Dataset1-Regression output 9

October 19, 2021

1 Dataset 1 - Regression

1.1 Experiment Details

The aim of the experiment is to verify if the: 1. ABC_GAN model corrects model misspecification 2. ABC_GAN model performs better and converges faster than a simple C-GAN model

In the experiment we predict the distribution that represents the real data and simulate realistic fake data points using statistical mode, C-GAN and ABC-GAN model with 3 priors. We analyze and compare their performance using metrics like mean squared error, mean absolute error, manhattan distance and euclidean distance between y_{real} and y_{pred}

The models are as follows:

- 1. The statistical model assumes the distribution $Y = \beta X + \mu$ where $\mu \sim N(0, 1)$
- 2. The Conditional GAN consists of
 - 1. Generator with 2 hidden layers with 100 nodes each and ReLu activation.
 - 2. Discriminator with 2 hidden layers with 25 and 50 nodes and ReLu activation. We use Adam's optimser and BCE Logit Loss to train the model. The input to the Generator of the GAN is (x,e) where x are the features and $e \sim N(0,1)$. The discriminator output is linear.
- 3. The ABC GAN Model consists of
 - 1. ABC generator is defined as follows:
 - 1. $Y = 1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + ... + \beta_n x_n + N(0, \sigma)$ where $\sigma = 0.1$
 - 2. $\beta_i \sim N(0, \sigma^*)$ when $\mu = 0$ else $\beta_i \sim N(\beta_i^*, \sigma^*)$ where $\beta_i^* s$ are coefficients obtained from statistical model
 - 3. σ^* takes the values 0.01.0.1 and 1
 - 2. C-GAN network is as defined above. However the input to the Generator of the GAN is (x, y_{abc}) where y_{abc} is the output of the ABC Generator.

1.2 Import Libraries

```
[1]: import warnings
warnings.filterwarnings('ignore')

[2]: import train_test
import ABC_train_test
import regressionDataset
import network
```

```
import statsModel
import performanceMetrics
import dataset
import sanityChecks
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from torch.utils.data import Dataset,DataLoader
from torch import nn
```

1.3 Parameters

General Parameters

- 1. Number of Samples
- 2. Number of features

ABC-Generator parameters are as mentioned below: 1. mean : 1 ($\beta \sim N(\beta^*, \sigma)$ where β^* are coefficients of statistical model) or 1 ($\beta \sim N(0, \sigma)$ 2. std : $\sigma = 1, 0.1, 0.01$ (standard deviation)

```
[3]: n_features = 10
n_samples= 100

#ABC Generator Parameters
mean = 1
variance = 0.001
```

```
[4]: # Parameters
    n_samples = 100
    n_features = 10
    mean = 0
    variance = 1
```

1.4 Dataset

Generate a random regression problem

$$Y = 1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + ... + \beta_n x_n + N(0, \sigma)$$
 where $\sigma = 0.1$

[5]: X,Y = regressionDataset.regression_data(n_samples,n_features)

```
Х1
                  Х2
                            ХЗ
                                      Х4
                                                Х5
                                                         Х6
                                                                   Х7
                                                                       \
0 -0.300035 -0.950023 -1.552244 0.069784 0.490576 0.234620 -0.836066
1 1.511078 0.466665 0.472634 -1.323431 0.188805 -0.644583 -0.355095
2 1.507415 1.685880 -0.490751 -1.407887 -0.389036 -1.951134 1.394092
3 1.644784 0.128439 -2.483455 -0.325933 -2.127511 -0.657200 -0.218824
4 -1.742249 -1.134471 -0.174136 1.125129 1.035036 -0.905433 0.090559
                  Х9
                           X10
        Х8
                                         Y
```

1.5 Stats Model

[6]: [coeff,y_pred] = statsModel.statsModel(X,Y)

No handles with labels found to put in legend.

OLS Regression Results

_____ Dep. Variable: Y R-squared: 1.000 Model: OLS Adj. R-squared: 1.000 3.833e+07 Method: Least Squares F-statistic: Date: Tue, 19 Oct 2021 Prob (F-statistic): 1.23e-290 Time: 23:26:07 Log-Likelihood: 621.89 No. Observations: 100 AIC: -1222. Df Residuals: 89 BIC: -1193.

Df Model: 10
Covariance Type: nonrobust

=======	coef	std err	t	P> t	[0.025	0.975]
const	9.021e-17	5.11e-05	1.77e-12	1.000	-0.000	0.000
x1	0.1248	5.54e-05	2252.712	0.000	0.125	0.125
x2	0.4942	5.35e-05	9240.436	0.000	0.494	0.494
х3	0.5776	5.25e-05	1.1e+04	0.000	0.578	0.578
x4	0.1132	5.3e-05	2136.443	0.000	0.113	0.113
x5	0.0763	5.64e-05	1353.177	0.000	0.076	0.076
x6	0.3331	5.21e-05	6386.981	0.000	0.333	0.333
x7	0.3384	5.18e-05	6534.653	0.000	0.338	0.338
x8	0.2230	5.48e-05	4067.697	0.000	0.223	0.223
x9	0.0227	5.64e-05	402.803	0.000	0.023	0.023
x10	0.4182	5.62e-05	7435.596	0.000	0.418	0.418
Omnibus: 0.302 Durbin-Watson:				2.196		
Prob(Omnibus):		0.860 Jarque-Bera (JB):			0.147	
Skew:		-0.093 Prob(JB):			0.929	
Kurtosis:	:========	3	.023 Cond.	No.		1.79

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters: const 9.020562e-17

x1 1.248070e-01

```
4.942317e-01
x2
xЗ
         5.776378e-01
         1.131731e-01
x4
x5
         7.627529e-02
         3.330697e-01
x6
x7
         3.383524e-01
8x
         2.230452e-01
         2.272429e-02
x9
x10
         4.182417e-01
```

dtype: float64

Performance Metrics

Mean Squared Error: 2.3221604842124612e-07 Mean Absolute Error: 0.0003861832025725345 Manhattan distance: 0.03861832025725345 Euclidean distance: 0.004818880040229742

1.6 Common Training Parameters (GAN & ABC_GAN)

```
[7]: n_epochs = 5000
error = 0.001
batch_size = n_samples//2
```

1.7 GAN Model

```
[8]: real dataset = dataset.CustomDataset(X,Y)
      device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
     Training GAN for n epochs number of epochs
 [9]: generator = network.Generator(n_features+2)
      discriminator = network.Discriminator(n_features+2)
      criterion = torch.nn.BCEWithLogitsLoss()
      gen_opt = torch.optim.Adam(generator.parameters(), lr=0.01, betas=(0.5, 0.999))
      disc_opt = torch.optim.Adam(discriminator.parameters(), lr=0.01, betas=(0.5, 0.
       →999))
[10]: print(generator)
      print(discriminator)
     Generator(
       (hidden1): Linear(in_features=12, out_features=100, bias=True)
       (hidden2): Linear(in_features=100, out_features=100, bias=True)
       (output): Linear(in_features=100, out_features=1, bias=True)
       (relu): ReLU()
     Discriminator(
       (hidden1): Linear(in_features=12, out_features=25, bias=True)
       (hidden2): Linear(in features=25, out features=50, bias=True)
       (output): Linear(in_features=50, out_features=1, bias=True)
       (relu): ReLU()
[11]: train_test.
       →training_GAN(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,
       →n_epochs,criterion,device)
```


[12]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.0004939509893766551

Mean Absolute Error: 0.016855388164251927

Mean Manhattan Distance: 1.6855388164251925

Mean Euclidean Distance: 0.22222257204195964

[13]: sanityChecks.discProbVsError(real_dataset,discriminator,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

[15]: train_test.

→training_GAN_2(discriminator,generator,disc_opt,gen_opt,real_dataset,batch_size,error,crite

Number of epochs needed 302

[16]: train_test.test_generator(generator,real_dataset,device)

Mean Square Error: 0.0008791809438956094

Mean Absolute Error: 0.022863019734406843

Mean Manhattan Distance: 2.2863019734406844

Mean Euclidean Distance: 0.2963730244581927

2 ABC GAN Model

2.0.1 Training the network

Training ABC-GAN for n_epochs number of epochs

```
[17]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

[18]: ABC_train_test.training_GAN(disc, gen,disc_opt,gen_opt,real_dataset,_u batch_size, n_epochs,criterion,coeff,mean,variance,device)

[19]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.00037049497909656047

Mean Absolute Error: 0.01562638223710237
Mean Manhattan Distance: 1.562638223710237

Mean Euclidean Distance: 0.1923120538549535

Sanity Checks

[20]: sanityChecks.discProbVsError(real_dataset,disc,device)

Training GAN until mse of y_pred is > 0.1 or n_epochs < 30000

```
[21]: gen = network.Generator(n_features+2)
    disc = network.Discriminator(n_features+2)

    criterion = torch.nn.BCEWithLogitsLoss()
    gen_opt = torch.optim.Adam(gen.parameters(), lr=0.01, betas=(0.5, 0.999))
    disc_opt = torch.optim.Adam(disc.parameters(), lr=0.01, betas=(0.5, 0.999))
```

[22]: ABC_train_test.

-training_GAN_2(disc,gen,disc_opt,gen_opt,real_dataset,batch_size,__
-error,criterion,coeff,mean,variance,device)

Number of epochs 244

[23]: ABC_train_test.test_generator(gen,real_dataset,coeff,mean,variance,device)

Mean Square Error: 0.0020636950090907303

Mean Absolute Error: 0.033541463671839446
Mean Manhattan Distance: 3.3541463671839447

[]: