Homework Assignment 9

Name

due Friday, November 4

Cover sheet: Staple this page in front of your solutions, with answers where indicated.

[41] Problem 4.41 and Problem 4.43

(No answer required here.)

[41x] A mass m slides without friction in Earth's gravity down the track shown in the figure; the equation for the track is $y = x^2/a$ for x < 0 and y = 0for x > 0. The initial point is $\{x,y\} = \{-a, a\}$ and the initial velocity is 0.

- (A) Calculate y' when the height is y, in the form y' = f(y).
- (B) Calculate the time when the mass passes the point $\{x,y\}=\{0,0\}.$

Answer: The time in part (B) is

 $time = 1.874 \ sqrt(a/q)$

[42] Problem 5.3.*

Answer: The parameter k is k = m q l

[43] Problem 5.5.*

Answer: Express C in terms of B_1 and B_2 $C = Sqrt[B_1^2 + B_2^2]$ $(B_1/A - i B_2/A) = B_1 - i B_2$

[44] Problem 5.9.*

...Answer: The period is 1.047 s

[45] Problem 5.12.**

(No answer is required here.)

[46] Problem 5.18.*** Assume $a < l_0$. Show that $\{x,y\} = \{0,0\}$ is an unstable equilibrium, and explain why.

The coefficient of y^2 is $k(1-l_0/a)$, which is negative if $a < l_0$.

So if the mass moves along the y axis, the potential energy decreases;

i.e., the point {0,0} is an unstable equilibrium.

Homework Assignment #9

[41x] Problem 4.41 and Problem 4.43

$$U = k r^n \implies F_r = -dU/dr = -n k r^{n-1}$$

For circular motion, $a_r = -v^2/r$; therefore, $m v^2/r = n k r^{n-1}$.

$$T = \frac{1}{2} \text{ m } v^2 = \frac{1}{2} \text{ n k r}^n = (n/2) \text{ U}.$$
 (virial theorem)

Problem 4.43

(a) Given
$$\mathbf{F}(\mathbf{r}) = \mathbf{f}(\mathbf{r}) \mathbf{e}_r = (\mathbf{f}(\mathbf{r})/\mathbf{r}) \mathbf{r} = (\mathbf{f}/\mathbf{r}) (\mathbf{x} \mathbf{e}_x + \mathbf{y} \mathbf{e}_y + \mathbf{z} \mathbf{e}_z)$$

$$\nabla \times \mathbf{F} = \begin{bmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ xf/r & yf/r & zf/r \end{bmatrix} = 0 \quad ; \quad \text{thus } \mathbf{F} \text{ is conservative.}$$

(b) In polar coordinates the curl is

$$= \hat{\mathbf{r}} \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial}{\partial \phi} A_{\theta} \right] + \hat{\theta} \left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} A_{r} - \frac{1}{r} \frac{\partial}{\partial r} (r A_{\phi}) \right]$$

$$+ \hat{\phi} \frac{1}{r} \left[\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial}{\partial \theta} A_{r} \right]$$
 [spherical polar]

We have $F_{\phi} = F_{\theta} = 0$; also $\partial F_r / \partial \phi = \partial F_r / \partial \theta = 0$; thus $\nabla \times \mathbf{F} = 0$.

[42] Problem 5.3 *

$$y = l - l \cos \theta$$

$$y \cos i s$$

$$U(\phi) = mgy = mgl(1 - l \cos \phi)$$

$$For small \phi, cos \phi \approx 1 - \frac{1}{2} \varphi^{2}$$

$$U \approx \frac{1}{2} mgl \phi^{2} = \frac{1}{2} k \varphi^{2}$$

$$where k = mgl$$

[43] Problem 5.5 *

Given
$$I: \times = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$$

$$= (G+G_2) \cos \omega t + i (G-G_2) \sin \omega t$$

$$= B_1 \cos \omega t + B_2 \sin \omega t$$

$$= B_1 \cos \omega t + B_2 \sin \omega t$$

$$= B_1 \cos \omega t + B_2 \sin \omega t$$

$$= B \cos \phi \cos \omega t + B \sin \phi \sin \omega t$$

$$= A \cos (\phi - \omega t)$$

$$= A \cos (\phi - \omega t)$$

$$= A \cos (\phi - \omega t)$$

$$= A \cos (\omega t - \phi)$$

$$= A Re e^{i\omega t} e^{-i\phi} = Re Ce^{i\omega t}$$

$$C = A e^{-i\phi}$$

[44] Problem 5.9 *

Speed
$$\sigma = 1.2 \text{ m/s}$$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 + 7$
 $0.2 +$

[45] Problem 5.12 **

Perine
$$\langle f \rangle = \frac{1}{L} \int_{0}^{L} f(t) dt$$
.
Say $x = A \omega s \omega t$ and $U = -A \omega s in \omega t$.
 $\langle T \rangle = \frac{1}{L} \int_{0}^{L} \frac{1}{2} m v^{2} dt$
 $= \frac{\partial Q}{2\pi} \frac{m_{1}}{2} A^{2} \omega^{2} \int_{0}^{L} s m^{2} \omega t dt$
 $= \frac{1}{L} \frac{1}{L} = \frac{1}{L} \omega$
 $\langle T \rangle = \frac{1}{L} m A^{2} \omega^{2} = \frac{1}{L} m A^{2} \frac{k}{m}$
 $\langle T \rangle = \frac{1}{L} k A^{2} = \frac{1}{L} k A^$

• Now suppose a $< l_0$, i.e., the two springs are compressed in the equilibrium configuration. Then the coefficient of $y^2 = k(1 - l_0/a)$ is negative;

so the equilibrium is unstable. Why? If the mass moves up or down the y axis, then the springs decompress and the potential energy decreases.