

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 10

Corpo, Espaços Vetorias, Subespaços Vetoriais Definicão e Exemplos

Professora: Isamara C. Alves

Data: 06/04/2021

Seja \mathbb{K} um conjunto, onde $\mathbb{K} \neq \emptyset$.

Seja $\mathbb K$ um conjunto, onde $\mathbb K \neq \emptyset$. Dizemos que $\mathbb K$ é um Corpo se, e somente se,

1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) **Comutativa:** x + y = y + x; $\forall x, y \in \mathbb{K}$

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADIG} \widetilde{\mathrm{AO}}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa:

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADI}} \underline{\mathrm{CAO}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADI} \widetilde{\mathrm{QAO}}}$ que satisfaz as seguintes propriedades:
 - (1) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) Elemento Neutro:

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADI} \widetilde{\mathrm{QAO}}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em \mathbb{K} uma $\underline{\text{MULTIPLICA}}$ que satisfaz as seguintes propriedades:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) Elemento Neutro:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) **Associativa:** (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (1) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$
 - (III) Elemento Inverso:

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$
 - (III) Elemento Inverso: $\exists \frac{1}{x} \in \mathbb{K}; \frac{1}{x}.x = 1; \forall x \in \mathbb{K}^*$

- 1. Está definida em \mathbb{K} uma $\underline{\mathrm{ADI}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em K uma MULTIPLICAÇÃO que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$
 - (III) Elemento Inverso: $\exists \frac{1}{x} \in \mathbb{K}; \frac{1}{x}.x = 1; \forall x \in \mathbb{K}^*$
 - (IV) Distributiva para a adição:

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADI}} \widehat{\mathrm{CAO}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em \mathbb{K} uma $\underline{\text{MULTIPLICA}}$ que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$
 - (III) Elemento Inverso: $\exists \frac{1}{x} \in \mathbb{K}; \frac{1}{x}.x = 1; \forall x \in \mathbb{K}^*$
 - (IV) Distributiva para a adição:

$$x(y+z) = xy + xz; \forall x, y, z \in \mathbb{K}$$

- 1. Está definida em $\mathbb K$ uma $\underline{\mathrm{ADI}} \widehat{\mathrm{CAO}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: x + y = y + x; $\forall x, y \in \mathbb{K}$
 - (II) Associativa: (x + y) + z = x + (y + z); $\forall x, y, z \in \mathbb{K}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathbb{K}; x + 0 = x; \forall x \in \mathbb{K};$
 - (IV) Elemento Simétrico: $\exists ! -x \in \mathbb{K}; x + (-x) = 0; \forall x \in \mathbb{K}$
- 2. Está definida em \mathbb{K} uma $\underline{\text{MULTIPLICA}}$ que satisfaz as seguintes propriedades:
 - (I) Associativa: (x.y)z = x(y.z); $\forall x, y, z \in \mathbb{K}$
 - (II) **Elemento Neutro:** 1.x = x; $\forall x, 1 \in \mathbb{K}$
 - (III) Elemento Inverso: $\exists \frac{1}{x} \in \mathbb{K}; \frac{1}{x}.x = 1; \forall x \in \mathbb{K}^*$
 - (IV) Distributiva para a adição:

$$x(y+z) = xy + xz; \forall x, y, z \in \mathbb{K}$$

Corpo Exemplos

 $1. \ \mathbb{K} = \mathbb{R}$ com as operações usuais de adição e multiplicação por escalar;

Corpo Exemplos

- 1. $\mathbb{K}=\mathbb{R}$ com as operações usuais de adição e multiplicação por escalar;
- 2. $\mathbb{K}=\mathbb{C}$ com as operações usuais de adição e multiplicação por escalar.

Corpo Exemplos

- 1. $\mathbb{K}=\mathbb{R}$ com as operações usuais de adição e multiplicação por escalar;
- 2. $\mathbb{K}=\mathbb{C}$ com as operações usuais de adição e multiplicação por escalar.

Seja ${\mathcal V}$ um conjunto tal que ${\mathcal V} \neq \emptyset.$

Espaços Vetoriais

Definição

Seja $\mathcal V$ um conjunto tal que $\mathcal V \neq \emptyset$. Dizemos que $\mathcal V$ é um ESPAÇO VETORIAL sobre um corpo $\mathbb K$ se, e somente se,

1. Está definida em ${\cal V}$ uma <code>ADIÇÃO</code> que satisfaz as seguintes propriedades:

- 1. Está definida em ${\cal V}$ uma $\underline{{}^{ADI} \zeta \widetilde{A} O}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa:

- 1. Está definida em ${\cal V}$ uma $\underline{{}^{ADI} \zeta \widetilde{A} O}$ que satisfaz as seguintes propriedades:
 - (I) **Comutativa:** u + v = v + u; $\forall u, v \in \mathcal{V}$

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIQ ilde{A}O}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa:

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIQ ilde{A}O}}$ que satisfaz as seguintes propriedades:
 - (1) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIQ ilde{A}O}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) Elemento Neutro:

...,...

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIÇ\~AO}}$ que satisfaz as seguintes propriedades:
 - (1) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; u + 0 = u; \forall u \in \mathcal{V};$

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIÇ\~AO}}$ que satisfaz as seguintes propriedades:
 - (1) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; u + 0 = u; \forall u \in \mathcal{V};$
 - (IV) Elemento Inverso:

Espaços Vetoriais

Definição

- 1. Está definida em ${\cal V}$ uma $\underline{{
 m ADIQ ilde{A}O}}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) Elemento Inverso: $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$

Espaços Vetoriais Definicão

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u + v) + w = u + (v + w); \forall u, v, w \in \mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades:

Definição

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u + v) + w = u + (v + w); \forall u, v, w \in \mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$

Espaços Vetoriais Definicão

- 1. Está definida em ${\cal V}$ uma ${
 m ADIQ ilde{A}O}$ que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u, v \in \mathcal V$ e $\forall \lambda, \beta \in \mathbb K$
 - (I) Distributiva para a adição de elementos em V:

Espaços Vetoriais Definicão

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (1) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) **Associativa:** $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u, v \in \mathcal V$ e $\forall \lambda, \beta \in \mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$

Definição

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} :

Definição

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u, v \in \mathcal V$ e $\forall \lambda, \beta \in \mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v)=\lambda v+\lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$

Definição

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u, v \in \mathcal V$ e $\forall \lambda, \beta \in \mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$
 - (III) Associativa para a multiplicação por escalares em K:

Definição

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$
 - (III) Associativa para a multiplicação por escalares em K:

$$(\lambda.\beta)u = \lambda(\beta u) = \beta(\lambda u) = (\beta.\lambda)u$$

Espaços Vetoriais Definição

Seja $\mathcal V$ um conjunto tal que $\mathcal V \neq \emptyset$. Dizemos que $\mathcal V$ é um Espaço Vetorial sobre um corpo $\mathbb K$ se, e somente se,

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u + v) + w = u + (v + w); \forall u, v, w \in \mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$
 - (I) Distributiva para a adição de elementos em \mathcal{V} : $\lambda(u+v)=\lambda v+\lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$
 - (III) Associativa para a multiplicação por escalares em \mathbb{K} :

$$(\lambda.\beta)u = \lambda(\beta u) = \beta(\lambda u) = (\beta.\lambda)u$$

(IV) Elemento Identidade:

Definição

Seja $\mathcal V$ um conjunto tal que $\mathcal V \neq \emptyset$. Dizemos que $\mathcal V$ é um ESPAÇO VETORIAL sobre um corpo $\mathbb K$ se, e somente se,

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$
 - (III) Associativa para a multiplicação por escalares em \mathbb{K} :

$$(\lambda.\beta)u = \lambda(\beta u) = \beta(\lambda u) = (\beta.\lambda)u$$

(IV) Elemento Identidade: 1.u = u; $1 \in \mathbb{K}$

Definição

Seja $\mathcal V$ um conjunto tal que $\mathcal V \neq \emptyset$. Dizemos que $\mathcal V$ é um ESPAÇO VETORIAL sobre um corpo $\mathbb K$ se, e somente se,

- 1. Está definida em ${\cal V}$ uma ADIÇÃO que satisfaz as seguintes propriedades:
 - (I) Comutativa: u + v = v + u; $\forall u, v \in \mathcal{V}$
 - (II) Associativa: $(u+v)+w=u+(v+w); \forall u,v,w\in\mathcal{V}$
 - (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}$; u + 0 = u; $\forall u \in \mathcal{V}$;
 - (IV) **Elemento Inverso:** $\exists ! u \in \mathcal{V}; u + (-u) = 0; \forall u \in \mathcal{V}$
- 2. Está definida em $\mathcal V$ uma MULTIPLICAÇÃO POR ESCALAR que satisfaz as seguintes propriedades: $\forall u,v\in\mathcal V$ e $\forall\lambda,\beta\in\mathbb K$
 - (I) Distributiva para a adição de elementos em V: $\lambda(u+v) = \lambda v + \lambda u$
 - (II) Distributiva para a multiplicação por escalares em \mathbb{K} : $(\lambda + \beta)u = \lambda u + \beta u$
 - (III) Associativa para a multiplicação por escalares em \mathbb{K} :

$$(\lambda.\beta)u = \lambda(\beta u) = \beta(\lambda u) = (\beta.\lambda)u$$

(IV) Elemento Identidade: 1.u = u; $1 \in \mathbb{K}$

Exemplos

1. $\mathcal{V}=\mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar;

Exemplos

1. $\mathcal{V}=\mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V}=\mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar;

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $\mathcal{V}=\mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar;

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $\mathcal{V}=\mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n =$

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $V = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL;

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$:

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$.

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$:

- 1. $\mathcal{V} = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) =$

- 1. $V = \mathbb{R}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 2. $\mathcal{V} = \mathbb{C}$ sobre o corpo \mathbb{C} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** COMPLEXO.
- 3. $V = \mathbb{C}$ sobre o corpo \mathbb{R} considerando as operações usuais de adição e multiplicação por escalar; é um **espaço vetorial** REAL.
- 4. $\mathcal{V} = \mathbb{R}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{R}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.

5.
$$\mathcal{V} = \mathbb{C}^n =$$

5.
$$V = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$$
 sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO:

Exemplos

5. $V = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$:

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com

5.
$$\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$$
 sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$.

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$:

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) =$

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.

Exemplos

5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.

6. $\mathcal{V} = \mathbb{C}^n =$

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $V = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL;

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$:

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$.

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$:

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) =$

- 5. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{C} é um espaço vetorial COMPLEXO; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{C}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.
- 6. $\mathcal{V} = \mathbb{C}^n = \{u = (x_1, x_2, \dots, x_i, \dots, x_n) | x_i \in \mathbb{C}, \forall i\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição $\forall u, v \in \mathcal{V}$: $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ com $u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$. e multiplicação por escalar $\lambda \in \mathbb{K} = \mathbb{R}$ e $\forall u \in \mathcal{V}$: $\lambda u = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$.

7.
$$\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) =$$

Exemplos

7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL;

Exemplos

7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição

Exemplos

7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) =$

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $V = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO;

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $V = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.
- 9. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) =$

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.
- 9. $V = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL;

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.
- 9. $V = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{C}; \forall i, j\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.
- 9. V = M_{m×n}(ℂ) = {A_{m×n} = (a_{ij})_{1≤i≤m,1≤j≤n}|a_{ij} ∈ ℂ; ∀i,j} sobre o corpo ℝ é um espaço vetorial REAL; considerando as operações usuais de adição e multiplicação por escalar; λ ∈ K = ℝ.

- 7. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{R}) = \{A_{m \times n} = (a_{ij})_{1 \le i \le m, 1 \le j \le n} | a_{ij} \in \mathbb{R}; \forall i, j \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.
- 8. $\mathcal{V} = \mathcal{M}_{m \times n}(\mathbb{C}) = \{A_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} | a_{ij} \in \mathbb{C}; \forall i, j \}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.
- 9. V = M_{m×n}(ℂ) = {A_{m×n} = (a_{ij})_{1≤i≤m,1≤j≤n}|a_{ij} ∈ ℂ; ∀i,j} sobre o corpo ℝ é um espaço vetorial REAL; considerando as operações usuais de adição e multiplicação por escalar; λ ∈ K = ℝ.

10.
$$V = \mathcal{P}_n(\mathbb{R})$$

Espaços Vetoriais Exemplos

10. $V = \mathcal{P}_n(\mathbb{R})$ é o conjunto de todos os polinômios reais de grau $\leq n$; $n \in \mathbb{N}$;

Exemplos

10. $V = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição

Exemplos

10. $V = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$.

Exemplos

10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) =$

Exemplos

10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R}

Exemplos

10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL.

