VISION TRANSFORMER ADAPTER FOR DENSE PREDICTIONS

ICLR 2023

汇报人: 丁伯瑞

2023.06.20

Author

Zhe Chen 1,2 *, Yuchen Duan 2,3 *, Wenhai Wang 2 $\stackrel{\square}{\sim}$, Junjun He 2 , Tong Lu 1 $\stackrel{\square}{\sim}$, Jifeng Dai 2,3 , Yu Qiao 2

¹Nanjing University, ²Shanghai AI Laboratory, ³Tsinghua University czcz94cz@gmail.com, {duanyuchen, wangwenhai, hejunjun}@pjlab.org.cn

引用次数

lutong@nju.edu.cn, {daijifeng, qiaoyu}@pjlab.org.cn

Zhe Chen PhD candidate, Nanjing University

PhD candidate, <u>Nanjing University</u> 在 smail.nju.edu.cn 的电子邮件经过验证 - <u>首页</u> Computer Vision Foundation Model

位于	SI用次数	平份	
Vision Transformer Adapter for Dense Predictions Z Chen, Y Duan, W Wang, J He, T Lu, J Dai, Y Qiao International Conference on Learning Representation (ICLR)	101	2022	
Internimage: Exploring Large-scale Vision Foundation Models with Deformable Convolutions W Wang, J Dai, Z Chen, Z Huang, Z Li, X Zhu, X Hu, T Lu, L Lu, H Li, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)	53	2022	
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Z Chen, W Wang, E Xie, T Lu, P Luo Proceedings of the AAAI Conference on Artificial Intelligence 36 (1), 393-400	10	2022	
InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges G Chen, S Xing, Z Chen, Y Wang, K Li, Y Li, Y Liu, J Wang, YD Zheng, Ego4D Challenge 2022 @ ECCV	7	2022	
InternGPT: Solving Vision-Centric Tasks by Interacting with Chatbots Beyond Language Z Liu, Y He, W Wang, W Wang, Y Wang, S Chen, Q Zhang, Y Yang, Q Li, arXiv preprint arXiv:2305.05662	5	2023	
DDP: Diffusion Model for Dense Visual Prediction Y Ji, Z Chen, E Xie, L Hong, X Liu, Z Liu, T Lu, Z Li, P Luo arXiv preprint arXiv:2303.17559	5	2023	
FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation Z Chen, J Wang, W Wang, G Chen, E Xie, P Luo, T Lu arXiv preprint arXiv:2111.02394	5	2021	
VisionLLM: Large language model is also an open-ended decoder for vision-centric tasks W Wang, Z Chen, X Chen, J Wu, X Zhu, G Zeng, P Luo, T Lu, J Zhou, arXiv preprint arXiv:2305.11175	4	2023	
SiameseCCR: A Novel Method for One-Shot and Few-Shot Chinese CAPTCHA Recognition using Deep Siamese Network	3	2020	

创建我的个人资料

引用次数

	总计	2018 年至今
引用	196	196
h 指数	5	5
i10 指数	3	3
		160
		160

开放获取的出版物数量	查看全部
0 篇文章	2 篇文章
无法查看的文章	可查看的文章
根据资助方的强制性开放获取政策	

合著作者

Motivation

- □ 现在普遍的认知为ViT变体(如Swin-Transformer)会在目标检测,分割等领域可以产生更好的效果。因为其通过使用局部空间操作将视觉特定的归纳偏差引入其架构中。传统ViT缺乏图像相关的先验知识会导致收敛速度较慢,性能较低,因此在密集预测任务效果不好。
- □ 作者提出了一个Adapter优化方法: 在不修改原始结构的情况下有效地将普通ViT适应下游密集预测任务。具体来说,为了将视觉特定的归纳偏差引入到普通ViT中,作者为ViT-adapter设计了三个定制模块。

