### 四公開特許公報(A)

昭60-121207

@Int\_Cl.4

識別記号

厅内整理番号

匈公開 昭和60年(1985)6月28日

B 22 F 9/28

7141-4K

審査請求 未請求 発明の数 1 (全4頁)

**の発明の名称** 超微粒子の製造方法

**釰特** 願 昭58-225363

❷出 願 昭58(1983)12月1日

砂発 明 者

逸 雄

- 郎

町田市鶴川 6 - 8 - 17 相模原市西橋本 1 - 19-38

の発明者 平野 逸の発明者 西沢 恵っ

相模原市南台1-9-1

⑪出 顋 人 東洋曹違工業株式会社

新南陽市大字富田4560番地

Opposion des 0 30, 23, 200 Designado Esto Designado Esto

EG EH EB

1 発明の名称

超敬粒子の製造方法

#### 2 特許請求の範囲

- ハロゲン化ニオブとナトリウムを気相で反応させることによる超段粒子ニオブの製造方。
   法。
- 5 ハロゲン化ニオブを反応室に高級速度で導入する特許開水の範囲第一項。第二項配駁の方法。
- ヘロケン化ニオフを1m/砂以上の額速度 で反応室に導入する特許請求の範囲第三項記 数の方法。

#### 3 発明の詳細な説明

本発明はハロダン化ニオブとナトリウム(以下 Ma という)を気相で反応させ、金属ニオブの超酸粒子を効率よく製造する方法に関するものである。ここで云う超数粒子初とは粒径1ヵ以下の粉件をいう。 超微粉体は、その微細さゆえその性質はバルク状態とはまったく異なり新しい用途が期待されている。

金属超数初の製造方法は物理的方法としてはアトマイズ法やガス中蒸発法が、化学的方法としては熱分解法やガス強元法。気相反応法が知られている。気相反応は金銭塩化物等の蒸気を Fi, CO 等により避元して微粉体を得る方法で、 この方法は延続操業が可能な反面 Fi, CO の選元力が弱く、超級初化し得る対象物質が限定される欠点があった。又この方法は反応温度も比較的高温に する必要があった。

またガス蒸発法では、蒸気圧の低い高 融点金属 (NB, Ta, MO, W など)では超数粒子の製造自体を わめて困難であった。

特別昭60-121207(2)

一般に気相反応法で超敏粒子をうるためには、 高い過飽和度比(契照の蒸気圧/平衡蒸気圧)を 現現して核生成速度を早めることが必要である。 本発明でのハロゲン化ニオブとナトリウムとの登 元反応は次式で示される

.N DXs+5Na → N D+5Na X (X-ハロゲン) …(1) (タ) (タ) (B) (B)

気相反応で生成物はすべて固体である。 従って 温度領域が広いため高い過胞和度比が安定してえ られ、又強い還元力を有し、比較的蒸気匠の高い Naを使用するため反応速度も早い。

また反応器の構造,反応ガスの導入方法,加熱 方法などの装置因子も超数粒子製造のための大き な因子である。

本発明者らは、これらを勘案して効率よくニオプの超微粒子を得る方法をもとめて研究した結果 本発明を完成したものである。

次に本発明を詳述する。ハロダン化ニオブと Na を各々不活性ガス中で気化させ、反応温度に維持 してある反応室に、はじめに Na 蒸気を次いてハロ グン化ニオブを早い級選趾で送り込む。 CCで用いるハロダン化ニオブとしては塩化ニオブ(以下NDC4という)、臭化ニオブ(以下NDBr。という)、 沃化ニオブ(以下NDI。という)、 恋化ニオプ
(以下NDR。という) かよびこれらの低級ハロゲン
化物いずれをもちいても粒径1μ以下の金属ニオブがえられる。

反応は300℃以上で開始するので、反応協定は300℃以上であればよく、上限温度は核生成速度を早くするため剛生するNaCLの沸点1400℃以下であることが好ましく、特に好ま

しくはその融点の800C以下である。 前配触点 以下で反応させることにより、粒色が均一を粒子 がえられる。

気化したNDC4は越点以上の温度に保ち、あらかじめNa蒸気が導びかれている反応室内に高速で送り込むととが好ましい。

反応室へ吹き出す速度は超微粉の微生物を得る 上で高静速度で導入することがよく、1m/sec 以上であれば特に限定されないが反応室の長さの 削限から3m/seo以下が望ましい。

