

First: What happened last Wednesday

Kiran's talk on mapping fMRI data to stimulus semantics

- •Learned a map from fMRI data from selected areas of the brain of subjects watching a movie to a corpus of annotations on the movie
- Also: discussion of word embeddings, a useful technique that encodes words in a corpus as vectors in R^d

Jacob's talk on computation in the fly's brain

 A treasure trove of information, ideas and project topics

Concluding our treatment of synaptic plasticity: Spike timing-dependent plasticity (STDP)

If spike arrives in time, some gain. Just in time, **big gain**. If it misses it, some loss. Just misses it, **big loss**.

Bengio et al. 2016 "Towards biologically plausible deep learning" through STDP

- Gradient descent: $\Delta x^t = \alpha \delta(t) \nabla f(x^t)$ update happens at time t
- SDTP: $\Delta w^t = \beta \, \delta(t) \, \nabla \, V(w^t) \, t$ is the time the spike arrives at the synapse
- Some similarity, huh?
- Idea: What if we use an STDP feedforward net to optimize some objective function whose "local derivative" is V?
- This idea is pursued in the paper; some learning can be done, but there are catches and different kinds of biological implausibility...

Incidentally, my take on biological plausibility

- Deep nets are biologically plausible (in some well defined sense)
- •Forward computation is of course plausible (e.g., the visual cortex)
- Backprop can be thought of as modeling evolution
- Assuming that the feedforward circuit and/or the weights are a phenotype that depends on many genes
- Minibatch: the collective experience of a generation
- Selection changes the allele statistics of the population

Information Theory: Entropy of a distribution D

$$H(D) = -\sum_{j} Prob[r_{j}] log_{2} (Prob[r_{j}])$$

Example: coin {p, 1-p}

Shannon's second theorem

Theorem 2: If the channel has capacity C and noise $p < \frac{1}{2}$ then

- (a) Any rate R < C(1-h(p)) can be achieved by coding
- (b) No rate greater than C(1 h(p)) can be achieved

(c) If equivocation – uncertainty in decoding, H(x|y) > 0 – is allowed,

then the attainable region is as shown

H(x|y) equivocation

Shannon's second theorem, part (a)

Theorem 2: If a channel has capacity C and noise $p < \frac{1}{2}$ then

(a) Any rate R < C(1-h(p)) can be achieved by coding

Proof of (a): Consider a long bit string B of length m. Map each such B to a random bit string c(B) of length m + r, where r is the redundancy afforded by the excess of C over R. 2^m such codewords

Remarkably, after c(B) is received as a corrupted bit string B', B can be recovered by finding the closest codeword to B'.

This is because these "Hamming balls" around the c(B)s with radius p(m+r) are disjoint (with high probability).

Shannon's second theorem, parts (b) and (c)

Theorem 2: (b) No rate greater than C(1 - h(p)) can be achieved c) If equivocation is allowed, the attainable region is as shown

Proof of (b) and (c): If the code has redundancy less than C h(p), the balls centered at the codewords will intersect with large probability and substantial equivocation will result.

H(x|y) equivocation

ATTAINABLE REGION

C(1-h(p))

H(x)

PS: Coding Theory since Shannon

- Striving to achieve this Shannon bound with explicit codes (not randomly selected codewords)
- •Reed Solomon codes, BCH codes (1950s and 1960s)
- Polar codes, turbo-codes, sparse graph codes (2000s)

Joint, relative, and mutual entropy

- Entropy of a joint distribution H(x,y)
- Conditional entropy H(x y)
- Chain rule: H(x,y) = H(x) + H(y|x) = H(y) + H(x|y)
- •Mutual information:

$$I(x, y) = \sum_{i,j} Prob[i,j] \log_2(Prob[i,j]/Prob[i] Prob[j])$$

•"How far from independent" are these random variables...

Joint, relative, and mutual entropy (cont.)

•Mutual information:

$$I(x, y) = \sum_{i,j} Prob[i,j] log_2(Prob[i,j]/Prob[i]) Prob[j]$$
•Kullback-Leibler divergence of two distributions P, Q

$$KL(P,Q) (\neq KL(Q,P)) = -\Sigma_i P[i] \log_2 (Q[i]/P[i]) \ge 0$$

 $I(x, y) = KL(P(x,y), P(x) \cdot P(y))$ •Notice:

A connection to Deep Learning [McAllester 2018]

- You have the distribution P(image, label) in the world
- •You want to create another distribution, call it
- $Q_{N(\Theta)}$ (image, label) where Θ are the parameters (weight etc.) of the CNN
- You want to $\max_{\Theta} E_{(image,label)\sim P} \log Q_{N(\Theta)}(label|image)$ Equivalently, to $\min_{\Theta} KL(P, Q_{N(\Theta)})$

Finally...

