DCC007 – Organização de Computadores II

Aula 7 – Superescalar 1

Prof. Omar Paranaiba Vilela Neto

Introdução

 Processadores estudados até aqui estão limitados a CPI ≥ 1

- Processadores superescalares permitemCPI < 1
 - Executam múltiplas instruções em paralelo

- Tipos de processadores superescalares
 - In-order
 - Out-of-order

Pipe A: Integer Ops., Branches Pipe B: Integer Ops., Memory

Pipe A: Integer Ops., Branches Pipe B: Integer Ops., Memory

Pipe A: Integer Ops., Branches Pipe B: Integer Ops., Memory

Diagrama lógico de Disparo do Pipeline

ОрА	F	D	Α0	Α1	W		
ОрВ	F	D	В0	B1	W		
ОрС		F	D	Α0	A1	W	
OpD		F	D	B0	B1	W	
OpE			F	D	Α0	Α1	W
OpF			F	D	В0	B1	W

Dispara 2 Instruções Pode ter 2 instruções no mesmo estágio no mesmo tempo

$$CPI = 0.5$$

Instruções devem ser trocadas no pipeline

Hazard Estrutural

Hazard de Dados – 2 Disparos

Sem Encaminhamento

```
ADDIU R1,R1,1 F D A0 A1 W
ADDIU R3,R4,1 F D B0 B1 W
ADDIU R5,R6,1 F D A0 A1 W
ADDIU R7,R5,1 F D D D A0 A1 W
```

Com Encaminhamento

```
ADDIU R1,R1,1 F D A0 A1 W
ADDIU R3,R4,1 F D B0 B1 W
ADDIU R5,R6,1 F D A0 A1 W
ADDIU R7,R5,1 F D D A0 A1 W
```

Hazard de Dados – 2 Disparos

Com Encaminhamento

```
ADDIU R1,R1,1 F D A0 A1 W
ADDIU R3,R4,1 F D B0 B1 W
ADDIU R5,R6,1 F D A0 A1 W
ADDIU R7,R5,1 F D D A0 A1 W
```

A ordem influencia

```
ADDIU R1,R1,1 F D A0 A1 W ADDIU R3,R4,1 F D B0 B1 W ADDIU R7,R5,1 F D A0 A1 W ADDIU R5,R6,1 F D B0 B1 W
```

Lógica de Disparo e Alinhamento

Ciclo Ender Instr.

```
0 0x000 OpA0 0x004 OpB
```

•••

```
2 0x100 OpD
```

```
2 0x104 J 0x204
```

••

```
3 0x204 OpE
```

••

Cache de Instruções

É difícil o disparo através <u>de linhas</u> <u>da cache</u>. Necessário portas extras.

Lógica de Disparo e Alinhamento

```
Ciclo Ender Instr.
                                  Código ideal. Sem restrições de
     0x000 OpA
 0
                                           alinhamento
     0x004 OpB
 0
     0x008 OpC
 1
                                      D A0 A1 W
                              OpA F
     0x00C J 0x100
                              OpB F
                                         B0 B1 W
                              OpC
                                         D B0 B1 W
    0x100 OpD
 2
                               J
                                         D
                                            A0 A1 W
     0x104 J 0x204
                                         F
                                                B0 B1 W
                               OpD
                               J
     0x204 OpE
                                             D A0 A1 W
 3
 3
     0x208 J 0x30C
                                             F
                                                   B0 B1 W
                               OpE
                               J
                                                   A0 A1 W
     0x30C OpF
 4
                              0pF
                                                F
                                                      A0 A1 W
     0x310 OpG
 4
                               0pG
                                                      B0 B1 W
                                                   D
 5
     0x314 OpH
                                                   F
                               OpH
                                                       D
                                                          A0 A1 W
```

Com Restrições de Alinhamento

Ciclo Ender Instr.

```
? 0x000 OpA
```

- ? 0x004 OpB
- ? 0x008 OpC
- 9 0x00C J 0x100

...

- ? 0x100 OpD
- ? 0x104 J 0x204

•••

- ? 0x204 OpE
- ? 0x208 J 0x30C

••

- ? 0x30C OpF
- ? 0x310 OpG
- ? 0x314 OpH

Cache de Instruções

Com Restrições de Alinhamento

Cache de Instruções

```
Ciclo Ender Instr.
     0x000 OpA
     0x004 OpB
     0x008 OpC
     0x00C J 0x100
     0x100 OpD
     0x104 J 0x204
     0x204 OpE
     0x208 J 0x30C
     0x30C OpF
     0x310 OpG
     0x314 OpH
```

0x000	0	0	1	1
0x100	2	2		
0x200	3 X	3	4	4 X
0x300			⁵ X	5
0x310	6	6		

X Dado que nunca será usado

Com Restrições de Alinhamento

```
Ciclo Ender Instr.
    0x000 OpA
                                  A0 A1 W
1
    0x004 OpB
1
                                  B0 B1 W
    0x008 OpC
                               F
                                     B0 B1 W
    0x00C J 0x100
                                     A0 A1 W
3
    0x100 OpD
                                        B0 B1 W
3
    0x104 J 0x204
                                        A0 A1 W
4 0x200 ?
                                     F
    0x204 OpE
4
                                        D
                                           A0 A1 W
5
    0x208 J 0x30C
                                        F
                                              A0 A1 W
5
    0x20C ?
                                        F
6
    0x308 ?
                                            F
6
    0x30C OpF
                                                  A0 A1 W
7
    0x310 OpG
                                                     A0 A1 W
     0x314 OpH
                                                  D
                                                     B0 B1 W
```


Pipe A: Integer Ops., Branches Pipe B: Integer Ops., Memory

Cuidado com o tamanho do problema!

Separando os estágios: Decodificação e Disparo

- Rede de Encaminhamento pode se tornar complexa.
- Separar os estágios ajuda:
 - D = Decodifica, Resolve os Hazards Estruturais
 - I = Lê Registradores, Trata Encaminhamento, Dispara as instruções para as unidades específicas.

```
OpA F D I A0 A1 W
OpB F D I B0 B1 W
OpC F D I A0 A1 W
OpD F D I B0 B1 W
```

Custo de Parada de Desvio: Muito Alto

```
A1 W
BEQZ
      F D
      F D I
ОрА
                   B<sub>0</sub>
           F
ОрВ
               D
           F
ОрС
               D
OpD
               F
                   D
OpE
               F
                   D
                   F
0pF
                   F
0pG
ОрН
                                  A0 A1 W
OpI
                       F
                           D
                                  B0 B1 W
```

Custo de Parada de Desvio: Muito Alto

BEQZ F D I A0 A1 W

Aumenta

Importância da Previsão

Agradecimento

David Wentzlaff (Princeton University)