Disturbance rejection of a non-contact 3-DOF stage

using Gaussian process regression

The University of Tokyo Koseki-Ohnishi Lab

REON SASAKI

r.sasaki@ctl.t.u-tokyo.ac.jp

Non-contact 3-DOF stage

High-speed, high-precision positioning control

- ⇒ related to production speed and quality
 - ⇒ Demand for actuators with high thrust density

Motor with IRON CORES

State-dependent disturbance

One of the major problems is... Thrust Ripple!!

- ullet Cogging force between iron cores and magnets depends on Position and Current $f_{\mathbf{d}}(x,u)$
- ullet Deviation of force constant by relative position depends on Position and Velocity $f_{
 m fc}(x)$
- ullet Changes in viscosity friction due to assembly errors depends on Position and Velocity $f_{
 m vd}(x,\dot{x})$

$$\begin{array}{c} M\ddot{x} + D\dot{x} + \underbrace{f_{\rm vd}(x,\dot{x})}_{\mbox{Viscosity}} + \underbrace{f_{\rm d}(x,u)}_{\mbox{congling}} = \underbrace{(1 + \underbrace{f_{\rm fc}(x))}_{\mbox{Force}} u}_{\mbox{constant}} \\ \hline \\ \mbox{Constant}_{\mbox{variation}} \end{array}$$

State-depenent disturbance changes in various trajectories!

Reducing calculation cost of Gaussian process regression

Gaussian Process Regression (GPR)

Nonparametric bayesian estimation method ⇒ Prediction of outputs without basis functions.

Kernel function $k(\boldsymbol{x_n}, \boldsymbol{x_{n'}}) = \theta_1 \exp\left(-\frac{|p_n - p_{n'}|^2}{\theta_2} - \frac{|v_n - v_{n'}|^2}{\theta_3}\right) + \theta_4 \delta$

 $\mu(x^*) = K_{xx^*}^{\top} (K_{xx} + \sigma_n^2 I_N)^{-1}$ \longrightarrow Predicting output of x^*

 $\Sigma(\boldsymbol{x}^*) = K_{\boldsymbol{x}^*\boldsymbol{x}^*} - K_{\boldsymbol{x}\boldsymbol{x}^*}^\top (K_{\boldsymbol{x}\boldsymbol{x}} + \sigma_n^2 I_N)^{-1} K_{\boldsymbol{x}\boldsymbol{x}^*} \longrightarrow \text{Reliability of prediction}$ Size of matrix is decided by the number of data

Handling more data ⇒ Increasing calculation time

To reduce calculation cost...

Disturbance compensation using the force map made by GPR

Compared the following error between some method

Model inversion vs Linear interpolation vs Smoothing spline vs GPR

	Max error	L2 norm
Case1	749.5μm	15710.2
Case2	194.1μm	5043.6
Case3	88.3μm	1734.2
Case4	$36.5 \mu \mathrm{m}$	593.1

Future work

- Use adopted disturbance observer
- · Generate FF signal for all axis

Acknowledgement: Koichi Sakata, Pai-Hsueh Yang (Nikon)