$strid-A\ string\ diagrams\ generator$

Samuel Mimram March 23, 2015

Contents

strid is a string diagrams generator for inclusion into LATEX files. It is still in very α stage but already quite useable. It is entirely programmed in OCaml¹. Feel free to drop me a line at samuel.mimram@pps.jussieu.fr if you have some comments, bug reports or feature requests about it.

1 Presentation of strid

1.1 A first example

Suppose that $(\mathcal{C}, \otimes, I)$ is a strict monoidal category. A monoid in \mathcal{C} is an object M of \mathcal{C} together with two maps $\mu: M \otimes M \to M$, called multiplication, and $\eta: I \to M$, called unit, respectively drawn as

and

$$\bigcirc$$
— M

such that the equalities

$$\begin{array}{ccc}
M & & & M \\
M & & & M
\end{array}$$

$$M & & M$$

and

$$M \longrightarrow M = M \longrightarrow M = M$$
hold.

Let's have a look at how we typeset the left member of the associativity equation:

The *strid* code for this figure is

¹OCaml can be downloaded at http://caml.inria.fr/.

```
text(r)[1,t=#$M$#]\\
}
```

Despite it's apparent complexity, this code is very simple! Like every *strid* diagram, this code starts with "matrix {" and ends with "}". Between those lines comes the actual description of the diagram. It is structured as a matrix whose columns are separated by "&" and whose lines are separated by "\".

The rightmost multiplication is typeset by

```
mult(ull,dl,r)
```

Here, "mult" is the kind of the operator (a multiplication-shaped one) and its arguments specify that it should be linked to the relative positions (-2,1) (ull means up-left-left), (-1,-1) (dl means down-left) and (1,0). The order in which the links should be specified is indicated on the figure below:

As for other operators, links are specified inputs first and then outputs.

The labels are specified similarly by instructions like

$$text(r)[1,t=\#M\#]$$

This create a "text" operator from here to the relative position (1,0). The brackets "[1,t=#\$M\$#]" are here to specify optional parameters related to this operator. The "1" indicates that we are going to add a label and the "t=#\$M\$#" means that the label's text should be "\$M\$". The text between # is quoted uninterpreted.

Suppose that we have put the text of this figure in a file named monoid_assoc_l.strid. Compiling this file can be simply done by typing

```
strid monoid_assoc_l.strid
```

This generates a file monoid_assoc_1.tex which can be used in a LATEX file like:

\documentclass{article}

\usepackage{tikz}

```
\begin{document}
\input{monoid_assoc_l.tex}
\end{document}
```

You will need the TikZ package which can be downloaded at http://sourceforge.net/projects/pgf/.

Similarly, the right member of the equation is generated in a file monoid_assoc_r.tex. To have the equality sign between the two diagrams centered vertically you need to center the two diagrams. This can be done using the \vcenter and \hbox IFTEX commands as shown in the following example:

```
\[
\vcenter{\hbox{\input{monoid_assoc_1.tex}}}
=
\vcenter{\hbox{\input{monoid_assoc_r.tex}}}
\]
```

1.2 Visualizing your diagram

Making a nice diagram is sometimes hard and LATEX compilation of the diagrams usually takes some time to complete. If you want to quickly see the diagram generated by *strid* on a file toto.strid, type the command

This will open a window in which the output diagram is displayed, which is refreshed every time the file toto.strid is changed.

2 The operators

2.1 Line: line

1 | 2

2.2 Multiplication: mult

2.3 Unit: unit

2.4 Adjunction: adj

2.5 Symmetry: sym

2.6 Braiding: braid

2.7 m, n-ary box: mboxn

2.8 Vertical box: vbox

2.9 Region: region

Regions can be delimited:


```
is typeset by
matrix {
    \\
    region(6d6r)\\
&&&mult(dl,dr,uu)[l,t=#$f$#]\\
    \\
&&mult(4dl,dr,u)[l,t=#$g$#]\\
    \\
&&&&mult(ul,uuu,dd)[l,t=#$\mu$#]\\
}
```

3 Parameters of operators

3.1 Labels

Labels can be added to operators. For example the diagram


```
can be typeset by
matrix {
\\
&mult(ul,ur,d)[1,t=#$\mu$#]\\
\\
}
```

If you don't like the size of the ellipse surrounding the label, this can of course be changed. For example,

can be typeset by

```
matrix {
\\
&mult(ul,ur,d)[1,t=#$\mu$#,w=0.6,h=0.4]\\
\\
}
```

Various shapes are available for labels:

3.1.1 Triangles: triangle / t

For example,


```
can be typeset by
matrix {
    \\
unit(d)[1,t=#$!$#,s=triangle,d=d,c=lightgray]&&
unit(d)[1,t=#$?$#,s=triangle,d=d,c=lightgray]\\
\\
&arc(ul,ur)&\\
}
```

Here, the s parameter is the shape (currently, only ellipse and triangle are available), the d parameter is the direction of the triangle and the c parameter specifies the color of the triangle.

