COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

NP-completeness & Approximation Algorithm

LI Bo
Department of Computing
The Hong Kong Polytechnic University

INDIVIDUAL PROJECT

You can choose *one* of the three types of projects to work on:

- *Type I:* Introduce one (new) algorithm and analyze why the algorithm has good performance.
- Type II: Summarize the real-world applications of an algorithm.
- Type III: Implement one algorithm on real-world data sets.

(If you have any other ideas, feel free to discuss them with me.)

INDIVIDUAL PROJECT

Report format (e.g. Introduction + Preliminaries+ Results + Discussion):

- Font: 12-point Times New Roman
- Margin and Spacing: 2.5 cm all round, single column and single-line spacing
- Page limit: no more than 3 pages, including references

Deadline: Dec 20, 2024 (two days after the exam).

ESTABLISHING NP-COMPLETENESS

NP-complete

A problem $Y \in NP$ with the property that for every problem $X \in NP$, $X \leq_P Y$.

Remark.

Once we establish first "natural" NP-complete problem, others fall like dominoes.

Proposition.

If $X \in \mathbb{NP}$ -complete, $Y \in \mathbb{NP}$, and $X \leq_P Y$, then $Y \in \mathbb{NP}$ -complete.

Proof.

Consider any problem $W \in \mathbb{NP}$. Then, both $W \leq_P X$ and $X \leq_P Y$. By transitivity, $W \leq_P Y$.

Example: SAT \leq_P 3-SAT \leq_P INDEPENDENT-SET \leq_P VERTEX-COVER \leq_P SET-COVER.

Recipe.

To prove that $Y \in NP$ -complete:

- \triangleright Step 1. Show that $Y \in \mathbb{NP}$.
- \triangleright Step 2. Choose an NP-complete problem X.
- \triangleright Step 3. Prove that $X \leq_P Y$.

SUBSET SUM

SUBSET SUM

SUBSET-SUM.

Figure Given n natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W? $(M = \sum_{i=1}^{n} w_i > W)$

Exercise.

- $\ge \{215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655\}, W = 1505.$
- \triangleright Yes: 215 + 355 + 355 + 580 = 1505.

SUBSET SUM

Theorem. 3-SAT \leq_P SUBSET-SUM*.

Approach: Given an instance Φ of 3–SAT, we construct an instance of SUBSET-SUM that has solution if and only if Φ is satisfiable.

$C_1 =$	$\neg x_1$	٧	<i>x</i> ₂	٧	<i>x</i> 3			
$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>x</i> 3			
$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	¬ x3			
3-SAT instance								

Construction

Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each having n + k digits:

- Include one digit for each variable x_i and one digit for each clause C_i containing it.
- \triangleright Include two numbers for each variable x_i .

	x_1	x_2	<i>x</i> ₃	C_1	C ₂	<i>C</i> ₃	
x_1	1	0	0	0	1	0	100,010
$\neg x_1$	1	0	0	1	0	1	100,101
<i>x</i> ₂	0	1	0	1	0	0	10,100
$\neg x_2$	0	1	0	0	1	1	10,011
<i>x</i> ₃	0	0	1	1	1	0	1,110
¬ x3	0	0	1	0	0	1	1,001

Construction

Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each having n + k digits:

- Include one digit for each variable x_i and one digit for each clause C_i .
- \triangleright Include two numbers for each variable x_i .
- \triangleright Include two numbers for each clause C_i .
- \triangleright Sum of each x_i digit is 1; sum of each C_i digit is 4.

Key property: No carries possible

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$
 $C_2 = x_1 \lor \neg x_2 \lor x_3$
 $C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$

3-SAT instance

	x_1	x_2	<i>x</i> ₃	C_1	C ₂	<i>C</i> ₃	
x_1	1	0	0	0	1	0	100,010
$\neg x_1$	1	0	0	1	0	1	100,101
<i>x</i> ₂	0	1	0	1	0	0	10,100
$\neg x_2$	0	1	0	0	1	1	10,011
х3	0	0	1	1	1	0	1,110
¬ x3	0	0	1	0	0	1	1,001
(0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444
	73						

Proof.

- Suppose 3-SAT instance Φ has satisfying assignment x^* .
- If $x_i^* = true$, select integer in row x_i ; otherwise, select integer in row $\neg x_i$.
- \triangleright Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- \triangleright Select dummy integers to make C_i digits sum to 4.

Lemma. If there exists a subset that sums to W, then Φ is satisfiable.

Proof.

- \triangleright Suppose there exists a subset S^* that sums to W.
- \triangleright Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i = true$; otherwise, assign $x_i = false$.
- \triangleright Digit C_j forces subset S^* to select at least one literal in clause.

$C_1 =$	$\neg x_1$	٧	<i>x</i> ₂	٧	х3			
$C_2 =$	x_1	٧	$\neg x_2$	٧	х3			
$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	¬ x3			
3-SAT instance								

hen		x_1	x_2	<i>x</i> ₃	C_1	C ₂	C ₃	
	x_1	1	0	0	0	1	0	100,010
	$\neg x_1$	1	0	0	1	0	1	100,101
W.	<i>x</i> ₂	0	1	0	1	0	0	10,100
x _i or	$\neg x_2$	0	1	0	0	1	1	10,011
·,	<i>X</i> ₃	0	0	1	1	1	0	1,110
1;+0;01	¬ x3	0	0	1	0	0	1	1,001
literal	(0	0	0	1	0	0	100
		0	0	0	2	0	0	200
dumn	ny]	0	0	0	0	1	0	10
intege	1	0	0	0	0	2	0	20
		0	0	0	0	0	1	1
		0	0	0	0	0	2	2
	W	1	1	1	4	4	4	111,444
		73						

KNAPSACK.

Given a set of n items X, size $s_i \ge 0$, values $v_i \ge 0$, a weight limit B, and a target value V, is there a subset $S \subseteq X$ such that:

 $\sum_{i \in S} s_i \le B$ and $\sum_{i \in S} v_i \ge V$.

More Stories

SUBSET-SUM.

Given n integers $w_1, ..., w_n$ and an integer W, is there a subset of them that adds up to exactly W.

$$M = \sum_{i=1}^{n} w_i > W$$

PARTITION.

Given integers v_1, \dots, v_n , is there a subset $S \subseteq \{1, \dots, n\}$ such that

$$\sum_{i \in S} v_i = \sum_{i \notin S} v_i.$$

Theorem. SUBSET-SUM \leq_P KNAPSACK

Proof.

Given SUBSET-SUM instance $w_1, ..., w_n$ and an integer W, set $s_i = v_i = w_i$ and B = V = W.

Theorem. SUBSET-SUM $\leq_{\mathbb{P}}$ PARTITION

"Proof".

Given SUBSET-SUM instance $w_1, ..., w_n$ and an integer W, set $v_i = w_i$ and $W = \frac{1}{2} \sum_{i \in [n]} v_i$.

 $PARTITION \leq_{P} SUBSET-SUM$

PARTITION.

Given integers v_1, \dots, v_n , is there a subset $S \subseteq \{1, \dots, n\}$ such that

$$\sum_{i \in S} v_i = \sum_{i \notin S} v_i.$$

Theorem. SUBSET-SUM ≤_P PARTITION

Proof.

- \triangleright Given SUBSET-SUM problem w_1, \dots, w_n, W , we construct the following instance of Partition:
- $\triangleright v_1 = w_1, \dots, v_n = w_n, v_{n+1} = 2M, v_{n+2} = 3M 1$ $\frac{2W}{N}$, where $M = \sum_{i=1}^{n} v_i > W$.
- \triangleright We prove $\exists S \subseteq \{1, \dots, n\}$ s. t.

$$\sum_{i \in S} v_i = W$$

if and only if $\exists S' \subseteq \{1, \dots, n, n+1, n+2\} s.t.$

$$\sum_{i \in S'} v_i = \sum_{i \notin S'} v_i.$$

- \triangleright Suppose there is $S \subseteq \{1, \dots, n\}$ such that $\sum_{i \in S} v_i = W$.
- ightharpoonup Then immediately $\sum_{i \notin S} v_i = M W$.

$$\sum_{i \notin S} v_i = M - W.$$

$$\sum_{i \in S} v_i + v_{n+2} = \sum_{i \notin S} v_i + v_{n+1}.$$

$$X + 3M - 2W = (M - X) + 2M$$

- \triangleright In any partition of $\{1, \dots, n, n+1, n+2\}$, v_{n+1} and v_{n+2} must be separated, because they add up to $5M - 2W > \sum_{i=1}^{n} v_{i}$.
- ightharpoonup Thus, for $S = S' \setminus \{n+1, n+2\}$,

$$\sum_{i \in S} v_i + v_{n+2} = \sum_{i \notin S} v_i + v_{n+1}$$

> It follows directly from the arithmetic that $\sum_{i \in S} v_i = W.$

Summary

SUBSET-SUM.

Given n integers $w_1, ..., w_n$ and an integer W, is there a subset of them that adds up to exactly W.

$$M = \sum_{1}^{n} w_i > W$$

KNAPSACK.

Given a set of n items X, size $s_i \ge 0$, values $v_i \ge 0$, a weight limit B, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} s_i \leq B$$
 and $\sum_{i \in S} v_i \geq V$.

PARTITION.

Given integers v_1, \dots, v_n , is there a subset $S \subseteq \{1, \dots, n\}$ such that

$$\sum_{i \in S} v_i = \sum_{i \notin S} v_i.$$

Theorem. SUBSET-SUM \leq_{P} KNAPSACK

Theorem. PARTITION \leq_{P} SUBSET-SUM

Theorem. SUBSET-SUM \leq_P PARTITION

$3SAT \leq_P SUBSET-SUM \equiv_P PARTITION \leq_P KNAPSACK$

DO NOT forget to show that the problem is NP, in order to claim they are NP-complete!

Six Basic NP-Complete problems

• 3-Satisfiability (3-SAT)

• 3-Dimensional Matching (3DM) $3SAT \le_p 3DM$

Exact Cover by 3-Sets (X3C) $3DM \le_p X3C$

- Vertex Cover (VC)
- Independent Set (IS)
- Hamiltonian Cycle (HC)

 $3SAT \leq_p HC, VC \leq_p HC$

• Partition

3-Dimensional Matching (3DM)

Given: Sets X, Y, Z, each of size n, and a set $T \subset X \times Y \times Z$ of order triplets.

Question: is there a set of *n* triplets in *T* such that each element is contained in exactly one triplet?

Exact Cover by 3-Sets (X3C)

Given: a set U with |U| = 3n and a collection C of 3-element subsets of U.

Question: Does C contain an exact cover for U, that is, a subcollection $C' \subseteq C$ such that every element of U occurs in exactly one member of C'?

Theorem. 3DM≤ $_p$ X3C.

$$3DM: T \subseteq X \times Y \times Z$$

 $M \subseteq T$ is a matching with size n for 3DM iff $M \subseteq U$ is a 3-exact-cover for U

X3C: $U = X \cup Y \cup Z$ (unordered)

Hamiltonian Cycle Problem

We are given a unweighted and undirected graph G = (V, E). Is there a cycle in G that visits each node exactly once?

No

Travelling Salesman Problem (TSP)

We are given n cities $1, \dots, n$, and a nonnegative integer distance l(i, j) between any two cities i and j (assume that the distances are symmetric, that is, l(i, j) = l(j, i) for all i and j). We are also given a parameter K.

We are asked to determine if there is a tour of all cities with total distance no more than K.

Hamiltonian Cycle Problem (undirected graph)

We are given a unweighted and undirected graph G = (V, E). Is there a cycle in G that visits each node exactly once?

Yes No

Theorem. TSP is NP-complete.

Proof:

- > TSP (decision version) is in NP.
- ➤ Reduction from Hamiltonian Cycle.
- \triangleright Let G be an arbitrary undirected graph with n vertices.
- \triangleright Construct a length function for K_n (complete graph) as follows

$$\ell(e) = \begin{cases} 1 & \text{if } e \text{ is an edge in } G, \\ 2 & \text{otherwise.} \end{cases}$$

- If G has a Hamiltonian cycle, then there is a TSP cycle in K_n whose length is exactly n;
- \triangleright Otherwise, every TSP cycle in K_n has length at least n+1.

