Modelling Guitar Effects: Transient, Non-linear Circuit Solver

Johnathon Caguiat, Philip Christian, Steven Dong, Ciaran Geaney

ECE1254 Final Project April 20th, 2016

Overview

- Objective and Background: Transience with Non-linearity
- Variable Time-stepping
- Diodes and Transistors: Equations, Stamps and Testing
- Modelling of Guitar effects and Insights Gained

Objective

 Create a circuit solver which can solve a system transience and nonlinearity.

- System of choice: guitar sound modulation.
 - Sound is a transient input voltage input
 - Additional transience and non-linearity can be added by choosing relevant circuit elements: capacitors, diodes and transistors

Adding Non-Linear Elements to Transient Systems

$$\begin{cases} Gx(t) + C\dot{x}(t) + \mathbf{F}'(\mathbf{x}) = Bu(t) \\ y(t) = L^Tx(t) \end{cases} \begin{cases} Gx(t) + C\dot{x}(t) + \mathbf{Hg}(\mathbf{x}) = Bu(t) \\ y(t) = L^Tx(t) \end{cases}$$

Example of how these might look for a two connection, non-linear resistor:

Implementing Trapezoidal Rule

Add two x_{n+1} and x_n such that we can use an approximation for the first derivative:

$$Gx_{n+1} + C\dot{x}_{n+1} + F'(x_{n+1}) = Bu_{n+1}$$
+ $Gx_n + C\dot{x}_n + F'(x_n) = Bu_n$

$$G(x_{n+1} + x_n) + C(x_{n+1} + x_n) + F'(x_{n+1}) + F'(x_n) = B(u_{n+1} + u_n)$$

Substitute the approximation of the : $\frac{x_{n+1} - x_n}{\Delta t} = \frac{\dot{x}_{n+1} + \dot{x}_n}{2}$

$$G(x_{n+1} + x_n) + 2C\left(\frac{x_{n+1} - x_n}{\Delta t}\right) + F'(x_{n+1}) + F'(x_n) = B(u_{n+1} + u_n)$$

Implementing Trapezoidal Rule

Collect x terms and divide by 2:

$$\left(\frac{G}{2} + \frac{C}{\Delta t}\right)x_{n+1} + \left(\frac{G}{2} - \frac{C}{\Delta t}\right)x_n + \frac{F'(x_{n+1}) + F'(x_n)}{2} = \frac{B(u_{n+1} + u_n)}{2}$$

 X_{n+1} is now non-linear and requires Newton's Method to solve for each time step

Implementing Newton's Method

Recall Newton's Method:

$$x_{k+1} = x_k - [J(F(x_k))]^{-1}F(x_k)$$

 $F(x_k)$ form of the Trapezoidal Rule:

$$F(x_{k}) = \left(\frac{G}{2} + \frac{C}{\Delta t}\right)x_{k} + \left(\frac{G}{2} - \frac{C}{\Delta t}\right)x_{n} + \frac{F'(x_{k}) + F'(x_{n})}{2} - \frac{B(u_{n+1} + u_{n})}{2} = 0$$

Implementing Newton's Method

The Jacobian of $F(x_k)$

$$J(F(x_{k})) = J(\left(\frac{G}{2} + \frac{C}{\Delta t}\right)x_{k}) + J(\left(\frac{G}{2} - \frac{C}{\Delta t}\right)x_{n}) + J(\frac{F'(x_{k}) + F'(x_{n})}{2}) - J(\frac{B(u_{n+1} + u_{n})}{2})$$

$$J(F(x_k)) = \left(\frac{G}{2} + \frac{C}{\Delta t}\right) + \frac{J(F'(x_k))}{2}$$

Note that we need F'(x) and $[J(F(x_k))]^{-1}$ for every guess of x_k . This means that F'(x), J(F'(x)) need to be calculated and J(F'(x)) inverted at every guess.

Variable Time Stepping

- Large Time Steps when function is smooth
- Small time steps when change is large

Time size depends on Error

• Key Equation:

$$\Delta t_{new} = \min(0.9\sqrt{(\epsilon_{max}/\epsilon)}, \Delta t_{max})$$

- Error calculates difference in the result of two methods
 - In this case, 1-step trapezoidal and 2-step trapezoidal

• Test Circuit: binary clock tree

Variable Time Stepping

Error of Variable Time Stepping

Newton's Method Convergence Strategies

- Large shunt resistors to ground
- •Final result of previous time step is used as Newton's Method initial guess of the current time step
- Continuation Method
- Adding time delay to source signal

Some More Improvements

- •Relaxed Newton's Method convergence minimum error
- •Restricted the maximum allowable range for Newton's Method
- •dx=dx_max/norm(dx)*dx
- Scale down the amplitudes of incoming signal

Diode Model Equation and Stamps

The current for a diode is described by the following equation:

$$i = I_0(e^{\frac{V_+ - V_-}{\eta V_T}} - 1)$$

The stamp follows the format of a non-linear resistor, seen earlier:

Jacobian of a Diode Stamp

For F'(x): For g(x): n_1 n_2

Diode Test 1: Half Wave Rectifier

Diode Test 2 – Bridge Rectifier

Transistor Model Equations

- Ebers-Moll BJT model
 - Simpler to implement than others (e.g. Gummel-Poon)

$$i_F = I_{Se} \left(e^{v_{be}/V_{Te}} - 1 \right)$$
$$i_R = I_{Sc} \left(e^{v_{bc}/V_{Tc}} - 1 \right)$$

• From KCL:

$$i_b = (1 - \alpha_F)i_F + (1 - \alpha_R)i_R$$
$$i_c = \alpha_F i_F - i_R$$
$$i_e = -i_F + \alpha_R i_R$$

Transistor Stamp

Transistor Testing – CE Amplifier

Guitar Effect 1: Tube Screamer Circuit

Tube Screamer Input vs. Output

Guitar Effect 2: Fuzz Effect

Iteration	1	2	3	4	5	6
Node 3 Voltage	4.2908	4.2908	4.2907	4.2901	4.2567	NaN
Node 4 Voltage	4.8088	4.7736	4.7083	4.1638	-29.2446	NaN

Insights

Diodes

• Either the current through the diode becomes unmanageably large, which produces a singular (exceeding precision) inverse-Jacobian, or becomes a poorly scaled non-invertible Jacobian

Transistors

- Ebers-Moll model consists of diodes: the problems that are applicable to diodes are also applicable to transistors.
- A circuit that contains more than one non-linear element (Fuzz Box) becomes very sensitive to voltage, the exponential characteristics cascades, which is harder to control.

Modelling

- Although the integration of both methods was depicted as simply integrating two
 while loops, it still required to revaluate, by hand, the form of the equations within
- The error obtained when comparing the variable time step to fixed is smaller, and also computationally faster

Improvements

- Try MOSFET instead of BJT since its I-V curve is quadratic
- Can use algorithm to improve shunt resistor method (Gmin stepping)
- The sensitivity of the diodes may have been manageable if we had time to integrate the variable time stepping
- Scaling units of the voltages, currents, and circuit elements

Questions?

Thank you for your time!

Result

