

【高速先生原创|学习笔记系列】原来你是这样的 PDN

作者: 陈亮 一博科技高速先生团队成员

【关键词 keyword】

PDN、电容、ESL、ESR、容抗、感抗、谐振频率、低电压、大电流

【内容摘要 description】

说起 PDN 想必大家都不陌生。在 PCB 电源趋于低电压、大电流的今天, 电源分配网络 (Power Delivery Network)设计就显得尤为重要。要保证系统稳定的运行,除了要考虑电源的 直流压降,还需要考虑电源噪声是否满足系统要求。今天我们就来看看,怎么才能满足噪声 要求?

原来你是这样的 PDN

说起 PDN 想必大家都不陌生。在 PCB 电源趋于低电压、大电流的今天, 电源分配网络 (Power Delivery Network)设计就显得尤为重要。要保证系统稳定的运行,除了要考虑电源 的直流压降,还需要考虑电源噪声是否满足系统要求。每个工程师都希望自己项目的电源都 能和自己一样,安静的当一个的美男子。

看过《谜一样的电容》的小伙伴都明白,利用电容的隔直通交属性,可以将 DC 电源中 的交流噪声短路进 GND 来达到滤波的效果。理论上一个电容就能将所有的噪声都滤除,但是 理想很丰满,现实很骨感。之前为了方便理解电容的特性,我们使用的都是理想电容模型, 而实际电容器除了电容之外还有另外的寄生参数。分别是等效串联电阻(ESR)、等效串联 电感(ESL)。这两个寄生参数与电容一起构成一个等效电路,影响着电容的实际滤波效果。

实际电容器模型表示如下:

如何关注

- 1、搜索微信号"高速先生"

要了解寄生参数是怎么影响电容的滤波效果,就需要引入容抗和感抗。因为寄生参数变化会使容抗、感抗随之变化,进而影响电容的滤波能力。想了解变化原理的同学就仔细看下公式,不想看公式的同学直接看黑体笔记吧!

容抗: 交流电路中,电荷在电路中做周期性的往返运动,电荷的运动速度与电压、电容和频率成正比关系,将电容和频率相乘,则得到一个类似于电阻的量,由于没有热的产生,因此将这一量称为容抗,容抗的单位和电阻单位一样,也是欧姆。容抗公式:

Xc 电容容抗值

ω 角速度π 圆周率

 $Xc = 1/(\omega C) = 1/(2\pi fC)$

f 頻率

- 1 -3-11- 31

感抗:因为电感对交流电有阻碍作用,所以把电感与频率的合成效应称为感抗。单位和容抗一样都是欧姆。

感抗公式:

XL 电感感抗直

$$XL = \omega L = 2 \pi f L$$

ω 角速度

f 频率

L 电感

电容的阻抗=寄生电阻+(感抗-容抗)

$$Z = ESR + j2\pi fESL + \frac{1}{j2\pi fC} = ESR + j(2\pi fESL - \frac{1}{2\pi fC})$$

从公式可以总结以下三点:

频率很低时: 2π fESL (感抗)小于 $\frac{1}{2\pi fC}$ (容抗),电容阻抗随频率增加而减小,复阻抗为负值,电流超前于电压,呈电容特性。

频率很高时: $2\pi fESL$ (感抗)大于 $\frac{1}{2\pi fC}$ (容抗),电容阻抗随频率增加而增加,复阻抗为正值,电压超前于电流,呈电感特性。

当在某一频率, $2\pi fESL$ (感抗)等于 $\frac{1}{2\pi fC}$ (容抗),容抗与感抗抵消,只剩下等效 串联电阻,此频率点电容的滤波效果最好,这个频率点被称为电容的谐振频率。

由于容抗和感抗的影响,导致实际电容器的阻抗会随频率变化而变化。 电容阻抗曲线: 电容的谐振频率公式。

2、扫描右侧二维码,开始学习

$$f_0 = \frac{1}{2\pi\sqrt{ESL \bullet C}}$$

因为寄生参数对电容的影响,导致实际电容器只有在谐振频率点附近频段,才具有很好的滤波效果。根据电容阻抗公式可以知道容量大的电容谐振频率点较低低,容量小的电容谐振频率点较高。通过将不同容量的电容并联使用,让不同的谐振频率覆盖工作频段,使工作频段整体都能获得很好的滤波效果。这就是电源通常需要使用大小不同的电容进行组合滤波的原因,由多种大小不同的电容阻抗曲线组合成的包线就是电源 PDN 阻抗曲线。如下图红色曲线:

电源 PDN 阻抗曲线就是 PCB 滤波能力的直观体现(划重点)。

通过使用频域目标阻抗法分析 PDN 阻抗曲线,判断我的 PCB 滤波能力是否满足系统对电源质量的要求。说到这有的小伙伴就要问了,如果有的频段 PDN 阻抗不满足怎么办,通常我们增加该谐振频率的电容,或者调整周围频段的电容搭配降低该频段的阻抗。

由于电源 PDN 曲线并不是固定不变的。电容自身封装大小、容值公差等因素都会影响电容的阻抗曲线。除了器件自身的影响,设计引入的安装电感,也会使电容的阻抗曲线偏移。不良设计会引入过量的安装电感,甚至会使电容失去滤波效果。由于低电压、大电流的电源对滤波能力要求更高, PDN 阻抗裕量更小。所以需要通过仿真得到准确的电源 PDN 阻抗曲线。

提问: 良好的设计能避免引入过量的安装电感, 那设计中有哪些方法可以减小电容的安装电感呢? 欢迎各位小伙伴们加入评论留言区的互动!

【关于一博】

如何关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

深圳市一博科技股份有限公司(简称一博科技)成立于 2003 年 3 月,专注于高速 PCB 设计、PCB 制板、SMT 焊接加工和供应链服务。我司在中国、美国、日本设立研发机构,全球研发工程师 600 余人。

一博旗下 PCB 板厂位于深圳松岗,采用来自日本、德国等一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。

一博旗下 PCBA 总厂位于深圳,并在上海、成都、长沙设立分厂,厂房面积 23000 平米,现有 30 条 SMT 产线,配备全新进口富士 XPF、NXT3、AIMEX III、全自动锡膏印刷机、十温区回流炉、波峰焊等高端设备,并配有 AOI、XRAY、SPI、智能首件测试仪、全自动分板机、BGA 返修台、三防漆等设备,专注研发打样、中小批量的 SMT 贴片、组装等服务。作为国内 SMT 快件厂商,48 小时准交率超过 95%。常备一万余种 YAGEO、MURATA、AVX、KEMET 等全系列阻容以及常用电感、磁珠、连接器、晶振、二三极管,并提供全 BOM 元器件服务。

PCB 设计、制板、贴片、物料一站式硬件创新平台,缩短客户研发周期,方便省心。

EDADOC, Your Best Partner.

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

高速先生微信公众号

历届所有技术文章 持续更新中

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

