ECA602 – Sistemas de Controle

Universidade Federal de Itajubá

Engenharia Eletrônica

Aula 05

Resposta em Frequência

Prof. Dr. Luís Henrique de Carvalho Ferreira

Notas de Aula - 2013

Considerações iniciais

• Recordando a **aula 01**, um sinal senoidal que passa através de um sistema dinâmico linear e invariante no tempo é amplificado (ou atenuado) pelo ganho $|G(j\omega)|$ e deslocado pela fase $\angle G(j\omega)$, permanecendo com a mesma frequência.

• O ganho e a fase são obtidos da função de transferência pela troca de s por $j\omega$, definindo a **resposta em frequência**.

$$G(s) \Rightarrow G(j\omega) = |G(j\omega)| \angle G(j\omega)$$

 Dessa maneira, a resposta em frequência representa o comportamento de um sistema dinâmico quando a frequência do sinal senoidal de entrada varia de zero a infinito.

- Uma vez que a função de transferência passa a ser expressa por um número complexo, a resposta em frequência pode ser representada pelo módulo e fase como uma função explícita da frequência em uma escala logarítmica na base 10 (décadas de frequência); a representação é conhecida como diagrama de Bode, na qual o módulo é expresso na escala em decibel. A principal vantagem de se utilizar a escala em decibel é que a multiplicação dos módulos é convertida em uma adição, o que já ocorre com as fases.
- Os fatores que mais ocorrem em uma função de transferência arbitrária são:
 - Ganhos.
 - Pólos e zeros na origem.
 - Pólos e zeros reais no semi-plano à esquerda.
 - Pólos e zeros complexo-conjugados no semi-plano à esquerda.

ullet Para um ganho K, tem-se:

$$G(s) = K$$

$$|G(j\omega)| = K$$
 $\angle G(j\omega) = 0^{\circ}$

- O módulo é constante (o valor do ganho) e a fase permanece inalterada com o aumento da frequência.
- Caso o ganho K seja proveniente da multiplicação de funções de transferências, a representação do módulo total em decibéis é dada pela adição de cada módulo individualmente, simplificando a composição do diagrama de Bode.

$$G(s) = K_1 K_2$$

$$|G(j\omega)| = 20 \log(K_1 K_2) = 20 \log K_1 + 20 \log K_2$$

Para um pólo na origem, tem-se:

$$G(s) = \frac{1}{s}$$

$$|G(j\omega)| = \omega^{-1} \qquad \angle G(j\omega) = -90^{\circ}$$

Compensação analítica

- ullet O módulo é atenuado de $20~\mathrm{dB}$ por década e a fase atrasada de 90° com o aumento da freguência.
- Para um zero na origem, tem-se:

$$G(s) = s$$

$$|G(j\omega)| = \omega \qquad \angle G(j\omega) = +90^{\circ}$$

ullet O módulo é amplificado de $20~\mathrm{dB}$ por década e a fase adiantada de 90° com o aumento da frequência.

• Para um pólo real no semi-plano à esquerda, tem-se:

$$G(s) = \frac{1}{\tau s + 1}$$

$$|G(j\omega)| = \left(\omega^2 \tau^2 + 1\right)^{-1/2} \qquad \angle G(j\omega) = -\tan^{-1} \omega \tau$$

$$\frac{\omega \to 0 \quad \omega = \tau^{-1} \quad \omega \to \infty}{\text{m\'odulo} \quad 1 \quad 0.707 \quad (\omega \tau)^{-1}}$$

$$\text{fase} \qquad 0^\circ \qquad -45^\circ \qquad -90^\circ$$

• Assim, o módulo é atenuado de $20~\mathrm{dB}$ por década a partir da frequência de corte (o inverso da constante de tempo) e a fase atrasada de até 90° com aumento da frequência.

• Para um zero real no semi-plano à esquerda, tem-se:

$$G(s) = \tau s + 1$$

$$|G(j\omega)| = (\omega^2 \tau^2 + 1)^{1/2} \qquad \angle G(j\omega) = + \tan^{-1} \omega \tau$$

	$\omega \to 0$	$\omega = \tau^{-1}$	$\omega o \infty$
módulo	1	1.414	ωau
fase	0°	+45°	+90°

• Assim, o módulo é amplificado de $20~\mathrm{dB}$ por década a partir da frequência de corte (o inverso da constante de tempo) e a fase adiantada de até 90° com aumento da frequência.

