Machine Learning

(Học máy – IT3190E)

Khoat Than

School of Information and Communication Technology Hanoi University of Science and Technology

Contents

- Introduction to Machine Learning
- Supervised learning
 - Ensemble learning
- Unsupervised learning
- Reinforcement learning
- Practical advice

Theoretical study

- Bias-variance tradeoff
- 2. Strategies for combining classifiers
 - a) Majority voting (averaging)
 - b) Weighted average
 - c) Gating
 - d) Stacking
- 3. Ensemble learning methods based on data sampling
 - a) Bagging
 - b) Random subspaces
- Example method based on data sampling: Random Forests
- 5. Example method based on classifier stacking: Boosting

1. Bias - Variance tradeoff

BIAS - VARIANCE TRADEOFF

- High bias typically occurs when underfitting the data
- High variance typically occurs when overfitting the data

UNSTABLE LEARNERS

- Beyond the problems linked to underfitting/overfitting, some predictive models are inherently unstable/sensitive
 - Small differences in the learning dataset might lead to very different predictions (regression/classification), e.g.:
 - Sensitivity to outliers
 - Sensitivity to noises
 - Resulting in a large variance in the prediction

UNSTABLE CLASSIFIERS

- Decision trees are unstable
 - * Example from https://towardsdatascience.com/the-indecisive-decision-tree-story-of-an-emotional-algorithm-1-2-8611eea7e397

I trained 10 decision trees having exact same hyper-parameters with 10 different seed values, which ensures that each tree trains with a slightly different sample. Let's look at the top three most important variables, which represent structure of the tree, obtained by the trees for both the data sets.

	seed	train_acc	valid_acc	top_feature	second_feature	third_feature
0	0	0.903439	0.785185	Title	Fare	Age
1	288	0.888889	0.748148	Sex	Age	Fare
2	576	0.879630	0.740741	Title	Fare	Age
3	864	0.892857	0.792593	Sex	Age	Fare
4	1152	0.883598	0.748148	Sex	Age	Fare
5	1440	0.886243	0.725926	Title	Age	Sex
6	1728	0.895503	0.703704	Fare	Sex	Age
7	2016	0.894180	0.770370	Title	Fare	Age
8	2304	0.902116	0.792593	Sex	Pclass	Fare
9	2592	0.871693	0.777778	Title	Age	Fare
10	2880	0.898148	0.785185	Title	Age	Pclass

SOLUTION: ENSEMBLE LEARNING

- Idea of ensemble learning methods:
 - "United we stand, divided we fall"
- Objective of ensemble learning methods
 - Reducing variance/instability of individual models by combining multiple models

SOLUTION: ENSEMBLE LEARNING

- Ensemble learning can be applied for both unsupervised and supervised learning
 - Supervised learning: regression or classification
 - E.g. random forests
 - Unsupervised learning: clustering ensembles
 - E.g. consensus clustering
- Ensemble learning can be seen as a special kind of metalearning
- In this lecture, we will focus mostly on classification

2. Strategies for combining classifiers

COMBINING CLASSIFIERS

- Consider a set of classifiers $h_1, ..., h_L$ being **diverse**
 - Maybe from the same model, but making different mistakes (e.g. trees in the random forest)
 - Maybe based on different models (e.g. SVM + naive Bayes)
- **Idea:** construct a classifier $H(\mathbf{x})$ that combines the individual predictions of $h_1, ..., h_L$
 - $h_1, ..., h_L$ might return different predictions, or
 - $h_1, ..., h_L$ might focus on different regions of the representation space
- H(x) is sometimes called a meta-classifier

MAJORITY VOTING (AVERAGING)

- \blacksquare $H(\mathbf{x})$ is simply the majority vote
 - Or, the average output for regression
 - This is the most usual strategy for random forests

[https://courses.cs.washington.edu/courses/cse4 46/20wi/Lecture16/16_EnsembleMethods.pdf]

WEIGHTED AVERAGE

- H(x) is simply a weighted majority vote
 - Or, the weighted average output for regression
 - The weights $w_1, ..., w_L$ are learnt from a validation dataset

[https://courses.cs.washington.edu/courses/cse 446/20wi/Lecture16/16_EnsembleMethods.pdf]

- This is a special case of weighted average where the weights $w_1, ..., w_L$ depend on the input(s)
 - The gating function selects/weights the best models for each problem
 - The gating function is learnt from a validation dataset

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

- Consists in stacking layers of classifiers
 - The predictions of the 1st layer are used as an input for the 2nd layer
 - The second layer is trained on a validation dataset
 - One might stack more than 2 layers of classifiers

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

COMBINING CLASSIFIERS

- Consider a set of classifiers $h_1, ..., h_L$ being **diverse**
 - Maybe based on different models (e.g. SVM + naive Bayes)
 - In this case, the classifiers can be learnt from the same learning dataset (diversity is achieved by the diversity of the models)
 - Maybe from the same model, but making different mistakes (e.g. trees in the random forest): models can be
 - Learnt from different samplings of the training dataset
 - Random strategies
 - e.g. bagging, random subspaces
 - Stacked
 - Adaptive strategies
 - e.g. boosting

3. Ensemble learning methods based on data sampling

BOOTSTRAP SAMPLING

- A bootstrap sample is built from an initial data set
 - By sampling n instances with replacement
 - Excludes ~35% of the training instances
- A bootstrap sample contains as many objects as the original sample, but...
 - Some objects are replicated several times
 - Others are missing
- The selection of the n objects to be replicated is ALMOST random
 - For example, bootstrap samples might be further stratified (mostly for classification)
 - Keeps the class distribution of the initial data set

- Bagging [Breiman, 1996]
 - Creating L bootstrap samples
 - 2. Learning L classifers h_i
 - 3. Combining the L classifiers $h_1, ..., h_L \rightarrow H$ (final classifier)

- Objective of bagging:
 - Reduce the effects of outliers / instances that are « too influential »
- The performance of the individual classifiers h_i is evaluated using out-of-bootstrap data
- For step 3 (classifier combination), one can use:
 - Averaging
 - Weighted average
 - Gating

- Advantages
 - Can reduce the detrimental effects of outliers
 - Can enhance performances
- Disadvantages
 - Higher computational complexity
 - Higher space complexity

RANDOM SUBSPACES

- Objectives of random subspaces [Ho, 1998]:
 - Reduce the effects of ill-prepared attributes on the final model
 - Reduce the effects of attributes (features) correlation on the final model
 - Circumvent the problems that arise when the number of samples in the training dataset is insufficient compared to the number of attributes
- The L classifiers $h_1, ..., h_l$ are built from all examples
- Each classifier h_i is built from q attributes
 - Randomly selected from the whole set of attributes
 - \bullet In general, q << p (where p is the initial number of attributes)

RANDOM SUBSPACES

- For step 3 (classifier combination), one can use:
 - Averaging
 - Weighted average
 - Gating

RANDOM SUBSPACES

Advantages

- Can effectively reduce the effects of ill-prepared attributes on the final model
- Can effectively reduce the effects of attributes (features) correlation on the final model
- Can effectively circumvent the problems that arise when the number of samples in the training dataset is insufficient compared to the number of attributes

Disadvantages

- Higher computational complexity
- Higher space complexity
- Loss of readability / interpretability, for some models
 - e.g. for random forests

4. Methods based on data sampling

Random Forests

RANDOM FORESTS

- Random forests might be used for classification or regression
- Somehow combines bagging and random subspaces, as
 - Each tree in the forest is built:
 - Using bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node (node-level random subspaces)

RANDOM FORESTS

- In its original version [Ho, 1995]
 - The trees in the forest are not pruned
 - The outputs of the trees are averaged
 - Might be used for classification or regression

RANDOM FORESTS

- Documentation of RandomForestClassifier in the scikit-learn Python library:
 - https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.Rando mForestClassifier.html
 - * N.B. Different strategies for pre-pruning the trees are possible
- A comprehensive tutorial about Random Forests in Python:
 - https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

Advantages

- Better stability (effectively reduces variance)
- \star On average, H (random forest) achieves better performances than the h_i (individual trees)
- Disadvantages
 - More computationally expensive
 - A lot more for the learning stage
 - A bit more for the classification stage
 - Loose the readability / interpretability of the individual trees h_i

