Engenharia de Software I

Rogério Eduardo Garcia (rogerio.garcia@unesp.br)

Bacharelado em Ciência da Computação 2025

Aula 04

When times are stable, and the sea is calm and secure, no one is tested.

1

Engenharia de Software I – Aula 4

- Revisão
- Introdução ao Método Larman
 - Planejar e Elaborar
 - Construir
 - Analisar
 - Revisão de conceitos de Orientação a Objetos

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

3

Análise de Requisitos

Engenharia de Sistemas de Computador

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

Como Proceder?

Princípios da Análise

- O domínio de informação de um problema deve ser representado e compreendido
- Modelos que descrevam a informação, função e comportamento do sistema devem ser desenvolvidos
- Os modelos devem ser divididos em partições, de maneira que revele os detalhes em forma de camadas, preferencialmente
- O processo de análise deve ter como foco a informação essencial do (Udel) – detalhes de implementação ficam para a fase de Projeto

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

11

11

Princípios da Especificação

- Separar funcionalidade de implementação
- Uso de uma linguagem de especificação orientada ao processo
- A especificação deve abranger o sistema do qual o software é um componente
- A especificação deve abranger o sistema no qual o software opera

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

12

Princípios da Especificação (Cont.)

- Uma especificação deve ser um modelo cognitivo
- Uma especificação deve ser operacional
- Uma especificação deve ser tolerante com a nãointeireza e ser expansível
- Uma especificação deve ser localizada e fracamente acoplada

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

13

13

Para que tudo isso?

- Obter uma descrição dos requisitos
- Propor uma solução ("software") que atenda ao requisitos da melhor maneira possível
- Possibilidade de avaliar não apenas a proposta, mas também as consequências de decisões tomadas em tempo de projeto

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

14

Portanto...

• É preciso planejar considerando a maneira com que um projeto será implementado...

Orientado a Objetos

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

16

Mundo x Paradigma OO

- Mundo Real é formado por objetos que se interagem
- Representar esses objetos em um software é mais natural e permanente do que representar a sua funcionalidade (decomposição funcional), pois essa é mutável
- A representação usando objetos facilita o mapeamento do mundo real, ou seja, a criação de um modelo que o represente

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

17

17

Gap Semântico

- Quanto menor o Gap (diferença entre espaços) mais fácil será :
 - o desenvolvimento da aplicação
 - assegurar a compreensão, confiabilidade e manutenção da aplicação
- Diminuir o Gap implica em tornar o mapeamento do mundo real (modelo) mais próximo da realidade
- Sendo mais "natural", o Paradigma de Orientação a Objetos tem por objetivo diminuir o gap semântico

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

19

19

UML

- História da UML
 - início em 1994 esforço conjunto de Booch e Rumbaugh para combinar as notações diagramáticas de seus métodos Booch e OMT (Object Modeling Technique)
 - a eles juntaram-se outros colaboradores
 - adotada como padrão em 1997 pela OMG
 - continua a ser refinada...
 - versão 2.0 em andamento (???)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

25

25

UML

- Segundo OMG: "A UML (Unified Modeling Language - Linguagem de Modelagem Unificada) é uma linguagem para especificar, visualizar, construir e documentar os artefatos de sistemas de software, bem como para modelar negócios e outros sistemas que não sejam de software"
- Notação UML principalmente diagramática, para modelagem de sistemas usando conceitos baseados na metáfora de "objetos"

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

26

UML

- Questões críticas em análise e projeto OO:
 - Como alocar responsabilidades às classes?
 - Com quem os objetos devem interagir?
 - O que cada classe deve fazer?
- Certas soluções que já se mostraram boas para problemas de projeto podem ser expressas como conjuntos de princípios, heurísticas e <u>padrões</u>

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

27

27

UML

- A UML combina o melhor do melhor de:
 - Conceitos de Modelagem de Dados (Diagramas Entidade-Relacionamento);
 - Modelagem de Negócios (Fluxo de trabalhos);
 - Modelagem de Objetos;
 - Modelagem de Componentes.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

28

UML

- A UML é a linguagem padrão para visualizar, especificar, construir e documentar os artefatos de um sistema intensamente baseado em software
- Pode ser usada com todos os processos, durante todo o ciclo de desenvolvimento, e com diferentes tecnologias de implementação;

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

29

29

Diagramas

- Use Case
- Diagramas de Estrutura Estática
 - Diagrama de Objetos
 - Diagramas de Classe
- Diagramas de Interação
 - Diagrama de Sequência
 - Diagrama de Colaboração
- Statecharts
- Diagramas de Atividade
- Diagrama de Implementação
 - Diagrama de Componentes
 - Diagrama de Desdobramentos (Deployment)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

30

Método Larman: Visão Geral

- Auxiliar o desenvolvedor a:
 - Aplicar princípios, diretrizes e padrões na construção de software
 - Seguir um conjunto de atividades comuns de análise e projeto, a partir de um ciclo de desenvolvimento iterativo
 - Criar diagramas frequentemente utilizados na notação UML

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

32

Desenvolvimento Iterativo

- Um ciclo de vida iterativo (CVI) envolve a repetição dos ciclos de planejamento, elaboração, construção e instalação
- O sistema cresce pela adição de novas funções (e refinamento das existentes) em cada ciclo iterativo
- Cada ciclo ataca um pequeno conjunto de requisitos

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

33

33

Método Larman: Visão Geral

- Processo Planejar e Elaborar
 - Casos de Uso: Formatos, Tipos e Diagrama
 - Modelo Conceitual: Conceitos e Associações
- Processo Construir (Fase Analisar)
 - Casos de Uso: refinar e evoluir (descrição e diagrama)
 - Modelo Conceitual: Agregações, Generalizações e Tipos Associativos
 - Diagramas de Sequência
 - Contratos de Operação

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

42

Estudo de caso - TPV

- Descrição Geral:
 - O propósito deste projeto é criar um terminal de ponto de vendas (TPV) para ser usado em lojas de varejo
- Clientes
 - ObjectStore, Inc., uma multinacional que comercializa objetos

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

45

45

Estudo de caso - TPV

- Objetivos:
 - O objetivo geral é aumentar a automatização das compras (checkout) para permitir serviços e processos comerciais mais rápidos, melhores e mais baratos. Tipicamente, isso inclui:
 - checkout (passagem pelo caixa) mais rápido para o cliente
 - análise rápida e precisa do crédito
 - controle automático do estoque

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

46

TPV - Funções Básicas

- R1.1 Registrar a venda em andamento (corrente), isto é, os itens comprados (E)
- R1.2 Calcular o total da venda corrente, incluindo os cálculos de impostos e de cupons de desconto (E)
- R1.3 Capturar a informação de um item adquirido, usando o código, obtido por um leitor de código de barra, ou pela entrada manual do código do produto, usando o código universal de produto (CUP ou UPC) (E)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

47

47

Funções Básicas - TPV

- R1.4 Reduzir a quantidade em estoque quando a venda for finalizada (O)
- R1.5 Registrar as vendas completadas (O)
- R1.6 O funcionário (Caixa) deve abrir o caixa (log in) com um Identificador (ID) e uma senha para poder usar o sistema (E)
- R1.7 Fornecer um mecanismo de armazenamento permanente (O)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

48

Funções Básicas - TPV

- R1.8 Fornecer mecanismos de comunicação inter-processos e intersistemas (O)
- R1.9 Exibir a descrição e o preço do item registrado (E)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

49

49

Funções de Pagamento - TPV

- R2.1 Tratar os pagamentos em dinheiro: capturar a quantia recebida e informar o troco (E)
- R2.2 Tratar o pagamento com cartão de crédito: captar a informação do cartão de crédito por um leitor de cartões ou uma entrada manual e autorizar o pagamento com o serviço de autorização de crédito (externo) da loja via conexão por modem (E)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

50

Funções de Pagamento - TPV

- R2.3 Registrar os pagamentos por crédito no sistema de contas a receber da loja, uma vez que o serviço de autorização de crédito deve à loja a quantia oferecida como pagamento (O)
- R2.4 Tratar os pagamentos com cheque: capturar o CPF por entrada manual e autorizar o pagamento com o serviço de autorização de crédito da loja (externo) via conexão por modem (E)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

51

51

Atributos do Sistema - TPV

- para R1.9 (Exibir a descrição e o preço do item registrado (E))
 - tempo de resposta: Max 5s → Obrigatório
 - metáfora da interface:
 - saída baseada em formulário → Obrigatório
 - saída colorida → Desejável

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

52

Atributos do Sistema – TPV

- para R2.3 (Registrar os pagamentos por crédito no sistema de contas a receber da loja (O))
 - tolerância a falhas: deve registrar no sistema de contas a receber em 24h, mesmo em caso de falhas elétrica ou de hardware → Obrigatório
 - tempo de resposta: Max 10s → Obrigatório

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

53

53

Casos de Uso: descrevendo processos

- Objetivos:
 - Identificar e Escrever Casos de Uso
 - Elaborar Diagramas de Casos de Uso
- Mais adiante (Análise do Construir) será usado para:
 - Contrastar Casos de Uso de Alto Nível e Expandidos
 - Contrastar Casos de Uso Reais e Essenciais

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

55

55

Casos de Uso

- Um caso de uso é um padrão de comportamento que o sistema exibe
 - Cada caso de uso é uma sequência de transações relacionadas executadas por um ator e o sistema em um diálogo

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

56

Casos de Uso

- Um caso de uso é um documento textual que descreve a sequência de eventos realizados por um ator (um agente externo) para completar um processo durante o uso do sistema
- Contam "histórias" de utilização do sistema
- Casos de uso não são especificação de requisitos, mas ilustram e implicam requisitos
 - dependem de que se tenha um entendimento ao menos parcial dos requisitos do sistema

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

57

57

Atores

- Um ator é uma entidade externa ao sistema que participa de um caso de uso de alguma forma.
- Atores interagem com o sistema, estimulando-o com eventos de entrada ou de saída
- Representam o papel que desempenham no caso de uso. Ex: Cliente, Caixa
 - uma pessoa, por exemplo, pode assumir vários papéis
 - várias pessoas podem ser instâncias de um ator

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

58

Atores

- Atores podem ser papéis desempenhados por pessoas, sistemas de computadores, dispositivos elétricos e mecânicos, ...
- Para um caso de uso, geralmente existe um ator iniciador e possivelmente vários outros atores participantes

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

59

59

Método Larman: Formatos dos Casos de Uso

- de alto nível
 - descreve o processo sucintamente, em duas ou três sentenças
 - são vagos a respeito de decisões de projeto e são úteis para a compreensão dos principais processos globais
- expandidos
 - mostram mais detalhes
 - compreensão mais profunda dos processos e requisitos

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

60

Expandindo Casos de Uso

- Um documento de fluxo de eventos é criado para cada caso de uso
 - Escrito do ponto de vista do ator
- Detalha o que o sistema deve fornecer quando o caso de uso é executado
- Conteúdos típicos
 - Como o caso de uso inicia e termina
 - Fluxo normal de eventos
 - Fluxos alternativos de eventos
 - Fluxos excepcionais de eventos (respostas a erros)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

62

Caso de Uso Expandido

Parte 1

Descrição similar ao Caso de uso de Alto Nível

Parte 2

Descrição da sequência típica de eventos

Parte 3

Descrição de sequências Alternativas de eventos

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

63

63

Caso de Uso Expandido (Parte 1 - Resumo)

(restrito a pagamento em dinheiro e sem tratar controle de estoque)

Caso de Uso: Comprar Itens com Dinheiro

Atores: Cliente (iniciador), Caixa

Informar ator que inicia o processo

Finalidade: Capturar a venda e seu pagamento em dinheiro

Visão geral: Um Cliente chega ao balcão de saída da loja com itens que

deseja comprar. O Caixa registra os itens de compra e recebe o pagamento. Quando termina, o Cliente sai com os itens comprados.

iteris comprados.

Tipo: primário e essencial (a ser discutido adiante...)

Referências Cruzadas: Requisitos: R1.1, R1.2, R1.3, R1.7, R1.9, R2.1

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

64

Caso de Uso Expandido

- Rastreabilidade
 - A cláusula de referência cruzada permite conferir se todos os requisitos foram atendidos por casos de uso.
 - Ao final, todos os casos de uso devem poder ser rastreados para a implementação e o teste.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

65

65

Lembrando...

- R1.1 Registrar a venda em andamento ... (E)
- R1.2 Calcular o total da venda corrente ... (E)
- R1.3 Capturar a informação de um item adquirido, usando o código... (E)
- R1.7 Fornecer um mecanismo de armazenamento permanente (O)
- R1.9 Exibir a descrição e o preço do item registrado (E)
- R2.1 Tratar os pagamentos em dinheiro... (E)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

66

Caso de Uso Expandido Parte 2 - Sequência típica de eventos Ação do ator Resposta do Siste 1. Este caso de uso começa quando o Cliente chera ao TPV com items para comprar

Ação do ator	Resposta do Sistema
Sete caso de uso começa quando o Cliente chega ao TPV com itens para comprar	
2. O Caixa registra o identificador de cada item	3. Determina o preço do item e adiciona informação sobre o item à transação de venda corrente
Se há mais de um do mesmo item, o caixa também entra a quantidade	A descrição e o preço do item são apresentados
4. Quando termina a entrada dos itens, o Caixa indica ao TPV que as entradas estão completas	5. Calcula e apresenta o total da venda
6. O Caixa informa o total ao cliente	
7. O Cliente entrega o pagamento em dinheiro – o "pagamento em dinheiro" – possivelmente maior que o total da venda	
Ciência da Computação - Engenharia	de Software I - Rogério Eduardo Garcia 67

67

Caso de Uso Expandido

Parte 2 - Sequência típica de eventos-Cont.

Ação do ator	Resposta do Sistema
8. O Caixa registra a quantidade de dinheiro recebida	9. Exibe o valor do troco a ser devolvido ao cliente
10. O Caixa deposita o dinheiro recebido e retira o troco devido	11. Registra a venda completada (<i>logs</i>)
O Caixa entrega ao cliente o troco e o recibo impresso	
12. O Cliente sai com os itens comprados	

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

68

Caso de Uso Expandido (Parte 3 – Sequências Alternativas)

- Descreve alternativas importantes ou exceções que podem ocorrer numa sequência típica
 - se forem muito complexas podem se transformar num caso de uso
- Sequências alternativas:
 - Linha 2: Identificador de item inválido digitado.
 Indicar o erro.
 - Linha 7: O Cliente não tem dinheiro suficiente.
 Cancelar a transação de venda

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

69

69

Tipos de Casos de Uso (I)

- Primários : principais processos comuns
 Ex: Comprar Itens
- Secundários: processos menos importantes ou raros

Ex: Requisição de estoque de produto novo

 Opcionais: processos que podem não ser incluídos na solução

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

70

Tipos de Casos de Uso (II)

- Essencial: caso de uso expandido expresso numa forma ideal, que é relativamente livre de detalhes tecnológicos e de implementação
 - decisões de projeto são postergadas
- Real: descreve o processo em termos de seu projeto atual (real)
 - considera tecnologia, entrada e saída, interface,...
 - definido na fase de projeto

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

71

71

Tipos de Casos de Uso (II)

- Casos de uso de alto nível são essenciais por natureza, devido à sua forma resumida e alto nível de abstração
- O intervalo entre essencial e real deve ser visto como um contínuo em que o caso de uso pode se situar em qualquer ponto

72

Caso de Uso Comprar Itens: Essencial

cada item inform	etermina o preço do item e adiciona nação sobre o item à transação de
cada item inform	nação sobre o item à transação de
Se há mais de um do mesmo item, o A de	a corrente
	escrição e o preço do item são sentados
4	

73

Caso de Uso Comprar Itens: Real

Ação do Ator	Resposta do Sistema
Este caso de uso começa quando o Cliente chega ao TPV com itens para comprar	
entrada UPC da janela. Ele então	3. Mostra o preço do item e adiciona a informação do item à transação de venda corrente. A descrição e o preço são mostrados na caixa de texto 2 da Janela1.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

74

Importante

 Em geral, os casos de uso reais não devem ser produzidos na fase de engenharia de requisitos (comprometimento prematuro com uma decisão de projeto e complexidade desnecessária)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

75

75

Diagrama de Casos de Uso: UML Diagram

Objetivo

- Mostrar como o sistema a ser desenvolvido irá interagir com o ambiente, delimitando o sistema e definindo a funcionalidade
- Importantes na organização e modelagem do comportamento do sistema

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

77

77

Diagrama de Casos de Uso

- Um diagrama de caso de uso mostra o relacionamento entre os atores e os casos de uso dentro de um sistema.
 - Um caso de uso representa uma funcionalidade do sistema.
 - Representado por uma elipse contendo o nome do caso de uso
 - Um ator é um agente externo (um usuário ou um outro sistema) que interage com o sistema.
 - Pode ser representado como um retângulo de classe com o estereótipo "ator" ou pela figura de um homem estilizado.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

78

Diagrama de Casos de Uso: Notação

- Relacionamentos entre casos de uso e atores:
 - communicates: relacionamento entre atores e casos de uso.
 - extends: um relacionamento extends de um caso de uso A para um caso de uso B indica que uma instância de B pode incluir o comportamento especificado por A.
 - **include**: um relacionamento include de um caso de uso A para um caso de uso B indica que uma instância de B inclui o comportamento especificado por A.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

82

Identificação de casos de uso

- Dois métodos: baseado nos <u>atores</u> ou baseado nos <u>eventos</u> do sistema
- Baseado em atores
 - Identificar os atores relacionados a um sistema ou organização
 - Para cada ator, identificar os processos que eles iniciam ou dos quais eles participam
 - Exemplos:
 - Caixa Iniciar uso, Registrar retirada de dinheiro
 - Cliente Comprar itens, Reembolsar itens

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

85

85

Identificação de casos de uso

- Baseado em eventos
 - Identificar os eventos externos aos quais um sistema deve responder
 - Relacionar os eventos a atores e a casos de uso
 - Exemplos:
 - Itens vendidos (ator=cliente, caso de uso=comprar item)
 - Dinheiro retirado (ator=caixa, caso de uso=registrar retirada de dinheiro)

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

86

Importante

- um caso de uso não representa um passo individual ou uma operação ou transação de entrada. por exemplo: "imprimir o recibo" não é um caso de uso no sistema de TPV
- um caso de uso é normalmente a descrição de um processo relativamente grande, com início e fim próprios, que normalmente incluem várias transações ou operações de entrada e saída. Ex:
 - retirar dinheiro de um caixa automático
 - matricular-se em uma disciplina
 - verificar ortográfica em um editor de texto
 - ...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

87

87

Escopo do Sistema

- O sistema pode ser limitado por:
 - Hardware ou software
 - Departamentos de uma organização
 - Toda a organização
- O limite é sempre delimitado arbitrariamente pelo analista e o cliente, mas geralmente leva em conta critérios tais como: política organizacional, limites de menor comunicação entre os subsistemas, oportunidade e tamanho do sistema

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

88

Decisão e Desvio

- Pontos de decisão e desvio podem ocorrer em um caso de uso
 - Ex: no caso de uso Comprar Itens, o cliente pode pagar em dinheiro, cartão de crédito ou cheque
 - Dividir o caso de uso em seções
 - Para cada caso de uso:
 - Parte 1 Resumo
 - Seção Principal
 - parte 2 sequência típica de eventos
 - parte 3 sequências alternativas
 - Seção Pagamento com dinheiro
 - parte 2 sequência típica de eventos
 - parte 3 sequências alternativas
 - Seção Pagamento com cartão de crédito

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

90

Seção Principal Sequência típica de eventos		BC 202
Ação do ator	Resposta do Sistema	
 Este caso de uso começa quando o Cliente chega ao TPV com itens para comprar 		
2. O Caixa registra o identificador de cada item	3. Determina o preço do item	
4. Quando termina a entrada dos itens	5. Calcula	
6. O Caixa informa o total ao cliente		
 7. O Cliente escolhe o tipo de pagamento: i. Se for pagamento em dinheiro, ver seção Pagamento em Dinheiro ii. Se for pagamento com cartão de crédito ver seção Pagamento por Cartão de Crédito iii. Se for pagamento por cheque, ver seção Pagamento em Cheque 		
	8. Registra a venda completada	
9. O Caixa entrega o recibo para o Cliente		

Caso de Uso Comprar Itens

Seção Pagamento com Dinheiro Sequência típica de eventos

Ação do ator	Resposta do Sistema
1. O Cliente entrega o pagamento em dinheiro, possivelmente maior que o total da venda	
2. O Caixa registra a quantidade de dinheiro recebida	3. Exibe o valor do troco a ser devolvido ao cliente
4. O Caixa deposita o dinheiro recebido e retira o troco devido	
O Caixa entrega o troco ao Cliente	

Sequência alternativa:

• **Linha 4:** Dinheiro insuficiente na gaveta para pagar o troco. Solicita dinheiro ao supervisor

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

92

Planejar e Elaborar: Passos do Processo

- Listar todas as funções (requisitos), definir os limites do sistema e identificar atores e casos de uso.
- Escrever todos os casos de uso no formato de alto nível, classificandoos como principais, secundários e opcionais.
- 3. Desenhar o diagrama de casos de uso.
- Escrever o formato expandido dos casos de uso mais importantes, mais complexos ou mais arriscados. Os demais poderão ser expandidos quando forem tratados em fases posteriores do processo de desenvolvimento.
- Idealmente, postergar os casos de uso reais até a fase de projeto. Exceções podem ocorrer se:
- a) descrições concretas auxiliam grandemente a compreensão, ou
- b) os clientes demandam que o processo seja especificado dessa forma.

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

93

93

Exemplo – Sistema TPV

(Passo 1. Identificar atores, casos de uso e limites do sistema.)

Os limites do sistema serão definidos como o sistema de hardware e software.

Atores e casos de uso:

Caixa: Abrir (Log In), Retirar dinheiro da caixa, Fechar

Cliente: Comprar Itens, Reembolsar Itens Gerente: Iniciar e Encerrar (o sistema)

Administrador do Sistema: Adicionar novo usuário

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

94

Exemplo – Sistema TPV

(Passo 2. Escrever casos de uso no formato de alto nível.)

Caso de uso: Comprar Itens

Atores: Cliente (iniciador), Caixa

Tipo: primário

Descrição: Um cliente chega ao balcão de saída da loja com

itens para comprar. O caixa registra os itens de compra e recebe o pagamento. Quando termina,

o cliente sai com os itens comprados.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

95

95

Exemplo – Sistema TPV

(Passo 2. Escrever casos de uso no formato de alto nível.)

Caso de uso: Iniciar

Atores: Gerente

Tipo: primário

Descrição: Um Gerente liga o sistema TPV de modo a

prepará-lo para o uso pelos Caixas. O Gerente confere que as datas e hora estão corretas, após o que o sistema está pronto para uso dos Caixas.

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

96

Exemplo – Sistema TPV

Caso de Uso: Comprar Itens

Atores: Cliente (iniciador), Caixa

Propósito: Captura a venda e seu pagamento em dinheiro

Visão geral: Um cliente chega a um ponto de pagamento, com vários itens que

deseja comprar. O caixa registra os itens de compra e recebe o pagamento, o qual pode necessitar autorização. No final, o cliente

sai com os itens comprados.

Tipo: primário e essencial

Referências

Cruzadas: Funções: R1.1, R1.2, R1.3, R1.7, R1.9, R2.1, R2.2, R2.3, R2.4

Casos de Uso: o caixa deve ter completado o caso de uso Abrir

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

98

Exemplo – Sistema TPV

Seção: Principal

Sequência Típica de Eventos

Ação do ator

Resposta do sistema

- 1. Este caso de uso começa quando um Cliente chega a um ponto de pagamento equi-pado com um TPV, com vários itens que deseja comprar.
- 2. O Caixa registra cada item.

Se houver mais de um exemplar do item, o Caixa também pode entrar a quantidade.

- 3. Determina o preço do item e acrescenta informação sobre o item à transação de vendas em andamento A descrição é o preço do item corrente são apresentados
- 4. No término da entrada de itens, o Caixa indica para o TPV que a entrada de itens está completa.
- 6. O Caixa informa ao Cliente o total.

5. Calcula e apresenta o total da venda.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

99

99

Exemplo – Sistema TPV

Ação do ator

Resposta do sistema

- 7. O Cliente escolhe o tipo de pagamento:
- a. Se pagamento em dinheiro, ver seção Pagar com Dinheiro.
- b. Se pagamento com cartão, ver seção Pagar com Cartão de Crédito.
- c. Se pagamento com cheque, ver seção
- Pagar com Cheque.
- 8. Registra a venda completada. 9. Atualiza os níveis de estoque. 10. Gera um recibo.
- 11. O Caixa dá o recibo ao Cliente.
- 12. O Cliente sai com os itens comprados.

Sequências alternativas

Linha 2: Entrada de Identificador de item inválido. Indicas erro. Linha 7: Cliente não pode pagar. Cancelar a transação de venda.

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

100

Exemplo – Sistema TPV

Seção: Pagar com Dinheiro Sequência Típica de Eventos

Ação do ator

Resposta do sistema

- O Cliente dá um pagamento em dinheiro.
 O valor fornecido é possivelmente maior que o total da venda.
- 2. O Caixa registra a quantia fornecida

3. Apresenta o troco devido ao

- **4.** O Caixa deposita o dinheiro recebido e retira o troco devido.
- O Caixa dá o troco ao Cliente

Sequências Alternativas

Linha 1: O Cliente não tem dinheiro suficiente. Pode cancelar a venda ou iniciar outro método de pagamento

Cliente

Linha 4: A gaveta de dinheiro não contém o suficiente para pagar o troco. O Caixa solicita mais dinheiro ao supervisor ou pede ao Cliente uma quantia de dinheiro diferente ou a opção por um outro método de pagamento

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

101

101

Exemplo – Sistema TPV

Seção: Pagar com Cartão de Crédito

Sequência Típica de Eventos

Ação do ator

 O Cliente comunica suas informações de Crédito para o pagamento com cartão de crédito

Resposta do sistema

- Gera uma solicitação de pagamento com cartão de crédito e a envia a um Serviço de Autorização de Crédito (SAC) externo
- O SAC autoriza o pagamento
 Recebe uma resposta de aprovação de crédito do SAC.

5. Lança o pagamento com cartão de

crédito e a informação da resposta de aprovação no

sistema de Contas a Receber (C/R). (O SAC deve dinheiro à Loja, logo C/R deve fazer acompanhamento)

6. Exibe a mensagem de autorização bem

sucedida

Sequências Alternativas

Linha 3: Solicitação de crédito negada pelo SAC. Sugerir um método de pagamento diferente

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

102

Modelos Conceituais

- Modelo Conceitual é uma representação dos conceitos, ou objetos, do mundo real pertencentes a um domínio de interesse
- É exibido por um conjunto de diagramas de estrutura estática, no qual não se definem operações
- Pode ser tratado como um "dicionário visual" das abstrações significativas do domínio
 - ajuda a compreender vocabulário e informação do domínio
- Pode mostrar: <u>conceitos</u>, <u>associações</u> entre conceitos e <u>atributos</u> de conceitos

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

107

107

Modelo Conceitual: Conceito

- Informal: idéia, "coisa", ou objeto do mundo real no domínio de interesse.
 - Algo digno de nota, de ser documentado, de importância para o domínio.
- Formal: Um conceito pode ser considerado em termos de seu:
 - Símbolo: palavra ou imagem representando um conceito.
 - Ex.: Venda
 - Intenção: a definição de um conceito.
 - Ex.: Uma venda representa uma transação de compra e possui data e hora.
 - Extensão: o conjunto de exemplos (instâncias) ao qual o conceito se aplica.
 - Ex.: Venda1, Venda2, Venda3 ...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

114

Conceitos no Sistema TPV TPV Venda Loja Como identificar conceitos em um sistema ?

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

116

116

Estratégias para Identificar Conceitos

- É melhor especificar em excesso um modelo conceitual com muitos conceitos do que subespecificá-lo.
 - Menos conceitos não implicam em um modelo melhor.
 - Não exclua um conceito só porque sua necessidade não está óbvia nos requisitos.
 - Não exclua um conceito só porque não tem atributos ele pode possuir um papel de comportamento e não de informação.
- Usar uma Lista de Categorias de Conceitos.
- Identificar Substantivos.

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

117

Conceito - Definição

- Informal: idéia, "coisa", ou objeto do mundo real no domínio de interesse
 - algo digno de nota, de ser documentado, de importância para o domínio
- Formal Um conceito pode ser considerado em termos de seu:
 - Símbolo: palavra ou imagem representando um conceito. Ex: Venda
 - Intenção: a definição de um conceito. Ex: Uma venda representa uma transação de compra e possui data e hora
 - Extensão: o conjunto de exemplos (instâncias) ao qual o conceito se aplica: Ex: Venda1, Venda2, Venda3 ...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

118

118

Exemplo

- Símbolo Ex: Aeronave
- Intenção Ex: (o conceito) Aeronave representa uma aeronave, ou seja, um meio de transporte aéreo que possui categoria, dimensões, número de lugares, ...
- Extensão Ex: AirBus PT999, Boing747 PX111,...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

119

Exemplos de Categorias de Conceitos

- Objetos físicos ou tangíveis: TPV, Carro, Aeronave
- Especificações ou Descrições de "Coisas": EspecificaçãoProduto, ListaVerificação
- Lugares: Loja, Aeroporto
- Transações: Venda, Pagamento, Reserva
- Regras e Políticas: PolíticaReembolso
- Itens de linha de transação: ItemLinhaVendas

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

121

Exemplos de Categorias de Conceitos (cont.)

- Papéis desempenhados por pessoas: Caixa
- Contêineres: Depósito, Armário, Aeronave
- Coisas em um contêiner: Item, Passageiro
- Catálogos: CatálogoProdutos, CatálogoPeças
- Organizações: DepartamentoVendas
- Sistema externo: SistmAutorizaçãoCartCrédito
- ...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

122

122

Identificação de Substantivos - caso de uso Comprar Itens

- Este caso de uso começa quando um Cliente chega a um ponto de pagamento equipado com um TPV com vários itens que deseja comprar.
- O caixa registra o código universal do produto (UPC) de cada item.
 - Se houver mais de um exemplar do **item** o **caixa** também pode entrar a **quantidade**.
- 3. Determina o preço do **item** e acrescenta informação sobre o **item** à **transação de vendas** em andamento.

A descrição e o preço do item corrente são apresentados

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

123

Identificação de Substantivos

Lembre-se:

 Nem todos os substantivos são conceitos – linguagem natural pode ser ambígua

Ex: substantivos diferentes podem representar o mesmo conceito – (*Consumidor* e *Cliente*)

 Alguns dos substantivos são <u>candidatos a conceitos</u> e outros são candidatos a atributos

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

124

124

Conceitos candidatosDomínio TPV – caso de uso *Comprar Itens*

→ Ideal: Combinar as estratégias para identificar uma lista de candidatos a conceito

- TPV
- Item
- Loja
- Venda
- CatálogoProdutos
- EspecificaçãoProduto
- · ItemLinhaVenda
- Caixa
- · Cliente
- Pagamento
- Gerente

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

25/04/22

125

O Conceito de Especificação (ou de Descrição)

- O que aconteceria se todas as TVs de 19" (Item) fossem vendidas ?
- Como fazer para saber o preço desse item de venda?

127

Quando utilizar conceitos de especificações

- Quando houver necessidade da existência de uma descrição de um item ou serviço, independente da existência de uma instância do item ou serviço
 - se a exclusão de instâncias do item/serviço resultar em perda de informação que deveria ser mantida
- Quando reduzir informação redundante ou duplicada

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

128

Cardinalidade ou Multiplicidade

- Cardinalidade define quantos objetos participam da relação
 - É o número de instâncias de objetos da classe que participam da relação
 - Para cada associação e agregação, são definidas duas multiplicidades: uma para cada participante do relacionamento.

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

133

133

Navegação

- Embora associações e agregações sejam bidirecionais por default, por ser desejável restringir a navegação em uma direção
 - Para isso, uma ponta (flecha) é adicionada à linha, indicando a direção da navegação

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

135

135

Associação - definição

- <u>Associação</u> é um relacionamento entre conceitos
 - indica uma conexão com significado e interesse
- Em UML são descritas como "relacionamentos semânticos entre objetos diferentes"

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

138

Critérios para incluir associações

- Quando o conhecimento associado necessita ser preservado por algum tempo
 - "necessário-ser-conhecida" requisitos indicam essa necessidade
 - Ex: associação entre Venda e Pagamento
- Evite associações cuja necessidade não é sugerida nos requisitos
 - Ex: associação entre Venda e Gerente
- É mais importante identificar conceitos do que associações
- Excesso de associações pode tornar o modelo conceitual confuso
- Evite mostrar associações redundantes ou deriváveis

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

139

139

Associações Comuns

- A é uma parte física de B
 - Gaveta TPV
 - Asa Aeronave
- A é uma parte lógica de B
 - ItemLinhaVenda Venda
 - PernaVôo (Flight Leg) RotaVôo
- A está fisicamente contida em/sobre B
 - Item Prateleira
 - Passageiro Aeronave
- A está logicamente contida em B
 - Descriçãoltem Catálogo
 - Vôo Programação Vôo
- A é registrada em B
 - Venda TPV
 - Reserva ManifestoVôo

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

140

Associações Comuns

- A é uma descrição para B
 - Descriçãoltem Item
 - DescriçãoVôo Vôo
- A é um item de linha de uma transação ou relatório B
 - ItemLinhaVenda Venda
 - ServiçoManutenção LogManutenção
- A é uma transação relacionada a outra transação B
 - Pagamento Venda
 - Reserva Cancelamento

• ...

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

141

141

Associações com Papéis

- Cada extremo de uma associação é chamado de papel.
- Os papéis podem ter, opcionalmente, as seguintes propriedades:
 - Nome
 - Expressão de multiplicidade
 - Navegabilidade

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

142

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

143

25/04/22

Associações e Implementação

- Uma associação indica um relacionamento significativo apenas sob a perspectiva conceitual.
 - Uma associação não implica em um fluxo de dados ou conexão entre objetos em uma solução de software.
 - Algumas associações do modelo conceitual podem não ser necessárias na implementação.
 - Durante a implementação podem ser descobertas associações entre objetos de software que foram esquecidas durante a modelagem conceitual.

25/04/22

Ciência da Computação - Engenharia de Software I - Rogério Eduardo Garcia

145

145

