Disciplina: Matemática Computacional

Aula 4: Funções

/\nrocontaaa	
	٦
Apresentação	J

Objetivos

- •
- •
- •

Razão e proporção

definição de função

Considere dois conjuntos A e B. Dizemos que f é uma função de A em B (escrevemos f : A \rightarrow B) se, para todo elemento $x \in A$, há um único elemento $y \in B$.

Saiba mais

domínio da função contradomínio da função imagem da função

Exemplo

•

•

•

•

Atenção

•

Logo, nem toda relação é uma função.

Exemplo 2

$$y = \pm \sqrt{x}$$

Comentário

Exemplo

- •
- •
- •
- •
- •
- •
- •

sobrejetora

Exemplo

- •
- •
- •
- •

Exemplo

- •
- •
- •
- •

Função inversa e função composta

Funções Inversas

$$\underline{s}$$
 \underline{v} \underline{t} $\underline{s} = v \cdot t$

$$t = s/v$$

$$\underline{s} = v \cdot t \quad t = s/v$$

Atenção

Funções Compostas

Funções do primeiro e do segundo graus e seus gráficos

Uma função f na variável x, tal que f: $R \to R$, é denominada função do primeiro grau se pode ser escrita na forma f (x) = ax + b (ou y = ax + b), em que a e b são valores reais quaisquer, com a $\neq 0$.

Comentário

а

x b

Exemplo

•

•

Χ	f(x)
2	$3 \cdot (2) + 3 = 6 + 3 = 9$
4	$3 \cdot (4) + 3 = 12 + 3 = 15$
—1	$3 \cdot (-1) + 3 = -3 + 3 = 0$

a < 0 k

Denominamos função do segundo grau, na variável x, toda função f: $R \to R$ que pode ser escrita na forma f (x) = ax2 + bx + c (ou y = ax² + bx + c) em que a, b e c são valores reais quaisquer, com a \neq 0.

• <u>a</u>

•

Raiz

Intercepto

Discriminante (△)

Vértice da parábola

$$\left(\frac{-b}{2a}, -\frac{\Delta}{4a}\right)$$

$$x_{1,2}=rac{-b\pm\sqrt{arDeta}}{2a}$$

Atividade

- a) função é injetora e seu gráfico é representado por uma reta.
- b) A função é injetora e seu gráfico é representado por uma parábola.
- c) A função é sobrejetora e seu gráfico é representado por uma reta.
- d) A função é sobrejetora e seu gráfico é representado por uma parábola.
- e) A função é bijetora e seu gráfico é representado por uma reta.

- a) 200 peças
- b) 20 peças
- c) 190 peças
- d) 100 peças
- e) 10 peças

a) 5		
b) 10		
c) 15		
d) 20		
e) 25		
Notas		
Função Con	nposta ¹	
3		
Referência	•	
Referencia	>	
I	Matemática aplicada à Computação	
- •		
Próxima au	la	
•		
•		
•		
Explore ma	is	
•		
•		
•		
•		
•		
-		