NASA/TP-20220000355/Vol 2

NDARC NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson Ames Research Center Moffett Field, California

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.
 Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation.

 Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to <u>help@sti.nasa.gov</u>
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

NASA/TP-20220000355/Vol 2

NDARC NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson Ames Research Center Moffett Field, California

National Aeronautics and Space Administration

Ames Research Center Moffett Field, CA 94035-1000

NDARC NASA Design and Analysis of Rotorcraft

Input and Data Structures

Release 1.16 January 2022

Wayne Johnson NASA Ames Research Center, Moffett Field, CA

1.	Data Structures and Input	1
2.	Input Based on Configuration	13
3.	Parameters and Constants	21
4.	Job	26
5.	Design	33
6.	Cases	35
7.	Size	39
8.	SizeParam	40
9.	OffDesign	46
10.	OffParam	47
11.	Performance	48
12.	PerfParam	49
13.	MapEngine	50
14.	. MapAero	53
15.	FltCond	56
16	Mission	62
17.	MissParam	63
18.	. MissSeg	71
19.	. FltState	80
20.	FltAircraft	81

21.	FltFuse	100
22.	FltGear	102
23.	FltRotor	103
24.	FltWing	110
25.	FltTail	113
26.	FltTank	114
27.	FltProp	116
28.	FltEngn	118
29.	FltJet	121
30.	FltChrg	124
31.	Solution	127
32.	Cost	132
33.	Emissions	136
34.	Aircraft	138
35.	XAircraft	156
36.	Systems	158
37.	WFltCont	165
38.	WDeIce	167
39.	Fuselage	168
40.	AFuse	172
41.	WFuse	175
42.	LandingGear	177
43.	AGear	179
44.	WGear	180

45.	Rotor	181
46.	PRotorInd	198
47.	PRotorPro	203
48.	PRotorTab	206
49.	DRotor	208
50.	IRotor	211
51.	WRotor	213
52.	Wing	217
53.	AWing	228
54.	WWing	231
55.	WWingTR	233
56.	Tail	236
57.	ATail	239
58.	Wtail	241
59.	FuelTank	243
60.	WTank	247
61.	Propulsion	249
62.	WDrive	254
63.	EngineGroup	256
64.	DEngSys	265
65.	WEngSys	266
66.	JetGroup	268
	•	200
67.	DJetSys	
		274
68.	DJetSys	274 275

71.	WChrgSys	283
	EngineModel	
73.	EngineParamN	290
74.	Engine Table	292
75.	RecipModel	295
76.	CompressorModel	299
77.	MotorModel	302
78.	JetModel	305
79.	FuelCellModel	308
	SolarCellModel	
81.	BatteryModel	313
	Location	
83.	Weight	318

1-1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Figure 1-1 Outline of NDARC tasks.

Figure 1-2 NDARC Interfaces.

```
&JOB INIT input=0, INIT data=0, &END
&DEFN action='ident',created='time-date',title='standard input',&END
&DEFN action='open file',file='engine.list',&END
&DEFN action='open file', file='helicopter.list', &END
1-----
&DEFN quant='Cases',&END
&VALUE title='Helicopter', TASK size=0, TASK mission=1, TASK perf=1, &END
&DEFN quant='Size',&END
&VALUE nFltCond=0,nMission=0,&END
&DEFN quant='OffDesign', &END
&VALUE title='mission analysis',nMission=1,&END
&DEFN quant='OffMission', &END
&VALUE
     (one mission, mission segment parameters as arrays)
& END
&DEFN quant='Performance', &END
&VALUE title='performance analysis',nFltCond=2,&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN action='endofcase',&END
&DEFN action='endofjob', &END
```

Figure 1-3a Illustration of NDARC input (primary input).

```
&DEFN action='ident',created='time-date',title='Helicopter',&END
! default helicopter
&DEFN action='configuration', &END
&VALUE config='helicopter',rotate=1,&END
!-----
&DEFN quant='Cases', &END
&VALUE title='Helicopter', FILE design='helicopter.design', &END
&DEFN quant='Size',&END
&VALUE
  title='Helicopter',
  SIZE perf='none', SET rotor='radius+Vtip+sigma', 'radius+Vtip+sigma',
  FIX_DGW=1,SET_tank='input',SET_SDGW='input',SET_WMTO='input',
&END
&DEFN quant='Solution', &END
&VALUE &END
&DEFN quant='Aircraft', &END
&VALUE (Aircraft parameters) &END
&DEFN quant='Geometry', &END
&VALUE (geometry) &END
&DEFN quant='Rotor 1', &END
&VALUE (Rotor 1 parameters) &END
!-----
     (other parameters in other structures)
!-----
&DEFN quant='TechFactors', &END
&VALUE (technology factors) & END
&DEFN action='endoffile', &END
```

Figure 1-3b Illustration of NDARC input (secondary input file).

1-2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

Table 1-1. Input and output files.

	file logical name	unit number (and default)
INPUT		
Primary Input	standard input	nuin = 5
Secondary Input File	FILE	nufile = 40
Aircraft Description	FILE	nufile = 40
Solution	FILE	nufile = 40
OUTPUT		
Output	standard output	nuout = 6
Design	DESIGNn	nudesign = 41
Performance	PERFn	nuperf = 42
Airframe Aerodynamics	AEROn	nuaero = 43
Engine Performance	ENGINEn	nuengine = 44
Geometry	GEOMETRYn	nugeom = 45
Aircraft Description	AIRCRAFTn	nuacd = 46
Solution	SOLUTIONn	nusoln = 47
Sketch	SKETCHn	nusketch = 48
Errors	ERRORn	nuerror = 49

1-2.1 Input

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT='Job'. The initialization takes place before case input, so changed initialization parameters in QUANT='Job' input take effect for the next case. The DEFN namelist has the following parameters.

- a) ACTION: character string (length = 32; case independent).
- b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure number (1 or next condition/mission if absent).
- c) SOURCE: integer; for copy action.
- d) FILE: file name or logical name (length = 256).
- e) CREATED: character string of creation time and date (length = 20).
- f) TITLE: character string of title identifying input file (length = 80).
- g) VERSION: code version number as character string (length = 6).
- h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the solution). A secondary input file has DEFN namelists to define action and contents. When ACTION='end' (or EOF) is encountered in a secondary input file, the file is closed and the code returns to primary input.

A DEFN namelist with ACTION='ident' identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file. If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission, with the mission segment parameters as arrays, is input with QUANT='SizeMission' or QUANT='OffMission'; and each condition is input with QUANT='SizeCondition' or QUANT='PerfCondition'.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION='delete' deletes this input as specified by QUANT='SizeCondition n', QUANT='SizeMission n', QUANT='OffMission n', or QUANT='PerfCondition n'. ACTION='delete all' deletes all (ignore structure number); ACTION='delete one' deletes structure n (all if number absent); ACTION='delete structure n and subsequent structures (all if number absent).

For ACTION='nosize', input variables in the Size structure are set for no size iteration: SIZE_perf='none', SIZE_engine='none', SIZE_jet='none', SIZE_charge='none', SET_rotor='radius+Vtip+sigma', SET_wing='area+span', FIX_DGW=1, SET_tank='input', SET_limit_ds='input', SET_SDGW='input', SET_WMTO='input'.

Table 1-2. ACTION options.

ACTION	keyword	QUANT	function
Primary Input Only			
blank	_	blank	open and read secondary input file, name = FILE
'open file'	file,open		open and read secondary input file, name = FILE
'load aircraft'	aircraft,desc		load aircraft description file, name = FILE
'read solution'	solution	'text'	read complete solution file, name = FILE (text)
'read solution'	solution	not 'text'	read complete solution file, name = FILE (binary)
'end of case'	end+case		stop case input, execute case
'end of job'	end+job,quit		stop job input, execute case, exit code
Primary or Secondary Input			
blank	_	'structure'	read VALUE namelist
'read namelist'	list	'structure'	read VALUE namelist
'copy input'	сору	'structure'	copy input from source (same structure), SOURCE=SRCnumber
'initialize'	init	'structure'	set structure variables to default values
'delete all'	del+all	'structure'	delete all conditions or missions
'delete one'	del+one	'structure'	delete one condition or mission
'delete last'	del+last	'structure'	delete last conditions or missions
'configuration'	config		set input based on aircraft configuration
'nosize'	nosize		set input for no size iteration
'identification'	ident		identify file
'end'	end (or EOF)		Secondary: close file, return to primary input
'end'	end (or EOF)		Primary: same as ACTION='endofjob'

Table 1-3. QUANT options. QUANT	data structures read	maximum n
'Job' 'Cases'	Job Cases	
'Size' 'SizeCondition n' 'SizeMission n' 'OffDesign' 'OffMission n' 'Performance' 'PerfCondition n' 'MapEngine' 'MapAero'	SizeParam one FltCond+FltState one MissParam, MissSeg+FltState as array OffParam one MissParam, MissSeg+FltState as array PerfParam one FltCond+FltState MapEngine MapAero	nFltCond nMission nMission nFltCond
'Solution'	Solution	
'Cost' 'Emissions' 'Aircraft' 'Systems' 'Fuselage' 'LandingGear' 'Rotor n' 'Wing n' 'Tail n' 'FuelTank n' 'Propulsion n' 'EngineGroup n' 'JetGroup n'	Cost Emissions Aircraft Systems, WFltCont, WDelce Fuselage, AFuse, WFuse LandingGear, AGear, WGear Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor Wing, AWing, WWing, WWingTR Tail, ATail, WTail FuelTank, WTank Propulsion, WDrive EngineGroup, DEngSys, WEngSys JetGroup, DJetSys, WJetSys ChargeGroup, DChrgSys, WChrgSys	nRotor nWing nTail nTank nPropulsion nEngineGroup nJetGroup nChargeGroup
'EngineModel n' 'EngineParamN n' 'EngineTable n' 'RecipModel n' 'CompressorModel n' 'MotorModel n' 'JetModel n' 'FuelCellModel n' 'SolarCellModel n' 'BatteryModel n'	EngineModel EngineParamN EngineTable RecipModel CompressorModel MotorModel JetModel FuelCellModel SolarCellModel BatteryModel	nEngineModel nEngineParamN nEngineTable nRecipModel nCompressorModel nMotorModel nJetModel nFuelCellModel nSolarCellModel
'TechFactors' 'Geometry'	all TECH_xxx all Location	

1-2.2 Formats

```
Namelist input has the following format (see also figure 1-3).
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &DEFN quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='NAMELIST', quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='COPY', quant='STRUCTURE n', source=#, &END
An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):
 &DEFN action='IDENT', created='time-date', title='xxx', version='n.n', modification='xxx', &END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This aircraft description file is read by identifying it in the primary input:
 &DEFN action='AIRCRAFT', file='aircraft.acd', &END
A solution file is written in a separate file by NDARC, from the Design (kcase), in binary or text format:
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:
 &DEFN action='SOLUTION, quant='TEXT', file='aircraft.soln'&END
```

1-2.3 Conventions

Each flight condition (FltCond and FltState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeq, and FltState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in this namelist, so MissSeq and FltState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location variables), with corresponding options for output. A variable that is a scalar in the Rotor, Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.

Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1-3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that manipulates character strings, to produce compilable module and subroutines for NDARC.

1–4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a "+" sign in the column between the type and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Table 1-4. NDARC data structures.

Design	Fuselage	FuelTank(ntankmax)	FltState(nfltmax)
Cases	[Location]loc_fuselage	[Location]loc_auxtank(nauxtankmax)	FltAircraft
Size	AFuse	Weight	FltFuse
SizeParam	Weight	WTank	FltGear
FltCond(nfltmax)	WFuse	Propulsion(npropmax)	FltRotor(nrotormax)
FltState(nfltmax)	LandingGear	Weight	FltWing(nwingmax)
Mission(nmissmax)	[Location]loc_gear	WDrive	FltTail(ntailmax)
MissParam	AGear	EngineGroup(nengmax)	FltTank(ntankmax)
MissSeg(nsegmax)	Weight	[Location]loc_engine	FltProp(npropmax)
FltState(nsegmax)	WGear	DEngSys	FltEngn(nengmax)
OffDesign	Rotor(nrotormax)	Weight	FltJet(njetmax)
OffParam	$[Location]loc_rotor$	WEngSys	FltChrg(nchrgmax)
Mission(nmissmax)	[Location]loc_pylon	JetGroup(njetmax)	
MissParam	[Location]loc_pivot	[Location]loc_jet	
MissSeg(nsegmax)	[Location]loc_nac	DJetSys	
FltState(nsegmax)	PRotorInd	Weight	
Performance	PRotorPro	WJetSys	
PerfParam	${\sf PRotorTab}$	${\sf ChargeGroup(nchrgmax)}$	
FltCond(nfltmax)	IRotor	[Location]loc_charger	
FltState(nfltmax)	DRotor	DChrgSys	
MapEngine	Weight	Weight	
MapAero	WRotor	WChrgSys	
Solution	Wing(nwingmax)	EngineModel(nengmax)	
Cost	[Location]loc_wing	EngineParamN(nengpmax)	
Emissions	AWing	EngineTable(nengmax)	
Aircraft	Weight	RecipModel(nengmax)	
[Location]loc_cg	WWing	${\sf CompressorModel(nengmax)}$	
Weight	WWingTR	MotorModel(nengmax)	
XAircraft	Tail(ntailmax)	JetModel(njetmax)	
Systems	[Location]loc_tail	FuelCellModel(nchrgmax)	
Weight	ATail	SolarCellModel(nchrgmax)	
WFltCont	Weight	BatteryModel(ntankmax)	
WDelce	WTail	·	

The rotorcraft configuration is identified by the variable config in the QUANT='Aircraft' input. With ACTION='configuration', the analysis defines a number of input parameters in order to facilitate modelling of conventional configurations. The input required to execute ACTION='configuration' is:

```
&DEFN action='configuration',&END  
&VALUE config='aaaa',nRotor=#,rotate=#,#,overlap_tandem=#,#,ang_multicopter=#,#,&END
```

The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note that default values are defined for all input quantities.

2–1 All Configurations

 $a)\ Components:\ n\mathsf{Rotor} = 2\ (except\ multicopter), n\mathsf{Wing} = 0, n\mathsf{Tail} = 2;\ n\mathsf{Propulsion} = 1, n\mathsf{Engine} \\ \mathsf{Group} = 1, n\mathsf{Engine} \\ \mathsf{Model} = 1, n\mathsf{Jet} \\ \mathsf{Group} = 0, n\mathsf{Charge} \\ \mathsf{Group} = 0,$

b) Aircraft

Aircraft controls: ncontrol=7, IDENT_control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder'

Control states: nstate control=1

Trim states: nstate trim=10, selected by FltAircraft%STATE trim=IDENT trim; compound state not active

	IDENT_trim	mtrim	trim_quant	trim_var
6-variable	'free'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','pitch','roll'
longitudinal	'long'	4	'force x','force z','moment y','moment z'	'coll','Ingcyc','pitch','pedal'
symmetric 3-variable	'symm'	3	'force x','force z','moment y'	'coll','Ingcyc','pitch'
weight and drag	'force'	2	'force x','force z'	'coll','pitch'
hover thrust and torque	'hover'	2	'force z','moment z'	'coll','pedal'
hover thrust	'thrust'	1	'force z'	'coll'
hover rotor C_T/σ	'rotor'	1	'CTs rotor 1'	'coll'
wind tunnel	'windtunnel'	3	'CTs rotor 1','betac 1','betas 1'	'coll','latcyc','lngcyc'
full power	'power'	1	'P margin 1'	'coll'
ground run	'ground'	1	'force x'	'coll'
compound	'comp'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','prop','roll'

```
c) Systems: MODEL FWfc=0, MODEL CVfc=0 (no fixed wing flight controls, no conversion controls)
d) Landing Gear: KIND LG=0 (fixed gear), Wgear%nLG=3
e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank int=1, WTank%nplumb=2
f) Rotor
First rotor is primary: kPropulsion=1, KIND xmsn=1
Second and other rotors are dependent: kPropulsion=1, KIND xmsn=0, INPUT gear=1 (input quantity is tip speed)
Configuration: direction='main'
Drag: SET aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET Dspin=1, DRotor%DoQ spin=0. (no spinner drag)
Weight: WRotor%MODEL config=1 (rotor), WRotor%KIND rotor=2 (not tilting)
Control:
   INPUT coll=0, INPUT cyclic=0, INPUT incid=0, INPUT cant=0, INPUT diam=0 (no connection to aircraft controls)
   T coll=0., T latcyc=0., T lngcyc=0., T incid=0., T cant=0., T diam=0. (all controls, all states)
   KIND control=1 (1 for thrust and TPP command)
   KIND coll=2 (1 for thrust, 2 for C_T/\sigma)
   KIND cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
   KIND tilt=0 (fixed shaft)
g) Wing
Control:
   INPUT flap=0, INPUT flaperon=0, INPUT aileron=0, INPUT incid=0 (no connection to aircraft controls)
   T flap=0., T flaperon=0., T aileron=0., T incid=0. (all controls, all states, all panels)
Drag: Idrag=0. (not tilt)
h) Tail
First tail is horizontal tail: KIND tail=1, WTail%MODEL Htail=1 (helicopter)
Second tail is vertical tail: KIND tail=2, WTail%MODEL Vtail=1 (helicopter)
Configuration: KIND TailVol=2, TailVolRef=1 (rotor reference)
Control:
   INPUT cont=1 (tail control connection to aircraft controls), INPUT incid=0 (no connection of tail incidence to aircraft controls)
   T cont=0., T incid=0. (all controls, all states)
i) Propulsion: nGear=1, STATE gear wt=1, INPUT DN=0
```

```
i) Engine Group
Configuration: kPropulsion=1, INPUT gear=1 (gear ratio from N spec), SET power=0 (sized), fPsize=1., direction='x', SET geom=0 (standard position)
Drag: MODEL drag=1, ldrag=0. (not tilt)
k) Engine Group, Jet Group, Charge Group
Control:
   INPUT amp=0, INPUT mode=0, INPUT incid=0, INPUT yaw=0 (no connection to aircraft controls)
   T amp=0., T incid=0., T yaw=0. (all controls, all states)
2–2 Helicopter
a) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(4,1)=-r (rotor collective connection to aircraft control 'pedal')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–3 Tandem
a) Components: nTail=0 (no tail)
b) Fuel Tank: place=2 (sponson)
```

```
c) Rotor
Configuration: config='main+tandem', fDGW=.5, SET geom='tandem', fRadius=1.
   fArea = 1 - m/2, from m = (2/\pi)(\cos^{-1} h - h\sqrt{1 - h^2}), h = 1 – overlap tandem
First rotor is front rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=-1., T latcyc(2,1)=-r, T latcyc(4,1)=-r
Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=1., T latcyc(2,1)=-r, T latcyc(4,1)=r
Performance: PRotorInd%MODEL twin='tandem', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
2-4 Coaxial
a) Rotor
Configuration: config='main+coaxial', fDGW=.5, fArea=.5, SET geom='coaxial', fRadius=1.
First rotor is lower rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Performance: PRotorInd%MODEL_twin='coaxial', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Horizontal tail: T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=1. WDrive%ndriveshaft=0. WDrive%fShaft=0.1: WDrive%fTorque=0.6. WDrive%fPower=0.6
```

2-5 Tiltrotor

```
a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tilt', 'flap', 'flaperon', 'elevator', 'aileron', 'rudder'
Control states: nstate control=2 (state 1 for helicopter mode, state 2 for airplane mode)
Control state in conversion: kcont hover=1, kcont conv=1, kcont cruise=2
Drive state in conversion: kgear hover(1)=1, kgear conv(1)=1, kgear cruise(1)=1
c) Systems: MODEL FWfc=1, MODEL CVfc=1 (fixed wing flight controls, conversion control)
d) Landing Gear: KIND LG=1 (retractable)
e) Fuel Tank: place=3 (wing), fFuelWing(1)=1.
f) Rotor
Configuration: config='main+tiltrotor', fDGW=.5, fArea=1.; SET geom='tiltrotor', KIND TRgeom=1 (from clearance), fRadius=1., WingForRotor=1
First rotor is right rotor: otherRotor=2
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1., T coll(2,1)=-1., T lngcyc(3,1)=-1., T lngcyc(4,1)=1.
Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT gear=2 (input quantity is gear ratio)
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1, T coll(2,1)=1, T lngcyc(3,1)=-1, T lngcyc(4,1)=-1.
Airplane mode control state: T coll(1,2)=1. (collective connection to aircraft control 'coll')
Tilt: KIND tilt=1 (shaft control = incidence), incid ref=90. (helicopter mode reference), SET Wmove=1, fWmove=1. (wing tip weight move)
   control: INPUT incid=1, T incid(5,1)=1., T incid(5,2)=1. (incidence connection to aircraft control 'tilt')
Performance: PRotorInd%MODEL twin='tiltrotor', PRotorInd%Kh twin=1., PRotorInd%Kf twin=1., IRotor%MODEL int twin=2
Weight: WRotor%KIND rotor=1 (tilting)
Drag: SET aeroaxes=2 (tiltrotor), ldrag=90. (tiltrotor)
   DRotor%SET Dhub=1, DRotor%DoQ hub=0., DRotor%CD hub=0., DRotor%SET Vhub=1, DRotor%DoQV hub=0., DRotor%CDV hub=0. (no hub drag)
g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET ext=0
Control: KIND flaperon=3 (independent), nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(2,2)=-1. (airplane mode aileron connection to aircraft control 'latcyc')
```

```
T flap(6,1)=1., T flap(6,2)=1. (flap direct control)
   T flaperon(7,1)=1., T flaperon(7,2)=1. (flaperon direct control)
   T aileron(9,1)=1., T aileron(9,2)=1. (aileron direct control)
Weight: WWing%MODEL wing=3 (tiltrotor)
h) Tail
Configuration: KIND TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL Htail=2, Wtail%MODEL Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1
   T \cot(3,2)=1. (airplane mode elevator connection to aircraft control 'lngcyc')
   T cont(8,1)=1., T cont(8,2)=1. (elevator direct control)
Vertical tail control: nVincid=1
   T cont(4,2)=1. (airplane mode rudder connection to aircraft control 'pedal')
   T cont(10,1)=1., T cont(10,2)=1. (rudder direct control)
i) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
j) Engine Group
Configuration: fPsize=0.5, SET geom=1 (tiltrotor)
First engine group: RotorForEngine=1
Second engine group: RotorForEngine=2
Control: INPUT incid=1; T incid(5,1)=1., T incid(5,2)=1. (nacelle incidence connection to aircraft control 'tilt')
Drag: SET Swet=1, Swet=0., MODEL drag=0, Idrag=90. (no engine nacelle drag)
   DEngSys%SET drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.
2-6 Compound
a) Components: nRotor=3, nWing=1
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tailinc', 'elevator', 'rudder', 'prop', 'aileron', 'flap'
Trim states: nstate trim=11; compound state active
c) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
```

```
control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1) = -r (rotor collective connection to aircraft control 'pedal')
Third rotor is propeller: config='prop+auxT', fThrust=1., fArea=0., SET geom='standard'
   direction='prop', WRotor%MODEL config=3 (auxiliary thrust)
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(8,1)=1. (rotor collective connection to aircraft control 'prop')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Wing
Configuration: fDGW=1.
Control: nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(9,1)=1. (aileron direct control)
   T flap(10,1)=1. (flap direct control)
Weight: WWing%MODEL wing=2 (parametric)
e) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7.1)=1. (rudder direct control)
f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–7 Multicopter
a) Components: nTail=0 (no tail)
b) Rotor
Configuration: config='main+multirotor', fDGW=1/nRotor, fArea=1., SET geom='multicopter'
Control: KIND control=2 (thrust and NFP command); INPUT coll=1
   rotation: r = 1; if (rotate < 0) r = -1; a = ang multicopter
   T coll(1,1)=1, T coll(2,1)=-\sin(a), T coll(3,1)=\cos(a), T coll(4,1)=r (rotor collective connection to aircraft controls)
```

```
Performance: PRotorInd%MODEL twin='multirotor'; xh multi=0., xp multi=0., xf multi=0., except 1.0 for this rotor
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
c) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
2–8 Airplane
a) Components: nRotor=1, nWing=1
b) Solution: KIND Lscale=2 (wing span reference)
c) Aircraft
Geometry: INPUT geom=2, KIND scale=2, kScale=1 (geometry scaled with wing span); KIND Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder','aileron','flap'
    coll = propeller, latcyc = lateral stick, lngcyc = longitudinal stick
d) Systems: MODEL FWfc=1 (fixed wing flight controls)
e) Rotor
Propeller: config='prop+auxT', fThrust=1., fDGW=0., SET_geom='standard'
   direction='prop', WRotor%MODEL config=3 (auxiliary thrust)
Control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control 'coll')
f) Wing
Configuration: fDGW=1.
Control: nVincid=1
   INPUT flap=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(2,1)=1. (lateral stick), T aileron(8,1)=1. (aileron direct control)
   T flap(9,1)=1. (flap direct control)
Weight: WWing%MODEL wing=2 (parametric)
g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(3,1)=1. (longitudinal stick), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(4,1)=1. (pedal), T cont(7,1)=1. (rudder direct control)
h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1
```

Chapter 3

Parameters	Value				
ncasemax	10	ndesignmax	41	ngetab2ma×	20
nfilemax	40	ncontmax	20	npanelmax	5
nrotormax	16	nsweepmax	200	nauxtankmax	4
npropmax	16	qsweepmax	4	ngearmax	8
nengmax	16	ntrimstatemax	20	nratemax	20
njetmax	4	mtrimmax	16	nengtmax	20
nchrgmax	4	nvnemax	32	nengxmax	100
nstatemax	10	niasmax	40	nengkmax	6
nwingmax	8	nvelmax	20	nengrmax	40
ntailmax	6	ntablemax	32	nengpmax	20
ntankmax	4	nrmax	51	nengcmax	80
nmissmax	20	mrmax	40	nspeedmax	8
nsegmax	40	mpsimax	36	nrowmax	4000
nfltmax	21	ngetabmax	40	naeromax	100
Constants	Value				
ACTION_error	0	SET_takeoff_transition	6	TRIM_QUANT_Cmargin	20
ACTION_file	1	${\sf SET_take} of f_climb$	7	$TRIM_{QUANT_{tank}}$	21
ACTION_ident	2	$SET_takeoff_brake$	8	$TRIM_QUANT_Bmargin$	22
ACTION_list	3	$MAX_{QUANT_{none}}$	0	$TRIM_{QUANT_{rotorL}}$	23
ACTION_copy	4	$MAX_{QUANT_{end}}$	1	$TRIM_{QUANT_{rotorfL}}$	24
ACTION_init	5	$MAX_{QUANT_{range}}$	2	TRIM_QUANT_CLs	25
ACTION_delete	6	$MAX_QUANT_rangelow$	3	$TRIM_{QUANT_{rotorV}}$	26
ACTION_delone	7	MAX_QUANT_range100	4	$TRIM_{QUANT_{rotorX}}$	27
ACTION dellast	8	MAX QUANT rangeVg	5	TRIM QUANT rotorfX	28

ACTION (0	NANY OLIANIT	6	TOIM OLIMIT CV	20
ACTION_config	9	MAX_QUANT_rangelowVg	6	TRIM_QUANT_CXs	29
ACTION_nosize	10	MAX_QUANT_range100Vg	7	TRIM_QUANT_XoQ	30
ACTION_desc	11	MAX_QUANT_climb	8	TRIM_QUANT_CTs	31
ACTION_soln	12	MAX_QUANT_angle	9	TRIM_QUANT_Tmargs	32
ACTION_endfile	13	$MAX_{QUANT_{power}}$	10	$TRIM_{QUANT_{T}}Tmargt$	33
ACTION_endcase	14	MAX_QUANT_PoV	11	$TRIM_{QUANT_{T}}Tmarge$	34
ACTION_endjob	15	MAX_QUANT_alt	12	$TRIM_{QUANT_{rotorP}}$	35
STATE_newcase	1	$MAX_QUANT_Pmargin$	13	$TRIM_{QUANT_{betac}}$	36
STATE_onecase	2	$MAX_QUANT_Qmargin$	14	$TRIM_{QUANT_{betas}}$	37
STATE_endofjob	3	$MAX_QUANT_PQmargin$	15	$TRIM_{QUANT_{hubMx}}$	38
STATE_init	1	$MAX_{QUANT_{J}}Imargin$	16	$TRIM_{QUANT_{hubMy}}$	39
STATE_size	2	$MAX_QUANT_PJmargin$	17	$TRIM_{QUANT_{hubQ}}$	40
STATE_miss	3	$MAX_{QUANT_{QJmargin}}$	18	$TRIM_{QUANT_{wingL}}$	41
STATE_perf	4	$MAX_QUANT_PQJmargin$	19	$TRIM_{QUANT_{wingfL}}$	42
STATE_maps	5	MAX_QUANT_Bmargin	20	TRIM_QUANT_CL	43
STATE_out	6	MAX_QUANT_Lmargin	21	TRIM_QUANT_Lmargin	44
SIZE_perf_engine	1	$MAX_{QUANT_{T}}Tmargs$	22	TRIM_QUANT_tailL	45
SIZE_perf_rotor	2	MAX_QUANT_Tmargt	23	$TRIM_{VAR_{not}}found$	0
SIZE_perf_none	3	MAX_QUANT_Tmarge	24	TRIM_VAR_pitch	-1
SIZE_engine_engn	1	MAX_VAR_none	0	TRIM_VAR_roll	-2
SIZE_engine_none	2	MAX_VAR_vel	-1	TRIM_VAR_ROC	-3
SIZE_jet_jet	1	MAX_VAR_ROC	-2	TRIM_VAR_side	-4
SIZE_jet_none	2	MAX_VAR_side	-3	TRIM_VAR_speed	-5
SIZE_charge_chrg	1	MAX_VAR_alt	-4	TRIM_VAR_turn	-6
SIZE_charge_none	2	MAX_VAR_turn	-5	TRIM_VAR_pullup	-7
SIZE rotor none	1	MAX_VAR_pullup	-6	TRIM VAR Vtip	-8
SIZE rotor radius	2	MAX VAR xaccF	-7	TRIM VAR Nspec	-9
SIZE_rotor_thrust	3	MAX_VAR_yaccF	-8	AERO_VAR_none	0
SET_rotor_radius	1	MAX_VAR_zaccF	-9	AERO_VAR_not_found	-1
SET_rotor_DL	2	MAX_VAR_xaccl	-10	AERO_VAR_alpha	-2
SET_rotor_ratio	3	MAX_VAR_yaccl	-11	AERO_VAR_beta	-3
SET_rotor_scale	4	MAX_VAR_zaccI	-12	RCCONFIG_rotorcraft	0
SET_rotor_not_radius	5	MAX_VAR_xaccG	-13	RCCONFIG_helicopter	1
SET_wing_area	1	MAX_VAR_yaccG	-14	RCCONFIG_tandem	2
2=000	*		± •		_

SET_wing_WL	2	MAX_VAR_zaccG	-15	RCCONFIG_coaxial	3
SET_wing_not_area	3	MAX_VAR_pitch	-16	RCCONFIG_tiltrotor	4
SET_wing_span	4	MAX_VAR_roll	-17	$RCCONFIG^-compound$	5
SET_wing_ratio	5	MAX_VAR_Vtip	-18	$RCCONFIG_{multicopter}$	6
SET_wing_radius	6	MAX_VAR_Nspec	-19	RCCONFIG_airplane	7
SET_wing_width	7	SET_vel_general	1	ROTORCONFIG_main	1
SET_wing_hub	8	SET_vel_hover	2	ROTORCONFIG_tail	2
SET_wing_panel	9	SET_vel_vert	3	ROTORCONFIG_prop	3
SET_wing_not_span	10	SET_vel_right	4	${\sf ROTORCONFIG_tandem}$	4
SET_tank_input	1	SET_vel_left	5	ROTORCONFIG_coaxial	5
SET_tank_miss	2	SET_vel_rear	6	${\sf ROTORCONFIG_tiltrotor}$	6
SET_tank_fmiss	3	SET_vel_Vfwd	7	ROTORCONFIG_not_twin	7
SET_tank_used	4	SET_vel_Vmag	8	$SET_geom_standard$	0
$SET_tank_nopower$	0	SET_vel_climb	9	$SET_geom_tiltrotor$	1
SET_tank_power	1	SET_vel_VNE	10	SET_geom_coaxial	2
SET_SDGW_input	1	$SET_vel_takeoff$	11	SET_geom_tandem	3
SET_SDGW_fDGW	2	SET_vel2_TAS	1	$SET_geom_tailrotor$	4
SET_SDGW_fWMTO	3	SET_vel2_CAS	2	$SET_geom_multicopter$	5
SET_SDGW_maxfuel	4	SET_vel2_IAS	3	$MODEL_twin_none$	0
SET_SDGW_perf	5	SET_vel2_Mach	4	$MODEL_twin_sidebyside$	1
$SET_{WMTO_{input}}$	1	SET_atmos_input	-1	$MODEL_twin_coaxial$	2
SET_WMTO_fDGW	2	SET_atmos_dens	-2	$MODEL_twin_tandem$	3
SET_WMTO_fSDGW	3	SET_atmos_notair	-3	$MODEL_twin_multirotor$	4
$SET_{WMTO_{maxfuel}}$	4	${\sf SET_atmos_std}$	1	tablevar_none	0
$SET_{WMTO_{perf}}$	5	$SET_atmos_std_dtemp$	2	$tablevar_V$	1
SET_limit_input	1	$SET_atmos_std_temp$	3	tablevar_Vh	2
SET_limit_Ratio	2	SET_atmos_polar	4	tablevar_mu	3
SET_limit_Pav	3	$SET_atmos_polar_dtem$	5	tablevar_muz	4
SET_limit_Preq	4	$SET_atmos_polar_temp$	6	tablevar_alpha	5
SET_GW_none	0	SET_atmos_trop	7	tablevar_muTPP	6
SET_GW_DGW	1	$SET_atmos_trop_dtemp$	8	tablevar_muzTPP	7
SET_GW_SDGW	2	$SET_atmos_trop_temp$	9	tablevar_alphaTPP	8
SET_GW_WMTO	3	${\sf SET_atmos_hot}$	10	tablevar_CTs	9
SET_GW_fDGW	4	${\sf SET_atmos_hot_dtemp}$	11	$tablevar_Mx$	10

SET_GW_fSDGW	5	SET_atmos_hot_temp	12	tablevar_Mtip	11
SET_GW_fWMTO	6	${\sf SET_atmos_hot_table}$	13	tablevar_Mat	12
SET_GW_input	7	SET_Vtip_input	1	SET_panel_free	0
SET_GW_maxP	8	SET_Vtip_ref	2	SET_panel_span	1
SET_GW_maxQ	9	SET_Vtip_speed	3	SET_panel_bratio	2
SET_GW_maxPQ	10	SET_Vtip_conv	4	SET_panel_edge	3
SET_GW_maxJ	11	SET_Vtip_hover	5	SET_{panel} station	4
SET_GW_maxPJ	12	SET_Vtip_cruise	6	SET_panel_radius	5
SET_GW_maxQJ	13	SET_Vtip_man	7	SET_panel_width	6
SET_GW_maxPQJ	14	SET_Vtip_OEI	8	SET_panel_hub	7
SET_GW_source	15	SET_Vtip_xmsn	9	SET_panel_adjust	8
SET_GW_fsource	16	SET_Vtip_mu	10	SET_panel_area	9
SET_GW_payfuel	17	SET_Vtip_Mtip	11	SET_panel_Sratio	10
SET_GW_paymiss	18	SET_Vtip_Mat	12	SET_panel_chord	11
SET_UL_pay	1	SET_Vtip_Nrotor	13	SET_panel_cratio	12
SET_UL_fuel	2	${\sf STATE_LG_default}$	0	SET_panel_taper	13
SET_UL_payfuel	3	${\sf STATE_LG_extend}$	1	SET_tail_area	1
SET_UL_miss	4	${\sf STATE_LG_retract}$	2	SET_tail_vol	2
SET_UL_paymiss	5	$TRIM_{QUANT_{not}}found$	0	SET_tail_span	3
SET_pay_none	1	$TRIM_{QUANT_{forcex}}$	1	SET_tail_AR	4
SET_pay_input	2	$TRIM_{QUANT_{forcey}}$	2	SET_tail_chord	5
SET_pay_delta	3	$TRIM_{QUANT_{forcez}}$	3	$MODEL_engine_RPTEM$	1
SET_pay_scale	4	$TRIM_{QUANT_{momentx}}$	4	$MODEL_engine_table$	2
KIND_MissSeg_taxi	1	$TRIM_QUANT_momenty$	5	MODEL_engine_recip	3
$KIND_MissSeg_dist$	2	$TRIM_{QUANT_{momentz}}$	6	$MODEL_engine_comp$	4
$KIND_MissSeg_time$	3	$TRIM_{QUANT_{nz}}$	7	${\sf MODEL_engine_compreact}$	5
$KIND_MissSeg_hold$	4	TRIM_QUANT_nx	8	${\sf MODEL_engine_compflow}$	6
${\sf KIND_MissSeg_climb}$	5	TRIM_QUANT_ny	9	$MODEL_engine_motor$	7
$KIND_MissSeg_spiral$	6	$TRIM_{QUANT_{power}}$	10	$MODEL_engine_gen$	8
$KIND_MissSeg_fuel$	7	$TRIM_QUANT_Pmargin$	11	${\sf MODEL_engine_motorgen}$	9
KIND_MissSeg_burn	8	$TRIM_QUANT_Qmargin$	12	$MODEL_jet_RPJEM$	1
$KIND_MissSeg_takeoff$	9	$TRIM_{QUANT_{powerEG}}$	13	$MODEL_jet_react$	2
SET_takeoff_none	0	$TRIM_QUANT_Emargin$	14	$MODEL_jet_flow$	3
SET_takeoff_start	1	$TRIM_QUANT_FEmargin$	15	$MODEL_jet_simple$	4

SET_takeoff_groundrun	2	$TRIM_{QUANT_{thrust}}$	16	${\sf MODEL_charge_fuelcell}$	1
SET_takeoff_enginefail	3	$TRIM_QUANT_Jmargin$	17	MODEL_charge_solarcell	2
SET_takeoff_liftoff	4	$TRIM_QUANT_FJmargin$	18	$MODEL_charge_simple$	3
${\sf SET_takeoff_rotation}$	5	$TRIM_QUANT_charge$	19		

Chapter 4

Common: Job

Variable	Type	Description	Default
version modification versionout INIT_input INIT_data	c*6 c*32 c*64 int	NDARC Version (set by main program) number n.n modification string for headers (Version n.n, modification "xxx") + Initialization input parameters (0 default, 1 last case input, 2 last case solution) other parameters (0 default, 1 start of last case, 2 end of last case)	1 0
		INIT_input: if default, all input variables set to default values if last-case-input, then case inherits input at beginning of previous case if last-case-solution, then case inherits input at end of previous case use INIT_input=2 to analyze case #1 design in subsequent cases INIT_data: if always start-last-case, then case starts from default if default, all other variables set to default values	
ACT_error ACT_version	int int	+ Errors + action on error (0 none, 1 exit) + action on version mismatch in input (0 none, 1 exit) + File open	1 0
OPEN_status	int	+ status keyword for write (0 unknown, 1 replace, 2 new, 3 old)	2

		+	Input/output unit numbers	
		+	input	
nuin	int	+	standard input	5
nufile	int	+	secondary file input	40
		+	output	
nuout	int	+	standard output	6
nudesign	int	+	design (DESIGNn)	41
nuperf	int	+	performance (PERFn)	42
nuaero	int	+	airframe aerodynamics (AEROn)	43
nuengine	int	+	engine performance (ENGINEn)	44
nugeom	int	+	geometry output (GEOMETRYn)	45
nuacd	int	+	aircraft description (AIRCRAFTn)	46
nusoln	int	+	solution (SOLUTIONn)	47
nusketch	int	+	sketch output (SKETCHn)	48
nuerror	int	+	errors (ERRORn)	49

default input/output unit numbers usually acceptable default OPEN_status can be changed as appropriate for computer OS

unit number for input (nuin for primary file, nufile for secondary file)

kcase	int	current case number
ncase	int	number of cases (maximum ncasemax)
case_state	int	case state
job_state	int	job state
out_design_state	int	design output state (1 file open)
out_perf_state	int	performance output state (1 file open)
out_geom_state	int	geometry output state (1 file open)
out_error_state	int	errors output state (1 file open)
nuinit	int	nuout or nuerror
fscratch	FltState	scratch structure
		Input
kind_input	int	file input status (0 for primary file, 1 for secondary file, 2 for aircraft or solution file)

int

nread

Analysis

Input file identification (stored from action=IDENT data)

ninputfile int number of identifications (maximum nfilemax; first is standard input)

input_title(nfilemax) c*80 title

input_created(nfilemax) c*20 creation date

 $\begin{array}{ll} \text{theDesign(ncasemax)} & \text{Design} & \text{Design} \\ \text{theInput} & \text{Design} & \text{Input} \end{array}$

theLastCaseInput Design Input from last case

system data = Job + theDesign(ncase) + theInput + theLastCaseInput

all data structure parameters = input (can be changed by analysis) or other (generated by analysis)

theInput used for input (not changed by analysis)

theLastCaseInput used to print only what changed from last case

after case input concluded, kcase incremented and theInput copied to theDesign(kcase)

CPU time

CPUtime_case_start(ncasemax)

real case start

CPUtime_case_end(ncasemax) real case end
CPUtime_case(ncasemax) real case
CPUtime_job real job

Clock time

DateTime case start(8,ncasemax)

nt case start

DateTime_case_end(8,ncasemax)

case end

ElapsedTime_case(ncasemax) real case ElapsedTime_job real job

int

Case dimensions

nrotor_caseintnumber of rotors (Aircraft)nwing_caseintnumber of wings (Aircraft)ntail_caseintnumber of tails (Aircraft)

ntank case int number of fuel tank systems (Aircraft)

npropulsion_case	int	number of propulsion groups (Aircraft)
nenginegroup_case	int	number of engine groups (Aircraft)
njetgroup_case	int	number of jet groups (Aircraft)
nchargegroup_case	int	number of charge groups (Aircraft)
nenginemodel_case	int	number of engine models (Aircraft)
nengineparamn_case	int	number of engine model parameters (Aircraft)
nenginetable_case	int	number of engine tables (Aircraft)
nrecipmodel_case	int	number of reciprocating engine models (Aircraft)
ncompressormodel_case	int	number of compressor models (Aircraft)
$nmotormodel_case$	int	number of motor models (Aircraft)
njetmodel_case	int	number of jet models (Aircraft)
nfuelcellmodel_case	int	number of fuel cell models (Aircraft)
nsolarcellmodel_case	int	number of solar cell models (Aircraft)
nbatterymodel_case	int	number of bettery models (Aircraft)
ncontrol_case	int	number of controls (Aircraft)
nstate_control_case	int	number of control states (Aircraft)
npanel_case(nwingmax)	int	number of wing panels (Wing)
mauxtanksize_case(ntankmax)	
	int	number of aux tank sizes (FuelTank)
ngear_case(npropmax)	int	number of drive system states (Propulsion)
nstate_trim_case	int	number of trim states (Aircraft)
$mtrim_case(ntrimstatemax)$	int	number of trim variables (Aircraft)
nwoful_case	int	number of other fixed useful load categories (System)
	Jo	bb constants
pi	real	π
twopi	real	2π
halfpi	real	$\pi/2$
degrad	real	degree/radian = $180/\pi$
raddeg	real	radian/degree = $\pi/180$
	C	ase constants
gravity	real	gravity g (ft/sec ² or m/sec ²)
density_sls	real	SLS density ρ_0 (slug/ft ³ or kg/m ³)
csound_sls	real	SLS speed of sound c_s (ft/sec or m/sec)

		Conversion factors
powerconv	real	power (hp from ft-lb/sec; kW from m-N/sec)
knotsconv	real	speed (knots from ft/sec or m/sec)
nmconv	real	range (nm from ft or m)
massconv	real	mass (slug from lb; kg from kg)
volumeconv	real	volume (gal from ft ³ ; liter from m ³)
		Conversion factors for scaled D/q
DoQconv23	real	$D/q = kW^{2/3}$ (ft ² from $k=m^2/kg^{2/3}$; m ² from $k=ft^2/lb^{2/3}$; depending on Units_Dscale)
DoQconv12	real	$D/q = kW^{1/2}$ (ft ² from $k=m^2/kg^{1/2}$; m ² from $k=ft^2/lb^{1/2}$; depending on Units_Dscale)
		Conversion factors for mission and flight condition input
uconv_vel	real	velocity (knots from input)
uconv_alt	real	altitude (ft or m from input)
uconv_pay	real	payload (lb or kg from input)
uconv_time	real	time (minutes from input)
uconv_dist	real	distance (nm from input)
uconv_drag	real	drag (ft ² or m ² from input)
uconv_ROC	real	rate of climb (ft/sec or m/sec from input)
uconv_en	real	Conversion factor for energy (MJ from input)
		Conversion factors for weight equations
wtconv_hp	real	power (hp from hp or kW)
wtconv_lb	real	weight (lb from lb or kg)
wtconv_frc	real	force (lb from lb or N)
wtconv_ft	real	length (ft from ft or m)
wtconv_ft2	real	area (ft ² from ft ² or m ²)
wtconv_gal	real	fuel (gal from gal or liter)
wtconv_slug	real	slug (slug/lb or kg/kg)
wtconv_in	real	inches (in/ft or m/m)
wtconv_kW	real	power (kW from hp or kW)
wtconv_m	real	meter (m from ft or m)
		Conversion factors for energy
Econv_kg	real	weight (kg from lb or kg)
Econv_L	real	volume (liter from gal or liter)
Econv_dE	real	energyflow (MJ/hr from hp or kW)

Disconv			Conversion factors
Rangeconv real	DLconv	real	disk loading (lb/ft ² from lb/ft ² or N/m ²)
WRITEenergy_case	tonconv	real	ton (from lb or kg)
WRITEenergy_case int Units for output Units for output Uwrite int analysis units (from Cases) Uwrite_temp int mission units, temperature (from Cases) Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDOQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Usrea c*10 area Uvol c*10 velocity Utemp c*10 velocity Utemp c*10 weight Upwr c*10 weight Upwr c*10 fuel flow Usfc c*10 free Usfc c*10 free Uspecrange c*10 free	rangeconv	real	range for fuel=1%GW (nm from 1/(lb/hp-hr) or 1/(kg/kW-hr), times $\ln(1/.99)$)
WRITEenergy_case int Units for output Units for output Uwrite int analysis units (from Cases) Uwrite_temp int mission units, temperature (from Cases) Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDOQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Usrea c*10 area Uvol c*10 velocity Utemp c*10 velocity Utemp c*10 weight Upwr c*10 weight Upwr c*10 fuel flow Usfc c*10 free Usfc c*10 free Uspecrange c*10 free			Output
Uwrite int analysis units (from Cases) Uwrite_temp int mission units, temperature (from Cases) Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDoQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 moment Ugue c*10 moment Uque c*10 moment Uque c*10 moment	WRITEenergy case	int	•
Uwrite_temp int mission units, temperature (from Cases) Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDoQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 specific range Ufueleff c*10 productivity Ufrc c*10 moment Uque c*10 moment Uque c*10 moment Uque c*10 moment	5		Units for output
Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDOQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 weight Upwr c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 mass flow Usfc c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 force Umom c*10	Uwrite	int	analysis units (from Cases)
Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDoQ c*10 drag (ft², m²); uconv_pay Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 weight Upwr c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 force Umom c*10 <t< td=""><td>Uwrite_temp</td><td>int</td><td>mission units, temperature (from Cases)</td></t<>	Uwrite_temp	int	mission units, temperature (from Cases)
Udist c*10 distance (nm, mile, km); uconv_dist Utime c*10 time (min, hr); uconv_time UDoQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lh, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Uffc c*10 force Umom c*10 moment Uque c*10 moment Uque c*10 drag fersioney Ugnamic pressure		c*10	speed (knots, mph, kph, ft/sec, m/sec); uconv_vel
Utime c*10 time (min, hr); uconv_time UDoQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 volume Uvol c*10 volume Uvel c*10 velocity Utemp c*10 weight Upwr c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	UROC	c*10	rate of climb (ft/min, ft/sec, m/sec); uconv_ROC
UDoQ c*10 drag (ft², m²); uconv_drag Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 volume Uvol c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Uffc c*10 force Umom c*10 moment Uguel c*10 moment Uguel c*10 moment Uguel c*10 moment Ugnamic pressure	Udist	c*10	distance (nm, mile, km); uconv_dist
Upay c*10 payload (lb, kg); uconv_pay Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 divamic pressure	Utime	c*10	time (min, hr); uconv_time
Ualt c*10 altitude (ft, m); uconv_alt Ulen c*10 length Uarea c*10 volume Uvol c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 daynamic pressure	UDoQ	c*10	$drag (ft^2, m^2); uconv_drag$
Ulen c*10 length Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Upay	c*10	payload (lb, kg); uconv_pay
Uarea c*10 area Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Ualt	c*10	altitude (ft, m); uconv_alt
Uvol c*10 volume Uvel c*10 velocity Utemp c*10 temperature Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Ulen	c*10	length
Uvelc*10velocityUtempc*10temperatureUwtc*10weightUpwrc*10powerUfuelflowc*10fuel flowUmassflowc*10mass flowUsfcc*10sfcUtsfcc*10thrust sfcUspecrangec*10specific rangeUfueleffc*10fuel efficiencyUproductivityc*10productivityUfrcc*10forceUmomc*10momentUquec*10dynamic pressure	Uarea	c*10	area
Utempc*10temperatureUwtc*10weightUpwrc*10powerUfuelflowc*10fuel flowUmassflowc*10mass flowUsfcc*10sfcUtsfcc*10thrust sfcUspecrangec*10specific rangeUfueleffc*10fuel efficiencyUproductivityc*10productivityUfrcc*10forceUmomc*10momentUquec*10dynamic pressure	Uvol		volume
Uwt c*10 weight Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Uvel	c*10	velocity
Upwr c*10 power Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Utemp	c*10	temperature
Ufuelflow c*10 fuel flow Umassflow c*10 mass flow Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Uwt	c*10	weight
Umassflowc*10mass flowUsfcc*10sfcUtsfcc*10thrust sfcUspecrangec*10specific rangeUfueleffc*10fuel efficiencyUproductivityc*10productivityUfrcc*10forceUmomc*10momentUquec*10dynamic pressure	Upwr	c*10	power
Usfc c*10 sfc Utsfc c*10 thrust sfc Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Ufuelflow	c*10	fuel flow
Utsfcc*10thrust sfcUspecrangec*10specific rangeUfueleffc*10fuel efficiencyUproductivityc*10productivityUfrcc*10forceUmomc*10momentUquec*10dynamic pressure	Umassflow	c*10	mass flow
Uspecrange c*10 specific range Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Usfc		sfc
Ufueleff c*10 fuel efficiency Uproductivity c*10 productivity Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Utsfc	c*10	thrust sfc
Uproductivity $c*10$ productivity Ufrc $c*10$ force Umom $c*10$ moment Uque $c*10$ dynamic pressure	Uspecrange	c*10	specific range
Ufrc c*10 force Umom c*10 moment Uque c*10 dynamic pressure	Ufueleff	c*10	fuel efficiency
Umom $c*10$ momentUque $c*10$ dynamic pressure	Uproductivity	c*10	productivity
Uque c*10 dynamic pressure	Ufrc	c*10	force
' I	Umom		moment
Udens c*10 density	Uque		dynamic pressure
	Udens	c*10	density

c*10	disk loading
c*10	energy
c*10	specific range
c*10	fuel efficiency
c*10	productivity
	c*10 c*10 c*10

Structure: Design

Variable	Type	Description	Default
Cases	Cases	Cases	
Size	Size	Size Aircraft for Design Conditions and Missions	
OffDesign	OffDesign	Mission Analysis	
Performance	Performance	Flight Performance Analysis	
MapEngine	MapEngine	Map of Engine Performance	
MapAero	MapAero	Map of Airframe Aerodynamics	
Solution	Solution	Solution Procedures	
Cost	Cost	Cost	
Emissions	Emissions	Emissions	
Aircraft	Aircraft	Aircraft	
Systems	Systems	Systems	
Fuselage	Fuselage	Fuselage	
LandingGear	LandingGear	Landing Gear	
Rotor(nrotormax)	Rotor	Rotors	
Wing(nwingmax)	Wing	Wings	
Tail(ntailmax)	Tail	Tails	
FuelTank(ntankmax)	FuelTank	Fuel Tank Systems	
Propulsion(npropmax)	Propulsion	Propulsion Groups	
${\sf EngineGroup(nengmax)}$	EngineGroup	Engine Groups	
JetGroup(njetmax)	JetGroup	Jet Groups	
${\sf ChargeGroup(nchrgmax)}$	ChargeGroup	Charge Groups	
EngineModel(nengmax)	EngineMode	I Engine Models	
EngineParamN(nengpmax)	EngineParan	MEngine Model Parameters	
EngineTable(nengmax)	EngineTable	Engine Tables	
RecipModel(nengmax)	RecipModel	Reciprocating Engine Models	
CompressorModel(nengmax)	CompressorN	A Compressor Models	
MotorModel(nengmax)	${\sf MotorModel}$	Motor Models	
JetModel(njetmax)	JetModel	Jet Models	

Structure: Design

FuelCellModel(nchrgmax)

SolarCellModel(nchrgmax)

BatteryModel(ntankmax)

FuelCellModeFuel Cell Models

SolarCellModeSolar Cell Models

BatteryModelBattery Models

Variable	Type		Description	Default
		+	Case Description	
title	c*100	+	title	
subtitle1	c*100	+	subtitle	
subtitle2	c*100	+	subtitle	
subtitle3	c*100	+	subtitle	
notes	c*1000	+	notes	
ident	c*32	+	identification	
timedate	c*20		time-date identification	
		+	Case Tasks (0 for none)	
TASK_Size	int	+	size aircraft for design conditions	1
TASK_Mission	int	+	mission analysis	1
TASK_Perf	int	+	flight performance analysis	1
TASK_Map_engine	int	+	map of engine performance	0
TASK_Map_aero	int	+	map of airframe aerodynamics	0
			Turn off all tasks to just initialize and check the model, including geometry and weights	
WDITE insut	int	+	Write Input Parameters	2
WRITE_input	int int	+	selection (0 none, 1 all, 2 first case)	2
WRITE_input_TechFactors	int	+	TechFactors (0 for none)	1
$WRITE_input_Geometry$	int	+	Geometry (0 for none)	1

		+	Output	
		+	selection (0 for none)	
OUT_design	int	+	design file	0
OUT_perf	int	+	performance file	0
OUT_geometry	int	+	geometry file	0
OUT_aircraft	int	+	aircraft description file	0
$OUT_{solution}$	int	+	solution file (1 text, 2 binary)	0
OUT_sketch	int	+	sketch file	0
OUT_error	int	+	errors file	0
		+	file name or logical name (blank for default logical name)	
FILE_design	c*256	+	design file (DESIGNn)	, ,
FILE_perf	c*256	+	performance file (PERFn)	, ,
FILE_geometry	c*256	+	geometry file (GEOMETRYn)	, ,
FILE_aircraft	c*256	+	aircraft description file (AIRCRAFTn)	, ,
FILE_solution	c*256	+	solution file (SOLUTIONn)	, ,
FILE_sketch	c*256	+	sketch file (SKETCHn)	, ,
FILE_engine	c*256	+	engine performance file (ENGINEn)	, ,
FILE_aero	c*256	+	airframe aerodynamics file (AEROn)	, ,
FILE_error	c*256	+	errors file (ERRORn)	, ,
		+	formats	
WRITE_page	int	+	page control (0 none, 1 form feed, 2 extended Fortran)	1
WRITE_design	int	+	design (1 first case only, 2 all cases)	2
$WRITE_{wt}_{level}$	int	+	weight statement, max level (1 to 5)	5
$WRITE_wt_long$	int	+	weight statement, style (0 omit zero lines, 1 all lines)	0
WRITE_energy	int	+	fuel energy for burn weight (0 for none)	1
$WRITE_{flight}$	int	+	flight state, component loads (0 for none)	0
WRITE_files	int	+	design, performance, or geometry (1 single file of all cases)	0
$WRITE_sketch_load$	int	+	sketch component forces (0 none)	1
WRITE_sketch_cond	int	+	sketch flight condition (0 none, 1 design, 2 performance)	0
ksketch	int	+	flight condition number	0

selected files are generated for each case (n = case number in default name) option single file of all cases for design, performance, or geometry (form feed between cases)

size and analysis tasks can produce design and performance files same information as in standard output, in tab-delimited form aircraft or solution file can be read by subsequent case or job geometry file has information for graphics and other analyses sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces engine map task (TASK_Map_engine) produces engine performance file airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file error messages to standard output (OUT_error=0) or separate file (OUT_error=1)

		+	Gravity	
SET_grav	int	+	specification (0 standard, 1 input)	0
grav	real	+	input gravitational acceleration g	
		+	Environment	
density_ref	real	+	reference density (0. for air at SLS)	0.
csound_ref	real	+	reference speed of sound (0. for air at SLS)	0.
		+	Units	
Units	int	+	analysis units (1 English, 2 SI)	1
		+	units for input of missions and flight conditions	
Units_miss	int	+	override default units (0 no, 1 yes)	0
Units_vel	int	+	velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec)	0
Units_alt	int	+	altitude units (0 ft or m; 1 ft, 2 m)	0
Units_pay	int	+	payload units (0 lb or kg; 1 lb, 2 kg)	0
Units_time	int	+	time units (0 minutes; 1 hours)	0
Units_dist	int	+	distance units (0 nm; 1 miles; 2 km)	0
Units_temp	int	+	temperature (0 F or C; 1 F, 2 C)	0
Units_drag	int	+	drag units (0 ft 2 or m 2 ; 1 ft 2 , 2 m 2)	0
$Units_{ROC}$	int	+	rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec)	0
		+	units for parameters	
Units_Dscale	int	+	input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI)	0
Units_energy	int	+	units for energy input and output (1 MJ, 2 kWh)	1

Analysis units: must be same for all cases in job

English: ft-slug-sec-F; weights in lb, power in hp (internal units)

SI: m-kg-sec-C; weights in kg, power in kW (internal units)

Weight in the design description is actually mass

pounds converted to slugs using reference gravitational acceleration

Default units for flight condition and mission: override with Units_xxx

speed in knots, time in minutes, distance in nm, ROC in ft/min

Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ

		Input for case
inCases	int	Cases
inSize	int	Size
inSizeCondition(nfltmax)	int	SizeCondition
inSizeMission(nmissmax)	int	SizeMission
inOffDesign	int	OffDesign
inOffMission(nmissmax)	int	OffMission
inPerformance	int	Performance
inPerfCondition(nfltmax)	int	PerfCondition
inMapEngine	int	MapEngine
inMapAero	int	MapAero
inSolution	int	Solution
		Last input
lastSizeCondition	int	SizeCondition
lastSizeMission	int	SizeMission
lastOffMission	int	OffMission
lastPerfCondition	int	PerfCondition

case input of other structures recorded in Aircraft structure there must be input for systems, fuselage, landing gear, fuel tank there must be input for all structures used

Structure: Size

Variable	Type	Description	Default
		Size Aircraft for Design Conditions and Missions	
SizeParam	SizeParam	Parameters	
		Sizing Flight Conditions	
FltCond(nfltmax)	FltCond	conditions	
FltState(nfltmax)	FltState	conditions	
		Design Missions	
${\sf Mission}({\sf nmissmax})$	Mission	missions	

Chapter 8

Variable	Type		Description	Default
		+	Size Aircraft for Design Conditions and Missions	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Sizing Method	
$SIZE_perf(npropmax)$	c*16	+	quantity sized from performance	'engine'
$SIZE_{\mathtt{engine}}(nengmax)$	c*16	+	engine group sized from performance	'none'
$SIZE_jet(njetmax)$	c*16	+	jet group sized from performance	'jet'
$SIZE_charge(nchrgmax)$	c*16	+	charge group sized from performance	'none'
$SIZE_{param}$	int	+	parameter iteration (0 not required)	0
$SET_{rotor}(nrotormax)$	c*32	+	rotor parameters	'DL+Vtip+CWs'
$SET_{wing}(nwingmax)$	c*16	+	wing parameters	${}'WL+aspect{}'$
FIX_DGW	int	+	design gross weight (0 calculated, 1 fixed)	0
FIX_WE	int	+	weight empty (0 calculated, 1 fixed, 2 scaled)	0
$SET_{tank}(ntankmax)$	c*16	+	fuel tank capacity	'miss'
SET_SDGW	c*16	+	structural design gross weight	'f(DGW)'
SET_WMTO	c*16	+	maximum takeoff weight	'f(DGW)'
$SET_limit_ds(npropmax)$	c*16	+	drive system torque limit	'ratio'

size task (Cases%TASK_Size=1): at least one nFltCond or nMission no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group

'engine' = power from maximum of power required for all designated conditions and missions

'rotor' = radius from maximum of power required for all designated conditions and missions

