

| 0                                | 0                                                                                                    | 0                                                                                                | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
|----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| 0                                | 0                                                                                                    | 0                                                                                                | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| 0                                | 0                                                                                                    | 0                                                                                                | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| 0                                | 0                                                                                                    | 0                                                                                                | $-k^2 r_1$                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| $\frac{1}{3}\bar{l}\sqrt{2}kt_2$ | <i>ikt</i> 2<br>3                                                                                    | $\frac{k^2 t_2}{3}$                                                                              | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| $\frac{\sqrt{2} t_2}{3}$         | <del>t</del> 2<br>3                                                                                  | $-\frac{1}{3}\bar{l}kt_2$                                                                        | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| $\frac{2t_2}{3}$                 | $\frac{\sqrt{2} t_2}{3}$                                                                             | - <u>1</u> i                                                                                     | 0                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                           | 0                      |
| $\omega_1^{\#1} + ^{lphaeta}$    | $\omega_1^{\#2} + ^{lphaeta}$                                                                        | $f_{1}^{#1} + \alpha \beta$                                                                      | $\omega_{1}^{\#1} +^{\alpha}$                                                                                                                                                                                                                                         | $\omega_1^{\#2} \dagger^{lpha}$                                                                                                                                                                                                                                                                                                                                                 | $f_{1}^{#1} \dagger^{lpha}$ | $f_1^{\#2} +^{\alpha}$ |
|                                  | $+\alpha \beta$ $\frac{2t_2}{3}$ $\frac{\sqrt{2}t_2}{3}$ $\frac{1}{3}$ $i$ $\sqrt{2}$ $kt_2$ $0$ $0$ | $+\alpha\beta$ $\frac{2t_2}{3}$ $\frac{\sqrt{2}t_2}{3}$ $\frac{1}{3}\bar{l}\sqrt{2}kt_2$ 0 0 0 0 | $+\alpha\beta$ $\frac{2t_2}{3}$ $\frac{\sqrt{2}t_2}{3}$ $\frac{1}{3}i\sqrt{2}kt_2$ 0 0 0 0 0 $+\alpha\beta$ $\frac{\sqrt{2}t_2}{3}$ $\frac{t_2}{3}$ $\frac{ikt_2}{3}$ 0 0 0 0 $+\alpha\beta$ $\frac{1}{3}i\sqrt{2}kt_2$ $\frac{1}{3}ikt_2$ $\frac{k^2t_2}{3}$ 0 0 0 0 | $ \begin{vmatrix} \alpha \beta & \frac{2t_2}{3} & \frac{\sqrt{2} t_2}{3} & \frac{1}{3} i \sqrt{2} k t_2 & 0 & 0 & 0 \\ +\alpha \beta & \frac{\sqrt{2} t_2}{3} & \frac{t_2}{3} & \frac{i k t_2}{3} & 0 & 0 & 0 \\ +\alpha \beta & -\frac{1}{3} i \sqrt{2} k t_2 & -\frac{1}{3} i k t_2 & \frac{k^2 t_2}{3} & 0 & 0 & 0 \\ +\alpha & 0 & 0 & 0 & -k^2 r_1 & 0 & 0 \end{vmatrix} $ |                             |                        |

| $\tau_{1}^{\#2}$                   | 0                                          | 0                                   | 0                                   | 0                             | 0                             | 0                           | 0                         |
|------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|-------------------------------|-----------------------------|---------------------------|
| $\tau_{1}^{\#1}{}_{\alpha}$        | 0                                          | 0                                   | 0                                   | 0                             | 0                             | 0                           | 0                         |
| $\sigma_{1}^{\#2}{}_{lpha}$        | 0                                          | 0                                   | 0                                   | 0                             | 0                             | 0                           | 0                         |
| $\sigma_{1}^{\#1}{}_{lpha}$        | 0                                          | 0                                   | 0                                   | $-\frac{1}{k^2 r_1}$          | 0                             | 0                           | 0                         |
| $\tau_1^{\#1}{}_+\alpha\beta$      | $\frac{3  i  \sqrt{2}  k}{(3+k^2)^2  t_2}$ | $\frac{3ik}{(3+k^2)^2t_2}$          | $\frac{3k^2}{(3+k^2)^2t_2}$         | 0                             | 0                             | 0                           | 0                         |
| $\sigma_1^{\#2}$                   | $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$           | $\frac{3}{(3+k^2)^2 t_2}$           | $-\frac{3ik}{(3+k^2)^2t_2}$         | 0                             | 0                             | 0                           | 0                         |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$ | $\frac{6}{(3+k^2)^2 t_2}$                  | $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$    | $-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$ | 0                             | 0                             | 0                           | 0                         |
|                                    | $\sigma_{1}^{\#1} + \alpha^{eta}$          | $\sigma_{1}^{\#2} + \alpha^{\beta}$ | $\tau_{1}^{\#1} + \alpha^{\beta}$   | $\sigma_{1}^{\#1} +^{\alpha}$ | $\sigma_{1}^{\#2} +^{\alpha}$ | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_1^{\#2} +^{\alpha}$ |

| Source constraints                                                            |    |  |  |  |
|-------------------------------------------------------------------------------|----|--|--|--|
| SO(3) irreps                                                                  | #  |  |  |  |
| $\tau_{0+}^{\#2} == 0$                                                        | 1  |  |  |  |
| $\tau_{0+}^{\#1} == 0$                                                        | 1  |  |  |  |
| $\sigma_{0^+}^{\#1} == 0$                                                     | 1  |  |  |  |
| $\tau_{1}^{\#2\alpha} == 0$                                                   | 3  |  |  |  |
| $\tau_{1}^{\#1\alpha} == 0$                                                   | 3  |  |  |  |
| $\sigma_1^{\#2\alpha} == 0$                                                   | 3  |  |  |  |
| $\tau_{1+}^{\#1\alpha\beta} + \bar{\imath}k\sigma_{1+}^{\#1\alpha\beta} == 0$ | 3  |  |  |  |
| $\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$                 | 3  |  |  |  |
| $\tau_{2+}^{\#1\alpha\beta} == 0$                                             | 5  |  |  |  |
| $\sigma_{2^{+}}^{\#1\alpha\beta} == 0$                                        | 5  |  |  |  |
| Total #:                                                                      | 28 |  |  |  |



|                                        | $\sigma_{2^{+}\alpha\beta}^{\#1}$ | $	au_2^{\#1}{}_{lphaeta}$ | $\sigma_{2-\alpha\beta\chi}^{\#1}$ |
|----------------------------------------|-----------------------------------|---------------------------|------------------------------------|
| $\sigma_{2}^{\#1}\dagger^{lphaeta}$    | 0                                 | 0                         | 0                                  |
| $	au_{2}^{\#1} \dagger^{lphaeta}$      | 0                                 | 0                         | 0                                  |
| $\sigma_2^{\#1} \dagger^{lphaeta\chi}$ | 0                                 | 0                         | $\frac{1}{k^2 r_1}$                |
|                                        |                                   |                           |                                    |

| $\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2}  \omega_{0^{-}}^{\#1}$ |   |   |   |                 |  |  |  |
|------------------------------------------------------------------------------|---|---|---|-----------------|--|--|--|
| $\omega_{0^+}^{\#1}\dagger$                                                  | 0 | 0 | 0 | 0               |  |  |  |
| $f_{0^{+}}^{#1}\dagger$                                                      | 0 | 0 | 0 | 0               |  |  |  |
| $f_{0}^{#2}$ †                                                               | 0 | 0 | 0 | 0               |  |  |  |
| $\omega_0^{\#1}$ †                                                           | 0 | 0 | 0 | $k^2 r_2 + t_2$ |  |  |  |
|                                                                              |   |   |   |                 |  |  |  |

| _                           | $\sigma_{0^{+}}^{#1}$ | $\tau_{0}^{\#1}$ | $	au_{0}^{\#2}$ | $\sigma_0^{\#1}$          |
|-----------------------------|-----------------------|------------------|-----------------|---------------------------|
| $\sigma_{0^+}^{\#1}\dagger$ | 0                     | 0                | 0               | 0                         |
| $\tau_{0^{+}}^{\#1}$ †      | 0                     | 0                | 0               | 0                         |
| $	au_{0^{+}}^{\#2} \dagger$ | 0                     | 0                | 0               | 0                         |
| $\sigma_0^{\sharp 1}$ †     | 0                     | 0                | 0               | $\frac{1}{k^2 r_2 + t_2}$ |



 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& t_2 > 0}$ 

(No massless particles)