Problem 1 Solve for x in the following logarithmic equation:

$$\log_2(-3\,x+5) = 3$$

$$x = \boxed{-1}$$

Feedback(attempt): Start by rewriting the log into an exponential form (i.e. put each side of the equal sign as an exponent to a base which is the same value as the log's base). For example, start by rewriting $\log_2{(-3\,x+5)}=3$ as $-3\,x+5=2^3$, then proceed to solve x.

Problem 2 Solve for x in the following logarithmic equation:

$$\log_5(-x+5) = -4$$

$$x = \boxed{\frac{3124}{625}}$$

Feedback(attempt): Start by rewriting the log into an exponential form (i.e. put each side of the equal sign as an exponent to a base which is the same value as the log's base). For example, start by rewriting $\log_5(-x+5) = -4$ as $-x+5 = 5^{-4}$, then proceed to solve x.

Problem 3 Solve for x in the following logarithmic equation:

$$\log_7(x-4) = -1$$

$$x = \boxed{\frac{29}{7}}$$

Feedback(attempt): Start by rewriting the log into an exponential form (i.e. put each side of the equal sign as an exponent to a base which is the same value as the log's base). For example, start by rewriting $\log_7(x-4) = -1$ as $x-4 = 7^{-1}$, then proceed to solve x.

Problem 4 Solve for x in the following logarithmic equation:

$$\log_4(2x - 3) = -1$$

$$x = \boxed{\frac{13}{8}}$$

Feedback(attempt): Start by rewriting the log into an exponential form (i.e. put each side of the equal sign as an exponent to a base which is the same value as the log's base). For example, start by rewriting $\log_4{(2x-3)} = -1$ as $2x-3=4^{-1}$, then proceed to solve x.