Consider the following Python dictionary data and Python list labels:

1. Create a DataFrame df from this dictionary data which has the index labels.

Out[219...

| animal |   |       | age        | visits      | priority |
|--------|---|-------|------------|-------------|----------|
|        | a | cat   | 2.5        | 1           | yes      |
|        | b | cat   | 3.0        | 3           | yes      |
|        | c | snake | 0.5        | 2<br>3<br>2 | no       |
|        | d | dog   | NaN<br>5.0 |             | yes      |
| e      | е | dog   |            |             | no       |
|        | f | cat   | 2.0        | 3           | no       |
|        | g | snake | 4.5        | 1           | no       |
|        | h | cat   | NaN        | 1           | yes      |
|        | i | dog   | 7.0        | 2           | no       |
|        | j | dog   | 3.0        | 1           | no       |
|        |   |       |            |             |          |

**2.** Display a summary of the basic information about this DataFrame and its data (*hint:* there is a single method that can be called on the DataFrame).

```
In [221... df.describe()
```

Out[221...

|             | age      | visits    |
|-------------|----------|-----------|
| count       | 8.000000 | 10.000000 |
| mean        | 3.437500 | 1.900000  |
| std         | 2.007797 | 0.875595  |
| min         | 0.500000 | 1.000000  |
| 25%         | 2.375000 | 1.000000  |
| 50%         | 3.000000 | 2.000000  |
| <b>75</b> % | 4.625000 | 2.750000  |
| max         | 7.000000 | 3.000000  |

**3.** Return the first 3 rows of the DataFrame df.

```
In [223...
```

df.head(3)

Out[223...

|   | animal | age | visits | priority |
|---|--------|-----|--------|----------|
| а | cat    | 2.5 | 1      | yes      |
| b | cat    | 3.0 | 3      | yes      |
| c | snake  | 0.5 | 2      | no       |

**4.** Display the 'animal' and 'age' columns from the DataFrame df

```
In [225...
```

df[["animal", "age"]]

Out[225...

|   | animal | age |
|---|--------|-----|
| а | cat    | 2.5 |
| b | cat    | 3.0 |
| c | snake  | 0.5 |
| d | dog    | NaN |
| e | dog    | 5.0 |
| f | cat    | 2.0 |
| g | snake  | 4.5 |
| h | cat    | NaN |
| i | dog    | 7.0 |
| j | dog    | 3.0 |

**5.** Display the data in rows [3, 4, 8] and in columns `['animal', 'age']'

In [227...

df.iloc[[3,4,8],[0,1]]

```
        out[227...
        animal dog NaN

        d dog S.0

        i dog 7.0
```

**6.** Select only the rows where the number of visits is greater than 3.

```
df[df["visits"]>3]
In [229...
Out[229...
             animal age visits priority
           df[df["visits"]>=3]
In [231...
Out[231...
               animal
                       age visits priority
           b
                  cat
                        3.0
                                 3
                                        yes
                       NaN
           d
                 dog
                                        yes
            f
                  cat
                        2.0
                                 3
                                        no
```

7. Select the rows where the age is missing, i.e. it is NaN.

```
In [233... null=pd.isna(data1)
    null
    df[null["age"]==True]
```

 out[233...
 animal age visits
 priority

 d dog NaN 3 yes

 h cat NaN 1 yes

```
In [138... null=pd.isna(data1)
    null
    null[null["age"]==True]
```

```
Out[138...animalagevisitsprioritydFalseTrueFalseFalsehFalseTrueFalseFalse
```

**8.** Select the rows where the animal is a cat *and* the age is less than 3.

```
In [235... df[(df["animal"]=="cat") & (df["age"]<3)]</pre>
```

Out[235...

|   | animal | mal age v |   | priority |  |
|---|--------|-----------|---|----------|--|
| а | cat    | 2.5       | 1 | yes      |  |
| f | cat    | 2.0       | 3 | no       |  |

**9.** Select the rows where the age is between 2 and 4 (inclusive)

```
In [237... age=df[(df["age"]>=2)&(df["age"]<=4)]
    age</pre>
```

Out[237...

|   | animal | age | visits | priority |
|---|--------|-----|--------|----------|
| а | cat    | 2.5 | 1      | yes      |
| b | cat    | 3.0 | 3      | yes      |
| f | cat    | 2.0 | 3      | no       |
| j | dog    | 3.0 | 1      | no       |

