Smarandache's Conjecture on Consecutive Primes

Octavian Cira

(Aurel Vlaicu, University of Arad, Romania)

E-mail: octavian.cira@uav.ro

Abstract: Let p and q two consecutive prime numbers, where q > p. Smarandache's conjecture states that the nonlinear equation $q^x - p^x = 1$ has solutions > 0.5 for any p and q consecutive prime numbers. This article describes the conditions that must be fulfilled for Smarandache's conjecture to be true.

Key Words: Smarandache conjecture, Smarandache constant, prime, gap of consecutive prime.

AMS(2010): 11A41

§1. Introduction

We note $\mathbb{P}_{\geqslant k} = \{p \mid p \text{ prime number}, p \geqslant k\}$ and two consecutive prime numbers $p_n, p_{n+1} \in \mathbb{P}_{\geqslant 2}$.

Smarandache Conjecture The equation

$$p_{n+1}^x - p_n^x = 1 (1.1)$$

has solutions > 0.5, for any $n \in \mathbb{N}^*$ ([18], [25]).

Smarandache's constant([18], [29]) is $c_S \approx 0.567148130202539\cdots$, the solution for the equation

$$127^x - 113^x = 1.$$

Smarandache Constant Conjecture The constant c_S is the smallest solution of equation (1.1) for any $n \in \mathbb{N}^*$.

The function that counts the prime numbers $p, p \leq x$, was denoted by Edmund Landau in 1909, by π ([10], [27]). The notation was adopted in this article.

We present some conjectures and theorems regarding the distribution of prime numbers.

Legendre Conjecture([8], [20]) For any $n \in \mathbb{N}^*$ there is a prime number p such that

$$n^2 .$$

¹Received August 15, 2014, Accepted December 5, 2014.

The smallest primes between n^2 and $(n+1)^2$ for $n=1,2,\cdots$, are 2, 5, 11, 17, 29, 37, 53, 67, 83, \cdots , [24, A007491].

The largest primes between n^2 and $(n+1)^2$ for $n=1,2,\cdots$, are 3, 7, 13, 23, 31, 47, 61, 79, 97, \cdots , [24, A053001].

The numbers of primes between n^2 and $(n+1)^2$ for $n=1,2,\cdots$ are given by 2, 2, 2, 3, 2, 4, 3, 4, \cdots , [24, A014085].

Bertrand Theorem For any integer n, n > 3, there is a prime p such that n .

Bertrand formulated this theorem in 1845. This assumption was proven for the first time by Chebyshev in 1850. Ramanujan in 1919 ([19]), and Erdös in 1932 ([5]), published two simple proofs for this theorem.

Bertrand's theorem stated that: for any $n \in \mathbb{N}^*$ there is a prime p, such that n . $In 1930, Hoheisel, proved that there is <math>\theta \in (0,1)$ ([9]), such that

$$\pi(x+x^{\theta}) - \pi(x) \approx \frac{x^{\theta}}{\ln(x)}$$
 (1.2)

Finding the smallest interval that contains at least one prime number p, was a very hot topic. Among the most recent results belong to Andy Loo whom in 2011 ([11]) proved any for $n \in \mathbb{N}^*$ there is a prime p such that 3n . Even ore so, we can state that, if Riemann's hypothesis

$$\pi(x) = \int_{2}^{x} \frac{du}{\ln(u)} + O(\sqrt{x}\ln(x)) , \qquad (1.3)$$

stands, then in (1.2) we can consider $\theta = 0.5 + \varepsilon$, according to Maier ([12]).

Brocard Conjecture([17,26]) For any $n \in \mathbb{N}^*$ the inequality

$$\pi(p_{n+1}^2) - \pi(p_n^2) \geqslant 4$$

holds.

Legendre's conjecture stated that between p_n^2 and a^2 , where $a \in (p_n, p_{n+1})$, there are at least two primes and that between a^2 and p_{n+1}^2 there are also at least two prime numbers. Namely, is Legendre's conjecture stands, then there are at least four prime numbers between p_n^2 and p_{n+1}^2 .

Concluding, if Legendre's conjecture stands then Brocard's conjecture is also true.

Andrica Conjecture([1],[13],[17]) For any $n \in \mathbb{N}^*$ the inequality

$$\sqrt{p_{n+1}} - \sqrt{p_n} < 1 \tag{1.4}$$

stands.

The relation (1.4) is equivalent to the inequality

$$\sqrt{p_n + g_n} < \sqrt{p_n} + 1 \tag{1.5}$$

where we denote by $g_n = p_{n+1} - p_n$ the gap between p_{n+1} and p_n . Squaring (1.5) we obtain the equivalent relation

$$g_n < 2\sqrt{p_n} + 1 \ . \tag{1.6}$$

Therefore Andrica's conjecture equivalent form is: for any $n \in \mathbb{N}^*$ the inequality (1.6) is true.

In 2014 Paz ([17]) proved that if Legendre's conjecture stands then Andirca's conjecture is also fulfilled. Smarandache's conjecture is a generalization of Andrica's conjecture ([25]).

Cramér Conjecture([4, 7, 21, 23]) For any $n \in \mathbb{N}^*$

$$g_n = O(\ln(p_n)^2) , \qquad (1.7)$$

where $g_n = p_{n+1} - p_n$, namely

$$\limsup_{n \to \infty} \frac{g_n}{\ln(p_n)^2} = 1 .$$

Cramér proved that

$$g_n = O(\sqrt{p_n} \ln(p_n))$$
,

a much weaker relation (1.7), by assuming Riemann hypothesis (1.3) to be true.

Westzynthius proved in 1931 that the gaps g_n grow faster then the prime numbers logarithmic curve ([30]), namely

$$\limsup_{n \to \infty} \frac{g_n}{\ln(p_n)} = \infty .$$

Cramér-Granville Conjecture For any $n \in \mathbb{N}^*$

$$q_n < R \cdot \ln(p_n)^2 \,, \tag{1.8}$$

stands for R > 1, where $g_n = p_{n+1} - p_n$.

Using Maier's theorem, Granville proved that Cramér's inequality (1.8) does not accurately describe the prime numbers distribution. Granville proposed that $R = 2e^{-\gamma} \approx 1.123 \cdots$ considering the small prime numbers ([6, 13]) (a prime number is considered small if $p < 10^6$, [3]).

Nicely studied the validity of Cramér-Grandville's conjecture, by computing the ratio

$$R = \frac{\ln(p_n)}{\sqrt{g_n}} \ ,$$

using large gaps. He noted that for this kind of gaps $R \approx 1.13 \cdots$. Since $1/R^2 < 1$, using the ratio R we can not produce a proof for Cramér-Granville's conjecture ([14]).

Oppermann Conjecture([16],[17]) For any $n \in \mathbb{N}^*$, the intervals

$$[n^2 - n + 1, n^2 - 1]$$
 and $[n^2 + 1, n^2 + n]$

contain at least one prime number p.

Firoozbakht Conjecture For any $n \in \mathbb{N}^*$ we have the inequality

$$\sqrt[n+1]{p_{n+1}} < \sqrt[n]{p_n} \tag{1.9}$$

or its equivalent form

$$p_{n+1} < p_n^{1+\frac{1}{n}}$$
.

If Firoozbakht's conjecture stands, then for any n > 4 we the inequality

$$g_n < \ln(p_n)^2 - \ln(p_n)$$
, (1.10)

is true, where $g_n = p_{n+1} - p_n$. In 1982 Firoozbakht verified the inequality (1.10) using maximal gaps up to 4.444×10^{12} ([22]), namely close to the 48th position in Table 1.

Currently the table was completed up to the position 75 ([15, 24]).

Paz Conjecture([17]) If Legendre's conjecture stands then:

- (1) The interval $[n, n+2\lfloor \sqrt{n}\rfloor +1]$ contains at least one prime number p for any $n \in \mathbb{N}^*$;
- (2) The interval $[n \lfloor \sqrt{n} \rfloor + 1, n]$ or $[n, n + \lfloor \sqrt{n} \rfloor 1]$ contains at leas one prime number p, for any $n \in \mathbb{N}^*$, n > 1.

Remark 1.1 According to Case (1) and (2), if Legendre's conjecture holds, then Andrica's conjecture is also true ([17]).

Conjecture Wolf Furthermore, the bounds presented below suggest yet another growth rate, namely, that of the square of the so-called Lambert W function. These growth rates differ by very slowly growing factors (like $ln(ln(p_n))$). Much more data is needed to verify empirically which one is closer to the true growth rate.

Let P(g) be the least prime such that P(g) + g is the smallest prime larger than P(g). The values of P(g) are bounded, for our empirical data, by the functions

$$P_{min}(g) = 0.12 \cdot \sqrt{g} \cdot e^{\sqrt{g}} ,$$

$$P_{max}(g) = 30.83 \cdot \sqrt{g} \cdot e^{\sqrt{g}} .$$

For large g, there bounds are in accord with a conjecture of Marek Wolf ([15, 31, 32]).

§2. Proof of Smarandache Conjecture

In this article we intend to prove that there are no equations of type (1.1), in respect to x with solutions ≤ 0.5 for any $n \in \mathbb{N}^*$.

Let
$$f:[0,1]\to\mathbb{R}$$
,

$$f(x) = (p+g)^x - p^x - 1 , (2.1)$$

where $p \in \mathbb{P}_{\geqslant 3}$, $g \in \mathbb{N}^*$ and g the gap between p and the consecutive prime number p+g. Thus

the equation

$$(p+g)^x - p^x = 1. (2.2)$$

is equivalent to equation (1.1).

Since for any $p \in \mathbb{P}_{\geqslant 3}$ we have $g \geqslant 2$ (if Goldbach's conjecture is true, then $g = 2 \cdot \mathbb{N}^{*1}$).

Figure 1 The functions (2.1) and $(p+g+\varepsilon)^x-p^x-1$ for $p=89,\,g=8$ and $\varepsilon=5$

Theorem 2.1 The function f given by (2.1) is strictly increasing and convex over its domain.

Proof If we compute the first and second derivative of function f, namely

$$f'(x) = \ln(p+q)(p+q)^x - \ln(p)p^x$$

and

$$f''(x) = \ln(p+g)^2 (p+g)^x - \ln(p)^2 p^x.$$

it follows that f'(x) > 0 and f''(x) > 0 over [0,1], thus function f is strictly increasing and convex over its domain.

Corollary 2.2 Since f(0) = -1 < 0 and f(1) = g - 1 > 0 because $g \ge 2$ if $p \in \mathbb{P}_{\ge 3}$ and, also since function f is strictly monotonically increasing function it follows that equation (2.2) has a unique solution over the interval (0,1).

 $^{12 \}cdot \mathbb{N}^*$ is the set of all even natural numbers

Theorem 2.3 For any g that verifies the condition $2 \le g < 2\sqrt{p} + 1$, function f(0.5) < 0.

Proof The inequality $\sqrt{p+g} - \sqrt{p} - 1 < 0$ in respect to g had the solution $-p \le g < 2\sqrt{p} + 1$. Considering the give condition it follows that for a given g that fulfills $2 \le g < 2\sqrt{p} + 1$ we have f(0.5) < 0 for any $p \in \mathbb{P}_{\geqslant 3}$.

Remark 2.4 The condition $g < 2\sqrt{p} + 1$ represent Andrica's conjecture (1.6).

Theorem 2.5 Let $p \in \mathbb{P}_{\geqslant 3}$ and $g \in \mathbb{N}^*$, then the equation (2.2) has a greater solution s then s_{ε} , the solution for the equation $(p+g+\varepsilon)^x - p^x - 1 = 0$, for any $\varepsilon > 0$.

Proof Let $\varepsilon > 0$, then $p+g+\varepsilon > p+g$. It follows that $(p+g+\varepsilon)^x - p^x - 1 > (p+g)^x - p^x - 1$, for any $x \in [0,1]$. Let s be the solution to equation (2.2), then there is $\delta > 0$, that depends on ε , such that $(p+g+\varepsilon)^{s-\delta} - p^{s-\delta} - 1 = 0$. Therefore s, the solution for equation (2.2), is greater that the solution $s_{\varepsilon} = s - \delta$ for the equation $(p+g+\varepsilon)^x - p^x - 1 = 0$, see Figure 1. \square

Theorem 2.6 Let $p \in \mathbb{P}_{\geqslant 3}$ and $g \in \mathbb{N}^*$, then $s < s_{\varepsilon}$, where s is the equation solution (2.2) and s_{ε} is the equation solution $(p + \varepsilon + g)^x - (p + \varepsilon)^x - 1 = 0$, for any $\varepsilon > 0$.

Figure 2 The functions (2.1) and $(p+\varepsilon+g)^x-(p+\varepsilon)^x-1$ for $p=113, \varepsilon=408, g=14$

Proof Let $\varepsilon > 0$, Then $p+\varepsilon+g > p+g$, from which it follows that $(p+\varepsilon+g)^x - (p+\varepsilon)^x - 1 < (p+g)^x - p^x - 1$, for any $x \in [0,1]$ (see Figure 2). Let s the equation solution (2.2), then there $\delta > 0$, which depends on ε , so $(p+\varepsilon+g)^{s+\delta} - (p+\varepsilon)^{s+\delta} - 1 = 0$. Therefore the solution s, of the equation (2.2), is lower than the solution $s_\varepsilon = s+\delta$ of the equation $(p+\varepsilon+g)^x - (p+\varepsilon)^x - 1 = 0$, see Figure 2.

Remark 2.7 Let p_n and p_{n+1} two prime numbers in Table maximal gaps corresponding the maximum gap g_n . The Theorem 2.6 allows us to say that all solutions of the equation $(q+\gamma)^x - q^x = 1$, where $q \in \{p_n, \dots, p_{n+1} - 2\}$ and $\gamma < g_n$ solutions are smaller that the solution of the equation $p_{n+1}^x - p_n^x = 1$, see Figure 2.

Let:

- (1) $g_A(p) = 2\sqrt{p} + 1$, Andrica's gap function;
- (2) $g_{CG}(p) = 2 \cdot e^{-\gamma} \cdot \ln(p)^2$, Cramér-Grandville's gap function;
- (3) $g_F(p) = g_1(p) = \ln(p)^2 \ln(p)$, Firoozbakht's gap function;

(4)
$$g_c(p) = \ln(p)^2 - c \cdot \ln(p)$$
, where $c = 4(2\ln(2) - 1) \approx 1.545 \cdots$,

(5)
$$g_b(p) = \ln(p)^2 - b \cdot \ln(p)$$
, where $b = 6(2\ln(2) - 1) \approx 2.318 \cdots$.

Theorem 2.8 The inequality $g_A(p) > g_{\alpha}(p)$ is true for:

- (1) $\alpha = 1 \text{ and } p \in \mathbb{P}_{\geqslant 3} \setminus \{7, 11, \cdots, 41\};$
- (2) $\alpha = c = 4(2\ln(2) 1)$ and $p \in \mathbb{P}_{\geq 3}$;
- (3) $\alpha = b = 6(2\ln(2) 1)$ and $p \in \mathbb{P}_{\geqslant 3}$ and the function g_A increases at at a higher rate then function g_b .

Proof Let the function

$$d_{\alpha}(p) = g_{A}(p) - g_{\alpha}(p) = 1 + 2\sqrt{p} + \alpha \cdot \ln(p) - \ln(p)^{2}$$

The derivative of function d_{α} is

$$d'_{\alpha}(p) = \frac{\alpha - 2\ln(p) + \sqrt{p}}{p} .$$

The analytical solutions for function d_1' are $5.099\cdots$ and $41.816\cdots$. At the same time, $d_1'(p) < 0$ for $\{7,11,\cdots,41\}$ and $d_1'(p) > 0$ for $p \in \mathbb{P}_{\geqslant 3} \setminus \{7,11,\cdots,41\}$, meaning that the function d_1 is strictly increasing only over $p \in \mathbb{P}_{\geqslant 3} \setminus \{7,11,\cdots,41\}$ (see Figure 3).

For $\alpha = c = 4(2\ln(2) - 1) \approx 1.5451774444795623 \cdots$, $d'_c(p) > 0$ for any $p \in \mathbb{P}_{\geqslant 3}$, $(d'_c$ is nulled for p = 16, but $16 \notin \mathbb{P}_{\geqslant 3}$), then function d_c is strictly increasing for $p \in \mathbb{P}_{\geqslant 3}$ (see Figure c). Because function d_c is strictly increasing and $d_c(3) = \ln(3)(8\ln(2) - 4 - \ln(3)) + 2\sqrt{3} + 1 \approx 4.954 \cdots$, it follows that $d_c(p) > 0$ for any $p \in \mathbb{P}_{\geqslant 3}$.

In $\alpha = b = 6(2\ln(2) - 1) \approx 2.3177661667193434 \cdots$, function d_b is increasing fastest for any $p \in \mathbb{P}_{\geqslant 3}$ (because $d_b'(p) > d_\alpha'(p)$ for any $p \in \mathbb{P}_{\geqslant 3}$ and $\alpha \geqslant 0$, $\alpha \neq b$). Since $d_b'(p) > 0$ for any $p \in \mathbb{P}_{\geqslant 3}$ and because

$$d_b(3) = \ln(3)(12\ln(2) - 6 - \ln(3)) + 2\sqrt{3} + 1 \approx 5.803479047342222 \cdots$$

It follows that $d_b(p) > 0$ for any $p \in \mathbb{P}_{\geqslant 3}$ (see Figure 3).

Figure 3 d_{α} and d'_{α} functions

Remark 2.9 In order to determine the value of c, we solve the equation $d'_{\alpha}(p) = 0$ in respect to α . The solution α in respect to p is $\alpha(p) = 2\ln(p) - \sqrt{p}$. We determine p, the solution of $\alpha'(p) = \frac{4-\sqrt{p}}{2p}$. Then it follows that $c = \alpha(16) = 4(2\ln(2) - 1)$.

Remark 2.10 In order to find the value for b, we solve the equation $d_{\alpha}''(p) = 0$ in respect to α . The solution α in respect to p is $\alpha(p) = 2\ln(p) - \frac{\sqrt{p}}{2} - 2$. We determine p, the solution of $\alpha'(p) = \frac{8 - \sqrt{p}}{4p}$. It follows that $b = \alpha(8) = 6(2\ln(2) - 1)$.

Since function d_b manifests the fastest growth rate we can state that the function g_A increases more rapidly then function g_b .

Let
$$h(p,g) = f(0.5) = \sqrt{p+g} - \sqrt{p} - 1$$
.

Figure 4 Functions h_b , h_c , h_F and h_{CG}

Theorem 2.11 For

$$h_{CG}(p) = h(p, g_{CG}(p)) = \sqrt{p + 2e^{-\gamma}\ln(p)^2} - \sqrt{p} - 1$$

 $h_{CG}(p) < 0 \text{ for } p \in \{3, 5, 7, 11, 13, 17\} \cup \{359, 367, \cdots\} \text{ and }$

$$\lim_{p \to \infty} h_{CG}(p) = -1 .$$

Proof The theorem can be proven by direct computation, as observed in the graph from Figure 4. \Box

Theorem 2.12 The function

$$h_F(p) = h_1(p) = h(p, g_F(p)) = \sqrt{p + \ln(p)^2 - \ln(p)} - \sqrt{p} - 1$$

reaches its maximal value for $p=111.152\cdots$ and $h_F(109)=-0.201205\cdots$ while $h_F(113)=-0.201199\cdots$ and

$$\lim_{p \to \infty} h_F(p) = -1 \ .$$

Proof Again, the theorem can be proven by direct calculation as one can observe from the graph in Figure 4. \Box

Theorem 2.13 The function

$$h_c(p) = h(p, g_c(p)) = \sqrt{p + \ln(p)^2 - c \ln(p)} - \sqrt{p} - 1$$

reaches its maximal value for $p=152.134\cdots$ and $h_c(151)=-0.3105\cdots$ while $h_c(157)=-0.3105\cdots$ and

$$\lim_{p \to \infty} h_c(p) = -1 .$$

Proof Again, the theorem can be proven by direct calculation as one can observe from the graph in Figure 4. \Box

Theorem 2.14 The function

$$h_B(p) = h(p, g_B(p)) = \sqrt{\ln(p)^2 - b \ln(p) + p} - \sqrt{p} - 1$$

reaches its maximal value for $p=253.375\cdots$ and $h_B(251)=-0.45017\cdots$ while $h_B(257)=-0.45018\cdots$ and

$$\lim_{p \to \infty} h_B(p) = -1 \ .$$

Proof Again, the theorem can be proven by direct calculation as one can observe from the graph in Figure 4. \Box

Table 1: Maximal gaps [24, 14, 15]

1 1 1 2 1 2 2 3 2 3 4 7 4 4 9 23 6 5 24 89 8 6 30 113 14 7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 <th>#</th> <th>n</th> <th>p_n</th> <th>g_n</th>	#	n	p_n	g_n
3 4 9 23 6 5 24 89 8 6 30 113 14 7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421		1		
4 9 23 6 5 24 89 8 6 30 113 14 7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 1705170	2	2	3	2
5 24 89 8 6 30 113 14 7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945	3	4	7	4
6 30 113 14 7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 285	4	9	23	6
7 99 523 18 8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26	5	24	89	8
8 154 887 20 9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462	6	30	113	14
9 189 1129 22 10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 206843	7	99	523	18
10 217 1327 34 11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248	8	154	887	20
11 1183 9551 36 12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	9	189	1129	22
12 1831 15683 44 13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	10	217	1327	34
13 2225 19609 52 14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	11	1183	9551	36
14 3385 31397 72 15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	12	1831	15683	44
15 14357 155921 86 16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	13	2225	19609	52
16 30802 360653 96 17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	14	3385	31397	72
17 31545 370261 112 18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	15	14357	155921	86
18 40933 492113 114 19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	16	30802	360653	96
19 103520 1349533 118 20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	17	31545	370261	112
20 104071 1357201 132 21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	18	40933	492113	114
21 149689 2010733 148 22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	19	103520	1349533	118
22 325852 4652353 154 23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	20	104071	1357201	132
23 1094421 17051707 180 24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	21	149689	2010733	148
24 1319945 20831323 210 25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	22	325852	4652353	154
25 2850174 47326693 220 26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	23	1094421	17051707	180
26 6957876 122164747 222 27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	24	1319945	20831323	210
27 10539432 189695659 234 28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	25	2850174	47326693	220
28 10655462 191912783 248 29 20684332 387096133 250 30 23163298 436273009 282	26	6957876	122164747	222
29 20684332 387096133 250 30 23163298 436273009 282	27	10539432	189695659	234
30 23163298 436273009 282	28	10655462	191912783	248
	29	20684332	387096133	250
31 64955634 1294268491 288	30	23163298	436273009	282
	31	64955634	1294268491	288

#	n	p_n	g_n
32	72507380	1453168141	292
33	112228683	2300942549	320
34	182837804	3842610773	336
35	203615628	4302407359	354
36	486570087	10726904659	382
37	910774004	20678048297	384
38	981765347	22367084959	394
39	1094330259	25056082087	456
40	1820471368	42652618343	464
41	5217031687	127976334671	468
42	7322882472	182226896239	474
43	9583057667	241160624143	486
44	11723859927	297501075799	490
45	11945986786	303371455241	500
46	11992433550	304599508537	514
47	16202238656	416608695821	516
48	17883926781	461690510011	532
49	23541455083	614487453523	534
50	28106444830	738832927927	540
51	50070452577	1346294310749	582
52	52302956123	1408695493609	588
53	72178455400	1968188556461	602
54	94906079600	2614941710599	652
55	251265078335	7177162611713	674
56	473258870471	13829048559701	716
57	662221289043	19581334192423	766
58	1411461642343	42842283925351	778
59	2921439731020	90874329411493	804
60	5394763455325	171231342420521	806
61	6822667965940	218209405436543	906
62	35315870460455	1189459969825483	916
63	49573167413483	1686994940955803	924
64	49749629143526	1693182318746371	1132

#	n	p_n	g_n
65	1175661926421598	43841547845541059	1184
66	1475067052906945	55350776431903243	1198
67	2133658100875638	80873624627234849	1220
68	5253374014230870	203986478517455989	1224
69	5605544222945291	218034721194214273	1248
70	7784313111002702	305405826521087869	1272
71	8952449214971382	352521223451364323	1328
72	10160960128667332	401429925999153707	1356
73	10570355884548334	418032645936712127	1370
74	20004097201301079	804212830686677669	1442
75	34952141021660495	1425172824437699411	1476

We denote by $a_n = \lfloor g_A(p_n) \rfloor$ (Andrica's conjecture), by $cg_n = \lfloor g_{CG}(p_n) \rfloor$ (Cramér-Grandville's conjecture) by $f_n = \lfloor g_F(p_n) \rfloor$ (Firoozbakht's conjecture), by $c_n = \lfloor g_c(p_n) \rfloor$ and $b_n = \lfloor g_b(p_n) \rfloor$.

The columns of Table 2 represent the values of the maximal gaps a_n , cg_n , f_n , c_n , b_n and g_n , [14, 2, 28, 15]. Note the Cramér-Grandville's conjecture as well as Firoozbakht's conjecture are confirmed when $n \ge 9$ (for $p_9 = 23$, the forth row in the table of maximal gaps).

Table 2: Approximative values of maximal gaps

#	a_n	cg_n	f_n	c_n	b_n	g_n
1	3	0	-1	-1	-2	1
2	4	1	0	-1	-2	2
3	6	4	1	0	-1	4
4	10	11	6	4	2	6
5	19	22	15	13	9	8
6	22	25	17	15	11	14
7	46	43	32	29	24	18
8	60	51	39	35	30	20
9	68	55	42	38	33	22
10	73	58	44	40	35	34
11	196	94	74	69	62	36

#	a_n	cg_n	f_n	c_n	b_n	g_n
12	251	104	83	78	70	44
13	281	109	87	82	74	52
14	355	120	96	91	83	72
15	790	160	131	123	115	86
16	1202	183	150	143	134	96
17	1217	184	151	144	134	112
18	1404	192	158	151	141	114
19	2324	223	185	177	166	118
20	2330	223	185	177	166	132
21	2837	236	196	188	177	148
22	4314	264	220	211	200	154
23	8259	311	260	251	238	180
24	9129	318	267	257	244	210
25	13759	350	294	285	271	220
26	22106	389	328	317	303	222
27	27547	407	344	333	319	234
28	27707	408	344	334	319	248
29	39350	439	371	360	345	250
30	41775	444	375	365	349	282
31	71952	494	419	407	391	288
32	76241	499	423	412	396	292
33	95937	521	443	431	414	320
34	123978	546	464	452	435	336
35	131186	552	469	457	440	354
36	207142	598	510	497	479	382
37	287598	633	540	527	509	384
38	299113	637	544	531	512	394
39	316583	643	549	536	517	456
40	413051	672	574	561	542	464
41	715476	734	628	614	594	468
42	853761	754	646	632	612	474
43	982163	771	660	646	626	486
44	1090874	783	671	657	636	490

