TRABALHO FINAL DA DISCIPLINA DE BIG DATA PARA NEGÓCIOS

Nome: Silvio Cesar de Santana

Matrícula: 2017103163

Unicarioca - Pós-Graduação - Maio Junho/2024

Professora: Andrea Costa Nascimento

Resumo

A convergência para a tecnologia digital no campo e fazenda, está mais do que notória ao longo dos anos. A busca pela eficiência nos processos de produção, visando não só reduzir custos e aumentar margens financeiras, mas uma qualidade de vida melhor e sustentável, tem se se tornado rotina em muitos locais do país. Para tal, é necessário que se faça investimentos consideráveis para implantação e implementação de tecnologias capazes de possibilitar a utilização das informações geradas.

Segundo uma pesquisa realizada pela Embrapa, cerca de 61% das empresas e prestadoras de serviço relacionadas ao setor agrícola destacam problemas na implementação de tecnologias por problemas de conectividades. De acordo com dados do *Censo Agropecuário 2017*, divulgados em 2019 pelo Instituto Brasileiro de Geografia e Estatística (IBGE), problemas de infraestrutura e conectividade, tem grande impacto no dia a dia do agro. Dos 5,07 milhões de estabelecimentos rurais existentes no Brasil, 3,64 milhões não têm acesso à internet, ou seja, 71,8% das propriedades. Porém, através de utilização de smartphones, de 2006 a 2017 houve um crescimento de 1.900% no acesso à rede pelos produtores rurais.

A qualificação de ferramentas e pessoal para trabalhar com Big Data nesses setores tem se tornado uma grande procura nos tempos atuais, e um desafio para aqueles que estão em processo de implantação.

Big Data - Conceito

Com o grande volume de dados, desde o início da utilização de informações armazenadas em bancos de dados, houve a necessidade de uma melhoria nos sistemas de conexões e armazenagens dessas informações. O conceito de *big data* é definido com 5'V, representados pelos seguintes conceitos: 1

Volume Variedade Velocidade Veracidade Valor

Big Data na Agropecuária

Agronegócio 4.0

Agricultura digital no campo

Conjunto de tecnologias de ponta desenvolvidas para otimização integrada do agro. Envolve a digitalização dos processos de produção agropecuária, que vão além da mecanização. A inovação passa pela orientação das operações e decisões a partir de dados colhidos pelos dispositivos conectados. Na prática, ocorre a integração de todos os sistemas em tempo real a partir de big data, IA, machine learning, computação em nuvem, IoT, , nano e biotecnologias, e comunicação entre máquinas, permitindo monitoramento das operações agrícolas. O crescimento dessas soluções tecnológicas associadas tende a se manter nos próximos anos, gerando previsibilidade para as safras, maior produtividade, redução de desperdícios e custos.

Desafios da implantação de Big Data

O agronegócio tem sido reconhecido como um vetor crucial do crescimento econômico brasileiro. Em 2022, a soma de bens e serviços gerados no agronegócio chegou a R\$ 2,54 trilhões ou 25% do PIB brasileiro. Os segmentos, agrícola, 72,2% desse valor (R\$ 1,836 trilhão), a pecuária 27,8%, ou R\$ 705,36 bilhões.

Agropecuária alcançou R\$ 1,252 trilhão em 2023, o Valor Bruto da Produção (VBP), dos quais R\$ 851,96 bilhões na produção agrícola e R\$ 400,54 no segmento pecuário -, o que representa uma queda de 2,6% frente a 2022.

Comparativo 2023-2022 dos 10 principais produtos do VBP da agropecuária (R\$ bilhões)

Elaboração: DTec/CNA

Saldo da Balança Comercial Brasileira de 2010 a 2023 (em US\$ bilhões)

Fonte: MDIC, AgroStat/MAPA. Elaboração: CNA **Produção e Exportações Brasileiras no Ranking Mundial em 2023**

Fonte: USDA/2023 Elaboração: CNA

Monitoramento da Cobertura e Uso da Terra do Brasil

De acordo com levantamento do IBGE, entre 2018 e 2020, aproximadamente 70 mil km² do Brasil sofreram alguma mudança na cobertura e uso da terra, o que equivale a cerca de 0,7% do território nacional, ou às áreas dos Estados do Rio de Janeiro e de Alagoas somadas. Destaca-se, nesse mesmo período, o crescimento efetivo de 0,6% (6 825 km²) de pastagem com manejo, de 3,2% (21 344 km²) de área agrícola.

Evolução da Cobertura e Uso da Terra - Brasil

Classe	2000	2010	2012	2014	2016	2018	2020
Área Artificial (km²)	34.567	36.217	36.730	37.461	37.773	38.294	37.366
Área Agrícola (km²)	458.975	556.232	583.768	624.632	643.769	664.784	688.900
Pastagem com Manejo (km²)	885.186	1.099.031	1.126.106	1.123.824	1.118.893	1.125.194	1.132.213
Mosaico de ocupações em Área Florestal (km²)	844.506	826.977	826.680	824.024	839.894	829.071	820.941
Silvicultura (km²)	50.543	69.844	76.071	82.136	83.646	85.951	86.610
Vegetação Florestal (km²)	4.039.569	3.823.520	3.787.264	3.764.779	3.740.024	3.732.236	3.718.891
Área Úmida (km²)	33.888	33.877	33.799	33.773	33.873	33.868	33.585
Vegetação Campestre (km²)	1.818.102	1.711.000	1.679.527	1.656.591	1.646.883	1.635.447	1.625.591
Mosaico de ocupações em Área Campestre (km²)	232.340	240.963	247.715	250.437	252.857	252.609	253.204
Corpo d'Água Continental (km²)	128.749	128.749	128.749	128.749	128.749	128.902	127.128
Corpo d'Água Costeiro (km²)	222.461	222.461	222.461	222.461	222.461	222.461	224.395
Área Descoberta (km²)	3.680	3.695	3.696	3.699	3.744	3.749	3.742

Com os destaques para Agropecuária

Área Agrícola (km²)	458.975	556.232	583.768	624.632	643.769	664.784	688.900
Pastagem com Manejo (km²)	885.186	1.099.031	1.126.106	1.123.824	1.118.893	1.125.194	1.132.213

Houve um aumento considerável nessas áreas nos últimos 20 anos.

Big Data e cultura orientada por dados

Nas fazendas e lavouras, o processo de preparo, plantio e colheita em determinado espaço, gera milhares de pontos durante o percurso. Essas informações de localização, são essenciais para se trabalhar com Big Data, e ajudar em perguntas como:

- ... quais sementes plantar
- ... quanto,
- ... onde e
- ... quando

Algumas tecnologias e conceitos:

- > Agricultura de precisão (AP)
- ➤ Utilização de gerenciamento de mapas e imagens de satélite como o ArcGis
- > Amostragem de solo georreferenciada
- > Mapa de produtividade
- ➤ Taxa Variável

Quais as desvantagens da tecnologia no campo?

- > Falta de conectividade;
- Escassez de mão de obra qualificada para manuseio e análise das ferramentas tecnológicas;

Por que utilizar um software de gestão agrícola?

Gerar impactos diretos na tomada de decisão

Padronizar as informações tornando uma leitura e conhecimento facilitado.

Auxiliar aumentando produtividade e centraliza controle da produção.

Administrar tempo, áreas, recursos de equipamentos e pessoas.

- Preparo de solo,
- Plantio,
- Tratos culturais,
- Colheita

Onde aplicar o software de gestão agrícola?

- No cultivo de cana-de-açúcar,
- No beneficiamento de sementes,

Estratégias para a Implementação

- ➤ Definir o escopo do projeto Visões analíticas / métricas
- Desenvolver o planejamento das etapas do projeto, junto as áreas envolvidas: Gerência, RH, Produção, Financeiro, ...
- > Definir infraestrutura, Banco de dados
- ➤ Definir/Desenvolver ferramentas para coleta e controle das informações
- Definir os dados que serão utilizados nos cadastros
- > Testes
- > Validação

Exemplos de utilização de Big Data no agronegócio

1 - Monsanto

A Monsanto, investiu US\$ 930 milhões, em 2013, na aquisição da Climate Corporation, especializada em tecnologias que coletam, monitoram e analisam diversas informações na lavoura, em tempo real, possibilitando a utilização por muitos agricultores, do seu banco de dados. Ajudando a tomar decisões baseadas em dados estatísticos e de alta precisão, como Melhor data para plantar, tipos de sementes, adubos, visando a melhoria da safra.

2 - Bayer

Agricultura moderna Principais desafios

Serviços

Parceiros

Principais tecnologias

Climate FieldView

Plataforma conectada a máquinas agrícolas que coletam dados automaticamente. Monitoramento pelo produtor em tempo real, gerando mapas que ajudam no controle da produção.

Orbia

É o marketplace do agronegócio.

Também atua em áreas como Inteligência artificial e telemedicina e Radiologia

Pecuária Digital

A utilização de marcadores em animais, como, Brincos, Colares, Subcutâneos, para identificação e controle possibilitam várias análises, entre elas, medir consumo alimentar e emissão de gases. Possibilitando avaliar desempenho e tendo um retorno econômico maior.

Exemplos de utilização de Big Data na pecuária Digital

1 - Fazenda Santa Rosa – Altair/-SP

Nessa fazenda de confinamento com 25000 cabeças de gado.

O monitoramento é realizado por células no cocho, que identificam o cadastro do animal, atualizado a cada 2 minutos, possibilitando verificar comportamento/ consumo de água/alimento.

A Inteligência de negócios é feita desde a entrada até frigorifico. No momento de embarque, ao fazer pesagem do lote, é verificado uma grande melhoria no processo que antes, o controle de embarque para remessa necessitava, verificar ficha por ficha do cadastro do animal, porém, utilizando medição por radiofrequência, identificando cada animal, foi possível embarque em 1(uma) hora até 4 carretas, sendo que do modo antigo, só era possível carregar uma, nesse mesmo tempo.

Acelerar processo, partindo do princípio da Rastreabilidade total, gera considerável qualidade de retorno, tanto para o gado, para o pecuarista e consumidor.

Considerações Finais

Não se pode falar em transformação digital, com foco em Big Data, na agricultura e pecuária, sem levar em consideração pontos fundamentais como investimento considerado em Pessoas, Equipamentos e Tempo.

O comprometimento e colaboração total das pessoas envolvidas em todos os processos de produção e transformação é fundamental, já que todos.

Possibilitando cada vez mais, melhorias para o produtor e consumidor. Todavia, é preciso que se busque adaptar o esforço de trabalho de acordo com a realidade e necessidade do cliente.

Entretanto, como se tem observado durante anos, a utilização das ferramentas para gerenciamento e controle bem como, uma estratégia correta, pode se obter muito sucesso

Referências

Wikipedia - https://pt.wikipedia.org/wiki/Big_data Conceito Big Data

Agronegócio - https://digital.futurecom.com.br/transformacao-digital/como-o-big-data-tem-sido-usado-no-campo

Panorama do agro - https://www.cnabrasil.org.br/cna/panorama-do-agro

IBGE - Monitoramento Cobertura e uso do solo

https://www.ibge.gov.br/apps/monitoramento cobertura uso terra/v1/#/home

Bayer – Inovação aberta

https://www.bayer.com.br/pt/inovacao-aberta

Monsanto

https://www.startagro.agr.br/por-que-monsanto-aposta-na-agricultura-digital/

Conheça a pecuária digital - Video

https://youtu.be/nTlu4WpKqRs?si=vvQCdorAm3kz9DX6

Bayer – Climate View

https://www.bayer.com.br/pt/paixao-por-inovar

Softwares de gestão agrícola

 $\underline{https://www.totvs.com/blog/gestao-agricola/software-de-gestao-agricola/}$