STATS 300A: Theory of Statistics I

Autumn 2016/17

Lecture 2: September 29

Lecturer: Joseph Romano

Scribes: Kenneth Tay

2.1 Exponential Families

Recall that we have data $X \sim P_{\theta}, \theta \in \Omega$. The family of distributions $\{P_{\theta}\}$ is an s-parameter exponential family if the P_{θ} 's have densities of the form

$$\frac{dP_{\theta}}{d\mu}(x) = p_{\theta}(x) = \exp\left[\sum_{i=1}^{s} \eta_{i}(\theta)T_{i}(x) - B(\theta)\right]h(x).$$

Example: Suppose $X \sim \text{Poisson}(\lambda)$. This is an exponential family:

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
$$= \exp\left[x \log \lambda - \lambda\right] \frac{1}{x!}.$$

So T(x) = x. Let $\eta = \log \lambda$. Then $\lambda = e^{\eta} = A(\eta)$.

There is a natural parameterization $\theta \to \eta$, and we can write

$$p(x,\eta) = \exp\left[\sum_{i=1}^{s} \eta_i T_i(x) - A(\eta)\right] h(x).$$

Generally, we want to express the family in the most economical way. For example, a reduction in the number of terms is possible if the η 's satisfy a linear constraint.

Example: $p_{\theta}(x) \propto \exp[\eta_1 x + \eta_2 x^2]$ but $\eta_1 + \eta_2 = 1$. Then we can rewrite this as $\exp[\eta_1 (x + x^2) + x^2]$, hence is better expressed as a 1-parameter exponential family, rather than 2.

Suppose instead that $\eta_2 = \eta_1^2$. Then we can't make this sort of reduction.

We will always assume that the representation is minimal, i.e. neither the η 's nor the T's satisfy a linear constraint.

Definition 2.1 We say that an s-dimensional exponential family has **full rank** if the natural parameter space contains an s-dimensional rectangle.

2.1.1 Properties of exponential families

Here are some basic properties of the exponential family:

1. The natural parameter space is convex. (Proof relies of Hölder's inequality.)

2. For any integrable function f and any η in the natural parameter space,

$$\int f(x) \exp\left[\sum \eta_i T_i(x) - A(\eta)\right] h(x)\mu(dx)$$

is infinitely differentiable w.r.t. η_i 's, and the derivatives can be obtained by differentiating inside the integral.

3. If X comes from an exponential family with

$$p_{\theta}(x) \propto \exp \left[\sum_{i=1}^{s} \eta_i T_i(x) \right] h(x),$$

then $T = (T_1, \dots, T_s)$ (as a function of X) is distributed according to an exponential family as well, with density of the form

$$\propto \exp\left[\sum \eta_i t_i - A(\eta)\right] k(t).$$

4. Suppose X_i 's are iid and follow an exponential family model. Then $(X_1, \ldots X_n)$ has joint density

$$\prod_{j=1}^{n} \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(X_{j}) - A(\eta) \right] h(x_{j}) = \exp \left[\sum_{i=1}^{s} \eta_{i} \sum_{j=1}^{n} T_{i}(X_{j}) - nA(\eta) \right] \prod_{j=1}^{n} h(x_{j}).$$

This is still an exponential family of the same "form".

Simple application of property 2: Let f = 1. Since

$$\int \exp\left[\sum \eta_i T_i(x) - A(\eta)\right] h(x)\mu(dx) = 1,$$

the derivative w.r.t. η_j must be equal to 0.

Let's try to obtain the derivative by differentiating inside the integral:

$$\int \exp\left[\sum \eta_i T_i(x) - A(\eta)\right] \left[T_j(x) - \frac{\partial}{\partial \eta_i} A(\eta)\right] h(x) \mu(dx) = \mathbb{E}_{\eta} T_j(x) - \frac{\partial}{\partial \eta_i} A(\eta),$$

so

$$\mathbb{E}_{\eta} T_j(x) = \frac{\partial}{\partial \eta_j} A(\eta).$$

In general, $Cov(T_i, T_j) = \frac{\partial}{\partial \eta_i} \frac{\partial}{\partial \eta_j} A(\eta).$

2.2 Sufficiency

Definition 2.2 A statistic T = T(X) is **sufficient** for X (or the family of distributions of X, or θ) if the conditional distribution of X|T = t does not depend on θ , for all t.

