# Introduction to Bayesian Inference for Statistical Model Fitting

#### Luigi Acerbi

Department of Computer Science University of Helsinki Finnish Center for Artificial Intelligence FCAI







BAMB! Summer School – Day 2 September 2022

- Introduction and motivation
  - Bayes rule
  - Bayesian inference for model fitting
- Computing the posterior distribution
  - Computing the posterior "by hand"
  - Inference algorithms
  - The prior
- Making use of a Bayesian posterior
  - Visualizing the posterior
  - Posterior prediction

- Introduction and motivation
  - Bayes rule
  - Bayesian inference for model fitting
- 2 Computing the posterior distribution
  - Computing the posterior "by hand"
  - Inference algorithms
  - The prior
- Making use of a Bayesian posterior
  - Visualizing the posterior
  - Posterior prediction



$$p(oldsymbol{ heta}|\mathsf{data}) = rac{p(\mathsf{data}|oldsymbol{ heta})p(oldsymbol{ heta})}{p(\mathsf{data})}$$



$$\underbrace{p(\theta|\mathsf{data})}_{p(\mathsf{data})} = \underbrace{\frac{p(\mathsf{data}|\theta)}_{p(\mathsf{data})} \underbrace{p(\theta)}_{evidence}}_{p(\mathsf{data})}$$



$$\overbrace{p(\theta|\mathsf{data})}^{\mathsf{posterior}} = \underbrace{\overbrace{\frac{p(\mathsf{data}|\theta)}{p(\mathsf{data})}}^{\mathsf{likelihood}} \overbrace{p(\mathsf{data})}^{\mathsf{prior}}}_{\mathsf{evidence}}$$

$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta})p(oldsymbol{ heta})doldsymbol{ heta}$$





Really, just basic rules of probability:



Really, just basic rules of probability:



Really, just basic rules of probability:

 $p(\theta, \mathsf{data}) = p(\mathsf{data}|\theta)p(\theta)$ 



Really, just basic rules of probability:



Really, just basic rules of probability:

## What's new in Bayesian inference for model fitting?

The output of Bayesian inference is a probability distribution (posterior) over model parameters:

$$p(\theta|\mathsf{data})$$

Before, we only had a single best point estimate  $\theta_{\star}$ .

# What's new in Bayesian inference for model fitting?

The output of Bayesian inference is a probability distribution (posterior) over model parameters:

$$p(\theta|\mathsf{data})$$

Before, we only had a single best point estimate  $\theta_{\star}$ .

#### Questions:

- How do we compute  $p(\theta|\text{data})$ ?
- ② What do we do once we have  $p(\theta|\text{data})$ ?
- Why should we bother?

$$\underbrace{p(\theta|\mathsf{data})}_{\mathsf{posterior}} = \underbrace{\frac{p(\mathsf{data}|\theta)}{p(\mathsf{data})}}_{\mathsf{evidence}} \underbrace{p(\mathsf{data})}_{\mathsf{posterior}} p(\mathsf{data}) = \int p(\mathsf{data}|\theta)p(\theta)d\theta$$

$$\frac{p(\theta|\text{data})}{p(\theta|\text{data})} = \underbrace{\frac{p(\text{data}|\theta)}{p(\theta)}}_{\text{evidence}} \frac{p(\text{data})}{p(\theta)} \qquad p(\text{data}) = \int p(\text{data}|\theta)p(\theta)d\theta$$

- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability

$$\underbrace{p(\theta|\mathsf{data})}_{\mathsf{posterior}} = \underbrace{\frac{p(\mathsf{data}|\theta)}{p(\mathsf{data})}}_{\mathsf{evidence}} \underbrace{\frac{p(\mathsf{data})}{p(\theta)}}_{\mathsf{posterior}}$$

$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta})p(oldsymbol{ heta})doldsymbol{ heta}$$

- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability

- Hyperparameter tuning
- Model selection

$$\underbrace{p(\theta|\mathsf{data})}_{\mathsf{posterior}} = \underbrace{\frac{p(\mathsf{data}|\theta)}{p(\mathsf{data})}}_{\mathsf{evidence}} \underbrace{\frac{p(\mathsf{data})}{p(\mathsf{data})}}_{\mathsf{evidence}}$$

$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta}) p(oldsymbol{ heta}) doldsymbol{ heta}$$

- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability
- Better predictions

- Hyperparameter tuning
- Model selection

- Introduction and motivation
  - Bayes rule
  - Bayesian inference for model fitting
- Computing the posterior distribution
  - Computing the posterior "by hand"
  - Inference algorithms
  - The prior
- Making use of a Bayesian posterior
  - Visualizing the posterior
  - Posterior prediction

#### Data and model

- Same data from before (IBL mouse behavioral data)
- Same model as before (psychometric function model)
  - Parameters  $\theta = (\mu, \sigma, \lambda, \gamma)$



#### Let's just apply Bayes rule!

- ullet We consider a 1-D posterior (one free parameter,  $\sigma$ )
- We fix  $\mu, \lambda, \gamma$  to some values  $\mu_{\star}, \lambda_{\star}, \gamma_{\star}$
- We assume a uniform prior  $p(\sigma)$  for  $\sigma \in [1, 100]$
- We compute

$$p(\sigma|\mu_{\star}, \lambda_{\star}, \gamma_{\star}, \mathsf{data}) = \frac{p(\mathsf{data}|\mu_{\star}, \sigma, \lambda_{\star}, \gamma_{\star})p(\sigma)}{Z}$$

• The normalization is  $Z=\int p({\sf data}|\mu_\star,\sigma,\lambda_\star,\gamma_\star)p(\sigma)d\sigma$ 

Let's do this!