(a) Previous Method (Li et al., ViTDet)

$$\hat{\mathcal{F}}_{\mathrm{vit}}^{i} = \mathcal{F}_{\mathrm{vit}}^{i} + \gamma^{i} \mathrm{Attention}(\mathrm{norm}(\mathcal{F}_{\mathrm{vit}}^{i}), \mathrm{norm}(\mathcal{F}_{\mathrm{sp}}^{i}))$$

$$\hat{\mathcal{F}}_{\text{vit}}^i = \mathcal{F}_{\text{vit}}^i + \gamma^i \text{Attention}(\text{norm}(\mathcal{F}_{\text{vit}}^i), \text{norm}(\mathcal{F}_{\text{sp}}^i))$$

ARCHITECTURE CONFIGURATIONS

Varianta		Se	ttings of	ViT			Settin	gs of Ada	pter	Total
Variants	Layers	Width	FFN	Heads	#Param	N	FFN	Heads	#Param	Total Param 8.0M 27.5M 99.8M 327.0M
Tiny (T)	12	192	768	3	5.5M	4	48	6	2.5M	8.0M
Small (S)	12	384	1536	6	21.7M	4	96	6	5.8M	27.5M
Base (B)	12	768	3072	12	85.8M	4	192	12	14.0M	99.8M
Large (L)	24	1024	4096	16	303.3M	4	256	16	23.7M	327.0M

Table 10: **Configurations of the ViT-Adapter.** We apply our adapters on four different settings of ViT, including ViT-T, ViT-S, ViT-B, and ViT-L, covering a wide range of different model sizes.

Experiment

Mathad	#Param	N	Aask I	R-CNN	V1×	schedu	ile	Mas	sk R-C	CNN 3	\times +M	S sche	dule
Method	(M)	AP^{b}	AP_{50}^{b}	AP_{75}^{b}	AP^{m}	APm 50	AP_{75}^{m}	AP^{b}	AP_{50}^{b}	AP_{75}^{b}	AP^{m}	AP ₅₀	APm 75
PVT-Tiny (Wang et al., 2021)	32.9	36.7	59.2	39.3	35.1	56.7	37.3	39.8	62.2	43.0	37.4	59.3	39.9
PVTv2-B1 (Wang et al., 2022a)	33.7	41.8	64.3	45.9	38.8	61.2	41.6	44.9	67.3	49.4	40.8	64.0	43.8
ViT-T (Li et al., 2021b)	26.1	35.5	58.1	37.8	33.5	54.9	35.1	40.2	62.9	43.5	37.0	59.6	39.0
ViTDet-T (Li et al., 2022b)	26.6	35.7	57.7	38.4	33.5	54.7	35.2	40.4	63.3	43.9	37.1	60.1	39.3
ViT-Adapter-T (ours)	28.1	41.1	62.5	44.3	37.5	59.7	39.9	46.0	67.6	50.4	41.0	64.4	44.1
PVT-Small (Wang et al., 2021)	44.1	40.4	62.9	43.8	37.8	60.1	40.3	43.0	65.3	46.9	39.9	62.5	42.8
PVTv2-B2 (Wang et al., 2022a)	45.0	45.3	67.1	49.6	41.2	64.2	44.4	47.8	69.7	52.6	43.1	66.8	46.7
Swin-T (Liu et al., 2021b)	47.8	42.7	65.2	46.8	39.3	62.2	42.2	46.0	68.1	50.3	41.6	65.1	44.9
ConvNeXt-T (Liu et al., 2022)	48.1	44.2	66.6	48.3	40.1	63.3	42.8	46.2	67.9	50.8	41.7	65.0	44.9
Focal-T (Yang et al., 2021)	48.8	44.8	67.7	49.2	41.0	64.7	44.2	47.2	69.4	51.9	42.7	66.5	45.9
ViT-S (Li et al., 2021b)	43.8	40.2	63.1	43.4	37.1	59.9	39.3	44.0	66.9	47.8	39.9	63.4	42.2
ViTDet-S (Li et al., 2022b)	45.7	40.6	63.3	43.5	37.1	60.0	38.8	44.5	66.9	48.4	40.1	63.6	42.5
ViT-Adapter-S (ours)	47.8	44.7	65.8	48.3	39.9	62.5	42.8	48.2	69.7	52.5	42.8	66.4	45.9
PVTv2-B5 (Wang et al., 2022a)	101.6	47.4	68.6	51.9	42.5	65.7	46.0	48.4	69.2	52.9	42.9	66.6	46.2
Swin-B (Liu et al., 2021b)	107.1	46.9	-	-	42.3	-	_	48.6	70.0	53.4	43.3	67.1	46.7
ViT-B (Li et al., 2021b)	113.6	42.9	65.7	46.8	39.4	62.6	42.0	45.8	68.2	50.1	41.3	65.1	44.4
ViTDet-B (Li et al., 2022b)	121.3	43.2	65.8	46.9	39.2	62.7	41.4	46.3	68.6	50.5	41.6	65.3	44.5
ViT-Adapter-B (ours)	120.2	47.0	68.2	51.4	41.8	65.1	44.9	49.6	70.6	54.0	43.6	67.7	46.9
ViT-L [†] (Li et al., 2021b)	337.3	45.7	68.9	49.4	41.5	65.6	44.6	48.3	70.4	52.9	43.4	67.9	46.6
ViTDet-L [†] (Li et al., 2022b)	350.9	46.2	69.2	50.3	41.4	65.8	44.1	49.1	71.5	53.8	44.0	68.5	47.6
ViT-Adapter-L [†] (ours)	347.9	48.7	70.1	53.2	43.3	67.0	46.9	52.1	73.8	56.5	46.0	70.5	49.7

