

Professorship in Transportation Analytics (Teaching Concept & Philosophy)

Xinyu Chen

Postdoctoral Associate, MIT
December 6, 2024

Education Mission

"Education is not the learning of facts, but the training of the mind to think."

Albert Einstein

- TUM School of Management in Heilbronn:
 - o Bachelor in Management & Data Science
 - Master in Management
 - Master in Management & Digital Technology
 - o Master in Management & Innovation
- My targets: Fostering curiosity and empowering students to take ownership of their learning; Creating an inclusive and engaging environment that supports diverse students.

Teaching Methods

Format & Assessment:

- Research-based techniques (critical thinking skills)
- ② Class quiz (problem solving)
- Project-oriented examination (problem solving)
- Mid-term/final-term presentation

Classroom is a family:

- Making learning fun
- Making it as simple and clear as possible
- Coffee time for discussion (guidance & support & thought exchange)

Collaboration:

- Approaching advanced AI techniques
- Building blog posts (e.g., ICLR blogposts track)

Source: ICLR 2024

Methods for Assessing Students' Learning

Assessment of Teaching

Data

Well-documented data files:

- Beginners to build coding skills
- **②** Graduate students to build research projects

Source: https://spatiotemporal-data.github.io/Chicago-mobility/taxi-data

Tutorials

Intuitive understanding of core concepts in data science:

- O Creating graphics
- Examining with realistic data
- Oeveloping toy examples
- Providing Python implementation

Figure 2. Illustration of the circular convolution between $\mathbf{x} = (x_1, x_2, x_3, x_4)^{\top}$ and $\mathbf{y} = (y_1, y_2, y_3)^{\top}$. (a) Computing z_1 involves $x_0 = x_4$ and $x_{-1} = x_5$. (b) Computing z_2 involves $x_0 = x_4$. The figure insoired by Prince (2023).

Example 2. Given vectors $\boldsymbol{x}=(0,1,2,3,4)^{\top}$ and $\boldsymbol{y}=(2,-1,3)^{\top}$, the circular convolution $\boldsymbol{z}=\boldsymbol{x}\star\boldsymbol{y}$ can be expressed as: $\boldsymbol{z}=\boldsymbol{x}\star\boldsymbol{y}=C_{0}(\boldsymbol{x})\boldsymbol{y}=(5,14,3,7,11)^{\top}$ where $C_{0}(\boldsymbol{x})$ is the convolution matrix with $\tau=3$ columns. Specifically, the convolution matrix is structured as follows, $C_{0}(\boldsymbol{x})=\begin{bmatrix}0&4&3\\1&4&3\\2&1&0\\1&3&2\end{bmatrix}$ As a resulf, it gives $\boldsymbol{z}=C_{0}(\boldsymbol{x})\boldsymbol{y}=\begin{bmatrix}0&4&3\\1&0&4\\2&1&0\\3&2&1\end{bmatrix}\begin{bmatrix}2&1\\1&4\\3&1&3\end{bmatrix}$

This representation shows that the circular convolution is equivalent to a matrix-vector

multiplication, making it easier to understand, especially in signal processing applications.

Source: https://spatiotemporal-data.github.io/posts/ts_conv

Reproducible Classes

Open-source repositories:

- Providing supplementary materials
- Examining examples and codes
- Reproducing graphics in LaTeX

Explanation style

awesome-beamer

(100+ GitHub stars)

Class website will be available at https://spatiotemporal-data.github.io

References

- 3Blue1Brown
 - o A math YouTube channel created and run by Grant Sanderson
 - o Website: https://www.3blue1brown.com/

- Prof. Steve Brunton (UW)
 - o Data-driven dynamics and control
 - o Website: https://www.youtube.com/@Eigensteve

Thanks for your attention!

Any Questions?

About me:

★ Homepage: https://xinychen.github.io

★ MIT sites: https://sites.mit.edu/xinychen