Визуализация модели цветка космеи

Выполнила: Жаворонкова А. А. ИУ7-56Б

Руководитель: Куров А. В.

Цель и задачи работы

<u>Целью</u> данной работы является разработка программного обеспечения для создания реалистичного изображения цветка.

Задачи:

- выделить объекты сцены и выбрать модель их представления;
- проанализировать алгоритмы визуализации трехмерной сцены, при необходимости рассмотреть модификации, обосновать выбор конкретного алгоритма;
- реализовать выбранные алгоритмы;
- спроектировать архитектуру и графический интерфейс программы;
- реализовать программное обеспечение для визуализации модели цветка;
- исследовать зависимость скорости генерации кадра от шага полигональной сетки.

Объекты сцены

- Ограничивающая плоскость
- Источник освещения
- Камера
- Цветок:
 - оСтеблевая часть:
 - Цветоножка
 - Цветоложе
 - Лист
 - оЛистовая часть

Аналитическое задание поверхностей

Цветоножка

$$x = 0.6 \cos t + \frac{1}{5} \sin z,$$

$$y = 0.6 \sin t,$$

$$z = z.$$

Цветоложе

$$z = \frac{(x - \frac{1}{4})^2}{2} + \frac{y^2}{2}$$

Лист

$$\begin{cases} x = t, \\ y = \frac{1}{3}t^2, \\ z = \frac{2}{t+1} + 3t. \end{cases}$$

Лепесток

$$\begin{cases} z = \frac{1}{2}x^2 + y \\ x^2 + \frac{1}{5}y^2 \le 3 \end{cases}$$

Анализ алгоритмов удаления невидимых ребер и поверхностей

	Алгоритм Робертса	Алгоритм, использующий z-буфер	Алгоритм обратной трассировки лучей	Алгоритм Варнока
Сложность алгоритма (N — количество граней, С — количество пикселей)	$O(N^2)$	O(CN)	O(CN)	O(CN)
Эффективность для сцен с большим количеством объектов	Низкая	Высокая	Низкая	Средняя
Пространство работы алгоритма	Объектное пространств о	Пространство изображения	Пространство изображения	Пространство изображения
Сложность реализации	Высокая	Низкая	Средняя	Средняя

Анализ алгоритмов закраски

	Простая закраска	Закраска по Гуро	Закраска по Фонгу
Реалистичность получаемого изображения	Низкая	Средняя	Высокая
Эффективность для сцен с большим количеством объектов	Высокая	Средняя	Низкая
Сочетаемость с диффузной составляющей поверхности	Нет	Да	Нет

Общий алгоритм решения поставленной задачи

Средства реализации

В качестве <u>языка</u> для разработки программы был выбран язык программирования С++.

- В стандартной библиотеке языка присутствует поддержка всех структур данных, выбранных по результатам проектирования;
- Средствами языка можно реализовать все алгоритмы, выбранные в результате проектирования;
- Доступность учебной литературы.

В качестве среды разработки был выбран QtCreator.

- Данная среда разработки предоставляет удобную графическую библиотеку;
- Позволяет работать с графическим интерфейсом.

Диаграмма классов

Предоставляемый интерфейс

OK

Зависимость времени генерации одного кадра изображения от шага полигональной сетки

Изображения, получаемые при разных шагах полигональной сетки

Шаг полигональной сетки: 0.025

Шаг полигональной сетки: 0.250

Шаг полигональной сетки: 0.750

Заключение

<u>Цель</u>, которая была поставлена в начале курсовой работы была достигнута: разработано программное обеспечение для создания реалистичного изображения цветка.

В ходе выполнения были решены все задачи:

- выделены объекты сцены и выбрана модель их представления;
- проанализированы алгоритмы визуализации трехмерной сцены, рассмотрены модификации, обоснован выбор конкретного алгоритма;
- спроектирована архитектура и графический интерфейс программы;
- реализованы выбранные ранее алгоритмы;
- реализовано программное обеспечение для визуализации модели цветка;
- исследована зависимость скорости генерации кадра от шага полигональной сетки.

В результате исследования был выбран шаг полигональной сетки, обеспечивающий достаточную реалистичность и время генерации одного кадра изображения — 0.250.