Aula teórica 2: "Transístor bipolar"

Dr. José A. Chaljub Duarte

Que informação tem a imagem da figura?

Fonte de corrente dependente de corrente ideal

Tensão de saída

$$v_2 = Ai_1R_L = -\frac{AR_L}{R_s}v_s$$

$$\frac{AR_L}{R_i} > 1 \implies V_2 > V_S$$

JACHD

5

Dispositivo que se comporta como uma fonte de corrente dependente de corrente de corrente ideal

$$V_{22} - i_2 R_2 - V_2 = 0$$

Equação da reta de carga

O transistor bipolar se assemelha a uma fonte de corrente dependente de corrente ideal

Transistor bipolar (BJT)

Base estreita e com menor concentração de impurezas que o emissor

Circuito base común (BC)

Correntes no transístor bipolar

Correntes no transístor bipolar

$$I_E = I_{pE} + I_{nE}$$

$$I_C = I_{CO} - I_{pC} = I_{CO} - \alpha I_E$$

Ganho de corrente de grande sinal na configuração BC

$$\alpha = -\frac{I_C - I_{CO}}{I_E - 0}$$

Equação para descrever o comportamento do transístor bipolar:

$$I_C = -\alpha I_E + I_{CO} (1 - e^{V_C/V_T})$$

Característica VI de de saída do BC

Característica VI de entrada do BC

Las curvas se desplazan como consecuencia del efecto Early

Regiões de trabalho do BJT

Modo	Polarización de la unión	
	Emisor-base	Colector-base
Activo-directo	Directa	Inversa
Umbral (corte)	Inversa	Inversa
Saturación	Directa	Directa
Activo-inverso	Inversa	Directa

Emisor común (EC)

O transístor é um nodo

$$I_E = I_C + I_B$$

EC: VI de saída e de entrada

Combinando

Emisor común (EC)

$$I_{C} = I_{CO} - I_{pC} = I_{CO} - \alpha I_{E}$$

$$I_{E} = I_{C} + I_{B}$$

$$I_{C} = I_{CO} - I_{D} = I_{CO} - \alpha I_{E}$$

$$I_C = \frac{I_{CO}}{1 - \alpha} + \frac{\alpha I_B}{1 - \alpha}$$

Define-se β como:

$$\beta \equiv \frac{\alpha}{1 - \alpha}$$

Ganho de corrente de grande sinal do EC

Variação de β com Ic

Na região ativa:

$$I_C = (1 + \beta)I_{CO} + \beta I_B$$

$$\beta = h_{FE} \approx \frac{I_C}{I_B}$$

Voltaje Early

BJT: Parâmetros importantes (até o momento)

- Icmax
- PDmax.
- VCBmax
- VBEmax
- Tiempos de conmutación

Tempos de comutação

Tempos que demora em passar de saturação a corte ou de corte a saturação.

EC em Corte

ambas as uniões em inverso.

- /lc/=/IB/=lco
- IE=0

■ VBE=0, Si.

EC em saturación

Ambas as uniões em direto

VBE sat ≈ 0.8 V.

VCEsat ≈ 0.2V

Condição necessária e suficiente:

IB> IBmin

Siendo IBmin= Ic/β

Estratégia para determinar saturação

- Considerar saturação. Utilizar valores típicos do VBE e VCE. Comprovar IB>IBmin
- Considerar região ativa. Comprovar VCE > 0,3V.

Reta de carrega em saturação

fototransistor

Polarização: IB=0 (base não conectada):

$$IC=(\beta+1)(Ico+IL)$$

IL Componente de corrente gerada pela luz