Filtro Pasivos de Primer orden

Introducción

Los filtros son circuitos tal que la respuesta o salida de estos depende de la frecuencia angular (ω) de la señal de entrada. Estos filtros se caracterizan por una frecuencia critica (ω_c) que define la transición entre las etapas de un filtro de primer orden (pasa alto o pasa bajo).

Dentro de los filtros de primer orden está el compuesto por el circuito RC (resistor – capacitor) que posee una función de transferencia dado por:

Figura 1: circuito de filtro pasa bajo RC.

$$\frac{V_i}{V_0} = H(\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

Donde la frecuencia critica está dada por $\omega_c = 1/RC$. La atenuación $(A(\omega))$ y desfase $(\phi(\omega))$ al que se somete la señal de entrada al pasar por el circuito está definido por:

$$A(\omega) \equiv 20 \log_{10} |H(\omega)| = -10 \log_{10} \left(1 + \left(\frac{\omega}{\omega_c} \right)^2 \right) dB$$
$$\phi(\omega) = \operatorname{atan} \left(\frac{\Im\{H(\omega)\}}{\Re\{H(\omega)\}} \right) = \operatorname{atan} \left(\frac{\omega}{\omega_c} \right)$$

Objetivo

- Determinar experimentalmente el diagrama de bode de un circuito RC operando en pasa bajo y pasa alto calculando el cociente entre la señal de salida y de entrada (potencia).
- Calcular y medir señal de salida a una entrada cuadrada de ciclo de trabajo del 50% con una frecuencia menor, igual (cercana) y superior a la frecuencia angular critica del circuito en pasa bajo.

Materiales.

- Puntas de sondas de prueba
- Osciloscopio
- Generador de señales
- Resistencias y condensadores
- Protoboard.