Model Theory An introduction

Dan Saattrup Nielsen

October 25, 2013

- Introduction
- Basic concepts
- Awesome theorems

- Model theory is about models and theories
- Classical model theory = algebra + logic
- Syntax and semantics

- Model theory is about models and theories
- Classical model theory = algebra + logic
- Syntax and semantics

- Model theory is about models and theories
- Classical model theory = algebra + logic
- Syntax and semantics

- Model theory is about models and theories
- Classical model theory = algebra + logic
- Syntax and semantics

- Introduction
- Basic concepts
- Awesome theorems

Definition

A language \mathcal{L} is a set of relation symbols $(R_i)_{i \in I}$, function symbols $(f_j)_{j \in J}$ and constant symbols $(c_k)_{k \in K}$.

Definition

A language \mathcal{L} is a set of relation symbols $(R_i)_{i \in I}$, function symbols $(f_j)_{j \in J}$ and constant symbols $(c_k)_{k \in K}$.

Definition

A language \mathcal{L} is a set of relation symbols $(R_i)_{i\in I}$, function symbols $(f_j)_{j\in J}$ and constant symbols $(c_k)_{k\in \mathcal{K}}$.

Definition

A language \mathcal{L} is a set of relation symbols $(R_i)_{i\in I}$, function symbols $(f_j)_{j\in J}$ and constant symbols $(c_k)_{k\in K}$.

Definition

- an n-ary relation $R_i^{\mathfrak{M}} \subseteq M^n$ for each n-ary relation symbol $R_i \in \mathcal{L}$,
- ullet an n-ary function $f_j^{\mathfrak{M}}:M^n o M$ for each n-ary function symbol $f_j\in\mathcal{L}$
- a distinguished element $c_k^{\mathfrak{M}} \in M$ for each constant symbol $c_k \in \mathcal{L}$.

Definition

- an n-ary relation $R_i^{\mathfrak{M}} \subseteq M^n$ for each n-ary relation symbol $R_i \in \mathcal{L}$,
- ullet an n-ary function $f_j^{\mathfrak{M}}:M^n o M$ for each n-ary function symbol $f_j\in\mathcal{L}$
- a distinguished element $c_k^{\mathfrak{M}} \in M$ for each constant symbol $c_k \in \mathcal{L}$.

Definition

- an n-ary relation $R_i^{\mathfrak{M}} \subseteq M^n$ for each n-ary relation symbol $R_i \in \mathcal{L}$,
- an n-ary function $f_j^{\mathfrak{M}}: M^n \to M$ for each n-ary function symbol $f_j \in \mathcal{L}$
- a distinguished element $c_k^{\mathfrak{M}} \in M$ for each constant symbol $c_k \in \mathcal{L}$.

Definition

- an n-ary relation $R_i^{\mathfrak{M}} \subseteq M^n$ for each n-ary relation symbol $R_i \in \mathcal{L}$,
- ullet an n-ary function $f_j^{\mathfrak{M}}:M^n o M$ for each n-ary function symbol $f_j\in\mathcal{L}$
- a distinguished element $c_k^{\mathfrak{M}} \in M$ for each constant symbol $c_k \in \mathcal{L}$.

Definition

- an n-ary relation $R_i^{\mathfrak{M}} \subseteq M^n$ for each n-ary relation symbol $R_i \in \mathcal{L}$,
- ullet an n-ary function $f_j^{\mathfrak{M}}:M^n o M$ for each n-ary function symbol $f_j\in\mathcal{L}$
- a distinguished element $c_k^{\mathfrak{M}} \in M$ for each constant symbol $c_k \in \mathcal{L}$.

Theories

Let $\mathcal L$ be a language.

Definition

An \mathcal{L} -theory \mathcal{T} is just a set of \mathcal{L} -sentences. \mathcal{T} is called *satisfiable* if it has a model.

Theories

Let $\mathcal L$ be a language.

