Mathématiques

Devoir de contrôle n° 2

1er année secondaire

Durée : 45 minutes

Prof: Mhamdi Abderrazek

Lycée Thélepte

Novembre 2015

.Exercice n°1 (3points).....

Pour chacun des énoncés suivants une seule des trois propositions est juste, on demande de

l'indiquer sans aucune justification :

1). $\sqrt{36} + \sqrt{64} =$	a).√100	b).√196	c).√2304
$ 2). \pi-1 + 1-\pi =$	a).2π	b).0	c).2(π -1)
$3).\sqrt{8} + \sqrt{18} - \sqrt{50} =$	a).0	b). $3\sqrt{2}$	c) $5\sqrt{2}$

.Exercice n°2 (8points).....

Soit
$$a = 3\sqrt{20} + 2\sqrt{45} - \sqrt{605} + 2$$
 et $b = \sqrt{180} - \sqrt{125} - \frac{\sqrt{15}.\sqrt{56}}{\sqrt{21}.\sqrt{10}}$

- 1).a).Montrer que $a = \sqrt{5} + 2$ et que $b = \sqrt{5} 2$.
 - b). Montrer que a et b sont inverses.
- 2).a).Calculer $\frac{1}{b}et\frac{1}{a}$.
 - b). En déduire que $\sqrt{\frac{1}{\sqrt{5}-2} - \frac{1}{\sqrt{5}+2}}$ est un entier naturel.
- 3). Calculer \boldsymbol{a}^2 et \boldsymbol{b}^2 et en déduire que $\sqrt{(\sqrt{5}+2)^2+(\sqrt{5}-2)^2}=3\sqrt{2}$.

Page 1 | 4

......Exercice n°3 (9points).....

Soit ABC un triangle tel que AB=3cm; AC=4,5cm et BC=6cm.

Soit E le point de [AB] tel que AE=1cm.

La parallèle à (BC) passant par E coupe (AC) en F.

- 1).a).Faire une figure.
 - b).Calculer AF et EF.
- 2).a).Placer les points I et J les milieux respectifs des segments [EB] et [FC].
 - b).Montrer que IJ=4cm.
- 3).a).Construire le point M le symétrique du point E par rapport au point B.
 - b). Construire le point N le symétrique du point F par rapport au point C.
 - c). Calculer AM et AN et en déduire que les droites (EF) et (MN) sont parallèles.

Bon travail

Mathématiques

Novembre 2015

Lycée Thélepte

Correction du devoir de contrôle n° 2

1er année secondaire

Prof: Mhamdi Abderrazek

Exercice n°1

1	2	3
b	С	a

Exercice n°2

1).a).
$$\mathbf{a} = 3\sqrt{20} + 2\sqrt{45} - \sqrt{605} + 2 = 3\sqrt{4x5} + 2\sqrt{9x5} - \sqrt{121x5} + 2$$

 $= 3\sqrt{4} \cdot \sqrt{5} + 2\sqrt{9} \cdot \sqrt{5} - \sqrt{121} \cdot \sqrt{5} + 2 = 3x2\sqrt{5} + 2x3\sqrt{5} - 11\sqrt{5} + 2$
 $= (6+6-11)\sqrt{5} + 2 = \sqrt{5} + 2$.
 $\mathbf{b} = \sqrt{180} - \sqrt{125} - \frac{\sqrt{15} \cdot \sqrt{56}}{\sqrt{21} \cdot \sqrt{10}} = \mathbf{b} = \sqrt{36x5} - \sqrt{25x5} - \sqrt{\frac{15x56}{21x10}} = \sqrt{36} \cdot \sqrt{5} - \sqrt{25} \cdot \sqrt{5} - \sqrt{4}$
 $= 6\sqrt{5} - 5\sqrt{5} - 2 = \sqrt{5} - 2$.

b).On a
$$a \cdot b = (\sqrt{5} + 2) \cdot (\sqrt{5} - 2) = \sqrt{5}^2 - 2^2 = 5 - 4 = 1$$
 signifie a et b sont **inverses**.

2).a).
$$\frac{1}{b} = a = \sqrt{5} + 2$$
 et $\frac{1}{a} = b = \sqrt{5} - 2$.

b).
$$\sqrt{\frac{1}{\sqrt{5}-2} - \frac{1}{\sqrt{5}+2}} = \sqrt{\frac{1}{b} - \frac{1}{a}} = \sqrt{a-b} = \sqrt{(\sqrt{5}+2) - (\sqrt{5}-2)} = \sqrt{4} = 2 \in \mathbb{N}$$

3).*).
$$\boldsymbol{a}^2 = (\sqrt{5} + 2)^2 = \sqrt{5}^2 + 2x^2 \sqrt{5} + 2^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5}$$
.

*).
$$b^2 = (\sqrt{5} - 2)^2 = \sqrt{5}^2 - 2x^2 \sqrt{5} + 2^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5}$$
.

*).
$$\sqrt{(\sqrt{5}+2)^2 + (\sqrt{5}-2)^2} = \sqrt{a^2 + b^2} = \sqrt{(9+4\sqrt{5}) + (9-4\sqrt{5})} = \sqrt{18}$$

= $\sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}$.

Exercice n°3

- 1).b).Dans le triangle ABC on a $E \in (AB)$ et $F \in (AC)$ et (EF)//(BC) alors d'après théorème de Thalès on a $\frac{AE}{AB} = \frac{AF}{AC} = \frac{EF}{BC}$ donc $\mathbf{AF} = \frac{AE.AC}{AB} = \mathbf{1,5cm}$ et $\mathbf{EF} = \frac{AE.BC}{AB} = \mathbf{2cm}$.
- 2).b).On a EFCB est un trapèze de bases [EF]et[BC] et I=E*B et J=F*C alors d'après théorème de Thalès on a $\mathbf{IJ} = \frac{EF+BC}{2} = \frac{2+6}{2} = \frac{8}{2} = \mathbf{4cm}$.
- 3).c).*).**AM**=AE+EB+BM=AE+2.EB=1+2x2=**5cm** (car EB=BM).
 - *). **AN**=AF+FC+CN=AF+2.FC=1,5+2x3=**7,5cm** (car FC=CN).
 - *). Dans le triangle AMN on a $E \in [AM]$ et $F \in [AN]$ et $\frac{AE}{AM} = \frac{AF}{AN}$ ($car \frac{AE}{AM} = \frac{1}{5} = 0.2$ et $\frac{AF}{AN} = \frac{1.5}{7.5} = 0.2$) donc d'après réciproque du théorème de Thalès

On a (EF)//(MN).