Solution Book of Mathematic

Ssnior 2 Part I

MELVIN CHIA

Written on 9 October 2022

Contents

11.1 Revision Exercise 14	. 2
---------------------------	-----

11.1 Revision Exercise 14

Calculate the following (Question 1 to 4):

1.
$$5\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix} + 4\begin{pmatrix} 6 & 2 \\ 1 & -1 \end{pmatrix}$$

Sol.

$$5 \begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix} + 4 \begin{pmatrix} 6 & 2 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -15 & -5 \\ 15 & 20 \end{pmatrix} + \begin{pmatrix} 24 & 8 \\ 4 & -4 \end{pmatrix}$$
$$= \begin{pmatrix} 9 & 3 \\ 19 & 16 \end{pmatrix}$$

$$2. -4 \begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$

Sol.

$$-4\begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix} - 3\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -12 & 0 \\ 4 & -20 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ -3 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} -15 & 0 \\ 7 & 17 \end{pmatrix}$$

$$3. \begin{pmatrix} 2 & 6 & -1 \\ 8 & -4 & 3 \\ 5 & 7 & -2 \end{pmatrix} + \begin{pmatrix} 4 & -2 & 1 \\ -2 & 1 & 0 \\ -3 & 5 & -4 \end{pmatrix}$$

Sol.

$$\begin{pmatrix} 2 & 6 & -1 \\ 8 & -4 & 3 \\ 5 & 7 & -2 \end{pmatrix} + \begin{pmatrix} 4 & -2 & 1 \\ -2 & 1 & 0 \\ -3 & 5 & -4 \end{pmatrix}$$
$$= \begin{pmatrix} 6 & 4 & 0 \\ 6 & -3 & 3 \\ 2 & 12 & -6 \end{pmatrix}$$

$$4. \ 2 \begin{pmatrix} 1 & -3 & 5 \\ 7 & 2 & 0 \\ 2 & 4 & -4 \end{pmatrix} - \begin{pmatrix} -2 & -6 & 2 \\ -5 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

Sol.

$$2 \begin{pmatrix} 1 & -3 & 5 \\ 7 & 2 & 0 \\ 2 & 4 & -4 \end{pmatrix} - \begin{pmatrix} -2 & -6 & 2 \\ -5 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & -6 & 10 \\ 14 & 4 & 0 \\ 4 & 8 & -8 \end{pmatrix} - \begin{pmatrix} -2 & -6 & 2 \\ -5 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 0 & 8 \\ 19 & 3 & -1 \\ 4 & 8 & -6 \end{pmatrix}$$

5. Given that $\binom{2}{-3} + 3 \binom{5}{y} = \binom{x}{y}$, find the value of x and y.

Sol.

$${2 \choose -3} + 3 {5 \choose y} = {x \choose y}$$

$${2 \choose -3} + {15 \choose 3y} = {x \choose y}$$

$${17 \choose -3 + 3y} = {x \choose y}$$

$$x = 17$$

$$y = -3 + 3y$$

$$2y = 3$$

$$y = \frac{3}{2}$$

$$x = 17, y = \frac{3}{2}$$

6. Let
$$P = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 2 & -3 \\ 4 & 0 & -2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{pmatrix}$ and $R = \begin{pmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{pmatrix}$. Find the following:

(a) 2Q + R' **Sol.**

$$2Q + R' = 2 \begin{pmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -10 & -8 \\ -4 & 0 & 12 \\ 6 & 4 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & -2 \\ 5 & -7 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 6 & -9 & -8 \\ -4 & -2 & 10 \\ 11 & -3 & 7 \end{pmatrix}$$

(b)
$$(P - R) + 2Q'$$

$$(P-R) + 2Q'$$

$$= \begin{pmatrix} 3 & -2 & 1 \\ -1 & 2 & -3 \\ 4 & 0 & -2 \end{pmatrix} - \begin{pmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{pmatrix}$$

$$+ 2 \begin{pmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{pmatrix}'$$

$$= \begin{pmatrix} -1 & -2 & -4 \\ -2 & 4 & 4 \\ 4 & 2 & -3 \end{pmatrix} + \begin{pmatrix} 2 & -4 & 6 \\ -10 & 0 & 4 \\ -8 & 12 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 6 & 2 \\ -12 & 4 & 8 \\ -4 & 14 & 3 \end{pmatrix}$$

(c)
$$[2(Q-P)]'$$

Sol.

