

http://9xy.ru/a7q

Уравнение незатухающих гармонических колебаний, формула

При любых колебаниях отклонение системы вызывает появление восстанавливающей силы, которая стремится вернуть систему в положение равновесия.

определение **Линейный закон силы:** Гармонические колебания характеризуются соотношением: Восстанавливающая сила $F_{_{\rm B}}$ пропорциональна отклонению y.

Отклонению y отвечает сила F, определяемая жесткостью системы

Если

система си	У	отклонение спустя время t,	метр
	F	отклоняющая сила,	Ньютон
	$F_{\scriptscriptstyle B}$	восстанавливающая сила,	Ньютон
	D	жесткость,	Ньютон/метр
	m	масса,	килограмм
	ω	круговая частота,	радиан / секунда

то

Противоположно направленная восстанавливающая сила равна

$$F_{_{\mathcal{B}}}=-Dy$$

Согласно основному закону динамики,

$$-Dy = m \dot{y}$$

Отсюда после перестановки следует

$$\ddot{y} + \frac{D}{m}y = 0$$

Полагая

$$\frac{D}{m} = \omega^2$$

получаем

Дифференциальное уравнение незатухающих гармонических колебаний

$$\mathbf{\ddot{y}} + \boldsymbol{\omega}^2 \, \boldsymbol{y} = \, 0$$

Решение этого дифференциального уравнения дается формулой <u>отклонения</u>, что можно доказать, дважды продифференцировав отклонение y по t.