5 Maximum in Sliding Window

Problem Introduction

Given a sequence a_1, \ldots, a_n of integers and an integer $m \le n$, find the maximum among $\{a_i, \ldots, a_{i+m-1}\}$ for every $1 \le i \le n-m+1$. A naive O(nm) algorithm for solving this problem scans each window separately. Your goal is to design an O(n) algorithm.

Problem Description

Input Format. The first line contains an integer n, the second line contains n integers a_1, \ldots, a_n separated by spaces, the third line contains an integer m.

Constraints. $1 \le n \le 10^5, 1 \le m \le n, 0 \le a_i \le 10^5 \text{ for all } 1 \le i \le n.$

Output Format. Output $\max\{a_i,\ldots,a_{i+m-1}\}$ for every $1 \le i \le n-m+1$.

Time Limits.

language	С	C++	Java	Python	C#	Haskell	JavaScript	Ruby	Scala
time (sec)	1	1	1.5	5	1.5	2	5	5	3

Memory Limit. 512MB.

Sample 1.

Input:

27315262

4

Output:

77566

What to Do

We give hints for three different solutions.

- 1. Implement a queue using two stacks. Use a queue data structure for sliding a window through a sequence: for shifting a window one position to the right, pop the leftmost element of the queue and push a new element from the new window. A queue can be implemented using two stacks such that each queue operation takes constant time on average. Then, use your implementation of the stack with maximum.
- 2. Preprocess block suffixes and prefixes. Partition the input sequence into blocks of length m and precompute the maximum for every suffix and every prefix of each block. Afterwards, the maximum in each sliding window can be found by considering a suffix and a prefix of two consecutive blocks.
- 3. Store relevant items in a dequeue. Use a double-ended queue (dequeue) to store elements of the current window. At the same time, store only relevant elements: before adding a new element drop all smaller elements.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.