Linear Algebra Done Right Solutions to Exercises 6.C

1 Orthogonal complement of subset

Problem statement

Suppose $v_1, \ldots, v_m \in V$. Prove that

$$\{v_1,\ldots,v_m\}^{\perp} = (\operatorname{span}(v_1,\ldots,v_m))^{\perp}.$$

Solution

To prove our desired result, let's first show $\{v_1, \ldots, v_m\}^{\perp} \subset (\operatorname{span}(v_1, \ldots, v_m))^{\perp}$, and then $(\operatorname{span}(v_1, \ldots, v_m))^{\perp} \subset \{v_1, \ldots, v_m\}^{\perp}$.

First Direction

Suppose $u \in \{v_1, \dots, v_m\}^{\perp}$. This implies $\langle u, v_j \rangle = 0$ for $j = 1, \dots, m$. We can write every $v \in \text{span}(v_1, \dots, v_m)$ as

$$v = a_1 v_1 + \dots + a_m v_m$$

for $a_1, \ldots, a_m \in \mathbf{F}$. It follows that

$$\langle u, v \rangle = \bar{a}_1 \langle u, v_1 \rangle + \dots + \bar{a}_m \langle u, v_m \rangle = 0.$$

Hence, $u \in (\operatorname{span}(v_1, \dots, v_m))^{\perp}$.

Second Direction

Suppose $u \in (\operatorname{span}(v_1, \ldots, v_m))^{\perp}$. Since $v_1, \ldots, v_m \in \operatorname{span}(v_1, \ldots, v_m)$, it follows that $\langle u, v_j \rangle = 0$ for $j = 1, \ldots, m$. Hence, $u \in \{v_1, \ldots, v_m\}^{\perp}$.

 $\mathbf{2} \quad U^{\perp} = \{0\} \text{ iff } U = V$

Problem statement

Suppose U is a finite-dimensional subspace of V. Prove that $U^{\perp} = \{0\}$ if and only if U = V.

Solution

First Direction

Suppose $U^{\perp}=\{0\}$. Via Theorem 6.51 ('The orthogonal complement of the orthogonal complement') and Theorem 6.46(b) ('Basic properties of orthogonal complement'), we can write

$$U = (U^{\perp})^{\perp} = \{0\}^{\perp} = V.$$

Hence, U = V.

Second Direction

Suppose U=V. Via Theorem 6.46(c) ('Basic properties of orthogonal complement'), we can write

$$U^{\perp} = V^{\perp} = \{0\}.$$

Hence, $U^{\perp} = \{0\}.$

3
$$U^{\perp} = \{0\} \text{ iff } U = V$$

Problem statement

Suppose U is a subspace of V with basis u_1, \ldots, u_m and

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

is a basis of V. Prove that if the Gram-Schmidt Procedure is applied to the basis of V above, producing a list $e_1, \ldots, e_m, f_1, \ldots, f_n$, then e_1, \ldots, e_m is an orthonormal basis of U and f_1, \ldots, f_n is an orthonormal basis of U^{\perp} .

Solution

Via the Gram-Schmidt Procedure (Theorem 6.31), we can state

$$\operatorname{span}(u_1,\ldots,u_m)=\operatorname{span}(e_1,\ldots,e_m).$$

Thus, e_1, \ldots, e_m is an orthonormal basis of U.

Via Theorem 6.50 ('Dimension of the orthogonal complement'), we have

$$\dim V = \dim U + \dim U^{\perp}$$

which implies dim $U^{\perp} = n$. Given $e_1, \ldots, e_m, f_1, \ldots, f_n$ is an orthonormal list, it follows that $\langle e_j, f_k \rangle = 0$ for $j = 1, \ldots, m$ and $k = 1, \ldots, n$. Hence,

 $f_j \in \{e_1, \dots, e_m\}^{\perp}$ and, via Exercise 6.C(1), $f_j \in (\operatorname{span}(e_1, \dots, e_m))^{\perp}$. Therefore, $f_j \in U^{\perp}$ for $j = 1, \dots, n$.

Given $\dim U^{\perp} = n$ and f_1, \dots, f_n is an orthonormal list of length n in U^{\perp} ,

it follows that f_1, \ldots, f_n is an orthonormal basis of U^{\perp} .

4 Finding orthonormal bases of U, U^{\perp}

Problem statement

Suppose U is the subspace of \mathbb{R}^4 defined by

$$U = \text{span}((1, 2, 3, -4), (-5, 4, 3, 2)).$$

Find an orthonormal basis of U and an orthonormal basis of U^{\perp} .

Solution

Following exercise 6.C(3), we need to expand (1, 2, 3, -4), (-5, 4, 3, 2) to be a basis of \mathbb{R}^4 , and then apply the Gram-Schmidt Procedure (Theorem 6.31).

A reasonable guess at two vectors to make a basis of \mathbb{R}^4 is (1,0,0,0), (0,1,0,0). To check if (1,2,3,-4), (-5,4,3,2), (1,0,0,0), (0,1,0,0) is linearly independent, we can solve the following system of linear equations

$$x - 5y + z + 0w = 0$$
$$2x + 4y + 0z + w = 0$$
$$3x + 3y + 0z + 0w = 0$$
$$-4x + 2y + 0z + 0w = 0.$$

The bottom two equations can be reduced to x = -y and 2x = y, which implies x = 0 and y = 0. Substituting x = 0 and y = 0 into the top two equations, we get z = 0 and w = 0, confirming that our list is linearly independent.

By applying the Gram-Schmidt Procedure to our list¹, we obtain e_1, e_2, e_3, e_4 where e_1, e_2 is an orthonormal basis of U and e_3, e_4 is an orthonormal basis of U^{\perp} .

 $^{^{1}\}mathrm{This}$ is lazy, but the computation is heinously messy.

5 Proving $P_{U^{\perp}} = I - P_U$

Problem statement

Suppose V is finite-dimensional and U is a subspace of V. Show that $P_{U^{\perp}} = I - P_U$, where I is the identity operator on V.

Solution

First, let's describe $P_{U^{\perp}}$. Following from Theorem 6.47 ('Direct sum of a subspace and its orthogonal complement'), for $v \in V$ we can write v = u + w where $u \in U^{\perp}$ and $w \in (U^{\perp})^{\perp}$. Given V is finite-dimensional and Theorem 6.51 ('The orthogonal complement of the orthogonal complement'), $(U^{\perp})^{\perp} = U$ and $w \in U$. Therefore $P_{U^{\perp}}v = u$ and $P_{U}v = w$, and we can write

$$P_{U^{\perp}}v = Iv - P_{U}v.$$

Hence, it follows that $P_{U^{\perp}} = I - P_{U}$.

6 $P_U P_W = 0$ **iff** $\langle u, w \rangle = 0$

Problem statement

Suppose U and W are finite-dimensional subspaces of V. Prove that $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$.

Solution

First Direction

Suppose $P_U P_W = 0$. This implies range $P_W \subset \text{null } P_U$. Via Theorems 6.55(d) and 6.55(e) ('Properties of the orthogonal projection P_U '), it follows that $W \subset U^{\perp}$. Hence, $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$ since $w \in U^{\perp}$.

Second Direction

Suppose $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$. This implies $W \subset U^{\perp}$, and via Theorems 6.55(d) and 6.55(e), it follows that range $P_W \subset \text{null } P_U$. Hence, $P_U P_W = 0$.

7 Prove $\exists U$ such that $P = P_U$

Problem statement

Suppose V is finite-dimensional and $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and every vector in null P is orthogonal to every vector in range P. Prove that there exists a subspace U of V such that $P = P_U$.

Solution

Let's first think about null $P \cap \text{range } P$. Suppose $v \in \text{null } P \cap \text{range } P$. Given every vector in null P is orthogonal to every vector in range P, it follows that $\langle v, v \rangle = 0$ and v = 0 via the property of definiteness (Definition 6.3). Thus null $P \cap \text{range } P = \{0\}$. We can write

 $\dim(\operatorname{null} P + \operatorname{range} P) = \dim\operatorname{null} P + \dim\operatorname{range} P - \dim(\operatorname{null} P \cap \operatorname{range} P)$

via Theorem 2.43 ('Dimension of a sum') and

$$\dim V = \dim \operatorname{null} P + \dim \operatorname{range} P$$

via the Fundamental Theorem of Linear Maps. Since $\dim(\operatorname{null} P \cap \operatorname{range} P) = 0$, it follows that

$$\dim(\text{null } P + \text{range } P) = \dim \text{null } P + \dim \text{range } P = \dim V,$$

and thus

$$V = \text{null } P \oplus \text{range } P.$$

Via Theorem 6.47 ('Direct sum of a subspace and its orthogonal complement'), we can write

$$\operatorname{range} P \oplus \operatorname{null} P = V = \operatorname{range} P \oplus (\operatorname{range} P)^{\perp}$$

implying that null $P = (\text{range } P)^{\perp}$.

A reasonable guess at our desired subspace U is range P. To show this, suppose $v \in V$. We can write v as v = u + w where $u \in \text{range } P$ and $w \in (\text{range } P)^{\perp} = \text{null } P$. It follows that

$$Pv = P(u+w) = Pu + Pw = Pu$$

and

$$P_{\text{range }P}v = u$$

where u is the orthogonal projection of v onto range P.

To complete the proof, we need to show that Pu = u. Since $u \in \text{range } P$, there exists $x \in V$ such that Px = u. Applying P to both sides, we have $P^2x = Pu$. Given $P^2 = P$, we can write

$$Pu = P^2x = Px = u.$$

Hence, Pv = Pu = u and $P_{\text{range }P}v = u$ for $v \in V$.