Output 8Following is the Breadth-First Search
537248

	No. :
	Practical -1
19)	Woite Python Program to implement breadth first Search algorithm
-	Intro-BFS is a graph traversal algorithm that explores a graph or tree level by level. It storts at a designed source node and systematically visits all its immediate neighbors then all their unvisited neighbors and so on.
-	code °-
	graph = ['3', '4'], '3':['2', 'u'], '7':['8'], '2':[]. '4':['8'].
	18':0
	visited = []
	90 eve = ()
	def bfs (visited, graph, node): visited. append (node) queue. append (node)
, 3	m = queve : Pop (o) Print (m, end = " ")
	for neighbour in graph [m]: if neighbour not in visited: visited. append (neighbour) queue. append (neighbour)
	Print ("Fallowing is the Breadth-First Search") bis (visited, graph, '5')

the standard of the standard o	No. : 02
Historia of the self the service of	1b) Write Python Program to implement depth first - Intro Dia in the control of
The state of the s	- Intro - DFS in Al is a fundamental algorithm used for traversing or searching through graph and tree data structures. It's a type of uninformed search algorithm meaning it does not use any huristic information
Following is the depth First Search	The state of the s
53 2 4 7	9xaph = { '5':['3', '4'], '3':['2', '4'],
i i i i i i i i i i i i i i i i i i i	980ph = { '5':['3', '4'], '3':['2', '4'], '4':['3'], '2':[], '4':['3'], '8':[].
tekn dyng Isticia old get with the following bengge benefit	def to dis (visited, graph, node): if node not in visited: print (node) visited add (node) for neighbour in graph [node]: dfs (visited, graph, neighbour)
(a get possification of the control	for neighbour in graph [node]: dfs (visited, graph, neighbour)
the state of and displace to	Print("Following is the Depth First Search") dfs (visited, graph, 's')
Leading bagga susup	
Peint C. Fellanders is the Could Find Could State of the Could State o	

to mast to malgrif as more as noting	Practical - 2
her matical letametail n 29 10 de 200	2a Write Python Program to implement Tower of Hano
Output 8- Move disk I from Source A to destination c Move disk 2 from source A to destination B Move disk 3 from source A to destination B Move disk 3 from source B to destination A Move disk 1 from Source B to destination A Move disk 1 from Source B to destination C Move disk 1 from Source A to destination C Move disk 1 from Source A to destination B Move disk 1 from source C to destination B Move disk 4 from source C to destination A Move disk 4 from source B to destination A Move disk 1 from source B to destination B Move disk 2 from source C to destination B Move disk 2 from source B to destination B Move disk 1 from source B to destination B Move disk 2 from source B to destination B Move disk 3 from source B to destination B Move disk 1 from source B to destination B Move disk 1 from source A to Move disk 1 from source A to Move disk 1 from source A to Move disk 1 from source C to destination B Move disk 1 from source A to Move disk 1 from source C to destination B	- Intro-The Tower of Hanoi is a classic mathematical Ruzzle frequently used in Al and computer science to illustrate and teach fundamental concepts such a security problem - Solving and algorithmic design - Code o- def Tower of Hanoi (n. source destination, auxiliary) print ("Move disk I form Source". Source. "to destination". destination) Tower of Hanoi (n=1, source, destination, auxiliary) Print ("Move disk", n. "from source, "to desination", destination) Tower of Hanoi (n-1, auxiliary) destination, source) Tower of Hanoi (n-1, auxiliary) destination, source)
Periodic Polleria Co to to Depth - Front and	

Date: 26 Write Python Program to solve Water jug Problem - Intro-The Water Jug Problem is a classic Al puzzle
that involves measuring a specific amount of water
using two jugs of different capacities. The goal
is to find a sequence of operations to reach
a desired amount of water in one of the jugs. Output :illustrating State-space search and problem - solving techniques. TUGI JUG2 Code :def pour (sug1, jug2): Print("Y.d \t. 1.d" 1. (jug1, jug2))
if jug 2 is fill: return elif jug 2 is max 2: four (0, jugi)

clif jugi!=0 and juge is 0:

pour (0, jugi)

elif jugi is fill: elif jugi < maxi: pous (max 1, jug2)
elif jugk (max 2 - jug2):
pous (0, (jug 1 + jug2))
else: pour Ciugl - (max2-jug2), (max2-jug2)+jug2) print (" JUGI / t JUG2") pour (0,0)

