Analytical and Monte-Carlo modeling of Multi-Parallel Slit and Knife-Edge Slit Prompt Gamma Cameras

E. Testa¹, B.F.B. Huisman^{1,2}, D. Dauvergne³, J. M. Létang², D. Sarrut³

¹Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, 69622 Villeurbanne, France, ²CREATIS, Université de Lyon; CNRS UMR5220; INSERM U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, Lyon, France, ³Université Grenoble Alpes, Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Grenoble, France

Introduction

Ion-range verification during hadrontherapy

- ► Major challenge to fully take benefit from ion beam ballistic properties
- ► Main imaging modalities under study: prompt gammas (PG) detection [1] with non-imaging systems (such as PG Timing, PG Spectroscopy and PG Peak Integral) and imaging systems, namely physically-collimated or electronically collimated cameras (Compton cameras)

PG collimated cameras

▶ 2 main collimator configurations: Multi-Parallel Slit (MPS) [2] and Knife-Edge Slit (KES) collimators [3] (Figure XXX)

Simulated geometries

► The prototypes with some alterations for the Analytical Model Verification (AMV), in

Multi Parallel Slit Prototype 50 mm

ø 300 mm

160 mm

Figure 1: Change the target diameter: 15 cm

magnification = 0.8

Pinto PMB 2014

Knife Edge Prototype

Peralli PMB 2014 Sterpin PMB 2015

(Case 1)

particular the use of "perfect" collimators and detectors (full gamma absorption)

► No theoretical considerations have been proposed for the specific 1D collimation systems developed for PG detection

▶ 2 configurations (Table 2):

AMV

 $> 1~{\sf MeV}$

no TOF

Table 2: AMV: Analytical Model Verification –

PC: Prototypes Comparison. For AMV, the PG

source corresponds to the PG emitted along the

beam direction during the PMMA irradiation

MPS

KES

MPS

MPS

Absorber

Energy

TOF

selection KES

selection KES

BKG

Target

Beam

► The prototypes as they are published (Figure 1)

PC

BGO

LYSO

TOF

No modeling Exp. data based

160 MeV proton

Yes

 $> 1~{\sf MeV}$

3-6 MeV

no TOF

Objectives

- ightharpoonup Development an analytical model (AM) of MPS and KES collimations \Rightarrow main intrinsic features of each collimator
- Verification of the AM by means of Monte Carlo (MC) simulations
- Comparison the two MPS and KES prototypes developed by IBA and the CLaRyS collaboration, respectively.

The Analytical Model of MPS and KES collimations

	MPS	KES
Effective slit width (s_e)	$oldsymbol{s}$	$s + rac{\ln(2)}{\mu \ an(lpha)}$
Spatial resolution (Res)	$s\left(1+rac{d_1}{D} ight)$	$s_e\left(1+rac{d_1^{'}}{d_2^{'}} ight)$
Detection efficiency (Eff)	$rac{Hs}{4\pi LD}(1-f)$	$rac{Hs_e}{4\pi Ld_2'}\left(1+rac{x^2}{d_2'^2} ight)^{-3/2}$
Collimator effective thickness (T_e)	D imes f	$oldsymbol{T}$

Table 1: Detection efficiencies and spatial resolution predicted by the analytical model

Monte Carlo simulations

► Gate 7.2 with Geant4 4.10.02 and the QGSP_BIC_HP_EMY physics list

ightharpoonup Optimization: vpgTLE variance reduction method \Rightarrow gain of $\sim 10^3$ [4]

proton per 4 mm bin) which are both based on measured data

 \triangleright Estimates of background counts in the detector are taken from [5] (KES, $2.5 \cdot 10^{-7}$

counts/incident proton and per 8 mm bin) and [2] (MPS, $5 \cdot 10^{-7}$ counts per primary

Results

AMV MPS KES MC AM AMMC

PG profiles detected by the prototypes

Figure 2: PG profiles: MPS (left), KES (right). See Table 2 for the parameters.

ToF

Table 3: TO VERIFY: Standard deviation of the FOP distribution. In bold, the cuts and ToF

> 1

MPS KES

0.37 0.55

1.35 2.08

4.41 11.88

3–6

MPS KES

0.44

1.60

1.07

4.22

\triangleright Detection efficiency: #detected PG/#emitted PG in the camera Field of View Fall-off Retrieval Precision

(FOV)
Spatial resolution: the width of the PG profile fall-off, namely the FWHM of
the peak resulting from the computation of the PG profile first derivative

Figures of merit

► Fall-off Retrieval Precision (FRP): TODO

► Background (BKG) modeling:

References

- [1] J. Krimmer and et al., "Prompt-gamma monitoring in hadrontherapy: A review," NIMA, 2017.
- [2] M. Pinto and et al., "Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring.," PMB, vol. 59, 2014.
- [3] J. Smeets and et al., "Prompt gamma imaging with a slit camera for real-time range control in proton therapy," PMB, 2012.
- F. B. Huisman and et al., "Accelerated prompt gamma estimation for clinical proton therapy simulations," PMB, 2016.
- [5] I. Perali and et al., "Prompt gamma imaging of proton pencil beams at clinical dose rate," PMB, 2014.

Acknowledgments

Time selection

 10^9 (# protons)

selections as proposed.

Camera

 10^8

 10^7

Energy selection (MeV)

This work is supported by the Labex PRIMES ANR-11-LABX-0063.

None

MPS KES

0.42 0.74

1.36 1.82

20.36 20.50 22.45 17.18 56.92 **19.39**

3-6

MPS KES

0.66 **1.32**

2.00 **9.70**