PATENT

Attorney Docket No.: 19496-006220US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Choo et al.

Application No.: 09/424,487

Filed: February 29, 2000

For: NUCLEIC ACID BINDING

PROTEINS

Examiner:

Robinson, H.

Art Unit:

1653

SUPPLEMENTAL INFORMATION ... DISCLOSURE STATEMENT UNDER

CFR §1.97 and §1.98

CENTER 1600/296

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The references cited on attached form PTO/SB/08A/08B are being called to the attention of the Examiner. Copies of the references are enclosed. It is respectfully requested that the cited references be expressly considered during the prosecution of this application, and the references be made of record therein and appear among the "references cited" on any patent to issue therefrom.

As provided for by 37 CFR §§ 1.97(g) and (h), no representation is being made that a search has been conducted or that this statement encompasses all the possible relevant information, and no inference should be made that the information and references cited are, or are considered to be material to patentability because they are in this statement. No inference should be made that the information and references cited are prior art merely because they are in this statement.

Choo et al.

Application No.: 09/424,487

Page 2

Applicant believes that no fee is required for submission of this statement, since it is being submitted prior to the first Office Action. However, if a fee is required, the Commissioner is authorized to deduct such fee from the undersigned's Deposit Account No. 20-1430. Please deduct any additional fees from, or credit any overpayment to, the above-

Respectfully submitted,

PATENT

Joe Liebeschuetz Reg. No. 37,505

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834

Tel: 650-326-2400 Fax: 650-326-2422

noted Deposit Account.

JOL:crf

PA 3188331 v1

Approved for use through 10/31/2002. OMB 0651-0031**
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid ON/B control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet

	Complete if Known	
Application Number	09/424,487	
Filing Date	02/29/00)3
First Named Inventor	Choo	
Group Art Unit	1653	20
Examiner Name	Robinson, H.	0 2
Attorney Docket Number	019496-006220US	<u> </u>

	Τ	U.S. Patent Document			- 1	Pages, Columns, Lines,	N
Examiner Initials *	Cite No.'	Number Kind Code ² (if known)	Name of Patentee or Applicant of Cited Document	Date of Publica Cited Docum MM-DD-YY	nent	Where Relevant Passages or Relevant Figures Appear	
		6,013,453	Choo et al.	01-11-20	<u>xo</u>		
	2	6,007,988	Choo et al.	12-28-19	9		<u>-</u>
	3	6,001,885	Vega et al.	12-14-19	99		
	4	5,972,615	An et al.	10-26-19	99		
	5	5,939,538	Leavitt et al.	08-17-19	99		
	6	5,916,794	Chandrasegaran	06-29-19	99		
	7	5,871,907	Winter et al.	02-16-19	99		
	8	5,871,902	Weininger et al.	02-16-19	99		
	9	5,869,618	Lippman et al.	02-9-19	99		
	10	5,792,640	Chandrasegaran	08-11-19	98		
	111	5,789,538	Rebar et al.	08-04-19	98		
	12	5,702,914	Evans et al.	12-30-19	97		
	13	5,674,738	Abramson et al.	10-07-19	97		
	14	5,639,592	Evans et al.	06-17-19	97		
	15	5,597,693	Evans et al.	01-28-19	97		
	16	5,578,483	Evans et al.	11-26-19	96		
	17	5,498,530	Schatz et al.	03-12-19	996		
	18	5,487,994	Chandrasegaran	01-30-1	996		
	19	5,436,150	Chandrasegaran	07-25-1	995		
	20	5,403,484	Ladner et al.	04-04-1	995		
	21	5,376,530	De The et al.	12-27-1	994		
	22	5,356,802	Chandrasegaran	10-18-1	994		
	23	5,350,840	Call et al.	09-27-1	994		
	24	5,348,864	Barbacid	09-20-1	994		
	25	5,340,739	Stevens et al.	08-23-1	994		
	26	5,324,819	Oppermann et al.	06-28-1	994		
	27	5,324,818	Nabel et al.	06-28-1	994		
	28	5,324,638	Tao et al.	06-28-1	994		
	29	5,302,519	Blackwood et al.	04-12-	994		
	30	5,243,041	Fernandez-Pol	09-07-	1993		
	31	5,223,409	Ladner et al.	06-29-	1993		
	32	5,198,346	Ladner et al.	03-30-	1993		

