Relaxed Scheduling for Scalable Belief Propagation

Janne H. Korhonen

IST Austria

Joint work with

Dan Alistarh* and Vitaly Aksenov*

*IST Austria, †ITMO University

Inference on probabilistic graphical models

Parallelising belief propagation

(in shared memory parallel setting)

Belief propagation

messages associated with edges of the graph

$$(\mu_{i\to j}\in\mathbb{R}^d)$$

 $\Pr[X_i = x_i] \propto \psi_i(x_i) \prod \mu_{j \to i}(x_i)$

 $j \in N(i)$

Belief propagation message updates can be **scheduled** in any order

lots of updates easy to parallelise

faster convergence fewer updates sequential, hard to parallelise

Priority-based belief propagation can parallelised efficiently using **relaxed schedulers**

parallel data structure approximates a priority queue

Priority-based belief propagation can parallelised efficiently using **relaxed schedulers**

Priority-based belief propagation can parallelised efficiently using **relaxed schedulers**

Ising model 1000×1000 grid

- synchronous
- residual splash [Gonzales et al, UAI 2009]
- relaxed residual (this work)

Number of updates

Simple parallel belief propagation implementation with state-of-the-art scaling

2

Relaxed schedulers are a powerful tool for parallelising iterative machine learning algorithms

arXiv:2002.11505

Ising model 1000×1000 grid

- synchronous
- residual splash [Gonzales et al, UAI 2009]
- relaxed residual (this work)

