PRIMEIRA EDIÇÃO

Métodos numéricos

PROBLEMAS NÃO LINEARES E INVERSOS

Fernando Pujaico Rivera

email: fernando.pujaico.rivera@gmail.com

Esta obra está liberada com uma Licença Creative Commons Atribuição - NãoComercial - SemDerivações 4.0 Internacional. Não é possível usar este arquivo excepto em conformidade com a Licença. Pode obter uma copia da Licença em: https://creativecommons.org/licenses/by-nc-nd/4.0/

Limite de responsabilidade e exceção de garantia: O autor tem feito seu melhor esforço na preparação deste material. Esta edição deve ser proporcionada sem nenhuma modificação. Se distribui gratuitamente com a esperança de que seja útil, porém sem nenhuma garantia expressa ou implícita em relação à exatidão ou completitude do conteúdo.

Garanta o "download" gratuito da versão digital do livro em https://trucomanx.github.io/metodos.numericos

Impresso no Brasil – ISBN: XXXXXXXXXXXX

Publicado: Edição Independente

Primeira impressão: XXXXXXXXXX 2020

Diagramação: Fernando Pujaico Rivera **Revisão de texto:** Fernando Pujaico Rivera

Capa: Fernando Pujaico Rivera

Ficha catalográfica

Pujaico Rivera, Fernando, 1982.

Métodos numéricos: Problemas não lineares e inversos / Fernando Pujaico Rivera. – Lavras, Edição Independente, 2020.

38 p.: XXXxXXXcm.

Inclui Bibliografia

ISBN:XXXXXXXXXXXX

1. Métodos numéricos. 2. Problemas inversos. 3. Cáculo numérico. I. Título.

CDD: 515 CDU: 519.6

Agradecimentos

Patrocínio

Para investir nesta pesquisa e colaborar com o desenvolvimento e crescimento deste projeto, você pode comprar um exemplar do livro. Para ver uma lista com indicações sobre onde comprar:

- Uma versão impressa do livro, aceder a https://trucomanx.github.io/metodos.numericos/ comprar-impresso.html
- Uma versão digital do livro, aceder a https://trucomanx.github.io/metodos.numericos/ comprar-digital.html

Também pode colaborar com dinheiro em efetivo, desde 5 reais, pelo seguinte método:

• https://apoia.se/metodosnumericos

Para verificar a integridade do arquivo da versão digital deste livro, pode seguir as indicações publicadas no sitio oficial do projeto:

 https://trucomanx.github.io/metodos.numericos/verificar. html

Se já colaborou com a pesquisa, e se assim o deseja, sintase livre de me mandar um e-mail a fernando.pujaico.rivera@gmail.com, sugerindo abordar um novo assunto ou aprofundar em outro. Se seu pedido está dentro das minhas capacidades este será agregado sem falta na seguinte edição do livro.

Fernando Pujaico Rivera

Sumário

1		leona gerai	
	CI	asificação de dados1	3
1.	1	Regressão logística e SE com classificador $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$	4
1.	1.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} o \mathbb{R}$	4
1.2	2	Regressão logística-polinomial e SE com classificador $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$ 1	6
1.2	2.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} o \mathbb{R}$	6
1.3	3	Regressão logística e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N o \mathbb{R}$	8
1.3	3.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$ $~\dots 1$	8
1.4	4	Regressão logística-polinomial e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N o \mathbb{R}^N$ 20	\mathbb{R}
1.4	4.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$ $~\dots \dots ~2$	21
1.4	5	Regressão logística-não linear e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N o \mathbb{R}^N$ 24	\mathbb{R}
1.5	5.1	Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$ $~\dots \dots ~2$	25
1.0	6	Provas dos teoremas 2	26
Ш		Referências	
	Bil	bliografia3	3
		Livros 3	3
			34
		_	34

Índica						 25
IIIGICE	 	 	 	 	 	 აა

Teoria geral

•	Cidallicação de addos 13
1.1	Regressão logística e SE com classificador
	$f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$
1.2	Regressão logística-polinomial e SE com classi-
	ficador $f_{f c}(x):~\mathbb{R} o\mathbb{R}$
1.3	Regressão logística e SE com classificador
	$f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$
1.4	Regressão logística-polinomial e SE com classi-
	ficador $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N ightarrow \mathbb{R}$
1.5	Regressão logística-não linear e SE com classi-
	ficador $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^{N} ightarrow\mathbb{R}$
1.6	Provas dos teoremas

1. Clasificação de dados

Definição 1.0.1 — Função sigmoid ou Função logística $f: \mathbb{R} \to \mathbb{R}$: Função f(u), definida como na Eq. (1.1), com domínio real e contradomínio real acotado entre 0 e 1. [Kur+01, pp. 27],

$$f(u) = \frac{1}{1 + e^{-u}}. (1.1)$$

A derivada da função logística cumpre a seguinte propriedade,

$$\frac{df(u)}{du} = f(u)(1 - f(u)). \tag{1.2}$$

Definição 1.0.2 — Função $logit: \mathbb{R} \to \mathbb{R}$: A função logit(f) é definida como na Eq. (1.3), com domínio entre 0 e 1 e contradomínio que atinge todos os números reais. [KK10, pp. 17],

$$u = logit(f),$$

= $ln\left(\frac{f}{1-f}\right)$. (1.3)

A função logit, pode entende-se como a função inversa da função logística.

Figura 1.1: Função sigmoide.

Figura 1.2: Função logit.

- *MSE*: Sigla da frase no inglês "mean square error" que significa "erro quadrático médio".
- SE: Sigla da frase no inglês "square error" que significa "erro quadrático".

1.1 Regressão logística e SE com classificador $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

Teorema 1.1 — Classificação de dados em \mathbb{R} :

Dados, um conjunto de L dados $x_l \in \mathbb{R}, 1 \leq l \leq L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , e separáveis por um hiperplano. Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, com domínio $x \in \mathbb{R}$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2]^{\mathrm{T}} \in \mathbb{R}^2$, como definido na Eq. (1.4),

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}}, \quad h_{\mathbf{c}}(x) = c_1 + c_2 x, (1.4)$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(x)$.

Podemos atribuir a cada valor x_l uma etiqueta $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático $e(\mathbf{c})$,

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2,$$
 (1.5)

ponderado usando os pesos $w_l \in \mathbb{R}_+$, pode ser achado^a com

$$\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{A}^{\mathsf{T}} \mathbf{W} \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_l \\ \vdots & \vdots \\ 1 & x_L \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_l \\ \vdots \\ w_L \end{pmatrix} \end{pmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_1) \\ logit(y_2) \\ \vdots \\ logit(y_l) \\ \vdots \\ logit(y_L) \end{bmatrix}. \quad (1.6)$$

- Dado que a função de classificação $f_{\mathbf{c}}(x)$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(x)$ representa a probabilidade de que um valor x pertença ao grupo \bigcirc .
- O limiar da classificação de $f_{\mathbf{c}}(x)$ está no hiperplano $c_1 + c_2 x = 0$, provocando neste ponto um $f_{\mathbf{c}}(x) = 0.5$.

1.1.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

■ **Exemplo 1.1** Conhecida as L=10 amostras x_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.1, achar o classificador $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^L ||c_1 + c_2 x_l - logit(y_l)||^2$.

Solução 1.1 — Relativa ao Exemplo 1.1: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||c_1 + c_2 x_l - logit(y_l)||^2$ com os L = 10 dados x_l da Tabela 1.1, usamos a Eq. (1.6) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e

^aA demostração pode ser vista na Prova 1.1.

l	1	2	3	4	5	6	7	8	9	10
x_l	1.1	1.2	1.4	1.7	1.8	2.8	2.9	3.1	3.3	3.4
y_l	Δ	Δ	Δ	Δ	Δ	0			0	

Tabela 1.1: Valores x_l .

0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-5.5043 \quad 2.4248]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados x_l , como é mostrado na Figura 1.3a e na Eq. (1.7),

$$f_{\hat{\mathbf{c}}}(x) = \frac{1}{1 + e^{5.5043 - 2.4248x}}. (1.7)$$

É interessante ressaltar que para um valor A=0.1 a pendente é pequena e a classificação é pouco definida, com limiar de classificação em 2.27.

- (a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$
- (b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.3: Classificação usando a função $f_{\mathbf{c}}(x)$.

Solução 1.2 — Relativa ao Exemplo 1.1: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||c_1 + c_2 x_l - logit(y_l)||^2$ com os L = 10 dados x_l da Tabela 1.1, usamos a Eq. (1.6) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}, 0.001$ para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-17.3022 \quad 7.6221]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados x_l , como é mostrado na Figura 1.3b e na Eq. (1.8),

$$f_{\hat{\mathbf{c}}}(x) = \frac{1}{1 + e^{17.3022 - 7.6221x}}. (1.8)$$

É interessante ressaltar que para um valor A = 0.001 a pendente é abrupta para cada grupo e a classificação é bem definida, com limiar de classificação em 2.27.

1.2 Regressão logística-polinomial e SE com classificador $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

Teorema 1.2 — Classificação de dados em \mathbb{R} :

Dados, um conjunto de L dados $x_l \in \mathbb{R}$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , não separáveis por um hiperplano. Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, com domínio $x \in \mathbb{R}$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2 \ ... \ c_{M+1}]^T \in \mathbb{R}^{M+1}$, como definido na Eq. (1.9),

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}}, \quad h_{\mathbf{c}}(x) = \sum_{m=0}^{M} c_{m+1} x^{m},$$
(1.9)

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(x)$.

Podemos atribuir a cada valor x_l uma etiqueta $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático médio $e(\mathbf{c})$,

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2,$$
(1.10)

ponderado com os pesos $w_l \in \mathbb{R}_+$, pode ser calculado^a com a Eq. (1.11); onde a matriz $\mathbf{W} = diag([w_1, w_2, ..., w_L]^T);$

$$\hat{\mathbf{c}} = [\mathbf{A}^{T}\mathbf{W}\mathbf{A}]^{-1}\mathbf{A}^{T}\mathbf{W}\mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{M} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{M} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{l} & x_{l}^{2} & \dots & x_{l}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{L} & x_{L}^{2} & \dots & x_{L}^{M} \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ logit(y_{3}) \\ \vdots \\ logit(y_{l}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}. \quad (1.11)$$

^aA demostração pode ser vista na Prova 1.2.

- Dado que a função de classificação $f_{\mathbf{c}}(x)$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(x)$ representa a probabilidade de que um valor x pertença ao grupo \bigcirc .
- Os limiares de classificação na função $f_{\mathbf{c}}(x)$ estão nas raízes $h_{\mathbf{c}}(x) = 0$, provocando nestos pontos um $f_{\mathbf{c}}(x) = 0.5$.

1.2.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$

■ Exemplo 1.2 Conhecidas as L=12 amostras x_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.2, achar o classificador $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(x) - logit(y_l)||^2$.

l	1	2	3	4	5	6	7	8	9	10	11	12
x_l	1.1	1.2	1.4	4.0	4.1	4.2	2.1	2.2	2.5	2.6	2.8	2.9
y_l	Δ	Δ	Δ	Δ	Δ	Δ	0		0	0	0	

Tabela 1.2: Valores x_l .

Solução 1.3 — Relativa ao Exemplo 1.2: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2$ com os L = 12 dados x_l da Tabela 1.2, usamos a Eq. (1.11) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-12.6667 \quad 11.2848 \quad -2.1263]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados x_l , como é mostrado na Figura 1.4a e na Eq. (1.12),

$$f_{\hat{\mathbf{c}}}(x) = \frac{1}{1 + e^{-(-12.6667 + 11.2848x - 2.1263x^2)}}.$$
 (1.12)

É interessante ressaltar que para um valor A = 0.1 a pendente é pequena e a classificação é pouco definida, com limiares de classificação em 1.6122 e 3.6951.

(b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.4: Classificação usando a função $f_{\mathbf{c}}(x)$.

Solução 1.4 — Relativa ao Exemplo 1.2: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(x)$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(x_l) - logit(y_l)||^2$ com os L=12 dados x_l da Tabela 1.2, usamos a Eq. (1.11) onde escolhemos $w_l=1$ e valores $y_l \in \{0.001,\ 0.999\},\ 0.001$ para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-39.8164 \quad 35.4727 \quad -6.6838]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados x_l , como é mostrado na Figura 1.4b e na Eq. (1.13),

$$f_{\hat{\mathbf{c}}}(x) = \frac{1}{1 + e^{-(-39.8164 + 35.4727x - 6.6838x^2)}}.$$
 (1.13)

É interessante ressaltar que para um valor A=0.001 a pendente é abrupta para cada grupo com uma classificação bem definida, e limiares de classificação em 1.6122 e 3.6951.

1.3 Regressão logística e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$

Teorema 1.3 — Classificação de dados em \mathbb{R}^N :

Dados, um conjunto de L pontos $\mathbf{x}_l \in \mathbb{R}^N$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos \triangle e \bigcirc , separáveis por um hiperplano em \mathbb{R}^N . Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, com domínio $\mathbf{x} \in \mathbb{R}^N$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} = [c_1 \ c_2 \ ... \ c_{N+1}]^T \in \mathbb{R}^{N+1}$, como definido na Eq. (1.14),

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x}^{\mathrm{T}} \end{bmatrix} \mathbf{c},$$

$$(1.14)$$

ou seu equivalente: $logit(y) = h_c(\mathbf{x})$.

Podemos atribuir a cada ponto \mathbf{x}_l uma etiqueta $y_l \in \{A, 1-A\}$, A para \triangle e 1-A para \bigcirc , onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático $e(\mathbf{c})$,

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$
(1.15)

pode ser achado^a mediante a Eq. (1.16), sendo que é considerado que os erros de cada amostra \mathbf{x}_l em $e(\mathbf{c})$ são ponderados mediante os pesos $w_l \in \mathbb{R}_+$,

$$\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} 1 & \mathbf{x}_{1}^{\mathrm{T}} \\ 1 & \mathbf{x}_{2}^{\mathrm{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_{l}^{\mathrm{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_{L}^{\mathrm{T}} \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ \vdots \\ logit(y_{l}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{l} \\ \vdots \\ w_{L} \end{bmatrix} \end{pmatrix}.$$

$$(1.16)$$

- Dado que a função de classificação $f_{\mathbf{c}}(\mathbf{x})$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(\mathbf{x})$ representa a probabilidade de que um ponto \mathbf{x} pertença ao grupo \bigcirc .
- O limiar de classificação na função $f_{\mathbf{c}}(\mathbf{x})$ está no hiperplano $h_{\mathbf{c}}(\mathbf{x}) = 0$, provocando nestos pontos um $f_{\mathbf{c}}(\mathbf{x}) = 0.5$.

1.3.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N o \mathbb{R}$

■ Exemplo 1.3 Conhecidas as L=10 amostras \mathbf{x}_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.3, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$.

^aA demostração pode ser vista na Prova 1.3.

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	1	3	1	2	1	4	5	6	3	2
	1	1	4	2	2	4	3	2	5	6
\mathbf{y}_l	Δ	Δ	Δ	\triangle	Δ	0	0	0	0	

Tabela 1.3: Pontos \mathbf{x}_l .

Solução 1.5 — Relativa ao Exemplo 1.3: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da Tabela 1.3, usamos a Eq. (1.16) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.1, 0.9\}$, 0.1 para \triangle e 0.9 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-5.21014 \quad 0.95532 \quad 0.84509]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.5a,

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-(-5.21014 + 0.95532x_1 + 0.84509x_2)}}.$$
 (1.17)

É interessante ressaltar que a pendente é pequena e a classificação é pouco definida, com limiares de classificação no hiperplano $-5.21014 + 0.95532x_1 + 0.84509x_2 = 0$.

- (a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$
- (b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.5: Classificação usando a função $f_{\mathbf{c}}(\mathbf{x})$.

Solução 1.6 — Relativa ao Exemplo 1.3: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L = 10 dados \mathbf{x}_l da Tabela 1.3, usamos a Eq. (1.16) onde escolhemos $w_l = 1$ e valores $y_l \in \{0.001, 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor $\hat{\mathbf{c}} = [-16.3776 \quad 3.0029 \quad 2.6564]^{\mathrm{T}}$. Assim, podemos representar a função $f_{\mathbf{c}}(\mathbf{x})|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l , como é mostrado na Figura 1.5b e na Eq. (1.18),

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-(-16.3776 + 3.0029x_1 + 2.6564x_2)}}.$$
 (1.18)

É interessante ressaltar que a pendente é abrupta para cada grupo com uma classificação bem definida, e limiares de classificação no hiperplano $-16.3776 + 3.0029x_1 + 2.6564x_2 = 0$.

1.4 Regressão logística-polinomial e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$

Teorema 1.4 — Classificação de dados em \mathbb{R}^N :

Dados, um conjunto de L pontos $\mathbf{x}_l \in \mathbb{R}^N$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos Δ e \bigcirc , não separáveis por um hiperplano em \mathbb{R}^N . Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, com domínio $\mathbf{x} \in \mathbb{R}^N$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor \mathbf{c} , como definido na Eq. (1.19),

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \mathbf{a}_{M}(\mathbf{x})\mathbf{c},$$

$$(1.19)$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(\mathbf{x})$, sendo $h_{\mathbf{c}}(\mathbf{x})$ um polinômio multivariante de grau total M [GCL07, pp. 47] [Zip12, pp. 108] com coeficientes agrupados no vetor \mathbf{c} . Podemos atribuir a cada ponto \mathbf{x}_l uma etiqueta $y_l \in \{A, 1-A\}$, A para \triangle e 1-A para \bigcirc , onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza o erro quadrático $e(\mathbf{c})$,

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$
(1.20)

pode ser achado^a mediante a Eq. (1.21), onde os erros de cada amostra \mathbf{x}_l em $e(\mathbf{c})$ são ponderados com os pesos $w_l \in \mathbb{R}_+$ e estão agrupados na matriz \mathbf{W} ;

$$\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}_{M}(\mathbf{x}_{1}) \\ \mathbf{a}_{M}(\mathbf{x}_{2}) \\ \vdots \\ \mathbf{a}_{M}(\mathbf{x}_{L}) \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{L} \end{bmatrix} \end{pmatrix}, \quad (1.21)$$

$$\mathbf{a}_{M}(\mathbf{x}) = \begin{bmatrix} \mathbf{b}_{0}(\mathbf{x}) & \mathbf{b}_{1}(\mathbf{x}) & \dots & \mathbf{b}_{m}(\mathbf{x}) & \dots & \mathbf{b}_{M}(\mathbf{x}) \end{bmatrix}, \tag{1.22}$$

$$\mathbf{b}_{0}(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_{1}(\mathbf{x}) = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{N} \end{bmatrix}, \quad \mathbf{b}_{m}(\mathbf{x}) = \bigcup_{\alpha_{1} + \alpha_{2} + \dots + \alpha_{N} = m}^{\rightarrow} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{N}^{\alpha_{N}}. \quad (1.23)$$

 $\mathbf{b}_m(\mathbf{x})$ representa um vetor linha com monômios $x_1^{\alpha_1}x_2^{\alpha_2}...x_N^{\alpha_N}$ como elementos, de modo que em cada elemento se cumpre que $\alpha_1+\alpha_2+...+\alpha_N=m$, sendo que $\alpha_n\in\mathbb{N}$.

- Dado que a função de classificação $f_{\mathbf{c}}(\mathbf{x})$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(\mathbf{x})$ representa a probabilidade de que um ponto \mathbf{x} pertença ao grupo \bigcirc .
- O limiar de classificação na função $f_{\mathbf{c}}(\mathbf{x})$ está na superfície $h_{\mathbf{c}}(\mathbf{x}) = 0$.
- A ordem dos elementos do vetor $\mathbf{a}_M(\mathbf{x})$ podem ser alterados, isto só modificará a posição dos elementos no vetor \mathbf{c} .

1

^aA demostração pode ser vista na Prova 1.4.

