

Parametric Analysis of Ambisonic Audio

Contributions to methods, applications and data generation

Andrés Pérez López 23-10-2020

SupervisionDr. Emilia Gómez
Dr. Adan Garriga

President Dr. Xavier Serra Secretary Dr. Máximo Cobos Vocal Dr. Tuomas Virtanen

Outline

I. INTRODUCTION

1. Introduction

II. SCIENTIFIC CONTRIBUTIONS

- 2. Blind Reverberation Time Estimation
- 3. Coherence Estimation
- 4. Sound Event Localization and Detection
- 5. Data Generation and Storage

III. CONCLUSIONS

6. Conclusions

I - INTRODUCTION

Motivation

- Popularization of VR/AR
- Affordability of Ambisonic (VR) microphones
- Standardization of Ambisonics as spatial format
- New challenges and opportunities

Motivation

Motivation

1. INTRODUCTION

Problem description

^[1] Jarrett, D., Habets, E., and Naylor, P. (2017). Theory and applications of spherical microphone array processing, volume 9. Springer.

1. INTRODUCTION

Problem description

Problem description

1. Acoustic Parameter Estimation

1. Acoustic Parameter Estimation

2. Sound Event Localization and Detection

2. Sound Event Localization and Detection

3. Data Generation and Storage

3. Data Generation and Storage

Outline

II - SCIENTIFIC CONTRIBUTIONS

2. Blind Reverberation Time Estimation

Reverberation Time (RT60)

[2] Audioforo.com. *Curso de medidas acústicas*. https://audioforo.com/2015/03/18/curso-de-medidas-acusticas-3-como-mido-el-tr/

- State of the art: ACE Challenge 2015 [3]
- Focus on single-channel

- State of the art: ACE Challenge 2015 [3]
- Focus on single-channel

Proposal:

novel RT60 estimation method for first order ambisonics

I. Dereverberation

Obtain a clean signal estimate

2. System Identification

Compute the RIR by inverse filtering

Proposed Method

Dereverberation

- Split early and late reverberation
- Multichannel Autoregressive Model (MAR)
- Offline optimization based on group sparsity [4]

System Identification

- Estimate impulse response from dry and recorded
- Compute RT60 from Schroeder integral

Experimental Setup

Baseline Method [5]

- 1st classified in ACE regarding Pearson correlation coefficient
- Subband detection of energy decays in signal offsets

[5] T. d. M. Prego, A. A. de Lima, S. L. Netto, B. Lee, A. Said, R. W. Schafer, and T. Kalker, "A blind algorithm for reverberation-time estimation using subband decomposition of speech signals," The Journal of the Acoustical Society of America, vol. 131, no. 4, pp. 2811–2816, 2012.

2. REVERBERATION TIME ESTIMATION

Experimental Setup

Datasets

1. Speech

LibriSpeech [6] *test-clean*

2. Drums

DSD100 [7] test-drums

[6] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: an asr corpus based on public domain audio books," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[7] A. Liutkus, F.-R. Stoter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito, N. Ono, and J. Fontecave, "The 2016 signal separation evaluation campaign," in Latent Variable Analysis and Signal Separation - 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015. Springer International Publishing, 2017, pp. 323–332.

Experimental Setup

Datasets

- 9 simulated First Order Ambisonic RIRs
- RT60 between 0.4 and 1.1 s (@1 kHz)
- Random (uniform) Direction of Arrival
- Total clips: 270 (speech), 450 (drums)

Results

	speech		drums	
Metric	Baseline	MAR+SID	Baseline	MAR+SID
Bias	-0.0599	0.0305	0.1521	0.2568
MSE	0.6366	0.0594	13.9376	16.5261
ρ	0.8212	0.9848	0.3705	0.7552

Results

Summary of contributions

- Novel method for blind RT60 estimation
 - Dereverberation using auto-recursive model
 - System identification
- Outperforms state-of-the-art baseline method in most metrics
- Improved consistency and robustness

3. Coherence Estimation

- Coherence/diffuseness as sound field parameter
 - Spatial domain: Magnitude Squared Coherence (MSC) [8]
 - o Ambisonic domain: sound field diffuseness (e.g. DirAC [9])

^[8] Elko, G. W. (2001). Spatial coherence functions for differential microphones in isotropic noise fields. In Microphone Arrays, pages 61–85. Springer, New York.

^[9] Pulkki, V. (2007). Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society, 55(6):503-516

- A-Format microphones:
 - Spatial domain: known curve [8]
 - Ambisonic domain: theoretically incoherent [8]

[8] Elko, G. W. (2001). Spatial coherence functions for differential microphones in isotropic noise fields. In Microphone Arrays, pages 61–85. Springer, New York.

