ICT 41205 Digital Control Systems Introduction to Digital Control Systems

Nimal Skandhakumar

Faculty of Technology University of Sri Jayewardenepura

2018

Digital Control Systems

Controlling systems using digital signals

What are Systems?

Systems

A set of things working together as parts of a mechanism

- Natural Systems
 - Human body
- Artificial Systems
 - Automotive vehicle

Dynamic Systems

Example

Fan vs. Air Conditioner

Systems with inputs and outputs: how the input affects the output or what input should be given to generate a desired output.

Dynamic Systems

Systems that evolve with time

What is Control?

Control

Change the behaviour of a system

Digital Control

The control laws are implemented in a digital device

Examples of Digitally Controlled Systems

- housing
 - in-house temperature regulation
- automotive industry
 - speed regulators in cars
- aeronautic/space industry
 - autopilots, automatic take off/landing
- robotics
 - robot-arm trajectory control

Advantages of Digital over Analogue

- Speed
 - Superior performance at very fast speeds with digital computers
- Accuracy
 - Digital signals are more accurate
- Flexibility
 - Controller can be modified without complete replacement
- Cost
 - Digital controllers are more economical to build
- Implementation Errors
 - Implementation errors are negligible

Signals

- A magnitude which varies with time
- Variable, not constant
- Simple or complex
- Sound, thermal, etc.

Type of signals

- Binary
- Digital
- Continuous
- Fuzzy not well defined
- Stochastic unpredictable

System variables

Input Signals:

- Manipulated
 - can be controlled
- Disturbances
 - cannot be controlled

Process Variables:

- External
 - can be sensed
- Internal
 - within the system

Systems related to signals

- Signal generators (sine wave)
- Signal processes (filer, sampler)
- Sensors or transducers (microphone)
- Receivers and transmitters

Representation of Signals

v(t)

graph or table

function of time

information + noise

Control System Structure

- Open-loop
 - set goals, no disturbances, no measurements
- Closed-loop
 - operator sets goals, controller sets variables with measurements
- Supervisory
 - operator supervise closed-loop references
- Cascade
 - sub-processes
- Feed-forward
 - sense disturbance and control input generated
- Two degrees of freedom
 - two controllers to adjust different aspects of process
- Hierarchical
 - hierarchical sub-processes, with central coordinating

Closed-loop Digital Control Systems

In a closed loop control system, the variable to be controlled (controlled variable / system output) is continuously measured and then compared with a predetermined value (reference variable).

What do you want to learn?