Chapitre 4 : Vecteurs aléatoires - Couple de

vecteurs aléatoires

MA 360 : Mathématiques appliquées

 $\label{eq:pierre-Alain TOUPANCE} Pierre-alain.toupance@esisar.grenoble-inp.fr$

Grenoble INP - ESISAR $3^{i\grave{e}me}$ année

30 septembre 2020

Soient X et Y deux variables aléatoires sur l'espace probabilisé (Ω, \mathcal{A}, P) .

On appelle couple de variable aléatoire l'application Z=(X,Y) définie sur Ω par :

$$\forall \omega \in \Omega, \ Z(w) = (X(w), Y(w))$$

Loi d'un couple

2/28

Connaître la loi de (X,Y) consiste à déterminer :

$$\forall C \in \mathcal{P}(\mathbb{R}^2), \mathbb{P}_{(X,Y)}(C) = \mathbb{P}((X,Y) \in C)$$

On dit que les lois de X et de Y sont les **lois marginales** de (X,Y).

Définition

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$

- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$
- Pour tout intervalle I et J de \mathbb{R} , on a :

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$

- $\forall \mathcal{B} \subset \mathbb{R}^2$, $\mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$
- Pour tout intervalle I et J de \mathbb{R} , on a : $\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$

- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$
- Pour tout intervalle I et J de \mathbb{R} , on a : $\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$ $= \iint_{I} \left(\iint_{J} f(x, y) dy \right) dx$

La loi conjointe d'un couple (X, Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$

- $\forall \mathcal{B} \subset \mathbb{R}^2$, $\mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$
- Pour tout intervalle I et J de \mathbb{R} , on a : $\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$ $= \iint_{I} \left(\iint_{J} f(x, y) dy \right) dx$ $= \iint_{J} \left(\iint_{I} f(x, y) dx \right) dy$

Exemple de loi conjointe

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$$

- lacktriangle Montrer que f est la densité d'un couple de probabilité.
- ② Soit (X, Y) un couple de VA dont f est la densité conjointe. Calculer $\mathbb{P}(X \in [0; 1/2]), Y \in [1/2; 1]$ et P(0 < X < Y).

Solution

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$

$$F_{(X,Y)}(\alpha,\beta) =$$

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dy dx$$

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dy dx$$

Remarque : Si l'on connait la fonction de répartition F d'un couple (X,Y) et que F est C^2 presque partout alors la densité de cette loi conjointe est définie par :

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dy dx$$

Remarque : Si l'on connait la fonction de répartition F d'un couple (X,Y) et que F est C^2 presque partout alors la densité de cette loi conjointe est définie par :

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$$

Propriété

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

Propriété

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X < \alpha) &= & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \end{array}$$

Propriété

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

 $\begin{array}{lll} D\acute{e}monstration: \\ \mathbb{P}(X<\alpha) &=& \mathbb{P}(X<\alpha,Y\in\mathbb{R}) \\ &=& \mathbb{P}((X,Y)\in A) \text{ où } A=\{(x,y)\in\mathbb{R}^2,\ x<\alpha\} \end{array}$

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

 $\begin{array}{lll} D \acute{e}monstration : \\ \mathbb{P}(X < \alpha) & = & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \\ & = & \mathbb{P}((X,Y) \in A) \text{ où } A = \{(x,y) \in \mathbb{R}^2, \ x < \alpha\} \\ & = & \iint_A f(x,y) dx dy \end{array}$

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

 $\begin{array}{ll} D \acute{e}monstration: \\ \mathbb{P}(X < \alpha) & = & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \\ & = & \mathbb{P}((X,Y) \in A) \text{ où } A = \{(x,y) \in \mathbb{R}^2, \ x < \alpha\} \\ & = & \iint_A f(x,y) dx dy \\ & = & \int_{-\infty}^{\alpha} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx \end{array}$

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

 $\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X<\alpha) &=& \mathbb{P}(X<\alpha,Y\in\mathbb{R}) \\ &=& \mathbb{P}((X,Y)\in A) \text{ où } A = \{(x,y)\in\mathbb{R}^2,\ x<\alpha\} \\ &=& \iint_A f(x,y) dx dy \\ &=& \int_{-\infty}^{\alpha} \left(\int_{-\infty}^{+\infty} f(x,y) dy\right) dx \\ \text{Ainsi } f_X(x) &=& \int_{\mathbb{P}} f(x,y) dy \end{array}$

4日 > 4周 > 4 目 > 4 目 > ...

Soit (X, Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
 et $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$

$$\begin{array}{lll} D\acute{e}monstration: & & \\ \mathbb{P}(X<\alpha) & = & \mathbb{P}(X<\alpha,Y\in\mathbb{R}) \\ & = & \mathbb{P}((X,Y)\in A) \text{ où } A = \{(x,y)\in\mathbb{R}^2,\ x<\alpha\} \\ & = & \int\!\!\int_A f(x,y) dx dy \\ & = & \int_{-\infty}^{\alpha} \left(\int_{-\infty}^{+\infty} f(x,y) dy\right) dx \\ \text{Ainsi } f_X(x) = \int_{\mathbb{P}} f(x,y) dy \end{array}$$

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leqslant 1\\ 0 & \text{sinon} \end{cases}$$

Solution

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leqslant 1\\ 0 & \text{sinon} \end{cases}$$

Déterminer les lois marginales.

Solution

Variables aléatoires continues indépendantes

Définition (rappel)

Soient X et Y deux variables aléatoires.

X et Y sont indépendantes si et seulement si $\forall (A, B) \in \mathcal{P}(\mathbb{R})^2$,

$$\mathbb{P}(X \in A, Y \in B) = P(X \in A) \times \mathbb{P}(Y \in B)$$

Propriétés |

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Par conséquent
$$f_{(X,Y)}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial x \partial y}(x,y) = \frac{\partial F_X}{\partial x}(x) \frac{\partial F_Y}{\partial y}(y)$$

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Par conséquent
$$f_{(X,Y)}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial x \partial y}(x,y) = \frac{\partial F_X}{\partial x}(x) \frac{\partial F_Y}{\partial y}(y)$$
 ainsi $f_{(X,Y)}(x,y) = f_X(x) f_Y(y)$

Exercice

Robert et Brad doivent faire un exercice de probabilité. Les temps de la résolution de l'exercice par Robert et Brad suivent des lois exponentielles de paramètres respectifs 2λ et 3λ en mn où $\lambda \in \mathbb{R}^+$. On suppose qu'ils cherchent de façon indépendante cet exercice.

Déterminer la probabilité que Robert ait trouvé la solution de l'exercice avant Brad

Solution

Somme de 2 VA

Soient X et Y deux variables aléatoires de densité conjointe $f_{(X,Y)}$.

on a:

$$F_{(X+Y)}(t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy \text{ où } \mathcal{D} = \{(x,y) \in \mathbb{R}^2, x+y < t\}$$

X + Y est une VA réelle à densité f_{X+Y} définie par :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_{(X,Y)}(y, t - y) dy$$

Si X et Y sont indépendantes alors :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = (f_X * f_Y)(t)$$

Exercice

Robert va acheter son pain tous les matins, le temps de parcours en minutes de son domicile à la boulangerie suit une loi uniforme sur [10; 12].

- En supposant que le temps du retour suit la même loi que l'aller et est indépendante de celle-ci, déterminer la loi de la variable aléatoire égale au temps de l'aller retour.
- 2 D'autre part, le temps passé dans la boulangerie suit une loi exponentielle de paramètre $\frac{1}{2}$ et indépendante du temps de parcours, déterminer le temps moyen que met Robert pour aller chercher son pain.

Solution

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

Si X_1 et X_2 ne sont pas indépendantes on a :

$$X_1 + X_2 \leadsto \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2 + 2Cov(X_1, X_2)})$$

où
$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$$

Exercice

On admet que le poids d'un tronc d'arbre, en tonnes, est une variable aléatoire X qui suit une loi normale de moyenne m=2 et d'écart-type $\sigma=0,6$.

- Soit n∈ N*. Pour tout entier i tel que 1 ≤ i ≤ n, soit X_i la variable aléatoire qui, à chaque chargement de n troncs d'arbre, associe le poids du i-ème tronc. Les variables aléatoires X_i, supposées indépendantes, suivent toutes la loi de X. On considère la variable aléatoire Y = X₁ + X₂ + ... + X_n.
 Déterminer la loi de probabilité de Y.
- 2 Un transporteur accepte une charge maximale de 25 tonnes. Déterminer le nombre maximal de troncs que l'on peut charger, en ayant une probabilité de surcharge ne dépassant pas 1%. Solution

Exercices

Soit (X,Y) un couple de variables aléatoires dont la densité conjointe est :

$$f(x,y) = \begin{cases} e^{-(x+y)} & \text{si } x \geqslant 0 \text{ et } y \geqslant 0\\ 0 & \text{sinon} \end{cases}$$

Calculer la densité de $\frac{X}{Y}$.

