

531961

Rec'd PCTO 19 APR 2005

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
6. Mai 2004 (06.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/037613 A2(51) Internationale Patentklassifikation⁷: **B60R 16/02**

(DE). DOSTERT, Klaus [DE/DE]; Bergstrasse 13, 67706 Krickenbach (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/003389

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.(22) Internationales Anmeldedatum:
13. Oktober 2003 (13.10.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 48 821.5 19. Oktober 2002 (19.10.2002) DE(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).**Veröffentlicht:**

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: FEED LINE STRUCTURE

(54) Bezeichnung: VERSORGUNGSLEITUNGSSTRUKTUR

(57) Abstract: The invention relates to a feed line for supplying power to electrical components of a motor vehicle and transmitting information between at least some of said electrical components. The inventive feed lines are arranged particularly in a star topology comprising at least one star point. In order to be able to transmit large supply currents, the feed line structure is embodied such that at least one part of the feed lines (10) is provided with a coaxial arrangement of several outer strands (4) that are located around a central strand (2).

(57) Zusammenfassung: Die Erfindung betrifft eine Versorgungsleitungsstruktur zur Energieversorgung von elektrischen Komponenten eines Kraftfahrzeugs und zur Übertragung von Informationen zwischen zumindest einigen der elektrischen Komponenten, wobei die Versorgungsleitungen insbesondere in einer Sternstruktur mit wenigstens einem Sternpunkt angeordnet sind; um hohe Versorgungsströme übertragen zu können, ist die Versorgungsleitungsstruktur so ausgebildet, dass zumindest ein Teil der Versorgungsleitungen (10) eine koaxiale Anordnung mehrerer äußerer Leitungslitzen (4) um eine zentrale Leitungslitze (2) herum umfasst.

WO 2004/037613 A2

10 Versorgungsleitungsstruktur

Stand der Technik

15 Die Erfindung betrifft eine Versorgungsleitungsstruktur zur Energieversorgung von elektrischen Komponenten eines Kraftfahrzeugs und zur Übertragung von Informationen zwischen zumindest einigen der elektrischen Komponenten, wobei die Versorgungsleitungen vorzugsweise in einer
20 Sternstruktur mit wenigstens einem Sternpunkt angeordnet sind.

Eine derartige Versorgungsleitungsstruktur ist in der nicht vorveröffentlichten deutschen Patentanmeldung 101 42 410.8
25 der Anmelderin beschrieben.

Eine gattungsgemäße Versorgungsleitungsstruktur soll sowohl der Kommunikation zwischen verschiedenen elektrischen Komponenten, wie z.B. zwischen einem Türsteuergerät und
30 einem Sitzsteuergerät, als auch der Energieversorgung dieser Komponenten dienen. Man spricht hier von "Power Line Communications". Hierfür hat es sich als zweckmäßig erwiesen, den im Stand der Technik vorhandenen Kabelbaum umzustrukturieren derart, dass die Versorgungsleitungen in
35 einer Sternstruktur mit wenigstens einem Sternpunkt

einer Sternstruktur mit wenigstens einem Sternpunkt angeordnet sind. Es hat sich bei der bekannten Versorgungsleitungsstruktur die Verwendung von sogenannten "Twisted-Pair"-Leitungen für die Versorgung der Komponenten 5 als vorteilhaft erwiesen. Hierunter werden miteinander verdrillte Doppeladern oder Leiterlitzen verstanden, die eine Verbesserung der Störfestigkeit mit sich bringen und in Abhängigkeit von ihrem Verdrillungsgrad unterschiedliche Wellenwiderstände aufweisen. Da ein Sternpunkt innerhalb 10 eines Leitersystems stets als Parallelschaltung von Widerständen angesehen werden kann, ergibt sich eine sehr niedrige Impedanz für den Sternpunkt, was zu unerwünschten Reflexionen der in einem Versorgungsleitungszweig in Richtung auf den Sternpunkt sich ausbreitenden Welle am 15 Sternpunkt führt. Dieser Effekt kann jedoch durch Beschaltung des Leitungszweigs im Bereich des Sternpunkts unterdrückt werden, was mit der genannten deutschen Patentanmeldung 101 42 410.8 vorgeschlagen wurde.

