	Convergence of random variables
	Many types of convergence!
	in probability => [in olistichedia
	Talmox sucely)
	$\frac{P}{n \rightarrow \infty}$
def	$\lim_{n\to\infty} x_n = x$
	lim P. (Xn-X > s) = 0 for se serj' deviation"
J	in Statistics: En is consistent (=>
	$\lim_{n\to\infty} \widehat{\theta}_n = \widehat{\theta}$
	sequence value
	of estimators.
	anger Vrang definition for \$30

 $\chi_{n} \xrightarrow{\rho} \chi$ Peopertus. Resperties of our lim & ET [1.1. plim xn+yn) = plim xn+plim yn
(if both sides
(xist)) 1.2. if fis continuous then plin f(Xn) = f(plun Xn) 2 If (M) = u (Vor (M) = 0)

hen when my = n LU (law of large Numbers) If W, W, Wz wee iid then $X_n = W = \frac{W_1 + W_2 + \dots + W_n}{M}$ Som Xn = E/W.) External exam. 572134 Summer 2021 M/ Sample X, X2 ... Xn ~ 110 Voc(X1)=dE pof: $f(z) = \frac{1}{(\lambda-1)! \Theta^{\alpha}} x^{\alpha-1} \exp(-x/\Theta)$ Lis known (a) ÔMI plu ên VO (heck whether ên 15 consistent.

External exam. ST2134 Summer 2021 N/ Sample X, X2 Xn ~ 11d Voc(X1)=dE $pof: f(z) = \frac{1}{(\lambda - 1)! \Theta^{\alpha}} x^{\alpha - 1} \exp(-x/\Theta)$ Lis known (a) Ômi plu ên vo consistent. α) max? $\{(x_1, x_2, \dots, x_n)\}$ in disorek $\operatorname{mox} \left\{ (\chi_1) \cdot \left\{ (\chi_2) \cdot \ldots \cdot \left\{ (\chi_n) \right\} \right\} \right\}$ molx O $/P(\chi_{i}=x_{i})$. $\text{mox } \ln \left(\int (x_1) \cdot \int (x_2) \cdot \dots \cdot \int (x_n) \right) \qquad \left(\int (x_1 = x_1) \cdot \int (x_1 = x_2) \cdot \dots \cdot \int (x_n) \right)$ take ln!

1+1> easy to (ftg)

2 it's numerically stable e^{int} e^{i n = 2000 $f(x_1) \cdot f(x_1) \cdot \dots \cdot f(x_n) \simeq$ $\approx 0.5 \cdot 1000 =$ $f(x_i) \approx 0.5$ 6,000000 ~300 zero) lu 0,5-2000 = 2000. lu a5= $\approx (-1386.294)$

Inflicing

=
$$\ln ((\lambda - 1)! e^{-x} \cdot 2^{d-1} \cdot e^{-x} e^{-x$$

inheiten stert plus mi skun su 3 + 2)

let's use the definition. M=min(Xy.Xn) $\lim_{n \to \infty} P\left(|M_n - 2| > \Delta \right) = 0$ $X_1 \dots X_n \ge 2 =$ $M_n = \min\{X_1 \dots X_n\} \ge 2$ $= lm P(M_n-2>b) = lm P(M_n>2+a)$ $P(M_n > 2+s) = 0$ $case 2. s \in (0;3)$ 2 x x x x x x 5 P(M, > 2+B) = P(X, > 2+B, X2 > 2+B... X4 > 2+B)= $=P(X_1>2+\Delta) \cdot P(X_n>2+\Delta)=$ 5-(2+D) 5-(2+D). $P(|M_n-2|>\Delta) > \lim_{n \to \infty} O(\Delta) = 0$ $\lim_{n \to \infty} O(\Delta) = 0$ $\lim_{n \to \infty} \left(\frac{3-x}{3}\right)^n \left[\Delta \in (0;3)\right] = 0$

$$E(\ln X_{1}) = \int_{2}^{5} \ln x \cdot poly(x) dx \in \mathbb{R}$$

$$poly(x)$$

$$poly($$