No se permite el uso de ningún tipo de material.

Todas las respuestas deben estar justificadas.

Ejercicio 1. (2 puntos) Dada una sucesión (a_n) de números reales consideramos la sucesión (b_n) definida por

$$b_n = \frac{a_1 + \dots + a_n}{n}.$$

- a) Supongamos que (a_n) es convergente. Estudiar la convergencia de la sucesión (b_n) .
- a) Supongamos que (b_n) es convergente. Estudiar la convergencia de la sucesión (a_n) .

Ejercicio 2. (2 puntos) Se define la función parte entera $[\]: \mathbb{R} \to \mathbb{R}$ como [x] = mayor número entero que es menor o igual que x. Estudiar la continuidad de la función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = x - [x].$$

Ejercicio 3. (2 puntos) Sean f, g, h tres funciones tales que $g(x) \le f(x) \le h(x)$ para todo x y que cumplen g(0) = h(0) y g'(0) = h'(0) = 0. Estudiar la derivabilidad de f en x = 0.

Ejercicio 4. (2 puntos) Sean a y b números reales positivos. Calcular

$$\lim_{x \to +\infty} \left(\frac{a^{1/x} + b^{1/x}}{2} \right)^x.$$

Ejercicio 5. (2 puntos) Calcular el polinomio de Taylor de grado menor o igual que 3 en el punto x=0 de la función

$$f(x) = e^{\arcsin x}$$
.

Tiempo: 2 horas