Átomo de Hidrogênio

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

PROBLEMA 0.1

1B03

Assinale a alternativa com o número máximo de elétrons com número quântico secundário l no átomo de hidrogênio.

- 2l + 1
- 4l + 2
- c 2l + 2

PROBLEMA 0.2

1B19

Assinale a alternativa com o número máximo de elétrons com número quântico principal n no átomo de hidrogênio.

- 2n + 1
- 4n + 2

- $3n^2$

PROBLEMA 0.3

1B04

Considere os orbitais a seguir.

Assinale a alternativa que relaciona os orbitais que podem existir no átomo de hidrogênio.

- 2d

PROBLEMA 0.4

1B05

Considere os orbitais a seguir.

Assinale a alternativa que relaciona os orbitais que podem existir no átomo de hidrogênio.

- 1p
- 5f

- 6g

PROBLEMA 0.5

1B06

Assinale a alternativa com o conjunto de números quânticos (n, l, m_l, m_s) que pode representar um orbital atômico.

- - (2,2,+1,+1/2) **B** (4,2,-3,-1/2) **C** (4,4,+2,-1/2)

- (5,0,0,+1)
- (6,4,+3,+1/2)

PROBLEMA 0.6

1B07

Assinale a alternativa com o conjunto de números quânticos (n, l, m_l, m_s) que pode representar um orbital atômico.

- **A** (1, 1, 0, +1/2) **B** (5, 3, -3, -1/2) **C** (5, 4, -4, -1/2)
- **D** (5,5,+4,-1/2) **E** (6,4,+5,+1/2)

PROBLEMA 0.7

1B08

Assinale a alternativa com a representação correta dos números de spin $m_s = 1/2$ e $m_s = -1/2$.

- Rotação do elétron em sentido horário e anti-horário, respectivamente.
- Rotação do elétron em sentido anti-horário e horário, respectivamente.
- Sentido do vetor momento magnético para cima e para baixo, respectivamente.
- Sentido do vetor momento magnético para baixo e para cima, respectivamente.
- Não existem análogos clássicos para os números quânticos de spin.

PROBLEMA 0.8

1B09

Considere a isosuperfície de um orbital do átomo de hidrogênio.

Assinale a alternativa com a identidade desse orbital.

- $2p_z$
- - $3p_z$
- C 3d₇₂
- 4p2
- $4d_{z2}$

O gráfico abaixo, mostra a função de onda de um orbital do átomo de hidrogênio.

Assinale a alternativa com a identidade desse orbital.

A 1s

В

2p

C 3s

3р

E 4s

1B10

PROBLEMA 0.10

1B11

- 1. A carga nuclear efetiva independe do número de elétrons presentes em um átomo.
- 2. Os elétrons de um orbital s blindam mais efetivamente da carga do núcleo que os elétrons de outros orbitais devido à maior penetrabilidade dos orbitais s.
- 3. Elétrons com $\mathfrak{l}=2$ blindam mais efetivamente que elétrons com $\mathfrak{l}=1$.
- A carga nuclear efetiva de um elétron em um orbital p é menor que a de um elétron em um orbital s da mesma camada.

Assinale a alternativa que relaciona as proposições corretas.

A

1, 2 e 3

B 1, 2 e 3

c 1, 2 e 3

D 1, 2 e 3

E 1, 2 e 3

PROBLEMA 0.11

- 1. A Z_{eff} de um elétron em um orbital 1s é igual à Z_{eff} de um elétron em um orbital 2s.
- 2. A $Z_{\rm eff}$ de um elétron em um orbital 2s é igual à $Z_{\rm eff}$ de um elétron em um orbital 2p.
- 3. Um elétron em um orbital 2s tem a mesma energia que um elétron no orbital 2p.
- 4. Os elétrons nos orbitais 2p têm números quânticos ms com *spins* de sinais contrários.

Assinale a alternativa que relaciona as proposições *incorretas*.

A 1, 2 e 3

B 1, 2 e 4

c 1, 3 e 4

D 2, 3 e 4

E 1, 2, 3 e 3

PROBLEMA 0.12

1B13

- 1. $|E_{2s}| = |E_{2p}|$ para átomo de hidrogênio.
- 2. $|E_{2s}| = |E_{2p}|$ para o íon de hélio carregado com uma carga positiva.
- 3. $|E_{2s}| > |E_{2p}|$ para o átomo de hélio.
- 4. $|E_{2s}| > |E_{2p}|$ para o ânion de hélio.

Assinale a alternativa que relaciona as proposições corretas.

A 1, 2 e 3

1, 2 e 4

c 1, 3 e 4

D 2, 3 e 4

E 1, 2, 3 e 3

PROBLEMA 0.13

1B14

Assinale a alternativa com o número de elétrons com número quântico magnético nulo no estado fundamental do germânio.

c 15

A 10

B 12

[

7 **E**

PROBLEMA 0.14

1B15

Assinale a alternativa com a configuração eletrônica do estado fundamental do vanádio.

 $A \quad [Ar]4s^13d^4$

B $[Ar]4s^23d^3$

(Ar) $4s^03d^5$

D $[Ar]4s^13d^5$

Assinale a alternativa com a configuração eletrônica do estado fundamental do chumbo.

- $[Xe]4f^{14}5d^{10}6s^2$
- $[Xe]4f^{14}5d^{10}6s^26p^1$
- $[Xe]4f^{14}5d^{10}6s^26p^2$
- $[Xe]4f^{14}5d^{10}6s^{1}6p^{3}$
- $[Xe]4f^{14}5d^{10}6p^4$

PROBLEMA 0.16

1B16

Assinale alternativa com a espécie cuja configuração eletrônica no seu estado fundamental é [Ar]4s²3d¹⁰.

- Cu^+
- Sn^{2+}
- Cd^{2+}

- Ge^{2+}
- Zn^+

PROBLEMA 0.17

1B21

Assinale a alternativa com o número atômico do cátion divalente paramagnético que possui, para seu elétron mais energético no estado fundamental, números quânticos: n = 3, l = 2, m = +2.

- 24
- 25
- 26
 - - 27
- 28

PROBLEMA 0.18

1B18

Assinale a alternativa com a configuração eletrônica do estado fundamental do cromo.

- Caixa
- Caixa
- Caixa

- Caixa
- Caixa

PROBLEMA 0.19

1B22

Assinale a alternativa com a configuração eletrônica do estado fundamental do cobre.

- $[Ar]4d^23d^8$
- $[Ar]4s^23d^9$
- $[Ar]4s^{1}3d^{10}$
- $[Ar]4s^23d^{10}$
- $[Ar]4s^{1}3d^{10}4p^{1}$

PROBLEMA 0.20

1B23

Assinale a alternativa com a configuração eletrônica no estado fundamental átomo de paládio, espécie diamagnética.

- [Kr]4d¹⁰
- $[Kr]5s^14d^9$
- $[Kr]5s^14d^{10}$
- $[Kr]5s^24d^8$
- $[Kr]5s^24d^{10}$

- 18
- C

20

2

 $1s^{2}2s^{1}$

cie com paramagnetismo mais acentuado.

- $1s^22s^22p^1$
- $1s^22s^22p^3$

PROBLEMA 0.21

- $1s^22s^22p^6$
- $[Ar]4s^23d^{10}$

PROBLEMA 0.22

1B25

Considere as espécies A, B, C e D, que possuem 9, 11, 20 e 10 prótons e 10, 11, 18, 10 elétrons, respectivamente. Assinale a alternativa correta.

Assinale a alternativa com a configuração eletrônica da espé-

- A espécie **B** é um gás nobre.
- A camada de valência da espécie A no estado fundamental é $ns^2 np^5$.
- A camada de valência da espécie C no estado fundamental é $ns^2 np^6$.
- A espécie **D** é um metal eletricamente neutro.
- As espécies A e C são cátions.

PROBLEMA 0.23

1B26

Considere composto iônico binário, onde o cátion, de carga +2 possui 12 prótons e o ânion, de carga −3 possui 10 elétrons. Assinale a alternativa que mais se aproxima da massa molar desse composto.

- 38 g
- 50 g
- 90 g

- 100 g
- 122 g

PROBLEMA 0.24

1B27

Considere três nuclídeos A, B e C, sendo A e B isótopos, A e C isótonos, **B** e **C** isóbaros e o número de massa de **A** é 39. A soma do número de prótons de A, B e C é 58 e a soma do número de nêutrons é 61.

Assinale a alternativa com o número de nêutrons de B.

PROBLEMA 0.25

1B28

21

Considere três nuclídeos, A, B e C, com números atômicos consecutivos. B e C são isóbaros, A e C são isodiáferos, B possui 32 nêutrons e o número de massa de A é 38. Assinale a alternativa com o número atômico de B.

19

- 17

Gabarito

1.	В	2.	D	3.	D	4.	D	5.	E
6.	C	7.	E	8.	В	9.	D	10.	В
11.	E	12.	E	13.	C	14.	В	15.	C
16.	D	17.	D	18.	В	19.	C	20.	A
21.	C	22.	C	23.	D	24.	E	25.	C