Exemplos

10. $\mathcal{V}=\mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}.$ $\mathcal{V}=\mathcal{P}_n(\mathbb{R})=\{p(t)=a_0+a_1t+\ldots+a_nt^n|a_j\in\mathbb{R}; \forall j=0,1,\ldots,n; \forall t\in\mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t)\in\mathcal{P}_n(\mathbb{R})$:

Exemplos

10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:

 $p(t) + q(t) = (a_0 + a_1t + \ldots + a_nt^n) + (b_0 + b_1t + \ldots + b_nt^n)$

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:
 - $p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de todos os polinômios reais de grau $< n; n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{R}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{R} \}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{R})$:
 - - $p(t) + q(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \dots + a_n t^n)$

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de todos os polinômios reais de grau $< n; n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{R}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:

 - $p(t) + q(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$: e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$

Exemplos

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:
 - $p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$

OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{R})$ é dado por :

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:
 - $p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$

OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{R})$ é dado por :

$$0(t) = 0 + 0t + \ldots + 0t^{j} + \ldots + 0t^{n} = 0.$$

- 10. $\mathcal{V} = \mathcal{P}_n(\mathbb{R})$ é o conjunto de **todos os polinômios reais de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{R}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{R}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{R}\}$ sobre o corpo \mathbb{R} é um **espaço vetorial** REAL. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{R})$:
 - $p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$

OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{R})$ é dado por :

$$0(t) = 0 + 0t + \ldots + 0t^{j} + \ldots + 0t^{n} = 0.$$

11.
$$\mathcal{V} = \mathcal{P}_n(\mathbb{C})$$

11. $V = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$;

Exemplos

11. $V = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição

Exemplos

11. $V = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$.

Exemplos

11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) =$

Exemplos

11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{C}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{C}\}$ sobre o corpo \mathbb{C}

Exemplos

11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{C}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO.

Exemplos

11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{C}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{C})$:

Exemplos

11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{p(t) = a_0 + a_1t + \ldots + a_nt^n | a_j \in \mathbb{C}; \forall j = 0, 1, \ldots, n; \forall t \in \mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO. Sejam p(t) e $q(t) \in \mathcal{P}_n(\mathbb{C})$:

Exemplos

11. $\mathcal{V}=\mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V}=\mathcal{P}_n(\mathbb{C})=\{p(t)=a_0+a_1t+\ldots+a_nt^n|a_j\in\mathbb{C}; \forall j=0,1,\ldots,n; \forall t\in\mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO. Sejam p(t) e $q(t)\in\mathcal{P}_n(\mathbb{C})$:

$$p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$$

$$(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$$

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n)$

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $< n; n \in \mathbb{N}$: considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_p(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\leq n$; $n \in \mathbb{N}$;

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_p(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição

- 11. $\mathcal{V}=\mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V}=\mathcal{P}_n(\mathbb{C})=\{p(t)=a_0+a_1t+\ldots+a_nt^n|a_j\in\mathbb{C}; \forall j=0,1,\ldots,n; \forall t\in\mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO. Sejam p(t) e $q(t)\in\mathcal{P}_n(\mathbb{C})$:
 - $p(t) + q(t) = (a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$
- 12. $V = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$,

- 11. $\mathcal{V}=\mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n; n \in \mathbb{N};$ considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{C}.$ $\mathcal{V}=\mathcal{P}_n(\mathbb{C})=\{p(t)=a_0+a_1t+\ldots+a_nt^n|a_j\in\mathbb{C}; \forall j=0,1,\ldots,n; \forall t\in\mathbb{C}\}$ sobre o corpo \mathbb{C} é um **espaço vetorial** COMPLEXO. Sejam p(t) e $q(t)\in\mathcal{P}_n(\mathbb{C})$:
 - $p(t) + q(t) = (a_0 + a_1 t + \dots + a_n t^n) + (b_0 + b_1 t + \dots + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n; e$
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n.$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de **todos os polinômios complexos de grau** $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar; $\lambda \in \mathbb{K} = \mathbb{R}$, é um **espaço vetorial** REAL.

Exemplos

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_n(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{R}$. é um espaco vetorial REAL.

OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{C})$ é dado por :

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_p(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{R}$. é um espaco vetorial REAL.
- OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{C})$ é dado por :

$$0(t) = 0 + 0t + \ldots + 0t^{j} + \ldots + 0t^{n} = 0.$$

- 11. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\langle n; n \in \mathbb{N} \rangle$ considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{C}$. $\mathcal{V} = \mathcal{P}_p(\mathbb{C}) = \{ p(t) = a_0 + a_1 t + \ldots + a_n t^n | a_i \in \mathbb{C}; \forall i = 0, 1, \ldots, n; \forall t \in \mathbb{C} \}$ sobre o corpo \mathbb{C} é um **espaco vetorial** COMPLEXO. Seiam p(t) e $q(t) \in \mathcal{P}_p(\mathbb{C})$:
 - - $p(t) + a(t) = (a_0 + a_1 t + ... + a_n t^n) + (b_0 + b_1 t + ... + b_n t^n)$ $(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$; e
 - $\lambda p(t) = \lambda (a_0 + a_1 t + \ldots + a_n t^n) = \lambda a_0 + \lambda a_1 t + \ldots + \lambda a_n t^n$
- 12. $\mathcal{V} = \mathcal{P}_n(\mathbb{C})$ é o conjunto de todos os polinômios complexos de grau $\leq n$; $n \in \mathbb{N}$; considerando as operações usuais de adição e multiplicação por escalar: $\lambda \in \mathbb{K} = \mathbb{R}$. é um espaco vetorial REAL.
- OBSERVAÇÃO: O polinômio nulo $0(t) \in \mathcal{P}_n(\mathbb{C})$ é dado por :

$$0(t) = 0 + 0t + \ldots + 0t^{j} + \ldots + 0t^{n} = 0.$$

Exemplos

Seja o conjunto $V = \{x \in \mathbb{R} | x > 0\}.$

Exemplos

Seja o conjunto $V = \{x \in \mathbb{R} | x > 0\}.$ Definimos as seguintes operações em \mathcal{V} :

Exemplos

Seja o conjunto $V = \{x \in \mathbb{R} | x > 0\}.$ Definimos as seguintes operações em \mathcal{V} :

• ADICÃO: $x \oplus y = xy$: $\forall x, y \in \mathcal{V}$

Exemplos

Seja o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$ Definimos as seguintes operações em V:

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$

Exemplos

Seja o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$ Definimos as seguintes operações em \mathcal{V} :

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$

Vamos verificar se $(\mathcal{V}, \oplus, \odot)$ é um espaço vetorial real.