Definition

An \mathcal{L} -theory \mathcal{T} is just a set of \mathcal{L} -sentences. \mathcal{T} is called *satisfiable* if it has a model.

Theories

Let $\mathcal L$ be a language.

Definition

An \mathcal{L} -theory \mathcal{T} is just a set of \mathcal{L} -sentences. \mathcal{T} is called *satisfiable* if it has a model.

- Introduction
- Basic concepts
- Awesome theorems

Definition

- irreflexive
- transitive
- total
- dense.

Definition

- irreflexive
- transitive
- total
- dense.

Definition

- irreflexive
- transitive
- total
- dense.

Definition

- irreflexive
- transitive
- total
- dense.

Definition

- irreflexive
- transitive
- total
- dense.

Definition

- irreflexive
- transitive
- total
- dense.

Let $\mathcal{L}_{\textit{strict}} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\it strict}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\mathit{strict}}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{\textit{strict}} := \{<\}$ be the language of strict orderings.

Proposition

Let \mathfrak{M} , \mathfrak{N} be two DLO's without endpoints and let σ be an \mathcal{L}_{ctrict} -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\it strict}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{\textit{strict}} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\mathit{strict}}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\mathit{strict}}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{\textit{strict}} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\mathit{strict}}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\it strict}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{\textit{strict}} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\mathit{strict}}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{strict}$ -sentence σ such that $\mathfrak M\models\sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{strict} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\mathit{strict}}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\textit{strict}}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let $\mathcal{L}_{strict} := \{<\}$ be the language of strict orderings.

Proposition

Let $\mathfrak{M},\,\mathfrak{N}$ be two DLO's without endpoints and let σ be an $\mathcal{L}_{\mathit{strict}}$ -sentence. Then

$$\mathfrak{M} \models \sigma \Leftrightarrow \mathfrak{N} \models \sigma.$$

Proposition

Let $\mathfrak M$ be a DLO without endpoints. There exists no $\mathcal L_{\mathit{strict}}$ -sentence σ such that $\mathfrak M \models \sigma$ iff the ordering on $\mathfrak M$ is complete.

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let $\mathcal T$ be a satisfiable $\mathcal L$ -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal L|$. Then $\mathcal T$ is complete.

Corollary

 Vec_{∞} is complete in $\mathcal{L}_{\mathsf{vec}}$, the language of vector spaces.

Let \mathcal{L} be a language.

Definition

A theory $\mathcal T$ is *complete* if for every $\mathcal L$ -sentence σ , either $\mathcal T \models \sigma$ or $\mathcal T \models \neg \sigma$.

Theorem (Vaught's test)

Let \mathcal{T} be a satisfiable \mathcal{L} -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal{L}|$. Then \mathcal{T} is complete.

Corollary

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let $\mathcal T$ be a satisfiable $\mathcal L$ -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal L|$. Then $\mathcal T$ is complete.

Corollary

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let $\mathcal T$ be a satisfiable $\mathcal L$ -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal L|$. Then $\mathcal T$ is complete.

Corollary

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let \mathcal{T} be a satisfiable \mathcal{L} -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal{L}|$. Then \mathcal{T} is complete.

Corollary

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let $\mathcal T$ be a satisfiable $\mathcal L$ -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal L|$. Then $\mathcal T$ is complete.

Corollary

Let \mathcal{L} be a language.

Definition

A theory \mathcal{T} is *complete* if for every \mathcal{L} -sentence σ , either $\mathcal{T} \models \sigma$ or $\mathcal{T} \models \neg \sigma$.

Theorem (Vaught's test)

Let $\mathcal T$ be a satisfiable $\mathcal L$ -theory with no finite models and every model of cardinality κ is isomorphic, for some cardinal $\kappa \geq |\mathcal L|$. Then $\mathcal T$ is complete.

Corollary

Let $\mathcal L$ be a language and $\mathcal T$ an $\mathcal L$ -theory.

