Games, graphs, and machines

Recall the definitions

- [0] = The set $\{0\}$.
- [1] = The set of all positive numbers.

$$[0] + [0] =$$
 $[0] + [1] =$
 $[1] + [1] =$

$$[0] \cdot [0] =$$
 $[0] \cdot [1] =$
 $[1] \cdot [1] =$

1

Boolean powers

Let
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Find A^{*k} for $k = 1, 2, 3, \dots$

Can you explain the pattern using a graph?

Existence of paths

Let A be the adjacency matrix of the graph.

- Find A^{*k} for large k.
- Find $I + A + A^{*2} + \cdots + A^{*k}$ for large k.

Adding loops

Suppose we add loops.

- Now what is A^{*k} for large k?
- What about $I + A + A^{*2} + \cdots + A^{*k}$?

Modular arithmetic?

Let A be the adjacency matrix of

Can you describe A^{*k} for all k?

Min plus

Write the min/plus weighted adjacency matrix of

Assume that the loops have weight 0 (not shown).

Min/plus arithmetic

Find

$$3\odot (4\oplus 1)\oplus 1\odot (\infty\oplus 3).$$