Astronomía General - Curso 2021 Práctica N° 6

MOVIMIENTO ANUAL APARENTE DEL SOL - SALIDA Y PUESTA DE UN ASTRO

- 1. a) Indicar cuáles son los valores máximo y mínimo entre los que varía la declinación del Sol durante el año y a qué fechas corresponden.
 - b) Representar en la esfera celeste el arco diurno del Sol en esas fechas, para un observador en el hemisferio sur y otro en el hemisferio norte.
 - c) Comparar los arcos diurnos de la misma fecha para cada hemisferio. Comentar.
- 2. Determinar el valor que toma el acimut en la salida y puesta del Sol, así como el valor máximo que alcanza su altura durante el día, para un observador en La Plata ($\phi = -34^{\circ}$ 54') en las siguientes fechas:
 - a) 1 de febrero
 - b) 20 de marzo
 - c) 21 de junio
 - d) 8 de agosto

Obtener los datos de la declinación del Sol para cada fecha de las efemérides¹.

- En cada caso, hacer un diagrama de la esfera celeste, indicando el arco diurno del Sol y el triángulo de posición que se resuelve para calcular A de salida y puesta.
- Comentar cómo cambia el punto de salida y puesta del Sol y su altura máxima para las distintas fechas.
- 3. Calcular la duración del día más largo y el día más corto para un observador en:
 - a) La Quiaca, $\phi = -22^{\circ} 06'$
 - b) Base Marambio, $\phi = -64^{\circ} 14'$
- 4. Calcular el ángulo horario y el acimut de salida y puesta de una estrella cuya declinación es $\delta = -33^{\circ}$, para un observador ubicado en una latitud norte $\phi = 28^{\circ}$. Calcular además la altura máxima que alcanzará la estrella. Seguir los pasos que se detallan a continuación:
 - a) Dibujar la esfera celeste correspondiente al observador.
 - b) Indicar el arco diurno del astro.
 - c) Marcar las coordenadas horizontales y ecuatoriales locales del astro en su punto de puesta. Marcar el triángulo esférico de posición que permite obtener A y t de salida y puesta.
 - d) Aplicando el Teorema del coseno al triángulo anterior, deducir las expresiones que permiten calcular A y t de salida y puesta para el astro dado.
 - e) Calcular los valores de A y t de salida y puesta.
 - f) Marcar en la esfera celeste, la altura máxima que alcanza el astro y calcularla.
- 5. En cierto lugar se determinó que el día 27 de mayo, la altura del Sol será de 65°, en el momento en que se halle cruzando el meridiano superior del lugar. Calcular a qué latitud se halla ese sitio, utilizando en los cálculos la coordenada declinación δ del Sol que aparece en las efemérides¹.

¹En el Suplemento al almanaque naútico y aeronáutico se publican cada año, las efemérides del Sol, la Luna, los planetas y las estrellas mas brillantes. Allí se pueden encontrar las coordenadas del Sol requeridas para esta práctica, para cada día del año. Este Suplemento está disponible como material de la clase.

Respuestas:

2.

Fecha	A_{puesta}	A_{salida}	h_{max}
01 de febrero	68°43'39"	291°16'21"	72°24'39"
20 de marzo	89°55'22"	270°04'38"	55°09'48"
21 de junio	119°00'33"	240°59'27"	31°39'49"
8 de agosto	109°43'07"	250°16'53"	39°02'07"

- 3. Recordar que la duración del día es = 2 t $_{\odot~puesta}$

Duración del día más corto = 10h 38m 50.46s

b)

Duración del día más largo = 20h 31m 50.39s

Duración del día más corto = 3h 28m 9.61s

4

 $\mathbf{A}_{puesta}{=}51^{\circ}54'51"$

 $\overset{\cdot}{A_{salida}} = 308^{\circ}05'09"$

 t_{puesta} =04h 39m 12s

 $t_{salida}{=}19h~20m~48s$

 $h_{max} = 29^{\circ}$

5

 $\phi = 46^{\circ} \ 20' \ 11" \ y \ \phi = -3^{\circ} \ 39'49"$