Dissecting Different Flavors of Generic Programming in One Haskell Universe

Presented to Galois

Sean Leather

Utrecht University

August 27, 2013

What is Generic Programming?

In programming languages, the adjective "generic" is heavily overloaded.

- Java/C# generics
- C++ templates
- Ada generic packages

What is Generic Programming?

The goal is often the same.

A higher level of abstraction than "normally" available

The technique is also often similar.

Some form of parameterization and instantiation

Examples of Generic Programming

```
Java/C#:

public class Stack<T>
{
   public void push(T item) {...}
   public T pop() {...}
}
```

In other words:

ullet Java-style generics pprox parametric polymorphism

Examples of Generic Programming

```
C++:
template < typename T, typename Compare >
T& min(T& a, T& b, Compare comp) {
  if (comp(b, a))
    return b;
  return a;
}
```

In other words:

ullet C++ templates pprox ad-hoc polymorphism

Generic Programming in Haskell

"Generic programming":

- For other languages, the term tends to be used for late additions.
- Parametric and ad-hoc polymorphism were available in Haskell from the beginning.

In Haskell, we have come to use "generic programming" for datatype-generic programming (a.k.a. "polytypism" or "shape/structure polymorphism").

Datatype-Generic Programming

What is datatype-generic programming?

- Parameterize a function over the *structure* of datatypes
- Instantiate the function with a particular type

The result is a function that

- works with many types (polymorphism) but
- uses knowledge of the type (unlike parametric) and
- need not be redefined for every type (unlike ad-hoc).

Generic Functions

Applications

- Pretty-printing (e.g. show), parsing (e.g. read)
- Compression, serialization, marshalling (and their inverses)
- Comparison, equality
- (Co-)recursion, map, zip, zippers
- Traversals, queries, updates

Generic Platforms

Many different implementations:

- Preprocessors:
 - PolyP
 - Generic Haskell
- Libraries
 - Scrap Your Boilerplate (SYB) included with GHC for a long time
 - Extensible and Modular Generics for the Masses (EMGM)
 - ► Regular recursion schemes
 - Multirec mutually recursive datatypes
 - ▶ Generic Deriving available in GHC ≥ 7.2, similar to Instant Generics
 - (and many, many more)

Generic Flavors

The implementations can be grouped into flavors depending on how they view the structure of a datatype.

Some flavors (or views):

Spine A constructor is a sequence of types.

Example: SYB

Sums-of-products A datatype is a collection of alternative tuples of types.

Example: Generic Deriving

Fixed point A datatype is a sums-of-products with recursive points.

Example: Multirec

Dissecting a Datatype: Sums-of-Products

data
$$T_{sum} = A_1 \mid A_2$$

A datatype can have:

Alternatives: unique constructors (≥ 0)

Dissecting a Datatype: Sums-of-Products

data
$$T_{prod} = P_2$$
 Char Int

A datatype can have:

Fields: types for each constructor (≥ 0)

Dissecting a Datatype: Sums-of-Products

Other features that are modeled:

- Constant types: each type in a field
- Parameters: type variables ($\geqslant 0$)

Features that are not modeled:

- Recursion
- Nesting (though it can be)

Modeling a Sum

To model (nested) alternatives:

$$data$$
 Either a $b = Left$ a $|$ Right b

For syntactic elegance:

$$data \ a :+: b = L \ a \mid R \ b$$

Modeling a Product

To model (nested) fields:

data
$$(,)$$
 a b = $(,)$ a b

For syntactic elegance:

data
$$a : \times : b = a : \times : b$$

Modeling Other Structures

A constructor without fields:

$$data U = U$$

A constructor name:

data C a = C String a

A field type:

data K a = K a

Note: There are other features of datatypes, but we consider only the above.

Modeling an Example

An example datatype:

data
$$E a = E_1 \mid E_2 a (E a) Int$$

The corresponding structure representation type:

type
$$Rep_E a = C U :+: C (K a :\times: K (E a) :\times: K Int)$$

Notes:

- \bullet :+: is infixr 5 and :×: is infixr 6.
- Operators nest to the right.

Converting Between Types: Isomorphism

- Generic functions work on the sums-of-products model.
- But first we need to convert between the model and the actual value of the datatype.
- We define an isomorphism: two total, dual functions.

```
\begin{array}{l} \mathsf{to}_\mathsf{E} :: \mathsf{Rep}_\mathsf{E} \; \mathsf{a} \to \mathsf{E} \; \mathsf{a} \\ \mathsf{to}_\mathsf{E} \; \big( \mathsf{L} \; \big( \mathsf{C} \; "\mathsf{E1}" \; \mathsf{U} \big) \big) &= \mathsf{E}_1 \\ \mathsf{to}_\mathsf{E} \; \big( \mathsf{R} \; \big( \mathsf{C} \; "\mathsf{E2}" \; \big( (\mathsf{K} \; \mathsf{x}) \; : \! \times : \, \big( \mathsf{K} \; \mathsf{e} \big) \; : \! \times : \, \big( \mathsf{K} \; \mathsf{i} \big) \big) \big) \big) = \mathsf{E}_2 \; \mathsf{x} \; \mathsf{e} \; \mathsf{i} \end{array}
```

Converting Between Types: Isomorphism

For convenience, we join the representation type and isomorphism in a type class Generic with an associated type synonym Rep .

```
class Generic a where type Rep a from :: a \rightarrow Rep a to :: Rep a \rightarrow a
```

The instance for E:

```
\label{eq:constraints} \begin{split} & \textbf{instance} \  \, \textbf{Generic} \  \, (\textbf{E a}) \  \, \textbf{where} \\ & \textbf{type} \  \, \textbf{Rep} \  \, (\textbf{E a}) = \textbf{Rep}_{\textbf{E}} \  \, \textbf{a} \\ & \textbf{from} = \textbf{from}_{\textbf{E}} \\ & \textbf{to} = \textbf{to}_{\textbf{E}} \end{split}
```

Generic Functions

A generic function

- Is defined on each case of the structure representation and
- Works for every datatype that has a structure representation and isomorphism.

Example: $show_{Rep a} :: a \rightarrow String$

• We will define a show function for each case.

Unit:

```
\begin{array}{l} \mathsf{show}_U :: \mathsf{U} \to \mathsf{String} \\ \mathsf{show}_U \ \mathsf{U} = "" \end{array}
```

Constructor name:

```
\begin{array}{l} \mathsf{show}_\mathsf{C} :: (\mathsf{a} \to \mathsf{String}) \to \mathsf{C} \; \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_\mathsf{C} \; \mathsf{show}_\mathsf{a} \; (\mathsf{C} \; \mathsf{nm} \; \mathsf{a}) = "(" \# \; \mathsf{nm} \; \# " \; " \# \; \mathsf{show}_\mathsf{a} \; \mathsf{a} \; \# \; ")" \end{array}
```

Field:

```
\mathsf{show}_{\mathsf{K}} :: (\mathsf{a} \to \mathsf{String}) \to \mathsf{K} \; \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_{\mathsf{K}} \; \mathsf{show}_{\mathsf{a}} \; (\mathsf{K} \; \mathsf{a}) = \mathsf{show}_{\mathsf{a}} \; \mathsf{a}
```

Binary sum:

```
\begin{array}{l} \mathsf{show}_+ :: (\mathsf{a} \to \mathsf{String}) \to (\mathsf{b} \to \mathsf{String}) \to \mathsf{a} : +: \mathsf{b} \to \mathsf{String} \\ \mathsf{show}_+ \ \mathsf{show}_\mathsf{a} \ \_ (\mathsf{L} \ \mathsf{a}) = \mathsf{show}_\mathsf{a} \ \mathsf{a} \\ \mathsf{show}_+ \ \_ \ \mathsf{show}_\mathsf{b} \ (\mathsf{R} \ \mathsf{b}) = \mathsf{show}_\mathsf{b} \ \mathsf{b} \end{array}
```

Binary product:

```
show_{\times} :: (a \rightarrow String) \rightarrow (b \rightarrow String) \rightarrow a : \times: b \rightarrow String \\ show_{\times} show_{a} show_{b} (a : \times: b) = show_{a} a + + + show_{b} b
```

Recall:

```
\textbf{type} \; \mathsf{Rep}_\mathsf{E} \; \mathsf{a} = \mathsf{C} \; \mathsf{U} : +: \mathsf{C} \; \big(\mathsf{K} \; \mathsf{a} : \times: \mathsf{K} \; \big(\mathsf{E} \; \mathsf{a}\big) : \times: \mathsf{K} \; \mathsf{Int}\big)
```

