

DEPARTMENT OF ELECTRONIC ENGINEERING

N.E.D. UNIVERSITY OF ENGINEERING AND TECHNOLOGY

VLSI SYSTEM DESIGN(EL-408)
BATCH 2017-18

LAB SESSION # 12 TO 14

INSTUCTOR NAME: MISS SABA FAKHAR

CLASS: B.E

SECTION: C GROUP

MEMBERS:

1. **MUNTAHA SHAMS** (EL-17062)

Cloud id: shams4002093@cloud.neduet.edu.pk

2. **FARYAL ZEHRA** (EL-17065)

Cloud id: zehra4007201@cloud.neduet.edu.pk

3. **WARDAH ARSHAD** (EL-17069)

Cloud id: arshad4004588@cloud.neduet.edu.pk

4. **ZEENAT SHAIKH** (EL-17074)

Cloud id: Shaikh4003776@cloud.neduet.edu.pk

5. **AREEJ ASAD** (EL-17089)

Cloud id: asad4008253@cloud.neduet.edu.pk

LAB 12

a) Design the modules using all basic gates: AND, OR, XOR, NOR, NAND and XNOR gate and verify the results

AND GATE

Inputs		Output
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = A.B$$

The output waveform is only high when both the inputs I.e., in1 and in2 are high

OR-GATE

The output waveform is high elsewhere except it is only low when both the inputs I.e., in1 and in2 are low.

NOR-GATE

The output waveform is low elsewhere except it is only high when both the inputs I.e., in1 and in2 are low.

NAND-GATE

force -freeze sim:/nand_gate/in1 1 0, 0 {200 ns} -r 400 force -freeze sim:/nand_gate/in2 1 0, 0 {100 ns} -r 200 VSIM 15>run -all

Type here to search

0 ns to 1115 ns

O ∄i

The output waveform is high elsewhere except it is only low when both the inputs I.e., in1 and in2 are high.

Project : nand_gate Now: 965,787,100 ns Delta: 0

sim:/nand_gate

₹

へ 📴 🖶 🦟 🗘) 7:50 pm 20/01/202:

XOR-GATE

The output waveform is high for dissimilar inputs and low for similar inputs

XNOR-GATE

The output of the XNOR gate is high if both the inputs are the same; otherwise, the output is low. An EX-NOR gate is an equality detector. Here's the logical representation of the XNOR gate.

RESULTS: The AND, OR, NAND, NOR, XOR & XNOR gates have been implemented and verified.

Lab 13

Objective: To implement 4 to 1 MUX on Modelsim Software

Outcome: The above waveforms verify the working of a 4:1 multiplexer.
Here when the input to the selector bits is 00 the output is a
When the input to the selector bits is 0 1 the output is b
When the input to the selector bits is 1 0 the output is c
When the input to the selector bits is 1 1 the output is d