MA3469 - Assignment 1

Eoin O'Connor 15321657

Problem 1.

Solution Below is a plot of the dependence of the error on the step size for the Euler method and the Runge-Kutta method when compared to the analytic solution.

The Euler data was fitted with a function of the form $f(x) = a \cdot x$ The Runge-Kutta data was fitted with a function of the form $f(x) = a \cdot x^4$

These fits tell us that the error in the Euler method scales linearly with the step size h and the Runge-Kutta method scales with h^4 .

Problem 2.

Solution The Runge-Kutta algorithm in rossler.cc gives the value of $x_0(50) = 1.97347$ which to 5sf is $x_0(50) = 1.9735$ this agrees with Mathematica's solution to the problem