

THE PROBLEM STATEMENT IS NOT COMPLETE, MORE INFORMATION IS NEEDED.
ASSUME (W/) 4 (W/) 7 (W/) 2
FURTHER ASSUME = TEO FOR ALL DEVICES.

Figure 12.42

$$I_{OEF} = I_{OOT}$$

$$V_{651} = V_{652} + I_{DEF} R_{8}$$

$$U_{5}E = SQUADE LAW £ONS. £ SQUE FOR V_{65}$$

$$I_{MOSX}(W) + V_{M1} = \int_{I_{M}(o)}^{2I_{OUT}} + V_{M2} + I_{OUT} R_{5}$$

$$I_{MOSX}(W) + V_{M1} = V_{M1} = V_{M2} £ SQUE FOR Interval R_{5}$$

$$I_{MOSX}(W) = V_{M1} = V_{M2} £ SQUE FOR Interval R_{5}$$

$$I_{MOSX}(W) = I_{M1} = I_{M2} £ I_{M1} = I_{M2}$$

$$I_{MOSX}(W) = I_{M1} = I_{M2} £ I_{M1} = I_{M2}$$

$$I_{MOSX}(W) = I_{M1} = I_{M2} I_{M1} = I_{M2}$$

$$I_{M1} = I_{M2} I_{M1} = I_{M2} I_{M1} = I_{M2} I_{M2}$$

$$I_{M1} = I_{M2} I_{M1} = I_{M2} I_{M2} I_{M2}$$

$$I_{M1} = I_{M2} I_{M2} I_{M2} I_{M2}$$

12.2. Explain how the start-up circuit shown in Fig. 12.43 operates. Derive a relationship that guarantees that $V_X < V_{TH}$ after the circuit turns on.

Figure 12.43

18.2 When the circuit turns on, initially both M5 and M6 are off and V_X and V_Y rise together, i.e., $V_X = V_Y$. When V_Y reaches V_{TH6} , V_X is also near V_{TH5} . Thus, V_Y reaches V_{TH6} , V_X is also near V_{TH5} . Thus, V_Y reaches V_{TH6} , V_Y is also near V_{TH5} . Thus, V_Y reaches V_{TH6} , V_Y is also near V_{TH5} . Thus, V_Y is also near V_{TH5} . Thus, V_Y is also near V_{TH5} . Thus, V_Y is also near V_{TH6} , V_Y begins to drop if M6 is turned on sufficiently because the voltage gain of M6 and V_Y exceeds unity. For high V_Y values of V_Y , V_Y can be lower than V_{TH5} .

Since V_Y , V_Y can be lower than V_{TH5} .

Since V_Y , V_Y can be lower than V_{TH5} . V_Y and V_Y is also V_Y in V_Y i

12.5. In the circuit of Fig. 12.15, assume that Q_2 and Q_4 have a finite current gain β . Calculate the error in the output voltage.

BECAUSE ALL PMOS THE SAME SIZE.

Id = Ic2 = Ic3 = Icq = Ic

$$2\ln(n) = I_c R_1$$

$$I_c = 2\ln(n)$$

WITH
$$\beta$$
 ERROR
$$I_E = I_c - I_B$$

$$I_E = I_c - I_c$$

$$= I_c \left(1 - \frac{1}{B}\right)$$

The form of the form
$$A$$
 and A are the form A and A and A and A are the form A and A are the form A and A and A are the form A are the form A are the form A and A are the form A and A are the form A and A are the form A are the form A and A are the form A are the form A and A are the form A are the form A and A are the form A and A are the form A are the form A and A are the form A are the form A and A are the form A are the form A are the form A are the form A and A are the form A and A are the form A are the form A and A are the form A and A are the form A are the form A are