GA-ANN House Price

Octiba Nima Group

Nils | Markus | Renny | Febrianti

Assignment Description

- Given a dataset with around 80 features describing characteristics of residential homes in Ames Iowa
- The task is to predict the final price of each home
- Optimize performance of predictive models by using Genetic Algorithm for features selection

Technology Used

Modules summary

Data Cleaning

- 1 dataset of residential homes in Ames Iowa with around 80 features
- Drop columns that is not useful such as, PID and Order
- Handle missing values
 - Zero / null as values : fill in as Nan / zero
 - Missing values : fill with median values
- Cleanse inconsistency of paired features

Data Cleaning

- Convert categorical to numerical features
 - Rank based on mean of SalePrice Feature
 - Rank based on common understanding
 - Without rank
- Remove outliers
- Features engineering
 - Totalsize(total squarefeet)
 - Remodeled
 - TotalBathroom
 - TotalGarage

Darwins theory of evolution, natural selection.

- preserve and accumulate advantageous mutations
- advantage is passed on to offspring
- inferior individuals gradually die off
- superior individuals survive

Survival of the fittest.

• The goal is to find the most fit individual with the best possible genes.

Pitfalls

- definition of advantageous
- preserve and accumulate vs variance
- local minimums

Initial population

- population consists of chromosomes, individuals
- chromosomes consists of genes
- · our case, boolean vector, features on or off

Pitfalls

- when initializing, how many features on?
- population size, how many individuals neccesary to acheive enough diversity?

Fitness

- goal is to predict house prices
- scikit-learns MLPRegressor
- translate chromosome into feature selections
- predict house prices in train data, calculate MSE
- get training score
- convert the MSE or training score to fitness score to be used as probabilities.
 - MSE: invert, high is better, low is worse
 - Score: scale to positive numbers, minmax

Pitfalls

- never mix test data with training!
- efficiency, enough for disseminating the individuals from eachother

Selection

- mating pool, different strategies:
 - pure roulette
 - roulette with elitism
 - exponential rank

Pitfalls

 roulette, strong individuals become dominating and vice versa with low variance and high population size difficult to preserve and accumulate advantage

Crossover

- choice of mate, different strategies:
 - random
 - sequenced coupling
 - roulette based on fitness (not implemented)
- crossover implementations
 - multipoint
 - uniform
- elitism
 - reserve a portion of the next generation for the best fit individuals in current generation
 - exempted from crossover (but in mating pool) and mutation

Pitfalls

- too much crossover can ruin advantageous chromosomes
- too little crossover can lead to slow convergence

Mutation

- mutation is implemented so that at a set rate, parts of the chromosome flip
- introduces variance in population

Pitfalls

• similar to crossover, too much can ruin, too little slow convergence

Parameter values, what to set?

- GA implementation has a lot of parameters affecting the evolution:
 - initrate
 - crossover rate
 - mutation rates
 - population size
 - number of generations
 - how much elitism
 - fitness function efficiency
 - iterations
 - hidden layers

- Parameter sweeps
 - baseline
 - systematic, easy to implement
 - requires a basic knowledge of what ranges to sweep
 - sometimes values outside of what is expected is good
 - produces a lot of data
 - difficult to make sense
 - statistics!
 - not good for finding out what parameters work together

Meta-GA

- GA is good for this kind of problems
- better chance of finding synergy effects of diff. parameters
- a new chromosome, fitness function and mutation algorithm
- population of GA's with different parameters
- very time consuming!

Artificial Neural Network

- ANN module
- The data structure
- The learning
- The activation function
- Local minimums
- Over-fitting

Artificial Neural Network

- Example 1: results of running with below parameters
 - init_Ratio = 0.5
 - cross_rate = 0.5
 - mutate_rate = 0.002
 - pop_size = 120
 - n_generations = 100
 - elitism = 0.05
 - ga_ann_iterations =100
 - ga_ann_layers = 2
 - mape_ann_iterations =1000
 - mape_ann_layers = 4
 - ga_score='score'
 - ga_evolve='elitism',
 - final_mape_idx='best')

Mape for prediction result without feature selection approach (ANN only) = 8.475532981326609 %

Plot of Prediction Vs Ytest without feature selection approach (ANN Only)

Mape for prediction result with feature selection approach (GA-ANN): 7.916424526075956 %

	MAPE	Run Time	No. of Features
Without Feature Selection	8.48%	0.734 s	81
With Feature Selection GA-ANN	7.92%	o.612 s	45
Improvement	6.6% accuracy	16.614 % run time	

60

- Example 2: results of running with below parameters
 - init_Ratio = 0.1
 - cross_rate = 0.5
 - mutate_rate = 0.002
 - pop_size = 120
 - n_generations = 100
 - elitism = 0.05
 - ga_ann_iterations =100
 - ga_ann_layers = 2
 - mape_ann_iterations =1000
 - mape_ann_layers = 4

Mape for prediction result without feature selection approach (ANN only) = 9.081127250637053 %

Mape for prediction result with feature selection approach (GA-ANN): 8.63879207408662 %

Without GA: 0.416 s

With GA: 0,343 s

Selected Features: 26

Improvement: 17.38%

	MAPE	Run Time	No. of Features
Without Feature Selection	9.08%	0.416 s	81
With Feature Selection GA-ANN	8.64%	0.343 s	26
Improvement	4.84% accuracy	17.38 % run time	

- Example 3: results of running with below parameters
 - init_Ratio = 0.9
 - cross_rate = 0.5
 - mutate_rate = 0.002
 - pop_size = 120
 - n_generations = 100
 - elitism = 0.05
 - ga_ann_iterations =100
 - ga_ann_layers = 2
 - mape_ann_iterations =1000
 - mape_ann_layers = 4

Mape for prediction result without feature selection approach (ANN only) = 9.246340278044626 %

Mape for prediction result with feature selection approach (GA-ANN): 8.305010474158319 %

Plot of Prediction Vs Ytest with feature selection approach (GA-ANN)

	MAPE	Run Time	No. of Features
Without Feature Selection	9.25%	0.41015	81
With Feature Selection GA-ANN	8.31%	0.40115	71
Improvement	10.16% accuracy	2.17% run time	

Conclusion & Lesson Learned

- It is possible to improve efficiency by feature selection, and keep a reasonable or same level of accuracy
- A lot of parameters to play around with and need time to tune the parameters for getting the best result
- The results varies dependent on initial split of data, so could be valuable to run the process many times and do some statistics