Introduction to Statistical Method

Hypothesis Testing

A second major statistical method for gaining information on a probability.

The goal is to reject or fail to reject statements (hypotheses) based on statistical data.

Hypothesis Definition

A statement about a population parameter θ . The hypothesis will compare θ to a null value donated θ_0 .

Fisher's Null Hypothesis Test

This hypothesis will be donated by H_0 and is null hypothesis.

Three forms: $H_0: \theta = \theta_0$ or $H_0: \theta \leq \theta_0$ or $H_0: \theta \geq \theta_0$.

A hypothesis test is based on rejecting a hypothesis.

One-Tailed Test

The test of a hypothesis of the form $H_0: \theta \leq \theta_0$ or $H_0: \theta \geq \theta_0$ is said to be one-tailed tests.

P-Value for a One-Tailed Test

• Apply an example first

We want to find evidence that a new car design has a mean mileage greater than 26 mpg. Therefore, we set up the null hypothesis: $H_0: \mu \leq 26$.

The goal is to reject the null hypothesis.

• Example explanation

We take a random sample and calculate \overline{X} , if it is much greater than 26, then there is reason to believe that H_0 is false.

Take a random sample of size n and find the value \overline{x} for the sample mean.

The probability of obtaining the measured value of \overline{x} or a larger result if H_0 is true is the **significance** or **P-Value** of the test.

(TM还是说中文吧:就是说,猜测 $\mu \leq 26$,然后我们得到了样本的平均的观测值 \overline{x} ,根据样本个数和标准差,我们可以对样本的平均值 \overline{X} 得到基于 $\mu \leq 26$ 的test,然后可以放宽到 $\mu = 26$,然后可以用 $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$ 算出P的值来判断这个样本是否符合这个假设)

$$P[\overline{X} \geq \overline{x} | \mu \leq 26] \leq P[\overline{X} \geq \overline{x} | \mu = 26]$$

 H_0 : $\mu \leq \mu_0$ shows the case if $\mu = \mu_0$, the curve shift left if $\mu < \mu_0$

The shaded area shows the probability of obtaining $\overline{X} \geq \overline{x}$ if $\mu = \mu_0$.

- The P-value is therefore an upper bound of the probability of obtaining the data if H_0 is true.
- $P = P[D|H_0]$ if D represents the statistical data, we will reject H_0 if it is small.

So either:

- \circ fail to reject H_0 at P level of significance
- \circ reject the H_0 at P level of significance

The statistic on which the *P* is based is **test statistic**.

Two-Tailed Test

If we are testing a hypothesis of the form $H_0: \theta = \theta_0$, we say we are performing a two-tailed test.

 H_0 : $\mu = \mu_0$ The **P** is twice the value of one-tailed test.

Does a Small P-Value Provide Evidence that H0 is False

Since we know the fact that the $P = P[D|H_0]$, but some researcher want $P[H_0|D]$.

We can derive the fact from the Bayes's theorem:

$$P[D|H_0] = P[D\cap H_0]/P[H_0]$$
, then we can derive $P[H_0|D] = P[D\cap H_0]/P[D]$.

$$\begin{split} P[H_0|D] &= \frac{P[D \cap H_0]}{P[D]} = \frac{P[D|H_0] \cdot P[H_0]}{P[D]} = \frac{P[D|H_0] \cdot P[H_0]}{P[D|H_0] \cdot P[H_0] + P[D|\neg H_0] \cdot (1 - P[H_0])} \\ &= \frac{P[D|H_0]}{P[D|H_0] + P[D|\neg H_0] \cdot (\frac{1 - P[H_0]}{P[H_0]})} \end{split}$$

Is Hypothesis Testing Logical?

Since we get the $P[H_0|D]$ representation, we can let it be close to 1 depending on $P[H_0]$.

Hence, it is possible that: given H_0 and the data is very unlikely, but given the data H_0 is very likely.

- In the classic argument:
 - If P then Q; not Q therefore not P
- In hypothesis testing, we want to argue that

If P then Q; Q is unlikely therefore P is unlikely

Actually this is wrong.

Bayesian & Frequentist Statistics

Bayesian

Claim to understand the **logical inconsistencies** and intend to compensate for them with **prior and posterior probability** distributions.

Theoretically true, difficult to implement in practice.

Frequentist

Mainly ignore the problems mentioned here or claim that they are not relevant in their specific research.

Neyman-Pearson Decision Theory

Two competing hypothesis: H_0, H_1 .

Seek to reject H_0 to accept H_1 .

- H₀ is null hypothesis
- H_1 is research hypothesis or alternative hypothesis.

So there are four possible outcomes of the decision-making process:

- We reject H_0 when H_0 is untrue.
- **Type I Error**: We reject H_0 even though H_0 is true.
- **Type II Error**: We fail to reject H_0 even though H_0 is untrue.
- We fail to reject H_0 when H_0 true.

Type I and Type II error should be as small as possible.

Power, Type I & II Error Probabilities

```
lpha=P[	ext{Type I Error}]=P[	ext{reject }H_0\mid H_0 	ext{ true}]=P[	ext{accept }H_1\mid H_1 	ext{ false}] eta=P[	ext{Type II Error}]=P[	ext{fail to reject }H_0\mid H_0 	ext{ false}] Power=1-eta
```

The power shows how likely our experiment is successful.

- By requiring strong evidence before rejecting H_0 (a value of the test statistic that is very different from its null value), α can be made small.
- The range of values for the test statistic that causes us to reject H_0 is **critical region**.

We choose the critical region in such a way to make α small.

• The more evidence we require to reject H_0 (the smaller the critical region is), the harder it is to actually reject H_0 in the first place.

The power decreases with β becomes larger.

• For given H_0 and H_1 , β can be controlled by increasing the sample size.

Example of Neyman-Pearson Decision Theory

The mean is supposed to be $\mu_0 = 40$ and the standard deviation is $\sigma = 2$.

Two hypothesis $H_0: \mu=40$, $H_1: |\mu-40|\geq 1$

Then the sample size is n = 25.

The probability of committing Type I Error is $\alpha \leq 5\%$. (derive from H_0 and H_1 ?)

So we apply the test statistic $Z=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$ and let $-z_{lpha/2}\leq Z\leq z_{lpha/2}$ to get probability of 1-lpha and

$$P[|Z| > z_{\alpha/2}] = \alpha$$
.

The $\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right| \geq 1.96$ is the critical region, with this critical region there are 5% of Type I Error.

If the sample mean is $\bar{x} = 40.9$, then the test statistic is z = 2.25 > 1.96.

Type II Error

$$|Z|=\Big|rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\Big|\geq z_{lpha/2}=$$
 2.575 when $lpha=$ **1**%. So with $z=$ **2.25** $<$ **2.575**, there is a Type II Error.

Assume null hypothesis $H_0: \mu = \mu_0$ and the true value is $\mu = \mu_0 + \delta, \delta \in \mathbb{R} \setminus \{0\}$.

 $Z=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$ is the test statistic actually follows a normal distribution with unit variance and mean $\delta\sqrt{n}/\sigma$.

Review that if $-z_{lpha/2} \leq Z \leq z_{lpha/2}$ then we cannot reject H_0 , deriving the Type II Error.

$$eta = P[|Z| \leq z_{lpha/2}] = rac{1}{\sqrt{2\pi}} \int_{-z_{lpha/2}}^{z_{lpha/2}} e^{-(t-\delta\sqrt{n}/\sigma)^2/2} dt pprox rac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{lpha/2}-\delta\sqrt{n}/\sigma} e^{-t^2/2} dt$$

We donate
$$-z_{eta}pprox z_{lpha/2}-\delta\sqrt{n}/\sigma$$
 or $npprox rac{(z_{lpha/2}+z_{eta})^2\sigma^2}{\delta^2}$

Given a critical region determined by α , we can find a sample size n so that the probability of committing a Type II Error is β .

Remark

In order for the statistical procedure to be valid, a critical region must be fixed before any data obtained.