Name			
MULTIPLE CHOICE. Choose th	e one alternative that best completes	the statement or answers the questi	on.
Select the most appropriate answ	ver.		
1) A Type I error occurs by			
A) rejecting the null l	nypothesis when the null hypothesis is	s false.	-
, ,	ull hypothesis when the null hypothes		
	ull hypothesis when the null hypothes		
D) rejecting the null l	nypothesis when the null hypothesis is	s true.	
2) A Type II error occurs b	NV		2)
- -	ull hypothesis when the null hypothes	sis is true.	
	nypothesis when the null hypothesis is		
	ull hypothesis when the null hypothes		
D) rejecting the null l	nypothesis when the null hypothesis is	strue.	
Solve the problem.	a is the probability of moking a		2)
a) The level of significance A) Type β error	e, α , is the probability of making a	e I error	3)
C) Correct decision		e II error	
5, 25331	-7 -31-		
Classify the conclusion of the sig	nificance test as a Type I error, a Typ	e II error, or No error.	
4) A manufacturer claims	that the mean amount of juice in its 16	ounce bottles is 16.1 ounces. A	4)
	oup wants to perform a significance tes	t to determine whether the mean	
-	than this. The hypotheses are:		
H_0 : $\mu = 16.1$			
H _a : µ < 16.1			
	s of the sample lead to rejection of the		
juice, µ, is less than 16.1	error, a Type II error, or a correct decis	ion, ii in ract the mean amount of	
A) Type II error	B) Type I error	C) No error	
7,9 1,950 11 611 611	2) 1360101101	(5) 110 51151	
5) In the past, the mean lif	etime for a certain type of flashlight ba	attery has been 9.5 hours. The	5)
manufacturer has intro	duced a change in the production meth	nod and wants to perform a	
significance test to dete	rmine whether the mean lifetime has i	ncreased as a result. The hypotheses	
are:			
H_0 : $\mu = 9.5 \text{ f}$			
$H_a: \mu > 9.5 \text{ f}$			
	s of the sample lead to rejection of the		
has not increased.	error, a Type II error, or a correct decis	non, ir in ract the mean running time	
A) Type II error	B) No error	C) Type I error	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	7, 31,	

mar		nge in the production meth	_	6)
	H_0 : $\mu = 9.6$ hours			
	H_a : $\mu > 9.6$ hours			
con		-	the null hypothesis. Classify that ion, if in fact the mean running time	
	A) No error	B) Type II error	C) Type I error	
7) A h pro pro	ealth insurer has determined that cedure is \$1200. They suspect th	at the "reasonable and cust at the average fee charged a insurer performs a signifi	a Type II error, or a correct decision as tomary" fee for a certain medical by one particular clinic for this cance test to determine whether their	specified. 7)
E C	ne P-value is 0.09 and a decision A) Type II error. We conclude the \$1200 when it actually is higher. We conclude that \$1200 when it actually is higher. We conclude that when it actually is not higher.	at the average fee charged er. It the average fee charged er. It the average fee charged at the average fee charged	of error is it? Explain. for the procedure is not higher than for the procedure is not higher than for the procedure is higher than \$1200 for the procedure is higher than	
21.6 One ave	s hours. The principal introduces be year later, the principal perform rage amount of time spent watch H_0 : μ = 21.6 hours H_a : μ < 21.6 hours	s a campaign to encourage ms a significance test using hing television per week h	the students to watch less television. If $\alpha = 0.05$ to determine whether the as decreased. The hypotheses are:	8)
A	week is less than 21.6 hours w	at the average amount of ti hen it in fact is not.	of error is it? Explain. me spent watching television each time spent watching television each	

C) Type I error. We conclude that the average amount of time spent watching television each

D) Type II error. We conclude that the average amount of time spent watching television each

week is 21.6 hours when it is in fact less.

week is 21.6 hours when it is in fact less.

week is less than 21.6 hours when it in fact is not.

Provide an appropriate response.				
9) Suppose 1000 tests are run to test a null hypothesis using α =0.05. If the null hypothesis is true,				
about how many of these tests would you expect to show statistically significant results?				
A) 0				
B) 50				
C) 1000				
D) cannot be determined from the information given				
E) 5				
,				
In the situation below, indicate whether it makes more sense to use a relatively large significance level (such as α	=0.10) or a			
relatively small significance level (such as α =0.01)	•			
10) Testing a new drug with potentially dangerous side effects to see if it is significantly better than the				
drug currently in use. If it is found to be more effective, it will be prescribed to millions of people.	10)			
A) Large B) Small				
ry Edigo				
11) Testing to see whether taking a vitamin supplement each day has significant health benefits. There	11)			
are no (known) harmful side effects of the supplement.				
A) Small B) Large				
A pharmaceutical company is testing to see whether its new drug is significantly better than the existing drug on	the market.			
It is more expensive than the existing drug.				
12) Which makes more sense to use, a relatively large significance level (such as α =0.10) or a relatively	12)			
small significance level (such as α =0.01), for the company?				
A) Small B) Large				
13) Which makes more sense to use, a relatively large significance level (such as α =0.10) or a relatively	13)			
small significance level (such as α =0.01), for the consumers?	·			
A) Small B) Large				
, 3				
In the situation below, describe what it means in that context to make a Type I and Type II error. Testing a new di	rug with			
potentially dangerous side effects to see if it is significantly better than the drug currently in use. If it is found to l				
effective, it will be prescribed to millions of people.	Je more			
14) Making a Type I error means:	14)			
	14)			
A) We do not find any difference between the drugs.				
B) We do not find enough evidence that the new drug is more effective but it really is more				
effective.				
C) We find evidence that the new drug is more effective but it is really not any better.				
D) none of these				
E) We find evidence that the new drug is more effective				
15) Making a Type II error means:	15)			
A) We do not find any difference between the drugs.				
B) We find evidence that the new drug is more effective				
C) We do not find enough evidence that the new drug is more effective but it really is more				
effective.				
D) none of these				
E) We find evidence that the new drug is more effective but it is really not any better				

Select the	Select the most appropriate answer.				
16)	16) By replicating a study and finding significant results again, we can be more confident that the				
	results are indeed significant.				
	A) False	B) True			
17)	Smaller sample sizes make it easier to achieve statisti true.	cal significance if the alternative	hypothesis is	17)	
	A) True	B) False			
18)	For a given level of significance, increasing the samp		_ the	18)	
	probability of committing a Type II error if the altern	ative hypothesis is true.			
	A) not affect B) always increase				
	C) sometimes increase				
	D) sometimes decrease				
	E) decrease				
(19)	For a given level of significance, increasing the samp		_ the	19)	
	probability of committing a Type I error if the alterna	itive hypothesis is true.			
	A) sometimes decrease				
	B) always decrease				
	C) sometimes increase				
	D) always increase				
	E) not affect				