Итерационные методы для решения линейных систем

Метод Галеркина

Приближенное решение $x_m \in x_0 + K_m$ системы:

$$Ax = b$$
,

где x_0 — начальное приближение и K_m пространство размерности m, можно найти удовлетворив условиям Петрова-Галеркина:

$$b - Ax_m \perp L_M$$

где L_m еще одно пространство размерности m.

В итерационных методах пространством K_m обычно выбирают пространство Крылова:

$$K_m = K_m(A, r_0) = \operatorname{span}(r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0).$$

где $r_0 = b - Ax_0$ — начальная невязка. Метод подпространств Крылова аппроксимирует решение полиномом q_{m-1} степени m-1:

$$A^{-1}b \approx x_m = x_0 + q_{m-1}(A)r_0$$

Выбор подпространства L_m зависит от свойств матрицы A и от выбора минимизируемой ошибки. Стандартный выбор:

- 1. $L_m = K_m$ для положительно определенного A > 0;
- 2. $L_m = AK_m$ для A общего вида.

Подпространства Крылова

$$K_m(A, v) = \operatorname{span}(v, Av, A^2v, \dots, A^{m-1}v).$$

- 1. Элементы K_m имеют вид x = p(A)v для подходящего многочлена p, $\deg p \leq m-1$.
- 2. Наименьшая из степеней многочленов p, таких что p(A)v=0 называется степенью v относительно A. Если μ степень v, то K_{μ} инвариантно относительно A и $K_m=K_{\mu}$ для $m\geq \mu$. Более того,

$$\dim K_m = m \quad \Leftrightarrow \quad m \leq \mu.$$

4. Пусть Q_m проектор на K_m и $A_m = Q_m A \bigg|_{K-m}$ сужение A на K_m , тогда для любого многочлена q, $\deg q \leq m$ верно $Q_m q(A) v = q(A_m) v$, а для $\deg q \leq m-1$ верно $q(A) v = q(A_m) v$.

Алгоритм Арнольди

- 1. Выберем v_1 , $||v_1|| = 1$.
- 2. Повторяем для j = 1 ... m:
- 3. Вычислим $h_{ij} = Av_j \cdot v_i$ для $i = 1 \dots j$.
- 4. Вычислим $w_j = Av_j \sum_{i=1}^{j} h_{ij}v_i$.
- 5. Положим $h_{j+1,j} = ||w_j||_2$.
- 6. Если $h_{j+1,j} = 0$, то завершаем алгоритм.
- 7. В противном случае $v_{j+1} = w_j/h_{j+1,j}$.

Шаги 3-7 суть процесс ортогонализации Грама-Шмидта. Вектора $v_1\dots v_m$ образуют ортогональный базис в K_m , если алгоритм не прервался до $j\leq m$.

Соберем вектора v_j в столбцы матрицы $V_m=(v_1,\ldots,v_m)\in \mathsf{Mat}(n\times m)$. Пусть $\bar{H}\in \mathsf{Mat}((m+1)\times m)$ – матрица Хессенберга с элементами h_{ij} , а H – первые m строк матрицы \bar{H} . Тогда

$$AV_m = V_m H_m + w_m e_m^T = V_{m+1} \bar{H}_m,$$
$$V_m^T A V_m = H_m.$$

Алгоритм Арнольди прерывается на шаге j ($h_{j+1,j}=0$), если и только если j степень v_1 относительно A.

Практичный вариант алгоритма Арнольди

- 1. Выберем v_1 , $||v_1|| = 1$.
- 2. Повторяем для j = 1 ... m:
- 3. Вычислим $w_j = Av_j$.
- 4. Повторяем для $i = 1 \dots j$:
- 5. Вычислим $h_{ij} = \mathbf{w}_j \cdot \mathbf{v}_i$.
- 6. Обновим $w_j \mapsto w_j h_{ij}v_i$.
- 7. Положим $h_{j+1,j} = \|w_j\|_2$.
- 8. Если $h_{j+1,j} = 0$, то завершаем алгоритм.
- 9. В противном случае $v_{j+1} = w_j/h_{j+1,j}$.

В приближенной арифметике ортогональность векторов в этом варианте лучше. Еще лучше использовать отражения Хаусхолдера, вместо Грама-Шмидта, но они в два раза медленнее.

Метод полной ортогонализации (FOM)

Решаем систему Ax=b методом Галеркина, положив $L_m=K_m=K_m(A,r_0)$, где $r_0=b-Ax_0$ для начального приближения x_0 . Приближенное решение x_m ищется в пространстве $x_0+K_m\ni x_m$ из условий Галеркина $b-Ax_m\perp K_m=L_m$.

1. Положим в алгоритме Арнольди $v_1=r_0/\beta$, $\beta=\|r_0\|$, и пусть V_m ортонормированный базис, порожденный алгоритмом Арнольди, и H соответствующая матрица Хессенберга. Тогда

$$V_m^T A V_m = H_m, \quad V_m^T r_0 = V_m^T (\beta v_1) = \beta e_1.$$

2. Приближенное решение находится решением системы из m уравнений:

$$x_m = x_0 + V_m y_m$$
, $H_m y_m = \beta e_1$.

Невязка приближенного решения:

$$b - Ax_m = -h_{m+1,m}e_m^T y_m v_{m+1},$$

$$||b - Ax_m||_2 = h_{m+1,m}|e_m^t \cdot y_m|.$$

Здесь e_m – m-ый стоблец единичной матрицы.

FOM с перезапуском

- 1. Вычислим $r_0 = b Ax_0$, $\beta = ||r_0||_2$, $v_1 = r_0/\beta$.
- 2. Вычисляем базис Арнольди V и матрицу Хессенберга H_m стартуя с вектора v_1 .
- 3. Решаем систему $H_m y_m = \beta e_1$ и получаем приближенное решение $x_m = x_0 + V_m y_m$.
- 4. Если полученная точность устраивает, то останавливаемся.
- 5. Если нет, то кладем $x_0 = x_m$ повторяем с шага 1.

Частичная ортогонализация (ІОМ)

- 1. Повторяем для $j = 1 \dots m$:
- 2. Вычислим $w_i = Av_i$.
- 3. Повторяем для $i = \max(1, j k + 1) \dots j$:
- 4. $h_{ij} = w_j \cdot v_i$.
- 5. $w_j \mapsto w_j h_{ij}v_i$.
- 6. $h_{j+1,j} = ||w_j||_2, v_{j+1} = w_j/h_{j+1,j}.$

Ортогонализуем только относительно k последних векторов. Однако для вычисления решения по прежнему требуются все m векторов:

$$x_m = x_0 + V_m y_m.$$

Однопроходный метод (DIOM)

Матрица Хессенберга H_m из неполной ортогонализации (IOM) имеет одну побочную нижнюю диагональ и k побочных верхних. Используем LU разложение $H_m = L_m U_m$,

$$\begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ & h_{32} & h_{33} & h_{34} & h_{35} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \end{pmatrix} = \begin{pmatrix} 1 & & & & \\ & l_{21} & 1 & & & \\ & & & l_{43} & 1 \\ & & & & l_{54} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} & & \\ & u_{22} & u_{23} & u_{24} & & \\ & & & u_{33} & u_{34} & u_{35} \\ & & & & u_{44} & u_{45} \\ & & & & & u_{55} \end{pmatrix}$$

Приближенное решение

$$x_m=x_0+V_mU_m^{-1}L_m^{-1}(eta e_1).$$

Обозначим $P_m=(p_1\dots p_m)=V_mU_m^{-1},\ z_m=L_m^{-1}(eta e_1),\$ тогда $x_m=x_0+P_mz_m.$

Вектора P_m можно вычислить рекуррентно:

$$P_m U_m = V_m, \quad \sum_{i=m-k+1}^m u_{im} p_i = v_m,$$
 $p_m = \frac{1}{u_{mm}} \left[v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i \right].$

При увеличении m левый верхних диагональный минор матриц H_m и L_m не изменяется. Следовательно справедливо:

$$z_m = \begin{pmatrix} z_{m-1} \\ \zeta_m \end{pmatrix}, \quad \zeta_m = -I_{m,m-1}\zeta_{m-1}.$$

Приближенное решение:

$$x_m = x_0 + P_{m-1}z_{m-1} + \zeta_m p_m.$$

Так как $x_0 + P_{m-1}z_{m-1} = x_{m-1}$, то приближенные решения обновляются по формуле:

$$x_m = x_{m-1} + \zeta_m p_m.$$

Однопроходный метод без запоминания (DIOM)

- 1. Выберем x_0 и вычислим $r_0=b-Ax_0$, $\beta=\|r_0\|_2$, $v_1=r_0/\beta$.
- 2. Цикл по *m* до сходимости:
- 3. Вычисляем $h_{im}, i = \max(1, m-k+1) \dots m$ и v_{m+1} по алгоритму Арнольди.
- 4. Обновляем LU разложение для H_m , получаем новый столбец U_m . Если $u_{mm}=0$, завершаем алгоритм.
- 5. $\zeta = \beta$ для m = 1, потом $\zeta = -I_{m,m-1}\zeta_{m-1}$.
- 6. $p_m = u_{mm}^{-1}(u_m \sum_{i=m-k+1}^{m-1} u_{im}p_i).$
- 7. $x_m = x_{m-1} + \zeta_m p_m.$

При выходе на шаге 4 результат не точен. Нужно использовать LU с перестановкой строк.