Inverse deformation gradient

1 Deformation gradient

Let $\phi(\cdot,t):\Omega^0\to\Omega^t$ be the flow map of our material. The deformation gradient $\mathbf{F}(\cdot,t):\Omega^0\to\mathbb{R}^{2\times 2}$ is defined as

$$\mathbf{F}(\mathbf{X},t) = \frac{\partial \phi}{\partial \mathbf{X}}(\mathbf{X},t), \text{ or } F_{ij}(\mathbf{X},t) = \frac{\partial \phi_i}{\partial X_i}(\mathbf{X},t).$$

2 Inverse material mapping

If $\phi(\cdot,t):\Omega^0\to\Omega^t$ is the flow map of our material, let $\phi^{-1}(\cdot,t):\Omega^t\to\Omega^0$ be the inverse flow map. Then, by definition

$$\mathbf{X} = \phi^{-1}(\phi(\mathbf{X}, t), t), \quad \forall \mathbf{X} \in \Omega^0, \ \forall t \ge 0$$

and

$$\mathbf{x} = \phi(\phi^{-1}(\mathbf{x}, t), t), \quad \forall \mathbf{x} \in \Omega^t, \ \forall t \ge 0.$$

3 Inverse deformation gradient

The inverse of the deformation gradient $\mathbf{F}^{-1}(\cdot,t):\Omega^0\to\mathbb{R}^{2\times 2}$ is the mapping defined as

$$\mathbf{F}^{-1}(\mathbf{X},t) = (\mathbf{F}(\mathbf{X},t))^{-1}$$

In other words, at any point $\mathbf{X} \in \Omega^0$ and at any time $t \geq 0$, the function $\mathbf{F}^{-1}(\mathbf{X}, t)$ is defined to be the inverse of the deformation gradient at that point and time.

4 Deformation gradient of inverse mapping

We can also define $\frac{\partial \phi^{-1}}{\partial \mathbf{x}}(\cdot,t): \Omega^t \to \mathbb{R}^{2\times 2}$ as a function over Ω^t . It is just the Jacobian of the inverse mapping. I sometimes use the notation

$$\frac{\partial \phi^{-1}}{\partial \mathbf{x}} = \frac{\partial \mathbf{X}}{\partial \mathbf{x}}, \text{ or } \frac{\partial \phi_i^{-1}}{\partial x_j}.$$

5 Inverse of the deformation gradient is the pull back of the inverse deformation gradient

I know that sounds confusing, but it is an important relation. That is, the inverse of the deformation gradient $\mathbf{F}^{-1}(\cdot,t):\Omega^0\to\mathbb{R}^{2\times 2}$ is the pull back of $\frac{\partial\phi^{-1}}{\partial\mathbf{x}}(\cdot,t):\Omega^t\to\mathbb{R}^{2\times 2}$. We can show this by differentiating the relation

$$\mathbf{X} = \phi^{-1}(\phi(\mathbf{X}, t), t), \quad \forall \mathbf{X} \in \Omega^0, \ \forall t \ge 0$$

that is

$$\mathbf{I} = \frac{\partial \phi^{-1}}{\partial \mathbf{x}} (\phi(\mathbf{X}, t), t) \frac{\partial \phi}{\partial \mathbf{X}} (\mathbf{X}, t)$$

where I is the identity matrix. In index notation, this reads

$$\delta_{ij} = \frac{\partial \phi_i^{-1}}{\partial x_k} (\phi(\mathbf{X}, t), t) \frac{\partial \phi_k}{\partial X_j} (\mathbf{X}, t).$$

Now, since $\frac{\partial \phi}{\partial \mathbf{X}}(\mathbf{X}, t) = \mathbf{F}(\mathbf{X}, t)$ and $\mathbf{I} = \frac{\partial \phi^{-1}}{\partial \mathbf{x}}(\phi(\mathbf{X}, t), t) \frac{\partial \phi}{\partial \mathbf{X}}(\mathbf{X}, t)$, $\frac{\partial \phi^{-1}}{\partial \mathbf{x}}(\phi(\mathbf{X}, t), t)$ must be the inverse of $\mathbf{F}(\mathbf{X}, t)$. In other words,

$$\mathbf{F}^{-1}(\mathbf{X},t) = \frac{\partial \phi^{-1}}{\partial \mathbf{x}}(\phi(\mathbf{X},t),t), \quad \forall \mathbf{X} \in \Omega^0, \ t \ge 0.$$

I also sometimes use the notation

$$F_{ij}^{-1} = \frac{\partial X_i}{\partial x_j} = \frac{\partial \phi_i^{-1}}{\partial x_j}.$$

Finally, of course this also implies that $\frac{\partial \phi^{-1}}{\partial \mathbf{x}}(\cdot,t):\Omega^t\to\mathbb{R}^{2\times 2}$ is the push forward of $\mathbf{F}^{-1}(\cdot,t):\Omega^0\to\mathbb{R}^{2\times 2}$.