[0000] [0000] [[0000]] Board after movel: [(000] Board affer move 2: [[000] Board after move 3: [0000] [101] Board after movel: [0000] [101] [202] Board after moves; [1001] [101] [202] Board after move 6: [LOOL] [222] winner is:2

No. : U3 Date :	-
Practical - 3	
Simulation of Tic Tac Toe in python	
Intro-The Tic Tac Toe problem in Al involves creating? an unbeatable player by developing algorithms that analyze game states, predict moves, and choose optimal actions to win or avoid losing utilizing techniques	111
impost numpy as np impost sandom from time impost skep	
get (seate-poorqs): get (seate-poorqs): fe- get (seate-poorqs):	
def possibilities (board): seturn [(1, j) for i in range (3) for j in range (3) if board [1][i] == 0]	110000
def random-place (board, player): loc = random. choice (Possibilities (board)) board (10c) = player return board	
def row - win (board, player): return any Call Rell == Player for cell in row) for row in board)	
def (ol-win (board, player): return any (alli row [i] == player for row in board) for in range (3))	
def diag-win (boord, player): retyrn all (boord [i][i] == player for i in rage (3))
- +15D);	

No. :06	
Date:	
all(board[i][2-i]==player for i in range (33)	
def evaluate (board): for player in [1,2]:	
for player in [1,2): if row-win (board, player) or col-win (board, player): or diag-win (board, player):	
return player return -1 if np. all (board !=0) else 0	ring
def play-game(): board winner move = (reate-board () 1011 print (board) Sleep (1)	ate
while winner == 0: for player in [1,2): board = random - place (board, player) board = random ofter more I more 3: In print (f" InBoard ofter more I board 3")	
sleep (1) move +=1 winner = evaluate (board) if winner != 0: break	
zeturn winner	
point (f "InWinner is: [Play-game()]")	
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
331414: 2his 300 310 310 310 310 310 310 11 30 10 1	
1 C 1 D 1 D C 1 O	
3 M 70 9 510 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
SC James of Soles To and Soles To Comment of Soles of Sol	
200130	

	Practical-4	N. Carlot
	Write a python program to solve Missionaries and Cannibals problem.	
	Intro-The Missionaries and Cannibals problem is a classic AI puzzle where missionaries and Cannibals must cross a river without Cannibals outnumbering missionaries on either side. It used to demonstrate search algorithms and problem - solving techiques in AI	
0 -	Code %-	
	Im = 3 1c = 3 7M = 0 8C = 0 K = 0	
	print ("\nM MM cccl 1\n") toy:	to to be
	while True: while True: print ("left side -> right side river travel") Wheint (input ("Enter number of missionaries to travel => ")) U(=int (input ("Enter number of Cannibals to travel => "))	
	of (uM == 0 and uC == 0): point("Empty + ravel not possible. Re- enter:") elif((uM+uC) <= 2 and (IM-uM) >= 0 and (IC-uC) == 0);	
	1M -= UM 1C -= UC 8M += UM 8C += UC K += 1	

Date

No. : 08	
Date :	
break	
else:	Sales and
print("Wrong input, re-enter:")	
point ("\n")	
print ("left side:", "M" * IM + "C" * IC, end = "") print ("I>1", end="")	
print ("Right side: ", " N" * &M +" (" * &C)	
if ((1c == 3 and IM Pn [1,2]) 0x(x(==3 and xM Pn	
point ("Cannibals Outnumber Missionaries: You lost the game")	
break	
totate 750e: if (8M+8C == 6):	
print ("You won the game: In It Congratulations print ("Total attempts: ", k) break	2
pacan	The same of
while True:	
print ("Right side -> left side river travel") "M = int (input ("Enter number of missionaries to travel => "))	
uc = int (input ("Enter number of cannibals travel=	
IT (UM == 0 = 1 0	The same of the same of
print ("Empty travel not Possible . Re-enter;") elif ((UM+UC) <= 2 and (xM-UM) >= 0 and (x(-UC) >= 0	le le
IM t=UM	
1c += vC	
8M -= UM	
x (-= v(
break	
else:	
print ("Wrong input, re-enter:")	1
	Contract of the last
	The same

No. :
print ("In") print ("Icft side:", "N" * IN + "(" * IC, end =""") print ("Right side:", "M" * rM + "(" * r() in [1,2])): print ("Capribals Outnumber Missonaries: You lost the game")
except Value Essos: print ("InInValid input, place setsy!")
1 1 2 1 C 2
निर्मा के कर्ण भग्ने के करा कर के कर क
EDUCATION SOCIETY

Practical 5 sa. Derive the expression based on associative law - Intro 6- The associative law in Al's Boolean algebra states that the grouping of variables doesn't affect the outcome of OR and AND operations, enabling Simplification of logical expressions and optimization of Al algorithms. Output :-Code ?-Enter Value for a:3 def associative-law (): Enter Value for b: 6 Enter Value for c: 5 a = float ("nput ("Enter a value for a:")) b = float ("nput ("Enter a value for b:")) C= float Cinput ("Enter a value for C:")) Results: Addition: (3.0+6.0)+5.0=14.0 add_LHS = (a+b)+C 3.0+(6.0+5.0)=14.0 add-RHS = (+(b+c) Associative law is verified mul-LHS = (a+b)+c mul-RHS = Q* (b* c) Mutiplication: (3.0 \$ 6.0) \$ 5.0 = 90.0 print ("InResults: ") 8.0 + (6.0 + 5.0) = 90.0 Associative low is verified paint (f"In Addition:") print(f"([a] + [b]) + [c] = [add - [HS]")
print(f"[a] + ([b] + [c]) = [add - RHS]") in muttiplication point ("Associative law for addition is", "Voesified" if add-LHS == add-RHS else "not verified") print (f" In Multiplication:") print (f" ({a3 * [b3) * I(3 = I mul-LHS]") print (f"([a3 * ([b3 * {(3) = [mul-RHS]") point ("Associative law for multiplication is", Varified" if and mul-LHS = = mul-RHS else" not vortied" associative - law ()

	def solve Novil (board, col):	for i, jin zip (range(row, N, 1), range (tol, -1, -1)): return false	fox(,) in zip (xange (xow, -1,-1)), xange (col, -1, -1)): yetuan False	fox (in range (a)); if board [row](i] ==1; zeturn False	def Esafe (board, row, col):	global N N = 4 def printSoldfon(booxd): for i in range (N): print() print() print()	Code -	Intro-The N-Queens Problem is a puzzle in Computer Science and mathematics where the goal is to place N queens on an NXN Chessboard so that no two queen can other. This means column, or diagonal.	Waste a program to Simulate N- Queen Broblem	Bractical-6 No. 13
--	-------------------------------	--	--	--	-------------------------------	---	--------	---	--	--------------------

The second secon
--

	No. :
	Date :
Practical. No. 7	
Implement Hill climbing algorithm.	
Introduction Hill climbing algorithm is a newsistic secured in Artificial Intellegence and optimizat	earch algorithm
The Idea comes from the real world a	of dimbing a
you keep moving up hill until you reach no higher neighbor excists. It is a kind of local search algorithm - only on the coverent state of its immedial instead of exploring the whole search special	meaning sit focuses e nelghbols
(ode V = [4, 1, 3, 7, 59] i= int (input ("Start index:"))	
while True: n=[(i-1, v(i-1]) if i>0 else None i] (i <len(v)-1 else="" none]<="" td=""><td>, Ci+1, v[i+1])</td></len(v)-1>	, Ci+1, v[i+1])
$n = \{x \text{ fot } x \text{ in } n \text{ if } x\}$ $m = m \text{ occ} \{n, \text{ key} = \text{ lambda } x : x \text{ li}\}$ $i = m \{0\}$ $i = m \{0\}$)
i = mlo] print(t" local more at index = 2i3, v	alue = {v[i] z")
Drawt index: 0 Local max or index = 3, value = 7	
Cocar direct co	

Date: Practical No. 8 Implement Travelling Salesman (Solo Kaveller) algorithm Inhoduction The Travelling Saleman problem is a slassic optimization problem: A palesman has to visit all given wither exactly once and return to the starting city. The goal is to find the shortest possible route Algorithm approaches: 1) Stewt from ar chosen city 2] At each step, visit the nearest unvisited city 3] Repeat until all cities are visited Coele impolt math cities = [(0,0), (1,2), (4,3), (6,1)] visited = [0] while len (visited) < len (Glies): last = visited [-1] next-city = min ((i fot i in range (len (uites)). i i not in visited) key z lambda i: math. hypot (cities[i][0] - cities [last] [o], cities [i][1] - cities [last][1])) Visited append Cneet city print ("visit order:", visited) Output Visit Order: [0,1,2,3]