第17章: LPC111x Flash编程固件

Rev. 00.10 — 11 January 2010

User manual

1. 如何阅读本章

LPC111x系列处理器Flash配置的差异如表 17-213所列。

表 213. LPC111x flash 配置

型号	Flash	
LPC1111	8 kB	
LPC1112	16 kB	
LPC1113	24 kB	
LPC1114	32 kB	

注释: 除了 ISP 和 IAP 命令,Flash存储器的访问时间可以在Flash控制块的一个寄存器中配置,具体请查阅 17–10小节。

2. 引导加载程序

引导加载程序(BootLoader)在系统复位后执行初始化操作,并且提供完成Flash存储器编程的方式。它可执行空处理器的初始化,也可对一个已写入程序的处理器进行擦除或重写,也可以在系统执行阶段对 Flash 存储器进行编程。

3. 特性

- 在线编程: 在线编程 (ISP) 是使用引导加载程序和异步串口,对片上Flash进行编程 或重新编程。可以通过这种方式向用户板烧写程序。
- 现场编程:现场编程 (IAP) 是指应用代码直接执行对片上Flash存储器的擦除和编程。
- Flash 访问时间可以通过Flash 控制模块一个寄存器来配置。

4. 应用

引导加载程序(BootLoader)提供在线编程(ISP)和现场编程(IAP)两种实现芯片 Flash存储器编程的方式。

5. 描述

引导加载程序在每次系统上电或复位时执行。引导加载程序可以执行ISP 命令处理程序或用户应用代码。复位后如果在PIOO_1引脚出现一个低电平,被当作开始ISP命令处理程序的外部硬件请求。当RESET引脚的上升沿信号到来时,电源引脚处于正常电平,需要对PIOO_1信号采样3 ms以上,以确定是执行用户代码还是ISP处理程序。如果 PIOO_1

UM10398_0

User manual

© NXP B.V. 2010. All rights reserved.

第17章: LPC111x Flash编程固件

采样为低,且看门狗溢出标志被置位,则开始 ISP处理程序的外部硬件请求被忽略。如果没有 ISP 请求 (复位后PIO0_1为高电平),则开始寻找有效的用户程序。如果找到有效的用户程序,则将执行权限转给该用户程序。如果没有找到有效的用户程序,则调用自动波特率程序。

PIO0_1引脚作为 ISP 硬件请求时要特别注意。由于 PIO0_1 复位后处于高阻态,需要用户提供外部硬件 (上拉电阻或其它器件) 使该引脚处于定义的状态。否则可能不能如预进入 ISP 模式。

5.1 复位后的存储器映射

系统引导块共占用16 kB。引导块占据从地址0x1FFF 0000开始的一段存储区域。系统引导程序设计为从此处开始运行,但是 ISP和IAP程序 使用部分片上 RAM。如何使用RAM在稍后的小节中会描述。复位后,片上Flash引导块中的中断向量表也会被激活,也就是说,从地址0x0000 0000开始的512字节的存储器区域也是可见的。

5.1.1 有效用户代码的判定标准

有效用户代码的判定标准:保留的 Cortex-M0 中断向量位置 7 (在中断向量表中偏移地址 为0x 0000 001C) 应该包含向量表入口0到6的检验和的补码。 这将导致前 8 个表入口的检验和为 0。引导程序代码检查Flash扇区0的前8个位置的检验和。如果结果为0,则将执行权限交给用户代码

如果结果无效,自动波特率程序通过串口 0 与主机进行同步。主机发送一个 '?' (0x3F)作为同步字符然后等待应答信号。主机方串口设置应该是 8 位数据、1位停止位无校验位。自动波特率程序按自己的频率计算收到同步字符的位时间,然后对串口波特率发生器进行编程。它也发送一个ASCII 字符串 ("Synchronized<CR><LF>") 到主机。作为应答主机也发送同样的字符串 ("Synchronized<CR><LF>")。自动波特率程序检查接收到的字符串以确认同步。如果同步以确认则发送 "OK<CR><LF>"字符串到主机。主机将以自己正在运行的晶振频率作为应答。例如,主机运行在 10 MHz,主机应答应该是 "10000<CR><LF>";接收到晶振频率后,"OK<CR><LF>"字符串被发送到主机。如果同步没有被确认,自动波特率程序仍然等待同步字符。为确保自动波特率程序能够正确运行而不调用 ISP,CCLK 频率必须大于等于10 MHz。

一旦晶振频率接收部分完成,将调用 ISP 命令处理。为了安全考虑,在执行flash 擦写操作之前和执行 "Go" 命令之前,应该调用解锁命令 "Unlock"。其他命令不用调用解锁命令。每次 ISP 会话只需要调用执行一次解锁命令。解锁命令的详细的描述见 第227页的17-7 "ISP 命令"小节。

第17章: LPC111x Flash编程固件

5.2 通信协议

所有的 ISP 命令都必须以 ASCII 字符串的形式发送。符串必须以回车 (CR) 和/或换行(LF) 控制符结尾。额外的 <CR> 和<LF> 控制符将被忽略。所有的 ISP 应答信号也以 <CR><LF> 控制符结尾的 ASCII 字符串形式发送。数据以 UU-encoded 格式发送和接收。

5.2.1 ISP命令格式

"命令 参数 0 参数 1 ... 参数 n<CR><LF>""数据"("数据"只适用于写命令)。

5.2.2 ISP响应格式

"返回代码<CR><LF>响应_0<CR><LF>响应_1<CR><LF> ··· 响应 n<CR><LF>"数据"("数据"只适用于读命令)

5.2.3 ISP 数据格式

数据流采用 UU 编码格式。UU 编码算法将 3 字节二进制数据转换成 4 字节的可打印 ASCII 字符。该编码的效率高于 Hex 格式; Hex 格式将 1 字节二进制数据转换成 2 字节ASCII Hex数据。发送器在发送20个UU编码行之后发送校验和。任何UU编码行的长度都不应超过 61 个字符(字节),也就是说它可以保持 45 个数据字节。接收器应当将该校验和与接收到的数据的校验和比较。如果校验和匹配,接收器响应"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,接收器则响应

"RESEND<CR><LF>"。作为响应,发送器应当将字节重新发送。

UU-encode 的详细描述可以在 wotsit 网页得到。

5.2.4 ISP 流量控制

软件XON/XOFF流量控制方法用来防止由缓冲区溢出产生的数据丢失。当数据接收过快,接收端将发送一个ASCII控制符DC3(停止)停止数据流。发送 ASCII 控制符 DC1 (开始)则恢复数据流。主机也应支持相同的流量控制协议。

5.2.5 ISP 命令中止

通过发送 ASCII 控制字符 "ESC"可以终止命令。这个特殊字符没有被当作ISP命令写入 "ISP 命令s" 部分。一旦接收到 ESC 字符,ISP 命令处理程序将等待一个新的命令。

5.2.6 ISP期间的中断

系统复位之后,Flash引导区的中断向量表有效。

5.2.7 IAP期间的中断

在擦写操作期间,片上flash 存储器不可访问。当用户Flash区激活后,用户程序代码开始 执行中断向量。在执行 flash 擦写 IAP 调用,用户必须禁止中断,或确保用户中断向量在 RAM中,且中断处理程序也在RAM中。IAP代码不能使用和禁止中断

UM10398_0 © NXP B.V. 2010. All rights reserved

User manual

UM10398

第17章: LPC111x Flash编程固件

5.2.8 ISP 命令处理程序使用的 RAM

ISP 命令使用片上地址从 0x1000 017C 到 0x1000 025B 的RAM。用户可以使用该区域, 但复位后内容可能会丢失。Flash 编程命令使用片上最顶端的32字节RAM。堆栈位于 RAM 顶端 - 32。用户最大可使用的堆栈是256字节,堆栈是向下增加的。

5.2.9 IAP命令处理程序使用的 RAM

Flash编程命令使用片上RAM顶端的32字节。用户最大可使用的堆栈是128字节,堆栈是向 下增加的。

UM10398 0 © NXP B.V. 2010. All rights reserved. Rev. 00.10 — 11 January 2010

222 of 326

223 of 326

第17章: LPC111x Flash编程固件

5.3 启动过程流程图

5.4 扇区编号

一些 IAP 和 ISP 命令 在 "扇区" 操作并指定扇区编号。下表列出了LPC111x 系列处理器中扇区编号和存储器地址之间的对应关系。

UM10398_0 © NXP B.V. 2010. All rights reserved.

224 of 326

第17章: LPC111x Flash编程固件

表 214. LPC111x 系列处理器扇区编号

扇区 编号	扇区 大小	存储器地址范围	LPC1111 8 kB flash	LPC1112 16 kB flash	LPC1113 24 kB flash	LPC1114 32 kB flash
0	4 kB	0x0000 0000 - 0x0000 0FFF	有	有	有	有
1	4 kB	0x0000 1000 - 0x0000 1FFF	有	有	有	有
2	4 kB	0x0000 2000 - 0x0000 2FFF	-	有	有	有
3	4 kB	0x0000 3000 - 0x0000 3FFF	-	有	有	有
4	4 kB	0x0000 4000 - 0x0000 4FFF	-	-	有	有
5	4 kB	0x0000 5000 - 0x0000 5FFF	-	-	有	有
6	4 kB	0x0000 6000 - 0x0000 6FFF	-	-	-	有
7	4 kB	0x0000 7000 - 0x0000 7FFF		-	-	有

6. 代码读保护 (CRP)

代码读保护是一种允许用户在系统上设置以不同的片上Flash安全级别访问以及限制ISP使用的保护机制。如果需要,程序可通过在 Flash 0x0000 02FC地址处写入一个特征值来调用CRP。代码读保护不影响IAP 命令。

注意: 任何CRP 改动,必须是在系统复位后才会生效。

第17章: LPC111x Flash编程固件

表 215. 代码读保护选项

名称	写入0x0000 02FC的模式值	描述
NO_ISP	0x4E69 7370	阻止 PIO0_1 引脚进入 ISP 模式。 PIO0_1 可以正常行使其它功能.
CRP1	0x12345678 0x87654321	禁止通过JTAG引脚访问芯片。该模式允许通过以下ISP命令更新部分flash,但受到限制: 写 RAM 命令不能访问地址 0x1000 0300 以下的 RAM。 复制 RAM 到 flash 的命令不能写 0 扇区。 擦除命令,只有当所有扇区被擦除才可以擦除0扇区。 比较命令不可用。 读存储器命令不可用。 该模式在需要 CRP同时又需要flash区块更新、但不允许擦除所有扇区时非常有用。由于部分更新时比较命令不可用,次级引导区采用校验机制以确保flash的完整性。 通过 JTAG 引脚访问芯片被禁止。以下 ISP命令不可用。
		 读存储器 写 RAM 执行 复制RAM 到 flash 比较 当CRP2被允许后,ISP擦除命令只能擦除用户扇区。
CRP3	0x43218765	禁止通过JTAG引脚访问芯片。如果扇区0位置包含有效的用户代码,通过拉低PIO0_1引脚来禁止进入ISP。 该模式使用 PIO0_1引脚有效地禁止ISP重写。用户程序可使用IAP调用或重调用ISP命令提供flash更新机制,允许通过UART更新flash。 注意:如果写入 CRP3,将不能在处理器上进行批量测试。

表 216. 代码读保护 硬件/软件交互

CRP 选项	用户代码有效	PIO0_1 引脚 复位时状态	允许 JTAG	进入 ISP 模式	在 ISP模式下 更新部分flash
无	否	x	是	是	是
无	是	高	是	否	NA
无	是	低	是	是	是
CRP1	是	高	否	否	NA
CRP1	是	低	否	是	是
CRP2	是	高	否	否	NA

UM10398_0 © NXP B.V. 2010. All rights reserved.

225 of 326

第17章: LPC111x Flash编程固件

表 216. 代码读保护 硬件/软件交互

CRP 选项	用户代码有效	PIO0_1 引脚 复位时状态	允许 JTAG	进入 ISP 模式	在 ISP模式下 更新部分flash
CRP2	是	Low	否	是	否
CRP3	是	х	否	否	NA
CRP1	否	х	否	是	是
CRP2	否	x	否	是	否
CRP3	否	x	否	是	否

表 217. 不同的 CRP级别所允许的ISP命令

ISP 命令	CRP1	CRP2	CRP3 (不允许进入 ISP 模式)
解锁	允许	允许	n/a
设置波特率	允许	允许	n/a
回显	允许	允许	n/a
写RAM	允许; 仅限 0x1000 0300 之上	禁止	n/a
读存储器	禁止	禁止	n/a
准备写操作用的扇区	允许	允许	n/a
复制 RAM 到 flash	允许;禁止复制到扇区0	禁止	n/a
执行	禁止	禁止	n/a
擦除扇区	允许; 仅当所有扇区被删除时,可以删除扇区0。	允许; 仅限所有 扇区。	n/a
空扇区检查	禁止	禁止	n/a
读分类ID	允许	允许	n/a
读Boot代码版本	允许	允许	n/a
比较	禁止	禁止	n/a
读 UID	允许	允许	n/a

在选定CRP模式后,允许通过ISP访问芯片,不支持和受限制的ISP 命令将被终止,并返回代码 CODE_READ_PROTECTION_ENABLED。

6.1 ISP 进入保护

除了上述三种CRP模式,用户可以阻止通过PIO0_1引脚进入ISP模式,从而释放PIO0_1引脚用于其他功能。这通常叫做NO_ISP模式。通过向地址 0x0000 02FC 写入特征值0x4E69 7370 进入NO_ISP模式。

226 of 326

第17章: LPC111x Flash编程固件

7. ISP 命令

以下命令是ISP 命令处理程序所接受的命令。每个命令都有具体的状态码。当接收到未定义的命令时,命令处理程序返回代码INVALID_COMMAND。命令和返回代码为ASCII格式。

只有当接收到的 ISP 命令执行完毕时,ISP 命令处理程序才发送CMD_SUCCESS。这时主机才能发送新的 ISP 命令。"设置波特率"、"写 RAM"、"读存储器"和"运行"命令除外。

表 218. ISP 命令总览

ISP 命令	说法	描述
解锁	U <解锁码>	<u>表 17–219</u>
设置波特率	B <波特率> <停止位>	<u>表 17–220</u>
回显	A <设定>	表 17–221
写RAM	W <起始地址> <字节数>	表 17–222
读存储器	R <地址> <字节数>	表 17–223
准备写操作用的扇区	P <起始扇区编号> <结束扇区编号>	表 17–224
复制 RAM 到 flash	C <flash 地址=""> <ram 地址=""> <字节数></ram></flash>	<u>表 17–225</u>
执行	G <地址> <模式>	<u>表 17–226</u>
擦除扇区	E <起始扇区编号> <结束扇区编号>	<u>表 17–227</u>
空扇区检查	I <起始扇区编号r> <结束扇区编号>	表 17–228
读分类ID	J	表 17–229
读Boot代码版本	K	表 17–231
比较	M <地址1> <地址2> <字节数>	表 17–232
读UID	N	表 17–233

7.1 解锁 <解锁码>

表 219. ISP解锁命令

命令	U
输入	解锁码: 23130 ₁₀
返回码	CMD_SUCCESS
	INVALID_CODE
	PARAM_ERROR
描述	该命令用于解锁Flash写、擦除和运行命令。
举例	"U 23130 <cr><lf>" 解锁Flash读写、擦除&运行命令。</lf></cr>

第17章: LPC111x Flash编程固件

7.2 设置波特率 <波特率> <停止位>

表 220. ISP 设置波特率命令

命令	В
输入	波特率: 9600 19200 38400 57600 115200 230400
	停止位: 1 2
返回码	CMD_SUCCESS
	INVALID_BAUD_RATE
	INVALID_STOP_BIT
	PARAM_ERROR
描述	该命令用于改变波特率。新的波特率在命令处理程序发送返回代码
	CMD_SUCCESS之后生效。
举例	"B 57600 1 <cr><lf>" 设置串口波特率57600bps和1个停止位。</lf></cr>

7.3 回显 <设定>

表 221. ISP回显命令

命令	A
输入	Setting: ON = 1 OFF = 0
返回码	CMD_SUCCESS
	PARAM_ERROR
描述	回显命令的默认设定是ON。当ON时,ISP命令处理程序将接收到的串行数据发送回主机。
举例	"A 0 <cr><lf>" 关闭回显。</lf></cr>

7.4 写RAM <起始地址> <字节数>

主机应当在接收到CMD_SUCCESS返回代码后发送数据。主机应当在发送20个UU编码行之后发送校验和。校验和通过累加原始数据(UU编码之前)获得,在传输完20行UU编码后被重置。任何UU编码行的长度都不应超过61个字符(字节),即它可以保持45个数据字节。当数据少于20个UU编码行时,按照实际发送的字节数计算校验和。ISP命令处理器程序会将它与接收字节的校验和相比较。若校验和匹配,那么主机响"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,主机响应"RESEND<CR><LF>",作为响应ISP命令处理程序将重新发送字节。

228 of 326

第17章: LPC111x Flash编程固件

表 222. ISP 写 RAM 命令

命令	W
输入	起始地址:被写RAM的起始地址,该地址边界应当字对齐。.
	字节数:写入的字节数,字节数应当为4的倍数。
返回码	CMD_SUCCESS
	ADDR_ERROR (地址边界不是字对齐)
	ADDR_NOT_MAPPED
	COUNT_ERROR (字节数不是 4 的整数倍)
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
描述	该命令用于将数据下载到RAM。数据应当为UU编码格式。该命令在启用代码读保护时被禁止。
举例	"W 268436224 4 <cr><lf>" 写 4 字节数据到地址 0x1000 0300 处。</lf></cr>

7.5 读存储器 <地址> <字节数>

数据流紧随命令成功返回码之后。发送完 20个UU编码行之后发送校验和。校验和是通过累加原始数据(UU编码之前)产生的,在传输完 20行 UU 编码后被重置。任何UU编码行的长度都不超过61个字符(字节),即它可以保持45 个数据字节。当数据少于20个UU编码行时,按照实际发送的字节数计算校验和。主机将它与接收字节的校验和相比较。如果校验和匹配,那么主机响"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,主机响应"RESEND<CR><LF>"。作为响应,ISP命令处理程序将重新发送字节。

表 223. ISP 读存储器命令

命令R输入起始地:被读出数据字节的地址,该地址边界应当字对齐。字节数:读出的字节数。计数值应当为4的倍数。返回码CMD_SUCCESS 后面跟 <实际数据 (UU-编码)> ADDR_ERROR (地址边界不是字对齐的) ADDR_NOT_MAPPED COUNT_ERROR (字节数不是4的整数倍) PARAM_ERROR CODE_READ_PROTECTION_ENABLED描述该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。举例"R 268435456 4 <cr><lf>"从地址 0x1000 0000处读 4 字节 数据。</lf></cr>	**	
字节数:读出的字节数。计数值应当为4的倍数。 返回码	命令	R
返回码 CMD_SUCCESS 后面跟 <实际数据 (UU-编码)> ADDR_ERROR (地址边界不是字对齐的) ADDR_NOT_MAPPED COUNT_ERROR (字节数不是4的整数倍) PARAM_ERROR CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。	输入	起始地址: 被读出数据字节的地址,该地址边界应当字对齐。
ADDR_ERROR (地址边界不是字对齐的) ADDR_NOT_MAPPED COUNT_ERROR (字节数不是4的整数倍) PARAM_ERROR CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。		字节数: 读出的字节数。计数值应当为4的倍数。
ADDR_NOT_MAPPED COUNT_ERROR (字节数不是4的整数倍) PARAM_ERROR CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。	返回码	CMD_SUCCESS 后面跟 <实际数据 (UU-编码)>
COUNT_ERROR (字节数不是4的整数倍) PARAM_ERROR CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。		ADDR_ERROR (地址边界不是字对齐的)
PARAM_ERROR CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。	^	ADDR_NOT_MAPPED
CODE_READ_PROTECTION_ENABLED 描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。		COUNT_ERROR (字节数不是4的整数倍)
描述 该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。		PARAM_ERROR
		CODE_READ_PROTECTION_ENABLED
举例 "R 268435456 4 <cr><lf>" 从地址 0x1000 0000处读 4 字节 数据。</lf></cr>	描述	该命令用于读出RAM或Flash存储器的数据。该命令在启用代码读保护时被禁止。
	举例	"R 268435456 4 <cr><lf>" 从地址 0x1000 0000处读 4 字节 数据。</lf></cr>

7.6 准备写操作用的扇区 <起始扇区号> <结束扇区号>

该命令将Flash写/擦除操作分成两个步骤处理。

UM10398_0 © NXP B.V. 2010. All rights reserved

第17章: LPC111x Flash编程固件

表 224. ISP 准备写操作用的扇区命令

命令	Р	
输入	起始扇区号	
	结束扇区号: 应当大于等于起始扇区号	
返回码	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	PARAM_ERROR	
描述	该命令必须在执行"复制RAM到Flash"或"擦除扇区"命令之前执行。这两个命令的成功执行会导致相关的扇区再次被保护。该命令不能用于boot扇区。如果要准备单个扇区,可将起始和结束扇区号设置为相同值。	
举例	"P 0 0 <cr><lf>" 准备Flash扇区0。</lf></cr>	

7.7 复制 RAM 到 flash <Flash 地址> <RAM 地址> <字节数>

表 225. ISP复制命令

命令	C		
输入	Flash 地址(DST): 要写入数据字节的目标Flash地址。目标地址的边界应当为256字节对齐。		
RAM 地址(SRC): 读出数据字节的源RAM地址。			
	字节数: 写入字节的数目。应当为 256 512 1024 4096		
返回码 CMD_SUCCESS			
	SRC_ADDR_ERROR (地址边界不是字对齐)		
	DST_ADDR_ERROR (地址边界错误)		
	SRC_ADDR_NOT_MAPPED		
	DST_ADDR_NOT_MAPPED		
	COUNT_ERROR (字节计数值不是256 512 1024 4096)		
	SECTOR_NOT_PREPARED_FOR WRITE_OPERATION		
	▶ BUSY		
	CMD_LOCKED PARAM_ERROR		
	CODE_READ_PROTECTION_ENABLED		
描述	该命令用于对Flash存储器编程。受影响的扇区应当先通过调用"准备写操作用的扇区"命令来做准备。当成功执行复制命令后,扇区将自动受到保护。该命令不能写boot扇区。该命令在启用代码读保护时被禁止。		
举例	举例 "C 0 268467504 512 <cr><lf>" 从 RAM 地址 0x1000 0800 复制 512 字节数据到flash 地址 0。</lf></cr>		

第17章: LPC111x Flash编程固件

7.8 执行 <地址> <模式>

表 226. ISP 执行命令

命令	G		
输入	地址: 代码执行的起始Flash或RAM地址。该地址边界应当以字对齐。		
	模式::T(执行Thumb模式下的程序) A(执行ARM模式下的程序)。		
返回码	CMD_SUCCESS		
	ADDR_ERROR		
ADDR_NOT_MAPPED CMD_LOCKED PARAM_ERROR			
			CODE_READ_PROTECTION_ENABLED
		描述	该命令用于执行(调用)位于 RAM 或 Flash 存储器中的程序。一旦成功执行该命
	令,就有可能不再返回ISP命令处理程序。该命令在启用代码读保护时被禁止。		
举例	"G 0 A <cr><lf>" 跳转到ARM模式下的地址 0x0000 0000 处。</lf></cr>		

7.9 擦除扇区 <起始扇区编号> <结束扇区编号>

表 227. ISP擦除扇区命令

命令	E	
输入	起始扇区编号	
	结束扇区编号: 应当大于等于起始扇区号。	
返回码	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	CMD_LOCKED	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
描述	该命令用于擦除片内 Flash 存储器的一个或多个扇区。boot扇区不能由该命令擦除。	
	该命令在启用代码读保护时只允许擦除所有用户扇区。	
举例	"E 2 3 <cr><lf>" 擦除 flash 扇区 2 和 3。</lf></cr>	
- 华例	"E 2 3 <ur><lf>" 擦除 flash 扇区 2 和 3。</lf></ur>	

第17章: LPC111x Flash编程固件

7.10 空扇区检查<起始扇区编号> <结束扇区编号>

表 228. ISP 空扇区检查命令

命令	1		
输入	起始扇区编号		
	结束扇区编号: 应当大于等于起始扇区号。		
返回码 (返回码 CMD_SUCCESS		
	SECTOR_NOT_BLANK (后面跟<第一个非空字的偏移量> <非空字的内容>) INVALID_SECTOR		
	PARAM_ERROR		
描述	该命令用于对片内Flash存储器的一个或多个扇区进行查空。		
	由于扇区 0 的前 64 字节重新映射到 Flash boot 扇区,因此对其进行查空一定会失败。		
举例	"I 2 3 <cr><lf>" 对Flash扇区2和 3进行查空。</lf></cr>		

7.11 读分类ID号

表 229. ISP读分类ID号

命令	J
输入	无
返回码	CMD_SUCCESS后跟ASCII格式的分类ID号。 (见表 17-230 "LPC111x 分类ID号").
描述	该命令用于读取器件的分类ID号。

表 230. LPC111x系列处理器分类ID号

处理器	ASCII/dec 编码	Hex 编码
LPC1111FHN33/101	69095467	0x041E 502B
LPC1111FHN33/201	68571179	0x0416 502B
LPC1112FHN33/101	70078507	0x042D 502B
LPC1112FHN33/201	69554219	0x0425 502B
LPC1113FHN33/201	70537259	0x0434 502B
LPC1113FHN33/301	70520875	0x0434 102B
LPC1113FBD48/301	70520875	0x0434 102B
LPC1114FHN33/201	71585835	0x0444 502B
LPC1114FHN33/301	71569451	0x0444 102B
LPC1114FBD48/301	71569451	0x0444 102B
LPC1114FA44/301	71569451	0x0444 102B

第17章: LPC111x Flash编程固件

7.12 读Boot 代码版本号

表 231. ISP 读 Boot 代码版本号命令

命令	K	
输入	无	
返回码	CMD_SUCCESS 后跟2字节ASCII格式的boot代码版本号 将其解释为<字节1 (主)>.<字节0 (次)>。	
描述	该命令用于读取boot代码版本号。	

7.13 比较 <地址1> <地址2> <字节数>

表 232. ISP 比较命令

命令	M		
输入	地址1 (DST):要比较的目标Flash或RAM的起始地址。该地址边界应当字对齐。 地址2 (SRC):要比较的源Flash或RAM的起始地址。该地址边界应当字对齐。 字节数:待比较的字节数,计数值应当为4的倍数。		
返回码	CMD_SUCCESS (源和目标的数据相同) COMPARE_ERROR (后面跟第一个不匹配字节的地址) COUNT_ERROR (字节数不是4的倍数) ADDR_ERROR ADDR_NOT_MAPPED PARAM_ERROR		
描述	运命令用来比较两段的存储器中的内容。. 当源或目标地址是从地址 0开始的前512字节中的任意一个时,比较结果可能不正确。前512个字节重新映射到boot ROM。		
举例	"M 8192 268468224 4 <cr><lf>"将0x108000开始的RAM中的4个字节与0x2000 开始的Flash中的4个字节相比较。</lf></cr>		

7.14 读 UID

表 233. 读 UID 命令

命令	N
输入	无
返回码	CMD_SUCCESS 后跟4个32位ASCII码的晶元测试信息。字的低地址部分先发送。
描述	该命令用来读取UID。

UM10398_0 © NXP B.V. 2010. All rights reserved.

第17章: LPC111x Flash编程固件

7.15 ISP返回码

表 234. ISP返回码总览

大 Zot. ioi Zeinio元			
返回码	助记符	描述	
0	CMD_SUCCESS	命令被成功执行。只有当主机发出的命令被成功执 行完毕后,才由 ISP 处理程序发出。	
1	INVALID_COMMAND	无效命令。	
2	SRC_ADDR_ERROR	源地址边界没有字对齐。	
3	DST_ADDR_ERROR	目标地址边界没有字对齐。	
4	SRC_ADDR_NOT_MAPPED	源地址没有位于存储器映射中。计数值必须考虑是 否可用。	
5	DST_ADDR_NOT_MAPPED	目标地址没有位于存储器映射中。计数值必须考虑 是否可用。	
6	COUNT_ERROR	字节计数值不是 4 的倍数或是一个非法值。	
7	INVALID_SECTOR	扇区号无效或结束扇区号小于起始扇区号。	
8	SECTOR_NOT_BLANK	扇区非空。	
9	SECTOR_NOT_PREPARED_FOR_ WRITE_OPERATION	为写操作准备扇区命令未执行。	
10	COMPARE_ERROR	源和目标数据不相等。	
11	BUSY	Flash编程硬件接口忙。	
12	PARAM_ERROR	参数不足或无效参数。	
13	ADDR_ERROR	地址边界没有字对齐。	
14	ADDR_NOT_MAPPED	地址没有位于存储器映射中。计数值必须考虑是否可 用。	
15	CMD_LOCKED	命令被锁定。	
16	INVALID_CODE	解锁码无效。	
17	INVALID_BAUD_RATE	无效的波特率设定。	
18	INVALID_STOP_BIT	无效停止位设定。	
19	CODE_READ_PROTECTION_ ENABLED	允许代码读保护。	

8. IAP命令

对于IAP来说,应当通过寄存器 r0 中的字指针指向存储器(RAM)包含的命令代码和参数来调用 IAP 程序。 IAP 命令的结果返回到寄存器 r1 所指向的结果表。用户可以通过传送相同的指针到寄存器 r0 和 r1 重用命令表得到结果。参数表应当足够大,以保证在结果数多余参数数时仍能容纳所有的结果。参数传递见图17-51。命令参数和结果的数目根据 IAP命令而有所不同。命令参数的最大数目为5个,是"复制RAM到Flash"命令。

User manual

第17章: LPC111x Flash编程固件

命令结果的最大数目为4,是"读UID"命令的返回。命令处理程序在接收到一个未定义的命令时,会发送状态码NVALID_COMMAND。IAP命令是 thumb代码,通常位于地址 0x1FFF 1FF0 处。

IAP功能可用下面的C代码来调用。

定义IAP程序的入口地址。由于IAP地址的第0位是1,因此当程序计数器转移到该地址时会转换到Thumb指令集。

#define IAP LOCATION 0x1fff1ff1

定义数据结构或指针,将 IAP命令表和结果表传递给 IAP函数:

```
unsigned long command[5];
unsigned long result[4];

unsigned long * command;
unsigned long * result;
command=(unsigned long *) 0x......
result= (unsigned long *) 0x......
```

定义函数类型指针,函数包含2个参数,无返回值。注意: IAP将结果表的基地址放于R1中,以返回结果。

```
typedef void (*IAP)(unsigned int [],unsigned int[]);
IAP iap entry;
```

设置函数指针:

iap_entry=(IAP) IAP_LOCATION;

需要调用 IAP时,使用下面的语句。

iap entry (command, result);

一些IAP调用需要4个以上参数。按照ARM 规范 (The ARM Thumb Procedure Call Standard SWS ESPC0002 A-05)规定,最多有4个参数可以通过通用寄存器r0、r1、r2和r3传递,剩下的参数通过堆栈传递。最多有4个参数可以通过r0、r1、r2和r3 寄存器返回,其他参数直接通过存储器返回。如果使用ARM建议的参数传递和返回机制,不同供应商提供的不同C编译器可能产生问题。采用上面建议的参数传递机制可以减少那样的风险。

Flash存储器在擦写操作期间不可访问。执行flash写/擦除操作的IAP命令使用片内RAM顶端的32个字节空间;如果应用程序中允许IAP编程,那么用户程序不应使用这段空间。

第17章: LPC111x Flash编程固件

表 235. IAP 命令总览

IAP 命令	命令码	描述
准备用于写操作的扇区	50 ₁₀	表 17–236
复制 RAM 到 flash	51 ₁₀	<u>表 17–237</u>
擦除扇区	52 ₁₀	表 17–238
检查空扇区	53 ₁₀	表 17-239
读分类ID	54 ₁₀	表 17-240
读 Boot 代码版本	55 ₁₀	表 17-241
比较	56 ₁₀	表 17-242
重调用 ISP	57 ₁₀	表 17-243
读UID	58 ₁₀	表 17-244

8.1 准备用于写操作的扇区

该命令将Flash写/擦除操作分两步执行。

表 236. IAP 准备用于写操作的扇区命令

命令 准备用于写操作的扇区

输入 **命令码: 50₁₀**

参数0: 起始扇区编号

Param1:结束扇区编号(应当大于等于起始扇区编号)。

第17章: LPC111x Flash编程固件

表 236. IAP 准备用于写操作的扇区命令

命令	准备用于写操作的扇区
返回码	CMD_SUCCESS
	BUSY
	INVALID_SECTOR
结果	无
描述	该命令必须在执行"复制RAM到Flash"或"擦除扇区"命令之前执行。这两个命令的成功执行会导致相关的扇区再次被保护。该命令不能用于boot扇区。如果要准备单个扇区,可将起始和结束扇区号设置为相同值。

8.2 复制 RAM 到 flash

表 237. IAP Copy RAM to flash command

命令	复制 RAM 到 flash
输入	命令码: 51 ₁₀
	参数0(DST): : 要写入数据字节的目标Flash的地址。目标地址的边界应为 256 字节对齐。
	参数1(SRC):读出数据字节的源RAM的地址。该地址边界应当字对齐。
	参数2 :写入字节的数目。应当是 256 512 1024 4096。
	参数3: 系统时钟频率 (CCLK) 单位: kHz。
返回码	CMD_SUCCESS
	SRC_ADDR_ERROR (地址边界不是字对齐)
	DST_ADDR_ERROR (地址边界错误)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (字节数不是 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	BUSY
结果	无
描述	该命令用于对Flash存储器编程。被编程的扇区应当先通过调用"准备写操作的扇区"命令进行准备。当成功执行复制命令后,扇区将自动受到保护。该命令不能写boot扇区。
7	

第17章: LPC111x Flash编程固件

8.3 擦除扇区

表 238. IAP 擦除扇区命令

命令	擦除扇区		
输入	命令码: 52₁₀		
返回码	CMD_SUCCESS BUSY SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION INVALID_SECTOR		
结果	无		
描述	该命令用于擦除片内Flash存储器的一个或多个扇区。boot扇区不能由该命令擦除。要擦除单个扇区可将起始和结束扇区号设定为相同值。		

8.4 检查空扇区

表 239. IAP 检查空扇区命令

命令	检查空扇区					
输入	命令码: 53 ₁₀					
	参数0: 起始扇区编号。					
	参数1: 结束扇区编号(应当大于起始扇区编号)。					
返回码	CMD_SUCCESS BUSY					
	SECTOR_NOT_BLANK					
	INVALID_SECTOR					
结果	Result0: 若状态代码为SECTOR_NOT_BLANK,则是第一个非空字位置的偏移量。					
	Result1: 非空字位置的内容。					
描述	该命令用于对片内Flash存储器的一个或多个扇区进行查空。要对单个扇区查空,					
	可将起始和结束扇区号设定为相同值.					

8.5 读分类ID

表 240. IAP 读分类ID

命令	读分类ID号
输入	命令码: 54 ₁₀
	参数: 无
返回码	CMD_SUCCESS
结果	结果 0 : 分类ID。
描述	该命令用于读分类ID。

UM10398_0 © NXP B.V. 2010. All rights reserved.

第17章: LPC111x Flash编程固件

8.6 读 Boot 代码版本号

表 241. IAP 读 Boot 代码版本号命令

命令	读 boot 代码版本号
输入	命令码: 5510
	参数: 无
返回码	CMD_SUCCESS
结果	结果0: 2字节boot代码版本号。将其解释为<字节1(主)>.<字节0(次)>。
描述	该命令用于读取boot代码版本号。

8.7 比较 <地址1> <地址2> <字节数>

表 242. IAP比较命令

命令	比较		
输入	命令码: 56 ₁₀		
	参数0(DST) :要比较的Flash或RAM的数据字节的目的起始地址。该地址边界应当字对齐。		
	参数1(SRC):要比较的Flash或RAM的数据字节的源起始地址。该地址边界应当字		
	对齐。		
	参数2: 待比较的字节数。该值应当为4的倍数。		
返回码	CMD_SUCCESS		
	COMPARE_ERROR		
	COUNT_ERROR (字节数不是 4 的整数倍)		
	ADDR_ERROR		
	ADDR_NOT_MAPPED		
结果	结果0: 当状态代码为COMPARE_ERROR时,为第一个不匹配字节的偏移地址。.		
描述	该命令用来比较两块存储器中的内容。		
	当源或目标地址包含从地址 0开始的前 512 字节中的任意一个时,比较的结果不一定正确。前 512字节可以被重新映射到RAM中。		

8.8 重调用 ISP

表 243. 重调用 ISP

命令	重调用ISP
输入	命令码: 5710
返回码	无。
结果	无。
描述	该命令用于调用引导程序进入ISP模式。 它会映射引导向量,设置 PCLK = CCLK,配置 UART RXD 和 TXD 引脚,复位计数器/定时器 CT32B1,复位 U0FDR (见表 9–132)寄存器。当有效用户程序在内部 Flash中,且无法通过 PIO0_1引脚无法访问时,可使用该命令进入ISP模式。

UM10398_0 © NXP B.V. 2010. All rights reserved.

第17章: LPC111x Flash编程固件

8.9 读UID

表 244. IAP 读 UID 命令

命令	读 UID			
输入	命令码: 5810			
返回码	CMD_SUCCESS	CMD_SUCCESS		
结果	结果0: 第一个 32-位字 (在低地址)。 结果1: 第二个 32-位字。 结果2: 第三个 32-位字。 结果3: 第四个 32-位字。			
描述	该命令用来读 UID。			

8.10 IAP 状态码

表 245. IAP状态代码总览

状态码	助记符	描述
0	CMD_SUCCESS	命令成功执行。
1	INVALID_COMMAND	无效命令。
2	SRC_ADDR_ERROR	源地址边界没有字对齐。
3	DST_ADDR_ERROR	目标地址的边界错误。
4	SRC_ADDR_NOT_MAPPED	源地址没有位于存储器映射中。 计数值必须考虑是否可用。
5	DST_ADDR_NOT_MAPPED	目标地址没有位于存储器映射中。计数值必须考虑是 否可用。
6	COUNT_ERROR	字节计数值不是4的倍数或是一个非法值。
7	INVALID_SECTOR	扇区号无效。
8	SECTOR_NOT_BLANK	扇区非空。
9	SECTOR_NOT_PREPARED_ FOR_WRITE_OPERATION	"准备用于写的扇区"操作命令没有执行
10	COMPARE_ERROR	目的和源数据不相同。
11	BUSY	Flash 编程硬件接口忙。

9. 调试说明

9.1 比较flash映像

根据使用的调试器和当前IDE的调试设置,当调试器连接时可见的存储器可能是引导ROM、内部SRAM或flash。为了帮助确定当前调试环境下是哪块存储器,可以查看Flash地址 0x0000 0004 处的值。该地址包含进入ARM Cortex-M0 向量表代码的入口点,可以是引导ROM、内部SRAM或flash存储器的底端。

UM10398_0

User manual

第17章: LPC111x Flash编程固件

表 246. 调试模式的存储器映射

存储器映射模式	地址 0x0000 0004 处的起始地址
引导加载模式	0x1FFF 0000
用户 flash 模式	0x0000 0000
用户 SRAM 模式	0x1000 0000

9.2 串行线调试 (SWD) flash 编程接口

调试工具能够将部分Flash 内容写入 RAM,然后从适当的偏移地址重复执行执行IAP调用"复制 RAM 到 flash"。

10. Flash存储器访问

根据系统时钟频率,可以通过设置地址为0x4003 C010的FLASHCFG 寄存器来配置不同的 Flash 访问时间。

注意: 不恰当的寄存器设置可能导致LPC111x不正确的Flash 存储器操作。

表 247. 配置寄存器(FLASHCFG, 地址 0x4003 C010)位域描述

位	符号	值	描述	复位值
1:0	FLASHTIM		Flash 存储器访问时间。 FLASHTIM +1 等于访问Flash 的系统时钟数。	10
		00	1 个系统时钟的lash 访问时间 (针对最高为20 MHz 系统频率)。.	
		01	2 个系统时钟的flash 访问时间(针对最高为40 MHz 系统频率)。.	_
		10	3个系统时钟的flash 访问时间(针对最高为 50 MHz 系统频率)。.	_
		11	保留。	<tbd></tbd>
31:2	*	-	保留。 用户程序不应该更改这些位。这些位必须以读出的原值 写回。	