Rappel

Transformée de Laplace

La transformée de Laplace :

$$\mathcal{L}(f(t)) = F(p) = \int_0^{+\infty} f(t) e^{-tp} dt \qquad \text{avec } f(t) = 0 \text{ pour } t < 0$$

Propriétés:

• Linéarité : $\mathcal{L}(f(t) + g(t)) = F(p) + G(p)$ et $\mathcal{L}(\lambda f(t)) = \lambda F(p)$ $\lambda \in \Re$

• Intégration : $\mathcal{L}\left(\int_0^t f(\tau) d\tau\right) = \frac{1}{p}F(p)$

• Dérivation: $\mathcal{L}\left(\frac{df}{dt}(t)\right) = \underbrace{pF(p) - f(0)}_{\text{th}} \leftarrow \mathcal{N} = \underbrace{\mathcal{L}\left(\frac{d^2f}{dt^2}(t)\right)}_{\text{th}} = \underbrace{p^2F(p) - pf(0) - \dot{f}(0)}_{\text{th}} \leftarrow \mathcal{N} = 2$

.....

$$\mathcal{L}\left(\frac{d^{n}f}{dt^{n}}(t)\right) = \underline{p^{n}F(p)} - \underline{p^{n-1}f(0) - \dots - pf^{(n-2)}(0) - f^{(n-1)}(0)}$$

• Périodicité : Soit les deux signaux suivants :

alors: $G(p) = \frac{F(p)}{1 - e^{-Tp}}$

• Retard: $\mathcal{L}(f(t-\tau)) = e^{-\tau p} F(p)$ $\mathcal{L}(e^{-at} f(t)) = F(p+a)$

• Produit de convolution : $\mathcal{L}\left(\int_0^t f(\tau)g(t-\tau) d\tau\right) = F(p)G(p)$

• Thérorème de la valeur initiale : $\lim_{t \to \infty} f(t) = \lim_{t \to \infty} pF(p)$

• Thérorème de la valeur finale : $\lim_{t\to\infty} f(t) = \lim_{t\to0} pF(p)$

• Quelques transformées de Laplace

大為	43
F(p)	f(t) t >0
1	$\delta(t)$: impulsion de Dirac
$\frac{1}{p}$	$\Gamma(t)$: échelon unitaire = ($t>0$)
$\sum_{n=1}^{n-1} \left(\frac{1}{p^n} \right)^{n-1}$	$t \leftarrow n=2 \qquad \frac{1}{(n-1)!}t^{n-1}$ $eph = -\alpha \qquad e^{-\alpha t}$
1 p+a 1	
$\frac{1}{(p+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad n = 1, 2, 3,$
$ \frac{1}{p(p+a)} $	$1-e^{-at}$
$\frac{1}{(p+a)(p+b)}$	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$
$\frac{p}{(p+a)(p+b)}$	$\frac{1}{a-b} \left(a e^{-at} - b e^{-bt} \right)$
$\frac{p+d}{(p+a)(p+b)}$	$\frac{1}{b-a} \left[(d-a)e^{-at} - (d-b)e^{-bt} \right]$
$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
$\frac{p+d}{(p+a)(p+b)(p+c)}$	$\frac{(d-a)e^{-at}}{(b-a)(c-a)} + \frac{(d-b)e^{-bt}}{(a-b)(c-b)} + \frac{(d-c)e^{-ct}}{(a-c)(b-c)}$
$p^2 + \omega^2$	sin@t
$\frac{p}{p^2 + \omega^2}$	$\cos \omega t$
$\frac{\omega}{(p+a)^2 + \omega^2}$	$e^{-at}\sin\omega t$
$\frac{p+a}{(p+a)^2+\omega^2}$	$e^{-at}\cos\omega t$
$\frac{p+d}{p^2+\omega^2}$	$\sqrt{\frac{d^2 + \omega^2}{\omega^2}} \sin(\omega t + \phi) \phi = \operatorname{Arctg}(\omega/d)$
$\frac{p\sin\phi + \omega\cos\phi}{p^2 + \omega^2}$	$\sin(\omega t + \phi)$