- 9. 一定条件下,乙酸酐 $\Big[\big(\mathrm{CH_3CO} \big)_2 \mathrm{O} \Big]$ 醇解反应 $\Big[\big(\mathrm{CH_3CO} \big)_2 \mathrm{O} + \mathrm{ROH} \longrightarrow \mathrm{CH_3COOR} + \mathrm{CH_3COOH} \Big]$ 可进行完全,利用此反应定量测定有机醇 $\Big(\mathrm{ROH} \big)$ 中的羟基含量,实验过程中酯的水解可忽略。实验步骤如下:
- ①配制一定浓度的乙酸酐-苯溶液。
- ②量取一定体积乙酸酐-苯溶液置于锥形瓶中,加入 mgROH 样品,充分反应后,加适量水使剩余乙酸酐完全水解: $(CH_3CO)_2O+H_2O\longrightarrow 2CH_3COOH$ 。
- ③加指示剂并用 $\operatorname{cmol} \cdot \operatorname{L}^{-1}\operatorname{NaOH}$ 甲醇标准溶液滴定至终点,消耗标准溶液 $\operatorname{V}_{1}\operatorname{mL}$ 。
- ④在相同条件下,量取相同体积的乙酸酐-苯溶液,只加适量水使乙酸酐完全水解;加指示剂并用 $cmol \cdot L^{-1}NaOH-$ 甲醇标准溶液滴定至终点,消耗标准溶液 V_2mL 。 ROH 样品中羟基含量(质量分数)计算 正确的是

A.
$$\frac{c(V_2-V_1)\times17}{1000m}\times100\%$$

B.
$$\frac{c(V_1-V_2)\times17}{1000m}\times100\%$$

C.
$$\frac{0.5c(V_2-V_1)\times17}{1000m}\times100\%$$

D.
$$\frac{c(0.5V_2-V_1)\times17}{1000m}\times100\%$$