第5章 动态规划

5.1, 5.2 多阶段决策和最优化原理

动态规划研究的问题

- 动态规划起源于1950年代,创始人为R. Bellman。
- 动态规划所研究的对象是多阶段决策问题。
 - 这样的问题可以转化为一系列相互联系的单阶段优化问题。 在每个阶段都需要作出决策。
 - 每个阶段的决策确定以后,就得到一个决策序列,称为策略。多阶段决策问题就是求一个策略,使各阶段的总体目标达到最优(如最小化费用,或最大化收益)。
- 相对于线性规划一次性地对一个问题求出整体最优解,多 阶段决策问题的这种解决办法称为动态规划(Dynamic Programming)。而原来的线性规划方法被称为静态规划。

内容

- 多阶段决策问题和最优化原理
- 定期多阶段决策问题
- 不定期多阶段决策问题

问题举例一: 最短路问题

- 如图,求从a到g的最短路。
- 由于这是一个多阶段图(分层图),该图上的最短路问题 是一个多阶段决策(优化)问题。

如何求解? (后向优化)

- ●由于这是一个多阶段图,从a到g的任何一条路径的边数都是6。
- ●从a到g,必然要经过a的下一个阶段中的顶点 b_1 或 b_2 。因此,从a到g的最短路就是从a到 b_1 ,然后再从 b_1 走到g,以及从a到 b_2 ,再从 b_2 走到g,两种走法中最短的一个。
- ●于是,定义 $f_k(u,g)$ 为从当前顶点 u 开始经过 k 条边到达 g 的

最短路长度。则有: $\begin{cases} f_k(u,g) = \min_{v \in N^+(u)} \{l(u,v) + f_{k-1}(v,g)\}, & k \ge 2 \\ f_1(u,g) = d(u,g), & k = 1 \end{cases}$

●原问题即是求 $f_n(a,g)$ (n=6)。

逆向求解递推方程(标号法)

动态规划表格

- ●行标 i: 从目标顶点 g 开始,倒数第 i 层(即,计算 $f_i(u)$)。
- p_1, p_2, p_3, p_4 : 倒数第 i 层的自上而下的各个顶点(最多 4 个)。

	p_1	p_2	p_3	p_4
1	4	3	×	×
2	7	5	9	×
3	7	6	8	×
4	13	10	9	12
5	13	16	×	×
6	18	×	×	×

	p_1	p_2	p 3	p 4
1	1	1	×	×
2	1	2	2	×
3	2	2	2	×
4	1	1	2	3
5	2	3	×	×
6	1	×	×	×

●最短路为: $a \rightarrow b_1 \rightarrow c_2 \rightarrow d_1 \rightarrow e_2 \rightarrow f_2 \rightarrow g$ 。

递归如何?循环如何?

• 递归程序

```
f(i, u, g)
1 if i = 1 then return d(u, g),
2 else return min v \in N(u) {d(u, v) + f(i - 1, v, g)}.
 循环程序
f(u,g)
 1 p \leftarrow (a, b_1, c_1, d_1, e_1, d_1, f_1, g).
 2 for b \leftarrow b_1 到 b_2 do
       for c \leftarrow c_1 到 c_4 do
          for d \leftarrow d_1 到 d_3 do
             for e \leftarrow e_1 到 e_3 do
 5
```

循环?

```
for f \leftarrow f_1 到 f_2 do
6
                 q \leftarrow (a, b, c, d, e, f, g).
                 if q的长度 < p的长度 then p \leftarrow q。
8
9
              endfor /*f*/
            endfor /* e */
10
11
         endfor /* d */
      endfor /* c */
12
13 endfor /* b */
14 return p.
```

问题举例二:资源分配问题

- 设有数量为x的某种资源,将它投入两种生产方式A和B中(或称为投给部门A和部门B)。
- 若投给部门A的数量为z,则可获收益g(z),回收az,其中a($0 \le a \le 1$)为部门A的回收率。类似地,若投给部门B的数量为z,则可获收益h(z),回收bz,其中b($0 \le b \le 1$)为部门B的回收率。
- 连续投放n个阶段,问每个阶段如何分配资源才能使总收入 最大?

