Maximum and Minimum Values

FIGURE 1

1 Definition A function of two variables has a local maximum at (a, b) if $f(x, y) \le f(a, b)$ when (x, y) is near (a, b). [This means that $f(x, y) \le f(a, b)$ for all points (x, y) in some disk with center (a, b).] The number f(a, b) is called a **local maximum value.** If $f(x, y) \ge f(a, b)$ when (x, y) is near (a, b), then f has a local minimum at (a, b) and f(a, b) is a local minimum value.

Theorem If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

EXAMPLE 1 Let
$$f(x, y) = x^2 + y^2 - 2x - 6y + 14$$
. Then
$$f_x(x, y) = 2x - 2 \qquad f_y(x, y) = 2y - 6$$

These partial derivatives are equal to 0 when x = 1 and y = 3, so the only critical point is (1, 3). By completing the square, we find that

 $z = x^2 + y^2 - 2x - 6y + 14$

EXAMPLE 2 Find the extreme values of $f(x, y) = y^2 - x^2$.

FIGURE 3 $z = y^2 - x^2$

Second Derivative Test

Local Max

$$f'(c) = 0$$
 and $f''(c) < 0$

Local Min

$$f'(c) = 0$$
 and $f''(c) > 0$

Second Derivatives Test Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ [that is, (a, b) is a critical point of f]. Let

$$D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is not a local maximum or minimum.

Lagrange Multipliers

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

Method of Lagrange Multipliers To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
$$g(x, y, z) = k$$

and

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $f_z = \lambda g_z$ $g(x, y, z) = k$

EXAMPLE 2 Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

SOLUTION We are asked for the extreme values of f subject to the constraint $g(x, y) = x^2 + y^2 = 1$. Using Lagrange multipliers, we solve the equations $\nabla f = \lambda \nabla g$ and g(x, y) = 1, which can be written as

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $g(x, y) = 1$

or as

$$2x = 2x\lambda$$

$$4y = 2y\lambda$$

$$x^2 + y^2 = 1$$

From $\boxed{9}$ we have x=0 or $\lambda=1$. If x=0, then $\boxed{11}$ gives $y=\pm 1$. If $\lambda=1$, then y=0 from $\boxed{10}$, so then $\boxed{11}$ gives $x=\pm 1$. Therefore f has possible extreme values at the points (0,1), (0,-1), (1,0), and (-1,0). Evaluating f at these four points, we find that

In geometric terms, Example 2 asks for the highest and lowest points on the curve C in Figure 2 that lie on the paraboloid $z=x^2+2y^2$ and directly above the constraint circle $x^2+y^2=1$.

Screen clipping taken: 13/04/2025 8:39 pm

$$f(0, 1) = 2$$
 $f(0, -1) = 2$ $f(1, 0) = 1$ $f(-1, 0) = 1$

Therefore the maximum value of f on the circle $x^2 + y^2 = 1$ is $f(0, \pm 1) = 2$ and the minimum value is $f(\pm 1, 0) = 1$. Checking with Figure 2, we see that these values look reasonable.

EXAMPLE 3 Find the extreme values of $f(x, y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.

SOLUTION According to the procedure in (14.7.9), we compare the values of f at the critical points with values at the points on the boundary. Since $f_x = 2x$ and $f_y = 4y$, the only critical point is (0, 0). We compare the value of f at that point with the extreme values on the boundary from Example 2:

$$f(0, 0) = 0$$
 $f(\pm 1, 0) = 1$ $f(0, \pm 1) = 2$

Therefore the maximum value of f on the disk $x^2 + y^2 \le 1$ is $f(0, \pm 1) = 2$ and the minimum value is f(0, 0) = 0.

3-14 Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

3.
$$f(x, y) = x^2 + y^2$$
; $xy = 1$

5.
$$f(x, y) = y^2 - x^2$$
; $\frac{1}{4}x^2 + y^2 = 1$

20.
$$f(x, y) = 2x^2 + 3y^2 - 4x - 5$$
, $x^2 + y^2 \le 16$

