CHAPITRE 0

Logique (rudiment

Table des matières

Ι	Algèbre de Boole	3
II	Déduction naturelle	6
III	Raisonement par l'absurde	8
τv	Prédicat	10

Définition: Un <u>proposition</u> est un énoncé qui est soit vrai, soit faux.

Première partie Algèbre de Boole

Définition: Soient A et B deux propositions. La proposition \underline{A} et \underline{B} est définie par la table de vérité suivante :

A	B	$A ext{ et } B$
\overline{V}	V	\overline{V}
\overline{V}	F	\overline{F}
\overline{F}	V	\overline{F}
\overline{F}	F	F

Définition: Soient A et B deux propositions. La proposition \underline{A} ou \underline{B} est définie par la table de vérité suivante :

A	B	A ou B
\overline{V}	V	V
\overline{V}	F	\overline{V}
\overline{F}	V	\overline{V}
\overline{F}	F	\overline{F}

Définition: Soit A une proposition. La <u>négation</u> de A, notée non(A) est définie par :

$$\begin{array}{c|c}
A & \text{non}(A) \\
\hline
V & F \\
\hline
F & V
\end{array}$$

Définition: Deux propositions A et B sont <u>équivalentes</u> si elles ont la même table de vérité. Dans ce cas, on note $A \iff B$

Proposition: Soient A, B et C trois propositions.

- 1. $(A \text{ et } B) \text{ et } C \iff A \text{ et } (B \text{ et } C)$
- $2. \ A \ {\rm et} \ A \iff A$
- 3. A et $B \iff B$ et A
- 4. $(A \text{ ou } B) \text{ ou } C \iff A \text{ ou } (B \text{ ou } C)$
- 5. A ou $A \iff A$
- 6. A ou $B \iff B$ ou A
- 7. non (non (A)) \iff A

8.
$$A$$
 et $(B$ ou $C) \iff A$ et B ou A et C

9.
$$A \text{ ou } (B \text{ et } C) \iff (A \text{ ou } B) \text{ et } (A \text{ et } C)$$

10. non
$$(A \text{ et } B) \iff \text{non } (A) \text{ ou } \text{non } (B)$$

11. non $(A \text{ ou } B) \iff \text{non } (A) \text{ et } \text{non } (B)$

11. non
$$(A \text{ ou } B) \iff \text{non } (A) \text{ et non } (B)$$

Définition: Soient A et B deux propositions. La proposition $A \implies B$ (A implique B) est définie par :

A	B	$A \Longrightarrow B$
\overline{V}	V	\overline{V}
\overline{V}	F	\overline{F}
\overline{F}	V	\overline{V}
\overline{F}	F	\overline{V}

Définition: Soient A et B deux propositions telles que $A \implies B$ est vraie. On dit que A est une <u>condition suffisante</u> pour que B soit vraie. On dit que B est une <u>condition nécessaire</u> pour que A soit vraie.

Proposition (Contraposée): Soient A et B deux propositions.

$$(A \implies B) \iff (\text{ non } B \implies \text{ non } A)$$

Proposition: Soient A et B deux propositions.

$$(A \implies B) \iff \big((A \implies B) \text{ et } (B \implies A)\big)$$

Proposition: Soient A et B deux propositions.

$$(A \implies B) \iff (B \text{ ou non } (A))$$

Deuxième partie Déduction naturelle

Dans ce paragraphe, A et B sont deux propositions.

A et B

Comment démontrer A et B?

- On démontre A
- On démontre B

Comment utiliser l'hypothèse A et B?

On utilise A ou on utilise B.

A ou B

Comment démontrer A ou B?

On essaie de démontrer A. Si on y arrive, alors on a prouvé A ou B sinon on démontre B.

$\underline{\text{Variante}}$

On suppose A faux. On démontre B.

Comment utiliser l'hypothèse A ou B?

On fait une disjonction des cas :

- Cas 1: On suppose A
- Cas 2: On suppose B

$A \implies B$

Comment démontrer $A \implies B$?

On suppose A. On démontre B.

Comment utiliser l'hypothèse $A \implies B$?

On démontre A. On utilise B.

Troisième partie Raisonement par l'absurde

Situation:

Soient A et B deux propositions.

On veut montrer $A \implies B$.

On suppose \underline{A} . On suppose aussi \underline{B} faux.

On cherche à faire apparaı̂tre une contradiction $(\mbox{\it \rlap{\sl}})$

Quatrième partie

Prédicat

IV Prédicat

Définition: Un <u>prédicat</u> $\mathscr{P}(x)$ est un énoncé dont la valeur de vérité dépend de l'objet x, élément d'un ensemble E.

Le <u>domaine de validité</u> de $\mathscr P$ est l'ensemble des valeurs x de E pour lequelles $\mathscr P(x)$ est vraie :

$$\{x \in E \mid \mathscr{P}(x)\}$$

Remarque (Notation):

On écrit

$$\forall x \in E, \mathscr{P}(x)$$

pour dire que $\mathscr{P}(x)$ est vraie pour tous les x de E.

On écrit

$$\exists x \in E, \mathscr{P}(x)$$

pour dire qu'il existe (au moints) un élément $x \in E$ pour lequels $\mathscr{P}(x)$ est vraie.

On écrit

$$\exists ! x \in E, \mathscr{P}(x)$$

pour dire qu'il existe un unique élément $x \in E$ tel que $\mathscr{P}(x)$ est vraie.

 $\forall x \in E, \mathscr{P}(x) \mid \underline{\text{Comment démontrer } \forall x \in E, \mathscr{P}(x) ?}$

Soit $x \in E$ (fixé quelconque). Montrons $\mathscr{P}(x)$.

Comment utiliser $\forall x \in E, \mathscr{P}(x)$?

On choisit (spécialise) une ou plusieurs (voir toutes) valeurs de x et on exploite $\mathscr{P}(x).$