Numerical values of surface and line tensions from the three sets of independent simulations

December 16, 2022

Table 1: Numerical values of surface and line tensions from the three sets of independent simulations; lipid numbers N_{ol} and N_{il} in the outer and inner leaflets; interfacial tension Σ of liquid-liquid interface between α droplet and aqueous bulk phase β ; membrane segment tensions Σ and Σ of the two membrane segments and; as well as contact line tension λ . The three surface tensions are given in units of k_BT/d^2 , the line tension in units of k_BT/d .

Size	N_{ol}	N_{il}	$\sum_{\alpha} \beta$	$\sum_{\alpha} \gamma$	$\Sigma_{eta}\gamma$	λ
14 nm	5400	4700	$\frac{2\alpha\beta}{2.781}$	0.611	$\frac{2\beta}{1.375}$	14.62
	0400	4100	2.823	0.678	1.243	21.02
			2.851	0.697	1.339	22.7
			2.82 ± 0.04	0.66 ± 0.05	1.32 ± 0.07	19.44 ± 4.20
	5500	4600	2.821	0.753	1.148	7.16
	3300	4000	2.844	0.755	1.128	7.10
			2.852	0.948	1.066	6.84
			2.84 ± 0.02	0.86 ± 0.10	1.11 ± 0.04	7.04 ± 0.31
	5700	4400	2.851	1.082	0.991	-6.511
	3700	4400	2.845	1.102	0.806	-10.72
			2.865	1.267	0.774	-12.87
			2.85 ± 0.01	1.15 ± 0.11	0.86 ± 0.12	-10.03 ± 2.09
	5963	4137	2.813	1.781	0.505 ± 0.12	-25.51
	0303	4101	2.878	1.692	0.599	-17.3
			2.868	1.773	0.618	-26.9
			2.85 ± 0.04	1.75 ± 0.05	0.57 ± 0.06	-23.25 ± 5.1
18.3 nm	5400	4700	2.931	0.931	1.445	-25.25 ± 5.1 11.4
	3400	4100	2.951	0.998	1.445	20.75
			2.944	0.983	1.481	20.1
	5400	4700	2.94 ± 0.01	0.97 ± 0.04	1.47 ± 0.01	17.49 ± 5.2
	5500	4600	2.915	1.081	1.227	2.63
	3500	4000	2.981	1.23	1.393	6.805
			2.976	1.195	1.381	9.051
			2.96 ± 0.04	1.17 ± 0.08	1.33 ± 0.09	6.17 ± 3.8
	5700	4400	2.902	1.44	0.971	-6.8777
	0.00	1100	2.949	1.481	1.109	-14.32
			2.941	1.479	1.095	-12.88
			2.93 ± 0.03	1.47 ± 0.02	1.06 ± 0.08	-11.35 ± 4.11
	5963	4137	2.921	1.941	0.698	-23.089
			2.987	1.875	0.771	-29.321
			2.991	1.964	0.81	-26.435
			2.96 ± 0.04	1.92 ± 0.05	0.76 ± 0.06	-26.28 ± 5.1
24.5 nm	5400	4700	2.77	1.186	1.354	10.6
			3.01	1.11	1.481	14.8
			2.99	1.137	1.342	20.1
	5400	4700	2.9 ± 0.1	1.14 ± 0.03	1.39 ± 0.08	15.2 ± 4.1
	5500	4600	2.8909	1.29	1.202	1.02
			2.999	1.361	1.365	5.01
			2.969	1.356	1.381	3.75
			2.95 ± 0.06	1.33 ± 0.03	1.32 ± 0.10	3.26 ± 2.4
	5700	4400	2.977	0.84	1.011	-8.23
			2.913	2.32	1.12	-16.09
			2.979	1.976	1.09	-16.5
			2.96 ± 0.04	1.72 ± 0.08	1.08 ± 0.06	-13.61 ± 4.9
	5963	4137	2.907	2.11	0.843	20.34
			2.943	2.01	0.932	28.8
			2.939	1.958	0.864	29.59
	5963	4137	2.93 ± 0.01	2.02 ± 0.08	0.88 ± 0.05	-26.25 ± 5.8