ЗАДАНИЕ на лабораторные работы №6

Тема: Построение и программная реализация алгоритмов численного интегрирования и дифференцирования функций.

Цель работы. Получение навыков построения алгоритмов вычисления двукратного интеграла с использованием квадратурных формул Гаусса и Симпсона и производных от сеточных функций.

Задание 1.

Построить алгоритм и программу для вычисления двукратного интеграла по области G, ограниченной кривой $x^2 + y^2 = 2x$

$$I = \iint_{G} \sqrt{x^2 + y^2} \, dx \, dy$$

Применить метод последовательного интегрирования. По одному направлению использовать формулу Гаусса, а по другому - формулу Симпсона.

Результаты.

- 1. Разработать алгоритм вычисления n корней полинома Лежандра n-ой степени $P_n(x)$ при реализации формулы Гаусса.
- 2. Исследовать влияние количества выбираемых узлов сетки по каждому направлению на результаты расчетов.

Задание 2.

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

параметры функции неизвестны и определять их не нужно.

X	у	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3- 2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.

В столбец 5 занести вторую разностную производную.

Результаты.

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности

Вопросы при защите лабораторной работы.

- 1. В каких ситуациях теоретический порядок квадратурных формул численного интегрирования не достигается.
- 2. Построить формулу Гаусса численного интегрирования при одном узле.
- 3. Построить формулу Гаусса численного интегрирования при двух узлах.
- 4. Получить обобщенную кубатурную формулу, для вычисления двойного интеграла методом последовательного интегрирования на основе формулы трапеций с **тремя** узлами по каждому направлению.
- 5. Получить формулу порядка точности $O(h^2)$ для первой разностной производной y'_N в крайнем правом узле x_N .
- 6. Получить формулу порядка точности $O(h^2)$ для второй разностной производной y''_0 в крайнем левом узле x_0 .
- 7. Используя 2-ую формулу Рунге, дать вывод формулы для первой производной y'_0 в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2).$$

8. Любым способом получить формулу порядка точности $O(h^3)$ для первой разностной производной y'_0 в крайнем левом узле x_0 .

Методика оценки работы.

Модуль 3, срок - 17-я неделя..

- 1. Задание полностью выполнено 11 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на вопросы до 17 баллов (максимум).