Inequalities, Distributions 10

COMPUTER SCIENCE MENTORS 70

April 9 – 11, 2018

1.1 Introduction

Markov's Inequality

For a non-negative random variable *X* with expectation $E(X) = \mu$, and any $\alpha > 0$:

$$P[X \ge \alpha] \le \frac{E(X)}{\alpha}$$

Proof of Markov's Inequality

$$E(X) = \sum_{a} a * Pr[X = a]$$

$$\geq \sum_{a \geq \alpha} a * Pr[X = a]$$

$$\geq \alpha \sum_{a \geq \alpha} Pr[X = a]$$

$$= \alpha Pr[X \geq \alpha]$$

Alternate Proof of Markov's Inequality

Consider the indicator random variable Y which equals 1 if $X \ge a$ and 0 otherwise. Now consider the relationship between X and aY

- If X < a, then Y = 0, which means aY = a * 0 = 0Because X is a non-negative random variable, $X \ge 0$, so $aY \le X$ in this case.
- If $X \ge a$, then Y = 1, which means $aY = a * 1 = a \le X$

Thus, we have $aY \leq X$.

We take expectation on both sides to get:

$$E[aY] \le X$$

$$aE[Y] \le E[X]$$

$$E[Y] \le \frac{E[X]}{a}$$

Now we note that the expectation of an indicator random variable is the probability that it is equal to 1 and we have the proof:

$$P(X \ge a) \le \frac{E[X]}{a}$$

Chebyshev's Inequality

For a random variable *X* with expectation $E(X) = \mu$, and any $\alpha > 0$:

$$\mathrm{P}[|X - \mu| \ge \alpha] \le \frac{\mathrm{Var}(X)}{\alpha^2}$$

Chebyshev's Inequality can be used to estimate the mean of an unknown distribution. Often times we do not know the true mean, so we take many samples $X_1, X_2, ..., X_n$. Our sample mean is thus $S_n = \frac{X_1 + X_2 + ... + X_n}{n}$

We can upper-bound the probability of that our sample mean deviates too much from our true mean as:

$$P(|\hat{\mu} - \mu| > \epsilon) \le \delta$$

where ϵ is known as our error and δ is known as our confidence.

1.2 Questions

1. Use Markov's to prove Chebyshev's Inequality:

- 2. Let X be the sum of 20 i.i.d. Poisson random variables X_1, \ldots, X_{20} with $E(X_i) = 1$. Find an upper bound of $P[X \ge 26]$ using,
 - (a) Markov's inequality:

(b) Chebyshev's inequality:

3. Bound It

A random variable X is always strictly larger than -100. You know that E(X) = -60. Give the best upper bound you can on $P[X \ge -20]$.

- 4. The citizens of the country USD (the United States of Drumpf) vote in the following manner for their presidential election: if the country is liberal, then each citizen votes for a liberal candidate with probability p and a conservative candidate with probability 1-p, while if the country is conservative, then each citizen votes for a conservative candidate with probability p and a liberal candidate with probability p. After the election, the country is declared to be of the party with the majority of the votes.
 - (a) Assume that $p = \frac{3}{4}$ and suppose that 100 citizens of USD vote in the election and that USD is known to be conservative. Provide a tight bound on the probability that it is declared to be a Liberal country.
 - (b) Now let p be unknown; we wish to estimate it. Using Chebyshev's Inequality, determine the number of voters necessary to determine p within an error of 0.01, with probability at least 0.95.

5. Squirrel Standard Deviation

As we all know, Berkeley squirrels are extremely fat and cute. The average squirrel is 40% body fat. The standard deviation of body fat is 5%. Provide an upper bound on the probability that a randomly trapped squirrel is either too skinny or too fat? A skinny squirrel has less than 27.5% body fat, and a fat squirrel has more than 52.5%

6. Give a distribution for a random variable where the expectation is 1,000,000 and the probability that the random variable is zero is 99%.

7. Consider a random variable Y with expectation μ whose maximum value is $\frac{3\mu}{2}$, prove that the probability that Y is 0 is at most $\frac{1}{3}$.

- 8. Let X be the sum of 20 i.i.d. Poisson random variables X_1, \ldots, X_{20} with $E(X_i) = 1$. Find an upper bound of $P[X \ge 26]$ using,
 - (a) Markov's inequality:

(b) Chebyshev's inequality:

- 9. Let $X_1, X_2, ..., X_n$ be n iid Geometric random variables with parameter p. Using Chebyshev's inequality, provide an upper-bound on: $P(|\frac{X_1+X_2+...+X_n}{n}-\frac{1}{p})| \geq a)$ Recall the variance for a Geometric Distribution with parameter p is $\frac{1-p}{p^2}$
- 10. Suppose we have a sequence of iid random variables $X_1, X_2, ..., X_n$ Let $A_n = \frac{X_1 + X_2 + ... + X_n}{n}$ be the sample mean. Show that the true mean of $X_i = \mu$ is within the interval $[\mu - 4.5 \frac{\sigma}{\sqrt{n}}, \mu + 4.5 \frac{\sigma}{\sqrt{n}}]$ with 95% probability.

2 Distributions

2.1 Bernoulli Distribution

Bernoulli Distribution: Bernoulli(*p*)

We say X has the Bernoulli distribution if it takes on value 1 with probability p, and value 0 with probability 1-p. With the Bernoulli distribution we can model a single countable event, i.e. a single coin flip.

Expectation:

$$E(X) = 0 * (1 - p) + 1 * p = p$$

Variance:

$$var(X) = E(X^2) - E(X)^2 = 0^2 * (1-p) + 1^2 * p - p^2 = p(1-p)$$

2.2 Binomial Distribution

Binomial Distribution: Bin(n, p)

The binomial distribution counts the number of successes when we conduct n independent trials. Each trial has a probability p of success. For this reason, we can think of the binomial distribution as a sum of n independent Bernoulli trials, each with probability p.

