

ANALYSIS BASED ON HSIC DEPENDENCE MEASURES

*Hilbert Schmidt Independence Criterion

Amandine MARREL

CEA DES/IRESNE/DER, IMT Toulouse

NEW ADVANCED IN SENSITIVITY

FROM RESEARCH TO INDUSTRY

In collaboration with M. Albert, V. Chabridon, M. De Lozzo, R. El Amri, B. Laurent-Bonneau, A. Meynaoui, G. Sarazin.

LIKE Workshop 2022

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

Sensitivity Analysis in Uncertainty treatment ⇒ In numerical simulation

- Numerical simulators: fundamental tools to model & predict physical phenomena.
- Large number of input parameters, characterizing the studied phenomenon or related to its physical and numerical modelling.
- Uncertainty on some input parameters → impacts the uncertainty on the output
- Black-box and time-expensive simulators → limited number of simulations

⇒ Quantify how the variability of the input parameters influences the output

→ Aim of Sensitivity Analysis (SA)

Saltelli et al. [2000]

Sensitivity Analysis (SA) in Uncertainty treatment ⇒ In numerical simulation

- Quantitative SA and Ranking purpose:
 - Quantify the impact of each uncertain input and interaction → Ranking
 - → Identify the variables to be fixed or further characterized in order to obtain the largest reduction of the output uncertainty
- Screening purpose. Separate the inputs into two groups: influential and non-influential
 - Non-influential variables fixed without consequences on the output uncertainty
 - In support of model reduction
 - To build a simplified model, a metamodel

Global SA within a probabilistic framework

ightarrow Valuable information to understand ${\mathcal M}$ and underlying phenomenon

Global Sensitivity Analysis of numerical simulators

HSIC* Review

*Hilbert Schmidt Independence Criterion

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

A few notations

Black-box model

$$Y = \mathcal{M}(X_1, \dots, X_d)$$

- lacksquare X_1, \ldots, X_d are d independent inputs, evolving in domain $\mathcal{X}_1, \ldots, \mathcal{X}_d$
- Y evolves in domain Y
- P_X denotes the probability distribution of X and p_X its density if is X continuous
- $P_{Y|X}$: the conditional distribution of Y given X
- $P_{X,Y}$: the joint probability measure and $P_Y \otimes P_X$ the product of marginal distributions
- $\blacktriangleright \mathcal{M}$ unknown, only a *n*-sample of simulations $(X^{(j)}, Y^{(j)})_{1 \le i \le n}$ where $Y^{(j)} = \mathcal{M}(X^{(j)})$ for i = 1, ..., n

GSA built upon RKHS framework

► How to evaluate the sensitivity in a probabilistic way? ⇔ independence

 \rightarrow By comparing $P_{X,Y}$ with $P_X \otimes P_Y$

$$S_i = d(P_{X_i,Y}, P_{X_i} \otimes P_Y)$$

where d a dissimilarity measure between two probablity distributions

d can be based on Maximum Mean Discrepancy:

$$\mathsf{MMD}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{F}} \big[\mathbb{E}_{\mathbb{P}} f(Y) - \mathbb{E}_{\mathbb{Q}} f(Y) \big]$$

with \mathcal{F} = unit ball in a (characteristic) Reproducing Kernel Hilbert Space (RKHS)

(Sriperumbudur et al. [2008])

$$\Rightarrow$$
 S_i = $MMD^2(P_{X,Y}, P_Y \otimes P_X) = HSIC(X, Y)$
Hilbert-Schmidt Independence Criterion

GSA built upon RKHS framework

► Link between embeddings in RKHS and MMD

Association of RKHS \mathcal{F}_X to X: with Φ_X mapping function from \mathcal{X} to \mathcal{F}_X where the inner product is defined by kernel k (s.d.f. function).

