Amendments to the Claims:

1-5 (cancelled)

6 (currently amended): An interleaver comprising:

a birefringent element assembly providing two <u>interim</u> output <u>components</u> <u>optical beams</u>, which are generally orthogonal to each other <u>in polarization direction</u>, for one input optical beam <u>at the interleaver input</u>;

a reflector configured to direct the two <u>interim output</u> components <u>optical beams</u> from the birefringent element assembly back through the birefringent element assembly <u>to the interleaver</u> <u>output</u>;

The interleaver as recited in claim 1,

wherein the birefringent element assembly comprises three birefringent elements which are orientated to provide birefringent phase delays to the optical beams passing through them; and

the phase delays and the angular orientations of birefringent elements of the birefringent element assembly are selected from the <u>following</u> table <u>such that two final output optical beams</u>, <u>wherein each final output optical beam consists of a group of optical components of interleaved optical wavelengths</u>, are obtained at the interleaver output for the input optical beam:

Table III

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ}\pm\varphi_3$, $90^{\circ}\pm\varphi_2$, $90^{\circ}\pm\varphi_1$ (parallel component) $\pm\varphi_3$, $\pm\varphi_2$, $\pm\varphi_1$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ}\pm\varphi_{3}$, $90^{\circ}\pm\varphi_{2}$, $90^{\circ}\pm\varphi_{1}$ (parallel component) $\pm\varphi_{3}$, $\pm\varphi_{2}$, $\pm\varphi_{1}$ (orthogonal component) where $\Gamma - \Gamma' = (2l + 1) \pi$
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$90^{\circ}\pm\varphi_{1}$, $90^{\circ}\pm\varphi_{2}$, $90^{\circ}\pm\varphi_{3}$ (parallel component) $\pm\varphi_{1}$, $\pm\varphi_{2}$, $\pm\varphi_{3}$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$\pm \varphi_1, \pm \varphi_2, \pm \varphi_3$ (parallel component) $90^{\circ} \pm \varphi_1, 90^{\circ} \pm \varphi_2, 90^{\circ} \pm \varphi_3$ (orthogonal component) where $\Gamma - \Gamma' = (2l + 1) \pi$

wherein m1, m2, m3, k1, k2, k3 and l are integers $(0, \pm 1, \pm 2, \ldots)$.

7-11 (cancelled)

12 (previously amended): The interleaver as recited in elaim-1 claim 6, wherein the birefringent element assembly comprises a first birefringent element having an angular orientation of φ_1 , a second birefringent element having an angular orientation of φ_2 and a third birefringent element having an angular orientation of φ_3 ;

wherein an order of the first birefringent element, second birefringent element, and third birefringent element is selected from the group consisting of:

first birefringent element, second birefringent element, third birefringent element; third birefringent element, second birefringent element, first birefringent element; and

wherein the angular orientations are with respect to a polarization direction of light entering the birefringent element assembly.

13 (previously amended): The interleaver as recited in elaim 1 claim 6, wherein the birefringent element assembly comprises:

a first birefringent element having an angular orientation of 45° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of Γ ;

a second birefringent element has an angular orientation of -21° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ ; and

a third birefringent element has an angular orientation of 7° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ .

14 (currently amended): An interleaver comprising:

a birefringent element assembly providing two <u>interim</u> output components <u>optical beams</u>, which are generally orthogonal to each other <u>in polarization direction</u>, for one input optical beam <u>at the interleaver input</u>;

a reflector configured to direct the two <u>interim output components</u> <u>optical beams</u> from the <u>birefringent element assembly</u> back through the birefringent element assembly <u>to the interleaver</u> <u>output</u>;

The interleaver as recited in claim 1,

wherein the birefringent element assembly comprises two birefringent elements which are orientated to provide birefringent phase delays to the optical beams passing through them; and

the angular orientations (φ_1 and φ_2) and the corresponding phase delays of the two birefringent elements are selected from the <u>following</u> table <u>such that two final output optical</u> <u>beams</u>, wherein each final output optical beam consists of a group of optical components of interleaved optical wavelengths, are obtained at the interleaver output for the input optical beam:

Table III

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ}\pm\varphi_3$, $90^{\circ}\pm\varphi_2$, $90^{\circ}\pm\varphi_1$ (parallel component) $\pm\varphi_3$, $\pm\varphi_2$, $\pm\varphi_1$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$.\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ} \pm \varphi_3$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_1$ (parallel component) $\pm \varphi_3$, $\pm \varphi_2$, $\pm \varphi_1$ (orthogonal component) where $\Gamma - \Gamma' = (2l + 1) \pi$
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$90^{\circ}\pm\varphi_1$, $90^{\circ}\pm\varphi_2$, $90^{\circ}\pm\varphi_3$ (parallel component) $\pm\varphi_1$, $\pm\varphi_2$, $\pm\varphi_3$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$\pm \varphi_1, \pm \varphi_2, \pm \varphi_3$ (parallel component) $90^{\circ} \pm \varphi_1, 90^{\circ} \pm \varphi_2, 90^{\circ} \pm \varphi_3$ (orthogonal component) where $\Gamma - \Gamma' = (2l + 1) \pi$

Wherein m1, m2, m3, k1, k2, k3 and l are integers $(0, \pm 1, \pm 2, \ldots)$.

15 (previously amended): The interleaver as recited in claim 1 claim 14, wherein the birefringent element assembly comprises:

a first birefringent element having an angular orientation of 45° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of Γ ; and

the <u>a</u> second birefringent element has an angular orientation of -21° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ ;

16-18 (cancelled)

Correction to Typos in Table III for Claim 6 (Previously Presented – on March 9, 2004):

In the patent publication US 2003/0025998 A1 (Feb. 6, 2003), there are four typos for Table III under claim 6 and paragraph [0143]:

"100₁" (happened at two places) should be " φ_1 " and "100₃" (happened at two places) should be " φ_3 ", respectively.

Table III in the specification paragraph [0129] is correct. Please help to make correction if this application is allowed to issue.