

Geometric Progressions Ex 20.5 Q 12

a,b,c are in G.P.
a, b = ar, c = ar²

$$a(b^2+c^2) = c(a^2+b^2)$$

 $a(a^2r^2+a^2r^4) = ar^2(a^2+a^2r^2)$
 $a^3r^2(1+r^2) = a^3r^2(1+r^2)$
LHS = RHS

a,b,c are in G.P.
a, b = ar, c = ar²
LHS =
$$a^2b^2c^2\left(\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3}\right)$$

= $a^2 \times a^2r^2 \times a^2r^4\left(\frac{1}{a^3} + \frac{1}{a^3r^3} + \frac{1}{a^3r^6}\right)$
= $a^6r^6\left(\frac{r^6+r^3+1}{a^3r^6}\right)$
= $a^3\left(r^6+r^3+1\right)$
= $a^3+a^3r^3+a^3r^6$
= $a^3+(ar)^3+\left(ar^2\right)^3$
= $a^3+b^3+c^3$
= RHS
LHS = RHS

a,b,c are in G.P.
a, b = ar, c = ar²

$$= \frac{(a+b+c)^2}{a^2+b^2+c^2}$$

$$= \frac{(a+ar+ar^2)^2}{a^2+a^2r^2+a^2r^4}$$

$$= \frac{a^2\left(1+r+r^2\right)^2}{a^2\left(1+r^2+r^4\right)}$$

$$= \frac{a^2\left(1+r+r^2\right)^2}{a^2\left[\left(1+2r^2+r^4\right)-r^2\right]}$$

$$= \frac{a^2\left(1+r+r^2\right)^2}{a^2\left[\left(1+r^2-r\right)\left(1+r^2+r\right)\right]}$$

$$= \frac{a(1+r+r^2)}{a(1+r^2-r)}$$

$$= \frac{a+ar+ar^2}{a+ar^2-ar}$$

$$= \frac{a+b+c}{a-b+c}$$
= RHS
LHS = RHS

a,b,c are in G.P.
a, b = ar, c = ar²
LHS =
$$\frac{1}{a^2 - b^2} + \frac{1}{b^2}$$

= $\frac{1}{a^2 - a^2r^2} + \frac{1}{a^2r^2}$
= $\frac{1}{a^2} \left[\frac{1}{1 - r^2} + \frac{1}{r^2} \right]$
= $\frac{1}{a^2} \left[\frac{1}{r^2 - r^4} \right]$
= $\frac{1}{(ar)^2 - (ar^2)^2}$
= $\frac{1}{b^2 - c^2}$
= RHS
LHS = RHS

a, b, c are in G.P.
a, b = ar, c = ar²
LHS =
$$(a + 2b + 2c)(a - 2b + 2c)$$

= $(a + 2ar + 2ar^{2})(a - 2ar + 2ar^{2})$
= $a^{2}(1 + 2r + 2r^{2})(1 - 2r + 2r^{2})$
= $a^{2}[(1 + 2r^{2})^{2} - (2r)^{2}]$
= $a^{2}[1 + 4r^{4} + 4r^{2} - 4r^{2}]$
= $a^{2}[1 + 4r^{4}]$
= $a^{2} + 4(ar^{2})^{2}$
= $a^{2} + 4c^{2}$
= RHS
LHS = RHS

******* END *******