Solution

• Comme
$$f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$$
, f est

continue presque partout.

De plus
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \ge 0.$$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$

$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$

$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$

$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$

$$= 1$$

• Comme
$$f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$$
, f est

continue presque partout.

De plus
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$$

Et on a:

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$

$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$

$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$

$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$

$$= 1$$

① Comme $f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$, f est

continue presque partout.

De plus
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$
$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$
$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$
$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$

• Comme $f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$, f est

continue presque partout.

De plus
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$
$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$
$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$
$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$

① Comme $f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$, f est

continue presque partout.

De plus
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$
$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$
$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$
$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$

• Comme $f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$, f est

continue presque partout.

De plus $\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$
$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$
$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$
$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$
$$= 1$$

• Comme $f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2 \\ 0 & \text{sinon} \end{cases}$, f est

continue presque partout.

De plus $\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \geqslant 0.$

$$\iint_{\mathbb{R}^2} f(x,y) dx dy = \int_{-1}^1 \left(\int_{-1}^1 \frac{3(x^2 + y^2)}{8} dx \right) dy$$
$$= \int_{-1}^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=-1}^{x=1} \right) dy$$
$$= \int_{-1}^1 \left(\frac{1}{4} + \frac{3}{4} y^2 \right) dy$$
$$= \left[\frac{1}{4} y + \frac{1}{4} y^3 \right]_{-1}^1$$
$$= 1$$

- lacktriangle Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) = \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx dy$$

$$= \int_{1/2}^{1} \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=1/2} \right) dy$$

$$= \int_{1/2}^{1} \left(\frac{1}{64} + \frac{3}{16} y^2 \right) dy$$

$$= \left[\frac{1}{64} y + \frac{1}{16} y^3 \right]_{1/2}^{1}$$

$$= \int_{1/2}^{1} \left(\frac{1}{164} + \frac{3}{16} y^2 \right) dy$$

- $oldsymbol{0}$ Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) = \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx dy$$

$$= \int_{1/2}^{1} \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=1/2} \right) dy$$

$$= \int_{1/2}^{1} \left(\frac{1}{64} + \frac{3}{16} y^2 \right) dy$$

$$= \left[\frac{1}{64} y + \frac{1}{16} y^3 \right]_{1/2}^{1}$$

$$= \frac{1}{164} + \frac{1}{164} \left(1 - \frac{1}{164} \right) = \frac{1}{1644}$$

- lacktriangle Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) = \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx dy$$

$$= \int_{1/2}^{1} \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=1/2} \right) dy$$

$$= \int_{1/2}^{1} \left(\frac{1}{64} + \frac{3}{16} y^2 \right) dy$$

$$= \left[\frac{1}{64} y + \frac{1}{16} y^3 \right]_{1/2}^{1}$$

- \bullet Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) = \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx dy$$

$$= \int_{1/2}^{1} \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=1/2} \right) dy$$

$$= \int_{1/2}^{1} \left(\frac{1}{64} + \frac{3}{16} y^2 \right) dy$$

$$= \left[\frac{1}{64} y + \frac{1}{16} y^3 \right]_{1/2}^{1}$$

$$= \frac{1}{128} + \frac{1}{16} \left(1 - \frac{1}{8} \right) = \frac{1}{16}$$

- \bullet Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\begin{split} \mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) &= \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx \Big) dy \\ &= \int_{1/2}^{1} \Big(\Big[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \Big]_{x=0}^{x=1/2} \Big) dy \\ &= \int_{1/2}^{1} (\frac{1}{64} + \frac{3}{16} y^2) dy \\ &= \Big[\frac{1}{64} y + \frac{1}{16} y^3 \Big]_{1/2}^{1} \\ &= \frac{1}{128} + \frac{1}{16} \Big(1 - \frac{1}{8} \Big) = \frac{1}{16} \end{split}$$

- \bullet Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\begin{split} \mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) &= \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx \bigg) dy \\ &= \int_{1/2}^{1} \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=1/2} \right) dy \\ &= \int_{1/2}^{1} \left(\frac{1}{64} + \frac{3}{16} y^2 \right) dy \\ &= \left[\frac{1}{64} y + \frac{1}{16} y^3 \right]_{1/2}^{1} \\ &= \frac{1}{128} + \frac{1}{16} \left(1 - \frac{1}{8} \right) = \frac{1}{16} \end{split}$$
 Orenotic estern