反応は通常大気圧でおこなわれるが装置面から 許されるならは彼圧下もしくは加圧下でおこなり ことも可能である。

生成した超級物のニオブ、剛生する NaCA および 過剰の Naの抽換するときの温度条件は特に限定されないが、100℃以上に保ち揃染しながら Naを分離しても0℃以下に冷却して抽染してもよい。

抽染した生成物は水を含まない 有機 溶 剤を用いて Na および NaCL を除去することが簡便である。 洗剤後有限溶剤の付着している超数粒子は50℃ 以下の放衆を含む不活性ガス中もしくは乾燥空気中で乾燥することにより、超微粒子の表面に酸化 膜を生成させ安定化させることができる。

本発明によれば高収率で Q 0 5 ~ Q 2 µm の金属 ニオブがえられる。

又、比較的低温での瞬間的な反応であるため、き わめて効率よく生強できる。

更に選元剤のナトリクムも比較的安価なので各済 性にすぐれている。

次に実施例で本発明を更に詳述する。

#### 央施例1

市販のフェロニオブを協衆化して常法により不 統物を除去してえた純度9 2 9 多の NDC4 6 0 0 9 を NDC4 ホッパン性込んだ。

市版 Na を気化器で 7 6 0 ℃ に保ち 1 1 2/minの Ar ガスをキャリヤーとして Na 蒸気 (Na 5 9/min )を 8 0 0 ℃ に保った経設の反応富上部より導入した。 一方、 Nb O 4 はホッパーからスクリュー ● で 3 0 0 ℃ に保った気化室に 1 0 9/minで送り気化 させ、NDC4を 1 Vmlnの Arで反応室内 にノメルをとうして 1 m/secの 級選度をもって導入した。 Naの割合は NDC4 の L 2 倍当量であった。

反応室下部の出口から抽集器に導びかれた ND超 酸粉、ナトリウムおよび塩化ナトリウムの混合物、は反応終了接抽集器とと反応器からはすしてエチルアルコール 1 Lを加え Na を溶解させ沈降分離でエチルアルコールを除去した。 ことでえられたスラリーにエチレングリコール 9 Lを加え Na OL を溶解させ、沈降分離でニオブ超散粉を分離エチルアルコールで洗浄した。

エチルアルコール中の超数粉スラリーは、盆温 の乾燥空気中でエチルアルコールを気化させ超数 粉の装面を散化安定化した。

えられた超数粉ニメブは次の様であった。

収量 1809(収率87%)

**拉庇** 005~01 mμ

ND 944 \$

0 5.69

04 0.1 46

符問昭60-121207(3)

超数粒子ニオブの缸子與数銀写丸(×50000)を図りに示した。

#### 突施例2.

実施例1で使用した装置を用いてNDCにとNa を反応させた。

Brs Noch を 8 5 9/minの割合で気化させノメルより反応室にふきこんだ。同時にNa 蒸気を 2 9/minの割合で6 0 0 ℃に保った反応室に通した。 キャリャーとしての Ar ガスは各々 2 2/min, 1.5 2/minであった。

生成した超数粉は2 アミノエタノール 1.5 と、エタノール 3 とを使用して Na および Na Br を除去するとともに安定化した。

収率 90 ★ 85 9

Nb 92 4

0 8 5

Br nd

**粒径 0.2 ₪** 

図 2 にえられた超敏粉の電子脳殻鏡写真(×10,000)

を示した。

#### 4 図面の簡単な説明

図1はNbC4とNaの反応でえられた超数粒子の NH子類数鏡写真(×50,000) 図2はNbC4 とNaの反応でえられた超数粒子の 電子類数鏡写真(×10,000)である。

符許出願人 東洋寶達工業株式会社



時間960-121207(4)









#### TRANSLATION

# Unexamined Published Japanese Patent Application No. S60-121207

Title of the Invention:

Process for Producing Ultrafine Particles

Publication Date: June 28, 1985 Patent Application No. S58-225363

Filing Date: December 1, 1983
Applicant: Tosoh Corporation

Inventor: H. Sudo, I. Hirano and K. Nishizawa

#### 1. TITLE OF THE INVENTION

Process for Producing Ultrafine Particles

#### 2. CLAIMS

- 1. A process for producing ultrafine particulate niobium, comprising reacting a niobium halide with sodium in a gaseous phase.
- 2. The process as claimed in claim 1, wherein the reaction is performed at a temperature not higher than the boiling point of sodium halide which is generated as a by-product.
- 3. The process as claimed in claim 1 or 2, wherein the niobium halide is introduced into a reaction chamber at a high linear velocity.
- 4. The process as claimed in claim 3, wherein the niobium halide is introduced into a reaction chamber at a linear velocity of at least 1 m/sec.

#### 3. DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a process for efficiently producing ultrafine particles of metal niobium by reacting a niobium halide with sodium (hereinafter referred to as "Na") in a gaseous phase. The term "ultrafine particle powder" as used herein means a powder having a particle size of 1  $\mu$ m or less. Owing to the fineness, ultrafine powder materials

2

exhibit properties utterly different from those in the bulk state and are expected to bring new uses.

With respect to the process for producing metal ultrafine powder, physical processes such as atomization and evaporation in gas, and chemical processes such as thermal decomposition, gas reduction and gas phase reaction are known. The gas phase reaction is a process of reducing a vapor of a metal chloride or the like by H<sub>2</sub>, CO or the like to obtain a fine particle material. According to this process, a continuous operation can be performed, however, the objective material which can be formed into ultrafine powder is disadvantageously limited because H<sub>2</sub> or CO is weak in the reducing power. Furthermore, this process requires a relatively high reaction temperature.

According to the gas evaporation process, in the case of a high melting point metal (e.g., Nb, Ta, Mo, W) having a low vapor pressure, the production itself of ultrafine particles is very difficult.

In general, for obtaining ultrafine particles by a gas phase reaction, it is necessary to realize a high oversaturation degree ratio (i.e., actual vapor pressure/equilibrium steam pressure) and thereby elevate the nucleation rate. The reducing reaction between a niobium halide and sodium in the present invention proceeds as shown in the following scheme (1):

$$NbX_s + 5Na \rightarrow Nb + 5NaX$$
 (X=halogen)

(g) (g) (s) (s)

In the gas phase reaction, all products are obtained as solid. Therefore, the temperature region is broad and a high oversaturation degree ratio can be stably obtained. Furthermore, since Na used has a strong reducing power and a relatively low vapor pressure, the reaction proceeds at a high rate.

In addition, the structure of reactor, the method of introducing the reaction gas, the heating method and other structural factors are also important factors in the production of ultrafine particles.

By taking account of these, the present inventors have

made studies for a method of efficiently obtaining ultrafine particulate niobium, as a result, they have accomplished the present invention.

The present invention will be described in detail below. A niobium halide and Na each is vaporized in an inert gas. Thereafter, Na steam and then a niobium halide are fed at a high linear velocity into a reaction chamber maintained at a reaction temperature. The niobium halide used here may be any of niobium chloride (hereinafter referred to "NbCl $_5$ "), niobium bromide (hereinafter referred to as "NbBr $_5$ "), niobium iodide (hereinafter referred to as "NbI $_5$ "), niobium fluoride (hereinafter referred to as "MbF $_5$ ") and lower halides thereof. Whichever is used, a metal niobium having a particle size of 1  $\mu m$  or less can be obtained.

In the following, the present invention is described in detail by specifically referring to the case where NbCl<sub>5</sub> is used. With respect to the ratio between NbCl<sub>5</sub> and Na, the equivalent is, as shown in scheme (1), 1:5 in terms of a molar ratio. In the present invention, it may be sufficient in practice if the ratio is equivalent, however, the reaction is preferably performed at a ratio of from 0.5 to 2.0 equivalent, more preferably from 0.8 to 1.2 equivalent. If the ratio is less than 0.8 equivalent, the loss of NbCl<sub>5</sub> increases, whereas if it exceeds 1.2 equivalent, not only this is unprofitable but also a cumbersome treatment for excess Na is necessary.

The reaction starts at 300°C or higher, therefore, the reaction temperature is suitably 300°C or higher and in order to increase the nucleation rate, the upper limit of the temperature is preferably not higher than the boiling point of NaCl, namely, 1,400°C or lower, more preferably not higher than the melting point thereof, namely, 800°C or lower. When the reaction is carried out at a temperature not higher than the melting point, particles having a uniform size can be obtained.

The vaporized NbCl<sub>5</sub> is preferably kept at a temperature not lower than the dew point and fed at a high speed into a reaction chamber where Na steam is previously introduced.

With respect to the speed in blowing the gas into the reaction chamber, the gas is preferably introduced at a high linear speed so as to obtain an ultrafine product. The blowing speed is not particularly limited as long as it is 1 m/sec or more, however, in view of the limited length of the reaction chamber, the blowing speed is preferably 3 m/sec or less.

The reaction is usually performed under atmospheric pressure, however, if the equipment allows, the reaction may be performed under reduced or increased pressure.

