jessekelighine.com Jesse C. Chen 陳捷

證明. 我們證明一個 n 邊形可以被分割成 n-2 個小三角 形。我們用數學歸納法證明:

定理 2. 任何圖形可以被分割爲有限個三角形。

起始 當 n=3 的時候,不需要分割就是個三角形。

推遞 當 $n \geq 3$ 的時候,選取一頂點 A,其有兩個相鄰的頂點 B、C。如果連線 \overline{BC} 完全落在這個多邊形裡面,則把 A 點去掉便成了一個 n-1 邊形。根據歸納假設,這個 n-1 邊形可以被分成 n-3 個三角形。再把 $\triangle ABC$ 加上,那麼原本的 n 邊形就能被分割成 n-2 個三角形。那如果連線 \overline{BC} 不完全落在這個 n 邊形內部,則選取離 \overline{BC} 最遠的頂點 D,連線 \overline{AD} 必然完全落在這個 n 邊形內部。連結 \overline{AD} 便將原本的 n 邊形分成兩個小多邊形,而兩個多邊形的頂點數 m 與 p 的和為 n+2。根據歸納假設,m 邊形能被分為 m-2 個三角形,p 邊形能被分為 p-2 個三角形,兩者相加得

$$(m-2) + (p-2) = (m+p) - 4$$

= $(n+2) - 4 = n - 2_{\circ}$

故 n 邊形能被分割為 n-2 個三角形。

討論 2. 雖然**定理 1** 以及**定理 2** 看似無聊至極,但是對於等一下的證明非常重要,所以特別給他定理編號。另外,其實這兩個定理要能成立需要一個假設,那就是剪貼的過程要有限。這是爲什麼我們一開始需要定義簡單多邊形。

證明. 考慮以下的圖形:

= 我們想將 △ABC 剪貼成 □ABDE。作法如下:

大家可能都有玩過七巧板, 能夠把原本拼成正方形的七塊 拼圖拼成各式各樣的圖形。類似的圖形拼貼謎題也很常 見, 其中一個非常有名的便是 Henry Dudeney 在他 1907 年《The Canterbury Puzzles》書中提到把正方形切割並 拼貼成正三角形的謎題(這個謎題被稱爲 Haberdaher's Problem)。

這些謎題都非常有趣, 但是能不能把這些謎題都一次解決呢?也就是說, 我們想要知道:

問題. 就能只透過剪剪貼貼, 就把任意的圖形變成任何 一個面積相同的圖形嗎?

這個問題看似直接簡單,但又沒辦法直觀地說明對錯。 其實,這個問題能用基礎的幾何學知識證明。我們接下來 就用歐幾里德式的證明來解決這麼問題吧!

-- * -- * -- * --

在開始之前,我們先淸楚的定義我們所謂的圖形以及剪貼 指涉的到底是什麼。

定義 1 (圖形). 一個圖形指的是一個簡單多邊形, 也就是一個沒有洞, 其邊不與自己相交, 並且只有有限個角與邊的多邊形。

定義 2 (剪貼). 剪指將一個圖形以一條直線分割成兩部分。貼指的是把兩個圖形不重疊地合併再一起。剪貼指的是對一個圖形先進行數個剪,後執行數個貼,最後產生一個圖形且沒有剩餘的塊。

討論 1. 這些定義是要淸楚我們討論的圖形是什麼,因爲 顯然地,只透過剪貼就想要把一個圓變成一個正方形是不 可能的。這個定義模仿的就是一把剪刀剪下去的概念。簡 單來說,一個圖形就是可以用一張紙剪出來且沒有洞的形 狀。

定理 1. 如果一圖形 A 能被剪貼成圖形 B, 則圖形 B 也能被剪貼成圖形 A。

證明. 只要將剪貼的過程倒過來執行就可以了。

- 2. 令 M 爲 C 在 \overline{FG} 上的垂足;
- 3. 將 $\triangle ABC$ 沿著 \overline{FG} 以及 \overline{CM} 剪開;
- 4. 將 $\triangle CFM$ 旋轉 180° 貼到 $\triangle AFE$ 的位置;
- 5. 將 $\triangle CMG$ 旋轉 180° 貼到 $\triangle BDG$ 的位置。

我們宣稱通過這個作法剪貼成的 $\Box ABDE$ 是一個與 $\triangle ABC$ 面積相同的長方形。

首先, 因爲 F 與 G 分別是 \overline{AC} 與 \overline{BC} 的中點, 我們知道以下三件事:

- \overline{ED} (\overline{FG} 的延伸) 與 \overline{AB} 平行;
- \overline{AE} , \overline{CM} 與 \overline{BD} 等長。

