

. . .

Analyzing a delivery process

Group 5 Adam, André, Kewen, Sasan

Workflow: understanding order & delivery process

KPIs

Total time (order until arrival in days)

Mean in w (iii Distribution

Percentage of orders for which expected time is met

- Normal delivery
- Express delivery

Processing time in warehouse (in days)

Mean 95% quantile Distribution

Percentage of orders for which expected time is met

- Normal delivery
- Express delivery

Wait time from "Ready to ship" to "on truck" (in days)

Mean 95% quantile Distribution

Percentage of orders for which expected time is met

- Normal delivery
- Express delivery

Delivery time (in days)

Mean 95% quantile Distribution

Percentage of orders for which expected time is met

- Normal delivery
- Express delivery

Hypothesis and goal

Hypothesis:

- The delivery process is not fully satisfactory and can be optimized.
- In particular, we do not always meet our expectations with respect to total delivery times and the different steps of the delivery process.

Goals: identify potential for improvement in the delivery process

Table of contents

Total metrics

Processing metrics

Ready to ship metrics

Delivery metrics

Understanding the results

Total metrics

Metrics overview for: Total time (in days)

	Overall	Normal delivery	Express delivery
count	333	258	75
mean	10.83	11.93	7.05
std	2.86	1.96	2.16
min	3.00	6.00	3.00
25%	9.00	11.00	5.00
50%	11.00	12.00	7.00
75%	13.00	13.00	8.00
95%	15.00	15.00	10.30
max	17.00	17.00	13.00

. .

Total time by type of shipping

Total time should not exceed the sum of the expected time spans, i.e.:

$$4 + 3 + 5 = 12$$
 days

02 Processing

Metrics overview for: Processing time (in days)

	Overall	Normal delivery	Express delivery
count	204	151	53
mean	4.18	4.93	2.04
std	1.97	1.44	1.69
min	0.00	2.00	0.00
25%	3.00	4.00	0.00
50%	4.00	5.00	2.00
75%	6.00	6.00	3.00
95%	7.00	7.00	5.00
max	8.00	8.00	5.00

. .

03 Ready to ship

Metrics overview for: Wait time (in days)

	Overall	Normal delivery	Express delivery
count	204	151	53
mean	1.57	1.99	0.40
std	0.95	0.68	0.53
min	0.00	1.00	0.00
25%	1.00	2.00	0.00
50%	2.00	2.00	0.00
75%	2.00	2.00	1.00
95%	3.00	3.00	1.00
max	3.00	3.00	2.00

• •

04 Delivery

Metrics overview for: Delivery time (in days)

	Overall	Normal delivery	Express delivery
count	333	258	75
mean	4.60	4.64	4.48
std	1.20	1.16	1.34
min	1.00	1.00	2.00
25%	4.00	4.00	3.00
50%	5.00	5.00	5.00
75%	5.00	5.00	5.00
95%	7.00	6.00	7.00
max	7.00	7.00	7.00

. .

05 Understanding the results

Understanding the results

- On average, we deliver within a total of 11 days (normal: 12 days, express: 7 days).
- For 95% of the orders, we do not exceed 15 days (normal: 15 days, express: 10 days).
- Express delivery is generally much faster than normal delivery with respect to total time, processing time, and wait time.
- We exceed the expected total time for 30.9% of the orders (normal: 39.5%, express: 1.3%).
- In 63.6% of the orders with normal delivery, we exceed our expected processing time in the warehouse.
- Therefore, there is room for improvement of the delivery process, especially with respect to the processing time in case of normal deliveries.

Technical documentation

Metrics overview for time (in days)

```
# Create ship mode variable with two categories "Express" vs. "Normal" delivery:

category_names = {
    'First Class':'Express',
    'Second Class':'Normal',
    'Standard Class':'Normal'
}

df['ship_mode2'] = df['ship_mode'].map(category_names)

df[['ship_mode','ship_mode2']]

volume
```

Describe main variables in dataframe:

Distribution of total time

```
# Histogram for total days
# Create dataframe without NaN values in total days:
df4 = df.copy()
df4.dropna(subset=['total_days'], inplace=True)
# Use predefined style ggplot:
plt.style.use('ggplot')
# Set figure size:
plt.figure(figsize=(6, 4))
# Create histogram by specifying x-value:
plt.hist(x = df4['total_days'], align="mid", bins=50)
# Axis labels:
plt.xlabel("Total time (days)")
plt.ylabel("Frequency")
# Set title
plt.title("Distribution of total time")
# Show graphic
plt.show()
```


Total time by type of shipping

```
# Histogram grouped by type of shipping
  fig, ax = plt.subplots()
  df.groupby('ship_mode2')['total_days'].plot(kind='hist',align='mid', alpha=0.5, legend=True, ax=ax, bins=50)
  # Customize the plot
  ax.set_title('Total time by type of shipping')
  ax.set_xlabel('Total time (days)')
  ax.set_ylabel('Frequency')
  ax.legend(title='Type of shipping')
  # Show the plot
 plt.show()
0.1s
```

. . .

Percentage of orders for which total time was met

Total time should not exceed the sum of the expected time spans, i.e.:

```
4 + 3 + 5 = 12  days
```

```
# Create variable assessing whether expected total time was met;
      total time should not exceed the sum of the expected time spans, i.e.:
        + 3 + 5 = 12 days.
    def total_met(row):
        if row['total_days'] <= 12:
            return 1
        if row['total_days'] > 12:
            return 0
    df4['total_met'] = df4.apply(total_met, axis=1)
13
    df4[['total_days', 'total_met']].sample(10)
 0.0s
```


Percentage of orders for which total time was met

Total time should not exceed the sum of the expected time spans, i.e.:

```
4 + 3 + 5 = 12  days
```

```
# Create variables for percentage of orders for which total time was met:
total_met_overall = df4["total_met"].mean() * 100
# Normal delivery:
total_met_normal = df4.query('ship_mode2 == "Normal"')["total_met"].mean() * 100
# Express delivery:
total_met_express = df4.query('ship_mode2 == "Express"')["total_met"].mean() * 100
# Show bar chart:
# Data
values = [total_met_overall, total_met_normal, total_met_express]
labels = ['Overall', 'Normal', 'Express']
plt.bar(labels, values, color=['blue', 'orange', 'green'])
# Adding percentages above the bars
for i, value in enumerate(values):
    plt.text(i, value, f'{value:.1f}%', ha='center')
# Adding labels and title
plt.xlabel('Type of shipping')
plt.ylabel('Percentage of orders')
plt.title('Percentage of orders for which total time was met')
# Show the plot
plt.show()
```