■ Exemplo 1.4 — Polinômios multivariante:

• Polinômio univariado de grau total 2: $P_{\mathbf{c}}(x) = c_1 + c_2 x + c_3 x^2$.

$$\mathbf{b}_0(x) = [1], \quad \mathbf{b}_1(x) = [x], \quad \mathbf{b}_2(x) = [x^2].$$
 (1.24)

• Polinômio bivariado de grau total 2: $P_{\mathbf{c}}(\mathbf{x}) = c_1 + c_2 x_1 + c_3 x_2 + c_4 x_1^2 + c_5 x_1 x_2 + c_6 x_2^2$.

$$\mathbf{b}_0(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_1(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}, \quad \mathbf{b}_2(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix}. \tag{1.25}$$

• Polinômio trivariado de grau total 2: $P_{\mathbf{c}}(\mathbf{x}) = c_1 + c_2x_1 + c_3x_2 + c_4x_3 + c_5x_1^2 + c_6x_2^2 + c_7x_3^2 + c_8x_1x_2 + c_9x_1x_3 + c_{10}x_2x_3$.

$$\mathbf{b}_0(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_1(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}, \quad \mathbf{b}_2(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_2^2 & x_3^2 & x_1x_2 & x_1x_3 & x_2x_3 \end{bmatrix}.$$
(1.26)

Lema 1.4.1 — Número de elementos de $\mathbf{b}_m(\mathbf{x})$: Dada uma função vetorial $\mathbf{b}_m(\mathbf{x})$ de parâmetro $\mathbf{x} \in \mathbb{R}^N$, a quantidade de elementos $\phi(N,m)$ do vetor $\mathbf{b}_m(\mathbf{x})$ pode ser calculado com

$$\phi(N,m) = \binom{N}{m} = \binom{N+m-1}{m} = \frac{N(N+1)(N+2)...(N+m-1)}{m!}.$$
 (1.27)

Prova: $\phi(N,m)$ representa o número de combinações (grupos ou multiconjuntos) com repetição, onde cada grupo tem m elementos, escolhidos desde um universo de N diferentes elementos, quando a ordem de escolha não importa, e cada elemento pode ser escolhido mais de uma vez em cada grupo [Sch12, pp. 101,107]. $\phi(N,m)$ pode ser entendido como o número de monômios no polinômio multivariado $(x_1 + x_2 + ... + x_N)^m$.

Lema 1.4.2 — Número de elementos de $\mathbf{a}_M(\mathbf{x})$: Dada uma função vetorial $\mathbf{a}_M(\mathbf{x})$ de parâmetro $\mathbf{x} \in \mathbb{R}^N$, a quantidade de elementos $L_M(N)$ do vetor $\mathbf{a}_M(\mathbf{x})$ pode ser calculado com [BS19, pp. 231]

$$L_M(N) = \sum_{m=0}^{M} \phi(N, m) = \binom{N+M}{M}.$$
 (1.28)

Prova: Usando a identidade Hockey-stick [DW14], onde $\sum_{k=0}^{r} {n+k \choose k} = {n+r+1 \choose r}$ e o Lema 1.4.1, podemos facilmente obter a Eq. (1.28). $L_M(N)$ também pode ser entendido como o número de monômios no polinômio multivariado $(1+x_1+x_2+...+x_N)^M$ [Zip12, pp. 121].

1.4.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N ightarrow \mathbb{R}$

■ **Exemplo 1.5** Conhecidas as L=10 amostras \mathbf{x}_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.4, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$ que usa um polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M=2, que gere o menor erro $e(\mathbf{c})=\sum_{l=1}^{L}||h_{\mathbf{c}}(\mathbf{x}_l)-logit(y_l)||^2$.

Solução 1.7 — Relativa ao Exemplo 1.5: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, com polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M = 2, que gera o menor erro $e(\mathbf{c}) = \mathbf{c}$

_

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	1	1	2	4	5	2	2	3	5	6
	5	4	2	1	1	6	5	3	2	2
\mathbf{y}_l	Δ	Δ	Δ	Δ	Δ	0	0	0		\circ

Tabela 1.4: Pontos \mathbf{x}_l .

 $\sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L=10 dados \mathbf{x}_l da Tabela 1.4, usamos as Eqs. (1.26) e (1.21) onde escolhemos $w_l=1$ e valores $y_l\in\{0.1,\ 0.9\},\ 0.1$ para \triangle e 0.9 para \bigcirc , obtendo um vetor

$$\hat{\mathbf{c}} = [-11.71919 \quad 2.49938 \quad 2.49938 \quad -0.30282 \quad -0.30282 \quad 0.50579]^{\mathrm{T}}.$$
 (1.29)

Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l , como é mostrado na Eq. (1.30) e na Figura 1.6a,

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\hat{\mathbf{c}}}(\mathbf{x})}}, \quad h_{\hat{\mathbf{c}}}(\mathbf{x}) = -11.71919 +2.49938x_1 + 2.49938x_2 -0.30282x_1^2 - 0.30282x_2^2 + 0.50579x_1x_2.$$
 (1.30)

É interessante ressaltar que para um valor A = 0.1 a pendente na mudança de classificação é pouco definida, com limitares de classificação na superfície $h_{\hat{\mathbf{c}}}(\mathbf{x}) = 0$.

- (a) Gráfico da classificação usando $y_l \in \{0.1, 0.9\}.$
- (b) Gráfico da classificação usando $y_l \in \{0.001, 0.999\}.$

Figura 1.6: Classificação usando a função $f_{\mathbf{c}}(\mathbf{x})$.

Solução 1.8 — Relativa ao Exemplo 1.5: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, com polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M=2, que gera o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L=10 dados \mathbf{x}_l da Tabela 1.4, usamos as Eqs. (1.26) e (1.21) onde escolhemos $w_l=1$ e valores $y_l\in\{0.001,\,0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor

$$\hat{\mathbf{c}} = [-36.83809 \quad 7.85656 \quad 7.85656 \quad -0.95187 \quad -0.95187 \quad 1.58990]^{\mathrm{T}}.$$
 (1.31)

Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l , como é mostrado na Eq. (1.32) e na Figura 1.6b,

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\hat{\mathbf{c}}}(\mathbf{x})}}, \quad h_{\hat{\mathbf{c}}}(\mathbf{x}) = -36.83809 +7.85656x_1 + 7.85656x_2 -0.95187x_1^2 - 0.95187x_2^2 + 1.58990x_1x_2.$$
 (1.32)

É interessante ressaltar que para um valor A = 0.001 a pendente na mudança de classificação está bem definida, com limiares de classificação na superfície $h_{\hat{\mathbf{c}}}(\mathbf{x}) = 0$.

■ **Exemplo 1.6** Conhecidas as L=10 amostras \mathbf{x}_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.5, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$ que usa um polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M=2, que gere o menor erro $e(\mathbf{c})=\sum_{l=1}^{L}||h_{\mathbf{c}}(\mathbf{x}_l)-logit(y_l)||^2$.

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	5	3	2	4	5	4	3	3	4	4
	5	5	2	1	3	4	4	3	2	3
\mathbf{y}_l	Δ	Δ	Δ	Δ	Δ	0	0	0	0	0

Tabela 1.5: Pontos \mathbf{x}_l .

