OPERATIONAL RESEARCH AND OPTIMIZATION (MCSD1133)

Assignment 2

Lecturer Name: Dr. Nor Azizah Ali

Due: 28th June, 2024 **Group Members:**

Name	Matric No
MOHAMMED RAZA ASFAK CHIDIMAR	MCS231004
AYAZ RAHMAN BHUIYAN	MCS231023
MUSAB IBNE AHMAD	MCS231017
ISMAIL MAEEN FATEH ALLAH ALAWAMI	MCS221028

Q1. Find an initial solution to the following transportation problem...

Q2. Using the U-V method to optimize the initial basic feasible solution found in question (1). Compute the total cost.

סיתה	V 1 = 6	V2=-6	5 V3 = 8
0	50		50
$u_1 = 0$	6	18	8
u ₂ = 19	17	(-) 60	(+)
u2 = 16		20	¥(-)

$$P_{ij} = u_i + v_j - c_{ij}$$

 $\times_{12} = 0 + (-6) - 18 = -24$
 $\times_{21} = 19 + 6 - 17 = 8$
 $\times_{23} = 19 + 8 - 19 = 8$

x31= 16+6-20=2

$$u_{1} = 0$$

$$u_{1} = 0$$

$$u_{2} = 11$$

$$u_{3} = 8$$

$$u_{40}$$

$$u_{5} = 8$$

$$20$$

$$10$$

$$24$$

$$x_{12} = 0 + 2 - 18 = -16$$
 $x_{21} = 11 + 6 - 17 = 0$
 $x_{31} = 8 + 6 - 20 = -6$
 $x_{33} = 8 + 8 - 24 = -8$

So, the values of x_{ij}

is less than or equed to 0. So, we can stop hore.

Z = (50×6)+(50×8) + (40×13)+ CS Scani(sckw)th Canocanner

From 1(a), we found the value by northwate corner method was 3120.

And after the optimization using U-V method we got the result 2000. And this value is also same as the result found from the lowest cost cell method and Vogel's Approximation

Q3. Libby Air Filter manufactures room air filter at plants in P1, P2 and P3. These are sent to regional distributors in RD1, RD2 and RD3....

Result from Excel Solver

Based on the given optimal solution, there are leftover air filters from Plant P2, as it has 650 units available but only needs to ship a total of 450 units to the distribution centers. Therefore, the remaining 200 units from Plant P2 cannot be entirely shipped to any distribution center.

Below is amount of air filters for Libby Air Filter to ship from each plant to each regional distribution center to achieve optimal solution with optimum transportation costs of \$14700.

Q4. In the MDS program at top university in Chicago, students bid for electives on the third year of their program....

Student	Electives				Electiv	Electiv
Student	AA	BI	ОМ	FA	e e	e
Ally	1	0	0	1	2	2
Garry	0	0	1	1	2	2
Franky	1	1	0	0	2	2
Ellis	0	1	0	1	2	2
Susan	0	1	1	0	2	2
Edward	1	1	0	0	2	2
Dave	1	0	1	0	2	2
Teryy	0	1	1	0	2	2
James	0	0	1	1	2	2
Winnie	1	0	0	1	2	2
Limit per Class	5	5	5	5		
Student per Cl	5	5	5	5		
Total Bid	705					

Output shows:						
Student	s for eac	h electiv	/es			
AA	BI	ОМ	FA			
Ally	Franky	Garry	Ally			
Franky	Ellis	Susan	Garry			
Edward	Susan	Dave	Ellis			
Dave	Edward	Teryy	James			
Winnie	Teryy	James	Winnie			

Output in Spreadsheet:

- **Student Bids**: The bid values each student places on each elective.
- **Elective Assignment**: The binary matrix indicating the assigned electives for each student.
- **Total Bid**: The sum of the bid values for the assigned electives, which is maximized to 705.

Q5. The Dorwyn Company has two new products (special kinds of doors and windows) that will compete with the two new products for the Wyndor Glass Co....

Result from Excel Solver

The company should produce approximately **1.15** units of doors (D) and **1.5** units of windows (W) per week to maximize profit. Under these conditions, the maximum profit is estimated to be approximately **\$7.58** (in hundreds of dollars, thus \$758).

This product mix satisfies the constraints set forth:

The first constraint, $D + 3W \le 18$, is met with a total of approximately **5.65**. The second constraint, $5D + 2W \le 14$, is satisfied with a total of approximately **8.77**.

Q6. Basyir has inherited RM1000. He has to decide how to invest the money for one year...

Summary of Decisions:

• Maximax: Growth Stock

• **Maximin**: Certificate of Deposit (C/D)

• Minimax Regret: Junk Bond

• **Hurwicz**: Growth Stock

• Equal Likelihood: Gold

Final Recommendation:

Growth Stock stands out as a strong recommendation, particularly under the Maximax and Hurwicz criteria.