Exemplos

Seja o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$ Definimos as seguintes operações em \mathcal{V} :

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$

Vamos verificar se $(\mathcal{V}, \oplus, \odot)$ é um espaço vetorial real.

Seja o conjunto $V = \{x \in \mathbb{R} | x > 0\}.$

Seja o conjunto
$$\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$$

• ADIÇÃO: $x \oplus y = xy; \forall x, y \in \mathcal{V}$

Seja o conjunto
$$\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy; \forall x, y \in \mathcal{V}$
- (I) Comutativa:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy; \forall x, y \in \mathcal{V}$
- (I) Comutativa: $x \oplus y =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy; \forall x, y \in \mathcal{V}$
- (I) Comutativa: $x \oplus y = xy =$

Seja o conjunto $V = \{x \in \mathbb{R} | x > 0\}.$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (I) Comutativa: $x \oplus y = xy = yx =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x$;

Seja o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy; \forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- Associativa:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (I) Comutativa: $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- (II) Associativa: $(x \oplus y) \oplus z =$

Espaços Vetoriais Exemplos

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- (II) Associativa: $(x \oplus y) \oplus z = (xy)z =$

Espacos Vetoriais Exemplos

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- (II) Associativa: $(x \oplus y) \oplus z = (xy)z = x(yz) =$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x; \forall x, y \in \mathcal{V}$
- (II) Associativa: $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z)$:

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x; \forall x, y \in \mathcal{V}$
- (II) Associativa: $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x; \forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) Elemento Neutro:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x; \forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) Elemento Neutro: $\exists ! 0 \in \mathcal{V}$:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- (1) Comutativa: $x \oplus y = xy = yx = y \oplus x; \forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) **Elemento Neutro:** $\exists !0 \in \mathcal{V}; x \oplus 0 = x.0 = x;$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 = x.0 = x; \forall x \in \mathcal{V};$

Exemplos

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- (III) **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 = x.0 = x; \forall x \in \mathcal{V}; \text{ onde, } 0 = 1 \text{ \'e o VETOR NULO}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 = x.0 = x; \forall x \in \mathcal{V}; \text{ onde, } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) Elemento Inverso:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- **Comutativa:** $x \oplus y = xy = yx = y \oplus x$; $\forall x, y \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 = x.0 = x; \forall x \in \mathcal{V}; \text{ onde, } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) Elemento Inverso: $\exists ! -x \in \mathcal{V}$;

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}; x \oplus 0 = x.0 = x; \forall x \in \mathcal{V}; \text{ onde, } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) Elemento Inverso: $\exists ! -x \in \mathcal{V}; x \oplus (-x) =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}: x \oplus 0 = x.0 = x: \forall x \in \mathcal{V}: \text{ onde. } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) **Elemento Inverso:** $\exists ! -x \in \mathcal{V}; x \oplus (-x) = x(-x) = 0;$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADIÇÃO: $x \oplus y = xy$; $\forall x, y \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}: x \oplus 0 = x.0 = x: \forall x \in \mathcal{V}: \text{ onde. } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) **Elemento Inverso:** $\exists ! -x \in \mathcal{V}; x \oplus (-x) = x(-x) = 0; \forall x \in \mathcal{V};$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}: x \oplus 0 = x.0 = x: \forall x \in \mathcal{V}: \text{ onde. } 0 = 1 \text{ \'e o VETOR NULO}$
- (IV) Elemento Inverso: $\exists ! -x \in \mathcal{V}; x \oplus (-x) = x(-x) = 0; \forall x \in \mathcal{V}; \text{ onde, } -x = \frac{1}{x} \in \mathcal{V}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}: x \oplus 0 = x.0 = x: \forall x \in \mathcal{V}: \text{ onde. } 0 = 1 \text{ \'e o VETOR NULO}$
- **Elemento Inverso:** $\exists ! -x \in \mathcal{V}; x \oplus (-x) = x(-x) = 0; \forall x \in \mathcal{V}; \text{ onde, } -x = \frac{1}{x} \text{ e } 0 = 1 \text{ é}$ o elemento inverso e o vetor nulo, respectivamente.

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- ADICÃO: $x \oplus v = xv$: $\forall x, v \in \mathcal{V}$
- **Comutativa:** $x \oplus v = xv = vx = v \oplus x$: $\forall x, v \in \mathcal{V}$
- **Associativa:** $(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z); \forall x, y, z \in \mathcal{V}$
- **Elemento Neutro:** $\exists ! 0 \in \mathcal{V}: x \oplus 0 = x.0 = x: \forall x \in \mathcal{V}: \text{ onde. } 0 = 1 \text{ \'e o VETOR NULO}$
- **Elemento Inverso:** $\exists ! -x \in \mathcal{V}; x \oplus (-x) = x(-x) = 0; \forall x \in \mathcal{V}; \text{ onde, } -x = \frac{1}{x} \text{ e } 0 = 1 \text{ é}$ o elemento inverso e o vetor nulo, respectivamente.

Espaços Vetoriais Exemplos

Exemplos

Seja o conjunto
$$\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$$

• MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$

Exemplos

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}; \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}; \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

$$\lambda\odot(x\oplus y)=$$

Exemplos

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}; \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

$$\lambda \odot (x \oplus y) = (xy)^{\lambda} =$$

Exemplos

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}: \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

$$\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} =$$

Exemplos

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}; \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

$$\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) =$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}; \forall x \in \mathcal{V}: \forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V:

$$\lambda\odot(x\oplus y)=(xy)^{\lambda}=x^{\lambda}y^{\lambda}=(\lambda\odot x)(\lambda\odot y)=(\lambda\odot x)\oplus(\lambda\odot y);\forall x,y\in\mathcal{V}\;\mathsf{e}\;\forall\lambda\in\mathbb{R}$$

Exemplos

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} :

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x =$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} =$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} \oplus x^{\beta$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x)$:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} :

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta)\odot x =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} =$

Seia o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}.$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y): \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y): \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x$:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$: $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y): \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x; \forall x \in \mathcal{V} \text{ e } \forall \lambda, \beta \in \mathbb{R}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$
- (I) Distributiva para a adição de elementos em \mathcal{V} : $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x; \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (IV) Elemento Identidade:

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$: $\forall \lambda \in \mathbb{R}$
- Distributiva para a adição de elementos em V: $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y): \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \mathcal{V}, \beta \in \mathbb{R}$
- Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x : \forall x \in \mathcal{V} \in \mathcal{V} \in \mathcal{V}$
- **Elemento Identidade:** $1 \odot u =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$
- (1) Distributiva para a adição de elementos em \mathcal{V} : $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \text{ e } \forall \lambda \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x; \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (IV) Elemento Identidade: $1 \odot u = u^1 =$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$
- (1) Distributiva para a adição de elementos em \mathcal{V} : $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x; \forall x \in \mathcal{V} \text{ e } \forall \lambda, \beta \in \mathbb{R}$
- (IV) Elemento Identidade: $1 \odot u = u^1 = u : \forall u \in \mathcal{V} : 1 \in \mathbb{R}$

Seja o conjunto
$$V = \{x \in \mathbb{R} | x > 0\}.$$

- MULTIPLICAÇÃO POR ESCALAR: $\lambda \odot x = x^{\lambda}$; $\forall x \in \mathcal{V}$; $\forall \lambda \in \mathbb{R}$
- (1) Distributiva para a adição de elementos em \mathcal{V} : $\lambda \odot (x \oplus y) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x)(\lambda \odot y) = (\lambda \odot x) \oplus (\lambda \odot y); \forall x, y \in \mathcal{V} \in \forall \lambda \in \mathbb{R}$
- (II) Distributiva para a multiplicação por escalares em \mathbb{R} : $(\lambda + \beta) \odot x = x^{\lambda + \beta} = x^{\lambda} x^{\beta} = x^{\lambda} \oplus x^{\beta} = (\lambda \odot x) \oplus (\beta \odot x); \forall x \in \mathcal{V} \in \forall \lambda, \beta \in \mathbb{R}$
- (III) Associativa para a multiplicação por escalares em \mathbb{R} : $(\lambda.\beta) \odot x = x^{\lambda\beta} = x^{\beta\lambda} = (\beta.\lambda) \odot x; \forall x \in \mathcal{V} \text{ e } \forall \lambda, \beta \in \mathbb{R}$
- (IV) Elemento Identidade: $1 \odot u = u^1 = u : \forall u \in \mathcal{V} : 1 \in \mathbb{R}$

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um **subconjunto** de \mathcal{V} ;

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um **subconjunto** de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$.

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

(I) Adição de vetores:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W} \Rightarrow u + v \in \mathcal{W},$$

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W} \Rightarrow u + v \in \mathcal{W},$$

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W} \Rightarrow u + v \in \mathcal{W},$$

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{K} \Rightarrow \lambda u \in \mathcal{W}.$$

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} e \mathcal{W} um subconjunto de \mathcal{V} ; tal que $\mathcal{W} \neq \emptyset$. Dizemos que \mathcal{W} é um SUBESPACO VETORIAL de \mathcal{V} se, e somente se, estão definidas em \mathcal{W} as seguintes operações:

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W} \Rightarrow u + v \in \mathcal{W},$$

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{K} \Rightarrow \lambda u \in \mathcal{W}.$$

Subespacos Vetoriais Observações

- 1. O conjunto {0} que contém apenas o vetor nulo é denominado ESPAÇO VETORIAL NULO.
- 2. Se V é um espaço vetorial sobre o corpo \mathbb{K} , então o **espaço vetorial nulo** $\{0\}$

Subespacos Vetoriais Observações

- 1. O conjunto {0} que contém apenas o **vetor nulo** é denominado ESPAÇO VETORIAL NULO.
- 2. Se \mathcal{V} é um espaço vetorial sobre o corpo \mathbb{K} , então o **espaço vetorial nulo** $\{0\}$ e o espaço vetorial $\mathcal V$ são os subespacos impróprios ou triviais de $\mathcal V$.

Subespacos Vetoriais

Observações

- 1. O conjunto {0} que contém apenas o **vetor nulo** é denominado ESPACO VETORIAL NULO.
- 2. Se V é um espaço vetorial sobre o corpo \mathbb{K} , então o espaço vetorial nulo $\{0\}$ e o espaço vetorial $\mathcal V$ são os SUBESPACOS IMPRÓPRIOS ou TRIVIAIS de $\mathcal V$. Enquanto que os demais são denominados SUBESPAÇOS PRÓPRIOS de \mathcal{V} .

Subespacos Vetoriais Observações

- 1. O conjunto {0} que contém apenas o **vetor nulo** é denominado ESPACO VETORIAL NULO.
- 2. Se V é um espaço vetorial sobre o corpo \mathbb{K} , então o espaço vetorial nulo $\{0\}$ e o espaço vetorial $\mathcal V$ são os SUBESPACOS IMPRÓPRIOS ou TRIVIAIS de $\mathcal V$. Enquanto que os demais são denominados SUBESPACOS PRÓPRIOS de \mathcal{V} .
- 3. Se \mathcal{V} é um espaço vetorial sobre o corpo \mathbb{K} , então o subespaço \mathcal{W} de \mathcal{V} é também um espaco vetorial sobre \mathbb{K} .

Subespaços Vetoriais

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$$

Subespaços Vetoriais Exemplos

1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .

Subespaços Vetoriais Exemplos

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W};$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

$$\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R}$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

$$\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u =$$

- 1. $\mathcal{W} = \{u = (x, v) \in \mathbb{R}^2 | x = v\}$ é um subespaco vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

$$\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(x, x) =$$

- 1. $\mathcal{W} = \{u = (x, v) \in \mathbb{R}^2 | x = v\}$ é um subespaco vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

$$\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(x, x) = (\lambda x, \lambda x) \in \mathcal{W}.$$

- 1. $\mathcal{W} = \{u = (x, v) \in \mathbb{R}^2 | x = v\}$ é um subespaco vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v = (x + y, x + y) \in \mathcal{W}$$

$$\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(x, x) = (\lambda x, \lambda x) \in \mathcal{W}.$$

Subespaços Vetoriais Exemplos

2.
$$W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$$

Subespaços Vetoriais

Exemplos

2.
$$\mathcal{W} = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$$
 é um subespaço vetorial do \mathbb{R}^3 .

Subespaços Vetoriais Exemplos

2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .

(I) Adição de vetores:

2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .

(I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W}$$

2. $\mathcal{W} = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2),$$

- 2. $\mathcal{W} = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2,$$

- 2. $\mathcal{W} = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$$

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$$

Exemplos

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$$

$$\forall u = (y + z, y, z) \in \mathcal{W}; \forall \lambda \in \mathbb{R}$$

Exemplos

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$$

$$\forall u = (y + z, y, z) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda(y + z), \lambda y, \lambda z) =$$

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores:

$$\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$$

$$\forall u = (y + z, y, z) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda(y + z), \lambda y, \lambda z) = (\lambda y + \lambda z, \lambda y, \lambda z)$$

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores: $\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow$ $u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$
 - (II) Multiplicação por escalar:

$$\forall u = (y + z, y, z) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda(y + z), \lambda y, \lambda z) = (\lambda y + \lambda z, \lambda y, \lambda z) \Rightarrow \lambda u \in \mathcal{W}.$$

- 2. $W = \{u = (x, y, z) \in \mathbb{R}^3 | x = y + z\}$ é um subespaço vetorial do \mathbb{R}^3 .
 - (I) Adição de vetores: $\forall u = (y_1 + z_1, y_1, z_1), v = (y_2 + z_2, y_2, z_2) \in \mathcal{W} \Rightarrow$ $u + v = ((y_1 + y_2) + (z_1 + z_2), y_1 + y_2, z_1 + z_2) \Rightarrow u + v \in \mathcal{W}, e$
 - (II) Multiplicação por escalar:

$$\forall u = (y + z, y, z) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda(y + z), \lambda y, \lambda z) = (\lambda y + \lambda z, \lambda y, \lambda z) \Rightarrow \lambda u \in \mathcal{W}.$$

Subespaços Vetoriais

3.
$$W = \{p(t) \in \mathcal{P}_{3}(\mathbb{R}) | p(t) + p'(t) = 0\}$$

Subespaços Vetoriais Exemplos

3.
$$\mathcal{W}=\{p(t)\in\mathcal{P}_3(\mathbb{R})|p(t)+p^{'}(t)=0\}$$
 é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.

Subespaços Vetoriais Exemplos

3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.

3.
$$\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$$
 é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.

$$\forall p(t), q(t) \in \mathcal{W}$$

3.
$$\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$$
 é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.

$$\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) =$$

3.
$$\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$$
 é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.

$$\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) =$$

$$\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$$

$$orall p(t),q(t)\in\mathcal{W}\Rightarrow p(t)+q(t)=-p^{'}(t)-q^{'}(t)=-(p^{'}(t)+q^{'}(t))=-(p(t)+q(t))^{'}$$

$$orall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p^{'}(t) - q^{'}(t) = -(p^{'}(t) + q^{'}(t)) = -(p(t) + q(t))^{'} \Rightarrow (p(t) + q(t)) + (p(t) + q(t))^{'} = 0$$

$$\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p^{'}(t) - q^{'}(t) = -(p^{'}(t) + q^{'}(t)) = -(p(t) + q(t))^{'} \Rightarrow (p(t) + q(t)) + (p(t) + q(t))^{'} = 0 \Rightarrow p(t) + q(t) \in \mathcal{W}, e$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t) + q(t))' \Rightarrow (p(t) + q(t)) + (p(t) + q(t))' = 0 \Rightarrow p(t) + q(t) \in \mathcal{W}$, e
 - (II) Multiplicação por escalar:

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t)+q(t))' \Rightarrow (p(t)+q(t))+(p(t)+q(t))' = 0 \Rightarrow p(t)+q(t) \in W$. e
 - (II) Multiplicação por escalar:

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) =$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores:

$$orall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p^{'}(t) - q^{'}(t) = -(p^{'}(t) + q^{'}(t)) = -(p(t) + q(t))^{'} \Rightarrow (p(t) + q(t)) + (p(t) + q(t))^{'} = 0 \Rightarrow p(t) + q(t) \in \mathcal{W}, \ \mathsf{e}$$

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda (-p^{'}(t)) =$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t)+q(t))' \Rightarrow (p(t)+q(t))+(p(t)+q(t))' = 0 \Rightarrow p(t)+q(t) \in \mathcal{W}$, e
 - (II) Multiplicação por escalar:

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda(-p'(t)) = -(\lambda p'(t))$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t)+q(t))' \Rightarrow (p(t)+q(t))+(p(t)+q(t))' = 0 \Rightarrow p(t)+q(t) \in \mathcal{W}$, e
 - (II) Multiplicação por escalar:

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda (-p'(t)) = -(\lambda p'(t)) = -(\lambda p(t))'$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores:

$$orall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p^{'}(t) - q^{'}(t) = -(p^{'}(t) + q^{'}(t)) = -(p(t) + q(t))^{'} \Rightarrow (p(t) + q(t)) + (p(t) + q(t))^{'} = 0 \Rightarrow p(t) + q(t) \in \mathcal{W}, \ \mathsf{e}$$

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda(-p'(t)) = -(\lambda p'(t)) = -(\lambda p(t))' \Rightarrow \lambda p(t) + (\lambda p(t))' = 0$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t)+q(t))' \Rightarrow (p(t)+q(t))+(p(t)+q(t))' = 0 \Rightarrow p(t)+q(t) \in \mathcal{W}$, e
 - (II) Multiplicação por escalar:

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda(-p'(t)) = -(\lambda p'(t)) = -(\lambda p(t))' \Rightarrow \lambda p(t) + (\lambda p(t))' = 0 \Rightarrow \lambda p(t) \in \mathcal{W}.$$

- 3. $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(t) + p'(t) = 0\}$ é um subespaço vetorial do $\mathcal{P}_3(\mathbb{R})$.
 - (I) Adição de vetores: $\forall p(t), q(t) \in \mathcal{W} \Rightarrow p(t) + q(t) = -p'(t) - q'(t) = -(p'(t) + q'(t)) =$ $-(p(t)+q(t))' \Rightarrow (p(t)+q(t))+(p(t)+q(t))' = 0 \Rightarrow p(t)+q(t) \in \mathcal{W}$, e
 - (II) Multiplicação por escalar:

$$\forall p(t) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda p(t) = \lambda(-p'(t)) = -(\lambda p'(t)) = -(\lambda p(t))' \Rightarrow \lambda p(t) + (\lambda p(t))' = 0 \Rightarrow \lambda p(t) \in \mathcal{W}.$$

Subespaços Vetoriais Exemplos

4.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t \}$$

Subespaços Vetoriais

4.
$$\mathcal{W}=\{A\in\mathcal{M}_n(\mathbb{R})|A=A^t\}$$
 é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.

Subespaços Vetoriais

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores:

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
: tais que. $A = A^t$ e $B = B^t$

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t$

4.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$$
 é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t \Rightarrow A + B \in \mathcal{W}$, e

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t \Rightarrow A + B \in \mathcal{W}$, e

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t \Rightarrow A + B \in \mathcal{W}$, e

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^t = (\lambda A)^t$$

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores: $\forall A, B \in \mathcal{W}$; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t$ $\Rightarrow A + B \in \mathcal{W}$. e
 - (II) Multiplicação por escalar: $\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^t = (\lambda A)^t \Rightarrow \lambda A \in \mathcal{W}.$

- 4. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.
 - (I) Adição de vetores: $\forall A, B \in \mathcal{W}$; tais que, $A = A^t$ e $B = B^t \Rightarrow A + B = A^t + B^t = (A + B)^t$ $\Rightarrow A + B \in \mathcal{W}$. e
 - (II) Multiplicação por escalar: $\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^t = (\lambda A)^t \Rightarrow \lambda A \in \mathcal{W}.$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \left[egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right]$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

 \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**. \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Subespacos Vetoriais Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

Adição de vetores:

Adição de vetores:
$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n$$

 \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**. \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Adição de vetores:
$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n \\ \Rightarrow A(X + Y) =$$

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

 \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Adição de vetores:

Adição de vetores:
$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n \\ \Rightarrow A(X + Y) = AX + BY =$$

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

 \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

Adição de vetores:

Addição de vetores:
$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n \\ \Rightarrow A(X + Y) = AX + BY = 0_n + 0_n$$

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**. \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n$$

 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n$

Exemplos

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

onde, X_n é o conjunto solução do **sistema linear hom** $\mathcal W$ é um subespaço vetorial do $\mathbb R^n$.

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n$$

 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W}; \text{ ou seja, } u + v \in \mathcal{W}, \text{ e}$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

 ${\mathcal W}$ é um subespaço vetorial do ${\mathbb R}^n$.

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W}; \text{ tais que, } AX = 0_n \text{ e } AY = 0_n$$

 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W}; \text{ ou seja, } u + v \in \mathcal{W}, \text{ e}$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde, X_n é o conjunto solução do **sistema linear homogêneo**.

 \mathcal{W} é um subespaço vetorial do \mathbb{R}^n .

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$
 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) =$$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde X é a conjunta solução do sistema linear homogêneo.

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$
 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) = \lambda(AX) =$$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n\};$ onde X é a conjunta solução do sistema linear homogêneo.

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$
 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) = \lambda(AX) = \lambda(0_n)$$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{ u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n \};$

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$
 $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) = \lambda(AX) = \lambda(0_n) = 0_n$$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{ u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n \};$

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$ $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) = \lambda(AX) = \lambda(0_n) = 0_n \Rightarrow \lambda X \in \mathcal{W}; \text{ ou seja, } \lambda u \in \mathcal{W}.$$

5. Seja
$$A \in \mathcal{M}_n(\mathbb{R})$$
 e $X_n = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ então, $\mathcal{W} = \{ u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | AX = 0_n \};$

(I) Adição de vetores:

$$\forall u, v \in \mathcal{W}; u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathcal{W};$$
 tais que, $AX = 0_n$ e $AY = 0_n$ $\Rightarrow A(X + Y) = AX + BY = 0_n + 0_n = 0_n \Rightarrow X + Y \in \mathcal{W};$ ou seja, $u + v \in \mathcal{W}$, e

$$\forall X \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow A(\lambda X) = \lambda(AX) = \lambda(0_n) = 0_n \Rightarrow \lambda X \in \mathcal{W}; \text{ ou seja, } \lambda u \in \mathcal{W}.$$

Subespaços Vetoriais Observações

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$$

Subespaços Vetoriais Observações

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

 $\forall u, v \in \mathcal{W}$; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$

Observações

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$$

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v =$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2)$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

```
\forall u, v \in \mathcal{W}; tais que, u = (y_1^2, y_1) e v = (y_2^2, y_2)

\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}, e
```

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

$$\forall u \in \mathcal{W} : \forall \lambda \in \mathbb{R} \Rightarrow \lambda u =$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) =$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) = (\lambda y_1^2, \lambda y_1)$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) = (\lambda y_1^2, \lambda y_1) \Rightarrow \lambda y_1^2 \neq (\lambda y_1)^2$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) = (\lambda y_1^2, \lambda y_1) \Rightarrow \lambda y_1^2 \neq (\lambda y_1)^2 \Rightarrow \lambda u \notin \mathcal{W}.$$

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

(II) Multiplicação por escalar:

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) = (\lambda y_1^2, \lambda y_1) \Rightarrow \lambda y_1^2 \neq (\lambda y_1)^2 \Rightarrow \lambda u \notin \mathcal{W}.$$

Por (I) e (II), podemos concluir que W NÃO é um subespaço vetorial do \mathbb{R}^2 .

Observações

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | x = y^2 \}$
 - (I) Adição de vetores:

$$\forall u, v \in \mathcal{W}$$
; tais que, $u = (y_1^2, y_1)$ e $v = (y_2^2, y_2)$
 $\Rightarrow u + v = (y_1^2 + y_2^2, y_1 + y_2) \Rightarrow y_1^2 + y_2^2 \neq (y_1 + y_2)^2 \Rightarrow u + v \notin \mathcal{W}$, e

(II) Multiplicação por escalar:

$$\forall u \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = \lambda(y_1^2, y_1) = (\lambda y_1^2, \lambda y_1) \Rightarrow \lambda y_1^2 \neq (\lambda y_1)^2 \Rightarrow \lambda u \notin \mathcal{W}.$$

Por (I) e (II), podemos concluir que W NÃO é um subespaço vetorial do \mathbb{R}^2 .

Subespaços Vetoriais Observações

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

Subespaços Vetoriais Observações

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

(I) Adição de vetores:

 $\forall A, B \in \mathcal{W}$; tais que, $A = A^2$ e $B = B^2$

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B =$

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2$

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2$

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

(I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

2.
$$\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$$

(I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A =$$

- 2. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

$$\forall A \in \mathcal{W} : \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^2$$

- 2. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^2 \neq (\lambda A)^2$$

- 2. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$
 - (I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^2 \neq (\lambda A)^2 \Rightarrow \lambda A \notin \mathcal{W}.$$

Observações

2. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$

(I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

(II) Multiplicação por escalar:

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^2 \neq (\lambda A)^2 \Rightarrow \lambda A \notin \mathcal{W}.$$

Por (I) e (II), podemos concluir que W NÃO é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.

Observações

2. $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^2\}$

(I) Adição de vetores:

$$\forall A, B \in \mathcal{W}$$
; tais que, $A = A^2$ e $B = B^2 \Rightarrow A + B = A^2 + B^2 \neq (A + B)^2 \Rightarrow A + B \notin \mathcal{W}$, e

(II) Multiplicação por escalar:

$$\forall A \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda A = \lambda A^2 \neq (\lambda A)^2 \Rightarrow \lambda A \notin \mathcal{W}.$$

Por (I) e (II), podemos concluir que W NÃO é um subespaço vetorial do $\mathcal{M}_n(\mathbb{R})$.

Subespacos Vetoriais

Exercícios

1. Seja o conjunto $\mathcal{V} = \mathcal{C}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R} | f \in \text{uma função contínua} \}$, com a operação de adição de elementos e a operação de multiplicação por escalar definidas em $F(\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \in \text{uma função} \}: (f+g)(x) = f(x) + g(x) \in (\lambda f)(x) = \lambda f(x).$ Verifique se $\mathcal{C}([a,b])$ é um espaço vetorial real.

- 1. Seja o conjunto $\mathcal{V} = \mathcal{C}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R} | f \in \text{uma função contínua} \}$, com a operação de adição de elementos e a operação de multiplicação por escalar definidas em $F(\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \text{ \'e uma função } \}: (f+g)(x) = f(x) + g(x) \text{ e } (\lambda f)(x) = \lambda f(x).$ Verifique se $\mathcal{C}([a,b])$ é um espaço vetorial real.
- 2. Considere o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}$. Definido com as operações usuais de adição e multiplicação por escalar em \mathbb{R} : Verique se $(\mathcal{V}, +, ...)$ é um espaço vetorial real.

- 1. Seja o conjunto $\mathcal{V} = \mathcal{C}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R} | f \in \text{uma função contínua} \}$, com a operação de adição de elementos e a operação de multiplicação por escalar definidas em $F(\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \text{ \'e uma função } \}: (f+g)(x) = f(x) + g(x) \text{ e } (\lambda f)(x) = \lambda f(x).$ Verifique se $\mathcal{C}([a,b])$ é um espaço vetorial real.
- 2. Considere o conjunto $\mathcal{V} = \{x \in \mathbb{R} | x > 0\}$. Definido com as operações usuais de adição e multiplicação por escalar em \mathbb{R} : Verique se $(\mathcal{V}, +, ...)$ é um espaço vetorial real.
- 3. Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o mesmo corpo \mathbb{K} . Mostre que $Z = \mathcal{V} \times \mathcal{U} = \{(v, u)/v \in \mathcal{V} \text{ e } u \in \mathcal{U}\}$ munido das seguintes operações:
 - (i) $(v_1, u_1) + (v_2, u_2) = (v_1 + v_2, u_1 + u_2)$
 - (ii) $\lambda(v, u) = (\lambda v, \lambda u), \lambda \in \mathbb{K}$
 - é um espaco vetorial sobre o corpo K.

Subespaços Vetoriais

Exercícios

1. Sejam
$$\mathcal{V}=\mathcal{M}_n(\mathbb{R})$$
 e $\mathcal{W}=\{A\in\mathcal{M}_n(\mathbb{R})|tr(A)=0\}$

Subespacos Vetoriais

Exercícios

- 1. Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Sejam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.

- 1. Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Sejam $\mathcal{V} = \mathcal{C}([a, b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a, b]) | f(a) = 1\}$.

- 1. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Seiam $\mathcal{V} = \mathcal{C}([a,b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a,b]) | f(a) = 1\}$.
- 4. Sejam $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(-1) = 0 \text{ e } p'(1) = 0\}.$

- 1. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Seiam $\mathcal{V} = \mathcal{C}([a,b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a,b]) | f(a) = 1\}$.
- 4. Sejam $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(-1) = 0 \text{ e } p'(1) = 0\}.$
- 5. Sejam $\mathcal{V} = \mathcal{C}([0,1])$ e $\mathcal{W} = \{ f \in \mathcal{C}([0,1]) | \int_{-1}^{1} f(x) dx > 0 \}.$

- 1. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Sejam $\mathcal{V} = \mathcal{C}([a, b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a, b]) | f(a) = 1\}$.
- 4. Sejam $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(-1) = 0 \text{ e } p'(1) = 0\}.$
- 5. Sejam $\mathcal{V} = \mathcal{C}([0,1])$ e $\mathcal{W} = \{ f \in \mathcal{C}([0,1]) | \int_{-1}^{1} f(x) dx > 0 \}$.
- 6. Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | (\int_0^1 p(t)dt) + p'(0) = 0\}.$

- 1. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Sejam $\mathcal{V} = \mathcal{C}([a, b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a, b]) | f(a) = 1\}$.
- 4. Sejam $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(-1) = 0 \text{ e } p'(1) = 0\}.$
- 5. Sejam $\mathcal{V} = \mathcal{C}([0,1])$ e $\mathcal{W} = \{ f \in \mathcal{C}([0,1]) | \int_{-1}^{1} f(x) dx > 0 \}$.
- 6. Seiam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | (\int_{-1}^1 p(t)dt) + p'(0) = 0\}.$
- 7. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$ e $W = \{A \in \mathcal{M}_n(\mathbb{C}) | A = (A)^t\}$.

Exercícios

- 1. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ e $\mathcal{W} = \{A \in \mathcal{M}_n(\mathbb{R}) | tr(A) = 0\}$
- 2. Seiam $V = \mathbb{R}^2$ e $W = \{(x, y) \in \mathbb{R}^2 | y 2x = 1\}$.
- 3. Sejam $\mathcal{V} = \mathcal{C}([a, b])$ e $\mathcal{W} = \{f \in \mathcal{C}([a, b]) | f(a) = 1\}$.
- 4. Sejam $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R}) | p(-1) = 0 \text{ e } p'(1) = 0\}.$
- 5. Sejam $\mathcal{V} = \mathcal{C}([0,1])$ e $\mathcal{W} = \{ f \in \mathcal{C}([0,1]) | \int_{-1}^{1} f(x) dx > 0 \}$.
- 6. Seiam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ e $\mathcal{W} = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | (\int_{-1}^1 p(t)dt) + p'(0) = 0\}.$
- 7. Seiam $\mathcal{V} = \mathcal{M}_n(\mathbb{C})$ e $W = \{A \in \mathcal{M}_n(\mathbb{C}) | A = (A)^t\}$.