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant,

Considered

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

Signature

¹ Unique citation designation number. 2 See attached Kinds of U.S. Patent Documents. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet

1000000	Complete if Known	
Application Number	09/424,487	
Filing Date	02/29/00	-
First Named Inventor	Choo	
Group Art Unit	1653	
Examiner Name	Robinson, H.	
Attorney Docket Number	019496-006220US	

					······
Γ	33	5,096,815	Ladner et al.	03-17-1992	
	+	5,096,814	Aivasidis et al.	03-17-1992	
	34		Wassaini at al	02-05-1991	
	35	4,990,607	Katagiri et al.	02 03 1771	1

					PATENT DOCU	III.C.III.G	Pages, Columns, Lines,	
Examiner Initials*	Cite No.1	Fore Office ³		nd Code⁵	Name of Patentee or Applicant of	Date of Publication of Cited Document MM-DD-YYYY	Where Relevant Passages or Relevant Figures Appear	T ⁶
muais	110.	Office	Number (ii	known)	Cited Document	,	Figures Appear	
	36	PCT	WO 99/48909	A2		09-30-1999		
	37	PCT	WO 99/47656	A2		09-23-1999		
	38	PCT	WO 99/45132	Al		09-10-1999		
	39	PCT	WO 99/42474	A2		08-26-1999		
	40	PCT	WO 99/41371	A1		08-19-1999		
	41	PCT	WO 99/36553	A2		07-22-1999		
	42	PCT	WO 98/54311	Al		12-03-1998		<u> </u>
	43	PCT	WO 98/53060	A1		11-26-1998		
	44	PCT	WO 98/53059	Al		11-26-1998		
	45	PCT	WO 98/53058	A1		11-26-1998		
	46	PCT	WO 98/53057	A1		11-26-1998		↓
	47	PCT	WO 97/27213	A1		07-31-1997		↓
	48	PCT	WO 97/27212	A1		07-31-1997		
	49	PCT	WO 96/32475	A2		10-17-1996		
	50	PCT	WO 96/20951	Al		07-11-1996		↓
	51	PCT	WO 96/11267	Al		04-08-1996		
	52	PCT	WO 96/06110	Al		02-29-1996		
	53	PCT	WO 95/19431	AI		07-25-1995		
		EP	875 567	A2		11-04-1998	·	
	54		+ 57557	+		————		1

Examiner Signature	Date Considered	

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST, 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Complete if Known 09/424,487 **Application Number** February 29, 2000 Filing Date Choo First Named Inventor 1653 Group Art Unit Robinson, H. **Examiner Name** 019496-006220US **Attorney Docket Number**

(use as many sheets as necessary)

of Sheet

		OTHER PRIOR ART NON PATENT LITERATURE DOCUMENTS	
xaminer	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T 2
muais	55	AGARWAL et al., "Stimulation of Transcript Elongation Requires both the Zinc Finger and RNA Polymerase II Plinding Demains of Human TFIIS." Biochemistry, 30(31):7842-7851 (1991).	
	56	ANATO et al., "A thermodynamic study of unusually stable RNA and DNA hairpins," Nuc. Acids. Res., 19(21):5901-5905 (1991).	
	57	BARBAS, C. F., "Recent advances in phage display," Curr. Opin. Biotech., 4:526-530 (1993).	_
	58	BARBAS et al., "Assembly of combinatorial antibody libraries on phage surfaces: The gene III site," PNAS,	
	59	BARBAS et al., "Semisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem,	
	60	BELLEFROID et al., "Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells," <u>EMBO J.</u> , 12(4):1363-1374 (1993).	<u> </u>
	61	DEERG LM "DNA Rinding Specificity of Steriod Receptors," Cell, 57:1065-1068 (1989).	↓_
	62	BERG, J. M., "Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites," PNAS, 89:11109-	<u> </u>
	63	BERG et al., "The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc," Science, 271:1081-1085 (1996).	_
	64	DERG I.M. "Letting your fingers do the walking," Nature Biotechnology, 15:323 (1997)	ļ
	65	BERGQVIST et al., "Loss of DNA-binding and new transcriptional trans-activation function in polyomavirus lesses." Testigen with mutation of zinc finger motif," Nuc. Acids Res., 18(9):2715-2720 (1990).	_
	66	BLAESE et al., "Vectors in cancer therapy: how will they deliver?," Cancer Gene Therapy, 2(4):291-297	
	67	CAPONIGRO et al., "Transdominant genetice analysis of a growth control pathway," PNAS. 95:7508-7513	
	68	CELENZA et al., "A Yeast Gene That Is Essential for Release from Glucose Repression Encodes a Protein	\perp
	69	CHENG et al., "Identification of Potential Target Genes for Adrlp through Characterization of Essential	
	70	CHENG et al., "A Single Amino Acid substitution in Zinc Finger 2 of Adr Ip Changes its Binding specificity at	1
	71	CHOO et al., "A role in DNA binding for the linker sequences of the first three zinc tingers of IFIIIA, Nuc.	\perp
	72	CHOO et al., "Designing DNA-binding proteins on the surface of filamentous phage," Curr. Opin. Biotech., 6:431-436 (1995).	

			$\neg \neg$
Examiner Signature	Date Con:	nsidered	ل_

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Detect. Washington, DC 20231. Patents, Washington, DC 20231

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid CMB control number

Complete if Known Substitute for form 1449B/PTO 09/424,487 **Application Number** INFORMATION DISCLOSURE February 29, 2000 Filing Date STATEMENT BY APPLICANT First Named Inventor Choo 1653 Group Art Unit Robinson, H. (use as many sheets as necessary) **Examiner Name** 019496-006220US Attorney Docket Number

