Об одной задаче для уравнения Лапласа со смешанными граничными условиями

Капустин Н.Ю., Васильченко Д. Д.

Рассмотрим краевую задачу для уравнения Лапласа

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0 \tag{1}$$

в полуполосе $D = \{(x, y): 0 < x < \pi, y > 0\}$

в классе функций $u(x,y) \in C(\overline{D}) \cap C^1(\overline{D} \cap \{y>0\}) \cap C^2(D)$

с граничными условиями

$$u(0,y) = 0, \ \frac{\partial u}{\partial x}(\pi, y) = 0, \ y > 0,$$
 (2)

$$\lim_{y \to 0+0} \int_{0}^{\pi} \left[\frac{\partial u}{\partial y}(x,y) - \frac{\partial u}{\partial x}(x,y) + \varphi(x) \right]^{2} dx = 0, \ \varphi(x) \in L_{2}(0,\pi), \tag{3}$$

$$u(x,y) \rightrightarrows 0, y \to +\infty.$$
 (4)

Аналогичная задача изучалась как вспомогательная с граничными условиями второго рода на боковых сторонах полуполосы и коэффициентом $\frac{1}{k}$ при $\frac{\partial u}{\partial y}(x,y), \ |k|>1$ в работе [1].

Теорема 1. Решение задачи (1 - 4) существует, причём его можно представить в виде ряда

$$u(x,y) = \sum_{n=0}^{\infty} A_n e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right],\tag{5}$$

где коэффициенты $A_n, n = 0, 1, 2, \dots$ находятся из разложения

$$\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] = \frac{\varphi(x)}{\sqrt{2}} \tag{6}$$

Доказательство. Докажем существование решения задачи (1) — (4). В силу основного результата работы [2] система $\left\{\sin\left[\left(n+\frac{1}{2}\right)x+\frac{\pi}{4}\right]\right\}_{n=0}^{\infty}$ образует базис Рисса в пространстве $L_2(0,\pi)$. Поэтому коэффициенты разложения в формуле (6) удовлетворяют неравенствам Бесселя

$$C_1 \|\varphi\|_{L_2(0,\pi)} \le \sum_{n=0}^{\infty} A_n^2 \left(n + \frac{1}{2}\right)^2 \le C_2 \|\varphi\|_{L_2(0,\pi)}, 0 < C_1 < C_2,$$

а значит сходится ряд $\sum\limits_{n=0}^{\infty}|A_n|$ и сходится равномерно ряд (5). То, что функция (5) при y>0 - решение уравнения (1), удовлетворяющее условиям (2) - это очевидно. В силу равенства $\sum\limits_{n=0}^{\infty}e^{-\left(n+\frac{1}{2}\right)y}=\frac{e^{-y/2}}{1-e^{-y}},$ также очевидно, что выполнено условие (4). Проверим выполнение условия (3).

Выразим функцию $\varphi(x)$ из представления (6) и подставим в условие (3)

$$I(y) = 2\int_{0}^{\pi} \left[\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx$$

Докажем, что $I(y) \to 0$ при $y \to 0 + 0$.

$$I(y) \le 4 \int_{0}^{\pi} \left[\sum_{n=0}^{m} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx + 4 \int_{0}^{\pi} \left[\sum_{n=m+1}^{\infty} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx$$

В силу левой части неравенства Бесселя имеем оценку

$$\int_{0}^{\pi} \left[\sum_{n=m+1}^{\infty} A_{n} \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^{2} dx \le$$

$$\leq C_{3} \sum_{n=m+1}^{\infty} A_{n}^{2} \left(n + \frac{1}{2} \right)^{2} \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right)^{2} \le C_{3} \sum_{n=m+1}^{\infty} A_{n}^{2} \left(n + \frac{1}{2} \right)^{2} < \frac{\varepsilon}{2}$$

Это верно $\forall \varepsilon > 0$, если $m \geqslant N = N(\varepsilon)$

Во втором слагаемом мы имеем дело с конечным числом элементов, поэтому:

$$\int_{0}^{\pi} \left[\sum_{n=0}^{m} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx \le$$

$$\le C_4 \sum_{n=0}^{m} A_n^2 \left(n + \frac{1}{2} \right)^2 \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right)^2 < \frac{\varepsilon}{2}$$

Это верно, если $0 < y < \delta$ (m зафиксировано в зависимости от N). Условие (3) выполнено. Теорема доказана.

