算法设计与分析实验报告

实验名称: ______ 骑士巡游问题

一、问题陈述,相关背景、应用及研究现状的综述分析

1.问题陈述:

在一张国际象棋棋盘上(8*8 方格),骑士(knight,马)位于任意一个位置。问如何才能让骑士不重不漏的经过棋盘上的每个格?本问题中已知骑士位置(m,n),其中0=<m,n<=8,要求给出骑士行走路径,路径可用8*8矩阵输出,其中值表示骑士到达此位置行走的步数(初始为1);

2.相关背景:

骑士巡游问题也属于 TSP(TravelingSalesmanProblem),最早由数学家欧拉于 1759 年所提出。

3.应用及研究现状:

骑士巡游问题应用较广,如基于骑士巡游的灰度图像加密压缩算法,基于骑士巡游的 Mesh 光网络链路故障定位策略等。

常见的骑士巡游问题的解法有回溯递归

二、模型拟制、算法设计和正确性证明

1. 模型拟制

用二维数组来代表棋盘,初始化全为 0,其中存储的数字为路径的序号,如果为 0则表示还没有走过。

2. 算法设计

- 1. 递归解法: 从起始点开始,依次探测 8 个方向的点是否可行,如果可行,则在二维数组中存下路径序号,如果不可行,则进行回溯,直到走完所需路径,表明一次巡游完成。
- 2. 贪心解法: 从起点开始,探测周围 8 个方向的点的对应可行路径数,选择其中路径数最少的那一个点,存储路径序号,然后重复上述步骤,继续探索,直到结束。

3. 正确性证明:

递归解法类似于穷举,探索所有路径,直到有一种可行方案出现,但这样的话时间复 杂度较高。

贪心解法某些情况下可以求得最优解,但是有些情况只能求得较优解,不过时间复杂 度较低。

三、时间和空间复杂性分析
算法 1: 递归解法 递归对应树形结构,最多每个结点可以有 8 个子女,最坏情况, 时间复杂度为 8 的 n 平 方次方,空间复杂度主要来源于二维数组存储,空间复杂度为 0 (n²) 算法 2: 贪心解法
每次从 8 个点中选择一个点继续探索,总共的探索次数是确定的,为 n 平方-1,因此时间复杂度为 0 (n^2),空间复杂度与算法 1 类似,为 0 (n^2)

四、程序实现和实验测试过程

程序实现代码存于 cavalier_traversal 文件 实验测试截图如下:

请输) 1 3					隔开					
巡游员	各径)	为 ([回溯)) :						
43	38	55	62	53	50	35	64			
56	61	42	1	36	63	52	49			
39	44	37	54	51	2	31	34			
60	57	46	41	32	29	48	3			
45	40	59	28	47	4	33	30			
58	27	16	19	22	11	8	5			
17	20	25	14	9	6	23	12			
26	15	18	21	24	13	10	7			
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	 巡游路径为(贪心)(以(3,3)为例:									
++	+						+			
23	20	17	38	51	64	15	40			
18	37	22	57	16	39	52	63			
21	24	19	50	61	58	41	14			
36	31	60	1	56	49	62	53			
25	2	47	32	59	54	13	42			
30	35	28	55	48	45	10	7			
3	26	33	46	5	8	43	12			
34	29	4	27	44	11	6	9			

五、总结

递归算法某些点运行时间较长,而贪心算法某些情况只能求得次优解。