MODULE 3

FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION

LECTURES 12-16

Topics

- 3.1 FUNCTION OF A RANDOM VARIABLE
- 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE
- 3.3 EXPECTATION AND MOMENTS OF A RANDOM VARIABLE
- 3.4 PROPERTIES OF RANDOM VARIABLES HAVING THE SAME DISTRIBUTION
- 3.5 PROBABILITY AND MOMENT INEQUALITIES
 - 3.5.1 Markov Inequality
 - 3.5.2 Chebyshev Inequality
 - 3.5.3 Jensen Inequality
 - 3.5.4 AM-GM-HM inequality
- 3.6 DESCRIPTIVE MEASURES OF PROBABILITY DISTRIBUTIONS
 - 3.6.1 Measures of Central Tendency
 - 3.6.1.1 Mean
 - 3.6.1.2 *Median*
 - 3.6.1.3 *Mode*
 - 3.6.2 Measures of Dispersion
 - 3.6.2.1 Standard Deviation
 - 3.6.2.2 Mean Deviation
 - 3.6.2.3 Quartile Deviation
 - 3.6.2.4 Coefficient of Variation

3.7 MEASURES OF SKEWNESS

3.8 MEASURES OF KURTOSIS

MODULE 3

FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION

LECTURE 12

Topics

3.1 FUNCTION OF A RANDOM VARIABLE

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

3.1 FUNCTION OF A RANDOM VARIABLE

Let (Ω, \mathcal{F}, P) be a probability space and let X be random variable defined on (Ω, \mathcal{F}, P) . Further let $h: \mathbb{R} \to \mathbb{R}$ be a given function and let $Z: \Omega \to \mathbb{R}$ be a function of random variable X, defined by $Z(\omega) = h(X(\omega)), \omega \in \Omega$. In many situations it may be of interest to study the probabilistic properties of Z, which is a function of random variable X. Since the variable Z takes values in \mathbb{R} , to study the probabilistic properties of Z, it is necessary that $Z^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}_1$, i.e., Z is a random variable. Throughout, for a positive integer k, \mathbb{R}^k will denote the k-dimensional Euclidean space and \mathcal{B}_k will denote the Borel sigmafield in \mathbb{R}^k .

Definition 1.1

Let k and m be positive integers. A function $h: \mathbb{R}^k \to \mathbb{R}^m$ is said to be a Borel function if $h^{-1}(B) \in \mathcal{B}_k$, $\forall B \in \mathcal{B}_m$.

The following lemma will be useful in deriving conditions on the function $h: \mathbb{R} \to \mathbb{R}$ so that $Z: \Omega \to \mathbb{R}$, defined by $Z(\omega) = h(X(\omega)), \omega \in \Omega$, is a random variable. Recall that, for a function $\Psi: D_1 \to D_2$ and $A \subseteq D_2, \Psi^{-1}(A) = \{\omega \in D_1: \Psi(\omega) \in A\}$.

Lemma 1.1

Let $X: \Omega \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ be given functions. Define $Z: \Omega \to \mathbb{R}$ by $Z(\omega) = h(X(\omega)), \omega \in \Omega$. Then, for any $B \subseteq \mathbb{R}$,

$$Z^{-1}(B) = X^{-1}(h^{-1}(B)).$$

Proof. Fix $B \subseteq \mathbb{R}$. Note that $h^{-1}(B) = \{x \in \mathbb{R}: h(x) \in B\}$. Clearly

$$h(X(\omega)) \in B \Leftrightarrow X(\omega) \in h^{-1}(B).$$

Therefore,

$$Z^{-1}(B) = \{\omega \in \Omega : Z(\omega) \in B\}$$
$$= \{\omega \in \Omega : h(X(\omega)) \in B\}$$
$$= \{\omega \in \Omega : X(\omega) \in h^{-1}(B)\}$$
$$= X^{-1}(h^{-1}(B)). \blacksquare$$

Theorem 1.1

Let X be a random variable defined on a probability space (Ω, \mathcal{F}, P) and let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function. Then the function $Z: \Omega \to \mathbb{R}$, defined by $Z(\omega) = h(X(\omega)), \omega \in \Omega$, is a random variable.

