Chapitre 43

Fonctions de deux variables.

Sommaire.

	Fonctions définies sur un ouvert de \mathbb{R}^2 et à valeurs réelles. 1.1 Ouverts de \mathbb{R}^2	
2	Dérivées partielles.	2
	2.1 Dérivées partielles, gradient	3
3	Deux questions naturelles.	3
	3.1 Comment dériver une composée ?	3
	3.2 Que peut-on dire au sujet des extrema?	4

Les propositions marquées de \star sont au programme de colles.

Un cours très chaotique marqué par la fin d'année et 33°C dans la salle!

1 Fonctions définies sur un ouvert de \mathbb{R}^2 et à valeurs réelles.

1.1 Ouverts de \mathbb{R}^2 .

Définition 1

Soit $a \in \mathbb{R}^2$ et r > 0.

 \bullet On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$\mathscr{B}(a,r) = \{ x \in \mathbb{R}^2 \mid ||x - a|| < r \}.$$

 $\bullet\,$ On appelle boule fermée de centre a et de rayon r l'ensemble

$$\overline{\mathscr{B}}(a,r) = \{x \in \mathbb{R}^2 \mid ||x - a|| \le r\}.$$

Exemple 2

Représenter $\overline{\mathcal{B}}(0_{\mathbb{R}^2},\frac{1}{2})$. Représenter la boule ouverte de centre (2,1) et de rayon 1.

Définition 3

On dit qu'une partie X de \mathbb{R}^2 est un **ouvert** si

$$\forall x \in X \quad \exists r > 0 \quad \mathscr{B}(x,r) \subset X$$

Exemple 4

Dessiner un ouvert de \mathbb{R}^2 .

Montrer qu'une boule ouverte de \mathbb{R}^2 est un ouvert de \mathbb{R}^2 .

Montrer qu'une intersection finie d'ouverts de \mathbb{R}^2 est un ouvert de \mathbb{R}^2 .

Solution:

Soit $\mathscr{B}(a,r)$ une boule ouverte et $x \in \mathscr{B}(a,r)$. On pose $r' = r - \|x - a\|$. Alors $\mathscr{B}(x,r') \subset X$. En effet, pour $y \in \mathscr{B}(x,r')$, $\|y - x\| < r' = r - \|x - a\|$ donc $\|y - a\| \le \|y - x\| + \|x - a\|$.

Alors $||y - a|| < r : y \in \mathcal{B}(a, r)$.

Soient $X_1, ..., X_n$ des ouverts de R^2 et $x \in \bigcap_{i=1}^n X_i$.

Par définition, $\forall i \in [1, n], \ x \in X_i \text{ et } \forall i \in [1, n], \ \exists r_i > 0 \quad \mathscr{B}(x, r_i) \subset X_i.$

Posons $\rho = \min_{i \in \mathbb{I}, n^{\mathbb{I}}} r_i$, prouvons $\mathscr{B}(x, \rho) \subset \bigcap_{i \in \mathbb{I}} X_i$.

Soit $y \in \mathcal{B}(x, \rho)$ et $i \in [1, n]$, on a $||y - x|| < \rho \le r_i$ donc $y \in \mathcal{B}(x, r_i)$.

Or, $\mathscr{B}(x, r_i) \subset X_i$ donc $y \in X_i$, et ce pour tout i.

1.2 Limite et continuité d'une fonction définie sur un ouvert de \mathbb{R}^2 .

Définition 5

Soit U un ouvert de \mathbb{R}^2 , $f: U \to \mathbb{R}$, $a \in U$ et $l \in \mathbb{R}$. On dit que f **tend vers** l en a, noté $f(x) \xrightarrow[x \to a]{} l$ si

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in U \quad ||x - a|| \le \eta \Longrightarrow |f(x) - l| \le \varepsilon.$$

Définition 6

Soit U un ouvert de \mathbb{R}^2 , $f:U\to\mathbb{R}$ et $a\in U$, ainsi que $l\in\mathbb{R}$.

- On dit que f est **continue en** a si $f(x) \xrightarrow[x \to a]{} f(a)$.
- On dit que f est continue sur U si f est continue en tout $a \in U$.

2 Dérivées partielles.

2.1 Dérivées partielles, gradient.

Définition 7

Soient U ouvert de \mathbb{R}^2 , $f: U \to \mathbb{R}$ et $a = (x_0, y_0) \in U$.

• On dit que f admet une **première dérivée partielle** en a si $x \mapsto f(x, y_0)$ est dérivable en x_0 . Dans ce cas, on note $\frac{\partial f}{\partial x}(x_0, y_0)$ sa limite:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

• On dit que f admet une **deuxième dérivée partielle** en a si $y \mapsto f(x_0, y)$ est dérivable en y_0 . Dans ce cas, on note $\frac{\partial f}{\partial y}(x_0, y_0)$ sa limite:

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Définition 8

Si $f: U \to \mathbb{R}$ admet des dérivées partielles en $a \in U$, on définit son **gradient** en a noté $\nabla f(a)$ par

$$\nabla f(a) = \begin{pmatrix} \frac{\partial f}{\partial x}(a) \\ \frac{\partial f}{\partial y}(a) \end{pmatrix}$$

Méthode

Calculer la première dérivée partielle, c'est par définition dériver $x\mapsto f(x,y)$ pour y fixé : on dérive en traitant y comme une constante.

Pour le calcul de la seconde dérivée partielle, c'est x qui est traité comme une constante.

Exemple 9

1.
$$f:(x,y)\mapsto x^2+x^2y-2y^2$$
. Calculer $\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)$ puis $\nabla f(1,2)$.

2. Si g est dérivable sur \mathbb{R} , on pose $F(x,y) = g(\frac{y}{x})$ définie sur $\mathbb{R}^* \times \mathbb{R}$. Calculer $\frac{\partial F}{\partial x}(x,y)$ et $\frac{\partial F}{\partial y}(x,y)$ et $\nabla F(x,y)$.

Solution:

1. Soient
$$(x, y) \in \mathbb{R}^2$$
.

On a $\frac{\partial f}{\partial x}(x,y) = 2x + 2xy$ et $\frac{\partial f}{\partial y}(x,y) = x^2 - 4y$.

Alors
$$\nabla f(1,2) = \begin{pmatrix} 6 \\ -7 \end{pmatrix}$$

2. On a
$$\frac{\partial F}{\partial x}(x,y) = -\frac{y}{x^2}g'(\frac{y}{x})$$
 et $\frac{\partial F}{\partial y}(x,y) = \frac{1}{x}g'(\frac{y}{x})$

Alors
$$\nabla F(x,y) = \frac{1}{x^2} g'(\frac{y}{x}) \begin{pmatrix} -y \\ x \end{pmatrix}$$

Exemple 10: 🔨

Contrairement au cas d'une fonction d'une variable réelle, l'existence des dérivées partielles en a n'implique pas la continuité en a. On le constatera sur l'exemple ci-dessous :

f définie sur \mathbb{R}^2 par $\begin{cases} f(x,y) = \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 & \text{sinon} \end{cases}$ admet des dérivées partielles en (0,0) mais n'est pas continue en (0,0).

Solution:

On a
$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

Supposons par l'absurde que $f(x,y) \xrightarrow[(x,y)\to(0,0)]{} f(0,0)$.

C'est-à-dire $\forall \varepsilon > 0, \ \exists \eta > 0 \mid \forall (x,y) \in \mathbb{R}^2, \ \|(x,y) - (0,0)\| \le \eta \Longrightarrow |f(x,y) - f(0,0)| \le \varepsilon.$

Alors $\forall \varepsilon > 0$, $\exists \eta > 0 \mid \forall (x, y) \in \mathbb{R}^2$, $\|(x, y)\| \le \eta \Longrightarrow |f(x, y)| \le \varepsilon$.

Pour $x \neq 0$, $f(x,x) = \frac{1}{2}$ 0, donc pour $\varepsilon = \frac{1}{3}$, on a pour tout $|x| \leq \frac{\eta}{\sqrt{2}}$.

On a $||(x,x)|| \le \sqrt{(\frac{\eta}{\sqrt{2}})^2 + (\frac{\eta}{\sqrt{2}})^2} \le \eta$.

2.2 Fonctions de classe C^1 .

Définition 11

Soit U ouvert de \mathbb{R}^2 et $f: U \to \mathbb{R}$.

On dit que f est **de classe** \mathcal{C}^1 sur U si f possède deux dérivées partielles en tout point de U, **et** que ces dérivées partielles sont continues sur U.

On note $\mathcal{C}^1(U,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^1 sur U.

Exemple 12

- 1. Si I, J sont deux intervalles ouverts de \mathbb{R} et $\varphi \in \mathcal{C}^1(I, \mathbb{R}), \varphi \in \mathcal{C}^1(J, \mathbb{R})$ alors la fonction $(x, y) \mapsto \varphi(x)\psi(y)$ est de classe \mathcal{C}^1 sur $I \times J$.
- 2. $(x,y)\mapsto\arctan(\frac{y}{x})$ est de classe C^1 sur $\mathbb{R}_+^*\times\mathbb{R}$.
- 3. $(x,y) \mapsto \|(x,y)\|$ est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

Solution:

3. Les dérivées partielles existent en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$.

$$\frac{\partial f}{\partial x}(x,y) = \frac{2x}{2\sqrt{x^2 + y^2}}, \quad \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}}.$$

Elles sont continues sur $\mathbb{R}^2 \setminus \{(0,0)\}...$

Proposition 13: DL à l'ordre 1.

Toute fonction $f \in \mathcal{C}^1(U,\mathbb{R})$ admet le DL à l'ordre 1 suivant en tout point $a = (x_0, y_0) \in U$.

$$f(x_0 + h, y_0 + k) = \int_{(h,k)\to(0,0)} f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0 + y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|).$$

Ou encore

$$f(a+H) \underset{H \to (0,0)}{=} f(a) + \langle \nabla f(a), H \rangle + o(\|H\|).$$

Corrolaire 14

Soit U un ouvert de \mathbb{R}^2 . Toute fonction de classe \mathcal{C}^1 sur U y est continue.

Définition 15: Plan tangent à la surface en un point.

Soit f une fonction de C^1 sur un ouvert U de \mathbb{R}^2 . On considère un point $(x_0, y_0, z_0) \in \mathbb{R}^3$ appartenant à la surface d'équation z = f(x, y), c'est-à-dire tel que $(x_0, y_0) \in U$ et $z_0 = f(x_0, z = y_0)$. Le plan d'équation

$$z - z_0 = (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

est appelé **plan tangent** en (x_0, y_0) à la surface z = f(x, y).

3 Deux questions naturelles.

3.1 Comment dériver une composée ?

Théorème 16: Règle de la chaîne (1).

Soient U un ouvert de \mathbb{R}^2 , I un intervalle de \mathbb{R} .

Soient $f \in \mathcal{C}^1(U, \mathbb{R})$ et $\gamma : t \mapsto (x(t), y(t)) \in \mathcal{C}^1(I, U)$. Alors $F : t \mapsto f(x(t), y(t))$ est de classe \mathcal{C}^1 sur I avec

$$\forall t \in I \quad F'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(x(t), y(t)) = x'(t) \frac{\partial f}{\partial x} (x(t), y(t)) + y'(t) \frac{\partial f}{\partial y} (x(t), y(t)).$$

soit
$$\forall t \in I$$
, $(f \circ \gamma)'(t) = \langle \gamma'(t), \nabla f(\gamma(t)) \rangle$.

On dit qu'on a calculé la dérivée de f suivant l'arc paramétré γ .

Preuve:

...

$$F(t+h) = f(\gamma(t+h)) = f(x(t+h), y(t+h)) = f(x(t+h), y(t+h))$$

$$= f(x(t) + hx'(t) + \varepsilon_1(h), y(t) + hy'(t) + \varepsilon_2(h))$$

$$= f(\underbrace{(x(t), y(t))}_{a} + \underbrace{(hx'(t) + \varepsilon_1(h), hy'(t) + \varepsilon_2(h))}_{H})$$

$$= f(x(t), y(t)) + \langle \nabla f(x(t), y(t)), H \rangle + o(||H||)$$

$$= f(\gamma(t)) + (hx'(t) + \varepsilon_1(h)) \frac{\partial f}{\partial x}(\gamma(t)) + (hy'(t) + \varepsilon_2(h)) \frac{\partial f}{\partial y}(\gamma(t)) + o(||H||)$$

$$= f(\gamma(t)) + h(x'(t) \frac{\partial f}{\partial x}(\gamma(t)) + y'(t) \frac{\partial f}{\partial y}(\gamma(t))) + o(h)$$

Exemple 17

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Calculer la dérivée de $\varphi : t \mapsto f(t^3, \cos t)$.

Solution:

On a:

$$\forall t \in \mathbb{R}, \ \varphi'(t) = 3t^2 \frac{\partial f}{\partial t^3}(t^3, \cos t) - \sin(t) \frac{\partial f}{\partial \cos(t)}(t^3, \cos(t))$$

Théorème 18: Règle de la chaîne (2).

Soient U et V deux ouverts de \mathbb{R}^2 , φ_1 et φ_2 dans $\mathcal{C}^1(U,\mathbb{R})$ et $\varphi: \begin{cases} U & \to \mathbb{R}^2 \\ (u,v) & \mapsto (\varphi_1(u,v), \varphi_2(u,v)) \end{cases}$. Si $f \in \mathcal{C}^1(V,\mathbb{R})$, et $\varphi(U) \subset V$, alors $f \circ \varphi$ est de classe \mathcal{C}^1 sur U et

$$\forall (u,v) \in U \quad \frac{\partial (f \circ \varphi)}{\partial u}(u,v) = \frac{\partial \varphi_1}{\partial u}(u,v) \times \frac{\partial f}{\partial x}(\varphi(u,v)) + \frac{\partial \varphi_2}{\partial u}(u,v) \times \frac{\partial f}{\partial y}(\varphi(u,v)).$$

$$\frac{\partial (f \circ \varphi)}{\partial v}(u,v) = \frac{\partial \varphi_1}{\partial v}(u,v) \times \frac{\partial f}{\partial x}(\varphi(u,v)) + \frac{\partial \varphi_2}{\partial v}(u,v) \times \frac{\partial f}{\partial y}(\varphi(u,v)).$$

Méthode : À la physicienne.

En notant $x(u, v) = \varphi_1(u, v)$ et $y = \varphi_2(u, v)$:

$$\frac{\partial (f \circ \varphi)}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \quad \text{et} \quad \frac{\partial (f \circ \varphi)}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial u} \frac{\partial y}{\partial v}.$$

Exemple 19: Changement de variable affine.

Soient a, b, c, d, e, f six réels et $g \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Calculer les dérivées partielles de

$$h:(x,y)\mapsto g(ax+by+c,dx+ey+f)$$

Solution:

On note u = ax + by + c et v = dx + ey + f.

$$\frac{\partial h}{\partial x}(x,y) = \frac{\partial g}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial g}{\partial v}\frac{\partial v}{\partial x} = a\frac{\partial g}{\partial u}(u,v) + d\frac{\partial g}{\partial v}(u,v).$$

$$\frac{\partial h}{\partial y}(x,y) = \frac{\partial g}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial g}{\partial v}\frac{\partial v}{\partial y} = b\frac{\partial g}{\partial u}(u,v) + e\frac{\partial g}{\partial v}(u,v)$$

3.2 Que peut-on dire au sujet des extrema?

Définition 20

Soit $A \subset \mathbb{R}^2$, $f: A \to \mathbb{R}$ et $a \in A$. On dit que

1. f admet un maximum local en a si f(a) majore f(A) au voisinage de a, soit

$$\exists r > 0 \quad \forall x \in A \quad ||x - a|| \le r \Longrightarrow f(x) \le f(a).$$

2. f admet un **minimum local** en a si f(a) minore f(A) au voisinage de a, soit

$$\exists r > 0 \quad \forall x \in A \quad ||x - a|| \le r \Longrightarrow f(x) \ge f(A).$$

- 3. f présente un **extremum local** en a si elle y admet un maximum ou un minimum local.
- 4. Extremum global : un maximum (resp. minimum) est global si il majore (resp. minore) f sur tout A.

Exemple 21

 $f:(x,y)\mapsto x^2+y^2$ présente un minimum global en (0,0).

Proposition 22

Soit f de classe C^1 sur U ouvert de \mathbb{R}^2 et $a \in U$.

Si f admet un extremum local en a, alors

$$\frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0$$
 autrement dit $\nabla f(a) = (0,0)$.

On dit alors que a est un **point critique**.

Exemple 23: La réciproque est fause!

Comme pour les fonctions d'une seule variable, la réciproque est fausse.

Vérifier ainsi que (0,0) est un point critique de $f:(x,y)\mapsto x^2-y^2$ mais n'est pas un extremum.

On le remarque aussi sur le graphe : première page du poly.

Exemple 24

- 1. $f:(x,y)\mapsto x^2+y^2-2x-4y$ admet un minimum global en un point de \mathbb{R}^2 à préciser. 2. La fonction $f:(x,y)\mapsto x^3+y^3-6(x^2-y^2)$ présente un minimum local en (4,0), un maximum local en (0,-4). Les autres points critiques ne sont pas des extrema.