Filter and its Applications

Tian Chen

Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Sciences

2017.05.13

Quick Overview

- Introduction
- 2 Filter
 - Linear Gaussian Process
 - Nonlinear Gaussian Process
- 3 Applications
 - SLAM (Simultaneous Localization And Mapping)
 - Inertial Navigation
 - Tracking

- Introduction
- Filter
 - Linear Gaussian Process
 - Nonlinear Gaussian Process
- Applications
 - SLAM (Simultaneous Localization And Mapping)
 - Inertial Navigation
 - Tracking

Introduction

process	Linear Gaussian	Nonline Gaussian
motion model	$\mathbf{A}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k$	$\mathbf{f}(\mathbf{x}_{k-1},\mathbf{u}_k,\mathbf{q}_k)$
observation model	$\mathbf{H}_k\mathbf{x}_k+\mathbf{r}_k$	$\mathbf{g}(\mathbf{x}_k,\mathbf{r}_k)$
Estimation	kalman Filter	EKF, particle Filter

- Introduction
- Filter
 - Linear Gaussian Process
 - Nonlinear Gaussian Process
- Applications
 - SLAM (Simultaneous Localization And Mapping)
 - Inertial Navigation
 - Tracking

$$\begin{cases} \mathbf{x}_k = \mathbf{A}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k \\ \mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k \end{cases}$$
(1)

Tian Chen IACAS 6 / 21

$$\begin{cases} \mathbf{x}_k = \mathbf{A}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k \\ \mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k \end{cases}$$
(1)

system state: $\mathbf{x}_k \in \mathbb{R}^N$

input state: $\mathbf{u}_k \in \mathbb{R}^N$

process noise: $\mathbf{q}_k \in \mathbb{R}^N \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_0)$

measurement: $\mathbf{y}_k \in \mathbb{R}^M$

measurement noise: $\mathbf{r}_k \in \mathbb{R}^M \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_0)$

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 からぐ

$$\begin{cases} \mathbf{x}_k = \mathbf{A}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k \\ \mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k \end{cases}$$
(2)

Tian Chen IACAS 7 / 21

$$\begin{cases} \mathbf{x}_k = \mathbf{A}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k \\ \mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k \end{cases}$$
(2)

transition matrix: $\mathbf{A}_k \in \mathbb{R}^{N \times N}$

control-input matrix: $\mathbf{B}_k \in \mathbb{R}^{N \times N}$

observation matrix: $\mathbf{H}_k \in \mathbb{R}^{M \times N}$

Tian Chen IACAS 7 / 21

Kalman Filter

Predict

Predicted state estimate
$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k$$
Predicted estimate covariance $\mathbf{P}_{k|k-1} = \mathbf{A}_k \mathbf{P}_{k-1|k-1} \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k$
measurement residual $\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$

Tian Chen IACAS 8 / 21

Kalman Filter

Predict

Predicted state estimate
$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{q}_k$$
Predicted estimate covariance $\mathbf{P}_{k|k-1} = \mathbf{A}_k \mathbf{P}_{k-1|k-1} \mathbf{A}_k^\mathrm{T} + \mathbf{Q}_k$
measurement residual $\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$

Update

residual covariance
$$\mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^\mathrm{T} + \mathbf{R}_k$$

"Optimal" Kalman gain $\mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^\mathrm{T} \mathbf{S}_k^{-1}$

Updated state estimate $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \tilde{\mathbf{y}}_k$

Updated estimate covariance $\mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1}$

Tian Chen IACAS 8 / 21

R. E. Kalman

Born 1930 in Hungry Studied at MIT/Columbia Developed filter in 1960/61

His passing not only brought about personal loss but also a sad reminder of the passing of a golden era in systems and control.

Nonlinear Gaussian Process

$$\begin{cases} \mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_k) \\ \mathbf{y}_k = \mathbf{g}(\mathbf{x}_k, \mathbf{r}_k) \end{cases}$$
(3)

transition model: f

observation model: g

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りゅ○

Nonlinear Gaussian Process

$$\begin{cases} \mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_k) \\ \mathbf{y}_k = \mathbf{g}(\mathbf{x}_k, \mathbf{r}_k) \end{cases}$$
(3)

transition model: f observation model: g

$$\frac{\mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_k) \approx \check{\mathbf{x}}_k + \mathbf{A}_{k-1}(\mathbf{x}_{k-1} - \check{\mathbf{x}}_{k-1}) + \mathbf{q}'_k}{\mathbf{g}(\mathbf{x}_k, \mathbf{u}_k, \mathbf{r}_k) \approx \check{\mathbf{y}}_k + \mathbf{H}_k(\mathbf{x}_k - \check{\mathbf{x}}_k) + \mathbf{r}'_k} \tag{4}$$

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 りへで

Tian Chen IACAS 10 / 21

Extended Kalman Filter

Predict

Predicted state estimate
$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_k)$$
Predicted estimate covariance $\mathbf{P}_{k|k-1} = \mathbf{A}_k \mathbf{P}_{k-1|k-1} \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k'$
measurement residual $\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{g}(\mathbf{x}_k, \mathbf{r}_k)$

Tian Chen IACAS 11 / 21

Extended Kalman Filter

Predict

Predicted state estimate
$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_k)$$
Predicted estimate covariance $\mathbf{P}_{k|k-1} = \mathbf{A}_k \mathbf{P}_{k-1|k-1} \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k'$
measurement residual $\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{g}(\mathbf{x}_k, \mathbf{r}_k)$

Update

residual covariance
$$\mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^\mathrm{T} + \mathbf{R}_k$$

"Optimal" Kalman gain $\mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^\mathrm{T} \mathbf{S}_k^{-1}$

Updated state estimate $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \tilde{\mathbf{y}}_k$

Updated estimate covariance $\mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1}$

Tian Chen IACAS 11 / 21

Particle Filter

- Introduction
- ² Filter
 - Linear Gaussian Process
 - Nonlinear Gaussian Process
- Applications
 - SLAM (Simultaneous Localization And Mapping)
 - Inertial Navigation
 - Tracking

Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable slam system with full 3d motion estimation[C]//Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011: 155-160.

3D state

$$\mathbf{x} = \begin{bmatrix} \Omega^T & \mathbf{p}^T & \mathbf{v}^T \end{bmatrix}$$

where

$$\Omega = \left[\phi, \theta, \varphi \right]$$
 roll, pitch and yaw Euler angles $\mathbf{p} = \left[\mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \right]$ posotion $\mathbf{v} = \left[\mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z \right]$ velocity

Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable slam system with full 3d motion estimation[C]//Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011: 155-160.

Dynamic system

$$egin{aligned} \dot{\Omega} &= \mathbf{E}_{\omega} \cdot \omega \ \\ \dot{\mathbf{p}} &= \mathbf{v} \ \\ \dot{\mathbf{v}} &= \mathbf{R}_{\omega} \cdot \mathbf{a} + \mathbf{g} \end{aligned}$$

where

Rotation matrix from Sensor to world

 \mathbf{E}_{ω} maps angular rates to the derivatives of the Euler angles

g constant gravity vector

Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable slam system with full 3d motion estimation[C]//Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011: 155-160.

■ Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable slam system with full 3d motion estimation[C]//Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011: 155-160.

Multi-Sensor Fusion

Stephan Weiss, Markus W. Achtelik, Margarita Chli and Roland Siegwart. Versatile
Distributed Pose Estimation and Sensor Self-Calibration for Autonomous MAVs. in IEEE

Tian Chen IACAS 18 / 21

Multi-Sensor Fusion

- Stephan Weiss, Markus W. Achtelik, Margarita Chli and Roland Siegwart. Versatile Distributed Pose Estimation and Sensor Self-Calibration for Autonomous MAVs. in IEEE International Conference on Robotics and Automation (ICRA), 2012. pdf
- Simon Lynen, Markus Achtelik, Stephan Weiss, Margarita Chli and Roland Siegwart, A Robust and Modular Multi-Sensor Fusion Approach Applied to MAV Navigation. in Proc. of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2013.

Tracking

```
8.00
                                                                           8.00
                                                                           4.00
  2.00
                                                                           2.00
  0.00
                              7.00
                                                                17.00
                                                                                                        7.00
                                                                                                                        12.00
                                                                                                                                           17.00
  -2.00
                                                                           -2.00
  4.00
                                                                           4.00
  -6.00
                                                                           -6.00
  -8.00
                                                                           -8.00
                         y=-4.863 heading=-1.500 v=1.216 w=0.348
EKF: 2.65457
0.746771
-0.489834
Particle filter ESS: 0.558485
Real/Simulated bearing: -62.218 / -60.227 deg
eel/Simulated range: 5.624 / 5.470
[KF] 0 LMs | Pr: 0.00ms | Pr.Obs: 0.00ms | Obs.DA: 0.00ms | Upd: 0.03ms
Real: x:2.621 y=-4.976 heading=-1.466 v=1.314 w=0.346
EKF: 2.77312
-0.615365
 Particle filter ESS: 0.768586
Real/Simulated bearing: -61.493 / -56.765 deg
Real/Simulated range: 5.795 / 5.676
[KF] 0 LMs | Pr: 0.00ns | Pr.Obs: 0.00ns | Obs.DA: 0.00ns | Upd: 0.01ns
Real: x:2.766 y=-5.092 heading=-1.431 v=1.489 w=0.343
EKF: 2,93366
-4.62573
0.931677
Particle filter ESS: 0.64026
Particle Title: 23. 0.00020
Real/Simulated bearing: -00.701 / -86.076 deg
Real/Simulated range: 5.977 / 5.640
[KF] 0 LMs | Pr: 0.00ns | Pr.Obs: 0.00ns | Obs.OA: 0.00ns | Upd: 0.03ns
Real: x:2.925 yr-5.212 headings-1.397 vrl.500 wr0.338
EKF: 2.72666
 Particle filter ESS: 0.547234
```

Thank you