Aufgabe 4

a)

 $L = \{\langle M \rangle w \mid M \text{ erreicht bei Eingabe } w \text{ mindestens einmal den Zustand } q\}$

Eingabe: w, TM M, forderter Zustand q, $|Q| \cdot |\Gamma| \cdot max\{|w|, 1\}$

Um zu entscheiden, ob M auf w nie den Zustand q erreicht, simuliere M auf w. Aufs zweite Band schreiben wir erreichte Konfigurationen.

Dann gibt es folgende Fälle:

- 1. q wird erriecht in $|Q| \cdot |\Gamma| \cdot max\{|w|, 1\}$ vielen Schritten. \Longrightarrow Akzeptieren.
- 2. M terminiert und q wird nie erriecht. \Longrightarrow Verwerfen.
- 3. M terminiert nicht und q wird in $|Q| \cdot |\Gamma| \cdot max\{|w|, 1\}$ vielen Schritten nie erriecht.
- ⇒ Verwerfen. (D.h. eine Konfiguration wird doppelt besucht.)

b)

 $L_b = \{ \langle M \rangle \ w \mid M \text{ schreibt bei Eingabe } w \text{ jemals ein } \# . \}$

c)

 $L_c = \{ \langle M \rangle \ w \mid \text{ wenn M bei leeren Eingabewort gestart wird, schreibt M jemals einen a.} \}$

c)

Aufgabe 5

a)

```
S = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = \bot \}
```

Dann ist:

 $L(S) = \{ \langle M \rangle \mid \text{berechnet eine Funktion aus S. } \}$ $= \{ \langle M \rangle \mid M \text{ hält auf keinen W\"{o}rter.} \}$

 $S \neq \emptyset$: $f_{M_{\perp}} \in S$, M_{\perp} geht immer in Endlosschleife.

 $S \neq R$: $f_{M_w} \in R \setminus S$, M_w hält auf w und ist endscheidbar.

Nach $Satz\ von\ Rice$ ist L_1 nicht rekursiv.

b)

$$S = \{ f_M \mid \forall w, w' \in \{0, 1\}^* : f_{M_c}(w) = w', |w'| < c \}$$

Dann ist:

 $L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus S. } \}$

={ $\langle M \rangle$ | die Länge aller ausgegebenen Wörter von M ist beschränkt bei c}

 $S \neq \emptyset$: $f_{M_w} \in S$, M_w hält immer auf jeder Eingabe und die Ausgabe ist leer.

 $S \neq R$: $f_{M_w} \in R \setminus S$, M_w hält auf w mit $|f_w| \geq c$.

Nach $Satz\ von\ Rice$ ist L_2 nicht rekursiv.