МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФН

КАФЕДРА

«ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Основы сеточных методов

Домашняя работа №1-2

Группа: ФН11-62Б

Вариант № 6

Студент: Зеликова В.И.

Преподаватель: Кутыркин В.А.

Оценка:

Задание:

ДЗ №1-2 (n — номер группы, N — номер фамилии студента в журнале) Используя равномерную сетку отрезка [–1;1] с 41 узлом, составить конечно-разностную схему для решения краевой задачи:

$$\begin{cases} \frac{d^2 \varphi(\tau)}{d\tau^2} + \tau \frac{d \varphi(\tau)}{d\tau} - 4 \varphi(\tau) = (-\tau^3 + 12\tau^2 + 6\tau - 4)\alpha + (-2\tau^2 - 3\tau + 2)\beta, \, \tau \in (-1;1) \\ \varphi(-1) = \alpha, \quad \varphi(1) = 3\alpha + 2\beta \text{ (краевые условия)}, \, \alpha = n - 64, \, \beta = \frac{N}{4}. \end{cases}$$

Получить приближённое сеточное решение задачи, используя метод прогонки.

Оценить погрешность относительно аналитического решения в узлах сетки, сравнив её с оценкой, полученной из практического правила Рунге; таблично и графически сравнить полученные приближённое и аналитическое решения задачи. ▶

Решение:

$$N = 6$$
, $n = 62$, $\alpha = -2$, $\beta = \frac{3}{2}$.

Представим задачу в виде линейного уравнения $\widehat{\pmb{F}}(\varphi) = v$, где $\widehat{\pmb{F}}$ – линейный дифференциальный оператор в нормированном (чебышёвском) пространстве достаточно гладких на отрезке [a;b] функций, для которого:

$$\begin{cases} \widehat{\pmb{F}}(\varphi)\big|_{-1} = \varphi(-1) = \alpha; \\ \widehat{\pmb{F}}(\varphi)\big|_{\tau} = \frac{d^2\varphi(\tau)}{d\tau^2} + \tau \frac{d\varphi(\tau)}{d\tau} - 4\varphi(\tau) = \upsilon(\tau), \ \tau \in (-1;1); \\ \widehat{\pmb{F}}(\varphi)\big|_{1} = \varphi(1) = 3\alpha + 2\beta, \end{cases}$$

где
$$v(\tau) = (-\tau^3 + 12\tau^2 + 6\tau - 4)\alpha + (-2\tau^2 - 3\tau + 2)\beta$$
.

Зададим на отрезке [-1;1] равномерную сетку с 41 узлом и шагом

$$h = \frac{1 - (-1)}{40} = \frac{1}{20}.$$

$$A = \langle -1, -\frac{19}{20}, -\frac{18}{20}, \dots, \frac{18}{20}, \frac{19}{20}, 1 \rangle.$$

Тогда, используя разностные производные, получим следующую схему:

$$\begin{cases} \frac{\varphi_0 = \alpha;}{h^2} \\ \frac{\varphi_{j+1} - 2\varphi_j + \varphi_{j-1}}{h^2} + p_j \cdot \frac{\varphi_{j+1} - \varphi_{j-1}}{2h} - q_j \cdot \varphi_j = \nu_j, \ j = \overline{1, k-1}; \\ \varphi_k = 3\alpha + 2\beta; \\ k \to +\infty, \end{cases}$$

где
$$p_j = \tau_j$$
, $q_j = 4$, $\varphi_j = \varphi(\tau_j)$, $v_j = (-\tau_j{}^3 + 12\tau_j{}^2 + 6\tau_j - 4)\alpha + (-2\tau_j{}^2 - 3\tau_j + 2)\beta$.

Обозначим решение задачи как Ф и получим:

$$\begin{cases} \Phi_0 = \alpha; \\ \frac{\Phi_{j+1} - 2\Phi_j + \Phi_{j-1}}{h^2} + p_j \cdot \frac{\Phi_{j+1} - \Phi_{j-1}}{2h} - q_j \cdot \Phi_j = \nu_j + O(h^2) \ \text{при } h \to 0, j = \overline{1, k-1}; \\ \Phi_k = 3\alpha + 2\beta; \\ k \to +\infty, \end{cases}$$

Распишем подробнее второе уравнение системы и получим СЛАУ:

$$\begin{cases} \Phi_0 = \alpha = \nu_0; \\ \left(\frac{1}{h^2} - \frac{p_1}{2h}\right) \alpha + \left(-\frac{2}{h^2} - q_1\right) \Phi_1 + \left(\frac{1}{h^2} + \frac{p_1}{2h}\right) \Phi_2 = \nu_1; \\ \left(\frac{1}{h^2} - \frac{p_2}{2h}\right) \Phi_1 + \left(-\frac{2}{h^2} - q_2\right) \Phi_2 + \left(\frac{1}{h^2} + \frac{p_2}{2h}\right) \Phi_3 = \nu_2; \\ \dots \\ \left(\frac{1}{h^2} - \frac{p_{k-1}}{2h}\right) \Phi_{k-2} + \left(-\frac{2}{h^2} - q_{k-1}\right) \Phi_{k-1} + \left(\frac{1}{h^2} + \frac{p_{k-1}}{2h}\right) 3\alpha + 2\beta = \nu_{k-1}; \\ \Phi_k = 3\alpha + 2\beta = \nu_k; \end{cases}$$

В матричном виде СЛАУ имеет вид:

$$F > \Phi = \nu$$

Где матрица F:

		0	1	2	3	4
	0	1	0	0	0	0
	1	409.5	-804	390.5	0	0
	2	0	409	-804	391	0
	3	0	0	408.5	-804	391.5
F =	4	0	0	0	408	-804
	5	0	0	0	0	407.5
	6	0	0	0	0	0
	7	0	0	0	0	0
	8	0	0	0	0	0
	9	0	0	0	0	

	36	37	38	39	40
31	0	0	0	0	0
32	0	0	0	0	0
33	0	0	0	0	0
34	0	0	0	0	0
35	407.5	0	0	0	0
36	-804	408	0	0	0
37	391.5	-804	408.5	0	0
38	0	391	-804	409	0
39	0	0	390.5	-804	409.5
40	0	0	0	0	1

Матрица F имеет диагональное преобладание. Применим метод прогонки. Рабочие формулы прямого хода метода прогонки для данной задачи будут иметь вид:

$$x_n = L_n x_{n+1} + M_n, \ k = \overline{0, k-1};$$

 $x_k = M_k,$

$$\begin{split} L_0 &= -\frac{c_0}{b_0}, \, M_0 = \frac{f_0}{b_0}; \\ L_n &= -\frac{c_n}{L_{n-1}a_n + b_n}, \, M_n = \frac{f_n - M_{n-1}a_n}{L_{n-1}a_n + b_n}, \, n = \overline{1, k-1}; \\ M_k &= \frac{f_k - M_{k-1}a_k}{L_{k-1}a_k + b_k} = x_k. \end{split}$$

Вычислив L, M, применяем обратных ход прогонки, формулы для которого имеют вид:

$$\begin{split} x_{k-1} &= L_{k-1} x_k + M_{k-1}; \\ x_{k-2} &= L_{k-2} x_{k-1} + M_{k-2}; \\ &\dots \\ x_0 &= L_0 x_1 + M_0. \end{split}$$

$\mathbf{M}^{T} =$		0	1	2	3		4		5	6	7	8	9	10
	0	-2	-1.019	-0.69	93 -0.5	532	-0.439	-(0.38	-0.342	-0.317	-0.3	-0.29	
L ^T =		0	1	2	3	4	5		6	7	8	9	10	11
	0	0	0.486	0.646	0.725	0.7	71 0.8	01	0.82	3 0.83	8 0.849	0.858	0.866	

Из данных формул вычисляем сеточное приближенное решение.

$x^{T} =$		0	1	2	3	4	5	6	7	8	9
	0	-2	-1.986	-1.99	-2.008	-2.036	-2.072	-2.111	-2.151	-2.189	

Аналитическое решение данного дифференциального уравнения имеет вид:

$$\varphi(\tau) = -2\tau^4 - 2\tau^3 + \frac{3}{2}\tau^2 + \frac{3}{2}\tau - 2.$$

τ ^T =		0	1	2	3	4	5	6	7	8	9
	0	-2	-1.986	-1.989	-2.007	-2.035	-2.07	-2.109	-2.149	-2.187	

Сравним значения приближенного и аналитического решения в узлах сетки:

$$x - \tau = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -3.178 \cdot 10^{-4} \\ 2 \\ -5.946 \cdot 10^{-4} \\ 3 \\ -8.347 \cdot 10^{-4} \\ 4 \\ -1.042 \cdot 10^{-3} \\ 5 \\ -1.221 \cdot 10^{-3} \\ 6 \\ -1.374 \cdot 10^{-3} \\ 7 \\ -1.506 \cdot 10^{-3} \\ 8 \\ -1.618 \cdot 10^{-3} \\ 9 \\ \dots$$

Максимальная по модулю разность = $2.346 \cdot 10^{-3}$.

Оценим погрешность с помощью практического правила Рунге. Для этого получим аналогичным образом второе сеточное решение $^{>}\Phi^*$ на равномерной сетке шага $\frac{h}{2}$ и сравним значение сеточных функций в одних и тех же узлах сетки.

$xx^T =$		0	1	2	3	4	5	6	7
	0	-2	-1.99	-1.986	-1.985	-1.989	-1.997	-2.007	

		0
	0	0
	1	-4.11·10 ⁻⁵
	2	-7.95·10 ⁻⁵
xx - τ =	3	-1.153·10-4
	4	-1.488·10 ⁻⁴
	5	-1.799·10 ⁻⁴
	6	-2.088·10-4
	7	-2.357·10 ⁻⁴
	8	

Максимальная по модулю разность = $5.84 \cdot 10^{-4}$

Практическая оценка приближенного решения >Ф имеет вид:

$$\varepsilon = \frac{\parallel {}^{>}\Phi - {}^{>}\Phi^* \parallel}{2^{m-1}-1},$$

где m = 2 – порядок аппроксимации схемой.

Получаем:

$$\varepsilon = \frac{5.84 \cdot 10^{-4}}{2 - 1} = 5.84 \cdot 10^{-4}.$$

Графики приближенного и аналитического решений:

Вывод: с помощью конечно-разностной схемы было получено приближенное сеточное решение краевой задачи. Максимальная абсолютная погрешность приближенного решения в узлах сетки составила $2.346 \cdot 10^{-3}$. Оценка по правилу Рунге оказалась близка к этому значению: $5.84 \cdot 10^{-4}$. Графики аналитического и численного решений очень близки.