#### Лексический анализ

## 1. Структура транслятора:



**2. Лексический анализ** — первая (наиболее простая) фаза трансляции. Лексический анализ выполняется программой (входящей в состав транслятора), называемой лексическим анализатором (или сканером).



## 3. Взаимодействие лексического и синтаксического анализаторов:

последовательное параллельное.

**а)** Последовательное взаимодействие лексического и синтаксического анализаторов.



**b)** Параллельное взаимодействие лексического и синтаксического анализаторов.



## 4. Пример:



Взаимодействие лексического и синтаксического анализаторов C, C++, Java последовательное.

#### 5. Примеры:

а) грамматика 
$$G = (T, N, P, S')$$
 для цепочки **float id**  $T = \{A, B, ..., Z, a, b, ..., z, 0, 1, ..., 9, \omega, ;, =\}, N = \{S', A', B', C', D'\}, S' \rightarrow floatA'$   $A' \rightarrow \omega B'$   $B' \rightarrow \omega B'$   $B' \rightarrow A | ... | Z | a | ... | z | AC' | ... | ZC' | aC' | ... | zC'$   $B' \rightarrow A | ... | Z | a | ... | z | AD' | ... | ZD' | aD' | ... | zD'$   $C' \rightarrow 0 | 1 | 2 | ... | 9 | 0C' | 1C' | 2C' | ... | 9C'$   $C' \rightarrow A | ... | Z | a | ... | z | AC' | ... | ZC' | aC' | ... | zC'$   $C' \rightarrow 0D' | 1D' | 2D' | ... | 9D'$   $C' \rightarrow AD' | ... | ZD' | aD' | ... | zD'$   $D' \rightarrow \omega D'$   $D' \rightarrow \omega D'$   $D' \rightarrow = |$ ;  $\omega - npo6en$ 

## b) Пример: вывод (распознавание) цепочки float f;

G = (T, N, P, S') - регулярная *праволинейная* грамматика



#### 6. Примеры: правосторонний вывод.

Вывод называется *правосторонним*, если в нем на каждом шаге вывода правило грамматики применяется всегда к крайнему правому нетерминальному символу в цепочке.

### а) *Пример:* вывод (распознавание) цепочки **float f2x** =

| Вывод цепочки                                                                                            | Дерево нисходящего разбора цепочки |
|----------------------------------------------------------------------------------------------------------|------------------------------------|
| $S' \to floatA'$ $A' \to \omega B'$ $B' \to fC'$ $C' \to 2C'$ $C' \to xD'$ $D' \to \omega D'$ $D' \to =$ | float  A'  B'  C'  X  D'  D'       |

## b) *Пример*: вывод (распознавание) цепочки float 22x =

$$S' \rightarrow floatA'$$

$$A' \rightarrow \omega B'$$

! нет правила вывода – цепочка не распозналась

с) *Пример:* грамматика 
$$G = (T, N, P, S')$$
 для **float f**;

$$T = \{A, B, ..., Z, a, b, ..., z, 0, 1, ..., 9, \omega, ;, =\}, T = \{S', A', B', C', D'\},$$

$$S' \rightarrow A'$$

$$A' \rightarrow B'; |B'\omega|B' =$$

$$B' \rightarrow B'A \mid ... \mid B'Z \mid B'a \mid ... \mid B'z$$

$$B' \to B'0 | ... | B'9$$

$$B' \rightarrow C'A | \dots | C'Z | C'a | \dots | C'z$$

$$C' \rightarrow C' \omega$$

 $C' \rightarrow float\omega$ 

G = (T, N, P, S') - регулярная леволинейная грамматика.

5

7.

#### 8. Примеры: левосторонний вывод.

Вывод называется левосторонним, если в нем на каждом шаге вывода правило грамматики применяется всегда к крайнему левому нетерминальному символу в цепочке. Другими словами — на каждом шаге вывода происходит подстановка цепочки символов на основании правила грамматики, т.е. вместо крайнего левого нетерминального символа в исходной цепочке.

а) Пример: восходящий вывод (распознавание) цепочки float f;



## b) Пример: вывод (распознавание) цепочки float f2x =

$$C' \to float \omega$$

$$B' \to C'f$$

$$B' \rightarrow B'2$$

$$B' \rightarrow B'x$$

$$A' \rightarrow B'\omega;$$

$$S' \rightarrow A'$$

Восходящий вывод цепочки

**9.** Для описания лексики языка программирования, обычно применяются регулярные грамматики.

С точки зрения лексического анализатора – язык программирования набор лексем (токенов), которые распознаются (классифицируются) лексическим анализатором.

Язык программирования на уровне лексического анализа представляет собой *регулярный язык* (язык типа 3 иерархии Хомского).

**10.** Грамматика языка описывает множество правильных цепочек символов над заданным алфавитом.

Для описания регулярных языков используют другую форму описания – регулярные выражения.

#### 11. Регулярное выражение

Регулярное выражение описывает множество цепочек – формальный язык. Для записи регулярного выражения используются метасимволы.

Множество цепочек описанных регулярным выражением называется регулярным множеством (или регулярным языком).

## 12. Определение.

Пусть I – алфавит.

Регулярные выражения над алфавитом I и языки, представляемые ими, рекурсивно определяются следующим образом:

- 1)  $\emptyset$  регулярное выражение, представляет пустое множество;
- 2)  $\lambda$  регулярное выражение, представляет множество  $\{\lambda\}$ ;
- 3) для каждого  $a \in I$  символ a является регулярным выражением и представляет множество  $\{a\}$ ;
- 4) если p регулярное выражение, представляющее множество P и q регулярное выражение, представляющее множество Q, то p+q, pq, q \* являются регулярными выражениями и представляют множества:
  - a)  $P \cup Q$  (объединение),
  - b) PQ (конкатенация множеств),
  - с)  $P^*$  (итерация) соответственно.
- 5)  $pp^* = p^+$

**а)** Символы, применяемые для описания регулярных выражений, называются **метасимволами** или **символами-джокерами**.

Джокерами являются символы:  $*,^+,+,(,),\emptyset$ .

## 13. Примеры

а) регулярные выражения и множества описанные ими:

| Регулярное выражение  | Множество                                               |  |  |
|-----------------------|---------------------------------------------------------|--|--|
| a                     | a                                                       |  |  |
| a+b                   | a,b                                                     |  |  |
| a+b+c                 | a,b,c                                                   |  |  |
| a <sup>+</sup>        | a, aa, aaa, aaaa                                        |  |  |
| a*                    | λ, a, aa, aaa, aaaa,                                    |  |  |
| ab                    | ab                                                      |  |  |
| ab+cd                 | ab, cd                                                  |  |  |
| (ab+cd) <sup>+</sup>  | ab, cd, abab, abcd, cdcd, cdab, ababab, cdcdcd, abcdab, |  |  |
|                       | cdabcd, abcdcdcdcd, abababab,                           |  |  |
| (ab+cd)*              | $\lambda$ , $(ab+cd)^+$                                 |  |  |
| a(bc+de)              | abc, ade                                                |  |  |
| a(bc+de)f             | abcf, adef                                              |  |  |
| ab <sup>+</sup> c     | abc, abbc, abbbc,                                       |  |  |
| ab*c                  | ac, abc, abbc, abbbc,                                   |  |  |
| a(bc+de)+f            | abcf, adef, abcbcf, abcdef, adebcf, adedef,             |  |  |
|                       | abcdedcdef,                                             |  |  |
| a(bc+de)*f            | af, a(bc+de)+f                                          |  |  |
| (ab+cd)(ef+gh)        | abef,abgh, cdef, cdgh                                   |  |  |
| (ab+cd)e <sup>+</sup> | abe, cde, abee, cdee, abeee, cdeee,                     |  |  |
| (ab+cd)e*             | ab, cd, (ab+cd)e <sup>+</sup>                           |  |  |

 $\mathbf{b}$ ) Пример для  $\mathit{float}\, f$ 

$$float(\omega)^+ (A + B + ... + Z + a + b + ... + z)^+$$
  
 $(A + B. + ... + Z + a + b + ... + z + 0 + 1. + ... + 9)^*$ 

14. Теория регулярных языков была разработана в 1940-х годах.

