

# รายงานสรุปการทำ Model

### เสนอ

# ดร. กัญณัฏฐ์ หอมทรัพย์

# จัดทำโดย

นายฟาริช หะยีมะสาและ รหัสนักศึกษา 61050258 ชั้นปีที่ 3 ภาคเรียนที่ 1 ปีการศึกษา 2563

#### การทำ model Feature Selection

เริ่มจากการ insert data set pima-indians-diabetes1.csv



หลังจากนั้นทำการสร้าง Method MI สำหรับทำการวัดคะแนนของคอลัมที่เลือกใช้งาน

```
def MI(dat):
    sum = 0
    for i in dat:
        X = df.iloc[:,i]
        y = df.iloc[:,-1]
        MI_score = mutual_info_score(X,y)
        sum += MI_score
    return sum
```

#### Sequential Forward Selection (SFS)

โค้ดส่วนของการทำ Sequential Forward Selection (SFS)

```
max = []
\max s = 0
count_i = len(df.columns) # จำนวน รอบ
count_j =list(range(len(df.columns)-1)) # Create list index เพื่อใช้บอก ตน. คอสัม [0,1,2,3,4,5,7]
column_old = -1
for i in range(count_i):
  for j in count j: # ไว้เพิ่มค่า ทดลองจับคู่เพื่อเอามาหาค่า MI
    copy = max.copy()
    copy.append(j)
    if(max_s < MI(copy)): #check MI %1 Max
      max_s = MI(copy)
      column_new = j
  if(column_old != column_new): # ไว้เช็ค มีคอลัมใหม่ที่ดีกว่าไหม
    column old = column new
    max.append(column_old)
    count_j.remove(column_old)
print(max,MI(max))
```

ได้คอลัมและคะแนนของคอลัมทั้งหมดที่ทำการเลือกมาได้คือ

กราฟแสดงคะแนนในการเลือกคอลัม



#### Sequential Backward Selection (SBS)

โค้ดส่วนของการทำ Sequential Backward Selection (SFS)

```
max1 = list(range(len(df.columns)-1))
max_s = MI(max1)
count_i = len(df.columns)
column_old = -1
column new = -1
for i in range(count_i): #loop ตามจำนวนตัวทั้งหมด
  count_j = max1.copy()
  for j in count_j: #loop เพื่อหาตัวที่เอาออกแล้วมีค่ามากที่สุด
    copy = max1.copy() #copy ค่า max มาใส่เพื่อหาตัวถัดไปที่ควรเอาออก
    copy.remove(j) #ลบตัวในรอบนั้น
    if(max_s<MI(copy)): #if ไว้เช็คมาเอาออกแล้วค่ามากขึ้นใหม
      print(max_s,MI(copy))
      max_s = MI(copy)
      column_new = j
  if(column_old != column_new): #if เช็ดว่าเอาออกแล้วมีต่ามากสุดยังซ้ำกับตัวเดิมใหม เพื่อกันการที่เอาต่าออกแล้วทำให้ค่า MI น้อยลงกว่าเดิม
    column_old = column_new
    max1.remove(column_old) #ลบออกค่าที่ควรเอาออกจาก max
print(max1,MI(max))
```

ได้คอลัมและคะแนนของคอลัมทั้งหมดที่ทำการเลือกมาได้คือ

[0, 1, 2, 3, 4, 5, 6, 7] 1.3306790760532268

#### กราฟแสดงคะแนนในการเลือกคอลัม



#### Sequential Forward Floating Selection (SFFS)

โค้ดส่วนของการทำ Sequential Forward Floating Selection (SFFS)

```
max Global = 0
max_list_Global = []
max_list1 = []
max_list2 = []
index_col = list(range(len(df.columns)-1)) #[0,1,2,3,4,5,6,7]
index_col_SBS = list(range(len(df.columns)-1))
for i in range(len(df.columns)-1):
  max_local1 = 0
  max_local2 =0
  for j in index_col:
   if j in max_list1:
     continue
   copy = max_list1.copy()
    copy.append(j)
   if(max_local1 < MI(copy)):</pre>
      max_local1 = MI(copy)
      column_new_SFS = j
  max_list1.append(column_new_SFS)
   #SFS
  if(i >= 3):
    copy_list = max_list1.copy()
    for k in copy_list:
      temp = max_list1.copy()
      temp.remove(k)
      for m in index_col_SBS:
        if m in temp:
          continue
        temp2 = temp.copy()
        temp2.append(m)
        if(max_local2 < MI(temp2)):</pre>
          max_local2 = MI(temp2)
          max_list2 = temp2.copy()
    #SBS
  if(max_local1 < max_local2):</pre>
    max_list1 = max_list2.copy()
    max_local1 = max_local2
  if(max\_Global < MI(max\_list1)):
    max_Global = max_local1
    max_list_Global = max_list1.copy()
print(max_list_Global,MI(max_list_Global))
print(max_list1,MI(max_list1))
```

# ได้คอลัมและคะแนนของคอลัมทั้งหมดที่ทำการเลือกมาได้คือ

### [5, 1, 4, 7, 3, 0, 6, 2] 1.330679076053227

### กราฟแสดงคะแนนในการเลือกคอลัม



# การวัดประสิทธิภาพของทั้งสามตัว

### กราฟแสดงคะแนนการเลือกของแต่ละตัว



### สรุปการวัดประสิทธิภาพ

```
SFS มีคะแนน MI = 1.330679076053227

SBS มีคะแนน MI = 1.330679076053227

SFFS มีคะแนน MI = 1.330679076053227

ทั้งสามวิธีได้คอลัมออกมาเหมือนกันจึงทำให้ คะแนนเท่ากัน
แต่วิธีที่ดีที่สุดในสามวิธีนี้คือ SFFS เพราะมีการรีเช็คกันระหว่างการทำงานโดยใช้วิธี SFS SBS
```

ปัญหา SFS SBS เพราะวิธีที่ผมทำจะเป็นแบบ greedy เมื่อเจอการใส่คอลัมแล้วทำให้ค่า MI ลดลงจะหยุด จึงติดปัญหา local maximum อาจจะมีคำตอบที่ดีกว่าแต่ไปไม่ถึงแต่ SFFS จะทำงานไปจนสุดทางและจะมีการจำคำตอบที่ดีที่สุดที่ เกิดขึ้นในระหว่างทาง เพื่อแก้ไขปัญหา local maximum

### SFS, SBS, SFFS โดยใช้ Library

โดยก่อนจะใช้ Library จะต้องทำการ import ตัว SFS และตัว Model ที่จะใช้วัดคะแนนมาก่อน

โค้ดส่อนของการ Import

```
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LinearRegression

X = df.iloc[:,:-1].values
y = df.iloc[:,-1].values
knn = KNeighborsClassifier(n_neighbors=2)
```

โค้ดส่วนของ SFS

# SFS ได้คอลัมและคะแนนดังนี้

|   | feature_idx              | cv_scores                                                 | avg_score | feature_names            | ci_bound  | std_dev   | std_err    |
|---|--------------------------|-----------------------------------------------------------|-----------|--------------------------|-----------|-----------|------------|
| 1 | (1,)                     | [0.64583333333333334, 0.69791666666666666, 0.645          | 0.684896  | (1,)                     | 0.0293318 | 0.0336532 | 0.0127197  |
| 2 | (1, 5)                   | $[0.71875, 0.71875, 0.6875, 0.7083333333333333334, \dots$ | 0.721354  | (1, 5)                   | 0.0255789 | 0.0293475 | 0.0110923  |
| 3 | (1, 5, 6)                | [0.71875, 0.72916666666666666, 0.72916666666666           | 0.727865  | (1, 5, 6)                | 0.0205222 | 0.0235458 | 0.00889946 |
| 4 | (1, 4, 5, 6)             | [0.75, 0.71875, 0.71875, 0.6875, 0.770833333333           | 0.720052  | (1, 4, 5, 6)             | 0.023341  | 0.0267799 | 0.0101219  |
| 5 | (1, 3, 4, 5, 6)          | [0.73958333333333334, 0.65625, 0.69791666666666           | 0.701823  | (1, 3, 4, 5, 6)          | 0.0217412 | 0.0249443 | 0.00942807 |
| 6 | (1, 2, 3, 4, 5, 6)       | [0.67708333333333334, 0.75, 0.71875, 0.72916666           | 0.710938  | (1, 2, 3, 4, 5, 6)       | 0.0206785 | 0.0237251 | 0.00896724 |
| 7 | (0, 1, 2, 3, 4, 5, 6)    | [0.67708333333333334, 0.72916666666666666, 0.718          | 0.713542  | (0, 1, 2, 3, 4, 5, 6)    | 0.0128397 | 0.0147314 | 0.00556794 |
| 8 | (0, 1, 2, 3, 4, 5, 6, 7) | [0.6666666666666666, 0.75, 0.65625, 0.6875, 0             | 0.710938  | (0, 1, 2, 3, 4, 5, 6, 7) | 0.0293318 | 0.0336532 | 0.0127197  |

### โค้ดส่วนของ SBS

### SBS ได้คอลัมและคะแนนดังนี้

| avg         | g_score | ci_bound  | cv                                      | _scores | feature_idx              | feature_names            | std_dev   | std_err   |
|-------------|---------|-----------|-----------------------------------------|---------|--------------------------|--------------------------|-----------|-----------|
| <b>8</b> 0. | .710938 | 0.0293318 | [0.6666666666666666, 0.75, 0.65625, 0.6 | 875, 0  | (0, 1, 2, 3, 4, 5, 6, 7) | (0, 1, 2, 3, 4, 5, 6, 7) | 0.0336532 | 0.0127197 |

### โค้ดส่วนของ SFFS

## SFFS ได้คอลัมและคะแนนดังนี้

|   | feature_idx              | cv_scores                                         | avg_score | feature_names            | ci_bound  | std_dev   | std_err    |
|---|--------------------------|---------------------------------------------------|-----------|--------------------------|-----------|-----------|------------|
| 1 | (1,)                     | [0.64583333333333334, 0.69791666666666666, 0.645  | 0.684896  | (1,)                     | 0.0293318 | 0.0336532 | 0.0127197  |
| 2 | (1, 5)                   | [0.71875, 0.71875, 0.6875, 0.7083333333333333334, | 0.721354  | (1, 5)                   | 0.0255789 | 0.0293475 | 0.0110923  |
| 3 | (1, 5, 6)                | [0.71875, 0.72916666666666666, 0.72916666666666   | 0.727865  | (1, 5, 6)                | 0.0205222 | 0.0235458 | 0.00889946 |
| 4 | (1, 4, 5, 6)             | [0.75, 0.71875, 0.71875, 0.6875, 0.770833333333   | 0.720052  | (1, 4, 5, 6)             | 0.023341  | 0.0267799 | 0.0101219  |
| 5 | (1, 3, 4, 5, 6)          | [0.73958333333333334, 0.65625, 0.69791666666666   | 0.701823  | (1, 3, 4, 5, 6)          | 0.0217412 | 0.0249443 | 0.00942807 |
| 6 | (1, 2, 3, 4, 5, 6)       | [0.67708333333333334, 0.75, 0.71875, 0.72916666   | 0.710938  | (1, 2, 3, 4, 5, 6)       | 0.0206785 | 0.0237251 | 0.00896724 |
| 7 | (0, 1, 2, 4, 5, 6, 7)    | [0.6875, 0.76041666666666666, 0.67708333333333333 | 0.721354  | (0, 1, 2, 4, 5, 6, 7)    | 0.0286206 | 0.0328373 | 0.0124113  |
| 8 | (0, 1, 2, 3, 4, 5, 6, 7) | [0.6666666666666666, 0.75, 0.65625, 0.6875, 0     | 0.710938  | (0, 1, 2, 3, 4, 5, 6, 7) | 0.0293318 | 0.0336532 | 0.0127197  |

