4.1 下图显示了某内存的部分情况,请回答以下问题。注意: 地址和数据给出的均为二进制表示。

地址	数据
00001011	0000 0011
00001010	0010 1000
00001001	0110 0100
00001000	0001 0011
00000111	0100 0000
00000110	1000 0000
00000101	1100 0000
00000100	0100 0010
00000011	0111 1111
00000010	1000 0000
00000001	1111 1110
00000000	0000 0000

- 1) 单元 0 和单元 4 包含的二进制数值分别是什么? 0 66
- 2)每个单元内的二进制数值可以以不同的方式被解释,如可以表示为无符号整数、补码整数、浮点数、ASCII 码等。
 - I. 将单元0和单元1解释为一个8位补码整数,请以十进制形式写出结果;0-2
 - II. 将单元2和单元3解释为一个8位无符号整数,请以十进制形式写出结果;128 127
 - III. 将单元4解释为ASCII码值; B
 - IV. 将单元 4、5、6 和 7 解释为一个 IEEE 浮点数 (32 位),请分别以大尾端和小尾端的方式解释,给出十进制结果。不会
- 3) 存储单元的内容也可以是一条指令,将单元 8、9、10 和 11 解释为一条 RV32I 指令,请分别以大尾端和小尾端的方式解释,该指令表示什么?
- 4) 一个二进制数值也可以被解释为一个存储单元的地址,如果存储在单元 11 中的数值 是一个地址,它指的是哪个单元?那个单元里包含的二进制数值是什么?

单元3 包含的二进制数值是127

4.2 假设一个 16 位的指令采取如下格式:

操作码 | 源寄存器 | 目标寄存器 | 补码整数

如果共有12个操作码和8个寄存器,那么,"补码整数"能够表示的数值范围是什么? -64到63

4.3 假设一个 32 位的指令采取如下格式:

操作码 目标寄存器 源寄存器 1 源寄存器 2 无符号整数

如果共有 200 个操作码和 60 个寄存器,"无符号整数"能够表示的最大数是多少? 63

- **4.4** 对于 RV32I 的 I-类型指令,请回答以下问题:
 - 1) 立即数的范围是多少? -2048到2047
 - 2) 如果重新定义 RV32I 的 I-类型指令,使得立即数表示无符号整数,那么,立即数的范围是多少? 0到4095
 - 3) 如果重新定义 RV32I 指令集,将寄存器的数量从32个降低到16个,那么,在I-类型的指令中能够表示的立即数的最大值是多少?假设立即数仍表示补码整数。

-8192到8191

- **4.5** 对于 RV32I 的 R-类型指令,如果重新定义 RV32I 指令集,将寄存器的数量从 32 个增加至 128 个,是否可行? 不行,R型不存在立即数,寄存器数量改变会影响op码或者func码
- 4.6 假设某计算机的内存包括 65536 个单元,每个单元包含 16 位的内容,请回答以下问题:
 - 1) 需要多少位表示地址? 2^16=65536 需要16位表示地址
 - 2) 假设每条指令都由 16 位组成,操作码占 4 位,寄存器占 3 位。其中一条指令与 RV32I 的 jal 指令工作机制类似,那么,PC 相对偏移范围是多少?

-256到255

- **4.7** 假设寄存器 x5 中存储的位组合的最右边两位有特殊的重要性,请使用一条 RV32I 指令,将这两位数值读取出来。提示:读取出的数值的左边 30 位均为 0,右边两位为 x5 中的位组合的最右边两位。 ANDI rd, x5, imm imm=00..00011
- **4.8** 1) 将x5乘8, 并将结果存于x6中, 一条RV32I指令(L5-指令集体系PPT80页给出的指令)可以实现吗? **SLLI x6.** x5. imm imm=00..0011
 - 2) 将 x5 除以 8, 并将结果存于 x6 中, 一条 RV32I 指令可以实现吗? SRAI x6, x5, imm
 - 3) 使用一条 RV32I 指令,可以将 x5 中的值移至 x6 中吗? imm=00..0011 ADDI x6, x5, imm imm=00..0000
- **4.9** 写一段 RV32I 指令序列,将数据在内存的单元之间移动。以移动一个字(32位)为例,假设该字所在的地址位于寄存器 x5 中,将其移动至寄存器 x6 保存的地址中。 LW x6, 0(x5) SW x6, 0(x6)
- 4.10 写一段 RV32I 指令序列,将以下常数写入 x5 中:

1)20 Ll x5, 20

2)0x12345678 LUI x5, 0x12345 ADDI x5, x5, 0x678 ADDI x5, x5, 0xFF0

4.11 当一段起始于单元 x00400000 的 RV32I 程序结束执行后,寄存器 x18~x23 的值分别是 多少?

地址	31	25 24	20 19	15	14	12	11	7	6	0 角	解释
x2000 1234		0000 0000 0000 0000 1000 0000 0000 0000									
x2000 1230		0000 0000 0100 0000 0000 0000 0000 0000									
x10000004		0010 0000 0000 0000 0001 0010 0011 0000									
x10000000											
x0040 0020	0000 0000 0000		10	111	0	10	101	11	000001	1	lw
x0040 001C	0000 0000 0000		10	010	0	10	101	11	000001	1	lw
x00400018	000000	0 1001	10	011	00	00	000	11	010001	1	sb
x00400014	0000 0000 0001		10	010	00	00	101	10	000001	1	lb
x00400010	0000 0000 0100		10	011	0	10	101	01	000001	1	lw
x0040 000C	000000	0 1001	11 10	010	0	10	000	00	010001	1	sw
x00400008	0000 0000 0100		10	010	00	00	101	00	000001	1	lb
x00400004	0000 0000 0100		10	010	0	10	100	11	000001	1	lw
x00400000	0001 0000 0000 0000 0000 10010					011011	.1	lui			

x18: 0x0040 0000 x21: 0x0000 8000

x19: 0x00 x22: 0x00

x20: 0x30 x23: 0x0040 0000

4.12 下表显示了 RV32I 内存的一部分情况:

地址	31 25	24 20	19 15	14 12	11 7	6 0	解释
x0040000C	1 111111	00000	00111	000	10101	1100011	beq
x0040 0008	1111 1111	1111	00111	100	00111	0010011	xori
x0040 0004	0000000	00110	00101	000	00111	0110011	add
x00400000	1111 1111	1111	00101	100	00101	0010011	xori

如果条件分支指令将控制转移到 x0400 0000 单元,那么 x5 和 x6 有什么特点? 相等

4.13 当如下 RV32I 指令序列执行至 x0040 0024 时, x5 中存储的值为 7, 由此可推知 x6 的什么信息?

地址	31 25	24 20	19 15	14 12	11 7	6 0	解释	
x0040 0024								
x0040 0020	1 111111	00000	00111	001	0110 1	1100011	bne	
x0040 001C	1111 1111	1111	00111	000	00111	0010011	addi	
x0040 0018	0000000	00001	01000	001	01000	0010011	slli	
x0040 0014	0000 0000	0001	00101	000	00101	0010011	addi	
x0040 0010	0 000000	00000	01001	000	01000	1100011	beq	
x0040 000C	0000000	01000	00110	111	01001	0110011	and	
x0040 0008	0000 0000 0001		00000	000	01000	0010011	addi	
x0040 0004	0000 0001	0000	00000	000	00111	0010011	addi	
x0040 0000	0000 0000	0000	00000	000	00101	0010011	addi	