 K_n $\begin{pmatrix} u \\ 1 \\ 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} v \\ w \end{pmatrix}$

20

If G has a Hamiltonian cycle if and only if there is a TSP cycle in K_n whose length is exactly n.

Approximation Algorithms

KNAPSACK (Decision)

Given a set of items $X = \{a_1, \dots, a_n\}$, cost $c_i \ge 0$, values $v_i \ge 0$, a budget B, and a target value V, is there a subset $S \subseteq X$ such that:

 $\sum_{i \in S} c_i \leq B$ and $\sum_{i \in S} v_i \geq V$.

Knapsack Problem:

KNAPSACK (Optimization)

Given a set of items $X = \{a_1, \dots, a_n\}$, cost $c_i \ge 0$, values $v_i \ge 0$, a budget B. Find a subset $S \subseteq X$ such that:

$$\sum_{i\in S}c_i\leq B,$$

and $v_i(S)$ is maximized.

Without loss of generality, we can assume $c_i \leq B$ for all a_i .

One More Dynamic Programming Algorithm for Knapsack

- $ightharpoonup S_{i,p}$: subset of $\{a_1, \dots, a_i\}$ with minimal cost which has value exactly p.
- $> c(S_{i,p}) = \begin{cases} \infty & \text{if } S_{i,p} \text{ does not exist} \\ \sum_{a_i \in S_{i,p}} c(a_i) & \text{otherwise} \end{cases}$
- > Consider the following recurrence:

$$S_{1,p} = \begin{cases} \{a_1\}, & \text{if } p = a_1 \\ -, & \text{otherwise} \end{cases}$$

$$S_{i+1,p} = \begin{cases} \arg\min\{c(S_{i,p}), c(\{a_{i+1}\} \cup S_{i,p-v_{i+1}})\}, & \text{if } v_{i+1} \leq p \text{ and } S_{i,p-v_{i+1}} \neq -s_{i,p}, \end{cases}$$
 otherwise

- \succ This recurrence computes all $S_{i,p}$ for i and $p \in \{0,1,\cdots,n\cdot V^*\}$ where $V^* = \max_i v_i$.
- > The optimal solution to Knapsack is then given by

$$\arg\max_{p:c(S_{n,p})\leq B}v(S_{n,p}).$$

Dynamic Programming Algorithm for Knapsack

1:
$$S_{1,p} = \begin{cases} a_1 & \text{if } p = v_i \\ & \text{otherwise} \end{cases}$$
2: **for** $i \in \{1, \dots, n\}$ **do**
3: **for** $p \in \{1, \dots, n \cdot V^*\}$ **do**
4: $S_{i+1,p} = \begin{cases} \operatorname{argmin} \left\{ c(S_{i,p}), c(a_{i+1} \cup S_{i,p-v_{i+1}}) \right\} & \text{if } v_{i+1} \leq p \text{ and } S_{i,p-v_{i+1} \neq -} \\ S_{i,p} & \text{otherwise} \end{cases}$
5: **end for**
6: **end for**

- 7: **return** $\underset{p:c(S_{n,p})\leq B}{\operatorname{argmax}} v(S_{n,p})$

polynomial time algorithm?

number of bits

- \triangleright The running time of this algorithm is $O(n^2V^*)$.
- NO! It is pseudo-polynomial!
- \triangleright Running time is measured by the *size* of the input. The value V^* can be written using $\log V^*$ bits, so a polynomial-time algorithm should have complexity $O(\log^c V)$ for some constant c.
- \triangleright The complexity $O(n^2V^*)$ is in fact exponential in the size of the input.

k = 100

Definition

For a maximization problem, an algorithm is called α -approximation if for any input, the algorithm returns a feasible solution S such that

$$\frac{f(S)}{f(O)} \ge \alpha,$$

 $\alpha \leq 1$

where O is an optimal solution, and f evaluates the quality of the solution.