## การนำคอลัมที่เลือกมาสร้างโครงสร้างต้นไม้(Decision Tree)

เลือกใช้คอลัม จาก SFFS ที่ได้ Average Score มากที่สุด คือ 0.722656 ได้คอลัม คือ 0, 1, 2, 5, 6, 7 ก่อนเข้า Model Tree ต้องทำการ Import ตัว Model เข้ามาก่อน

#### โค้ดส่วน Import

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
import sklearn as sk
from sklearn.neural_network import MLPClassifier
import xgboost as xgb
```

โค้ดส่วนของ Method Evaluation Accuracy ไว้หาคะแนน Accuracy

```
def evaluation_accuracy(prediction,actual):
    acc = sum(prediction==actual)/len(prediction)
    return acc
```

### Non-Normalization (ยังไม่ทำการ Normalization)

ต่อมาเป็นการแบ่งส่วนของข้อมูลที่เป็นคำตอบและคอลัมที่เลือกใช้

```
max_list = [0, 1, 2, 5, 6, 7]
X = df.iloc[:,max_list] #Feature_selection_SFFS
y = df.iloc[:,-1]
```

```
โค้ดของการแบ่งข้อมูล Train และ Test
```

```
#ฟานาย model โดยใช้ข้อมูลที่ไม่ normalization
X1_train, X1_test, y1_train, y1_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

#### Decision Tree

```
#DecisionTree
clf_NDT = DecisionTreeClassifier(random_state=0, max_depth=2)
clf_NDT = clf_NDT.fit(X1_train,y1_train)
y_pred_NDT = clf_NDT.predict(X1_test)
print('Accuracy DecisionTree =',evaluation_accuracy(y_pred_NDT,y1_test))
#print(confusion_matrix(y_pred_NDT, y1_test))
```

ค่า Accuracy ที่ได้ของ Decision Tree

Accuracy DecisionTree = 0.7575757575757576

#### Random Forest

```
#RandomForest
clf_NRF = RandomForestClassifier(max_depth=2, random_state=0)
clf_NRF = clf_NRF.fit(X1_train,y1_train)
y_pred_NRF = clf_NRF.predict(X1_test)
print('Accuracy RandomForest =',evaluation_accuracy(y_pred_NRF,y1_test))
#print(confusion_matrix(y1_test, y_pred_NRF))
```

ค่า Accuracy ที่ได้ของ Random Forest

Accuracy RandomForest = 0.7532467532467533

#### XGBoost

```
#XGBoost
regressor = xgb.XGBClassifier(n_estimators=100, reg_lambda=1, gamma=0, max_depth=3)
regressor.fit(X1_train,y1_train)
y_pred_XGB = regressor.predict(X1_test)
print('Accuracy XGBoost =',evaluation_accuracy(y_pred_XGB,y1_test))
```

ค่า Accuracy ที่ได้ของ XGBoost

Accuracy XGBoost = 0.7922077922077922

#### Normalization (ทำการ Normalization)

#### โค้ดของการ Normalization

```
df_nor = df.copy() #df_normalization
for i in range(len(df_nor.columns)-1): #normalization
   df_nor.iloc[:,i] = (df_nor.iloc[:,i] - df_nor.iloc[:,i].min()) / (df_nor.iloc[:,i].max() - df_nor.iloc[:,i].min())
df_nor
```

แบ่งข้อมูลคำตอบและคอมลัมที่ใช้

```
X_nor = df_nor.iloc[:,max_list] #Feature_selection_SFFS
y_nor = df_nor.iloc[:,-1]
```

โค้ดส่วนของการแบ่งส่วน Train และ Test

```
#ทำนาย model โดยใช้ข้อมูลที่ normalization
X_train, X_test, y_train, y_test = train_test_split(X_nor, y_nor, test_size=0.3, random_state=1)
```

#### **Decision Tree**

```
#DecisionTree
clf_NDT = DecisionTreeClassifier(random_state=0, max_depth=2)
clf_NDT = clf_NDT.fit(X1_train,y1_train)
y_pred_NDT = clf_NDT.predict(X1_test)
print('Accuracy DecisionTree =',evaluation_accuracy(y_pred_NDT,y1_test))
#print(confusion_matrix(y_pred_NDT, y1_test))
```

