# Teorija brojeva

Filip Najman

4 predavanje

29.3.2021.

### Teorem Vrijedi

$$\sum_{d|n} \varphi(d) = n$$

Vrijedi

$$\sum_{d|n} \varphi(d) = n$$

Dokaz: Neka je  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ .

$$\sum_{d|n} \varphi(d) = n$$

Dokaz: Neka je  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ .

Zbog multiplikativnosti od  $\varphi$ , imamo:

$$\sum_{d|n} \varphi(d) = \prod_{i=1}^{k} (1 + \varphi(p_i) + \varphi(p_i^2) + \dots + \varphi(p_i^{\alpha_i})).$$
 (1)

Naime, množenjem faktora na desnoj strani od (1) dobivamo sumu faktora oblika  $\varphi(p_1^{\beta_1})\cdots \varphi(p_k^{\beta_k})=\varphi(p_1^{\beta_1}\cdots p_k^{\beta_k})$ , gdje je  $0\leq \beta_i\leq \alpha_i$ ,  $i=1,\ldots,k$ , a to je upravo lijeva strana od (1).

$$\sum_{d\mid n}\varphi(d)=n$$

Dokaz: Neka je  $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ .

Zbog multiplikativnosti od  $\varphi$ , imamo:

$$\sum_{d|n} \varphi(d) = \prod_{i=1}^k (1 + \varphi(p_i) + \varphi(p_i^2) + \dots + \varphi(p_i^{\alpha_i})). \tag{1}$$

Naime, množenjem faktora na desnoj strani od (1) dobivamo sumu faktora oblika  $\varphi(p_1^{\beta_1})\cdots \varphi(p_k^{\beta_k})=\varphi(p_1^{\beta_1}\cdots p_k^{\beta_k})$ , gdje je  $0\leq \beta_i\leq \alpha_i,\ i=1,\ldots,k$ , a to je upravo lijeva strana od (1). Sada

$$\sum_{d|n} \varphi(d) = \prod_{i=1}^{k} \left( 1 + (p_i - 1) + (p_i^2 - p_i) + \dots + (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) \right)$$

$$=\prod_{i=1}^k p_i^{\alpha_i}=n.$$

Ako je p prost broj, onda je  $(p-1)! \equiv -1 \pmod{p}$ .

Ako je p prost broj, onda je  $(p-1)! \equiv -1 \pmod{p}$ .

Dokaz: Za p=2 i p=3 kongruencija je očito zadovoljena. Stoga smijemo pretpostaviti da je  $p\geq 5$ .

Ako je p prost broj, onda je  $(p-1)! \equiv -1 \pmod{p}$ .

Dokaz: Za p=2 i p=3 kongruencija je očito zadovoljena. Stoga smijemo pretpostaviti da je  $p\geq 5$ .

Grupirajmo članove skupa  $\{2,3,\ldots,p-2\}$  u parove (i,j) sa svojstvom  $i\cdot j\equiv 1\pmod{p}$ .

Ako je p prost broj, onda je  $(p-1)! \equiv -1 \pmod{p}$ .

Dokaz: Za p=2 i p=3 kongruencija je očito zadovoljena. Stoga smijemo pretpostaviti da je  $p\geq 5$ .

Grupirajmo članove skupa  $\{2, 3, ..., p-2\}$  u parove (i, j) sa svojstvom  $i \cdot j \equiv 1 \pmod{p}$ .

Primjetimo da za svaki i postoji točno jedan j modulo p koji to zadovoljava, pošto jednadžba  $ix\equiv 1\pmod p$  ima točno jedno rješenje.

Ako je p prost broj, onda je  $(p-1)! \equiv -1 \pmod{p}$ .

Dokaz: Za p=2 i p=3 kongruencija je očito zadovoljena. Stoga smijemo pretpostaviti da je  $p\geq 5$ .

Grupirajmo članove skupa  $\{2,3,\ldots,p-2\}$  u parove (i,j) sa svojstvom  $i\cdot j\equiv 1\pmod p$ .

Primjetimo da za svaki i postoji točno jedan j modulo p koji to zadovoljava, pošto jednadžba  $ix \equiv 1 \pmod p$  ima točno jedno rješenje.

Očito je  $i \neq j$  jer bi inače broj (i-1)(i+1) bio djeljiv sa p, a to je nemoguće zbog 0 < i-1 < i+1 < p.

Tako dobivamo  $\frac{p-3}{2}$  parova i ako pomnožimo odgovarajućh  $\frac{p-3}{2}$  kongruencija, dobit ćemo

$$2 \cdot 3 \cdots (p-2) \equiv 1 \pmod{p},$$

pa je

$$(p-1)! \equiv 1 \cdot 1 \cdot (p-1) \equiv -1 \pmod{p}.$$



Tako dobivamo  $\frac{p-3}{2}$  parova i ako pomnožimo odgovarajućh  $\frac{p-3}{2}$  kongruencija, dobit ćemo

$$2 \cdot 3 \cdots (p-2) \equiv 1 \pmod{p},$$

pa je

$$(p-1)! \equiv 1 \cdot 1 \cdot (p-1) \equiv -1 \pmod{p}.$$

Očito je da vrijedi i obrat Wilsonovog teorema. Zaista, neka vrijedi

$$(p-1)! \equiv -1 \pmod{p}$$

i pretpostavimo da p nije prost. Tada p ima djelitelj d, 1 < d < p, i d dijeli (p-1)!.

