

ORIENTABILIDAD DE SUPERFICIES II

Alan Reyes-Figueroa Geometría Diferencial

(AULA 18) 14.MARZO.2024

Teorema

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Entonces, S es orientable \iff existe una aplicación continua $N: S \to \mathbb{R}^3$ tal que $N(\mathbf{p}) \in T_{\mathbf{p}}S^{\perp}$ y $||N(\mathbf{p})|| = 1$, $\forall \mathbf{p} \in S$ (esto es, S admite un campo normal unitario continuo N).

<u>Prueba</u>:

 $[\Rightarrow]$. Suponga que S es orientable. Entonces existe un atlas coherente $\mathcal{A} = \{(\mathbf{x}_i, U_i)\}_{i \in I}$ con $\mathbf{x}_i : U_i \subseteq \mathbb{R}^2 \to V_i \cap S$, parametrizaciones coherentes. Además, $S = \bigcup_i V_i = \bigcup_i \mathbf{x}_i(U_i)$. Dado $\mathbf{p} \in S$, existe $j \in I$ tal que $\mathbf{p} \in V_i$. Definimos entonces

$$N(\mathbf{p}) = \frac{\mathbf{x}_{ju}(\mathbf{q}) \times \mathbf{x}_{jv}(\mathbf{q})}{||\mathbf{x}_{iu}(\mathbf{q}) \times \mathbf{x}_{iv}(\mathbf{q})||}, \quad \text{donde } \mathbf{q} = \mathbf{x}_j^{-1}(\mathbf{p}) \in U_j.$$

Si existe algún otro índice $k \in I$ tal que $\mathbf{p} \in V_k = \mathbf{x}_k(U_k)$, entonces como \mathbf{x}_j y \mathbf{x}_k son coherentes, se tiene que $\{\mathbf{x}_{ju}, \mathbf{x}_{jv}\}$ y $\{\mathbf{x}_{ku}, \mathbf{x}_{kv}\}$ son bases de $T_{\mathbf{p}}S$, ambas con la misma orientación (¿por qué?).

Luego, $\mathbf{x}_{ku} imes \mathbf{x}_{kv} = \lambda (\mathbf{x}_{ju} imes \mathbf{x}_{jv})$, con $\lambda >$ 0, y se tiene que

$$\frac{\boldsymbol{x}_{ku}(\boldsymbol{q})\times\boldsymbol{x}_{kv}(\boldsymbol{q})}{||\boldsymbol{x}_{ku}(\boldsymbol{q})\times\boldsymbol{x}_{kv}(\boldsymbol{q})||} = \frac{\lambda(\boldsymbol{x}_{ju}(\boldsymbol{q})\times\boldsymbol{x}_{jv}(\boldsymbol{q}))}{||\lambda(\boldsymbol{x}_{ju}(\boldsymbol{q})\times\boldsymbol{x}_{jv}(\boldsymbol{q}))||} = \frac{\boldsymbol{x}_{ju}(\boldsymbol{q})\times\boldsymbol{x}_{jv}(\boldsymbol{q})}{||\boldsymbol{x}_{ju}(\boldsymbol{q})\times\boldsymbol{x}_{jv}(\boldsymbol{q})||}.$$

de modo que el vector normal $N(\mathbf{p})$ está bien definido e independe de la carta local \mathbf{x}_i en el atlas coherente.

Además, $N(\mathbf{p})$ es una función continua, pues en cartas locales, depende de cocientes y productos cruz de funciones diferenciables.

 $[\Leftarrow]$. Suponga ahora que existe un campo normal unitario continuo $N:S\to\mathbb{R}^3$. Sea $\mathbf{x}:U\subseteq\mathbb{R}^2\to V\cap S$, con U conexo.

Definamos la función $f:U o\mathbb{R}$ por

$$f(\mathbf{q}) = \left\langle N(\mathbf{x}(\mathbf{q})), \frac{\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})}{||\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})||} \right\rangle.$$

Entonces,
$$N(\mathbf{x}(\mathbf{q})) = f(\mathbf{q}) \cdot \frac{\mathbf{x}_u \times \mathbf{x}_v}{||\mathbf{x}_u \times \mathbf{x}_v||}(\mathbf{q})$$
, con $f(\mathbf{q}) = 1$ ó $f(\mathbf{q}) = -1$.

Como f es continua en U y U es conexo, entonces $f \equiv 1$ ó $f \equiv -1$ en U.

Si $f \equiv -1$, redefinimos la parametrización \mathbf{x} por $\widetilde{\mathbf{x}}(u,v) = \mathbf{x}(v,u)$ (esto es, $\widetilde{\mathbf{x}} = \mathbf{x} \circ r$, donde r es la reflexión $(u,v) \to (v,u)$), en el conjunto $\widetilde{U} = \{(v,u) : (u,v) \in U\}$. Observe que $\widetilde{\mathbf{x}}(\widetilde{U}) = \mathbf{x}(U) = V \cap S$ y $f(\widetilde{U}) \equiv 1$.

Sea \mathcal{A} la colección

$$\mathcal{A} = \{(\mathbf{x}, U): \ U \subseteq \mathbb{R}^2 \ \text{conexo}, \mathbf{x}: U \to V \cap S, \ y \ \textit{N}(\mathbf{x}(\mathbf{q})) = \ \tfrac{\mathbf{x}_u \times \mathbf{x}_v}{||\mathbf{x}_u \times \mathbf{x}_v||}(\mathbf{q}), \ \forall \mathbf{q} \in U\}.$$

Para cualquier parametrización con dominio conexo U, se tiene que $(\mathbf{x}, u) \in \mathcal{A}$ ó $(\widetilde{\mathbf{x}}, \widetilde{U}) \in \mathcal{A}$.

Luego, como S es superficie, podemos cubrir S con cartas locales (\mathbf{x}, U) , donde, de ser necesario, restringimos los dominios U a abiertos conexos. En particular, $S = \bigcup_{\mathbf{x} \in \mathcal{A}} \mathbf{x}(U)$.

Sean $(\mathbf{x}_i, U_i), (\mathbf{x}_j, U_j) \in \mathcal{A}$. Mostramos que \mathbf{x}_i y \mathbf{x}_j son coherentes.

Si $\mathbf{x}_i(U_i) \cap \mathbf{x}_j(U_j) = \emptyset$, no hay nada que mostrar. Caso contrario, tome $\mathbf{p} \in \mathbf{x}_i(U_i) \cap \mathbf{x}_j(U_j)$, con $\mathbf{x}_i(\mathbf{q}_i) = \mathbf{p} = \mathbf{x}_j(\mathbf{q}_j)$. Como,

$$\frac{\mathbf{x}_{iu}(\mathbf{q}_i) \times \mathbf{x}_{iv}(\mathbf{q}_i)}{||\mathbf{x}_{iu}(\mathbf{q}_i) \times \mathbf{x}_{iv}(\mathbf{q}_i)||} = N(\mathbf{x}_i(\mathbf{q}_i)) = N(\mathbf{x}_j(\mathbf{q}_j)) = \frac{\mathbf{x}_{ju}(\mathbf{q}_j) \times \mathbf{x}_{jv}(\mathbf{q}_j)}{||\mathbf{x}_{ju}(\mathbf{q}_j) \times \mathbf{x}_{jv}(\mathbf{q}_j)||}.$$

Esto muestra que $\mathbf{x}_{iu} \times \mathbf{x}_{iv}$ y $\mathbf{x}_{ju} \times \mathbf{x}_{jv}$ tienen igual signo, de modo que las bases $\{\mathbf{x}_{iu}, \mathbf{x}_{iv}\}$ y $\{\mathbf{x}_{ju}, \mathbf{x}_{jv}\}$ tienen igual orientación \Rightarrow las cartas (\mathbf{x}_i, U_i) , (\mathbf{x}_j, U_j) son coherentes.