Sheet	2		of	7		Attorney Docket Number	019496-006220US	_
	73	CHOO	et al.,	"Promoter-	specific Active 73:525-532 (I	ation of Gene Expression Directed	by Bacteriophage-selected Zinc	
	74	CHOC), Y., "l	Recognition	of DNA meth	nylation by zinc fingers," Nature S	truct. Biol., 5(4):264-265 (1998).	
	75					Structural Biology, 5(4):253-255		
<u> </u>	76	CHOC), Y., "	End effects	in DNA recog	nition by zinc finger arrays," Nuc.	Acids Res., 26(2):554-557 (1998).	
	77	CHOC	et al.,	"In vivo ro	epression by a 642-645 (1994	site-specific DNA-binding protein 1).	designed against an oncogenic	
	78	СНОС	et al.,	"Physical 1	basis of a prote	ein-DNA recognition code," Curr.	Opin. Struct. Biol., 7(1):117-125 (1997)	
	79	CHOC	et al.,	"Toward a	code for the in	nteractions of zinc fingers with DN -11167 (1994).	VA: Selection of randomized fingers	
	80	CHOC	et al.,	, "Selection	of DNA bindi	ing sites for zinc fingers using ratio (1994)	onally randomized DNA reveals coded	
	81	CORI	BI, N. e	et al., "Synt	hesis of a New FEBS Letters	Zinc Finger Peptide; Comparison , 417: 71-74 (1997).	of its 'Code' Deduced and 'CASTing'	
	82	CROZ	ZATIE r Prote	R et al., "Si in Cause Er	ngle Amino A	cid Exchanges in Separate Domain Sex Biased Lethality," Genetics, 1.	ns of the Drosophila serendipity δ Zinc 31:905-916 (1992).	
·	83	DEBS	et al.,	"Regulation Factor"."	n of Gene Exp	pression in Vivo by Liposome-med Chemistry, 265(18):10189-10192	iated Delivery of a Purified (1990).	
	84	DESJ	ARLA	IS et al., "L	ength-encode 099-11103 (19	d multiplex binding site determina 994).	tion: Application to zinc finger	
	85	DESI	ARLA	IS et al., "U	Jse of a zinc-fi	inger consensus sequence framewo S, 90:2256-2260 (1993)	ork and specificity rules to design	_
	86	DESI	ARLA	IS et al., "7	Foward rules ro 49 (1992)	elating zinc finger protein sequenc	es and DNA binding site preferences,"	L
	87	DES.	IARLA	AIS et al., "I	Redesigning th	tion, and Genetics, 12(2):101-104	inc Finger Protein: A Data Base-Guided (1992)	L
	88	DES.	JARLA	VIS et al., "I	Redesigning the	te DNA-Binding Specificity of a Zition, and Genetics, 13:272 (1992)	linc Finger Protein: A Data Base-Guided	
	89	DIBI	ELLO	et al., "The	Drosophila <i>Br</i> 9:385-397 (19	oad-ComplexEncodes a Family of 91).	Related Proteins Containing Zinc	L
	90	ELR	OD-EF	RICKSON of	et al., "High-re ger-DNA reco	solution structures of variant Zif2 gnition," Structure, 6(4):451-464	68-DNA complexes: implications for (1998).	\downarrow
	91	ELR	OD-El	RICKSON (et al., "Zif268 actions." Struc	protein-DNA complex refined at 1 ture, 4(10):1171-1180 (1996)	.6 Å: a model system for understanding	\downarrow
	92	FAII	LIAS	et al., "The	crystal structu	re of a two zinc-finger peptide rev 6:483-487 (1993)	reals an extension to the rules for zinc-	1
	93					any Proteins," <u>Cell</u> , 53:675 (1988).	1

		\neg
Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Complete if Known 09/424,487

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Application Number

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Filing Date February 29, 2000

First Named Inventor Choo

Group Art Unit 1653

Examiner Name Robinson, H.

(use as many sheets as necessary)

,,	300 00	• • • • • • • • • • • • • • • • • • • •		
Sheet	3	of 7	Attorney Docket Number	019496-006220US