20

Aufgabe und Lösung der Erfindung

Ein weiteres Problem bei der vorstehend beschriebenen Versorgungsleitungsstruktur ist jedoch die Übertragung 25 hoher Ströme. Werden die vorerwähnten "Twisted-Pair"-Leitungen verwendet, so begrenzt ihr beschränkter Leitungsquerschnitt aufgrund der praktischen Verdrillbarkeit die übertragbare Stromstärke. Ferner ist die Herstellung von "Twisted-Pair"-Leitungen mit großem 30 Querschnitt aufwendig.

Es ist daher eine Aufgabe der vorliegenden Erfindung, bei gattungsgemäßen Versorgungsleitungsstrukturen auch große Versorgungsströme übertragen zu können.

Diese Aufgabe wird ausgehend von der genannten Versorgungsleitungsstruktur erfindungsgemäß dadurch gelöst, dass zumindest ein Teil der Versorgungsleitungen eine

5 koaxiale Anordnung mehrerer äußerer Leitungslitzen um eine zentrale Leitungslitze herum umfasst.

Vorteile der Erfindung

10

Die Erfindung schlägt also vor, zur Versorgung von einzelnen Hochstromverbrauchern oder zur Versorgung von zentralen Verteilerknoten, also Sternpunkten innerhalb der Versorgungsleitungsstruktur, eine koaxiale Anordnung von

15 Leitungslitzen zur Bildung des betreffenden Abschnitts der Versorgungsleitung zu verwenden. Es ergibt sich auf diese Weise ein sehr großer Leitungsquerschnitt, der die Übertragung hoher Ströme, auch weit oberhalb von 10 A, zur Energieversorgung gestattet, was mit einzelnen "Twisted-Pair"-Leitungen nicht möglich wäre, da die hierfür benötigten Leitungsquerschnitte eine Verdrillung der Leitungslitzen nicht mehr wirtschaftlich zuließen.

20 Durch die Verwendung einer koaxialen Anordnung mehrerer äußerer Litzen um eine zentrale Leitungslitze herum kann auch eine Selektivität, beispielsweise mit Hilfe eines zentralen Sicherungskastens, realisiert werden. Dies würde eine Anzahl von "Twisted-Pair"-Leitungen erfordern, die dann aber gebündelt verlegt werden müssten, was als

25 30 aufwendig anzusehen ist.

Die erfindungsgemäß vorgeschlagene Anordnung besteht aus einer Anzahl von äußeren Litzen von insbesondere gleichem Querschnitt und einer zentralen Litze, der sogenannten

Führungsleitze, um die die äußeren Litzen herum angeordnet beziehungsweise gewickelt sind. Es ist aber auch denkbar, dass für die Führungsleitung eine Litze mit größerem Querschnitt als bei den äußeren Litzen verwendet wird.

- 5 Ebenso ist es möglich, für die Ausbildung der Führungsleitung ähnlich einem geflochtenen oder geschlagenen Drahtseil mehrere Litzen zu verwenden. Es hat sich als vorteilhaft erwiesen, wenn um die zentrale Führungsleitung herum 5 - 10, insbesondere 5 - 8, äußere Leitungslitzen vorgesehen sind.
- 10 Dabei haben sich 6 äußere Leitungslitzen als besonders zweckmäßig erwiesen. Gute Erfahrungen wurden mit Leitungslitzen eines Querschnitts von 2 - 3 mm², insbesondere von etwa 2,5 mm², erzielt.
- 15 Es erweist sich in Weiterbildung der Erfindung von besonderer Bedeutung, wenn die äußeren Leitungslitzen mittels Kondensatoren gegeneinander hochfrequenztechnisch kurzgeschlossen sind, und zwar vorzugsweise an ihren beiden Enden. Auf diese Weise verhält sich der so gebildete
- 20 Versorgungsleitungsschnitt für HF-Datensignale ähnlich wie eine Koaxial-Leitung.

