

Description

The VSM55P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-60V, I_{D} =-55A $R_{DS(ON)}$ <28m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Package Marking and Ordering Information

Device Markin	g Device	Device Package	Reel Size	Tape width	Quantity
VSM55P06-T2	VSM55P06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	-55	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	-24.8	А	
Pulsed Drain Current	I _{DM}	-220	А	
Maximum Power Dissipation	P _D	110	W	
Derating factor		0.73	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	273	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.36	°C/W	
--	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-2	-2.6	-3.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	23	28	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-20A	-	25	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	V _{DS} =-30V,V _{GS} =0V,	-	3016.8	-	PF
Output Capacitance	Coss		-	180	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	126	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =-30V, R_{L} =1.5 Ω , V_{GS} =-10V, R_{G} =3 Ω	-	12	-	nS
Turn-on Rise Time	t _r		-	15	-	nS
Turn-Off Delay Time	t _{d(off)}		-	38	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V - 20 I - 20 A	-	49.8		nC
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-20A, V_{GS} =-10V	-	10.6		nC
Gate-Drain Charge	Q _{gd}	V _{GS} 10V	-	13.6		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-20A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-55	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 20A	-	47		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	53		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-20V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)
Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 ID Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance