FONDAMENTI DI ELETTRONICA – INGEGNERIA BIOMEDICA

Il tempo a disposizione è 2 ore e 30 minuti.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_4 e R_5 in modo che le correnti di drain di M_1 e M_2 valgano rispettivamente $I_{D1} = 1$ mA e $I_{D2} = 5$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 e M_4 ;
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_{sig}$;
- 4) le resistenze di ingresso e uscita ai piccoli segnali ac R_i e R_o .

Dati: V_{DD} =15 V, R_1 =400 kΩ, R_2 =200 kΩ, R_3 =5 kΩ, R_6 =1.5 kΩ, R_L =6 kΩ, R_{sig} =500 Ω, $M_{1,3,4}$: k_n =2 mA/V², V_{tn} =1 V, λ_n =0 V⁻¹, M_2 : k_p =10 mA/V², V_{tp} =-1 V, λ_p =0 V⁻¹

PROBLEMA P2

Dato il circuito riportato in figura sottostante, che utilizza un amplificatore operazionale ideale:

- 1) Posto ii = 0, ricavare l'espressione del guadagno di tensione Av(s) = vo/vi.
- 2) Tracciare il diagramma di Bode asintotico di ampiezza e fase di Av(s).
- 3) Posto Vi = 5 V ed Ii = 2 mA, calcolare il valore di Vo.

Dati: $R = 4.7 \text{ k}\Omega$, $R_i = 50 \text{ k}\Omega$, $R_a = R_b = 100 \Omega$, $C_i = 4 \text{ nF}$, $C_a = 40 \text{ nF}$

PROBLEMA Q1

Dato il circuito riportato nella figura sottostante, si calcoli il valore della tensione V_o , giustificando chiaramente la risposta.

ESERCIZIO Q2

Il circuito di figura impiega un amplificatore operazionale ideale. Determinare la potenza erogata dal generatore di tensione $V_{\rm IN}$ e la potenza erogata dall'amplificatore operazionale. Calcolare l'effetto di una tensione di offset pari a 5 mV sulla Vo.

Dati:
$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 4 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$, $V_{IN} = 5 \text{ V}$,

