Постановка

В небольшой стране n городов. Каждый город имеет номер — целое число от 1 до n. Столица имеет номер g_1 . Дороги между городами двухсторонние, причем есть только один путь от столицы до каждого города.

Карта хранится в следующем виде: для каждого нестоличного города i хранится число r_i - номер последнего города на пути из столицы в город i.

Было решено перенести столицу из города g_1 в город g_2 . После этого старое представление карты перестало быть верным. Необходимо найти новое представление карты дорог в описанном выше виде.

Входные данные

Первая строка содержит следующие 3 числа: n, g_1 , g_2 , ограниченные следующими условиями $2 \le n \le 5 \cdot 10^4$ и $1 \le g_1 \ne g_2 \le n$. количество городов, номер старой столицы и номер новой столицы соответственно.

Следующая строка содержит n-1 чисел - старое представление карты дорог. Для всех городов за исключением g_1 задано целое число p_i (номер последнего города на пути из столицы в город i). Все города описаны в порядке увеличения номеров.

Выходные данные

Выведите n-1 чисел — новое представление карты дорог в том же формате.

Пример 1

Входные данные	Выходные данные
3 2 3	2.2
2 2	23

Пример 2

Входные данные	Выходные данные
6 2 4	6 4 1 4 2
61242	

Постановка

Имеется n людей. Они общаются в m группах. Человек x узнает новось из внешнего источника. Затем этот пользователь отправляет новость всем своим друзьям (друзья если оба общаются в какой-нибудь группе). Друзья сообщают новость своим друзьям и тд. Это происходит до того, как не останется пары друзе, в которой один знает новость, а другой - нет.

Для каждого пользователя необходимо определить сколько пользователей узнает новость, если он начнет её распространять.

Входные данные

В первой строке записаны два целых числа n и m ($1 \le n, m \le 5 \cdot 10^5$) — количество пользователей и групп, соответственно.

Далее следуют m строк с описанием групп. Строка i начинается целым числом $0 \le g_i \le n$ — количество пользователей в группе i. Далее следуют g_i чисел, обозначающих пользователей. $\sum_{i=1}^m k_i \le 5 \cdot 10^5$.

Выходные данные

Выведите n целых чисел равных количеству узнавших новость для каждого человека.

Пример

Входные данные	Выходные данные
75	
3254	
0	4 4 1 4 4 2 2
212	4414422
11	
267	

Задача З

Постановка

Дан неориентированный граф из n вершин и m ребер. Вершины пронумерованы целыми числами от 1 до n.

Граф гармоничный если для каждой тройки целых чисел (l,m,r), где $1 \le l < m < r \le n$, если есть путь из вершины l в вершину r, тогда существует путь из вершины l в вершину m.

Тоесть, в гармоничном графе, если из вершины l можно по ребрам дойти до вершины r (l < r), тогда также должно быть можно дойти до вершин (l+1), (l+2), . . . , (r1).

Найдите минимальное число ребер которых надо добавить в граф, чтобы он стал гармоничным.

Входные данные

В первой строке - два целых числа n и m ($3 \le n \le 2 \cdot 10^5$ и $1 \le m \le 2 \cdot 10^5 a$). В следующих m строках записаны по два целых числа t_i и g_i ($1 \le t_i, g_i \le n$, $t_i \ne g_i$), описывающих ребро между вершинами t и g.

Граф простой (без петель и между каждой парой вершин не более одного ребра).

Выходные данные

Минимальное количество ребер которое необходимо добавить в граф.

Пример

Входные данные	Выходные данные
14 8	
1 2	
2 7	
3 4	
6 3	1
5 7	
3 8	
68	
11 12	