再描述一遍

- 设第k个阶段的资源总数为 x_k ,投给部门A的资源数量为 y_k 。则投给部门B的数量为 $x_k y_k$ 。于是可得到收入 $g(y_k) + h(x_k y_k)$,回收 $ax_k + b \cdot (x_k y_k)$ 。

$$x_n = ay_{n-1} + b(x_{n-1} - y_{n-1})$$

 $y_k \ge 0, \quad x_k \ge 0, \quad k = 1..n - 1$

如何求解? (后向优化)

● 令 $f_k(x)$ 表示当前资源数量为 x,再经过 k 个阶段投放完成系统目标,所得到的最大总收入。

• 则有:
$$\begin{cases} f_k(x) = \max_{0 \le y \le x} \{g(y) + h(x - y) + f_{k-1}(ay + b(x - y))\}, & k \ge 2 \\ f_1(x) = \max_{0 \le y \le x} \{g(y) + h(x - y)\}, & k = 1 \end{cases}$$

● 原问题即是求 $f_n(x)$ 。

例5.1.2

例5.1.2: 离散变量的资源分配问题。

- 今有 1000 台机床 (x = 1000) , 投放到 $A \setminus B$ 两个部门。
- 若给部门 A 投放 z 台机床,则产生效益 $g(z) = z^2$,回收 0.8z 台机床(a = 0.8)。
- 若给部门 B 投放 z 台机床,则产生效益 $h(z) = 2z^2$,回收 0.4z台机床(b = 0.4)。
- 问连续投放 5 年 (n = 5), 每年如何投放,可使 5 年的总收益最大?

如何求解?

● 行标 k: 到达目标,还需要多少个阶段,即,计算 $f_k(x)$ 。

●列标 x: 可能的资源数。

$k \setminus x$	0	1	2	3	• • •	1000
1	$f_1(0)$	$f_1(1)$	$f_1(2)$	$f_1(3)$	• • •	$f_1(1000)$
2	$f_2(0)$	$f_2(1)$	$f_2(2)$		• • •	$f_2(1000)$
3	$f_3(0)$				• • •	$f_3(1000)$
4	$f_4(0)$				•••	$f_4(1000)$
5	$f_5(0)$				• • •	$f_5(1000)$

- 问题的目标就是计算 *f*₅(1000)。
- 从左上到右下, 计算整个表, 可求得问题的解。

计算一个单元格

```
f(k, x)
```

- 1 $v \leftarrow -\infty$
- 2 for $y \leftarrow 0$ 到 x do
- $t \leftarrow g(y) + h(x y) + \text{table}(k 1, \lfloor ay + b(x y) \rfloor).$ $/* \Leftrightarrow \text{table}(0, x) = 0. */$
- 4 if t > v then $v \leftarrow t$.
- 5 endfor
- 6 return v.

说明

- 每计算一个单元格的 $f_k(x)$,都需要计算一个 $\max_{0 \le y \le x} \{...\}$ 函数。因此,尽管使用表格暂存了计算结果,为计算出最后的 $f_n(x)$ 仍需要大量的计算。
- 小技巧:不用每行都从 0 计算到 1000。每年无论如何投放,回收的机床最多是 0.8x 台($\max\{a,b\}=0.8$)。例如表格第 5 行表示最后一个阶段,其前面有 4 个阶段。因此对于第5 行,只需要从 0 计算到 $0.8^4 \times 1000 \cong 4096$ 。
- 但动态规划法已经比直接用递归的方法解递推方程减少了 大量的计算。

计算结果

$$f_5(1000) = 2657120$$

$$f_3(640) = 950272$$

$$f_1(204) = 83232$$

$$f_4(800) = 1657120$$

$$f_2(512) = 607520$$

递归的方法

```
f(k, x)
 1 v \leftarrow 0
 2 if k=1 then
       for y \leftarrow 0 到 x do
 3
           t \leftarrow g(y) + h(x - y).
           if t > v then v \leftarrow t_{\circ}
        endfor
 6
 7 else
       for y \leftarrow 0 到 x do
 8
 9
           t \leftarrow g(y) + h(x-y) + f(k-1, ay + b(x-y))
10
          if t > v then v \leftarrow t_{\circ}
```

递归的方法

- 11 endfor
- 12 endif
- 13 return v.

多阶段决策问题

- 有一个系统,可以分成若干个阶段。
- 任意一个阶段 k,系统的状态可以用 x_k 表示(可以是数量、向量、集合等)。
- 每一状态 x_k 都有一个决策集合 $Q_k(x_k)$,在 $Q_k(x_k)$ 中选定一个决策 $q_k \in Q_k(x_k)$,状态 x_k 就转移到新的状态 $x_{k+1} = T_k(x_k, q_k)$,并且得到效益(或费用) $R_k(x_k, q_k)$ 。
- 系统的目标就是在每一个阶段都在它的决策集合中选择一个决策,使所有阶段的总效益达到最大(或总费用达到最小)。
- 这样的多阶段决策问题通常使用动态规划方法来求解。

