# Nonparametric Causal Survival Analysis under Clustered Interference

#### Chanhwa Lee and Michael Hudgens

Dept of Biostatistics, University of North Carolina at Chapel Hill

Join work with Prof. Donglin Zeng, Dept of Biostatistics, University of Michigan at Ann Arbor

August 5, 2024

### Motivation

#### **Clustered Interference**



#### **Right Censoring**



### **Nonparametric (Data-adaptive)**



### **Notation**



#### Observed data

- Cluster  $i \in \{1, \ldots, m\}$ , Unit  $j \in \{1, \ldots, N_i\}$
- $T_{ij} \in \mathbb{R}^+$ : event time,  $A_{ij} \in \{0,1\}$ : treatment,  $\mathbf{X}_{ij} \in \mathbb{R}^p$ : confounders,  $\mathbf{Z}_i = (\mathbf{T}_i, \mathbf{A}_i, \mathbf{X}_i)$ : Full data
- $C_{ij} \in \mathbb{R}^+$ : censoring time,  $Y_{ij} = \min\{T_{ij}, C_{ij}\}$ : observed time,  $\Delta_{ij} = \mathbb{1}(T_{ij} \leq C_{ij})$ ,  $\mathbf{O}_i = (\mathbf{Y}_i, \mathbf{\Delta}_i, \mathbf{A}_i, \mathbf{X}_i)$ : Observed data
- $\mathcal{A}(N_i) = \{0,1\}^{N_i}$ : set of all length  $N_i$  binary vectors

#### Potential outcome

- $T_{ij}(\mathbf{a}_i)$ : Potential event time for unit j in cluster i when the cluster i receives treatment assignment according to  $\mathbf{a}_i$
- $T_{ij}(\mathbf{a}_i) = T_{ij}(a_{ij}, \mathbf{a}_{i(-j)}),$  $\mathbf{a}_{i(-j)} = (a_{i1}, \dots, a_{i(j-1)}, a_{i(j+1)}, \dots, a_{iN_i})$
- No interference:  $T_{ij}(a_{ij}, \mathbf{a}_{i(-j)}) = T_{ij}(a_{ij}, \mathbf{a}'_{i(-j)})$

- Counterfactual scenario that a cluster of size  $N_i$  with cluster-level covariate  $\mathbf{X}_i$  receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i|\mathbf{X}_i,N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | 8)<br>9<br>9<br>9<br>9<br>9 | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | \$1<br>\$2<br>\$2<br>\$2<br>\$3 |                             | \$\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) | (A) (Y) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B |
|------------|--------------------------------------------|-----------------------------|---------------------------------|---------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| Factual P  | $P(0,0,0 \mathbf{X},N)$                    | $P(1,0,0 \boldsymbol{X},N)$ | $P(0,1,0 \boldsymbol{X},N)$     | $P(0,0,1 \boldsymbol{X},N)$     | $P(1,1,0 \boldsymbol{X},N)$ | $P(1,0,1 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P(0,1,1 \boldsymbol{X},N)$                    | $P(1,1,1 \boldsymbol{X},N)$                |
|            | 0.1                                        | 0.15                        | 0.2                             | 0.05                            | 0.15                        | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                            | 0.1                                        |

JSM, 5 Aug 2024 4

- Counterfactual scenario that a cluster of size  $N_i$  with cluster-level covariate  $\mathbf{X}_i$  receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i|\mathbf{X}_i,N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment   | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \$1<br>\$2<br>\$2<br>\$3    | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | (A) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X | \$\begin{align*} \$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$1 - K)                    | (S) |
|--------------|------------------------------------------|-----------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|
| Factual P    | $P(0,0,0 \boldsymbol{X},N)$              | $P(1,0,0 \boldsymbol{X},N)$ | $P(0,1,0 \boldsymbol{X},N)$     | $P(0,0,1 \boldsymbol{X},N)$                | $P(1,1,0 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $P(1,0,1 \boldsymbol{X},N)$             | $P(0,1,1 \boldsymbol{X},N)$ | $P(1,1,1 \boldsymbol{X},N)$             |
|              | 0.1                                      | 0.15                        | 0.2                             | 0.05                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15                                    | 0.1                         | 0.1                                     |
| Allocation Q | $Q(0,0,0 \boldsymbol{X},N)$              | $Q(1,0,0 \boldsymbol{X},N)$ | $Q(0,1,0 \boldsymbol{X},N)$     | $Q(0,0,1 \boldsymbol{X},N)$                | $Q(1,1,0 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Q(1,0,1 \boldsymbol{X},N)$             | $Q(0,1,1 \boldsymbol{X},N)$ | $Q(1,1,1 \boldsymbol{X},N)$             |

- Counterfactual scenario that a cluster of size N<sub>i</sub> with cluster-level covariate X<sub>i</sub> receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i | \mathbf{X}_i, N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment   | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | (A) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | \$\( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \( \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | (A) (N) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B |
|--------------|--------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| Factual P    | $P(0,0,0 \boldsymbol{X},N)$                | $P(1,0,0 \boldsymbol{X},N)$     | $P(0,1,0 \boldsymbol{X},N)$     | $P(0,0,1 \boldsymbol{X},N)$                | $P(1,1,0 \boldsymbol{X},N)$                | $P(1,0,1 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P(0,1,1 \boldsymbol{X},N)$                    | $P(1,1,1 \boldsymbol{X},N)$                |
|              | 0.1                                        | 0.15                            | 0.2                             | 0.05                                       | 0.15                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                            | 0.1                                        |
| Allocation Q | Q(0,0,0 X,N)                               | $Q(1,0,0 \boldsymbol{X},N)$     | $Q(0,1,0 \boldsymbol{X},N)$     | Q(0,0,1 X,N)                               | $Q(1,1,0 \boldsymbol{X},N)$                | $Q(1,0,1 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Q(0,1,1 \boldsymbol{X},N)$                    | Q(1,1,1 X,N)                               |
| Treat All    | 0                                          | 0                               | 0                               | 0                                          | 0                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                              | 1                                          |

