PSET-06 - (HWOZ) (20171049) Given that: For BG cell, distribution is N(4, , 0,2) and for Facell, distribution is N(un, or2). Also, given that, if xij <0, then BG, else FG. @ If P(BG) = P(FG) & 0, = 02 So, P(86) = P(FG). P(x|FG) = (x-M) = (x-M) = (x-M) = (x-M) $\Rightarrow \frac{(x-u_i)^2}{2\sigma_i^2} = \frac{(x-u_i)^2}{2\sigma_i^2} \Rightarrow (x-u_i)^2 = (x-u_i)^2$ $(x-u_i) = \pm (x-u_i) \Rightarrow u_i = u_i, \text{ or } \left(x = \frac{u_i + u_i}{2}\right)$ Hence, the optimal value of θ is $\theta^* = \frac{u_1 + u_2}{2}$.

(b) For $\theta^* = \frac{u_1 + u_2}{2}$, Putting $x = \left(\frac{u_1 + u_2}{2}\right)$. $P(BG). P(X|BG) = \frac{P(BG)}{\sqrt{2\pi} \sigma_1} = \frac{\left(\frac{u_1 + u_2}{2}\right)^2}{2\sigma_1^2} = 0$ Also, $f(FG) \cdot f(x|FG) = \frac{f(FG)}{\sqrt{\pi}\sigma_{\bullet}} e^{-\left(\frac{M_{\bullet}+M_{\bullet}}{2} - M_{\bullet}\right)^{2}}$ Also, DEBOTO (xtra) co Cocasicio: (1) = (1) $\frac{\rho(BG)}{\sqrt{2\pi}\sigma_1} = \frac{\rho(FG)}{\sqrt{2\sigma_1^2}} = \frac{\rho(FG)}{\sqrt{2\sigma_1^2}} = \frac{\rho(FG)}{\sqrt{2\sigma_1^2}}$ $\Rightarrow \frac{P(BG)}{P(FG)} = \frac{\sigma_1}{\sigma_2} \cdot e^{-\frac{(4_1 - 4_1)^2}{8} \left[\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2} \right]}$ $\frac{P(BG)}{P(FG)} = \frac{\sigma_1}{\sigma_2} \cdot e^{\frac{(M_1 - M_2)^2}{3}} \left(\frac{1}{\sigma_2} - \frac{1}{\sigma_1^2} \right)$ (c) lyiven M=100, M=200 60,=02, {Let 0,=0=0}. Now, P(BG) = 4xP(FG). P(BG).P(X|BG) = P(FG).P(X|FG).-> 4 P(X|BG) = P(X|FG). $\frac{4}{(\sqrt{1\pi})^2\sigma} e^{-\frac{(\theta^*-100)^2}{2\sigma^2}} = \frac{1}{(\sqrt{1\pi})^2\sigma} e^{-\frac{(\theta^*-100)^2}{2\sigma^2}}$ $4 e^{-\frac{(0^*-100)^2}{2\sigma^2}} = e^{-\frac{(0^*-100)^2}{2\sigma^2}}$ => ln4 - (0*-100)2 = - (0*-200)2 20° ln4 = (0* -100) - (0*-200) ⇒ (20* -300)(100) = 202 ln4 $(0^* - 150) = \frac{\sigma^2 \ln 4}{100} \Rightarrow 0^* = \frac{\sigma^2 \ln 4}{100} + 150$

Scanned by CamScanner