Explainable Reinforcement Learning: A Survey

XRL = XAI + DRL

XRL taxonomy

Table 1. Selected XRL methods and their categorization according to the taxonomy described in section 2.

Scope	Global	Local
Intrinsic	 PIRL (Verma et al. [63]) Fuzzy RL policies (Hein et al. [22]) 	• Hierarchical Policies (Shu et al. [54])
Post-hoc	 Genetic Programming (Hein et al. [23]) Reward Decomposition (Juozapaitis et al. [27]) Expected Consequences (van der Waa et al. [64]) Soft Decision Trees (Coppens et al. [8]) Deep Q-Networks (Zahavy et al. [66]) Autonomous Policy Explanation (Hayes and Shah [21]) Policy Distillation (Rusu et al. [51]) Linear Model U-Trees (Liu et al. [38]) 	 Interestingness Elements (Sequeira and Gervasio [53]) Autonomous Self-Explanation (Fukuchi et al. [17]) Structural Causal Model (Madumal et al. [41]) Complementary RL (Lee [33]) Expected Consequences (van der Waa et al. [64]) Soft Decision Trees (Coppens et al. [8]) Linear Model U-Trees (Liu et al. [38])
Notes Methods in hold one presented in detail in this week		

Notes. Methods in bold are presented in detail in this work.

- [63] Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically interpretable reinforcement learning. PMLR 80:5045-5054 (2018)
- [54] Shu, T., Xiong, C., Socher, R.: Hierarchical and interpretable skill acquisition in multi-task reinforcement learning (2017)
- [38] Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model u-trees. In: Machine Learning and Knowledge Discovery in Databases, pp. 414–429. Springer International Publishing (2019)
- [41] Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement learning through a causal lens (2019)

Multi-level hierarchical policy

Fig. 5. Example for the mutli-level hierarchical policy for the task to stack two blue boxes on top of each other. The top-level policy (π_3 , in red) encompasses the high-level plan 'get blue'—'find blue'—'put blue'. Each step (i.e., arrow) either initiates another policy (marked by a different color) or directly executes an action. Adopted from [54].

Linear Model U-Tree Training

Fig. 1: Experience Training Setting

Linear Model U-Tree Structure

Fig. 3: An example of Linear Model U-Tree (LMUT).

Rule extractor

Fig. 7: Examples of Rule Extraction for Mountain Car and Cart Pole.

Structural Causal Model (1)

$$U = \{X, Y\}$$

 $V = \{Z\}$
 $F = \{f_Z : Z = 2X + 3Y\}$

U: Exogenous (External) Incoming edge를 가지고 있지 않음

V: Endogenous (Internal) Incoming edge를 가지고 있음

F: Structural Equation (UuV)에서 V로 가는 관계

Structural Causal Model (2)

 $U = \{U_X, U_Y, U_Z\}$ $V = \{X, Y, Z\}$ $E = \{f_{ZZ}, f_{ZZ}, f_{ZZ}\}$

 $F = \{f_X, f_Y, f_Z\}$

 f_X : $X = u_X$

 f_Y : $Y = \frac{X}{3} + U_Y$

 f_Z : $Z = \frac{Y}{16} + U_Z$

U: Exogenous (External) Incoming edge를 가지고 있지 않음

V: Endogenous (Internal) Incoming edge를 가지고 있음

F: Structural Equation (UuV)에서 V로 가는 관계

Structural causal models (SCMs)

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

SCM Definition

A tuple of the following sets:

- 1. A set of endogenous variables
- 2. A set of exogenous variables
- 3. A set of functions, one to generate each endogenous variable as a function of the other variables

Exogenous variables

Endogenous variables

Action Influence model

Figure 1: Action influence graph of a Starcraft II agent

Example 1. Consider the question, asking why a Starcraft II agent built supply depots, rather than choosing to build barracks:

Question

Why not $build_barracks$ (A_b) ? Explanation Because it is more desirable to do action

build_supply_depot (A_s) to have more Supply Depots (S) as the goal is to have more Destroyed Units (D_u) and De-

stroyed buildings (D_b) .

$$m = [W = 12, S = 1, B = 2, An = 22, Du = 10, Db = 7]$$

$$m' = [W = 12, S = 3, B = 2, An = 22, Du = 10, Db = 7]$$