Fisica per applicazioni di realtà virtuale

Anno Accademico 2022-23

Prof. Matteo Brogi

Dipartimento di Fisica, stanza B3, nuovo edificio

Lezione 9

Meccanica dei sistemi: moti di traslazione

Sommario della unità

Abbandoniamo il concetto di punto materiale

- Centro di massa e leggi della dinamica
- Baricentro vs centro di massa; determinazione sperimentale
- Distribuzione di massa nel corpo umano
- Sistemi a massa variabile
- Razzi e propulsione nello spazio

No rotazioni per questa unità

La posizione di un sistema di punti: il centro di massa

È la media "pesata" (peso=massa) della posizione di tutti i punti

$$x_{\mathrm{CM}} = rac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}} = rac{1}{M} \sum_{i} m_{i} x_{i}$$
 con M la massa totale

vale sia per traslazioni (a) che per rotazioni (b)

caso (a): CM fisso rispetto ai punti del corpo

caso (b): CM può cambiare rispetto ai punti del corpo in rotazione (non descrive il moto rotazionale)

Proprietà fondamentale del CM (versione 1)

Concentrando la massa del sistema nel CM, considerandolo un punto materiale, applicando F=ma ⇒ il CM descrive il moto traslatorio del sistema

ovvero

il CM si muove sullo stesso percorso su cui si muoverebbe un punto materiale soggetto alla ∑F esterne e con massa pari a quella del sistema

Nota: vista l'analogia con un punto materiale, le rotazioni non sono descritte dal moto del CM Cfr. casi a) e b) slide precedente

Centro di massa e moto traslatorio

Formalizziamo il legame tra il moto del CM e la ∑F sul sistema

$$\overrightarrow{v}_{\text{CM}} = \frac{\overrightarrow{dx}_{\text{CM}}}{dt} = \frac{d}{dt} \left(\frac{1}{M} \sum_{i} m_{i} \overrightarrow{x}_{i} \right)$$

(definizione di x_{CM})

$$\overrightarrow{v}_{\text{CM}} = \frac{1}{M} \frac{d}{dt} \left(\sum_{i} m_{i} \overrightarrow{x}_{i} \right) = \frac{1}{M} \sum_{i} m_{i} \overrightarrow{v}_{i}$$

$$\overrightarrow{N}\overrightarrow{v}_{\text{CM}} = \overrightarrow{p}_{\text{CM}} = \sum_{i} \overrightarrow{p}_{i}$$

La quantità di moto del CM è la somma delle q.m. dei singoli punti materiali (= prodotto della massa totale e v_{CM})

Estensione del CM alla seconda legge della dinamica

Accelerazione del CM

$$\overrightarrow{a}_{\text{CM}} = \frac{1}{M} \sum_{i} m_{i} \overrightarrow{a}_{i}$$

Su ogni punto materiale i agisce una forza F_i

Tra due punti materiali (chiamiamoli i, j) può agire una forza F_{ij}

Se i esercita forza su j j esercita forza contraria su i (III legge dinamica)

Estensione alla seconda legge della dinamica

Il legge Newton per ciascun punto

Il legge Newton per il sistema

$$\overrightarrow{F}_i + \sum_{j \neq i} \overrightarrow{F}_{ij} = m_i \overrightarrow{a}_i$$

$$\overrightarrow{F}_{\text{ris}} = \sum_{i} \overrightarrow{F}_{i} + 0 = \sum_{i} m_{i} \overrightarrow{a}_{i}$$

Azione e reazione: ogni Fij è bilanciata da Fji

$$\overrightarrow{F}_{ris} = M \overrightarrow{a}_{CM}$$

La II legge di Newton non cambia a patto di descrivere il sistema con la massa totale M e con l'accelerazione del CM

Proprietà fondamentale del CM (versione 2)

Valido solo per moti di traslazione

Il moto di un sistema discreto dal punto di vista sia cinematico che dinamico è interamente descritto dal CM e le sue variabili cinematiche XCM, VCM, ACM

Conseguenza #1: le forze interne al sistema non contano per determinarne il moto (ricordate: si annullano per il III principio)

Conseguenza #2: un sistema di punti materiali soggetto a moto di traslazione si muove come se tutta la massa fosse concentrata in un punto materiale coincidente con il CM

Vedremo che questo resta valido anche per sistemi continui

Esercizi sul centro di massa

Esercizio 6.01: Un razzo viene lanciato con moto parabolico, e programmato di modo tale che nel punto più alto della traiettoria (x = d) si separi in due parti di massa uguale. La prima parte si arresta a mezz'aria e cade verticalmente al suolo, mentre la seconda prosegue.

- a) Descrivere la traiettoria del centro di massa e calcolarne la gittata.
- b) Rispondere alla stessa domanda, ma per la seconda metà del razzo.

