Chessboard Distance

The Chessboard Distance for any two points (X_1, Y_1) and (X_2, Y_2) on a Cartesian plane is defined as $max(|X_1 - X_2|, |Y_1 - Y_2|)$.

You are given two points (X_1, Y_1) and (X_2, Y_2) . Output their Chessboard Distance.

Note that, |P| denotes the absolute value of integer P. For example, |-4| = 4 and |7| = 7.

Input Format

- First line will contain T, the number of test cases. Then the test cases follow.
- Each test case consists of a single line of input containing 4 space separated integers X_1 , Y_1 , X_2 , Y_2 as defined in the problem statement.

Output Format

For each test case, output in a single line the chessboard distance between (X_1, Y_1) and (X_2, Y_2)

Constraints

- 1 ≤ *T* ≤ 1000
- $1 \le X_1, Y_1, X_2, Y_2 \le 10^5$

Subtasks

Subtask #1 (100 points): original constraints

Sample 1:

Input	
Output	
3	3
2 4 5 1 5 5 5 3 1 4 3 3	
1 4 3 3	

Explanation:

- In the first case, the distance between (2, 4) and (5, 1) is max(|2-5|, |4-1|) = max(|-3|, |3|) = 3.
- In the second case, the distance between (5,5) and (5,3) is max(|5-5|,|5-3|) = max(|0|,|2|) = 2.
- In the third case, the distance between (1, 4) and (3, 3) is max(|1 3|, |4 3|) = max(|-2|, |1|) = 2.