- Da die zentrale Leitungslitze oder Führungsleitung im Inneren der koaxialen Anordnung im Allgemeinen einen kleineren Querschnitt aufweist als die Summe der Querschnitte der äußeren Leitungslitzen, erweist es sich als vorteilhaft, wenn bei Übertragung hoher Ströme die Rückführung von Gleichstromkomponenten über die Karosserie erfolgen kann. Hierfür erweist es sich als vorteilhaft, wenn die zentrale Leitungslitze, vorzugsweise an ihren beiden Enden, mit der Karosserie verbunden ist.

Solchenfalls können sich aber in nachteiliger Weise Gleichtaktströme über die Karosserie ausbilden. Dem kann

aber vorteilhafterweise durch Verwendung einer induktiven Kopplung zwischen den äußeren Leitungslitzen und der zentralen Leitungslitze entgegengewirkt werden. Hierfür kann ein ringförmiger Kern mit oder aus ferritischem

- 5 Material verwendet werden, welcher einfach über den betroffenen Abschnitt der Versorgungsleitung geschoben wird, so dass sich die Versorgungsleitung durch diesen ringförmigen Kern hindurcherstreckt. Es wird auf diese Weise eine "Common-mode-Spule" gebildet. Um die Impedanz
10 für Gleichtaktströme weiter zu erhöhen, besteht die Möglichkeit, die koaxiale Anordnung von Leitungslitzen wenigstens einmal oder mehrmals um den ringförmigen Kern zu legen, so dass die Versorgungsleitung eine oder mehrere Schlaufen durch und um den ringförmigen Kern bildet.

15

Es hat sich gezeigt, dass ein Wellenwiderstand der koaxialen Anordnung von Leitungslitzen von 35 - 50 Ohm, insbesondere um 40 Ohm, realisiert werden kann.

- 20 Mit der erfindungsgemäßen Versorgungsleitungsstruktur lässt sich bei einer Leitungslänge von 5 m im Frequenzbereich zwischen 100 und 250 MHz ein Übertragungsverhalten von -1,4 dB bis -4,4 dB, vorteilhafterweise von -1,9 dB bis -3,7 dB, erreichen, was als besonders geeignet anzusehen ist. Es
25 lassen sich große Ströme übertragen.

- Zur Unterdrückung von Gleichtaktströmen an Übergängen der zentralen Leitungslitze zur Karosserie oder der äußeren Leitungslitzen zu weiteren Zweigen mit insbesondere
30 "Twisted-Pair"-Leitungen bewährt sich die Verwendung von ringförmigen Kernen mit ferritischem Material als "Common-mode-Spulen".

Zeichnung

Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung

- 5 von Ausführungsbeispielen der Erfindung, die in der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren
10 Rückbeziehung, sowie unabhängig von ihrer Formulierung oder Darstellung in der Beschreibung oder in der Zeichnung.

In der Zeichnung zeigen:

- 15 Figur 1: eine schematische Darstellung einer koaxialen Anordnung von Leitungslitzen einer Versorgungsleitung;

- 20 Figur 2: eine schematische Darstellung von HF-technisch kurzgeschlossenen äußeren Leitungslitzen;

- 25 Figur 3: eine schematische Darstellung der Verwendung eines ringförmigen Ferritkerns als Common-mode-Spule;

- Figur 4: eine schematische Darstellung der Verbindung eines erfindungsgemäßen Leitungsabschnitts mit einer Metallplatte (Karosserie);

- 30 Figur 5: ein Ersatzschaltbild der Anordnung nach Figur 4 mit einer Common-mode-Spule;

- Figur 6: das Übertragungsverhalten einer erfindungsgemäßen Versorgungsleitung mit und ohne Common-mode-

Spule; und

Figur 7: das Übertragungsverhalten einer 5 m langen
erfindungsgemäßen Versorgungsleitung
(messtechnisch ermittelt und modelliert).

