Coordinate Reference Systems

Rolf Becker

Process of Map Making

R. Knippers (2009): Kartoweb. ITC, U Twente http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

The Earth is a Potato

https://de.wikipedia.org/wiki/Datei:Gloabl and Regional Ellipsoids.svg

Global Ellipsoid: Center?

- Center of Mass (CM), Center of Gravity
- Geometric Center (GC)
- One block made of two materials: half iron, half wood

GRS80

- GRS 80, or Geodetic Reference System 1980, is a geodetic reference system consisting of a global reference ellipsoid and a gravity field model.
- The reference ellipsoid is regular.
- The geoid (/ˈdʒiːɔɪd/) is the shape that the surface of the oceans would take under the influence of Earth's gravity and rotation alone, in the absence of other influences such as winds and tides.
- Gravitational equipotential surface
- The geoid is irregular.

Deviation of the Geoid from the idealized figure of the Earth

(difference between the EGM96 geoid and the WGS84 reference ellipsoid)

Red areas are above the idealized ellipsoid; blue areas are below.

https://commons.wikimedia.org/wiki/File:Geoid height red blue averagebw.png

World Geodetic System WGS84 (EPSG:4326)

- Used by GPS
- Origin located in Earth's center of mass
- Equatorial (a), polar (b) and mean Earth radii as defined in the 1984 World Geodetic System revision (not to scale)

https://commons.wikimedia.org/wiki/File:WGS84_mean_Earth_radius.svg https://en.wikipedia.org/wiki/World_Geodetic_System

Different Reference Ellipsoids

NOAA: National Oceanic and Atmospheric Agency

https://vdatum.noaa.gov/docs/datums.html

Ellipsoid
 approximates
 geoid locally

The red ellipsoid fits the geoid well in North America.

The blue ellipsoid fits the geoid well in Europe.

• center of mass of geoid

center of ellipsoid

http://www.geography.hunter.cuny.edu/~jochen/gtech361/lectures/lecture04/concepts/Datums/Components%20of%20a%20datum.htm

WGS 84: Latitude, Longitude (lat, lon)

Prime Meridian: λ = 0°
 (approx. Greenwich)

Latitude (Breite) φ, φ :
 measured from equator,
 North +, South -

 Logitude (Länge) λ : measured from PM, East + , West -

• Lat: N − S

• Lon: E − W

Longitude

Metropolis

Kamp-Lintfort:

• WGS84: 51° 30′ 0″ N 6° 32′ 0″ E

• WGS84: 51.5° 6.533333°

UTM: 32U 328794 5708314

Which city?

WGS84: 40° 42′ 46″ N 74° 0′ 21″ W

• WGS84: 40.712778° -74.005833°

• UTM: 18T 583973 4507349

https://tools.wmflabs.org/geohack/geohack.php?pagename=Kamp-Lintfort&language=de¶ms=51.5 N 6.533333333333 E region:DE-NW type:city(37346)

Map Projections

- Geographic coordinates: lat, lon (radius)
- Cartesian coordinates: x, y (z)
- Mostly optimized locally!

http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

Map Projections

The coordinate system of the Netherlands is derived from an oblique azimuthal stereographic projection.

http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

Different Azimuthal Projections

http://www.geo.hunter.cuny.edu/~jochen/gtech201/lectures/lec6concepts/Map%20coordinate%20systems/Perspective.htm

Projection Invariants (what is preserved)

- Preserving direction (azimuthal or zenithal), a trait possible only from one or two points to every other point
- Preserving shape locally (conformal or orthomorphic)
- Preserving area (equal-area or equiareal or equivalent or authalic)
- Preserving distance (equidistant), a trait possible only between one or two points and every other point
- Preserving shortest route, a trait preserved only by the gnomonic projection
- Because the sphere is not a developable surface, it is impossible to construct a map projection that is both equal-area and conformal.

https://www.researchgate.net/publication/273517879 User preferences for world map projections

Mecator Projection

Dots: Tissot's Indicatrix / Indicatrices

Mercator Projection

Directions along a Rhumb line are true between any two points on a map. **Distances** are true only along the Equator. Although it has a **conformal** property, areas are greatly distorted increasing size at poles.

https://gisgeography.com/cylindrical-projection/

Tranverse Mercator Projection

Lambert introduced the
Transverse Mercator in 1772. It
uses a horizontally oriented
cylinder tangent to a Meridian.
This is particular useful for
mapping large areas that are
mainly north-south in extent.

Map Projections

Universal Transverse Mercator (UTM): Conformal Projection

Nordrhein-Westfalen: ETRS89 / UTM, Realisation of WGS84

ETRS89: European Terrestial Reference System

Bezugssystem	Europäisch terrestrisches Referenzsystem 1989
Bezugsfläche	GRS80-Ellipsoid, Große Halbachse a: 6 378 137 m und Abplattung f: 1: 298, 257 222 101
Datum/Lagerung	Fundamentalstationen des ITRS zum Zeitpunkt Januar 1989
Abbildung	Universale Transversale Mercatorabbildung (UTM)
Projektion	Schnittzylinder - siehe Abb. 2
Meridianstreifensystem	6° breite Meridianstreifen (Zonen)
Hauptmeridian	nicht längentreu, Maßstabsfaktor 0,9996
Netzgrundlage	ETRS89

Tab. 1: Wesentliche Merkmale von ETRS89/UTM

Abb. 1: Dreidimensionales kartesisches geozentrisches Koordinatensystem

https://www.bezreg-

koeln.nrw.de/brk internet/publikationen/abteilung07/pub geobasis etrs89.pdf

Nordrhein-Westfalen: ETRS89 / UTM

Abb. 2: Schnittzylinder der UTM-Abbildung

Abb. 3: Die Lage von NRW in der UTM-Zone 32

https://www.bezreg-

koeln.nrw.de/brk internet/publikationen/abteilung07/pub geobasis etrs89.pdf

EPSG: Unique ID for CRS

- EPSG: European Petroleum Survey Group Geodesy
- Provides a unique numeric key for all registered CRS
- **EPSG:4326** -> WGS84 (GPS coord.)
- EPSG:25832 -> ETRS89 / UTM zone 32N
 - Link: https://epsg.io/25832
 - Ka-Li coord: 327896.29, 5710585.12
- EPSG:4647 -> ETRS89 / UTM zone 32N (zE-N)
 - Link: https://epsg.io/4647
 - Ka-Li coord: **32**327896.29, 5710585.12
 - Remarks: Variant of ETRS89 / UTM zone 32N
 (CRS code 25832) in which easting has zone prefix.

http://theconversation.com/five-maps-that-will-change-how-you-see-the-world-74967

WGS 84: GPS Trilateration

https://gisgeography.com/wgs84-world-geodetic-system/

Geoid, Ellipsoid, Topography

https://gis.stackexchange.com/questions/80533/which-of-egm96-geoid-or-wgs84-ellipsoid-fits-the-earth-better

https://nptel.ac.in/courses/105104100/lectureB 8/B 8 8coordinate.htm