CC2

Documents, calculatrices et portables interdits. Les réponses doivent être accompagnées d'une justification.

Durée: 1h

Exercice 1. a) Calculer la fonction dérivée de $f: x \mapsto \cos(x^2)$.

b) Déterminer $\lim_{x \to \sqrt{\pi}} \frac{\cos(x^2) + 1}{x - \sqrt{\pi}}$.

Exercice 2. a) Résoudre l'inéquation $\ln(4x+1) > 2$.

b) Résoudre l'équation $\ln(x+1) + \ln(x) = 0$.

Exercice 3. On considère la fonction $g:]0,+\infty[\to\mathbb{R}$ définie par

$$\forall x \in]0, +\infty[\,, \ g(x) = \frac{e^x}{x}\,.$$

- a) Quelles est la limite de g en 0 (à droite)?
- b) Calculer g'(x) et étudier son signe. Dresser le tableau de variation de la fonction g. On rappelle que $\lim_{x\to +\infty}\frac{e^x}{x}=+\infty$.
- c) La fonction g admet-elle un minimum global? Un maximum global?
- d) Trouver une condition nécessaire et suffisante sur le réel λ pour que l'équation $e^x = \lambda x$ ait au moins une solution dans l'intervalle $]0, +\infty[$.

Exercice 4. On considère la fonction $h: x \mapsto (1+x)^{1/4}$.

- a) Quel est l'ensemble de définition de h?
- b) Calculer la fonction dérivée et la fonction dérivée seconde de h, et préciser l'ensemble de définition de chacune de ces fonctions.
- c) Ecrire la formule de Taylor-Young en 0 à l'ordre 2 pour la fonction h.
- d) Déterminer $\lim_{x\to 0} \frac{4(1+x)^{1/4} 4 x}{x^2}$.