Date 1 Page 1

SOLVING RECURRENCE RELATIONS

CHINESE RING PUZZLE

$$T(n) = 2T(n-2) + T(n-1) + 1$$

$$T(1) = \Upsilon$$
 $T(2) = 2$

$$T(n) = \begin{cases} 2T(n+1)+1 & \text{if } n \text{ is even} \end{cases}$$

$$2T(n+1) & \text{if } n \text{ is even} \end{cases}$$

closed form solution

sub.
$$T(n-1)$$
 in \bigcirc

$$T(h) = 2\Gamma(h-2) + 2T(h-2) + 1 + 1$$

$$T(n) = 4T(n-2) + 2$$

$$T(n) = 4T(n-2) + 2$$

$$T(n-2) = 4T(n-4) + 2$$

$$T(n) = 4T(n-4) + 8 + 2$$

$$= 4^2 T (n-4) + 10$$

$$T(n) = 4^2 T(n-4) + 2(4) + 2$$

$$T(n) = 4^{-}T(n-4) + 2($$

$$1(n) = 41(n-4) + 20$$

$$T(n) = 43 T(n-6) + 2(4)2 + 2(4) + 2$$

$$T(n) = 43 T(n-6)$$

$$T(n) = 4^{r} T(n-2r) + 2(1+4+...4^{r-1})$$

$$T(n) = 4^r T(n-2r)$$

$$= 4^{r} T (n-2r) + 2 (4^{r-1})$$

$$T(n) = 2^{n-2} T(n-(n-2)) + 2(2^{n-2}-1)$$

$$\Rightarrow r = n-2$$

 $= 2^{n-2} + (2) + \frac{2}{3} (2^{n-2} + -1)$

 $= 2^{n-2} \cdot 2 + 2 \left(2^{n-2} - 1\right)$

 $= 2^{n-1} + 2^{n-1} - 2$

 $= 2^{n-1} + 2^{n-1} - 1 = \frac{4 \cdot 2^{n-1} - 2}{3}$

$$\frac{1}{3} \left(\frac{2^{n} - 1}{3} \right) = \frac{2}{3} \left(\frac{2^{n} - 1}{3} \right) = \frac{2 \times 63}{3} = \frac{42}{3} = \frac{8}{3}$$

$$\frac{2}{3}\left(2^{6}-1\right) = \frac{2}{3} \times \frac{(64-1)}{3} = \frac{2\times63}{3} = \frac{42}{3} = \frac{84eps}{3}$$

(n-1) is even, so from 2.

T(n) = 2T(n-2) + 2T(n-2)

 $So(n. T(n)) = \frac{1}{3} \left(2^{n+1} - 1 \right)$

T(n-1) = 2T(n-2)

ab. T(n-1) in (1).

T(n) = 4T(n-2) + 1

base rase TU) = 1

$$\frac{2}{3}$$
 $\left(\frac{2}{3} \right)$

classmate				
Date 17.9.2019 Page 7				
Α,				

METHODS FOR SOLVING RRS

 $\frac{2T(n)}{2} = 2T(n) + n$

O repeated substitution

@ goess the answer

prove by induction

Blinear homogenous agns. & heterogenous egns

(E) linear algebra methods (diagonalization)

repeated robstitution. ... r times.

 $\frac{n-1}{2^r} \Rightarrow n-2^r \Rightarrow r-2 + gn$

 $T(n) = 2^n T(n) + nxr$

T(n) = n + n lg n

 $T(n) = \Theta(n \lg n)$

	Date	17.9.20
	Page	4
R		

$$\frac{1(n)}{2} = \frac{3}{2} + \frac{11}{2}$$

n = 2r >> r = lgn

$$T(n) = 3^{r} T\left(\frac{n}{2^{r}}\right) + n \times \left(1 + 3 + \left(\frac{3}{2}\right)^{2} + \dots + \left(\frac{3}{2}\right)^{r-1}\right)$$