再來, 注意到 $\triangle CFM \cong \triangle AFE$ 。這是因爲 $\angle CMF = \angle AEF = 90^\circ$,斜邊 $\overline{AF} = \overline{CF}$,並且鄰邊 $\overline{CM} = \overline{AE}$,故 $\triangle CFM$ 與 $\triangle AFE$ 透過 RHS 全等。類似地, $\triangle CMG \cong \triangle BDG$,因爲 $\angle GMC = \angle GDB = 90^\circ$,斜邊 $\overline{CG} = \overline{BG}$,以及鄰邊 $\overline{CM} = \overline{BD}$ 。因此,將 $\triangle CFM$ 以及 $\triangle CMG$ 分別貼到 $\triangle AEF$ 與 $\triangle BDG$ 的位置是可行的。

最後,我們確認 $\square ABDE$ 是一個長方形。顯然的,因 為 \overline{ED} 與 \overline{AB} 平行,並且 \overline{AE} 與 \overline{BD} 都和 \overline{ED} 垂直,所 以 $\square ABDE$ 是長方形。

討論 3. 如果 $\angle BAC$ 是直角, 那麼我們在證明中使用的剪貼做法需要修改嗎?如果 $\angle BAC$ 是鈍角呢?

定理 4. 任何長方形可以剪接成正方形。

證明. 考慮以下的圖形:

我們想將 $\Box ABCD$ 剪貼成正方形 $\Box AEFG$ 。作法如下:

- 1. 將 \overline{AE} 的長度定為 $\sqrt{\overline{AB} \cdot \overline{BC}}$;
- 2. \diamondsuit $\overline{CI} = \overline{AE}$;
- 4. 將 □*ABCD* 沿著 \overline{BI} 以及 \overline{EH} 剪開;
- 5. 將 $\triangle BCI$ 平移貼到 $\triangle HFG$ 的位置;
- 6. 將 $\triangle BHE$ 平移貼到 $\triangle IGD$ 的位置。

我們宣稱通過這個作法剪貼成的 $\Box AEFG$ 是與 $\Box ABCD$ 面積相等的正方形。

顯然地,將 $\triangle BCI$ 貼到 $\triangle HFG$ 的位置後, \overline{BC} 與 \overline{EH} 切齊並且 \overline{AG} 與 \overline{AD} 共線。是故,我們只需說明 $\triangle BHE \cong \triangle IGD$ 並且確認 $\Box AEFG$ 是正方形卽可完成 證明。

注意到因為 $\overline{AE} = \overline{CI}$, 所以 $\overline{BE} = \overline{DI}$; 又因為 $\overline{FH} = \overline{AD}$, 所以 $\overline{EH} = \overline{DG}$; 最後因為 $\angle BEH = \angle IDG = 90^\circ$, 故 $\triangle BHE$ 與 $\triangle IGD$ 因為 SAS 全等。因此,將 $\triangle BHE$ 貼到 $\triangle IGD$ 的位置之後 $\Box AEFG$ 便是一個完整的長方形。

最後我們確認 $\Box AEFG$ 其實是一個正方形。這是顯然的,因為 $\Box AEFG$ 與 $\Box ABCD$ 面積相同,又因為 \overline{AE} 的長度是 $\sqrt{AB} \cdot \overline{BC}$,所以我們必然有 $\overline{AE} = \overline{FH} + \overline{EH}$ 。 #

討論 4. 在以上的證明中, 我們說:

顯然地,將 $\triangle BCI$ 貼到 $\triangle HFG$ 的位置後, \overline{BC} 與 \overline{EH} 切齊並且 \overline{AG} 與 \overline{AD} 共線。

這件事看圖的確是顯然的,但是我們沒有提供嚴謹的證明。 如果 $\Box ABCD$ 是一個長寬比為 5:1 的長方形,那以上的 這個顯然的事實還成立嗎?如果不成立,遇到的問題是什 麼?然後要怎麼修改證明中使用的作法呢?

定理 5. 任兩個正方形可以剪貼成一個正方形。

證明. 考慮以下的圖形:

我們想將 $\Box ACDE$ 與 $\Box BFGC$ 合併成一個大的正方形 $\Box AHIB$ 。作法如下:

- 1. 將 □*ACDE* 與 □*BFGC* 如圖放置在直角三角形 △*ABC* 的兩股;
- 2. 令 M 爲 $\square BFGC$ 的中點;
- 3. 令 \overline{KN} 爲過 M 且與 \overline{AB} 垂直的線段;
- 4. 令 \overline{LJ} 爲過 M 且與 \overline{AB} 平行的線段;

- 5. 將 $\square BFGC$ 沿著 \overline{KN} 以及 \overline{LJ} 剪開;
- 6. 將 $\Box ACDE$ 與 $\Box KMJF$ 等四塊四邊形如圖照虛線 平移並貼成 $\Box AHIB$ 。

