République algérienne démocratique et populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Université Abdelhamid Mehri – Constantine 2

Faculté des nouvelles technologies de l'information et de la communication (NTIC)

Technologies des Logiciels et des Systèmes d'Information (TLSI)

MÉMOIRE DE MASTER

pour obtenir le diplôme de Master en Informatique

Option: Génie logiciel (GL)

SmartFarm Solution

Réalisé par :

Sous la direction de :

Mr. Gharzouli Abderahmane Mahdi

Mr. Smain Nasr-Eddine Bouzenada

Mr. Sadi Belkacem

Remerciements

Nous remercions dieu le tout puissant de nous avoir donné la santé et la volonté de terminer ce parcours tout d'abord nous tenons à exprimer avec tous notre respect ,notre connaissance et notre sincères remerciements à nos enseignants qui nous ont aidé à acquérir les compétences nécessaires pour bien mener cette recherche. pour leur encadrement exceptionnel leur disponibilités leur conseils et leur aides précieuse de notre parcours nous sommes profondément reconnaissant envers eux et envers les gens á qui nous avons l'honneur de les rencontrer tous notre remerciements s'adressent également à tous nos enseignants et particulièrement Mr. Smain Nasr-Eddine Bouzenada pour leur soutien leur efforts leur encouragement tout au long de notre parcours universitaire et de notre mémoire pour nos Master deux

Votre expertise et votre patience ont été des facteurs déterminants dans l'aboutissement de notre travail, et nous sommes vraiment reconnaissant pour tout le temps que vous nous avez accordé pour discuter de nos idées et nous guider dans la bonne direction.

Enfin, nous exprimons notre profonde gratitude surtout envers nos parents et nos proches qui nous ont soutenu tout au long de notre études et ont toujours cru en nous .

Encore une fois, merci infiniment pour votre précieuse contribution à notre parcours universitaire.

Résumé

Abstract

Smartfarm in greenhouse is an advanced agricultural system that integrates smart technologies and data analytics to optimize crop growth and yield in a controlled environment. The proposed system uses a network of sensors and monitoring devices to collect data on various environmental parameters such as temperature, humidity and light intensity. This data is analyzed using machine learning algorithms to provide insights into crop growth patterns, predict yield.

Smartfarm is designed to provide real-time feedback to farmers and greenhouse managers, allowing them to make informed decisions about crop management. The proposed system also provides remote access to monitor and control the environment, such as adjusting temperature and humidity levels, and ensuring optimal growing conditions.

The integration of Smartfarm has numerous benefits, including increased efficiency, reduced resource consumption, and improved crop yields. The proposed system allows farmers to optimize their operations to produce more food sustainably while reducing costs and minimizing environmental impact. Overall, Smartfarm represents a significant step forward in sustainable agriculture, and its potential to revolutionize the industry is significant. By leveraging advanced technology and data-driven insights, Smartfarm in greenhouse offers a new and more efficient way to grow crops in a controlled environment.

Résumé

Ferme intelligente en serre est un système agricole avancé qui intègre des technologies intelligentes et de l'analyse de données pour optimiser la croissance et le rendement des cultures dans un environnement contrôlé. Le système utilise un réseau de capteurs et de dispositifs de surveillance pour collecter des données sur divers paramètres environnementaux tels que la température, l'humidité et l'intensité lumineuse. Ces données sont analysées à l'aide d'algorithmes d'apprentissage automatique pour fournir des informations sur les modèles de croissance des cultures, prédire le rendement. ferme intelligente est conçu pour fournir des commentaires en temps réel aux agriculteurs et aux gestionnaires de serre, leur permettant de prendre des décisions éclairées en matière de gestion des cultures. Le système fournit également un accès à distance pour surveiller et contrôler l'environnement, comme régler les niveaux de température et d'humidité, et assurer des conditions de croissance optimales.

L'intégration de ferme intelligente présente de nombreux avantages, notamment une efficacité accrue, une consommation de ressources réduite et une amélioration des rendements des cultures. Le système permet aux agriculteurs d'optimiser leurs opérations pour produire plus de nourriture de manière durable, tout en réduisant les coûts et en minimisant l'impact sur l'environnement.

Dans l'ensemble, ferme intelligente représente une avancée significative dans l'agriculture durable, et son potentiel de révolutionner l'industrie est important. En tirant parti de technologies avancées et d'informations fondées sur les données, ferme intelligente offre une nouvelle manière plus efficace de cultiver les cultures dans un environnement contrôlé.

ملخص

المزرعة الذكية في البيوت البلاستكية هو نظام زراعي متقدم يدمج التقنيات الذكية وتحليل البيانات لتحسين نمو المحاصيل والحصاد في بيئة مراقبة. يستخدم النظام شبكة من الحساسات وأجهزة المراقبة لجمع البيانات عن مختلف المعلمات البيئية مثل درجة الحرارة والرطوبة وشدة الإضاءة. يتم تحليل هذه البيانات باستخدام خوارزميات التعلم الآلي لتوفير إدراكات حول أنماط نمو النباتات، وتوقعات الحصاد.

تم تصميم المزرعة الذكية لتوفير ردود فعل في الوقت الحقيقي للمزارعين ومديري البيوت الزراعية، مما يتيح لهم اتخاذ قرارات مدروسة بشأن إدارة المحاصيل. كما يوفر النظام الوصول عن بعد لمراقبة والتحكم في البيئة، مثل ضبط درجة الحرارة والرطوبة، وضمان الظروف المثلى للنمو.

تتميز تكامل المزرعة الذكية بالعديد من الفوائد، بما في ذلك زيادة الكفاءة، وتقليل استهلاك الموارد، وتحسين حصاد المحاصيل. يتيح النظام للمزارعين تحسين عملياتهم لإنتاج المزيد من الغذاء بشكل مستدام، مع تقليل التكاليف وتقليل الأثر على البيئة. بشكل عام، عمثل المزرعة الذكية خطوة مهمة في الزراعة المستدامة، وإمكاناته لتحول الصناعة هامة. من خلال الاستفادة من التكنولوجيا المتقدمة.

Table des matières

Re	emer	ciements	ii	
Résumés Liste des abréviations			iii vii	
1	Info	ormation general sur les serres	3	
	1.1	température	3	
	1.2	Humidité		
	1.3	Eclairage	4	
2	Contributions		5	
	2.1	Theoretical Proposal	5	
	2.2	Implementation et Experiments	5	
General Conclusion			6	
R.	References			

Liste des abréviations

IoT Internet Of Things

UML Unified Modeling Language

SI Serre Intelligente

Géneral Introduction

Domaine d'etude

L'agriculture a largement contribué à l'économie de l'Algérie pendant des siècles. L'Algérie est l'un des principaux exportateurs de produits agricoles. Ces dernières années, le gouvernement algérien a pris des mesures pour stimuler le secteur agricole en investissant dans la technologie, les infrastructures et la formation et et il s'agit notamment du Plan national de développement agricole (PNDA), qui est conçu pour stimuler l'efficacité et la compétitivité. «il a été décidé d'orienter les efforts vers une agriculture intelligente et solide face au changement climatique en tenant compte de l'environnement et de l'équilibre des écosystèmes sans négliger le gaspillage, grâce à une bonne gestion des excédents de production»[1].

Problématique

Les serres intelligentes(SI) et l'Internet des Objets (IoT) sont des technologies émergentes qui ont transformé l'agriculture. SI sont des structures utilisées pour cultiver des plantes sous un environnement contrôlé, offrant ainsi une solution efficace pour la production de cultures dans des conditions météorologiques défavorables ou dans des régions où les terres sont limitées.

Les serres intelligentes utilisent des technologies de pointe pour optimiser les conditions de croissance des plantes. Ces technologies peuvent inclure des capteurs de température, d'humidité et de lumière, des systèmes d'irrigation automatisés et des logiciels d'analyse de données pour suivre les conditions de croissance des plantes. SI permettent également une surveillance et un contrôle précis des conditions environnementales.

L'utilisation de l'IoT dans SI offre une connectivité en réseau aux appareils électroniques, des capteurs..., collectent une grande quantité de données, puis elles sont analysées

et interprétées de manière efficace.

Objectifs

Pour répondre à ces défis, voici les objectifs suivants :

"Nous prenons en particulier les tomates, en raison de la forte productivité en Algérie"

-1 Optimiser la production : Les serres intelligentes peuvent aider les agriculteurs à optimiser leur production en régulant les conditions environnementales pour une croissance optimale des plantes. Les capteurs IoT peuvent être utilisés pour surveiller les niveaux d'humidité, de température et de lumière, ce qui permet aux agriculteurs de prendre des

décisions éclairées sur l'irrigation, la ventilation et l'éclairage.

-2 Réduire la consommation d'eau et d'énergie : SI peuvent également aider à réduire la consommation d'eau et d'énergie. Les capteurs IoT peuvent être utilisés pour surveiller les niveaux d'humidité du sol et de l'air, ce qui permet aux agriculteurs de réguler l'irrigation et la ventilation de manière efficace. De plus, SI peuvent être équipées de technologies d'éclairage LED et d'autres technologies d'efficacité énergétique pour réduire la consom-

mation d'énergie.

-3 System automatisés : le systeme s'interagit et intervenit immédiate et efficace en temps opportun, avec des notifications envoyées à l'agriculteur.

Organisation de mémoire

Notre mémoire est structuré comme suite :

Chapitre 1: Information generale sur les Serres

Chapitre 2: IOT

Chapitre 3: Conception et Analyse

Chapitre 4: Implimentation

Information general sur les serres

Introduction

Ce chapitre fournit des informations de base sur la gestion des cultures en serre. En savoir plus sur la production de tomates. Le succès des cultures dépend d'une bonne régulation de l'humidité, températur et bonne irrigation . le problème de la maladie Souvent dû à un mauvais contrôle de l'humidité et de la ventilation en fonction des conditions météorologiques que fait-il. Même les serriculteurs biologiques expérimentés peuvent La difficulté de faire pousser des cultures avec succès.

Tomates de serre

La culture des tomates en serre est un moyen de production de tomates efficace et peu coûteux en Algérie. La culture des tomates en serre offre aux agriculteurs un moyen sûr et pratique de produire des tomates de qualité supérieure à des coûts et à des quantités élevés. Elle repose sur les principes suivants :

Caracteristique

1.1 température

La température est le facteur le plus déterminant dans la production de la tomate. Celle-ci réagit énormément aux variations thermiques.

Un écart de température d'un ou deux degrés Celsius entre le jour et la nuit est favorable à la production de fruits. Pour la production des plants et avant l'apparition des premières fleurs, il est préférable toutefois de maintenir la température plus constante à environ 20

°C. En été, l'aération doit être suffisante pour que la température ne dépasse pas 28 °C. Idéalement, il faudrait qu'elle ne dépasse pas 25 °C, car au dessus de cette température la tomate ne fait plus aucun gain. [2]

1.2 Humidité

L'humidité relative optimale des cultures sous serre varie de 60 à 80 %. Dans le cas des cultures hydroponiques, l'humidité relative nocturne et diurne se monte en général respectivement à 75 % et 85 %. [3]

1.3 Eclairage

Les tomates sont sensibles aux conditions de faible luminosité. Elles exigent un minimum de 6 heures d'ensoleillement direct pour fleurir. Toutefois, en cas de trop grande intensité du rayonnement solaire, des fentes, des brûlures solaires et une coloration inégale peuvent apparaître au stade de maturité. Il est donc essentiel, dans le cas des cultures sous serre, de s'assurer que les fruits disposent de suffisamment d'ombre. La longueur du jour n'influence pas la production de tomates. Les cultures sous serre sont par conséquent répandues sous un large éventail de latitudes.[4]

Contributions

(This part includes all the contributions proposed in your project. You describe the adopted approach and methodology and you explain how you carried out your project. The results obtained are also presented, analyzed and discussed. This part may consist of one (01) or two (02) chapters maximum, and **should not exceed 20 pages**. The general structure is as follows:)

Introduction

2.1 Theoretical Proposal

(This section may include the following: Project description, formal or semi-formal project design, system architecture, process used in project development, etc.)

2.2 Implementation et Experiments

Conclusion

General Conclusion

(Consisting of **2 pages maximum**, this part is reserved for conclusion and perspectives. In the conclusion, you provide a summary of your contributions, providing an answer to the addressed problem and specifying the context of project applicability. In addition, the limits and perspectives of the project are also discussed, by listing the works to be considered in the future.)

Synthesis

Perspectives

References

[1] Bureau Business France d'ALGER, "Point sur l'agriculture en 2020 - Algérie", Presse République Française Liberté Égalité Fraternité, 10 Janvier 2021 (https://www.businessfrance.fr/algerie-point-sur-l-agriculture-en-2020).

[2] Module 4, Production de transplants et de légumes en serres - Chapitre 7, « Cultures en serre », manuscrit du Guide de gestion globale de la ferme maraîchère biologique et diversifiée, rédigé par Anne Weill et Jean Duval.

[3],[4] Nutrition de la tomate "Principes agronomiques de la tomate", Knowledge grows yara france.(https://www.yara.fr/fertilisation/solutions-pour-cultures/tomate/principes-agronomiques-tomates/).