- \bullet Ainsi f est bien la densité d'un couple de variable aléatoire.
- ② $\mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1] = \iint_{\Delta_1} f(x, y) dx dy$ où $\Delta_1 = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant 1/2 \text{ et } 1/2 \leqslant x \leqslant 1/\}$

$$\begin{split} \mathbb{P}(X \in [0; 1/2], Y \in [1/2; 1]) &= \int_{1/2}^{1} \int_{0}^{1/2} \frac{3(x^2 + y^2)}{8} dx \bigg) dy \\ &= \int_{1/2}^{1} \bigg(\Big[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \Big]_{x=0}^{x=1/2} \bigg) dy \\ &= \int_{1/2}^{1} (\frac{1}{64} + \frac{3}{16} y^2) dy \\ &= \Big[\frac{1}{64} y + \frac{1}{16} y^3 \Big]_{1/2}^{1} \\ &= \frac{1}{128} + \frac{1}{16} \Big(1 - \frac{1}{8} \Big) = \frac{1}{16} \end{split}$$
 Grenoble esister

$$\mathbb{P}(0 < X < Y) = \iint_{D} f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \iint_{\Delta} \frac{3(x^{2} + y^{2})}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \int_{0}^{1} \left(\left[\frac{1}{8} x^{3} + \frac{3}{8} y^{2} x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{8} y^{3} + \frac{3}{8} y^{3} \right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{8} x^{3} + \frac{3}{8} y^{3} \right) dy$$

18/28

$$\mathbb{P}(0 < X < Y) = \iint_{D} f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \iint_{\Delta} \frac{3(x^{2} + y^{2})}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \int_{0}^{1} \left(\left[\frac{1}{8} x^{3} + \frac{3}{8} y^{2} x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{8} y^{3} + \frac{3}{8} y^{3} \right) dy$$

$$= \int_{0}^{1} \frac{1}{2} y^{3} dy$$

$$= \left[\frac{1}{4} y^{4} \right]_{x=0}^{1} = \frac{1}{4} y^{4}$$

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\mathbb{P}(0 < X < Y) = \iint_{D} f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \iint_{\Delta} \frac{3(x^{2} + y^{2})}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^{2}, 0 < x < y\}$$

$$= \int_{0}^{1} \left(\left[\frac{1}{8} x^{3} + \frac{3}{8} y^{2} x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{8} y^{3} + \frac{3}{8} y^{3} \right) dy$$

$$= \int_{0}^{1} \frac{1}{8} y^{3} dy$$

18/28

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\mathbb{P}(0 < X < Y) = \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \iint_{\Delta} \frac{3(x^2 + y^2)}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \int_0^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_0^1 \left(\frac{1}{8} y^3 + \frac{3}{8} y^3 \right) dy$$

$$= \int_0^1 \frac{1}{2} y^3 dy$$

$$= \left[\frac{1}{2} x^4 \right]^1 - \frac{1}{2}$$

$$\mathbb{P}(0 < X < Y) = \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \iint_{\Delta} \frac{3(x^2 + y^2)}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \int_0^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_0^1 \left(\frac{1}{8} y^3 + \frac{3}{8} y^3 \right) dy$$

$$= \int_0^1 \frac{1}{2} y^3 dy$$

$$\mathbb{P}(0 < X < Y) = \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \iint_\Delta \frac{3(x^2 + y^2)}{8} dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \int_0^1 \left(\left[\frac{1}{8} x^3 + \frac{3}{8} y^2 x \right]_{x=0}^{x=y} \right) dy$$

$$= \int_0^1 (\frac{1}{8} y^3 + \frac{3}{8} y^3) dy$$

$$= \int_0^1 \frac{1}{2} y^3 dy$$

$$= \left[\frac{1}{8} y^4 \right]_0^1 = \frac{1}{8}$$

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leq 1\\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x,y) dy$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1 - x^2}}{-x^2}$$

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leq 1 \\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x,y) dy$
On a $\forall x \notin [-1;1], \ f_X(x) = 0$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1 - x^2}}{\sqrt{1 - x^2}}$$

On a $\forall x \notin [-1; 1], f_X(x) = 0$

Loi conjointe
Fonction de répartition
lois marginales
Variables aléatoires continues indépendantes
Somme de 2 variables aléatoires continues

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leq 1 \\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x,y) dy$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1 - x^2}}{\pi}$$

On a donc $:f_X(x) = \begin{cases} \frac{2\sqrt{1-x^2}}{\pi} \\ 0 \end{cases}$

si $x \in [-1; 1]$ On a aussi sinon

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leqslant 1\\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est définie par : $\forall x \in \mathbb{R}$ $f_X(x) = \int_{\mathbb{R}^n} f(x,y) dy$

définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$ On a $\forall x \notin [-1; 1], \ f_X(x) = 0$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1 - x^2}}{\pi}$$

On a donc
$$:f_X(x) = \begin{cases} \frac{2\sqrt{1-x}}{\pi} \\ 0 \end{cases}$$

si $x \in [-1; 1]$ On a aussi sinon

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leq 1 \\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est

définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$ On a $\forall x \notin [-1; 1], \ f_X(x) = 0$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1 - x^2}}{\pi}$$

On a donc
$$:f_X(x) = \begin{cases} \frac{2\sqrt{1-x^2}}{\pi} \end{cases}$$

si $x \in [-1; 1]$ On a aussi sinon

Comme
$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leq 1\\ 0 & \text{sinon} \end{cases}$$
, La densité f_X de X est

définie par : $\forall x \in \mathbb{R}, \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$ On a $\forall x \notin [-1; 1], \ f_X(x) = 0$

$$\forall x \in [-1; 1], \ f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
$$= \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= \frac{2\sqrt{1-x^2}}{\pi}$$

On a donc
$$:f_X(x) = \begin{cases} \frac{2\sqrt{1-x^2}}{\pi} & \text{si } x \in [-1;1] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{P}(X < Y) = \iint_{\Delta} f(x, y) dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, x < y\}$$

$$= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < y\}$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \left(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy\right) dx$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx$$

$$= \left[-\frac{2}{5}e^{-5\lambda x}\right]_{0}^{+\infty}$$

20/28

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\mathbb{P}(X < Y) = \iint_{\Delta} f(x, y) dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, x < y\}$$

$$= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \left(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy \right) dx$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx$$

$$= \left[-\frac{2}{5} e^{-5\lambda x} \right]_{0}^{+\infty}$$

$$= \frac{2}{5}$$

$$\mathbb{P}(X < Y) = \iint_{\Delta} f(x, y) dx dy \text{ où } \Delta = \{(x, y) \in \mathbb{R}^2, x < y\}$$

$$= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, 0 < x < y\}$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \left(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy\right) dx$$

$$= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx$$

$$= \left[-\frac{2}{5}e^{-5\lambda x}\right]_{0}^{+\infty}$$

$$= \frac{2}{5}$$

$$\begin{split} \mathbb{P}(X < Y) &= \iint_{\Delta} f(x,y) dx dy \text{ où } \Delta = \{(x,y) \in \mathbb{R}^2, x < y\} \\ &= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2, 0 < x < y\} \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \Big(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy \Big) dx \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx \\ &= \Big[-\frac{2}{5} e^{-5\lambda x} \Big]_{0}^{+\infty} \\ &= \frac{2}{5} \end{split}$$

$$\begin{split} \mathbb{P}(X < Y) &= \iint_{\Delta} f(x,y) dx dy \text{ où } \Delta = \{(x,y) \in \mathbb{R}^2, x < y\} \\ &= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2, 0 < x < y\} \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \Big(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy \Big) dx \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx \\ &= \left[-\frac{2}{5} e^{-5\lambda x} \right]_{0}^{+\infty} \\ &= \frac{2}{5} \end{split}$$

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\begin{split} \mathbb{P}(X < Y) &= \iint_{\Delta} f(x,y) dx dy \text{ où } \Delta = \{(x,y) \in \mathbb{R}^2, x < y\} \\ &= \iint_{D} 2\lambda e^{-2\lambda x} 3\lambda e^{-3\lambda y} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2, 0 < x < y\} \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} \Big(\int_{x}^{+\infty} 3\lambda e^{-3\lambda y} dy\Big) dx \\ &= \int_{0}^{+\infty} 2\lambda e^{-2\lambda x} e^{-3\lambda x} dx \\ &= \Big[-\frac{2}{5} e^{-5\lambda x}\Big]_{0}^{+\infty} \\ &= \frac{2}{5} \end{split}$$

ullet Soient X et Y les VA égales au temps de parcours de l'aller et du retour, les densités de ces 2 VA sont :

$$f_X(x) = \frac{1}{2} \mathbb{I}_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} \mathbb{I}_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

lacktriangle Soient X et Y les VA égales au temps de parcours de l'aller et du retour, les densités de ces 2 VA sont :

