SERVE-SMARTHACKATHON

INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY)

REPORT

TEAM NAME-RAJS161.ANSHRAJ

TEAM MEMBER-

- 1) ANSH SINGH
- 2) ADITYA KARN
- 3)ADARSH DUBEY

Methodology

1) Data Preprocessing:

- Tokenization and removal of stop words.
- Text vectorization using TF-IDF (Term Frequency-Inverse Document Frequency).
- Sentiment analysis to identify emotional biases.
- Feature extraction such as title length, text length, keyword density, and readability.

2) Feature Engineering:

- **Title Length**: Fake news often has exaggerated or sensational headlines.
- **Text Length**: Analyzing verbosity to detect content intended to obscure facts.
- Keyword Density: Examining frequent use of sensational keywords like "shocking" or "breaking."
- Linguistic Features: Grammar quality, punctuation usage, and readability.

3) Model Training:

- Algorithm Used: Random Forest Classifier.
- **Training Process**: The dataset was split into training and testing sets (80%-20% split).
- Hyperparameters:
 - Number of Trees: 100
 - Max Depth: Tuned based on cross-validation.

- For deep learning trials the following configuration was used:
 - Model Architecture: Sequential model with fully connected Dense layers.

。 **Optimizer**: Adam.

Loss Function: Binary Cross-Entropy.

Number of Epochs: 20.

Batch Size: 32.

4) Evaluation Metrics:

- Accuracy: Proportion of correctly classified instances.
- **Precision**: Ability to correctly identify positive instances among predicted positives.
- Recall: Ability to identify all actual positives.
- **F1 Score**: Harmonic mean of precision and recall.
- AUC-ROC: Measures the model's ability to distinguish between classes.

Conclusion

The project successfully built an efficient fake news detection model with an accuracy of 97.43% and an AUC-ROC score of 0.986, indicating excellent classification performance. Key takeaways include:

- Features like title length, keyword density, and sentiment analysis significantly enhance model performance.
- The Random Forest Classifier proved effective for this classification task.
- Deep learning trials achieved promising results but required additional computational resources.

Future Scope:

- Incorporate more diverse datasets to improve generalizability.
- Explore advanced deep learning techniques like BERT for better contextual understanding.
- Integrate real-time prediction capabilities for broader applications.

Accuracy: 0. Classificati				
	precision	recall	f1-score	support
0	0.98	0.97	0.98	3137
1	0.97	0.97	0.97	2863
266110261			0.07	6000
accuracy			0.97	6000
macro avg	0.97	0.97	0.97	6000
weighted avg	0.97	0.97	0.97	6000