Jiagiaina de Dode

- O módulo possui dois comportamentos assintóticos distintos para um pólo real: é constante até a frequência de corte e atenuado de 20 dB por década a partir dessa freguência. Por sua vez, a fase de um pólo real no semi-plano a esquerda é atrasada de 45° na frequência de corte, sendo praticamente 0° a uma década abaixo e praticamente -90° a uma década acima da frequência de corte.
- O módulo possui dois comportamentos assintóticos distintos para um zero real: é constante até a frequência de corte e amplificado de 20 dB por década a partir dessa frequência. Por sua vez, a fase de um zero real no semi-plano a esquerda é adiantada de 45° na frequência de corte, sendo praticamente 0° a uma década abaixo e praticamente $+90^{\circ}$ a uma década acima da frequência de corte.

 Para um par de pólos complexo-conjugados no semi-plano à esquerda, tem-se:

Compensação analítica

$$G(s) = \frac{1}{\left(\frac{s}{\omega_n}\right)^2 + 2\zeta \frac{s}{\omega_n} + 1}$$

$$|G(j\omega)| = \left[\left(2\zeta \frac{\omega}{\omega_n} \right)^2 + \left(1 - \frac{\omega^2}{\omega_n^2} \right)^2 \right]^{-1/2}$$

$$\angle G(j\omega) = -\tan^{-1} \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}$$

Dessa maneira:

	$\omega \to 0$	$\omega = \omega_n$	$\omega o \infty$
módulo	1	$(2\zeta)^{-1}$	$(\omega/\omega_n)^{-2}$
fase	0°	-90°	-180°

Compensação analítica

• Em torno da frequência de corte (a frequência natural), há o efeito da ressonância, o qual amplifica o módulo. Para $0.3 \le$ $\zeta < 1$, o módulo possui dois comportamentos assintóticos distintos: é constante até a frequência de corte e atenuado de 40 dB por década a partir dessa frequência. Já a fase é atrasada de 90° na frequência de corte, sendo praticamente 0° a uma década abaixo e praticamente -180° a uma década acima da frequência de corte.

 Para um par de zeros complexo-conjugados no semi-plano à esquerda, tem-se:

Compensação analítica

$$G(s) = \left(\frac{s}{\omega_n}\right)^2 + 2\zeta \frac{s}{\omega_n} + 1$$

$$|G(j\omega)| = \left[\left(2\zeta \frac{\omega}{\omega_n} \right)^2 + \left(1 - \frac{\omega^2}{\omega_n^2} \right)^2 \right]^{1/2}$$

$$\angle G(j\omega) = + \tan^{-1} \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}$$

Dessa maneira:

	$\omega \to 0$	$\omega = \omega_n$	$\omega o \infty$
módulo	1	2ζ	$(\omega/\omega_n)^2$
fase	0°	+90°	+180°

• Em torno da frequência de corte (a frequência natural), há o efeito da ressonância, o qual atenua o módulo. Para $0.3 < \zeta <$ 1, o módulo possui dois comportamentos assintóticos distintos: é constante até a frequência de corte e amplificado de 40 dBpor década a partir dessa frequência. Já a fase é adiantada de 90° na frequência de corte, sendo praticamente 0° a uma década abaixo e praticamente $+180^{\circ}$ a uma década acima da frequência de corte.

- Para um sistema dinâmico de fase não-mínima. os zeros no semi-plano à direita ou os atrasos de transporte contribuem com um atraso de fase adicional quando comparado à um sistema dinâmico de fase-mínima com o mesmo módulo.
- Para um zero real no semi-plano à direita, tem-se:

$$G(s) = \tau s - 1$$

$$|G(j\omega)| = (\omega^2 \tau^2 + 1)^{1/2} \qquad \angle G(j\omega) = -\tan^{-1} \omega \tau$$

