Faculté des Mathématiques **USTHB**

Master 1 ISMTID

Module: Processus Stochastiques 2

Année 2013/2014 01/06/2013 Durée: 1h 30m

Epreuve Finale

Exercice 1 (6 pts) A/Soit $\varepsilon_1, \varepsilon_2, ...$ des variables aléatoires indépendantes d'espérance nulle et de variance $Var[\varepsilon_i] = \sigma_i^2$. Posons

$$S_n = \sum_{i=1}^n \varepsilon_i, \quad et \ T_n^2 = \sum_{i=1}^n \sigma_i^2$$

Montrez que $S_n^2 - T_n^2$ est une martingalepar rapport à $\mathcal{F}_n = \sigma\left(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n\right)$ \mathbf{B} / Soit W(t) un mouvement Brownien avec la filtration $\mathcal{F}_t = \sigma\left(W(s), s \leq t\right)$ et $(\phi_k)_{k \geq 0}$ une suite de variables aléatoire de carrés intégrables et $0 = t_0 < t_1 < ... < t_n$ tels que ϕ_k est \mathcal{F}_{t_k} mesurable. Soit

$$f(t) = \sum_{k=0}^{n-1} \phi_k \ 1_{[t_k, t_{k+1}[}(t).$$

Déterminer l'integrale de Itô I(f) de f.

Exercice 2 (8 pts) On considère une suite $(X_n)_{n\geq 1}$ de v.a. réelles indépendantes de même loi normale $N(m, \sigma^2)$ avec m < 0 et on pose $S_0 = X_0 = 0$, $S_n = X_1 + ... + X_n$ et $\mathcal{F}_n = \sigma(X_0, ..., X_n)$.

 $1/Soit\ Z = \sup_{n \ge 0} S_n$. Montrer en utilisant la loi forte des grand nombres que $P(Z < +\infty) = 1$.

2/ Utilisez $E(e^{\alpha X_1}) = \exp\left(\alpha^2 \frac{\sigma^2}{2} + \alpha m\right)$, α réel, pour avoir une expression pour $E\left(e^{\alpha S_{n+1}} \mid \mathcal{F}_n\right)$.

3/ Montrer qu'il existe un $\alpha_0 > 0$ unique tel que $(e^{\alpha_0 S_n})_{n \ge 0}$ soit une martingale.

4/ Montrer que, pour tout a > 1, on $a P\left(e^{\alpha_0 Z} > a\right) \leq \frac{1}{a}$. 5/ Montrer que pour tout t > 0, $P(Z > t) \leq e^{-\alpha_0 t}$.

Exercice 3 (6 pts) Soit W(t) un mouvement Brownien et c > 0.

1/ Montrer que $V(t) = \frac{1}{2}W(c^2t)$ est un mouvement Brownien.

2/ Soit S_t le prix d'une action en bourse au temps t. On suppose que le prix d'une action est modélisé par un mouvement Brownien geometrique $S(t) = S(0) \exp(\mu t + \sigma W(t))$. Supposons que les valeurs des paramètres sont $\mu = 0.055$ et $\sigma = 0.07$. Sachant que S(5) = 100, trouver la probabilité que le prix S(10) soit supérieur à 150.