Treat All:  $Q_{AII}(\mathbf{a}_i|\mathbf{X}_i,N_i)=\prod_{i=1}^{N_i}\mathbb{1}(a_{ij}=1)$ 

- Counterfactual scenario that a cluster of size  $N_i$  with cluster-level covariate  $\mathbf{X}_i$  receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i|\mathbf{X}_i,N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment   | \$1<br>\$2<br>\$2<br>\$3    | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | \$1<br>\$2<br>\$3<br>\$3<br>\$3 | (A) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | \$\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) | (A) (Y) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A |                             |
|--------------|-----------------------------|---------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|
| Factual P    | $P(0,0,0 \boldsymbol{X},N)$ | $P(1,0,0 \boldsymbol{X},N)$     | $P(0,1,0 \boldsymbol{X},N)$     | $P(0,0,1 \boldsymbol{X},N)$                | $P(1,1,0 \boldsymbol{X},N)$                | $P(1,0,1 \boldsymbol{X},N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P(0,1,1 \boldsymbol{X},N)$                    | $P(1,1,1 \boldsymbol{X},N)$ |
|              | 0.1                         | 0.15                            | 0.2                             | 0.05                                       | 0.15                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                            | 0.1                         |
| Allocation Q | $Q(0,0,0 \boldsymbol{X},N)$ | Q(1,0,0 X,N)                    | $Q(0,1,0 \boldsymbol{X},N)$     | $Q(0,0,1 \boldsymbol{X},N)$                | $Q(1,1,0 \boldsymbol{X},N)$                | Q(1,0,1 X,N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Q(0,1,1 \boldsymbol{X},N)$                    | $Q(1,1,1 \boldsymbol{X},N)$ |
| Treat All    | 0                           | 0                               | 0                               | 0                                          | 0                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                              | 1                           |
| Treat None   | 1                           | 0                               | 0                               | 0                                          | 0                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                              | 0                           |

Treat None:  $Q_{\text{None}}(\mathbf{a}_i|\mathbf{X}_i,N_i)=\prod_{j=1}^{N_i}\mathbb{1}(a_{ij}=0)$ 

- Counterfactual scenario that a cluster of size  $N_i$  with cluster-level covariate  $\mathbf{X}_i$  receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i|\mathbf{X}_i,N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment   | \$1<br>2<br>2<br>2<br>3     | \$1<br>\$2<br>\$2<br>\$2<br>\$3 | \$1<br>\$2<br>\$2<br>\$3<br>\$3 | (A) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y) (Y | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$1 - K) - K | (S) |
|--------------|-----------------------------|---------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|
| Factual P    | $P(0,0,0 \boldsymbol{X},N)$ | $P(1,0,0 \boldsymbol{X},N)$     | P(0,1,0 X,N)                    | $P(0,0,1 \boldsymbol{X},N)$                | $P(1,1,0 \boldsymbol{X},N)$             | $P(1,0,1 \boldsymbol{X},N)$             | $P(0,1,1 \boldsymbol{X},N)$                | $P(1,1,1 \boldsymbol{X},N)$             |
|              | 0.1                         | 0.15                            | 0.2                             | 0.05                                       | 0.15                                    | 0.15                                    | 0.1                                        | 0.1                                     |
| Allocation Q | $Q(0,0,0 \boldsymbol{X},N)$ | $Q(1,0,0 \boldsymbol{X},N)$     | $Q(0,1,0 \boldsymbol{X},N)$     | $Q(0,0,1 \boldsymbol{X},N)$                | $Q(1,1,0 \boldsymbol{X},N)$             | $Q(1,0,1 \boldsymbol{X},N)$             | $Q(0,1,1 \boldsymbol{X},N)$                | $Q(1,1,1 \boldsymbol{X},N)$             |
| Treat All    | 0                           | 0                               | 0                               | 0                                          | 0                                       | 0                                       | 0                                          | 1                                       |
| Treat None   | 1                           | 0                               | 0                               | 0                                          | 0                                       | 0                                       | 0                                          | 0                                       |
| Туре В       | (1-0.7)3                    | 0.7(1-0.7)2                     | 0.7(1-0.7)2                     | 0.7(1-0.7)2                                | 0.72 (1-0.7)                            | 0.72 (1-0.7)                            | 0.72 (1-0.7)                               | 0.73                                    |

Type B:  $Q_{\text{B}}(\mathbf{a}_i|\mathbf{X}_i,N_i;\alpha)=\prod_{j=1}^{N_i}\alpha^{a_{ij}}(1-\alpha)^{1-a_{ij}}$ 

- Counterfactual scenario that a cluster of size  $N_i$  with cluster-level covariate  $\mathbf{X}_i$  receives treatment  $\mathbf{a}_i \in \mathcal{A}(N_i)$  with probability  $Q(\mathbf{a}_i|\mathbf{X}_i,N_i)$
- $Q(\cdot|\mathbf{X}_i, N_i)$ : probability dist'n on  $\mathcal{A}(N_i)$

| Assignment   | (A) (K) (K) (K) (K) (K) (K) (K) (K) (K) (K | \$\begin{array}{cccccccccccccccccccccccccccccccccccc | \$1<br>\$2<br>\$3<br>\$3<br>\$3 | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | (S) | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | (A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | (S) |
|--------------|--------------------------------------------|------------------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|
| Factual P    | $P(0,0,0 \boldsymbol{X},N)$                | $P(1,0,0 \boldsymbol{X},N)$                          | $P(0,1,0 \boldsymbol{X},N)$     | $P(0,0,1 \boldsymbol{X},N)$                | $P(1,1,0 \boldsymbol{X},N)$             | $P(1,0,1 \boldsymbol{X},N)$             | $P(0,1,1 \boldsymbol{X},N)$                    | $P(1,1,1 \boldsymbol{X},N)$             |
|              | 0.1                                        | 0.15                                                 | 0.2                             | 0.05                                       | 0.15                                    | 0.15                                    | 0.1                                            | 0.1                                     |
| Allocation Q | $Q(0,0,0 \boldsymbol{X},N)$                | $Q(1,0,0 \boldsymbol{X},N)$                          | $Q(0,1,0 \boldsymbol{X},N)$     | $Q(0,0,1 \boldsymbol{X},N)$                | $Q(1,1,0 \boldsymbol{X},N)$             | $Q(1,0,1 \boldsymbol{X},N)$             | $Q(0,1,1 \boldsymbol{X},N)$                    | $Q(1,1,1 \boldsymbol{X},N)$             |
| Treat All    | 0                                          | 0                                                    | 0                               | 0                                          | 0                                       | 0                                       | 0                                              | 1                                       |
| Treat None   | 1                                          | 0                                                    | 0                               | 0                                          | 0                                       | 0                                       | 0                                              | 0                                       |
| Туре В       | (1-0.7) <sup>3</sup>                       | 0.7(1-0.7)2                                          | 0.7(1-0.7)2                     | 0.7(1-0.7)2                                | 0.72 (1-0.7)                            | 0.72 (1-0.7)                            | 0.72 (1-0.7)                                   | 0.73                                    |
| ТРВ          | 0                                          | 0                                                    | 0                               | 0                                          | 0.3                                     | 0.3                                     | 0.2                                            | 0.2                                     |

**Treatment Proportion Bound:**  $Q_{\text{TPB}}(\mathbf{a}_i | \mathbf{X}_i, N_i; \rho) = \mathbb{1}(\overline{\mathbf{a}}_i \geq \rho) \mathbb{P}(\mathbf{a}_i | \mathbf{X}_i, N_i) / \mathbb{P}(\overline{\mathbf{A}}_i \geq \rho | \mathbf{X}_i, N_i)$ 

ullet Expected overall risk by time au under policy Q

$$\mu( au;Q) = \mathbb{E}\left\{N_i^{-1}\sum_{j=1}^{N_i}\sum_{\mathbf{a}_i\in\mathcal{A}(N_i)}\mathbb{1}(T_{ij}(\mathbf{a}_i)\leq au)Q(\mathbf{a}_i|\mathbf{X}_i,N_i)
ight\}$$

JSM, 5 Aug 2024 5

• Expected overall risk by time  $\tau$  under policy Q

$$\mu( au; Q) = \mathbb{E}\left\{N_i^{-1}\sum_{j=1}^{N_i}\sum_{\mathbf{a}_i\in\mathcal{A}(N_i)}\mathbb{1}(T_{ij}(\mathbf{a}_i)\leq au)Q(\mathbf{a}_i|\mathbf{X}_i,N_i)\right\}$$

• Expected risk by time  $\tau$  when treated under policy Q

$$\mu_1(\tau; Q) = \mathbb{E}\Big\{N_i^{-1} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i-1)} \mathbb{1}(T_{ij}(1, \mathbf{a}_{i(-j)}) \leq \tau) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\Big\}$$

JSM, 5 Aug 2024 5

ullet Expected overall risk by time au under policy Q

$$\mu(\tau;Q) = \mathbb{E}\left\{N_i^{-1}\sum_{j=1}^{N_i}\sum_{\mathbf{a}_i\in\mathcal{A}(N_i)}\mathbb{1}(T_{ij}(\mathbf{a}_i)\leq au)Q(\mathbf{a}_i|\mathbf{X}_i,N_i)\right\}$$

• Expected risk by time  $\tau$  when treated under policy Q

$$\mu_1( au; Q) = \mathbb{E}\Big\{N_i^{-1} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i-1)} \mathbb{1}(T_{ij}(1, \mathbf{a}_{i(-j)}) \leq au) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\Big\}$$

 $Q(\mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) = Q(1, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) + Q(0, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i)$  probability of all units in cluster i other than j receiving treatment  $\mathbf{a}_{i(-j)}$  under policy Q.

ullet Expected overall risk by time au under policy Q

$$\mu(\tau;Q) = \mathbb{E}\left\{N_i^{-1}\sum_{j=1}^{N_i}\sum_{\mathbf{a}_i\in\mathcal{A}(N_i)}\mathbb{1}(T_{ij}(\mathbf{a}_i)\leq au)Q(\mathbf{a}_i|\mathbf{X}_i,N_i)\right\}$$

• Expected risk by time  $\tau$  when treated under policy Q

$$\mu_1( au; Q) = \mathbb{E}\Big\{N_i^{-1} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i-1)} \mathbb{1}(T_{ij}(1, \mathbf{a}_{i(-j)}) \leq au) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\Big\}$$

- $Q(\mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) = Q(1, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) + Q(0, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i)$  probability of all units in cluster i other than j receiving treatment  $\mathbf{a}_{i(-j)}$  under policy Q.
- ho No interference:  $T_{ij}(1,\mathbf{a}_{i(-j)})\equiv T_{ij}(1)\Rightarrow \mu_1( au;Q)\equiv \mathbb{E}\Big\{N_i^{-1}\sum_{j=1}^{N_i}Y_{ij}(1)\Big\}$

• Expected overall risk by time au under policy Q

$$\mu(\tau;Q) = \mathbb{E}\left\{N_i^{-1}\sum_{j=1}^{N_i}\sum_{\mathbf{a}_i\in\mathcal{A}(N_i)}\mathbb{1}(T_{ij}(\mathbf{a}_i)\leq au)Q(\mathbf{a}_i|\mathbf{X}_i,N_i)\right\}$$

• Expected risk by time  $\tau$  when treated under policy Q

$$\mu_1( au; Q) = \mathbb{E}\Big\{N_i^{-1} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i-1)} \mathbb{1}(T_{ij}(1, \mathbf{a}_{i(-j)}) \leq au) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\Big\}$$

- $Q(\mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) = Q(1, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i) + Q(0, \mathbf{a}_{i(-j)}|\mathbf{X}_i, N_i)$  probability of all units in cluster i other than j receiving treatment  $\mathbf{a}_{i(-j)}$  under policy Q.
- ho No interference:  $T_{ij}(1,\mathbf{a}_{i(-j)}) \equiv T_{ij}(1) \Rightarrow \mu_1( au;Q) \equiv \mathbb{E}\Big\{N_i^{-1}\sum_{j=1}^{N_i}Y_{ij}(1)\Big\}$
- Expected risk by time  $\tau$  when untreated under policy Q

$$\mu_0( au; Q) = \mathbb{E}\Big\{N_i^{-1} \sum_{j=1}^{N_i} \sum_{\mathbf{a}_{i(-j)} \in \mathcal{A}(N_i-1)} \mathbb{1}(T_{ij}(0, \mathbf{a}_{i(-j)}) \leq au) Q(\mathbf{a}_{i(-j)} | \mathbf{X}_i, N_i)\Big\}$$

### Estimands: Causal effects

- $DE(\tau; Q) = \mu_1(\tau; Q) \mu_0(\tau; Q)$ : effect of treatment under policy Q
  - $\,\,{\scriptstyle{\triangleright}}\,\,$  Vaccine effect on COVID19 risk by one year when 50% of neighbors vaccinated

JSM, 5 Aug 2024 6

#### Estimands: Causal effects

- $DE(\tau; Q) = \mu_1(\tau; Q) \mu_0(\tau; Q)$ : effect of treatment under policy Q
  - ▶ Vaccine effect on COVID19 risk by one year when 50% of neighbors vaccinated
- $OE(\tau; Q, Q') = \mu(\tau; Q) \mu(\tau; Q')$ : compares two policies Q and Q' overall
  - $\triangleright$  Difference in overall COVID19 risk by one year when 50% vs. 30% of neighbors vaccinated

#### Estimands: Causal effects

- $DE(\tau; Q) = \mu_1(\tau; Q) \mu_0(\tau; Q)$ : effect of treatment under policy Q
  - ▶ Vaccine effect on COVID19 risk by one year when 50% of neighbors vaccinated
- $OE(\tau; Q, Q') = \mu(\tau; Q) \mu(\tau; Q')$ : compares two policies Q and Q' overall
  - Difference in overall COVID19 risk by one year when 50% vs. 30% of neighbors vaccinated
- $SE_0(\tau; Q, Q') = \mu_0(\tau; Q) \mu_0(\tau; Q')$ : compares risks when untreated
  - ▶ Unvaccinated individual's COVID19 risks by one year when 50% vs. 30% of neighbors vaccinated

## Assumptions and Identifiability

- (A1) Consistency:  $T_{ij} = \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} T_{ij}(\mathbf{a}_i) \mathbb{1}(\mathbf{A}_i = \mathbf{a}_i)$
- (A2) Conditional Exchangeability:  $T_{ij}(\mathbf{a}_i) \perp \!\!\! \perp \mathbf{A}_i | \mathbf{X}_i, N_i$  for all  $\mathbf{a}_i \in \mathcal{A}(N_i)$
- (A3) Positivity:  $\mathbb{P}(A_{ij} = 1 | \mathbf{X}_i, N_i) \in (c, 1 c)$  for some  $c \in (0, 1)$
- (A4) Conditional Independent Censoring:  $T_{ij} \perp \!\!\! \perp C_{ij} | \mathbf{A}_i, \mathbf{X}_i, N_i$
- (A5) Noncensoring Positivity:  $\mathbb{P}(\Delta_{ij} = 1 | \mathbf{A}_i, \mathbf{X}_i, N_i) > 0$
- (A6) Finite cluster size:  $\mathbb{P}(N_i \leq n_{\sf max}) = 1$  for some  $n_{\sf max} \in \mathbb{N}$

## Assumptions and Identifiability

- (A1) Consistency:  $T_{ij} = \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} T_{ij}(\mathbf{a}_i) \mathbb{1}(\mathbf{A}_i = \mathbf{a}_i)$
- (A2) Conditional Exchangeability:  $T_{ij}(\mathbf{a}_i) \perp \!\!\! \perp \mathbf{A}_i | \mathbf{X}_i, N_i$  for all  $\mathbf{a}_i \in \mathcal{A}(N_i)$
- (A3) Positivity:  $\mathbb{P}(A_{ij} = 1 | \mathbf{X}_i, N_i) \in (c, 1 c)$  for some  $c \in (0, 1)$
- (A4) Conditional Independent Censoring:  $T_{ij} \perp \!\!\! \perp C_{ij} | \mathbf{A}_i, \mathbf{X}_i, N_i$
- (A5) Noncensoring Positivity:  $\mathbb{P}(\Delta_{ij} = 1 | \mathbf{A}_i, \mathbf{X}_i, N_i) > 0$
- (A6) Finite cluster size:  $\mathbb{P}(N_i \leq n_{\sf max}) = 1$  for some  $n_{\sf max} \in \mathbb{N}$

### **Identifiability**

• Using Full data:  $\Psi(\tau; \mathbf{w}) = \mathbb{E}\left\{\sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathbf{w}(\mathbf{a}_i, \mathbf{X}_i, N_i)^\top \left[\mathbb{P}\left(T_{ij} \leq \tau | \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i\right)\right]_{j=1}^{N_i}\right\}$ 

