Integration of functions of single variable

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

December 1, 2020

Indefinite integrals

Properties

Table of indefinit

Substitution Rule

Integration by pa

functions

Trigonometric

integrals Pationalizing

Examples of E

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

- 1 Indefinite integrals
 - Definition. Properties
 - Table of indefinite integrals
 - Substitution Rule
 - Integration by parts
 - Integrals of rational functions
 - Trigonometric integrals
 - Rationalizing substitutions

Motivation

Definition. **Properties**

- Given the velocity of a function, one wishes to know its position at a given time.
- Find a function whose derivative is known.

Definition.

Properties

Antiderivatives

Definition

A function F(x) is called an antiderivative of f(x) on an interval I if F'(x) = f(x) for all $x \in I$.

Example

- $\left(\ln(1+x^2)\right)' = \frac{2x}{1+x^2}$ so $\ln(1+x^2)$ is an antiderivative of $\frac{2x}{1+x^2}$.
- $x^4 + 2$ is an antiderivative of $4x^3$.

Theorem

If F(x) is an antiderivative of f(x) on I. Then the family of all antiderivatives of f(x) is F(x) + C.

Definition

The family of all antiderivatives is called the indefinite integral of f(x).

Denote $\int f(x)dx = F(x) + C$, where F(x) is a known antiderivative.

$$\int \frac{2x}{1+x^2} dx = \ln(1+x^2) + C, \qquad \int 4x^3 dx = x^4 + C.$$

Indefinite integrals

Definition.
Properties
Table of indefinit

Substitution Rule Integration by parts Integrals of rational functions

Rationalizing substitutions

Examples of Eu

Linearity

Indefinite integrals

Definition. Properties

integrals

Substitution Rule

Integration by parts

functions

Trigonometric

Rationaliz

substitution

Let F(x), G(x) be antiderivatives of f(x), g(x) respectively. Then

$$\int (Af(x) + Bg(x))dx = AF(x) + BG(x) + C.$$

Theorem

A function f(x) which is continuous on [a, b] has an antiderivative on that interval.

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

Table of indefinite integrals

Indefinit

Definition

Table of indefinite integrals

Substitution Rule

Integration by part

functions

Trigonometri

integrals

substitutions

Examples of Exampl

$$\int x^{\alpha} dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} + C & \text{if } \alpha \neq -1, \\ \ln|x| + C & \text{if } \alpha = -1. \end{cases}$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, 0 < a \neq 1$$

$$\int \sin x dx = -\cos x + C, \qquad \int \cos x dx = \sin x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\cot x + C, \qquad \int \frac{dx}{\cos^{2} x} = \tan x + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C.$$

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

Substitution Rule

The Substitution Rule

Theorem

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x))g'(x)dx = \int f(u)du.$$

Example

Evaluate the following integrals

$$\int \frac{x^4 dx}{x^{10} + 1}$$

$$\int \frac{dx}{e^x - e^{-x}}$$

$$\int \frac{dx}{\sqrt{x^2+4}}$$

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

Integration by parts

Assume that u(x), v(x) are continuously differentiable functions. We have

$$\int u dv = uv - \int v du.$$

Example

Evaluate the integrals

$$\int \frac{x}{\cos^2 x} dx$$

$$\int \sqrt{x^2 + \alpha} dx$$

Indefinit

Definition. Properties

Table of indefin integrals

Integration by parts

Integrals of rational functions

integrals Rationalizi

substitutions

Examples of Eu

Table of indefinite integrals

Indefinit

Integral Definition

Table of indefin

Substitution Rule

Integration by parts

Integrals of ration

rigonometri

integrals

Rationalizing

Examples of E

$$\int \frac{dx}{\sqrt{x^2 + \alpha}} = \ln|x + \sqrt{x^2 + \alpha}| + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\int \sqrt{x^2 + \alpha} dx = \frac{x}{2} \sqrt{x^2 + \alpha} + \frac{\alpha}{2} \ln|x + \sqrt{x^2 + \alpha}| + C.$$

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

Definition.
Properties
Table of indefini

integrals
Substitution Rule
Integration by parts
Integrals of rational

Trigonometric integrals Rationalizing substitutions Aim: Evaluate $\int R(x)dx$, where

$$R(x) = \frac{b_0 + b_1 x + \ldots + b_m x^m}{a_0 + a_1 x + \ldots + a_n x^n}, a_i, b_i \in \mathbb{R}, a_n, b_m \neq 0,$$

is a rational function.

Method: expressing R(x) as a sum of partial fractions.

- Performing a polynomial division to reduce to proper rational function.
- 2 Factorizing the denominator into factors $(x-a)^k$, $(x^2+px+q)^k$, where $q-\frac{p^2}{4}>0$.
- 3 Writing R(x) as the sum of following functions

$$\int \frac{A_l dx}{(x-a)^l}, \quad \int \frac{B_l x + C_l}{(x^2 + px + q)^l} dx, l = 1, 2, \dots, k.$$

Integrals of rational

Example

Evaluate the integrals

$$\int \frac{xdx}{(x+2)^2(x-1)}$$

1
$$\int \frac{xdx}{(x+2)^2(x-1)}$$

2 $\int \frac{xdx}{x^4+3x^2+2}$

$$\int \frac{xdx}{x^4 + 3x^2 + 2}$$

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

Trigonometric integrals $\int \mathcal{R}(\sin x, \cos x) dx$

Indefinite integrals

Definition.
Properties
Table of indefinite integrals

Substitution Rule
Integration by parts
Integrals of rational

Trigonometric integrals Rationalizing substitutions Examples of Euler substitutions Evaluate $\int \mathcal{R}(\sin x, \cos x) dx$, where $\mathcal{R}(\sin x, \cos x)$ is a rational function of the variables $u = \sin x$, $v = \cos x$.

General substitution $t = \tan \frac{x}{2}$, $t \in (-\pi, \pi)$. We obtain

$$\int \mathcal{R}\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

Example

Evaluate
$$\int \frac{dx}{2\sin x - \cos x + 5}.$$

Special cases

Indefinite integrals

Table of indefinite integrals
Substitution Rule
Integration by parts
Integrals of rational

Trigonometric integrals

Rationalizing substitutions Examples of Eule substitutions ■ If $\mathcal{R}(-\sin x, -\cos x) = \mathcal{R}(\sin x, \cos x)$, set $t = \tan x$ or $t = \cot x$. Examples: $\int \frac{dx}{\sin^2 x \cos^4 x}$, $\int \frac{\tan x dx}{1 + \cos^2 x}$.

■ If $\mathcal{R}(-\sin x, \cos x) = -\mathcal{R}(\sin x, \cos x)$, set $t = \cos x$. Examples $\int \frac{dx}{(2+\cos x)\sin x}$

If $\mathcal{R}(\sin x, -\cos x) = -\mathcal{R}(\sin x, \cos x)$, set $t = \sin x$.

Indefinite integrals

Properties

Table of indefinit

Substitution Rule
Integration by parts

Trigonometric integrals Rationalizing substitutions Examples of Eule If we can write $a_1 \cos x + b_1 \sin x = A(a \sin x + b \cos x) + B(a \cos x - b \sin x)$. Then

$$\int \frac{a_1 \cos x + b_1 \sin x}{a \sin x + b \cos x} dx = \int \left(A + B \frac{a \cos x - b \sin x}{a \sin x + b \cos x} \right) dx$$
$$= Ax + B \ln|a \sin x + b \cos x| + C.$$

Example

$$\int \frac{\sin x - \cos x}{\sin x + 2\cos x} dx, \quad \int \frac{\sin x}{\sin x - 3\cos x} dx$$

- Definition. Properties
- Table of indefinite integrals
- Substitution Rule
- Integration by parts
- Integrals of rational functions
- Trigonometric integrals
- Rationalizing substitutions

000

Rationalizing

substitutions

$$\int \mathcal{R}(x, \sqrt{a^2 - x^2}) dx.$$
Set $x = a \sin t$, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, or $x = a \cos t$, $t \in [0, \pi]$.

$$\int \mathcal{R}(x, \sqrt{x^2 - a^2}) dx.$$
Set $x = \frac{a}{\sin t}$, $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $t \neq 0$, or $x = \frac{a}{\cos t}$, $t \in (0, \pi)$, $t \neq \frac{\pi}{2}$.

$$\int \mathcal{R}(x, \sqrt{a^2 + x^2}) dx.$$
Set $x = a \tan t$, $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, or $x = a \cot t$, $t \in (0, \pi)$.

Indefinite integrals 000

Rationalizing

substitutions

Example

Evaluate

$$\int \frac{x^3 dx}{\sqrt{1-x^2}}$$

$$\int \frac{dx}{x\sqrt{x^2 + 2x + 2}}$$

$$\int x\sqrt{-x^2+4x-3}dx$$

$$\int \mathcal{R}(x,\sqrt{Ax^2+Bx+C})dx,\ A>0$$

Rule: A > 0, set $\sqrt{Ax^2 + Bx + C} = t \pm \sqrt{Ax}$.

Example

Evaluate
$$I = \int \frac{dx}{x + \sqrt{x^2 + x + 1}}$$

Set $\sqrt{x^2 + x + 1} = t - x$. Then $x = \frac{t^2 - 1}{2t + 1}$, $dx = \frac{2(t^2 + t + 1)}{(2t + 1)^2} dt$.

$$I = \int \frac{2(t^2 + t + 1)}{t(2t+1)^2} dt = \int \left(\frac{2}{t} - \frac{3}{2t+1} - \frac{3}{(2t+1)^2}\right) dt$$

$$= 2\ln|t| - \frac{3}{2}\ln|2t+1| + \frac{3}{2(2t+1)} + C$$

$$= 2\ln|\sqrt{x^2 + x + 1} + x| - \frac{3}{2}\ln|2(\sqrt{x^2 + x + 1} + x) + 1| + \frac{3}{4(\sqrt{x^2 + x + 1} + x) + 2} + C$$

Indefinite integrals Definition. Properties

Table of indefinite integrals

Substitution Rule

Integration by parts Integrals of rational functions

Trigonometric integrals
Rationalizing substitutions

Examples of Euler substitutions

$$\int \mathcal{R}(x,\sqrt{Ax^2+Bx+C})dx$$
, $C>0$

Rule: C > 0, set $\sqrt{Ax^2 + Bx + C} = xt \pm \sqrt{C}$.

Example

Evaluate $I = \int \frac{dx}{1+\sqrt{1-2x-x^2}}$ Set $\sqrt{1-2x-x^2} = tx-1 \Rightarrow x = \frac{2(t-1)}{t^2+1}$, $dx = \frac{2(3t^2-2t+1)}{(t^2+1)^2}dt$.

$$I = \int \frac{3t^2 - 2t + 1}{t(t - 1)^2(t^2 + 1)} dt = \int \left(-\frac{1}{t} + \frac{1}{t - 1} + \frac{2}{t^2 + 1} \right) dt$$

$$= -\ln|t| + \ln|t - 1| + 2\arctan t + C$$

$$= -\ln\left|\frac{\sqrt{1 - 2x - x^2} + 1}{x}\right| + \ln\left|\frac{\sqrt{1 - 2x - x^2} + 1}{x} - 1\right| + 2\arctan\frac{\sqrt{1 - 2x - x^2} + 1}{x} + C$$

Indefinite
integrals

Definition.
Properties

Table of indefini

Substitution Rule Integration by parts Integrals of rational functions

Trigonometric integrals

substitutions

Examples of Euler substitutions

$$\int \mathcal{R}(x,\sqrt{A(x-\alpha)(x-\beta)})dx$$

Indefinit

Definition. Properties

integrals

Substitution Rule

Integration by pa

functions

integrals

Rationalizing substitutions

Examples of Euler substitutions

Rule: If
$$Ax^2 + B + C = A(x - \alpha)(x - \beta)$$
, set $\sqrt{Ax^2 + Bx + C} = t(x - \alpha)$ or $\sqrt{Ax^2 + Bx + C} = t(x - \beta)$.

Indefinite integrals

0000

Properties

Table of indefini

Substitution Rule

Integration by par

Integration by par

functions

Trigonometric

integrals

substitutions

Examples of Euler substitutions Fact: there are functions that $\int f(x)dx$ is not an elementary function. We cannot evaluate their integrals in terms of the functions we know, for instance

$$\int e^{x^2} dx, \int \frac{\sin x}{x} dx, \int \frac{1}{\ln x} dx \dots$$