Esto muestra que ${\mathcal A}$ es un atlas coherente para $S\Rightarrow S$ es orientable. $_{\square}$

Corolario

Si la superficie $S \subseteq \mathbb{R}^3$ es la imagen inversa de un valor regular de una función diferenciable $f: U \subseteq \mathbb{R}^3 \to \mathbb{R}$, entonces S es orientable.

Prueba:

Sea $S = f^{-1}(a)$, a valor regular de f. Para $\mathbf{p} \in S$, consideremos $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ una parametrización de una vecindad $V \cap S$ de \mathbf{p} .

Tomemos una curva parametrizada dada por $\alpha: (-\varepsilon, \varepsilon) \to V \cap S$, tal que $\alpha(t) = (x(t), y(t), z(t))$, con $\alpha(0) = \mathbf{p}$. Entonces

$$f(\alpha(t)) = f(x(t), y(t), z(t)) = a$$
, para todo $t \in (-\varepsilon, \varepsilon)$.

Derivando la ecuación anterior en t = 0, obtenemos

$$D(f \circ \alpha)(0) = \nabla f(\mathbf{p}) \cdot \alpha'(0) = \frac{\partial f}{\partial x}(\mathbf{p})x'(0) + \frac{\partial f}{\partial y}(\mathbf{p})y'(0) + \frac{\partial f}{\partial z}(\mathbf{p})z'(0) = 0.$$

Luego, $\nabla f(\mathbf{p}) \cdot \alpha'(\mathbf{o}) = \mathbf{o}$. Como esto vale para toda curva parametrizada α en S pasando por \mathbf{p} , entonces $\nabla f(\mathbf{p})$ es normal a $T_{\mathbf{p}}S$. Como esto vale en todo punto $\mathbf{p} \in S$, entonces

$$N(\mathbf{p}) = rac{
abla f(\mathbf{p})}{||
abla f(\mathbf{p})||}$$

define un campo normal unitario continuo para S. Por el teorema anterior, S es orientable. \Box

Ejemplo 1: (Abiertos de \mathbb{R}^2)

Todo abierto $U \subseteq \mathbb{R}^2$ es orientable. Para ello, basta considerar el atlas $\mathcal{A} = \{(id, U)\}$, el cual es coherente ya que consiste de una sola carta local.

Ejemplo 2: (Grafos de funciones)

Todo gráfico de una función diferenciable $G_f = \{(u, v, f(u, v)) : (u, v) \in U \subseteq \mathbb{R}^2\}$ es una superficie orientable.

Podemos parametrizar G_f por $\mathbf{x}(u,v)=(u,v,f(u,v))$, y considerar el atlas coherente $\mathcal{A}=\{(\mathbf{x},U)\}.$

Ejemplo 3: (La esfera S²)

La esfera unitaria S^2 es orientable. Considere el campo normal $N:S^2 \to \mathbb{R}^3$ dado por

$$N(\mathbf{p}) = \mathbf{p}, \quad \forall \mathbf{p} \in S^2.$$

Este es un campo normal unitario diferenciable.

Ejemplo 4: (Preimagen de un valor regular)

Sea $f : \mathbb{R}^3 \to \mathbb{R}$ función diferenciable, a valor regular de f, y $S = f^{-1}(a)$. Entonces S es orientable. Basta ver que

$$N(\mathbf{p}) = rac{
abla f(\mathbf{p})}{||
abla f(\mathbf{p})||}$$

define un campo normal unitario continuo sobre S.

Propiedad

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Suponga que $S = \mathbf{x}_1(U_1) \cup \mathbf{x}_2(U_2)$, con $\mathbf{x}_1 : U_1 \to V_1$, $\mathbf{x}_2 : U_2 \to V_2$ parametrizaciones. En otras palabras, $\mathcal{A} = \{(\mathbf{x}_1, U_1), (\mathbf{x}_2, U_2)\}$ es un atlas para S.

Si $W = V_1 \cap V_2 = \mathbf{x}_1(U_1) \cap \mathbf{x}_2(U_2)$ es conexo, entonces S es orientable.

Prueba:

Como sólo hay dos cartas locales, con intersección conexa W, entonces hay dos posibilidades para todo punto $\mathbf{q} \in \mathbf{x}_{-1}(W)$:

$$\det D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q}) > O, \quad \acute{\mathsf{o}} \quad \det D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q}) < O.$$

Si det > 0, las cartas son coherentes. Caso contrario, podemos hacer la mudanza de parámetros $r:(u,v)\to (v.u)$, y redefinir la parametrización $\widetilde{\mathbf{x}}_1=\mathbf{x}_1\circ r$. Luego, det $D(\mathbf{x}_2^{-1}\circ\widetilde{\mathbf{x}}_1)(\mathbf{q})>0$.

<u>Ejemplo 5</u>: (La esfera S²) Consideramos la proyección estereográfica

Tenemos dos cartas locales para S^2 : $(\pi_N^{-1}, \mathbb{R}^2)$ y $(\pi_S^{-1}, \mathbb{R}^2)$, con

•
$$S^2 = \pi_N^{-1}(\mathbb{R}^2) \cup \pi_S^{-1}(\mathbb{R}^2)$$

•
$$W = \pi_N^{-1}(\mathbb{R}^2) \cap \pi_S^{-1}(\mathbb{R}^2) = S^2 - \{N, S\} \simeq S^1 \times (0, 1) \text{ es conexo.}$$

Por la propiedad anterior, S² es orientable.

Proposición

 $S \subseteq \mathbb{R}^3$ es no orientable \iff existen dos vecindades conexas parametrizadas $U_1, U_2 \subseteq \mathbb{R}^2$, con $\mathbf{x}_1 : U_1 \to V_1, \mathbf{x}_2 : U_2 \to V_2$ tales que la intersección $W = V_1 \cap V_2 \cap S$ tiene dos componentes conexas $W_1 \vee W_2$, con

$$\det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1) > O \ en \ W_1, \quad y \quad \det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1) < O \ en \ W_2.$$

Idea de prueba:

Las cartas (\mathbf{x}_1, U_1) y (\mathbf{x}_2, U_2) no son coherentes (sí lo son sobre W_1 ó W_2 por separado, pero no sobre toda la intersección W).

Cualquier intento de corregir la coherencia en W_2 (e.g. considerar la reflexión $(u, v) \rightarrow (v, u)$) automáticamente desarma la coherencia sobre W_1 .

Ejemplo 6: La banda de Möbius no es orientable.

Hn modelo nara la handa de Möhius

Usamos el modelo

$$S = M\ddot{o}bius = [0,5] \times (0,1)/\sim$$
, donde $(0,y) \sim (5,1-y)$.

Consideramos las cartas locales $\mathbf{x}_1: U_1 \to V_1$, $\mathbf{x}_2: U_2 \to V_2$, donde $U_1 = V_1 = (0,4) \times (0,1)$, $U_2 = (0,3) \times (0,1)$, $V_2 = ([0,1) \cup (3,5]) \times (0,1)$ y

$$\mathbf{x}_1(u,v) = (u,v), \quad \mathbf{x}_2(u,v) = \begin{cases} (u+3,v), & \text{si } 0 < u \leq 2; \\ (u-2,1-v), & \text{si } 2 \leq u < 3. \end{cases}$$

La intersección $W = V_1 \cap V_2$ tiene dos componentes conexas: $W_1 = (3,4) \times (0,1)$ y $W_2 = (0,1) \times (0,1)$.

Basta ver que

$$D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{p}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 en W_1 , $D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{p}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ en W_2 .