

เอกสารประกอบการอบรม Backtracking and Branch-and Bound

ค่ายคอมพิวเตอร์โอลิมปิก สอวน. ค่าย 2 2/2566 ศูนย์โรงเรียนสามเสนวิทยาลัย - มหาวิทยาลัยธรรมศาสตร์ ระหว่างวันที่ 18 มีนาคม – 3 เมษายน 2567

โดย สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์

อัลกอริทึม 3-2:

- Backtracking
- Branch-and-Bound

ผศ.ดร.ฐาปนา บุญชู

ทบทวนปัญหาที่สำคัญ (Exhaustive Search)

Exhaustive Search

- ปัญหาสำคัญหลายปัญหาเป็นการค้นหาองค์ประกอบ (Element) ที่มีคุณลักษณะเฉพาะใน Space ที่เติบโต (Grow) อย่างรวดเร็วในระดับ Exponential หรือเร็วกว่านั้น ตาม Instance size
- โดยทั่วไปปัญหาเหล่านี้มักจะเกี่ยวข้องกับ Combinatorial objects
 - Permutations
 - Combinations
 - Subsets ของ Set ที่สนใจ
- หลาย ๆ ปัญหาเป็น Optimization problems ที่ค้นหาองค์ประกอบที่หาค่าสูงหรือต่ำสุดของ คุณลักษณะบางอย่าง เช่น Path length หรือ Assignment cost

Traveling salesman problem (TSP):

- Traveling salesman problem (TSP): ปัญหาคือการ ค้นหา Shortest tour จาก Set ของ n เมืองที่ Tour นี้จะ เยี่ยมแต่ละเมือง<u>เพียงครั้งเดียว</u>เท่านั้นก่อนที่เดินทางกลับ เมืองเริ่มต้น
 - โดยเราสามารถจำลองปัญหานี้มาเป็น Weighted graph ได้ (Vertices: เมือง, Edge weight: ระยะทางระหว่างเมือง)
 - เป็นปัญหาการหา Shortest Hamiltonian circuit ของ กราฟ ที่ถูกนิยามโดย ลำดับ n + 1 adjacent vertices $v_{i_0}, v_{i_1}, \dots, v_{i_{n-1}}, v_{i_0}$ โดย $v_{i_1}, \dots, v_{i_{n-1}}$ จะไม่ ช้ำกัน
 - เราสามารถ Generate ทุก Tours ที่เป็นไปได้โดย Permutations ของ n-1 เมืองระหว่างกลาง หาเส้นทางของ Tour เลือกเส้นที่สั้นที่สุด
 - จำนวน Permutation ทั้งหมดคือ $\frac{1}{2}(n-1)!$

- มีของจำนวน n ชิ้น โดยแต่ละชิ้นมีน้ำหนัก (Weight) คือ W_1, \ldots, W_n และมูลค่า (Value) v_1, \ldots, v_n และถุง (Knapsack) ที่มีความจุ W ให้หา Subset ของที่สามารถ บรรจุลงในถุงได้โดยที่มูลค่ารวมใน Subset นั้นมีมูลค่ามาก ที่สุด
- Exhaustive search คือการ <u>Generate ทุก Subset ที่</u> <u>เป็นไปได้</u> แล้วหาผลรวมของ Weights และ Values ใน Subset เหล่านั้นที่เป็นไปตามข้อกำหนด
- เนื่องจากจำนวนของ Subset ที่เป็นไปได้ทั้งหมดคือ 2^n ทำให้ Exhaustive search ใช้เวลา $\Omega(2^n)$ => NP-hard problems (ไม่มีใครรู้จัก Polynomial-time algorithm ใดที่แก้ NP-hard Problem ยังไม่มีการ พิสูจน์แต่ Computer scientists เชื่อแบบนั้น)
 - P Backtracking และ Branch and Bound สามารถแก้<u>บาง</u> Instances ของปัญหานี้ได้

Subset	Total weight	Total value
Ø	0	\$ 0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1, 2}	10	\$54
{1, 3}	11	not feasible
{1, 4}	12	not feasible
{2, 3}	7	\$52
{2, 4}	8	\$37
$\{3, 4\}$	9	\$65
$\{1, 2, 3\}$	14	not feasible
{1, 2, 4}	15	not feasible
{1, 3, 4}	16	not feasible
$\{2, 3, 4\}$	12	not feasible
{1, 2, 3, 4}	19	not feasible

