

Low Power JFET Input Operational Amplifiers

These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing.

The commercial and vehicular devices are available in Plastic dual in–line and SOIC packages.

Low Supply Current: 200 μA/Amplifier

Low Input Bias Current: 5.0 pAHigh Gain Bandwidth: 2.0 MHz

High Slew Rate: 6.0 V/μs

High Input Impedance: 10¹² Ω
 Large Output Voltage Swing: ±14 V

• Output Short Circuit Protection

ORDERING INFORMATION

Op Amp Function	Device	Operating Temperature Range	Package
	TL062CD, ACD TL062CP, ACP	T _A = 0° to +70°C	SO–8 Plastic DIP
Dual	TL062VD TL062VP	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	SO–8 Plastic DIP
	TL064CD, ACD TL064CN, ACN	T _A = 0° to +70°C	SO-14 Plastic DIP
Quad	TL064VD TL064VN	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	SO-14 Plastic DIP

TL062 TL064

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	٧s	+36	V
Input Differential Voltage Range (Note 1)	VIDR	±30	V
Input Voltage Range (Notes 1 and 2)	VIR	±15	V
Output Short Circuit Duration (Note 3)	tsc	Indefinite	sec
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{stg}	-60 to +150	°C

NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal

- The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V, whichever is less.
- Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. (See Figure 1.)

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 0° to +70°C, unless otherwise noted.)

			TL062AC			TL062C TL064C		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S = 50 Ω , V _O = 0V) T _A = 25°C T _A = 0° to +70°C	VIO	_	3.0	6.0 7.5	_	3.0	15 20	mV
Average Temperature Coefficient for Offset Voltage (R _S = 50Ω , V _O = $0 V$)	ΔV _{IO} /ΔΤ	_	10	_	_	10	_	μV/°C
Input Offset Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = 25^{\circ}C$ $T_A = 0^{\circ} \text{ to } +70^{\circ}C$	lIO	_	0.5 —	100 2.0		0.5 —	200 2.0	pA nA
Input Bias Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = 25^{\circ}C$ $T_A = 0^{\circ} \text{ to } +70^{\circ}C$	I _{IB}	_	3.0	200 2.0	_	3.0	200 10	pA nA
Input Common Mode Voltage Range TA = 25°C	VICR	— –11.5	+14.5 -12.0	+11.5 —	_ _11	+14.5 -12.0	+11	V
Large Signal Voltage Gain (R _L = 10 k Ω , V _O = \pm 10 V) T _A = 25°C T _A = 0° to +70°C	AVOL	4.0 4.0	58 —	_	3.0 3.0	58 —	_	V/mV
Output Voltage Swing (R _L = 10 k Ω , V _{ID} = 1.0 V) T _A = 25°C	V _O +	+10 —	+14 -14	_ _10	+10 —	+14 -14	_ _10	V
$T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	V _O +	+10 —	_	_ _10	+10 —	_	_ _10	
Common Mode Rejection (RS = 50Ω , V _{CM} = V _{ICR} min, V _O = $0 V$, T _A = $25^{\circ}C$)	CMR	80	84	_	70	84	_	dB
Power Supply Rejection (R _S = 50 Ω, V _{CM} = 0 V, V _O = 0, T _A = 25°C)	PSR	80	86	_	70	86	_	dB
Power Supply Current (each amplifier) (No Load, V _O = 0 V, T _A = 25°C)	ΙD		200	250	1	200	250	μА
Total Power Dissipation (each amplifier) (No Load, V _O = 0 V, T _A = 25°C)	PD	_	6.0	7.5	_	6.0	7.5	mW

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_{A} = T_{low}$ to T_{high} [Note 4], unless otherwise noted.)

		TL062V			TL064V			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S = 50 Ω , V _O = 0V) $T_A = 25^{\circ}C$ $T_A = T_{low}$ to T_{high}	VIO	_	3.0	6.0 9.0	_	3.0	9.0 15	mV
Average Temperature Coefficient for Offset Voltage (RS = 50 Ω , VO = 0 V)	ΔV _{ΙΟ} /ΔΤ	_	10	_	_	10	_	μV/°C
Input Offset Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = 25^{\circ}C$ $T_A = T_{low}$ to T_{high}	lIO	_	5.0 —	100 20	_	5.0 —	100 20	pA nA
Input Bias Current ($V_{CM} = 0 \text{ V}, V_O = 0 \text{ V}$) $T_A = 25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	lв	_	30 —	200 50	_	30 —	200 50	pA nA
Input Common Mode Voltage Range (T _A = 25°C)	VICR	 _11.5	+14.5 -12.0	+11.5 —	 _11.5	+14.5 -12.0	+11.5 —	V
Large Signal Voltage Gain (R _L = 10 k Ω , V _O = \pm 10 V) T _A = 25°C T _A = T _{low} to T _{high}	AVOL	4.0 4.0	58 —	_ _	4.0 4.0	58 —	_	V/mV
Output Voltage Swing (R _L = 10 k Ω , V _{ID} = 1.0 V) T _A = 25°C T _A = T _{low} to T _{high}	V _O + V _O - V _O -	+10 — +10 —	+14 -14 	_ _10 _ _ _10	+10 — +10 —	+14 -14 	_ _10 _ _ _10	V
Common Mode Rejection (RS = 50 Ω , V _{CM} = V _{ICR} min, V _O = 0, T _A = 25°C)	CMR	80	84	_	80	84	_	dB
Power Supply Rejection (RS = 50Ω , V _{CM} = $0 V$, V _O = 0 , T _A = 25° C)	PSR	80	86	_	80	86	_	dB
Power Supply Current (each amplifier) (No Load, V _O = 0 V, T _A = 25°C)	ID	_	200	250	_	200	250	μΑ
Total Power Dissipation (each amplifier) (No Load, $V_O = 0 \text{ V}$, $T_A = 25^{\circ}\text{C}$)	PD	_	6.0	7.5	_	6.0	7.5	mW

NOTE: $4. T_{low} = -40^{\circ}C$ $T_{high} = +85^{\circ}C$ for TL062,4V

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ T_{A} = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics			Min	Тур	Max	Unit
Slew Rate (V_{in} = -10 V to +10 V, R_L = 10 k Ω , C_L = 100 pF, A_V =	Slew Rate ($V_{in} = -10 \text{ V}$ to +10 V, $R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = +1.0$)			6.0	-	V/μs
Rise Time (V_{in} = 20 mV, R_L = 10 k Ω , C_L = 100 pF, A_V = +1.0)		t _r		0.1	_	μs
Overshoot (V_{in} = 20 mV, R_L = 10 k Ω , C_L = 100 pF, A_V = +1.0)		os		10	I	%
Settling Time $(V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, A_V = -1.0, R_L = 10 k\Omega, V_O = 0 \text{ V} \text{ to } +10 \text{ V} \text{ step})$	To within 10 mV To within 1.0 mV	ts		1.6 2.2		μѕ
Gain Bandwidth Product (f = 200 kHz)		GBW		2.0		MHz
Equivalent Input Noise (R _S = 100 Ω , f = 1.0 kHz)		e _n	_	47		nV/√Hz
Input Resistance		R _i	_	1012	_	W
Channel Separation (f = 10 kHz)		CS	_	120	_	dB

Figure 1. Maximum Power Dissipation versus
Temperature for Package Variations

Figure 2. Output Voltage Swing versus Supply Voltage

Figure 3. Output Voltage Swing versus Temperature

Figure 4. Output Voltage Swing versus Load Resistance

Figure 5. Output Voltage Swing versus Frequency

Figure 6. Large Signal Voltage Gain versus Temperature

Figure 7. Open Loop Voltage Gain and Phase versus Frequency

Figure 8. Supply Current per Amplifier versus Supply Voltage

Figure 9. Supply Current per Amplifier versus Temperature

Figure 10. Total Power Dissipation versus Temperature

Figure 11. Common Mode Rejection versus Temperature

Figure 12. Common Mode Rejection versus Frequency

Figure 13. Power Supply Rejection versus Frequency

140 PSR, POWER SUPPLY REJECTION (dB) $\Delta V_O/A_{DM}$ +PSR = 20Log 120 ΔV_{CC} +PSR ($\Delta V_{CC} = \pm 1.5 \text{ V}$) $\Delta VO/ADM$ 100 -PSR = 20Log $-PSR (\Delta V_{EE} = \pm 1.5)$ $\Delta V_{\sf EE}$ 80 60 $V_{CC} = +15 V$ 40 VCC V_{EE} = -15 V $T_A = 25^{\circ}C$ A_{DM} -O ΔV_O 20 Q VEE 0 100 1.0 k 100 k 1.0 M 10 k f, FREQUENCY (Hz)

Figure 14. Normalized Gain Bandwidth Product, Slew Rate and Phase Margin versus Temperature

Figure 15. Input Bias Current versus Temperature

Figure 16. Input Noise Voltage versus Frequency

Figure 17. Small Signal Response

Figure 18. Large Signal Response

Figure 19. AC Amplifier

Figure 20. High-Q Notch Filter

Figure 21. Instrumentation Amplifier

Figure 22. 0.5 Hz Square-Wave Oscillator

Figure 23. Audio Distribution Amplifier

OUTLINE DIMENSIONS

NOTES:

- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
ם	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
H	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62	BSC	0.300	BSC	
М		10°		10°	
N	0.76	1.01	0.030	0.040	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. DIMENSIONS ARE IN MILLIMETERS.
 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION.

	MILLIMETERS					
DIM	MIN	MAX				
Α	1.35	1.75				
A1	0.10	0.25				
В	0.35	0.49				
C	0.18	0.25				
D	4.80	5.00				
Е	3.80	4.00				
е	1.27	BSC				
Н	5.80	6.20				
h	0.25	0.50				
L	0.40	1.25				
θ	0 °	7 °				

OUTLINE DIMENSIONS

N SUFFIX

PLASTIC PACKAGE CASE 646-06 ISSUE L

NOTES:

- 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
C	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L	0.300 BSC		7.62 BSC		
М	0°	10°	0°	10°	
N	0.015	0.039	0.39	1.01	

PLASTIC PACKAGE CASE 751A-03 (SO-14) ISSUE F

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION. MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0 °	7°	0 °	7°	
Р	5.80	6.20	0.228	0.244	
R	0.25	0.50	0.010	0.019	

TL062 TL064 NOTES

TL062 TL064 NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

