Calculus 2 11/21 Note Module Class 07

Yueh-Chou Lee

November 21, 2019

Section 6.1: Areas and Distances

Area Formula

The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continuous for all x in [a, b], is

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

Graph:

Example:

Sketch the region enclosed by the gievn curves and find its area.

1.
$$y = \tan x, \ y = 2\sin x, \ -\pi/3 \le x \le \pi/3$$

Sol.

The curves intersect when $\tan x = 2 \sin x$, and

$$\tan x = 2\sin x \iff \sin x = 2\sin x \cos x \iff \sin x (2\cos x - 1) = 0$$

$$\Leftrightarrow \sin x = 0 \text{ or } \cos x = \frac{1}{2} \iff x = 0, \pm \frac{\pi}{3}$$

1

Since $\tan x$ and $\sin x$ are odd functions, if $f(x) = 2\sin x - \tan x$, then f is odd [f(x) = f(-x)].

$$A = 2 \int_0^{\pi/3} (2\sin x - \tan x) \, dx = 2 \left[-2\cos x - \ln|\sec x| \right]_{x=0}^{\pi/3} = 2 - 2\ln 2$$

2.
$$y = 3^x$$
, $y = 2^x$, $-1 \le x \le 1$

Sol.

$$A = \int_{-1}^{1} |3^{x} - 2^{x}| dx = \int_{-1}^{0} (2^{x} - 3^{x}) dx + \int_{0}^{1} (3^{x} - 2^{x}) dx$$
$$= \left[\frac{2^{x}}{\ln 2} - \frac{3^{x}}{\ln 3} \right]_{x=-1}^{0} + \left[\frac{3^{x}}{\ln 3} - \frac{2^{x}}{\ln 2} \right]_{x=0}^{1}$$
$$= \frac{4}{3 \ln 3} - \frac{1}{2 \ln 2}$$

Exercise:

Find the area enclosed by the gievn curves.

1.
$$y = x^3, y = x$$

2.
$$y = \sinh x$$
, $y = e^{-x}$, $x = 0$, $x = 2$

Sol.
1.
$$\frac{1}{2}$$
 2. $2 - 2\sqrt{3} + \frac{1}{2}e^2 + \frac{3}{2}e^{-2}$

Section 6.2: Volumes

Definition of Volume

Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the **volume** of S is

$$V = \int_{a}^{b} A(x) \, dx$$

Graph:

Example:

1. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Sol.

See the above figure, then $y = \sqrt{r^2 - x^2}$. So the cross-sectional area is

$$A(x) = \pi y^2 = \pi (r^2 - x^2)$$

3

Thus,

$$V = \int_{-r}^{r} A(x) dx = \int_{-r}^{r} \pi(r^2 - x^2) dx = 2\pi \int_{0}^{r} (r^2 - x^2) dx$$
$$= 2\pi \left[r^2 x - \frac{x^3}{3} \right]_{x=0}^{r} = 2\pi \left(r^3 - \frac{r^3}{3} \right)$$
$$= \frac{4}{3}\pi r^3$$

Exercise:

1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

(a)
$$y = x^3$$
, $y = 1$, $x = 2$; about $y = -3$.

- (b) $y = \sin x, y = \cos x, 0 \le x \le \pi/4$; about y = -1.
- 2. A frustum of a right circular cone with height h, lower base radius R, and top radius r. Find the volume of a frustum.

1.(a)
$$\frac{471\pi}{14}$$
 (b) $(2\sqrt{2} - \frac{3}{2}) \pi$

1.(a)
$$\frac{471\pi}{14}$$
 (b) $\left(2\sqrt{2} - \frac{3}{2}\right)\pi$
2. $V = \frac{1}{3}\pi h(R^2 + Rr + r^2)$ or $V = \frac{h}{3}\left[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}\right]$

Section 6.3: Volumes by Cylindrical Shells

Volume Formula

The volume of the solid in the following graph, obtained by rotating about the y-axis the region under the curve y = f(x) from a to b, is

$$V = \int_{a}^{b} 2\pi x f(x) dx \quad \text{where } 0 \le a < b$$

Graph:

Example:

1. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Sol.

See the above figure, then $h(x) = 2\sqrt{r^2 - x^2}$. Thus,

$$V = \int_0^r 2\pi x h(x) dx = \int_0^r 2\pi x (2\sqrt{r^2 - x^2}) dx$$
$$= 4\pi \int_0^r x (r^2 - x^2)^{1/2} dx$$
$$= 4\pi \left[-\frac{1}{3} (r^2 - x^2)^{3/2} \right]_{x=0}^r$$
$$= \frac{4}{3} \pi r^3$$

Exercise:

1. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.

(a)
$$y = 4 - 2x$$
, $y = 0$, $x = 0$; about $x = -1$.

(b)
$$y = \sqrt{x}$$
, $x = 2y$; about $x = 5$.

2. A frustum of a right circular cone with height h, lower base radius R, and top radius r. Use the method of cylindrical shells to find the volume of a frustum.

1.(a)
$$\frac{40\pi}{3}$$
 (b) $\frac{136\pi}{15}$

Sol.
1.(a)
$$\frac{40\pi}{3}$$
 (b) $\frac{136\pi}{15}$
2. $V = \frac{1}{3}\pi h(R^2 + Rr + r^2)$ or $V = \frac{h}{3}\left[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}\right]$

Section 6.5: Average Value of a Function

The Mean Value Theorem for Integrals

If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

that is,

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

Example:

- 1. (a) Find the average value of on the given interval.
 - (b) Find c such that $f_{ave} = f(c)$.
 - (c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

$$f(x) = 2\sin x - \sin(2x), [0, \pi]$$

Sol.

(a) $f_{\text{ave}} = \frac{1}{\pi - 0} \int_0^{\pi} \left[2\sin x - \sin(2x) \right] dx = \frac{1}{\pi} \left[-2\cos x + \frac{1}{2}\cos(2x) \right]_{x=0}^{\pi} = \frac{4}{\pi}$

(b) $f(c) = f_{\text{ave}} \iff 2\sin c - \sin(2c) = \frac{4}{\pi}$

(c) .

2. Find the numbers b such that the average value of $f(x) = 2 + 6x - 3x^2$ on the interval [0, b] is equal to 3.

Sol.

$$\frac{1}{b-0} \int_0^b f(x) \, dx = 3$$

$$\Leftrightarrow \frac{1}{b} \int_0^b (2 + 6x - 3x^2) \, dx = 3$$

$$\Leftrightarrow 2 + 3b - b^2 = 3$$

$$\Leftrightarrow b^2 - 3b + 1 = 0$$

$$\Leftrightarrow b = \frac{3 \pm \sqrt{5}}{2}$$

Both roots are valid since they are positive.

Exercise:

- 1. Find the average value of the function on the given interval.
 - (a) $f(x) = x^2 \sqrt{1 + x^3}$, [0, 2]
 - (b) $f(x) = (\ln x)/x$, [1, 5]
- 2. (a) Find the average value of on the given interval.
 - (b) Find c such that $f_{ave} = f(c)$.
 - (c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

$$f(x) = (x-3)^2$$
, [2, 5]

Sol.

1.(a) $\frac{26}{9}$ (b) $\frac{1}{8}(\ln 5)^2$

2.(a) $f_{\text{ave}} = 1$ (b) c = 2, 4 (c)