- มีจำนวน n คนเพื่อถูกมอบหมาย (Assign) ให้ทำงาน n งาน (1 คนต่อ 1 งาน)
- โดย C[i, j] คือราคา (Cost) ที่ต้องจ่ายเมื่อมอบหมายงานคนที่ i-th ไปยังงานที่ j-th
 - โดย i, j = 1, 2, ..., n
- โจทย์คือต้องการหาการมอบหมาย (Assignment) ที่มีราคาน้อย มากที่สุด
- พิจารณา Cost matrix ด้านบน โจทย์คือ ในแต่ละแถวให้เลือก หนึ่งค่าโดยที่แต่ละแถวจะเลือกค่าในคอลัมน์ที่ซ้ำกันไม่ได้และ ผลรวมทั้งหมดทั้งต้องมีค่าน้อยมากที่สุด
- Exhaustive search คือการที่เราต้อง <u>Generate ทุก</u> <u>Permutation ของ 1, ..., n</u> หา Cost รวมแล้วหาค่าที่น้อยที่สุด
- สามารถใช้ Hungarian method แก้ได้อย่างมีประสิทธิภาพมาก ขึ้น

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

$$C = \left[\begin{array}{cccc} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{array} \right]$$

$$<1, 2, 3, 4>$$
 $cost = 9 + 4 + 1 + 4 = 18$
 $<1, 2, 4, 3>$ $cost = 9 + 4 + 8 + 9 = 30$
 $<1, 3, 2, 4>$ $cost = 9 + 3 + 8 + 4 = 24$
 $<1, 3, 4, 2>$ $cost = 9 + 3 + 8 + 6 = 26$
 $<1, 4, 2, 3>$ $cost = 9 + 7 + 8 + 9 = 33$
 $<1, 4, 3, 2>$ $cost = 9 + 7 + 1 + 6 = 23$

Backtracking and Branch-and-Bound

Backtracking and Branch-and-Bound

- Backtracking (BT) and Branch-and-Bound (BB) เป็นขั้นตอนวิธีที่ช่วยแก้ Combinatorial Problems ที่ยาก ที่มีขนาดใหญ่บางปัญหา (Some large instances of problems)
- ต่างจาก Exhaustive search โดยที่ BT และ BB สร้างค่อย ๆ สร้าง Candidate solution บางส่วน
 - ถ้า ค่าส่วนที่เหลือไม่มี Potential values ขององค์ประกอบส่วนอื่นที่เหลือ ก็ไม่จำเป็นต้อง Generate ต่อไป
- ทั้ง BT และ BB นั้นเกี่ยวข้องกับการสร้าง State-space tree โดยที่แต่ละ Node จะหมายถึง ทางเลือกเฉพาะ (Specific choices) สำหรับองค์ประกอบของ Solutions
- ทั้งสองวิธีจะหยุดค้นหาในทางเลือกนั้นทันทีเมื่อรับประกันได้ว่าไม่เจอ Solution แล้วแน่นอน

Backtracking and Branch-and-Bound (ต่อ)

- •BT และ BB นั้นต่างกันที่ธรรมชาติของปัญหาที่มันจะ
 - BB นั้นแก้ปัญหาได้เฉพาะ Optimization problems เนื่องจากมันคือการ คำนวณค่า Bound บนค่าที่เป็นไปได้ของ Objective function ของปัญหา
 - BT นั้นมักจะแก้ปัญหาที่เป็น Non-optimization problems
- •BT และ BB ยังต่างกันที่ลำดับการ Generate nodes ใน State-space tree อีกด้วย
 - •BT มักใช้ DFS
 - BB มักใช้ Best-first Search

Backtracking

Backtracking

Exhaustive Search การค้นหาโดยการ Generate ทุก ๆ Candidate solutions และเลือกอันที่มีคุณสมบัติที่ต้องการ (มากสุด, น้อยสุด, ...)

- Backtracking search มีความฉลาดเหนือกว่า Exhaustive search โดยมันจะพิจารณา
 Partially constructed solution ว่ามันสามารถพัฒนาต่อไปได้ไหมโดยไม่ละเมิดข้อจำกัด
 (Constraints)
 - ถ้าไม่ได้มันจะหยุดการค้นหาใน Branch นั้น ๆ และทำการ Backtrack กับขึ้นมาที่ก่อนหน้าที่มันจะ ไปเจอทางที่ละเมิดดังกล่าวและเลือกไปในทางอื่นแทน
- Root คือ Initial states ก่อน Search
 - Node แรก คือทางเลือกแรกของ Partially constructed solution
 - Node ต่อมา คือทางเลือกต่อ ๆ มา ของ Partially constructed solution
- โดยเราจะบอกว่า Node ใน State-space tree นั้น Promising ถ้ามันเป็นส่วนหนึ่งของ Partially constructed solution ถ้าไม่เช่นนั้นเราเรียกว่า Nonpromising

Backtracking

- โดย Leaves คือ Complete solution หรือ Nonpromising dead-end ที่พบ
- State-space tree นี้ส่วนใหญ่เราสร้างแบบ **Depth-first search**
 - ถ้า Node ปัจจุบันเป็น <u>Promising</u> แล้ว Node นี้จะถูกเพิ่มเป็นทางเลือกต่อไป และ Algorithm จะ เคลื่อนลงไปที่ทางเลือกดังกล่าวนี้
 - ถ้า Node ปัจจุบันเป็น Nonpromising แล้ว Algorithm จะ Backtrack กลับไปที่ Parent และเลือก ทางเลือกอื่น ถ้าไม่มีทางเลือกแล้วให้ ขึ้นไปอีกหนึ่งเลเวล
 - เมื่อ Algorithm พบ Complete solution มันจะหยุดหรือค้นหาต่อไปสำหรับ Solution อื่น ๆ

N-Queens Problem

N-Queens Problem

• ปัญหา N-Queens คือการ
วาง Queen ลงใน
Chessboard N x N โดย
ห้ามมี Queen โจมตีกันได้
(Queens จะโจมตีกันเมื่อมัน
อยู่ใน แถว คอมลัมน์ หรือ
แนวทแยงเดียวกัน)


```
https://www.geeksforgeeks.org/
n-queen-problem-backtracking-3/
```

```
bool solveNQUtil(int board[N][N], int col)
   // base case: If all queens are placed
   // then return true
   if (col >= N)
       return true;
   // Consider this column and try placing
   // this queen in all rows one by one
   for (int i = 0; i < N; i++) {</pre>
       // Check if the gueen can be placed on
       // board[i][col]
       if (isSafe(board, i, col)) {
           // Place this queen in board[i][col]
           board[i][col] = 1;
           // recur to place rest of the queens
           if (solveNQUtil(board, col + 1))
                return true;
           // If placing queen in board[i][col]
           // doesn't lead to a solution, then
           // remove queen from board[i][col]
            board[i][col] = 0; // BACKTRACK
   // If the gueen cannot be placed in any row in
   // this column col then return false
   return false;
```

```
bool isSafe(int board[N][N], int row, int col)
    int i, j;
    // Check this row on left side
    for (i = 0; i < col; i++)
        if (board[row][i])
            return false:
    // Check upper diagonal on left side
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
        if (board[i][i])
            return false;
    // Check lower diagonal on left side
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
        if (board[i][i])
            return false;
    return true;
```

```
int main()
{
    solveNQ();
    return 0;
}
```

```
#include <bits/stdc++.h>
#define N 4
using namespace std;
```


แบบฝึกหัด

- N-Queens (NQP-BT.cpp)
 - ทดลองกำหนดค่า N = 4, 8, 10, ...
- (ฝึกด้วยตนเอง)
 - Traveling salesman problem
 - 0/1 Knapsack problem
 - ตัวอย่าง Input จากในสไลด์

Hamiltonian Circuit Problem

Hamiltonian Circuit Problem

• Hamiltonian Cycle or Circuit in a graph G is a cycle that visits every vertex of G exactly once and returns to the starting vertex.

Hamiltonian Circuit Problem

Subset-Sum Problem

Subset-Sum Problem

- กำหนดให้เซต $A=\{a_1,\dots,a_n\}$ ที่มีจำนวนสมาชิกทั้งหมด n ตัว ปัญหา Subsetsum คือการหา Subset ของเซต A สำหรับจำนวนเต็มบวก n จำนวน โดยผลรวมนั้น เท่ากับ d
- เช่น $A = \{1, 2, 5, 6, 8\}$ และ d = 9 จะพบว่ามี 2 Solutions คือ {1,2,5,6,8} และ {1,8}
- บาง Instance ของปัญหานี้ไม่มีคำตอบ
- ullet เพื่อแก้ปัญหานี้เราอาจจะเรียงลำดับจากน้อยไปมาก $a_1 < a_2 < \ldots < a_n$

Subset-Sum Problem

แบบฝึกหัด 3

- เขียนโปรแกรมโดยใช้แนวคิด <u>Backtracking</u> เพื่อแก้ปัญหา
 - Subset-sum (SSP-BT.cpp)
 - ให้ใช้ตัวอย่างในไสลด์เป็นข้อมูลนำเข้าและส่งออก

