

Center for Industrial Mathematics (ZeTeM)

Faculty 03

Mathematics / Computer science

Deep Learning for Differential Equations and TorchPhysics

Workshop

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023

Goals of This Workshop

- Data-based and physics-informed DL for ODEs/PDEs
- Learn usage of TorchPhysics library
- Learning solution functions of PDEs
 - + parameter identification
- Learning solution operators for multiple parameter functions

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023 Faculty 03 Mathematics / Computer science

Today's Programme

Lecture:

- Introduction to Differential Equations
- Learning solution functions from data or physics-informed
- Physics-Infomed Neural Networks (PINNs)

Exercises:

Manual implementation, without TorchPhysics

Introduction to Differential Equations

Ordinary Differential Equations (ODEs)

• Consider functions of a single variable

$$u: \Omega \subseteq \mathbb{R} \longrightarrow \mathbb{R}^m$$

$$t \longmapsto (u_1(t), ..., u_m(t))^T$$

- Derivatives denoted by $u^{(n)}(t) = (u_1^{(n)}(t), ..., u_m^{(n)}(t))^T$
- Alternative notation $u^{(1)} = u' = \partial_t u$, $u^{(2)} = u'' = \partial_t^2 u$, ...

Ordinary Differential Equations (ODEs)

• Consider functions of a single variable

$$u: \Omega \subseteq \mathbb{R} \longrightarrow \mathbb{R}^m$$

$$t \longmapsto (u_1(t), ..., u_m(t))^T$$

- Derivatives denoted by $u^{(n)}(t) = (u_1^{(n)}(t), ..., u_m^{(n)}(t))^T$
- Alternative notation $u^{(1)} = u' = \partial_t u$, $u^{(2)} = u'' = \partial_t^2 u$, ...
- Goal: Find u that solves the ODE

$$u^{(n)}(t) = f\left(t, u^{(1)}(t), u^{(2)}(t), ..., u^{(n-1)}(t)\right)$$
 for $t \in \Omega$

and satisfies some initial conditions, e.g. $u(t_0) = u_0$

Deep Learning for Differential Equations and TorchPhysics Janek Gödeke, Tom Freudenberg Bremen, 19.07,2023

ODE Example - Simple Harmonic Oscillator

Consider mass on a spring

Universität

- Equilibrium position at u = 0 (no movement)
- Gets displaced at time t = 0 by u_0

ODE Example - Simple Harmonic Oscillator

- · Consider mass on a spring
- Equilibrium position at u = 0 (no movement)
- Gets displaced at time t = 0 by u_0
- Hooke's law:

$$u^{(2)}(t) = -ku(t)$$

- Velocity $u^{(1)}(0) = 0$
- Solution $u(t) = -u_0 \cos(\sqrt{k}t)$

Notation for Partial Differential Equations (PDEs)

• Consider functions of multiple variables

$$u: D \subseteq \mathbb{R}^I \longrightarrow \mathbb{R}^m$$

 $x \longmapsto (u_1(x), ..., u_m(x))^T$

Partial derivatives

kth standard basis vector in \mathbb{R}^{l}

$$\partial_{x_k} u(x) := \frac{\partial}{\partial x_k} u(x) := \lim_{h \to 0} \frac{u(x + he_k) - u(x)}{h}$$

Further conventions

$$\partial_{x_k}^2 u := \partial_{x_k} (\partial_{x_k} u) \neq (\partial_{x_k} u)^2$$

PDEs - Some Basic Differential Operators

• For scalar fields $u:D\subseteq\mathbb{R}^I\to\mathbb{R}$

Gradient
$$\nabla u(x) = \left(\partial_{x_1} u(x), ..., \partial_{x_l} u(x)\right)^T$$
 Laplacian
$$\Delta u(x) = \sum_{k} \partial_{x_k}^2 u(x)$$

• For vector fields $u : D \subseteq \mathbb{R}^l \to \mathbb{R}^m$

Divergence
$$\operatorname{div} u(x) = \sum_k \partial_{x_k} u_k(x) = \nabla \cdot u$$
 Rotation
$$\operatorname{rot} u = \nabla \times u$$

