Practice take home exam solutions, typed by Anna Hoskins.

1. Rate of change = rate in -rate out. Therefore the differential equation is:

$$\frac{dx}{dt} = 12 - .4x(t)$$

2. Find the general solution

$$y' + \frac{t}{1+t^2} y = (1+t^2)^{\frac{1}{2}}$$

$$I.F. = e^{\frac{1}{2} \int \frac{2t}{1+t^2}} = e^{\frac{1}{2} \ln(1+t^2)} = e^{\ln \sqrt{1+t^2}} = \sqrt{1+t^2}$$

$$\sqrt{1+t^2} + \frac{t}{\sqrt{1+t^2}} y = 1+t^2$$

$$(y\sqrt{1+t^2})' = 1+t^2$$

$$y\sqrt{1+t^2} = t + \frac{t^3}{3} + c$$

$$y = \frac{t}{\sqrt{1+t^2}} + \frac{t^3}{3\sqrt{1+t^2}} + \frac{c}{\sqrt{1+t^2}}$$
(ii)
$$y' = (1-t)(1+y^2)$$

$$\frac{dy}{dt} = (1-t)(1+y^2)$$

$$\frac{dy}{1+y^2} = (1-t)dt$$

$$\tan^{-1} y = t - \frac{t^2}{2} + c$$

$$y' + \frac{t^2}{4 - t^2} y' = \frac{3t}{4 - t^2}, y(0) = \frac{5}{2}$$

 $4 - t^2 = (2 + t)(2 - t)$

p(t) and q(t) are discontinuous at $t = \pm 2$. This splits the real line as follows:

Of these the longest interval containing $t_0 = 0$ is (-2, 2).

$$y' + \frac{2t}{4 - t^2} y = \frac{3t}{4 - t^2}$$

$$I.F. = e^{\int \frac{2t}{4 - t^2} dt} = e^{-\ln(4 - t^2)} = e^{\ln\frac{1}{(4 - t^2)}} = \frac{1}{4 - t^2}. \text{ Multiplyin g by IF we have}$$

$$\frac{1}{4 - t^2} y' + \frac{2t}{(4 - t^2)^2} y = \frac{3t}{(4 - t^2)^2} \text{ or } \left(\frac{1}{4 - t^2} y\right)' = -\frac{3}{2} - \frac{2t}{(4 - t^2)^2}$$
(Integrating both sides) $\frac{1}{4 - t^2} y = -\frac{3}{2} \left(-\frac{1}{4 - t^2}\right) + c$

$$\frac{1}{4 - t^2} y = (\frac{3}{2}) \frac{1}{4 - t^2} + c \text{ or } y = \frac{3}{2} + c(4 - t^2). \text{ Using } y(0) = \frac{5}{2} \text{ we get } 4c = 1 \text{ or } c = \frac{1}{4}$$

$$\therefore \text{ Which gives } y = \frac{3}{2} + \frac{1}{4}(4 - t^2) \text{ or } y = \frac{5}{2} - \frac{1}{4}t^2$$

$$4.$$

$$\frac{dx}{dt} + 12x = 24x^{\frac{3}{4}}.$$
 Dividing through by $x^{\frac{3}{4}}$ we get $x^{-\frac{3}{4}}\frac{dx}{dt} + 12x^{\frac{1}{4}} = 24$
Putting $v = x^{\frac{1}{4}}$ and differentiating we get $\frac{dv}{dt} = \frac{1}{4}x^{-\frac{3}{4}}\frac{dx}{dt}$ or $4\frac{dv}{dt} = x^{-\frac{3}{4}}\frac{dx}{dt}$

Substituting, the equation becomes,

$$4\frac{dv}{dt} + 12v = 24 \text{ or } \frac{dv}{dt} + 3v = 6, \text{ which reduces to}$$

$$\frac{dv}{dt} = -3(v-2) \text{ or } \frac{dv}{v-2} = -3dt \text{ Integrating } \ln|v-2| = -3t + c_1 \text{ or } v-2 = ce^{-3t},$$
or $v = 2 + ce^{-3t}$. Now $x^{\frac{1}{4}} = 2 + ce^{-3t}$ or $x = (2 + ce^{-3t})^4$

5.

(i)
$$(2yx^{2} + 2y)dx + (2xy^{2} + 2x)dy = 0$$

$$M \qquad N$$

$$\frac{\partial M}{\partial y} = 2x^{2} + 2, \quad \frac{\partial N}{\partial x} = 2y^{2} + 2$$

$$\frac{\partial M}{\partial t} \neq \frac{\partial N}{\partial t}$$

is not exact

(ii)
$$(2x^{2} + 2t + 1)dt + (4x^{3} + 4tx)dx = 0$$

$$M \qquad N$$

$$\frac{\partial M}{\partial x} = 4x, \quad \frac{\partial N}{\partial t} = 4x$$

$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial t} \therefore exact.$$

$$Now \quad M = \frac{\partial \mathbf{f}}{\partial t}, \quad N = \frac{\partial \mathbf{f}}{\partial x}$$

$$\mathbf{f} = \int (2x^{2} + 2t + 1)dt$$

$$= 2x^{2}t + t^{2} + t + \Psi(x)$$

$$N = \frac{\partial \mathbf{f}}{\partial x} = 4xt + \Psi'(x) = 4x^{3} + 4tx$$

$$\Rightarrow \Psi'(x) = 4x^{3} \text{ integrating } \Psi(x) = x^{4}$$

and the solution is

$$\mathbf{f} = 2x^2t + t^2 + t + x^4 = c$$

6.

(1)
$$y'' - 2y' + y = 0$$

Characteristic equation : $r^2 - 2r + 1 = 0$, which gives $(r - 1)^2 = 0$
the roots are : $r = 1$ repeated twice. So, $y_1 = e^t$, $y_2 = te^t$
are fundamental solutions and the general solution is: $y = c_1 e^t + c_2 t e^t$

6. (ii)

$$2y'' - 2y' + y = 0$$
Characteristic Equation

$$2r^{2} - 2r + 1 = 0$$

$$r = \frac{2 \pm \sqrt{4 - 8}}{4}$$

$$r = \frac{2 \pm 2i}{4} = \frac{1 \pm i}{2}$$

$$\therefore y_1 = e^{(\frac{t}{2} - \frac{it}{2})} = e^{\frac{t}{2}} (\cos \frac{t}{2} + i \sin \frac{t}{2})$$

$$y_2 = e^{\left(\frac{t}{2} - \frac{it}{2}\right)} = e^{\frac{t}{2}} \left(\cos\frac{t}{2} + i\sin\frac{t}{2}\right)$$

Fundamental solutions: $e^{\frac{t}{2}}\cos(\frac{t}{2})$, $e^{\frac{t}{2}}\sin(\frac{t}{2})$

General Solution:
$$y = e^{\frac{t}{2}} (c_1 \cos \frac{t}{2} + c_2 \sin \frac{t}{2})$$

7.

$$ty'' + 2y' = 0$$
, $t > 0$. Dividing by t $y'' + \frac{2}{t}y' = 0$

$$W(y_1, y_2) = ce^{-\int \frac{2}{t}dt} = ce^{-2\ln t} = ce^{\frac{\ln \frac{1}{t^2}}{t}} = \frac{c}{t^2}$$

$$W(y_1, d) = \begin{vmatrix} y_1, d \\ y_1, 0 \end{vmatrix} = \frac{c}{t^2} \text{ or } dy_1' = \frac{c}{t^2} \text{ or } y_1' = -\frac{c_1}{t^2}$$

Integratin g we get
$$y_1 = \frac{c_1}{t}$$

8.

(a)
$$\frac{dS}{dt} = rS + k = r(S + \frac{k}{r})$$

$$\frac{dS}{S + \frac{k}{r}} = rdt. \text{ Integratin g we get } \ln(S + \frac{k}{r}) = rt + c \text{ which gives}$$

$$S + \frac{k}{r} = ce^{rt} \text{ or } S = -\frac{k}{r} + ce^{rt}$$

$$\text{Initially } S(0)=0 \qquad c=k/r$$

$$\therefore S = -\frac{k}{r} + \frac{k}{r}e^{rt}$$

8. (b)

$$rS = k(e^{rt} - 1) \quad or \quad k = \frac{rS(t)}{e^{rt} - 1}$$
$$k = \frac{(.075)10^6}{e^{(.075)40} - 1} = \frac{75(10^3)}{e^3 - 1} \approx 3929.68$$

8. (c)

$$r10^6 = 2000(e^{40r} - 1)$$

 $500r = e^{40r} - 1$ Solving, using a graphic calculator, we get r = .0927, *i.e.*, 9.77%

9.

$$15u'' - 2u' - u = 0, u(0) = u'(0) = 1$$

Characteristic Equation

$$15r^2 - 2r - 1 = 0 \quad or \quad r = \frac{2 \pm \sqrt{4 + 60}}{30}$$

or
$$r = \frac{1}{3}, -\frac{1}{5}$$
 which gives $u = c_1 e^{\frac{t}{3}} + c_2 e^{-\frac{t}{5}}$

$$u(0) = 1 = c_1 + c_2$$

$$u'(0) = \frac{1}{3}c_1 - \frac{1}{5}c_2 = 1$$

$$c_1 = \frac{9}{4}$$
 and $c_2 = -\frac{5}{4}$: $u = \frac{9}{4}e^{\frac{t}{3}} - \frac{5}{4}e^{-\frac{t}{5}}$.