```
Osman Emre Bilici
2171353
1)
a)
Variables V = \{111,213,223,315,331,351\}
Domain D = {A1,A2,B1,B2,B3,C} where A, B, C refers to 9.30,13.30, 16.30
respectively and meaning of the number near the letter is class number. (i.e, A1 =
BMB1, 9.30)
Constraints = {
      111: {A1,A2,B1,B2,B3,C},
      (213,223): { (A1,B1), (A1,C), (A1,B2), (A1,B3), (A2,B1), (A2,B2), (A2,B3),
      (A2,C), (B1,C), (B2,C), (B3,C)},
      (223,213): { (A1,B1), (A1,C), (A1,B2), (A1,B3), (A2,B1), (A2,B2), (A2,B3),
      (A2,C), (B1,C), (B2,C), (B3,C)},
      (315,331,351): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) },
      (315,351,331): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) },
      (331,315,351): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) },
      (331,351,315): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) },
      (351,331,315): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) },
      (351,315,331): { (A1,B1,C), (A2,B1,C), (A1,B2,C), (A2,B2,C) }
      }
```

Each domain should be used only once. So I did not show that deleting that used nodes from other variables.

b)

	111	213	223	315	331	351	
initial domain	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1,B 2,B3,C	A1,A2,B1,B2, B3,C	
After 111 = B2	B2	A1,A2,B1, B3,C	A1,A2,B1, B3,C	A1,A2,B1, B3,C	A1,A2,B1,B 3,C	A1,A2,B1,B3, C	
After 213 = A1	B2	A1	B1,B3,C	A2,B1,B3, C	A2,B1,B3, C	A2,B1,B3,C	
After 223 = C	B2	A1	С	A2,B1,B3	A2,B1,B3	A2,B1,B3	
After 315 = A2	B2	A1	С	A2	B1,B3	B1,B3	
After 331 = B3	B2	A1	С	A2	B3	No possible values	

	111	213	223	315	331	351	
initial domain	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	A1,A2,B1, B2,B3,C	
After 111 = B2	B2	A1,A2,B1, B3,C	A1,A2,B1, B3,C	A1,A2,B1, B3,C	A1,A2,B1, B3,C	A1,A2,B1, B3,C	
After 213 = A1	B2	A1	B1,B3,C	A2,B1,B3, C	A2,B1,B3, C	A2,B1,B3, C	
After 223 = C	B2	A1	С	A2,B1,B3	A2,B1,B3	A2,B1,B3	
After 315 = A2	B2	A1	С	A2	B1,B3	B1,B3	
	B2	A1	С	A2	B1,B3	B1,B3	
	B2	A1	С	A2	No possible values	B1,B3	

After assigned 111 = B2, all other variables are consistent. (They lose value B2, so they are checked.)

After assigned 213 = A1, 223 \rightarrow 213 and 213 \rightarrow 223 are consistent after deleting A1 from 223. Others are also consistent.

After assigned 223 = C, $213 \rightarrow 223$ is consistent. But all courses with grade 3, lose value C and they should be checked. For every value of 315, 331,351, there are some allowed values on 315, 331, 351. So they are consistent.

After assigned 315 = A2, 331 \rightarrow 315 is consistent. 315 \rightarrow 331 is consistent. 315 \rightarrow 351 is consistent. 351 \rightarrow 315 is consistent. 331 \rightarrow 351 is not consistent. Removing bad values B1 and B3. There are no possible values.

2)

This is my tracking:

Node D : $\alpha = 5$, $\beta = \infty$

Node B : $\beta = 5$

Node E: $\alpha = 6$, $\beta = 5$ Since $\alpha \ge \beta$, cut off \rightarrow 10 is never looked.

Node A : $\alpha = 5$

Node C: $\alpha = 5$, $\beta = \infty$

Node F : $\alpha = 5$, $\beta = \infty$ $\alpha = \max(2,5)$

Node C : α = 5, β = 2 β = min(∞ ,2) where 2 is best value of F.

 $\alpha \ge \beta$, cut off \rightarrow Node G is never looked.

These are the final values:

Node A : $\alpha = 5$, value = 5

Node B: $\beta = 5$, value = 5

Node C: $\alpha = 5$, $\beta = 2$, value = 2

Node D : $\alpha = 5$, $\beta = \infty$, value = 5

Node E: α = 6, β = 5, value = 6

Node F : $\alpha = 5$, $\beta = \infty$, value = 2

3.a)

This table shows the premises count. Whenever the premises of rule satisfied, count is decreased. At the end, premises of $K \Rightarrow L$ is zero and agenda is empty. So it is proved by forward chaining.

K⇒L	1	1	1	1	1	1	1	1	1	1	1	0	0
I∧J⇒K	2	2	2	2	2	2	2	2	2	1	0	0	0
$G \land H \Rightarrow I$	2	2	2	2	2	2	2	1	0	0	0	0	0
$H \land D \Rightarrow J$	2	2	2	2	1	1	1	0	0	0	0	0	0
$E \wedge H \Rightarrow G$	2	2	2	2	2	1	1	0	0	0	0	0	0
$E \land F \Rightarrow H$	2	2	2	2	2	1	0	0	0	0	0	0	0
$G \land A \Rightarrow E$	2	1	1	1	1	1	1	1	1	1	1	1	1
$A \land B \Rightarrow E$	2	1	0	0	0	0	0	0	0	0	0	0	0
$B \land C \Rightarrow F$	2	2	1	0	0	0	0	0	0	0	0	0	0
А	0	0	0	0	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0	0	0	0	0	0
Agenda	A,B,C,D	B,C,D	C,D,E	D,E,F	E,F	F	Н	G,J	J,l	I	K	L	

b)

I show my work by tracking the selected nodes.

- 1. K ⇒ L
- 2. $I \wedge J \Rightarrow K$
- 3. $G \land H \Rightarrow I$
- 4. $E \land H \Rightarrow G$
- 5. $G \land A \Rightarrow E$ this is not suitable since one of the premises is not satisfied yet.
- 6. $\mathbf{A} \wedge \mathbf{B} \Rightarrow \mathbf{E}$ A and B satisfied. So E is satisfied.
- 7. $E \land F \Rightarrow H$
- 8. $\mathbf{B} \wedge \mathbf{C} \Rightarrow \mathbf{F}$ B and C satisfied. So F is satisfied.
- 9. $\mathbf{E} \wedge \mathbf{F} \Rightarrow \mathbf{H}$ E and F satisfied. So H is satisfied.
- 10. $\mathbf{E} \wedge \mathbf{H} \Rightarrow \mathbf{G}$ E and H satisfied. So G is satisfied.
- 11. **G** \wedge **H** \Rightarrow **I** G and H satisfied. So I is satisfied.
- 12. $\mathbf{H} \wedge \mathbf{D} \Rightarrow \mathbf{J}$ H and D satisfied. So J is satisfied.
- 13. $I \land J \Rightarrow K$ I and J satisfied. So K is satisfied.
- 14. **K** ⇒ **L** K is satisfied. So L satisfied.