SIMPLE IPR CURVE FOR UNDERSATURATED RESERVOIR

Avg. Pr	1300	psi
(Pwf)stablized	900	psi
(Qo)stablized	110	STB/day

Productivity index	0.275 STB/day-ps
AOF	357.5 STB/day

data values for plotting IPR curve

Pwf	Qo
1300	0
1170	35.75
1040	71.5
910	107.25
780	143
650	178.75
520	214.5
390	250.25
260	286
130	321.75
0	357.5

Vogel's Method

Saturated oil reservoirs (pr ≤ pb)			
Avg. Pr	2500	psi	
(Pwf)stablized	2000	psi	
(Qo)stablized	350	STB/day	

data for plotting IPR curve

	vogel's	constant J approach
Pwf	Qo	Qo
2500	0	0
2250	183.5365854	175
2000	350	350
1750	499.3902439	525
1500	631.7073171	700
1250	746.9512195	875
1000	845.1219512	1050
750	926.2195122	1225
500	990.2439024	1400
250	1037.195122	1575
0	1067.073171	1750

$$\left(Q_{o}\right)_{max} = Q_{o} / \left[1 - 0.2 \left(\frac{p_{o,f}}{p_{f}}\right) - 0.8 \left(\frac{p_{wf}}{p_{f}}\right)^{2}\right]$$

J	0.7	STB/day-ps
(Qo)max	1067.073171	STB/day

$$Q_o = \left(Q_o\right)_{max} \left[1 - 0.2 \left(\frac{p_{wf}}{p_r}\right) - 0.8 \left(\frac{p_{wf}}{p_r}\right)^2\right]$$

Avg. Pr 3000 psi (Pwf)stabized 2500 psi (Qo)stabized 250 STB/da Db. 2130 psi

CASE 1: The recorded stabilized bottom-hole flowing pressure is greater than or equal to the hubble-point pressure i.e. pwf > 1

		_		
J	0.5	STB/day-psi	0	
Qob	435	STB/day	J =	$Q_{ab} = J \left(p_r - P_b \right)$
(Qmax)vogel	591.6666667	STB/day	P. – P	A00 + A4 . (A

 $Q_o = J \; (\overline{p}_t - p_{wt}).$

Pwf	Qo
3000	0
2826	87
2652	174
2478	261
2304	348
2130	435
1917	536.7666667
1704	629.0666667
1491	711.9
1278	785.2666667
1065	849.1666667
852	903.6
639	948.5666667
426	984.0666667
213	1010.1
0	1026.666667

$$Q_{_{O}} = Q_{_{Ob}} + \frac{Jp_{_{D}}}{1.8} \left| 1 - 0.2 \left(\frac{p_{_{wf}}}{p_{_{D}}} \right) - 0.8 \left(\frac{p_{_{wf}}}{p_{_{D}}} \right)^{2} \right|$$

Undersaturated oil reservoirs (pr > pb) Avg. Pr 3000 (Pwf)stablized 1700 (Qo)stablized 630.7 Pb 2130 Ps 2130

CASE 2:
The recorded stabilized bottom-hole flowing pressure is less than the bubble-point pressure pwf < pb

J	0.499992515	STB/day-psi			Q.		$Q_{ab} = J \left(p_r - P_b \right)$
Qob	434.993488	STB/day	1=-	E.	7 - 50	/ (2)	$\Delta^{00} = 4 \cdot (D_4 = 1.65)$
(Qmax)vogel	591.6578093	STB/day	(-	P 1 Pb 1	$0.2 \left(\frac{p_{wf}}{p_b} \right) - 0.8$	PwE	
		_	Pr	Ph 1.8	p. D.	p,	
Pwf	Qo			110 55555	1 - 0 3	1.+8.2	
3000	0						
2826	86.99869759						
2652	173.9973952						
2478	260.9960928	($Q_o = J(\overline{p}_t - 1)$	p_{wt}).			
2304	347.9947904						
2130	434.993488						
1917	536.7586312						
1704	629.0572494						
1491	711.8893427			sa T n	V 7	521	
1278	785.2549111	89		Jpb . na	$\left(\frac{p_{wf}}{p_b}\right) = 0.8 \left(\frac{p_{wf}}{p_b}\right)$	wf	
1065	849.1539545	13	$Q_0 = Q_{ob} +$	18 1-0.2	- 0.8		
852	903.5864729			1.0	Pb) (1	ь	
639	948.5524664					4.	
426	984.051935]					
213	1010.084879						
		1					

VOGEL'S FUTURE IPR PREDICTION

Saturated oil reservoirs (pr ≤ pb)

Avg. Pr	2500	psi
(Pwf)stablized	2000	psi
(Qo)stablized	350	STB/day
Euturo Ava Dr	2200	nci

(Qomax)f	848.8780488
Pwf	(Qo)f
2200	
1980	146.0070244
1760	278.432
1540	397.2749268
1320	502.5358049
1100	594.2146341
880	672.3114146
660	736.8261463
440	787.7588293

$$\left(Q_{o\,max}\right)_{f} = \left(Q_{o\,max}\right)_{p} \left[\frac{\left(\overline{p}_{r}\right)_{f}}{\left(\overline{p}_{r}\right)_{p}}\right] 0.2 + 0.8 \left[\frac{\left(\overline{p}_{r}\right)_{f}}{\left(\overline{p}_{r}\right)_{p}}\right]$$

Undersaturated on reservoirs (pr > pb)				
Avg. Pr	3000	psi		
(Pwf)stablized	2500	psi		
(Qo)stablized	250	STB/day		
Pb	2130	psi		
Future Avg. Pr	2600	nsi		

		_	- 5	
(J)p	0.5	STB/day-psi	1"-1"	(n) /(n)
(J)f	0.37555556	STB/dav-psi	f p	Pris Pri

Pwf		(Qo)f
	2600	0
	2506	35.30222222
	2412	70.60444444
	2318	105.9066667
	2224	141.2088889
	2130	176.5111111
	1917	252.9491852
	1704	322.2767407
	1491	384.4937778
	1278	439.6002963
	1065	487.5962963
	852	528.4817778
	639	562.2567407
	426	588.9211852
	213	608.4751111
	0	620.9185185

Undersaturated oil reservoirs (pr > pb)

Avg. Pr	3000	psi
(Pwf)stablized	1700	psi
(Qo)stablized	630.7	STB/day
Pb	2130	psi
Future Ava. Pr	2600	psi

ip.	0.499992515	STB/day-psi
ıf	0.3755/0033	STR/day-nei

Pwf		(Qo)f
2	2600	0
2	2506	35.30169374
2	412	70.60338748
2	2318	105.9050812
2	2224	141.206775
2	2130	176.5084687
1	917	252.9453985
1	704	322.2719162
1	491	384.4880218
1	278	439.5937154
1	065	487.5889969
	852	528.4738663
	639	562.2483237
	426	588.9123689
	213	608.4660021

IPR CURVE USING FETKOVITCH MODEL

$$Q_o = \frac{0.00708\,kh}{\left[\ln\frac{r_o}{r_w} - 0.75 + s\right]} \int\limits_{p=r}^{r_o} f\left(p\right) dp \qquad f\left(p\right) - \frac{k_m}{\mu_n \beta_o} \label{eq:Qounty_optimization}$$

Saturated oil reservoirs (pr ≤ pb) Avg. Pr 3600 psi

Qo, STB/day	pwf, psi	(Pr^2 - Pwf^2)
263	3170	2911100
383	2890	4607900
497	2440	7006400
640	2150	8337500

$$f(p) = \left(\frac{1}{\mu_o B_o}\right)_{pb} \left(\frac{P}{pb}\right)$$

$$Q_{o} = \frac{1}{\ln\left[\frac{r_{c}}{r_{c}}\right] - 0.75 + s} \int_{p_{of}}^{p_{c}} \frac{1}{\left(\mu_{a}B_{o}\right)_{gh}} \left(\frac{p}{p_{b}}\right) dp \ \ Q_{o} = J\left(\frac{1}{2p_{b}}\right) \left(p_{r}^{-2} - p_{wf}^{2}\right) \ \ Q_{o} = C\left(\frac{-2}{p_{r}} - p_{wf}^{2}\right)^{o}$$

slope	1.2264304
intercept	3.5023980
n	0.8153744
С	0.0013939

Pwf	Qo
3600	0
3240	226.7695
2880	381.8483
2520	507.2600
2160	610.4282
1800	694.7021
1440	761.9557
1080	813.3432
720	849.6007
360	871.1872
0	878.3557

FETKOVITCH'S FUTURE IPR CURVE PREDICTION

(n)p	0.8153744
(C)p	0.0013939
(C)f	0.0007744

$(C)_t = (C$	$p_p [(\overline{p}_t)_t/(\overline{p}_t)_p]$
	shearst arish

Fetkovich assumes that the value of the exponent n would not change as the reservoir pressure declines

Pwf	Qo
2000	0
1800	48.3088543
1600	81.34540218
1400	108.0619508
1200	130.0399249
1000	147.992856
800	162.319938
600	173.2670576
400	180.9910161
200	185.5896063
0	187.1167222

$$f(p) = \left(\frac{1}{\mu_0 B_0}\right)_p$$
 value of uo and Bo is measured at (Pr+Pwf)/2

e flowing pressure is greater than or equal to the bubble-point pressure, i.e. pwf≥pb

$$Q_{o} = \frac{0.00708 \, kh}{ln \left[\frac{r_{e}}{r_{w}}\right] - 0.75 + s} \int_{p_{w}e}^{p_{e}} \left[\frac{1}{\mu_{o}B_{o}}\right] dp \, Q_{o} = \frac{0.00708 \, kh}{\mu_{o}B_{o} \left[ln \left(\frac{r_{e}}{r_{w}}\right) 0.75 + S\right]} \left(\bar{p}_{r} - p_{we}\right)$$

J 0.424944982 STB/day-psi

Pwf	Qo
300	0.00
270	00 127.48
240	00 254.97
210	00 382.45
180	00 509.93
150	00 637.42
135	697.97
120	00 752.15
105	799.96
90	00 841.39
75	60 876.45
60	00 905.13
45	0 927.44
30	
15	0 952.94
	0 956.13

$$Q_n = J \left(\overline{p}_i - p_{ad} \right)$$

$$\boldsymbol{Q}_{o} = \boldsymbol{J} \Bigg[\frac{1}{2\boldsymbol{p}_{b}} \Big(\boldsymbol{p}_{b}^{2} - \boldsymbol{p}_{wf}^{2}\Big) + \Big(\boldsymbol{\bar{p}_{r}} - \boldsymbol{p}_{b}\Big) \Bigg]$$

(C)p	0.000116667	
(C)f	9.72222E-05	
(J)p	0.35	
(J)f	0.243055556	(vogels method)
(J)f	0.291666667	(fetkovitch method

	ICINOTICII	roger
Pwf	Qo	Qo
2500	0.00	0.00
2300	58.33	48.61
2100	116.67	97.22
1900	175.00	145.83
1700	233.33	194.44
1500	291.67	243.06
1350	333.23	277.69
1200	370.42	308.68
1050	403.23	336.02
900	431.67	359.72
750	455.73	379.77
600	475.42	396.18
450	490.73	408.94
300	501.67	418.06
150	508.23	423.52
0	510.42	425.35

rv-v	1)	(P)	~~~(1)	١
1(p)=	$\mu_o B_o$	$\left(\frac{P}{pb}\right)$	$f(\mathbf{p}) = \left(\frac{1}{\mu_0 B_0} \right)$	'n

CASE 2:

$$Q_o = \frac{0.00708\,kh}{ln\bigg[\frac{r_e}{r_w}\bigg] - 0.75 + s\bigg[\sum_{P_{wr}}^{pb}f\big(p\big)dp + pb\int\limits_{pb}^{p_r}f\big(p\big)dp\bigg]}$$

J 0.7 STB/day-psi

Pwf	Qo
4000	0
3840	112
3680	224
3520	336
3360	448
3200	560
2880	772.8
2560	963.2
2240	1131.2
1920	1276.8
1600	1400
1280	1500.8
960	1579.2
640	1635.2
320	1668.8
	4000

$$Q_n = J \left\langle \vec{p}_n - p_{nf} \right\rangle$$

Field case 3: Well B, Keokuk Pool, Seminole County, Oklahoma, August 1935

Multi-rate test dat	a	
Pwf (psi)	Oil Rate (bbl/day)	
1714	0	
1583	280	
1443	508	test point (for two point correlation's)
1272	780	
1196	1125	test point (for single point correlation's)
982	1335	

IPR curve by using New correlation

(Qo)max	2636.899892
Pwf	Qo
1714	0
1583	311.3553721
1443	624.0096558
1272	977.7314268
1196	1125
982	1506.812135
800	1793.363642
600	2067.796199
400	2299.863093
200	2489.564324
0	2636.899892

IPR curve by using Vogel's method

o)max		2388.927833	0
		_	
vf		Qo	
	1714	0	
	1583	317.4879492	
	1443	632.106709	
	1272	981.7948926	
	1196	1125	
	982	1487.863165	
	800	1749.580982	
	600	1987.482024	
	400	2173 340179	

IPR curve by using Fetkovitch's method

	Qo
1714	
1583	194.60782
1443	50
1272	933.559726
1196	112
982	1642.10487
800	2033.10734
600	2389.23385
400	2653.45878
200	2815.7582
0	2870.46960

Percentage Error				
New correlation	Vogel's	Fetkovitch's		
11.19834719	13.38855328	30.49720499		
22.83654641	24.43045453	2.57362E-13		
25.35018292	25.87114008	19.68714444		
0	0	2.62743E-13		
12.86982287	11.45042437	23.00411072		
14.45097988	15.02811445	14.63769203		

Field case 3: Well B, Keokuk Pool, Seminole County, Oklahoma, August 1935.

The multi rate test has been repeated for this well from Field Case 2 after 8 months of production with a drop in reservoir pressure from 1714 psi to 1605 psi.

 $q_{\text{owner2}} = q_{\text{owner1}} \left(\frac{p_{c2}}{p_{c1}} \right)^{t}$

420 test point (for two point correlation's) 720 test point (for single point correlation's)

Future IPR curve by using New correlation

$$\frac{q_{s}}{q_{max}} = 1 - C_1 \left[\frac{P_{sf}}{P_{s}} \right] - \left(1 - C_1 \left[\frac{P_{sf}}{P_{s}} \right]^2 \right]$$

Future IPR curve by using Vogel's method

IPR curve by using	Fetkovitch's method	

IPR curve by using	retkovitch's n	netnoa
n	1.403733588	
(C)p	0.000002391	$(C)_f = (C)_g [(\widetilde{p}_i)_i / (\widetilde{p}_i)_p]$
(C)f	0.000002239	Seed - code earlier residue
	Qo	
1605	0	
1381	336.7133354	
1231	643.1968966	
1120	875.8771461	
982	1157.208629	
800	1496.876726	
600	1809.398535	
400	2042.734009	
200	2186.569916	
0	2235.135746	

		New correlation	Vogel's	Fetkovitch's
Pwf (psi)	Oil Rate (bbl/day)	Qo	Qo	Qo
1605	0	0	0	0
1381	420	434.7769194	462.2009897	336.7133354
1231	720	701.8747149	737.5363727	643.1968966
1120	850	887.1085623	923.6364101	875.8771461
`				

	Percentage Error		
	New correlation	Vogel's	Fetkovitch's
	3.518314133	10.04785469	19.8301582
	2.517400704	2.435607313	10.6670976
	4.365713211	8.663107068	3.04437013
ge absolute errors	3.467142683	7.048856355	11.1805420