Нейрофизиологи **Уоррен Мак-Каллох** и **Уолтер Питс** моделировали нервную систему на нейронном уровне. Математик **Стивен Клин** формально описал модели нейрофизиологов с помощью алгебры, которую назвал регулярными множествами. Для формального описания этих множеств он разработал простую математическую запись, которую назвал регулярным языком.

Запись использует специальные символы, которые в настоящее время называют метасимволами или символами-джокерами.

**15.** На сегодняшний день существует несколько диалектов регулярных языков (наборов метасимволов):

**grep** (global regular expression print) — команда в unix/linux; **egrep** (extended grep) — разработал Альфред Ахо;

**BRE** (Basic Regular Expression) и **ERE** (Extended regular expression) – BRE + POSIX (Portable Operating System Interface) – попытка стандартизировать;

Perl – встроенные в язык Perl регулярные выражения;

ECMA-стандарт регулярных выражений в JavaScript;

**SED** (Stream Editor) – Bell Labs (1973-74 Lee E. McMahon).

- **16.** Чаще всего используется Perl-нотация (набор метасимволов) регулярных выражений (в том числе в стандартных библиотеках C++ и C#).
- **17.** В стандартной библиотеке С++ набор функций **<regex>**.

#### **18.** Пример применения функции **regex\_math**:

```
#include "stdafx.h"
#include <regex>
//std::regex_constants, std::regex_error
//std::regex_replace, std::regex_iterator
//std::regex_match, std::regex_search, std::regex_token_iterator
//std::regex_traits
int _tmain(int argc, _TCHAR* argv[])
          ch1[] = "1234567899";
   char
   wchar_t ch1w1[] = L"1234567899", wch2[] = L"12345X6799";
         ch2[] = "ABCDEFGHIR", ch2r[] = "АБВГДЕЖЗИК";
                 = "abcdefghir",
                                   ch4[] = "a1b2c3de3f";
          ch3[]
          ch5[] = "11345.2234",
                                  ch6[] = "11345. 223";
   char
                 = "27.01.1960";
         ch7[]
   bool b1 = std::regex_match(ch1, ch1+10,
                                              std::regex("[0-9]*")); // true
   bool b1w = std::regex_match(ch1w1, ch1w1+10, std::regex("[0-9]*")); // true
   bool b1w1 = std::regex_match(wch2, wch2+10, std::regex("[0-9]*")); // false
                                               std::regex("[A-Z]*")); // false
   bool b2 = std::regex_match(ch1, ch1+10,
                                              std::regex("[A-Я]*")); // true
   bool b2r = std::regex_match(ch2r, ch2r+10,
                                               std::regex("[A-Z]*")); // true
   bool b3 = std::regex_match(ch2, ch2+10,
                                               std::regex("[a-z]*")); // false
   bool b4 = std::regex_match(ch2, ch2+10,
                                              std::regex("[a-z]*")); // true
   bool b5 = std::regex_match(ch3, ch3+10,
                                              std::regex("[a-z]*")); // true
   bool b5r = std::regex_match(ch3, ch3+10,
                                              std::regex("[a-z|0-9]*")); // true
   bool b6 = std::regex_match(ch4, ch4+10,
                                              std::regex("[a-z|0-9]*")); // true
   bool b7 = std::regex match(ch3, ch3+10,
                                              std::regex("[a-z|0-9]*")); // false
   bool b8 = std::regex_match(ch2, ch2+10,
                                              std::regex("[a-z|A-Z]*")); // true
   bool b9 = std::regex_match(ch2, ch2+10,
                                              std::regex("[0-9]+.[0-9]*")); // true
   bool b10 = std::regex_match(ch5, ch5+10,
                                              std::regex("[0-9]+.[0-9]*"));
   bool b11 = std::regex_match(ch6, ch6+10,
                                                                             // false
               "(0[1-9]+|1[0-9]+|2[0-9]+|3[0|1]+)"
   #define DD
   #define MM "(0[1-9]+|1[0-2]+)"
   #define YYYY "([0-9]{4,4})"
   bool b12 = std::regex_match(ch7, ch7+10, std::regex(DD "\." MM "\." YYYY)); // true
   return 0;
}
```

#### 19. Схема работы лексического анализатора



Класс алгоритмов, соответствующих приведенной выше схеме, может быть записан в форме конечного автомата (КА).

#### 20. Определение КА:

 $\overline{\mathbf{KA}}$  это пятерка  $M = (S, I, \delta, s_0, F)$ , где

S – конечное множество состояний устройства управления;

I – алфавит входных символов;

 $\delta$  – функция переходов, отображающая  $S \times (I \cup \{\lambda\})$  во множество подмножеств  $S: \delta(s,i) \subset S, s \in S, i \in I$ ;

 $s_0 \in S$  - начальное состояние устройства управления;

 $F \subseteq S$  - множество заключительных (допускающих) состояний устройства управления.

Если  $\delta(s,\lambda)=\emptyset$  и  $|\delta(s,a)|\le 1$ , то конечный автомат – детерминированный (ДКА).

Т.е. отсутствуют состояния, имеющие  $\lambda$ -переходы и для каждого состояния s и входного символа a существует не более одной дуги, выходящей из s и помеченной как a. ДКА — это автомат, который переходит из любого состояния по любому символу точно в одно состояние.

Иначе - конечный автомат является недетерминированным (НКА).

21. Мгновенное описание KA – пара (s, w),

где  $s \in S$  – состояние КА,

 $w \in I^*$  – неиспользованная часть входной цепочки.

- 22.  $(s_0, w_0)$  начальное мгновенное описание КА, где  $w_0$  анализируемая цепочка.
- 23.  $(s_f, \lambda)$ ,  $s_f \in S$  допускающее мгновенное описание KA.
- 24. Если (s, aw) и  $s' \in \delta(s, a)$ , где  $s', s \in S$ ,  $a \in I \cup \lambda$ ,  $w \in I^*$ , то  $(s, aw) \succ (s', w)$  читается: непосредственно следует.
- 25. Если  $(s_i, w_i) \succ (s_{i+1}, w_{i+1}) \succ (s_{i+2}, w_{i+2}) \succ ... \succ (s_k, w_k)$ , то  $(s_i, w_i) \succ *(s_k, w_k)$  следует.
- 26. Если  $(s_0, w) \succ *(s_f, \lambda), s_0 \in S$  начальное состояние,  $s_f \in F$  конечное состояние,

то цепочка  $w \in I^*$  допускается (или распознается) KA.

27. Пример: пусть  $w \in (a + b) * aba$  входная цепочка,

КА  $M=(\{s_1,s_2,s_3,s_4\},\{a,b\},\delta,s_1,\{s_4\})$ , где функция  $\delta$  задана следующей таблицей:

|                       | а                 | b         | λ                         |
|-----------------------|-------------------|-----------|---------------------------|
| $s_1$                 | $\{s_1, s_2\}$    | $\{s_1\}$ | Ø                         |
| $s_2$                 | Ø                 | $\{s_3\}$ | Ø                         |
| <i>s</i> <sub>3</sub> | {s <sub>4</sub> } | Ø         | { <i>s</i> <sub>1</sub> } |
| <i>s</i> <sub>4</sub> | Ø                 | Ø         | {s <sub>2</sub> }         |

#### 28. Последовательность мгновенных описаний автомата



29.  $(s_1, abaaba) \succ *(s_4, \lambda)$  — значит, что автомат M допускает (распознает) цепочку abaaba.

#### 30. Определение.

**Графом переходов** конечного автомата  $M = (S, I, \delta, s_0, F)$  называется ориентированный граф G = (S, E),

где S - множество вершин графа совпадает с множеством состояний конечного автомата,

E- множество ребер (направленных линий, соединяющих вершины),

ребро  $(s_i, s_j) \in E$ , если  $s_j \in \delta(s_i, a), a \in I \cup \lambda$ .

Метка ребра  $(s_i, s_j)$  – все a , для которых  $s_j \in \delta(s_i, a)$  .



- 31. Конечный автомат может быть однозначно задан своим графом переходов.
- 32. Доказаны 4 утверждения:
  - 1) язык является регулярным множеством тогда и только тогда, когда он задан регулярной грамматикой;
  - 2) язык может быть задан регулярной грамматикой (левосторонней или правосторонней) тогда и только тогда, когда язык является регулярным множеством;
  - 3) язык является регулярным множеством тогда и только тогда, когда он задан конечным автоматом;
  - 4) язык распознается с помощью конечного автомата тогда и только тогда, когда он является регулярным множеством.

## Другими словами:

любой регулярный язык может быть задан регулярной грамматикой, регулярным выражением или конечным автоматом.

#### Или:

любой конечный автомат задает регулярный язык, а значит грамматику или регулярное выражение.

## 33. Доказана теорема (А. Ахо, Дж. Хопкрофт, Дж. Ульман):

Пусть  $\alpha$  - регулярное выражение, тогда найдется недетерминированный конечный автомат  $M=(S,I,\delta,s_0,\{s_f\})$ , допускающий автомат, представленный  $\alpha$ , и обладающий следующими свойствами:

- 1)  $|S| \leq 2|\alpha|$ ;
- 2)  $\forall a \in I \cup \{\lambda\} : \delta(s_f, a) = \emptyset$ ;
- 3)  $\forall s \in S : \sum_{a \in I \cup \{\lambda\}} |\delta(s, a)| \leq 2$ .

## 34. Построение графа конечного автомата по регулярному выражению:

**Метод построения.** Автомат для выражения строится композицией из автоматов, соответствующих подвыражениям. На каждом шаге построения строящийся автомат имеет в точности одно заключительное состояние, в начальное состояние нет переходов из других состояний и нет переходов из заключительного состояния в другие.









# 35. *Пример:* пусть язык L задан регулярным выражением (a+b)\*aba

а) Подвыражение: a+b







b) Подвыражение: *aba* 











$$S_0$$
  $\xrightarrow{a}$   $S_0$   $\xrightarrow{b}$   $S_0$   $\xrightarrow{a}$   $S_f$ 

# с) Продолжение. Подвыражение: (a + b) \*



# d) Выражение: (a+b)\*aba



# е) Пример (продолжение): (a + b) \* aba



f) Пример (продолжение): 
$$(a+b)*aba$$
  $M=(\{s_0,s_0,s_2,s_3\},\{a,b\},\delta,s_0,\{s_3\})$ 

|       | a                 | b                 | λ |
|-------|-------------------|-------------------|---|
| $s_0$ | $\{s_0, s_1\}$    | $\{s_0\}$         | Ø |
| $s_1$ | Ø                 | {s <sub>2</sub> } | Ø |
| $s_2$ | {s <sub>3</sub> } | Ø                 | Ø |
| $s_3$ | Ø                 | Ø                 | Ø |

## 36. Пример (продолжение): алгоритм разбора



## 37. Пример (продолжение): алгоритм разбора



**(S0,S1)** Ошибка разбора

# 38. Пример (продолжение): алгоритм разбора



aabbxbabba {S<sub>0</sub>}
abbxbabba {S<sub>0</sub>,S<sub>1</sub>}
bbxbabba {S<sub>0</sub>,S<sub>1</sub>}
bxbabba {S<sub>0</sub>,S<sub>2</sub>}
xbabba {}
Oшибка разбора

# 39. Реализация алгоритма для разбора

