CS 228 : Logic in Computer Science

Krishna. S

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

2/12

- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : { $a, b, a \cup b$ }. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- ▶ Possibilities at each state : maximally consistent subsets of B
 - \blacktriangleright {a, $\neg b$, a Ub}
 - $\blacktriangleright \{ \neg a, b, a \cup b \}$
 - ▶ {a, b, a Ub}
 - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
- Our initial state(s) must guarantee truth of $a \cup b$. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 $\rightarrow \{a, b, a \cup b\}$

LTL to GNBA : Accepting States

$$\rightarrow \boxed{\{a,b,a\,\mathsf{U}b\}}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

Construct GNBA for $\neg(a \cup b)$.

10/1

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - \blacktriangleright { a, c, ψ, φ }
 - $\{\neg a, c, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\qquad \qquad \bullet \quad \{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \}$
 - $\{\neg a, \neg c, \neg \psi, \neg \varphi\}$

$$\rightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow$$
 $\{\neg a, c, \psi, \varphi\}$

$$\{a, \neg c, \neg \psi, \neg \varphi\}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\longrightarrow \{a, \neg c, \neg \psi, \varphi\}$$

12/12