lab -> Monday -> (5:30-7:30) - Advanced Image MS-> 20% f-5-1351h Dab - 20% Bund ormander 1. The Mini pri-> 20% a visital of the Bolleria B classin. -> 50/0 3 Signals -> (1). Continuous (2). Discrete. 3 3. Digital. Aplitude is broken into levels 4 values are assigned to neavest level. 3 3 Sempling process > Converting Continuous signals to discrete time signal. Suantization - Converting Discrete to Digital time signal of Notes if Quantization levels are len, then info. will lost which will result into more distortion. -Processing continuous time signal is not easy, as sample size becomes as. (that's why sampling is neededly.) -> To reduce the memory size storing the levels, quantization is used as no. of levels are more in discrete. ⇒ Image is a Signal. Energy (E) = h) freq. > Plank's const. = 16.62×10-34 } The EM spectrum

162/2011
the let v-be the set of grey levels used to define connectivity for a pts. IIP), I(q) ->
connecting connectivity for a pts IIP), I(q) ->
I(P) EV ; [8-bit: 0-255]
3 types of connectivity
1). 4- connectivity = I(P), I(q) EV& PEN4(q)
11) 8- 11 => I(P), I(q) 6 > 4 PE Hb (2) 111) M- 111 (Mixed-conn.) => 111.
iii). M - (Mixed-conn.) =>
(3). I(Y), 1CQ) & Volume Production
(b), 9 = N4 (P)
6. 9 END (P) (and) NUP) NNU (2)= 0
(d) all (d)
(d) (h) (d) (h) (d) (h) (d) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h
011-1 01-10 0.0-0
001 000
4- Connectivity. 8- connectivity. M-connectivity.
-> Adjacency -> p,q
1. 4-adjacency 3. 8-adjacency 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
3. 8-adjacency James (1919)
Pather A poth P(x, y) to 2 (s, t) is a sequence of distinct pixels
(Mo, No), (M, N), (Mn, Mn) (Mn, Mn) (Mn, Mn) (Mn, Mn) (Mn, Mn)
00 1000 (10) (0) (1) (1) (1) (1) (1)
(mi, Mi) is adjacent to (mi-1, Mi-1).
length of path = n[15i5n]

Connected Component > let S = I and P.2 ES P is connected to 2 in S if there is a bath from P to g' consisting entirely of prixels in S. for any PES, the set of prixels in S that are connected to p is called connected components of s. 上院二十二十月 1年以上160日 -> @ object. on o when con = (and reprise gold Connected component labelling > 0 -11 00, by Cot of and as from a agent with the Di sean an image from left to right and top to bottom. Assume 4 connectivity. the street of the

(3): I be the target pixel at any step in the ___ process

(4): T(P)= pixel value at position p.

L(P) = label axigned to prixel location P.

Steps-> (1). If IIP)==0, move to ment position. (i). if I(b)==T, I(a)==@D I(#)== 0

Then assign a new label to P.

