Homework 1

Problem 1. Prove IP2 by induction on the property $Q(x) = {}^{\alpha}P(k)$ holds for all k < x."

Proof. Note Q(0) is vacuously true since there are no natural numbers less than 0. Suppose Q(n) is true. Then P(k) holds for all k < n. Now if P(n) is true, then P(k) holds for all k < n + 1 and thus Q(n + 1) is true. Then Q holds for any natural number n which means P holds for the same set of numbers. This proves IP2 holds.

Problem 2. Prove that the relation <, as we defined it in class, is transitive on \mathbb{N} . That is, show that for all $k, m, n \in \mathbb{N}$, if k < m and m < n then k < n.

Proof. Let P(n) be the statment "For all k < m and m < n, k < n". Note that P(0) is vacuously true since there are no natural numbers less than 0. Suppose P(n) is true. Choose k < n + 1 and m < k. If m < n then we know k < n by our inductive hypothesis. It remains to show the case k = n. Suppose k = n and m < n. Then $m \subseteq n$. But note that $n + 1 = n \cup \{n\}$. Thus $m \subseteq n + 1$ and so m < n + 1. By the principle of induction, P(n) holds for all $n \in \mathbb{N}$.

Problem 3. Prove that $(\mathbb{N}, <)$ is a well ordered set.

Proof. Let $A \subseteq \mathbb{N}$ be a subset with no least element. Let $B = \mathbb{N} \setminus A$ be the set of natural numbers not in A. Note that $0 \in B$ because 0 is less than every natural number and so it would be the least element of A. Also, if $n \in B$, then $n+1 \in B$ as well, otherwise n+1 would be a least element of A. But then $B = \mathbb{N}$ and so $A = \emptyset$. Thus all nonempty subsets of \mathbb{N} have least elements.

Problem 4. Prove that there is no function $f: \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, f(n) > f(n+1).

Proof. Suppose such a function f exists. We can show that each element of $f(\mathbb{N})$ is distinct. Suppose f(k) < f(n) for all k < n. Then note that f(n) < f(n+1) and by the transitivity of < on \mathbb{N} , we have f(k) < f(n+1) for each k < n+1. Thus by the second version of the induction principle, we know every element of $f(\mathbb{N})$ is distinct.

Let f(0) = k. Note that there are only k natural numbers less than k. Consider f(k+1). We know $f(k+1) < f(k), f(k-1), \ldots, f(1), f(0)$. Since each of $f(0), f(1), \ldots, f(k)$ is distinct, by the pigeon hole principle, one of these must be equal to f(k+1). This is a contradiction and so f cannot exist. \square

Problem 5. Verify that the definition we gave in class for \vDash is unambiguous for each wff A.

Proof. Let S be a set of sentence symbols and $M \subseteq S$ be a model. First suppose that A has length 1. Then either $A \in M$ or $A \notin M$ and so either $M \models A$ or $M \not\models A$. Now suppose that for all wffs B of length n, we have $M \models B$. Then by definition $M \not\models A = (\neg(B))$. Also, if C is a wff of length n, then $M \models A = ((B) \land (C))$. Since these are the only two ways of making a wff, by the principle of induction there is no ambiguity in the symbol \models for any wff A.