We can define a show function (assuming show_{Int}):

```
\begin{split} \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} &:: \  \, (\mathsf{a} \to \mathsf{String}) \to ((\mathsf{a} \to \mathsf{String}) \to \mathsf{E} \; \mathsf{a} \to \mathsf{String}) \\ & \to \mathsf{Rep}_\mathsf{E} \; \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} \; \mathsf{show}_\mathsf{a} \; \mathsf{show}_\mathsf{E} &= \\ \mathsf{show}_+ \; (\mathsf{show}_\mathsf{C} \; \mathsf{show}_\mathsf{U}) \\ & \; (\mathsf{show}_\mathsf{C} \; (\mathsf{show}_\mathsf{K} \; \mathsf{show}_\mathsf{a}) \\ & \; (\mathsf{show}_\mathsf{K} \; (\mathsf{show}_\mathsf{K} \; (\mathsf{show}_\mathsf{E} \; \mathsf{show}_\mathsf{a})) \; (\mathsf{show}_\mathsf{K} \; \mathsf{show}_\mathsf{Int})))) \end{split}
```

The show_E function itself is just an isomorphism away:

```
\begin{aligned} \mathsf{show}_\mathsf{E} :: (\mathsf{a} \to \mathsf{String}) \to \mathsf{E} \; \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_\mathsf{E} \; \mathsf{show}_\mathsf{a} = \mathsf{show}_\mathsf{Rep_\mathsf{E}} \; \mathsf{show}_\mathsf{a} \; \mathsf{show}_\mathsf{E} \circ \mathsf{from}_\mathsf{E} \end{aligned}
```

```
\begin{split} \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} &:: \ (\mathsf{a} \to \mathsf{String}) \to ((\mathsf{a} \to \mathsf{String}) \to \mathsf{E} \ \mathsf{a} \to \mathsf{String}) \\ & \to \mathsf{Rep}_\mathsf{E} \ \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} \ \mathsf{show}_\mathsf{a} \ \mathsf{show}_\mathsf{E} &= \\ \mathsf{show}_+ \ (\mathsf{show}_\mathsf{C} \ \mathsf{show}_\mathsf{U}) \\ & (\mathsf{show}_\mathsf{C} \ (\mathsf{show}_\mathsf{K} \ \mathsf{show}_\mathsf{a}) \\ & (\mathsf{show}_\mathsf{K} \ (\mathsf{show}_\mathsf{K} \ \mathsf{show}_\mathsf{B} \ \mathsf{show}_\mathsf{a})) \ (\mathsf{show}_\mathsf{K} \ \mathsf{show}_\mathsf{Int})))) \end{split}
```

Some observations:

- This is not a generic function.
- It is defined on the structure of E, not on datatypes in general.
- It demonstrates a predictable pattern for defining the generic function.

Consider these typical expressions and their types:

```
\begin{array}{lll} \mathsf{show}_\mathsf{C} \; \mathsf{show}_\mathsf{U} & :: \mathsf{C} \; \mathsf{U} & \to \mathsf{String} \\ \mathsf{show}_\mathsf{X} \; \big( \mathsf{show}_\mathsf{K} \; \mathsf{show}_\mathsf{Int} \big) \; \big( \mathsf{show}_\mathsf{K} \; \mathsf{show}_\mathsf{Char} \big) :: \big( \mathsf{K} \; \mathsf{Int} : \! \times \! : \mathsf{K} \; \mathsf{Char} \big) \to \mathsf{String} \end{array}
```

- show? functions call other show? functions.
- They can be considered recursive but not in the usual way.
- Polymorphic recursion functions with different types that have a common scheme that reference each other

There are several ways to encode polymorphic recursion. We use type classes.

- The class declaration specifies the type signature.
- Each recursive (type) case is specified by an instance of the class.

A simplified definition of the Show class:

class Show a where

show :: $a \rightarrow String$

Some of the instances for each structure representation case:

Constructor name:

```
instance Show a \Rightarrow Show (C a) where show = show_C show
```

Binary sum:

```
instance (Show a, Show b) \Rightarrow Show (a :+: b) where show = show<sub>+</sub> show show
```

The remaining instances are straightforward.

Now, compare:

```
\begin{array}{l} \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} \ :: \ (\mathsf{a} \to \mathsf{String}) \to ((\mathsf{a} \to \mathsf{String}) \to \mathsf{E} \ \mathsf{a} \to \mathsf{String}) \\ & \to \mathsf{Rep}_\mathsf{E} \ \mathsf{a} \to \mathsf{String} \\ \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} \ \mathsf{show}_\mathsf{a} \ \mathsf{show}_\mathsf{E} = \\ \mathsf{show}_+ \ (\mathsf{show}_\mathsf{C} \ \mathsf{show}_\mathsf{V} \ (\mathsf{show}_\mathsf{K} \ \mathsf{show}_\mathsf{a}) \\ & (\mathsf{show}_\mathsf{C} \ (\mathsf{show}_\mathsf{K} \ (\mathsf{show}_\mathsf{E} \ \mathsf{show}_\mathsf{a})) \ (\mathsf{show}_\mathsf{K} \ \mathsf{show}_\mathsf{Int})))) \end{array}
```

To:

```
\mathsf{show}_{\mathsf{Rep}_\mathsf{E}} :: (\mathsf{Show}\ \mathsf{a}, \mathsf{Show}\ (\mathsf{E}\ \mathsf{a})) \Rightarrow \mathsf{Rep}_\mathsf{E}\ \mathsf{a} \to \mathsf{String} \mathsf{show}_{\mathsf{Rep}_\mathsf{E}} = \mathsf{show}
```

Finally, we can use a slightly different Show class to support generic functions for any type that has a representation.

class Show a where

```
show :: a \rightarrow String default show :: (Show (Rep a), Generic a) \Rightarrow a \rightarrow String show = show \circ from
```

This uses default signatures: if type a has the instances
 Show (Rep a) and Generic a, then the given definition is used.

The instance for E:

```
instance Show a \Rightarrow Show (E a)
```

???

class Uniplate' a r where

$$\mathsf{descend'} :: (\mathsf{r} \to \mathsf{r}) \to \mathsf{a} \to \mathsf{a}$$

$\begin{tabular}{ll} \textbf{instance} & Uniplate' & U & a \textbf{ where} \\ \end{tabular}$

$$descend' - U = U$$

instance Uniplate
$$a \Rightarrow Uniplate'$$
 (K a) a **where**

$$descend' f(K a) = K(f a)$$

$$descend'_{-}(Ka) = Ka$$

instance
$$\mathsf{Uniplate'}$$
 a $\mathsf{r} \Rightarrow \mathsf{Uniplate'}$ (C a) r where

$$descend' f (C nm a) = C nm (descend' f a)$$

instance (Uniplate' a r, Uniplate' b r)
$$\Rightarrow$$
 Uniplate' (a :+: b) r **where**

$$descend' f (L a) = L (descend' f a)$$

$$descend' f (R b) = R (descend' f b)$$

instance (Uniplate' a r, Uniplate' b r) \Rightarrow Uniplate' (a :×: b) r **where** descend' f (a :×: b) = descend' f a :×: descend' f b

GP in General

- Datatype-generic programming:
 - Datatype is the parameter
 - Instantiation gives you a large class of generic functions
- Many generic functions:
 - Pretty-printing (show) and parsing (read)
 - Compression, serialization, and the reverse
 - Comparison, equality
 - ► Folds (catamorphisms), unfolds (anamorphisms), maps, zips, zippers
 - Traversals, updates, queries
- Many different libraries:
 - Instant Generics presented here
 - Generic Deriving GHC ≥ 7.2, similar to Instant Generics
 - ▶ EMGM maintained by me
 - Regular folds, etc.
 - Multirec mutually recursive datatypes, folds, etc.
 - Scrap Your Boilerplate (SYB) GHC, traversals, queries
 - **.**..

References

Generic Programming in Haskell:

- Johan Jeuring, Sean Leather, José Pedro Magalhães, Alexey Rodriguez Yakushev. Libraries for Generic Programming in Haskell. AFP 2008. pp. 165-229, 2009.
- Generic Deriving: http://www.haskell.org/haskellwiki/GHC.Generics