# What does it mean when the chance of rain is 60% in the next 12 hours?

https://graphical.weat her.gov/sectors/conus .php?element=PoP12



# What does it mean when the chance of rain is 60% in the next 12 hours?

- There is a 60 percent chance that measurable precipitation (0.01 inch) will occur at any given point (grid box) in the area for which the forecast is made in the next 12 hours
- The complicated version that is not really that relevant:
- "Probability of Precipitation" (PoP) describes the chance of precipitation occurring at *any* point within an area.
- PoP =  $C \times A$ 
  - "C" = the confidence that precipitation will occur **somewhere** in the forecast area,
  - "A" = the percent of the area that will receive measureable precipitation, if it occurs at all.
- If the forecaster knows precipitation is sure to occur (confidence is 100%), then indicating that only 60% of the area will receive measurable (>0.01 inch) precipitation
- Or, if expecting precipitation everywhere (A=1), then confidence is only 60% that rain will fall
- But, usually the PoP is a combination of confidence and areal coverage: most of the time, the forecaster is expressing a combination of degree of confidence (say 75%) and areal coverage (80%)

# https://www.wpc.ncep.noaa.gov/pwpf/wwdaccum probs.php



3 month outlooks 3 categories: above equal chance below

https://www.cpc.nc ep.noaa.gov/produ cts/predictions/mul ti season/13 seaso nal outlooks/color/ p.gif



# https://www.cpc.ncep.noaa.gov/products/predictions/long range/two class.php



## https://www.cpc.ncep.noaa.gov/



### Probability Definitions

- Event- possible uncertain outcomes
- Null event- can't happen
- Elementary event- can't be decomposed into other events
- Compound event- decomposable into 2 or more elementary events
- S- sample or event space- all possible elementary events
- Mutually exclusive- two events that can't occur at same time
- MECE- Mutually exclusive and collectively exhaustive- no more than 1 event can occur and at least one event will occur

#### More Definitions

- E- Event
- Pr{E}- probability of Event E; 0≤ Pr{E} ≤ 1
- Pr{E} = 0, event does not occur
- Pr{E} = 1 event occurs

| Temperature below   | Temperature above   |
|---------------------|---------------------|
| Precipitation below | Precipitation below |
| Temperature below   | Temperature above   |
| Precipitation above | Precipitation above |

Figure 4.2. MECE possibilities for seasonal forecasts temperature and precpitation anomalies for a specifilocation.

# Two Statistical Frameworks: Frequency vs. Bayesian

- Frequency- probability of an event is its relative frequency after many trials
- a- number of occurrences of E
- n- number of opportunities for E to take place
- a/n- relative frequency of E occurring
- $Pr\{E\} \rightarrow a/n \text{ as } n \rightarrow \infty$

# Two Statistical Frameworks: Frequency vs. Bayesian

- Bayesian- probability represents the degree of belief of an individual about an outcome of an uncertain event
- Some events occur so rarely that there is no long-term relevant probability
- Two individuals can have different probabilities for same outcome
- Bookies are Bayesian
  - Super Bowl odds 2019: Heavy Patriots money had sportsbooks rooting for Rams

#### Deck of Cards

• If don't look at cards, then the odds of getting any specific card when dealt cards is the same as if you only were dealt one card: they are independent events

| Pr{ace} | Pr{10-K} | Pr{2-9} | Pr{21} |
|---------|----------|---------|--------|
| 7.7     | 30.8     | 61.5    | 4.8    |

|      | Tally of    | Total       | Tally of      | Total # of    | Observed    | Expected    | Expected      |
|------|-------------|-------------|---------------|---------------|-------------|-------------|---------------|
|      | occurrences | number of   | opportunities | opportunities | probability | Probability | number of     |
|      |             | occurrences | (2 x number   | (n)           | a/n *100    | from Part 1 | outcomes if n |
|      |             | (a)         | of hands)     |               | (%)         | (%)         | opportunities |
| ace  |             |             |               | 20            |             | 7.7         | 1.5           |
| 10-K |             |             |               | 20            |             | 30.8        | 6             |
| 2-9  |             |             |               | 20            |             | 61.5        | 12            |
| 21   |             |             |               | 10            |             | 4.8         | .5            |



Number of Opportunities: 2340 (180 days \* 13 years)

### More concepts

- {E}<sup>c</sup>- complement of {E}, event does not occur
- $Pr\{E\}^c = 1-\{E\}$
- $Pr\{E_1 \cap E_2\}$  joint probability that  $E_1 \& E_2$  occur
- $Pr\{E_1 \cap E_2\} = 0$  if  $E_1 \& E_2$  are mutually exclusive
- Pr{E<sub>1</sub> U E<sub>2</sub>}- probability that E<sub>1</sub> OR E<sub>2</sub> occur
- $Pr\{E_1 \cup E_2\} = Pr\{E_1\} + Pr\{E_2\} Pr\{E_1 \cap E_2\}$

### Conditional Probability

- Conditional probability: probability of {E<sub>2</sub>} given that {E<sub>1</sub>} has occurred
- $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\}$
- E<sub>1</sub> is the conditioning event
- If  $E_1$  and  $E_2$  are independent of each other, then  $Pr\{E_2 \mid E_1\} = Pr\{E_2\}$  and  $Pr\{E_1 \mid E_2\} = Pr\{E_1\}$
- Fair coin- Pr{heads} = 0.5
  - chance of getting heads on second toss is independent of the first Pr{heads | heads} = 0.5
     Pr{heads} twice = 0.5 \* 0.5 = .25

## Bayes Theorem

- $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\}$
- E<sub>1</sub> is the conditioning event
- What is the advantage? Probability of conditioning event E<sub>1</sub> only computed once
- $Pr\{E_1 \mid E_2\} = Pr\{E_2 \mid E_1\} * Pr\{E_1\} / Pr\{E_2\}$
- $Pr\{E_1 \cap E_2\} = Pr\{E_2 \mid E_1\} * Pr\{E_1\}$
- $Pr\{E_1 \cap E_2\} = Pr\{E_1 \mid E_2\} * Pr\{E_2\}$  then

Bayesian Application: how you should respond to "evidence"

|               | Pos Test | Neg Test | TOTAL |
|---------------|----------|----------|-------|
| DRUG USER     | 0.495%   | 0.005%   | 0.5%  |
| NOT DRUG USER | .995%    | 98.505%  | 99.5% |
| TOTAL         | 1.49%    | 98.51%   | 1     |

How many drug users test positive? 99%
Out of a ten thousand people, how many drug users do they catch? .00495\*10000=~50

What are odds of falsely accusing non drug user?

E₁ – not drug user

E<sub>2</sub> - positive test

 $Pr\{E_1\} - 99.5\%$ 

 $Pr\{E_2\} - 1.49\%$ 

 $Pr\{E_2 \mid E_1\} - .995\%$ 

 $Pr\{E_1 \mid E_2\} = Pr\{E_2 \mid E_1\} * Pr\{E_1\} / Pr\{E_2\} = 0.995 * 99.5 / 1.49 = 68\%$ 

- If you are a non drug user, you have a 68% chance of getting a "false positive"
- How many non-drug users get falsely accused?.00995\*10000=~100

Conclusion: always always ask for second opinion if clean and test positive

# Application of Bayes theorem: how to be rational responding to probabilities

|                  | Pos Test | Neg Test | TOTAL |
|------------------|----------|----------|-------|
| DRUG USER        | 0.495%   | 0.005%   | 0.5%  |
| NOT DRUG<br>USER | .995%    | 98.505%  | 99.5% |
| TOTAL            | 1.49%    | 98.51%   | 1     |

What are odds of a drug user skating?

E₄ – drug user

E<sub>3</sub> - negative test

 $Pr{E_3} - 98.51\%$ 

 $Pr\{E_4\} - 0.5\%$ 

 $Pr\{E_3 \cap E_4\} - .005\%$ 

 $Pr{E_4 | E_3} = Pr{E_4 \cap E_3} / Pr{E_3} = 0.005 / 98.51 = .0051\%$ 

Out of 10000 people, maybe 1 drug user will test negative Conclusion: people who give drug tests are more interested in making sure drug users are caught than worrying about innocent people being falsely accussed

#### Olympic Fog Climatology

When phenomena are persistent, then "odds" are higher once an event is underway



#### **Forecast Verification**

- What is your reason for doing it?
- (Brier and Allen 1951; Compendium of Meteorology)
  - Administrative: who's blowing the forecasts?
  - Scientific: why do errors happen?
  - Economic: what's the impact of forecast errors?

# What you should be doing

- Read Chapter 2 & 3a Notes
- Assignment 4 due November 8. Finish it today
- Assignment 5 Extra Credit . Due Nov. 15

## Measures oriented: "give me a number!"

Distill set of forecasts and observations into small # of metrics

|          |                          | Observed | Observed | Forecast<br>marginal<br>totals |
|----------|--------------------------|----------|----------|--------------------------------|
|          |                          | Yes      | No       |                                |
| Forecast | Yes                      | а        | b        | a+b                            |
| Forecast | No                       | С        | d        | c+d                            |
|          | Observed marginal totals | a+c      | b+d      | n=a+b+c+d<br>sample size       |

• PC = percent correct = 
$$\frac{a+d}{n}$$

• FAR = false alarm ratio = 
$$\frac{b}{a+b}$$

• TS = CSI = 
$$\frac{a}{a+b+c}$$

• POD = HR = 
$$\frac{a}{a+c}$$

# What if it just happened by chance?

|          |                          | Observed | Observed | Forecast<br>marginal<br>totals |
|----------|--------------------------|----------|----------|--------------------------------|
|          |                          | Yes      | No       |                                |
| Forecast | Yes                      | а        | b        | a+b                            |
| Forecast | No                       | С        | d        | c+d                            |
|          | Observed marginal totals | a+c      | b+d      | n=a+b+c+d<br>sample size       |

- Random correct yes forecast by chance =  $\frac{(a+b)}{n} \frac{(a+c)}{n}$
- Random correct no forecast by chance =  $\frac{(b+d)}{n} \frac{(c+d)}{n}$
- $SS = \frac{(correct forecasts random correct forecasts)}{(total forecasts random correct forecasts)}$

$$\bullet \quad HSS = \frac{2(ad-bc)}{(a+c)(b+d)+(a+b)(b+d)}$$

### Verifying wind forecasts

|          |                             | Observed | Observed | Forecast<br>Marginal totals |
|----------|-----------------------------|----------|----------|-----------------------------|
|          |                             | ≥ 5m/s   | <5 m/s   |                             |
| Forecast | ≥ 5m/s                      | 11       | 6        | 17                          |
| Forecast | <5 m/s                      | 16       | 44       | 60                          |
|          | Observed<br>Marginal totals | 27       | 50       | 77                          |

PC= 71.4%; FAR= 35.3%; TS= 33.3%; and POD = 40.7%

randomly correct yes forecast: 7.7%

randomly correct no forecast: 50.1%

HSS= 31.4%

#### Distributions oriented: "how close am I?"

- Assessing the characteristics of joint distribution of errors
- Categorize errors: which errors are smallest, which are biggest as a function of the range of values?
- Relies heavily on conditional probabilities
- http://meso1.chpc.utah.edu/jfsp/

#### Forecast Verification

- http://meso1.chpc.utah.edu/jfsp/
- Select Wildfires by WFO
- Select SLC
- Look at over all years, then focus on wildfires in Utah in 2016
- Then follow along in class

#### Assessing Forecast Accuracy



|       |                                | Observed | Observed | Observed | Error<br>Marginal<br>totals |
|-------|--------------------------------|----------|----------|----------|-----------------------------|
|       |                                | ≤3 m/s   | 3-6 m/s  | ≥6 m/s   |                             |
| Error | ≤ -2 m/s                       | 0        | 10       | 11       | 21                          |
| Error | ± 2 m/s                        | 22       | 20       | 7        | 49                          |
| Error | > 2 m/s                        | 0        | 7        | 0        | 7                           |
|       | Observed<br>Marginal<br>totals | 22       | 37       | 18       | 77                          |

- 26% of the forecasts were within 2 m/s when the wind speeds were between 3 and 6 m/s (20/77)
- Given that the observed wind speed is greater than 6 m/s: (Pr{E<sub>1</sub>} = 18/77= 23.4%)
- Probability that the forecasters predict strong winds to be too light  $Pr\{E_2 \mid E_1\}$ :  $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\} = ((11/77)/(18/77)) = 64.7\%$

What can we say about estimating this winter's snow total will be?

- What physically is happening?
- Could we use last winter's snow total to predict this winter's?
  - Persistence from one year to next
- What about the amount of snow earlier this winter or right now?
  - Persistence from one month to the next...

#### Alta Snowfall Seasonal Totals



#### Atla Snowfall Accumulation Each Winter



# How Much Snow Might Accumulate During the Season at Alta?



### Predict May 1 Snowfall from Dec 1 Snowfall

| Case 1. Predictor: Dec1 total snowfall (cm) |                    |       |      |       |                    |  |
|---------------------------------------------|--------------------|-------|------|-------|--------------------|--|
| Predictand: May 1 Total                     |                    | Below | Near | Above | Marginal<br>Totals |  |
| snowfall at Alta (cm)                       | Below              | 14    | 9    | 1     | 24                 |  |
|                                             | Near               | 6     | 9    | 10    | 25                 |  |
|                                             | Above              | 4     | 7    | 13    | 24                 |  |
|                                             | Marginal<br>Totals | 24    | 25   | 24    | 73                 |  |

## Predict May 1 Spay fall from Dag 1 Spay wfall

| Pr{E <sub>1</sub> }                  | 24/73=33% | $Pr\{M_3 \mid E_3\}$                 | 13/24=54%  |
|--------------------------------------|-----------|--------------------------------------|------------|
| $Pr\{E_1 \cap E_2\}$                 | 0         | $Pr\{E_1 \mid M_1\}$                 | 14/24=58%  |
| $Pr\{E_1 \cap M_1\}$                 | 14/73=19% | Pr{E <sub>2</sub>   M <sub>1</sub> } | 9/24=38%   |
| $Pr{E_1 \cap M_3}$                   | 4/73= 5%  | Pr{E <sub>3</sub>   M <sub>1</sub> } | 1/24=4%    |
| Pr{M <sub>1</sub>   E <sub>1</sub> } | 14/24=58% | Pr{E <sub>3</sub>   M <sub>3</sub> } | 13/24=54%  |
| Pr{M <sub>3</sub>   E <sub>1</sub> } | 4/24=17%  | $Pr{E_1 \cap M_1}$ IF random         | 9/72=11%   |
| Pr{M <sub>3</sub>   E <sub>2</sub> } | 7/24=29%  | % May 1 total same as Predictor      | 36/73= 49% |

# Predict May 1 Snowfall from Last Year's May 1 Snowfall

| Case 6. Predicto                              | r: May1 Prior      | Year total sr | nowfall (cm) |       |                    |
|-----------------------------------------------|--------------------|---------------|--------------|-------|--------------------|
| Predictand: May 1 Total snowfall at Alta (cm) |                    | Below         | Near         | Above | Marginal<br>Totals |
| (333)                                         | Below              | 10            | 7            | 7     | 24                 |
|                                               | Near               | 5             | 12           | 7     | 24                 |
|                                               | Above              | 8             | 6            | 10    | 24                 |
|                                               | Marginal<br>Totals | 23            | 25           | 24    | 72                 |