2686.
$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{12}}{\ln n}. \quad 2687. \quad \sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n^p}.$$

2688.
$$\sum_{n=1}^{\infty} \frac{(-1)^{\{\ln n\}}}{n}.$$

2689.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n)} \right]^{p}.$$

2690.
$$\sum_{n=1}^{\infty} \frac{\sin n \cdot \sin n^2}{n}$$
. 2691. $\sum_{n=1}^{\infty} \sin n^2$.

Указание. Доказать, что $\lim_{n\to\infty} \sin n^2 \neq 0$.

2692. Пусть

$$R(x) = \frac{a_0x^p + a_1x^{p-1} + \dots + a_p}{b_0x^q + b_1x^{q-1} + \dots + b_q}$$

— рациональная функция, где $a_0 \neq 0$, $b_0 \neq 0$ и $[b_0 x^q + b_1 x^{q-1} + \ldots + b_q] > 0$ при $x \geqslant n_0$.

Исследовать на абсолютную и условную сходимость ряд

$$\sum_{n=n_0}^{\infty} (-1)^n R(n).$$

Исследовать сходимость рядов:

2693.
$$\frac{1}{1^{p}} - \frac{1}{2^{q}} + \frac{1}{3^{p}} - \frac{1}{4^{q}} + \frac{1}{5^{p}} - \frac{1}{6^{q}} + \dots$$
2694. $1 + \frac{1}{3^{p}} - \frac{1}{2^{p}} + \frac{1}{5^{p}} + \frac{1}{7^{p}} - \frac{1}{4^{p}} + \dots$
2695. $1 + \frac{1}{3^{p}} - \frac{1}{1^{p}} + \frac{1}{5^{p}} + \frac{1}{7^{p}} - \frac{1}{3^{p}} + \frac{1}{9^{p}} + \dots$

$$+ \frac{1}{11^{p}} - \frac{1}{5^{p}} + \dots$$
2696. $1 - \frac{2}{2^{q}} + \frac{1}{3^{p}} + \frac{1}{4^{p}} - \frac{2}{5^{q}} + \frac{1}{6^{p}} + \dots$

$$+ \frac{1}{7^{p}} - \frac{2}{8^{q}} + \frac{1}{9^{p}} + \dots$$