5. Methods based on classifier stacking

Boosting

RECALL: COMBINING CLASSIFIERS

- Consider a set of classifiers $h_1, ..., h_L$ being **diverse**
 - Maybe based on different models (e.g. SVM + naive Bayes)
 - In this case, the classifiers can be learnt from the same learning dataset (diversity is achieved by the diversity of the models)
 - Maybe from the same model, but making different mistakes (e.g. trees in the random forest): models can be
 - Learnt from different samplings of the learning dataset
 - Random strategies
 - e.g. bagging, random subspaces
 - Stacked
 - Adaptive strategies
 - e.g. boosting

- Ensemble Learning models based on data sampling can effectively reduce the variance of the model
- But, they might still suffer from a large bias
 - At least, in some regions of the data space (i.e. for some examples)
- Boosting aims at reducing the bias

AI: « How can I help you? »

[Gorin et al.]

- goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
 - yes I'd like to place a collect call long distance please (Collect)
 - operator I need to make a call but I need to bill it to my office (ThirdNumber)
 - yes I'd like to place a call on my master card please (CallingCard)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)
 - observation:
 - · easy to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard'"
 - hard to find single highly accurate prediction rule

Simple decision rules (often from tacit knowledge)

BOOSTING

- Idea: sequentially derives weak classifiers (can be rules of thumb)
 - Apply procedure to subset of examples
 - Obtain the first weak classifier
 - Apply to 2nd subset of examples
 - Obtain 2nd weak classifier
 - Repeat L times
- How to choose examples on each round?
 - Concentrate on "hardest" examples
 - I.e. the most often misclassified by previous classifiers

Technically:

- Assume given "weak" classifiers h_t that perform slightly better than random (i.e. accuracy ≥ 55% for 2-class problems)
- * We will stack them in a cascade, such that h_{t+1} focuses on samples that are misclassified by h_t (difficult examples)
- Given a sufficient number of training samples, a boosting algorithm can provably construct a meta-classifier H with much better accuracy (up to 99%)

- Principle: building a cascade of « weak » classifiers h_t ...
- ... Each individual classifier h_t aims at focusing on the « hard samples » that were incorrectly classified by its predecessor in the cascade h_{t-1}

- In practice, there are two main strategies:
 - Arcing: augmenting the probability of selecting these « hard samples » in the training dataset of classifier h_t
 - * AdaBoost: augmenting the weight of these « hard samples » when learning the classifier h_t
- In general, the outputs of the classifiers are combined using (weighted) averaging

- Example of practical application of boosting
 - Face detection from numeric images [Viola&Jones, 2001]
 - Find faces in photograph or movie using Adaboost algorithm
 - Weak classifiers: detect light/dark rectangles in image
 - Many clever tricks to it make extremely fast and accurate
 - Up until today, still a state-of-the-art method for face detection

Advantages

- Reduces the effect of « difficult records » (at the frontier between classes)
- Often gives very good results in practice
 - If there is a large number of records in the training dataset, boosting often gives better results than bagging

Disadvantages

- More computationally expensive the the individual classifiers
- If there are not enough training sample:
 - Either the learning set is perfectly classified by the first classifier, and the boosting algorithm is useless
 - Either the algorithm focuses on a small number of samples, potentially unrepresentative of the classes, and the "boosted" classifier may perform worse than the original classifier...

5. Example of EL method based on classifier stacking

AdaBoost

BOOSTING GENERIC ALGORITHM

- 2-class problem formulation:
- Given a training set $(\mathbf{x_1}, y_1), ..., (\mathbf{x_n}, y_n)$
 - $\star x_i$ being the vector of explanatory variables values for record i
 - * $y_i \in \{-1, +1\}$ being the true label of instance $x_i \in X$ (2-class problem)
- For t = 1, ..., L:
 - * construct distribution D_t on $\{1, ..., n\}$
 - * find weak classifier ("rule of thumb") $h_t: X \to \{-1, +1\}$
 - with error ε_t on D_t:
 - $\epsilon_t = P_{i \sim D_t}(h_t(x_i) \neq y_i)$
- output final/combined classifier H

• Construct distribution D_t on $\{1, ..., n\}$

given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

Weight of sample i in the learning dataset of classifier h_{t+1} :

- weights of correct predictions are multiplied by $e^{-\alpha_t} \leq 1$
 - weights of in correct predictions are multiplied by $e^{\alpha_t} \geq 1$

where $Z_t = \text{normalization factor}$ $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

- $\bullet \epsilon_t = \sum_{i: y_i \neq h_t(x_i)} D_t(i)$
- Final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$

Weight of classifier h_t in the final decision (denoted w_t in the slide on average weighing)

Such that:

- α_t grows as ϵ_t gets smaller
- if $\mathcal{E}_t \leq 0.5$, then $\alpha_t \geq 0$ (trivial, otherwise flip h_t 's prediction)

Error of h_t is the sum of the weights of all examples misclassified by h_t

- Toy example (from Rob Schapire):
 - Weak classifiers h_t = vertical or horizontal half-planes that best discriminate the two classes
 - Initial learning dataset:

- Toy example (from Rob Schapire):
 - Round 1:

- Toy example (from Rob Schapire):
 - * Round 2:

• The size of the point *i* in the above illustration is an indicator of $D_t(i)$

- Toy example (from Rob Schapire):
- Round 3:

- Toy example (from Rob Schapire):
- Final classifier:

- Problem: how to weight the training samples during learning?
- For algorithms like logistic regression, one can simply incorporate weights D(i) into the cost function

$$J_{ ext{reg}}(oldsymbol{ heta}) = -\sum_{i=1}^n$$
D (i) $[y_i \log h_{oldsymbol{ heta}}(\mathbf{x}_i) + (1-y_i) \log (1-h_{oldsymbol{ heta}}(\mathbf{x}_i))] + \lambda \|oldsymbol{ heta}_{[1:d]}\|_2^2$

- Essentially, weights the cost of misclassification differently for each instance i
- For algorithms that don't directly support instance weights (e.g. ID3 decision trees), use weighted bootstrap sampling
 - Form the training set by resampling instances with replacement according to D

- It can be proven that the error on the training dataset (apparent error) goes to 0 in O(log n) iterations
- AdaBoost works best with "weak" learners
 - Should not be complex
 - Typically highly biased classifiers
 - Works even when weak learners are just slightly better than random
 - Examples of such weak learners:
 - Decision stumps (1 level decision trees)
 - Depth-limited decision trees
 - Linear classifiers

- Successive weak learners focus on the hardest parts of the representation space
- In other words, if a point is repeatedly misclassified...
- ... Each time, its weight is increased...
- Eventually, it will be emphasized enough to generate a hypothesis (weak classifier) that correctly predicts it
 - But, instances with highest weight are often outliers
 - So, like all boosting-based methods, it only works well when If there is a large number of records in the training dataset

- In theory, AdaBoost should overfit as the number of weak classifiers L grows large
 - I.e., when the final classifier keeps growing more complex
- But in practice, AdaBoost often does not overfit
 - Provided there are enough training samples
 - * Mhàs
 - it continues to drive down the test error even AFTER the training error reaches zero

[Figure from Schapire: "Explaining AdaBoost"]

- Strengths:
 - Fast
 - Simple to program
 - No parameter to tune (beside L)
 - No assumption about the weak learners
- Cases where boosting can fail:
 - Insufficient / non-representative learning data
 - Overly complex weak learners
 - Lot of noise
 - Large number of outliers

TUTORIALS IN PYTHON

- A comprehensive tutorial about Viola & Jones' algorithm:
 - https://realpython.com/traditional-face-detection-python/
- Generalization of AdaBoost: Gradient Boosting
 - https://machinelearningmastery.com/gentle-introductiongradient-boosting-algorithm-machine-learning/
 - https://machinelearningmastery.com/gradient-boosting-machineensemble-in-python/

References

- Breiman, Leo. Bagging predictors. Machine Learning, 24(2), pp.123-140, 1996
- Breiman, Leo. Random forests. Machine Learning, 45(1), 5-32, 2001.
- Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15(Oct):3133-3181, 2014.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2017.
- Ho, T.K. The random subspace method for constructing decision forests. IEEE
 Transactions on Pattern Analysis and Machine Intelligence, 20(8), pp.832-844, 1998.