Theorem (Gödels Completeness Theorem)

Let σ be an \mathcal{L} -sentence. Then

$$\mathcal{T} \models \sigma \Leftrightarrow \mathcal{T} \vdash \sigma.$$

Theorem (Compactness Theorem)

 $\mathcal T$ is satisfiable iff every finite $\Delta\subseteq\mathcal T$ is satisfiable.

Corollary

If $\mathcal{T} \models \sigma$ then $\Delta \models \sigma$ for some finite $\Delta \subseteq \mathcal{T}$

Let $\mathcal L$ be a language and $\mathcal T$ an $\mathcal L$ -theory.

Theorem (Gödels Completeness Theorem)

Let σ be an \mathcal{L} -sentence. Then

$$\mathcal{T} \models \sigma \Leftrightarrow \mathcal{T} \vdash \sigma.$$

Theorem (Compactness Theorem)

 $\mathcal T$ is satisfiable iff every finite $\Delta\subseteq\mathcal T$ is satisfiable.

Corollary

If $\mathcal{T} \models \sigma$ then $\Delta \models \sigma$ for some finite $\Delta \subseteq \mathcal{T}$

Let $\mathcal L$ be a language and $\mathcal T$ an $\mathcal L$ -theory.

Theorem (Gödels Completeness Theorem)

Let σ be an \mathcal{L} -sentence. Then

$$\mathcal{T} \models \sigma \Leftrightarrow \mathcal{T} \vdash \sigma.$$

Theorem (Compactness Theorem)

 $\mathcal T$ is satisfiable iff every finite $\Delta\subseteq\mathcal T$ is satisfiable.

Corollary

If $\mathcal{T} \models \sigma$ then $\Delta \models \sigma$ for some finite $\Delta \subseteq \mathcal{T}$

Let $\mathcal L$ be a language and $\mathcal T$ an $\mathcal L$ -theory.

Theorem (Gödels Completeness Theorem)

Let σ be an \mathcal{L} -sentence. Then

$$\mathcal{T} \models \sigma \Leftrightarrow \mathcal{T} \vdash \sigma.$$

Theorem (Compactness Theorem)

 ${\mathcal T}$ is satisfiable iff every finite $\Delta\subseteq{\mathcal T}$ is satisfiable.

Corollary

If $\mathcal{T} \models \sigma$ then $\Delta \models \sigma$ for some finite $\Delta \subseteq \mathcal{T}$.

Let \mathcal{L} be a language and \mathcal{T} an \mathcal{L} -theory.

Theorem (Gödels Completeness Theorem)

Let σ be an \mathcal{L} -sentence. Then

$$\mathcal{T} \models \sigma \Leftrightarrow \mathcal{T} \vdash \sigma.$$

Theorem (Compactness Theorem)

 ${\mathcal T}$ is satisfiable iff every finite $\Delta\subseteq{\mathcal T}$ is satisfiable.

Corollary

If $\mathcal{T} \models \sigma$ then $\Delta \models \sigma$ for some finite $\Delta \subseteq \mathcal{T}$.

Lemma

Let σ be a sentence in the language of rings. Then $ACF_0 \models \sigma$ if $ACF_p \models \sigma$ for all primes p. In particular $\mathbb{C} \models \sigma$.

Theorem (Ax)

Lemma

Let σ be a sentence in the language of rings. Then $ACF_0 \models \sigma$ if $ACF_p \models \sigma$ for all primes p. In particular $\mathbb{C} \models \sigma$.

Theorem (Ax)

Lemma

Let σ be a sentence in the language of rings. Then $ACF_0 \models \sigma$ if $ACF_p \models \sigma$ for all primes p. In particular $\mathbb{C} \models \sigma$.

Theorem (Ax)

Lemma

Let σ be a sentence in the language of rings. Then $ACF_0 \models \sigma$ if $ACF_p \models \sigma$ for all primes p. In particular $\mathbb{C} \models \sigma$.

Theorem (Ax)