A3AEAU11 : Commande des Systèmes Linéaires Continus

<u>TP1-2 – Modélisation d'un moteur à courant continu</u>

Melik MILI - Nicolas BREIL - Juliette BENDIB

3A FISA AE

Table des matières

TP1 Partie 1 – Description du module électromécanique :1
TP1 Partie 2 - Étude du système :2
Travail à effectuer (aimant position levée)2
Travail à effectuer
Calculs des paramètres : 5
 2) Peut-on procéder directement à l'analyse fréquentielle entre la tension d'induit Ve et la position de l'arbre moteur θ ? Expliquer pourquoi ?
6) Déduire les paramètres Km et Tm7
TP2 – Commande d'un moteur à courant continu8
1) Lorsque K = 1, déterminer par le calcul, la marge de phase du système à partir de la fonction de transfert identifiée dans la manipulation 1 (valeurs des paramètres à valider avec l'enseignant). On vérifiera en séance cette valeur sous Matlab grâce à la fonction margin
Calcul d'une commande par retour d'état
1) Calculer une commande par retour d'état de telle sorte que le système bouclé se comporte comme un système du second ordre avec un dépassement inférieur à 5% et de temps de réponse à 2% inférieur à tr = 0, 8 s. Pour faire ces calculs, on choisira la représentation d
3) Déterminer les valeurs de K1 et K2 conduisant à une marge de phase de 45 degrés et une erreur de
traînage deux fois plus petite que celle obtenue à la question 4 du paragraphe 2.214
4) Calculer la fonction de transfert du système en boucle fermée
ANNEXE

TP1 Partie 1 – Description du module électromécanique :

Figure 1 : Module Électromécanique

Figure 2 : Schéma bloc du système

Ce module est un système de commande d'ordre 1 visant à piloter un moteur à courant continu. Il est régi par la fonction de transfert $G_s=rac{K_m}{1+T_mS}$

Pour ce TP, nous allons devoir caractériser ce système en déterminant les différentes variables du système : K_s ; K_a ; K_m ; T_m .

TP1 Partie 2 - Étude du système :

Travail à effectuer (aimant position levée)

Détermination des gain Ks et Kg.

Pour déterminer Ks, il faut regarder le gain du potentiomètre. Pour cela, nous devons positionner le potentiomètre à différents angles et regarder la tension Vs de sortie. Nous en avons déduit que **Ks=0.0279**. La fonction pôlyfit de matlab nous permet de trouver la courbe qui passe au mieux par tous les points et d'en déduire Ks.

potentiometre (angle)	Vs (V)
0	-0,97
30	-0,15
60	0,66
90	1,55
120	2,43
150	3,29
180	4,13
210	4,78
240	-4,28
270	-3,51
300	-2,63
330	-1,86
360	-1

Pour déterminer Kg, il faut regarder le gain au niveau de la génératrice tachymétrique. Pour différentes valeurs en entrée (Ve), nous avons relevé les valeurs en RPM ainsi que la valeur Vg. Ensuite, RPM est multiplié par 9 comme sur le schéma bloc et convertit en rad/s grâce à la formule suivante : $\frac{2*\pi*RPM*9}{60}$

Ve (V)	RPM (Rotations par minute)	Vg (V)	rad/s	RPM*9
1	42	0,68	39,564	378
2	100	1,65	94,2	900
3	160	2,62	150,72	1440
4	218	3,62	205,356	1962
5	278	4,58	261,876	2502

Une commande matlab nous permet de trouver le gain Kg. Dans l'exemple suivant, la fonction polyfit permet de déterminer la courbe qui passe au mieux par tous les points. On sait que la fonction est d'ordre 1 en traçant les courbes sur Excel donc la fonction sera de la forme ax+b. Le gain correspond à

