太极图形课

第08讲 Deformable Simulation 01: Spatial and Temporal Discretization

太极图形课

第08讲 Deformable Simulation 01: Spatial and Temporal Discretization

Previously in this Taichi Graphics Course...

Procedural Animation

Rendering

Deformable Simulation

Fluid Simulation

Rendering is a lot of fun...

2017

But sometimes we want moving pictures as well

Kinetically-controlled characters

Physically-animated characters

Physically-based animations

• Generate animated pictures based on laws of physics

In the following two classes...

Procedural Animation

Deformable Simulation

Rendering

Fluid Simulation

Our real lives are surrounded by deformable objects...

... so be our virtual lives

Goal of a simulation: predicting the status of the moving matters at the given time

Where is the block at time t=1? What is the velocity of the block at time t=2?

Outline today: A practitioner's guide to build your first deformable object simulator

Code of the day

https://github.com/taichiCourse01/--Deformables

Mass-Spring Linear FEM 11

Outline today

- Laws of physics
- Integration in time
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

Things NOT covered in today's class...

- Derivations in continuum mechanics
- Strong form v.s. weak form & basis functions
- Geometric integrators
- Damping / Collisions / Contact

Laws of physics

Equations of motion

• Define
$$\frac{d}{dt}q \coloneqq \dot{q}$$

- We have:
 - $\dot{x} = v$
 - $\dot{v} = a$

- Or simply:
 - $\ddot{x} = a$

Equations of motion

• Define $\frac{d}{dt}q \coloneqq \dot{q}$

- We have:
 - $\dot{x} = v$
 - $\dot{v} = a$

- Or simply:
 - $\ddot{x} = a$

Equations of motion

$$f = Ma$$

Equations of motion (linear ODE)

- $M\ddot{x} = f(x)$
- For linear materials, we have f(x) = -K(x X)
 - *X*: Rest-pose position
 - x: Current-pose position

Equations of motion (linear ODE)

- $\bullet \ M\ddot{x} = f(x)$
- For linear materials, we have f(x) = -K(x X)
 - We, therefore, yield a linear differential equation:
 - $\bullet \ \ M\ddot{x} + K(x X) = 0$
 - Or sometimes: $M\ddot{u} + Ku = 0$ (define displacement u := x X)

Note: linear materials are widely used for small deformations, such as in physically based **sound simulation** (for rigid bodies) and **topology optimization**

• $M\ddot{x} = f(x)$

- $\dot{x} = v$
- $\bullet \ \dot{v} = a = M^{-1}f$

```
• M\ddot{x} = f(x)
```

- $\dot{x} = v$
- $\bullet \ \dot{v} = a = M^{-1}f$

```
for i in range(N):
    #update
    vel[i] += dt*force[i]/m
    pos[i] += dt*vel[i]
```

The temporal integration


```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```



```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```



```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```



```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```



```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```



```
def magic_black_box(x_n, v_n):
    # do something
    return x_np1, v_np1
```


$$\bullet \ M\ddot{x} = f(x)$$

•
$$\dot{x} = v$$

$$\bullet \ \dot{v} = a = M^{-1}f$$

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t) dt$$

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t)dt$$

• $v(t_n + h) = v(t_n) + \int_0^h M^{-1} f(t_n + t)dt$

 $h = t_{n+1} - t_n$: is the time-step size

Time integration

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t)dt$$

• $v(t_n + h) = v(t_n) + \int_0^h M^{-1} f(t_n + t)dt$

- We don't know how to integrate this quantity
- We don't know anything after t_n

Time integration

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t) dt$$

•
$$v(t_n + h) = v(t_n) + \int_0^h M^{-1} f(t_n + t) dt$$

• Explicit(forward) Euler integration

$$\bullet \ x_{n+1} = x_n + hv_n$$

 $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$

- Explicit(forward) Euler integration
 - $\bullet \ x_{n+1} = x_n + hv_n$
 - $v_{n+1} = v_n + hM^{-1}f(x_n)$

• Explicit(forward) Euler integration

$$\bullet \ x_{n+1} = x_n + h v_n$$

$$\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$$

Note: Forward Euler is **extremely fast**, but it will also **increase the system energy** gradually. It is **seldom used** for the existence of symplectic Euler integration.

- Symplectic Euler integration
 - $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$

- Symplectic Euler integration
 - $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$

Time integration (explicit)

- Symplectic Euler integration
 - $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$

Note: Symplectic Euler is as **fast** as forward Euler, it is **momentum preserving**, it has an **oscillating system Hamiltonian**. It is often THE explicit integration method to use. It has been widely used in **accuracy-centric applications** (astronomy simulation / molecular dynamics etc).

Time integration (explicit)

- Symplectic Euler integration
 - $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$

Further Reading: The geometric integrator [Link]

Time integration (implicit)

• Implicit (backward) Euler integration

•
$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$
 $f(x(t_{n+1}))$

 $\bullet x_{n+1} = x_n + hv_{n+1}$

• The *nonlinear system solver* will be covered in the next class.

Time integration (implicit)

• Implicit (backward) Euler integration

•
$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$\bullet \ x_{n+1} = x_n + hv_{n+1}$$

Time integration (implicit)

• Implicit (backward) Euler integration

•
$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$
 $f(x(t_{n+1}))$

 $\bullet \ x_{n+1} = x_n + hv_{n+1}$

Note: Implicit Euler is often **expensive** due to the nonlinear optimization, it **damps the Hamiltonian** from the oscillating components, it is often **stable for large time-steps** and is widely used in performance-centric applications. (game / MR / design / animation)

Time integration in practice

- Explicit integration:
 - $v_{n+1} = v_n + hM^{-1}f(x_n)$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$
- Time integration steps:
 - Evaluate f at x_n
 - For conservative force: f(x) = -E(x), where E is the potential energy
 - Update v using f (or $M^{-1}f$)
 - Update x using v

Time integration (an example)

Gravitational energy:

$$\bullet E = -\frac{GMm}{r(x_1, x_2)}$$

Gradient (gravitational force):

$$\bullet \frac{\partial E}{\partial x_1} = \frac{\partial r}{\partial x_1} \cdot \frac{\partial E}{\partial r} = \frac{x_1 - x_2}{r} * \frac{GMm}{r^2}$$

•
$$f(x_1) = -\frac{\partial E}{\partial x_1}$$

•
$$f(x_1) = -\frac{\partial E}{\partial x_1}$$

• $f(x_2) = -\frac{\partial E}{\partial x_2}$
• or $f(x_2) = -f(x_1)$

Time integration (an example)

•
$$r = ||x_1 - x_2|| = \sqrt{(x_1 - x_2)^T (x_1 - x_2)}$$

- Further Readings:
 - Calculus On Manifolds [<u>Link</u>]
 - The Matrix Cookbook [Link]

The N-body problem [Link]

```
# compute gravitational force
for i in range(N):
    p = pos[i]
    for j in range(i):
        diff = p-pos[j]
        r = diff.norm(1e-5)

    f = -G * m * m * (1.0/r)**3 * diff

    force[i] += f
    force[j] += -f
```

Compute force

```
for i in range(N):
    #symplectic euler
    vel[i] += dt*force[i]/m
    pos[i] += dt*vel[i]
```

Time integration

The energy is all we need

Gravitational energy:

$$\bullet E = -\frac{GMm}{r(x_1, x_2)}$$

- Take-away:
 - For conservative forces (as most of the elastic forces are), the **energy** definition is all we need for their simulations.

The energy is all we need

- A deformable object is a:
 - continuum body

The spatial integration

The energy of a deformable continuum body

- Keep these questions in mind...
 - How to describe the deformation?
 - How to describe the elastic energy?
- ... when we go through:
 - A mass-spring system
 - The linear finite element method

- -- A simple yet useful discrete deformation model
- Tessellate the mesh into a discrete one
- Aggregate the volume mass to the vertices
- Link the mass-vertices with springs

-- A simple yet useful discrete deformation model

- How to define the deformation?
 - Spring current pose: x_1, x_2
 - Spring current length: $l = ||x_1 x_2||$
 - Spring rest-length: l_0
 - "Deformation": $l l_0$

- How to define the deformation?
 - "Deformation": $l l_0$
- How to define the deformation energy?
 - Hooke's Law: $E(x_1, x_2) = \frac{1}{2}k(l l_0)^2$

• Elastic energy:

•
$$E = \frac{1}{2}k(l - l_0)^2$$

• Gradient:

•
$$\frac{\partial E}{\partial x_1} = \frac{\partial l}{\partial x_1} \cdot \frac{\partial E}{\partial l} = \frac{x_1 - x_2}{l} * k(l - l_0)$$

•
$$f(x_1) = -\frac{\partial E}{\partial x_1}$$

$$\bullet \ f(x_2) = -f(x_1)$$

Mass-spring system (an example)

```
@ti.kernel
def compute gradient():
    # clear gradient
    for i in range(N edges):
        grad[i] = ti.Vector([0, 0])
    # gradient of elastic potential
    for i in range(N edges):
        a, b = edges[i][0], edges[i][1]
        r = x[a]-x[b]
        1 = r.norm()
        10 = spring_length[i]
        k = YoungsModulus[None]*10
        # stiffness in Hooke's law
        gradient = k*(1-10)*r/1
        grad[a] += gradient
        grad[b] += -gradient
```

Compute force

```
# symplectic integration
acc = -grad[i]/m - ti.Vector([0.0, g])
v[i] += dh*acc
x[i] += dh*v[i]
```

Time integration

Mass-spring systems are particularly useful in:

Cloth Sim [Dinev et al. 2018]

Hair Sim [Selle et al. 2018]

Mass-spring systems are NOT the best choices when simulating continuum area/volume

Area/volume gets inverted without any penalty

Mass-spring systems are NOT the best choices when simulating continuum area/volume

Area/volume gets inverted without any penalty

A continuous model to describe deformation

$$\phi(X) = X + t$$

$$\phi(X) = RX$$

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\phi(X) = SX$$

$$S = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

For
$$X$$
 near X^* : $\phi(X) \approx \frac{\partial \phi}{\partial X}(X - X^*) + \phi(X^*) = \frac{\partial \phi}{\partial X}X + \left(\phi(X^*) - \frac{\partial \phi}{\partial X}X^*\right)$

$$\phi(X) \approx FX + t$$

$$\phi(X) = X + t$$
$$F = \frac{\partial \phi}{\partial X} = I$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\phi(X) = RX$$

$$F = \frac{\partial \phi}{\partial X} = R$$

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\phi(X) = SX$$
$$F = \frac{\partial \phi}{\partial X} = S$$

$$S = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

• The gradient of the deformation map:

•
$$\phi: X \to x$$

•
$$F = \begin{bmatrix} \partial x_1 / \partial X_1 & \partial x_1 / \partial X_2 \\ \partial x_2 / \partial X_1 & \partial x_2 / \partial X_1 \end{bmatrix}$$

• $x \approx FX + t$

 $\phi(X) \approx FX + t$

The gradient of the deformation map:

•
$$\phi: X \to x$$

•
$$F = \begin{bmatrix} \partial x_1 / \partial X_1 & \partial x_1 / \partial X_2 \\ \partial x_2 / \partial X_1 & \partial x_2 / \partial X_1 \end{bmatrix}$$

•
$$x \approx FX + t$$

 $\phi(X) \approx FX + t$

 A non-rigid deformation gradient shall end up with a non-zero deformation energy.

Energy density: $\Psi(x) = \Psi(\phi(X))$

• Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$

Energy density:
$$\Psi(\phi(X)) = \Psi(FX + t)$$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - Recall that $\phi(X) \approx FX + t$, we have $\Psi(x) \approx \Psi(FX + t)$

Energy density: $\Psi(FX + t) = \Psi(FX)$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - Recall that $\phi(X) \approx FX + t$, we have $\Psi(x) \approx \Psi(FX + t)$
 - Since the energy density function should be translational invariant
 - i.e. $\Psi(x) = \Psi(x + t)$

Energy density: $\Psi(FX) = \Psi(F)$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - Recall that $\phi(X) \approx FX + t$, we have $\Psi(x) \approx \Psi(FX + t)$
 - Since the energy density function should be translational invariant
 - i.e. $\Psi(x) = \Psi(x + t)$
 - ...and X is the state-independent rest-pose (for elastic materials)

Energy density: $\Psi(x) = \Psi(F)$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - Recall that $\phi(X) \approx FX + t$, we have $\Psi(x) \approx \Psi(FX + t)$
 - Since the energy density function should be translational invariant
 - i.e. $\Psi(x) = \Psi(x + t)$
 - ...and X is the state-independent rest-pose (for elastic materials)
 - We have $\Psi = \Psi(F)$ being a function of the **local deformation gradient** alone.

Energy density: $\Psi(x) = \Psi(F)$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - We have $\Psi = \Psi(F)$ being a function of the **local deformation gradient** alone.

$$\phi(X) \approx FX + t$$

Energy density: $\Psi(x) = \Psi(F)$

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - We have $\Psi = \Psi(F)$ being a function of the **local deformation gradient** alone.
- What should Ψ look like?

What should Ψ Look like?

Note:
$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2} = \sqrt{tr(A^T A)}$$

Deformation gradient is NOT the best quantity to describe **deformation**

- Using the mass-spring system as an analogy:
 - The "deformation gradient" of a spring:
 - $\bullet \quad \frac{x_1 x_2}{l_0}$
 - The "deformation" of a spring:
 - $\bullet \quad \left\| \frac{x_1 x_2}{l_0} \right\| 1$
 - Translational invariant
 - Rotational invariant
 - Being zero means "no deformation"

We want a descriptor to describe deformation

- Strain (tensor): $\epsilon(F)$
 - Descriptor of severity of deformation
 - $\epsilon(I) = 0$
 - $\epsilon(F) = \epsilon(RF)$ for $\forall R \in SO(dim)$

We want a descriptor to describe deformation

- Strain (tensor): $\epsilon(F)$
 - Descriptor of severity of deformation
 - $\epsilon(I) = 0$
 - $\epsilon(F) = \epsilon(RF)$ for $\forall R \in SO(dim)$
- Sample strain tensors in different constitutive models:
 - St. Venant-Kirchhoff model: $\epsilon(F) = \frac{1}{2}(F^TF I)$
 - Co-rotated linear model: $\epsilon(F) = S I$, where F = RS
 - Further Reading: (Signed) Polar Decomposition [<u>Link</u>]

What should Ψ Look like?

Note:
$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2} = \sqrt{tr(A^T A)}$$

From energy density to energy

•
$$E(x) = \int_{\Omega} \Psi(F) dX$$

Spatial Discretization is needed!

From energy density to energy

•
$$E(x) = \int_{\Omega} \Psi(F) dX$$

Linear finite element method (FEM)

$$Linear\ Element$$
$$\phi(X) = FX + t$$

Linear finite element method (FEM)

$$E =$$

Linear FEM energy

- Continuous Space:
 - $E(x) = \int_{\Omega} \Psi(F(x)) dX$

- Discretized Space:
 - $E(x) = \sum_{e_i} \int_{\Omega_{e_i}} \Psi(F_i(x)) dX = \sum_{e_i} w_i \Psi(F_i(x))$
 - $w_i = \int_{\Omega_{e_i}} dX$: size (area/volume) of the i-th element

Linear element: $\phi(X) = FX + t$

The gradient of $\Psi(F(x))$

ullet Eventually we will need the gradient of Ψ to run simulations...

• Chain rule:
$$\frac{\partial \Psi}{\partial x} = \frac{\partial F}{\partial x}$$
: $\frac{\partial \Psi}{\partial F}$
In 2D: A $(2n \times 1) \times (2 \times 2)$ tensor A (2×2) tensor (matrix)

Note (matrix contraction): $B: A = A: B = \sum_{i,j} A_{ij} B_{ij} = \sqrt{tr(A^T B)}$

The gradient of $\Psi(F(x))$

 \bullet Eventually we will need the gradient of Ψ to run simulations...

• Chain rule:
$$\frac{\partial \Psi}{\partial x} = \frac{\partial F}{\partial x} : \frac{\partial \Psi}{\partial F}$$

• For hyperelastic materials, the 1st Piola-Kirchhoff stress tensor:

•
$$P = \frac{\partial \Psi}{\partial F}$$

The 1st Piola-Kirchhoff stress tensor: $P = \frac{\partial \Psi}{\partial F}$

Some 1st Piola-Kirchhoff stress tensors

- St. Venant-Kirchhoff model (StVK):
 - Strain: $\epsilon_{stvk}(F) = \frac{1}{2}(F^TF I)$
 - Energy density: $\Psi(F) = \mu \left\| \frac{1}{2} (F^T F I) \right\|_F^2 + \frac{\lambda}{2} tr \left(\frac{1}{2} (F^T F I) \right)^2$
 - $P = \frac{\partial \Psi}{\partial F} = F \left[2\mu \epsilon_{stvk} + \lambda tr(\epsilon_{stvk})I \right]$
- Co-rotated linear model:
 - Strain: $\epsilon_c(F) = S I$, where F = RS
 - Energy density: $\Psi(F) = \mu \|R^T F I\|_F^2 + \frac{\lambda}{2} tr(R^T F I)^2$
 - $P = \frac{\partial \Psi}{\partial F} = R[2\mu\epsilon_c + \lambda tr(\epsilon_c)I] = 2\mu(F R) + \lambda tr(R^T F I)R$

Linear FEM

- Elastic energy:
 - $E_i(x) = w_i \Psi(F_i(x))$
- Gradient:

•
$$\frac{\partial E_i}{\partial x} = w_i \frac{\partial F_i}{\partial x} : P_i$$

Chain rule in detail:
$$\frac{\partial \Psi}{\partial x_i^{(k)}} = \frac{\partial F}{\partial x_i^{(k)}}$$
: P

- Let's compute $\frac{\partial F}{\partial x_i^{(k)}}$ first:
 - j = 1,2,3,4, stands for the vertex #
 - k = 1,2,3, stands for the dimension

Chain rule in detail:
$$\frac{\partial \Psi}{\partial x_i^{(k)}} = \frac{\partial F}{\partial x_i^{(k)}}$$
: P

- Let's compute $\frac{\partial F}{\partial x_i^{(k)}}$ first:
 - Since $F = D_s D_m^{-1}$

•
$$\frac{\partial F}{\partial x_j^{(k)}} = \frac{\partial D_S}{\partial x_j^{(k)}} D_m^{-1}$$

$$\bullet \frac{\partial F}{\partial x_{j}^{(k)}} = \frac{\partial D_{S}}{\partial x_{j}^{(k)}} D_{m}^{-1}
\bullet \text{ Where } \frac{\partial D_{S}}{\partial x_{j}^{(k)}} = \delta_{k} \delta_{j}^{T}, \text{ for } j = 1,2,3$$

$$\bullet \text{ Thus: } \frac{\partial F}{\partial x_{j}^{(k)}} = \delta_{k} \delta_{j}^{T} D_{m}^{-1}$$

$$\bullet \text{ Thus: } \frac{\partial F}{\partial x_{j}^{(k)}} = \delta_{k} \delta_{j}^{T} D_{m}^{-1}$$

$$\bullet \frac{\partial D_{S}}{\partial x_{1}^{(2)}}$$

$$\begin{bmatrix} x_1 - x_4 & x_2 - x_4 & x_3 - x_4 \end{bmatrix} = F[X_1 - X_4 & X_2 - X_4 & X_3 - X_4]$$

$$D_S$$

$$D_m$$
95

Chain rule in detail: $\frac{\partial \Psi}{\partial x_i^{(k)}} = \frac{\partial F}{\partial x_i^{(k)}}$: P

$$\bullet \frac{\partial F}{\partial x_j^{(k)}} : P = \delta_k \delta_j^T D_m^{-1} : P$$

•
$$\frac{\partial F}{\partial x_i^{(k)}}$$
: $P = tr(D_m^{-T}\delta_j\delta_k^T P)$

•
$$\frac{\partial F}{\partial x_i^{(k)}}$$
: $P = tr(\delta_k^T P D_m^{-T} \delta_j)$

$$\bullet \frac{\partial F}{\partial x_j^{(k)}} : P = \delta_k^T P D_m^{-T} \delta_j = [P D_m^{-T}]_{kj}$$

Chain rule in detail:
$$\frac{\partial \Psi}{\partial x_i^{(k)}} = \frac{\partial F}{\partial x_i^{(k)}}$$
: P

$$\bullet \frac{\partial \Psi}{\partial x_j^{(k)}} = [PD_m^{-T}]_{kj}$$

- Thus: $\frac{\partial \Psi}{\partial x_j}$ = the j-th col of $[PD_m^{-T}]$ for j=1,2,3
- $\bullet \frac{\partial \Psi}{\partial x_4} = -\sum_{j=1}^3 \frac{\partial \Psi}{\partial x_j}$
- $\bullet \frac{\partial E_i}{\partial x_j} = w_i \frac{\partial \Psi_i}{\partial x_j}$

Linear FEM

- Elastic energy:
 - $E_i(x) = w_i \Psi(F_i(x))$
- Gradient:

•
$$\frac{\partial E_i}{\partial x} = w_i \frac{\partial F_i}{\partial x} : P_i$$

- Further Readings:
 - Finite Element Method, Part I [Link]
 - Or using auto-diff in Taichi [Link]

Linear FEM (an example)

```
# gradient of elastic potential
for i in range(N triangles):
    Ds = compute D(i)
    F = Ds@elements Dm inv[i]
    # co-rotated linear elasticity
    R = compute R 2D(F)
    Eye = ti.Matrix.cols([[1.0, 0.0], [0.0,
1.0]])
    # first Piola-Kirchhoff tensor
    P = 2*LameMu[None]*(F-R) +
LameLa[None]*((R.transpose())@F-Eye).trace()*R
    #assemble to gradient
    H = elements \ VO[i] * P @
(elements Dm inv[i].transpose())
    a,b,c =
triangles[i][0],triangles[i][1],triangles[i][2]
    gb = ti.Vector([H[0,0], H[1, 0]])
    gc = ti.Vector([H[0,1], H[1, 1]])
    ga = -gb-gc
    grad[a] += ga
    grad[b] += gb
    grad[c] += gc
```

```
# symplectic integration
acc = -grad[i]/m - ti.Vector([0.0, g])
v[i] += dh*acc
x[i] += dh*v[i]
```

Linear FEM using autodiff (an example)

```
@ti.kernel
def compute_total_energy():
    for i in range(N_triangles):
        Ds = compute_D(i)
        F = Ds @ elements_Dm_inv[i]
        # co-rotated linear elasticity
        R = compute_R_2D(F)
        Eye = ti.Matrix.cols([[1.0, 0.0], [0.0, 1.0]])
        element_energy_density = LameMu[None]*((F-R)@(F-R).transpose()).trace() +
0.5*LameLa[None]*(R.transpose()@F-Eye).trace()**2

        total_energy[None] += element_energy_density *
elements_V0[i]
```

```
if using_auto_diff:
    total_energy[None]=0
    with ti.Tape(total_energy):
        compute_total_energy()
else:
    compute_gradient()
```

Compute gradient

```
# symplectic integration
acc = -x.grad[i]/m - ti.Vector([0.0, g])
v[i] += dh*acc
x[i] += dh*v[i]
```

100

Compute energy Time integration

Revisit the mass-spring system

Deformation gradient:
$$F = D_S D_m^{-1} = \frac{x_1 - x_2}{X_1 - X_2} = \frac{x_1 - x_2}{l_0}$$

Deformation strain: $\epsilon = ||F|| - 1$

Energy density:
$$\Psi = \mu \epsilon^2 = \mu \left(\left\| \frac{x_1 - x_2}{l_0} \right\| - 1 \right)^2$$

Energy:
$$E = l_0 \Psi = \frac{1}{2} \frac{2\mu}{l_0} l_0^2 \epsilon^2 = \frac{1}{2} k (\|x_1 - x_2\| - l_0)^2$$

- Laws of physics
 - Equations of motion
- Integration in time
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

- Laws of physics
 - Equations of motion
- Integration in time
 - Numerical quadrature
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

- Laws of physics
 - Equations of motion
- Integration in time
 - Numerical quadrature
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

- Laws of physics
 - Equations of motion
- Integration in time
 - Numerical quadrature
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

φ

F

 ϵ

 $\Psi(\epsilon(F))$

P

$$E = \int \Psi$$

$$f = -\frac{\partial E}{\partial x}$$

- Laws of physics
 - Equations of motion
- Integration in time
 - Numerical quadrature
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

- Laws of physics
 - Equations of motion
- Integration in time
 - Numerical quadrature
- Integration in space
 - A simple (but useful) model: mass-spring system
 - Constitutive models
 - The finite element method

Further readings

- Real Time Physics, Chapter 3,4 [SIGGRAPH 2008 Course] [Link]
- Finite Element Method, Part I [SIGGRAPH 2012 Course] [Link]
- Dynamic Deformables: Implementation and Production Practicalities [SIGGRAPH 2020 Course] [Link]

Homework

Homework Today

- Download the repo (--Deformables):
 - https://github.com/taichiCourse01/--Deformables

• Try:

- Changing your time integration scheme from explicit Symplectic Euler to forward Euler (in both --Galaxy and --Deformables)
- Changing your material model from the corotated Linear model to the StVK model
- Weave a different 2D/3D structure (other than a cantilever) and simulate it using either the mass-spring model or the linear FEM model

Excellent homework assignments

[@Huanghongru]

[@cflw]

[@chunleili]

Gifts for the gifted

- Use **Template** for your homework
- Next check Dec. 14, 2021

113

Questions?

本次答疑: 11/18 ←作业分享也在这里

下次直播: 11/23

直播回放: Bilibili 搜索「太极图形」

主页&课件: https://github.com/taichiCourse01

主页&课件(backup): https://docs.taichi.graphics/tgc01