	94	FRIESEN et al., "Phage Display of RNA Binding Zinc Fingers from Transcription Factor IIIA*," <u>J. Biological Chem.</u> , 272(17):10994-10997 (1997).
	95	GHOSH, D., "A relational database of transcription factors," Nuc. Acids Res., 18(7):1749-1756 (1990).
	96	GOGOS et al., "Recognition of diverse sequences by class I zinc fingers: Asymmetries and indirect effects on specificity in the interaction between CF2II and A+T-rich sequence elements," PNAS, 93(5):2159-2164 (1996)
-	97	GOSSEN et al., "Tight control of gene expression in mammalian cells by tetracycline-responsive promoters," PNAS, 89:5547-5551 (1992)
	98	GREISMAN et al., "A General Strategy for Selecting High-Affinity Zinc Finger Proteins for Diverse DNA Target Sites," Science, 275:657-561 (1997)
	99	HAMILTON et al., "High affinity binding sites for the Wilms' tumor suppressor protein WT1," Nuc. Acids Res., 23(2):277-284 (1995).
	100	HAMILTON et al., "Comparison of the DNA Binding Characteristics of the Related Zinc Finger Proteins WT1 and EGR1," Biochemistry, 37:2051-2058 (1998).
	101	HANAS et al., "Internal deletion mutants of <i>Xenopus</i> transcription factor IIIA," Nuc. Acids Res., 17(23):9861-9870 (1989).
	102	HAYES et al., "Locations of Contacts between Individual Zinc Fingers of Xenopus laevis Transcription Factor IIIA and the Internal Control Region of a 5S RNA Gene," <u>Biochemistry</u> , 31:11600-11605 (1992).
	103	HEINZEL et al., "A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression," Nature, 387:43-48 (1997).
	104	HIRST et al., "Discrimination of DNA response elements for thyroid hormone and estrogen is dependant on dimerization of receptor DNA binding domains," PNAS, 89:5527-5531 (1992).
	105	HOFFMAN et al., "Structures of DNA-binding mutant zinc finger domains: Implications for DNA binding," Protein Science, 2:951-965 (1993).
	106	ISALAN et al., "Comprehensive DNA Recognition through Concerted Interactions from Adjacent Zinc Fingers," Biochemistry, 37:12026-12033 (1998).
	107	JACOBS, G. H., "Determination of the base recognition positions of zinc fingers from sequence analysis," EMBO J., 11(12):4507-4517 (1992).
	108	JAMIESON et al., "A zinc finger directory for high-affinity DNA recognition," PNAS, 93:12834-12839 (1996)
	109	JAMIESON et al., "In Vitro Selection of Zinc Fingers with Altered DNA-Binding Specificity," Biochemistry, 33(19):5689-5695 (1994)
	110	JULIAN et al., "Replacement of His23 by Cys in a zinc finger of HIV-1 NCp7 led to a change in 1H NMR-derived 3D structure and to a loss of biological activity," FEBS letters, 331(1,2):43-48 (1993).
7111	111	KAMIUCHI et al., "New multi zinc finger protein: biosynthetic design and characteristics of DNA recognition," Nucleic Acids Symposium Series, 37:153-154 (1997).
	112	KIM et al., "Serine at Position 2 in the DNA Recognition helix of a Cys2-His2 Zinc finger Peptide is Not, in General, Responsible for Base Recognition," J. Mol. Biol., 252:1-5 (1995).
	113	KIM et al., "Site-specific cleavage of DNA-RNA hybrids by zinc finger/Fokl cleavage domain fusions," Gene, 203:43-49 (1997).

		Date	
- 1	Examiner		
	Signature	Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Application Number 09/424,487

Filing Date February 29, 2000

First Named Inventor Choo

Group Art Unit 1653

Examiner Name Robinson, H.

Attorney Docket Number 019496-006220US

(use as many sheets as necessary)