**10.** Change the age in row 'f' to 1.5.

```
In [239... df.loc[df.age==2.0, 'age'] = 1.5
df
```

Out[239...

|   | animal |     | visits         | priority |  |
|---|--------|-----|----------------|----------|--|
| а | cat    | 2.5 | 1              | yes      |  |
| b | cat    | 3.0 | 3              | yes      |  |
| c | snake  | 0.5 | 2              | no       |  |
| d | dog    | NaN | 3              | yes      |  |
| e | dog    | 5.0 | 5.0 2<br>1.5 3 | no       |  |
| f | cat    | 1.5 |                | no       |  |
| g | snake  | 4.5 | 1              | no       |  |
| h | cat    | NaN | 1              | yes      |  |
| i | dog    | 7.0 | 2              | no       |  |
| j | dog    | 3.0 | 1              | no       |  |

**11.** Calculate the sum of all visits in df (i.e. the total number of visits).

```
In [241... df["visits"].sum()
```

Out[241... 19

**12.** Calculate the mean age for each different animal in df .

```
In [247...
cat=df[(df["animal"]=="cat")]
age_of_cat=cat["age"]
```

**13.** Append a new row 'k' to df with your choice of values for each column. Then delete that row to return the original DataFrame.

```
In [249...
         df.loc['k'] = ["raccoon", 2, 3, "yes"]
         print(df)
         print("\nDeleting new row")
         df=df.drop("k")
         print(df)
            animal age visits priority
              cat 2.5
        a
                           1
                                  yes
        b
              cat 3.0
                            3
                                  yes
            snake 0.5
                            2
        C
                                   no
        d
              dog NaN
                            3
                                  yes
              dog 5.0
                            2
        е
                                   no
        f
              cat 1.5
                           3
                                  no
            snake 4.5
                           1
        g
                                  no
                         1 2
        h
              cat NaN
                                  yes
        i
              dog 7.0
                                  no
        j
              dog 3.0
                            1
                                   no
                            3
          raccoon 2.0
                                   yes
        Deleting new row
          animal age visits priority
            cat 2.5
                          1
        а
                                 yes
        b
            cat 3.0
                         3
                                 yes
          snake 0.5
                         2
        C
                                 no
        d
            dog NaN
                         3
                                 yes
                         2
        e
            dog 5.0
                                 no
        f
            cat 1.5
                         3
                                 no
          snake 4.5
                         1
        g
                                  no
                                 yes
        h
            cat
                 NaN
                          1
        i
                7.0
                          2
            dog
                                  no
        j
            dog 3.0
                          1
                                  no
```

**14.** Count the number of each type of animal in df.

```
In [251... df['animal'].value_counts()
```

```
Out[251... animal cat 4 dog 4 snake 2 Name: count, dtype: int64
```

**15.** Sort df first by the values in the 'age' in *decending* order, then by the value in the 'visits' column in *ascending* order (so row i should be first, and row d should be last).

```
In [259... # age_desc=df.sort_values(by=["age"], ascending=False)
# age_desc

age_visit=df.sort_values(['age', 'visits'], ascending=[False, True])
age_visit
```

Out[259...

|   | animal    | age | visits | priority |
|---|-----------|-----|--------|----------|
| i | dog       | 7.0 | 2      | no       |
| е | dog       | 5.0 | 2      | no       |
| g | snake 4.5 |     | 1      | no       |
| j | dog       | 3.0 | 1      | no       |
| b | cat       | 3.0 | 3      | yes      |
| a | cat       | 2.5 | 1      | yes      |
| f | cat       | 1.5 |        | no       |
| c | snake     | 0.5 | 2      | no       |
| h | cat       | NaN | 1      | yes      |
| d | dog       | NaN | 3      | yes      |
|   |           |     |        |          |

**16.** The 'priority' column contains the values 'yes' and 'no'. Replace this column with a column of boolean values: 'yes' should be True and 'no' should be False.

```
In [263...

df.loc[df.priority=='yes', 'priority'] = True

df.loc[df.priority=='no', 'priority'] = False

df
```

Out[263...