(General) Backtracking Algorithms

Backtracking Algorithms

- โดยทั่วไป Output ของ Backtracking algorithm มักจะอยู่ในรูปของ n-tuple (x_1,\dots,x_n) โดยที่แต่ละ Coordinate x_i คือองค์ประกอบของ Ordered set S_i
- ทุก Solution tuples จะมี Length ที่เท่ากัน (N-Queens, Hamiltonian circuit) หรือไม่เท่ากันก็ได้ (Subset-sum)
- BB จะสร้าง State-space tree ที่ Node จะหมายถึง Partially constructed tuples
- ถ้า (x_1,\ldots,x_i) ยังไม่ใช่ Solution มันจะหาทางเลือกอื่น S_{i+1} ที่สอดคล้องกับ (x_1,\ldots,x_i) และเพิ่มลงไป ใน Tuple ในตำแหน่ง (i+1)st
 - ullet ถ้าไม่มีทางเลือกใดที่เป็นไปได้ใน S_{i+1} มันจะ Backtrack กลับไปหาค่าต่อไปของ x_i

```
ALGORITHM Backtrack(X[1..i])
```

```
//Gives a template of a generic backtracking algorithm
//Input: X[1..i] specifies first i promising components of a solution
//Output: All the tuples representing the problem's solutions

if X[1..i] is a solution write X[1..i]

else //see Problem 9 in this section's exercises

for each element x \in S_{i+1} consistent with X[1..i] and the constraints do

X[i+1] \leftarrow x

Backtrack(X[1..i+1])
```

Backtracking Algorithms

- ใน Worst case นั้น BT นั้นก็อาจจะต้อง Generate ทุก Possible candidates ในเวลา Exponential หรือ มากกว่า
- สำหรับ BT Algorithm
 - มักจะถูกใช้กับ <u>Combinatorial problems</u> ที่ยากและไม่มี Efficient algorithms ในการหา <u>Exact</u> <u>solution</u>
 - BT นั้นอาจจะมีประสิทธิภาพดีกว่า (Prune State-space ได้บางส่วน) Exhaustive search และ มักจะแก้ปัญหาได้ในเวลาที่รับได้ (Acceptable amount of time)
 - แม้ BT จะไม่สามารถ Prune อะไรได้เลย แต่ก็ยังถือเป็นวิธีการหนึ่งที่ช่วยเรา generate ทุก ๆ Possible candidates ได้

Branch-and-Bound

Branch-and-Bound

- แนวคิดของ BT คือการตัด (Prune) Branches ที่ไม่นำไปสู่ Solution
- BB นั้นเราจะต่อยอดแนวคิดของ BT เพื่อประยุกต์กับ Optimization problem
 - Optimization problem: ปัญหาที่หาค่าต่ำที่สุดหรือสูงที่สุดของ Objective function
 - Feasible solutions: เป็น Complete assignments ที่ไม่ขัดกับ Constraints ใด
 - Optimal solutions: เป็น Feasible solutions ที่ให้ค่าจาก Objective function ที่ดีที่สุด
- ถ้าเปรียบเทียบกับ BT แล้ว BB มีสิ่งต่อไปนี้
 - วิธีที่จะสามารถหาค่า Bound (Lower bound สำหรับ Minimization problem และ Upper bound สำหรับ Maximization problem) สำหรับ Best value ของ Objective function สำหรับทุก Solution ที่สามารถได้มาจาก การเพิ่ม Component ไปยัง Partially constructed solution
 - ค่าที่ดีที่สุดของ Solution ที่ดีที่สุดที่เคยพบเจอมาทั้งหมด
- <u>ถ้าค่าของ Bound ไม่ดีกว่า Best value ที่เคยพบเจอมา กล่าวคือ ไม่น้อยกว่าสำหรับ Minimization</u> <u>algorithm และไม่มากกว่าสำหรับ Maximization algorithm แล้ว Node ดังกล่าวจะถือว่า Nonpromising และ ถูก Pruned ทิ้งไป</u>

Branch-and-Bound

- เราจะ Terminate ออกจาก Search path สำหรับ Branch ใน State-space tree ปัจจุบันเมื่อ
 - ค่า Bound ของ Node ไม่ดีกว่า Best solution แน่นอน
 - ละเมิด Problem constraints

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$
 person a person b person c person d

