Práctica de Priorización de Requisitos

Proceso Analítico Jerárquico (PAJ)

Método formal multicriterio para priorizar
 requisitos [Joachim Karlsson & Kevin Ryan]

Priorizar Requisitos.

- No hay recursos ni el tiempo necesario para implementar todos los requisitos.
- Seleccionar requisitos prioritarios.
 - Permite gestionar óptimamente los recursos disponibles
 - Permite resolver el conflicto entre el coste, la calidad y los tiempos de entrega.
- Problema
 - La mala selección compromete el proyecto.
- Organizarlos según una escala.

Priorizar Requisitos: Escalas Subjetivas vs Objetivas

ESCALAS SUBJETIVAS

- Los valores de la escala dependen de la interpretación que haga la persona que los estima
- Subjetiva
 - Alta
 - Media
 - Baja
- Conducen rápidamente a incongruencias si son valorados por varias personas.

ESCALAS OBJETIVAS

- Se trata de evaluar contra un criterio medible objetivamente.
- Objetiva
 - Sin el requisito la aplicación resulta inútil
 - Alta, Vital, Normal
 - Sin el requisito la utilidad de la aplicación se ve reducida
 - Media, Importante, Esperado
 - Sin el requisito la funcionalidad principal no está comprometida.
 - Baja, quedaría bien, estimulante.

Priorizar Requisitos: Escalas absolutas vs relativas

ESCALAS ABSOLUTAS

- Suponen dar valores a cada requisito de acuerdo a una escala (objetiva o subjetiva).
 - Si hay muchos valores en la escala es fácil ser inconsistente.
 - Si hay pocos, requisitos muy diferentes toman el mismo valor.
 - Pueden no estar acotadas

ESCALAS RELATIVAS

- Implican comparar requisitos dos a dos e indicar cuál es más valioso.
- En general es más fácil y rápido valorar por comparación.
- Exige más valoraciones.
 - Es más redundante
 - Menos sensitiva a errores de valoración
- No elimina la posibilidad de ser inconsistente.
 - Transitividad.

Ingeniería del Software

Comparaciones multicriterio

- Qué ocurre si quieres analizar la importancia y el coste
- □ ¿Qué estamos comparando?
 - Escalas subjetivas
 - Elegimos Importancia media y coste alto o importancia baja y coste bajo ¿Por qué?
 - Escalas objetivas
 - NO RESUELVEN EL PROBLEMA.
 - Comparamos Churras con Merinas.
 - Sin el requisito la utilidad de la aplicación se ve reducida
 - El coste del requisito es superior a 10.000€
 - Decisión subjetiva
 - Es más importante dejar satisfecho al cliente
 - Es más importante ganar dinero.

Características PAJ

- Utiliza escalas relativas.
- Utiliza estala de comparación objetiva.
 - 1: Los dos requisitos tienen el mismo valor
 - 3: La experiencia favorece ligeramente un requisito sobre el otro
 - 5: La experiencia favorece fuertemente un requisito sobre el otro
 - 7: La prevalencia de un requisito sobre otro está contrastado en la práctica
 - 9: La evidencia de la prevalencia de un requisitos sobre otro es la más fuerte posible
 - 2, 4, 6, 8: Valores de compromiso.
- Aborda el problema de valoraciones inconsistentes.
- Utiliza dos criterios que pueden estar en conflicto.
 - Valor para el cliente (Calidad e importancia)
 - Coste del requisito

Proceso Analítico Jerárquico

- Se parte de la especificación revisada de los requisitos.
- Se calcula el valor o coste relativo de los requisitos según el método de 4 pasos descrito a continuación.
 - Paso 1. Inicialización de la matriz NxN de requisitos.
 - Paso 2. Comparación de los requisitos por parejas.
 - □ Paso 3. Estimar autovalores de la matriz.
 - Paso 4. Asignar a cada requisito su valor relativo.
- Se analiza la consistencia del resultado

- Paso 1. Inicialización de la matriz Nxn de requisitos
 - Se asume que tenemos 4 requisitos
 - Se crea una matriz 4x4
 - Se asume que se quiere estimar el valor relativo

	r1	r2	r3	r4
R1				
R2				
R3				
R4				

Ingeniería del Software

- Paso 2. Comparación de los requisitos por parejas.
 - Estimar el valor relativo de cada Requisitos en una fila tiene con respecto al de cada columna.
 - (R1, r2)=9 R1 es lo más valioso posible frente a r2
 - La diagonal tiene valores 1

$$\square$$
 (R1, r2) = 1/(R2, r1)

Tbl. Incial	r1	r2	r3	r4
R1	1,00	0,33	2,00	4,00
R2	3,00	1,00	5,00	3,00
R3	0,50	0,20	1,00	0,33
R4	0,25	0,33	3,00	1,00

- □ Paso 3. Estimar autovalores de la matriz.
 - Calcular la suma de cada columnas
 - Dividir cada elemento de la columna por el valor de la suma de su columna.

