Université d'Avignon, Méthodologie 2021-2022

Feuille n°5: Inégalités. Limites et fonctions.

Exercice 1 Résoudre les inéquations suivantes.

- 1. 2x 1 > 0.
- 2. $3x + 2 \le x 3$.
- 3. x < 2x + 1.
- 4. 3x + 1 < 2x 1 < 7x.

Exercice 2 Résoudre les inéquations ci-dessous.

- $u^2 9 < 0$.
- $x^2 + x + 1 \ge 0$.
- $4x^2 + x + 1 < 0$.
- $2x^2 + 4x 3 \ge 0$.
- (x-1)(x+2) > 0.
- $(x+1)(1+x+x^2) < 0$.

Exercice 3 Déterminer les réels x vérifiant les conditions ci-dessous. On pourra utiliser le langage des intervalles pour décrire les solutions.

- |x| < 1.
- $|x 1| \le 1$.
- |x+3| > 2.
- |x-1| = |x-3|.
- $\bullet |x| \le |x-1|.$

Exercice 4 Pour chacune des fonctions suivantes, préciser l'ensemble de définition naturel.

- $\bullet \ x \mapsto \frac{1}{x}.$
- $\bullet \ x \mapsto \frac{x+1}{x-1}.$

•
$$x \mapsto \frac{1}{x^2-1} + \sin(x)$$
.

•
$$x \mapsto \frac{x}{\cos(x)-1}$$
.

$$\bullet \ x \mapsto \frac{\sin(2x)}{x^2 + x - 2}.$$

Exercice 5 Dans chacun des cas suivants, précisez les fonctions f + g, fg f/g et g/f en indiquant l'ensemble de définition.

•
$$f: x \mapsto 2x - 1; \ g: x \mapsto x - 3.$$

•
$$f: x \mapsto x - 2; \ g: x \mapsto 2x^2 - 5x + 3.$$

•
$$f: x \mapsto x + 1; \ g: x \mapsto x^2 + 3x + 2.$$

Exercice 6 Dans chacun des cas, trouver l'ensemble de définition de $f \circ g$ et $g \circ f$ et calculez $(f \circ g)(x)$ ainsi que $(g \circ f)(x)$.

1.
$$f: x \mapsto 2x + 3; \ g: x \mapsto x - 1.$$

2.
$$f: x \mapsto \cos(x); g: x \mapsto x^3$$
.

3.
$$f: x \mapsto \frac{1}{x}; \ g: x \mapsto x - 2.$$

4.
$$f: x \mapsto \sqrt{x}; \ g: x \mapsto 2x - 1.$$

Exercice 7 Pour chacun des cas suivants, écrivez f sous la forme $g \circ h$ pour en déduire le sens de variation de f.

•
$$f(x) = \sqrt{x^2 + 3}$$
.

•
$$f(x) = (-x^2 + 1)^3$$
.

$$f(x) = \sqrt{2-x}.$$

•
$$f(x) = (x^3 - 1)^3$$
.

•
$$f(x) = \frac{1}{x^2+4}$$
.

 ${\bf Exercice} \,\, 8 \,\, \textit{Représentez graphiquement les fonctions ci-dessous}.$

$$f: x \mapsto 1 + x^3$$
.

$$f: x \mapsto x^2 - x - 2.$$

$$f: x \mapsto \frac{1}{x-1} + 1$$
.

Exercice 9 Etudiez la limite, aux points a indiqués, de la fonction f proposée.

1.
$$x \mapsto 3$$
; $(a = 10)$.

2.
$$x \mapsto |x|$$
; $(a = 0)$.

3.
$$x \mapsto 2x^3 + 5x^2 - x + 1$$
; $(a = 5)$.

4.
$$x \mapsto \frac{2x^2+x-1}{x-3}$$
; $(a=3)$.

5.
$$x \mapsto \frac{1}{x^2}$$
; $(a = 0)$.

6.
$$x \mapsto \frac{x}{\sqrt{x-1}}$$
; $(a = 1)$.

7.
$$x \mapsto \frac{2x+1}{5x+3}$$
; $(a = -3/5)$.

8.
$$x \mapsto \frac{x-1}{x^2-2x+1}$$
; $(a=1)$.

9.
$$x \mapsto \frac{2x-5}{3(x^2-5x+6)}$$
; $(a=2, a=3)$.

Exercice 10 On dit qu'une fonction $f: I \to \mathbb{R}$ est bornée sur I ssi il existe M > 0 tel que pour tout $x \in I$ on a $|f(x)| \leq M$. Pour chacune des fonctions ci-dessous, montrer qu'elle est bornée sur l'intervalle I et donner une borne.

•
$$f(x) = \sqrt{x+1}$$
, $I = [-1, 8]$.

•
$$f(x) = 5\sin(5x), I = \mathbb{R}.$$

•
$$f(x) = x^2 + x + 1$$
, $I = [0, 5]$.

•
$$f(x) = \cos(x) + \frac{1}{x^2 + 3}$$
, $I = \mathbb{R}$.

Exercice 11 Soit f une fonction bornée sur un intervalle I. On suppose que pour tout $x \in I$, $f(x) \neq 0$. A-t-on nécessairement 1/f bornée sur I?

Exercice 12 Soit $I = [a, +\infty[$ un intervalle, avec $a \in \mathbb{R}$. Construire une fonction $f: I \to \mathbb{R}$ tel que $f \circ f$ n'existe pas.

Exercice 13 Représentez graphiquement la fonction définie sur IR par

$$f(x) = |x+1| + |x-1|.$$

Exercice 14 Calculez les limites en $+\infty$ des fonctions suivantes.

•
$$f(x) = 2x^2 - 100x + 5$$
.

•
$$f(x) = -3x^2 + 5x + 8$$

•
$$f(x) = x^3 - x^2$$
.

•
$$f(x) = \sqrt{2x - 5}$$
.

•
$$f(x) = \frac{2x-1}{3x+2}$$
.

•
$$f(x) = \frac{1}{2} \left(\frac{3x+8}{2-x} \right)$$
.

$$f(x) = \frac{-x^2 + x}{x + 1}.$$

•
$$f(x) = \frac{2x-1}{x^2+x+1}$$
.