Semaine 22 - Systèmes linéaires et suites récurrentes

Valentin De Bortoli email : valentin.debortoli@gmail.com

Dans la suite k est un corps (on se limite à \mathbb{R} et \mathbb{C}) et E un k-espace vectoriel.

1 Matrices circulantes et polygones

Soit $(a_i)_{i \in [1,n]} \in \mathbb{C}^n \ (n \in \mathbb{N}).$

1 Peut-on trouver $(z_i)_{i \in [\![1,n]\!]}$ un polygone du plan complexe tel que a_i soit le milieu de $[z_i,z_{i+1}]$ si i < n et a_n milieu de $[z_n,z_1]$?

2 Un calcul d'inverse

Soit $A \in \mathcal{G}l_n(\mathbb{R})$. On suppose de plus que $A + A^{-1} = I_n$.

- 1 Montrer que $\forall k \in \mathbb{N}, A^k + A^{-k}$ est scalaire.
- 2 En déduire $A^k + A^{-k}$.

3 Matrices de permutation

Soit σ une bijection de [1, n] dans [1, n]. On note $M_{\sigma} \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par :

$$\forall (i,j) \in [1,n], \ M_{\sigma}(i,j) = \begin{cases} 0 \text{ si } j \neq \sigma(i) \\ 1 \text{ sinon} \end{cases}$$

- 1 Quel est l'effet d'une multiplication à droite par une matrice de permutation? A gauche?
- 2 On suppose que la permutation considérée est une transposition, c'est-à-dire $\exists! \ (i,j) \in \llbracket 1,n \rrbracket, \ \sigma(i) \neq i \land \sigma(j) \neq j \land \sigma(i) = j$. Montrer que dans ce cas M_{σ} peut s'écrire comme produit de matrices de type $I_n + E_{i,j}$ (matrices de transvection) et d'une matrice de dilatation (matrice diagonale inversible dont un seul des coefficients est différent de 1).
- 3 En supposant que toute permutation peut s'écrire comme un composition de transpositions, conclure que toute matrice de permutation peut s'écrire comme produit de matrices de transvection et de matrices de dilatation.

4 Matrices de transvection, matrice de dilatation

On appelle matrices de transvection les matrices de la forme $I_n + E_{i,j}$. On appelle matrice de dilatation toute matrice diagonale inversible dont un seul des coefficients est différent de 1. Ces deux ensembles jouent un rôle fondamental pour la description du groupe linéaire.

- 1 Reprendre la question 1 de l'exercice précédent. A partir de maintenant on admettra la dernière question de l'exercice précédent.
- 2 Montrer que tout élément du groupe linéaire peut s'écrire comme produit de matrices de transvection et de dilatation.

5 Matrices échelonnées et nombres entiers

- 1 Donner la forme échelonnée selon les colonnes de $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$.
- $\mathbf{2} \quad \text{Soit } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2\left(\mathbb{Z}\right). \text{ Montrer qu'il existe } P = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \mathcal{M}_2\left(\mathbb{Z}\right) \text{ inversible et d'inverse dans } \mathcal{M}_2\left(\mathbb{Z}\right) \text{ tel que } MP = \begin{pmatrix} 1 & 0 \\ c' & d' \end{pmatrix} \text{ avec } (c', d') \in \mathbb{Z}^2.$
 - 3 Comment obtenir une matrice échelonnée selon les colonnes dans $\mathbb Z$?
 - 4 Appliquer les conclusions de la question précédente à l'exemple de la première question.

6 Somme de matrices inversibles

1 Montrer que tout matrice $M \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire comme la somme de deux matrices inversibles.

7 Dimension d'un espace matriciel

Soit $A \in \mathcal{M}_n(\mathbb{R})$ de rang r.

1 Montrer que $A = \{B \in \mathcal{M}_n(\mathbb{R}), ABA = 0\}$ est un espace-vectoriel et donner sa dimension.

8 Somme de matrice inversible

Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$.

1 On suppose que $rg(A) + rg(B) \ge n$. Montrer qu'il existe U et V deux matrices de $\mathcal{G}l_n(\mathbb{R})$ telles que UA + BV inversible.

9 Suite et équivalent

Soit $(u_n)_{n\in\mathbb{N}}$ définie de la manière suivante :

$$\begin{cases} u_0 \in]0, \frac{\pi}{2}[\\ u_{n+1} = \sin(u_n) \end{cases}$$

- 1 Montrer que $u_n \to 0$.
- 2 Montrer que $\frac{1}{u_{n+1}^2} \frac{1}{u_n^2}$ admet une limite en $+\infty$ et la calculer.
- 3 En utilisant la question 3 de l'exercice précédent déterminer un équivalent de u_n lorsque $n \to +\infty$.

10 Méthode de Newton

Soit $f \in \mathcal{C}^2([a,b])$ à valeurs réelles avec f' > 0 sur [a,b]. On définit $(x_n)_{n \in \mathbb{R}} \in \mathbb{R}^{\mathbb{N}}$ de la manière suivante :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

On suppose également que f s'annule en $c \in]a,b[$. Enfin on suppose que $\forall n \in \mathbb{N}, \ x_n \in [a,b]$.

1 Montrer que $\forall n \in \mathbb{N}, \ x_{n+1}$ correspond à l'abscisse du point d'intersection entre la tangente à f en x_n et l'axe des abscisses. Faire un dessin.

2

- **2** Montrer que $\forall n \in \mathbb{N}, |x_{n+1} c| \le C|x_n c|^2 \text{ avec } C \in \mathbb{R}_+.$
- **3** Donner la formule liant x_{n+1} et x_n dans le cas où $f: x \mapsto x^2 a$ et f définie sur $[0, 2a], (a \in \mathbb{R}_+)$.

Remarque : cette méthode est très utilisée pour trouver le minimum de fonctionnelle. Néanmoins f n'est pas toujours dérivable ou peut être très compliquée à dériver. On utilise alors d'autres algorithmes (méthode de la corde, méthode de la sécante, dichotomie et bien d'autres...).

11 Récurrence et nombre d'or

1 Montrer que $\sqrt{1 + \sqrt{1 + \sqrt{\dots}}} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} = \frac{1 + \sqrt{5}}{2}$.

12 Une suite complexe

Soit la suite $(z_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ définie par :

$$\begin{cases} z_0 = \rho e^{i\theta} \in \mathbb{C}, \ \rho \in \mathbb{R}_+, \theta \in [-\pi, \pi] \\ z_{n+1} = \frac{z_n + |z_n|}{2}, \ \forall n \in \mathbb{N} \end{cases}$$

- 1 Exprimer z_n sous la forme d'un produit.
- $2 \quad \text{Montrer que } \forall n \in \mathbb{N}^*, \ \prod_{k=1}^n \cos(\frac{\theta}{2^k}) = \frac{\sin(\theta)}{2^n \sin(\frac{\theta}{2^n})}.$
- **3** Montrer que z_n admet une limite et la calculer.