$$\frac{1}{r}$$
), n

 $T(n) = 3 \ln \left(\frac{3}{2} \ln -1 \right)$

 $T(n) = \binom{\log 3}{n} + 2n \binom{\log_2 3/2}{n}$

= $n + 2n \left(n + 3 - 1 \right)$

 $= n^{\log 3} + 2 / n^{\log 3} - n$

= 3n^{lg3} -2n

 $T(n) = \Theta(n^{\log 3})$

$$= 8^{r} T \left(\frac{n}{3^{r}} \right) + n \left(\frac{3}{3} \frac{1}{3^{r}} - 1 \right)$$

$$= \frac{8^{r} T \left(\frac{n}{2^{r}} \right) + n \left(\frac{3(2)^{r} - 1}{3(2 - 1)^{r}} \right)}{3(2 - 1)^{r}}$$

$$= \frac{8^{r} T \left(\frac{n}{2^{r}} \right) + 2n \left(\frac{3}{2} \right)^{r} - 1}{2^{r}}$$

$$ox T(n) = 3T\left(\frac{n}{2}\right) + n$$

Classmate ex $T(n) = 3T(n) + n^2$ repeated substitution $T(n) = n^{(9)3} + n^2 \left(1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{5}\right)^{r-1}\right)$ $T(n) = \Theta(n^2)$ MASTER THEORM $T(n) = qT(\frac{n}{n}) + f(n)$ Soln. of T(h) (or T(n) asymptomatically bounded as follows) - Critical exponent/ractio. for some E>0, then T(n)= O(n log a)

1) of f(n) = 0 (n/cg, a-E) 2. if f(n) = A /n logs a then T(n) = O (n logs a lg n) (a) if f(n) = 12 (nloggate) for some exo, then 7(n)=0(n) and if a (n) < k(n), for some const. k < 1 and for sufficiently large n. regularity cond.

Date 17.9.2019
Page 7

$$ex T(n) = 2T(n) + n$$

ex
$$T(n) = 3T(n) + n$$

$$h = 60 \left(n^{\log 3/2} \right) \quad \text{ase } 0.$$

$$n^{\log 3}$$
 vs n^2 (ase 3)

$$T(n) = A(n^2)$$

reg. cond.
$$3\left(\frac{n}{2}\right) \leq k \cdot f(n)$$

$$\frac{3n^2}{4}$$
 $\frac{1}{4}$ \frac

Classmate

Date 17.9.2019
Page 8

ex
$$T(n) = qT(\frac{n}{3}) + n$$

case 1
$$\tau(n) = \Theta(n^3)$$

ex
$$T(n) = {}^{\bullet}T\left(\frac{3n}{5}\right) + 1$$

case 2 $T(n) = O(lg n)$

ex
$$T(n) = 3T(n) + n \lg n$$

$$n \log_n 3 \rightarrow 0.8$$
vs $n \lg n$

Neg.

$$a\left(\frac{n}{h}\right) < k \leq (n)$$

classmate

ex $T(n) = 2T(n) + n(\log n)$ nlg2 vs nlogn

logn < nE for any &>0

f(n) is not polynomially larger than n We can't apply master's theorm

 $T(n) = aT(\frac{n}{n}) + (n)$

T(1) = d.

recursion tree

0

T (n/b)

T(n162) b(n162)

f(n)

a ((n)

 $a^{2}/(\frac{n}{b})$

	Classmate Date 17.9.2019 Page Lo
total levels = leg n +1	
no. of legt nodes = a logon = n	oga critical exponent
 T(n) = Sum of all the elements.	
$= \sum_{i=0}^{\log_b n} \alpha^i / (\frac{n}{bi}) + d n \log^a$	a % 1 b > 1
$T(n) = \sum_{c=0}^{\lfloor cn \rfloor} \alpha^{c} f(n) + \Theta(n) \log_{b}^{\alpha}$	
<u> </u>	
ca se i	
then complexity O (nlogsa)	of leaf nodes
O(nogsa)	
of neither term dominates:	
$\Theta\left(n^{\log_{b}a} \cdot (\log n)\right)$	

of the first term dominates (sum of internal modes)

overk on a small numerical example where you generate

a recursion tree draw reconstant tree for computing.

 $T(n) = 2T\left(\frac{n}{3}\right) + 5n$ When n = 27.

T (i) = 7.