RAININ(ISIT

Awadelkarim $(ameloa)^1$ Kevin Coelho (katc)¹

¹Stanford University

OBJECTIVES

The objective of this work is to:

- Classify songs into given playlists
- Explore features like track metadata, artists and genres from Spotify's API
- Explore various ML algorithms in this domain.
- Train and test a model using Spotify's curated playlists and real user data

INTRODUCTION

songs, S, recommendations lack the novelty and creativity of an individual creator's taste. We hope to produce a tool trained at a smaller scale on similarity (collaborative filtering), but these cult with few tools available for avid music lisplaylist $k \in K$? unfinished playlists, will capture more interesting traits of each user. Playlist curation is time consuming and diffi-Problem Statement. Spotify's playlist recommendations rely , can we sort song $s \in$ ent. Given a group of K and a set of unclassified S into the best

(b) Myles' playlists

Figure: User playlists, mapped to two dimensions via PCA.

scapes. spanning one artist, others generate heterogeneous mixes songs together, some make playlists solely from ing playlists; many users put similar sounding playlist moods become less concrete and/or separable (see above figure). Users have a variety of strategies for creat-Our multiple genres, problem increases eras, in difficulty and sound-

METHODS

 $\frac{2}{3}$ ble to rithms so far have been SVM(with RBF Kernel) and model to **real user data**. The best performing algo-Neural Network (with 1 hidden layer). We started with data we test "Spread the Gospel" and "Celtic Punk". a "toy set" of **Spotify-curated playlists** such in an ideal setting, then generalize a successful perceived to be most separa-We wanted

DATASETS

"tempo". each track, we gathered audio features, genres, and artists from Spotify's public API. Audio features include things like "danceability", "energy", and Our started with one-hot vector representations and plan represented unique moods/styles (5721 hand selected 116 of our friends playlists which broadly curated playlists (1044 tracks). to try other methods like node2vec and word2vec . For categorical data like genre and artist, set" composed 13 of Spotify's For our "user set" tracks). $\overline{\text{OWn}}$ pre-

Perceptron & SVMs

We k =processing step of rescaling the features, and RBF kerneled SVMs, with and without dataset. compared Perceptron with Polynomial, 5 and obtained the following results: Weperformed k-fold cross validation with on the Sigmoid, the

	Scaled	Unscaled
RBF SVM	$0.77(\pm 0.05)$	$0.25~(\pm~0.04)$
Sig SVM	$0.74 (\pm 0.07)$	$0.09 (\pm 0.04)$
Poly SVM	$0.17 (\pm 0.02)$	$0.48 (\pm 0.05)$
Perceptron	$0.76 (\pm 0.05)$	$0.13 (\pm 0.10)$

Table: Test Accuracy: # correct/total # samples. tested with audio feature data + one-hot genres. Trained and

RBF the results: and the following precision, recall, f-score, and support preprocessed data. error term, we obtain an accuracy of 0.80 ± 0.05 kerneled SVM reliably performed the best with Tuning the penalty parameter on

	λ	B	\bigcirc	
"Swagger"	0.65	0.62	0.64	76
"Spread the Gospel"	1.00	0.93	0.96	40
"90's Baby Makers"	0.74	0.79	0.76	47
"Tender"	0.75	0.36	0.49	33
"Have a Great Day!"	0.69	0.83	0.75	100
"Dance Rising"	0.85	0.94	0.89	99
"Sad Vibe"	0.71	0.83	0.77	42
"Afternoon Acoustic"	0.79	0.80	0.80	76
"Kitchen Swagger"	0.49	0.43	0.46	75
"All The Feels"	0.85	0.88	0.86	65
"Jazz Vibes"	0.92	0.92	0.92	118
"Celtic Punk"	1.00	0.94	0.97	49
"Country by the"	0.95	0.84	0.89	49

Table: A: Precision, B: Recall, C: F1-score, \Box Support

RESULTS

Figure: Results of training neural network with one hidden layer (sigmoid activation) and LogSoftmax output layer, minimizing NLL loss with L_2 regularization

layer that a neural network, minimizing We explored many architectures and ultimately found hidden performs best on the toy set. layer of neurons, and \mathcal{D} LogSoftmax NLL loss,with one output

# Hidden layers	Train	Test
2 (identity + sigmoid)	91.0%	77.0%
1 (sigmoid)	89.0%	82.0%

archite Table: ctures Train and test accuracy on the toy dataset for various (activation functions in parentheses)

	Jacob Kevin Miz	100% 94% 69%	90% 78% 40%
	Miz	62%	40%
	Myles	64%	15%
rain anc ture.	test accur	acy on various	rain and test accuracy on various users using fir ture.

Train

Test

architect

Conclusion & Future Work

- becau The NN relationships between classes ise SVMs are less suited to understanding achieved highest accuracy. This may be
- with: The NN struggled on the user set. May be improved
- separable) - better playlist selection (choosing more -larger labeled datasets (bigger user playlists)
- better feature selection -different algorithm, such as decision trees
- Features we hope to explore:
- graph") artists" (each -node2vec representation of Spotify's "related artist and genre is a node on a "related and our own collection of related genres
- user-generated tags (via a companion app)

ing via low 128-We artist similarity. have for dimensional node2vec artist embeddings. See be-PCA. a two-dimensional visualization of the cluster gathered related artists data and computed The representation successfully captures

Figure: 2D node2vec data on related artists