• Para um atraso de transporte, tem-se:

$$G(s) = e^{-\tau s}$$

$$|G(j\omega)| = 1 \qquad \angle G(j\omega) = -\omega \tau$$

• Como exemplo, faça o esboço da resposta em freguência das seguintes funções de transferência:

$$G_1(s) = 100 \frac{1}{s(s+10)} = 10 \frac{1}{s(s/10+1)}$$

$$G_2(s) = 10000 \frac{s+1}{(s+10)(s+100)} = 10 \frac{s+1}{(s/10+1)(s/100+1)}$$

$$G_3(s) = 1000 \frac{s+1}{s^2 + 4s + 100} = 10 \frac{s+1}{(s/10)^2 + 2(0.2)(s/10) + 1}$$

$$G_4(s) = 1000 \frac{s-1}{(s+10)^2} = 10 \frac{s-1}{(s/10+1)^2}$$

-270 L

Frequencia [rad/s]

10¹

10⁰

 Os critérios de estabilidade comumente definidos na resposta em frequência são o critério de Nyquist e o critério de Bode, os quais permitem analisar a estabilidade em malha fechada através da resposta em frequência em malha aberta. Sem perda de generalidade, a malha de controle será feita com a realimentação unitária.

Compensação analítica

A equação característica pode ser expressa por:

$$C(s)G(s) = -1 \Rightarrow C(j\omega)G(j\omega) = -1$$

 Os critérios permitem investigar tanto a estabilidade absoluta quanto a estabilidade relativa em malha fechada.

Critério de Nyquist

 A resposta em frequência também pode ser representada por um diagrama real vs imaginário como uma função implícita da freguência: a representação é conhecida como diagrama de Nyquist, o qual é obtido variando a frequência de zero a infinito e espelhando o mesmo em relação ao eixo real. A equação característica pode ser expressa por:

$$C(j\omega)G(j\omega) = -1 + j0$$

• A estabilidade absoluta é analisada em torno do ponto real -1pelo critério de estabilidade de Nyquist, definida por:

$$Z = P + N$$

ullet Z e P são os números de pólos com parte real positiva em malha fechada e em malha aberta, respectivamente, e N é o número de contornos em torno do ponto real -1 (positivo no sentido horário e negativo no sentido anti-horário).

Critério de Nyquist

Resposta em frequência

 Um sistema dinâmico instável em malha aberta será estável em malha fechada se o número de contornos em torno do ponto -1no sentido anti-horário for igual ao número de pólos instáveis em malha aberta. Ou seja, Z deve ser igual a zero. Como exemplo, analise a estabilidade das seguintes funções de transferência:

$$C_1(s)G_1(s) = \frac{1}{s^2 + 2s + 1}$$

$$C_2(s)G_2(s) = \frac{s+1}{s^2+4s-5}$$

$$C_3(s)G_3(s) = \frac{s^2 + 2s + 1}{s^3 + 0.1s^2 + s + 1}$$

-1.5

0.5

-0.5

Real

1.5

Critério de Nyquist

Margens de ganho e de fase

Na análise da estabilidade relativa, a margem de ganho é definida como o fator pelo qual o ganho (dado em decibéis) em malha aberta pode variar sem tornar a realimentação instável. Por sua vez, a margem de fase é definida como o fator pelo qual a fase em malha aberta pode variar sem tornar a realimentação instável, tendendo o sistema dinâmico à estabilidade marginal.

• Pelo diagrama de Nyquist, a margem de ganho é dada pelo inverso da distância entre a origem e o ponto em que a curva intercepta o eixo real. A margem de fase é dada pelo ângulo entre o eixo real e o segmento de reta que passa pela origem e o ponto em que a curva intercepta o círculo de raio unitário (centrado na origem). Essas definições são mais intuitivas se vistas a partir do diagrama de Bode.

Critério de Nyquist

Resposta em frequência

 Como exemplo, considere as funções de transferência em malha aberta utilizadas na aula 04, nas quais os ganhos foram ajustados para que o sistema dinâmico seja estável em malha fechada (vide o lugar das raízes):

$$C_1(s)G_1(s) = \frac{8}{(s-1)(s+2)(s+3)}$$

$$C_2(s)G_2(s) = \frac{s+1}{s^2}$$

$$C_3(s)G_3(s) = 30 \frac{s+1}{s(s-1)(s^2+4s+16)}$$

 Note que não é possível distinguir se os pólos ou os zeros são provenientes da planta ou do controlador.

