Hoofdstuk 3 – Digitale signalen en schakelaars

Thuisopdracht 1:

Waar	Onwaar
True	False
1	0
Hoog	Laag

Thuisopdracht 2

Serieschakeling:

S1	S2	L
0	0	0
0	1	0
1	0	0
1	1	1

Parallelschakeling:

S1	S2	L
0	0	0
0	1	1
1	0	1
1	1	1

- a) Er zijn altijd 2^n regels in de waarheidstabel (met n het aantal variabelen). Dus voor drie variabelen wordt dat $2^3 = 8$ regels.
- b) Kijk goed wanneer je een gesloten stroomkring krijgt: L = A AND ((B AND C) OR D) AND E

Thuisopdracht 3

Thuisopdracht 4:

Function	Symbol	Alternative symbol	Boolean expression	Truth table
Buffer	$A \longrightarrow B$	$A \longrightarrow 1 \longrightarrow B$	B = A	$\begin{array}{c c} A & B \\ \hline 0 & 0 \\ 1 & 1 \end{array}$
NOT	$A \longrightarrow B$	$A \longrightarrow B$	$B = \overline{A}$	$\begin{array}{c c} A & B \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
AND	$A \longrightarrow C$	$A \longrightarrow B$ & C	$C = A \cdot B$	$\begin{array}{c cccc} A & B & C \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$A \longrightarrow C$	$A \longrightarrow \geq 1 \longrightarrow C$	C = A + B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NAND	$A \longrightarrow C$	$A \longrightarrow B$ & C	$C = \overline{A \cdot B}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NOR	$A \longrightarrow C$	$A \longrightarrow \geq 1$ C	$C = \overline{A + B}$	$\begin{array}{c ccccc} A & B & C \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive OR	$A \longrightarrow C$	$A \longrightarrow B \longrightarrow C$	$C = A \oplus B$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Exclusive NOR	$A \longrightarrow C$	A = 1 =1 C	$C = \overline{A \oplus B}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Labopdracht 1:

- a) Hoofdstuk 39.4.4 (p 603):
 - Logische 0: Vol ligt tussen 0 en 0.6 V
 - Logische 1: V_{OH} ligt tussen V_{DD}-0.7 en V_{DD}. (Dus bij een voedingsspanning van 3.3V ligt deze tussen 2.3 en 3.3 V.)
- b) Hoofdstuk 39.4.4 (p 603):
 - Logische 0: Ligt een beetje aan de pin, maar ongeveer V_{IL}=0.2xV_{DD}. Dus voor een voedingsspanning van 3.3V wordt dit tussen 0 en 0.66 V
 - Logische 1: V_{IH} = 0.8xV_{DD}. Dus bij een voedingsspanning van 3.3V ligt deze tussen 2.6 en 3.3 V.)
- c) Voedingsspanning van 3.3V betekent dat de logische '0' lager moet zijn dan $0.2 \times 3.3 = 0.66$ V en de logische '1' groter dan $0.8 \times 3.3 = 2.6$ V. De aangeboden 1V ligt hier tussenin, dus het is NIET duidelijk of dit een '1' of een '0' is.
- d) Zoek de datasheet van de HEF4511 op. Hierin vind je in hoofdstuk 9 de 'static characteristics':
 - V_{IL} = 0 tot 1.5 V

 $V_{IH} = 3.5 \text{ tot } 5 \text{ V}$

• $V_{OL} = 0 \text{ tot } 0.05 \text{ V}$

 V_{OH} = afhankelijk van gevraagde stroom, maar typisch rond de 4.4V

Labopdracht 2

a) Let goed op de rekenregels en waar wel of geen haakjes staan! AND gaat voor OR.

b)

S1	S2	S3	L
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

d-g) Spanning meet je parallel, stroom meet je in serie!

Labopdracht 3:

- a) Zet coupling op DC. Je wil in ieder geval de hele amplitude in beeld krijgen en een paar periodes van het signaal.
 - VOLTS/DIV: amplitude is 5V. We hebben 4 hokjes beschikbaar, maar het signaal komt beter in beeld als hij niet helemaal tot het maximum komt. We willen dus ongeveer 3 hokjes voor 5 V: 5/3=1.7 V. Met 2 VOLTS/DIV kunnen we het signaal dus goed afbeelden.
 - SEC/DIV: de frequentie is 1 kHz, dus 1 periode duurt $T=\frac{1}{f}=\frac{1}{1000}=1$ ms. We hebben 10 hokjes beschikbaar. Als we 5 periodes willen zien hebben we dus 2 hokjes per periode en zetten we SEC/DIV op 0.5 ms.

Labopdracht 4:

a) Gebruik ook een weerstand zodat geen kortsluiting ontstaat!

b) Als het goed is zie je zoiets wanneer de schakelaar sluit:

Labopdracht 5:

a) Zet de files 1 voor 1 op je microcontroller en vul de waarheidstabel in. Zoek op internet de waarheidtabellen op voor logische poorten met 3 ingangen en vergelijk deze met die van jou om de poort te identificeren.

S1	S2	S3	LED
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

CombiLogic 1.hex: AND function CombiLogic 2.hex: NAND function CombiLogic 3.hex: OR function CombiLogic 4.hex: NOR function CombiLogic 5.hex: XOR function CombiLogic 6.hex: XNOR function

b) Kijk goed op welke pin van het rode bordje de led is aangesloten en meet op die pin.

Flash 1.hex: 500 ms on, 500 msec off \rightarrow periode = 1 sec. $f = \frac{1}{T} = 1$ Hz

Flash 2.hex: 100 ms on, 500 msec off \rightarrow periode = 0.6 sec. $f = \frac{1}{T} = \frac{1}{0.6} = 1.67$ Hz Flash 3.hex: 1 ms on, 1 ms off \rightarrow periode = 2 ms. $f = \frac{1}{T} = \frac{1}{0.002} = 500$ Hz