WWI 2022 – grupa 3 Dzień 2

Kulki

W worku znajduje się n kulek numerowanych kolejnymi liczbami całkowitymi od 1 do n. Losujemy m razy po jednej kulce z worka, ze zwracaniem. Niech $f_{n,d,k}(m)$ oznacza prawdopodobieństwo, że jeśli posortujemy niemalejąco ciąg numerów kolejno wylosowanych kulek, to na d-tej pozycji w tym posortowanym ciągu (indeksując pozycje od 1 do m) będzie numer większy niż k.

Przykładowym ciągiem, dla n = 7 oraz m = 5, może być (6, 2, 7, 1, 2). Jeśli przyjmiemy d = 3 i k = 2, to na d-tej pozycji w posortowanym ciągu **nie** znajduje się liczba większa niż k, ponieważ posortowany ciąg to (1, 2, 2, 6, 7).

Zadanie polega na obliczeniu $f_{n,d,k}(m)$, dla wszystkich m całkowitych od d do n. Liczba ta zawsze jest wymierna, można więc ją przedstawić w postaci $\frac{a}{b}$, gdzie a i b są nieujemnymi liczbami całkowitymi oraz b > 0. Należy wypisać $a \cdot b^{-1} \mod 10^9 + 7$, przy czym $x^{-1} \mod p$, to tak zwana odwrotność x modulo p, czyli taka liczba całkowita y z przedziału [0, p-1], że $x \cdot y \equiv 1 \pmod p$.

Wejście

W pierwszym i jedynym wierszu wejścia znajdują się trzy liczby całkowite n, d oraz k ($1 \le d, k \le n \le 2 \cdot 10^5$).

Wyjście

Na wyjście należy wypisać n-d+1 wierszy. W każdym z nich powinna być wartość funkcji $f_{n,d,k}(m)$, w formacie opisanym wcześniej, dla kolejnych parametrów m od d do n.

Przykłady

Wejście	Wyjście	
2 2 1	750000006	

9 4 3 876543217	Wyjście	
213991772 776406042 859625064 956713923 260275367		

Wyjaśnienie do przykładu

W pierwszym teście przykładowym rozpatrujemy tylko m=2. Możliwe do uzyskania ciągi to (1,1), (1,2), (2,1) oraz (2,2). Jedynie ciąg (1,1) po posortowaniu na drugiej pozycji nie ma wartości większej niż 1, zatem szukane prawdopodobieństwo wynosi $\frac{3}{4}$.

Odwrotnością 4 mod 10^9+7 jest 250 000 002, ponieważ $4\cdot 250\,000\,002=10^9+8\equiv 1\pmod{10^9+7}$. Trzeba więc wypisać $3\cdot 250\,000\,002=750\,000\,006$.

Ocenianie

Podzadanie	Ograniczenia	Limity czasowe	Punkty
1	$n \leqslant 2000$	1 s	30
2	brak dodatkowych ograniczeń	1 s	70