

PERTEMUAN-6

ALGORITHMA GARIS

Algorithma Garis

- Masalah :
 - Pixel mana yang harus dipilih untuk menggambar sebuah garis ?

ALGORITHMA GARIS

- Algorithma garis adalah algorithma untuk menentukan lokasi pixel yang paling dekat dengan garis sebenarnya (actual line)
- Ada tiga algorithma utama untuk menggambar garis :
 - Line Equation
 - DDA Algorithm
 - Bresenham's Algorithm

Kuadran Garis

Kuadran	Kriteria	Arah Garis	Contoh
I	(x1 < x2) dan (y1 < y2)	(x2,y2) (x1,y1)	(1,1) – (4,5) (-3,2) – (-1,4)
II	(x1 > x2) dan (y1 < y2)	(x2,y2) (x1,y1)	(4,2) – (3,4) (-3,-3) – (-6,-1)
III	(x1 > x2) dan (y1 > y2)	(x1,y1) (x2,y2)	(6,-2) – (4,-5) (9,5) – (1,2)
IV	(x1 < x2) dan (y1 > y2)	(x1,y1) (x2,y2)	(3,9) – (6,2) (-2,1) – (4,-5)

Kuadran Garis

Di kuadran mana garis A? Di kuadran mana garis B? Dapatkah garis Adan B dinyatakan sebagai garis dengan kuadran yang sama? Bagaimana caranya? Bagaimana halnya dengan garis C dan D?

Kuadran Garis

- Garis A: (3;1) (8;4)
 - Garis A berada di kuadran I
- Garis B: (3;7) (1;2)
 - Garis B berada di kuadran III
 - $\mathbf{m} = (2-7)/(1-3) = -5/-2 = 2.5$
 - tetapi apabila garis B dinyatakan sebagai (1; 2) –
 (3; 7) maka garis B akan berada di kuadran I
 - $\mathbf{m} = (7-2)/(3-1) = 5/2 = 2.5$

LINE EQUATION

Sebuah garis lurus dapat diperoleh dengan menggunakan rumus :

$$y = mx + b$$

- dimana :
 - □ m = gradien
 - b = perpotongan garis dengan sumbu y.

LINE EQUATION

Apabila dua pasang titik akhir dari sebuah garis dinyatakan sebagai (x1,y1) and (x2, y2), maka nilai dari gradien m dan lokasi b dapat dihitung dengan :

$$m = \frac{y_2 - y_1}{x_2 - x_1} \tag{1}$$

$$b = y_1 - m \cdot x_1 \tag{2}$$

Contoh

Gambar garis (0,1) – (5,7) dengan menggunakan Line Equation

$$x_1 = 0$$
 $y_1 = 1$
 $x_2 = 5$ $y_2 = 7$
 $m = (7-1)/(5-0) = 1,2$
 $b = 1 - 1,2 * 0 = 1$

x	У
0	1.2 * 0 + 1 = 1
1	1.2 * 1 + 1 = 2,2 ≈ 2
2	1.2 * 2 + 1 = 3,4 ≈ 3
3	1.2 * 3 + 1 = 4,6 ≈ 5
4	1.2 * 4 + 1 = 5,8 ≈ 6
5	1.2 * 5 + 1 = 7

Gradien dan Tipe Garis

m = tak terdefinisi

m = 0

m = 1

Tipe Garis

Dapatkah anda mencari perbedaan yang esensial antara garis A dan B (misal: gradien, pertambahan x dan y)?

Tipe Garis

- Garis A: (3;1) (8;4)
 - \square m = (y2 y1) / (x2 x1) = (4-1)/ (8-3) = 3/5= 0,6
 - 0 < m < 1
 - $x_{i+1} = x_i + 1$; $y_{i+1} = y_i + d1$
- Garis B: (1;2) (2;7)
 - \square m = (7-2) / (2-1) = 5 / 1 = 5
 - \square m > 1
 - $x_{i+1} = x_i + d2$; $y_{i+1} = y_i + 1$
- Berapa nilai d1 dan d2 ?

ALGORITHMA DDA

- Digital differential analyzer (DDA) merupakan algorithma untuk menghitung posisi pixel disepanjang garis dengan menggunakan posisi pixel sebelumnya.
- Algorithma berikut ini menggunakan asumsi bahwa garis berada di kuadran I atau II serta garis bertipe cenderung tegak atau cenderung mendatar.

Algorithma DDA

Untuk garis dengan 0 < m < 1, maka x_{i+1} = x_i
+1 dan :

$$y_{i+1} = y_i + m \tag{3}$$

Untuk garis dengan m > 1, maka y_{i+1} = y_i + 1 dan :

$$x_{i+1} = x_i + \frac{1}{m} \tag{4}$$

Algorithma DDA

■ Garis dengan 0 > m > -1, maka $x_{i+1} = x_i-1$ dan

$$y_{i+1} = y_i - m \tag{5}$$

Sedangkan bila m < -1, maka yi+1 = yi+1 dan</p>

$$x_{i+1} = x_i - \frac{1}{m} \tag{6}$$

Contoh Algorithma DDA

 Gambar garis dari (0;1) – (5;7) dengan menggunakan DDA.

$$x_1=0, y_1=1$$

 $x_2=5, y_2=7$
 $m = (7-1)/(5-0) = 1,20$
 $1/m=1/1,20 = 0,83$

х								
(0 1							
0+0,83 = 0,83 × 1	1 2							
$0,83+0,83 = 1,66 \approx 2$	2 3							
1,66+0,83 = 2,59 ≈ 3	3 4							
2,59+0,83 = 3,42 ≈ 3	3 5							
3,42+0,83 = 4,25 ≈ 4	4 6							
4,25+0,83 = 5,08 ≈ 5	5 7							

- Bresenham mengembangkan algorithma yang lebih efisien.
- Algorithma ini mencari nilai integer yang paling mendekati garis sesungguhnya (actual line).
- Algorithma ini tidak memerlukan pembagian.

- Algorithma Bresenham yang disajikan berikut ini hanya dapat digunakan untuk garis yang berada di kuadran I dan 0 < m < 1.
- Anda yang ingin mempelajari pembuktian matematis dari algorithma Bresenham silahkan membaca buku Computer Graphics (Hearn dan Baker)

d1= $m - \frac{1}{2}$, karena d1< 0 atau negatif maka pixel berikutnya adalah pixel (x_{i+1}, y_i)

d1=m – $\frac{1}{2}$, karena d1> 0 atau positif maka pixel berikutnya adalah pixel (x_{i+1}, y_{i+1})

Algorithma Bresenham (0 < m < 1)

Gambar garis berikut ini dengan menggunakan algorithma Bresenham :

$$(0;1) - (6;5)$$

$$(2;2) - (7;5)$$

$$(0;1) - (5;7)$$

Garis: (0;1) - (6;5)

р	X	у
2	0	1
-2	1	2
6	2	2
2	3	3
-2	4	4
6	5	4
2	6	5

Garis: (2;2) - (7;5)

8											
7											
6											
5											
6 5 4 3 2											
3											
2											
1											
0											
	\bigcap	1	2	3	4	5	6	7	8	9	10

р	Х	у
1	2	2
-3	3	3
3	4	3
-1	5	4
5	6	4
1	7	5

Garis: (0;1) - (5;7)

8											
7											
6											
5											
4											
6 5 4 3 2											
2											
1											
0											
	\bigcirc	1	2	3	4	5	6	7	8	9	10

р	Х	у
7	0	1
9	1	2
11	2	3
13	3	4
15	4	5
17	5	6

- Mengapa garis (0;1) (5;7) tidak dapat digambar dengan tepat ?
 - Garis (0;1) (5;7) mempunyai m = 1,2, dengan demikian asumsi pada algorithma tersebut tidak tepat dan harus disesuaikan.

Algorithma Bresenham (m > 1)

Algorithma Bresenham (m > 1)

Garis: (0;1) - (5;7)

					•						
8											
7											
6											
5 4 3											
4											
3											
2											
1	/										
0											
	0	1	2	3	4	5	6	7	8	9	10

р	Х	у
4	0	1
2	1	2
0	2	3
-2	3	4
8	3	5
6	4	6
4	5	7

SOAL

- Gunakan algorithma DDA dan Bresenham untuk menggambar garis-garis berikut :
 - 1. (2;1) (9;6)
 - (1;2) (8;5)
 - (3;1) (10;5)
 - 4. (6;7) (13;10)
 - (2;8) (9;11)

Atribut Garis

- Atribut garis meliputi :
 - Ketebalan garis

Pola garis

Warna garis