Linear Algebra – Homework 7

26 Oct 2022 Due: 3 Nov 2022

Textbook Problems. These problems will not be graded, but you must submit solutions to receive full credit for the homework.

Problem 3.1.27. True or false (with a counterexample if false):

- (a) The vectors **b** that are not in the column space C(A) form a subspace.
- (b) If C(A) contains only the zero vector, then A is the zero matrix.
- (c) The column space of 2A equals the column space of A.
- (d) The column space of A I equals the column space of A (test this).

Problem 3.1.28. Construct a 3×3 matrix whose column space includes (1,1,0) and (1,0,1), but not (1,1,1). Construct a 3×3 whose column space is only a line.

Problem 3.2.12. The equation x - 3y - z = 0 determines a plane in \mathbb{R}^3 . What is the matrix A in this equation? Which variables are free? What are the two special solutions?

Problem 3.2.20. Construct a 2×2 matrix whose nullspace equals its column space. This is possible.

Problem 3.2.31. Find the reduced row echelon forms R and the rank of these matrices:

- (a) The 3×4 matrix with all entries equal to 4.
- (b) The 3×4 matrix with $a_{ij} = i + j 1$.
- (c) The 3×4 matrix with $a_{ij} = (-1)^j$.

Problem 3.2.32. Kirchhoff's Current Law $A^T \mathbf{y} = \mathbf{0}$ says that current in = current out at every node. At node 1, this is $y_3 = y_1 + y_4$. Write the four equations for Kirchhoff's Law at the four nodes (arrows show the positive direction of each y). Reduce A^T to R and find three special solutions in the nullspace of A^T (4 × 6 matrix).

Problem 3.3.4. Find the complete solution (also called the *general solution*) to

$$\left[\begin{array}{cccc} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \\ t \end{array}\right] = \left[\begin{array}{c} 1 \\ 3 \\ 1 \end{array}\right].$$

Problem 3.3.7. Show by elimination that (b_1, b_2, b_3) is in the column space if $b_3 - 2b_2 + 4b_1 = 0$.

$$A = \left[\begin{array}{rrr} 1 & 3 & 1 \\ 3 & 8 & 2 \\ 2 & 4 & 0 \end{array} \right].$$

What combination of the rows of A gives the zero row?

Problem 3.3.13. Explain why these are all false:

- (a) The complete solution is any linear combination of \mathbf{x}_p and \mathbf{x}_n .
- (b) A system $A\mathbf{x} = \mathbf{b}$ has at most one particular solution.
- (c) The solution \mathbf{x}_p with all free variables zero is the shortest solution (minimum length $\|\mathbf{x}\|$). Find a 2×2 counterexample.
- (d) If A is invertible there is no solution \mathbf{x}_n in the nullspace.

Problem 3.3.34 Suppose you know that the 3×4 matrix A has the vector $\mathbf{s} = (2, 3, 1, 0)$ as the only "special solution" to $A\mathbf{x} = \mathbf{0}$.

- (a) What is the rank of A and the complete solution to $A\mathbf{x} = \mathbf{0}$?
- (b) What is the exact reduced row echelon form of A?
- (c) How do you know that $A\mathbf{x} = \mathbf{b}$ can be solved for all \mathbf{b} ?

Graded Problems.

Problem 1. Find the reduced row echelon form R and a spanning set (the special solution(s)) for the null space N(A):

$$A = \begin{bmatrix} -3 & -1 & 0 & 1 \\ -4 & -1 & 1 & 1 \\ -1 & 1 & 4 & -1 \end{bmatrix}$$

Problem 2. Find a condition on b_1 , b_2 , b_3 that guarantees $\mathbf{b} = (b_1, b_2, b_3)$ is in the column space $\mathbf{C}(A)$ of the matrix

$$A = \left[\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right].$$

Then find the *complete* solution to the system of linear equations

$$A\mathbf{x} = \left[\begin{array}{c} 1\\1\\-2 \end{array} \right].$$