

Today's learning objectives

- Describe how we can we track energy and mass in the atmosphere.
- Describe and simplify exchange processes of energy and mass at surface-atmosphere interfaces.
- Review: Define the dominant energy and mass transfer mechanisms in the atmosphere.

Conservation of energy and mass

One of the most powerful laws used in micrometeorology is this **law of conservation**.

Neither mass nor energy can be created or destroyed by any ordinary means. We can convert energy from one form to another and move it around.

Energy of importance to climatology exists in the Earth-Atmosphere system in four different forms (radiant, thermal, kinetic and potential) and is continually being transformed from one to another.

Conservation of energy and mass

Input = Output

Input - Output = 0

Input – Output = Storage change

Input - Output = 0

Input - Output = Storage change

Conservation in a three-dimensional box

input output storage (3u+1v+2w) - (3u+1v+2w) = 0

divergence free case

What is the change in storage? (Slido question)

storage

What is the change in storage in this case? (Slido **Question**)

input output storage

Conservation of a scalar in three dimensions

total derivative

(change in entire system)

partial derivatives

(changes in time or space)

total change storage change

Advection (input / output by wind)

Conservation at a land-interface

no wind is able to enter box from below, hence no transport from below by wind (diffusion is still an option)

input output storage
$$(4u+1v)$$
 - $(1u+2v+2w)$ = 0

Assuming horizontal homogeneity.

For a number of variables in the ABL we find that on average:

$$\frac{\partial \overline{\bullet}}{\partial x}$$
 and $\frac{\partial \overline{\bullet}}{\partial y} \ll \frac{\partial \overline{\bullet}}{\partial z}$ (e.g. for u, v, p, T, q, c)

Over flat and homogeneous terrain we simplify situations in micrometeorology / climatology to a horizontally homogeneous case i.e. where the mean horizontal gradients vanish:

$$\frac{\partial \overline{\bullet}}{\partial x} = \frac{\partial \overline{\bullet}}{\partial y} = 0$$

Reducing a 3D land-atmosphere interface to 1D

Then, we can assume that the advection by mean wind on opposite sides of the 'box' cancel each other out, i.e.

$$u\frac{\partial \overline{\bigcirc}}{\partial x} = v\frac{\partial \overline{\bigcirc}}{\partial y} = 0$$

This means that only vertical exchange at top of the box is considered. Indeed many parameterizations are onedimensional

$$0 = \frac{\partial \rho_v}{\partial t} + u \frac{\partial \rho_v}{\partial x} + v \frac{\partial \rho_v}{\partial y} + w \frac{\partial \rho_v}{\partial z}$$

where is ρ_v vapour density (same as absolute humidity). For the purpose of this set of questions, we assume there is no condensation or vaporization happening.

$$0 = \frac{\partial \rho_{v}}{\partial t} + u \frac{\partial \rho_{v}}{\partial x} + v \frac{\partial \rho_{v}}{\partial y} + w \frac{\partial \rho_{v}}{\partial z}$$

1. What does (i) describe? Units of the term?

$$0 = \frac{\partial \rho_v}{\partial t} + u \frac{\partial \rho_v}{\partial x} + v \frac{\partial \rho_v}{\partial y} + w \frac{\partial \rho_v}{\partial z}$$

2. What does (ii) describes? Units?

$$0 = \frac{\partial \rho_v}{\partial t} + u \frac{\partial \rho_v}{\partial x} + v \frac{\partial \rho_v}{\partial y} + w \frac{\partial \rho_v}{\partial z}$$

3. Assume horizontal homogeneous conditions, and

 $\frac{\partial \rho_v}{\partial z}$ = -1 g m⁻³ m⁻¹, u = 2 m s⁻¹, v = 0 m s⁻¹, w = 0.1 m s⁻¹. Is the air drying out, becoming more humid, or is the humidity staying constant?

Mechanisms of energy and mass transfer

Radiative exchange - electromagnetic waves, photons

Mechanisms of energy and mass transfer

Radiative exchange - electromagnetic waves, photons

Molecular exchange - conduction and diffusion

Mechanisms of energy and mass transfer

Radiative exchange - electromagnetic waves, photons

Molecular exchange - conduction and diffusion

Turbulent exchange - convection in a fluid

Transport of energy and mass in the climate system.

	Electromagnetic and -static energy	Heat (changes in sensible or latent energy content)	Mass (e.g. water vapour)
Radiative exchange			
~~~			
Molecular exchange			
-			
Turbulent exchange			

# Transport of energy and mass in the climate system.

	Electromagnetic and -static energy	Heat (changes in sensible or latent energy content)	Mass (e.g. water vapour)
Radiative exchange	Shortwave,Longwave, Net all-wave-radiation		
Molecular exchange	Electricity conduction (not relevant in the atmosphere)	Heat conduction	Diffusion of water vapour molecules
Turbulent exchange	Turbulent exchange of charged gases (thunderstorms)	Turbulent sensible heat flux density	Turbulent latent heat flux density

## Quantifying transfer - Fluxes and flux densities

#### Energy

Equivalence between energy and heat



Power, heat flux

is rate of work or the flow rate of energy



#### Heat flux density

is flow rate of energy per unit (surface) area



$$W m^{-2}$$
  
J s⁻¹ m⁻²

## Flux densities of mass, heat and radiant energy

#### Mass flux density

is flow rate of mass per unit (surface) area



 $kg s^{-1} m^{-2}$ 

#### Heat flux density

is flow rate of latent or sensible heat per unit (surface) area



 $W m^{-2}$  $J s^{-1} m^{-2}$ 

#### Radiant flux density

is flow rate of radiative energy per unit (surface) area



 $W m^{-2}$  $J s^{-1} m^{-2}$ 

## **Energy fluxes at Earth's surface**

#### Mass flux density

is flow rate of mass per unit (surface) area



 $kg s^{-1} m^{-2}$ 

#### Heat flux density

is flow rate of latent or sensible heat per unit (surface) area



 $W m^{-2}$  $J s^{-1} m^{-2}$ 

#### Radiant flux density

is flow rate of radiative energy per unit (surface) area



 $W m^{-2}$  $J s^{-1} m^{-2}$ 

## Take home points

- We discussed the conservation of energy and mass as a powerful principle to describe exchange in the atmosphere.
- We saw that over flat and homogeneous terrain we **simplify situations** to a horizontally homogeneous case i.e. where the mean horizontal gradients vanish.
- Transfer of mass and energy (heat and radiant energy) can be quantified using flux densities, where transfer is normalized per unit area and unit time.