Numerical Optimization

Unit 8 Linear Programming and the Simplex Method

Che-Rung Lee

Department of Computer Science National Tsing Hua University

October 28, 2021

Example problem

$$\min_{\substack{x_1, x_2 \\ \text{s.t.}}} \quad z = -4x_1 - 2x_2$$

$$\text{s.t.} \quad x_1 + x_2 \le 5$$

$$2x_1 + 1/2x_2 \le 8$$

$$x_1, x_2 \ge 0$$

Matrix formulation

$$\begin{array}{ll} \min_{x_1,x_2} & z = -4x_1 - 2x_2 \\ \text{s.t.} & x_1 + x_2 \leq 5 \\ & 2x_1 + 1/2x_2 \leq 8 \\ & x_1,x_2 \geq 0 \end{array}$$

• Let
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\vec{c} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 1 \\ 2 & 1/2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$.

• The problem can be written as

$$\begin{aligned} \min_{\vec{x}} & \quad \vec{c}^T \vec{x} \\ \text{s.t.} & \quad A \vec{x} \leq \vec{b} \\ & \quad \vec{x} \geq 0 \end{aligned}$$

The standard form

$$\min_{\vec{x}} \quad z = \vec{c}^T \vec{x}$$
s.t.
$$A\vec{x} = \vec{b}$$

$$\vec{x} > 0$$

- z : Objective function.
- \vec{c} : Cost vector $\in \mathbb{R}^n$
- A: Constraint matrix $\in \mathbb{R}^{m \times n}$, assuming $m \le n$
- $A\vec{x} = \vec{b}$: Linear equality constraints.
- The i_{th} constraint is $\sum_{j=1}^{n} a_{ij}x_j = b_i$

Converting to the standard form

• Change inequality constraints to equality constraints:

$$x_1 + x_2 + x_3 = 5$$

 $2x_1 + \frac{1}{2}x_2 + x_4 = 8$

- x₃ and x₄ are called slack variables.
- As a result,

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \vec{c} = \begin{pmatrix} -4 \\ -2 \\ 0 \\ 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1/2 & 0 & 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

Rules to converting to standard form

1. If
$$\sum_{j=1}^n a_{ij}x_j \leq b_j$$

$$\Rightarrow$$
 adding a slack variable $s_i \geq 0$

$$\sum_{i=1}^n a_{ij} x_j + s_i = b_i.$$

2. If
$$\sum_{i=1}^n a_{ij}x_j \geq b_j$$

$$\Rightarrow$$
 adding a surplus variable $e_i \ge 0$

$$\sum_{j=1}^n a_{ij}x_j - e_i = b_i.$$

3. If
$$x_i \geq l_i$$

$$\Rightarrow x_i = \hat{x}_i + l_i$$
, $\hat{x}_i \ge 0$.

4. If
$$x_i \leq u_i$$

$$\Rightarrow x_i = u_i - \hat{x}_i , \hat{x}_i \geq 0.$$

5. If
$$x_i \in \mathbb{R}$$

$$\Rightarrow \quad x_i = \bar{x}_i - \hat{x}_i \ , \ \bar{x}_i \geq 0 \ , \ \hat{x}_i \geq 0.$$

6. For the problem
$$\max_{\vec{x}} \vec{c}^T \vec{x} \Rightarrow -\min_{\vec{x}} -\vec{c}^T \vec{x}$$
.

$$-\min_{\vec{x}} -\vec{c}^T$$

Some terminology

- Feasible set: $\mathcal{F} = \{\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{b}, \vec{x} \ge 0\}.$
- If $\mathcal{F} \neq \emptyset$, the problem is feasible or consistent.
- If $\mathcal{F} = \emptyset$, the problem is infeasible.
- If $\vec{c}^T \vec{x} \ge \alpha$ for all $\vec{x} \in \mathcal{F}$, the problem is bounded.
- If the solution is at infinity, the problem is unbounded.
- The problem may have infinity number of solutions.
- Hyperplane $H = \{\vec{x} \in \mathbb{R}^n | \vec{a}^T \vec{x} = \beta\}$ whose normal is \vec{a}
- Closed half space $H = \{\vec{x} \in \mathbb{R}^n | \vec{a}^T \vec{x} \le \beta\}$ or $H = \{\vec{x} \in \mathbb{R}^n | \vec{a}^T \vec{x} \ge \beta\}$
- Polyhedral set or polyhedron (polygon): A set of the intersection of finite closed half spaces.
- Poly tope: nonempty and bounded polyhedron.

Convex set

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p \in \mathbb{R}^n$ and $\alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{R}$.

Linear combination	$\vec{y} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 \dots + \alpha_p \vec{x}_p$
Affine combination	$\vec{y} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 \dots + \alpha_p \vec{x}_p$
	and $\alpha_1 + \alpha_2 + \ldots + \alpha_p = 1$
Convex combination	$\vec{y} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 \dots + \alpha_p \vec{x}_p$
	and $0 \leq \alpha_1, \alpha_2, \dots \alpha_p \leq 1$
	and $\alpha_1 + \alpha_2 + \ldots + \alpha_p = 1$
Cone combination	$\vec{y} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 \dots + \alpha_p \vec{x}_p$
	and $\alpha_1, \alpha_2, \dots, \alpha_p \geq 0$

For a set $S \subset \mathbb{R}^n$, $S \neq \emptyset$, if $\forall \vec{x_1}, \vec{x_2} \in S$ s.t. the affine(convex) combination of $\vec{x_1}, \vec{x_2}$ are in S, we say S is a affine(convex) set.

The simplex method

Basic idea

- Find a "vertex" of the poly-tope.
- ② Find the best direction and move to the next "vertex" (pricing).
- Test optimality of the "vertex".

Basic feasible point

- A vertex \vec{x} in the polytope C is called a basic feasible point.
- Geometrically, \vec{x} is not a convex combination of any other point in C.
- Algebraically, $A\vec{x} = \vec{b}$, the columns of A corresponding to the positive elements of \vec{x} are linearly independent.
- Theorem: at least one of the solution is the basic feasible point.
- Which means we only need to search those basic feasible points.
- For m hyperplanes in an n dimensional space, $m \ge n$, the intersection of any n hyperplanes can be a basic feasible point. Therefore, we have $C_n^m = \frac{m!}{n!(m-n)!}$ points to check.
 - For m = 2n, $C_n^{2n} > 2^n$. The time complexity of doing so is exponential!
 - We need a systematical way to solve this.

Basic variables and nonbasic variables

- We need to find an intersection of n hyperplanes, whose normal vectors are linearly independent. (why?)
- Partition A = [B|N] where B is invertible.

Example

For
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1/2 & 0 & 1 \end{pmatrix}$$
, we let $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $N = \begin{pmatrix} 1 & 1 \\ 2 & 1/2 \end{pmatrix}$

• Partition $\vec{x} = \begin{bmatrix} \vec{x}_B \\ \vec{x}_N \end{bmatrix}$ accordingly.

Example

Based on the above partition, $\vec{x}_B = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}, \vec{x}_N = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Compute the basic feasible point

- Let $\vec{x}_N = 0$ and solve $B\vec{x}_B = \vec{b}$
 - \vec{x}_B is called the "basic variables"
 - \vec{x}_N is the "nonbasic variables"
- $\vec{x} = \begin{bmatrix} B^{-1}\vec{b} \\ \vec{0} \end{bmatrix}$ is a basic feasible point. (why?)

Example

$$\vec{x} = \begin{pmatrix} x_3 \\ x_4 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 0 \\ 0 \end{pmatrix}. \text{ (Where is this point?)}$$

Compute the search direction

Rewrite the object function z as a function of nonbasic variables.

$$A = [B|N]$$
 and $A\vec{x} = \vec{b}$

which implies $B\vec{x}_B + N\vec{x}_N = \vec{b}$.

• Let $\vec{x}_B = B^{-1}(\vec{b} - N\vec{x}_N)$ and substitute it to z.

$$z_{k+1} = \vec{c}^T \vec{x}$$

$$= \vec{c}_B^T \vec{x}_B + \vec{c}_N^T \vec{x}_N$$

$$= \vec{c}_B^T B^{-1} (\vec{b} - N \vec{x}_N) + \vec{c}_N^T \vec{x}_N$$

$$= (-c_B^T B^{-1} N + \vec{c}_N^T) \vec{x}_N + \vec{c}_B^T B^{-1} \vec{b}$$

$$= \vec{p}^T \vec{x}_N + \vec{c}_R^T B^{-1} \vec{b}$$

Now z has only nonbasic variables.

Pricing vector

- The vector $\vec{p} = \vec{c}_N N^T (B^{-1})^T \vec{c}_B$ is called the *pricing vector*.
- Since all nonbasic variables are zero at this time, if x_i 's coefficient (the *i*th element of \vec{p}) is negative, then by increasing x_i 's value, we can decrease z's value.
- What if all the elements in \vec{p} are positive?
- If there are more than one elements in \vec{p} are negative, which nonbasic variable x_i should be chosen to increase its value?

Example

At this point, $z = -4x_1 - 2x_2$. We choose to increase x_1 .

Search direction

Let the *i*th element of \vec{x}_N , denoted ν_i , be the chosen element to be increased. What is the search direction?

- Since all the constraints need be satisfied, to increase ν_i implies to change some basic variables.
- How to find this relation?

$$A\vec{x} = \vec{b}$$

$$B\vec{x}_B + N\vec{x}_N = \vec{b}$$

$$\vec{x}_B = B^{-1}(\vec{b} - N\vec{x}_N)$$

• Let the *i*th column of N be \vec{n}_i .

$$\vec{x}_B = B^{-1}(\vec{b} - \nu_i \vec{n}_i).$$

- When ν_i is increased by 1, the change of \vec{x}_B is $-B^{-1}\vec{n}_i$ (because $B^{-1}\vec{b}$ are their current values.).
- Other \vec{x}_N elements remain the same. (why?)

Search direction

The search direction is

$$\vec{d} = \begin{pmatrix} -B^{-1}\vec{n}_i \\ \vec{0} \\ 1 \\ \vec{0} \end{pmatrix} \begin{array}{l} \leftarrow \text{Basic variables} \\ \leftarrow \text{Other nonbasic variables} \\ \leftarrow \text{The index of } \nu_i \\ \leftarrow \text{Other nonbasic variables} \end{array}$$

Example

We choose x_1 to increase its value. The 1st column of A is $(1 \ 2)^T$. Therefore, $-B^{-1}\vec{n}_1 = (-1 \ -2)^T$.

$$\vec{d} = \begin{pmatrix} d_3 \\ d_4 \\ d_1 \\ d_2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix}$$

Step length

How large can the step length be?

- The only constraint of changing those basic variables is to keep them nonnegative.
- Let α be the step length.

$$\vec{x}_B^{(now)} = \vec{x}_B^{(now)} + \alpha \vec{d} = B^{-1}\vec{b} + \alpha \vec{d} \ge 0$$

• The ratio test: the only basic variables that we care are those whose \vec{d} elements are negative. (why?)

$$\alpha = \min_{x_j \in \vec{x}_B, d_j < 0} |x_j/d_j|. \tag{1}$$

• What if all d_is are positive?

Example

Since d_3 and d_4 are all negative, and $x_3 = 5, x_4 = 8$,

$$\alpha = \min(|-5/1|, |-8/2|) = 4.$$

Move to the next location

- If everything goes well, there will be one nonbasic variable ν_i becomes positive, and one basic variable x_i becomes zero.
- We exchange those two variables. Let ν_i be a basic variable and let x_j be a nonbasic variable.
- This process continues until the optimal solution is found. (How to know the optimal solution?)

Example

$$x_3 = 5 + (-1) * 4 = 1.$$

 $x_4 = 8 + (-2) * 4 = 0$ becomes nonbasic and $x_1 = 4$ becomes basic.

The simplex method

The simplex method for linear programming

- **1** Let \mathcal{B}, \mathcal{N} be the index set of basic variables and nonbasic variables.
- ② For k = 1, 2, ...
 - **1** $B = A(:, \mathcal{B}), N = A(:, \mathcal{N}), \vec{x}_B = B^{-1}b, \text{ and } \vec{x}_N = 0.$
 - **2** Solve $B^T \vec{v} = \vec{c}_B$
 - **3** Compute $\vec{p} = \vec{c}_N N^T \vec{v}$.
 - If $\vec{p} \ge 0$, stop (the optimal solution found)
 - **3** Select $i \in \mathcal{N}$ with $\vec{p}(i) < 0$.
 - **6** $Solve <math>B\vec{s} = A(:,i)$
 - If $\vec{s} < 0$, stop (unbounded)
 - **3** Calculate α using (1) and assume the index of zeroed basic variable is j.

 - \odot Update \mathcal{B} and \mathcal{N} by exchanging index i and j.

Time complexity

- The worst case time complexity of the Simplex method is still exponential. But practically, only O(n) iterations are required.
- This phenomenon has been analyzed by Daniel A. Spielman and Shang-Hua Teng, and they win the Godel prize in 2008.
- See their paper for details: Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time.
- There are polynomial-time algorithms for the linear programming problems.
 - 1981: Leonid Khachiyan(Ellipsoid method)
 - 1984: Narendra Karamarker(Interior point method), which will be discussed.

Lower bound of the answer

Question: Before we solve the problem, can we use the constraints to estimate the "lower bound" of $z(\vec{x})$?

Example

- From (1), $z_x = 5x_1 + 8x_2 \ge 4x_1 + 8x_2 = 4(x_1 + 2x_2) = 16$
- From (2), $z_x = 5x_1 + 8x_2 \ge 5x_1 + \frac{5}{2}x_2 = 5(x_1 + \frac{1}{2}x_2) = 10$
- From the combination of (1) and (2), $z_x = 5x_1 + 8x_2 \ge 5x_1 + 7.75x_2 = 3.5(x_1 + 2x_2) + 1.5(x_1 + \frac{1}{2}x_2) = 17$

Maximum lower bound

- What is the "maximum lower bound" of z from constraints?
- We multiply y_1 to (1) and multiply y_2 to (2), and add them together.

$$\begin{array}{cccc} (x_1 + 2x_2)y_1 & \geq & 4y_1 \\ +) & (x_1 + \frac{1}{2}x_2)y_2 & \geq & 2y_2 \\ \hline (y_1 + y_2)x_1 + (2y_1 + \frac{1}{2}y_2)x_2 & \geq & 4y_1 + 2y_2 \end{array}$$

The problem of maximizing the lower bound becomes

max_{y₁,y₂}
$$4y_1 + 2y_2$$

s.t. $y_1 + y_2 \le 5$
 $2y_1 + \frac{1}{2}y_2 \le 8$
 $y_1, y_2 > 0$

which is called the *dual problem* of the original problem.

• The original problem is called the primal problem.

The primal and the dual problem.

The primal and the dual

Primal problem	Dual problem
$\min_{\vec{x}} \vec{c}^T \vec{x}$	$\max_{\vec{y}} \vec{b}^T \vec{y}$
s.t. $A\vec{x} \geq \vec{b}$	$ \begin{array}{ccc} \operatorname{max}_{\vec{y}} & b^T \vec{y} \\ \operatorname{s.t.} & A^T \vec{y} \leq \vec{c} \end{array} $
$ec{x} \geq 0$	$ec{y} \geq 0$

Example

Primal problem	Dual problem
$\min_{x_1, x_2} 5x_1 + 8x_2$	$\max_{y_1,y_2} 4y_1 + 2y_2$
s.t. $x_1 + 2x_2 \ge 4$	s.t. $y_1 + y_2 \le 5$
$x_1 + \frac{1}{2}x_2 \ge 2$	$2y_1 + \frac{1}{2}y_2 \le 8$
$x_1, x_2 \geq 0$	$y_1,y_2\geq 0$

Duality

Theorem (The weak duality)

If \vec{x} is feasible for the primal problem and \vec{y} is feasible for the dual problem , then

$$\vec{y}^T \vec{b} \le \vec{y}^T A \vec{x} \le \vec{c}^T \vec{x}.$$

Theorem (The strong duality)

If \vec{x}^* is the optimal solution of the primal. If \vec{y}^* is the optimal solution of the dual. Then

$$\vec{c}^T \vec{x}^* = \vec{b}^T \vec{y}^*$$

Moreover, if the primal (dual) problem is unbounded, the dual (primal) is infeasible.

Properties of the optimal solution

Example

Primal problem	Dual problem
$\begin{array}{ll} \min_{x_1,x_2} & 5x_1 + 8x_2 \\ \text{s.t.} & x_1 + 2x_2 \geq 4 \\ & x_1 + \frac{1}{2}x_2 \geq 2 \\ & x_1 + \frac{1}{5}x_2 \geq 1 \\ & x_1,x_2 \geq 0 \end{array}$	$\begin{array}{ll} \max_{y_1,y_2} & 4y_1 + 2y_2 + y_3 \\ \text{s.t.} & y_1 + y_2 + y_3 \leq 5 \\ & 2y_1 + \frac{1}{2}y_2 + \frac{1}{5}y_3 \leq 8 \\ & y_1, y_2, y_3 \geq 0 \end{array}$

- The optimal solution of the primal is 52/3, which happens at $(x_1^*, x_2^*) = (4/3, 4/3)$;
- At the primal optimal solution, the first two constrains hold the equality. But the last constrain does not.
- The optimal solution of the dual is at the point $(y_1^*, y_2^*, y_3^*) = (11/3, 4/3, 0);$

Complementary slackness

Given a feasible point, an inequality constraint is called active if its equality holds. Otherwise it is called inactive.

Theorem (Complementary slackness)

 \vec{x}^* and \vec{y}^* are optimal solution of the primal and the dual problem if and only if

- For j = 1, 2, ..., n, $A(;,j)^T \vec{y}^* = c_j$ or $x_j^* = 0$
- ② For i = 1, 2, ..., m, $A(i, ;)\vec{x}^* = b_i$ or $y_i^* = 0$

If we add slack variables \vec{s} to $A\vec{x} + \vec{s} = \vec{b}$, the above theorem can be rewritten as

- If a constraint i is active, $s_i = 0$.
- If a constraint i is inactive, $s_i > 0$.
- The complementarity slackness condition is $y_i^* s_i^* = 0$ for all i.