# Assumptions and Identifiability

- (A1) Consistency:  $T_{ij} = \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} T_{ij}(\mathbf{a}_i) \mathbb{1}(\mathbf{A}_i = \mathbf{a}_i)$
- (A2) Conditional Exchangeability:  $T_{ij}(\mathbf{a}_i) \perp \!\!\! \perp \mathbf{A}_i | \mathbf{X}_i, N_i \text{ for all } \mathbf{a}_i \in \mathcal{A}(N_i)$
- (A3) Positivity:  $\mathbb{P}(A_{ij}=1|\mathbf{X}_i,N_i)\in(c,1-c)$  for some  $c\in(0,1)$
- (A4) Conditional Independent Censoring:  $T_{ij} \perp \!\!\! \perp C_{ij} | \mathbf{A}_i, \mathbf{X}_i, N_i$
- (A5) Noncensoring Positivity:  $\mathbb{P}(\Delta_{ij} = 1 | \mathbf{A}_i, \mathbf{X}_i, N_i) > 0$
- (A6) Finite cluster size:  $\mathbb{P}(N_i \leq n_{\sf max}) = 1$  for some  $n_{\sf max} \in \mathbb{N}$

### **Identifiability**

- Using Full data:  $\Psi(\tau; \mathbf{w}) = \mathbb{E}\left\{\sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathbf{w}(\mathbf{a}_i, \mathbf{X}_i, N_i)^\top \left[\mathbb{P}\left(T_{ij} \leq \tau | \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i\right)\right]_{j=1}^{N_i}\right\}$
- Using Observed data:

$$\Psi(\tau; \mathbf{w}) = \mathbb{E}\left[\left.\sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathbf{w}(\mathbf{a}_i, \mathbf{X}_i, N_i)^\top \left[\mathbb{E}\left\{\frac{\Delta_{ij}\mathbb{1}(Y_{ij} \leq \tau)}{S_{ij}^C(Y_{ij}|\mathbf{A}_i, \mathbf{X}_i, N_i)}\middle| \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i\right\}\right]_{i=1}^{N_i}\right]$$

• EIF of  $\Psi(\tau; \mathbf{w})$  using full data:

$$\varphi^{F,*}(\tau; \mathbf{Z}_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} \varphi_{ij}^{F,*}(\tau; \mathbf{Z}_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} \left[ \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathsf{OR}_{ij}(\tau; \mathbf{Z}_i, \mathbf{a}_i) + \mathsf{BC}_{ij}(\tau; \mathbf{Z}_i) - \Psi(\tau; \mathbf{w}) \right]$$

• EIF of  $\Psi(\tau; \mathbf{w})$  using full data:

$$\varphi^{F,*}(\tau; \mathbf{Z}_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} \varphi_{ij}^{F,*}(\tau; \mathbf{Z}_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} \left[ \sum_{\mathbf{a}_i \in \mathcal{A}(N_i)} \mathsf{OR}_{ij}(\tau; \mathbf{Z}_i, \mathbf{a}_i) + \mathsf{BC}_{ij}(\tau; \mathbf{Z}_i) - \Psi(\tau; \mathbf{w}) \right]$$

$$\mathsf{OR}_{ij}(\tau; \mathbf{Z}_i, \mathbf{a}_i) = \left\{ w_j(\mathbf{a}_i, \mathbf{X}_i, N_i) + \phi_j(\mathbf{A}_i, \mathbf{X}_i, N_i; \mathbf{a}_i) \right\} F_{ij}^T(\tau | \mathbf{A}_i = \mathbf{a}_i, \mathbf{X}_i, N_i),$$

$$\mathsf{BC}_{ij}(\tau; \mathbf{Z}_i) = \frac{w_j(\mathbf{A}_i, \mathbf{X}_i, N_i)}{\mathbb{P}(\mathbf{A}_i | \mathbf{X}_i, N_i)} \left\{ \mathbb{1}(T_{ij} \leq \tau) - F_{ij}^T(\tau | \mathbf{A}_i, \mathbf{X}_i, N_i) \right\}$$

• EIF of  $\Psi(\tau; \mathbf{w})$  using full data:

$$\varphi^{F,*}(\tau; \mathbf{Z}_{i}) = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}^{F,*}(\tau; \mathbf{Z}_{i}) = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left[ \sum_{\mathbf{a}_{i} \in \mathcal{A}(N_{i})} \mathsf{OR}_{ij}(\tau; \mathbf{Z}_{i}, \mathbf{a}_{i}) + \mathsf{BC}_{ij}(\tau; \mathbf{Z}_{i}) - \Psi(\tau; \mathbf{w}) \right]$$

$$\mathsf{OR}_{ij}(\tau; \mathbf{Z}_{i}, \mathbf{a}_{i}) = \left\{ w_{j}(\mathbf{a}_{i}, \mathbf{X}_{i}, N_{i}) + \phi_{j}(\mathbf{A}_{i}, \mathbf{X}_{i}, N_{i}; \mathbf{a}_{i}) \right\} F_{ij}^{T}(\tau | \mathbf{A}_{i} = \mathbf{a}_{i}, \mathbf{X}_{i}, N_{i}),$$

$$\mathsf{BC}_{ij}(\tau; \mathbf{Z}_{i}) = \frac{w_{j}(\mathbf{A}_{i}, \mathbf{X}_{i}, N_{i})}{\mathbb{P}(\mathbf{A}_{i} | \mathbf{X}_{i}, N_{i})} \left\{ \mathbb{1}(T_{ij} \leq \tau) - F_{ij}^{T}(\tau | \mathbf{A}_{i}, \mathbf{X}_{i}, N_{i}) \right\}$$

$$\Longrightarrow \widehat{\Psi}^{F}(\tau; \mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \varphi^{F}(\tau; \mathbf{Z}_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}^{F}(\tau; \mathbf{Z}_{i})$$

• EIF of  $\Psi(\tau; \mathbf{w})$  using full data:

$$\varphi^{F,*}(\tau; \mathbf{Z}_{i}) = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}^{F,*}(\tau; \mathbf{Z}_{i}) = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left[ \sum_{\mathbf{a}_{i} \in \mathcal{A}(N_{i})} \mathsf{OR}_{ij}(\tau; \mathbf{Z}_{i}, \mathbf{a}_{i}) + \mathsf{BC}_{ij}(\tau; \mathbf{Z}_{i}) - \Psi(\tau; \mathbf{w}) \right]$$

$$\mathsf{OR}_{ij}(\tau; \mathbf{Z}_{i}, \mathbf{a}_{i}) = \left\{ w_{j}(\mathbf{a}_{i}, \mathbf{X}_{i}, N_{i}) + \phi_{j}(\mathbf{A}_{i}, \mathbf{X}_{i}, N_{i}; \mathbf{a}_{i}) \right\} F_{ij}^{T}(\tau | \mathbf{A}_{i} = \mathbf{a}_{i}, \mathbf{X}_{i}, N_{i}),$$

$$\mathsf{BC}_{ij}(\tau; \mathbf{Z}_{i}) = \frac{w_{j}(\mathbf{A}_{i}, \mathbf{X}_{i}, N_{i})}{\mathbb{P}(\mathbf{A}_{i} | \mathbf{X}_{i}, N_{i})} \left\{ \mathbb{1}(T_{ij} \leq \tau) - F_{ij}^{T}(\tau | \mathbf{A}_{i}, \mathbf{X}_{i}, N_{i}) \right\}$$

$$\Longrightarrow \widehat{\Psi}^{F}(\tau; \mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \varphi^{F}(\tau; \mathbf{Z}_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}^{F}(\tau; \mathbf{Z}_{i})$$

• EIF of  $w(\mathbf{a}, \mathbf{x}, n)$ :  $\varphi_{w(\mathbf{a}, \mathbf{x}, n)}^*(\mathbf{O}_i) = \{\mathbb{1}(\mathbf{X}_i = \mathbf{x}, N_i = n)/d\mathbb{P}(\mathbf{x}, n)\}\phi(\mathbf{A}_i, \mathbf{X}_i, N_i; \mathbf{a})$ 

Under censoring, employ IPCW and robust correction accounting for the censoring process

$$0 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_i} \sum_{j=1}^{N_i} \left[ \frac{\Delta_{ij}}{S_{ij}^{\mathcal{C}}(Y_{ij} | \mathbf{A}_i, \mathbf{X}_i, N_i)} \varphi_{ij}^{\mathcal{F},*}(\tau; \mathbf{Z}_i) + \int_{0}^{\infty} \frac{\mathbb{E}\left\{\varphi_{ij}^{\mathcal{F},*}(\tau; \mathbf{Z}_i) | T_{ij} \geq r, \mathbf{A}_i, \mathbf{X}_i, N_i\right\}}{S_{ij}^{\mathcal{C}}(r | \mathbf{A}_i, \mathbf{X}_i, N_i)} dM_{ij}^{\mathcal{C}}(r) \right]$$

• Under censoring, employ IPCW and robust correction accounting for the censoring process

$$0 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left[ \frac{\Delta_{ij}}{S_{ij}^{C}(Y_{ij}|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} \varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i}) + \int_{0}^{\infty} \frac{\mathbb{E}\{\varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i})|T_{ij} \geq r,\mathbf{A}_{i},\mathbf{X}_{i},N_{i}\}}{S_{ij}^{C}(r|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} dM_{ij}^{C}(r) \right]$$

$$\implies \widehat{\Psi}(\tau;\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \varphi(\tau;\mathbf{O}_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}(\tau;\mathbf{O}_{i})$$

Under censoring, employ IPCW and robust correction accounting for the censoring process

$$0 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left[ \frac{\Delta_{ij}}{S_{ij}^{C}(Y_{ij}|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} \varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i}) + \int_{0}^{\infty} \frac{\mathbb{E}\{\varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i})|T_{ij} \geq r,\mathbf{A}_{i},\mathbf{X}_{i},N_{i}\}}{S_{ij}^{C}(r|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} dM_{ij}^{C}(r) \right]$$

$$\implies \widehat{\Psi}(\tau;\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \varphi(\tau;\mathbf{O}_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}(\tau;\mathbf{O}_{i})$$

$$\varphi_{ij}(\tau;\mathbf{O}_{i}) = \sum_{\mathbf{a}_{i} \in \mathcal{A}(N_{i})} \mathsf{OR}_{ij}(\tau;\mathbf{O}_{i},\mathbf{a}_{i}) + \mathsf{IPCW-BC}_{ij}(\tau;\mathbf{O}_{i}) + \mathsf{AUG}_{ij}(\tau;\mathbf{O}_{i})$$

• Under censoring, employ IPCW and robust correction accounting for the censoring process

$$0 = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left[ \frac{\Delta_{ij}}{S_{ij}^{C}(Y_{ij}|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} \varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i}) + \int_{0}^{\infty} \frac{\mathbb{E}\left\{\varphi_{ij}^{F,*}(\tau;\mathbf{Z}_{i})|T_{ij} \geq r,\mathbf{A}_{i},\mathbf{X}_{i},N_{i}\right\}}{S_{ij}^{C}(r|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} dM_{ij}^{C}(r) \right]$$

$$\implies \widehat{\Psi}(\tau;\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \varphi(\tau;\mathbf{O}_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi_{ij}(\tau;\mathbf{O}_{i})$$

$$\varphi_{ij}(\tau;\mathbf{O}_{i}) = \sum_{\mathbf{a}_{i} \in \mathcal{A}(N_{i})} \mathsf{OR}_{ij}(\tau;\mathbf{O}_{i},\mathbf{a}_{i}) + \mathsf{IPCW-BC}_{ij}(\tau;\mathbf{O}_{i}) + \mathsf{AUG}_{ij}(\tau;\mathbf{O}_{i})$$