'none' = power required not used to size engine/rotor

flight conditions and missions (max GW, max effort, or trim)

that have zero power margin are not used to size engine or rotor that have zero torque margin are not used to size transmission

```
SIZE engine: size power-consuming engines of engine group
      'engine' = power from maximum of power required for all designated conditions and missions
          flight conditions and missions (max GW, max effort, or trim)
                that have zero power margin are not used to size engine group
          designated only for engine groups that consume power
          engine groups that produce power sized with propulsion group (SIZE perf)
      'none' = power required not used to size engine group
SIZE jet:
      'jet' = thrust from maximum of thrust required for all designated conditions and missions
      'none' = thrust required not used to size jet group
          flight conditions and missions (max GW, max effort, or trim)
                that have zero thrust margin are not used to size jet group
SIZE charge:
      'charge' = power from maximum of power required for all designated conditions and missions
      'none' = power required not used to size charge group
'SIZE param': use to force parameter iteration
SET rotor, rotor parameters: required for each rotor
rotor parameters: input three or two quantities, others derived
    SET rotor = input three of ('radius' or disk loading 'DL' or 'ratio'), 'CWs', 'Vtip', 'sigma'
    except if SIZE perf='rotor': SET rotor = input two of 'CWs', 'Vtip', 'sigma' for one or more main rotors
    SET rotor = 'ratio+XX+XX' to calculate radius from radius of another rotor
    tip speed is Vtip ref for drive state #1
rotor parameters for an antitorque or aux thrust rotor:
    SET_rotor = input three of ('radius' or 'DL' or 'ratio' or 'scale'), 'CWs', 'Vtip', 'sigma'
    SET rotor = 'scale+XX+XX' to calculate tail rotor radius from parametric equation,
         using main rotor radius and disk loading
    thrust from designated sizing conditions and missions (DESIGN thrust)
SET wing, wing parameters: for each wing; input two quantities, other two derived
    SET wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel'),
                    'chord', aspect ratio 'aspect'
    SET wing = 'ratio+XX' to calculate span from span of another wing
    SET wing = 'radius+XX' to calculate span from rotor radius
    SET wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
```

```
SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)
    SET wing = 'panel+XX' to calculate span from wing panel widths
FIX DGW: input DGW restricts SIZE perf, SET GW parameters
FIX WE: fixed or scaled weight empty obtained by adjusting contingency weight
    scaled with design gross weight: W_E=dWE+fWE*W_D
SET tank, fuel tank sizing: usable fuel capacity Wfuel cap (weight) or Efuel cap (energy)
     'input' = input Wfuel cap or Efuel cap
     'miss' = calculate from mission fuel used
          Wfuel cap or Efuel cap = max(fFuel cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
     'f(miss)' = function of mission fuel used
          Wfuel cap or Efuel cap = dFuel cap + fFuel cap*((maximum mission fuel)+(reserve fuel))
     'used' = calculate from maximum fuel quantity in tank during mission
           Wfuel cap or Efuel cap = dFuel cap + fFuel cap*(maximum fuel in tank)
     'XX+power' = and calculate from mission battery discharge power
SET SDGW, structural design gross weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{SD}=dSDGW+fSDGW*W_{D}
    'f(WMTO)' = based on WMTO; W_{SD}=dSDGW+fSDGW*W_{MTO}
    'maxfuel' = based on fuel state; W_{SD}=dSDGW+fSDGW*W_G, W_G = W_D-Wfuel_DGW+fFuelSDGW*W_{\mathrm{fuel-cap}}
    'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN sdgw)
    Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW
SET WMTO, maximum takeoff weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{MTO}=dWMTO+fWMTO*W_D
    'f(SDGW)' = based on SDGW; W_{MTO}=dWMTO+fWMTO*W_{SD}
    'maxfuel' = based on maximum fuel; W_{MTO}=dWMTO+fWMTO*W_G, W_G = W_D-Wfuel DGW+W_{\text{fuel-cap}}
    'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN wmto)
    Aircraft input parameters: dWMTO, fWMTO
```

```
SET limit ds, drive system torque limit: input (use Plimit xx) or calculate (from fPlimit xx)
     'input' = Plimit ds input
     'ratio' = from takeoff power, fPlimit_ds\sum (N_{\rm eng} P_{\rm eng})
    'Pav' = from engine power available at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim}) \sum (N_{eng}P_{av})
    'Preq' = from engine power required at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{reg})
engine shaft limit also uses EngineGroup%SET limit es
rotor shaft limit also uses Rotor%SET limit rs, rotor limits only use power required (or input)
input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
     turn off sizing: Cases%TASK size=0, Cases%TASK mission=1, Cases%TASK perf=1
    fix aircraft: use ACTION='nosize', or
         SIZE perf='none', SIZE engine='none', SIZE jet='none', SIZE charge='none'
         SET rotor='radius+Vtip+sigma', SET wing='area+span', FIX DGW=1
         SET tank='input', SET limit ds='input', SET SDGW='input', SET WMTO='input'
     with wing panels: SET wing='WL+panel', Wing%SET panel='width+taper', 'span+taper'
```

Specification

```
iSIZE perf(npropmax)
                               int
                                                 performance (SIZE perf engine, rotor, none)
iSIZE engine(nengmax)
                                                 performance (SIZE engine engn, none)
                               int
iSIZE jet(njetmax)
                                                 performance (SIZE jet jet, none)
                               int
iSIZE charge(nchrgmax)
                                                 performance (SIZE charge chrg, none)
                               int
iSIZE rotor(nrotormax)
                               int
                                                 rotor sized (SIZE rotor radius, thrust, none)
iSET rotor radius(nrotormax)
                               int
                                                 rotor radius (SET rotor radius, DL, ratio, scale, not radius)
                                                 rotor C_W/\sigma (1 fixed, 0 not)
FIX rotor CWs(nrotormax)
                               int
FIX rotor Vtip(nrotormax)
                               int
                                                 rotor V_{\text{tip}} (1 fixed, 0 not)
                                                 rotor \sigma (1 fixed, 0 not)
FIX rotor sigma(nrotormax)
                               int
iSET wing area(nwingmax)
                               int
                                                 wing area (SET wing area, WL, not area)
                                                 wing span (SET wing span, ratio, radius, width, hub, panel, not span)
iSET wing span(nwingmax)
                               int
FIX wing chord(nwingmax)
                               int
                                                 wing chord (1 fixed, 0 not)
```

FIX_wing_AR(nwingmax)	int	wing aspect ratio (1 fixed, 0 not)
iSET_tank(ntankmax)	int	fuel tank (SET_tank_input, miss, fmiss, used)
iSET_tank_power(ntankmax)	int	fuel tank (SET_tank_nopower, power)
iSET_SDGW	int	SDGW (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)
iSET_WMTO	int	WMTO (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)
iSET_limit_ds(npropmax)	int	drive system torque limit (SET_limit_input, ratio, Pav, Preq)
•		Number of conditions and missions
nSIZE_perf(npropmax)	int	conditions and missions for size engine or rotor
nSIZE_engine(nengmax)	int	conditions and missions for size engine group
nSIZE_jet(njetmax)	int	conditions and missions for size jet group
nSIZE_charge(nchrgmax)	int	conditions and missions for size charge group
nDESIGN_GW	int	design conditions and missions for DGW
$nDESIGN_xmsn(npropmax)$	int	design conditions and missions for transmission
nDESIGN_sdgw	int	design conditions for SDGW
$nDESIGN_wmto$	int	design conditions for WMTO
nDESIGN_tank	int	design missions for fuel tank
nDESIGN_thrust	int	design conditions and missions for rotor thrust
		Size aircraft
kind_iter_size	int	kind iteration, performance (0 none, 1 size engine or radius, or engine group, or jet group, or charge group)
kind_iter_param	int	kind iteration, parameters (0 none, 1 calculate parameters)
issizeconv	int	converged (0 not)
count_size	int	number of iterations, performance loop
count_param	int	number of iterations, parameter loop
count_total	int	total number of iterations
		error ratio
error_engine(nengmax)	real	engine
error_jet(njetmax)	real	jet
$error_charge(nchrgmax)$	real	charge
$error_rotor(nrotormax)$	real	rotor
error_DGW	real	DGW
$error_xmsn(npropmax)$	real	Plimit
error_sdgw	real	structural design gross weight
error_wmto	real	maximum takeoff weight
error_tank	real	Wfuelcap (rms all tanks)

$error_thrust(nrotormax)$	real	thrust	
error_WE	real	WE	
		residual (difference after one size iteration)	
resid_engine(nengmax)	real	engine power Peng = $P_{\rm eng}$	
$resid_jet(njetmax)$	real	jet thrust T jet = T _{jet}	
resid_charge(nchrgmax)	real	charge power Pchrg = $P_{\rm chrg}$	
$resid_rotor(nrotormax)$	real	rotor radius R	
$resid_DGW$	real	design gross weight DGW	
$resid_xmsn(npropmax)$	real	transmission limit Plimit_ds = $P_{DS limit}$	
resid_sdgw	real	structural design gross weight SDGW	
resid_wmto	real	maximum takeoff weight WMTO	
$resid_tank(ntankmax)$	real	fuel capacity Wfuel_cap = $W_{\rm fuel-cap}$ or Efuel_cap = $E_{\rm fuel-cap}$	
$resid_thrust(nrotormax)$	real	rotor design thrust Tdesign	
resid_WE	real	weight empty WE	
Pratio(npropmax)	real	ratio P_{reqPG}/P_{avPG} (max all sizing conditions and missions)	
Eratio(nengmax)	real	ratio P_{reqEG}/P_{avEG} (max all sizing conditions and missions)	
Jratio(njetmax)	real	ratio T_{reqJG}/T_{avJG} (max all sizing conditions and missions)	
Cratio(nchrgmax)	real	ratio P_{reqCG}/P_{avCG} (max all sizing conditions and missions)	
nFltCond_out	int	number of conditions for output	
nMission_out	int	number of missions for output	
		+ Sizing Flight Conditions	
nFltCond	int	+ number of conditions (maximum nfltmax)	0
iii it cond	1111	+ Design Missions	v
nMission	int	+ number of missions (maximum nmissmax)	0
HIVIISSIOH	1111	T Humori of impotono (maximum illinosiliax)	U

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Structure: OffDesign

Variable	Type	Description	Default
		Mission Analysis	_
OffParam	OffParam	Parameters	
Mission(nmissmax)	Mission	Missions	

Structure: OffParam

Variable	Type	Description	Default
	-	+ Mission Analysis	
title	c*100 -	+ title	
notes	c*1000	+ notes	
nMission_out	int	Analyze mission number of missions for output	
nMission	int -	+ Missions + number of missions (maximum nmissmax)	0

mission analysis input required if Cases%TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Structure: Performance

Variable	Type	Description	Default
		Flight Performance Analysis	
PerfParam	PerfParam	Parameters	
		Performance Flight Conditions	
FltCond(nfltmax)	FltCond	conditions	
FltState(nfltmax)	FltState	conditions	

Chapter 12

Structure: PerfParam

Variable	Type		Description	Default
		+	Flight Performance Analysis	
title	c*100	+	title	
notes	c*1000	+	notes	
			Analyze performance	
nFltCond_out	int		number of conditions for output (including sweeps)	
nsweep_total	int		total number of sweep conditions	
		+	Performance Flight Conditions	
nFltCond	int	+	number of conditions (maximum nfltmax)	0
			flight performance analysis input required if Cases%TASK_Perf=1	
			hight performance analysis hiput required if Cases% (ASK_Peri=1	
			input one condition (FltCond and FltState variables) in PerfCondition namelist	

Chapter 13

Structure: MapEngine

Variable	Type		Description	Default
		+	Map of Engine Performance	
title	c*100	+	title	
notes	c*1000) +	notes	
		+	Identification	
kEngineGroup	int	+	engine group	1
KIND_map	int	+	Kind (1 performance, 2 model)	1
			engine map only available for RPTEM model and reciprocating engine model (performance only)	
			engine map input required if Cases%TASK_Map_engine=1	
			only performance parameters or only model parameters used	
		+	Performance	
		+	independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)	
SET_var(5)	int	+	first set	0
SET_var2(5)	int	+	second set	0
WRITE_header	int	+	output format (1 single header, 2 header for inner variable)	2
SET_atmos	c*12	+	atmosphere specification	'std'
_		+	altitude h (Units_alt)	
altitude_min	real	+	minimum	0.
altitude_max	real	+	maximum	20000.
altitude_inc	real	+	increment	1000.
altitude_base	real	+	baseline	0.

Structure: MapEngine 51

	+	temperature τ or temperature increment ΔT (Units_temp)	
real	+	minimum	0.
real	+	maximum	100.
real	+	increment	10.
real	+	baseline	0.
	+	flight speed V (TAS, Units_vel)	
real	+	minimum	0.
real	+	maximum	200.
real	+	increment	50.
real	+	baseline	0.
int	+	engine speed N (1 rpm, 2 percent)	2
real	+	minimum	90.
real	+	maximum	110.
real	+	increment	5.
real	+	baseline	100.
int	+	power required (1 power, 2 fraction of power available (0. to 1.+)	2
real	+	minimum	.1
real	+	maximum	1.
real	+	increment	.1
real	+	baseline	1.
int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
int	+	installation losses (0 for none)	0
	real real real real real real real int real real real real real real int real real int	real +	real + minimum real + maximum real + increment real + baseline

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:

determines whether temp_xxx is temperature or temperature increment

'std' = standard day at specified altitude (use altitude_xxx)

'temp' = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)

'dtemp' = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx) see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine 52

		+	Model	
		+	flight speeds $V(TAS, Units_vel)$	
nV_model	int	+	number (maximum 10)	1
$V_{model}(10)$	real	+	values	0.
V_{min}	real	+	minimum	0.
V_{max}	real	+	maximum	400.
V_inc	real	+	increment	50.
		+	temperature ratio T/T_0	
ntheta_model	int	+	number (maximum 10)	1
$theta_model(10)$	real	+	values	1.
theta_min	real	+	minimum	8.
theta_max	real	+	maximum	1.1
theta_inc	real	+	increment	.02
		+	engine speed, $N/N_{\rm spec}$ (percent)	
fN_{min}	real	+	minimum	90.
fN_{max}	real	+	maximum	110.
fN_{inc}	real	+	increment	5.
		+	fraction static MCP power, P/P_{0C}	
fP_min	real	+	minimum	.1
fP_max	real	+	maximum	2.
fP_{inc}	real	+	increment	.1

RPTEM model

performance: fuel flow, mass flow, net jet thrust, optimum turbine speed vs power fraction and airspeed (use fP and V_model) turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model) power available: specific power, mass flow, power, fuel flow vs temperature ratio (use theta and V_model) vs airspeed (use V and theta_model)

Specification

kEngineModel	int	engine model
iSET_atmos	int	atmosphere (SET_atmos_xxx)
nSET_var	int	number of independent variable sets

Chapter 14

Structure: MapAero

Variable	Type		Description	Default
		+	Map of Airframe Aerodynamics	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Tables	
$KIND_table$	int	+	kind (1 one-dimensional, 2 multi-dimensional)	1
		+	aerodynamic loads (0 for components off)	
$SET_{fuselage}$	int	+	fuselage and landing gear	1
SET_tail	int	+	tails	1
SET_wing	int	+	wings	1
SET_rotor	int	+	rotors	1
SET_engine	int	+	engines and fuel tank	1
			airframe aerodynamics map input required if Cases%TASK_Map_aero=1 multi-dimensional: generate 6 files of three-dimensional tables one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW filename=FILE_aero//load or AEROn//load one-dimensional: generate 1 file of all six loads function of single independent variable = var_lift(1)	

Structure: MapAero 54

SET_extkit	int	+	wing extension kit on aircraft (0 none, 1 present)	1
KIND_alpha	int	+	angle of attack and sideslip angle representation (1 conventional, 2 reversed)	1
$SET_comp_control$	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	0
control(ncontmax)	real	+	aircraft controls	0.
tilt	real	+	tilt	0.
alpha	real	+	angle of attack α	0.
beta	real	+	sideslip angle eta	0.
			landing gear state: STATE_LG='extend', 'retract' (keyword = ext, ret)	

+ Independent variables

$var_lift(3)$	c*16	+	lift	
var_drag(3)	c*16	+	drag	
var_side(3)	c*16	+	side force	
var_pitch(3)	c*16	+	pitch moment	
var_roll(3)	c*16	+	roll moment	
var_yaw(3)	c*16	+	yaw moment	
		+	Variable range	
		+	angle of attack and sideslip variation	
angle_lowinc	real	+	low range increment (deg)	2.
angle_highinc	real	+	high range increment (deg)	5.
angle_low	real	+	low range value (deg)	40.
angle_max	real	+	maximum value (deg)	180.
		+	control variation	
control_lowinc	real	+	low range increment (deg)	2.
control_highinc	real	+	high range increment (deg)	2.
control_low	real	+	low range value (deg)	45.
control_max	real	+	maximum value (deg)	90.
		+	third independent variable	
gamma_lowinc	real	+	low range increment (deg)	20.
gamma_highinc	real	+	high range increment (deg)	20.
gamma_low	real	+	low range value (deg)	60.
gamma_max	real	+	maximum value (deg)	60.

Structure: MapAero 55

```
var_load identify independent variables
    only var_lift(1) used for KIND_table=one-dimensional
    values: 'alpha', 'beta', IDENT_control(ncontrol)
    var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder
angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max
maximum total values = naeromax
```

		Operating Condition
iSTATE_LG	int	landing gear state (STATE_LG_extend, retract)
		Independent variables (AERO_VAR_none, alpha, beta, or control number)
nvar(6)	int	number of independent variables
ivar(3,6)	int	variables (drag, side, lift, roll, pitch, yaw)
		Tables
nang	int	number of angles (maximum naeromax)
ang(naeromax)	real	angle values
ncnt	int	number of controls (maximum naeromax)
cnt(naeromax)	real	control values
ngam	int	number of gamma (maximum naeromax)
gam(naeromax)	real	gamma values

Chapter 15

Variable	Type		Description	Default
		+	Sizing or Performance Flight Condition	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*12	+	gross weight	'DGW'
GW	real	+	input gross weight W_G	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
SET_Wlimit	c*12	+	gross weight limit	'none'
Wlimit	real	+	input gross weight limit	0.
SET_alt	int	+	altitude (0 input, 1 from KIND_source)	0
		+	source for gross weight and altitude	
KIND_source	int	+	kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition)	1
kSource	int	+	mission or condition number	0
kSegment	int	+	segment number	0
seg_source	int	+	segment (1 start, 2 midpoint)	1
SET_UL	c*12	+	useful load	'pay'
Wpay	real	+	input payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition W_{ammo} (Units_pay)	0.
Wpay_weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.

		+	fuel tank system	
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
SET_auxtank(ntankmax)	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change)	1
mauxtank(ntankmax)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,nta	nkmax)			
	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	
		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment $\delta N_{\rm crew}$	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
dNpass_seat	int	+	passenger seat increment $\delta N_{\mathrm{pass-seat}}$	0
		+	kits on aircraft (0 none, 1 present)	
SET_foldkit	int	+	folding kit	1
$SET_{extkit}(nwingmax)$	int	+	wing extension kit	1
$SET_{wingkit}(nwingmax)$	int	+	wing kit on aircraft	1
$SET_{otherkit}$	int	+	other kit on aircraft	0
DESIGN_engine	int	+	design condition for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design condition for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design condition for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design condition for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design condition for transmission (1 to use for transmission sizing)	1
DESIGN_sdgw	int	+	design condition for SDGW (1 to use for SDGW calculation)	1
DESIGN_wmto	int	+	design condition for WMTO (1 to use for WMTO calculation)	1
DESIGN_thrust	int	+	design condition for antitorque or aux thrust (1 to use for rotor sizing)	1

```
label is short description for output sizing flight condition: use all parameters except sweep fixed gross weight conditions not used to determine DGW, SDGW, WMTO (set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0) condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim) condition not used to size transmission if zero torque margin (max GW, max effort, or trim)
```

```
performance flight condition: not use DESIGN xx
SET GW, SET UL values determine which input parameters used
SET GW, set gross weight W_G:
      'DGW' = design gross weight W_D; input (FIX_DGW) or calculated
      'SDGW' = structural design gross weight W_{SD} (may depend on DGW)
      'WMTO' = maximum takeoff gross weight W_{MTO} (may depend on DGW)
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use GW)
      'source' = gross weight from specified mission segment or flight condition (KIND source)
      'f(source)' = function of source: fGW*W_{source}+dGW
     'maxP', 'max' = maximum GW for power required equal specified power: P_{req} = \text{fPav}P_{av} + \text{dPav}
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
      'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{rea} = f Tav T_{av} + d Tav
              \min((fT_{avJG}+d)-T_{reaJG})=0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
SET Wlimit: weight limit for SET GW='max'
      'none' = no limit
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use Wlimit)
SET UL, set useful load: with fixed useful load adjustments in fallout weight
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
if SET GW='pay+fuel', assume SET UL same (actual SET UL ignored)
```

```
KIND_source, source for gross weight or altitude: source must be solved before this condition calculation order: size missions, size conditions, off design missions, performance conditions input fuel weight: W_{\rm fuel} = \min({\rm dFuel+fFuel*}W_{\rm fuel-cap}, W_{\rm fuel-cap}) + \sum {\rm Nauxtank*}W_{\rm aux-cap} auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL='pay') adjust Nauxtank for first fuel tank system with SET_auxtank > 0 otherwise number of auxiliary fuel tanks fixed at input value payload: only Wpay used if SET_Wpayload = no details crew: only dWcrew used if SET_Wcrew = no details equipment: dNcrew seat and dNpass_seat require non-zero weight per seat
```

Parameter sweep sweep (0 for none, 1 from list, 2 from range) SET sweep 0 int kind (1 single sweep sequence, 2 nested sweeps) KIND sweep int 1 INIT sweep int initialize trim (0 for not) 0 number of swept quantities (1 to qsweepmax) nquant sweep int 1 c*12 quantity (parameter name) quant sweep(qsweepmax) + range

+ first parameter value sweep first(qsweepmax) real sweep_last(qsweepmax) real + last parameter value sweep inc(qsweepmax) parameter increment real list nsweep(gsweepmax) number of values (maximum nsweepmax) int + sweep(nsweepmax,qsweepmax) real parameter values +

Parameter sweep: only for performance flight conditions, not sizing flight conditions maximum total number of values for all conditions is nsweepmax

KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps Sweeps executed from sweep last to sweep first

sweep analyzed using single data structure, only solution for sweep_first saved (last value executed) sweep_last (first value executed) should be condition that will converge sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

```
Single sweep sequence: only use nsweep(1)
    sweep inc of first quantity determines number of values, sweep inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Available parameters: quant sweep = parameter name
    GW, dGW, fGW, dPavn, fPavn, dTavn, FTavn, Wpay, dFueln, fFueln, dWcrew, dWequip
    Vkts, Mach, ROC, climb, side, pitch, roll, rate turn, nz turn, bank turn, rate pullup, nz pullup
    ax linear, ay linear, az_linear, nx_linear, ny_linear, nz_linear
    altitude, dtemp, temp, density, csound, viscosity, HAGL
    controln, coll, latcyc, lngcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque
     DoQ pay, fDoQ pay, DoQV pay, dSLcg, dBLcg, dWLcg, trim targetn
n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity
n = 1 if absent from quant sweep
for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
for fTorque, value is factor on input fTorque for for all propulsion groups
```

parent	int	parent (1 Size, 2 Performance)
kFltCond	int	FltCond number
kcol_out	int	performance output column (first for sweep)
		Specification
iSET_GW	int	gross weight (SET_GW_xxx)
$iSET_{max}GW$	int	max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
iSET_Wlimit	int	max gross weight limit (0 none, SET_GW_xxx)
iSET_UL	int	useful load (SET_UL_pay, fuel, payfuel)
iSETPmargin(npropmax)	int	power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine or rotor
iSETQmargin(npropmax)	int	torque margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size transmission
iSETEmargin(nengmax)	int	power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine group
iSETJmargin(njetmax)	int	jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size jet group
iSETCmargin(nchrgmax)	int	charger power margin as quantity (1 trim); not used to size charge group
iSETBmargin(ntankmax)	int	battery power margin as quantity (2 max effort, 1 trim); not used to size fuel tank

isFIX_GW	int	fixed gross weight; DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0
		Parameter sweep
kquant_sweep(qsweepmax)	int	quantity number
label_sweep	c*8	quantity column label (first parameter)
msweep(qsweepmax)	int	number of values
vsweep(nsweepmax,qsweepma	ax)	
	real	parameter values
fPower_original(nengmax)	real	fraction of rated engine power available
fThrust_original(njetmax)	real	fraction of rated jet thrust available
fCharge_original(nchrgmax)	real	fraction of rated charger power available
$fTorque_original(npropmax)$	real	fraction of rated drive system torque limit

Structure: Mission

Variable	Type	Description	Default
		Mission Profile	
MissParam	MissParam	Parameters	
		Mission Segments	
MissSeg(nsegmax)	MissSeg	mission segments	
FltState(nsegmax)	FltState	flight conditions	

Chapter 17

Variable	Type		Description	Default
		+	Mission Profile	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*16	+	mission takeoff gross weight W_G	'pay $+$ miss $'$
GW	real	+	input gross weight	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
SET_Wlimit	c*16	+	gross weight limit	'none'
Wlimit	real	+	input gross weight limit	0.
SET_UL	c*16	+	useful load	'pay+miss'
Wpay	real	+	input takeoff payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition $W_{ m ammo}$ (Units_pay)	0.
Wpay_weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.
SET_pay	c*16	+	payload changes	'delta'
		+	fuel tank systems	
$FIX_missfuel(ntankmax)$	int	+	mission fuel weight (0 calculated, 1 fixed)	0
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
$SET_{auxtank}(ntankmax)$	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change)	1
mauxtank(ntankmax)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,ntar	nkmax)			
	int	+	number of auxiliary fuel tanks $N_{ m auxtank}$ (each aux tank size)	

		+	fixed useful load	
SET_foldkit	int	+	folding kit on aircraft (0 none, 1 present)	1
SET_reserve	int	+	fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments)	1
fReserve	real	+	fuel reserve fraction $f_{\rm res}$	0.
		+	split segments	
dist_inc	real	+	distance increment (Units_dist)	100.
time_inc	real	+	time increment (Units_time)	30.
alt_inc	real	+	altitude increment (Units_alt)	2000.
VTO_inc	real	+	takeoff velocity increment	10.
hTO_inc	real	+	takeoff height increment	10.
DESIGN_engine	int	+	design mission for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design mission for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design mission for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design mission for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design mission for transmission (1 to use for transmission sizing)	1
DESIGN_tank	int	+	design mission for fuel tank (1 to use for fuel tank capacity)	1
DESIGN_thrust	int	+	design mission for antitorque or aux thrust (1 to use for rotor sizing)	1

```
'input' = input (use GW)
      'maxP', 'max' = maximum GW for power required equal specified power: P_{req} = \text{fPav}P_{av} + \text{dPav}
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              at mission segment MaxGW, minimum gross weight of designated segments
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
      'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              at mission segment MaxGW, minimum gross weight of designated segments
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{req} = fTavT_{av} + dTav
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fT_{avJG}+d)-T_{reqJG})=0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
SET Wlimit: weight limit for SET GW='max'
      'none' = no limit
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use Wlimit)
SET UL, set useful load:
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
      'miss' = fuel weight from mission; initial payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
if SET GW='pay+fuel' or 'pay+miss', assume SET UL same (actual SET UL ignored)
FIX missfuel only used for SET UL='miss' or 'pay+miss', with more than one fuel tank system
```

```
SET pay, set payload changes: mission segment payload (use of MissSeg%xWpay)
       'none' = no changes
       'input' = value; payload = xWpay (not use Wpay)
       'delta' = increment; payload = (initial payload weight)+(xWPay-xWpay(seg1))
       'scale' = factor; payload = (initial payload weight)*(xWPay/xWpay(seg1))
when SET GW='max' and SET UL='fuel' or 'miss' (so payload is fallout), payload (from SET pay and xWpay) must
not be zero at the maximum GW segments
payload: only Wpay and xWpay used if SET_Wpayload = no details
input fuel weight: W_{\text{fuel}} = \min(\text{dFuel+fFuel}*W_{\text{fuel-cap}}, W_{\text{fuel-cap}}) + \sum \text{Nauxtank}*W_{\text{aux-cap}}
     for fallout fuel weight, this is the initial value for the mission iteration
auxiliary fuel tanks:
     SET auxtank options: fixed; or adjust Nauxtank for each segment; or
          increase at mission start, then constant; or increase at start, then drop
     for input fuel (SET UL = 'fuel' or 'pay+fuel'), start with input Nauxtank, then drop
     for mission fuel (SET_UL = 'miss' or 'pay+miss'), fixed W_{\text{fuel}} or E_{\text{fuel}} at start
     for fallout (SET_UL = 'pay'), adjust W_{\text{fuel}} with change in Nauxtank (fixed W_G - W_{\text{pay}} = W_O + W_{\text{fuel}})
     for all SET UL, adjust W_O with change in Nauxtank
     fuel tank design mission: Nauxtank=0, allow W_{\text{fuel}} or E_{\text{fuel}} to exceed tank capacity
SET_reserve: maximum of fuel for designated reserve mission segments
     and fraction of fuel (f_{\text{res}}W_{\text{burn}}) or f_{\text{res}}E_{\text{burn}}) or fraction of fuel capacity (f_{\text{res}}W_{\text{fuel-cap}}) or f_{\text{res}}E_{\text{fuel-cap}}
```

		+	Segment integration	
KIND_SegInt	int	+	method (0 segment start, 1 segment midpoint, 2 trapezoidal)	1
		+	Mission iteration (supersede Solution input if nonzero)	
relax_miss	real	+	relaxation factor (mission fuel)	0.
relax_range	real	+	relaxation factor (range credit)	0.
relax_gw	real	+	relaxation factor (max takeoff GW)	0.
toler_miss	real	+	tolerance (fraction reference)	0.
trace_miss	int	+	trace iteration (0 for none)	0

kind iteration (0 none, 1 calculate mission fuel, 2 adjust mission, 3 only range credit or integration)

1

```
Mission Segments
                                              number of mission segments (maximum nsegmax)
nSeg
                             int
                                                input all mission segments as arrays in single mission namelist
                                          parent (1 Size, 2 OffDesign)
                             int
parent
kMission
                              int
                                          Mission number
                                          performance output column
kcol out
                             int
                                          Specification
iSET GW
                             int
                                              gross weight (SET GW xxx)
iSET maxGW
                                              max gross weight (SET GW maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
                              int
                                              number max gross weight segments
nSET maxGW
                             int
                                              max gross weight limit (0 none, SET GW xxx)
iSET Wlimit
                             int
                                              useful load (SET UL pay, fuel, payfuel, miss, paymiss)
iSET UL
                             int
iSET pay
                                              payload changes (SET pay none, input, delta, scale)
                             int
iSETPmargin(npropmax)
                                              power margin as quantity (all mission segments); not used to size engine or rotor
                             int
                                              torque margin as quantity (all mission segments); not used to size transmission
iSETQmargin(npropmax)
                             int
iSETEmargin(nengmax)
                                              power margin as quantity (all mission segments); not used to size engine group
                             int
                                              jet thrust margin as quantity (all mission segments); not used to size jet group
iSETJmargin(njetmax)
                             int
                                              charger power margin as quantity (all mission segments); not used to size charge group
iSETCmargin(nchrgmax)
                             int
iSETBmargin(ntankmax)
                                              battery power margin as quantity (all mission segments); not used to size fuel tank
                             int
isFIX GW
                                              fixed gross weight; DESIGN GW=0
                             int
                                          Segments
                                              number reserve segments
nreserve
                             int
                                              number adjustable segments
nadjust
                              int
kind adjust
                              int
                                              kind adjustable (0 none, 1 distance, 2 time)
                                              kind range credit (0 none, 1 all forward, 2 all backward, 3 both)
kind range
                              int
                                              number takeoff segments
ntakeoff
                              int
                                          Iteration
```

kind iter

int

ismissconv	int	converged (0 not)
count miss	int	number of iterations
error_miss(3)	real	error ratio (Wfuel, range credit, takeoff GW)
_		residuals (difference after one mission iteration)
resid_fuel(ntankmax)	real	fuel Wfuel or Efuel
resid rangecredit	real	range credit
resid_TOGW	real	takeoff gross weight
	N	fission quantities
isFirstSol	int	first solution (initialize GW_to and Wfuel_to)
GW to	real	takeoff gross weight (start of mission)
GW_endmiss	real	gross weight (end of mission, excluding reserve segments; last non-reserve segment)
GW_end	real	gross weight (end of mission; last segment)
Wfuel_to(ntankmax)	real	takeoff fuel weight (start of mission)
Wfuel_add(ntankmax)	real	added fuel weight (fill/add/drop during mission)
Wfuel_endmiss(ntankmax)	real	fuel weight (end of mission, excluding reserve segments; last non-reserve segment)
Wfuel_end(ntankmax)	real	fuel weight (end of mission; last segment)
Wfuel max(ntankmax)	real	maximum fuel weight in tank (all segments)
Wfuel net(ntankmax)	real	maximum net (burn-add) fuel used (all segments)
Wburn(ntankmax)	real	weight fuel burned W_{burn}
Wres(ntankmax)	real	weight reserve fuel $W_{\rm res}$ (maximum of fraction or reserve segments)
Wfuel_miss(ntankmax)	real	calculated mission fuel weight $(W_{\rm burn} + W_{\rm res})$
Efuel to(ntankmax)	real	takeoff fuel energy (start of mission)
Efuel_add(ntankmax)	real	added fuel energy (fill/add/drop during mission)
Efuel_endmiss(ntankmax)	real	fuel energy (end of mission, excluding reserve segments; last non-reserve segment)
Efuel_end(ntankmax)	real	fuel energy (end of mission; last segment)
Efuel_max(ntankmax)	real	maximum fuel energy in tank (all segments)
Efuel_net(ntankmax)	real	maximum net (burn-add) fuel energy used (all segments)
Eburn(ntankmax)	real	energy fuel burned $E_{ m burn}$
Eres(ntankmax)	real	energy reserve fuel $E_{\rm res}$ (maximum of fraction or reserve segments)
Efuel_miss(ntankmax)	real	calculated mission fuel energy ($E_{\rm burn} + E_{\rm res}$)
exceedP	int	exceed power available: any mission segment $P_{reqPG} > (1 + \epsilon)P_{avPG}$
exceedQ	int	exceed torque available: any mission segment $P_{reqPG} > (1 + \epsilon)P_{DSlimit}$
exceedJ	int	exceed jet thrust available: any mission segment $T_{reqJG} > (1 + \epsilon)T_{avJG}$
exceedC	int	exceed charger power available: any mission segment $P_{reqCG} > (1 + \epsilon)P_{avCG}$

exceedWf	int	exceed fuel capacity: any mission segment $W_{\rm fuel} > (1+\epsilon)W_{\rm fuel-cap}$ or $E_{\rm fuel} > (1+\epsilon)E_{\rm fuel-cap}$
exceedB	int	exceed battery power: any mission segment $ \dot{E}_{\rm batt} > (1+\epsilon)P_{\rm max}$
		Total mission, excluding reserve segments
endurance	real	endurance E , block time (min)
range	real	range R (nm)
airdist	real	air distance (nm)
blockspeed	real	block speed (kts; range/endurance)
range_factor	real	range factor $RF = R/\ln(W_{to}/(W_{to} - W_{burn}))$ (nm)
range_factorE	real	range factor $RF = R/E_{\text{burn}}$ (nm/MJ)
fuel_eff	real	fuel efficiency $e = W_{\rm pay} R/W_{\rm burn}$ (ton-nm/lb or ton-nm/kg)
fuel_effE	real	fuel efficiency $e = W_{\rm pay} R / E_{\rm burn}$ (ton-nm/MJ)
productivity_o	real	productivity $p = W_{\text{pay}}V/W_O$ (ton-kt/lb or ton-kt/kg)
productivity_f	real	productivity $p = W_{\text{pay}}V/W_{\text{burn}}$ (ton-kt/lb or ton-kt/kg)
$productivity_fE$	real	productivity $p = W_{\text{pay}}V/E_{\text{burn}}$ (ton-kt/MJ)
fuelflow	real	average fuel flow $W_{\rm burn}/E$ (lb/hr or kg/hr)
energyflow	real	average energy flow $E_{ m burn}/E$ (MJ/hr)
spec_range	real	average specific range $R/W_{\rm burn}$ (nm/lb or nm/kg)
$spec_rangeE$	real	average specific range $R/E_{\rm burn}$ (nm/MJ)
		Cost
Ndep	real	number of depatures per year $B/T_{ m miss}$
ASM	real	available seat miles
COP	real	yearly operating cost C_{OP} (maintenance + fuel + crew + depreciation + insurance + finance + ETS)
Ctrip	real	trip operating cost $C_{OP}/N_{\rm dep}$
Cpass	real	passenger operating cost $C_{\rm trip}/(N_{\rm pass}{ m LoadFactor}/100)$
xmaint	real	operating cost fraction, maintenance
xfuel	real	operating cost fraction, fuel
xcrew	real	operating cost fraction, crew
xdep	real	operating cost fraction, depreciation
xins	real	operating cost fraction, insurance
xfin	real	operating cost fraction, finance
xETS	real	operating cost fraction, ETS
DOC	real	direct operating cost $100C_{OP}/\text{ASM}$

En	nissions Trading Scheme (kg CO2, per mission)
real	total
real	fuel burned
real	energy used
We	eight of emissions (kg, per mission)
real	carbon dioxide
real	NO_x
real	water vapor
real	soot
real	sulphates
Av	erage Temperature Response (deg C)
real	total
real	total without AIC
real	carbon dioxide
real	NO_x - methane
real	NO_x - ozone (long life)
real	NO_x - ozone (short life)
real	water vapor
real	soot
real	sulphates
real	aviation induced cloudiness
	real real real real real real real real

Variable	Type		Description	Default
		+	Segment definition	
label_seg	c*8	+	label	, ,
kind	c*12	+	kind	'dist'
dist	real	+	distance D (Units_dist)	0.
time	real	+	time T (Units_time)	0.
		+	segment	
reserve	int	+	reserve (0 for not)	0
adjust	int	+	adjustable for flexible mission (0 for not)	0
range_credit	int	+	segment number for range credit (0 for no reassignment)	0
ignore	int	+	ignore segment (0 for not)	0
сору	int	+	copy segment (source segment number)	0
split	int	+	split segment (number segments; -1 calculated; 0 for not split)	0
SET_tank(ntankmax)	int	+	segment fuel use or replace	0
dTank(ntankmax)	real	+	fuel increment	0.
fTank(ntankmax)	real	+	fuel factor	1.
SET_refuel(ntankmax)	int	+	refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel)	0
xWfuel(ntankmax)	real	+	fuel weight or energy change	0.
rWfuel(ntankmax)	real	+	threshold fraction	0.
mWfuel(ntankmax)	real	+	threshold weight or energy	0.
		+	gross weight	
MaxGW	int	+	maximize gross weight (0 not)	0
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
		+	useful load	
xWpay	real	+	payload weight change (Units_pay)	0.
×Npass	int	+	number of passengers increment δN_{pass}	0

		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment δN_{crew}	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
dNpass_seat	int	+	passenger seat increment $\delta N_{\rm pass-seat}$	0
		+	kits on aircraft (0 none, 1 present)	
SET_extkit(nwingmax)	int	+	wing extension kit	1
SET_wingkit(nwingmax)	int	+	wing kit	1
SET_otherkit	int	+	other kit	0
SET_alt	int	+	altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt)	0
kSeg_alt	int	+	source of altitude	0
		+	design mission (0 to not use segment for sizing)	
SizeEngine	int	+	power	1
SizeJet	int	+	jet thrust	1
SizeCharge	int	+	charger power	1
SizeGW	int	+	DGW	1
SizeXmsn	int	+	transmission	1
SizeThrust	int	+	antitorque or aux thrust	1

segment kind

kind='taxi', 'idle': taxi/warm-up mission segment (use time)

kind='dist': fly segment for specified distance (use dist)

kind='time': fly segment for specified time (use time)

kind='hold', 'loiter': fly segment for specified time (use time), fuel burned but no distance added to range

kind='climb': climb/descend from present altitude to next segment altitude

kind='spiral': climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range

kind='fuel': use or replace specified fuel amount, calculate time and distance

kind='burn', 'charge': use or replace specified fuel amount, calculate time but no distance added to range

kind='takeoff', 'TO': takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment reserve: time and distance not included in block time and range

```
range credit: to facilitate specification of range
     range calculated for this segment credited to segment = range credit
     range credit segment must be kind='dist', specified distance is for group of segments
         actual distance flown in range credit segment is specified dist less distances from other segments
     if credit to earlier segment, iteration required
adjustable: for SET UL not 'miss', can adjust one or more segments
    if more than one segment adjusted, must be all kind='dist' or all kind='time'/'hold'
    adjust time or distance based on fuel burn (proportional to initial values)
split segment: number specified, or calculated from MissParam%dest inc, time inc, alt inc
ignore segment: removed from input; segments using MaxGW, range credit, FltCond%KIND source can not be ignored
SET tank: segment fuel use or replace for kind='fuel' or 'burn'; distance and time calculated
     SET tank = 0: no requirement
    SET_tank = 1: target dTank+fTank*W_{\rm fuel-cap} or dTank+fTank*E_{\rm fuel-cap}
    SET tank = 2: target dTank+fTank*W_{\rm fuel} or dTank+fTank*E_{\rm fuel}
    SET tank = 3: increment dTank+fTank*W_{\text{fuel-cap}} or dTank+fTank*E_{\text{fuel-cap}}
    SET tank = 4: increment dTank+fTank*W_{\text{fuel}} or dTank+fTank*E_{\text{fuel}}
    charge if \dot{E} < 0 (not based on keyword, increment always positive)
     target limited by capacity, if target already achieved then no requirement
     increment limited by current fuel (use) or capacity minus current fuel (replace)
SET_refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
     SET refuel = 1: fill all tanks (including any auxiliary tanks installed)
     SET refuel = 2: add fuel xWfuel
     SET refuel = 3: drop fuel xWfuel
     SET_refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
     SET refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel
     SET refuel = 6: if below mWfuel, fill all tanks
     SET refuel = 7: if below mWfuel, add xWfuel
     SET refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
     SET refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
    added fuel limited by capacity (unless sizing fuel tank); not used for first segment
    xWfuel positive (add or drop determined by SET refuel)
```

maximize gross weight: MaxGW designate segments if SET_GW='maxP' or 'maxQ' or 'maxPQ'

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral begin altitude is that input for this segment (SET alt=0), or altitude of previous segment (SET alt=1),

payload: only Wpay and xWpay used if SET_Wpayload = no details

xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details

equipment: $dNcrew_seat$ and $dNpass_seat$ require non-zero weight per seat

Takeoff distance calculation takeoff segment kind SET takeoff c*12 'none' Vkts takeoff real + ground speed or climb speed (knots, CAS) 0. climb takeoff climb angle relative ground γ (deg) real 0. height takeoff height during climb h (ft or m) 0. real + slope of ground γ_G (+ for uphill; deg) 0. slope ground real friction friction coefficient μ 0.04 real + t decision real + decision delay after engine failure t_1 (sec) 1.5 + rotation time t_R (sec) 2.0 t rotation real transition load factor n_{TR} nz transition real + 1.2

```
takeoff distance calculation: set of consecutive kind='takeoff' segments first segment identified by SET_takeoff='start' (V=0) last segment if next segment is not kind='takeoff', or is SET_takeoff='start' takeoff segment kind SET_takeoff='start', 'ground run' (keyword = ground or run), 'engine fail' (keyword = eng or fail) SET_takeoff='liftoff', 'rotation', 'transition', 'climb', 'brake' each segment requires appropriate configuration, trim option, max effort specification not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET_alt max_var='alt' not allowed in maximum effort velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0 can split segment (except start, rotation, transition): split height for climb, velocity for others splitting liftoff or engine failure segment produces additional ground run segments
```

separate definition of multiple ground run, climb, brake segments allows configuration variations define takeoff profile in terms of velocities

integrate acceleration vs velocity to obtain time and distance segments correspond to ends of integration intervals analysis checks for consistency of input velocity and calculated acceleration analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff='liftoff' segment order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb only one liftoff; only one engine failure, rotation, transition (or none) engine failure before liftoff; all ground run before liftoff, all climb after liftoff accelerate-stop distance definition: does not have SET_takeoff='liftoff' segment order: start, ground run, engine failure, brake only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure
number of inoperative engines specified by nEnglnop for each segment
if engine failure segment present, nEnglnop specification must be consistent

parent (1 Size, 2 OffDesign) int parent Mission number kMission int kMissSeg MissSeg number int kcol out int performance output column Specification ikind int kind (MissSeg kind taxi, dist, time, hold, climb, spiral, fuel, burn) folding kit on aircraft (0 none, 1 present) SET foldkit int

```
Segments
kind range
                              int
                                              this segment receives range credit (0 not, 1 source forward, 2 source backward, 3 both)
fadjust
                              real
                                               adjustment ratio (initial time or dist ratio)
                                               split segment (number segments; 0 for not split)
wassplit
                              int
ksplit first
                                                  first segment after split
                              int
                                                  last segment after split
ksplit last
                              int
dWpay
                              real
                                               payload increment (xWpay-xWpay(seg1)) or factor (xWpay/xWpay(seg1))
iSET maxGW
                                               max gross weight (0 no iteration; SET GW maxP, maxP, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ + maxGW)
                              int
                                               power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETPmargin(npropmax)
                             int
                                              torque margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETQmargin(npropmax)
                              int
                                              power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETEmargin(nengmax)
                              int
                                              jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETJmargin(njetmax)
                              int
iSETCmargin(nchrgmax)
                              int
                                              charger power margin as quantity (1 trim)
                                              battery power margin as quantity (2 max effort, 1 trim)
iSETBmargin(ntankmax)
                              int
                                          Maximum gross weight
                                              converged (0 not)
ismaxgwconv
                              int
                                               number of iterations
count maxgw
                              int
error maxgw
                              real
                                              error ratio
                                               gross weight increment
GW inc
                              real
                                          Takeoff distance calculation
iSET takeoff
                              int
                                               takeoff segment kind (SET takeoff xxx)
VCAS TO
                                               ground speed or climb speed (CAS)
                              real
                                              ground speed (ft/sec or m/sec)
V TO
                              real
climb TO
                                               angle relative ground (deg)
                              real
                                              consistent acc and V change, climb and h change
isConsistent TO
                              int
                                               net force T - D (ground axes)
FxG TO
                              real
                                              net force W - L (ground axes)
FzG TO
                              real
FzGmu TO
                                              friction drag \mu F_{zG}
                              real
acc TO
                              real
                                              acceration (ground axes)
h TO
                                              height (ft or m)
                              real
t TO
                              real
                                              time (sec)
s TO
                                              distance (ft or m)
                              real
time TO
                              real
                                               cumulative time (sec)
dist TO
                              real
                                              cumulative distance (ft or m)
```

```
original value for engine failure decision (from FltAircraft)
rating original(nengmax)
                               c*12
                                                      engine rating
krate original(nengmax)
                                int
                                                      engine rating
                                                      fraction of rated engine power available
fPower original(nengmax)
                               real
rating jet original(njetmax)
                               c*12
                                                      jet rating
krate jet_original(njetmax)
                                                      jet rating
                               int
                                                      fraction of rated jet thrust available
fThrust original(njetmax)
                                real
rating charge original(nchrgmax)
                                c*12
                                                      charger rating
krate_charge_original(nchrgmax)
                                int
                                                      charger rating
fCharge original(nchrgmax)
                                                      fraction of rated charger power available
                                real
                                                      friction coefficient
friction original
                                real
                                                  engine failure segment (0 for none)
kSegEF TO
                                int
                                             Performance (from FltState; at start or midpoint)
speed
                                real
                                                  horizontal speed V_h (knots)
Vclimb
                                real
                                                  climb velocity V_c (ft/sec or m/sec)
                                                  fuel flow \dot{w} (lb/hr or kg/hr)
fuelflow(ntankmax)
                                real
                                                 energy flow \dot{E} (MJ/hr)
energyflow(ntankmax)
                                real
                                                  trapezoidal integration
                                                     horizontal speed V_h
speed start
                                real
Vclimb start
                                                      climb velocity V_c
                                real
fuelflow start(ntankmax)
                                                      fuel flow \dot{w}
                                real
                                                      energy flow \dot{E}
energyflow_start(ntankmax)
                                real
                                                      horizontal speed V_h
speed end
                                real
Vclimb end
                                                      climb velocity V_c
                                real
fuelflow end(ntankmax)
                                real
                                                      fuel flow \dot{w}
energyflow end(ntankmax)
                                                      energy flow \dot{E}
                                real
                                                  altitude h at start of segment (ft or m)
alt start
                                real
                                                  altitude h at end of segment (from start of next segment, only used for kind='climb' or 'spiral')
alt end
                                real
                                             Headwind V_w (knots)
Wind
                                real
                                             Ground speed V_q = V_h - V_w (knots)
                                real
groundspeed
```

		Mission segment quantities
Т	real	time T (minutes)
D	real	ground distance D (nm)
otherDpast	real	distance from past range credit (nm)
otherDfuture	real	distance from future range credit (nm)
dR	real	range contribution dR (nm)
airdist	real	air distance (nm)
Wburn(ntankmax)	real	fuel burned $W_{\rm burn}$ (lb or kg)
Wfuel_add(ntankmax)	real	fuel added or dropped at start of segment
Wfuel_start(ntankmax)	real	fuel weight W_{fuel} (segment start)
Eburn(ntankmax)	real	fuel burned $E_{\rm burn}$ (MJ)
Efuel_add(ntankmax)	real	fuel added or dropped at start of segment
Efuel_start(ntankmax)	real	fuel energy $E_{\rm fuel}$ (segment start)
GW_start	real	gross weight W_G (segment start)
		Emissions Trading Scheme (kg CO2, per mission)
ETS	real	total
ETS_fuel	real	fuel burned
ETS_energy	real	energy used
		Weight of emissions (kg, per mission)
W_CO2	real	carbon dioxide
W_NOx	real	NO_x
W_H2O	real	water vapor
W_soot	real	soot
W_SO4	real	sulphates
		Average Temperature Response (deg C)
ATR	real	total
ATR_noAIC	real	total without AIC
ATR_CO2	real	carbon dioxide
ATR_CH4	real	NO_x - methane
ATR_O3L	real	NO_x - ozone (long life)
ATR_O3S	real	NO_x - ozone (short life)
ATR_H2O	real	water vapor
ATR_soot	real	soot
ATR_SO4	real	sulphates

ATR_AIC aviation induced cloudiness real

 $EI_{{
m NO}_x}=\sum EI\dot{w}/\sum \dot{w},$ input or turboshaft calculated, weighted for engine group $f_P=P_q/P_{to}$ for \dot{w} EI_NOx(ntankmax) real

fPto(nengmax) real

Chapter 19

Structure: FltState

Variable	Type	Description	Defa
		Flight State	
FltAircraft	FltAircraft	Aircraft	
		Components	
FltFuse	FltFuse	fuselage	
FltGear	FltGear	landing gear	
FltRotor(nrotormax)	FltRotor	rotors	
FltWing(nwingmax)	FltWing	wings	
FltTail(ntailmax)	FltTail	tails	
FltTank(ntankmax)	FltTank	fuel tank systems	
FltProp(npropmax)	FltProp	propulsion groups	
FltEngn(nengmax)	FltEngn	engine groups	
FltJet(njetmax)	FltJet	jet groups	
FltChrg(nchrgmax)	FltChrg	charge groups	

Variable	Type		able Type		Description	Default	
		+	Flight State				
		+	Specification				
SET_max	int	+	maximum effort performance (maximum 2, 0 to analyze specified condition)	0			
$max_quant(2)$	c*12	+	quantity	, ,			
$max_var(2)$	c*12	+	variable	, ,			
$max_limit(2)$	int	+	switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both)	0			
$max_Vlimit(2)$	int	+	velocity limited by V_{NE} (0 not)	0			
fVel(2)	real	+	flight speed factor	1.			
SET_vel	c*12	+	flight speed	'general'			
Vkts	real	+	horizontal velocity V_h (TAS or CAS or IAS, Units_vel)	0.			
Mach	real	+	horizontal velocity M (Mach number)	0.			
ROC	real	+	vertical rate of climb V_c (Units_ROC)	0.			
climb	real	+	climb angle θ_V (deg)	0.			
side	real	+	sideslip angle ψ_V (deg)	0.			
		+	aircraft motion				
SET_{pitch}	int	+	pitch motion specification (0 Aircraft value, 1 FltState input)	1			
SET_roll	int	+	roll motion specification (0 Aircraft value, 1 FltState input)	1			
pitch	real	+	pitch $ heta_F$	0.			
roll	real	+	$\operatorname{roll} \phi_F$	0.			
SET_turn	int	+	turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle)	0			
rate_turn	real	+	turn rate $\dot{\psi}_F$ (deg/sec)	0.			
nz_turn	real	+	load factor n (g)	1.			
bank_turn	real	+	bank angle ϕ_F (deg)	0.			
SET_pullup	int	+	pullup specification (0 zero, 1 pitch rate, 2 load factor)	0			
rate_pullup	real	+	pitch rate $\dot{\theta}_F$ (deg/sec)	0.			
nz_pullup	real	+	load factor n (g)	1.			
SET_acc	int	+	linear acceleration specification (0 zero, 1 acceleration, 2 load factor)	0			
ax_linear	real	+	x-acceleration a_{ACx} (ft/sec ² or m/sec ²)	0.			

ay_linear	real	+	y-acceleration a_{ACy} (ft/sec ² or m/sec ²)	0.
az_linear	real	+	z-acceleration a_{ACz} (ft/sec ² or m/sec ²)	0.
nx_linear	real	+	x-load factor increment n_{Lx} (g)	0.
ny_linear	real	+	y-load factor increment n_{Ly} (g)	0.
nz_linear	real	+	z-load factor increment n_{Lz} (g)	0.
altitude	real	+	altitude h (Units_alt)	0.
SET_atmos	c*12	+	atmosphere specification	'std'
temp	real	+	temperature $ au$ (Units_temp)	
dtemp	real	+	temperature increment ΔT (Units_temp)	0.
density	real	+	density ρ	
csound	real	+	speed of sound c_s	
viscosity	real	+	viscosity μ	
SET_wind	int	+	wind specification (0 none, 1 headwind, 2 tailwind)	0
dWind	real	+	wind increment, knots (dWind+fWind*altitude)	0.
fWind	real	+	wind gradient, knots (dWind+fWind*altitude)	0.
SET_GE	int	+	ground effect (0 OGE, 1 IGE)	0
HAGL	real	+	height of landing gear above ground level h_{LG}	999.
STATE_LG	c*12	+	landing gear state	'default'
STATE_control	int	+	aircraft control state	1
SET_control(ncontmax)	int	+	control specification (0 Aircraft value, 1 FltState input)	1
SET_coll	int	+	collective stick	1
SET_latcyc	int	+	lateral cyclic stick	1
SET_Ingcyc	int	+	longitudinal cyclic stick	1
SET_pedal	int	+	pedal	1
SET_tilt	int	+	tilt (0 Aircraft value, 1 FltState input, 2 Aircraft conversion schedule)	1
control(ncontmax)	real	+	aircraft controls	
coll	real	+	collective stick c_{AC0}	0.
latcyc	real	+	lateral cyclic stick c_{ACc}	0.
Ingcyc	real	+	longitudinal cyclic stick c_{ACs}	0.
pedal	real	+	pedal c_{ACp}	0.
tilt	real	+	tilt $lpha_{ m tilt}$	0.
$SET_comp_control$	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	1
SET_cg	int	+	center of gravity specification (0 baseline plus increment, 1 input)	0
dSLcg	real	+	stationline	0.

dBLcg	real	+	buttline	0.
dWLcg	real	+	waterline	0.
		+	Specification, each propulsion group	
SET_Vtip(npropmax)	c*12	+	rotor tip speed specification	'hover'
Vtip(npropmax)	real	+	tip speed	
Mtip(npropmax)	real	+	tip Mach number $M_{ m tip}$	
$mu_Vtip(npropmax)$	real	+	tip speed from μ	
$Mat_Vtip(npropmax)$	real	+	tip speed from M_{at}	
Nrotor(npropmax)	real	+	rotor speed (rpm)	
Nspec(npropmax)	real	+	engine speed (rpm)	
$STATE_gear(npropmax)$	int	+	drive system state	1
rating_ds(npropmax)	c*12	+	drive system rating	, ,
fTorque(npropmax)	real	+	fraction of rated drive system torque limit f_Q (0. to 1.+)	1.
SET_Plimit(npropmax)	int	+	drive system limit (0 not applied to power available)	1
$SET_Qlimit_rs(npropmax)$	int	+	rotor shaft limit (0 not used for torque margin)	1
SET_Pmargin(npropmax)	int	+	power and torque margin (0 not used for maximum effort)	1
dPacc(npropmax)	real	+	accessory power increment $dP_{\rm acc}$	0.
		+	Specification, each engine group	
rating(nengmax)	c*12	+	engine rating	'MCP'
fPower(nengmax)	real	+	fraction of rated engine power available f_P (0. to 1.+)	1.
nEngInop(nengmax)	int	+	number of inoperative engines $N_{\rm inop}$	0
$SET_Preq(nengmax)$	int	+	power required (1 distributed, 2 fixed A , 3 fixed AP_{av} , 4 fixed $AP_{\rm eng}$)	1
STATE_IRS(nengmax)	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each jet group	
rating_jet(njetmax)	c*12	+	jet rating	'MCT'
fThrust(njetmax)	real	+	fraction of rated jet thrust available f_T (0. to 1.+)	1.
nJetInop(njetmax)	int	+	number of inoperative jets $N_{\rm inop}$	0
SET_Jreq(njetmax)	int	+	thrust required (1 from component, 2 fixed A, 3 fixed AT_{av} , 4 fixed AT_{jet})	2
STATE_IRS_jet(njetmax)	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each charge group	
$rating_charge(nchrgmax)$	c*12	+	charger rating	'MCP'
fCharge(nchrgmax)	real	+	fraction of rated charger power available f_C (0. to 1.+)	1.
nChrgInop(nchrgmax)	int	+	number of inoperative chargers N_{inop}	0
SET_Creq(nchrgmax)	int	+	power required (2 fixed A , 4 fixed AP_{chrg})	2

dPeq(ntankmax)	real	+	Equipment power increment $dP_{\rm eq}$, each fuel tank	0.
,		+	Specification, each fuel tank (battery)	
ffade(ntankmax)	real	+	battery capacity fade factor	1.
Tcell(ntankmax)	real	+	cell temperature (deg C)	20.
fcurrent(ntankmax)	real	+	maximum current (fraction x_{mbd} or $x_{CC_{max}}$)	1.
,		+	Specification, each rotor	
STOP_rotor(nrotormax)	int	+	rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing)	0
STATE_deice	int	+	Deice system state (0 off)	0
		+	Performance	
DoQ_pay	real	+	payload forward flight drag increment D/q (Units_drag)	0.
fDoQ_pay	real	+	payload drag increment scaling with weight $\Delta(D/q)/W_{\rm pay}$ (Units_drag, Units_pay)	0.
$DoQV_{pay}$	real	+	payload vertical drag increment D/q (Units_drag)	0.
		+	Rotor (nonzero to supersede rotor model)	
Ki(nrotormax)	real	+	induced power factor κ	0.
cdo(nrotormax)	real	+	profile power mean c_d	0.
MODEL_Ftpp(nrotormax)	int	+	inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)	0
$MODEL_Fpro(nrotormax)$	int	+	inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	0
KIND_control(nrotormax)	int	+	control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)	0
		+	Trim solution	
STATE_trim	c*12	+	aircraft trim state (match IDENT_trim, 'none' for no trim)	'none'
trim_target(mtrimmax)	real	+	trim quantity targets	
		+	Iterations (supersede Solution input if nonzero)	
		+	relaxation factor	
relax_rotor	real	+	all rotors	0.
relax_trim	real	+	trim	0.
relax_fly(2)	real	+	maximum effort	0.
relax_maxgw	real	+	maximum gross weight	0.
		+	tolerance (fraction reference)	
toler_rotor	real	+	all rotors	0.
toler_trim	real	+	trim	0.
$toler_fly(2)$	real	+	maximum effort	0.
toler_maxgw	real	+	maximum gross weight	0.
		+	reinitialize aircraft controls (0 no, 1 force retrim)	
init_trim	int	+	trim	0

init_fly	int	+	maximum effort	0
		+	variable perturbation amplitude (fraction reference, 0. for no limit)	
perturb_trim	real	+	trim	0.
$perturb_fly(2)$	real	+	maximum effort	0.
perturb_maxgw	real	+	maximum gross weight	0.
		+	maximum derivative amplitude (0. for no limit)	
maxderiv_fly(2)	real	+	maximum effort	0.
maxderiv_maxgw	real	+	maximum gross weight	0.
		+	maximum increment fraction (0. for no limit)	
maxinc_fly(2)	real	+	maximum effort	0.
maxinc_maxgw	real	+	maximum gross weight	0.
		+	solution method	
$method_flymax(2)$	int	+	maximum effort	0
		+	trace iteration (0 for none)	
trace_rotor	int	+	all rotors	0
trace_trim	int	+	trim (2 for component controls)	0
$trace_fly(2)$	int	+	maximum effort	0
trace_maxgw	int	+	maximum gross weight	0

maximum effort performance: one or two quantity/variable identified; first is inner loop

two variables must be unique

two variables can be identified for same maximized quantity (endurance, range, climb) quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable

fVel is only used for max var='speed' or 'ROC'

ceiling calculation should use 'Pmargin'/'alt' as inner loop, 'power'/'speed' as outer loop

best range calculation often requires maxinc fly=0.1 for convergence

ROC for zero power margin initialized based on level flight power margin if input ROC=0

max quant='rotor(s) n' uses Rotor%CTs steady, max quant='rotor(t) n' uses Rotor%CTs tran

max quant='rotor(e) n' uses equation for rotor thrust capability (Rotor%K0 limit and Rotor%K1 limit)

if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow

max_var='Vtip' or 'Nspec' requires FltAircraft%SET_Vtip='input'

if trailing "n" is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description	max_quant	
endurance	'end'	maximum (1/fuelflow)
range (high side)	'range'	0.99 maximum (V/fuelflow)
range	'range(100)'	maximum (V /fuelflow)
range (low side)	'range(low)'	0.99 maximum (V/fuelflow), low side
range (high side), ground speed	'range Vg'	0.99 maximum (V_g /fuelflow)
range, ground speed	'range (100) Vg $'$	maximum (V_q /fuelflow)
range (low side), ground speed	'range(low)Vg'	0.99 maximum (V_q /fuelflow), low side
climb or descent rate	'climb', 'ROC'	maximum (ROC)
climb rate (power)	'power'	maximum (1/Power)
climb or descent angle	'angle'	maximum (ROC/V)
climb angle (power)	'power/V'	maximum (V /Power)
ceiling	'alt'	maximum (altitude)
power margin	'P margin'	$\min(P_{av} - P_{req}) = 0$ (all propulsion groups)
torque margin	'Q margin',	$\min(Q_{\text{limit}} - Q_{req}) = 0$ (all limits)
jet thrust margin	'J margin',	$\min(T_{av} - T_{req}) = 0$ (all jet groups)
power and torque margin	'PQ margin',	most restrictive
power and thrust margin	'PJ margin',	most restrictive
torque and thrust margin	'QJ margin',	most restrictive
power, torque, thrust margin	'PQJ margin',	most restrictive
battery power margin	'B margin'	$\min(P_{\max} - \dot{E}_{\mathrm{batt}}) = 0$ (all fuel tanks)
rotor thrust margin	'rotor(t) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (transient)
rotor thrust margin	'rotor(s) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (sustained)
rotor thrust margin	'rotor(e) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (equation)
wing lift margin	'stall n'	$C_{L\text{max}} - C_L = 0$

description	max_var	
horizontal velocity	'speed'	times fVel
vertical rate of climb	'ROC'	times fVel
aircraft velocity	'side'	sideslip angle
altitude	'alt'	
aircraft angular rate	'pullup', 'turn'	Euler angle rates
aircraft acceleration	'xacc', 'yacc', 'zacc'	linear, airframe axes
aircraft acceleration	'xaccl', 'yaccl', 'zaccl'	linear, inertial axes
aircraft acceleration	'xaccG', 'yaccG', 'zaccG'	linear, ground axes
aircraft control	match IDENT_control	
aircraft orientation	'pitch', 'roll'	body axes relative inertial axes
propulsion group tip speed	'Vtip n'	
propulsion group engine speed	'Nspec n'	

```
SET_vel, velocity specification:
```

'general' = general (use Vkts=horizontal, ROC, side)

'hover' = hover (zero velocity)

'vert' = hover or VROC (use ROC; Vkts=0, climb=0/+90/-90)

'right' = right sideward (use Vkts, ROC; side=90)

'left' = left sideward (use Vkts, ROC; side=-90)

'rear' = rearward (use Vkts, ROC, side=180)

'Vfwd' = general (use Vkts=forward velocity, ROC, side)

'Vmag' = general (use Vkts=velocity magnitude, ROC, side)

'climb' = general (use Vkts=velocity magnitude, climb, side)