Define embedding of $\mathbb P$ in RKHS: $\mu_{\mathbb P} \in \mathcal F_X$ such as $E_{\mathbb P}[f(X)] = \langle f, \mu_{\mathbb P} \rangle_{\mathcal F_X}$ for all $f \in \mathcal F_X$ Reproducing property $\Rightarrow \mu_{\mathbb P} = E_{\mathbb P}[k(\bullet, X)] = E_{\mathbb P}[\Phi_X(X)]$

$$\Rightarrow \mathsf{MMD}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}_{X}, \|f\|_{\mathcal{F}_{X}} \leq 1} \left[\mathbb{E}_{\mathbb{P}} f(Y) - \mathbb{E}_{\mathbb{Q}} f(Y) \right] = \left\| \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right\|_{\mathcal{F}}$$

Kernel trick (reproducing prop.) \Rightarrow MMD²(\mathbb{P} , \mathbb{Q}) = $\mathbb{E}[k(X,X')] + \mathbb{E}[k(Y,Y')] - 2\mathbb{E}[k(X,Y)]$ where $X,X' \sim \mathbb{P}$ and $Y,Y' \sim \mathbb{Q}$

HSIC definition

lacktriangle MMD² applied between $P_{X,Y}$ and $P_Y \otimes P_X \Rightarrow HSIC(X,Y)_{\mathcal{F}_{X,i},\mathcal{F}_Y}$

With \mathcal{F}_{X_i} and \mathcal{F}_Y **RKHS** associated to X_i and Y_i resp.

 k_X , k_Y , kernels on \mathcal{X} , \mathcal{Y} associated with RKHS \mathcal{F}_X , \mathcal{F}_Y $k_X k_Y$ kernel on $\mathcal{X} \times \mathcal{Y}$ associated with RKHS $\mathcal{F}_X \otimes \mathcal{F}_Y$

Steinwart and Christmann [2008]

$$\Rightarrow HSIC(X,Y)_{\mathcal{F}_{X_{i}},\mathcal{F}_{Y}} = MMD_{\mathcal{F}_{X_{i}},\mathcal{F}_{Y}}^{2} \left(P_{X,Y}, P_{Y} \otimes P_{X}\right) = \left\|\mu_{P_{X,Y}} - \mu_{P_{Y} \otimes P_{X}}\right\|_{\mathcal{F}_{X},\mathcal{F}_{Y}}^{2}$$

Hilbert-Schmidt Independence Criterion

Gretton et al. [2005]

Kernel trick (reproducing property) again yields:

$$\operatorname{HSIC}(X,Y) = \mathbb{E}[k_X(X,X')k_Y(Y,Y')] + \mathbb{E}[k_X(X,X')]\mathbb{E}[k_Y(Y,Y')] - 2\mathbb{E}[\mathbb{E}[k_X(X,X')|X]\mathbb{E}[k_Y(Y,Y')|Y]]$$

where (X',Y') is an independent and identically distributed copy of $(X,Y) \sim P_{X,Y}$.

HSIC definition

> HSIC is in fact a "super generalized" covariance

(Gretton et al. [2005])

1. Cross-covariance operator $C_{X,Y}$ between the feature maps

$$\mathcal{C}_{X,Y} = \mathbb{E}_{X,Y}[\Phi_X(X) \otimes \Phi_Y(Y)] - \mathbb{E}_X[\Phi_X(X)] \otimes \mathbb{E}_Y[\Phi_Y(Y)] = \mathbb{E}_{X,Y}[\Phi_X(X) \otimes \Phi_Y(Y)] - \mu_{P_X} \otimes \mu_{P_Y}$$

2. HSIC corresponds to the squared Hilbert-Schmidt norm of $C_{X,Y}$

$$\text{HSIC}(X,Y)_{\mathcal{F}_{X},\mathcal{F}_{Y}} = \|C_{X,Y}\|_{HS}^{2} = \|\mu_{P_{X,Y}} - \mu_{P_{Y} \otimes P_{X}}\|^{2}$$

⇒ A larger panel of input-output dependency can be captured by this operator,

HSIC somehow "summarizes" the cross-cov between feature maps applied to X and Y

► Characteristic kernels and RKHS

Injective feature map

 \Rightarrow Equivalence to independence: $HSIC(X,Y) = 0 \Leftrightarrow X \perp Y$

Ex: Gaussian Kernel

$$k(x_i, x_i') = exp\left(-\frac{(x_i - x_i')^2}{2\lambda^2}\right)$$

HSIC estimation

> HSIC expression with only expectations of kernels

$$\operatorname{HSIC}(X,Y) = \mathbb{E}[k_X(X,X')k_Y(Y,Y')] + \mathbb{E}[k_X(X,X')]\mathbb{E}[k_Y(Y,Y')] - 2\mathbb{E}[\mathbb{E}[k_X(X,X')|X]\mathbb{E}[k_Y(Y,Y')|Y]]$$
 where (X',Y') is an independent and identically distributed copy of (X,Y) .

■ Monte-Carlo estimator from a *n*-sample of simulations $(X_i^{(j)}, Y^{(j)})_{1 \le j \le n}$

$$\widehat{\mathsf{HSIC}}(X,Y) = \frac{1}{n^2} Tr(K_X H L_Y H) \qquad (Gretton et al. [2005])$$

where
$$H = I_n - \frac{1}{n}$$
, $K_X = \left(k_X\left(X^{(j)}, X^{(j')}\right)\right)_{1 \le j, j' \le n}$ and $L_Y = \left(k\left(Y^{(j)}, Y^{(j')}\right)\right)_{1 \le j, j' \le n}$

- Statistical properties of HSIC:
 - Asymptotically unbiased, variance of order O(1/n)
 - If $X \perp Y$, $n\widehat{\mathsf{HSIC}}(X,Y)$ converges asymptotically to a Gamma distribution

HSIC for sensitivity analysis

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

HSIC-based sentivity indices and independence test

Normalization for sensitivity analysis:

(Da Veiga [2015])

$$R_{HSIC,i}^{2} = \frac{HSIC(X_{i},Y)}{\sqrt{HSIC(X_{i},X_{i})HSIC(Y,Y)}}$$

 $\Rightarrow R_{HSIC}^2 \in [0,1]$ for easier interpretation

⇒ Use for ranking of inputs

$$Influence(X_{[1]}) > Influence(X_{[2]}) > \cdots > Influence(X_{[d]})$$

Where order
$$[\cdot]$$
 is such that $\widehat{R_{H,X_{[1]}}^2} > \widehat{R_{H,X_{[2]}}^2} > \cdots > \widehat{R_{H,X_{[d]}}^2}$

- ► Several illustrations on analytical examples and industrial applications
 - HSIC detect non-influential factors easily and robustly, even with small sample size
 - HSIC indices can capture a large spectrum of dependence
 - \rightarrow Good ranking on usual GSA functions from sample size n~ 100
 - → Efficiency for <u>screening</u> → Even better: <u>HSIC independence test</u>

- ► Use HSIC for screening → with Independence test $HSIC(X_i, Y) = 0 \Leftrightarrow X_i \perp Y \quad \text{(with characteristic kernels!)}$
 - Null hypothesis: $\mathcal{H}_0: X_i \perp Y_i$ against $\mathcal{H}_1: X_i \nmid Y_i$
 - Test statistics: $n\widehat{\mathrm{HSIC}}(X_i,Y)$
 - Decision rule to obtain a test of level $\alpha = \mathbb{P}_{\mathcal{H}_0}$ [reject \mathcal{H}_0] (α fixed at 5% or 10%)

 $\mathcal{H}_{0,i}$ rejected iff $n\widehat{\mathrm{HSIC}}(X_i,Y)>q_{1-\alpha}$ where $q_{1-\alpha}$ is the $(1-\alpha)$ quantile under $\mathcal{H}_{0,i}$

$$\rightarrow$$
 Test function: $\Delta_{\alpha} = 1_{n\widehat{\text{HSIC}}(X_i,Y) > q_{1-\alpha}}$

In practice, computation of p-value:

$$p$$
-value = $\mathbb{P}[\widehat{HSIC}(X_i, Y) > \widehat{hsic}_{obs}(X_i, Y)]$

 \Rightarrow How to have the distribution of $n\widehat{HSIC}(X_i, Y)$ under \mathcal{H}_0 ?

\Rightarrow How to have the distribution $n\widehat{HSIC}(X_i, Y)$ under \mathcal{H}_0 to compute *p-value*?

- Asymptotic computation with Gamma approximation for large n (Gretton et al. (2008])
- Permutation-based approximation for smaller sample size n (De Lozzo & Marrel (2016a], Meynaoui et al. [2019])

Algorithm 1 – Permutation-based independence test (for each X_i)

Require: The learning sample (X_i, Y) of n inputs/outputs $\{(X_i^{(1)}, Y^{(1)}), \dots, (X_i^{(n)}, Y^{(n)})\}$, B and α

- 1: Compute $\widehat{\mathrm{HSIC}}_{obs}(X_i,Y)$ from Eq. (2)
- 2: Generate B permutation-based samples $(X_i, Y_{[b]})_{1 \le b \le B}$
- 3: Compute the B permutation-based estimators $\Big(\widehat{\mathrm{HSIC}}_b(X_i,Y)\Big)_{1 \le b \le B}$ by replacing \mathbf{Y} by $\mathbf{Y}_{[b]}$ in Eq. (2)
- 4: Estimate the p-value by Monte-Carlo estimator $\hat{p}_{val,i}^B = \frac{1}{B} \sum_{b=1}^B \mathbb{1}_{\widehat{\mathrm{HSIC}}_b(X_i,Y) > \widehat{\mathrm{HSIC}}_{obs}(X_i,Y)}$
- 5: if $\hat{p}_{val,i}^{B} < \alpha$ then
- 6: return reject (\mathcal{H}_0^i)
- 7: else
- 8: return accept (\mathcal{H}_0^i)
- 9: end if

\Rightarrow How to have the distribution $n\widehat{HSIC}(X_i, Y)$ under \mathcal{H}_0 to compute *p-value*?

- Asymptotic computation with Gamma approximation for large n (Gretton et al. (2008])
- Permutation-based approximation for smaller sample size n (De Lozzo & Marrel (2016a], Meynaoui et al. [2019])
- \rightarrow Theoretical demonstration: permuted-test is of level α (Meynaoui et al. [2019])
- → Empirically observed: power of asymptotic and permutation test equivalent for a sufficient number B of permutations
- → Extension for non independent identically distributed samples: (El Amri & Marrel [2021b])
 - ✓ ok for Latin Hypercube sample (LHS)
 - ✓ Correction with Conditional Randomization Test for scrambled low-discrepancy sequence (El Amri & Marrel [2021b])
 - Not possible for space-filling LHS

▶ **Permutation-based** approximation (El Amri & Marrel [2021a])

In practice, which number B of permutations to accurately estimate p-value?

In practice reduction of *B* to few hundreds.

⇒ Sensitivity studies and convergence studies more tractable

Institut de recherche sur les systèmes nucléaires pour la production d'éneraie bas carbone

► Estimation of p-value with **Pearson III**-approximation (El Amri & Marrel [2021b])

$$\widehat{\mathsf{HSIC}}(X,Y) = \frac{1}{n^2} Tr(K_X H L_Y H) = \frac{1}{n^2} Tr(\widetilde{K}_X \widetilde{L}_Y)$$

With $\widetilde{K}_X = (HK_XH)$ and $\widetilde{L}_Y = (HL_YH)$ double centered matrices

 $A \in \mathbb{R}^{n \times n}$ symmetric and with centered rows $W = UU^T$ with $U \in \mathbb{R}^{n \times p}$ and centered columns S = Tr(AW)

⇒ Distribution of S when rows of U are randomly permuted can be approximated by a Pearson III
 + expression of 3 first moments

(Kazi-Aoual et al. [1994])

- ▶ Application to permuted $\widehat{\mathsf{HSIC}}_b(X,Y)$ statistics with $A=\widetilde{K}_X$ and $W=\widetilde{L}_Y$
 - ⇒ Direct approximation, no permutation required
 - ⇒ Fast and very efficient
 - **⇒** Best method for non-asymptotic framework

Solutions for more powerful HSIC tests

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

Solutions for more powerful HSIC-based test

Limitation: as mentionned before, usual kernels often depend on parameter

For 1-D Gaussian kernel: bandwidth parameter λ (λ > 0), estimated in practice either with empirical standard deviation, or empirical median $k_G(x_i, x_i') = exp\left(-\frac{(x_i - x_i')^2}{2\lambda^2}\right)$

- → Heuristic choices without theoretical justifications
- → Impact on the **power** of the HSIC-based test (and quantitative interpretation of HSIC)
- **▶** Solution 1: Aggregated HSIC-tests to take into account several kernels
 - → Improve the power of tests: theoretical demonstration on level and power
 - → Improve the robustness of HSIC-based screening

Albert et al. [2021] and Meynaoui's PhD [2019]

Solution 1 for more powerful test: aggregation

- \triangleright Methodology of aggregated testing procedure of level α ?
 - 1. Consider a countable **collection of positive bandwidths** $\Lambda = (\lambda_i)_i$ and $\mathcal{U} = (\mu_i)_i$ and a collection of positive weights $\{\omega_{\lambda,\mu} \ / \ (\lambda,\mu) \in \Lambda \times \mathcal{U}\}$ such that $\sum_{(\lambda,\mu)\in\Lambda\times\mathcal{U}} e^{-\omega_{\lambda,\mu}} \leq 1$
 - 2. Define a level for each single test of the collection $(\lambda, \mu) \in \Lambda \times \mathcal{U} : u_{\alpha}e^{-\omega_{\lambda,\mu}}$

Single test rejects
$$\mathcal{H}_0 \iff H\widehat{SIC}_{\lambda,\mu} > q_{1-u_{\alpha}e}^{\lambda,\mu}$$

where u_{α} is the less conservative value such that the aggregated test is of level α :

$$u_{\alpha} = \sup \left\{ u > 0 \; ; \; \mathbb{P}_{f_X \otimes f_Y} \left[\sup_{(\lambda,\mu) \in \Lambda \times \mathcal{U}} \left(\widehat{HSIC_{\lambda,\mu}} > q_{1-u_{\alpha}e^{-\omega_{\lambda,\mu}}}^{\lambda,\mu} \right) > 0 \right] \leq \alpha \right\}$$

- \Rightarrow In practice $oldsymbol{u}_{lpha}$ estimated by permutation-based approach
- 3. Reject independence if there is at least one single test that rejects ${m \mathcal{H}}_0$

$$\Delta_{\alpha} = 1 \Leftrightarrow \sup_{(\lambda,\mu) \in \Lambda \times \mathcal{U}} \left(\widehat{HSIC_{\lambda,\mu}} > q_{1-u_{\alpha}e^{-\omega_{\lambda,\mu}}}^{\lambda,\mu} \right) > 0$$

Solution 2 for more powerful test: optimal bandwidths

► Solution 2: HSIC-tests with optimal bandwidths (El Amri & Marrel [2021b])

$$(\lambda, \mu)_n^* = \underset{\lambda, \mu}{\operatorname{argmax}} \widehat{HSIC}_{\lambda, \mu}$$

$$\widehat{HSIC}^* = \widehat{HSIC}_{(\lambda, \mu)_n^*}$$

- ► Methodology of optimal-bandwidth test:
 - Optimization solved using HSIC gradient and kernel derivatives
 - Adaptation of permutation-based method by re-estimating the optimal bandwidths for each permuted sample
 - Use of sequential permutation to optimize the number of permutation

Numerical comparisons

▶ Illustration on analytical examples (from Berreth & Samworth [2019], details in Appendix)

Results obtained from 1000 i.i.d. Monte-Carlo samples of size n=100

Power curves of independence tests according to shape parameters l and ρ

*MINT: Mutual Information-based test

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

▶ Goal-oriented SA for safety studies

- (Marrel & Chabridon [2021])
- \Rightarrow To measure the input influence in a <u>restricted output domain</u>: $Y \in \mathcal{C}$
- \Rightarrow Numerous applications for safety and risk assessment ($\mathcal{C} = \{Y | Y > q_{0.9}\}$, e.g.)
- ► Technical point: choose the characteristic kernel according to the type of data:
 - Output = « Is Y in domain C? »
 - Target SA: measures the influence of X over the occurrence of $Y \in \mathcal{C}$
 - \rightarrow Bernouilli output: $\mathbf{1}_{Y \in \mathcal{C}}(Y) \sim \mathcal{B}(p_{\mathcal{C}})$ with $p_{\mathcal{C}} = \mathbb{P}[Y \in \mathcal{C}] \Rightarrow$ Dirac Kernel
 - Conditional SA: performed within \mathcal{C} only, ignoring what happens outside
 - \rightarrow Real output: $Y|Y \in \mathcal{C}$ with $\mathbb{P}_{|Y \in \mathcal{C}}[\mathcal{A}] = \frac{\mathbb{P}[\mathcal{A} \cap Y \in \mathcal{C}]}{p_{\mathcal{C}}} \Rightarrow$ Gaussian kernel

Goal-oriented HSIC for safety studies

(Marrel & Chabridon [2021])

- ⇒ Brute versions:
 - Target SA: $HSIC(X, \mathbf{1}_{Y \in \mathcal{C}}(Y))$ with Dirac Kernel
 - Conditional SA: $HSIC(X,Y|Y \in C)$ with Gaussian Kernel
- \Rightarrow Smoother versions to cope with the loss of information and take into account some information outside $\mathcal{C} \rightarrow$ Use of weight function $W_{\mathcal{C}}$ for relaxation

$$W_{\mathcal{C}}: \mathcal{Y} \to [0,1]$$

 $W_{\mathcal{C}}(y) = e^{-d_{\mathcal{C}}(y)/s} \text{ and } d_{\mathcal{C}}(y) = \inf_{y' \in \mathcal{C}} ||y - y'||$

 $\rightarrow HSIC(X, W_{\mathcal{C}}(Y))$ and $HSIC(X, W_{\mathcal{C}}(Y)Y|Y \in \mathcal{C})$

Similar use for optimization purpose in Spagnol et al. [2019]

✓ Implementation in sensiHSIC of R Sensitivity package:

Estimators of $HSIC(X, W_{\mathcal{C}}(Y))$ + asymptotic and permuted-based tests

SA for functional data

(El Amri & Marrel [2021b])

Output is a random function of time or space \Rightarrow which kernel?

One solution: combine

- 1. Functional Principal Component Analysis (FPCA)
- 2. Truncation with the q first terms: $Y(t) \mu(t) \approx \sum_{k=1}^{q} U_k \varphi_k(t)$
- 3. Weigthed kernel based on the q FPCA (random) coefficients $(U_k)_{k=1,\dots q}$

$$k(\mathbf{Y}^{(l)}, \mathbf{Y}^{(m)}) = \sum_{h=1}^{q} w_h k(||U_h^{(l)} - U_h^{(m)}||_2^2)$$

Where k is a usual kernel for real variables (Gaussian e.g.) and weights \mathbf{w}_h correspond to the percentage of variance explained by each component \mathbf{U}_h (cf. eigenvalues from FPCA)

SA for functional data

(El Amri & Marrel [2021b])

Illustration on compartmental epidemiologic model on COVID-19

Modified SIR model (Susceptible – Infected – Recovered) with 6 uncertain inputs

I(t) and R(t): number of asymptomatic and reported symptomatic infectious individuals at time t

Conclusion and prospects

IRESNE | DER | SESI | LEMS

Research Institute on Nuclear Systems for Low Carbone Energy Production

Conclusions

► HSIC as indices of Sensitivity Analysis

- Focus the SA analysis on the difference between $P_{X,Y}$ with $P_X \otimes P_Y$
- Power of RKHS → HSIC=one of the most successful non-parametric dependence measure
- Capture a large spectrum of relationships
- Able to deal with many factors and purposes (ranking, screening, goal-oriented SA)
- Characterize independence → efficient for screening and building independence tests!

HSIC-tests of independence for screening

- Rigorous statistical framework, control of 1st and 2nd kind error
- Asymptotic and several non-asymptotic versions
- P-value of test → Really efficient for screening and for quantitative SA

Efficiency demonstrated in numerous industrial applications, especially with small sample size and large dimension

Prospects

- **▶** Limitations and prospects remain in HSIC SA indices
 - Decomposition into main effects & interactions must be investigated
 - ⇒ Assess the use of HSIC with ANOVA-like kernels and Shapley-HSIC for dependent inputs (Da Veiga [2021])
 - ⇒ Build associated independence tests
 - ⇒ Assess power for screening and relevancy for ranking

Simulation Analytics and Meta-model-based solutions for Optimization, Uncertainty and Reliability Analysis

- Invariance properties → Preliminary isoprobabilistic transformation? (Poczos et al. (2018))
- Extension "functional" HSIC-tests with other reduction techniques like Dynamic Time Warping?

