Sistemes de coordenades i espais vectorials: introducció als vectors

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Grau en Multimèdia. Aplicacions i Videojocs

jordi.villa@uvic.cat

curs 2022-2023

Índex

- Els nombres reals
- Espais 2D i 3D
- Osplaçament i vectors
- Espais vectorials
- Sistemes de coordenades
- Trigonometria bàsica

Introducció al curs

El material d'aquestes presentacions està basat en anteriors presentacions i apunts d'altres professors [?, ?, ?] de la UVic-UCC, pàgines web diverses (normalment enllaçades des del text), així com monografies [?, ?, ?].

Perquè necessitem els nombres reals

- Per a descriure el món, cal mesurar magnituds
- Per a comprendre'l, cal conèixer com es relacionen les magnituds
- Per a saber com es relacionen les magnituds, cal generar models

$$\mathbb{C} \ \textit{Complexos} \left\{ \begin{array}{l} \mathbb{R} & \textit{Reals} \\ \mathbb{R} & \textit{Reals} \end{array} \right\} \left\{ \begin{array}{l} \mathbb{Q} & \textit{Racionals} \\ \mathbb{Z} & \textit{Enters} \end{array} \right\} \left\{ \begin{array}{l} \mathbb{N} & \textit{Naturals} \\ \textit{Zero} \\ \textit{Enters negatius} \\ \mathbb{Q} - \mathbb{Z} & \textit{Fraccionaris} \end{array} \right.$$

(1)

exercises

- Escriu equacions polinòmiques amb coeficients enters que tinguin com a solucions nombres naturals, enters, racionals, irracionals (algebraics)
- Escriu una equació polinòmica amb coeficients enters que tingui com a solució el número π (transcendent)
- Troba una equació polinòmica amb coeficients constants sense cap nombre real com a solució

Nombres discrets vs nombres continus

- \mathbb{Z} és un conjunt de nombres discrets: donat un enter, sempre hi ha un enter consecutiu. Exemple: el codi binari, 0, 1.
- Un conjunt de números es diu que és continu si poden prendre qualsevol valor en un interval finit o infinit. Exemples: [3,5], (- inf,0). El món no és discret, sinó mesurable! Per tant, no podem parlar de dos nombres reals consecutius.

Els nombres reals es representen damunt una recta, la recta real.

Propietat de la recta real

- Necessitem una referència per anomenar els punts de la recta: fixarem un orígen (el 0) i una escala (1)
- La recta està ordenada
- És infinita
- els intèrvals i semirectes són parts de la recta:

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,\infty] = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$
(2)

• La distància entre nombres reals és d(a, b) = |b - a|.

El pla 2D

- Fem el salt a dues dimensions. Ncessitarem referenciar els punts en un pla.
- René Descartes (1590-1650) va posar les bases matemàtiques per a poder fer-ho: el producte cartesià $\mathbb{R} \times \mathbb{R}$, consistent en el conjunt de parells (ordenats) de nombres reals:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) : x \in \mathbb{R}, y \in \mathbb{R} \}$$
 (3)

El pla 2D

- Com fèiem amb la recta, usem una referència per identificar els punts del pla: fixem un origen (0,0) i dos punts que ens donguin l'escala horitzontal i vertical: $\{(1,0),(0,1)\}$.
- Els eixos d'abcisses i ordenades venen determinats per les rectes $\{(x,y)\in\mathbb{R}^2:y=0\}$ i $\{(x,y)\in\mathbb{R}^2:x=0\}$, respectivament.

UVIC | UVIC-UCC

El pla 2D

• Podem definir els quatre quadrants del pla com:

$$Q1 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$$

$$Q2 = \{(x, y) \in \mathbb{R}^2 : x \le 0, y \ge 0\}$$

$$Q3 = \{(x, y) \in \mathbb{R}^2 : x \le 0, y \le 0\}$$

$$Q4 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \le 0\}$$

La distància euclídea:

$$d((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$
 (4)

L'Espai 3D

- El nostre interès és l'espai tridimensional, que ens apropa a la realitat (escultura, holografia, impressió-3D, animació 3D...).
- L'espai 3D és el conjunt de tríos de nombres reals:

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{ (x, y, z) : x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R} \}$$
 (5)

- Triem un origen (0,0,0) i tres punts més que ens donen les tres escales, (1,0,0), (0,1,0) i (0,0,1)
- podem definir eixos (per exemple l'eix Z es defineix com $\{(x,y,z)\in\mathbb{R}^3:x=0,y=0\}$) o plans (l'Eix XY vidra definit per $\{(x,y,z)\in\mathbb{R}^3:z=0\}$).
- La distància euclídea:

$$d((x_1,y_1,z_1),(x_2,y_2,z_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Desplaçament i vectors

El nostre interès és descriure moviments, ja siguin en la recta, en el pla o en l'espai 3D.

Com descriuries el desplaçament d'un punt des de la posició x=2 a la posició x=4? i el desplaçament invers?

Com descriuries el desplaçament rectilini d'un punt des de la posició (2,1) a la (-3,2). I el desplaçament contrari? D óna dos punts inicial i final entre els quels hi hauria el mateix desplaçament.

Pots posar un exemple similar en l'espai 3D?

En general:

El vector desplaçament entre la posició inicial A i la final B es defineix com $\overrightarrow{AB} = B - A$

El vector desplaçament entre la posició inicial $A=(x_1,y_1)$ i la final $B(x_2,y_2)$ es defineix com $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$

El vector desplaçament entre la posició inicial $A=(x_1,y_1,z_1)$ i la final $B=(x_2,y_2,z_2)$ es defineix com $\vec{AB}=(x_2-x_1,y_2-y_1,z_2-z_1)$

Cada escalar del vector s'anomena component