'VNE' = never-exceed speed

'+Mach' = use Mach not Vkts

'+CAS' = Vkts is CAS not TAS

'+IAS' = Vkts is IAS not TAS

velocities: forward $V_f = V_h \cos(\text{side})$, side $V_s = V_h \sin(\text{side})$, climb $V_c = V_h \tan(\text{climb})$

```
aircraft motion:
     orientation velocity relative inertial axes defined by climb and sideslip angles (\theta_V, \psi_V)
         sideslip positive aircraft moving to right, climb positive aircraft moving up
         specify horizontal velocity, vertical rate of climb, and sideslip angle
     orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (\psi_F, \theta_F, \phi_F)
         yaw positive to right, pitch positive nose up, roll positive to right
     SET PITCH and SET roll, pitch and roll motion specification:
         Aircraft values (perhaps function speed) or flight state input
         initial values specified if motion is trim variable; otherwise fixed for flight state
     SET turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
         \tan(\text{roll}) = \sqrt{n^2 - 1} = (\text{turn})V/g; calculated using input Vkts for flight speed
     SET pullup, load factor in pullup: use pullup rate or load factor
         n = 1 + (pullup)V/g; calculated using input Vkts for flight speed
    SET acc, linear acceleration: use acceleration or load factor
SET atmos, atmosphere specification:
     'std' = standard day at specified altitude (use altitude)
     'polar' = polar day at specified altitude (use altitude)
     'trop' = tropical day at specified altitude (use altitude)
     'hot' = hot day at specified altitude (use altitude)
     'xxx+dtemp' = specified altitude, plus temperature increment (use altitude, dtemp)
     'xxx+temp' = specified altitude, and specified temperature (use altitude, temp)
     'hot+table' = hot day table at specified altitude (use altitude)
     'dens' = input density and temperature (use density, temp)
     'input' = input density, speed of sound, and viscosity (use density, csound, viscosity)
     'notair' = input, not air on earth (use density, csound, viscosity)
SET GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
     height rotor = landing gear above ground + hub above landing gear = HAGL + (WL hub-WL gear+d gear)
STATE LG: 'default' (based on retraction speed), 'extend', 'retract' (keyword = def, ext, ret)
```

STATE control, aircraft control state: identifies control matrix STATE control=0 to use conversion schedule, STATE control=n (1 to nstate control) to use state#n SET control, control specification: Aircraft values (perhaps function speed) or flight state input coll/latcyc/lngcyc/pedal/tilt specification and values put in SET control and control, based on IDENT control initial values specified if control is trim variable; otherwise fixed for flight state SET control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control SET tilt: 0 to use Aircraft%tilt and Aircraft%Vtilt: 1 to use FltState%tilt 2 to use conversion speeds Aircraft%Vconv hover and Aircraft%Vconv cruise SET cg, center of gravity position: input for this flight state; or baseline cg position plus shift due to nacelle tilt, plus input cg increment tip speed, engine, transmission: for each propulsion group SET Vtip, primary rotor tip speed: for primary rotor of propulsion group 'input' = use input Vtip for this flight state 'Mtip' = use input Mtip for this flight state 'Nrotor' = use input Nrotor (rpm) for this flight state 'ref' = use Vtip ref (for drive state STATE gear) 'speed' = use default Vtip(speed) 'conv' = use conversion schedule (Vtip hover or Vtip cruise) 'hover' = use default Vtip_hover = Vtip_ref(1) 'cruise', 'man', 'OEI', 'xmsn' = use default Vtip cruise, Vtip man, Vtip oei, Vtip xmsn 'mu' = use tip speed from μ (mu Vtip) 'Mat' = use tip speed from M_{at} (Mat Vtip) 'xxx+Mat' = for tip speed limited by M_{at} (Mat Vtip) 'xxx+diam' = for variable diameter rotor, scale $V_{\rm tip}$ with radius ratio without rotors, specify engine group speed by SET Vtip='input' (use input Nspec) or 'ref' STATE gear, drive system state: identifies gear ratio set for multiple speed transmissions state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group rating ds='speed' to use schedule with speed if Propulsion%nrate ds≤ 1, drive system rating not used fTorque reduces drive system torque limit (fTorque = 0. to 1.; > 1 is an acceptable input) SET Plimit: usually should not be applied for flight conditions and mission segments that size transmission

```
engine rating: match rating designation in engine model; e.g. 'ERP','MRP','IRP','MCP'
    or rating='idle' or rating='takeoff'
fPower reduces engine group power available (fPower = 0. to 1 : > 1 is an acceptable input)
    the engine model gives the power available, accounting for installation losses and mechanical limits
         then the power available is reduced by the factor fPower
             next torque limits are applied (unless SET Plimit=off), first engine shaft limit and then drive system limit
    for SET GW='maxP' or 'maxPQ' (flight condition or mission), the gross weight is determined
    such that P_{reaPG} = fP_{avPG} + d
         either fPower or fPav can be used to reduce the available power
             with identical results, unless the engine group is operating at a torque limit
nEnglnop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine
SET Preq: distribution of propulsion group power required among engine groups
    distributed (SET_Preq=1): P_{reqEG} from P_{reqPG}, proportional P_{eng}
        except for rotor reaction drive, P_{regEG} from power needed to supply reaction force
        and for fuselage or wing flow control, P_{reqEG} from power needed to supply momentum flux
    fixed options use engine group amplitude control variable A, for each operable engine
         engine group that consumes shaft power (generator or compressor) only uses fixed option
         engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option
    EngineGroup%SET_Power, fPsize defines power distribution for sizing
jet rating: match rating designation in jet model; or rating jet='idle' or rating jet='takeoff'
fThrust reduces jet group thrust available (fThrust = 0 to 1; > 1 is an acceptable input)
nJetlnop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet
SET Jreq: fixed options use jet group amplitude control variable A, for each operable jet
    from component (SET_Jreq=1): only for reaction drive or flow control, T_{reaJG} from required F_{Grea}
charger rating: match rating designation in charger model; or rating charge='idle' or rating charge='takeoff'
fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)
nChrglnop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge
SET Creq: use charge group amplitude control variable A, for each operable charger
STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL Ftpp=1, MODEL Fpro=3
```

```
STATE_trim, aircraft trim state: match IDENT_trim, 'none' for no trim identifies trim variables and quantities

ACTION='configuration' defines trim states with following identification:

IDENT_trim='free', 'symm', 'hover', 'thrust', 'rotor', 'windtunnel', 'power', 'ground', 'comp' requirement for trim_target depends on designation of Aircraft%trim_quant
```

```
int
                                           parent (1 SizeCond, 2 SizeMiss, 3 OffMiss, 4 PerfCond)
parent
                                           Mission number
kMission
                              int
                                           MissSeg number
kMissSeg
                              int
kFltState
                              int
                                           FltState number
kcol out
                                           performance output column
                              int
                                           Maximum effort
imax quant(2)
                                               quantity (MAX QUANT xxx)
                              int
                                               quantity structure number
imax quantn(2)
                              int
imax isslope(2)
                              int
                                               quantity is slope (maximize)
                                               variable (MAX VAR xxx, or control number)
imax var(2)
                              int
                                               variable structure number
imax varn(2)
                              int
                                           Specification
                                               velocity (SET vel xxx)
iSET vel
                              int
iSET vel2
                              int
                                               velocity (SET vel2 TAS, SET vel2 CAS, SET vel2 Mach)
                                               sideward flight (1 for sideward flight)
isSideward
                              int
                                               atmosphere (SET atmos xxx)
iSET atmos
                              int
iSTATE LG
                                               landing gear state (STATE LG default, extend, retract)
                              int
iSTATE trim
                                               aircraft trim state (number, 0 for no trim)
                              int
                                           Specification, each propulsion group
                                               rotor tip speed (SET Vtip input, Nrotor, ref, speed, conv, hover, cruise, man, OEI, xmsn, mu, Mat, Mtip)
iSET Vtip(npropmax)
                              int
iSET Vtip Mat(npropmax)
                                               rotor tip speed limited by M_{at}
                              int
iSET Vtip VarDiam(npropmax)
                                               rotor tip speed for variable diameter rotor (1 to scale V_{\rm tip} with radius ratio)
                              int
iSETPmargin(npropmax)
                              int
                                               power margin as quantity (2 maximum effort, 1 trim)
iSETQmargin(npropmax)
                                               torque margin as quantity (2 maximum effort, 1 trim)
                              int
                                               drive system rating number
krate ds(npropmax)
                              int
xSET Plimit(npropmax)
                                               drive system limit (SET Plimit, superseded for sizing by Propulsion%SET Plimit size)
                              int
```

		Specification
krate(nengmax)	int	engine rating number
$krate_{jet}(njetmax)$	int	jet rating number
<pre>krate_charge(nchrgmax)</pre>	int	charger rating number
iSETEmargin(nengmax)	int	power margin as quantity (1 trim)
iSETJmargin(njetmax)	int	jet thrust margin as quantity (2 maximum effort, 1 trim)
iSETCmargin(nchrgmax)	int	charger power margin as quantity (1 trim)
iSETBmargin(ntankmax)	int	battery power margin as quantity (2 maximum effort, 1 trim)
		Weight
GW	real	gross weight W_G
Wfuel_total	real	usable fuel weight $W_{ m fuel}$
- Wfuel(ntankmax)	real	usable fuel weight
Wfuel_std(ntankmax)	real	standard tanks
Wfuel_aux(ntankmax)	real	auxiliary tanks
Wpayload	real	payload weight $W_{ m pay}$
Wpay_pass	real	passengers W_{pass}
Wpay_cargo	real	cargo $W_{ m cargo}$
Wpay_extload	real	external load $W_{ m ext-load}$
Wpay_ammo	real	ammunition $W_{ m ammo}$
Wpay_weapons	real	weapons $W_{ m weapons}$
Wpay_other	real	other $W_{ m other}$
WFixUL	real	fixed useful load W_{FUL}
dW_fixUL	real	fixed useful load increment (relative weight statement W_fixUL)
Wcrew	real	crew (replace weight statement W_fixUL_crew)
Wauxtank	real	auxiliary fuel tanks (replace weight statement W_fixUL_auxtank)
W_fixUL_other	real	other fixed useful load (replace weight statement W_fixUL_other)
Woful(10)	real	categories
Wequip	real	equipment increment (replace weight statement W_fixUL_equip)
Wfoldkit	real	folding kit (replace weight statement W_fixUL_foldkit)
Wextkit	real	wing extension kit (replace weight statement W_fixUL_extkit)
Wwingkit	real	wing kit (replace weight statement W_fixUL_wingkit)
Wotherkit	real	other kit (replace weight statement W_fixUL_otherkit)
WO	real	operating weight W_O
Ncrew	int	number of crew

Npass	int	number of passengers
Ncrew_seat	int	number of crew seats
Npass_seat	int	number of passenger seats
Efuel_total	real	usable fuel energy E_{fuel}
Efuel(ntankmax)	real	usable fuel energy
$Efuel_std(ntankmax)$	real	standard tanks
Efuel_aux(ntankmax)	real	auxiliary tanks
		Weight at mission segment start
GW_start	real	gross weight W_G
$Wfuel_start(ntankmax)$	real	usable fuel weight W_{fuel}
$Wfuel_std_start(ntankmax)$	real	standard tanks
$Wfuel_aux_start(ntankmax)$	real	auxiliary tanks
$Efuel_start(ntankmax)$	real	usable fuel energy E_{fuel}
$Efuel_std_start(ntankmax)$	real	standard tanks
$Efuel_aux_start(ntankmax)$	real	auxiliary tanks
zcg(3)	real	Center of gravity position
SLcg	real	stationline
BLcg	real	buttline
WLcg	real	waterline
		Moments of inertia
lxx	real	I_{xx}
lyy	real	I_{yy}
Izz	real	I_{zz}
lxy	real	I_{xy}
lyz	real	I_{yz}
lxz	real	I_{xz}

weight statement defines fixed useful load and operating weight for design configuration so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments gross weight = weight empty + useful load = operating weight + payload + usable fuel useful load = fixed useful load + payload + usable fuel operating weight = weight empty + fixed useful load

alt real altitude h tmp real temperature τ dtmp real temperature increment ΔT sigma real density ratio ρ/ρ_0 theta real temperature ratio T/T_0 delta real pressure ratio p/p_0 kinvis real kinematic viscosity $\nu=\mu/\rho$ altdens real density altitude h_d altpress real pressure altitude h_p Flight condition radius(nrotormax) real rotor radius R VNE real never-exceed speed V_{NE} (knots TAS) rotational speeds V_{NE} (knots TAS) rotational speeds V_{NE} real rotor rip speed V_{NE} rotor rip speed speed V_{NE} rotor rip speed
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
theta real temperature ratio T/T_0 delta real pressure ratio p/p_0 kinvis real kinematic viscosity $\nu = \mu/\rho$ altdens real density altitude h_d altpress real pressure altitude h_p Flight condition radius(nrotormax) real rotor radius R VNE real never-exceed speed V_{NE} (knots TAS) rotational speeds V_{NE} (knots TAS) rotational speeds V_{NE} real rotor rip speed V_{NE} real rotor rip speed V_{NE} r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
kinvis real kinematic viscosity $\nu = \mu/\rho$ altdens real density altitude h_d altpress real pressure altitude h_p Flight condition radius(nrotormax) real rotor radius R VNE real never-exceed speed V_{NE} (knots TAS) rotational speeds Vtip_trim(nrotormax) real rotor rip speed ΩR rpm_trim(nrotormax) real rotor rpm Ω
altdens real density altitude h_d altpress real pressure altitude h_p Flight condition radius(nrotormax) real rotor radius R VNE real never-exceed speed V_{NE} (knots TAS) rotational speeds Vtip_trim(nrotormax) real rotor tip speed ΩR rpm_trim(nrotormax) real rotor rpm Ω
altpress real pressure altitude h_p Flight condition radius(nrotormax) real rotor radius R VNE real never-exceed speed V_{NE} (knots TAS) rotational speeds Vtip_trim(nrotormax) real rotor tip speed ΩR rpm_trim(nrotormax) real rotor rpm Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} \text{VNE} & \text{real} & \text{never-exceed speed V_{NE} (knots TAS)} \\ & & \text{rotational speeds} \\ \text{Vtip_trim(nrotormax)} & \text{real} & \text{rotor tip speed ΩR} \\ \text{rpm_trim(nrotormax)} & \text{real} & \text{rotor rpm Ω} \\ \end{array}$
$\begin{array}{ccc} & & & & & & \\ & & & & & \\ \text{Vtip_trim(nrotormax)} & \text{real} & & \text{rotor tip speed } \Omega R \\ \text{rpm_trim(nrotormax)} & \text{real} & & \text{rotor rpm } \Omega \end{array}$
$\begin{array}{cccc} \text{Vtip_trim(nrotormax)} & \text{real} & \text{rotor tip speed } \Omega R \\ \text{rpm_trim(nrotormax)} & \text{real} & \text{rotor rpm } \Omega \end{array}$
$\operatorname{rpm_trim}(\operatorname{nrotormax})$ real rotor $\operatorname{rpm}\Omega$
MI trim restor(protormov) real restor O/O
rN_trim_rotor(nrotormax) real rotor $\Omega/\Omega_{ m ref}$
$N_{trim}(nengmax)$ real engine rpm N
rN_trim_eng(nengmax) real engine $N/N_{ m spec}$
rN_trim_ref(npropmax) real propulsion group reference speed ratio
flight speed
speed real horizontal speed V_h (knots)
Vclimb real climb velocity V_c (ft/sec or m/sec)
side_trim real sideslip angle ψ_V (deg)
derived
Vhoriz real horizontal velocity V_h (ft/sec or m/sec)
Mhoriz real horizontal Mach number V_h/c_s
climb_trim real climb angle $ heta_V$ (deg)
Vside real sideward velocity V_s (ft/sec or m/sec)
Vmag real velocity magnitude $ V $
Vfwd real forward velocity V_f (ft/sec or m/sec)
VCAS real calibrated airspeed $V_{\rm cal}$ (knots) $(V\sqrt{\sigma}f(\delta,M))$
VIAS real indicated airspeed $V_{\rm ind}$ (knots)
VAC(3) real velocity v_{AC} in F axes

```
drag vector, -v_{AC}/|v_{AC}| in F axes
ed(3)
                                real
qAC
                                real
                                                           dynamic pressure q_{AC}
Wind
                                                       headwind V_w (knots)
                                real
                                                       ground speed V_q = V_h - V_w (knots)
groundspeed
                                real
                                                  angular velocity
                                                       turn \dot{\psi}_F (yaw rate)
turn trim
                                real
pullup trim
                                real
                                                       pullup \theta_F (pitch rate)
                                                       turn radius R_T
turnRadius
                                real
wAC(3)
                                                       \omega_{AC} in F axes
                                real
                                                   acceleration
                                                       a_{AC} in F axes (linear)
aAC(3)
                                real
                                                       load factor n_{AC} (linear acc and angular rate)
nAC(3)
                                real
                                                   angle of attack and sideslip angle representation (1 conventional, 2 reversed)
KIND alpha
                                int
                                                   orientation of body axes relative inertial axes
                                                       pitch angle \theta_F (deg)
pitch trim
                                real
roll trim
                                real
                                                       roll angle \phi_F (deg)
                                                   rotation matrices
                                                       C^{FI}, velocity axes relative inertial axes
CFI(3,3)
                                real
                                                       C^{VI}, body axes relative inertial axes
CVI(3,3)
                                real
                                                       C^{FV}, body axes relative velocity axes
CFV(3,3)
                                real
control trim(ncontmax)
                                                   aircraft controls
                                real
Nauxtank(nauxtankmax,ntankmax)
                                int
                                                  number of auxiliary fuel tanks N_{\rm auxtank} (each aux tank size), from FltCond or MissSeg
                                                   wing extension kit on aircraft (0 none, 1 present)
SET extkit(nwingmax)
                                int
                                                   wing kit on aircraft (0 none, 1 present)
SET wingkit(nwingmax)
                                int
                                                   total fuel capacity W_{\text{fuel-cap}}, including auxiliary tanks
Wfuel cap(ntankmax)
                                real
                                                   total fuel capacity E_{\text{fuel-cap}}, including auxiliary tanks
Efuel cap(ntankmax)
                                real
                                                   slope of ground \gamma_G (+uphill; deg), from MissSeg
slope ground
                                real
SET sweep
                                int
                                                   parameter sweep, from FltCond
```

angle of attack and sideslip angle representation: from Aircraft and isSideward

```
orientation body relative inertial axes defined by Euler angles, with yaw/pitch/roll sequence (\psi_F, \theta_F, \phi_F) yaw positive to right, pitch positive nose up, roll positive to right C^{FI} = X_{\rm roll} Y_{\rm pitch} Z_{\rm yaw}, yaw angle = (turn)*time orientation velocity relative inertial axes defined by climb and sideslip angles (\theta_V, \psi_V) sideslip positive aircraft moving to right, climb positive aircraft moving up C^{VI} = Y_{\rm climb} Z_{\rm side} Z_{\rm yaw} orientation body relative velocity axes: C^{FV} = X_{\rm roll} Y_{\rm pitch} Z_{\rm -side} Y_{\rm -climb}
```

```
Trim (last)
                                                converged (0 not)
istrimconv
                               int
                                                number of iterations
count trim
                               int
error trim(mtrimmax)
                               real
                                                error ratio
resid trim(mtrimmax)
                               real
                                                residual (difference after one trim iteration)
gain trim(mtrimmax,mtrimmax)
                                                gain matrix
                               real
                                            Maximum effort (principal iteration, 99% range iteration; inner, outer loops)
isflyconv(2,2)
                                                converged (0 not)
                               int
                                                number of iterations
count_fly(2,2)
                               int
error fly(2,2)
                               real
                                                error ratio
isSwitched(2)
                                                quantity switched (1 P margin, 2 Q margin, 3 both)
                               int
                                            Maximum gross weight (flight condition or mission takeoff)
                                                converged (0 not)
ismaxgwconv
                               int
                                                number of iterations
count maxgw
                               int
                                                error ratio
error_maxgw
                               real
                                            Rotor flap equation (all converged or any not converged)
                                                converged (0 not, -1 no iteration)
                               int
isrotorconv
                                            Solution state
                                                count of solution (0 at start, get aircraft controls)
count control
                               int
trim deriv exist
                               int
                                                trim derivative matrix exist (0 for not)
```

```
Loads
                                                        forces (F axes, about cg)
                                                             aerodynamic F_{\text{aero}}^F (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Faero(3)
                                    real
                                                             rotor F_{\text{rotor}}^F
                                    real
Frotor(3)
                                                             fuel tanks F_{\text{tank}}^F
Ftank(3)
                                    real
                                                             engine groups F_{\text{eng}}^F (jet thrust, momentum drag)
Fengine(3)
                                    real
                                                             jet groups F_{\rm iet}^F
Fjet(3)
                                    real
                                                             charge groups F_{\text{charge}}^F
Fchrg(3)
                                    real
                                                             gravitational F_{\mathrm{grav}}^F
Fgrav(3)
                                    real
                                                             inertial F_{\text{inertial}}^F (turn)
Finertia(3)
                                    real
                                                        moments (F axes, about cg)
                                                             aerodynamic M^F_{
m aero} (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Maero(3)
                                    real
                                                             rotor M_{\rm rotor}^F
Mrotor(3)
                                    real
                                                             fuel tanks M_{\mathrm{tank}}^F
Mtank(3)
                                    real
                                                             engine groups M_{\text{engine}}^F (jet thrust, momentum drag)
Mengine(3)
                                    real
                                                             jet groups M_{\rm iet}^F
Mjet(3)
                                    real
                                                             charge groups M_{\rm charge}^F
Mchrg(3)
                                    real
                                                             inertial M_{
m inertial}^F (turn)
Minertia(3)
                                    real
                                                        total force (F axes, about cg); F + F_{grav} - F_{inertia}
Ftotal(3)
                                    real
                                                        total moment (F axes, about cg); M - M_{\text{inertia}}
Mtotal(3)
                                    real
                                                        download, aero F_z (I axes); set to 0 if V>10 knots
Download
                                    real
                                                        rotor thrust, rotor -F_z (I axes; sum Fvert)
Thrust
                                    real
DLoT
                                    real
                                                        download/thrust DL/T
                                                        download/weight DL/W
DLoW
                                    real
                                                        aircraft disk loading T/A_{ref} (lb/ft<sup>2</sup> or N/m<sup>2</sup>)
diskloadT
                                    real
                                                        aircraft disk loading W_G/A_{ref} (lb/ft<sup>2</sup> or N/m<sup>2</sup>)
diskloadW
                                    real
                                                        reference rotor area A_{\text{ref}} = \sum f_A A
Aref
                                    real
                                                   Aircraft performance
                                                        power
                                                             power required P_{req} (engine groups)
Preq
                                    real
                                                             power margin, min(P_{av} - P_{rea}) (propulsion groups and converted engine groups)
Pmargin
                                    real
                                                             torque margin, \min(P_{\text{limit}} - P_{req})
Qmargin
                                    real
                                                             exceed power available: any propulsion group P_{reaPG} > (1 + \epsilon)P_{avPG}
exceedP
                                    int
                                                             exceed torque available: any propulsion group P_{reqPG} > (1 + \epsilon) P_{DSlimit}
exceedQ
                                    int
```

```
thrust
Tjet
                                   real
                                                            thrust required T_{\rm iet} (jet groups)
                                                            jet thrust margin, \min(T_{av} - T_{reg})
Jmargin
                                   real
                                                            exceed jet thrust available: any jet group T_{rea,IG} > (1+\epsilon)T_{av,IG}
exceedJ
                                   int
                                                       charging
                                                            power required P_{\text{chrg}} (charge groups)
Pchrg
                                   real
Cmargin
                                                            charger power margin, min(P_{av} - P_{reg})
                                   real
                                                            exceed charger power available: any charge group P_{regCG} > (1 + \epsilon)P_{avCG}
exceedC
                                   int
                                                       equivalent aircraft power required P = P_{reg} + VT_{iet}
Pequiv
                                   real
Pclimb
                                                       climb power, V_{\rm climb}W
                                   real
                                                       fuel flow \dot{w}
fuelflow(ntankmax)
                                   real
fuelflow total
                                   real
                                                       total fuel flow \dot{w}
                                                       equivalent fuel flow \dot{w}_{\rm equiv}, from energy flow
fuelflow equiv
                                   real
                                                       energy flow E
energyflow(ntankmax)
                                   real
                                                       total energy flow E
energyflow total
                                   real
                                                       exceed fuel capacity: W_{\text{fuel}} > (1 + \epsilon)W_{\text{fuel-cap}} or E_{\text{fuel}} > (1 + \epsilon)E_{\text{fuel-cap}}
exceedWf
                                   int
                                                            battery power margin, \min(P_{max} - |\dot{E}_{batt}|) (MJ/hr)
Bmargin
                                   real
                                                            exceed battery power: any fuel tank |\dot{E}_{\rm batt}| > (1 + \epsilon) P_{\rm max}
exceedB
                                   int
                                                       sfc, \dot{w}_{\rm equiv}/P_{\rm equiv} (lb/hp-hr or kg/kW-hr)
sfc
                                   real
                                                       efficiency, P_{\text{equiv}}/\dot{E}
efficiency
                                   real
                                                       specific range, V/\dot{w}_{\rm equiv} (nm/lb or nm/kg)
spec range
                                   real
                                                       specific range, V/\dot{E} (nm/MJ)
spec rangeE
                                   real
                                                   Performance indices
                                                       aircraft figure of merit FM = W \sqrt{W/(2\rho A_{\rm ref})}/P
FΜ
                                   real
                                                       aircraft effective lift-to-drag ratio L/D_e = WV/P
LoDe
                                   real
                                                       aircraft effective drag D_e = P/V
Drage
                                   real
DragAC
                                   real
                                                       aircraft drag D_{AC}
                                                       aircraft drag area D/q = D_{AC}/q_{AC}; set to 0 if V<10 knots
DoQAC
                                   real
WoP
                                                       power loading W/P
                                   real
                                                       range for fuel=1%GW (nm)
range onepcW
                                   real
                                                       fuel efficiency e = W_{\text{pay}}V/\dot{w}_{\text{equiv}} (ton-nm/lb or ton-nm/kg)
fuel eff
                                   real
                                                       productivity p = W_{pay}V/W_O (ton-kt/lb or ton-kt/kg)
productivity
                                   real
```

Structure: FltAircraft

Operating size

length_op	real	length
width_op	real	width
area_op	real	area

Structure: FltFuse

Variable	Type	Description	Default
		Flight State - Fuselage	
		controls	
flow	real	momentum coefficient C_{μ}	
		aerodynamics	
VintR(3,nrotormax)	real	interference velocity v_{int}^F , from rotors (F axes)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
FGreq	real	flow control momentum flux required F_{Greq}	
PEGreq	real	engine group power required to supply F_{Greq}	
DoQ_pay	real	payload D/q	
DoQ_cont	real	contingency D/q	
CL	real	lift coefficient C_L	
CM	real	pitch moment coefficient C_M	
CD	real	drag coefficient C_D	
CY	real	side force coefficient C_Y	
CN	real	yaw moment coefficient C_N	
L	real	lift	
M	real	pitch moment	
D	real	drag	
Υ	real	side force	
N	real	yaw moment	
		loads	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	

Structure: FltFuse 101

aerodynamic moment $M^F_{
m aero}$ (F axes, about cg) drag $e^T_dF^F_{
m aero}$ download, aero F_z (I axes) Maero(3) real

Drag real

Download real

Chapter 22

Structure: FltGear

Variable	Type	Description	Default
		Flight State - Landing Gear	
		aerodynamics	
iSTATE_LG	int	landing gear state (STATE_LG_extended, retracted)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
ed(3)	real	drag vector, $-v/ v $ in F axes	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)	
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$	
Download	real	download, aero F_z (I axes)	

Variable	Type	Description	Default
		Flight State - Rotor	
		control mode	
$KIND_control_coll$	int	collective control mode (1 thrust command, 2 pitch command)	
$KIND_control_cyc$	int	cyclic control mode (1 TPP command, 2 NFP command)	
Scoll	real	collective T matrix scale factor $S(1, a/6, \rho V_{\text{tip}}^2 A_{\text{blade}} a/6)$	
Scyc	real	cyclic T matrix scale factor S (–1 TPP command, 1 NFP command)	
		controls	
coll	real	collective	
Ingcyc	real	longitudinal cyclic	
latcyc	real	lateral cyclic	
incid	real	incidence	
cant	real	cant	
diam	real	diameter	
fgear	real	gear ratio factor	
Freact	real	reaction drive net force F_{react}	
		geometry	
Ccont(3,3)	real	shaft control, $C_{ m cont}$	
CSF(3,3)	real	shaft relative airframe, C^{SF}	
zhub(3)	real	hub position, $z_{ m hub}$	
zpylon(3)	real	pylon position, $z_{ m pylon}$	
znac(3)	real	nacelle cg position, $z_{ m nac}$	
CBF(3,3)	real	pylon relative airframe, C^{BF}	
		condition	
radius	real	$\operatorname{radius} R$	
Vtip	real	tip speed $V_{\mathrm{tip}} = \Omega R$	
Omega	real	rotational speed Ω	
Mtip	real	tip Mach number $M_{ m tip}$	
Mat	real	maximum Mach number M_{at} (advancing tip or helical)	

sigma	real	solidity σ (thrust weighted)
gamma	real	Lock number γ
Iblade	real	blade moment of inertia $I_{\rm blade}$
flapfreq	real	flap frequency ν
conefreq	real	coning frequency ν
Khub	real	hub stiffness $K_{ m hub}$
Tillas	1001	ndo stifficas 11 nub
	p	performance
		shaft axis loads
Т	real	thrust
Н	real	drag force
Υ	real	side force
Mx	real	roll moment
Му	real	pitch moment
Q	real	torque
CT	real	thrust coefficient C_T
CH	real	drag force coefficient C_H
CY	real	side force coefficient C_Y
CMx	real	roll moment coefficient C_{Mx}
СМу	real	pitch moment coefficient C_{My}
CQ	real	torque coefficient C_Q
		control and motion
theta75	real	collective pitch $\theta_{0.75}$ (0.75R)
thetas	real	longitudinal cyclic pitch θ_s
thetac	real	lateral cyclic pitch θ_c
beta0	real	coning β_0
betac	real	longitudinal flapping eta_c
betas	real	lateral flapping β_s
lambda0	real	inflow $\lambda_0 = \kappa \lambda_i$
CPS(3,3)	real	tip-path plane relative shaft, C^{PS}
		velocity and inflow
VoVtip	real	$V/V_{ m tip}$
VF(3)	real	total velocity relative air v^F (F axes)
VS(3)	real	total velocity relative air v^S (S axes)
mux	real	μ_x
		,

muy	real	μ_y
muz	real	μ_z
omegaS(3)	real	angular velocity ω^S (S axes)
dax	real	\dot{lpha}_x
day	real	\dot{lpha}_y
mu	real	$\mu = \sqrt{\mu_x^2 + \mu_y^2}$
alphas	real	$\alpha = \tan^{-1}(\mu_z/\mu)$
fDuctA	real	ducted fan area ratio f_A
fDuctT	real	ducted fan thrust ratio f_T
fDuctW	real	ducted fan far wake ratio f_W
fDuctD	real	ducted fan power ratio $f_D = f_W/2\eta_D$
zg	real	height rotor hub above ground, z_q/D
zge	real	effective height, $z_q C_q/(D\cos\epsilon)$
fg	real	ground effect inflow ratio $f_q = P/P_{\infty}$
kappag	real	ground effect thrust ratio $\kappa_q = T/T_{\infty}$
СТе	real	C_T for inflow solution
lambdah	real	reference $\lambda_h = \sqrt{C_T/2}$
lambda_ideal	real	ideal induced velocity λ_i
CPideal	real	ideal induced power $C_{Pideal} = C_T \lambda_i$
kappax	real	inflow gradient κ_x
kappay	real	inflow gradient κ_y
kappam	real	inflow gradient $\kappa_m = (\sigma a/8) f_m/U$
diskload	real	disk loading T/A (lb/ft ² or N/m ²)
CTs	real	thrust coefficient/solidity, $ C_T/\sigma $
FPpro	real	profile power factor F_P
FHpro	real	profile drag factor F_H
VintWn(3,nwingmax)	real	interference velocity v_{int}^F from wings, normal (F axes)
VintWp(3,nwingmax)	real	interference velocity v_{int}^{F} from wings, inplane (F axes)
		inplane forces
CHtpp	real	drag force C_H , tpp
CYtpp	real	side force C_Y , tpp
СНо	real	drag force C_H , profile
CYo	real	side force C_Y , profile
fB	real	blockage factor $f_B = \Delta T/T = B f_\mu f_z$

```
download factor f_{DL} = 1/(1 - \Delta T/T) = 1/(1 - DL f_{\mu}f_z)
fDL
                                    real
                                                    rotor flap equations
                                                         converged (0 \text{ not}, -1 \text{ no iteration})
isrotorconv
                                    int
                                                         iteration count
count rotor
                                    int
error rotor(3)
                                    real
                                                         error ratio (E_t, E_c, E_s)
                                                         residual (E_t, E_c, E_s)
resid rotor(3)
                                    real
                                                         rotor derivative matrix exist (0 for not)
rotor deriv exist
                                    int
                                                    loads
                                                         \begin{array}{c} \text{rotor force } F^F_{\text{rotor}} \text{ (F axes, about cg)} \\ \text{rotor moment } M^F_{\text{rotor}} \text{ (F axes, about cg)} \end{array}
Frotor(3)
                                    real
Mrotor(3)
                                    real
                                                         lift (wind axis)
L
                                    real
Χ
                                    real
                                                         drag (wind axis)
                                                         lift coefficient C_L
CL
                                    real
\mathsf{CX}
                                                         drag coefficient C_X
                                     real
                                                         vertical force (inertia axes)
Fvert
                                    real
                                                         rotor blade loading, C_T/\sigma f_T
CTs rotor
                                    real
                                                         max C_T/\sigma (sustained)
CTs steady
                                    real
                                                         max C_T/\sigma (transient)
CTs tran
                                    real
                                                         max C_T/\sigma (equation)
CTs eqn
                                    real
                                                         thrust margin, (C_T/\sigma)_{\text{max}} - |C_T/\sigma| (sustained)
Tmargin steady
                                    real
                                                         thrust margin, (C_T/\sigma)_{\text{max}} - |C_T/\sigma| (transient)
Tmargin tran
                                     real
                                                         thrust margin, (C_T/\sigma)_{\text{max}} - |C_T/\sigma| (equation)
Tmargin eqn
                                    real
                                                         drive system limit P_{RSlimit} (at rpm_trim and rating_ds)
Plimit rs
                                    real
                                                         torque margin, P_{RSlimit} - P
Qmargin rs
                                    real
                                                         exceed torque available: P > (1 + \epsilon)P_{RSlimit}
exceedQ rs
                                    int
                                                    power
Ρ
                                                         rotor power P
                                    real
                                                         induced power P_i
Pind
                                     real
Ppro
                                     real
                                                         profile power P_o
Ppar
                                    real
                                                         parasite power P_n
                                                         wing interference power P_w
Pw
                                    real
                                                         propulsive force efficiency power P_d
Pd
                                    real
                                                         climb efficient power P_v
Pv
                                    real
CP
                                    real
                                                         rotor power coefficient C_P
```

CPind	real	induced power coefficient C_{Pi}	
CPpro	real	profile power coefficient C_{Po}	
CPpar	real	parasite power coefficient C_{Pp}	
CPw	real	wing interference power coefficient P_w	
CPd	real	propulsive force efficiency power coefficient P_d	
CPv	real	climb efficient power coefficient P_v	
lambda	real	induced velocity λ	
lambdat	real	wing interference velocity $\lambda_t = C_{Pw}/C_F$	
Ki	real	induced power factor κ	
cdmean	real	mean drag coefficient $c_{ m dmean}$	
cdmean_basic	real	mean drag coefficient, basic (without TECH_drag or Re scale)	
cdmean_stall	real	mean drag coefficient, stall (without TECH_drag or Re scale)	
cdmean_comp	real	mean drag coefficient, compressible (without TECH_drag or Re scale)	
cdmean_table	real	mean drag coefficient, table term	
FM	real	hover figure of merit, Tf_Dv/P	
etaprop	real	propulsive efficiency, TV/P	
etamom	real	momentum efficiency, $T(V + f_D v)/P$	
CDe	real	effective drag, $(C_{Pi} + C_{Po})/(V/V_{\rm tip})$	
LoDe	real	effective lift-to-drag, C_L/C_{De}	
		shaft power and reaction drive	
Pshaft	real	shaft power $P_{ m shaft}$	
Preact	real	reaction drive power $P_{\rm react} = \Omega r_{\rm react} F_{\rm react}$	
rOmegareact	real	blade velocity $\Omega r_{\mathrm{react}}$	
mdotreact	real	mass flow $\dot{m}_{ m react}$	
STreact	real	specific thrust $ST = F_{Greq}/\dot{m}_{\rm react}$	
FGreq	real	gross thrust (momentum flux) required $F_{Greq} = F_{react} + \dot{m}_{react} \Omega r_{react}$	
PEGreq	real	engine group power required to supply F_{Greq}	
		aerodynamics	
		hub	
Vaero_hub(3)	real	total velocity relative air v^F (F axes)	
Vmag_hub	real	velocity magnitude	
q_hub	real	dynamic pressure	
ed_hub(3)	real	drag vector, $-v/ v $ in F axes	
VB_hub(3)	real	total velocity relative air v^B (B axes)	

alpha_hub	real	angle of attack α (deg)
		pylon
Vaero_pylon(3)	real	total velocity relative air v^F (F axes)
$Vmag_{pylon}$	real	velocity magnitude
q_pylon	real	dynamic pressure
ed_pylon(3)	real	drag vector, $-v/ v $ in F axes
VB_pylon(3)	real	total velocity relative air v^B (B axes)
alpha_pylon	real	angle of attack α (deg)
CDhub	real	drag coefficient, hub $C_{D m hub}$
CDpylon	real	drag coefficient, pylon $C_{D m pylon}$
CDduct	real	drag coefficient, duct $C_{D\mathrm{duct}}$
CDspin	real	drag coefficient, spinner $C_{D{ m spin}}$
CDbldstop	real	drag coefficient, stopped blade $C_{Dblade-stop}$
Dhub	real	drag, hub $D_{ m hub}$
Dpylon	real	drag, pylon $D_{ m pylon}$
Dduct	real	drag, duct $D_{ m duct}$
Dspin	real	drag, spinner $D_{ m spin}$
Dbldstop	real	drag, stopped blade $D_{\rm blade-stop}$
	10	pads
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)
	ir	nterference
lambda int	real	ideal induced velocity λ_i (from C_T)
vind(3)	real	induced velocity v_{ind}^F (F axes)
chi_wake	real	wake angle χ
Fint_fus	real	interference factor $f_W f_z f_r f_t$ at fuselage
Fint_wingLp(nwingmax,npane	elmax)	
	real	interference factor $f_W f_z f_r f_t$ at wing, left panel
Fint_wingRp(nwingmax,npane	elmax)	· · · · · · · · · · · · · · · · · · ·
· - ·	real	interference factor $f_W f_z f_r f_t$ at wing, right panel
Fint_tail(ntailmax)	real	interference factor $f_W f_z f_r f_t$ at tail
isInWake_fus	int	fuselage inside wake
_		-

isInWake_wingLp(nwingmax,npanelmax)

int wing inside wake, left panel

isInWake_wingRp(nwingmax,npanelmax)

int wing inside wake, right panel

 $\begin{array}{lll} \text{isInWake_tail(ntailmax)} & \text{int} & \text{tail inside wake} \\ \text{ftwin} & \text{real} & \text{twin rotor factor } f_t \end{array}$

Aint_wing(nwingmax) real induced power interference at wing $\alpha_{\rm int}$

Chapter 24

Structure: FltWing

Variable	Type	Description	Default
		Flight State - Wing	
		controls	
flap(npanelmax)	real	flap δ_F	
flaperon(npanelmax)	real	flaperon δ_f	
aileron(npanelmax)	real	aileron δ_a	
incid(npanelmax)	real	incidence i	
flow(npanelmax)	real	momentum coefficient C_{μ}	
		geometry	
zac(3)	real	aerodynamic center position, z_{ac}	
zcg(3)	real	center of gravity position, z_{cg}	
		aerodynamics	
VintR_Lp(3,nrotormax,np	anelmax)		
	real	interference velocity v_{int}^F at left wing panel, from rotors (F axes)	
VintR_Rp(3,nrotormax,np	anelmax)		
	real	interference velocity v_{int}^F at right wing panel, from rotors (F axes)	
VintR(3,nrotormax)	real	interference velocity v_{int}^F (panel area weighted), from rotors (F axes)	
VintW(3,nwingmax)	real	interference velocity v_{int}^F , from other wings (F axes)	
AintW(nwingmax)	real	interference angle $\alpha_{\rm int}$, from other wings	
AintR(nrotormax)	real	induced power interference $\alpha_{\rm int}$, from rotors	
		with mean interference	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	

Structure: FltWing

alpha_int	real	angle of attack α , with interference (deg)
CDV	real	vertical drag coefficient C_{DV}
		left panel
$Vaero_Lp(3,npanelmax)$	real	total velocity relative air v^F (F axes)
$VB_{Lp}(3,npanelmax)$	real	total velocity relative air v^B (B axes)
$alpha_Lp(npanelmax)$	real	angle of attack α (deg)
$beta_Lp(npanelmax)$	real	sideslip angle β (deg)
$CBA_Lp(3,3,npanelmax)$	real	C^{BA}
$Vmag_Lp(npanelmax)$	real	velocity magnitude
$q_Lp(npanelmax)$	real	dynamic pressure
$CL_Lp(npanelmax)$	real	lift coefficient C_{Lp}
$CDp_Lp(npanelmax)$	real	drag coefficient, parasite C_{Dpp}
$CM_{Lp}(npanelmax)$	real	pitch moment coefficient C_{Mp}
$CR_Lp(npanelmax)$	real	roll moment coefficient $C_{\ell p}$
$L_{L}p(npanelmax)$	real	lift
$Dp_Lp(npanelmax)$	real	drag, parasite
$M_Lp(npanelmax)$	real	pitch moment
$R_{Lp}(npanelmax)$	real	roll moment
		right panel
$Vaero_{Rp}(3,npanelmax)$	real	total velocity relative air v^F (F axes)
$VB_Rp(3,npanelmax)$	real	total velocity relative air v^B (B axes)
$alpha_Rp(npanelmax)$	real	angle of attack α (deg)
$beta_Rp(npanelmax)$	real	sideslip angle β (deg)
$CBA_Rp(3,3,npanelmax)$	real	C^{BA}
$Vmag_Rp(npanelmax)$	real	velocity magnitude
$q_Rp(npanelmax)$	real	dynamic pressure
$CL_{Rp}(npanelmax)$	real	lift coefficient C_{Lp}
$CDp_Rp(npanelmax)$	real	drag coefficient, parasite C_{Dpp}
$CM_{Rp}(npanelmax)$	real	pitch moment coefficient C_{Mp}
$CR_{R}p(npanelmax)$	real	roll moment coefficient $C_{\ell p}$
$L_Rp(npanelmax)$	real	lift
$Dp_{Rp}(npanelmax)$	real	drag, parasite
$M_Rp(npanelmax)$	real	pitch moment
$R_Rp(npanelmax)$	real	roll moment

Structure: FltWing

qS	real	qS (sum over panels)
qeff	real	(qS)/S (weighted by panel area)
dCLda3D	real	compressible 3D lift curve slope $C_{L\alpha}$
AoA_max	real	$lpha_{ m max}$
CL	real	lift coefficient C_L
CDp	real	drag coefficient, parasite C_{Dp}
CDi	real	drag coefficient, induced C_{Di}
CM	real	pitch moment coefficient C_M
CR	real	roll moment coefficient C_ℓ
CLmax	real	maximum lift coefficient $C_{L\max}$
L	real	lift
Dp	real	drag, parasite
Di	real	drag, induced
D	real	drag
M	real	pitch moment
R	real	roll moment
Lmargin	real	stall margin, $C_{L \max} - C_L$
FGreq	real	flow control momentum flux required F_{Greq} (all panels)
PEGreq	real	engine group power required to supply F_{Greq} (all panels)
		loads
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)
		interference
Vint_tail(3,ntailmax)	real	velocity at tail v_{int}^F (F axes)
vind(3)	real	induced velocity v_{ind}^{F} (F axes)
Vint_wing(3,nwingmax)	real	velocity at other wing v_{int}^F (F axes)
Aint_wing(nwingmax)	real	angle at other wing $(\alpha_{\rm int} = v_{\rm int}/v^B = K_{\rm int}v_{\rm ind}/v^B)$
Vintn_rotor(3,nrotormax)	real	velocity at rotor v_{int}^F , normal (F axes)
Vintp_rotor(3,nrotormax)	real	velocity at rotor $v_{\text{int}}^{\text{int}}$, inplane (F axes)
- ()		Jille / I

Chapter 25

Structure: FltTail

Variable	Type	Description	Default
		Flight State - Tail	
		controls	
cont	real	control δ	
incid	real	incidence i	
		aerodynamics	
VintR(3,nrotormax)	real	interference velocity v_{int}^F , from rotors (F axes)	
VintW(3,nwingmax)	real	interference velocity v_{int}^F , from wings (W axes)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
dCLda3D	real	compressible 3D lift curve slope $C_{L\alpha}$	
AoA_max	real	$lpha_{ m max}$	
CL	real	lift coefficient C_L	
CDp	real	drag coefficient, parasite C_{Dp}	
CDi	real	drag coefficient, induced C_{Di}	
CLmax	real	maximum lift coefficient $C_{L{ m max}}$	
L	real	lift	
D	real	drag	
		loads	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)	
Drag	real	$\mathrm{drag}e_d^T F_{\mathrm{aero}}^F$	
Download	real	download, aero F_z (I axes)	

Structure: FltTank

Variable	Type	Description	Default
		Flight State - Fuel Tank Systems	
		all tanks (standard plus auxiliary)	
Wfuel	real	usable fuel weight	
Efuel	real	usable fuel energy	
Wfuel_cap	real	fuel weight capacity	
Efuel_cap	real	fuel energy capacity	
rWfuel	real	fraction weight capacity	
rEfuel	real	fraction energy capacity = state-of-charge = 1 - depth-of-discharge	
		battery ($\dot{E} > 0$ discharge, $\dot{E} < 0$ charge; power and current positive)	
Pfuel_cap	real	power capacity $P_{\rm cap} = x_{mbd} E_{\rm fuel-cap}/(d_{\rm max} - d_{\rm min})$ (MJ/hr)	
state	int	state (1 discharging, -1 CC charge, -2 CV charge)	
dact	real	actual depth-of-discharge $d_{\rm act} = d_{\rm min} + (d_{\rm max} - d_{\rm min})d_{\rm use}$	
X	real	current x (1/hr)	
xi	real	current $\xi = x/x_{mbd}$	
V	real	voltage V	
Edotcomp	real	component energy flow \dot{E}_{comp} (MJ/hr)	
etabatt	real	battery efficiency η_{batt}	
Ploss	real	power loss $P_{\rm loss}$ (MJ/hr)	
etasys	real	system efficiency $\eta_{\rm sys}$	
Edotbatt	real	battery energy flow $\dot{E}_{\rm batt}$ (MJ/hr)	
dcrit	real	effective capacity factor d_{crit}	
Edoteff	real	effective energy flow $\dot{E}_{ m eff}$ (MJ/hr)	
xmax	real	maximum current x_{max} (1/hr)	
Pmax	real	maximum power (for x_{max}) (MJ/hr)	
Bmargin	real	battery power margin $P_{\rm max} - \dot{E}_{\rm batt} $ (MJ/hr)	
exceedB	int	exceed battery power: $ \dot{E}_{\rm batt} > (1+\epsilon)P_{\rm max}$	

Structure: FltTank

```
system losses
Peq
                                  real
                                                      equipment power loss P_{\rm eq} (hp or kW)
Pdist
                                                      distribution power loss P_{\text{dist}} (MJ/hr)
                                  real
                                                      thermal management system
                                                          battery rejected power P_{\rm rej} (MJ/hr)
Prej
                                  real
                                                          mass flow \dot{m}
mdot
                                  real
FG
                                   real
                                                          gross jet thrust F_G
FΝ
                                                          net jet thrust F_N
                                   real
                                                          jet thrust force F_{\text{jet}}^F (F axes, about cg)
Fjet(3)
                                  real
                                                          jet thrust moment M_{
m jet}^F (F axes, about cg)
Mjet(3)
                                  real
                                                          thermal management system loss P_{\rm TMS} (MJ/hr)
PTMS
                                   real
fuelflow
                                   real
                                                      fuel flow \dot{w}
                                                      energy flow \dot{E}
energyflow
                                  real
                                                      equivalent fuel flow \dot{w}_{
m equiv}, from energy flow
fuelflow equiv
                                  real
                                                 aerodynamics
                                                      total velocity relative air v^F (F axes)
Vaero(3)
                                   real
Vmag
                                   real
                                                      velocity magnitude
                                                      dynamic pressure
                                  real
q
                                                      drag vector, -v/|v| in F axes
ed(3)
                                  real
                                                      cooling drag D
Dcool
                                  real
                                                      download, aero F_z (I axes)
DL
                                  real
                                                 auxiliary tanks
                                                      total velocity relative air v^F (F axes)
Vaero aux(3,nauxtankmax)
                                  real
Vmag aux(nauxtankmax)
                                                      velocity magnitude
                                  real
q aux(nauxtankmax)
                                                      dynamic pressure
                                   real
                                                      drag vector, -v/|v| in F axes
ed aux(3,nauxtankmax)
                                  real
D aux(nauxtankmax)
                                  real
                                                      drag D
                                                      download, aero F_z (I axes)
DL aux(nauxtankmax)
                                  real
                                                 loads
                                                     aerodynamic force F^F_{
m aero} (F axes, about cg) aerodynamic moment M^F_{
m aero} (F axes, about cg)
Faero(3)
                                   real
Maero(3)
                                   real
                                                      \operatorname{drag} \, e_d^T F_{\mathrm{aero}}^F
                                   real
Drag
                                                      download, aero F_z (I axes)
Download
                                  real
```

Structure: FltProp

Variable	Type	Description	Default
		Flight State - Propulsion Group	
STATE_gear	int	drive system state	
		control	
DN_trim	real	rotational speed increment, primary rotor or primary engine (rpm)	
		power	
Pcomp	real	power required P_{comp} , all components	
Pcomp_rotor	real	rotor	
Pcomp_eng	real	engine groups	
Pxmsn	real	transmission losses $P_{\rm xmsn}$	
Pacc	real	accessory power $P_{ m acc}$	
PreqPG	real	power required $P_{reqPG} = P_{comp} + P_{xmsn} + P_{acc}$, propulsion group	
PavPG	real	power available P_{avPG} , propulsion group (sum all engine groups producing shaft power)	
PavElsum	real	engine installed power available P_{avEI} (sum all engine groups producing shaft power)	
PavEGsum	real	engine group power available P_{avEG} (sum all engine groups producing shaft power)	
Pratio	real	P_{reqPG}/P_{avPG} , propulsion group	
Plimit_ds	real	drive system limit $P_{DS ext{limit}}$ (at rpm_trim(primary) and rating_ds, including fTorque)	
atPlimit_ds	int	at drive system limit (P_{avPG} limited by $P_{DS ext{limit}}$)	
Qmargin_ds	real	torque margin, $P_{DS ext{limit}} - P_{reqPG}$	
Pmargin	real	power margin, $P_{avPG} - P_{reqPG}$	
exceedP	int	exceed power available: $P_{reqPG} > (1 + \epsilon)P_{avPG}$	
$exceedQ_ds$	int	exceed torque available: $P_{reqPG} > (1 + \epsilon) P_{DS \text{limit}}$	
Qmargin	real	torque margin, min(propulsion group, engine groups, rotors)	
exceedQ	int	exceed torque available: any propulsion group, engine groups, rotors	
		propulsion group engines	
fuelflow(ntankmax)	real	fuel flow \dot{w}	
fuelflow_total	real	total fuel flow \dot{w}	
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{ m equiv}$, from energy flow	
${\sf energyflow(ntankmax)}$	real	energy flow \dot{E}	

Structure: FltProp

energyflow_total	real	total energy flow \dot{E}
sfc	real	specific fuel consumption $sfc = \dot{w}_{equiv}/P_{req}$
Fprop(3)	real	jet thrust and momentum drag force $F_{\text{prop}}^{\hat{F}}$ (\hat{F} axes, about cg)
Mprop(3)	real	jet thrust and momentum drag moment $\widehat{M}_{\mathrm{prop}}^F$ (F axes, about cg)
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{\operatorname{aero}}^F$
Download	real	download, aero F_z (I axes)

Structure: FltEngn

Variable	Type	Description	Default
		Flight State - Engine Group	
		controls	
amp	real	amplitude A	
mode	real	$\operatorname{mode} B$	
incid	real	incidence i	
yaw	real	yaw ψ	
fgear	real	gear ratio factor $f_{ m gear}$	
		geometry	
CBF(3,3)	real	engine relative airframe, C^{BF}	
ef(3)	real	engine direction, e_f	
		engine	
Pq	real	uninstalled power required, P_q	
Plossq	real	installation loss P_{loss} or P_{TMS}	
etalossq	real	installation efficiency $\eta_{ m loss}$	
Preq_eng	real	installed power required, $P_{req-eng}$	
N_{trim}	real	engine rpm N	
mdot	real	mass flow \dot{m}	
wdot	real	fuel flow \dot{w}	
Edot	real	energy flow \dot{E}	
FG	real	gross installed jet thrust F_G	
Fmom	real	momentum thrust $F_{\text{mom}} = \dot{m}V$	
FGreq	real	gross thrust (momentum flux) required $F_{Greq} = F_{\text{react}} + \dot{m}_{\text{react}} \Omega r_{\text{react}}$ or flow control (all components)	
FGq	real	$F_{Gq} = F_{G{ m req}}/({\sf Nengine-NEngInOp})$	
FN	real	net installed jet thrust F_N	
Daux	real	momentum drag of auxiliary air flow D_{aux}	
Pa	real	uninstalled power available, P_a	
Plossa	real	installation loss $P_{ m loss}$ or $P_{ m TMS}$	

Structure: FltEngn

etalossa	real	installation efficiency $\eta_{ m loss}$
Pav_eng	real	installed power available, P_{av-eng}
Pmech	real	engine mechanical limit P_{mech} (at N_trim)
atPmech	int	at mechanical limit (P_{av-eng} limited by P_{mech})
etamotor	real	motor/generator efficiency $\eta_{ m motor}$
Prej	real	motor/generator rejected power $P_{\rm rej}$ (hp or kW)
	en	agine group
${\sf Reaction Mode}$	int	reaction drive mode (MODEL_engine_compreact or converted)
Converted	int	converted (KIND=RPTEM with mode=1; 0 shaft power, 1 reaction, 2 jet)
ProducePower	int	shaft power (0 consumed (generator or compressor), 1 produced)
Pcomp	real	component power P_{comp} (generator or compressor); (Nengine–NEngInOp) P_qK_{ffd}
Preq	real	power required P_{reqEG}
PavEl	real	engine installed power available P_{avEI} ; (Nengine–NEngInOp) $P_{av-\mathrm{eng}}$
Pav	real	power available, P_{avEG} ; fPower(Nengine–NEngInOp) P_{av-eng}
Qreq	real	torque required Q_{req} (at N_trim)
Pratio	real	P_{reqEG}/P_{avEG}
Pmargin	real	power margin, $P_{avEG} - P_{reqEG}$
Plimit_es	real	drive system limit $P_{ES ext{limit}}$ (at N_trim and rating_ds)
atPlimit_es	int	at drive system limit (P_{avEG} limited by $P_{ES \text{limit}}$)
Qmargin_es	real	torque margin, $P_{ES ext{limit}} - P_{reqEG}$
exceedQ_es	int	exceed torque available: $P_{reqEG} > (1 + \epsilon) P_{ES limit}$
Fmargin	real	momentum margin, $F_G - F_{Greq}$
exceedF	int	exceed momentum available: $F_{Greq} > (1 + \epsilon)F_G$
fuelflow	real	fuel flow \dot{w} (negative if generated)
energyflow	real	energy flow \dot{E} (negative if generated)
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{ m equiv}$, from energy flow
sfc	real	specific fuel consumption $\mathrm{sfc} = \dot{w}_{\mathrm{equiv}}/P_{req}$
FNEG	real	net installed jet thrust F_N
DauxEG	real	momentum drag of auxiliary air flow D_{aux}
Fjet(3)	real	jet thrust force F_{jet}^F (F axes, about cg)
Mjet(3)	real	jet thrust moment M_{jet}^F (F axes, about cg)
Faux(3)	real	momentum drag force F_{aux}^F (F axes, about cg)
Maux(3)	real	momentum drag moment M_{aux}^F (F axes, about cg)

Structure: FltEngn

```
aerodynamics
                                                               total velocity relative air v^F (F axes)
Vaero(3)
                                        real
                                                               velocity magnitude
Vmag
                                        real
                                                               dynamic pressure
                                        real
q
                                                              drag vector, -v/|v| in F axes total velocity relative air v^B (B axes)
ed(3)
                                        real
VB(3)
                                        real
                                                               angle of attack \alpha (deg)
alpha
                                        real
                                                               drag coefficient C_D
CD
                                        real
D
                                                               drag
                                        real
                                                               cooling drag
Dcool
                                        real
                                                         load
                                                              aerodynamic force F^F_{
m aero} (F axes, about cg) aerodynamic moment M^F_{
m aero} (F axes, about cg) drag e^T_d F^F_{
m aero} download, aero F_z (I axes)
Faero(3)
                                        real
Maero(3)
                                        real
Drag
                                        real
Download
                                        real
```

Structure: FltJet

Variable	Type	Description	Default
		Flight State - Jet Group	
		controls	
amp	real	amplitude A	
mode	real	$\operatorname{mode} B$	
incid	real	incidence i	
yaw	real	yaw ψ	
		geometry	
CBF(3,3)	real	jet relative airframe, C^{BF}	
ef(3)	real	jet direction, e_f	
		jet	
Tq	real	uninstalled thrust required T_q	
Tlossq	real	installation loss $T_{ m loss}$	
etalossq	real	installation efficiency η_{loss}	
Treq_jet	real	installed thrust required $T_{req-\mathrm{jet}}$	
mdot	real	mass flow \dot{m}	
wdot	real	fuel flow \dot{w}	
Edot	real	energy flow \dot{E}	
ST	real	specific thrust $ST = T_{Gq}/\dot{m}$	
FG	real	gross installed jet thrust F_G	
Fmom	real	momentum thrust $F_{\text{mom}} = \dot{m}(1+\beta)V$	
FGreq	real	gross thrust (momentum flux) required $F_{Greq} = F_{react} + \dot{m}_{react} \Omega r_{react}$ or flow control (all components)	
FGq	real	$F_{Gq} = F_{G{ m req}}/({\sf Njet-NJetInOp})$	
FN	real	net installed jet thrust F_N	
Daux	real	momentum drag of auxiliary air flow $D_{\rm aux}$	
Ta	real	uninstalled thrust available T_a	
Tlossa	real	installation loss $T_{ m loss}$	
etalossa	real	installation efficiency $\eta_{ m loss}$	

Structure: FltJet

Tav_jet	real	installed thrust available T_{av-jet}
Tmech	real	jet mechanical limit $T_{ m mech}$
atTmech	int	at mechanical limit (T_{av-jet} limited by T_{mech})
	jet	group
${\sf Reaction Mode}$	int	reaction drive mode (MODEL_jet_react or converted)
Converted	int	converted (RPJEM with mode=1; 0 jet, 1 reaction)
Treq	real	thrust required T_{reqJG}
TavJI	real	jet installed thrust available T_{avJI} ; (Njet–NJetInOp) $T_{av-\mathrm{jet}}$
Tav	real	thrust available, T_{avJG} ; fThrust(Njet-NJetInOp) $T_{av-\text{jet}}$
Jratio	real	T_{reqJG}/T_{avJG}
Jmargin	real	thrust margin $T_{avJG} - T_{reqJG}$
exceedJ	int	exceed thrust available: $T_{reqJG} > (1 + \epsilon)T_{avJG}$
Fmargin	real	momentum margin $F_G - F_{Greq}$
exceedF	int	exceed momentum available: $F_{Greq} > (1 + \epsilon)F_G$
fuelflow	real	fuel flow \dot{w} (negative if generated)
energyflow	real	energy flow \dot{E} (negative if generated)
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{ m equiv}$, from energy flow
sfc	real	specific fuel consumption $sfc = \dot{w}_{equiv}/T_{req}$
FNJG	real	net installed jet thrust F_N
DauxJG	real	momentum drag of auxiliary air flow $D_{\rm aux}$
Fjet(3)	real	jet thrust force F_{jet}^F (F axes, about cg)
Mjet(3)	real	jet thrust moment M_{iet}^F (F axes, about cg)
Faux(3)	real	momentum drag force F_{aux}^F (F axes, about cg)
Maux(3)	real	momentum drag moment M_{aux}^F (F axes, about cg)
	loa	ads
F(3)	real	force F_{iet}^F (F axes)
M(3)	real	moment $M_{\rm iet}^F$ (F axes)
,		
V (2)	_	rodynamics
Vaero(3)	real	total velocity relative air v^F (F axes)
Vmag	real	velocity magnitude
q (2)	real	dynamic pressure
ed(3)	real	drag vector, $-v/ v $ in F axes
VB(3)	real	total velocity relative air v^B (B axes)
alpha	real	angle of attack α (deg)

Structure: FltJet

CD	real	drag coefficient C_D
D	real	drag
Dcool	real	cooling drag
		load
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)

Structure: FltChrg

Variable	Type	Description	Default
		Flight State - Charge Group	
		controls	
amp	real	amplitude A	
mode	real	$mode\ B$	
incid	real	incidence i	
yaw	real	yaw ψ	
		geometry	
CBF(3,3)	real	charger relative airframe, C^{BF}	
ef(3)	real	charger direction, e_f	
		charger	
Pacell	real	power available $P_{av} = P_{a\text{cell}} = \dot{E}_{a\text{cell}}$	
Pqcell	real	cell power required $P_{q ext{cell}} = \dot{E}_{q ext{cell}}$	
Preq	real	installed power required $P_{req} = P_{reqCG}/(Ncharge-NChrgInOp)$	
		charger, fuel cell	
deltac	real	compressor pressure ratio δ_c	
iratio	real	power required current ratio i_q/i_d	
sfc_burn	real	cell specific fuel consumption \dot{w}/P_{req}	
mdot_burn	real	mass flow \dot{m}	
wdot_burn	real	fuel flow \dot{w}	
FG	real	gross installed jet thrust F_G	
Fmom	real	momentum thrust $F_{ m mom}$	
FN	real	net installed jet thrust F_N	
Daux	real	momentum drag of auxiliary air flow $D_{\rm aux}$	
		charger, solar cell	
etachrg	real	charger efficiency $\eta_{ m chrg}$	

Structure: FltChrg

```
charge group
                                                      power required P_{reqCG} = \dot{E}_{reqCG}
Pchrg
                                   real
                                                      total cell power required P_{reqtotal}; (Ncharge-NChrgInOp)P_{qcell}
                                   real
Pregtotal
                                                      power available P_{avCG}; fCharge(Ncharge-NChrgInOp)P_{av}
PavCG
                                   real
Cratio
                                                      P_{reaCG}/P_{avCG}
                                   real
                                                      power margin, P_{avCG} - P_{reaCG}
Cmargin
                                   real
                                                      exceed power available: P_{reaCG} > (1 + \epsilon)P_{avCG}
exceedC
                                   int
                                                      energy flow \dot{E} (negative if generated)
energyflow
                                   real
                                                      equivalent fuel flow \dot{w}_{
m equiv}, from energy flow
fuelflow equiv
                                   real
                                                  charge group, fuel cell
                                                      fuel burn
                                                           fuel flow \dot{w}
fuelflow burn
                                   real
                                                           energy flow \dot{E}
energyflow burn
                                   real
                                                           equivalent fuel flow \dot{w}_{\mathrm{equiv}}, from energy flow
fuelflow equiv burn
                                   real
                                                           specific fuel consumption sfc = \dot{w}_{\rm equiv}/P_{reg}
sfc
                                   real
FNCG
                                   real
                                                      net installed jet thrust F_N
                                                      momentum drag of auxiliary air flow D_{\mathrm{aux}}
DauxCG
                                   real
Fjet(3)
                                                      jet thrust force F_{\text{jet}}^F (F axes, about cg)
                                   real
                                                      jet thrust moment M_{\rm iet}^F (F axes, about cg)
Mjet(3)
                                   real
                                                      momentum drag force F_{\text{aux}}^F (F axes, about cg)
Faux(3)
                                   real
                                                      momentum drag moment M_{\text{aux}}^F (F axes, about cg)
Maux(3)
                                   real
                                                 loads
                                                      force F_{\text{chrg}}^F (F axes)
F(3)
                                   real
                                                      moment \bar{M}_{\mathrm{chrg}}^F (F axes)
M(3)
                                   real
                                                  aerodynamics
                                                      total velocity relative air v^F (F axes)
Vaero(3)
                                   real
                                                      velocity magnitude
Vmag
                                   real
                                                      dynamic pressure
                                   real
q
                                                      drag vector, -v/|v| in F axes
ed(3)
                                   real
                                                      total velocity relative air v^B (B axes)
VB(3)
                                   real
alpha
                                   real
                                                      angle of attack \alpha (deg)
CD
                                                      drag coefficient C_D
                                   real
D
                                   real
                                                      drag
```

Structure: FltChrg

Dcool	real	cooling drag
	loa	nd
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{\operatorname{aero}}^F$
Download	real	download, aero F_z (I axes)

Chapter 31

Variable	Type		Description	Default
		+	Solution Procedures	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Rotor	
		+	convergence control	
$niter_rotor(nrotormax)$	int	+	maximum number of iterations	40
$toler_rotor(nrotormax)$	real	+	tolerance (deg)	.01
$relax_rotor(nrotormax)$	real	+	relaxation factor	.5
$deriv_rotor(nrotormax)$	int	+	derivative (1 first order, 2 second order)	1
$maxinc_rotor(nrotormax)$	real	+	maximum increment amplitude (0. for no limit)	4.
$trace_rotor(nrotormax)$	int	+	trace iteration (0 for none)	0
		+	Trim	
		+	convergence control	
niter_trim	int	+	maximum number of iterations	40
toler_trim	real	+	tolerance (fraction reference)	.001
relax_trim	real	+	relaxation factor	.5
		+	perturbation identification of derivative matrix	
deriv_trim	int	+	perturbation (1 first order, 2 second order)	1
mpid_trim	int	+	number of iterations between identification (0 for never recalculated)	0
perturb_trim	real	+	variable perturbation amplitude (fraction reference)	.002
init_trim	int	+	reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim)	0
start_trim	int	+	initialize controls from solution of previous case (0 no)	0
trace_trim	int	+	trace iteration (0 for none, 2 for component controls)	0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case requirements not checked

		+	Maximum effort	
method_fly	int	+	method (1 secant, 2 false position)	1
method_flymax	int	+	maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit)	3
		+	convergence control	
niter_fly	int	+	maximum number of iterations	80
toler_fly	real	+	tolerance (fraction reference)	.002
relax_fly	real	+	relaxation factor	.5
perturb_fly	real	+	variable perturbation amplitude (fraction reference)	.05
maxderiv_fly	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_fly	real	+	maximum increment fraction (0. for no limit)	0.
rfit_fly	real	+	extent of curve fit (fraction maximum)	.98
nfit_fly	int	+	order of curve fit (2 quadradic, 3 cubic)	3
init_fly	int	+	reinitialize aircraft controls (0 no, 1 force retrim)	0
trace_fly	int	+	trace iteration (0 for none)	0
		+	Maximum gross weight (flight condition or mission takeoff)	
method_maxgw	int	+	method (1 secant, 2 false position)	1
		+	convergence control	
niter_maxgw	int	+	maximum number of iterations	40
toler_maxgw	real	+	tolerance (fraction reference)	.002
relax_maxgw	real	+	relaxation factor	.5
perturb_maxgw	real	+	variable perturbation amplitude (fraction reference)	.02
maxderiv_maxgw	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_maxgw	real	+	maximum increment fraction (0. for no limit)	0.
trace_maxgw	int	+	trace iteration (0 for none)	0
		+	Mission	
		+	convergence control	
niter_miss	int	+	maximum number of iterations	40
toler_miss	real	+	tolerance (fraction reference)	.01
relax_miss	real	+	relaxation factor (mission fuel)	1.
relax_range	real	+	relaxation factor (range credit)	1.
relax_gw	real	+	relaxation factor (max takeoff GW)	1.
trace_miss	int	+	trace iteration (0 for none)	0

		+	Size aircraft	
		+	convergence control	
niter_size	int	+	maximum number of iterations (performance loop)	40
niter_param	int	+	maximum number of iterations (parameter loop)	40
toler_size	real	+	tolerance (fraction reference)	.01
		+	relaxation factors	
relax_size	real	+	power or radius	1.
$relax_DGW$	real	+	gross weight	1.
relax_xmsn	real	+	drive system limit	1.
relax_wmto	real	+	WMTO and SDGW	1.
relax_tank	real	+	fuel tank capacity	1.
relax_thrust	real	+	rotor thrust	1.
		+	maximum increment fraction (0. for no limit)	
maxinc_size	real	+	power or radius	0.
$maxinc_DGW$	real	+	gross weight	0.
maxinc_xmsn	real	+	drive system limit	0.
maxinc_wmto	real	+	WMTO and SDGW	0.
maxinc_tank	real	+	fuel tank capacity	0.
maxinc_thrust	real	+	rotor thrust	0.
trace_size	int	+	trace iteration (0 for none, 2 for power)	0
			with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)	
		+	Case	
trace_case	int	+	trace operation (0 for none, 1 trace, 2 for all iterations)	1
trace_start	int	+	counter at start trace of iterations	0
trace_count	int		counter	

use trace_case=2 to identify point at which analysis diverges counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start then turn on trace selectively for mission/segment/condition

toler_check	real	+	Flight condition and mission segment check Preq, Qlimit, Wfuel (fraction reference)	.005
		+	Tolerance and perturbation scales	
KIND_Wscale	int	+	weight scale (1 design gross weight, 2 nominal C_T/σ)	1
KIND_Pscale	int	+	power scale (1 aircraft power, 2 derived from weight scale)	1
KIND_Lscale	int	+	length scale (1 rotor radius, 2 wing span, 3 fuselage length)	1
scaleRotor	int	+	rotor number	1
scaleWing	int	+	wing number	1
			Derived tolerance and perturbation scales	
Wscale	real		weight scale	
Pscale	real		power scale	
Lscale	real		length scale	
Ascale	real		angle scale	
Fscale	real		force scale	
Mscale	real		moment scale	
Vscale	real		horizontal velocity scale	
Rscale	real		vertical velocity scale	
Oscale	real		angular velocity scale	
Tscale	real		C_T/σ scale	
Cscale	real		C_L scale	
Hscale	real		altitude scale	
Gscale	real		acceleration scale	
Xscale	real		range scale	

		+	External solution procedure (0 for internal)	
SETextsol_size	int	+	size iteration	0
$SETextsol_miss$	int	+	mission iteration	0
$SETextsol_trim$	int	+	trim iteration	0
$SETextsol_rotor$	int	+	rotor iteration	0

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual the solution problem (such as size parameters, trim variables) must still be defined residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FltRotor with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal iteration

Structure: Cost

Variable	Type		Description	Default
		+	Cost	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Inflation	
MODEL_inf	int	+	model (1 only input factor, 2 CPI, 3 DoD)	3
year_inf	int	+	year for internal inflation factor	2018
inflation	real	+	inflation factor (per cent, relative 1994 or year_inf)	100.00
EXTRAP_inf	int	+	year beyond CPI/DoD table data (0 error, 1 extrapolate factor)	1
			inflation: F_i multiplies airframe purchase price and maintenance cost factor inflation always used, even with internal table CPI or DoD table: F_i = inflation ($F_{\text{table}}(\text{year_inf})/F_{\text{table}}(1994)$) input factor: F_i = inflation (relative 1994) cost factors and rates include technology and inflation, correspond to year_inf	
		+	Cost	
MODEL_cost	int	+	model (0 none)	1
FuelPrice(ntankmax)	real	+	fuel price G_{fuel} (\$/gallon or \$/liter)	5.0
EnergyPrice(ntankmax)	real	+	energy price G_{energy} (\$/MJ or \$/kWh, Units_energy)	0.04
EnergyCredit(ntankmax)	real	+	credit for generated energy (\$/MJ or \$/kWh, Units_energy)	0.
Npass	int	+	number of passengers $N_{ m pass}$	100

equivalent energy price for fuel burned: $MJ\cong(gal)/126.2$ (based on 42.8 MJ/kg and 6.5 lb/gal of JP-4/JP-8) EnergyCredit=0. if no credit for generated energy

Structure: Cost

		+	Direct Operating Cost	
BlockHours	real	+	available block hours per year B	3751.
NonFlightTime	real	+	non-flight time per trip T_{NF} (min)	12.
DepPeriod	real	+	depreciation period D (years)	15.
LoanPeriod	real	+	loan period L (years)	15.
IntRate	real	+	interest rate i (%)	8.
ResidValue	real	+	residual value V (%)	10.
Spares	real	+	spares per aircraft S (% purchase price)	25.
LoadFactor	real	+	passenger load factor (%)	75.
		+	Technology Factors	
TECH_cost_af	real	+	airframe χ_{AF}	0.87
TECH_cost_maint	real	+	maintenance $\chi_{ m maint}$	1.0
TECH_cost_comp	real	+	components $\chi_{ m comp}$	1.0
		+	CTM rotorcraft cost model	
		+	Purchase Price	
$MODEL_aircraft$	int	+	aircraft (1 rotorcraft, 2 turboprop airliner)	1
KIND_engine	int	+	engine (1 turbine, 2 piston)	1
fmotor	real	+	weighting factor for electric motor or generator	0.5
		+	airframe	
rComp	real	+	additional cost rate $r_{\rm comp}$ for composite construction (\$/lb or \$/kg)	0.
fWcomp_body	real	+	composite weight in body (fraction body weight)	0.
fWcomp_tail	real	+	composite weight in tail (fraction tail weight)	0.
fWcomp_pylon	real	+	composite weight in pylon (fraction pylon weight)	0.
fWcomp_wing	real	+	composite weight in wing (fraction wing weight)	0.
		+	systems (fixed useful load)	
rFCE	real	+	cost factor $r_{\rm FCE}$, flight control electronics (\$/lb or \$/kg)	10000.
rMEP	real	+	cost factor r_{MEP} , mission equipment package (\$/lb or \$/kg)	10000.
rBatt	real	+	cost factor r_{batt} , battery (\$/MJ or \$/kWh, Units_energy)	50.

cost factors and rates include technology and inflation, correspond to year_inf rComp negative for cost reduction

Structure: Cost

		+	Maintenance	
MODEL_maint	int	+	maintenance cost estimate (1 total only, 2 separate components)	2
rLabor	real	+	labor rate (\$ per hour)	160.
MMHperFH	real	+	maintenance man hours per flight hour	0.
Mlabor	real	+	MMH/FH factor $M_{ m labor}$	0.0017
Mparts	real	+	parts factor $M_{ m parts}$	34.
Mengine	real	+	engine overhaul factor $M_{ m engine}$	1.45
Mmajor	real	+	major periodic maintenance factor $M_{ m major}$	18.
Mbatt	real	+	battery maintenance factor $M_{\rm batt}$ (\$/MJ or \$/kWh per hour, Units_energy)	.10

labor rate includes inflation, corresponds to year_inf current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18 current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight empty (Mlabor)

		+	Direct Operating Cost	
$MODEL_doc$	int	+	crew+depreciation+insurance estimate (1 total only, 2 separate components)	2
Kcdi	real	+	crew+depreciation+insurance factor $K_{\rm cdi}$	1.0
Kcrew	real	+	crew cost factor $K_{ m crew}$	1.0
Kins	real	+	insurance cost K_{ins} (fraction aircraft cost)	.0056
KETS	real	+	emissions trading scheme cost $K_{\rm ETS}$ (\$/kg CO ₂)	.02
		+	Scott rotorcraft component cost model	
		+	production	
year_proc	int	+	year of procurement (0 same as year_inf, not used if <1955)	0
Nprod	int	+	aircraft production number (0 not used)	0
Nlot	int	+	number aircraft in this production lot (0 not used)	0

Structure: Cost

		+	systems	
drFCE	real	+	cost factor $\Delta r_{\rm FCE}$, additional flight control electronics (\$/lb or \$/kg)	0.
drMEP	real	+	cost factor Δr_{MEP} , additional mission equipment package (\$/lb or \$/kg)	0.
		+	component cost models	
f_sec	real	+	fuselage, fraction of secondary fuselage weight	0.35
KIND_fuse_boom	int	+	fuselage, includes tail boom (0 not)	0
KIND_fuse_dev	int	+	fuselage, early LRIP of new design (0 not)	0
MODEL_eng	int	+	engine, turboshaft (0 not)	1
Kmotor	real	+	electric motor/generator cost $c = KP^X$, factor	0.2
Xmotor	real	+	electric motor/generator cost $c = KP^X$, exponent	1.0
Pr_avg	real	+	engine, stage-averaged compressor pressure ratio	1.6
TBO_eng	real	+	engine, time between overhaul (hours)	2000.
KIND_eng_mar	int	+	engine, marinized (0 not)	0
KIND_eng_FADEC	int	+	engine, FADEC equipped (0 not)	1
KIND_xmsn_rg	int	+	transmission, engine group includes reduction gearbox (0 direct drive)	0
KIND_xmsn_mar	int	+	transmission, marinized (0 not)	0
KIND_av_dev	int	+	avionics, early LRIP of new package (0 not)	0
KIND_av_UAV	int	+	avionics, unmanned medium to long endurance aircraft (0 not)	0
f_env	real	+	environmental group, fraction prime equipment cost	0.03
f_arm_furn_LH	real	+	armament provisions, furnishings, and load and handling groups, fraction fuselage cost	0.12
$KIND_int_SE_prof$	int	+	integration and assembly, systems engineering, and profit (1 government, 2 commercial)	1
$f_{int}SE_{prof}$	real	+	integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost	0.25

Chapter 33

Structure: Emissions

Variable	Type		Description	Default
		+	Emissions	
title	c*100	+	title	
notes	c*1000	+	notes	
MODEL_emissions	int	+	Emissions model (0 none)	1
		+	Emissions Trading Scheme (ETS)	
Kfuel(ntankmax)	real	+	CO_2 emissions from fuel used, K_{fuel} (kg/kg)	3.75
Kenergy(ntankmax)	real	+	CO_2 emissions from energy used, K_{energy} (kg/MJ or kg/kWh, Units_energy)	0.14
		+	Average Temperature Response (ATR)	
Н	real	+	aircraft operating lifetime H (yr)	30.
U	real	+	aircraft utilization rate U (missions/yr)	350.
r	real	+	ATR discount rate r	0.03
tmax	real	+	ATR integration period t_{max} (yr)	500.
		+	emission index (kg/kg)	
EI_CO2(ntankmax)	real	+	carbon dioxide, EI_{CO_2}	3.16
EI_H2O(ntankmax)	real	+	water vapor, $EI_{ m H_2O}$	1.26
EI_SO4(ntankmax)	real	+	sulphates, $EI_{\mathrm{SO_4}}$	0.0002
$EI_{soot}(ntankmax)$	real	+	soot, $EI_{ m soot}$	0.00004
$EI_NOx(ntankmax)$	real	+	nitrogen oxides, EI_{NO_x}	0.01
$MODEL_{NOx}(ntankmax)$	int	+	turboshaft engine NOx emission model (0 input EI_{NO_x} , 1 DLR, 2 Swiss)	1
KIND_NOx(ntankmax)	int	+	model parameters (0 input, 1 low emissions, 2 high emissions)	1
KEI0(ntankmax)	real	+	DLR model, K_{EI0}	0.0036739
KEI1(ntankmax)	real	+	DLR model, K_{EI1}	0.00748
KEIs(ntankmax)	real	+	Swiss model, K_{EIs}	0.004
fAIC	real	+	aviation induced cloudiness factor, $f_{\rm AIC}$	1.0
		+	energy emission factor (kg/MJ or kg/kWh, Units_energy)	
K_CO2(ntankmax)	real	+	carbon dioxide, K_{CO_2}	0.14
K_H2O(ntankmax)	real	+	water vapor, $K_{\rm H_2O}$	0.

Structure: Emissions	137
----------------------	-----

K_SO4(ntankmax)	real	+	sulphates, K_{SO_4}	0.
$K_{soot}(ntankmax)$	real	+	soot, $K_{ m soot}$	0.
$K_NOx(ntankmax)$	real	+	nitrogen oxides, K_{NO_x}	0.
SET credit	int	+	Emissions credit for energy generated (0 for none)	1

EI default values are for turboshaft engine

emission index (EI and K_{fuel}) only used for tanks that store and use fuel as weight (SET_burn=1) energy emission factor (K and $K_{\rm energy}$) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: $r \ge 100000$ evaluated as $r = \infty$

ATR factors

ZCO2 CO_2 real NO_x (CH₄ and O_{3L}) ZNOx real Zs short life real turboshaft NO_x model power factor, $P_q = f_P P_{to}$ fPower(11,nengmax) real

wdot(11,nengmax) fuel flow, \dot{w} real

Chapter 34

	- Aircraft	
*100	- title	
*1000	- notes	
*16	- Configuration	'helicopter'
nt	configuration (RCconfig_rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, airplane)	
nt	number of main rotors	
	config: identifies rotorcraft configuration	
	config = 'rotorcraft', 'helicopter', 'tandem', 'coaxial', 'tiltrotor', 'compound', 'multicopter', 'airplane'	
	· · · · · · · · · · · · · · · · · · ·	4
		4
nt		1
at	± · · · · · · · · · · · · · · · · · · ·	

	·	
	· · · · · · · · · · · · · · · · · · ·	
nt	<u>*</u>	
		0
		0
		0
**ממ מממ מממ	*1000 +1 *16 +1 at *16 +1 *16 +1 at	#1000 + notes #16 + Configuration configuration (RCconfig_rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, airplane) number of main rotors config: identifies rotorcraft configuration config = 'rotorcraft', 'helicopter', 'tandem', 'coaxial', 'tiltrotor', 'compound', 'multicopter', 'airplane' + Aircraft Controls number of aircraft controls (maximum ncontmax) labels of aircraft controls number of control states (maximum nstatemax) pilot's controls (control number) collective stick lateral cyclic stick longitudinal stick pedal tilt tilt control values (function speed) number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) collective stick lateral cyclic stick lateral cyclic stick lateral cyclic stick

nVpedal	int	+	pedal
nVtilt	int	+	tilt
cont(nvelmax,ncontmax)	real	+	values
coll(nvelmax)	real	+	collective stick c_{AC0}
latcyc(nvelmax)	real	+	lateral cyclic stick c_{ACc}
Ingcyc(nvelmax)	real	+	longitudinal cyclic stick c_{ACs}
pedal(nvelmax)	real	+	$\operatorname{pedal} c_{ACp}$
tilt(nvelmax)	real	+	tilt $lpha_{ m tilt}$
Vcont(nvelmax,ncontmax)	real	+	speeds (CAS or TAS)
Vcoll(nvelmax)	real	+	collective stick
Vlatcyc(nvelmax)	real	+	lateral cyclic stick
VIngcyc(nvelmax)	real	+	longitudinal cyclic stick
Vpedal(nvelmax)	real	+	pedal
Vtilt(nvelmax)	real	+	tilt

```
control system: set of aircraft controls c_{AC} defined
```

aircraft controls connected to individual controls of each component, $c = Tc_{AC} + c_0$

for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule

 c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

use of component control c_0 can be suppressed for flight state using SET_comp_control aircraft controls: identified by IDENT_control

typical aircraft controls are pilot's controls; default IDENT_control='coll','latcyc','lngcyc','pedal','tilt' available for trim (flight state specifies trim option)

initial values specified if control is trim variable; otherwise fixed for flight state each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) coll/latcyc/lngcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control flight state input can override

0

by connecting aircraft control to component control, flight state can specify component control value sign conventions for pilot's controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right rotor controls are positive Fourier series, with azimuth measured in direction of rotation

```
Aircraft Motion
                                                  aircraft pitch angle \theta_F
nVpitch
                                                       number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                int
                                         +
pitch(nvelmax)
                                real
                                         +
Vpitch(nvelmax)
                                                       speeds (CAS or TAS)
                                real
                                         +
                                                  aircraft roll angle \phi_F
nVroll
                                int
                                                       number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                                       values
roll(nvelmax)
                                real
                                         +
                                                       speeds (CAS or TAS)
Vroll(nvelmax)
                                real
                                         +
                                                    aircraft motion
                                                         available for trim (depending on flight state)
                                                         each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
                                                         flight state input can override; initial value if trim variable
                                              Conversion
Vconv hover
                                                  maximum speed for hover and helicopter mode (CAS or TAS)
                                real
                                                  minimum speed for cruise (CAS or TAS)
Vconv cruise
                                real
                                         +
                                                  control state
                                                      hover and helicopter mode (V \leq V_{\text{conv-hover}})
kcont hover
                                                                                                                                                                                  1
                                int
                                                      conversion mode (V_{\text{conv-hover}} < V < V_{\text{conv-cruise}})
kcont conv
                                int
                                                                                                                                                                                  1
                                                      cruise mode (V \ge V_{\text{conv-cruise}})
kcont cruise
                                int
                                         +
                                                                                                                                                                                  1
                                                  drive system state (each propulsion group)
                                         +
                                                      hover and helicopter mode (V \leq V_{\text{conv-hover}})
kgear hover(npropmax)
                                int
                                         +
                                                                                                                                                                                  1
                                                      conversion mode (V_{\text{conv-hover}} < V < V_{\text{conv-cruise}})
kgear conv(npropmax)
                                         +
                                                                                                                                                                                  1
                                int
kgear cruise(npropmax)
                                                       cruise mode (V > V_{\text{conv-cruise}})
                                                                                                                                                                                  1
                                int
                                         +
```

conversion control: use depends on STATE_control, SET_tilt, SET_Vtip of FltState hover and helicopter mode ($V \leq V_{\rm conv-hover}$): use tilt=90, Vtip_hover, kgear_hover, kcont_hover cruise mode ($V \geq V_{\rm conv-cruise}$): use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise conversion mode: tilt linear with V, use Vtip_hover, kgear_conv, kcont_conv nacelle tilt angle: 0 for cruise, 90 deg for helicopter mode flight

		+	Never-exceed speed	
SET_VNE	c*32	+	model	'none'
iSET_VNE	int		limits defined (0 for none)	
$iSET_VNE_table$	int		table (3 for 3D)	
$iSET_VNE_stall$	int		stall	
iSET_VNE_comp	int		compressibility	
iSET_VNE_Mat	int		Mach number	
		+	table	
$KIND_VNE_table$	int	+	velocity (0 TAS, 1 CAS, 2 IAS)	0
nwt_VNE	int	+	number of weights (maximum nvnemax)	
nalt_VNE	int	+	number of altitudes (maximum nvnemax)	
$ntemp_VNE$	int	+	number of temperatures (maximum nvnemax)	
$rwt_VNE(nvnemax)$	real	+	weight ratio $r_W = W_G/W_D$ (fraction DGW)	
alt_VNE(nvnemax,nvnemax)	real	+	density altitude $h_d(nalt,nwt)$	
$temp_VNE(nvnemax)$	real	+	temperature τ (deg C)	
VNE(nvnemax,nvnemax)	real	+	never-exceed speed $V_{NEt}(nalt,nwt)$ (knots)	
VNE3(nvnemax,nvnemax,nvne	max)			
	real	+	never-exceed speed $V_{NEt}(nalt,nwt,ntemp)$ (knots)	
$KIND_VNE_stall(nrotormax)$	int	+	stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation)	3
C_VNE(5)	real	+	compressibility limit constants C_n	
$Mat_VNE(nrotormax)$	real	+	advancing tip Mach number M_{at} , each rotor (0. for no limit)	1.
		+	limits (0. not used)	
VNEmaxTAS	real	+	TAS maximum (knots)	0.
VNEmaxIAS	real	+	IAS maximum (knots)	0.
VNEminTAS	real	+	TAS minimum (knots)	0.
VNEminIAS	real	+	IAS minimum (knots)	0.

```
never-exceed speed: calculate V_{\rm NE} in knots TAS; depends on density altitude h_d, gross weight W_G (in terms of weight ratio r_W = W_G/W_D, fraction DGW), and temperature \tau SET_VNE = 'none', or one to four of ('table' or 'table3', 'stall', 'comp', 'Mat') table limit (2D): V_{\rm NE}(h_d) for set of weights r_W (alt_VNE(nalt,nwt)) table limit (3D): V_{\rm NE}(h_d,r_W,\tau) (alt_VNE not depend on weight) stall limit: V_{\rm NE} from rotor thrust capability (C_T/\sigma vs \mu) compressibility limit: V_{\rm NE} = C_1 - C_2 h_d + C_3 \tau - C_4 V_{\rm tip} - C_5 r_W (knots IAS; temperature in deg C) Mach number limit: V_{\rm NE} from advancing tip Mach number M_{at}
```

```
+ Indicated airspeed correction
```

nIAS	int	+	number of values (maximum niasmax, 0 no correction)	0
IAS(niasmax)	real	+	indicated airspeed (knots)	
CAS(niasmax)	real	+	calibrated airspeed (knots)	
dIAS(niasmax)	real		CAS-IAS	
SET_Vschedule	int	+	Velocity schedules (1 CAS, 2 TAS, 3 IAS)	1

indicated airspeed correction: IAS(1)=CAS(1)=0., both IAS and CAS unique and sequential velocity schedules: all described as function CAS or TAS or IAS conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings

		+	Trim states	
nstate_trim	int	+	number of trim states (maximum ntrimstatemax)	1
$IDENT_trim(ntrimstatemax)$	c*12	+	label of trim state	
mtrim(ntrimstatemax)	int	+	number of trim variables (maximum mtrimmax)	0
trim_quant(mtrimmax,ntrimsta	itemax)			
	c*16	+	trim quantity name	
trim_var(mtrimmax,ntrimstate	max)			
	c*16	+	trim variable name	
trim_target(mtrimmax,ntrimsta	atemax)			
	int	+	target source (1 FltState, 2 component)	1
			Derived trim states	
itrim_quant(mtrimmax,ntrimst	atemax)			
	int		trim quantity name (TRIM_QUANT_xxx)	
itrim_quantn(mtrimmax,ntrims	statemax)			
	int		trim quantity structure number	
itrim_quantk(mtrimmax,ntrims	tatemax)			
	int		trim quantity kind (0 other, 1 rotor, 2 rotor lift, 3 rotor prop, 4 wing, 5 wing lift)	
itrim_var(mtrimmax,ntrimstate	emax)			
	int		trim variable name (TRIM_VAR_xxx, or control number)	
itrim_varn(mtrimmax,ntrimstat	temax)			
	int		trim variable structure number	

trim state: one or more set of quantities and variables for trim iteration FltState identifies trim state (STATE_trim match IDENT_trim), trim variable:

description	trim_var	
aircraft control aircraft orientation aircraft velocity aircraft velocity aircraft angular rate propulsion group tip speed propulsion group engine speed	match IDENT_control 'pitch', 'roll' 'speed', 'ROC' 'side' 'pullup', 'turn' 'Vtip n' 'Nspec n'	body axes relative inertial axes horizontal, vertical flight speed sideslip angle Euler angle rates

trim quantity:

description	trim_quant	target
aircraft total force	'force x', 'force y', 'force z'	zero
aircraft total moment	'moment x', 'moment y', 'moment z'	zero
aircraft load factor	'nx', 'ny', 'nz'	FltState%trim_target
propulsion group power	'power n'	FltState%trim_target
power margin	'P margin n'	FltState%trim_target
torque margin	'Q margin n'	FltState%trim_target
engine group power	'power EG n'	FltState%trim_target
power margin	'E margin n'	FltState%trim_target
momentum margin	'FE margin n'	FltState%trim_target
jet group thrust	'jet n'	FltState%trim_target
jet thrust margin	'J margin n'	FltState%trim_target
momentum margin	'FJ margin n'	FltState%trim_target
charge group power	'charge n'	FltState%trim_target
charge power margin	'C margin n'	FltState%trim_target
fuel tank energy flow	'tank n'	FltState%trim_target
battery power margin	'B margin n'	FltState%trim_target
rotor lift	'lift rotor n', 'flift rotor n'	${\sf FltState\%trim_target, Rotor\%Klift}$
rotor lift	'CLs rotor n', 'vert rotor n'	${\sf FltState\%trim_target, Rotor\%Klift}$
rotor propulsive force	'prop rotor n', 'fprop rotor n'	$FltState\%trim_target, Rotor\%Kprop$
rotor propulsive force	'CXs rotor n', ' X/q rotor n'	$FltState\%trim_target, Rotor\%Kprop$
rotor thrust	'CTs rotor n'	${\sf FltState\%trim_target, Rotor\%Klift}$
rotor thrust margin	'T margin n'	$FltState\%trim_target$
rotor thrust margin	'T margin tran n', 'T margin eqn n'	$FltState\%trim_target$
rotor shaft power	'power rotor n'	FltState%trim_target
rotor flapping	'betac n', 'Ingflap n'	FltState%trim_target
rotor flapping	'betas n', 'latflap n'	FltState%trim_target
rotor hub moment	'hub Mx n', 'roll n'	$FltState\%trim_target$
rotor hub moment	'hub My n', 'pitch n'	FltState%trim_target
rotor torque	'hub Mz n', 'torque n'	FltState%trim_target
wing lift	'lift wing n', 'flift wing n'	${\sf FltState\%trim_target,Wing\%Klift}$
wing lift coefficient	'CL wing n'	$FltState\%trim_target, Wing\%Klift$
wing lift margin	'L margin n'	FltState%trim_target
tail lift	'lift tail n'	FltState%trim_target

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used if trailing "n" is absent, use first component (n=1)

trim_quant='flift rotor n' or trim_quant='flift wing n': target is fraction total aircraft lift (GW*nAC(3)) trim_quant='fprop rotor n': target is fraction total aircraft drag (qAC*DoQ) trim_quant='T margin n' uses Rotor%CTs_steady, trim_quant='T margin tran n' uses Rotor%CTs_tran trim_quant='T margin eqn n' uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

trim_var='Vtip' or 'Nspec': requires FltAircraft%SET_Vtip='input'

	+	Geometry	
INPUT_geom	int +	input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL)	2
	+	scaled geometry	
	+	reference length	
KIND_scale	int +	kind (1 rotor radius, 2 wing span, 3 fuselage length)	1
kScale	int +	identification (component number)	1
	+	reference point	
KIND_Ref	int +	kind (0 input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity)	0
kRef	int +	identification (component number)	1
SL_Ref	real +	stationline	
BL_Ref	real +	buttline	
WL_Ref	real +	waterline	
		calculated reference point (input or component)	
SLref	real	stationline	
BLref	real	buttline	
WLref	real	waterline	
loc_cg	Location +	baseline center of gravity location	

```
Geometry: Location for each component fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
```

SET atmos

temp

dtemp

density

csound

viscosity

altitude

iSET atmos

density to

sigma to

theta to

delta to

```
XoL + aft, YoL + right, ZoL + up; from reference point
                             option to fix some geometry (FIX geom in Location override INPUT geom)
                            option to specify reference length (KIND scale in Location override this global KIND scale)
                        reference point: KIND Ref, kRef; input dimensional XX Ref, or position of identified component
                             component reference must be fixed
                        certain Locations can be calculated from other parameters (configuration specific)
                   center of gravity: baseline is for nacelle angle = 90
                        flight state has calculated or input actual cg location
             Takeoff flight condition
                  atmosphere specification
c*12
                                                                                                                                             'std'
                      temperature \tau
real
         +
                      temperature increment \Delta T
real
         +
                                                                                                                                               0.
                      density \rho
real
         +
                      speed of sound c_s
real
         +
                      viscosity \mu
real
                  altitude
real
         +
             Derived takeoff flight condition
                  atmosphere (SET atmos xxx)
int
real
                  density \rho
                  density ratio \rho/\rho_0
real
                  temperature ratio T/T_0
real
                  pressure ratio p/p_0
real
                   takeoff condition (density) used for C_T/\sigma in rotor sizing
                   SET atmos, atmosphere specification:
                        'std' = standard day at specified altitude (use altitude)
                        'dtemp' = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
                        'temp' = standard day at specified altitude, and specified temperature (use altitude, temp)
                        'dens' = input density and temperature (use density, temp)
                        'input' = input density, speed of sound, and viscosity (use density, csound, viscosity)
                        'notair' = input, not air on earth (use density, csound, viscosity)
                        see FltState%SET atmos for other options (polar, tropical, and hot days)
```

scaled geometry input (INPUT geom = 2): divided by reference length (KIND scale, kScale)

		Size
diskload	real	aircraft disk loading (lb/ft ² or N/m ²)
Aref	real	reference rotor area
wingload	real	aircraft wing loading (lb/ft ² or N/m ²)
Sref	real	reference wing area
Pav	real	total takeoff power available
powerload	real	aircraft power loading
Tav	real	total takeoff thrust available
thrustload	real	aircraft weight-to-thrust
		aircraft disk loading = $W_D/A_{\rm ref}$, $A_{\rm ref} = \sum f_A A$; rotor disk loading = $f_W W_D/A$
		aircraft wing loading = $W_D/S_{\rm ref}$, $S_{\rm ref} = \sum S$; individual wing loading = $f_W W_D/S$
		aircraft power loading = W_D/P_{av} , $P_{av} = \sum N_{\rm eng} P_{\rm eng}$ (each engine group at takeoff rating)
		aircraft thrust-to-weight = W_D/T_{av} , $T_{av} = \sum N_{\rm jet}T_{\rm jet}$ (each jet group at takeoff rating)
		Configuration
nWingExt	int	wing extensions (0 for none)
nWingExtKit	int	wing extension kits (0 for none)
nWingKit	int	wing kits (0 for none)
nWotherkit	int	other kit (0 for none)
SET_fold	int	folding (0 none, 1 fold weights, 2 with kit) (from Systems)
		Neutral point
SLna	real	stationline SL_{na}
		Operating size (hover; controls = 0 except tilt = 90)
length_op	real	length
width_op	real	width
area_op	real	area
		Fuel tank system
burnweight	int	first fuel tank that burns weight (0 none)
eref	real	reference specific energy (MJ/kg)
		Cost
CAC	real	aircraft C_{AC}
CAC_nokit	real	aircraft C_{AC} , folding kit not installed

Size

Cmaint real maintenance $C_{
m maint}$

Cmaint_nokit real maintenance C_{maint} , folding kit not installed

factor inf real inflation factor F_i (year inf relative 1994, including factor inflation)

factor_inf2011 real inflation factor F_i (2011 relative 1994, CPI) factor inf2018 real inflation factor F_i (2018 relative 1994)

 Ccomp
 real
 composite cost increment C_{comp}

 CMEP
 real
 mission equipment package cost C_{MEP}

CFCE real flight control electronics cost $C_{
m FCE}$

Cbatt real battery cost C_{batt}

 $\begin{array}{cccc} \text{Wcomp} & \text{real} & \text{composite weight increment W_{comp}} \\ \text{WMEP} & \text{real} & \text{mission equipment package weight W_{MEP}} \\ \text{WFCE} & \text{real} & \text{flight control electronics weight W_{FCE}} \\ \end{array}$

Wbatt real battery weight W_{batt} Ebatt real battery capacity E_{batt}

WAFcost real airframe weight W_{AF}

WEKcost real $W_{EK} = \text{weight empty} + \text{airframe kits} = W_{AF} + W_{\text{MEP}} + W_{\text{FCE}} + W_{\text{batt}}$

 $\begin{array}{ccccc} {\sf Pcost} & & {\sf real} & {\sf rated \ takeoff \ power} \ P \\ {\sf Clabor} & & {\sf real} & & {\sf labor \ cost} \ C_{\sf labor} \\ {\sf Cparts} & & {\sf real} & & {\sf parts \ cost} \ C_{\sf parts} \\ \end{array}$

Cengine real engine overhaul cost $C_{
m engine}$

Cmajorrealmajor periodic maintenance $\cos C_{\mathrm{major}}$ Cbattmaintrealbattery maintenance $\cos C_{\mathrm{batt-maint}}$ MMHperFHrealmaintenance man hours per flight hourCACcomprealaircraft C_{AC} from components

rACcomp real total aircraft C_{AC}/W_{EK} (\$/lb or \$/kg) rAFcomp real airframe flyaway C_{FA}/W_{AF} (\$/lb or \$/kg) rPQcomp real prime equipment c_{pq}/W_{AF} (\$/lb or \$/kg)

dCMEP real mission equipment package cost increment ΔC_{MEP} dCFCE real flight control electronics cost increment ΔC_{FCE}

c_FA real aircraft flyaway

c_pq real prime equipment (including inflation and technology factor)

c_int_SE	real		integration/assemmbly and systems engineering	
c_profit	real		profit	
c_wing	real		wing	
c_rotor	real		rotor	
c_fuselage	real		fuselage	
c_emp_nac_LG	real		empennage, nacelle, and landing gear	
c_engine	real		engine	
c_prop	real		propeller	
c_xmsn	real		transmission	
$c_FC_inst_hyd$	real		flight controls, instruments, and hydraulic systems	
c_aux_fuelsys	real		auxiliary power system, fuel system, exhaust, propulsion controls and accessories	
c_elect	real		electrical	
c_avionics	real		avionics	
c_arm_furn_load	real		armament provisions, furnishings, and load and handling	
c_env	real		environmental	
		+	Weight	
DGW	real	+	design gross weight W_D	
Wfuel DGW	real	+	mission fuel W_{fuel} corresponding to DGW	
 Wpay_DGW	real	+	payload $W_{\rm pay}$ corresponding to DGW	
WE	real	+	weight empty W_E	
dWE	real	+	weight increment	
fWE	real	+	weight factor	
		+	structural design gross weight	
SDGW	real	+	structural design gross weight W_{SD}	
dSDGW	real	+	weight increment	0.
fSDGW	real	+	weight factor	1.
fFuelSDGW	real	+	fraction main fuel tanks filled at SDGW	1.
		+	maximum takeoff weight	
WMTO	real	+	maximum takeoff weight W_{MTO}	
dWMTO	real	+	weight increment	0.
fWMTO	real	+	weight factor	1.
nz_ult	real	+	design ultimate flight load factor n_{zult} at SDGW	6.0

```
input or calculated: design gross weight W_D (FIX DGW), structural design gross weight W_{SD} (SET SDGW), maximum
takeoff weight W_{MTO} (SET_WMTO), weight empty W_E (FIX_WE)
    if calculated, then input parameter is initial value
DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading
    to obtain aircraft moments of inertia from radii of gyration
    for tolerance and perturbation scales of the solution procedures
    optionally to define structural design gross weight and maximum takeoff weight
    optionally to specify the gross weight for missions and flight conditions
Wfuel DGW and Wpay DGW usually calculated (identified as input so inherited by next case)
FIX WE: fixed or scaled weight empty obtained by adjusting contingency weight
    scaled with design gross weight: W_E=dWE+fWE*W_D
SET SDGW, structural design gross weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{SD}=dSDGW+fSDGW*W_{D}
    'f(WMTO)' = based on WMTO; W_{SD}=dSDGW+fSDGW*W_{MTO}
    'maxfuel' = based on fuel state; W_{SD}=dSDGW+fSDGW*W_G, W_G = W_D-Wfuel DGW+fFuelSDGW*W_{\mathrm{fuel-cap}}
     'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN sdgw)
SET WMTO, maximum takeoff weight:
     'input' = input
    'f(DGW)' = based on DGW; W_{MTO}=dWMTO+fWMTO*W_D
    'f(SDGW)' = based on SDGW; W_{MTO}=dWMTO+fWMTO*W_{SD}
    'maxfuel' = based on maximum fuel; W_{MTO}=dWMTO+fWMTO*W_G, W_G = W_D-Wfuel_DGW+W_{\mathrm{fuel-cap}}
     'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN wmto)
SDGW used for weights (fuselage, rotor, wing)
WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group)
nz ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)
```

```
Weight
Weight
                                                   aircraft weight statement (operating weight, without payload and usable fuel)
                                 Weight
WO
                                                       operating weight W_O
                                 real
                                                       growth factor = W_D/(W_D - W_{\text{scaled}} - W_{\text{fuel}})
growth factor
                                 real
                                                   moments of inertia (based on design gross weight, scaled with reference length)
                                          +
                                                        roll radius of gyration k_x/L
kx
                                 real
                                                       pitch radius of gyration k_u/L
ky
                                          +
                                 real
                                                       yaw radius of gyration k_z/L
kz
                                 real
                                          +
                                               Derived moments of inertia (corresponding to aircraft weight statement)
                                                   I_{xx}
lxx
                                 real
lyy
                                 real
                                                   I_{yy}
lzz
                                 real
                                                   I_{zz}
lxy
                                 real
                                                   I_{xy}
                                                   I_{yz}
lyz
                                 real
lxz
                                 real
                                                   I_{xz}
```

```
weight empty = structure + propulsion + systems and equipment + vibration + contingency operating weight = weight empty + fixed useful load weight statement defines fixed useful load and operating weight for design configuration so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments flight state can also increment crew weight or equipment weight flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight gross weight = weight empty + useful load = operating weight + payload + usable fuel useful load = fixed useful load + payload + usable fuel
```

		+	Drag	
FIX_drag	int	+	total aircraft D/q (0 calculated; 1 fixed, input D/q ; 2 scaled, input C_D ; 3 scaled, from k)	0
DoQ	real	+	area D/q	0.
CD	real	+	coefficient C_D (based on rotor area, $D/q = A_{ref}C_D$)	0.008
kDrag	real	+	$k = (D/q)/(W_{MTO}/1000)^{2/3}$ (Units_Dscale)	2.5
FIX_DL	int	+	total aircraft download (0 calculated; 1 fixed, input D/q_V ; 2 scaled, from k_{DL})	0
DoQV	real	+	area $(D/q)_V$	0.
kDL	real	+	$k_{DL} = (D/q)_V/A_{ m ref}$	0.05

fixed drag or download: obtained by adjusting contingency D/q or $(D/q)_V$ FIX_drag: minimum drag, excludes drag due to lift and angle of attack use only one of input DoQ, CD, kDrag (others calculated) $A_{\rm ref} = {\rm reference\ rotor\ area;\ units\ of\ kDrag\ are\ ft^2/klb^{2/3}\ or\ m^2/Mg^{2/3}}$ CD = 0.02 for old helicopter, 0.008 for current low drag helicopters kDrag = 9 for old helicopter, 2.5 for current low drag helicopters, 1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units) FIX_DL, download: $A_{\rm ref} = {\rm reference\ rotor\ area,\ kDL} \sim DL/T$ use only one of DoQV, kDL (other calculated)

+ Aerodynamics

KIND_alpha int + angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight)

angle of attack and sideslip angle: reversed definition best for sideward flight

2

Derived aircraft drag

real	sum component cruise drag, area $(D/q)_{\text{comp}}$ (without contingency)
real	sum component helicopter drag, area $(D/q)_{\text{comp}}$ (without contingency)
real	sum component vertical drag, area $(D/q)_{comp}$ (without contingency)
real	total cruise drag, area $(D/q)_{AC}$
real	total helicopter drag, area $(D/q)_{AC}$
real	total vertical drag, area $(D/q)_{AC}$
real	total cruise $(D/q)_{AC}/A_{\rm ref}$
real	total helicopter $(D/q)_{AC}/A_{\mathrm{ref}}$
real	total cruise $(D/q)/(W_{MTO}/1000)^{2/3}$
real	total helicopter $(D/q)/(W_{MTO}/1000)^{2/3}$
real	total vertical $(D/q)_V/A_{ m ref}$
real	total cruise wetted drag, area $(D/q)_{\mathrm{wet}}$
real	total wetted area S_{wet}
real	total cruise $(D/q)_{\rm wet}/S_{\rm wet}$
	real real real real real real real real

		+	Number of Components	
nRotor	int	+	rotors (maximum nrotormax)	2
nWing	int	+	wings (maximum nwingmax)	0
nTail	int	+	tails (maximum ntailmax)	1
nTank	int	+	fuel tank systems (maximum ntankmax)	1
nPropulsion	int	+	propulsion groups (maximum npropmax)	1
nEngineGroup	int	+	engine groups (maximum nengmax)	1
nJetGroup	int	+	jet groups (maximum njetmax)	0
nChargeGroup	int	+	charge groups (maximum nchrgmax)	0
nEngineModel	int	+	engine models (maximum nengmax)	1
${\sf nEngineParamN}$	int	+	engine model parameters (maximum nengpmax)	0
nEngineTable	int	+	engine tables (maximum nengmax)	0
nRecipModel	int	+	reciprocating engine models (maximum nengmax)	0
nCompressorModel	int	+	compressor models (maximum nengmax)	0
${\sf nMotorModel}$	int	+	motor models (maximum nengmax)	0
nJetModel	int	+	jet models (maximum njetmax)	0
nFuelCellModel	int	+	fuel cell models (maximum nchrgmax)	0
nSolarCellModel	int	+	solar cell models (maximum nchrgmax)	0
${\sf nBatteryModel}$	int	+	battery models (maximum ntankmax)	0

propulsion group is set of components and engine groups, connected by drive system engine model or engine table or reciprocating engine or motor model describes particular engine, used in one or more engine groups jet model describes particular jet, used in one or more jet groups fuel cell model or solar cell model describes particular charger, used in one or more charge groups battery model describes particular battery, used in one or more fuel tanks

Aircraft Input for case

inAircraft	int	Aircraft
inSystems	int	Systems
inFuselage	int	Fuselage
inLandingGear	int	LandingGear

inRotor(nrotormax)	int	Rotor
inWing(nwingmax)	int	Wing
inTail(ntailmax)	int	Tail
inFuelTank(ntankmax)	int	FuelTank
inPropulsion(npropmax)	int	Propulsion
inEngineGroup(nengmax)	int	EngineGroup
inJetGroup(njetmax)	int	JetGroup
inChargeGroup(nchrgmax)	int	ChargeGroup
inEngineModel(nengmax)	int	EngineModel
inEngineParamN(nengpmax)	int	EngineParamN
inEngineTable(nengmax)	int	EngineTable
inRecipModel(nengmax)	int	RecipModel
<pre>inCompressorModel(nengmax)</pre>	int	CompressorModel
inMotorModel(nengmax)	int	MotorModel
inJetModel(njetmax)	int	JetModel
inFuelCellModel(nchrgmax)	int	FuelCellModel
inSolarCellModel(nchrgmax)	int	SolarCellModel
inBatteryModel(ntankmax)	int	BatteryModel
inCost	int	Cost
inEmissions	int	Emissions
	Des	sign specification (from Size)
iSIZE_perf(npropmax)	int	performance (SIZE_perf_engine, rotor, none)
iSIZE_engine(nengmax)	int	performance (SIZE_engine_engn, none)
iSIZE_jet(njetmax)	int	performance (SIZE_jet_jet, none)
iSIZE_charge(nchrgmax)	int	performance (SIZE_charge_chrg, none)
iSIZE_rotor(nrotormax)	int	rotor sized (SIZE_rotor_radius, thrust, none)
<pre>iSET_rotor_radius(nrotormax)</pre>		
	int	rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius)
FIX_rotor_CWs(nrotormax)	int	rotor C_W/σ (1 fixed, 0 not)
FIX_rotor_Vtip(nrotormax)	int	rotor $V_{\rm tip}$ (1 fixed, 0 not)
FIX_rotor_sigma(nrotormax)	int	rotor σ (1 fixed, 0 not)
iSET_wing_area(nwingmax)	int	wing area (SET_wing_area, WL, not_area)
iSET_wing_span(nwingmax)	int	wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
FIX_wing_chord(nwingmax)	int	wing chord (1 fixed, 0 not)

FIX : AD(:)	•4	
FIX_wing_AR(nwingmax)	int	wing aspect ratio (1 fixed, 0 not)
FIX_DGW	int	design gross weight (0 calculated, 1 fixed)
FIX_WE	int	weight empty (0 calculated, 1 fixed, 2 scaled)
iSET_tank(ntankmax)	int	fuel tank (SET_tank_input, miss, fmiss, used)
$iSET_tank_power(ntankmax)$	int	fuel tank (SET_tank_nopower, power)
iSET_SDGW	int	$SDGW\ (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)$
iSET_WMTO	int	WMTO (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)
$iSET_limit_ds(npropmax)$	int	drive system torque limit (SET_limit_input, ratio, Pav, Preq)
kind_iter_size	int	kind iteration, performance (0 none, 1 size engine or radius or jet group or charge group)
kind_iter_param	int	kind iteration, parameters (0 none, 1 calculate parameters)
$nSIZE_perf(npropmax)$	int	conditions and missions for size engine or rotor
nSIZE_engine(nengmax)	int	conditions and missions for size engine group
$nSIZE_jet(njetmax)$	int	conditions and missions for size jet group
$nSIZE_charge(nchrgmax)$	int	conditions and missions for size charge group
nDESIGN_GW	int	design conditions and missions for DGW
$nDESIGN_xmsn(npropmax)$	int	design conditions and missions for transmission
$nDESIGN_wmto$	int	design conditions for WMTO
nDESIGN_tank	int	design missions for fuel tank
nDESIGN_thrust	int	design conditions and missions for antitorque or aux thrust rotor
	De	esign data (from sizing)
DGW_source	int	design gross weight source (1 condition, 2 mission)
DGW_kState	int	design gross weight source number
DGW_kSeg	int	design gross weight segment number
nDesignState	int	number design of conditions and missions (maximum ndesignmax)
XAircraft(ndesignmax)	XAircraft	design data
• = •		-

Chapter 35

Variable	Type	Description	Default
		Design Data	
source	int	source (1 condition, 2 mission)	
kState	int	source number	
kSeg	int	segment number	
title	c*100	title	
kind	c*12	kind (condition or mission)	
number	c*12	number (condition or mission/segment)	
label	c*12	label	
setgw	c*12	Set Gross Weight	
setul	c*12	Set Useful Load	
design	c*12	design	
Nauxtank(nauxtankmax	x,ntankmax)		
	int	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	
Ncrew	int	number of crew	
Npass	int	number of passengers	
Ncrew_seat	int	number of crew seats	
Npass_seat	int	number of passenger seats	
kits	c*12	kits	
		Weights (from FltAircraft)	
GW	real	gross weight W_G ; at segment start	
Wpayload	real	payload weight $W_{ m pay}$	
Wpay_pass	real	passengers $W_{ m pass}$	
Wpay_cargo	real	cargo $W_{ m cargo}$	
Wpay_extload	real	external load $W_{ m ext-load}$	
Wpay_ammo	real	ammunition $W_{ m ammo}$	
Wpay_weapons	real	weapons $W_{ m weapons}$	
Wpay_other	real	other $W_{ m other}$	

Wfuel total	real	usable fuel weight $W_{\rm fuel}$; at segment start
Wfuel(ntankmax)	real	usable fuel weight
Wfuel_std(ntankmax)	real	standard tanks
Wfuel_aux(ntankmax)	real	auxiliary tanks
WO	real	operating weight W_O
WE	real	weight empty W_E (from Aircraft)
WFixUL	real	fixed useful load W_{FUL}
Wcrew	real	crew
W_fixUL_fluid	real	fluids (from Aircraft%Weight)
Wauxtank	real	auxiliary fuel tanks
W_fixUL_other	real	other fixed useful load
Woful(10)	real	catagories
Wequip	real	equipment increment
Wfoldkit	real	folding kit
Wextkit	real	wing extension kit
Wwingkit	real	wing kit
Wotherkit	real	other kit
WUL	real	useful load W_{UL}
WML	real	military load
		Energy (from FltAircraft)
Efuel_total	real	usable fuel energy E_{fuel} ; at segment start
Efuel(ntankmax)	real	usable fuel energy
$Efuel_std(ntankmax)$	real	standard tanks
$Efuel_{aux}(ntankmax)$	real	auxiliary tanks
Etuel_aux(ntankmax)	real	auxiliary tanks

Chapter 36

Variable	Type		Description	Default
		+	Systems	
title	c*100	+	title	
notes	c*1000) +	notes	
		+	Weight	
Weight	Weight		weight statement (systems)	
$SET_{W}payload$	int	+	payload (1 no details; 2 all terms)	1
Upass	real	+	weight per passenger	
		+	fixed useful load	
SET_Wcrew	int	+	crew weight (1 no details; 2 all terms)	1
Wcrew	real	+	weight or adjustment	
Ucrew	real	+	weight per crew	
Ncrew	int	+	number of crew	
Wtrap	real	+	trapped fluids and engine oil weight	0.
		+	other fixed useful load	
nWoful	int	+	number of categories (0 for one value without name; maximum 10)	0
$Woful_name(10)$	c*24	+	category name	1.1
Woful(10)	real	+	baseline weight	0.
Wotherkit	real	+	other kit	0.

SET_Wpayload: payload specified by flight condition or mission

SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment, survival kits, life rafts, oxygen

Structure: Systems				159
SET_fold	int	+	folding (0 none, 1 fold weights, 2 with kit)	0
		+	folding weight in kit $f_{\rm foldkit}$ (fraction wing/rotor/tail/body fold weight)	
fWfoldkitW(nwingmax)	real	+	wing	0.5
fWfoldkitR(nrotormax)	real	+	rotor	0.5
fWfoldkitT(ntailmax)	real	+	tail	0.5
fWfoldkitFw	real	+	body (wing and rotor fold)	0.5
fWfoldkitFt	real	+	body (tail fold)	0.5
SET_Wvib	int	+	vibration treatment weight (1 fraction weight empty, 2 input)	1
Wvib	real	+	weight $W_{ m vib}$	
fWvib	real	+	fraction weight empty $f_{\rm vib}$	
SET_Wcont	int	+	contingency weight (1 fraction weight empty, 2 input)	1
Wcont	real	+	weight $W_{ m cont}$	
fWcont	real	+	fraction weight empty $f_{ m cont}$	
			$\begin{split} W_E = & (\text{structure} + \text{propulsion group} + \text{systems and equipment}) + W_{\text{vib}} + W_{\text{cont}} \\ \text{SET_Wvib:} \ W_{\text{vib}} \ \text{input or} \ W_{\text{vib}} = f_{\text{vib}} W_E \\ \text{SET_Wcont:} \ W_{\text{cont}} \ \text{input or} \ W_{\text{cont}} = f_{\text{cont}} W_E; \text{ or adjust } W_{\text{cont}} \ \text{for input or scaled} \ W_E \ \text{(FIX_WE=1 or 2)} \\ \text{SET_fold, folding:} \\ \text{set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight} \\ \text{fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight} \\ \text{kit weight removable, absent for specified flight conditions and missions} \end{split}$	
		+	systems and equipment	
Wauxpower	real	+	auxiliary power group (APU)	0.
Winstrument	real	+	instruments group	0.
Wpneumatic	real	+	pneumatic group	0.
Wenviron	real	+	environmental control group	0.
SET_Welectrical	int	+	electrical group (1 no details; 2 all terms)	1
Welectrical	real	+	aircraft	0.
Welect_supply	real	+	power supply	0.
Welect_conv	real	+	power conversion	0.

0.

power distribution and controls

Welect_distrib

real

+

Welect_lights	real	+	lights and signal devices	0.
Welect_support	real	+	equipment supports	0.
SET_WMEQ	int	+	avionics group (1 no details; 2 all terms)	1
WMEQ	real	+	avionics	0.
Wavionics_com	real	+	communications	0.
Wavionics_nav	real	+	navigation	0.
Wavionics_ident	real	+	identification	0.
Wavionics_disp	real	+	control and display	0.
Wavionics_survive	real	+	aircraft survivability	0.
Wavionics_mission	real	+	mission system equipment	0.
		+	armament group	
SET_Warmor	int	+	armor (1 no details; 2 all terms)	1
Warmor	real	+	armor	0.
Uarmor_floor	real	+	cabin floor armor weight per area	
Uarmor_wall	real	+	cabin wall armor weight per area	
Uarmor_crew	real	+	armor weight per crew	
$SET_{Warmprov}$	int	+	armament provisions (1 no details; 2 all terms)	1
Warmprov	real	+	armament provisions	0.
Warmprov_gun	real	+	gun provisions	0.
Warmprov_turret	real	+	turret systems	0.
Warmprov_expend	real	+	expendable weapons provisions	0.
Warm_elect	real	+	armament electronics (avionics group)	0.
$SET_{W}furnish$	int	+	furnishings and equipment group (1 no details; 2 all terms)	1
Wfurnish	real	+	furnishings and equipment	0.
		+	accommodations for personnel	
Useat_crew	real	+	each crew seat	
Useat_pass	real	+	each passenger seat	
Uaccom_crew	real	+	miscellaneous accommodation per crew seat	
Uaccom_pass	real	+	miscellaneous accommodation per passenger seat	
Uox_crew	real	+	oxygen system per crew seat	
Uox_pass	real	+	oxygen system per passenger seat	
Wfurnish_misc	real	+	miscellaneous equipment	0.

		+	furnishings	
Wfurnish_trim	real	+	trim	0.
Uinsulation	real	+	acoustic and thermal insulation weight per cabin area	
		+	emergency equipment	
Wemerg_fire	real	+	fire detection and extinguishing	0.
Wemerg_other	real	+	other emergency equipment	0.
$SET_{W}Ioad$	int	+	load and handling group (1 no details; 2 all terms)	1
Wload	real	+	load and handling	0.
Whandling_aircraft	real	+	aircraft handling	0.
		+	load handling	
Uhandling_cargo	real	+	cargo handling weight per cabin floor area	
Wload_hoist	real	+	hoist	0.
Wload_extprov	real	+	external load provisions	0.
		+	systems and equipment	
Ncrew_seat	int	+	number of crew seats	0
Npass_seat	int	+	number of passenger seats	0
Ucrew_seat_inc	real	+	equipment weight increment per crew seat (0. for default)	0.
Upass_seat_inc	real	+	equipment weight increment per passenger seat (0. for default)	0.

Upass seat inc=Useat pass+Uaccom pass+Uox pass

```
SET_Welectrical=1: only Welectrical+WDlelect
SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor
SET_Warmprov=1: only Warmprov
SET_Wfurnish=1: only Wfurnish
    miscellaneous accommodation includes galleys and toilets
    miscellaneous equipment includes cockpit displays
    trim includes floor covering, partitions, crash padding, acoustic and thermal insulation
    excluding vibration absorbers
    other emergency equipment includes first aid, survival kit, life raft
SET_Wload=1: only Wload
equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
    Ucrew_seat_inc=Useat_crew+Uaccom_crew+Uox_crew+Uarmor_crew
```

]	Derived weights	
			fixed useful load, fold kit	
$W_{fix}UL_{foldkit_{fus}}$	real		fuselage	
$W_fixUL_foldkit_rotor$	real		rotors	
$W_{fix}UL_{foldkit}$	real		wings	
$W_{fix}UL_{foldkit_tail}$	real		tails	
			armament group	
Warmor_floor	real		cabin floor armor weight	
Warmor_wall	real		cabin wall armor weight	
Warmor_crew	real		crew armor weight	
			furnishings and equipment group	
Wseat	real		seats	
Waccom	real		miscellaneous accommodation	
Wox	real		oxygen system	
Winsulation	real		acoustic and thermal insulation weight	
Whandling_cargo	real		cargo handling weight	
Ucrewseatinc	real		equipment weight increment per crew seat	
Upassseatinc	real		equipment weight increment per passenger seat	
Wtip(nrotormax)	real		weight on wing tip	
		+	Weight	
		+	systems and equipment	
		+	flight control group and hydraulic group	
MODEL fc	int	+	model (0 input, 1 NDARC, 2 custom)	1
MODEL_RWfc	int	+	rotary wing flight controls (0 not present, 1 global, 2 for each rotor)	1
refRotor	int	+	reference rotor number for global	1
MODEL_FWfc	int	+	fixed wing flight controls (0 for not present)	1
MODEL_CVfc	int	+	conversion controls (0 for not present)	1
		+	flight control weight increment	
dWRWfc_b	real	+	rotary wing, boosted	0.
dWRWfc_mb	real	+	rotary wing, control boost mechanisms	0.
dWRWfc_nb	real	+	rotary wing, non-boosted	0.
dWFWfc_mb	real	+	fixed wing, control boost mechanisms	0.
dWFWfc_nb	real	+	fixed wing, non-boosted	0.
dWCVfc_mb	real	+	conversion, boosted	0.

Structure: Systems				163
dWCVfc_nb	real	+	conversion, control boost mechanisms	0.
		+	fixed flight controls	
Wfc_cc	real	+	cockpit controls	0.
Wfc_afcs	real	+	automatic flight control system	0.
		+	hydraulic weight increment	
dWRWhyd	real	+	rotary wing	0.
dWFWhyd	real	+	fixed wing	0.
dWCVhyd	real	+	conversion	0.
WEQhyd	real	+	equipment hydraulics	0.
WFltCont	WFltC	Cont	NDARC model	
		+	anti-icing group	
MODEL_DI	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWDIelect	real	+	electrical system	0.
dWDIsys	real	+	anti-ice system	0.
WDelce	WDeld	ce	NDARC model	
			weight model result multiplied by technology factor and increment added:	
			$Wxx = TECH_xx^*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.$	
			MODEL_RWfc: global option is based on just main rotors	
			"for each rotor" option sums separate contributions from all rotors	
			tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor;	
			sum rotary wing and conversion flight controls, hydraulic group, trapped fluids	
		+ T	Fechnology Factors	
		+	rotary wing flight control weight	
TECH_RWfc_b	real	+	boosted χ_{RWb}	1.0
TECH RWfc mb	real	+	control boost mechanisms χ_{RWmb}	1.0
TECH DAK	1		The second of th	1.0

1.0

TECH_RWfc_nb

real

+

non-boosted χ_{RWnb}

Structure: Systems				164
		+	fixed wing flight control weight	
TECH_FWfc_mb	real	+	control boost mechanisms χ_{FWmb}	1.0
TECH_FWfc_nb	real	+	non-boosted χ_{FWnb}	1.0
		+	conversion flight control weight	
$TECH_CVfc_mb$	real	+	control boost mechanisms χ_{CVmb}	1.0
TECH_CVfc_nb	real	+	non-boosted χ_{CVnb}	1.0
		+	flight control hydraulics	
TECH_RWhyd	real	+	rotary wing $\chi_{RW\mathrm{hyd}}$	1.0
TECH_FWhyd	real	+	fixed wing $\chi_{FW\mathrm{hyd}}$	1.0
TECH_CVhyd	real	+	conversion $\chi_{CV ext{hyd}}$	1.0
		+	anti-icing anti-icing	
TECH_Dlelect	real	+	electrical system $\chi_{DI m elect}$	1.0
TECH_DIsys	real	+	anti-ice system $\chi_{DI_{\mathrm{sys}}}$	1.0

Chapter 37

Structure: WFltCont

Variable	Type		Description	Default
		+	Flight Control Group, NDARC Weight Model	
		+	rotary wing flight controls	
MODEL_WRWfc	int	+	model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic)	1
fRWfc_nb	real	+	AFDD: non-boosted control weight f_{RWnb} (fraction boost mechanisms weight)	0.6
$xRWfc_red$	real	+	AFDD: hydraulic system redundancy/complexity factor f_{RW}_{red}	3.0
KIND_WRWfc	int	+	AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
fRWfc_b	real	+	Boeing, GARTEUR, Tishchenko, or generic: boosted weight f_{RWb} (fraction boosted + boost mech, or total)	0.2
fRWfc_mb	real	+	GARTEUR, Tishchenko, or generic: boost mechanisms weight f_{RWmb} (fraction total weight)	0.2
KRW	real	+	generic: factor K_{RW}	0.
XRWN	real	+	exponent X_{RWN}	0.
XRWR	real	+	exponent X_{RWR}	0.
XRWc	real	+	exponent X_{RWc}	0.
XRWW	real	+	exponent X_{RWW}	0.
XRWb	real	+	exponent X_{RWb}	0.
		+	fixed wing flight controls	
MODEL_WFWfc	int	+	model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic)	1
fFWfc_nb	real	+	non-boosted weight f_{FWnb} (fraction total fixed wing flight control weight)	0.10
nfunction	int	+	Raymer: number of control functions	6
fmech	real	+	Raymer: number of mechanical functions (fraction total)	0.2
KFW	real	+	generic, factor K_{FW}	0.
XFW	real	+	exponent X_{FW}	0.
		+	conversion controls	
fCVfc_mb	real	+	boost mechanisms weight f_{CVmb} (fraction maximum takeoff weight)	0.02
fCVfc_nb	real	+	non-boosted weight f_{CVnb} (fraction boost mechanisms weight)	0.10
		+	cockpit controls	
MODEL_cc	int	+	model (1 fixed Wfc_cc, 2 scaled with DGW)	1
Kcc	real	+	factor K_{cc}	1.7
Xcc	real	+	exponent X_{cc}	0.41

Structure: WFltCont

fRWhyd fFWhyd fCVhyd	real real real	+ fixed wing $f_{FW\text{hyd}}$ (fraction fixed wing boost mechanisms weight)	0.40 0.10 0.10
		$xRWfc_red = 1.0 \text{ to } 3.0$	
WtParam_fc(8)	real	 + Custom Weight Model + parameters Weight Model Input 	0.
		Rotary wing	
WMTO_rw	real	maximum takeoff weight	
Wbld_rw	real	blade weight	
Nrotor_rw	int	number of rotors	
NrNb_rw	int	total number of blades, Nrotor*Nblade	
chord_rw	real	blade mean chord	
Vtip_rw	real	hover tip speed	
radius_rw	real	blade radius	
NAME OF STREET		Fixed wing	
WMTO_fw	real	maximum takeoff weight	
Sht_fw	real	horizontal tail area (fixed wing) Conversion	
WMTO_cv	real	maximum takeoff weight Cockpit controls	
DGW_cc	real	design gross weight	

Chapter 38

Structure: WDeIce

Variable	Type	Description	Default
		+ Anti-Icing Group, NDARC Weight Model	
kDelce_elec(nrotormax)	real	+ weight factor for electrical system $K_{\rm elec}$ (lb/ft ² or kg/m ²)	0.25
kDelce_rotor(nrotormax)	real	+ weight factor for main rotor K_{rotor} (lb/ft ² or kg/m ²)	0.25
kDelce_wing(nwingmax)	real	+ weight factor for wing K_{wing} (lb/ft or kg/m)	0.
kDelce_air(nengmax)	real	+ weight factor for engine air intake K_{air} (lb/lb or kg/kg)	0.006
kDelce_jet(njetmax)	real	+ weight factor for jet air intake $K_{\rm jet}$ (lb/lb or kg/kg)	0.006
		+ Custom Weight Model	
$WtParam_DI(8)$	real	+ parameters	0.
		Weight Model Input	
Ablade(nrotormax)	real	blade area	
Lwing(nwingmax)	real	wing length	
Weng(nengmax)	real	engine weight	
Wjet(njetmax)	real	jet weight	

Structure: Fuselage

Variable	Type		Description	Default
		+	Fuselage	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Geometry	
loc_fuselage	Locatio	n +	fuselage location	
SET_length	int	+	fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only)	1
Length_fus	real	+	length $\ell_{ m fus}$	
SET_nose	int	+	nose length (distance forward of hub; 1 input, 2 calculated)	1
Length_nose	real	+	nose length $\ell_{ m nose}$	
fLength_nose	real	+	nose length (fraction reference length)	
SET_aft	int	+	aft length (distance aft of hub; 1 input, 2 calculated)	1
Length_aft	real	+	aft length $\ell_{ m aft}$	
fLength_aft	real	+	aft length (fraction reference length)	
fRef_fus	real	+	fuselage SL location relative nose $f_{\rm ref}$ (fraction fuselage length)	
Length_rotors	real		rotor-rotor longitudinal separation	
Length_tail	real		tail length (wing to horizontal tail)	
Width_fus	real	+	fuselage width $w_{ m fus}$	
SET_Swet	int	+	fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight)	2
Swet	real	+	wetted area $S_{ m wet}$	
Sproj	real	+	projected area S_{proj}	
fSwet	real	+	factor for wetted area f_{wet} or k_{wet}	1.
fSproj	real	+	factor for projected area f_{proj} or k_{proj}	1.
Height_fus	real	+	fuselage height $h_{ m fus}$	
Circum_boom	real	+	tail boom effective circumference C_{boom}	
Width_boom	real	+	tail boom effective width $w_{\rm boom}$	
Swet_in	real		input wetted area $S_{ m wet}$	
Sproj_in	real		input projected area $S_{ m proj}$	

Structure: Fuselage 169

SET_Scabin	int	+	cabin area (1 input, 2 calculated)	2
Scabin	real	+	total cabin surface area $S_{ m cabin}$	
Scabin_floor	real	+	cabin floor area $S_{\text{cabin-floor}}$	
Scabin_wall	real	+	cabin wall area $S_{ m cabin-wall}$	
fScabin	real	+	factor for total cabin surface area $f_{\rm cabin}$	0.6
fScabin_floor	real	+	factor for cabin floor area $f_{\text{cabin-floor}}$	0.6
fScabin_wall	real	+	factor for cabin wall area $f_{\text{cabin-wall}}$	0.6
KIND_scale	int	+	reference length (1 rotor radius, 2 wing span, 3 fuselage length)	1
refRotor	int	+	rotor number (for rotor radius)	1
refWing	int	+	wing number (for wing span)	1

SET length: input (use Length fus) or calculated (from nose and aft lengths) calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor which can not then be scaled with fuselage length

SET nose: input (use Length nose) or calculated (from fLength nose); used for Length fus and Swet

SET aft: input (use Length aft) or calculated (from fLength aft); used for Length fus

fRef fus=(SL fuselage-SL nose)/Length fus; used for operating length and sketch

input required if SET length = input, otherwise calculated

SET Swet: both wetted area and projected area; input (use Swet, Sproj),

or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length) or from weight, units of $k_{\text{wet}} = \text{fSwet}$ and $k_{\text{proj}} = \text{fSproj}$ are $\text{ft}^2/\text{klb}^{2/3}$ or $\text{m}^2/\text{Mg}^{2/3}$

boom circumference and width used if SET Swet not input and not from weight (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

Geometry (for graphics)

height of cargo ramp Height ramp real fraction of fuselage length used for cargo fLength cargo real

0.60

Structure: Fuselage

		+	Controls	
		+	flow control momentum coefficient C_{μ}	
INPUT_flow	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_flow(ncontmax,nstatemax)$	real	+	control matrix	
nVflow	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flow(nvelmax)	real	+	values	
Vflow(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$	
			for each component control, define matrix T (for each control state) and value c_0	
			flight state specifies control state, or that control state obtained from conversion schedule	
			c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)	
			by connecting aircraft control to comp control, flight state can specify comp control value	
			initial values if control is connected to trim variable; otherwise fixed for flight state	

 + Aerodynamic 	cs
-----------------------------------	----

MODEL_aero	int	+	model (0 none, 1 standard)	1
AFuse	AFuse		standard model	
DoQ_cont	real	+	contingency drag, area $(D/q)_{\mathrm{cont}}$	0.
DoQV_cont	real	+	contingency vertical drag, area $(D/q)_{V \text{cont}}$	0.
]	Derived drag	
DoQ_fus	real		fuselage drag, area $(D/q)_{ m fus}$	
DoQV_fus	real		fuselage vertical drag, area $(D/q)_{V \text{fus}}$	
DoQ_fit	real		fittings and fixtures drag, area $(D/q)_{ m fit}$	
DoQ_rb	real		rotor-body interference drag, area $(D/q)_{\rm rb}$	
prop_flow(3)	int		propulsion for flow control (group (1 engine, 2 jet), number, model)	

DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input

Structure: Fuselage

		+	Weight	
Weight	Weight		weight statement (component)	
		+	fuselage group	
MODEL_weight	int	+	fuselage group model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWbody	real	+	basic body	0.
dWmar	real	+	body marinization	0.
dWpress	real	+	pressurization	0.
dWcrash	real	+	body crashworthiness	0.
dWftfold	real	+	tail fold	0.
dWfwfold	real	+	wing fold	0.
WFuse	WFuse		AFFD model	
		+	Technology Factors	
TECH_body	real	+	basic body $\chi_{ m basic}$	1.0
TECH_mar	real	+	body marinization $\chi_{ m mar}$	1.0
TECH_press	real	+	pressurization $\chi_{ m press}$	1.0
$TECH_crash$	real	+	body crashworthiness χ_{cw}	1.0
TECH_ftfold	real	+	tail fold $\chi_{ m tfold}$	1.0
TECH_fwfold	real	+	wing fold $\chi_{ ext{wfold}}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Structure: AFuse

Variable	Type		Description	Default
		+	Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
AoA_max	real	+	angle of attack for maximum lift $\alpha_{\rm max}$ (deg)	10.
		+	lift	
SET_lift	int	+	specification (1 fixed, L/q ; 2 scaled, C_L)	2
dLoQda	real	+	lift slope, $d(L/q)/d\alpha$ (per rad)	0.
dCLda	real	+	lift slope, $C_{L\alpha} = dC_L/d\alpha$ (per rad; based on wetted area, $L/q = SC_L$)	0.
		+	pitch moment	
SET_moment	int	+	specification (1 fixed, M/q ; 2 scaled, C_M)	2
MoQ0	real	+	moment at zero lift, $(M/q)_0$	0.
CM0	real	+	moment at zero lift, C_{M0} (based on wetted area and fuselage length, $M/q = S\ell C_M$)	0.
dMoQda	real	+	moment slope, $d(M/q)/d\alpha$ (per rad)	0.
dCMda	real	+	moment slope, $C_{M\alpha}=dC_M/d\alpha$ (per rad; based on wetted area and fuselage length, $M/q=S\ell C_M$)	0.
SS_zy	real	+	sideslip angle for zero side force β_{zy} (deg)	0.
SS_max	real	+	sideslip angle for maximum side force $\beta_{\rm max}$ (deg)	10.
		+	side force	
SET_side	int	+	specification (1 fixed, Y/q ; 2 scaled, C_Y)	2
dYoQdb	real	+	side force slope, $d(Y/q)/d\beta$ (per rad)	0.
dCYdb	real	+	side force slope, $C_{Y\beta} = dC_Y/d\beta$ (per rad; based on wetted area, $Y/q = SC_Y$)	0.
		+	yaw moment	
SET_yaw	int	+	specification (1 fixed, N/q ; 2 scaled, C_N)	2
NoQ0	real	+	moment at zero lift, $(N/q)_0$	0.
CN0	real	+	moment at zero lift, C_{N0} (based on wetted area and fuselage length, $N/q = S\ell C_N$)	0.
dNoQdb	real	+	moment slope, $d(N/q)/d\beta$ (per rad)	0.
dCNdb	real	+	moment slope, $C_{N\beta}=dC_N/d\beta$ (per rad; based on wetted area and fuselage length, $N/q=S\ell C_N$)	0.

Structure: AFuse

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

		+	Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	0.005
		+	fixtures and fittings	
SET_Dfit	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_fit	real	+	area $(D/q)_{ m fit}$	
CD_fit	real	+	coefficient $C_{D ext{fit}}$ (based on wetted area, $D/q = SC_D$)	0.
		+	rotor-body interference	
SET_Drb	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQ_rb(nrotormax)$	real	+	area $(D/q)_{rb}$	
$CD_{rb}(nrotormax)$	real	+	coefficient C_{Drb} (based on wetted area, $D/q = SC_D$)	0.
CD_rb_total	real		total rotor-body interference drag, C_{Drb}	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on projected area, $D/q = S_{\text{proj}}C_D$)	0.
CDVs	real		$C_{DV}S_{ m proj}/S_{ m wet}$	
		+	sideward drag	
SET_Sdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQS	real	+	area $(D/q)_S$	
CDS	real	+	coefficient C_{DS} (based on wetted area, $D/q = SC_D$)	0.
		+	drag variation with angle of attack	
MODEL_drag	int	+	model (0 none, 1 general, 2 quadratic)	2
AoA_Dmin	real	+	angle of attack for fuselage minimum drag $C_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment $K_d, \Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	0.
Xdrag	real	+	drag increment $X_d, \Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2.

Structure: AFuse

MODEL_trans AoA_tran at Xd	int real real real	++++	transition from forward flight drag to vertical drag model (1 input transition angle of attack, 2 calculate for quadratic) angle of attack for transition α_t (deg) angle of attack for transition α_t (deg) (derived) exponent X_d (derived)	1 25.
		+	Flow Control; $\Delta C_L = C_{L\alpha}(L_{\mu s}\sqrt{C_{\mu}} + L_{\mu 1}C_{\mu} + L_{\mu 2}C_{\mu}^2), \Delta C_{L \max} = X_{\mu}C_{\mu}, \Delta C_M = M_{\mu}C_{\mu}, \Delta C_D = D_{\mu}C_{\mu}$	
MODEL_flow	int	+	model (0 none)	0
Lmus	real	+	lift $L_{\mu s}$	0.0
Lmu1	real	+	lift $L_{\mu 1}$	0.0
Lmu2	real	+	lift $L_{\mu2}$	0.0
Xmu	real	+	maximum lift X_μ	1.0
Mmu	real	+	moment M_μ	0.0
Dmu	real	+	$\mathrm{drag}\ D_{\mu}$	0.0
Cmu_limit	real	+	flow limit $C_{\mu m limit}$	1.0

Chapter 41

Structure: WFuse

Variable	Type		Description	Default
		+	Fuselage Group, NDARC Weight Model	
$MODEL_body$	int	+	model (1 AFDD84, 2 AFDD82, 3 other)	1
$MODEL_other$	int	+	model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic))
KIND_ramp	int	+	AFDD: rear cargo ramp (0 none)	0
fLength_crg	real	+	Boeing: cabin length + ramp length + cg range (fraction fuselage length)	0.6
Vdive	real	+	Boeing or Torenbeek or Raymer: design dive speed $V_{ m dive}$ (knots)	200.
ndoor	int	+	Raymer: number of cargo doors	0
Pdelta	real	+	Raymer: cabin pressure differential (psi)	8.
Kfus	real	+	generic: factor $K_{\rm fus}$	0.
XfusW	real	+	exponent $X_{\mathrm{fus}W}$	0.
Xfusn	real	+	exponent $X_{\mathrm{fus}n}$	0.
XfusS	real	+	exponent $X_{\mathrm{fus}S}$	0.
Xfusl	real	+	exponent $X_{\mathrm{fus}\ell}$	0.
fWbody_mar	real	+	body weight for marinization $f_{ m mar}$ (fraction basic body weight)	0.
fWbody_press	real	+	body weight for pressurization f_{press} (fraction basic body weight)	0.
fWbody_crash	real	+	body weight for crashworthiness f_{cw} (fraction body weight)	0.
fWbody_tfold	real	+	tail fold weight $f_{\rm tfold}$ (fraction tail (AFDD84 or other) or body (AFDD82) weight)	0.
fWbody_wfold	real	+	wing fold weight f_{wfold} (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight)	0.

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing dive speed: $V_{\rm max}$ = SLS max speed, Vdive = $1.25V_{\rm max}$ fLength_crg = $(\ell_c + \ell_r + \Delta CG)/\ell_{\rm body} \cong 1.0$ for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp) typically fWbody_crash = 0.06 typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDD82) for folding tail

Structure: WFuse 176

+	Custom	Weight	Model
---	--------	--------	-------

$WtParam_fuse(8)$	real	+	parameters		0).

Weight Model Input

WMTO	real	maximum takeoff weight
SDGW	real	structural design gross weight
nz	real	design ultimate flight load factor at SDGW
Sbody	real	body wetted area
Lbody	real	fuselage length

landing gear placement (1 on body, 2 on wing) landing gear (0 fixed, 1 retracts) $place_LG$ int

 $kind_LG$ int

WtTail tail weight (for fold) real WtWing wing weight (for fold) real

Structure: LandingGear

Variable	Type	Description	Default
		Landing Gear	
title	c*100 -	title title	
notes	c*1000 -	notes notes	
	-	+ Geometry	
loc_gear	Location -	landing gear location	
d_gear	real -	distance from bottom of landing gear to WL_gear d_{LG}	0.
place	int -	placement (1 located on body, 2 located on wing)	1
KIND_LG	int -	retraction (0 fixed, 1 retracts)	1
speed	real -	retraction speed (CAS or TAS, knots)	
		landing gear location: with HAGL (FltState) determines rotor height above ground level height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub-WL_gear+d_gear place: used for weight (fuselage and wing))
		+ Aerodynamics	
MODEL_aero		model (0 none, 1 standard)	1
AGear	AGear	standard model	
		Derived drag	
DoQC_LG	real	landing gear cruise drag, area D/q (0 for retractable gear)	
DoQH_LG	real	landing gear helicopter drag, area D/q	

		+	Weight	
Weight	Weight		weight statement (component)	
		+	alighting gear group	
MODEL_weight	int	+	alighting gear group model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWLG	real	+	basic landing gear	0.
dWLGret	real	+	retraction	0.

Structure: LandingGear

real

WGear

dWLGcrash

WGear

+ Technology FactorsTECH_LGreal+ basic landing gear χ_{LG} 1.0TECH_LGretreal+ retraction χ_{LGret} 1.0TECH_LGcrashreal+ crashworthiness χ_{LGcw} 1.0

crashworthiness

AFFD model

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

178

0.

Chapter 43

Structure: AGear

Variable	Type		Description	Default
		+	Drag, Standard Model	
DoQ	real	+	drag area extended, D/q	

Chapter 44

Structure: WGear

Variable	Type		Description	Default
		+	Landing Gear Group, NDARC Weight Model	
MODEL_LG	int	+	model (1 fraction, 2 parametric rotary wing, 3 parametric fixed wing)	2
nLG	int	+	number of landing gear assemblies N_{LG}	3
fWLG_basic	real	+	basic landing gear weight f_{LG} (fraction maximum takeoff weight)	0.0325
fWLG_ret	real	+	landing gear weight for retraction f_{LGret} (fraction basic weight)	0.08
fWLG_crash	real	+	landing gear weight for crashworthiness $f_{LG_{\mathrm{CW}}}$ (fraction basic+retraction weight)	0.14
			only MODEL_LG=fraction uses fWLG_basic typically fWLG_basic = 0.0325 (fraction method)	
			typically fWLG_ret = 0.08, fWLG_crash = 0.14	
		+	Custom Weight Model	
WtParam_gear(8)	real	+	parameters	0.
WMTO wingload	real real		Weight Model Input maximum takeoff weight wing loading	

Chapter 45

Variable	Type	Description	Default
	+	Rotor	
title	c*100 +	title	
notes	c*1000 +	notes	
config	c*32 +	Configuration	'main'
rotorconfig	int	configuration (ROTORCONFIG_main, tail, prop)	
isMainRotor	int	main rotor (0 not)	
isAntiQRotor	int	antitorque rotor (0 not)	
isAuxTRotor	int	auxiliary thrust rotor (0 not)	
isVariableDiam	int	variable diameter rotor (0 not)	
isDuctedFan	int	ducted fan (0 not)	
isReactionDrive	int	reaction drive (0 not)	
isMultiRotor	int	multiple rotors (0 not)	
isStoppable	int	stopped rotor (0 not)	
twinrotor	int	configuration (ROTORCONFIG_tandem, coaxial, tiltrotor, not_twin)	

```
configuration designation: principal designation required, rest identify special characteristics
    principal designation = 'main', 'tail', 'prop'
    antitorque = 'antiQ', 'auxT'
    twin rotor = 'coaxial', 'tandem', 'tiltrotor' (keyword = tan, coax, tilt)
    others = 'variable diameter', 'stop', 'ducted fan', 'reaction drive', 'multirotor' (keyword = var, stop, duct, react, multi)
principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)
    separately specify appropriate performance and weight models
multiple rotor configurations have special options for geometry and performance
    options defined by variables SET_geom, MODEL_twin, MODEL_int_twin
antitorque or aux thrust rotor has special options for sizing
    options defined by variables SET_rotor, fThrust, Tdesign
reaction drive still requires propulsion group
```

kRotor	int		rotor number	
		+	Propulsion group	
kPropulsion	int	+	group number	1
KIND_xmsn	int	+	drive system branch (1 primary, 0 dependent)	1
Vtip_ref(ngearmax)	real	+	reference tip speed	
$rVtip_ref(ngearmax)$	real		ratio to state #1	
Omega_ref	real		reference rotational speed (state #1)	
INPUT_gear	int	+	gear ratio input for dependent branch (1 Vtip_ref, 2 gear)	1
gear(ngearmax)	real	+	gear ratio $r = \Omega_{ m dep}/\Omega_{ m prim}$ (ratio rpm to rpm of primary rotor)	1.0
		+	Reaction drive	
r_react	real	+	effective radial station of force (fraction Radius)	1.0
prop_react(3)	int		propulsion for reaction drive (group (1 engine, 2 jet), number, model)	
			drive system branch: only one primary rotor per propulsion group tip speed and gear ratio required for each drive system state primary: specify Vtip_ref and default tip speeds; $V_{\rm tip-hover} = {\rm Vtip_ref}(1)$ dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius) can not specify gear ratio if sizing changes dependent rotor $V_{\rm tip}$ (SET_rotor) if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1 variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of dependent rotor reaction drive requires one and only one propulsion system (engine group or jet group)	
		+	Default rotor tip speeds (primary rotor)	
INPUT_Vtip	int	+	input form (1 tip speed, 2 hover $V_{ m tip}$ and rpm ratio)	1
		+	function of flight speed	
nVrpm	int	+	number of speeds (1 constant; \geq 2 piecewise linear, maximum nvelmax)	1
Vrpm(nvelmax)	real	+	speeds (CAS or TAS)	
		+	tip speed	
	1			

cruise

real

+

Vtip_cruise

Vtip_man	real	+	maneuvering flight	
Vtip_oei	real	+	OEI	
Vtip_xmsn	real	+	transmission sizing	
Vtip(nvelmax)	real	+	function of flight speed	
		+	rpm ratio $(V_{ m tip}/V_{ m tip-hover})$	
fRPM_cruise	real	+	cruise	1.
fRPM_man	real	+	maneuvering flight	1.
fRPM_oei	real	+	OEI	1.
fRPM xmsn	real	+	transmission sizing	1.
fRPM(nvelmax)	real	+	function of flight speed	1.
			default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState only for primary rotor; $V_{\rm tip}$ calculated from gear(state) for dependent branch	
CET liveit ve	int	+	Drive system torque limit	1
SET_limit_rs	int	+	rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit)	1
Plimit_rs	real	+	rotor shaft power limit $P_{RS ext{limit}}$	-
fPlimit_rs	real	+	rotor shaft power limit factor	1.
Qlimit_rs	real		rotor shaft torque limit ($P_{RS m limit}$ at $\Omega_{ m ref}$)	
			drive system torque limit: Size%SET_limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs) SET_limit_ds='input': Plimit_rs input SET_limit_ds\neq'input': from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)	
			rotor shaft: options for SET limit ds='input'	
			SET limit rs=0: Plimit rs	
			SET_limit_rs=1: fPlimit_rs \times (rotor P_{reg})	
			SET limit rs=2: fPlimit rs $\times P_{DSlimit}$	
			rotor shaft power limit: corresponds to one rotor	
			can be used for max effort in flight state (max quant='Q margin')	
			can be used for max gross weight in flight condition or mission (SET_GW='maxQ' or 'maxPQ')	
			always check and print whether exceed torque limit	

diskload real + disk loading (lb/ft ² or N/m ²)	
fArea real + fraction rotor area for reference disk area f_A	
fDGW real + fraction DGW f_W (for disk loading and blade loading)	
fThrust real + thrust factor (antitorque or aux thrust rotor)	1.0
Radius real + radius R	
CWs real + blade loading C_W/σ (thrust-weighted)	
sigma real + solidity $\sigma = Nc/\pi R$ (thrust-weighted)	
Tdesign real + thrust for antitorque or aux thrust rotor	
Pdesign real + power for antitorque or aux thrust rotor	
Ndesign real + rotor speed (rpm) at Pdesign	
SET_thrust int + rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign)	0
iSET_thrust int rotor thrust for disk loading and blade loading (1 from DGW, 2 from Tdesign)	
rotor disk loading = T/A ; aircraft disk loading = $W_D/A_{\rm ref}$, $A_{\rm ref} = \sum (f_A A)$	
$W = f_W W_D$ (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust	t
Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)	
if rotor sized from disk loading (SET_rotor='DL+xx+xx'), area = T /diskload	
if SET_rotor specify 'Vtip', use Vtip_ref(1)	
if SET_rotor not specify 'Vtip', calculate Vtip_ref(1), and then Vtip_ref for dependent rotors	
if SET_rotor='CWs+xx+xx', then C_W/σ from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted so	idity
for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign otherwise use fDGW and design gross weight	
Tdesign and Pdesign generally calculated (identified as input so inherited by next case)	

		+	Geometry	
SET_geom	c*12	+	position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)	'std'
KIND_TRgeom	int	+	tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge)	0
		+	twin rotors	
fRadius	real	+	ratio rotor radius to that of other rotor	1.0
otherRotor	int	+	other rotor number	

Structure: Rotor	185

positionOfRotor	int	+	rotor position (+1/-1 for right/left, lower/upper, front/aft)	0
WingForRotor	int	+	wing number	1
PanelForRotor	int	+	wing panel number	1
clearance_fus	real	+	tiltrotor clearance between rotor and fuselage d_{fus}	0.6
fclearance_fus	real	+	tiltrotor clearance factor	1.0
sep_coaxial	real	+	coaxial rotor separation s (fraction Diameter)	0.08
overlap_tandem	real	+	tandem rotor overlap o (fraction Diameter)	0.25
			derived	
iSET_geom	int		position (SET_geom_standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)	
clearance_calc	real		clearance between rotor and fuselage $d_{ m fus}$	
Hsep_twin	real		horizontal separation ℓ (fraction Diameter)	
Vsep_twin	real		vertical separation s (fraction Diameter)	
overlap_twin	real		overlap o (1 – separation/Diameter)	
m_twin	real		overlap area fraction m	
		+	tail rotor	
mainRotor	int	+	main rotor number	1
fRadius_tr	real	+	radius scale factor	1.0
clearance_tr	real	+	clearance between tail rotor and main rotor d_{tr}	0.5
		+	multicopter	
ang_multicopter	real	+	angle ψ (clockwise from forward, deg)	0.
len_multicopter	real	+	arm length ℓ (fraction Radius)	1.5
		+	variable diameter rotor	
$SET_VarDiam$	int	+	set diameter (1 conversion schedule, 2 function speed)	
fRcruise	real	+	ratio cruise radius to hover radius (variable diameter only)	
		+	rotor stopped as wing	
StopAsWing	int	+	wing number (0 not)	0

SET_geom: calculation override part of location input

SET_geom='tiltrotor': calculate lateral position (BL)

 ${\sf KIND_TRgeom=clearance:}\ from\ {\sf WingForRotor}, {\sf Width_fus}, {\sf clearance_fus}, {\sf fclearance_fus}$

KIND_TRgeom=wing tip: from WingForRotor, wing span

KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span positionOnRotor specifies right or left position

 BL or YoL in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL

```
SET geom='coaxial': calculate position from sep coaxial
         same sep coaxial for otherRotor, positionOnRotor specifies lower or upper position
         loc rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs
         loc pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc rotor
    SET geom='tandem': calculate longitudinal position (SL) from overlap tandem
         same overlap tandem for otherRotor, positionOnRotor specifies front or aft position
        loc rotor (SL or XoL only) is midpoint between hubs
        loc pylon SL or XoL is relative calculated loc rotor
    SET geom='tailrotor': calculate longitudinal position (SL) from clearance tr, mainRotor
         loc pylon SL or XoL is relative calculated loc rotor
    SET geom='multicopter': calculate longitudinal and lateral position from ang multicopter, len multicopter
         loc rotor (SL,BL or XoL,YoL) is center of rotors
        loc pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc rotor
         ang multicopter also used for Aircraft%config='multicopter' to define control
    if rotor number \leq 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft
sizing:
    if SET rotor='ratio', Radius=fRadius*Radius(otherRotor); otherRotor not SET rotor='ratio'
twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor
    if SET rotor='scale', Radius=fRadius tr*(main rotor Radius)*function(DiskLoad)
variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls
    conversion schedule: R = \text{Radius in hover and helicopter mode} (V \leq V_{\text{conv-hover}})
         R = \text{Radius*fRcruise} in cruise mode (V \geq V_{\text{conv-cruise}}); linear with V in conversion mode
    function of speed: use nVdiam, fdiam, Vdiam to calculate R
stoppable rotor: zero rotor flapping, forces, and power when stopped
    stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag
    stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag
    stopped as wing (FltAircraft%STOP rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag
```

		+	Geometry	
rotate	int	+	direction of rotation (1 counter-clockwise, –1 clockwise)	1
nBlade	int	+	number of blades N	
		+	planform and twist	
SET_chord	int	+	chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord)	1
fTWsigma	real	+	ratio thrust-weighted solidity to geometric solidity $f = \sigma_t/\sigma_g$	1.
taper	real	+	taper ratio t (tip chord/root chord)	1.
SET_twist	int	+	twist distribution (1 linear from twistL, 2 nonlinear from twist)	1
twistL	real	+	linear twist θ_L (deg, root to tip)	-10.
nprop	int	+	number of radial stations (maximum nrmax)	2
rprop(nrmax)	real	+	radial stations (r_{root}/R)	
fchord(nrmax)	real	+	chord distribution $c(r)/c_{ m ref}$	1.
twist(nrmax)	real	+	twist $\theta_{tw}(r)$ (deg)	
		+	flap dynamics	
KIND_hub	int	+	hub type (1 articulated, 2 hingeless)	1
flapfreq	real	+	first flapwise natural frequency ν (per-rev at hover tip speed)	1.04
conefreq	real	+	coning natural frequency ν (0. to use flapfreq)	0.
gamma	real	+	blade Lock number γ	8.
precone	real	+	precone β_p (deg)	0.
delta3	real	+	pitch-flap coupling δ_3 (deg)	0.
		+	aerodynamics	
dclda	real	+	blade section 2D lift-curve slope $a=c_{\ell\alpha}$ (per-rad)	5.7
tiploss	real	+	tip loss factor B (lift zero from BR to tip)	0.97
xroot	real	+	root cutout (r_{root}/R)	0.1

```
SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout)
```

fTWsigma = sigma_tw/sigma_geom

from fTWsigma: calculate equivalent linear taper, and $f_c=c/c_{\rm ref}$ from taper (linear): calculate fTWsigma, and $f_c=c/c_{\rm ref}$ from fchord(r): integrate for c_g and c_t , fTWsigma= c_t/c_g , calculate taper, $f_c=$ scaled fchord

SET_twist: use one of twistL or twist(r); other calculated

for nonlinear distribution, twist relative 0.75R obtained from input

flap frequency and Lock number are used for flap dynamics and hub moments due to flap specified for hover radius and rotational speed $KIND_hub$ determines how flap frequency and hub moment spring vary with rotor speed and R weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a=5.7, thrust-weighted chord SET Iblade determines whether Lock number input or calculated

Geometry (for graphics) thick blade thickness-to-chord ratio 0.12 real Geometry (derived) direction of rotation (1 counter-clockwise, -1 clockwise) frotate real rotor area (πR^2) Arotor real thrust-weighted chord chord real solidity $\sigma = Nc/\pi R$; mean geometric chord real sigma geom mean geometric chord chord geom real aspect ratio, R/chord geom AspectRatio real Ablade real thrust-weighted blade area geometric blade area Ablade_geom real ΚP $tan(\delta_3)$ real chord distribution $f_c = c(r)/c_{\rm ref}$ (scaled to unit thrust-weighted chord) fc(nrmax) real twist $\theta_{tw}(r)$ (relative 0.75R) tw(nrmax) real gamma calc real blade Lock number γ autorotation index KE/PAl calc real blade moment of inertia $I_{\rm blade}$ Iblade real flap stiffness K_{flap} (KIND_hub = hingeless) Kflap real flap hinge offset e (KIND hub = articulated) eflap real cone stiffness K_{cone} (conefreq input) Kcone real hub moment spring K_{hub} Khub real Blade element theory solution integration + number of radial stations (xroot to 1; maximum mrmax) int + mr number of azimuth angles (maximum mpsimax) 8 mpsi int +

```
radial increment dr = (1 - xroot)/mr
dr
                                 real
                                                         \cos(\psi_i), \psi_i = j \Delta \psi, j = 1 \text{ to mpsi } (\Delta \psi = 2\pi/\text{mpsi})
cspsi(mpsimax)
                                 real
                                                         \sin(\psi_i), \psi_i = j \Delta \psi, j = 1 to mpsi (\Delta \psi = 2\pi/\text{mpsi})
snpsi(mpsimax)
                                 real
                                               Geometry
loc rotor
                                  Location +
                                                    hub location
                                                    pylon location
loc pylon
                                  Location +
loc pivot
                                 Location +
                                                    pivot location
                                                    nacelle cg location
loc_naccg
                                 Location +
                                                    nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z'; 'main' (-z), 'tail' (ry), 'prop' (x))
direction
                                 c*16
                                                                                                                                                                                     'main'
                                           +
                                                    shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls)
KIND tilt
                                 int
                                                                                                                                                                                          0
                                           +
                                                    orientation of rotor shaft
                                                         incidence \theta_h (deg)
incid hub
                                  real
                                           +
                                                                                                                                                                                         0.
cant hub
                                 real
                                           +
                                                         cant angle \phi_h (deg)
                                                                                                                                                                                         0.
                                                    orientation of pivot axes
                                           +
dihedral pivot
                                           +
                                                         pivot dihedral angle \phi_n (deg)
                                  real
                                                         pivot pitch angle \theta_n (deg)
pitch pivot
                                  real
                                           +
sweep pivot
                                 real
                                           +
                                                         pivot sweep angle \psi_n (deg)
                                                    reference shaft control
                                           +
incid ref
                                           +
                                                         incidence i_{ref} (deg)
                                                                                                                                                                                         0.
                                  real
                                           +
                                                         cant angle c_{ref} (deg)
cant ref
                                 real
                                                                                                                                                                                         0.
                                           +
                                                    moving weight for cg shift
                                                         weight (1 wing tip weight, 2 W_{abrs}, 3 W_{abrs} and W_{ES})
SET Wmove
                                 int
                                           +
                                                                                                                                                                                          1
fWmove
                                  real
                                           +
                                                         fraction moving weight
                                                                                                                                                                                         1.
                                                    hub position increment due to tilt \Delta z_{\text{hub}}^F (SL/BL/WL)
                                           +
                                                                                                                                                                                         0.
dz hub(3)
                                 real
                                                Derived geometry
                                                    nominal orientation (1, -1, 2, -2, 3, -3, -3, r2, 1)
iDirection
                                 int
axis incid
                                 int
                                                     axis incidence (\pm 123)
axis cant
                                 int
                                                    axis cant (\pm 123)
KIND incid
                                 int
                                                    incidence (0 fixed, 1 controlled)
                                                    cant angle (0 fixed, 1 controlled)
KIND cant
                                 int
                                                    pivot axes relative airframe, C^{PF}
CPF(3,3)
                                 real
                                                    pivot axes relative airframe, C^{FP}
CFP(3,3)
                                 real
                                                    WC^{HF} (C^{SF} for reference control)
WCHF(3,3)
                                  real
                                                    rotor shaft relative airframe, C^{SF} (zero shaft control)
CSF(3,3)
                                  real
```

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90 SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or $w/N_{\rm rotor}$ $w = W_{gbrs} \ ({\rm drive\ system}) \ {\rm or} \ W_{gbrs} + \sum (W_{ES}) \ ({\rm drive\ system\ and\ engine\ system})$

```
Controls
                                                rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
KIND control
                              int
                                                                                                                                                                          1
KIND cyclic
                                                    cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset)
                                                                                                                                                                          1
                               int
                                       +
                                                    collective input (1 thrust, 2 C_T/\sigma)
KIND coll
                                                                                                                                                                          2
                               int
                                       +
                                                    scale collective T matrix (0 for none)
SCALE coll
                               int
                                                                                                                                                                          1
                                                collective (magnitude of thrust vector)
                                                    connection to aircraft controls (0 none, 1 input T matrix)
INPUT coll
                               int
                                       +
                                                                                                                                                                          1
T coll(ncontmax,nstatemax)
                                                    control matrix
                                       +
                               real
nVcoll
                                                    number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
                               int
                                       +
                                                                                                                                                                          0
coll(nvelmax)
                                                    values
                               real
Vcoll(nvelmax)
                               real
                                                    speeds (CAS or TAS)
                                                longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)
                                                    connection to aircraft controls (0 none, 1 input T matrix)
INPUT Ingcyc
                               int
                                                                                                                                                                          1
T Ingcyc(ncontmax,nstatemax)
                               real
                                                    control matrix
nVIngcyc
                               int
                                       +
                                                    number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                          0
Ingcyc(nvelmax)
                               real
VIngcyc(nvelmax)
                                                    speeds (CAS or TAS)
                               real
                                       +
                                                lateral cyclic (tip-path plane tilt or no-feathering plane tilt)
                                                    connection to aircraft controls (0 none, 1 input T matrix)
INPUT latcyc
                               int
                                                                                                                                                                          1
T latcyc(ncontmax,nstatemax)
                                                    control matrix
                               real
                                                    number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                          0
nVlatcyc
                               int
latcyc(nvelmax)
                               real
                                       +
                                                    speeds (CAS or TAS)
Vlatcyc(nvelmax)
                               real
                                       +
```

		+	incidence i (nacelle tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	$\operatorname{cant} c$	
INPUT_cant	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_cant(ncontmax,nstatemax)	real	+	control matrix	
nVcant	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
cant(nvelmax)	real	+	values	
Vcant(nvelmax)	real	+	speeds (CAS or TAS)	
		+	diameter $f_{ m diam}$ (variable diameter only)	
INPUT_diam	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{diam}(ncontmax, nstatemax)$	real	+	control matrix	
nVdiam	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fdiam(nvelmax)	real	+	values	
Vdiam(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{\rm gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax,nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	
		+	reaction drive net force $F_{ m react}$	
INPUT_Freact	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_Freact(ncontmax, nstatemax)$	<u>(</u>)			
	real	+	control matrix	
nVFreact	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
Freact(nvelmax)	real	+	values	
VFreact(nvelmax)	real	+	speeds (CAS or TAS)	

```
aircraft controls connected to individual controls of component, c = Tc_{AC} + c_0
    for each component control, define matrix T (for each control state) and value c_0
         flight state specifies control state, or that control state obtained from conversion schedule
     c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
    by connecting aircraft control to component control, flight state can specify component control value
     initial values if control is connected to trim variable; otherwise fixed for flight state
```

16

pylon moves with rotor; nontilting part is engine nacelle

```
Trim Targets
                                                  rotor lift
nVlift
                                                      number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                int
Klift(nvelmax)
                                real
                                                      target
                                                      speeds (CAS or TAS)
Vlift(nvelmax)
                                real
                                         +
                                                  rotor propulsive force
                                                      number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVprop
                                int
Kprop(nvelmax)
                                real
                                                      speeds (CAS or TAS)
Vprop(nvelmax)
                                real
                                                   target definition determined by Aircraft%trim quant
                                                   Klift can be fraction total aircraft lift, lift, C_L/\sigma, or C_T/\sigma
                                                   Kprop can be fraction total aircraft drag, propulsive force -X, -C_X/\sigma, or -X/q)
                                             Rotor Thrust Capability (C_T/\sigma \text{ vs } \mu)
                                                  sustained
                                                      number of points (maximum 20)
nsteady
                                int
                                                                                                                                                                               16
                                                      advance ratio
mu steady(20)
                                real
                                         +
                                                      C_T/\sigma
```

CTs_steady(20)

mu tran(20)

CTs tran(20)

ntran

real

int

real

real

+

+

+

transient

advance ratio

 C_T/σ

number of points (maximum 20)

K0_limit K1_limit	+ real + real +	equation, $C_T/\sigma = K_0 - K_1 \mu^2$ constant K_0 constant K_1	0.17 0.25
		CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim defaults used if CTs(1)=0. default CTs_steady = $.170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042$ default CTs_tran = $.200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040$ default mu_steady = $0.,.10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78$ default mu_tran = $0.,.10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,.80,.82,.84,.86$	
	+	Performance	
MODEL_perf	int + PRotorInd	power model (1 standard, 2 table model)	1
PRotorInd PRotorPro	PRotoring PRotorPro	standard model, induced power standard model, profile power	
PRotorTab	PRotorTab	table model	
MODEL Ftpp	int +	inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)	2
MODEL_Fpro	int +	inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	2
		if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required	
	+	Interference	
MODEL_int	int +	model (0 none, 1 standard, 2 with transition)	1
	+	transition	
Vint_low	real +	low velocity (knots)	0.
Vint_high	real +	high velocity (knots)	0.
IRotor	IRotor	standard model	
		Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all with transition: interference factors linearly vary from Kint at $V \leq \text{Vint_low}$ to 0 at $V \geq \text{Vint_high}$	

		+	Geometry	
SET_aeroaxes	int	+	hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor)	1
pitch_aero	real	+	pitch relative shaft axes $\theta_{\mathrm{ref}}, C^{BS} = Y_{-\theta_{\mathrm{ref}}}$	0.
SET_Spylon	int	+	pylon wetted area (1 fixed, input Swet; 2 scaled, W_{gbrs} ; 3 scaled, W_{gbrs} and W_{ES})	2
Swet_pylon	real	+	area $S_{ m pylon}$	0.
kSwet_pylon	real	+	factor, $k = S_{ m pylon}/(w/N_{ m rotor})^{2/3}$ (Units_Dscale)	1.0
SET_Sduct	int	+	duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct)	2
S_{duct}	real	+	area $S_{ m duct}$	0.
fLength_duct	real	+	duct length (fraction rotor radius)	1.2
SET_Sspin	int	+	spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet)	2
Swet_spin	real	+	area $S_{ m spin}$	0.
fSwet_spin	real	+	factor, $k = S_{ m spin}/A_{ m spin}$	1.0
fRadius_spin	real	+	spinner radius (fraction rotor radius)	0.
			Derived geometry	
CBS(3,3)	real		pylon axes relative shaft, C^{BS}	
CBF(3,3)	real		pylon axes relative airframe, C^{BF} (zero shaft control)	
Radius_spin	real		spinner radius $R_{ m spin}$	
			only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller	
			SET_Spylon, pylon wetted area: input (use Swet_pylon) or calculated (from kSwet_pylon) units of kSwet are $\rm ft^2/lb^{2/3}$ or $\rm m^2/kg^{2/3}$	
			$w=W_{gbrs}$ (drive system) or $W_{gbrs}+\sum W_{ES}$ (drive system and engine system) pylon wetted area used for pylon drag	
			rotor pylon must be consistent with engine group nacelle	
			SET_Sduct, duct area: input (use S_duct) or calculated (from fLength_duct) $S_{\rm duct} = (2\pi R)\ell_{\rm duct}, \ell_{\rm duct} = {\rm fLength_duct}*R; \text{ used for drag (wetted area } 2S_{\rm duct}) \text{ and weight}$	
			SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin) $A_{\rm spin} = \pi R_{\rm spin}^2 = {\rm spinner\ frontal\ area\ (from\ fRadius_spin*R)}; \ {\rm spinner\ radius\ used\ for\ drag\ and\ weight}$	

		+	Drag	
MODEL_drag	int	+	model (0 none, 1 standard)	1
ldrag	real	+	incidence angle for helicopter nominal drag (deg; 0 for not tilt)	0.
DRotor	DRotor		standard model	
			Derived drag	
DoQC_hub	real		hub cruise drag, area $(D/q)_{ m hub}$	
DoQH_hub	real		hub helicopter drag, area $(D/q)_{ m hub}$	
DoQV_hub	real		hub vertical drag, area $(D/q)_{ m hub}$	
DoQC_pylon	real		pylon cruise drag, area $(D/q)_{ m pylon}$	
DoQH_pylon	real		pylon helicopter drag, area $(D/q)_{\rm pylon}$	
DoQV_pylon	real		pylon vertical drag, area $(D/q)_{ m pylon}$	
$DoQC_duct$	real		duct cruise drag, area $(D/q)_{ m duct}$	
DoQH_duct	real		duct helicopter drag, area $(D/q)_{ m duct}$	
$DoQV_duct$	real		duct vertical drag, area $(D/q)_{ m duct}$	
DoQ_spin	real		spinner drag, area $(D/q)_{ m spin}$	
Swet_rotor	real		total wetted area $S_{ m wet}$	
		+	Download and blockage	
MODEL_download	int	+	model (0 none, 1 blockage, 2 download, 3 both)	0
download	real	+	download $DL = \Delta T/T$	0.
blockage	real	+	blockage $B = \Delta T/T$	0.
muDL	real	+	advance ratio μ_{DL} (0. for no correction)	0.16
zDL	real	+	height above ground $(z_q/D)_{DL}$ (fraction diameter, 0. for no correction)	0.41
aDL	real	+	forward flight constant a_{DL}	1.04
bDL	real	+	ground effect constant b_{DL}	0.23
			- -	

download: rotor induced and profile power evaluated at thrust increased by $f_{DL}=1/(1-\Delta T/T)$ blockage: force acting on aircraft includes $f_B=(\Delta T/T)T$ opposing thrust download DL and blockage B are for hover, out of ground effect download and blockage zero for $\mu>\mu_{DL}$ or $z_g/D<(z_g/D)_{DL}$

MoDEL_weight Meight Forter group for empennage or propulsion group) Forter group for g			+	Weight	
MODEL_weight int model (0 input, 1 NDARC, 2 custom) 1	Weight	Weight		· ·	
MODEL_weightint real re		•	+		
dWhade real + blade dWhub real + hub and hinge 0 dWshaft real + inter-rotor shaft 0 dWspin real + fairing/spinner 0 dWrfold real + blade fold 0 dWrfold real + tail rotor 0 dWaux real + auxiliary thrust 0 dWduct real + auxiliary thrust 0 dWduct real + duct 0 WRotor WRotor WDARC model 0 0 Wblade tip real + blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI) 1 1 AI real + blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI) 1 1 AI real + tip weight (freation blade radius) 0 0 Wblade tip real	MODEL_weight	int	+		1
dWhubreal+hub and hinge0.dWshaftreal+inter-rotor shaft0.dWspinreal+fairing/spinner0.dWrfoldreal+blade fold0.dWrrreal+tail rotor0.dWauxreal+auxiliary thrust0.dWsuptreal+auxiliary thrust0.dWductreal+duct0.WRotorWRotorNDARC modelSET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from Al)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{\text{blade}}L_{\text{blade}}\Omega^2/P$ (sec)3.0Wblade_tipreal+distributed weight (fraction blade radius)0.9fWblade_tipreal+distributed weight (fraction blade radius)0.6wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wtipreal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)1.0TECH_bladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)1.0TECH_bladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)1.0TECH_spinreal+blade weight (fraction total tail rotor weigh			+	weight increment	
dWshaftreal+inter-rotor shaft0.dWspinreal+fairing/spinner0.dWrfoldreal+blade fold0.dWtrreal+tail rotor0.dWauxreal+auxiliary thrust0.dWsuptreal+auxiliary thrust0.dWductreal+duct0.WRotorWDARC modelNDARC model0.SET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from Al)1Alreal+autorotation index $KE/P = \frac{1}{2}N_{\text{blade}}N_{\text{blade}}^2P/P$ (sec)3.0Wblade_tipreal+location tip weight (fraction blade radius)0.9rbladereal+location tip weight (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5TECH_bladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)1.0TECH_bladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5TECH_bladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)1.0TECH_spinreal+blade weight (fraction total tail rotor wing weight)1.0TECH_spinreal	dWblade	real	+	blade	0.
dWspinreal+fairing/spinner0dWrfoldreal+blade fold0dWtrreal+tail rotor0dWauxreal+auxiliary thrust0dWrsuptreal+rotor support structure0dWductreal+duct0WRotorWRotorNDARC model0SET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{blade}I_{blade}\Omega^2/P$ (sec)3.0Wblade_tipreal+location tip weight (fraction blade radius)0.0rWblade_tipreal+location tip weight (fraction blade radius)0.6rWbladereal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55TECH_bladereal+blade weight χ_{blade} 1.0TECH_shaftreal+blade weight χ_{blade} 1.0TECH_spinreal+blade weight χ_{blade} 1.0TECH_froldreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+tail rotor weight χ_{spin} 1.0TECH_suptreal+tail	dWhub	real	+	hub and hinge	0.
dWrfold real + blade fold 0. dWtr real + tail rotor 0. dWtr real + tail rotor 0. dWaw real + auxiliary thrust 0. dWaw real + auxiliary thrust 0. dWrsupt real + duct 0. dWduct real + duct 0. dWduct real + duct 0. dWduct real + duct 0. dwdwaw real + distributed weight (fraction blade radius) 0. dwdwaw real + distributed weight (fraction blade radius) 0. do real + duct 0. dwdwaw real 0.	dWshaft	real	+	inter-rotor shaft	0.
dWtrreal+tail rotor0dWauxreal+auxiliary thrust0dWrsuptreal+rotor support structure0dWductreal+duct0WRotorWRotorNDARC model1SET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from A1)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{blade}I_{blade}\Omega^2/P$ (sec)3.0Wblade_tipreal+location tip weight (freation blade radius)0.9fWblade_tipreal+location tip weight (freation blade radius)0.6xWbladereal+radius of gyration for distributed mass (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5TECH_bladereal+blade weight χ_{blade} 1.0TECH_shaftreal+blade weight χ_{blade} 1.0TECH_spinreal+blade fold weight χ_{blade} 1.0TECH_rofolreal+tail rotor weight χ_{tr} 1.0TECH_auxreal <td>dWspin</td> <td>real</td> <td>+</td> <td>fairing/spinner</td> <td>0.</td>	dWspin	real	+	fairing/spinner	0.
dWauxreal+auxiliary thrust0dWrsuptreal+rotor support structure0.dWductreal+duct0.WRotorWRotorNDARC modelSET_lbladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{\rm blade}I_{\rm blade}\Omega^2/P$ (sec)3.0Wblade_tipreal+location tip weight (fraction blade radius)0.9fWblade_tipreal+distributed weight for centrifugal force (fraction blade radius)0.6rbladereal+distributed weight for centrifugal force (fraction blade radius)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (all blades; required for drive system weight)Wipreal+blade weight (all blades; required for drive system weight)TECH_bladereal+blade weight $\chi_{\rm blade}$ 1.0TECH_bsinreal+hub and hinge weight $\chi_{\rm blade}$ 1.0TECH_spinreal+fairing/spinner weight $\chi_{\rm spin}$ 1.0TECH_rofldreal+tail rotor weight $\chi_{\rm tr}$ 1.0TECH_auxreal+tail rotor weight $\chi_{\rm tr}$ 1.0TECH_auxreal+tail rotor weight $\chi_{\rm spin}$ 1.0TECH_rosptreal+tail ro	dWrfold	real	+	blade fold	0.
dWrsupt dWductreal real real real WRotor+ duct NDARC modelSET_Iblade AI AI real blade weight (frection blade radius) real real real real real real real blade weight (fraction total tail rotor or auxiliary thrust rotor weight) weight on wing tip (required for drive system weight) weight on wing tip (required for tiltrotor wing weight)Wblade Wtip TECH_blade TECH_blade TECH_shaft TECH_spin real TECH_spin real real real real real blade weight χ_{blade} real blade weight χ_{blade} real real blade weight χ_{blade} real blade weight χ_{blade} real blade weight χ_{blade} real real blade weight χ_{blade} real blade weight χ_{blade} real real real blade weight χ_{blade} real real blade weight χ_{blade} real real real blade weight χ_{blade} real real blade weight χ_{blade} real real real blade fold weight χ_{blade} real real blade fold weight χ_{blade} real real real real blade fold weight χ_{blade} real <br< td=""><td>dWtr</td><td>real</td><td>+</td><td>tail rotor</td><td>0.</td></br<>	dWtr	real	+	tail rotor	0.
dWductreal+duct0WRotorWRotorNDARC modelSET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{\text{blade}}I_{\text{blade}}\Omega^2/P$ (sec)3.0Wblade_tipreal+tip weight (per blade)0rWblade_tipreal+location tip weight (fraction blade radius)0.9fWbladereal+radius of gyration for distributed mass (fraction Wblade_tip)1.0rbladereal+radius of gyration for distributed mass (fraction blade radius)0.5Wbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladereal+blade weight (all blades; required for drive system weight)Wtipreal+blade weight (all blades; required for drive system weight)TECH_bladereal+blade weight χ_{blade} TECH_bladereal+blade weight χ_{blade} TECH_shaftreal+blade weight χ_{blade} TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_foldreal+fairing/spinner weight χ_{fold} 1.0TECH_foldreal+blade fold weight χ_{fold} 1.0TECH_suptreal+auxiliary thrust weight χ_{supt} 1.0TECH_suptreal+auxiliary thrust weight χ	dWaux	real	+	auxiliary thrust	0.
WRotorWRotorNDARC modelSET_lbladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{blade}I_{blade}\Omega^2/P$ (sec)3.0Wblade_tipreal+tip weight (per blade)0.0rWblade_tipreal+location tip weight (fraction blade radius)0.9fWblade_tipreal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+blade weight for centrifugal force (fraction blade radius)0.5xWbladereal+blade weight (fraction total tail rotor or auxiliary thrus toror weight)0.5Wtipreal+blade weight (fraction total tail rotor or auxiliary thrus toror weight)weight on wing tip (required for drive system weight)Wtipreal+blade weight χ_{blade} 1.0TECH_bladereal+blade weight χ_{blade} 1.0TECH_shaftreal+blade weight χ_{blade} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_foldreal+blade fold weight χ_{fold} 1.0TECH_auxreal+auxiliary thrust weight χ_{supt} 1.0TECH_rsuptreal+auxiliary thrust weight χ_{supt} 1.0	dWrsupt	real	+	rotor support structure	0.
SET_Ibladeint+blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)1AIreal+autorotation index $KE/P = \frac{1}{2}N_{\text{blade}}\Omega^2/P$ (sec)3.0Wblade_tipreal+tip weight (per blade)0.rWblade_tipreal+location tip weight (fraction blade radius)0.9rWblade_tipreal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+radius of gyration for distributed mass (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.5Wbladereal+blade weight (all blades; required for drive system weight)Wtipreal+blade weight (all blades; required for drive system weight)TECH_bladereal+blade weight χ_{blade} TECH_bladereal+blade weight χ_{blade} TECH_shaftreal+hub and hinge weight χ_{blade} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_spinreal+fairing/spinner weight χ_{fold} 1.0TECH_foldreal+tail rotor weight χ_{fold} 1.0TECH_auxreal+tail rotor weight χ_{fold} 1.0TECH_auxreal+tail rotor support structure weight χ_{supt} 1.0	dWduct	real	+	duct	0.
Al real + autorotation index $KE/P = \frac{1}{2}N_{\text{blade}}\Omega^2/P$ (sec) 3.0 Wblade_tip real + tip weight (per blade) 0. rWblade_tip real + location tip weight (fraction blade radius) 0.9 fWblade_tip real + distributed weight for centrifugal force (fraction Wblade_tip) 1.0 rblade real + radius of gyration for distributed mass (fraction blade radius) 0.5 wblade real + blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55 Wblade real + blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55 Wtip real + blade weight (all blades; required for drive system weight) 1.0 TECH_blade real + blade weight χ_{blade} 1.0 TECH_blade real + blade weight χ_{blade} 1.0 TECH_shaft real + hub and hinge weight χ_{bub} 1.0 TECH_spin real + fairing/spinner weight χ_{spin} 1.0 TECH_rfold real + blade fold weight χ_{fold} 1.0 TECH_fux real + tail rotor weight χ_{spin} 1.0 TECH_rsupt real + auxiliary thrust weight χ_{aut} 1.0 TECH_rsupt real + auxiliary thrust weight χ_{supt} 1.0	WRotor	WRotor		NDARC model	
Wblade_tipreal+tip weight (per blade)0.rWblade_tipreal+location tip weight (fraction blade radius)0.9fWblade_tipreal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+radius of gyration for distributed mass (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladereal+blade weight (all blades; required for drive system weight)Wtipreal+blade weight (all blades; required for drive system weight)TECH_bladereal+blade weight χ_{blade} 1.0TECH_bladereal+blade weight χ_{blade} 1.0TECH_shaftreal+hub and hinge weight χ_{hub} 1.0TECH_shaftreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+auxiliary thrust weight χ_{supt} 1.0	SET_Iblade	int	+		1
Wblade_tipreal+tip weight (per blade)0.rWblade_tipreal+location tip weight (fraction blade radius)0.9fWblade_tipreal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+radius of gyration for distributed mass (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladereal+blade weight (all blades; required for drive system weight)Wtipreal+blade weight (all blades; required for drive system weight)TECH_bladereal+blade weight χ_{blade} 1.0TECH_bladereal+blade weight χ_{blade} 1.0TECH_shaftreal+hub and hinge weight χ_{hub} 1.0TECH_shaftreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+auxiliary thrust weight χ_{supt} 1.0	Al	real	+	autorotation index $KE/P = \frac{1}{2}N_{\rm blade}I_{\rm blade}\Omega^2/P$ (sec)	3.0
fWblade_tipreal+distributed weight for centrifugal force (fraction Wblade_tip)1.0rbladereal+radius of gyration for distributed mass (fraction blade radius)0.6xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladereal+blade weight (all blades; required for drive system weight)-Wtipreal+Technology FactorsTECH_bladereal+blade weight χ_{blade} 1.0TECH_hubreal+hub and hinge weight χ_{hub} 1.0TECH_spinreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{supt} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0	Wblade_tip	real	+	tip weight (per blade)	0.
rblade real + radius of gyration for distributed mass (fraction blade radius) 0.6 xWblade real + blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55 Wblade real blade weight (all blades; required for drive system weight) real weight on wing tip (required for tiltrotor wing weight) 1.0 TECH_blade real + blade weight χ_{blade} 1.0 TECH_shaft real + inter-rotor shaft χ_{shaft} 1.0 TECH_spin real + fairing/spinner weight χ_{fold} 1.0 TECH_rfold real + blade fold weight χ_{fold} 1.0 TECH_tr real + tail rotor weight χ_{fold} 1.0 TECH_aux real + auxiliary thrust weight χ_{supt} 1.0 TECH_supt real + rotor support structure weight χ_{supt} 1.0	$rWblade_tip$	real	+	location tip weight (fraction blade radius)	0.9
xWbladereal+blade weight (fraction total tail rotor or auxiliary thrust rotor weight)0.55Wbladerealblade weight (all blades; required for drive system weight)Wtiprealweight on wing tip (required for tiltrotor wing weight)TECH_bladereal+blade weight χ_{blade} TECH_hubreal+hub and hinge weight χ_{hub} 1.0TECH_shaftreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{supt} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0	$fWblade_tip$	real	+	distributed weight for centrifugal force (fraction Wblade_tip)	1.0
Wbladerealblade weight (all blades; required for drive system weight)Wtiprealweight on wing tip (required for tiltrotor wing weight)TECH_bladerealblade weight χ_{blade} TECH_hubrealhub and hinge weight χ_{hub} TECH_shaftrealhub and hinge weight χ_{shaft} TECH_spinrealfairing/spinner weight χ_{spin} TECH_rfoldrealblade fold weight χ_{fold} TECH_trrealtail rotor weight χ_{tr} TECH_auxrealauxiliary thrust weight χ_{supt} TECH_rsuptrealrotor support structure weight χ_{supt}	rblade	real	+	radius of gyration for distributed mass (fraction blade radius)	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\times Wblade	real	+	blade weight (fraction total tail rotor or auxiliary thrust rotor weight)	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wblade	real		blade weight (all blades; required for drive system weight)	
TECH_bladereal+blade weight $\chi_{\rm blade}$ 1.0TECH_hubreal+hub and hinge weight $\chi_{\rm hub}$ 1.0TECH_shaftreal+inter-rotor shaft $\chi_{\rm shaft}$ 1.0TECH_spinreal+fairing/spinner weight $\chi_{\rm spin}$ 1.0TECH_rfoldreal+blade fold weight $\chi_{\rm fold}$ 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight $\chi_{\rm supt}$ 1.0	Wtip	real		weight on wing tip (required for tiltrotor wing weight)	
TECH_hubreal+hub and hinge weight χ_{hub} 1.0TECH_shaftreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0			+		
TECH_shaftreal+inter-rotor shaft χ_{shaft} 1.0TECH_spinreal+fairing/spinner weight χ_{spin} 1.0TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0	$TECH_blade$	real	+	blade weight $\chi_{ m blade}$	1.0
TECH_spinreal+fairing/spinner weight $\chi_{\rm spin}$ 1.0TECH_rfoldreal+blade fold weight $\chi_{\rm fold}$ 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight $\chi_{\rm supt}$ 1.0	TECH_hub	real	+		1.0
TECH_rfoldreal+blade fold weight χ_{fold} 1.0TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0	$TECH_shaft$	real	+	inter-rotor shaft $\chi_{ m shaft}$	1.0
TECH_trreal+tail rotor weight χ_{tr} 1.0TECH_auxreal+auxiliary thrust weight χ_{at} 1.0TECH_rsuptreal+rotor support structure weight χ_{supt} 1.0	TECH_spin	real	+		1.0
TECH_aux real + auxiliary thrust weight χ_{at} 1.0 TECH_rsupt real + rotor support structure weight $\chi_{\rm supt}$ 1.0	$TECH_{rfold}$	real	+	blade fold weight $\chi_{ m fold}$	1.0
TECH_rsupt real + rotor support structure weight χ_{supt} 1.0	TECH_tr	real	+		1.0
	TECH_aux	real	+		1.0
TECH_duct real + duct weight χ_{duct} 1.0		real	+		
	TECH_duct	real	+	duct weight χ_{duct}	1.0

Chapter 46

Variable	Type		Description	Default
-		+	Rotor Induced Power, Standard Energy Performance Method	
MODEL_ind	int	+	model (0 none, 1 constant, 2 standard)	2
		+	induced velocity factors (ratio to momentum theory induced velocity)	
Ki_hover	real	+	hover $\kappa_{ m hover}$	1.12
Ki_climb	real	+	axial climb $\kappa_{ m climb}$	1.08
Ki_prop	real	+	axial cruise (propeller) κ_{prop}	2.0
Ki_edge	real	+	edgewise flight (helicopter) κ_{edge}	2.0
		+		
CTs_Hind	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for hover κ_h variation	0.08
kh1	real	+	coefficient k_{h1} for κ_h	0.
kh2	real	+	coefficient k_{h2} for κ_h	0.
Xh2	real	+	exponent X_{h2} for κ_h	2.
CTs_Pind	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for axial κ_p variation	0.08
kp1	real	+	coefficient k_{p1} for κ_p	0.
kp2	real	+	coefficient k_{p2} for κ_p	0.
Xp2	real	+	exponent X_{p2} for κ_p	2.
CTs_Tind	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for edgewise κ_e variation	0.08
kt1	real	+	coefficient k_{t1} for κ_e	0.
kt2	real	+	coefficient k_{t2} for κ_e	0.
Xt2	real	+	exponent X_{t2} for κ_e	2.
		+	variation with shaft angle	
kpa	real	+	coefficient $k_{p\alpha}$ for κ_p	0.
Xpa	real	+	exponent $X_{p\alpha}$ for κ_p	2.
		+	variation with propulsive force	
kpx	real	+	coefficient k_{px} for κ_p	0.
Xpx	real	+		1.
		+		
Maxial	real	+	constant $M_{ m axial}$ from hover to climb	1.176

Xaxial	real	+	exponent X_{axial} from hover to climb	0.65
mu_axtran	real	+	advance ratio $\mu_{z{ m tran}}$ from hover to axial	0.
		+	variation with axial velocity	
mu_prop	real	+	advance ratio $\mu_{z \text{prop}}$ for Ki_prop	1.0
ka1	real	+	coefficient k_{a1} for $\kappa(\mu_z)$ (linear)	0.
ka2	real	+	coefficient k_{a2} for $\kappa(\mu_z)$ (quadratic)	0.
ka3	real	+	coefficient k_{a3} for $\kappa(\mu_z)$	0.
Xa	real	+	exponent X_a for $\kappa(\mu_z)$	4.5
		+	variation with edgewise velocity	
$MODEL_edge$	int	+	model for edgewise κ relative axial κ (0 replace, 1 sum)	0
mu_edge	real	+	advance ratio $\mu_{ ext{edge}}$ for Ki_edge	0.35
ke1	real	+	coefficient k_{e1} for $\kappa(\mu)$ (linear)	0.8
ke2	real	+	coefficient k_{e2} for $\kappa(\mu)$ (quadratic)	0.
ke3	real	+	coefficient k_{e3} for $\kappa(\mu)$	1.
Xe	real	+	exponent X_e for $\kappa(\mu)$	4.5
kea	real	+	variation with rotor drag $k_{e\alpha}$	0.
		+	variation with lift offset	
ko1	real	+	coefficient k_{o1} for f_{off}	0.
ko2	real	+	factor k_{o2} for $f_{\rm off}$	8.
Ki_min	real	+	minimum $\kappa_{ m min}$	1.
Ki_max	real	+	maximum $\kappa_{ m max}$	10.
fedge	real		edgewise scale factor S	
fprop	real		axial scale factor S	
			MODEL_ind=constant uses only Ki_hover, Ki_prop, Ki_edge	
			nonzero values of Ki in FltState supersede calculated value	
		+	Climb power	
$MODEL_climb$	int	+	model (0 for no climb power increment, 1 vertical, 2 edgewise, 3 both)	0
		+	vertical flight	
nclimb_vert	int	+	number of climb values (maximum 20)	
$Vclimb_vert(20)$	real	+	climb speed V_c/v_h	
fclimb_vert(20)	real	+	climb power factor f	

```
edgewise forward flight
nclimb edge
                               int
                                                    number of climb values (maximum 20)
Vclimb edge(20)
                                                    climb speed V_c/v_h
                               real
                                        +
fclimb edge(20)
                                                    climb power factor f
                               real
                                        +
                                                  climb power factor f(V_c/v_h) gives P_{\text{climb}} - P_{\text{level}} = TV_c f
                                                       including TV_c and effect of climb on induced and profile power
                                                  intended for use with table model for level flight power
                                            Momentum theory
                                                inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold)
MODEL grad
                                                                                                                                                                           1
                               int
                                                    longitudinal gradient factor f_x
                                                                                                                                                                          1.
fGradx
                                        +
                               real
                                                    lateral gradient factor f_u
fGrady
                                        +
                                                                                                                                                                          1.
                               real
                                                hub moment inflow gradient factor f_m
fGradm
                               real
                                        +
                                                                                                                                                                          1.
                                            Ground effect
MODEL GE
                                                model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 T table, 8 P table)
                                                                                                                                                                           3
                               int
                                                effective height correction C_q
                                                                                                                                                                          1.
Cge
                               real
                                        +
                                        +
                                                table
KIND GEtable
                                                    table kind (2 2D, 3 3D)
                                                                                                                                                                           2
                               int
                                        +
                                                    number of C_T/\sigma values (maximum ngetabmax)
nCTsGE
                               int
                                        +
                                                                                                                                                                           0
nhGE
                                                    number of h/D values (maximum ngetab2max)
                                                                                                                                                                           0
                               int
                                        +
                                                    number of M_{\rm tip} values (maximum ngetab2max)
nMtipGE
                                        +
                                                                                                                                                                           0
                               int
CTsGE(ngetabmax)
                                                    blade loading C_T/\sigma
                               real
                                        +
                                                    rotor height above ground h/D
hGE(ngetab2max)
                                        +
                               real
MtipGE(ngetab2max)
                                                    rotor tip Mach number M_{\rm tip}
                               real
                                        +
                                                    ground effect factor \kappa_q = x(C_T/\sigma, h/D) or f_q = x(C_T/\sigma, h/D)
xGE(ngetabmax,ngetab2max)
                               real
xGE3(ngetabmax,ngetab2max,ngetab2max)
                                                    ground effect factor \kappa_q = x(C_T/\sigma, h/D, M_{\rm tip}) or f_q = x(C_T/\sigma, h/D, M_{\rm tip})
                               real
                                        +
```

MODEL_GE: table options for $\kappa_g=T/T_\infty$ or $f_g=P/P_\infty$ as function of blade loading C_T/σ and rotor height above ground h/D (fraction rotor diameter), and perhaps tip Mach number $M_{\rm tip}$

Cge: for tiltrotors, typically $C_g=0.5$; smaller effective height accounting for increased influence of ground compared to isolated rotor

+ Ducted fan

$MODEL_duct$	int	+	model (1 specify area ratio, 2 specify thrust ratio)	1
fDuctA	real	+	area ratio f_A (fan area/far wake area)	1.
fDuctT	real	+	thrust ratio f_T (rotor thrust/total thrust)	0.5
fDuctVx	real	+	velocity ratio f_{Vx} (fan edgewise velocity/free stream velocity)	1.
fDuctVz	real	+	velocity ratio f_{Vz} (fan axial velocity/free stream velocity)	1.
eta_duct	real	+	duct efficiency η_D (total pressure loss through duct)	1.

ducted fan model used only if config='duct'

+ Twin rotors

MODEL_twin	c*12	+	model (based on config, none, side-by-side, coaxial, tandem, multirotor)	'config'
Kh_twin	real	+	ideal induced velocity correction for hover $\kappa_{h ext{twin}}$	1.00
Kp_twin	real	+	ideal induced velocity correction for propeller $\kappa_{p ext{twin}}$	1.00
Kf_twin	real	+	ideal induced velocity correction for forward flight $\kappa_{f ext{twin}}$	0.85
Cind_twin	real	+	constant C in axial to forward flight transition	1.0
Caxial_twin	real	+	constant C_a in hover to propeller transition	1.0
A_coaxial	real	+	coaxial rotor nonuniform disk loading factor $\bar{\alpha}$	1.05
$xh_multi(nrotormax)$	real	+	multirotor thrust factor x_h for hover	1.0
$xp_multi(nrotormax)$	real	+	multirotor thrust factor x_p for propeller	1.0
xf_multi(nrotormax)	real	+	multirotor thrust factor x_f for forward flgiht	1.0

Derived twin rotors

		Berried twin rotors
iMODEL_twin	int	model (MODEL_twin_none, sidebyside, coaxial, tandem, multirotor)
xh	real	thrust factor x_h , hover
хр	real	thrust factor x_p , propeller
xf1	real	thrust factor x_{f1} , forward flight, this rotor
xf2	real	thrust factor x_{f2} , forward flight, other rotor

MODEL_twin: 'config', 'none', 'side-by-side' or 'tiltrotor', 'coaxial', 'tandem', or 'multirotor' 'config' must identify rotor as twin or multiple rotors coaxial: MODEL_twin='coaxial' (use A_coaxial; Kh_twin not used) or MODEL_twin='tandem' with zero horizontal separation (typically Kh_twin=0.90) coaxial and tandem: Kf_twin = 0.88 to 0.81 for rotor separation 0.06D to 0.12D

thrust factors x calculated for twin rotors, input for multiple rotors correction factors and transition constants $(\kappa_{\text{twin}}, C, C_a)$ used for twin or multiple rotors

Chapter 47

Structure: PRotorPro

Variable	Type		Description	Default
		+	Rotor Profile Power, Standard Energy Performance Method	
		+	Technology factor	
TECH_drag	real	+	profile power χ	1.0
Re_ref	real	+	Reference Reynolds number Re_{ref} (0. for no correction)	0.
X_Re	real	+	exponent for Reynolds number correction X_{Re}	0.2
MODEL_basic	int	+	Basic model c_{dbasic} (0 none, 1 array, 2 equation)	2
		+	array (c_d vs thrust-weighted C_T/σ)	
ncd	int	+	number of points (maximum 24)	24
CTs_cd(24)	real	+	blade loading	
cd(24)	real	+	drag coefficient	
		+	equation	
CTs_Dmin	real	+	$(C_T/\sigma)_{D{ m min}}$ for minimum profile drag ($\Delta= C_T/\sigma-(C_T/\sigma)_{D{ m min}})$	0.07
d0_hel	real	+	coefficient $d_{0\text{hel}}$ in drag, $c_{dh} = d_{0\text{hel}} + d_{1\text{hel}}\Delta + d_{2\text{hel}}\Delta^2 + \Delta c_{d\text{sep}}$ (hover/edgewise)	0.009
d1_hel	real	+	coefficient $d_{1\text{hel}}$ in drag (hover/edgewise)	0.
d2_hel	real	+	coefficient $d_{2\text{hel}}$ in drag (hover/edgewise)	0.5
d0_prop	real	+	coefficient $d_{0\text{prop}}$ in drag, $c_{dp} = d_{0\text{prop}} + d_{1\text{prop}}\Delta + d_{2\text{prop}}\Delta^2 + \Delta c_{d\text{sep}}$ (axial)	0.009
d1_prop	real	+	coefficient $d_{1\text{prop}}$ in drag (axial)	0.
d2_prop	real	+	coefficient $d_{2\text{prop}}$ in drag (axial)	0.5
dprop	real	+	variation with shaft angle, coefficient $d_{p\alpha}$ for c_{dp}	0.
Xprop	real	+	variation with shaft angle, exponent $X_{p\alpha}$ for c_{dp}	2.
CTs_sep	real	+	$(C_T/\sigma)_{\rm sep}$ for separation $(\Delta c_{\rm dsep} = d_{\rm sep}(C_T/\sigma - (C_T/\sigma)_{\rm sep})^{X_{\rm sep}})$	0.07
dsep	real	+	factor d_{sep} in drag increment	4.0
Xsep	real	+	exponent $X_{\rm sep}$ in drag increment	3.0
df1	real	+	variation with edgewise velocity, coefficient d_{f1}	0.
df2	real	+	variation with edgewise velocity, coefficient d_{f2}	0.
Xf	real	+	variation with edgewise velocity, exponent X_f	2.

Structure: PRotorPro

C	z1	real	+	variation with axial velocity, coefficient d_{z1}	0.
c	z2	real	+	variation with axial velocity, coefficient d_{z2}	0.
)	ζz	real	+	variation with axial velocity, exponent X_z	2.

default array (cd(1)=0.): C_T/σ = 0. to 0.23 (uniform increments) cd = .01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977, .01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

nonzero values of cdo in FltState supersede calculated cdmean

$MODEL_stall$	int	+	Stall model c_{dstall} (0 none)	1
		+	C_T/σ at stall $(\Delta_s= C_T/\sigma -(f_s/f_{lpha}f_{ m off})(C_T/\sigma)_s, \Delta c_d=d_{s1}\Delta_s^{X_{s1}}+d_{s2}\Delta_s^{X_{s2}})$	
nstall	int	+	number of points (maximum 20)	10
mu_stall(20)	real	+	advance ratio $V/V_{ m tip}$	
CTs_stall(20)	real	+	$(C_T/\sigma)_s$	
fstall	real	+	constant f_s in stall drag increment	1.0
dstall1	real	+	factor d_{s1} in stall drag increment	2.
dstall2	real	+	factor d_{s2} in stall drag increment	40.
Xstall1	real	+	exponent X_{s1} in stall drag increment	2.0
Xstall2	real	+	exponent X_{s2} in stall drag increment	3.0
		+	variation with lift offset	
do1	real	+	coefficient d_{o1} for f_{off}	0.
do2	real	+	factor d_{o2} for $f_{ m off}$	8.
dsa	real	+	variation with rotor drag d_{slpha}	0.

default used if CTs_stall(1)=0. default CTs_stall = 0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10

 $default\ \mathsf{mu_stall} = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.80$

Structure: PRotorPro 205

MODEL_comp	int	+	Compressibility model $c_{d\text{comp}}$ (0 none, 1 drag divergence, 2 similarity, 3 tip Mach number)	1
$MODEL_comp_ff$	int	+	compressibility increment (0 only used for hover or axial flight)	1
		+	similarity model	
fSim	real	+	factor f	1.0
thick_tip	real	+	blade tip thickness-to-chord ratio $ au$	0.08
		+	drag divergence model ($\Delta_m = M_{at} - M_{dd}, \Delta c_d = d_{m1}\Delta_m + d_{m2}\Delta_m^{X_m}$)	
dm1	real	+	coefficient d_{m1} in drag increment	0.056
dm2	real	+	coefficient d_{m2} in drag increment	0.416
Xm	real	+	exponent X_m in drag increment	2.0
		+	drag divergence Mach number ($M_{dd} = Mdd0 - Mddcl\ c_\ell$)	
Mdd0	real	+	M_{dd0} at zero lift	0.88
Mddcl	real	+	derivative with lift $\kappa = \partial M_{dd}/\partial c_\ell$	0.16
		+	tip Mach number model	
dmt	real	+	coefficient d_{mt}	
Mtip_limit	real	+	tip Mach number limit $M_{ m tiplimit}$	
CT_limit	real	+	thrust coefficient limit $C_{T m limit}$	
Mtip_ref	real	+	reference tip Mach number $M_{ m tipref}$	
MODEL_propeff	int	+	Propulsive force efficiency (0 none)	0
DoQ_ref	real	+	reference propulsive force $(D/q)_{ref}$	
nCTs_eff	int	+	number of blade loading values (maximum 20)	
nV_eff	int	+	number of rotor velocity values (maximum 20)	
CTs_eff(20)	real	+	blade loading C_T/σ	
V_eff(20)	real	+	rotor velocity $V/V_{ m tip}$	
propeff(20,20)	real	+	efficiency for propulsive force increment $\eta(C_T/\sigma, V/V_{\rm tip})$	

propeff: efficiency η gives $\Delta P_o = V \Delta D(1/\eta - 1)$

DoQ_ref corresponds to baseline profile and induced power models intended for use with table model for power at baseline propulsive force

Chapter 48

Structure: PRotorTab

Variable	Type		Description	Default
		+	Performance, Table Method	
$MODEL_indTab$	int	+	induced power model (0 standard, 1 table, 2 table with equations)	1
nvar_ind	int	+	number independent variables (1 to 3)	0
var_ind(3)	c*12	+	variables	, ,
nv_ind(3)	int	+	number of variable values (maximum ntablemax)	0
$v_{ind}(ntablemax,3)$	real	+	independent variable	
MODEL_proTab	int	+	profile power model (0 standard, 1 table, 2 table with equations)	1
KIND_proTab	int	+	profile power model (0 standard, 1 table $c_{d\text{mean}}$, 2 table $c_{d\text{mean}}F = 8C_{Po}/\sigma$)	1
nvar_pro	int	+	number independent variables (1 to 3)	0
var_pro(3)	c*12	+	variables	, ,
nv_pro(3)	int	+	number of variable values (maximum ntablemax)	0
v_pro(ntablemax,3)	real	+	independent variable	
MODEL_geTab	int	+	ground effect model (0 inflow, 1 table thrust, 2 table power)	0
		+	table	
Ki(ntablemax,ntablemax,r	ıtablemax)			
•	real	+	induced power factor κ	
cdo(ntablemax,ntablemax	ntablemax)		•	
•	real	+	profile power mean c_d	
			Derived	
ivar_ind(3)	int		induced power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)	
ivar_pro(3)	int		profile power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)	

independent variables: var_ind and var_pro

'V': flight speed $V/V_{\rm tip}$ 'Vh': horizontal speed $V_h/V_{\rm tip}$

'mu', 'muHP': edgewise advance ratio μ (hub plane)

'muz', 'muzHP': axial velocity ratio μ_z (hub plane)

Structure: PRotorTab

```
'alpha', 'alphaHP': shaft angle-of-attack \alpha = \tan^{-1}(\mu_z/\mu) (hub plane)
```

'muTPP': edgewise advance ratio μ (tip-path plane) 'muzTPP': axial velocity ratio μ_z (tip-path plane)

'alphaTPP': shaft angle-of-attack $\alpha = \tan^{-1}(\mu_z/\mu)$ (tip-path plane)

'CTs', 'CT/s': blade loading C_T/σ 'Mx', 'offset': lift offset M_x/TR 'Mtip': tip Mach number $M_{\rm tip}$

'Mat': advancing tip Mach number M_{at}

MODEL_geTab: ground effect included in inflow, or table power evaluated at thrust decreased by κ_g , or table power decreased by f_g

MODEL_download ≥ 2 : table induced and profile power evaluated at thrust increased by $f_{DL} = 1/(1 - \Delta T/T)$

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

Chapter 49

Variable	Type		Description	Default
		+	Rotor Drag, Standard Model	
		+	forward flight drag	
SET_Dhub	int	+	hub drag specification (1 fixed, D/q ; 2 scaled, C_D ; 3 scaled, squared-cubed; 4 scaled, square-root)	2
DoQ_hub	real	+	area $(D/q)_{ m hub}$	
CD_hub	real	+	coefficient $C_{D \text{hub}}$ (based on rotor area, $D/q = SC_D$)	0.0024
kDrag_hub	real	+	$k = (D/q)/(W/1000)^{2/3}$ or $(D/q)/W^{1/2}$ (Units_Dscale)	0.8
SET_Dpylon	int	+	pylon drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_pylon	real	+	area $(D/q)_{ m pylon}$	
CD_pylon	real	+	coefficient $C_{D\text{pylon}}$ (based on pylon wetted area, $D/q = SC_D$)	0.
SET_Dduct	int	+	duct drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_duct	real	+	area $(D/q)_{ m duct}$	
CD_duct	real	+	coefficient $C_{D ext{duct}}$ (based on duct wetted area, $D/q = SC_D$)	0.
SET_Dspin	int	+	spinner drag specification (1 fixed, D/q ; 2 scaled, C_D)	1
DoQ_spin	real	+	area $(D/q)_{ m spin}$	0.
CD_spin	real	+	coefficient $C_{D\text{spin}}$ (based on spinner wetted area, $D/q = SC_D$)	0.
		+	vertical drag	
SET_Vhub	int	+	hub drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV_hub	real	+	area $(D/q)_{V{ m hub}}$	
CDV_hub	real	+	coefficient $C_{DV \text{hub}}$ (based on rotor area, $D/q = SC_D$)	0.
SET_Vpylon	int	+	pylon drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV_pylon	real	+	area $(D/q)_{V m pylon}$	
CDV_pylon	real	+	coefficient $C_{DVpylon}$ (based on pylon wetted area, $D/q = SC_D$)	0.
SET_Vduct	int	+	duct drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQV_{duct}$	real	+	area $(D/q)_{V m duct}$	
CDV_{duct}	real	+	coefficient $C_{DV \mathrm{duct}}$ (based on duct wetted area, $D/q = SC_D$)	0.

		+	stopped/stowed rotor	
		+	forward flight hub drag	
$DoQ_hubstop$	real	+	area $(D/q)_{ m hub-stop}$	0.
CD_hubstop	real	+	coefficient $C_{D \text{hub-stop}}$ (based on rotor area, $D/q = SC_D$)	0.
$DoQ_hubstow$	real	+	area $(D/q)_{ m hub-stow}$	0.
CD_hubstow	real	+	coefficient $C_{D \text{hub-stow}}$ (based on rotor area, $D/q = SC_D$)	0.
		+	vertical hub drag	
$DoQV_hubstop$	real	+	area $(D/q)_{V m hub-stop}$	0.
CDV_hubstop	real	+	coefficient $C_{DV \text{hub-stop}}$ (based on rotor area, $D/q = SC_D$)	0.
$DoQV_hubstow$	real	+	area $(D/q)_{V m hub-stow}$	0.
$CDV_hubstow$	real	+	coefficient $C_{DV \text{hub-stow}}$ (based on rotor area, $D/q = SC_D$)	0.
		+	stopped blade drag	
$CD_bladestop$	real	+	coefficient $C_{D\rm blade}$ (based on blade area, $D/q = SC_D$)	0.
		+	transition from forward flight drag to vertical drag	
$MODEL_Dhub$	int	+	hub drag model (0 none, 1 general, 2 quadratic)	2
$MODEL_Dpylon$	int	+	pylon drag model (0 none, 1 general, 2 quadratic)	2
$MODEL_Dduct$	int	+	duct drag model (0 none, 1 general, 2 quadratic)	2
X_hub	real	+	hub drag, transition exponent X_d	2.
X_pylon	real	+	pylon drag, transition exponent X_d	2.
X_{duct}	real	+	duct drag, transition exponent X_d	2.
Xh	real		hub drag, transition exponent X_d (derived)	
Хр	real		pylon drag, transition exponent X_d (derived)	
Xd	real		duct drag, transition exponent X_d (derived)	

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes tiltrotor with nontilting engines: use nacelle drag as well rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

```
SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub units of kDrag are ft^2/klb^{2/3} or m^2/Mg^{2/3}; ft^2/lb^{1/2} or m^2/kg^{1/2} CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs kDrag (2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)
```

kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters, 0.038 for hingeless rotors, 0.027 for faired hubs (English units) $W = f_W W_{MTO} \mbox{ (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)} \label{eq:weight}$

stopped/stowed rotor: areas or coefficients (based on SET_Dhub and SET_Vhub) replace hub drag

Chapter 50

Structure: IRotor

Variable	Type		Description	Default
		+	Rotor Interference, Standard Model	
		+	model	
MODEL_develop	int	+	development along wake axis (1 step function, 2 nominal, 3 input Xdevelop)	3
Xdevelop	real	+	rate parameter t	0.2
MODEL_boundary	int	+	immersion in wake (1 step function, 2 always immersed, 3 input Xboundary)	3
MODEL_contract	int	+	far wake contraction (0 no, 1 yes)	1
Xboundary	real	+	boundary transition s (fraction contracted radius)	0.2
MODEL_int_twin	int	+	twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin)	1
Ktwin	real	+	velocity factor in overlap region K_T	1.4142
Nint_wing(nwingmax)	int	+	number wing span stations	6
Nint_tail(ntailmax)	int	+	number tail span stations	2
		+	interference factors K_{int} (0. for no interference)	
Kint_fus	real	+	at fuselage	1.0
Kint_wing(nwingmax)	real	+	at wing	1.0
Kint_tail(ntailmax)	real	+	at tail	1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all interference factor linearly transition from Kint at $V \leq \text{Vint_low}$ to 0 at $V \geq \text{Vint_high}$

to account for wing or tail area in wake, interference averaged at Nint points along span

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.

MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary= ∞

MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin= $\sqrt{2}$

For tiltrotors, typically the interference is wing-like, with $C_{\rm int}\cong -0.06$

Chapter 51

Variable	Type		Description	Default
		+	Rotor Group, NDARC Weight Model	
$MODEL_config$	int	+	model (1 rotor, 2 tail rotor, 3 auxiliary thrust)	1
MODEL_Wblade	int	+	blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic)	1
MODEL_Whub	int	+	hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic	c) 1
MODEL_Wshaft	int	+	inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length)	0
		+	AFDD00 weight models	
MODEL_type	int	+	hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes)	1
KIND_rotor	int	+	rotor kind (for blade weight; 1 tilting, 2 not)	2
		+	AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed)	
flapfreq_blade	real	+	blade (0. to use flapfreq)	0.
flapfreq_hub	real	+	hub (0. to use flapfreq_blade)	0.
		+	lift offset rotor	
MODEL_offset	int	+	rotor tip clearance (for blade weight; 1 scaled, 2 fixed)	1
offset	real	+	design lift offset L (roll moment/ TR)	0.3
thick20	real	+	blade airfoil thickness-to-chord ratio $\tau_{.2R}$ (at 20%R)	0.21
clearance_tip	real	+	tip clearance, scaled s/R or fixed s (ft or m)	0.05
thick25	real	+	Boeing: blade airfoil thickness-to-chord ratio $\tau_{.25R}$ (at 25%R)	0.15
rattach	real	+	Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius)	0.09
		+	generic blade	
Kblade	real	+	factor $K_{ m blade}$	0.
XbldN	real	+	exponent $X_{\mathrm{bld}N}$	0.
XbldR	real	+	exponent $X_{\mathrm{bld}R}$	0.
Xbldc	real	+	exponent $X_{\mathrm{bld}c}$	0.
XbldV	real	+	exponent $X_{\mathrm{bld}V}$	0.
Xbldf	real	+	exponent $X_{\mathrm{bld} u}$	0.
XbldW	real	+	exponent $X_{\mathrm{bld}W}$	0.

		+	generic hub	
Khub	real	+	factor $K_{ m hub}$	0.
XhubN	real	+	exponent $X_{\mathrm{hub}N}$	0.
XhubR	real	+	exponent $X_{\mathrm{hub}R}$	0.
Xhubc	real	+	exponent $X_{\mathrm{hub}c}$	0.
XhubV	real	+	exponent $X_{ m hub}V$	0.
Xhubf	real	+	exponent $X_{ m hub}_ u$	0.
XhubW	real	+	exponent $X_{\mathrm{hub}W}$	0.
MODEL_tr	int	+	tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR)	1
thick70	real	+	GARTEUR: blade airfoil thickness-to-chord ratio $\tau_{.7R}$ (at 70%R)	0.11
MODEL_aux	int	+	auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic)	1
thrust_aux	real	+	AFDD82: design maximum thrust T_{at}	0.
power_aux	real	+	AFDD10: design maximum power P_{at}	0.
material_aux	real	+	AFDD10: material factor f_m	1.
		+	generic propeller	
Kat	real	+	factor $K_{ m at}$	0.
XatN	real	+	exponent $X_{\mathrm{at}N}$	0.
XatR	real	+	exponent $X_{\mathrm{at}R}$	0.
Xatc	real	+	exponent $X_{\mathrm{at}c}$	0.
XatV	real	+	exponent $X_{\mathrm{at}V}$	0.
XatP	real	+	exponent $X_{\mathrm{at}P}$	0.
fWfold	real	+	blade fold weight $f_{ m fold}$ (fraction total blade weight)	0.
fWsupt	real	+	rotor support structure weight (fraction maximum takeoff weight)	0.
Usupt	real	+	rotor support weight per length $U_{ m supt}$ (lb/ft or kg/m)	0.
fshaft	real	+	rotor shaft length (fraction rotor radius) $f_{ m shaft}$	0.
Ushaft	real	+	rotor shaft weight per length $U_{ m shaft}$ (lb/ft or kg/m)	0.
Uduct	real	+	duct weight per area U_{duct} (lb/ft ² or kg/m ²)	1.5

MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or separate blade and hub weights)

duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

The AFDD00 hub weight equation using the calculated blade weight (MODEL_type = 0) results in a lower average error, and best represents legacy rotor systems.

Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than trend.

if thrust_aux $\neq 0$, supersedes design maximum thrust of rotor from sizing task

if power_aux $\neq 0$, supersedes design maximum power of rotor from sizing task

material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction default Ω_{prop} is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold

rotor support structure weight must be consistent with engine support and pylon support weights of engine section

+ Custom Weight Mod	del		Model	M	ght	Weis	Custom	+
---------------------	-----	--	-------	---	-----	------	--------	---

		' '	custom weight woder	
$WtParam_rotor(8)$	real	+	parameters	0.
		•	Weight Model Input	
]	Blade	
nblade_b	int		number of blades	
radius_b	real		radius	
chord_b	real		blade mean chord	
taper_b	real		blade taper ratio	
Vtip_b	real		hover tip speed	
flapfreq_b	real		blade flap frequency	
HoD_b	real		coaxial separation h/D (for lift offset)	
SDGW_b	real		structural design gross weight (for lift offset)	
nz_b	real		design ultimate flight load factor at SDGW (for lift offset and Boeing)	
WMTO_b	real		maximum takeoff weight	
		1	Hub and hinge	
nblade_h	int		number of blades	
radius_h	real		radius	
chord_h	real		blade mean chord	
taper_h	real		blade taper ratio	

Vtip_h	real	hover tip speed
flapfreq_h	real	blade flap frequency
Wbld_h	real	blade weight
SDGW_h	real	structural design gross weight (for lift offset)
nz_h	real	design ultimate flight load factor at SDGW (for lift offset)
WMTO_h	real	maximum takeoff weight
		Shaft
radius_s	real	radius
chord_s	real	blade mean chord
taper_s	real	blade taper ratio
HoD_s	real	coaxial separation h/D (for lift offset)
SDGW_s	real	structural design gross weight (for lift offset)
nz_s	real	design ultimate flight load factor at SDGW (for lift offset)
		Fold
Wbld_f	real	blade weight
		Spinner
Dspin_n	real	spinner diameter (for Wspin)
		Support structure
WMTO_p	real	maximum takeoff weight
radius_p	real	radius
		Rotor/fan duct
$Sduct_d$	real	duct area
		Tail rotor
radius_t	real	radius
$Qlimit_t$	real	PSDlimit*R_mr/Vtip (for tail rotor)
		Auxiliary thrust
nblade_a	int	number of blades
radius_a	real	radius
chord_a	real	blade mean chord
Vtip_a	real	hover tip speed
RPMprop_a	real	propeller speed (rpm)
Taux_a	real	aux thrust Tdesign
Paux_a	real	aux power Pdesign

Chapter 52

Variable	Type		Description Description	efault
		+	Wing	
title	c*100	+	title	
notes	c*1000	+	notes	
kWing	int		wing number	
		+	Geometry	
wingload	real	+	wing loading $W/S = f_W W_D/S$	
fDGW	real	+	fraction DGW f_W (for wing loading)	1.0
area	real	+	area S	
span	real	+	$\operatorname{span} b$	
chord	real	+	$\operatorname{chord} c$	
AspectRatio	real	+	aspect ratio AR	
			wing parameters: for each wing; input two quantities, other two derived (SizeParam input)	_
			SET_wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel'),	
			'chord', aspect ratio 'aspect'	
			SET_wing = 'ratio+XX' to calculate span from span of another wing	
			SET_wing = 'radius+XX' to calculate span from rotor radius	

rotor stopped as wing: identified by wing number Rotor%StopAsWing for stoppable rotor use SET_wing='area+span', area = blade geometric area, span = 2R, nPanel=1, zero weight wing aerodynamic loads calculated when FltAircraft%STOP_rotor = stopped as wing

SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)

if wing sized from wing loading (SET_wing='WL+xx'), area = fDGW*DGW/wingload

SET_wing = 'panel+XX' to calculate span from wing panel widths

SET_wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)

		+	Geometry	
		+	rotors	
nRotorOnWing	int	+	number of rotors mounted on wing	0
RotorOnWing(nrotormax)	int	+	rotor numbers	
		+	span calculation	
fSpan	real	+	ratio wing span to span of other wing, or to rotor radius	1.0
otherWing	int	+	other wing number	0
RotorForSpan	int	+	rotor number for span (if nRotorOnWing=0)	0
RotorOnPanel(npanelmax)	int	+	rotor at wing panel edge	
thick	real	+	thickness ratio $ au_w$.23
$fWidth_box$	real	+	wing torque box chord w_{tb} (fraction wing chord)	0.45
SET_ac	int	+	aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)	0
dSLac	real	+	stationline	0.
dBLac	real	+	buttline	0.
dWLac	real	+	waterline	0.
SET_cg	int	+	center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)	0
dSLcg	real	+	stationline	0.
dWLcg	real	+	waterline	0.

RotorOnWing required for SET_wing = 'radius' or 'width' or 'hub'; MODEL_wing = tiltrotor; SET_Vdrag = airfoil c_{d90} RotorOnPanel required for SET_panel = 'radius' or 'width' or 'hub' SET_wing = 'radius' gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations

taper and sweep calculated for entire wing from wing panel geometry

fWidth_box used by tiltrotor weight equations thick and fWidth_box used for fuel in wing

+ Geometry (for graphics)

twist real + twist 0.

Geometry (derived)

taper real taper ratio

sweep	real		sweep (+ aft, deg)	
dihedral	real		dihedral (+ up, deg)	
MAC	real		mean aerodynamic chord \bar{c}_A	
×AC	real		mean aerodynamic center chordwise offset from root aero center \bar{x}_A (+ aft)	
zAC	real		mean aerodynamic center vertical offset from root aero center \bar{z}_A (+ up)	
StoppedRotor	int		stopped rotor number (0 not)	
		+	Geometry	
loc_wing	Locatio	on +	aerodynamic center location	
nPanel	int	+	number of wing panels (maximum npanelmax)	1
KIND_ACoffset	int	+	aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord)	1
_		+	Wing Panels	
SET_panel(npanelmax)	c*24	+	panel parameters	'span+taper'
span_panel(npanelmax)	real	+	span (one side), b_p	
area_panel(npanelmax)	real	+	area (both sides), S_p	
$chord_panel(npanelmax)$	real	+	mean chord, c_p	
fspan_panel(npanelmax)	real	+	ratio span to wing span (one side), $b_p/(b/2)$	1.
farea_panel(npanelmax)	real	+	ratio area to wing area (both sides), S_p/S	1.
fchord_panel(npanelmax)	real	+	ratio mean chord to wing chord, c_p/c	1.
		+	panel edges	
edge_panel(npanelmax)	real	+	outboard edge, y_E	
fedge_panel(npanelmax)	real	+	outboard edge, $\eta_E = y/(b/2)$	1.
lambdal(npanelmax)	real	+	inboard chord ratio, $c_I/c_{ m ref}$	1.
lambdaO(npanelmax)	real	+	outboard chord ratio, $c_O/c_{ m ref}$	1.
		+	aerodynamic center locus	
$sweep_panel(npanelmax)$	real	+	sweep Λ_p (deg, + aft)	0.
$dihedral_panel(npanelmax)$	real	+	dihedral δ_p (deg, + up)	0.
$d \times AC_panel(npanelmax)$	real	+	chordwise offset at panel inboard edge x_{Ip} (+ aft)	0.
$dzAC_panel(npanelmax)$	real	+	vertical offset at panel inboard edge z_{Ip} (+ up)	0.
		+	control surfaces	
$fchord_flap(npanelmax)$	real	+	flap chord $\ell_F = c_F/c_p$ (fraction panel chord)	0.25
$fchord_flaperon(npanelmax)$	real	+	flaperon/aileron chord $\ell_f = c_f/c_p$ (fraction panel chord)	0.25
$fspan_flap(npanelmax)$	real	+	flap span $f_b = b_F/b_p$ (fraction panel span)	0.5
$fspan_flaperon(npanelmax)$	real	+	flaperon/aileron span $f_b = b_f/b_p$ (fraction panel span)	0.5
$fAC_aileron(npanelmax)$	real	+	aileron aerodynamic center lateral position y	0.7

```
SET wing, wing parameters: for each wing; input two quantities, other two derived
     SET_wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel')
     SET wing = 'chord', aspect ratio 'aspect'
     SET_wing = 'ratio+XX' to calculate span from span of another wing
     SET wing = 'radius+XX' to calculate span from rotor radius
     SET_wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
     SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)
     SET wing = 'panel+XX' to calculate span from wing panel widths
wing panels: SET panel not required with only one panel
SET panel: specify consistent definition of panels (span, edge, area, chord)
     panel span: 'span' or 'bratio', else free
         'span' = input span panel, b_p
         'bratio' = input ratio to wing span, fspan panel, b_p/(b/2)
     panel outboard edge: 'edge', 'station', 'width', 'hub', or 'adjust' (not used for tip panel)
         'edge' = input edge panel, y_E
         'station' = input fraction wing semispan fedge panel, \eta_E = y/(b/2)
         'radius' = from rotor radius
         'width' = from rotor radius, fuselage width, and clearance (tiltrotor)
         'hub' = from rotor hub position (tiltrotor)
         'adjust' = from adjacent input panel span or span ratio
     panel area or chord: 'area', 'Sratio', 'chord', 'cratio', 'taper', else free
         'area' = input area panel, S_n
         'Sratio' = input ratio to wing area, farea_panel, S_p/S
         'chord' = input chord_panel, c_p
         'cratio' = input ratio to wing chord, fchord_panel, c_p/c
         'taper' = from chord ratios lambdal and lambdaO
     require consistent definition of panel spans and outboard edges, and consistent with SET wing
         all edges known (from input edge or station, or from adjacent panel span or span ratio)
         resulting edges unique and sequential
         if wing span calculated from panel widths:
              one and only one input panel span or span ratio that not used to define edge
         if known span: no input panel span or span ratio that not used to define edge
```

```
usually best that any free span defined for inboard panel, not outboard panel
    panel area or chord:
        if one or more taper (and no free), calculate c_{\rm ref} from wing area
        if one (and only one) free, calculate S_p from wing area
fAC aileron: from panel inboard edge, fraction panel span
    for nPanel=1, from centerline and fraction wing semispan
Example input for typical wing geometry
Tiltrotor, one panel:
    Size: SET wing='WL+width', ! span from radius, fuselage width, and clearance; and wing loading
    Rotor: SET geom='tiltrotor',KIND TRgeom=1, ! rotor lateral position (BL) from clearance
        WingForRotor=1,otherRotor=1/2,
        clearance fus=x.,
        fclearance fus=1.,
    Fuselage: Width fus=x.,
    Wing: wingload=x.,
        nRotorOnWing=2,RotorOnWing=1,2,
        nPanel=1.
        SET_panel='span+taper',lambdal=1.,lambdaO=1.,! not required with only one panel
Tiltrotor with wing extension, two panels
    Size: SET_wing='WL+panel', ! span from wing panel widths; and wing loading
    Rotor: SET_geom='tiltrotor',KIND_TRgeom=1, ! rotor lateral position (BL) from clearance
        WingForRotor=1,otherRotor=1/2,PanelForRotor=1,
        clearance fus=x.,
        fclearance fus=1.,
    Fuselage: Width fus=x.,
    Wing: wingload=x.,
        nRotorOnWing=2,RotorOnWing=1,2,
        nPanel=2.
        SET panel='width+taper', 'span+taper', ! outboard edge from R, Width fus, and clearance; from span panel
        RotorOnPanel=1, 0,
        span panel=0., x.,
        lambdal=1., 1.,
        lambdaO=1., x.,
```

```
sweep panel=x., x.,
        dihedral panel=x., x.,
        SET_ext=1,kPanel_ext=2,KIT_ext=0,! wing extension
General wing, two panels, define chord and span of both
    Size: SET_wing='panel+area', ! span from wing panel widths; and wing area
    Rotor: SET_geom='standard',
    Wing: area=x.,
        nPanel=2,
        SET_panel='span+chord','span+free', ! span from span_panel; chord from inboard chord_panel and area
        span_panel=x., x.,
        chord panel=x., x.,
Tiltwing, three panels, four rotors
    inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
    outboard hub at 3.6R (1.85R between hubs, overlap = .075)
    wing tip at 4.2R (0.6R from outboard hub)
    Size: SET_wing='WL+radius', ! calculate span from rotor radius; and wing loading
    Rotor: right/right-inboard/left-inboard/left
        SET_geom='tiltrotor',KIND_TRgeom=3, ! rotor lateral position (BL) from wing panel edge
        WingForRotor=1,
        positionOfRotor=1/1/-1/-1, ! right/left
        PanelForRotor=2/1/1/2,
    Wing: wingload=x.,
        nRotorOnWing=4,RotorOnWing=1,2,3,4,
        fSpan=4.2, ! fSpan=b/D
        nPanel=3,
        SET_panel='station+cratio','station+cratio','station+free',
        fedge panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
        fchord panel=1., 1., 1.,
```

			Derived geometry	
iSET_panel_span(npanelmax)	int		span (SET_panel_span, bratio, free)	
iSET_panel_edge(npanelmax)	int		edge (SET_panel_edge, station, radius, width, hub, adjust)	
$iSET_panel_area(npanelmax)$	int		area (SET_panel_area, Sratio, chord, cratio, taper, free)	
kind_area	int		kind area and chord solution (1 tapered panels, 2 free panel)	
chordl(npanelmax)	real		inboard chord c_{Ip}	
chordO(npanelmax)	real		outboard chord c_{Op}	
$eAC_aileron(npanelmax)$	real		aileron aerodynamic center lateral position y (from centerline, fraction wing semispan)	
$rArea_flap(npanelmax)$	real		flap area/panel area	
$rArea_flaperon(npanelmax)$	real		flaperon-aileron area/panel area	
$Ktef_flap(4,npanelmax)$	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
$Ktef_flaperon(4,npanelmax)$	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
rArea_Wflap	real		total flap area/wing area	
$rArea_Wflaperon$	real		total flaperon-aileron area/wing area	
isConsistent	int		consistent geometry (0 if calculated geometry not consistent)	
		+	Wing Extensions	
SET_ext	int	+	extension (0 for none)	0
kPanel ext	int	+	wing panel number	2
KIT_ext	int	+	wing extension as kit (0 not kit)	0
areaX	real		extension area S_X (both sides)	
spanX	real		extension span b_X (one side)	
areal	real		inboard area $(S - S_X)$	
spanl	real		inboard span $(b-2b_X)$	
area_flapI	real		inboard flap area	
area_flaperonl	real		inboard flaperon-aileron area	
AspectRatiol	real		inboard wing aspect ratio	
sweepl	real		inboard wing sweep	
taperl	real		inboard wing taper	
		+	Wing Kit	
KIT_wing	int	+	wing as kit (0 not, 1 kit, 2 kit as fixed useful load)	0
fWkit	real	+	kit weight (fraction total wing weight)	0.

		+	Controls (each panel)	
		+	kind deflection	
$KIND_flap(npanelmax)$	int	+	flap (1 fraction root flap; 2 increment relative root flap; 3 independent)	3
KIND_aileron(npanelmax)	int	+	aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent)	3
KIND_incid(npanelmax)	int	+	incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent)	3
$KIND_flaperon(npanelmax)$	int	+	kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent)	1
		+	flap δ_{Fp}	
INPUT_flap(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_flap(ncontmax,nstatemax,n)$	panelmax	<)		
	real	+	control matrix	
nVflap(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flap(nvelmax,npanelmax)	real	+	values	
Vflap(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
		+	flaperon δ_{fp}	
$INPUT_flaperon(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{flaperon}(ncontmax, nstatem)$	ax,npane	elmax)		
	real	+	control matrix	
nVflaperon(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flaperon(nvelmax,npanelmax)				
	real	+	values	
Vflaperon(nvelmax,npanelmax))			
	real	+	speeds (CAS or TAS)	
		+	aileron δ_{ap}	
$INPUT_{aileron}(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{a}ileron(ncontmax,nstatemax)$	k, npanelr	max)		
	real	+	control matrix	
nVaileron(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
aileron(nvelmax,npanelmax)	real	+	values	
${\sf Vaileron(nvelmax,npanelmax)}$				
	real	+	speeds (CAS or TAS)	

		+	incidence i_p	
INPUT_incid(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$,npanelm	ax)		
	real	+	control matrix	
nVincid(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax,npanelmax)	real	+	values	
Vincid(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
		+	flow control momentum coefficient C_{μ}	
INPUT_flow(npanelmax)	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_flow(ncontmax,nstatemax,	npanelma	x)		
	real	+	control matrix	
nVflow(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flow(nvelmax,npanelmax)	real	+	values	
Vflow(nvelmax, npanelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$	
			for each component control, define matrix T (for each control state) and value c_0	
			flight state energifies control state, or that control state obtained from conversion schedule	

for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

target definition determined by Aircraft%trim_quant Klift can be fraction total aircraft lift, lift, or C_L

MODEL_aero Idrag AWing DoQC_wing	int real AWing real	++++	Aerodynamics $ \begin{array}{c} \text{model (0 none, 1 standard)} \\ \text{incidence angle i for helicopter nominal drag (deg; 0 for not tilt)} \\ \text{standard model} \\ \text{Derived drag} \\ \text{wing cruise drag, area } (D/q)_{\text{wing}} \\ \end{array} $	1 0.
DoQH_wing	real		wing helicopter drag, area $(D/q)_{\rm wing}$	
DoQV_wing	real		wing vertical drag, area $(D/q)_{\rm wing}$	
DoQ_wb	real		wing-body interference drag, area $(D/q)_{wb}$	
Swet	real		total wetted area $S_{ m wet}$	
$prop_flow(3)$	int		propulsion for flow control (group (1 engine, 2 jet), number, model)	
		+	Weight	
Weight	Weight		weight statement (component)	
		+	wing group	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	_
dWprim	real	+	wing primary structure	0.
dWext	real	+	wing extension	0.
dWfair	real	+	fairing	0.
dWfit	real	+	fittings	0.
dWflap	real	+	flaps and control surfaces	0.
dWwfold	real	+	wing fold	0.
dWefold	real	+	wing extension fold	0.
WWing	WWing	ζ	NDARC model (except tiltrotor)	
WWingTR	WWing	χTR	NDARC tiltrotor model	
		+	tiltrotor model	
fWtip	real	+	factor for weight on wing tips	1.
×Wtip	real	+	increment for weight on wing tips	0.
Wwing_total	real		wing weight	
Wwing_ext	real		wing extension weight	
Wwing_kit	real		wing kit weight	
Wtip_total	real		weight on wing tips	

		+	Technology Factors	
TECH_prim	real	+	wing primary structure (torque box) weight $\chi_{\rm prim}$	1.0
TECH_ext	real	+	wing extension weight $\chi_{ m ext}$	1.0
TECH_fair	real	+	fairing weight $\chi_{ m fair}$	1.0
TECH_fit	real	+	fittings weight $\chi_{ m fit}$	1.0
TECH_flap	real	+	flaps and control surfaces weight $\chi_{\rm flap}$	1.0
TECH_wfold	real	+	wing fold weight $\chi_{ m fold}$	1.0
$TECH_efold$	real	+	wing extension fold weight $\chi_{ m efold}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of

rotor group, engine section or nacelle group, air induction group,

engine system, drive system (less drive shaft), rotary wing and conversion flight controls,

hydraulic group, trapped fluids, wing tip extensions

fWtip and xWtip adjust Wtip_total, without changing weight statements

negative increment required when engine and transmission not at tip location with rotor

Chapter 53

Variable	Type		Description	Default
		+	Wing Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
CLmax	real	+	maximum lift coefficient $C_{L{ m max}}$	1.5
SET_compress	int	+	compressibility correction (0 none, 1 lift, 2 drag, 3 both)	0
		+	lift	
SET_lift	int	+	specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$)	2
dCLda	real	+	lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad)	5.73
Tind	real	+	lift curve slope non-elliptical loading correction $ au$	0.25
Eind	real	+	Oswald or span efficiency $e\left(C_{Di}=(C_L-C_{L0})^2/(\pi eAR)\right)$	0.8
CL_Dmin	real	+	lift coefficient for minimum induced drag C_{L0}	0.
dCLda3D	real		incompressible 3D lift curve slope $C_{L\alpha}$ (derived)	
fDind	real		$1/(\pi eAR)$	
AoA_max	real		$\alpha_{ m max} = C_{L{ m max}}/(dC_L/dlpha_{3D})$ (deg)	
Mdiv	real	+	lift-divergence Mach number $M_{ m div}$	0.75
		+	control (each wing panel)	
eta0(npanelmax)	real	+	lift effectiveness factor $\eta_0, \eta_0 - \eta_1 \delta $	0.85
eta1(npanelmax)	real	+	lift effectiveness factor η_1 , $\eta_0 - \eta_1 \delta $	0.43
Kconl(npanelmax)	real	+	calibration or correction factor for lift K_ℓ	1.
Kconm(npanelmax)	real	+	calibration or correction factor for moment K_m	1.
Kcond(npanelmax)	real	+	calibration or correction factor for drag K_d	1.
Kconx(npanelmax)	real	+	calibration or correction factor for maximum lift K_x	1.
		+	pitch moment	
CMac	real	+	pitch moment coefficient about aerodynamic center $C_{\it Mac}$	0.
		+	Wing Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	

CD	real	+	coefficient C_{D0} (based on wing area, $D/q = SC_D$)	0.012
		+	vertical drag	
SET_{Vdrag}	int	+	specification (1 fixed, D/q ; 2 scaled, C_D ; 3 airfoil c_{d90})	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient, C_{DV} (based on wing area, $D/q = SC_D$)	2.
cd90	real	+	airfoil drag coefficient c_{d90} (-90 deg)	1.4
fd90	real	+	airfoil drag coefficient flap effectiveness factor f_{d90}	2.5
CDcc	real	+	compressibility drag increment C_{Dcc} at M_{cc}	0.0011
Mcc0	real	+	critical Mach number constant M_{cc0}	0.74
Mcc1	real	+	critical Mach number constant M_{cc1}	0.31
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
MODEL	•4	+	drag variation with angle of attack	0
MODEL_drag	int	+	model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for wing minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
MODEL_sep	int	+	separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) $\Delta C_D = C_{D0} K_s (\alpha_e - \alpha_s)^{X_s}$	3
AoA_sep	real	+	angle of attack for separation α_s (deg)	10.
Ksep	real	+	drag increment K_s	0.
Xsep	real	+	drag increment X_s	2.
Xd	real		drag exponent X_d (derived)	
Xs	real		drag exponent X_s (derived)	

transition from forward flight drag to vertical drag angle of attack for transition α_t (deg)

 AoA_tran

real

Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag. If C_{Dp} varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and C_{L0} should be zero).

25.

		+	wing-body interference drag	
SET_wb	int	+	specification (1 fixed, D/q 2 scaled, C_D)	1
DoQ_wb	real	+	area $(D/q)_{wb}$	0.
CD_wb	real	+	coefficient C_{Dwb} (based on wing area, $D/q = SC_D$)	0.
		+	Interference velocity	
Etail(ntailmax)	real	+	angle of attack change at tail, $E=d\epsilon/d\alpha$ (rad/rad)	0.
Kint_wing(nwingmax)	real	+	interference factor K_{int} at other wings (0. for no interference)	0.
		+	interference power factor K_{int} at rotors (0. for no interference)	
Kintn_rotor(nrotormax)	real	+	normal (helicopter)	0.
Kintp_rotor(nrotormax)	real	+	inplane (propeller)	0.

for tandem wings, typically

Kint_wing(aftwing)=2. for front-on-aft interference

Kint_wing(frontwing)=0. for aft-on-front interference

for biplane wings, typically Kint_wing(otherwing)=0.7

with mutual interference (as for biplane), require trim or other iteration for convergence

interference power: inplane (propeller) factor Kintp_rotor negative for favorable

		+	Flow Control; $\Delta C_L = C_{L\alpha}(L_{\mu s}\sqrt{C_{\mu}} + L_{\mu 1}C_{\mu} + L_{\mu 2}C_{\mu}^2), \Delta C_{L \max} = X_{\mu}C_{\mu}, \Delta C_M = M_{\mu}C_{\mu}, \Delta C_D = D_{\mu}C_{\mu}$	
MODEL_flow	int	+	model (0 none)	0
Lmus(npanelmax)	real	+	lift $L_{\mu s}$	1.4
Lmu1(npanelmax)	real	+	lift $L_{\mu 1}$	0.0
Lmu2(npanelmax)	real	+	lift $L_{\mu 2}$	0.0
Xmu(npanelmax)	real	+	maximum lift X_μ	1.0
Mmu(npanelmax)	real	+	moment M_{μ}	0.0
Dmu(npanelmax)	real	+	$\mathrm{drag}\ D_{\mu}$	0.0
Cmu_limit(npanelmax)	real	+	flow limit $C_{\mu m limit}$	1.0

Chapter 54

Variable	Type		Description	Default
		+	Wing Group, NDARC Weight Model	
MODEL_wing	int	+	model (1 area, 2 parametric, 3 tiltrotor, 4 other)	2
MODEL_other	int	+	model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))	
fLift	real	+	lift factor	1.0
bFold	real	+	parametric method: fraction wing span that folds b_{fold} (0 to 1)	0.
wfus	real	+	Boeing: maximum fuselage width (fraction wing span)	
Vdive	real	+	Boeing or Raymer: design dive speed $V_{\rm dive}$ (knots)	200.
rflaplift	real	+	GARTEUR: ratio maximum lift with and without flaps	
		+	area method	
Uprim	real	+	weight per area U_{prim} , wing primary structure (lb/ft ² or kg/m ²)	5.
Uext	real	+	weight per area $U_{\rm ext}$, wing extension (lb/ft ² or kg/m ²)	3.
		+	weight factors (fraction total wing weight)	
fWfair	real	+	fairing $f_{ m fair}$	0.10
fWfit	real	+	fittings $f_{ m fit}$	0.12
fWflap	real	+	flaps and control surfaces $f_{ m flap}$	0.10
fWfold	real	+	wing fold $f_{ m fold}$	0.
fWefold	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.
		+	Custom Weight Model	
$WtParam_wing(8)$	real	+	parameters	0.
			Weight Model Input	
Swing	real		wing area (without extension)	
Sext	real		wing extension area	
sweep	real		sweep angle	
AR	real		aspect ratio	
taper	real		taper ratio	
thick	real		thickness-to-chord ratio	

SDGW real

structural design gross weight design ultimate flight load factor at SDGW landing gear placement (1 on body, 2 on wing) real nz place_LG int

folding SET_fold int

Chapter 55

Variable	Type		Description	Default
		+	Wing Group, NDARC Tiltrotor Weight Model	
		+	jump takeoff condition	
CTs_jump	real	+	rotor maximum blade loading C_T/σ	0.20
n_jump	real	+	load factor n_{jump} at SDGW	2.0
Vtip_jump	real	+	rotor tip speed (0. to use hover $V_{\rm tip}$)	750.0
thickTR	real	+	wing airfoil thickness-to-chord ratio $ au_w$	0.23
		+	width of wing structural attachments to body	
SET_Attach	int	+	definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span)	1
fAttach	real	+	fraction width $w_{ m attach}/w_{ m fus}$	1.
wAttach	real	+	width $w_{\rm attach}$ (ft or m)	0.
fRG_pylon	real	+	pylon radius of gyration $r_{\rm pylon}/R$ (fraction rotor radius)	0.30
		+	wing mode frequencies (per rev, fraction rotor speed)	
freq_beam	real	+	beam bending frequency ω_B	0.5
freq_chord	real	+	chord bending frequency ω_C	0.8
freq_tors	real	+	torsion frequency ω_T	0.9
SET_{refrpm}	int	+	reference rotor speed (0 from input Vtip_freq, 1 hover $V_{\rm tip}$, 2 cruise $V_{\rm tip}$)	0
Vtip_freq	real	+	rotor tip speed	600.
$MODEL_form$	int	+	form factors (1 calculate, 2 input)	1
form_beam	real	+	torque box beam bending F_B	0.6048
form_chord	real	+	torque box chord bending F_C	0.4874
form_tors	real	+	torque box torsion F_T	1.6384
form_spar	real	+	spar caps vertical/horizontal bending F_{VH}	0.5018
eff_spar	real	+	spar structural efficiency e_{sp}	0.8
eff_box	real	+	torque box structural efficiency e_{tb}	0.8
		+	tapered spar cap correction factors	
C_t	real	+	weight correction C_t (equivalent stiffness)	0.75
C_j	real	+	weight correction C_j (equivalent strength)	0.50
C_m	real	+	strength correction C_m (equivalent stiffness)	1.5

		+	material (lb/in ² , in/in, lb/in ³ ; or N/m ² , m/m, kg/m ³)	
E_spar	real	+	spar modulus E_{sp}	10.E6
E_box	real	+	torque box modulus E_{tb}	10.E6
G_box	real	+	torque box shear modulus G_{tb}	4.0E6
StrainU_spar	real	+	spar ultimate strain allowable ϵ_U	0.01
$StrainU_box$	real	+	torque box ultimate strain allowable ϵ_U	0.01
density_spar	real	+	density spar cap $ ho_{sp}$	0.06
density_box	real	+	density torque box ρ_{tb}	0.06
		+	weight per area (lb/ft ² or kg/m ²)	
Ufair	real	+	fairing $U_{ m fair}$	2.
Uflap	real	+	flaps and control surfaces U_{flap}	3.
UextTR	real	+	wing extension $U_{ m ext}$	3.
		+	weight factor	
fWfitTR	real	+	fittings f_{fit} (fraction maximum thrust of one rotor)	0.01
fWfoldTR	real	+	wing fold $f_{\rm fold}$ (fraction total wing weight excluding fold)	0.
fWefoldTR	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.
			jump takeoff: hover $V_{ m tip}$ obtained from RotorOnWing(1) rotor	
			wing frequencies: reference rotor rotation speed from rotor $V_{\rm tip}$ and radius from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise	
			thickTR only used for tiltrotor wing weight	

+ Custom Weight Model

WtParam_wingtr(8) real + parameters 0.

SET_Attach: attachment width used for both torsion stiffness and fairing area

Weight Model Input

span real wing span (without extension)
chord real wing chord
fWtb real width wing torque box (fraction chord)

wfus	real	fuselage width
------	------	----------------

Sflap real area of control surfaces (flap and flaperon)

Sext real wing extension area

Wtip real weight on wing tips (both sides, except wing tip extension)

SDGW real structural design gross weight

radius real blade radius

Vtip_hover real hover tip speed

Vtip_cruise real cruise tip speed

Nrotor int number of rotors (for Tcap)
Ablade real blade area, one rotor (for Tcap)

Chapter 56

Structure: Tail

Variable	Type		Description	Default
		+	Empennage	
title	c*100	+	title	
notes	c*1000	+	notes	
KIND_tail	int	+	kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical)	1
isHortail	int		horizontal tail (0 vertical)	
isVtail	int		V-tail (0 not)	
kTail	int		tail number	
		+	Geometry	
SET_tail	c*16	+	specification	'vol $+$ aspect $'$
area	real	+	area S	
span	real	+	$\operatorname{span} b$	
chord	real	+	$\operatorname{chord} c$	
AspectRatio	real	+	aspect ratio AR	
TailVol	real	+	tail volume V	
KIND_TailVol	int	+	tail volume reference (1 wing, 2 rotor)	2
TailVolRef	int	+	wing or rotor number for tail volume	1
otherVtail	int	+	other V-tail number	

```
KIND_tail used for geometry, baseline orientation, tail volume, tail weight model tail parameters: input two quantities, others calculated SET_tail = input two of ('area' or tail volume 'vol'), ('span' or aspect ratio 'aspect' or 'chord') tail volume reference: tail volume V = S\ell/RA (tailarea * taillength / (diskarea * radius)) or horizontal tail volume V = S\ell/S_w c_w (tailarea * taillength / (wingarea * wingchord)) or vertical tail volume V = S\ell/S_w b_w (tailarea * taillength / (wingarea * wingspan)) V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail) separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero weight only for second tail, based on V-tail area and aspect ratio
```

Structure: Tail

		+	Geometry (for graphics and weights)	
taper	real	+	taper ratio	1.0
sweep	real	+	sweep (+ aft, deg)	0.
dihedral	real	+	dihedral (deg)	0.
thick	real	+	thickness ratio	.12
			Derived geometry	
iSet_tail_area	int		area (SET_tail_area, vol)	
iSet_tail_len	int		length (SET_tail_span, AR, chord)	
Length_tail	real		tail length ℓ	
rArea_control	real		control surface area/tail area	
Ktef_cont(4)	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
CBF(3,3)	real		tail axes relative airframe, C^{BF}	
areaVtail	real		V-tail area S_V	
spanVtail	real		V-tail span b_V	
A spect Ratio V tail	real		V-tail aspect ratio	
		+	Geometry	
loc_tail	Locatio	n +	aerodynamic center location	
cant	real	+	cant angle ϕ (deg)	0.
fchord_cont	real	+	control surface chord c_f/c (fraction tail chord)	0.25
fspan_cont	real	+	control surface span b_f/b (fraction tail span)	1.0
		+	Controls	
		+	elevator δ_e or rudder δ_r	
INPUT_cont	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{cont}(ncontmax,nstatemax)$	real	+	control matrix	
nVcont	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
cont(nvelmax)	real	+	values	
Vcont(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid				
II V III CIU	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)		+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax) values	0

Structure: Tail

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$

for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule

horizontal tail cant angle: + to left (vertical tail for cant = 90) vertical tail cant angle: + to right (horizontal tail for cant = 90)

```
c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
                                                        by connecting aircraft control to comp control, flight state can specify comp control value
                                                        initial values if control is connected to trim variable; otherwise fixed for flight state
                                             Aerodynamics
                                                  model (0 none, 1 standard)
MODEL aero
                                int
                                                                                                                                                                               1
ATail
                                ATail
                                                  standard model
                                             Derived drag
                                                 tail drag, area (D/q)_{\text{tail}}
DoQ tail
                                real
DoQV tail
                                                 tail vertical drag, area (D/q)_{V_{\text{tail}}}
                                real
Swet
                                real
                                                  total wetted area
                                            Weight
                                                  weight statement (component)
Weight
                                Weight
                                                  tail (empennage group)
                                                      model (0 input, 1 NDARC, 2 custom)
MODEL weight
                                int
                                                                                                                                                                               1
                                                      weight increment
dWtail
                                                          basic
                                real
                                                                                                                                                                               0.
dWfold
                                real
                                                          fold
                                                                                                                                                                               0.
WTail
                                                      NDARC model
                                WTail
Wtail total
                                real
                                                  tail weight
                                             Technology Factors
TECH tail
                                                  tail weight \chi_{ht} or \chi_{vt}
                                                                                                                                                                              1.0
                                real
                                                  fold weight \chi_{\text{fold}}
TECH tfold
                                                                                                                                                                              1.0
                                real
                                         +
```

weight model result multiplied by technology factor and increment added:

 $Wxx = TECH \times x^*Wxx \mod d + dWxx$; for fixed (input) weight use MODEL xx=0 or TECH xx=0.

