Vector Calculus PRACTICE before Examination 2

Dr. Paul Bailey Tuesday, October 1, 2019

Problem 1. (Conics) In each case, give the definition of the word, and find an equation in two variables x and y whose locus is a conic of the given type.

- (a) Circle
- (b) Parabola.
- (c) Ellipse.
- (d) Hyperbola.

Problem 2. (Ellipses)

The locus of the equation

$$4x^2 + 24x + 9y^2 - 36y + 36 = 0.$$

is an ellipse. Find its center, vertices, and foci.

Problem 3. (Surfaces) Find an equation in three variables x, y, and z, whose locus in \mathbb{R}^3 is the following.

(a) A point.

(f) An elliptic paraboloid.

(b) A line.

(g) A hyperbolic paraboloid.

(c) A plane.

(h) A cone.

(d) The union of two planes.

(i) A one-sheeted hyperboloid.

(e) A hyperbolic cylinder.

(j) A two-sheeted hyperboloid.

Problem 4. (Dot and Cross Product)

Let A = (3, 8, -2), B = (-7, 3, 9), and C = (2, -2, 10). Let \vec{v} be the vector from A to B, and let \vec{w} be the vector from A to C.

- (a) Compute \vec{v} and \vec{w} .
- (b) Compute the dot product $\vec{v} \cdot \vec{w}$.
- (c) Compute the scalar projection $\operatorname{proj}_{\vec{w}}\vec{v}$.
- (d) Compute the cross product $\vec{v} \times \vec{w}$.

Problem 5. (Lines and Planes)

Compute the indicated value(s).

- (a) Find the parametric equations of the line passing through the points P(5, -2, 8) and Q(2, 4, 5).
- (b) Find the standard equation of a plane which contains the line from part (a) and passes through the point R(7, -2, 1).
- (c) Find the distance from the point S(-3,1,5) to the plane from part (b).

Problem 6. (Intersecting Planes)

Let A be the plane given by 7x + 2y + z = 8 and B be the plane given by x + 2y + 7z = 8.

Let $L = A \cap B$ be the line of intersection of A and B. Let $P_0 = (1, 1, 1)$ and note that $P_0 \in L$.

Find the equation of the plane which is perpendicular to L and passes through the point P_0 , expressed in the form ax + by + cz = d.

Problem 7. (Paths in \mathbb{R}^2)

Let $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ be given by $\vec{r}(t) = \langle \sec t, \tan t \rangle$.

- (a) Find the velocity vector for $\vec{r}(t)$.
- (b) Find the speed at time t.
- (c) Find the speed at the time $t = \frac{\pi}{3}$.
- (d) The coordinate parametric equations for \vec{r} are $x = \sec t$ and $y = \tan t$. Use this to show that the image of \vec{r} lies on a hyperbola in \mathbb{R}^2 , and sketch the image of \vec{r} .

Problem 8. (Curvature) Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0.

- (a) Create a function $f:[-a,a]\to\mathbb{R}$ whose graph is the upper half of this ellipse.
- (b) Use the formula

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}$$

to find the curvature of the ellipse at the point (0, b).

(c) Find the osculating circle to the ellipse at the point (0, b).

Problem 9. (Intersecting Quadrics)

Let S be the sphere centered at the origin with radius 4. Let H be the hyperboloid with equation $x^2+y^2-z^2=1$. Let $C=S\cap H$; then C consists of two circles.

- (a) Sketch the sphere, the hyperboloid, and their intersection in the same picture.
- (b) Find the centers of the two circles.

Problem 10. (Paths on Quadrics)

Consider a path given by

$$\vec{r}: \mathbb{R} \to \mathbb{R}^3$$
 given by $\vec{r} = \langle \sqrt{1+t^2}\cos t, \sqrt{1+t^2}\sin t, t \rangle$.

- (a) Show that $\frac{dz}{dt} = 1$.
- (b) Show that the image of \vec{r} is a subset of the one-sheeted hyperboloid with equation $x^2 + y^2 z^2 = 1$.
- (c) Sketch the image of \vec{r} .
- (d) Compute the position, velocity, speed, and unit tangent vector at time t = 0.

Problem 11. (Paths Intersect Quadrics)

Consider a path given by

$$\vec{s}: \mathbb{R} \to \mathbb{R}^3$$
 given by $\vec{s} = \langle 2t, 2t^2, t^3 \rangle$,

and the one-sheeted hyperboloid with equation $x^2 - y^2 + z^2 = 1$. Find all times t when the path intersects the hyperboloid. Find a point where the path intersects the hyperboloid.

Problem 12. (Hyperboloids) [Challenge]

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by

$$f(x, y, z) = x^2 + y^2 - z^2.$$

For $t \in \mathbb{R}$, the preimage of t is

$$f^{-1}(t) = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = t\}.$$

The preimage of t is a surface in \mathbb{R}^3 . Find t such that $f^{-1}(t)$ is tangent to the sphere with equation $x^2 + y^2 + (z-3)^2 = 4$.