

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

25A and 28A, 80V and 100V, 0.077 and 0.100 Ohm, N-Channel Power MOSFETs

November 1997

Features

- 25A and 28A, 80V and 100V
- $r_{\text{DS(ON)}}$ = 0.077 Ω and 0.100 Ω
- Single Pulse Avalanche Energy Rated
- · Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Ordering Information

PART NUMBER	PACKAGE	BRAND
IRF540	TO-220AB	IRF540
IRF541	TO-220AB	IRF541
IRF542	TO-220AB	IRF542
IRF543	TO-220AB	IRF543
RF1S540	TO-262AA	RF1S540
RF1S540SM	TO-263AB	RF1S540SM

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RF1S540SM9A.

Description

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17421.

Symbol

Packaging

JEDEC TO-220AB

JEDEC TO-262AA

JEDEC TO-263AB

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	•					
	IRF540, RF1S540, RF1S540SM	IRF541	IRF542	IRF543	UNITS	
V _{DS}	100	80	100	80	V	
V_{DGR}	100	80	100	80	V	
I _D	28	28	25	25	Α	
I _D	20	20	17	17	Α	
I _{DM}	110	110	100	100	Α	
V _{GS}	±20	±20	±20	±20	V	
P _D	150	150	150	150	W	
	1	1	1	1	W/oC	
E _{AS}	230	230	230	230	mJ	
T _{STG}	-55 to 175	-55 to 175	-55 to 175	-55 to 175	оС	
•						
T _L	300	300	300	300	°C	
. T _{pkg}	260	260	260	260	oC	
	VDGR ID IDM VGS PD EAS TSTG	RF1S540SM V _{DS} 100 V _{DGR} 100 I _D 28 I _D 20 I _{DM} 110 V _{GS} ±20 P _D 150 1 E _{AS} 230 T _{STG} -55 to 175	RF18540SM IRF541 V _{DS} 100 80 V _{DGR} 100 80 I _D 28 28 I _D 20 20 I _{DM} 110 110 V _{GS} ±20 ±20 P _D 150 150 P _D 1 1 E _{AS} 230 230 T _{STG} -55 to 175 -55 to 175 T _L 300 300	RF1S540SM IRF541 IRF542 VDS 100 80 100 VDGR 100 80 100 ID 28 28 25 ID 20 20 17 IDM 110 110 100 VGS ±20 ±20 ±20 PD 150 150 150 1 1 1 EAS 230 230 230 TSTG -55 to 175 -55 to 175 -55 to 175 TL 300 300 300	RF1S540SM IRF541 IRF542 IRF543 VDS 100 80 100 80 VDGR 100 80 100 80 ID 28 28 25 25 ID 20 20 17 17 IDM 110 110 100 100 VGS ±20 ±20 ±20 ±20 PD 150 150 150 150 1 1 1 1 1 EAS 230 230 230 230 TSTG -55 to 175 -55 to 175 -55 to 175 -55 to 175	RF1S540SM IRF541 IRF542 IRF543 UNITS VDS 100 80 100 80 V VDGR 100 80 100 80 V ID 28 28 25 25 A ID 20 20 17 17 A IDM 110 110 100 100 A VGS ±20 ±20 ±20 V PD 150 150 150 W 1 1 1 W/°C EAS 230 230 230 230 mJ TSTG -55 to 175 -55 to 175

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $T_J = 150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNITS
Drain to Source Breakdown Voltage IRF540, IRF542, RF1S540, RF1S540SM	BV _{DSS}	$I_D = 250 \mu A$, $V_{GS} = 0V$ (Figure 10)	100	-	-	V
IRF541, IRF543	1		80	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	-	4	V
Zero Gate Voltage Drain Current	ero Gate Voltage Drain Current I _{DSS} V _{DS} = Rated BV _{DSS} , V _{GS} = 0V		-	-	25	μА
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}\text{C}$	-	-	250	μА
On-State Drain Current (Note 2) IRF540, IRF541, RF1S540, RF1S540SM	I _{D(ON)}	V _{DS} > I _{D(ON)} × r _{DS(ON)} MAX, V _{GS} = 10V (Figure 7)		-	-	А
IRF542, IRF543	1		25	-	-	Α
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$	-	-	±100	nA
Drain to Source On Resistance (Note 2) IRF540, IRF541, RF1S540, RF1S540SM	rDS(ON)	I _D = 17A, V _{GS} = 10V (Figures 8, 9)		0.060	0.077	Ω
IRF542, IRF543	1			0.080	0.100	Ω
Forward Transconductance (Note 2)	9fs	V _{DS} ≥ 50V, I _D = 17A (Figure 12)	8.7	13	-	S
Turn-On Delay Time	t _{d(ON)}	$\begin{split} &V_{DD}=50V,\ I_D\approx28A,\ R_G\approx9.1\Omega,\ R_L=1.7\Omega\\ &(\text{Figures 17, 18})\ \text{MOSFET Switching Times are}\\ &\text{Essentially Independent of Operating}\\ &\text{Temperature} \end{split}$		15	23	ns
Rise Time	t _r			70	110	ns
Turn-Off Delay Time	t _{d(OFF)}			40	60	ns
Fall Time	t _f			50	75	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V_{GS} = 10V, I_D = 28A, V_{DS} = 0.8 x Rated BV _{DSS} , $I_{g(REF)}$ = 1.5mA (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature		38	59	nC
Gate to Source Charge	Q _{gs}			8	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			21	-	nC

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Input Capacitance	C _{ISS}	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$		-	1450	-	pF
Output Capacitance	C _{OSS}	(Figure 11)		-	550	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	100	-	pF
Internal Drain Inductance	L _D	Measured From the Contact Screw on Tab To Center of Die	Modified MOSFET Symbol Showing the Internal Devices	-	3.5	-	nH
		Measured From the Drain Lead, 6mm (0.25in) from Package to Center of Die	Inductances D D E L D	-	4.5	-	nH
Internal Source Inductance	L _S	Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad	GO ELS	-	7.5	-	nH
Thermal Resistance Junction to Case	$R_{\theta JC}$		-	-	-	1	°C/W
Thermal Resistance	1.00A		-	-	80	°C/W	
Junction to Ambient	R _{θJA}	RF1S540SM Mounted on FR-4 Board with Minimum Mounting Pad			-	62	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET Sym-	♦ D	-	-	28	Α
Pulse Source to Drain Current (Note 3)	I _{SDM}	bol Showing the Integral Reverse P-N Junction Diode	G S S	-	-	110	Α
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 27A$, $V_{GS} = 0V$ (Figure 13)		ı	i	2.5	V
Reverse Recovery Time	t _{rr}	$T_J = 25^{o}C$, $I_{SD} = 28A$, $dI_{SD}/dt = 100A/\mu s$		70	150	300	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 25^{o}C$, $I_{SD} = 28A$, $dI_{SD}/dt = 100A/\mu s$		0.44	1.0	1.9	μС

NOTES:

- 2. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4. V_{DD} = 25V, starting T_J = 25°C, L = 440 μ H, R_G = 25 Ω , peak I_{AS} = 28A. (Figures 15, 16).

Typical Performance Curves Unless Otherwise Specified (Continued)

0.1 5.0 2

FIGURE 6. SATURATION CHARACTERISTICS

 $V_{GS} = 10V, I_D = 28A$

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE **VOLTAGE AND DRAIN CURRENT**

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON **RESISTANCE vs JUNCTION TEMPERATURE**

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN **VOLTAGE vs JUNCTION TEMPERATURE**

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. SWITCHING TIME TEST CIRCUIT

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

FIGURE 19. GATE CHARGE TEST CIRCUIT

FIGURE 20. GATE CHARGE WAVEFORMS