

## Física II Revisão prova densidade, Pressão e Pressão Hidrostática

| Nome Aluno:                | 1º TRIMESTRE       | TURMA: |
|----------------------------|--------------------|--------|
| PROFESSOR: Andréa Umpierre | Nº DE QUESTÕES: 12 |        |

- 01) Um cubo maciço de aresta 10cm, tem massa igual a 5kg. Qual é em g/cm³ a densidade do material de que é feito esse cubo?
- 02) Uma coroa contém 579 g de ouro (densidade 19,3 g/cm³), 90 g de cobre (densidade 9,0 g/cm³), 105 g de prata (densidade 10,5 g/cm³). Se o volume final dessa coroa corresponder à soma dos volumes de seus três componentes, a densidade dela, em g/cm³, será:
  - a) 10,5
- b) 12,9
- c) 15,5
- d) 19,3
- e) 38,8
- 03) Um cilindro é colocado verticalmente sobre uma superfície plana. Qual a pressão exercida pelo cilindro, sabendo que sua base vale 0,012m² e sua massa 18kg?
- 04) Uma pessoa de peso igual a 600N se equilibra em um só pé cuja área de contato com o solo é de 150cm<sup>2</sup>. Calcule a pressão exercida no solo.
- 05) Considere um avião comercial em voo de cruzeiro. Sabendo que a pressão externa a uma janela de dimensões 0,30 m x 0,20 m é um quarto da pressão interna, que por sua vez é igual a 1 atm (10<sup>5</sup> N/m²), calcule o módulo da força.
- 06) Um automóvel de massa 800 kg em repouso apoia-se sobre quatro pneus idênticos. Considerando que o peso do automóvel seja distribuído igualmente sobre os quatro pneus e que a pressão em cada pneu seja de 1,6.10<sup>5</sup> N/m² (equivalente a 24 lbf/pol²) a superfície de contato de cada pneu com o solo é, em centímetros quadrados:
  - a) 100
- b) 125
- c) 175
- d) 200
- e) 250
- 07) Um garoto toma refrigerante utilizando um canudinho. Podemos afirmar, corretamente, que ao puxar o ar pela boca o menino:
  - a) reduz a pressão dentro do canudinho
  - b) aumenta a pressão dentro do canudinho
  - c) aumenta a pressão fora do canudinho
  - d) reduz a pressão fora do canudinho
  - e) reduz a aceleração da gravidade dentro do canudinho

| 08) O nível da água contida em uma caixa está 6m acima de uma torneira. Sabendo que a densidade da água vale 1000kg/m³. Qual a pressão hidrostática sobre a torneira?                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09) Um aparelho de mergulho suporta uma pressão externa de até 8,5 atm, sem se romper. Se por acidente, o aparelho afunda no oceano, a que profundidade, em metros, ele será esmagado pela pressão da água? Considera a pressão atmosférica no nível do mar igual a $p_{atm}=10^5 N/m^2$ , a densidade da água $10^3 \ Kg/m^3$ e $g=10m/s^2$ .                                                                                         |
| <ul> <li>10) Uma pessoa com peso de 600N e que calça um par de sapatos que cobrem uma área de 0,05m² não consegue atravessar uma região nevada sem se afundar, porque essa região não suporta uma pressão superior a 10.000 N/m². Responda:</li> <li>a) Qual a pressão exercida por essa pessoa sobre a neve?</li> <li>b) Qual deve ser a área mínima de cada pé de um esqui que essa pessoa deveria usar para não afundar?</li> </ul> |
| 11) Se o fluxo sanguíneo não fosse ajustado pela expansão das artérias, para uma pessoa em pé a diferença de pressão arterial entre o coração e a cabeça seria de natureza puramente hidrostática. Nesse caso, para uma pessoa em que a distância entre a cabeça e o coração vale 50 cm, qual o valor em mmHg dessa diferença de pressão? (Considere a densidade do sangue igual a $10^3 \text{ kg/m}^3$ ).                            |
| 12) Um aparelho de mergulho suporta uma pressão externa de até 7x 10 <sup>5</sup> N/m², sem se romper. Se por acidente, o aparelho afunda no oceano, a que profundidade, em metros, ele será esmagado pela pressão da água? Considera a densidade da água 10 <sup>3</sup> Kg/m³ e g= 10m/s².                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |