Life Insurance BUSINESS REPORT

Project Report

Prepared by:-

Trishit Kundu (1928327)

Contents

1 lı	ntroduction to Business Problem	3
	1.1 Defining the problem statement	3
	1.2 Need Of the Study/Project	3
	1.3 Understanding Business Opurtunity	3
2:	Data Report	3
	2.1 Understanding how data was collected in terms of time, frequency and methodology	3
	2.2 Visual inspection of data (rows, columns, descriptive details)	4
	2.3 Understanding of attributes (variable info, renaming if required)	6
3. ا	Exploratory Data Analysis	10
	3.1 Univariate analysis (distribution and spread for every continuous attribute, distribution ofdata in categories for	
	categorical ones)	10
	3.2 Bivariate analysis (relationship between different variables , correlations)	12
	3.3 Removal of unwanted variables (if applicable)	14
	3.4 Missing Value treatment (if applicable)	14
	3.5 Outlier treatment (if required)	15
	3.6 Variable transformation (if applicable)	18
	3.7 Addition of new variables (if required)	20
4.	Business Insights from EDA	20
	4.1 Is the data unbalanced? If so, what can be done? Please explain in the context of thebusiness	20
	4.2 Any business insights using clustering (if applicable)	20
	4 3 Any other husiness insights	23

1 Introduction to Business Problem

1.1 Defining the problem statement

The dataset belongs to a leading life insurance company. The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.

1.2 Need Of the Study/Project

As we know the company wants to get a knowledge about the performance of it's agent, so that effective upskill programme can be arranged for low performing agents and various engagement activities for high performers. This study will therefore help the low Performers to enhance their skills and inturn helps the company have more efficient agents. Similarly the study will help the high performers to know about where they can improve more. Overall this study is very essential for the company to boost it's performence.

1.3 Understanding Business Opurtunity

- i) Company can understand the market perspective.
- ii) Company will identify the high value agents and low value agents
- iii)Company will accordingly plan the upskill program and also able to give reward to high value agents
- iv)company will understand who will be the target value customer

2: Data Report

2.1 Understanding how data was collected in terms of time, frequency and methodology

The dataset is devided quite evenly among high performers and low performers but the zone wise representation is High for west and north zone while compared to others.

Variable	Discerption			
CustID	Unique customer ID			
AgentBonus	Bonus amount given to each agents in last month			
Age	Age of customer			
CustTenure	Tenure of customer in organization			
Channel	Channel through which acquisition of customer is done			
Occupation	Occupation of customer			
EducationField	EducationField Field of education of customer			
Gender	Gender of customer			
ExistingProdType	Existing product type of customer			
Designation Designation of customer in their organization				
NumberOfPolicy	Total number of existing policy of a customer			
MaritalStatus Marital status of customer				
MonthlyIncome	Gross monthly income of customer			
Complaint	Indicator of complaint registered in last one month by customer			
ExistingPolicyTenure	Max tenure in all existing policies of customer			
SumAssured	Max of sum assured in all existing policies of customer			
Zone	Customer belongs to which zone in India. Like East, West, North and South			

PaymentMethod	Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly
LastMonthCalls	Total calls attempted by company to a customer for cross sell
CustCareScore	Customer satisfaction score given by customer in previous service call

2.2 Visual inspection of data (rows, columns, descriptive details)

#	Column	Non-Null Count	
0	CustID	4520 non-null	int64
1	AgentBonus	4520 non-null	int64
2	Age	4251 non-null	float64
3	CustTenure	4294 non-null	float64
4	Channel	4520 non-null	object
5	Occupation	4520 non-null	object
6	EducationField	4520 non-null	object
7	Gender	4520 non-null	object
8	ExistingProdType	4520 non-null	int64
9	Designation	4520 non-null	object
10	NumberOfPolicy	4475 non-null	float64
11	MaritalStatus	4520 non-null	object
12	MonthlyIncome	4284 non-null	float64
13	Complaint	4520 non-null	int64
14	ExistingPolicyTenure	4336 non-null	float64
15	SumAssured	4366 non-null	float64
16	Zone	4520 non-null	object
17	PaymentMethod	4520 non-null	object
18	LastMonthCalls	4520 non-null	int64
19	CustCareScore	4468 non-null	float64

