Momento angular

(Partícula isolada)

$$\vec{l} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$$

Caso particular:

- partícula em mov. circular

$$\vec{l} = I\vec{\omega}$$

$$\vec{L} = \vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \dots + \vec{l}_N = \sum_{i=1}^{N} \vec{l}_i$$

Momento angular total

(Corpo rígido em torno de eixo fixo)

Torque e momento angular

$$\vec{\tau} = \vec{r} \times \vec{F}$$
$$|\vec{\tau}| = r F sen \phi$$

2ª Lei de Newton para rotação

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt}$$

Notação vetorial

- Direção: $\vec{L} /\!/ \vec{\varpi} /\!/ eixo$

- Sentido: Regra da mão direita

Conservação do momento angular

$$\sum ec{ au} = rac{dec{L}_T}{dt}$$

Logo, se
$$\sum \vec{\tau} = 0 \implies \frac{d\vec{L}_T}{dt} = 0$$

Ou seja, \vec{L} constante

Conservação do momento angular

Se o torque externo resultante que atua sobre um sistema é nulo, o momento angular do sistema permanece constante, não importando que mudanças ocorram dentro do sistema.

ou

$$\vec{L}_{Ti} = \vec{L}_{Tf}$$

Exemplos:

- O voluntário que gira

Exemplos:

O praticante de saltos ornamentais

Exemplo 11-7:

Exemplo 11-12:

Uma barata de massa *m* está sobre um disco de massa 6,00m e raio R. O disco gira como um carrossel em torno de um eixo central, com velocidade angular $\omega = 1.5 \text{ rad/s}$. A barata está inicialmente a uma distância r = 0.80R do centro do disco, mas rasteja até a borda do disco. Trate a barata como se fosse uma partícula. Qual a sua velocidade angular ao chegar à borda do disco?