Theoretische Physik I (Hebecker)

Robin Heinemann

20. April 2017

Inhaltsverzeichnis

1	Semo	esterüberblick -	4
	1.1	Mathe	4
2	Kine	ematik des Massenpunktes	4
	2.1	Kinematik der Massenpunktes in einer Dimension	4
		2.1.1 Graphik	4
		2.1.2 Üben dieser Logik an unserem Beispiel	5
	2.2	Grundbegriffe der Differenzial und Integralrechung	5
		2.2.1 Funktion	5
		2.2.2 Differentiation oder Ableitung	5
		2.2.3 Integrieren	7
	2.3	Kinematik in mehreren Dimensionen	7
		2.3.1 Zweidimensionale Bewegung	7
		2.3.2 Dreidimensionale Bewegung	8
	2.4	Vektorräume	8
		2.4.1 Einfachstes Beispiel	9
		2.4.2 Unser Haupt-Beispiel	9
	2.5	Kinematik in $d>1$	9
		2.5.1 Beispiel für 3-dimensionale Trajektorie	9
	2.6	Skalarprodukt	О
		2.6.1 Symmetrische Bilinearform	О
		2.6.2 Norm (Länge) eines Vektors	О
	2.7	Abstand zwischen Raumpunkten	1
		2.7.1 Spezialfall	1
		2.7.2 Infinitesimaler Abstand	1
	2.8	Bogenlänge und begleitendes Dreibein	2
		2.8.1 Beispiel in d=2	2
	2.9	Vektorprodukt	3
	2.10	Binormalenvektor	3
		2.10.1 Zur Information	1

3	Gru	ndbegriffe der Newtonsche Mechanik 14
	3.1	Newtonsche Axiome
	3.2	Trajektorie
	3.3	Differentialgleichungen
		3.3.1 1. Ordnung
		3.3.2 Anfangswertproblem
		3.3.3 partielle Ableitung
		3.3.4 Existenz und Eindeutigkeit
		3.3.5 Beispiele
		3.3.6 Separation der Variablen
		3.3.7 System von Dgl
		3.3.8 Systeme von n gewöhnlicher Dgl. p-ter Ordnung
		3.3.9 Erste physikalische Beispiele
	3.4	Taylorentwicklung
		3.4.1 Interessantes "Gegenbeispiel"
	3.5	Harmonischer Oszillator
		3.5.1 Eindimensionales System
	3.6	Lineare Differentialgleichungen
		3.6.1 Zusammenfassung / Verallgemeinerung auf $n > 1 \dots 23$
		3.6.2 Finden der partikulären Lösung
4	Erha	altungssätze in Newtonscher Mechanik 23
	4.1	Impulserhaltung
	4.2	Drehimpulserhaltung
	4.3	Konservative Kräfte und Energieerhaltung
		4.3.1 Energieerhaltung
		4.3.2 Kriterium für Konservativität
	4.4	Kurvenintegrale
	4.5	Satz von Stokes
	4.6	Energieerhaltung für Systeme von Massenpunkten
	4.7	Eindimensionale Bewegung
5	Har	monischer Oszillator in komplexen Zahlen 32
	5.1	Komplexe Zahlen
		5.1.1 Ziel
		5.1.2 Naive Definition
		5.1.3 präzisere Definition
		5.1.4 Zusammenfassung:
		5.1.5 Fundamentalsatz der Algebra
		5.1.6 Quaternionen
	5.2	Anwendung auf harmonischen Oszillator
	5.3	harmonischer Oszillator mit periodisch treibender Kraft

6	Sym	metrie der Raum zeit 37				
	6.1	Matrix, Determinante, Inverse Matrix				
	6.2	Der Euklidische Raum				
	6.3	Symmetriegruppe (M)				
	6.4	Tensoren				
	6.5	Galilei-Transformationen				
	6.6	Affiner Raum				
	6.7	Dynamik				
	6.8	Zusammenfassung:				
7	Wechsel der Koordinatensystems und Scheinkräfte					
	7.1	Wechsel des Koordinatensystems im euklidischen Raum 48				
	7.2	Aktive und Passive Beschreibung von Symmetrien				
	7.3	Beschleunigte, nichtrotierende Koordinatensysteme				
	7.4	Kleine Drehungen				
	7.5	Rotierendes Koordinatensystem				
	7.6	Trägheitstensor				
8	Zent	ralkraftproblem 54				
	8.1	Motivation				
	8.2	Zweikörperproblem				
	8.3	Allgemeine Koordinatensysteme				
	8.4	Zentralkraftproblem				
	8.5	Qualitative Lösung des Zentralkraftproblems				
	8.6	Kepler-Problem: Bahnform				
	8.7	Kegelschnitte				
	8.8	Die Trajektorie				
		8.8.1 Ellipse				
	8.9	Umlaufzeit				
9	Zerf	alls und Stoßprozesse 62				
	9.1	Stoßparameter und Streuwinkel				
	9.2	Wirkungsquerschnitt				
		9.2.1 Differentieller Wirkungsquerschnitt				
	9.3	Rutherford-Streuung				
	9.4	Teilchenzerfall				
	9.5	Schwerpunkts vs Laborsystem				
	9.6	Elastischer Stoß				
	9.7	Elastischer Stoß am ruhenden Target				
10	Grav	ritation ausgedehnter Körper 69				
		Potential einer Massenverteilung				
		Gravitationspotential einer Kugelschale				
	10.3	Divergenz und Gaußscher Satz				

1 Semesterüberblick

- 1. Newtonsche Mechanik
- 2. Lagrange / Hamilton Mechanik / Statistik / Kontinua
- 3. Elektrodynamik / Spezielle Relativitätstheorie
- 4. Quantenmechanik
- 5. Thermodynamik / Quantenstatistik
- 6. Allgemeine Relativitätstheorie / Kosmologie
- 7. Quantenfeldtheorie I (ggf. 5.)
- 8. Quantenfeldtheorie II (ggf. 6. ← Stringtheorie / Teilchenphysik / Supersymmetrie)
- 9. Masterarbeit
- 10. Masterarbeit

1.1 Mathe

wichtig:

- · Gruppentheorie
- Differientialgeometrie

2 Kinematik des Massenpunktes

Massenpunkt / Punktmasse - (selbstevidente) Abstraktion Kinematik: Beschreibung der Bewegung (Ursachen der Bewegung \rightarrow Dynamik)

2.1 Kinematik der Massenpunktes in einer Dimension

2.1.1 Graphik

- Ort: *x*
- zu Zeit t: x(t)
- Geschwindigkeit: $v(t) \equiv \frac{\mathrm{d}x(t)}{\mathrm{d}t} \equiv \dot{x}(t)$
- Beschleunigung: $a(t) \equiv \dot{v}(t) = \ddot{x}(t)$
- Beispiel: $x(t) \equiv x_0 + v_0 t + \frac{a_0}{2} t^2, \ v(t) = v_0 + a_0 t, \ a(t) = a_0$

· Umgekehrt: Integration, z.B. von Geschwindigkeit zu Trajektorie: Anfangsposition muss gegeben sein, z.B. $x(t_0) \equiv x_0$

$$x(t) = x_0 + \int_{t_0}^t v(t') \mathrm{d}t'$$

Man prüft leicht $\dot{x}(t) = v(t)$

– Es gibt keine andere Funktion $\tilde{x}(t)$ mit $\dot{\tilde{x}}(t)=v(t)$ und $\tilde{x}(t_0)=x_0$

Analog: Von Beschleunigung zur Geschwindigkeit, und dann weiter zur Trajektorie

2.1.2 Üben dieser Logik an unserem Beispiel

Gegeben: $a(t) = a_0, t_0 = 0, v_0, x_0$

$$\Rightarrow v(t) = v_0 + \int_0^t a_0 dt' = v_0 + a_0 t$$
$$x(t) = x_0 + \int_0^t (v_0 + a_0 t') dt' = x_0 + v_0 t + \frac{a_0}{2} t^2$$

2.2 Grundbegriffe der Differenzial und Integralrechung

2.2.1 Funktion

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$$

2.2.2 Differentiation oder Ableitung

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

 $\mathrm{d}f$ bezeichnet den in Δx linearen Anteil des Zuwachs $\Delta f \equiv f(x+\Delta x) - f(x).$

- Aus $\Delta f = f'(x)\Delta(x) + O(\Delta x^2)$ folgt $df = f'(x)\Delta x$
- Anwendung auf die Identitätsabbildung: $x \mapsto x \implies \mathrm{d} x = \Delta x$

$$\implies df = f'(x)dx \text{ oder } \frac{df(x)}{dx} = f'(x)$$

Dies ist eigentlich nur eine Schreibweise für f'(x), aber nützlich, weil bei kleinen $\Delta x \, \mathrm{d} f \simeq$ Δf (Schreibweise beinhaltet intuitiv die Grenzwert-Definition)

• f'(x) wieder Funktion \implies analog: $f''(x), f'''(x), \dots, f^{(n)}(x)$

$$\left(f\cdot g\right)'=f'g+g'f \text{ (Produkt/Leibnizregel)}$$

$$\left(f\circ g\right)'(x)=f'(g(x))g'(x) \text{ (Kettenregel)}$$

$$\left(f^{-1}\right)'(x)=\frac{1}{f'(f^{-1}(x))} \text{ (Ableitung der Inversen Funktion)}$$

- Begründung (nur zum letzten Punkt)

$$(f^{-1})'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}(f(y))} = \frac{\mathrm{d}y}{f'(y)\mathrm{d}y} = \frac{1}{f'(f^{-1}(x))}$$

- Schöne Beispiele

$$(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$$

 $\arctan'(x) \equiv (\tan^{-1}(x)) = \frac{1}{\tan^{-1}(y)}$ wobei $y = \tan^{-1}(x)$

Besser:

$$\tan^{-1}(y) = \left(\sin y \frac{1}{\cos y}\right)' = \cos y \frac{1}{\cos y} + \sin y \left(\frac{1}{\cos y}\right)' = 1 + \sin y \left(-\frac{1}{\cos^2 y}\right) (-\sin y) = 1 + \sin y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \sin^2 y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \sin^2 y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \sin^2 y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \sin^2 y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \sin^2 y \left(-\frac{1}{\cos^2 y}\right) (-\cos^2 y) = 1 + \cos^$$

$$1 + \tan^2 y = 1 + x^2 \implies \arctan'(x) = \frac{1}{1 + x^2}$$

• Verknüpfung

$$f\circ g:x\mapsto f(g(x))$$

Inverse

$$f^{-1}: x = f(y) \mapsto y$$

- Grenzwerte:
 - nützliche Regel: l'Hospital (" $\frac{0}{0}$ ") Falls $\lim_{x\to x_0} f, g=0$ und $\lim_{x\to x_0} \frac{f'}{g'}$ existiert, so gilt $\lim_{x\to x_0} \frac{f}{g}=\lim_{x\to x_0} \frac{f'}{g'}$
 - weitere nützliche Regel

$$\lim \frac{\text{Beschränkt}}{\text{Unbeschränkt und monoton wachsend}} = 0$$

□ Beispiel:

$$\lim_{y \to 0} \frac{\sin \frac{1}{y}}{\frac{1}{y}}$$

- Kürzen unter lim
 - □ Beispiel:

$$\lim_{x \to \infty} \frac{x}{2x + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{\sqrt{x}}} = \frac{1}{2}$$

2.2.3 Integrieren

Fundamentalsatz der Analysis

$$\int_{a}^{y} f(x)dx = F(y)\&F'(y) = f(y)$$
$$\int_{a}^{b} f(x)dx = F(x) + C$$
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

(→ saubere Definition über Riemannsches Integral)

Praxis

Partielle Integration

$$\int_{-\infty}^{\infty} f(x)g'(x)dx = f(y)g(y) - \int_{-\infty}^{\infty} f'(x)g(x)dx$$

Substitution Unter Annahme einer invertierbaren Funktion $x: y \mapsto x(y)$

$$\int f(x)dx = \int f(x)\frac{dx}{dy}dy = \int f(x(y))x'(y)dy$$

Andere Formulierung:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution y = g(x)

Klassiker

$$\int \ln x dx = \int \ln x 1 dx = \ln x - \int \frac{1}{x} x dx = x(\ln x - 1)$$
$$\int x e^{x^2} dx = \int e^{x^2} \frac{1}{2} d(x^2) = \frac{1}{2} \int e^y dy = \frac{1}{2} e^y = \frac{1}{2} e^{x^2}$$

2.3 Kinematik in mehreren Dimensionen

2.3.1 Zweidimensionale Bewegung

Zweidimensional \rightarrow Bewegung in der Ebene. Trajektorie: x(t), y(t)

Beispiel

$$x(t) = v_0 t \sin \omega t$$

$$y(t) = v_0 t \cos \omega t$$

TODO Skizze der Trajektorie (Bahnkurve)

Raumkurve Menge aller Punkte $\{x, y\}$, die das Teilchen durchläuft

TODO Skizze Nichttriviale Darstellung nur im Raum (Raumkurve)

2.3.2 Dreidimensionale Bewegung

Die Darstellung der Trajektorie ist erschwert, denn man bräuchte 4 Dimensionen: 3 für Raum und 1 für Zeit Formal kein Problem: Trajektorie ist

x(t), y(t), z(t)

 $x^{1}(t), x^{2}(t), x^{3}(t)$

$$\{x^i(t)\}, i = 1, 2, 3$$

Dementsprechend:

$$v^{i}(t) = \dot{x}^{i}(t); a^{i}(t) = \dot{v}^{i}(t); i = 1, 2, 3$$

2.4 Vektorräume

Eine Menge V heißt Vektorraum, wenn auf ihr zwei Abbildungen

- die Addition (+)
- die Multiplikation mit reellen Zahlen (*)

definiert sind.

$$x: V \times V \to V$$

 $\text{Multiplikation}: \mathbb{R} \times V \to V$

 $V \times V$ - Produktmenge \equiv Menge aller Paare so dass gilt:

$$v+(w+u)=(v+w)+u \quad u,v,w\in V \text{Assoziativit\"{a}t}$$

$$v+w=w+v \text{Kommutativit\"{a}t}$$

$$\exists 0\in V: v+0=v \ \forall \ v\in V \text{Null}$$

$$\alpha(v+w)=\alpha v+\alpha w \text{Distributivit\"{a}t}$$

$$(\alpha+\beta)v=\alpha v+\beta v \quad \alpha,\beta\in \mathbb{R} \text{Distributivit\"{a}t}$$

$$\alpha(\beta v)=(\alpha\beta)v \text{Assoziativit\"{a}t der Multiplikation}$$

$$1v=v \text{Multiplikation mit Eins}$$

2.4.1 Einfachstes Beispiel

 $V \equiv \mathbb{R}$ (mit der gewöhnlichen Addition und Multiplikation und mit $0 \in \mathbb{R}$ als Vektorraum Null)

2.4.2 Unser Haupt-Beispiel

Zahlentupel aus n-Zahlen:

$$V \equiv \mathbb{R}^n = \{(x^1, x^2, \dots, x^n), x^i \in \mathbb{R}\}\$$

Notation:

$$\vec{x} = \begin{pmatrix} x^1 & x^2 & \dots & x^n \end{pmatrix}, \vec{y} = \begin{pmatrix} y^1 & \dots & y^n \end{pmatrix}$$

Man definiert:

$$\begin{split} \vec{x} + \vec{y} &\equiv \left(x^1 + y^1, x^2 + y^2, \dots, x^n + y^n\right) \\ \vec{0} &\equiv \left(0, \dots, 0\right) \\ \alpha \vec{x} &\equiv \left(\alpha x^1, \dots, \alpha x^n\right) \end{split}$$

TODO (Maybe) Skizze 3D Vektor → übliche Darstellung durch "Pfeile"

2.5 Kinematik in d > 1

Trajektorie ist Abbildung: $\mathbb{R} \to \mathbb{R}^3, t \to \vec{x}(t) = (x^1(t), x^1(t), x^3(t))$

$$\vec{v} = \dot{\vec{x}}(t), \vec{a(t)} = \dot{\vec{v}}(t) = \ddot{\vec{x}}(t)$$

Setzt allgemeine Definition der Ableitung voraus:

$$\frac{\mathrm{d}\vec{y}(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\vec{y}(x + \Delta x) - \vec{y}(x)}{\Delta x} \implies \vec{y}'(x) = \left(y^{1'}(x), \dots, y^{n'}(x)\right)$$

2.5.1 Beispiel für 3-dimensionale Trajektorie

Schraubenbahn:

$$\begin{split} \vec{x}t &= (R\cos\omega t, R\sin\omega t, v_0 t) \\ \vec{v} &= (-R\omega\sin\omega t, R\omega\cos\omega t, v_0) \\ \vec{a} &= (-R\omega^2\cos\omega t, -R\omega^2\sin\omega t, 0) \end{split}$$

TODO Skizze (Raumkurve) Kommentar:

 $\vec{x}, \vec{v}, \vec{a}$ leben in verschiedenen Vektorräumen! allein schon wegen $[x] = m, [v] = m s^{-1}$ Wir können wie in d = 1 von \vec{a} zu \vec{v} zu \vec{x} gelangen!

$$\vec{v}(t) = \vec{v_0} + \int_{t_0}^t \mathrm{d}t' \vec{a}(t') = \left(v_0^1 + \int_{t_0}^t \mathrm{d}t' a^1(t'), v_0^2 + \int_{t_0}^t \mathrm{d}t' a^2(t'), v_0^3 + \int_{t_0}^t \mathrm{d}t' a^2(t')\right)$$

Üben: Schraubenbahn; $t_0=0$, $\vec{x_0}=(R,0,0), v_0=(0,R\omega,v_0)$ Es folgt:

$$\begin{split} &\vec{v}(t)(0,R\omega,v_0) + \int_0^t \mathrm{d}t' \big(-R\omega^2 \big) \big(\cos \omega t', \sin \omega t', 0 \big) \\ = &(0,R\omega,v_0) + \big(-R\omega^2 \big) \Big(\frac{1}{\omega} \sin \omega t', -\frac{1}{\omega} \cos \omega t', 0 \Big) \mid_0^t \\ = &(0,R\omega,v_0) - R\omega (\sin \omega t, -\cos \omega t, 0) - (0,-1,0) \\ = &(-R\omega \sin \omega t, R\omega + R\omega \cos \omega t - R\omega, v_0) \\ = &(-R\omega \sin \omega t, R\omega \cos \omega t, v_0) \end{split}$$

Bemerkung Man kann Integrale über Vektoren auch durch Riemannsche Summen definieren:

$$\int_{t_0}^t \vec{v}(t') \mathrm{d}t' = \lim_{n \to \infty} (v(t_0) \Delta t + \vec{v}(t_0 + \Delta t) \Delta t + \ldots + \vec{v}(t - \Delta t) \Delta t)$$

mit
$$\Delta t = \frac{t - t_0}{N}$$

2.6 Skalarprodukt

Führt von Vektoren wieder zu nicht-vektoriellen (Skalaren) Größen.

2.6.1 Symmetrische Bilinearform

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ "linear" Abbildung von $V \times V \to \mathbb{R}, \ (v,w) \mapsto v \cdot w$ mit den Eigenschaften

- $v \cdot w = w \cdot v$
- $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$

Sie heißt positiv-semidefinit, falls $v \cdot v \ge 0$,

Sie heißt positiv-definit, falls $v \cdot v = 0 \implies v = 0$ Hier : Skalarprodukt \equiv positiv definite symmetrische Bilinearform

2.6.2 Norm (Länge) eines Vektors

$$|v| = \sqrt{v \cdot v} = \sqrt{v^2}$$

 \mathbb{R}^n : Wir definieren

$$\vec{x}\cdot\vec{y}=x^1y^1+\ldots+x^ny^n\equiv\sum_{i=1}^nx^iy^i\equiv\underbrace{x^iy^i}_{\text{Einsteinsche Summenkonvention}}$$

$$|\vec{x}| = \sqrt{(x^1)^2 + \dots + (x^n)^2}$$

Wichtig: oben euklidisches Skalarprodukt! Anderes Skalarprodukt auf $\mathbb{R}^2: \vec{x}\cdot\vec{y}=7x^1y^2+x^2y^2$ anderes Beispiel:

$$\vec{x} \cdot \vec{y} \equiv x^1 y^1 - x^2 y^2$$

symmetrische Bilinearform, nicht positiv, semidefinit! Frage: Beispiel für Bilinearform die positiv-semidefinit ist, aber nicht positiv definit

$$\vec{x}\vec{y} = x^1y^1$$

2.7 Abstand zwischen Raumpunkten

Der anschauliche Abstand zwischen Raumpunkten \vec{x}, \vec{y} :

$$\begin{aligned} |\vec{x} - \vec{y}| &= \sqrt{(\vec{x} - \vec{y})(\vec{x} - \vec{y})} = \sqrt{(\vec{x} - \vec{y})^2} = \sqrt{\sum_{i=1}^3 (x^i - y^i)^2} = \sqrt{(x^i - y^i)(x^i - y^i)} \\ &= \sqrt{\vec{x}^2 + \vec{y}^2 - 2\vec{x}\vec{y}} = \sqrt{|\vec{x}|^2 + |\vec{y}|^2 - 2|\vec{x}||\vec{y}|} \cos \theta \end{aligned}$$

Haben benutzt: $\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta$

2.7.1 Spezialfall

$$\vec{x} = (x^1, 0, 0), \vec{y} = (y^1, y^2, 0)$$

$$\vec{x} \cdot \vec{y} = x^1 \cdot y^1; \cos \theta = \frac{y^1}{|\vec{y}|}; |\vec{x}| = x^1$$

TODO Skizze

$$\implies \vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$$

Dass dies für beliebige Vektoren gilt, wird später klar werden.