Chapter 57

Structure: ATail

Variable	Type		Description	Default
		+	Tail Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
CLmax	real	+	maximum lift coefficient $C_{L_{\max}}$	1.
SET_compress	int	+	compressibility correction (0 none, 1 lift, 2 drag, 3 both)	0
		+	lift	
SET_lift	int	+	specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$)	2
dCLda	real	+	lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad)	5.73
Tind	real	+	lift curve slope non-elliptical loading correction $ au$	0.25
Eind	real	+	Oswald efficiency $e\left(C_{Di}=(C_L-C_{L0})^2/(\pi eAR)\right)$	0.8
CL_Dmin	real	+	lift coefficient for minimum induced drag C_{L0}	0.
dCLda3D	real		incompressible 3D lift curve slope $C_{L\alpha}$ (derived)	
fDind	real		$1/(\pi e A\!R)$	
AoA_max	real		$\alpha_{ m max} = C_{L{ m max}}/(dC_L/dlpha_{3D})$ (deg)	
Mdiv	real	+	lift-divergence Mach number $M_{ m div}$	0.75
		+	control	
eta0	real	+	lift effectiveness factor $\eta_0, \eta_0 - \eta_1 \delta $	0.85
eta1	real	+	lift effectiveness factor $\eta_1, \eta_0 - \eta_1 \delta $	0.43
Kconl	real	+	calibration or correction factor for lift K_ℓ	1.
Kconm	real	+	calibration or correction factor for moment K_m	1.
Kcond	real	+	calibration or correction factor for drag K_d	1.
Kconx	real	+	calibration or correction factor for maximum lift K_x	1.
		+	Tail Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on tail area, $D/q = SC_D$)	0.011

Structure: ATail

SET_Vdrag DoQV CDV CDcc Mcc0 Mcc1	int real real real real real	+ + + + + +	vertical drag specification (1 fixed, D/q ; 2 scaled, C_D) area $(D/q)_V$ coefficient C_{DV} (based on tail area, $D/q = SC_D$) compressibility drag increment C_{Dcc} at M_{cc} critical Mach number constant M_{cc0} critical Mach number constant M_{cc1}	1. 0.0011 0.74 0.31
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
MODEL_drag	int	+ +	drag variation with angle of attack model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for tail minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
Xd	real		exponent X_d (derived)	
		+	transition from forward flight drag to vertical drag	
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.

Chapter 58

Structure: WTail

Variable	Type		Description	Default
		+	Tail, NDARC Weight Model	
MODEL_tail	int	+	model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail)	3
		+	horizontal tail	
$MODEL_Htail$	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
$MODEL_Hother$	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
KIND_Htail	int	+	Torenbeek or Raymer: kind (1 fixed, 2 variable incidence)	1
wfus	real	+	Raymer: fuselage width at horizontal tail w_f/b_{ht} (fraction span)	0.2
		+	vertical tail	
$MODEL_Vtail$	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
$MODEL_Vother$	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
place_AntiQ	int	+	AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail)	1
KIND_Vtail	int	+	Torenbeek or Raymer: kind (1 conventional, 2 T-tail)	1
fTtail	real	+	Torenbeek: T-tail factor $(S_{ht}h_{ht})/(S_{vt}b_{vt})$	0.8
Vdive	real	+	design dive speed $V_{ m dive}$ (knots)	200.
		+	area method	
Utail	real	+	weight per area U_{tail} (lb/ft ² or kg/m ²)	3.
fTfold	real	+	fold weight factor f_{fold} (fraction total tail weight excluding fold)	0.
			weight models can use taper ratio, sweep, and thickness ratio	
			dive speed: $V_{\rm max}$ = SLS max speed, Vdive = $1.25V_{\rm max}$	

+ Custom Weight Model

WtParam_tail(8) real + parameters 0.

Structure: WTail 242

		Weight Model Input Horizontal tail
area_ht	real	planform area
AR_{ht}	real	aspect ratio
		Vertical tail
area_vt	real	planform area
AR_vt	real	aspect ratio

Chapter 59

Structure: FuelTank

Variable	Type		Description	Default
		+	Fuel Tank System	
title	c*100	+	title	
notes	c*1000	+	notes	
kTank	int		tank number	
		+	Configuration	
SET_burn	int	+	fuel quantity stored and used (1 weight, 2 energy)	1
		+	fuel weight properties	
fuel_density	real	+	fuel weight per volume $\rho_{\rm fuel}$ (lb/gallon or kg/liter)	6.5
specific_energy	real	+	fuel energy per weight $e_{ m fuel}$ (MJ/kg)	42.8
fFuelWing(nwingmax)	real	+	fraction wing torque box filled by fuel tanks	1.0
		+	fuel tank sizing	
Wfuel_cap	real	+	fuel capacity $W_{\rm fuel-cap}$ (weight, lb or kg)	
Efuel_cap	real	+	fuel capacity $E_{\rm fuel-cap}$ (energy, MJ)	
fFuel_cap	real	+		1.0
dFuel_cap	real	+	capacity increment $d_{\rm fuel-cap}$	0.
IDENT_battery	c*16	+	battery identification	, ,

store and use weight: energy calculated from weight; capacity is usable fuel weight use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy) ${\sf SET_tank='input':\ input\ Wfuel_cap\ or\ Efuel_cap}$

Structure: FuelTank 244

SET_tank='miss': calculate from mission fuel used

 $Wfuel_cap \ or \ Efuel_cap = max(fFuel_cap*(maximum \ mission \ fuel), (maximum \ mission \ fuel) + (reserve \ fuel))$

SET_tank='miss+power' = calculate from mission fuel used and mission battery discharge power

SET_tank='f(miss)' = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

		+	Geometry	
loc_tank	Location	n +	location	
place	int	+	placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination)	1
SET_length_wire	int	+	wiring length (1 input, 2 from component positions)	1
Length_wire	real	+	length $\ell_{ m wire}$	
fLength_wire	real	+	factor	1.0
		+	Auxiliary Fuel Tank	
Mauxtanksize	int	+	number of auxiliary tank sizes (minimum 1, maximum nauxtankmax)	1
Waux_cap(nauxtankmax)	real	+	fuel capacity $W_{\rm aux-cap}$ (weight)	1000.
Eaux_cap(nauxtankmax)	real	+	fuel capacity $E_{\rm aux-cap}$ (energy)	20000.
fWauxtank(nauxtankmax)	real	+	tank weight $f_{\rm auxtank}$ (fraction auxiliary fuel weight)	0.
eWauxtank(nauxtankmax)	real	+	tank weight $e_{ m auxtank}$ (MJ/kg or kWh/kg, Units_energy)	0.
DoQ_auxtank(nauxtankmax)	real	+	$drag (D/q)_{auxtank}$ (each tank)	
loc_auxtank(nauxtankmax)	Location	n +	location	
		+	Equipment power	
MODEL_Peq	int	+	model (0 for none)	0
sfc	real	+	specific fuel consumption	0.
Peq_0	real	+	power loss $P_{\rm eq0}$, constant	0.
Peq_d	real	+	power loss $P_{\mathrm{eq}d}$, scale with density	0.
Peq_t	real	+	power loss $P_{\mathrm{eq}t}$, scale with temperature	0.
KPeq_w	real	+	power loss P_{eqw} , weight factor	0.
$XPeq_{w}$	real	+	power loss P_{eqw} , weight exponent	0.
Peq_deice	real	+	deice power loss $P_{\mathrm{eq}i}$	0.

Structure: FuelTank 245

specific fuel consumption: weight (lb/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)

		+	Thermal management system	
SET_TMS	int	+	design rejected power $P_{\rm rej-design}$ (0 none, 1 input, 2 fraction $P_{\rm cap}$)	0
Prej_design	real	+	power (hp or kW)	0.
fPrej_design	real	+	fraction	0.02
SET_FN	int	+	net jet force (0 for no force)	1
_		+	Power distribution losses	
eta_dist	real	+	efficiency at $P_{\rm cap}$	1.
_		+	Cooling drag	
DoQ_cool	real	+	area $(D/q)_{\rm cool}$	0.
			Derived	
Vfuel_cap	real		fuel capacity $V_{\rm fuel-cap}$ (volume)	
Wfuel_wing	real		wing fuel capacity $W_{\mathrm{fuel-wing}}$	
rWfuel_wing	real		wing fuel capacity (fraction Wfuel_cap)	
ncomp_in_tank	int		number of components in fuel tank system	
kBatteryModel	int		battery identification (BatteryModel, from IDENT_battery)	
specific_power	real		specific power $\pi_{\rm tank} = x_{mbd} e_{\rm tank} / (3.6 (d_{\rm max} - d_{\rm min})) (kW/kg)$	
fEfuel_act	real		actual battery capacity factor $1/(d_{ m max}-d_{ m min})$	
		+	Weight	
Weight	Weight		weight statement (component, not including auxiliary tanks)	
		+	fuel system (propulsion group)	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWtank	real	+	tanks and support; battery management system	0.
dWplumb	real	+	plumbing; power distribution (wiring)	0.
WTank	WTank		NDARC model	
Neng	int		number of main engines	
fuelflow	real		total fuel flow F at DGW takeoff conditions (lb/hr or kg/hr)	
WTMS	real		battery thermal management system weight	

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 60

Structure: WTank

Variable	Type		Description	Default
		+	Fuel System, NDARC Weight Model	
		+	weight storage	
		+	fuel tank	
$MODEL_tank$	int	+	model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation	n)) 2
ntank_int	int	+	number of internal tanks $N_{ m int}$	4
fWtank	real	+	tank weight $f_{\rm tank}$ (fraction fuel capacity weight)	0.09
Ktoler	real	+	parametric: ballistic tolerance factor f_{bt} (1.0 to 2.5)	2.5
KIND_crash	int	+	parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
Ktank	real	+	Torenbeek (generic): factor $K_{\rm tank}$	3.2
Xtank	real	+	Torenbeek (generic): exponent X_{tank}	0.727
fint	real	+	Raymer: integral tank capacity (fraction total)	1.0
fprot	real	+	Raymer: protected tank capacity (fraction total)	1.0
		+	plumbing	
MODEL_plumb	int	+	model (1 fraction, 2 parametric)	2
nplumb	int	+	total number of fuel tanks (internal and auxiliary) for plumbing $N_{\rm plumb}$	4
K0_plumb	real	+	weight increment $K_{0 \text{plumb}}$ (lb)	150.
K1_plumb	real	+	weight factor $K_{1\text{plumb}}$ (lb)	2.0
fWplumb	real	+	plumbing weight f_{plumb} (fraction total fuel system weight)	0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.

 KO_{plumb} is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically $KO_{plumb} = 50$ to 250 lb

Structure: WTank

		+ energy storage	
eWtank	real	+ tank weight e_{tank} (MJ/kg or kWh/kg, Units_energy)	
energy_density	real	+ tank volume density $\rho_{\rm tank}$ (MJ/liter or kWh/liter, Units_energy)	
fBMS	real	+ battery management system (fraction basic tank weight)	0.2
		+ power distribution (wiring) weight	
Uwire	real	+ weight per length	0.62
fwire	real	+ fraction basic tank weight	0.2
		specific energy $e_{\rm tank}$ and energy density $ ho_{\rm tank}$ based on usable fuel capacity (consistent with $d_{\rm max}-d_{\rm min}$)	
M/(D) (1/0)	1	+ Custom Weight Model	0
WtParam_tank(8)	real	+ parameters	0.
		Weight Model Input	
		Tanks and support	
Wint_t	real	internal fuel tank capacity (weight)	
Cint_t	real	internal fuel tank capacity (volume)	
		Plumbing	
Neng_p	int	number of main engines	
fuelflow_p	real	fuel flow rate	
Xtank_p	real	tank weight	
		Energy tank	
Eint_e	real	internal fuel tank capacity (energy)	
xwire e	real	wiring length	
	icui	withing tength	

Variable	Type	Description	Default
		+ Propulsion Group	
title	c*100	+ title	
notes	c*1000	0 + notes	
		propulsion group is set of components and engine groups, connected by drive system	
		components (rotors) define power required, engine groups define power available	
		drive system defines ratio of rotational speeds of components (relative primary rotor speed)	
kPropulsion	int	propulsion group number	
		Specification	
kRotor_prim	int	primary rotor	
$rotor_in_group(nrotormax)$	int	rotors in group (0 no, 1 main rotor, 2 other)	
nRotor	int	number of rotors in group	
nRotor_main	int	number of main rotors	
kEngine_prim	int	primary engine group	
<pre>engine_in_group(nengmax)</pre>	int	engine groups in propulsion group (0 no, 1 only produce power, 2 can consume power)	
nEngineGroup	int	number of engine groups	
firstEngineGroup	int	first engine group	
canConsumePower	int	engine group generator or compressor, can consume shaft power (0 only produce power)	
		+ Drive system	
nGear	int	+ number of states (maximum ngearmax)	1
STATE_gear_var	int	+ drive system state for variable speed transmisson (0 for none)	0

drive system branches: one primary rotor per propulsion group (specify $V_{\rm tip}$), others dependent (specify gear ratio) specify primary engine group only if no rotors in propulsion group drive system state: identifies gear ratio set for multiple speed transmissions state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of dependent rotors and engines

		+	Transmission losses	
MODEL_Xloss	int	+	model (1 fraction component power required; 2 with function drive shaft limit)	2
fPloss_xmsn	real	+	gear box loss ℓ_{xmsn} (fraction total component power required)	0.04
Ploss_windage	real	+	power loss due to windage $P_{ m windage}$	0.
		+	Accessory losses	
Pacc_0	real	+	power loss $P_{ m acc0}$, constant	0.
Pacc_d	real	+	power loss $P_{\mathrm{acc}d}$, scale with density	0.
Pacc_n	real	+	power loss $P_{\rm accn}$, scale with density and rpm	0.
Pacc_deice	real	+	deice power loss $P_{\mathrm{ac}i}$	0.
fPacc_ECU	real	+	ECU (etc.) power loss $\ell_{\rm acc}$ (fraction component+transmission power)	0.
fPacc_IRfan	real	+	IRS fan loss ℓ_{IRfan} (fraction total engine power)	0.
		+	Geometry	
SET_length	int	+	drive shaft length (1 input, 2 from hub positions, 3 scale with radius)	2
Length_ds	real	+	length ℓ_{DS}	
fLength_ds	real	+	factor	0.9
			SET_length: input (use Length_ds) or calculated (from fLength_ds)	
			ez. Tangan mbar (ase zengan zen) er ememmen (nem reengan zen)	
B.,	1	+	Drive system torque limit	
Plimit_ds	real	+	drive system power limit $P_{DS m limit}$	
fPlimit_ds	real	+	drive system power limit factor	1.0
SET_{Plimit}	int	+	drive system limit when sizing transmission (0 not applied to power available)	0

		+	Drive system ratings	
nrate_ds	int	+	number of ratings (maximum nratemax)	1
rating_ds(nratemax)	c*12	+	drive system rating designation	, ,
frating_ds(nratemax)	real	+	torque limit factor	1.0
		+	schedule	
Vdrive_hover	real	+	maximum speed for hover and helicopter mode (CAS or TAS)	
Vdrive_cruise	real	+	minimum speed for cruise (CAS or TAS)	
rating_ds_hover	c*12	+	rating for hover and helicopter mode ($V \leq V_{\text{drive-hover}}$)	, ,
rating_ds_conv	c*12	+	rating for conversion mode $(V_{\text{drive-hover}} < V < V_{\text{drive-cruise}})$, ,
rating_ds_cruise	c*12	+	rating for cruise mode $(V \ge V_{\text{drive-cruise}})$, ,
			Derived drive system limit	
Qlimit_ds	real		drive system torque limit ($P_{DS ext{limit}}$ at primary rotor reference speed)	
arating_ds(nratemax)	c*12		drive system rating designation	
$xrating_ds(nratemax)$	real		torque limit factor	
krate_ds_hover	int		rating number for hover and helicopter mode	
krate_ds_conv	int		rating number for conversion mode	
krate_ds_cruise	int		rating number for cruise mode	
			drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)	
			SET_limit_ds='input': Plimit_ds input	
			SET_limit_ds='ratio': from takeoff power, fPlimit_ds $\sum (N_{ m eng} P_{ m eng})$	
			SET_limit_ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)	
			$fPlimit_ds(\Omega_{\mathrm{ref}}/\Omega_{\mathrm{prim}})\sum(N_{\mathrm{eng}}P_{av})$	
			SET_limit_ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)	
			extstyle ext	
			engine shaft: options for SET_limit_ds≠'input'	
			SET_limit_es=0: Plimit_es	
			SET_limit_es=1: fPlimit_es \times (engine group $P_{\rm eng}$ or P_{req} , depending on SET_limit_ds)	
			SET_limit_es=2: fPlimit_es $\times P_{DS ext{limit}}(P_{ ext{eng}EG}/P_{ ext{eng}PG})$	
			drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)	
			can be used for trim (trim_quant='Q margin')	
			used for drive system weight, tail rotor weight, transmission losses	
			limits propulsion group P_{av} (if FltState%SET_Plimit=on)	

```
engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
                                                      limits engine group P_{av} (if FltState%SET Plimit=on)
                                                  rotor shaft power limit: corresponds to one rotor
                                                  all limits
                                                       can be used for max effort in flight state (max quant='Q margin')
                                                       can be used for max gross weight in flight condition or mission (SET GW='maxQ' or 'maxPQ')
                                                       always check and print whether exceed torque limit
                                                  the engine model gives the power available, accounting for installation losses and mechanical limits
                                                  then the power available is reduced by the factor FltState%fPower
                                                  next torque limits are applied (unless FltState%SET Plimit=off), first engine shaft limit and then drive system limit
                                                  SET Plimit size=0: drive system limits are not applied for transmission sizing conditions and mission segments
                                                  (DESIGN xmsn); otherwise use FltState%SET Plimit
                                                  drive system ratings: blank to use engine ratings of first engine group
                                                       limit at flight state is rxf_QP_{\text{limit}}, where r is the rotor speed ratio and x is the rating factor frating_ds
                                                       if nrate ds≤ 1, drive system rating not used
                                                       schedule used if FltAircraft%rating ds='speed'
                                            Control
                                                rotational speed increment \Delta N, primary rotor or primary engine (rpm)
INPUT DN
                                                    connection to aircraft controls (0 none, 1 input T matrix)
                                                                                                                                                                           0
                               int
T DN(ncontmax,nstatemax)
                                                    control matrix
                               real
nVDN
                                                    number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                           0
                               int
DN(nvelmax)
                               real
                                                    values
VDN(nvelmax)
                                                    speeds (CAS or TAS)
                               real
                                                  aircraft controls connected to individual controls of component, c = Tc_{AC} + c_0
                                                       for each component control, define matrix T (for each control state) and value c_0
                                                           flight state specifies control state, or that control state obtained from conversion schedule
                                                       c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
                                                       by connecting aircraft control to comp control, flight state can specify comp control value
                                                       initial values if control is connected to trim variable; otherwise fixed for flight state
```

		+	Weight	
Weight	Weight		weight statement (component, not including EngineGroup)	
		+	drive system (propulsion group)	
MODEL_DS	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWgb	real	+	gear box	0.
dWrs	real	+	rotor shaft	0.
dWds	real	+	drive shaft	0.
dWrb	real	+	rotor brake	0.
dWcl	real	+	clutch	0.
dWgd	real	+	gas drive	0.
WDrive	WDrive		NDARC model	
STATE_gear_wt	int	+	drive system state for weight	1
$kEngineGroup_wt(2)$	int	+	EngineGroup for weight (input, output)	1
Wtip	real		weight on wing tip	
Wgbrs	real		weight gear box and rotor shaft	
		+	Technology Factors	
TECH_gb	real	+	gear box weight χ_{gb}	1.0
TECH_rs	real	+	rotor shaft weight χ_{rs}	1.0
$TECH_ds$	real	+	drive shaft weight χ_{ds}	1.0
TECH_rb	real	+	rotor brake weight χ_{rb}	1.0
TECH_cl	real	+	clutch weight χ_{cl}	1.0
$TECH_{gd}$	real	+	gas drive weight χ_{gd}	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup wt: always identify engine group for drive system input

if propulsion group has rotors, primary rotor speed used for drive system output

if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

Chapter 62

Structure: WDrive

Variable	Type		Description	Default
		+	Drive System, NDARC Weight Model	
		+	gear box (including rotor shafts)	
MODEL_gbrs	int	+	model (1 AFDD83, 2 AFDD00, 3 other)	1
$MODEL_other$	int	+	model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)	
fShaft	real	+	rotor shaft weight f_{rs} (fraction gear box and rotor shaft weight)	0.13
ngearbox	int	+	AFDD83: number of gear boxes N_{qb}	7
fTorque	real	+	AFDD83: second (main or tail) rotor rated torque f_Q (fraction total drive system rated torque)	0.03
nstage	int	+	Boeing: number of stages in main-rotor drive	4
		+	generic gearbox	
Kgbrs	real	+	factor K_{gbrs}	0.
XgbP	real	+	exponent X_{qbP}	0.
Xgbe	real	+	exponent X_{gbe}	0.
Xgbr	real	+	exponent X_{qbr}	0.
$KIND_other$	int	+	other: separate tail rotor drive weight increment (0 none)	0
Ktrgb	real	+	tail rotor drive weight increment factor K_{trgb}	1.0
fPower_tr	real	+	tail rotor power (fraction total drive system rated power)	0.15
gear_tr	real	+	tail rotor gear ratio	5.0
		+	drive shaft and rotor brake	
$MODEL_dsrb$	int	+	model (0 none, 1 AFDD82)	1
ndriveshaft	int	+	AFDD82: number of intermediate drive shafts N_{ds} (excluding rotor shafts)	6
fPower	real	+	AFDD82: second (main or tail) rotor rated power f_P (fraction total drive system rated power)	0.15

fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)

typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)

for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter)

typically fShaft = 0.13 (data range 0.06 to 0.20)

Structure: WDrive

0.

WtParam_drive(8)	real -	
		Weight Model Input
		Gear box and rotor shaft
PDSlimit_gb	real	drive system rated power
RPMrotor_gb	real	rotor speed (rpm)
RPMeng_gb	real	engine speed (rpm)
Nrotor_gb	int	number of main rotors
		Drive shaft
PDSlimit_ds	real	drive system rated power
$RPMrotor_ds$	real	rotor speed (rpm)
$xhub_ds$	real	length of drive shaft between rotors
		Rotor brake
Wblade_rb	real	blade weight (all blades, all rotors)
Vtip_rb	real	main rotor tip speed

Variable	Type		Description	Default
		+	Engine Group	
title	c*100	+	title	
notes	c*1000	+	notes	
kEngineGroup	int		engine group number	
		+	Description	
MODEL_engine	c*32	+	engine model	'RPTEM'
IDENT_engine	c*16	+	engine identification	'Engine'
IDENT_system2	c*16	+	second system identification	1 1
nEngine	int	+	number of engines N_{eng}	1
nEngine_main	int	+	number of main engines	1
Peng	real	+	engine power $P_{\rm eng}$ (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12	+	takeoff power rating	'MCP'
rating_idle	c*12	+	idle power rating	'MCP'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
fuselage_flow	int	+	fuselage flow control (0 not)	1
wing_flow(nwingmax)	int	+	wing flow control (0 not)	1
		+	Propulsion Group	
kPropulsion	int	+	group number	1
KIND_xmsn	int	+	drive system branch (1 primary, 0 dependent)	0
INPUT_gear	int	+	gear ratio input (1 from Nspec, 2 gear)	1
gear(ngearmax)	real	+	engine gear ratio $r = \Omega_{\rm spec}/\Omega_{\rm prim}$ (ratio rpm to rpm of primary rotor in propulsion group)	1.0
			Derived	
iMODEL_engine	int		engine model (MODEL_engine_xxx)	
KIND_engine	int		engine model (MODEL_engine_RPTEM, table, recip, comp, motor)	
can Consume Power	int		can consume shaft power (0 only produce power), generator or compressor	
can Produce Power	int		can produce shaft power (0 only consume power)	

isConvertReact	int	convertible engine, reaction drive (0 not)
isConvertJet	int	convertible engine, turbojet/fan (0 not)
kModel_eng	int	identification (EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel, from IDENT_engine)
kModel_sys2	int	identification (EngineModel, from IDENT_system2)
kBattery	int	battery model, from kFuelTank (0 for none)
nrate	int	number of ratings
rating(nratemax)	c*12	rating designations (lowercase)
krateC	int	MCP rating number
krate_to	int	takeoff power rating number
WOneEng	real	weight one engine $W_{ m one\ eng}$
Nref	real	reference engine speed (at drive state #1)
comp_flow	int	flow control, any component (0 none)

```
MODEL engine: engine model
```

```
'RPTEM', 'shaft' = turboshaft engine (RPTEM); IDENT_engine \rightarrow EngineModel; fuel is weight 'table' = turboshaft engine (table); IDENT_engine \rightarrow EngineTable; fuel is weight 'recip' = reciprocating engine; IDENT_engine \rightarrow RecipModel; fuel is weight 'comp' = compressor; IDENT_engine \rightarrow CompressorModel; not use fuel 'comp+react' = compressor for reaction drive; IDENT_engine \rightarrow CompressorModel; not use fuel 'comp+flow' = compressor for flow control; IDENT_engine \rightarrow CompressorModel; not use fuel 'motor' = electric motor; IDENT_engine \rightarrow MotorModel; fuel is energy 'gen' = electric generator; IDENT_engine \rightarrow MotorModel; fuel is energy (generated, not burned) 'motor+gen' = motor + generator (mode B \ge 0 for motor); IDENT_engine \rightarrow MotorModel; fuel is energy MODEL_engine: convertible engine; only with turboshaft
```

'+react' = reaction drive (mode B=1); IDENT_system2 \rightarrow EngineModel '+jet', '+fan' = turbojet/turbofan (mode B=1); IDENT_system2 \rightarrow EngineModel

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel second system identification: match ident of EngineModel; not use weight number of main engines: for fuel tank weight

for fixed engine: use $P_{\rm eng}=0$. and no size task (or engine power not sized) takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight FltState%rating can be set to 'idle' (rating idle) or 'takeoff' (rating to)

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating) or energy (motor, may have BatteryModel)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group INPUT_gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of engine

Sizing

SET_power	int	+	specification (0 sized, 1 fixed)	0
fPsize	real	+	sized power ratio f_n	1.0
SET_Pother	int	+	sized power from other engine group (0 not)	0
fEsize(nengmax)	real	+	fraction other engine group power f_E	0.

SET_power: if SIZE_perf='engine', used to distribute propulsion group power required among engine groups $P_{\rm eng} = f_n P_{\rm sized}/N_{\rm eng} \mbox{ for } n\mbox{-th engine group, } P_{\rm sized} = P_{PG} - \sum_{\rm fixed} N_{\rm eng} P_{\rm eng}$ must size at least first engine group, so SET_power and fPsize values not used for first group fPsize calculated for first engine group, must be >0.

not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine='engine') FltState%SET_Preq specifies distribution of power required for flight state

SET_Pother: size power from engine group of other propulsion groups, $\max(P_{\rm eng}, f_E P_{\rm eng-other})$

Engine model performance parameters (one engine)

 $\begin{array}{lll} \text{PO(nratemax)} & \text{real} & \text{power} \ (P_0) \\ \text{SPO(nratemax)} & \text{real} & \text{specific power} \ (SP_0) \\ \text{Pmech(nratemax)} & \text{real} & \text{mechanical limit of power} \ (P_{\text{mech}} \ \text{or} \ P_{\text{peak}}) \\ \text{sfcOC} & \text{real} & \text{specific fuel consumption at MCP} \ (\text{sfc}_{0C}) \\ \text{FgOC} & \text{real} & \text{gross jet thrust at MCP} \ (F_{g0C} = SF_{0C}\dot{m}_{0C}) \\ \end{array}$

Nspec Nopt0C mdot0C wdot0C sfc0(nratemax)	real real real real real	specification engine speed $(N_{\rm spec})$ optimum engine speed at MCP $(N_{\rm opt0C})$ mass flow at MCP $(\dot{m}_{0C} = P_{0C}/SP_{0C})$ fuel flow at MCP $(\dot{w}_{0C} = {\rm sfc}_{0C}P_{0C})$ specific fuel consumption $({\rm sfc}_0)$ Engine model performance parameters (one engine), ratio converted to base	
rsfc0C_conv	real	specific fuel consumption at MCP	
rFg0C_conv	real	gross jet thrust at MCP, jet/fan only	
rwdot0C_conv	real	fuel flow at MCP	
		reciprocating: only P0, Pmech, Nspec used, and sfc0 motor or generator: only P0, Pmech, Nspec used	-
SET_limit_es Plimit_es	int real	+ Drive system torque limit + engine shaft (0 input, 1 fraction power, 2 fraction drive system limit) + engine shaft power limit $P_{ES limit}$	1
fPlimit_es	real	+ engine shaft power limit factor	1.0
_		Derived engine shaft limit	
Qlimit_es	real	engine shaft torque limit ($P_{ES ext{limit}}$ at engine reference speed)	
		drive system torque limits: SET_limit_ds = input (use Plimit_es) or calculated (from fPlimit_es) $ \begin{array}{l} \text{SET_limit_ds='input': Plimit_ds input} \\ \text{SET_limit_ds='ratio': from takeoff power, fPlimit_ds} \sum (N_{\rm eng}P_{\rm eng}) \\ \text{SET_limit_ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN_xmsn fPlimit_ds(\Omega_{\rm ref}/\Omega_{\rm prim}) \sum (N_{\rm eng}P_{av}) \\ \text{SET_limit_ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN_xmsn fPlimit_ds(\Omega_{\rm ref}/\Omega_{\rm prim}) \sum (N_{\rm eng}P_{req}) \\ \text{engine shaft: options for SET_limit_ds$\neq'input'} \\ \text{SET_limit_es=0: Plimit_es} \\ \text{SET_limit_es=2: fPlimit_es} \times (\text{engine group } P_{\rm eng} \text{ or } P_{req}, \text{depending on SET_limit_ds}) \\ \text{SET_limit_es=2: fPlimit_es} \times P_{DSlimit}(P_{\rm eng}EG/P_{\rm eng}PG) \\ \end{array}$	

```
engine shaft power limit: corresponds to all engines of engine group (nEngine \times Peng) limits engine group P_{av} (if FltState%SET_Plimit=on) can be used for max effort in flight state (max_quant='Q margin') can be used for max gross weight in flight condition or mission (SET_GW='maxQ' or 'maxPQ') always check and print whether exceed torque limit
```

		+	Installation	
Kffd	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
eta_d	real	+	engine inlet efficiency η_d (fraction, for δ_M)	0.98
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_inlet	real	+	engine inlet loss ℓ_{in}	0.
fPloss_ps	real	+	inlet particle separator loss ℓ_{in}	0.
fPloss_exh	real	+	engine exhaust loss ℓ_{ex} (IRS off)	0.015
		+	auxiliary air momentum drag (IRS off)	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency η_{aux}	0.75
		+	IR suppressor	
		+	power losses (IRS on)	
fPloss_exh_IRon	real	+	engine exhaust loss ℓ_{ex}	0.030
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.015
		+	Thermal management system	
SET_TMS	int	+	design rejected power $P_{\text{rej-design}}$ for one engine (0 none, 1 input, 2 fraction P_{eng})	0
Prej_design	real	+	power (hp or kW)	0.
fPrej_design	real	+	fraction	0.02
		+	Model	
SET_FN	int	+	net jet force (0 for no force)	1
SET_Daux	int	+	auxiliary air momentum drag (0 for no drag)	1

installation power losses = inlet + particle separator + exhaust (including IRS) IR suppressor state specified by STATE_IRS in operating condition motor or generator: only use Kffd, thermal management system

```
Geometry
                                                    location
loc_engine
                                 Location +
                                                    nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')
direction
                                 c*16
                                                                                                                                                                                        'x'
                                                    position (0 standard, 1 tiltrotor, 2 rotor)
SET geom
                                                                                                                                                                                         0
                                 int
RotorForEngine
                                 int
                                           +
                                                         rotor number
                                                                                                                                                                                         1
                                                    nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, W_{ES}; 3 scaled, W_{ES} and W_{qbrs})
                                                                                                                                                                                         2
SET Swet
                                 int
                                           +
                                                         area S_{\text{wet}} (per engine)
Swet
                                           +
                                                                                                                                                                                        0.
                                 real
                                                         factor, k = S_{\text{wet}}/(w/N_{\text{eng}})^{2/3} (Units_Dscale)
                                                                                                                                                                                       0.8
kSwet
                                 real
                                           +
                                                    nacelle/cowling area S_{\rm nac}
Snac
                                 real
                                                    total wetted area
Swet nac
                                 real
```

```
SET_geom: calculation override part of location input SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine) SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are \mathrm{ft}^2/\mathrm{lb}^{2/3} or \mathrm{m}^2/\mathrm{kg}^{2/3} w=W_{ES} (engine system) or W_{ES}+W_{gbrs}/N_{EG} (engine system and drive system) nacelle wetted area used for nacelle drag, and for cowling weight engine group nacelle must be consistent with rotor pylon
```

Derived geometry

iDirection	int	nominal orientation $(1, -1, 2, -2, 3, -3)$
axis_incid	int	axis incidence (± 123)
axis_yaw	int	axis yaw (± 123)
isFixed	int	orientation (1 fixed)
CBF(3,3)	real	engine axes relative airframe, C^{BF} (fixed)
ef0(3)	real	engine direction, e_{f0}
ef(3)	real	engine direction, e_f (fixed)

		+	Controls	
		+	amplitude A (fixed engine group power)	
INPUT_amp	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_amp(ncontmax,nstatemax)$	real	+	control matrix	
nVamp	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
amp(nvelmax)	real	+	values	
Vamp(nvelmax)	real	+	speeds (CAS or TAS)	
		+	$\operatorname{mode} B$	
$INPUT_mode$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{mode}(ncontmax,nstatemax)$	real	+	control matrix	
nVmode	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
mode(nvelmax)	real	+	values	
Vmode(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_yaw(ncontmax,nstatemax)$	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{\rm gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax,nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

Nacelle Drag model (0 none, 1 standard) MODEL drag int 1 incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0. Idrag real standard model DEngSys **DEngSys** Derived drag nacelle cruise drag, area $(D/q)_{\rm nac}$ DoQC nac real nacelle helicopter drag, area $(D/q)_{\rm nac}$ DoQH nac real nacelle vertical drag, area $(D/q)_{\text{nac}}$ DoQV nac real

component drag contributions must be consistent
pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag),
since pylon connected to rotor shaft axes
tiltrotor with nontilting engines, use nacelle drag as well

+ Weight
Weight weight statement (component, including engine weight)

Weight

		+	engine weight	
MODEL_weight	int	+	model (0 input, 1 RPTEM or NASA, 2 custom)	1
dWEng	real	+	weight increment (all engines)	0.
		+	engine system (except engine), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1
MODEL_nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1

		+	weight increment	
dWexh	real	+	exhaust	0.
dWacc	real	+	accessories	0.
dWsupt	real	+	engine support	0.
dWcowl	real	+	engine cowling	0.
dWpylon	real	+	pylon support	0.
dWair	real	+	air induction	0.
WEngSys	WEngs	Sys	NDARC model	
Weng_total	real		engine weight	
WES	real		engine system weight W_{ES} (engine, exhaust, accessories)	
Wtip	real		weight on wing tip	
WESC	real		motor electronic speed control weight	
WTMS	real		motor thermal management system weight	
		+	Technology Factors	
TECH_eng	real	+	engine weight $\chi_{ m eng}$	1.0
TECH_cowl	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
TECH_pylon	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_supt	real	+	engine support structure weight $\chi_{ m supt}$	1.0
TECH_air	real	+	air induction system weight $\chi_{ m airind}$	1.0
TECH_exh	real	+	exhaust system weight $\chi_{ m exh}$	1.0
TECH_acc	real	+	engine accessories weight $\chi_{ m acc}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted area, rotor moving weight)

nacelle weight = support + cowl + pylon engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip: engine section or nacelle group, air induction group, engine system

Chapter 64

Structure: DEngSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_{Vdrag}	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on wetted area, $D/q = SC_D$)	
		+	transition from forward flight drag to vertical drag	
MODEL_Deng	int	+	model (0 none)	1
Xdrag	real	+	exponent X_d	2.0
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
		+	Cooling Drag	
DoQ_cool	real	+	area $(D/q)_{ m cool}$	0.

Chapter 65

Structure: WEngSys

Variable	Type		Description	Default
		+	Engine Section or Nacelle Group, NDARC Weight Model	
MODEL_nacelle	int	+	model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport))	1
fWpylon	real	+	pylon support structure weight f_{pylon} (fraction maximum takeoff weight)	0.
		+	nacelle group weight, W vs P_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent $X_{ m nac}$	
n_clf	real	+	Boeing: crash load factor	20.
fWidth_nac	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
MODEL_airind	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight f_{airind} (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
		+	exhaust system weight, per engine, including IR suppressor; W_{exh} vs P_{0C}	
Kwt0_exh	real	+	$K_{0 m exh}$	0.
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
		+	engine accessories	
MODEL_lub	int	+	lubrication system weight (1 in engine weight, 2 in accessory weight)	1
			typically fWair = 0.3 (data range 0.1 to 0.6)	
			engine support and pylon support weights must be consistent with rotor support structure weight	

+ Custom Weight Model+ parameters WtParam_engsys(8) real 0. Structure: WEngSys 267

		Weight Model Input
		Exhaust
Neng_x	int	number of engines
Peng_x	real	installed takeoff power
		Accessory
Neng_a	int	number of engines
Weng_a	real	engine weight (all engines)
		Engine support
Neng_s	int	number of engines
Weng_s	real	engine weight (all engines)
		Cowling
Snac_c	real	nacelle wetted area
Neng_c	int	number of engines
Peng_c	real	installed takeoff power
Weng_c	real	engine weight (all engines)
		Pylon support
WMTO_p	real	maximum takeoff weight
		Air induction
Neng_i	int	number of engines
Weng_i	real	engine weight (all engines)
Snac_i	real	nacelle wetted area

Variable	Type		Description	Default
		+	Jet Group	
title	c*100	+	title	
notes	c*1000	+	notes	
kJetGroup	int		jet group number	
		+	Description	
MODEL_jet	c*32	+	jet model	'RPJEM'
IDENT_jet	c*16	+	jet identification	'Jet'
IDENT_system2	c*16	+	second system identification	, ,
nJet	int	+	number of jets $N_{\rm jet}$	1
Tjet	real	+	jet thrust T_{jet} (SLS static at takeoff rating, 0. for T0_ref(rating_to))	0.
rating_to	c*12	+	takeoff thrust rating	'MCT'
rating_idle	c*12	+	idle thrust rating	'MCT'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
fuselage_flow	int	+	fuselage flow control (0 not)	1
wing_flow(nwingmax)	int	+	wing flow control (0 not)	1
			Derived	
iMODEL_jet	int		jet model (MODEL_jet_xxx)	
KIND_jet	int		jet model (MODEL_jet_RPJEM, simple)	
isConvertReact	int		convertible engine (0 not)	
kModel_jet	int		identification (JetModel, from IDENT_jet)	
kModel_sys2	int		identification (JetModel, from IDENT_system2)	
nrate	int		number of ratings	
rating(nratemax)	c*12		rating designations (lowercase)	
krateC	int		MCT rating number	
krate_to	int		takeoff thrust rating number	
WOneJet	real		weight one jet $W_{ m one\ jet}$	

flow control, any component (0 none)

MODEL_jet: jet model

'RPJEM', 'jet', 'fan' = turbojet/turbofan engine (RPJEM); IDENT_jet \rightarrow JetModel; fuel is weight

'react' = reaction drive (RPJEM)); IDENT_jet \rightarrow JetModel; fuel is weight

'flow' = flow control (RPJEM)); IDENT_jet \rightarrow JetModel; fuel is weight

'simple' = simple force generator; no model identified; fuel is weight or energy

MODEL_jet: convertible engine; only with turbojet/turbofan

'+react' = reaction drive (mode B=1); IDENT_system2 \rightarrow JetModel

jet identification: match ident of JetModel
second system identification: match ident of JetModel; not use weight

for fixed jet: use $T_{\rm jet}=0$. and no size task (or jet thrust not sized)

T0(nratemax)	real		thrust (T_0)	
ST0(nratemax)	real		specific thrust (ST_0)	
Tmech(nratemax)	real		mechanical limit of thrust (T_{mech})	
sfc0C	real		specific fuel consumption at MCT (sfc_{0C})	
mdot0C	real		mass flow at MCT ($\dot{m}_{0C} = T_{0C}/ST_{0C}$)	
wdot0C	real		fuel flow at MCT ($\dot{w}_{0C} = \mathrm{sfc}_{0C} T_{0C}$)	
Edot0C	real		energy flow at MCT ($\dot{w}_{0C} = \mathrm{sfc}_{0C}T_{0C}$)	
			Jet model performance parameters (one jet), ratio converted to base	
rsfc0C_conv	real		specific fuel consumption at MCT	
$rwdot0C_conv$	real		fuel flow at MCT	
		+	Installation	
Kffd	real	+	deterioration factor on jet fuel flow K_{ffd}	1.05
eta_d	real	+	jet inlet efficiency η_d (fraction, for δ_M)	0.98
		+	power losses (fraction thrust available, T_{loss}/T_a)	
$fTloss_inlet$	real	+	engine inlet loss ℓ_{in}	0.
$fTloss_exh$	real	+	engine exhaust loss ℓ_{ex} (IRS off)	0.01

		+	auxiliary air momentum drag (IRS off)	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency η_{aux}	0.75
		+	IR suppressor	
		+	power losses (IRS on)	
$fTloss_exh_IRon$	real	+	engine exhaust loss ℓ_{ex}	0.03
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow f_{aux} (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on jet fuel flow K_{ffd}	1.05
		+	power losses (fraction thrust available, $T_{\rm loss}/T_a$)	
fTloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.01
			IR suppressor state specified by STATE_IRS_jet in operating condition	
		+	Simple force generator	
Tmax	real	+	design maximum thrust $T_{ m max}$	0.
SET_burn	int	+	fuel quantity used (1 weight, 2 energy)	1
sfc	real	+	thrust specific fuel consumption (weight or energy)	1.0
SW	real	+	specific weight S (per jet)	
KIND_simple	int	+	weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor)	1
			fuel tank system identified must be consistent with SET_burn	
			Consistent	

+ Geometry + location

loc_jet Location + nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z') direction c*16 +

'x'

Structure: JetGroup				271
SET_Swet Swet kSwet Snac Swet_nac	int real real real	++++	nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled) area $S_{\rm wet}$ (per jet) factor, $k=S_{\rm wet}/(W_{ES}/N_{\rm jet})^{2/3}$ (Units_Dscale) nacelle/cowling area $S_{\rm nac}$ total wetted area	2 0. 0.8
			SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are ft²/lb²/3 or m²/kg²/3 nacelle wetted area used for nacelle drag, and for cowling weight	
iDirection axis_incid axis_yaw isFixed CBF(3,3) ef0(3) ef(3)	int int int real real		Derived geometry nominal orientation $(1, -1, 2, -2, 3, -3)$ axis incidence (± 123) axis yaw (± 123) orientation (1 fixed) jet relative airframe, C^{BF} (fixed) jet direction, e_{f0} jet direction, e_{f} (fixed)	
INPUT_amp T_amp(ncontmax,nstatemax) nVamp amp(nvelmax) Vamp(nvelmax)	int real int real real	+ + + + + + +	Controls amplitude A connection to aircraft controls (0 none, 1 input T matrix) control matrix number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax) values speeds (CAS or TAS)	1
INPUT_mode T_mode(ncontmax,nstatemax) nVmode	int	+ + + +	mode B connection to aircraft controls (0 none, 1 input T matrix) control matrix number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	1

values

speeds (CAS or TAS)

real

real

mode(nvelmax)

Vmode(nvelmax)

		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_yaw(ncontmax,nstatemax)	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$	
			for each component control, define matrix T (for each control state) and value c_0	
			flight state specifies control state, or that control state obtained from conversion schedule	
			c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)	
			by connecting aircraft control to comp control, flight state can specify comp control value	
			initial values if control is connected to trim variable; otherwise fixed for flight state	

+	Nace	lle	Drag
---	------	-----	------

int +	model (0 none, 1 standard)	1
real +	incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	0.
DJetSys	standard model	
	Derived drag	
real	nacelle cruise drag, area $(D/q)_{ m nac}$	
real	nacelle helicopter drag, area $(D/q)_{ m nac}$	
real	nacelle vertical drag, area $(D/q)_{ m nac}$	
	real + DJetSys real real	real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) DJetSys standard model Derived drag real nacelle cruise drag, area $(D/q)_{\rm nac}$ real nacelle helicopter drag, area $(D/q)_{\rm nac}$

		+	Weight	
Weight	Weight		weight statement (component, including jet weight)	
		+	jet weight	
MODEL_weight	int	+	model (0 input, 1 RPJEM, 2 custom)	1
dWJet	real	+	weight increment (all jets)	0.
		+	engine system (except jet), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1
MODEL_nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1
		+	weight increment	
dWexh	real	+	exhaust	0.
dWacc	real	+	accessories	0.
dWsupt	real	+	engine support	0.
dWcowl	real	+	engine cowling	0.
dWpylon	real	+	pylon support	0.
dWair	real	+	air induction	0.
WJetSys	WJetSy	'S	NDARC model	
Wjet_total	real		jet weight	
WES	real		engine system weight W_{ES} (engine, exhaust, accessories)	
		+	Technology Factors	
TECH_jet	real	+	jet weight $\chi_{ m jet}$	1.0
$TECH_jetcowl$	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
$TECH_jetpylon$	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_jetsupt	real	+	engine support structure weight χ_{supt}	1.0
TECH_jetair	real	+	air induction system weight $\chi_{ m airind}$	1.0
$TECH_jetexh$	real	+	exhaust system weight $\chi_{ m exh}$	1.0
TECH_jetacc	real	+	engine accessories weight $\chi_{ m acc}$	1.0

```
weight model result multiplied by technology factor and increment added:
```

```
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0. engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area) nacelle weight = support + cowl + pylon jet weight parameters in JetModel
```

Chapter 67

Structure: DJetSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on wetted area, $D/q = SC_D$)	
		+	transition from forward flight drag to vertical drag	
MODEL_Djet	int	+	model (0 none)	1
Xdrag	real	+	exponent X_d	2.0
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
		+	Cooling Drag	
DoQ_cool	real	+	area $(D/q)_{\rm cool}$	0.

Chapter 68

Structure: WJetSys

Variable	Type		Description	Default
		+	Engine Section or Nacelle Group, NDARC Weight Model	
MODEL_nacelle	int	+	model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport))	1
fWpylon	real	+	pylon support structure weight f_{pylon} (fraction maximum takeoff weight)	0.
		+	nacelle group weight, W vs T_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent $X_{ m nac}$	
n_clf	real	+	Boeing: crash load factor	20.
fWidth_nac	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
MODEL_airind	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight f_{airind} (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
		+	exhaust system weight, per jet; $W_{\rm exh}$ vs T_{0C}	
Kwt0_exh	real	+	$K_{0 m exh}$	0.
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
		+	engine accessories	
MODEL_lub	int	+	lubrication system weight (1 in jet weight, 2 in accessory weight)	1
		+	Custom Weight Model	
WtParam_jetsys(8)	real	+	parameters	0.
			Weight Model Input	
			Exhaust	
Njet_x	int		number of engines	
Tjet_x	real		installed takeoff thrust	
			Accessory	
Njet_a	int		number of engines	
Wjet_a	real		jet weight (all jets)	

Structure: WJetSys 276

Njet_s	int	Engine support number of engines
Wjet_s	real	jet weight (all jets)
		Cowling
Snac_c	real	nacelle wetted area
Njet_c	int	number of engines
Tjet_c	real	installed takeoff thrust
Wjet_c	real	jet weight (all jets)
		Pylon support
WMTO_p	real	maximum takeoff weight
		Air induction
Njet_i	int	number of engines
Wjet_i	real	jet weight (all jets)
Snac_i	real	nacelle wetted area

Structure: ChargeGroup

Variable	Type	Description	Default
	,	+ Charge Group	
title	c*100	+ title	
notes	c*1000	+ notes	
kChargeGroup	int	charge group number	
		+ Description	
$MODEL_charge$	c*32	+ charger model	, ,
IDENT_charge	c*16	+ charger identification	'Charge'
nCharge	int	+ number of chargers $N_{\rm chrg}$	1
Pchrg	real	+ charger power P_{chrg} (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12	+ takeoff power rating	'MCP'
rating_idle	c*12	+ idle power rating	'MCP'
kFuelTank	int	+ fuel tank system number (generated)	1
kFuelTank_burn	int	+ fuel tank system number (burned)	
		Derived	
iMODEL_charge	int	charger model (MODEL_charge_xxx)	
KIND_charge	int	charger model (MODEL_charge_fuelcell, solarcell, simple)	
kModel_chrg	int	identification (FuelCellModel or SolarCellModel, from IDENT_charge)	
kBattery	int	battery model, from kFuelTank (0 for none)	
nrate	int	number of ratings	
rating(nratemax)	c*12	rating designations (lowercase)	
krateC	int	MCP rating number	
krate_to	int	takeoff power rating number	
WOneChrg	real	weight one charger $W_{ m one~chrg}$	

MODEL_charge: charger model

 $^{&#}x27;fuel' = fuel \ cell; \ IDENT_charge \rightarrow Fuel Cell Model; \ fuel \ generated \ is \ energy; \ fuel \ burned \ is \ weight \ (kFuel Tank_burn)$

^{&#}x27;solar' = solar cell; IDENT_charge \rightarrow SolarCellModel; fuel generated is energy

^{&#}x27;simple' = simple charger; no model identified; fuel generated is energy

Structure: ChargeGroup 278

charger identification: match ident of FuelCellModel or SolarCellModel

for fixed charger: use $P_{\rm chrg}=0$. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

fuel tank system identified for burn must store and use weight

			Charger model performance parameters (one charger)	
P0(nratemax)	real		power (P_0)	
sfc0C	real		specific fuel consumption at MCP (sfc_{0C})	
mdot0C	real		mass flow at MCP (\dot{m}_{0C})	
wdot0C	real		fuel flow at MCP ($\dot{w}_{0C} = \mathrm{sfc}_{0C} P_{0C}$)	
solararea	real		solar cell total area	
		+	Installation	
Kffd	real	+	deterioration factor on charger fuel flow or performance K_{ffd}	1.05
eta_d	real	+	charger inlet efficiency η_d (fraction, for δ_M)	0.98
		+	auxiliary air momentum drag	
fMF_auxair	real	+	mass flow f_{aux} (fraction charger mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Simple charger	
Pmax	real	++	Simple charger design maximum power $P_{\rm max}$	0.
Pmax eta_chrg	real real			0. 1.0
		+	design maximum power P_{max}	
eta_chrg	real	++	design maximum power $P_{ m max}$ efficiency $\eta_{ m chrg}$	
eta_chrg	real	+ + + +	design maximum power $P_{\rm max}$ efficiency $\eta_{\rm chrg}$ specific weight S (per charger)	
eta_chrg SW	real real	+ + + +	design maximum power P_{\max} efficiency η_{chrg} specific weight S (per charger)	
eta_chrg SW loc_charger	real real Location	+ + + +	design maximum power P_{\max} efficiency η_{chrg} specific weight S (per charger) Geometry location	1.0
eta_chrg SW loc_charger direction	real real Location c*16	+ + + + + +	design maximum power $P_{\rm max}$ efficiency $\eta_{\rm chrg}$ specific weight S (per charger) Geometry location nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z') nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled) area $S_{\rm wet}$ (per charger)	1.0
eta_chrg SW loc_charger direction SET_Swet	real real Location c*16 int	+ + + + + + + +	design maximum power $P_{\rm max}$ efficiency $\eta_{\rm chrg}$ specific weight S (per charger) Geometry location nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z') nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled)	1.0 'x' 2
eta_chrg SW loc_charger direction SET_Swet Swet	real real Location c*16 int real	+ + + + + + + + +	design maximum power $P_{\rm max}$ efficiency $\eta_{\rm chrg}$ specific weight S (per charger) Geometry location nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z') nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled) area $S_{\rm wet}$ (per charger)	1.0 'x' 2 0.

Structure: ChargeGroup 279

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are $ft^2/lb^{2/3}$ or $m^2/kg^{2/3}$ nacelle wetted area used for nacelle drag

```
Derived geometry
                                               nominal orientation (1, -1, 2, -2, 3, -3)
iDirection
                              int
axis incid
                              int
                                                axis incidence (\pm 123)
                                               axis yaw (\pm 123)
axis_yaw
                              int
                                               orientation (1 fixed)
isFixed
                              int
                                               charger relative airframe, C^{BF} (fixed)
CBF(3,3)
                              real
                                               charger direction, e_{f0}
ef0(3)
                              real
                                               charger direction, e_f (fixed)
ef(3)
                              real
                                           Controls
                                                amplitude A
INPUT amp
                                                    connection to aircraft controls (0 none, 1 input T matrix)
                                                                                                                                                                        1
                              int
T amp(ncontmax,nstatemax)
                                                    control matrix
                              real
                                       +
                                                   number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVamp
                              int
                                                                                                                                                                        0
amp(nvelmax)
                                                    values
                              real
                                                   speeds (CAS or TAS)
Vamp(nvelmax)
                              real
                                                \mathsf{mode}\ B
                                                   connection to aircraft controls (0 none, 1 input T matrix)
INPUT mode
                              int
                                                                                                                                                                        1
T mode(ncontmax,nstatemax)
                                                    control matrix
                              real
                                                   number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVmode
                                                                                                                                                                        0
                              int
mode(nvelmax)
                              real
                                                    values
Vmode(nvelmax)
                                                   speeds (CAS or TAS)
                              real
                                       +
                                               incidence i (tilt)
                                                   connection to aircraft controls (0 none, 1 input T matrix)
INPUT incid
                              int
                                       +
                                                                                                                                                                        1
T incid(ncontmax,nstatemax)
                              real
                                                    control matrix
nVincid
                                       +
                                                   number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                        0
                              int
incid(nvelmax)
                              real
                                       +
                                                    values
                                                   speeds (CAS or TAS)
Vincid(nvelmax)
                              real
                                       +
```

Structure: ChargeGroup 280

			yoyy d	
INPUT yaw	int	+ +	yaw ψ connection to aircraft controls (0 none, 1 input T matrix)	1
				1
T_yaw(ncontmax,nstatemax)	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state	

	+ .	Nacelle Drag	
$MODEL_drag$	int +	model (0 none, 1 standard)	1
ldrag	real +	incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	0.
DChrgSys	DChrgSys	standard model	
]	Derived drag	
DoQC_nac	real	nacelle cruise drag, area $(D/q)_{ m nac}$	
DoQH_nac	real	nacelle helicopter drag, area $(D/q)_{ m nac}$	
$DoQV_{\mathtt{nac}}$	real	nacelle vertical drag, area $(D/q)_{ m nac}$	
	+	Weight	
Weight	Weight	weight statement (component, including charger weight)	
	+	charger weight	
MODEL_weight	int +	model (0 input, 1 NDARC, 2 custom)	1
dWChrg	real +	weight increment (all chargers)	0.
WChrgSys	WChrgSys	NDARC model	
Wchrg_total	real	charge group weight	
WES	real	engine system weight W_{ES} (engine, exhaust, accessories)	
DoQH_nac DoQV_nac Weight MODEL_weight dWChrg WChrgSys Wchrg_total	real + Weight + int + real + WChrgSys real	nacelle helicopter drag, area $(D/q)_{\rm nac}$ nacelle vertical drag, area $(D/q)_{\rm nac}$ Weight weight statement (component, including charger weight) charger weight model (0 input, 1 NDARC, 2 custom) weight increment (all chargers) NDARC model charge group weight	1 0

Structure: ChargeGroup 281

+ Technology Factors

TECH_chrg real + charger weight $\chi_{\rm chrg}$ 1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area) charger weight parameters in FuelCellModel or SolarCellModel

Chapter 70

Structure: DChrgSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on wetted area, $D/q = SC_D$)	
		+	transition from forward flight drag to vertical drag	
MODEL_Dchrg	int	+	model (0 none)	1
Xdrag	real	+	exponent X_d	2.0
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
		+	Cooling Drag	
DoQ_cool	real	+	area $(D/q)_{ m cool}$	0.

Chapter 71

Structure: WChrgSys

Variable	Type		Description	Default
		+	Custom Weight Model	
$WtParam_chrgsys(8)$	real	+	parameters	0.

Type	Description	Default
	+ Engine Model	
c*100	+ title	'Default'
c*1000	+ notes	
c*16	+ identification	'Engine'
	engine identification: used by IDENT_engine of EngineGroup input (eg 'T800')	
	installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N	
	uninstalled: power available P_a , power required P_q , gross jet thrust F_g , net jet thrust F_n "0" = SLS static; " C " = MCP	
)
	engine model can be used by more than one engine group, so all parameters fixed	
	as model for turbojet or reaction drive of convertible engine:	
	only use sfc0C_ref, sfc0C_ref, and parameters for optimum speed, thrust available, and performance P0_ref and SP0_ref required, but not used; weight, ratings, technology, and scaling variables not used	
int	engine model number	
	+ Weight	
int	The state of the s	1
real	+ engine weight (fixed)	0.
	+ engine weight, $W_{\rm eng}$ vs $P_{\rm eng}$ model ($W = K_{\rm 0eng} + K_{\rm 1eng}P + K_{\rm 2eng}P^{X_{\rm eng}}$)	
real		0.
real	+ constant $K_{1\mathrm{eng}}$	0.25
real		0.
real	+ exponent X_{eng}	0.
	int int real real real real real	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

SW ref	real	++	engine weight, $SW = P_{\rm eng}/W_{\rm eng}$ vs \dot{m}_{0C} model specific weight reference $SW_{\rm ref}$ ($\dot{m} = \dot{m}_{\rm tech}$)	4.
SW_limit	real	+	specific weight limit $SW_{ m lim}$ $(\dot{m}=\dot{m}_{ m lim})$	5.
			Cystom Weight Model	
WtParam_engine(8)	real	+	Custom Weight Model parameters	0.
vvtFaram_engme(8)	icai	+	parameters	0.
		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	2000.
$SP0_ref(nratemax)$	real	+	specific power (SP_0)	150.
$Pmech_ref(nratemax)$	real	+	mechanical limit of power (P_{mech})	2500.
sfc0C_ref	real	+	specific fuel consumption at MCP (sfc_{0C})	0.45
SF0C_ref	real	+	specific jet thrust $(F_{g0C} = SF_{0C}\dot{m}_{0C})$	10.
Nspec_ref	real	+	specification turbine speed $(N_{\rm spec})$	20000.
$Nopt0C_ref$	real	+	optimum turbine speed at MCP $(N_{\mathrm{opt}0C})$	20000.
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rSP0(nratemax)	real		specific power (SP_{0R}/SP_{0C})	
rPmech(nratemax)	real		mechanical limit of power $(P_{\mathrm{mech}R}/P_{0C})$	
			Reference Engine Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			engine rating: match rating designation in FltState; typically designated as	
			'ERP' = Emergency Rated Power (OEI power)	
			'CRP' = Contigency Rated Power (2.5 min)	
			'MRP' = Maximum Rated Power (5 or 10 min)	
			'IRP' = Intermediate Rated Power (30 min)	
			'MCP' = Maximum Continuous Power (normal operations)	
			engine model being used may not contain data for all ratings	

```
Technology
                                                     specific power at MCP SP_{\text{tech}} (0. for SP0 ref(MCP))
SP0C tech
                                  real
                                                                                                                                                                                             0.
sfc0C tech
                                                     specific fuel consumption at MCP sfc_{tech} (0. for sfc0C_ref)
                                                                                                                                                                                             0.
                                  real
                                            +
                                                     specification turbine speed N_{\rm tech} (0. for Nspec_ref)
Nspec tech
                                  real
                                                                                                                                                                                             0.
                                            +
                                                 Scaling
                                                     engine size (0 scaled, 1 fixed)
FIX size
                                  int
                                            +
                                                                                                                                                                                             0
MF limit
                                            +
                                                     mass flow at limit SP and sfc (\dot{m}_{lim})
                                                                                                                                                                                           30.
                                  real
SP0C limit
                                                     specific power limit SP_{lim}
                                  real
                                            +
                                                                                                                                                                                          200.
                                                     specific fuel consumption limit {
m sfc_{lim}}
sfc0C limit
                                            +
                                                                                                                                                                                          0.34
                                  real
                                                     specification turbine speed variation (K_{Ns2})
KNspec
                                  real
                                                                                                                                                                                             0.
                                                 Derived scaling
                                                     specific power available (SLS static, MCP, N_{\rm spec}), SP_{0C} vs \dot{m}_{0C}
P0C limit
                                                          power limit
                                  real
                                                          K_{sp0}
Ksp0
                                  real
                                                          K_{sp1}
Ksp1
                                  real
                                                     specific fuel consumption (SLS static, MCP, N_{\rm spec}), {\rm sfc}_{0C} vs \dot{m}_{0C}
Ksfc0
                                  real
                                                          K_{sfc0}
Ksfc1
                                  real
                                                          K_{sfc1}
                                                     specification turbine speed, N_{\rm spec} vs \dot{m}_{0C}
KNs1
                                  real
                                                          K_{Ns1}
KNs2
                                                          K_{Ns2}
                                  real
                                                     optimum turbine speed, N_{\text{opt}0C}
KNo
                                  real
                                                     engine weight, SW = P/W_{\rm eng} vs \dot{m}_{0C}
                                                          K_{sw0}
Ksw0
                                  real
                                                          K_{sw1}
Ksw1
                                  real
                                                       SP and sfc functions are defined by values SPOC tech, sfc0C tech, \dot{m}_{\rm tech}=POC ref/SPOC tech
                                                             and limits SPOC limit, sfc0C limit, MF limit
                                                       defaults SP0C tech=SP0 ref(MCP), sfc0C tech=sfc0C ref, Nspec tech=Nspec ref
                                                       require \dot{m}_{\rm tech} < \dot{m}_{\rm lim} (otherwise get SP_{0C} = {\sf SPOC\_tech} and {\sf sfc}_{0C} = {\sf sfc0C\_tech})
                                                       for no variation of SP, sfc, and SW with scale, use FIX size=1 or MF limit=0.
                                                       engine weight scaling determined by MODEL weight
```

		+	Optimum Power Turbine Speed	
MODEL_OptN	int	+	model (0 none, 1 linear, 2 cubic)	1
		+	linear, $N_{\rm opt}/N_{\rm spec}$ vs P_q/P_0	
KNoptA	real	+	constant $K_{N{ m opt}A}$	1.
KNoptB	real	+	constant $K_{N{ m opt}B}$	0.
		+	cubic, $N_{ m opt}/N_{ m opt0C}$ vs P_q/P_{0C}	
KNopt0	real	+	constant $K_{N{ m opt}0}$	1.
KNopt1	real	+	constant $K_{N ext{opt} 1}$	0.
KNopt2	real	+	constant $K_{N ext{opt}2}$	0.
KNopt3	real	+	constant K_{Nopt3}	0.
XNopt	real	+	exponent $X_{N ext{opt}}$	0.
		+	power turbine efficiency function, $\eta_t(N)/\eta_t(N_{\rm spec})$	
XNeta	real	+	exponent $X_{N\eta}$	2.0

engine power and performance variation with power turbine speed determined by $N_{\rm opt}$ and $X_{N\eta}$ used only for INPUT_param = single set; no variation if MODEL_OptN=0

+ Power Available and Power Required Parameters

MODEL_Pav	int	+	power available (0 constant, 1 referred, 2 general)	2
MODEL_perf	int	+	performance at power required (1 referred, 2 general)	2
INPUT_param	int	+	parameter input form (1 single set; 2 function of engine speed)	1
Param	EngineParamN		single set (input moved to Param for use)	
		+	function of engine speed	
nspeed	int	+	number of engine speeds (maximum nspeedmax)	1
rNeng(nspeedmax)	real	+	engine speed ratio, $N/N_{ m spec}$	1.
kEngineParamN(nspeedmax)	int	+	identification of parameter sets	1

constant or referred model does not use parameters, does not include effect of turbine speed general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available constant specific fuel consumption (MODEL_perf=1, sfc0C_tech=0., MF_limit=0.) no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

```
Power Available
                                                 input form (1 coefficients K_0, K_1; 2 values \theta_b, K_b)
INPUT lin
                                                                                                                                                                             1
                               int
                                                 referred specific power available, SP_a/SP_0 vs temperature
                                                     number of regions (maximum nengkmax-1)
Nspa(nratemax)
                                                                                                                                                                             0
                               int
                                                     K_{spa0} (piecewise linear K_{spa} = K_0 + K_1\theta)
Kspa0(nengkmax,nratemax)
                               real
                                        +
                                                                                                                                                                           3.5
Kspa1(nengkmax,nratemax)
                                                     K_{spa1} (piecewise linear K_{spa} = K_0 + K_1\theta)
                                                                                                                                                                           -2.5
                               real
                                        +
Tspak(nengkmax,nratemax)
                               real
                                        +
                                                     K_{spa-b}
Kspab(nengkmax,nratemax)
                               real
                                        +
                                                     X_{spa0} (piecewise linear X_{spa} = X_0 + X_1\theta)
Xspa0(nengkmax,nratemax)
                                                                                                                                                                            -.2
                               real
                                                     X_{spa1} (piecewise linear X_{spa} = X_0 + X_1\theta)
Xspa1(nengkmax,nratemax)
                               real
                                                                                                                                                                             0.
Tspax(nengkmax,nratemax)
                               real
                                        +
Xspab(nengkmax,nratemax)
                               real
                                        +
                                                     X_{spa-b}
                                                 referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature
                                        +
                                                     number of regions (maximum nengkmax-1)
                                        +
Nmfa(nratemax)
                               int
                                                                                                                                                                             0
                                                     K_{mfa0} (piecewise linear K_{mfa} = K_0 + K_1\theta)
                                                                                                                                                                             .3
Kmfa0(nengkmax,nratemax)
                               real
                                        +
                                                     K_{mfa1} (piecewise linear K_{mfa} = K_0 + K_1\theta)
Kmfa1(nengkmax,nratemax)
                               real
                                                                                                                                                                            -.3
Tmfak(nengkmax,nratemax)
                                        +
                               real
Kmfab(nengkmax,nratemax)
                               real
                                                     K_{mfa-b}
                                                     X_{mfa0} (piecewise linear X_{mfa} = X_0 + X_1\theta)
Xmfa0(nengkmax,nratemax)
                               real
                                        +
                                                                                                                                                                             1.
                                                     X_{mfa1} (piecewise linear X_{mfa} = X_0 + X_1\theta)
Xmfa1(nengkmax,nratemax)
                                                                                                                                                                             0.
                               real
                                        +
Tmfax(nengkmax,nratemax)
                               real
                                        +
                                                     \theta_b
Xmfab(nengkmax,nratemax)
                                                     X_{mfa-b}
                               real
                                        +
```

piecewise linear function:

input form = coefficients K_0 , K_1 (N sets) or values θ_b , K_b (N+1 values) form not input is calculated (N-1 θ_b , K_b or N K_0 , K_1) input K_0 , K_1 : adjacent K_1 different, resulting θ_b unique and sequential input θ_b , K_b : θ_b unique and sequential

 $N_{
m spec}$ = specification power turbine speed

 SP_a , \dot{m}_a = referred specific power and mass flow available, at $N_{\rm spec}$

 SP_0 , \dot{m}_0 = referred specific power and mass flow available, at $N_{\rm spec}$, SLS static

N = power turbine speed, $N_{
m opt}$ = optimum power turbine speed

 η_t = power turbine efficiency; assume gas power available $P_G = P_a/\eta_t$ insensitive to N, so $\eta_t(N)$ give $P_a(N)$

		+	Performance at Power Required	
		+	referred fuel flow at power required, $\dot{w}_{req}/\dot{w}_{0C}$ vs P_q/P_{0C}	
Kffq0	real	+	constant K_{ffq0}	.2
Kffq1	real	+	constant K_{ffq1}	.8
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.3
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	.6
Kmfq1	real	+	constant K_{mfq1}	.78
Kmfq2	real	+	constant K_{mfq2}	48
Kmfq3	real	+	constant K_{mfq3}	.1
Xmfq	real	+	exponent X_{mfq}	3.5
		+	gross jet thrust at power required, F_g/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	.2
Kfgq1	real	+	constant K_{fgq1}	8.
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fgq}	2.0
		+	installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs ℓ_{ex}	
Kfgr0	real	+	constant K_{fgr0}	8.
Kfgr1	real	+	constant K_{fgr1}	.6
Kfgr2	real	+	constant K_{fgr2}	0.
Kfgr3	real	+	constant K_{fgr3}	0.

Chapter 73

Structure: EngineParamN

Variable	Type		Description	Default
		+	Engine Model Parameters	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
kEngineParamN	int		engine param number	
		+	Power Available	
nrate	int	+	number of ratings	1
INPUT_lin	int	+	input form (1 coefficients K_0, K_1 ; 2 values θ_b, K_b)	1
		+	referred specific power available, SP_a/SP_0 vs temperature	
Nspa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kspa0(nengkmax,nratemax)	real	+	K_{spa0} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	3.5
Kspa1(nengkmax,nratemax)	real	+	K_{spa1} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	-2.5
Tspak(nengkmax,nratemax)	real	+	$ heta_b$	
Kspab(nengkmax,nratemax)	real	+	K_{spa-b}	
Xspa0(nengkmax,nratemax)	real	+	X_{spa0} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	2
Xspa1(nengkmax,nratemax)	real	+	X_{spa1} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	0.
Tspax(nengkmax,nratemax)	real	+	$ heta_b$	
Xspab(nengkmax,nratemax)	real	+	X_{spa-b}	
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature	
Nmfa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kmfa0(nengkmax,nratemax)	real	+	K_{mfa0} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	.3
Kmfa1(nengkmax,nratemax)	real	+	K_{mfa1} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	3
Tmfak(nengkmax,nratemax)	real	+	$ heta_b$	
Kmfab(nengkmax,nratemax)	real	+	K_{mfa-b}	
Xmfa0(nengkmax,nratemax)	real	+	X_{mfa0} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	1.
Xmfa1(nengkmax,nratemax)	real	+	X_{mfa1} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	0.
Tmfax(nengkmax,nratemax)	real	+	$ heta_b$	
Xmfab(nengkmax,nratemax)	real	+	X_{mfa-b}	

Structure: EngineParamN 291

number of ratings consistent with EngineModel

```
Performance at Power Required
                                                    referred fuel flow at power required, \dot{w}_{req}/\dot{w}_{0C} vs P_q/P_{0C}
                                                        constant K_{ffq0}
Kffq0
                                 real
                                                                                                                                                                                        .2
                                                        constant K_{ffq1}
Kffq1
                                 real
                                                                                                                                                                                        8.
Kffq2
                                                        constant K_{ffq2}
                                                                                                                                                                                        0.
                                 real
                                           +
                                                        constant K_{ffq3}
Kffq3
                                 real
                                           +
                                                                                                                                                                                        0.
Xffq
                                                        exponent X_{ffq}
                                                                                                                                                                                      1.3
                                 real
                                           +
                                                    referred mass flow at power required, \dot{m}_{req}/\dot{m}_{0C} vs P_q/P_{0C}
Kmfq0
                                                        constant K_{mfq0}
                                  real
                                                                                                                                                                                        .6
Kmfq1
                                  real
                                           +
                                                        constant K_{mfq1}
                                                                                                                                                                                       .78
                                                        constant K_{mfq2}
Kmfq2
                                                                                                                                                                                      -.48
                                  real
                                                        constant K_{mfq3}
Kmfq3
                                 real
                                           +
                                                                                                                                                                                        .1
                                                        exponent X_{mfq}
Xmfq
                                 real
                                           +
                                                                                                                                                                                      3.5
                                                    gross jet thrust at power required, F_a/F_{a0C} vs P_a/P_{0C}
                                                        constant K_{fqq0}
Kfgq0
                                 real
                                                                                                                                                                                        .2
Kfgq1
                                                        constant K_{fgq1}
                                                                                                                                                                                        8.
                                  real
                                                        constant K_{fqq2}
Kfgq2
                                                                                                                                                                                        0.
                                 real
                                                        constant K_{fqq3}
Kfgq3
                                           +
                                                                                                                                                                                        0.
                                  real
                                                        exponent X_{fgq}
                                                                                                                                                                                      2.0
Xfgq
                                 real
                                           +
                                                    installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs \ell_{ex}
                                           +
Kfgr0
                                                        constant K_{far0}
                                 real
                                           +
                                                                                                                                                                                        8.
                                                        constant K_{fqr1}
Kfgr1
                                           +
                                                                                                                                                                                        .6
                                  real
                                                        constant K_{fqr2}
Kfgr2
                                           +
                                                                                                                                                                                        0.
                                  real
                                                        constant K_{fqr3}
Kfgr3
                                 real
                                           +
                                                                                                                                                                                        0.
                                               Derived
                                                    referred power P_q/P_{0C} (0. to 4.0)
q(41)
                                  real
fgq(41)
                                                    gross jet thrust F_a/F_{a0C}
                                 real
                                                    referred mass flow \dot{m}_{req}/\dot{m}_{0C}
mfq(41)
                                 real
```

Structure: EngineTable

Variable	Type		Description	Default
		+	Engine Table	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input	
			engine table can be used by more than one engine group, so all parameters fixed	
			engine not scaled (SET_power, fPsize not used); eta_d not used	
			fixed engine weight dWEng (MODEL_weight=0)	
			no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)	
			obtain Peng from table; mechanical limits included in power available data	
			tables intended for installed engine, including losses (fPloss inlet, fPloss ps, fPloss exh not used)	
			fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency	

kEngineTable	int		engine table number	
nrate rating(nratemax) krateC	int c*12 int	+ + +	Engine ratings number of ratings (maximum nratemax) rating designations MCP rating number	1 'MCP'
Nspec	real	+	Specification turbine speed ($N_{\rm spec}$)	

Structure: EngineTable

		+	Table	
KIND_table	int	+	format (1 E, 2 H)	1
nalt	int	+	number of altitudes (maximum nengtmax)	
ntemp	int	+	number of temperatures (maximum nengxmax)	
nspeed	int	+	number of speeds (maximum nengtmax)	
nalt_ram	int	+	number of altitudes for $f_{\rm RAM}$ (maximum nengtmax)	
ntemp_ram	int	+	number of temperatures for $f_{\rm RAM}$ (maximum nengxmax)	
alt(nengtmax)	real	+	altitude h	
temp(neng×ma×)	real	+	temperature $ au$	
speed(nengtmax)	real	+	speed V (TAS)	
$alt_ram(nengtmax)$	real	+	altitude h for f_{RAM}	
temp_ram(nengxmax)	real	+	temperature $ au$ for $f_{ m RAM}$	
			table format E: use alt, speed table format H: use alt, temp; and for $f_{\rm RAM}$ use speed, alt_ram, temp_ram; no jet thrust	
		+	Technology factors	
Кр	real	+	power available	1.0
Kw	real	+	fuel flow	1.0
Kf	real	+	net thrust	1.0
		+	Table format E	
Tp(nengtmax,nengtmax,nr)	ratemax)			
	real	+	power available $P_a(h, V, R)$	
Tw(nengtmax,nengtmax,n	ratemax)			
	real	+	fuel flow $\dot{w}(h, V, R)$	
Tf(nengtmax,nengtmax,nra	atemax)			
	real	+	net thrust $F_N(h, V, R)$	
		+	Table format H	
KIND_temp	int	+	temperature units (0 F or C based on Units; 1 F, 2 C)	0
change_temp	int		change temperature units (0 not, 1 F to C, 2 C to F)	

Structure: EngineTable

		+	power available	
P0(nengtmax,nengxmax,nr	ratemax)			
	real	+	static power $P_0(h, \tau, R)$	
KIND_ram	int	+	ram factor (1 table, 2 referred)	1
fRAM(nengtmax,nengxmax	x,nengtmax)			
	real	+	table ram factor $f_{\mathrm{RAM}}(V, \tau, h)$	
Xpa(nratemax)	real	+	referred ram factor $f_{\mathrm{RAM}} = (\delta_M \sqrt{ heta_M})^{X_{pa}}$, exponent X_{pa}	1.
		+	fuel flow	
KIND_fuelflow	int	+	kind (1 reference $\dot{w}_{\rm ref}(P_{q{ m ref}})$, 2 table $\dot{w}(P_q,h, au)$)	1
		+	reference	
nfuelflow	int	+	number of fuel flow values (maximum nengxmax)	
$Pq_ref(nengxmax)$	real	+	reference power required $P_q/\delta^{X_{dp}}\theta^{X_{rp}}$	
$ff_ref(nengxmax)$	real	+	reference fuel flow $\dot{w}/\delta^{X_{df}}\dot{\theta}^{X_{rf}}$	
Xdp	real	+	reference power, pressure exponent X_{dp}	1.0
Xrp	real	+	reference power, temperature exponent X_{rp}	0.5
Xdf	real	+	reference fuel flow, pressure exponent X_{df}	1.0
Xrf	real	+	reference fuel flow, temperature exponent X_{rf}	0.5
		+	table	
npower_ff	int	+	number of power required values (maximum nengtmax)	
nalt_ff	int	+	number of altitudes (maximum nengtmax)	
ntemp_ff	int	+	number of temperatures (maximum nengtmax)	
$power_ff(nengtmax)$	real	+	power required P_q	
$alt_ff(nengtmax)$	real	+	altitude h	
$temp_ff(nengtmax)$	real	+	temperature $ au$	
ff(nengtmax,nengtmax,nen	igtmax)			
	real	+	fuel flow $\dot{w}(P_q,h, au)$	

Variable	Type		Description	Default
		+	Reciprocating Engine Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input	
			installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N uninstalled: power available P_a , power required P_q , gross jet thrust F_g , net jet thrust F_n fuel flow = specific fuel consumption * power (sfc = \dot{w}/P); mass flow = fuel flow / fuel-air ratio	
			reciprocating engine model can be used by more than one engine group, so all parameters fixed	
kRecipModel	int		reciprocating engine model number	
		+	Weight	
MODEL_weight	int	+	$\operatorname{model}(0 \operatorname{fixed}, 1 W(P))$	1
Weng	real	+	engine weight (fixed)	0.
		+	engine weight, $W_{\rm eng}$ vs $P_{\rm eng}$ model ($W = K_{\rm 0eng} + K_{\rm 1eng} P + K_{\rm 2eng} P^{X_{\rm eng}}$)	
Kwt0_eng	real	+	constant $K_{0\mathrm{eng}}$	0.
Kwt1_eng	real	+	constant $K_{1\mathrm{eng}}$	0.25
Kwt2_eng	real	+	constant $K_{ m 2eng}$	0.
Xwt_eng	real	+	exponent X_{eng}	0.
		+	Custom Weight Model	
$WtParam_recip(8)$	real	+	parameters	0.

		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	1000.
$sfc0_ref(nratemax)$	real	+	specific fuel consumption (sfc_0)	0.60
$F0_{ref(nratemax)}$	real	+	fuel-air ratio (F_0)	0.08
$SF0_{ref(nratemax)}$	real	+	specific jet thrust $(F_g = SF_0\dot{m})$	0.
$Pmep_ref(nratemax)$	real	+	mean effective pressure limit (P_{mep})	1000.
$Pcrit_ref(nratemax)$	real	+	critical (throttle) limit (P_{crit})	1000.
$N0_{ref}(nratemax)$	real	+	reference engine speed (N_0)	2000.
Nspec_ref	real	+	specification engine speed $(N_{\rm spec})$	2000.
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rN0(nratemax)	real		reference engine speed $(N_{0R}/N_{\rm spec})$	
rcrit(nratemax)	real		critical power $(P_{\text{crit}R}/P_{0R})$	
rmep(nratemax)	real		mechanical limit of power $(P_{\mathrm{mech}R}/P_{0R} * N_{\mathrm{spec}}/N_{0R})$	

Reference Engine Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as

'MRP' = Maximum Rated Power (5 or 10 min)

'MCP' = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit

Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
Xo	real	+	specific output exponent X_o	0.2
Xs	real	+	mean piston speed exponent X_s	0.3
Xf	real	+	specific fuel consumption exponent X_f	0.1
Ksfc1	real	+	specific fuel consumption constant $K_{ m sfc1}$	1.
Ksfc2	real	+	specific fuel consumption constant $K_{ m sfc2}$	0.
KN1	real	+	engine speed constant $K_{N m spec 1}$	1.
KN2	real	+	engine speed constant $K_{N m spec 2}$	0.
			Derived scaling	
Xsfc	real		exponent $-X_f/(2-X_o)$	
XN	real		exponent $-(1+X_s)/(2-X_o)$	
		+	Power Available	
MODEL_Pav	int	+	model (0 constant P_a)	1
Kp(nratemax)	real	+	factor K_p	1.
Kram(nratemax)	real	+	constant $K_{ m ram}$	1.
XpN(nratemax)	real	+	exponent X_{pN}	1.
Xpt(nratemax)	real	+	exponent $X_{v\theta}$	0.5
Xcrit(nratemax)	real	+	exponent $X_{ m crit}$	3.0
		+	Performance at Power Required	
		+	fuel flow, \dot{w}_{req}/\dot{w}_0 vs P_q/P_0	
MODEL_Kffq	int	+	model (1 polynomial, 2 piecewise linear)	1
		+	polynomial	
Kffq0(nratemax)	real	+	constant K_{ffq0}	0.
Kffq1(nratemax)	real	+	constant K_{ffq1}	1.
Kffq2(nratemax)	real	+	constant K_{ffq2}	0.
Kffq3(nratemax)	real	+	constant K_{ffq3}	0.
		+	piecewise linear	
Nffq(nratemax)	int	+	number of values (maximum nengrmax)	0
Pffq(nengrmax,nratemax)	real	+	power ratio P_q/P_0	
Kffq(nengrmax,nratemax)	real	+	factor K_{ffq}	
Xffq(nratemax)	real	+	exponent X_{ffq}	0.
Xffs(nratemax)	real	+	exponent $X_{ff\sigma}$	0.

```
fuel-air ratio, F_{req}/F_0 vs P_q/P_0
MODEL KFq
                                                   model (1 polynomial, 2 piecewise linear)
                              int
                                                                                                                                                                      1
                                                   polynomial
                                                       constant K_{Fq0}
KFq0(nratemax)
                                                                                                                                                                     1.
                              real
                                                       constant K_{Fa1}
KFq1(nratemax)
                              real
                                                                                                                                                                     0.
                                                       constant K_{Fq2}
KFq2(nratemax)
                                                                                                                                                                     0.
                              real
                                                       constant K_{Fq3}
KFq3(nratemax)
                              real
                                                                                                                                                                     0.
                                                   piecewise linear
                                                       number of values (maximum nengrmax)
NFq(nratemax)
                              int
                                                                                                                                                                      0
                                                       power ratio P_q/P_0
PFq(nengrmax,nratemax)
                              real
                                       +
KFq(nengrmax,nratemax)
                                                       factor K_{Fq}
                              real
                                       +
XFq(nratemax)
                                                   exponent X_{Fq}
                              real
                                       +
                                                                                                                                                                     0.
                                               installed net jet thrust, K_{fqr} = F_G/F_q (installed thrust loss)
                                      +
Kfgr(nratemax)
                                                   constant K_{fqr}
                              real
                                      +
                                                                                                                                                                     1.
```

```
Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffq1=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)
```

Structure: CompressorModel

Variable	Type		Description	Default
		+	Compressor Model	
title		+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Comp'
			compressor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			mass flow = power / specific power ($SP = P/\dot{m}$); gross thrust = specific thrust * mass flow ($ST = T/\dot{m}$)	
			compressor model can be used by more than one engine group, so all parameters fixed	
kCompressorModel	int		compressor model number	
		+	Weight	
MODEL_weight	int	+	model (0 fixed, 1 W(P))	1
Wcomp	real	+	compressor weight (fixed)	0.
		+	compressor weight, W_{comp} vs P_{eng} model ($W = K_{0\text{comp}} + K_{1\text{comp}}P + K_{2\text{comp}}P^{X_{\text{comp}}}$)	
Kwt0_comp	real	+	constant $K_{0\text{comp}}$	0.
Kwt1_comp	real	+	constant $K_{1\text{comp}}$	0.2
Kwt2_comp	real	+	constant $K_{2\text{comp}}$	0.
Xwt_comp	real	+	exponent X_{comp}	0.
		+	Custom Weight Model	
$WtParam_comp(8)$	real	+	parameters	0.

Structure: CompressorModel 300

		+	Parameters	
	int	+	Compressor Ratings	1
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
D0 ((,)	1	+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	
SP0_ref(nratemax)	real	+	specific power (SP_0)	
Pmech_ref(nratemax)	real	+	mechanical limit of power (P_{mech})	
SF0C_ref	real	+	specific jet thrust $(F_{g0C} = SF_{0C}\dot{m}_{0C})$	
Nspec_ref	real	+	specification compressor speed ($N_{ m spec}$)	
Do.()			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rSP0(nratemax)	real		specific power (SP_{0R}/SP_{0C})	
rPmech(nratemax)	real		mechanical limit of power $(P_{\mathrm{mech}R}/P_{0C})$	
			if MCP scaled, ratios to MCP values kept constant compressor rating: match rating designation in FltState	
		+	Power Available	
		+	referred specific power available, SP_a/SP_0	
Xspa	real	+	exponent X_{spa}	1.
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0	
Xmfa	real	+	exponent X_{mfa}	1.
		+	Performance at Power Required	
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	
Kmfq1	real	+	constant K_{mfq1}	
Kmfq2	real	+	constant K_{mfq2}	
Kmfq3	real	+	constant K_{mfq3}	
Xmfq	real	+	exponent X_{mfq}	1.

Structure: CompressorModel 301

1.
0.
0.
0.
2.0

0.

0.

0

 $Xwtq_motor$

Xwts_motor

KIND_design

real

real

int

+

+

Structure: MotorModel

	Type		Description	Default
		+	Motor Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Motor'
			motor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			motor model can be used by more than one engine group, so all parameters fixed	
kMotorModel	int		motor model number	
		+	Weight	
MODEL_weight	int	+	NASA model (0 fixed, 1 $W(P)$, 2 $W(Q)$)	2
Wmotor	real	+	motor weight (fixed)	0.
		+	motor weight, W_{motor} vs P_{eng} model ($W = K_{0\text{motor}} + K_{1\text{motor}}P + K_{2\text{motor}}P^{X_{\text{motor}}}Q^{X_{q\text{motor}}}S^{X_{s\text{motor}}}$)	
Kwt0_motor	real	+	constant $K_{0\mathrm{motor}}$	0.
Kwt1_motor	real	+	constant $K_{1 m motor}$	0.
17 . 0	real	+	constant $K_{ m 2motor}$	0.
Kwt2_motor	icai	•		

exponent $X_{
m motor}$ exponent $X_{
m qmotor}$ exponent $X_{
m smotor}$ motor weight, $W_{
m motor}$ vs $Q_{
m peak}$ model torque-to-weight design (0 only high Q/W; 1 high Q/W, 2 low Q/W factor)

Structure: MotorModel 303

		+	controller weight ($\Delta W = K_{\rm ESC} P^{X_{\rm ESC}}$)	
Kwt_ESC	real	+	constant K_{ESC}	0.
Xwt_ESC	real	+	exponent X_{ESC}	0.
		+	Custom Weight Model	
$WtParam_motor(8)$	real	+	parameters	0.
		+	Parameters	
		+	Motor Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	0.
Ppeak_ref(nratemax)	real	+	mechanical limit of power (P_{peak})	
Nspec_ref	real	+	specification motor speed $(N_{\rm spec})$	
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rPpeak(nratemax)	real		mechanical limit of power $(P_{\mathrm{peak}R}/P_{0C})$	
			Reference Motor Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			motor rating: match rating designation in FltState	
		+	Performance	
		+	Motor/Generator Efficiency	
KIND_eff	int	+	kind (1 fixed, 2 function power, 3 map)	2
		+	fixed or function power	
eta_motor	real	+	reference efficiency (at $P_{\rm eng}$)	1.00
loss_motor	real	+	power loss (fraction $P_{\rm eng}$)	0.00
		+	efficiency map $(P_{\text{loss}} = P_{\text{eng}} f_{\text{loss}} \sum_{i=0}^{3} \sum_{j=0}^{3} C_{ij} t^{i} n^{j})$	
Closs(4,4)	real	+	loss coefficients Closs(i+1,j+1)= C_{ij}	0.00
floss	real	+	factor $f_{ m loss}$	1.00
eta_cont	real	+	controller efficiency	1.00

Structure: MotorModel 304

KNspec KNbase	real real	+ + + +	Scaling specification motor speed variation (K_{Ns}) base motor speed variation (K_{Ns}) base motor speed variation (K_{Nb}) $ \overline{N_{\rm spec}} \ \ {\rm used} \ \ {\rm by\ efficiency\ map;} \ \ N_{\rm base} \ \ {\rm affects} \ \ P_{\rm peak} \ \ {\rm scaling} $ for no variation of motor speeds with scale, use KNspec = KNbase = 0.	0. 0.
		+	Thermal Management System	
		+	mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)	
KTMSm0	real	+	constant $K_{\mathrm{TMS}m0}$	0.
KTMSm1	real	+	constant $K_{\mathrm{TMS}m1}$	0.07
XTMSm	real	+	exponent $X_{\mathrm{TMS}m}$	1.
		+	power (hp or kW) from mass flow (lb/sec or kg/sec)	
KTMSp0	real	+	constant $K_{\mathrm{TMS}p0}$	0.
KTMSp1	real	+	constant $K_{\mathrm{TMS}p1}$	0.6
XTMSp	real	+	exponent $X_{\mathrm{TMS}p}$	1.
		+	gross jet force (lb or N) from mass flow (lb/sec or kg/sec)	
KTMSf0	real	+	constant $K_{\mathrm{TMS}f0}$	0.
KTMSf1	real	+	constant $K_{\mathrm{TMS}f1}$	6.0
XTMSf	real	+	exponent $X_{\mathrm{TMS}f}$	1.
		+	weight (lb or kg)	
KTMSw0	real	+	constant $K_{\mathrm{TMS}w0}$	4.0
KTMSw1	real	+	constant $K_{\mathrm{TMS}w1}$	0.3
XTMSwp	real	+	exponent $X_{\mathrm{TMS}wp}$	1.
XTMSwm	real	+	exponent $X_{\mathrm{TMS}wm}$	0.

Structure: JetModel

Variable	Type		Description	Default
		+	Jet Model	
title	c*100	+	title	'Default'
notes	c*100	+ 0	notes	
ident	c*16	+	identification	'Jet'
			jet identification: used by IDENT_jet of JetGroup input	
			installed: thrust available T_{av} , thrust required T_{req} uninstalled: thrust available T_a , thrust required T_q "0" = SLS static; " C " = MCT	
			mass flow = thrust / specific thrust ($ST = T/\dot{m}$); fuel flow = specific fuel consumption * thrust (sfc = \dot{w}/T)	
			jet model can be used by more than one jet group, so all parameters fixed	
			as model for reaction drive of convertible engine: only use sfc0C_ref and parameters for thrust available and performance at thrust required T0_ref and ST0_ref required, but not used; weight, ratings, technology, and scaling variables not used	
kJetModel	int		jet model number	
		+	Weight	
MODEL_weight	int	+	RPJEM model (0 fixed, 1 $W(T)$)	1
Wjet	real	+	jet weight (fixed)	0.
		+	jet weight, $W_{\rm jet}$ vs $T_{\rm jet}$ model ($W = K_{0\rm jet} + K_{1\rm jet}T + K_{2\rm jet}T^{X_{\rm jet}}$)	
Kwt0_jet	real	+	constant $K_{0 m jet}$	0.
Kwt1_jet	real	+	constant $K_{ m liet}$	0.2
Kwt2_jet	real	+	constant $K_{ m 2jet}$	0.
Xwt_jet	real	++	exponent $X_{ m jet}$ Custom Weight Model	0.
WtParam jet(8)	real	+	parameters	0.

Structure: JetModel 306

		+	Parameters	
		+	Jet Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCT'
krateC	int		MCT rating number	
		+	Reference	
$T0_ref(nratemax)$	real	+	thrust (T_0)	0.
$ST0_{ref}(nratemax)$	real	+	specific thrust (ST_0)	
$Tmech_ref(nratemax)$	real	+	mechanical limit of thrust $(T_{\rm mech})$	
sfc0C_ref	real	+	specific fuel consumption at MCT (sfc_{0C})	
			Derived ratios	
r $T0(nratemax)$	real		thrust (T_{0R}/T_{0C})	
rSTO(nratemax)	real		specific thrust (ST_{0R}/ST_{0C})	
rTmech(nratemax)	real		mechanical limit of thrust $(T_{\rm mech}R/T_{0C})$	
			Reference Jet Rating: SLS, static	
			if MCT scaled, ratios to MCT values kept constant	
			jet rating: match rating designation in FltState	
			- Jet runng. Materi runng designation in Protecte	
		+	Technology	
ST0C_tech	real	+	specific thrust at MCT ST_{tech} (0. for ST0_ref(MCT))	0.
sfc0C_tech	real	+	specific fuel consumption at MCT $\operatorname{sfc_{tech}}(0. \text{ for sfc0C_ref})$	0.
SICOC_tech	icai	+	Scaling	0.
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
MF_limit	real	+	mass flow at limit ST and sfc (\dot{m}_{lim})	0.
ST0C_limit	real	+	specific thrust limit ST and SIC (M_{lim})	0.
sfc0C_limit	real	+	specific fuel consumption limit sfc _{lim}	0.
sicoc_iiiiit	icai	т	Derived scaling	
			specific thrust available (SLS static, MCT), ST_{0C} vs \dot{m}_{0C}	
T0C_limit	real		specific tiliust available (SES static, WC1), SI_{0C} vs m_{0C} thrust limit	
Kst0	real		K_{st0}	
Kst1	real		K_{st1}	

Structure: JetModel 307

specific fuel consumption (SLS static, MCT), sfc_{0C} vs \dot{m}_{0C}

```
Ksfc0
                                  real
                                                          K_{sfc0}
Ksfc1
                                  real
                                                          K_{sfc1}
                                                       ST and sfc functions are defined by values STOC tech, sfcOC tech, \dot{m}_{\rm tech}=TOC ref/STOC tech
                                                            and limits STOC limit, sfc0C limit, MF limit
                                                       defaults ST0C_tech=ST0_ref(MCT), sfc0C_tech=sfc0C_ref
                                                       require \dot{m}_{\rm tech} < \dot{m}_{\rm lim} (otherwise get ST_{0C} = {\sf STOC\_tech} and {\rm sfc}_{0C} = {\sf sfc0C\_tech})
                                                       for no variation of ST and sfc with scale, use FIX size=1 or MF limit=0.
                                                Turbofan bypass ratio (0. for turbojet)
bypass
                                  real
                                                                                                                                                                                            0.
                                                Thrust Available
                                                     referred specific thrust available, ST_a/ST_0
                                                          exponent X_{sta}
Xsta
                                  real
                                            +
                                                                                                                                                                                            1.
                                                     referred mass flow at thrust available, \dot{m}_a/\dot{m}_0
                                                          exponent X_{mfa}
Xmfa
                                  real
                                                                                                                                                                                            1.
                                                Performance at Thrust Required
                                                     referred fuel flow at thrust required, \dot{w}_{reg}/\dot{w}_{0C} vs T_q/T_{0C}
Kffq0
                                                          constant K_{ffq0}
                                                                                                                                                                                            0.
                                  real
Kffq1
                                                          constant K_{ffq1}
                                  real
                                            +
                                                                                                                                                                                            1.
                                                          constant K_{ffq2}
Kffq2
                                  real
                                            +
                                                                                                                                                                                            0.
Kffq3
                                                          constant K_{ffq3}
                                  real
                                                                                                                                                                                            0.
Xffq
                                                          exponent X_{ffq}
                                                                                                                                                                                            1.
                                  real
                                                     referred mass flow at thrust required, \dot{m}_{req}/\dot{m}_{0C} vs T_q/T_{0C}
                                            +
                                                          constant K_{mfq0}
Kmfq0
                                                                                                                                                                                            0.
                                  real
Kmfq1
                                  real
                                                          constant K_{mfq1}
                                                                                                                                                                                            1.
Kmfq2
                                            +
                                                          constant K_{mfq2}
                                                                                                                                                                                            0.
                                  real
Kmfq3
                                                          constant K_{mfg3}
                                                                                                                                                                                            0.
                                  real
                                            +
                                                          exponent X_{mfq}
Xmfq
                                                                                                                                                                                            1.
                                  real
                                            +
                                                Derived
                                                     referred thrust T_q/T_{0C} (0. to 4.0)
t(41)
                                  real
                                                     referred mass flow \dot{m}_{req}/\dot{m}_{0C}
mfq(41)
                                  real
```

Structure: FuelCellModel

Variable	Type		Description	Default
		+	Fuel Cell Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Cell'
			fuel cell identification: used by IDENT_charge of ChargerGroup input	
			"0" = SLS static; "C" = MCP	
			fuel cell model can be used by more than one charger group, so all parameters fixed	
kFuelCellModel	int		fuel cell model number	
		+	Weight	
MODEL_weight	int	+	$\operatorname{model}(0 \operatorname{fixed}, 1 W(P))$	1
Wcell	real	+	fuel cell weight (fixed)	0.
		+	fuel cell weight, W_{cell} vs P_{chrg} model ($W = K_{0\text{cell}} + K_{1\text{cell}}P + K_{2\text{cell}}P^{X_{\text{cell}}}$)	
Kwt0_cell	real	+	constant $K_{0 m cell}$	0.
Kwt1_cell	real	+	constant $K_{ m 1cell}$	0.
Kwt2_cell	real	+	constant $K_{ m 2cell}$	0.
Xwt_cell	real	+	exponent X_{cell}	0.
		+	Custom Weight Model	
$WtParam_fuelcell(8)$	real	+	parameters	0.

Structure: FuelCellModel 309

nrateintFuel Cell Ratingsnrate (nratemax)c*12+ rating (maximum nratemax)'MCP'krateCintMCP rating number+ Reference+ ReferencePO_ref(nratemax)real+ power (P_0) 0.sfcOC_refreal+ specific fuel consumption at MCP (sfc_0C)0.rPO(nratemax)real+ power (P_{0R}/P_{0C})
rating(nratemax) c*12 + rating designations MCP rating number MCP rating number P_{C} reconstructions of the construction o
krateC int
krateC int MCP rating number PO_ref(nratemax) real + Reference PO_ref(nratemax) real + spocific fuel consumption at MCP (sfc $_{OC}$) 0. sfcOC_ref real + specific fuel consumption at MCP (sfc $_{OC}$) 0. rPO(nratemax) real + specific fuel consumption at MCP (sfc $_{OC}$) 0. Reference Fuel Cell Rating: SLS, static if MCP scaled, ratios to MCP values kept constant fuel cell rating: match rating designation in FltState 1. idesign real + design current density i_d pi_comp real + compressor pressure ratio π_C ncell(nengcmax) real + number of values (maximum nengcmax) 1 ncell(nengcmax) real + current density i_c 1. vcell(nengcmax) real + pressure scaling exponent X_{fc} 0.38 Kmf real + pressure scaling exponent X_{fc} 0.38 vdesign real + pressure scaling exponent X_{fc} 0.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
sfoC_ref real + specific fuel consumption at MCP (sfc_{OC}) 0 rPO(nratemax) real power (P_{OR}/P_{OC}) Reference Fuel Cell Rating: SLS, static if MCP scaled, ratios to MCP values kept constant fuel cell rating: match rating designation in FltState idesign real + design current density i_d pi_comp real + design current density i_d ncell int + number of values (maximum nengcmax) 1 ncell(nengcmax) real + voltage v_c 1. xfc real + pressure scaling exponent X_{fc} 0.38 Kmf real + pressure scaling exponent X_{fc} 0.38 vdesign real design voltage v_d 0.50
sfcOC_ref real Po(nratemax) + specific fuel consumption at MCP (sfc_{OC}) Derived ratios 0. rP0(nratemax) real power (P_{OR}/P_{OC}) Reference Fuel Cell Rating: SLS, static if MCP scaled, ratios to MCP values kept constant fuel cell rating: match rating designation in FltState idesign real + design current density i_d pi_comp real + design current density i_d ncell int + number of values (maximum nengcmax) 1 ncell(nengcmax) real + voltage v_c 1 vcell(nengcmax) real + pressure scaling exponent X_{fc} 0.38 Kmf real + mass flow ratio (m/w) 86 vdesign real design voltage v_d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Reference Fuel Cell Rating: SLS, static if MCP scaled, ratios to MCP values kept constant fuel cell rating: match rating designation in FltState $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
pi_comp real + compressor pressure ratio π_C + cell characteristics (at cell pressure $\delta_c = 1$) ncell int + number of values (maximum nengcmax) 1 icell(nengcmax) real + current density i_c 1. vcell(nengcmax) real + voltage v_c 1. Xfc real + pressure scaling exponent X_{fc} 0.38 Kmf real + mass flow ratio (\dot{m}/\dot{w}) 86. Derived vdesign real design voltage v_d
ncell int + number of values (maximum nengcmax) 1 icell(nengcmax) real + current density i_c 1. vcell(nengcmax) real + voltage v_c 1. Xfc real + pressure scaling exponent X_{fc} 0.38 Kmf real + mass flow ratio (\dot{m}/\dot{w}) 86. Derived vdesign real - design voltage v_d
ncellint+number of values (maximum nengcmax)1icell(nengcmax)real+current density i_c 1.vcell(nengcmax)real+voltage v_c 1.Xfcreal+pressure scaling exponent X_{fc} 0.38Kmfreal+mass flow ratio (\dot{m}/\dot{w}) 86.Derivedvdesignrealdesign voltage v_d
icell(nengcmax)real+current density i_c vcell(nengcmax)real+voltage v_c 1.Xfcreal+pressure scaling exponent X_{fc} 0.38Kmfreal+mass flow ratio (\dot{m}/\dot{w}) 86.Derivedvdesignrealdesign voltage v_d
vcell(nengcmax)real+voltage v_c 1.Xfcreal+pressure scaling exponent X_{fc} 0.38Kmfreal+mass flow ratio (\dot{m}/\dot{w}) 86.Derivedvdesignreal-design voltage v_d
Xfc real + pressure scaling exponent X_{fc} 0.38 Kmf real + mass flow ratio (\dot{m}/\dot{w}) 86. Derived vdesign real design voltage v_d
Kmf real + mass flow ratio (\dot{m}/\dot{w}) 86. Derived vdesign real design voltage v_d
Derived vdesign real design voltage v_d
vdesign real design voltage v_d
1. Company of the com
pdesign real design power density p_d
vmax real voltage for maximum power $v_{ m max}$
irate(nratemax) real rated current density i_R

reference sfc corresponds to fuel specific energy and design cell current, including technology impact units of idesign and icell must be consistent

Structure: FuelCellModel 310

icell values unique and sequential; icell(1)=0.
vcell monotonically decreasing (reversed vcell unique and sequential)

simple model: define power P0_ref and specific fuel consumption sfc0C_ref, mass flow from Kmf ncell=1 for constant v_c , hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

Structure: SolarCellModel

Variable	Type	Description	Default
title	c*100	+ Solar Cell Model + title	'Default'
notes	c*1000		
ident	c*16	+ identification	'Cell'
		solar cell identification: used by IDENT_charge of ChargerGroup input	
		"0" = SLS static; "C" = MCP	
		solar cell model can be used by more than one charge group, so all parameters fixed	
kSolarCellModel	int	solar cell model number	
		+ Weight	
MODEL_weight	int	+ model (0 fixed, 1 $W(A)$)	1
Wsolar	real	+ solar cell weight (fixed)	0.
ssolar	real	+ weight density (kg/m ²)	
		+ Custom Weight Model	
$WtParam_solarcell(8)$	real	+ parameters	0.
		+ Parameters	
	_	+ Solar Cell Ratings	
nrate	int	+ number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+ rating designations	'MCP'
krateC	int	MCP rating number	

Structure: SolarCellModel 312

P0_ref(nratemax) rP0(nratemax)	real real	++	Reference power (P_0) Derived ratios power (P_{0R}/P_{0C})	0.
			Reference Solar Cell Rating: SLS, static if MCP scaled, ratios to MCP values kept constant solar cell rating: match rating designation in FltState	
esolar	real	+ + +	Performance power density (W/m ²) Efficiency	
KIND_eff eta_cell loss_cell	int real real	+++++	kind (1 fixed, 2 function power) reference efficiency (at $P_{\rm chrg}$) power loss (fraction $P_{\rm chrg}$)	2 1.00 0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

Chapter 81

Structure: BatteryModel

Variable	Type		Description	Default
		+	Battery Model	
title	c*100		title	'Default'
notes	c*1000) +	notes	
ident	c*16	+	identification	'Battery'
			battery identification: used by IDENT_battery of FuelTank input	
			battery model can be used by more than one fuel tank system, so all parameters fixed	
kBatteryModel	int		battery model number	
MODEL hottom	int	+	Performance	1
MODEL_battery Vref	int	+	model (1 equivalent circuit, 2 lithium-ion)	1
xmbd	real real	+	reference voltage V_{ref} maximum burst discharge current x_{mbd} (1/hr)	4.2 20.
xCCmax	real	+	maximum charge current x_{mbd} (1/hr)	4.
ACCITION	icai	+	actual cell depth-of-discharge $(d_{\text{act}} = d_{\text{min}} + (d_{\text{max}} - d_{\text{min}})d_{\text{use}})$	т.
DoDmin	real	+	minimum d_{\min}	0.0
DoDmax	real	+	maximum d_{\max}	0.8
Dobinax	Tear	'	Derived performance	0.0
CfromE	real		charge capacity C (A-hr) from usable energy capacity (MJ); $(10^6/3600)/(DoDmax-DoDmin)/Vref$	
PfromE	real		power capacity P (hp or kW) from usable energy capacity (MJ); xmdb/(DoDmax-DoDmin)/Econv_dE	

Structure: BatteryModel 314

		+	Thermal Management System	
		+	mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)	
KTMSm0	real	+	constant $K_{\mathrm{TMS}m0}$	0.
KTMSm1	real	+	constant $K_{\mathrm{TMS}m1}$	0.07
XTMSm	real	+	exponent $X_{\mathrm{TMS}m}$	1.
		+	power (hp or kW) from mass flow (lb/sec or kg/sec)	
KTMSp0	real	+	constant $K_{\mathrm{TMS}p0}$	0.
KTMSp1	real	+	constant $K_{\mathrm{TMS}p1}$	0.6
XTMSp	real	+	exponent $X_{\mathrm{TMS}p}$	1.
		+	gross jet force (lb or N) from mass flow (lb/sec or kg/sec)	
KTMSf0	real	+	constant $K_{\mathrm{TMS}f0}$	0.
KTMSf1	real	+	constant $K_{\mathrm{TMS}f1}$	6.0
XTMSf	real	+	exponent $X_{\mathrm{TMS}f}$	1.
		+	weight (lb or kg)	
KTMSw0	real	+	constant $K_{\mathrm{TMS}w0}$	4.0
KTMSw1	real	+	constant $K_{\mathrm{TMS}w1}$	0.3
XTMSwp	real	+	exponent $X_{\mathrm{TMS}wp}$	1.
XTMSwm	real	+	exponent $X_{\mathrm{TMS}wm}$	0.
		+	Equivalent Circuit Model	
KIND_eff	int	+	kind (1 fixed, 2 function power)	2
_		+	discharge	
eta_dischrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_dischrg	real	+	power loss (fraction P_{ref})	0.00
		+	charge	
eta_chrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_chrg	real	+	power loss (fraction P_{ref})	0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

Structure: BatteryModel 315

		+	Lithium-Ion Model	
		+	discharge	
fcrit	real	+	critical voltage factor ($F_V = f_{\text{crit}}$ is capacity)	0.6
fd	real	+	nominal discharge voltage ($V_d = f_d V_{ref}$)	1.0
		+	open circuit voltage ratio ($V_o = V_d F_V(d)$)	
nFV	int	+	number of points (maximum 40)	0
DoD(40)	real	+	depth-of-discharge d (fraction)	0.
FV(40)	real	+	F_V	0.
Tref	real	+	reference temperature T_{ref} (deg C)	20.
fTC	real	+	temperature control power loss f_{TC} (fraction component power)	0.01
		+	current influence on discharge voltage	
R	real	+	internal resistance $x_{mbd}CR/V_{ref}$	0.1
kdl	real	+	depth-of-discharge $k_{dI}x_{mbd}C$	0.05
		+	temperature influence on discharge voltage	
kVT	real	+	voltage increment k_{VT}	0.005
kdT	real	+	depth-of-discharge k_{dT}	0.000005
		+	charge	
fc	real	+	nominal charge voltage ($V_c = f_c V_{\rm ref}$)	1.0
kcV	real	+	CC phase starting voltage decrement k_{cV}	0.1
ks	real	+	CV phase parameter k_{σ}	0.2
			Derived lithium-ion discharge	
DoDrev(40)	real		reversed DoD	
FVrev(40)	real		reversed FV	

open circuit voltage ratio: monotonically decreasing; default used if nFV=0 default DoD = 0.,1,2,3,4,.5,6,.7,8,9,.91,.92,.93,.94,.95,.96,.97,.98,.99,1.,1.01,1.02 default FV = 1.,97,95,.93,.915,.90,.89,.88,.87,.85,.847,.842,.835,.826,.815,.8,78,.75,.7,.6,.4,0.

Structure: Location

Variable	Type		Description	Default
		+	Location	
		+	input	
		+	fixed (dimensional, arbitrary origin)	
FIX_geom	c*8	+	input	, ,
SL	real	+	stationline	
BL	real	+	buttline	
WL	real	+	waterline	
		+	scaled (based on reference length, from reference point)	
XoL	real	+	x/L	
YoL	real	+	y/L	
ZoL	real	+	z/L	
		+	reference length	
KIND_scale	int	+	kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length)	0
kScale	int	+	identification (component number)	1

```
Fixed input: FIX_geom = 'x', 'y', 'z' (or combination) to override INPUT_geom=2

Geometry: Location for each component

fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m

scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point

option to fix some geometry (FIX_geom in Location override INPUT_geom)

option to specify reference length (KIND_scale in Location override global KIND_scale)

Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component component reference must be fixed

Locations can be calculated from other parameters (configuration specific)
```

Structure: Location 317

```
Derived
                                               input, from Aircraft%INPUT geom and FIX geom (1 fixed; 2 scaled)
INPUT_geom_x
                              int
                                                   \boldsymbol{x}
INPUT geom y
                              int
                                                   y
INPUT_geom_z
                              int
                                               from Aircraft%INPUT geom and FIX geom (0 calculated, 1 fixed, 2 scaled)
FIX x
                              int
FIX y
                              int
                                                   y
FIX z
                              int
                                                   all fixed (0 not, some scaled or calculated)
isFixed
                              int
                                               fixed (dimensional, arbitrary origin)
SLloc
                                                   stationline
                              real
BLloc
                              real
                                                   buttline
                                                   waterline
WLloc
                              real
                                               scaled (based on reference length, from reference point)
XoLloc
                              real
                                                   x/L
                                                  y/L
YoLloc
                              real
                                                   z/L
ZoLloc
                              real
                                               reference length
                                                  from Aircraft%KIND_scale and KIND_scale (1 rotor radius, 2 wing span, 3 fuselage length)
KIND scale loc
                              int
                                                   from Aircraft%kScale and kScale (component number)
kScale loc
                              int
                                                   reference length
scale
                              real
                                                FIX = 0: x calculation depends on component/configuraton; calc SLloc and XoLloc
                                                FIX = 1: x from SLloc; calc XoLloc
                                                FIX = 2: x from XoLloc; calc SLloc
```

```
Geometry (dimensional, body axes, relative reference point)
```

Variable	Type	Description	Default
WE	real	WEIGHT EMPTY	
W_structure	real	STRUCTURE	
W_wing	real	wing group	
W_wing_basic	real	basic structure	
W_wing_secondary	real	secondary structure	
W_wing_fair	real	fairings (not RP8A)	
W_{wing_fit}	real	fittings (not RP8A)	
W_{wing_fold}	real	fold/tilt (not RP8A)	
$W_{wing_control}$	real	control surfaces	
W_{rotor}	real	rotor group	
W_{rotor_blade}	real	blade assembly	
W_{rotor_hub}	real	hub & hinge	
W_rotor_basic	real	basic (not RP8A)	
W_{rotor_shaft}	real	inter-rotor shaft (not RP8A)	
W_rotor_fair	real	fairing/spinner (not RP8A)	
W_{rotor_fold}	real	blade fold (not RP8A)	
W_{rotor_supt}	real	rotor support structure (not RP8A)	
W_{rotor_duct}	real	duct (not RP8A)	
W_tail	real	empennage group	
W_Htail	real	horizontal tail (not RP8A)	
W_Htail_basic	real	basic (not RP8A)	
W_Htail_fold	real	fold (not RP8A)	
W_Vtail	real	vertical tail (not RP8A)	
W_Vtail_basic	real	basic (not RP8A)	
W_Vtail_fold	real	fold (not RP8A)	
$W_{tailrotor}$	real	tail rotor (not RP8A)	
W_{tr}	real	blades	
W_tr_hub	real	hub & hinge	

W_tr_supt	real	rotor supports
W_{tr_duct}	real	rotor/fan duct
$W_fuselage$	real	fuselage group
W_fus_basic	real	basic (not RP8A)
$W_fus_wingfold$	real	wing & rotor fold/retraction (not RP8A)
$W_fus_tailfold$	real	tail fold/tilt (not RP8A)
W_fus_mar	real	marinization (not RP8A)
W_fus_press	real	pressurization (not RP8A)
W_fus_crash	real	crashworthiness (not RP8A)
W_gear	real	alighting gear group
W_gear_basic	real	basic (not RP8A)
W_gear_retract	real	retraction (not RP8A)
W_gear_crash	real	crashworthiness (not RP8A)
W_nacelle	real	engine section or nacelle group
W_nac_engsupt	real	engine support (not RP8A)
W_nac_cowling	real	engine cowling (not RP8A)
W_nac_pylon	real	pylon support (not RP8A)
W_airind	real	air induction group
$W_propulsion$	real	PROPULSION GROUP
W_engsys	real	engine system
W_engine	real	engine
W_exhaust	real	exhaust system
W_acc	real	accessories (not RP8A)
$W_propeller$	real	propeller/fan installation
W_prop_blade	real	blades (not RP8A)
W_prop_hub	real	hub & hinge (not RP8A)
W_prop_supt	real	rotor supports (not RP8A)
W_prop_duct	real	rotor/fan duct (not RP8A)
W_fuelsys	real	fuel system
W_fuel_tank	real	tanks and support
W_fuel_plumb	real	plumbing
W_drive	real	drive system
W_drive_box	real	gear boxes
W_drive_xmsn	real	transmission drive

W_drive_rtrsft	real	rotor shaft
W_drive_brake	real	rotor brake (not RP8A)
W_drive_clutch	real	clutch (not RP8A)
W_drive_gas	real	gas drive
W_equip	real	SYSTEMS AND EQUIPMENT
$W_fltcont$	real	flight controls group
W_fc_cockpit	real	cockpit controls
W_fc_afcs	real	automatic flight control system
W_{fc_system}	real	system controls
W_fc_fw	real	fixed wing systems
$W_{fc_fw_nonboost}$	real	non-boosted (not RP8A)
W_fc_fw_mech	real	boost mechanisms (not RP8A)
W_fc_rw	real	rotary wing systems
$W_{fc_rw_nonboost}$	real	non-boosted (not RP8A)
W_fc_rw_mech	real	boost mechanisms (not RP8A)
$W_{fc_rw_boost}$	real	boosted (not RP8A)
W_fc_cv	real	conversion systems
$W_{fc_cv_nonboost}$	real	non-boosted (not RP8A)
W_fc_cv_mech	real	boost mechanisms (not RP8A)
W_auxpower	real	auxiliary power group
$W_{instrument}$	real	instruments group
W_hydraulic	real	hydraulic group
W_hyd_fw	real	fixed wing (not RP8A)
W_hyd_rw	real	rotary wing (not RP8A)
W_hyd_cv	real	conversion (not RP8A)
W_hyd_eq	real	equipment (not RP8A)
$W_pneumatic$	real	pneumatic group
W_electrical	real	electrical group
W_elect_aircraft	real	aircraft (not RP8A)
W_elect_deice	real	anti-icing (not RP8A)
W_avionics	real	avionics group (mission equipment)
W_arm	real	armament group
$W_armprov$	real	armament provisions (not RP8A)
W_armor	real	armor (not RP8A)

$W_furnish$	real	furnishings & equipment group
W_environ	real	environmental control group
W_deice	real	anti-icing group
W_{load}	real	load & handling group
W_vib	real	VIBRATION (not RP8A)
W_{cont}	real	CONTINGENCY
W_fixUL	real	FIXED USEFUL LOAD
W_fixUL_crew	real	crew
W_fixUL_fluid	real	fluids (oil, unusable fuel) (not RP8A)
$W_fixUL_auxtank$	real	auxilary fuel tanks
W_fixUL_other	real	other fixed useful load (not RP8A)
W_fixUL_equip	real	equpment increment (not RP8A)
$W_fixUL_foldkit$	real	folding kit (not RP8A)
W_fixUL_extkit	real	wing extension kit (not RP8A)
$W_fixUL_wingkit$	real	wing kit (not RP8A)
$W_fixUL_otherkit$	real	other kit (not RP8A)
Wpayload	real	PAYLOAD
Wfuel	real	USABLE FUEL
$Wfuel_std$	real	standard tanks (not RP8A)
Wfuel_aux	real	auxiliary tanks (not RP8A)
Wscaled	real	scaled weight (sum all K=3 in operating weight)
Wfixed	real	fixed weight (sum all K=2 in operating weight)
Wfeature	real	military features in empty weight
WO	real	OPERATING WEIGHT = weight empty + fixed useful load
WUL	real	USEFUL LOAD = fixed useful load + payload + usable fuel
GW	real	GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

follows SAWE RP8A Group Weight Statement, except as noted typical only lowest elements of hierarchy specified, others obtained by summation

set status flag when define weight

can define weights (k=2 or 3) at any level, ignore child weights if not lowest level when print weight statement, designate all fixed (ie input) quantities

usage:

set all W=K=0; put W, with K=2 or 3

then fill structure: if K=0 and some child defined/sum, then $W=\sum$ (child) and K=1 addition or increment sums all elements, with status Kt of total as follows

	Ka =	0	1	2	3
Kb = 0		0	1	2	3
Kb = 1		1	1	3	3
Kb = 2		2	3	2	3
Kb = 3		3	3	3	3

Status (0 none; 1 sum of child; 2 defined, fixed (input); 3 defined, not fixed (scaled, wt eq; or composite))

```
ΚE
                                           WEIGHT EMPTY
                              int
                                               STRUCTURE
K_structure
                              int
K_wing
                                                   wing group
                              int
                                                       basic structure
K_wing_basic
                              int
K_wing_secondary
                                                       secondary structure
                              int
K_wing_fair
                                                           fairings (not RP8A)
                              int
                                                           fittings (not RP8A)
K_wing_fit
                              int
                                                          fold/tilt (not RP8A)
K wing fold
                              int
K_{wing\_control}
                                                       control surfaces
                              int
K rotor
                              int
                                                   rotor group
                                                      blade assembly
K rotor blade
                              int
                                                      hub & hinge
K rotor hub
                              int
K_rotor_basic
                              int
                                                           basic (not RP8A)
                                                          inter-rotor shaft (not RP8A)
K rotor shaft
                              int
                                                          fairing/spinner (not RP8A)
K rotor fair
                              int
K rotor fold
                                                           blade fold (not RP8A)
                              int
                                                      rotor support structure (not RP8A)
K_{rotor\_supt}
                              int
                                                      duct (not RP8A)
K_{rotor\_duct}
                              int
K tail
                              int
                                                   empennage group
                                                      horizontal tail (not RP8A)
K_Htail
                              int
```

K_Htail_basic	int	basic (not RP8A)
K_Htail_fold	int	fold (not RP8A)
K_Vtail	int	vertical tail (not RP8A)
K_Vtail_basic	int	basic (not RP8A)
K_Vtail_fold	int	fold (not RP8A)
$K_{tailrotor}$	int	tail rotor (not RP8A)
K_{tr} blade	int	blades
K_tr_hub	int	hub & hinge
K_{tr_supt}	int	rotor supports
K_{tr} duct	int	rotor/fan duct
$K_{fuselage}$	int	fuselage group
K_fus_basic	int	basic (not RP8A)
$K_fus_wingfold$	int	wing & rotor fold/retraction (not RP8A)
$K_{fus_tailfold}$	int	tail fold/tilt (not RP8A)
K_fus_mar	int	marinization (not RP8A)
K_fus_press	int	pressurization (not RP8A)
K_fus_crash	int	crashworthiness (not RP8A)
K_{gear}	int	alighting gear group
K_gear_basic	int	basic (not RP8A)
K_gear_retract	int	retraction (not RP8A)
K_{gear_crash}	int	crashworthiness (not RP8A)
$K_nacelle$	int	engine section or nacelle group
K_nac_engsupt	int	engine support (not RP8A)
$K_nac_cowling$	int	engine cowling (not RP8A)
K_nac_pylon	int	pylon support (not RP8A)
K_airind	int	air induction group
$K_propulsion$	int	PROPULSION GROUP
K_engsys	int	engine system
K_engine	int	engine
K_exhaust	int	exhaust system
K_acc	int	accessories (not RP8A)
$K_propeller$	int	propeller/fan installation
K_prop_blade	int	blades (not RP8A)
K_prop_hub	int	hub & hinge (not RP8A)

K_prop_supt	int	rotor supports (not RP8A)
K_prop_duct	int	rotor/fan duct (not RP8A)
K_fuelsys	int	fuel system
K_fuel_tank	int	tanks and support
K_fuel_plumb	int	plumbing
K_drive	int	drive system
K_drive_box	int	gear boxes
K_drive_xmsn	int	transmission drive
K_{drive_rtrsft}	int	rotor shaft
K_drive_brake	int	rotor brake (not RP8A)
K_drive_clutch	int	clutch (not RP8A)
K_drive_gas	int	gas drive
K_equip	int	SYSTEMS AND EQUIPMENT
$K_fltcont$	int	flight controls group
$K_{fc_cockpit}$	int	cockpit controls
K_fc_afcs	int	automatic flight control system
K_{fc_system}	int	system controls
K_fc_fw	int	fixed wing systems
$K_fc_fw_nonboost$	int	non-boosted (not RP8A)
$K_fc_fw_mech$	int	boost mechanisms (not RP8A)
K_fc_rw	int	rotary wing systems
$K_{fc_rw_nonboost}$	int	non-boosted (not RP8A)
$K_{fc_rw_mech}$	int	boost mechanisms (not RP8A)
$K_fc_rw_boost$	int	boosted (not RP8A)
K_fc_cv	int	conversion systems
$K_{fc}_{cv}_{nonboost}$	int	non-boosted (not RP8A)
$K_{fc}_{cv}_{mech}$	int	boost mechanisms (not RP8A)
K_auxpower	int	auxiliary power group
$K_{instrument}$	int	instruments group
$K_hydraulic$	int	hydraulic group
K_hyd_fw	int	fixed wing (not RP8A)
K_hyd_rw	int	rotary wing (not RP8A)
K_hyd_cv	int	conversion (not RP8A)
K_hyd_eq	int	equipment (not RP8A)

K_pneumatic	int	pneumatic group
K_electrical	int	electrical group
K_elect_aircraft	int	aircraft (not RP8A)
K_elect_deice	int	anti-icing (not RP8A)
K_avionics	int	avionics group (mission equipment)
K_{arm}	int	armament group
$K_{armprov}$	int	armament provisions (not RP8A)
K_{armor}	int	armor (not RP8A)
$K_{-}furnish$	int	furnishings & equipment group
K_environ	int	environmental control group
K_deice	int	anti-icing group
$K_{L}load$	int	load & handling group
K_vib	int	VIBRATION (not RP8A)
K_cont	int	CONTINGENCY
K_fixUL	int	FIXED USEFUL LOAD
K_fixUL_crew	int	crew
K_fixUL_fluid	int	fluids (oil, unusable fuel) (not RP8A)
$K_{fix}UL_{auxtank}$	int	auxilary fuel tanks
K_fixUL_other	int	other fixed useful load (not RP8A)
$K_{fix}UL_{equip}$	int	equipment increment (not RP8A)
$K_fixUL_foldkit$	int	folding kit (not RP8A)
K_fixUL_extkit	int	wing extension kit (not RP8A)
$K_{fix}UL_{wingkit}$	int	wing kit (not RP8A)
$K_{fix}UL_{otherkit}$	int	other kit (not RP8A)
Kpayload	int	PAYLOAD
Kfuel	int	USABLE FUEL
$Kfuel_std$	int	standard tanks (not RP8A)
Kfuel_aux	int	auxiliary tanks (not RP8A)
KO	int	OPERATING WEIGHT = weight empty + fixed useful load
KUL	int	USEFUL LOAD = fixed useful load + payload + usable fuel
KGW	int	GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel