Computer Exercise 8.2.10

The following program will determine the singular value decomposition of two different matrices such that $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$; the built-in MATLAB function 'svd' will be used to accoplish this. The outputted matrices \mathbf{U}, \mathbf{D} , and \mathbf{V} will be used to check that $\mathbf{U}\mathbf{D}\mathbf{V}^T$ returns \mathbf{A} .

$$\mathbf{a)} \ \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

```
A = [1, 1; 0, 1; 1, 0];
[U, D, V] = svd(A);
A
```

```
A = 3 \times 2

1 1

0 1
1 0
```

```
%round function is used
%because 'negative zeros' were
%being displayed; also the default
%(floating point) output is messy
round(U*D*V')
```

ans =
$$3 \times 2$$

1 1
0 1
1 0

b)
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 7 & 5 \\ -2 & -3 & 4 \\ 5 & -3 & -2 \end{bmatrix}$$

1

round(U*D*V')

ans =
$$4 \times 3$$

1 3 -2

2 7 5

-2 -3 4

5 -3 -2

In both parts \boldsymbol{a} and \boldsymbol{b} , we see that $\mathbf{U}\mathbf{D}\mathbf{V}^T$ returns \mathbf{A} .