## **DATA 609 HW5**

## Bin Lin

2017-9-24

Page 228: #1. Consider a model for the long-term dining behavior of the students at College USA. It is found that 25% of the students who eat at the college's Grease Dining Hall return to eat there again, whereas those who eat at Sweet Dining Hall have a 93% return rate. These are the only two dining halls available on campus, and assume that all students eat at one of these halls. Formulate a model to solve for the long-term percentage of students eating at each hall.

```
Grease_{n+1} = 0.25Grease_n + 0.07Sweet_n

Sweet_{n+1} = 0.75Grease_n + 0.93Sweet_n
```

```
#I assume each dining area has 50% of the students in the begining.
Grease <- 0.5
Sweet <- 0.5
df <- data.frame(Grease, Sweet)</pre>
df$Grease[1]
```

```
## [1] 0.5
```

```
for (i in 1:10)
{
    a <- (0.25 * df$Grease[i] + 0.07 * df$Sweet[i])
    b <- (0.75 * df$Grease[i] + 0.93 * df$Sweet[i])
    df <- rbind(df, c(a, b))
}
df</pre>
```

```
## Grease Sweet
## 1 0.5000000 0.5000000
## 2 0.16000000 0.8400000
## 3 0.09880000 0.9012000
## 4 0.08778400 0.9122160
## 5 0.08580112 0.9141989
## 6 0.08544420 0.9145558
## 7 0.08537996 0.9146200
## 8 0.08536631 0.9146316
## 9 0.08536631 0.9146341
## 11 0.08536587 0.9146341
```

The results show that after few iterations, the number of students in each dining hall has reach steady state with around 91.46% of students eat at Sweet Dining Hall and 8.54% of students eat at Grease Dining Hall.

Page 232 #1. Consider a stereo with CD player, FM-AM radio tuner, speakers (dual), and power amplifier (PA) components, as displayed with the reliabilities shown in Figure 6.11. Determine the system's reliability. What assumptions are required in your model?



## Alt text

Power Amplifier (PA): series system

$$R_{PA} = 0.95$$

CD and FM-AM radio tuner: parallel system

$$R_{CD-FM-AM} = R_{CD} + R_{FM-AM} - R_{CD} * R_{FM-AM} = 0.98 + 0.97 - 0.98 * 0.97 = 0.9994$$

Speaker: parallel system

$$R_{speaker} = R_{speaker1} + R_{speaker2} - R_{speaker1} * R_{speaker2} = 0.99 + 0.99 - 0.99 * 0.99 = 0.9999$$

System Reliability: series system

$$R_{System} = R_{PA} * R_{CD-FM-AM} * R_{Speaker} = 0.95 * 0.9994 * 0.9999 = 0.949$$

I am assuming the power amplifier forms a series system with other parts of stereo. CD player and FM-AM radio tuner are parallel each other, but its integrity is also part of series sysmte. Same idea apply for two speakers.

Page 240 Use the basic linear model y = ax + b to fit the following data sets. Provide the model, provide the values of SSE, SSR, SST, and R2, and provide a residual plot.

## Warning: package 'ggplot2' was built under R version 3.3.3

df <- data.frame(Height = 60:80, Weight = c(132, 136, 141, 145, 150, 155, 160, 165, 170, 175, 18
0, 185, 190, 195, 201, 206, 212, 218, 223, 229, 234))
df</pre>

```
##
      Height Weight
           60
## 1
                 132
## 2
           61
                 136
## 3
           62
                 141
## 4
           63
                 145
## 5
           64
                 150
## 6
           65
                 155
## 7
                 160
           66
## 8
           67
                 165
## 9
           68
                 170
                 175
## 10
           69
           70
                 180
## 11
## 12
           71
                 185
## 13
           72
                 190
## 14
           73
                 195
## 15
           74
                 201
           75
                 206
## 16
## 17
           76
                 212
           77
                 218
## 18
           78
                 223
## 19
           79
## 20
                 229
## 21
           80
                 234
```

```
ggplot(data = df, aes(x = Height, y = Weight)) + geom_point(color='blue')+ geom_smooth(method = "lm", formula = y ~ x, color = "red")
```



1. For Table 2.7, predict weight as a function of height.

The linear model for this equation is Weight = 5.1364 \* Height -178.49

Slope: 
$$a = \frac{m\sum x_i y_i - \sum x_i \sum y_i}{m\sum x_i^2 - (\sum x_i)^2}$$

Intercept: 
$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i y_i \sum x_i}{m \sum x_i^2 - (\sum x_i)^2}$$

```
m <- nrow(df)
numerator1 <- m * sum(df$Height * df$Weight) - sum(df$Height) * sum(df$Weight)
denomenator1 <- (m * sum(df$Height ^ 2) - (sum(df$Height) ^ 2))
a <- numerator1 / denomenator1
a</pre>
```

## ## [1] 5.136364

```
numerator2 <- sum(df$Height ^ 2) * sum(df$Weight) - sum(df$Height * df$Weight) * sum(df$Height)
denomenator2 <- m * sum(df$Height ^ 2) - sum(df$Height) ^ 2
b <- numerator2 / denomenator2
b</pre>
```

## [1] -178.4978

$$SSE = \sum_{i=1}^{m} \left[ y_i - (ax_i + b) \right]^2$$

$$SST = \sum_{i=1}^{m} (y_i - y)^{-2}$$

## [1] 20338.95

$$SSR = SST - SSE$$

## [1] 20314.32

```
R^2 = 1 - \frac{SSE}{SST}
```

```
r_square <- 1 - (SSE / SST)
r_square
```

```
## [1] 0.9987888
```

```
m1 <- lm(df$Weight ~ df$Height)
summary(m1)</pre>
```

```
##
## Call:
## lm(formula = df$Weight ~ df$Height)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                    Max
## -1.4567 -0.7749 -0.3658 0.9978 2.3160
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -178.49784 2.88313 -61.91 <2e-16 ***
## df$Height 5.13636 0.04103 125.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.139 on 19 degrees of freedom
## Multiple R-squared: 0.9988, Adjusted R-squared: 0.9987
## F-statistic: 1.567e+04 on 1 and 19 DF, p-value: < 2.2e-16
```

```
par(mfrow=c(2,2))
plot(m1)
```



2. For Table 2.7, predict weight as a function of the cube of the height.

The linear model for this equation is Weight = 0.000347 \* Height^3 + 59.46

Fitted values

Slope: 
$$a = \frac{m\sum x_i y_i - \sum x_i \sum y_i}{m\sum x_i^2 - (\sum x_i)^2}$$

Intercept: 
$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i y_i \sum x_i}{m \sum x_i^2 - (\sum x_i)^2}$$

```
df$cube_height <- df$Height ^ 3

m <- nrow(df)
numerator1 <- m * sum(df$cube_height * df$Weight) - sum(df$cube_height) * sum(df$Weight)
denomenator1 <- (m * sum(df$cube_height ^ 2) - (sum(df$cube_height) ^ 2))
a <- numerator1 / denomenator1
a</pre>
```

Leverage

## [1] 0.0003467044

```
numerator2 <- sum(df$cube_height ^ 2) * sum(df$Weight) - sum(df$cube_height * df$Weight) * sum(d
f$cube_height)
denomenator2 <- m * sum(df$cube_height ^ 2) - sum(df$cube_height) ^ 2
b <- numerator2 / denomenator2
b</pre>
```

## [1] 59.4584

$$SSE = \sum_{i=1}^{m} \left[ y_i - (ax_i + b) \right]^2$$

SSE <- sum((df\$Weight - (a \* df\$cube\_height + b)) ^ 2)
SSE</pre>

## [1] 39.86196

$$SST = \sum_{i=1}^{m} (y_i - y)^{-2}$$

SST <- sum((df\$Weight - mean(df\$Weight)) ^ 2)
SST</pre>

## [1] 20338.95

SSR = SST - SSE

SSR <- SST - SSE SSR

## [1] 20299.09

$$R^2 = 1 - \frac{SSE}{SST}$$

 $r_square \leftarrow 1 - (SSE / SST)$  $r_square$ 

## [1] 0.9980401

m2 <- lm(df\$Weight ~ df\$cube\_height)
summary(m2)</pre>

```
##
## Call:
## lm(formula = df$Weight ~ df$cube_height)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -2.9710 -1.0878 0.3279 1.1349
##
                                   1.6461
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                                                 <2e-16 ***
                  5.946e+01 1.276e+00
## (Intercept)
                                         46.60
                                                 <2e-16 ***
## df$cube_height 3.467e-04 3.525e-06
                                         98.36
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.448 on 19 degrees of freedom
## Multiple R-squared: 0.998, Adjusted R-squared: 0.9979
## F-statistic: 9675 on 1 and 19 DF, p-value: < 2.2e-16
```

```
par(mfrow=c(2,2))
plot(m2)
```







