BỘ GIÁO DỤC VÀ ĐÀO TẠO ----ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYẾN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2005

Môn: **TOÁN, Khối B**

(Đáp án – thang điểm gồm 4 trang)

Câu	Ý	Nội dung	Điểm
I		Tiệt dung	2,0
	I.1		1,0
		$m = 1 \Rightarrow y = \frac{x^2 + 2x + 2}{x + 1} = x + 1 + \frac{1}{x + 1}.$ a) TXĐ: $\mathbb{R} \setminus \{-1\}$. b) Sự biến thiên: $y' = 1 - \frac{1}{(x + 1)^2} = \frac{x^2 + 2x}{(x + 1)^2}, \ y' = 0 \Leftrightarrow x = -2, x = 0.$	0,25
		$y_{CD} = y(-2) = -2, y_{CT} = y(0) = 2.$ Duòng thẳng x = -1 là tiệm cận đứng.	0,25
		Đường thẳng $y = x + 1$ là tiệm cận xiên. Bảng biến thiên:	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
		c) Đồ thị	0,25

	I.2		1,0
		Ta có: $y = x + m + \frac{1}{x+1}$. TXĐ: $\mathbb{R} \setminus \{-1\}$. $y' = 1 - \frac{1}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2}$, $y' = 0 \Leftrightarrow x = -2$, $x = 0$.	0,25
		Xét dấu y' $\frac{x \mid -\infty -2 -1 0 +\infty}{y' \mid + 0 - \parallel - 0 +}$ Đồ thị của hàm số (*) luôn có điểm cực đại là $M(-2;m-3)$ và điểm cực tiểu là $N(0;m+1)$.	0,50
		$MN = \sqrt{(0-(-2))^2 + ((m+1)-(m-3))^2} = \sqrt{20}.$	0,25
II.			2,0
111,	II.1		1,0
		$\begin{cases} \sqrt{x-1} + \sqrt{2-y} &= 1 \\ 3\log_9(9x^2) - \log_3 y^3 &= 3 \end{cases} $ (2) $DK: \begin{cases} x \ge 1 \\ 0 < y \le 2. \end{cases}$	0,25
		$(2) \Leftrightarrow 3(1 + \log_3 x) - 3\log_3 y = 3 \Leftrightarrow \log_3 x = \log_3 y \Leftrightarrow x = y.$	0,25
		Thay $y = x$ vào (1) ta có $\sqrt{x-1} + \sqrt{2-x} = 1 \Leftrightarrow x-1+2-x+2\sqrt{(x-1)(2-x)} = 1$ $\Leftrightarrow \sqrt{(x-1)(2-x)} = 0 \Leftrightarrow x = 1, x = 2.$ Vậy hệ có hai nghiệm là $(x;y) = (1;1)$ và $(x;y) = (2;2)$.	0,50
	II.2		1,0
		Phương trình đã cho tương đương với $\sin x + \cos x + 2\sin x \cos x + 2\cos^2 x = 0$ $\Leftrightarrow \sin x + \cos x + 2\cos x \left(\sin x + \cos x\right) = 0$ $\Leftrightarrow \left(\sin x + \cos x\right) \left(2\cos x + 1\right) = 0.$	0,50
		• $\sin x + \cos x = 0 \Leftrightarrow \operatorname{tgx} = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi \ (k \in \mathbb{Z}).$	0,25
		• $2\cos x + 1 = 0 \Leftrightarrow \cos x = -\frac{1}{2} \Leftrightarrow x = \pm \frac{2\pi}{3} + k2\pi (k \in \mathbb{Z}).$	0,25

III.			3,0
111,	III.1		1,0
		Gọi tâm của (C) là $I(a;b)$ và bán kính của (C) là R .	0.25
		(C) tiếp xúc với Ox tại $A \Rightarrow a = 2$ và $ b = R$.	0,25
		$IB = 5 \Leftrightarrow (6-2)^{2} + (4-b)^{2} = 25 \Leftrightarrow b^{2} - 8b + 7 = 0 \Leftrightarrow b = 1, b = 7.$	0,25
		Với $a = 2, b = 1$ ta có đường tròn	
		$(C_1):(x-2)^2+(y-1)^2=1.$	0,25
		Với $a = 2, b = 7$ ta có đường tròn	0.25
		$(C_2):(x-2)^2+(y-7)^2=49.$	0,25
	III.2a		1,0
		$A_1(0;-3;4), C_1(0;3;4).$	0,25
		$\overrightarrow{BC} = (-4;3;0), \overrightarrow{BB_1} = (0;0;4)$	0,23
		Vecto pháp tuyến của $mp(BCC_1B_1)$ là $\vec{n} = [\overrightarrow{BC}, \overrightarrow{BB_1}] = (12;16;0)$.	0,25
		Phương trình mặt phẳng (BCC_1B_1) :	
		$12(x-4)+16y = 0 \Leftrightarrow 3x + 4y - 12 = 0.$	
		Bán kính mặt cầu:	
		R = d(A,(BCC ₁ B ₁)) = $\frac{ -12-12 }{\sqrt{3^2+4^2}} = \frac{24}{5}$.	0,25
		Phương trình mặt cầu:	0,25
		$x^2 + (y+3)^2 + z^2 = \frac{576}{25}$.	0,23
	III.2b		1,0
		Ta có $M(2; -\frac{3}{2}; 4), \overrightarrow{AM} = (2; \frac{3}{2}; 4), \overrightarrow{BC}_1 = (-4; 3; 4).$	0,25
		Vector pháp tuyến của (P) là $\overrightarrow{n_P} = \left[\overrightarrow{AM}, \overrightarrow{BC_1}\right] = \left(-6; -24; 12\right)$. Phương trình (P): $-6x - 24\left(y+3\right) + 12z = 0 \Leftrightarrow x + 4y - 2z + 12 = 0$. Ta thấy $B(4;0;0) \not\in (P)$. Do đó (P) đi qua A, M và song song với BC_1 .	0,25
		Ta có $\overrightarrow{A_1C_1}=(0;6;0)$. Phương trình tham số của đường thẳng A_1C_1 là $\begin{cases} x=0\\ y=-3+t\\ z=4. \end{cases}$ $N\in A_1C_1\Rightarrow N\left(0;-3+t;4\right).$ Vì $N\in (P)$ nên $0+4\left(-3+t\right)-8+12=0\Leftrightarrow t=2.$ Vậy $N\left(0;-1;4\right).$ $MN=\sqrt{\left(2-0\right)^2+\left(-\frac{3}{2}+1\right)^2+\left(4-4\right)^2}=\frac{\sqrt{17}}{2}.$	0,50

IV			2,0
1 7	IV.1		1,0
		Ta có $I = 2\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos^{2} x}{1 + \cos x} dx$. Đặt $t = 1 + \cos x \Rightarrow dt = -\sin x dx$. $x = 0 \Rightarrow t = 2, \ x = \frac{\pi}{2} \Rightarrow t = 1$.	0,25
		$I = 2\int_{2}^{1} \frac{(t-1)^{2}}{t} (-dt) = 2\int_{1}^{2} (t-2+\frac{1}{t}) dt$	0,25
		$=2\left(\frac{t^2}{2}-2t+\ln t \right)\Big _1^2$	0,25
		$= 2\left[\left(2 - 4 + \ln 2\right) - \left(\frac{1}{2} - 2\right)\right] = 2\ln 2 - 1.$	0,25
	IV.2		1,0
		Có $C_3^1 C_{12}^4$ cách phân công các thanh niên tình nguyện về tỉnh thứ nhất. Với mỗi cách phân công các thanh niên tình nguyện về tỉnh thứ nhất thì có $C_2^1 C_8^4$ cách phân công các thanh niên tình nguyện về tỉnh thứ hai. Với mỗi cách phân công các thanh niên tình nguyện về tỉnh thứ nhất và tỉnh thứ hai thì có $C_1^1 C_4^4$ cách phân công các thanh niên tình nguyện về tỉnh thứ ba.	0,50
		Số cách phân công đội thanh niên tình nguyện về 3 tỉnh thỏa mãn yêu cầu bài toán là $C_3^1.C_{12}^4.C_2^1.C_8^4.C_1^1.C_4^4 = 207900.$	0,50
V			1,0
•		Áp dụng bất đẳng thức Cô si cho hai số dương ta có $\left(\frac{12}{5}\right)^{x} + \left(\frac{15}{4}\right)^{x} \ge 2\sqrt{\left(\frac{12}{5}\right)^{x} \cdot \left(\frac{15}{4}\right)^{x}}$ $\Rightarrow \left(\frac{12}{5}\right)^{x} + \left(\frac{15}{4}\right)^{x} \ge 2.3^{x} $ (1).	0,50
		Turong tự ta có $ \left(\frac{12}{5}\right)^{x} + \left(\frac{20}{3}\right)^{x} \ge 2.4^{x} \qquad (2). $ $ \left(\frac{15}{4}\right)^{x} + \left(\frac{20}{3}\right)^{x} \ge 2.5^{x} \qquad (3). $	0,25
		Cộng các bất đẳng thức (1), (2), (3), chia hai vế của bất đẳng thức nhận được cho 2, ta có điều phải chứng minh. Đẳng thức xảy ra \Leftrightarrow (1), (2), (3) là các đẳng thức \Leftrightarrow x = 0.	0,25

------Hết------

