Something We Cannot Build

Think about it:

Can we built the circuit using the combinational logic?

```
• If not, what is missing here? I need storage

2. need event rather than a fixed Voltage
```

Something We Cannot Build

- One needs the storage unit
- The output is triggered by an event instead of a value.

Use feedback to store a bit

Question: if we want to maintain the state, what voltage should be applied to v_{11} and v_{12} ?

S-R (SET-RESET) Latch

- The output of each gate is connected to an input of the opposite gate to provide a feedback.
- Even the input is removed, the output state is still maintained.
- This is the active high input SR latch

S_{D}	$R_{\scriptscriptstyle \mathrm{D}}$	Q	Q*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	0 0 0 0
1	1	1	0

The state is undetermined when S and R are removed simultaneously

R	S	Q	Q*
0	O	0	0
0	O	1	1
O	1	O	1
0	1	1	
ſ	0	0	O
1	0	1	D
1	1	0	$\mathcal{O}^{\mathcal{O}}$
1	1		0°

S-R (SET-RESET) Latch

Active low input SR latch

$S_{\rm D}'$	$R_{\rm p}^{\prime}$	Q	Q*
1	1	0	0
1	1	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
0	0	0	0 1 [⊕]
0	0	1	10

S-R (SET-RESET) Latch

Question: plot the waveform of Q and Q'

S-R Latch as a Contact-Bounce Eliminator

- The closure of a mechanical switch is accompanied by the contact bounce
- An S-R latch can be used to eliminate the effects of switch bounce.
- The 1 to 2 transition sets the latch. Any further voltage spikes on the S input do not affect the latch.
- Similarly, a clean transition from HIGH to LOW is made for a 2 to 1 transition.

The gated S-R Latch

- C1 denotes that CLK is a control signal with the numbering 1
- 1S and 1R denotes that S and R are controlled by C1
- The gated latch is a level-sensitive device

The gated S-R Latch

Question: plot the waveform of Q and Q', assume the initial Q is 0

The asynchronous gated S-R Latch

Synchronous: S,R

- When S_D' and R_D' are not used for asynchronous set and reset, one should set them to 1
- When they are used, CLK should be set to 0

The gated D Latch

• Compared to the S-R latch, it lost the keep function

The gated D Latch

Question: plot the waveform of *Q* and *Q'*, assume the initial *Q* is 0

The gated D Latch

D latch using transmission gate

D latch using MUX