$$[2(Q-P)]'$$

$$= \begin{cases} 2 \begin{bmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{bmatrix} - \begin{bmatrix} 3 & -2 & 1 \\ -1 & 2 & -3 \\ 4 & 0 & -2 \end{bmatrix} \end{bmatrix}'$$

$$= \begin{bmatrix} 2 \begin{pmatrix} -2 & -3 & -5 \\ -1 & -2 & 9 \\ -1 & 2 & 5 \end{bmatrix} \end{bmatrix}'$$

$$= \begin{bmatrix} -4 & -6 & -10 \\ -2 & -4 & 18 \\ -2 & 4 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} -4 & -2 & -2 \\ -6 & -4 & 4 \\ -10 & 18 & 10 \end{bmatrix}$$

(d)
$$(R'-Q)'$$

Sol.

$$(R' - Q)' = \begin{bmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{bmatrix}' - \begin{bmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{bmatrix} \end{bmatrix}'$$

$$= \begin{bmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -5 & -4 \\ -2 & 0 & 6 \\ 3 & 2 & 3 \end{bmatrix}'$$

$$= \begin{bmatrix} 4 & 0 & 5 \\ 1 & -2 & -7 \\ 0 & -2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -2 & 3 \\ -5 & 0 & 2 \\ -4 & 6 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 & 2 \\ 6 & -2 & -9 \\ 4 & -8 & -2 \end{bmatrix}$$

7. Let
$$M = \begin{pmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{pmatrix}$$
 and $N = \begin{pmatrix} 3 & 6 \\ 7 & -1 \\ -4 & 2 \end{pmatrix}$. Find the matrix X in the following equations:

(a)
$$2N - 3M = 2M - X$$

$$2N - 3M = 2M - X$$

$$X = 5M - 2N$$

$$= 5\begin{pmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{pmatrix} - 2\begin{pmatrix} 3 & 6 \\ 7 & -1 \\ -4 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 0 \\ 20 & -15 \\ 10 & 20 \end{pmatrix} - \begin{pmatrix} 6 & 12 \\ 14 & -2 \\ -8 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} -11 & -12 \\ 6 & -13 \\ 18 & 16 \end{pmatrix}$$

(b)
$$2(M-2N) + X = M + N$$

$$2(M-2N) + X = M + N$$

$$X = M + N - 2(M - 2N)$$

$$= M + N - 2M + 4N$$

$$= -M + 5N$$

$$= -\begin{pmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{pmatrix} + 5\begin{pmatrix} 3 & 6 \\ 7 & -1 \\ -4 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -4 & 3 \\ -2 & -4 \end{pmatrix} + \begin{pmatrix} 15 & 30 \\ 35 & -5 \\ -20 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 16 & 30 \\ 31 & -2 \\ -22 & 6 \end{pmatrix}$$

(c)
$$(M + 2N)' = X$$

Sol.

$$(M+2N)' = X$$

$$X = (M+2N)'$$

$$= \begin{bmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{bmatrix} + 2 \begin{bmatrix} 3 & 6 \\ 7 & -1 \\ -4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 6 & 12 \\ 14 & -2 \\ -8 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 12 \\ 18 & -5 \\ -6 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 18 & -6 \\ 12 & -5 & 8 \end{bmatrix}$$

(d)
$$3N' - M' = 2X$$

Sol.

$$3N' - M' = 2X$$

$$2X = (3N - M)'$$

$$= \begin{bmatrix} 3 \begin{pmatrix} 3 & 6 \\ 7 & -1 \\ -4 & 2 \end{bmatrix} - \begin{pmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 18 \\ 21 & -3 \\ -12 & 6 \end{bmatrix} - \begin{pmatrix} -1 & 0 \\ 4 & -3 \\ 2 & 4 \end{bmatrix} \end{bmatrix}'$$

$$= \begin{pmatrix} 10 & 18 \\ 17 & 0 \\ -14 & 2 \end{pmatrix}'$$

$$= \begin{pmatrix} 10 & 17 & -14 \\ 18 & 0 & 2 \end{pmatrix}$$

$$X = \begin{pmatrix} 5 & \frac{17}{2} & -7 \\ 9 & 0 & 1 \end{pmatrix}$$

Of the following matrices, determine if AB and BA are defined. If any of them is defined, find the value of them (Question 8 to 11):

8.
$$A = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- .. The number of columns of A is not equal to the number of rows of B
- $\therefore AB$ is not defined
- .. The number of columns of B is equal to the number of rows of A
- $\therefore BA$ is defined

$$\therefore BA = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 11 \\ -2 \\ 0 \end{pmatrix}$$

9.
$$A = \begin{pmatrix} -5 & 4 & 3 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 \\ -3 & 0 \\ 1 & -4 \end{pmatrix}$$

.. The number of columns of A is equal to the number of rows of B

 $\therefore AB$ is defined

$$\therefore AB = \begin{pmatrix} -5 & 4 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ -3 & 0 \\ 1 & -4 \end{pmatrix} = \begin{pmatrix} 1 & -17 \\ -5 & -11 \end{pmatrix}$$

... The number of columns of B is equal to the number of rows of A

 $\therefore BA$ is defined

$$\therefore BA = \begin{pmatrix} -2 & 1 \\ -3 & 0 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} -5 & 4 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & -6 & -3 \\ 13 & -12 & -9 \\ -9 & -4 & -9 \end{pmatrix}$$

10.
$$A = \begin{pmatrix} 3 & 2 & -1 \\ 5 & 4 & 0 \\ -2 & 6 & 1 \end{pmatrix}, B = \begin{pmatrix} 9 & 0 \\ -7 & 1 \\ 2 & 3 \end{pmatrix}$$

Sol.

.. The number of columns of A is equal to the number of rows of B

 $\therefore AB$ is defined

$$\therefore AB = \begin{pmatrix} 3 & 2 & -1 \\ 5 & 4 & 0 \\ -2 & 6 & 1 \end{pmatrix} \begin{pmatrix} 9 & 0 \\ -7 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 11 & -1 \\ 17 & 4 \\ -58 & 9 \end{pmatrix}$$

.. The number of columns of B is not equal to the number of rows of A

 $\therefore BA$ is not defined

11.
$$A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 1 & 4 \\ 5 & 2 \end{pmatrix}$$

Sol.

... The number of columns of A is not equal to the number of rows of B

 $\therefore AB$ is not defined

.. The number of columns of B is equal to the number of rows of A

 $\therefore BA$ is defined

$$\therefore BA = \begin{pmatrix} 3 & 0 \\ 1 & 4 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 10 & 4 \\ 18 & 2 \end{pmatrix}$$

12. Given that $A = \begin{pmatrix} a & 3a \\ 2b & b \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $AB = \begin{pmatrix} 45 \\ 48 \end{pmatrix}$, find the value of a and b.

Sol.

$$AB = \begin{pmatrix} a & 3a \\ 2b & b \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 45 \\ 48 \end{pmatrix}$$
$$\begin{pmatrix} 3a + 6a \\ 6b + 2b \end{pmatrix} = \begin{pmatrix} 45 \\ 48 \end{pmatrix}$$
$$9a = 45$$
$$8b = 48$$
$$a = 5$$
$$b = 6$$

13. Given that $A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, A + B = AB, find the value of a, b and c.

Sol.

$$A + B = AB$$

$$\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

$$\begin{pmatrix} 3+a & b \\ 0 & 4+c \end{pmatrix} = \begin{pmatrix} 3a & 3b \\ 0 & 4c \end{pmatrix}$$

$$3+a=3a$$

$$2a=3$$

$$b=3b$$

$$2b=0$$

$$4+c=4c$$

$$3c=4$$

$$a=\frac{3}{2}, b=0, c=\frac{4}{3}$$

Find the value of the following determinants (Question 14 to 22):

14.
$$\begin{vmatrix} 20 & 15 \\ 8 & 6 \end{vmatrix}$$

$$\begin{vmatrix} 20 & 15 \\ 8 & 6 \end{vmatrix} = 20 \cdot 6 - 15 \cdot 8$$
$$= 120 - 120$$
$$= 0$$

15.
$$\begin{vmatrix} 6 & -7 \\ 15 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 6 & -7 \\ 15 & -2 \end{vmatrix} = 6 \cdot -2 - (-7) \cdot 15$$
$$= -12 + 105$$
$$= 93$$

16.
$$\begin{vmatrix} -4 & -10 \\ 12 & 7 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} -4 & -10 \\ 12 & 7 \end{vmatrix} = -4 \cdot 7 - (-10) \cdot 12$$
$$= -28 + 120$$
$$= 92$$

17.
$$\begin{vmatrix} 3 & 3 & -6 \\ 2 & -2 & 0 \\ 3 & 0 & -3 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 3 & 3 & -6 \\ 2 & -2 & 0 \\ 3 & 0 & -3 \end{vmatrix} = 18 + 0 + 0 - 36 - 0 + 18$$
$$= 0$$

Sol.