of 7

Sheet	4	or 7	_
	114	KIM et al., "A 2.2 A° resolution crystal structure of a designed zinc finger protein bound to DNA," Nat. Struct. Biol., 3(11):940-945 (1996)	
	115	KIM et al., "Getting a handhold on DNA: Design of poly-zinc finger proteins with femtomolar dissociation constants," PNAS, 95:2812-2817 (1998).	
	116	KIM et al., "Design of TATA box-binding protein/zinc finger fusions for targeted regulation of gene expression." PNAS, 94:3616-3620 (1997)	
	117	KIM et al., "Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain," PNAS, 93:1156-1160 (1996)	
	118	KIM et al., "Transcriptional repression by zinc finger peptides," J. Biol. Chem., 272(47):29795-28000 (1997).	
	119	KINZLER et al., "The GLI gene is a member of the Kruppel family of zinc finger proteins," Nature, 332:371-4 (1988).	
	120	KLUG, A., "Gene Regulatory Proteins and Their Interaction with DNA," Ann. NY Acad. Sci., 758:143-160 (1995).	
	121	KLUG et al., "Protein Motifs 5: Zinc Fingers," FASEB J., 9:597-604 (1995).	
	122	KOTHEKAR, V., "Computer simulation of zinc finger motifs from cellular nucleic acid binding protein and their interaction with consensus DNA sequences," FEBS Letters, 274(1-2):217-222 (1990).	
	123	KRIWACKI et al., "Sequence-specific recognition of DNA by zinc-finger peptides derived from the transcription factor Spl." PNAS, 89:9759-9763 (1992).	
	124	KULDA et al., "The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger," EMBO L., 9(5):1355-1364 (1990).	
	125	LIU et al., "Design of polydactyl zinc-finger proteins for unique addressing within complex genomes," PNAS, 94(11):5525-5530 (1997).	<u> </u>
	126	MANDEL-GUTFREUND et al., "Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites," Nuc. Acids Res., 26(10):2306-2312 (1998).	
	127	MARGOLIN et al., "Kruppel-associated boxes are potent transcriptional repression domains," PNAS, 91:4509-4513 (1994).	
	128	MIZUSHIMA et al., "pEF-BOS, a powerful mammilian expression vector," Nuc. Acids Res., 18(17):5322 (1990).	
	129	NAKAGAMA et al., "Sequence and Structural Requirements for High-Affinity DNA Binding by the WT1 Gene Product," Molecular and Cellular Biology, 15(3):1489-1498 (1995).	
	130	NARDELLI et al., "Zinc finger-DNA recognition: analysis of base specificity by site-directed mutagenesis," Nuc. Acids Res., 20(16):4137-4144 (1992)	
	131	NARDELLI et al., "Base sequence discrimination by zinc-finger DNA-binding domains," Nature, 349:175-178 (1991).	
	132	NEKLUDOVA et al., "Distinctive DNA conformation with enlarged major groove is found in Zn-finger—DNA and other protein—DNA complexes," PNAS, 91:6948-6952 (1994)	
	133	ORKIN et al., "Report and Recommendations of the Panel to Assess the NIH Investment in Research on Gene Therapy," December 7, 1995.	

1	Examiner Signature	Date Considered	
ì	Signature		

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

Approved for use through 10/31/2002. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449B/PTO

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Complete if Known 09/424,487 **Application Number** February 29, 2000 Filing Date **First Named Inventor** Choo 1653 Group Art Unit **Examiner Name** Robinson, H. 019496-006220US Attorney Docket Number