• Room $\Omega \subset \mathbb{R}^2$ with window (16° C) and heater (40° C)

$$u=$$
 16 at $\partial\Omega_{window}$ $u=$ 40 at $\partial\Omega_{heater}$ (Dirichlet boundary conditions)

• Room $\Omega \subset \mathbb{R}^2$ with window (16° C) and heater (40° C)

$$u=$$
 16 at $\partial\Omega_{window}$ $u=$ 40 at $\partial\Omega_{heater}$ (Dirichlet boundary conditions)

ullet Insulated walls $\partial\Omega_{\it wall}=\partial\Omega\setminusig(\partial\Omega_{\it window}\cup\partial\Omega_{\it heater}ig)$

$$\nabla u \cdot \overrightarrow{n} = 0$$
 at $\partial \Omega_{wall}$ (Neumann boundary condition)

 $rac{\partial \Omega_{heater}}{\Omega}$ $rac{\wedge}{n}$

Normal vector $\overrightarrow{n}(x)$ is illustrated in the figure

• Assumption: Temperature distribution reached static state $u: \Omega \to \mathbb{R}$:

$$0 = \int_{\partial V} \nabla u \cdot n \, dS$$
$$= \int_{V} \Delta u \, dV,$$

according to Gaussian Integration Theorem

Janek Gödeke, Tom Freudenberg Bremen, 19.07,2023

PDE Example - Stationary Heat Equation

• Assumption: Temperature distribution reached static state $u: \Omega \to \mathbb{R}$:

$$0 = \int_{\partial V} \nabla u \cdot n \, dS$$
$$= \int_{V} \Delta u \, dV,$$

according to Gaussian Integration Theorem

Hence,

$$\Delta u = 0$$
 on Ω

 Stationary Heat Equation with boundary conditions for the room:

$$\begin{cases} \Delta u &= 0 \text{ on } \Omega \\ u &= 16 \text{ at } \partial \Omega_{\textit{window}} \\ u &= 40 \text{ at } \partial \Omega_{\textit{heater}} \\ \nabla u \cdot \vec{n} &= 0 \text{ at } \partial \Omega_{\textit{wall}} \quad \text{(insulated wall)} \end{cases}$$

Solution approximated in TorchPhysics with PINNs

PDE Example - Time-Dependent Heat Equation

• Heater follows heat curve $h:[t_0,t_{end}]\to\mathbb{R}$

$$u(x,t) = h(t)$$
 for $x \in \partial \Omega_{heater}, t \in [t_0, t_{end}]$

- Time-dependent temperature distribution $u: \Omega \times [t_0, t_{end}] \to \mathbb{R}$
- Heat equation with constant diffusion $D \in \mathbb{R}$ becomes

$$\partial_t u = D \cdot \Delta_x u$$

Will be considered in the exercise session tomorrow

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023 Faculty 03 Mathematics / Computer science

Classical Numerical Methods for PDEs

- Finite Difference Methods (FDM)
 - → classical formulation of PDE
- Finite Element Method (FEM)
 - \rightarrow weak formulation of PDE
- etc.

Universität

Finite Difference Method

• For $f:[0,1] \to \mathbb{R}$ find u

$$\begin{cases} u^{(1)}(x) &= f(x) \text{ on } (0,1) \\ u(0) &= 0 \end{cases}$$

• Taylor approximation at $x \in (0, 1)$

$$u^{(1)}(x) \approx \frac{u(x+h) - u(x-h)}{2h}$$

Finite Difference Method

Main Idea

• For $f:[0,1] \to \mathbb{R}$ find u

$$\begin{cases} u^{(1)}(x) &= f(x) \text{ on } (0,1) \\ u(0) &= 0 \end{cases}$$

• Taylor approximation at $x \in (0,1)$

$$u^{(1)}(x) \approx \frac{u(x+h) - u(x-h)}{2h}$$

• Equidistant grid, stepsize h = 1/(N+1)

• Find $(u(0), u(h), ..., u(Nh), u(1))^T$ by

$$\frac{1}{2h} \begin{pmatrix} 2h & & & & \\ -1 & 0 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 0 & 1 \\ & & & -2 & 2 \end{pmatrix} \begin{pmatrix} u(0) \\ u(h) \\ \vdots \\ u(Nh) \\ u(1) \end{pmatrix} = \begin{pmatrix} 0 \\ f(h) \\ \vdots \\ f(Nh) \\ f(1) \end{pmatrix}$$