2.7.2 Infinitesimaler Abstand

Speziell wird der infinitesimale Abstand wichtig sein:

$$\mathbf{d}\vec{x} = (\mathbf{d}x^1, \mathbf{d}x^2, \mathbf{d}x^3)$$

$$\mathrm{d}\vec{x} = \left(\frac{\mathrm{d}x^1}{\mathrm{d}t}\mathrm{d}t, \frac{\mathrm{d}x^2}{\mathrm{d}t}\mathrm{d}t, \frac{\mathrm{d}x^3}{\mathrm{d}t}\mathrm{d}t\right) = \left(v^1\mathrm{d}t, v^2\mathrm{d}t, v^3\mathrm{d}t\right) = \left(v^1, v^2, v^3\right)\mathrm{d}t = \vec{v}\mathrm{d}t, \text{ oder: } \vec{v} = \frac{\mathrm{d}\vec{x}}{\mathrm{d}t}$$

$$\begin{split} (\mathrm{d}\vec{x} \text{ analog zu } \mathrm{d}f \text{ vorher}); \\ \mathrm{d}\vec{x}^2 &= \left|\mathrm{d}\vec{x}\right|^2 = \left|\vec{v}\right|^2 \! \mathrm{d}t^2 \setminus \left|\mathrm{d}x\right| = \left|\vec{v}\right| \! \mathrm{d}t. \end{split}$$

2.8 Bogenlänge und begleitendes Dreibein

 $|d\vec{x}|$ entlang $\vec{x}(t)$ aufaddieren \rightarrow Bogenlänge.

$$s(t) = \int_{t_0}^t |\mathrm{d}\vec{x}| = \int_{t_0}^t \mathrm{d}t' \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t'} \right| = \int_{t_0}^t \mathrm{d}t' \sqrt{\dot{\vec{x}}(t')^2} = \int_{t_0}^t \sqrt{\vec{v}(t')^2}$$

Infinitesimale Version:

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| = |\vec{v}|$$

Man kann (im Prinzip) s(t) = s nach t auflösen.

$$\implies t = t(s) \implies \qquad \qquad \underbrace{\vec{x}(s)}_{} \equiv \vec{x}(t(s))$$

Nützlich, zum Beispiel für die Definition des Tangentenvektors:

$$\vec{T}(s) = \frac{\mathrm{d}\vec{x}(s)}{\mathrm{d}s}$$

Es gilt

$$\vec{T} \parallel \vec{v}; |\vec{T}| = \left| \frac{\vec{v} dt}{|\vec{v}| dt} \right| = 1 \implies \vec{T} \cdot \vec{T} = 1$$

Ableiten nach s:

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}(1) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}(\vec{T} \cdot \vec{T}) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} \cdot \vec{T} + \vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = 2\vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

Nutze

$$\vec{T} \cdot \vec{T} = T^i T^i$$

⇒ Ableitung des Tangentenvektors ist orthogonal zum Tangentenvektor. Krümmungsradius der Bahn:

$$\rho \equiv \frac{1}{\left|\frac{\mathbf{d}\vec{T}}{\mathbf{d}s}\right|}$$

Normalenvektor:

$$\vec{N} = \frac{\frac{\mathrm{d}\vec{T}}{\mathrm{d}s}}{\left|\frac{\mathrm{d}\vec{T}}{\mathrm{d}s}\right|} = \rho \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

2.8.1 Beispiel in **d**=2

$$\vec{x}(t) = R(\cos \omega t, \sin \omega t)$$

$$\vec{v}(t) = R\omega(-\sin(\omega t), \cos \omega t)$$

$$|\vec{v}| = \sqrt{(R\omega)^2(\sin^2 \omega t + \cos^2 \omega t)} = R\omega$$

$$\begin{split} s(t) &= \int_{t_0=0}^t \mathrm{d}t' |\vec{v}| = R\omega t; \ t(x) == \frac{s}{R\omega} \\ \implies \vec{x}(s) &= R \Big(\cos\frac{s}{R}, \sin\frac{s}{R} \Big), \vec{T} = \frac{\mathrm{d}\vec{x}}{\mathrm{d}s} = \Big(-\sin\frac{s}{R}, \cos\frac{s}{R} \Big) \\ \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} &= -\frac{1}{R} \Big(\cos\frac{s}{R}, \sin\frac{s}{R} \Big) \implies \rho = R; \ \vec{N} = -\Big(\cos\frac{s}{R}, \sin\frac{s}{R} \Big) \end{split}$$

TODO Skizze

2.9 Vektorprodukt

$$V \times V \mapsto V; \ \left(\vec{a}, \vec{b}\right) \mapsto \vec{c} = \vec{a} \times \vec{b}$$

mit

$$c^i = \left(\vec{a} \times \vec{b}\right)^i \equiv \sum_{i,k=1}^3 \varepsilon^{ijk} a^j b^k = \varepsilon^{ijk} a^j b^k$$

dabei:

•
$$\varepsilon^{123} = \varepsilon^{231} = \varepsilon^{321} = 1$$

•
$$\varepsilon^{213} = \varepsilon^{132} = \varepsilon^{321} = -1$$

• sonst 0 ($\varepsilon^{ijk}=0$, falls zwei Indizes gleich)

Alternativ:

$$|\vec{c}| = |\vec{a}| |\vec{b}| |\sin \theta|$$

- Richtung von \vec{c} definiert durch $\vec{c} \perp \vec{a} \wedge \vec{c} \perp \vec{c}$
- Vorzeichen von \vec{c} ist so, dass $\vec{a}, \vec{b}, \vec{c}$ ein "Rechtssystem" bilden

TODO Skizze

2.10 Binormalenvektor

$$B = \vec{T} \times \vec{N}$$

 $\vec{T}, \vec{N}, \vec{B}$ heißen "begleitendes Dreibein" und bilden ein Rechtssystem. alle haben Länge 1 \vec{T}, \vec{N} spannen die "Schmiegebene" auf

2.10.1 Zur Information

$$\frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = \frac{1}{\rho}\vec{N}; \ \frac{\mathrm{d}\vec{B}}{\mathrm{d}s} = -\frac{1}{\sigma}\vec{B}; \ \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{\sigma}\vec{B} - \frac{1}{\rho}\vec{T}$$

 σ definiert die Torsion.

3 Grundbegriffe der Newtonsche Mechanik

3.1 Newtonsche Axiome

Dynamik: Ursachen der Bewegungsänderung \rightarrow Kräfte: $\vec{F} = (F^1, F^2, F^3)$

- 1. Es existierten Inertialsysteme (Koordinatensysteme in denen eine Punktmasse an der keine Kraft wirkt) nicht oder sich geradlinig gleichförmig bewegt: $\ddot{\vec{x}} = 0$
- 2. In solchen Systemen gilt: $\vec{F} = m\ddot{\vec{x}}$
- 3. Für Kräfte zwischen zwei Massenpunkten gilt:

$$\vec{F}_1 2 = -\vec{F}_2 1$$

4. definiert die träge Masse

Die entscheidende physikalische Aussage von 2. ist das Auftreten von $\ddot{\vec{x}}$ (nicht etwa $\dot{\vec{x}}$ oder $\dot{\vec{x}}$) Alternative Diskussionen der obigen Axiomatik:

• zum Beispiel Kapitel 1.2 von Jose/Saletan (mit 2 Definition der Kraft)

3.2 Trajektorie

Vorhersagen erfordern: $\vec{F} \to \text{Trajektorie}$. Genauer: Sei $\vec{F}(\vec{x}, t)$ gegeben. Berechne $\vec{x}(t)$!

3.3 Differentialgleichungen

hier nur "gewöhnliche DGL" (nur Ableitungen nach einer Variable) (im Gegensatz zu "partiellen" (Ableitung nach verschiedenen Variablen))

3.3.1 1. Ordnung

Die allgemeine Form einer gewöhnlichen Dgl. 1. Ordnung (⇒ nur 1. Ableitung):

$$y'(x) = f(x, y)$$

Lösung Funktion: $y: x \mapsto y(x)$ mit y'(x) = f(x,y(x)) (im Allgemeinen wird x aus einem gewissen Intervall kommen: $x \in I \equiv (a, b) \subseteq \mathbb{R}$)

3.3.2 Anfangswertproblem

Gegeben durch:

1. Dgl.:
$$y' = f(x, y)$$

2. Anfangsbedingung
$$(x_0; y_0) \in \mathbb{R}^2$$

Gesucht: Funktion y(x) mit (für $x \in I, x_0 \in I$:

1.
$$y'(x) = f(x, y(x))$$

2.
$$y(x_0) = y_0$$

3.3.3 partielle Ableitung

Wir betrachten ab sofort auch Funktionen mehrerer Variablen: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x,y) \mapsto f(x,y)$ Partielle Ableitung:

$$\frac{\partial f(x,y)}{\partial y} \equiv \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$$

Rechenregeln: Wie bei normalen Ableitung, nur mit x fest.

Beispiel

$$f(x, y, z) \equiv x^{2} + yz$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = z$$

$$\frac{\partial f}{\partial z} = y$$

3.3.4 Existenz und Eindeutigkeit

... viele Theoreme über Existenz und Eindeutigkeit (Peano und Picand / Lindelöf) Insbesondere sind Existenz und Eindeutigkeit gesichert falls:

$$f(x,y) \wedge \frac{\partial f(x,y)}{\partial y}$$

stetig sind.

Zeichne an jedem Punkt (x, y) einen Vektor (1, f(x, y)) ein.

$$\frac{dy(x)}{dx} = y'(x) = f(x, y(x)) = \frac{(x, y(x))}{1}$$

Weiteres Argument für die Existenz und Eindeutigkeit TODO(Skizze) Steigung der gesuchten Funktion bei x_0 ist bekannt als $f(x_0, y_0) \implies$ kann Wert der Funktion bei $x + \Delta x$ abschätzen: $y_0 + \Delta x f(x_0,y_0)$ (für kleine Δx) Kenne Steigung bei $x_0 \Delta x: f(x_0 + \Delta x, y_0 + \Delta x f(x_0,y_0))$ \implies Schätze Wert der Funktion bei $x_0 + 2\Delta x$ ab. (\implies perfekt für Numerik)

3.3.5 Beispiele

1.

$$y'(x) = f(x, y), f(x, y) = 3$$
$$y'(x) = 3 \implies y(x) = \int 3dx = 3x + c$$

Das ist schon die allgemeine Lösung der Dgl. Ein Anfangswertproblem, zum Beispiel mit $(x_0,y_0)=(-1,1)$ lässt sich durch Bestimmen der Konstanten lösen:

$$y(x) = 3x + c \implies 1 = 3(-1) + c \implies c = 4 \implies y(x) = 3x + 4$$

3.3.6 Separation der Variablen

Separation der Variablen funktioniert wenn f(x, y) = g(x)h(y)

Beispiel

$$f(x,y) = \frac{x}{y} \implies y'(x) = \frac{x}{y(x)}$$

$$\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{x}{y} \implies y\mathrm{d}y = x\mathrm{d}x$$

Variablen sind getrennt, kann einfach Integrieren

$$\int y dy = \int x dx \implies \frac{y^2}{2} = \frac{x^2}{2} + c \implies y = \pm \sqrt{x^2 + 2c}$$

Lösen allgemeines Anfangswertproblem allgemeines Anfangswertproblem mit Anfangsbedingung (x_0, y_0)

$$y_0^2 = x_0^2 + 2c \implies 2c = y_0^2 - x_0^2 \implies y = \begin{cases} \sqrt{y_0^2 + x^2 - x_0^2} & y_0 \ge 0 \\ -\sqrt{y_0^2 + x^2 - x_0^2} & y_0 \le 0 \end{cases}$$

1. TODO Skizze

3.3.7 System von Dgl.

(Fast) alles oben gesagte funktioniert auch für Systeme gewöhnlicher Dgl. 1. Ordnung:

$$\frac{\mathrm{d}y^1(x)}{\mathrm{d}x} = f^1(x, y^1, \dots, y^n)$$

$$\frac{\mathrm{d} y^n(x)}{\mathrm{d} x} = f^n(x, y^n, \dots, y^n)$$

Vektorschreibweise:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \vec{f}(x, \vec{y})$$

Wir haben hier eine vektorwertige Funktion von n+1 Variablen benutzt:

$$\vec{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

Anfangsbedingungen: $(x_0, \vec{y}_0) \rightarrow n+1$ Parameter. Einer davon entspricht der Verschiebung entlang ein und derselben Lösung \implies allgemeine Lösung hat (n+1)-1=n Parameter oder Integrationskonstanten.

3.3.8 Systeme von n gewöhnlicher Dgl. p-ter Ordnung

$$\vec{y}^{(p)}(x) = \vec{f}\big(x, \vec{y}, \vec{y}^\prime, \vec{y}^{\prime\prime}, \ldots, \vec{y}^{(p-1)}\big)$$

Anfangsbedingungen: $(x_0, \vec{y}_0, \vec{y}'_0, \dots, \vec{y}_0^{(p-1)}), \vec{y}'_0 \stackrel{\wedge}{=} \vec{y}'(x)$ bei $x = x_0$

Tatsache Systeme von Dgl. können auf größere Systeme niedrigerer Ordnung zurückgeführt werden. Wir illustrieren dies am Beispiel mit p=2

Beispiel

$$\vec{y}''(x) = \vec{f}(x, \vec{y}, \vec{y}')$$

Dies ist äquivalent zu einem System von 2n Dgl 1. Ordnung

$$\begin{cases} \vec{z}'(x) &= \vec{f}(x, \vec{y}, \vec{z}) \\ \vec{y}'(x) &= \vec{z} \end{cases} (\equiv g(x, \vec{y}, \vec{z}))$$

Ursprüngliche Form folgt durch Einsetzen der 2. Gleichung in die Erste. Das verallgemeinert sich sofort auf die Ordnung p: Man gibt einfach der (p-1) niederen Ableitungen neue Namen und betrachtet sie als neue Variablen. Die zusätzlichen Dgl sind schlicht die Aussagen, dass es sich dabei immer noch um die ehemaligen Ableitungen handelt.

 \implies System von p Dgl 1. Ordnung; allgemeine Lösung hat p Parameter

3.3.9 Erste physikalische Beispiele

Punktmasse 3 Dgl 2. Ordnung:

$$\ddot{\vec{x}} = \frac{1}{m} \vec{F} \left(t, \vec{x}, \dot{\vec{x}} \right)$$

⇒ 6 Dgl 1. Ordnung:

$$\begin{cases} \dot{\vec{v}} &= \frac{1}{m} \vec{F}(t, \vec{x}, \vec{v}) \\ \dot{\vec{x}} &= \vec{v} \end{cases}$$
 (1)

In vielen Fällen: (zeitunabhängiges) Kraftfeld $\vec{F}(\vec{x})$ ("Vektorfeld").

Darstellung in d=2 (Skizze Vektorfeld). wichtig: doppelte Markierung der Achsen

Einfachster Fall (d = 1) betrachte den Fall, dass F von v, aber nicht von t abhängt:

$$\begin{cases} \dot{v} &= \frac{F(x,v)}{m} \\ \dot{x} &= v \end{cases}$$

$$\begin{pmatrix} v \\ x \end{pmatrix} = \begin{pmatrix} \frac{F(x,v)}{m} \\ v \end{pmatrix}$$
(2)

1. **TODO** Darstellung im Phasenraum Analyse im Phasenraum passt perfekt zur früheren allgemeinen Analyse von Dgl 1. Ordnung Analog in d=3: Vektorfeld: $(\frac{\vec{F}}{m}, \vec{v})$, Phasenraum (\vec{x}, \vec{v}) oder (\vec{x}, \vec{p}) ist 6-dimensional

Harmonischer Oszillator (d = 1**)** F(x) = -kx

$$\begin{cases} \dot{v} &= -x \\ \dot{x} &= v \end{cases} \tag{3}$$

Phasenraum des Harmonischen Oszillator

Freier Fall mit Luftwiderstand Aufgabe: Bestimme die zeitliche Entwicklung von v wenn Körper im Schwerefeld losgelassen wird. $F_R = -cv^2$ Problem 1-dim: x wachse nach unten, Start bei $t=0, x=0, \dot{x}=0$

$$F = m\ddot{x} \implies mg - c\dot{x}^2 = m\ddot{x} \implies \begin{cases} mg - cv^2 &= m\dot{v} \\ v &= \dot{x} \end{cases}$$

Erste Gleichung enthält kein x und kann unabhängig gelöst werden:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{c}{m}v^2$$
$$\mathrm{d}t = \frac{\mathrm{d}v}{g - \frac{c}{m}v^2}$$

Konstanten und Dimensionen

$$[g] = \text{m s}^{-2}; \left[\frac{c}{m}\right] = \text{N kg}^{-1} \text{ m}^{-2} \text{ s}^{2}$$

Kann leicht Konstanten der Dimension Zeit und Geschwindigkeit bilden:

$$\hat{t} = \sqrt{\frac{m}{gc}}, \hat{v} = \sqrt{\frac{gm}{c}}$$

Benutze jetzt die dimensionslosen Variablen $t' = \frac{t}{\hat{t}}, v' = \frac{v}{\hat{v}}$

$$\implies dt' = \frac{dv'}{1 - v^{2\prime}} = \frac{dv'}{2} \left(\frac{1}{1 + v'} + \frac{1}{1 - v'} \right)$$

$$2t' = \ln 1 + v' - \ln 1 - v' + c$$

v' = 0 bei $t' = 0 \implies c = 0$ Auflösen nach v':

$$e^{2t'} = \frac{1+v'}{1-v'} \implies \dots$$

$$\implies v' = 1 - \frac{2}{e^{2t'} + 1} \implies v = \hat{v} \left(1 - \frac{2}{e^{\frac{2t}{\hat{t}}}} + 1 \right)$$

 $\implies \hat{v}$ ist Grenzgeschwindigkeit, wird exponentiell angenommen, wenn $t \gg \hat{t}$

Zugabe: einfache physikalische Argumente für die Größe von c:

1.
$$[c] = \text{kg m}^{-1}$$
, Input: A (Querschnitt), $\rho_L \implies c \sim \rho_L A$

2. Energiebilanz an verdrängter Luft:

$$F_R \cdot l \sim E_{\rm kin, Luft} \sim \rho_L l A \frac{v^2}{2}$$

3.4 Taylorentwicklung

Ohne Beschränkung der Allgemeinheit $x_0=0$. Untersuche Verhalten beliebiger glatter Funktionen

$$f(x) = f(0) + \int_0^x dx' f'(x')$$

$$= f(0) + f'(x')(x_-x) \Big|_0^x - \int_0^x dx' f''(x')(x'-x)$$

$$= f(0) + f'(0)x - f''(x') \frac{(x'-x)}{2} \Big|_0^x + \int_0^x dx' f'''(x') \frac{(x'-x)^2}{2}$$

$$= f(0) + f'(x)x + f''(0) \frac{x^2}{2} + \dots$$

Allgemein:

$$f(x) = f(0) + \sum_{n=1}^{m} f^{(n)}(0) \frac{x^n}{n!} + \overbrace{\int_0^x \mathrm{d}x' f^{(m+1)}(x') \frac{(x'-x)^m}{m!}}^{\text{Restglied}}$$

Falls das Restglied für $n \to \infty$ verschwindet:

$$f(x) = f(0) + \sum_{n=1}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$$

Analog: Taylor-Reihe:

$$f(x) = f(x_0) + \sum_{n=1}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

- 1. Oft erste Terme = gute Näherung
- 2. Verallgemeinerung auf viele Variablen

3.4.1 Interessantes "Gegenbeispiel"

$$f(x) \equiv \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Überzeugen sie sich, dass alle Ableitungen existieren, auch bei Null! Sie Brauchen:

$$\lim_{x \to 0} \frac{1}{x^n} e^{-\frac{1}{x^2}} = 0$$

Die Ableitungen verschwinden sogar bei Null ⇒ Taylor-Reihe ist Null, keine gute Näherung

3.5 Harmonischer Oszillator

- · eines der wichtigsten physikalischen Systeme
- beschreibt viele kompliziertere Systeme angenähert

3.5.1 Eindimensionales System

$$d=1, F=F(x)$$

$$F(x)=-\frac{\mathrm{d}}{\mathrm{d}x}v(x)=-v'(x)$$

Damit haben wir das **Potential** (\rightarrow beschreibt die potentielle Energie des Massenpunktes) v als Stammfunktion von -F definiert

Skizze

Massenpunkt kann nur ruhen, wo F=0 beziehungsweise V'=0. Genauer: Nur Minima (Maxima instabil).

Ziel Untersuchung der Bewegung in der Nähe von Minimal (also bei $x \approx x_0$ wobei $v'(x_0) = 0$

$$V(x)$$
 bei x_0 , $V'(x_0) = 0$, $|x - x_0|$ klein

$$\implies V(x) \simeq V(x_0) + \frac{1}{2}v''(x_0)(x - x_0)^2$$

$$\implies F(x) \simeq -V''(x_0)(x - x_0)$$

$$x - x_0 \equiv y \implies \underbrace{F(y) = -ky}_{\text{harmonischer Oszillator}}, k \equiv v''(0)$$

Wir sehen: Harmonischer Oszillator ist eine Idealisierung von potentiell sehr großem Nutzen (viele Systeme)

Lösung Newton $\implies m\ddot{y} = -ky$ beziehungsweise $\ddot{y} = -\omega^2 y, \omega \equiv \sqrt{\frac{k}{m}}$ $\implies \sin \omega t$ und $\cos \omega t$ sind Lösungen $\implies y(t) = A \sin \omega t + B \cos \omega t$ ist auch Lösung (wegen Linearität) (wegen der beiden frei wählbaren Konstanten ist dies schon die allgemeine Lösung)

Verallgemeinerungen

- Reibungsterm $\sim \dot{y}$
- treibende Kraft $\sim f(t)$

3.6 Lineare Differentialgleichungen

allgemeine Form einer linearen Dgl. n-ter Ordnung:

$$y^{(n)} + f_{n-1}(x)y^{(n-1)}(x) + \dots + f_0(x)y(x) = f(x)$$

Das Wort linear bezieht sich nur auf y, nicht x

Die Dgl. heißt homogen falls $f(x) \equiv 0$ Homogen von Grad p: Ersetzung $y \to \alpha y$ führt zu Vorfaktor αp , hier p=1

- wir hatten oben dem Fall n=2 "mit konstanten Koeffizienten"
- noch einfacheres Beispiel: $n=1, f\equiv 0$ (aber beliebige Koeffizienten)

$$y' + a(x)y = 0$$

Das ist separabel:

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}x} + a(x)y &= 0 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= -a(x)y \\ \frac{\mathrm{d}y}{x} &= -a(x)\mathrm{d}x \\ \int \frac{\mathrm{d}y}{y} &= -\int a(x)\mathrm{d}x \\ \ln y - A(x) + c_1 \\ y &= ce^{-A(x)} \end{split}$$

A(x) sei eine beliebige aber fest gewählte Stammfunktion von a Wir können den inhomogenen Fall lösen, durch "Variation der Konstanten"

– Ansatz:
$$y=C(x)e^{-A(x)}$$
, Dgl. $y'+ay=f$
$$\left(ce^{-A}\right)'+aCe^{-A}=f$$

$$c'e^{-A}-CA'e^{-A}+Cae^{-A}=f$$

Beachte A' = a

$$\implies c'e^{-A} = fe^A, c(x) = \int \mathrm{d}x f(x) e^{A(x)}$$

$$y(x) = \left[\int^x \mathrm{d}x' f(x') e^{A(x')}\right] e^{-A(x)}$$

f(x') ist eine frei wählbare additive Konstante im x' -Int. $(C(x) \to C(x) + \alpha)$ entspricht der Addition der Lösung der homogenen Dgl.

