Sobre o Uso da tabela da distribuição ${\bf t}$

Markus Stein

8 September 2020

Tabelas, tabelas, tabelas...

- Para que servem as tabelas?
- Cada número em uma tabela de probabilidade é resultado de inúmeros cálculos ("Hoje em dia usamos computadores para encontrar esses números...")

Qual a diferença entre a tabela da distribuição t (Student) e da distribuição Normal padrão?

- Na tabela da distribuição **Normal padrão** precisamos somente definir o nível de significância α , ou nível de confiança $1-\alpha$, para o problema....encontrar um valor tal que a probabilidade abaixo ou acima seja de interesse.
 - Na tabela da Normal padrão definimos a probabilidade de interesse no corpo da tabela e olhamos o valor correspondente na linha e coluna.
- Já na distribuição \mathbf{t} de Student também precisamos calcular os graus de liberdade ν , que é um parâmetro que depende do tamanho da amostra n, ou amostras n_1 e n_2 no caso de duas populações. (existe uma tabela igual a da normal padrão para cada grau de liberdade)
- Então, para facilitar o uso da distribuição ${\bf t}$ foi criada uma tabela que apresenta valores , para específicos valores de ν e α .
 - Na tabela da ${\bf t}$, os valores associados a probabilidades estão no corpo da tabela, basta definirmos os graus de liberdade do problema ν e a probabilidade α .

Usando softwares para encontrar valores

- No software R podemos encontrar valores de y tal que $P(Y < y) = \alpha$ usando as funções
 - 'qnorm(α)' para distribuição Normal Padrão,
 - 'qt (α, ν) ' para distribuição **t de Student**,
 - 'qchisq(α, ν)' para a distribuição Qui-QUadrado.
 em que ν são os graus de liberdade da distribuição.

Exemplos para se calcular P(Y < y) = 0,975:

• Para a distribuição *normal padrão** temos

qnorm(0.975)

[1] 1.959964

que corresponde na figura abaixo a $y=1.959964\,$

• Tente para a distribuição ${\bf t}$ e ${\bf qui}$ - ${\bf quadrado},\dots$ (assuma $\nu=15$ para ${\bf t}$ e ${\bf Qui}$ - ${\bf Quadrado}$)

Referência

Livro online da plataforma 'Probabilidade e Estatística (EAD)'

- No 'Capítulo 3 Distribuições de Variáveis Aleatórias' ver Seções
 - 1.1.3 Tabela de probabilidade normal
 - $-\,$ 1.1.4 Exemplos de probabilidade