Parameter Identification - Inverse Problem

- Have talked about finding solution of ODE/PDE for given parameters
 - Given diffusion coefficient $D \in \mathbb{R}$ solve

$$\partial_t u = D\Delta u$$

• Given function $f:[0,1] \to \mathbb{R}$ solve $u^{(1)} = f$

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023

Parameter Identification - Inverse Problem

- Have talked about finding solution of ODE/PDE for given parameters
 - Given diffusion coefficient $D \in \mathbb{R}$ solve

$$\partial_t u = D\Delta u$$

- Given function $f:[0,1] \to \mathbb{R}$ solve $u^{(1)} = f$
- Other-way-round: Given solution u, find parameter D or parameter function f
- Typically ill-posed → next slide

Parameter Identification - III-Posedness

• Parameter-solution pair f(x) = x + 1 and $u(x) = 0.5x^2 + x$ of

$$\begin{cases} u^{(1)}(x) = f(x) \\ u(0) = 0 \end{cases}$$

- Add noise (1.7%) to both of them
- Reconstruct u from f_{noisy} (solving ODE)
- Reconstruct f from u_{noisy} (parameter-identification)
 → Inverse integral operator

Deep Learning for PDEs

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023 Faculty 03 Mathematics / Computer science

Motivation: Why Deep Learning for PDEs?

Parameter identification/optimization problems

- → Iterative algorithms: Solve many similar PDEs
- → Classical methods like FDM or FEM: Time-consuming
- \rightarrow Replace by trained NN
- $\rightarrow \text{Less time-consuming}$

Deep Learning (DL) for PDEs

Harmonic Oscillator

$$\begin{cases} u^{(2)}(t) = -ku(t) \\ u(0) = u_0, \ u^{(1)}(0) = 0 \end{cases}$$

- Forward problem: For different parameters k > 0 find solutions u_k
 - 1) Fix points $t_0 = 0$, $t_1, ..., t_N$ and learn (continuous) function

$$A_1: \mathbb{R}_+ \longrightarrow \mathbb{R}^{N+1}$$

$$k \longmapsto (u_k(t_0), ..., u_k(t_N))^T$$

2) Mesh-independent: Learn (continuous) function

$$A: \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(k,t) \longrightarrow u_k(t)$$

Deep Learning (DL) for PDEs

Harmonic Oscillator

$$\begin{cases} u^{(2)}(t) = -ku(t) \\ u(0) = u_0, \ u^{(1)}(0) = 0 \end{cases}$$

- Forward problem: For different parameters k > 0 find solutions u_k
 - 1) Fix points $t_0 = 0$, $t_1, ..., t_N$ and learn (continuous) function

$$egin{aligned} A_1: \mathbb{R}_+ &\longrightarrow \mathbb{R}^{N+1} & ext{Inverse Problem:} \ k &\longmapsto \left(u_k(t_0),...,u_k(t_N)
ight)^T & A_1 k = \left(u_k(t_0),...,u_k(t_N)
ight)^T \end{aligned}$$

2) Mesh-independent: Learn (continuous) function

$$A: \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(k,t) \longrightarrow u_k(t)$$

Why Do NNs Even Have a Chance?

Some Universal Approximation Theorem

Theorem (Hornik, 1989)

Let $K \subset \mathbb{R}^n$ be compact and consider a continuous function

$$A: K \subset \mathbb{R}^n \to \mathbb{R}^m$$
.

For each error ε there is φ_{θ} with p hidden layers and sigmoidal activations that uniformly approximates A, i.e.

$$||Ax - \varphi_{\theta}(x)|| < \varepsilon$$
 for every $x \in K$.

• Sigmoidal $\sigma: \mathbb{R} \to \mathbb{R}$ means $\lim_{x \to -\infty} \sigma(x) = 0$ and $\lim_{x \to \infty} \sigma(x) = 1$

Many Universal Approximation Theorems...

Also for ReLU activation, e.g.
 ReLU(x) - ReLU(x - 1) is sigmoidal

Universität

Many Universal Approximation Theorems...