$$\begin{vmatrix} 5 & 7 & 1 \\ -3 & 6 & 9 \\ 4 & 7 & 3 \end{vmatrix} = 90 + 252 - 21 - 24 - 315 + 63$$
$$= 45$$

19.
$$\begin{vmatrix} -2 & 7 & -4 \\ 3 & -5 & 2 \\ -1 & 0 & -3 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} -2 & 7 & -4 \\ 3 & -5 & 2 \\ -1 & 0 & -3 \end{vmatrix} = -30 - 14 - 0 + 20 + 0 + 63$$

$$\begin{array}{c|cccc}
 & 1 & 0 & -1 \\
 & 3 & -2 & 5 \\
 & -1 & 1 & 3
\end{array}$$

Sol.

$$\begin{vmatrix} 1 & 0 & -1 \\ 3 & -2 & 5 \\ -1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} -2 & 5 \\ 1 & 3 \end{vmatrix} - 3 \begin{vmatrix} 0 & -1 \\ 1 & 3 \end{vmatrix} - \begin{vmatrix} 0 & -1 \\ -2 & 5 \end{vmatrix}$$

$$\begin{array}{c|cccc}
2 & 6 & 4 \\
1 & 3 & 1 \\
-2 & -6 & 5
\end{array}$$

Sol

$$\begin{vmatrix} 2 & 6 & 4 \\ 1 & 3 & 1 \\ -2 & -6 & 5 \end{vmatrix} = 3 \begin{vmatrix} 2 & 2 & 4 \\ 1 & 1 & 1 \\ -2 & -2 & 5 \end{vmatrix}$$
$$= 0 \quad \text{(col 1 and 2 are the same)}$$

$$\begin{array}{c|cccc}
10 & 8 & -2 \\
15 & 16 & -3 \\
-5 & -4 & 1
\end{array}$$

Sol.

$$\begin{vmatrix} 10 & 8 & -2 \\ 15 & 16 & -3 \\ -5 & -4 & 1 \end{vmatrix} = -5 \begin{vmatrix} 2 & 8 & 2 \\ 3 & 16 & 3 \\ -1 & -4 & -1 \end{vmatrix}$$
$$= 0 \quad \text{(col 1 and 3 are the same)}$$

Using the identities of determinant, prove the following equations (Question 23 to 24):

23.
$$\begin{vmatrix} bc & 1 & bc(b+c) \\ ca & 1 & ca(c+a) \\ ab & 1 & ab(a+b) \end{vmatrix} = 0$$

Proof.

$$\begin{vmatrix} bc & 1 & bc(b+c) \\ ca & 1 & ca(c+a) \\ ab & 1 & ab(a+b) \end{vmatrix}$$

$$= a^{2}b^{2}c^{2}\begin{vmatrix} 1 & \frac{1}{bc} & b+c \\ 1 & \frac{1}{ab} & c+a \\ 1 & \frac{1}{ab} & a+b \end{vmatrix}$$

$$= a^{2}b^{2}c^{2}\begin{vmatrix} 1 & \frac{1}{bc} & -a \\ 1 & \frac{1}{ab} & -c \end{vmatrix}$$

$$= a^{2}b^{2}c^{2}\begin{vmatrix} 1 & a & -a \\ 1 & b & -b \\ 1 & c & -c \end{vmatrix}$$

$$= -a^{2}b^{2}c^{2}\begin{vmatrix} 1 & a & a \\ 1 & b & b \\ 1 & c & c \end{vmatrix}$$

$$= 0$$

$$C_{3} \rightarrow C_{3} + (a+b+c)C_{1}$$

$$C_{2} \rightarrow C_{2} + abcC_{1}$$

24.
$$\begin{vmatrix} a & 1 & a^{2}(b+c) \\ b & 1 & b^{2}(c+a) \\ c & 1 & c^{2}(a+b) \end{vmatrix} = 0$$

Proof.