dtypes: float64(7), int64(5), object(8)

memory usage: 706.4+ KB

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
AgentBonus	4520.00	NaN	NaN	NaN	4077.84	1403.32	1605.00	3027.75	3911.50	4867.25	9608.00
Age	4520.00	NaN	NaN	NaN	14.41	8.77	2.00	8.00	13.00	19.00	58.00
CustTenure	4520.00	NaN	NaN	NaN	14.40	8.74	2.00	8.00	13.00	19.00	57.00
Channel	4520	3	Agent	3194	NaN						
Occupation	4520	4	Salaried	2192	NaN						
EducationField	4520	6	Graduate	1870	NaN						
Gender	4520	2	Male	2688	NaN						
ExistingProdType	4520.00	NaN	NaN	NaN	3.69	1.02	1.00	3.00	4.00	4.00	6.00
Designation	4520	5	Executive	1662	NaN						
NumberOfPolicy	4520.00	NaN	NaN	NaN	3.57	1.45	1.00	2.00	4.00	5.00	6.00
MaritalStatus	4520	4	Married	2268	NaN						
MonthlyIncome	4520.00	NaN	NaN	NaN	22823.25	4764.89	16009.00	19858.00	21606.00	24531.75	38456.00
Complaint	4520.00	2.00	0.00	3222.00	NaN						
ExistingPolicyTenure	4520.00	NaN	NaN	NaN	4.08	3.29	1.00	2.00	3.00	5.00	25.00
SumAssured	4520.00	NaN	NaN	NaN	618602.01	242117.25	168536.00	444476.25	578976.50	750010.50	1838496.00
Zone	4520	4	West	2566	NaN						
PaymentMethod	4520	4	Half Yearly	2656	NaN						
LastMonthCalls	4520.00	NaN	NaN	NaN	4.63	3.62	0.00	2.00	3.00	8.00	18.00
CustCareScore	4520.00	NaN	NaN	NaN	3.07	1.38	1.00	2.00	3.00	4.00	5.00
Result	4520	2	low	2474	NaN						

2.3 Understanding of attributes (variable info, renaming if required)

#	Column	Count	Dtype	Remark
0	CustID	4520	int64	Dropped as not important.
1	AgentBonus	4520	int64	Numeric, target variable
2	Age	4251	float64	Numeric
3	CustTenure	4294	float64	Numeric
4	Channel	4520	object	Categorical
5	Occupation	4520	object	Categorical
6	EducationField	4520	object	Categorical
7	Gender	4520	object	Categorical
8	ExistingProdType	4520	int64	Numeric
9	Designation	4520	object	Categorical
10	NumberOfPolicy	4475	float64	Numeric
11	MaritalStatus	4520	object	Categorical
12	MonthlyIncome	4284	float64	Numeric
13	Complaint	4520	int64	Converted into categorical
14	ExistingPolicyTenure	4336	float64	Numeric
15	SumAssured	4366	float64	Numeric
16	Zone	4520	object	Categorical
17	PaymentMethod	4520	object	Categorical
18	LastMonthCalls	4520	int64	Numeric
19	CustCareScore	4468	float64	Numeric

Dropped Column CustID.

df.drop(['CustID'],axis=1,inplace=True)

The name of the columns seems to be fine with no special characters or spaces between them .

Unique values of various Categories

Channel: 3

Online 468
Third Party Partner 858
Agent 3194
Name: Channel, dtype: int64

Occupation: 5
Free Lancer 2
Laarge Business 153
Large Business 255
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

EducationField: 7
MBA 74
UG 230
Post Graduate 252
Engineer 408
Diploma 496
Under Graduate 1190
Graduate 1870

Name: EducationField, dtype: int64

Gender: 3

Fe male 325 Female 1507 Male 2688

Name: Gender, dtype: int64

Designation: 6
Exe 127
VP 226
AVP 336
Senior Manager 676
Executive 1535
Manager 1620

Name: Designation, dtype: int64

MaritalStatus: 4 Unmarried 194 Divorced 804 Single 1254 Married 2268

Name: MaritalStatus, dtype: int64

Zone: 4 South 6 East 64 North 1884 West 2566

Name: Zone, dtype: int64

PaymentMethod: 4 Quarterly 76 Monthly 354 Yearly 1434 Half Yearly 2656

Name: PaymentMethod, dtype: int64

The highlighted data seems to be recorded incorrectly and required replacement and this was done to ensure theright categories are picked up by the model

Post fixing of the data

Channel: 3

Online 468
Third Party Partner 858
Agent 3194

Name: Channel, dtype: int64

Occupation: 4
Free Lancer 2
Large Business 408
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

EducationField: 6
MBA 74
Post Graduate 252
Engineer 408
Diploma 496
Under Graduate 1420
Graduate 1870

Name: EducationField, dtype: int64

Gender: 2 Female 1832 Male 2688

Name: Gender, dtype: int64

Designation: 5 VP 226 AVP 336 Senior Manager 676 Manager 1620 Executive 1662

Name: Designation, dtype: int64

MaritalStatus: 4 Unmarried 194 Divorced 804 Single 1254 Married 2268

Name: MaritalStatus, dtype: int64

Complaint: 2 1 1298 0 3222

Name: Complaint, dtype: int64

Zone: 4
South 6
East 64
North 1884
West 2566

Name: Zone, dtype: int64

PaymentMethod: 4 Quarterly 76 Monthly 354 Yearly 1434 Half Yearly 2656

Name: PaymentMethod, dtype: int64

The complaint column was actually categorical columns but perceived as numerical because of incorrect data capture .. Fixing the inconsistencies fixed the type of the variable as well.

3. Exploratory Data Analysis

3.1 Uni variate analysis (distribution and spread for every continuous attribute, distribution ofdata in categories for categorical ones)

Continuous

3.2 Bivariate analysis (relationship between different variables, correlations)

Most of the variables don't seem to be related closely to each other which means there is low multi-collinearity in the data and each feature would have its importance in building the right model . because of this we have not dropped any columns other than Custld and would want to build the model to see the variable importance.

The pair plot also seems to suggest the same thing. But due to the huge number of columns pair plot was not providing very clear insight and hence resorted to bi variate plots with every combination possible.

3.3 Removal of unwanted variables (if applicable)

CustID is a redundant column and has been removed. Chose not to remove any other columns and left to the model phase where the variable importance would be judged.

```
In [7]: M df.drop(['CustID'],axis=1,inplace=True)
```

3.4 Missing Value treatment (if applicable)

```
There are 1166 missing values in the dataset
In [20]:  df.isnull().sum()[df.isnull().sum()>0]
    Out[20]: Age
                                   269
            CustTenure
                                  226
            NumberOfPolicy
                                   45
            MonthlyIncome
                                  236
            ExistingPolicyTenure
            SumAssured
                                 154
            CustCareScore
                                  52
            dtype: int64
median2=df["CustTenure"].median()
            median3=df["NumberOfPolicy"].median()
            median4=df["MonthlyIncome"].median()
            median5=df["ExistingPolicyTenure"].median()
            median6=df["SumAssured"].median()
            median7=df["CustCareScore"].median()
            df["Age"].replace(np.nan,median1,inplace=True)
            df["CustTenure"].replace(np.nan,median2,inplace=True)
            df["NumberOfPolicy"].replace(np.nan,median3,inplace=True)
df["MonthlyIncome"].replace(np.nan,median4,inplace=True)
            df["ExistingPolicyTenure"].replace(np.nan,median5,inplace=True)
            df["SumAssured"].replace(np.nan,median6,inplace=True)
            df["CustCareScore"].replace(np.nan,median7,inplace=True)
```

Since all the variables which had missing values were of numeric type .So we have replaced it with median values. After fixing values:

In [24]: ▶	<pre>df.isnull().sum()</pre>	
Out[24]:	AgentBonus	0
	Age	0
	CustTenure	0
	Channel	0
	Occupation	0
	EducationField	0
	Gender	0
	ExistingProdType	0
	Designation	0
	NumberOfPolicy	0
	MaritalStatus	0
	MonthlyIncome	0
	Complaint	0
	ExistingPolicyTenure	0
	SumAssured	0
	Zone	0
	PaymentMethod	0
	LastMonthCalls	0
	CustCareScore	0
	dtype: int64	

3.5 Outlier treatment (if required)

In a favour of doing any outlier treatment as most of the numeric data here has out of bound and hence the outliers might be able add value to the model. More so the numeric data which is continuous has huge outliers. Like the SumAssured or ExistingPolicy tenure has many observation which stands out and most of the others are in the right range.

After fixing Outliars:

3.6 Variable transformation (if applicable)

Channel: 3

Online 468
Third Party Partner 858
Agent 3194
Name: Channel, dtype: int64

Occupation: 5
Free Lancer 2
Laarge Business 153
Large Business 255
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

EducationField: 7
MBA 74
UG 230
Post Graduate 252
Engineer 408
Diploma 496
Under Graduate 1190
Graduate 1870

Name: EducationField, dtype: int64

Gender: 3
Fe male 325
Female 1507
Male 2688

Name: Gender, dtype: int64

Designation: 6
Exe 127
VP 226
AVP 336
Senior Manager 676
Executive 1535
Manager 1620

Name: Designation, dtype: int64

MaritalStatus: 4 Unmarried 194 Divorced 804 Single 1254 Married 2268

Name: MaritalStatus, dtype: int64

Zone: 4 South 6 East 64 North 1884 West 2566

Name: Zone, dtype: int64

PaymentMethod: 4
Quarterly 76
Monthly 354
Yearly 1434
Half Yearly 2656

Name: PaymentMethod, dtype: int64

The highlighted data seems to be recorded incorrectly and required replacement and this was done to ensure the right categories are picked up by the model

Since the complaint column had only values in 0's and 1's but was of numaric type .So we have converted it into categorical value.

```
In [58]: M df['Complaint'] = df.Complaint.astype(object)
```

After fixing:

Channel: 3

Online 468
Third Party Partner 858
Agent 3194
Name: Channel, dtype: int64

Occupation: 4
Free Lancer 2
Large Business 408
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

EducationField: 6
MBA 74
Post Graduate 252
Engineer 408
Diploma 496
Under Graduate 1420
Graduate 1870

Name: EducationField, dtype: int64

Gender: 2 Female 1832 Male 2688

Name: Gender, dtype: int64

Designation: 5
VP 226
AVP 336
Senior Manager 676
Manager 1620
Executive 1662

Name: Designation, dtype: int64

MaritalStatus: 4 Unmarried 194 Divorced 804 Single 1254 Married 2268

Name: MaritalStatus, dtype: int64

Complaint: 2 1 1298 0 3222

Name: Complaint, dtype: int64

Zone: 4 South 6 East 64 North 1884 West 2566

Name: Zone, dtype: int64

PaymentMethod: 4
Quarterly 76
Monthly 354
Yearly 1434
Half Yearly 2656

Name: PaymentMethod, dtype: int64

3.7 Addition of new variables (if required)

We have added a new column named Result where the value of the result column is high if the value of AgentBonous is grater than or equal to it's mean else we put the value as low.

4. Business Insights from EDA

4.1 Is the data unbalanced? If so, what can be done? Please explain in the context of thebusiness

low 2474 High 2046

Name: Result, dtype: int64

Data is balanced with almost equal High and low values. Thus it shows that nearly half of the agent are good performers.

4.2 Any business insights using clustering (if applicable)

Variable plotted against Match Result

East and North zone has highest customer tenures

Single and Divorced have most existing policy tenure

Diploma monthly income is highest

4.3 Any other business insights

- Age is positively correlated with AgentBonus.
- Cust Tenure is positively correlated with AgentBonus.
- Monthly Income is positively correlated with AgentBonus.
- CustomerCareScore Does not affect any other column.
- NumberOfPolicy has very minimal effect on AgentBonus.