Esercizio 6.02: Tre persone sono sedute su un natante leggero riempito d'aria e dalla forma di serpente, la cui coda è considerata l'origine degli assi. Sapendo che le tre persone pesano uguali e che le loro posizioni sono x_1 = 1 m, x_2 = 5 m, e x_3 = 6 m:

- a) si calcoli la posizione del centro di massa;
- b) si ripeta il calcolo nel caso che il natante leggero sia sostituito da una trave orizzontale di massa pari al doppio di ciascuna persona, lunghezza 8 m, e origine in x=0.

Esercizio 6.03: Un pescatore di 75 kg getta fuori da una barca di massa 55 kg una boa di 5 kg, orizzontalmente e con velocità di 3.2 m/s. Calcolate la velocità della barca dopo il lancio, assumendo che essa sia inizialmente ferma.

Baricentro o centro di massa?

Il **baricentro** (eng: barycentre): punto di azione della risultante della forza gravitazionale applicata a ciascun punto del sistema

Baricentro e centro di massa **coincidono** se il "campo gravitazionale è uniforme" = l'accelerazione di gravità è costante su tutto il corpo

Determinazione sperimentale

Richiede almeno due linee a piombo

La loro intersezione identifica la posizione del baricentro

Il centro di massa del corpo umano

Le **articolazioni:** punti di **perno** (o di cerniera) su cui si esercita la forza peso applicata al centro di massa della parte corrispondente

Distanza delle articolazioni (%) 91.2	Punti di cerniera (•) (articolazioni) Tra la base del cranio e la colonna vertebrale	Centro di massa (×) (% dell'altezza sopra al piano)		Massa percentuale
		Testa	93.5	6.9
81.2	Articolazioni della spalla	Tronco e collo	71.1	46.1
	$\langle \mathbf{x} \rangle$	Parte superiore del braccio	71.7	6.6
52.1	Anca gomito 62.2 polso 46.2	Avambraccio	55.3	4.2
		Mani	43.1	1.7
		Parte superiore delle gambe	42.5	21.5
28.5	Ginocchio			
		Parte inferiore delle gambe	18.2	9.6
4.0	Caviglia	Piede	1.8	3.4
			58.0	100.0

Esempio: il centro di massa di una gamba estesa

Vogliamo la posizione del centro di massa ⊗ rispetto all'anca, se h=170 cm

Differenze percentuali (sull'altezza) prese dalla tabella precedente, riferite alla posizione dell'anca

Le articolazioni non contano in questo caso = problema unidimensionale

$$x_{\text{CM}}(\%) = \frac{9.6 \times 21.5 + 33.9 \times 9.6 + 50.3 \times 3.4}{21.5 + 9.6 + 3.4} = 20.4\% = 34.7 \text{ cm}$$

Esempio: il centro di massa di una gamba piegata

Vogliamo la posizione del centro di massa 🛇

L'articolazione del ginocchio rende il problema bidimensionale

Scomponiamo la soluzione in $CM = (x_{CM}, y_{CM})$

$$x_{\text{CM}}(\%) = \frac{9.6 \times 21.5 + 23.6 \times 9.6 + 23.6 \times 3.4}{21.5 + 9.6 + 3.4} = 14.9\%$$

$$y_{\text{CM}}(\%) = \frac{28.5 \times 21.5 + 18.2 \times 9.6 + 1.8 \times 3.4}{21.5 + 9.6 + 3.4} = 23.0\%$$

 $CM = (0.149 \times 170, 0.23 \times 170) \text{ cm} = (25.3, 39.1) \text{ cm}$

Il centro di massa sta sotto la posizione del ginocchio

Il centro di massa nel salto in alto: la tecnica Fosbury

Durante il salto il CM passa sotto l'asta; perché è importante?

Proprietà del CM: il moto traslazionale dell'atleta è pienamente descritto dal CM

L'energia e il lavoro richiesti per il salto sono quelli necessari a portare il CM oltre l'asta

Minore altezza del CM rispetto al suolo ⇒ minore lavoro contro la forza di gravità (cfr. unità 4)

Sistemi a massa variabile

Descrivono bene il moto di un razzo o un cannone

(Attenzione ai segni: per ora ΔM generico, poi useremo il fatto che è negativo)

Siamo interessati al moto del **sottosistema S**, (non di S' che include la massa espulsa)

Nell'intervallo di tempo Δt il sistema espelle una massa $-\Delta M$ a velocità ${\bf u}$ La velocità ${\bf v}$ del sistema S deve cambiare

In assenza di forze esterne, la quantità di moto totale non può cambiare

Sistemi a massa variabile: Il legge di Newton

$$\overrightarrow{p}_i = M\overrightarrow{v}$$

q. moto iniziale

$$\overrightarrow{p}_f = (M + \Delta M)(\overrightarrow{v} + \Delta \overrightarrow{v}) + (-\Delta M \overrightarrow{u})$$

q. moto finale

variazione della q. moto

$$\Delta \overrightarrow{p} = \overrightarrow{p}_f - \overrightarrow{p}_i = (M + \Delta M)(\overrightarrow{v} + \Delta \overrightarrow{v}) + (-\Delta M \overrightarrow{u}) - M \overrightarrow{v}$$
$$= M\Delta \overrightarrow{v} + \Delta M \overrightarrow{v} + \Delta M \Delta \overrightarrow{v} - \Delta M \overrightarrow{u}$$

$$\overrightarrow{F}_{\text{ext}} = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{p}}{\Delta t} = \lim_{\Delta t \to 0} \left[M \frac{\Delta \overrightarrow{v}}{\Delta t} + (\overrightarrow{v} - \overrightarrow{u}) \frac{\Delta M}{\Delta t} + \Delta \overrightarrow{v} \frac{\Delta M}{\Delta t} \right]$$

$$\overrightarrow{F}_{\text{ext}} = M \frac{d\overrightarrow{v}}{dt} + (\overrightarrow{v} - \overrightarrow{u}) \frac{dM}{dt} + d\overrightarrow{v} \frac{dM}{dt} \quad \text{Termine}$$

$$trascurabile$$

Sistemi a massa variabile: II legge di Newton

$$\overrightarrow{F}_{\text{ext}} = M \frac{d\overrightarrow{v}}{dt} + (\overrightarrow{v} - \overrightarrow{u}) \frac{dM}{dt} = \frac{d}{dt} (M \overrightarrow{v}) - \overrightarrow{u} \frac{dM}{dt}$$

accelerazione del corpo che espelle massa
$$M\frac{d\overrightarrow{v}}{dt} = \overrightarrow{F}_{\rm ext} + \overrightarrow{v}_{\rm rel}\frac{dM}{dt}$$
 velocità relativa
$$v_{\rm rel} = \mathbf{u} - \mathbf{v}$$

Considerando solo i moduli (dM/dt < 0) e senza forze esterne ($F_{\text{ext}}=0$)

$$\frac{dv}{M-dt} = -v_{\text{rel}} \frac{dM}{dt}$$

Sistemi a massa variabile: II legge di Newton

Applichiamo quanto detto al caso di un razzo

$$\frac{dv}{dt} = -v_{\text{rel}} \frac{dM}{dt}$$

$$dv = -v_{\text{rel}} \frac{dM}{M}$$

separazione delle variabili

la "spinta" (thrust) di un razzo

$$\int_{v_0}^{v_f} dv = -v_{\text{rel}} \int_{M_0}^{M_f} \frac{dM}{M}$$

Equazione differenziale (variabile e derivate) ma a "variabili separabili"

L'equazione differenziale del razzo

Equazione a variabili separabili:

(più facile da risolvere - un integrale per ciascuna variabile)

$$\int_{v_0}^{v_f} dv = -v_{\text{rel}} \int_{M_0}^{M_f} \frac{dM}{M}$$

L'integrale di 1 è semplicemente x

$$v \mid_{v_0}^{v_f} = -v_{\text{rel}} \log M \mid_{M_0}^{M_f}$$

L'integrale di 1/x è il logaritmo naturale di x

Partenza da fermo

$$-\frac{v_f}{v_{\text{rel}}} = \log M_f - \log M_0 = \log \left(\frac{M_f}{M_0}\right)$$

$$\frac{NI_f}{M_0} = e^{-v_f/v_{\text{rel}}}$$

Proprietà dei logaritmi

Sistemi a massa variabile: esercizi

Esercizio 6.04: Un razzo pieno di carburante sulla rampa di lancio ha una massa di 13600 kg. Esso è lanciato verticalmente verso l'alto, e allo spegnimento del motore ha bruciato e espulso 9100 kg di carburante. I gas sono scaricati al ritmo di 146 kg/s con una velocità relativa al razzo di 1520 m/s; mentre il carburante brucia si suppongano costanti queste due quantità.

- a) Calcolare la spinta (thrust) del razzo
- b) Calcolare la velocità del razzo allo spegnimento del motore se si trascurano tutte le forze esterne, compresa la gravità e la resistenza dell'aria.

Esercizio 6.05: Un'imbuto lascia cadere della sabbia al ritmo costante dM/dt su un nastro trasportatore che si muove con una velocità v nel sistema di riferimento del laboratorio. Quale potenza è richiesta per mantenere il nastro in moto con velocità v?

L'esercizio 6.05 va ulteriormente commentato alla luce del teorema delle forze vive

Sistemi a massa variabile: esercizio 6.05 (implicazioni)

Facciamo comparire l'energia cinetica nella soluzione per la potenza

$$P_{\text{ext}} = v^2 \frac{dM}{dt} = \frac{d(v^2 M)}{dt} = 2\frac{d}{dt} \left(\frac{1}{2}Mv^2\right) = 2\frac{dK}{dt}$$

Ricordando che P = dW/dt, si ha che solo **metà del lavoro si trasforma in K**Si ottiene lo stesso risultato partendo dal lavoro su un elemento dM di sabbia e integrando la massa tra 0 ed M

$$dW = P dt = v^2 dM \qquad W = v^2 \int_0^M dM = v^2 M$$

Problema: la massa M è passata da velocità u=0 a v, quindi ∆K=Mv²/2=W/2

Per risolvere il problema bisogna considerare forze dissipative che convertono W per es. in calore. W = ΔK + W_{diss}