 Discrete information theory can be extended to continuous random variables and distributions

$$\sum \rightarrow \int$$

One application: how flies encode contrast

To maximize entropy of the encoding, the response distribution should mimic the stimulus distribution!

Questions? Thoughts? Feedback?

Today:

- Continue on Information Theory and the Brain
- Introduction to Dynamical Systems
- Examples of Dynamical Systems models of the Brain

Another example of applying Information Theory to the Brain (besides contrast coding in the fly)

•Q: What is the information contained in the spike train of a neuron responding to a stimulus?

•A1: $p(t) = probability there is a spike in [t, t + \Delta t]$ entropy
rate $H \lesssim -R \int_0^\infty p(t) \log_2(p(t) \Delta t) dt$ (approximate because of possible correlations)

(choose Δt small enough so two spikes unlikely)

For Poisson spikes: $H = R(1 - \ln (R \Delta t)) / \ln 2$

- •Better approach: Pick Δt small, and $T = m \Delta t$
- •p(B) is the probability that B in {0,1}^m occurs in some time interval of length T
- •Above, m = 6 and B = 010011 $H = - [\Sigma_B p(B) \log_2 p(B)]/T$
- •But there is noise in the spikes

Calculation of noise entropy

•Noise at time t: the entropy of the distribution of the different responses B(t) to the same stimulus starting at time t

$$H_{\text{noise}} = -\Delta t \left[\sum_{B} p(B(t)) \log_2 p(B(t)) \right] / T^2$$

$$H_{\text{true}} = H - H_{\text{noise}}$$

•Finally, extrapolate data for $T \rightarrow \infty$

Rieke et al. 1995 "Naturalistic stimuli increase efficiency of information transmission..."

Result: Frog auditory neurons respond with much higher H_{true} to sounds that resemble frog calls than to white noise -- despite the fact that the latter has higher entropy

Information Theory

- Fundamental, important, useful
- Entropy, Shannon's theorems, mutual information,
 KL divergence
- •Information Theory and the Brain: extent and scope of existing results arguably somewhat below (my) expectations

NB: not to be confused with Fisher Information [Fisher and Edgeworth, 1930s], often called just "information" in Statistics

- •A stimulus θ and a response x
- •Q: how much information does the distribution $f(x|\theta)$ (twice diff'ble) carry about the value of θ ?
- •Fisher information:

$$I(\theta) = E_f [(\partial^2/\partial \theta^2) \ln(f(x|\theta))]$$

- •Important fact (Cramer Rao bound): The variance of any estimate of θ is lower bounded by ~ $1/I(\theta)$
- Occasionally used instead of entropy in the study of Brain systems

Next: Dynamical Systems (aka Ordinary Differential Equations, ODEs)

- •Find $\dot{x} = f(x)$, given the value of x at t = 0
- x(t) is an unknown function of time t, usually a vector function; x denotes dx/dt
- •Linear dynamical system: $\dot{x} = A x$
- •One dimension, solution: $x(t) = x(0) e^{At}$
- True for any number of dimensions...
- •Linear systems are useful only as local approximations for solving nonlinear systems (helps, sometimes)

NONLINEAR

With Applications to Physics,

DYNAMICS

Biology, Chemistry, and Engineering

AND CHAOS

Excellent Book!

The dawn of dynamical systems: The two-body problem [Newton 1687]

•E.g., the earth and the moon (ignoring all else)

```
F(x,y) = M\ddot{x}-F(x,y) = m\ddot{y}
```

- (Second derivatives simulated by an extra equation)
- Two body problem can be solved easily
- Add: the center of mass moves with constant velocity (assume zero)
- •Subtract: the vector of the two bodies moves on a plane
- Etc.

The Three-Body Problem? Sun – earth –moon [Euler 1770]

- •Surprise: essentially unsolvable (e.g., in closed form)
- Families of periodic solutions found, but not the full realm of solutions
- •Field stuck after first success...
- •Breakthrough, [Poincaré 1890s] focus on qualitative questions: "will the moon ever fly away?"
- The limit behavior of the system

1D systems

- There can be no periodic solution: only equilibria (stable/unstable) where the graph of f(x) intersects the x-axis
- •Q: how does one prove convergence?
- •A: potential/Lyapunov functions

1D systems: more examples

- •Exponential growth. $\dot{x} = a x$
- •The logistic equation: growth with limits

$$\dot{x} = a \times (1 - x)$$

1D systems: bifurcation

$$\dot{\mathbf{x}} = \mathbf{r} \, \mathbf{x} - \mathbf{x}^3$$

algebraic function of time (recall Exercise 2.4.9). This lethargic decay is called *critical slowing down* in the physics literature. Finally, when r > 0, the origin has become unstable. Two new stable fixed points appear on either side of the origin, symmetrically located at $x^* = \pm \sqrt{r}$.