3.1.2 Rectangles: rectangle / r

The left member is typeset by

```
matrix {
  \\
1box1(u,3d)[1,t=#f#,s=rectangle]\\
\\
&1box1(3u,d)[1,t=#g#,s=rectangle]\\
\\
}
```

3.2 Arrows

Lines can be oriented using the a attribute. For example,


```
can be typeset by
matrix {
\\
&mult(ul,dl,r)[a]&\\
\\
}
```

To specify that the direction should be backwards use the d=b subattribute. For example,


```
can by typeset by
matrix {
\\
&mult(ul,dl,r)[a,d=b]&\\
\\
}
```

4 Configuration files

All parameters can be saved in a configuration file named strid.conf. To generate a configuration file, type

```
strid --dump-conf
```

You can then edit strid.conf.

Some of the options that can be set are:

- line_width: default width of a line
- label_width: default width of a label
- label_height: default height of a label
- no_tex_environment: do not output \begin{tikz} and \end{tikz}
- scaling_factor: scale the diagrams
- label_triangle_height: default height of a triangular label
- label_rectangle_width: default width of a rectangular label
- label_rectangle_height: default height of a rectangular label
- interpolation: interpolation method for drawing lines (possible values are cspline and linear)
- small_circle_ray: ray of small circles (used to tweak the drawing of multiplications)

5 Examples

5.1 Yang-Baxter equality for braids


```
Left member is typeset by
```

```
matrix {
\\
&&braid(ull,dll,urr,dr)&&&&braid(ull,dl,urr,drr)&&\\
\\
&&&&braid(ul,d4l,ur,d4r)\\
\\
}
and right member by
matrix {
\\
&&&&braid(u4l,dl,u4r,dr)\\
\\
&&braid(ull,dll,ur,drr)&&&&braid(ul,dll,urr,drr)&&\\
\\
}
```

5.2 Hopf law for bialgebras

Left member is typeset by

```
matrix{
\\
\\
\\
&&&mult(uu31,dd31,r)&&mult(uu3r,dd3r,1)&&&\\
\\
\\
\\
}
and right member by
```

```
matrix{
\\
&mult(u3r,dr,1)&&&&&&mult(u31,d1,r)&\\
\\
&&&&sym(u11,d11,urr,drr)\\
\\
&mult(ur,d3r,1)&&&&&mult(u1,d31,r)&\\
\\
}
```

5.3 Naturality condition for natural transformations between two lax functors between bicategories

The code for the left-hand side of the equation is

```
&&line(,ur)&&&&&&
&&
&& &&
\label{text-def} $$ \text{$\mathbb{F}\A,\mathbb{F}\B]'!}$$ text(u) [1,t=\#\infty\{F\}\B]'!]$$
&& \\
text(u)[1,t=#$\circ$#]
&& &&
$$  \ [\] \mathbb{F}\A,\mathbb{F}\B]\!]$\#]
&& &&
\label{text}  \mbox{text(u)[1,t=\#$\\quad [\![B,C]\!] \land times \mbox{$\mathcal{F}$$} \mbox{$\#$}]} 
\\
}
and the code for the right-hand side is
matrix {
//
\label{eq:continuous} $$ \text{$\mathbb{G}\C]} \to \continuous $$ \text{$\mathbb{G}\C]}. $$ \times \theta_{A}=0. $$
&&text(u)[1,t=#$\mathcal{G}$#] &&text(u)[1,t=#$\circ$#]&\\
\\
\\
&&&3box3(2u21,2u,2u2r,4d21,3d0.51,dr)[1,t=#$\theta$#]&&&&&\\
\\
//
11
&&&braid(2u2r,3u0.51,d0.5r,d0.51)&&&&&\\
\\
11
&&
\label{eq:text} text(u) [1,t=\#$[\![\mathbb{F}\C,\mathbb{G}\]'] \times \circ$\#]
\label{text-def} $$ \text{$\mathbb{F}\A,\mathbb{F}\B]'!}$$ text(u) [1,t=\#\infty\{F\}\B]'!]$$
&& \\
text(u)[1,t=#$\circ$#]
&& &&
\times [\cdot][\mathbb{F}\A,\mathbb{F}\B]\]
\\
}
```