Kontekstno-neodvisne gramatike za kodiranje in stiskanje podatkov

Janez Podlogar

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

5. 5. 2023

Spomnimo se

S kontekstno-neodivsnih gramatik želimo stisniti poljuben niz.

Spomnimo se

S kontekstno-neodivsnih gramatik želimo stisniti poljuben niz.

Definicija

- *Abeceda* je končna neprazna množica Σ
- Množica vseh končnih nizov abecede Σ označimo s Σ^*
- Dolžina niza w je število znakov abecede v w, označimo z |w|

Spomnimo se

S kontekstno-neodivsnih gramatik želimo stisniti poljuben niz.

Definicija

- *Abeceda* je končna neprazna množica Σ
- Množica vseh končnih nizov abecede Σ označimo s Σ^*
- Dolžina niza w je število znakov abecede v w, označimo z |w|

Primer nizov abecede

Naj bo $\Sigma = \{a, b, c\}$ abeceda, potem sta niza

 $ab \in \Sigma^*$, cababcccababcccab $\in \Sigma^*$

Definicija

Definicija

Kontektsno-neodvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je

• V končna množica nekončnih simbolov

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija
- $S \in V$ začetni simbol

Definicija

Kontektsno-neodvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija
- $S \in V$ začetni simbol

Definicija

Jezik kontekstno-neodvisne gramatike G je množica vseh nizov, ki jih lahko izpeljemo z gramatiko G, označimo ga z L(G).

Stiskanje niza w = cababcccababcccab

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

• $V = \{S, A, B, C\}$

Stiskanje niza w = cababcccababcccab

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$

Stiskanje niza w = cababcccababcccab

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$

Stiskanje niza w = cababcccababcccab

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

Stiskanje niza w = cababcccababcccab

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S = S

$$S = cCCA$$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

 $S = cCCA \xrightarrow{C} cAABAAB$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

 $S = cCCA \xrightarrow{C} cAABAAB \xrightarrow{B} cAAcccAAccc$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

 $S = cCCA \xrightarrow{C} cAABAAB \xrightarrow{B} cAAcccAAccc \xrightarrow{A} cababcccababccc$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

 $S = cCCA \xrightarrow{C} cAABAAB \xrightarrow{B} cAAcccAAccc \xrightarrow{A} cababcccababccc = w$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

 $S = cCCA \xrightarrow{C} cAABAAB \xrightarrow{B} cAAcccAAccc \xrightarrow{A} cababcccababccc = w$ Velja, da je

$$L(G_w) = \{w\}.$$

Definicija

Kontekstno-neodvisna gramatika G je deterministična, če vsak nekončen simbol $A \in V$, nastopa natanko enkrat kot levi član nekega produkcijskega pravila. Kontekstno-neodvisna gramatika, ki ni deterministična, je nedeterministična.

Definicija

Kontekstno-neodvisna gramatika G je deterministična, če vsak nekončen simbol $A \in V$, nastopa natanko enkrat kot levi član nekega produkcijskega pravila. Kontekstno-neodvisna gramatika, ki ni deterministična, je nedeterministična.

Trditev

Naj bo *G* deterministična kontekstno-neodvisna gramatika. Potem je jezik gramatike *G* enojec ali pa prazna množica.

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm Naj bo $G=(V,\Sigma,P,S)$, kjer je

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm Naj bo $G=(V,\Sigma,P,S)$, kjer je

•
$$V = \{S\}$$

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm

- $V = \{S\}$
- $\Sigma = \{a\}$

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm

- $V = \{S\}$
- $\Sigma = \{a\}$
- $P = \{S \rightarrow S\}$

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm

- $V = \{S\}$
- $P = \{S \to S\}$
- \bullet S=S

Deterministična kontekstno-neodvisna gramatika z praznim jeziokm

Naj bo $G = (V, \Sigma, P, S)$, kjer je

- $V = \{S\}$
- $\Sigma = \{a\}$
- $P = \{S \rightarrow S\}$
- \circ S = S

Gramatika je očitno deterministična in velja $L(G) = \emptyset$.

Deterministična kontekstno-neodvisna gramatika z odvečnimi simboli

- $V = \{S, A\}$
- $\Sigma = \{a\}$
- $P = \{S \to a, A \to a\}$
- \bullet S=S

Deterministična kontekstno-neodvisna gramatika z odvečnimi simboli

Naj bo $G = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A\}$
- $\Sigma = \{a\}$
- $P = \{S \rightarrow a, A \rightarrow a\}$
- \circ S = S

Gramatika je očitno deterministična in velja L(G) = a.