3.6.1 Zusammenfassung / Verallgemeinerung auf n > 1

Definition 3.1 (Linear Unabhängig) Ein Satz von Funktionen $f_1(x),\dots,f_n(x)$ heißt linear unabhängig, falls jede Linearkombination bei der nicht alle Koeffizienten Null sind auch nicht Null ist:

$$\alpha_1 f_1(x) + \dots + \alpha_n f_n(x) \equiv 0 \implies \alpha_1 = \dots = \alpha_n = 0$$

(identisch zur linearen Unabhängigkeit von Vektoren)

Fakt Kennt man n linear unabhängige Lösungen einer homogenen linearen Dgl. n -ter Ordnung, so kennt man die allgemeine Lösung:

$$y_{hom}(x) = C_1 y_1(x) + \dots + C_n y_n(x)$$

Die allgemeine Lösung ist stets von dieser Form.

Wenn wir außerdem eine partikuläre Lösung der inhomogenen Gleichung haben, so haben wir auch schon deren allgemeinen Lösung

$$y(x) = y_{hom}(x) + y_{part}(x)$$

"Beweis"durch Einsetzen in

$$y^{(n)} + f_{n-1}y^{(n-1)} + \ldots + f_0y = f$$

3.6.2 Finden der partikulären Lösung

Auch bei n>1: Variation der Konstanten (Funktioniert gut bei konstanten Koeffizienten) Mächtigere Methoden: Überführen von System von linearen Dgl. 1. Ordnung (braucht Matrixrechnung)

4 Erhaltungssätze in Newtonscher Mechanik

4.1 Impulserhaltung

Systeme mit mehreren Massenpunkten $a, b \in \{1, ..., n\}$ Trajektorien: $\vec{x}_a(t), a = 1, \dots, n$

Satz 4.1 (Impulserhaltung) Bei verschwindenden externen Kräften ($\vec{F}_{ext}=0$) gilt:

$$\vec{p} \equiv \sum_a \vec{P_a} \equiv \sum_a m_a \vec{x_a} = \ {\rm const}$$

Beweis

3. Newtonsches Axiom

mit äußeren Kräften:

$$\dot{\vec{p}} = \sum_{a} \vec{F}_{a,ext.} \equiv \vec{F}_{ext}$$

Falls zum Beispiel die äußere Kraft nicht in x^1 -Richtung wirkt (F1_{ext} = 0), so gilt immer noch $p^1 = \text{const}$ (eigentlich drei Erhaltungssätze für p^1, p^2, p^3 , manchmal gelten nur einige davon)

4.2 Drehimpulserhaltung

Oft: Kräfte wirken parallel zur Verbindungslinie zweier Massenpunkte:

- Gravitationskraft
- · Elektrostatische Kraft
- Modell der masselosen Stange (→ Modell für starre Körper!)

Definition 4.2 (Drehimpuls)

$$\vec{L}_a \equiv \vec{x}_a \times \vec{p}_a$$
$$\left(\vec{L}_a\right)^i = \varepsilon^{ijk} x_a^j p_a^k$$

Falls $\vec{F}_{a,ext}=0$ und alle interne Kräfte wirken parallel zur Verbindungslinie der jeweiligen Punkte, dann gilt Drehimpulserhaltung

Satz 4.3 (Drehimpulserhaltung)

$$\vec{L} \equiv \sum_a \vec{L}_a = \sum_a m_a \vec{x}_a \times \dot{\vec{x}}_a = \sum_a \vec{x}_a \times \vec{p}_a = \text{ const}$$

Beweis Nachrechnen:

$$\begin{split} \dot{\vec{L}} &= \sum_{a} m_a \left(\dot{\vec{x}}_a \times \dot{\vec{x}}_a + \vec{x}_a + \ddot{\vec{x}}_a \right) \\ &= \sum_{a} \vec{x}_a \times \vec{F}_a \\ &= \sum_{a \neq b} \vec{x}_a \times \vec{F}_{ab} \\ &= \sum_{a > b} \left(\vec{x}_a \times \vec{F}_{ab} + \vec{x}_b \times \vec{F}_{ba} \right) \\ &= \sum_{a > b} (\vec{x}_a - \vec{x}_b) \times \vec{F}_{ab} \end{split} \tag{Summe "ber alle Paare von $a,b,a \neq b$}$$

da $\vec{F}_{ab} \parallel (\vec{x}_a - \vec{x}_b)$ per Annahme

$$=0$$

Bei externen Kräften:

$$\dot{\vec{L}} = \sum_{a} \vec{x}_{a} \times \vec{F}_{a,ext} \equiv \vec{M}_{ext}$$

 M_{ext} ist das durch äußere Kräfte auf Punkt a ausgeübte ${\bf Drehmoment}$, allgemein (für einzelnen Punkt):

$$\vec{M} = \vec{x} \times \vec{F} = \dot{\vec{L}}$$

Wichtig: Drehimpulserhaltung gilt auch dann wenn alle äußeren Kräfte Zentralkräfte sind, Zentralkraft:

$$\vec{F}_a \parallel \vec{x}_a$$

Drehimpuls hängt vom Koordinatensystem ab.

Bemerkung 4.4 $\vec{L} \equiv \vec{x} \times \vec{p}$ (allgemeiner jedes Kreuzprodukt von Vektoren) ist ein Axial- oder Pseudovektor, das heißt: Bei Drehungen wie Vektor, Bei Reflexion am Ursprung kein Vorzeichenänderung

Beweis

$$ec{a}
ightarrow -ec{a}, ec{b}
ightarrow -ec{b} \implies ec{a} imes ec{b}
ightarrow +ec{a} imes ec{b}$$

4.3 Konservative Kräfte und Energieerhaltung

Definition 4.5 (Gradient) Gradient von *V*:

$$\vec{\nabla} \equiv \left(\frac{\partial V}{\partial x^1}, \frac{\partial V}{\partial x^2}, \frac{\partial V}{\partial x^3}\right)$$

 $\frac{\partial}{\partial x}$ ist ein "Differentialoperator", also:

$$\frac{\partial}{\partial x}: f(x,y) \mapsto \frac{\partial f(x,y)}{\partial x}$$

Dementsprechend $\frac{\partial^2}{\partial x^2}$ ist ein "Differentialoperator" zweiter Ordnung, also:

$$\frac{\partial^2}{\partial x^2}: f(x,y) \mapsto \frac{\partial^2 f(x,y)}{\partial x^2}$$

 $ec{
abla} V$ ist gute Schreibweise, weil $ec{
abla}$ ein vektorwertiger Differentialoperator ist:

$$\vec{\nabla} = \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3}\right)$$

Definition 4.6 (konservatives Kraftfeld) Ein zeitunabhängiges Kraftfeld $\vec{F}(\vec{x})$ heißt **konservativ** falls es eine Funktion $V(\vec{x})$ (Potential") gibt. sodass

$$\vec{F} = -\vec{\nabla}V$$

4.3.1 Energieerhaltung

Für einen Massenpunkt in einem konservativen Kraftfeld gilt:

$$E = \frac{T}{\text{kinetisch}} + \frac{V}{\text{potentielle Energie}} = \frac{m}{2} \dot{\vec{x}}(t)^2 + V(\vec{x}(t)) = \text{const}$$

Begründung

$$\begin{split} \frac{\mathrm{d}T}{\mathrm{d}t} &= \frac{m}{2}\frac{\mathrm{d}}{\mathrm{d}t}(\dot{x}^i\dot{x}^i) = \frac{m}{2}2\dot{x}^i\ddot{x}^i = m\dot{\vec{x}}\ddot{\vec{x}}\\ \frac{\mathrm{d}V}{\mathrm{d}t} &= \lim_{\Delta t \to 0}\frac{V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3)}{\Delta t}\\ \mathrm{mit}\,\Delta x &= \frac{\mathrm{d}\vec{x}}{\mathrm{d}t}\Delta t \end{split}$$

Umschreiben des Zählers

$$\begin{split} &V(x^1 + \Delta x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3 + \Delta x^3) \\ &+ V(x^1, x^2, x^3 + \Delta x^3) - V(x^1, x^2, x^3) \\ &\cong \frac{\partial V}{\partial x^1}(x^1, x^2 + \Delta x^2, x^3 + \Delta x^3) \Delta x^1 + \frac{\partial V}{\partial x^1}(x^1, x^2, x^3 + \Delta x^3) \Delta x^2 + \frac{\partial V}{\partial x^1}(\vec{x}) \Delta x^3 \end{split}$$

Teilen durch Δt , Grenzwertbildung

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\partial V}{\partial x^i}(\vec{x}(t)) \frac{\mathrm{d}x^i}{\mathrm{d}t}$$

oder (allgemeine Rechenregel)

$$\mathrm{d}V = \frac{\partial V}{\partial x^i} \mathrm{d}x^i$$

Allgemeine Formulierung der Rechenregel: Sei $f:\mathbb{R}^n\to\mathbb{R}\wedge\vec{x}:\mathbb{R}\to\mathbb{R}^n$ Die Verknüpfung $f \circ \vec{x} : \mathbb{R} \to \mathbb{R}$ ist eine Funktion. Für diese gilt:

$$\underbrace{\mathrm{d}f}_{\text{totales Differential}} = \frac{\partial f}{\partial x^{i}} \mathrm{d}x^{i} = (\vec{\nabla}f) \mathrm{d}\vec{x} \tag{4}$$

oder totale Ableitung:

(5)

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x^i} \frac{\mathrm{d}x^i}{\mathrm{d}t} \tag{6}$$

Unsere Anwendung

(7)

$$\dot{E} = m\dot{\vec{x}}\ddot{\vec{x}} + \frac{\partial V}{\partial x^i}\dot{x}^i = \vec{F}\dot{\vec{x}} + (\vec{\nabla}V)\dot{\vec{x}} = 0 \checkmark$$
(8)

$$V(x^{1}+\Delta x^{1},x^{2}+\Delta x^{2},x^{3}+\Delta x^{3})-V(x^{1},x^{2}+\Delta x^{2},x^{3}+\Delta x^{3})$$

Vergleiche:

$$f(x + \Delta) - f(x) \cong f'(x)\Delta$$

4.3.2 Kriterium für Konservativität

Für einfach zusammenhängende Gebiete¹ gilt:

$$\vec{F}$$
 ist konservativ $\iff \vec{\nabla} \vec{F} = 0$

Begründung $\implies \setminus$

$$\vec{F} = -\vec{\nabla}V \implies \underbrace{\vec{\nabla} \times \vec{F}}_{\equiv \text{ Rotation von } F \text{ (rot } F)} = 0$$

¹Jede geschlossene Kurve kann auf Länge Null zusammengezogen werden

$$\begin{split} \left(\vec{\nabla}\times\vec{F}\right)^i &= \varepsilon^{ijk}\frac{\partial}{\partial x^j}F^k = \varepsilon^{ijk}\partial^iF^k \\ &= -\varepsilon^{ijk}\partial^j\partial^kV = -\frac{1}{2}(\varepsilon^{ijk} - \varepsilon^{ikj})\partial^j\partial^kV \\ &= -\frac{1}{2}\varepsilon^{ijk}\partial^j\partial^kV + \frac{1}{2}\varepsilon^{ikj}\underbrace{\partial^k\partial^j}_{\partial x}\underbrace{\partial^j}_{\partial y} = \underbrace{\partial^j}_{\partial y}\underbrace{\partial^j}_{\partial x} \\ &= -\frac{1}{2}\varepsilon^{ijk}\partial^j\partial^kV + \frac{1}{2}\varepsilon^{ijk}\partial^j\partial^kV = 0 \\ \downarrow &\downarrow &\downarrow &\downarrow \end{split}$$

Wähle beliebiges festes $ec{x}_0$ im Gebiet. Definiere Potential als minus Arbeit am Massenpunkt ightarrowAbbildung

$$V(\vec{x}) \equiv -\int_{\vec{x}_0}^{\vec{x}} \vec{F}(x) \mathrm{d}\vec{s} \tag{Linienintegral}$$

Linienintegral kann immer definiert werden, wenn Kurve durch Gebiet mit Vektorfeld verläuft

$$d\vec{s} \equiv d\vec{x}(s) = \left(\frac{dx^1}{ddx}, \frac{dx^2}{ddx}, \frac{dx^3}{ddx}\right) ds$$

Also gilt:

$$\vec{F} d\vec{s} = \underbrace{F^i \left(\frac{dx^i}{ds} \right) ds}_{\text{Integrand im normalen Riemann Integr.}}$$

Wähle beliebigen kleinen Vektor \vec{l} und berechne:

$$\vec{l}\vec{F}(\vec{x}) \cong -\left(-\int_{\vec{x}}^{\vec{x}+\vec{l}} d\vec{s}\vec{F}\right)$$

$$= -\left(\left(-\int_{\vec{x}_0}^{\vec{x}+\vec{l}} d\vec{s}\vec{F}\right) - \left(-\int_{\vec{x}_0}^{\vec{x}} d\vec{s}\vec{F}\right)\right)$$

$$= -\left(V\left(\vec{x}+\vec{l}\right) - V(\vec{x})\right)$$

$$\cong -\frac{\partial V}{\partial x^i} l^i = -\vec{l}\left(\vec{\nabla}V\right)$$

$$\Rightarrow \vec{l}\left(\vec{F} + \vec{\nabla}V\right) = 0$$

$$\Rightarrow \vec{F} + \vec{\nabla}V = 0\checkmark$$

Lücke: Wegunabhängigkeit der Definition von V: Wähle zwei unterschiedliche Wege (L_1, L_2):

$$\int_{L_1} \mathrm{d}\vec{s}\vec{F} - \int_{L_2} \mathrm{d}\vec{s}\vec{F} = \oint \mathrm{d}\vec{s}\vec{F}$$

$$\downarrow$$
 Rand von Σ

Satz von Stokes

$$= \int_{\Sigma} \vec{df} (\vec{\nabla} \times \vec{F})$$
$$\left(\cot \vec{F} \right)^{i} = \left(\vec{\nabla} \times \vec{F} \right)^{i} = \varepsilon^{ijk} \frac{\partial}{\partial x^{j}} F^{k}$$

zum Beispiel:

$$\begin{split} \left(\vec{\nabla}\times\vec{F}\right)^1 &= \frac{\partial F^3}{\partial x^2} - \frac{\partial F^2}{\partial x^3} \\ \int_{L_2} \mathrm{d}\vec{s}\vec{F} - \int_{L_1} \mathrm{d}\vec{s}\vec{F} &= \oint_{\partial\Sigma} \mathrm{d}\vec{s}\vec{F} = \int_{\Sigma} \mathrm{d}\vec{f} * \left(\vec{\nabla}\times\vec{F}\right) \stackrel{!}{=} 0 \\ \text{"Stokes"} \end{split}$$

4.4 Kurvenintegrale

Jedes Kurvenintegral kann durch Parametrisierung der Kurve berechnet werden. Kurve $C o \vec{x}(t)$

$$\begin{split} \mathrm{d}\vec{x} &\equiv \mathrm{d}\vec{s} \\ \int_C \mathrm{d}\vec{s} \vec{F}(\vec{x}) &\equiv \int_C \mathrm{d}\vec{x} \vec{F}(\vec{x}) = \int_{t_1}^{t_2} \mathrm{d}t \frac{\mathrm{d}\vec{x}(t)}{\mathrm{d}t} \vec{F}(\vec{x}(t)) \end{split}$$

4.5 Satz von Stokes

Definition 4.7 (Satz von Stokes)

$$\oint d\vec{s}\vec{F} = \int_{\Sigma} d\vec{f} \left(\vec{\nabla} \times \vec{F} \right)$$

Beweis

$$\begin{split} \oint \mathrm{d}\vec{s}\vec{F} &= \int_0^{\Delta x^1} \mathrm{d}s F^1(x,0) + \int_0^{\Delta x^2} \mathrm{d}s F^2(\Delta x^1,s) - \int_0^{\Delta x^1} \mathrm{d}s F^1(s,\Delta x^2) - \int_0^{\Delta x^2} \mathrm{d}s F^2(0,s) \\ &= \int_0^{\Delta x^1} \mathrm{d}s \big(F^1(s,0) - F^1(s,\Delta x^2)\big) + \int_0^{\Delta x^2} \mathrm{d}s \big(F^2(\Delta x^1,s) - F^2(0,s)\big) \\ &= \int_0^{\Delta x^1} \mathrm{d}s \left(\frac{\partial F^1}{\partial x^2}\right) \Delta x^2 + \int_0^{\Delta x^2} \mathrm{d}s \frac{\partial F^2}{\partial x^1} \Delta x^1 + O(\Delta^3) \\ &= \Delta x^1 \Delta x^2 \left(\frac{\partial F^2}{\partial x^1} - \frac{\partial F^1}{\partial x^2}\right) + O(\Delta^3) \\ &= \Delta x^1 \Delta x^2 \left(\vec{\nabla} \times \vec{F}\right)^3 + O(\Delta^3) \\ &= \underbrace{\Delta x^1 \Delta x^2 e_3}_{\vec{\delta}} \left(\vec{\nabla} \times \vec{F}\right) \end{split}$$

$$pprox \Delta \vec{f} (\vec{\nabla} imes \vec{F})$$

Allgemein steht $\Delta \vec{f}$ oder $\mathrm{d}\vec{f}$ für ein kleines oder infinitesimales Flächenelement, Länge $\stackrel{\wedge}{=}$ Größe der Fläche Die Richtung des Vektors definiert Orientierung der Fläche (Zum Beispiel Oben = da, wo der Pfeil hin zeigt)

Randkurve: so definiert, dass man von oben gesehen linksherum (mathematisch positiver Drehsinn) läuft

- 1. Spezielle Lage in unserer Rechnung unwichtig
- 2. Übergang zu größeren Flächen durch Aufaddieren

Fläche =
$$N\Delta^2 \implies N \sim \frac{1}{Delta^2}$$

$$\sum_{\text{Rechtecke}} \oint d\vec{s} \vec{F} = \sum_{\text{Rechtecke}} \int d\vec{f} (\vec{\nabla} \times \vec{F}) + NO(\Delta^3)$$

weil sich nicht "innere Ränder wegheben"

$$\oint d\vec{s}\vec{F} = \sum_{\text{Rechtecke}} \int d\vec{f} (\vec{\nabla} \times \vec{F})$$

klar

$$\oint d\vec{s}\vec{F} = \int d\vec{f} (\vec{\nabla} \times \vec{F})$$

Glätten des Randes: Zerlegung des Randes $\Delta \vec{s}$ in kleine Rechtecke $\Delta \vec{s}_1, \Delta \vec{s}_2$

$$\begin{split} \Delta \vec{s} &= \Delta \vec{s}_1 + \Delta \vec{s}_2 \\ \vec{F} \Delta \vec{s} &= \vec{F} \Delta \vec{s}_1 + \vec{F} \Delta \vec{s}_2 = \vec{F}_1 \Delta \vec{s}_1 + \vec{F}_2 \Delta \vec{s}_2 + O(\Delta x^2) \end{split}$$

 $ec F,ec F_1,ec F_2$ jeweils am Mittelpunkt der Linienelemente Zahl derartiger Randelemente $\sim rac{1}{\Delta} \implies$ Fehler $O(\Delta)$

 \implies Auch nach Summation bleibt Fehler von $O(\Delta)$

Besser wäre Zerlegung in Simplices ("Haben sie mal versucht eine Schildkröte zu fliesen")

Für unsere Anwendung: wichtig, dass jede geschlossene Kurve in einem einfach zusammenhängenden Gebiet, Rand ist.

4.6 Energieerhaltung für Systeme von Massenpunkten

Massenpunkte: $\vec{x}_a, a = 1, \dots, n$

Kräfte: seien \parallel zu $\vec{x}_a - \vec{x}_b$ ("Zentralkräfte")

Solche Kräfte kann man stets schreiben als:

$$\vec{F}_{ab} = -\vec{\nabla}_a V_{ab} (|\vec{x}_a - \vec{x}_b|)$$

mit:

$$V_{ab} = Vba, \vec{\nabla}_a = \left(\frac{\partial}{\partial x_a^1}, \frac{\partial}{\partial x_a^2}, \frac{\partial}{\partial x_a^3}\right)$$

dazu:

$$-\vec{\nabla}_a V_{ab}(|\vec{x}_a-\vec{x}_b|) = \left(-\vec{\nabla}_a |\vec{x}_a-\vec{x}_b|\right) V_{ab}'(|\vec{x}_a-\vec{x}_b|)$$

Dies zeigt:

$$\begin{split} &= -\vec{\nabla}_a \sqrt{\left(\vec{x}_a - \vec{x}_b\right)^2} \\ &= \frac{\vec{x}_a - \vec{x}_b}{\left|\vec{x}_a - \vec{x}_b\right|} \end{split}$$

Wir können passendes V für jede Zentralkraft finden. Man berechnet einfach V' und sucht die Stammfunktion.