5

Beschreibung der Ausführungsbeispiele

- 10 Figur 1 zeigt im Schnitt die erfindungsgemäße koaxiale Anordnung von sieben Leitungslitzen gleichen Querschnitts von je $2,5 \text{ mm}^2$, wobei sechs äußere Leitungslitzen 4 um eine zentrale Leitungs- oder Führungslitze 2 herum angeordnet sind. Das Maß d beträgt 1,78 mm und das Maß D beträgt 6,8
- 15 mm. Bei der Verwendung dieser Anordnung in einer Versorgungsleitungsstruktur zur Energieversorgung der elektrischen Komponenten eines Kraftfahrzeugs sowie zur Übertragung von Informationen zwischen zumindest einigen dieser elektrischen Komponenten liegen die äußeren
- 20 Leitungslitzen 4 auf Plus-Potential und die zentrale Leitungslitze 2 auf Minus-Potential. Die sechs äußeren Litzen 4 können an einem zentralen Sicherungskasten, z.B. im Motorraum, einzeln abgesichert werden. Das andere Ende dieser erfindungsgemäßen Versorgungsleitung kann mit einem
- 25 Verteilerkasten an einem anderen zentralen Punkt im Kraftfahrzeug, beispielsweise unter dem Rücksitz, verbunden werden. Dieser zentrale Punkt bildet dann einen Sternpunkt der Versorgungsleitungsstruktur.
- 30 Wie aus Figur 2 ersichtlich und dort schematisch dargestellt, sind die äußeren Litzen 4 vorzugsweise an beiden Enden der koaxialen Leitungsanordnung mit Hilfe von Kondensatoren 6 HF-technisch kurzgeschlossen, so dass sich die erfindungsgemäße Anordnung zur Bildung einer

Versorgungsleitung für HF-Datensignale ähnlich wie eine Koaxialleitung verhält.

Insbesondere bei Übertragung hoher Ströme stellt sich das
5 Problem der Rückführung der Gleichstromanteile. Wie eingangs angedeutet, erweist es sich als vorteilhaft, besonders für hohe Ströme eine Rückführung der Gleichstromanteile über die Karosserie durchzuführen.
Hierfür werden beide Enden der zentralen Leitungs- oder
10 Führungsleitze 2 der erfindungsgemäßen Anordnung zusätzlich mit der nicht dargestellten Karosserie verbunden. Dies bedingt jedoch das Auftreten von Gleichtaktströmen über die Karosserie. Dem wird - wie ebenfalls eingangs ausgeführt - durch Verwendung eines ringförmigen Kerns mit oder aus
15 ferritischem Material entgegengewirkt. Ein solcher ringförmiger Kern 8 ist in Figur 3a dargestellt, wobei zugleich schematisch eine äußere Leitungsleitze 4, die einen Strom I_1 führt und die zentrale Leitungsleitze 2, die einen Strom I_2 führt, dargestellt ist. Der ringförmige Kern 8 ist
20 einfach über die koaxiale Anordnung der Leitungsleitzen 2, 4 geschoben, so dass diese koaxiale Anordnung beziehungsweise der erfindungsgemäß ausgebildete Abschnitt der betrachteten Versorgungsleitung sich durch den ringförmigen Kern 8 hindurchstreckt.

25 Zur Erhöhung der Impedanz für den Gleichtaktstromanteil wäre es auch denkbar und vorteilhaft, wenn sich der betrachtete Versorgungsleitungsabschnitt schlaufenförmig einmal oder mehrmals um den Querschnitt des ringförmigen
30 Kerns 8 herum erstreckt, so wie dies schematisch in Figur 3b angedeutet ist.