Problem definition

Model non-ideal behavior of coherence estimators:

- A-Format microphones
- Spherical isotropic noise
- Recorded and simulated audio
- Spatial and spherical harmonic domain

Methods

Simulation

Isotropic noise using the geometrical method [10, 11]

- 1024 plane waves
- Ideal open-sphere A-Format microphone
 - Radius 0.015 m
 - Directivity factor 0.5 (cardioid)

[10] Habets, E. A. P. and Gannot, S. (2007). Generating sensor signals in isotropic noise fields. The Journal of the Acoustical Society of America, 122(6):3464–3470.

[11] Habets, E. A. P. and Gannot, S. (2010). Comments on generating sensor signals in isotropic noise fields.

Methods

Recording

- Spherical loudspeaker layout: 25 Genelec 8040
- Plane-wave ambisonic encoding of gaussian noise sources
 - Ambisonic orders $N \in [1,5]$
 - Number of sources I = [8, 16, 32, 64]

Spatial domain - simulated vs. recorded

Ambisonic domain - simulated

Ambisonic domain - simulated vs. recorded

Summary of contributions

- Novel diffuse field characterization
 - Most common ambisonic microphone
 - Two different metrics / domains
- Quantify high impact of diffuseness time-averaging window
- Study feasibility of diffuse sound reproduction in ambisonics

4. Sound Event Localization and

Detection

Introduction

Sound Event Localization and Detection (SELD)

[12] DCASE Workshop, Task 3. http://dcase.community/challenge2020/task-sound-event-localization-and-detection

Introduction

Proposed method

- **PAPAFIL**: PArametric PArticle Filter
 - Focus on low-complexity
 - Uses traditional machine learning
 - First Localization, then Classification
- Presented to DCASE Challenge 2020

Spatial location

T Temporal activity

 $oldsymbol{\mathcal{K}}$ Sound class

1. SINGLE SOURCE ESTIMATION

2. PARTICLE TRACKING

3. SIGNAL FILTER

Steer a first-order virtual cardioid towards the estimated DOAs:

- Improve SNR of target sound event
- Mono downmix
- Sound event estimation (with temporal segmentation)

4. EVENT CLASSIFICATION

Gradient Boosting Machine (GBM) [13]

[13] J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of statistics, pp. 1189–1232, 2001.

4. EVENT CLASSIFICATION

Sound features obtained from Essentia [14]:

- Frame-based: first order statistics
- Whole event

Type	Features	Number
Low-level	Mel bands MFCC Spectral Features	24 13 26
SFX	Duration Harmonic Sound envelope Pitch envelope	2 4 11 4

[14] D. Bogdanov, N. Wack, E. Gomez Gutierrez, S. Gulati, H. Boyer, O. Mayor, G. Roma Trepat, J. Salamon, J. R. Zapata Gonzalez, X. Serra, et al., "Essentia: An audio analysis library for music information retrieval," in 14th Conference of the International Society for Music Information Retrieval (ISMIR); p. 493-8., Curitiba, Brazil, November 2013.

Experiments

DATASET

TAU-NIGENS Spatial Sound Events 2020 - FOA [15]

[15] I. Trowitzsch, J. Taghia, Y. Kashef, and K. Obermayer, "The nigens general sound events database,"

Experiments

BASELINE

Based on SELD-net [16]:

- CRNN architecture
- Joint localization and classification
- Improved after DCASE2019 Challenge

[16] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks," IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 1, pp. 34–48, March 2018

Experiments

PAPAFIL 1

Oracle space-time information (parsing annotation files)

PAPAFIL 2

True parametric particle filtering method

6-fold cross-validation (development set)

Method	ER_{20}	F_{20}	LE_{CD}	LR_{CD}	SELD
BASELINE	0.72	37.4 %	22.8°	60.7 % 54.4 % 59.7 %	0.47
PAPAFIL1	0.60	49.8 %	13.4 °		0.41
PAPAFIL2	0.57	54.0 %	13.8°		0.38
<i>PAPAFIL1-O PAPAFIL2-O</i>	0.37	67.0 %	2.0°	68.6 %	0.26
	0.32	79.6 %	8.5°	82.4%	0.19

6-fold cross-validation (development set)

Method	ER ₂₀	F ₂₀	LE_{CD}	LR_{CD}	SELD
BASELINE	0.72	37.4 %	22.8°	60.7 % 54.4 % 59.7 %	0.47
PAPAFIL1	0.60	49.8 %	13.4 °		0.41
PAPAFIL2	0.57	54.0 %	13.8°		0.38
PAPAFIL1-O	0.37	67.0 %	2.0°	68.6 %	0.26
PAPAFIL2-O	0.32	79.6 %	8.5°	82.4%	0.19

Method	ER_{20}	F_{20}	LE_{CD}	LR_{CD}	SELD
BASELINE-DEV	0.72	37.4 %	22.8°	60.7 %	0.47
BASELINE-EVAL	0.70	39.5 %	23.2°	62.1 %	0.45
PAPAFIL2-DEV	0.57	54.0 %	13.8°	59.7 % 65.1 %	0.38
PAPAFIL2-EVAL	0.51	60.1 %	12.4 °		0.33

Method	ER_{20}	F_{20}	LE_{CD}	LR_{CD}	SELD
BASELINE-DEV	0.72	37.4 %	22.8°	60.7 %	0.47
BASELINE-EVAL	0.70	39.5 %	23.2°	62.1 %	0.45
PAPAFIL2-DEV	0.57	54.0 %	13.8°	59.7 %	0.38
PAPAFIL2-EVAL	0.51	60.1 %	12.4 °	65.1 %	0.33

	Submission Information	Evaluation dataset					
Rank	Submission name	Technical Report	Best official system rank	Error Rate (20°) III	F-score (20°) 📠	Localization error (°)	Localization recall
1	Du_USTC_task3_4	D	1	0.20	84.9 %	6.0	88.5 %
2	Nguyen_NTU_task3_2	Ð	4	0.23	82.0 %	9.3	90.0 %
3	Shimada_SONY_task3_4	Ð	5	0.25	83.2 %	7.0	86.2 %
4	Cao_Surrey_task3_4	Ð	11	0.36	71.2 %	13.3	81.1 %
5	Park_ETRI_task3_4	Ð	13	0.43	65.2 %	16.8	81.9 %
6	Phan_QMUL_task3_3	Ð	15	0.49	61.7 %	15.2	72.4 %
7	PerezLopez_UPF_task3_2	Ð	16	0.51	60.1 %	12.4	65.1 %
8	Sampathkumar_TUC_task3_1	Ð	20	0.53	56.6 %	14.8	66.5 %
9	Patel_MST_task3_4	D	22	0.55	55.5 %	14.4	65.5 %
10	Ronchini_UPF_task3_2	Ð	28	0.58	50.8 %	16.9	65.5 %
11	Naranjo- Alcazar_VFY_task3_2	Ð	30	0.61	49.1 %	19.5	67.1 %
12	Song_LGE_task3_3	Ð	31	0.57	50.4 %	20.0	64.3 %
13	Tian_PKU_task3_1	Ð	36	0.64	47.6 %	24.5	67.5 %
14	Singla_SRIB_task3_2	Ð	38	0.88	18.0 %	53.4	66.2 %
15	DCASE2020_MIC_baseline	D	39	0.69	41.3 %	23.1	62.4 %

Summary of contributions

- Novel low-complexity method for SELD
 - Localization with parametric particle filtering
 - Classification by GBM
- Very low complexity
- Results outperform baseline

5. Dataset Generation and Storage

Introduction

Support generation of parametrizable ambisonic datasets

- Synthetic and recorded
- Stress on Room Impulse Responses
- Using python

MASP

MASP: Multichannel Acoustic Signal Processing Library

- Port of several Matlab libraries by A. Politis
- Acoustic simulation and microphone arrays
- Special focus on spherical configurations

MASP

Components:

- Array Response Simulator Simulation of spherical microphones
- Shoebox Room Model Image Source Method [17]:
- Spherical Array Processing Analysis and transformation tools
- Spherical Harmonic Transform Mathematical convenience tools

[17] Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating small-room acoustics. *The Journal of the Acoustical Society of America*, 65(4), 943-950.

MASP

SOFA: Spatially Oriented Format for Acoustics [18]

- File format for storage of HRTFs and other IRs
- Widely used, standard (AES-69)
- Solves the interoperatibility problem between datasets

[18] Majdak, P., Iwaya, Y., Carpentier, T., Nicol, R., Parmentier, M., Roginska, A., Suzuki, Y., Watanabe, K., Wierstorf, H., Ziegelwanger, H., et al. (2013). *Spatially oriented format for acoustics: A data exchange format representing head-related transfer functions*. In Audio Engineering Society Convention 134. Audio Engineering Society.

Ambisonics Directional Room Impulse Response for SOFA

- Proposed extension of SOFA for Ambisonic RIRs
- Support multi-perspective measurements
- Standard integration currently discussed in the AES-69 steering group

pysofaconventions

- Python implementation of SOFA 1.0
- Adaptation from C++ library
- Used in several external projects
 - Facebook / Chalmers University
 - Several fixes / pull requests

Ambiscaper

Ambiscaper

- Based on J. Salomon's Scaper [19]
- Tool for automatic generation of ambisonic datasets
- Statistical rule-based generation
- Synthetic / recorded IRs

[19] Salamon, J., MacConnell, D., Cartwright, M., Li, P., and Bello, J. P. (2017). *Scaper: A library for soundscape synthesis and augmentation*. In Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 344–348. IEEE.

Ambiscaper

Ambiscaper

- Low adoption
 - Developed in 2018 (before LOCATA, DCASE)
 - Much more datasets available nowadays
 - Maintenance cost
- Dataset reproducibility premises are still valid

III - CONCLUSIONS

6. Conclusions

Contribution to different components of an ambisonics analysis and generation framework

- Making use of parametric signal representations
- Focusing on applied problems and research reproducibility

Main objectives:

- To develop methods for the characterisation of acoustic parameters from recordings originated from ambisonic microphones.
- 2. To propose methodologies for **sound event localization and detection** in ambisonic domain which are grounded on spatial parametric analysis.
- 3. To contribute to the **generation and storage** of ambisonic sound scenes, for their usage in controlled experimental environments.

- 1.) Blind reverberation time estimation
 - First attempt in literature to address the problem
- Performance comparable to state-of-the-art
- Improved result consistency
- IEEE MMSP 2020 Best Paper Runner-Up Award

- 2.) Coherence estimation
 - Characterization of A-Format microphone under spherical noise
 - Rendering capabilities of spherical arrays using ambisonics

- 3.) Sound Event Localization and Detection
 - Novel approach with parametric particle filter
- Very low complexity
- Q2 results in DCASE 2020 Challenge (7/15)

- 4.) Data generation and management
 - Acoustic simulation library
- SOFA library and standard proposal
- Dataset generation software

Future work

Technology transfer: convert prototypes into products

- 1 peer-reviewed journal article
 - "Analysis of spherical isotropic noise fields with an A-Format tetrahedral microphone". A. Pérez-López and N.Stefanakis. The Journal of the Acoustical Society of America 146.4 (2019): EL329-EL334.

- 4 peer-reviewed conference articles
 - "Blind reverberation time estimation from ambisonic recordings". A. Pérez-López, A. Politis and E. Gómez. IEEE MMSP 2020.
 - "PAPAFIL: a low complexity sound event localization and detection method with parametric particle filtering and gradient boosting". A. Pérez-López and R. Ibañez-Usach. Submitted to Detection and Classification of Acoustic Scenes and Events 2020 Workshop.
 - "A hybrid parametric-deep learning approach for sound event localization and detection". A. Pérez-López, E. Fonseca and X. Serra. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop.
 - "Ambiscaper: A tool for automatic generation and annotation of reverberant ambisonics sound scenes". A. Pérez-López. In Proceedings of the 16th International Workshop on Acoustic Signal Enhancement, (IWAENC). IEEE, 2018.

- 3 conference engineering briefs (abstract-reviewed)
 - "Ambisonics directional room impulse response as a new convention of the spatially oriented format for acoustics". A. Pérez-López and J. De Muynke. In Proceedings of the 144th Audio Engineering Society Convention. Audio Engineering Society 2018.
 - "pysofaconventions, a Python API for SOFA". A. Pérez-López. In Proceedings of the
 148th Audio Engineering Society Convention. Audio Engineering Society, 2020.
 - "A Python library for multichannel acoustic signal processing". A. Pérez-López and A. Politis. In Proceedings of the 148th Audio Engineering Society Convention. Audio Engineering Society, 2020.

- 1 peer-reviewed conference article (as supervisor)
 - "Sound event localization and detection based on CRNN using dense rectangular filters and channel rotation data augmentation". F. Ronchini, D. Arteaga and A. Pérez-López. Submitted to Detection and Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020).

Software contributions

- 3 open-source libraries
 - masp <u>https://github.com/andresperezlopez/masp</u>
 - pysofaconventions https://github.com/andresperezlopez/pysofaconventions
 - Ambiscaper https://github.com/andresperezlopez/ambiscaper
- 3 open implementations of papers
 - RT60 estimation https://github.com/andresperezlopez/ambisonic_rt_estimation
 - o DCASE2020 https://github.com/andresperezlopez/DCASE2020
 - DCASE2019 https://github.com/andresperezlopez/DCASE2019_task3

Thanks