Prüfe Konsistenz mit 3. Axiom:

$$\underbrace{-\vec{\nabla}_a V_{ab}(|\vec{x}_a - \vec{x}_b|)}_{\vec{F}_{ab}} = +\vec{\nabla}_b V_{ab}(|\vec{x}_a - \vec{x}_b|) = \underbrace{+\vec{\nabla}_b V_{ba}(|\vec{x}_b - \vec{x}_a|)}_{-\vec{F}_{ba}}$$

In diesem System gilt Energieerhaltung:

$$E = \sum_a T_a + \frac{1}{2} \sum_{a \neq b} V_{ab} = \sum_a T_a + \sum_{a < b} V_{ab} = \text{const}$$

Begründung:

$$\begin{split} \dot{E} &= \sum_{a} \dot{\vec{x}}_{a} \vec{F}_{a} + \frac{1}{2} \sum_{a \neq b} \left(\left(\vec{\nabla}_{a} V_{ab} \right) \dot{\vec{x}}_{a} + \left(\vec{\nabla}_{b} V_{ab} \right) \dot{\vec{x}}_{b} \right) \\ &= \sum_{a \neq b} \dot{\vec{x}}_{a} \vec{F}_{ab} + \frac{1}{2} \sum_{a \neq b} \left(-\vec{F}_{ab} \dot{\vec{x}}_{a} - \underbrace{\vec{F}_{ab} \dot{\vec{x}}_{b}}_{\text{Umbenennung } a} \right) = 0 \\ &= W - \frac{1}{2} W - \frac{1}{2} W \end{split}$$

Bemerkung: Passend gewähltes ${\cal V}_{ab}$ gibt das Modell der starren Stangen

4.7 Eindimensionale Bewegung

$$F(x) = m\ddot{x}$$

- mit Einsatz allgemein lösbar!
- Startpunkt: Jedes 1-dim. zeitunabhängiges Kraftfeld ist konservativ

$$E = \frac{m}{2}\dot{x}^2 + V(x) =$$
const

(bis auf Vorzeichen)

$$\begin{split} \dot{x} &= \sqrt{\frac{2}{m}(E-V(x))} \implies \mathrm{d}t = \frac{\mathrm{d}x}{\sqrt{\frac{2}{m}(E-V(x))}} \\ &\quad t = \in \frac{\mathrm{d}x}{\sqrt{\frac{2}{m}(E-V(x))}} \end{split}$$

Integral lösen, Integrationskonstante und Energie so bestimmen, das Anfangswertproblem gelöst

$$t = t(x)$$
 auflösen $\implies x = x(t) \checkmark$

viel einfacher als allgemeine Differentialgleichung 2. Ordnung

5 Harmonischer Oszillator in komplexen Zahlen

Motivation

Harmonischer Oszillator mit Reibung:

$$\ddot{x} = -\omega^2 x - c\dot{x}$$

Exponentieller Ansatz:

$$x \sim e^{\alpha t} \implies \alpha^2 + \omega^2 + c\alpha = 0$$

gesucht: α , Betrachte Grenzfälle:

1. ω klein

$$\Rightarrow \alpha^2 + c\alpha = 0 \Rightarrow \alpha = -c \Rightarrow x \sim e^{-ct}$$

2. ω groß (beziehungsweise c klein)

$$\alpha^2 + \omega^2 \simeq 0$$

nicht lösbar!

Aber: wir wissen schon $\sin \omega t$, $\cos \omega t$ sind Lösungen.

Falls jede gesuchte Gleichung lösbar \implies Hoffnung auf elegante allgemeine Lösung

Speziell:
$$\alpha^1 = -1$$
 (für $\omega = 1, c = 0$)

5.1 Komplexe Zahlen

5.1.1 Ziel

reelle Zahlen so zu erweitern, dass $x^2 = -1$ lösbar

5.1.2 Naive Definition

Definiere "Imaginäre Einheit" $x^2 = -1$ lösbar "i", so dass $i^2 = -1$ Wollen addieren und Multiplizieren, deshalb erkläre komplexe Zahl \mathbb{C} als:

$$\mathbb{C}\ni z=x+\imath y, x,y\in\mathbb{R}$$

Wir definieren außerdem:

•
$$z_1 + z_2 = (x_1 + \imath y_1) + (x_2 + \imath y_2) \equiv (x_1 + x_2) + \imath (y_1 + y_2)$$

•
$$z_1 \cdot z_2 = (x_1 + \imath y_1)(x_2 + \imath y_2) \equiv x_1 x_2 + x_1 \imath y_2 + \imath y_1 x_2 + \imath y_1 \imath y_2 \equiv (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

5.1.3 präzisere Definition

Definition 5.1 (Körper) Körper ("Field") ist eine Menge K mit zwei binären Operationen ("+","·"), so dass:

$$\bullet \ \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
 (Assoziativität)
$$\bullet \ \alpha + \beta = \beta + \alpha$$
 (Kommutativität)
$$\bullet \ \exists \ 0 \in K : \alpha + 0 = \alpha \ \forall \ \alpha$$
 (Null)
$$\bullet \ \forall \ \alpha \ \exists (-\alpha) \in K : \alpha + (-\alpha) = 0$$
 (Additives Inverses)
$$\bullet \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$
 (Assoziativität der Mult.)
$$\bullet \ \alpha \cdot \beta = \beta \cdot \alpha$$
 (Kommutativität der Mult.)
$$\bullet \ \exists \ 1 \in K : 1 \cdot \alpha = \alpha \ \forall \ \alpha$$
 (Eins)

•
$$\forall \, \alpha \neq 0 \, \exists \, \alpha^{-1} \in K : \alpha \cdot \alpha^{-1} = 1$$
 (Inverses der Mult.)

•
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$
 (Distributivität)

Wir kennen bereits:

-
$$K=\mathbb{Q}$$
 (rationale Zahlen)
- $K=\mathbb{R}$ (reelle Zahlen)

Definition 5.2 (Komplexer Zahlenkörper) Komplexe Zahlen sind die Menge $\mathbb{C}=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2$ mit den Operationen

•
$$(x_1, y_1) + (x_2, y_2) \equiv (x_1 + x_2, y_1 + y_2)$$

•
$$(x_1, y_1) \cdot (x_2, y_2) \equiv (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$$

Das ist äquivalent zu unserer "naiven Definition" z = x + iy

Aufgabe: Prüfen sie, dass die Axiome erfüllt sind!

Schwierigster Teil: Multiplikations-Inverses, Idee / Vorschlag:

$$z^{-1} = (x + iy)^{-1} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$

 $\mathbb{C}=\mathbb{R}^2 \implies$ Darstellung durch Vektoren in Ebene liegt nahe.

- Addition: ≡ Vektoraddition
- Multiplikation: Beträge der Vektoren werden multipliziert, Winkel "arg" werden addiert.
- $\arg z = \phi$
- $\Re z = x$
- $\Im z = u$
- $|z| = \sqrt{x^2 + y^2}$

Übliche Funktionen (exp, \ln , \sin , \cos) können mittels ihrer in $\mathbb R$ bekannten Taylorreihe auf $\mathbb C$ übertragen werden

Besonders wichtig:

$$e^z \equiv \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Brauchen $e^{z+w} = e^z \cdot e^w$

Nachrechnen:

$$e^{z+w} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k}$$

$$\downarrow$$
 Binominialkoeffizient

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

englisch: n choose k"

durch Umschreiben der Summen erhält man:

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{n^k}{k!} \frac{w^{n-k}}{(n-k)!}$$
$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{z^k}{k!} \frac{w^l}{l!} = e^z e^w$$

Insbesondere:

komplexe Zahl e vom Betrag
$$e^z=e^{x+\imath y}=\underbrace{e^x\,\widetilde{e^\imath y}}_{ ext{reelle Zahl}}$$

In der Tat:

$$e^{iy} = \sum_{n=0}^{\infty} \frac{(iy)^n}{n!} = \sum_{k=0}^{\infty} \frac{iy^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(iy)^{2k+1}}{(2k+1)!}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k y^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!}$$
$$= \cos y + i \sin y$$

⇒ Eulersche Formel

$$e^{\imath \phi} = \cos \phi + \imath \sin \phi$$

5.1.4 Zusammenfassung:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$w = e^z = e^x e^{iy} = |w|e^{i\arg w}$$

$$\ln w = z = x + iy = \ln|w| + i\arg w$$

Problem: $\arg w$ und deshalb \ln nicht eindeutig definiert Lösung: Definiere $\arg w \in (-\pi, \pi)$

5.1.5 Fundamentalsatz der Algebra

In $\mathbb C$ hat jedes Polynom

$$P_n(z) = \sum_{i=0}^n a_i z^i$$

eine Nullstelle z_0

In der Tat hat es sogar n Nullstellen:

$$P_n(z) = (z-z_0) \cdot \underbrace{P_{n-1}(z)}_{\text{Hat wieder eine Nullstelle, usw.}}$$

(Man sagt: Körper C ist algebraisch abgeschlossen)

• Es gibt auf $\mathbb C$ wichtige Abbildung: "komplexe Konjugation"

$$z \to z^* \stackrel{\wedge}{=} z \to \bar{z}$$

Definiert durch:

$$(x+\imath y)^*=x-\imath y, \left(\rho e^{\imath\,\phi}\right)^*=\rho e^{-\imath\,\phi}$$

also auch

$$(z^*)^* = z$$

5.1.6 Quaternionen

$$1, i \to 1, i, j, k, i^2 = j^2 = k^2 = -1$$

 $ij = k, ji = -k, jk = i, ...$

5.2 Anwendung auf harmonischen Oszillator

Erinnerung: physikalisches Problem:

$$\ddot{x} + c\dot{x} + \omega^2 x = 0$$

Fall $\frac{c}{2} > \omega$ (Kriechfall)

$$x=e^{\alpha t},\alpha^2+c\alpha+\omega^2=0$$

$$\alpha_{1,2}=-\frac{c}{2}\pm\sqrt{\frac{c^2}{4}-\omega^2}$$

- ⇒ 2 linear unabhängige Lösungen, also allgemeine Lösung durch lineare Superposition
- \implies exponentielles Abfallverhalten, ohne Oszillationen

Fall $\frac{c}{2} < \omega$ (Schwingfall), $\sqrt{-x} = i\sqrt{x}$

$$\begin{split} \alpha_{1,2} &= -\frac{c}{2} \pm \imath \sqrt{\omega^2 - \frac{c^2}{4}} \equiv -\frac{c}{2} \pm \imath \tilde{\omega} \\ x_{1,2} &= e^{-\frac{c}{2}t} e^{\pm \imath \omega t} = e^{-\frac{c}{2}t} (\cos \pm \tilde{\omega}t + \imath \sin \pm \tilde{\omega}t) \\ x_{1,2} &= e^{-\frac{c}{2}t} (\cos \tilde{\omega}t \pm \imath \sin \tilde{\omega}t) \end{split}$$

Durch Linearkombination \rightarrow 2 reelle Lösungen:

$$x_1 = e^{-\frac{c}{2}t}\cos\tilde{\omega}t; \qquad x_2 = e^{-\frac{c}{2}t}\sin\tilde{\omega}t$$

- \implies allgemeine Lösung durch Linearkombination
- ⇒ gedämpfte Schwingung

Fall $\frac{c}{2} = \omega$ (aperiodischer Grenzfall)

$$\alpha_1=\alpha_2$$

⇒ Nur eine linear unabhängige Lösung, brauche weitere Lösung um allgemeine Anfangsbedingungen zu erfüllen

Idee: Betrachte Schwingfall Lösungen für $\tilde{\omega} \to 0$

Taylor:

$$\begin{split} \cos x &= 1 + \left(x^2\right); & \sin x = x + O(x^3) \\ & \Longrightarrow x_1 = e^{-\frac{c}{2}t}; & x_2 = e^{-\frac{c}{2}t} \tilde{\omega} t \end{split}$$

 \implies Wieder asymptotische Annäherung an 0 ohne Oszillation

5.3 harmonischer Oszillator mit periodisch treibender Kraft

Inhomogene Dgl:

$$\ddot{x} + c\dot{x} + \omega^2 x = \frac{1}{m}F(t), F(t) = fe^{i\underline{\omega}t}$$

Ansatz:

$$\begin{split} x(t) &= A e^{\imath \underline{\omega} t} \\ \Longrightarrow \left(A (-\underline{\omega}^2 + \imath c \underline{\omega} + \omega^2) - \frac{f}{m} \right) e^{\imath \omega t = 0} \\ A &\equiv |A| e^{\imath \phi} = \frac{f}{m} \cdot \frac{1}{\omega^2 - \underline{\omega}^2 + \imath c \underline{\omega}} \end{split}$$

mit

$$\frac{1}{a+\imath b} = \frac{a-\imath b}{a-\imath b} \frac{1}{a+\imath b} = \frac{a-\imath b}{a^2-b^2}$$

und elementarer Algebra findet man den Realteil der Lösung:

$$\Re x(t) = |A|\cos\underline{\omega}t + \phi$$

$$|A| = \frac{\frac{f}{m}}{\sqrt{\omega^2 - \omega^2} + c^2\omega^2}, \tan\phi = \frac{c\underline{\omega}}{\underline{\omega}^2 - \omega^2}$$

Allgemeine Lösung ergibt sich, indem man zu dieser partikulären Lösung der inhomogenen Gleichung die allgemeine Lösung der homogenen Gleichung addiert.

Wichtig: Langzeitverhalten ist durch die partikuläre Lösung bestimmt ⇒ Resonanzkatastrophe bei $c \to 0 \& \underline{\omega} \to \omega$

6 Symmetrie der Raum zeit

6.1 Matrix, Determinante, Inverse Matrix

Definition 6.1 (Permutation) Eine Permutation (Bez: σ) von n Elementen ist eine umkehrbare Abbildung einer Menge von *n* Elementen auf sich selbst:

Menge:
$$\{1,\ldots,n\}$$
, Abb: $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}, i\mapsto \sigma i$ oft nützlich: Man denke an die elementweise Anwendung von σ auf $\{1,\ldots,n\}:\to\{\sigma(1),\ldots,\sigma(n)\}$

Eine Permutation heißt **gerade** ($sgn(\sigma) = 1$), falls sie sich aus geradzahlig vielen Vertauschungen von Nachbarn ergibt. Zum Beispiel ist $123 \rightarrow 312$ das Produkt von $123 \rightarrow 132$ und $123 \rightarrow 213$:

$$123 \rightarrow 132 \rightarrow 312$$

$$\varepsilon^{\sigma(1)\dots\sigma(n)} \equiv \operatorname{sgn}(\sigma)$$

Insbesondere: $\varepsilon^{12\dots n}=1$

- Eine $(n \times m)$ -Matrix ist ein Schema A^{ij} von Zahlen, die jeweils Eintrag i in Zeile i und Spalte j bezeichnen.
- Man kann eine $(n \times m)$ -Matrix mit einer $(m \times p)$ -Matrix multiplizieren:

$$(AB)^{ij} = \sum_{k=1}^{m} A^{ik} B^{kj}$$

das Ergebnis ist eine $(n \times p)$ -Matrix

Definition 6.3 (Determinante) Für quadratische ($(n \times n)$ -Matrizen) definieren wir die **Determinante**:

$$\det A = \frac{1}{n!} \varepsilon^{i_1 \dots i_n} A^{i_1 j_1} A^{i_2 j_2} \dots A^{i_n j_n} \varepsilon^{j_1 \dots j_n}$$

n-dim. Levi-Civita-Symbol

Damit erhält man:

Determinante einer (1×1) -Matrix: die Zahl selbst.

Erstes nicht triviales Beispiel: (2×2) -Matrix

$$\det A = \det \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix} = \frac{1}{2!} \varepsilon^{ij} A^{ik} A^{jl} \varepsilon^{kl}$$

$$= \frac{1}{2!} (\varepsilon^{12} A^{11} A^{22} \varepsilon^{12} + \varepsilon^{12} A^{12} A^{21} \varepsilon^{21} + \varepsilon^{21} A^{21} A^{12} \varepsilon^{12} + \varepsilon^{21} A^{22} \varepsilon^{12} + \varepsilon^{21} A^{21} A^{21} \varepsilon^{21} + \varepsilon^{21} A^{22} \varepsilon^{12} + \varepsilon^{21} A$$

Man überlegt sich leicht:

$$\det A = \sum_{\sigma} \operatorname{sgn} \sigma A^{1\sigma(1)} A^{2\sigma(2)} \dots A^{n\sigma(n)}$$

Also: n! Summanden, Jeder ist Produkt von je einem Element aus jeder Zeile und Spalte der Matrix. Vorzeichen ist Vorzeichen der Permutation (siehe unten)

Beispiel 6.4 ((3×3) -**Matrix)** Rechenschema:

$$A = \begin{pmatrix} A^{11} & A^{12} & A^{13} & A^{11} & A^{12} \\ A^{21} & A^{22} & A^{23} & A^{21} & A^{22} \\ A^{31} & A^{32} & A^{33} & A^{31} & A^{32} \end{pmatrix}$$
$$\det A = A^{11}A^{22}A^{33} + A^{12}A^{23}A^{31} + \dots$$

Betrachte nun den Ausdruck:

$$\begin{split} \varepsilon^{i_1 i_2 \dots i_n} A^{i_1 j_1} A^{i_2 j_2} \dots A^{i_n j_n} &= \varepsilon^{i_1 i_2 \dots} A^{i_2 j_2} A^{i_1 j_2} \dots \\ &= \varepsilon^{i_2 i_1 \dots} A^{i_2 j_2} A^{i_2 j_1} \dots = -\varepsilon^{i_1 i_2 \dots i_n} A^{i_1 j_2} A^{i_2 j_1} \dots A^{i_n j_n} \end{split}$$

Vorzeichenwechsel durch Vertauschen zweier Indizes, obiger Ausdruck ist total antisymmetrisch"

Totale Antisymmetrie ist die definierende Eigenschaft von ε . Sie bestimmt jeden Ausdruck mit u Indizes bis auf Vorfaktor. Deshalb:

$$\varepsilon^{i_1\dots i_n} A^{i_1j_1} \quad A^{i_nj_n} = c\varepsilon^{j_1\dots j_n}$$

Multipliziere mit $\varepsilon^{j_1 \dots j_n}$:

$$n! \det A = c \varepsilon^{j_1 \dots j_n} \varepsilon^{j_1 \dots j_n} = c n!$$

 \implies alternative Formel für det A:

$$e^{i_1 \dots i_n} A^{i_1 j_1} \dots A^{i_n j_n} = (\det A) \varepsilon^{j_1 \dots j_n}$$

Zentraler Fakt: A invertierbar $\iff \det A \neq 0$

Inverse Matrix:

$$\left(A^{-1}\right)^{ij} = \frac{1}{(n-1)! \det A} \varepsilon^{ji_2 \dots i_n} \varepsilon^{ij_2 \dots j_n} A^{i_2 j_2} \dots A^{i_n j_n}$$

Prüfen:

$$\begin{split} \left(A^{-1}\right)^{ij}A^{jk} &= \frac{1}{(n-1)!\det A}\varepsilon^{ji_2\dots i_n}\varepsilon^{ij_2\dots j_n}A^{jk}A^{i_2j_2}\dots A^{i_nj_n} \\ &= \frac{1}{(n-1)!\det A}(\det A)\underbrace{\varepsilon^{kj_2\dots j_n}\varepsilon^{ij_2\dots j_n}}_{(n-1)!\delta^{ik}} \\ &= \delta^{ik}\checkmark \end{split}$$

Kommentar:

$$\frac{1}{(n-1)!} \varepsilon^{i i_2 \dots i_n} \varepsilon^{j j_2 \dots j_n} A^{i_2 j_2} \dots A^{i_n j_n}$$

$$= (-1)^{i+j} \det \begin{pmatrix} M(i,j) \\ \downarrow \\ \text{Matrix der Cofaktøren} \end{pmatrix}$$

Matrix der Cofaktoren ergibt sich aus A Streichen von Zeile i und Spalte j

6.2 Der Euklidische Raum

physikalischer Raum: $V=\mathbb{R}^3$ mit Skalarprodukt $\vec{x},\vec{y}\to\vec{x}\cdot\vec{y}=x^iy^i$

Unser Ziel: Symmetrien, also Abbildungen $R:V\to V, \vec x\mapsto \vec x'$, welche die Struktur des Raumes respektieren. Das heißt:

$$R(\alpha\vec{x}+\beta\vec{x})=\alpha R(\vec{x})+\beta R(\vec{y})$$

$$R(\vec{x},\vec{y})\equiv\vec{x}\vec{y}=R(x)R(y)$$
 ...

Sagt nur: Zahlen transformieren nicht

Zunächst nur Linearitätsbedingung (wird respektiert von allgemeinen linearen Transformationen)

$$x^i \mapsto x'^i = R^{ij}x^j$$

oder

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \mapsto \begin{pmatrix} x'^1 \\ \vdots \\ x'^n \end{pmatrix} = \begin{pmatrix} R^{11} & \dots & R^{1n} \\ \vdots & & \vdots \\ R^{n1} & \dots & R^{nn} \end{pmatrix}$$

Symmetrie: Lineare Transformation: $\vec{x} \mapsto R(\vec{x})$

konkret: $x^i \mapsto x'^i = R^{ij}x^j$

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \mapsto \begin{pmatrix} x'^1 \\ \vdots \\ x'^n \end{pmatrix} = \begin{pmatrix} R^{11} & \dots & R^{1n} \\ \vdots & & \vdots \\ R^{n1} & \dots & R^{nn} \end{pmatrix} \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

Kurzschreibweise:

$$x \mapsto x' = Rx$$

- hier: Großbuchstaben = Matrizen
- Kleinbuchstaben = Vektoren

Beispiel 6.5 (n = 2)

$$x'^{1} = R^{11}x^{1} + R^{12}x^{2}$$
$$x'^{2} = R^{21}x^{1} + R^{22}x^{2}$$

Ganz explizit

$$R = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Transformation der beiden Basisvektoren

Jeder andere Vektor $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$) ist schreibbar als $\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Er transformiert demnach gemäß

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \alpha \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2\alpha \\ \alpha + \beta \end{pmatrix}$$

Wichtig: Symmetrietransformationen müssen verknüpfbar sein:

Dazu: Betrachte zwei Transformationen:

$$R_1: x \mapsto R_1 x; R_2: x \mapsto R_2 x$$

zusammen:

$$R_1\circ R_2: x\mapsto R_2R_1x$$

Die Komponente i des entstehenden Vektors ist:

$$(R_2R_1x)^i = R_2^{ij}(R_1x)^j = R_2^{ij}R_1^{jk}x^k$$

Man kann die Abbildung $x \mapsto R_2 R_2 x$ auch "in einem Schritt" als Transformation durch die Produktmatrix R_2R_1 realisieren:

$$\left(R_2R_1x\right)^i = \underbrace{\left(R_2^{ij}R_1^{jk}\right)}_{\text{Produktmatrix}}x^k$$

Die Produktmatrix ist $(R_2R_1)^{ij}=R_2^{ij}R_1^{jk}\equiv R_3^{ik}$ Hinweis zum expliziten Rechnen:

$$\begin{pmatrix} R_1^{11} & R_1^{12} & R_1^{13} \\ R_1^{21} & R_1^{22} & R_1^{23} \\ R_1^{31} & R_1^{32} & R_1^{33} \end{pmatrix}$$

$$\begin{pmatrix} R_2^{11} & R_2^{12} & R_2^{13} \\ R_2^{21} & R_2^{22} & R_2^{23} \\ R_2^{31} & R_3^{22} & R_2^{33} \end{pmatrix} \begin{pmatrix} R_3^{11} & R_3^{12} & R_3^{13} \\ R_3^{21} & R_3^{22} & R_3^{23} \\ R_3^{31} & R_3^{32} & R_3^{33} \end{pmatrix}$$

Für den Begriff der Symmetrie brauchen wir Invertierbarkeit. Wir nennen eine Transformation beziehungsweise die entsprechende Matrix R invertierbar, falls es eine zweite Matrix R^{-1} gibt, so dass

$$R^{-1}\circ R={
m id}$$
 (Identitätsabbildung)
$$(R^{-1})^{ij}R^{jk}=\mathbb{1}^{ik}\equiv \delta^{ik}$$

Wäre Linearität die einzige wichtige Eigenschaft: dann wären die Symmetriefunktionen alle

$$R \in GL(n)$$

Menge aller invertierbaren $n \times m$ Matrizen

Wir brauchen zusätzlich:

$$\vec{x}\vec{y} = R(\vec{x})R(\vec{y}), R(x)^i = R^{ij} \times j$$

Dazu wichtige Schreibweise

$$\left(M^T\right)^{ij}=M^{ji}$$
 (T für transponiert)

auch:
$$x=\begin{pmatrix} x^i\\ \dots\\ x^n \end{pmatrix}$$
 , $x^{\vec{i}}=(x^1\dots x^n)$ Es gilt: $\vec{x}\vec{y}=x^Ty=x^iy^i$ es gilt weiterhin:

$$R(\vec{x})R(\vec{y}) = \left(Rx\right)^T(Ry) = \left(x^TT^T\right)(Ry) = x^TR^tRy$$

Nebenrechnung

$$\begin{split} \left(\left(AB\right)^{T}\right)^{ij} &= \left(AB\right)^{ji} = A^{jk}B^{jk} = B^{ki}B^{jk} = \left(B^{T}\right)^{ik}\left(A^{\sim}\right)^{kj} \\ &= \left(B^{T}A^{T}\right)^{ij} \\ &\Rightarrow \left(AB\right)^{T} = B^{T}A^{T} \end{split}$$

Ziel: $x^TR^TRy = xT_y$ soll gelten für beliebige x,y. Dies gilt genau dann wenn $R^TR = \mathbb{1}$

$$(R^T)^{ik}R^{kj} = \delta^{ii}$$

$$R^{ki}R^{kj} = \delta^{ii}$$

$$R^{ik}R^{jk} = \delta^{ii}$$

wenn AB = 1, so auch BA = 1

Symmetrien des euklidischen Raums: $x \to Rx$ mit $R^TT = \mathbb{1} \ R \in O(3) \subset ULU3$

6.3 Symmetriegruppe (M)

Symmetrien in Physik und Mathe → Gruppen Bisher:

- Matrixgruppen
 - GL(n) Symmetriegruppe des Vektorraums \mathbb{R}^n
 - O(n) Symmetriegruppe des euklidischen Raumes

Allgemeiner: Eine Gruppe ist eine Menge G mit einer Binären Operation $G \times G \to G$ für die gilt:

- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- $\exists e \in G : a \cdot e = e \cdot a = a \ \forall \ a \text{ ("Eins")}$
- $\forall a \in G \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$

Eine Gruppe heißt "abelsch" falls $a \cdot b = b \cdot a \, \forall \, a, b$ Beispiele dafür:

• $\mathbb{Q} \{0\}, \mathbb{R} \{0\}, \mathbb{C} \{0\}$

Falls sie statt "·" die Operation "+" zur Gruppenoperation erklären, dann sind

Q, R, C, Z

Gruppen mit +

Definition 6.6 (Körper) K mit Operationen $+, \cdot$ ist ein Körper falls:

- (K, +) ist abelsche Gruppe (Eins = 0)
- $(K \{0\}, \cdot)$ ist auch abelsche Gruppe
- Distributivität

GL(n) ist eine (nicht abelsche) Gruppe. Müssen prüfen: A, B invertierbar $\implies A \cdot B$ invertierbar. Wir geben das Inverse zu $A \cdot B$ einfach an:

$$(B^{-1}A^{-1})(AB) = B^{-1}(AA^{-1})B = B^{-1}B = \mathbb{1}$$

 $GL^+(n)$ - orientierungserhaltende Untergruppe \equiv alle A in GL(n) mit $\det A > 0$ O(n) ist Untergruppe von GL(n). Müssen prüfen dass A, B orthogonal $\implies A \cdot B$ orthogonal. Dazu:

$$(A \cdot B)^T (A \cdot B) = B^T A^T A B = B^T B = 1$$

Wichtige Untergruppe: Spezielle Orthogonale Transformation SO(n)

Diese Transformationen erfüllen: det(R) = 1

Dazu zwei Fakten: $\det A^T = \det A, \det(AB) = (\det(A))(\det B)$ Damit folgt aus $R^TR = \mathbb{1}$

$$\det(R^TR) = \det(R^T)(\det R) = (\det R)^2 = \det \mathbb{R} = 1, \det R = \pm 1$$

 \equiv Matrizen in O(n) mit $\det = 1$

Speziell in n=3 (3d-Raum) wird die Reflexion bezüglich y,z Ebene beschrieben durch:

$$R_x = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \det R_x = -1$$

Fakt: Jedes Element von O(3) ist schreibbar als R oder $R \cdot R_x$ mit $R \in SO(3)$, SO(3) sind "echte" Drehungen.

Überlegen Sie sich, dass $R \in SO(2)$ allgemein schreibbar ist als

$$R = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Identifizieren sie SO(2) mit folgender Menge

$$\{z \in \mathbb{C} \mid |z| = 1\}$$

Die Gruppenoperation soll der komplexen Multiplikation entsprechen

6.4 Tensoren

Ein Tensor von Rang (oder Stufe) m im n-dimensionalen Vektorraum $V=\mathbb{R}^n$ ist eine multilineare

$$t: \underbrace{V \times V \times \ldots \times V}_{m\text{-mal}} \to \mathbb{R}$$

Praktisch:

$$t: \left(\vec{x}_{(1)}, \vec{x}_{(2)}, \dots, \vec{x}_{(n)}\right) \mapsto t_{i_1 \dots i_m} x_{(1)}^{i_1} \dots x_{(m)}^{i_m}$$

• Euklidisches Skalar
produkt: $V \times V \to \mathbb{R}$ Beispiel 6.7

$$\delta: (\vec{x}, \vec{y}) \mapsto \delta_{i,i} x^i y^j \equiv \vec{x} \cdot \vec{y} \in \mathbb{R}$$

· Noch einfacher:

$$t: V \to \mathbb{R}: t_i \vec{x} \to t_i x^i \in \mathbb{R}$$

Die Menge solcher linearen Abbildungen bildet auch einen n-dimensionalen Vektorraum, den sogenannten Dualraum V^* (zu V) Notation: $\underline{t} = \{t_1, \dots, t_n\} \in V^*$

Erinnerung:
$$\vec{x} = \{x^1, \dots, x^n\} \in V$$

Oben(Unten schreiben der Indizes macht die "natürliche Wirkung") von t auf \vec{x} besonders deutlich: $t_i x^i \in \mathbb{R}$

- oben: kontravariant
- unten: kovariant (\rightarrow Co-Vektor $\in V^*$)

Für und: enorme Vereinfachung:

Wir haben immer euklidischen Raum und damit die besondere Rolle von $\delta_{i\,j}$ und die inversen Matrix δ^{ij}

$$\delta_{ij}\delta^{jk}=\delta^k_i=(\mathbb{1}^k_i)$$

Dies erlaubt uns Indizes beliebig zu "heben" und zu "senken":

$$t^i \equiv \delta^{ij} t_j, x_i \equiv \delta_{ij} x^j$$

Damit können wir V und V^* identifizieren. Wir können auch alle Tensor Indizes beliebig oben oder unten schreiben. Wir werden zur Vereinfachung weiterhin schreiben

$$\vec{x}\vec{y} = x^iy^i \big(\text{ eigentlich } x^iy^j\delta_{ij} \big)$$

(Mehr zum Dualraum in Lineare Algebra)

Für uns: Tensor der Stufe 1: ist Vektor

$$t: \vec{x} \mapsto t^i x^i = \vec{t} \vec{x} \in \mathbb{R}$$

Wichtig für uns: Resultat von Anwendung eines Rang-1-Tensors auf Vektor ist invariant unter Drehungen:

$$x \mapsto Rx; t \mapsto Rt$$

Invarianz:

$$t^T x = t^T R^T R x$$

Betrachte einfaches, allgemeines Beispiel für Tensor der Stufe 2:

$$\begin{split} t &\equiv U \otimes W \in V \otimes V \\ t : (\vec{x}, \vec{y}) \mapsto (u^i w^j) \cdot (x^i y^j) = (\vec{u} \cdot \vec{x}) \cdot (\vec{w} \cdot \vec{y}) \end{split}$$

 $mit t^{ij} \equiv u^i w^j$

$$=t^{ij}x^iy^j$$

Grob gesagt: $V\otimes V$ ist die Menge aller Linearkombinationen von Elementen wie $U\otimes W$ Transformation von $t^{ij}=u^iw^j$ unter Drehungen:

$$t^{ij} = u^i w^j \xrightarrow{R} R^{ik} u^k R^{jl} w^l = R^{ik} R^{jl} t^{kl}$$

Invarianz von $t(\vec{x}, \vec{y})$:

$$\begin{split} t(\vec{x},\vec{y}) &\to (Rt)(Rx,Ry) = \big(R^{ik}r^{jl}t^{kl}\big)\big(R^{ip}x^p\big)\big(R^{jq}y^q\big) \\ &= \big(R^{ik}R^{ip}\big)\big(R^{jl}R^{jq}\big)t^{kl}x^py^q \\ &= \delta^{kp}\delta^{lq}t^{kl}x^py^q \\ &= t^{kl}x^ky^l \\ &= t(\vec{x},\vec{y}) \end{split}$$

Allgemeine Transformation eines Tensors unter Drehungen:

$$t \to t' = Rt, t'^{i_1 \dots i_m} = R^{i_1 j_1} \dots R^{i_m j_m} t^{j_1 \dots j_m}$$

Invarianz von $tig(\vec{u}_{(1)},\dots,\vec{u}_{(m)}ig)$ folgt wie oben.

Fortgeschrittener Kommentar: Gruppe wirkt auf Vektoren aus $K \equiv$ Darstellung

Für unser Beispiel der Wirkung von O(n) auf \mathbb{R}^k war das "offensichtlich" mit Tensoren haben wir "nicht triviales Beispiel für Darstellung"

$$\underbrace{R \in O(n)}_{\text{Elemente }R^{ij}} \overset{\text{Darst.}}{\mapsto} D(R) \in \underbrace{n^2 \times n^2\text{-Matrizen}}_{\text{Elemente }D(R)^{ij,kl} = R^{ik}R^{jl}}$$

Dieses D(R) wirkt wie oben beschrieben auf Tensoren:

$$t^{ij} \overset{D(R)}{\mapsto} D(R)^{ij,kl} t^{kl}$$

D(R) ist eine Darstellung von O(n), die verschieden ist von der "definierenden" Darstellung

Transformation von δ^{ij}

$$\delta'^{ij} = R^{ik}R^{jl}\delta^{kl} = R^{ik}R^{jk} = \delta^{ij}$$

 $\implies \delta^{ij}$ ist ein **invarianter Tensor**

weiteres Beispiel: (für m=n: Levi Civita-Tensor)

Wir schreiben nur m=n=3 Fall aus:

$$\varepsilon(\vec{x}, \vec{y}, \vec{z}) = \varepsilon^{ijk} x^i y^j z^k = x^i \varepsilon^{ijk} y^j z^k = \vec{x}(\vec{y} \times \vec{z})$$

Transformation:

$$\varepsilon'^{i_{1}i_{2}i_{3}} = R^{i_{1}j_{1}}R^{i_{2}j_{2}}R^{i_{3}j_{3}}\varepsilon^{j_{1}j_{2}j_{3}} = \varepsilon^{i_{1}i_{2}i_{3}} \det(R) = \varepsilon^{i_{1}i_{2}i_{3}} \downarrow R \in SO(3)$$

 Fakt: Falls t_1,t_2 Tensoren vom Rang m_1,m_2 sind, so ist das folgende ein Tensor vom Rang $m_1+m_2-2l_i$:

$$t_1^{i_1\dots i_li_{l+1}\dots i_m}t_2^{i_1\dots i_lj_{l+1}\dots j_{m_2}}=t^{i_{l+1}\dots i_{m_1}j_{l+1}\dots j_{m_2}}$$

Anwendungen: $\vec{a} \times \vec{v}$ ist ein Pseudovektor:

$$\left(\vec{a}' \times \vec{b}'\right)^i \equiv \varepsilon^{ijk} a'^j b'^k = \pm \varepsilon'^{ijk} a'^j b'^k = \pm R^{il} \varepsilon^{ljk} a^j b^k = \pm R^{il} \left(\vec{a} \times \vec{b}\right)^l$$
 falls Spiegelung

6.5 Galilei-Transformationen

Bisher: \mathbb{R}^3 mit Symmetriegruppe O(3)

Jetzt: Physikalische Raum Zeit: Zusätzlich: $t \in \mathbb{R}$

Punkt $\vec{x} \in \mathbb{R}^3 \xrightarrow{neu}$ Ereignisse $(t, \vec{x}) \in \mathbb{R} \times \mathbb{R}^3$

Müssen abschaffen: $\vec{0}$ im Vektorraum. In der Tat: $|\vec{x}|, |\vec{y}|$ sind unphysikalisch, physikalisch ist nur $|\vec{x} - \vec{y}|$, ebenso ist nur $t_1 - t_2$ physikalisch

⇒ Symmetrietransformationen:

- 1. Rotationen: $(t, x) \mapsto (t, Rx), R \in O(3)$
- 2. Translationen: $(t,x)\mapsto (t+s,x+y), s\in\mathbb{R}, y\in\mathbb{R}^3\implies \text{Abschaffung der }0\in\mathbb{R} \text{ und }\vec{0}\in\mathbb{R}^3$,
- 3. Boosts: $(t,x)\mapsto (t,x+vt),v\in\mathbb{R}^3$ "zeitabhängige Verschiebung"

Die Galilei-Gruppe G ist die von 1., 2. und 3. "generierte" Gruppe. Nicht trivialer Fakt: Jedes Boost Rot.

 $g\in G$ ist schreibbar als $g=\overset{\uparrow}{g_3}\circ g_2\circ g_1$ Man muss dazu unter anderem zeigen, dass es zu einem $\overset{\downarrow}{\downarrow}$ Trans

 $g_2\circ g_1\circ g_2''\in G$ ein g_2'',g_1'' gibt, sodas
s $g_2\circ g_1\circ g_2'=g_2''\circ g_1''$ "Boost" = Zunahme (der Geschwindigkeit). Boost einer Trajektorie:
 $(t,\vec{x}(t))\mapsto (t,\vec{x}(t)+\vec{v}_0t)$ $\vec{v} = \dot{\vec{x}}(t) \mapsto \vec{v}' = \dot{\vec{x}}(t) + \vec{v}_0$

Boost zerstören das Konzept der Gleichörtlichkeit: Seien (t, x), (t', x) zwei Ereignisse am gleichen Ort. Boost $\implies (t, x + vt), (t', x + vt')$, **nicht** mehr am gleichen Ort

6.6 Affiner Raum

Definition 6.8 O(3) Symmetriegruppe des euklidischen Raumes. "Elegant!".

Besser: Definition des **affinen Raumes**: Gegeben sein Menge A, ein Vektorraum V und eine Abbildung $A \times A \to V, (P,Q) \mapsto \vec{PQ}$ sodass $\vec{PQ} + \vec{QR} = \vec{PR}$. Außerdem: Zu jeden $P \in A, \vec{V}$ soll es eindeutig ein $Q \in A$ geben, sodass $\vec{=} \vec{PQ}$, das Paar (A, V) heißt affiner Raum

Beispiel 6.9 Zu jedem Vektorraum gehört ein affiner Raum: Wähle $A \equiv V, V \times V \rightarrow V, (\vec{x}, \vec{y}) \mapsto$ $\vec{y} - \vec{x}$

Sei (A^4, V^4) ein 4-dimensionaler affiner Raum. (Man denke zum Beispiel an den zu $\mathbb{R} \times \mathbb{R}^3$ gehörigen affinen Raum)

Physikalische Raumzeit: $(A^{(4)}, V^{(4)})$ mit

- 1. Eine lineare Abbildung $V^4 \to \mathbb{R}$ ("Zeitfunktion") (im konkreten Beispiel: $((t, x), (t', x')) \mapsto$ t'-t)
- 2. Sei $\tilde{V}^{(3)} \subset V^{(4)}$ der Raum von Pfeilen zwischen gleichzeitigen Ereignissen ($v \in \tilde{V}^{(3)}$ heißt $T(\tilde{v}) = 0$) Dann hat \tilde{V} ein Skalarprodukt, "Abstandsfunktion". Im konkreten Beispiel: $(t,x),(t,x')\mapsto |x-x'|$

Zusammen bilden 1. und 2. eine Galileische Struktur. Die physikalische Raumzeit ist $(A^{(4)}, V^{(4)})$ mit galileischer Struktur

G sind die Transformationen des $(A^{(4)}, V^{(4)})$, welche seine Galileische Struktur respektieren.

6.7 Dynamik

Dynamik soll invariant sein! Betrachte Trajektorie, die die Bewegungsgleichung erfüllt:

$$(t, \vec{x}(t)), m \frac{\mathrm{d}^2 \vec{x}}{\mathrm{d}t^2} = \vec{F}(t, \vec{x}(t))$$

Transformierte Trajektorie:

$$t', \vec{x}'(t') = (t+s, R\vec{x}(t) + \vec{y} + \vec{v}(t+x))$$

Dazu:

$$m\frac{\mathrm{d}^2}{\mathrm{d}t'^2} = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = mfrac\mathrm{d}^2\mathrm{d}t^2(R\vec{x}(t) + \vec{y} + \vec{v}(t+s)) = mR\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = R\vec{F}(t,\vec{x}(t))$$

⇒ Newtonsche Dynamik ist invariant falls Kräfte wie Vektoren transformieren. (hatten wir schon verlangt) Bei Systemen von Massepunkten mit Zentralkräften ist die Kraft gleich dem Gradient, sie besitzt automatisch Vektor-Transformationseigenschaften

Wir fordern bei

$$mR\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = R\vec{F}(t, \vec{x}(t))$$

eigentlich

$$R\vec{F}(t, \vec{x}(t)) = \vec{F}'(t', x'(t'))$$

Wichtig: Die Transformation von \vec{F} beinhaltet nicht nur Drehung, sondern auch Transformation über das Argument. Betrachte zur Vereinfachung $R=\mathbb{1} \implies \vec{F}'(t',\vec{x}')=\vec{F}(t,\vec{x})$

Geschwindigkeitsabhängige Kräfte: zum Beispiel Reibung

$$\vec{F}_R = -\alpha \begin{pmatrix} \\ \dot{\vec{x}} - \vec{u} \\ \\ \\ \text{Medium} \end{pmatrix}$$

6.8 Zusammenfassung:

Allgemeingültiges Schema:

- Beschreibung der Bewegung festlegen (Spielfeld) (hier: affiner Raum und Galileische Struktur)
- Identifikation der Symmetriegruppe (hier Galilei Gruppe)
- Invarianz der Dynamik prüfen beziehungsweise fordern (Spielregeln) (Newtonsches Grundgesetz)

7 Wechsel der Koordinatensystems und Scheinkräfte

7.1 Wechsel des Koordinatensystems im euklidischen Raum

$$V = \mathbb{R}^n, n = 3$$

Bisher:

Immer feste Basis

$$\vec{x} = \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = x^1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x^2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x^3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x^i \vec{e}^i$$

 $\{e^i\}$ - durch "i" nummerierte Basisvektoren.

Wichtig:

- In Physik gibt es keine ausgezeichnete Basis.
- können Basis / Koordinatensystem wechseln

$$\vec{e}^{\prime k} = R^{ik} \vec{e}^k$$

(analog zu $\vec{x} = x^i \vec{e}^i$) Wichtig: $\{\vec{e}'^i\}$ wieder Basis $\iff R \in GL(n)$

Hier: euklidischer Raum: Orthonormalbasen: $\vec{e}^i\vec{e}^j=\delta^{ij}$

Wenn $\{\vec{e}^i\}$ Orthonormalbasis, so wird $\{\vec{e}'^i\}$ auch eine sein, falls $R \in O(n)$

$$\vec{e}'^{i}\vec{e}'^{j} = (R^{ik}\vec{e}^{k})(R^{jl}\vec{e}^{l}) = R^{ik}R^{jl}\delta^{kl} = \delta^{ij}$$

Wir können festen Vektor \vec{x} bezüglich neuer Basis zerlegen:

$$\begin{split} \vec{x} &= x'^i \vec{e}'^i = x'^i R^{ij} \vec{e}^j = x^j \vec{e}^j \\ &\implies x^j = x'^i R^{ij} \\ &\stackrel{\cdot (R^T)^{jk}}{=\!=\!=\!=\!=} x^j (R^T)^{jk} = x'^i R^{ij} (R^t)^{jk} \\ x'^k &= R^{kj} x^j \end{split} \qquad \text{(gleiche Formel, wie bei Drehung um } R)$$

Dies ist nicht unerwartet, da $\{\vec{e}^{\prime i}\}$ aus $\{\vec{e}^{i}\}$ durch Drehung R^{-1} hervorgeht:

Dazu: Die Vektoren $\{\vec{e}^i\}$ haben bezüglich der Basis $\{\vec{e}^i\}$ die Komponenten δ^{ij} :

$$\vec{e}^i = \delta^{ij}\vec{e}^j, (\vec{e}^i)^j = \delta^{ij}$$
$$\vec{e}'^i = R^{ij}\vec{e}^j, (\vec{e}'^i)^j = R^{ij}$$

also gilt:

$$\begin{split} \left(\vec{e}'^{i}\right)^{j} &= R^{ij} = \left(R^{-1}\right)^{ji} = \left(R^{-1}\right)^{jk} \delta^{ki} = \left(R^{-1}\right)^{jk} \left(\vec{e}^{i}\right)^{k} \\ \left(\vec{e}'^{i}\right)^{j} &= \left(R^{-1}\right)^{jk} \left(\vec{e}^{i}\right)^{k} \end{split}$$

⇒ Behauptung ist gezeigt

7.2 Aktive und Passive Beschreibung von Symmetrien

- · Aktiv: Transformieren physikalisches Objekt
- Passiv: Wechsle Koordinatensystem

Beispiel 7.1 ()

- Aktiv: $x \to x' = Rx$. Symmetrieforderung: $\vec{x}' \cdot \vec{y}' = \vec{x} \cdot \vec{y}$, also: Skalarproduktinvarianz
- Passiv: \vec{x} fest. Komponenten (Es gilt: $\vec{e}'^i = R^{ij}\vec{e}^j$)
 - x^i in Basis $\{\vec{e}^i\}$

-
$$x'^i = R^{ij}x^j$$
 in Basis $\{\vec{e}'^i\}$

Symmetrieforderung: Mathematischer Ausdruck für Skalarprodukt soll in neuen Komponenten die gleiche Form haben. In der Tat:

- alt:
$$\vec{x} \cdot \vec{y} = x^i y^i$$

- neu: $\vec{\cdot} \cdot \vec{y} = x^i y^i = (R^{-1})^{ij} x'^j (R^{-1})^{ik} y'^k = x'^i y'^i \checkmark$

Beispiel 7.2 (Galilei-Transformation) • Aktiv: $(t, x(t)) \rightarrow (t+s, Rx(t) + y + (t+s)v)$. Symmetrieforderung: Neue Trajektorie ist auch physikalische Bewegung.

• Passiv: Sei $\vec{x}_0 = \vec{a} + \vec{b}t$ der Vektor, der vom alten zum neuen Koordinatenursprung zeigt:

$$\vec{x}_n = \vec{x} - \left(\vec{a} + \vec{b}t\right)$$

Bezeichne Komponenten von \vec{x}_n bezüglich der neuen, gedrehten Basis mit x'^j

$$x'(t) = A^{-1}(x - a - bt) = Rx + y + vt$$

mit $R \equiv A^{-1}$, $y \equiv -A^{-1}a$, $v \equiv -A^{-1}b$ (könnte auch noch Uhren umstellen $\rightarrow s$)

- Transformation sieht formal so aus, wie im aktiven Fall Symmetrieforderung: "Newton" soll gleiche Form haben: Prüfen dies:

$$\ddot{x}' = R\ddot{x} = R\frac{F}{m} = \frac{F'}{m}\checkmark$$

noch"zeitunabhängig

7.3 Beschleunigte, nichtrotierende Koordinatensysteme

keine Symmetrietransformation! Nichinertialsysteme! $\vec{x}_0(t)$ beschreibe Bewegung des "neuen" Ursprungs

$$\begin{split} \vec{x}_I &= \vec{x}_0 + \vec{x} \implies \ddot{\vec{x}} = \ddot{\vec{x}_I} - \, \ddot{v} x_0 \\ m \ddot{\vec{x}} &= m \ddot{\vec{x}}_i - m \ddot{\vec{x}}_0 = \vec{F} + \vec{F}_s \\ \downarrow \\ \text{Scheinkraft} \end{split} \tag{Inertial}$$

$$F_s \equiv -m \ddot{\vec{x}}_0$$

 \implies Im Nichtinertialsystem bewegt sich ein Punkt so, als gäbe es eine zusätzliche Kraft: $m\ddot{\vec{x}}=$ $\vec{F} + \vec{F}_s$

7.4 Kleine Drehungen

Definition 7.3 (Spur)

$$M_{ii} = \operatorname{sp}(M) = \sum_i a_i$$

 $\operatorname{sp}(M)$ wird als Spur bezeichnet, und entspricht der Summe über die Diagonalelemente

 $= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} t_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Drehungen: $R(t) \in SO(u), R^TR = 1$ für $t \sim \epsilon, R(0) = 1$

$$\begin{split} R(\epsilon) &= \mathbb{1} + \varepsilon M + O(\varepsilon^2) \\ R(\epsilon) R^T(\varepsilon) &= (\mathbb{1} + \varepsilon M) (\mathbb{1} + \varepsilon M^T) \stackrel{!}{=} \\ &= \mathbb{1} + \epsilon \left(\underbrace{M + M^T}_0 \right) \stackrel{!}{=} \mathbb{1} \end{split}$$

 $\implies M$ ist antisymmetrisch!, $M_{ij}=-M_{ji}$. Es gibt $N_A=\frac{n(n-1)}{2}$ linear unabhängige Basismatrizen T_a .

Beispiel 7.4 (n = 3) Für $n = 3: N_A = 3$:

$$\begin{split} M &= \epsilon_a t_a t_1 \\ \left(T_i\right)_{j,k} &= \varepsilon_{ijk} \\ \vec{\epsilon} &= |\vec{\epsilon}| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ R(\vec{\epsilon}) &= \mathbbm{1} + |\epsilon| \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + O\Big(|\vec{\epsilon}|^2\Big) = \begin{pmatrix} 1 & |\vec{\epsilon}| & 0 \\ -|\vec{\epsilon}| & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + O\Big(|\vec{\epsilon}|^2\Big) \\ &= \begin{pmatrix} \cos |\vec{\epsilon}| & \sin |\vec{\epsilon}| & 0 \\ -\sin |\vec{\epsilon}| & \cos |\vec{\epsilon}| & 0 \\ 0 & 0 & 1 \end{pmatrix} + O\Big(|\vec{\epsilon}|^2\Big) \end{split}$$

Anwendung:

$$\begin{split} \vec{\Delta\phi} &= -\vec{\epsilon} \\ R\left(\vec{\Delta\phi}\right) &= \mathbb{1} - \vec{\Delta\phi}\vec{T} \\ R\left(\vec{\Delta\phi}\right)_{ij} &= \delta_{ij} - \Delta\phi_k\varepsilon_{ijk} \\ R\left(\vec{\Delta\phi}\right)_{ij} v_j &= v_i + \Delta\phi_k\varepsilon_{ikj}v_j \\ R\left(\vec{\Delta\phi}\right)\vec{v} &= \vec{v} + \vec{\Delta\phi} \times \vec{v} \end{split}$$

Trivia: Wenn jemand mit Deltas anfängt, dann hört er auch mit d's auf.

$$\vec{v}(t) = v$$

$$\vec{v}(t + \Delta t) = R(\vec{\Delta \phi})\vec{v}$$

$$\lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{\left(R(\vec{\Delta \phi}) - \mathbb{1}\right)}{\Delta t}\vec{v} = \underbrace{\frac{\vec{\Delta \phi}}{\Delta t}}_{\vec{\omega}} \times \vec{v} = \vec{\omega} \times \vec{v} = \frac{d\vec{v}}{dt}$$

$$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\vec{\Delta \phi}}{\Delta t} = \frac{d\vec{\phi}}{dt} = \dot{\vec{\phi}}$$

7.5 Rotierendes Koordinatensystem

In diesem Abschnitt sei $r_x, \omega_x \in \mathbb{R}^3$ r_I : Geschwindigkeit im Inertialsystem

Im Inertialsystem

$$\begin{split} r_I &= r_0(t) + r_N \\ &= r_0(t) + R(t) r \end{split}$$

Newton im Inertialsystem

$$\begin{split} m\ddot{r_I} &= F_I \\ \Longrightarrow \ m\ddot{r_0} + (R\cdot r)^{\cdot\cdot\cdot} &= F_I = R\cdot F \\ \dot{R}(t)\cdot r &= \lim_{\Delta t \to 0} \frac{R(t+\Delta t) - R(t)}{\Delta t} r \end{split}$$

wichtige Formel: $\dot{R}(t) \cdot r = R(\omega \times r)$, damit erhält man:

$$=\frac{(R(\Delta t)-\mathbb{1})}{\Delta t}R(t)r=\underset{IS}{\omega_{IS}}\times R(t)\cdot r=(R\omega)\times (Rr)=R(\omega\times r)$$

$$\downarrow R\omega$$

$$(Rr)^{\cdot\cdot\cdot}=\left(\dot{R}r+R\dot{r}\right)^{\cdot\cdot}=\left(R(\omega\times r)+R\dot{r}\right)^{\cdot\cdot}=\dot{R}(\omega\times r)+R(\dot{\omega}\times r)+R(\omega\times\dot{r})+\dot{R}\dot{r}+R\ddot{r}$$

$$=R(\omega\times(\omega\times r)+\dot{\omega}\times r+2(\omega\times\dot{r})+\ddot{r})$$

$$\Longrightarrow m\ddot{r}=F-m\left((R^{-1})\ddot{r}_0+\underbrace{\omega\times(\omega\times r)}_{F_{Zentrifugal}}+\underbrace{2\omega\times\dot{r}}_{F_{Coriolis}}+\underbrace{\dot{\omega}\times r}_{E_{Tangential}}\right)$$

Bemerkung 7.5 (Zentrifugalkraft)

 F_z :

$$\begin{split} \left(-\omega\times(\omega\times r)\right)_k &= -\varepsilon_{ijk}\omega_i\varepsilon_{lmj}\omega_lr_m \\ &= -(\delta_{lk}\delta_{mi} - \delta_{mk}\delta_{li})\omega_lr_m\omega_i \\ &= -(\omega r)\omega_k + r_k(\omega^2) \end{split}$$

für $\omega \perp r$:

$$\vec{F}_z = m\omega^2 \vec{r}$$

Bemerkung 7.6 (Corioliskraft)

 F_c zum Beispiel: $r \perp \omega$

$$\vec{F}_c = -2m|\vec{\omega}||\vec{v}|\vec{e}_3 \times \vec{e}_1 = 2m|\omega||\omega v|\vec{e}_2$$

7.6 Trägheitstensor

Massenpunkte bei \vec{r}_a

$$\begin{split} \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_a}{\Delta t} &= \frac{\vec{\Delta \phi}}{\Delta t} \times \vec{r}_a = \frac{\vec{\mathrm{d}} \vec{r}_a}{\vec{\mathrm{d}} t} = \vec{\omega} \times \vec{r}_A \\ E_{kin} &= \sum_a \frac{ma}{2} \left(\dot{\vec{r}}_a^2 \right) = \sum_a \frac{m_a}{2} (\vec{\omega} \times \vec{r}_a)^2 \\ &= \sum_a \frac{m_a}{2} \varepsilon_{ijk} \varepsilon_{lmk} \omega_i (r_a)_j \omega_l (r_a)_m \\ &= \sum_a \frac{m_a}{2} \left(\delta_{jm} \delta_{ij} - \delta_{jl} \delta_{im} \right) \omega_i \omega_l (r_a)_j (r_a)_m \\ &= \sum_a \frac{1}{2} \underbrace{m_a \left(\Delta_{ij} r_a^2 - (r_a)_i (r_a)_j \right) \omega_i \omega_j}_{I_{ij}} = \frac{1}{2} I_{ij} \omega_i \omega_j \\ &= \frac{1}{2} \omega^T I \omega \\ I &= \int \mathbf{d}^3 r \rho(r) (\mathbb{1} \vec{r}^2 - \vec{r} \otimes \vec{r}^T) \\ &\downarrow \\ &\text{Massendichte} \end{split}$$

$$I_{ij} = \int \mathrm{d}^3 r \rho(r) \left(\vec{r}^2 \delta_{ij} - r_i r_j \right)$$

$$\varepsilon^{ijk}\varepsilon^{lmn} = N\big(\delta^{il}\delta^{jm}\delta^k n + \ldots\big)$$

$$\delta^{ij} = i$$

8 Zentralkraftproblem

8.1 Motivation

für Kräfte zwischen Massenpunkten die parallel zur Verbindungslinie wirken: Potentialbeschreibung

$$\vec{F}_1 = -\vec{\nabla}_1 V(|\vec{x}_1 - \vec{x}_2|) \\ \downarrow \\ \vec{x}_1$$

Besonders wichtig:

$$V(r) \sim \frac{1}{r}$$

Beispiel 8.1 (Gravitation)

$$\begin{split} V(|\vec{x}_1 - \vec{x}_2|) &= -\frac{G_N m_1 m_2}{|\vec{x}_1 - \vec{x}_2|} \\ \vec{F}_1 &= -\frac{-\vec{x}_1 - \vec{x}_2}{|\vec{x}_1 - \vec{x}_2|^3} F_n m_1 m_2 \\ &= -\frac{\vec{x}_1 - \vec{x}_2}{|\vec{x}_1 - \vec{x}_2|} \frac{G_N}{(\vec{x}_1 - \vec{x}_2)^2} \end{split}$$

Nichttriviale Aussage: "träge Masse = schwere Masse"

Beispiel 8.2 (Elektrostatik)

$$V = \frac{q_1q_2}{4\pi\varepsilon|\vec{x}_1 - \vec{x}_2|}$$

Vereinfachung:

- 1. Masse m_2 bei $\vec{0}$ fixiert
- 2. $m_2\gg m_2\implies$ analog zu 1.

$$\Longrightarrow V(\vec{x}) = -\frac{G_N m_1 m_2}{|\vec{x}|} = V(r) = -\frac{G_n m_1 m_2}{r}$$

8.2 Zweikörperproblem

Lassen Bewegung beider Massen zu

$$\begin{split} m_1 \ddot{\vec{x}}_1 &= -\vec{\nabla}_1 V(|\vec{x}_1 - \vec{x}_2|) \\ m_2 \ddot{\vec{x}}_2 &= -\vec{\nabla}_2 V(|\vec{x}_1 - \vec{x}_2|) \end{split}$$

Betrachte passende Linearkombination:

$$\begin{split} \ddot{\vec{x}}_1 - \ddot{\vec{x}}_2 &= \frac{1}{m_1} \Big(-\vec{\nabla} V(|\vec{x}_1 - \vec{x}_2|) \Big) - \frac{1}{m_2} \Big(-\vec{\nabla}_2 (|\vec{x}_1 - \vec{x}_2|) \Big) \\ &= \underbrace{\left(\frac{1}{m_1} + \frac{1}{m_2} \right)}_{\equiv \frac{1}{m_1}} \Big(-\vec{\nabla}_1 (|\vec{x}_1 - \vec{x}_2|) \Big) \end{split}$$

Man erhält Gleichung für die Relativkoordinate" $\vec{x}_1 - \vec{x}_2$

$$(\vec{x}_1 - \vec{x}_2)^{...} = \frac{1}{m} \Big(-\vec{\nabla} V(|\vec{x}_1 - \vec{x}_2|) \Big) \frac{1}{m} \equiv \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 m_2}{m_1 + m_2}$$
 (Reduzierte Masse)

Zusätzlich: Addition der beiden Gleichungen gibt:

$$m_1 \ddot{\vec{x}}_1 + m_2 \ddot{\vec{x}}_2 = 0$$
$$\implies \ddot{\vec{x}}_s = 0$$

Mit $\vec{x}_s \equiv$ Schwerpunktskoordinate, bewegt sich frei

$$\vec{x}_s \equiv \frac{m_1\vec{x}_1 + m_2\vec{x}_2}{m_1 + m_2}$$

⇒ Das zu lösende Problem ist also nur die Bewegung der Relativkoordinate

$$m\ddot{\vec{x}} = -\vec{\nabla}V(|\vec{x}|)$$

Das ist Zentralkraftproblem mit ursprünglichem Potential, aber mit der reduzierten Masse

8.3 Allgemeine Koordinatensysteme

Kenne bereits: $\mathbb{C}=\mathbb{R}^2$

$$x^1 = \Re z$$
$$x^2 = \Im z$$

$$r = |z|$$
$$\phi = \arg z$$

"Polarkoordinaten", sind einfaches Beispiel für mögliche allgemeine Parametrisierung.

Beispiel 8.3 (Zylinderkoordinaten)

$$x^{1} = r \cos \phi$$
$$x^{2} = r \sin \phi$$
$$x^{3} = z$$

Wichtig: Eineindeutige Abbildung $(x^1,x^2,x^3) \leftrightarrow (r,\phi,z)$ (und allgemein). Hier:

$$r = \sqrt{(x^1)^2 + (x^2)^2}$$
$$\phi = \arctan \frac{x^2}{x^1}$$
$$z = x^3$$

Beispiel 8.4 (Kugelkoodinaten)

$$x^{1} = r \sin \theta \cos \phi$$
$$x^{2} = r \sin \theta \sin \phi$$
$$x^{3} = r \cos \theta$$

8.4 Zentralkraftproblem

(Nach allgemeines V(r)). Wir wissen bereits:

$$\vec{L}=\vec{r} imes \vec{p}=\,{
m const}, \vec{p}=m\dot{\vec{r}}, \vec{r}=\,{
m Koordinaten}$$
 des Teilchens

Es gilt $\vec{L} \perp \vec{r} \wedge \vec{L} = \text{const} \implies \text{Bewegung in gester Ebene. Also ohne Beschränkung der}$ Allgemeinheit ist die Bewegung in der (1-2) -Ebene. Außerdem: Problem rotationssymmetrisch. ⇒ angemessene Beschreibung: Polarkoordinaten (Winkel und Rotation) naiv:

$$m\ddot{\vec{x}} = \vec{F}(\vec{x})$$

$$\downarrow \\ \mathrm{durch}\, r, \phi \; \mathrm{ausdr\"{u}cken}$$

eleganter: Weiter mit Drehimpulserhaltung (wieder: $\vec{x} \rightarrow \vec{r}$)

$$ec{L}={
m const}, {
m const}=\left|ec{L}\right|=m \middle| ec{r} imes \dot{ec{r}} \middle|=mr \cdot r \dot{\phi}=mr^2 \dot{\phi}$$

Nachrechnen:

$$\begin{split} \dot{\vec{r}} &= (r\cos\phi, r\sin\phi)^{\cdot} \\ &= \underbrace{\left(\dot{\vec{r}}\cos\phi, \dot{\vec{r}}\sin\phi\right)}_{\parallel\vec{r} \implies \text{Radialgeschwindigkeit}} + \underbrace{\left(r(-\sin\phi), r\cos\phi\right)\dot{\phi}}_{\perp\vec{r} \implies \text{Tangentialgeschwindigkeit}} \end{split}$$

Insbesondere:

 $r\dot{\phi} \equiv \text{Betrag der Tangentengeschwindigkeit}$

Konstanz von $|\vec{L}|$ geometrische Interpretation:

Berechne die von "Leitstrahl" in Zeit dt überstrichene Fläche: "Die Flächengeschwindigkeit ist konstant" (2. Keplersches Gesetz)

$$\mathrm{d}f = \frac{1}{2}rr\mathrm{d}\phi$$

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{1}{2}r^2\dot{\phi} = \mathrm{const}$$

Energieerhaltung:

$$E=\frac{m}{2}\dot{\vec{r}}^2+V(r)=\frac{m}{2}\big(\dot{r}^2+r^2\dot{\phi}^2+V(r)=\ \mathrm{const}\big)$$

Kombinieren mit Drehimpulserhaltung gibt: ($L \equiv |\vec{L}|$)

$$\dot{\phi} = \frac{L}{mr^2}$$

$$E = \frac{m}{2}r^2 + \frac{L^2}{2mr^2} + V(r)$$

Definiere:

$$U(r) \equiv \frac{L^2}{2mr^2} + V(r)$$

⇒ Energieerhaltung:

$$E = \frac{m}{2}\dot{r}^2 + U(r)$$

Dies ist die Energieerhaltung für das "effektive 1-dimensionale Problem mit dem effektiven Potential". Dieses ist allgemein lösbar mit

$$\int dt = \int \frac{dr}{\sqrt{\frac{2}{m}(E - U(r))}}$$

 $\operatorname{Damit} t = t(r)$

$$\implies r = r(t) \implies \dot{\phi}(t) \implies \phi(t)$$
 (Integrieren)

Explizit lösbar: $V \sim \frac{1}{r}, V \sim r^2$

8.5 Qualitative Lösung des Zentralkraftproblems

$$\begin{split} E &= \frac{m}{2} \dot{r^2} + U(r) \\ U(r) &= \frac{L^2}{2mr^2} + V(r) \\ &= \frac{L^2}{2mr^2} - \frac{\alpha}{r} \\ \alpha &= g_N m_1 m_2 \end{split} \tag{Kepler}$$

- Fall 1: $E>0 \implies$ minimales, aber kein maximales r
- Fall 2: $E < 0 \implies r$ zwischen zwei Extrema

 $V \sim \frac{1}{r} \implies$ keine Periheldrehung.

allgemeiner: Periheldrehung triff auf! (kein Schließen der Bahn)

