SÃO PAULO TECH SCHOOL CIÊNCIA DA COMPUTAÇÃO – 1CCOA

AMANDA OLIVEIRA DA SILVA – 04251104

ANA LUIZA SANTOS ROBETO – 04251032

EDUARDO NUNES DE LIMA – 04251108

LUCAS PEREIRA AMORIM SANTOS – 04251058

NICOLAS BARBOSA PEREIRA – 04251009

SAMUEL ANTUNES SANTOS – 04251054

GRUPO 11

MONITORAMENTO DE LUMINOSIDADE EM ESTUFAS DE MORANGO NO RIO GRANDE DO SUL

SÃO PAULO

2025

AMANDA OLIVEIRA DA SILVA - 04251104

ANA LUIZA SANTOS ROBETO - 04251032

EDUARDO NUNES DE LIMA - 04251108

LUCAS PEREIRA AMORIM SANTOS - 04251058

NICOLAS BARBOSA PEREIRA - 04251009

SAMUEL ANTUNES SANTOS – 04251054

GRUPO 11

MONITORAMENTO DE LUMINOSIDADE EM ESTUFAS DE MORANGO NO RIO GRANDE DO SUL

[(Monitoramento de luminosidade em estufas de morango no Rio Grande do Sul)] apresentado ao curso de CCO1A, como requisitos para obtenção de conclusão no progresso de aula das atividades valendo notas e pontos.

São Paulo

2025

SUMÁRIO

1.	Contexto	5
2.	Objetivo	7
3.	Justificativa	8
4.	Escopo do projeto	9
4.	1. Premissas	9
4.2	2. Restrições e limitações	9
5.	Entregáveis / Requisitos	10
5.	1. Sistema de alertas	10
6.	Macro cronograma	11
7.	Possíveis riscos	12
8.	Planilha de risco	13
9.	Diagrama de visão de negócio	14
10.	Diagrama de solução	15
11.	Metodologia usada	16
12.	Suporte ao usuário	17
13.	Banco de dados	18
14.	Apêndices	19
14	1.1. Apêndice A	19
15.	Referências	20

LISTA DE FIGURAS

Figura 1: UniAnchieta - Engenho.	5
Figura 2: Demonstração do Arduino, imagem criada pelos desenvolvedore	s do
projeto Lux Berry	7
Figura 7. Planilha de Risco do Projeto, imagem criada pelos desenvolvedo	res
do projeto Lux Berry	13
Figura 5: Demonstração do diagrama de negócios, imagem criada pelos	
desenvolvedores do projeto Lux Berry	14
Figura 6: Diagrama de Solução do Projeto, imagem criada pelos	
desenvolvedores do projeto Lux Berry	15
Figura 3: Formulário disponível no JIRA	17
Figura 4: Modelagem lógica do projeto Luxberry.	18
Figura 8: fluxograma de suporte ao usuário	 19

1. CONTEXTO

O cultivo de morangos está em expansão no Brasil e no mundo. A fruta avançou na produção em termos globais: de 2011 para 2021, o total de hectares cultivados no mundo subiu 20%, enquanto a produção avançou 44%, conforme dados mais recentes da FAO/ONU (Organização das Nações Unidas para Alimentação e Agricultura).

O Brasil é o maior produtor de morango da América Latina, com 165 mil toneladas/ano (EMBRAPA, 2020), cultivadas em 4.500 hectares. Minas Gerais lidera a produção nacional (51%), seguido por Rio Grande do Sul (13%) e Paraná (13%):

Estado	Área (ha)	Produção (ton)	Produtividade (ton/ha)
MG	2.100	84.000	41
PR	650	21.450	30
RS	518	21.763	42
SP	425	13.801	32
ES	247	8.510	33
SC	225	9.900	20
DF	200	7.400	40
BA	100	2.700	30
RJ	35	980	60
Total	4.500	165.440	•

Figura 1: UniAnchieta - Engenho.

O Rio Grande do Sul responde por 13% da produção nacional (2º lugar), destacando-se pela qualidade superior da fruta, que movimenta cerca de R\$ 375 milhões/ano no estado. A agricultura familiar é a base do setor: 70% da produção nacional vem de pequenos produtores, para quem o morango representa 80% da renda anual (SEBRAE/RS).