Zur Verdeutlichung des Einflusses des ringförmigen Kerns 8, also der Common-mode-Spulenkopplung, sei auf Figur 4

verwiesen, die schematisch den Anschluss eines erfindungsgemäßen Abschnitts einer Versorgungsleitung 10 mit einem Generator U_Q und einer die Karosserie darstellenden Metallplatte 12 zeigt. Ein Ersatzschaltbild 5 ist in Figur 5 dargestellt.

Auf der einen Seite der Versorgungsleitung 10 ist der Generator U_Q angeschlossen. Auf der anderen Seite der Versorgungsleitung 10 ist zwischen den äußeren 10 Leitungslitzen 4 und der zentralen Leitungslitze 2 ein Lastwiderstand Z_{Last} vorgesehen. Wird nun ungünstigerweise das Potential, auf dem sich der Innenleiter, also die zentrale Leitungslitze 2, befindet, zusätzlich noch mit der Metallplatte 12 verbunden, so befinden sich demzufolge der 15 Schirm der so gebildeten Koaxialleitung, also die äußeren Leitungslitzen 4, und die Metallplatte 12 auf unterschiedlichem Potential. Durch parasitäre Kapazitäten, die im Ersatzschaltbild der Figur 5 mit C_p zwischen Schirm und Metallplatte 12 dargestellt sind, wird ein Stromkreis 20 geschlossen und ein Gleichtaktstrom fließt. Ergänzt man nun auf der Generatorseite der Versorgungsleitung 10 einen ringförmigen Kern 8 aus ferritischem Material, so wie dies vorausgehend beschrieben wurde, so kann dieser 25 Gleichtaktstrom weitgehend unterbunden werden, da die Impedanz Z_{CM} der durch den ringförmigen Kern 8 gebildeten Common-mode-Spule die ursprüngliche Impedanz des Stromkreises deutlich heraufsetzt. Um ein besseres Verständnis der Gegebenheiten zu vermitteln, wird auf einen HF-Ansatz verzichtet. Für das Ersatzschaltbild der Figur 5 30 wurde daher angenommen, dass die Leitungslänge "kurz" im Verhältnis zur Wellenlänge ist. Daher kann das Ersatzschaltbild unter Verwendung diskreter Bauelemente angefertigt werden.

Die Figuren 6a und 6b zeigen die Messergebnisse des betrachteten Szenarios bei Verwendung einer 3 m langen Versorgungsleitung 10. Die Messung wurde in Abbildung 6a sowohl für den Fall mit als auch ohne induktive Kopplung 5 durch einen ringförmigen ferritischen Kern durchgeführt.

Es sind deutliche Vorteile bei Verwendung des ringförmigen Kerns zu erkennen.

- 10 Das Schaubild nach Figur 6b zeigt Messungen bei unterschiedlichen Verbindungen zur Metallplatte 12. Hierfür wurde zunächst die Versorgungsleitung 10 selbst vermessen, indem die Verbindung zur Metallplatte 12 getrennt wurde. Außerdem ist zusätzlich noch derjenige Zustand der
15 Verbindung der zentralen Leitungslitze 2 der Versorgungsleitung 10 sowohl auf der Generatorseite als auch auf der Lastseite mit der Metallplatte 12 dargestellt. Dies stellt eigentlich den Sonderfall für $C_p \rightarrow \infty$ beziehungsweise eine Überbrückung des Kondensators C_p dar.
20 Als Anwendung ist hierbei der zusätzliche Gleichstrompfad über die Karosserie zu nennen, der bereits erwähnt wurde. Schließlich ist zum direkten Vergleich auch noch eine Verbindung zur Metallplatte 12 nur auf der Generatorseite dargestellt. Dabei wurde bei sämtlichen Messungen ein
25 ringförmiger Kern (Common-mode-Spule) auf der Generatorseite der Versorgungsleitung 10 verwendet. Aus den Messergebnissen ist zu erkennen, dass sich die Kurven nur um circa 2 dB voneinander unterscheiden. Somit ist die Realisierung eines zusätzlichen Gleichstrompfads über die
30 Karosserie durchaus realisierbar, ohne dass dies negative Auswirkungen auf das Übertragungsverhalten des Versorgungsleitungsabschnitts 10 innerhalb der Versorgungsleitungsstruktur hätte.

Zum Wellenwiderstand:

Zur Berechnung des Wellenwiderstands einer koaxialen

5 Leitungsanordnung wird die folgende Formel herangezogen:

$$Z_L = \frac{60\Omega}{\sqrt{\epsilon_{r,\text{Isolierung}}}} \cdot \ln\left(\frac{D}{d}\right)$$

Bei $\epsilon_{r,\text{Isolierung}}$ handelt es sich um die

10 Dielektrizitätskonstante des verwendeten Isolator-Materials. D und d sind aus Abbildung 1 ersichtlich.

Da der Mantel beziehungsweise Schirm der koaxialen
Leitungsanordnung nicht im ganzen Umfang einen konstanten
15 Abstand zur Führungslitze besitzt, wird in Gleichung 1 für
D ein mittlerer Durchmesser verwendet.

Bei Verwendung einer PVC-isolierten Kupferleitung mit einem
Querschnitt von $2,5 \text{ mm}^2$ nach in Abbildung 1 vorgestelltem
20 Beispiel mit einer Führungs- und sechs Umfangs-Litzen
ergibt sich nach Gleichung 1 ein berechneter
Wellenwiderstand von

$$Z_{L,\text{berechnet}} = 42,99\Omega$$

25

mit $d=1,78 \text{ mm}$ und $D=6,8 \text{ mm}$.

Messtechnisch ergab sich ein Wellenwiderstand von

30

$$Z_{L,\text{gemessen}} \approx 40\Omega,$$

womit die oben angegebene Formel bestätigt werden konnte.

Zum Dämpfungsmaß

- 5 Entsprechend den Beziehungen für eine koaxiale Leitungsanordnung kann das Dämpfungsmaß durch Leiterverluste an einer koaxialen Leitungsanordnung entsprechend folgender Beziehung angenähert werden:

$$10 \quad \alpha_L = \sqrt{\frac{\mu_0 \cdot \mu_{r,Leiter} \cdot \rho}{\pi}} \cdot \frac{1 + \frac{D}{d}}{2 \cdot D \cdot Z_L} \cdot \sqrt{f}$$

Für das Dämpfungsmaß der dielektrischen Verluste α_D kann analog zum obigen Vorgehen durch die Gleichung

$$15 \quad \alpha_D = \pi \cdot \sqrt{\epsilon_{r,Isolierung}} \cdot \frac{\tan \delta}{c_0} \cdot f$$

angenähert werden.

- 20 Zum Kapazitätsbelag

Der Kapazitätsbelag C' einer koaxialen Leitungsanordnung kann mit der folgenden Gleichung angenähert werden:

$$25 \quad C' = \frac{2 \cdot \pi \cdot \epsilon_0 \cdot \epsilon_{r,Isolierung}}{\ln\left(\frac{D}{d}\right)}$$

Zur Überprüfung der oben getroffenen Aussagen wurde das Übertragungsverhalten einer 5 m langen koaxialen

Leitungsanordnung, bestehend aus sieben Litzen mit gleichem Querschnitt von $2,5 \text{ mm}^2$ untersucht und anhand der oben vorgestellten Näherungsformeln modelliert. Für die Dielektrizitätskonstante ϵ_r wurde hierbei $\epsilon_r=3,5$ und für den Verlustfaktor $\tan\delta$ von Kupfer $\tan\delta=15 \cdot 10^{-3}$ verwendet. Der Wellenwiderstand Z_L wurde entsprechend Gleichung 1 mit $Z_L=40\Omega$ angenähert. Die Messung selbst wurde unter der Bezugsimpedanz $Z_0=40\Omega$ angenähert. Die Messung selbst wurde aber unter der Bezugsimpedanz $Z_0=39\Omega$ durchgeführt.

10

Schließlich ist in Figur 7 sowohl die messtechnisch ermittelte als auch die modellierte Übertragungsfunktion dargestellt. Die modellierte Übertragungsfunktion wurde unter Zugrundelegung der obigen Beziehungen mittels eines 15 Least-Squares-Schätzers berechnet. Man erkennt die hervorragende Übereinstimmung von Messung und Simulation.

5

Ansprüche

10

1. Versorgungsleitungsstruktur zur Energieversorgung von elektrischen Komponenten eines Kraftfahrzeugs und zur Übertragung von Informationen zwischen zumindest einigen der elektrischen Komponenten, wobei die

15 Versorgungsleitungen insbesondere in einer Sternstruktur mit wenigstens einem Sternpunkt angeordnet sind, dadurch gekennzeichnet, dass zumindest ein Teil der Versorgungsleitungen (10) eine koaxiale Anordnung mehrerer äußerer Leitungslitzen (4) um eine zentrale Leitungslitze
20 (2) herum umfasst.

2. Versorgungsleitungsstruktur dadurch gekennzeichnet, dass die äußeren Leitungslitzen (4) mittels Kondensatoren (6) gegeneinander hochfrequenztechnisch kurzgeschlossen sind.

25 3. Versorgungsleitungsstruktur, nach Anspruch 2, dadurch gekennzeichnet, dass die äußeren Leitungslitzen (4) an beiden Enden der betrachteten Versorgungsleitung (10) mittels Kondensatoren (6) gegeneinander hochfrequenztechnisch kurzgeschlossen sind.

30 4. Versorgungsleitungsstruktur, dadurch gekennzeichnet, dass die zentrale Leitungslitze (2), vorzugsweise an ihren beiden Enden, mit der Karosserie (12) verbunden ist.

5. Versorgungsleitungsstruktur, dadurch gekennzeichnet, dass sich eine Versorgungsleitung (10) durch einen ringförmigen Kern (8) mit ferritischem Material hindurchstreckt. (Common-mode-Spule)
- 5 6. Versorgungsleitungsstruktur, dadurch gekennzeichnet, dass die Versorgungsleitung (10) den ringförmigen Kern (8) wenigstens einmal umschließt.
7. Versorgungsleitungsstruktur nach Anspruch 5 oder 6 dadurch gekennzeichnet, dass sich die Versorgungsleitung 10 (10) generatorseitig durch einen ringförmigen Kern (8) mit ferritischem Material hindurchstreckt.
- 15 8. Versorgungsleitungsstruktur, dadurch gekennzeichnet, dass eine zentrale Leitungslitze (2) und 5 - 10, insbesondere 5 - 8, äußere Leitungslitzen (4) vorgesehen sind.
9. Versorgungsleitungsstruktur, dadurch gekennzeichnet, dass die Leitungslitzen (2, 4) einen Querschnitt von 2 - 3 mm² aufweisen.
10. Versorgungsleitungsstruktur, dadurch gekennzeichnet, 20 dass die koaxiale Anordnung der mehreren äußeren Leitungslitzen (4) um die zentrale Leitungslitze (2) herum einen Wellenwiderstand von 35 - 50 Ohm aufweist.
11. Versorgungsleitungsstruktur, dadurch gekennzeichnet, 25 dass die koaxiale Anordnung der mehreren äußeren Leitungslitzen (4) um die zentrale Leitungslitze (2) herum im Frequenzbereich zwischen 100 und 250 MHz ein Übertragungsverhalten von -1,4 dB bis -4,4 dB, insbesondere von -1,9 dB bis -3,7 dB, aufweist.

1 / 4

Fig. 1

Fig. 2

Fig. 3a

Fig. 3b

2 / 4

Fig. 4

Fig. 5

3 / 4

Fig. 6a

Fig. 6b

4 / 4

Fig. 7