

计算机组成原理

授课老师: 吴炜滨

大纲

- > 定点运算
 - 除法运算
 - 笔算除法的分析
 - 笔算除法的改进
 - 原码的除法运算

笔算除法的分析

$$\begin{array}{c|c} 0.1 \ 1 \ 0.1 \ 10 \ 1 \\ \hline 0.1 \ 10 \ 1 \\ \hline 0.0 \ 1 \ 10 \ 1 \\ \hline 0.0 \ 1 \ 0 \ 1 \\ \hline 0.0 \ 0 \ 1 \ 0 \ 1 \\ \hline 0.0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ \hline 0.0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ \hline \end{array}$$

$$x \div y = -0.1101$$
 商符心算求得
余数 0.0000111

■特点

- 商符单独心算:同正异负
- 商值由绝对值相除而得,心算上商
 - 比较余数和右移一位的除数的大小
 - 余数<右移一位的除数: 上商0
 - 余数≥右移一位的除数: 上商1
- 余数不动低位补0,减右移一位的除数
- 2倍字长加法器
- 上商位置不固定

笔算除法的改进

■ 笔算除法

- 商符单独心算:同正异负
- 商值由绝对值相除而得,心算上商
 - 比较余数和右移一位的除数的大小
 - 余数<除数:上商0
 - 余数≥除数:上商1
- 余数不动低位补0,
 - 减右移一位的除数
- 2倍字长加法器
- 上商位置不固定

■ 机器除法

- 商符单独计算: 两操作数符号位异或
- 商值由绝对值相除而得,根据减法结果上商
 - 左移一位的余数减除数
 - ・ 差< 0: 上商0
 - 差≥0: 上商1
- 余数左移一位低位补0,

减除数

- 1倍字长加法器
- 在寄存器最末位上商,每次上商完左移一位

大纲

- > 定点运算
 - 除法运算
 - 原码的除法运算
 - 运算规则
 - 恢复余数法
 - 加减交替法 (不恢复余数法)
 - 硬件配置
 - 控制流程

运算规则

■以小数为例

$$[x]_{\bar{\mathbb{R}}} = x_0. x_1 x_2 \cdots x_n \qquad [y]_{\bar{\mathbb{R}}} = y_0. y_1 y_2 \cdots y_n$$
$$[\frac{x}{y}]_{\bar{\mathbb{R}}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

- 式中
 - 商符单独计算: $x_0 \oplus y_0$
 - 商值由绝对值相除而得: $\frac{x^*}{y^*}$
 - $x^* = 0.x_1x_2 \cdots x_n$ 为 x 的绝对值
 - $y^* = 0. y_1 y_2 \cdots y_n$ 为 y 的绝对值

运算规则

$$\left[\frac{x}{y}\right]_{\mathbb{R}} = (x_0 \oplus y_0).\frac{x^*}{y^*}$$

■约定

- 小数原码除法 *x** < *y**
 - 小数定点机,原码数值绝对值<1
- 整数原码除法 $x^* \ge y^*$
 - 整数定点机,原码数值绝对值≥1
- 被除数不等于0
 - 结果总为0, 无需经过除法运算, 直接利用判零电路即可得结果
- 除数不能为0
 - 结果为无穷大,不能在机器中表示
- 商的位数与操作数的位数相同

■ 设机器字长为5位(含1位符号位), x = 0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: 数值部分

$$[x^*]_{\bar{\mathbb{R}}} = 0.1011$$
 $[y^*]_{\bar{\mathbb{R}}} = 0.1101$

$$[x^*]_{\dot{k}\dot{h}} = 0.1011$$
 $[y^*]_{\dot{k}\dot{h}} = 0.1101$ $[-y^*]_{\dot{k}\dot{h}} = 1.0011$

■ 设机器字长为5位(含1位符号位), x = 0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$

$$[x^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

被除数 (余数)	商	说明
0.1011	0.0000	
+ 1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
1.1110	0.0000	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0.0000	恢复后的余数
逻辑左移 1.0110	0.000	← 1
+ 1.0011		$+[-y^*]_{\lambda \mid \cdot}$
0.1001	0.0001	余数为正,上商 1
1.0010	0.001	← 1
+ 1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$

被除数 (余数)	商	说 明
0.0101	0.0011	余数为正,上商 1
0.1010	0.011	← 1
+ 1.0011		$+[-y^*]_{\dot{\imath} \dot{\upharpoonright}}$
1.1101	0.0110	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1010	0.0110	恢复后的余数
1.0100	0.110	← 1
+ 1.0011		$+[-y^*]_{\dot{\imath} \dot{\upharpoonright}}$
0.0111	0.1101	余数为正,上商1

 $\frac{x^*}{y^*} = 0.1101$

真正余数由最终余数乘上2⁻⁴而得: 0.0000111

■ 设机器字长为5位(含1位符号位), x = 0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$

$$[x]_{\text{fi}} = 0.1011 \quad [y]_{\text{fi}} = 1.1101$$

商符

$$x_0 \oplus y_0 = 0 \oplus 1 = 1$$

• 商值由两数绝对值相除而得

$$\frac{x^*}{y^*} = 0.1101$$

• 真正余数由最终余数乘上2⁻⁴而得: 0.00000111

$$\therefore \left[\frac{x}{v}\right]_{\mathbb{R}} = 1.1101$$
 余数: 0.00000111

- 利用恢复余数法完成两个n+1位小数原码(含1位符号位)相除,其特点:
 - 每次上商时,减除数
 - 余数≥ 0: 上商 1
 - 余数<0:上商0,恢复余数
 - 然后, 余数逻辑左移1位, 准备下次上商
 - 第一次上商判溢出
 - 小数定点机,第一次上商为1,发生溢出
 - 上商n+1次
 - 商的位数与操作数的位数相同
 - 移位n次
 - 用移位的次数判断除法是否结束

不恢复余数法 (加减交替法)

- 恢复余数法运算规则:每次上商时,根据上次所得的余数
 - 余数R_i ≥ 0 : 上商 1
 - 余数逻辑左移1位,减除数,得到进行下次上商判断时余数: $2R_i y^*$
 - 余数*R_i* < 0 : 上商 0
 - 恢复余数: $R_i + y^*$; 再逻辑左移1位,减除数,得到进行下次上商判断时余数: $2(R_i + y^*) y^* = 2R_i + y^*$
- 不恢复余数法运算规则:每次上商时,根据上次所得的余数
 - 余数R_i ≥ 0 : 上商1
 - 余数逻辑左移1位,减除数,得到进行下次判断上商时余数: $2R_i y^*$
 - 余数 $R_i < 0$: 上商0
 - 余数逻辑左移1位,加除数,得到进行下次判断上商时余数: $2R_i + y^*$
 - 加减交替法

不恢复余数法 (加减交替法)

■ 已知机器字长为5位(含1位符号位), x = 0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: 数值部分

$$[x^*]_{\bar{\mathbb{R}}} = 0.1011$$
 $[y^*]_{\bar{\mathbb{R}}} = 0.1101$

$$[x^*]_{\dot{k}h} = 0.1011$$
 $[y^*]_{\dot{k}h} = 0.1101$ $[-y^*]_{\dot{k}h} = 1.0011$

$$[x^*]_{\dot{\uparrow}\dot{\uparrow}} = 0.1011$$

 $[y^*]_{\dot{\uparrow}\dot{\uparrow}} = 0.1101$
 $[-y^*]_{\dot{\uparrow}\dot{\uparrow}} = 1.0011$

逻辑

$$\frac{x^*}{y^*} = 0.1101$$

真正余数由最终余数乘上 2⁻⁴而得: 0.00000111

被除数 (余数)	商	说明
0.1011	0.0000	
+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
1.1110	0.0000	余数为负,上商 0
1.1100	0.000	← 1
+0.1101		$+[y^*]_{\dot{\imath} \dot{\uparrow}}$
0.1001	0.0001	余数为正,上商 1
1.0010	0.001	← 1
+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
0.0101	0.0011	余数为正,上商 1
0.1010	0.011	← 1
+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
1.1101	0.0110	余数为负,上商 0
1.1010	0.110	← 1
+0.1101		$+[y^*]_{\dot{\imath} \dot{\backprime}}$
0.0111	0.1101	余数为正,上商 1

不恢复余数法 (加减交替法)

■ 设机器字长为5位(含1位符号位), x = 0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$

$$[x]_{\text{fi}} = 0.1011 \quad [y]_{\text{fi}} = 1.1101$$

商符

$$x_0 \oplus y_0 = 0 \oplus 1 = 1$$

• 商值由两数绝对值相除而得

$$\frac{x^*}{y^*} = 0.1101$$

• 真正余数由最终余数乘上2⁻⁴而得: 0.00000111

$$\therefore \ [\frac{x}{v}]_{\bar{\mathbb{R}}} = 1.1101 \qquad \qquad 余数: \ 0.00000111$$

不恢复余数法 (加减交替法)

- 利用不恢复余数法完成两个n+1位小数原码(含1位符号位)相除,其特点:
 - 每次上商时,根据上次所得的余数
 - 余数 $R_i \geq 0$:上商1
 - 下次判断上商时余数: 2*R_i y**
 - 余数 $R_i < 0$: 上商0
 - 下次判断上商时余数: $2R_i + y^*$
 - 第一次上商,直接减除数,判溢出
 - 小数定点机,第一次上商为1,发生溢出
 - 上商 n+1次, $\ln n+1$ 次
 - 商的位数与操作数的位数相同,加法次数与上商次数相同
 - 移位 n 次
 - 用移位的次数判断除法是否结束

原码加减交替除法硬件配置

■ 寄存器A、X、Q、加法器均n+1位

• A: 被除数的原码、余数

• X: 除数的原码

• Q (MQ): 商的原码

■ 用 Q_n 控制加减交替

• Q_n=1: 左移一位, 做减法

• Q_n=0: 左移一位, 做加法

原码加减交替除法硬件配置

- 计数器C
 - 计数器值 = 移位次数 = 数值部分位数 = n
 - 每移位一次, 计数器值减1
- S: 商符
 - 值 = 被除数和除数的符号位进行异或
- G_D: 除法标志
- V: 溢出标志

原码加减交替除法控制流程

- ■准备
 - Q清零准备接收商,被除数原码 \rightarrow A,除数原码 \rightarrow X,数值部分位数 $n \rightarrow$ C
- 求商符
 - $A_0 \oplus X_0 \rightarrow S$
- 变被除数、除数为绝对值
 - $0 \rightarrow A_0$, $0 \rightarrow X_0$
- 第一次上商判断溢出
 - $[A] [X] \rightarrow A$
 - A < 0?
 - Y: $0 \rightarrow Q_n$
 - N:溢出,1→V,停止运算进行中断处理(重新选择比例因子)
 - A、Q 同时左移一位
 - $[A] + [X] \rightarrow A$
 - $[C] 1 \rightarrow C$

原码加减交替除法控制流程

■ 逐位上商

- A < 0?
 - Y: 0 → Q_n, A、Q 同时左移一位, [A] + [X] → A
 - N: 1 → Q_n, A、Q 同时左移一位, [A] [X] → A
- $[C] 1 \rightarrow C$
- C = 0?
 - N: 回到判断A < 0?
 - Y: 最后一次上商
 - A < 0?
 - Y: $0 \rightarrow Q_n$
 - N: $1 \rightarrow Q_n$

谢谢!