a est sera donc Ks=0.017. Pour vérifier que le gain est correct, nous pouvons tracer une courbe théorique ainsi qu'une courbe expérimentale et regarder la correspondance des courbes.

```
% (RPM * 9 * 2 * pi) / 60 en fonction de Vg
[a3] polyfit((rpm_mes*9*2*pi)/60,vg,1)

figure
% Tracé de la courbe des (valeurs relevées * 9 * 2 * pi) / 60
plot((rpm_mes*9*2*pi)/60,vg,'-ok')
hold on
% Tracé de la courbe théorique * 9 * 2 * pi) / 60
vg_theo3 = a3(1)*(rpm_theo*9*2*pi)/60+a3(2);
plot((rpm_theo*9*2*pi)/60,vg_theo3,'--r');

Kg=a3(1);
Ve=3; %échelon
Vg=2.65; %trouvé au voltmetre
Km=Vg/(Ve*Kg) % Vg=Ve*Kg*Km
```

Figure 3: Script matlab de vérification de Kg

Sur le graphe suivant, nous avons superposé les différentes valeurs que nous avons mesurées en rpm avec les valeurs théoriques attendues. Ce graphe est retourné par la script ci-dessus.

Figure 4: Kg en fonction de Kg attendu

Travail à effectuer

1) Pour une entrée Ve en échelon de position d'une amplitude de 3 volts, relever la réponse en tension Vg du système. En déduire la valeur de Km et Tm. Vérifier par simulation sous Simulink la validité du résultat obtenu.

Détermination de Km et Tm :

En envoyant un échelon d'amplitude 3 volts en entrée, on relève une sortie Vg de 2.65.

Le schéma bloc nous permet d'affirmer que Vg = Ve.Kg.Km

$$Km = \frac{Vg}{Ve.Kg}$$

On peut remplacer par les valeurs relevées : $\textit{Km} = \frac{2.65}{3*0.017} = \textbf{51.96}$

Tm a été trouvé à l'oscilloscope. C'est le temps de montée à 63%. Il est de Tm=0.254s

En fréquentiel, on se met en basse fréquence et on regarde à -3db. La fréquence est de 3.6 Hz.

$$Tm = \frac{1}{Fm} = 0.277s$$

Les résultats ont été vérifiés sur simulink.

Figure 5: Simulation simulink

Diagramme de Bode de la fonction de transfert :

Figure 6 : Diagramme de Bode de G(s)

Calculs des paramètres :

2) <u>Peut-on procéder directement à l'analyse fréquentielle entre la tension d'induit Ve et la position de l'arbre moteur θ ? Expliquer pourquoi ?</u>

On peut voir sur notre diagramme de Bode que la partie en basse fréquence est constante. En envoyant des signaux Ve continu ou basse fréquence ($<\frac{1}{T_m}$) avec différents niveaux d'amplitudes, on pourra déterminer la position θ du moteur.

3) <u>Entre quelles grandeurs doit-on effectuer l'analyse fréquentielle ? Préciser les grandeurs mesurables sur la platine que vous utiliserez.</u>

On va obtenir des radiant / volt x seconde car le gain K n'a pas d'unité et on a des volts en sortie. On doit effectuer l'analyse fréquentielle entre V_{tacho} et V_e . On mesurera le signal d'entrée Ve et le signal de sortie sur le port de sortie du tachymètre.

4) Pour des fréquences allant de 0,05 Hz à 10 Hz et une tension d'entrée de V_e = 2 volts, relever la courbe de réponse en fréquence du système : appliquer une entrée sinusoïdale d'amplitude 2 volts, et pour chaque fréquence, relever le gain et le déphasage du signal de sortie par rapport au signal d'entrée.

					Gain
fréquence	Ve(jaune)	Vs(vert)	Phase	rad	(Vs/Ve)
0,05	3,96	3,35	0	0	0,8459596
0,5	3,96	2,6	35	0,61055556	0,65656566
1	3,98	1,79	55	0,95944444	0,44974874
2	3,98	1,07	70	1,22111111	0,26884422
3	3,98	0,76	74	1,29088889	0,19095477
4	3,98	0,58	82	1,43044444	0,14572864

5	3,98	0,45	82	1,43044444	0,11306533
6	3,98	0,378	85	1,48277778	0,09497487
7	3,98	0,326	87	1,51766667	0,08190955
8	3,98	0,285	88	1,53511111	0,07160804
9	3,98	0,257	89	1,55255556	0,06457286
10	3,98	0,233	90	1,57	0,05854271

5) <u>Tracer sous Matlab les courbes de réponse en fréquence pour la fonction de transfert θ(s)/Ve(s) dans le plan de Black et dans le plan de Bode. On utilisera les fonctions (semilogx, grid, title, xlabel, ylabel...)</u>

Les graphes sont disponibles en grand en annexe.