Table 1: Object detection and instance segmentation with Mask R-CNN on COCO val2017. For fair comparison, we initialize all ViT-T/S/B models with the regular ImageNet-1K pre-training (Touvron et al., 2021), and ViT-L † with the ImageNet-22K weights from (Steiner et al., 2021).

Method	Pre-train	$ \mathrm{AP^b} $	$\mathrm{AP^m}$
Swin-B (Mask R-CNN 3×+MS)	ImageNet-1K ImageNet-22K Multi-Modal	48.6 49.6 N/A	43.3 44.3 N/A
ViT-Adapter-B (Mask R-CNN 3×+MS)	ImageNet-1K ImageNet-22K Multi-Modal	49.6 50.5 51.2	43.6 44.6 45.3

Table 4: **Comparison of different pre-trained** weights. Our method retains the flexibility of ViT and thus could benefit from advanced multimodal pre-training (Zhu et al., 2021).

Experiment

□ 消融实验:

Method	1	Compor Injector	ents Extractor	Interaction Mode	ı		
ViT-S (Li et al., 2021b)				_	40.2	37.1	43.8M
Variant 1	✓			Add	41.6	38.0	45.1M
Variant 2	✓	\checkmark		Attention	42.6	38.8	46.6M
ViT-Adapter-S (ours)	✓	✓	✓	Attention	44.7	39.9	47.8M

N	AP^{b}	$\mathrm{AP^m}$	#Param
0	40.2	37.1	43.8M
1	43.2	38.9	45.5M
2	43.9	39.4	46.2M
4	44.7	39.9	47.8M
6	44.7	39.8	49.4M

Attention Mechanism	Complexity	$ AP^{b} $	$\mathrm{AP^m}$	FLOPs	#Param	Train Time	Memory
Global Attention (Vaswani et al., 2017) CSwin Attention (Dong et al., 2021)	Quadratic Linear			1080G 456G		1.61s 0.56s	*19.0G 15.6G
Pale Attention (Wu et al., 2022a)	Linear			458G		0.75s	17.4G
Deformable Attention (Zhu et al., 2020)	Linear	44.7	39.9	403G	47.8M	0.36s	13.7G

Summary

- □ 本文提出了一种新的adapter方法,可以利用在普通的ViT上
- □ 因为特定的transformer无法利用多模态,该adapter可以利用多模态预训练模型
- □ 能够学习到CNN关注的纹理等信息,可以有效地加入到ViT中。

