Sur un Nouvel Invariant des Graphes et un Critère de Planarité

YVES COLIN DE VERDIÈRE

Institut Fourier, B. P. 74, 38402 St. Martin d'Heres, Cedex, France

Communicated by the Managing Editors

Received February 12, 1987

Un graphe fini est dit *planaire* si on peut le dessiner dans le plan sans que les arêtes se recoupent. Un problème bien naturel et résolu par Kuratowski [KI] est de trouver une caractérisation des graphes planaires. On pourra ausi à ce sujet consulter les monographies [BE, WE, TE]. Il se trouve que les méthodes développées dans nos articles précédents [C-C, $[CV_i]_{1 \le i \le 4}$] permettent d'exhiber un invariant global associé à un graphe fini et qui semble nouveau. Cet invariant entier $\mu(\Gamma)$ satisfait le:

Théorème. Γ est planaire si et seulement si $\mu(\Gamma) \leq 3$.

Les objets de cet article sont la définition de $\mu(\Gamma)$, l'étude des propiétés de monotonie par rapport aux opérations de réduction, et de contraction (au sens de [H-T]) du graphe; la preuve du théorème précédent ainsi que d'autres concernant le plongement des graphes dans les surfaces. La question sous-jacente qui semble la plus importante est: $\mu(\Gamma)$ est-il relié au nombre chromatique $C(\Gamma)$? Les exemples connus et le théorème précédent conduisent à proposer la:

Conjecture. Pour tout Γ , $\mu(\Gamma) \geqslant C(\Gamma) - 1$.

L'étude de cette conjecture, qui implique le théorème des 4 couleurs, pourrait conduire à une nouvelle démonstration de ce dernier théorème!!

Il faut aussi noter que cette conjecture est plus faible que celle de Hadwiger [TE p. 52; OE p. 146].

1. Construction de $\mu(\Gamma)$

Cette construction est basée sur une propriété de transversalité introduite par Arnold [AD] et décrite dans [CV 3] sous le nom d'hypothèse SAH ("strong Arnold's hypothesis").

Commençons par préciser quelques notations:

 Γ est un graphe fini, connexe, non orienté, et sans boucles;

 $V(\Gamma)$ ou V, l'ensemble de ses sommets de cardinal v_{Γ} ou v;

 $E(\Gamma)$ ou E, l'ensemble de ses arêtes de cardinal e_{Γ} ou e;

 \mathscr{S}_v l'ensemble des matrices symétriques réelles $v \times v$.

On note \mathcal{O}_{Γ} l'ensemble des matrices de \mathscr{S}_{v} telles que si $A=(a_{ij})\in\mathcal{O}_{\Gamma}$, on ait:

- (i) $a_{ii} < 0$ si $\{i, j\} \in E$
- (ii) $a_{ii} = 0$ si $\{i, j\} \notin E$ et $i \neq j$.

A toute mesure $v = \sum_{i \in V} V_i \delta(i)$ ($V_i > 0$), sur V, est associée une bijection $A \mapsto q_A$ de \mathcal{O}_Γ sur l'ensemble Q_Γ des formes quadratiques sur $\mathbf{R}^V = L^2(V, v)$ de la forme

$$q((x_i)) = \sum_{i \in V} c_i x_i^2 + \sum_{\{i,j\} \in E} c_{\{i,j\}} (x_i - x_j)^2,$$

où les $c_{\{i,j\}}$ sont > 0; cette bijection est définie par

$$\langle Ax | y \rangle_{L^2(v)} = q_A(x, y).$$

Comme Γ est connexe, il est classique et facile de vérifier que le spectre de $A \in \mathcal{O}_{\Gamma}$ est de la forme $\lambda_1 < \lambda_2 \le \cdots \le \lambda_v$, où les valeurs propres sont répétées avec leur multiplicité (convention usuelle).

L'hypothèse d'Arnold. Soit $\lambda_0 \in \mathbf{R}$, $n_0 \ge 1$ un entier, on considère la sous-variété $W_{\lambda_0, n_0} \subset \mathcal{S}_v$ des matrices symétriques ayant λ_0 comme valeur propre de multiplicité n_0 , et on dira que la valeur propre λ_0 de multiplicité n_0 de $A_0 \in \mathcal{O}_\Gamma$ vérifie SAH si \mathcal{O}_Γ et W_{λ_0, n_0} se coupent transversalement en A_0 .

La codimension de W_{λ_0, n_0} étant $n_0(n_0 + 1)/2$, ceci ne peut se produire que si $v + e \ge n_0(n_0 + 1)$.

Soit $L: T_{A_0} \mathcal{O}_{\Gamma} \to Q(E_0)$ (avec $E_0 = \text{Ker}(A_0 - \lambda_0 \text{Id})$, et $Q(E_0)$ l'espace des formes quadratiques sur E_0) définie par

$$L(dA) = \langle dA \cdot | \cdot \rangle_{|E_0}$$

où le produit scalaire est celui de $L^2(V, v)$.

On a le:

CRITÈRE (*). L'hypothèse SAH équivaut à la surjectivité de L.

Donnons maintenant la:

DÉFINITION. $\mu(\Gamma)$ est le plus grand entier n_0 tel qu'il existe $A_0 \in \mathcal{O}_{\Gamma}$ dont la seconde valeur propre λ_2 est de multiplicité n_0 et vérifie SAH. Un tel A_0 est dit optimal pour Γ .

Quelques exemples:

1. Si K_N est le graphe complet à N sommets, $\mu(K_N) = N - 1$. En effet $T_A \mathcal{O}_{K_N} = \mathcal{S}_N$ et donc L est surjective pour tout A_0 . Il suffit de prendre A_0 dont la matrice a tous les coefficients égaux à -1 et le spectre $-N < 0 = 0 = 0 \cdots = 0$. Réciproquement si λ_2 est de multiplicité $v_{\Gamma} - 1$, Γ est le graphe complet K_v : en effet, l'espace propre E_{λ_2} est alors l'orthogonal de la fonction propre $\varphi_0 \in E_{\lambda_1}$. Pour $f \in E_{\lambda_2}$, on a donc

$$\sum_{i=2}^{v} a_{1i} f(i) = \mu_0 f(1);$$

donc s'il existe i tel que $a_{1i}=0$, il y a une autre relation que l'orthogonalité à φ_0 entre les valeurs de f(i): donc $\forall i, \ a_{1i} \neq 0$, on voit ainsi que Γ est complet.

2. Si $K_{3,3}$ est le graphe complet bipartit à 6 sommets, on a $\mu(K_{3,3}) = 4$ (la figure 1).

En effet, $\mu(K_{3,3}) \le 4$ d'après la remarque précédente. Soit A_0 telle que $a_{ii} = 0$ et $a_{ij} = -1$ si et seuelement si $\{i, j\} \in E$. Le spectre de A_0 est -3 < 0 = 0 = 0 < 3. L'espace propre $E_0 = \text{Ker } A_0$ est défini par

$$E_0 = \{(x_i) | x_1 + x_2 + x_3 = 0, x_4 + x_5 + x_6 = 0\}.$$

Soit $L_i(x) = x_i$; alors L_1 , L_2 , L_4 , L_5 forment une base de E_0^* . Il est clair que L_1^2 , L_2^2 , L_4^2 , L_5^2 , L_1L_4 , L_1L_5 , L_2L_4 , et L_2L_5 sont dans l'image de L_5 ; pour ce qui est de L_1L_2 et L_4L_5 , elles s'obtiennent par restriction de $x_3^2 = (x_1 + x_2)^2$ et $x_6^2 = (x_4 + x_5)^2$ à E_0 .

- 3. Si I_N est le graphe linéaire à N sommets $(N \ge 2)$, on a $\mu(I_N) = 1$.
- 4. Si C_N est le graphe cyclique à N sommets, $\mu(C_N) = 2$.
- 5. Si Γ est l'étoile à 3 branches, $\mu(\Gamma) = 2$.

FIGURE 1

2. Propriétés de $\mu(\Gamma)$ relativement aux réductions et aux contractions

2.a. Réduction. Une réduction Γ_1 de Γ est un graphe connexe défini de la façon suivante: $E(\Gamma_1) \subset E(\Gamma)$ et $V(\Gamma_1)$ sont les sommets de $V(\Gamma)$ qui sont extrémités d'au moins une arête de $E(\Gamma_1)$. On efface des arêtes de Γ , puis on efface les sommets de Γ qui sont isolés par cette opération (la figure 2).

Théorème 2.1. Si Γ_1 s'obtient à partir de Γ par réduction (connexe), on a $\mu(\Gamma_1) \leq \mu(\Gamma)$.

Preuve. Soit $n = \mu(\Gamma_1)$ et A_0 optimal pour Γ_1 . On définit, pour chaque $A \in \mathcal{O}_{\Gamma_1}$ et chaque $\varepsilon > 0$, une forme quadratique de Q_{Γ} par

$$q_{\varepsilon,A}((x_i)) = C \cdot \Sigma' x_i^2 + \varepsilon \Sigma''(x_i - x_j)^2 + q_A((x_i)),$$

où Σ' porte sur $V(\Gamma)\setminus V(\Gamma_1)$, Σ'' sur $E(\Gamma)\setminus E(\Gamma_1)$, et q_A est la forme quadratique associée à une mesure μ_0 sur $V(\Gamma_1)$. On choisit sur $V(\Gamma)$ la mesure $\nu_0 = \mu_0 + \Sigma'\delta(i)$ et C plus grand que toutes les valeurs propres de q_A pour A voisin de A_0 .

Pour $\varepsilon=0$, le spectre de q_{0,A_0} relativement à $L^2(V(\Gamma), v_0)$ admet $\lambda_2=\lambda_2(A_0)$ comme seconde valeur propre de multiplicité n; on a de plus l'hypothèse SAH pour cette valeur propre relativement aux déformations de \mathscr{O}_{Γ} . Cette propriété reste évidemment vraie pour $q_{\varepsilon,A_{\varepsilon}}$ ($\varepsilon>0$) et A_{ε} bien choisi proche de A_0 . Mais pour $\varepsilon>0$, $q_{\varepsilon,A}\in Q_{\Gamma}$.

- 2.b. Contractions. Soit Γ un graphe connexe. On dit que Γ_0 est une contraction de Γ si Γ_0 peut être défini de la façon suivante: soit $V(\Gamma) = \bigcup_{i=1}^N A_i$ une partition de $V(\Gamma)$ en morceaux connexes non \emptyset , alors (la figure 3)
 - (i) $V(\Gamma_0) = \{1, 2, ..., N\},$
- (ii) $\{i, j\} \in E(\Gamma_0)$ si et seulement si il existe une arête $\{\alpha, \beta\} \in E(\Gamma)$ telle que $\alpha \in A_i$ et $\beta \in A_j$.

FIGURE 2

FIGURE 3

On note:

 $E_{i,j} \subset E(\Gamma)$ les arêtes qui joignent un sommet de A_i à un sommet de A_j ;

$$n_{i,j} = \# E_{i,j};$$

 $n_i = \# A_i;$
 Γ_i le graphe tel que $V(\Gamma_i) = A_i$ et $E(\Gamma_i) = E_{i,i}$ $(i \ge 1);$
 p la projection naturelle de $V(\Gamma)$ sur $V(\Gamma_0);$
 $v = \sum_{\alpha \in V(\Gamma)} \delta(\alpha)$ et v_0 son image par $p : v_0(\{i\}) = n_i.$

On a le

Théorème 2.2. Si Γ_0 est une contraction de Γ , $\mu(\Gamma) \geqslant \mu(\Gamma_0)$.

Preuve. Soit $A_0 \in \mathcal{O}_{\Gamma_0}$ optimal, $q_{A_0} \in Q_{\Gamma_0}$ la forme quadratique associée relativement à v_0 , $\lambda_2(A_0)$, $F_0 = \operatorname{Ker}(A_0 - \lambda_2 \operatorname{Id})$, et $m_0 = \mu(\Gamma_0) = \dim(F_0)$.

L'espace $L^2(V(\Gamma_0), \nu_0)$ s'identifie naturellement et isométriquement par $f \mapsto f \circ p$ au sous-espace E_0 des fonctions de $L^2(V(\Gamma), \nu)$ constantes sur chaque A_i .