At the time of collecting the produced ultrafine niobium powder, the by-product NaCl and the excessive Na, the temperature condition is not particularly limited and Na may be separated while collecting those by keeping the temperature at 100°C or higher, or those may be cooled to 0°C or lower and then collected.

From the products collected, Na and NaCl can be easily removed using an organic solvent not containing water. After the rinsing, the ultrafine particle having attached thereto the organic solvent is dried in an inert gas or dry air containing oxygen at 50°C or lower to form an oxide film on the surface of the ultrafine particle, so that the ultrafine particle can be stabilized.

According to the present invention, metal niobium of a particle diameter of from 0.05 to 0.2  $\mu m$  can be obtained in a high yield.

Furthermore, this is an instantaneous reaction occurring at a relatively low temperature, therefore, the production can be attained with extremely high efficiency.

In addition, sodium as a reducing agent is relatively inexpensive, therefore, the production cost is low.

The present invention is described in greater detail below by referring to the following Examples.

#### Example 1

600 g of NbCl<sub>5</sub> having a purity of 99.9% which was obtained by chlorinating a commercially available ferroniobium and removing impurities in a usual manner, was charged into an

5

NbCl, hopper.

A commercially available Na was kept at 760°C in a vaporizer and the Na vapor (Na: 5 g/min) was introduced from the upper portion of a vertical reaction chamber kept at  $800^{\circ}$ C using 11  $\lambda$ /min of Ar gas as a carrier gas. On the other hand, NbCl<sub>s</sub> was fed from the hopper to a vaporizing chamber kept at  $300^{\circ}$ C at 10 g/min by means of a screw. The NbCl<sub>s</sub> was then introduced into the reaction chamber through a nozzle at a linear velocity of 1 m/sec using 1  $\lambda$ /min of Ar.

The ratio of Na was 1.2 times equivalent to NbCl<sub>5</sub>. A mixture of Nb ultrafine powder, sodium and sodium chloride was guided from the outlet at the lower portion of the reaction chamber to a collector and after the completion of reaction, the collector as a whole was taken off from the reactor. To the mixture,  $1 \lambda$  of ethyl alcohol was added to dissolve Na and the ethyl alcohol was removed by sedimentation. To the resulting slurry,  $9 \lambda$  of ethylene glycol was added to dissolve NaCl and the niobium ultrafine powder was separated by sedimentation and washed with ethyl alcohol.

The ultrafine powder slurry in the ethyl alcohol was stabilized by vaporizing the ethyl alcohol in dry air at room temperature and thereby oxidizing the ultrafine powder surface.

The thus-obtained ultrafine niobium had the following results:

Yield: 180 g (yield: 87%) Particle diameter: 0.05 to 0.1 µm

Nb: 94.4% O: 5.6% Cl: 0.1%

Fig. 1 is an electron microphotograph (x50,000) of the ultrafine particulate niobium.

#### Example 2

Using the apparatus used in Example 1, NbBr<sub>s</sub> and Na were reacted with each other.

More specifically,  $NbBr_s$  was vaporized at a rate of 8.3 g/min and blown into a reaction chamber through a nozzle. At

6

the same time, Na vapor passed through the reaction chamber kept at 600°C, at a rate of 2 g/min. In these, Ar gas as a carrier was used at a rate of 2  $\lambda$ /min and 1.5  $\lambda$ /min, respectively.

Using 1.5 liter of 2-aminoethanol and 3 liter of ethanol, Na and NaBr were removed and at the same time, the ultrafine powder produced was stabilized.

Yield: 90%, 85 g
Nb: 92%
O: 8%
Br: n.d.
Particle diameter: 0.2 μm

FIG. 1 is an electron microphotograph (x10,000) of the ultrafine particulate niobium obtained.

#### 4. BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an electron microphotograph (x50,000) of ultrafine particles obtained by a reaction between NbCl, and Na.

FIG. 2 is an electron microphotograph (x10,000) of ultrafine particles obtained by a reaction between NbBr<sub>5</sub> and Na.



FIG. 1



FIG. 2

#### DECLARATION

Re: European Patent No. 0 946 323

I, Masako Kimura of 3-6, Namiki 7-chome, Abiko-shi, Chiba 270-1165 Japan, do solemnly and sincerely declare that I understand the Japanese language and the English language well, and that the attached English version is a true, accurate and faithful partial translation made by me of:

Unexamined Published Japanese Patent Application No. S60-121207

I make this solemn declaration conscientiously believing the same to be true.

This ninth day of July, 2004

Masako Kimura

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.