Basic linear algebra recap. Convergence rates. Line Search

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

∌ റ ⊘

• Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$

- Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

$$A = U\Sigma V^T$$

Lecture reminder

- Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

$$A = U\Sigma V^T$$

 $\bullet \ \operatorname{tr}(ABCD) = \operatorname{tr}(DABC) = \operatorname{tr}(CDAB) = \operatorname{tr}(BCDA) \ \text{for any matrices ABCD if the multiplication defined}.$

Lecture reminder

- Naive matmul $\mathcal{O}(n^3)$, naive matvec $\mathcal{O}(n^2)$
- All matrices have SVD

$$A = U\Sigma V^T$$

- tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) for any matrices ABCD if the multiplication defined.
- $\langle \hat{A}, B \rangle = \operatorname{tr}(A^T \hat{B})$

 $f \to \min_{x,y,z}$

എ റ ഉ

Convergence rate

Figure 1: Illustration of different convergence rates

• Linear (geometricm, exponential) convergence:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

⊕ ი ⊘

Convergence rate

Figure 1: Illustration of different convergence rates

• Linear (geometricm, exponential) convergence:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

 Any convergent sequence, that is slower (faster) than any linearly convergent sequence has sublinear (superlinear) convergence

Lecture reminder

⊕ ດ **ø**

Let $\{r_k\}_{k=m}^\infty$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

• If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q=1, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.

♥ ი ⊘

Let $\{r_k\}_{k=m}^\infty$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- If $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q=1, then $\{r_k\}_{k=m}^{\infty}$ has sublinear convergence.
- The case q > 1 is impossible.

എ റ ഉ

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

• If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.

Lecture reminder

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- exceeding q. If $\lim_{k\to\infty}\inf_k\frac{r_{k+1}}{r_k}=1$, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.

େ ଚେ 🗢

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q = \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k} < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with a constant not exceeding q.
- If $\lim_{k\to\infty}\inf_k\frac{r_{k+1}}{r_k}=1$, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.
- The case $\lim_{k\to\infty}\inf_k\frac{r_{k+1}}{r_k}>1$ is impossible.

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- If there exists q and $0 \le q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- In particular, if q=0, then $\{r_k\}_{k=m}^{\infty}$ has superlinear convergence.
- If q does not exist, but $q=\lim_{k\to\infty}\sup_k\frac{r_{k+1}}{r_k}<1$, then $\{r_k\}_{k=m}^\infty$ has linear convergence with a constant not exceeding q.
- If $\lim_{k\to\infty}\inf_k\frac{r_{k+1}}{r_k}=1$, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.
- The case $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} > 1$ is impossible.
- In all other cases (i.e., when $\lim_{k\to\infty}\inf_k\frac{r_{k+1}}{r_k}<1\leq\lim_{k\to\infty}\sup_k\frac{r_{k+1}}{r_k}$) we cannot claim anything concrete about the convergence rate $\{r_k\}_{k=m}^\infty$.

Line search

Typical line search problem is finding the good value α of the stepsize:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

Lecture reminder

• Solution localization methods:

Lecture reminder

- Solution localization methods:
 - Dichotomy search method

♥ ೧ ♥

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:

Lecture reminder

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease

എ റ ഉ

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:

Lecture reminder

- Sufficient decrease
- Goldstein conditions

⊕ ೧ ⊘

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions

େ ମେ 🕈

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions
 - The idea behind backtracking line search

 $f \to \min$

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3\times 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

1. $A_1A_2A_3x$ (from left to right)

Check the simple **\$\rightarrow\$**code snippet after all.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3\times 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)

Check the simple **code** snippet after all.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter

Check the simple **code** snippet after all.

Problems

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3\times 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter

Problems

4. The results of the first two options will not be the same.

Check the simple **code** snippet after all.

Problem 2. Connection between Frobenius norm and singular values.

Let $A \in \mathbb{R}^{m \times n}$, and let $q := \min\{m, n\}$. Show that

$$||A||_F^2 = \sum_{i=1}^q \sigma_i^2(A),$$

where $\sigma_1(A) \ge \ldots \ge \sigma_q(A) \ge 0$ are the singular values of matrix A. Hint: use the connection between Frobenius norm and scalar product and SVD.

Problem 3. Known your inner product.

Simplify the following expression:

$$\sum_{i=1}^{n} \langle S^{-1} a_i, a_i \rangle,$$

where $S = \sum_{i=1}^n a_i a_i^T, a_i \in \mathbb{R}^n, \det(S) \neq 0$

•
$$r_k = \frac{1}{3^k}$$

- $r_k = \frac{1}{3^k}$ $r_k = \frac{4}{3^k}$

- $r_k = \frac{1}{3^k}$ $r_k = \frac{4}{3^k}$ $r_k = \frac{1}{k^{10}}$

- $r_k = \frac{1}{3^k}$ $r_k = \frac{4}{3^k}$ $r_k = \frac{1}{k^{10}}$ $r_k = 0.707^k$

- $r_k = \frac{1}{3^k}$ $r_k = \frac{4}{3^k}$
- $r_k = \frac{5}{k^{10}}$
- $r_k = 0.707^k$ $r_k = 0.707^{2^k}$

Problem 5. One test is simpler, than another.

$$r_k = \frac{1}{k^k}$$

Problem 6. Quadratic convergence.

Show, that the following sequence does not have a quadratic convergence.

$$r_k = \frac{1}{3^{k^2}}$$