Summary paper 1: Cardinal Hermite Interpolation Schoenberg

Yoann Pradat

April 16, 2019

Given a sequence of numbers y and a linear space S we denote as C.I.P (y, S) the problem of finding $F \in S$ that satisfies $F(\nu) = y_{\nu}$ for all ν .

Given r sequences of numbers $y, \ldots, y^{(r-1)}$ and a linear space \mathcal{S} we denote as C.H.I.P (y, \mathcal{S}) the problem of finding $F \in \mathcal{S}$ that satisfies $F^{(s)}(\nu) = y_{\nu}^{(s)}$ for all $s = 0, \ldots, r-1$ for all ν .

Notations

$$S_{2m,r} = \{ \text{Cardinal splines of order } 2m - 1 \text{ with knots at integers of multiplicity r} \}$$
 (1)

$$F_{\gamma,r} = \{ F|F^{(s)}(x) = \mathcal{O}(|x|^{\gamma}) \quad \text{as } x \to \pm \infty \quad \forall s = 0, \dots, r-1 \}$$

$$\tag{2}$$

$$\mathcal{L}_{p,r} = \{ F | F^{(s)} \in \mathcal{L}_p \quad \forall s = 0, \dots, r - 1 \}$$
(3)

$$S_{2m,r}^{0} = \{ S \in S_{2m,r} | S^{(s)}(\nu) = 0 \quad \forall s = 0, \dots, r - 1 \quad \forall \nu \}$$

$$(4)$$

Theorem 1. C.H.I.P $(y, S_{2m,r} \cap F_{\gamma,r})$ has a solution iif $y_{\nu}^{(s)} = \mathcal{O}(|\nu|^{\gamma})$ as $\nu \to \pm \infty$. If it exists the solution is unique.

Theorem 2. C.H.I.P $(y, S_{2m,r} \cap \mathcal{L}_{p,r})$ has a solution iff $y^{(s)} \in l_p$. If it exists the solution is unique.

For $s=0,\ldots,r-1$, let the r sequences $y_{\nu}^{(\rho)}=\delta_{\nu}\delta_{\rho-s}$ for $\rho=0,\ldots,r-1$. As these are in l_1 , there exists a unique $L_{2m,r,s}\in S_{2m,r}\cap \mathcal{L}_{1,r}$ such that for all $s=0,\ldots,r-1$, $L_{2m,r,s}^{(\rho)}(\nu)=\delta_{\nu}\delta_{\rho-s}$ for all $\rho=0,\ldots,r-1$ and ν . Let $L_s=L_{2m,r,s}$.

Theorem 3. There exists A(m,r), $\alpha(m,r)$ such that

$$\forall s, \rho = 0, \dots, r - 1 \quad \forall x \quad |L_{2m,r,s}^{(\rho)}(x)| \le A(m,r) \exp(-\alpha(m,r)x) \tag{5}$$

Theorem 4. The spline function unique solution to theorems 1 and 2 is given by Lagrange-Hermite interpolation

$$\forall x \quad S(x) = \sum_{-\infty}^{\infty} y_{\nu} L_0(x - \nu) + \dots + y_{\nu}^{(r-1)} L_{r-1}(x - \nu)$$
 (6)

I. Proof of unicity in theorems 1 and 2

Note that a spline is uniquely defined by $P(x) \in \pi_{2m-1}$ that satisfies $\forall x \in [0,1]$ S(x) = P(x). Indeed, with n = 2m-1, then $S(x) = P(x) + \sum_{s=0}^{r-1} c_1^{(s)} (x-1)_+^{2m-1-s} + \cdots + \sum_{s=0}^{r-1} c_0^{(s)} (-x)_+^{2m-1-s} + \sum_{s=0}^{r-1} c_{-1}^{(s)} (-x-1)_+^{2m-1-s} + \cdots$ and $c_2^{(s)}$ are uniquely defined by $S^{(s)}(2) = y^{(s)}(2)$, etc.

 $S_{2m,r}^0$ is a linear space of dimension d=2m-2r. $S\in S_{2m,r}^0$ that satisfies $\forall x\ S(x+1)=\lambda S(x)$ is an eigenspline for eigenvalue λ . Let P be the polynomial component of S on [0,1]. The conditions $P^{(s)}(1)=P^{(s)}(0)=0$ for $s=0,\ldots,r-1$ allows to write

$$P(x) = a_0 x^n + a_1 \binom{n}{1} x^{n-1} + \dots + a_{n-r} \binom{n}{n-r} x^r$$
 (7)

The conditions $P^{(s)}(1) = \lambda P^{(s)}(1) = 0$ for $s = r, \dots, 2m - r - 1$ (from $S_{2m,r} \subseteq \mathcal{C}^{2m-r-1}$) transform into

$$\Delta_{r,d}(\lambda)[a_0,\dots,a_{n-r}]^T = 0 \tag{8}$$

Theorem 5. $|\Delta_{r,d}(\lambda)| = 0$ is a reciprocal equation of degree d = 2m - 2r and has all its roots real, simple and of sign $(-1)^r$.

Lemma 3.
$$|\Delta_{r,d}(\lambda)| = (-1)^{rd} |A_d - \lambda I_d|$$
 with $(-1)^r A_d = (J_d)^r P_{r,d}$

This lemma is proved by proving that $(-1)^r A_d$ is an <u>oscillation matrix</u> and then using the Gantmatcher-Krein theorem.

 $|\Delta_{r,d}(\lambda)| = 0$ have d simple roots all of sign $(-1)^r$ and they are such that

$$0 < |\lambda_1| < \dots < |\lambda_{m-r}| < 1 < |\lambda_{m-r+1}| < \dots < |\lambda_{2m-2r}|$$
(9)

Let S_1, \ldots, S_d the associated eigenspline. These are defined up to a factor (as the kernel of $\Delta_{r,d}(\lambda_i)$ is a line) and we choose to have $\forall 0 < x < 1 \quad 0 < S(x) < 1$ and $S^{(r)} = 0$.

As a consequence, $\forall x \ S_j(x) = (-1)^r S_{d-j+1}(x)$ and $\forall n < x < n+1 \ (-1)^{nr} S_j(x) > 0$.

Lemma 6. If $S \in S^0_{2m,r}$, there exists a unique decomposition

$$\forall x \quad S(x) = \sum_{j=1}^{d} c_j S_j(x) \tag{10}$$

II. Proof of theorems 1,2,3 and 4

 $\forall s = 0, \ldots, r-1 \quad \forall x \quad L_s(x) = L_{2m,r,s}(x) \text{ and } L_s \in S_{2m,r} \cap \mathcal{L}_{1,r}.$ Note that L_s is even if s is even, odd if s is odd. To construct L_s we first look at extension of the restriction to $[1, \infty)$ i.e $\tilde{L}_s(x) = L_s(x)$ for $x \geq 1$ and $\tilde{L}_s \in S_{2m,r}^0$. Applying lemma 6 and as $S_j \in \mathcal{L}_{1,r}$ we can write

$$\tilde{L}_s(x) = \sum_{j=1}^{m-r} c_j S_j(x)$$
(11)

Let $P(x) = L_s(x) \forall x \in [0, 1]$. Then we can write

• if r and s have same parity

$$P(x) = \frac{x^s}{s!} + a_1 x^r + a_2 x^{r+2} + \dots + a_{m-r+1} x^{2m-r} + a_{m-r+2} x^{2m-r+1} + \dots + a_m x^{2m-1}$$
 (12)

 \bullet if r and s have opposite parity

$$P(x) = \frac{x^{s}}{s!} + a_{1}x^{r+1} + a_{2}x^{r+3} + \dots + a_{m-r}x^{2m-r-1} + a_{m-r+1}x^{2m-r} + a_{m-r+2}x^{2m-r+1} + \dots + a_{m}x^{2m-1}$$
(13)

The conditions $P^{(\rho)}(1) = \tilde{L}^{(\rho)}(1)$ for $\rho = 0, \dots, 2m-r-1$ yields 2m-r equations for the m+m-r = 2m-r unknowns c_j and a_j . We can then explicitly compute the expressions of the L_s . The system resulting from these equations is non singular as there is no non-trivial spline in $S_{2m,r} \cap \mathcal{L}_1$.

Corollary Cardinal Lagrange-Hermite interpolation.

$$f(x) = \sum_{-\infty}^{\infty} f(\nu) L_0(x - \nu) + \dots + f^{(r-1)}(\nu) L_{r-1}(x - \nu) + R(x)$$
(14)

is exact (i.e R=0) if $f \in F_r^*$ and is a cardinal spline function of degree 2m-1 and class C^{2m-r-1} . It is exact also for $f \in \pi_{2m-1}$.