- ในปัญหานี้: Cost ของทุก Solutions ไม่มีทางน้อยไปกว่าผลรวมของค่าที่น้อยที่สุด ของแต่ละแถวบวกกัน
 - เช่น 2 + 3 + 1 + 4 = 10 (Lower bound)
 (Note: ค่านี้ไม่ใช่ Legitimate selection ค่า 3 และ 1 มาจากColumn เดียวกัน)
 - เมื่อเราเลือก 9 จากแถวแรกเราจะพบว่า Lower bound จะขยับเป็น 9 + 3 + 1 + 4 = 17
- เรื่องที่สำคัญอีกเรื่องหนึ่งคือ "ลำดับการที่ Node ถูก Generated"
 - เราจะพยายาม Generate MOST promising nodes จาก Nonterminating leaves บนต้นไม้ ปัจจุบัน
 - คำถามคือ => เราจะรู้ได้อย่างไรว่า Node ใดคือ MOST promising node ?
 - คำตอบ => ให้เราดูจาก Lower bound ของแต่ละ Node (ไม่การันตีว่าจะเป็นส่วนหนึ่งของ Optimal)
 - วิธีการแบบนี้เรียกว่า Best-first branch-and-bound

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix} \begin{array}{c} \text{person } a \\ \text{person } b \\ \text{person } c \\ \text{person } d \end{array}$$

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix} \begin{array}{c} \text{person } a \\ \text{person } b \\ \text{person } c \\ \text{person } d \end{array}$$

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix} \begin{array}{c} \text{person } a \\ \text{person } b \\ \text{person } c \\ \text{person } d \end{array}$$

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix} \begin{array}{c} \text{person } a \\ \text{person } b \\ \text{person } c \\ \text{person } d \end{array}$$

เนื่องจาก Branch อื่น ๆ ถูก Pruned ไปหมด เนื่องจากค่า Lower bound ของ Branches เหล่านั้นแย่กว่าของ Best solution (lb = 13) ที่เจอ

Hungarian Method

https://byjus.com/maths/hungarian-method/

- (ทบทวน) มีของจำนวน n ชิ้น โดยแต่ละชิ้นมีน้ำหนัก (Weight) คือ W_1,\ldots,W_n และ มูลค่า (Value) v_1,\ldots,v_n และถุง (Knapsack) ที่มีความจุ W ให้หา Subset ของที่ สามารถบรรจุลงในถุงได้โดยที่มูลค่ารวมใน Subset นั้นมีมูลค่ามากที่สุด
- สำหรับ BB
 - ให้เราเรียงลำดับตาม Value-to-weight ratios (มากไปหาน้อย) $\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}$
 - ในเลเวลที่ i-th ใน Search tree จะเป็นการแทนทุก Subsets ของ n items ที่รวม/ไม่รวม i items แรกที่เรียงลำดับ ($\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}$)
 - ในแต่ละ Node จะบันทึก Total weight และ Total values รวมถึงค่า upper bound ของ Value
 - ค่า Upper bound (ub) = $v + (W w)(v_{i+1}/w_{i+1})$

item	weight	value	value weight	
1	4	\$40	10	
2	7	\$42	6	The knapsack's capacity W is 10.
3	5	\$25	5	
4	3	\$12	4	

w/o 1

Upper bound ของ Root = 100 เนื่องจากยังไม่มีใครถูกเลือกดังนั้น w = 0, v = 0 ไอเท็มต่อไปคือ 40/4 = 10 ub = 0 + 10*10 = 100

Upper bound (ub) = $v + (W - w)(v_{i+1}/w_{i+1})$

Traveling Salesman Problem

Traveling Salesman Problem

- [1] Lower bound คำนวณได้ Edge ที่มีค่าน้อยที่สุด (Element ที่น้อยที่สุดใน Intercity distance matrix) และคูณกับจำนวนเมืองทั้งหมด
- [2] Lower bound ก็สามารถคำนวณได้จาก สำหรับแต่ละเมือง $i,1 \leq i \leq n$ หาผลรวม S_i ของ Distances จาก City i ไปยัง 2 เมืองที่ใกล้เมือง i ที่สุด คำนวณผลรวม S จาก n จำนวณนี้ $lb = \frac{[s_1 + \dots + s_n]}{2} = \frac{[s]}{2}$

Traveling Salesman Problem

 $lb = \lceil [(1+3) + |(3+6) + (1+2) + (3+4) + (2+3)]/2 \rceil = 14.$

Interesting Questions

- UVa 10285 Longest Run on a Snowboard
 - https://onlinejudge.org/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=1226
- UVa 10350 Liftless EME
 - https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem
 &problem=1291

References

• Introduction to the Design and Analysis of Algorithms (3rd Edition)