$$\mathsf{OR}_{ij}(\tau;\mathbf{O}_{i},\mathbf{a}_{i}) = \left\{w_{j}(\mathbf{a}_{i},\mathbf{X}_{i},N_{i}) + \phi_{j}(\mathbf{A}_{i},\mathbf{X}_{i},N_{i};\mathbf{a}_{i})\right\} F_{ij}^{T}(\tau|\mathbf{A}_{i} = \mathbf{a}_{i},\mathbf{X}_{i},N_{i}),$$

$$\mathsf{IPCW-BC}_{ij}(\tau;\mathbf{O}_{i}) = \frac{w_{j}(\mathbf{A}_{i},\mathbf{X}_{i},N_{i})}{\mathbb{P}(\mathbf{A}_{i}|\mathbf{X}_{i},N_{i})} \left\{\frac{\Delta_{ij}}{S_{ij}^{C}(Y_{ij}|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} \mathbb{I}(Y_{ij} \leq \tau) - F_{ij}^{T}(\tau|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})\right\},$$

$$\mathsf{AUG}_{ij}(\tau;\mathbf{O}_{i}) = \frac{w_{j}(\mathbf{A}_{i},\mathbf{X}_{i},N_{i})}{\mathbb{P}(\mathbf{A}_{i}|\mathbf{X}_{i},N_{i})} \int_{0}^{\tau} \frac{S_{ij}^{T}(r|\mathbf{A}_{i},\mathbf{X}_{i},N_{i}) - S_{ij}^{T}(\tau|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})}{S_{i}^{C}(r|\mathbf{A}_{i},\mathbf{X}_{i},N_{i})} dM_{ij}^{C}(r)$$

JSM, 5 Aug 2024 9

#### Nuisance functions

- Nuisance functions  $\eta = (\mathbf{F}^T, \mathbf{S}^C, H, \mathbf{w}, \phi)$ :
  - 1. Event time distribution function  $\mathbf{F}^{T}(r|\mathbf{a}_{i},\mathbf{x}_{i},n_{i}) = \left[F_{ij}^{T}(r|\mathbf{A}_{i}=\mathbf{a}_{i},\mathbf{X}_{i}=\mathbf{x}_{i},N_{i}=n_{i})\right]_{i=1}^{n_{i}}$ 2. Censoring time survival function  $\mathbf{S}^{C}(r|\mathbf{a}_{i},\mathbf{x}_{i},n_{i}) = \left[S_{ij}^{C}(r|\mathbf{A}_{i}=\mathbf{a}_{i},\mathbf{X}_{i}=\mathbf{x}_{i},N_{i}=n_{i})\right]_{i=1}^{n_{i}}$

  - 3. Cluster treatment probability  $H(\mathbf{a}_i, \mathbf{x}_i, n_i) = \mathbb{P}(\mathbf{A}_i = \mathbf{a}_i | \mathbf{X}_i = \mathbf{x}_i, N_i = n_i)$
  - 4. Weight function  $\mathbf{w}(\mathbf{a}_i, \mathbf{x}_i, n_i)$
  - 5. EIF of the weight function  $\phi(\mathbf{a}_i', \mathbf{x}_i, n_i; \mathbf{a}_i)$
- $\mathbf{F}^T \& \mathbf{S}^C$ : Random survival forest (Ishwaran et al. 2023)
- H: Random effect Bayesian additive regression trees (Chipman et al. 2010, Dorie 2022)

### Sample Splitting Estimator



#### Theoretical results

#### **Theorem**

Under the mild conditions s.t nuisance function estimators have convergence rate of  $m^{-1/4}$ , then  $\sqrt{m}\{\widehat{\Psi}(\tau;\mathbf{w}) - \Psi(\tau;\mathbf{w})\}/\widehat{\sigma}(\tau;\mathbf{w}) \overset{d}{\to} N(0,1)$ , where  $\widehat{\sigma}(\tau;\mathbf{w}) \overset{p}{\to} \sigma(\tau;\mathbf{w})$ . Also, if there is no censoring,  $\sigma(\tau;\mathbf{w})^2 = \mathrm{Var}\{\varphi^{F,*}(\tau;\mathbf{O},\boldsymbol{\eta})\}$  is the nonparametric efficiency bound of  $\Psi(\tau;\mathbf{w})$ .

#### Sketch of proof)

$$\begin{split} \widehat{\Psi}(\tau; \mathbf{w}) - \Psi(\tau; \mathbf{w}) &= \frac{1}{K} \sum_{k=1}^{K} \left[ (\mathbb{P}_{m}^{k} - \mathbb{P}) \varphi(\tau; \mathbf{O}; \boldsymbol{\eta}) + (\mathbb{P}_{m}^{k} - \mathbb{P}) \left\{ \varphi(\tau; \mathbf{O}, \widehat{\boldsymbol{\eta}}_{(k)}) - \varphi(\tau; \mathbf{O}, \boldsymbol{\eta}) \right\} \right] \\ &+ \mathbb{P} \left\{ \varphi(\tau; \mathbf{O}, \widehat{\boldsymbol{\eta}}_{(k)}) - \varphi(\tau; \mathbf{O}, \boldsymbol{\eta}) \right\} \right] \end{split}$$

- $(\mathbb{P}_m^k \mathbb{P})\varphi(\tau; \mathbf{O}; \boldsymbol{\eta}) \sim N(0, \sigma^2(\tau; \mathbf{w}))$ : CLT
- $\bullet \ \ (\mathbb{P}^k_m \mathbb{P}) \big\{ \varphi(\tau; \mathbf{O}, \widehat{\boldsymbol{\eta}}_{(k)}) \varphi(\tau; \mathbf{O}, \boldsymbol{\eta}) \big\} = O_{\mathbb{P}} \left( m_k^{-1/2} || \varphi(\tau; \mathbf{O}, \widehat{\boldsymbol{\eta}}_{(k)}) \varphi(\tau; \mathbf{O}, \boldsymbol{\eta}) || \right)$
- $\bullet \ \mathbb{P}\big\{\varphi(\tau;\mathbf{O},\widehat{\boldsymbol{\eta}}_{(k)}) \varphi(\tau;\mathbf{O},\boldsymbol{\eta})\big\} = O_{\mathbb{P}}\left(r_{\mathbf{w}}^2 + r_{\mathbf{F}^{T}}(r_{\mathcal{H}} + r_{\boldsymbol{\phi}} + r_{\mathbf{S}^{C}})\right)$

#### Theoretical results

#### Theorem

Under the mild conditions,  $\sqrt{m}\{\widehat{\Psi}(\cdot;\mathbf{w}) - \Psi(\cdot;\mathbf{w})\} \rightsquigarrow \mathbb{G}(\cdot)$  in  $\ell^{\infty}([0,\tau])$  as  $m \to \infty$ , where  $\ell^{\infty}([0,\tau])$  is a function space with the finite supremum norm over  $[0,\tau]$ , and  $\mathbb{G}(\cdot)$  is a mean zero Gaussian process with covariance function  $\mathbb{E}\{\mathbb{G}(s)\mathbb{G}(t)\} = \text{Cov}\{\varphi(s;\mathbf{O},\eta),\varphi(t;\mathbf{O},\eta)\}$ .

| Policy | Consistency                                            | Asymptotic<br>Normality                                              | Consistent Variance<br>Estimator                | Notes                                   |  |
|--------|--------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--|
| Type B | $r_{\lambda^T}(r_H + r_{S^C}) = o(1)$                  | $r_{\lambda^{T}}(r_{H}+r_{S^{C}})=o(m^{-1/2})$                       | $r_H = r_{\lambda^T} = r_{\mathbf{S}^C} = o(1)$ | $\phi=$ 0, Doubly Robust                |  |
| ТРВ    | $r_H = o(1),$<br>$r_{\lambda^T}(r_H + r_{S^C}) = o(1)$ | $r_H = o(m^{-1/4}),$<br>$r_{\lambda^T}(r_H + r_{S^C}) = o(m^{-1/2})$ | $r_H = r_{\lambda^T} = r_{S^C} = o(1)$          | Consistent <i>H</i> estimation required |  |

#### **Simulations**

- D = 1000 simulations, each consisted of m = 200 clusters
- $N_i \stackrel{iid}{\sim} Unif\{5, 6, \dots, 20\}, i = 1, \dots, m$
- $X_{i,c1}, \ldots, X_{i,c5} \stackrel{iid}{\sim} \text{Unif}(0,1)$ : cluster-level covariates
- $X_{ij1}, \ldots, X_{ij5} \stackrel{iid}{\sim} \text{Unif}(0,1), \ X_{ij6}, \ldots, X_{ij10} \stackrel{iid}{\sim} \text{Bernoulli}(0.5)$ : individual-level covariates
- $A_{ij} \sim \text{Bernoulli}(\pi_{ij})$ : treatment status,

$$\pi_{ij} = \Phi\big(0.1 + 0.2X_{ij1}^2 + 0.2\max\{X_{ij2}, 0.3\}X_{ij6} + 0.3\mathbb{1}(X_{i,c1} > 0.5) + b_i\big), \ b_i \stackrel{iid}{\sim} \mathsf{N}(0, 0.5)$$

- Event time  $T_{ij} \sim \mathsf{Gamma}(0.5A_{ij} + 0.4\overline{\mathbf{A}}_{i(-j)}X_{ij1} + 0.2A_{ij}\overline{\mathbf{A}}_{i(-j)} + 0.2X_{ij2} + 0.4X_{i,c1}, 2)$
- Censoring time  $C_{ij} = X_{ij7}C_{ij,\mathsf{Unif}} + (1-X_{ij7})C_{ij,\mathsf{Poi}}$
- Type B policy with  $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$  at time  $\tau = 0.3$

### **Simulations**



Figure 1: Finite sample performance of the proposed SBS-NSS, SBS-PSS, and Chakladar IPCW estimators for Type B policy; Bias: average bias of estimates, RMSE: root mean squared error, Cov: 95% CI coverage (%)

JSM, 5 Aug 2024 15

## Application to Cholera Vaccine Study in Bangladesh

- Prior research suggests possible interference within baris, i.e., clusters of patrilineally related households, but none have utilized data-adaptive methods.
- m = 5,625 baris, size of  $N_i = 2,...,239$ , total 112,154 individuals.
- Vaccine rate: 45% (48,763 / 112,154)
- Cholera incident rate: 0.4% (458 / 112,154)
- Mean event time: 256 days (IQR: [183, 364])
- Mean censoring time: 412 days (IQR: [397, 431])
- How does cholera incidence change if every individual is vaccinated with a probability of 0.6? [Type B policy]
- How does cholera incidence change if at least 30% of individuals within a bari are vaccinated? [TPB policy]

Application to Cholera Vaccine Study in Bangladesh

### Application to Cholera Vaccine Study in Bangladesh



#### Discussion

- Nonparametric methods are developed which can be used to draw inference about treatment effects in the presence of confounding, clustered interference, and right censoring, and can be applied to any treatment allocation policy, allowing for units' propensity to vary by their covariates and are not based on parametric model
- Proposed nonparametric sample splitting estimators make use of semiparametric efficiency theory and a variety of data-adaptive techniques, and therefore are robust to model mis-specification compared to parametric estimators.
- Application to the cholera vaccine study suggests that vaccination decreases the risk of cholera, and unvaccinated individuals may receive a protective spillover effect from vaccinated individuals. The direct vaccine effect is large when the vaccine coverage is low, while the spillover effect from vaccinated to unvaccinated individuals is large when the vaccine coverage is high.