ค่าของ Accuracy ที่ได้ของ Decision Tree

Accuracy DecisionTree = 0.7575757575757576

#### Random Forest

```
#RandomForest
clf_NRF = RandomForestClassifier(max_depth=2, random_state=0)
clf_NRF = clf_NRF.fit(X1_train,y1_train)
y_pred_NRF = clf_NRF.predict(X1_test)
print('Accuracy RandomForest =',evaluation_accuracy(y_pred_NRF,y1_test))
#print(confusion_matrix(y1_test, y_pred_NRF))
```

ค่าของ Accuracy ที่ได้ของ Random Forest

Accuracy RandomForest = 0.7532467532467533

#### XGBoost

```
#XGBoost
regressor = xgb.XGBClassifier(n_estimators=100, reg_lambda=1, gamma=0, max_depth=3)
regressor.fit(X1_train,y1_train)
y_pred_XGB = regressor.predict(X1_test)
print('Accuracy XGBoost =',evaluation_accuracy(y_pred_XGB,y1_test))
ค่า Accuracy ที่ได้ของ XGBoost
```

Accuracy XGBoost = 0.7922077922077922

### สรุปการนำข้อมูลเข้า Model

ค่า Accuracy ของก่อนทำการ Normalize และ หลังทำการ Normalize มีค่าเท่ากัน อาจเกิดจากการที่ข้อมูลมีการจัดการ มาแล้วจึงทำให้ค่าของก่อนและหลังทำการ Normalize จึงมีค่าเท่ากัน

#### Multiple Regression

เริ่มจากการ Import Library และ Import Data Set

โค้ดส่วนการ Import Library

```
import pandas as pd
from sklearn.metrics import mutual_info_score
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

โค้ดส่วนของการ Import Data Set

```
link = 'https://raw.githubusercontent.com/farisknight13/Python_ML/main/%E0%B8%99%E0%B8%89%E0%B8%81%E0%B8%81%E0%B8%99%E0%B8%A3%E0%B8%A7%E0%B8%A1.csv df = pd.read_csv(link) df
```

#### ตัวอย่าง Dataset

|     | CALENDAR_YEAR | MONTH_DESC | MONTH_CD | TAX_AMT      | TOTAL_TAX_AMT | VOLUMN       | TOTAL_VOLUMN | PRICE      | PRICE_FACTORY | TOTAL_VOLUMN_CAPA | CAPA         | VAL_RATE  | TAXQTY_UNIT | ART_TAXV  | ART_TOTALTAXV | LAG_TIME_TOTAL_TAX_AMT |
|-----|---------------|------------|----------|--------------|---------------|--------------|--------------|------------|---------------|-------------------|--------------|-----------|-------------|-----------|---------------|------------------------|
| 0   | 2554          | มกราคม     | 1        | 2.222302e+10 | 1.371691e+10  | 4.344679e+09 | 2.863381e+09 | 0.000000   | 0.000000      | 3.633069e+07      | 1.286312e+07 | 11.053448 | 5.076811    | 3.704450  | 5.150043      | 0.000000e+00           |
| 1   | 2554          | กุมภาพันธ์ | 2        | 2.164869e+10 | 1.407221e+10  | 4.220640e+09 | 2.914440e+09 | 0.000000   | 0.000000      | 7.478745e+07      | 3.279386e+06 | 11.229805 | 4.969179    | 5.021377  | 6.429500      | 1.371691e+10           |
| 2   | 2554          | มีนาคม     | 3        | 2.511702e+10 | 1.353646e+10  | 4.896327e+09 | 2.865928e+09 | 0.000000   | 0.000000      | 3.713671e+07      | 3.346770e+07 | 11.589345 | 5.101931    | 3.734156  | 5.349773      | 1.407221e+10           |
| 3   | 2554          | เมษายน     | 4        | 2.261955e+10 | 1.324597e+10  | 4.597110e+09 | 2.848384e+09 | 0.000000   | 0.000000      | 3.694402e+07      | 3.134440e+07 | 11.864044 | 4.974018    | 3.488816  | 5.101580      | 1.353646e+10           |
| 4   | 2554          | พฤษภาคม    | 5        | 8.343328e+09 | 4.914525e+09  | 4.743274e+09 | 2.967009e+09 | 0.000000   | 0.000000      | 6.134105e+07      | 5.331400e+07 | 11.384126 | 3.887956    | 2.687062  | 3.752981      | 1.324597e+10           |
|     |               |            |          |              |               |              |              |            |               |                   |              |           |             |           |               |                        |
| 103 | 2562          | สิงหาคม    | 8        | 3.106545e+10 | 2.093361e+10  | 5.434510e+09 | 3.818035e+09 | 49.936558  | 67.880428     | 5.201406e+09      | 2.133556e+08 | 0.009600  | 5.100187    | 10.758439 | 11.020983     | 2.248958e+10           |
| 104 | 2562          | กันยายน    | 9        | 3.081077e+10 | 2.113849e+10  | 5.380393e+09 | 3.795921e+09 | 471.270093 | 490.512497    | 4.631266e+09      | 1.352323e+08 | 0.064000  | 5.085954    | 7.666068  | 7.959199      | 2.093361e+10           |
| 105 | 2562          | ตุลาคม     | 10       | 5.135828e+10 | 2.907713e+10  | 9.029945e+09 | 5.490935e+09 | 398.927588 | 410.381595    | 7.118240e+09      | 4.039597e+08 | 0.050032  | 5.129802    | 5.415956  | 6.702060      | 2.113849e+10           |
| 106 | 2562          | พฤศจิกายน  | 11       | 2.919940e+10 | 1.639425e+10  | 5.134057e+09 | 3.117933e+09 | 282.659714 | 314.805547    | 4.061296e+09      | 4.277479e+08 | 0.004174  | 5.142831    | 6.913818  | 7.873968      | 2.907713e+10           |
| 107 | 2562          | ฮันวาคม    | 12       | 3.016830e+10 | 1.697095e+10  | 5.277681e+09 | 3.062632e+09 | 152.550383 | 185.922437    | 4.044626e+09      | 2.655927e+08 | 0.009031  | 5.159901    | 7.837104  | 8.708511      | 1.639425e+10           |

#### Non-Normalization

โค้ดส่วนของการแบ่งข้อมูล Train 2554-2561 Test 2562

```
feature_train = df.iloc[:96,:19]
label_train = df.iloc[:96,4]
feature_test = df.iloc[96:,:19]
label_test = df.iloc[96:,4]
```

การ Drop คอลัมที่ไม่ได้เกี่ยวข้องกับการคำนวน เช่น ปี เดือน คำตอบ

```
feature_train.drop(['CALENDAR_YEAR', 'MONTH_CD','MONTH_DESC','TOTAL_TAX_AMT'], axis=1, inplace=True)
feature_test.drop(['CALENDAR_YEAR', 'MONTH_CD','MONTH_DESC','TOTAL_TAX_AMT'], axis=1, inplace=True)
feature_train
```

```
corr_matrix = feature_train.corr().abs()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
# Find features with correlation greater than 0.90
to_drop = [column for column in upper.columns if any(upper[column] > 0.90)]
# Drop features
feature_train.drop(to_drop, axis=1, inplace=True)
feature_test.drop(to_drop, axis=1, inplace=True)
โค้ดส่วนของการจัดการข้อมูลที่มีค่าเป็น o โดยการใส่ค่า Mean เข้าไปแทน
mean_p = feature_train['PRICE'].mean()
print(mean p)
mean_pf = feature_train['PRICE_FACTORY'].mean()
print(mean_pf)
47.843799518531256
125.69256250418319
feature_train['PRICE'] = feature_train['PRICE'].replace([0],mean_p)
feature train['PRICE_FACTORY'] = feature train['PRICE_FACTORY'].replace([0],mean pf)
feature_train
โค้ดการนำข้อมูลเข้า Model เพื่อทำนายค่า predict ของปี 2562
regr = linear_model.LinearRegression()
regr.fit(feature train, label train)
pred = regr.predict(feature_test)
ค่าที่ทำนายคคกมา
print(label_test)
print(pred)
     2.184130e+10
     2.230267e+10
98
      2.150852e+10
     2.282755e+10
100
     2.283282e+10
101
      2.235165e+10
102
     2.248958e+10
     2.093361e+10
103
104
      2.113849e+10
105
     2.907713e+10
     1.639425e+10
106
107
      1.697095e+10
Name: TOTAL TAX AMT, dtype: float64
[2.23015524e+10 2.07644159e+10 2.07022085e+10 2.12683291e+10
2.20828420e+10 2.07081932e+10 2.05654707e+10 1.83059166e+10
1.96042017e+10 3.31769866e+10 1.74147455e+10 1.84965765e+10]
```

# หลังจากนั้นนำค่าที่ทำนายออกมาไปเทียบกับคำตอบ แล้วคิดค่า MEA% ออกมา

```
test = df.iloc[96:,[0,2]]
test['ACTUAL'] = label_test
test['Predict'] = pred
test['MAE%'] = (test['ACTUAL']-test['Predict']).abs()/test['ACTUAL']*100
test
```

|     | CALENDAR_YEAR | MONTH_CD | ACTUAL       | Predict      | MAE%      |
|-----|---------------|----------|--------------|--------------|-----------|
| 96  | 2562          | 1        | 2.184130e+10 | 2.230155e+10 | 2.107269  |
| 97  | 2562          | 2        | 2.230267e+10 | 2.076442e+10 | 6.897157  |
| 98  | 2562          | 3        | 2.150852e+10 | 2.070221e+10 | 3.748822  |
| 99  | 2562          | 4        | 2.282755e+10 | 2.126833e+10 | 6.830430  |
| 100 | 2562          | 5        | 2.283282e+10 | 2.208284e+10 | 3.284642  |
| 101 | 2562          | 6        | 2.235165e+10 | 2.070819e+10 | 7.352715  |
| 102 | 2562          | 7        | 2.248958e+10 | 2.056547e+10 | 8.555573  |
| 103 | 2562          | 8        | 2.093361e+10 | 1.830592e+10 | 12.552510 |
| 104 | 2562          | 9        | 2.113849e+10 | 1.960420e+10 | 7.258283  |
| 105 | 2562          | 10       | 2.907713e+10 | 3.317699e+10 | 14.099939 |
| 106 | 2562          | 11       | 1.639425e+10 | 1.741475e+10 | 6.224740  |
| 107 | 2562          | 12       | 1.697095e+10 | 1.849658e+10 | 8.989635  |

#### Normalization

แบ่งข้อมูลที่จะทำการ Normalization และทำการ Normalization

โค้ดการแบ่งข้อมูลที่จะทำ Normalization

โค้ดการ Normalization

```
df_nor = df_.copy() #df_normalization
for i in range(len(df_nor.columns)-1): #normalization
    df_nor.iloc[:,i] = (df_nor.iloc[:,i] - df_nor.iloc[:,i].min()) / (df_nor.iloc[:,i].max() - df_nor.iloc[:,i].min())
df_nor
```

### โค้ดการแบ่งข้อมูล Train 2554-2561 Test 2562

pred nor = regr nor.predict(feature test nor)

```
feature_train_nor = df_nor.iloc[:96,1:15]
label train nor = df nor.iloc[:96,0]
feature_test_nor = df_nor.iloc[96:,1:15]
label_test_nor = df_nor.iloc[96:,0]
Drop คอลัมที่มี Correlation มากกว่า 0.90
corr_matrix = feature_train_nor.corr().abs()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
# Find features with correlation greater than 0.90
to_drop = [column for column in upper.columns if any(upper[column] > 0.90)]
# Drop features
feature_train_nor.drop(to_drop, axis=1, inplace=True)
feature_test_nor.drop(to_drop, axis=1, inplace=True)
จัดการข้อมูลที่เป็นค่า 0 โดยใส่ค่า Mean
mean_p_nor = feature_train_nor['PRICE'].mean()
print(mean p nor)
mean_pf_nor = feature_train_nor['PRICE_FACTORY'].mean()
print(mean_pf_nor)
0.054240438300075855
0.03891287311553241
feature train nor['PRICE'] = feature train nor['PRICE'].replace([0],mean p nor)
feature_train_nor['PRICE_FACTORY'] = feature_train_nor['PRICE_FACTORY'].replace([0],mean_pf_nor)
feature_train_nor
โค้ดการนำข้อมูลเข้า Model เพื่อทำนายผลปี 2562
regr nor = linear model.LinearRegression()
regr_nor.fit(feature_train_nor,label_train_nor)
```

### ค่าที่ได้

```
print(label_test_nor)
print(pred_nor)
96
     0.736077
97
    0.752469
98 0.724254
99
     0.771118
100 0.771305
101 0.754209
102 0.759110
103 0.703827
104
     0.711107
105
     0.993161
106 0.542546
107 0.563036
Name: TOTAL_TAX_AMT, dtype: float64
[0.73721514 0.69476578 0.71937967 0.71639632 0.76118347 0.71546259
0.703508    0.61933099    0.65287727    1.13526496    0.59247505    0.59777292]
```

### นำค่าที่ได้มาเทียบกับคำตอบเพื่อหาค่า MAE%

```
test_nor = df.iloc[96:,[0,2]]
test_nor['ACTUAL'] = label_test_nor
test_nor['Predict'] = pred_nor
test_nor['MAE%'] = (test_nor['ACTUAL']-test_nor['Predict']).abs()/test_nor['ACTUAL']*100
test_nor
```

|     | CALENDAR_YEAR | MONTH_CD | ACTUAL   | Predict  | MAE%      |
|-----|---------------|----------|----------|----------|-----------|
| 96  | 2562          | 1        | 0.736077 | 0.737215 | 0.154662  |
| 97  | 2562          | 2        | 0.752469 | 0.694766 | 7.668498  |
| 98  | 2562          | 3        | 0.724254 | 0.719380 | 0.672946  |
| 99  | 2562          | 4        | 0.771118 | 0.716396 | 7.096360  |
| 100 | 2562          | 5        | 0.771305 | 0.761183 | 1.312238  |
| 101 | 2562          | 6        | 0.754209 | 0.715463 | 5.137366  |
| 102 | 2562          | 7        | 0.759110 | 0.703508 | 7.324619  |
| 103 | 2562          | 8        | 0.703827 | 0.619331 | 12.005242 |
| 104 | 2562          | 9        | 0.711107 | 0.652877 | 8.188540  |
| 105 | 2562          | 10       | 0.993161 | 1.135265 | 14.308215 |
| 106 | 2562          | 11       | 0.542546 | 0.592475 | 9.202658  |
| 107 | 2562          | 12       | 0.563036 | 0.597773 | 6.169519  |

```
ค่า Intercept
```

```
print('intercept',regr_nor.intercept_)
intercept 0.09910156964953709
ค่า Coefficient
print('coefficient',regr_nor.coef_)
ค่า Adjusted r square
print('adjusted r square',r2_score(label_test_nor,pred_nor))
adjusted r square 0.6721293522973857
การทำนายผลปี 2563
หาค่าเฉลี่ยของแต่ละคอลัม
x0 = feature_train_nor.iloc[:,0].mean()
x1 = feature_train_nor.iloc[:,1].mean()
x2 = feature_train_nor.iloc[:,2].mean()
x3 = feature_train_nor.iloc[:,3].mean()
x4 = feature_train_nor.iloc[:,4].mean()
x5 = feature_train_nor.iloc[:,5].mean()
x6 = feature_train_nor.iloc[:,6].mean()
x7 = feature_train_nor.iloc[:,7].mean()
x8 = feature_train_nor.iloc[:,8].mean()
x9 = feature_train_nor.iloc[:,9].mean()
ทำนายผล
pred 2563 = regr_nor.predict([[x0,x1,x2,x3,x4,x5,x6,x7,x8,x9]])
print('predict 2563 =',pred_2563)
predict 2563 = [0.35673017]
```

#### Outlier

ใช้ Data set pima-indians-diabetes1.csv

```
import pandas as pd
import seaborn as sns
import numpy as np

url = 'https://raw.githubusercontent.com/61050960/Dataset/main/pima-indians-diabetes1.csv?raw=true'
df = pd.read_csv(url)
df
```

|     | Number<br>of times<br>pregnant | Plasma glucose<br>concentration a 2 hours in<br>an oral glucose tolerance<br>test | Diastolic<br>blood<br>pressure<br>(mm Hg) | Triceps<br>skin fold<br>thickness<br>(mm) | 2-Hour<br>serum<br>insulin<br>(mu U/ml) | Body mass<br>index (weight in<br>kg/(height in<br>m)^2) | Diabetes<br>pedigree<br>function | Age<br>(years) | Class<br>variable<br>(0 or 1) |
|-----|--------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------------|----------------|-------------------------------|
| 0   | 6                              | 148                                                                               | 72                                        | 35                                        | 0                                       | 33.6                                                    | 0.627                            | 50             | 1                             |
| 1   | 1                              | 85                                                                                | 66                                        | 29                                        | 0                                       | 26.6                                                    | 0.351                            | 31             | 0                             |
| 2   | 8                              | 183                                                                               | 64                                        | 0                                         | 0                                       | 23.3                                                    | 0.672                            | 32             | 1                             |
| 3   | 1                              | 89                                                                                | 66                                        | 23                                        | 94                                      | 28.1                                                    | 0.167                            | 21             | 0                             |
| 4   | 0                              | 137                                                                               | 40                                        | 35                                        | 168                                     | 43.1                                                    | 2.288                            | 33             | 1                             |
|     |                                |                                                                                   |                                           |                                           |                                         |                                                         |                                  |                |                               |
| 763 | 10                             | 101                                                                               | 76                                        | 48                                        | 180                                     | 32.9                                                    | 0.171                            | 63             | 0                             |
| 764 | 2                              | 122                                                                               | 70                                        | 27                                        | 0                                       | 36.8                                                    | 0.340                            | 27             | 0                             |
| 765 | 5                              | 121                                                                               | 72                                        | 23                                        | 112                                     | 26.2                                                    | 0.245                            | 30             | 0                             |
| 766 | 1                              | 126                                                                               | 60                                        | 0                                         | 0                                       | 30.1                                                    | 0.349                            | 47             | 1                             |
| 767 | 1                              | 93                                                                                | 70                                        | 31                                        | 0                                       | 30.4                                                    | 0.315                            | 23             | 0                             |

768 rows × 9 columns

ส่วนของ Box plot แสดงค่าของข้อมูลที่ไม่ได้อยู่ในช่วง หรือข้อมูลที่เป็ยข้อมูลที่ผิดพลาด

โค้ดของ Box plot ของแต่ละคอลัม

```
test = df.iloc[:,0] test1 = df.iloc[:,1] test2 = df.iloc[:,2] test3 = df.iloc[:,3]
sns.boxplot(x=test) sns.boxplot(x=test1) sns.boxplot(x=test2) sns.boxplot(x=test3)

test4 = df.iloc[:,4] test5 = df.iloc[:,5] test6 = df.iloc[:,6] test7 = df.iloc[:,7]
sns.boxplot(x=test4) sns.boxplot(x=test5) sns.boxplot(x=test6) sns.boxplot(x=test7)
```

#### กราฟ Box plot









ใค้ดของ Method การบอก Upper limit และ Lower limit และเลือกเฉพาะค่าที่อยู่ในช่วง

```
def Outlier(dat,i):
    q25 = dat.iloc[:,i].quantile(0.25)
    q75 = dat.iloc[:,i].quantile(0.75)
    IQR = q75 - q25
    upperlimit = q75 + 1.5*IQR
    lowerlimit = q25 - 1.5*IQR
    outlier = np.bitwise_or(dat.iloc[:,i] > upperlimit,dat.iloc[:,i] < lowerlimit)
    print("upper limit => ",upperlimit)
    print("lower limit => ",lowerlimit)
    dat.iloc[outlier,i] = np.mean(dat.iloc[:,i])
```

ค่า Upper limit และ Lower limit ของแต่ละคอลัม

```
for i in range(len(df.columns)-1):
 print("column : ",i)
 Outlier(df,i)
column : 0
upper limit => 13.5
lower limit => -6.5
column : 1
upper limit => 202.125
lower limit => 37.125
column : 2
upper limit => 107.0
lower limit => 35.0
column : 3
upper limit => 80.0
lower limit => -48.0
column: 4
upper limit => 318.125
lower limit => -190.875
column : 5
upper limit => 50.550000000000004
lower limit => 13.35
column: 6
upper limit => 1.2
lower limit => -0.329999999999996
column: 7
upper limit => 66.5
lower limit => -1.5
```

หลังจากเลือกเฉพาะค่าที่อยู่ในช่วงก็จะนำมาทำ Sequential Forward Floating Selection ต่อเพื่อหาคอลัมที่จะนำไปใช้งาน

### โค้ดของ Sequential Forward Floating Selection

### ได้ผลลัพธ์

|   | feature_idx              | cv_scores                                               | avg_score | feature_names            | ci_bound  | std_dev   | std_err    |
|---|--------------------------|---------------------------------------------------------|-----------|--------------------------|-----------|-----------|------------|
| 1 | (1,)                     | [0.61458333333333334, 0.71875, 0.63541666666666         | 0.682292  | (1,)                     | 0.0311214 | 0.0357065 | 0.0134958  |
| 2 | (1, 5)                   | [0.70833333333333334, 0.72916666666666666, 0.687        | 0.720052  | (1, 5)                   | 0.0258543 | 0.0296635 | 0.0112118  |
| 3 | (1, 5, 6)                | $[0.70833333333333334, 0.71875, 0.71875, 0.6875, \dots$ | 0.722656  | (1, 5, 6)                | 0.0231193 | 0.0265255 | 0.0100257  |
| 4 | (1, 4, 5, 6)             | [0.71875, 0.69791666666666666, 0.73958333333333         | 0.71224   | (1, 4, 5, 6)             | 0.0217412 | 0.0249443 | 0.00942807 |
| 5 | (1, 4, 5, 6, 7)          | [0.729166666666666666, 0.7291666666666666, 0.708        | 0.71875   | (1, 4, 5, 6, 7)          | 0.025275  | 0.0289988 | 0.0109605  |
| 6 | (0, 1, 3, 4, 5, 7)       | [0.729166666666666666, 0.6875, 0.6875, 0.7395833        | 0.726562  | (0, 1, 3, 4, 5, 7)       | 0.0211709 | 0.02429   | 0.00918078 |
| 7 | (0, 1, 3, 4, 5, 6, 7)    | [0.71875, 0.6875, 0.6875, 0.739583333333333334,         | 0.72526   | (0, 1, 3, 4, 5, 6, 7)    | 0.021262  | 0.0243945 | 0.00922026 |
| 8 | (0, 1, 2, 3, 4, 5, 6, 7) | [0.7083333333333334, 0.739583333333334, 0.677           | 0.71875   | (0, 1, 2, 3, 4, 5, 6, 7) | 0.0208027 | 0.0238676 | 0.0090211  |

เลือกคอลัมที่มีค่า CV Score มากที่สุดคือ [0,1,3,4,5,7]

#### น้ำมาเข้า Model Decision Tree

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
import sklearn as sk
import xgboost as xgb
X = df.iloc[:,[0, 1, 3, 4, 5, 7]] #Feature_selection_SFFS
y = df.iloc[:,-1]
def evaluation_accuracy(prediction,actual):
 acc = sum(prediction==actual)/len(prediction)
#ท่านาย model โดยใช้ข้อมูลที่ไม่ normalization
X1_train, X1_test, y1_train, y1_test = train_test_split(X, y, test_size=0.3, random_state=1)
#DecisionTree
clf_NDT = DecisionTreeClassifier(random_state=0, max_depth=2)
clf_NDT = clf_NDT.fit(X1_train,y1_train)
y_pred_NDT = clf_NDT.predict(X1_test)
print('Accuracy DecisionTree =',evaluation_accuracy(y_pred_NDT,y1_test))
#print(confusion_matrix(y_pred_NDT, y1_test))
#GradientBoosting
clf_NGB = GradientBoostingClassifier(random_state=0)
clf_NGB = clf_NGB.fit(X1_train,y1_train)
y_pred_NGB = clf_NGB.predict(X1_test)
print('Accuracy GradientBoosting =',evaluation_accuracy(y_pred_NGB,y1_test))
#RandomForest
clf_NRF = RandomForestClassifier(max_depth=2, random_state=0)
clf NRF = clf NRF.fit(X1 train,y1 train)
y_pred_NRF = clf_NRF.predict(X1_test)
print('Accuracy RandomForest =',evaluation_accuracy(y_pred_NRF,y1_test))
#print(confusion_matrix(y1_test, y_pred_NRF))
regressor = xgb.XGBClassifier(n_estimators=100, reg_lambda=1, gamma=0, max_depth=3)
regressor.fit(X1_train,y1_train)
y_pred_XGB = regressor.predict(X1_test)
print('Accuracy XGBoost =',evaluation_accuracy(y_pred_XGB,y1_test))
```

#### ได้ผลลัพธ์ค่า Accuracy

```
Accuracy DecisionTree = 0.7532467532467533
Accuracy GradientBoosting = 0.7662337662337663
Accuracy RandomForest = 0.7532467532467533
Accuracy XGBoost = 0.7922077922077922
```

### การทำ Bagging

### โค้ดส่วน Bagging

```
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import classification_report,confusion_matrix
#Bagging
clf_bg = BaggingClassifier(random_state=0)
clf = clf_bg.fit(X1_train,y1_train)
y_pred = clf.predict(X1_test)
y_score = clf.score(X1_test,y1_test)
print("Bagging")
print(classification_report(y1_test,y_pred))
print(confusion_matrix(y1_test,y_pred))
print(y_score)
```

#### ค่าการทำนายและ confusion matrix

#### Bagging

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.79      | 0.89   | 0.84     | 146     |
| 1            | 0.76      | 0.59   | 0.66     | 85      |
| accuracy     |           |        | 0.78     | 231     |
| macro avg    | 0.77      | 0.74   | 0.75     | 231     |
| weighted avg | 0.78      | 0.78   | 0.77     | 231     |

[[130 16] [ 35 50]] 0.7792207792207793

### การทำ Boosting

### โค้ดส่วน Boosting

```
#GradientBoosting
clf_NGB = GradientBoostingClassifier(random_state=0)
clf_N = clf_NGB.fit(X1_train,y1_train)
y_pred_NGB = clf_N.predict(X1_test)
y_score = clf_N.score(X1_test,y1_test)
print("Boosting")
print(classification_report(y1_test,y_pred_NGB))
print(confusion_matrix(y1_test,y_pred_NGB))
print(y_score)
```

ค่าการทำนายและ confusion matrix

#### Boosting

| _            | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.80      | 0.86   | 0.83     | 146     |
| 1            | 0.72      | 0.62   | 0.67     | 85      |
| accuracy     |           |        | 0.77     | 231     |
| macro avg    | 0.76      | 0.74   | 0.75     | 231     |
| weighted avg | 0.77      | 0.77   | 0.77     | 231     |

[[125 21] [ 32 53]] 0.7705627705627706