Extinction and scattering of nebular emission in Orion

WILLIAM J. HENNEY¹

¹Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michaoacán, Mexico

Abstract

I compare several different methods for estimating the dust extinction of diffuse emission from H $\scriptstyle\rm II$ regions. Using archival data for the Orion Nebula, I show that apparent discrepancies between the different methods are powerful diagnostics of (1) emission line scattering from dusty PDRs; (2) the presence of dust layers sandwiched between two emitting gas layers; and (3) the presence of deeply embedded ionized gas that is invisible at optical and near-infrared wavelengths.

Keywords: Atomic physics; Radiative transfer; Photodissociation regions

1. INTRODUCTION

2. OTHER MEASURES OF EXTINCTION

2.1. Diffuse interstellar bands

5781 Å is the cleanest. There is also 6283 Å, which is stronger, but it is affected by the telluric O_2 absorption.

Figure 1. Scatter plot of the infrared/optical extinction anomaly versus the radio/infrared extinction anomaly. Plot symbol color and size indicate the optical—radio extinction (larger values are darker and larger).

 $\hbox{[O\,{\sc iii}]}$ 4959 and 5007 Å is a 1% change in wavelength. We see about a 1% variation in the ratio.

[Ar III] 7751 and 7136 Å is a 9% change in wavelength. We see about a 15% variation in the ratio.

These give the gradient, $dA_{\lambda}/d\lambda$

2.2. Forbidden metal doublets

We can use two lines that share an upper level. Small wavelength range, but high S/N and rock-solid intrinsic ratio.

REFERENCES

Figure 2. Three-color image of extinction in the inner Orion Nebula. Extinction derived from the optical band reddening of the Balmer decrement $(4886 \, \text{Å} \text{ to } 6563 \, \text{Å})$ is shown in green. The infrared/optical extinction anomaly is shown in blue and the radio/infrared extinction anomaly is shown in red.