Proof. Fix $B \in \mathcal{B}_1$. Since h is a Borel function, we have $h^{-1}(B) \in \mathcal{B}_1$. Now using the fact that X is a random variable it follows that

$$Z^{-1}(B) = X^{-1}(h^{-1}(B)) \in \mathcal{F}.$$

This proves the result.

Remark 1.1

(i) Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function. According to a standard result in calculus inverse image of any open interval $(a, b), -\infty \le a < b \le \infty$, under continuous function h is a countable union of disjoint open intervals. Since \mathcal{B}_1 contains all open intervals and is closed under countable unions it follows that $h^{-1}((a, b)) \in \mathcal{B}_1$, whenever $-\infty \le a < b \le \infty$. Now on employing the

arguments similar to the one used in proving Theorem 1.1, Module 2 (also see Theorem 1.2, Module 2) we conclude that $h^{-1}(B) \in \mathcal{B}_1$, $\forall B \in \mathcal{B}_1$. It follows that any continuous function $h: \mathbb{R} \to \mathbb{R}$ is a Borel function and thus, in view of Theorem 1.1, any continuous function of a random variable is a random variable. In particular if X is a random variable then X^2 , |X|, $\max(X, 0)$, $\sin X$ and $\cos X$ are random variables.

(ii) Let $h: \mathbb{R} \to \mathbb{R}$ be a strictly monotone function. Then, for $-\infty \le a < b \le \infty$, $h^{-1}(a,b)$ is a countable union of intervals and therefore $h^{-1}(a,b) \in \mathcal{B}_1$, i.e., h is a Borel function. It follows that if X is a random variable and if $h: \mathbb{R} \to \mathbb{R}$ is strictly monotone then h(X) is a random variable.

A random variable X takes values in various Borel sets according to some probability law called the probability distribution of random variable X. Clearly the probability distribution of a random variable of absolutely continuous/discrete type is described by its distribution function (d.f.) and/or by its probability density function/probability mass function (p.d.f/p.m.f.). For a given Borel function $h: \mathbb{R} \to \mathbb{R}$, in the following section, we will derive probability distribution of h(X) using the probability distribution of random variable X.

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

In our future discussions when we refer to a random variable, unless otherwise stated, it will be either of discrete type or of absolutely continuous type. The probability distribution of a discrete type random variable will be referred to as a discrete (probability) distribution and the probability distribution of a random variable of absolutely continuous type will be referred to as an absolutely continuous (probability) distribution.

The following theorem deals with discrete probability distributions.

Theorem 2.1

Let X be a random variable of discrete type with support S_X and p.m.f. $f_X(\cdot)$. Let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function and let $Z: \Omega \to \mathbb{R}$ be defined by $Z(\omega) = h(X(\omega)), \omega \in \Omega$. Then Z is a random variable of discrete type with support $S_Z = \{h(x): x \in S_X\}$ and p.m.f.

$$f_{Z}(z) = \begin{cases} \sum_{x \in A_{z}} f_{X}(x), & \text{if } z \in S_{Z} \\ 0, & \text{otherwise} \end{cases}$$
$$= \begin{cases} P(\{X \in A_{z}\}), & \text{if } z \in S_{Z} \\ 0, & \text{otherwise}' \end{cases}$$

where $A_z = \{x \in S_X : h(x) = z\}.$

Proof. Since h is a Borel function, using Theorem 1.1, it follows that Z is a random variable. Also X is of discrete implies that S_X is countable which further implies that S_Z is countable. Fix $z_0 \in S_Z$, so that $z_0 = h(x_0)$ for some $x_0 \in S_X$.

Then

$$\{X = x_0\} = \{\omega \in \Omega : X(\omega) = x_0\} \subseteq \{\omega \in \Omega : h(X(\omega)) = h(x_0)\}$$
$$= \{h(X) = h(x_0)\}$$
$$= \{Z = z_0\},$$

and

$$\{X \in S_X\} = \{\omega \in \Omega : X(\omega) \in S_X\} \subseteq \{\omega \in \Omega : h(X(\omega)) \in S_Z\}$$
$$= \{h(X) \in S_Z\}$$
$$= \{Z \in S_Z\}.$$

Therefore,

$$P({Z = z_0}) \ge P({X \in x_0}) > 0$$
, (since $x_0 \in S_X$),

and
$$P(\{Z \in S_Z\}) \ge P(\{X \in S_X\}) = 1$$
.

It follows that S_Z is countable, $P(\{Z = z\}) > 0$, $\forall z \in S_Z$ and $P(\{Z \in S_Z\}) = 1$, i. e., Z is a discrete type random variable with support S_Z .

Moreover, for $z \in S_Z$,

$$P(\lbrace Z = z \rbrace) = P(\lbrace \omega \in \Omega : h(X(\omega)) = z \rbrace)$$

$$= \sum_{x \in A_z} P(\lbrace X = x \rbrace)$$

$$= \sum_{x \in A_z} f_X(x)$$

$$= P(\lbrace X \in A_z \rbrace).$$

Hence the result follows. ■

The following corollary is an immediate consequence of the above theorem.

Corollary 2.1

Under the notation and assumptions of Theorem 2.1, suppose that $h: \mathbb{R} \to \mathbb{R}$ is one-one with inverse function $h^{-1}: D \to \mathbb{R}$, where $D = \{h(x): x \in \mathbb{R}\}$. Then Z is a discrete type random variable with support $S_z = \{h(x): x \in S_X\}$ and p.m.f.

$$f_Z(z) = \begin{cases} f_X(h^{-1}(z)), & \text{if } z \in S_Z \\ 0, & \text{otherwise} \end{cases}$$
$$= \begin{cases} P(\{X = h^{-1}(z)\}), & \text{if } z \in S_Z \\ 0, & \text{otherwise} \end{cases} \cdot \blacksquare$$

Example 2.1

Let *X* be a random variable with p.m.f.

$$f_X(x) = \begin{cases} \frac{1}{7}, & \text{if } x \in \{-2, -1, 0, 1\} \\ \frac{3}{14}, & \text{if } x \in \{2, 3\} \\ 0, & \text{otherwise} \end{cases}.$$

Show that $Z = X^2$ is a random variable. Find its p.m.f. and distribution function.

Solution. Since $h(x) = x^2, x \in \mathbb{R}$, is a continuous function and X is a random variable, using Remark 1.1 (i) it follows that $Z = h(X) = X^2$ is a random variable. Clearly $S_X = \{-2, -1, 0, 1, 2, 3\}$ and $S_Z = \{0, 1, 4, 9\}$. Moreover,

$$P(\{Z=0\}) = P(\{X^2=0\}) = P(\{X=0\}) = \frac{1}{7},$$

$$P(\{Z=1\}) = P(\{X^2=1\}) = P(X \in \{-1,1\}) = \frac{1}{7} + \frac{1}{7} = \frac{2}{7},$$

$$P(\{Z=4\}) = P(\{X^2=4\}) = P(X \in \{-2,2\}) = \frac{1}{7} + \frac{3}{14} = \frac{5}{14},$$
and
$$P(\{Z=9\}) = P(\{X^2=9\}) = P(\{X\in \{-3,3\}\}) = 0 + \frac{3}{14} = \frac{3}{14}.$$

Therefore the p.m.f. of Z is

$$f_{Z}(z) = \begin{cases} \frac{1}{7}, & \text{if } z = 0\\ \frac{2}{7}, & \text{if } z = 1\\ \frac{5}{14}, & \text{if } z = 4\\ \frac{3}{14}, & \text{if } z = 9\\ 0, & \text{otherwise} \end{cases}$$

and the distribution function of Z is

$$F_{Z}(z) = \begin{cases} 0, & \text{if } z < 0\\ \frac{1}{7}, & \text{if } 0 \le z < 1\\ \frac{3}{7}, & \text{if } 1 \le z < 4 \\ \frac{11}{14}, & \text{if } 4 \le z < 9\\ 1, & \text{if } z \ge 9 \end{cases}$$

Example 2.2

Let *X* be a random variable with p.m.f.

$$f_X(x) = \begin{cases} \frac{|x|}{2550}, & \text{if } x \in \{\pm 1, \pm 2, \dots, \pm 50\} \\ 0, & \text{otherwise} \end{cases}.$$

Show that Z = |X| is a random variable. Find its p.m.f., and distribution function.

Solution. As $h(x) = |x|, x \in \mathbb{R}$, is a continuous function and X is a random variable, using Remark 1.1 (i), Z = |X| is a random variable. We have $S_X = \{\pm 1, \pm 2, \dots, \pm 50\}$ and $S_Z = \{1, 2, \dots, 50\}$. Moreover, for $z \in S_Z$,

$$P(\{Z=z\}) = P(\{|X|=z\}) = P(\{X \in \{-z,z\}\}) = \frac{|-z|}{2550} + \frac{|z|}{2550} = \frac{z}{1275}$$

Therefore the p.m.f. of Z is

$$f_Z(z) = \begin{cases} \frac{z}{1275}, & \text{if } z \in \{1, 2, \dots, 50\}, \\ 0, & \text{otherwise} \end{cases}$$

and the distribution function of Z is

$$F_{Z}(z) = \begin{cases} 0, & \text{if } z < 1\\ \frac{1}{1275}, & \text{if } 1 \le z < 2\\ \frac{i(i+1)}{2550}, & \text{if } i \le z < i+1, i=2,3,\cdots,49\\ 1, & \text{if } z \ge 50 \end{cases}.$$

Example 2.3

Let *X* be a random variable with p.m.f.

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & \text{if } x \in \{0, 1, \dots, n\}, \\ 0, & \text{otherwise} \end{cases}$$

where n is a positive integer and $p \in (0,1)$. Show that Y = n - X is a random variable. Find its p.m.f. and distribution function.

Solution. Note that $S_X = S_Y = \{0, 1, \dots, n\}$ and $h(x) = n - x, x \in \mathbb{R}$, is a continuous function. Therefore Y = n - X is a random variable. For $y \in S_Y$

$$P(\{Y=y\}) = P(\{X=n-y\}) = \binom{n}{n-y} p^{n-y} (1-p)^y = \binom{n}{y} (1-p)^y p^{n-y}.$$

Thus the p.m.f. of *Y* is

$$f_Y(y) = \begin{cases} \binom{n}{y} (1-p)^y p^{n-y}, & \text{if } y \in \{0, 1, \dots, n\}, \\ 0, & \text{otherwise} \end{cases}$$

and the distribution function of Y is

$$F_{Y}(y) = \begin{cases} 0, & \text{if } y < 0 \\ p^{n}, & \text{if } 0 \le y < 1 \\ \sum_{j=0}^{i} {n \choose j} (1-p)^{j} p^{n-j}, & \text{if } i \le y < i+1, i = 1, 2, \dots, n-1 \end{cases}$$

The following theorem deals with probability distribution of absolutely continuous type random variables.

Theorem 2.2

Let X be a random variable of absolutely continuous type with p.d.f. $f_X(\cdot)$ and support S_X . Let S_1, S_2, \dots, S_k , be open intervals in \mathbb{R} such that $S_i \cap S_j = \phi$, if $i \neq j$ and $\bigcup_{i=1}^k S_i = S_X$. Let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function such that, on each $S_i(i=1,...,k), h: S_i \to \mathbb{R}$ is strictly monotone and continuously differentiable with inverse function $h_i^{-1}(\cdot)$. Let $h(S_j) = \{h(x): x \in S_j\}$ so that $h(S_j)(j=1,...,k)$ is an open interval in \mathbb{R} . Then the random variable T = h(X) is of absolutely continuous type with p.d.f.

$$f_T(t) = \sum_{j=1}^k f_X \left(h_j^{-1}(t) \right) \left| \frac{d}{dt} h_j^{-1}(t) \right| I_{h(S_j)}(t).$$

Proof. We will provide an outline of the proof which may not be rigorous. Let $F_T(\cdot)$ be the distribution function of T. For $t \in \mathbb{R}$ and $\Delta > 0$,

$$\frac{F_T(t+\Delta) - F_T(t)}{\Delta} = \frac{P(\{t < h(X) \le t + \Delta\})}{\Delta}$$
$$= \sum_{j=1}^k \frac{P(\{t < h(X) \le t + \Delta, X \in S_j\})}{\Delta}.$$

Fix $j \in \{1, ..., k\}$. First suppose that $h_j(\cdot)$ is strictly decreasing on S_j . Note that $\{X \in S_j\} = \{h(X) \in h(S_j)\}$ and $h(S_j)$ is an open interval. Thus, for t belonging to the exterior of $h(S_j)$ and sufficiently small $\Delta > 0$, we have $P(\{t < h(X) \le t + \Delta, X \in S_j\}) = 0$. Also, for $t \in h(S_j)$ and sufficiently small $\Delta > 0$,

$$P(\{t < h(X) \le t + \Delta, X \in S_j\}) = P(\{h_j^{-1}(t + \Delta) \le X < h_j^{-1}(t)\}).$$

Thus, for all $t \in \mathbb{R}$, we have

$$\frac{P(\lbrace t < h(X) \leq t + \Delta, X \in S_{j} \rbrace)}{\Delta} = \frac{P(\lbrace h_{j}^{-1}(t + \Delta) \leq X < h_{j}^{-1}(t) \rbrace) I_{h(S_{j})}(t)}{\Delta}$$

$$= \frac{1}{\Delta} \begin{bmatrix} \int_{h_{j}^{-1}(t + \Delta)}^{h_{j}^{-1}(t)} f_{X}(z) dz \end{bmatrix} I_{h(S_{j})}(t)$$

$$\stackrel{\Delta\downarrow 0}{\longrightarrow} -f_{X} \left(h_{j}^{-1}(t) \right) \left(\frac{d}{dt} h_{j}^{-1}(t) \right) I_{h(S_{j})}(t). \tag{2.1}$$

Similarly if h_i is strictly increasing on S_i then, for all $t \in \mathbb{R}$, we have

$$\frac{P(\lbrace t < h(X) \leq t + \Delta, X \in S_j \rbrace)}{\Delta} = \frac{P(\lbrace h_j^{-1}(t) < X \leq h_j^{-1}(t + \Delta) \rbrace) I_{h(S_j)}(t)}{\Delta}$$

$$= \frac{1}{\Delta} \left[\int_{h_j^{-1}(t)}^{h_j^{-1}(t + \Delta)} f_X(z) dz \right] I_{h(S_j)}(t)$$

$$\xrightarrow{\Delta \downarrow 0} f_X\left(h_j^{-1}(t)\right) \left(\frac{d}{dt}h_j^{-1}(t)\right) I_{h(S_j)}(t). \tag{2.2}$$

Note that if h is strictly decreasing (increasing) on S_j then $\frac{d}{dt} h_j^{-1}(t) < (>)0$ on S_j . Now on combining (2.1) and (2.2) we get, for all $t \in \mathbb{R}$,

$$\frac{P(\lbrace t < h(X) \leq t + \Delta, X \in S_j \rbrace)}{\Delta} \xrightarrow{\Delta \downarrow 0} f_X \left(h_j^{-1}(t) \right) \left| \frac{d}{dt} h_j^{-1}(t) \right| I_{h(S_j)}(t),$$

$$\Rightarrow \frac{F_T(t + \Delta) - F_T(t)}{\Delta} \xrightarrow{\Delta \downarrow 0} \sum_{i=1}^k f_X \left(h_j^{-1}(t) \right) \left| \frac{d}{dt} h_j^{-1}(t) \right| I_{h(S_j)}(t).$$

Similarly one can show that, for all $t \in \mathbb{R}$,

$$\lim_{\Delta \uparrow 0} \frac{F_T(t + \Delta) - F_T(t)}{\Delta} = \sum_{j=1}^k f_X \left(h_j^{-1}(t) \right) \left| \frac{d}{dt} h_j^{-1}(t) \right| I_{h(S_j)}(t). \tag{2.3}$$

It follows that the distribution function of T is differentiable everywhere on \mathbb{R} except possibly at a finite number of points (on boundaries of intervals $h(S_1), \dots, h(S_k)$ of S_T). Now the result follows from Remark 4.2 (vii) of Module 2 and using (2.3).

The following corollary to the above theorem is immediate.

Corollary 2.2

Let X be a random variable of absolutely continuous type with p.d.f. $f_X(\cdot)$ and support S_X . Suppose that S_X is a finite union of disjoint open intervals in \mathbb{R} and let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function such that h is differentiable and strictly monotone on S_X (i.e., either $h'(x) < 0, \forall x \in S_X$ or $h'(x) > 0, \forall x \in S_X$). Let $S_T = \{h(x): x \in S_X\}$. Then T = h(X) is a random variable of absolutely continuous type with p.d.f.

$$f_T(t) = \begin{cases} f_X(h^{-1}(t)) \left| \frac{d}{dt} h^{-1}(t) \right|, & \text{if } t \in S_T \\ 0, & \text{otherwise} \end{cases}$$

It may be worth mentioning here that, in view of Remark 4.2 (vii) of Module 2, Theorem 2.2 and Corollary 2.2 can be applied even in situations where the function h is differentiable everywhere on S_X except possibly at a finite number of points.

Example 2.4

Let *X* be random variable with p.d.f.

$$f_X(x) = \begin{cases} e^{-x}, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}$$

and let $T = X^2$

- (i) Show that T is a random variable of absolutely continuous type;
- (ii) Find the distribution function of T and hence find its p.d.f.;
- (iii) Find the p.d.f. of T directly (i.e., without finding the distribution function of T).

Solution. (i) and (iii). Clearly $T = X^2$ is a random variable (being a continuous function of random variable X). We have $S_X = S_T = (0, \infty)$. Also $h(x) = x^2, x \in S_X$, is strictly increasing on S_X with inverse function $h^{-1}(x) = \sqrt{x}, x \in S_T$. Using Corollary 2.1 it follows that $T = X^2$ is a random variable of absolutely continuous type with p.d.f.

$$f_T(t) = \begin{cases} f_X(\sqrt{t}) \left| \frac{d}{dt} (\sqrt{t}) \right|, & \text{if } t > 0 \\ 0, & \text{otherwise} \end{cases}$$
$$= \begin{cases} \frac{e^{-\sqrt{t}}}{2\sqrt{t}}, & \text{if } t > 0 \\ 0, & \text{otherwise} \end{cases}$$

(ii) We have $F_T(t) = P(\{X^2 \le t\}), t \in \mathbb{R}$. Clearly, for $t < 0, F_T(t) = 0$. For $t \ge 0$,

$$F_T(t) = P(\{-\sqrt{t} \le X \le \sqrt{t}\})$$

$$= \int_{-\sqrt{t}}^{\sqrt{t}} f_X(x) dx$$

$$= \int_{0}^{\sqrt{t}} e^{-x} dx$$

$$= 1 - e^{-\sqrt{t}}.$$

Therefore the distribution function of *T* is

$$F_T(t) = \begin{cases} 0, & \text{if } t < 0 \\ 1 - e^{-\sqrt{t}}, & \text{if } t \ge 0 \end{cases}$$

Clearly F_T is differentiable everywhere except at t=0. Therefore, using Remark 4.2 (vii) of Module 2, we conclude that the random variable T is of absolutely continuous type with p.d.f. $f_T(t) = F_T'(t)$, if $t \neq 0$. At t=0 we may assign any arbitrary nonnegative value to $f_T(0)$. Thus a p.d.f. of T is

$$f_T(t) = \begin{cases} \frac{e^{-\sqrt{t}}}{2\sqrt{t}}, & \text{if } t > 0\\ 0, & \text{otherwise} \end{cases}. \blacksquare$$

Example 2.5

Let *X* be a random variable with p.d.f.

$$f_X(x) = \begin{cases} \frac{|x|}{2}, & \text{if } -1 < x < 1\\ \frac{x}{3}, & \text{if } 1 \le x < 2\\ 0, & \text{otherwise} \end{cases}$$

and let $T = X^2$

- (i) Show that T is a random variable of absolutely continuous type;
- (ii) Find the distribution function of T and hence find its p.d.f;
- (iii) Find the p.d.f. of T directly (i.e., without finding the distribution function of T).

Solution. (i) and (iii). Clearly $T = X^2$ is a random variable (being a continuous function of random variable X). We have $S_X = (-1,0) \cup (0,2) = S_1 \cup S_2$, say. Also $h(x) = x^2, x \in S_X$, is strictly decreasing in $S_1 = (-1,0)$ with inverse function $h_1^{-1}(t) = -\sqrt{t}$; $h(x) = x^2, x \in S_X$, is strictly increasing in $S_2 = (0,2)$, with inverse function $h_2^{-1}(t) = \sqrt{t}$; $h(S_1) = (0,1)$ and $h(S_2) = (0,4)$. Using Theorem 2.2 it follows that $T = X^2$ is a random variable of absolutely continuous type with p.d.f.

$$f_{T}(t) = f_{X}(-\sqrt{t}) \left| \frac{d}{dt} (-\sqrt{t}) \right| I_{(0,1)}^{(t)} + f_{X}(\sqrt{t}) \left| \frac{d}{dt} (\sqrt{t}) \right| I_{(0,4)}^{(t)}$$

$$= \begin{cases} \frac{1}{2}, & \text{if } 0 < t < 1\\ \frac{1}{6}, & \text{if } 1 < t < 4\\ 0, & \text{otherwise} \end{cases}$$

(ii) We have $F_T(t) = P(\{X^2 \le t\}), t \in \mathbb{R}$. Since $P(\{X \in (-1,2)\}) = 1$, we have $P(\{T \in (0,4)\}) = 1$.

Therefore, for t < 0, $F_T(t) = P(\{T \le t\}) = 0$ and, for $t \ge 4$, $F_T(t) = P(\{T \le t\}) = 1$. For $t \in [0,4)$, we have

$$F_{T}(t) = P\left(\left\{-\sqrt{t} \le X \le \sqrt{t}\right\}\right)$$

$$= \int_{-\sqrt{t}}^{\sqrt{t}} f_{X}(x) dx$$

$$= \begin{cases} \int_{-\sqrt{t}}^{\sqrt{t}} \frac{|x|}{2} dx, & \text{if } 0 \le t < 1\\ \int_{-1}^{1} \frac{|x|}{2} dx + \int_{1}^{\sqrt{t}} \frac{x}{3} dx, & \text{if } 1 \le t < 4 \end{cases}$$

Therefore, the distribution function of *T* is

$$F_T(t) = \begin{cases} 0, & \text{if } t < 0 \\ \frac{t}{2}, & \text{if } 0 \le t < 1 \\ \frac{t+2}{6}, & \text{if } 1 \le t < 4 \\ 1, & \text{if } t \ge 4 \end{cases}.$$

Clearly F_T is differentiable everywhere except at points 0, 1 and 4. Using Remark 4.2 (vii) of Module 2 it follows that the random variable T is of absolutely continuous type with a p.d.f.

$$f_T(t) = \begin{cases} \frac{1}{2}, & \text{if } 0 < t < 1\\ \frac{1}{6}, & \text{if } 1 < t < 4 \end{cases}$$

Note that a Borel function of a discrete type random variable is a random variable of discrete type (see Theorem 1.1). Theorem 2.2 provides sufficient conditions under which a Borel function of an absolutely continuous type random variable is of absolutely continuous type. The following example illustrates that, in general, a Borel function of an absolutely continuous type random variable may not be of absolutely continuous type.

Example 2.6

Let X be a random variable of absolutely continuous type with p.d.f.

$$f_X(x) = \begin{cases} e^{-x}, & \text{if } x > 0\\ 0, & \text{sotherwise'} \end{cases}$$

and let T = [x], where, for $x \in \mathbb{R}$, [x] denotes the largest integer not exceeding x. Show that T is a random variable of discrete type and find its p.m.f.

Solution. For $a \in \mathbb{R}$, we have

$$T^{-1}\big((-\infty,a]\big)=(-\infty,[a]+1)\in\mathcal{B}_1.$$

It follows that T is a random variable. Also $S_X = (0, \infty)$. Since $P(\{X \in S_X\}) = 1$, we have $P(T \in \{0, 1, 2, \dots\}) = 1$. Also, for $i \in \{0, 1, 2, \dots\}$.

$$P({T = i}) = P({i \le X < i + 1})$$

$$= \int_{i}^{i+1} f_X(x) dx$$

$$= \int_{i}^{i+1} e^{-x} dx$$

$$= (1 - e^{-1})e^{-i}$$

$$> 0.$$

Consequently the random variable T is of discrete type with support $S_T = \{0, 1, 2, ...\}$ and p.m.f.

$$f_T(t) = P({T = t}) = \begin{cases} (1 - e^{-1})e^{-t}, & \text{if } t \in {0, 1, 2, ...} \\ 0, & \text{otherwise} \end{cases}$$
.