Polynomial-time approximation scheme (PTAS) for Knapsack

- \triangleright Computes all $S_{i,p}$ for i and $p \in \{0,1,\cdots,n\cdot V^*\}$. \longrightarrow Increase by 1 in each step.
- \triangleright Let $0 < \epsilon < 1$ be a sufficiently small constant.
- $ightharpoonup \operatorname{Set} k = \frac{\epsilon \cdot V^*}{n}.$
- ightharpoonup Set $v_i' = \left\lfloor \frac{v_i}{k} \right\rfloor$ for all $i = 1, \dots, n$.
- \triangleright Run the DP algorithm for $(\{(c_1, v_1'), \dots, (c_n, v_n')\}, B)$.

How about skipping some? Increase by k > 1?

$$O(n^2 \cdot \frac{V^*}{k}) = O(n^2 \cdot \frac{V^* \cdot n}{\epsilon \cdot V^*}) = O(\frac{n^3}{\epsilon})$$

How far away from the optimal solution?

Approximation Ratio

 \triangleright Let S be the solution returned by the algorithm (regarding $v'(\cdot)$).

 $v_i' = \left| \frac{v_i}{l_i} \right| \ge \frac{v_i}{l_i} - 1$

 \triangleright Let O be the optimal solution (regarding $v(\cdot)$).

Without loss of generality, we can assume $c_i \leq B$ for all a_i .

A Few More Definitions

Strong NP-completeness

- \triangleright The pseudo-polynomial algorithm does not establish that P = NP!
- The NP-completeness proof for SUBSET-SUM, KNAPSACK and PARTITION uses exponentially large integers.
- ➤ Problems including VERTEX-COVER, SET-COVER, INDEPENDET-SET, were shown NP-complete via reductions that constructed only polynomially small integers.

Strongly NP-complete

If a problem remains NP-complete even if any instance of length n is restricted to contain integers of size at most p(n), a polynomial, then we say that the problem is **strongly NP-complete**.

NP-hard

NP-complete

A problem $Y \in NP$ with the property that for every problem $X \in NP$, $X \leq_P Y$.

Recipe.

To prove that $Y \in \mathbb{NP}$ -complete:

- \triangleright Step 1. Show that $Y \in \mathbb{NP}$.
- \triangleright Step 2. Choose an NP-complete problem X.
- \triangleright Step 3. Prove that $X \leq_P Y$.
- Sometimes we may be able to show that all problems in NP polynomially reduce to some problem A, but we are unable to argue that $A \in NP$.
- So, A does not qualify to be called NP-complete.
- Yes, undoubtedly A is as hard as any problem in NP, and hence most probably intractable.

NP-hard

The term NP-hard is also used in the literature to describe optimization problems (which are not decision problems and thus not in NP).

INDEPENDENT SET

Independent Set Problem

Given a graph G = (V, E) with |V| = n and |E| = m. Find a set of maximum number of vertices such that no two are adjacent?

Always select the node with minimum degree.

Greedy Algorithm

Require: a graph G = (V, E) $W \leftarrow V$ $S \leftarrow \emptyset$ while $W \neq \emptyset$ do $Find \text{ a vertex } v \in W \text{ with minimum degree in } G[W]$ $W \leftarrow W \setminus N_G[v]$ $S \leftarrow S \cup \{v\}$ end while return Sthe subset of vertices adjacent to v and v

Independent Set Problem

Greedy Algorithm

```
Require: a graph G = (V, E)
W \leftarrow V
S \leftarrow \emptyset
while W \neq \emptyset do
Find \text{ a vertex } v \in W \text{ with minimum degree in } G[W]
W \leftarrow W \setminus N_G[v]
S \leftarrow S \cup \{v\}
end while
\text{return } S
```

Theorem.

The Greedy Algorithm is $(1/(\Delta + 1))$ -approximation for graphs with degree at most Δ .

Proof

- \triangleright Every time a vertex ν is picked by Greedy, at most Δ vertices are removed.
- So at the end at most $|S| \cdot (\Delta + 1)$ vertices have been removed.
- ➤ All nodes have been removed:

$$n \le (\Delta + 1) \cdot |S|$$

That is

$$|S| \ge \frac{n}{\Delta + 1} \ge \frac{OPT}{\Delta + 1}$$