Best Machine Learning

Algorithms for Predicting

Motor Insurance Claims

OUR TEAM

Festus Godwin (Team Lead)

Shamsuddeen Lawal

Rofhiwa Ntshagovhe (Admin Lead)

Sandisiwe Mtsha

Peter Maila

Kasavuli Mark

OUTLINE

PROJECT OVERVIEW

SIGNIFICANCE

This project holds
 significant importance in
 optimizing insurance
 operations

PROBLEM

- Suboptimal Predictions
- Fraudulent Claims

SOLUTION

- Optimize Claims
 Prediction
- PromoteStakeholders' Trust

ANALYTICAL INSIGHTS

DATASETS

DATASET A

Number of Observations: 161 832

Number of Features: 23

DATASET B

Number of Observations: 25 519

Number of Features: 9

DATA DISTRIBUTION

	count	mean	std	min	25%	50%	75%	max
Kilowatts	129465.0	84.202819	31.655294	0.0	63.000000	74.0	97.0	426.0
VehicleYear	129465.0	2014.476414	3.653251	2004.0	2012.000000	2015.0	2017.0	2022.0
SumAssured	129465.0	157700.526397	72162.021462	30000.0	109100.000000	146700.0	189300.0	515000.0
TotalExcess	129465.0	24369.043502	12218.025355	0.0	19000.000000	25130.0	31770.0	90460.0
BaseExcess	129465.0	4480.361812	1980.984924	0.0	4000.000000	5000.0	5000.0	60000.0
PolicyHolderAgeYears	129465.0	38.158792	10.118095	18.0	30.000000	36.0	44.0	92.0
VehicleAgeYears	129465.0	5.599622	3.635835	0.0	3.000000	5.0	8.0	16.0
Exposure	129465.0	0.755729	0.319860	0.1	0.421918	1.0	1.0	1.0
AnnualClaims	129465.0	4309.076033	22902.575946	0.0	0.000000	0.0	0.0	475900.0

	vehicle_year	vehicle_age	sum_insured	excess	exposure	annual_claims
count	25519.000000	25519.000000	2.551900e+04	25519.000000	25519.000000	2.551900e+04
mean	2016.004154	6.065285	6.650507e+05	66036.699497	0.505176	8.691689e+03
std	5.964126	5.891118	6.849623e+05	68156.828771	0.329561	8.643850e+04
min	1972.000000	0.000000	2.000000e+03	2500.000000	0.083333	0.000000e+00
25%	2014.000000	2.000000	2.100000e+05	20691.000000	0.250000	0.000000e+00
50%	2018.000000	5.000000	3.406880e+05	33206.300000	0.333333	0.000000e+00
75%	2020.000000	9.000000	9.000240e+05	89276.000000	0.916666	0.000000e+00
max	2023.000000	51.000000	1.000000e+07	1000000.000000	1.000000	3.226904e+06

DATA PROCESSING

PRE PROCESSING

Missing/Null Values

Missing Values Imputed Using the Mode:

- Area
- Occupation

FEATURE ENGINEERING

Encoding Categorical Data

- Binary encoding
- Target encoding
- Label encoding
- CatBoost encoding

FEATURE ENGINEERING

Feature Selection

Features Removed:

- Area
- Occupation
- Make
- Colour

ML ALGORITHMS

Random Forest

MODELS COMPARATIVE ANALYSIS

MODEL IMPLEMENTATION

Classification	Report:				
	precision	recall	f1-score	support	
No Claims	0.89	0.95	0.92	23061	
Claimed	0.94	0.88	0.91	23349	
accuracy			0.91	46410	
macro avg	0.92	0.91	0.91	46410	
weighted avg	0.92	0.91	0.91	46410	

MODEL IMPLEMENTATION

LightGBM Regressor

LightGBM RMSE: 16451.559711261558

```
# LightGBM
lightgbm_model = LGBMRegressor(objective='tweedie', tweedie_variance_power=1.6, metric='rmse', verbose=-1)
lightgbm_model.fit(X_regression, y_regression, sample_weight=train_data['Exposure'])

#Make Predictions
lightgbm_predictions = lightgbm_model.predict(test_data.drop(['AnnualClaims'], axis=1))

#Calculate RMSE
lightgbm_rmse = mean_squared_error(test_data['AnnualClaims'], lightgbm_predictions, squared=False)
print("LightGBM RMSE:", lightgbm_rmse)
```

COMPARATIVE ANALYSIS

COMPARATIVE ANALYSIS

MODEL IMPLEMENTATION

```
# Evaluation
print(f'MAE Evaluation scores for training and validation')
xgb_train_mae = round(mae(y_train_cat, xgb_train_y_pred),2)
print(f'Train XGBoost MAE: {xgb_train_mae}')
xgb_test_mae = round(mae(y_test_cat, xgb_test_y_pred),2)
print(f'Test XGBoost MAE: {xgb_test_mae}')

print('-' * 50)

print(f'RMSE Evaluation scores for training and validation')
xgb_train_rmse = round(np.sqrt(mse(y_train_cat, xgb_train_y_pred)),2)
print(f'Train XGBoost RMSE: {xgb_train_rmse}')
xgb_test_rmse = round(np.sqrt(mse(y_test_cat, xgb_test_y_pred)),2)
print(f'Test XGBoost RMSE: {xgb_test_rmse}')
```

MODEL IMPLEMENTATION

COMPARATIVE ANALYSIS

RECOMMENDATIONS

01

Best ML Algorithm

XGBoost

LightGBM

O2 Continuous /

Continuous Algorithm Assessment

03

Education and Awareness

CONCLUSION

THANK YOU

CONNECT WITH US ON LINKEDIN

Festus Godwin

Shamsuddeen Lawal

Rofhiwa Ntshagovhe

Sandisiwe Mtsha

Peter Maila

Mark Kasavuli