-0.05

-0.1 -1.4

-1.2

-0.8

Real

-0.6

-0.4

-0.2

 Para um sistema de fase-mínima, as informações do critério de Nyquist podem ser analisadas diretamente pelo diagrama de Bode. A equação característica pode ser expressa por:

$$C(j\omega)G(j\omega) = 1 \angle - 180^{\circ}$$

- A estabilidade absoluta é analisada para a frequência na qual o módulo é igual a 1 (ou $0~\mathrm{dB}$) pelo critério de estabilidade de Bode. Para que o sistema dinâmico seja estável em malha fechada, a fase deve estar acima da linha de -180° na frequência de cruzamento de ganho (ou de ganho unitário).
- A margem de ganho é dada pela diferença entre o módulo e a linha de $0~\mathrm{dB}$ na frequência na qual a fase é de -180° . A margem de fase é dada pela diferença entre a fase e a linha de -180° na frequência de ganho unitário. Como exemplo, analise a estabilidade das funções de transferência anteriores.

 Para se obter um sistema de 2^a ordem em malha fechada, a função de transferência em malha aberta deve ser dada por (considerando a realimentação unitária):

$$C(s)G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$$

- Assim, as figuras de mérito definidas para o sistema dinâmico de 2^a ordem serão válidas para quantificar as características da resposta temporal da malha de controle.
- Para o sistema dinâmico em questão, a equação característica vista pelo critério de Bode pode ser expressa por:

$$C(j\omega)G(j\omega) = \frac{\omega_n^2}{j\omega(j\omega + 2\zeta\omega_n)} = 1\angle - 180^\circ$$

• A frequência de ganho unitário ω_u é definida por:

$$|C(j\omega_u)G(j\omega_u)| = \frac{\omega_n^2}{\sqrt{4\zeta^2\omega_n^2\omega_u^2 + \omega_u^4}} = 1$$

 A qual está relacionada com os parâmetros de um sistema dinâmico de 2ª ordem por:

$$\omega_u = \omega_n \sqrt{\sqrt{4\zeta^4 + 1} - 2\zeta^2}$$

• A margem de fase ϕ_m é definida por:

$$\phi_m = 180^\circ + \angle C(j\omega_u)G(j\omega_u)$$

$$\phi_m = 180^\circ - 90^\circ - \tan^{-1}\left(\frac{\omega_u}{2\zeta\omega_n}\right) = \tan^{-1}\left(\frac{2\zeta\omega_n}{\omega_n}\right)$$

Assim:

$$\phi_m = \tan^{-1} \left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2} \right) \approx 100\zeta$$

Compensação analítica

 Note que a margem de fase depende do coeficiente de amortecimento (com uma aproximação linear para $\zeta \leq 0.7$), estando diretamente relacionada com o overshoot do sistema dinâmico de 2^a ordem. Já o tempo de acomodação pode ser definido por:

$$\zeta \omega_n = rac{\omega_u an \phi_m}{2}$$
 $T_A = rac{4}{\zeta \omega_n} = rac{8}{\omega_u an \phi_m}$

Recordando a aula 01, há duas figuras de mérito para a resposta transiente de um sistema de 2ª ordem subamortecido.

$$\mathit{overshoot} = e^{-rac{\pi \zeta}{\sqrt{1-\zeta^2}}} imes 100\% \hspace{1cm} T_A = rac{4}{\zeta \omega_n}$$

 Em suma, as figuras de mérito no tempo estão relacionadas com a resposta em frequência por:

$$T_A = \frac{8}{\omega_u \tan \phi_m} \qquad \zeta \approx \frac{\phi_m}{100}$$

Assim, o overshoot e o tempo de acomodação podem ser utilizados como as especificações da resposta em frequência. O problema de controle se redefine na utilização de um controlador que faça com que a reposta em frequência tenha uma dada frequência de ganho unitário e uma margem de fase.

 Para o controlador PID e suas variantes, busca-se os ganhos que fazem com que a frequência de ganho unitário e a margem de fase sejam vistas no diagrama de Bode.

$$\left[K_P + j\left(K_D\omega - \frac{K_I}{\omega}\right)\right]G(j\omega) = -1$$

 As especificações podem ser satisfeitas por três parâmetros, desde que a solução sejam ganhos reais positivos:

$$\varphi \triangleq \angle K(j\omega_u) = -180^\circ + \phi_m - \angle G(j\omega_u)$$

$$K_P = \frac{\cos \varphi}{|G(j\omega_u)|}$$
 $K_D\omega_u - \frac{K_I}{\omega_u} = \frac{\sin \varphi}{|G(j\omega_u)|}$

• O controlador altera o tipo do sistema dinâmico em malha aberta, no qual o valor do ganho K_I pode ser adotado.

