Machine Learning Algorithm Detecting Schizophrenia via fMRI and sMRI Data

By Kathleen Williams CMSE 410

Current Diagnosis Method for Schizophrenia

Process of Elimination

• Estimate possibilities for the presence of other illnesses through serum tests [2,3]

Misdiagnoses

- Error during serum tests
- Similar symptomologies
- Comorbidities

Project Outline

Data from fMRI and sMRI scans

Two groups: schizophrenic and non-schizophrenic

Question: Can fMRI and sMRI data be used to detect schizophrenia?

Solution: Create a machine learning (ML) algorithm to distinguish data from the two groups

fMRI

- dynamic physiological information [4]
- blood oxygen level dependent technique, perfusion (whether by endogenous or exogenous contrast), blood flow, and cerebrospinal fluid (CSF) pulsation measurements [4]

sMRI

static anatomical information [4]gray matter

Dataset

"MLSP 2014 Schizophrenia Classification Challenge" [5]

Available on Kaggle

fMRI

[5]

A	A	В	C	- 1	Α	В	C	D
1	Id	Class		1	Id	FNC1	FNC2	FNC3
2	120873	1		2	120873	0.34312	0.045761	-0.13112
3	135376	0		3	135376	0.2879	0.10257	-0.32343
4	139149	0		4	139149	0.24585	0.21662	-0.12468
5	146791	0		5	146791	0.4209	0.33138	0.24453

sMRI

[5]

1		Α	В	C	D	E	F		^
1	1	Id	SBM_map1	SBM_map2	SBM_map3	SBM_map	SBM_map	SB	
I	2	120873	0.72506502	-0.6392542	0.35306925	-0.98171	-1.41997	-0	
I	3	135376	-1.32885518	0.50296975	0.0132317	1.128496	-0.07074	0.	
I	4	139149	0.732267758	-1.24155378	0.65494157	-0.28922	0.158316	0.	
	5	146791	-0.34391707	-1.05251938	-1.15052142	0.765989	0.923129	0.	

Dataset

Training Set:

- FNC features represent the correlation values which "describe the connection level between pairs of brain maps over time"
- SBM features are the standardized weights which "describe the expression level of ICA brain maps derived from graymatter concentration"

Testing Set:

 test subject labels of having schizophrenia or not have been removed in both the FNC and SBM csv files for the testing dataset

Methods and Software

Past Kaggle Challenge Winners

- Gaussian process (GP) classification,
- feature trimming/pruning
- Distance Weighted Discriminant

My Algorithm:

Logistic regression

Start of Code

```
In [51]: | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression

In [52]: | # read training data
FNC_train = pd.read_csv("train_FNC.csv")
labels_train = pd.read_csv("train_labels.csv")
SBM_train = pd.read_csv("train_SBM.csv")
```

ML for fMRI and sMRI

```
In [58]: # train model
           log_reg = LogisticRegression(solver = 'lbfgs')
           log_reg.fit(FNC_train, labels_train["Class"])
   Out[58]: LogisticRegression()
In [59]: # predictions
            class_prediction = log_reg.predict(FNC_test)
            print(class prediction)
            [0 0 0 ... 0 0 0]
# every time that the score is greater than 0.5, put in class 1, and scores less than 0.5 pu in class 0
            # count every time that prediction is equal to output and divide by total
           log reg.score(FNC_train, labels_train["Class"])
   Out[60]: 0.5348837209302325
 In [65]: # Logistic regression
             log_reg2 = LogisticRegression()
            log reg2.fit(SBM train, labels train["Class"])
    Out[65]: LogisticRegression()
 print(class_prediction)
             [0 0 0 ... 0 0 0]
 In [69]: ₩ # score model
             # every time that the score is greater than 0.5, put in class 1, and scores less than 0.5 put in class 0
             # count every time that prediction is equal to output and divide by total
             log_reg2.score(SBM_train, labels_train["Class"])
    Out[69]: 0.5348837209302325
```

Conclusion: sMRI and fMRI can't be used to detect Schizophrenia

Sources

- 1. AL-Ma'amari, Mohammed. "How to Choose the Best Machine Learning Model?" *Medium*, Medium, 16 June 2020, medium.com/@mamarih1/how-to-choose-the-best-machine-learning-model-e1dbb46bdd4d.
- 2. "MLSP 2014 Schizophrenia Classification Challenge." *Kaggle*, www.kaggle.com/c/mlsp-2014-mri/data.
- 3. "MLSP 2014 Schizophrenia Classification Challenge." *Kaggle*, www.kaggle.com/c/mlsp-2014-mri/overview/description.
- 4. "Schizophrenia Diagnosis & Tests: How Doctors Know If Someone Has It." *WebMD*, WebMD, 19 Jan. 2021, www.webmd.com/schizophrenia/schizophrenia-tests.
- 5. "Schizophrenia: Symptoms, Causes, Treatments." *Cleveland Clinic*, my.clevelandclinic.org/health/diseases/4568-schizophrenia#diagnosis-and-tests.
- 6. "Tutorials." *Brain Imaging Analysis Kit*, brainiak.org/tutorials/.
- 7. "Logistic Regression in Python Step by Step in 10 Minutes." *YouTube*, YouTube, 26 Sept. 2019, www.youtube.com/watch?v=HYcXgN9HaTM.
- 8. "Logistic Regression Python Sklearn." *YouTube*, YouTube, 31 July 2019, www.youtube.com/watch?app=desktop&v=VK6v9Ure8Lk&feature=youtu.be.