Solução 1.9 — Relativa ao Exemplo 1.6: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, com polinômio multivariante $h_{\mathbf{c}}(x)$ de grau total M=2, que gera o menor erro $e(\mathbf{c}) = \sum_{l=1}^{L} ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2$ com os L=10 dados \mathbf{x}_l da Tabela 1.5, usamos as Eqs. (1.26) e (1.21) onde escolhemos $w_l=1$ e valores $y_l\in\{0.001,\ 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc , obtendo um vetor

$$\hat{\mathbf{c}} = [-81.5028 \quad 46.6937 \quad 5.7968 \quad -7.9601 \quad -2.8062 \quad 3.2267]^{\mathrm{T}}.$$
 (1.33)

Assim, podemos representar a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l , como é mostrado na Eq. (1.34) e na Figura 1.7,

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\hat{\mathbf{c}}}(\mathbf{x})}}, \quad h_{\hat{\mathbf{c}}}(\mathbf{x}) = -81.5028 +46.6937x_1 + 5.7968x_2 -7.9601x_1^2 - 2.8062x_2^2 + 3.2267x_1x_2.$$
 (1.34)

É interessante ressaltar que $h_{\hat{\mathbf{c}}}(\mathbf{x}) = 0$ ao ser um polinômio multivariante de grau 2, pode tomar varias formas como uma elipse, uma parábola ou uma hipérbole; neste caso a seção cônica que classifica bem os dados é uma elipse.

Figura 1.7: Gráfico da classificação usando $y_l \in \{0.001, 0.999\}$.

1.5 Regressão logística-não linear e SE com classificador $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$

Teorema 1.5 — Classificação de dados em \mathbb{R}^N :

Dados, um conjunto de L pontos $\mathbf{x}_l \in \mathbb{R}^N$, $1 \le l \le L$, repartidos em dois grupos etiquetados com os símbolos Δ e \bigcirc , não separáveis por um hiperplano em \mathbb{R}^N . Se desejamos criar um classificador mediante a função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, com domínio $\mathbf{x} \in \mathbb{R}^N$, contradomínio $y \in \mathbb{R}$ e parâmetros agrupados no vetor $\mathbf{c} \in \mathbb{R}^M$, como definido na Eq. (1.35),

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}},$$
 (1.35)

ou seu equivalente, $logit(y) = h_{\mathbf{c}}(\mathbf{x}) \equiv h(\mathbf{c}, \mathbf{x})$, onde $h_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$ é uma função não linear com domínio \mathbf{x} e com coeficientes $\mathbf{c} = [c_1, c_2, ..., c_M]^{\mathrm{T}}$. Podemos atribuir a cada ponto \mathbf{x}_l uma etiqueta $y_l \in \{A, 1-A\}$, A para \triangle e 1-A para \bigcirc , onde $0 < A \ll 0.5$ é escolhido por nós, e afirmar que o vetor $\mathbf{c} = \mathbf{\hat{c}}$, que minimiza o erro quadrático $e(\mathbf{c})$,

$$e(\mathbf{c}) = ||\mathbf{h}(\mathbf{c}) - \mathbf{z}||_{\mathbf{W}}^2 + \alpha ||\mathbf{c} - \mathbf{c}_{last}||_{\mathbf{D}}^2, \tag{1.36}$$

$$\mathbf{h}(\mathbf{c}) = \begin{bmatrix} h_{\mathbf{c}}(\mathbf{x}_1) \\ h_{\mathbf{c}}(\mathbf{x}_2) \\ \vdots \\ h_{\mathbf{c}}(\mathbf{x}_L) \end{bmatrix}, \ \mathbf{z} = \begin{bmatrix} logit(y_1) \\ logit(y_2) \\ \vdots \\ logit(y_L) \end{bmatrix}, \ \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} \end{pmatrix}, \ \mathbf{D} = diag \begin{pmatrix} \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_M \end{bmatrix} \end{pmatrix}, \quad (1.37)$$

pode ser achado^a usando de forma iterativa a Eq. (1.38), sendo que $w_l \in \mathbb{R}_+$, $d_l \in \mathbb{R}_+$, e $\alpha \in \mathbb{R}_+$ são valores escolhido por nós;

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} - [\mathbf{J}(\mathbf{c}_{i-1})^{\mathrm{T}} \mathbf{W} \mathbf{J}(\mathbf{c}_{i-1}) + \alpha \mathbf{D}]^{-1} \mathbf{J}(\mathbf{c}_{i-1})^{\mathrm{T}} \mathbf{W} [\mathbf{h}(\mathbf{c}_{i-1}) - \mathbf{z}], \tag{1.38}$$

onde a matriz $\mathbf{J}(\mathbf{c}) \equiv \frac{\partial \mathbf{h}(\mathbf{c})}{\partial \mathbf{c}^{\mathrm{T}}}$ é a matriz Jacobiana de $\mathbf{h}(\mathbf{c})$,

$$\mathbf{J}(\mathbf{c}) = \begin{bmatrix} \mathbf{j}(\mathbf{c}, \mathbf{x}_1) \\ \mathbf{j}(\mathbf{c}, \mathbf{x}_2) \\ \vdots \\ \mathbf{j}(\mathbf{c}, \mathbf{x}_L) \end{bmatrix}, \quad \mathbf{j}(\mathbf{c}, \mathbf{x}) = \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial \mathbf{c}^{\mathrm{T}}} \\ = \begin{bmatrix} \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_1} & \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_2} & \dots & \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_M} \end{bmatrix}.$$
(1.39)

Considerações:

- A busca iterativa da Eq. (1.38) é declarada finalizada com sucesso quando iterações consecutivas do vetor \mathbf{c}_i convergem a valores próximos, onde declaramos $\hat{\mathbf{c}} = \mathbf{c}_i$.
- O erro mínimo, $e(\hat{\mathbf{c}}) \ge 0$, não necessariamente ter valor zero.

^aA demostração pode ser vista na Prova 1.5.

- Dado que a função de classificação $f_{\mathbf{c}}(\mathbf{x})$ vai entre 0 e 1, podemos reinterpretar este valor como se fosse uma probabilidade; neste caso, $f_{\mathbf{c}}(\mathbf{x})$ representa a probabilidade de que um ponto \mathbf{x} pertença ao grupo \bigcirc .
- O limiar de classificação na função $f_{\mathbf{c}}(\mathbf{x})$ está na superfície $h_{\mathbf{c}}(\mathbf{x}) = 0$, provocando nestos pontos um $f_{\mathbf{c}}(\mathbf{x}) = 0.5$.

1.5.1 Exemplos de classificação com uma função $f_{\mathbf{c}}(\mathbf{x}):~\mathbb{R}^N o \mathbb{R}$

■ Exemplo 1.7 Conhecidas as L=10 amostras \mathbf{x}_l e seus respetivos grupos indicados pelos símbolos \triangle e \bigcirc , mostrados na Tabela 1.6, achar o classificador $f_{\mathbf{c}}(\mathbf{x})$ que usa a função $h_{\mathbf{c}}(\mathbf{x}) = c_1 \left((x_1 - c_2)^2 + (x_2 - c_3)^2 - c_4^2 \right)$, que gere o menor erro $e(\mathbf{c}) = ||\mathbf{h}(\mathbf{c}) - \mathbf{z}||^2 + 0.001 ||\mathbf{c} - \mathbf{c}_{last}||^2$.

l	1	2	3	4	5	6	7	8	9	10
\mathbf{x}_l	6	2	2	6	6	4	3	3	4	4 3
	5	5	1	1	3	4	4	3	2	3
\mathbf{y}_l	Δ	Δ	Δ	Δ	Δ	0	0	0	0	0

Tabela 1.6: Pontos \mathbf{x}_l .

Solução 1.10 — Relativa ao Exemplo 1.7: Para obter o vetor de parâmetros $\mathbf{c} = \hat{\mathbf{c}}$ da função $f_{\mathbf{c}}(\mathbf{x})$, que gere o menor erro $e(\mathbf{c})$ com os L = 10 dados \mathbf{x}_l da Tabela 1.6, usamos a Eq. (1.38) onde escolhemos $\alpha = 0.001$, $d_l = w_l = 1$ e valores $y_l \in \{0.001, 0.999\}$, 0.001 para \triangle e 0.999 para \bigcirc ; além disso calculamos

$$\mathbf{j}(\mathbf{c}, \mathbf{x}) = \begin{bmatrix} (x_1 - c_2)^2 + (x_2 - c_3)^2 - c_4^2, & -2c_1(x_1 - c_2), & -2c_1(x_2 - c_3), & -2c_1c_4 \end{bmatrix},$$
(1.40)

obtendo um vetor $\hat{\mathbf{c}} = [-1.8915, 3.7830, 3.0296, -2.0352]^T$. Assim, a função $f_{\mathbf{c}}(x)|_{\mathbf{c}=\hat{\mathbf{c}}}$ que classifica os dados \mathbf{x}_l é mostrada na Eq. (1.41) e na Figura 1.8,

$$f_{\hat{\mathbf{c}}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\hat{\mathbf{c}}}(\mathbf{x})}}, \quad h_{\hat{\mathbf{c}}}(\mathbf{x}) = -1.8915 \left((x_1 - 3.7830)^2 + (x_2 - 3.0296)^2 - 2.0352^2 \right). \tag{1.41}$$

É interessante ressaltar que o limiar de classificação está na superfície $h_{\hat{\mathfrak{c}}}(\mathbf{x})=0$.

Figura 1.8: Gráfico da classificação usando $y_l \in \{0.001, 0.999\}$.

1.6 Provas dos teoremas

Prova 1.1 — Relativa ao Teorema 1.1 Este procedimento é semelhante à Prova 1.2 quando na função $f_{\bf c}(x)$,

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}},$$
 (1.42)

escolhemos uma função $h_{\mathbf{c}}(x) = c_1 + c_2 x$; é dizer um valor M = 1 na Eq. (1.43).

Prova 1.2 — Relativa ao Teorema 1.2 Dados, os escalares $x \in \mathbb{R}$, $y \in \mathbb{R}$ e $c_m \in \mathbb{R}$, uma função $f_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, uma função polinomial $h_{\mathbf{c}} : \mathbb{R} \to \mathbb{R}$, de grau M, e definidas as seguintes equações,

$$y \equiv f_{\mathbf{c}}(x) = \frac{1}{1 + e^{-h_{\mathbf{c}}(x)}}, \quad h_{\mathbf{c}}(x) \equiv \sum_{m=0}^{M} c_{m+1} x^m \equiv \mathbf{a}_M(x) \mathbf{c}, \tag{1.43}$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(x)$, onde $\mathbf{c} = [c_1 \ c_2 \ ... \ c_m \ ... \ c_{M+1}]^{\mathrm{T}} \in \mathbb{R}^{M+1}$ é um vetor coluna e $\mathbf{a}_M(x) = \begin{bmatrix} 1 & x & x^2 & ... & x^m & ... & x^M \end{bmatrix}$ um vetor linha. Se definimos um erro $e(\mathbf{c})$ como

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_{l} ||h_{\mathbf{c}}(x_{l}) - logit(y_{l})||^{2},$$
(1.44)

proveniente de avaliar L amostras x_l que pertencem a dois grupos, sendo que cada valor x_l tem uma etiqueta de grupo $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós. Todos estes dados podem ser representados pelos vetores $\mathbf{x} = [x_1 \ x_2 \ ... \ x_l \ ... \ x_L]^T$ e $\mathbf{z} = [logit(y_1) \ logit(y_2) \ ... \ logit(y_l) \ ... \ logit(y_l)]^T$, ponderados com os pesos $w_l \in \mathbb{R}_+$, representados pela matriz diagonal $\mathbf{W} = diag([w_1 \ w_2 \ ... \ w_l \ ... \ w_l]^T)$. De modo que podemos rescrever a Eq. (1.44) como,

$$e(\mathbf{c}) \equiv ||\mathbf{A}\mathbf{c} - \mathbf{z}||_{\mathbf{W}}^{2} \tag{1.45}$$

onde a matriz A é definida como,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{M}(x_{1}) \\ \mathbf{a}_{M}(x_{2}) \\ \vdots \\ \mathbf{a}_{M}(x_{l}) \\ \vdots \\ \mathbf{a}_{M}(x_{L}) \end{bmatrix} \equiv \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{M} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{M} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{l} & x_{l}^{2} & \dots & x_{l}^{M} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{L} & x_{L}^{2} & \dots & x_{L}^{M} \end{bmatrix}.$$

$$(1.46)$$

Usando o Teorema $\ref{eq:condition}$, sabemos que o vetor $\mathbf{c} = \mathbf{\hat{c}}$, que minimiza a Eq. (1.45) pode ser achado usando

$$\hat{\mathbf{c}} = [\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A}]^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}. \tag{1.47}$$

Prova 1.3 — Relativa ao Teorema 1.3 Dados, o vetor coluna $\mathbf{x} \in \mathbb{R}^N$, os escalares $y \in \mathbb{R}$ e $c_m \in \mathbb{R}$, uma função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, uma função $h_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, e definidas as seguintes equações,

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \mathbf{a}(\mathbf{x})\mathbf{c}, \tag{1.48}$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(\mathbf{x})$, onde $\mathbf{c} = [c_1 \ c_2 \ ... \ c_m \ ... \ c_{N+1}]^T \in \mathbb{R}^{N+1}$ é um vetor coluna e $\mathbf{a}(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2 & ... & x_m & ... & x_N \end{bmatrix}$ é um vetor linha. Se definimos um erro $e(\mathbf{c})$ como

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$
(1.49)

proveniente de avaliar L amostras $\mathbf{x}_l \in \mathbb{R}^N$ que pertencem a dois grupos, sendo que cada amostra \mathbf{x}_l tem uma etiqueta de grupo $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós; então, podemos rescrever a Eq. (1.49) como a Eq. (1.50), onde os pesos $w_l \in \mathbb{R}_+$ são escolhidos por nós,

$$e(\mathbf{c}) \equiv ||\mathbf{A}\mathbf{c} - \mathbf{z}||_{\mathbf{W}}^{2} \tag{1.50}$$

onde

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}(x_1) \\ \mathbf{a}(x_2) \\ \vdots \\ \mathbf{a}(x_l) \\ \vdots \\ \mathbf{a}(x_L) \end{bmatrix} \equiv \begin{bmatrix} 1 & \mathbf{x}_1^T \\ 1 & \mathbf{x}_2^T \\ \vdots & \vdots \\ 1 & \mathbf{x}_l^T \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_1) \\ logit(y_2) \\ \vdots \\ logit(y_l) \\ \vdots \\ logit(y_L) \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_l \\ \vdots \\ w_L \end{pmatrix}.$$

$$(1.51)$$

Usando o Teorema $\ref{eq:condition}$, sabemos que o vetor $\mathbf{c} = \mathbf{\hat{c}}$, que minimiza a Eq. (1.50) pode ser achado usando

$$\hat{\mathbf{c}} = [\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A}]^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}. \tag{1.52}$$

Prova 1.4 — Relativa ao Teorema 1.4 Dados, o vetor coluna $\mathbf{x} \in \mathbb{R}^N$, os escalares $y \in \mathbb{R}$ e $c_m \in \mathbb{R}$, uma função $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, uma função $h_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, e definidas as seguintes equações,

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}}, \quad h_{\mathbf{c}}(\mathbf{x}) = \mathbf{a}_{M}(\mathbf{x})\mathbf{c}, \tag{1.53}$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(\mathbf{x})$, onde $\mathbf{c} = [c_1 \ c_2 \ c_3 \ ... \ c_{L_M(N)}]^{\mathrm{T}} \in \mathbb{R}^{L_M(N)}$ é um vetor coluna com $L_M(N) = \binom{N+M}{M}$ coeficientes para cada elemento em $\mathbf{a}_M(\mathbf{x})$, que é um vetor com todos os monômios multivariados de grau total menor ou igual a M,

$$\mathbf{a}_{M}(\mathbf{x}) = \begin{bmatrix} \mathbf{b}_{0}(\mathbf{x}) & \mathbf{b}_{1}(\mathbf{x}) & \dots & \mathbf{b}_{m}(\mathbf{x}) \end{bmatrix},$$
 (1.54)

onde $\mathbf{b}_m(\mathbf{x}) \in \mathbb{R}^{\phi(N,m)}$ é um vetor linha de $\phi(N,m) = \binom{N+m-1}{m}$ elementos², com todos os monômios multivariados de grau total igual a m formados a partir dos elementos do vetor \mathbf{x} ,

$$\mathbf{b}_{0}(\mathbf{x}) = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{b}_{1}(\mathbf{x}) = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{N} \end{bmatrix}, \quad \mathbf{b}_{2}(\mathbf{x}) = \begin{bmatrix} x_{1}^{2} & x_{2}^{2} & \dots & x_{N}^{2} & x_{1}x_{2} & \dots & x_{N-1}x_{N} \end{bmatrix},$$
(1.55)

$$\mathbf{b}_{m}(\mathbf{x}) = \bigcup_{\alpha_{1} + \alpha_{2} + \dots + \alpha_{N} = m}^{\rightarrow} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{N}^{\alpha_{N}}; \tag{1.56}$$

em geral a ordem dos elementos (monômios) no vetor $\mathbf{a}_M(\mathbf{x})$ é arbitrário³, pois uma modificação na ordem só leva a uma modificação na ordem dos elementos no vetor \mathbf{c} . Assim, podemos definir o erro quadrático $e(\mathbf{c})$ como

$$e(\mathbf{c}) = \sum_{l=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2,$$
(1.57)

¹Para ver como calcular $L_M(N)$ ver o Lema 1.4.2.

²Para ver como calcular $\phi(N,m)$ ver o Lema 1.4.1.

³Inclusive poderia se escolher só um número reduzido de monômios; por exemplo, poderíamos escolher $\mathbf{a}_3(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_1x_2^2 & x_1^2 \end{bmatrix}$, consequentemente $\mathbf{c} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix}$, de modo que $h_{\mathbf{c}}(\mathbf{x}) = c_1 + c_2x_1 + c_3x_1x_2^2 + c_4x_1^2$.

proveniente de avaliar o erro quadrático de L amostras $\mathbf{x}_l \in \mathbb{R}^N$ que pertencem a dois grupos, onde cada amostra \mathbf{x}_l tem uma etiqueta de grupo $y_l \in \{A, 1-A\}$, $0 < A \ll 0.5$ é escolhido por nós, e os erros quadráticos são ponderados com os pesos $w_l \in \mathbb{R}_+$. Assim, podemos rescrever a Eq. (1.57) como,

$$e(\mathbf{c}) \equiv ||\mathbf{A}\mathbf{c} - \mathbf{z}||_{\mathbf{W}}^{2} \tag{1.58}$$

onde

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{M}(\mathbf{x}_{1}) \\ \mathbf{a}_{M}(\mathbf{x}_{2}) \\ \vdots \\ \mathbf{a}_{M}(\mathbf{x}_{l}) \\ \vdots \\ \mathbf{a}_{M}(\mathbf{x}_{L}) \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} logit(y_{1}) \\ logit(y_{2}) \\ \vdots \\ logit(y_{l}) \\ \vdots \\ logit(y_{L}) \end{bmatrix}, \quad \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{l} \\ \vdots \\ w_{L} \end{bmatrix} \end{pmatrix}.$$
(1.59)

Usando o Teorema ??, sabemos que o vetor $\mathbf{c} = \hat{\mathbf{c}}$, que minimiza as Eqs. (1.57) e (1.58) pode ser achado usando

$$\hat{\mathbf{c}} = [\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A}]^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{z}. \tag{1.60}$$

