- _______________ 다음에 주어진 벡터장 \mathbf{F} 의 발산(divergence) $\nabla \cdot \mathbf{F}$ 와 회전(curl) $\nabla \times \mathbf{F}$ 의 식을 각각 구하시오.
 - (a) $\mathbf{F}(x, y, z) = (xz, xy, yz)$
 - (b) $\mathbf{F}(x, y, z) = (y^2 + z^2, x^2 + z^2, x^2 + y^2)$
 - (b) $\mathbf{F}(x, y, z) = (xy^2z^3, e^{yz}, \sin(xyz))$
 - (c) $\mathbf{F}(x, y, z) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right) \quad ((x, y) \neq (0, 0))$
 - ${f 2}$ 삼변수 실함수 f가 C^2 이면 $\nabla imes \nabla f = (0,0,0)$ 임을 보이시오.
 - **3** 벡터장 $\mathbf{F} = (f_1, f_2, f_3)$ 이 C^2 벡터장이면 $\nabla \cdot (\nabla \times \mathbf{F}) =$ 임을 보이시오.