6.10

Assume $k = \rho_i^{\alpha_i}$

Construct vector $x = (x_i)_i$ which is k-size

Here then we can pick \$a_i\$, \$b_i\$ from \$p_i^{\alpha_i}\$

And $x_i = a_j * i + b_j \mod p_j^{a_j}$ for every $i \in [n]$

Using the chinese remainder theorem, $x_i = \sum_{j'} (a_j * i + b_j) * \frac{k}{p_j^{a_j}} * (\frac{p_j^{a_j}}{k} \mod p_j^{a_j}) * \mod k$

Since $0 \le x_i \le$

And $k^2\$ choose all $a_1, b_1, a_2, b_2 \$ it is next step to generate k^2 .

Next, prove for $x_i \neq x_j$ and for all $0 \le k-1$, there is unique choice of a_i , b_i for all i, which $x_i = w$, $x_j = z$.

Let $w_j = w \mod p_i^{a_j}$, and $z_j = z \mod p_i^{a_j}$, where $w_j = a_j * m + b_j$ and $z_j = a_j * n + b_j$.

Then \$a_j\$ and \$b_j\$ can be unique.

Finally, for a certain i and j, each vector generated \$a_i, b_i\$ for all \$i\$, which has relation to \$w, z\$ in No. i position with No. j coordinates.

So, \$k^2\$ where each pair of these values appears only once. ****