Теорема 2. Решение задачи (1-4) единственно

Доказательство. Докажем единственность решения этой задачи. Пусть u(x,y) - разность двух решений - решение задачи с $\varphi(x)\equiv 0$. Введём обозначения $A_{\varepsilon}=(0,\varepsilon), A_R=(0,R), B_R=(\pi,R), B_{\varepsilon}=(\pi,\varepsilon).$ $D_{R\varepsilon}$ - прямоугольник $A_{\varepsilon}A_RB_RB_{\varepsilon}$. Справедливы следующие соотношения:

$$0 = \iint_{D_{R\varepsilon}} (R - y)(u_{xx} + u_{yy}) dx dy =$$

$$= \iint_{D_{R\varepsilon}} ((R - y)u_{x}u)_{x} dx dy + \iint_{D_{R\varepsilon}} ((R - y)u_{y}u)_{y} dx dy - \iint_{D_{R\varepsilon}} (R - y)(u_{x}^{2} + u_{y}^{2}) dx dy + \iint_{D_{R\varepsilon}} u_{y}u dx dy =$$

$$= -\iint_{D_{R\varepsilon}} (R - y)(u_{x}^{2} + u_{y}^{2}) dx dy - \int_{A_{\varepsilon}B_{\varepsilon}} (R - \varepsilon)u_{y}u dx - \int_{A_{\varepsilon}B_{\varepsilon}} \frac{u^{2}}{2} dx + \int_{A_{R}B_{R}} \frac{u^{2}}{2} dx =$$

$$= -\iint_{D_{R\varepsilon}} (R - y)(u_{x}^{2} + u_{y}^{2}) dx dy - \int_{A_{\varepsilon}B_{\varepsilon}} (R - \varepsilon)(u_{y} - u_{x}) u dx - \int_{A_{\varepsilon}B_{\varepsilon}} (R - \varepsilon)u_{x}u dx - \int_{A_{\varepsilon}B_{\varepsilon}} \frac{u^{2}}{2} dx + \int_{A_{\varepsilon}B_{\varepsilon}} \frac{u^{2}}{2} dx + \int_{A_{\varepsilon}B_{\varepsilon}} \frac{u^{2}}{2} dx$$

Отсюда следует

$$\iint_{D_{R\varepsilon}} (R - y) \left(u_x^2 + u_y^2 \right) dx dy + \frac{1}{2} \int_{A_{\varepsilon} B_{\varepsilon}} u^2 dx + \frac{R - \varepsilon}{2} u^2 (\pi, \varepsilon) =$$

$$= \int_{A_{\varepsilon} B_{\varepsilon}} (R - \varepsilon) \left(u_x - u_y \right) u dx + \frac{1}{2} \int_{A_R B_R} u^2 dx \leqslant$$

$$\leqslant (R - \varepsilon) \left[\int_{A_{\varepsilon} B_{\varepsilon}} (u_y - u_x)^2 dx \right]^{\frac{1}{2}} \left[\int_{A_{\varepsilon} B_{\varepsilon}} u^2 dx \right]^{\frac{1}{2}} + \frac{1}{2} \int_{A_R B_R} u^2 dx \leqslant$$

$$\leqslant (R - \varepsilon)^2 \int_{A_{\varepsilon} B_{\varepsilon}} (u_y - u_x)^2 dx + \frac{1}{4} \int_{A_{\varepsilon} B_{\varepsilon}} u^2 dx + \frac{1}{2} \int_{A_R B_R} u^2 dx,$$

$$\iint_{D_{R\varepsilon}} (R - y) \left(u_x^2 + u_y^2 \right) dx dy + \frac{1}{4} \int_{A_{\varepsilon} B_{\varepsilon}} u^2 dx + \frac{R - \varepsilon}{2} u^2 (\pi, \varepsilon) \leqslant$$

$$\leqslant (R - \varepsilon)^2 \int_{A_{\varepsilon} B_{\varepsilon}} (u_y - u_x)^2 dx + \frac{1}{2} \int_{A_R B_R} u^2 dx$$

$$\leqslant (R - \varepsilon)^2 \int_{A_{\varepsilon} B_{\varepsilon}} (u_y - u_x)^2 dx + \frac{1}{2} \int_{A_R B_R} u^2 dx$$

