Regularizacija

 Modifikacija funkcije greške: umesto direktne minimizacije gubitka

$$L(h_{\theta}(x^{(i)}), y^{(i)})$$

minimizujemo regularizovanu grešku:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h_{\theta}(x^{(i)}), y^{(i)}) + \lambda \Omega(\theta)$$
Regularizacioni parametar Regularizacioni izraz

Zašto model greši?

1. i 3. model imaju veliku generalizacionu grešku, ali su razlozi različiti

Regularizacija

• Regularizacioni parametar λ služi za fino podešavanje prilagodljivosti modela tako što kontroliše nagodbu dva cilja:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h_{\theta}(x^{(i)}), y^{(i)}) + \lambda \Omega(\theta)$$

Minimizacija gubitka rezultuje prediktivnim modelom.

Čini da se dobro uklopimo u trening podatke

Minimizacija Ω rezultuje jednostavnim modelom.

Jednostavniji modeli imaju manju varijansu u predikcijama i stabilniji su

$$\lambda = \infty \Rightarrow$$
 parametri θ će biti 0
Veliko sistematsko odstupanje, ali
mala varijansa

Regularizacioni izraz Ω

1) Suma apsolutnih vrednosti (L_1 norma): Lasso regression/ L_1 regularizacija

$$\Omega = \sum_{d=1}^{D} |\theta_d| = \|\theta\|_1$$

2) Suma kvadrata vrednosti (kvadrirana L_2 norma): Ridge regression/ L_2 regularizacija

$$\Omega = \sum_{j=1}^{a} \theta_j^2 = \|\theta\|_2^2$$

Ridge regression (L_2)

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{d} \theta_{i}^{2}$$

RSS: model treba što više da odgovara trening skupu

 $heta_0$ nije uključen u regularizacioni izraz

Magnitude koeficijenata θ treba da su što manje

Ridge regression (L_2)

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{d} \theta_{i}^{2}$$

RSS: model treba što više da odgovara trening skupu

Magnitude koeficijenata θ treba da su što manje

λ kontroliše nagodbu ova dva cilja

$$\lambda = 0$$

OLS metod (bez regularizacije)

$$\lambda = \infty \Rightarrow \theta = 0$$

naš model postaje konstanta $h_{\theta}(x) = \theta_0$

Zašto se zove *ridge* (grebena)?

Multikolinearnost: funkcija cilja nema jedinstven minimum, već greben

Ridge regression gradient descent

Bez regularizacije:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Sa regularizacijom:

$$\theta_0^{(t+1)} = \theta_0^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \alpha \lambda \theta_j$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} (1 - \alpha \lambda) - \frac{\alpha}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

U svakom koraku smanjujemo θ

Ridge regression closed form solution

Bez regularizacije:
$$\theta = (X^T X)^{-1} X^T y$$
 $X = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_D^{(1)} \\ 1 & x_1^{(2)} & \dots & x_D^{(2)} \\ \dots & \dots & \dots & \dots \\ 1 & x_1^{(N)} & \dots & x_D^{(N)} \end{bmatrix}$

U slučaju $N \leq D$ (N – broj primera, D – broj obeležja) X^TX je singularna matrica (nije invertibilna)

Sa regularizacijom (za $\lambda > 0$):

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \dots & \\ & & & 1 \end{bmatrix}\right)^{-1} X^T y$$

I u slučaju $N \leq D$ ova matrica se može invertovati

Priprema podataka za regularizaciju

Podatke je neophodno normalizovati

$$x_j^{(i)} = \frac{x_j^{(i)} - \mu_j}{\sigma_j}$$

- Neka se sve vrednosti x kreću u istom opsegu [-1, 1]
- Uzmimo obeležje x_i i pomnožimo ga se 10^{-6}
- Bez regularizacije: $\theta_i^{\text{new}} = \theta_i^{\text{old}} \cdot 10^6$
- Regularizacija: tretira sva obeležja jednako praktično bi uticala samo na θ_i

Tretiranje θ_0 (intercept)

• θ_0 je očekivana vrednosti y kada su svi ulazi 0

• Nema smisla da θ_0 forsiramo da bude malo jer konceptualno nije indikator preprilagođavanja

- Da ne bismo u jednačinama zasebno tretirali θ_0 možemo:
 - 1. centrirati podatke oko 0 (transformisati y da ima srednju vrednost 0)
 - 2. Primeniti ridge regresiju tretirajući sve heta jednako

3_Regularizacija_odabir_lambda\Start.m

Isprobavanjem:

1.
$$\lambda = 0 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(1)}$$

2. $\lambda = 0.01 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(2)}$
3. $\lambda = 0.02 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(3)}$
4. $\lambda = 0.04 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(4)}$
5. $\lambda = 0.08 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(5)}$
...

12. $\lambda = 10 \rightarrow \min_{\theta} J(\theta) \rightarrow \theta^{(10)}$

 Evaluiraćemo svaki od ovih 12 modela i odabraćemo onaj sa najmanjom greškom

Regressio

Regression workflow

- 1. Selekcija modela: za svako λ:
 - i. Estimirati parametre $\widehat{ heta}_{\lambda}$ na **trening** podacima
 - ii. Proceniti performanse modela $\hat{\theta}_{\lambda}$ na **test** podacima
 - iii. Odabrati λ^* kao λ sa najmanjom greškom na **test** skupu

2. Evaluacija modela

• Generalizacionu grešku modela proceniti računanjem greške modela $\widehat{\theta}_{\lambda^*}$ na **test** skupu

 λ je još jedan parameter modela: ne smemo ga optimizovati na test skupu!

Regression workflow

- Podeliti dostupne podatke na:
 - trening skup treniranje modela
 - validation (hold-out) skup optimizacija kompleksnosti modela
 - test skup evaluacija performansi modela
- Za svako λ:

Unakrsna validacija

Trening skup

Validacioni skup

Šta ako nam ne ostane dovoljno podataka za podelu na trening i validacioni skup?

Uprosečićemo performanse modela za sve moguće izbore validacionog skupa

Test skup

Svakako moramo odvojiti podatke za evaluaciju

Unakrsna validacija

- Izmešati trening podatke i podeliti ih na K jednakih delova
- For *k*=1,...,*K*
 - Izdvojiti k-ti deo skupa kao validacioni skup
 - Na ostatku trening skupa proceniti parametre \hat{\theta}_{\lambda}^{(k)}
 - Odrediti grešku modela na validacionom skupu: $err_k(\lambda)$
- Izračunati prosečnu grešku $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} err_k(\lambda)$

Unakrsna validacija

- Postupak unakrsne validacije bismo ponovili za svaku vrednost λ koju razmatramo
- Odabiramo λ^* za koje je $CV(\lambda^*)$ minimalno

- Koliko K odabrati?
 - Najbolja aproksimacija se dobija za K=N (validacioni skup od jednog primera) – leave-one-out cross validation
 - Ova procedura je računarski zahtevna zahteva fitovanje N modela za svaku razmatranu vrednost λ
 - Tipično se koristi K=5 (5-fold CV) ili K=10 (10-fold CV)

Sumarizacija

Regularizacija:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h_{\theta}(x^{(i)}), y^{(i)}) + \lambda \Omega(\theta)$$

• L₂ regularizacija/ridge regression:

$$\Omega(\theta) = \sum_{i=1}^{a} \theta_j^2$$

• Pričali smo o tome kako odabrati λ