Assignment 7

Exercise 31 (Checking that the risk-neutral probability is a probability). Consider a one-period binomial model and suppose the no-arbitrage condition d < 1 + r < u holds and suppose that 0 < d < u, define

$$\tilde{p} = \frac{1 + r - d}{u - d}.$$

Show that $\tilde{p} \in (0,1)$ and $1 - \tilde{p} = \frac{u-1-r}{u-d}$.

Exercise 32 (Sufficient condition for no-arbitrage). Consider a one-period binomial model with 0 < d < u and r > -1 and assume that

$$d < 1 + r < u$$

holds. Show that there is no arbitrage in the model.

Exercise 33 (Pricing a European put option). 1. Consider a one-period binomial model with model parameters $S_0 = 4$, u = 2, $d = \frac{1}{2}$, $r = \frac{1}{4}$. Compute the time-0 price of a European put option with maturity T = 1 and strike price K = 5 in this model (recall that its payoff at time 1 is $(K - S_1)^+$).

2. Write a function in Python that computes the price of a European put option in the one-period binomial model. (Test that it works by using the analytical price derived in 1.)