Lecture 005

Shrinkage methods

Edward Rubin

Admin

Admin

Material

Last time

- Linear regression
- Model selection
 - Best subset selection
 - Stepwise selection (forward/backward)

Today

- tidymodels
- Shrinkage methods

Admin

Upcoming

Readings

- Today ISL Ch. 6
- Next ISL 4

Problem sets Soon!

Intro

Recap: Subset-selection methods (last time)

- 1. algorithmically search for the "best" subset of our p predictors
- 2. estimate the linear models via least squares

Intro

Recap: Subset-selection methods (last time)

- 1. algorithmically search for the "best" subset of our p predictors
- 2. estimate the linear models via least squares

These methods assume we need to choose a model before we fit it...

Intro

Recap: Subset-selection methods (last time)

- 1. algorithmically search for the "best" subset of our p predictors
- 2. estimate the linear models via least squares

These methods assume we need to choose a model before we fit it...

Alternative approach: Shrinkage methods

- fit a model that contains all p predictors
- simultaneously: shrink[†] coefficients toward zero

Intro

Recap: Subset-selection methods (last time)

- 1. algorithmically search for the "best" subset of our p predictors
- 2. estimate the linear models via least squares

These methods assume we need to choose a model before we fit it...

Alternative approach: Shrinkage methods

- fit a model that contains all p predictors
- simultaneously: shrink[†] coefficients toward zero

Idea: Penalize the model for coefficients as they move away from zero.

† Synonyms for *shrink*: constrain or regularize

Why?

Q How could shrinking coefficients toward zero help our predictions?

Why?

- Q How could shrinking coefficients toward zero help our predictions?
- A Remember we're generally facing a tradeoff between bias and variance.

Why?

- Q How could shrinking coefficients toward zero help our predictions?
- A Remember we're generally facing a tradeoff between bias and variance.
 - Shrinking our coefficients toward zero reduces the model's variance.
 - Penalizing our model for larger coefficients shrinks them toward zero.
 - The optimal penalty will balance reduced variance with increased bias.

[†] Imagine the extreme case: a model whose coefficients are all zeros has no variance.

Why?

- Q How could shrinking coefficients toward zero help our predictions?
- A Remember we're generally facing a tradeoff between bias and variance.
 - Shrinking our coefficients toward zero reduces the model's variance.
 - Penalizing our model for larger coefficients shrinks them toward zero.
 - The optimal penalty will balance reduced variance with increased bias.

Now you understand shrinkage methods.

- Ridge regression
- Lasso
- Elasticnet

† Imagine the extreme case: a model whose coefficients are all zeros has no variance.

Back to least squares (again)

Recall Least-squares regression gets $\hat{\beta}_{j}$'s by minimizing RSS, i.e.,

$$\min_{\hat{eta}} ext{RSS} = \min_{\hat{eta}} \sum_{i=1}^n e_i^2 = \min_{\hat{eta}} \sum_{i=1}^n \left(oldsymbol{y_i} - \left[\hat{eta}_0 + \hat{eta}_1 x_{i,1} + \dots + \hat{eta}_p x_{i,p}
ight]
ight)^2 = \hat{y}_i$$

Back to least squares (again)

Recall Least-squares regression gets $\hat{\beta}_{j}$'s by minimizing RSS, i.e.,

$$\min_{\hat{eta}} ext{RSS} = \min_{\hat{eta}} \sum_{i=1}^n e_i^2 = \min_{\hat{eta}} \sum_{i=1}^n \left(oldsymbol{y_i} - \left[\hat{eta}_0 + \hat{eta}_1 x_{i,1} + \cdots + \hat{eta}_p x_{i,p}
ight]
ight)^2 = \hat{y}_i$$

Ridge regression makes a small change

- adds a shrinkage penalty = the sum of squared coefficients $\left(\lambda \sum_{j} \beta_{j}^{2}\right)$
- minimizes the (weighted) sum of RSS and the shrinkage penalty

Back to least squares (again)

Recall Least-squares regression gets $\hat{\beta}_{j}$'s by minimizing RSS, i.e.,

$$\min_{\hat{eta}} ext{RSS} = \min_{\hat{eta}} \sum_{i=1}^n e_i^2 = \min_{\hat{eta}} \sum_{i=1}^n \left(oldsymbol{y_i} - \left[\hat{eta}_0 + \hat{eta}_1 x_{i,1} + \dots + \hat{eta}_p x_{i,p}
ight]
ight)^2 = \hat{y}_i$$

Ridge regression makes a small change

- adds a shrinkage penalty = the sum of squared coefficients $\left(\lambda \sum_{j} \beta_{j}^{2}\right)$
- minimizes the (weighted) sum of RSS and the shrinkage penalty

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Ridge regression

Least squares

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y}_i - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

$$\min_{\hat{eta}} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2$$

- λ (≥ 0) is a tuning parameter for the harshness of the penalty.
- $\lambda = 0$ implies no penalty: we are back to least squares.

Ridge regression

Least squares

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

$$\min_{\hat{eta}} \sum_{i=1}^n \left(\mathbf{y}_i - \hat{\mathbf{y}}_i \right)^2$$

 λ (≥ 0) is a tuning parameter for the harshness of the penalty.

 $\lambda = 0$ implies no penalty: we are back to least squares.

Each value of λ produces a new set of coefficients.

Ridge regression

Least squares

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

$$\min_{\hat{eta}} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2$$

 λ (≥ 0) is a tuning parameter for the harshness of the penalty.

 $\lambda = 0$ implies no penalty: we are back to least squares.

Each value of λ produces a new set of coefficients.

Ridge's approach to the bias-variance tradeoff: Balance

- reducing **RSS**, i.e., $\sum_i (y_i \hat{y}_i)^2$
- reducing coefficients (ignoring the intercept)

→ determines how much ridge "cares about" these two quantities.

†

 \dagger With $\lambda=0$, least-squares regression only "cares about" RSS.

λ and penalization

Choosing a *good* value for λ is key.

- If λ is too small, then our model is essentially back to OLS.
- If λ is too large, then we shrink all of our coefficients too close to zero.

λ and penalization

Choosing a *good* value for λ is key.

- If λ is too small, then our model is essentially back to OLS.
- If λ is too large, then we shrink all of our coefficients too close to zero.

Q So what do we do?

λ and penalization

Choosing a *good* value for λ is key.

- If λ is too small, then our model is essentially back to OLS.
- If λ is too large, then we shrink all of our coefficients too close to zero.

Q So what do we do?

A Cross validate!

(You saw that coming, right?)

Penalization

Note Because we sum the **squared** coefficients, we penalize increasing big coefficients much more than increasing small coefficients.

Example For a value of β , we pay a penalty of $2\lambda\beta$ for a small increase.

- At $\beta = 0$, the penalty for a small increase is 0.
- At $\beta = 1$, the penalty for a small increase is 2λ .
- At $\beta=2$, the penalty for a small increase is 4λ .
- At $\beta=3$, the penalty for a small increase is 6λ .
- At $\beta=10$, the penalty for a small increase is 20λ .

Now you see why we call it *shrinkage*: it encourages small coefficients.

[†] This quantity comes from taking the derivative of $\lambda \beta^2$ with respect to β .

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why?

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Example Let x_1 denote distance.

Least-squares regression

If x_1 is meters and $\beta_1=3$, then when x_1 is km, $\beta_1=3,000$.

The scale/units of predictors do not affect least squares' estimates.

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Example Let x_1 denote distance.

Least-squares regression

If x_1 is meters and $\beta_1 = 3$, then when x_1 is km, $\beta_1 = 3,000$. The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for $\beta_1=3,000$ than $\beta_1=3$. You will not get the same (scaled) estimates when you change units.

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Example Let x_1 denote distance.

Least-squares regression

If x_1 is meters and $\beta_1 = 3$, then when x_1 is km, $\beta_1 = 3,000$. The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for $\beta_1=3,000$ than $\beta_1=3$. You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., $x_{stnd} = (x - mean(x))/sd(x)$.

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Example Let x_1 denote distance.

Least-squares regression

If x_1 is meters and $\beta_1=3$, then when x_1 is km, $\beta_1=3,000$. The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for $\beta_1=3,000$ than $\beta_1=3$. You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., recipes::step_normalize().

Example

Let's return to the credit dataset—and pre-processing with tidymodels.

Recall We have 11 predictors and a numeric outcome balance.

We can standardize our **predictors** using step_normalize() from recipes:

```
# Load the credit dataset
credit_df = ISLR::Credit %>% clean_names()
# Processing recipe: Define ID, standardize, create dummies, rename (lowercase)
credit_recipe = credit_df %>% recipe(balance ~ .) %>%
    update_role(id, new_role = "id variable") %>%
    step_normalize(all_predictors() & all_numeric()) %>%
    step_dummy(all_predictors() & all_nominal()) %>%
    step_rename_at(everything(), fn = str_to_lower)
# Time to juice
credit_clean = credit_recipe %>% prep() %>% juice()
```

Example

For ridge regression[†] in R, we will use glmnet() from the glmnet package.

The **key arguments** for glmnet() are

- x a **matrix** of predictors
- y outcome variable as a vector
- standardize (T Or F)
- alpha elasticnet parameter
 - o alpha=0 gives ridge
 - alpha=1 gives lasso

- lambda tuning parameter (sequence of numbers)
- nlambda alternatively, R picks a sequence of values for λ

Example

We just need to define a decreasing sequence for λ , and then we're set.

```
# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit ridge regression
est_ridge = glmnet(
    x = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix(),
    y = credit_clean$balance,
    standardize = F,
    alpha = 0,
    lambda = lambdas
)
```

The glmnet output (est_ridge here) contains estimated coefficients for λ . You can use predict() to get coefficients for additional values of λ .

Ridge regression coefficents for λ between 0.01 and 100,000

Example

glmnet also provides convenient cross-validation function: cv.glmnet().

```
# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
ridge_cv = cv.glmnet(
    x = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix(),
    y = credit_clean$balance,
    alpha = 0,
    standardize = F,
    lambda = lambdas,
    # New: How we make decisions and number of folds
    type.measure = "mse",
    nfolds = 5
)
```

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

In tidymodels

tidymodels can also cross validate (and fit) ridge regression.

- Back to our the linear_reg() model 'specification'.
- The penalty λ (what we want to tune) is penalty instead of lambda.
- Set mixture = 0 inside linear_reg() (same as alpha = 0, above).
- Use the glmnet engine.

```
# Define the model
model_ridge = linear_reg(penalty = tune(), mixture = 0) %>% set_engine("glmnet")
```

Example of ridge regression with tidymodels

```
# Our range of lambdas
lambdas = 10^{seq}(from = 5, to = -2, length = 1e3)
# Define the 5-fold split
set.seed(12345)
credit cv = credit df %>% vfold cv(v = 5)
# Define the model
model ridge = linear reg(penalty = tune(), mixture = 0) %>% set engine("glmnet")
# Define our ridge workflow
workflow ridge = workflow() %>%
  add model(model ridge) %>% add recipe(credit recipe)
# CV with our range of lambdas
cv ridge =
 workflow ridge %>%
 tune grid(
    credit cv,
    grid = data.frame(penalty = lambdas),
    metrics = metric set(rmse)
# Show the best models
cv ridge %>% show best()
```

With tidymodels...

Next steps: Finalize your workflow and fit your last model.

Recall: finalize_workflow(), last_fit(), and collect_predictions()

Prediction in R

Otherwise: Once you find your λ via cross validation,

1. Fit your model on the full dataset using the optimal λ

```
# Fit final model
final_ridge = glmnet(
    x = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix(),
    y = credit_clean$balance,
    standardize = T,
    alpha = 0,
    lambda = ridge_cv$lambda.min
)
```

Prediction in R

Once you find your λ via cross validation

- 1. Fit your model on the full dataset using the optimal λ
- 2. Make predictions

```
predict(
  final_ridge,
  type = "response",
  # Our chosen lambda
  s = ridge_cv$lambda.min,
  # Our data
  newx = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix()
)
```

Shrinking

While ridge regression *shrinks* coefficients close to zero, it never forces them to be equal to zero.

Drawbacks

- 1. We cannot use ridge regression for subset/feature selection.
- 2. We often end up with a bunch of tiny coefficients.

Shrinking

While ridge regression *shrinks* coefficients close to zero, it never forces them to be equal to zero.

Drawbacks

- 1. We cannot use ridge regression for subset/feature selection.
- 2. We often end up with a bunch of tiny coefficients.
- Q Can't we just drive the coefficients to zero?

Shrinking

While ridge regression *shrinks* coefficients close to zero, it never forces them to be equal to zero.

Drawbacks

- 1. We cannot use ridge regression for subset/feature selection.
- 2. We often end up with a bunch of tiny coefficients.
- Q Can't we just drive the coefficients to zero?
- **A** Yes. Just not with ridge (due to $\sum_{j} \hat{\beta}_{j}^{2}$).

Intro

Lasso simply replaces ridge's squared coefficients with absolute values.

Intro

Lasso simply replaces ridge's squared coefficients with absolute values.

Ridge regression

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Lasso

$$\min_{\hat{eta}^L} \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2 + \lambda \sum_{j=1}^p \left| eta_j
ight|$$

Everything else will be the same—except one aspect...

Shrinkage

Unlike ridge, lasso's penalty does not increase with the size of β_i .

You always pay λ to increase $|\beta_j|$ by one unit.

Shrinkage

Unlike ridge, lasso's penalty does not increase with the size of β_i .

You always pay λ to increase $|\beta_i|$ by one unit.

The only way to avoid lasso's penalty is to **set coefficents to zero**.

Shrinkage

Unlike ridge, lasso's penalty does not increase with the size of β_i .

You always pay λ to increase $|\beta_i|$ by one unit.

The only way to avoid lasso's penalty is to set coefficents to zero.

This feature has two **benefits**

- 1. Some coefficients will be **set to zero**—we get "sparse" models.
- 2. Lasso can be used for subset/feature **selection**.

Shrinkage

Unlike ridge, lasso's penalty does not increase with the size of β_i .

You always pay λ to increase $|\beta_i|$ by one unit.

The only way to avoid lasso's penalty is to set coefficents to zero.

This feature has two **benefits**

- 1. Some coefficients will be **set to zero**—we get "sparse" models.
- 2. Lasso can be used for subset/feature **selection**.

We will still need to carefully select λ .

Example

We can also use glmnet() for lasso.

Recall The **key arguments** for glmnet() are

- x a **matrix** of predictors
- y outcome variable as a vector
- standardize (T or F)
- alpha elasticnet parameter
 - o alpha=0 gives ridge
 - alpha=1 gives lasso

- lambda tuning parameter (sequence of numbers)
- nlambda alternatively, R picks a sequence of values for λ

Example

Again, we define a decreasing sequence for λ , and we're set.

```
# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit lasso regression
est_lasso = glmnet(
    x = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix(),
    y = credit_clean$balance,
    standardize = F,
    alpha = 1,
    lambda = lambdas
)
```

The glmnet output (est_lasso here) contains estimated coefficients for λ . You can use predict() to get coefficients for additional values of λ .

Lasso coefficents for λ between 0.01 and 100,000

Compare lasso's tendency to force coefficients to zero with our previous ridge-regression results.

Ridge regression coefficents for λ between 0.01 and 100,000

Example

We can also cross validate λ with cv.glmnet().

```
# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
lasso_cv = cv.glmnet(
    x = credit_clean %>% dplyr::select(-balance, -id) %>% as.matrix(),
    y = credit_clean$balance,
    alpha = 1,
    standardize = F,
    lambda = lambdas,
    # New: How we make decisions and number of folds
    type.measure = "mse",
    nfolds = 5
)
```

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Ridge or lasso?

Ridge regression

- + shrinks $\hat{\beta}_j$ near 0
- many small $\hat{\beta}_j$
- doesn't work for selection
- difficult to interpret output
- + better when all $\beta_i \neq 0$

Best: p is large & $\beta_j \approx \beta_k$

Lasso

- + shrinks $\hat{\beta}_j$ to 0
- + many $\hat{\beta}_i = 0$
- + great for selection
- + sparse models easier to interpret
- implicitly assumes some $\beta = 0$

Best: p is large & many $eta_j pprox 0$

Ridge or lasso?

Ridge regression

- + shrinks $\hat{\beta}_j$ near 0
- many small $\hat{\beta}_j$
- doesn't work for selection
- difficult to interpret output
- **+** better when all $\beta_j \neq 0$

Best: p is large & $\beta_j \approx \beta_k$

Lasso

- + shrinks $\hat{\beta}_j$ to 0
- + many $\hat{\beta}_j = 0$
- + great for selection
- + sparse models easier to interpret
- implicitly assumes some $\beta = 0$

Best: p is large & many $eta_j pprox 0$

[N]either ridge... nor the lasso will universally dominate the other.

ISL, p. 224

Why not both?

Elasticnet combines ridge regression and lasso.

Why not both?

Elasticnet combines ridge regression and lasso.

$$\min_{eta^E} \sum_{i=1}^n ig(y_i - \hat{y}_i ig)^2 + (1-lpha) \lambda \sum_{j=1}^p eta_j^2 + lpha \lambda \sum_{j=1}^p ig|eta_jig|$$

We now have two tuning parameters: λ (penalty) and α (mixture).

Why not both?

Elasticnet combines ridge regression and lasso.

$$\min_{eta^E} \sum_{i=1}^n ig(y_i - \hat{y}_i ig)^2 + (1-lpha) \lambda \sum_{j=1}^p eta_j^2 + lpha \lambda \sum_{j=1}^p ig|eta_jig|$$

We now have two tuning parameters: λ (penalty) and α (mixture).

Remember the alpha argument in glmnet()?

- $\alpha = 0$ specifies ridge
- $\alpha = 1$ specifies lasso

Why not both?

We can use tune() from tidymodels to cross validate both α and λ .

Note You need to consider all combinations of the two parameters. This combination can create *a lot* of models to estimate.

For example,

- 1,000 values of λ
- 1,000 values of lpha

leaves you with 1,000,000 models to estimate.[†]

Cross validating elasticnet in tidymodels

```
# Our range of \lambda and \alpha
lambdas = 10^{seq}(from = 5, to = -2, length = 1e2)
alphas = seq(from = 0, to = 1, by = 0.1)
# Define the 5-fold split
set.seed(12345)
credit cv = credit df %>% vfold cv(v = 5)
# Define the elasticnet model
model net = linear reg(
  penalty = tune(), mixture = tune()
) %>% set engine("glmnet")
# Define our workflow
workflow_net = workflow() %>%
  add model(model net) %>% add recipe(credit recipe)
# CV elasticnet with our range of lambdas
cv net =
  workflow net %>%
  tune grid(
    credit cv,
    grid = expand grid(mixture = alphas, penalty = lambdas),
    metrics = metric set(rmse)
```

Cross validating elasticnet in tidymodels With grid_regular()

```
# Our range of \lambda and \alpha
lambdas = 10^{seq}(from = 5, to = -2, length = 1e2)
alphas = seq(from = 0, to = 1, by = 0.1)
# Define the 5-fold split
set.seed(12345)
credit cv = credit df %>% vfold cv(v = 5)
# Define the elasticnet model
model net = linear reg(
  penalty = tune(), mixture = tune()
) %>% set engine("glmnet")
# Define our workflow
workflow_net = workflow() %>%
  add model(model net) %>% add recipe(credit recipe)
# CV elasticnet with our range of lambdas
cv net =
  workflow net %>%
  tune grid(
    credit cv,
    grid = grid_regular(mixture(), penalty(), levels = 100:100),
    metrics = metric set(rmse)
```

In case you are curious: The best model had $\lambda \approx$ 0.628 and $\alpha \approx$ 0.737. CV estimates elasticnet actually reduced RMSE from ridge's 118 to 101.

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL) James, Witten, Hastie, and Tibshirani

Table of contents

Admin

- Today
- Upcoming

Shrinkage

- Introduction
- Why?

Ridge regression

- Intro
- Penalization
- Standardization
- Example
- Prediction

(The) lasso

- Intro
- Shrinkage
- Example

Ridge or lasso

- Plus/minus
- Both?

Other

• Sources/references