(use as many sheets as necessary)

of

PABO et al., "Systematic Analysis of Possible Hydrogen Bonds between Amino Acid Side Chains and B-form 134 DNA," J. Biomolecular Struct. Dynamics, 1:1039-1049 (1983). PABO et al., "Protein-DNA Recognition," Ann. Rev. Biochem., 53:293-321 (1984). 135 PABO, C. O., "Transcription Factors: Structural Families and Principals of DNA Recognition," Ann. Rev. 136 Biochem., 61:1053-1095 (1992). PAVLETICH et al., "Crystal Structure of a Five-Finger GLI-DNA Complex: New Perspectives on Zinc 137 Fingers," Science, 261:1701-1707 (1993). PAVLETICH et al., "Zinc Finger-DNA Recognition: Crystal Structure of a Zif268-DNA Complex at 2.1 Å," 138 Science, 252:809-817 (1991) PENGUE et al., "Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB 139 domain present in a subfamily of zinc finger proteins," Nuc. Acids Res., 22(15):2908-2914 (1994). PENGUE et al., "Transcriptional Silencing of Human Immunodeficiency Virus Type 1 Long Terminal Repeat-Driven Gene Expression by the Kruppel-Associated Box Repressor Domain Targeted to the Transactivating 140 Response Element," J. Virology, 69(10):6577-6580 (1995). PENGUE et al., "Kruppel-associated box-mediated repression of RNA polymerase II promoters is influenced by 141 the arrangement of basal promoter elements," PNAS, 93:1015-1020 (1996). POMMERANTZ et al., "Structure-Based Design of a Dimeric Zinc Finger Protein," Biochemistry, 37(4):965-142 970 (1998) POMMERANTZ et al., "Structure-Based Design of Transcription Factors," Science, 267:93-96 (1995). 143 POMMERANTZ et al., "Analysis of homeodomain function by structure-based design of a transcription factor," 144 PNAS, 92:9752-9756 (1995) QIAN et al., "Two-Dimensional NMR Studies of the Zinc Finger Motif: Solution Structures and Dynamics of Mutant ZFY Domains Containing Aromatic Substitutions in the Hydrophobic Core," Biochemistry, 31:7463-145 7476 (1992). QUIGLEY et al., "Complete Androgen Insensitivity Due to Deletion of Exon C of the Androgen Receptor Gene Highlights the Functional Importance of the Second Zinc Finger of the Androgen Receptor in Vivo," Molecular 146 Endocrinology, 6(7):1103-1112 (1992). RAUSCHER et al., "Binding of the Wilms' Tumor Locus Zinc Finger Protein to the EGR-1 Consensus 147 Sequence," Science, 250:1259-1262 (1990). RAY et al., "Repressor to activator switch by mutations in the first Zn finger of the glucocorticoid receptor: Is 148 direct DNA binding necessary?," PNAS, 88:7086-7090 (1991). REBAR et al., "Phage Display Methods for Selecting Zinc Finger Proteins with Novel DNA-Binding 149 Specificities," Methods in Enzymology, 267:129-149 (1996). REBAR et al., "Zinc Finger Phage: Affinity Selection of Fingers with New DNA-Binding Specificities," 150 Science, 263:671-673 (1994) REITH et al., "Cloning of the major histocompatibility complex class II promoter binding protein affected in a 151 hereditary defect in class II gene regulation," PNAS, 86:4200-4204 (1989). RHODES et al., "Zinc Fingers: They play a key part in regulating the activity of genes in many species, from 152 yeast to humans. Fewer than 10 years ago no one knew they existed," Scientific American, 268:56-65 (1993)

1	Examiner	Date
1	Signature	Considered
-	Signature	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

¹ Unique citation designation number. 2 See attached Kinds of U.S. Patent Documents. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Complete if Known Substitute for form 1449B/PTO 09/424,487 **Application Number** INFORMATION DISCLOSURE February 29, 2000 Filing Date STATEMENT BY APPLICANT First Named Inventor Choo 1653 **Group Art Unit** Robinson, H. (use as many sheets as necessary) **Examiner Name** 019496-006220US Attorney Docket Number Sheet

153	RICE et al., "Inhibitors of HIV Nucleocapsid Protein Zinc Fingers as Candidates for the Treatment of AIDS," Science, 270:1194-1197 (1995).	
 154	RIVERA et al., "A humanized system for pharmacologic control of gene expression," Nature Medicine, 2(9):1028-1032 (1996)	
 155	ROLLINS et al., "Role of TFIIIA Zinc Fingers In vivo: Analysis of Single-Finger Function in Developing Xenopus Embryos," Molecular Cellular Biology, 13(8):4776-4783 (1993).	
 156	SALEH et al., "A Novel Zinc Finger Gene on Human Chromosome lqter That Is Alternatively Spliced in Human Tissues and Cell Lines," Am. J. Hum. Genet., 52:192-203 (1993).	
 157	SHI et al., "Specific DNA-RNA Hybrid Binding by Zinc Finger Proteins," Science, 268:282-284 (1995).	
 158	SHI et al., "DNA Unwinding Induced by Zinc Finger Protein Binding," Biochemistry, 35:3845-3848 (1996)	
 159	SHI et al., "A direct comparison of the properties of natural and designed finger proteins," Chem. & Biol., 2(2):83-89 (1995)	
 160	SINGH et al., "Molecular Cloning of an Enhancer Binding Protein: Isolation by Screening of an Expression Library with a Recognition Site DNA," Cell, 52:415-423 (1988).	
161	SKERKA et al., "Coordinate Expression and Distinct DNA-Binding Characteristics of the four EGR-Zinc Finger Proteins in Jukat T Lymphocytes," Immunobiology, 198:179-191 (1997).	
162	SOUTH et al., "The Nucleocapsid Protein Isolated from HIV-1 Particles Binds Zinc and Forms Retroviral-Type Zinc Fingers," Biochemistry, 29:7786-7789 (1990).	
 163	SUZUKI et al., "Stereochemical basis of DNA recognition by Zn fingers," Nuc. Acids Res., 22(16):3397-3405 (1994)	
 164	SUZUKI et al. "DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families," PNAS, 91:12357-12361 (1994)	_
165	SWIRNOFF et al., "DNA-Binding Specificity of NGFI-A and Related Zinc Finger Transcription Factors," Mol. Cell. Biol., 15(4):2275-2287 (1995)	_
166	TAYLOR et al, "Designing Zinc-Finer ADR1 Mutants with Altered Specificity of DNA Binding to T in UAS1 Sequences," Biochemistry, 34:3222-3230 (1995)	L
 167	THIESEN et al., "Determination of DNA binding specificities of mutated zinc finger domains," FEBS Letters, 283(1):23-26 (1991).	L
168	THIESEN et al., "Amino Acid Substitutions in the SP1 Zinc Finger Domain Alter the DNA Binding Affinity to Cognate SP1 Target Site," Biochem. Biophys. Res. Communications, 175(1):333-338 (1991).	L
 169	THUKRAL et al., "Localization of a Minimal Binding Domain and Activation Regions in Yeast Regulatory Protein ADR1," Molecular Cellular Biology, 9(6):2360-2369 (1989).	L
170	THUKRAL et al., "Two Monomers of Yeast Transcription Factor ADR1 Bind a Palindromic Sequence Symmetrically to Activate ADH2 Expression," Molecular Cellular Biol., 11(3):1566-1577 (1991).	L
 171	THUKRAL et al., "Alanine scanning site-directed mutagenesis of the zinc fingers of transcription factor ADR1: Residues that contact DNA and that transactivate," PNAS, 88:9188-9192 (1991), + correction page.	
 172	THUKRAL et al., "Mutations in the Zinc Fingers of ADR1 That Change the Specificity of DNA Binding and Transactivation," Mol. Cell Biol., 12(6):2784-2792 (1992)	

Examiner	Date	
Signature	Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 10/31/2002. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449B/PTO

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Complete if Known 09/424,487 **Application Number** February 29, 2000 Filing Date First Named Inventor Choo 1653 Group Art Unit Robinson, H. **Examiner Name** 019496-006220US Attorney Docket Number

(use as many sheets as necessary) of | 7

VORTKAMP et al., "Identification of Optimized Target Sequences for the GLI3 Zinc Finger Protein," DNA 173 Cell Biol., 14(7):629-634 (1995). WEBSTER et al., "Conversion of the E1A Cys4 zinc finger to a nonfunctional His2, Cys2 zinc finger by a single point mutation," PNAS, 88:9989-9993 (1991). 174 WHYATT et al., "The two zinc finger-like domains of GATA-1 have different DNA binding specificities," 175 EMBO J., 12(13):4993-5005 (1993). WILSON et al., "In Vivo Mutational analysis of the NGFI-A Zinc Fingers*," J. Biol. Chem., 267(6):3718-3724 176 WITZGALL et al., "The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression," PNAS, 91:4514-4518 (1994). 177 WRIGHT et al., "Expression of a Zinc Finger Gene in HTLV-I- and HTLV-II-transformed Cells," Science, 178 248:588-591 (1990). WU et al., "Building zinc fingers by selection: Toward a therapeutic application," PNAS, 92:344-348 (1995). 179 YANG et al., "Surface plasmon resonance based kinetic studies of zinc finger-DNA interactions," J. Immunol. 180 Methods, 183:175-182 (1995). YU et al., "A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1," 181 PNAS, 90:6340-6344 (1993).

Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231

¹ Unique citation designation number. ² See attached Kinds of U.S. Patent Documents. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.