AArch32	AArch64	AArch32	AArch64	Index by	External
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

PIREO_EL2, Permission Indirection Register 0 (EL2)

The PIREO EL2 characteristics are:

Purpose

Stage 1 Permission Indirection Register for unprivileged access of the EL2&0 translation regime.

Configuration

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to PIREO EL2 are undefined.

Attributes

PIREO EL2 is a 64-bit register.

Field descriptions

 Perm7
 Perm6
 Perm5
 Perm4
 Perm3
 Perm2
 Perm1
 Perm0

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents Stage 1 Base Permissions.

Perm <m></m>	Meaning
0b0000	No access, Overlay applied.
0b0001	Read, Overlay applied.
0b0010	Execute, Overlay applied.
0b0011	Read and Execute, Overlay applied.
0b0100	Reserved - treated as No access, Overlay applied.
0b0101	Read and Write, Overlay applied.
0b0110	Read, Write and Execute, Overlay applied.
0b0111	Read, Write and Execute, Overlay applied.

0b1000	Read, Overlay not applied.
0b1001	Read, GCS Read and GCS Write, Overlay not applied.
0b1010	Read and Execute, Overlay not applied.
0b1011	Reserved - treated as No access, Overlay not applied.
0b1100	Read and Write, Overlay not applied.
0b1101	Reserved - treated as No access, Overlay not applied.
0b1110	Read, Write and Execute, Overlay not applied.
0b1111	Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When Stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing PIREO_EL2

When FEAT_VHE is implemented, and HCR_EL2. E2H is 1, without explicit synchronization, accesses from EL2 using the register name PIREO_EL2 or PIREO_EL1 are not guaranteed to be ordered with respect to accesses using the other register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIRE0_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0010	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        X[t, 64] = NVMem[0x298];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PIRE0\_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PIRE0\_EL2;
```

MSR PIREO EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x298] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PIRE0\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PIRE0\_EL2 = X[t, 64];
```

MRS <Xt>, PIRE0 EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nPIRE0_EL1 ==
'0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x290];
    else
        X[t, 64] = PIRE0\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        X[t, 64] = PIRE0\_EL2;
    else
        X[t, 64] = PIRE0\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PIRE0\_EL1;
```

MSR PIREO EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.PIEn == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HFGWTR EL2.nPIRE0 EL1 ==
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x290] = X[t, 64];
    else
        PIRE0\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.PIEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR EL3.PIEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        PIREO EL2 = X[t, 64];
    else
        PIRE0\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PIRE0\_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.