Simulation and inference in neuroscience

Lecture 9: Neural likelihood estimation

March 2025

Pedro Gonçalves goncalveslab.sites.vib.be/en

KU LEUVEN

https://hertie.ai/data-science/team

9.1 Recap: Neural Posterior Estimation (NPE)

Sample from the prior

Evaluate at x_o

Evaluate at x_o

NPE is amortised: after training $q_{\phi}(\theta \mid x)$, we can evaluate it for any observation x_o

9.2 Neural <u>Likelihood</u> Estimation (NLE)

NLE: step 1

Sample from the prior

NLE: step 2

NLE: neural density estimators to learn the likelihood instead of the posterior. Step 3

NLE: neural density estimators to learn the likelihood instead of the posterior. Step 4

12

NLE: neural density estimators to learn the likelihood instead of the posterior. Step 4

How can we evaluate $p(\theta | x_o)$?

Solution: Bayesian inference with tractable likelihood

$$\bullet p(\theta \mid x_o) = \frac{p(x_o \mid \theta)p(\theta)}{p(x_o)}$$

• But,
$$p(x_o) = \int_{\theta}^{P(x_o)} p(x_o \mid \theta) p(\theta) d\theta$$
, which is intractable in general.

- Two main strategies (not covered in class; suggested reading material at the end of slides):
 - 1. Variational Inference
 - 2. Markov Chain Monte Carlo Sampling

Neural likelihood estimation (NLE)

- The five main steps of NLE:
 - 1. Sample from the prior: $\theta_n \sim p(\theta)$
 - 2. Run simulations: $x_n \sim p(x \mid \theta_n)$
 - 3. Train a neural density estimator $q_{\phi}(x \mid \theta)$ by minimising $\mathcal{L}(\phi) = \mathbb{E}[-\log q_{\phi}(x \mid \theta)]$
 - 4. Evaluate the estimator at x_o to get an estimate of the likelihood function $p(x_o \mid \theta)$.
 - 5. Get samples from $p(\theta | x_o)$ with Markov Chain Monte Carlo (MCMC) sampling or estimate posterior $p(\theta | x_o)$ with variational inference.
- After training $q_{\phi}(x \mid \theta)$, we can evaluate it for any observation x_o , but need to estimate the posterior $p(\theta \mid x_o)$ for each x_o (step 5 above).

9.3 When to use NLE instead of NPE

NPE NLE

- Amortized inference: after training, we can evaluate $p(\theta | x_o)$ for any observation x_o .
- Easy to deal with i.i.d. observations: $p(x_1^o, x_2^o, \dots, x_m^o | \theta) = \prod_n p(x_n^o | \theta).$
- Requires special corrections if θ is not sampled from prior $p(\theta)$ in the training data (more on this later).
- Can use training data with θ from any distribution.

- For high-dimensional parameter space (θ) , learning $p(\theta \mid x)$ can be very challenging.
- For high-dimensional observations x, learning $p(x \mid \theta)$ can be very challenging.
- Requires MCMC.

Learning $p(\theta \mid x)$ directly vs. learning $p(x \mid \theta)$ for MCMC sampling

- Consider $\dim(x)$ and $\dim(\theta)$. Learning neural density estimators in high-dimensional spaces is hard, but neural nets can take high-dimensional input easily. So, use NPE when $\dim(x) >> \dim(\theta)$, and NLE when $\dim(x) << \dim(\theta)$.
- Consider structure in x or θ . When one of these is an image (or time series), we could use a CNN (RNN) to process it as input. Specialized neural density estimators also exist for structured outputs. Other structure (graphs, sets, etc.) can also be exploited.
- Feasibility of MCMC depends on the shape and dimension of the posterior.
- All of these considerations are active areas of research, and the set of SBI problems for which these methods have been tested remains small.

Lecture 9: Neural likelihood estimation

- In NLE, we (1) approximate an unknown likelihood function $p(x_o | \theta)$ by minimising the KL-divergence to our model q_{ϕ} , (2) use "standard" Bayesian inference tools to get an approximation to the posterior $p(\theta | x_o)$.
- The five main steps of NLE:
 - 1. Sample from the prior: $\theta_n \sim p(\theta)$
 - 2. Run simulations: $x_n \sim p(x \mid \theta_n)$
 - 3. Train a neural density estimator $q_{\phi}(x \mid \theta)$ by minimising $\mathcal{L}(\phi) = \mathbb{E}[-\log q_{\phi}(x \mid \theta)]$
 - 4. Evaluate the estimator at x_o to get an estimate of the likelihood function $p(x_o | \theta)$.
 - 5. Get samples from $p(\theta | x_o)$ with Markov Chain Monte Carlo (MCMC) sampling or estimate posterior $p(\theta | x_o)$ with variational inference.
- After training $q_{\phi}(x \mid \theta)$, we can evaluate it for any observation x_o , but need to estimate the posterior $p(\theta \mid x_o)$ for each x_o (step 5 above).

Further reading on sampling and variational inference

- Nice introduction to MCMC and variational inference at https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
- Variational Inference: A Review for Statisticians. (2018) David M.
 Blei, Alp Kucukelbir, Jon D. McAuliffe
- An Introduction to MCMC for Machine Learning. (2003)
 Christophe Andrieu, Nando de Freitas, Arnaud Doucet & Michael I. Jordan