Big Bang Big Crunch

Proyecto Final Problema del Agrupamiento de Restricciones

Metaheurísticas Alba Casillas Rodríguez albacaro@correo.ugr.es Curso 2019/2020

¿Cómo nace la metaheurística?

- En 2006, dos investigadores estambulís, Ibrahim Eksin y Osman Kaan Erol deciden crear un algorítmo de búsqueda inspirado en teorías de la creación, evaluación y destrucción del universo.
- Big Bang Big Crunch (BB-BC) empieza a ser utilizado para problemas de optimización y a ser comparado con distintos algoritmos genéticos debido a su estrecha similitud.

- En 2008, Ali Koksal Hocaoglu y Hakki Murat Genç describen A BB-BC como un algoritmo principalmente caracterizado por una búsqueda rápida en el espacio de búsqueda y una explotación agresiva en del espacio de soluciones.

Fases principales:

BIG BANG

- Conjunto de procedimientos de disipación de energía en la naturaleza basada en el desorden y la aleatoriedad.
- [Disipación de energía] Se genera una población de soluciones factibles aleatorias o mediante modificaciones.
- Representa el proceso de EXPLORACIÓN de soluciones.

BIG CRUNCH

- Proceso de destrucción de la población manteniendo solamente los mejores.
- Al final nos quedamos con una única solución.
- Obtenemos los mejores candidatos para la creación de una nueva población mejorada.
- Se explora pero también se EXPLOTA las mejores soluciones.

ELITE POOL

- Uno de los términos más importantes de esta práctica es el uso de un "Conjunto de élite" (elite pool).
- Se almacenará continuamente el 10% de las mejores soluciones de cada población.
- Motivación:
- Se conoce en todo momento el valor de las mejores soluciones, permitiendo realizar una mayor explotación de estas.
- La exploración del vecindario toma como "cota" el mejor y peor valor de este grupo, asegurando calidad en la exploración.
- Las nuevas poblaciones se crearán a partir de estas, no desde el "vacío", por lo que progresivamente nacerán poblaciones mejores.

Hibridación.

- Para la hibridación se ha utilizado Búsqueda Local.

- La metaheurística ya es inicialmente una hibridación, por lo que se ha comparado un BB-BC sin Búsqueda Local con el BB-BC inicial (con BL).

- La Búsqueda Local se aplica a la mejor solución (el centro de la masa) de la población sucesivamente hasta que la población se reduce a un único elemento.

Los resultados utilizando la hibridación son notablemente mejores que sin ella, igualando al resto de algoritmos.

Implementación

Para adaptarlo a nuestro problema (PAR) se han realizado los siguientes cambios:

$$C_i^{new} = C_c + \sigma$$

$$\sigma = \frac{r\alpha(C_{\max} - C_{\min})}{k}, 0 < \frac{\alpha}{k} < 1$$

- La generación de vecinos se hace mediante $\,C_c\,$ (centro de la masa). Originalmente se trabaja con valores numéricos. Se ha considerado el centro de la masa como la mejor solución y no su valor.
- Cada vecino utiliza el centro de la masa al que se le modifican posiciones que tendrán el valor de su padre C_i.
 - Sigma indicará el número de posiciones del centro de la masa a cambiar.

** Estos cambios se explican en profundidad en la documentación

Resultados

	Tasa_C	Tasa_inf	Agr.	T
COPKM	8,13	448,40	645,61	1652,94
BL	7,69	709,20	1015,93	2388,08
COPKM-Arreg	37,24	537,40	51,56	13,93
BL-Arreglado	22,39	55,40	23,86	156,64
AGG-UN	25.23	528,00	39,30	868,21
AGG-SF	27,61	418,00	38,75	875,07
AGE-UN	22,24	45,00	23,44	926,75
AGE-SF	21,41	103,00	24,14	985,57
AM10-1.0	41,48	1377,00	78,18	898,825
AM10-0.1	33,78	675,00	51,77	890,42
AM10-0.1MEJ	29,43	682,00	47,61	891,21
ES	21,48	47,40	22,74	452,35
BMB	21,97	136,80	25,09	958,46
ILS	35,28	77,80	23,67	947,45
ILS-ES	36,82	163,80	26,06	998,13
BB-BC	34,66	1088,20	66,60	877,18
BB-BC + BL	22,07	69,40	23,92	937,91

- -Solo obtenemos buenos resultados en BB-BC+BL (BB-BC original).
- Los resultados de BB-BC + BL son tan buenos como los del resto de algoitmos, superando a los genéticos y meméticos.
- -Esta tabla muestra los resultados del conjunto más complejo, Ecoli.

