Department of Mathematics and Systems Analysis MS-C1300 — Complex Analysis, 2025-2026/II

K Kytölä

Exercise sessions: Tue-Wed, Oct 21-22, 2025

Topic: complex number calculations and geometric interpretation

The first three exercises are to be discussed and solved in exercise sessions. The last exercise (marked with symbol \buildrel) is a quiz for which you will write a solution in an exam-like setup (no materials or extra equipment allowed) during the last 20min of the exercise session.

Exercise 1.

Calculate:

- (a) all complex square roots of $-1 + i\sqrt{3}$;
- (b) all complex cube roots of -8.

Express the answers in Cartesian coordinates (i.e., as z = x + iy with $x, y \in \mathbb{R}$) and in polar coordinates (i.e., as $z = r e^{i\theta} = r(\cos(\theta) + i\sin(\theta))$ with $r \ge 0$ and $\theta \in \mathbb{R}$).

Exercise 2.

(a) Let $z \in \mathbb{C} \setminus \{1\}$ and let $n \in \mathbb{N}$. Prove that

$$\sum_{j=0}^{n} z^{j} = \frac{1 - z^{n+1}}{1 - z} .$$

(b) Let $n \in \mathbb{N}$, $n \geq 2$. Find all solutions $z \in \mathbb{C}$ to the equation

$$z^{n-1} + z^{n-2} + \dots + z + 1 = 0.$$

Exercise 3.

Show geometrically (recommended) or by a calculation (also possible) that if $z \in \mathbb{C}$ is such that |z| = 1 and $z \neq -1$, then

$$\Im \mathfrak{m} \left(\frac{z}{(z+1)^2} \right) = 0.$$

Which other points $z \in \mathbb{C}$ satisfy the above equation?

Quiz 4.

Visualize and describe in geometric terms the following subsets of the complex plane:

(a)
$$A = \left\{ z \in \mathbb{C} \mid |z - 3i| < 2 \right\};$$
(b)
$$B = \left\{ z \in \mathbb{C} \mid |z + 1| = |z + i| \right\};$$
(c)
$$C = \left\{ z \in \mathbb{C} \mid |z| = 2|z - 1| \right\};$$
(d)
$$D = \left\{ z \in \mathbb{C} \mid z^2 = \overline{z}^2 \right\}.$$

Justify concisely the main features of your descriptions and visualizations starting from the definitions of the sets.