我們宣稱通過這個作法剪貼成的正方形 $\Box AHIB$ 的面積等於 $\Box ABCD$ 及 $\Box BFGC$ 面積的總和。

首先,由於 \overline{LJ} 平行於 \overline{AB} ,並且 \overline{AL} 平行於 \overline{BJ} , $\Box ABJL$ 是一個平行四邊形。另外,由於 M 是 $\Box BFGC$ 的中心點,故 \overline{MJ} 、 \overline{MK} 與 \overline{ML} 等長。因此, \overline{MK} = \overline{MJ} 是 \overline{AB} 長度的一半,並且 K' 與 J' 分別是 \overline{AH} 與 \overline{HI} 的中點。又因爲 \overline{FJ} 平行於 \overline{GL} , \overline{FK} 平行於 \overline{BN} …等平行關係,從 $\Box BFGC$ 剪出來的四塊四邊形可以緊密的貼到 $\Box AHIB$ 中的四個角落。

最後, 我們說明 $\Box BFGC$ 中間就剩下的正方形洞的面積恰好就是與 $\Box ACDE$ 的面積相等。再次注意到平行四邊形 $\Box ABJC$, 可以發現 $\Box ACDE$ 的邊長恰好是

$$\overline{AC} = \overline{AL} - \overline{CL} = \overline{JB} - \overline{CL} = \overline{FK} - \overline{FJ}$$

而 □BFGC 中間就剩下的正方形洞的邊長是

$$\overline{F'O} = \overline{J'O} - \overline{F'J'} = \overline{F'K'} - \overline{F'J'}_{\circ}$$

是故, $\Box ACDE$ 可以完美地鑲嵌在 $\Box BFGC$ 中間就剩下的正方形洞中。 #

討論 5. 定理 5 的證明就是勾股定理的一種證明,而我們證明方式是直接建構將兩個小正方形剪貼成大正方形的作法。其實,只使用**定理 1** 以及**定理 4** 也能建構出將兩個小

O

正方形合併成一個大正方形的作法。你能想出是什麼作法 嗎?

定理 6(Wallace-Bolyai-Gerwien). 任何一個圖形都可以剪貼成任一個面積相同的圖形。

證明. 假設有兩個面積相同的圖形 A 和圖形 B。根據定理 2,先將 A 分成數個三角形。再根據定理 3 以及定理 4,將所有三角形都先剪貼成長方形,再剪貼成正方形。最後根據定理 5 把所有小正方形合併成一個面積與 A 相等的大正方形。同理,圖形 B 也可以通過一樣的方法被剪貼成一個面積相等的大正方形。是故,先將圖形 A 剪貼成大正方形,再根據定理 1,就能將大正方形剪貼成圖形 B。 #

如此一來, 我們一開始的問題就就靠著定理 6 解決了!

-- * -- * -- * --

最後這個定理被稱為 Wallace-Bolyai-Gerwien Theorem, 因為有三位數學家各自在 19 世紀初獨立地證明了這個定 理,所以這個定理就冠上這三位數學家的名字。

從一開始 Henry Dudeney 的例子可見,我們的證明方法顯然在很多情況下是太費工了。可以說我們給的剪貼次數是一個上界,也就是說:必定可以使用我們提供的剪貼程序完成圖形之間的轉換,但是在很多時候可以通過更簡易的程序完成剪貼。而找尋這些更簡易的程序也就是這些謎題的有趣之處。一開始我們給出了 Henry Dudeney 把正方形剪貼成正三角形的作法,但是沒有給出尺寸的細節。你能夠看圖用尺規作圖建構出 Henry Dudeney 切割正方形或正三角形的方法嗎?

1. 令 C' 使得 BC' = BC 並以 B 為圓心作半圓 C'C;
2. 令過 E 點 BC 華線交半圓 C'C 於 F;
4. 令 CE 之延伸交 FG 於 I (此時 EI = 43);
5. 令 J 為圖 C 且與 GI 平行之線之交點 (此時 EI = 1/43);
6. 以 J 為圓心 EK 為半徑作如交 CD 於 L;
7. 以 E 為圓心 EK 為半徑作如交 EL 於 N;
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
9. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。
8. 以 N 為圓心 EK 為半徑作如交 AB 於 O。

解答. 要能夠直想出這樣的切割方式不簡單, 但是有一開始的圖要反推剪貼方式就要簡單得多。首先, 觀察到 $\overline{\Lambda M}=\overline{DM}$ 並且 $\overline{BE}=\overline{CE}$, 這是因為這四個邊在貼成正三角形時要兩兩重合。類似地, $\overline{MN}=\overline{NO}=\overline{EL}$ 。接著, 因為正方形與正三角形面積相等, 所以 $4\cdot\overline{\Lambda M}^2=\sqrt{3}\cdot\overline{MN}^2$, 這就表示 $\overline{MN}=\frac{2}{\sqrt{3}}\overline{\Lambda M}$ 。有了這些關係就可以開始 因為正方形與正三角形面積相等, 所以 $4\cdot\overline{\Lambda M}^2=\sqrt{3}\cdot\overline{MN}^2$,這就表示 $\overline{\Lambda M}=\frac{2}{\sqrt{3}}\overline{\Lambda M}$ 。有了這些關係就可以開始 只規作圖了。為了方便起見, 在尺規作圖中令 $\overline{\Lambda M}=1$:

 \boldsymbol{D}