Многорукие бандиты

Что такое RL?

Раздел машинного обучения, изучающий поведение агента, максимизирующее некоторый выигрыш, в среде.

- Поиск оптимальной стратегии
- При обучении нет пар типа «Данные-ответ»

Постановка задачи

- 1. Множество состояний окружений S
- 2. Множество действий А
- 3. Множество вещественных выигрышей r
- 4. Стратегия в определенный момент времени $p_t(a)$

Является Марковским процессом принятия решений

Марковкий процесс принятия решений

Кратко о Марковских процессах:

Марковский процесс принятия решений задается кортежем из 4-х значений:

S – конечное множество состояний

A – конечное множество действий (часто представляется в виде множества A_s , доступных из состояния s)

 $P_a(s, s') = Pr(s_t+1 = s' | s_t = s, a_t = a)$ – вероятность, что действие а в состоянии s во время t приведет в состояние s' ко времени t+1

 $R_a(s,s')$ — вознаграждение, получаемое после перехода в состояние s' из s с вероятностью перехода $P_a(s,s')$

Игра агента со средой

- 1. Инициализация стратегии $p_1(a)$
- 2. Для всех t = 1...T...
 - 1. Агент выбирает действие $a \sim p_t(a)$;
 - 2. Среда генерирует премию r
 - 3. Агент корректирует стратегию $p_{t+1}(a)$

Exploration vs Exploitation

Проблема заключается в том, что агент должен не только максимизировать прибыль на каждом шаге, но и исследовать среду.

Оптимальная стратегия может отличаться от эксплуатируемой в текущем состоянии.

Применение RL

Примеры:

- Показ рекламы в интернете
- Игра на бирже
- Управление ценами в ретейле
- Логические игры(Go, шахматы, Dota)
- Тестирование

Многорукие бандиты

Многорукие бандиты

Модель: агент в комнате с несколькими игровыми автоматами. У каждого автомата своё ожидание выигрыша. Нужно за ограниченное количество попыток выбрать лучший автомат.

Супер жадный алгоритм

Всегда выбирать действие, максимизирующие прибыль, которую оцениваем как среднее вознаграждение:

$$a = argmax_{a \in A} \left(\frac{1}{k_a} \sum_{i=1}^{k_a} r_i\right)$$

Вопрос

Почему жадный алгоритм плох и как его можно улучшить?

ϵ - жадный алгоритм

- Вводим параметр $\epsilon \in (0,1)$
- С вероятностью 1ϵ выбираем действие с максимальной оценкой математического ожидания, иначе выбираем случайное другое действие.
- •Обычно $\epsilon = 0.1$

ϵ – deacreasing

Аналогично предыдущему алгоритму. Однако теперь мы можем уменьшать с течением времени значение ϵ .

Тем самым увеличивая regret.

Минус жадных алгоритмов: алгоритмы не различают хорошую альтернативу и бесполезную.

Алгоритм UCB1

Upper Confidence Bounds

Рассчитываем приоритет каждого действия по формуле:

$$priority_i = \hat{\mu_i} + \sqrt{\frac{2lnt}{k_i}}$$
 где $\hat{\mu_i}$ - средняя награда i -ого действия t - кол-во сделанных ходов, k_i - кол-во ходов с выбором i -ого действия

Выбираем действие с наивысшим приоритетом!

Алгоритм UCB1

Для нахождения оценки воспользуемся неравенством Чернова.

Пусть
$$\hat{\mu} = \frac{1}{k} \sum_i r_i$$
 и $\mu = \mathbb{E}(\hat{\mu}) = \frac{1}{k} \sum_i \mu_i$

$$P(\hat{\mu} + z < \mu) \le e^{-2kz^2}$$

Алгоритм UCB1

$$P(\hat{\mu} + z < \mu) \le e^{-2kz^2}$$

 r_a награда за действие a

 $\hat{\mu}$ средняя награда за действие a за все время

Z односторонняя верхняя оценка

Верхняя оценка полученная после решения неравенста.

$$z = z(a, t) = \sqrt{\frac{2lnt}{k_a}}$$

Утверждается, что данного значения хватает, чтобы быть уверенным, что мы находимся в пределах истинного значения

Сэмплирование Томпсона

• Бета распределение является априорно сопряженным к распределению Бернулли

$$Beta (\alpha + y, \beta + 1 - y) = Beta (\theta \mid \alpha, \beta) \cdot Bernoulli (y \mid \theta)$$

- При $\alpha + \beta = 1$ бета-распределение принимает форму равномерного распределения, т.е. именно такого, которое естественно использовать в ситуации полной неопределенности (например, в самом начале тестирования); чем более определенными становятся наши ожидания относительно прибыльности бандита, тем более скошенным становится распределение (влево не прибыльный бандит, вправо прибыльный);
- Модель интерпретируется, т.е. lpha кол-во успешных испытаний, eta кол-во неудачных испытаний.

$$p(q = x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

Сэмплирование Томпсона

Algorithm 1 Thompson Sampling for Bernoulli bandits

```
For each arm i = 1, ..., N set S_i = 0, F_i = 0.
```

```
foreach t = 1, 2, \dots, do
```

For each arm i = 1, ..., N, sample $\theta_i(t)$ from the Beta $(S_i + 1, F_i + 1)$ distribution.

Play arm $i(t) := \arg \max_i \theta_i(t)$ and observe reward r_t .

If r = 1, then $S_{i(t)} = S_{i(t)} + 1$, else $F_{i(t)} = F_{i(t)} + 1$.

end

 S_i, F_i - значение параметров бета распределения для i - ого действия

 $\theta_i(t)$ - значение сгенерированное бета распределением i - ого действия

Зачем бандиты, если есть A/B тесты

Сравнение методов

Пример для 4 распределений Бернулли с параметрами р = 0.3, 0.5, 0.6, 0.7

Вопросы

- 1. В чем заключается проблема жадного алгоритма?
- 2. Записать формулу приоритета действия для алгоритма UCB.
- 3. Написать алгоритм семплирования Томпсона.

Источники

Статья по семплированию Томпсона

Статья по UCB1

Статья на wiki про сопряжённое априорное распределение

<u>Байесовские многорукие бандиты с Habr-a</u>

Видеоряд «обучение с подкреплением - К.В. Воронцов»