Tako dobivamo  $\frac{p-3}{2}$  parova i ako pomnožimo odgovarajućh  $\frac{p-3}{2}$  kongruencija, dobit ćemo

$$2 \cdot 3 \cdots (p-2) \equiv 1 \pmod{p},$$

pa je

$$(p-1)! \equiv 1 \cdot 1 \cdot (p-1) \equiv -1 \pmod{p}.$$

Očito je da vrijedi i obrat Wilsonovog teorema. Zaista, neka vrijedi

$$(p-1)! \equiv -1 \pmod{p}$$

i pretpostavimo da p nije prost. Tada p ima djelitelj d, 1 < d < p, i d dijeli (p-1)!.

No, tada d mora dijeliti i -1, što je kontradikcija.

Neka je p prost broj. Tada kongruencija  $x^2 \equiv -1 \pmod{p}$  ima rješenja ako i samo ako je p=2 ili  $p\equiv 1 \pmod{4}$ .

Neka je p prost broj. Tada kongruencija  $x^2 \equiv -1 \pmod p$  ima rješenja ako i samo ako je p=2 ili  $p \equiv 1 \pmod 4$ .

Dokaz: Ako je p = 2, onda je x = 1 jedno rješenje.

Neka je p prost broj. Tada kongruencija  $x^2 \equiv -1 \pmod p$  ima rješenja ako i samo ako je p=2 ili  $p \equiv 1 \pmod 4$ .

Dokaz: Ako je p = 2, onda je x = 1 jedno rješenje.

Ako je  $p \equiv 1 \pmod{4}$ , onda iz Wilsonovog teorema imamo:

$$[1 \cdot 2 \cdots \frac{p-1}{2}] \cdot [(p-1)(p-2) \cdots (p-\frac{p-1}{2})]$$

$$\equiv [(\frac{p-1}{2})!]^2 \equiv -1 \pmod{p},$$

pa je  $x = (\frac{p-1}{2})!$  jedno rješenje.

Neka je p prost broj. Tada kongruencija  $x^2 \equiv -1 \pmod{p}$  ima rješenja ako i samo ako je p=2 ili  $p \equiv 1 \pmod{4}$ .

Dokaz: Ako je p = 2, onda je x = 1 jedno rješenje.

Ako je  $p \equiv 1 \pmod{4}$ , onda iz Wilsonovog teorema imamo:

$$[1 \cdot 2 \cdots \frac{p-1}{2}] \cdot [(p-1)(p-2) \cdots (p-\frac{p-1}{2})]$$

$$\equiv [(\frac{p-1}{2})!]^2 \equiv -1 \pmod{p},$$

pa je  $x = (\frac{p-1}{2})!$  jedno rješenje.

Neka je  $p \equiv 3 \pmod 4$ . Pretpostavimo da postoji  $x \in \mathbb{Z}$  takav da je  $x^2 \equiv -1 \pmod p$ .

Neka je p prost broj. Tada kongruencija  $x^2 \equiv -1 \pmod p$  ima rješenja ako i samo ako je p=2 ili  $p \equiv 1 \pmod 4$ .

Dokaz: Ako je p = 2, onda je x = 1 jedno rješenje.

Ako je  $p \equiv 1 \pmod{4}$ , onda iz Wilsonovog teorema imamo:

$$[1 \cdot 2 \cdots \frac{p-1}{2}] \cdot [(p-1)(p-2) \cdots (p-\frac{p-1}{2})]$$

$$\equiv [(\frac{p-1}{2})!]^2 \equiv -1 \pmod{p},$$

pa je  $x = (\frac{p-1}{2})!$  jedno rješenje.

Neka je  $p \equiv 3 \pmod{4}$ . Pretpostavimo da postoji  $x \in \mathbb{Z}$  takav da je  $x^2 \equiv -1 \pmod{p}$ .

Tada je  $x^{p-1} \equiv (-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ , što je u suprotnosti s Malim Fermatovim teoremom.



Neka je f(x) polinom s cjelobrojnim koeficijentima stupnja n. Pretpostavimo da je p prost broj, te da vodeći koeficijent od f nije djeljiv s p. Tada kongruencija  $f(x) \equiv 0 \pmod{p}$  ima najviše n rješenja modulo p.

Dokaz: Za n=1 tvrdnja je već dokazana prošli put.

Neka je f(x) polinom s cjelobrojnim koeficijentima stupnja n. Pretpostavimo da je p prost broj, te da vodeći koeficijent od f nije djeljiv s p. Tada kongruencija  $f(x) \equiv 0 \pmod{p}$  ima najviše n rješenja modulo p.

Dokaz: Za n=1 tvrdnja je već dokazana prošli put.

Pretpostavimo da tvrdnja vrijedi za sve polinome stupnja n-1, te neka je f polinom stupnja n.

Neka je f(x) polinom s cjelobrojnim koeficijentima stupnja n. Pretpostavimo da je p prost broj, te da vodeći koeficijent od f nije djeljiv s p. Tada kongruencija  $f(x) \equiv 0 \pmod{p}$  ima najviše n rješenja modulo p.

Dokaz: Za n=1 tvrdnja je već dokazana prošli put.

Pretpostavimo da tvrdnja vrijedi za sve polinome stupnja n-1, te neka je f polinom stupnja n.

Za svaki  $a\in\mathbb{Z}$  imamo f(x)-f(a)=(x-a)g(x), gdje je g polinom stupnja n-1 s cjelobrojnim koeficijentima i s istim vodećim koeficijentom kao f. Zato ako kongruencija  $f(x)\equiv 0\pmod p$  ima rješenje x=a, onda sva rješenja ove kongruencije zadovoljavaju  $(x-a)g(x)\equiv 0\pmod p$ .

Neka je f(x) polinom s cjelobrojnim koeficijentima stupnja n. Pretpostavimo da je p prost broj, te da vodeći koeficijent od f nije djeljiv s p. Tada kongruencija  $f(x) \equiv 0 \pmod{p}$  ima najviše n rješenja modulo p.

Dokaz: Za n=1 tvrdnja je već dokazana prošli put.

Pretpostavimo da tvrdnja vrijedi za sve polinome stupnja n-1, te neka je f polinom stupnja n.

Za svaki  $a \in \mathbb{Z}$  imamo f(x) - f(a) = (x - a)g(x), gdje je g polinom stupnja n-1 s cjelobrojnim koeficijentima i s istim vodećim koeficijentom kao f. Zato ako kongruencija  $f(x) \equiv 0 \pmod{p}$  ima rješenje x = a, onda sva rješenja ove kongruencije zadovoljavaju  $(x - a)g(x) \equiv 0 \pmod{p}$ .

No, po induktivnoj prepostavci kongruencija  $g(x) \equiv 0 \pmod{p}$  ima najviše n-1 rješenja, pa kongruencija  $f(x) \equiv 0 \pmod{p}$  ima najviše n rješenja.

### Teorem (Henselova lema)

Neka je f(x) polinom s cjelobrojnim koeficijentima. Ako je  $f(a) \equiv 0 \pmod{p^j}$  i  $f'(a) \not\equiv 0 \pmod{p}$ , onda postoji jedinstveni  $t \in \{0, 1, 2, \ldots, p-1\}$  takav da je  $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$ .

### Teorem (Henselova lema)

Neka je f(x) polinom s cjelobrojnim koeficijentima. Ako je  $f(a) \equiv 0 \pmod{p^j}$  i  $f'(a) \not\equiv 0 \pmod{p}$ , onda postoji jedinstveni  $t \in \{0,1,2,\ldots,p-1\}$  takav da je  $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$ .

Dokaz: Koristimo Taylorov razvoj polinoma f oko a:

$$f(a+tp^{j}) = f(a) + tp^{j}f'(a) + t^{2}p^{2j}\frac{f''(a)}{2!} + \dots + t^{n}p^{nj}\frac{f^{(n)}(a)}{n!}.$$
(2)

### Teorem (Henselova lema)

Neka je f(x) polinom s cjelobrojnim koeficijentima. Ako je  $f(a) \equiv 0 \pmod{p^j}$  i  $f'(a) \not\equiv 0 \pmod{p}$ , onda postoji jedinstveni  $t \in \{0,1,2,\ldots,p-1\}$  takav da je  $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$ .

Dokaz: Koristimo Taylorov razvoj polinoma f oko a:

$$f(a+tp^{j}) = f(a) + tp^{j}f'(a) + t^{2}p^{2j}\frac{f''(a)}{2!} + \dots + t^{n}p^{nj}\frac{f^{(n)}(a)}{n!}.$$
(2)

Pokažimo da su brojevi  $\frac{f^{(k)}(a)}{k!}$  cijeli. Ovu je tvrdnju dovoljno dokazati za polinome oblika  $g(x)=x^m$ , gdje je  $m\geq k$ . No, tada je

$$\frac{g^{(k)}(a)}{k!} = \frac{m(m-1)\cdots(m-k+1)a^{m-k}}{k!} = \binom{m}{k}a^{m-k} \in \mathbb{Z}.$$

#### Zato iz (2) dobivamo

$$f(a+tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}.$$

#### Zato iz (2) dobivamo

$$f(a+tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}.$$

Dakle, da bi bilo  $f(a+tp^j)\equiv 0\pmod{p^{j+1}}$ , nužno je i dovoljno da bude

$$tf'(a) \equiv -\frac{f(a)}{p^j} \pmod{p}.$$
 (3)

Budući da je  $f'(a) \not\equiv 0 \pmod{p}$ , kongruencija (3) ima, onom što je dokazano prošli put točno jedno rješenje.

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

Dokaz: Za j=1 tvrdnja vrijedi po Malom Fermatovom teoremu.

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

 $\mathit{Dokaz} \colon \mathsf{Za} \ j = 1 \ \mathsf{tvrdnja} \ \mathsf{vrijedi} \ \mathsf{po} \ \mathsf{Malom} \ \mathsf{Fermatovom} \ \mathsf{teoremu} .$ 

Pretpostavimo da tvrdnja vrijedi za neki  $j\in\mathbb{N}$ , tj. da su  $x_1,\ldots,x_{p-1}$  sva rješenja kongruencije  $f(x)=x^{p-1}-1\pmod{p^j}$ .

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

Dokaz: Za j=1 tvrdnja vrijedi po Malom Fermatovom teoremu.

Pretpostavimo da tvrdnja vrijedi za neki  $j\in\mathbb{N}$ , tj. da su  $x_1,\ldots,x_{p-1}$  sva rješenja kongruencije  $f(x)=x^{p-1}-1\pmod{p^j}$ .

Tada je  $f(x_i) \equiv 0 \pmod{p^j}$  i  $f'(x_i) = (p-1)x^{p-2} \not\equiv 0 \pmod{p^j}$ , pa po Henselovoj lemi postoji jedinstveni  $t_j \in \{0,1,\ldots,p-1\}$  takav da je  $f(x_i+t_ip^j) \equiv 0 \pmod{p^{j+1}}$ .

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

 $\mathit{Dokaz} \colon \mathsf{Za} \ j = 1 \ \mathsf{tvrdnja} \ \mathsf{vrijedi} \ \mathsf{po} \ \mathsf{Malom} \ \mathsf{Fermatovom} \ \mathsf{teoremu} .$ 

Pretpostavimo da tvrdnja vrijedi za neki  $j\in\mathbb{N}$ , tj. da su  $x_1,\ldots,x_{p-1}$  sva rješenja kongruencije  $f(x)=x^{p-1}-1\pmod{p^j}$ .

Tada je  $f(x_i) \equiv 0 \pmod{p^j}$  i  $f'(x_i) = (p-1)x^{p-2} \not\equiv 0 \pmod{p^j}$ , pa po Henselovoj lemi postoji jedinstveni  $t_j \in \{0, 1, \ldots, p-1\}$  takav da je  $f(x_i + t_i p^j) \equiv 0 \pmod{p^{j+1}}$ .

Sada su  $x_i'=x_i+t_ip^j$ ,  $i=1,\ldots,p-1$  rješenja kongruencije  $f(x)\equiv 0\pmod{p^{j+1}}$ .

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

 $\mathit{Dokaz} \colon \mathsf{Za} \ j = 1 \ \mathsf{tvrdnja} \ \mathsf{vrijedi} \ \mathsf{po} \ \mathsf{Malom} \ \mathsf{Fermatovom} \ \mathsf{teoremu} .$ 

Pretpostavimo da tvrdnja vrijedi za neki  $j\in\mathbb{N}$ , tj. da su  $x_1,\ldots,x_{p-1}$  sva rješenja kongruencije  $f(x)=x^{p-1}-1\pmod{p^j}$ .

Tada je  $f(x_i) \equiv 0 \pmod{p^j}$  i  $f'(x_i) = (p-1)x^{p-2} \not\equiv 0 \pmod{p^j}$ , pa po Henselovoj lemi postoji jedinstveni  $t_j \in \{0, 1, \dots, p-1\}$  takav da je  $f(x_i + t_i p^j) \equiv 0 \pmod{p^{j+1}}$ .

Sada su  $x_i'=x_i+t_ip^j$ ,  $i=1,\ldots,p-1$  rješenja kongruencije  $f(x)\equiv 0\pmod{p^{j+1}}$ .

Pokažimo da su to sva rješenja. Zaista, ako je x' neko rješenje, onda je  $f(x') \equiv 0 \pmod{p^j}$ , pa je  $x' \equiv x_i \pmod{p^j}$  za neki  $i = 1, \ldots, p-1$ .

Kongruencija  $x^{p-1}-1\equiv 0\pmod{p^j}$  ima točno p-1 rješenja za svaki prost broj p i prirodan broj j.

 $\mathit{Dokaz} \colon \mathsf{Za} \ j = 1 \ \mathsf{tvrdnja} \ \mathsf{vrijedi} \ \mathsf{po} \ \mathsf{Malom} \ \mathsf{Fermatovom} \ \mathsf{teoremu} .$ 

Pretpostavimo da tvrdnja vrijedi za neki  $j\in\mathbb{N}$ , tj. da su  $x_1,\ldots,x_{p-1}$  sva rješenja kongruencije  $f(x)=x^{p-1}-1\pmod{p^j}$ .

Tada je  $f(x_i) \equiv 0 \pmod{p^j}$  i  $f'(x_i) = (p-1)x^{p-2} \not\equiv 0 \pmod{p^j}$ , pa po Henselovoj lemi postoji jedinstveni  $t_j \in \{0, 1, \ldots, p-1\}$  takav da je  $f(x_i + t_i p^j) \equiv 0 \pmod{p^{j+1}}$ .

Sada su  $x_i'=x_i+t_ip^j$ ,  $i=1,\ldots,p-1$  rješenja kongruencije  $f(x)\equiv 0\pmod{p^{j+1}}$ .

Pokažimo da su to sva rješenja. Zaista, ako je x' neko rješenje, onda je  $f(x') \equiv 0 \pmod{p^j}$ , pa je  $x' \equiv x_i \pmod{p^j}$  za neki  $i = 1, \ldots, p-1$ .

Sada iz jedinstvenosti od  $t_i$  slijedi da je  $x' \equiv x_i' \pmod{p^{j+1}}$ .



### Definicija

Neka su a i n relativno prosti prirodni brojevi. Najmanji prirodni broj d sa svojstvom da je  $a^d \equiv 1 \pmod{n}$  zove se red od a modulo n. Još se kaže da a pripada eksponentu d modulo n.

### Definicija

Neka su a i n relativno prosti prirodni brojevi. Najmanji prirodni broj d sa svojstvom da je  $a^d \equiv 1 \pmod n$  zove se red od a modulo n. Još se kaže da a pripada eksponentu d modulo n.

### Propozicija

Neka je d red od a modulo n. Tada za prirodan broj k vrijedi  $a^k \equiv 1 \pmod{n}$  ako i samo ako d|k|. Posebno, d $|\varphi(n)|$ .

Dokaz: Ako d|k, recimo  $k = d \cdot l$ , onda je  $a^k \equiv (a^d)^l \equiv 1 \pmod{n}$ .

# Definicija

Neka su a i n relativno prosti prirodni brojevi. Najmanji prirodni broj d sa svojstvom da je  $a^d \equiv 1 \pmod n$  zove se red od a modulo n. Još se kaže da a pripada eksponentu d modulo n.

# Propozicija

Neka je d red od a modulo n. Tada za prirodan broj k vrijedi  $a^k \equiv 1 \pmod{n}$  ako i samo ako d|k|. Posebno, d $|\varphi(n)|$ .

Dokaz: Ako d|k, recimo  $k = d \cdot l$ , onda je  $a^k \equiv (a^d)^l \equiv 1 \pmod{n}$ .

Obratno, neka je  $a^k \equiv 1 \pmod n$ . Podijelimo k sa d, pa dobivamo  $k=q\cdot d+r$ , gdje je  $0\leq r < d$ .

# Definicija

Neka su a i n relativno prosti prirodni brojevi. Najmanji prirodni broj d sa svojstvom da je  $a^d \equiv 1 \pmod n$  zove se red od a modulo n. Još se kaže da a pripada eksponentu d modulo n.

# Propozicija

Neka je d red od a modulo n. Tada za prirodan broj k vrijedi  $a^k \equiv 1 \pmod{n}$  ako i samo ako d|k|. Posebno, d $|\varphi(n)|$ .

Dokaz: Ako d|k, recimo  $k = d \cdot l$ , onda je  $a^k \equiv (a^d)^l \equiv 1 \pmod{n}$ .

Obratno, neka je  $a^k \equiv 1 \pmod{n}$ . Podijelimo k sa d, pa dobivamo  $k = q \cdot d + r$ , gdje je  $0 \le r < d$ .

Sada je

$$1 \equiv a^k \equiv a^{qd+r} \equiv (a^d)^q \cdot a^r \equiv a^r \pmod{n},$$

pa zbog minimalnosti od d slijedi da je r = 0, tj.  $d \mid k$ .



# Definicija

Ako je red od a modulo n jednak  $\varphi(n)$ , onda se a zove primitivni korijen modulo n.

Ako postoji primitivni korijen modulo n, onda je grupa reduciranih ostataka modulo n s množenjem modulo n ciklička, tj. svaki element reduciranog sustava ostataka je potencije primitivnog korijena.

Ako je p prost broj, onda postoji točno  $\phi(p-1)$  primitivnih korijena modulo p.

Dokaz: Svaki od brojeva  $1, 2, \ldots, p-1$  pripada modulo p nekom eksponentu d, koji je djelitelj od  $\varphi(p) = p-1$ . Označimo sa  $\psi(d)$  broj brojeva u nizu  $1, 2, \ldots, p-1$  koji pripadaju eksponentu d.

Ako je p prost broj, onda postoji točno  $\phi(p-1)$  primitivnih korijena modulo p.

Dokaz: Svaki od brojeva  $1,2,\ldots,p-1$  pripada modulo p nekom eksponentu d, koji je djelitelj od  $\varphi(p)=p-1$ . Označimo sa  $\psi(d)$  broj brojeva u nizu  $1,2,\ldots,p-1$  koji pripadaju eksponentu d. Tada ie

$$\sum_{d|p-1} \psi(d) = p - 1.$$

Ako je p prost broj, onda postoji točno  $\phi(p-1)$  primitivnih korijena modulo p.

Dokaz: Svaki od brojeva  $1,2,\ldots,p-1$  pripada modulo p nekom eksponentu d, koji je djelitelj od  $\varphi(p)=p-1$ . Označimo sa  $\psi(d)$  broj brojeva u nizu  $1,2,\ldots,p-1$  koji pripadaju eksponentu d. Tada ie

$$\sum_{d|p-1} \psi(d) = p-1.$$

Tvrdnja:  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ .

Ako je p prost broj, onda postoji točno  $\phi(p-1)$  primitivnih korijena modulo p.

Dokaz: Svaki od brojeva  $1,2,\ldots,p-1$  pripada modulo p nekom eksponentu d, koji je djelitelj od  $\varphi(p)=p-1$ . Označimo sa  $\psi(d)$  broj brojeva u nizu  $1,2,\ldots,p-1$  koji pripadaju eksponentu d. Tada ie

$$\sum_{d|p-1} \psi(d) = p-1.$$

Tvrdnja:  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ .

Neka je  $\psi(d) \neq 0$ , te neka je a broj koji pripada eksponentu d modulo p.

Ako je p prost broj, onda postoji točno  $\phi(p-1)$  primitivnih korijena modulo p.

Dokaz: Svaki od brojeva  $1,2,\ldots,p-1$  pripada modulo p nekom eksponentu d, koji je djelitelj od  $\varphi(p)=p-1$ . Označimo sa  $\psi(d)$  broj brojeva u nizu  $1,2,\ldots,p-1$  koji pripadaju eksponentu d. Tada ie

$$\sum_{d|p-1} \psi(d) = p-1.$$

Tvrdnja:  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ .

Neka je  $\psi(d) \neq 0$ , te neka je a broj koji pripada eksponentu d modulo p. Promotrimo kongruenciju

$$x^d \equiv 1 \pmod{p}$$
.

Ona ima rješenja  $a, a^2, \ldots, a^d$  i po Lagrangeovom teoremu to su sva rješenja.



Pokažimo da brojevi  $a^m$ , za  $1 \le m \le d$  i (m,d) = 1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'} \equiv 1 \pmod{p}$ , onda  $d \mid md'$ , pa  $d \mid d'$ .

Pokažimo da brojevi  $a^m$ , za  $1 \le m \le d$  i (m,d) = 1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'} \equiv 1 \pmod{p}$ , onda  $d \mid md'$ , pa  $d \mid d'$ .

Ako je b bilo koji broj koji pripada eksponentu d modulo p, onda pošto je b rješenje jedndžbe  $x^d \equiv 1 \pmod{p}$ , vrijedi da je  $b \equiv a^m$  za neki m. 1 < m < d.

Pokažimo da brojevi  $a^m$ , za  $1 \leq m \leq d$  i (m,d)=1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'}\equiv 1 \pmod{p}$ , onda d|md', pa d|d'.

Ako je b bilo koji broj koji pripada eksponentu d modulo p, onda pošto je b rješenje jedndžbe  $x^d \equiv 1 \pmod p$ , vrijedi da je  $b \equiv a^m$  za neki m,  $1 \le m \le d$ . Budući da je

$$b^{\frac{d}{(m,d)}} \equiv (a^d)^{\frac{m}{(m,d)}} \equiv 1 \pmod{p},$$

iz činjenice da je red od b modulo p jednak d, slijedi da je (m,d)=1. Dakle, dobili smo da je  $\psi(d)=\varphi(d)$ .

Pokažimo da brojevi  $a^m$ , za  $1 \le m \le d$  i (m,d)=1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'}\equiv 1\pmod{p}$ , onda d|md', pa d|d'.

Ako je b bilo koji broj koji pripada eksponentu d modulo p, onda pošto je b rješenje jedndžbe  $x^d\equiv 1\pmod p$ , vrijedi da je  $b\equiv a^m$  za neki m,  $1\leq m\leq d$ . Budući da je

$$b^{\frac{d}{(m,d)}} \equiv (a^d)^{\frac{m}{(m,d)}} \equiv 1 \pmod{p},$$

iz činjenice da je red od b modulo p jednak d, slijedi da je (m,d)=1. Dakle, dobili smo da je  $\psi(d)=\varphi(d)$ .

Dakle dokazali smo tvrdnu da  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ .



Pokažimo da brojevi  $a^m$ , za  $1 \leq m \leq d$  i (m,d)=1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'}\equiv 1 \pmod{p}$ , onda d|md', pa d|d'.

Ako je b bilo koji broj koji pripada eksponentu d modulo p, onda pošto je b rješenje jedndžbe  $x^d \equiv 1 \pmod p$ , vrijedi da je  $b \equiv a^m$  za neki m,  $1 \le m \le d$ . Budući da je

$$b^{\frac{d}{(m,d)}} \equiv (a^d)^{\frac{m}{(m,d)}} \equiv 1 \pmod{p},$$

iz činjenice da je red od b modulo p jednak d, slijedi da je (m,d)=1. Dakle, dobili smo da je  $\psi(d)=\varphi(d)$ .

Dakle dokazali smo tvrdnu da  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ . Po Teoremu koji smo ranije dokazali je

$$\sum_{d|p-1} \varphi(d) = p-1,$$

pa ako bi bilo  $\psi(d)=0<arphi(d)$  za neki d, onda bi suma  $\sum_{d|p-1}\psi(d)$  bila manja od p-1, što je kontradikcija.

Pokažimo da brojevi  $a^m$ , za  $1 \leq m \leq d$  i (m,d)=1, predstavljaju sve brojeve koji pripadaju eksponentu d modulo p. Zaista, svaki od njih ima red d, jer ako je  $a^{md'}\equiv 1 \pmod{p}$ , onda d|md', pa d|d'.

Ako je b bilo koji broj koji pripada eksponentu d modulo p, onda pošto je b rješenje jedndžbe  $x^d \equiv 1 \pmod p$ , vrijedi da je  $b \equiv a^m$  za neki m,  $1 \le m \le d$ . Budući da je

$$b^{\frac{d}{(m,d)}} \equiv (a^d)^{\frac{m}{(m,d)}} \equiv 1 \pmod{p},$$

iz činjenice da je red od b modulo p jednak d, slijedi da je (m,d)=1. Dakle, dobili smo da je  $\psi(d)=\varphi(d)$ .

Dakle dokazali smo tvrdnu da  $\psi(d) \neq 0$  povlači  $\psi(d) = \varphi(d)$ . Po Teoremu koji smo ranije dokazali je

$$\sum_{d|p-1} \varphi(d) = p-1,$$

pa ako bi bilo  $\psi(d)=0<\varphi(d)$  za neki d, onda bi suma  $\sum_{d\mid p-1}\psi(d)$  bila manja od p-1, što je kontradikcija. Stoga je  $\psi(d)\neq 0$  za svaki d, iz dokazane tvrdnje slijedi  $\psi(d)=\varphi(d)$  za svaki d, pa i  $\psi(p-1)=\varphi(p-1)$ .



Neka je p neparan prost broj, te neka je g primitivni korijen modulo p. Tada postoji  $x \in \mathbb{Z}$  takav da je g' = g + px primitivni korijen modulo  $p^j$  za sve  $j \in \mathbb{N}$ .

Dokaz: Imamo  $g^{p-1}=1+py$ , za neki  $y\in\mathbb{Z}$ . Po binomnom teoremu je

$$g'^{p-1} = 1 + py + (p-1)pxg^{p-2} + \binom{p-1}{2}p^2x^2g^{p-3} + \dots + p^{p-1}x^{p-1},$$

tj. 
$$g'^{p-1} = 1 + pz$$
, gdje je  $z \equiv y + (p-1)g^{p-2}x \pmod{p}$ .



Neka je p neparan prost broj, te neka je g primitivni korijen modulo p. Tada postoji  $x \in \mathbb{Z}$  takav da je g' = g + px primitivni korijen modulo  $p^j$  za sve  $j \in \mathbb{N}$ .

Dokaz: Imamo  $g^{p-1}=1+py$ , za neki  $y\in\mathbb{Z}$ . Po binomnom teoremu je

$$g'^{p-1} = 1 + py + (p-1)pxg^{p-2} + {p-1 \choose 2}p^2x^2g^{p-3} + \cdots + p^{p-1}x^{p-1},$$

tj. 
$$g'^{p-1} = 1 + pz$$
, gdje je  $z \equiv y + (p-1)g^{p-2}x \pmod{p}$ .

Koeficijent uz x nije djeljiv sa p, pa možemo odabrati x tako da bude (z,p)=1.

Neka je p neparan prost broj, te neka je g primitivni korijen modulo p. Tada postoji  $x \in \mathbb{Z}$  takav da je g' = g + px primitivni korijen modulo  $p^j$  za sve  $j \in \mathbb{N}$ .

Dokaz: Imamo  $g^{p-1}=1+py$ , za neki  $y\in\mathbb{Z}$ . Po binomnom teoremu je

$$g'^{p-1} = 1 + py + (p-1)pxg^{p-2} + {p-1 \choose 2}p^2x^2g^{p-3} + \cdots + p^{p-1}x^{p-1},$$

tj. 
$$g'^{p-1} = 1 + pz$$
, gdje je  $z \equiv y + (p-1)g^{p-2}x \pmod{p}$ .

Koeficijent uz x nije djeljiv sa p, pa možemo odabrati x tako da bude (z, p) = 1.

Tvrdimo da tada g' ima traženo svojstvo. Dokažimo to.

Pretpostavimo da g' pripada eksponentu d modulo  $p^j$ . Tada d dijeli  $\varphi(p^j)=p^{j-1}(p-1)$ .

Pretpostavimo da g' pripada eksponentu d modulo  $p^j$ . Tada d dijeli  $\varphi(p^j)=p^{j-1}(p-1)$ .

No, g' je primitivni korijen modulo p, pa p-1 dijeli d. Dakle,  $d=p^k(p-1)$  za neki k< j. Nadalje, imamo

$$(1+pz)^p = 1+p^2z_1, \quad (1+pz)^{p^2} = (1+p^2z_1)^p = 1+p^3z_2, \quad \dots$$
  
$$(1+pz)^{p^k} = 1+p^{k+1}z_k,$$

gdje je 
$$(z_i, p) = 1$$
 za  $i = 1, \ldots, k$ .

Pretpostavimo da g' pripada eksponentu d modulo  $p^j$ . Tada d dijeli  $\varphi(p^j)=p^{j-1}(p-1)$ .

No, g' je primitivni korijen modulo p, pa p-1 dijeli d. Dakle,  $d=p^k(p-1)$  za neki k< j. Nadalje, imamo

$$(1+pz)^p = 1+p^2z_1$$
,  $(1+pz)^{p^2} = (1+p^2z_1)^p = 1+p^3z_2$ , ...  
 $(1+pz)^{p^k} = 1+p^{k+1}z_k$ ,

gdje je  $(z_i, p) = 1$  za  $i = 1, \ldots, k$ .

Budući da je  ${g'}^d \equiv (1+pz)^d \equiv 1 \pmod{p^j}$ , odavde zaključujemo da je j=k+1, što povlači da je  $d=\varphi(p^j)$ .

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n = 2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Neka je  $d=\varphi(2p^j)=\varphi(p^j)$ . Tada je (g') reda d modulo  $(2p^j)$ , pa je on primitivni korijen modulo  $2p^j$ 

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Neka je  $d=\varphi(2p^j)=\varphi(p^j)$ . Tada je (g') reda d modulo  $(2p^j)$ , pa je on primitivni korijen modulo  $2p^j$ 

Ostaje još dokazati nužnost. Neka je najprije  $n=2^j$  za  $j\geq 3$ .

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Neka je  $d=\varphi(2p^j)=\varphi(p^j)$ . Tada je (g') reda d modulo  $(2p^j)$ , pa je on primitivni korijen modulo  $2p^j$ 

Ostaje još dokazati nužnost. Neka je najprije  $n=2^j$  za  $j\geq 3$ .

Tada za neparan broj *a* vrijedi  $a^2 \equiv 1 \pmod 8$ . Budući da  $8|a^2-1|$  i  $2|a^2+1|$  imamo  $a^4 \equiv 1 \pmod {16}$ .

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Neka je  $d=\varphi(2p^j)=\varphi(p^j)$ . Tada je (g') reda d modulo  $(2p^j)$ , pa je on primitivni korijen modulo  $2p^j$ 

Ostaje još dokazati nužnost. Neka je najprije  $n=2^j$  za  $j\geq 3$ .

Tada za neparan broj *a* vrijedi  $a^2 \equiv 1 \pmod 8$ . Budući da  $8|a^2-1$  i  $2|a^2+1$  imamo  $a^4 \equiv 1 \pmod {16}$ .

Ponavljajući ovaj argument dobivamo:  $a^{2^{j-2}} \equiv 1 \pmod{2^j}$  za  $j \geq 3$ .

Za prirodan broj n postoji primitivni korijen modulo n ako i samo ako je  $n=2, 4, p^j$  ili  $2p^j$ , gdje je p neparan prost broj.

Dokaz: Jasno je da je 1 primitivni korijen modulo 2, te da je 3 primitivni korijen modulo 4.

Neka je g primitivni korijen modulo  $p^j$ ; on postoji prema prethodno dokazanom teoremu. Odaberimo među brojevima g i  $g+p^j$  onaj koji je neparanm i nazovimo ga g'.

Neka je  $d=\varphi(2p^j)=\varphi(p^j)$ . Tada je (g') reda d modulo  $(2p^j)$ , pa je on primitivni korijen modulo  $2p^j$ 

Ostaje još dokazati nužnost. Neka je najprije  $n=2^j$  za  $j\geq 3$ .

Tada za neparan broj *a* vrijedi  $a^2 \equiv 1 \pmod 8$ . Budući da  $8|a^2-1$  i  $2|a^2+1$  imamo  $a^4 \equiv 1 \pmod {16}$ .

Ponavljajući ovaj argument dobivamo:  $a^{2^{j-2}} \equiv 1 \pmod{2^j}$  za  $j \geq 3$ . Budući da je  $\varphi(2^j) = 2^{j-1}$ , dokazali smo da ne postoji primitivni korijen modulo  $2^j$  za  $j \geq 3$ .



Konačno, neka je  $n = n_1 n_2$ , gdje je  $(n_1, n_2) = 1$ ,  $n_1 > 2$ ,  $n_2 > 2$ .

Konačno, neka je  $n=n_1n_2$ , gdje je  $(n_1,n_2)=1$ ,  $n_1>2$ ,  $n_2>2$ .

Brojevi  $\varphi(n_1)$  i  $\varphi(n_2)$  su parni, pa imamo

$$a^{rac{1}{2}arphi(n)} \equiv \left(a^{arphi(n_1)}
ight)^{rac{1}{2}arphi(n_2)} \equiv 1 \pmod{n_1},$$
  $a^{rac{1}{2}arphi(n)} \equiv \left(a^{arphi(n_2)}
ight)^{rac{1}{2}arphi(n_1)} \equiv 1 \pmod{n_2}.$ 

Konačno, neka je  $n=n_1n_2$ , gdje je  $(n_1,n_2)=1$ ,  $n_1>2$ ,  $n_2>2$ . Brojevi  $\varphi(n_1)$  i  $\varphi(n_2)$  su parni, pa imamo

$$a^{rac{1}{2}arphi(n)} \equiv \left(a^{arphi(n_1)}
ight)^{rac{1}{2}arphi(n_2)} \equiv 1 \pmod{n_1},$$
  $a^{rac{1}{2}arphi(n)} \equiv \left(a^{arphi(n_2)}
ight)^{rac{1}{2}arphi(n_1)} \equiv 1 \pmod{n_2}.$ 

Stoga je  $a^{\frac{1}{2}\varphi(n)}\equiv 1\pmod{n}$ , što znači da ne postoji primitivni korijen modulo n.

## Napomena

Tzv. Artinova hipoteza glasi: Neka je  $\pi(N)$  broj prostih brojeva  $\leq N$ , a  $v_2(N)$  broj prostih brojeva  $q \leq N$  za koje je 2 primitivni korijen. Tada je  $v_2(N) \sim A \cdot \pi(N)$ , gdje je  $A = \prod_p (1 - \frac{1}{p(p-1)}) \approx 0.3739558$ .



## Napomena

Tzv. Artinova hipoteza glasi: Neka je  $\pi(N)$  broj prostih brojeva  $\leq N$ , a  $v_2(N)$  broj prostih brojeva  $q \leq N$  za koje je 2 primitivni korijen. Tada je  $v_2(N) \sim A \cdot \pi(N)$ , gdje je  $A = \prod_p (1 - \frac{1}{p(p-1)}) \approx 0.3739558$ .

# Definicija

Neka je g primitivni korijen modulo n. Lako se vidi da tada brojevi  $g^I$ ,  $I=0,1,\ldots, \varphi(n)-1$  tvore reducirani sustav ostataka modulo n. Stoga za svaki cijeli broj a takav da je (a,n)=1 postoji jedinstveni I takav da je  $g^I\equiv a\pmod{n}$ . Eksponent I se zove indeks od a u odnosu na g i označava se sa  $\operatorname{ind}_g a$  ili  $\operatorname{ind} a$ .

- 1) ind  $a + \text{ind } b \equiv \text{ind } (ab) \pmod{\varphi(n)}$
- 2) ind 1 = 0, ind g = 1
- 3) ind  $(a^m) \equiv m \text{ ind } a \pmod{\varphi(n)}$  za  $m \in \mathbb{N}$
- 4) ind  $(-1) = \frac{1}{2}\varphi(n)$  za  $n \ge 3$

- 1) ind  $a + \text{ind } b \equiv \text{ind } (ab) \pmod{\varphi(n)}$
- 2) ind 1 = 0, ind g = 1
- 3) ind  $(a^m) \equiv m \text{ ind } a \pmod{\varphi(n)}$  za  $m \in \mathbb{N}$
- 4) ind  $(-1) = \frac{1}{2}\varphi(n)$  za  $n \ge 3$

*Dokaz:* Svojstva 1) – 3) slijede direktno iz definicije, a svojstvo 4) slijedi iz  $g^{2\inf(-1)} \equiv (-1)^2 \equiv 1 \pmod{n}$  i  $2\inf(-1) < 2\varphi(n)$ .

- 1) ind  $a + \text{ind } b \equiv \text{ind } (ab) \pmod{\varphi(n)}$
- 2) ind 1 = 0, ind g = 1
- 3) ind  $(a^m) \equiv m$  ind  $a \pmod{\varphi(n)}$  za  $m \in \mathbb{N}$
- 4) ind  $(-1) = \frac{1}{2}\varphi(n)$  za  $n \ge 3$

*Dokaz:* Svojstva 1) – 3) slijede direktno iz definicije, a svojstvo 4) slijedi iz  $g^{2\inf(-1)} \equiv (-1)^2 \equiv 1 \pmod{n}$  i  $2\inf(-1) < 2\varphi(n)$ .

Uočimo da su svojstva indeksa 1) – 3) potpuno analogna svojstvima logaritamske funkcije.

# Propozicija

Ako je (n, p-1)=1, onda kongruencija  $x^n\equiv a\pmod p$  ima jedinstveno rješenje.

## Propozicija

Ako je (n, p-1)=1, onda kongruencija  $x^n\equiv a\pmod p$  ima jedinstveno rješenje.

Dokaz: Iz  $x^n \equiv a \pmod{p}$ , dobivamo

$$n \operatorname{ind} x \equiv \operatorname{ind} a \pmod{p-1},$$

pa jer je (n, p-1)=1, ova kongruencija ima jedinstveno rješenje.



## Zadatak

Odredite najmanji primitvni korijen modulo 11 u sustavu najmanjih nenegativnih ostataka.

## Zadatak

Odredite najveći primitvni korijen modulo 13 u sustavu najmanjihu nenegativnih ostataka.

## Zadatak

Neka je a, n,  $d \in \mathbb{Z}$ . Ako je red od a modulo n jednak d, odredite x takav da je a $x^2 \equiv 1 \pmod{n}$ .

#### 7adatak

Neka su a,  $n \in \mathbb{Z}$ . Može li red od a modulo n biti a? Ako može dajte primjer, ako ne može dokažite.

## Zadatak

Neka su a,  $n \in \mathbb{Z}$ . Može li red od a modulo n biti n? Ako može dajte primjer, ako ne može dokažite.