Neuporabni simboli in prazen jezik

Definicija

Pravimo, da kontekstno-neodvisna gramatika G ne vsebuje neuporabnih simbolov, ko za vsak simbol $y \in V \cup \Sigma$, $y \neq S$, obstaja končno mnogo nizov $\alpha_1, \alpha_2, \ldots, \alpha_n \in (V \cup \Sigma)^*$ tako, da je y vsebovan vsaj v enem izmed nizov in velja

$$S = \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \alpha_n \in L(G)$$
.

Dopustne gramatike

Definicija

Kontekstno-neodvisna gramatika G je dopustna, če je deterministična, ne vsebuje neuporabnih simbolov, $L(G) \neq \emptyset$ in prazen niz ne nastopa kot desni član kateregakoli produkcijska pravila v P.

Dopustne gramatike

Definicija

Kontekstno-neodvisna gramatika G je dopustna, če je deterministična, ne vsebuje neuporabnih simbolov, $L(G) \neq \emptyset$ in prazen niz ne nastopa kot desni član kateregakoli produkcijska pravila v P.

Posledica

Jezik dopustne kontekstno-neodvisne gramatike je enojec.

Za dopustno gramatiko je dovolj podati produkcijska pravila Podana imamo produckcijska pravila

• $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$

Za dopustno gramatiko je dovolj podati produkcijska pravila Podana imamo produckcijska pravila

•
$$P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$$

Nekončni simboli gramatike so

$$V = \{A_0, A_1, A_2, A_3\}.$$

Za dopustno gramatiko je dovolj podati produkcijska pravila Podana imamo produckcijska pravila

•
$$P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$$

Nekončni simboli gramatike so

$$V = \{A_0, A_1, A_2, A_3\}.$$

Končni simboli gramatike so

$$\Sigma = \{a, b\}.$$

Za dopustno gramatiko je dovolj podati produkcijska pravila Podana imamo produckcijska pravila

•
$$P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$$

Nekončni simboli gramatike so

$$V = \{A_0, A_1, A_2, A_3\}.$$

Končni simboli gramatike so

$$\Sigma = \{a, b\}.$$

Začetni simbol je

$$S = A_0$$
.

Endomorfiem

Definicija

Naj bo Σ abeceda. *Endomorfizem množice* Σ^* je preslikava $f \colon \Sigma^* \to \Sigma^*$ tako, da je

$$f(\varepsilon) = \varepsilon \text{ in } \forall w, u \in \Sigma^* : f(wu) = f(w)f(u).$$

Endomorfiem

Definicija

Naj bo Σ abeceda. *Endomorfizem množice* Σ^* je preslikava $f\colon \Sigma^* \to \Sigma^*$ tako, da je

$$f(\varepsilon) = \varepsilon \text{ in } \forall w, u \in \Sigma^* : f(wu) = f(w)f(u).$$

Za endomorfizem f množice Σ^* induktivno definiramo

$$f^{0}(w) = w,$$

 $f^{1}(w) = f(w),$
 $f^{k}(w) = f(f^{k-1}(w)),$

kjer je $w \in \Sigma^*$ in $k \ge 2$ celo število.

Definicija

 $D0L\,sistem$ je trojica $D=(\Sigma,\,f,\,w)$, kjer je

Definicija

D0L sistem je trojica $D = (\Sigma, f, w)$, kjer je

 \bullet Σ abeceda

Definicija

D0L sistem je trojica $D = (\Sigma, f, w)$, kjer je

- Σ abeceda
- ullet f endomorfizem množice Σ^*

Definicija

D0L sistem je trojica $D = (\Sigma, f, w)$, kjer je

- Σ abeceda
- ullet f endomorfizem množice Σ^*
- $w \in \Sigma^*$ aksiom

Definicija

D0L sistem je trojica $D = (\Sigma, f, w)$, kjer je

- \bullet Σ abeceda
- f endomorfizem množice Σ^*
- $w \in \Sigma^*$ aksiom

Sistem generira zaporedje nizov $\{f^k(w)\mid k=0,1,2\ldots\}$, ki ima fiksno točko w^* , če velja

$$w^* \in \{ f^k(w) \mid k = 0, 1, 2 \dots \},$$

 $f(w^*) = w^*.$

Definicija

Naj bo G deterministična kontekstno-neodvisna gramatika v kateri prazen niz ne nastopa kot desni član kateregakoli produkcijska pravila. Na $(V \cup \Sigma)^*$ definiramo endomorfizem f_G tako, da

$$\forall a \in \Sigma : f_G(a) = a;$$

če je $A \to \alpha$ produkcijsko pravilo, potem je $f_G(A) = \alpha$.

Definicija

Naj bo G deterministična kontekstno-neodvisna gramatika v kateri prazen niz ne nastopa kot desni član kateregakoli produkcijska pravila. Na $(V \cup \Sigma)^*$ definiramo endomorfizem f_G tako, da

$$\forall a \in \Sigma : f_G(a) = a;$$

če je $A \to \alpha$ produkcijsko pravilo, potem je $f_G(A) = \alpha$.

D0L sistem $(V \cup \Sigma, f_G, S)$ označimo z D(G) in ga imenujemo D0L sistem prirejen gramatiki G.

Izrek

Naj bo G dopustna kontekstno-neodvisna gramatika. Potem jezik gramatike G ustreza fiksni točki D0L sistema $(V \cup \Sigma, f_G, S)$.

Izrek

Naj bo G dopustna kontekstno-neodvisna gramatika. Potem jezik gramatike G ustreza fiksni točki D0L sistema $(V \cup \Sigma, f_G, S)$.

Posledica

Jezik dopustne kontekstno-neodvisna gramatike G je

$$L(G) = \{ f_G^{|V|}(S) \}.$$

Karakterizacija dopustnih gramatik preko D0L sistema

Izrek

Naj bo G kontekstno-neodvisna gramatika v kateri prazen niz ne nastopa kot desni član kateregakoli produkcijska pravila. Gramatika G je dopustna natanko takrat, ko je $f_G^{|V|}(S) \in \Sigma^+$ in vsak simbol iz $V \cup \Sigma$ nastopa v vsaj enem izmed nizov $f_G^i(S)$, kjer je $i=0,1,\ldots,|V|$.

•
$$P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$$

•
$$P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$$

•
$$V = \{A_0, A_1, A_2, A_3\}$$
 in $\Sigma = \{a, b\}$

- $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$
- $V = \{A_0, A_1, A_2, A_3\}$ in $\Sigma = \{a, b\}$

$$f_G(A_0) = aA_1A_2A_3$$

- $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$
- $V = \{A_0, A_1, A_2, A_3\}$ in $\Sigma = \{a, b\}$

$$f_G(A_0) = aA_1A_2A_3$$

$$f_G^2(A_0) = aabA_1bA_2b$$

- $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$
- $V = \{A_0, A_1, A_2, A_3\}$ in $\Sigma = \{a, b\}$

$$f_G(A_0) = aA_1A_2A_3$$

$$f_G^2(A_0) = aabA_1bA_2b$$

$$f_G^3(A_0) = aababbA_1bb$$

$$f_G^4(A_0) = aababbabbb$$

- $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$
- $V = \{A_0, A_1, A_2, A_3\}$ in $\Sigma = \{a, b\}$

$$f_G(A_0) = aA_1A_2A_3$$

$$f_G^2(A_0) = aabA_1bA_2b$$

$$f_G^3(A_0) = aababbA_1bb$$

$$f_G^4(A_0) = aababbabbb$$

Vsak od simbolov A_1, A_2, A_3, a, b se pojavi vsaj enkrat v zgoraj izračunanih nizih

- $P = \{A_0 \rightarrow aA_1A_2A_3, A_1 \rightarrow ab, A_2 \rightarrow A_1b, A_3 \rightarrow A_2b\}$
- $V = \{A_0, A_1, A_2, A_3\}$ in $\Sigma = \{a, b\}$

$$f_G(A_0) = aA_1A_2A_3$$

$$f_G^2(A_0) = aabA_1bA_2b$$

$$f_G^3(A_0) = aababbA_1bb$$

$$f_G^4(A_0) = aababbabbb$$

Vsak od simbolov A_1, A_2, A_3, a, b se pojavi vsaj enkrat v zgoraj izračunanih nizih in $f_G^4(A_0) \in \Sigma^+$.

Posplošitev izreka

Izrek

Naj bo G dopustna kontekstno-neodvisna gramatika in naj bo $\alpha \in (V \cup \Sigma)^+$. Potem ima D0L sistem $(V \cup \Sigma, f_g, \alpha)$ fiksno točko $w^* \in \Sigma^+$. in velja formula

$$w^* = f_G^{|V|}(\alpha).$$

Uporaben endomorfizem

Definicija

Naj bo G dopustna kontekstno-neodvisna gramatika. Definiramo preslikavo $f_G^\infty: (V \cup \Sigma)^* \to (V \cup \Sigma)^*$, ki vsak $\alpha \in (V \cup \Sigma)^*$ preslika v fiksno točko D0L sistema $(V \cup \Sigma, f_G^\infty, \alpha)$.

Z $\mathcal A$ označimo poljubno abecedo z vsaj dvema črk in fiksiramo končno mnogo množico simbolov

$${A_0, A_1, A_2, \ldots},$$

Predpostavimo, da nobeden od simbolov A_0, A_1, A_2, \ldots ne nastopa v abecedi A.

Definicija

Naj bo $\mathcal A$ abeceda. S $\mathcal G(\mathcal A)$ označimo pravo podmnožico vseh kontekstno neodivsnih gramatik G, ki izpolnjujejo naslednje pogoje:

• *G* je dopustna

Definicija

Naj bo \mathcal{A} abeceda. S $\mathcal{G}(\mathcal{A})$ označimo pravo podmnožico vseh kontekstno neodivsnih gramatik G, ki izpolnjujejo naslednje pogoje:

- G je dopustna
- $V(G) = \{A_0, A_1, A_2, \dots, A_{|V(G)|-1}\}$

Definicija

Naj bo \mathcal{A} abeceda. S $\mathcal{G}(\mathcal{A})$ označimo pravo podmnožico vseh kontekstno neodivsnih gramatik G, ki izpolnjujejo naslednje pogoje:

- *G* je dopustna
- $V(G) = \{A_0, A_1, A_2, \dots, A_{|V(G)|-1}\}$
- $\Sigma(G) \subset \mathcal{A}; S(G) = A_0$

Definicija

Naj bo \mathcal{A} abeceda. S $\mathcal{G}(\mathcal{A})$ označimo pravo podmnožico vseh kontekstno neodivsnih gramatik G, ki izpolnjujejo naslednje pogoje:

- G je dopustna
- $V(G) = \{A_0, A_1, A_2, \dots, A_{|V(G)|-1}\}$
- $\Sigma(G) \subset \mathcal{A}$; $S(G) = A_0$
- ullet Če naštejemo nekončne simbole V(G) v vrstnem redu pojavitve v nizu

$$f_G^0(A_0)f_G^1(A_0)f_G^2(A_0)\dots f_G^{|V(G)|-1}(A_0),$$

dobimo urejen seznam $A_0, A_1, A_2, \dots A_{|V(G)|-1}$

Definicija

Naj bo $\mathcal A$ abeceda. Z $\mathcal G^*(\mathcal A)$ označimo pravo podmnožico množice $\mathcal G(\mathcal A)$ za katero velja, da za vsaka nekončna simbola $A,B\in V(G),\ A\neq B$ velja

$$f_G^{\infty}(A) \neq f_G^{\infty}(B)$$
.

Definicija

Naj bo $\mathcal A$ abeceda in G kontekstno-neodvisna gramatika. Preobrazba niza je preslikava

$$\mathcal{A}^+ \to G^*(A),$$

 $x \mapsto G_x.$

Definicija

Naj bo $\mathcal A$ abeceda in G kontekstno-neodvisna gramatika. Preobrazba niza je preslikava

$$A^+ \to G^*(A),$$

 $x \mapsto G_x.$

Z |G| označimo skupno število vseh desnih članov produkcijskih pravil gramatike vključno s ponovitvami. Preobrazba niza je asimptotsko kompaktna, če je

$$\lim_{n\to\infty} \max_{x\in\mathcal{A}^n} \frac{|G_x|}{|x|} = 0.$$

Biskecijska preobrazba niza

Definicija

Naj bo $x = x_1x_2 \cdots x_n \in \mathcal{A}^+$. Vpeljemo *biskecijsko členitev niza*

$$S(x) = \{x\} \cup \{x_i \cdots x_j \mid \frac{i-1}{j-i+1}\}.$$