Grundbegriffe der Informatik Aufgabenblatt 3

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.			Naı	ne des Tutors:	
Ausgabe:	11. No	ovember	2015			
Abgabe:	20. No). November 2015, 12:30 Uhr				
	im GE	BI-Briefk	asten	im l	Untergeschoss	
	von G	ebäude	50.34			
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet						
abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Punkte						
Blatt 3:			/	/ 18	(Physik: 18)	
Blätter 1 – 3:			/	/ 48	(Physik: 45)	

Aufgabe 3.1 (2 + 4 = 6 Punkte)

Die Zahlen x_n , $n \in \mathbb{N}_0$, seien induktiv definiert durch

$$x_0 = 0$$
, für jedes $n \in \mathbb{N}_+$: $x_n = n - x_{n-1}$.

- a) Geben Sie die Zahlenwerte von x_1 , x_2 , x_3 und x_4 an.
- b) Beweisen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}_0$ gilt:

$$x_n = \begin{cases} \frac{n}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade.} \end{cases}$$

Lösung 3.1

- a) $x_1 = 1$, $x_2 = 1$, $x_3 = 2$, $x_4 = 2$.
- b) Induktionsanfang: $x_0 = 0 = \frac{0}{2}$. Induktionsschritt: Es sei $n \in \mathbb{N}_0$ so, dass gilt:

$$x_n = \begin{cases} \frac{n}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade.} \end{cases}$$
 (Induktionsvoraussetzung)

Nach Definition von x_{n+1} im ersten Schritt, der Induktionsvoraussetzung im zweiten Schritt und elementarer Arithmetik in den folgenden Schritten gilt:

$$x_{n+1} = (n+1) - x_n$$

$$= (n+1) - \begin{cases} \frac{n}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade,} \end{cases}$$

$$= \begin{cases} (n+1) - \frac{n}{2}, & \text{falls } n \text{ gerade,} \\ (n+1) - \frac{n+1}{2}, & \text{falls } n \text{ ungerade,} \end{cases}$$

$$= \begin{cases} \frac{n}{2} + 1, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade,} \end{cases}$$

$$= \begin{cases} \frac{n+2}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade,} \end{cases}$$

$$= \begin{cases} \frac{(n+1)+1}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade,} \end{cases}$$

$$=\begin{cases} \frac{(n+1)+1}{2}, & \text{falls } n+1 \text{ ungerade,} \\ \frac{n+1}{2}, & \text{falls } n+1 \text{ gerade,} \end{cases}$$

$$=\begin{cases} \frac{n+1}{2}, & \text{falls } n+1 \text{ gerade,} \\ \frac{(n+1)+1}{2}, & \text{falls } n+1 \text{ ungerade.} \end{cases}$$

Schlussworte: Gemäß des Prinzips der vollständigen Induktion gilt zu beweisende Aussage.

Aufgabe 3.2 (1 + 1 + 1 = 3 Punkte)

- a) Es sei w = 10011. Geben Sie $u = \text{Num}_2(w)$ und $v = \text{Num}_3(w)$ an.
- b) Geben Sie $\mu = \text{Repr}_3(285)$ und $\nu = \text{Repr}_9(285)$ an.
- c) Das Wort μ der vorangegangenen Teilaufgabe hat die Länge 6. Geben Sie $\xi = \operatorname{Repr}_9(\operatorname{Num}_3(\mu(0)\mu(1))) \cdot \operatorname{Repr}_9(\operatorname{Num}_3(\mu(2)\mu(3))) \cdot \operatorname{Repr}_9(\operatorname{Num}_3(\mu(4)\mu(5)))$ und $\zeta = \operatorname{Num}_9(\xi)$ an.

Erinnerung: Für jedes $i \in \mathbb{Z}_6$ ist $\mu(i)$ das i-te Zeichen des Wortes μ .

Lösung 3.2

a)
$$u = \text{Num}_2(w) = 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^4 = 1 + 2 + 16 = 19$$

 $v = \text{Num}_3(w) = 1 \cdot 3^0 + 1 \cdot 3^1 + 1 \cdot 3^4 = 1 + 3 + 81 = 85$

b)
$$\mu = 101120$$

$$\nu = 346$$

c)
$$\xi = 346 = \nu$$

 $\zeta = 285$

Aufgabe 3.3 (2 + 4 + 3 = 9 Punkte)

Die Abbildung I sei induktiv definiert durch

$$I: \{0,1\}^* \to \{0,1\}^*,$$
 $\epsilon \mapsto 1,$
 $w \cdot 0 \mapsto w \cdot 1, \text{ wobei } w \in \{0,1\}^*,$
 $w \cdot 1 \mapsto I(w) \cdot 0, \text{ wobei } w \in \{0,1\}^*.$

- a) Berechnen Sie $I(\epsilon)$, $I(I(\epsilon))$, $I(I(I(\epsilon)))$ und $I(I(I(I(\epsilon))))$.
- b) Beweisen Sie durch vollständige Induktion über die Wortlänge, dass für jedes $w \in \{0,1\}^*$ gilt:

Es gibt ein
$$i \in \mathbb{Z}_{|I(w)|}$$
 so, dass $(I(w))(i) = 1$.

Erinnerung: Für jedes $w \in \{0,1\}^*$ und jedes $i \in \mathbb{Z}_{|I(w)|}$ ist (I(w))(i) das i-te Zeichen des Wortes I(w).

c) Es sei $E = \{u \in \{0,1\}^* \mid \text{ es gibt ein } i \in \mathbb{Z}_{|u|} \text{ so, dass } u(i) = 1\}$. Nach der vorangegangenen Teilaufgabe gilt $I(w) \in E$ für jedes $w \in \{0,1\}^*$. Definieren Sie induktiv eine Abbildung $S: E \to \{0,1\}^*$ so, dass für jedes $w \in \{0,1\}^*$ gilt: $\operatorname{Num}_2(S(I(w))) = \operatorname{Num}_2(w)$.

Lösung 3.3

- a) $I(\epsilon) = 1$ $I(I(\epsilon)) = I(1) = I(\epsilon \cdot 1) = I(\epsilon) \cdot 0 = 1 \cdot 0 = 10$ $I(I(I(\epsilon))) = I((10)) = I(1 \cdot 0) = 1 \cdot 1 = 11$ $I(I(I(I(\epsilon)))) = I(11) = I(1 \cdot 1) = I(1) \cdot 0 = 10 \cdot 0 = 100$
- b) Es ist zu zeigen, dass für jedes $n \in \mathbb{N}_0$ gilt:

Für jedes $w \in \{0,1\}^n$ gibt es ein $i \in \mathbb{Z}_{|I(w)|}$ so, dass (I(w))(i) = 1.

Induktionsanfang: Es sei $w \in \{0,1\}^0$. Dann ist $w = \epsilon$. Foglich ist I(w) = 1. Also ist (I(w))(0) = 1.

Induktionsschritt: Es sei $n \in \mathbb{N}_0$ so, dass gilt:

Für jedes
$$u \in \{0,1\}^n$$
 gibt es ein $i \in \mathbb{Z}_{|I(u)|}$ so, dass $(I(u))(i) = 1$. (I.V.)

Weiter sei $w \in \{0,1\}^{n+1}$. Dann gibt es ein $u \in \{0,1\}^n$ und ein $x \in \{0,1\}$ so, dass $u \cdot x = w$.

Fall 1:
$$x = 0$$
. Dann ist $I(w) = I(u \cdot x) = u \cdot 1$. Also ist $(I(w))(|w| - 1) = 1$.

Fall 2:
$$x = 1$$
. Dann ist $I(w) = I(u \cdot x) = I(u) \cdot 0$. Nach (I.V.) gibt es ein $i \in \mathbb{Z}_{|I(u)|}$ so, dass $(I(u))(i) = 1$. Also ist $(I(w))(i) = (I(u))(i) = 1$.

In jedem Fall gibt es ein $i \in \mathbb{Z}_{|I(w)|}$ so, dass (I(w))(i) = 1.

Schlussworte: Gemäß des Prinzips der vollständigen Induktion gilt zu beweisende Aussage.

c) Interpretiert man Wörter in $\{0,1\}^*$ als Zahlen in Binärdarstellung, wobei man das leere Wort als die Zahl 0 interpretiert, so ist I(w) die Summe von w und 1. Unter dieser Interpretation bedeutet S(I(w)) = w, dass S(I(w)) die Differenz von I(w) und 1 ist. Die Abbildung S muss die "Transformationen", die I vornimmt rückgängig machen, lax gesagt, müssen wir um die Definition von S zu erhalten die Pfeile der Form \mapsto in der Definition von S umdrehen. Eine mögliche induktive Definition von S ist:

$$S: E \to \{0,1\}^*,$$
 $1 \mapsto \epsilon,$
 $w \cdot 1 \mapsto w \cdot 0$, wobei $w \in \{0,1\}^+,$
 $w \cdot 0 \mapsto S(w) \cdot 1$, wobei $w \in \{0,1\}^*.$

Dies ist tatsächlich wohldefiniert, da der Definitionsbereich von *S* nur Wörter enthält in denen mindestens eine 1 vorkommt.