Action-Based Temporal Logics and Model Checking (part II)

Radu Mateescu

Inria and LIG / Convecs

http://convecs.inria.fr

PDL logic

(syntax)

$$| \phi_1 \vee \phi_2 |$$

$$| \phi_1 \wedge \phi_2 |$$

$$-\phi_1$$

$$|\langle \beta \rangle \varphi_1|$$

$$[\beta] \varphi_1$$

boolean constants

disjunction

conjunction

negation

possibility

necessity

$$[\beta] \phi = \neg \langle \beta \rangle \neg \phi$$

PDL logic

(semantics)

Let $M = (S, A, T, s_0)$. Interpretation $[[\phi]] \subseteq S$:

- [[true]] = S
- **■** [[false]] = ∅
- \blacksquare [[$φ_1 \lor φ_2$]] = [[$φ_1$]] \cup [[$φ_2$]]
- $[[\neg \varphi_1]] = S \setminus [[\varphi_1]]$
- $[[\langle \beta \rangle \varphi_1]] = \{ s \in S \mid \exists s' \in S .$

$$(s, s') \in [[\beta]] \land s' \in [[\phi_1]]$$

 $[[[\beta] \phi_1]] = \{ s \in S \mid \forall s' \in S .$

$$(s, s') \in [[\beta]] \Rightarrow s' \in [[\phi_1]]$$

Exercise: distributivity of concatenation

Show the identity below

$$(x, y) \in R_1 \circ R_2 \Leftrightarrow$$

 $\exists z . (x, z) \in R_1 \land (z, y) \in R_2$

```
Let s \in [[\langle \beta_1 . \beta_2 \rangle \varphi]], i.e., \exists s' \in S . (s, s') \in [[\beta_1 . \beta_2]] \land s' \in [[\varphi]] =  // by def. [[\beta]] \exists s' \in S . (s, s') \in [[\beta_1]] \circ [[\beta_2]] \land s' \in [[\varphi]] =  // by def. of 'o' \exists s' \in S . \exists s'' \in S . (s, s'') \in [[\beta_1]] \land (s'', s') \in [[\beta_2]] \land s' \in [[\varphi]] =  \exists s'' \in S . ((s, s'') \in [[\beta_1]] \land \exists s' \in S . (s'', s') \in [[\beta_2]] \land s' \in [[\varphi]]) =  \exists s'' \in S . ((s, s'') \in [[\beta_1]] \land s'' \in [[\langle \beta_2 \rangle \varphi]]) =  s \in [[\langle \beta_1 \rangle \langle \beta_2 \rangle \varphi]]
```

Quantifier propagation:

$$\exists x . (P \lor Q(x)) = P \lor \exists x . Q(x)$$

$$\exists x . (P \land Q(x)) = P \land \exists x . Q(x)$$

Exercise: distributivity of choice

Show the identity below

(Hint: use a similar reasoning as for concatenation.)

Exercise: distributivity of iteration (1/2)

Show the identity below

```
R^* = \bigcup_{k \ge 0} R^k, where R^k = R \circ ... \circ R, R^0 = Id
```

```
Let s \in [[\langle \beta^* \rangle \phi]], i.e.,
\exists s' \in S . ((s, s') \in [[\beta^*]] \land s' \in [[\phi]]) =
\exists s' \in S . \exists k \ge 0 . ((s, s') \in [[\beta]]^k \land s' \in [[\phi]]) =
\exists s' \in S : (((s, s') \in [[\beta]]^0 \lor \exists k \ge 0 : (s, s') \in [[\beta]]^{k+1}) \land s' \in [[\phi]]) =
\exists s' \in S : ((s = s' \lor \exists k \ge 0 : (s, s') \in [[\beta]]) \circ [[\beta]]^k) \land s' \in [[\phi]]) =
\exists s' \in S . (s = s' \land s' \in [[\phi]]) \lor
    \exists s' \in S . \exists k \ge 0 . ((s, s') \in [[\beta]] \circ [[\beta]]^k) \land s' \in [[\phi]]) =
s \in [[\phi]] \lor
    \exists s' \in S . \exists k \ge 0 . (\exists s'' \in S . (s, s'') \in [[\beta]] \land (s'', s') \in [[\beta]]^k) \land s'
\in [[ \phi ]]) = .. / ...
```

Exercise: distributivity of iteration (2/2)

```
s \in [[\phi]] \vee
     \exists s' \in S . \exists k \ge 0 . (\exists s'' \in S . (s, s'') \in [[\beta]] \land (s'', s') \in [[\beta]]^k) \land s' \in [[\beta]]^k
     [[\phi]] =
s \in [[\phi]] \lor
     \exists s' \in S . (\exists s'' \in S . (s, s'') \in [[\beta]] \land \exists k \ge 0 . (s'', s') \in [[\beta]]^k) \land s' \in [[\beta]]^k
     [[\phi]] =
s \in [[\phi]] \vee
     \exists s'' \in S . (s, s'') \in [[\beta]] \land \exists s' \in S . ((s'', s') \in [[\beta]]^*) \land s' \in [[\phi]]) = [[\beta]]^*
s \in [[\phi]] \lor \exists s'' \in S . (s, s'') \in [[\beta]] \land s'' \in [[\langle \beta^* \rangle \phi]] =
s \in [[\phi]] \lor s \in [[\langle \beta \rangle \langle \beta^* \rangle \phi]] =
s \in [[\phi \lor \langle \beta \rangle \langle \beta^* \rangle \phi]]
```


Exercise: nil regular formula

Show the identities below

Modal mu-calculus

(syntax)

$$\phi ::= true \mid false$$

$$\mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1$$

$$|\langle \alpha \rangle \varphi_1|$$

$$[\alpha] \varphi_1$$

$$\mid X$$

$$\mid \mu X \cdot \varphi_1$$

$$| vX \cdot \varphi_1|$$

boolean constants

■ Duality:
$$vX \cdot \varphi = \neg \mu X \cdot \neg \varphi [\neg X / X]$$

Syntactic restrictions

- Syntactic monotonicity [Kozen-83]
 - ► Necessary to ensure the existence of fixed points
 - ▶In every formula σX. φ (X), where $σ ∈ {μ, ν}$, every free occurrence of X in φ falls in the scope of an even number of negations

$$\mu X . \langle a \rangle X \vee \neg \langle b \rangle X$$

- Alternation depth 1 [Emerson-Lei-86]
 - ► Necessary for efficient (linear-time) verification
 - In every formula μX . φ (X), every maximal subformula νY . φ' (Y) of φ is closed

$$\mu X . \langle a \rangle \nu Y . ([b] Y \wedge [c] X)$$

Positive Normal Form

(elimination of negations)

- Propagate negations downwards using dualities:
 - ▶ ¬ false = true

 - $\blacktriangleright \neg \langle \alpha \rangle \phi = [\alpha] \neg \phi$
 - $\blacktriangleright \neg \mu X \cdot \phi(X) = \nu X \cdot \neg \phi(\neg X)$

PNF transformation works because of syntactic monotonicity

Example:

- $\neg \mu X$. ($\langle s \rangle \nu Y$. ([r] false \land [true] Y) $\lor \langle$ true $\rangle X$)
- = $vX \cdot (\neg \langle s \rangle vY \cdot ([r] \text{ false } \land [\text{ true }] Y) \land \neg \langle \text{ true } \rangle \neg X)$
- = $vX \cdot ([s] \neg vY \cdot ([r] \text{ false } \land [\text{ true }] Y) \land [\text{ true }] X)$
- = $vX \cdot ([s] \mu Y \cdot (\langle r \rangle \text{ true } \vee \langle \text{ true } \rangle Y) \wedge [\text{ true }] X)$

Modal mu-calculus

(semantics)

Let $M = (S, A, T, s_0)$ and $\rho : X \to 2^S$ a context mapping propositional variables to state sets. Interpretation $[[\phi]] \subseteq S$:

- $[[X]] \rho = \rho (X)$

Exercise: contradictions

- Show the identities below
 - $\blacktriangleright \mu X \cdot X = \text{false}$

$$\Phi(U) = [[X]] [U/X] = U \Rightarrow \Phi^{k}(U) = U$$
$$[[\mu X . X]] = U_{k \ge 0} \Phi^{k}(\emptyset) = U_{k \ge 0} \emptyset = \emptyset$$

 $\blacktriangleright \mu X . \langle \alpha \rangle X = \text{false}$

$$\Phi (U) = [[\langle \alpha \rangle X]] [U/X] =$$

$$\{ s \in S . \exists (s, a, s') \in T . a \in [[\alpha]] \land s' \in U \}$$

$$\Phi (\emptyset) = \{ s \in S . \exists (s, a, s') \in T . a \in [[\alpha]] \land s' \in \emptyset \} = \emptyset$$

$$\Rightarrow \Phi^{k} (\emptyset) = \emptyset$$

$$[[\mu X . \langle \alpha \rangle X]] = U_{k>0} \Phi^{k} (\emptyset) = U_{k>0} \emptyset = \emptyset$$

Exercise: tautologies

Show the identities below

$$\triangleright vX \cdot X = \text{true}$$

$$vX \cdot X =$$

$$\neg \mu X \cdot \neg (X [\neg X / X]) =$$

$$\neg \mu X \cdot \neg (\neg X) =$$

$$\neg \mu X \cdot X =$$

$$\neg \text{ false = true}$$

 $\triangleright vX$. $[\alpha]X = true$

(Hint: use duality as above.)

```
// by duality
// by syntactic substitution
// by using the contradiction
```

Exercise: monotonicity of modal formulas in PNF (1/3)

- Let φ be a modal formula in PNF (i.e., without negations) with X the only free variable. Show that

By structural induction on φ .

•
$$\varphi ::= X$$
:
 $[[X]][U_1/X] = U_1 \subseteq U_2 = [[X]][U_2/X].$

// by hypothesis

• φ ::= false (similar for true): [[false]] [U_1/X] = \emptyset = [[false]] [U_2/X].

Exercise: monotonicity of modal formulas in PNF (2/3)

- $\varphi ::= \varphi_1 \vee \varphi_2$ (similar for \wedge): $[[\varphi_1 \vee \varphi_2]][U_1/X] = [[\varphi_1]][U_1/X] \cup [[\varphi_2]][U_1/X] \subseteq$ // by induction hypothesis $[[\varphi_1]][U_2/X] \cup [[\varphi_2]][U_2/X] = [[\varphi_1 \vee \varphi_2]][U_2/X].$
- $\varphi ::= \langle \alpha \rangle \varphi_1$ (similar for $[\alpha] \varphi_1$): $[[\langle \alpha \rangle \varphi_1]] [U_1/X] = \{s \in S \mid \exists (s, a, s') \in T. (a \in [[\alpha]] \land s' \in [[\varphi_1]] [U_1/X])\} \subseteq //$ by induction hypothesis and monotonicity of $\langle \rangle \{s \in S \mid \exists (s, a, s') \in T. (a \in [[\alpha]] \land s' \in [[\varphi_1]] [U_2/X])\} = [[\langle \alpha \rangle \varphi_1]] [U_2/X].$

Exercise: monotonicity of modal formulas in PNF (3/3)

- Let ϕ be a modal formula in PNF with X the only free variable. Show that
 - $\blacktriangleright \forall k \geq 0 . \Phi^k(\varnothing) \subseteq \Phi^{k+1}(\varnothing)$

By induction on *k*:

•
$$k = 0$$
: $\Phi^0(\varnothing) = \varnothing \subseteq \Phi(\varnothing) = \Phi^1(\varnothing)$.

