Data Science Survival Skills

Introduction WS 2023/2024

Who we are

What to expect

DSSS is hard work

Lectures: We explain how things work

Exercises: You experience how things

work

Homework: You get in touch with the content

Administration stuff

- Please subscribe to the **StudOn** course! (slides, exercises, homework...)
- Register for the exam on campo!
- Attendance in lecture and exercise is not mandatory, but strongly encouraged.
- Homework is not mandatory, but strongly encouraged.
 - → you get access to the solutions, but if you don't understand them, you should have asked in the exercise!
- Each successfully submitted and graded homework gives up to 1 bonus point

Lectures + Exercises

Lectures are Fridays 12-14

c.t.

Exercises are Wednesdays 16-18

c.t.

Homework is provided on Lecture Friday and due to the next Monday (10 days later)

Homework:

Task is given on a slide. Submission is due to the next Monday.

Please submit homework until Monday 23:59 PM to get potentially the bonus point

Content

Friday	Sat/Sun	Mon		Tue	Wednesday	Thu	Topic	
20/10/2023					25/10/2023			
Introduction					Soft exercise		What is Data Science?	
27/10/2023		29/10/2023			01/11/2023			
Lecture (Groh)		Voluntary homework			Online Exercise		What are computers?	
3/11/2023		5/11/2023			08/11/2023			
Lecture		Homework due from	27/10/2023		Exercise		Programming 1on1	
10/11/2023		12/11/2023			15/11/2023			
Lecture		Homework due from	3/11/2023		Exercise		What is actually data	
17/11/2023		19/11/2023			22/11/2023			
Lecture		Homework due from	10/11/2023		Exercise		Data exploration	
24/11/2023		26/11/2023			29/11/2023			
Lecture		Homework due from	17/11/2023		Exercise		Statistics	
1/12/2023		3/12/2023			6/12/2023			
Lecture		Homework due from	24/11/2023		Exercise		From baselines to data imputation	
8/12/2023		10/12/2023			13/12/2023			
Lecture		Homework due from	1/12/2023		Exercise		Machine Learning I	
15/12/2023		17/12/2023			20/12/2023			
Lecture		Homework due from	8/12/2023		Exercise		Machine Learning II	
22/12/2023		24/12/2023			27/12/2023			
Nothing		Nothing			Nothing			
29/12/2023		31/12/2023			3/1/2024		XMAS HOLIDAYS	
Nothing		Nothing			Nothing			
5/1/2024		7/1/2024			10/1/2024			
Nothing		Nothing			Nothing			
12/1/2024		14/1/2024			17/1/2024			
Lecture		Homework due from	15/12/2023		Exercise		How to process natural language	
19/1/2024		21/1/2024			24/1/2024			
Lecture		Homework due from	12/1/2024		Exercise		How to make code faster	
26/1/2024		28/1/2024			31/1/2024			
Lecture		Homework due from	19/1/2024		Exercise		Graphical User Interfaces	
2/2/2024		4/2/2024			7/2/2024			
Lecture		Homework due from	26/1/2024		Exercise		Deploying code	
9/2/2024			of semester					
Recap		Homework	due from 2/2	/2024				

This is the master slide!

Students

- We planned with ~ 20
- We have a room for ~ 50
- We have 135 registered students

Winter term 2022/2023: Registered ~ 120

We have another ~ 300 on the waiting list... 300 took the exam

Winter term 2023/2024:

Registered ~ 724

You are a lot - and we are not. Please be patient, as we need to handle all of you!

- Written Exam: 60 min
- Multiple choice + open questions (75:25)
- Content: Lectures + Exercises
- I am aiming for CONCEPTS and LOGICAL THINKING

Grade:

Bonus points

Written exam

Example: Oral exam 2,3 + 10 bonus points → 1,7 You need to pass the exam to receive bonus effect

0-5 bonus points:

6-9 bonus points:

10+ bonus point:

-0.0

-0.3

-0.7

Grades winter term (regular exam)

How does homework submission work?

A single pdf slide to be submitted

Homework: Task A, Task B

A passionate DSSS student

Upload in time to StudOn submission folder. Submission due Mondays 23:59 PM. 1 second too late is TOO LATE!

No late submissions accepted - no exceptions.

What to do when you have a (real!) problem

No E-Mails!

Please use the StudOn forum, such that anyone could answer!

Real (!) problems are:

- You have a question related to the lecture
 That you CANNOT FIND ANYWHERE ONLINE!!
- In your exam preparation you came across a problem re the content,
 That you CANNOT SOLVE USING THE LIBRARY or STACKOVERFLOW/GOOGLE.

And give us enough time, e.g. two days before the exam is not the ideal moment!

Expectations

Student expectations

Please get in touch with your fellow students and ask yourself the following questions:

- What do I want from the course?
- How can I achieve this?
- How can I actively contribute to the course?
- What do expect from lecturers?

5 minutes

My/our expectations

- Be at and on time for lectures
- Do the exercises/homework
- Ask questions

Use the course forum!

I will not answer E-mails when you can find the information online etc

Data Science

We live in a world of data

1900s

2020s

Why do we need "data science"?

Statistics

- Likelihood, Probabilities
- PDFs
- Descriptive statistics
- Explorative statistics

What we can't do with statistics alone:

- Machine Learning
- Working with unstructured data (Deep Learning)
- Complex time-series forecasting
- Clustering

A bit of history

Al Magazine Volume 17 Number 3 (1996) (© AAAI)

Articles

There is an urgent need for a new generation of computational theories and tools to assist humans in extracting useful information (knowledge) from the rapidly growing volumes of digital data.

From Data Mining to Knowledge Discovery in **Databases**

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth

From data mining to knowledge discovery in databases

U Fayyad, G Piatetsky-Shapiro, P Smyth Al magazine, 1996 - ojs.aaai.org

Abstract

Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular realworld applications, specific data-mining techniques, challenges involved in real-world

MEHR ANZEIGEN ~

Coining the word "data science"

International Statistical Review (2001), 69, 1, 21-26, Printed in Mexico

(3) International Statistical Institute

Data Science: an Action Plan for Expanding the Technical Areas of the Field of Statistics

William S. Cleveland -

Statistics Research, Bell Laboratories, 600 Mountain Avenue, Murray Hitt Ivsors-E-mail: wsc@research.bell-labs.com

Summary

An action plan to enlarge the technical areas of statistics focuses on the data analyst. The plan sets out six technical areas of work for a university department, and advocates a specific allocation of resources devoted to research in each area and to courses in each area. The value of technical work is judged by the extent to which it benefits the data analyst, either directly or indirectly. The plan is also applicable to government research labs and corporate research organizations.

Key words: Future; Applications; Computing; Methods; Models; Theory.

Why not using Data Mining (a common concept based around statistics) and Computer Science to take advantage of both

→ Data Science.

What changed?

Read only "I am online"

Only consuming

Wikipedia size and users

Update

English articles 6,730,059

Total wiki pages 59,193,160

Article percentage 11.37%

Average revisions 19.86

Total admins 881

Total users 46,321,402

UTC time: 16:06 on 2023-Oct-17

Read+Write "I am contributing"

- Social media
 - Myspace
 - Facebook
 - YouTube
- Communicate
- Spread information
- Wikipedia

Let's define the job of data science.

Tons of data, from shopping to trading, health-related information, email conversations, ...

Messy, unstructured, maybe totally irrelevant data

Taking messy data and creating/gaining insights

Takeaways, relevant variables, biomarkers, ...

How large is data?

BIG DATA

Value	Metric		Value		IEC	Memory		
1000	kΒ	kilobyte	1024	KiB	kibibyte	ΚB	kilobyte	
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	MB	megabyte	
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte	
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte	
1000 ⁵	PB	petabyte	1024 ⁵	PiB	pebibyte		-	
1000 ⁶	ЕВ	exabyte	1024 ⁶	EiB	exbibyte		-	
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		-	
1000 ⁸	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		-	
	Orders of magnitude of data							

By Ender005 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49888192

How much data is around?

Global growth trend of data volume, 2006–2020 (based on "The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east")

Value	Metric		Value	IEC		Memory		
1000	kΒ	kilobyte	1024	KiB	kibibyte	KB	kilobyte	
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	MB	megabyte	
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte	
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte	
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		_	
1000 ⁶	ЕВ	exabyte	1024 ⁶	EiB	exbibyte		-	
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		_	
1000 ⁸	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		_	
Orders of magnitude of data								

Exponential growth of data!

What is "Data Science"?

Data Science Workflow

Tools that people need in Data Science

Friday	Sat/Sun	Mon		Tue	Wednesday	Thu	Topic
20/10/2023					25/10/2023		
Introduction					Soft exercise		What is Data Science?
27/10/2023		29/10/2023			01/11/2023		
Lecture (Groh)		Voluntary homework			Online Exercise		What are computers?
3/11/2023		5/11/2023			08/11/2023		
Lecture		Homework due from	27/10/2023		Exercise		Programming 1on1
10/11/2023		12/11/2023			15/11/2023		
Lecture		Homework due from	3/11/2023		Exercise		What is actually data
17/11/2023		19/11/2023			22/11/2023		
Lecture		Homework due from	10/11/2023		Exercise		Data exploration
24/11/2023		26/11/2023			29/11/2023		
Lecture		Homework due from	17/11/2023		Exercise		Statistics
1/12/2023		3/12/2023			6/12/2023		
Lecture		Homework due from	24/11/2023		Exercise		From baselines to data imputation
8/12/2023		10/12/2023			13/12/2023		
Lecture		Homework due from	1/12/2023		Exercise		Machine Learning I
15/12/2023		17/12/2023			20/12/2023		
Lecture		Homework due from	8/12/2023		Exercise		Machine Learning II
22/12/2023		24/12/2023			27/12/2023		
Nothing		Nothing			Nothing		
29/12/2023		31/12/2023			3/1/2024		XMAS HOLIDAYS
Nothing		Nothing			Nothing		AMAS HOLIDATS
5/1/2024		7/1/2024			10/1/2024		
Nothing		Nothing			Nothing		
12/1/2024		14/1/2024			17/1/2024		
Lecture		Homework due from	15/12/2023		Exercise		How to process natural language
19/1/2024		21/1/2024			24/1/2024		
Lecture		Homework due from	12/1/2024		Exercise		How to make code faster
26/1/2024		28/1/2024			31/1/2024		
Lecture		Homework due from	19/1/2024		Exercise		Graphical User Interfaces
2/2/2024		4/2/2024			7/2/2024		
Lecture		Homework due from	26/1/2024		Exercise		Deploying code
9/2/2024			of semester				
Recap		Homework	due from 2/2	/2024			

- Python programming 2.0 (numpy, pandas, ...)
- What is data? File types and Co.
- Data exploration techniques + visualization
- Statistics
- Machine Learning
- NLP
- Code enhancement (numba, Cython)
- GUIs
- Deploying code

Roles in Data Science

Data Analyst: Analyzes data to provide actionable insights.

Data Engineer: Manages and optimizes databases to handle and query data.

Machine Learning Engineer: Designs and implements machine learning models.

Data Scientist: Encompasses roles of data analyst and machine learning engineer, often with domain expertise.

Roles in Data Science

Data Science Pyramid of Needs

https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

Next week

How does a computer actually work? From transistors to ASICs.

Homework

Description of the homework

We put an example Jupyter notebook on StudOn,
 That should help you get started with Colab and numpy.
 This is voluntary homework until next week.