Some References 1/2

- Albert, M, Laurent, B., Marrel, A. and Meynaoui, A. Adaptive test of independence based on HSIC measures.
 To appear in Annals of Statistics, 2022.
- Baucells, M. and Borgonovo, E. Invariant probabilistic sensitivity analysis. Management Science, 59 (11), pp. 2536-2549, 2013.
- Berrett, T. B. and Samworth, R. J. Nonparametric independence testing via mutual information. Biometrika, 106(3):547{566, 2019.
- Borgonovo, E. A new uncertainty importance measure, Reliability Engineering & System Safety, 92(6), 771–784, 2007.
- Da Veiga S., Global sensitivity analysis with dependence measures, *Journal of Statistical Computation and Simulation*, 85:1283-1305, 2015.
- Da Veiga S., Kernel-based anova decomposition and shapley effects—application to global sensitivity analysis. arXiv preprint arXiv:2101.05487. 2021.
- De Lozzo M. and Marrel A., New improvements in the use of dependence measures for sensitivity analysis and screening, *Journal of Statistical Computation and Simulation*, 86:3038-3058, 2016
- El Amri R. and Marrel A. HSIC-based independence tests with optimal sequential permutations: application for sensitivity analysis of numerical simulators, *Quality and Reliability Engineering International*, 2021a.
- El Amri R. and Marrel A., More powerful HSIC-based independence tests, extension to space-filling designs and functional data, https://hal-cea.archives-ouvertes.fr/cea-03406956, 2021b.
- Gretton, Bousquet, Smola and Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. *In: Proceedings Algorithmic Learning Theory*, 2015.
- looss B. and Lemaître P. A review on global sensitivity analysis methods. In Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer, 2015.
- Kraskov, A., Stogbauer, H. and Grassberger, P. Estimating mutual information', Physical Review E 69(6), 066138.1–066138.16, 2004.

Some References 2/2

- Marrel A. and Chabridon V. Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Reliability Engineering and System Safety 214, 2021.
- Meynaoui, A. New developments around dependence measures for sensitivity analysis: application to severe accident studies for generation IV reactors. PhD thesis, University of Toulouse, 2019.
- Müller, A. Integral probability metrics and their generating classes of functions, Advances in Applied Probability 29(2), 429–443, 1997.
- Spagnol A., Le Riche R. and Da Veiga S. Global Sensitivity Analysis for Optimization with Variable Selection, SIAM/ASA Journal on Uncertainty Quantification, Vol. 7, No. 2: pp. 417-443, 2019.
- Poczos. Ghahramani and J. Schneider. Copula-based Kernel Dependency Measures. https://arxiv.org/abs/1206.4682, 2018.
- Saltelli, A., Chan, K., and Scott, E., editors. Sensitivity analysis. Wiley Series in Probability and Statistics. Wiley. 2000.
- Sobol, I. Sensitivity estimates for non linear mathematical models. Mathematical Modelling and Computational Experiments, 1:407-414, 1993.
- Sriperumbudur B.K., Gretton A., and Fukumizu K. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, (11):1517-1561, 2010.
- Zhang, Q., Filippi, S., Gretton, A. et al. Large-scale kernel methods for independence testing. Stat Comput 28, 113-130, 2018.

Thank you for your attention!

DE LA RECHERCHE À L'INDUSTRIE

APPENDIX

Numerical comparisons of standard and solutions 1 & 2

Illustration on analytical examples (usually used in indep. test comparison)

3 different mechanisms of dependence, varying by a shape parameter (l or ρ)

Berreth & Samworth [2019]

- (i). Defining the joint density f_l , $l=1,\ldots,10$ of (X,Y) on $[-\pi,\pi]$ by $f_l(x,y)=\frac{1}{4\pi^2}\left\{1+\sin(lx)\sin(ly)\right\}$
- (ii). Considering X and Y as $X = L\cos\Theta + \frac{\varepsilon_1}{4}$, $Y = L\sin\Theta + \frac{\varepsilon_2}{4}$, where L, Θ , ε_1 and ε_2 are independent, with $L \sim \mathcal{U}\{1,\ldots,l\}$ for $l=1,\ldots,10$, $\Theta \sim \mathcal{U}\left[0,2\pi\right]$ and $\varepsilon_1,\varepsilon_2 \sim \mathcal{N}(0,1)$.
- (iii). Defining $X \sim \mathcal{U}[-1,1]$. For a given $\rho = 0.1, 0.2, \ldots, 1$, Y is defined as $Y = |X|^{\rho} \varepsilon$, where $\varepsilon \sim \mathcal{N}(0,1)$ independent with X.