Homework 8

Due: Friday, December 11, 2020

Question 1. Patients arrive at an emergency room as a Poisson process with intensity λ . The time to treat each patient is an independent exponential random variable with parameter μ . Let $X = (X_t)_{t>0}$ be the number of patients in the system (either being treated or waiting). Write down the generator of X. Show that X has an invariant distribution π if and only if $\lambda < \mu$. Find π . What is the total expected time (waiting + treatment) a patient waits when the system is in its invariant distribution?

$$\mathbf{G} = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & 0 & \dots \\ \mu & -(\mu + \lambda) & \lambda & 0 & 0 & \dots \\ 0 & \mu & -(\mu + \lambda) & \lambda & 0 & \dots \\ 0 & 0 & \mu & -(\mu + \lambda) & \lambda & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 (\longrightarrow) If X has an invariant distribution π , then $\pi \mathbf{G} = 0$. We have

$$-\lambda \pi(0) + \mu \pi(1) = 0$$
$$\lambda \pi(n-1) - (\mu + \lambda)\pi(n) + \mu \pi(n+1) = 0$$

Then $\pi(n) = (\frac{\lambda}{\mu})^n \pi(0)$. We must have $\sum_{n=0}^{\infty} \pi(n) = 1 = \pi(0) \sum_{n=0}^{\infty} (\frac{\lambda}{\mu})^n$, then $\sum_{n=0}^{\infty} (\frac{\lambda}{\mu})^n < 1$

 $\infty \to \frac{\lambda}{\mu} < 1$. Thus $\lambda < \mu$. (\longleftarrow) If $\lambda < \mu$, then $\sum_{n=0}^{\infty} (\frac{\lambda}{\mu})^n < \infty$. We can define $\pi(0)$ such that $\pi(0) \sum_{n=0}^{\infty} (\frac{\lambda}{\mu})^n = 1$ and let $\pi(n) = (\frac{\lambda}{\mu})^n \pi(0)$. Then $\sum_{n=0}^{\infty} \pi(n) = 1$ and $\pi \mathbf{G} = 0$ are both satisfied, thus π must be a

stationary distribution.
$$\pi(0) \sum_{n=0}^{\infty} \pi(n) = 1 \text{ and } \pi \mathbf{G} = 0 \text{ are both satisfied, thus } \pi \text{ indst be a stationary distribution.}$$

$$\pi(0) \sum_{n=0}^{\infty} (\frac{\lambda}{\mu})^n = 1 \to \frac{\pi(0)}{1-\lambda/\mu} = 1 \to \pi(0) = 1 - \frac{\lambda}{\mu}. \text{ Then } \pi(n) = (1 - \frac{\lambda}{\mu})(\frac{\lambda}{\mu})^n.$$
At steady state, $EX = \sum_{n=0}^{\infty} n\pi(n) = (1 - \frac{\lambda}{\mu})\sum_{n=0}^{\infty} n(\frac{\lambda}{\mu})^n = (1 - \frac{\lambda}{\mu})\frac{\lambda/\mu}{(1-\lambda/\mu)^2} = \frac{\lambda}{\mu-\lambda}.$ By Little's law

$$L = \lambda W$$

where L is expected number of patients at steady state, λ is the rate of arrival and W is the expected processing time. Then $W = \frac{1}{\mu - \lambda}$.

Question 2. Let $X = (X_t)_{t>0}$ be a Markov chain with state space $S = \{0, 1, 2, \ldots\}$ and with a generator G whose ith row has entries

$$g_{i,i-1} = i\mu$$
, $g_{i,i} = -i\mu - \lambda$, $g_{i,i+1} = \lambda$

with all other entries being zero (the zeroth row has only two entries: $g_{0,0}$ and $g_{0,1}$). Assume $X_0 = j$. Find $G_{X_t}(s) := Es^{X_t}$. What is the distribution of X_t as $t \to \infty$?

By Kolmogorov forward equation

$$\frac{dp_t(i,0)}{dt} = -\lambda p_t(i,0) + \mu p_t(i,1)
\frac{dp_t(i,j)}{dt} = \lambda p_t(i,j-1) - (j\mu + \lambda)p_t(i,j) + (j+1)\mu p_t(i,j+1) \quad j \ge 1$$

Multiplying the j-th equation by s^{j} and summing all equations

$$\frac{dG_{X_t}}{dt} = \lambda s G_{X_t} - \mu s \frac{dG_{X_t}}{ds} - \lambda G_{X_t} + \mu \frac{dG_{X_t}}{ds}$$
$$= \lambda (s-1)G_{X_t} - \mu (s-1)\frac{dG_{X_t}}{ds}$$

where $G_{X_t} = \sum_{j=0}^{\infty} s^j p_t(i,j)$. Solving the above PDE with the initial condition $G_{X_0}(s) = s^j$ in Mathematica yields

$$G_{X_t}(s) = [(s-1)e^{-\mu t} + 1]^j e^{\frac{\lambda}{\mu}(s-1)(1-e^{-\mu t})}$$