 Para o controlador de avanço ou atraso de fase, busca-se os ganhos que fazem com que a frequência de ganho unitário e a margem de fase sejam vistas no diagrama de Bode.

$$\frac{j\omega a_1 + a_0}{j\omega b_1 + 1}G(j\omega) = -1$$

 As especificações podem ser satisfeitas por três parâmetros, desde que a solução sejam ganhos reais positivos:

$$\varphi \triangleq \angle K(j\omega_u) = -180^\circ + \phi_m - \angle G(j\omega_u)$$

$$a_1 = \frac{1 - a_0 |G(j\omega_u)| \cos \varphi}{\omega_u |G(j\omega_u)| \sin \varphi} \qquad b_1 = \frac{\cos \varphi - a_0 |G(j\omega_u)|}{\omega_u \sin \varphi}$$

 O controlador mantém o tipo do sistema dinâmico em malha aberta, no qual o valor do ganho a_0 pode ser adotado.

Controle de posicionamento de um satélite

 O funcionamento de um satélite requer um controle de posicionamento para que as antenas, sensores e painéis solares sejam corretamente orientados.

• O ângulo $\theta(t)$, medido em radianos, descreve a orientação do satélite em relação ao referencial inercial e pode ser alterado pela ação da força f(t) do propulsor, medida em Newtons.

Controle de posicionamento de um satélite

 O vento solar agindo sobre os painéis solares é modelado por um torque de distúrbio m(t) sobre o centro de massa. Assim:

$$Df(t) - m(t) = J\ddot{\theta}(t)$$

A função de transferência é dada por:

$$G(s) = \frac{\Theta(s)}{F(s)} = \frac{D}{Js^2}$$

• Adotando a distância D igual a $1~\mathrm{m}$ e o momento de inércia Jigual a $1 \text{ Nms}^2/\text{rad}$, qual o controlador PD capaz de impor a frequência de ganho unitário em 2.7 rad/s e a margem de fase em 30°? Qual o overshoot e o tempo de acomodação previsto para esse sistema em malha fechada? Qual o controlador de avanço de fase capaz de impor essas mesmas especificações?

Diagrama de Bode ($K_P = 6.31$ e $K_D = 1.35$)

Diagrama de Bode ($a_0 = 5.00$, $a_1 = 2.19$ e $b_1 = 0.13$)

Controle de velocidade de um motor DC

A função de transferência é dada por:

$$G(s) = \frac{\Omega(s)}{E(s)} = \frac{59.29}{s^2 + 6.98s + 15.12}$$

• Qual o controlador PID capaz de impor a frequência de ganho unitário em 15 rad/s e a margem de fase em 70° com um erro em regime permanente menor do que 2% para a entrada do tipo rampa? Qual o overshoot e o tempo de acomodação previsto em malha fechada?

- O Piper Dakota (desenvolvido pela Piper Aircraft e licenciado pela Embraer) é um avião civil de pequeno porte idealizado na década de 1960. O ângulo de arfagem $\theta(t)$, medido em graus, descreve o ângulo do nariz da aeronave em relação ao solo e pode ser alterado pelo ângulo do elevador $\delta(t)$ (superfície aerodinâmica na cauda), também medido em graus.
- A função de transferência é dada por:

$$G(s) = \frac{\Theta(s)}{\Delta(s)} = 160 \frac{(s+2.5)(s+0.7)}{(s^2+5s+40)(s^2+0.03s+0.06)}$$

• É desejável um overshoot menor do que 10% e um tempo de acomodação menor do que 2 segundos. Embora seja um sistema de ordem superior, qual o controlador capaz de impor essa dinâmica (ou seja, a frequência de ganho unitário em 20 rad/s e a margem de fase em 75°)?

Controle de arfagem de um piloto automático

Diagrama de Bode G(s)

Diagrama de Bode ($K_P = 0.85, K_I = 2.00 \text{ e } K_D = 0.11$)