The probability of having *k* successes:

$$P[X = k] = \binom{n}{k} * p^k * (1 - p)^{n - k}$$

For example, if we flip a fair coin 10 times, the probability of 6 heads is

$$P(H=6) = {10 \choose 6} \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^4$$

Expectation:

If we were to compute the sum the traditional way, we would have to compute the sum

$$E(X) = \sum_{x \in X} x \cdot \binom{n}{x} p^x (1-p)^{n-x}$$

Instead of doing that, we can use the fact that the binomial distribution is the sum of n independent Bernoulli distributions:

$$X = X_1 + \ldots + X_n$$

And now use linearity of expectation:

$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = p + p + \dots + p = np$$

Variance:

We know that variance is only separable when variables are mutually independent, i.e. $var(X_1 + X_2 + ... + X_n) = var(X_1) + var(X_2) + ... + var(X_n)$ only when $X_1, X_2, ... X_n$ are mutually independent. Since our sum of Bernoulli trials is independent, we can do the following:

$$var(X) = var(X_1 + X_2 + \dots + X_n) = var(X_1) + var(X_2) + \dots + var(X_n)$$
$$= p(1-p) + p(1-p) + \dots + p(1-p) = np(1-p)$$

2.3 Poisson Distribution

Poisson Distribution: Pois(λ) The Poisson distribution is an approximation of the binomial distribution under two conditions:

- *n* is very large
- p is very small

Let $\lambda = np$ represent the "rate" at which some event occurs. We usually use this distribution when these events are rare, such as a lightbulb failing.

The probability of k occurrences is

$$P[X = k] = \frac{e^{-\lambda} * \lambda^k}{k!}$$

It turns out that the expectation and variance of the Poisson distribution are both equal to λ . This will be clear after we walk through the derivation of the Poisson distribution.

Derivation:

Recall, $\lambda=np$. Also, recall from calculus we have $\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$, implying that $\lim_{n\to\infty}\left(1-\frac{\alpha}{n}\right)^n=e^{-\alpha}$. We will also use the fact that for large n, $\frac{n!}{(n-k)!}\approx n^k$. We will use these facts below.

$$P[X = k] = \binom{n}{k} * p^k * (1 - p)^{n - k}$$
(1)

$$= \frac{n!}{k! * (n-k)!} * p^k * (1-p)^{n-k}$$
 (2)

$$\approx \frac{n^k * p^k}{k!} * (1 - \frac{\lambda}{n})^{n-k} \tag{3}$$

$$\approx \frac{\lambda^k * e^{-\lambda}}{k!} \tag{4}$$

Since we started with a binomial distribution, our expectation and variance should remain the same.

Expectation:

Since the expectation of a binomial is np, and we set $\lambda = np$, our expectation is also E(X) = np. We can also show this from scratch:

$$E(X) = \sum_{k=0}^{\infty} k * \frac{e^{-\lambda} * \lambda^k}{k!}$$
$$= \sum_{k=1}^{\infty} k * \frac{e^{-\lambda} * \lambda^k}{k!}$$

$$= e^{-\lambda} * \lambda * \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= e^{-\lambda} * \lambda * \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$= e^{-\lambda} * \lambda * e^{\lambda}$$

$$= \lambda$$

Variance:

For variance, it is much easier to start with the binomial case and reason from there. The variance of a binomial is np(1-p), which looks like $\lambda(1-p)$. However, we started with the assumption that p is very small, so we can assume (1-p) is very close to 1 and thus $\lambda(1-p)$ is very close to λ . Therefore, $var(X) = \lambda$.

2.4 Geometric Distribution

Geometric Distribution: Geom(*p*)

With the geometric distribution, we count the number of failures until the first success. For example, we could count the number of rolls of a dice until we roll a 6. The probability that the first success occurs on trial k is:

$$P[X = k] = (1 - p)^{k-1} * p, k > 0$$

In what way can we derive the geometric distribution from the binomial distribution?

Expectation:

We know that E(X) is the number of trials until the first success occurs, including that first success. There are two cases:

- 1. The first success occurs, with probability p
- 2. We obtain a failure, with probability 1-p, meaning that we are back where we started but already used one trial

Putting this together, we get:

$$E(X) = p * 1 + (1 - p) * (1 + E(X)) \implies E(X) = \frac{1}{p}$$

Variance:

$$var(X) = \frac{1-p}{p^2}$$

2.5 Questions

1. In this problem, we will explore how we can apply multiple distributions to the same problem.

Suppose you are a professor doing research in *machine learning*. On average, you receive 12 emails a day from students wanting to do research in your lab, but this number varies greatly.

- (a) Which distribution would you use to model the number of emails you receive from students on any one day?
- (b) What is the probability that you receive 7 emails tomorrow? At least 7?
- (c) Now, let's look at the month of April, in which lots of students are emailing you to secure a summer position. What is the probability that the first day in April that you receive exactly 15 emails is April 7th? *Hint: Break this problem down into parts, and assign your result to the first part to the variable p.*
- (d) Now, calculate the probability that April 8th is the first day that we receive at least 15 emails.
- (e) What is the probability that you receive at least 15 emails on 10 different days in April?
- (f) What is the probability that you receive at least 15 emails on at least 15 days in April?

GROUP TUTORING HANDOUT: INEQUALITIES, DISTRIBUTIONS	Page 11
Computer Science Montage CS70 Fall 2019, Niek Titterton and May Overiankin with Anindit Consla	leuichman Armi