Assignment-1

SPRING 2022

MEASURE THEORY & INTEGRATION (MA51002)

- 1. Show that the set of real numbers in [0,1] which possess decimal expansion not containing the digit 5 has measure zero.
- 2. (a) Find two subsets E_1, E_2 in \mathbb{R} such that $E_1 \cap E_1 = \emptyset$ and $m^*(E_1 \cup E_1) \neq m^*(E_1) + m^*(E_2)$? On what conditions on E_1, E_2 will give that the equality holds above?
 - (b) Does the Lebesgue outer measure countably additive?
- 3. Let $\mathcal{F} = \{A \subseteq \mathbb{R} \mid A \text{ or } A^c \text{ is a finite set}\}$. Check that whether \mathcal{F} is a σ -algebra or not. If \mathcal{F} is not a σ -algebra, then find a necessary and sufficient conditions for \mathcal{F} to form a σ -algebra?
- 4. Let $\{E_k\}$ be a sequence of measurable sets in \mathbb{R} .
 - (a) Suppose $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$ and $m(E_1) < \infty$. Then show that

$$\lim_{k\to\infty} m(E_k) = m(\cap_{k=1}^{\infty} E_k).$$

(b) Suppose $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$. Then show that

$$\lim_{k \to \infty} m(E_k) = m(\cup_{k=1}^{\infty} E_k).$$

- 5. Show that every monotonically increasing (and decreasing) function defined on a measurable set in \mathbb{R} is Borel measurable.
- 6. Let $f: E \to \mathbb{R}$ be a function and $E \subseteq \mathbb{R}$ is a measurable set. Define a function $g: \mathbb{R} \to \mathbb{R}$ as g(x) = f(x) if $x \in E$ and g(x) = 0 if $x \notin E$. Then show that f is measurable if and only if g is measurable.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function and $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then show that $g \circ f$ is measurable. What can you say about the measurability of $f \circ g$?
- 8. Let $A \subseteq \mathbb{R}$. Show that there exists a Borel set U such that $U \supseteq A$ and $m^*(A) = m^*(U)$.
- 9. Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E in \mathbb{R} . Then show that $limsup(f_n)$, $liminf(f_n)$ are measurable.
- 10. (a) What are Littlewood's 3 principles?
 - (b) Show that if f is a measurable function which is almost everywhere differentiable, then its derivative $\frac{df}{dx}$ is also measurable.