Устремим $\varepsilon \to 0+0$, тогда в силу неравенства $(a-b)^2 \leqslant 2a^2+2b^2$

$$\lim_{\varepsilon \to 0+0} \int_{A_{\varepsilon} B_{\varepsilon}} (u_y - u_x)^2 dx = 0$$

и получим соотношение

$$\lim_{\varepsilon \to 0+0} \iint\limits_{D_{R\varepsilon}} \left(R-y\right) \left(u_x^2+u_y^2\right) dx dy + \frac{1}{4} \int\limits_0^\pi u^2(x,0) dx + \frac{R}{2} u^2(\pi,0) \leqslant \frac{1}{2} \int\limits_{A_R B_R} u^2 dx$$

Устремим теперь $R \to \infty$, тогда $\int\limits_{A_R B_R} u^2 dx \to 0$, тем самым, это возможно только в случае $u(x,y)\equiv 0$ в \overline{D} . Теорема доказана.

Теорема 3. Пусть u(x,y) - решение задачи (1)-(4), тогда u_x,u_y представимы в виде

$$u_{y}(x,y) = -Im \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_{0}^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt, \tag{7}$$

$$u_x(x,y) = Re \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_0^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt. \tag{8}$$

Доказательство. Рассмотрим равенство (6). Система синусов $\left\{\sin\left[\left(n+\frac{1}{2}\right)x+\frac{\pi}{4}\right]\right\}_{n=0}^{\infty}$ образует базис в $L_2(0,\pi)$. Поэтому для коэффициентов $A_n\left(n+\frac{1}{2}\right)$ справедливо следующее представление [2]:

$$A_n\left(n+\frac{1}{2}\right) = \int_0^\pi h_{n+1}(t) \frac{\varphi(t)}{\sqrt{2}} dt,$$

где

$$h_n(t) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\operatorname{tg} t/2)^{\gamma/\pi}} \sum_{k=1}^n \sin kt B_{n-k}, \ B_l = \sum_{m=0}^l C_{\gamma/\pi}^{l-m} C_{-\gamma/\pi-l}^m (-1)^{l-m}, \ C_l^m = \frac{l(l-1)\dots(l-n+1)}{n!}.$$

Пусть u(x,y) - решение задачи (1)-(4), тогда

$$u(x,y) = \sum_{n=0}^{\infty} A_n e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right]$$

и соотвественно

$$u_y(x,y) = -\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) e^{-\left(n + \frac{1}{2} \right)y} \sin\left[\left(n + \frac{1}{2} \right) x \right]$$

Здесь как раз возникает нужный нам коэффициент $A_n\left(n+\frac{1}{2}\right)$, поэтому

$$u_{y}(x,y) = -\sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right] dt$$

Учитывая равенство $\sin\left[\left(n+\frac{1}{2}\right)x\right]=Im\ e^{i\left(n+\frac{1}{2}\right)x},$ запишем формулу

$$u_{y}(x,y) = -Im \sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{-\left(n + \frac{1}{2}\right)y} e^{i\left(n + \frac{1}{2}\right)x} dt$$

Обозначим z = x + iy

$$u_y(x,y) = -Im \sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{i\left(n+\frac{1}{2}\right)z} dt$$

Для дальнейших выкладок нам было бы удобно, чтобы суммирование начинолось от 1, а не 0, поэтому сделаем замену m=n+1

$$u_y(x,y) = -Im \sum_{m=1}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_m(t) e^{i\left(m - \frac{1}{2}\right)z} dt =$$

$$=-Im e^{-\frac{iz}{2}} \sum_{m=1}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_m(t) e^{imz} dt.$$

Поменяем местами знаки интергирования и суммирования

$$u_y(x,y) = -Im \ e^{-\frac{iz}{2}} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} \sum_{m=1}^{\infty} h_m(t) e^{imz} dt$$

