NBA Daily Fantasy Basketball Predictor 🌕

A comprehensive machine learning pipeline for NBA daily fantasy sports (DFS) that implements advanced prediction models and optimization algorithms to generate profitable lineups. This project represents cutting-edge research in applying temporal machine learning techniques to DFS competitions.

Overview

This project addresses a fundamental research question: Can advanced ML techniques that capture temporal dependencies in NBA data, combined with sophisticated optimization algorithms, generate consistent profits in DFS tournaments?

Key innovations include:

- **Temporal Modeling**: Rolling-window training with LSTM/RNN and XGBoost
- Advanced Feature Engineering: 900+ features including DvP metrics, cross-season stats, and volatility indicators
- Multi-Algorithm Optimization: Genetic algorithms, integer linear programming, and constraint solvers
- Comprehensive Backtesting: Evaluation across 8 NBA seasons with real contest data
- Salary-Based Stratification: Targeted modeling for high-value players

9 Quick Start

Prerequisites

- Python 3.8+
- For Apple Silicon GPU acceleration: PyTorch with MPS support

Installation

```
pash
git clone https://github.com/tzachpach/final_project_dfs.git
cd final_project_dfs
pip install -r requirements.txt
```

Running the Pipeline

```
python src/experiments/run_experiments.py
```

This command initiates the comprehensive experimental pipeline that:

- 1. Runs multiple ML models (XGBoost, LSTM/RNN) with various configurations
- 2. Tests different feature engineering strategies
- 3. Evaluates multiple optimization algorithms
- 4. Generates performance metrics and comparisons
- 5. Outputs results for analysis

Workflow Architecture

```
mermaid
graph TD
    A[Raw NBA Data] --> B[run_experiments.py]
    B --> C[Experimental Pipeline]
    C --> D[Model Training & Evaluation]
    D --> E[XGBoost Models]
    D --> F[LSTM/RNN Models]
    E --> G[Fantasy Point Predictions]
    F --> G
    G ---> H[Optimization Algorithms]
    H --> I[Genetic Algorithm]
    H --> J[Integer Linear Programming]
    H --> K[PuLP Solver]
    I --> L[Optimal DFS Lineup]
    J --> L
    K --> L
    L --> M[Contest Backtesting]
    M ---> N[Profit/Performance Analysis]
```

X Core Components

1. Experimental Framework (src/experiments/run_experiments.py)

- Main entry point for the entire pipeline
- Orchestrates systematic testing of different model configurations
- Manages hyperparameter grid searches

• Coordinates model training, evaluation, and comparison

2. Data Preprocessing (src.preprocessing)

- (merge_all_seasons()): Combines multiple season CSV files
- (preprocess_all_seasons_data()): Standardizes columns and cleans data
- Handles missing values and inconsistent formatting

3. Feature Engineering (src.data_enrichment)

- (add_time_dependent_features_v2()):
 - Rolling averages (3, 5, 10 game windows)
 - Performance differentials
 - Trend indicators
 - · Volatility metrics
- (add_running_season_stats()): Cumulative season statistics
- (add_last_season_data_with_extras()): Cross-season continuity features
- Defense vs Position (DvP) metrics for matchup analysis

4. Prediction Models

XGBoost

- Module: (src.predict_fp_xgb_daily)
- Features:
 - Daily and weekly rolling predictions
 - Salary quantile binning (top 10%, 25%, etc.)
 - Multi-target vs single-target modes
 - Feature reduction strategies (SelectKBest, PCA)

LSTM/RNN

- Module: (src.predict_fp_rnn_*)
- Features:
 - Sequential modeling with lookback windows
 - Per-player scaling
 - Hyperparameter tuning for architecture

Multi-target prediction capability

5. Lineup Optimization

- **Genetic Algorithm** (src.lineup_genetic_optimizer))
 - Population-based optimization
 - Custom mutation/crossover strategies
 - Constraint-aware evolution
- Integer Linear Programming (ILP)
 - Google OR-Tools implementation
 - Guaranteed optimal solutions
 - Exact constraint modeling
- PuLP Solver
 - Alternative ILP implementation
 - Enhanced debugging capabilities

Contest Outcome Analysis

The pipeline includes comprehensive backtesting against real DFS contest data to evaluate profitability:

Setup

- 1. Ensure you have contest data: (fanduel_nba_contests.csv)
- 2. Generated lineups from the experimental pipeline
- 3. Run analysis scripts or notebooks for performance evaluation

Key Metrics

- Win Rate: Percentage of contests where lineup would've won
- Cash Rate: Percentage of contests where lineup would've cashed (finished above payout threshold)
- **ROI**: Return on investment over time
- Profit Analysis: Daily and cumulative profit tracking

Performance Evaluation

The experimental framework automatically:

- Compares predicted vs actual fantasy points
- Tests lineup performance across thousands of historical contests
- Evaluates different model configurations for profitability
- Identifies optimal strategies for consistent returns

Sample Results (from paper)

- Tested across 8 NBA seasons (2017-2024)
- 17,811 contests per season average
- \$234M total contest participation per season
- Multiple model architectures compared for optimal performance

Project Structure

```
final_project_dfs/
─ src/
   — experiments/
    run_experiments.py # Main entry point - orchestrates all experiments
   preprocessing/
                            # Data cleaning and merging
   # Feature engineering modules
   predict_fp_rnn_*/
                           # RNN/LSTM prediction modules
   lineup_genetic_optimizer/ # Optimization algorithms (GA, ILP, PuLP)
 — data/
                             # NBA game logs and DFS contest data
— output_csv/
                             # Final lineup predictions and results
 — notebooks/
   analyze_contests_vs_pred.ipynb # Contest analysis
- models/
                            # Saved model files
                           # Python dependencies
requirements.txt
— main.py
                             # Legacy single-run script (deprecated)
```