•
$$k := k+1$$
:

$$\Phi^{k+1}(\varnothing) = \Phi(\Phi^k(\varnothing)) \supseteq$$

$$\Phi(\Phi^{k-1}(\varnothing)) = \Phi((\varnothing))$$

// by induction hypothesis // and monotonicity of ϕ

Exercise: monotonicity of fixed points

Let ϕ_1 , ϕ_2 be modal formulas in PNF with X the only free variable. Show that

$$(\phi_1 \Rightarrow \phi_2) \Rightarrow (\mu X \cdot \phi_1 \Rightarrow \mu X \cdot \phi_2)$$

$$\Phi_1(U) = [[\varphi_1]][U/X]$$
 and $\Phi_2(U) = [[\varphi_2]][U/X]$
By induction on k , we show $\Phi_1^k(\emptyset) \subseteq \Phi_1^k(\emptyset)$.

•
$$k = 0$$
: $\Phi_1^0(\varnothing) = \varnothing \subseteq \varnothing = \Phi_2^0(\varnothing)$.

•
$$k := k+1$$
:

$$\Phi_1^{k+1}(\varnothing) = \Phi_1(\Phi_1^k(\varnothing)) \subseteq$$

$$\Phi_1(\Phi_2^k(\varnothing)) \subseteq$$

$$\Phi_2(\Phi_2^k(\varnothing)) = \Phi_2^{k+1}(\varnothing).$$

```
// by induction hypothesis // and monotonicity of \phi_1 // by hypothesis
```


Exercise: absorption

 \blacksquare Show the statement below (where ϕ is a modal formula in PNF)

$$\blacktriangleright \mu X \cdot X \lor \phi(X) = \mu X \cdot \phi(X)$$

(Hint: by induction on k, as for the monotonicity exercise.)

Exercise: fixed point semantics

■ Evaluate the formula: $\mu X \cdot [a] X$

▶ $\Phi(U) = [[[a]X]][U/X] = \{s \in S \mid \forall (s, a, s') \in T . s' \in U\}$

Exercise: fixed point semantics

Evaluate the formula: $\mu X \cdot \langle CS_0 \rangle$ true $\vee ([NCS_0]$ false $\wedge \langle true \rangle X)$

Fair execution

Fair execution of an action a:

fair
$$(a) = [(\neg a)^*] \langle \text{true*. } a \rangle \text{true}$$

= $vX \cdot \langle \text{true*. } a \rangle \text{true} \wedge [\neg a] X$

Associated functional:

$$\Phi(U) = [[\langle \text{true*. } a \rangle \text{true} \land [\neg a]X]] [U/X]$$

Evaluation on an LTS:

Exercise: fair execution

Show the identity below

```
▶ [(\neg a)^*] \langle \text{true}^*. a \rangle \text{true} = [(\neg a)^*] \langle (\neg a)^*. a \rangle \text{true}
```

Let ϕ_1 and ϕ_2 be the μ -calculus encodings of the diamond modalities:

```
\phi_{1} = \langle \text{true*. } a \rangle \text{ true} = \mu X . \langle a \rangle \text{ true} \vee \langle \text{true} \rangle X
\phi_{2} = \langle (\neg a)^{*}. a \rangle \text{ true} = \mu X . \langle a \rangle \text{ true} \vee \langle \neg a \rangle X
\phi_{1} = \mu X . \langle a \rangle \text{ true} \vee \langle \text{ true} \rangle X \qquad // \text{ by } a \vee \neg a = \text{ true}
= \mu X . \langle a \rangle \text{ true} \vee \langle a \vee \neg a \rangle X \qquad // \text{ by distrib. of } \langle \rangle \text{ over } \vee
= \mu X . \langle a \rangle \text{ true} \vee \langle a \rangle X \vee \langle \neg a \rangle X \qquad // \text{ by monotonicity of } \langle \rangle
= \mu X . \langle a \rangle \text{ true} \vee \langle \neg a \rangle X
= \phi_{2}
```