Para mitigar riscos climáticos, o cultivo em estufas se expandiu, elevando a produtividade do RS para 42 toneladas/hectare (acima da média nacional). Porém, a luminosidade inconsistente nessas estruturas tornou-se um problema crítico:

- Excesso de luz (>1.500 luxes): Queima folhas/frutos e aumenta estresse hídrico.
- Falta de luz (<800 luxes): Reduz fotossíntese em 40% (FAO), causando maturação irregular e estiolamento.

Isso resulta em perdas na safra que variam de produtor para produtor além de custos extras com energia e água. As mudanças climáticas e a sensibilidade de variedades modernas de morango agravam o cenário, exigindo soluções urgentes para manter a competitividade e sustentabilidade do setor.

2. OBJETIVO

Desenvolver, em um período de cinco meses, um sistema de monitoramento com sensores de luz, capaz de monitorar em tempo real a luminosidade em estufas de morango no Rio Grande do Sul. O sistema fornecerá dashboards analíticos, permitindo a visualização detalhada dos dados, além de gerar alertas automáticos e possibilitar a comparação de informações históricas para otimizar o cultivo.

Figura 2: Demonstração do Arduino, imagem criada pelos desenvolvedores do projeto Lux Berry

3. JUSTIFICATIVA

O monitoramento preciso da luminosidade pode reduzir perdas em até **50%**, otimizando custos com iluminação e irrigação. Além disso, melhora a qualidade dos frutos, aumentando sua competitividade e podendo elevar seu valor em até **50%**.

- Menos desperdício: Controle eficiente da luz;
- Mais produtividade: Melhor uso dos recursos;
- Sustentabilidade: Economia de energia e água;
- Qualidade superior: Frutos mais valorizados no mercado.

4. ESCOPO DO PROJETO

4.1. PREMISSAS

- A estufa possui energia elétrica e tomadas 110v para alimentar o Arduino e os sensores de luminosidade;
- A estufa possui um computador para rodar o sistema de monitoramento;
- A estufa possui conexão com a internet estável e de pelo menos 10 MB que funcione ininterruptamente;
- O ambiente da estufa é adequado para a instalação do Arduino e dos sensores, sem riscos de danos por água;
- Os produtores estão dispostos a utilizar o sistema e seguir as recomendações geradas a partir dos dados coletados.

4.2. RESTRIÇÕES E LIMITAÇÕES

- O projeto será desenvolvido com foco no monitoramento de luminosidade;
- O sistema será projetado para funcionar em estufas fechadas de vidro ou lona de pequeno e médio porte (30m²), podendo necessitar de ajustes para ser aplicado em grandes escalas;
- O projeto terá duração de 5 meses, com entregas divididas em 3 sprints, limitando o escopo de desenvolvimento e testes;
- O sistema será desenvolvido para operar em condições climáticas específicas do Rio Grande do Sul;
- O sistema não inclui a automação completa da estufa (como controle de irrigação ou temperatura).

5. ENTREGÁVEIS / REQUISITOS

Para a realização do projeto, será garantido que os seguintes resultados sejam entregues:

- Site institucional que possui:
 - > Tela de login;
 - > Tela de cadastro;
 - Uma calculadora pertinente ao contexto do trabalho;
 - Tela para análise dos dados coletados(dashboard);
- Arduino montado e programado para obter os dados necessários;
- Banco de dados preparado para receber os dados obtidos pelo Arduino;
- Modelagem do banco de dados.

Partindo para os requisitos de desenvolvimento, o projeto precisa contar com estudantes de programação da faculdade SPTECH, todos possuindo conhecimento em:

- Front-end.
- Back-end;
- Banco de dados;
- Virtualização e Sistema Operacional;
- Arduino e sensor de luminosidade;
- Documentação (Metodologia Scrum).

5.1. SISTEMA DE ALERTAS

O sistema dispara alertas automáticos quando a luminosidade ultrapassa ou fica abaixo dos níveis ideais – entre 800 lux e 1500 lux.