A toute forme quadratique $q \in Q_{\Gamma_0}$, il est donc naturel d'associer un relèvement $p^*(q)$, forme quadratique sur $L^2(V(\Gamma), \nu)$ vérifiant $p^*(q)(f \circ p) = q(f)$. On peut par exemple définier $p^*(q)$ en prolongeant linéairement les formules

$$p^*(x_i^2) = \frac{1}{n_i} \sum_{\alpha \in A_i} x_{\alpha}^2$$

$$p^*((x_i - x_j)^2) = \frac{1}{n_{i,j}} \sum_{\{\alpha, \beta\} \in E_{i,j}} (y_{\alpha} - y_{\beta})^2.$$

Soit maintenant $q_i \in Q_{\Gamma_i}$ $(i \ge 1)$ définies par

$$q_i(y) = \sum_{\{\alpha,\beta\} \in E(\Gamma_i)} (y_{\alpha} - y_{\beta})^2.$$

A tout $A \in \mathcal{O}_{\Gamma_0}$ de forme quadratique $q_A \in Q_{\Gamma_0}$, on associe, pour tout $\varepsilon > 0$, la forme quadratique $q_{\varepsilon,A} \in Q_{\Gamma}$ définie par

$$q_{\varepsilon,A} = \sum_{i=1}^{N} q_i + \varepsilon p^*(q_A).$$

Lorsque $\varepsilon=0$, le spectre de $q_{0,A}$ se compose de la valeur propre 0 de multiplicité N et de valeurs propres >0 (celles des q_i sur Γ_i). Comme $q_{\varepsilon,A}$ est une fonction analytique de ε et de A, on peut appliquer la théorie des perturbations analytiques de Kato [KO]: si on désigne par $E_{\varepsilon,A}$ la somme des espaces propres de $q_{\varepsilon,A}$ correspondant aux N petites valeurs propres de $q_{\varepsilon,A}$, lorsque ε est petit, $E_{\varepsilon,A}$ est proche de E_0 et on peut désigner par $U_{\varepsilon,A}$ la "petite" isométrie canonique de E_0 sur $E_{\varepsilon,A}$ et $\tilde{q}_{\varepsilon,A}$ et $\tilde{q}_{\varepsilon,A} = U_{\varepsilon,A}^*(q_{\varepsilon,A|_{E_{\varepsilon,A}}})$. La famille $\tilde{q}_{\varepsilon,A}$ de formes quadratiques sur E_0 est analytique en ε et A et admet pour valeurs propres les N petites valeurs propres de $q_{\varepsilon,A}$. De plus $\tilde{q}_{0,A}=0$ et donc $r_{\varepsilon,A}=(1/\varepsilon)$ $\tilde{q}_{\varepsilon,A}$ est encore analytique en ε et A.

On a $r_{0,A} = q_A$. En effet $r_{0,A}$ est la dérivée en $\varepsilon = 0$, par rapport à ε de $\tilde{q}_{\varepsilon,A}$ qui est donc égale (voir [CV 2] pour un calcul analogue) à la dérivée de $q_{\varepsilon,A|E_0}$; c'est-à-dire $p^*(q_A)_{|E_0} = q_A$, avec l'identification de E_0 et $L^2(V(\Gamma_0); V_0)$.

Pour $\varepsilon > 0$ petit, il existe donc, à cause de SAH pour A_0 , un opérateur $A_{\varepsilon} \in \mathcal{O}_{\Gamma_0}$, proche de A_0 , telle que $r_{\varepsilon,A_{\varepsilon}}$ admette λ_2 comme valeur propre de multiplicité m_0 , et donc $q_{\varepsilon,A}$ admet $\varepsilon \lambda_2$ comme seconde valeur propre de même multiplicité. L'hypothesse SAH pour cet opérateur est vérifiée en utilisant uniquement les déformations provenent de \mathcal{O}_{Γ_0} ; en effet l'application linéaire L_{ε} du critère * du §1, $L_{\varepsilon}: T_{A_{\varepsilon}}\mathcal{O}_{\Gamma_1} \to Q(F_{\varepsilon})$ dépend continûment de ε et est surjective pour $\varepsilon = 0$ car A_0 vérifie SAH.

2.c. Invariance topologique? Au vu des résultats précédents, il est naturel de se demander si $\mu(\Gamma)$ n'est pas un invariant topologique de Γ . Rappelons que deux graphes sont dits homéomorphes si on peut faire une subdivision de leurs arêtes de façon à obtenir des graphes isomorphes. Ce n'est pas le cas, comme le prouve l'exemple suivant où $\mu(\Gamma_1) = 3$ et $\mu(\Gamma_2) = 2$ (la figure 4).

FIGURE 4

3. Relations entre $\mu(\Gamma)$ et le plongement de Γ dans une surface

Rappelons [CV 1, CV 4] qu'on peut associer à toute variété compacte X un invariant entier m(X) défini de la façon suivante:

m(X) est la multiplicité maximale de la seonde valeur propre d'un opérateur différentiel elliptique positif du second ordre, symétrique et à coefficients réels opérant sur $C^{\infty}(X; \mathbf{R})$.

Les résultats connus sur m(X) sont les suivants : $m(S^2) = 3$ [CG], $m(P^2(\mathbf{R})) = 5$ et $m(\mathbf{R}^2/\mathbf{Z}^2) = 6$ [CG, BN], si B est la bouteille de Klein, m(B) = 5 [CV 4], et si X est une surface orientable de genre g, $m(X) \le 4g + 3$ [CG, BN]. Par contre, si $\dim(X) \ge 3$, $m(X) = +\infty$ [CV 2]. On a les

Théorème 3.1. Si Γ se plonge (injectivement) dans X, on a

$$\mu(\Gamma) \leqslant m(X)$$
.

THÉORÈME 3.2. Γ est planaire si et seulement si $\mu(\Gamma) \leq 3$.

Le théorème 3.1 est prouvé dans [CV 4, théoreme 7.1 et corollaire 7.3], en construisant un opérateur de Schrödinger dont la multiplicité de la seconde valeur propre est $\mu(\Gamma)$, à partir d'un dessin de Γ sur X. Comme $m(S^2) = 3$, on voit en particulier que si Γ est planaire, $\mu(\Gamma) \le 3$, en particulier ni K_5 , ni $K_{3,3}$ ne sont planaires d'après les calculs du §1.

Il reste à prouver que, si Γ n'est pas planaire, alors $\mu(\Gamma) \geqslant 4$. C'est une conséquence des résultats du §2 et de la version due à Harary et Tutte [H-T] du critère de planarité de Kuratowski [KI]:

Théorème 3.3 ([H-T]). Si Γ n'est pas planaire, il exists un graphe Γ_1 isomorphe à $K_{3,3}$ ou à K_5 qui est une réduction d'une contraction de Γ .

La preuve se termine alors par la remarque du §1:

$$\mu(K_{3,3}) = \mu(K_5) = 4.$$

Il serait intéressant d'avoir des généralisations du théorème 3.2 à d'autres surfaces que la sphère.

4. Variations de $\mu(\Gamma)$

Soit Γ tel que $\mu(\Gamma) = m$ et A_0 optimal pour Γ . Soit $X \subset V(\Gamma)$; on dira que X est générique si les formes linéaires $L_{\alpha} : E_0 \to \mathbb{R}$ définie par $L_{\alpha}(\varphi) = \varphi(\alpha)$ pour $\alpha \in X$ engendre le dual E_0^* de E_0 . On dira que X est générique positif

si X est générique et qu'il existe une relation linéaire $\sum_{\alpha \in X} a_{\alpha} L_{\alpha} = 0$ dans E_0^* avec les $a_{\alpha} > 0$. On a alors nécessairement $\#X \ge m+1$.

Soit maintenant $\Gamma_0 = S_X(\Gamma)$ défini par adjonction du sommet 0 à Γ et d'arêtes $\{0, \alpha\}$ pour $\alpha \in X$, alors on a:

Théorème 4.1. Si Γ est générique positif, alors

$$\mu(S_X(\Gamma)) = \mu(\Gamma) + 1.$$

Preuve. 1ère étape: Soit A_0 optimal pour Γ , construisons un opérateur $B_0 \in \mathcal{O}_{\Gamma_0}$ ayant $\lambda_{\varepsilon} = \lambda_2(A_0)$ comme seconde valeur propre, de multiplicité m+1 avec SAH. Soit sur $L^2(V(\Gamma_0), v_0)$ la forme quadratique $q_{\varepsilon, A}$ définie pour $\varepsilon = (\varepsilon_0, (\varepsilon \alpha)_{\alpha \in X})$ et $A \in \mathcal{O}_{\Gamma}$ par

$$q_{\varepsilon,A}(x_0,(x_i)) = (\lambda_2 + \varepsilon_0) x_0^2 - \sum_{\alpha \in X} \varepsilon_\alpha x_0 x_\alpha + q_A(x_i).$$

Lorsque les ε_{α} sont >0, $q_{\varepsilon,A} \in Q_{\Gamma_0}$. Pour $\varepsilon=0$, q_{0,A_0} admet λ_2 comme seconde valeur propre avec la multiplicité m+1. De plus, cette valeur propre vérifie SAH relativement aux déformations $A \in \mathcal{O}_{\Gamma}$, $\varepsilon \in \mathbb{R}^{1+\#X}$: en effet l'application linéaire L utilisée dans le critère * est

$$L(dA, d\varepsilon) = \left(d\varepsilon_0 \cdot x_0^2 - \sum_{\alpha \in X} d\varepsilon_\alpha \cdot x_0 \cdot x_\alpha + dq_A \right)_{|F_0|},$$

où $F_0 = \mathbf{R}v_0 \oplus E_0$ avec $v_0(i) = \delta_{0i}$, qui est surjective sur $Q(F_0)$ puisque X est générique.

Comme il y a une relation de dépendance entre les $(L_{\alpha})_{\alpha \in X}$, on a en fait l'existence d'un germe de sous-variété de $W_{\lambda_2,m+1} \cap \mathscr{S}_{v+1}$ près de q_{0,A_0} : l'espace tangent à cette sous-variété contient le vecteur donné par

$$d\varepsilon_{\alpha}=a_{\alpha},$$

$$d\varepsilon_0 = 0$$
,

$$dA = 0$$
,

qui est dans Ker(L). Comme les a_{α} sont > 0, cette sous-variété rencontre \mathcal{O}_{Γ_0} .

2ème étape: La deuxième étape dépend du

THÉORÈME 4.2. Si Γ s'obtient à partir de Γ_0 par la réduction obtenue en otant des arrêtes issues du même sommet 0, on a $\mu(\Gamma_0) = \mu(\Gamma)$ ou $\mu(\Gamma) + 1$.

Preuve. On sait déjà d'après le §1 que $\mu(\Gamma) \leq \mu(\Gamma_0)$. Soit A_0 optimal pour Γ_0 et E_0 l'espace propre correspondant. Soit $F_0 \subset E_0$ l'ensemble des

 $\varphi \in E_0$ telles que $\varphi(0) = 0$. F_0 est visiblement le second espace propre d'un opérateur B_0 de \mathscr{O}_Γ (supprimer dans la matrice de A_0 tous les coefficients a_{i0} et a_{0i}) et on a encore la propriété SAH, comme on peut le voir en utilisant le critère * puisque $L(L_0L_i)_{|F_0} = 0$ (i sommet adjacent à 0).

On peut aussi obtenir un corollaire amusant: désignons par $cr(\Gamma)$ le nombre minimum de croisements dans un dessin de Γ dans le plan, alors

COROLLAIRE 4.3. $\mu(\Gamma) \leq 3 + \operatorname{cr}(\Gamma)$.

En particulier si $cr(\Gamma) = 1$, on voit que $\mu(\Gamma) = 4$. C'est le cas pour $K_{3,3}$ et K_5 , comme le montre les dessins suivants (la figure 5).

5. Graphes *n*-critiques

Rappelons [TE, p.32 et suivantes] qu'on introduit une relation d'ordre naturelle sur les (classes d'isomorphismes) de graphes de la façon suivante:

DÉFINITION 5.1. Γ_1 est un mineur de Γ si Γ_1 est une réduction d'une contraction de Γ .

Il est donc naturel de poser la:

DÉFINITION 5.2. Γ est *n*-critique si $\mu(\Gamma) = n$ et que, pour tout mineur Γ_1 de Γ , non isomorphe à Γ , on a $\mu(\Gamma_1) < \mu(\Gamma)$.

On a donc le:

Théorème 5.3. Pour un graphe Γ , $\mu(\Gamma) \geqslant n$ si et seulement si il existe un mineur de Γ qui soit n-critique.

Des résultats généraux et difficiles de théorie des graphes [R-S] impliquent que, pour chaque n, il n'y a qu'un nombre fini de graphes n-critiques.

Nous en connaissons la liste pour $n \le 4$:

Théorème 5.3. Les graphes n-critiques, pour $n \leq 4$, sont les suivants:

pour n = 0, K_1 ; pour n = 1, K_2 ; pour n = 2, K_3 et $K_{3,1}$; pour n = 3, K_4 et $K_{3,2}$; pour n = 4, K_5 et $K_{3,3}$.

Pour tout n, K_{n+1} est n-critique.

Preuve. Les cas n = 0, 1 sont triviaux. Le cas n = 4 déjà traité (théorème 3.2).

Il reste les cas n = 2 et n = 3: pour traiter le cas n = 3, nous utilisons la notion de graphe extérieur-planaire [C-H].

Définition 5.5. Γ est extérieur-planaire si Γ est planaire et s'il existe un plongement j de Γ dans \mathbf{R}^2 tel que tous les sommets de Γ soient adhérents à la composante connexe non bornée de $\mathbf{R}^2 \setminus j(\Gamma)$.

On a alors le:

Théorème 5.6. Γ n'est pas extérieur-planaire si et seulement si Γ admet un mineur isomorphe à K_4 ou $K_{3,2}$.

On a $\mu(K_4) = \mu(K_{3,2}) = 3$, et donc le résultat plus précis:

Théorème 5.7. Γ est extérieur-planaire si et seulement si $\mu(\Gamma) \leq 2$.

Preuve. En effet, si Γ n'est pas extérieur-planaire, $\mu(\Gamma) \geqslant 3$, à cause de 5.6 et du calcul de μ pour les graphes K_4 et $K_{3,2}$.

Réciproquement, si Γ est extérieur-planaire, soit $\Gamma_1 = S_X(\Gamma)$, où $X = V(\Gamma)$; alors Γ_1 est planaire (figure) et $\mu(\Gamma_1) = \mu(\Gamma) + 1$ d'après 4.1, puisque $V(\Gamma)$ est générique positif. Donc $\mu(\Gamma) + 1 \le 3$.

FIGURE 6

De tout ceci, on déduit que les Γ 3-critiques sont K_4 et $K_{3,2}$.

Le cas 2-critique est évident. $\mu(\Gamma) \ge 2$ si et seulement si Γ n'est pas un graphe linéaire; c'est-à-dire s'il admet K_3 ou $K_{3,1}$ comme mineur (la figure 6).

REMERCIEMENTS

Je tiens à remercier ici mes collègues grenoblois de l'équipe de théorie des graphes (C. Benzaken, F. Jaeger, C. Payan, et N. H. Xuong) pour les discussions que j'ai eu avec eux durant la préparation de ce travail, notamment à propos des mineurs et des graphes k-critiques. En particulier, l'identification des graphes à $\mu \le 2$ et des graphes extérieurs-planaires repose sur une idée de F. Jaeger.

BIBLIOGRAPHIE

- [AD] V. ARNOLD, Modes and quasi-modes, J. Funct. Anal. 6 (1972), 94-101.
- [BE] D. BARNETTE, Map coloring, polyhedra, and the four-color problem, *Dolciani Math. Exp.* 8 (1983).
- [BN] G. Besson, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, *Ann. Inst. Fourier* **30** (1980), 109-128.
- [C-C] B. COLBOIS ET Y. COLIN DE VERDIÈRE, Multiplicité de la première valeur propre du laplacien des surfaces à courbure constante, Comment. Math. Helv. 63 (1988), 194–208.
- [CG] S. CHENG, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1979), 43-55.
- [C-H] C. CHARTRAND ET HARARY, Planar permutation graphs, Ann. Inst. H. Poincaré B 3 (1967), 433-438.
- [CV 1] Y. Colin De Verdière, Spectres de variétés riemanniennes et spectres de graphes, Proc. Intern. Congress of Math., Berkeley 1986, 522-530.
- [CV 2] Y. COLIN DE VERDIÈRE, Sur la multiplicité de la première valeur propre non nulle du laplacien, Comment. Math. Helv. 61 (1986), 254-270.
- [CV 3] Y. Colin de Verdière. Sur une hypothèse de transversalité d'Arnold, Comment. Math. Helv. 63 (1988), 184-193.
- [CV 4] Y. Colin de Verdière, Constructions de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. École Norm. Sup. 20 (1987), 599-615.
- [H-T] F. HARARY ET W. TUTTE, A dual form of Kuratowski's theorem, Canad. Math. Bull. 8 (1965), 17-20.
- [KI] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
- [KO] T. KATO, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin/ New York, 1976.
- [OE] O. Ore, "The Four-color Problem," Academic Press, New York, 1967.
- [R-S] ROBERTSON ET SEYMOUR, Graphs minors. I, J. Combin. Theory Ser. B 35 (1983), 39-61.
- [TE] W. TUTTE, Graph theory, Encyclopedia Math. 21 (1984).
- [WE] A. WHITE, Graphs, groups and surfaces, North-Holland, Amsterdam, 1984.