$$f_X(x) = \frac{1}{2}\mathbb{I}_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2}\mathbb{I}_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} \mathbb{I}_{[10;12]}(t-x) dx$$

ullet Soient X et Y les VA égales au temps de parcours de l'aller et du retour, les densités de ces 2 VA sont :

$$f_X(x) = \frac{1}{2} \mathbb{I}_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} \mathbb{I}_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} \mathbb{I}_{[10;12]}(t-x) dx$$

$$\mathrm{D'où}\ f_{X+Y}(t) = \begin{cases} 0 & \text{si } t < 20 \\ \frac{1}{4}(t-20) & \text{si } t \in [20;22] \\ \frac{1}{4}(24-t) & \text{si } t \in [22;24] \\ 0 & \text{si } t > 24 \end{cases}$$

lacktriangle Soient X et Y les VA égales au temps de parcours de l'aller et du retour, les densités de ces 2 VA sont :

$$f_X(x) = \frac{1}{2}\mathbb{I}_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2}\mathbb{I}_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y:

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} \mathbb{I}_{[10;12]}(t-x) dx$$

$$\mathrm{D'où}\ f_{X+Y}(t) = \begin{cases} 0 & \text{si } t < 20 \\ \frac{1}{4}(t-20) & \text{si } t \in [20;22] \\ \frac{1}{4}(24-t) & \text{si } t \in [22;24] \\ 0 & \text{si } t > 24 \end{cases}$$

Soit T la VA égale au temps passé dans la boulangerie, le temps moyen est : $E(X_1 + T + X_2) = 11 + 2 + 11 = 24$ Cours

- Y est la somme de lois normales indépendantes, ainsi $Y \sim \mathcal{N}(2n, 0, 6\sqrt{n})$.
- ② On souhaite déterminer n tel que $\mathbb{P}(Y \leq 25) > 0,99$.

On pose
$$Y^* = \frac{Y - 2n}{0, 6\sqrt{n}}$$

On a :

$$\mathbb{P}(Y \leqslant 25) > 0,99 \Leftrightarrow \mathbb{P}(Y^* \leqslant \frac{25 - 2n}{0,6\sqrt{n}}) > 0,99$$

$$\Leftrightarrow \frac{25 - 2n}{0,6\sqrt{n}} \geqslant 2,33$$

$$\Leftrightarrow 2n + 2,33 \times 0,6\sqrt{n} - 25 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 3,20$$

$$\Leftrightarrow n \leqslant 10,27$$

On pourra ainsi transporter au plus 10 troncs.

$$\mathbb{P}(Y \leqslant 25) > 0,99 \Leftrightarrow \mathbb{P}(Y^* \leqslant \frac{25 - 2n}{0,6\sqrt{n}}) > 0,99$$

$$\Leftrightarrow \frac{25 - 2n}{0,6\sqrt{n}} \geqslant 2,33$$

$$\Leftrightarrow 2n + 2,33 \times 0,6\sqrt{n} - 25 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 3,20$$

$$\Leftrightarrow n \leqslant 10,27$$

$$\mathbb{P}(Y \leqslant 25) > 0,99 \Leftrightarrow \mathbb{P}(Y^* \leqslant \frac{25 - 2n}{0,6\sqrt{n}}) > 0,99$$

$$\Leftrightarrow \frac{25 - 2n}{0,6\sqrt{n}} \geqslant 2,33$$

$$\Leftrightarrow 2n + 2,33 \times 0,6\sqrt{n} - 25 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 3,20$$

$$\Leftrightarrow n \leqslant 10,27$$

$$\mathbb{P}(Y \leqslant 25) > 0,99 \Leftrightarrow \mathbb{P}(Y^* \leqslant \frac{25 - 2n}{0,6\sqrt{n}}) > 0,99$$

$$\Leftrightarrow \frac{25 - 2n}{0,6\sqrt{n}} \geqslant 2,33$$

$$\Leftrightarrow 2n + 2,33 \times 0,6\sqrt{n} - 25 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 3,20$$

$$\Leftrightarrow n \leqslant 10,27$$

$$\mathbb{P}(Y \leqslant 25) > 0,99 \Leftrightarrow \mathbb{P}(Y^* \leqslant \frac{25 - 2n}{0,6\sqrt{n}}) > 0,99$$

$$\Leftrightarrow \frac{25 - 2n}{0,6\sqrt{n}} \geqslant 2,33$$

$$\Leftrightarrow 2n + 2,33 \times 0,6\sqrt{n} - 25 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 3,20$$

