

Graph Theory

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

5、无向树与根树

概念:

无向树, 生成树, 最小生成树, Kruskal 根树, m叉树, 最优二叉树, Huffman算法

有向树与根树的定义

根树 (Rooted Tree)

基图为无向树的有向图称为有向树;若有向树中一个顶点入度为0,其余的入度均为1,则称之为根树。

- 树根——入度为0的顶点
- 树叶——入度为1, 出度为0的顶点
- 内点——入度为1,出度不为0的顶点
- 分支点——树根与内点的总称
- 顶点 心的层数——从树根到心的通路长度
- 树高—— T 中层数最大顶点的层数
- 平凡根树——平凡图

根树实例

根树的画法——树根放上方,省去所有有向边上的箭头

家族树与根子树

定义 T 为非平凡根树

- (1)父亲(Parent)与儿子(Child):假若从a到b有一条边,则结点b称为a的"儿子",或称a为b的"父亲"。
- (2)祖先(Ancestor)与后代(Descendant): 假若从a到c有一条单向通路, 称a为c的"祖先"或 c是a的"后裔"。
- (3) 兄弟(Sibling): 同一个分枝点的"儿子"称为"兄弟"。

设v为根树I中任意一顶点,称v及其后代的导出子图为以v为根的根子树。

根树的分类

- (1) T 为有序根树——同层上顶点标定次序的根树
- (2) 分类
 - ① r 叉树——每个分支点至多有r 个儿子
 - ② r 叉有序树——r 树是有序的
 - ③ r 叉正则树——每个分支点恰有r 个儿子
 - ④ r 叉正则有序树
 - ⑤ r 叉完全正则树——树叶层数相同的r叉正则树
 - ⑥ r 叉完全正则有序树

最优二叉树

最优二叉树

设2叉树T有t片树叶 $v_1, v_2, ..., v_t$,权分别为 $w_1, w_2, ..., w_t$,称 $W(T) = \sum_{i=1}^t w_i l(v_i)$ 为T的权,其中 $l(v_i)$ 是 v_i 的层数。

在所有有t片树叶,带权 $w_1, w_2, ..., w_t$ 的2叉树中,权最小的2叉树称为最优2叉树

Huffman算法

给定实数 $w_1, w_2, ..., w_t$,且 $w_1 \le w_2 \le ... \le w_t$ 。

- (1) 连接权为 w_1 , w_2 的两片树叶,得一个分支点,其权为 w_1+w_2 ;
- (3) 重复(2),直到形成 t-1个分支点,t片树叶为止.。

例: 求带权为1,1,2,3,4,5的最优树。

解: 过程由下图给出, W(T)=38

最优二叉树的应用: 前缀码

前缀码 Prefix code

设 α_1 , α_2 , …, α_{n-1} , α_n 是长度为 n 的符号串

- (1) 前缀—— α_1 , $\alpha_1\alpha_2$, …, $\alpha_1\alpha_2$ … α_{n-1}
- (2) 前缀码—— $\{\beta_1, \beta_2, \dots, \beta_m\}$ 中任何两个元素互不为前缀
- (3) 二元前缀码—— β_i (*i*=1, 2, ···, *m*) 中只出现两个符号,如0与1

如何产生二元前缀码?

- (1) 一棵2叉树产生一个二元前缀码;
- (2) 一棵正则2叉树产生惟一的前缀码。 (按左子树标0,右子树标1)

图所示二叉树产生的前缀码为 {00, 10, 11, 011, 0100, 0101}

用Huffman算法产生最佳前缀码

例: 在通信中,八进制数字出现的频率如下:

0: 25% 1: 20%

2: 15%

3**:** 10%

4: 10%

5**:** 10%

6: 5%

7: 5%

求传输它们的最佳前缀码,并求传输 10^n ($n \ge 2$) 个按上述比例出现的八 进制数字需要多少个二进制数字?

若用等长的(长为3)的码字传输需要多少个二进制数字?

求最佳前缀码

解: 用100个八进制数字中各数字出现的个数,即以100乘各频率为权,并将各权由小到大排列,得 w_1 =5, w_2 =5, w_3 =10, w_4 =10, w_5 =10, w_6 =15, w_7 =20, w_8 =25。用此权产生的最优树如图所示。

W(T)=285, 传10ⁿ(n≥2)个 用二进制数字需 2.85×10ⁿ个, 用等长码需

3×10ⁿ个数字.

根树的周游与(逆)波兰表示法

根树的周游(遍历)

行遍或周游根树 7——对 7的每个顶点访问且仅访问一次。

对2叉有序正则树的周游方式:

- ① 中序行遍法——次序为: 左子树、根、右子树
- ② 前序行遍法——次序为: 根、左子树、右子树
- ③ 后序行遍法——次序为: 左子树、右子树、根

对图所示根树按中序、前序、后序行遍法访问结果分别为:

$$b \underline{a} (f \underline{d} g) \underline{c} e,$$

 $\underline{a} b (\underline{c} (\underline{d} f g) e),$
 $b ((f g \underline{d}) e \underline{c}) \underline{a}$

用2叉有序正则树存放算式

存放规则

- 最高层次运算放在树根
- 后依次将运算符放在根子树的 根上
- 数放在树叶上
- 规定:被除数、被减数放在左 子树树叶上

算式 ((b+(c+d))*a)÷((e*f)-(g+h)*(i*j)) 存放在图所示2叉树上。

波兰符号法

波兰符号法(Polish Notation)

按前序行遍法访问存放算式的2叉有序正则树,其结果不加括号,规定每个运算符号与其后面紧邻两个数进行运算,运算结果正确。称此算法为波兰符号法或前缀符号法。对上图的访问结果为

$$\div * + b + c d a - * e f * + g h * i j$$

逆波兰符号法(Reverse Polish Notation)

按后序行遍法访问,规定每个运算符与前面紧邻两数运算,称为逆波兰符号法或后缀符号法。对上图的访问结果为

$$b \ c \ d + + \ a * \ e \ f * \ g \ h + \ i \ j * * - \div$$