Δίκτυα Υπολογιστών ΙΙ

Ακολουθεί ανάλυση του κώδικα της εργασίας 1.3 του πρώτου κεφαλαίου.

Το πρόγραμμα ακολουθεί την εξής ροή:

- 1. Με την χρήση της συνάρτησης read_data(), διαβάζει την είσοδο του χρήστη.
 - a. Διαβάζει τον αριθμό των κόμβων στο δίκτυο node_count (εκτός του αισθητήρα).
 - b. Διαβάζει το bitrate κάθε συνδέσμου.
 - c. Διαβάζει το μέγεθος του πακέτου packet_size.
 - d. Διαβάζει τον κόμβο στον οποίο είναι συνδεδεμένος ο edge server edge_node_conn.
 - e. Ελέγχεται ότι όλα τα δεδομένα είναι θετικά ανα βήμα, και επίσης ότι ο δείκτης του edge server είναι το πολύ ο αριθμός των κόμβων k.
 - f. Στο τέλος επιστρέφεται ένα struct το οποίο περιέχει όλη την πληροφορία που διαβάστηκε.
- 2. Η πληροφορία δίνεται στην μεταβλητή network_info, η οποία δίνεται στην calc_delay() για να γίνουν οι υπολογισμοί καθυστέρησης.
 - a. Η συνάρτηση επιστρέφει έναν πίνακα που περιέχει την καθυστέρηση προς edge server, και προς κεντρικό server.
- 3. Με την χρήση της print_results(), οι καθυστερήσεις καθώς και η διαφορά τους εκτυπώνονται.

Παράδειγμα

Εστω εισάγονται τα ακόλουθα δεδομένα:

node_count = 10
bitrate = 16
packet_size = 32
edge_node_conn = 11

The connection must be with a node between 1 and node count (10) Enter edge server node connection Προφανώς το πρόγραμμα θα απορρίψει την τιμή του edge_node_conn εφόσον είναι μεγαλύτερη του node_count.

Έστω η νέα τιμή του edge_node_conn είναι 3. Ο τύπος υπολογισμού καθυστέρησης είναι ο εξής:

$$D = \left\{ n \frac{L}{R}, k \frac{L}{R} \right\} \text{ ^{Apa:}} \quad D = \left\{ 3 \frac{32}{16}, 10 \frac{32}{16} \right\} = \{6, 20\}$$

Και η διαφορά μεταξύ των δύο θα είναι 20 - 6 = 14s.

To server: 20.000sec
To edge: 6.000sec
Difference: 14.000sec

Κουλουράς Ιωάννης Ε20075