Hypotheses testing	
Bounds of the confidence inter- $t_c (n-k_1 x_{1z}) = 1.99$ $\alpha = 0.0$	
$t_{c} (n-k_{1}x_{1z}) = 1.99$ $x = 0.0$	Ch. L, Slide 69 Ch. 3, Slide 4
Essential elements of testin	5 Ch.3, Slide 5
Test statistic vs. p-value An example of one-tailed to right tail of the distribution	
Ho is rejected: { >> to or p	≤α,

"Beta" coefficients or standard	lised
"Beta" coefficients or standard regression coefficients	Slide 10
1) Standardize xj and y:	
$\chi_{ji}^{s} = \frac{\chi_{ji} - \overline{\chi_{j}}}{sd(x_{j})}, \forall j = 1,, k$	$Vox(x)^{s} = 1$
$y_i^s = \frac{y_i - \overline{y}}{sd(y)}$	Var (ys) = 1
2) Estimate:	,
yis = b ₁ + beta ₂ · X ₂ ; + beta ₃ · Standardised "beta" coeffic	
3) Compare Ibetail.	
Higher value of beta; I m variable (x) has more exp power in explaining the va	eans that the banatory of y.

Statistical inference	Stide	11
· We can commit either the Type or the Type I error.	e I error	- -
· Our goal is to: - midi mize the probability of T (X < 0.05) and at the game fin - minimize the probability of T or to maximize the power of the	ype I er ype II er ype II er e fest (1-	tor 1707 13%0.8
· Challenges: - there is a trade-off between in practice and - in order to regulate B, we would have be actual state of nature	X and	B
· Reality: in practice we focus at the same time we try to ensure at power of the test (1-B)	or X a	nd
· Power of the test depends on 1) Type of the test. 2) Difference between the actual tested value (b) vs. B) (+) 3) Measurement error (-); (4) Sample size (+).	d and	the

- · As we could commit the Type I error, we never accept Ho, only reliect.
- If Ho is rejected, i.e. a significant result, we make a <u>conclusion</u> from H₁ (i.e. B;≠0).
- If Ho is not rejected, i.e. a non-significant result, this means:

 either no important effect (i.e. B;=0)

 or too little information (could be rejecled with more info. or on another sample).

- · Hy is neither accepted nor rejected, as its distribution is usually not known explicitly (not the same a sthat of Ho).

S14:

- c vector of parameters of the linear combination of regression coeff. (estimates) r hypothesized value (scalar) from the null hypothesis