Configuration

Experimental Pipeline Configuration

The (run_experiments.py) script orchestrates extensive hyperparameter searches across:

Model Parameters

- XGBoost: Tree depth, learning rate, estimators, feature reduction methods
- LSTM/RNN: Hidden layers, dropout, batch size, learning rate, lookback windows

Training Strategies

- Rolling Windows: Daily vs Weekly training periods
- Salary Binning: Top 10%, 25%, or full player pool
- Prediction Modes: Multi-target (individual stats) vs Single-target (direct FP)
- Feature Reduction: SelectKBest, PCA, or no reduction

Optimization Algorithms

The pipeline tests all three optimization methods:

- Genetic Algorithm with configurable population size and generations
- Integer Linear Programming with exact solutions
- PuLP solver for comparison and validation

Customization

To modify experimental parameters, edit the configuration in (run_experiments.py):

```
python

# Example: Adjust model hyperparameters

xgb_params = {
    'max_depth': [3, 5, 7],
    'eta': [0.01, 0.05, 0.1],
    'n_estimators': [100, 200, 300]
}

# Example: Change optimization settings
ga_config = {
    'population_size': 100,
    'generations': 50,
    'mutation_rate': 0.1
}
```

Feature Details

Temporal Features

- Rolling Statistics: 3, 5, and 10-game windows for all major stats
- Volatility Metrics: Standard deviation of recent performances
- Trend Indicators: Performance direction over last N games

- Rest Days: Games missed, back-to-back indicators
- Lagged Features: Day-to-day performance differences

Matchup-Specific Features

- Defense vs Position (DvP): How opposing teams defend specific positions
- Pace Metrics: Game tempo expectations
- Opponent Defensive Ratings: Team-specific defensive efficiency
- Historical H2H Performance: Player performance vs specific teams

Cross-Season Features

- Previous season averages and totals
- Career progression metrics
- Double-double and triple-double frequencies
- Exceptional game counts (20+ points, 10+ assists, etc.)

Advanced Metrics

- Usage Rate: Percentage of team plays while on court
- Efficiency Ratings: Offensive/Defensive/Net ratings
- True Shooting Percentage: Shooting efficiency accounting for 3PT and FT
- Player Impact Estimate (PIE): Overall contribution metric

Salary-Based Stratification

The experimental framework automatically bins players by salary percentiles:

- **Elite Tier**: Top 10% by salary (stars and superstars)
- **High Tier**: 75-90th percentile (solid starters)
- **Mid Tier**: 50-75th percentile (role players)
- **Value Tier**: Below 50th percentile (bench players)

This stratification ensures models focus on DFS-relevant players and capture tier-specific patterns.

8 Research Findings & Roadmap

Key Research Questions (from paper)

1. Can advanced ML techniques generate consistent profits in NBA DFS contests?

- 2. How do temporal dependencies and feature engineering impact prediction accuracy?
- 3. Which optimization algorithms perform best under real-world constraints?

Experimental Results Summary

The comprehensive experimental pipeline evaluates:

- Model Architectures: XGBoost vs LSTM/RNN performance
- Feature Engineering: Impact of rolling windows, DvP metrics, and salary binning
- Optimization Methods: Genetic Algorithm vs ILP solver effectiveness
- Temporal Strategies: Daily vs weekly prediction windows
- Financial Performance: Win rates, cash rates, and ROI across thousands of contests

Phase 1: Core Implementa	tion	V
--------------------------	------	---

		• • •		
Manager 1	arabancii /a /	avnarımantal	ninalin	$\overline{}$
COLL	DIELIEUSIVE (experimental	DIDEIL	_
	0.000	o, (p o o	p.p.c	_

- XGBoost and RNN implementations
- Multiple optimization algorithms
- Historical contest backtesting
- Advanced feature engineering

Phase 2: Advanced Research

Daa	l_tıma	Initiry/	and	DOME	Intaa	ration
1750	1-11116	II II UI V	anu	11600	HILEU	rauon

- Multi-lineup generation for GPP contests
- Ownership projection models
- Bayesian hyperparameter optimization
- Deep reinforcement learning for lineup selection

Phase 3: Production Deployment 17

- Real-time API for live contests
- Automated bankroll management
- Mobile companion application
- Integration with multiple DFS platforms

Contributing

We welcome contributions! Please follow these steps:

1. Fork the repository

- 2. Create a feature branch (git checkout -b feature/AmazingFeature))
- 3. Commit your changes ((git commit -m 'Add some AmazingFeature'))
- 4. Push to the branch (git push origin feature/AmazingFeature)
- 5. Open a Pull Request

Code Style

- Follow PEP 8 guidelines
- Add docstrings to all functions
- Include unit tests for new features

License

This project is licensed under the MIT License - see the <u>LICENSE</u> file for details.

Acknowledgments

- NBA data sources and APIs
- DFS community for strategy insights
- Open source ML libraries (XGBoost, PyTorch, scikit-learn)

Contact

Tzach Pach - @tzachpach

Project Link: https://github.com/tzachpach/final_project_dfs

Disclaimer: This tool is for educational and research purposes. Always gamble responsibly.