Workshop 3 - Python, Shell Scripting and Regular Expressions

Objectives

In this workshop you will:

- Write some simple python programs to run on a remote server.
- Write a shell script that will execute your python programs and pipe input/output between them
- Write some regular expressions to match some specific text in a text file.
- Continue your python revision by solving more pylab problems with files, data structures and classes.

Overview

In the lecture this week we looked at the Shell and discussed some of its uses. In the workshop we will be exploring the shell on a remote server and learning how to use some of its features. After you have done this, you can continue your python revision.

Task 1 – Login to DWARF using an SSH client

- Start a terminal client (Putty is simple and installed on the lab machines, though you may use others (recommend MobaXterm))
- Login to DWARF dwarf.ict.griffith.edu.au
- When prompted, enter your Griffith sNumber WITH the s(s1234567)
- When prompted, enter your Griffith password

Task 2 – Practice moving around

- Spend a few moments traversing the file system using cd and ls commands.
 - > cd ~ will take you back to your home directory

Task 3 – Write 2 python scripts to run on the server

- You have 2 options you can write the script through the terminal client using a text editor like nano, or you can write the files on your pc locally and copy them over to the server using an SSH file transfer client.
 - WinSCP is a popular SSH file transfer client that should be installed on the lab PC's. PSCP is a command line client that you can quickly install on your laptop
 - Writing python in your local IDE and testing it is easier than writing in a non-code aware text editor like nano. If you don't feel confident copying the files over, another option would be to write the program, copy the text (CTRL-C) and paste it into nano on the SSH client.

• Program 1 – Word Frequency

Write a program that reads all words from standard input (until eof) and prints out a count for each word. The word should be processed case-insensitive (all capitals), punctuation should be removed (google python maketrans & translate or python string punctuation removal), and the output should be sorted by frequency. See lecture 2.1 slide 38 for a similar program.

How much wood would a woodchuck chuck if a woodchuck could chuck wood.

WOODCHUCK 2

WOOD 2

CHUCK 2

Α2

WOULD 1

MUCH 1

IF 1

HOW 1

COULD 1

• Program 2 – Histogram

Write a program that generates a text-based histogram for a list of labels/values read from standard input. The histogram should show percentages of the total input values - if there were 3 input with values 10, 5 and 5, 10 would show 50% on the histogram, 5 would show 25%. For the above listing, the following histogram would print:

[***] 15%
[***] 15%
[***] 15%
[***] 15%
[**] 8%
[**] 8%
[**] 8%
[**] 8%
[**] 8%

Task 4 – Write a bash script wordhisto.sh that will produce a word histogram from any text input file

- This program should use the 2 python programs you have written and pass input between them. You should check that the BaSH script is called with an input file as a parameter, and that the file exists.
- Use nano to make a text file to pass to your program and test it.
 - > ./wordhisto.sh inputFile
- Remember to make the script executable using chmod

Task 5 - Regular Expressions

- Write a Python program to extract all email addresses ended with ".org" in mbox-short.txt (using Regular Expressions)
- Write a Python program to extract all sender's email addresses ended with ".edu" with emails sent between 15:00 and 19:00 (using Regular Expressions).