# a_n cg_n f_n c_n b_n 45 1101584 784 672 658 637 46 1103811 785 672 658 637 47 1290905 803 689 674 653 48 1358957 810 694 679 659 49 1567786 827 709 694 673 50 1719108 838 719 704 683 51 2320599 875 752 736 715	gn 500 514 516 532 534 540 582
46 1103811 785 672 658 637 47 1290905 803 689 674 653 48 1358957 810 694 679 659 49 1567786 827 709 694 673 50 1719108 838 719 704 683	514 516 532 534 540 582
47 1290905 803 689 674 653 48 1358957 810 694 679 659 49 1567786 827 709 694 673 50 1719108 838 719 704 683	516 532 534 540 582
48 1358957 810 694 679 659 49 1567786 827 709 694 673 50 1719108 838 719 704 683	532 534 540 582
49 1567786 827 709 694 673 50 1719108 838 719 704 683	534 540 582
50 1719108 838 719 704 683	540 582
	582
51 2320599 875 752 736 715	
	500
52 2373770 878 754 739 717	588
53 2805843 899 773 757 735	602
54 3234157 918 788 773 751	652
55 5358046 983 846 830 807	674
56 7437486 1028 885 868 845	716
57 8850161 1051 906 889 865	766
58 13090804 1106 953 936 912	778
59 19065606 1159 1000 983 958	804
60 26171079 1206 1041 1023 998	806
61 29543826 1224 1057 1039 1013	906
62 68977097 1353 1170 1151 1124	916
63 82146088 1380 1194 1175 1148	924
64 82296594 1380 1194 1175 1148	1132
65 418767467 1648 1430 1409 1379	1184
66 470534915 1668 1447 1426 1396	1198
67 568765768 1701 1476 1455 1425	1220
68 903297246 1783 1548 1526 1496	1224
69 933883765 1789 1553 1532 1501	1248
70 1105270694 1820 1580 1558 1527	1272
71 1187469955 1833 1592 1570 1538	1328
72 1267169959 1844 1602 1580 1549	1356
73 1293108884 1848 1605 1583 1552	1370
74 1793558286 1908 1658 1636 1604	1442
75 2387612050 1962 1705 1682 1650	1476

Table 2, the graphs in 5 and 6 stand proof that

$$g_n = p_{n+1} - p_n < \ln(p_n)^2 - c \cdot \ln(p_n)$$
, (2.3)

for $p \in \{89, 113, \cdots, 1425172824437699411\}$. By Theorem 2.6 we can say that inequality (2.3) is true for any $p \in \mathbb{P}_{\geqslant 89} \setminus \mathbb{P}_{\geqslant 1425172824437699413}$.

This valid statements in respect to the inequality (2.3) allows us to consider the following hypothesis.

Conjecture 2.1 The relation (2.3) is true for any $p \in \mathbb{P}_{\geq 29}$.

Figure 5 Maximal gaps graph

Figure 6 Relative errors of cg, f, c and b in respect to g

Let $g_{\alpha}: \mathbb{P}_{\geqslant 3} \to \mathbb{R}_+,$

$$q_{\alpha}(p) = \ln(p)^2 - \alpha \cdot \ln(p)$$

and $h_{\alpha}: \mathbb{P}_{\geqslant 3} \times [0,1] \to \mathbb{R}$, with p fixed,

$$h_{\alpha}(p, x) = (p + g_{\alpha}(p))^{x} - p^{x} - 1$$

that, according to Theorem 2.1, is strictly increasing and convex over its domain, and according to the Corollary 2.2 has a unique solution over the interval [0, 1].

We solve the following equation, equivalent to (2.2)

$$h_c(p,x) = (p + \ln(p)^2 - c\ln(p))^x - p^x - 1 = 0$$
, (2.4)

in respect to x, for any $p \in \mathbb{P}_{\geq 29}$. In accordance to Theorem 2.5 the solution for equation (2.2) is greater then the solution to equation (2.4). Therefore if we prove that the solutions to equation (2.4) are greater then 0.5 then, even more so, the solutions to (2.2) are greater then 0.5.

For equation $h_{\alpha}(p, x) = 0$ we consider the secant method, with the initial iterations x_0 and x_1 (see Figure 7). The iteration x_2 is given by

$$x_2 = \frac{x_1 \cdot h_{\alpha}(p, x_0) - x_0 \cdot h_{\alpha}(p, x_1)}{h_{\alpha}(p, x_1) - h_{\alpha}(p, x_0)} . \tag{2.5}$$

Figure 7 Function f and the secant method

If Andrica's conjecture, $\sqrt{p+g}-\sqrt{p}-1<0$ for any $p\in\mathbb{P}_{\geqslant 3}, g\in\mathbb{N}^*$ and $p>g\geqslant 2$, is true, then $h_{\alpha}(p,0.5)<0$ (according to Remark 1.1 if Legendre's conjecture is true then Andrica's conjecture is also true), and $h_{\alpha}(p,1)>0$. Since function $h_{\alpha}(p,\cdot)$ is strictly increasing and convex, iteration x_2 approximates the solution to the equation $h_{\alpha}(p,x)=0$, (in respect to x). Some simple calculation show that x the solution x in respect to x, x, x, x, x, x, and x is:

$$a(p, h_{\alpha}, x_0, x_1) = \frac{x_1 \cdot h_{\alpha}(p, x_0) - x_0 h - \alpha(p, x_1)}{h_{\alpha}(p, x_1) - h_{\alpha}(p, x_0)}.$$
 (2.6)

Let $a_{\alpha}(p) = a(p, h_{\alpha}, 0.5, 1)$, then

$$a_{\alpha}(p) = \frac{1}{2} + \frac{1 + \sqrt{p} - \sqrt{\ln(p)^2 - \alpha \ln(p) + p}}{2(\ln(p)^2 - \alpha \ln(p) + \sqrt{p} - \sqrt{\ln(p)^2 - \alpha \ln(p) + p})}.$$
 (2.7)

Theorem 2.15 The function $a_c(p)$, that approximates the solution to equation (2.4) has values in the open interval (0.5, 1) for any $p \in \mathbb{P}_{\geq 29}$.

Proof According to Theorem 2.8 for $\alpha = c = 4(2\ln(2) - 1)$ we have $\ln(p)^2 - c \cdot \ln(p) < 2\sqrt{p} + 1$ for any $p \in \mathbb{P}_{\geq 29}$.

We can rewrite function a_c as

$$a_c(p) = \frac{1}{2} + \frac{1 + \sqrt{p} - \sqrt{p+c}}{2(c + \sqrt{p} - \sqrt{p+c})}$$
.

which leads to

$$\frac{1+\sqrt{p}-\sqrt{p+c}}{2(c+\sqrt{p}-\sqrt{p+c})} > 0 ,$$

it follows that $a_c(p) > \frac{1}{2}$ for $p \in \mathbb{P}_{\geqslant 3}$ (see Figure 8) and we have

$$\lim_{p \to \infty} a_c(p) = \frac{1}{2} .$$

Figure 8 The graphs for functions a_b , a_c and a_1

For $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$ and the respective gaps we solve the following equations (2.2).

$$\begin{cases} (2+1)^x - 2^x = 1 , & s = 1 \\ (3+2)^x - 3^x = 1 , & s = 0.7271597432435757 \cdots \\ (5+2)^x - 5^x = 1 , & s = 0.7632032096058607 \cdots \\ (7+4)^x - 7^x = 1 , & s = 0.5996694211239202 \cdots \\ (11+2)^x - 11^x = 1 , & s = 0.8071623463868518 \cdots \\ (13+4)^x - 13^x = 1 , & s = 0.6478551304201904 \cdots \\ (17+2)^x - 17^x = 1 , & s = 0.8262031187421179 \cdots \\ (19+4)^x - 19^x = 1 , & s = 0.6740197879899883 \cdots \\ (23+6)^x - 23^x = 1 , & s = 0.6042842019286720 \cdots . \end{cases}$$

Corollary 2.9 We proved that the approximative solutions of equation (2.4) are > 0.5 for any $n \ge 10$, then the solutions of equation (2.2) are > 0.5 for any $n \ge 10$. If we consider the exceptional cases (2.8) we can state that the equation (1.1) has solutions in $s \in (0.5, 1]$ for any $n \in \mathbb{N}^*$.

§3. Smarandache Constant

We order the solutions to equation (2.2) in Table 1 using the maximal gaps.

Table 3: Equation (2.2) solutions

	1	
p	g	solution for (2.2)
113	14	0.5671481305206224
1327	34	0.5849080865740931
7	4	0.5996694211239202
23	6	0.6042842019286720
523	18	0.6165497314215637
1129	22	0.6271418980644412
887	20	0.6278476315319166
31397	72	0.6314206007048127
89	8	0.6397424613256825
19609	52	0.6446915279533268
15683	44	0.6525193297681189
9551	36	0.6551846556887808
155921	86	0.6619804741301879
370261	112	0.6639444999972240
492113	114	0.6692774164975257
360653	96	0.6741127001176469
1357201	132	0.6813839139412406
2010733	148	0.6820613370357171
1349533	118	0.6884662952427394
4652353	154	0.6955672852207547
20831323	210	0.7035651178160084
17051707	180	0.7088121412466053
47326693	220	0.7138744163020114
122164747	222	0.7269826061830018
3	2	0.7271597432435757
191912783	248	0.7275969819805509
189695659	234	0.7302859105830866
436273009	282	0.7320752818323865
387096133	250	0.7362578381533295
1294268491	288	0.7441766589716590
1453168141	292	0.7448821415605216
	•	

		goluti f (0.0)
2222242742	9	solution for (2.2)
2300942549	320	0.7460035467176455
4302407359	354	0.7484690049408947
3842610773	336	0.7494840618593505
10726904659	382	0.7547601234459729
25056082087	456	0.7559861641728429
42652618343	464	0.7603441937898209
22367084959	394	0.7606955951728551
20678048297	384	0.7609716068556747
127976334671	468	0.7698203623795380
182226896239	474	0.7723403816143177
304599508537	514	0.7736363009251175
241160624143	486	0.7737508697071668
303371455241	500	0.7745991865337681
297501075799	490	0.7751693424982924
461690510011	532	0.7757580339651479
416608695821	516	0.7760253389165942
614487453523	534	0.7778809828805762
1408695493609	588	0.7808871027951452
1346294310749	582	0.7808983645683428
2614941710599	652	0.7819658004744228
1968188556461	602	0.7825687226257725
7177162611713	674	0.7880214782837229
13829048559701	716	0.7905146362137986
19581334192423	766	0.7906829063252424
42842283925351	778	0.7952277512573828
90874329411493	804	0.7988558653770882
218209405436543	906	0.8005126614171458
171231342420521	806	0.8025304565279002
1693182318746371	1132	0.8056470803187964
1189459969825483	916	0.8096231085041140
1686994940955803	924	0.8112057874892308
43841547845541060	1184	0.8205327998695296
55350776431903240	1198	0.8212591131062218
	·	

p	g	solution for (2.2)
80873624627234850	1220	0.8224041089823987
218034721194214270	1248	0.8258811322716928
352521223451364350	1328	0.8264955008480679
1425172824437699300	1476	0.8267652954810718
305405826521087900	1272	0.8270541728027422
203986478517456000	1224	0.8271121951019150
418032645936712100	1370	0.8272229385637846
401429925999153700	1356	0.8272389079572986
804212830686677600	1442	0.8288714147741382
2	1	1

§4 Conclusions

Therefore, if Legendre's conjecture is true then Andrica's conjecture is also true according to Paz [17]. Andrica's conjecture validated the following sequence of inequalities $a_n > cg_n > f_n > c_n > b_n > g_n$ for any n natural number, $5 \le n \le 75$, in Tables 2. The inequalities $c_n < g_n$ for any natural n, $5 \le n \le 75$, from Table 2 allows us to state Conjecture 2.1.

If Legendre's conjecture and Conjecture 2.1 are true, then Smarandache's conjecture is true.

References

- [1] D.Andrica, Note on a conjecture in prime number theory, Studia Univ. Babes- Bolyai Math., 31 (1986), no. 4, 44-48.
- [2] C.Caldwell, The prime pages, http://primes.utm.edu/n0tes/gaps. html, 2012.
- [3] Ch. K.Caldwell, Lists of small primes, https://primes.utm.edu/lists/small, Nov. 2014.
- [4] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, *Acta Arith.*, 2 (1936), 23-46.
- [5] P. Erdös, Beweis eines Satzes von Tschebyschef, Acta Scientifica Mathematica, 5 (1932), 194-198.
- [6] A.Granville, Harald Cramér and the distribution of prime numbers, Scand. Act. J., 1 (1995), 12-28.
- [7] R.K.Guy, Unsolved Problems in Number Theory, 2nd ed., p.7, Springer-Verlag, New York, 1994.
- [8] G.H.Hardy and W.M.Wright, An Introduction to the Theory of Numbers,5th ed., Ch.§2.8

- Unsolved Problems Concerning Primes and §3 Appendix, pp.19 and 415-416, Oxford University Press, Oxford, England, 1979.
- [9] G.Hoheisel, —it Primzahlprobleme in Der Analysis, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 33 (1930), 3-11.
- [10] E.Landau, Elementary Number Theory, Celsea, 1955.
- [11] A.Loo, On the primes in the interval [3n, 4n], Int. J. Contemp. Math. Sciences, 6 (2011), no. 38, 1871-1882.
- [12] H.Maier, Primes in short intervals, The Michigan Mathematical Journal, 32 (1985), No.2, 131-255.
- [13] P.Mihăilescu, On some conjectures in additive number theory, Newsletter of the European Mathematical Society, 1 (2014), No.92, 13-16.
- [14] T.R.Nicely, New maximal prime gaps and first occurrences, *Mathematics of Computation*, 68 (1999), no. 227, 1311-1315.
- [15] T.Oliveira e Silva, Gaps between consecutive primes, http://sweet.ua.pt/ tos/gaps.html, 30 Mach. 2014.
- [16] H.C.Orsted, G.Forchhammer and J.J.Sm.Steenstrup (eds.), Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder, pp. 169-179, http://books.google.ro/books?id= UQgXAAAAYAAJ, 1883.
- [17] G.A.Paz, On Legendre's, Brocard's, Andrica's and Oppermann's conjectures, arXiv:1310. 1323v2 [math.NT], 2 Apr 2014.
- [18] M.I.Petrescu, A038458, http://oeis.org, 3 Oct. 2014.
- [19] S.Ramanujan, A proof of Bertrand's postulate, Journal of the Indian Mathematical Society, 11 (1919), 181-182.
- [20] P.Ribenboim, *The New Book of Prime Number Records*, 3rd ed., pp.132-134, 206-208 and 397-398, Springer-Verlag, New York, 1996.
- [21] H.Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed., ch. The Cramér Conjecture, pp. 79-82, MA: Birkhäuser, Boston, 1994.
- [22] C.Rivera, Conjecture 30. The Firoozbakht Conjecture, http://www.primepuzzles.net/conjectures/conj_030.htm, 22 Aug. 2012.
- [23] C.Rivera, Problems & puzzles: conjecture 007, *The Cramér's conjecture*, http://www.primepuzzles.net/conjectures/conj_007.htm, 03 Oct. 2014.
- [24] N.J.A.Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis. org, 8 Oct. 2014.
- [25] F.Smarandache, Conjectures which generalize Andrica's conjecture, *Octogon*, 7(1999), No.1, 173-176.
- [26] E.W.Weisstein, Brocard's conjecture, From Math World A Wolfram Web Resource, http://mathworld.wolfram.com/BrocardsConjecture.html, 26 Sept. 2014.
- [27] E.W.Weisstein, Prime counting function, From *MathWorld* A Wolfram Web Resource, http://mathworld.wolfram.com/PrimeCountingFunction.html, 26 Sept. 2014.
- [28] E.W.Weisstein, Prime gaps, From *MathWorld* A Wolfram Web Resource, http://mathworld.wolfram.com/PrimeGaps.html, 26 Sept. 2014.

- [29] E.W.Weisstein, Smarandache constants, From *MathWorld* A Wolfram Web Resource, http://mathworld.wolfram.com/SmarandacheConstants.html, 26 Sept. 2014.
- [30] E.Westzynthius, Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind, Commentationes Physico-Mathematicae Helingsfors, 5 (1931), 1-37.
- [31] M.Wolf, Some heuristics on the gaps between consecutive primes, http://arxiv. org/pdf/1102.0481.pdf, 5 May 2011.
- [32] M.Wolf and M.Wolf, First occurrence of a given gap between consecutive primes, 1997.