Prova 1.5 — Relativa ao Teorema 1.5 Dados, o vetor coluna $\mathbf{x} \in \mathbb{R}^N$, os escalares $y \in \mathbb{R}$ e $c_m \in \mathbb{R}$, as funções $f_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, e $h_{\mathbf{c}} : \mathbb{R}^N \to \mathbb{R}$, e definida a seguinte equação,

$$y \equiv f_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-h_{\mathbf{c}}(\mathbf{x})}},\tag{1.61}$$

ou seu equivalente: $logit(y) = h_{\mathbf{c}}(\mathbf{x})$, onde $\mathbf{c} = [c_1 \ c_2 \ ... \ c_m \ ... \ c_M]^{\mathrm{T}}$ e $h_{\mathbf{c}}(\mathbf{x}) \equiv h(\mathbf{c}, \mathbf{x})$ é uma função de variável vetorial escolhida por nós. Podemos definir um erro quadrático $e(\mathbf{c})$ como

$$e(\mathbf{c}) = \sum_{n=1}^{L} w_l ||h_{\mathbf{c}}(\mathbf{x}_l) - logit(y_l)||^2 + \alpha \sum_{n=1}^{M} d_m ||c_m - c_{m,last}||^2;$$
(1.62)

onde a função de custo $e(\mathbf{c})$ toma em conta dois tipos de erro, separados em duas somatórias, ponderadas mediante a variável $\alpha \in \mathbb{R}_+$, a primeira somatória avalia o erro quadrático de L amostras $\mathbf{x}_l \in \mathbb{R}^N$ que pertencem a dois grupos etiquetados com a variável $y_l \in \{A, 1-A\}$, onde $0 < A \ll 0.5$ é escolhido por nós, todos estes erros ponderados com os pesos $w_l \in \mathbb{R}_+$; a segunda somatória de $e(\mathbf{c})$ avalia as distancias dos valores c_m ao redor de um valor $c_{m,last}$ previamente conhecido, ponderadas com os pesos $d_m \in \mathbb{R}_+$. Todos estes cálculos podem ser rescritos de forma matricial na seguinte equação

$$e(\mathbf{c}) \equiv ||\mathbf{h}(\mathbf{c}) - \mathbf{z}||_{\mathbf{W}}^2 + \alpha ||\mathbf{c} - \mathbf{c}_{last}||_{\mathbf{D}}^2, \tag{1.63}$$

onde

$$\mathbf{h}(\mathbf{c}) = \begin{bmatrix} h(\mathbf{c}, \mathbf{x}_1) \\ h(\mathbf{c}, \mathbf{x}_2) \\ \vdots \\ h(\mathbf{c}, \mathbf{x}_L) \end{bmatrix}, \ \mathbf{z} = \begin{bmatrix} logit(y_1) \\ logit(y_2) \\ \vdots \\ logit(y_L) \end{bmatrix}, \ \mathbf{W} = diag \begin{pmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} \end{pmatrix}, \ \mathbf{D} = diag \begin{pmatrix} \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_M \end{bmatrix} \end{pmatrix}.$$
 (1.64)

Usando o Teorema $\ref{eq:condition}$, sabemos que o vetor $\mathbf{c} = \mathbf{\hat{c}}$, que minimiza a Eq. (1.63) pode ser achado usando iterativamente

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} - [\mathbf{J}(\mathbf{c}_{i-1})^{\mathrm{T}} \mathbf{W} \mathbf{J}(\mathbf{c}_{i-1}) + \alpha \mathbf{D}]^{-1} \mathbf{J}(\mathbf{c}_{i-1})^{\mathrm{T}} \mathbf{W} [\mathbf{h}(\mathbf{c}_{i-1}) - \mathbf{z}], \tag{1.65}$$

onde a matriz $\mathbf{J}(\mathbf{c}) \equiv \frac{\partial \mathbf{h}(\mathbf{c})}{\partial \mathbf{c}^{\mathrm{T}}}$ é a **matriz Jacobiana** de $\mathbf{h}(\mathbf{c})$, e $\mathbf{c}_{last} \equiv \mathbf{c}_{i-1}$,

$$\mathbf{J}(\mathbf{c}) = \begin{bmatrix} \mathbf{j}(\mathbf{c}, \mathbf{x}_1) \\ \mathbf{j}(\mathbf{c}, \mathbf{x}_2) \\ \vdots \\ \mathbf{j}(\mathbf{c}, \mathbf{x}_L) \end{bmatrix}, \quad \mathbf{j}(\mathbf{c}, \mathbf{x}) = \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial \mathbf{c}^{\mathrm{T}}} \\ = \begin{bmatrix} \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_1} & \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_2} & \dots & \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_m} & \dots & \frac{\partial h(\mathbf{c}, \mathbf{x})}{\partial c_M} \end{bmatrix}.$$
(1.66)

Referências

Bibliografia	 	 	 	 	33
ivros					
Artigos					
Outras fontes					
ndice	 	 	 	 	35

Bibliografia

Livros

- [BS19] L. Bortolussi e G. Sanguinetti. Computational Methods in Systems Biology: 17th International Conference, CMSB 2019, Trieste, Italy, September 18–20, 2019, Proceedings. Lecture Notes in Computer Science. Springer International Publishing, 2019. ISBN: 9783030313043. URL: https://books.google.com.br/books?id=HAuwDwAAQBAJ (ver página 21).
- [DW14] D. DeTemple e W. Webb. Combinatorial Reasoning: An Introduction to the Art of Counting. Wiley, 2014. ISBN: 9781118652138. URL: https://books.google.com.br/books?id=n45UAwAAQBAJ (ver página 21).
- [GCL07] K.O. Geddes, S.R. Czapor e G. Labahn. *Algorithms for Computer Algebra*. Springer US, 2007. ISBN: 9780585332475. URL: https://books.google.com.br/books?id=9f0UwkkRxT4C (ver página 20).
- [KK10] D.G. Kleinbaum e M. Klein. *Logistic Regression: A Self-Learning Text*. Statistics for Biology and Health. Springer New York, 2010. ISBN: 9781441917423. URL: https://books.google.com.br/books?id=FTVDAAAAQBAJ (ver página 13).
- [Kur+01] V. Kurkova et al. Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference in Prague, Czech Republic, 2001. Springer computer science. Springer Vienna, 2001. ISBN: 9783211836514. URL: https://books.google.com.br/books?id=qXguv62cn1YC (ver página 13).
- [Sch12] E.A. Scheinerman. *Mathematics: A Discrete Introduction*. Cengage Learning, 2012. ISBN: 9780840049421. URL: https://books.google.com.br/books?id=DZBHGD2sEYwC (ver página 21).
- [Zip12] R. Zippel. *Effective Polynomial Computation*. The Springer International Series in Engineering and Computer Science. Springer US, 2012. ISBN: 9781461531883. URL: https://books.google.com.br/books?id=mmYECAAAQBAJ (ver páginas 20, 21).

Artigos

Outras fontes

Índice Remissivo

Função
Sigmoide
M
Multiconjunto
P
Polinômio multivariante20, 24
R
Regressão
Logística $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R} \dots 18$
Logística $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R} \dots 14$
Logística polinomial $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}24$
Logística polinomial $f_{\mathbf{c}}(x): \mathbb{R} \to \mathbb{R}$ 16
Logística-polinomial $f_{\mathbf{c}}(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}20$

ÍNDICE REMISSIVO 37

