Theorem 1.1. If A is the generator of a positive semigroup on $E = C_0(X)$, then $s(A) \in \sigma(A)$ unless $s(A) = -\infty$. In case X is compact we always have $s(A) > -\infty$.

<u>Proof.</u> We suppose $\sigma(A) \neq \emptyset$ (i.e., $s(A) > -\infty$) and assume $s(A) \notin \sigma(A)$. Then there exist $\varepsilon > 0$ and α_0 , $\beta_0 \in \mathbb{R}$ such that

(1.1)
$$[s(A)-\epsilon,\infty) \subset \rho(A)$$
 , $\mu_{O} := \alpha_{O} + i\beta_{O} \in \sigma(A)$ and $\alpha_{O} > s(A)-\epsilon$.

Now we choose $\lambda_0 \in \mathbb{R}$ large enough such that

$$(1.2) \quad |\lambda_{O} - \mu_{O}| < \lambda_{O} - (s(A) - \epsilon) ,$$

and, in addition, such that $\lambda_{O} > \omega(A)$. Then the resolvent $R(\lambda_{O},A)$ is a positive bounded operator, hence its spectral radius $r(R(\lambda_{O},A))$ is a spectral value. From A-III, Prop. 2.5 it follows that

$$(1.3) \quad \lambda_{\circ} - r(R(\lambda_{\circ}, A))^{-1} \in \sigma(A) \quad \text{and} \quad r(R(\lambda_{\circ}, A)) \ge |\lambda_{\circ} - \mu_{\circ}|^{-1}.$$

This and (1.2) implies that $\lambda_O - r(R(\lambda_O,A))^{-1}$ is a real spectral value which is greater than $s(A) - \varepsilon$. We have derived a contradiction to (1.1) and thus have proved the first statement of the theorem. To establish the second statement we recall that $\lim_{\lambda \to \infty} \lambda R(\lambda,A) f = f$ for every $f \in E$. In particular, for $f = 1_X$ we find a (large) $\lambda_O \in \mathbb{R}$ such that

(1.4)
$$\lambda_{O} R(\lambda_{O}, A) 1_{X} \ge 1/2 \cdot 1_{X}$$
 hence $R(\lambda_{O}, A) 1_{X} \ge (2\lambda_{O})^{-1} \cdot 1_{X}$.

We may assume $\lambda_{O} > \omega(A)$ then $R(\lambda_{O},A) \ge 0$, and iterating (1.4) we obtain

(1.5)
$$R(\lambda_0, A)^n 1_X \ge (2\lambda_0)^{-n} \cdot 1_X > 0$$
 for every $n \in \mathbb{N}$.

It follows that $\|R(\lambda_0,A)^n\| \ge (2\lambda_0)^{-n}$ and therefore

(1.6)
$$r(R(\lambda_0, A)) = \lim_{n\to\infty} ||R(\lambda_0, A)^n||^{1/n} \ge (2\lambda_0)^{-1} > 0$$
.

Thus $\sigma(R(\lambda_0,A))$ contains non-zero spectral values which in view of A-III,Prop.2.5 is equivalent to $\sigma(A) \neq \emptyset$.

The following examples show that the spectrum may be empty in case $\, X \,$ is not compact or if the semigroup is not positive.

Examples 1.2.(a) Consider X = [0,1) and (T(t)) on $C_0(X)$ given by

П