8.6 Kepler-Problem: Bahnform

$$\begin{split} E &= \frac{m}{2}\dot{r}^2 + \frac{L^2}{2mr^2} - \frac{\alpha}{r} \\ \dot{E} &= 0 = m\dot{r}\ddot{r} - \frac{L^2}{mr^3}\dot{r} + \frac{\alpha}{r^2}\dot{r} \\ m\ddot{r} &= \frac{L^2}{mr^3} - \frac{\alpha}{r^2} \end{split}$$

Schreibe $\frac{\mathrm{d}}{\mathrm{d}t}$ in $\frac{\mathrm{d}}{\mathrm{d}\phi}$ um, da r(t)nicht lösbar:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}(...) &= \frac{\mathrm{d}\phi}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}\phi}(...) \\ &= \frac{L}{mr^2}\frac{\mathrm{d}}{\mathrm{d}\phi}(...) \end{split}$$

speziell:

$$\begin{split} \dot{r} &= \frac{L}{mr^2} \frac{\mathrm{d}}{\mathrm{d}\phi}(r) = -\frac{L}{m} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{1}{r}\right) \\ m\ddot{r} &= m \frac{L^2}{mr^2} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(-\frac{L}{m} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{1}{r}\right)\right) \\ &= -\frac{L^2}{mr^2} \frac{\mathrm{d}^2}{\mathrm{d}\phi^2} \left(\frac{1}{r}\right) \\ -\frac{L^2}{mr^2} \frac{\mathrm{d}^2}{\mathrm{d}\phi^2} \left(\frac{1}{r}\right) &= \frac{L^2}{mr^3} - \frac{\alpha}{r^2} \\ \frac{\mathrm{d}^2}{\mathrm{d}\phi^2} \left(\frac{1}{r}\right) &= -\frac{1}{r} + \frac{m\alpha}{L^2} \end{split}$$

Definiere $u \equiv \frac{1}{r}, \frac{\mathrm{d}}{\mathrm{d}\phi}(\ldots) = (\ldots)'$

$$u'' = -u + \frac{m\alpha}{L^2}$$

harmonischer Oszillator mit äußerer Kraft, weiter mit $w\equiv u-\frac{m\,\alpha}{L^2}$

$$w'' = -w$$

Allgemeine Lösung:

$$w = A\cos\phi - \phi_0$$

Ohne Beschränkung der Allgemeinheit: $\phi_0=0$, so dass

$$\frac{1}{r} - \frac{m\alpha}{L^2} = A\cos\phi$$

$$r = \frac{1}{\frac{m\alpha}{L^2} + A\cos\phi}$$

$$r = \frac{p}{1 + e\cos\phi}$$

$$p = \frac{L^2}{m\alpha}$$

$$e = \sqrt{2 + \frac{2EL^2}{m\alpha^2}}$$

Herleitung der letzten Formel für e:

leite nach t ab:

$$r = \frac{p}{1 + e\cos\phi}$$

Diese verschwindet bei $\phi = 0$. Dort gilt dann:

$$E = \frac{L^2}{2mr^2} - \frac{\alpha}{r}$$

$$r = \frac{p}{1+e} = \frac{\frac{L^2}{m\alpha}}{1+e}$$

Beides zusammen ergibt:

$$e = \sqrt{1 + \frac{2EL^2}{m\alpha^2}}$$

8.7 Kegelschnitte

Kreis, Ellipse, Parabel, Hyperbel

$$r = \frac{p}{1 + e\cos\phi}$$

- Kreis: $e=0, r=\,{\rm const},$ physikalisch: $E=U_{m\,i\,n}$
- Ellipse: $0 < e < 1 \implies r$ beschränkt

$$\phi = 0 \implies r = \frac{p}{1+e}$$

$$\phi = \pi \implies r = \frac{p}{1-e}$$

$$\phi = \pi \frac{\pi}{2} \implies r = p$$

$$\frac{p}{1+e}$$

(Perihelabstand)

Außerdem

$$2a = p\left(\frac{1}{1+e} - \frac{1}{1-e}\right) = \frac{2p}{1-e^2}$$
$$a = \frac{p}{1-e^2}$$

Für die kleine Halbachse: Maximiere $y \implies$ maximiere y^2 (äquivalent)

$$0! \frac{\mathrm{d}y^2}{\mathrm{d}r}$$

$$y^2 = (r\sin\phi)^2 = r^2(1-\cos^2\phi) = r^2\left(1-\frac{1}{e^2}\left(\frac{p}{r}-1\right)^2\right) = r^2 - \frac{1}{e^2}(p-r)^2$$

$$0 = 2\left(r + \frac{1}{e^2}(p-r)\right)$$

$$r_0 = \frac{\frac{-p}{e}}{1-\frac{1}{e^2}} = \frac{p}{1-e^2}$$

Einsetzen in obige Formel für *y*:

$$y_{max} = \frac{p}{\sqrt{1 - e^2} \equiv b}$$

Andere Definition der Ellipse

$$\frac{\tilde{x}^2}{a^2} + \frac{\tilde{y}^2}{b^2} = 1$$

Vorsicht: x, y verschieden von \tilde{x}, \tilde{y} .

- Parabel: e=1, physikalisch: E=0, Körper "kommt im Unendlichen zur Ruhe", weil

$$\frac{m}{2}v^2 = E - U(r) \wedge U(\infty) = 0$$

Skizze, etc.: DIY

- Hyperbel: e>1, E>0, Körper hat für $r\to\infty$ nicht verschwindende Grenzgeschwindigkeit.

$$\begin{split} \phi &= 0 \implies r = \frac{p}{1+e} \\ \phi &= \pm \frac{\pi}{2} \implies r = p \\ r &= \infty \implies 0 = 1 + e \cos \phi \iff \phi = \arccos -\frac{1}{e} \end{split}$$

Wichtiger: Streuwinkel θ :

$$\theta = \pi - 2(\pi - \phi) = 2\phi - \pi$$

8.8 Die Trajektorie

Wie bekannt:

$$t = \int \frac{r \mathrm{d}r}{\sqrt{\frac{2E}{m}r^2 + \frac{2\alpha}{m}r - \frac{L^2}{m^2}}}$$

Brauchen Fallunterscheidung für E

8.8.1 Ellipse

$$t = \sqrt{\frac{m}{2|E|}} \int \frac{r \mathrm{d}r}{\sqrt{-r^2 + \frac{2\alpha}{m}r - \frac{L^2}{m^2}}}$$

Ersetze: $r \rightarrow s, r-a \equiv sae$

$$= \frac{\mathrm{d}s\left(s + \frac{1}{e}\right)}{\sqrt{1 - s^2}}$$

Ersetze $s = -\cos \eta$

$$t = \sqrt{\frac{ma^2}{2|E|}}(\eta - e\sin\eta)$$

$$r = a(1 - e\cos\eta)$$

Dies ist die Parameterdarstellung.

8.9 Umlaufzeit

(Ellipsenbahn)

$$\begin{split} T = \int_{1 \text{ Umlauf}} \mathrm{d}t = & , L = mr^2 \dot{\phi} \frac{2m}{L} \int_{1 \text{ Umlauf}} \mathrm{d}f = \frac{2m}{L} F_{ell} = \frac{2m}{L} \pi ab \\ \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{1}{2} r^2 \dot{\phi} \end{split}$$

Begründung von $F_{ell}=\pi ab$: Ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \xrightarrow{\text{Koordinatenwechsel}} x'^2 + y'^2 = 1$$

Also:

$$F_{ell} = \int_{\mathrm{Ell}} \mathrm{d}x \mathrm{d}y = ab \int_{Einh.kreis} \mathrm{d}x' \mathrm{d}y' = \pi ab \checkmark$$

$$T = \frac{2\pi m}{L} ab = \frac{2\pi m}{L} \frac{p^2}{\sqrt{1 - e^2}^3} = \frac{2\pi m}{L} \frac{\left(\frac{L^2}{m\alpha}\right)^2}{\left(\frac{2|E|L^2}{m\alpha^2}\right)^{\frac{3}{2}}} = \pi \alpha \sqrt{\frac{m}{2|E|^3}}$$

Mit $a = \frac{\alpha}{2|E|}$:

$$=2\pi a^{\frac{3}{2}}\sqrt{\frac{m}{\alpha}}$$

Satz 8.5 (Zweites Keplersches Gesetz) T ist proportional zu $a^{\frac{3}{2}}$.

(Zur Vollständigkeit:)

Satz 8.6 (Erstes Keplersches Gesetz) Umlaufbahnen sind Ellipsen, in deren einem Brennpunkt

Bemerkung 8.7 Analoge Analyse für $V = \frac{\pm \alpha}{r} \implies$ stets Hyperbelbahnen:

$$r = \frac{p}{-1 + e\cos\phi}$$

Es existiert eine **dritte** Erhaltungsgröße. Lenzscher Vektor:

$$ar{v} imes ar{L} - rac{lpha ar{r}}{r} \implies ext{ noch elegantere Analyse möglich}$$

Die Annahme $m_2 \gg m_1$ stimmt für System Erde-Mond nicht sehr gut. \implies Gezeitenberge, Zentrifugalkraft, örtlich variierende Gravitationskraft.

9 Zerfalls und Stoßprozesse

Chemie, Kernphysik, Teilchenphysik (QM-Aspekte sehr wichtig → später), astrophysikalische Prozesse (zum Beispiel kollisionsfreie Begegnung zweier Himmelskörper)

9.1 Stoßparameter und Streuwinkel

Streuwinkel θ folgt eindeutig aus b (bei mechanischem System) \implies Funktion $\theta = \theta(b)$. Bei perfekt reflektierender Kugel leicht zu berechnen:

$$\pi = 2\Delta\phi + \theta, b = R\sin(\Delta\phi)$$

Auflösen nach θ

$$\theta(b) = \pi - 2 \arcsin \frac{b}{R} = r \arccos \left(\frac{b}{R}\right)$$

Allgemeiner: Streuung an Zentralpotential V(r) (hier mit abstoßender Kraft) Obige starre Kugel entspricht dann dem Grenzfall

$$V(r) = \begin{cases} 0 & r > R \\ \infty r \le R \end{cases}$$

$$dt = \frac{dr}{\sqrt{\frac{2}{m}(E - U(r))}}, L = mr^2 \frac{d\phi}{dt}$$

Hierbei: $E = \frac{m}{2} v_{\infty}^2, L = m v_{\infty} b$

$$\phi = \int \frac{\frac{L^2}{r^2} dr}{\sqrt{2m(E - V(r)) - \frac{L^2}{r^2}}}$$

$$\int_{-\infty}^{\infty} \frac{b dr}{r^2}$$

$$\Delta\phi = \int_{r_{min}}^{\mathbf{v}} \frac{\frac{b\mathrm{d}r}{r^2}}{\sqrt{1-\frac{V(r)}{E}-\frac{b^2}{r^2}}}$$

 $r_{m\,i\,n}$ ist Lösung zu

$$1-\frac{V(r)}{E}-\frac{b^2}{r^2}=0$$

In der Tat: Bei r_{min} ist gerade $\mathrm{d}r=0$ obgleich $\mathrm{d}\phi\neq0$ ist. Dies geschieht exakt wenn $\sqrt{...}=0$

$$\implies \theta(b) = \pi - 2\Delta\phi$$

(allgemein bekannt)

Für konkreten Fall $V(r) = -\frac{\alpha}{r}$ kennen wir Ergebnis:

$$\theta = 2\phi - \pi, \cos \phi = -\frac{1}{e}$$

Wir haben also:

$$\sin\frac{\Theta}{2} = \sin\Bigl(\phi - \frac{\pi}{2}\Bigr) = -\sin\Bigl(\frac{\pi}{2} - \phi\Bigr) = -\cos\phi = \frac{1}{\sqrt{1 - \frac{2EL}{m\alpha^2}}}$$

Nutze: $L=mr_{\infty}b, E=\frac{m}{2}v_{\infty}^2$

$$\theta(b) = 2\arcsin\left(\frac{1}{\sqrt{1 + \left(\frac{2Eb}{\Omega}\right)^2}}\right)$$

9.2 Wirkungsquerschnitt

Teilchenstrahldichte:

$$n = \frac{\text{Teilchenzahl}}{\text{Fläche} \cdot \text{Zeit}}, [n] = \text{m}^{-2} \, \text{s}^{-1}$$

N ↑

 $\implies Zahldergestreuten Teilchenpro Zeit = n \cdot \sigma_{tot}, [N] = \mathbf{s}^{-1}$

Querschnittsfläche des Targets

 σ_{tot} -totaler Wirkungsquerschnitt, $\sigma_{tot} \equiv \frac{N}{n}$

9.2.1 Differentieller Wirkungsquerschnitt

$$\mathrm{d}N = n \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(\theta) \right)$$

Ring im Bild hat Fläche:

$$d\Theta = \left| \frac{d\Theta(b)}{db} \right| |db|$$

Damit können wir $\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(\theta)$ bei bekannter Funktion $\theta(b)$ berechnen:

$$dN = nd\sigma = n2\pi bdb = n2pib \left| \frac{d\theta}{db} \right|^{-1} d\theta \equiv n \left(\frac{d\sigma}{d\theta} \right) d\theta$$
$$\frac{d\sigma}{d\theta} = 2\pi b \left| \frac{d\theta}{d\theta} \right|^{-1} = 2\pi b \left| \frac{db}{d\theta} \right|$$

speziell:

$$b(\theta) = R \cos\left(\frac{\theta}{2}\right)$$
 (Starre Kugel)
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} = \pi b R \sin\frac{\theta}{2}$$

Es ist üblich $\mathrm{d}\theta$ in den differentiellen Raumwinkel umzurechnen:

$$\begin{split} \sigma^2 \mathrm{d}\Omega &= 2\pi \sin\theta \sigma \mathrm{d}\theta \sigma \\ b(\theta) &= R \cos\left(\frac{\theta}{2}\right) \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\theta} &= \pi b R \sin\frac{\theta}{2} \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{R^2}{4} \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{\mathrm{d}\sigma}{2\pi \sim \theta \mathrm{d}\theta} = \frac{\pi b R \sin\frac{\theta}{2}}{2\pi \sin\theta} = \frac{\pi R^2 \cos\frac{\theta}{2} \sin\frac{\theta}{2}}{2\pi \sin\theta} \checkmark \end{split}$$

⇒ gleichberechtigte Streuung in alle Richtungen. Integration:

$$\sigma_{tot} = \int d\Omega \left(\frac{d\sigma}{d\Omega} \right) = \left(\int d\Omega \right) \frac{R^2}{4} = \pi R^2 \checkmark$$

Analoge allgemeine Rechnung:

$$\sigma_{tot} = \int_0^{\pi} \mathrm{d}\theta \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}\right) = \int_0^{\pi} \mathrm{d}\theta 2\pi b \left|\frac{\mathrm{d}b}{\mathrm{d}\theta}\right| = \int_0^{R} \mathrm{d}b 2\pi b = \pi R^2$$

gilt nur, wenn $\theta(b)$ bei endlichem b verschwindet

9.3 Rutherford-Streuung

$$V(r) = \frac{\alpha}{r}, \alpha = \frac{q_1 q_2}{4\pi\varepsilon_0}$$

außerdem:

$$\sin\frac{\theta}{2} = \frac{1}{\sqrt{1+x^2}} \implies x = \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\frac{\frac{1}{2}}{\sin^2\frac{\theta}{2}} \implies \left|x\frac{\mathrm{d}x}{\mathrm{d}\theta}\right| = \frac{\cos\frac{\theta}{2}}{2\sin^3\frac{\theta}{2}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} = \pi\left(\frac{\alpha}{mv^2}\right)^2 \frac{\cos\frac{\theta}{2}}{\sin^3\frac{\theta}{2}}, \mathrm{d}\Omega = \mathrm{d}\theta 4\pi \sin\frac{\theta}{2}\cos\frac{\theta}{2}$$

$$\implies \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\alpha}{2mv^2}\right)^2 \frac{1}{\sin^4(\frac{\theta}{2})}$$

⇒ Rutherford-Streuung:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\alpha}{2mv^2}\right)^2 \frac{1}{\sin^4\frac{\theta}{2}} \sim \frac{1}{\theta^4}$$

 $\implies \sigma_{tot} = \infty$ Begründung:

$$\int \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}\Omega = \int_0^\pi \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} 2\pi \sin\theta \mathrm{d}\theta$$

Bei kleinem θ :

$$\sim \int_0^{\cdots} \mathrm{d}\theta \theta \frac{1}{\theta^4} \sim \int_0^{\cdots} \frac{\mathrm{d}\theta}{\mathrm{d}theta^3} - ' - \infty$$

Beispiel 9.1

$$\int_{\varepsilon}^{1} \frac{\mathrm{d}x}{x^{\alpha}} \sim \frac{1}{x^{\alpha-1}} \Big|_{1}^{\varepsilon} \sim \left(\frac{1}{\varepsilon}\right)^{\alpha-1} \xrightarrow{\alpha > 1} \infty$$

9.4 Teilchenzerfall

Beispiel 9.2 • Mesonen-Zerfall: $\rho \to \pi\pi$

- nicht-quaten-mechanisch: Explosionen
- Higgs-Zerfälle am LHC: $H \rightarrow \gamma \gamma, H \rightarrow bb$

Masse M, innere Energie U:

$$M,U\to m_1,U_1+m_2,U_2$$

1. Massenerhaltung: $M=m_1+m_2$ (nicht in Spezielle Relativitätstheorie)

2. Energie:
$$U + \frac{M}{2} \ddot{\vec{v}}^2 = (U_1 + \frac{m_1}{2} \vec{v}_1^2) + (U_2 + \frac{m_2}{2} \vec{v}_2^2)$$

3. Impuls:
$$\vec{p} = \vec{p}_1 + \vec{p}_2$$
, $(\vec{p} = M\vec{v})$

Ohne Beschränkung der Allgemeinheit ruhe M vor dem Zerfall (Schwerpunktsystem) $\vec{p}=0, \vec{v}=0$ (immer durch Boost erreichbar) ⇒

$$\begin{split} \vec{p}_1 + \vec{p}_2 &= 0, U - U_1 - U_2 \equiv (\Delta U) = \frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} \\ |\Delta U| &= \frac{p_1^2 1}{2} \bigg(\frac{1}{m_1} + \frac{1}{m_2} \bigg) = \frac{p_1^2}{2} \frac{M}{m_1 m_2} \end{split}$$

 $\operatorname{mit} \vec{p}_1 = -\vec{p}_2$:

$$|\vec{p}_{1}| = |\vec{p}_{2}| = \sqrt{\frac{2(\Delta U)m_{1}m_{2}}{M}}$$

Es gilt außerdem:

$$\frac{|v_1|}{|v_2|} = \frac{m_2}{m_1}$$

Diese Beschreibung durch Erhaltungsätze bleibt unvollständig! Richtungsinformation fehlt. (In QM-Beispielen wird die Richtungs-information oft im Spin/Drehimpuls von M liegen)

9.5 Schwerpunkts vs Laborsystem

Interessanter Fall: $\theta \equiv \theta_s$ im Schwerpunktsystem sei bekannt. Frage: Winkel θ_L im Laborsystem? Wir wissen bereits

$$\begin{split} \left|\vec{p}_{1,s}\right| &= \sqrt{\frac{2|\Delta U|m_1m_2}{M}}\\ \vec{p}_{1,s} &= \left|\vec{p}_{1,s}\right| \begin{pmatrix} \cos\theta_s\\ \sin\theta_s \end{pmatrix}, \vec{v}_{1,s} = \frac{\vec{p}_{1,s}}{m_1} \end{split}$$

Boost um \vec{v} zum Laborsystem:

$$\begin{split} \vec{v}_{1,L} &= \vec{v}_{1,s} + \vec{v} = \left| \vec{v}_{1,s} \right| \begin{pmatrix} \cos \theta_s \\ \sin \theta_s \end{pmatrix} + \left| \vec{v} \right| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \vec{v}_{1,L} &= \begin{pmatrix} \left| \vec{v}_{1,s} \right| \cos \theta_s + \left| \vec{v} \right| \\ \left| \vec{v}_{1,s} \right| \sin \theta_s \end{pmatrix} \\ \implies \tan \theta_L &= \frac{\left| \vec{v}_{1,s} \right| \sin \theta_s}{\left| \vec{v}_{1,s} \right| \cos \theta_s + \left| \vec{v} \right|} \end{split}$$

(Wenn gewünscht, $|\vec{v}_{1,s}|$ durch Ursprünglich gegebene Größen ausdrücken.) Anschaulich klar: $\theta_L o$ 0 für $|\vec{v}| \to \infty$

Bemerkung 9.3 Beim Zerfall $M \to m_1, m_2, m_3$ reichen die Erhaltungssätze nicht einmal mehr für die Betragsbestimmung

Beispiel 9.4 (β -Zerfall) $n \rightarrow p + e^- + \vec{v}_e$

9.6 Elastischer Stoß

Allgemeiner: 2-Teilchen-Streuung ("2 \rightarrow 2" Streuung)

$$(m_1, U_1), (m_2, U_2) \to (m'_1, U'_1), (m'_2, U'_2)$$

(bei uns stets Massenerhaltung: $m_1+m_2=m_1^\prime+m_2^\prime)$

- Einschränkung: kein Massenaustausch: $m_1=m_1^\prime, m_2=m_2^\prime$
- weitere Einschränkungen: $U=U^\prime$ (mit $U=U_1+U_2, U^\prime=U_1^\prime+U_2^\prime$)
- ⇒ elastischer Stoß. Es folgt:

$$\vec{p}_1 + \vec{p}_2 = \vec{p}_1' + \vec{p}_2'$$

und

$$\frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} = \frac{\vec{p}_1'^2}{2m_1} + \frac{\vec{p}_2'^2}{2m_2}$$

Ziel: Bestimmen von \vec{p}_1', \vec{p}_2' mögliche Prozedur: Gehen zunächst ins Schwerpunktsystem:

$$\vec{p}_{1.s} + \vec{p}_{2.s} \equiv \vec{p}_s = 0$$

Man denke sich einen Zwischenzeitlich entstehenden instabilen Zustand (ruhendes, instabiles Teilchen) mit $\vec{p}_s=0$. Dieses zerfällt mit Freisetzung des Energieüberschusses

$$|\Delta U| = \frac{\vec{p}_{1,s}^2}{2m_1} + \frac{\vec{p}_{2,s}^2}{2m_2}$$

Wie oben folgt:

$$\vec{p}'_{1,s} = -\vec{p}'_{2,s}$$

und (unter Ausnutzung von $\left|\vec{p}_{1,\,s}^{\prime}\right|=\left|\vec{p}_{2,\,s}^{\prime}\right|)$

$$\left|\vec{p}_{1,s}'\right| = \left|\vec{p}_{1,s}'\right| = \sqrt{\frac{2|\Delta U|m_1m_2}{M}} = \sqrt{\frac{m_2\vec{p}_{1,s}^2 + m_1\vec{p}_{2,s}^2}{m_1 + m_2}} = \left|\vec{p}_{1,s}\right| = \left|\vec{p}_{2,s}\right|$$

 \implies Der Übergang $\vec{p}_{1,s}, \vec{p}_{2,s} \to \vec{p}'_{1,s}, \vec{p}'_{2,s}$ entspricht Drehung, ohne Betragsänderung!

