```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [2]: df=pd.read_csv("Sales.csv")
In [3]: df
Out[3]:
                 TV Radio Newspaper Sales
            0 230.1
                      37.8
                                 69.2
                                       22.1
               44.5
                      39.3
                                 45.1
                                       10.4
               17.2
                      45.9
                                 69.3
                                       12.0
               151.5
                                 58.5
                                       16.5
               180.8
                      10.8
                                 58.4
                                       17.9
          195
               38.2
                       3.7
                                 13.8
                                        7.6
          196
               94.2
                       4.9
                                  8.1
                                       14.0
          197
              177.0
                       9.3
                                  6.4
                                       14.8
          198 283.6
                      42.0
                                 66.2
                                       25.5
          199 232.1
                       8.6
                                  8.7
                                       18.4
         200 rows × 4 columns
In [4]: df.head()
Out[4]:
                  Radio Newspaper Sales
          0 230.1
                    37.8
                               69.2
                                     22.1
             44.5
                    39.3
                               45.1
                                      10.4
             17.2
                    45.9
                               69.3
                                     12.0
          3 151.5
                    41.3
                               58.5
                                     16.5
          4 180.8
                    10.8
                               58.4
                                     17.9
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 4 columns):
                           Non-Null Count Dtype
          #
              Column
          0
              TV
                           200 non-null
                                             float64
               Radio
                           200 non-null
                                             float64
                           200 non-null
                                             float64
               Newspaper
                                             float64
              Sales
                           200 non-null
         dtypes: float64(4)
         memory usage: 6.4 KB
In [6]: df.describe()
Out[6]:
                       ΤV
                               Radio Newspaper
                                                      Sales
          count 200.000000 200.000000
                                      200.000000 200.000000
          mean
                147.042500
                            23.264000
                                       30.554000
                                                  15.130500
            std
                 85.854236
                            14.846809
                                       21.778621
                                                   5.283892
           min
                  0.700000
                             0.000000
                                        0.300000
                                                   1.600000
           25%
                 74.375000
                             9.975000
                                       12.750000
                                                  11.000000
           50%
                149.750000
                            22.900000
                                       25.750000
                                                  16.000000
           75% 218.825000
                            36.525000
                                       45.100000
                                                  19.050000
           max 296.400000
                            49.600000 114.000000
                                                  27 000000
```

In [7]: df.corr()

Out[7]:

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Newspaper	0.056648	0.354104	1.000000	0.157960
Sales	0.901208	0.349631	0.157960	1.000000

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1999d51caf0>

In [9]: x=df.iloc[:,:-1]

In [10]: x

Out[10]:

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [11]: y=df["Sales"]
In [12]: y
Out[12]: 0
                22.1
                10.4
         2
                12.0
                16.5
         3
         4
                17.9
         195
                7.6
         196
                14.0
         197
                14.8
         198
                25.5
         199
                18.4
         Name: Sales, Length: 200, dtype: float64
In [13]: from sklearn.model_selection import train_test_split
In [14]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=1)
In [15]: #creating the MLmodel
         from sklearn.linear_model import LinearRegression
In [16]: #creating instance of model /inheritance of model
         lr=LinearRegression()
In [17]: #train the model
         lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]: #predict the model
         y_pred=lr.predict(x_test)
In [19]: #evaluate the model
         from sklearn.metrics import r2_score
In [20]: r2_score(y_test,y_pred)
Out[20]: 0.8747226291661847
In [21]: lr.coef_
Out[21]: array([ 0.05507865,  0.10308563, -0.00090115])
In [22]: #loss function
         from sklearn.metrics import mean_absolute_error
In [23]: | mean_absolute_error(y_test,y_pred)
Out[23]: 1.2754390912939684
In [24]: from sklearn.metrics import mean_squared_error
In [25]: mean_squared_error(y_test,y_pred)
Out[25]: 2.409333612892368
In [26]: np.sqrt(mean_squared_error(y_test,y_pred))
Out[26]: 1.5522028259516758
```

```
In [27]: plt.style.use('fivethirtyeight')
  plt.figure(1 , figsize = (15 , 5))

  n = 0
  for x in ['TV' , 'Radio' , 'Newspaper']:

        n += 1
        plt.subplot(1 , 3 , n)
        plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
        sns.distplot(df , bins = 20 )
        plt.title('Distplot of {}'.format(x))
```



```
In [28]: sns.distplot(df['Sales'] , bins = 20)
plt.title('Distplot of Sales')
plt.show()
```



```
In [31]: plt.figure(1 , figsize = (15 , 5))

n = 0
for x in ['TV' , 'Radio' , 'Newspaper']:

n += 1

plt.subplot(1 , 3 , n)
plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)

if x == 'TV':
    sns.regplot(x = x , y = 'Sales' , data = df, color = 'g')
else:
    sns.regplot(x = x , y = 'Sales' , data = df, color = 'r')

plt.title('{}'.format(x))

plt.show()
```

