Exercise 9.50

Let Y_1, Y_2, \ldots, Y_n denote a random sample from the uniform distribution over the interval (θ_1, θ_2) . Show that $Y_{(1)} = \min(Y_1, Y_2, \ldots, Y_n)$ and $Y_{(n)} = \max(Y_1, Y_2, \ldots, Y_n)$ are jointly sufficient for θ_1 and θ_2 .

Exercise 9.64

Let Y_1, Y_2, \ldots, Y_n be a random sample from a normal distribution with mean μ and variance 1.

- **a** Show that the MVUE of μ^2 is $\widehat{\mu}^2 = \overline{Y}^2 1/n$.
- **b** Derive the variance of $\widehat{\mu}^2$.

Exercise 9.65

Let Y_1, Y_2, \dots, Y_n be independent Bernoulli random variables with

$$p(y_i | p) = p^{y_i}(1-p)^{1-y_i}, \quad y_i = 0, 1$$

That is, $P(Y_i = 1) = p$ and $P(Y_i = 0) = 1 - p$. Find the MVUE of p(1 - p), which is a term in the variance of Y_i or $W = \sum_{i=1}^n Y_i$, by the following steps.

a Let

$$T = \begin{cases} 1, & \text{if } Y_1 = 1 \text{ and } Y_2 = 0\\ 0, & \text{otherwise} \end{cases}$$

Show that E(T) = p(1 - p).

b Show that

$$P(T = 1 \mid W = w) = \frac{w(n - w)}{n(n - 1)}$$

c Show that

$$E(T\mid W) = \frac{n}{n-1} \left[\frac{W}{n} \left(1 - \frac{W}{n} \right) \right] = \frac{n}{n-1} \bar{Y} (1 - \bar{Y})$$

and hence that $n\bar{Y}(1-\bar{Y})/(n-1)$ is the MVUE of p(1-p).

Exercise 9.66

The likelihood function $L(y_1, y_2, ..., y_n | \theta)$ takes on different values depending on the arguments $(y_1, y_2, ..., y_n)$. A method for deriving a minimal sufficient statistic developed by Lehmann and Scheffé uses the ratio of the likelihoods evaluated at two points, $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$:

$$\frac{L\left(x_{1}, x_{2}, \dots, x_{n} \mid \theta\right)}{L\left(y_{1}, y_{2}, \dots, y_{n} \mid \theta\right)}$$

Many times it is possible to find a function $g(x_1, x_2, ..., x_n)$ such that this ratio is free of the unknown parameter θ if and only if $g(x_1, x_2, ..., x_n) = g(y_1, y_2, ..., y_n)$. If such a function g can be found, then $g(Y_1, Y_2, ..., Y_n)$ is a minimal sufficient statistic for θ .

- **a** Let Y_1, Y_2, \ldots, Y_n be a random sample from a Bernoulli distribution (see Example 9.6 and Exercise 9.65) with p unknown.
 - Show that

$$\frac{L\left(x_{1}, x_{2}, \dots, x_{n} \mid p\right)}{L\left(y_{1}, y_{2}, \dots, y_{n} \mid p\right)} = \left(\frac{p}{1-p}\right)^{\sum x_{i} - \sum y_{i}}$$

- Argue that for this ratio to be independent of p, we must have

$$\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i = 0 \quad \text{or} \quad \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

- Using the method of Lehmann and Scheffé, what is a minimal sufficient statistic for p? How does this sufficient statistic compare to the sufficient statistic derived by using the factorization criterion?
- **b** Consider the Weibull density $f(y \mid \theta) = \begin{cases} \left(\frac{2y}{\theta}\right) e^{-y^2/\theta}, & y > 0\\ 0, & \text{elsewhere} \end{cases}$
 - Show that

$$\frac{L\left(x_1, x_2, \dots, x_n \mid \theta\right)}{L\left(y_1, y_2, \dots, y_n \mid \theta\right)} = \left(\frac{x_1 x_2 \cdots x_n}{y_1 y_2 \cdots y_n}\right) \exp \left[-\frac{1}{\theta} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right)\right].$$

– Argue that $\sum_{i=1}^{n} Y_i^2$ is a minimal sufficient statistic for θ .

Exercise 9.68

Suppose that a statistic U has a probability density function that is positive over the interval $a \le u \le b$ and suppose that the density depends on a parameter θ that can range over the interval $\alpha_1 \le \theta \le \alpha_2$. Suppose also that g(u) is continuous for u in the interval [a,b]. If $E[g(U) \mid \theta] = 0$ for all θ in the interval $[\alpha_1, \alpha_2]$ implies that g(u) is identically zero, then the family of density functions $\{f_U(u \mid \theta), \alpha_1 \le \theta \le \alpha_2\}$ is said to be complete.

Suppose that U is a sufficient statistic for θ , and $g_1(U)$ and $g_2(U)$ are both unbiased estimators of θ . Show that, if the family of density functions for U is complete, $g_1(U)$ must equal $g_2(U)$, and thus there is a unique function of U that is an unbiased estimator of θ .

Coupled with the Rao-Blackwell theorem, the property of completeness of $f_U(u \mid \theta)$, along with the sufficiency of U, assures us that there is a unique minimum-variance unbiased estimator (UMVUE) of θ .

Exercise 9.50

The uniform distribution on the interval (θ_1, θ_2) is

$$f(y \mid \theta_1, \theta_2) = \frac{1}{(\theta_2 - \theta_1)} I_{\theta_1, \theta_2}(y)$$

The likelihood function, using the same logic as in Ex. 9.49, is

$$L(\theta_1, \theta_2) = \frac{1}{(\theta_2 - \theta_1)^n} \prod_{i=1}^n I_{\theta_1, \theta_2}(y_i) = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1, \theta_2}(y_{(1)}) I_{\theta_1, \theta_2}(y_{(n)})$$

So, Theorem 9.4 is satisfied with $g\left(y_{(1)},y_{(n)},\theta_{1},\theta_{2}\right)=\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}}I_{\theta_{1},\theta_{2}}\left(y_{(1)}\right)I_{\theta_{1},\theta_{2}}\left(y_{(n)}\right)$ and h(y)=1.

Exercise 9.64

- **a** From Ex. 9.38, \bar{Y} is sufficient for μ . Also, since $\sigma = 1, \bar{Y}$ has a normal distribution with mean μ and variance 1/n. Thus, $E(\bar{Y}^2) = V(\bar{Y}) + [E(\bar{Y})]^2 = 1/n + \mu^2$. Therefore, the MVUE for μ^2 is $\bar{Y}^2 1/n$.
- **b** $V\left(\bar{Y}^2-1/n\right)=V\left(\bar{Y}^2\right)=E\left(\bar{Y}^4\right)-\left[E\left(\bar{Y}^2\right)\right]^2=E\left(\bar{Y}^4\right)-\left[1/n+\mu^2\right]^2$. It can be shown that $E\left(\bar{Y}^4\right)=\frac{3}{n^2}+\frac{6\mu^2}{n}+\mu^4$ (the mgf for \bar{Y} can be used) so that

$$V\left(\bar{Y}^2 - 1/n\right) = \frac{3}{n^2} + \frac{6\mu^2}{n} + \mu^4 - -\left[1/n + \mu^2\right]^2 = \left(2 + 4n\mu^2\right)/n^2.$$

Exercise 9.65

a
$$E(T) = P(T = 1) = P(Y_1 = 1, Y_2 = 0) = P(Y_1 = 1) P(Y_2 = 0) = p(1 - p).$$

b

$$P(T = 1 \mid W = w) = \frac{P(Y_1 = 1, Y_2 = 0, W = w)}{P(W = w)} = \frac{P(Y_1 = 1, Y_2 = 0, \sum_{i=3}^{n} Y_i = w - 1)}{P(W = w)}$$

$$= \frac{P(Y_1 = 1) P(Y_2 = 0) P(\sum_{i=3}^{n} Y_i = w - 1)}{P(W = w)} = \frac{p(1 - p) \binom{n-2}{w-1} p^{w-1} (1 - p)^{n-(w-1)}}{\binom{n}{w} p^w (1 - p)^{n-w}}$$

$$= \frac{w(n - w)}{n(n - 1)}$$

c $E(T \mid W) = P(T = 1 \mid W) = \frac{W}{n} \left(\frac{n-W}{n-1}\right) = \left(\frac{n}{n-1}\right) \frac{W}{n} \left(1 - \frac{W}{n}\right)$. Since T is unbiased by part (a) above and W is sufficient for p and so also for p(1-p), $n\bar{Y}(1-\bar{Y})/(n-1)$ is the MVUE for p(1-p).

Exercise 9.66

a – The ratio of the likelihoods is given by

$$\frac{L(\boldsymbol{x} \mid p)}{L(\boldsymbol{y} \mid p)} = \frac{p^{\sum x_i} (1-p)^{n-\sum x_i}}{p^{\sum y_i} (1-p)^{n-\sum y_i}} = \frac{p^{\sum x_i} (1-p)^{-\sum x_i}}{p^{\sum y_i} (1-p)^{-\sum y_i}} = \left(\frac{p}{1-p}\right)^{\sum x_i - \sum y_i}.$$

- If $\Sigma x_i = \Sigma y_i$, the ratio is 1 and free of p. Otherwise, it will not be free of p.
- From the above, it must be that $g(Y_1, \ldots, Y_n) = \sum_{i=1}^n Y_i$ is the minimal sufficient statistic for p. This is the same as the sufficient statistic derived by using the factorization theorem.
- **b** The ratio of the likelihoods is given by

$$\frac{L(\boldsymbol{x}\mid\theta)}{L(\boldsymbol{y}\mid\theta)} = \frac{2^n \left(\prod_{i=1}^n x_i\right) \theta^{-n} \exp\left(-\sum_{i=1}^n x_i^2/\theta\right)}{2^n \left(\prod_{i=1}^n y_i\right) \theta^{-n} \exp\left(-\sum_{i=1}^n y_i^2/\theta\right)} = \frac{\prod_{i=1}^n x_i}{\prod_{i=1}^n y_i} \exp\left[-\frac{1}{\theta} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right)\right]$$

– The above likelihood ratio will only be free of θ if $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$, so that $\sum_{i=1}^{n} Y_i^2$ is a minimal sufficient statistic for θ .

Exercise 9.68

For unbiased estimators $g_1(U)$ and $g_2(U)$, whose values only depend on the data through the sufficient statistic U, we have that $E[g_1(U) - g_2(U)] = 0$. Since the density for U is complete, $g_1(U) - g_2(U) \equiv 0$ by definition so that $g_1(U) = g_2(U)$. Therefore, there is only one unbiased estimator for θ based on U, and it must also be the MVUE.