Введём новое обозначение:

$$I(t,z) = \sum_{m=1}^{\infty} h_m(t)e^{imz}$$

$$I(t,z) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{n=1}^{\infty} \sum_{k=1}^{n} \sin kt B_{n-k} e^{inz} = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} \sin kt \sum_{n=k}^{\infty} e^{inz} B_{n-k}$$

и новый индекс m=n-k

$$I(t,z) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} \sin kt \sum_{m=0}^{\infty} e^{i(m+k)z} B_m = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} e^{ikz} \sin kt \sum_{m=0}^{\infty} e^{imz} B_m$$

Первый ряд можем вычислить по формуле суммы бесконечно убывающей геометрической прогрессии

$$\sum_{k=1}^{\infty} e^{ikz} \sin kt = \sum_{k=1}^{\infty} e^{ikz} \frac{1}{2i} \left(e^{ikt} - e^{-ikt} \right) = \frac{1}{2i} \left(\frac{1}{1 - e^{i(z+t)}} - \frac{1}{1 - e^{i(z-t)}} \right) = \frac{1}{2i} \frac{e^{i(z+t)} - e^{i(z-t)}}{\left(1 - e^{i(z+t)} \right) \left(1 - e^{i(z-t)} \right)} = \frac{e^{iz} \sin t}{\left(1 - e^{i(z+t)} \right) \left(1 - e^{i(z-t)} \right)}$$

Рассмотрим второй ряд:

$$\sum_{l=0}^{\infty} e^{ilz} B_l = \sum_{l=0}^{\infty} e^{ilz} \sum_{m=0}^{l} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{-\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{-\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} C_$$

Введём новый индекс суммирования k=l-m

$$\begin{split} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} e^{i(m+k)z} C_{\gamma/\pi}^k C_{-\gamma/\pi-\beta}^m (-1)^k &= \sum_{m=0}^{\infty} e^{imz} C_{-\gamma/\pi-\beta}^m \sum_{k=0}^{\infty} C_{\gamma/\pi}^k (-1)^k e^{ikz} = (1+e^{iz})^{-\gamma/\pi-\beta} (1-e^{iz})^{\gamma/\pi} = \\ &= (1+e^{iz})^{1/2} (1-e^{iz})^{1/2} = \sqrt{1-e^{i2z}}, \end{split}$$

так как в нашем случае $\beta=-1,\ \gamma=\pi/2.$ Окончательно получаем формулу

$$\begin{split} u_y(x,y) &= -Im \ e^{\frac{-iz}{2}} \int\limits_0^\pi \frac{\varphi(t)}{\sqrt{2}} I(t,z) dt = \\ &= -Im \ e^{\frac{-iz}{2}} \int\limits_0^\pi \frac{2}{\pi} \frac{(2\cos t/2)^\beta}{(\operatorname{tg} t/2)^{\gamma/\pi}} \frac{e^{iz} \sin t}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \sqrt{1 - e^{i2z}} \frac{\varphi(t)}{\sqrt{2}} dt = \\ &= -Im \ \frac{2}{\pi} e^{\frac{-iz}{2}} \int\limits_0^\pi \frac{1}{2\cos t/2\sqrt{\tan t/2}} \frac{e^{iz} \sin t}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \sqrt{1 - e^{i2z}} \frac{\varphi(t)}{\sqrt{2}} dt, \end{split}$$

т.е. представление:

$$u_y(x,y) = -Im \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_0^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt.$$

Рассуждая аналогично, получим представление

$$u_x(x,y) = Re \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_{0}^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt.$$
 (9)

Теорема доказана.

- СПИСОК ЛИТЕРАТУРЫ [1] Моисеев Е.И. Моисеев Т.Е. Вафадорова Г.О. Об интегральном представлении задачи Неймана-Трикоми для уравнения Лаврентьева-Бицадзе // Дифференциальные уравнения, **2015** Т. 51. №8. С.1070-1075
- [2] $\it Mouceeb~E.H.~O$ базисности одной системы синусов $\it // \it Дифференциальные$ уравнения, **1987** T. 23. №1. C.177-189