Os alertas são exibidos no dashboard e enviados por meio de um pop-up nas páginas relacionadas da dashboard, onde o usuário passará a maior parte do tempo.

Cada alerta vem acompanhado de uma indicação de qual estufa e qual sensor está fora da faixa, o tipo do alerta (baixa ou alta luminosidade) e a data e hora que foi emitido.

6. MACRO CRONOGRAMA

- Sprint 1: Iniciar a documentação do projeto, realizar a tela de simulador financeiro, começar a usar uma ferramenta de gestão de projeto, criação de tabelas do banco de dados do projeto, apresentar o Arduino com o sensor funcionando, realizar os protótipos das telas no site e mostrar uma máquina virtual (VM) de forma local.
- Sprint 2: Continuação da documentação do projeto; codificação das telas prototipadas anteriormente, de forma estática; utilização da biblioteca Chart.JS no projeto; integração da API DatAquino; inserção do banco de dados na máquina virtual com o sistema operacional Lubuntu.
- Sprint 3: Finalização da documentação do projeto, em conjunto com fluxogramas de suporte e manuais de instalação; transformação do site estático para dinâmico; integração com a API Web-Data-Vis para inserção e requisição de dados; modelagem final do banco de dados; inserção do site pronto na máquina virtual configurada com o sistema operacional Lubuntu; sistema clienteservidor operando adequadamente.

7. POSSÍVEIS RISCOS

- A saída de um (ou mais) integrante(s) do projeto.
- A falta de internet e/ou hardwares que são necessários para a realização do projeto (por parte de um ou mais integrantes).

8. PLANILHA DE RISCO

A planilha apresentada abaixo trata da gestão de riscos de um projeto de monitoramento de luminosidade em estufas no Rio Grande do Sul. Ela identifica possíveis problemas que podem comprometer o andamento do projeto, como falhas de comunicação, falta de comprometimento da equipe, problemas técnicos com o Arduino e até questões externas, como falhas nas máquinas.

Cada risco foi avaliado segundo sua probabilidade de ocorrência (P) e seu impacto (I), resultando em um Fator de Risco (P x I). Os riscos foram então classificados em três níveis: baixo (verde), médio (amarelo) e alto (vermelho), conforme a matriz de risco exibida ao lado da tabela.

ID	Descrição do projeto	Probabilidade (P) 1 - Baixa 2 - Média 3 - Alta	Impacto (I) 1 - Baixo 2 - Médio 3 - Alto	Fator de Risco (P) x (I)	Ação - Evitar - Mitigar	Como?
1	Falta em reuniões.	1	1	1	Mitigar	Reuniões serão realizadas após as aulas e as informações são documentadas na ata.
2	Um integrante sair do grupo;	1	3	3	Mitigar	Todos sabem de todos os conteúdos
3	Dificuldade na comunicação entre o grupo, em reuniões e conversas;	3	3	9	Evitar	Todos devem dar sua opinião sobre os assuntos tratados e protótipos definidos
4	Todos não saberem o projeto, desde o início e o fim;	2	3	6	Evitar	Toda a documentação estará nas ferramentas de gestão.
5	Individualismo	2	3	6	Evitar	Tentar realizar tarefas em duplas/trios.
6	Falta de organização no projeto, no GitHub, no Trello e entre outras ferramentas	1	2	2	Mitigar	Todo progresso com relação aos entregaveis deve ser atualizado nas ferramentas de gestão assim como o upload da ata.
7	Problemas no Arduino.	2	3	6	Mitigar	Testar a conexão do Arduino sempre que for utilizá-lo e caso dê algum defeito, pedir um emprestado para um colega/professor.
8	Falha na apresentação.	2	3	6	Mitigar	Todos devem ensaiar todas as partes da apresentação para que caso, aconteça possamos ajudar e dar continuidade no que está sendo apresentado.
9	Falhas externas e falhas nas máquinas.	1	3	3	Evitar	Ter mais de um backup para caso tudo der errado.
10	Falta de comprometimento em seguir as regras, estabelecidas dentro do grupo.	2	2	4	Mitigar	Lembrar os colegas de grupo das regras caso algum esteja sendo descumprimda ou não utlizada

Componentes	_
Amanda Oliveira	_
Ana Luiza	
Eduardo Nunes	Ξ
Lucas Amorim	Ξ
Nicolas Pereira	
Samuel Antunes	Ī

Figura 3. Planilha de Risco do Projeto, imagem criada pelos desenvolvedores do projeto Lux Berry.

9. DIAGRAMA DE VISÃO DE NEGÓCIO

Figura 4: Demonstração do diagrama de negócios, imagem criada pelos desenvolvedores do projeto Lux Berry.

10. DIAGRAMA DE SOLUÇÃO

A imagem abaixo demonstra a arquitetura da solução desenvolvida para o projeto de monitoramento da empresa Luxberry. O sistema é dividido em três principais faces: a estufa (Máquina onde está conectada o sensor), o cliente (usuário) e servidor (Máquina da empresa com Lubuntu, My SQL e site).

Figura 5: Diagrama de Solução do Projeto, imagem criada pelos desenvolvedores do projeto Lux Berry.

11.METODOLOGIA USADA

Para este projeto foi utilizada a metologia SCRUM. A estrutura de entregas foi definida para ocorrer em um prazo semanal, realizando, nas segundas e quintas, uma reunião com os integrantes do grupo para melhor definição do que será realizado até a próxima entrega, com acompanhamento do projeto via GitHub e Trello.

A implementação da metodologia escolhida facilitou a organização do projeto e proporcionou a constante evolução do projeto para os desenvolvedores, auxiliando-os na visualização das tasks realizadas ou não. Além de facilitar o acompanhamento do projeto por parte dos clientes, que receberão resultados mensuráveis semanalmente.

12. SUPORTE AO USUÁRIO

O projeto conta com uma estrutura de suporte técnico para auxiliar o usuário da aplicação em caso de incidentes, tais como: sensores não detectarem a luz, dashboard não mostrar dados, login não funcionar, entre outros problemas. Para auxiliar na resolução de possíveis falhas, o usuário pode consultar o manual de instalação do sensor, caso o usuário tenha alguma dúvida.

Quando o usuário identificar qualquer tipo de incidente que necessite de suporte, ele poderá abrir um chamado diretamente no JIRA. Através da dashboard da aplicação, haverá um link FQA onde o usuário será redirecionado para preencher um formulário específico com as informações necessárias. Com o envio desse formulário, um tíquete será automaticamente criado no JIRA, onde nossos funcionários capacitados poderão ajudá-los da melhor maneira.

Figura 6: Formulário disponível no JIRA

13. BANCO DE DADOS

A imagem abaixo representa a modelagem lógica do banco de dados do projeto, feita no MySQL Workbench:

Figura 7: Modelagem lógica do projeto Luxberry.

O grupo empresa, telefone, endereço e funcionário representam a parte da empresa cadastrada. Já as tabelas estufa, sensoresLum, dadosSensor e alerta são responsáveis pelo monitoramento da luminosidade e relação com as estufas.

14. APÊNDICES

14.1. APÊNDICE A

Figura 8: fluxograma de suporte ao usuário

15. REFERÊNCIAS

EMBRAPA. ALICE: IDENTIFICADOR INVÁLIDO. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1067902 Acesso em: 22 fev. 2025.

FOLHA DO MATE. VENÂNCIO AIRES PRODUZ 45 TONELADAS DE MORANGO POR ANO. Disponível em: https://www.agrolink.com.br/noticias/boa-luminosidade-favorece-o-desenvolvimento-de-morango 493441.html Acesso em: 22 fev. 2025.

HORTIFRUTI/CEPEA: MORANGO EM NÚMEROS - HF BRASIL. Disponível em: https://www.hfbrasil.org.br/br/hortifruti-cepea-morango-em-numeros.aspx Acesso em: 22 fev. 2025.

PRODUÇÃO DE MORANGO REGISTRA VARIAÇÃO NOS PREÇOS. Disponível em: https://www.agrolink.com.br/noticias/producao-de-morango-registra-variacao-nos-precos 494913.html Acesso em: 22 fev. 2025.