动态规划的最优子结构性质

动态规划的最优化原理:需要问题的最优解具有如下所述的最优子结构性质:

- 一个多阶段决策问题,假设其最优策略的第一阶段的决策 为 q₁,系统转移到的新状态为 x₂。则该最优策略以后诸决 策对以 x₂ 为初始状态的子问题而言,必须构成其最优策略。
- 该子问题与原问题是同一类问题,只是问题规模下降了。
- 当观察到问题解的最优子结构性质时,就意味着问题可能用动态规划法求解。

动态规划的子问题重叠性质

- 从算法角度而言,(离散变量的)动态规划所依赖的另一个要素是子问题重叠性质:一个问题的求解可以划分成若干子问题的求解,而处理这些子问题的计算是部分重叠的。
- 动态规划法利用问题的子问题重叠性质设计算法,能够节省大量的计算。对一些看起来不太可能快速求解的问题, 往往能设计出多项式时间算法。
- 在算法理论中,多项式时间算法通常被认为是"有效的算法"(efficient algorithm)。

前向优化

- 写动态规划递推方程时,一般有两种写法:前向优化和后向优化。假设问题有n个阶段。
- 定义 $f_k()$ 为问题的前k个阶段(从第1阶段到第k阶段)的最优解值,然后将 $f_k()$ 递推至 $f_{k-1}()$ 。
- 最后写出递推的终止条件f₁()的表达式。
- 原问题就是计算 f_n ()。这称为前向优化。

后向优化

- 假设问题有n个阶段。
- 定义 $f_k()$ 为问题的后k个阶段(从第n-k+1阶段到第n阶段)的最优解值,然后将 $f_k()$ 递推至 $f_{k-1}()$ 。
- 最后写出递推的终止条件f₁()的表达式。
- 原问题就是计算 f_n ()。这称为后向优化。

2020/6/17

说明

- 前面给出的两个例子,最短路问题和资源分配问题,都是 采用后向优化技术解决的。
- 原则上,多阶段决策问题既可以使用前向优化技术解决, 也可以使用后向优化技术解决。
- 依据问题不同,前向优化和后向优化其中的一种或二者是 "自然"的解法。

最短路问题,前向优化

● 定义 $f_k(a, u)$ 为从顶点 a 经过 k 条边到达当前顶点 u 的最短路

长度。则有: $\begin{cases} f_k(a,u) = \min_{w \in N^-(u)} \{f_{k-1}(a,w) + l(w,u)\}, & k \ge 2 \\ f_1(a,u) = l(a,u), & k = 1 \end{cases}$

●原问题即是求 $f_n(a,g)$ (n=6)。

资源分配问题,前向优化

- 令 $f_k(x_{k+1})$ 表示从第 1 阶段连续生产到第 k 阶段,还余下恰好 x_{k+1} 份资源,所产生的最大效益。
- ●则有如下递推方程: 当 k = 2..n 时,

$$f_{k}(x_{k+1}) = \begin{cases} \max_{0 \le y_{k} \le -x_{k+1}} \{f_{k-1}(x_{k}) + g(y_{k}) + h(x_{k} - y_{k})\}, & \min\{a^{k-1}x_{1}, b^{k-1}x_{1}\} \le x_{k} \le \max\{a^{k-1}x_{1}, b^{k-1}x_{1}\} \\ -\infty, & \text{o.w.} \end{cases}$$

给定 x_{k+1} 、 y_k ,由于 x_k 、 x_{k+1} 、 y_k 需满足 $ay^k + b(x_k - y_k) = x_{k+1}$,

可直接计算出
$$x_k = \frac{1}{b}(x_{k+1} + (b-a)y_k)$$
。

资源分配问题,前向优化

•
$$\sharp k = 1$$
 时,
$$f_1(x_2) = \begin{cases} g(y_1) + h(x_1 - y_1), & 0 \le y_1 = \frac{bx_1 - x_2}{b - a} \le x_1 \\ -\infty, & \text{o.w.} \end{cases}$$

由已知 x_1 、 x_2 ,因为 x_1 、 x_2 、 y_1 需要满足 $ay_1 + b(x_1 - y_1) = x_2$,

可直接计算出 $y_1 = \frac{bx_1 - x_2}{b-a}$.

●最后,对 $\min\{a^n x_1, b^n x_1\} \le x_{n+1} \le \max\{a^n x_1, b^n x_1\}$ 计算所有可能 的 $f_n(x_{n+1})$,然后选取一个最大值,即为原问题的最优解。

动态规划所研究的问题

- 阶段数固定还是不固定?
 - 阶段数固定(也称为"定期"),指阶段数有限且固定。