- Also for ReLU activation, e.g.
 ReLU(x) ReLU(x 1) is sigmoidal
- Theorems with explicit bounds on required network size, e.g. (Yarotsky 2017), (Barron 1993)
- Approximation in different norms, e.g. L^p-norms or Sobolev norms, e.g. (Petersen 2019)
- Overview e.g. (DeVore et al. 2020)

Example of Approximation Properties

Universität Bremen

(a) 1 layer with 1 neuron

(d) 1 layer with 10 neurons

(b) 1 layer with 2 neurons

(e) 1 layer with 50 neurons

(c) 1 layer with 5 neurons

(f) 1 layer with 100 neurons

Nothing More to Do?

Universität

- Neural Networks typically non-convex
 - → Loss minimization is difficult
 - ightarrow Convergence guarantees to global minimum?
- Incomplete or noisy data
 - → "Bad" network architecture gets side-tracked

DL for PDEs - Data-Driven Approach

Harmonic Oscillator

$$\begin{cases} u^{(2)}(t) = -ku(t) \\ u(0) = u_0, \ u^{(1)}(0) = 0 \end{cases}$$

- Forward problem: For different parameters k > 0 find solutions u_k
 - 1) Fix points $t_0 = 0, t_1, ..., t_N$ and learn (continuous) function

$$A_{1}: \mathbb{R}_{+} \longrightarrow \mathbb{R}^{N+1}$$

$$k \longmapsto (u_{k}(t_{0}), ..., u_{k}(t_{N}))^{T}$$

2) Mesh-independent: Learn (continuous) function

$$A: \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(k, t) \longrightarrow u_k(t)$$

DL for PDEs - Data-Driven Approach

1) Fix points $t_0 = 0, t_1, ..., t_N$ and learn

$$A_1: \mathbb{R}_+ \longrightarrow \mathbb{R}^{N+1}$$

$$k \longmapsto (u_k(t_0), ..., u_k(t_N))^T$$

2) Mesh-independent: Learn

$$A: \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(k, t) \longrightarrow u_k(t)$$

DL for PDEs - Data-Driven Approach

1) Fix points $t_0 = 0, t_1, ..., t_N$ and learn

$$A_1: \mathbb{R}_+ \longrightarrow \mathbb{R}^{N+1}$$

$$k \longmapsto (u_k(t_0), ..., u_k(t_N))^T$$

- Data-tuples $k_i \in \mathbb{R}_+$ and $\tilde{u}_i \in \mathbb{R}^{N+1}$
- Train u_{θ} for minimizing e.g. MSE-loss

$$\frac{1}{|J|}\sum_{j\in J}\left\|u_{\theta}(k_j)-\tilde{u}_j\right\|^2$$

2) Mesh-independent: Learn

$$A: \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(k, t) \longrightarrow u_k(t)$$

- Data $(k_j, t_j) \in \mathbb{R}_+ imes \mathbb{R}$ and $\tilde{u}_j \in \mathbb{R}$
- Train u_{θ} for minimizing

$$\frac{1}{|J|}\sum_{j\in J}\left|u_{\theta}((k_j,t_j))-\tilde{u}_j\right|^2$$

Deep Learning for Differential Equations and TorchPhysics Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023 Faculty 03 Mathematics / Computer science

Problems of Data-Driven Approaches for PDEs

- Deep Learning generally needs lot of data
- Obtaining data of solution u is complicated
 - Through multiple experiments
 - Solving the equation with classical methods
 - → Expensive and time consuming

Problems of Data-Driven Approaches for PDEs

- Deep Learning generally needs lot of data
- Obtaining data of solution u is complicated
 - Through multiple experiments
 - Solving the equation with classical methods
 - → Expensive and time consuming
- Encode physical laws/PDEs into DL approaches?
 - → Physics-informed neural networks (PINNs)
 - → Plug neural network into the differential equation

Physics-Informed Neural Networks (PINNs)

PINNs - Original Publication

- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
- Authors: Raissi, Perdikaris, Karniadakis
- Journal of Computational Physics, 2019

PINNs - Main Idea

• Find solution $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ of

$$\mathcal{N}[u](x) = 0$$
, for $x \in \Omega$, $\mathcal{B}[u](x) = 0$, for $x \in \partial \Omega$.

• E.g. $\Omega = [0, 1] \times [0, 1], u : \mathbb{R}^2 \to \mathbb{R}$

$$\mathcal{N}[u](x) = \Delta u(x) - f(x), \text{ for } x \in \Omega,$$

 $\mathcal{B}[u](x) = u(x) - u_0, \text{ for } x \in \partial \Omega.$

PINNs - Main Idea

• Find solution $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ of

$$\mathcal{N}[u](x) = 0$$
, for $x \in \Omega$, $\mathcal{B}[u](x) = 0$, for $x \in \partial \Omega$.

- Sample points $\mathbf{x}_i^{\mathcal{N}} \in \Omega$ and $\mathbf{x}_i^{\mathcal{B}} \in \partial \Omega$
- Train network u_{θ} that minimizes the PDE-loss

$$\frac{1}{N_{\mathcal{N}}} \sum_{i=1}^{N_{\mathcal{N}}} \left\| \mathcal{N}[u_{\theta}](x_i^{\mathcal{N}}) \right\|^2 + \frac{1}{N_{\mathcal{B}}} \sum_{j=1}^{N_{\mathcal{B}}} \left\| \mathcal{B}[u_{\theta}](x_j^{\mathcal{B}}) \right\|^2$$

PINN-Approach

Universität Bremen

Physics-Informed Loss - We need to ...

- Compute differential operator \mathcal{N} of NN u_{θ} , e.g. Laplacian Δu_{θ}
 - 1) Autograd/Backpropagation of PyTorch
 - 2) Finite Differences
- Differentiate loss w.r.t. network parameters θ

PDE-loss:
$$\frac{1}{N_{\mathcal{N}}} \sum_{i=1}^{N_{\mathcal{N}}} \left\| \mathcal{N}[u_{\theta}](x_i^{\mathcal{N}}) \right\|^2 + \frac{1}{N_{\mathcal{B}}} \sum_{i=1}^{N_{\mathcal{B}}} \left\| \mathcal{B}[u_{\theta}](x_j^{\mathcal{B}}) \right\|^2$$

Backpropagation

Universität Bremen

Gradients of scalar-valued functions

$$p \circ u_{\theta} : \mathbb{R}^n o \mathbb{R}^m o \mathbb{R},$$
 p is projection or loss function

Backpropagation

Universität

Bremen

Gradients of scalar-valued functions

$$p \circ u_{\theta} : \mathbb{R}^n \to \mathbb{R}^m \to \mathbb{R},$$
 p is projection or loss function

Chain-rule for

$$\nabla_{\theta}(p \circ u_{\theta})(x_0), \ \nabla_{x}(p \circ u_{\theta})(x_0)$$

Backpropagation

Universität

Gradients of scalar-valued functions

$$p \circ u_{\theta} : \mathbb{R}^n \to \mathbb{R}^m \to \mathbb{R},$$

p is projection or loss function

Chain-rule for

$$\nabla_{\theta}(p \circ u_{\theta})(x_0), \ \nabla_{x}(p \circ u_{\theta})(x_0)$$

• Gradient $\nabla_{x_0}(p \circ u_\theta)(x_0)$ obtained by

```
import torch.autograd as auto
pu = p(model(x_0))
grad_x = auto.grad(pu, x_0)[0]
```


Backpropagation - Higher Derivatives

• Gradient $\nabla_{x_0}(p \circ u_\theta)(x_0)$ obtained by

Universität Bremen

```
import torch.autograd as auto
pu = p(model(x_0)
grad_x = auto.grad(pu, x_0)[0]
```


Backpropagation - Higher Derivatives

• Gradient $\nabla_{x_0}(p \circ u_\theta)(x_0)$ obtained by

Universität

```
import torch.autograd as auto
pu = p(model(x_0))
grad_x = auto.grad(pu, x_0)[0]
```

Computational graph for gradient computation:

```
grad_x = auto.grad(pu, x_0,
create_graph=True)[0]
```

Allows for computation of higher derivatives

Example - Second Derivative of $f(t) = t^2$

• Why is "ft.sum()" correct?

Universität

Example - Second Derivative of $f(t) = t^2$

- Second "create_graph=True"
 - → Further derivatives computable, e.g.

```
\partial_{\theta}(\partial_{t}^{2}f(t,\theta)) if f was \theta-dependent
```


- Previous slides: PyTorch's backpropagation for analytic derivatives of NN
- Instead: Approximate derivatives, e.g. by finite differences
- Example: Again $u^{(1)} = f$. Approximate (part of) PDE-loss

$$|u_{\theta}^{(1)}(t)-f(t)|^2 pprox \left|\frac{u_{\theta}(t+h)-u_{\theta}(t-h)}{2h}-f(t)\right|^2$$

Also higher derivatives, e.g.

$$u_{\theta}^{(2)}(t) \approx \frac{u_{\theta}(t+h)-2u(t)+u_{\theta}(t-h)}{h^2}$$

PINN - Parameter-Identification

• Given solution $u(x_1, t_1), ... u(x_n, t_n)$ of

$$\partial_t u = D\Delta u$$

• First network $u_{\theta} \approx u$

loss-term:
$$\frac{1}{n}\sum_{k=1}^{n}\left\|u_{\theta}(x_k,t_k)-u(x_k,t_k)\right\|^2$$

• Second network $D_{\theta} \in \mathbb{R}$ - trainable leaf-node

loss-term:
$$\frac{1}{\rho} \sum_{k=1}^{\rho} \left\| \partial_t u_{\theta}(\tilde{x}_k, \tilde{t}_k) - D_{\theta} \Delta u_{\theta}(\tilde{x}_k, \tilde{t}_k) \right\|^2$$

Overview of other DL-Approaches

Universität Bremen

PINNs - Examples, Failures and Extensions

PINN - Heat Equation with Variable Diffusion

- Spatial domain $\Omega \subset \mathbb{R}^2$, time interval I_t ,
- Parameter interval $I_D \subset \mathbb{R}$ for Diffusion
- For every $D \in I_D$ find solution u(t, x; D) of

$$\partial_t u = D\Delta u$$
, in $\Omega \times I_t$, $u(0, x; D) = u_0(x)$, in Ω , $u(t, x; D) = 0$, on $\partial\Omega \times I_t$.

• Input of the NN is (t, x, D), so

$$u_{\theta}: \Omega \times I_t \times I_D \rightarrow \mathbb{R}$$

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023

PINN - Heat Equation with Variable Diffusion

- Spatial domain $\Omega \subset \mathbb{R}^2$, time interval I_t ,
- Parameter interval $I_D \subset \mathbb{R}$ for Diffusion
- For every $D \in I_D$ find solution u(t, x; D) of

$$\partial_t u = D\Delta u$$
, in $\Omega \times I_t$, $u(0, x; D) = u_0(x)$, in Ω , $u(t, x; D) = 0$, on $\partial\Omega \times I_t$.

• Input of the NN is (t, x, D), so

$$u_{\theta}: \Omega \times I_{t} \times I_{D} \rightarrow \mathbb{R}$$

PINN - Problem: High Frequencies

• Consider the problem $\Omega = [0, 1] \times [0, 1]$ and

$$\partial_y u = y^{-1} u,$$
 in Ω ,
 $u(x,0) = 0,$ for $x \in [0,1],$
 $u(x,1) = \sin(20\pi x),$ for $x \in [0,1],$
 $\vec{n} \nabla u(x,y) = 0,$ for $x \in \{0,1\}, y \in [0,1].$

• Solution is $u(x, y) = y \sin(20\pi x)$

Universität

PINN - Problem: High Frequencies

• Consider the problem $\Omega = [0, 1] \times [0, 1]$ and

$$\partial_y u = y^{-1} u,$$
 in Ω ,
 $u(x,0) = 0,$ for $x \in [0,1],$
 $u(x,1) = \sin(20\pi x),$ for $x \in [0,1],$
 $\vec{n} \nabla u(x,y) = 0,$ for $x \in \{0,1\}, y \in [0,1].$

- Solution is $u(x, y) = y \sin(20\pi x)$
- Default PINN-Approach does not work!

PINN - Problem: High Frequencies

Universität

• Consider the problem $\Omega = [0, 1] \times [0, 1]$ and

$$\partial_y u = y^{-1} u,$$
 in Ω ,
 $u(x,0) = 0,$ for $x \in [0,1],$
 $u(x,1) = \sin(20\pi x),$ for $x \in [0,1],$
 $\vec{n} \nabla u(x,y) = 0,$ for $x \in \{0,1\}, y \in [0,1].$

- Solution is $u(x, y) = y \sin(20\pi x)$
- Ansatz: $\tilde{u}_{\theta}(x, y) = (1 y)u_{\theta}(x, y) + \sin(20\pi x)$

PINN - Approximation of Discontinuous Functions

• Find $u:[0,1] \to \mathbb{R}$ solving the coupled ODEs:

(1)
$$\begin{cases} \partial_x^2 u_1(x) &= 0 \text{ for } x \in (0, 0.5) \\ u_1(0) &= 0 \\ \partial_x u_1(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

(2)
$$\begin{cases} \partial_x^2 u_2(x) &= 0 \text{ for } x \in (0.5, 1) \\ u_2(0.5) &= 1.5 \\ \partial_x u_2(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

• Solution is
$$u(x) = x$$
, if $x <= 0.5$ and $= 1 + x$, if $x > 0.5$

PINN - Approximation of Discontinuous Functions

• Find $u:[0,1] \to \mathbb{R}$ solving the coupled ODEs:

(1)
$$\begin{cases} \partial_x^2 u_1(x) &= 0 \text{ for } x \in (0, 0.5) \\ u_1(0) &= 0 \\ \partial_x u_1(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

(2)
$$\begin{cases} \partial_x^2 u_2(x) &= 0 \text{ for } x \in (0.5, 1) \\ u_2(0.5) &= 1.5 \\ \partial_x u_2(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

- Solution is u(x) = x, if $x \le 0.5$ and = 1 + x, if x > 0.5
- Default PINN-Approach does not work!

PINN - Approximation of Discontinuous Functions

• Find $u:[0,1] \to \mathbb{R}$ solving the coupled ODEs:

(1)
$$\begin{cases} \partial_x^2 u_1(x) &= 0 \text{ for } x \in (0, 0.5) \\ u_1(0) &= 0 \\ \partial_x u_1(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

(2)
$$\begin{cases} \partial_x^2 u_2(x) &= 0 \text{ for } x \in (0.5, 1) \\ u_2(0.5) &= 1.5 \\ \partial_x u_2(0.5) &= u_2(0.5) - u_1(0.5) \end{cases}$$

- Solution is u(x) = x, if $x \le 0.5$ and = 1 + x, if x > 0.5
- Default PINN-Approach does not work!
- Ansatz: Two individual networks for both subdomains

PINN - Advantages

Compared to classical methods

Universität

- Grid/mesh independent, therefore more flexible & saving is usually more memory efficient
- General approach for different kinds of differential equations, especially nonlinear
- Learning parameter dependencies
- Extension to optimization- & inverse problems easy to implement
- Parallelizable on multiple GPUs

PINN - Disadvantages

Compared to classical methods

- No convergence theory
- Error not arbitrarily small
- Sometimes optimal minimum difficult to find, poor convergence
- Much slower for single computation of forward solutions
- Often trial and error for finding good parameters

Janek Gödeke, Tom Freudenberg Bremen, 19.07.2023

Exercise Session

- ODEs/PDEs can be lerned data-driven or physics-informed (or combi)
- Today's exercises:
 - 1) Recall basic PyTorch tensor syntax
 - 2) Manually implement data-driven and
 - 3) physics-informed learning, e.g. PINNs
- Tomorrow: More comfort with TorchPhysics + Parameter Identification
- Day after tomorrow: Introduction to Operator Learning

Appendix

PINN - Parameter-Identification

Parameter Function

- Look for spatially dependent diffusion D(x) where $x \in \Omega$
- Given solution $u(x_1, t_1), ... u(x_n, t_n)$ of

$$\partial_t u = \operatorname{div} (D(x) \nabla u)$$

- First network $u_{\theta} \approx u$ as before
- Second network $D_{\theta}:\Omega \to \mathbb{R}$

loss-term:
$$\frac{1}{\rho} \sum_{k=1}^{\rho} \left\| \partial_t u_{\theta}(\tilde{x}_k, \tilde{t}_k) - \text{div} \left(D_{\theta}(\tilde{x}_k) \nabla u_{\theta}(\tilde{x}_k, \tilde{t}_k) \right) \right\|^2$$