Amendment to the Claims

This listing of claims will replace all prior versions, and listing of claims in the application:

Listing Of Claims

1. (currently amended): A process for preparing or selecting a composition or product yielding a maximum fragrance burst of one or more of the fragrance components of at least 20% and for providing enhanced deposition of one or more fragrance components onto surfaces on which said composition comes into contact, relative to an undiluted product, wherein said composition is defined by perfume burst index PBI:

wherein ϕ = oil/water partition coefficient of a selected perfume or perfume components in a mixture;

CMC = critical micellization concentration (wt./wt.) of selected surfactant systems or mixture of surfactant systems in diluent or continuous phase; K = volatility constant of selected perfume from said continuous phase or diluent atmospheres);

wherein said process comprises (1) selecting a perfume or at least one component of said perfume mixture and; (2) selecting said surfactant system or said mixture of surfactants; and (3) formulating said perfume or component and said surfactant system to form said composition or product such that the above noted variables are calculated to provide a PBI that is greater than about 3;

wherein by maximum fragrance burst of at least 20% is meant that the perfume concentration in the headspace above said fragrance or fragrance components increases at least 20% relative to the perfume concentration in the headspace of an undiluted product comprising the same fragrance or fragrance components measured as the composition comprising said fragrance or fragrance components is diluted below the critical micelle concentration (CMC) of the fragrance, surfactant and water system.

- (original): A process according to claim 1, wherein said perfume is a type
 2 perfume selected to have an oil/water partition coefficient greater than
 about 500 and volatility constant of less than about 20.
- (original): A process according to claim 2, wherein said perfume is 3. selected from the group consisting of allyl cyclohexane propionate, ambrettolide, Ambrox DL (dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan), amyl benzoate, amyl cinnamate, amyl cinnamic aldehyde, amyl salicylate, anethol, aurantiol, benzophenone, benzyl butyrate, benzyl iso-valerate, benzyl salicylate, cadinene, campylcyclohexal, cedrol, cedryl acetate, cinnamyl cinnamate, citronellyl acetate, citronellyl isobutyrate, citronellyl propionate, cuminic aldehyde, cyclohexylsalicylate, cyclamen aldehyde, cyclomyral, dihydro isojamonate, diphenyl methane, diphenyl oxide, dodecanal, dodecalactone, ethylene brassylate, ethylmethyl phenylglycidate, ethyl undecylenate, exaltolide, GaloxilideTM (1,3,4,6,7,8-hexhydro,4,6,6,7,8,8-hexamethyl-cyclopenta-γ-2benzopyran), geranyl acetate, geranyl isobutyrate, hexadecanolide, hexenyl salicylate, hexyl cinnamic aldehyde, hexyl salicylate, α -ionone, β ionone, γ -ionone, α -irone, isobutyl benzoate, isobutyl quinoline, Iso E Super[™] (7-acettl, 1, 2, 3, 4, 5, 6, 7, 8-octahydro, 1, 1, 6, 7-tetramethyl

napthalene), cis-jasmone, lilial, linalyl benzoate, 20 methoxy naphthaline, methyl cinnamate, methyl eugenol, γ -methylionone, methyl linolate, methyl linolenate, musk indanone, musk ketone, musk tibetine, myristicin, neryl acetate, δ -nonalactone, γ -nonalactone, patchouli alcohol, phantolide, phenylethyl benzoate, phenylethylphenylacetate, phenyl heptanol, phenyl hexanol, α -santalol, thibetolide, tonalid, δ -undecalactone, γ -undecalactone, vertenex, vetiveryl acetate, yara-yara, ylangene, and mixtures thereof.

- 4. (original): A process according to claim 1, wherein said perfume is a type 3 perfume selected to have a partition coefficient of greater than about 500 and volatility constant of about 20 to about 1000.
- 5. (original): A process according to claim 4, wherein said perfume is selected from the group consisting of allo-ocimene, allyl caproate, allyl heptoate, anisole, camphene, carvacrol, carvone, citral, citronellal, citronellol, citronellyl nitrile, coumarin, cyclohexyl ethylacetate, p-cymene, decanal, dihydromyrcenol, dihydromyrcenyl acetate, dimethyl octanol, ethyllinalool, ethylhexyl ketone, eucalyptol, fenchyl acetate, geraniol, gernyl formate, hexenyl isobutyrate, hexyl acetate, hexyl neopentanoate, heptanal, isobornyl acetate, isoeugenol, isomenthone, isononyl acetate, isononyl alcohol, isomenthol, isopulegol, limonene, linalool, linalyl acetate, menthyl acetate, methyl chavicol, methyl octyl acetaldehyde, myrcene, napthalene, nerol, neral, nonanal, 2-nonanone, nonyl acetate, octanol, octanal, α-pinene, β-pinene, rose oxide, α-terpinene, γ-terpinene, α-terpinenol, terpinolene, terpinyl acetate, tetrahydrolinalool, tetrahydromyrcenol, undecenal, veratrol, verdox, and mixtures thereof.

- (original): A process for preparing a composition according to claim 1
 yielding maximum fragrance burst of at least 25%.
- 7. (currently amended): A method for changing a fragrance note in a composition subsequent to dilution by (1) selecting <u>and formulating into said composition</u> a fragrance with <u>a mixture of perfume components</u> wherein one or more of said perfume components have a PBI of greater than 3 and one or more components have a PBI of less than 3; and (2) ensuring the selection of selecting and formulating into said composition the fragrance components <u>noted above</u> such that the components desired in a new fragrance have a PBI greater than 3; <u>and (3) diluting said composition to achieve said desired change in fragrance;</u> said perfume burst index (PBI) being defined by formula

wherein \emptyset = oil/water partition coefficient of a selected perfume or perfume components in a mixture;

CMC = critical micellization concentration (wt./wt.) of selected surfactant systems or mixture of surfactant systems in diluent or continuous phase; K = volatility constant of selected perfume from said continuous phase or diluent (atmospheres)

8. (currently amended): A method for introducing a fragrance to a composition subsequent to dilution by ensuring desired—(1) selecting and formulating into said composition a desired fragrance or fragrance components have having a PBI of greater than about 3 so that, upon dilution, and (2) diluting said composition such that the concentration of desired fragrance components in a vapor phase exceeds an odor threshold of the desired components; said perfume burst index (PBI) being defined by formula

wherein \emptyset = oil/water partition coefficient of a selected perfume or perfume components in a mixture;

CMC = critical micellization concentration (wt./wt.) of selected surfactant systems or mixture of surfactant systems in diluent or continuous phase; K = volatility constant of selected perfume from said continuous phase or diluent (atmospheres)

9. (original): A process according to claim 1, wherein said surfactant system and/or surfactant system mixtures are selected to have a CMC greater than about .0001 wt. to wt.

- 10. (original): A process according to claim 9, wherein the surfactant systems contain surfactants selected from the group consisting of sodium lauryl ether sulfate, sodium laurate, potassium laurate, sodium oleate, potassium oleate, triethanolamine laurate, alkylpolyglucosides, sodium lauryl sulfate, caprylamidopropyl betaine, sodium cocoylisethionate and mixtures thereof.
- 11. (original): A process according to claim 9, wherein said surfactant systems or surfactant system mixtures includes CMC modifying ingredients selected from the group consisting of urea; glycerine; C₁-C₁₂ straight-chained or branched alcohols or diols; water soluble polymers selected from polyvinylpyrolidone, polyvinylalcohol, polyethyleneglycol, polypropyleneglycol and mixtures thereof; multivalent electrolytes selected from magnesium, calcium, aluminum salts and mixtures thereof; and sugars selected from dextrose, glucose, maltose, galactose; sucrose and mixtures thereof.