Lista 4: Analise II

A. Ramos *

17 de junho de 2017

Resumo

Lista em constante atualização.

- 1. Teorema de Weiestrass e teorema de Arzela-Áscoli;
- 2. Série de Fourier.
- 1. Mostre a identidade

$$\frac{x(1-x)}{n} = \sum_{k=0}^{n} x^{k} (1-x)^{n-k} \left(x - \frac{k}{n}\right)^{2},$$

para $x \in [0, 1]$.

- 2. Seja $f:[0,1]\to\mathbb{R}$ uma função continua. Se $\int_0^1 x^n f(x) dx=0$ para todo $n\in\mathbb{N}$, então f(x)=0 para todo $x\in[0,1]$. Dê um contra-exemplo, quando f não for contínuo.
- 3. Seja $f:[0,1]\to\mathbb{R}$ uma função continua. Usando o teorema de aproximação de Weiestrass, mostre que existem uma sequência de polinômios p_n tal que $\sum_n p_n = f$ em [0,1].
- 4. Seja \mathcal{P}_k , o conjunto de polinômios de grau menor ou igual a k e I um intervalo compacto. Dado M > 0, defina $\mathcal{P}_k(I;M) := \{ p \in \mathcal{P}_k : |p(x)| \leq M, \forall x \in I \}$. Prove que $\mathcal{P}_k(I;M)$ é equicontinuo.
- 5. Mostre que não existe polinômios p_n tal que $p_n \xrightarrow{u} f$ em \mathbb{R} , onde $f(x) = \sin(x)$ ou f(x) = exp(x). Por que não existe contradição com o teorema de aproximação de Weirestrass?
- 6. Defina $f:(0,1)\to\mathbb{R}$ com f(x)=1/x. Mostre que não existe sequência de polinômios $p_n\xrightarrow{u} f$ em (0,1).
- 7. Considere a sequência $f_n(x) := nx^3$. Mostre que f_n possui derivadas limitadas no ponto x = 0, mas f_n não é equicontinua nesse mesmo ponto.
- 8. Seja $f: I \times [a, \infty) \to \mathbb{R}$ contínua e suponha também que $F(t) := \int_a^\infty f(t, x) dx$, para todo $t \in I$. Defina $F_n(t) := \int_a^n f(t, x) dx$, $t \in I$, $n \in \mathbb{N}$. Mostre que a integral $\int_a^\infty f(t, x) dx$ converge uniformemente em I se e somente se, se $\{F_n\}$ converge uniformemente para F em I.
- 9. Seja f_n uma sequência equicontínua e simplesmente limitada num compacto $K \subset \mathbb{R}$. Suponha que toda subsequência uniforme convergente em K tem o mesmo limite $f: K \to \mathbb{R}$. Então, f_n converge uniformemente a f em K.
- 10. Dê um exemplo de uma sequência equicontínua de funções $f_n:(0,1)\to(0,1)$ que não possua subsequência uniformemente convergente em (0,1).
- 11. Considere uma sequência de funções $f_n: I \to \mathbb{R}$ de classe C^2 . Suponha que (i) f_n converge a f em I; (ii) existe algum $a \in I$ tal que $\{f'_n(a)\}$ é limitada e (iii) $\{f''_n\}$ é uniformemente limitada em I. Mostre que f é de classe C^1 . Dica: Use a equicontinuidade.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 12. Calcule a série de Fourier das seguintes funções definidas em $[-\pi,\pi)$ e calcule dita soma
 - (a) f(x) = a, se $(-\pi \le x < 0)$ e f(x) = b, se $(0 \le x < \pi)$.
 - (b) f(x) = ax, se $(-\pi \le x < 0)$ e f(x) = bx, se $(0 \le x < \pi)$.
 - (c) $f(x) = |x| e f(x) = exp(\alpha x), \alpha \neq 0.$
 - (d) $f(x) = \sin^2(x) e f(x) = ax + b$
- 13. Defina f(x) = x, se $0 \le x < 2\pi$. Use o teorema de Parseval para concluir que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

14. Considere $\alpha \in (0, \pi)$. Defina

$$f(x) = 1$$
, se $|x| \le \alpha$ e $f(x) = 0$, se $\alpha < |x| \le \pi$.

Além disso, defina $f(x+2\pi)=f(x)$ para todo $x \in \mathbb{R}$.

- (a) Calcule os coeficiente de Fourier de f
- (b) Mostre que

$$\sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{n} = \frac{\pi - \alpha}{2}, (0 < \alpha < \pi).$$

(c) Usando o teorema de Parseval, prove que

$$\sum_{n=1}^{\infty} \frac{\sin^2(n\alpha)}{n^2 \alpha} = \frac{\pi - \alpha}{2}.$$

(d) Faça α ir para zero e prove que

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 = \frac{\pi}{2}.$$

15. Considere $f: [-\pi, \pi) \to \mathbb{R}$ de classe C^1 . Suponha que existe $k \in \mathbb{N}$ tal que

$$\lim_{n \to \infty} n^k |a_n| = 0 \text{ e } \lim_{n \to \infty} n^k |b_n| = 0,$$

onde a_n e b_n são os coeficientes de Fourier da função f.

- (a) Mostre que f é de classe C^k
- (b) Prove que as derivadas $f^{(m)}$ (com $m \le k$) é a derivada m-ésima da série de Fourier, com convergência uniforme da série resultante.
- 16. Sejam $f,g:[-\pi,\pi)\to\mathbb{R}$ funções de classe C^1 por partes. Se ambas funções possuem a mesma série de Fourier, então f e g são funções identicas.
- 17. Seja $a \in \mathbb{R}$ com |a| < 1. Encontre as funções cujas séries de Fourier são dadas por

$$(a)\sum_{n=1}^{\infty}\frac{a^n\cos(nx)}{n}, \qquad (b)\sum_{n=1}^{\infty}\frac{a^n\sin(nx)}{n}, \qquad (c)\sum_{n=1}^{\infty}\frac{\cos(nx)}{n!}$$

2