## Bayesian inference solved?

- ullet Not really a grid only works in low dimension  $(D\sim 1-4)$
- ullet Curse of dimensionality: N points per dimension  $\Rightarrow N^D$  points
- We need inference algorithms!

#### Inference algorithms

- A general-purpose inference algorithm
  - ▶ takes as input an inference problem (likelihood, prior,...)
  - returns an approximate posterior
- Abstractly, similar to optimization...
  - take as input an optimization problem (target function)
  - return the optimum
- ...in practice, way more complex algorithms
  - Inference is harder

# Main families of inference algorithms

- Markov Chain Monte Carlo (MCMC)
- Variational inference

(there are others)

# Markov Chain Monte Carlo (MCMC)

- ullet Generates a random sequence  $oldsymbol{ heta}_0, oldsymbol{ heta}_1, \dots$  (a Markov chain)
- ullet Various rules for drawing  $heta_{n+1}| heta_n$  depending on the algorithm
  - ▶ These will generally depend on  $p(\theta_n, \text{data})$ ,  $p(\theta_{n+1}, \text{data})$
- **Output:** A set of samples  $\theta_0, \dots, \theta_N$
- If all goes well,  $\theta_0, \dots, \theta_N \sim p(\theta|\mathsf{data})$ 
  - ▶ In practice, lot of tweaking to ensure convergence of the Markov chain
  - ► State-of-the-art MCMC methods are (to a degree) self-tuning
  - Still a lot of tweaking involved

#### Example MCMC algorithm: Metropolis-Hastings



Source: Jin et al. (2019)

ullet Approximate  $p(oldsymbol{ heta}|\mathsf{data})$  with  $q_\phi(oldsymbol{ heta})$ 

- ullet Approximate  $p( heta| ext{data})$  with  $q_{\phi}( heta)$
- ullet Minimize Kullback-Leibler divergence between q and p

- ullet Approximate  $p( heta|\mathsf{data})$  with  $q_{\phi}( heta)$
- Minimize Kullback-Leibler divergence between q and p

#### **Obtains**

- ullet An approximate posterior  $q_\phi( heta)$
- ullet A lower bound to the log marginal likelihood, ELBO $(\phi)$

- ullet Approximate  $p( heta|\mathsf{data})$  with  $q_{\phi}( heta)$
- ullet Minimize Kullback-Leibler divergence between q and p

#### **Obtains**

- ullet An approximate posterior  $q_\phi( heta)$
- ullet A lower bound to the log marginal likelihood, ELBO $(\phi)$

 ${\sf VI}$  casts Bayesian inference into optimization + integration













Acerbi, NeurIPS (2018; 2020)



Acerbi, NeurIPS (2018; 2020)

#### Pick your prior

- ullet In Bayesian inference you need a prior over parameters, p( heta)
- Common choice: independent priors  $p(\theta) = \prod_{d=1}^{D} p(\theta_d)$ 
  - Choose the prior  $p(\theta_d)$  for each parameter
  - ▶ Independent prior does not mean that the posterior is independent!
- Remember that the prior is a probability distribution  $\int p(\theta)d\theta=1$
- Okay, but how do I pick a prior for each parameter?

#### Example priors: uniform box

- Bounded parameter
- Uniform in the full range
- Pros: Easy to define and to justify
- Cons: Non-informative

#### Example priors: tent

- Bounded parameter
- Uniform in a range, then falls off
- Uses the hard/plausible bounds defined previously
- Pros: Still easy to define, "weakly" informative
- Cons: Need some thought to define the plausible range

#### Example priors: smoothed tent

- Bounded parameter
- Just like tent prior but with smooth edges
- Pros: Better numerical properties than tent prior
- Cons: More complex to implement (can use provided functions)



. . .

#### **Predictions**

. . .

#### Final slide

- Contact me at luigi.acerbi@helsinki.fi
- Optimization demos: github.com/lacerbi/optimviz

#### MATLAB toolboxes:

BADS available at github.com/lacerbi/bads

#### Final slide

- Contact me at luigi.acerbi@helsinki.fi
- Optimization demos: github.com/lacerbi/optimviz

#### MATLAB toolboxes:

• BADS available at github.com/lacerbi/bads

#### Thanks!

(Time for questions?)