Московский государственный технический университет им. Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Лабораторная работа №5 по дисциплине «Цифровая обработка сигналов»

Выполнил ст. группы РЛ6-71 Филимонов С. В.

Преподаватель Дмитриев Д. Д.

Задание № 1

В соответствии с номером варианта рассчитайте ФНЧ с аппроксимацией Баттерворта.

Номер варианта	1	2	3	4	5	6
Порядок фильтра	7	6	5	8	9	5
Частота дискретизации, Гц	200	2000	16000	8000	10000	20
Частота среза, Гц	60	400	5000	1900	2000	5

Постройте АЧХ и ФЧХ, диаграмму расположения нулей и полюсов передаточной функции, значимую часть импульсной характеристики. Каким образом можно получить каждые два графика из третьего?

В задании я взял порядок фильтра и критическая частота (определяется как среза/ частота дискретизации), передал функцию scipy.signal.butter. И получил параметры фильтра b и а. На основе которых построил АЧХ и ФЧХ. С диаграммой расположения нулей и полосой функции передаточной возникли проблемы, python не было соответствующей функции.

Задание № 2

5.2.2

Выполните задание 5.2.1, воспользовавшись функцией cheby1 и приняв допустимую неравномерность АЧХ в полосе пропускания 0,5 дБ.

В этом задании использовалась функция scipy.signal.cheby1, с полосой пропускания 0.5 - в остальном аналогично предыдущему заданию.

Задание № 3

5.2.3

Выполните задание 5.2.2, воспользовавшись функцией ellip и приняв минимальное затухание AЧX в полосе подавления 30 дБ.

Действия аналогично заданию 1 и 2.

Задание № 4

5.2.4

Требуется цифровой ФВЧ со следующими параметрами:

Номер варианта	1	2	3	4	5	6
Граничная частота подавления	0,64	0,28	0,4	0,1	0,86	0,72
Граничная частота пропускания	0,7	0,32	0,6	0,15	0,9	0,73
Допустимая неравномерность в	0,05	0,1	1.10-5	0,15	0,11	1
полосе пропускания, дБ						22
Минимальное затухание в полосе	40	30	100	85	57	30
подавления, дБ						

Какой порядок будет иметь такой фильтр с аппроксимациями Баттерворта, Чебышева типа I, Чебышева типаII, эллиптической? Сравните эффективность различных аппроксимаций при более жестких и более мягких требованиях к АЧХ.

Для определения порядка фильтра я взял коэффициенты:

Wp = 0.1 * критическая частота

 $W_{S} = 0.15 *$ критическая частота

Rp = 0.15 * критическая частота

Rs = 85 * критическая частота

Полученные коэффициенты передал в функции получения порядков соответствующих фильтров и вывел полученный результат.

Баттерворта: 17 Чебышева типа I: 8 Чебышева типа II: 8 Эллиптический: 5

Задание № 5

5.2.5

Исследуйте, как скажется на АЧХ и ФЧХ фильтров из заданий 5.2.1–5.2.3 усечение коэффициентов передаточной функции до четырех десятичных разрядов, до двух разрядов? Сделайте

В данном задании как и в задании 1, 2, 3 мы получаем параметры фильтров b и а. После чего производим округление этих фильтров, до 4, 3, 2, 1 и 0 знаков после запятой. И соответвственно строим по ним АЧХ и ФЧХ. Полученные графики продемонстрированы ниже:

Вывод по работе:

Я научился применять фильтры к сигналам. Округлять параметры фильтров не очень хорошая идея, так как происходит их искажение.