2.2.1 Examples of sufficiency

• $X = (X_1, ..., X_n)$ with X_i 's iid, $X_i \sim \text{Bernoulli}(\theta)$. $T = \sum_{i=1}^n X_i$ is sufficient because the conditional distribution

$$(X_1, \dots X_n) \Big| \sum X_i = t$$

is uniform over the vectors each having t '1's and n-t '0's, regardless of what θ is.

- $X_1, ... X_n$ iid, uniformly distributed in $[0, \theta]$. Let $T = \max(X_1, ... X_n)$. Then T is sufficient: the conditional distribution is with probability $\frac{1}{n}$, $X_i = t$, and the remaining $X_j \sim U(0, t)$.
- $X_1, \ldots X_n$ iid, real-valued, from some continuous distribution. The order statistics $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ is sufficient. (Note: The k^{th} order statistic is the value of the k^{th} smallest value of the X_i 's.)

2.2.2 Why is sufficiency important?

Say I want to estimate $g(\theta)$, and suppose $\delta(X)$ is an estimator of $g(\theta)$. I claim that based on the outcome of the sufficient statistic T=t, I can construct an estimator δ' such that δ' has the same distribution as δ for all θ , which means that their risk functions are the same.

Proof: The distribution of $\delta(X)$ can be thought of as being constructed in a two-stage way as follows:

- 1. Observe outcome T = t, then
- 2. Pick X' according to the distribution of X|T=t.

Then X' has the same distribution as X, and so $\delta(X)$ has the same distribution as $\delta(X')$.

2.2.3 Fisher-Neyman Factorization Theorem

The main tool to determine sufficiency is the Fisher-Neyman Factorization Theorem:

Theorem 2.3 (Factorization Theorem) Assume that P_{θ} is such that $\frac{dP_{\theta}}{d\mu} = p_{\theta}$. A necessary and sufficient condition for T = T(X) to be sufficient is that there exist non-negative functions g_{θ} and h such that

$$p_{\theta}(x) = g_{\theta}(T(x)) \cdot h(x).$$

with probability 1.

Intuitively, the idea is that the part which depends on θ only depends on X through T(X).

Proof: We will only prove sufficiency for the discrete case. (For the continuous case, essentially the sums just get replaced by integrals.)

Let $p_{\theta}(x) = P_{\theta}(X = x)$. Suppose that we can write $p_{\theta}(x) = g_{\theta}(T(x)) \cdot h(x)$. We want to show that T is sufficient.

Let T(x) = t. Then

$$P_{\theta}(T = t) = \sum_{x:T(x)=t} P(X = x),$$

$$P_{\theta}(X = x | T = t) = \frac{P_{\theta}(X = x, T = t)}{P_{\theta}(T = t)}$$

$$= \frac{p_{\theta}(x)}{\sum_{x:T(x')=t} p_{\theta}(x')}$$

$$= \frac{g_{\theta}(t)h(x)}{\sum_{x':T(x')=t} g_{\theta}(t)h(x')}$$

$$= \frac{h(x)}{\sum_{x':T(x')=t} h(x')}$$

which does not depend on θ .

Example: $X_1, \ldots X_n$ iid, and

$$p_{\eta}(x) \propto \exp\left[\sum_{i=1}^{s} \eta_i T_i(x) - A(\eta)\right] h(x).$$

By the Factorization Theorem, $(T_1(X), \dots, T_s(X))$ is sufficient based on one observation X. With n observations, $\left(\sum_j T_1(X_j), \dots, \sum_j T_s(X_j)\right)$ is sufficient.