$$\Leftrightarrow n \leqslant 10,27$$

On détermine la fonction de répartition de $Z=\frac{X}{Y}$. On constate que pour $t<0, F_Z(t)=\mathbb{P}(\frac{X}{Y}\leqslant t)=0$

$$\forall t \geq 0, \ F_Z(t) = \mathbb{P}(\frac{X}{Y} \leq t)$$

$$= \mathbb{P}(X \leq Yt)$$

$$= \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, x \leq yt\}$$

$$= \iint_{\Delta} e^{-(x+y)} dx dy$$

On détermine la fonction de répartition de $Z = \frac{X}{Y}$. On constate que pour $t < 0, F_Z(t) = \mathbb{P}(\frac{X}{Y} \leqslant t) = 0$

$$\forall t \geqslant 0, \ F_Z(t) = \mathbb{P}(\frac{X}{Y} \leqslant t)$$

$$= \mathbb{P}(X \leqslant Yt)$$

$$= \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, x \leqslant yt\}$$

$$= \iint_{\Delta} e^{-(x+y)} dx dy$$
où $\Delta = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant yt, y > 0\}$

On détermine la fonction de répartition de $Z=\frac{X}{Y}$. On constate que pour $t<0, F_Z(t)=\mathbb{P}(\frac{X}{V}\leqslant t)=0$

$$\forall t \geqslant 0, \ F_Z(t) = \mathbb{P}(\frac{X}{Y} \leqslant t)$$

$$= \mathbb{P}(X \leqslant Yt)$$

$$= \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, x \leqslant yt\}$$

$$= \iint_{\Delta} e^{-(x+y)} dx dy$$
où $\Delta = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant yt, y > 0\}$

On détermine la fonction de répartition de $Z = \frac{X}{Y}$. On constate que pour $t < 0, F_Z(t) = \mathbb{P}(\frac{X}{V} \leqslant t) = 0$

$$\begin{split} \forall t \geqslant 0, \ F_Z(t) &= \mathbb{P}(\frac{X}{Y} \leqslant t) \\ &= \mathbb{P}(X \leqslant Yt) \\ &= \iint_D f(x,y) dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2, x \leqslant yt\} \\ &= \iint_{\Delta} e^{-(x+y)} dx dy \\ &\text{ où } \Delta = \{(x,y) \in \mathbb{R}^2, 0 \leqslant x \leqslant yt, \ y > 0\} \end{split}$$

On détermine la fonction de répartition de $Z = \frac{X}{Y}$. On constate que pour $t < 0, F_Z(t) = \mathbb{P}(\frac{X}{V} \leqslant t) = 0$

$$\forall t \geqslant 0, \ F_Z(t) = \mathbb{P}(\frac{X}{Y} \leqslant t)$$

$$= \mathbb{P}(X \leqslant Yt)$$

$$= \iint_D f(x, y) dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2, x \leqslant yt\}$$

$$= \iint_{\Delta} e^{-(x+y)} dx dy$$
où $\Delta = \{(x, y) \in \mathbb{R}^2, 0 \leqslant x \leqslant yt, \ y > 0\}$

$$\forall t \ge 0, \ F_Z(t) = \int_0^{+\infty} \int_0^{yt} e^{-(x+y)} dx dy$$

$$= \int_0^{+\infty} \left[-e^{-(y+x)} \right]_{x=0}^{x=yt} dy$$

$$= \int_0^{+\infty} (-e^{-(1+t)y} + e^{-y}) dy$$

$$= \left[\frac{e^{-(1+t)y}}{1+t} - e^{-y} \right]_0^{+\infty}$$

$$= 1 - \frac{1}{1+t}$$

$$\forall t \ge 0, \ F_Z(t) = \int_0^{+\infty} \int_0^{yt} e^{-(x+y)} dx dy$$

$$= \int_0^{+\infty} \left[-e^{-(y+x)} \right]_{x=0}^{x=yt} dy$$

$$= \int_0^{+\infty} (-e^{-(1+t)y} + e^{-y}) dy$$

$$= \left[\frac{e^{-(1+t)y}}{1+t} - e^{-y} \right]_0^{+\infty}$$

$$= 1 - \frac{1}{1+t}$$

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\forall t \ge 0, \ F_Z(t) = \int_0^{+\infty} \int_0^{yt} e^{-(x+y)} dx dy$$

$$= \int_0^{+\infty} \left[-e^{-(y+x)} \right]_{x=0}^{x=yt} dy$$

$$= \int_0^{+\infty} (-e^{-(1+t)y} + e^{-y}) dy$$

$$= \left[\frac{e^{-(1+t)y}}{1+t} - e^{-y} \right]_0^{+\infty}$$

$$= 1 - \frac{1}{1+t}$$

$$\forall t \ge 0, \ F_Z(t) = \int_0^{+\infty} \int_0^{yt} e^{-(x+y)} dx dy$$

$$= \int_0^{+\infty} \left[-e^{-(y+x)} \right]_{x=0}^{x=yt} dy$$

$$= \int_0^{+\infty} (-e^{-(1+t)y} + e^{-y}) dy$$

$$= \left[\frac{e^{-(1+t)y}}{1+t} - e^{-y} \right]_0^{+\infty}$$

$$= 1 - \frac{1}{1+t}$$

$$\forall t \ge 0, \ F_Z(t) = \int_0^{+\infty} \int_0^{yt} e^{-(x+y)} dx dy$$

$$= \int_0^{+\infty} \left[-e^{-(y+x)} \right]_{x=0}^{x=yt} dy$$

$$= \int_0^{+\infty} (-e^{-(1+t)y} + e^{-y}) dy$$

$$= \left[\frac{e^{-(1+t)y}}{1+t} - e^{-y} \right]_0^{+\infty}$$

$$= 1 - \frac{1}{1+t}$$

On a ainsi
$$F_Z(t) = \begin{cases} 1 - \frac{1}{1+t} & \text{si } t \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$
 F_Z est dérivable sur

] — ∞ ; 0[et sur]0; + ∞ [, ainsi Z est une variable à densité f_Z définie par :

$$\forall t \in]-\infty; 0[\cup]0; +\infty[, f_Z(t) = F_Z'(t) = \begin{cases} \frac{1}{(1+t)^2} & \text{si } t > 0\\ 0 & \text{si } t < 0 \end{cases}$$

On a ainsi $F_Z(t) = \begin{cases} 1 - \frac{1}{1+t} & \text{si } t \geqslant 0 \\ 0 & \text{sinon} \end{cases}$ F_Z est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$, ainsi Z est une variable à densité f_Z définie par :

$$\forall t \in]-\infty; 0[\cup]0; +\infty[, f_Z(t) = \begin{cases} \frac{1}{(1+t)^2} & \text{si } t > 0\\ 0 & \text{si } t < 0 \end{cases}$$

Cours

$$\forall t \in \mathbb{R}, \ P(X + Y < t) =$$

Chapitre 4: Vecteurs aléatoires

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

Chapitre 4: Vecteurs aléatoires

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

On effectue le changement de variable $\begin{cases} u = x \\ v = x + y \end{cases}$

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

On effectue le changement de variable $\begin{cases} u = x \\ v = x + y \end{cases}$

Ainsi:

$$P(X+Y < t) = \int_{\mathbb{R}} \int_{-\infty}^{t} f_{(X,Y)}(u,v-u) dv \ du$$
$$= \int_{-\infty}^{t} \int_{\mathbb{R}} f_{(X,Y)}(u,v-u) du \ dv$$

Chapitre 4 : Vecteurs aléatoires

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où
$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$$

On effectue le changement de variable $\begin{cases} u = x \\ v = x + y \end{cases}$

Ainsi:

$$P(X+Y< t) = \int_{\mathbb{R}} \int_{-\infty}^{t} f_{(X,Y)}(u, v-u) dv \ du$$
$$= \int_{-\infty}^{t} \int_{\mathbb{R}} f_{(X,Y)}(u, v-u) du \ dv$$

D'où $f_{X+Y}(v) = \int_{\mathbb{D}} f_{(X,Y)}(u,v-u)du$

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

On a:

$$\frac{(x-m_1)^2}{2\sigma_1^2} + \frac{(t-x-m_2)^2}{2\sigma_2^2} =$$

$$\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \Big((x - m_1) - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (t - m_1 - m_2) \Big)^2 + \frac{1}{2(\sigma_1^2 + \sigma_2^2)} (t - m_1 - m_2)^2$$

lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

On a:

$$\frac{(x-m_1)^2}{2\sigma_1^2} + \frac{(t-x-m_2)^2}{2\sigma_2^2} =$$

$$\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \Big((x - m_1) - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (t - m_1 - m_2) \Big)^2 + \frac{1}{2(\sigma_1^2 + \sigma_2^2)} (t - m_1 - m_2)^2$$

Ainsi
$$X_1 + X_2 \rightsquigarrow \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