As $t \to \infty$, $G_{X_t}(s) \to e^{\frac{\lambda}{\mu}(s-1)}$, then

$$P(X_t = k) = \frac{1}{k!}G^{(k)}(0) = \frac{\lambda^k}{k!}u^k e^{-\frac{\lambda}{\mu}}$$

Question 3. Let N be a time-inhomogeneous Poisson process with intensity function $\lambda(t)$. That is, the probability of a jumps of size one in the time interval (t, t + dt) is $\lambda(t)dt$ and the probability of two jumps in that interval of time is $\mathcal{O}(dt^2)$. Write down the Kolmogorov forward and backward equations of N and solve them. Let $N_0 = 0$ and let τ_1 be the time of the first jump of N. If $\lambda(t) = c/(1+t)$ show that $\mathbb{E}\tau_1 < \infty$ if and only if c > 1.

The generator G of N has entries

$$g_{i,i} = -\lambda(t), \quad g_{i,i+1} = \lambda(t), \quad g_{i,j} = 0 \text{ otherwise}$$

Then the Kolmorogov equations can be written as:

$$rac{d}{dt}\mathbf{P}_t = \mathbf{P}_t\mathbf{G} \ rac{d}{dt}\mathbf{P}_t = \mathbf{G}\mathbf{P}_t$$

Since N is a Poisson process, $p_t(i,j) = 0$ for i > j. Consider $p_t(i,i)$ and $p_t(i,i+1)$

$$\frac{dp_t(i,i)}{dt} = -\lambda(t)p_t(i,i)$$

$$\frac{dp_t(i,i+1)}{dt} = -\lambda(t)p_t(i,i+1) + \lambda(t)p_t(i,i)$$

With the initial condition $\mathbf{P_0} = \mathbf{I}$, the first equation has solution $p_t(i,i) = e^{-\int_0^t \lambda(\tau)d\tau}$. Substituting into the second equation and using integrating factor

$$\frac{dp_t(i, i+1)}{dt} + \lambda(t)p_t(i, i+1) = \lambda(t)e^{-\int_0^t \lambda(\tau)d\tau}$$
$$\frac{d}{dt}(p_t(i, i+1)e^{\int_0^t \lambda(\tau)d\tau}) = \lambda(t)$$
$$p_t(i, i+1) = \int_0^t \lambda(\tau)d\tau e^{-\int_0^t \lambda(\tau)d\tau}$$

Similarly we can solve for $p_t(i, i+2), p_t(i, i+3), \cdots$ iteratively, yielding

$$p_t(i,j) = \frac{(\int_0^t \lambda(\tau)d\tau)^{j-i}}{(j-i)!} e^{-\int_0^t \lambda(\tau)d\tau} \text{ for } i \le j$$

Then $p_{\tau_1}(0,1)$ can be expressed as

$$p_{\tau_1}(0,1) = \int_0^{\tau_1} \lambda(t)dt e^{-\int_0^{\tau_1} \lambda(t)dt}$$

$$= c \ln(\tau_1 + 1)e^{\ln(\tau_1 + 1)^{-c}}$$

$$= c \ln(\tau_1 + 1)(\tau_1 + 1)^{-c}$$

$$E\tau_1 = c \int_0^{\infty} \ln(\tau_1 + 1)(\tau_1 + 1)^{-c}d\tau_1$$

$$= \left[\frac{\ln(\tau_1 + 1)(\tau_1 + 1)^{1-c}}{1 - c}\right]_0^{\infty} - \int_0^{\infty} \frac{(\tau_1 + 1)^{1-c}}{(t + 1)(1 - c)}d\tau_1$$

- (\longrightarrow) If $E\tau_1 < \infty$, then 1 c < 0, thus c > 1.
- (\leftarrow) If c>1, then the integrand vanishes at infinity, thus $E\tau_1<\infty$.

Question 4. Let N be a Poisson process with a random intensity Λ which is equal to λ_1 with probability p and λ_2 with probability 1-p. Find $G_{N_t}(s) = Es^{N_t}$. What is the mean and variance of N_t ?

Let $m = p\lambda_1 + (1 - p)\lambda_2$, then the generator G of N has entries

$$g_{i,i} = -m$$
, $g_{i,i+1} = m$, $g_{i,j} = 0$ otherwise

By Kolmogorov forward equation

$$\frac{dp_t(i,0)}{dt} = -mp_t(i,0) \frac{dp_t(i,j)}{dt} = -mp_t(i,j) + mp_t(i,j-1) \quad j \ge 1$$

Multiplying the j-th equation by s^j and summing all equations

$$\frac{dG_{N_t}}{dt} = -mG_{N_t} + msG_{N_t}$$

where $G_{N_t} = \sum_{j=0}^{\infty} s^j p_t(i,j)$. With the initial condition $N_0 = 0 \to G_0 = 1$, this equation can be solved trivially with $G_{N_t} = e^{m(s-1)t}$. Then $EN_t = G'(1) = mt$ and $VarN_t = G''(1) + G'(1) - (G'(1))^2 = mt$.