|   | animal | age | visits | priority |
|---|--------|-----|--------|----------|
| а | cat    | 2.5 | 1      | True     |
| b | cat    | 3.0 | 3      | True     |
| c | snake  | 0.5 | 2      | False    |
| d | dog    | NaN | 3      | True     |
| е | dog    | 5.0 | 2      | False    |
| f | cat    | 1.5 | 3      | False    |
| g | snake  | 4.5 | 1      | False    |
| h | cat    | NaN | 1      | True     |
| i | dog    | 7.0 | 2      | False    |
| j | dog    | 3.0 | 1      | False    |

17. In the 'animal' column, change the 'snake' entries to 'python'.

```
In [265... df.loc[df.animal=='snake', 'animal'] = 'python'
df
```

Out[265...

|   | animal | age | visits                 | priority |
|---|--------|-----|------------------------|----------|
| а | cat    | 2.5 | 1                      | True     |
| b | cat    | 3.0 | 3                      | True     |
| c | python | 0.5 | aN 3<br>5.0 2<br>1.5 3 | False    |
| d | dog    | NaN |                        | True     |
| е | dog    | 5.0 |                        | False    |
| f | cat    | 1.5 |                        | False    |
| g | python | 4.5 |                        | False    |
| h | cat    | NaN | 1                      | True     |
| i | dog    | 7.0 | 2                      | False    |
| j | dog    | 3.0 | 1                      | False    |
|   |        |     |                        |          |

18. Load the ny-flights dataset to Python

```
In [267... flight=pd.read_csv("C:\\Users\\Gouri\\Downloads\\ny-flights.csv")
    flight
```

12/2/24, 12:54 PM Virtual competition

| Out[267 |                                                              | fl_date                    | unique_carrier | airline_id | tail_num | fl_num | origin | dest | dep_time | d٤ |
|---------|--------------------------------------------------------------|----------------------------|----------------|------------|----------|--------|--------|------|----------|----|
|         | 0                                                            | 2014-<br>01-01<br>00:00:00 | АА             | 19805      | N338AA   | 1      | JFK    | LAX  | 914.0    |    |
|         | 1                                                            | 2014-<br>01-01<br>00:00:00 | АА             | 19805      | N335AA   | 3      | JFK    | LAX  | 1157.0   |    |
|         | 2                                                            | 2014-<br>01-01<br>00:00:00 | AA             | 19805      | N327AA   | 21     | JFK    | LAX  | 1902.0   |    |
|         | 3                                                            | 2014-<br>01-01<br>00:00:00 | AA             | 19805      | N3EHAA   | 29     | LGA    | PBI  | 722.0    |    |
|         | 4                                                            | 2014-<br>01-01<br>00:00:00 | AA             | 19805      | N319AA   | 117    | JFK    | LAX  | 1347.0   |    |
|         | •••                                                          |                            |                |            |          |        |        |      |          |    |
|         | 20812                                                        | 2014-<br>01-31<br>00:00:00 | UA             | 19977      | N54711   | 1253   | ROC    | ORD  | 801.0    |    |
|         | 20813                                                        | 2014-<br>01-31<br>00:00:00 | UA             | 19977      | N77525   | 1429   | LGA    | CLE  | 1522.0   |    |
|         | 20814                                                        | 2014-<br>01-31<br>00:00:00 | UA             | 19977      | N37293   | 1456   | LGA    | IAH  | 719.0    |    |
|         | 20815                                                        | 2014-<br>01-31<br>00:00:00 | UA             | 19977      | N24729   | 1457   | LGA    | IAH  | 852.0    |    |
|         | 20816                                                        | 2014-<br>01-31<br>00:00:00 | MQ             | 20398      | N609MQ   | 3699   | BUF    | ORD  | 1208.0   |    |
|         | 20817 r                                                      | ows × 14 c                 | columns        |            |          |        |        |      |          |    |
|         | 4                                                            |                            |                |            |          |        |        |      |          | •  |
|         | 19. Which airline ID is present maximum times in the dataset |                            |                |            |          |        |        |      |          |    |
| In [289 | flight[['airline_id']].count().max()                         |                            |                |            |          |        |        |      |          |    |
| Out[289 | 20817                                                        |                            |                |            |          |        |        |      |          |    |
|         | 20. Draw a plot between dep_delay and arr_delay              |                            |                |            |          |        |        |      |          |    |

```
In [289..
```

```
In [293...
          import matplotlib.pyplot as plt
          x='dep_delay'
           y=['arr_delay']
           flight.plot(x,y)
```

Out[293... <Axes: xlabel='dep\_delay'>



In [ ]: