STAT2220: Engineering Statistics

Solution to Assignment 3 – Part I

3-140. a)
$$P(X \le 5, Y \le 8) = P(X \le 5)P(Y \le 8)$$

= $(0.6321)(0.6321)$
= 0.3996

b)
$$P(X > 5, Y \le 6) = P(X > 5)P(Y \le 6)$$

= $(1 - P(X \le 5))P(Y \le 6)$
= $(0.3679)(0.5276)$
= 0.1941

c)
$$P(3 < X \le 7, Y > 7) = P(3 < X \le 7)P(Y > 7)$$

= $(P(Y \le 7) - P(Y \le 3))(1 - P(Y \le 7))$
= $(0.3022)(0.4169)$
= 0.1260

$$\begin{aligned} \text{d) } P(X > 7, \, 5 < Y \le 7) &= P(X > 7) P(5 < Y \le 7) \\ &= (1 - P(X \le 7)) (P(Y \le 7) - P(Y \le 5)) \\ &= (0.2466) (0.1184) \\ &= 0.0292 \end{aligned}$$

3-154. a)
$$E(Y) = E(2.5X_1 - 0.5X_2 + 1.5X_3) = 2.5(1.2) - 0.5(0.8) + 1.5(0.5) = 3.35$$

b) $V(Y) = V(2.5X_1 - 0.5X_2 + 1.5X_3) = 6.25(1)^2 + 0.25(0.25)^2 + 2.25(2.2)^2 = 17.1556$
c) $E(-3Y) = -3E(Y) = -3(3.35) = -10.05$
d) $V(-3Y) = 9V(Y) = 9(17.1556) = 154.4004$

3-200. Let \overline{X} denote the average time to locate 10 parts. Then, $E(\overline{X}) = 45$ and $\sigma_{\overline{X}} = \frac{30}{\sqrt{10}}$

a)
$$P(\overline{X} > 60) = P(Z > \frac{60-45}{30/\sqrt{10}}) = P(Z > 1.58) = 0.0571$$

b) Let Y denote the total time to locate 10 parts. Then, Y > 600 if and only if $\overline{X} > 60$. Therefore, the answer is the same as part a.

3-216. a) P(system operates) =
$$P(C_1)P(C_2 \text{ or } C_3)P(C_4) = (0.9)(1 - P(C_2')P(C_3'))(0.95)$$

= $(0.9)(1-(0.1)(0.05))(0.95)$
= 0.8507

b) Components in parallel do not fail.

$$P(C_1' \text{ or } C_4' \text{ or both fail}) = 1 - P(C_1)P(C_4) = 1 - 0.855 = 0.145$$

c)
$$P(Both fail) = P(C_2')P(C_3') = (0.1)(0.05) = 0.005$$

d)
$$0.145(0.995) + 0.9(0.95)(0.1)(0.05) + 0.145(0.005) = 0.1493$$

- e) Fail due to series and not to parallel components
 Fail due to parallel and not series components
 Fail due to both series and parallel components
- f) P(system fails) = 1 0.8507 = 0.1493
- g) Recompute parts a, b, c, and f from 3-202

a)
$$(0.95)(0.995)(0.95) = 0.8980$$

b)
$$1 - 0.95^2 = 0.0975$$

f)
$$1 - 0.8980 = 0.1020$$

- h) Recompute parts a, b, c, and f
 - a) $0.9(1-0.05^2)(0.95) = 0.8529$
 - b) 0.1450
 - c) $0.05^2 = 0.0025$

f)
$$1 - 0.8529 = 0.1471$$

i) Increase reliability of series component since improvement in series reduced the probability of failure from 0.1493 to 0.102, whereas the improvement in parallel component only resulted in a decrease to 0.1471

Statistics 5.2220

Fall 2007

Solution to Assignment 3 - Part II

Q4-20 (a). $H_0 = 175$ vs. $H_1 > 175$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{190 - 175}{20 / \sqrt{10}} = 2.372 > 1.645 = Z_{0.05}$$

Conclusion: Reject H_0 at $\alpha = 0.05$

Q4-20 (b). Calculate the probability

$$\begin{array}{lcl} \alpha & = & P(\bar{X} > 190| = 175) \\ & = & p[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > \frac{190 - 175}{20/\sqrt{10}}] \\ & = & P(Z > 2.37) \\ & = & 1 - 0.99111 \\ & = & 0.0089 \end{array}$$

Q4-22 (a). n=16
$$0.05 = P(\bar{x} > c \text{ when } \mu = 175) = P(Z > \frac{c-175}{20/\sqrt{16}}) = P(Z > 1.645)$$
 Thus, $1.645 = \frac{c-175}{20/\sqrt{16}}$, and $c = 183.225$

Q4-22 (b). For
$$\alpha=0.05$$
, fail to reject H_0 if $\bar{X}<175+1.645(\frac{20}{\sqrt{16}})=183.23$ $\beta=P(\bar{X}\leq 183.23 \text{ when } \mu=195)=P(Z\leq \frac{183.23-195}{20/\sqrt{16}})=P(Z\leq -2.35)=0.009387$

Q4-22 (c). For the same level of α , with the increased sample size, β is reduced. With an increased sample size, the power has also increased.