

Aufgaben zu Riemannsche Flächen - WS 2025/26

12. Blatt

Aufgabe 39: Zeigen Sie, dass $\mathscr{U}=(U_1,U_2)$ mit $U_1:=\mathbb{C}\setminus\mathbb{R}_{\geq 0}$ und $U_2:=\mathbb{C}\setminus\mathbb{R}_{\leq 0}$ eine Leray-Überdeckung für $\check{H}^1(\mathbb{C}\setminus\{0\},\mathcal{O})$ ist und versuchen Sie damit $\check{H}^1(\mathbb{C}\setminus\{0\},\mathcal{O})$ zu bestimmen.

Aufgabe 40: Sei X eine Riemannsche Fläche und $\mathcal O$ die Garbe der holomorphen Funktionen. Es bezeichne $\mathcal O^{\times}$ die Garbe der nirgends-verschwindenden holomorphen Funktionen, also $\mathcal O^{\times}(U)=\{f:U\to\mathbb C^{\times}\mid f \text{ holomorph}\}$. Dies ist eine Garbe von abelschen Gruppen vermöge der Multiplikation.

Definitionen:

- Eine \mathcal{O} -Modulgarbe auf X ist eine Garbe \mathcal{L} , so dass jedes $\mathcal{L}(U)$ ein $\mathcal{O}(U)$ -Modul ist und die Modulstruktur verträglich mit den Restriktionen ist.
- Eine solche heißt holomorphes Geradenbündel, wenn gilt:

$$\forall x \in X \exists x \in U \subset X : \mathcal{L}|_{U} \cong \mathcal{O}|_{U},$$

das heißt, dass man einen Garbenisomorphismus der eingeschränkten Garben hat.

Sei nun $\mathscr{U}=(U_i)_{i\in I}$ eine offene Überdeckung mit Isomorphismen $\psi_i:\mathcal{L}|_{U_i}\xrightarrow{\cong}\mathcal{O}|_{U_i}$. Das Datum $(\mathscr{U},(\psi_i)_i)$ nennen wir ein *System lokaler Trivialisierungen* von \mathcal{L} . Wir definieren

$$g_{ij} := \psi_j(U_{ij}) \circ \psi_i(U_{ij})^{-1}(1) \in \mathcal{O}^{\times}(U_{ij}).$$

Zeigen Sie¹, dass:

i) $\eta = (g_{ij})_{ij} \in Z^1(\mathcal{U}, \mathcal{O}^{\times})$ gilt, und wir somit eine Klasse

$$c(\mathcal{L}) := [\eta] \in \check{H}^1(X, \mathcal{O}^{\times})$$

erhalten,

ii) diese Klasse nicht von der Wahl der Trivialisierungen abhängt.

Aufgabe 41: Ist umgekehrt \mathscr{U} eine offene Überdeckung und ein Kozykel $(g_{ij})_{ij} \in Z^1(\mathscr{U}, \mathcal{O}^{\times})$ gegeben, dann konstruieren Sie dazu ein Geradenbündel \mathcal{L} , so dass $c(\mathcal{L}) = [(g_{ij})_{ij}] \in H^1(X, \mathcal{O}^{\times})$ gilt.

Bemerkung: Sie haben nun Teile des Satzes bewiesen, dass man einen Isomorphismus

$$\operatorname{Pic}(X) \cong \check{H}^1(X, \mathcal{O}^{\times})$$

zwischen der Picardgruppe² $\operatorname{Pic}(X)$ von Isomorphieklassen von Geradenbündeln auf X (mit dem offensichtlichen Isomorphiebegriff) und obiger Čech-Kohomologiegruppe hat.

¹Beachten Sie, dass aus + jetzt · wurde.

²Die Gruppenmultiplikation auf Pic(X) ist durch das Tensorprodukt gegeben.