$$\begin{vmatrix} a & 1 & a^{2}(b+c) \\ b & 1 & b^{2}(c+a) \\ c & 1 & c^{2}(a+b) \end{vmatrix}$$

$$= \begin{vmatrix} a & 1 & a^{2}(b+c) \\ b-a & 0 & b^{2}(c+a)-a^{2}(b+c) \\ c-a & 0 & c^{2}(a+b)-a^{2}(b+c) \end{vmatrix}$$

$$R_{2} \to R_{2} - R_{1}, R_{3} \to R_{3} - R_{1}$$

$$= \begin{vmatrix} b-a & b^{2}(c+a)-a^{2}(b+c) \\ c-a & c^{2}(a+b)-a^{2}(b+c) \end{vmatrix}$$

$$= (b-a)[c^{2}(a+b)-a^{2}(b+c)]$$

$$-(c-a)[b^{2}(c+a)-a^{2}(b+c)]$$

$$= c^{2}(b-a)(b+a)-a^{2}(b+c)(c-a)$$

$$-b^{2}(c-a)(c+a)+a^{2}(b+c)(c-a)$$

$$= c^{2}(b^{2}-a^{2})-b^{2}(c^{2}-a^{2})$$

$$= b^{2}c^{2}-a^{2}c^{2}-b^{2}c^{2}+a^{2}c^{2}$$

$$= 0$$

Find the value of x in the following expressions (Question 25 to 26):

$$\begin{vmatrix} 2x & 3 & x+5 \\ -3 & 2 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 5x - 1$$

Sol.

$$\begin{vmatrix} 2x & 3 & x+5 \\ -3 & 2 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 5x - 1$$

$$x + 5 \begin{vmatrix} -3 & 2 \\ 2 & 1 \end{vmatrix} - \begin{vmatrix} 2x & 3 \\ 2 & 1 \end{vmatrix} = 5x - 1$$

$$-7(x+5) - (2x-6) = 5x - 1$$

$$-7x - 35 - 2x + 6 = 5x - 1$$

$$-14x = 28$$

$$x = -2$$

$$C_2 = C_3$$

$$\begin{vmatrix} 26. & \begin{vmatrix} x+3 & 1 & 0 \\ x & 3 & 0 \\ 1 & 0 & -x-2 \end{vmatrix} = x+6$$

Sol.

$$\begin{vmatrix} x+3 & 1 & 0 \\ x & 3 & 0 \\ 1 & 0 & -x-2 \end{vmatrix} = x+6$$

$$-x-2 \begin{vmatrix} x+3 & 1 \\ x & 3 \end{vmatrix} = x+6$$

$$-(x+2)(3x+9-x) = x+6$$

$$(x+2)(2x+9) = -x-6$$

$$2x^2 + 13x + 18 = -x-6$$

$$2x^2 + 14x + 24 = 0$$

$$x^2 + 7x + 12 = 0$$

$$(x+4)(x+3) = 0$$

$$x = -4 \text{ or } x = -3$$

27. Given an identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Let $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(2I + J)^{-1} = rI + sJ$, find the value of r and

$$(2I + J)^{-1} = \begin{bmatrix} 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}^{-1}$$

$$= \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}^{-1}$$

$$= \frac{1}{5} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

$$rI + sJ = r \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + s \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} + \begin{pmatrix} 0 & s \\ -s & 0 \end{pmatrix}$$

$$= \begin{pmatrix} r & s \\ -s & r \end{pmatrix}$$

$$(2I + J)^{-1} = rI + sJ$$

$$\begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix} = \begin{pmatrix} r & s \\ -s & r \end{pmatrix}$$

$$\therefore r = \frac{2}{5}, s = -\frac{1}{5}$$

Find the value of *a* in the following matrices if they are non-inversible (Question 28 to 31):

28.
$$\begin{pmatrix} 3 & a \\ -2 & 6 \end{pmatrix}$$

Sol.

$$\begin{vmatrix} 3 & a \\ -2 & 6 \end{vmatrix} = 0$$

$$18 + 2a = 0$$

$$2a = -18$$

$$a = -9$$

29.
$$\begin{pmatrix} 5a+2 & 4 \\ 6 & a \end{pmatrix}$$

Sol.

$$\begin{vmatrix} 5a+2 & 4 \\ 6 & a \end{vmatrix} = 0$$

$$5a^2 + 2a - 24 = 0$$

$$(x-2)(5x+12) = 0$$

$$x = 2 \text{ or } x = \frac{12}{5}$$

$$30. \begin{pmatrix} -7 & a & 3 \\ 2 & -3 & 1 \\ 0 & -a & 4 \end{pmatrix}$$

Sol.

$$\begin{vmatrix} -7 & a & 3 \\ 2 & -3 & 1 \\ 0 & -a & 4 \end{vmatrix} = 0$$

$$-7 \begin{vmatrix} -3 & 1 \\ -a & 4 \end{vmatrix} - 2 \begin{vmatrix} a & 3 \\ -a & 4 \end{vmatrix} = 0$$

$$-7(-12 + a) - 2(4a + 3a) = 0$$

$$84 - 7a - 14a = 0$$

$$21a = 84$$

$$a = 4$$

31.
$$\begin{pmatrix} a & -1 & 0 \\ 4 & 0 & -2 \\ a+4 & a & -8 \end{pmatrix}$$

Sol.

$$\begin{vmatrix} a & -1 & 0 \\ 4 & 0 & -2 \\ a+4 & a & -8 \end{vmatrix} = 0$$

$$a \begin{vmatrix} 0 & -2 \\ a & -8 \end{vmatrix} + \begin{vmatrix} 4 & -2 \\ a+4 & -8 \end{vmatrix}$$

$$2a^2 - 32 + 2a + 8 = 0$$

$$2a^2 + 2a - 24 = 0$$

$$a^2 + a - 12 = 0$$

$$(a+4)(a-3) = 0$$

$$a = -4 \text{ or } a = 3$$

Find the inverse of the following matrices (Question 32 to 37):

32.
$$\begin{pmatrix} 2 & 5 \\ 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 5 \\ 2 & 3 \end{pmatrix}^{-1} = -\frac{1}{4} \begin{pmatrix} 3 & -5 \\ -2 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{3}{4} & \frac{5}{4} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

33.
$$\begin{pmatrix} -2 & -1 \\ 4 & 6 \end{pmatrix}$$

$$\begin{pmatrix} -2 & -1 \\ 4 & 6 \end{pmatrix}^{-1} = -\frac{1}{8} \begin{pmatrix} 6 & 1 \\ -4 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{3}{8} & -\frac{1}{8} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

$$34. \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 9 \\ -2 & 2 & -4 \end{pmatrix}$$

Sol.

$$\begin{vmatrix} 1 & 0 & 3 \\ 3 & 1 & 9 \\ -2 & 2 & -4 \end{vmatrix} = 2$$

$$adj \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 9 \\ -2 & 2 & -4 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} 1 & 9 \\ 2 & -4 \end{vmatrix} & -\begin{vmatrix} 3 & 9 \\ -2 & -4 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ -2 & 2 \end{vmatrix} \\ -\begin{vmatrix} 0 & 3 \\ 2 & -4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ -2 & -4 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ -2 & 2 \end{vmatrix} \\ \begin{vmatrix} 0 & 3 \\ 1 & 9 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 3 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} -22 & -6 & 8 \\ 6 & 2 & -2 \\ -3 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -22 & 6 & -3 \\ -6 & 2 & 0 \\ 8 & -2 & 1 \end{pmatrix}$$

$$\therefore \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 9 \\ -2 & 2 & -4 \end{pmatrix}^{-1}$$

$$= \frac{1}{2} \begin{pmatrix} -22 & 6 & -3 \\ -6 & 2 & 0 \\ 8 & -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -11 & 3 & -\frac{3}{2} \\ -3 & 1 & 0 \\ 4 & -1 & \frac{1}{2} \end{pmatrix}$$

$$35. \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ -2 & 5 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ -2 & 5 & 1 \end{vmatrix} = -3$$

$$adj \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ -2 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} 1 & -4 \\ 5 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & -4 \\ -2 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ -2 & 5 \end{vmatrix} \\ -\begin{vmatrix} 2 & -3 \\ 5 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -3 \\ -2 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ -2 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & -3 \\ 1 & -4 \end{vmatrix} & -\begin{vmatrix} 1 & -3 \\ 2 & -4 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 21 & 6 & 12 \\ -17 & -5 & -9 \\ -5 & -2 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} 21 & -17 & -5 \\ 6 & -5 & -2 \\ 12 & -9 & -3 \end{pmatrix}$$

$$\therefore \begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ -2 & 5 & 1 \end{pmatrix}$$

$$= -\frac{1}{3} \begin{pmatrix} 21 & -17 & -5 \\ 6 & -5 & -2 \\ 12 & -9 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} -7 & -\frac{17}{3} & -\frac{5}{3} \\ -2 & -\frac{5}{3} & -\frac{2}{3} \\ -4 & 3 & 1 \end{pmatrix}$$

$$36. \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & 3 \\ 0 & -4 & 4 \end{pmatrix}$$

$$\begin{vmatrix} 4 & 1 & 0 \\ 0 & -2 & 3 \\ 0 & -4 & 4 \end{vmatrix} = 16$$

$$adj \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & 3 \\ 0 & -4 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} -2 & 3 \\ -4 & 4 \end{vmatrix} & - \begin{vmatrix} 0 & 3 \\ 0 & 4 \end{vmatrix} & \begin{vmatrix} 0 & -2 \\ 0 & -4 \end{vmatrix} \\ - \begin{vmatrix} 1 & 0 \\ -4 & 4 \end{vmatrix} & \begin{vmatrix} 4 & 0 \\ 0 & 4 \end{vmatrix} & - \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} \\ \begin{vmatrix} 1 & 0 \\ -2 & 3 \end{vmatrix} & - \begin{vmatrix} 4 & 0 \\ 0 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 1 \\ 0 & -2 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 0 & 0 \\ -4 & 16 & 16 \\ 3 & -12 & -8 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & -4 & 0 \\ 0 & 16 & -12 \\ 9 & 16 & -8 \end{pmatrix}$$

$$\therefore \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & 3 \\ 0 & -4 & 4 \end{pmatrix}$$

$$= \frac{1}{16} \begin{pmatrix} 4 & -4 & 3 \\ 0 & 16 & -12 \\ 0 & 16 & -8 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{3}{16} \\ 0 & 1 & -\frac{3}{4} \\ 0 & 1 & -\frac{1}{2} \end{pmatrix}$$

Sol.

$$\begin{vmatrix} 3 & 2 & 4 \\ -1 & -3 & 0 \\ 1 & 0 & 3 \end{vmatrix} = -9$$

$$adj \begin{pmatrix} 3 & 2 & 4 \\ -1 & -3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} -3 & 0 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} -1 & -3 \\ 1 & 0 \end{vmatrix} \\ -\begin{vmatrix} 2 & 4 \\ -3 & 0 \end{vmatrix} & -\begin{vmatrix} 3 & 4 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} 2 & 4 \\ -3 & 0 \end{vmatrix} & -\begin{vmatrix} 3 & 4 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ -1 & -3 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} -9 & 3 & 3 \\ -6 & 5 & 2 \\ 12 & -4 & -7 \end{pmatrix}$$

$$= \begin{pmatrix} -9 & -6 & 12 \\ 3 & 5 & -4 \\ 3 & 2 & -7 \end{pmatrix}$$

$$\therefore \begin{pmatrix} 3 & 2 & 4 \\ -1 & -3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

$$= \frac{1}{-9} \begin{pmatrix} -9 & -6 & 12 \\ 3 & 5 & -4 \\ 3 & 2 & -7 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & \frac{2}{3} & -\frac{4}{3} \\ -\frac{1}{3} & -\frac{5}{9} & \frac{4}{9} \\ -\frac{1}{3} & -\frac{2}{9} & \frac{7}{9} \end{pmatrix}$$

Solve the following system of equations using the method of Gauss elimination (Question 38 to 41):

$$37. \begin{pmatrix} 3 & 2 & 4 \\ -1 & -3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

38.
$$\begin{cases} 2x - y + 4z = 5 \\ 2x + 3y - 4z = -7 \\ x + y + z = 2 \end{cases}$$

$$\begin{pmatrix} 2 & -1 & 4 & 5 \\ 2 & 3 & -4 & -7 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} 3 & 0 & 5 & 7 \\ 4 & 2 & 0 & -2 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{2} R_2} \begin{pmatrix} 3 & 0 & 5 & 7 \\ 2 & 1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 3 & 0 & 5 & 7 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + 3R_3} \begin{pmatrix} 0 & 0 & 8 & 16 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + 3R_3} \begin{pmatrix} 0 & 0 & 8 & 16 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + 3R_3} \begin{pmatrix} 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_1} \begin{pmatrix} 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_3} \begin{pmatrix} 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_2 + 2R_3} \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{\mathcal{R}_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{\mathcal{R}_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{\mathcal{R}_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{\mathcal{R}_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{\mathcal{R}_1 \to R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

39.
$$\begin{cases} x - 2y - 3z = -4\\ 3x + y - 4z = -5\\ 2x + 4y - z = -5 \end{cases}$$

40.
$$\begin{cases} x - 2y - z = 3 \\ 4x - y + 2z = 1 \\ x + 3y = 5 \end{cases}$$

41.
$$\begin{cases} 2x - y - z = 0 \\ 4x - 3y + 2z = 1 \\ 3x - 2y - 4z = -1 \end{cases}$$

Solve the following system of equations using the Cramer's rule (Question 42 to 45):

42.
$$\begin{cases} x - 3y - 2z = 1\\ 7x + 4y - 5z = 0\\ 3x + 9y + z = -1 \end{cases}$$

Sol.

$$\Delta = \begin{vmatrix} 1 & -3 & -2 \\ 7 & 4 & -5 \\ 3 & 9 & 1 \end{vmatrix} = 13$$

$$\Delta_x = \begin{vmatrix} 1 & -3 & -2 \\ 0 & 4 & -5 \\ -1 & 9 & 1 \end{vmatrix} = 26$$

$$\Delta_y = \begin{vmatrix} 1 & 1 & -2 \\ 7 & 0 & -5 \\ 3 & -1 & 1 \end{vmatrix} = -13$$

$$\Delta_z = \begin{vmatrix} 1 & -3 & 1 \\ 7 & 4 & 0 \\ 3 & 9 & -1 \end{vmatrix} = 26$$

$$\therefore x = \frac{26}{13} = 2, \ y = \frac{-13}{13} = -1, \ z = \frac{26}{13} = 2$$

43.
$$\begin{cases} x - 2y + 3z = 6 \\ 2x + 3y - 4z = 20 \\ 3x - 2y - 5z = 6 \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & -5 \end{vmatrix} = -58$$

$$\Delta_x = \begin{vmatrix} 6 & -2 & 3 \\ 20 & 3 & -4 \\ 6 & -2 & -5 \end{vmatrix} = -464$$

$$\Delta_y = \begin{vmatrix} 1 & 6 & 3 \\ 2 & 20 & -4 \\ 3 & 6 & -5 \end{vmatrix} = -232$$

$$\Delta_z = \begin{vmatrix} 1 & -2 & 6 \\ 2 & 3 & 20 \\ 3 & -2 & 6 \end{vmatrix} = -116$$

$$\therefore x = \frac{-464}{-58} = 8, \ y = \frac{-232}{-58} = 4, \ z = \frac{-116}{-58} = 2$$

44.
$$\begin{cases} 2x - 2y - 4z + 3 = 0 \\ 2x + 3y + 4z - 2 = 0 \\ 7x + 3y - 2z - 2 = 0 \end{cases}$$

$$\begin{cases} 2x - 2y - 4z = -3 \\ 2x + 3y + 4z = 2 \\ 7x + 3y - 2z = 2 \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & -2 & -4 \\ 2 & 3 & 4 \\ 7 & 3 & -2 \end{vmatrix} = -40$$

$$\Delta_x = \begin{vmatrix} -3 & -2 & -4 \\ 2 & 3 & 4 \\ 2 & 3 & -2 \end{vmatrix} = 30$$

$$\Delta_y = \begin{vmatrix} 2 & -3 & -4 \\ 2 & 2 & 4 \\ 7 & 2 & -2 \end{vmatrix} = -80$$

$$\Delta_z = \begin{vmatrix} 2 & -2 & -3 \\ 2 & 3 & 2 \\ 7 & 3 & 2 \end{vmatrix} = 25$$

$$\therefore x = \frac{30}{-40} = -\frac{3}{4}, \ y = \frac{-80}{-40} = 2, \ z = \frac{25}{-40} = -\frac{5}{8}$$

$$45. \begin{cases} \frac{2}{x} - \frac{5}{y} + \frac{4}{z} = -3 \\ \frac{4}{x} + \frac{1}{y} - \frac{2}{z} = 7 \\ \frac{7}{2} - \frac{3}{2} = 4 \end{cases}$$

Let
$$a = \frac{1}{x}$$
, $b = \frac{1}{y}$, $c = \frac{1}{z}$

$$\begin{cases} 2a - 5b + 4c = -3 \\ 4a + b - 2c = 7 \\ 7a - 3c = 4 \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & -5 & 4 \\ 4 & 1 & -2 \\ 7 & 0 & -3 \end{vmatrix} = -24$$

$$\Delta_a = \begin{vmatrix} -3 & -5 & 4 \\ 7 & 1 & -2 \\ 4 & 0 & -3 \end{vmatrix} = -72$$

$$\Delta_b = \begin{vmatrix} 2 & -3 & 4 \\ 4 & 7 & -2 \\ 7 & 4 & -3 \end{vmatrix} = -152$$

$$\Delta_c = \begin{vmatrix} 2 & -5 & -3 \\ 4 & 1 & 7 \\ 7 & 0 & 4 \end{vmatrix} = -136$$

$$\therefore a = \frac{-72}{-24} = 3, \ b = \frac{-152}{-24} = \frac{19}{3}, \ c = \frac{-136}{-24} = \frac{17}{3}$$

$$\therefore x = \frac{1}{3}, \ y = \frac{3}{19}, \ z = \frac{3}{17}$$