Tbl. Incial	r1	r2	r3	r4
R1	1,00	0,33	2,00	4,00
R2	3,00	1,00	5,00	3,00
R3	0,50	0,20	1,00	0,33
R4	0,25	0,33	3,00	1,00
Total	4,75	1,87	11,00	8,33

- Paso 3. Estimar autovalores de la matriz.
 - Sumamos el valor de cada fila
 - Dividimos el vector suma por el número de requisitos.
 - Obtenemos así el vector de autovalores

	r1	r2	r3	r4
R1	0,21	0,18	0,18	0,48
R2	0,63	0,54	0,45	0,36
R3	0,11	0,11	0,09	0,04
R4	0,05	0,18	0,27	0,12

$$\frac{1}{4} \begin{pmatrix} 1,05\\1,98\\0,34\\0,62 \end{pmatrix} = \begin{pmatrix} 0,26\\0,50\\0,09\\0,16 \end{pmatrix}$$

- □ Paso 4. Asignar a cada requisito su valor relativo.
 - Asignamos a cada requisito un valor porcentual idéntico al autovalor corrempondiente
 - Los valores también se pueden leer de forma relativa. Esto supone que R2 tiene casi el doble de valor que R1

	Autovalores	Significado					
R1	0,26	R1 tiene el 26 %	del valor total de los requisitos.				
R2	0,50	R2 tiene el 50 %	del valor total de los requisitos.				
R3	0,09	R3 tiene el 9 %	del valor total de los requisitos.				
R4	0,16	R4 tiene el 16%	del valor total de los requisitos.				

Transitividad

- Valor de R1 > Valor de R2. R1 = 2 * R2
- □ Valor de R2 > Valor de R3. R2 = 2 * R3
- □ Valor de R1 ? Valor de R3. R1 = 4 * R3
- □ Cálculo del Índice de Consistencia (CI)

$$CI = \frac{(\lambda_{max} - n)}{n - 1}$$

- Cálculo de λ_{max}.
 - Multiplicamos la matriz inicial por el vector de autovalores.

$$\begin{pmatrix} 1 & 1/3 & 2 & 4 \\ 3 & 1 & 5 & 3 \\ 1/2 & 1/5 & 1 & 1/3 \\ 1/4 & 1/3 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0,26 \\ 0,50 \\ 0,09 \\ 0,16 \end{pmatrix} = \begin{pmatrix} 1,22 \\ 2,18 \\ 0,37 \\ 0,64 \end{pmatrix}$$

 Después dividimos cada elemento del vector resultante por los elementos de vector de autovalores.

$$\begin{pmatrix} 1,22/0,26 \\ 2,18/0,50 \\ 0,37/0,09 \\ 0,64/0,16 \end{pmatrix} = \begin{pmatrix} 4,66 \\ 4,40 \\ 4,29 \\ 4,13 \end{pmatrix}$$

- Cálculo de λ_{max}.
 - \blacksquare Finalmente obtenemos λ_{max} como.

$$\lambda_{max} = \frac{4,66 + 4,40 + 4,29 + 4,13}{4} = 4,37$$

 \square Y a partir del valor de λ_{max} calculamos Cl.

$$CI = \frac{(\lambda_{max} - n)}{n - 1} = \frac{4,37 - 4}{4 - 1} = 0,12$$

- Cálculo de la razón de consistencia.
 - Los índices aleatorios, RI, son los índices de consistencia de matrices recíprocas generadas aleatoriamente que con valores en la escala 1-9.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0,00	0,00	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,49	1,51	1,48	1,56	1,57	1,59

De acuerdo a la tabla anterior las matrices de orden 4 tienen un RI=0,90.
 Por tanto

$$CR = \frac{CI}{RI} = \frac{0,12}{0,90} = 0,14$$

Regla general: una razón menor que 0,10 es aceptable. Por tanto, el valor obtenido en el ejemplo es malo.

Proceso Completo

- Se parte de la especificación revisada de los requisitos
- La parte cliente hace la evaluación del valor relativo entre cada par de requisitos
- La empresa de desarrollo hace la estimación del coste relativo entre cada par de requisitos.
- Un Ingeniero de Software hace el cálculo de valor y coste relativo de cada requisito de acuerdo al método PAJ descrito y lo representa en un diagrama coste-valor como el mostrado en la figura
- Los implicados en el proyecto usan del diagrama costevalor como un diagrama conceptual para analizar y discutir la priorización de los requisitos.

Proceso Completo

- □ Se parte
- La parte cada pc
- La empr relativo
- Un Inger relativo descrito mostrad
- Los implivalor cola priori

