Vergelijking van een rechte - werkbladen SoftMaths (LLN)

1 Rechten met vergelijking y = mx

a) Bereken met de software de waardentabel en laat de grafiek tekenen van de volgende functies. (gebruik verschillende kleuren om hieronder te tekenen)

②
$$y = -2x$$

$$y = 0.5x$$

$$y = -x$$

b) Besluiten:

- De grafiek van de oplossingsverzameling van y = mx is een rechte a die door de oorsprong en het punt met coordinaat (1,m) gaat. We noteren: $a \leftrightarrow y = mx$
- (Definitie)

m = richtingscoëfficiënt. We noteren: rico a = m De richtingscoëfficiënt van een rechte is de toename van de y-waarde als de x-waarde met 1 toeneemt.

• (Eigenschap)

De rico bepaalt de richting van de rechte:

- * $m > 0 \Leftrightarrow$ rechte a is stijgend
- * $m < 0 \Leftrightarrow rechte a is dalend$
- * $m = 0 \Leftrightarrow \text{rechte a // x}$
- * m bestaat niet \Leftrightarrow rechte a // y
- (Opmerking)

De richtingscoëfficiënt van een rechte is de verhouding van de toename van de ywaarde tot de toename van de x-waarde en is dus als volgt te berekenen:

$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad [als (x_1, y_1) en (x_2, y_2) \in a]$$

2 Rechten met vergelijking y = mx + q

☑ Grafiek		_ 🗆 X
Functievoorschrift: f(x) = mx+q		•
Coëfficiënten:	Grafiek:	(-10,0;10,0) - (10,0;-10,0)
a = m =	-	
b = n =	F	;;;;;;;; -
c = • o = •	 	

a) Bereken met de software de waardentabel en laat de grafiek tekenen van de volgende functies. (gebruik verschillende kleuren om hieronder te tekenen)

②
$$y = 2x + 3$$

③
$$y = 2x - 1$$

$$y = 2x - 4$$

⑤ y = -3x

9 = -3x + 5

b) Besluiten:

- De grafiek van een oplossingsverzameling van y = mx + q is een rechte a die de y-as snijdt in het punt (0,q) en als rico m heeft, d.w.z. evenwijdig loopt met de rechte y = mx. We noteren: $a \leftrightarrow y = mx + q$
- (Definitie)

Twee rechten zijn evenwijdig als en slechts als ze dezelfde richtingscoëfficiënt hebben. a // b \Leftrightarrow rico a = rico b

- (Eigenschap)
 - * $m > 0 \Leftrightarrow$ rechte is stijgend
 - * $m < 0 \Leftrightarrow$ rechte is dalend
 - * $q > 0 \Leftrightarrow$ rechte snijdt de y-as boven de oorsprong
 - * $q < 0 \Leftrightarrow$ rechte snijdt de y-as onder de oorsprong

3 Rechten evenwijdig met de assen

• Rechten evenwijdig met de x-as

 $vgl \ r // x$ -as $r \leftrightarrow y = y_1$ $vgl \ x$ -as $x \leftrightarrow y = 0$ [als $(x_1,y_1) \in r$]

• Rechten evenwijdig met de y-as vgl s // y-as $s \leftrightarrow x = x_1$

 $\begin{array}{ccc} & \text{vgl s // y-as} & \text{s} \leftrightarrow \text{x} = \text{x}_1 \\ & \text{vgl y-as} & \text{y} \leftrightarrow \text{x} = 0 \end{array}$

[als $(x_1,y_1) \in s$]

4 <u>Belangrijke opmerkingen</u>

- Om het snijpunt van een rechte met de x-as te bepalen (een nulpunt), stel je y = 0.
- Om het snijpunt van een rechte met de y-as te bepalen, stel je x = 0.
- Als y = mx, dan zijn y en x recht evenredige grootheden.
- Tekenverloop van een functie: HB getallen p 139