Figure 7: Diagramme de Bode [échelle log en Hz]

Figure 8: Plan de black-nichols

6) <u>Déduire les paramètres Km et Tm.</u>

En regardant le bode, on peut relever $Fm = 5 Hz \rightarrow Tm = 0.2s$

et **Km*Ve*Kg*9= 40**
$$Km = \frac{40}{Ve*Kg*9}$$

$$Km = \frac{40}{5*0.017*9} = 52$$

TP2 – Commande d'un moteur à courant continu

Calcul d'un correcteur proportionnel

 Lorsque K = 1, déterminer par le calcul, la marge de phase du système à partir de la fonction de transfert identifiée dans la manipulation 1 (valeurs des paramètres à valider avec l'enseignant). On vérifiera en séance cette valeur sous Matlab grâce à la fonction margin.

Colda mandad Son
Calail de la manez de phase pour k=1
(P(Y) = 1+ 22C = + 22C
G(x) = 7,950 - 7,9502 = 1 0,2542+2 16,254022 = 1
63,362 = 0,0645 a + w2
On somplace cu² par x pour simplifier le caloul: 63, 362 = 0,064522+ x
-0.0645
ID = 52-420,0645 x(-63,362) = JAA,35 = 9,17-20
$\frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} = \frac{1}$
2 = -71-4 = 2 2800000 = -1-10 during month one
(82 = -40) — Par regues propagation con
E 1.22 21
54,52 = 4,95 nad/s
(0.55) (0.55) (0.55) (0.55) (0.55)
ang(G(D)) = andram (9,85) = andram (0,785) ~ 3866°
(0234.(935)2)
Margy de phase: 33669
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Marge de phase : 38.66 deg

Sur la figure 7 apparait la marge de phase calculée par matlab avec la fonction margin sur le script suivant :


```
% Question 4 :
% Fonction de transfert :
sys=tf([0.884]*9,[0.254 1 0]);
% Calculer la réponse en fréquence
margin(sys)
[mag, phase, w] = margin(sys);
% Convertir les magnitudes en décibels (logarithmique)
mag dB = 20*log10(squeeze(mag));
% Tracer le gain (en dB)
figure;
subplot(2,1,1); % Premier subplot (gain)
semilogx(w, mag_dB); % Semilogx pour échelle logarithmique
grid on;
xlabel('Fréquence (Hz)');
ylabel('Gain (dB)');
title('Diagramme de Bode - Gain');
% Tracer la phase
subplot(2,1,2); % Deuxième subplot (phase)
semilogx(w, squeeze(phase)); % Phase en degrés
grid on;
xlabel('Fréquence (Hz)');
ylabel('Phase (degrés)');
title('Diagramme de Bode - Phase');
```

Figure 9 : Script matlab tracé de Bode et fonction margin

2) <u>Déterminer la valeur de K conduisant à une marge de phase de 45 degrés. On vérifiera en séance cette valeur graphiquement sous Matlab en effectuant le tracé 10 de Bode (fonction bode), et/ou de Black (fonction nichols), ou en utilisant l'outil sisotool de Matlab.</u>

Marge do phase = 950
450 = Phase + 180°
~~
$-43S = -arbon\left(\frac{2}{2}\right)$
$135 = ardian\left(\frac{x}{9.754x^2}\right)$
156 = 2 (=)0397 = 2 = 2
$1.56 = \frac{x}{x} = 0.331 + \frac{x^2}{x^2} = \frac{x}{x}$
2,522 = 6,39 = -1 = (12-4x086x (-(12956K)2)
2. X 0,064516
$0.818 = -1 \pm 11 - 6 \times 0.062 \times (-63.3 k^2)$
0,818 = U7,958 K
$0,818 = 17,958 \times 0,818 = 17,958 \times 0,958 \times 0$
Sur graphe: 7m = = = 0,251 km=35
LOA verifier

3) <u>En déduire l'amortissement et les pôles du système en boucle fermée ainsi que la valeur du premier dépassement de la réponse à un échelon de position.</u>

	Toward à effectuer
	D = oup (- 377)] = 0,69
	am= = = = = +1276
	So same &
	Donc (2, 246)2
	3+3×062×45248×+(25,8)3
	and the same of th
1	Equation and aistrape: 13 + 10 1 + 52,5 - 2 + 1 to know to know to
	Jam Man
	10=1+ les limbac >(10-1) m= les=845. 10-6
	Tim Krinka
	252 = pr/km/x2 (=) p1 = 25/2×3×0/52 = 2300
	27 80 0M
	AN - En la
	AT THE MILE AND
	Table 7 5 4 Sel
	the state of the s

4) Pour cette valeur de K, calculer l'erreur de traînage. On rappelle que l'erreur de traînage est l'erreur à une entrée de type rampe dont la fonction de transfert est sous la forme A s 2

En conclusion, on peut dire que cette méthode de commande n'est pas réalisable. Dans un premier temps, les gains sont trop élevés, les AOP vont saturer et le niveau d'amplitude de la commande sera bien trop grand pour le moteur. De plus, l'erreur de trainage tend vers l'infini ce qui prouve que cette méthode n'est pas valide.

Calcul d'une commande par retour d'état

Figure 10 : Modèle de commande par retour d'état

Pour améliorer la commande du moteur, nous ajoutons un retour d'état (ici $\dot{\theta}$). Pour cela, nous allons devoir déterminer les gains K1 et K2.

1) Calculer une commande par retour d'état de telle sorte que le système bouclé se comporte comme un système du second ordre avec un dépassement inférieur à 5% et de temps de réponse à 2% inférieur à tr = 0, 8 s. Pour faire ces calculs, on choisira la

On obtient:

Pôles: 0 et -3.94

zeta=0.69

2) Calculer la fonction de transfert du système en boucle ouverte

3) <u>Déterminer les valeurs de K1 et K2 conduisant à une marge de phase de 45 degrés et une erreur de traînage deux fois plus petite que celle obtenue à la question 4 du paragraphe 2.2.</u>

	D= 2 0,884 KM 3(1+1,4548 KMK) - 0,0254 KB - 1 6,22 KM 0,0254 KM 0,0364 KM
	$\frac{3.8002_{5}}{2} = \frac{3.8002_{5}}{0.22}$ $\frac{2}{3.80000} = \frac{2}{0.22}$
V	De gour fixer J pour conserver sure manze de phose de 95°. Mathab permet de destermina I pour even sure monze de phose de 95°. Cour alteris sure arronde trainzage 2 pais plus patite, il famil de destermina.
Junion Kg	3 2KD = 0,890 KV

18 (N+ 1/22 KND) KD = 0/88C K-
an = (0,864 kg (1+145 kg) - D déduie un ouve modédo
Maintonont qu'on a V2, on peut colouler Krz.

Avec MATLAB, on obtient **K1 = 3.15**, **K2 = 3.53**

4) <u>Calculer la fonction de transfert du système en boucle fermée.</u> $Bf = \frac{Bo}{1+Bo}$

$$Bf = \frac{Bo}{1 + Bo}$$

5) <u>Déterminer l'amortissement, les pôles du système en boucle fermée ainsi que la valeur</u> du premier dépassement

Figure 11 : Montage avec retour d'état

A l'aide de deux montage amplificateur non-inverseur ainsi que de deux montage soustracteur, on réalise le schéma bloc de la figure 10.

Figure 12: Relevé de la consigne (jaune) et de la commande (vert) envoyées au système avec retour d'état

Les résultats obtenus sont très satisfaisants, on peut voir que le système n'a pas d'ondulation et qu'il comporte un temps de réponse rapide (ici inférieur à 0.2 secondes)

ANNEXE