9.7 Elastischer Stoß am ruhenden Target

 In L soll Target ruhen. Projektil: $m_1, \vec{p}_1 \neq 0$, Target: $m_1, \vec{p}_2 = 0$ (Kein Index für L, Index "s" für Schwerpunktsystem) Gegeben: \vec{p}_1 , Θ gesucht $|\vec{p}_1'|$

1. Analyse durch Übergang zum Schwerpunktsystem. In S:

$$0 = \vec{p}_s = \vec{p}_{1,s} + \vec{p}_{2,s} = \begin{pmatrix} \vec{p}_1 - m_1 \vec{v} \\ \downarrow \\ \text{Boost Geschwindigkeit } \vec{v} = \vec{v}_{Boost} \end{pmatrix} + (0 - m_2 \vec{v})$$

(Benutze $\vec{v}_s = \vec{v}_L - \vec{v}_{Boost}$)

$$\implies \vec{v} = \frac{\vec{p}_1}{M}i, M \equiv m_1 + m_2$$

$$\vec{p}_{1,s} = -\vec{p}_{2,s} = -(-m_s \vec{v}) = \frac{m_2}{M} \vec{p}_1$$

- Jetzt erhalten wir $\vec{p}_{1,s}',\vec{p}_{2,s}'$ durch Drehung um $Theta_s$
 - Dann trf. wir zurück zu $L \implies |\vec{p}_1',\Theta|$ also Funktion von Θ_s . Eliminieren von Θ_s ergibt $|\vec{p}_1'|$ als Funktion von Θ
- 2. Analyse direkt in L (Notation: $p_1 \equiv |\vec{p}_1|$, etc.) Energie:

$$\frac{p_1^2}{2m_1} = \frac{p_1^{\prime 2}}{2m_1} + \frac{p_2^{\prime 2}}{2m_2}$$

beziehungsweise:

$$p_2'^2 = \frac{m_2}{m_1} \big(p_1^2 - p_1'^2 \big)$$

Impuls:

$$\vec{p}_1 = \vec{p}_1' + \vec{p}_2' \implies p_{1,\parallel} = p_{1,\parallel}' + p_{2,\parallel}', p_{1,\perp}' = -p_{2,\perp}'$$

$$\begin{split} \implies p_1 &= p_{i,\parallel} = p_1' \cos \theta + \sqrt{{(p_2')}^2 - {\left(p_{2,\perp}'\right)}^2} = p_1 \cos \theta + \sqrt{{(p_2')}^2 - {\left(p_{1,\perp}'\right)}^2} \\ &= p_1' \cos \theta + \sqrt{\frac{m_2}{m_1} {\left(p_1^2 - p_1'^2\right) - {\left(p_1'\right)}^2 \sin^2 \theta}} = p_1 \end{split}$$

Forme um, so dass $\sqrt{...}$ rechts allein steht, quadriere, löse auf nach p'_1 :

$$p_1'=p_1\frac{m_1\cos\theta\pm\sqrt{m_2^2-m_1^2\sin^2\theta}}{M}$$

Im Allgemeinen (bei $\theta \neq 0$) ist die Situation analog, Es gibt einen "starken" und "schwachen" Stoß, die zum gleichen θ führen. (aber nur falls Argument von Wurzel positiv) Speziell:

$$m_1=m_2\equiv m \implies p_1'=p_1\frac{1}{2}\cos\theta(1\pm1)$$

Aber: bei $m_1 > m_2$, gibt es "echte" starke und schwache Stöße. Falls das Argument der Wurzel positiv, tatsächlich zwei physikalische Lösungen. Zum Verständnis: Einfacher Fall: $\theta = 0, m_1 > m_2 \implies$

$$\begin{aligned} p_1' &= p_1 \frac{m_1 + \sqrt{m_2^2}}{M} = p_1 \frac{M}{M} = p_1 \\ p_1' &= p_1 \frac{m_1 - m_2}{M} = p_1 \frac{m_1 - m_2}{m_1 + m_2} \end{aligned}$$

10 Gravitation ausgedehnter Körper

Punktmassennäherung oft schlecht, Aber: leicht korrigierbar wegen Additivität der Kräfte (Genauer: Newtonsche Gravitation ist linearisierte Näherung der ART).

10.1 Potential einer Massenverteilung

potentielle Energie für Gravitation zwischen m_0 und m_1

$$V(|\vec{r}_0 - \vec{r}_1|) = -\frac{m_0 m_1 G}{|\vec{r}_0 - \vec{r}_1|}, \vec{F}_{01} = -\vec{\nabla}_0 V(|\vec{r}_0 - \vec{r}_1|) \equiv -\left(\frac{\partial}{\partial (r_0)^1}, \frac{\partial}{\partial (r_0)^2}, \frac{\partial}{\partial (r_0)^3}\right)^T V(|\vec{r}_0 - \vec{r}_1|)$$

Wir wollen hier nur sehr kleine "Testmassen" m_0 betrachten \implies Bewegung von m_0 im unveränderlichen Feld von $m_1, m_2, m_3, ... \implies$ Schreibe

$$V(\vec{r}_0) = -\frac{m_0 m_1 G}{|\vec{r}_0 - \vec{r}_1|}, \vec{F} = -\vec{\nabla}_{(0)} V(\vec{r}_0)$$

Nützlich, ein von m_0 unabhängiges Gravitationspotential ϕ zu definieren: $\phi \equiv \frac{V}{m_0}$

$$\phi(\vec{r}_0) = -\frac{m_1 G}{|\vec{r}_0 - \vec{r}_1|}, \vec{F} = -m_0 \vec{\nabla}_0 \phi(\vec{r}_0)$$

 $(m_0$ verschwindet völlig in Bewegungsgleichung der Testmasse: $\ddot{\vec{r}_0} = -\vec{\nabla}_0 \phi(\vec{r}_0)$) Ziel: Gravitationspotential einer Ansammlung von Punktmassen:

$$\phi(\vec{r}_0) = \sum_{a=1}^N \frac{m_a G}{|\vec{r}_0 - \vec{r}_a|}$$

Limes sehr vieler, sehr kleiner Elemente: Volumenintegral:

$$\phi(\vec{r}_0) = -G \int \frac{\mathrm{d}^3 t \rho(\vec{r})}{|\vec{r}_0 - \vec{r}|}$$

Idee: diskrete Summe von $\vec{r}_a \to$ kontinuierliche Integral Variable \vec{r} . Erinnerung an Flächenintegral:

$$\int_A \mathrm{d}^2 \vec{x} f(\vec{x}) \equiv \int_{x_{min}^1}^{x_{max}^1} \mathrm{d}x^1 \int_{x_{min}^2}^{x_{max}^2} \mathrm{d}x^2 f(x^1, x^2)$$

Volumenintegral:

$$\int_{V} \mathrm{d}^{3}\vec{x} f(\vec{x}) = \int_{x_{max}^{2}}^{x_{max}^{2}} \mathrm{d}x^{2} \int_{A} \mathrm{d}^{2}\vec{y} f(x^{1}, x^{2}, x^{3}), \vec{y} = (x^{1}, x^{3})^{T}$$

Anstatt das Volumen stupide zu zerlegen ist es oft sinnvoller, Symmetrien auszunutzen (⇒ Kugel, etc), Bei Rotationssymmetrie:

$$\int_{\text{Kreisfläche}} \mathrm{d}^2 \vec{x} f(\vec{x}) = \int_0^R \mathrm{d}r \underbrace{\int_0^{2\pi} r \mathrm{d}\phi f(r,\phi)}_{\text{Kreis mit Radius } r} = \int_0^R r \mathrm{d}r \int_0^{2\pi} \mathrm{d}\phi f(r,\phi)$$

In 3D: (Volumenintegral)

$$\int_{\mathrm{Kugel}} \mathrm{d}^3\vec{x} f(\vec{x}) = \int_0^R \mathrm{d}r r^2 \underbrace{\int_0^\pi \sin\theta \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi f(r,\theta,\phi)}_{\mathrm{Sphäre\ mit\ Radius\ }r}$$

10.2 Gravitationspotential einer Kugelschale

Kugelschale sei dünn \implies Flächendichte $\rho_F, [\rho_F] = \mathrm{kg} \, \mathrm{m}^{-2}$ Brauche eigentlich nur Flächenintegral:

$$\int \mathrm{d}^3\vec{r} \rho(\vec{r}) \ldots = \int \mathrm{d}^2\vec{r} \rho_F(\vec{r})$$

Genauer: Koordinaten r, θ, ϕ , Kugelschale: $r \in (R, R + \Delta R)$

$$\int_{R}^{R+\Delta R} r^2 \mathrm{d}r \int_{0}^{\pi} \sin\theta \mathrm{d}\theta \int_{0}^{2\pi} d\phi \rho(\vec{r}) \dots \cong R^2 \int_{0}^{\pi} \sin\theta \mathrm{d}\theta \int_{0}^{2\pi} \mathrm{d}\phi \rho_F(\theta,\phi) \dots$$
$$A\rho_F = \Delta R \rho A = M$$

Kommentar:

$$\underbrace{\int_0^\pi \sin\theta \mathrm{d}\theta \int_0^{2pi} \mathrm{d}\phi \dots}_{\text{Integrigation ij has Paymyinkal}}^\pi \mathrm{d}\phi \dots = \int \mathrm{d}\Omega$$

Noch direkter zum konkretem Problem:

$$\begin{split} \mathrm{d}\phi &= -G\frac{\mathrm{d}M}{r} = -G\frac{\rho_F\mathrm{d}A}{r} = -\frac{G\rho_F}{r}\underbrace{(R\mathrm{d}\theta)}_{\text{Breite}}\underbrace{(2\pi R\sin(\theta))}_{\text{Länge}} \\ r &= \sqrt{(a-R\cos\theta)^2 + (R\sin\theta)^2} = \sqrt{\underbrace{a^2 + R^2}_{A} - \underbrace{2aR\cos\theta}_{B}} \\ \phi &= -G\rho_F 2\pi R^2 \int \frac{\sin\theta\mathrm{d}\theta}{\sqrt{A-B\cos\theta}} \end{split}$$

Substituiere: $x = \cos \theta, dx = -\sin \theta d\theta, \theta = 0 \implies x = 1, \theta = \pi \implies x = 1$

$$\begin{split} \phi &= -G\rho_F 2\pi R^2 \int_1^{-1} \frac{-\mathrm{d}x}{\sqrt{A-Bx}} \\ \phi &= -G\rho_F 2\pi R^2 \frac{2}{2aR} \Big(\sqrt{a^2 + R^2 + 2aR} - \sqrt{a^2 + R^2 - 2aR} \Big) \\ \phi &= -G\rho_F 2\pi R^2 \frac{1}{aT} ((a+R) - (a-R)) = -G\rho_f \frac{4\pi R^2}{a} \\ \phi &= -\frac{GM}{a} \end{split}$$

Potential so, als sei die Masse im Zentrum konzentriert. Analoge Rechnung zeigt: Keine Gravitationskraft (also Potential konstant) im Inneren. Pol. jedes sphärisch symmetrischen Körpers (auch inhomogen) ist so wie bei einer Punktmasse im Zentrum

10.3 Divergenz und Gaußscher Satz

Betrachte Integrale vom Typ

Flächenelement

$$I = \int_{O} \vec{\mathrm{d}} \vec{f} \vec{F}$$

Oberfläche eines Volumens

 \vec{F} : Vektorfeld. Betrachte Würfel:

$$I=I_{12}+I_{23}+I_{31}\\\downarrow$$

Betrag der zwei Flächen in der x^3-x^1 Ebene

$$I_{12} = \int_{12, \text{oben}} \mathrm{d}x^1 \mathrm{d}x^2 F^3 \big(x^1, x^2, \Delta x^3 \big) + \int_{12, \text{unten}} \mathrm{d}x^1 \mathrm{d}x^2 \big(-F^3 \big(x^1, x^2, 0 \big) \big)$$

⇒ *ein* Integral, Integrand:

$$\begin{split} \underbrace{F^3(x^1,x^2,\Delta x^3-F^3(x^1,x^2,0))}_{\text{Taylor um }x^3 \equiv 0} \\ I_{12} &= \int_{12} \mathrm{d}x^1 \mathrm{d}x^2 \Delta x^3 \frac{\partial F^3}{\partial x^3} \big(x^1,x^2,0\big) \\ I_{12} &= \Delta x^1 \Delta x^2, \Delta x^3 \left(\frac{\partial F^3}{\partial x^3}\right) (0,0,0) + O(\Delta^4) \end{split}$$

Zusammen mit analoger Rechnung für I_{23}, I_{31} :

$$\begin{split} I &= V \bigg(\frac{\partial F^1}{\partial x^1} + \frac{\partial F^2}{\partial x^2} + \frac{\partial F^2}{\partial x^2} \bigg) = V(\partial^i F^i) = V \Big(\vec{\nabla} \vec{F} \Big) = V \Big(\div \vec{F} \Big) \\ \Delta x^1 Deltax^2 \Delta x^3 \end{split}$$

Definition 10.1 (Divergenz)

$$\div \vec{F} \equiv \vec{\nabla} \vec{F} = \partial^i F^i$$

Jetzt: Großen Volumen zusammengesetzt aus kleinen Quadern. Addiere alle Gleichungen vom Typ (Einsteinsche Summenkonvention \implies Summe über a)

$$I_{(a)} = V_{(a)} \begin{pmatrix} \vec{
abla} \vec{F} \\ \downarrow \\ ext{bei Pos. von "a"} \end{pmatrix}$$

In der Summe der Oberflächenintegral fallen "innere Flächen" weg. ⇒ Satz von Gauß:

$$\int_{O} d\vec{f} \vec{F} = \int_{V} d^{3}\vec{r} (\vec{\nabla} \vec{F})$$

Wichtig: $O = \partial V$ ist Oberfläche des Volumen V (keine "inneren" Flächen). Vergleich mit Stokes:

$$\oint_{A} d\vec{s} \vec{F} = \int_{A} d\vec{f} \left(\vec{\nabla} \times \vec{F} \right)$$

Sehr ähnlich, aber "eine Dimension weniger". Noch eine Dimension weniger als bei Stokes:

$$V(\vec{x}_b) - V(\vec{x}_a) = \int_C d\vec{l} \left(\vec{\nabla} V \right)$$

Allgemein: "Generalized Stokes Theorem"

Lücke schließen:

Ist "Abschneiden" von Ecken in unserer Näherung akzeptabel?

1. Volumenänderung: Gesamt V:

$$N_{ges} \sim \frac{V}{\Delta^3} \sim \frac{1}{\Delta^3}$$

Zahl der Oberflächenquader:

$$N_O \sim \frac{O}{\Delta^2} \sim \frac{1}{\Delta^2}$$

Beitrag der Oberflächenquader zum Volumen ist

$$N_O\Delta^3\sim\frac{1}{\Delta^2}\Delta^3\sim\Delta\stackrel{\Delta\to 0}{--}\to 0$$

2. Oberflächenänderung. Dazu wichtiger Fakt: Die Summe der Flächenvektoren eines Tetraeders ist Null. Herleitung: Seien $\vec{a}, \vec{b}, \vec{c}$ die Ortsvektoren dreier Punkte, sodass die Ortsvektoren, zusammen mit den Verbindungsvektoren der Punkte einen Tetraeder bilden. Die Fläche eines Dreiecks (mit Kanten \vec{a} , \vec{b}) ist

$$\vec{A}_{ab} = \frac{1}{2} \vec{a} \times \vec{b}$$

Unsere Behauptung, hier angewandt, lautet:

$$-\frac{1}{2} \left(\vec{a} \times \vec{b} \right) - \frac{1}{2} \left(\vec{b} \times c \right) - \frac{1}{2} (\vec{c} \times \vec{a}) + \frac{1}{2} \left(\left(\vec{b} - \vec{a} \right) \times (\vec{c} - \vec{a}) \right) = 0$$

Tetraeder \rightarrow allgemeine Dreieckspyramide.

10.4 Gaußscher Satz und Gravitation

O: Oberfläche deines Volumen

$$M = -\frac{1}{4\pi G} \int_{O} \frac{1}{m} \vec{F} d\vec{f}$$

Kraft durch M auf Probemasse

"Integrale Formulierung des Newtonsches Gravitationsgesetzes" Zunächst Spezialfall: Zentrierte Sphäre mit Radius R: "O_1"

$$I_1 \equiv \int_{O_1} \vec{F} \, \mathrm{d}\vec{f} = \int_{O_1} \left(-\frac{GmM}{R^2} \vec{e}_r \right) \left| \mathrm{d}\vec{f} \right| \vec{e}_r = -GmM2\pi$$

stimmt! Beliebiges Volumen: O_2

$$\begin{split} I_2 &= \int_{O_2} \vec{F} \mathrm{d}\vec{f} \\ I_2 - I_1 &= \int_{O_2} \vec{F} \mathrm{d}\vec{f} - \int_{O_1} \vec{F} \mathrm{d}\vec{f} \end{split}$$

mit \tilde{O}_1 : Fläche der Sphäre mit entgegengesetzter Orientierung

$$= \int_{O_2} \vec{F} d\vec{f} + \int_{\tilde{O}_1} \vec{F} d\vec{f}$$

mit " $O_2 - O_1$ "ist Oberfläche des "Zwischenvolumens $Vol_2 - Vol_1$ "

$$= \int_{O_2 - O_1} \vec{F} \mathrm{d}\vec{f}$$

mit Gaußschem Satz:

$$= \int_{Vol_2-Vol_1} \mathrm{d}^3\vec{r} \Big(\vec{\nabla} \vec{F} \Big) = - \int_{Vol_2-Vol_1} \mathrm{d}^3\vec{r} \Big(\vec{\nabla}^2 V \Big) \qquad (\vec{F} = -\vec{\nabla} V)$$

 $ec{
abla}^2 = \Delta$ ist der Laplace-Operator

$$V(\vec{r}) = -\frac{GmM}{r}, r = |\vec{r}| = \sqrt{{(x^1)}^2 + {(x^2)}^2 + {(x^3)}^2}$$

Fokussiere auf $\frac{1}{r}$:

$$\begin{split} \left(\vec{\nabla}\left(\frac{1}{r}\right)\right)^i &= \frac{\partial}{\partial x^i}\left(\frac{1}{r}\right) = \frac{\partial}{\partial x^i}\frac{1}{\sqrt{\sum_j(x^j)^2}} \\ &= -\frac{1}{2}\frac{2x^i}{\sqrt{\sum_j(x^j)^2}^3} \\ \vec{\nabla}^2\left(\frac{1}{r}\right) &= \vec{\nabla}\left(\vec{\nabla}\left(\frac{1}{r}\right)\right) = \frac{\partial}{\partial x^i}\left(-\frac{x^i}{\sqrt{\sum_j(x^j)^2}^3}\right) \\ &= -\left(\frac{3}{\sqrt{\sum_j(x^j)^2}^3} - \frac{3}{2}\frac{x^i2x^i}{\sqrt{\sum_j(x^j)^2}^5}\right) \\ &= -\left(\frac{3}{r^3} - \frac{3}{2}\frac{2r^2}{r^5}\right) = 0 \end{split}$$

- 1. beliebige Fläche: Ok
- 2. Translation \rightarrow beliebige Position der Masse: Ok

$$\begin{split} M_i &= -\frac{1}{4\pi mG} \int_O \vec{F}_i \mathrm{d}\vec{f} \\ M &= \sum_i M_i = -\frac{1}{4\pi mG} \int_O \Biggl(\sum_i \vec{F}_i \Biggr) \mathrm{d}\vec{f} \end{split}$$

Symmetriegründe: auf Sphäre mit Radius $r:\left|\vec{F}\right|=\ {\rm const}$

$$= -\frac{1}{4\pi mG} \underbrace{\int_{O} \vec{F} d\vec{f}}_{|\vec{F}|4\pi r^2}$$

$$|\vec{F}| = \frac{mMG}{r^2}$$

$$\int_{Vol} (\vec{\nabla} \vec{F}) dVol = -4\pi mG \int_{Vol} \rho dVol$$

$$\implies \vec{\nabla} \vec{F} = -4\pi G m \rho$$

$$\vec{F} = -\vec{\nabla} V, \phi = \frac{V}{m}$$

$$\vec{\nabla}^2 \phi = -4\pi G \rho$$

Definition 10.2 (Poisson-Gleichung)

$$\vec{\nabla}^2 \phi = 4\pi G \rho$$

Mit $\rho = 0$: Laplace-Gleichung

$$\vec{\nabla}^2 \phi = 0$$

Definition 10.3 (Laplace-Operator) Allgemein:

$$\begin{split} \vec{\nabla} \Big(\vec{\nabla} f \Big) &= \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3} \right)^T \left(\frac{\partial f}{\partial x^1}, \frac{\partial f}{\partial x^2}, \frac{\partial f}{\partial x^3} \right) \\ &= \underbrace{\left(\frac{\partial^2}{\partial (x^1)^2}, \frac{\partial^2}{\partial (x^2)^2}, \frac{\partial^2}{\partial (x^3)^2} \right)}_{\Delta} f \end{split}$$