CSE 537 - Artificial Intelligence

Project-01: The Searchin' Pac Man

Submitted by: Nilesh Rustagi - 113259870, Varun Sabnis - 113272172

1. Depth First Search

Stats	Tiny Maze	Medium Maze	Big Maze
Expanded Nodes	15	146	390
Run Time	0.0s	0.0s	0.0s
Cost	10	130	210

- DFS uses the stack data structure which holds the list of nodes to be visited next i.e fringe list.
- If the state space graph consists of cycles, then DFS is not complete. But if the tree is finite, then we can say that DFS is complete
- DFS is not optimal because it disregards the cost or the depth of the node as it finds the solution in the leftmost part of the search tree

2. Breadth First Search

Stats	Tiny Maze	Medium Maze	Big Maze
Expanded Nodes	15	269	620
Run Time (in sec)	0.0s	0.0s	0.0s
Cost	8	68	210

- BFS uses the queue data structure which holds the list of nodes to be visited next i.e fringe list.
- In comparison to DFS, we can see that in BFS, the number of nodes expanded is more as on each level, all the nodes on one level are expanded before moving onto the next.
- Moreover, BFS gives a less cost solution wrt DFS because the goal is reached only after exploring all paths.

3. Uniform Cost Search

Stats	Tiny Maze	Medium Dotted Maze	Medium Scary Maze	Medium Maze	Big Maze
Expanded Nodes	15	186	108	269	620
Run Time (in sec)	0.0s	0.0s	0.0s	0.0s	0.0s
Cost	8	1	68719479864	68	210

- To implement uniform cost search we use priority queue as the fringe list. We always pick the lowest cost state from the fringe list.
- Once we pick a goal state out from the fringe list we return the path. We find that the UCS expansion of nodes is the same as BFS because the edge cost is 1.

4. A* Search

Stats	Tiny Maze	Medium Maze	Big Maze	Open Maze
Expanded Nodes	14	221	549	535
Run Time (in sec)	0.0	0.0	0.0s	0.0s
Cost	8	68	210	54

- In A* search algorithm we use priority queue as well, but the cost function includes heuristic cost from current state to goal state.
- We have used the Manhattan heuristic. The heuristic is admissible and consistent, hence will find the goal state in a number of steps.
- The A* search algorithm expands the minimum number of nodes when compared to other algorithms.

5. Corners Problem

Stats	Tiny Corners	Medium Corners
Expanded Nodes	435	2448
Run Time (in sec)	0.0	0.1
Cost	28	106

- The corners problem can be solved by additionally keeping track of how many corners have been visited along with the current position of the pacman.
- The breadth first search approach expands a large number of nodes to cover all the corners. A* search would do better as it expands contours that are targeted to the corners (one after the other) and hence reaches the goal faster.

6. Corners Heuristic

Stats	Medium Corners
Expanded Nodes	978
Run Time (in sec)	0.0
Cost	106

- We use an admissible heuristic for the corners problem. The heuristic is computed as the maximum maze distance (which uses BFS) between current position to any of the 4 corners.
- This is admissible, at least this distance must be covered before a goal state is reached. This is a lower bound on the actual optimal path cost to reach the goal state.

7. Food Search Problem

Stats	Tricky Search
Expanded Nodes	4137
Run Time (in sec)	6.4
Cost	60

- We have used mazeDistance to compute distance from current state to the food points. We will take the max of all distances to the food points as done in question 6.