) \implies p_1 > 0.5$ and $R(\alpha_1) < R(\alpha_h) \implies p_1 > 2/3$ Therefore we should choose α_0 if $p_1 < 1/3$, α_1 if $p_1 > 2/3$ and α_h otherwise.

• (iv) If the human is correct 95% of the time, then the general expected cost of α_h is $0.95\times2+0.05\times8=2.3$

Therefore, we should choose α_0 if $p_1 < 0.5$ and $R(\alpha_0) < R(\alpha_h) \implies p_1 < 2.3/6 = 0.383$ And we should choose α_1 if $p_1 > 0.5$ and $R(\alpha_1) < R(\alpha_h) \implies 6(1-p_1) < 2.3 = 1-0.38 = 0.617$

Therefore we should choose α_0 if $p_1 < 0.383$, α_1 if $p_1 > 0.617$ and α_h otherwise.

Q1: Parzen's Window

- $p_h(x) = \frac{1}{4} \sum_{n=1}^{4} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_n-x)^2}{2}}$
- Plugging x = 2 and the data, we get

$$p_1(x=2) = \frac{1}{4\sqrt{2\pi}} \left[e^{-\frac{(2-1)^2}{2}} + e^{-\frac{(2-3)^2}{2}} + e^{-\frac{(2-4)^2}{2}} + e^{-\frac{(2-10)^2}{2}} \right]$$

$$= \frac{1}{4\sqrt{2\pi}} \left[e^{-0.5} + e^{-0.5} + e^{-2} + e^{-32} \right]$$

• Plugging x = 5 and the data we get

$$p_1(x=5) = \frac{1}{4\sqrt{2\pi}} \left[e^{-\frac{(5-1)^2}{2}} + e^{-\frac{(5-3)^2}{2}} + e^{-\frac{(5-4)^2}{2}} + e^{-\frac{(5-10)^2}{2}} \right]$$
$$= \frac{1}{4\sqrt{2\pi}} \left[e^{-8} + e^{-2} + e^{-0.5} + e^{-12.5} \right]$$
$$= 0.0740$$

Q2: KNN

- The 3 closest data points for x_5 are x_1, x_2 , and x_3 .
- Therefore p(y = 1|x) = 1/3 and p(y = 0|x) = 2/3
- Therefore the data point should be classified as class 0
- The 3 closest datapoints for x₆ are x₂ (or x₁), x₃, and x₄.
- Therefore p(y=1|x)=2/3 and p(y=0|x)=1/3 (Note that x_1 and x_2 are equidistant, so I am also ok with p(y=1|x)=p(y=0|x)=1/2)
- · Therefore the datapoint should be classified as class 1

For 0.5 to win out over 0.4,

$$\begin{split} &(N+1)\log 0.5 > N_1\log 0.4 + (N-N_1)\log 0.6 + \log 0.5\\ \Longrightarrow &N\log \frac{0.5}{0.6} > N_1\log \frac{0.4}{0.6}\\ \Longrightarrow &\frac{N_1}{N} > \frac{\log 5/6}{\log 2/3} = \frac{\log 1.2}{\log 1.5} = 0.4497 \text{ because } \log 2/3 \text{ is negative} \end{split}$$

Therefore, we have

$$\hat{\theta}_{MAP} = \begin{cases} 0.4 & \text{if } \frac{N_1}{N} < \frac{\log 1.2}{\log 1.5} \\ 0.5 & \text{if } \frac{N_1}{N} > \frac{\log 1.2}{\log 1.5} \end{cases}$$

Note that N_1/N can never be exactly equal to $\frac{\log 1.2}{\log 1.5}$ because $\frac{\log 1.2}{\log 1.5}$ is irrational.

Ensemble Classifiers Bagging = Bootstrap Aggregating · Basic idea: Build different "experts" and let them Training Given a dataset S, at each iteration i, a training/set Si is sampled Advantages: with replacement from S (i.e. bootstraping) В Improve predictive performance A classifier C_i is learned for each S_i Different types of classifiers can be directly Classification: given an unseen sample X included o Each classifier Ci returns its class prediction Easy to implement The bagged classifier H counts the votes and assigns the class Not too much parameter tuning with the most votes to X Disadvantages: · The combined classifier is not transparent (black box) Bagging = Bootstrap Aggregating Not a compact representation · Reweighing of the learning sets is done by drawing at Bagging random with replacement from the learning sets Bagging works because it reduces variance • Predictors are aggregated by voting by voting/averaging o Usually, the more classifiers the better Main idea: train a strong classifier by combining weak classifiers Practically useful · Problem: we only have one dataset · Theoretically interesting Solution: generate new ones of size n by bootstrapping, i.e. sampling with replacement Classifier Cascade (Viola-Jones) Can help a lot if data is noisy For real problems results are only as good as the features used. Advantages of Random Forests • This is the main piece of ad-hoc (or domain) knowledge Rather than the pixels, use a very large set of simple functions Very high accuracy – not easily surpassed by other algorithms · Sensitive to edges and other critical features of the image Efficient on large datasets Computed at multiple scales Can handle thousands of input variables without variable deletion • Effective method for estimating missing data, also maintains accuracy • Introduce a threshold to yield binary features when a large proportion of the data are missing Binary features seem to work better in practice Robust to label noise · In general, convert continuous features to binary by quantizing · Can be used in clustering, locating outliers and semi-supervised learning Supervised vs. Unsupervised Learning Parametric Approach Assume parametric distribution of data · Estimate parameters of this distribution Up to now we considered supervised learning scenarios, where we are • Expectation Maximization given: samples x₁,..., x_r Non-Parametric Approach class labels for all samples This is also called learning with teacher, since the correct answer the true class) is Group the data into <u>clusters</u>, each cluster (hopefully) says something about classes present in the data Here, we consider unsupervised learning scenarios, where we are only What is a good clustering? given: • internal distances should be small Only samples x₁,..., x_n • This is also called learning without teacher, since the correct answer is not provided · external should be large · Do not split data into training and test sets K-means Clustering Why Unsupervised Learning? · Unsupervised learning is harder Finding the optimum of J_{SSE} is NP-hard How do we know if results are meaningful? No answer (labels) is available · In practice, k-means clustering usually performs well Let the experts look at the results (external evaluation) Define an objective function on clustering (internal evaluation) · It can be very efficient We nevertheless need it because Its solution can be used as a starting point for other clustering 1. Labeling large datasets is very costly (speech recognition, object detection algorithms in images) Sometimes can label only a few examples by hand Hundreds of papers on variants and improvements of k-means May have no idea what/how many classes there are (data mining) clustering are published every year May want to use clustering to gain some insight into the structure of the data before designing a classifier Clustering Summary Hierarchical Clustering Clustering (nonparametric learning) is useful for discovering inherent

Clustering is immensely useful in different fields

Clustering comes naturally to humans (in up to 3 dimensions), but not

 It is very easy to design a clustering algorithm, but it is very hard to make theoretical claims on performance
 General purpose clustering is unlikely to exist; for best results, clustering should be tuned to application at hand

· Generates minimum spanning tree

Encourages growth of elongated clusters
 Disadvantage: very sensitive to noise