2021 泰山学堂数学取向泛函分析期中考试

张一凡

2021年11月17日

1 正题

- 1. (i) 请详细叙述压缩映射原理的内容;
- (ii) 设 X 是赋范线性空间, 请详细叙述 X 为自反空间的定义, 并证明任意一个 Hilbert 空间 H 都是自反空间.
- 2. 设 X 是实的线性空间, 称子集 $\mathcal{P} \subseteq X$ 为 X 的一个锥, 如果 $\mathcal{P} + \mathcal{P} \subseteq \mathcal{P}$, 并且 $t\mathcal{P} \subseteq \mathcal{P}, t \geq 0$. 设 Y 是 X 的一个线性子空间, $\phi: Y \to \mathbb{R}$ 是一个实的线性泛函, 称 ϕ 是 \mathcal{P} 正的, 如果当 $x \in \mathcal{P} \cap Y$ 时, $\phi(x) \geq 0$.
- (i) 设 X = Y + P, 其中, $Y \rightarrow X$ 的一个线性子空间, 再令 $\phi \rightarrow Y$ 上的 $P \Gamma$ 近代 大河 、 试证明:
 - (*) 对 $\forall x \in X, \exists y \in Y,$ 使得 $y x \in \mathcal{P}$.
 - (**) 在 X 上定义

$$\rho(x) = \inf_{y \in Y, y - x \in \mathcal{P}} \phi(y),$$

则 ρ 是 X 上的次线性泛函.

(***) 存在 \mathcal{P} — 正线性泛函 $\Phi: X \to \mathbb{R}$, 并且 $\Phi|_Y = \phi$.

- (ii) 设 $X = \mathbb{R}^2$, $Y = \{(x,0) : x \in \mathbb{R}\}$, $\mathcal{P} = \{(x,y) : y \geq 0\} \setminus \{(x,0) : x < 0\}$, 在 Y 上定义泛函 f(x,0) = x, 那么 f 是 \mathcal{P} 正的,但 f 在 X 上不存在任何 \mathcal{P} 正的线性延拓.
- 3. (i) 设 X 为赋范线性空间,M 和 N 分别为 X 中的闭子空间和有限维子空间,试证明:M+N 为 X 的闭子空间;
- (ii) 设 X, Y 是 Banach 空间, $A: X \to Y$ 是一个有界线性算子. 若存在 Y 的闭子空间 Z, 使得 $Z \cap AX = \{0\}$, 且 Z + AX 是闭的, 则 AX 是闭的.

4. 证明 Fourier 变换
$$F: L^1(\mathbb{R}) \to C_0(\mathbb{R})$$
 不是满的.
$$F(f)(f) = \int_{\mathbb{R}} f(x) e^{-\lambda x} i \chi f_{\mathrm{dx}}.$$

5. 设 $\{e_1, e_2, \dots\}$ 是 Hilbert 空间 H 的一个规范正交基. 试证明: 如果 $\{f_1, f_2, \dots\}$ 是 H 的一个正交集, 并且满足

$$\left(f_{i}^{\sharp \circ}, \forall i\right)$$

$$\sum_{n=1}^{\infty} ||e_{n} - f_{n}||^{2} < \infty,$$

则 $\{f_1, f_2, \dots\}$ 是 H 的一个完全正交集,即 $\overline{\text{span}}\{f_1, f_2, \dots\} = H$.

6. (i) 已知 $\phi \in L^{\infty}([0,1])$, 考虑乘法算子

$$M_{\phi}: L^{2}([0,1]) \to L^{2}([0,1]), f \mapsto \phi f,$$

试计算 M_{ϕ} 的算子范数和谱集;

(ii) 在 $l^2(\mathbb{Z})$ 上考虑算子

$$U: l^2(\mathbb{Z}) \to l^2(\mathbb{Z}), (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n-1})_{n \in \mathbb{Z}},$$

试计算 U 的算子范数和谱集.

2 附加题

7. 设 $1 \le p < \infty$, 如果 $S \in L^p([0,1])$ 的闭子空间, 并且 $S \subseteq L^\infty([0,1])$, 试证明 S 是有限维的.

8. 定义 Volterra 算子 V 如下:

$$V: L^2([0,1]) \to L^2([0,1]), f(x) \mapsto \int_0^x f(t) dt.$$

试计算 V 的算子范数 ||V||.

