

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica
PE Maestría en Ciencias de la Ingeniería con Orientación en Sistemas

PROGRAMA ANALÍTICO

I. Datos de Identificación de la Unidad de Aprendi
--

1. Nombre: Inteligencia artificial

2. Frecuencia semanal: horas de trabajo presencial 4

3. Horas de trabajo extra aula por semana: 2

4. Modalidad: ⊠ Escolarizada □ No escolarizada □ Mixto

5. Período académico: oximes Semestral oximes Tetramestral oximes Modular

6. LGAC: Sistemas estocásticos y simulación

7. Ubicación semestral: 1 al 8

8. Área curricular: Formación, de libre elección

9. Créditos: 4

10. Requisito: Ninguno

11. Fecha de elaboración: 20/01/2010

12. Fecha de la última actualización: 09/06/2021

13. Responsable (es) del diseño:

100959 Dr. Romeo Sánchez Nigenda

096633 Dra. Satu Elisa Schaeffer

Vigente a partir del: 01 de agosto del 2016

Revisión: 1 Página 1 de 7

II. Presentación:

La inteligencia artificial refiere a búsqueda y planeación de acciones, razonamiento con restricciones, aprendizaje máquina y computación evolutiva (algoritmos genéticos).

III. Propósito(s):

Introducir al estudiante los conceptos básicos de la inteligencia artificial para que éste pueda construir herramientas inteligentes y aplicarlas en diferentes problemas de ingeniería.

IV. Competencias del perfil de egreso:

- **14. Competencias del perfil de egreso** P1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.
- P2) Resolver problemas concretos en sistemas de la industria, la academia o el sector público en base a las herramientas de la toma de decisiones con bases científicas para lograr el mejor diseño, análisis, planeación o gestión de dichos sistemas.
- 15. Competencias generales a que se vincula la Unidad de Aprendizaje: La unidad se vincula con las siguientes competencias generales:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de acuerdo	Tareas
a su etapa de vida en el área de las ciencias para comprender, interpretar y expresar ideas,	
sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico.	
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las cien-	Tareas
cias y la comunicación como herramientas para el acceso a la información y su transfor-	
mación en conocimiento, así como para el aprendizaje y trabajo colaborativo con técnicas	
de vanguardia que le permitan su participación constructiva en la sociedad.	
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los modelos de	Tareas
pensamiento científico para analizar fenómenos naturales y sociales que le permitan tomar	
decisiones pertinentes en su ámbito de influencia con responsabilidad social.	
C12) Construye propuestas innovadoras basadas en la comprensión holística de la realidad	Tareas,
incluyendo los diferentes campos científicos para contribuir a superar los retos del ambiente	proyecto
global interdependiente.	
C13) Asume el liderazgo que le ha otorgado el dominio de las ciencias, comprometido con	Tareas,
las necesidades sociales y profesionales para promover el cambio social pertinente.	proyecto

Revisión: 1 Página 2 de 7

Página 3 de 7

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje: La unidad se vincula con las siguientes competencias específicas:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel I II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E2) Resolver pro- blemas concretos en			Identifica los principios de la ingeniería	Tareas, proyec-	Resuelve necesi- dades previamente	Tareas, proyec-		
sistemas de la in-			de sistemas necesa-	to.	identificadas en	to.		
dustria, la academia			rios para modelar y		cuanto al diseño,			
o el sector público en base a las he-			resolver un problema aplicado específico.		análisis, planeación o gestión de siste-			
rramientas de la to-			apricado específico.		mas en la industria,			
ma de decisiones con					la academia o el			
bases científicas para					sector público.			
lograr el mejor dise-								
ño, análisis, planea-								
ción o gestión de di- chos sistemas.								

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

Página 4 de 7

V. Representación gráfica:

Revisión: 1

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

- 17. Desarrollo de las fases de la Unidad de Aprendizaje: Se cubren los principios teóricos y prácticos de la inteligencia artificial. Se busva desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita un conocimiento sólido de programación. La sesiones son de cuatro horas cada una y son veinte semanas en total.
 - 1. Introducción; selección de temas de proyecto
 - 2. Métodos de búsqueda (4 semanas)
 - 3. Planeación (4 semanas)
 - 4. Algoritmos evolutivos inteligentes (4 semanas)
 - 5. Aprendizaje máquina (5 semanas)
 - 6. Presentaciones de proyectos
 - 7. Revisión de portafolios de evidencia

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Reporte escrito y/ código de la im- plementación de un método de inteli- gencia artificial,	Calidad de la redac- ción científica del reporte; precisión del algoritmo pro- puesto; eficiencia de la implementa-	Experimentación con ejemplos; lec- tura de material de apoyo; modifica- ción de ejemplos; diseño y ejecución	Métodos diversos de inteligencia artificial	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción cient
	ción del método; cobertura de la experimentación.	de experimentos; análisis y repor- taje de resultados obtenidos.		tífica; repositorios de GitHub.

Revisión: 1 Página 5 de 7

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio en GitHub que debe reflejar todas las fases del trabajo en su log correspondiente. El alumno selecciona su lenguaje de programación para cada tarea.

Son 17 tareas (A1–A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$ contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$ inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de aprendizaje automático empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados computacionales
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0}$ = inadecuado en alzance y calidad

No habrá examen.

Ponderación específica:

Actividad	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5%	5 %	5 %	5 %	5 %	5 %	5 %	5 %	5%	5 %	5 %	5%	5%	5 %	5 %	5%	15 %	100%

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

- VIII. Producto integrador de aprendizaje de la unidad:
- 18. Producto integrador de Aprendizaje: Portafolio en un repositorio digital público.
- IX. Fuentes de apoyo y consulta:
- 19. Fuentes de apoyo y consulta

19.1. Básicas

- S. Russell y P. Norvig: Artificial Intelligence: A Modern Approach. Third Edition. Prentice Hall. 2010.
- D.E. Goldberg. *Genetic Algorithm in Search, Optimization and Machine Learning*. Addison-Wesley, Reading, EUA, 1989.
- S. Haykin. *Neural Networks: A Comprehensive Foundation*. Second edition. PrenGce Hall, Englewood-Cliffs, EUA, 1998.

19.2. Complementarias

Artículos científicos especializados.

Revisión: 1 Página 7 de 7

Autorizó: Dr. César Emilio Villarreal Rodríguez

ALERE FLAMMAM VERITATIS
Ciudad Universitaria, 9 de junio de 2021

Dr. César Emilio Villarreal RodríguezCoordinador Académico
Posgrado en Ingeniería de Sistemas

Vo. Bo. Dr. Simón Martínez Martínez Subdirector de Estudios de Posgrado Facultad de Ingeniería Mecánica y Eléctrica

Revisión: 1