UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE MATEMATICAS

Segunda Práctica Dirigida CALCULO DIFERENCIAL CM131 Ciclo 2013-II

1. En N demostrar:

- (a) La clausura de la adición y el producto.
- (b) La ley asociativa y conmutativa para la suma.
- (c) La ley asociativa y conmutativa para la multiplicación.
- (d) La ley cancelativa para la suma y multiplicación.

2. Demostrar:

- (a) Si $n, x \in \mathbb{N}$ y n < x, entonces $n+1 \le x$ (en otras palabras, si $n \in \mathbb{N}$, entonces entre n y n+1 no hay otro natural).
 - (b) Si a, b son enteros a.b = 0 si y sólo si a = 0 v b = 0.
 - (c) Si a, b enteros

i.
$$(-a) + (-b) = -(a+b)$$
.

ii.
$$(-a)(-b) = a.b.$$

iii.
$$(-a)(b) = -(ab)$$
.

3. Si a, b y c son enteros:

(a) a+c>b+c si y sólo si a>b.

(b) Si c > 0, a > b si y sólo si ac > bc.

(c) Si c < 0, a > b si y sólo si ac < bc.

- 4. (a) No existe ningún $n \in \mathbb{N}$, tal que 0 < n < 1.
 - (b) Si $a, b \in \mathbb{Z}$, a < b si y sólo si a-b < 0.
 - (c) Si a y b son enteros tales que a.b = 1 entonces a y b son ambos 1 o -1.

(d) Si $a, b \in \mathbb{Z}$ y a < b entonces existe $c \in \mathbb{Z}^+$ tal que a + c = b.

(5) En los racionales Q demostrar:

- (a) La propiedad de la tricotomía.
- Demostrar que la adición y la multiplicación están bien definidas.

Si x, y son racionales no nulos, entonces $(x.y)^{-1} = y^{-1}x^{-1}$.

- (d) Si $x \in y$ son racionales positivos con x < y, entonces 1/x > 1/y.
- (6. (a) Si Q⁺ es el conjunto de los racionales postivos entonces Q⁺ es cerrado respecto a la adición y la multiplicación.
 - Si $x = [1, m] \in \mathbb{Q}^+$ entonces $x^{-1} \in \mathbb{Q}^+$.
 - (c) Si Q⁻ es el conjunto de los racionales negativos, entonces Q⁻ es cerrado respecto a la adición pero no para la multiplicación.

(7.) Si $x, y, z \in \mathbb{Q}$ demostrar:

(a) x + z < y + z si y sólo si x < y.

(b) Si z > 0, xz < yz si y sólo si x < y.

(c) Si z < 0, xz < yz si y sólo si x > y.

- 8. Demostrar que la ecuación $x^2 = 3$ no tienen solución en \mathbb{Q} .
- Demostrar: Si $a, b \in \mathbb{Q}^+$ y a < b entonces $a^2 < ab < b$. Ly si $a, b \in \mathbb{Q}^-$.?
- 10. Considerando $m, n \in \mathbb{N}$, probar que se cumple:

$$s(m.s(n)) = m.n + s(m).$$

b) $s(s(m).s(n)) = s(m) + m.n + s(n)$

11. Dados dos números naturales x e y, luego se verifica una y solamente una de las afirmaciones siguientes:

a)
$$x = y$$
.

- b) Existe $u \in \mathbb{N}$ tal que x = y + u.
- c) Existe $v \in \mathbb{N}$ de tal manera que y = x + v.

12. Sea
$$f: \mathbb{N} \to \mathbb{N}$$
 una función tal que

$$f(n+1) > f(n), \forall n \in \mathbb{N}$$

Pruebe que:

6. 23

- a) Si m < n entonces f(m) < f(n).
- b) f es una función inyectiva.

18. Probar que $5n + 5 \le n^2$ para todo entero $n \ge 6$.

14. Considere $S \subset \mathbb{Z}$ no vacio. Pruebe $\min S = \max S$ si y solo si S es un conjunto unitario.

(15) Sea $S \neq \phi$ en $\mathbb Z$ la cual est acotada superiormente.

Considere

 $U(S) = \{u \in \mathbb{Z} : u \text{ cota superior de } S\}.$

Probar que $S \cap U(S)$ es un conjunto unitario.

(16.) Probar que

$$1 + 2^{2n} + 3^{2n} + 2((-1)^{FIB(n)} + 1)$$

es divisible por 7 para todo $n \in \mathbb{N}$. FIB(n+2) = FIB(n+1) + FIB(n), FIB(1) = 1, FIB(2) = 1.

17. Probar que $\forall n \in \mathbb{N}$ nunca son cuadrados perfectos:

(a)
$$2^{2n-1} + 4^{2n-1} + 9^{2n-1}$$
.
(b) $8^{2^n} - 5^{2^n}$.

18. Demuestre que para todo número natural $n \ge 2$, $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$

19. Probar que $2^{2^n} + 3^{2^n} + 5^{2^n}$ es divisible por 19 para todo $n \in \mathbb{N}$.

20. Probar que para todo $n \in \mathbb{N}$ $\sum_{i=1}^{n} F^{2}(i) = F(n)F(n+1) - 5. \quad F(1) = 1,$ $F(2) = 6, \ F(n) = F(n-1) + F(n-2).$

Sean a, b, c tres números naturales tales que c = a + b. Sea p un factor impar de $a^2 + b^2 + c^2$. Demostrar por inducción que $\forall n \in \mathbb{N}$:

(a) $(a^{6n-4} + b^{6n-4} + c^{6n-4})$ es divisible por p.

(b) $(a^{6n-2} + b^{6n-2} + c^{6n-2})$ es divisible por p^2

Los Profesores UNI, September 13, 2013.