

Accessing MIDFIELD: A Workshop for R beginners

FIE 2019

Wednesday October 16, 2019 5 – 8 pm

Multiple-Institution Database For Investigating Engineering Longitudinal Development

Workshop Agenda

Min	Topic
10	Introductions and Objectives
5	The data structures in MIDFIELD and midfieldr
30	Finding stories in the data
35	Starting with R (tutorial)
15	— break —
20	Elements of effective graphs
5	Introduce midfieldr
50	Starting with midfieldr (tutorial)
10	Next steps

Facilitators

Matthew Ohland, MIDFIELD Director/PI

Associate Head and Professor of Engineering Education, Purdue

Russell Long, MIDFIELD Managing Director

Richard Layton, MIDFIELD Data Display Specialist

Professor of ME, Rose-Hulman

Marisa Orr, MIDFIELD Associate Director

Assistant Professor of Mechanical Engr/ Engr & Science Ed, Clemson

Susan Lord, MIDFIELD Institute Director

Professor and Chair of Integrated Engineering, University of San Diego

Facilitators

Hasan Al Yagoub, Graduate Research Assistant, Engineering Education, Purdue

Hossein Ebrahiminejad, Graduate Research Assistant, Engineering Education, Purdue

Workshop Objectives

By the end of this workshop, participants should be able to

- Describe key variables in the MIDFIELD data
- Select academic programs and populations to study
- Use midfieldr, an R package specifically designed for use with MIDFIELD, to compute persistence metrics
- Explore and tell a story from MIDFIELD data Explain key features of effective data displays

Introduction to MIDFIELD

Multiple-Institution Database For Investigating Engineering Longitudinal Development

Multiple

I nstitution

D atabase

F or

I nvestigating

E ngineering

L ongitudinal

D evelopment

Whole-population data for institutions and time period

Current dataset

- 22 institutions
- 1.5 million unique students in all departments
- 250,000 unique engineering students, approximately 1/7 US engineering enrollment

5-year expansion plan in progress

- Total of 100+ diverse institutions
- 1/2 US engineering enrollment

Different uses of MIDFIELD

- Demographic data:
 - Who enrolls? Where are they coming from?
- Graduation data:
 - Who graduates? How long does it take?
- Term data:
 - When do students leave? How do students move among majors? Why do students change majors and what happens?
- Course data:
 - How do grade distributions vary by section? To what extent do students intentionally co-enroll in classes?

What have MIDFIELD researchers accomplished?

- Many publications in journals and conference proceedings, conference presentations, multiple book chapters, and one entire book.
- 4 journal best paper awards, two conference best paper awards, and other recognitions (e.g. WEPAN, ECEDHA).
- Panel discussions, invited workshops and talks, keynote addresses, publicity in various media outlets.

Women in graduate at the same rates as men.

All Engineering Matriculants

Six-Year Graduation Rates in Engineering (%)

Eightsemester persistence is a good predictor of six-year graduation... but not for everyone.

Number persisting to 8th semester

The aggregate experience doesn't represent the experience of any racial/ethnic group.

Some disciplines are better than others at graduating students... but some of the students who leave will graduate in other engineering majors.

