MInf Project: Summary & Schedule

Ziqian Ni

September 2019

1 Summary

The main goal of this project is to generate an algorithm that can compute the best next view when applying the space carving algorithm to objects with articulated shapes. Unlike the common largely convex shapes, articulated shapes are more tough to deal with due to their non-convexity and porosity. The original way of accumulating data from a number of evenly distributed views may fail in these cases, loosing both accuracy and efficiency. Therefore, we are designing an interactive and iterative process in which the next view is computed based on the partial model we already built with data acquired previously. Obviously, the algorithm that decide which is the best next view plays a crucial part in the process.

The work can be divided into three steps: First of all, a implementation of space carving algorithm, from extracting the silhouette of the object to projecting and carving, is needed. We will implement the algorithm based on RGB images but also make extension for depth maps as we are dealing with RGB-D images in the future work. We can use open source 3D datasets like Multiview Datasets , which provide photos from multiple views and their corresponding projection matrices, to test our program. After carving, we use tools like mesh-lab to visualize the result.

Then, we need to find a mathematical way to describe the procedure of carving and come up with reasonable algorithm to compute the next view. Many factors should be taken into consideration: the next view should not only provide as much information as possible but also should not be too far from present view so that it won't be too time-costly for the camera to travel to the next position. We can use RGB cameras and RGB-D cameras to get the photographs of the object from multiple views, and we are generating algorithms for both the two kinds of cameras. The tests of algorithms will be held in simulation environment first, and after that we can try to collect some real data in the laboratory and do tests in the real environment.

At last, we will analyse the algorithms. To be specific, we are going to compare the RGB-based algorithm and the RGBD-based algorithm by their accuracy and efficiency.

2 Schedule

Important time point:

- Fri 24 Jan: Submit interim report

- Thu 2 Apr: Submit final report

- Week of 27 Apr: Presentation/demo

Schedule:

time		task
wk2		
Sem1	wk3	implement a simple version of space carving algorithm
	wk4	improve the implementation
	wk5	prepare the simulation environment
	wk6	
	wk7	finish the first version of algorithm
	wk8	test it in simulation environment
	wk9	
	wk10	
	wk11	
Rev/Exam	wk1	improve the algorithm
	wk2	write the interim report
Vac	wk2	(do tests in real environment if time available)
	wk3	
	wk4	
Sem2	wk1	test the algorithm in real environment analyse the performance
	wk2	
	wk3	
	wk4	
	wk5	
	wk6	
	wk7	
	wk8	finish the report
	wk9	
	wk10	
	wk11	
Vac	wk1	prepare for the presentation
	wk2	
Rev	wk1	
Exam	wk1	