The reason for the term "pitchfork" becomes clear when we plot the bifurcation diagram (Figure 3.4.2). Actually, pitchfork trifurcation might be a better word!

1D systems: imperfect (or "catastrophic") bifurcation

$$\dot{x} = h + r x - x^3$$

Btw, recall the logistic equation

$$\dot{x} = a \times (1 - x)$$

The discrete-time logistic equation

$$x^{t+1} = a x^{t} (1 - x^{t})$$

$x^{t+1} = a x^{t} (1 - x^{t})$

 $x^{t+1} = a x^t (1 - x^t)$: a taste of chaos...

2D systems: periodic solutions (cycling!)

$$m\ddot{x} = -kx$$

- The harmonic oscillator
- Or the pendulum

One and two dimensions, summary

•In 1D dynamical systems, the limit behavior is equilibrium (or growth): there are no cycles

•In 2D? Poincaré – Bendixson theorem In 2D the limit behavior is either stationary (equilibrium) or periodic (cycles)*

There can be no chaos here,
 the flow "restrains itself"

Three dimensional dynamical systems Lorenz oscillator, 1963: CHAOS

$$\dot{x} = a(y - x)$$

$$\dot{y} = x(b - z) - y$$

$$\dot{z} = xy - cz$$

What is Chaos?

- Exponentially small perturbations in parameters and initial conditions lead to qualitatively different behaviors
- A seemingly periodic behavior repeats forever, except that the system never exactly cycles (Lorenz)
- An attractor is strange (fractal-like)
- •In discrete time: there cycles of all k cycle of period three is enough....)
- The system cannot be solved (or und satisfactory way

(but a

any

Against chaos: Properties you want your dynamical system to have

- Conservative systems: they conserve energy, other quantities of interest
- Reversible systems: they can be "run backwards"
- •Systems that have a Lyapunov function (progress toward convergence)

The fundamental theorem of dynamical systems: "Poincare'-Bendixson envy"

- •D > 2: is there a notion of a cycle so that the P-B theorem is restored (despite chaos)?
- •1900 1980: topologists looked for it
- Discrete time, say (continuous time follows)
- •Suppose for all $\varepsilon > 0$ there is a N such that from x I can come back to x with a sequence of < N steps alternating with jumps of length < ε
- Call such a point x chain-recurrent

The fundamental theorem of dynamical systems (cont.)

•Theorem [Conley 1984]: The domain of any dynamical system can be decomposed in the chain recurrent components (CRC) and the transient parts. There is a Lyapunov function that drives any transient point towards the CRCs

In other words "if you squint a little, chaos goes away"

OK, that was our quick introduction to dynamical systems

- Next: dynamical systems for modeling parts of the Brain
- Continuous and discrete
- A few representative examples
- Avoiding chaos

We have seen one

The Hodgkin-Huxley oscillator

$$\frac{dv}{dt} = \frac{1}{C_m}[I - g_{Na}m^3h(v - E_{Na}) - g_kn^4(v - E_K) - g_L(v - E_L)]$$

$$\frac{dm}{dt} = \alpha_m(v)(1-m) - \beta_m(v)m$$

$$\frac{dm}{dt} = \alpha_m(v)(1-m) - \beta_m(v)m$$

$$\frac{dh}{dt} = \alpha_h(v)(1-h) - \beta_h(v)h$$

Intracellular Medium

Feedforward network

- Two populations of neurons
- Feedforward synaptic connections
- u, v: vectors of spiking rates
- W: matrix of synaptic weights

$$T \cdot dv/dt = -v + F(W \cdot u)$$

Feedforward and Recurrent network

- Two populations of neurons
- Feedforward and recurrent synaptic connections
- u, v: vectors of firing rates
- W: matrix of synaptic weights

$$T \cdot dv/dt = -v + F(W \cdot u + R \cdot v)$$

Interesting case: Inhibitory and excitatory neurons in RED

Interesting case: Inhibitory and excitatory neurons (some *negative columns* in R, per Dale's Law)

• $T \cdot dv/dt = -v + F(W \cdot u + R \cdot v)$

A discrete-time system: Hopfield net

Nodes have two values: +1, -1 (blue-white)

Node i is happy if $\sum_{j} v_{i} v_{j} w_{i} \ge 0$.

Algorithm/dynamical system:

while there is an unhappy node flip it

A discrete-time system: Hopfield net

Theorem [Hopfield 1982]: Dynamical system converges

Proof: Lyapunov function

Σ_{i,j} v_i v_j w_{ij} always increases

